From 4a4bd1b9d8a8888bce055d866bb264e72a3fd40f Mon Sep 17 00:00:00 2001 From: jakobrunge Date: Fri, 23 Jun 2023 01:16:26 +0200 Subject: [PATCH 1/5] re-wrote pcmciplus in more modular form --- tigramite/pcmci.py | 305 ++++++++++++++++++++++++++++++++-------- tigramite/pcmci_base.py | 8 +- 2 files changed, 253 insertions(+), 60 deletions(-) diff --git a/tigramite/pcmci.py b/tigramite/pcmci.py index 85eda661..75aeaaab 100644 --- a/tigramite/pcmci.py +++ b/tigramite/pcmci.py @@ -12,7 +12,7 @@ import numpy as np import scipy.stats -from .pcmci_base import PCMCIbase +from pcmci_base import PCMCIbase def _create_nested_dictionary(depth=0, lowest_type=dict): """Create a series of nested dictionaries to a maximum depth. The first @@ -2155,17 +2155,12 @@ def run_pcmciplus(self, max_conds_px_lagged=max_conds_px_lagged, fdr_method=fdr_method) - # else: - # raise ValueError("pc_alpha=None not supported in PCMCIplus, choose" - # " 0 < pc_alpha < 1 (e.g., 0.01)") - - if pc_alpha < 0. or pc_alpha > 1: + elif pc_alpha < 0. or pc_alpha > 1: raise ValueError("Choose 0 <= pc_alpha <= 1") # Check the limits on tau self._check_tau_limits(tau_min, tau_max) - # Set the selected links - # _int_sel_links = self._set_sel_links(selected_links, tau_min, tau_max) + # Set the link assumption _int_link_assumptions = self._set_link_assumptions(link_assumptions, tau_min, tau_max) # Step 1: Get a superset of lagged parents from run_pc_stable @@ -2200,6 +2195,147 @@ def run_pcmciplus(self, + "\nfdr_method = %s" % fdr_method ) + skeleton_results = self._pcmciplus_mci_skeleton_phase( + lagged_parents, _int_link_assumptions, pc_alpha, + tau_min, tau_max, max_conds_dim, max_combinations, + max_conds_py, max_conds_px, max_conds_px_lagged, + reset_lagged_links, fdr_method, + p_matrix, val_matrix + ) + + colliders_step_results = self._pcmciplus_collider_phase( + skeleton_results['graph'], skeleton_results['sepset'], + lagged_parents, pc_alpha, + tau_min, tau_max, max_conds_py, max_conds_px, max_conds_px_lagged, + conflict_resolution, contemp_collider_rule) + + final_graph = self._pcmciplus_rule_orientation_phase(colliders_step_results['graph'], + colliders_step_results['ambiguous_triples'], conflict_resolution) + + # Store the parents in the pcmci member + self.all_lagged_parents = lagged_parents + + return_dict = { + 'graph': final_graph, + 'p_matrix': skeleton_results['p_matrix'], + 'val_matrix': skeleton_results['val_matrix'], + 'sepset': colliders_step_results['sepset'], + 'ambiguous_triples': colliders_step_results['ambiguous_triples'], + } + + # No confidence interval estimation here + return_dict['conf_matrix'] = None + + # Print the results + if self.verbosity > 0: + self.print_results(return_dict, alpha_level=pc_alpha) + + # Return the dictionary + self.results = return_dict + + return return_dict + + + # # Set the maximum condition dimension for Y and X + # max_conds_py = self._set_max_condition_dim(max_conds_py, + # tau_min, tau_max) + # max_conds_px = self._set_max_condition_dim(max_conds_px, + # tau_min, tau_max) + + # if reset_lagged_links: + # # Run PCalg on full graph, ignoring that some lagged links + # # were determined as non-significant in PC1 step + # links_for_pc = deepcopy(_int_link_assumptions) + # else: + # # Run PCalg only on lagged parents found with PC1 + # # plus all contemporaneous links + # links_for_pc = {} #deepcopy(lagged_parents) + # for j in range(self.N): + # links_for_pc[j] = {} + # for parent in lagged_parents[j]: + # if _int_link_assumptions[j][parent] in ['-?>', '-->']: + # links_for_pc[j][parent] = _int_link_assumptions[j][parent] + + # # Add contemporaneous links + # for link in _int_link_assumptions[j]: + # i, tau = link + # link_type = _int_link_assumptions[j][link] + # if abs(tau) == 0: + # links_for_pc[j][(i, 0)] = link_type + + # results = self.run_pcalg( + # link_assumptions=links_for_pc, + # pc_alpha=pc_alpha, + # tau_min=tau_min, + # tau_max=tau_max, + # max_conds_dim=max_conds_dim, + # max_combinations=max_combinations, + # lagged_parents=lagged_parents, + # max_conds_py=max_conds_py, + # max_conds_px=max_conds_px, + # max_conds_px_lagged=max_conds_px_lagged, + # mode='contemp_conds', + # contemp_collider_rule=contemp_collider_rule, + # conflict_resolution=conflict_resolution) + + # graph = results['graph'] + + # # Update p_matrix and val_matrix with values from links_for_pc + # for j in range(self.N): + # for link in links_for_pc[j]: + # i, tau = link + # if links_for_pc[j][link] not in ['<--', ' 0: + # self.print_results(return_dict, alpha_level=pc_alpha) + # # Return the dictionary + # self.results = return_dict + # return return_dict + + def _pcmciplus_mci_skeleton_phase(self, + lagged_parents, _int_link_assumptions, pc_alpha, + tau_min, tau_max, max_conds_dim, max_combinations, + max_conds_py, max_conds_px, max_conds_px_lagged, reset_lagged_links, + fdr_method, + p_matrix, val_matrix, + ): + """MCI Skeleton phase.""" + # Set the maximum condition dimension for Y and X max_conds_py = self._set_max_condition_dim(max_conds_py, tau_min, tau_max) @@ -2227,65 +2363,112 @@ def run_pcmciplus(self, if abs(tau) == 0: links_for_pc[j][(i, 0)] = link_type - results = self.run_pcalg( - link_assumptions=links_for_pc, + + if max_conds_dim is None: + # if mode == 'standard': + # max_conds_dim = self._set_max_condition_dim(max_conds_dim, + # tau_min, tau_max) + # elif mode == 'contemp_conds': + max_conds_dim = self.N + + if max_combinations is None: + max_combinations = np.inf + + initial_graph = self._dict_to_graph(links_for_pc, tau_max=tau_max) + + skeleton_results = self._pcalg_skeleton( + initial_graph=initial_graph, + lagged_parents=lagged_parents, + mode='contemp_conds', pc_alpha=pc_alpha, tau_min=tau_min, tau_max=tau_max, max_conds_dim=max_conds_dim, max_combinations=max_combinations, - lagged_parents=lagged_parents, max_conds_py=max_conds_py, max_conds_px=max_conds_px, max_conds_px_lagged=max_conds_px_lagged, - mode='contemp_conds', - contemp_collider_rule=contemp_collider_rule, - conflict_resolution=conflict_resolution) + ) - graph = results['graph'] + # Symmetrize p_matrix and val_matrix coming from skeleton + symmetrized_results = self.symmetrize_p_and_val_matrix( + p_matrix=skeleton_results['p_matrix'], + val_matrix=skeleton_results['val_matrix'], + link_assumptions=links_for_pc, + conf_matrix=None) + + # Update p_matrix and val_matrix with values from skeleton phase + # Contemporaneous entries (not filled in run_pc_stable lagged phase) + p_matrix[:, :, 0] = symmetrized_results['p_matrix'][:, :, 0] + val_matrix[:, :, 0] = symmetrized_results['val_matrix'][:, :, 0] - # Update p_matrix and val_matrix with values from links_for_pc + # Update all entries that are in links_for_pc for j in range(self.N): for link in links_for_pc[j]: i, tau = link if links_for_pc[j][link] not in ['<--', ''] = '-->' + skeleton_graph[skeleton_graph==' 0: - self.print_results(return_dict, alpha_level=pc_alpha) - # Return the dictionary - self.results = return_dict - return return_dict def run_pcalg(self, selected_links=None, @@ -2759,14 +2942,16 @@ def _pcalg_skeleton(self, adjt = self._get_adj_time_series(graph) val_matrix = np.zeros((N, N, tau_max + 1)) + val_min = dict() for j in range(self.N): val_min[j] = {(p[0], -p[1]): np.inf for p in zip(*np.where(graph[:, j, :] != ""))} # Initialize p-values. Set to 1 if there's no link in the initial graph - pvalues = np.zeros((N, N, tau_max + 1)) - pvalues[graph == ""] = 1. + p_matrix = np.zeros((N, N, tau_max + 1)) + p_matrix[graph == ""] = 1. + pval_max = dict() for j in range(self.N): pval_max[j] = {(p[0], -p[1]): 0. @@ -2840,8 +3025,8 @@ def _pcalg_skeleton(self, (i, -abstau))) # Store max. p-value and corresponding value to return - if pval >= pvalues[i, j, abstau]: - pvalues[i, j, abstau] = pval + if pval >= p_matrix[i, j, abstau]: + p_matrix[i, j, abstau] = pval val_matrix[i, j, abstau] = val if self.verbosity > 1: @@ -2856,6 +3041,8 @@ def _pcalg_skeleton(self, graph[i, j, 0] = graph[j, i, 0] = "" sepset[((i, 0), j)] = sepset[ ((j, 0), i)] = list(S) + # Also store p-value in other contemp. entry + p_matrix[j, i, 0] = p_matrix[i, j, 0] else: graph[i, j, abstau] = "" sepset[((i, -abstau), j)] = list(S) @@ -2898,7 +3085,7 @@ def _pcalg_skeleton(self, return {'graph': graph, 'sepset': sepset, - 'p_matrix': pvalues, + 'p_matrix': p_matrix, 'val_matrix': val_matrix, } @@ -3702,8 +3889,8 @@ def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) c = 0.8 for t in range(1, T): data[t, 0] += 0.4*data[t-1, 0] + 0.4*data[t-1, 1] + c*data[t-1,3] - data[t, 1] += 0.5*data[t-1, 1] + c*data[t-1,3] - data[t, 2] += 0.6*data[t-1, 2] + 0.3*data[t-2, 1] + c*data[t-1,3] + data[t, 1] += 0.5*data[t-1, 1] + c*data[t,3] + data[t, 2] += 0.6*data[t-1, 2] + 0.3*data[t-2, 1] #+ c*data[t-1,3] dataframe = pp.DataFrame(data, var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun']) # tp.plot_timeseries(dataframe); plt.show() @@ -3731,16 +3918,22 @@ def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) else: link_assumptions[j] = {} - print(link_assumptions) + for j in link_assumptions: + print(link_assumptions[j]) pcmci_parcorr = PCMCI( dataframe=dataframe, cond_ind_test=parcorr, - verbosity=2) + verbosity=0) results = pcmci_parcorr.run_pcmciplus(tau_max=tau_max, pc_alpha=0.01, - # link_assumptions=link_assumptions + reset_lagged_links=True, + link_assumptions=link_assumptions ) #, alpha_level = 0.01) print(results['graph'].shape) - print(results['graph'][:,3,:]) + # print(results['graph'][:,3,:]) + print(np.round(results['p_matrix'][:,:,0], 2)) + print(np.round(results['val_matrix'][:,:,0], 2)) + print(results['graph'][:,:,0]) + # Plot time series graph # tp.plot_time_series_graph( # val_matrix=results['val_matrix'], diff --git a/tigramite/pcmci_base.py b/tigramite/pcmci_base.py index 4d58e4df..a0ee1a13 100644 --- a/tigramite/pcmci_base.py +++ b/tigramite/pcmci_base.py @@ -634,8 +634,8 @@ def symmetrize_p_and_val_matrix(self, p_matrix, val_matrix, link_assumptions, co # Symmetrize p_matrix and val_matrix and conf_matrix for i in range(self.N): for j in range(self.N): - # If both the links are present in selected_links, symmetrize using maximum p-value - # if ((i, 0) in selected_links[j] and (j, 0) in selected_links[i]): + # If both the links are present in link_assumptions, symmetrize using maximum p-value + # if ((i, 0) in link_assumptions[j] and (j, 0) in link_assumptions[i]): if (i, 0) in link_assumptions[j]: if link_assumptions[j][(i, 0)] in ["o-o", 'o?o']: if (p_matrix[i, j, 0] @@ -645,8 +645,8 @@ def symmetrize_p_and_val_matrix(self, p_matrix, val_matrix, link_assumptions, co if conf_matrix is not None: conf_matrix[j, i, 0] = conf_matrix[i, j, 0] - # If only one of the links is present in selected_links, symmetrize using the p-value of the link present - # elif ((i, 0) in selected_links[j] and (j, 0) not in selected_links[i]): + # If only one of the links is present in link_assumptions, symmetrize using the p-value of the link present + # elif ((i, 0) in link_assumptions[j] and (j, 0) not in link_assumptions[i]): elif link_assumptions[j][(i, 0)] in ["-->", '-?>']: p_matrix[j, i, 0] = p_matrix[i, j, 0] val_matrix[j, i, 0] = val_matrix[i, j, 0] From 3f187d104aa3db556fb8a70d0a9d78be5cdd9e44 Mon Sep 17 00:00:00 2001 From: jakobrunge Date: Fri, 23 Jun 2023 12:04:50 +0200 Subject: [PATCH 2/5] re-wrote pcmciplus in more modular form --- tigramite/pcmci.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tigramite/pcmci.py b/tigramite/pcmci.py index 75aeaaab..a24b9777 100644 --- a/tigramite/pcmci.py +++ b/tigramite/pcmci.py @@ -12,7 +12,7 @@ import numpy as np import scipy.stats -from pcmci_base import PCMCIbase +from .pcmci_base import PCMCIbase def _create_nested_dictionary(depth=0, lowest_type=dict): """Create a series of nested dictionaries to a maximum depth. The first From c52f5845dcbd279cc5e8035de391909f4d0315e5 Mon Sep 17 00:00:00 2001 From: jakobrunge Date: Fri, 23 Jun 2023 14:37:41 +0200 Subject: [PATCH 3/5] re-wrote pcmciplus in more modular form --- setup.py | 2 +- tigramite/pcmci.py | 227 ++++++++++-------- .../tigramite_tutorial_pcmciplus.ipynb | 110 ++++----- 3 files changed, 187 insertions(+), 152 deletions(-) diff --git a/setup.py b/setup.py index 0d09a452..7f973b97 100644 --- a/setup.py +++ b/setup.py @@ -62,7 +62,7 @@ def run(self): # Run the setup setup( name="tigramite", - version="5.2.1.21", + version="5.2.1.22", packages=["tigramite", "tigramite.independence_tests", "tigramite.toymodels"], license="GNU General Public License v3.0", description="Tigramite causal inference for time series", diff --git a/tigramite/pcmci.py b/tigramite/pcmci.py index a24b9777..27b51796 100644 --- a/tigramite/pcmci.py +++ b/tigramite/pcmci.py @@ -2127,7 +2127,7 @@ def run_pcmciplus(self, Estimated matrix of test statistic values regarding adjacencies. p_matrix : array of shape [N, N, tau_max+1] Estimated matrix of p-values regarding adjacencies. - sepset : dictionary + sepsets : dictionary Separating sets. See paper for details. ambiguous_triples : list List of ambiguous triples, only relevant for 'majority' and @@ -2163,18 +2163,23 @@ def run_pcmciplus(self, # Set the link assumption _int_link_assumptions = self._set_link_assumptions(link_assumptions, tau_min, tau_max) - # Step 1: Get a superset of lagged parents from run_pc_stable - lagged_parents = self.run_pc_stable(link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - pc_alpha=pc_alpha, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations) + # + # Phase 1: Get a superset of lagged parents from run_pc_stable + # + lagged_parents = self.run_pc_stable(link_assumptions=link_assumptions, + tau_min=tau_min, + tau_max=tau_max, + pc_alpha=pc_alpha, + max_conds_dim=max_conds_dim, + max_combinations=max_combinations) + # Extract p- and val-matrix p_matrix = self.p_matrix val_matrix = self.val_matrix - # Step 2+3+4: PC algorithm with contemp. conditions and MCI tests + # + # Phase 2: PC algorithm with contemp. conditions and MCI tests + # if self.verbosity > 0: print("\n##\n## Step 2: PC algorithm with contemp. conditions " "and MCI tests\n##" @@ -2196,21 +2201,45 @@ def run_pcmciplus(self, ) skeleton_results = self._pcmciplus_mci_skeleton_phase( - lagged_parents, _int_link_assumptions, pc_alpha, - tau_min, tau_max, max_conds_dim, max_combinations, - max_conds_py, max_conds_px, max_conds_px_lagged, - reset_lagged_links, fdr_method, - p_matrix, val_matrix + lagged_parents=lagged_parents, + link_assumptions=_int_link_assumptions, + pc_alpha=pc_alpha, + tau_min=tau_min, + tau_max=tau_max, + max_conds_dim=max_conds_dim, + max_combinations=max_combinations, + max_conds_py=max_conds_py, + max_conds_px=max_conds_px, + max_conds_px_lagged=max_conds_px_lagged, + reset_lagged_links=reset_lagged_links, + fdr_method=fdr_method, + p_matrix=p_matrix, + val_matrix=val_matrix, ) + # + # Phase 3: Collider orientations (with MCI tests for default majority collider rule) + # colliders_step_results = self._pcmciplus_collider_phase( - skeleton_results['graph'], skeleton_results['sepset'], - lagged_parents, pc_alpha, - tau_min, tau_max, max_conds_py, max_conds_px, max_conds_px_lagged, - conflict_resolution, contemp_collider_rule) + skeleton_graph=skeleton_results['graph'], + sepsets=skeleton_results['sepsets'], + lagged_parents=lagged_parents, + pc_alpha=pc_alpha, + tau_min=tau_min, + tau_max=tau_max, + max_conds_py=max_conds_py, + max_conds_px=max_conds_px, + max_conds_px_lagged=max_conds_px_lagged, + conflict_resolution=conflict_resolution, + contemp_collider_rule=contemp_collider_rule) - final_graph = self._pcmciplus_rule_orientation_phase(colliders_step_results['graph'], - colliders_step_results['ambiguous_triples'], conflict_resolution) + # + # Phase 4: Meek rule orientations + # + final_graph = self._pcmciplus_rule_orientation_phase( + collider_graph=colliders_step_results['graph'], + ambiguous_triples=colliders_step_results['ambiguous_triples'], + conflict_resolution=conflict_resolution) # Store the parents in the pcmci member self.all_lagged_parents = lagged_parents @@ -2219,9 +2248,9 @@ def run_pcmciplus(self, 'graph': final_graph, 'p_matrix': skeleton_results['p_matrix'], 'val_matrix': skeleton_results['val_matrix'], - 'sepset': colliders_step_results['sepset'], + 'sepsets': colliders_step_results['sepsets'], 'ambiguous_triples': colliders_step_results['ambiguous_triples'], - } + } # No confidence interval estimation here return_dict['conf_matrix'] = None @@ -2328,12 +2357,21 @@ def run_pcmciplus(self, # return return_dict def _pcmciplus_mci_skeleton_phase(self, - lagged_parents, _int_link_assumptions, pc_alpha, - tau_min, tau_max, max_conds_dim, max_combinations, - max_conds_py, max_conds_px, max_conds_px_lagged, reset_lagged_links, - fdr_method, - p_matrix, val_matrix, - ): + lagged_parents, + link_assumptions, + pc_alpha, + tau_min, + tau_max, + max_conds_dim, + max_combinations, + max_conds_py, + max_conds_px, + max_conds_px_lagged, + reset_lagged_links, + fdr_method, + p_matrix, + val_matrix, + ): """MCI Skeleton phase.""" # Set the maximum condition dimension for Y and X @@ -2345,7 +2383,7 @@ def _pcmciplus_mci_skeleton_phase(self, if reset_lagged_links: # Run PCalg on full graph, ignoring that some lagged links # were determined as non-significant in PC1 step - links_for_pc = deepcopy(_int_link_assumptions) + links_for_pc = deepcopy(link_assumptions) else: # Run PCalg only on lagged parents found with PC1 # plus all contemporaneous links @@ -2353,22 +2391,18 @@ def _pcmciplus_mci_skeleton_phase(self, for j in range(self.N): links_for_pc[j] = {} for parent in lagged_parents[j]: - if _int_link_assumptions[j][parent] in ['-?>', '-->']: - links_for_pc[j][parent] = _int_link_assumptions[j][parent] + if link_assumptions[j][parent] in ['-?>', '-->']: + links_for_pc[j][parent] = link_assumptions[j][parent] # Add contemporaneous links - for link in _int_link_assumptions[j]: + for link in link_assumptions[j]: i, tau = link - link_type = _int_link_assumptions[j][link] + link_type = link_assumptions[j][link] if abs(tau) == 0: links_for_pc[j][(i, 0)] = link_type if max_conds_dim is None: - # if mode == 'standard': - # max_conds_dim = self._set_max_condition_dim(max_conds_dim, - # tau_min, tau_max) - # elif mode == 'contemp_conds': max_conds_dim = self.N if max_combinations is None: @@ -2388,7 +2422,7 @@ def _pcmciplus_mci_skeleton_phase(self, max_conds_py=max_conds_py, max_conds_px=max_conds_px, max_conds_px_lagged=max_conds_px_lagged, - ) + ) # Symmetrize p_matrix and val_matrix coming from skeleton symmetrized_results = self.symmetrize_p_and_val_matrix( @@ -2402,7 +2436,9 @@ def _pcmciplus_mci_skeleton_phase(self, p_matrix[:, :, 0] = symmetrized_results['p_matrix'][:, :, 0] val_matrix[:, :, 0] = symmetrized_results['val_matrix'][:, :, 0] - # Update all entries that are in links_for_pc + # Update all entries computed in the MCI step + # (these are in links_for_pc); values for entries + # that were removed in the lagged-condition phase are kept for j in range(self.N): for link in links_for_pc[j]: i, tau = link @@ -2411,11 +2447,11 @@ def _pcmciplus_mci_skeleton_phase(self, val_matrix[i, j, abs(tau)] = symmetrized_results['val_matrix'][i, j, abs(tau)] - # Correct the p_matrix if there is a fdr_method + # Optionally correct the p_matrix if fdr_method != 'none': p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, tau_max=tau_max, - link_assumptions=links_for_pc, + link_assumptions=link_assumptions, fdr_method=fdr_method) # Update matrices @@ -2425,7 +2461,7 @@ def _pcmciplus_mci_skeleton_phase(self, return skeleton_results - def _pcmciplus_collider_phase(self, skeleton_graph, sepset, lagged_parents, + def _pcmciplus_collider_phase(self, skeleton_graph, sepsets, lagged_parents, pc_alpha, tau_min, tau_max, max_conds_py, max_conds_px, max_conds_px_lagged, conflict_resolution, contemp_collider_rule): """MCI collider phase.""" @@ -2443,7 +2479,7 @@ def _pcmciplus_collider_phase(self, skeleton_graph, sepset, lagged_parents, colliders_step_results = self._pcalg_colliders( graph=skeleton_graph, - sepset=sepset, + sepsets=sepsets, lagged_parents=lagged_parents, mode='contemp_conds', pc_alpha=pc_alpha, @@ -2465,7 +2501,7 @@ def _pcmciplus_rule_orientation_phase(self, collider_graph, graph=collider_graph, ambiguous_triples=ambiguous_triples, conflict_resolution=conflict_resolution, - ) + ) return final_graph @@ -2556,7 +2592,7 @@ def run_pcalg(self, Estimated matrix of test statistic values regarding adjacencies. p_matrix : array of shape [N, N, tau_max+1] Estimated matrix of p-values regarding adjacencies. - sepset : dictionary + sepsets : dictionary Separating sets. See paper for details. ambiguous_triples : list List of ambiguous triples, only relevant for 'majority' and @@ -2609,7 +2645,7 @@ def run_pcalg(self, ) skeleton_graph = skeleton_results['graph'] - sepset = skeleton_results['sepset'] + sepsets = skeleton_results['sepsets'] # Now change assumed links marks skeleton_graph[skeleton_graph=='o?o'] = 'o-o' @@ -2618,7 +2654,7 @@ def run_pcalg(self, colliders_step_results = self._pcalg_colliders( graph=skeleton_graph, - sepset=sepset, + sepsets=sepsets, lagged_parents=lagged_parents, mode=mode, pc_alpha=pc_alpha, @@ -2653,7 +2689,7 @@ def run_pcalg(self, 'graph': graph_str, 'p_matrix': symmetrized_results['p_matrix'], 'val_matrix': symmetrized_results['val_matrix'], - 'sepset': colliders_step_results['sepset'], + 'sepsets': colliders_step_results['sepsets'], 'ambiguous_triples': colliders_step_results['ambiguous_triples'], } @@ -2701,7 +2737,7 @@ def run_pcalg_non_timeseries_data(self, pc_alpha=0.01, Estimated matrix of test statistic values regarding adjacencies. p_matrix : array of shape [N, N, 1] Estimated matrix of p-values regarding adjacencies. - sepset : dictionary + sepsets : dictionary Separating sets. See paper for details. ambiguous_triples : list List of ambiguous triples, only relevant for 'majority' and @@ -2714,16 +2750,13 @@ def run_pcalg_non_timeseries_data(self, pc_alpha=0.01, conflict_resolution=conflict_resolution) # Remove tau-dimension - # results['graph'] = results['graph'].squeeze() - # results['val_matrix'] = results['val_matrix'].squeeze() - # results['p_matrix'] = results['p_matrix'].squeeze() - old_sepsets = results['sepset'].copy() - results['sepset'] = {} - for old_sepset in old_sepsets: - new_sepset = (old_sepset[0][0], old_sepset[1]) - conds = [cond[0] for cond in old_sepsets[old_sepset]] + old_sepsets = results['sepsets'].copy() + results['sepsets'] = {} + for old_sepsets in old_sepsets: + new_sepsets = (old_sepsets[0][0], old_sepsets[1]) + conds = [cond[0] for cond in old_sepsets[old_sepsets]] - results['sepset'][new_sepset] = conds + results['sepsets'][new_sepsets] = conds ambiguous_triples = results['ambiguous_triples'].copy() results['ambiguous_triples'] = [] @@ -2919,7 +2952,7 @@ def _pcalg_skeleton(self, Estimated matrix of test statistic values regarding adjacencies. p_matrix : array of shape [N, N, tau_max+1] Estimated matrix of p-values regarding adjacencies. - sepset : dictionary + sepsets : dictionary Separating sets. See paper for details. """ N = self.N @@ -2957,10 +2990,10 @@ def _pcalg_skeleton(self, pval_max[j] = {(p[0], -p[1]): 0. for p in zip(*np.where(graph[:, j, :] != ""))} - # TODO: Remove sepset alltogether? + # TODO: Remove sepsets alltogether? # Intialize sepsets that store the conditions that make i and j # independent - sepset = self._get_sepset(tau_min, tau_max) + sepsets = self._get_sepsets(tau_min, tau_max) if self.verbosity > 1: print("\n--------------------------") @@ -3034,18 +3067,18 @@ def _pcalg_skeleton(self, val=val) # If conditional independence is found, remove link - # from graph and store sepset + # from graph and store sepsets if pval > pc_alpha: nonsig = True if abstau == 0: graph[i, j, 0] = graph[j, i, 0] = "" - sepset[((i, 0), j)] = sepset[ + sepsets[((i, 0), j)] = sepsets[ ((j, 0), i)] = list(S) # Also store p-value in other contemp. entry p_matrix[j, i, 0] = p_matrix[i, j, 0] else: graph[i, j, abstau] = "" - sepset[((i, -abstau), j)] = list(S) + sepsets[((i, -abstau), j)] = list(S) break # Print the results if needed @@ -3084,13 +3117,13 @@ def _pcalg_skeleton(self, " reached." % max_conds_dim) return {'graph': graph, - 'sepset': sepset, + 'sepsets': sepsets, 'p_matrix': p_matrix, 'val_matrix': val_matrix, } - def _get_sepset(self, tau_min, tau_max): - """Returns initial sepset. + def _get_sepsets(self, tau_min, tau_max): + """Returns initial sepsets. Parameters ---------- @@ -3101,15 +3134,15 @@ def _get_sepset(self, tau_min, tau_max): Returns ------- - sepset : dict - Initialized sepset. + sepsets : dict + Initialized sepsets. """ - sepset = dict([(((i, -tau), j), []) + sepsets = dict([(((i, -tau), j), []) for tau in range(tau_min, tau_max + 1) for i in range(self.N) for j in range(self.N)]) - return sepset + return sepsets def _find_unshielded_triples(self, graph): """Find unshielded triples i_tau o-(>) k_t o-o j_t with i_tau -/- j_t. @@ -3153,7 +3186,7 @@ def _find_unshielded_triples(self, graph): def _pcalg_colliders(self, graph, - sepset, + sepsets, lagged_parents, mode, pc_alpha, @@ -3171,7 +3204,7 @@ def _pcalg_colliders(self, ---------- graph : array of shape (N, N, tau_max+1) Current graph. - sepset : dictionary + sepsets : dictionary Separating sets. See paper for details. lagged_parents : dictionary Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing @@ -3207,7 +3240,7 @@ def _pcalg_colliders(self, ------- graph : array of shape [N, N, tau_max+1] Resulting causal graph, see description above for interpretation. - sepset : dictionary + sepsets : dictionary Separating sets. See paper for details. ambiguous_triples : list List of ambiguous triples, only relevant for 'majority' and @@ -3234,11 +3267,11 @@ def _pcalg_colliders(self, if contemp_collider_rule is None or contemp_collider_rule == 'none': # Standard collider orientation rule of PC algorithm - # If k_t not in sepset(i_tau, j_t), then orient + # If k_t not in sepsets(i_tau, j_t), then orient # as i_tau --> k_t <-- j_t for itaukj in triples: (i, tau), k, j = itaukj - if (k, 0) not in sepset[((i, tau), j)]: + if (k, 0) not in sepsets[((i, tau), j)]: v_structures.append(itaukj) else: # Apply 'majority' or 'conservative' rule to orient colliders @@ -3333,12 +3366,12 @@ def subsets(s): " Fraction of separating subsets " "containing (%s 0) is = 0 --> collider " "found" % self.var_names[k]) - # Also delete (k, 0) from sepset (if present) - if (k, 0) in sepset[((i, tau), j)]: - sepset[((i, tau), j)].remove((k, 0)) + # Also delete (k, 0) from sepsets (if present) + if (k, 0) in sepsets[((i, tau), j)]: + sepsets[((i, tau), j)].remove((k, 0)) if tau == 0: - if (k, 0) in sepset[((j, tau), i)]: - sepset[((j, tau), i)].remove((k, 0)) + if (k, 0) in sepsets[((j, tau), i)]: + sepsets[((j, tau), i)].remove((k, 0)) elif fraction == 1: # If (k, 0) is in all of the neighbor_sepsets, # leave unoriented @@ -3347,12 +3380,12 @@ def subsets(s): " Fraction of separating subsets " "containing (%s 0) is = 1 --> " "non-collider found" % self.var_names[k]) - # Also add (k, 0) to sepset (if not present) - if (k, 0) not in sepset[((i, tau), j)]: - sepset[((i, tau), j)].append((k, 0)) + # Also add (k, 0) to sepsets (if not present) + if (k, 0) not in sepsets[((i, tau), j)]: + sepsets[((i, tau), j)].append((k, 0)) if tau == 0: - if (k, 0) not in sepset[((j, tau), i)]: - sepset[((j, tau), i)].append((k, 0)) + if (k, 0) not in sepsets[((j, tau), i)]: + sepsets[((j, tau), i)].append((k, 0)) else: if self.verbosity > 1: print( @@ -3385,12 +3418,12 @@ def subsets(s): " Fraction of separating subsets " "containing (%s 0) is < 0.5 " "--> collider found" % self.var_names[k]) - # Also delete (k, 0) from sepset (if present) - if (k, 0) in sepset[((i, tau), j)]: - sepset[((i, tau), j)].remove((k, 0)) + # Also delete (k, 0) from sepsets (if present) + if (k, 0) in sepsets[((i, tau), j)]: + sepsets[((i, tau), j)].remove((k, 0)) if tau == 0: - if (k, 0) in sepset[((j, tau), i)]: - sepset[((j, tau), i)].remove((k, 0)) + if (k, 0) in sepsets[((j, tau), i)]: + sepsets[((j, tau), i)].remove((k, 0)) elif fraction > 0.5: if self.verbosity > 1: print( @@ -3398,12 +3431,12 @@ def subsets(s): "containing (%s 0) is > 0.5 " "--> non-collider found" % self.var_names[k]) - # Also add (k, 0) to sepset (if not present) - if (k, 0) not in sepset[((i, tau), j)]: - sepset[((i, tau), j)].append((k, 0)) + # Also add (k, 0) to sepsets (if not present) + if (k, 0) not in sepsets[((i, tau), j)]: + sepsets[((i, tau), j)].append((k, 0)) if tau == 0: - if (k, 0) not in sepset[((j, tau), i)]: - sepset[((j, tau), i)].append((k, 0)) + if (k, 0) not in sepsets[((j, tau), i)]: + sepsets[((j, tau), i)].append((k, 0)) if self.verbosity > 1 and len(v_structures) > 0: print("\nOrienting links among colliders:") @@ -3474,7 +3507,7 @@ def subsets(s): self._print_parents(all_parents=adjt, val_min=None, pval_max=None) return {'graph': graph, - 'sepset': sepset, + 'sepsets': sepsets, 'ambiguous_triples': ambiguous_triples, } diff --git a/tutorials/causal_discovery/tigramite_tutorial_pcmciplus.ipynb b/tutorials/causal_discovery/tigramite_tutorial_pcmciplus.ipynb index a42f2c54..a3f5e5c2 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_pcmciplus.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_pcmciplus.ipynb @@ -150,7 +150,7 @@ "\n", "* **Skeleton discovery phase**: Starting from a completely connected graph first a skeleton of adjacencies $X^i_{t-\\tau} - X^j_t$ is estimated by identifying which pairs of nodes are conditionally independent for certain subsets of the other nodes. See the paper for the particular way that conditions are chosen, which is different from the original PC algorithm. The adjacency between conditionally independent pairs is removed. The lagged adjacencies in that skeleton are then automatically oriented by time-order. For example, an undirected link $X^i_{t-2} - X^j_t$ can only be oriented as $X^i_{t-2} \\to X^j_t$ since causal effects cannot go back in time. \n", "\n", - "* **Collider orientation phase**: The contemporaneous adjacencies $X^i_{t} - X^j_t$ are then oriented based on the following collider rule. For an unshielded triple $X^k_{t-\\tau} - X^i_t - X^j_t$ with $\\tau\\geq 0$ (for $\\tau>0$ we always have $X^k_{t-\\tau} \\rightarrow X^i_t$) with no adjacency between $X^k_{t-\\tau}$ and $X^j_t$: If $X^i_t$ is *not* part of the conditioning set that makes $X^k_{t-\\tau}$ and $X^j_t$ independent, then orient $X^k_{t-\\tau} - X^i_t - X^j_t$ as $X^k_{t-\\tau} \\rightarrow X^i_t \\leftarrow X^j_t$. This rule is applied to all unshielded triples. There are three options (``contemp_collider_rule={'none', 'majority', 'conservative'}``) to decide whether a middle node $X^i_t$ is *not* part of the separating conditioning set: ``'none'``: In the original PC algorithm the conditions that lead to conditional independence in the skeleton discovery phase are stored (``sepset`` in Tigramite) and then used in the collider phase. Alternatively, all separating conditioning sets are *re-computed* based on the neighbors of $X^k_{t-\\tau}$ and $X^j_t$ and collider motifs are oriented based on the ``'majority'`` or ``'conservative'`` rule as discussed in the paper.\n", + "* **Collider orientation phase**: The contemporaneous adjacencies $X^i_{t} - X^j_t$ are then oriented based on the following collider rule. For an unshielded triple $X^k_{t-\\tau} - X^i_t - X^j_t$ with $\\tau\\geq 0$ (for $\\tau>0$ we always have $X^k_{t-\\tau} \\rightarrow X^i_t$) with no adjacency between $X^k_{t-\\tau}$ and $X^j_t$: If $X^i_t$ is *not* part of the conditioning set that makes $X^k_{t-\\tau}$ and $X^j_t$ independent, then orient $X^k_{t-\\tau} - X^i_t - X^j_t$ as $X^k_{t-\\tau} \\rightarrow X^i_t \\leftarrow X^j_t$. This rule is applied to all unshielded triples. There are three options (``contemp_collider_rule={'none', 'majority', 'conservative'}``) to decide whether a middle node $X^i_t$ is *not* part of the separating conditioning set: ``'none'``: In the original PC algorithm the conditions that lead to conditional independence in the skeleton discovery phase are stored (``sepsets`` in Tigramite) and then used in the collider phase. Alternatively, all separating conditioning sets are *re-computed* based on the neighbors of $X^k_{t-\\tau}$ and $X^j_t$ and collider motifs are oriented based on the ``'majority'`` or ``'conservative'`` rule as discussed in the paper.\n", "\n", "* **Rule orientation phase**: Orient further adjacencies such that the graph does not contain cycles (rules R1-R3 in paper).\n", "\n", @@ -216,7 +216,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9fc/8FeSps3qSCfdm05KKXuDLEHEgagMcQsqTgTFhYiICxU3IiAiIh+WCIoIypBRaGnpbmlL997pSJM0Ob8/+Ob+qG2ZhRY8z8fj/ci+933TNLn33PM+bxERERhjjDHGGGOMMcYYY4wx1oa4qzvAGGOMMcYYY4wxxhhjjHVXHERnjDHGGGOMMcYYY4wxxjrAQXTGGGOMMcYYY4wxxhhjrAMcRGeMMcYYY4wxxhhjjDHGOsBBdMYYY4wxxhhjjDHGGGOsAxxEZ4wxxhhjjDHGGGOMMcY6wEF0xhhjjDHGGGOMMcYYY6wDHERnjDHGGGOMMcYYY4wxxjrAQfT/Q0TQaDQgoq7uCmOMMcYYY4wxxhhjjLFuwqKrO9Bd1NfXw9bWFnV1dbCxsenq7jDGGGOMMcZYt2U0GlFUVISKigrY2NjAzs4OYrEYFRUVqKyshLOzMwIDAyESibq6q4wxxhhjV42D6IwxxhhjjDHGOkREKCgowOHDh3HgwAEcPXoUZ8+ehcFguODrPDw8cMstt0CtVkOr1aK5uRkikQgSiQQKhQK9e/dGv379YGdnh6NHj+Lw4cOorq6Gg4MDHB0dAQANDQ1obGyEjY0NnJ2dYW9vD4PBgObm5lbNzs4OI0eORP/+/WFpaXk93hbGGGOM/YeIiOuXAAA0Gg1nojPGGGOMMcb+s/R6PWJjY5GcnIyioiIUFhYiIyMDycnJqKurAwD06tULw4cPR0hICPz9/eHs7IyGhgbU1tbCaDTCyckJDg4OyM3NxV9//YVDhw5Bq9VCLpdDJpOBiGA0GqHRaJCRkQGTySSsPyQkBB4eHqiqqkJlZSVEIhFUKhUUCgU0Gg3Ky8tRU1MDqVQKmUzWqpWVlUGj0UChUGDMmDGYOnUqpkyZArVa3VVvJ2OMMcZuIhxE/z8cRGeMMcYYY4zdTKqqqnDixAnExMRAr9dDoVBAJpOhpqYG5eXlqK2thVgshlQqRXl5OY4cOYKmpiaIxWK4urrC3d0dgYGBCAsLQ3h4OAYNGgQnJ6dO619DQwPi4+NRU1ODwYMHX9KyiajdEjFGoxHx8fH4+++/8euvv+Lo0aOwsLBAVFQU+vXrh6ioKHh5ecHFxQXu7u5wcHDotO1gjDHG2M3vhg6inzp1Cs8//zzEYjFcXFywceNGhIaGwt3dHQDw2muvYdy4cZe0LA6iM8YYY4wxxrRaLY4fP46///4bZWVlsLGxgbW1Nfz9/REVFYXg4GBIJJKrWofRaAQAiMXiTqsZ3tjYiMOHD+PYsWNISkpCUlISzp49CwBwcHCASqVCU1MTmpuboVar4ezsDDs7OxARDAYDrK2tMWLECNxyyy3o3bs3pFJpp/SrqxQVFWHnzp2Ijo5GbGws0tPTcf6hr7e3NwYMGIC+ffsiPDwcoaGh8Pb2hlgs7sJeM8YYY6y7uqGD6KWlpbCxsYFCocCrr76KPn364P3330dsbOxlL4uD6IwxxhhjjN3YGhoa8M8//+Cvv/7CmTNn0NTUhKamJqjVagQHByMgIAC5ubk4duwYEhISYGNjA1dXV6jVamg0GlRXVyM/Px86nQ6Ojo7w8fFBQ0MD6urqUFJSAgCQy+WIjIxEVFQUQkND0dTUhIqKCjQ1NcHe3h6Ojo6QyWRobGxEQ0MDiouLkZ2djZycHFRXV6OhoQE6nU7os4WFBdzd3eHl5YXw8HA8+uij6Nu370W31WQyITExEX/++Sf27t2LI0eOQK/Xw8XFBREREejVqxeioqIwePBg+Pr6/ucn+NRqtSgtLUVZWRny8vIQGxuLkydPIj4+HvX19QAAS0tLeHl5wcfHB+PHj8cTTzwBW1vbLu551yIi1NTUQK1W/+c/Q4wxxv7bbugg+vkWL16MyMhILFq0SBii98UXX8De3v6SXs9BdMYYY4wxxro/o9GIiooKlJSUoLS0FPn5+YiLi8OpU6eQmJgIg8EANzc39OnTByqVCnK5HJWVlUhPT8fZs2fh5uaGwYMHIyoqClqtFiUlJaiuroatrS3s7e3h6emJUaNGITw8vFVWcm1tLU6fPi2sKy4uDhkZGbC2toajoyMUCgWqq6tRWVkJvV4PpVIJpVIJFxcX+Pv7w8/PD05OTkKNb5FIBJPJBK1Wi6KiImHizoKCAvTv3x/Tpk1Dr169EBoaiubmZpw5c6ZVS05ORkVFBRQKBUaNGoUJEyZg/PjxCAoK4mDnZTBPmpqSkoKsrCzk5eUhMzMTe/bsgVwux5w5c3DLLbfAz88PPj4+N/WkpUSEoqIinDlzBmlpacJkr0VFRbC1tUVERAQCAwNhYWEBAFCr1ejTpw+ioqLg5+d31SM0GGOMse7spgii5+fnY/r06Th48CA0Gg0cHBzwww8/IDY2Fp999lm7r9HpdK0yQDQaDTw9PTmIzhhjjDHGWBcqLS1FamoqGhoa0NDQgIKCAqSlpSEtLQ0FBQUoKytrNRmlWCxGWFgY+vbti/79++OWW27pMJBsNBo7NdBnMpnalP8gIhDRFZUFaWlpwZ49e/DNN9/g4MGDaGpqavW4QqFAYGAgevbsieDgYIwaNQpDhw6FlZXVVW0Ha6uoqAgrV67EqlWroNFoAJwbNTBkyBBMmDABo0ePRmBgIBwcHG6IkxZEhIyMDCQlJSE5ORmZmZkoLi4WTiJptVpotVrhf8vCwgJ9+/bFiBEj0KdPH+Tl5SEhIQFnz54VnlNWVoaCggIA5/4PHR0d4ezsLIysOL8FBgYKZVcZY4yxG1GnBNFra2uxd+9eFBUVQSQSwdXVFRMmTLguM6FrNBrcfvvtWL16NXr27Cncr9VqMWHCBBw+fLjd17311ltYsmRJm/s5iM4YY4wxxlhrRqNRCGo7Ozt3Wr3spqYmJCUlIT4+HjExMfjnn3+QmZnZ6jnW1tYIDQ1FSEgIfHx84Orqih49esDV1RWurq5wdna+KbODTSYT8vLykJqaCoVCgZ49e8LNze2GCNjeTIxGIwoLC3H27FmkpKRg3759+Pvvv9HQ0AAAUKlUCAkJwZAhQzB06FCMHDkSzs7OXdzrc6qqqrBv3z788ccf2Lt3L0pLSwEALi4uCAoKgru7O1xdXeHg4AC5XA65XA53d3cEBQXB19f3kv7PKysrERcXh7y8PJSXl6OsrAyFhYXIz89Hfn4+KioqAAAikQjz5s3Du+++C5VKdU23mzHGGLsWrjqIvmbNGrz//vu47bbbhDPLhYWF2LNnDxYuXIhHH320UzraHqPRiDvvvBPPP/88xowZA71eDyKClZUV9u7di82bN2Pt2rXtvpYz0RljjDHGGOtYVVUVNmzYgDVr1iA5OVm4X6FQYNiwYRgxYgQAoKKiolUzGo0YMmQIRo0aBU9PT+Tn5yMvLw+5ubnIy8tDfn4+qqqqUFdXh+bmZgCARCJBWFiYsNw+ffrA1tYW1tbWkMvlHDhm3Yper0dycjJycnKQk5ODxMREHD16VJjItV+/fpg4cSIGDx6MsLAweHp6XtPPsNFoxNmzZ5GVlYX8/Hzk5OTg4MGDOHnyJIgIvXr1wq233opx48YhMjISTk5O16wv/6bValFQUIBdu3bhzTffhKOjI1auXInbb7+dy78wxhi7oVx1ED0oKAinTp1qcza5vr4effv2xZkzZ66qgxeyadMmzJs3D7169QIAPPnkk/jggw+gVCphZWWFtWvXwtPT85KWxTXRGWOMMcbYfx0R4eDBg1i9ejW2b98Ok8mEO+64A+PHj4etrS0UCgVSU1Nx4MABHDt2DJaWlnBycoKzs7NwaTAY8M8//yA9PV1Yrlqthre3t9AcHR1ha2sLtVqN0NBQhIWFQSaTdeGWM3b1SkpKsH//fvz+++/Yu3cvampqAAA2NjYYNmwYRo8ejeHDh8Pd3V2YgPZymUwmnD17FsePH8fx48dx6tQpJCcnC6V/JBIJ3N3dMWjQINx6660YP358tymjkpOTgzlz5mDfvn1wd3fHrFmz8Mgjj7QaUc4YY91JS0sLqqqq4ODgIMwHwf67rjqIHhwcjIMHD6JHjx6t7i8pKcGoUaOQkZFxVR28XjiIzhhjjDHG/kuamprw008/YfPmzdBqtRCJRCgqKkJOTg569uyJxx9/HLNnz77i0hSlpaWorKyEt7c3rK2tO7n3jHVvJpMJ+fn5SElJwenTp3Ho0CEcOXIEWq1WeI5arRbq2/v4+LQ6GeXk5AQ7OztkZGTg5MmTOHXqFNLT05GZmSmM4AgKCsKAAQMQGRmJiIgIoeRPdw70EBFiYmLwww8/YNOmTaipqcGUKVOwcOFCDBkypKu7xxi7idTX1yMuLg7V1dXCPCVVVVUoKSlBZWUl5HI5bGxsWrX6+nqcOHECJ06cQHZ2Nqqrq0FEUKvVGD9+PCZNmoRbb72125TtYtfXVQfRd+/ejfnz5yM8PLxVOZeUlBSsWLECkydP7pSOXmscRGeMMcauHZ1Oh+zsbGRmZiIzMxPl5eWQSqWwsrKCpaVlq0srKytYWFigtLQUOTk5KCwsBABYWlrC2toaUVFR6N+/P8LCwiCXy7t4yxi7sZhMJkRHR+N///sf1q9fj7q6OowbNw6urq4gIiiVStx///0YPnw4l1BhrJPpdDokJyejvLwcFRUVKCwsREZGBtLT01FQUICKigq0tLS0eZ1KpUJUVBRCQ0PRs2dPhISEYMCAAbC3t++Creg8Op0OGzduxIcffoj09HSEhIRg4sSJmDhxIkaOHNlpcy8wxm5eRISioiLExMQgJSUFpaWlKC0tRXp6OlJTU9FeyNPR0RFOTk5obm6GRqNBXV1dq+/ewMBADBw4ECEhIXBxcYG9vT0SEhLw+++/IyYmBsC5sl3jxo2Dn5+fMEeLm5sbnJycuFTVTaxTJhY1Go04efIkiouLQURwd3fHgAEDuuyD89JLL+HEiRPw8vLCunXrLmmiIQ6iM8YYY1fPZDLh2LFjiI+Px5kzZ4SWl5cn7MQqlUq4urrCYDBAr9dDp9MJlwaDQViWXC6Hr6+vUEvWYDCguroaSUlJwo6upaUlbG1tYWNjI1yGhYVh5MiR3WpyN8a6ktFoxJEjR7B161Zs374dxcXFcHFxwezZszF37lz4+fl1dRcZYzgXDKqtrRXmF6iuroafnx+Cg4Nv6qCMyWTC77//jh07duCPP/5AcXExevTogdmzZ+PRRx/lci+MMUFVVRViYmJaNfOkyQ4ODnB3d0ePHj3g5+eH/v37o3///kKigMlkglqtbhMjJCLodDpoNBpYWlrCzs6uw/WXlZVh79692LNnDw4dOoTS0tJWgXqxWIzAwECMGTMGY8eOxZAhQ+Di4nJN3gt2/XVKEL07iY+Px4oVK/Djjz9i2bJl8PX1xYwZMy76Og6iM8YYY1fGYDDg9OnT2L59OzZu3IiCggJYWloiMDAQPXv2FFpgYCACAwPh4uLSYYYrEUGv10Ov10OlUrX7vObmZiQkJODMmTOoq6sTMkg0Gg1qampw6tQpZGVlAQBCQkIwcuRIjB49GpMnT4ZCobim7wW7+RiNRjQ0NEAkErVpjY2NqKmpQV1dHSwtLaFSqWBrawsHB4dLyuLW6XSQSqXCEOOO1NTUIDo6GrW1tXBycoKjo6OQRWVlZQUiQn19PWpra4VWUlKCtLQ0pKam4tChQygvL4eHhwemTp2KqVOnYsiQITd1UI4xdmMiIsTHx+P777/Hjz/+iJqaGvTq1QtTpkzBuHHj0KNHD9jb20Mmk6G5uRlarRYuLi6wsrLq6q4zxq5AWVkZDh48iMTERIjFYkilUlhbW8PHxwe+vr7QaDStAubmCZzt7OyEILm5dcX8Dy0tLSgrK0NJSQlKSkpQXFyM06dPY9++fcjOzgYAuLi4oHfv3hg/fjzuueceeHt7AwAaGxtRXl4OZ2dnKJXK6953dvk6NYi+bds2TJ06tbMWd0W++uorqFQqzJ49G6dOncK6devwxRdfXPR1HERnjDHGOmYedbZ3716cOnUKIpEIUqkUFRUViI2NhVarhVqtxn333YdZs2Zh0KBBXRqgKyoqwqFDh4SWkZEBGxsbTJ8+HVOmTBGyTWQyGcLDw9GzZ08eNv4fQETIzc3FkSNHkJWVhZKSEpSXl8PBwQGBgYHw9PREQUEBUlNTcebMGRQWFqK0tBRGo/Gy1qNUKoXhvc3NzWhqaoJEIkGPHj3g6uqKqqoqJCQkIDMzExKJRBgGbM6MMgfgRSIRysvLW03Q+W8KhQLNzc0wmUxtHnNxcUFoaCj69euHqVOnon///hcN2DPGWHfR3NyM3377DTt37sRvv/2G6urqdp/n5uaGpUuX4sEHH+STg4x1sZaWFuEEV11dHSoqKlBZWQmNRgOtVoumpibk5+cjOzsbaWlpwjyKHh4eEIvFMBgMqK2tbTV/hFwuF8o5mltAQEC3LzuXm5uLU6dOITExEadOncL+/fuh0+kQHh6O2tpaoWQlAFhbW8PR0VEobXmxZm1tjcjISAwcOBD+/v7d/r24WXRqEN3KygrvvfceXnjhhQ6fQ0TX9I/77rvvIjQ0FHfeeSeysrLw5ptv4qeffmrzPJ1OB51OJ9zWaDTw9PTkIDpjjDGGc0OrCwoK8Ndff2Hv3r3Yt28fampqoFarMWjQIFhYWMBgMMDa2hqDBg3CkCFDEBUVdUkl1LrC2bNnsW7dOqxbtw5FRUVtHpdKpRgxYgQefvhh3H333VdUa12r1UIsFnM2XCeJjY3F7t27YWNjAycnJyED28nJCWKxGDU1Na2aOQPbnBlu3tc7v+Xk5KC4uBjAuaCLq6srnJ2dUVFRgTNnzghJFSEhIQgKCoKnpyfc3d2FusNEJAwHNtcPV6vVsLW1hcFgQENDA2pqapCTk4Ps7GyUlZVBoVBAoVDAYDAIWUp2dnbo3bs3evXqBYPBgMLCQpSUlAjB+vN3z21sbDBw4EAMHjwYzs7OqKqqQmVlpdCqqqogl8thZ2cHOzs7qNVq2NnZwcnJCWq1+vr/4Rhj7BpoaWlBeno6qqurUV1djebmZsjlckilUvzwww/YvHkzwsPD8cgjj2Dw4MHo06cP/x4zdpmICC0tLTAYDMI+rUgkgslkEiYet7Kygru7OxwcHJCQkIDDhw/jxIkTyM3NRX5+PiorKy+4DisrK3h4eMDf3x+BgYEYOnQoRo0aBVdX11b9KC8vR05ODuRyOcLCwrr1hMmXqr6+Hrt378Zff/0FFxcX9OzZE66urqisrERxcTGqqqra3X9tr5n3N4Fz5S1FIhGICI6Ojhg8eDCGDh2KkJAQYbJqDw8PDrR3gk4Nou/duxf33nsvHnzwQaxcubLVH8hoNGLDhg147733LphNc7W+/vprKJVKzJ49G7Gxsfj+++/bzUR/6623sGTJkjb3cxCdMcbYzUqj0eDQoUPIyclBfn4+ampqYG1tDRsbG2Fn1bzDmpmZiaamJohEIgwYMAC33norJkyYgP79+9/QO7FGoxEFBQVQqVSwsbFBfX09UlJSkJCQgG3btuHQoUOwsbHB+PHjMXr0aAwfPhx2dnaQSqXCa/Py8lBWVoaGhgY0Njbi7NmzQg14IoK1tTWcnZ3h6+uLnj17wtvbGy0tLWhsbERTUxOamprQ2NgIkUgkvP/Nzc2oqKhAVVUV/P39MWzYMAwZMgSenp5tMoebm5uRnZ2NM2fOoL6+HlKpVJiINSsrC/n5+fD398eAAQMQEREBvV4PjUaD5uZmWFpaQiaTwdXVFZ6enlf8HiYlJaGpqQk+Pj7o0aPHFWU363Q61NbWorm5udVBQWFhIT777DMcOHAAarUaer0ejY2NF12eOaBtZ2cHW1tbyGSyNlk7PXr0wNChQzF06NA2E/KZS6JYW1vzQQZjjN1gTpw4gcWLF+PgwYPQ6XSwtLREREQEoqKi0LdvX/Tt2xfh4eEcWGc3rbKyMhw/fhzHjh3D2bNnYWNjAzs7O8hkMrS0tKClpQVGo1EIkms0GlRVVQknpqqrq6HRaFotUyqVwsbGBg0NDa2SUM+nVCoxYMAABAQEwNvbG66urlAoFJDL5bC2thYSIWxsbCCTyXhEXCeqrq5GTEwMMjMzAZwbwVhQUICjR48iJiam1d8sODgYDz/8MB544IFWJyy6g6amJiQkJCA2NhZnz54V5gWRSCSwsbGBSqVCdXU1SkpKUF1dDRsbGzg4OEClUgnHVVKpFB4eHvDw8EBgYCAiIyMREhICS0tLoVyohYUFJBIJ9Ho9zpw5g+TkZBQXF0MsFkMikcDPzw+33XbbBfva6TXRExISMHnyZPTr1w8//fQTJBIJ1qxZgw8++AB1dXV45pln2g1ed5Z/10T38/PD9OnT2zyPM9HPnc0vKChATk4OmpubIZPJIJPJhABKYWEhLCwsoFKpoFQqhUvz7MdFRUWor6+HRCJp1UQiEUpKSpCXl4eioiI0NTVBp9NBIpEgMDAQwcHBCA4ORkhICIKDgxEUFNRtMxcZY+xGZjKZkJmZiWPHjmHHjh3Yu3cv9Ho9rKys4OXlBQcHBzQ0NKCurg4A4OzsDCcnJ3h7ewt1zAcPHgwHB4cu3pLrJzs7Gxs2bMC+fftw8uRJYQLTf5PJZFCpVFCpVHB3d0efPn0QGRkJCwsLVFRUoKysDNnZ2cjMzER+fj6srKygUCigVCqFzGTgXEZKXV0dZDKZkDlsLiUCQNghdHJyQl1dHaqqqlBVVYX2dt8sLS3h7+8PDw8PZGZmIjc394Lb6uHhgaFDh8LHx0cIxDc1NaG2thYajQZSqRQymQxSqRQGgwEGgwFFRUWIjo5GfX29sBwrKyv06tULQ4YMweDBg+Ht7S18lswBaXM5oN27d+PEiRPIzMxEQUFBu9sBAP3798fLL7+MO++8ExKJBFqtFpWVlcJOtXliKHOzs7PjfQnGGGPQ6/VISEhAdHQ0Tp06hbi4OKSmpsJoNMLCwgK9e/fGiBEjMGrUKIwcORK2trZd3WXGLovJZEJhYSEyMzORnp6OEydO4NixY0L9bU9PTwQFBaGhoUFIVjDv55mbRCKBra0t7O3tWzUbGxtYWlpCKpXCZDIJ+6lKpRL+/v7w8/ODTqdDUVERysvLERYWhj59+nBJxG5Ir9ejtLQUFRUVKCgowJYtW7Bt2zYYDAYMHDgQEydOxLhx49C7d+8rGoF7KbRaLU6dOoWKigpotVpotVqIRCKIxWI0NDQgPj4esbGxSElJgdFohKWlJfz8/ODs7AxHR0cQEerq6tDQ0AC1Wg1XV1fY29sLJ4AaGxuF4yvz57KgoEAokyORSGBhYdEq9ms+iWMug6hSqUBEMBqNmDRpErZt23bBbbomE4sWFRVh0qRJAIDKykoYDAY8//zzeOaZZ2Btbd3Zq2vjpZdewokTJ+Dl5YV169Zd0kHVf6UmeklJCbZu3Yqff/4ZJ06c6LDGp1wuh6enJ4xGIxobG4VsO/PHxdbWFh4eHrCxsYHRaGzVTCYTXFxc4OPjAw8PDyiVSshkMuFsT1paGtLT04VhPkqlEqNHj8a4ceMQEREBLy8veHh48MEw6xARQavVoqKiAidPnsThw4dx8uRJVFRUoKamBkajEX379sXgwYMxePBgDBo0CE5OTl3dbcaui/z8fOzatQu7d+/G8ePHhQD5kCFDMG3aNNxxxx3w9vbmLJBLYN65a2xshMFggEgkgqenJ7y9vWFra3tNs5XLy8tx8uRJ5OXlIT8/H1VVVbCzs4O9vb0w/LNnz55Qq9VCgNva2rpVLdjy8nKkpaVBLpfDxsYGVlZW0Ov10Ol0OHv2LI4ePYpjx46hrKxMWIZSqYSdnR2sra1hNBqh1Wqh1+shlUohlUrh6OiIIUOGYOjQoVCr1cjJycHZs2dx6tSpVgdwZpaWlnByckJzczOqqqrg4OCAkSNHChPNmifGPD9r3NraGn5+fpwNzhhjrFNotVqhJnF0dDQOHTqE/Px8WFhYYPTo0bjzzjsxevRo9OzZk2uqs26hqKgIn3/+OQ4fPoyGhgYhHmMe1WiOy1hYWKBPnz4YMmSIkMxwpSMN2c2vtrYW27Ztw++//479+/dDo9FALBYLI2dNJhNaWlrg6OiIyMhIobm6ul7Sfnl9fT2OHz+OQ4cOCTEavV7f7nMtLCzQq1cv9OvXT2jh4eGdEgfUaDRITExEcnIyWlpaIJPJYGlpCaPRCL1eD7FYjODgYISFhbUZmXoxnR5Er6urw2effYaVK1cKw8Cjo6PRq1evzlxNp7uZgui1tbU4fPgwEhISkJKSgjNnzqC6uhp1dXWora2FVCrFhAkTMHHiRPj7+8PX1xcqlQrNzc1obm6Gg4MDnJ2d2/yTmAOX5hqgV6uyshJpaWk4evQo/vzzTxw5cgQGgwHAubNDQ4cOxR133IEpU6YgMDDwqtfHrh3zmbumpiacPXsWZ86cQWlpKezs7ODo6AgHBwfhUqvVIicnB7m5uSgtLUV5eTmqq6vh4eGB4OBgeHh4oLS0FPn5+SgvLxeGnlVVVQmvKysra/VlHBAQgCFDhghnJs0Zj8ePH0dZWZnwHGdnZ2g0Gmg0GtjZ2cHLywvu7u5oaWlBQ0MDmpubhWCOWq1GYGAggoKCIJVKkZmZiaysLBCRUFesb9++CA0NFbIsT58+jezsbAwdOrTNzOB1dXXIy8tDXl6eEJAzmUzw9fUVvrzz8vJw+vRplJeXIyAgAMHBwZf8g3U+8+gPOzu7bhWEqq6uxh9//IG///4bOp1OyIgwB++srKwQERGByMhIBAQEwNbWFkqlUqjvZjKZ+MDmPPX19UhLS2vVUlNTkZWVBQsLC4wcORKjR4/GgAED0K9fP66NzK6LqqoqYbJOc9Z4eXk5AGDChAldPuEsY4wxBgA5OTnYs2cPduzYgYMHD6KlpUWovaxWq2FpaSlk5J5/aWlpCWtra3h4eMDT01NoarW60/e7a2pqEBsbi+LiYkRGRt40daHZOeZSitnZ2cjLy4NGo0FDQwMSEhLw888/Qy6X4/bbb4darRaqApibuWSFeTQhY5fLYDAgPj4eiYmJSExMRFFRkVBdoqSkBKdPnxaSsZycnNC7d29hdKw5HuLk5ASDwYAjR47g0KFDiIuLg9FohJOTE0aMGIGRI0di+PDh8PDwgEKhgEwmA3AuC1wkEt2QxwSdGkRftGgRvv76azg4OODll1/GzJkz8fTTT2PPnj3YvXs3+vfv31mr6nQ3chBdr9cjOjoa+/btw/79+3Hy5EmYTCbY29sjLCwMwcHBcHR0hK2tLdzd3XHbbbd1y2CKVqtFfn4+CgoKcObMGezZswf79+9Hc3MzQkJCMGXKFAwbNgxSqRQikQguLi68I3GFTCYT8vLykJycjKamJmEW7NjYWBw9ehQJCQntljCwsrKCg4MD7O3t0dLSgurqatTU1KC5ubnd53ZUN81MpVLB2dkZdnZ2KCgoQEVFhfCYTCaDi4uLsNNqa2sLX19f+Pr6okePHlCr1bC3txfOjLaHiJCbm4vo6GghI9fW1hbW1taora1Ffn4+ioqKYGlpCZVKJWRpmssGnD17VjixIxKJhOzdiooKoZSB+QclLi4O1dXVwrpDQkIQEBCA/Px85OXloba29oLvhUwmE95Hc9AYANRqtXBm1svLCyqVCnK5HOXl5cjLy0NhYSFqamqg0WhQXV2N4uJiYV2Wlpbo0aNHu83V1VW4bm9vLwz30+l0wntrYWEhnHSwsrKCo6MjFArFRQ8QmpqakJycjNOnTyMzMxN5eXnIyclBfHw8jEYjIiIihEn4WlpahL9xQ0MDUlJSWn2exGIxxGKx8Hm0s7ODh4cH3NzcYGVlJfzwarVaNDY2wsLCQvichISEoG/fvvDx8elWJxMuxGQyoaKiAoWFhSgqKhImGxSJRFAqlRCLxUhMTBTKYZh5eXkhJCQEoaGhGDhwIG699VYenswYY4wxdgnq6uoQFxeHhIQEJCUlob6+Hnq9Hnq9HgaDoc1lbW0tioqKWo3qVigUcHZ2hoODgzBKzJw5bM4ebmlpgY2NDWxtbSGXy4VR3M7OzggODkZAQABKS0uRmpqKpKQkZGVlteqnQqGAj48Pmpub0dTUBGdnZwwaNAgDBw4Ujs9MJhOUSqUwKXfPnj159OF1UldXh99++w1JSUlITU1FQUFBq8fNxyNNTU2oq6trcxwtFouhVCrh6uqKOXPm4LHHHrvhYlPs5kFEQpLf6dOnkZiYiJKSEiFJ5vz6+e7u7hg5cqQQOA8KCrphjr8vV6cG0UNCQrBo0SLMnDmz1RmFN954A5988gk2btyIO+64o1PWderUKTz//PMQi8VwcXHBxo0bIZVKERgYKGSAvvbaaxg3btwlLa+7B9GJCPn5+YiLi0NcXBwyMzNRU1ODmpoapKamorGxEQ4ODhgzZgzGjh2LsWPH3lCBo440NjZi3759+PXXX7F79+5WQVbgXNmZvn37YtSoUZg8eTL69+9/wZ0EcwbwtR6G39VKS0uxc+dOxMXFwdnZGW5ubjCZTEhKShKGtZxfz9bM29sbw4YNQ79+/YSzhMD//8HXarWorq5GVVUVpFIp7O3tYWdnB7lcLtTO9fX1RWBgIOzt7YXh+5WVlcKllZUVfH194ePj0+Z/rbq6GkVFRejRowccHR27/G/U0tKCnJwctLS0wM/Pr9VERI2NjYiOjsaBAweQkJCAqKgojB07FgEBAThy5Aj27duHoqIieHl5wcfHB97e3kKzsbGBVCoFESErKwupqakoLCxEcHAwIiMj4eTkhLNnzyIjI0OYYCM2NhalpaVC7S6JRCJkwJj/DnZ2dnBzc4ObmxtkMhnKyspQWlqKkpISlJaWCq2srKzDUk4XI5PJ4OjoCCcnJ9jZ2UGv1wsTJZon9aitrRWyxs3b7uXlhcGDB+O2225rk6X/7/c8IyMDeXl5qKurQ11dHUwmE6RSKcRiMSorK4XAsl6vh9FoBBG1qoVmLi9hLhllfn/MByp2dnZwcnKCo6MjVCoVFAoFLC0t0dzcDK1WK4zKaW5uFnZkXV1dERAQgNDQUAQGBl7WMDMiQmNjIyorK5Gfn4/c3FxUVFSgR48e8PLygslkwp9//ok//vgDSUlJwokb4Nwwtx49egD4/99fYWFhGDBggDBBVlBQEFQq1RX9PRljjDHG2OUzGo0oLS1FQUGB0CoqKoQkI0tLS2H/1DwfikQiEWpMm+cMA86VXE1PT0d2djacnZ0RGhqKsLAw9O3bF/3794eHhwfi4+MRHR2NwsJCYdLGgoICREdHIyUlpcM5RlxcXDBu3DiMGjUKISEhCAoK+k/NdXM5GhoakJWVhaysLBQXFwuZsjKZTKgZbmlpKYyilUqlkMvl0Ov1+OGHH/Djjz+isbERnp6eCA0NhY+PjxCbMP99zMcttra2wsjo86sDdPXxL2OXSqfTCfMUeXp6/mc+u50aRCeiDt+47777DvPmzcNHH32EefPmXfW6SktLYWNjA4VCgVdffRV9+vTBtGnT0K9fP8TGxl728rpLEN082efZs2eRnZ2NrKwsxMfHt8pydXFxQUhIiHCW29/fH+PGjUOfPn1u6rPMRqMRxcXFQlmHwsJCnDx5EtHR0di/fz9qamrg4OAAuVyOuro6NDU1wdraGmq1GlZWVigpKRGGoyiVSnh6esLLy0u47NmzJ8LDw9GzZ89uW4+9ubkZWVlZyMjIQEZGBnQ6HeRyOaysrFBZWYmioiJkZGTgxIkTEIvFCAsLE2YxFovFCAkJQa9evRAREYGIiAiEh4fD1tZWGE7THU8gsf+PiITME1tb2ysehWEymYSSC6WlpaipqYG1tbUwMV9tbS2qq6uFE07W1tbQ6XSorKxs1aqrq2FlZSUcGJgvzdn5YWFhrU7GXG+lpaXChFJNTU3CxMe1tbUoLy9HZWWlEPg3GAzC5MpyuVyoz9zQ0ICSkhIUFRUJGf4ikUiYGNLKykr43bOxsUHv3r0RGRkpjOyIi4tDcXFxq8A4cO47qLGxUbjt6OiI8ePHC3UM3d3d4eHhAWdn55v6e50xxhhjjJ1jMpmuaL+vsbERWq0WFhYWEIlEaGxshEajQWFhIfbv348///wTp0+fFgK5/v7+uP/++zFjxgyEhoZ29mZ0mfr6emRmZqKkpAQODg5wdXWFXC4XRgYbDAa4u7vDzc0NOp0OhYWFyM/PR0xMDI4ePYrU1FThPTIfwxiNxjb78e05P3v8QglDjLEb2zWZWLQje/bswX333dcq7b8zLF68GJGRkbjrrrsQHBwMFxcXuLu744svvuiwSLxOp2tVakKj0cDT07NNEL25uRm7d++Go6OjUNP5/ADLlZxtaWlpwbFjx7Br1y6kpqaiubkZOp0OpaWlyMvLE8oWiMVieHl5oXfv3oiKihKam5vbZa/zZtfS0iKUtCEi2NjYQKlUor6+HtXV1Whuboabmxvc3d0hlUqFH0xz1kBeXp5Qs9XCwgJBQUEIDw9v1Xx9fa9JzSbzRDfx8fFIS0uDo6Mj/P39W2Ujp6enIyMjA7m5uUImslqthlKpFDJn7e3t4eHhAW9vb0yYMAG33367kGVgMplgMpm49A1jV6GiogJpaWnIzMxEfX09mpqahBnGgXPzPCQkJCAhIQESiQR9+/YVysmYyyCZT9oplUo0NDSgoKAAer0evXr14mA5Y4wxxhi7JpqampCZmYn09HTs27cP27ZtQ21tLXr37o3p06fj/vvvh7e3d1d385Lp9XoUFhbiyJEj+PPPP3Hw4EEUFRVd9nJEIhFCQ0MxdOhQDBo0CCEhIcKoavM+fktLC2pqalBVVSVkoEulUrS0tAhleiIjI7k2OWP/Adc1iA4AcXFxiIqK6rTl5efnY/r06Th48CCkUimqqqrg4OCAH374AbGxsfjss8/afd1bb72FJUuWtLn/30H07OxsBAQEtLsMhUKB3r17o0+fPvD29oaFhYVQu9lc5/nMmTOIiYlBUlISGhsbhTOeNTU1cHFxwcCBA4VMYicnJ/j7+8PPzw/+/v7w8vLqthnRN6Pq6mqkpKQgOTm5VTOPAJDJZAgNDUV4eDhcXV3b1LALDg6GjY0NLCwsYGVlBWtr6zYnWWpra3H69GlhdEF8fDzS09NhNBohkUjg7++P6upqoQyFRCKBn58fgoODERQUhKCgIOF6dyh3whhry3yii4PijDHGGGOsO9LpdPjjjz/w008/YdeuXdBqtRg6dChmzJiBadOmwcnJqau72MaJEyewfPlyHD9+XEiAE4lE6NOnD8aOHYuIiAgEBgbCzc1NGI2t1Wrh6ekJb29vWFpaori4GEVFRbCyshLmWeKYC2PsUl33IPrlKi0txT333NPm/l9//RUWFha4/fbbsXr1avTs2bPV41qtFhMmTMDhw4fbXe6lZqITEWpra4XyBVVVVUKtXPOMtfHx8SgpKUFLSwsMBkObyRSDgoIQGRkJW1tbYXK+CRMmXLR+N+t6RISysrJWQfWkpCRUVlbCwsICYrEYxcXF7Y6usLa2ho+PDxwdHVFRUYHS0lIhOC6TyYQTMObWq1cvYdiYRqNBZWUlPDw8+EedMcYYY4wxxtg1UV9fj507d2LTpk3Yu3cviAhRUVEYNWoUbrnlFowePbrLSjRWVVXhwIED+Pbbb7Fv3z4EBwfj/vvvF8of9u3bF46Ojl3SN8bYf0+3D6J3xGg04s4778Tzzz+PMWPGADg3pIeIYGVlhb1792Lz5s1Yu3btJS2vM2uiNzc3o6KiAlVVVfDx8YGdnd1VLY91b0SE0tJSZGRkoLGxES0tLdBqtSgoKEBubi6qqqrg7OwsTCLYp08fBAUFcWkVxhhjjDHGGGPdRmVlJXbu3IkDBw7gwIEDKC4uhkqlwsSJEzF58mQMHz4cPj4+nTYi2mAw4ODBg0hISEBGRgZycnJgNBohFotRXV2NhIQEEBH69OmDRYsW4e67774mJVYZY+xS3LBB9E2bNmHevHno1asXAODJJ5/EqFGjMGnSJCiVSlhZWWHt2rXw9PS8pOV1l4lFGWOMMcYYY4wxxroSESElJQW//PILduzYgbi4OADnJtEcNmwYhg4diqFDh8LR0VGYgLOurg41NTVoamqCWq2Gk5MTevToAQcHByHwXldXh+joaOzYsQNbtmxBdXU1lEolgoKC4O/vD6lUCpPJBLlcjhEjRmDMmDGXHNdhjLFr6YYNonc2DqIzxhhjjDHGGGOMtVVVVYVjx47h6NGjOHLkCGJiYqDX6y/ptTY2NvDz84NOp0N6ejqICF5eXpg+fTqmT5+OiIgInu+LMdbtcRD9/3AQnTHGGGOMMcYYY+zidDod4uPjUV9fDwsLC0gkEtja2kKtVkOpVKKmpgYVFRUoLi5GdnY2srKyYGFhgYEDB2LQoEHo2bMnB84ZYzcUDqL/Hw6iM8YYY4wxxhhjjDHGGPs3DqL/HyJCfX09rK2t+WwoY4wxxhhjjDHGGGOMMQAcRGeMMcYYY4wxxhhjjDHGOiTu6g4wxhhjjDHGGGOMMcYYY90VB9EZY4wxxhhjjDHGGGOMsQ5wEJ0xxhhjjDHGGGOMMcYY6wAH0RljjDHGGGOMMcYYY4yxDnAQnTHGGGOMMcYYY4wxxhjrAAfRGWOMMcYYY4wxxhhjjLEOcBCdMcYYY4wxxhhjjDHGGOsAB9EZY4wxxhhjjDHGGGOMsQ5wEJ0xxhhjjDHGGGOMMcYY6wAH0RljjDHGGGOMMcYYY4yxDnAQnTHGGGOMMcYYY4wxxhjrAAfRGWOMMcYYY4wxxhhjjLEOcBCdMcYYY4wxxhhjjDHGGOsAB9EZY4wxxhhjjDHGGGOMsQ7c0EH0+vp6DBw4ECqVCsnJyQCAzZs3Y/DgwbjllltQUFDQxT1kjDHGGGOMMcYYY4wxdiO7oYPocrkcu3fvxj333AMAMBgM+Pjjj3Ho0CEsXboUS5cu7eIeMsYYY4wxxhhjjDHGGLuR3dBBdAsLCzg5OQm3MzMzERYWBktLSwwdOhRJSUld2DvGGGOMMcYYY4wxxhhjNzqLru5AZ6qtrYWNjY1w22g0dvhcnU4HnU4n3CYi6PV6ODo6QiQSXdN+MsYYY4wxxhhjjDHGGLsx3NCZ6P+mVquh0WiE2xKJpMPnLl++HLa2tkKzs7ODs7Mz6uvrr0dXGWOMMcYYY+yqmEwmbN26Fa+++ioMBkNXd4cxxhhj7KZ1UwXRAwICkJqaCr1ej6NHjyIiIqLD5y5atAh1dXVC40lIGWOMMcYYYzcCIsKuXbsQFRWFadOm4b333sPjjz8OIurqrjHGGGOM3ZRu+HIukyZNwunTp5GRkYE5c+bg+eefx8iRIyGTyfDDDz90+DorKytYWVldx54yxhhjjDHG2NUpKyvDnDlzsHPnTowcORL//PMP8vLyMGvWLHh7e2PJkiUXXYbRaMSyZcvw7bff4qWXXsLTTz8NqVR6HXrPGGOMMXZjEhGnKwAANBoNbG1tUVdX16quOmOMMcYYY6z7SEhIwJo1ayCRSODu7g47Ozukp6cjISEBJpMJq1atQkBAQFd3s9MREbZs2YKnnnoKYrEY33zzDe666y5hPqfly5fj1VdfxfLly/HEE0/A3t6+3eWUlJRg5syZOHjwICZMmIC9e/ciJCQEb7/9NgYMGAAPDw+IRCLodDoUFhbC3d0dMpnsem4qu0pEBJ1Oh8bGRhiNRjg7O3d1lxhjjLEbHgfR/w8H0RljjDHGGOueiAh//fUXPvzwQ/z5559wd3eHSqVCUVERGhoa4Ovri969eyMlJQVVVVXYunUrRo8eDQBobm5GUlIS4uLikJSUhMjISNx///1QqVRdvFWXLjs7G8888wz27NmDqVOn4uuvv4aTk1Or5xARXnjhBaxcuRISiQTDhg3D9OnTMXPmTKhUKuj1eqxevRpvvfUWpFIpNm7ciNGjRyM+Ph7PPvssjhw5AgCwsbGBQqFAaWkpAMDJyQnPPPMMnnrqKTg4OHT6tjU0NKC8vBx+fn6dvuz/kr1792Lz5s1ITk5GamoqGhsbhcfmzJmDlStX8khsxhhj7CpwEP3/cBCdMcYYY4zdbBobG5GRkYHS0lKUlpbCwcEBgwcPvmEyU1taWrBlyxZ88MEHOH36NPr06YMFCxZg2rRpsLA4V5lSr9fD0tISAFBTU4N7770XBw8exN13342MjAykpKSgpaUFEokE/v7+yMzMhFKpxIwZM7Bo0SL4+Ph04RZe3IoVK/Daa6/BxcUFn332GaZMmSJkn7enuLgYu3fvxi+//IK9e/dCpVJh2rRp+Pvvv5Gbm4sHHngAH374YavPABEhNzcXycnJSE5ORnNzM3x8fODq6opdu3Zh7dq1EIvFeOqpp7Bw4cI2Afwr9c8//2DWrFnIz8/HXXfdheXLlyMoKKhTlv1f8vfff2PChAkICgpC//79ERoaih49ekClUiEnJweLFi1CVFQUNm/ejKKiIvz5559obGzE/Pnz4eLi0tXdZ4wxxm4IHET/PxxEZ4wxxhhjN4Pc3FysX78ef/31F6Kjo2EwGNo8JyAgAB9//DFuv/3269KniooK/P3339i7dy8OHz6Mfv36YeHChYiKihKeU19fj6qqKlRXVyM1NRW///479u7di+rqaowfPx4LFizAmDFjLhhABs4F3hctWoQDBw4gMjISffv2RVRUFCIiIiCXy5Gfn4+1a9di1apVqK2txcsvv4yFCxdCoVBc67fhsq1evRpPPPEEXnjhBSxduhRKpfKyXp+fn49Vq1Zh48aNiIqKwtKlSxEWFnbZ/aioqMDKlSuxcuVKAMBzzz2H+fPnQ61WX/ayAKC6uhorVqzAe++9h6FDh2LmzJlYvnw5CgsL8cQTT+Cdd97psBwNay09PR2DBw/GgAED8Ntvvwknl8534sQJTJ06FUVFRQAAW1tbiEQimEwmvPXWW5g3bx7XxGeM3TCI6KL7AoxdC9c0iH7q1Cn07dv3Wi2+U3EQnTHGGLs0BoPhogfbTU1NWL9+PX788Ue8/PLLmDJlynXqHWP/XQUFBVi2bBnWrFkDpVKJW265BWPGjEH//v3h5uYGZ2dnlJSU4Pjx4/j+++9x8OBB/PnnnxgxYkSbZW3cuBG//fYb5syZgxEjRlzRwerBgwexevVqnDhxAtnZ2QCAsLAwDB8+HHv37kVOTg6GDBkCo9GIzMxMVFdXt3p9VFQUJk2ahHvuuQe9e/e+sjflAhoaGvDuu+9ixYoVsLOzw4ABAxAaGorRo0fj1ltv7bT1VFZWYtWqVfjuu+9gbW2NgQMHYtCgQZg4cSLc3Nw6fJ05u/iJJ57AF1980S0CBpWVlfjwww/x+eefw9LSEvPnz8fUqVOxY8cObNiwASaTCStXrsTEiRMBnAvwrlixAg0NDXBycoJCocDhw4dx4sQJiMViLFmyBC+//DIkEgmam5vx5Zdf4u2334ZUKsXy5csxYsQI5Ofno7y8HLfeeus1KSdzI9i6dSueffZZNDY2QiQSQaVSYfjw4Rg9ejTef/99yGQyHDt2DLa2th0uo6ysDNu2bUOfPn3Qv39/1NXV4Y033sCqVavg4eGBhx9+GA899FC3H5nBGPvvOXPmDL744gucPn0aubm5KCsrw4wZM/Duu+/C1dW1q7vH/kOuaRDdy8sL+fn512rxnYqD6Iwxxlj7iAi//fYbfvvtN+zbtw+5ubkYNWoU7r77bkRERODs2bPIyspCTU0NAECn02H79u2oqalBcHAwMjIy8N133+Ghhx7q2g1h7CZVVFSE5cuXY/Xq1bCxscHLL7+MJ5988oJZyzqdDpMmTcKpU6dw+PBhREREADj3//7BBx/glVdeQY8ePVBaWoo+ffrg+eefx3333SfUVD5z5gy+++47tLS0QK1Ww8XFBZMnT4abmxtMJhPeeecdvPXWWwgPD8fo0aMxaNAgDBs2DJ6engDOZYtv374dGzZsgL29PXr27Ak/Pz84OjrCwcEBHh4e163kTFZWFlatWoWUlBSkpKQgPz8f8+bNw4oVK4QyMVfC/HdZu3YtiAgzZsyARCJBdHQ0UlJSYDKZMHDgQNx111248847hTImRIT4+HiMGTPmgtnFXam0tBTvvfcevvnmG+h0OigUCtx9990oLS3F/v37MX36dFhaWmLDhg1wd3eHv78/KioqoNFo0L9/f0ycOBGTJk1q9yRCaWkpXnnlFaxfv77V/T169MCaNWswadKk67WZXY6IsGzZMrzxxhu46667MHToUABAeXk5Dhw4gFOnTsHBwQEnTpyAr6/vFa0jISEBX3zxBX7++Wc0NjZizpw5+OyzzzgznTF23ej1epSWlsLLy6vV/fHx8Vi6dCl++eUXODs7Y+zYsfDx8YGVlRVWrlyJ5uZmLFiwABMnTkSvXr0gl8uvuA8ajQbz589Hbm4udu7c2S1Hp7Gud9VB9Hvvvbfd+4kIe/bsQUNDw9Us/rq50YPoycnJWLt2Lezt7TF9+nT4+/t3dZcYY4xdRw0NDViwYAFKS0sxc+ZMTJ48GVZWViguLkZmZibUajW8vLxgZ2d32dmMb775JpYuXYrAwECMGzcOAQEB2LNnD/7++28YjUYAgJubGxwdHSESiSASiTBixAg8//zz8PLywtNPP41Vq1bhww8/xPz587tFNiW7+TU2NuK1117D7t27MXjwYIwdOxa33nrrTVX/9/xAplKpxIIFCzBv3rxLnjBTo9Fg1KhRKCkpwUMPPYSwsDCcOHECX3zxBd58800sXrwY+/fvx6effoo9e/agR48eeOKJJ5Camopt27YJAe+amhpUVlaCiDBu3Di0tLTg77//xltvvYXXXnsNEonkGr8TnYeI8M033+C5557DgAEDsHTpUtTW1qK8vFxotbW1mDVrFiZMmNDuMv79d3n++ecxd+7cVnXEa2pqhLrlf/zxB5qamhASEoLg4GBER0ejpKQEISEhOHbsGOzs7K7T1l++wsJCxMbGYsyYMbC2tgYR4ccff8QLL7wACwsLvP7663j88cevaELLxMRE1NTUwMvLC2KxGE8++ST27NkjlHvprLrs3ZVOp8MjjzyCn376CUuWLMEbb7zR5vezpqYGRqMRjo6OV72+hoYGrFmzBgsWLMDw4cOxdevWKy7Xw9i1UF1djUceeQTe3t5CaambTUlJCbKysjBs2LAbcn85NzcXp0+fxq233gqZTNbmcfMk4cC5snJKpRLfffcdPv/8c5SUlODBBx/EihUrYGNjg3feeQfLli2Dv78/FixYgFmzZrVaZm1tLd5++218+eWX0Ov1kEgk8PLygpWVFSQSCYxGI+rr69HQ0AC1Wo3g4GAEBwejT58+GDBgAHr27AmxWAwAOHDgAB566CFUV1fDZDJh8uTJ+Pnnn2/IvwG7xugqqdVq2r17Nx08eLBVO3DgADk7O1/t4q+buro6AkB1dXVd3ZVLVlJSQmvXrqURI0YQAHJxcSGVSkUAaODAgXT06NEOX9vU1EQVFRXXsbeMMcauRnNzM61evZrS0tLaPJaamkohISGkUqmoX79+BIBsbW3Jzs6OALRqrq6uFBsbe8nr/fzzzwkAvffee20eq6qqosTERGpoaLjgMkwmE7366qsEgKZPn061tbWXvH7GrsSBAwfIz8+PZDIZPfLIIxQVFUUikYisrKzoqaeeotzc3C7p1/Hjx+n222+nhx56iPLy8q54OWVlZTR//nySy+VkZ2dHS5cuveJ92NLSUrrzzjvJ09OTAJBIJKKvvvqqzfNSU1Np7ty5JJfLyd/fn1atWkVarVZ4vKamhr799lsaOnQoeXt70969e694+7qDo0ePkqurq/DdKRaLycXFhXr16kXh4eEEgKZNm0aFhYXCa8rLy+mll14iuVxOtra29Pbbb1/S36WxsZF++eUXevDBB2nUqFH0yiuv0O7du6m+vv5abuI1pdPpSKfTdeoyTSYTffPNN6RSqUihUNCLL77Y6v2/mWg0Gho7dixZWVnRzz//fF3XffDgQbK3t6eePXvSrl27SK/XX9f1M9aelJQU8vf3J6VSSQBo48aNXd2lTmMymejYsWM0ffp0srCwIAA0c+ZMamxs7OquXbLm5mZaunQpyWQyAkBOTk70xhtvUE5ODplMJiIiys7OpnHjxrU5NrGysqLHH3+cPv30U7KzsyMnJyfq3bs3SSQSeuutty76HaTVaikmJoZWrVpFCxcupBdffJGee+45evHFF2nx4sX0wQcf0MKFC2nKlCkUEBAgrFcul5NKpSKpVEoAaOTIkZSTk0Pbtm0jALR06dLr8daxG8xVB9HvuusuOnjwYLuPTZgw4WoXf93cSEH0v//+m/r27Ssc6IwcOZI2b95Mer2eGhsb6eeff6aBAweSVCqlb775ps3rU1JSqGfPnmRvb0+pqaldsAWMMcb+rbGxkaqrq9t9zGAw0F133SXs9A0cOJDeeecdeuWVV+jhhx8mpVJJoaGhQoA9LS2N3nrrLVq2bBnt3LmT0tLSKDo6mjZv3kz9+vUjFxcXysnJuWiffv75ZxKJRPTCCy8IO8BXY9OmTWRjY0O+vr4UHR191cvraiaTiVatWkVffvklGY3Gru7ODaW5uZm2bNlCW7ZsocrKyk5d9jfffEMAaPjw4XTmzBnh/oqKCnr33XfJ0dGRLCwsaNasWRQdHd0pn+2LOXPmDE2ZMoUAUGhoKLm4uJBMJqPXXnuNNBrNJS+noqKCXn75ZVIoFGRjY0OLFy+mmpqaTutnXV0dlZSUXPA5zc3N1NLS0mnr7M7q6uooKSmJysvLW22zyWSiH3/8kZydnUkqlZKLiwv5+PiQQqEga2treuONNzr178Jaq6yspNdff51sbGwIAKnVaoqKiqKxY8fS8OHDaeDAgbRo0aKLBvGbmproueeeo5EjR7b7+1tSUkJvvPEGBQYG0osvvnjdAloVFRXUv39/sra2pgMHDlyXdf5bZmamcLzp4OBAjz32GL366qu0ePFiWrNmDf/msetq165dZG1tTeHh4ZSdnU0zZ84ka2trys7O7uquUXFxMf3222+0ZcsW2rx5M/32228d/kYWFBTQihUr6J133qFNmzbRwYMHafHixRQYGEgAyN/fnz755BP6/vvvSaFQUO/evSk5Ofm6/b999dVXpFAoaOrUqfS///2P8vPzKS4ujvbs2XPB5IO9e/dSYGAgWVhY0MKFCyk+Pp7mzZsnnPBwc3Oj2267jeRyOXl5edGuXbsoMzOT9uzZQ99//z2Vl5cLyyopKaH77ruPIiMjKSYm5ppsZ01NDe3bt48+/vhj+vjjj+nLL7+kbdu2tXqflyxZQgDof//73zXpA7txXXUQvTuaP38+DRs2jGbMmHHJGRA3ShA9OTmZrK2taciQIbRhw4ZWXzjn0+v1NG/ePAJADz/8MO3fv58KCwtp27ZtpFKpKCwsjMLCwsjDw4Py8/Ov81aw7ig5OZni4uIoOzv7sg7oGWNXr6KigsLCwsjFxYVSUlJaPWY0GmnmzJlkYWFBW7dupf/97380efJksrGxIR8fHxo4cCDNmzfvkjMWy8rKyM/Pj4KDg6mqqoqMRiOdPXuWUlJSqKmpiYiIoqOj6fbbbxcyYTpz5/3s2bM0aNAgsrKyouPHj3facq83vV5Pc+bMEU5s3HrrrVRaWtrV3ep2TCYT/fTTTzRjxgx6+eWXhSwhR0dH4b0TiUQUFRVF9957L82dO5eWLFlCZWVlV7S+7777jgDQM8880+HntqGhgT7++GPy9fUlANS3b1/auXPnZQXTTSYTNTQ0UH5+PsXHx9OBAwfo9OnTVFFR0WY5J0+eJHt7e/L19aUff/yRWlpaSKPR0GuvvUYymYxcXFxo9erVFwxM6/V6euedd0ilUpFKpaLXXnuNqqqqLrm/7Nqoqamhzz//nJYuXUqvvvoqLV++vNNPCrGO1dTU0KZNm+jdd9+lJ554gqZNm0azZs2imTNnklQqpQEDBtDZs2fbfW1CQgKFhYWRlZUV2dra0siRI6m5uZmIzmWBz507lywtLUmpVNJ9991HMpmM/P39O0we6wz19fX0ySefkLu7Ozk5OdGpU6eu2bouVUJCAi1cuJDCw8PJ19eX3N3dSSQS0T333CPsMzB2rZhMJnrvvfdIJBLRHXfcIRyj1tXVkZ+fHw0cOPC6jZQwmUyUkZFBGzdupNdee43uvPNO8vDwaJNVDYAGDx4sJCtqNBr6/vvv6ZZbbiGRSEQymYwcHByE51pbW9NDDz1Ef/75Z6v9loSEBPL39ycAZGlpSYGBgTRt2jRau3YtFRcXd/r2/fXXXySRSGjy5MnCCbTzm0KhoG+//bbVPk5BQQHdc889BIBGjRrV5himtraWdu7cSa+88gqNGTOGXnrppRtmhJXJZKIZM2aQSCSi5cuXX5eEi5uFwWCgrVu3UlJSUld35Zq46YLocXFxNHPmTCIieueddy55mM+NEEQvLy8nX19f6tWr1yUHOdeuXSucATS3adOmUX19PRUVFZGPjw8FBwd3GIxnNz+TyUSvv/56q8+IhYUFPfnkkxfNRmOMXb2amhrq06cPOTk5UXh4ODk5OQk7HYWFhTR79mwSi8W0efPmTltnRkYGOTg4kIuLCykUilb//05OTgSAgoOD6YcffrgmGafNzc00bNgwcnJy6jDA0Z1VVVXR+PHjycLCgtasWUN79uwhZ2dncnFxoXXr1gmBmP+6kydP0uDBgwkARUVFkY+PD4nFYlKr1fTCCy9QWloa5efn07p162j27Nk0ZswY6tOnD1lbW5OLiwv98ccfl7W+devWkUgkoieffPKSDnZaWlpo9+7ddMsttxAAGjt2LCUmJpJOpyOtVkslJSW0c+dOWrRoEd155500fPhwCgsLI1dXV7K0tGz3wNl8QPzUU09Reno6HThwgFQqFQ0ePLjdTNe8vDyaOXMmAaBevXrRV1991WafLDU1lfr160cSiYTmz5/P5fgYuwQxMTHk5+dHtra29OKLL9L27dspMzOT1q9fT3fffTdZWlpSr169KCkpiY4cOUJWVlZ0//3307Fjx8jPz49UKhW9//77woiCjIwMGjp0KAGgd99997ICKlqtlnbu3Enx8fFkMBhaPVZeXk5btmyhp59+mtRqNVlYWNDs2bO79W/jjh07SC6X05AhQ/j7iF0zTU1NNGPGDAJAr7/+epsT49HR0WRhYUFqtZoGDRpEjz766BWfgL+QuLg4euqpp4QT7wDI3d2dxo4dSwsXLqStW7dSbm4u1dTUkEajoUOHDlHPnj3J0tKSJk+eTHK5XAgyr1mzRihpWFtbS4mJiRc8GaXRaOjXX3+lzz77jF544QUaMGAAiUQiAkCTJ0+m06dPd8o2Zmdnk729PY0bN074jsrMzKTdu3fTyZMnKSsrix5//HECQHfeeSe98cYbNHz4cLK0tCQXFxfauHHjTRlkNhqNQpzk3nvvvWj5yv+65uZm+vbbb4WTPy4uLu2WXDOZTFRZWXlN/l+vh04Nom/durUzF3dFvvzyS1q/fj0REcXGxtLTTz/d7vOam5uprq5OaAUFBV0WRDeZTPTzzz/T119/3eFZxaamJho2bBg5Oztfdh1Pg8FAZ86coZ07d9Ivv/zS6gvuzJkz5OzsTFZWVjRu3Dj6+OOPefjpf4jBYKBHHnmEANCyZcsoNjaW9u/fT8uXLye1Wk0KhYLefPPNTq9peSkqKytp+/bttHHjRlqzZg0dPHiw1Wd3586d1LNnTxo0aBC98sortHfvXq7Z2MVMJhPt2bOH3n77bfr6669p+/btdPToUcrKyrphsg6uN41GQ4MGDSK1Wk0JCQlUUVFBkZGR5OjoSLfeeiuJxWJSKBTC71pnio2Npaeeeoo++ugj2rNnDx06dIi+//57Wrx4MW3ZsuWal2uoqKggPz8/Cg0NpdTUVPr0009p6NCh5O/vT8HBwRQREUHz5s2j2NjYbrFj3tLSQseOHaMHH3xQqHe8f/9+4XFzXWkA5OzsTG+88cZN87mvqamhn376ie6//34aNGgQzZ49m5YvX07JycntPv/8zLGIiAj6+++/hcf0ev1Fv6tLSkro1ltvJQA0Z84c+uWXXygrK4saGxspLy+PYmJiKCYmhvLz86m+vp42bdokBOsfe+yxyx45YTKZaNeuXa3qZJ7fevToQRMmTKBZs2bRs88+S0uWLKHPP/+cNm7cSH/88QedPHmSMjIyKDo6mrZu3UqvvfYaOTs7Cyelx44de9HPwokTJ2jSpEkkkUhIIpHQkCFDaPTo0TRixAiSyWQUFBREJ06cuKztYuy/rra2lubOnUteXl6t/qcHDBhAH3zwQaua/lu2bBGCUwMHDqSsrKw2yzMajfTmm28SAJo1axZptVqqqqqiX3/9lX788UfKyspq9Xul0Wjoww8/pB49egjrViqV1K9fPwoKCiK1Wi3c7+/vTy+++OJVzZVwPUVHR5OTkxO5ubnRF1980eq9ZOxqFRYWUr9+/Ugul19wToBjx47RsmXL6MEHHyQ7Ozt68MEHr3idJpOJTp48SWfPniWj0UilpaX02GOPkUgkIi8vL3rqqado165dlxQraWpqoldeeYUGDhxI7777bqf+X5eXl9PatWuFfZa77rqLpk6dSkFBQWRnZ0fPPvvsJa2vubmZYmNj6dtvv6WQkBDy9/e/6Ai37du3k6OjIzk4ONDdd99Nn3322X9inqOtW7eSUqmkqKioazIK4GZgMBho7Nixwkilffv2kbu7Ow0aNEhILvrjjz8oKipKSPKVSCS0Zs2aLu13bW0tbdmyhb799lv64IMPLmkOkk4NoltaWtLHH398wedc6wPhZcuW0Y4dO4jo3Nmz6dOnt/u8xYsXt3ugdL2D6LW1tTRt2jThQyQSiWj48OH0ww8/CAeZ5uGGMpnsmgx9LywspE8++YQmTJhAVlZW1Ldv3w6/DHU63UW/KJuamqimpoaampr+MzUzu5Oamho6duwYrVmzhhYsWECTJ0+mgIAA6tWrF61du5Z0Oh21tLTQH3/8QaNGjSILCwv64Ycf2iynurqaXnnlFZJKpRQVFUXp6enXpf8NDQ20bNkyoc7l+a1v3760ceNGIWvv1ltvpfvuu49cXFyEQMeiRYu6dfaOmclkolOnTtEvv/xCa9asoa+++opOnDhxQ54IMBqNtGXLFurTp49Qm1QsFrf5+02ZMqXVTl1SUhKtXLmyS07SdAdlZWXUr18/sra2ppMnTwr3V1VV0dChQ2nQoEH07bffdusRUlcrLS1NmPxUKpXS7bffTi+//DK9+OKL9PjjjwuT+oWFhdGHH354XXdcy8vLaePGjfToo48KB3IAyMfHh5YtW9bhSJ309HSaN28eKRQKGjRoUId17q+Hs2fP0uTJk+mZZ56htWvXUmJi4mXthyUmJtKsWbOESa6ioqJo1qxZNHDgQLK2tiYrKyv68ccfW71Gr9cL2Uqvv/56m6zLS2U0GunTTz9tNeT5Qu2WW26hHTt2XNV+pk6noy1bttD69evpxx9/pG3btlFeXt4VLbO5uZm+//57euWVVy4ruFRRUUHffPMNTZ8+naZPn06zZs2ixYsX31CTizHWHeXn59Pu3bupqKiow+f88MMP9N577110X2zTpk0kk8lalaUyNxcXFwoJCRG+u6RSKT366KOUmJhIhw8fpg8++IAeeeQRevHFF+m9996jn376iQoKCjp7c6+L3NxceuCBB0gsFpO7uzs9/vjj9Mwzz9DChQuvWS3jm11iYiLt3r2btmzZQr/++utNeyyt1WrpkUceodGjR9OcOXNoxYoVtGvXLsrIyKAjR45Qjx49yNPT87JKGn311VckEokoLi7usvtTU1PTau4hmUxGCoWC1Go1ffHFF1e8L3Mt6fV6+vbbbykiIoJGjRpFzzzzDC1YsEAY0XL//ffTqlWrKDExkQoKCmjfvn302Wef0SOPPEKRkZHCvp1YLKY+ffq0KcXSkZaWlv/knAjx8fHk7u5Onp6elJiY2NXd6XZeeuklkkgkrRKMTpw4QZaWlvToo4/S3LlzCQCNHj2aVqxYQVu2bKEnnniCANA777xDRqORdu3aRePHj6dp06Zd9u9iS0vLZf+f1tXVCfELkUhEdnZ2NHv27Iu+rlOD6H/88QfZ2NjQM8880+aAo6WlhdatW0dBQUGduco2vvrqKyFjLyYmpltmopeVldE///xDq1evJj8/P7KxsaEtW7ZQVVUVrVu3jsaPH08AyNPTk5588kmytLSkiIiI61JT6PTp02RnZ0dDhw5tNVzFYDDQ2rVrycvLiywtLemdd95pdwfzp59+alU+RiaTdfjcm5lWq6W0tDT67bffaMOGDbR//35KS0vrtCwNrVZLTz/9ND3wwAP0888/U1lZGW3ZsoUmTJggZNGIRCLy8fGhiRMn0osvvihMaObp6Une3t5CYOrPP/+84LpiY2OpZ8+eJJfL6b777qMhQ4ZQjx49yMvLi4YPH06zZs2iJ598kp5//nl66aWXaN68efTII4/Q/Pnz2z1TbzQaKSsri3bu3Ek//fQTbdq0iX788Ud666236N577yUXFxeSSqXCWfTGxkZqaWmhvXv3CkPu1Wo1bdiwQfieMZlMFBcXR08//TTZ2tqSVCqldevWdcp7bTKZqKCggLZt20aLFi2it99+m3bt2kX5+fkXDKw0NDTQyZMnaf/+/bRjxw46ePCg8H78/fffwpDg80vomDOUpk6detESSyaTierr66m0tLTLsnT1ej19//33FBwcLASx/vrrLzKZTNTS0kLl5eWUlJRE+/fvp2+++Ybc3NxIqVTS4sWLhSxTAPTggw92i0zjq2E0GtucDEhISKD58+fTJ5980ubvmZ2dTQEBAeTi4nJFO/s3k1OnTtH69evbDTYbDAb6/fff6b777iMrKysSi8U0YcIE+uKLLy57MqnMzEz6/vvvae7cuXT//ffTnj172j0ISE1NpeHDhwvfpb169aKHHnqIVqxYQQcPHrzkA4eYmBiyt7enyMhIKi8vp7KyMlq9ejW98MILtGrVKjp27NhVBUbr6+vp8ccfp5kzZ3aYMTlq1ChycnKinj17CtvTo0cPmj17Nv3vf/9r9zfJZDLRwYMHaeLEicJvxkcffdRm/hStVksPPvggAaCFCxfSsWPH6IsvvqARI0aQhYVFp34HFxUV0R9//EEbNmygvXv3UlxcHJ06dYp+//13Wr9+/U1bc5Ex1n3FxMTQ888/T+vXr6ecnByqqqqi3bt306uvvkrPPvssLVu2jFavXv2fmHsqIyODHn74YerXrx/16tWLXF1dSSwW04IFC/7zddMPHDhAY8aMoccff5xWrVol1Mn+t4aGBnryySfbnJRZtGjRde7xtafVamnChAkkk8no7rvvpt69e7cpLThkyJDLnmdGr9dTcHAwjRkzpt3jipaWFqqoqKD09HQ6duwYHT16lOLi4mj//v3k6+tLdnZ29NNPP9GePXvok08+oWXLlt2Qc1zU19fTihUrKCoqiiQSSav31dLSkiIjI+nRRx+lL7/8ko4fP84n6S9DQUEBRUZGkrW1Nb3yyiuUkJBwwx/DdoaffvqJANCnn37a5rHVq1cLNfW/+uqrVu+XyWSit99+Wzg+AUD9+/cnV1dXsrGxoW+//ZZSUlJo+/bttHz5cnrooYdo8ODB5O/vT48//jj9+eeflJGRQYsWLSIXFxdycHCgjz/+uFVZzY7+PjqdjsaMGUO2trYUGxt7WSeGOr0m+unTp8nDw4PuvPNOampqIp1OR1999RX5+PiQWq2mN998s7NX2cq/a6L/9NNPl/S661ET3WAw0FNPPdXqi2zo0KHtBgISExNp9uzZpFKp6IUXXriuQ+Sio6NJpVLRqFGjaMmSJfTYY49RUFAQAaB77rmH5s+fL5yx/P3336m0tJT0ej298MILBJybhG7Lli30448/0osvvkgSiYSioqIoISHhuvTfZDJReXk5HT58mD755BOaOXMm3XPPPe3WY7oW9u/fL2Qs/rs5ODjQp59+2m7mbWFhIc2cOZNmzZpFCxYsoM8//7zdzGSNRkOjR48muVxOvXr1arX8wYMH06pVqyg+Pr7dH8SkpCR69NFH6bHHHqPjx49f8pd+Q0MDPfvsszRkyBB64IEHaPHixbRo0SKaMWMGDR06lCIjIyk0NJQCAwMpIiKCBg0aRDY2NhQQECCcqY2OjqbJkye32UkyNycnJxo5ciQ999xzF8wkT01NvWD9xcbGRnrssccIAC1YsOCqMjiSkpJaBbvd3NxaDb1VKpUUERFBU6dOpffff5+OHDlCSUlJ9Oyzz7abSX/+D0S/fv1o165dVFZWRgaDgXQ6HR0/fpzef/99cnZ2Jk9PT4qNjRW2aefOnfTqq6/SbbfdJpzMMi/Tzs6ObrnlFnrttdfozJkzV7y9/1ZbW0uHDh2izz//nHbs2CH8IDU1NdGXX34pnIyZMmXKJY2Sqauro3nz5pFIJKLIyEjasGEDff/99wSAlixZctHXV1RUUEJCAh0+fJj++uuvbpHBnp6eTq+99hp5e3uTRCKh3r1702OPPUbDhg0TPtdSqZSkUilNmTKFZs+eTXfeeSc5OTlRQEDAZQeC/8uqq6vpm2++odGjR5NUKhUC3OvWrbvgZ6GlpYVeeukl4f8lJCSEwsPDCQAFBATQsmXLKCYmhlpaWmjVqlUkl8spODiY1q9ff9WZ74mJieTi4kL29vYkFotJLBaTr6+vMFJDLpfTvffeS9u3b2/zO19eXk5ff/01ffbZZ7Rq1Sr6+eefKScnh0wmEyUlJVFwcDAplUpyc3MTTjyef7D35ZdfEgD666+/iOjcQdX+/ftp4cKF1Lt3bwJAtra29Nhjj9GqVato7dq1tGrVKho4cCABoPDw8Faj4tpjMpno448/FrZHKpVS3759W2WhMMYY+28xGAy0fPlysrKyosDAQDp8+HBXd6lT7dy5k77++uuLPm/r1q1kaWlJffr0oYiICCGgOXToUNq4cSPl5+dTXFwcbd++nQIDA0kul9OXX35JxcXFVFNTQ8uXLycAtH37dmGZN3rArqmpicaPH09yuVzYPyE6t12FhYX0999/0//+978rnltm586dBIB+//13ys/Pp+eff54CAgKEUY8dtf79+98QI5kvV0NDAx04cIB27dpFmZmZN+3IhutJo9EIc1gAoIiIiEvO4r9Uer2eoqOj24wgzczMpBUrVrQ5foyOjqZPPvnkun8/lJSUCMdOs2bN6nD9mzdvbjfhx2zdunU0ffp0OnLkCJlMJqqurhZKDpubjY0N9e/fn2bNmkXz5s0jPz8/4TFbW1uaN28ePfbYYyQWi8nb25vuuOMOCgoKIgsLCwoMDKS5c+fSTz/9RH/99RedOHGCpk+fTpaWllc0Wfg1mVi0sLCQIiIiKCIigtzc3MjJyYmWLVt2yZNhXq358+fTsGHDaMaMGZccZLnWQfTa2lqaMGECWVhY0IoVKygpKalbn5k/dOgQOTo6kouLC/Xr14+mT5/ealheTEyMEIQwBwIsLCzos88+a/PPY36uhYUFLV68+IoCX01NTfTuu+/SlClTaOXKlW2+OEwmE/3+++80atSoVj+SMpmMBg0aRG5ubuTu7i5MvrFnzx7q1asXhYaG0meffXZZf/etW7fSww8/TO+88w5t2rSpVdAiNzeXHBwcaMyYMXTgwAHKy8ujhoYGysrKooMHDwr/2P7+/rRx40bhhywtLY28vLzI1dWVhg8fTv7+/kKQVC6X04gRI2jRokW0Y8cO6t+/P9nY2NA///xDROcmJfvhhx86/cv7amVlZVHv3r1JLpfT6NGjheDVhx9+SHv37qXCwkKqr68njUbT6XWDTSYTffLJJ8KXqIeHBymVShowYADt2bOnwy94k8lEtbW1QmDUwsKCgoOD6X//+58w/NdkMlFeXh7t3LmTPvroI3ryySdp1KhRrUZgODk50SuvvEIxMTGUnZ1N5eXllJycTD/++CO98sorbeYm+Lf8/Hzq378/yWQymjhxonBSxtXVlSZOnEgvv/wyffbZZ7Rx40bavn07vfPOO3TXXXeRvb09Aecmx/vqq69o06ZNtHv3bvruu+/oySefpEGDBlGvXr0oMjKSoqKiqH///jRo0CAaPXq0UO5h69at9PTTT1NISIiwPeaApVqtppkzZ5KLiwuJxWKaPn36FZ0c02g0rbZ/6dKlBIA+//xzys/Pb7ODV1lZSc8++6yQrW9unp6etHLlyi7LoFiyZIlwEuOJJ56gL7/8kh599FGKiIigW265hbZs2UJ6vZ4qKiro008/peHDh9OwYcNo0qRJ9Nhjj92wk6l0BxqNhnbs2EGTJ08mAOTh4UHPPfccffTRR/Tzzz9TQkICGQwGqq+vpylTppBYLKYPP/xQGA1iMpnoyJEjNH36dFKpVMJJMQD0xBNPdOpnKiMjg+bOnUvfffedMCJBq9VSXFwcvffeexQZGUnAuckoZ8+eTVu3bqW5c+eSTCYjiURCMplMyCI3b6tcLqfw8HBKS0ujxsZGevfdd8na2pqcnJxo48aNdPbsWVIqlTR37twL9uuNN94gX1/fVssfMWIE/fbbb5e1I56SkkKnTp3iCVUZY4wJ0tLSaMiQIQSA5s2bd9X7+42NjZSWltZJvWstPz//opOkNjU10Zw5c4Tfy3+XM0tOTqY9e/bQ/v376aOPPiKRSET333+/cOzb2NhIW7ZsEUbWnt8GDBhAGRkZrZZnMplo6tSpZG1tTQkJCfTdd99RcHAw+fn5CYk2N5LKykoaMWIEKRQKOnDgwDVZh8lkopEjR5KDg4Mw6ei8efPovffeo9WrV9P27dvp0KFDlJSURCkpKRQbG0vHjh3rFok57Mai0+lo165d1KtXL7K3t6djx44Jj50+fZo+//xzmj9/Pt1zzz00depUeuKJJ+jVV1+lXbt2tYoD6vV6Sk5Opp9//plef/11Gj9+fKu4QkhICL3++us0adIkYX/d1taWtm/fTiaTiT777DPhGHnLli3XbHvT09Ppo48+omeffZbuv/9+6tevHwHnygFNnjz5mhyPx8TE0KFDh9odeW+uRLBt27ZW605LS6MZM2bQhAkT6LnnnqOVK1fSk08+KSQFm5tIJLri96vTg+i1tbX09ttvk4ODA8nlclIoFDdEzaDLDaK3tLR0WBu8oqKCPvzwQ4qMjKTIyEgaN24cBQQEtJmErLu72AF0S0sLZWRk0LZt22jZsmUXzETV6XT05ptvkoWFBUVERFxy+QLzpKteXl5kYWFBQ4YMEQJ6fn5+NH36dHr//feFHbQhQ4bQu+++S1u3bqXExEQhg66oqIiioqJIpVLR2LFjCTg3Q/Y999xDEomEVCpVmx2h9hw+fJgkEgkFBAQIAUtHR0fatGkTabVa6tu3L3l7e19w6FdSUhLddtttQhbk8uXLyd7ensLCwlrVftLpdBQdHU0rVqygqVOnChnMTk5Ol1Ufris1NjYKddd+/vnn6372e//+/fTMM8/QG2+8QR999FGrz4m5Bnl1dTVt2bKFpk6dKgTTzMPd3nrrrUsOChkMBjp16hTt3r27UwJJ5pI9I0eOpA8++KDNjnVHr9mwYQMNHTq0VVBMJBJRaGgozZo1i5555hl66qmnaM6cOfTYY4/RI488QtOmTaOgoCDhNX5+fvT4448LZRIMBgMlJyfTK6+8QqGhofToo492asa7yWSiRx99VOivhYUF+fr60ujRo2nmzJlka2tL1tbW9O6779KJEycoLS2NYmNj6YEHHiCJREIuLi7066+/dlp/zHJycjrMRDbPq7FkyRKeTKuLJSUl0UMPPURBQUFtyom5uLiQSqWi3bt3d/h6nU5Hhw4dorfeeuuafI4uRVpaGi1evJh69uxJwLmJSd955x3ht8Q8i/3OnTtpwYIF9Oqrr7bZWS0pKRHmWLGzsyMvL6/LSl5oaWnhIDhjjLFO1dLSQitXriSFQkEeHh709ttvU25u7mUvZ9euXeTj40MAaNKkSZe0X3wpmpub6fXXXyeJREJKpZLeeOONNsf4LS0ttHv3bmGOslWrVtGsWbNIoVBQUlISmUwm+vDDD9vMBzRv3rwOSwSYy36ePHmScnJyOnyeRqMREltEIhHdcccd1L9//4tOuNndZGRkUEBAADk6OtLRo0ev6bri4+OpX79+tGLFiptmgnfWfdXU1NDw4cNJLpfTm2++KQSXpVIpBQQE0JgxY2j8+PHUt29fcnNzE5Ikx4wZQ+Hh4UJsyzzqfdKkSfT+++9TdHQ0/fbbb/TAAw+QtbU1RUZG0tq1a6mkpISmTp1KwLn54gDQ888/T5MnTyZ3d/dOT1z+5ptvhOoHCoWCwsLCaPTo0TRr1ixav379RU8+didVVVWUnZ1NCQkJVzXypFOD6K+88grZ2tqSn58frVq1ihoaGujBBx8kZ2fnVpOmdUeXE0TPz8+nwYMHtzkwr6mpoccff5wsLS3J0tKS7rvvPpo7dy5NnTqV7rjjjm6XKdwV4uPjKTIykhQKBR06dOiCzy0rKxOyDKdMmSLsLGk0Gtq2bRs999xzNGTIEJLJZNSvXz/6448/LlqjeurUqeTr60tbtmwRnltYWEjTp08nqVRKf//9d4evLy4uph49etCIESOE4HxhYSHde++9BIC8vb1JJpNdcoA7NjaW7r77bgJAw4YNu+jkcyaTic6ePdulk9Td6EwmE+3Zs4eGDRvWJqu5b9++wuiCgwcPdjhp4I3CaDSSRqMRMv4vRX19/QUn3LqWTCYTpaSk0G+//UZffvklLVy4kO69914aNGgQzZs3r8OsbfPEiQBozpw5reZyaG8dJSUllJubSzk5OR3+jZubm+m1114jiURCVlZW9Nxzz1FJSQkZjUYqKCigV199lQDQ8uXLO2XbWecxDwE8dOgQffLJJ/T000/fECfyzUwmE2VmZl7ViZlff/2V+vXrd82yvBhjjLHLlZ2dTQ8++KBwsnvixIltRhYXFha2mU8pMzOT7rjjDgJAEyZMoDVr1pCPjw9JpVIaN24chYeHk0qlIkdHRxoxYgTNnTv3kofnR0dHtxotvXDhQpLJZGRvb0+TJ0+mp59+mubPn08eHh5CyY/k5GQiOpcoFBERQYGBgTRjxgwCQK+88grl5+dTdnY25eXldcr7Zn4PFi1aROnp6UR0LiN+5syZBIAef/xx4f7uaufOnaRWqykkJITLGLKbUlNTE911110kFovptttuo19++aXdcogmk4nS0tLo/fffp8mTJ9OTTz5JX375JR06dOiCSZjtZWF/9tln5OXlRZs3byaic8lfcrmc5s+ff0XbYJ7T7HwbNmwgADR16lTavn17t66kcT11ahDdXEP032/+66+/Tkqlkn755ZfOXF2nutQg+p49e8jBwYE8PT2FSRxXrFhBf/75J7m7u5OtrS29//77N9QZmeutsbGRbrnlFlIqlXTkyBEyGAz05ZdfkouLCwUHB9NLL71E3377LTk7O5OTkxPt3Lnzgsu73Nmh2wu06/V6Gjt2LNnZ2bU7TFCv19OwYcPIzc2t3UlOtm3bRj179qQNGzZcVl+IzpVj4SFk159Wq6WTJ0/SDz/80KlZ1ez6M5lM9M0335BcLidnZ2d66KGHaPPmzbR37176+OOP6dFHHxXq9P97+KyPjw899thj9M0339C3335LX331FfXq1YukUim9/fbbtHTpUrK1tSUrKyuSyWTC6ziAzhhjjDF2eerr62ndunXk7e1NSqWSvvjiCzp58iTdc889JBKJSKFQ0Ny5c+n48eP07LPPklQqJQ8Pj1YJUFqtlt599126/fbb6emnn6YPPviAlixZQvfddx8FBAQQABo3bhwdO3aMtFptm2O/pKQkuvPOOwkARUZGUnx8vPBYUVERvfzyy3TbbbdReHg4ubq60uOPP04xMTFtlpOZmUm2trYkl8tp06ZN1/y9O5/JZKJPP/2UnJ2dhZMSF0tQu94KCgrorrvuIgA0efLkNidIGLvZdHWQ+d133yWJRHLZ5VbNo8JdXV1p3759RHRurkmZTEYPPfTQDT8XQ2cTERGhkxARRCJRu4999913mDdvHj766CPMmzevs1bZaTQaDWxtbVFXVwcbG5tWjxERDh8+jE8++QQ7d+7EpEmT8MMPP0CtVuPVV1/F+++/DwAYO3Ys1q5dC09Pz67YhBtKY2MjbrvtNpw6dQqenp5IT0/HAw88AAsLC/z2228oKyvDpEmTsHbtWri4uFyXPtXV1WHIkCHQarV4/fXXERUVBQcHB2zatAnr1q1DVlYWDh06hCFDhlyX/jDGLk9mZiZWr16NPXv2IDk5GQAgk8kQEhKCsLAwhIWFISQkBEqlEsC57/1Dhw5h//79SE1NBQBIJBJERkZizZo16N27NwCgpqYG69atg0Qigb+/P4KDgxEQENA1G8kYY4wxdoOrr6/Hyy+/jK+//hoA4O/vj5deegnl5eX46quvUFZWBhsbGyxatAjPPfcc5HL5JS2XiLBjxw688cYbwr6dVCqFUqkU4hS1tbXw9fXFkiVLMH36dEgkkivejuTkZEilUgQFBV3xMq5Gc3MzNm/ejI8//hiJiYkYO3Ysli5dikGDBnVJf4Bz+82ffPIJPvnkE6hUKqxcuRLTpk3rME7EGOscer0evXv3RklJCfr374+oqCjcddddrb4PEhIS8NVXX2Hu3Lno06cPAOCdd97BG2+8gT59+uD06dOYP38+tm7dCnt7exw5cuSSv3//Kzo1iH4xe/bswX333QeNRnO9VnnJOgqinz17FtOmTUNcXBxCQ0Mxf/58PPTQQxCLxcJztmzZAo1Gg4cffrjV/ezCGhoaMHXqVBiNRnzwwQeIiooCAJhMJhQUFMDLy+u6/9jm5eVh6tSpiIuLg/lfw8rKCnfffTfmzZvHAXTGbhCFhYVobm6Gr6/vJR0cXegkMGOMMcYY63zHjh1DRUUFJk+eLOyv6XQ6HDx4EFFRUXBycrqi5RqNRvz9998oKyuDRqNBY2OjcGzn5uaGe++9F5aWlp22HV3NZDLhl19+wZtvvomUlBQsWrQI77zzznWLTej1esTExGD37t346quvYDAY8NRTT+GNN96Ara3tdekDYwzIycnBhg0bEBcXh5iYGBQXF+O2227Dyy+/jK1bt+KLL76ApaUlWlpa8Oabb8LHxwezZ8/GkiVL8Prrr+ODDz7A66+/DrVajdjYWHh7e3f1JnU71zWIDgBxcXFCsLQ76SiI3tzcjIceeggPP/wwxo8fz0GW/4iGhgacPn0aRUVFGD9+PNRqdVd3iTHGGGOMMcYYa5fRaMTHH3+Ml19+GdOmTcP3339/TbNIi4uLMW/ePPzxxx/QarWwtrbGE088gQULFly30eSMsfaZTCZs3rwZixcvRmZmJlQqFRYvXownn3wS7733HpYvXw6j0YgHHngA69evF2KdiYmJkEqlCAkJ6eIt6J6uexC9u7pQORfGGGOMMcYYY4yx7m7Hjh2YOXMmIiIi8MUXX6Bfv36dvo7du3fjoYcegqWlJebPn4+RI0ciMjISFhYWnb4uxtiVa2lpwb59+xAREQF3d3fh/pMnT2LXrl14/fXXYWVl1YU9vLFwEP3/cBCdMcYYY4wxxhhjN7qTJ09i9uzZyMjIwKRJk7Bo0SIMHTr0qkfWGwwGvPzyy/jkk08wefJkrFu3Do6Ojp3Ua8YY695u2CB6fX09xo4di5SUFERHRyM8PBwAsHnzZnz66aeQy+VYv379JU/yyUF0xhhjjDHGGGOM3QyMRiM2b96MpUuXIj09HZ6enrj77rsxevRoeHh4wNXVFSUlJYiJiUFcXByqqqrQ2NgIAHjmmWdw2223tVpeSUkJ7r33XkRHR+Ojjz7Cs88+y+VuGWP/KTdsEL2lpQU1NTVYsGABXnrpJYSHh8NgMGDYsGH4559/EBMTg/Xr1+Pbb7+9pOVxEJ0xxhhjjDHGGGM3E6PRiH/++Qfbtm3Dtm3bUFJS0upxiUSC8PBw9OjRAyqVCiUlJTh27Bhuu+02vPbaa6iurkZaWhpWrFgBsViMLVu2YMiQIV20NYwx1nVu2IJVFhYWbWbrzszMRFhYGCwtLTF06FC89NJLXdQ7xhhjjDHGGGOMsa4lkUgwatQojBo1CitXrkRZWRmKi4tRXFwMR0dHREZGtpqAlIiwfft2vPjii0KwXKFQYMyYMVi9ejVPGsoY+8+6YYPo7amtrW2VRW40Gjt8rk6ng06nE25rNJpr2jfGGGOMMcYYY4yxriIWi+Hq6gpXV1f07du33eeIRCJMnToVEydORFxcHLy9veHu7g6xWHyde8sYY91Ltw+il5aW4p577mlz/6+//gp7e/tW96nV6lbBcIlE0uFyly9fjiVLlnReRxljjDHGGGOMMcZuAgqFAsOGDevqbjDGWLfR7YPoPXr0wJEjRy7puQEBAUhNTYVer0dMTAwiIiI6fO6iRYvw4osvCreJCHq9HtbW1lfdZ8YYY4wxxhhjjDHGGGM3h24fRL+QSZMm4fTp08jIyMCcOXPw0EMP4fnnn8fIkSMhk8nwww8/dPhaKysrWFlZXcfeMsYYY4wxxhhjjDHGGLvRiIiIuroTjDHGGGOMMcYYY4wxxlh3xDNDMMYYY4wxxhhjjDHGGGMd4CA6Y4wxxhhjjDHGGGOMMdYBDqIzxhhjjDHGGGOMMcYYYx3gIDpjjDHGGGOMMcYYY4wx1gEOojPGGGOMMcYYY4wxxhhjHeAgOmOMMcYYY4wxxhhjjDHWAQ6iM8YYY4wxxhhjjDHGGGMd4CA6Y4wxxhhjjDHGGGOMMdYBDqIzxhhjjDHGGGOMMcYYYx3gIDpjjDHGGGOMMcYYY4wx1gEOojPGGGOMMcYYY4wxxhhjHeAgOmOMMcYYY4wxxhhjjDHWAQ6iM8YYY4wxxhhjjDHGGGMd4CA6Y4wxxhhjjDHGGGOMMdYBDqIzxhhjjDHGGGOMMcYYYx3gIPr/ISJoNBoQUVd3hTHGGGOMMcYYY4wxxlg3wUH0/1NfXw9bW1vU19d3dVcYY4wxxhhjjDHGGGOMdRMWXd0B1jEiQnl5OXJzc5Gbm4u8vDzk5+ejoKAAFRUVaG5uRnNzM7RarXBdIpFAJpMJTS6Xd3hbpVLBwcEBjo6OrS5tbGygUCigVCqhUCi6+m244RARTCYTWlparrgZDIZWt41GI0wmk9DM62ivnf+YSCSCQqGASqWCUqkU2r9vW1padvXbxthNg4jQ0NCAqqqqVq26uhoNDQ3QarVoamoSWn19PcrLy1FWVgaNRtPud0B7o6TEYjFsbW1ha2sLOzs74dLe3h5OTk5wdHSEk5OT0My3+XudMcYYY4zdDAwGAxoaGtDU1ASlUgkbGxuIxZwryhi7NkTE9UsAABqNBra2tqirq4ONjc11W69Wq0VmZiYyMjJw9uxZIWBubs3NzcJzbWxs4OXlBU9PT7i4uEChULQKkMtkMphMpjaB9X/fNl+vr68Xgjsmk6nd/imVSvTo0QPOzs6wtraGtbU1VCpVm8v27jv/Ui6XQyQSXdP38t+B5ZaWFmi1WjQ2NgrBqqu5rtVqLzkI3lVEIhHEYrHQTCYTDAbDRV8nlUqhVCohlUpbNQsLC8jlctjb28PBwaHddv5jdnZ2vNPCbijm70yNRoPy8vI2rbq6GrW1tdBoNGhuboZer4fBYBDa+bd1Op3wXdHed6pUKhW+DxUKhdBUKhWcnZ3h7OwMW1tb4X/P/H8okUja/b9qaWmBRqNBbW0t6urqUFtbi5qaGlRXV6OyshIVFRVobGxs8zqFQtEqqO7s7CwE2s3XbW1thROp519aWVld8+9yxhhjjDH230NEqK2tbZVEWFhYiMLCQlRUVKChoaFN0+v1rZZhTjJRq9VQq9WwtrZute9qvt7efR1dl0gksLS0hJWVFaysrFpdN9+Wy+XCPr6Liwt69OgBFxcXuLi4QCaTXZP3izF2/XEQ/f9cyyA6EaGsrAzp6enIyMhAenq6cD03N1fIMLSxsYGvry98fHzabXZ2dp3aLzOTyYS6ujpUVlaiqqpKOJPb0NCA8vJylJSUoKysTPihqq+vb3Vpzqy8EJFI1Cqwbg6qm5tYLO7wtrl/tbW1aGhogMlkapOZbTQar2jbRSKRECA6P1jU3nWZTCYEt66kXc1rJRKJEEj7d6Dc3DoKbBkMBjQ2NqKxsRENDQ0XvG4OBpozYQ0GA7RaLaqrq9tk1TY1NbVZl1gshqOjoxCIMwcGz7/t4OAAtVoNe3t7qNXq63KChd1Yzh/NYTQaW43IMF8aDAZoNBrhu6Gurq5Nq6ysRFlZGcrLy4WTYP9eRkffXUqlEk5OTnBwcBCyvWUyGSwtLYXg9r+vW1paQqFQQC6Xw8bGptUIHwcHByiVyuv+WddqtUJAvaKios318vJy4XZFRQVqamouuDyxWAyFQgFra2u4urrC1dUVbm5ucHNzE26bDxg8PDxgYcED3hhjjDHG2DlEhOLiYsTFxSEzM7NVwDw3NxcajUZ4rkwmg6enJzw8PODi4gJra2thVPX5TalUQi6Xo7GxETU1NUJiSU1NDRoaGlqt+/zLS73e0tICvV4PnU4HnU7X6rq5mZMVtVptmxGkdnZ26NGjhxBYN1//920nJyfed2asm+Mg+v/pjCB6Y2MjMjMzcebMGaGZg+bmHwOJRAI/Pz8EBwcjKCgIwcHBwnVHR8fO3KTrqqWlBY2Nja0C6+0F283XzT8u5mYuQ9LedfPZZDs7O6hUKiGYbL48v51/n0QiaZXt2V6AnLMqr1xzc7NQosIcWK+srBQCc+c3c4CuvexcS0tLIVNArVbDzs6uzZn9a3H9/JMal5o9bzKZoNFohO3V6XRtArwmk0kondRRk0gkrT7/5gac22EzZztcz8+myWSCXq8XdgrNl+2NbDl/VIv5Nec38+sv5bHm5mYh6N3Q0CC8l1dCKpUKZU1sbW3h4OAgBHQVCoVwQur8S/P3gbW1dauTPkqlspPf4RuDwWBAZWUl6urqWo3G+fdlXV0dSktLUVxcjOLiYpSUlKC0tLTV/7iVlRXCwsLQq1cvRERECM3Z2bkLt5AxxhhjjF0vBoMBcXFx+Oeff/DPP//gxIkTKCsrA3BudKSvry+8vb3bJBB6e3vDycnphjtWNxqNqKysRGlpKUpLS1FWViZc//d91dXVrV4rEong5OQEV1dX+Pv7IyAgoFVzd3fnUd+MdTEOov+fywmiV1dXIyUlBSkpKUhNTUVKSgoyMjJQVFQkPMfBwQGBgYFCoNx86e/vz/Wn2X+SyWQSAu7mzABz6Ynzb9fV1bU6q9/RWf/zr3eGf2f/i0SiVlnQ5gD59WJhYQEbGxtYWloK/bCwsBBOBJhL9ZzfTCZTm+GF/z6BoNVqUVtbi9raWqE8iV6vv+IyROY+mTOxze1y7jMHvlUqVavRFxe6NL8/5oC5OVP8RtvRvpn8+6AhPT0dSUlJSExMREpKijB6xdXVFX369GnVfH19+W/HGGOMMXaDa2hoQHR0tBA0j46OhlarhUKhwKBBgzBkyBD07dsXUVFR8PT0/E/v/+l0OmFepPOD7EVFRcjOzkZWVhby8vKEY1ArKyv4+fkhICAAnp6ewojQ80eHOjo6cqCdsWuIg+j/p6MgemVlJb788kucPXtW+CIznzmVSCQIDAxEWFiYECgPDAxEYGAgHBwcumpTGPtPISK0tLRccsDdfP3fdezbC5i3V1bH2toajo6OsLe3F7LKz38OgFbD+dprRNSqHt/5DTgXjKyvr0d9fT30er2wbqPRKAS+xWJxmxr2YrG43eGF5ze5XA61Wg1bW1vI5fI2we3zg+7m+n7/nnvB3KysrHgnjV0So9GIs2fPIjExEfHx8YiLi0N8fDxKS0sBANbW1ggODkZISAhCQkIQGhqKkJAQ+Pr68rBWxhhjjLFuqqKiAkeOHME///yDI0eOIC4uDkajEQ4ODhg2bBiGDx+O4cOHo0+fPpBKpV3d3RuOXq9Hbm4usrKyhHhUVlYWCgsLUVJSgoqKilbPt7CwgIuLC9zc3ODu7g53d3d4eHgI152dnWFvbw97e3uu1c7YFeAg+v/pKIheVlaG3r17w8/PD/7+/vDz80NoaCjCwsLQs2dPzipnjDHGrlBpaSni4uKQnJyMtLQ0pKWlITU1FfX19QDOlegJCAhAUFBQm8YnqxljjDHGrh+DwYC0tDScOnUKx48fxz///IP09HQAgLe3txAwHzZsGIKDgznZ5jrQ6/UoKytDSUmJUGLRXG6xqKhIaO3NeySTyYSAurOzs1AG8/zr59+2srLqgi1krHu57CC6eZJBd3f3VvenpKQgLCysUzt3PV3LiUUZY4wxdmnME06lpaUhIyOjVcvLyxOe5+Dg0CqoHhgYKNTRVKvV/+nhwYwxxhhjV8NgMCA5ORmxsbE4deoU4uLikJiYCJ1OB5FIhNDQUCFoPnz4cHh6enZ1l9kFNDU1obi4GBUVFUJJVXOrrKxERUUFysrKhNZe0N3W1vaigXZzU6lUXbCVjF17lxVE37p1K1544QXY29uDiLB69WoMHDgQABAVFYW4uLhr1tHL8dJLL+HEiRPw8vLCunXrLilbnIPojDHGWPfW1NSEzMzMNsH19PR0NDQ0CM+zsbERJqUyD1t1cHAQsm3+fV0ul3fhVnUeIoLBYGg1ge/5ZazOvzQaja1KSYnFYohEIhgMBjQ3N8NgMEAikbQpG2WemLmjZn5cIpHwiQzGGGPsBmAymZCZmYmYmBjExMTg5MmTOH36NJqbmyGRSBAaGoqoqCihRUZGcpD0JqfX61sF1s2129u7XVFR0WbuMIVCccFAu7ncjJubG2e4sxvKZQXRIyMjsW/fPjg5OSE2NhYPPvggXnvtNcyYMQN9+vRBfHz8tezrJYmPj8eKFSvw448/YtmyZfD19cWMGTMu+joOojPGGGM3JiJCZWUlcnNzhZaTk4O8vDxUVlYKmTY1NTVob7fHPJxVqVTCwsICUqm01eW/r//7tkQiabdf5z/PPAFwS0sLJBKJ0M6f8+Bige+L3afX66/1W31ZLhZol0qlUCgUsLGxgbW1tTC3gzmgLxaLYWFhAZVKBWtra1hbWwvPba+pVCqoVCoePs4YY4x1gIhQVFQkBMtjYmIQGxuLuro6AEBgYCD69++P/v37Y8CAAYiMjIRCoejiXrPuzGg0orq6usMg+79v/3t/1cnJqVXd9n9f9/Ly4pM2/wEmkwn19fWoq6tDXV0dNBoNtFqtcAxlbnq9/oK3O7rPYDDAZDK1aTqdDvX19dBoNBg6dCi+/vrrC/bzsmbrMhgMcHJyAgD069cPhw8fxt13342srKxuk210/PhxjB8/HgBw6623Yt26dZcURGeMMcbYjUkkEsHJyQlOTk7o379/h88zGo2oq6tDdXU1qqqqhOB6VVUVqqqqoNVq0dLSIgS7zw98m5s507uxsVG43V5g3jzpsXkZ5uCxOWB+fjMH1tub3NfGxqbDiX8vNCnwhR6ztLSEhYUFiAgmkwlEJDSpVAorKytIpVIYjcZ2d0A72jG92GPtPd7U1ASNRgONRiNM6nx+vwwGAxoaGoTJljUaTZtsp39TKpWwsbGBo6MjHB0dYWdnJ2y7+e9gaWkJa2vrdkcnKBQKyOVyYWJlntyWMcbYjYSIUF1djezsbKFlZWXhzJkzyMjIQHV1NQDAzc0NAwYMwMKFC9G/f3/069cParW6i3vPbjQSiUTYDw8PD7/gc4kIdXV1KC4uRmFhoVCz3Xz95MmT2L59e5sJUx0cHODr6wtfX1/4+PgI1319feHt7c2TpHZDRISysjIhuSk3Nxd5eXnCSRXzsZdOp0NTU5MwJ9al+veI2X+Plj3/tvnYRyKRtEnYkclkcHZ2ho2NDaKioi663ss6KnB2dkZiYiIiIiIAnPsg79u3Dw8++CASExMva4OvldraWri5uQE4V7PJ/APxbzqdDjqdTrit0WiuS/8YY4wx1jUkEokQKA0ICOjq7rArQETQarVCUN3czg+0m4PtVVVVqKioQG1tLerq6oQgvrnV19ejqqoKjY2NF1ynhYUF5HI5FArFFTXzay0tLYWTA1KpFEqlEgqFAkqlstV1uVzO2fSMMcYuyGg0oqCgANnZ2Th79myrgHl2dnar+IaDgwP8/f0RFBSE2267DeHh4ejfv78QN2HsehGJRLCzs4OdnR1CQ0M7fJ5OpxMmR83Pz0dOTo7QTp06hfz8fLS0tAjPd3V1ha+vLwICAtCrVy9ERESgZ8+ecHFxuWnKNnY3548ENgfJ/329ublZeL5arYa3tzdcXV0RGBiIQYMGQS6Xw8rKCnK5HLa2tkKzsbGBra0t5HJ5h4HxrtpXvqwg+oYNG9pk41haWmLTpk2YN29ep3bsSqnVauEHo7a2Fvb29u0+b/ny5ViyZMn17BpjjDHGGLsKIpFICE67uLh0yjJ1Ol2rCba0Wq3QmpubodVq0dTUJFz+uzU0NKC8vLzdx5qamtodqXAxCoUCKpXqguVrOipvo1KpoFQqhUulUgmpVNop7xVjjLHry2AwICMjA/Hx8Th9+jRSU1ORnZ2N3NxcGAwGAIBYLIanpyf8/f3Rr18/3HffffD394efnx/8/f1ha2vbxVvB2OWxsrISMs3b09LSgqKiIiFoa24ZGRn4f+zdeXhU5dk/8O/smSyTZbLvCSSEJRDCviNIpQiKLy5FrdrX1qViq2+tVm3dWpdarXVpbevWasXa1qWKIhUVkB3CTlgSsu/7ZJLJLJlz//6gc34ZkkACCQH8fq7ruc7JZOacZyaZmXPucz/389577/klSFgsFiQlJSE1NbVbS09PR3h4+DlTWeNc0t7ejqqqKrVVVlaitLTUL0h+4uvsGylwySWXqOu+dqF8DvWrJvr54MSa6Onp6Vi+fHm3+/WUiZ6UlMSa6EREREQ0IEREHabqdrvVCVc9Hg/a29vR3t4Oh8PR4/qJmfUnZt93zcI/1eF8cHAw4uPj/SbyOrH2aFxcHEvXEBENIbvdjv3796sB8927d+PAgQNq3CI9PR1jxozBsGHD/FpKSgqMRuMQ957o3KAoCoqKilBUVITa2lrU1NSgvLzcL1O6ra1NvX9oaKh6wSk9Pd1vPTk5+YI7NnK5XKiuru4WIO/6c1VVVbdqHSEhIUhJSVHL6fiC4771sLCwb8TFiNMOor/33ntYtmzZQPdnQNxzzz3Ytm0bkpOT8cYbb/TpC4UTixIRERHR+UZRFL+guy8I39bWpi6bmprUEyRf/dHKykq/hBKtVovY2Fi/wHrXZXJyMpKSkpjVTkR0hkQEJSUl2LJlC7Zs2YIDBw7g6NGjqKqqAnB8Yu4xY8YgJydHbePGjbtgMjmJhpKIoLm5GcXFxWqw3VcSqaioCGVlZfB6vQCOl4JMSUnpFlxPTU1FSkoKIiMjhzxwLCJob29X53hqbGxEQ0MDGhsbUVNT0y043tjY6Pf4gICAbokWJ7a4uDiEhIQM0TM8t5x2EN1kMuGpp57C3Xff3et9RGTI/6H6ikF0IiIiIvqm8E0813VCr56WLS0t6mN0Oh2Sk5ORkJCAmJgYREdHqy02NhYjR45ERkbGBZe1RUR0JpxOJ/Ly8rB582Zs2bIFmzdvRm1tLQAgMzMT48ePR2ZmJjIyMjB27FiMHDmSmeVEQ8Tj8aCsrKzHAPuJ8w2YTCaEhYXBYrH4teDgYAQEBPTaTCYTgOOJEL01p9PZ6yjEE0ck+oL+XRmNRsTGxvYYFO/avikZ5APltIPoa9aswdVXX40bb7wRzz//vN+L7vV68dZbb+Gpp57C4cOHB6yzg4lBdCIiIiIif+3t7WodTN9JZHV1Nerq6vyab4Ivk8mEzMxMJCYmqpnsvpaWlob09HQGh4joglZRUaEGy7ds2YJdu3bB4/EgMDAQU6ZMwbRp0zB9+nRMnToVVqt1qLtLRH3kS0AoLS1FaWkpysvL0draitbWVthsNnW9ra0NLpcLTqezx+YbCajVantsGo0GJpPppPPidG2hoaGwWq2IjIxUl0FBQQyOD4Izqom+d+9eLF68GBMnTsTKlSuh0+nw2muv4emnn4bNZsOdd9553kzeySA6EREREVH/iQjq6+tx8OBB7N+/H4cPH/YrG1NbW6vWbdfpdEhLS0NiYiJiY2MRExPT4zI6OpoZ7UR0znO73dizZ49f0Ly8vBwAkJaWhunTp6tB8+zsbH6uEdF5VbWD/J3xxKKVlZVYtGgRAKChoQEejwd33XUX7rzzzvOqZg6D6EREREREA8/j8aC6uhpFRUU4evQojh49qgbXa2pqUFtbi6amJr/H+OqQDhs2DAkJCQgNDUVoaChiY2ORmJiIpKQkJCUlISIigieiRHTWuFwubN26FV999RXWrVuHbdu2wel0wmQyYeLEiWrAfNq0aYiNjR3q7hIR0QA6oyC6zWbDCy+8gOeffx4OhwMajQZbt25Fdnb2QPbxrGAQnYiIiIhoaLhcLtTV1amB9fLycrX+aE1NDWw2G1paWvxKxwCA2WxWg+pdg+tdbwsPD2egnYhOS1NTE/Ly8rB161asW7cOmzdvhtPpRHh4OObMmYNZs2ZhxowZyMnJUescExHRhem0g+j3338/Xn75ZVitVtx333247rrrcMcdd2D16tVYtWoVJk2aNNB9HVQMohMRERERndu8Xi/q6upQXl6O8vJyVFRUdFuvqqrym2QrMDDQL7A+atQo5OTkICcnB5GRkQywExEAoK2tDXl5edixY4faiouLAQAWiwWzZ8/GRRddhIsuughjx46FTqcb4h4TEdHZdNpB9JEjR+L+++/Hdddd5/fl8Ytf/ALPPfcc3n77bVx++eUD1tHBxiA6EREREdH5r7OzEzU1NT0G2MvKynDw4EG0t7cDAEJCQpCcnKyWjhk+fDiGDx+OYcOGIS0tjZOgEl2gXC4X9u/fj+3bt6sB80OHDkFRFAQGBiI3NxeTJk3CxIkTMWHCBGRkZECr1Q51t4mIaAiddhD9ZIXwX331VaxYsQLPPPMMVqxYcUYdPFsYRCciIiIiuvB5vV4cO3YMe/fuRWlpKcrKylBcXIxjx46hqKgILpcLAKDVahEXF4fY2NhuyxPXzWbzED8rIuqNw+HAvn37sGvXLrUdOHAAHo8Her0eY8eOxeTJkzFp0iRMmjQJI0eO5ASgRETUzRlPLNqb1atX45prrkFra+tgbH7AMYhORERERPTNpigKKisrcezYMRQUFKCiogLV1dWoqalRlzU1NX512QGok56eLNgeFxeHiIgIZrMSDZL29naUlpaq7989e/Zg165daoa5wWDAmDFjkJubi9zcXEyYMAHjxo1DQEDAUHediIjOA4MWRAeAXbt2ITc394y3k5eXh7vuugtarRYxMTF4++23YTAYkJGRgYSEBADAgw8+iAULFiA/Px+33HILvF4vfvnLX+Liiy/u0z4YRCciIiIiolNRFAVNTU1+gfWuAfaut9lsNr/H6vV6xMTE+AXWo6OjERQUhKCgIOj1enR0dMDhcEBEEBgYCLPZjMDAwB7XDQYD9Ho9DAaDuh4YGIjQ0FDWeqcLhoigqakJVVVVOHbsGI4dO4aysrJu7zm73a4+JiAgAGPHjlWD5bm5uRg9ejQn/yQiotM2qEH0gVJTUwOLxYLAwEA88MADGD9+PK666ipMnDgRO3fu9Lvv0qVL8Zvf/AYxMTFYuHAhNm/e3Kd9MIhOREREREQDqaOjA7W1tScNttfV1aG9vR0OhwMej0cNkvse77u9P/R6PaxWKywWCwICAhAQEICIiAjExMQgOjq6x2VUVBQMBsNgvAx0GpxOJ0pKSlBXV4eGhga/1tjYiObmZrS0tKCjowMajQZarRYulwutra1obW2FiECv13drvv+H/jSz2YyIiAhYrVaEh4erF3G6tv5MsunxeNDS0oKmpia1NTc3o66uDrW1td1aXV2d3+iPoKAgpKSkIC4uzm/UR0xMDFJTU5Geno7Y2FiO+iAiogF1XhT6io2NVdd9GRbA8dmz58yZg4SEBLz00kuIiIhAdXU1MjIyAABWqxUNDQ2IjIzstk2Xy6XWOwRw3pSdISIiIiKi84PZbEZqaipSU1PPaDudnZ1qQN3hcKjrnZ2d8Hg8fsu2tjY0Njaivr4ebW1tcDqd6OjoQGNjI44dO4bNmzejrq6u2/mPRqNBXFwckpKSem0xMTH9CpZSdyKCxsZG9UJK1+a7rbi4GBUVFeia76bVamG1WtUWHh6O1NRUmM1miAgURYHJZILFYkFISAi0Wi06Ozv9msfjgcvlgtPp9GsNDQ3dbuvaOjo6oCjKSZ+X0WjsMQCv1Wqh0WigKIoaOO+aMd5VYGAgYmJi1DZp0iS/n+Pi4jBs2DDExMRwpAUREZ1150UQ3aesrAxr167Fz3/+cwDApk2bYLVa8eabb+KRRx7BCy+84HegERoaiqamph6D6E8++SQeffTRs9Z3IiIiIiKi06HX6xESEoKQkJAB22ZHRwfq6+vVTN+qqipUVFSgvLwc5eXl2L9/P8rLy+FwOPz6kZCQgMTERERFRcFqtSIyMtIvsBscHIygoCAEBwf7rQcGBvYr8OnxeODxeCAifg04HrA1Go1Dnmnc0dHhl03ta42NjX7txNtOHFkQFhamZlQnJiZi5syZGD58ONLT0xEXF4fIyEiEhYUN2fMVEdhsNjUDvqOjQ72Q41v3Bdu7Bt6dTicURYGIQKvVIiwsDBEREYiIiEB4eLjfui/DnYiI6Fx1TpVzqampwZVXXtnt9o8++gh6vR5LlizBK6+8gszMTL/fd3R04JJLLsGGDRswdepUbN26FQCwePFi/OUvf+lzJnpSUhLLuRAREREREeF48LS5uVkNrPtaRUWFWlbEtzyx/vuJNBoNAgMDERAQAJPJBJPJpK5rtVq0t7ejra0N7e3taG9v71MJG51OB6PRCJPJpAbWTSaTOnq5azMYDGoQNzQ0FHq9HlqtFlqtFjqdDlqtFh6PB21tbbDb7Whra1ObLyDcNYvb4XD4nU92FRYW5pc1brVa1XIoVqu1WxkSs9l8Wn8fIiIiOnvOqUz02NhYbNy4sdvtXq8XS5cuxUMPPaQG0N1uN0QEJpMJGzZswPDhw9VtFBQUICYmptcsdADqgRsRERERERF1p9Fo1GzhcePGnfS+Ho8HNptNDYb7AuInrvuC0b7my1b2Za37MteDgoJgMBjU7HWNRqOuezweuN1uv+ZyudRl1/IlvnW32w2bzYbCwkK0tLTA6/VCURQoiqKu63Q6NeM/JCQEYWFhSExMhNlsVsuT+IL/vjrhXZsvo5olb4iIiC4851Qmem/eeecdrFixAtnZ2QCA22+/HXPnzsWiRYsQFBQEk8mE119/HUlJScjPz8ctt9wCr9eLxx57DAsWLOjTPjixKBERERERERERERGd6LwIop8NDKITERERERERERER0YkYRP8vEYHdbkdISAhn+iYiIiIiIiIiIiIiAAyiExERERERERERERH1SjvUHSAiIiIiIiIiIiIiOlcxiE5ERERERERERERE1AsG0YmIiIiIiIiIiIiIesEgOhERERERERERERFRLxhEJyIiIiIiIiIiIiLqBYPoRERERERERERERES9YBCdiIiIiIiIiIiIiKgXDKITEREREREREREREfWCQXQiIiIiIiIiIiIiol4wiE5ERERERERERERE1AsG0YmIiIiIiIiIiIiIesEgOhERERERERERERFRLxhEJyIiIiIiIiIiIiLqBYPoRERERERERERERES9YBCdiIiIiIiIiIiIiKgXDKITEREREREREREREfWCQfT/EhG0trZCRIa6K0RERERERERERER0jtAPdQfOFXa7HaGhobDZbLBYLEPdHSIiIiIionOC3W5HQUEB6urq0NjYiPb2dsTHxyMtLQ1paWkIDAwc6i4SERERDSoG0YmIiIiIiEhVU1ODVatWYdWqVdi1axfKy8v9fq/RaNQRvFqtFqNHj8bkyZMxZswYREVFISoqCkFBQdDpdNDr9RgxYgRCQkKG4qkQERERDQiNsH4JAKC1tZWZ6ERERERE3zBOpxMHDhyAw+GAy+VCcHAwcnNzYTKZhrprg6KiogKlpaWorq5GQ0MDFEWBoihobm7GwYMHceDAAeTn50Oj0WDGjBmYMWMGRo0ahaysLMTFxSEiIgIBAQGorq5GcXExDh06hB07dmDbtm0oKChAR0dHt33qdDpMmjQJF110EXJycjBq1CgMGzYMBoMBwPFAvFY7MJVGfae3Go1mQLZHREREBDCIrmIQnYiIiIjowuZ0OlFWVoaysjIcPXoUa9aswdq1a+FwOPzuZzKZMGXKFIwaNQqBgYEICgpCYGBgtxYcHIzo6GjExcUhJCQE9fX1qK2thdfrRVJSEmJjY6HRaGCz2VBfX4+Ojg54vV4AQFJSEqxW66AGe0UEbW1tqKqqwqpVq7By5Urs2rVL/b1Wq4Ver4dGo0FwcDBGjx6NMWPGYMqUKVi0aBEiIyP7vU+Hw4H6+no4HA54vV64XC7s3LkTX375JdavX4/a2tpujwkODsb06dMxZ84cjB8/HomJiUhISAAAtLS0+LXm5uZut7W0tKChoQE1NTWoqamB0+kEcDyQHhcXh8zMTKSlpcFut6O2thaNjY3wer3wer3QarWwWCywWCxISkrCxIkTMXHiRIwZMwbBwcGn+cqfnzweD/bv349t27Zh3759GDt2LK644grExsYC+P/ziBkMBhiNRuj1HNhORETfHOd1ED0vLw933XUXtFotYmJi8Pbbb2PUqFHqAdeDDz6IBQsW9GlbDKITEREREV0YnE4nDh8+jNLSUpSWlmL//v3YsWMHDhw4oAaxtVotpk+fjksvvRTz5s1DaGgoAgIC0NDQgI0bN2LDhg0oKSmBw+FQW3t7e4+Z1r3xZVp7PJ4efx8WFob09HTEx8cjNjYWkZGRasBer9dDURR4vV6EhIQgOjoaMTExagsKCoKIwOVyoampCUeOHMGRI0dw+PBhdVlVVQW32w3g+IWBxYsX4+qrr8bo0aMRFxeH8PDws56x3djYiEOHDqG4uBiKogAAqqursWHDBmzcuBF2u/2U27BYLAgLC/NrVqsVsbGxiI2NVV8br9eL8vJyFBQUoKSkBBaLBTExMYiMjITBYIBWq4XX64XdbofNZkNRURH27t2rvma+APySJUtw/fXXIyYmZlBfm7PF6/WiqKgIpaWlKCkpwYEDB7B9+3bs3r0bTqcTer0ew4cPR0FBARRFQW5uLux2O0pLS+FyudTtaLVamEwmGI1GpKWlYe7cuZg7dy4mT56sXkAiIiK6UJzXQfSamhpYLBYEBgbigQcewPjx4/HrX/8aO3fu7Pe2GEQnIiIiIjr3iQhKSkpw8OBB5Ofno6SkBMHBwbBarXC5XFi3bh02b96sBvuMRiOysrIwadIkTJo0CSNGjEBycjISEhJOq2SLoihwOp1wOByw2+2oqalBdXU17HY7oqOj1eBheXk5ysrKoNFo1DrhZrNZDY6XlpaisLAQRUVF6jYaGhrQ0dEBh8MBj8cDnU4HrVaL9vZ2NeDsYzQa4fF40PV0Tq/XY9iwYRgxYgSysrKQlJSEqKgoREZGYtKkSef8eY7X60VlZSUqKytRUVEBrVaLsLAwhIeHq8Fyi8UyqBnQbrcb+/fvx6FDh1BQUIB9+/Zh9erV8Hq9uOSSS9SkrREjRuDiiy8+b7Kxi4qK8OGHH2LdunXYsGEDbDYbgOPZ+unp6Zg8eTImT56MKVOmICcnB2azGY2Njfjoo4/w1VdfISoqCikpKYiJiVFHGLjdbrhcLrhcLuTn52PdunUoKSkBAERFRWHs2LHIyMhAeno6srKysHDhQvXCEhER0fnmvA6id/Xwww8jJycH999/P2JiYpCQkICXXnoJERERfXo8g+hEREREROcOp9OJI0eOoKSkBNXV1aiqqsKePXuwdetW1NfXAwBCQkKQlpYGh8OBxsZGiAhmzZqFefPmYerUqUhNTUV0dPSA1dseKl6vF42NjaitrVVbU1MTTCYTzGYzQkNDMWLECKSnpzNIOQiamprwzjvv4P3330dpaSkqKirgcrmQnJyMH/7wh/je976H6Ojooe6mH0VRkJ+fj7Vr1+Lvf/87tm3bhoCAAMyYMQNz5szBtGnTkJaWhqSkJBiNxgHbb1lZGXbt2oU9e/Zg//79OHbsGIqKimC325GQkIAVK1bgBz/4AaxW64Dtk4iI6Gy4IILoZWVlWL58OdatW4fW1lZYrVa8+eab2LlzJ1544YUeH+O7Yu7T2tqKpKQkBtGJiIiIiAaQ1+tFdXU1nE6nWvrBZDLBZDLB6/Vi8+bN+PLLL5GXlwen0wmPx4PGxkYUFRWp2dc6nQ4xMTEYNWoUpk2bhilTpmDcuHFISEhgyQg660QEu3fvxksvvYSVK1fC5XIhMzMT06dPR2pqKnQ6HfR6PRITE5GVlYWMjAx0dnaitbUVLpcLMTExCAsLO6P/XbvdjtWrV2PLli04evQojh49CrfbjYiICFgsFuTn56OhoQEGgwELFy7EtddeiyVLliAoKGgAX4m+EREcPHgQzz//PN566y243W6MGDECEydOxMyZM7FkyRLEx8ef9X4RERH1x4AE0ZubmyEiiIiIQH19PTZs2IARI0ZgzJgxA9HHk2ptbcWSJUvwyiuvIDMzU729o6MDl1xyCTZs2NDj4x555BE8+uij3W5nEJ2IiIiI6Ljm5mZs27YNpaWlaG9vh8PhQHJyMmbMmIH09HQ0Nzdj69at2LlzJ0pLS1FWVoa6ujq1xEhraysqKirUOuS9iY2NxbRp0xASEgKDwYDQ0FCMHDkSo0aNwrBhwxAZGQmdTnc2njJRvzQ0NOA///kPNm/ejM2bN6sTy7rdbjQ3N/f6OLPZjISEBMTHxyMhIQEpKSnIyMjA8OHDYbVaYTQa1QtORqMRXq8X+/btQ15eHjZs2IC1a9fC5XIhIyNDDdSbzWY0NTWhubkZw4cPx9y5czFt2jQEBgaexVfk5Orq6vDJJ58gLy8PO3fuxM6dO+H1ejFp0iTMnTsX48aNw9ixYzFy5MjzplQOEV24FEVBW1ubOol1e3s7xowZg5CQkKHuGg2BMw6iv/rqq3jyySehKAruvfdevP322xg7diw2bNiAH/3oR7jlllsGqq/deL1eLF26FHfddRfmz58Pt9sNEYHJZMKaNWvw7rvv4vXXX+/xscxEJyIiIqJvqpKSEuzcuROHDx9GYWGhWoPb19xuN6qrq3HkyBEAx+smBwUFwWw2q6VUwsLC0NLSAgCIjIxEeno6kpOTER0dDZ1Opz4mOTkZycnJCAwM9Kuh7HK5oCgKJk6ciKysLGaU0wWntbUVR44cwbFjx2AymWCxWGA0GlFTU6PWfve1kpISlJeX41Sn58HBwZg0aRIuu+wyLF26FKmpqWfnyQySpqYmfPrpp/joo4+wfft2lJaWAjj+PKdMmYKZM2fiyiuvPCsJekT0zSQiqK2txYEDB7Bv3z7s2bMHe/bsQUVFBWw2W7c5SfR6PaZPn46LL74YI0eORFpaGpKTkxEWFsaSahe4Mw6ijxs3Dtu2bVOzUoqLixEVFYXW1lbMnj0be/bsGaCudvfOO+9gxYoVyM7OBgDcfvvtePrppxEUFASTyYTXX38dSUlJfdoWa6ITERER0YWupqYGDz30EF577TUoioKIiAhkZmaqGeBdm9VqxZQpUzB16lQMGzZMDXI3Nzdjy5Yt2LVrF1JTUzF9+nSkpaUxCE50hpxOJ4qKimCz2eB2u9XmcrkgIhg9ejQyMjIu6FEZLS0t2LdvH7Zs2YJNmzbh66+/RktLC3JycrB8+XIsXLgQY8aMOe/nOSCigSMiyMvLw+eff46ioiIUFxejvb0dFosFFosFKSkpGDduHLKzs+HxeFBdXY2Kigrk5+fjwIEDOHDgABobGwEAgYGByM7ORk5ODtLS0hAeHo7Q0FB1cmuj0YgtW7ZgzZo1WL9+vTpJs09QUBAyMjKwbNkyXHnllcjKyhqKl4QGyRkH0XNzc7Fr1y4AQE5Ojl/QfPz48di9e/cZdfBsYRCdiIiIiC40dXV12LdvH44ePYr8/Hz89a9/hcFgwMMPP4zrrrsOkZGRQ91FIqJeud1urF69Gn/729+watUqOJ1OREVFqROjpqamYvTo0Zg6dSrLKxBdoEQEdXV1KCsrQ2lpKSorK6EoCgwGA5qamvD3v/8dhw4dQmhoKIYNG4a0tDRYLBbY7XbYbDYUFhaiuLjYb5t6vR6ZmZkYM2aM2rKzs5GWltbnC5UigubmZhQVFaG8vBw2mw3Nzc3Yvn07Vq1ahba2NqSmpmLatGmYOnUqcnJyMGrUKB57ncfOOIg+efJkbNiwAQEBAbDZbAgNDQVwfKKT2bNnM4hOREREvXI6nSguLkZFRQUqKiqg0+kQGxurtsjISL9sM99B9OHDh1FXV6dO3uZyudDS0gKbzYYxY8Zg/vz5HE5JFzxFUVBVVaVmXZWXl6OjowMulwu1tbXYsmULjh07BuD4yWJ6ejoWL16MBx98EBEREUPceyKi/nE6ndi8eTPWrl2LXbt2obS0FCUlJXA6ndBqtRg3bhxycnLU+RRmz57NwDrROU5RFBQUFODIkSOw2Wyw2+1oaGhQA+a++Va6lmM2m83Q6XTweDwwGAy4/PLLccMNN2D+/Pm9BsBtNhvy8/MREBCAuLg4REVFDeqono6ODvznP//B+vXrsXXrVuTl5cHtdgM4XgJv1KhR6rwvJpMJer0esbGxWLBgAYKDgwetX3RmzjiI3tbWhqCgoG7DN+vq6lBRUYHc3Nwz6uDpuOeee7Bt2zYkJyfjjTfegNFoPOVjGEQnIiIafE1NTfjss8/w5ZdfYufOnTh48CA6Ozt7vb9Op4PVaoVOp4OIwOFwoLW1tcf7ajQaBAYGor29HVarFVdccQUmTJiAYcOGYfjw4UhKSuIkZeTHbrfjq6++gtfrRWRkJMLDw6EoClwul1pCwe12IzQ0FBMnThyUCzMulws7duzAli1b1EC4zWZDdnY2Jk+ejMTERFRUVKCsrAw1NTVobGxEY2MjysrKUFJSop6QAUBUVJRa1jA8PByTJ0/GtGnTMGHCBKSlpfH/n4guOIqi4MiRI9i0aRM2bdqEAwcO4PDhw2hra4PJZMK3vvUtLFu2DFddddU5NcEq0TdNbW0tPvvsM3z++edoamqC2+1GW1sbDh48iLa2NvV+er0eERERSElJQUpKCpKTk7uth4eHn3cl5NxuNwoLC5Gfn+/XiouL4fF44PV60dnZCZPJhAULFiA7O1u9beTIkVi4cCESExOH+ml8451xEP1cs3v3bjz77LP429/+hscffxxpaWm49tprT/k4BtGJiIgGnojg0KFDWLVqFVatWoVNmzZBURQ1QDhhwgSMHj0aSUlJiI+Ph6IoqK2tRU1NDWpqalBbW4v6+nooigKNRoOAgAAMHz4cI0aMUO/f2dkJo9EIi8UCjUaDPXv24N1338W///1vFBQUwOv1Ajh+UJ6amqpOcGg2m5GYmIi5c+di1qxZCA8PH+JXi06XoihobGyEiMBoNEKv18Pj8cDlcsHhcKC5uVltTU1NaGpqwtdff40vvvjCLwh9MiEhIZg3bx7i4+NRXl6OiooKuFwuGAwG6PV6tLe3qxlUAKDVahEYGIisrCyMGjUKcXFx6OzshMfjQUtLC2pqalBVVYU9e/bA5XIhODgYw4YNQ1JSEoKDg7Fnzx4cPnxY3X90dDTi4uJgtVphtVqRmJiItLQ0pKenqyUNGCAiIjp+7FFUVISPPvoI77//PjZt2oTQ0FB873vfw2233YbMzMyh7iLRBU1RFJSXl2PXrl3YsGED1q9fj927d0Oj0WDChAlISkqC0WiE2WzGyJEjMX78eIwePRoREREwmUznXYB8oBQXF+PDDz/Ehx9+iLKyMjV549ixY1AUBWPGjMGMGTMwefJkTJo0CaNGjbqg58g4Fw1oEP29997DsmXLBmpzp+UPf/gDgoODccMNNyAvLw9vvPEGXnrppW73c7lcfsNBWltbkZSUxCA6ERHRGWpoaMDatWvx5ZdfYu3atSguLobZbMaCBQuwePFiLFq0CAkJCWelLx6PB2VlZSgsLMSxY8dw7NgxVFZWwuFwwOFwoKCgAGVlZdBoNJg6dSquvPJKXHnllUhOTj4r/bvQOJ1O6PX6Ac14VhQFNTU1KCsrU8v+nNiqqqrg8Xj6tD2NRoOwsDCMHTsWV1xxBZYsWQKLxYKGhgY0NTVBp9PBZDLBaDSqy+rqanz++ef4z3/+g5aWFiQlJSEpKQkBAQHweDzo7OxEUFAQQkNDERISAo1GA0VR0NraikOHDuHgwYNoaGhQJ+wMDQ1FTEwMYmJiMH78eMyePRvjxo3rdiJks9lQX1+PhIQEmM3mAXtNiYi+SYqLi/Hyyy/jtddeQ1NTE7Kzs3HFFVfgmmuuwahRo4a6e0QnpSgKdu/ejcrKSvUYKyoqCqmpqQgLC1MDzg6HA4cPH0Z+fj6qq6sRGBiIoKAgBAcHIygoCEFBQbBarYiNjUVERAS8Xi9aWlpQX1+P/Px87N+/H1VVVUhLS0NmZiYiIiLQ2NiIhoYGv+ZwOODxeKAoCmJiYpCcnIyIiAiUlZWhoKBAPeb2xdtSU1Mxe/ZszJ8/HwsXLkR0dPRQvpznpaamJqxduxb/+c9/sG3bNhw8eBAigqCgIOTm5mLixInIzs7G6NGjMWrUKJaDGUQDGkQ3mUx46qmncPfdd/d6HxEZ1KtKTzzxBEaNGoWlS5eisLAQDz30EFauXNntfo888ggeffTRbrcziE5ERHR6iouL8fTTT+P111+H2+3GyJEjMX/+fCxatAhz5849Z4OAJSUl+Oqrr/Dhhx/is88+g9vtxqxZs/C9730PV155pV891erqanz22WfYv38/XC4XnE4ngoKCkJiYiISEBDQ2NuLQoUMoKChAe3s7PB6PGmT11W1MS0vDsGHDkJWVhYkTJ2Ls2LEwmUxD+Ar0ndvtVk+ofFnYWq0WX3/9Nd577z2sX78eXq8XoaGhCAsLU4PCOp0OoaGhCA0NRXx8PMaOHYtx48YhNjYWOp0OWq0WtbW1an1bXw1MXx3MrtnivhEEvpaUlITExETExcVBq9XC7XbD4/GoQfCAgABEREQgPDwc4eHhsFgsfnX2iYjom6GjowOrV6/G+++/j48//hitra2YPXs2brvtNixduvScPU6hbx4RwZdffol33nkHn3zyCWpqanq8n6+0stPp9CuPaLFY4HQ6ex1tp9Pp1JGaPlFRUUhISEBxcTFsNpvffSMjIxEZGQmr1YrAwEAYDAZoNBrU1taivLwcDQ0NSE5OxvDhw5GRkaEux4wZg6SkpAF4Ragru92OXbt2YceOHdi+fTt27dqFoqIi+MK7aWlpGD16tDph6ujRo5GVlYWAgIAh7vn5b0CD6GvWrMHVV1+NG2+8Ec8//7xfsNzr9eKtt97CU0895Tc0daC9/PLLCAoKwg033ICdO3fiL3/5CzPRiYiIBonH48GaNWvw1ltv4b333kN4eDjuvvtu3HTTTYiPjx/q7vVba2sr/v3vf+PNN9/EF198AYPBgLi4OERGRsLj8WDfvn3QaDTIyMhAYGAgTCYT2tvb1TrWJpMJmZmZGDFiBCwWi1rqw5eB7JtI9dixYygoKEBnZycMBoNaxsM3vLWzsxOKoiA0NBTh4eEwm81obGxEbW0tAGD8+PGYOHEioqOj0dbWhra2NvXkyXf8pdFoel3v7OyE0+lER0dHt3bi7TabDUVFRTh27Bjq6up6fN10Oh3mzZuHyy67TO2rzWZTD+Y9Hg9aW1vR0tKC0tJS7N+/Hw6Ho8dtRUdHIyUlBampqWoNTF8dzKSkpPOyDiYREZ1b3G43PvjgA/zxj3/EunXrYDKZMGPGDFx00UVqWa2IiAhMmzaNgScaVK2traioqIDdbkd7ezsOHjyIP/zhDzh8+DAyMjJw2WWXYfHixRg5cqRaI7umpgalpaUoLy+HVquFyWRCUFAQRowYgZEjR6oxLY/Hg/b2drS3t6OtrQ2NjY1qucSAgACEhYXBarVixIgRiImJAXA8gN/Q0ICWlhZERkYiNDSUyQfnAYfDgUOHDuHAgQNqO3jwIMrLywEcLzOYkZGBESNGwGg0wuv1wmg0IiMjAyNHjlQnZT7XjrFFBBUVFSgoKEBxcbFfa2hoQEhICEJDQxEUFASdTge9Xg+r1YrU1FSkpqais7MTTU1NaG1tRVhYGGJiYpCQkIBx48adVsb+gNdE37t3LxYvXoyJEydi5cqV0Ol0eO211/D000/DZrPhzjvv7DEDfKCcWBM9PT0dy5cvP+XjWBOdaGApioIdO3bg008/xaFDhyAiEBEEBwcjNjYWsbGxak3krlmedOZsNhvq6urUTNC+TK5M3yw1NTXYvHkz8vLycPToURw9ehTNzc0wGAwwGo0YMWIEvv3tb2PhwoWIiIhQM659F6AbGhqQl5eHHTt24PPPP0dDQwNGjx6NH/zgB/j+97+PoKCgoX6KA6K8vBz//ve/UV1djYaGBng8HsybNw+XXHIJoqKiut2/ra0NZrO5z7UJnU4n9u3bh507d6KgoADl5eUoLy9HZ2cn9Ho9NBoNWltb0dTUhPb2dkRFRSE6Ohoejwf79+/vc/mSvtLpdDCbzX4tICAAISEhavZ8cnIyoqKiYLVa/UqZZGVlISIios/78nq9KCoqQmNjIxRFgdfrRXR0NJKTk5kJSEREZ9WRI0ewevVqfPnll9iwYYNfFm5ISAguv/xyXHnllbj44osvmGMcGhoigl27duHjjz/G6tWrcfToUbS0tPjdR6fT4YorrsCKFSswe/bscy6oSecXm82GgwcPqkH1o0ePQlEU6HQ6OJ1OHDlyBFVVVQCA5ORkXHrppZg2bZqa3JOQkDAoFxJFBHV1dTh8+DAqKyvhdDrVRB6n0wmHw4GDBw9i69atahKRRqNBQkKCOidQVFQU7HY7bDYbHA6HepGprq4OxcXF6nvLbDYjJCQELS0t6ugMrVaLMWPGYPz48ero1jFjxmDmzJkn7fegTCxaWVmJRYsWAYB60nnXXXfhzjvvPCvBsnvuuQfbtm1DcnIy3njjjT4FkBhEP341ftOmTYiNjUVWVhY/rKkbt9uN7du3Y8OGDdDpdBg1ahQyMzPVLMXi4mIUFRWhqKgI+/fvR319PcLDw5Gbm6sGldra2tTJ1JxOJ7RaLbKzs5Geno6EhAS1xcfHq+un87nh9XpRVlaGmpoaeL1eeL1etLW1ob6+3q+mm81mw8SJE7Fo0SKMGTNmyP/vRQRer9evnrDH41Fr6UZERECr1UJE0NTUhPLychw9ehSHDx/GwYMHsWvXLhQWFvptMzk5GfPnz8e8efMwf/58xMXFne2nRUPI6/UiPz8fmzZtwubNm7Fp0yYUFRUBAOLj45GVlYXMzExERUXB4/HA6XRi586d2LJlS7dhnl0FBARg/PjxmDVrFq699lqMHTt2yN8/3yRutxsHDhxAS0sLQkJCEBQUBIPBoGZ+n2qp1Wq7BcwHso45ERHR+crtdqOtrQ2VlZX44IMP8O677yI/Px9GoxGzZs3ChAkT1GP2wMBAREVFITIyUp3wOT4+npP9fcP5srnr6upQW1uLgwcPYsOGDfj6669RW1uL0NBQLFy4EDk5OUhJSUFSUhIsFguCgoLU7G+is8Vms2HLli349NNP8cknn6jnij5RUVFqoDkhIQFJSUkYM2YMcnJykJSU1Os5YHt7O/Ly8rB9+3Zs27YN+/btQ0dHhxqbaW1t9bu/0WhEQEAAAgICYDKZkJGRgalTp2LKlCnIyspCSkpKv0pgtra2qtsEjr8vW1tbUVJSgh07dmDbtm04cOAAKisrUVVVhSVLluCDDz446TYHPIhus9nwwgsv4Pnnn4fD4YBGo8HWrVuRnZ09kLsZcN/UIHpdXR3Wr1+Pjz76CB9//LF61T05ORkXXXQRDAYD7HY7nE6nOtSna2tpacHu3buxZ88eiAji4uIQHR0Np9OJ5uZmtLa2wmAwqG8EX1MUBTabDTabDeHh4cjJycH48eORk5OjDiOioed2u7Fnzx58+eWX+Oqrr7Bx40Y4HA6EhoaqH0BdhYeHIz09Henp6RgxYgQuueQSTJ06tcfAjKIoOHz4MDZv3oxt27ahrKwMlZWVqKys7HY1PiQkpFtgPSEhwa/+bXt7OwoLC3HkyBEcPXoUBQUFfiWburJYLIiMjERUVBTMZjO2b98Oh8OB2NhYjBw5Uq1VPGXKFEyYMKHPWZG+Ug/r1q3D+vXrcezYMWg0Gmi1WrWUglarhVarhV6vh06nU5uiKKiurlYnPAwICIDFYoHX60VjY6O6D51OB6vVCpvN5vf8IiMjkZWVhdzcXEyYMAHJycmw2Wxobm5W/4b79+8HAIwcORIXXXQRUlJSYLVaERMTg9zc3POy9Ab9fzabDatWrUJhYSE8Hg9cLhf279+PLVu2oLW1FTqdDuPHj8eMGTMwffp0TJ8+HYmJib1ur6WlBevXr4fT6YTJZFJrS5tMJlgsFowYMUKdMZ6IiIjoQnb06FF89tlnavawbz4Ph8OB+vp6OJ1O9b5GoxGjRo3CuHHjMG7cOOTk5GDcuHF+I7bq6uqwadMmbNq0CdXV1XA4HHC5XGrQaNy4cWhubkZpaSmKiorU8gwVFRVwu91wu92wWq3Izs7GmDFjkJaWhtjYWERGRqK6uhqFhYVobGzErFmz8K1vfQthYWFD8Kp9M7S3t/slNe3cuRM7d+70O4czGo2YPHkyZs2ahYsvvhizZs3icTSds9rb21FRUaE232hZX7ympKREjdlYLBakpaUhLS0NVqtVHbl85MgRHDhwAIqiIDAwEBMnTkRubi5CQkLU0a8ZGRnIyspSR6IOZdkgr9cLh8NxygTOAQ2i33///Xj55ZdhtVpx33334brrrsMdd9yB1atXY9WqVZg0adJA7WrAXehB9OrqamzZsgV79+5FXV2dOgPzoUOHAABjxozBsmXLcPnll6OmpgZr1qzBxo0bodPpEBISApPJhJaWFjQ2NqKxsRFNTU1QFAVarRZZWVnIycmBwWBQ62uZzWZ18i5f3dWuDQDCwsJgsVhQV1eHvXv3wm63AwDi4uIwfvx4TJ8+HXPmzMGkSZPOmwnXzmVtbW3YvHkz1q9fj6KiIjQ1NaGpqQkajQaBgYEIDAyE2WxGYGAgFEXBgQMHcOjQIXg8HgQHB2PWrFm46KKLMG/ePOTk5ECr1aKqqgpHjhxBeHg40tLSBuzgzOFwoKqqSv2Q7rru+7mqqqrbRClJSUkYMWKEWo94xIgRSEhIUAPWwcHBsFqt3UanOJ1OfP3111i3bh0KCwtRWFiIQ4cOoaOjA3q9HqNHj1abb5IWX3O5XLDZbNi7dy/27t0Ll8sFs9mMadOmqZntiqKo5WwURYGiKOjs7FQz5Ds7O6HRaBAbG4uEhASEhYWhra0NdrsdGo0GMTExiImJgcfjQW1tLerr6xEWFqZeVMjIyIDVaj3l61pbW4t169bhiy++wNdff42amhq/CxZJSUmYOnWq2nzP92TZxTabDdu2bcPhw4eh0WjUYWHV1dWorq6GVqtFXFwc4uLiYLfbUVpaisrKSni9Xmi1WhgMBsTHxyMpKQmpqanIyspCVlYWtFotDh06hIMHD8JqtWLmzJnMyDiB1+vFvn37sGnTJnz22Wf4z3/+A4/Hg9jYWBiNRhgMBowYMUINmk+aNIlDkImIiIgGmIigra0N5eXl6rwn+/btw969e3HgwAH1/NeXiOT1etHe3g7gePJaeno6zGYzDAYD8vPzu40qjYiIwJgxY5CdnY3U1FT1OK+2thb79+/HgQMHUF5ejo6ODvUxMTExCAkJQWFhIXQ6HaZMmYJJkyYhNzcXs2fPRmpq6ll7fYaCiKCjowMajaZbQpTL5UJjYyPsdjscDgeSk5P7dC7l4/V6cfjwYaxZswYff/wxvv76a3X0ZmxsLCZMmIBJkyYhOztbTTIcrJIYRENBRFBZWYk9e/YgPz9frUjgmx/KaDQiJSUFU6ZMwZQpUzBq1KgLZsTrgAbRR44cifvvvx/XXXed3/ClX/ziF3juuefw9ttv4/LLLx+QfeXl5eGuu+6CVqtFTEwM3n77bRgMBmRkZCAhIQEA8OCDD2LBggV92t6FGEQ/ePAg3nzzTfzzn/9EcXExgONfpr4P8rS0NMyZMwdz5szpdwaqL5PcZDIhMDDwjPuqKAqKioqwZ88e7N69G3l5edi8eTPsdjsCAgIwdepUzJkzB6NHj4bD4YDdbkdrayvsdjvsdjuioqLUK/2pqalq0K+zsxMbNmzAzp07ERoaioiICL9MeqPRqNZzDQ4ORnh4+JBe/RKRMy6H4PV60dzcjMbGRhQXF2P9+vVYt24ddu7cic7OTkRFRWHMmDGwWq0IDw9XDzAcDoe6VBRFzZ7wZTafa1fKfeVMRETNkh3I2t+dnZ1qFu+ePXtw8OBB5Ofno6Ojw29UhW8Sl+zsbOTm5mLixImYOHHieXPhx+v1oqqqCjt27MDWrVuxdetW7Ny5Uz0I903MER8fj9TUVCQnJ6vDW4uLi3H06FH1b6DVatVJEn2BcxFBdXU1ampqEBwcjOTkZCQkJMBoNEJRFDidTlRVVaGiogL19fVqvzQaDbp+PWm1WuTk5GDy5MnIzc3FmDFj1IC972r3ic1kMqkzyWdlZSE8PPysv76D4dChQ3j++eexcuVK2O12GAwGTJ06FcuWLcOyZctOml1ORERERGdPZ2cnCgoKsHfvXpSWlqrJPXFxcZgxY0aPx20NDQ04ePAgoqKikJSU1KfSlr5RwvX19YiNjVUnzCsrK8Pq1avx1VdfIS8vTw3Qz5w5EzfccAOuueaaCyb+sXPnTvz+97/Hhx9+6De5eWJiojqC8ujRoygpKYGiKH6PTUpKQnZ2NmJjYxEREYGQkBC43e5u8wIVFRVh9+7daG9vh8lkwvz583HppZdiwoQJGDFiBDP+iS5wAxpEP1kA8NVXX8WKFSvwzDPPYMWKFWe8r5qaGlgsFgQGBuKBBx7A+PHjcdVVV2HixInYuXNnv7d3IQTRFUXBrl27sGrVKnz00UfYvXs3IiIicM0112DevHmYNm2aeoHhfNDZ2Ym9e/diw4YNWL9+Pb7++ms0NTUBAEwmE0JCQmCxWBAcHIzKykp1uJTFYsHYsWORkJCAL774Ag0NDQgODlaDwyej1WoRERGhlvoIDw9Xr/Tr9XoYDAYYDAa1bElaWhqampqwb98+5Ofno7OzE0ajEWazGdHR0YiNjUVYWJga9LfZbL0ubTYbOjo6EB8fj4yMDCQmJqK9vR0tLS1wuVxqtnhQUJDafD+bTCYcPnwYO3fuxIEDB/zqGMfExGDu3LmYM2cO5s6dy3r3dEq+sjS+YaANDQ3qsK2ysjJYLBbEx8cjMTEREyZMwLRp05CZmXnG/1d2ux1HjhxRR0CMGTMGo0aNQm1tLdavX4/169cjLy8Phw4dOuV7+cQgPABkZWVh8uTJCAoKgtfrhYggKCgIwcHBiImJwYwZMzB27FjodDr1Io3JZOo2a7dv0sfBpigK9u3bhw0bNqCqqgrNzc0oKCjAV199hdjYWPzgBz/AggULMHHiRE7ESERERESn1NLSgk8++QRvvvkm1q5di6CgINx888340Y9+hLS0tKHuXr81Njbi3XffxRtvvIGdO3ciJSUFN954IxITExEUFASPx6OWWvF4POqo5bi4OISEhMBsNqOoqEgdNVBfX4+mpibY7Xa1lrIvYctkMqnnPxMmTMCUKVM4ypPoG2ZQJhbtzerVq3HNNdd0q6N8ph5++GHk5OTgiiuuQFZWFmJiYpCQkICXXnrJr+5YV74riT6tra1ISko674LoDocD//nPf7Bq1Sp88sknqKmpQWhoKC655BJ85zvfwaWXXjqg2blDSVEUtLS0IDg4uNtzEhFUVVWpJTX27duHkpISzJ07F8uWLVMnf7HZbGpJmsbGRng8HjVA3tbWpk426Zt8sqmpCR6PR81W9603NjaivLxcDeTFx8dj9OjRCAgIgNvthsPhQF1dHWpqamCz2dSAf2ho6EmXZrMZFRUVKCgoQGVlpZodbzKZ4HA44HA40N7e7td8GeTDhg3DxIkTkZOTg7i4OFitViQkJGDYsGEMmtMFxeFwoKCgABqNxu+gtmvT6/Vwu91oampCfX099uzZg61btyIvLw9ut1sdLeVwONTJbt1uN8LCwhAbG4uysjI4HA4Ax+vNJycno729HdXV1WhtbUV2djbmzJmD2bNnIzc3F+np6b2+z0QEZWVlyM/PR0hICOLj4xEREYGmpibU1taira0NFosFFosFDQ0N2LZtG7Zu3Yr169ejoaEBJpMJCQkJCA8PR3R0NJYvX45rrrnmgvlsJyIiIqKzr7KyEn/4wx/wxz/+ES0tLZgzZw6WLVuGpUuXIj4+/pw8h7Tb7eoI2o0bN2Lt2rVQFAULFy7ErbfeikWLFnFSVyIaNGc1iA4Au3btQm5u7oBtr6ysDMuXL8e6detgMBjQ2NgIq9WKN998Ezt37sQLL7zQ4+MeeeQRPProo91uPzGI3tzcjLvuugvh4eFqhnJ6ejqGDRuGuLg49X4BAQFntcaP3W7H73//ezz77LNoaGhAVlYWFi9ejMWLF2P69OnnXOmNC5Hb7UZ5eTlCQ0MRGRnZ6/0GokQLEQ0up9OJ7du3Y926dWhqakJycjKSk5PhcrlQXFyMsrIyBAcHq1krO3bsUCePBY6PgElPT1cnjvVNJAsAhYWF6iiavggMDMSkSZMwc+ZMzJ8/H9OmTWMNRSIiIiIaFA6HA++88w7+8Y9/4Msvv0RnZyfMZrNanjEuLg6xsbEYPXo0rrnmmrNSItHhcGDXrl3qfFhHjhzBli1b1IkKLRYLJk+ejMWLF2P58uWIjo4e9D4REZ31IHp/1dTU4Morr+x2+0cffQS9Xo8lS5bglVdeQWZmpt/vOzo6cMkll2DDhg09brevmeiVlZX4zne+o07C2NDQgM7Ozm7b02g0iIyMRGxsLHJycnDxxRdj3rx5iI6OVmfuPp1AanNzM0pKSlBaWoqysjJ1+dVXX8Fut+Pmm2/G3XffjYyMjH5vm4iIzkxtbS12796N3bt3o6yszG8CWd96SkoKcnNzkZ2drU6a29jYiIiICHXSJ1/Jp+DgYIwePfqCmXiFiIiIiM4fTU1N+Oqrr1BeXo7q6mq/dvjwYej1evzP//wPrr/+esybN29AEz2amprw3nvv4aOPPsLatWvVCVkDAwORlpaGqVOnYurUqZg2bRqysrKYcU5EZ905H0TvjdfrxdKlS3HXXXdh/vz5AI5nBvsmuFuzZg3effddvP76633aXl9ronu9XlRUVODYsWOora1VA+NtbW2ora1FVVUVtmzZgt27d3d7rFarhU6nQ2BgIIYNG4bMzExERkaqkzkajUZEREQgNDQUBQUF2Lp1q5rlCByvA+7LjszJycGPf/xjJCUl9edlIyIiIiIiIiLql5qaGrz11lt4/fXXcfjwYQQGBmLBggVYsmQJLr30UsTGxvZpOyKCiooKVFZWwmazoa6uDh988AFWrVoFr9eLmTNnYsmSJfjWt76F1NRUhISEcGQ3EZ0Tztsg+jvvvIMVK1YgOzsbAHD77bdj7ty5WLRokTrR4uuvv97nIPNATyxaX1+PjRs3wm63w+v1+jW73Y7CwkIUFBSgqakJZrMZZrNZrbXd3NysXmmdPHkyMjIykJycjOjoaH55EBEREREREdGQEBEcOnQIH3/8MT7++GNs2bIFiqJg8uTJWLJkCZYsWYKxY8eqsYvW1lbs3LkT27ZtU1tNTY3fNnNzc/Hd734Xy5cvR0xMzFA8LSKiUzpvg+gDbaCD6EREREREREREF7KGhgZ8+umn+Pjjj7FmzRrY7XZERkZCq9Wio6MDbW1tEBGEhIRg8uTJmDJlCqZMmYL09HRYLBaEhYUxBkNE5wUG0f+LQXQiIiIiIiIiotPjdruxfv16bN68GTqdDmazGVarFZMnT0ZWVha0Wu1Qd5GI6LQxiP5fDKITERERERERERER0YkYRP8vEYHdbuekFURERERERERERESkYhCdiIiIiIiIiIiIiKgXLEhFRERERERERERERNQLBtGJiIiIiIiIiIiIiHrBIDoRERERERERERERUS8YRCciIiIiIiIiIiIi6gWD6EREREREREREREREvWAQnYiIiIiIiIiIiIioFwyiExERERERERERERH1gkF0IiIiIiIiIiIiIqJeMIhORERERERERERERNQLBtGJiIiIiIiIiIiIiHrBIDoRERERERERERERUS8YRCciIiIiIiIiIiIi6gWD6EREREREREREREREvWAQnYiIiIiIiIiIiIioFwyiExERERERERERERH1gkF0IiIiIiIiIiIiIqJeMIj+XyKC1tZWiMhQd4WIiIiIiIiIiIiIzhHnTRA9Ly8Ps2bNwpw5c3D11VfD4/EgIyMDc+fOxdy5c/H5558DAPLz8zFz5kxMmzYNa9eu7fP27XY7QkNDYbfbB+spEBEREREREREREdF5Rj/UHeirhIQErFmzBoGBgXjggQfw4YcfIjQ0FOvWrfO73wMPPIA33ngDMTExWLhwIS6++OKh6TAREREREdE3hNfrRVtbG5xOZ7+bx+MBAGg0GrWd+LPX64XH40FnZ6e67OzshKIo8Hq9UBTFr514W39/7uk2AIiIiEBUVBSio6PVZdd1q9WKkJAQaLXnTb4aERER9cF5E0SPjY1V1w0GA/R6Pdra2jBnzhwkJCTgpZdeQkREBKqrq5GRkQEAsFqtaGhoQGRk5FB1m4iIiIiI6LwjImhubkZdXR1qa2tRV1eHuro61NfXo76+3m+9vr4ejY2NaqC5LzQaDcxmMwICAmAwGNR9+spr+tZ9Ta/Xq813PqjT6aDT6aDVatWlr3X9+WS/822nL/dVFAVNTU0oKytDXl4e6urq0NTU1O25abVahIaGIiYmBgkJCUhISEB8fDwSEhIQFxeHsLAwhIaGIiIiAnFxcTCbzQPzRyMiIqJBc94E0X3Kysqwdu1a/PznP8fs2bNhtVrx5ptv4pFHHsELL7zgV9M8NDQUTU1NPQbRXS4XXC6X+nNra+tZ6T8REREREdHZpigKbDYbGhoa0NjYqDZfgPzEZV1dHTo7O/22YTAYEBUVpbb4+Hjk5OSoP4eFhamB8VM1vV6vZpyfzzweDxobG9XXrKmpCS0tLWhubkZNTQ0qKytRWFiI9evXo6qqSs267yo0NBRxcXGnbBaLZUheM4/HA4fDgY6ODnR0dKjrXZdutxterxderxcmkwnBwcEICQlBcHCwXwsKCmKWPhERnZfOqyB6a2srvvvd7+KNN96AwWCA1WoFAFx11VV49dVXAcDvC7mlpQURERE9buvJJ5/Eo48+OvidJiIiIiIiOgOKosBut6O1tRVtbW1qa29v9/u5ra0NNptNDZB3DZg3NTX1mCkeGhqK6OhoxMTEIDo6GtOmTfP7uet6aGjoBRH4HkgGgwGxsbF+I6d7oygKmpubYbPZ1L9TTU0Nqqur1VZZWYmdO3eiurq623xdZrMZsbGxiImJ6TFAHRgYCLPZrGa2d3Z2wuv1qqVvOjs7ew2CnyxA7vV6B/Q1CwoK6tb34OBgWK1W9fnFxMSo67GxsYiKioJOpxvQfhAREfXHeRNE93q9uO666/DQQw8hMzMTbrcbIgKTyYQNGzZg+PDhAI6XfSkoKEBMTEyvWegAcP/99+P//u//1J9bW1uRlJR0Vp4LERERERFd+HzZ376Atq91/dlms0Gj0UCr1cLr9aK1tRU2m81veWIwtSe+wKTFYoHVaoXVasXw4cMxdepU9Wdfi4yMVNdNJtNZeCUIOJ7w5Xvd+6K9vd0vwO5rdXV16gWUxsZGtLW1wW63+wXDNRoNdDqdWq7GVwrHbDarwXbfMiwsDHFxcX5B+BPvc+LyxHWTyaSW13E6nd0u7vj62NvtdrsdFRUVyMvLQ01NDWw2m99rodFoEBMTg+HDhyMjI8OvDR8+HEFBQYPxJyMiIlJppGv9k3PYO++8gxUrViA7OxsAcPvtt+Ppp59GUFAQTCYTXn/9dSQlJSE/Px+33HILvF4vHnvsMSxYsKBP229tbUVoaChsNhssFstgPhUiIiIiIjpPdXZ2oqKiAiUlJSgrK0N9fX2PwXFfBnhPWbwhISFqIDssLAzA8YC7r5a2xWKBxWJR17ve1jUD2Rc4DwwMZIkMuqA4nU7U1dWhpqYGtbW1ammcgoICtbW0tKj3j4+P7xZcz8jIwLBhw1hznoiIBsR5E0QfbAyiExERERGRiKC+vh4FBQUoKipCcXExSkpK1GV5eblfYLxrQDwyMlJtXX/uuh4REcHsb6IzJCJobGz0C6p3bV1HbyQmJqpB9VGjRmHKlCkYP34834dERNQvgxpE/9WvfoWf//zng7X5AcUgOhERERHRN8PJAnCFhYVobW1V7xsVFYW0tDSkpqZ2WyYnJzPLlegcIyKoq6vr8f19+PBhuFwuGI1GjB8/HlOnTsW0adMwdepUJCcns+Y/ERH1asCC6Pfee6/fzyKCV199FT/4wQ8AAE8//fRA7GbQMIhORERERHRh8Hq9qKioQFlZGUpLS1FaWqqu+5YOh0O9f1xcXI91locNG8Zay0QXELfbjX379mHr1q1qO3bsGIDj86tNnToVM2bMwKxZszB+/HgYjcYh7jEREZ0rBiyInpqaiqlTp2LRokXwbfKee+7BM888AwC48cYbB2I3g4ZBdCIiIiKi84cv2/TIkSM4evSoXzt27Bjcbrd6X6vViuTkZKSkpPgthw8fjuHDhyM4OHgInwkRDaW6ujps27YNW7duxZYtW7Bt2zY4HA6YzWZMnToVM2fOxMyZMzFt2jSEhIQMdXeJiGiIDFgQvaOjA48//jiOHDmCJ598EsOHD0d6ejqKiooGYvODjkF0IiIiIqJzh4jAbrejqqoKVVVVqKysRFFRkV+w3Fd2RaPRIDU1FZmZmRgxYgQyMzMxbNgwpKSkICkpiUFyIuozj8eD3bt3Y+PGjfj666+xceNGNDQ0QKfTYfz48Zg9ezZmzZqFmTNnIjIycqi7S0REZ8mA10QvLCzEPffcgxEjRuDvf/87SktLB3Lzg4ZBdCIiIiKis8Pj8aCyshJlZWVqkLyn1t7e7ve46OhoNUjetaWnpyMgIGCIng0RXchEBEeOHMHXX3+NDRs24Ouvv1bjHKNGjVKD6rNmzUJSUtIQ95aIiAbLoE0s+tFHH2Hr1q144oknBmPzA45BdCIiIiKiM+d2u1FdXY3KykpUVFSgsrISlZWVKC8vR1lZGcrKylBdXY2upyGBgYFISEhAfHz8SVtgYOAQPjMiouPKysr8guqHDh0CcLzMrS+oPnv2bGRkZHCyUiKiC8SgBdHPNwyiExERERGdnIigpqYGx44dQ1FRESoqKtRAuW9ZV1fnFyA3m81ISEhAUlISkpOT/VpSUhISEhIQEhLCQBMRnbfq6+uxceNGNai+e/duKIqCqKgojBs3DtnZ2cjJycHMmTORlpbGzzuiC5jX64XL5YLT6exX83q9MBqNMJlMvTbfZ4dWq0VkZCSio6NhNpuH+Bl/cwxKEP29997DsmXLBnqzg4pBdCIiIiL6pmtra0NTUxOam5vVYHnXVlRUBIfDod7farUiISEBiYmJfsuu62FhYQwYEdE3SmtrK7Zs2YLNmzdj//792L9/PwoLCwEA8fHxmDp1KsaNG4exY8di4sSJSExMHOIeE9GpeL1eVFdXo7y8HOXl5aioqEBVVRWqq6tRXV2trvvma+kPg8EArVYLt9uN/oZpg4ODERMTg+joaMTExCA2NhZxcXHdljExMTAYDP3uG/1/gxJEN5lMeOqpp3D33Xf3eh8RGbSD6XvuuQfbtm1DcnIy3njjDRiNxlM+hkF0IiIiIrpQdXZ2orGxETU1NerJXteTvpKSEhQVFaGlpcXvcXq9HqmpqRg2bFi3lp6ezvIqRER91NzcjE2bNuHrr7/Gzp07sXfvXjQ2NgIAkpOTMWPGDOTm5mLs2LHIzs5GbGwsL0ASnSUigvr6ejVAfmLzzeHi9XrVxwQFBSE+Ph5xcXHqMi4uDhERETCbzQgICOhTM5lM0Ol0aj86Ozvhcrl6bD5erxcNDQ2oq6tDXV0damtrUVdXh5qaGvVY78SRgQAQGRmJ+Ph4tYReT8uoqChotdqz88KfZwYliL5mzRpcffXVuPHGG/H888/7ffB7vV689dZbeOqpp3D48OGB3jV2796NZ599Fn/729/w+OOPIy0tDddee+0pH8cgOhERERGdC7xeLxwOB9ra2tDe3g6n04mOjg50dHT0uN7e3t6ttba2or6+Xm1NTU3d9hMREaGe8KWlpSEtLQ0pKSmwWq0IDw9HdHQ0EhMTodfrh+BVICK6sIkIqqqqsG3bNmzcuFHNWveN9rFarcjOzsbo0aPVz+fU1FSkpKQgMjKSAXaifnI6nSgqKkJhYSEKCwtx7NgxFBYWoqioCOXl5X5BapPJhMTERCQlJXVrvnJ0oaGh5/T7sLOzE/X19WpQ3besqqpS56upqqpCTU0NFEVRH2c0GpGcnIyUlBS/zx1f+yYfGw5aTfS9e/di8eLFmDhxIlauXAmdTofXXnsNTz/9NGw2G+688048+uijA77fP/zhDwgODsYNN9yAvLw8vPHGG3jppZdO+TgG0YmIiIjoVEQEDocDdrtdbW1tbRARNWunawC8ra2t3+sdHR197o9Op0NQUFC3FhISgqioKLVFR0cjKioKMTEx6pBek8k0WC8TERGdBkVRUFRUpJaA2b9/P/Lz81FaWor29nb1foGBgX5Bra5BrsTERMTFxbFsA33j2Gw2VFRUqKVWfOvFxcUoLCxERUWFmpkdGBiI4cOHY/jw4UhPT1cD474WFRV1TgfIB1JnZydqa2vV4Hp5eTlKS0vVVlJSgvr6evX+Wq0W0dHRfhO/+7Lxu/4cHR2tZthfKAZ1YtHKykosWrQIANDQ0ACPx4O77roLd955J0JCQgZln0888QRGjRqFpUuXorCwEA899BBWrlzZ7X4nDoVobW1FUlISg+hEREREFwAR8cvSdjgccDgc6npvt3UNjp/YWltb0dbW5petcyp6vR7BwcEIDg5GUFCQ37Iv64GBgTCbzX4tICBAXf+mZgIREX2TiAiamppQUlLiF9jqut61HJdGo0FMTAwyMjKQmZmpLjMzMzF8+HBeRKXzTm8B8q5Lu92u3l+j0SAuLg6JiYlIS0tTA+bDhw/HsGHDWC6pnxwOB8rKylBaWqqWtvFltftabW2t3zGyVqtV67H7AuthYWEIDQ1FaGgoLBaLut71Z4vFcs5eBBy0o26bzYbXX38dlZWVcDgc0Gg02Lp1K7KzswdrlwCA8PBwtYh/S0sLIiIierzfk08+OSiZ8ERERHTu8Xq9qK+vVw/wWlpa0NzcjPb2dnR2dnZrWq0WBoMBer0eBoNBneyno6OjW+C1s7MTwPGD9a7txNu69qVr6+zshE6nU2si+lpAQABCQ0MRFhaG4OBgKIoCr9cLjUajZhvr9Xq43W643W71/l0PRC0Wy5BmgHi9XtTV1aGxsbHb66PVauH1etX+n6y5XC44nU41Y7uvrS+5Ir5M7sDAQAQGBiIkJERtkZGRSEtL87vN1ywWi7oeHBwMjUYDRVEgIggMDFSD4X2Zm4eIiOhkNBoNrFYrrFYrJkyY0ON9WltbUVpaisrKSjWwWFBQgL179+Kf//ynGicxGo3IycnBlClT1DZs2DAGFGnI+C4SFRcXd2tlZWU9BshjY2ORlJSExMREfOtb31JLr/iWHI0xsAIDA5GVlYWsrKxe7+M77u8pwF5dXY28vDy0tLSgtbUVNpsNbre7122ZzeYeg+0hISEwmUwwGo0wGAwwGo1+6325zWQy9Zi80pdzpkHJRL///vvx8ssvw2q14r777sN1112HO+64A6tXr8aqVaswadKkgd6l6sSa6Onp6Vi+fHm3+zETnYiI6MLg9XpRWVmpHmxXVFT4HbT5av11nQgIOJ4hHBQUpAbLuzZFUeDxeODxeNDZ2QmPxwNFUdRAq6+ZzWYYDAaIiNoA+P3c9TbgeNBWr9dDp9OpTVEUOJ1Ov4mDOjo6YLPZ0NLSogbqT4dOp1MPHH1Np9N1C2p3DfxrtVr1teh6MUGv10Or1ar38TWPx6P23+l0wul0or29HbW1td1e99MVEBCgBqz703wXHHx/M9+6b2kwGBg4ICKiC5qIoK6uDkePHsXevXuxbds2bN26FYWFhQCO118fN24cxowZg+zsbEyaNAmjR4/maCcaMG1tbT0GyYuLi1FSUuIXJA8JCVHnaulaZqVrgJxJCuc/p9MJm82mBtVPtu77ubW1FW63Gx6PR0226W29v5YuXYoPPvjgpPcZlCD6yJEjcf/99+O6667zi+T/4he/wHPPPYe3334bl19++UDvVnXPPfdg27ZtSE5OxhtvvNGnNxdrohMREZ3bvF4vSkpKsGPHDmzfvh379+9XM1Q8Ho96v6ioKHWG+Z5aTEwMwsPDERgYeF4ET0UEbrcbWq0WOp0OIqLWzlYURc2q8B2Idj3o9B1ontg6Ozt7DfSLiJr13vUigm+96318mdd6vR4BAQFqNr2v3EhcXBwSEhLUCdB89/c9Vq/Xdwvw+7JLegr6ExER0cBpbGzE9u3b1eOqAwcOoKCgQE0cmDRpkpqtPnXqVMTHxw91l2mIud1uNDc3o6mpqdfW2NjY7TabzaZuw2QyITU1VQ2Up6Wl+f0cERHB4z46IyKinsOcGGB3uVw9zkkUFxeHb3/72yfd7qAE0UWk13/4V199FStWrMAzzzyDFStWDPSuTxuD6ERERENLURSUlJTgwIEDyM/PR01NDRoaGlBbW6vW/fQFy9PS0pCTk4P09HSkp6erB90pKSkwm81D/EyIiIiIzk8OhwN5eXlqtvq2bdtQUVEBAEhMTMTUqVPVwPqECRMQGBg4xD2m0yUiaG5uRm1tLWpra1FXV6eu19fX9xggb2tr63FbwcHBiIiI6LGFh4cjISFBDZbHxsaqk7ETnU8GdWLR3qxevRrXXHONWpPrXNBbEL2pqQlz5szBqFGjMGrUKIwePRqjRo1CRkYG6ysRERGdBhFBTU2NmvHkawcPHoTD4QAAhIaGIjExEZGRkYiMjERKSgrS09MxfPhwTJgwAZGRkUP8LIiIiIi+GSorK/2C6jt37oTD4YBOp8PYsWPVwPr06dMxfPhwZhEPIRFBfX29GgzvqfmC5XV1dX6jOYHjNfNjYmIQFRUFq9Xaa2D8xMbyKvRNMCRBdADYtWsXcnNzh2LXPeotiF5TU4PHHnsM+fn5yM/PR319PYDjdVQzMjIwcuRIZGVlYcSIEeoyNDR0qJ4GEfWToih+E9e5XC513bfUarUIDg72q8Xb14n6vF4vXC5Xj6UTemoAelw/8ee2tja0trbCbrfD6/Wqw5V89ZMdDodfyYWTfdRrtVq1PvDJmq/+M2sjUl+JCGpra3Ho0CEcPnwY+fn5OHDgAPbv34/GxkYAxyepGTVqFLKzszFmzBiMHj0aY8aMQXx8PE/AiIiIiM5BnZ2dOHDggF9g/dChQwCOl9WbPn06ZsyYgenTp2PChAkICAgY4h5fWBobG3HkyBEUFhaqE7jX1NTg0KFDyM/P96svDgBBQUGIiYlRW3R0tN/PXW8LDQ3lMThRL4YsiH6u6Ws5l/r6ejWgnp+fj8OHD+Pw4cPq8CYAiIuLU2et7doSExM5ZIW+0drb29UAb3t7O9rb29X13pa+9c7OThgMBhgMBni9Xr9At6++la9esEajOWVg3Ld+4pX3vjKbzWpQPSgoCB6PR91u18kBz2QywNNlNBoRFBTU66SBJ/J6vXA4HOjo6OjT9g0GA8xms9/EiiaTSf29VquF2WyG2WxW6yL3tG4ymdTaySeu93ZbeHi4+tzo3NHa2orCwkIUFBSoyyNHjuDw4cNoaWkB8P8vPvsmrPIFzdPT0/ndSERERHSea2lpwdatW7Fp0yZs3rwZ27ZtQ3t7O3Q6HYYPH+43sn/06NHIzMxkcL0XiqKgpqZGLWdYUlKCwsJCHDlyBEeOHEFDQ4N635CQEFitVkRHRyMrKwujRo1CZmYm4uLi1MB4UFDQED4bogsHg+j/daY10e12O44ePaoGDXzt6NGjcLlcAI5n2/ky1n1txIgRyMzMPG/rt/omHRvo1tnZCZ1OB51OB71e3+NSq9X2mMUbFBQEi8UCi8UCo9EIvV4Pg8HQbdl1nQG5/lEUBTabDQ0NDWhoaEBLSwtaWlrUCe1aWlr8aqv5Wnt7+ym37QvM+jKffUu9Xq9ODKHVatWJ53yBVr1er2Zji4jf5HQ9Lftzm9frRVtbG+x2e4/L9vZ2GAyGXgPDJpNJ/T/rSwPQ43rXn4ODg2GxWBASEqJeONDr9QgNDT3tg1FFUfwuXnRtDodDDbT3tO50OtU+KoqCjo4OdHR0wOl0qutdf+56ocHpdEJRlD7302g0wmq1IjAwUJ3IsGugvadmsVgQHh6OsLAw6PX6bq+5wWBQPze6tvNl4smB1tHRgcbGRvU93rWdeHtlZaU6SgsArFYrhg0bhhEjRmDkyJFqS09PZxk0IiIiom+Izs5O7Nu3Dzt27FCTEA8ePIjq6moAxxNvfMF1X2Ddl3wYGRl5wSZZOJ1Ov3Pkmpoa1NTUqMHy0tJSlJWVwe12q48JDw9Xj6+7toyMDNakJzqLGET/r8GaWNTr9aK0tNQvsO5rvqCDRqNBSkoKhg0bhqSkJCQnJ/stk5KSEBwcPGB96kpRFLS0tKj1sHzNN5FEa2urOmNt16Chr51uFm9vtFqtGtxWFAWdnZ3wer39CrCd6X59AfaTNZPJ1GNmbdcAv2/Zdf1kt/mWXTN8uzZfSQ2TyeQX/PNtrz/BPhFBa2urGgxrbGxEY2OjWh6kp9bW1oaWlhbU19ejsbERXq+323Z1Oh1CQ0MRFhaGsLCwHoeI+TKJTwySBwUFISAg4II9WKKT6+zs9MviPzHI7nK50NHRgZaWFvV/tqOjQ/39qZrNZkNzczOcTme/+qXVatWAemhoaI+B9t5a1/sHBQUN2f+2oijqZ3pfguINDQ1qXfKujEajWp+8a4uNjcXw4cPVFh4ePgTPkoiIiIjOB83NzX6j+w8ePIj8/HxUVlaq99HpdIiJiUFsbCzi4uIQGxurtq4/m81m9XzYd27sS+rxxRF6Wp6slCZwPEbjO9fX6/XweDzqKGbfiOeGhgZUV1ejtrZWHX3sO8/ummDWNdHMZrN1m5hTo9Go8/+kpqb2uBzIGBURnT4G0f9rsILoJ+OrY+ULqhcXF6O8vBxlZWWoqanxq2EcHh6OpKQkJCQkID4+Xr0y2zWQ2nUdOD6rti8o6lu2tbWpASm73Y76+vpu5SYMBgOio6MRFRWF0NDQbrWgu66bzeY+BZ372noLMvm+7LxeLzo7O9HZ2QlFUXrM4G1vb1efr9vtVrOXfcuu6z3d1ltmfNeffQG9E7NsT/yCPtmXd0+3+Z7b6dDpdAgPD1dr8nd9zbqu+7Kqe9qPXq9HSEhIjy04OBhhYWGIiorqFkTz7ZdlNuhc53K5/A6cfc3j8cBut8Nms6G1tfWkrbf7nGykhUajQUhISJ+D7haLRR1d0bWu/YlL37rL5UJTUxOam5v9lhUVFd0yWYDj7/UT38dWq7XHILmv8f1NRERERIOlpaUFR48eRVVVlZqdXV1dra772onHtUPNNwJeRKDRaNTjel9ymW/d13xJKL5Es6ioKM45RXSeYBD9v4YiiH4ybrcblZWVKC8vVwPr5eXlqKqqQmVlJZqamroFUroGVIDjZTF85R58y+DgYLW8RHBwsN8EEtHR0YiOjuZEEkOss7PTr0zGiTXCXS5Xt7+51+tVM8tbWlqg0WjUcji+LPeuLSgoyC9oZrVaYbVaERAQwL890Wnq7OxUJ3w9k2D8iRMB9YVWq0V4eDjCw8MRERGhrickJCA1NRXJycmIjY1V3/MWi4XvdSIiIiI6r4gImpub1YC6ryykLw7ia72N+u46MhzovYSm1+tVE+Y6OzthNBphNBphMBjUpdVqVbPhieibgUH0/zrXguhERPTNpCgK7HY7Ojs7uw1N7W3pq4tPRERERERERAOPY0aIiIjOIVqtVi3LRERERERERERDj5no/yUisNvtCAkJYTYfEREREREREREREQFgEJ2IiIiIiIiIiIiIqFfaoe4AEREREREREREREdG5ikF0IiIiIiIiIiIiIqJeMIhORERERERERERERNQLBtGJiIiIiIiIiIiIiHrBIDoRERERERERERERUS8YRCciIiIiIiIiIiIi6gWD6EREREREREREREREvWAQnYiIiIiIiIiIiIioFwyiExERERERERERERH1gkF0IiIiIiIiIiIiIqJeMIhORERERERERERERNQLBtGJiIiIiIiIiIiIiHrBIDoRERERERERERERUS8YRCciIiIiIiIiIiIi6gWD6EREREREREREREREvWAQnYiIiIiIiIiIiIioFwyi/5eIoLW1FSIy1F0hIiIiIiIiIiIionMEg+j/ZbfbERoaCrvdPtRdISIiIiIiIiKiPqitrWVCJBENOgbRiYiIiIiIiIjovHPgwAEkJCRg5cqVQ90VIrrAnXdB9Ly8PMyaNQtz5szB1VdfDY/Ho/5u3bp1SEpKwty5czF//vwh7CUREREREREREQ2mX/3qV/B6vXjyySeZjU50Cm1tbUPdhfPaeRdET0hIwJo1a7B+/XoMHz4cH374od/vr7nmGqxbtw5ffPHF0HSQiIiIiIiIiIhUn3zyCd5+++0B3eahQ4fwj3/8A9/97ndx8OBBfPrpp+rv3n//fVx66aXYu3fvgO6T6Hx15MgRRERE4Kuvvhrqrpy3zrsgemxsLAIDAwEABoMBer3e7/fvvfceZs2aheeff/6k23G5XGhtbfVrREREROc6t9s91F2gQdbR0YGPP/4Y//u//4ubb74ZiqIMdZfOWRUVFZg7dy4qKyuHuivfSFVVVQMeFCOiC095eTm+853v4Pvf/z7q6uoGbLu/+tWvkJiYiFdeeQVTpkzB008/DQA4fPgwbrjhBqxfvx4TJkzAvffei/b29gHbL9H56KOPPoLH48Gzzz471F05Y+vXr8f//M//oLOz86zu97wLovuUlZVh7dq1WLx4sXrbxIkTceTIEXzxxRf47LPPkJeX1+vjn3zySYSGhqotKSnpbHSbiIiI6LQ0NTVh3rx5sFgsuOmmm7Bz586h7hINgs2bNyM6OhqXXXYZNm7ciNdffx0vv/zyUHfrnPXxxx9j/fr1eOKJJ4a6K984Xq8XV199Na6//nps2rRpqLtDROcoEcGKFSsQEhICnU6HF198cUC2e+TIEfz973/Hz372M5hMJtx3333YsGEDvvzyS1x11VVISkpCeXk5HnvsMbz44otYunTpgOyX6Hy1evVqBAcH45NPPkFBQcFQd+eMrFy5Eh988AHeeuuts7rf8zKI3traiu9+97t44403YDAY1NuDg4NhNBphNBpx2WWXnXTYzv333w+bzaa28vLys9F1+oY5duwYfvzjH2Pz5s3nVX2286mvNHDKysrwzjvvDHU3iM55GzZswDPPPHNW93n06FFMnToV+/btw09+8hOsW7cOkyZNwj333HNW+0GDS0Rw3333ISMjA4cOHcLRo0dx22234b777kNJSclQd++c9NVXX0Gr1eKVV15BWVnZUHdnUCxcuBCLFy8esGz79evXD0jm1m9/+1ts3rwZCQkJePzxxwegZzSY3G43Nm7cONTdoCGwd+9e/OY3vxmy/X/wwQf46KOP8OKLL+LWW2/FSy+9BLvdfsbbfeKJJxAbG4v//d//BQBcdtllyMzMxOLFi3Hs2DH885//RHh4OB544AH89a9/xdq1a1nahb6x7HY7Nm7ciEceeQSRkZF+F7N++9vf4vLLL4fL5RrCHvaP7/vsl7/8pd9cmYNOzjOdnZ2yePFiWbt2bbff2Ww2dX358uWyfv36Pm/XZrMJAL9tXGj+8Y9/SFpamrhcrqHuyjfGHXfcIQAEgGRnZ8szzzwj27ZtO6f/Bh9//LEkJydLeXn5UHeFzrJbb71VtFqtNDY2DnVXiIZUcXGxdHR09Pi76upqiYyMFADy6aefnpX+7NixQ8LDwyUrK0sKCwtF5Pjx0I9//GMJCQnpta90/lm7dq0AkE8++US9zWazSVJSkixYsEAURRnC3p17FEWRqKgo+dGPfiRWq1VuvfVW9Xdvv/22/PnPfz6j7f/73/+WDz744Ax7eWZsNptoNBoxGAwSFhYmb7755hn9Hxw6dEgAyG9/+9sz6tf+/fvFaDTKPffcI2+//bYAkJ07d/b58YqiyMGDB8+oD9Q/t9xyiwCQo0ePDnVX6CybP3++AJD8/Pyzvu+WlhaJj4+XJUuWiKIoUl5eLgaDQZ555pkz2m5dXZ3o9Xp59tln/W5/5ZVXBIC88cYbfre73W5JSEiQH/zgB2e0X6Iz1dbWJv/617/E4/Gc1f1+8MEHAkCOHTsmDz74oAQHB0tLS4u89dZbAkA0Go3cdtttZ7VPp6uxsVEAyD333CMA5NVXXz1r+x6QILrdbpe8vDxpbm4eiM2d1MqVKyUiIkLmzJkjc+bMkb///e9yyy23iMjxD8xJkybJtGnT5J577unXdi/0ILqiKJKTkyMA+nVxgU5fZ2enxMTEyF133SVr1qyRpUuXSkBAgACQgIAASUpKksjISAkNDZUnn3xyqLsrIsffBwkJCQJAHn300aHuzpDZu3evPPXUU0PdjbPK9/8KQP7+97+f9f0fPXpUPvroo7O+3/NVS0uLvP322xd0QK2mpmZInl9eXp4YDAbJyMiQr776yu93iqLI4sWLJTo6WmbMmCHp6enicDgGbN+KoshPfvIT+fe//63eVlRUJNHR0TJ16tRux1n5+fkCQD788MMB6wMNHUVRZMaMGTJp0qRu//urV68WAPL6668PUe/OTQcPHhQA8vnnn8uvf/1rMRgMUlRUJD/72c8EgFgsFuns7DytbbvdbomNjZUpU6YMcK/7x3dhZdOmTXLdddcJAPnb3/522ttbuXKlAJCoqCix2+2ntQ2XyyXjx4+XUaNGSUdHh3g8Hhk2bJj8z//8T7/7sXz5cvWzbd++ffKtb31Lbr755n736fHHH5epU6eK0+ns92O/Cd544w01sefE4CKdPq/Xe84fi+Xl5QkA0Wq18n//939+v3O73YPe/4ceekgCAwOltLRUve1///d/JT4+/ozer7/73e/EYDBIfX293+0nu0D3y1/+UsxmszQ1NZ32folOl6Io8t5770lSUpIAkD/+8Y9ndf+33HKLZGZmiohIZWWl6PV6Wb58uRgMBrnpppvkz3/+swCQN99886z263R8/PHHAkCKiorkqquukpSUlLOWqHpaQfSuV+/Wr18vKSkp8u1vf1tSU1PP2yDI+RREX7VqlV+mTV9s2LBBAIhOp5Nf/OIXg9Qzf62trfL0009LW1vbWdnfUNu+fbtfNuAXX3whAGTr1q3qbS6XS7Zu3Sq//e1v5Re/+IU88cQTalbI73//e7/ttbe3D1jfPv/8c3njjTdOeZC0YsUKCQoKkm9/+9uSnJx82iee57ubbrpJAEhlZeVQd+Ws2bhxowCQ4OBgufHGG8/qvletWiUWi2VAs+Dvvfde+dnPfjYg2zoXPfHEE2rgaKB9+umn8sUXXwz4dvvj0KFDYjKZ5P777z+r+21vb5cRI0bI2LFjZebMmQJAvve978mOHTvE6/WqB5cff/yxHDp0SAwGgzz88MMDtv/NmzerQY5f/OIX0tDQICNHjpRhw4ZJXV1dj4/Jzs6Wa6+9dsD60FdHjx6VgoKCs77fgWKz2c65UWGff/55tyz0rhYvXiyzZs06y706t7300ktiMBikra1N2traJCoqSqKiokSj0ch3v/tdASB5eXmnte1//OMfAkAiIyMHuNf986tf/UpCQ0PF6/WKiMgll1wikydPPu3t3XfffRIRESFGo1GeeOIJ9faioiJ54YUX5I033pAPPvhAKioqeny8oihyww03iMFg8Ms892V/9jW7/IorrpCUlBQJDQ2VpKQkufnmm0Wn06kX9Pub9JOdnS0A5L777uvX4841LpdLbrnlFnnrrbcGbJu7d++WgIAAufnmm2XMmDEnzcTdsGGDFBUVDdi+L1THjh2Tn/70p2K1Ws84c7O5uXlQL/4sX75c0tLS5Ec/+pFERkaq++ro6JDRo0fL0qVLBy0j1uPxSEJCQrfYxaFDh0Sj0ZzRaKGcnJx+XbgTOZ6gYTAYzngkzokKCgrkrbfekvvvv19++MMf8mIeddPR0SFLliwRALJo0SKZP3++ZGRkqN/tg01RFElKSpIf//jH6m3XXnutAJD58+eLy+USRVHkpptuErPZLPv27Tsr/Tpd9913n8THx4uiKHLgwAHRaDRy3333ycqVK+WPf/yjbN++fdD2fVpB9PHjx6vrs2bNkgMHDoiISHl5ud/vzicnC6I3NDSc0RdLfX29rFy5ss9vEIfD0Wuws7W1VeLi4gSA7N+/v899WLZsmYwcOVKuvPJKmTp1ap8fdyYeeOCBb0xG84EDBwSA3HHHHeptt956q6Smpp4ycK0oitx9992i0WjkzTfflJUrV8rUqVPFYDCcNCP42WefPWWgq7m5Wb73ve+pQZmbbrqp1y/1LVu2iEajkd/97neyZcsWASCfffbZSbd/IfJ6veoJ3CuvvDLU3Tlr/u///k9iY2PlJz/5icTExJyVL3RFUeTJJ58UjUajDjN99913z3i7brdbLBaL6HQ6OXLkSK/3O90MvHPBpEmTBIBMnz59QDOIampqxGw2CwC59tprpaamZsC23VeKoshFF10kOp1OTCaTFBcXn7V933bbbWI2myU/P1+8Xq/86U9/EqvVKgAkLi5OAgMD/YIPDzzwgJhMJlm9erX8+c9/lttuu002btx42vv/wQ9+IMnJyfLEE0+IRqORsLAwiYiIOOn/8WOPPSbBwcEDmhF/Ki6XS9LS0vp8zFdTUyMff/xxv/ahKIo8+uijkpKS0usFhNPldDplxIgRkp2dfdr/4y6XS818iYmJkaioKHnooYfE7Xaf1vZOloXu88gjj0h0dHS/t/3OO+/Ic889d1r96klNTc05cwHiyiuvlBkzZqg/v/DCCxIYGCjvv/++OJ1OCQgIOO1gyUUXXSQGg2HIk2yWLFkiF198sfqzbzj26V4cWLhwoSxevFhWrFghYWFh0tzcLNu3b5fIyEjR6XTqMeP06dN7fPwvfvELASArV670u93lckliYqIsXrz4lCWm2traxGw2y29+8xspLS2VOXPmSHBwsDz99NPidDpl0qRJMmnSpD4fi1RVVQkAmTZtmmg0Gvn666/79mKcY7xeryxfvlwdtToQ5W7a2tokPT1dcnNzpaOjQ2655RYZPXp0r/dPSEiQcePGDUhQtbi4WB5++GG566675M4775SHHnrojLfb12OeqqoqGTdu3Gm/T07mmWeeUb+js7OzJSEh4bSPxbxer2RmZkpGRka/yiH1VUlJieh0OnnhhRfU0Wu+Y+1HH31U9Hq96HQ6uf3229Xn8O6776plSM80GPzRRx/1Wurpmmuukbi4OGltbe33dnfv3i0ATiuB87rrrpNhw4YN2LnO0aNHxWg0CgB1RPdAlQF76qmnJDc397SPLc53iqLIvffeK88///xQd0W+/PLLXi8un4qiKPKd73xHAgIC5P333xdFUdR4y9kaTbp///5u8Z0jR47IzTff7DfStb29XcaOHTsoMcOamhqZOHGiTJo0SRYuXCj33XffaSdtzpgxQ6666ir1Z99Iva5twYIFg1KF44yD6BMnTvT7XU5Ozpn1aIj0FkQ/dOiQ6HQ6+fLLL/u9zY6ODvn1r38tFotFAMiGDRtO+Ri73S6xsbHy9NNP9/j7n/3sZxIQECChoaF9zrIsLS0VrVYrf/jDH+RPf/qTaLVaaWlp6ddz6a/q6moJDAyU2NhYCQ4OHvAT4FPxeDzyj3/846zVif3+978vGo1GdDqdHDp0SDwej0RGRsq9997bp8d7vV41YwqAzJs3T5YuXSparbbHIZe+rOGkpKReD24OHDgg8fHxYrFY5JVXXpE333xTjEajzJw5s9vfo729XbKzs2XixInS2dkpiqLImDFjZNmyZf1+Lc53O3fuFAASFhYmS5cu7fE+HR0d8sADD5w0sHU+URRF0tLS5NZbb5Uvv/xSAMiuXbsGfb/vvvuuAJCf//zn4vV6ZcyYMXLTTTf1ev8vv/yyTyM01q9fLwAkKChIli9f3uN93nzzTTEYDH36XD7XlJeXCwD1YGHNmjUDtu177rlHQkJC5A9/+INYrVYJCwuTu+66S9auXXvWgma+unzvv/++xMXFyXe+852zsl/fid7LL7/sd7vH45F169bJT37yE1m2bJnfxZf29nZJSUlRh0mHhobKyJEjT+uAsL29XSwWizpa7LPPPpPc3NxTBoN89Y3ff//9fu/zRCUlJX0KcLzwwgvq99WpLug7nU6ZOHFin4+DfI/xfSfq9Xr55S9/2afH9dUzzzyjZrxmZmae1hwgt99+uxiNRrn33nvll7/8pdx5552i0+kkNzdXTS7pj7179woAv1I+J/r73/8uAPo1DH3dunWi0+nEbDYPyAi3DRs2SFBQkFx//fVnvK0zpSiKREZGys9//nO/27se+82dO1cuv/zyfm/bF2z68Y9/LABk9+7dZ9jb06MoikRHR/s9R19mp6+cZdf7fvDBB5KTkyPz5s3rdZvx8fHywAMPSFVVlZjNZlmyZIkEBQXJtGnTpKGhQdxut7z88sui0WiktrbW77G+bPNf//rXPW77n//8pxiNRhk7duxJ3wfvvfeeAFDneFAUxe9CoO97vGugvqSkpNdA5ZtvvikApKqqSmbMmCFpaWn9Dsy53W658cYbZcWKFf163EBRFEV++MMfilarlbfeektGjhwp48ePP+Pv3meeeUb0er06cugvf/mLaDSaHsuwNjQ0qJ/tv/vd7/q1n+3bt8vLL78s//rXv+Szzz6T66+/XnQ6nYSFhcmoUaNk1KhRJx1pIyLy4osvnnSE3W9/+1vJyMjo00Vj30jf3o4DT1dxcbEEBATI7bffLu3t7eqxw+lm73/11VcCQIYNGyYGg0GeffbZAU1k+fGPfywRERHqyPAZM2bIggULpLCwUEwmk/zsZz9T39ePPPKImnw1efJk0el0kpaWJu+9995p73/JkiWSm5vb4+9KSkokICDgtEYd3nXXXRIVFXVawWVf8HLVqlW93qehoaHPx9f33nuvhIeHq6NpR48ePSDfkV6vVz3GHMgL4afa51CMMvR6vfL000/LhAkTZMeOHertvou2MTExQzpCfv/+/aLT6WTMmDGndSz10EMPCQD55z//6Xf7jBkzZObMmQPVzZN6+umnxWw29yk+tmrVKrWM3EB67LHHxGw2y80336xm5Z/O+UtHR4cYjUa/iysej0eqqqqkra1NOjs75R//+IeMHTu2x3O7k+nL5+9pBdF1Op1ERUVJZGSkmEwmqa6uFpHjGQjZ2dmns8l++clPfiIzZ86Ua6+91u/AwuPxyI033igzZ86UH/3oR/3aZm9BdEVRJDExUe68885+bc/pdEpWVpbo9Xq54447xGAwyIsvvnjKx/lOTGNjY7sFR31XOR955BG57bbbJCkpqU9/5Pvuu09CQ0PFbrdLUVFRn654dXR0yE033STHjh3zu/2dd96Rq6666pT7veOOOyQsLEwKCwvFYrHIXXfddcp+DqSXX35ZAMicOXMG/YJBXV2dmEwmeeihhyQ1NVWWLFkia9as6fcES76TFl9Awuv19ljqxev1yuTJkyUjI0O0Wm2v/1dLly6V4cOH+wUHNm/eLNHR0ZKamqqe3NjtdpkzZ44EBQX5nSQ+//zzotfrT5ml9+WXX/bpNVYURaqrq8/5EjGPPfaYWCwWeeSRRyQoKKjb+9Dtdsvll18uAGT27NnnfB3EI0eO+NUg7MmePXvUYKzL5ZLg4GB5/PHHB7VfiqLIhAkT/LLrfvrTn0psbGyPny/PPPOMAJCf/OQnp9z2fffdJ9HR0WoQ4MThaDU1NRIeHi46nU5Gjhx5zmRU9tVLL70ker1empqaZMqUKTJ16lT1/3DHjh2nffBbV1cngYGB8uCDD4rI8VFUP/7xj9WsmsjIyAHPCvd6vfL888/LihUrZNOmTdLU1CTR0dFy9dVXi8j/r+G6efPmM9rP559/LldddVW3upldZWVlycKFC/v9ni4qKpJ169aJ3W6X7du3n3bd6r/97W9+QaX+GDt2bI+BgsOHD0tOTk6fsq09Ho+EhISc8r3f2toqUVFRcv3114vVaj3lxeIf/vCHYjQaZcSIETJ+/PhTfgc4HA6ZM2eOGI1GWblypdx6660SGxs7YO/Turo6sVgscscdd0hhYaGkpKRIampqv/63X3/9dQHQbRj6jh07ZOTIkRIQENDvi6y//e1vxWQynfTkxpd5t2XLlh5/X1RUJFOmTJHXXntNvF6vlJaWSlRUlDonzsky9vqSbegLoPtqeQ5UhqeiKFJQUCB//vOf5eGHHz7p+7QrX1bV2rVre73Pww8/LBEREac8bn333Xfl4osvVof//uhHP5KoqCiprKwUAPKvf/2r70/oDPzlL3+RWbNmqf0tLi5WS0h15TtG8Z237Ny5U8aPHy8AJDMzs9egXn19vV8m6k9/+lMBIIsXL/YLDNTV1YlGo/H7LPPVT+2asdqTvXv3yujRo8VkMvVau/26666TcePGnfS1WLp0qaSkpMiaNWtkwYIFAqDXC2rf/e531USuwsJCCQoKkttvv/2k2++qs7NTrrnmGvXC3YkXD3zcbrf8+c9/lsOHD/d523317LPP+n2u5OXliV6vlwceeECOHTsmDz/8sMydO7dfk4K2t7dLdHS0fP/731dvO3r0aK+jTX0B3Xnz5klISIhUVVX1eV++cjq+lpSUJM8//7wavPUl6FxzzTU9Pr6wsFDN7u4p2/ODDz4QjUYjwKkn9c7PzxedTic5OTmi1+v79TxOZdmyZRIfH69eUG9qahKNRiN/+ctfTmt7N954owwbNkycTqf85Cc/EQDy7W9/u9f/wf5obGyUoKAgv4twf/nLX9QgeXJysvr3efDBB9UEFF8J0Pz8fFm0aJEAOK1RdhUVFaLVak8awHrooYfEaDT269jH5XJJZGSk3H333f3uk8jx/8WZM2dKSEhIjyNgd+3apQave/u+7dqXqKgovxIZDz30kISGhp7xccvXX38tAGTKlCkSGhraY1KioijyySefnFY2f0/++te/qheffMeOu3btku985zuDdm5YWVmpjkhOT0+XgIAA+dvf/iavvfaaAFA/m89kpOeZUBRF5s2bJykpKWI2m/s9Ma3v+L5r+TSfDz/8sE//Z/2xevVqueGGG+Tmm2+W22+/XR588EF5+eWXZcKECbJo0aI+bcPr9crIkSPliiuuGLB+eTweSUxM9Ps+mj17tt9owr7yJZSe6jhUURS57rrrJC4u7pQXD1wul9x+++1+7+XeDMjEoj7Nzc1nfKJ7Krt27ZLrrrtORI7XCHz77bfV373//vvqyf/3v//9fl05OVk5lzvvvFMSEhL6dVX4k08+8bt6M27cOL9/mJ54PB5JTU2VGTNmCIBuX8aLFy+WlJQUcTgc6j+Ob9Iz31CXEw+I2tvbJSIiwm8SkfT09FNmWfhqqM+fP189UK6trZWwsLBTZkodO3ZMDAaDOjHjr371KzEajVJSUnLSfQ4Ut9stKSkpMn36dAkLC5Nx48apF3p64htC/dprr53W/n75y19KQECANDQ0qFli48aNk2HDhp1xgFVRFLnrrrsEgDo6wfdBvG7dOrnhhhskNja22xVRXwZVT4GckpISGTt2rHrgMH36dLFYLN3eL42NjWIymXrNNhL5/5lC8+fP7zV78c0335TRo0erJSIuuuiiczqQPm3aNFm2bJkaWP7Pf/6j/s7r9cr1118ver1ePfHs79VTRVFk/fr1cv3114vFYul3iYP+WLVqlZjNZhkzZsxJP79OPNi7/PLLB73uru9ErWuWh28egROz4H0ZMunp6RIeHn7KDIDs7Gy58cYbxe12S3p6ercsxKuuukoiIyPlq6++OmmWq9frlY0bN8qPfvQjGTFihN//Ql+98sorsmzZMhk7dqyEh4cPSImkiy++WBYsWCAix7OVAcjzzz+vXtE/nYMRkeMXH4KDg6WhocHvdkVRJC8vT4xGo7zwwgtn3H+fsrIymTt3rmg0GrVMWUhIiISEhKjzEXi9XsnJyfG7UNAfXU9KAcgNN9zQ4/18gaqBCJRdeeWVkpSU1O+RUBdffLHMnj37tPb5y1/+UoKCgrpl59177719zsDwZbSnpqae9PPi4YcfFpPJJGVlZXLHHXdIfHx8r5/pb7/9trp/X733V1999aT9uO+++8RoNKpZ677vs4GqD3z77bdLaGioGqgtLS2V9PR0GTlyZI+ZmV15PB757LPPxGQy9XoS5QtanRjAc7vdJz3JXbJkiVx00UUn3X97e7sAvU8K+PDDD4ter1cDJOPHj5eUlBSpr6+XESNGdDsO3b17t9x3330ybtw4ASAzZ86Uv/71rz1meW7cuFGCgoLkoosuEpvNJllZWX4XQU/Xv/71L0lNTVVHcwQGBkpUVJS8++67oiiKtLW1ycaNG3u8GPziiy+KwWA46XeCb3TV3r17e/y9w+FQExZiYmLU74TQ0FC5//77RVEUsVgsJz0WGkjz5s3zuzDgO648MXhSUVEhOp1Ofv/738sHH3wgZrNZcnNzZd26ddLa2iomk0meeeaZbtv3TVLqCwLb7Xb529/+1uMx3PTp0/1G5D3++ONiNpv7lDjhcDjk+uuvF6PR6JdVKHL8RNWXrHAyR44cUf+fc3JyZOnSpRIQENDtgpeiKBIXFyc//elP1duee+450Wg0fRpV5/V65YYbbhCdTievvPKKGI1GefbZZ3u877/+9S/1+2TatGl+qK9JNAABAABJREFU56FnQlEUSU1Nlf/93//1u/3xxx9XA8chISESGxsr2dnZfc6EfO6550Sn0/ldUPGN4HjooYe63f/5558Xo9EodXV1EhUV1ecs7paWFtFoNPLqq69KY2OjHD16tMcM4aefflpMJlOPn7UrVqyQyMhIiY+Pl0suucTvO3/Xrl0SGBgoV155paSmpvqVz+zJ5ZdfLmlpaVJbWytBQUGn/F/rK9/758S/+9ixY7v97frCbrdLUFCQ33Ho6tWrJTo6WmJjY89o3htFUWT58uUSEhLidyG9ra1NHSXfteSIoijy2muvdUvE6OzslAkTJkhOTk6/z98ee+wxCQwMPGk5rLa2NklMTOx19G9PfIHH3j7X+8Jms8l3vvMdASC33XabrF+/XrZv3y6vvvqqBAQEyIQJE9TkipP55z//KQD8Rt74RpZ1vdijKEqPx1Z1dXW9Ht/eeuutkpSUJHV1dRIWFtbjnHi+ScdnzJgxIGUqr7vuOklISBCr1Srh4eFqcNtX2nCgS2McOXJEIiMj1f/3jo4OufHGG9VjgltvvVW8Xq9acnQo+D73P/30U/Wc9J133unTY+12u4SHh8u1117b49/Z6/VKRkbGgI3+dzqdkpCQIKmpqTJlyhTJycmRpKQktVRbf0rVvvrqq6LRaPp14fZkeipF53svd51DsC+eeuopCQoK6tPo2aNHj4pWqz3pOWx1dbXMnDlTDAaD/OlPfzrlNgc0iH42/P73v5e//vWvInI866Lrl+hPf/pT9Y39r3/9S37zm9/0ebsnC6L7gj3btm3r8/ZuvvlmyczMVN8sN9xwg0yaNOmkj/EdKO/atUsuvfRSyc7OVh/vC5z6hoD4yi/4vrB9WZonltPxZUt1vbp7yy23SFZW1kn78txzz4lWq/U7cb3pppskIiJCcnNzZdq0ab1+4F9//fUSFxenHuDZ7XaJiYk5a5MV+jIX9+3bJ/v27ZP4+HjJyMjoNaDhCxxERUX1+yquy+WS2NhYdUitoigydepUATBgE+IpiiI///nPBYA88MADkpiYqF4VLCwsFL1e3+1E6Xvf+54kJCT0egXcbrfLZZddJsDxsiW9Tbxw7bXXSmpqao+Tw3q9XpkwYYKkp6eLTqeTe+65p9t9vvjiC9HpdLJ48WJ57rnn5MUXXxSNRtPryclQq6+vF41GI6+99po6CqXr1cg777xTNBqNWqt+4cKFavZIXyiKIhdffLEAkOHDh6tfbINRm/uvf/2r6HQ6mTZtWo/BwY6ODvVgLjs7W704KXJ8JIdOpztlQOlMLFq0SMaOHev3OeLLgu96pf4f//iHaDQa+eEPfyjHjh1TT9J64yt14vsb+YZ4v/rqq1JbW6t+WfuGiP/sZz8Tk8nU7QDB6/XKRRddJMDxWti+zNveHDp0qNvFxZaWFtHr9ZKbmyu33367TJ48WdLS0vwCVLW1tf2q3drU1CR6vV4dnaIoivo3Tk9PlxtuuEG0Wm2fMzl96uvrJSgo6KRlwmbNmjVgB3lbtmyRsLAwSUxMlC+//FK8Xq988cUXcvPNN3fLCvIFwW699dZ+1VItLi6W8ePHi8FgkGeeeUadFLSnrNU//vGPA/Y/f/jwYdHpdD3WYV6/fr1ceeWV8txzz8m+ffvU///S0lLRaDS9Bkf7ss8T3+eKokhycrIAOOVJoIh/cKi3+TZqa2slODhYDVZt3bpVgP8/wa2iKPL222/LPffcI8uWLZPAwEC57rrr1Od57bXXSnR0dK8n1Hv27BGdTtftwtbChQslNzf3jC9M79+/X7Rabbe/zeHDh9WTxZ4CP19//bVcfPHFEhQUJMDxWtEn+9x/5JFHJDAwUB3arSiKLFq0SFJTU3t87h6PRywWS5/K1iQnJ/f4PlUURbKysuSGG26QDRs2yLhx48RsNqsnKz/96U/95rsoLy8Xk8kk0dHR8t3vfld+97vfqSfLMTExUlZWpm67ra1NkpKSZNasWeqxne+z9HTLSdXW1sqVV14pAOSyyy6TVatWSUtLi9TU1MiyZcvUCzq+Y9GeanMuW7bslBd8HQ6H3wVAm80mw4cPl7CwMMnKypLk5GQxm83yyiuviMvlkp/97Gei0WhEo9GowdqcnJxupVMGg91uV2uw++p83n333ZKWltbj/a+44gqxWq2i0Wjkqquu8vtuueyyy2TatGndHvPb3/5WzGZzn4JhTz75pAQGBqrHC8OGDev1QmRPnE6nTJ48WVJSUvwmDfcFffoyadkHH3wgq1evFkVRpLW1VeLj47tlxvlGJHS90O12u2XUqFEyY8aMU35uPPTQQ6LRaNTjgquvvlpGjRrV4+NuvPFGGTlypLz77rtqdvxAXHzdtWtXt+cgcjyA+dBDD8lbb70l7e3tsn//fjGbzXLjjTee8nk5HA6JjY2V733ve91+d9lll/V4Eez73/++ei7py1i+6qqr5JlnnjlpkMM3AvdUGfpVVVWi1Wq7BSkaGhokMDBQHn74Yfn000/Vi69Op1NWrlwp8fHxMnHiRGlvb5c77rjjpHNO+RLBfEGu2267bUBGM7ndbhk9enSP/1MrVqyQ4cOH93ubvtI6J14krK6ulgULFohGozntUlK+v9+JcxeIHA9A3XLLLX3+TvV913cdGX0qvlIkfbm48M477wiAPpfPvfTSSwekhLCiKPKnP/1JTCaT3yiKG264QRwOhxqbOVkMaMGCBd3mj1AURYYPHy4333yz+vPVV18tF110kV8gvaioSMxmc48j9l0ul0RERKjf988//3y3/wdFUWTKlCkycuRIsVgsMnv27B7P2fvzeiQkJMhPf/pTqaurk5tuukmmTJkib7/9trhcLpk5c6akp6ef0T666ujokJycHMnMzPS7UKwoirz44ovywx/+UD3uv/XWWyUtLW3QRoBv27ZNvvWtb3U7tmtvb5fk5GRZvHix2jffxam+lHD63e9+Jzqd7qTJpL6R032pt/7/2LvPqKiurw3gexpDnaH3ooAKoihYsIANu6KIvfeusbfYe+xRo8auSewaY0nUxG6MSdSosXfFrgjS28x93g+894ZhCjMUMfmf31qulQxTDsPMvefus8/eaWlpmDBhgt77rlq1CmKxWOtYrFKpDC7Y6JKeng4XFxeTdnUZ0qhRI625nEqlgr+/v94dSvq0bNnSpESO7t27w93dXWc88OTJk/Dw8ICbm5vRCeGFDqJ/rO2NvLlz5wqrpvfv39dYIe/fv79wYPnll18MBjEzMjKQmJgo/OMDL/oubhwdHY2uQa7r/osXLzY4aeVLG0RGRgL4J2jwyy+/4Pjx45DJZOjRo4fGB3/q1KlQKBRCNiWfwZ57dadGjRpo3Lixxmvt3r0bRGSwBmi3bt0QFhaGjh07wsnJSaj3tnbtWhw6dAhEumubnjt3DiKRSCvrjQ+e6iszcPbsWdSoUQOTJ08uVMMZlUqFMmXKaKxm37p1y2DZkxUrVkAmk0Eul+ttgvrNN9+ga9euWtk3fO3e3I1/Lly4ABsbmyJpBpTb/PnzQUSQyWQa72P//v3h6OgoLADExsYKNfUMUalUWL16tcF6trdv34aVlZXO1VN+cvbrr79i6dKlGoFLIOf7aWdnh8aNG2v8TUeOHAm5XI7bt2+b9Pt/DHzWJJ8FO2DAAGFSzC/OrF69Wrj/zZs3IZFIdGZ76cIHutasWQOO4/Dw4UOYm5trZE+ZIj4+Hr1799Y44GdnZ2P69OkgIvTp0wfZ2dlo2LAhKlasKEzczpw5A0tLS1hYWAjbb3Mfy3Nn5V69ehVjxowpUBa2Pnwj3m+++UbrZ7mz4G/cuAFzc3N07txZGHvLli1RuXJlvZOAdevWQSwWCzWDVSqVEBgiIpiZmaFFixbC41NTU1G6dGmtiS0/cd61axfUajUmTJgAJycnvRm6rVq1goWFhcbEkq/5zl8c3b17F2ZmZkLN6/fv3yMwMBASicToGsf8MSf35Onu3bvYunUrMjMz8erVK73vrT4cx2HQoEGwsrIyGHyfMmUKHB0di2QCW7duXVSqVMno33vTpk2QSCSIiooyui6+o6MjfH19hUxEjuNQp04d+Pv7a2XatmnTpsAZ/Lr0798fDg4OGkH5Fy9ewMnJCR4eHsIFm7OzMzp16oSYmBhYWVkVakGtWrVqqFevnvD/58+fBxGhTZs2MDMzy3eReObMmXBwcEC5cuU0FtV4KpUKrVu3hlKp1AgOly1bFt27d4darcbgwYNBlFPbtWHDhhg1apTG7/Ts2TNYWloiIiIC7dq1Q8OGDTF58mQkJiZCpVKhWrVqqFChglawg99xcfbsWZw6dQrR0dEm10nnOA6NGjVCmTJldAZTTp06BZlMhn79+ml8xm/fvg2lUomQkBB88cUXOH/+fL41WN+8eQO5XI758+cD+Od4IpPJdF6M8GWAjNmq3KhRI50Ze3///TeI/qnxqlKpNL7P/LZwfsvw8OHDYW9vr/W5uHfvHjw8PDRKG02aNAlyuVyjxB+/i69y5com1++Ni4uDu7s7HB0dsXPnTp3HlH379mHo0KFYt24d5syZo3FuBnICNI6OjsLx1JDw8HBhAXDs2LGwsLDAnDlzMHLkSPTt21drHnTmzBmN3aBt27YV5ueGXLx4UdiazNc5DQ8PR0REhN6yJrkdOHAARIRhw4YJ5fRq1aqlty8Ef60wadIkrb8BvyU/74V2z549803q4fHn6h9//FFIKDK1j8iTJ09gb2+PFi1aCGPs378//P39C3Qu2b59O4g0S5EsWbIEcrlc67ieN2s4LS0NP/74o8ZF9OXLlyGRSDQylfnjTd7AmUql0ri+4zgObdq0gZ2dXYH6KuQ2depU2NraGlXfmU8OyC+jcMWKFZBIJDqvvebPnw9ra2ut69Lq1asLCyUcx2HOnDkIDw8XdpN+/fXXOl+LL5tkzN+0adOmWkHHOXPmwNzcXChhMmDAAFhaWsLR0RFEOeVl+O8/v9v71q1bWs+dnp6OqlWrokqVKsLnjV9kyX2NYqrk5GR07NhR7+4G/to69zHKGPXq1dPbv8CY/lo//fSTzszgu3fvwsrKymCfIVP17dsXtra2RvU54zhOqAFtTJmKvHEQQ/jeVQUtn6NLfHw87ty5g6tXr+L69evC51ilUiEwMFBvCQy+TK6uBIgJEybAwcEB2dnZ2LBhg3AdkjuDuWvXrsLCad5dB/z5gD8/ZWVlITAwEJUrVxauNfhj1bFjx3D+/HlYW1ujQYMGBd7xff/+feGYr8u9e/dgYWGBzz77DPHx8Zg9ezbKli1b4LrZw4YNg1wuN2qhiP9dr169qvWzuLi4AvWiyY0v1Zp3x/DMmTNhZmamcRxNTEyEu7t7vnXvs7Ky4O3trXNOnVtCQgLMzMyMaoLO75zTFTvgs9CLsmcNf2wuSH/Dly9fCrtg+DJiuq5Pv/rqq3wXGnJTq9Wwt7c3aYfR3bt3IRaL8dVXXwm3PXz4EDExMSDK2YlpyvG70EF0Y/7gRblitHr1aiET/eLFixqZ6OPHjxdOJHv27DGYic4HmfL+05cd1adPH5QpU8ao34WfaObO7v3ll18MrtDzjzly5AiAnPescuXKCA0NhY2NDZo0aaI1sbp79y6Icrq316hRA2lpaXBzcxPeE34rUd5mIHFxcflmvJUvXx5DhgzBy5cvoVQqIRaLUa1aNahUKqEBYIsWLTQek5aWhrJly6JmzZpaB++0tDQ4Oztj0KBBGre/f/8effv2BREhKCgIEokEtWrVyreG87Vr17S2hwL/rGTn/Vm3bt3g4eGhM3OsVatWqFevHsaMGaOzCeqiRYuEi9+QkBBhgnf27Fl4e3ujSZMmWs9ZXKuk33zzjdbf7enTp7CwsIC/vz/27t2LUaNGwc7Orshqo/Hvae6DTkpKCtzd3YW6xRzHoUuXLjA3N0eLFi0wceJEBAQEoGzZslqZnfznpHr16oVaMDHG999/j9atW6NNmzZo3769zmyM3Lp27arROJmfwOzatQvm5uZCRkFufGkAY+rf8hd6uQOtc+bMgUQiMSojK68FCxaAKGe72/jx43H9+nWEhYVBLBZj5syZwueQD57s27cPjx49goODA+rUqYOlS5di4MCB6NKli1ZgMiAgADY2NsLz+/v7652UqdVqnDx5EqtWrcKoUaOwYMECgxM4Qzsl+Izgly9fonz58ggKCtIYGz+J0hds0hcMff78ObZv346xY8dq1cbkj8/8dv2MjAyULl0aUVFRwn1Onz6t89gC5BzH+Elw7izqbt26ITg4WOO+kydPhpmZGa5evYqaNWvCzs5Ob6aQLjExMahevbrB+1SrVk34bhpj1qxZWgtEuvABicJOVPmMJlMbVR05cgRWVlYIDg7GvHnzcObMGfz+++8YN24c/Pz84OrqiubNm2Pw4MGQSqWoV6+eVmma27dvw8zMTCj9BuRMchUKBWbNmlWo3yu358+fw8bGBiEhIXj+/Dmys7NRt25duLm54c2bN0hLS8Px48cxadIkVK9eHWKxuNCZrt9//z2ISNjZMHz4cLi7u+Phw4cgIuzevdvg4zt06IA6depgwYIFMDc31zh28w3vJBKJViMuvpRMr169hJ08hmzduhVhYWFo3Lgx2rRpAwsLC2ExQSQS6cwC4TgOgYGBQia4Uqk0edGBb5JkqBwdvzjcqlUrvHr1CnFxcfDz80P58uVN7q/Sp08feHh44N27d3B1dUWbNm2wcuVKndl2CxYsgKWlpVGZksOHD0dgYKDW7VOmTIGtra3e5+ADgJMmTcLLly8hl8v1fub592rz5s24e/cuZDIZpk+frnU/vkSPqSUtunfvDltbW6MDj/Hx8ZBIJBoJGvzxyJisocmTJ8PJyQk3b96EVCrFnDlzTBrv+PHjUapUqXzvN3DgQDg7O6NXr17o2bMnevTogR49eiAiIgLm5ub51vwdNGgQ/Pz88P79e5ibm2PWrFmQy+UGG8rlPcbx+F1LeRNIKleurHMuowu/63XQoEHo2rWrxg5bUxw5cgQikQg+Pj6Ijo6GnZ1dvr0UDI2pbt26KFOmjHCMatq0qd6MNL5+9aRJk4RyBHxJoszMTAQHB6NSpUoa11gqlQqenp5apRP4hcncASN+QahBgwaFagZZoUIFkwIfAwcOhLm5ud5+F5mZmfDw8ED37t11/pwvx5i7HIZarYalpaXO6+fs7GwMGjQIZmZmOnevNmrUSMjUzA+/EMIHpTIyMuDi4qLxficlJaFZs2YYNWqUVtJNamoqzM3NtRJYsrOzhZI/ebPm69Wrp3Nu+ODBg3xLgty5cwdBQUGwsrLSWT8bgJDAYEqgng/AGkp66N+/v97s2+fPn8PS0hL29vYaOz0yMjIQEhKCsmXLFulOV76kSMeOHQ0u9mRlZQnX9qbU0OYTT/LrJ9ayZUuUKVOm2K8hefznVdfnfvLkyVAoFDozsy9evAiinJ2w1tbW6NOnD1q1agUfHx+kp6cLu0/WrFmDyMhIeHh4aCSWtG/fXusa4urVq7CyskJMTAzUajVq1KihUR2AT3TM+/m/d++eUT1M1q9fD7FYbLD8zrJly0BEsLa2Fnaz6YqF5Icv7ZE7vmBIZmYmlEqlMBeJj49Hjx49hHJwRNpNO4319OlTYdfbkCFDhNtVKhVcXV11lo9avXo1RCKRwWsiPjlPV+A/r+jo6HwXuPmYTEBAANzc3LS+A/qy0AuD3yWkUChQtWpVdOnSRdgdlp8KFSpAJpOhW7du6NixIxwcHHRmgqekpMDOzs7ocj18WWtD/XB06dq1K9zd3TFs2DDUrl0bZmZm8PDwwHfffWfy+bvQQfSjR49CoVBg+PDhWm+mSqXC5s2bUa5cucK+jCBvTfTcgYe8NdENTaxNyUQH/rmgMCZ4MHz4cHh6emq8H2/fvtUKsOQWFRWFChUqaDyGzzisUqWK3oBoWFgY7OzshJWbSZMmwdbWFunp6Rg6dChcXV11nuiqVKmid1UsJSUFYrFYKJmwbt06yGQyjZMHnwWRO/A3btw4gxnGc+bMgVwuFyZ8qampKF++PJRKJdasWQO1Wo3z58/D29sbdnZ2eic1mZmZKF26tFZJGr5hja5t67dv39aZIc83UpszZw7i4uI0mqAmJydjwoQJICJMmTIF165dg6urK8qWLStMDmrWrKnVfLUkXL9+Hc2aNRNOIsZkZpnis88+g0wmw6ZNm7B9+3Z0794dZmZmGtuYUlNTMW3aNDRr1gyenp7w8vLSG1i+cOECxGIxZDIZrKys4OHhYXKzEI7jMGvWLEyePBnr1q3DyZMnNQK327dvh1gsRvXq1dGsWTOEhYWBiPQGeFQqFRwcHPD5558Lt6WkpEAul0MsFiM0NFTngf/du3cICAgwqr55gwYNtD6ffBPi2rVrm5Q5oFar4evri86dO2P+/PkwMzMDUU6ZGF1ZH5GRkahYsSIqVKgAX19fvRfevPXr1yMmJgYHDhwQLhz1BT35IKxMJhMa3kZFRemcVN66dQsymUyo8Z/XkydPQEQIDAyEhYWF1o4OtVqNsmXL6tz2VZimqBMmTIBUKsWFCxeEcla5X9tQoJXPfvf39xeyHVUqFezt7TWCtUDO98THxwdyuRxWVlb4448/EBISYlTd0bS0NFhaWgrZrfrwzXF1BdOSk5Nx69YtvH//HhzHCZNhY96z1NRUyGQyoye8QM778OWXX2osjLZp0wZly5YtUKbM5cuX0aRJE2GBhyinFNfAgQMxefJkNG/eHF5eXhg+fLjei7xp06ZBJpMJx25+kcmUkm3GuHr1Kjw9PeHu7o5evXpBLBbj9OnTOu+bnJxc6AtCfoG7cePGUKlUcHFxEZpuBQcH55sJU6FCBQwePBivXr2CRCLRWFSZN2+e3sxHfueKWCwWkhxMERsbi65duwoZuPocOHAA0dHROHr0KJ48eWJS+ZusrCyUK1cODRo0yHfiv3//fjg5OcHBwQGhoaFwdHQs0HmezwwPCgqCtbU1nj17BrVajYiICK3t0E2bNjX6IvSrr76CTCbT+LxwHIcyZcroLNuQW69evRAUFITRo0dDoVAYLF/UvXt3KJVKhIeHa5Whyq1ly5YoV66cxvf5559/Rps2bXQ+hs8iNbX5bmRkpMZ71LlzZwQEBBh1Iffzzz8L5xU/Pz+T+xWsXbsWYrHYYOCIL5+kqyFVSkoKfHx80LhxY73j5Wti89+B7t27C4tGBe031aRJE43dKVlZWSb3thgxYgRcXFxgbm4u9DoqiJ9//hljx45Fw4YN4efnZ3AXZH5u3rwJhUIBT09PHDx4EJaWlnrnFI8fP4aFhQVsbGwwcuRI7Nq1CwqFAlWqVMGIESMglUp1ZkHywbHci/gTJ06Eo6Oj1rnr+PHjEIlEGDt2rMEeTPrwGXqmLCy/f/8elpaWenfQ8teQ+q5bU1NTIZVKNa6L+CxUfSWaMjIyEBYWBi8vL41dLiqVCjY2Njqb5umSlpYGhUKBCRMm4K+//sL48eMhEolMCvw0b95co4cEx3Ho06ePzoVeIGdnS96gS3p6Ovz8/GBubq4zGJOWloYFCxbA2toaAQEB+e4wLlu2rEYALvfY8h5zMjIy0LdvX1hbWxssjcEfu3QFlnv27AlHR0fY2Nhg+PDhwu0jR46EmZmZUf0ATLVt2zZIpVJUr15d5w6HFy9eoEmTJpBKpSbPB1QqFfz8/IRSVrrwu7aM2dlTVFQqFQICArQWiTIzM+Hm5qa31AXHcfDx8YFYLBZKud2+fRsSiQSLFi1CkyZNULZsWWRnZ+PZs2ewtbVF+/btcfv2bWEnrq7j2oEDByASidC0aVOt72tGRgZkMplW2Z2oqCj4+Pjke77s2rUrqlatmu/70bdvX0yYMAGvXr0yKVDMe/r0Kezs7NCmTRuTFma7dOmC4OBgxMXFISQkBPb29hgzZgy2b9+OmJgY2Nra5puIqcukSZOgUCjQt29fjRgen2Sl6/ogMzMTpUqV0lvmkk+IzVsRQh9+EUnfYvu9e/dgbW2NLl26CN+D3FnzxZGFzrt8+TLmz5+Pvn37Co3qq1Spgh07duCvv/7C06dPtRJV+UXCbt26CU16De28nzBhApRKZb7zs+vXr8PR0RFVqlQxupwu786dO1AoFEIc4csvvyxwaaIiqYnOXyhGR0cjLS0NmZmZWL16NUqVKgU7OzudjUsKY8yYMQgPD0eXLl2QmZkpZG9lZ2ejR48eCA8P1ziZGMNQTXQg50RrY2Ojc/vw3bt3hQOHWq2Gh4cHPvvsM637ubm5aQToeLouWIGcye6yZcv0ZhkAOQGn3IFKfiK2YcMGKBQKna8H5GTVuLq66jxw8as7uSeVed8XfntKUFAQlixZgr1790IsFhucYMfHx8PKykoIKg0aNAgWFhZaE7z4+HgEBQWhSpUqOoMKq1atEoInuQ80/PYufWUnOnfuDG9vb43AEh8c5FdsZ8+eDZlMhrJlywqNfHJnAD148AClS5eGjY0NVq1aVaisk+Lwyy+/oFevXvkGSE2VmZmJiIgI4X2XSqX5NtnK76R4+vRprFy5EkuXLkVISAjKly9v1DZWHn+ycXd3F1aPAwMDsWPHDuzYsQNisRg9evQQLnb4khUikUgray4+Pl5oFJo3mN+8eXPY29trNbLKLTExEdHR0SAiTJ8+XWdwMDExUWdWGP9eiMViDBkyxOjJBF9TlL+4vn79Or744gu9WSd8jUiFQlGgUkN16tTR2dyRL88watQo4fv6008/wdraGqGhoRpZ3+np6ahUqRICAwMNluQIDAwUjmO6LF++HFKpVOuigm9MWpD6kVlZWahZsyZ8fHxgb2+vMys4JiZGawsyANSvXx+RkZFYuHAhzM3NkZycLBxHdS1o/Pjjj7C1tRUmP9OmTTNqG/fy5cshFovzzWbks1v4utZJSUno2LGjUB+b/8cHaCZMmGD056527dpo166d8P+HDh1Ct27dcO7cOZ3PwddJ9fX1xfPnz3Hnzh2IRCKTGtvoolKpcOXKFfz6668mB+NTU1Ph7u4ulEiYMmUKHBwciqXh8cuXL1G1alUQkcnZrwXBHxfnzp2rMfHPr1RAVlaWxgJJq1atEBoain379gkNaw1tm5w9e7bJOwvyevTokUkLCaY0YuW/O8Y2IXv79i3atm0LuVxucvmKvGMkIo0dm/fu3YO5ubkQbMnKyoKVlZXRAUr+oi53H4crV65o7GbUh9+tkLuslD7v37+Hq6trvtn7fLYdf1798OGD0Cg4b/Z6YmIiPD09DQaT9eGbiH748AHx8fGQy+V6A6d5paSkCA0q9W1TN4TPetdXkhD4p/SJvubRfDKOvl1HfH8ePgDIn0NkMpnJQX8ev8DL77Dky1qY0hiO/90lEkmBAsTFJTY2Fo0bNxbOZ4bO+48ePdK4jrly5QpcXFwMJp3wAeXcgcCgoCC9NeFnzpwpXDdUq1ZNo2FjfhYsWKBVDs4YgwcPhqurq1YggeM4hISE5NsLo1q1ahqZ6nyg2dDf+dmzZ3ByckKjRo2E7zC/81nfIrEu/fr105iPmLoT66uvvoJUKhVKgX322WcGg6t8ObfcPbL4a77w8HBYWloKx/qEhASsX78eXl5ekEqlGDp0qFG7e/v164cKFSoAyEmwGTp0KGrUqCHs6G7SpAm2bduG/fv3w9/fHxKJJN/Sm9nZ2XBwcMCECRM0buevedesWYOFCxdCIpHg+vXrwnHmyy+/zHe8BfXHH3/Az88P1tbWmD59Ok6fPo3ExEQsXLgQ1tbWcHR0LHAJyDVr1kAsFus91jZr1gwBAQHFMl8zhC+PlbuEEJ8VbGhBcPTo0RCJRBrfjaFDh8Lc3Fxr4YzPeOf/SSQSvbu1+J3IunrUhYaGaiyo842EiXTvps19Pw8PD509zgzhY0LGBm+zsrJQq1YteHt7G13Skcc3cS1TpgycnJw0kjnj4+Ph7e2NiIgIrc/HgwcPULNmTQwYMEArdpOeng5HR0d89tlnQok0/vqyd+/eBkuP8aVedWX589c/xmZLp6amwsrKSue1wvv37xEcHAx/f38kJSUJuzO7dOki3GfBggVFnoWuC8dxOH78OOrVq6fxeXV3d9c4F61atUo4RmdnZ+PEiRMGz3F8hQ19CcdATiKes7MzKleurLH7xtTxF4Uiayz6/PlzBAcHIzg4GO7u7nBycsLcuXOLrKREccsviA4AHTt21Cj1AOR8qN3c3CCVSrFu3Tr88ccfICKcOnVK6/FNmzbVKoEC5JR4MDMzK/CHIa+IiAhYW1tDJBLpbXjAB+B0fdFWrFgBMzOzfAM6586dQ7NmzYTarlWrVs33AnjUqFGwtbUVMtn11db7/fffIRKJtLbqpaamCtuizczMsHz5cuFnEydOFGqP6XLjxg2IRCKsW7dOuG3mzJlQKpXCwTY5ORndunXDiBEjsGnTJp3Bxg8fPpjctO+/QKVS4dmzZ0hOTi7ycjVXrlyBWCzWW4IpMTFRY2GAL7fBZwVkZWXht99+Q/PmzYWDebdu3bROomq1Gr169YJEIkGbNm0wZMgQDBs2DAqFAhYWFjrrir5+/dqoGl1qtRqzZ8+GSCRCgwYNtEqG8E379H0n+W7ffNDhr7/+QoMGDVC6dGn07NkTW7Zs0cgabNWqFSpVqmTS32Lu3LkmXeTkxm8RzNsEs3v37jobBV69ehUeHh5wdXUVgrkjRowQSpkYsnXrVkyePFnv75aUlIQqVapALpcLTWAPHz6McuXKae0CMsXjx49ha2sLKysrrb8f8E9AIvex+vnz50IJCz4jd8eOHfnWUM/92eSDULrOG7zk5GQ4Ozvnm2kK/DMRHjVqlNAAx9raGuPHj8fWrVtx+vRp7NmzB0uWLMGmTZtMer8+//xzODk5geM4IRjNXwxUrVpVKzjTuXNn+Pr6wsvLCwEBAWjXrh3c3NxMzh4oahs3bgRRzvbcqlWr6q05XBRSU1Nx4MCBj7LoymdM8QsX/N+Wv+DWN5m/deuWxmeQbxrJB4TWr19fbGXKCorPfsp9sa1rjHFxcbCzsytQuRxj6u8b8tdff2H48OFa85LVq1cLxwp+Md/YnRD8zsncO58mTZoEe3v7fOdtycnJkMvlsLa2NmrOefbsWcyZMyffv33ubPTBgwfD2toavXv3hlwuF/4+KpVKyK42tCitz9OnT4X3bNWqVSYHdSMjI3XWkjcGf2zXFyAHckr/WVhYGAx4t2vXDs7OzjoDB8uWLYNcLhc+cxzHoXz58kbXL9fl7du3Gk0cv/vuOxCRSYELfgt969atCzyO4sI3BezZs6fJx9cHDx5g5syZBksotWrVCvb29nj06JGQVWeoXMDbt2/xzTffIDIyEjKZzOjFiho1ahTos8kvvOQtB8KXCM2v6e+IESPg4+MjvHczZswwqu8J3/jz4MGDAP5pRm/K8fLVq1fYvHkzLly4YPDaWx/+77FlyxZERUVBLBZr7TbOiy/nNHPmTDx58gQWFhYYP3480tLSUL9+fVhbW6N+/frCglu7du20ms4bwl/b/vjjj/D09ISDgwO6d++OefPmYfny5QgPDxfOq40aNTI6oaVfv34a53OO4xAeHo6goCBkZ2cjIyMD/v7+qFWrFhwdHTX6/hSXpKQkDBw4EEqlUiPoO3z4cJMDo7nx5V/zllICcnYx8+eAjy0zMxPu7u7o16+fcFutWrU0dkPokpycrFUv/O3bt7CxsdGZmHT79m2cO3cOJ0+eNHitxDfe1LXTZMCAAahYsaLw/w8ePBD+RnkXY3LjFw517eTID988k88Cv3PnDhYtWoRFixZhyZIlOHDggHDd8/nnn0MikRSojnpycjLMzc3h5uamsyfCuXPnIBaLMXr0aDx9+hQcx2Hfvn1QKBTw8vKCWCxG//79Nd53/nt7584dZGVlwdbWFtOmTUN6ejoUCoXBZODs7GyULVsWTZs2Fa5r0tPTMW/ePFhZWaF69eomZ9rzC3G8uLg4VK5cGQ4ODhqLBvPnz4eFhQUSExNx9epVmJmZGV0Opag8ffoUf/75pzAfz91frUWLFho74YxRo0YNnf0Hbty4IfQYqFix4icRhyuSIPqHDx8wa9YsODg4wMLCApaWlgWq71uSjAmi80Gw3OUgOnbsCDs7O/Tp0wdEhNKlS8PR0VFnIHfChAnw8vLSuj04OFgjs6+w+JqehrYGJyUlQSKR6Axi9+zZM9+tPLmlpKTgxx9/NKqjcGxsrDA5iY6ONnhgGTlyJCwsLDSyLr/44gtIpVI8fPgQTZo0QaNGjQD8s5U5vw7g7du3h5ubm5CVExERgTZt2hjzazLFbPjw4bCystJadd+zZw+cnJzg4uIiHFeWLFkCiUSi8wR64cIFfPnll3qzFFQqFaZOnYomTZogODgY3t7eGDNmjMEdH6Y4ceIEXF1d4eTkpJGJ0bt3b511bHPjSyY0bNgQIpEIgYGBGD58OCpVqiQExW7duiXUbuMvjD8GtVqNwMBAtGrVSriNXzTMvTCV26tXrxAZGQmRSIRu3boVaXZMeno6+vfvDyJCuXLlQJRT57Sw554//vhD74UnH7zKXfNy6dKlMDMzExY4qlevjjZt2iAoKMjohk5qtRqurq4YPXq03vvMmTMHZmZmRjddGThwIPz9/bF27doivejgtxbfvHkT8+bNExod//TTT6hatSrc3NyEC+mEhASYm5tjwYIFuHv3rpD5l98ulo9BpVIhKCgIVatWNaksyL8BHyjLvRON4zh4enrq3aXHZ/fw50aVSoWNGzcWuv59cUpLS4NSqRR2tx0/fhz29vbo06ePECC+evUqAgICoFQqi+wYXxT4PiJWVlbo3r07FAqF0Vn4HMfByspKWHTmOA5+fn4aF/eGjBs3rsizFPmFwGHDhoGIsHLlSqF0VZMmTZCWloa2bdtCLBab1PQ4r9DQUHTs2BFVqlTROBcZIyMjw6TdbrllZ2dDKpVqbZHPrX79+joTZXJ78eIFFAqFzmzmxo0ba237/vvvvwtdkqFFixZQKpU4deoUxo8fD29vb5Of4+zZs0afe/5L3r9/D19fX6EPh0wmMyrgm5WVhXr16sHBwSHfUlAvXrzQyng3RdOmTRESEqJxPRUVFYWgoKB8gzd8KTN+d0ZMTIzeJpe58VndoaGh4DgO3bt3N+m6sagEBgZCLBbDxsbG6B0mEydOhFwuR506deDu7i4k+6WkpKBjx45o0qQJVq9eXaBGsXw5Qj5DWNdzPHjwAL/99ptJgTU+o5U/FvBJN7mvMfhEl9zXuB+DSqXC1atXsXbt2kKVaMpt7ty5kMvlWoukbdq0QWBg4EfPQufNnz9fKEt7+fJlrUxyU1y/fr3Y5iTr1q3TWNTiSzvFxMTAz89P72ePr4duav8XICe4zScrjBs3DlKpFBYWFlAqlbC2tgYRwcfHByNHjoRIJDK69JMuZ8+eNViyhd+JSUSwtbUFEaFt27b48OGDECMbPnw43r17h+fPn6N69eoaPTW6du2KSpUqCXG//DK7+abCMpkMoaGhKF26NKRSKUaNGmWwZJ4uBw8e1Njd8PbtWwQHB2tl3QM5MTWRSIRVq1YhKCgIlSpVKtEEpWrVqgnzsvT0dFhYWBi9W5DHL8jy3/3s7GyhbJGdnR0GDx78UY9vhhQ6iD5x4kQolUr4+vpi7dq1SElJQc+ePeHs7KyzAcOnypggeu5yEFu3bhW23fDBiTVr1kAqlaJ///46H8/fP3f2D78FN79ayqZISUlBxYoVtbo85xUWFqYz+65ChQo6V4CLSv/+/eHt7Z1vyZHk5GT4+PggPDwcP/zwAy5cuCB8gYCcjHmZTIakpCSh9mh+k6gXL17AyckJTZo0EcprGLooYj6ehIQEuLi4oFWrVjh8+DD27t2Ldu3aCQsulStXhr29PY4dOwZbW1u9Neg+BW/evEGTJk0gk8nw888/Q61Ww8XFJd8tchzHYezYsXB0dMTKlSs1LvgfPnyIoKAgKJVKtGzZEjY2NkXaMMgYfPbunDlzsHHjRlSrVg2VKlUyOKFVqVTCNudmzZoVeXbMpk2bULduXRw+fPijZMpWqFBBIzhetWpVjQyyRYsWCQuFpkyu+/Xrh7JlywLI+RwsWbIEX3/9NbKysvD+/XsolUqdZcL04S+oZDJZoRtW5saXRZg9e7bQD4X38OFDSKVSYdL09ddfQywWC1n9N27cQJ8+fQqUdVYc+NrMRGRSR/ZPXXZ2NqZMmaL1Ow0ZMgReXl46v68zZsyAk5PTxxpikRk4cCA8PT2xe/dumJmZISwsDEqlEs7OzkJd2EqVKunt1VKSkpOThdJVxjbk44WGhgpBc77chqGdLB9Dy5YtQUQICwsTPmN8c25/f39YWFgYLAtjjFmzZgn9Pwr7XKby9/fXu9CZmJhodL8Ifvt37vNDamoq5HK5RtmfovLhwwdERkbCzMwMXl5eGg2zmfzduHFD2N3LJ+4Y4/379/D390dgYKDBoNSyZcsgkUgKvBuZb7bOlyLht8Tn1+AZyJlrVK9eXQic+/v7C32h8sNnu//www/w8/MzaX5SVObNm4eAgACTFntTU1OFRoTFkdHcvHlzjBo1yqgm0cbKysqCvb09RowYgYEDB4KItJI0OI7DwoUL/1WxF33i4+NhbW2tkQgQGxsLsVisVfr2Y4/LysoK06ZNQ+/eveHl5fXRmpuagi/pyJf7HDp0KMqVKyccK/RluBtTD92QyZMng4hgYWGB2bNna+zKunTpErp37w6ZTIbGjRsX+87MZ8+e4dChQ5g1axa2bNmicX3IJxfl/vfDDz8IP+fLIlarVg1VqlQx6vUuX76Mr776Cr1790aXLl10JvkZIzMzE7a2tujcuTP69esHhUIBZ2dnvcc4fteTXC4v8aSXlStXQiqV4u3bt8JnzdSFtffv38PMzEwoczV79myIxWJ89913Jb6DOa9CB9EDAgKwdetWrYuyKVOmwMrKSuND+SkzJogO5GQM9uvXD2KxGNbW1lpB6AcPHugtYXPz5k2tC52RI0fC2dm5wNkxhTFhwgStuuipqakQi8V6M0uLgkqlMnrL3/HjxzUayFlYWAgBmYcPHwoXItOnT4dCoTDqC3bs2DFhMkxEJm3VY4rX9u3bhZqSRARHR0fs3LkTHMchISEBNWrUABHBxsYGb968KenhGpSVlYVmzZrByspK2LpvbJBDXzA4MTFRWJHV1Sm8uGVkZCAyMlLYvikWi43+ne7cuVPo0gifgrFjx8LV1RV///03NmzYACLC7t27hZ/zmUj8Ap+x+GDTrVu3hMbFIpEIvr6+aNmyJaysrEzKWklLS4OFhQWCg4P1NgQsqJo1a0IqlcLGxkYrI2DQoEGwt7fHhw8f9G7L+1RwHIcGDRpolWn7r+KzhXXVZG7fvr3J2y4/Bb///rtwvujUqRMyMzPx8uVLtG3bFkSEESNGFLie9Mdw69YtKBQKk+dcnTt3Rnh4OICcoI2ppb2Kw5UrV1C+fHmtbKnWrVvD0dFR6D1TGHzChIuLy0efNzdp0kRvSRO+1rwxDWg5jkN0dDQcHBzw6tUrJCUlCfWhi2uxJzMzEz169AARaTW7ZvK3f/9+EJHJSTd37tyBra0tQkNDdZYeSkxMhJOTk0ZdclPxtXH5uUKFChXg7Oxs9HGPz6I8e/asUJrOWPXq1UOZMmW0duh9LAU95v3222+YMmVKiR8zTcHPCy0sLLB27dp/1dgLYvTo0bC1tRXm0ZMnT4aNjU2JlwkePnw4HBwcIJfLMX/+/BIdiz6ZmZkaDaRDQ0PRs2dPIUA7ZcoUrccUtB56bgkJCZgxY4bBXUvx8fGfRDD0woUL+P777/HTTz/h/PnzGt8nflGciPLtWVAc+F3WpUqVwpQpUxAbG6v3vnyt/tzljUtKXFwcZDIZvvzyS4wYMaLA5VXbtWuH4OBgXL16FTKZDJMmTSqG0RZeoYPoht6c9evXQy6X62ykV1CXLl1CeHg46tSpg/bt22tNok+dOgVPT0/UrVvXqC1pPGOD6MA/gXRfX1+TMgeys7Mhl8uFbbRZWVlwdnbGqFGjjH6OoqSrLjpfb0xXF/CSolar8erVK/z+++9aq2zly5dH7969UaFCBXTt2tXo5+RXS729vf/zE5F/m9evX+PFixeIj4/XWuFPTk5Gx44dC92U8GNJSUlBzZo1QURQKpVFctGfnZ2NDRs2lPh2puzs7I+eCf8p4JvO8P9CQ0O1Fgdq1aqVb0OvvFJTU2Fubg53d3dIJBJs3boVf//9N1q3bg0i0jnpzc+FCxeKpRHcxIkTQUQ6G20/f/4c5ubm6NSpU771Yz8FHz58+KTKfBS3Zs2aoXz58lpZQOXLly+RhbnC4jgOzZo1w8iRI7WSOT6FmonGSE1NNXkewu8c4GvZF7QUxMeQmZlZZOcKjuNQsWLFfJuiFochQ4Zo1Srl9e/fH+XKlTP6ud6+fQtnZ2fUqlULPj4+sLS0LPZdkRzHYefOnSU+d/i3unv3boGyJ69evQo3NzeULl0ad+/e1fjZxIkTYWFhUaDSIbn9/PPPiImJQatWrdCiRQu9zWt1yc7ORunSpVG+fHkQGW48mNeZM2eEuZChQA9TeFevXkV0dHSBM1z/bZ49ewaZTIbFixcjIyMDTk5OesvRfUwPHjyASCSCXC7/pOcY1apVQ48ePZCamgqJRCL0C+jZsyfKlSsHjuOQnp6OFStWoGvXrggODi5wPfT/osaNG0MkEpXILtWEhAT8+eefRp1v1Go1zp49+8nEstq0aYPQ0FCULVtWb2WO/PAlbby9vVGxYsVPYtFFlyJrLKrPTz/9BBsbmyJ7vlevXgkBi0mTJmlkAAI5QfSCFNU3JYjOK8hkKnfHZD6zIb8me8VFV130r776CjKZ7JP9wOY1fvx4WFlZgYjw/fffG/247OxstGnTRmjiyDDF5f3796hcubLR9WqZTxvfpObs2bN6F1HfvHlToMl1VFQU5HK5VpmCBw8elFgNSF2uXr2KFi1a6O2yPmbMGBAR7O3t/zXnkv8Vv/32m9biRmZmJqRSaYluk2ZMs3PnThDlNL5zdXUt0tIBn7qsrKyP0qQ3ryVLlsDS0lLrYpXP4DO2DAaPL7lVv359ozLYmX+vJ0+eIDAwEA4ODvjpp58A5DSrlcvlBpvWfSwrVqwQdr+ZumOwQYMGOvt9MUxh9erVCx4eHti0aVOx7tQx1ZAhQww26PwUDB48GOXLlxcWuvhYE3/eWbp0KXx9fSGTyVC7dm0MHDgQa9as+STL05SEEydOYM6cOSU9jH8dPrZJRNi/f3+BniMrKwtOTk6QSqW4cuVKkY6vKIkAgIrZX3/9RaGhoUX+vNOnT6fKlStTmzZthNtOnz5NvXv3Jk9PT2rXrh2NGDFC52MzMzMpMzNT+P+kpCTy8vKixMREUigURT5WXp8+fejs2bMUGhpK+/bto7CwMPrtt9+K7fXyU7NmTSpVqhTt2LFDGN+1a9fo8uXLJTYmU5w7d47q1KlDlpaW9O7dO7K0tCzpITGMFgDEcRxJJJKSHgrzCXv9+jUlJSVR2bJlS3oohRIXF0e+vr7Uu3dvWr58eUkPh8mjUaNG9PbtW7py5QqJxWK6efMmVahQgU6fPk1169Yt6eExRrh69SqFhIQQEdGcOXNo8uTJJTyi/74DBw5QdHQ0vXr1ilxdXYXbT548SZGRkXTs2DFq3LixSc8ZGxtLXl5eJBKJinq4zCcmPj6eunbtSkePHqXevXtTQkIC/fHHH3Tv3j2ytrYu0bGlpKSQl5cXOTs70927d0167KtXr+jdu3cUHBxcTKNj/lfdvn2bypcvT1ZWVlSjRg06fvx4SQ/pX2PTpk3Uv39/mjx5Mi1dupQ+fPhAUqmUMjMzycnJiZKTk6lx48a0YsUKKleuXEkPl/mPyMrKInd3d0pKSqL379+TjY1NgZ5nz549pFarqVOnTkU8wqIj/RgvUhwB9NjYWDp+/DhNmTJF4/aqVasKE4DWrVtTeHg4ValSRevx8+fPp5kzZxb5uPJTtWpV2rx5M4nFYlq5ciX17Nnzo48ht3r16tGWLVsIObsS6M8//6RatWqV6JhMUbNmTbKzs6PIyEgWQGc+WSKRiAXQmXy5urpqBGf+rRwdHenatWvk7Oxc0kNhdJg6dSrVrVuXDh06RK1bt6abN28SEVFQUFAJj4wxFr/QZmFhQQMHDizh0fxv8PX1JSKihw8fCsfpFy9eUJcuXahu3brUoEEDk5/T29u7SMfIfLrs7e3pp59+ok2bNtHo0aMpKSmJNm/eXOIBdCIia2trWrZsGaWlpZn8WDc3N3JzcyuGUTH/6wIDA6lVq1Z08OBBGjp0aEkP51+latWqxHEcbdiwgapVq0ZSaU7ITy6X09atW0ksFlOrVq3YAi5TpMzMzGjkyJH04MGDAgfQiYjat29fhKMqHh8lE70gXr9+Te3atdO6/eDBgySVSikqKorWr19vMGNvzZo1JJfLqU+fPlo/K6lM9IyMDLpy5QqFhYWRWCwuttcx1rFjx6hp06Z0+fJlmjdvHu3bt48OHjxIUVFRJT00o50/f548PT3Jx8enpIfCMAzDMJ+8evXq0Z07d2jJkiV07949+vrrr+nNmzclPSzGBIGBgRQZGUlfffVVSQ/lf0JqaipZW1vT1q1bqUePHpSZmUl169alFy9e0OXLl9miIWO0Z8+e0ZEjR6hv374swYJhDLhx4wYtW7aM1q5dKwSCmfypVCqysbGhjIwMmjRpEs2bN6+kh8Qw/ymfbBBdH7VaTdHR0TRy5EiKjIzU+nlSUpIQBO/SpQsNGjSI6tSpk+/zJiUlkVKpLPYg+qcmJSWFbG1tydLSkjiOo23btlHr1q1LelgMwzAMwxSTFy9e0IgRI2jfvn0kk8koPDycTp48WdLDYkwQHx9P1tbWZGZmVtJD+Z/h7u5Ocrmc6tatS3FxcXT8+HE6d+4cVatWraSHxjAMwzCCWrVq0YULF+jAgQPUqlWrkh4Ow/ynlHwqtIl2795Nv/32G82ePZvq1atHu3btIiIStrPu3r2bqlevTrVq1SIPDw+jAuj/y6ytrSkiIoIcHBzowoULLIDOMAzDMP9xHh4etHfvXjp58iSFhoZSy5YtS3pIjIns7e1ZAP0jW79+PTVs2JBu3bpFFy9epPXr17MAOsMwDPPJ4csZ16hRo4RHwjD/Pf+6TPTi8r+aiU6U87vLZDKysLAo6aEwDMMwDMMwDMMwDMMwBXDx4kXauXMnLVmypKSHwjD/OSyI/v/+l4PoDMMwDMMwDMMwDMMwDMMwjG4siP7/AFBycjLZ2NiwTsUMwzAMwzAMwzAMwzAMwzAMEbEgOsMwDMMwDMMwDMMwDMMwDMPo9a9rLMowDMMwDMMwDMMwDMMwDMMwHwsLojMMwzAMwzAMwzAMwzAMwzCMHiyIzjAMwzAMwzAMwzAMwzAMwzB6sCA6wzAMwzAMwzAMwzAMwzAMw+jBgugMwzAMwzAMwzAMwzAMwzAMowcLojMMwzAMwzAMwzAMwzAMwzCMHiyIzjAMwzAMwzAMwzAMwzAMwzB6sCA6wzAMwzAMwzAMwzAMwzAMw+jBgugMwzAMwzAMwzAMwzAMwzAMowcLojMMwzAMwzAMwzAMwzAMwzCMHiyIzjAMwzAMwzAMwzAMwzAMwzB6sCA6wzAMwzAMwzAMwzAMwzAMw+jBgugMwzAMwzAMwzAMwzAMwzAMowcLojMMwzAMwzAMwzAMwzAMwzCMHiyIzjAMwzAMwzAMwzAMwzAMwzB6sCA6wzAMwzAMwzAMwzAMwzAMw+jBgugMwzAMwzAMwzAMwzAMwzAMowcLov8/AJSUlEQASnooDMMwDMMwDMMwDMMwDMMwzCeCBdH/X3JyMimVSkpOTi7poTAMwzAMwzAMY4S0tDRatGgRZWVllfRQGIZhGIZhmP8wFkRnGIZhGIZhGOZfaffu3TR+/Hj65ZdfSnooDMMwDMMwzH8YC6IzDMMwDMMwDPOv9P333xMR0c8//1zCI2EYhmEYhmH+y0RgRcCJiCgpKYmUSiUlJiaSQqEo6eEwDMMwDMMwDGNASkoKOTo6kkwmIw8PD7pz505JD4lhGIZhGIb5j2KZ6J+Iixcv0q1bt0p6GAzDMAzDMAzzr3D06FHKzMykadOm0d27d+np06clPaRP3rNnz8jJyYlOnTpV0kNhGIZhGIb5V/nXBdEvX75MERERVLduXerQoQNlZ2cLPzt9+jR5eXlRvXr1KDIysgRHaRoA1L59e2revDmlpqbqvE9WVhYdO3aM2MYBhmEYhmGKw6FDhyguLq6kh8EwRtu/fz8FBwdT//79SSwWs7roRtiyZQvFxcXRuHHjiOO4kh4OwzAMwzDMv8a/Loju4eFBx44dozNnzpC/vz/98MMPGj/v2LEjnT59mk6cOFEyAyyAixcv0tOnTyk2NpZmzJih8z7ffvstNW3alPbv3/9xB8cwDMMwzH/eq1evqFWrVrRw4cKSHgrDGCUrK4t+/PFHatOmDdna2lJYWBgdO3asxMf0KeM4jrZs2UKVKlWiy5cv0759+0p6SEXm119/pU2bNpX0MBiGYRiG+Q/71wXRXV1dydLSkoiIZDIZSaVSjZ/v27ePIiIiaPny5QafJzMzk5KSkjT+lZQ9e/aQs7MzzZo1i5YtW0ZXr17Vus9PP/1EREQjR47Um61elBISEqhTp0707NmzYn8thmEYhmFK1sGDB4koJ7OX7Xpj/g1OnTpFiYmJFBMTQ0REjRs3puPHj5NarS6R8Wzfvp2cnJzo8uXLJfL6xjh37hw9evSIli9fTk2bNqUpU6aQSqUq6WEVienTp9PQoUONuqYD8MmV0Tx8+DAdPny4pIfBMAzDMIwBBQqip6ena2z/O3HiBC1ZskQI9H4MsbGxdPz4cWrZsqVwW9WqVenu3bt04sQJOnr0qMFJ7Pz580mpVAr/vLy8PsawtQCgPXv2UExMDE2YMIECAwOpf//+GhcAWVlZ9Msvv1CfPn3o3bt3NHv27GIf1/jx42nXrl20c+fOYn8thmEYhmFK1oEDB8jW1pYePHhAN27cKOnhMJ+Ya9eu0cWLF0t6GBr2799Pvr6+VLFiRSLKCaJ/+PCBLl26VCLj2b17NyUlJVHLli0pNja2RMaQn82bN5Ovry/VqVOH5s2bR/fu3aMtW7aU9LAKLSEhgc6cOUMZGRlG7drdtm0bBQUF0e7duz/C6AwDQF988QVFRUVR586d6c2bNyU9JIZhGOZf6vXr17R+/XpauXIlLV68mO7fv1/SQypS165dI3t7e6pTpw7NmDGD/v77748+hgIF0WvUqCGs8s+fP5/mzp1LAOjrr7+msWPHFukAdUlKSqLu3bvT5s2bSSaTCbdbW1uTmZkZmZmZUatWrejatWt6n2PSpEmUmJgo/CupjOtLly7R06dPqX379iSTyWjdunV0+fJl2rhxo3Cf8+fPU3JyMg0bNowmTZpES5Ysodu3bxfbmM6cOUMbNmwgpVJZ4ttiGea/rLiyPdPS0thFGPM/CQD16dOHlT4zUVJSEp04cYI+//xzUigU9P3335f0kBgdkpOTKTk5WeO2tLQ0CgsLo6ZNm9K8efPojz/+KPLXPXr0KNWsWZPCwsJowoQJlJmZafD+d+7coenTpxf5OHJTq9V04MABatOmDYlEIiIiql69eonNXbOzs+nkyZP02Wefkbm5OTVv3pwSExMpNTWV7ty5U6I7XnnJycm0Z88e6tWrF4lEIgoJCaGOHTvSzJkzKT09vaSHVyhHjx4ltVpN5cuXp23btuV7/127dhER0YABA0q0Ga1KpaKhQ4fSpEmTaOzYsSSRSD5KshTDMAzz3wOAWrZsSQMGDKBx48bR5MmTqVGjRp/EHKSobN26lcRiMTk6OtKKFSuoevXq9OLFi487CBRA+fLlhf+uUqUKMjMzAQBqtRoVK1YsyFMaTaVSoWXLljh+/LjWzxITE4X/7ty5M86cOWP08yYmJoKINJ7jYxg3bhycnJyQnZ0t3Na+fXuUKVMGarUaADB27Fi4ubmB4zikp6fDz88PjRo1KpbxpKeno1y5cqhduzaWLl0KMzMzpKSkGP345ORkjB07Fjdu3CiW8TFMcXrz5g1OnjyJVatWYceOHVo/f/LkCZKSkorktR49egR3d3esXbu2SJ4PADiOw65du+Du7g6xWIyePXvi4cOHeu+vVquxbNkyVK1aFe/fvy/w66akpOD3338v8OOZovP06VM8f/5c6/Znz56B47gSGNHHdfbsWRARKlas+En+vmlpabhz505JD0PLrl27QER4/PgxunTpgkqVKpX0kP6nJCcnY/ny5ahTpw7u3bun8z5qtRphYWFo0KCBxu38365Ro0awsbEBEWH+/PlFNrbdu3dDJpMhKioK8+fPh0wmQ6VKlfDgwQO9j+nevTuISO/vUhT2798PIsLFixc1bo+JiUFISAhOnTqFP//8U+vcxnEcunbtip07dxbpeM6cOSOM59atW7C1tYW5uTmICEQEOzs7LFy4EGlpaUX6uqbYuHEjRCIRnj59Ktx27949SCQSLF68ON/HcxyH9evXY8SIEejatStiYmKwcuVKPHv2rDiHbZROnTqhSpUqWLt2LcRiMV69eqX3vomJiTAzM8P06dPh7e2NiIgIqFSqjzjaHFlZWWjfvj0kEgk2bNgAAPjiiy8glUqL9LvDcRzOnj2L9PT0IntOhmGKz5s3b7Bw4UKN8+yrV68wY8YM9OvXD1OnTsXXX3+NhISEkhsk80ni50anTp0CkBNvsLa2Rp8+fT76WI4ePYorV64U6XOq1Wp4eXlhyJAhAHLO50qlEmPGjCnS18lPgYLo9evXx/nz5wEArVq1wosXLwAAHz58KPYg+vbt22Fvb4+6deuibt262LlzJwYMGAAAWL9+PapVq4aaNWti7NixJj1vSQTROY5DqVKlhPHzLly4ACLCgQMHAOQsWuT+4PMXTMURqJ42bRpkMhlu3ryJ27dvg4jw448/GvXY9+/fIywsDEQEb29vvHnzpsjH91+QlJSEGzdu4MOHDyU9FJPExsb+pxdHDh8+DIlEAiKCVCoFEWHdunXCz69cuQJra2s0bdq0SF6vS5cukEgkEIlE2L17d6Gf7+rVq2jcuDGICG3atMHixYvh4uICqVSKFStWaN0/NjYWDRo0EC7wv/322wK97unTp+Hr6wsiQq9evUxadPu3evz4MTZu3Ihu3bohLCwMAwYMwMaNG4VzoS5nzpyBt7c3/vjjjyIZw61bt7BkyRJhsRXIWWQuW7Ys3N3dNQII/IRq2rRpJr/O5cuXkZqaWiRj/hhat24tBBJ/++03ox+Xnp6OcePGYdOmTcU2tpcvX6JKlSoQiURYtmzZJxXk79y5MypXrgwA2LNnD4hI5wLc5s2b0b59+xIJOP1XLVq0CHZ2dpBIJLC2tkaPHj103m/Tpk3C8fr+/fvC7dHR0ahWrRqAnGPAjBkzQET44osvCj22AwcOQCwWo2vXrsjKygIA/PXXX/Dy8kL79u11PiYpKQmWlpYgIixfvrzQY9CnXr16qFmzptbt33zzjfA+ERECAgI0jpP8QptUKsWxY8eKbDyff/45HB0dhde6cuUK5s2bh2+++QYnTpzAkCFDIJVK4eHhgT///LPIXtcUERERaNiwodbtAwYMgIODQ77z0jVr1oCIEBgYiDp16qBu3bqQyWTCIk5JBWkzMzOhVCoxc+ZMvH//HjKZDF9++aXe+2/fvh1EhKdPn+Ls2bMQi8WYMGFCsSxwcByn81iflZWFtm3bQiaT4YcffhBuT0tLg6enJzp06FAkr5+QkIA2bdqAiFCqVCns27cv33PP/fv3C3SNkpaW9p8+N6jVasTGxpb0MDQcOXJEK2kwPj5eiJEwwJ9//olp06YV2ZwrJSWl2OfFI0aMEM5hjRs3Rvfu3WFmZgYrKytUqVJFSJZq1qzZJzWX/K9r0aIFvvvuu5Iehl5qtRoVKlRAZGSkxu3r168HEeHgwYMfbSwvXryAhYUFXF1dERcXV2TP+9tvv4GIcPr0aeG2zz//HFZWVoVKCDRVgYLojx8/Rt26ddGoUSNER0fD0dERzZo1Q2hoKI4ePVrUY/woiiOIfurUKYOB5IsXL4KI8Msvv2j9rGbNmqhbty4eP34MIsLevXuFn2VlZcHFxQXDhw/XeExWVlahDqRpaWmwsLDAxIkTAeRM/Ly9vfHZZ5/l+9hXr16hYsWKcHBwwP79++Hi4oLatWsjIyOjwOMx5Pz58zhy5IjGbR8+fEBMTIywwPMp4TgOkydPhr29vXBSrFGjhsaFXVG5f/++xs6GotK4cWNIJBJMnz5deH61Wo2bN29qTZrfvn2LjRs3/mtO7BkZGfDz80NkZCTu3LmDrKwsDB48GDKZDL/++iuePXsGd3d3uLm5gYhw4sQJ4bFqtRq//PILXr58qff5z5w5oxE8vXz5MogIX3/9Nbp27QqZTIaff/65QGP/9ddf0axZMxARfH19cejQIeFnqamp6N69O5RKJZKTk4XbX716BXt7e3h6euL48eOoUqUKOnXqZNLrqlQqDB8+HESEiIgILFu2DJaWlggMDMT169cL9Lt8qhITE3H8+HGMHTsWAQEBICKIxWJUqVIFXbp0QVBQEEQiETw9PYVAU27Hjx+HhYWFSYHsdevWaVxY57Zr1y5YWVmBiDQukvbt2wcigq2tLerUqYOsrCzcuHED1tbW8PLyglgsNmmH1saNG0FEaNGiRYGPVcnJyZgyZYrO7Piidu/ePYhEIqxbtw6lS5fWCkbqOx49fPgQISEhEIvFICIsWbKkyMd2/fp1eHt7w93dHQMGDAARYejQoUYfq9VqNZ48eVLk4wJyAlAKhQIzZswAkPM3Mzc318pMffTokRAcXb16tc7n4jgO9+7d+9cc+wti4sSJ6NevX5Gcv//8808QEfr164cnT55g2bJlkEqlWn/rxMREuLi4IDo6GgqFApMnTwaQEyAzMzPD0qVLNe4/ffp0EBEWLlxo8PUN/Z04jkNoaCgiIyO1ftdFixZBLpfrzILbvHkziAhBQUFFtuic17Vr10BE2LVrl86fv3nzBvfv38eOHTu05tl9+vRBqVKl0LJlS1hbW+Py5ctFMib+fGDI/fv3UbFiRURERBTJa5rizp07ICJs375d62fPnz+Hubk5pk6dqvfxN2/ehLm5OQYPHqxxe0JCAjZv3gypVIrZs2cX+biNcfz4cRCRkPHWunVrYWFJl5iYGFSvXl34/9mzZ4OIYGNjg+7duxfZHObGjRvw8vKCt7c3Bg4ciL179+Lo0aM4ePAgWrduDTMzM51BDX7BrLCL7pcvX4avry+USiXWrVuH5s2bg4jQpEkTvddnT58+hY2NDRo1amTycbxOnToFety/Bb+I1Lx58yJLiCiMjIwMODo6wtfXV+M67MsvvxSuNefOnSss5Fy6dEkj8PRvdevWLURERMDc3BxyuRyWlpb46quvdN43IyMD/v7+IKICX2fllpiYiICAANjb22PBggVISUnB48ePMWzYMNjb2xfJ+5uSkgKlUomRI0diy5YtqFGjBnx9fbFw4UKNc+73338PItJ7rcAULT65tHHjxgV+jqysLBw5cqTYknb5Oc+FCxc0buc4Di1atICLiwsuXrxYLHGivIYMGQI7OzvY29ujY8eOOu/z+++/Y/78+SbNp0eNGgUXFxeNY96bN29gbm6OmTNnFnrcxipQEJ138+ZN/PDDD9izZw8uXLjw0Vafx4wZg/DwcHTp0kUoJQMA2dnZ6NmzJ8LDw40K/OZWlEF0juMwYcIEEBHMzMzQs2dPnVsZxowZA0dHR50fZD4TrG/fvpBKpVoZARMnToRSqRRWQpOTk1GuXDkMGzZM77i++uorVK1aVW+m6NGjR7Uy3Pv3749y5crpvH98fDw2btyI9u3bQ6lUws3NDTdv3gSQk01vZmaG3r17F/lkKjMzE56enpBKpUJAiOM4tGvXTsiQ0RXIKikqlQr9+vUDEWHkyJHYtm2bcJFpaimP1NRUjWBoXufOnRO2DXfr1g2bNm3CN998g82bN+Pw4cMFzhJOTk6GmZkZateuDbFYjJo1a6J///5wdXUFEWHBggUa9x80aBCICFu3bi3Q631sixYtgkQiET6/QM7nLCIiAi4uLqhYsSK8vb3x8uVLhIWFoWrVqsIBn/+uExEqVKiASZMmaRxH9u7dC6lUCjMzM3z//fcAgIYNGyIgIADZ2dnIyspCixYtYGVlZXKGy08//SQEK7777judx5InT55ALBZjzZo1wm2jR4+GUqnE27dvAeTsQLG1tTXppMpnNy9btkx4L27duoUKFSrA1dX1k8xI//DhAzp06GD01rJly5ahbNmywt/X1dUVffv2xf79+7WCR1euXAERae0qOHr0KMzNzdG0aVM0atRIa/K1d+9ehIaGanyvb926BbFYDJFIhI0bNwq3p6amYtSoUSAidOrUCY0aNUKZMmWEBdTq1aujbt26OHfuHKRSKQYOHAh/f39UrFgRHz58QJ06deDp6WnUSv2uXbsgFovRpEkTiESiAmWxJyUlITw8XNgdoc+GDRvQq1cv7N27t1CfmyFDhsDJyQnp6en44osvIJfLhd9127ZtcHBw0Fq0PnLkCGxtbeHr64u//voLn3/+uXDhWVTu3bsHhUKB4OBgoezB2rVrIZFI0KtXL6OeY+DAgZBIJAbLMxXUsWPHQES4evWqcFurVq1Qq1Yt4f85jkOTJk3g5eWFTp06wdbWVjh+ADkXF5MmTULp0qVBRB91IvsxxcbGCjuV+EB2YbRu3Rply5YV5s8pKSlwcHDQmsuNGzcOFhYWiI2NxcCBA+Hh4QGVSoVNmzZBJBLp3AUzYcIEiEQivZ+Z7Oxs+Pj4IDIyUuPcx+N3RerajfjixQuIxWKsX79e62f16tVD/fr1sWTJEpibmxdLdm+fPn30LlrmxnEcgoKCEBMTAyDn/bWxscGMGTOQkpKC6tWrw8XFBd98802hxvn27VuIRCKj5jwHDhwAEeHs2bPCbampqTh48GCxXkeNHTsW9vb2erPFx40bBysrK7x+/VrrZ+np6ahUqRLKly+vNwOT/4w+fvzY6DGdO3cO/fr1MzmDPTU1FQsXLhQSlT777DN4eXkJ1xu7d+/WW04oJSUFFhYWWvPWO3fuYObMmfDy8kJoaKhJ4wFyMv2ioqLw999/A8g5jzs7OyM4OBjDhw9HmTJlNHZIWFhY4PDhwzqfS6VSITg4GBUrVizw5/Ly5ctC1uqjR4+E2/fu3QsiEuajuXEch8aNG8Pa2hpEpJWsZMilS5eE3+2bb74p0JgL49mzZ7h586bGNWdCQgJOnDhRZN+rsLAwVK5cGYGBgSCiIiuPoFKpEBMTA09PT1SqVAmRkZEYMmQI1q9fb3AH8LZt24T3nE+g4TgOgYGBaN++vbCY2qhRI2HHqFQq/STKLxVEdna2MLcrV64cli1bhpUrV6JDhw4wNzfX2KHFmz17NqRSKcqVK4datWoVKiahVquFhWw+PuPg4ACJRAIHBwe4ubkJ55rC4EtS5Zc4wc/LSpUqVaJlwv5XzJ8/H0QEc3Nzo85ZarUajx8/xuPHj/Hw4UMsWrQIXl5eICK9O/lyy8rKwtGjR7Fz505cvnw533Ky2dnZKFu2LFq2bKnz5y9fvoS7uzuICFZWVmjcuLHGuaEoPXr0CDKZDPPnzxcC+7mTvt6/f48BAwZAJBKZtHNYrVbD09MTQ4cO1frZ0KFD4eDg8NHiD4UKopeEv/76C127dgUAzJkzB9u2bRN+9v333wsXNf369TMpI7mogugqlUrIMps/fz4WLFggZADmXhVKTU2Fvb09Ro8erfN5srOzUapUKRAR6tWrp/Xzhw8fgoiwZcsWABACK/o+iFu2bBF+vmrVKp2vOWrUKHh6emqcYPjJVt4D+YcPHxAYGAixWIwaNWpgxowZWgHArVu3goiwf/9+3W9WAfHZkSEhIXByckJsbCxWrVoFIsL06dMhFou1srIMycrKwvHjx4ulvEp6erpQ7zDvxVXv3r1ha2trUtkbftu2vknAgAED4O3tjSlTpqBixYoaE3YiglwuR5MmTbR6CiQnJ2PixIl6y1H88MMPwhby3377DYGBgShTpgzGjBmD1q1bw9XVVchqef/+PSwsLGBvbw8HBweNQMun6M2bN1AoFDoXoN68eQMvLy8oFAphIsvXPd21axfWrl0LIsKcOXOwfft29O7dG1ZWVvDx8cHJkyeFAHqnTp3QoUMHiMViDB48WCtzICkpCXZ2dlq7SwxJTU1FqVKl0KhRo3xXcGNiYhAYGAiO4/DmzRtYWFhoBEX/+OMPEBHOnTtn9Ou3a9dOKP+Q2+PHjyGTybQuUD8F/HGyQoUK+e6S4TM8o6KisGXLFly/fj3f97l27dqoX7++8P8vX76EtbU1WrRogYyMDMydOxdKpVLjefjFv/Hjxwu3tW3bFj4+Pujfvz+ICF9++SWWL18OFxcXYZs6x3G4evWqUHbo9OnTICL89NNPAP7JRLK3txeCaLGxsbCzs0N0dLTBBZODBw9CKpWiW7duUKvVmDt3rsnZLklJSahduzYUCgXGjh2rtYODt2LFCmGbOR9YMKY2b178cYfPpn7z5g1kMhmWLVuGn3/+GTKZDI6OjrC2tsalS5cA5Gzpl0qlaNGihcaiyKxZswyeK001YMAAuLq6as0vli5dCqlUmu8xks9+k0qlxRKcHjx4MEqVKqVxXtm8eTNEIhEOHz4MtVqN7777DkSEw4cP4+3bt7Czs0OfPn2gVquxcOFCSKVS2Nvbo3///sLFJf8+/5eMHj0atra2mDp1KohIYw5qqr///htEpFVCaObMmTA3NxfmBjdu3IBMJsOsWbMA/HO8Pnr0KBo1aqRzjgjkP8/kz2Vubm6QSCQYNWqUxoVht27d4Ovrq/e416hRI9SpU0fjNn735JYtW3Dr1i2NY5I+/Ofr/PnzGokx+rx9+xZyudzouu8rV66ERCLBixcv8O2334KIhAvHt2/fCmXQbG1tMWbMmAIlYfDBLEN1uHl8/6gmTZoAyAmEtG/fHkSEBg0aGPUcpuIzVkeOHKn3Pu/fv4dSqUT//v01go5JSUno3bs3zMzMcO3aNb2PT0pKgru7O6Kjo40a06ZNm4RSMKYmXHz99dcgInh6euLChQsoVaqUUB8VyNlZa2NjozOznr+u0VfTn1+YMmVb+IcPH4Qa+GKxWDjmV6hQQeP4/vLlS8TGxuL169f5loP4+++/IZfLtTL/jREbGws3Nze9iVMhISFo27at1u389dVPP/2EunXrIigoyOjkin79+sHT0xPt27eHk5NTgbbVq9VqjBo1CtWqVUNwcDCCgoIwduzYfIO+HMehfPnywmeiR48eqFu3rlCiUdfuC1Pdu3dPmPurVCosX768yLKb+XnQ6NGjMWTIELRt21a4xhaJRHrjGbVr10aDBg1QrVo1IUGDP67z861vv/0WFSpUQP/+/XHo0CEoFApMmDCh0GM2RVZWFl68eIF3794V+Dk4jkPnzp0hFosxbtw4jaBxSkoKSpUqhQYNGmjMYx4/fgxzc3OMHz8eP/74o9auJFPNmzcPRP+U23306BFGjRqF5cuXIyUlBStXroRUKtW5EGnK7xkcHIxWrVoZdf+7d+9CJpMVKNHlU5SSkoLVq1djxowZGD16NEaOHIlZs2bhq6++KrbdmMYKCwsTFtB0Xc/k1aNHD40YjEwmQ69evfDFF1+ASLPKRG6xsbHo37+/RvUC/l9ISAjmzJmjs7fSunXrQET466+/9I4pPT0dv/76KxYuXIjSpUujXLlyRVpqhdezZ0+4uLgI558OHToI89HGjRtDqVRCoVBgxYoVcHV11TtPzUtXKRfe48ePIZFIDJZyK0qFDqLr+wAUl1WrVgmTrUuXLmmsRIwbN07ITN67dy8WLVpk9PMWRRBdrVajS5cuEIvF2Lx5s3B7dna21rbW9evXG8wQAnKyIA1tx23cuDFq1qyJP/74A2KxGF988QWqVq2KSpUqaUx69u/fD4lEgn79+qF9+/bw9/fXuSofGBiIfv36adyWkJAAsViskTGtUqnQokULKJVK3Lp1y+B70rhxY5QtW9bgRYlarcaGDRvg7e2db11mlUqFMmXKoE2bNnj79i18fHxQvnx5mJmZCUHQwYMHQ6FQ5HsSe/LkCSZMmAAXFxcQEXr27KnzfllZWfj+++/xxRdf4Pbt28LtcXFx2LlzJ06dOqV1kZmZmYk1a9bA09MTcrlcZ/Dp3bt3sLe3R/fu3Q2OM/d4+RU7XZO2zMxM2NnZYdKkScJt6enpyMjIQHZ2Nu7duyc0kbS0tBQuhjiOQ6dOnYTsVl0GDBiAsmXL6vzZnTt3IBKJNJoiyeVy3LhxQ8iILwqpqalYtGiRkNmzf//+fDMKdu3ahYULFxq838CBA2Fra6v3JPL8+XOtbKaWLVvCxcUFEokEQ4cO1Xj+R48eoW7duiAiSCQSdO7cGdnZ2Ro7EmrXrq01Jj5wYuzka8KECZDL5TozL/LiJ9U///wzxo8fDxsbG40LHLVaDScnJ6GUU34+fPgAuVyu9xg7ePBg2Nvbf/RGzUDOMeLnn39Gz549hW2sQM7OKalUip49e0Imk2HKlCkGn2fDhg0QiUQGy/TkxQca+eNE79694eDggPj4eADAiRMnQERC1qdarYaDg4Ows+bGjRtCeYctW7aA4zihLqJYLEavXr20sgY6d+4Md3d3REZGajTT5DgOCxcu1FpU3b9/P0QiEYKCgrSOI+np6Rg9ejREIhHatGkjnEc4jkNMTAxsbGyMmsRyHIcGDRpAoVDg999/B8dxqFWrFipWrKhxbuIXocaMGQOO43D//n0MGTJEI6sqt8zMTHz//feYO3eu8J7yrzdx4kTI5XKNgEWnTp3g5eUFa2trNGvWDAkJCahevTqcnJwwffp0iEQi9OjRQ2eQYOjQobCwsCh0E9C4uDiYm5vrLHPw7t07SKVSvduQgZzvrlQqxbBhw9CrVy/4+fkV6e6ua9euwdzcHJ9//rnG7R8+fEDVqlVBRPDz89PajskH9mvUqCEsAvELU5mZmQgJCUH58uWLpEayMYFVfbKzszF//nw0b9680NkpCQkJsLa2xueffw6O49CjRw/I5XKtxpbG6ty5M7y9vbXmR+/fv4e1tTWGDBmCkSNHQi6Xw9/fXwga8AGj+vXra83P8powYYJWOS/e+PHj4eLiorFzo2vXrsJiq5mZmcF5NB+Qzp15PGvWLFhZWSE5ORkcx8HHxyffxeHcNcwtLS0RFhaGgIAA2NraQi6Xw83NDUFBQYiKisLs2bPRr18/WFhYGH3h9+HDB1haWmLmzJmIjIxE3bp1te5z//59TJgwATKZrEBByx49epjUjJfPzLp06RIWL14MIsKUKVPg6uoKZ2fnQgV6dOF7KenacZDb0qVLQUQoXbo0vvzySyxcuBCOjo4wMzPTuesgr507d+a7cMJxHMaNGwciwoABA9CgQQOdte0NCQsLQ3h4OGrWrCkESvOWEx05ciSsrKy0zlmdOnXSmQDA4xeCTEkA4udvT548weLFi2FjY4Py5csXujcUf5w15Vo7KSkJwcHB8Pb21rsgs3jxYq1yTM+fP4dSqRR2R/ElR435u/PfsVmzZuHly5dQKBRa/b54hoLykyZNgkgkQvfu3TF06FD069cPSqUSUqkUPXr00Djv53by5EkQERYtWoRRo0ahUqVKaNmyJdasWYMKFSrkW2bJGDNmzICNjY3GcbhWrVqoXLlyoUp7xcbGwtraWudxJyUlBb6+vujdu7fWz/hF2D179gjH0Dt37qBz584oW7as3nnCmDFjYGtra3BXc1HZt2+fUAaTKGd3/owZMwpU6pU/Nukr4cXvqMu9KN2qVSt4eHgI56Nq1aohPDy8QHOoEydOQCQSGSx5FR8fD3Nz80L1I+F3lJuyODNp0iTI5fJi2alYVNRqNc6dO4eRI0caXNT67LPPIJFI4ObmhnLlyiEwMFDo71WuXLli3a314cMHbNu2TedrvHjxQljwdXZ2zvd6mS85N336dPz88884duyYcDzmOA7R0dFwdnbWOY9p27YtHBwcMHHiRFy5cgXx8fH4448/sHXrVnTs2FEo55l77vf27VuTYkpAzrzH0dER4eHhRdrPhN9Nnbsf27t37+Dv7w8/Pz+0bt0a06ZNE96PwYMHw8fHx6jv5ciRI+Hq6qr3c9CrVy8olcqPUla20EF0XbUY8yrKC765c+cKE5v79++jc+fOws/69+8vbNP/5ZdfNIKJeWVkZCAxMVH49+zZs0IH0WfOnAki7e38wD8T5j///FNYZYyKijL4fElJSejataveFXg+m8Lb2xuhoaHIzs7GxYsXIRKJsHTpUrx//x6ff/45zMzMhEZgfAZT3m18T5480TtRq1mzpkbGwsSJEyEWi43a5nf16lWIRCK9GX1//vknqlSpImQBNWrUyODz8RcCfFOmv/76CxYWFggNDRVOynFxcbC3t9c56cg9LgcHB9jZ2WHYsGEYPXo0JBKJRmZKWloapk2bJmx9MTc3BxGhcuXKqFOnjjBx5/8GEyZMwIQJExATEwMPDw+IRCJ06dIFd+/e1TsOPuuD76BsyOTJk4WSAHkbRgDAoUOHQET5HjhSU1NRqVIllC5dGu/fvxeyKTp06KBzJwPHcfD09DSYwRQdHY1y5coJpXb4LY58XcfC9EpIS0vD0qVLhZNo3759hYaYVapU0RnASE5ORs+ePYW/D5+dynv//j3WrFmDmjVrCpm+prh+/TrEYjFatmyp84JArVbjq6++wrhx4zR+znEcNmzYoDPwHR8fDxsbG42MZH3+/vtvk+qPchyHSpUqISIiAlZWVloBMyAnCGBsY2g+U0tfnevnz59DLpd/1JIOHMdh9erVwveVz2wePXo0OI5DZGQk/P39kZGRgRkzZkAikRhcra9fv77O75khubP9Ll26pHXsS0pKglgsFkq0/PXXXyAiHDt2DGXKlEGdOnUQGRmJ8uXLCxMEjuOwa9cuvcHc+/fvC+UljG0Oe+nSJURERAgLOv3798f06dMRGBgIMzMzLF68WGuCkpiYCEdHR6MCTHypn9zfe35xYPXq1fjzzz+FbXx5F6HUajVatWoFpVIpfE/u3r2L4cOHw8HBQbgQc3Nzw6FDhxAbG4sWLVqAiLQ+13x2frVq1YQA6rt371CuXDkQET777DO9F7+pqakoU6YMqlevrvM7npKSojeTMbe5c+dqBfdzi4qKQlhYmPD/2dnZ6NWrF8LCwlCtWjUoFArUq1cPWVlZQqDg119/zfd1jZGUlISyZcuiUqVKOrcCcxyH8+fPo1u3bqhQoYLGAp9KpUL16tXh6uqqM+B3/fp1mJmZGd3kneM4XL58WeOC4v379+jUqROsrKwKNCG+f/8+atasCbFYDLlcrjeoY6z58+fDzMxMmPhnZGQgKChIZ0anLo8ePcL+/fsRFxeH+/fvQywW611AGTNmDIgICoUCM2fO1Jqb8oFXqVRqMJj89OlTiMVinTXsg4KCNMoJ8QHQefPmYd68eTA3Nzf43CkpKbCyshLOQxzHwd/fX6MXwaBBg+Dv76/3OdLT0+Ht7Y3o6Gj8+eefWLhwIXr06IFRo0bhiy++wIoVKzBjxgwMHz4cjRo1glKpBBFh0KBBep9Tl/79+8PR0REikUgjySUvPpNLX81/XTiOg6urq1Hnbp5KpYK/vz8qVaoEsVgsPPbNmzdo1KiRkIiQW2pqaoGDdQ0bNkTt2rWNuu+lS5fQpUsXSKVSoSzY06dPjXosv4Dq5uamN8mGDxItWrQIHMcJdX1zl5MyhN/hsHv3bmRmZuKzzz5D+fLltQJzSUlJ8PT0RPPmzYVzzJs3b2BtbZ3v3Kl06dJaZUF//vlnnZm0CQkJQv3i3LcVxZZyvlSlUqk0qkyOWq1GixYtNHZP6vLixQuN5Be+Xq6bm5tGoLpr165wdXXNN+C6YsUKSCQSIelg5cqVINKuy3v06FHI5XJMmzZNa3GU372cd+EuKSkJy5Ytg52dHUJCQnQek9q3b4+AgACd8YYpU6bA3t6+UME3/tiW97ry/PnzJs29dD1vy5Yt4e7urnc39MyZM4WFydwGDx4MNzc3ZGVlISMjA05OTujYsSNkMpnBvi58iUdDi/dAzpzvs88+M/i527Nnj86EByAnWVAsFiM6OhobN27E4cOH8fnnn0MqlSIwMNCkmvKnTp2CRCLBuHHjDN6vW7dusLW1RbNmzeDp6akVkzl8+LDRWcR5NWvWDNWqVcv3c9S9e3f4+/vr/Cxu3LhRKzaVmJiIevXqoWfPnjh9+jQ6duyIsmXLmnSsT0lJgaurq96m5EDO/MXU8yaQs3umsI2wd+3aJVyT8fP4sWPHar2X/E7mOXPmaD0Hv6hX0O+aMYYNGwYiQkxMjNaceM2aNZBIJIiPj0eXLl1QpUoVg88VExMDX19fvUmkL1++hK2trVai4du3b/NtjJ2WloYBAwbAzMxM2PHZs2dP2NnZmbxw+9tvv8Hc3BwdOnTQ+szu2rULc+bMMWkHQGZmJurUqQNvb2+jF8v4BLP8ElJevHgBDw8PnaVceImJiahUqRI8PT2LvWxVoYPoR48ehUKhwPDhw7XefJVKhc2bN+utqV0Qq1evFjLRL168qPFGjh8/XshE37Nnj8EMGr5OWN5/BQ2i85NAfRMzlUqFcuXKISoqSriwL2ymSVZWFlxdXSGRSDQaIw0dOhSWlpZQKBSwtLTExIkTNT7I4eHhWpNpvj6rriZRM2bMgJWVFWJiYoQMW1O22/fs2RNOTk5a7+2PP/4Ic3NzhIaG4vz581i+fDnMzMz0Ttb4QGDeQPvt27e1tg2uXr1a7xfy2rVrcHBwQGhoqDBZTEtLg4uLixD85bPM+CZKV69eRXp6Ovbt24cOHTogKioKa9euxfPnz3Hu3DkMGDAADg4O8PHxQcOGDTF8+PB8M36AnAlvlSpV0KBBA4P345vJDh06VFhIyLtVvnPnzqhQoUK+rwnkXMzb29ujatWqkEqlGDVqFFQqFSpXroywsDCN7zK/mmro88pvr+natSuISCPLvUGDBnB1dTU4odclMzMTK1asELaa9+nTRyML9+TJkwgNDdUob5GRkYHdu3ejbNmysLKywpYtW4Ttd2vWrEFKSorweZZIJGjevDl27dpVoIW+W7duFXnj3IkTJ8La2lrvNtinT5/im2++QaVKlRAQEGDS6/MLNlZWVjovBPnPlTEXy5GRkRplS3QZNWoUFArFR+mUnZiYKGyH79Wrl7BY+dVXX4GIUL9+fRCRUH80MzMTwcHBCAgIwOTJkzF79myNrLPnz59DJBJplVkwxvjx42Fra4uaNWvq3AodHBws7PhZtGgRLCwskJGRgZ9//lk4D5laAmvUqFEICAgwqQwBx3HYvXs3WrdujSpVqsDFxQU1atQw+D3lA8K5s/NVKpXGxZ9KpUJQUJDOBYhevXoJzTs9PT0xb948nRcKHz58QJkyZVChQgVER0dDJBLB2dkZ48aNw40bN/D8+XOhQZq5uTnc3d2F7bV5f8edO3dqXXS/ePECe/fuzfd7f+HCBYjFYq0J/dWrV+Hn5ycsqi5btkznuTMzMxPu7u5aO7xy4793/G6X5cuXQyQSoWfPnujfvz9Gjx4tfF/VajW8vb0LHQwGct6bLl26wNra2uBCryEpKSkGA0ULFiyASCTC8uXL9b7XWVlZ2LZtGypXrgyinJJj3bt3x4YNG+Du7g5bW1uUKlUKVapUMfrzzXEcvv76a1haWsLX1xfnz58Xyj/o+pwAOT1j9u3bp/F9jY2Nxf79+3Hv3j2kp6fD1dVV62/JZ3TmN3fkOA5hYWEgIohEIjg4OMDFxUVvHdOEhASsWrVK7/Hz9evXQimi/LRt21YrwMQnTuRN+pg2bZqQ1GBMvf7u3bujbNmyuHjxIlq3bg0iwsmTJ4Wf8/W/9e2Y4vuRGPsZVKvVuH//vslZU/yCpa5gVF7Dhw+HVCrNN7mBbyrOJyCYGpjZsGEDiHJKuOT+3KWlpSEoKAjBwcHCOf7mzZtwcXFB1apVddb5BnLmYZ9//rlQk5uXt/yjsV6+fGnSTizeq1evULFiRTg6Oups2jpw4EB4e3sLx/6srCy4u7sbHeAZP3487O3tjZr/8J+/nTt34tatWyhdujRcXV3znef06dNHI6ng+vXrICL4+PhoBfunTZsGCwuLYinDA+QcC3x8fFCjRo18j4H8Ditjkpxyz+P4TOa8TU6fPHmSb0CHr8GdezGRr+nesGFDjfvWrVsX7u7ukEqlqFixIn744Qf88MMPWLlyZb59tK5duwYnJydUrFhRI1D08uVLSKVSLF++XOfj+OsTfTV3P3z4gEuXLuk8h/N+//13EJFWKUwAaNOmDby9vQ0eky5evIjQ0FB8+eWXwjE/JSUFCxcuzHfOx++MyF3yKCkpCdbW1holPCZPniycQ/PbpdOhQwf4+/sbDNSuX79eSEjR9X1JSUmBQqGAhYWFVkIB/3sNGTJE6zX+/vtvVK1aFfb29kYdX54/fw4nJyfUr18/39JC7969Q0REBKKiojBp0iQcPHhQ4/PEcRyqVq2K6tWrm7So8uHDB8hkMr2fsdz4nb+5z4PAP9fxRIQdO3YIt/fr1w9WVlbCnLIgiV1AzsKVWCzW2DHP4zgOpUqVMhhj0SU2NhY+Pj6QyWRGJW/8+uuvaN68ucY56s8//xRKY54+fRpqtRpffvklxGIxoqKiNOp88yVA9I0xKioKZcqUKZammE+fPoWZmRmio6NhYWGB8PBwjflXkyZNhOsavtyhvu8Z3yPL0II98E+p5dy7DpYtWwaZTJZv6aOMjAxUrVoVpUuXFhKXjNk1pAuflLtu3Trhttu3b0MulwvXbPXq1dMq53bnzh2Eh4fj2LFjAHI+Z7169YKZmZlJ5WGzs7Ph6Oiot8xUXFwcxo0bB3Nzc9jZ2WnNcfJ68eIFvL29hX5gxaVIaqJfvXoVnp6eiI6ORlpaGjIzM7F69WqUKlUKdnZ2RVqnKW9N9NxbQvLWRDdUpL4oM9GvXr0KKysrtGvXzuBFOb/KzjclKYoM/e+//15rYpyQkIBatWph1KhROktD8PWtc2cItGnTBuHh4Tpf4969e6hTpw6aNGmCjh07YsmSJSaNPTY2Fubm5pg0aZLwuD179kAmk6F169bCRPjBgwcGJxN8E0Vjsrazs7MRGBioVR/txo0bcHR0REhIiNbF6ZIlSyCVSvHo0SMh4FicK548PoiSOyv25s2biImJES48+SZJ169fh0qlgp+fn0ZTipSUFFhaWmLevHlGv+4vv/wCsViM8PBwYWLOZzrm/l7Nnz8fVlZW+V6w1K5dW7ggzO3169cIDg6Gvb29SavZgwYNglgsRs+ePfVegGdmZmLkyJFCRi2/wh0RESFclHMch88++0wIxPHZkcV1wVMYfL3yKVOmCJ/bzMxMbN68GRUqVBAmWBUrVjQpiwPIyfhzc3PTmYUO5Bw3JBKJRgNSXfJmMBn6XaysrEzKzjPVq1evsH79evj7+0OhUGDPnj1a9+FLhjRv3lzj9qtXr6Jy5crw9vaGk5OTxk4cPjBWkJPvw4cPDZZdGjBggLDY1aRJE41Go3379kXDhg1NPjfwC0jFLSEhAQqFAmPGjAGQc5xt1qwZ7OzshO82X9Lm999/13r8mzdvMGLECBw5ciTfC5gbN27AxsYGAQEB2LBhg9YFKsdx2Lp1K8aPH1+sk6TJkydDKpWia9eu2LZtG9atWwdzc3OEhIRg27ZtaNu2LWQymc6GVXydZENZ1Hzt3unTp+P169dQKBQYOHCgwfEolcpCb73kvxdFUStWH7VajdGjR4Mop2xDVlYWsrKycO3aNaxevRrt2rUTjtmNGzfG4cOHsWDBAqEBWqNGjfDs2TP8+eefkEgkQk1wXnp6On744Qf06tULI0eOxOHDh3Hv3j00a9YMRISBAwcKF2McxyEqKgqOjo5ax/7cDfE8PT0xZswY4XzG/7O0tIRIJNLaERIbGwui/Bvp8VvNt27diq1bt6J3796FLoe4detWo7J3+cSN3MejVatW6Wxar1arhT4NxpSp+eWXX4T3qEyZMlq1rfmm5Lm39fLev38PW1tbjVrWxalevXpGBWqzs7MRGRkJa2troaxWXnFxcUJt1ICAAIMLRfpkZmZi+fLlOi+Wr169KsxVbt68CWdnZ1SoUAH+/v6wsrLC5s2bNUp38YsRcrlcmIctX74cy5cvR3R0NJRKZb41uIvS+/fvUb16dSgUCo1rsczMTNjb22tthZ82bRqsra2Napzm6uqqs4eNPm3btoWjoyOUSiWCgoKMyqrjSxXxO4g+++wzODk5ISQkBJaWlvj2229x5coVHD9+HDY2NsI5sbhcuHABEonEYAkBfjeqrixOXfhA0MWLF2FnZydcW+fVpk0bVK1aVe/z8EHDvAFm/rqFn6tevnwZRDnlR65cuSIsnPL/mjZtmm/prps3b8LV1RUBAQFCUs2sWbNgaWmpNwiuUqng4OCgsxH069evhfMNEcHR0VFneazhw4fD3d1d57zlzp07kEgkens0qFQqVKlSBc7OzpBIJHB1dUX79u2Fkgz9+/c3+DsDOTsjcyeuLF68GBKJRCPT8tmzZ5BIJEaV0OQXBfQtKgM5PS9CQ0NRunRp+Pr6avU9W7duHUQiETw8PFC/fn3heMQH0HNfx+T17t07uLi4aOwS0SX3Domi6q/166+/QiQSYdmyZXrvc+vWLY1x8fPavO+BLhzHoVy5chqVEoB/Yi81a9aEnZ0dnj9/LtRpX7duHTiOw5kzZ4Sm16bKyMgQGr/r+n1MTdJ59eoVypQpAx8fH9SsWROurq56+6YBOXMBS0tLSKVSuLu7486dO4iLi4O3tzfCwsK0vts//fQTbGxsEBgYiNu3b+P69esQiUQGd0jwi+F83OvixYto0qSJ0bszs7Ky9C4cDRgwAI6OjkhOTsaFCxfg4OCAsmXL4q+//hIWUVauXAkAQsyQT0JISEjAkiVL8Ndff4HjOLRu3Rr+/v75Bvs5jkN4eDgqVKgAlUoFjuNQsWJFtGvXzqjf59GjR7C1tRViIIUpK9W3b1+hZKdarUbt2rXh7++Pt2/fYuvWrfD390eNGjU0vhd8CWuinJKOs2fPLnDsrF+/fjrLVWZnZ8Pf3x/W1taYOnWq0dd7N2/ehK2trVHHVyDnmDhx4kScPHnS6ISdImss+vz5cwQHByM4OBju7u5wcnLC3Llz850QFcSYMWMQHh6OLl26IDMzU8jKys7ORo8ePRAeHm5Sgz5Af010fiu9rjf01atXGD58OMzMzFCpUqV8V/eys7OFk7UpW0WLmlqtRpkyZdC4cWPholahUBhdGqIgJk2aBCKCtbU1QkJCIBaL0aVLF633tVy5cnqz9qKiolClShWjL1T4Exa/QhYfH4/SpUujYsWKOlcPU1NT4ezsjEaNGsHc3Nxg9mBR4pvI8hPY7OxsoRatk5MTLl68iAYNGmgscqxZswZisVhY7d2+fTuIyOQuy5cvX9Y6ILVu3RpeXl5C5kF4eDhat26d73MdPHgQRLprGcfHx6NmzZqwtrbGN998k+93hc8cMWbVH8jJNqpevTpGjx6tM5NWrVZjyJAh6NGjh1FbYksS3/zSwcEB9evXF7YktmrVCt9//32hGvMkJSUZPMnWrVtXZ1dvjuOExy1ZsgRmZmYGs3Z4M2bMgEwm05kZURhPnjxBrVq1QJRTKzwyMtJgbfjff/9dby1N4J/GbgqFAvfv30doaKjRJRp06dKli94LUr4Uzrt372BpaanRgDX3+/yp+vzzz2FlZYW4uDgMHDhQyChTKBQ4c+YM/Pz88i1VZqzExMQSfz8yMzMxa9YshISECBchffr00cgg5gOkP/74o3Abn/GUX4kyIKd2vp+fH3r16gV7e3uDWWR37tzRmUFsigsXLsDMzKxAW3sLYsOGDZDJZEKPEKKcfhG1atXC1KlTtbJb1Go17t69q/G35xczTp06hR07dqBLly5QKBQgIpQvXx5eXl7C38fV1VXjb8F78+YNnJ2d0bJlS415RPfu3VGqVClcvHgRffv2hYODA1q0aIFvvvkGT58+xdGjRzF79my9F3cRERFo1qyZxm25Lzb52rnVq1cv0vKGxuJLCNavX194T5s3b663IWl6errORTBdVCoVxo4dix07duhdGIuMjESlSpU05iccx2HkyJGwtrYuVBM2U2RnZxt9PElKSkKvXr1AlFPqLu/5o3PnzrCzs8Ovv/5abH/TRYsWgSinOXTFihXx7t07JCUlCaXq7Ozs0KhRI2Gn1fjx45GWloYdO3agRo0akMlkwq7U6dOnF8sYDUlKSkKtWrXg6+srLPLymeF552nPnj2DWCzGmjVrkJ6ejps3b+oMmvHlGHRluOvz4sUL4b0y9gL8+fPnQsA3LS0Ntra2mDBhAlJTU4UeQrkDr4WtfW4Mvhkdf02T2/3796FUKtG6dWujP+OJiYkwNzeHra0tXFxc9J53+CxFfRmu9erV01lKhd+BzTdI7NatG3x8fITAUnZ2Nu7fv483b96Y1Pfi7t278PPzg6OjI06fPg0PD498AyVdu3ZFSEiI1u8fEhICd3d3/PLLL9i+fTvatWsHuVyusVialZUFJycngwslY8aMgVQqxdmzZ7V+xpeI+u2333D//n307t0bISEhmD17ttHXbHwS3uPHj3Hw4EFIJBKdC0lHjhwxGOjMrVatWggODtZ5Pfbu3TtIJBKsXr0aT548gY+PD/z9/YXvD78zPCoqSthFuW7dOmHHV349h4B/Fn0MZc/y17aGgv0FMXz4cFhaWuqsIc5XFsgdCIyJiUH16tWNfv5FixbBzMxMo+RlVFQUqlatiri4OLi5uaF+/fpwc3ND06ZNi+wcsnbtWohEIq3EjcWLF8Pc3By+vr7CjntD4uPjUaFCBbi5ueHBgwd4/fo1PDw8UKNGDZ0JOwcOHICZmRmaNWuGx48fo3z58nB1dUXdunXh4OCgd+fP7du3ERgYKMSGSpcune+xoE2bNvD19cW8efMglUphYWEBBwcHg+UVOY7Dd999BxcXF9SsWVNrMeThw4eQSqUaFSzu3buHypUrw8zMDG3atNFaRAkICED//v2RlpaG8PBwjWSCvDtHDOFLXa5du1b47/yased26NAheHp6FroG+IcPH+Dp6YmGDRsKjY5zN+88evQoiP4p0/nw4UOIxWIsX74cCxYsEMqKGvPd14V//ryJIfycoSAlhaZOnQqFQpFv0tHbt2/h6uoqNDrPnSxmSJEE0T98+IBZs2bBwcEBFhYWsLS0zDfV/lOjL4h+48YNSCQSVKtWTTipvn//HhMmTIClpSWUSiXmzJlj9PaY7du3o1SpUh+loYchBw4cgEwmQ6NGjYRJaUGbYxlDpVLh8OHDWLhwIfr27YtZs2bpvOAaPXo03N3dtU4or169gkQi0VtbXRf+wjUkJATZ2dlo3rw57OzsDE5a+IuW4OBgvdusi8Py5cshkUgQGxuLxYsXQyQS4fDhwwgLC4OlpSWICN99951wf35ruZ2dHfr06YMaNWqgVq1aRTKWhw8fwsvLC0qlEmvXrs23cVlueYMhuaWkpCAqKgpEOSUYWrdujalTp2L58uXYuXOnkCWVnZ2N4OBgVKlSpVgbiHyqsrOz8cMPP2DWrFlo27Yt+vXrZ1RpoKLAfw737dsn3Pbo0SMEBATAxsYGERER8PT0RExMjFHPl56eDj8/P40dIdnZ2di8eTNmz56N8ePHY8qUKUYF5HkfPnxAhQoV4OPjg61btxZqUSG3xMREoekJkXbfCFNwHKd3Unz79m0QkVA2IW9Zpk/d27dvYWFhgUqVKoGIsHHjRiQlJSEiIkLISDB0HPg3e/Hihc6JHMdxiIiIQGhoqPB350sJGdMciq8HSET4+uuv871/jRo1ULduXYO7D/R9/l69egV3d3fUqlWrUA07TXXu3DkMHjwYy5cvx9mzZ01OsOBLMPHvU+XKlTF9+nTh2MhxHO7du4ft27cbPCbs27cPRP+ULXj16lW+NWTzw2d186/LNwOcPHkyOI4T/r66Avsfy9GjRyESiTBx4kSkpqbC3NzcYMnDonTu3Dl4eHhALpdj8uTJWLp0KcqXL29S1mxJ2bVrF2xtbeHn5yfsbtMVZCkOarUaTZo0QUhIiNZn+syZM5g1axaioqJQuXJlvXWJS9qtW7cgkUiwcOFCADm1q/U1YG3dujVkMpmwk8va2horV67UmAe2a9cOwcHBJged8ksg0KVMmTIYPHiwUOqEX6jnOA5//vknLl68iLt373606zm1Wo3GjRvD2dlZa4EhMjISfn5+Ju/K4ksR5Z7z5ZWeng6lUqkzOMIHiPWVe+TLFRw9ehRSqTTfHmrGiouLQ506dYTzgaH+NsA/wVg+wJyeno769evD1tZWI16RmpoKPz8/REREQK1WQ61Wo0+fPhCLxQbjGllZWahbty6cnZ01Am3x8fFwdHQ0WKvaGCkpKbC2tkbr1q1hbm6OmJiYQl8fXbt2DTY2NmjZsqXWc/H1zPkFzgcPHkChUAjJIXwteL5sUO/evYXdWp999pnR388+ffrA2tpa53X527dv4ejoiA4dOhTm19QpOTkZpUqV0tqtznGcsEPCz88PWVlZSElJgYWFhUnNQhMSEuDq6opWrVqB4zi8fPlSWJQA/tlZb2trq7e3VEFkZWWhdOnSWtdoDRo0QPPmzTF27Fi4uLgIx0KVSoXx48drxX+6du0KW1tbjWvPP/74A3K5HLVr18bWrVuRmJiIU6dOCdf1bdu2FeaUb968QVBQEEQikc5Fv9ySkpKEcpy54xz68CVm+fnM69evUbZsWQQEBOi8lnzw4IGw0BwdHQ0vLy84ODhojKt3795wcXHR2q2VkZEhJLaFhoZq/Gz48OHw8fFBVFQULC0tce7cORw5cgQ9evRAq1atTCo5061bNzg7O6NLly7w8PAw+btdVIswfEKQWCzWSrLhOA41atQQstEHDhwIZ2dnIVb2xx9/YOnSpQVOfMrMzIStra3WeaZp06aoVq1agZ6Tv942tOtTrVajefPmcHJywsuXL3H58mXMmjVL2HVgSKGD6BMnToRSqYSvry/Wrl2LlJQU9OzZE87OzoVuRPAx6QuiAzkfjDJlysDCwgL9+vWDQqEQmvMZym781J04cQJKpRIymQyOjo4lnvHHj0nXhGjRokWQy+Umv998A6N69epBJBLlu7qXkpKC4cOHG8xqLQ7JycmwtbVFu3btYGFhITQoSk1NRVRUFLy8vLQCJg8ePMDkyZPh7+8PIsq3DIcp4uPj0bFjR2GCaswWNmM9fPgQixYtQnh4ODw9PYWGrd7e3ti/fz8WL14MsVhcrIs6jG4qlQqdOnWCTCbDwYMHcfv2bXh4eMDPzw/z5s1Dhw4dEBwcbFRJJd6RI0dAlFM2Ij4+Ho0aNYJIJIKLi4uwRcvPz8+oVfTs7Gw0adIESqWyWBYWrl69CrlcXiTlMvRRq9WwtbWFra0t7Ozs/pULRSNGjBCChLyUlBS0atXKYMOX/zJ+S/v333+PP//8EzKZzOgdcSqVCp6enggNDTXq88Bn/QQHB+u8sP/tt9/g4OCA7t27a2Slpaeno3bt2nB3dy9QreOS9vDhQ2zatKlQzYI4jkPjxo1RunRpoXm4lZWVSQt5eb158wYSiQRr167FtWvXIJfLUa1aNRARevfujYiICJN20RUXvhlp9+7dQUR6Gz8Wh5SUFEydOhXm5uaQyWTo0KEDjh07VuLviTEeP36MgIAAODg44ODBg3BxcRGCI8VNpVJ9EnPzwhg6dCgUCgUePHgAc3NzIaCe1507dzBt2jRs2rQJp0+fxuDBg0FEqFGjBvr27Stk+Bm7Q7GwBgwYgICAAISHh+fbt+hjef36tZA8w+NLKv3www8mP9/9+/eNSpLp168fSpUqpfGZf/HiBZRKpcHeCVlZWShVqhQsLS1hY2NT4L5jumRmZmLIkCHo2LFjvveNi4uDWCzGhg0bkJSUhMaNG8Pc3Fxn3V6+rOXq1avRv39/iEQioxbM3rx5Ay8vL6FvwePHjzFw4EDY2NgUSfnI3r17g4gQGRlZZOX7jh49ColEotXgvXHjxlp9j/jydNu2bUPXrl3h5+cnHJv4nd79+/c36XiVmJgIT09PnYsMXbp0gb29fbHtVOIz6HMHy/gd1cuXLxey5PmFd1PjAvzjdu3ahS+++ALm5uYa84w1a9borLFfWJs3bwbRP2WUEhMTIZVK8dVXXwnzVD4+xy8Quru7C+8zn1ipq4fGkSNHhMUriUQCIkKFChWwadMmraBxfHy80TvaOI7D9evXjT6nbtq0SeiBCORkjdvb2yMyMlKjwkFaWhrKlSuH0qVLCxnUcXFxaNq0KUQiEezs7IQdjYbq0P/6669ac20+Q1oqlRrVg8KQ2NhYWFhYaF1XlYRhw4bBz89P57GazxbfsmULzMzMTCohbIyePXvCx8dHWJjmy6MWpD8ZLzQ01GDi37Jlywqc5FLoIHpAQAC2bt2qdeE3ZcoUWFlZFeikbsilS5cQHh6OOnXqoH379lrlQE6dOgVPT0/UrVvXpEmPoSA6kHMBMHjwYCiVSowYMeKjbT8tbjdv3kSpUqUM1mD9mDIzM7VKy3Ach/Llyxs1UdKlVatWICLMmDGjqIZZLCZOnAiinCYuueuh5VfvmOM4PHz4sMgvtPjtTwXdmmOK3HVsxWKxyeWYmKKTlZWFtm3bwszMDA4ODqhQoUKhA27t2rUTgub29vYaDdgePnyI4OBgWFpa6qxpntuQIUMglUoL3ZTZkCNHjmDnzp3F9vxATi10IjI6o/9Tk5iYiB07dvwrAmAfU8OGDREYGAgfHx9Ur17dpEzvmzdvmpSRdPXqVQQFBQkTWX7R5/Lly1AoFKhcuTIcHR1hbW2NUaNGISoqCtbW1jAzM9Poh/K/6M6dO5DJZJg0aRKcnJxMqq+sT+PGjVGzZk0EBAQgODgY6enp+O6774QtrkW9Hb0gOI4TAjF5A2Ify7t37/Jtevcpio+PF4IHdnZ2/8pFqJLy7t07KJVKlC5dGiKRyKRFsHPnziE0NBQVK1bEsGHDsHfv3o+2qLBz504hkaS45wSm4He6/Pbbb+A4DlWqVNGqVVvU+L4KfO1hjuMQHR0NFxeXfJvHr169GkSEUaNGFdv4jFGrVi3Ur18foaGhsLGxMdgIuF+/fhCJRBCJRCY15L106ZKQGMT/W7x4cVEMH3fv3sWQIUOKvEwu3x9l9uzZ4DgOcXFxGlnTufFl1MzMzLR+r4ImhEyfPh02NjYaiSt8zXZjS2IU1PDhwyGRSHDo0CGhBF9ERAQAoGPHjvDy8kLbtm0RHBxcoOePiYmBs7MzfH199ZZ4LGp8U9+aNWuC4zghmP/w4UNkZ2fDzs4OU6dORXp6Ory9vdGwYUO4uLigXr16iI+Ph6enJxo3bmzwePL06VOsWLECR48e/WSuA06fPg2ZTIYBAwYIYxozZgzkcrlWwoBarcY333yDBQsWYPHixdi8ebPRdbB5SUlJqFatWpH1FZo6dSpEItFHT+LMi+M4ve8Fn40uFouhUCiKvB/VnTt3YGVlhe7du4PjOEyYMAG2traF6udiqATttWvXIJPJCnxuKnQQ3dCXZ/369ZDL5UalxBvr1atXwps5adIkrbqgp06dKlCDl/yC6P9lKpWqWDodF1S7du1Qo0YN4f/5GlH8KqKpnj17hi+//PKTz+Z5+fIlgoODDU7s/ss4jsP+/fvRtWvXYm0UyOQvMzMTHTp0QERERL4XSMZ49uwZrK2tUaFCBZ01CFNSUtC+fXvIZDK9ux7Wr18v1I37t5s+fTqIyKTyVMyn78KFC0KQzZjmdYWVnp4u1GL19vbG0qVL4eDggOrVqyMxMREJCQkYMWIElEol6tWrh3nz5n3U7ONP2YQJE4QgB99bpDA2bdoEopwGpLnf4+PHj2P8+PGfzIVmRkYGoqOjNXoxMMbJyMjA2LFjTapXyuRYsmQJiEgru/VT9vr1a6Hm+cdo3G0svlFl5cqVhUB/7tq1xUGtVsPLywuDBg3CmzdvMGTIEKFmfH7S09MxatSoIsnGLoy5c+eCKKdnxpUrVwzeNyEhAREREdi8ebPJr/P48WOcPHkSx48fx/nz5z+ZY78hs2bNAhFh5MiRQhlPXcmCCQkJ8Pb2hrm5eZFcGwD/NL3MXUKxd+/eKFWqVLFft6tUKkRHR8PCwgIzZ87UKE10+/ZtoURhQZPwXr58KTR+PHnyZFEO3SB+V/+OHTvQt29fBAQECD/r0qULQkJCsGTJEkgkEty5cwdnzpyBRCKBt7c3rKysPvneYfrw87AlS5YIDWQ/Vtm6wsrOzv5XlMLks9EnTZpULM/PN/Ves2YNHB0dMWLEiEI934sXLyASibBx40aN2/mmroGBgQU+vxdZY1F9+O67xWHatGladWtPnTqFUqVKITw83ODWjLz+l4Ponxq+YzwfbBs8eHCBakQxDPPpePbsmcE+A0lJSbC1tRVKGeV26dIlyOVyoYn0v93p06chkUhKPOOAKXqLFy/W2VysON29excxMTEgIlSqVOlfXWbuY0lOToanp6fQ9K6wEhISUKZMGXzzzTdF8nwM81+SmZmJRo0aFfnu5OJWq1atEmnKmp8//vgDIpEI5ubmaNq06Ud5zYkTJ8LKygrW1tZQKBRYvHjxvyJAzHv27Bm6dev2rw0QFrfVq1cLnylDi123b98udPmKvCpVqiTsNk9MTISlpaXGjvTilJaWhoiICBCRkL3N45s4F6Zp4759+9CuXbuPnsjXunVreHt7w83NDaNHjxZu5/sDKBQKjSoEfLm3j1Uuq7hMmDABIpEIrq6uqFmzJosdFTGO43D48OFCZYfnp2/fvkKSi66G1qZq0KCBVnUSvjxVYUoqFXsQHYBJXdSN9fTpU9SqVUtry0FycjIyMzORmZmJpk2b6m3alpGRgcTEROHfs2fPWBD9E/H27Vs4ODhAJpMJzS2Ka8WLYZhPx9SpU2FpaanRRC0uLg4+Pj6oVq3aJ5UNVlglnZXF/Pf8/fffbBePCd69e1ekFwL/poASwzD5M9QkvKQNGDDAqKaaReXu3bvw9PTE2LFj/5UlmZj87dmzB2ZmZgXKwC+M+fPnw9LSEikpKVizZg3EYnGRNtzMT3x8PNq3b69V6u7NmzdYt27dJ3sMMOTevXuQyWRagcL4+HhIJBJYWlpqlCXjOA5Xr179V/6uuanVasTExMDCwkJoBs78u6SmpiI4OLjIFog3btwIkUgk9IhKTk6Gu7s72rZtW6jnFQEAfYJev35N7dq107r94MGDJJVKKSoqitavX09ly5bV+xxr1qwhuVxOffr00frZjBkzaObMmVq3JyYmkkKhKNzgmUL78OEDbd68mb766iuKjY2lW7duUZkyZUp6WAzDFKO4uDjy8fGhMWPG0KxZsygpKYlat25N169fp7/++ou8vb1LeogMwzAMwzAlKiMjg27dukWhoaElPRTmPyQlJYWsrKxIJBJ9tNd89OgR+fn50Y4dO2jRokXk4eFBBw8e/Giv/181btw42rRpE718+ZLkcrlw+6BBgyggIIBGjhxZcoMrRmq1mt69e0eurq4lPRSmgLKyskitVpOFhUWhn+vDhw/k4eFBTk5ONGTIEHr27Blt2LCBbt++TaVKlSrw836yQXR91Go1RUdH08iRIykyMlLr50lJSUIQvEuXLjRo0CCqU6eO1v0yMzMpMzNT43FeXl4siP6JUavV9ObNG3J3dy/poTAM8xGMGjWKtmzZQufPn6dOnTpRbGwsHTp0iCIiIkp6aAzDMAzDMAzDFKGwsDBKSkqiO3fu0MGDBykqKqqkh/Svp1ar6f379+Ts7FzSQ2GYEvX333/T0qVLaceOHZSVlUUzZsyg6dOnF+o5/3VB9B07dtCwYcOoYsWKREQ0ePBg6tixIw0cOJDWrl1LGzZsoHXr1pFUKqXatWvTokWLjHrepKQkUiqVLIjOMAxTgp4/f06+vr5EROTm5kY//fQTBQUFlfCoGIZhGIZhGIYpasuWLaPRo0eTu7s7PX36lKRSaUkPiWGY/5i3b9/SL7/8Qu3atdPYnVEQ/7ogenFhQXSGYZhPw7hx4+iPP/6g3bt3s+14DMMwDMMwDPMf9eLFC/Ly8qLJkyfT7NmzS3o4DMMwBrEg+v9jQXSGYRiGYRiGYRiGYZiP57fffqPKlSuTpaVlSQ+FYRjGILZXhmEYhmEYhmEYhmEYhvnoatWqVdJDYBiGMQrLRP9/ACg5OZlsbGw+akdqhmEYhmEYhmEYhmEYhmEY5tPFgugMwzAMwzAMwzAMwzAMwzAMo4e4pAfAMAzDMAzDMAzDMAzDMAzDMJ8qFkRnGIZhGIZhGIZhGIZhGIZhGD1YEJ1hGIZhGIZhGIZhGIZhGIZh9GBBdIZhGIZhGIZhGIZhGIZhGIbRgwXRGYZhGIZhGIZhGIZhGIZhGEYPFkRnGIZhGIZhGIZhGIZhGIZhGD1YEJ1hGIZhGIZhGIZhGIZhGIZh9GBBdIZhGIZhGIZhGIZhGIZhGIbRgwXRGYZhGIZhGIZhGIZhGIZhGEYPFkRnGIZhGIZhGIZhGIZhGIZhGD1YEJ1hGIZhGIZhGIZhGIZhGIZh9GBBdIZhGIZhGIZhGIZhGIZhGIbRgwXRGYZhGIZhGIZhGIZhGIZhGEYPFkRnGIZhGIZhGIZhGIZhGIZhGD1YEJ1hGIZhGIZhGIZhGIZhGIZh9GBBdIZhGIZhGIZhGIZhGIZhGIbRgwXR/x8ASkpKIgAlPRSGYRiGYRiGYRiGYRiGYRjmE8GC6P8vOTmZlEolJScnl/RQGIZhGIZhGIZhGIZhGIZhmE8EC6IzDMMwzCfq1atXdOjQIYqLiyvpoTAMwzAMwzAMwwjev39PY8eOJS8vL2rbti1t2rSJ3rx5U9LDYphiIy3pATAMwzAMo2nlypW0atUqunv3LhEROTg40LJly6hbt24kEolKeHQMwzAMwzAMw/wvAUB79+6lR48ekUQiofj4eFq9ejWp1Wrq2rUr/f3339SvXz+SSqXUt29fmjRpEnl7e5f0sBmmSInwHysC/uTJE6pWrRoFBQUREdGePXvIyckp38clJSWRUqmkxMREUigUxT1MhmEKKDs7m/744w/6+eef6cyZM6RQKKhMmTIUGBhIHTp0IKVSWdJDZJhCuX79OlWqVInatm1L7dq1o4oVK9LcuXNp+/btVL9+fQoLCyMbGxvy9/en9u3bs6A6wzAMwzAMwzAasrOz6bvvviOFQkFt27Yt1HNlZGTQoEGDaOvWrWRnZ0ccx5FIJKLu3bvTlClTyNnZmYiI4uLiaOPGjbRo0SJKSkqili1bUtmyZcnX15dsbW1JLBaTmZkZRUZGkpWVVVH8mgzzUf0ng+hjx46lvXv3mvQ4FkRnmI8vKyuLfv/9d/rtt9/IzMyM7O3tyc3NjerWrUvm5uZa9z958iT16dOHnj59Svb29lSvXj3KzMyke/fu0aNHj8jKyoqGDRtGw4YNIwcHB5JKpSQWs6pVzL9L8+bN6cGDB3Tz5k2SyWTC7UeOHKHZs2fTmzdvKDk5md69e0dTp06lWbNmleBoGYZhGIZhGIYpKRkZGXTixAn6/fffyc3Njfz8/Oj58+c0d+5cevz4MZmbm9O9e/fIy8vL6Oe8efMmHT58mNzc3MjZ2ZmmTZtG169fp/Xr11O3bt3yfXxycjKtWrWKjh8/To8ePaLY2FhSq9XCz4ODg+nQoUPk7e1NarWavvjiC/ruu++oRo0a1KxZMwoLCyNLS0syNzcna2trljTEfDL+k0H0mjVrkr+/P0VERNDcuXN1fuEyMzMpMzNT+P+kpCTy8vJiQXSGKWaZmZl06NAh+vbbb+nEiROUmppKNjY2BIBSUlKIiITV8pYtW5KzszMplUpau3YtrVq1iurVq0fz58+natWqkUQiEZ731atXtGTJEvr6668pNTVVuD0gIIC++eYbqlat2kf/XRnGVCdOnKCGDRvS3r17880YWbRoEY0fP56WLl1Ko0aN+kgjZJiikZaWRi1btqSEhATq1KkTderUiXx8fEp6WAzDMAzDMMUqOzubnj9/To8fP6YLFy7Q2bNn6e+//yY/Pz8KDQ2lmjVrUtu2bcnMzMzg88TGxtKECRPo0KFDlJqaSs7OzhQfH08qlYqIiNq2bUtjxoyhNm3aUJMmTWjr1q1Gje/333+nJk2aUFZWFmVkZBARkZeXF+3fv5+qVKlS4N85IyODOI6jhw8fUtu2bSk9PZ1Wr15NS5cupQsXLlCHDh3oxo0bdOPGDY3HduvWjb799tsCvS7DFLX/XBA9MzOTVCoVWVpaUv/+/al58+YUExOjdb8ZM2bQzJkztW5nQXSGKR4PHz6kFStW0LfffksJCQlUvXp1iomJoYYNG1LlypVJIpFQVlYWPXjwgHbt2kXbtm2jhw8fCo+3sLCgBQsW0NChQw1ml79//56OHz9OmZmZlJ2dTV9//TVdvXqV5syZQ+PGjWOZ6cwn5fnz53TkyBFq3rw5ubm5UdWqVcnc3JzOnz9vVMbFpEmT6IsvvqBVq1bR4MGD9T7mwYMH9PTpU3r79i0BoM6dO7OMDqbEqNVqat++PR07doyaNm1KP/30E2VkZFClSpWoUaNG1LRpU2rQoAH7jDIMwzAM85+RkpJCbdu2pePHjxPHcUSUkzxWu3ZtCgkJocePH9Ply5eFrPGJEydSnz59tHZoA6Bt27bR0KFDSaFQ0JAhQyg6OpoCAgJIrVbT8+fPCQCVLl2aiIi+/vprGjJkCF2+fJlCQkIMjvH8+fPUrFkzqly5Mv34448klUrp5cuX5OrqWqTlV96+fUvR0dF04cIFKlWqFH377bcUHh5ORETPnj2jmzdvUmZmJp0+fZpWrFhBjx49YskWzCfhPxdEz+3IkSN04cIFnVvdWSY6U1A///wzJSYmUkxMjEYmNKPb3bt3adKkSfTDDz+Qvb099e3bl3r16kWBgYEGHweA3rx5QwkJCZSQkEA+Pj7k4eFh8utnZWXR9OnTacGCBeTo6Ej+/v7k5+dHn3/+eb5jYJjilJGRQbVq1aIrV64QEVFQUBDdvHmTzp8/T7Vq1TLqOQDQ8OHDadWqVVS5cmWaPn06tW7dWgg+8ufAo0ePajzuwIED1KpVq6L9hZj/SYcOHaJRo0aRWq2mmjVrUu3atal79+4G51JjxoyhL7/8kn744QeKioqi5ORkOnToEB07dox++eUXevXqFc2fP58mTpz4EX8ThmEYprgAoOTkZHadzfzPyszMpKioKLpw4QJ98cUXVKZMGfL29qYyZcpoxRRu3bpFc+fOpZ07d5JSqaRmzZpRy5YtSalU0pUrV+j06dN0/Phx6tatG61cuZJsbW0NvrZKpaKKFSuSh4cH/fLLL3Tz5k3avn07PX/+nJKTkyklJYXUajUBoIsXL1K1atXo8OHDxV6zPCMjg3bv3k3R0dF6jw2pqf/H3lmHRZW+ffyeoLsEEZAQBJQQC7uLFQxU7Mbu7nbtXtu1XXXNtWONVdcO7FXXrhUVFJCamfN9//A9z49hZmBAEN19PtfF5eWZE8+ZOeeJO773J3JxcaGuXbvSrFmz8rU9HI4+5IsRfc+ePVSnTh0yMTHJ61NnS2JiIllYWBDR5wg9Pz8/at++fbbHZaeJrlQqadKkSbRmzRrau3cvBQcH53XTOQXI77//TgcPHqTLly/TgwcPqGPHjjRmzBgyNTVl+8THx1O/fv1o48aNREQUHBxMs2fPplq1ahVUs7953r9/T6VLlyapVEojRoygdu3aFUi/QER09uxZOnr0KD169IiOHTtGLi4udO7cuW8m0lGpVJJcLi/oZvynuXXrFi1dupQSExOpffv2VLNmzXzNXOjRowetXbuWDh8+TE+ePKHt27eTl5cXzZ8/P8fnOn36NE2cOJGOHTtGJiYmZGdnRyYmJvTgwQPy9/en0aNHU2hoKDk4OFD9+vVJJpPRqVOn8v6mOP8ZXr58SQMHDqRt27ZRvXr1yM/Pj86dO0dXr14lV1dX2rx5M5UrV07tmKSkJJoyZQrNmDGDFi1aRH369NE4LwAaPXo0zZgxgw4ePEh169YlIqIbN27Q33//TU2aNNHZb3/48IGsrKy+mX49OxISEmjBggV069YtevXqFb17946cnJxYOnePHj2+uA8CQAsXLqTHjx/T5MmT2Rw5v0lNTdWInFMoFCSVSnkAAofzHyM+Pp66d+9Ou3btouPHj1OVKlUKukkczldFqVRSVFQU7d+/nw4dOkTVq1fX67j79+/Txo0bae/evRQTE0NERFZWVlSqVCnq1asXNW/eXO827Nmzhxo1akQBAQF08+ZNsre3J19fX7K0tCRzc3OSyWQkkUiocOHCNGnSJDU7SEEzbNgwWrFiBb148YLMzc0LujnfHAAoPj6erKys+Bzra4B8wMTEBA4ODmjZsiV27dqFtLS0/LiMVg4cOICQkBBUrlwZ7dq1g0Kh0Ou4jx8/gojw8eNHjc9evHiBqlWrQiqVomjRonBxccHLly/zuumcAkAQBEyfPh1EBDc3NzRr1gw9e/aEoaEh3N3dsXbtWqxYsQLDhg2Ds7MzrKyssG7dOpw9exYVK1YEEcHPzw/dunXDunXrcP78ebx69Qoqlaqgb63AUSqVqFevHuzs7PD06dOCbo4ax48fBxFh27ZtBd0UpKamon///jA1NcXevXv1Oub9+/dISUnJ55b9+0hPT8esWbNw+fJltk0QBOzfvx/VqlUDEaFw4cIoXrw4iAju7u5o2LAhatWqhRo1auDUqVN51paNGzeCiLBy5co8OycA/Pnnn5g/fz7GjRuHvn37Ytu2bRr90c6dO0FEOH/+fJ5em/PvRxAEnDhxAs2bN4dcLkehQoWwefNmCILA9vn7779RtmxZyOVyTJw4EYcPH8a5c+ewbNkyODk5wcjICFOnTs3yOuL4YWtri9u3b2PYsGGQyWQgIrRv3x6fPn1S2z8+Ph59+vSBVCpF48aN8e7dO73uJz4+HitXrkR4eDjmzp2rMWdMT0/Hzp070aBBA4SEhGDjxo1QKpU6z3fz5k3069cPQUFBmDRpEt6+fat1P0EQsHnzZhQuXBimpqaoWbMm2rZti/79+yMqKgply5aFRCLB6NGjtR7/+vVrdOvWDWXKlIGLiwuMjIzg4OCAgIAANGzYEBs3bkRqairi4+PRuHFjEBFMTEzg4eGB06dP6/XdZG7vTz/9hFq1asHb2xvGxsaQSqUwMjKCra0tFi1axPZVKBTo1KkTzM3NcfLkSbb98ePH8PLyQt26dfWem3M4nO+fEydOwMXFBdbW1ihZsiRcXV0RFxdX0M3ifCdknF+IpKSkfFfPUGxsLCIiIiCXy/Ve62njxYsXePTokdbvRB8EQUDLli1Rv359bN++/ava6L6Up0+fQiaTYfHixQXdlG8CQRCQnJyMO3fuYNy4cfD09AQRQSKRwNbWFi1atOC2gnwkX4zowcHBSEpKwi+//ILGjRujUKFCaNeuHfbt2/fNTpx1GdHv3r0Le3t7FClSBKdOncLLly/h4uKCkJAQJCUlFVBrOXmBIAgYMmQIiAjjxo1TG5Du37+PunXrgogglUrh4eGBVq1a4cWLF2rH79mzB927d0eJEiVAROzP3NwcU6dOVRucBEH4TxnXx44dC6lUiqNHjxZ0U7TSoEEDeHt7Iz09vcDacP/+fZQqVQqGhoYoV64cDA0NcfDgQZ3737x5E61bt4ZUKoVUKkXx4sXRsmVLPHjw4Cu2+vulX79+7B2NiIjAxo0bERoaCiJCxYoVsXXrVqSnp0MQBPz555/o1q0bIiIi0KJFCwQGBqJQoUJ49epVttf55ZdfsGnTJrVtz549Q8OGDREaGooKFSrAxMQE7dq1y/VE+EtQKpXw9vZGZGTkV7825/umR48eICL4+vpiwYIF+PDhg9b90tLSMHz4cEgkErWxsU2bNnjy5Ile13r//j08PT0hkUhgZGSEKVOmYN26dTAxMUFQUBB27NiBdevWYerUqXBwcIC5uTkGDhwIW1tbODs749ixYzrP/fbtW3Tu3BlGRkaQSqUoV64cJBIJgoKC8Pvvv2Pr1q3o2rUrnJycQEQoV64cGjRoACJC8eLFsX37drV3986dO6hSpQqICIUKFUKzZs1gYmICExMTdO7cGatWrcLVq1dx8eJFTJgwASEhISAiREZG6nQyz5gxA0Sk1peoVCosWbIEVlZWsLe3R9euXTF27FgsXLgQU6ZMQe/evVG1alUQEezt7eHm5gYrKyv89ttvePjwISpVqgSJRIJhw4YhNTVVr98hKSkJUVFRICKEh4dj8ODBmD9/PpYtW4ZFixahc+fOICIMHz4cqampaNasGWQyGUqVKgUTExMcPnwY9+/fh6urK1xdXSGTyTB06FC9rs3hcL5vzp8/D5lMhmrVquHZs2d4+vQprKys0KJFC9aH3rhxA4sXL8bAgQMRERGBtm3bYubMmTh06BBevXpVIPOkrBAEAePGjUOrVq2+ubZ9CTdu3EDXrl2xdOlSvccH4LOzeffu3Thx4oTauvfNmzc4cuQI1q1bh1mzZmHChAlYuHAhNm3ahMePH+t17p9//hl2dnbYuHEj23bmzBkUKVIERARnZ2fUq1cPy5cvZwZDlUqFXbt2ITo6Ghs2bMCHDx8gCALOnz+PwYMHo1WrVhg5ciSWL1+utq7PL3bv3o1ChQrBzs4Oe/bsyffr/Ztp3rw5fHx8mD3lW3n/9G3H3r174e/vj/nz56ttT0hIwMqVK9G/f3/UqVMH0dHROgM27t27h2LFirHAEiKCpaUlunTpgi1btmDVqlWYOHEiTExMULduXSQnJ3/x/XE0yRcjeqlSpdT+n5CQgA0bNiA8PBxOTk75cckvRpcRXaFQYOTIkWrRRDExMTA3N0eTJk2+mZeXox+CIODOnTtYuHAhatasCSLCwoULde774sULvb20Hz58wLVr1/Dbb7+hf//+kMlk8Pf3x6pVqxAdHQ1nZ2dYW1uje/fu+PPPP/+Vz44gCLh48SIztPz4448F3SSdXL9+HRKJBEuWLPmq101JScGuXbvQokULGBsbw9vbG1euXEFaWhrCw8NhZGSE/fv3qz0fly5dYtGEbm5umD9/PlasWIF+/frBw8MDlpaW2L17NwDg4cOHiI6Ohq+vL7y9veHl5YWBAwf+pxw42li3bh2ICAsWLMD69evh7e3NjGOHDx/O9n188+YNChcujOrVq2cZibpr1y5mOBw1ahQEQcC9e/fg5uYGNzc3dO7cGZ06dcKQIUMK1BG7bNkySCQS7oD5D6FUKnH48GH0798f3t7eqF69Ot6/f6/38StXrgQR4aefftJ7/EpISMDTp09x8+ZNPHr0KMdtvnnzJjp37ox79+6xbdevX4eXlxdbPJiZmaFNmzYsQ/DFixeoWbMmJBIJpk6dqtZWQRCwadMm2Nvbw8bGBjNmzGDHXbp0CaVLl2bn9ff3x8CBA3H9+nV2/KVLl5gxvWHDhnj69ClWrFgBExMT+Pr6qkV2vX37FhMnToS/vz+kUik7r5WVFZo3b47Dhw9nee+CIKB9+/YwMjLC+vXrMXToUHbfnTt3zjLa/q+//sLAgQPRpEkTPHz4kG1XKpWYPn06DAwMEBgYiBs3bkAQBLx//x7nzp3D3Llz0bRpUwQEBCA8PBxDhw5FQEAAzMzMsszcmjt3LogIRYoUgaGhIXbv3o2UlBSEhYXB0NAQhQoVQvHixfHixQvMmzcPRIQtW7Zkef8cDuf7JjU1Ff7+/ihbtqxaEN3WrVtBROjduzfKly8PIoJcLoePjw/q16+PChUqwMzMjPWZ9vb2qFu3Lvbt2/dNrJ0mT57M2paVs/ZbJT09HdeuXcPRo0dx5swZnD9/Hp06dYJEIoGzszP7d8KECejSpQuKFy8OKysr9O/fn40ngiDg3bt3mDdvHlxdXdXG45o1a7Ko2IxGPicnJxgaGoKIYGdnl60h/e+//4aZmRk8PDxARGjXrh1mzJgBuVyOypUrY+PGjRg1ahTq1q0LiUQCR0dHDB48GL6+viAidpyBgQGcnZ2Zk7tKlSooWrQoZDIZ7O3t1TKm8oKnT5+iU6dOqFSpEgoXLswCd/755588vc5/kT///BNEhKpVq8Lb2xvm5uaYNWuW2j5nzpzBhAkTNDIW84vNmzfD2toaQ4YM0Tmnjo2NRatWrVgQSkb7099//40SJUpAJpOhePHiaNiwISQSCSZNmqRxnrdv38LLywu+vr5YunQpNmzYgIMHD2o1lB87dowb0vORfItE14U2uZS8ZvDgwahcuTJat26ttwE0KzkXbYjp8OvXr/+SpnJyQHJyMi5fvozTp0/jyJEjOfIev3z5EtOnT2cyDQYGBqhevTp27NiRb+2NiYlhUa4+Pj4YOHAgRo4cySYbJiYm8PLyQtWqVdGqVSsMHjwYS5Ys+aKOTqVS4eXLl2qTzOTkZPTu3RuNGjXKt05UjMoPDAxkC+nJkyd/84bb9u3bw9HRMUeGpJyiVCpx5coVzJw5E/Xr12cLg6CgIEybNg0JCQls39TUVISFhYGI4Orqis6dO7OMCG9vb6xevVqjT/vw4QOaNGkCIkKNGjUgk8lQqFAh9OnTB0OHDkWvXr0gkUjQs2fPb2LxURBcunQJRkZG6NSpE/sOFAoF7t69m6Pv5MSJE5BKpRg3bpzWz69cuQJTU1NERkayKNLIyEgUKlQIfn5+XyXiRV+Sk5Ph4OCAXr16FXRTOHqQnJyMs2fP6r3/sWPH1FKd4+PjUadOHda3dO3aFfb29ggODtZL+uTChQswNDRE9+7dc9X+vCYtLQ2vX7/WGS2nUqkwbtw4EBGaNWuGN2/e4Oeff2YGm+bNm+P169caxymVShw/fjzbd3Xnzp1wdnaGXC4HESE6OjpLp1hSUhL+/PNPnDlzJkcZmSkpKahQoQKICA4ODujatSv+/PNPvY/XxbVr11CyZEkYGBjAysqKGTqMjY1RrVo19OjRAw0aNICHhweCgoJw69atbM+5ZcsWeHl54ciRI2xbamoqWrRogZCQEGZAEAQBrVu3hqmpKdauXYv4+Pgvvp/8QhAExMXFfbNZtBxOQXPo0CEMHz5cax8xfvx4yOVyNUekSOfOnSGRSFCvXj3s2LFDY26rUqnw8OFD7Nq1CxMnTkSlSpVARKhUqRKOHz9eYPPZhQsXgogwefJkhISEoEaNGgXSDhGlUonr169jxYoV6NGjB2bPns2ym2JjY7FkyRJERkYiPDwcDRs2RIUKFWBsbKxm4BbHl59++gnp6en466+/0LFjRxgZGSEgIAA9e/bEsGHDYGdnB6lUCj8/P1haWjLnR7t27RATE4OrV69i+vTpiIiIwIABA7BlyxY8ePBAbe0pCAJev34NT09PBAYGIjExUed9Va5cGR4eHkhISMD69ethbm4OIsKwYcM0sojv37+P7t27w9zcHBEREWycfPbsGRYsWIBBgwbhxIkTakEw7969Q61atSCXy7F48WK9n6m3b99iw4YN6NatG4KDgzF06FA2FxGzrooUKYK2bdti7Nix2LNnz392/ZXXCIKAzp07IywsDAMHDkT37t1BRBg0aBCUSiVmzZrFIrQDAwNx//79fG3P4cOHYWBggEqVKsHMzAzW1taYMGECrl69CpVKhbdv32LUqFGwsLCAnZ0dNmzYAEEQMHjwYBARBgwYABsbGxQrVgx37txh5xWz+c+cOcO2paSkoFKlSnBwcNA7KOX48eMwMTFB+/bt8/ze/+vkixE9Y8TQ1+bq1ato06YNAGDKlCkaKfW6yKkRHQBatWoFW1tb7lnMRwRBwLlz59C9e3e1hR4RwdraGufOncvyeJVKhQkTJkAqlcLY2BitW7fG/v37v1oEqEql0ng+VCoVTpw4gXnz5mHo0KFo3bo1qlWrxlJz+vfvr/N8aWlpOr2N3bt3Z572ihUrYv/+/bh16xZKliwJY2NjmJiYoHHjxjqjaLUZvJOSknD79m21bQkJCRg1ahR69+6NVatW4ciRI8zQW7t2bRw8eDDLSN1vCTGt1N7eHsuXL8+zdsfHx2P16tVo0qQJbGxsQEQwNTVFvXr1MGPGDLWBMjMKhQL79+/HgAEDUKJECZQuXRpbtmzJsm2CIGDWrFkoU6YMFi5cqPGM/Pzzz2yw/v3339G5c2cULlwYtWrVwty5c3Hr1q0cpW5+Tzx9+hRFihRBuXLl8kQbbvLkySxCIKNh5fHjx3B2dkbZsmVZ9MMvv/wCAwMDlC5dWqc2ckEyefJkGBkZ5SpCmPP1SEhIYJr9K1asyHZ/8X23tbXFggULcPfuXfj6+sLGxkYt6+LGjRuwt7dHUFCQzufzzZs32LVrF1xcXFC+fPnvrp/YsWMHc1yKBpsDBw7kybk/fvyI0aNH56szHvjsKL1w4UKej6spKSmYO3cupk+fjl9//ZVlROUHmQ0Inz59Qv369ZkRpn79+rh582a+XDunJCQkYPDgwXBxcYGBgQGICCVKlOC1kDicTJw9exbGxsbsPSlfvjzmz5+PO3fu4ObNmzAwMMDYsWO1HqtUKvHmzRu9ryUIAg4ePIhSpUqxmjUjR47E2bNnvygQ5u3bt7hx44ZOaTKR27dvo2vXriAiDBkyBIIgsIC6jIau/OL58+dYvHix2lpNpVKhVq1aTHrUz88PRkZGLJNKJpNBJpOhatWqCA8PR0REBNq0aYM5c+bg1KlTePz4Me7cuYPLly9rNWZr67eXLVuGXr16YcaMGdi6dSuePXuWq/u5efMmzM3NERkZybKhrl69yozus2bNgkQiUatF9Pjx4zz/rhUKBfr37w8igoWFBUqVKoWoqCgsXbpUa6T8wYMHYWdnx77jli1bwsDAAAEBAdi+fTucnJzg6+v7TQXN/NtZtGgRJBIJyzwYPnw4rly5Am9vb1haWmLmzJnYu3cvbty4kadz2AsXLsDMzAw//PAD0tPT8c8//6B3794wNTVljikzMzOYmZlh2LBhiI2NZccKgsCeu7p162ro+ysUClSuXBlubm64desWNmzYgFq1asHY2Dhb21dmVq1aBSLCH3/8kSf3zflMvhjRC5LFixdj3bp1AIDLly+jd+/eWvdLTU3Fx48f2d/z589zbESPjY2Fvb09WrRokSdt5/yPxMRELFu2DAEBASxybsyYMbhw4QLu3r2Le/fuoXLlyjAzM8PRo0fx+vVrDBo0CObm5qhbty7OnTuHT58+oXnz5kzz/FuOdhKZPXs2JBKJ1oJ/Fy5cgJeXFxwdHbF161YIgoD4+Hi0adMGRMRkO9asWcMi4CUSCfz9/XHz5k3s2bMHUqkUvXr1UpsYJSUlYcyYMTAzM8OoUaPYQv358+cssrxBgwa4ePEiDh06BDc3N5iZmcHX15fJVhQrVuy79bS/fPkS7du3Zwvl3r17Y8mSJXpF3mXmxo0baNKkCQwNDSGRSFCpUiVMmDABp06dKvDiLUuWLGEOKE9PTwwcOBD16tVjE24xfbN+/fo4evToN/dbCoKA58+f5yi7ITY2FsWLF4e7u3ueGUBUKhXGjBkDqVSK0NBQ7N+/H+3atYOBgQHc3Nw0NNMfP3781VIKc0pSUhJcXFwQERFR0E3JNwRBwM2bNzF58mQ0bdoUO3bs+OYzZDISHx+P0NBQWFpaonHjxpDL5Th+/LjO/WNiYmBsbIw2bdogOjqayYh4e3trDXC4efMmHBwcUKRIEezbtw/A58n7ypUrWcqpmH76/PnzfLvP/OT27duYN2+e3hqsnK/Hixcv8NNPP8Hf3x8mJiZYtWqV2tjz5s0bLFiwAOXKlUP58uWxatWqfOtPFQoFtm3bhiJFisDExAQDBgzATz/9hI0bN8LV1RVeXl5Mzz8tLQ0nTpzA1q1bsXr1aixcuBDTpk3D6NGjsWLFim9u/ORw8pr79+/Dzs4OVapUQUJCArZv387km8SMXz8/vzx3vIqBSN26dWNBKkQEGxsbhIWFYcOGDWoZnrq4desWunTpwubAotRWkyZNcPjwYahUKnz48AEbN25kDr/ChQtj9uzZ7P1WqVQoUaIEGjRokKf3mJnU1FSUKVMGRIQ5c+aw7YsXLwYRYfPmzSw47OPHj9i4cSM6duyIxYsXqxnuvjV27drFJGAyR8YTEQYPHvzV2nL8+HHMnDkT3bp1Q8WKFVk0s6+vLwYMGIDDhw9j7NixkEgkaNCggdpcPyYmBiVLlmTRzzlxDnHyhq1bt8LX1xe//fYb2/bx40e0atWKOfnEZy0iIgJLly79InWMixcvws7ODhUqVNCYk6SmpuLEiRMYNWoUJkyYkGWB+bNnz+rMdHv69Cmsra1Z20uWLJkrTX2VSoXQ0FCULFmyQOvA/dvIdyP69u3b8/sSakydOhW7du0CADx48ACtWrXSut/48eO1dtg5faF++eUXEBFWr1793UTfAp9f3MwTmxMnTqBixYqYOXNmgS0A7t69i379+sHS0hJSqRSNGjVik5nMiJFMhoaGMDExgaWlJQYMGAB/f3+me2ZmZoadO3cWwJ3kDoVCgdKlSyMgIIAZXZVKJaZOnQq5XI5y5cox6Y769evD1dUVlpaWLD1IRBAEHD9+HPPmzVPr3EVN23r16mHQoEGYOnUqXFxcYGRkhObNm0MqlaJu3bo4ceIEihQpAjc3NyxevBh+fn7sHalTpw4zRiQlJeHatWvfXXSiNs6dO4eoqCj4+/tDLpfDwMBALS09KwRBwMKFC2FkZARfX1/MnTv3m4xCOHToEM6dO6fhRDl27BhWrVqFsWPHMk3g0NDQrxJdkx1bt25Fo0aN4ODgACLSqhGnjYSEBJQpUwaFChXKF93vs2fPMn1iNzc3zJkzJ9tIpm+RX3/9FUSE/fv3F3RT8pyYmBg2HogRRkQEPz8//PLLL9+8oevFixcICQmBjY0NLl26BIVCgbp168LGxkarQfzDhw8oVqwYgoODWTbKjRs3MGbMmCwj9Z4+fcqMBJGRkUz2rHnz5tiyZUuuI804HH1JTk5GdHQ0m580bNgQJUuWZGNxo0aNEBYWBolEAisrK0yaNClP5h2PHj1C586dERQUxIx/4eHhGg6Xx48fw9PTE66urmjZsiWTMsgog2NnZwcXFxcQ0Xc17+RwckJKSgpOnDgBLy8vFC9eXGNsSUpKwsGDBzFixAitMi55SVpaGq5evYpff/0VU6ZMQeXKlZlcZnBwMOrXr48uXbrg999/Z+P98+fPWaFkZ2dnTJs2DWfOnMHmzZsxZcoUFryVMROlfPnyWLdundZgmE2bNoGIcPny5Xy7z379+sHQ0BBNmzaFgYEBrly5gmfPnsHc3BzdunXLt+t+DXbt2sWyoS5cuIBjx45h3bp1WLlyZYGuLT98+IAdO3aga9eurF+XSqWYMmWKVptESkoK1qxZk6/yoJzcoVQq8eLFC5w5cwbTpk1D1apVIZPJ4Obmht9//z3H59u/fz9MTU0RGhqa77/35cuXsW3bti92hl25cgVSqRRz587No5Zx8t2IbmhomO0PlpcL2SVLlrBI9EuXLuVrJDrwue3NmjUDEcHR0RE9evTAkiVLsHHjRuzevRu7du3C1q1bsXv37hxrKqpUKmzZsgVTpkxB3759MXjwYJ3aYTnhr7/+QkhICAwNDREeHo7Vq1ezaGYfHx8QEXr27PlVNSBv377NFvEODg4YOXIk03TLirS0NPTr1w/jxo1jqTBKpRKbN29Go0aNEBMTk99Nz3OuXr0KmUyGwYMHY8KECXBzc4NEIsHo0aOZB3HXrl0oUqQIqlevziKj9GX58uWoU6cOfHx8YGpqisaNG7NCMUePHmVpaiEhIczTrlQq8euvv2Lbtm3fvOEpL0hJSUGDBg1gbm6OK1eu6NzvzZs32LZtG3t2+/fvnyeSIQWJIAg4cOAAM94VZBTL0qVLmQbmmDFj0KFDBxgbG6sVyouNjcWiRYuwadMmnD59GgcOHEDfvn1RtGhRWFpa4urVq/nWvsTERPz555/ftV6uIAioXbs2vLy8vslnVxAELF68GK6urujYsaNOyQeVSqW2sNmzZw/MzMxQqlQpHDhwgC3Gzp49i4YNG4KI0L59e+ZkTEpKwooVK7It9phfJCQkqMmMHTlyhEWIZzRExMfHw9fXF66urjh9+jTb/ubNG9SvXx+Wlpa5choJgoB169axbJT8fG84HF1s2rQJ5cuXR8OGDdGnTx8sW7ZMLYrr0aNHGDhwIORyOfz8/PD777/jt99+Q5cuXeDt7Y1ixYrBz88PZcuWRevWrTFhwgSsXLkS69evx5YtW3DmzBkkJCRApVJh4cKFMDMzg4uLC7p164aFCxdmWXfgxYsXCA0NRXBwMCZOnIiYmBh8/PhRrf8XBAENGzaEq6trnszXOZz84q+//kKHDh3g7e2NevXqoW/fvliyZAnL5M3M8ePHUatWLRa5XbRo0W9SCu7JkyeYO3cuevbsiSZNmrCMqtKlS2PIkCEwNTWFo6MjVq1apdUoLggCzpw5g969e2P+/PnZOpEVCgWKFSuGWrVq5cv6aMeOHSD6XNA7LS0NISEh8PHxQb169eDs7PxdBm98b4gZjZnlTTnfL48ePUL16tVBROjRowdOnjyZrWKBQqHATz/9BJlMhoiIiG82y1gXvXv3hoWFxXebVfqtke9G9EOHDsHS0hJ9+/bVGFyUSiXWrFmD4sWL59n1Mmui//LLL3odlxtNdBGVSoWzZ89i8ODB8PLyYilAmf9q1Kiht366UqlEx44dmVG5ZMmSMDU1RVhYWK4NNiqVCqtWrYKpqSl8fHzw448/skItDg4OWLNmDdtHJpMhPDw8y0KUffr0QXBwMDZv3qw1Cv/Jkyf47bffcO7cObx+/Vrr5OL9+/cYPHgw5HI5ihUrhg0bNvwropq/lOHDh4OIYG5ujujoaK2GXKVSmS8TtidPnmDatGn/+QVgUlISypYti0KFCuHvv/9W++zixYsstVJ0Pv3bInljY2NhY2ODzp07a/38/v37mDBhQr5N4NeuXQsiUhs7kpKS4OrqivDwcABAXFwcAgICmGSF+Ofm5oYePXrg2rVr+dK2fxt3796FgYEB+vTp80299//88w9++OEHFiEtRgNVrlwZHTt2xPDhwzFw4EBUqVKF6Q5WqlQJrVq1gkQiQdOmTXXWv9i4cSNMTEwQGBiIsWPHMuchEaFdu3Z5El2ij2xMTEwMunTpAmNjY8hkMpQuXRotWrRg+t3anFjPnj1DpUqVIJVKMXr0aCxYsABWVlawsbHJM71vDudb5saNG6zgKhGhePHi6NevH4YNG4aBAweic+fOqFy5MgoVKqR1Pi5mNvXq1Usv6Yec8OjRIxgbG2PYsGF5el5t7NmzBzVq1MCIESNw9erV/0SQw3+N9PR0zJw5E3/99Veuz6FQKHDq1Cls3LgRs2fPRvPmzZmEX58+fdC4cWOWhSlG3IaGhuLHH3/EH3/8gcjISDXN85iYmO9GFk0QBBw+fBg1a9aEXC7HwIED83zeeujQIRARFi9enONjP336hPnz58PV1RVOTk4IDw/H+PHjMWTIEDRt2hTm5uZo1qwZe7fv3bvH5E92796dp/fB4fyXEJ3pYsFaURp3wIABTIY1Li4Ojx8/xty5c+Hm5lYggaZ5RVxcHJydneHm5pZlgCBHP76KJnpMTAxcXFzQuHFjJCcnIy0tDUuWLIG7uztsbGwwbty4PL3e4MGDUblyZbRu3VpvHeIvMaJnRhAEJCcnIzY2Fu/evUNCQgJOnDgBJycnODs7q0WPaUOhUKB169aQSqVqhVEPHz4MuVyOLl266D1Rfvz4Mfr06YOKFSvCwsICRISuXbuqGRbevHmjYTg5cOAATE1NERERobWj+OuvvyCVSpmHv3jx4ujcuTPat2+PZs2aoWjRohqLFgMDAzg5OcHf3x/+/v4sHdbExARTp07lxvMMpKWlYe/evd+UQeu/SGxsLLy9vWFmZobevXvj5s2bGD9+PGQyGcqUKYNNmzZ9k7IteYUYCS5WuQc+R8IOHjyYpblGRUXleuGuUCjw6NEjtePT09OxcOFCSKVSdO3aVWOhtn37dhARfvnlF4SGhsLOzg63b99GQkICbt++jbt373JDQi6YMWMGZDIZLC0t0b9//zx/rt+/f49Tp05h79692S6+Y2NjMW7cONja2sLBwQF79+4F8PnZ2LhxIxo3bozQ0FB4eHjA09MTzZs3x4wZMzBz5ky0bNkSJUuWxNixY7O9zo0bN1CsWDEYGRmhd+/eePLkCdauXQsrKys4OTmpaSvqQ0pKCo4fP47Ro0cjNDQUcrkc69ev17pvXFwcM0y4uLhg6tSpWL58Odq1a4eSJUvqTBkWySjzJZFI0K1bt2+yeC2Hk1+oVCocPHgwW+OiSqVi2acxMTFYu3Ythg0blq9FtiZNmgS5XJ6ryMU3b95g586dOHbsGGJiYrQa+T99+oQePXqAiFCuXDnmBAwKCvpXz0n+a6hUKrRt2xZEBGtra5w8eVJjH6VSiVOnTmH+/PkYO3YsevXqhYEDB2LevHnYvHkzevXqxZxGRARLS0sEBgZi2bJlGuuu1NRUXL58GcuXL0fTpk2ZsdbZ2RkbN2787udW+Wn479GjB0xNTbPMBFMqldiyZQs6deqEtm3bolWrVnBwcIBMJkPbtm0xcuRI1K5dG/b29vDy8kLt2rXRv39/DaP/3r17MXny5Hy7Fw7nv4RCocCtW7ewadMm9OzZE4ULF9awYcnlcrRr1+67D8569uwZypQpA2NjY6xfv/6779N1IQgCrl27hvv37+fbNSQAQF+Bly9fUlhYGBERvXv3jhQKBQ0YMID69u1LFhYWX6MJWZKQkEBWVlb08eNHsrS0zJdrvH79mqKiouj06dNUs2ZN6tWrF/n5+dH+/ftp//79FBcXR3Z2dvTp0ye6evUqbd68mZo3b652jg0bNlD79u2pY8eOFBQURMbGxlSkSBGqVKkS2drasv1UKhUtWrSIRo8eTZaWllSzZk0KDAykSpUqUeXKlfVq78GDByk8PJw6d+5My5cvJ4lEwj5r06YN/fHHH/Tw4UO6fv06zZo1i54/f04GBgZkaGhIgYGBVK1aNSpTpgzFxcXR48eP6cWLF/T+/XuKi4sjQRDIxcWFXF1dqUqVKuTi4pI3XzKHk8e8e/eOFi1aRMuWLaPY2FiSyWQ0duxYGjVqFBkYGBR08/IVlUpFoaGhpFQqadeuXbR8+XJasWIFpaWl0YgRI8jFxYU6depEa9eupQ4dOuh1ToVCQcePH6ft27fT7t276d27d+Tj40Pt2rUjR0dHmjZtGj1+/Jh69OhBP/30E8lkMrXjAVD9+vXpyJEjZGFhQcePH6cyZcrkx+3/53j+/DktXbqUVqxYQcbGxnT8+HHy8fEhIqLU1FQ6ePAg1a9fn0xMTLI8T3p6Ok2cOJEuXrxIsbGx9Pr1a3r79i37vEWLFrR+/XoyMjJSO+7vv/+mOXPm0Nq1a0kqlVKXLl1o9OjR5OjomPc3+/8oFApKTU1Vm4e8fPmSevToQfv27aM2bdrQggULyM7OTuvxCQkJtH79etq9ezf9+eeflJqaSvb29lSzZk36+PEj/fnnn3T9+nXy9PRkx1y8eJGioqLow4cPtGjRImrZsiXJ5fJctf/mzZskCAIFBQXl6ngOh5P3pKamUmBgIKWnp1ObNm0oPDycUlNT6cCBA3TixAmqVKkSjR49mhwcHNgxAGjjxo3Uv39/io+PZ9tlMhmVL1+eatWqRVKplO7evUvnzp2jd+/e0dy5c6l79+6kVCrp+PHjFB0dTWZmZnTq1Cm1c3O+PwBQ3759acmSJbRixQrasmULnT59mpYsWUJubm706NEjunLlCv32228UGxtLxsbGZG9vT3Z2dpSamkrPnj2jlJQUcnFxoZYtW1JUVBT5+fmRmZmZ3m1ITU2lK1euUFBQEJmbm+fj3X7/JCUlUVBQEDk5OdGpU6fU5q6CINAvv/xCU6ZMoXv37lFwcDBZWFiQTCYjPz8/Gjx4MHl5eRVg6zkcjoggCHThwgX666+/yMLCgiwsLCggIICcnZ0Luml5QmpqKvXs2ZPWrl1Lfn5+1Lp1a2rTpg15eHhke+ydO3do+vTp1LNnT6pQocJXaK1+fPz4kWJjYyk2NpZOnTpF69evp7/++ouIiEJCQigqKopKlixJtra25OzsTG5ubl9+0Xwzz2fgw4cPmDRpEuzs7GBiYgJTU1PcuHEjX671+PFj2Nvbo1q1aqhWrZreer55GYmeFQqFAps2bULFihWZd8vExATh4eHo3bs3WrZsibCwMBZ5p425c+fC3t4eZmZmajIGJUqUQM2aNVG1alV4e3tDIpGgT58+X3RPoqTC2LFjmbfq7t27kEgkuUpb43C+V1JTU7F9+/bvUmf/S7h48SIkEgmLYBowYABevnzJPu/YsSPMzMyyjL5JSUnBnj170KFDB1Zp3MvLC8OHD8e2bdvQrl07mJqaMtmO7MaH+/fvo2zZslqjsjhfzqtXr+Dv7w9HR0fcunULJ0+eZMUmAwMDs4z8/PjxI2rXrg0DAwNERkaid+/emDRpErZs2YIbN25g27ZtMDIyQs2aNfHx40e8ePECu3fvRmRkJCQSCRwcHDB58mS8e/fuK96xJoIgYMOGDbCxsYGjoyNOnTql9vmzZ8/Qp08fmJubQyaToUGDBpgzZ45amvvHjx/h4eGBihUrQqFQIC0tDVOmTIGBgQHKly+vUbyQw+H8e7h16xbatWunJhXl6OiI5s2bw9LSEhYWFhg3bhyWL1+OOXPmICwsDESE1q1b4/Hjx3jw4AHOnTuHZcuWITIyEjY2NihUqBCqVauGnj174u7duxrXvHfvHhwdHREcHMzqBGUmPj4ehw4dwpIlS7LVgM1LtGUGKxQKXLly5V8bDZdbXrx4gZ49e4KIsHLlSgCfv78OHTqwZ0kmk8HX1xdDhw7F2bNnNaKsBUFAXFzcdyO78m/g9OnTkEgkaNKkCavr9ffff7OCp+Hh4bhw4UIBt5LD4fzXEWWu2rZty+yJbdu21Rm5nZqaigkTJsDAwADGxsYwNjYucDmpe/fuYfLkyawYdEa7aps2bXDw4EFs374dkZGRMDY2VttnzZo1X3z9fDeijxgxAlZWVvD09MTy5cuRlJSEDh06oFChQrh48WKeX+/x48eIjIzM8XFfy4iekZiYGBw4cOCLChMIgoBHjx5h3bp16NatG1q2bIl27dqha9euWRZIygnTp08HEaFp06Z48+YNWrVqBVdXVy6/wuH8R1ixYgUWLVqkNa08ISEBxYoVQ6lSpdQKMAmCgCNHjqBVq1ZMSsrPzw9jxoxBTEyMxqI5MTExx0VyOflHbGwsgoKCWDp3xYoVsWvXLhQvXhxmZmb46aefcPjwYRw/fhynT5/GhQsXcPbsWQQGBsLKygrHjx/Xee5Tp07B2tqaFSij/68rsGzZsizrcBQEr169QrVq1WBkZIStW7cCALZu3QorKys4ODhgzJgxWconnDlzhkkTBQQEQCaTYcSIEXpLzXE4nO8bpVKJP//8E5cvX2YGzbdv32LAgAEwNDRk9W+KFy+eYwkpbdy8eRO2trYICgrCnTt32PYrV66gfPnyagvJ8uXL52jdk5SUhLt372L9+vXo0aMHKlasiLp166JVq1aYOnWq1vpIwGfHt4ODA5o2bcpkCpOSktCgQQMQEVq0aPFVDfqZOXXqFGbPnq2XMT8+Ph6//vorzp07l6drRqVSiX379qFRo0aQyWQwNTXFwoUL1fYRBAFXrlzBw4cPkZ6enmfX5uQdW7duhZOTE0xMTNCpUyeYmprCw8ODB31wOJxvkqSkJCxevBjOzs6QyWSIiorCunXr8PLlS9y+fRtjxoyBu7s75HI5xowZg/j4eERGRkIqlWLp0qV50oa4uDh06dIFoaGh2LFjh1rg7ogRI7B9+3a2r0qlwpgxY9jcqVWrVtiwYQNOnDiBW7duaa2FlZqaiufPn+PGjRto3749TExM1AL2bt68iXnz5uHXX3/F+fPn8ebNm2zbnO9GdF9fX6xbt05jYjVmzBiYmZnluRfj8ePHcHJyQuXKlTFy5Ei9oxsKwoj+PbFt2zbY29vD3t4eEokkz14aDofz/XP16lUULlwY5ubmWLhwIa5cuYLatWuDiFCyZElMmjSJV7X/Dnn//j2ioqKwZMkSZvxJTExkGq3a/lxcXHDz5s1sz33nzh1MmTIFu3btwrNnz77pSMTU1FS0bt0aRITq1avn2OgzevRoEBFKly6Nq1ev5m9jORzOd0N6enq+RApfv34dvr6+MDY2xvz58zF+/HjI5XIEBwdj7dq1uHfvHi5dugQrKytUrFhRZ/2dxMRErFy5EhUrVoSVlZVaX+/n54fWrVsjMjIS1apVg0wmQ7du3TT68vfv38PHxwfu7u4wNzdHcHAwrl69ivLly8Pc3BwTJkyAlZUV3Nzcsq0ZlR+sXr2aFdScOnUq256YmIhOnTqhcePGmD17No4ePYrevXszx3JGB/DUqVPx+vXrXF3/6dOnGD9+PCucHRwcjKVLl/L16HdMQkIChg8fDmNjY/Ts2ZPXt+JwON88ycnJmDdvHkqVKqU2xllZWaFz585qRmelUok+ffqwDJtHjx7l+rr79u2Ds7MzLC0tUa1aNRARypYti3r16oGIWCBey5Yt8ezZM5a5PHXq1FwFXiUnJyMwMBA+Pj74+PEjFixYAENDQzYPICL88MMP2Z4n343oWS2MV65cCSMjIyxatCjPrpeamoqkpCQIgoAuXbpgx44dOvf7+PEj+3v+/Dk3omfDP//8g6ZNm6JkyZI8Cp3D4ajx4cMH9OrVi0m/FC9eHLt37/6mjaOc3BMbG4unT5/i77//xp07d3D9+nVcunTpXzuGCoKA0aNHw9raGmvWrMnRc61QKHDs2DGtRbo5HA4nP0hOTka/fv1YUbTx48drZMBcuHABlpaWCAoKQmRkJOrVq8fkMKtWrQpzc3NIJBI0aNAAM2bMwMaNG3H8+HG8f/9e43qrV69m8o8i6enpqFGjBmxtbfHgwQNcv34dbm5uICI4ODjg8uXLAIAnT56gcuXKkMvl2LRpU7b3dufOHaxZsybLjB6lUpllP61UKjFy5EgQEaKjo1lk244dOxAbG4uyZcvCwsIC1apVY6ngDg4OGDduHJ48eYJr165hw4YN6NChA4yNjSGXy9GxY0eNIpDaSE1Nxc6dO9GgQQNIJBKYm5sjOjoaly5d4nOmfxF8zOdwON8jsbGx2LJlC3bv3q3T5icIArZv3w4XFxcYGxtj6NCh2LFjB+7cuZNt33f27FkMHjwYvr6+ICLUr18fz58/BwCcOHECVatWRfny5bF+/Xqkpqbil19+gY2NDSQSCczMzLBr164vur979+7BwsICjo6OICL0798fKSkpiIuLQ0xMjF6y41+tsKguDh48SFFRUZSQkJCj4/755x9q1qyZxvY9e/awApsHDx6kc+fO0aRJkzT2mzBhAk2cOFFje34WFuVwOJx/OxcvXqRHjx5RZGTkv77wKue/hyAIJJVKC7oZHA6Hoxdnz54lc3NzCgwM1Pr5+fPnady4cSSVSsnc3JyMjIxIIpEQEZG3tzd17NiRihYtqte1ZsyYQSNGjKD27duTRCKh27dv0/Xr1+no0aNUrVo1IiKKjY2lmTNnUo8ePahYsWLsWIVCQdHR0bRu3TqaO3cu9ejRg3bs2EHr1q2jlJQUcnNzI3t7ezpx4gTdunWLiIh69epFixcv1mjHuXPnqF27dmRjY0Nbt25VK+xMRHTkyBEaNmwY3bhxg2bOnEmDBw8mIqJWrVrR3r17ydnZmRISEujgwYMUEhJC6enpdPfuXSpevDgZGxtrXC8+Pp7WrVtH48ePJzs7O9q8eTOVL19ebZ9Pnz7Rnj17aNeuXXTw4EFKSkqismXLUrdu3SgqKkqtuDWHw+FwON8DSUlJNHnyZFq5ciUrim5lZUXh4eEUGRlJDRo0ICMjI7b/H3/8QdWrVycnJycKCwujJk2a0A8//MDmHbp49eoVzZo1izp06EDBwcFf3O6dO3fSyJEjac6cOdSwYcMcH1/gRnQioqtXr1JISEienCsxMZFNREaOHEl+fn7Uvn17jf3S0tIoLS2N/T8hIYFcXV25EZ3D4XA4HA6Hw+FwcgAAmjhxIm3atIkKFSpEjo6O1LFjR4qIiND7+FGjRtH06dPJ3NyckpKSqEaNGuTi4kLPnj2jV69eUbly5ahFixb07Nkz6tu3L/3888/UuXNnIiJSKpU0ZcoUmjJlCpUpU4bevn1L79+/p9WrV5O/vz8dP36cduzYQcePH6dKlSrR7NmzKTQ0lF0/JSWFatSoQe/evaPDhw+Tl5dXju7/8ePH1KpVK7py5QpFRUWRr68vFS1alE6ePEm//vorJSUlUZkyZahRo0bUpEkTKlGiRI7Oz+FwOBzOtwgAio2NpTt37tDJkydp586ddOvWLYqMjKTt27ez/WrXrk3v37+nK1eufNdBSd+EET0vOXjwII0ZM4ZMTU3Jw8ODVq9eTXK5PNvjEhISyMrKihvRORwOh8PhcDgcDqcAWL9+Pd27d486dOhAPj4+Ovfr1q0brVu3jnbs2EE3btyglStX0rNnz2jcuHE0evRo+vTpE3Xp0oV27NhBRERyuZxCQ0Np0KBB1LhxY62RbwqFggCQoaFhrtquUCho2rRpdOjQIbp//z69f/+ePDw8qH379tS+fXuNqHgOh8PhcP6NbNiwgdq3b08HDx6k+vXr07lz56hixYq0fft2ioyMLOjmfRH/OiN6buFGdA6Hw+FwOBwOh8P59klLS6MaNWrQuXPnyMTEhKKioqhfv35UqlQptg8A2rt3LxkZGVGlSpXI3Nz8q7YxISGBzM3Nv+uIOw6Hw+FwcgoAqlmzJr18+ZJu3rxJkZGR9OjRI7p169Z3PyZyI/r/w43oHA6Hw+FwOBwOh/N98PbtWzpw4ABFRESQjY1NQTeHw+FwOBzO/3Pr1i0KDg6mli1b0qZNm2jDhg3Utm3bgm7WF8ON6P8PN6JzOBwOh8PhcDgcDofD4XA4HM6XMXDgQJo/fz55enrSvXv39JLa/tb5vuPoORwOh8PhcDgcDofD4XA4HA6H880wYcIEKlWqFE2fPv1fYUAn4pHoDB6JzuFwOBwOh8PhcDgcDofD4XA4nMzwSHQOh8PhcDgcDofD4XA4HA6Hw+FwdMAj0f8fAJSYmEgWFhYkkUgKujkcDofD4XA4HA6Hw+FwOBwOh8P5BuBGdA6Hw+FwOBwOh8PhcDgcDofD4XB0wOVcOBwOh8PhcDgcDofD4XA4HA6Hw9EBN6JzOBwOh8PhcDgcDofD4XA4HA6HowNuROdwOBwOh8PhcDgcDofD4XA4HA5HB9yIzuFwOBwOh8PhcDgcDofD4XA4HI4OuBGdw+FwOBwOh8PhcDgcDofD4XA4HB1wIzqHw+FwOBwOh8PhcDgcDofD4XA4OuBGdA6Hw+FwOBwOh8PhcDgcDofD4XB0wI3oHA6Hw+FwOBwOh8PhcDgcDofD4eiAG9E5HA6Hw+FwOBwOh8PhcDgcDofD0QE3onM4HA6Hw+FwOBwOh8PhcDgcDoejA25E53A4HA6Hw+FwOBwOh8PhcDgcDkcH3IjO4XA4HA6Hw+FwOBwOh8PhcDgcjg64EZ3D4XA4HA6Hw+FwOBwOh8PhcDgcHXAjOofD4XA4HA6Hw+FwOBwOh8PhcDg64EZ0DofD4XA4HA6Hw+FwOBwOh8PhcHTAjegcDofD4XA4HA6Hw+FwOBwOh8Ph6OC7M6JfuXKFqlSpQtWqVaMWLVqQQqFgn508eZJcXV2pevXqVKtWrRydFwAlJCQQgLxuMofD4XA4HA6Hw+FwOBwOh8PhcL5TvjsjepEiRejw4cP0xx9/ULFixWj37t1qn0dFRdHJkyfp2LFjOTpvYmIiWVlZUWJiYh62lpMT4uLiSKVSFXQzOBwOh8PhcDgczjdOamoqxcTEFHQzOBwOh8Ph/Ef47ozoTk5OZGpqSkREBgYGJJfL1T7fsWMHValShRYsWFAQzePkEkEQqESJEjR9+vSCbgqHw+FwOBwOh8P5xlm3bh2VK1eOkpKSCropHA6Hw+Fw/gN8d0Z0kWfPntHvv/9ODRs2ZNvKlClD9+7do2PHjtGhQ4foypUrOo9PS0ujhIQEtT9OwfHgwQP6559/aNWqVSQIQkE3h8PhcL5Lzp8/T5cvXy7oZnC+gF27dtHbt28LuhkcDofzzXPnzh1SKBR069atgm4Kh8PhcDic/wDfpRE9ISGB2rVrR2vWrCEDAwO23dzcnAwNDcnQ0JAiIiLo+vXrOs8xbdo0srKyYn+urq65bg8AUiqVeu374sULWr58ea6v9W/l0qVLRET05MkT+uOPPwq4NRwOJzsUCgUtWrSIUlNTC7opnAwMGDCAhgwZUtDN4OSS2NhYatq0Kf38888F3RQOh8P55nnw4AEREd24caOAW8LhcL4leIAkh8PJL747I7pKpaI2bdrQuHHjyMfHR+2zjJ3l6dOnqVixYjrPM3LkSPr48SP7e/78ea7a8+bNGypbtixFRETotX+3bt2oR48e9PDhw1xd79/KxYsXqVixYlSsWDFau3ZtQTeHw/nuOHDgABUrVoxSUlK+yvWOHj1K/fr1o127dn2V63GyRxAEunXrFt28eZMXyc4j0tLSaMWKFV+tXsrRo0eJiOjevXtf5XoczrcGl+Xg5ATRiJ5V4BSHw/lvsW/fPrK3t+dzqX8hJ06coNevXxd0Mzj/cb47I/qvv/5KZ8+epcmTJ1P16tVp69at1L17d/ZZuXLlqGLFilSkSBGqWrWqzvMYGRmRpaWl2l9OefToEVWqVInu3btHBw8epD///DPL/Q8cOEAHDx4kIqI9e/bk+Hr/Zi5dukTlypWjjh070vbt2//zBV6VSiUdP36cG8Lymbi4OPL396fz588XdFO+mLlz59LDhw/p5MmTX+V64nUy92Xbtm2jgQMHfpU2cNR5/Pgxffr0ieLi4ujVq1df5ZqCIPyr++sff/yRunfvTt27d/8q/fHhw4eJiOj+/fv5fq1/Cx8+fNA7G5DzbXPkyBGysLAgf39/6t+/P129evWLzvf333/T2bNn86h1nG8NhUJBjx8/JplMxo3oHA6HMX36dFIoFDz7/19GWloa/fDDDzRjxoyCbkqe8F+x8ygUCjpx4gR9+vSpoJuSd4ADAPj48SOICB8/ftRr/7t378LR0RHe3t54+PAhSpQogQYNGujcPy0tDcWLF0fNmjURFhaGatWq6dw3JSUFgiDk9Ba+W9LT02FkZIR58+bh6dOnkEgk+Pnnnwu6WQXK9u3bQUQ4fvx4QTflX8369etBRGjUqFGenzspKQmvXr3K8/Nq4++//wYRQSKRoE+fPnodk5CQ8EXXLFu2LGQyGaysrJCeng4AEAQBJUuWhFQqxdu3b7/o/PmNIAi4f/9+QTcjT9m5cyeICESEAwcOZLv/iRMn0Lx5c6hUqlxfs3379nB3d2fPQE741se5mzdvwsDAANWrVwcRYfXq1fl6PZVKBUdHR5iamsLOzi5fr/VvQRAEeHp6om/fvgXdlG+Ou3fvYuLEiRrbnz9/jnfv3qltEwQBu3fvhkKh+FrNw9GjRzXaMWjQIDg6OqJr165wdnaGra3tF/VPNWrUgJOT0xedg/Ptcv/+fRAR6tSpAwsLi29+TPna3Lt3D0lJSQXdDK2oVCp8+vSpoJvxr2L37t14+vRpQTcjR4wYMQIbN27M03OeP38eRIRSpUrBxsYGycnJeXr+y5cv4+bNm3l6To5+nDhxAkSEChUqFHRTvphffvkFtra2uHr1akE3RW+USiV27tyJlJQUvfZ/+PAhhg4dCkdHRxARxo4dm88t/HpwI/r/k1Mjev/+/VG4cGG8efMGALBp0yYQEa5cuaJ1/7lz50IqleLGjRtYvnw5ZDKZxuIB+GxQLlKkCJYtW5b7mykAHjx4gPj4+Fwde+XKFRAR/vzzTwBA7dq1UaVKlTxs3ffHuHHjQERo2LBhQTflX02zZs1gYGAAiUSChw8f5um5o6OjUahQIb37lC9h5MiRsLKyQseOHeHp6ZnlQvLs2bOIiIiARCLBjh07cnW9jx8/QiqVonv37mrOHvFdJiJs2LAhV+f+Wvz+++8gIpw8ebKgm5JnTJgwAfb29rCwsMD06dOz3b9v3756G9y1cfjwYfZ7b926NUfHrlmzBt7e3mwM/dZQKpUoX748fH19kZqaii5dusDU1BR37tzR63iFQoFJkybh2bNnel8zJiYGRIQePXqAiLTOETjqXL9+HUQEQ0PDHH3X/wVat24NIsLLly/VtoeEhKBFixZq286cOQMiwr59+75K2xISEiCXyzFixAi17eXKlUObNm0A/K+Pvn37drbn++effxAVFYXY2Fi27d69e6x/unjxYt7eAOebYP/+/SAiLFu2DESER48eFXSTAAD79u3DqVOnCrQN//zzD4yNjVG1alWkpaUVaFu0MW/ePLi4uHyTbcsp06ZNw6pVqwq0DUlJSTAwMPiu1o1iH21hYYHXr1/n2XlbtGgBLy8v5mRbu3Ztnp37n3/+gZWVFfz9/bnTrgAYPXo0iAjGxsa5Ct7Jb86dO4eePXtmu9+KFSsgkUggkUi+KAhEEARcvnz5qzyLr1+/Ro0aNUBEmDt3brbtWrp0KYyNjWFjY4O+ffuiYcOG8PLy0mjrt/g76kOujejnz59nk5XTp09j1qxZ2LNnT5417GuTUyN61apV0bx5c/Z/hUIBLy8vREZGauz77t07WFlZoVevXgCAV69egYiwfv16jX1Fo0TGc+vLtWvXCiT6U6VSwdnZGe3atcvV8cuWLYNMJmMRCaJD4u+//9Z5THp6OlJTU3N1va/Jy5cvsWjRohx3bk2bNoWRkRGICHfv3tW6z2+//cY94Rl48uSJxvf88uVLndHGqampMDc3x+jRo2FnZ4cBAwbkWVsSExNhZmYGIsKoUaPy7LzaSE9Ph5OTE3r37o19+/aBiPDXX39p3bdFixYgIvj6+iIgIAAhISG5GnjFheu9e/fg7OzMvrt+/frB0dERwcHBaNmyZa7v6fnz57h3757Oz5VKJQ4ePPhFA+/06dNBRKhYseJ3MxFOT0/HggULdEaWNW3aFLVq1ULFihXRunXrbM9XrVo1EBHq16+vc5/9+/cjLi5OY3tycjI8PT1Ro0YNVKlSJUeOz/T0dLi5uYGIEBYW9k1+/wsXLgQR4fTp0wA+L1D9/PwQGBioV7SumE3UuHFjva85Y8YMmJqa4sKFCyAinD17Ntftzy3nzp3L86it/GTatGkscl+fhUtumTt3LkJCQvLt/HlNXFwcm0Ns376dbY+Pj4dEIoGlpaVa/zlmzBgQEWbMmPFV2nfo0CEQkdp3mpSUBLlcjqVLlwL4PC/XNzNx/vz5ICIMHDiQbRs6dChsbGxgY2ODcePG5f1N/Ad5//492rdvXyB9kzbmz58PY2NjPHv2DESEXbt2ZXvMvXv38nXMUSqVcHR0RJkyZXTu8/TpU3Tt2jVfDcijR4+GiYkJDA0N0blz529unK1atarev9m3zOnTp5kh+MOHDwXWjoMHDzKnoa6APl2kpqYWSLbOgAEDYGdnBxsbG3Tt2jVPzvn48WNIpVL89NNPAIB69eohNDQ0T84NAO3atYOhoWGBzdG+d770WQsNDUXRokVBRLh27VreNSyP6NKlC4goy0z0BQsWgIjQu3dvDBgwAIUKFcp1FuDGjRvZOi4vHVGZOXXqFJycnODk5IRSpUpl+U69f/8eTZo0YUFBon3v6NGjGkENv/76K6ysrL5a3ykIAs6fP58n42GujOj9+/dHpUqVUL58eYwePRrVq1fHrFmz8MMPP+SpIeprkhMjuiAIsLS0xI8//qi2fdWqVVqjZlauXAmpVIp//vmHbStXrhyaNWumce5u3bqBiFC0aNEctf/Ro0cwNjbO0hiSHQkJCejVqxdWrFgBpVKp93Fi2pSpqaleEhGbN2/GoEGD2P+7dOmCoKAg9n/Rm75o0SKd5wgPD4eVlRX69++fpbGtoOnVq1euBlofHx/06NEDTk5O6N69u8bniYmJMDU1zZGB5t/Mzz//DCJC6dKlsWvXLsTGxmLw4MEwMjKCvb29VqOQ6LC6ceMGRo4cCQsLC63v/+zZszXe9exYs2YNJBIJ2rdvzxZ4In///bfeaVD6sGvXLhARYmJi8OnTJxgZGWn1EIsRH3PnzoVKpcKRI0dARPj999/ZPufOncOECROyvebQoUPh7OwMQRDQvXt3eHl5IS0tDfb29hg8eDDGjx8Pa2vrXBu5a9WqheDgYJ2f//TTT1/soGjTpg2srKzyPfry+PHjeSbrI/7WI0eO1Pq5t7c3BgwYgB49eqBkyZJZnksQBFhbW8Pf3585RDKzdu1aEBGaNGmi8dmoUaNgaGiIe/fu4ddffwUR4fr16+zz1NRUnZMUUUZpxowZIKIs+/r85tSpUzh69KjatvT0dFhaWmr0vefOnQMRYf/+/dmet1q1arC1tc1RtkOtWrUQFhaGpKQkEBHWrFmj930AwJ07d5CYmKjXviqVSuP32bp1K4gIkydPztF1c8revXuxYMGCPDlX1apVERERgenTp8PAwEBrNLogCHj//n2uryEIAooXLw4iwpMnT76kuV+NxYsXQyaTwcHBQW2+ldHQkjFStmzZsiAidOjQ4au0b+TIkawdYvT48ePHQURqwQEBAQF6GVdq1KgBAwMDGBkZ4dmzZ0hNTYW9vT0GDBiA1q1bf5MOkOTkZPTq1QujRo3Cpk2bsgwc0YfXr1/nuM/ICfHx8QgJCQERwcbGRmeAR16wbt06vTJye/fujRIlSkAQBNjZ2WmVL8qI+IxldCzlNX/88Qd7tp8/f651n0GDBoGIcO7cuXxpQ2JiImxsbDBgwAA2js+ZMyfPzn/jxg0sXLgw14aIjx8/Qi6XQyqV5ouc4tciPT0dJUqUQGBgIAwNDb+aE1IbgwcPhrOzM7y9vXP0nX769AnFixfH4MGD869xWkhKSoKVlRWGDx+OhQsXQiKR5IlRdODAgbCxsWHBJuK8OS/OLUqJrFixAu7u7ujUqdMXn/O/RExMDFxdXeHr64t9+/bluP/48OEDZDIZ5s2bB5lMhuXLl2d7zJYtWzB79my9zn/+/HlUq1bti4I0PTw8QET47bfftH4eGxsLqVSKfv36sShyIsLhw4dzdb3y5cujZMmScHR0hIODAxYvXoyFCxdi1KhRemebC4KQpWPj06dPsLa2RpUqVfD69WsW7KptPpycnIwyZcrAxsYGO3fuVPtMdDCLtmKlUglfX1+911V5gRgglRfZKbkyoosTlpSUFNjZ2bGHTalUZrtw/1bJiRH94cOHWlPg09LS4OLigujoaLXtDRs2RNWqVdW2TZ06Febm5movqlKpRKFCheDl5QUiUjO6Z0d4eDjzjOZGW+nx48coWbIkTExMQEQIDg7GH3/8odexo0ePhoWFBSQSSbaasYIgwNvbG0SEEydOAPi8SMr8nVWpUkWr4Qb4nycrKioK9vb2LJp0+vTpOZrUt23bFv369cuyrRlTg3NKUlISLC0tQURo1aqV3sclJydDKpVi5cqVmDJlCoyNjTXaIXZg5ubm/4pUyC/h8uXLMDIyQtOmTZl2sVQqhbm5OQYMGKAzkq13795wd3eHIAh4/vw55HK5hmFH/J7NzMxyFJ1ZtWpV1KpVCwkJCShUqBDatWsHpVKJiRMnQiqVYujQoV983yJhYWEoW7Ys+3/9+vVRu3Ztjf2mT58OU1NT5hEWBAHBwcGoV68egM9R+4UKFdKrHyxbtiyLdBaj0qdNm8acEpcuXcq1VMqLFy8gkUgglUq1tuPt27ewsbGBm5sbpFIpzpw5k+NrAEBQUBCio6NRrVo1BAUF6R0ZoVQqcfz4cb0mfykpKTAxMUHnzp1z1cbMtG3bFkQEIyMjDfmhpKQk1gcvWbIEcrk8y4ng06dPQUTYtm0b7O3tNfrCa9euwdjYmBlNMmaaXbp0CXK5nBks0tPT4ezsjG7dugH4/E46ODigWbNmGo4UlUqFEiVK4IcffgAA9OnTB0ZGRrh161buv5hcsmbNGshkMg2ndWaJMRFBEBAYGKg14ywjosTIli1bUK5cOYSEhGT7fCUlJcHQ0JD1Qa6urjqdJdpYv349ZDKZ3gvh/v37w9PTExcuXADw+Z5NTEwgl8tRvXp1va+bG0SD55eMr8Bno55MJsPSpUuRmJgIOzs79OjRQ2O/efPmwdjYGJcvX1bbrlKp9Ir+uXbtGjOK5aeRMi8pXbo0IiIi0KpVK7WIodGjR8PBwQH29vbMCRkbG8ui0zOOJflJxYoVUaVKFRARNm/eDACYNGkSrK2t1d6V6OjobNcV79+/h0wmw6xZs2Bvb4/o6GjmELp9+zZ++eUXEBFevHiRZ+1XqVTYs2fPF9UWWbZsGSQSCYoUKcL6dX3kSNLS0tC0aVM1pyUATJw4UW1u/aVcuXIFS5cuxZUrV/Du3TuUK1cOtra2OHnyJEqUKIGiRYtqdRCfOXMG69aty/V1k5OTYWtrCysrq2znXXXr1mXBJDVr1kTTpk117qtSqVCqVCkQESIiInLdvuzo27cvHB0dIZfLsXjxYo3P09PT2Vxr4cKFap9t3749T2pvzJ8/HzKZjBk5hg8fDqlUmicBAwcPHoS5uTmICI8fP87VOUTD5qBBgyCXywtU1u3169da7+PUqVPZRkfOmDEDUqkU165dQ5cuXVC4cOE8zZI+c+YMypcvr1f9nuDgYHTo0IE5TfQ1Gg8fPpw5xr5mhvfKlSshkUjw6NEjpKenw9fXF9WqVcP58+fRt29flCpVKseOxY8fP8LCwkJt7qRQKODs7Kw1IA34PK87c+YMoqOjs/zO0tLS4Ofnh4oVK0KlUmHy5MkwNTXVuk75+PEjJk2aVKCZCbp49+4d6tWrhyVLlnzV6+7btw9mZmYICQlBrVq1QESoXbs2zpw5o7cx/bfffmNKBUFBQXo52AMCAmBsbKzxW2zbtk2j32nWrJnWub++PHr0iM0VR48erXWftWvXQiKRMBufIAjw8fHJVQCDuNbevXs33rx5g/DwcCZvaG1tDUtLS43AmpUrV6Jz58744YcfULZsWbi5ucHY2BhOTk548OCBzjZnVIhISEiAkZGRhnNCEAS0adMGJiYmOm2R/fr1Q+HChaFUKlkAlqmpKYYNG5bj+88pt27dgpGREYyNjVGqVKkvjkbPtRE9PT0dHz58gKWlJXswxQ4mvxk8eDAqV66M1q1bqxkQFQoFOnTogMqVK2dpHNVGTozoO3bsABFpTZsYPXo0rKysWKRpUlISjI2NNR60mzdvgohw8OBBtk2MXtiyZYuG0SIr9uzZw47z8PDQ0LrMjj///BMODg7w9PTE7du3ce7cOZQrV04tlV1k3759aNWqldqDFxAQgHbt2qFmzZpZFkzNeI+Ojo4oW7YsEhMTIZVKsWLFCrX9xo0bp7WglEqlQnBwMJNgSElJwYYNG9CoUSPmAGjUqFG20WJpaWkwMTGBkZGRVt1ZQRDQr1+/bHVWZ86cqVNP+Oeff4ZEIsGAAQMgl8v1jka9evUqi1B59+4dTExMMGnSJLV9wsLCULhwYRARjh07ptd5c0NSUhJu3bqFV69eFZixXhAETJw4UWs0+Lt371C0aFGULVuWTf5OnTqFWbNmMQNNw4YNERgYqPbMCoIAV1dXtX6iZcuW8PT0ZJFDV65cgbGxMRvss3ofMzq8xCKfYqEcUaszNDQUEokEfn5+KFKkiF5G26NHj2Lo0KGYPHkyFixYoDHAXbx4EVKpVM0bv3DhQhgYGGgMnOXKldMw/olOgsuXL6NKlSqwsLDQavy+d+8eu0dRD118Z1NSUmBqagpDQ0OUKlUKwP8KJA4ZMiTbe8zMrFmzIJFIQEQ4cuSIxuc9evSAlZUVXr16hYoVK8LDwwMfP37Ep0+fsHz5cgwbNgxHjx5FWloaUlJScPDgQQwZMgQxMTHsHOnp6TA0NMTChQvx559/qhlysmPSpEkgIr08/KKmr62t7RdrvqWlpcHKygpDhgxBkSJFNIwFogTI5cuXmb5xxnvOzN69e0FEePr0KUaNGgULCwtmEIqLi4OHhwdCQkKQnJyMunXromjRokhKSsLVq1dhY2ODcuXKqS24Jk2aBFNTU+zatQsWFhYoWbIkDAwM0LRpU7V7F68rji3Jycnw9/dHoUKFMG/evFxnaehrEAU+v/+inI9oVMmoGy06IbQZcObPnw8DA4MspdOio6NRpEgRpKens99Cm3xbRkRnlOgIrl27dpYGoYwsXrwYRAQrKyu9Im4/fPgAU1NTWFtbw8DAAFOmTIGLiwvKlSuH6dOnw8jIKN8kXdLT02FqagoiwsyZM7/oXNu2bVOLhhGj0TMXVitZsiSICO7u7my8v337Ntzc3PSauA8fPhx2dnYoUaLEF0VqX79+/atE24ja+r/99hsWLVoEAwMD9l5Vr14dTZo0QZs2bVh/LY4DAwcOhLm5+RctLPQxwnz69AkGBgZYvHgxSpYsyaL56taty5xrIqtXr4ZEIlGbmz98+FBtfBMzW16+fIk5c+ZAJpOhZMmSqFy5MoD/GdkzzzNzy7t37xAWFgYiQrNmzXL1falUKvj6+rJgkdjYWJibm2vM9X755RcNx43YV2TWk69bty6ICJUrV/7ixeHt27eZoZToc9Fya2trJhPx7NkzODs7o1SpUhp9RY0aNTSChHKCmFlIlH2tDQ8PD/YODxgwAF5eXjr3FQ0BrVq1goGBwRdlp+hClLfs378/6tSpgzp16mjss3v3bhARC7DISEhICKytrb8oW1GhUKBo0aKstoDYrkaNGsHCwkIvGchnz55plY0Ta3rVrVsXEolEZzSfIAg4cuSIzroePXr0QLFixfDu3TsYGhpmq6+bXwiCgLJly8LW1lYtMEHsE318fHTKIz558gSmpqZMQuru3bsgIr3kp/Th7Nmz7B3MznEfGxvL5hnp6enw9PTM9hjgc0aBXC5nARq5rZOUU8Qgnoz67QcOHGDvfeHChWFtba0RYJcdy5Ytg1Qq1cgAmTx5Mog+y+tdunQJSqUSN2/exPLly1GmTBkQEQwMDODj46Oz2O3o0aMhk8mY8/LFixeQSqVMfiwjK1asANHn7Oi8qG3z7t27XMm3Hjp0CNHR0ezYly9fsuzT/K499/TpU4wcORLdunVDkyZNIJVK0bhxYyQlJUEQBOzduxd+fn4gIpQtWxabN2/Odtzq168fihYtCkEQ0LVrVwQGBma5/5MnT9gzlfG9vHHjBohILZMgNjYWBgYGWc5NVSoV2rdvj02bNmn9XLT7VKlSRWvfDwCRkZEoX7682rbx48fDwsIix/Pujh07ws3NTU09IjExEYIg4OnTpxr2AXG9W6pUKURERKBr164YPXo0FixYAE9PT1SoUEHrOqpSpUoawXlNmjRBuXLl1LbNnDmT2SN1IWb0Hjt2DIGBgahduzaioqLyVHJJG6mpqQgMDESJEiXYGKwrWHjGjBl6ZRXlyog+d+5ceHl5wd3dHYsWLUK9evXQp08fhISEYMyYMbk5pd5cvXqVTQymTJmi9iDv3LmTeX66du2aI0+SLiP6o0ePULFiRTWJljFjxsDR0VHref766y8W3Qf8z9ue2YssCAI8PT3Voqb69evHjGuFChXS67v89OkT3N3dUa9ePSbiL5FI9JY4OX36NExNTVG5cmU1o4BKpYKrq6tGsYMGDRqoGRQfP37M7nfdunUgyrqwT/v27eHl5cVSKsXCdpm9v2LKVObt4jW0/bbJycnYuHEjnJ2dYWJighkzZujskE+dOsU6Vm1pPmJhTyLdBRJTU1NhbGyMIkWKaO34ypUrhwYNGiA+Ph6mpqZaZTKSk5OxZMkStSgIcUEoPos9e/aEvb090yWOjY2FTCbDokWLULhw4S9Kwbty5YqGdzY9PR1Lly5FgwYNmKaq+GdsbAwrKysUKlQILVq00IiE0sZvv/2mtRrzuHHjsGbNmiwHTaVSiejoaBallVGbWRAE1K9fH3Z2dllWoxczFzIahsXIwoxSJjExMbC0tGTppW5ubihTpgySk5Ph6+uLjh07aj2/ODnr378/FAoFxowZoxZBpVAoWKrVsWPH2CCWXZT2zz//DKlUCmdnZzg6OsLQ0BAWFhbYu3cvgM8TbEtLS4SGhqpN+kQj/u7du9k2US8088Cfnp6OokWLwtbWFjKZDCdPnoSJiYlG2q+HhweKFi2Kly9fsgV8xj6tcePGICLMnz+fbevcuXOunKrBwcGIjIyEra2txjtz9epVSCQSdp2HDx/C3Nwc5cuXh62tLSQSCYvwMjc3Z8a6zJOl27dvq0XsicVOslu4njp1ClKpFHK5XG2Bqovhw4ezdyi3qXoiogzD9evXmQZexohDUTYsOTkZHz58yNZwO2XKFFhbW7NMDJlMhu7du2PgwIHw9fWFra0t65cePHgAIyMjREVFwcbGBmXLltUoJP369Ws2Aa1Tpw4SExOxd+9eGBgYoEmTJrh06RJevXqFSpUqoWLFimrHvnjxAp06dYJMJoOzszMrVKsvv//+O9zd3dmi69SpUxr9yurVq2Frawu5XM6eiXHjxuHFixcgUk/v79Chg05j9Nu3b2FgYKD2rGfk/fv3MDExwZQpU9i2Zs2awcXFJcvnq3///nBzc2Pt7tWrV7YRuG/evMGAAQNYRN+qVasglUqzjX766aefWJTi4MGD2aL15cuXLIo+v5yzYupq8eLFUaxYsRxpY545cwYjRoxgC4ZOnTrB39+ffZ5RwkBEvJ/FixfDzs4O9evXx+nTp2FjYwMiQqVKlbK8piAIKFq0KLp3744BAwao/UbA5/dOn+c1PT0dxYoVg1Qq1eoczOr658+fx5EjR/Q2jIq1KdLT01lWxZkzZ5Cens76d7EPef36Ndq3b4+goCBWUyO3BVp3794NMzMzXLp0Kcv9ROfizZs3MWjQIBQpUgQKhQLm5uaYNm2a2r537twBETHJpU+fPsHGxgZ169Zl30dkZCRbzCUnJ7PI7oz9X9WqVREeHq7Xfbx48QKDBg1C8+bNcePGDbXPzpw5Azc3N9jZ2WHYsGEgolwVFBT784yLuA4dOsDb25vdV1JSEmxsbGBtba02xrdr1w5EpNaPKpVKWFhYsDoXhw4dUvssJ0b1Dx8+wNvbGyVKlMDbt29x5swZLFiwQCNbSHy2fvnlF7ZNdFhkboO+iMa1sLAwhIaGajhVMpKWlsayNoHPmUVEpFXS6tOnTyhSpAiaN2+Of/75R8O4kFeITtPTp09j8eLFkMvlGmNlo0aNEBISgl69eqnNkT58+ACpVJql8+DNmzdo2rQpli1bprM2iph5kdmJnpiYiMDAQLi7u2eZBXTkyBGYmpqibNmyas+dGBDSu3dvKBQKBAYGas2yO3v2LCpUqMCCRzIH4AiCAA8PD/Tu3RvA5/ExICCgQDTbjx07BqLPUdgBAQFISkpCTEwMTExM0KRJE/j5+cHKykrrsyz2sxmzURo1agRfX98sxzWVSqXTUCty/vx5WFhYoEqVKsxJLmaNaUPMvBGDAUR52awKKqtUKlSoUIEVTy9durROGZjExETs3r07z3TTz549CyLNjP7Vq1fj6NGjUCqVmDZtGgwNDXMkh1imTBmtfYZCoWDF7ImIrQ0kEglq1aqFffv24c6dOzA2NtYahCn2LZmDucLDw1G6dGmN/du0aQMPDw/Y29sjICDgizItxPdWLpfrHewDfLaXyGQyVp+rWbNm8PDwgIuLC7p37w4TExOtwT3x8fG4ePHiF0tN9erVCyYmJihdujRq166NKVOmaA2MPHDgAOrUqQMiYutbXZQoUQJdunQB8NlRIZPJdPaDwOe5rlwuR/ny5dWCPEXdcrlcztY5c+bMYcFgujKVNmzYwGwh2pwabdq0QenSpdn6KvP9irXYMq4PgP/ZDnMiM/b27VsYGRlh+vTpOvcJDw9HcHAw61vDwsLg7++v9T0+e/YspFKphpyjuF7OPCaJ44z4/e3atQsSiSTbDFqx/xclEk+ePMkCl7L6LYHPY2SnTp00MrGzQ6lUok+fPjA0NERMTAwEQYCfn5/WQCVRHjtzkII2cl1Y9O3bt8zoGh8fj23btuH8+fO5PZ3eLF68mKUJXr58mQ3CwGedXnFCun37dsyaNUvv8+oyoqekpMDMzEyt42zYsGGW2uNly5ZlA1GnTp10GpJETdmjR49CpVLBxcWFGa0bNmyo04sFfE6l2L59O8LCwmBoaMgMWikpKXBycmKdTFaIg3T16tW1Dug9e/aEh4cHe/kSExNhaGgIAwMDlC9fHoIgsKjXjx8/smKKujQJP3z4ABMTE0ydOpXdo9gZZe7IU1JSNLSdk5OT4erqmq13PSEhAf3798/ScDVhwgTY2NigVatW8PLyUutQ5syZA6LPer2+vr46U8DEYjJEpPGsiUZasWCOqG8uTiYFQcC2bdtYcQxRBgEAhg0bpiYv8PLlS1haWrJ9RK3T2NhYdOnSJdfZH7dv34ZcLkeDBg3UJq+jRo2CVCpFzZo1MXfuXJw6dQr79u3D2rVrsXDhQsyaNQtjx46Fu7s78+xnNcmpU6cOpFKp2iTiwYMH7LurW7euhhFc1LBt3bo1pFIpZs2aBZlMxgrFAP9biOvSHct4rsyd5cSJE2FlZaXx3CUkJGDJkiUICAhA4cKFmTFh1KhRsLW1VfPQCoKAUaNGgYjQtGlTyGQyNGjQgE1QMhIfH8/6FtEok/E3Bz4/86KOtBgl27NnT2YwSkhIQKNGjSCRSNCrVy+Ym5ujatWqWtPJixcvrnZ+8T3VZlwTC5yIhvPQ0FC1opSi7IeRkRFKliyJrl27Mj10kU2bNsHU1FTtN965cyeIsi4QnJlbt26x96Zhw4aoW7cu+0wQBFSpUgX+/v5qv9v69etha2uL/v374+HDhxAEAdeuXcOPP/6IGTNm4NatW+jTpw88PT3ZMWK2jziG3blzB4aGhlkOmu/fvy9moFMAAD7nSURBVIeLiwuqVKmCsWPHwtLSMttIu1KlSqFt27bw9PRUSzu8d+8eWrZsqbVgpy6io6NZVXNBEBAaGorAwED2fPTt2xfFixdn+7u7u2eZCdC8eXM1mbGWLVuCiODh4YGWLVtqTKDFCHxtBnSRESNGoHPnzmrfy969ezWccbre2fv376NUqVKoWbNmtt8H8HncFp1s1atXx8iRI1nB0pCQEBw+fBgqlYoZu9q1a4clS5Zg5cqVag40Nzc3NWekr69vlkUqs1r0z5w5E4aGhmrvghj1kjHzLDNBQUFqBokFCxbAyMhIa32SN2/eoF+/fjAxMYGZmRlmzpwJQRBYv5pxYfru3TsMGTKERV0KgoCAgAA1ubRTp06xOYRKpYK9vX2+BUQsWLAAhoaGWmsyiLx9+xa1a9fWSLEXo3+HDRsGQRDg5OSk8YyPHj0aZmZm7N0aOnQo7OzskJ6ejsOHD0MikUAikaBq1aoYMmQIbG1tszTeiFEzJ06cYKnEYqDAkydPIJVKIZPJsjWkLlmyBBKJBOXKlYONjU2WiwBBEHDv3j3MmDGDRWoRERo2bJitJEliYiJsbW2ZZJhCoYCpqSlmzZrFslXOnz/PJFxWr14NR0dHDBs2jKUi58b4GRcXBycnJxBp1lAYPXo0GjRowOZZY8eOhZ2dHVQqFSswKhr1M2c/qlQqWFtbs4XdypUr2fexbds2NkcX55XA5zHB09NTLbhh5syZMDExyTLS6+PHj+jWrRsMDQ1hZWUFT09PSKVS9O7dG0uXLmURi+XLl2dzlq5du8LU1FRntKou6tatq1HYW5zTiGupn376iRlVxXVPcnIyLCws4ObmBgMDAzZ3F7MPTp48iYoVK6JMmTLMAVOsWDEEBATodPbEx8djxowZ2LlzJx49eoSGDRvC2tpaZ2p3RipUqKAWTSoGgTg4OKitzzJz//59re+daIQ+ePAglixZAplMplPaUoz8FQMSxCxOsQZRUlIS7ty5g5iYGAwZMgSGhobsvatbt66GzGZuyCz7OGDAABQuXBgqlQrPnz/XCF74559/WBCMmGUhzuHESFw3NzeEhYVpvd6UKVOYlriVlRXGjh2rkWUZEhKic/345MkTFCpUCJUrV9Y6f9m1axcMDQ1RtWpVmJqaIjIyEiqVCnv37oVUKkXfvn3Z9fr27asR+S8WKA4ODsbixYthYGCgEYx1//59EP0vGEt03uVGivRLqVu3LoKCgnDjxg2YmZmhcePG8PDwYBkWHz58QFhYGKRSqYZcaEhIiEZmkhgkM3ToUJ1SN9OmTYOTk5NOg5EoZ1SpUiUkJiYyqdzq1avrHKuio6PV1oLp6ekoU6YMXFxctGbNC4LAokZFu8mCBQt0Ztn169cPRJ/lN3Jb4+fPP/9EkyZN4O/vD0NDQ421d2bi4+NhYWGB4cOH63V+cd2dMYAoM0qlElu2bMHMmTNx4sQJjfWTWKA6YxDBkSNHIJfLER0drfH9i0oAGZ9dQRDg4uKCwYMH4/bt23ByckLJkiVzlZmjUqnQuHFjmJubo3HjxpBIJNk6/zL+ttHR0UhOTsbKlSvh7u4OHx8fPHnyhPWzGdv98uVLuLi4qM3VMwfK9e/fH7169crW4aVUKuHk5KRWjyU7QkJCspTZev36tZrTVvy9M88ZMlK/fn3UqlWLjUuPHz/GmzdvYGRkhLFjx8Le3h49e/ZkdoKoqCiMGzcOdnZ2Gvf46dMnuLi4IDw8HCVLlkSJEiXU5hOCIKBw4cIYOnQom99mDmgV5zuZnfPAZwk+fbNPAbCs0ayyYkVn/dmzZ5nTW1cUPfC5/5bL5WqBEAMGDIC9vb3G85uQkABjY2PMnDkTW7ZsgVwuR/PmzfVytIm2EzFrTlz7Z65PlRFBEFjAnq7g0WvXruGHH35AQEAAxowZg6tXr2L16tXMeZZRslfMWsncT0dERMDFxSVbgz7wBUb0gmLq1KnMMPngwQM1remMelZHjx7N0huSmpqKjx8/sj9xsqNNzqVp06ZqqRdFihTJ0tgiDkRv3ryBg4ODzgEgLS0NYWFhMDU1ZYZbcTI4efJkDS+WSqXCwYMH0aRJExbxV6JECY1I6ZkzZ8LAwEBnQRvg84NmZWXFBmltiBGnYhS+KGMjesWPHj2KOnXqqBm6OnTowAw9mREfWHEReOvWLUilUo2oRJGaNWuqTc5nzJgBuVyulzacIAjw8vLS6UyoWrUqmjRpwiY84qJR9N6Lz050dDRKlCih9RxTpkyBhYUFoqOjYWNjo2ZY6tmzJ5ydnZnRVZTvWbhwIRYsWMAWYz/88ANatGiBIkWKqHkKM3vSxe/8zJkzqFSpEho0aADgs7Mooycwq+8j80S7Vq1arPCd2KnGxMRALpdrpBRrIz09HWvWrEGhQoVYJkRmRNkcIlLTX5syZQrMzMywY8cOuLi4wMTEBB4eHnB3d0eRIkWYvr+BgQHL6mjUqBFLPwc+T3711bRaunQppFIp7ty5g+3btzNDYVbfV0aDuag7Jk6sBEFghaHETIYjR46wQpXZORRHjBgBW1tb5lTZtm0be6fFv/Hjx2vcm0qlYlkStWrV0tnJDxs2DObm5iwSqXr16uyZyYxCocCJEyfYtXr37g1fX1/2uZjW+scff7DnJXMUtiAIGgbhhIQEGBoaYsyYMXobi0eOHMl0GX/88UdYWloyI6K4QM7OaaINUfZB7BPHjBkDJycntX2mTp0KmUymEUWZkpKC48ePo3bt2rCxscGzZ8/Y+6xLyglQT68V5SAUCgUEQWBRF5kdjhMnTkT9+vU15KiUSiUcHBzUtPRFg5hYfK169epo3rw5+zwiIkKtb85M8eLF1Ra3KSkpWUanpaamYunSpToN6FkRFxeHy5cv47fffsP27duzfGdFI2t2E5hPnz4hNDQU5ubmWLZsGRsrVSoVjh49iooVKzKDhEQiwbx583ReNyoqChUqVADweeFGlHXRGdHYkVljOz4+HkWKFEH79u3VtouTa11ODYVCAUNDQ7UCq+LkN3Nm1/v37+Hv7w8bGxtMnDhRTZJAvE7G+YlYvDUsLAwqlYpFgGVlKG3WrJnOcflLiYqKYnJsfn5+as+syI8//ggiUstESUpKgpGREUqXLg2iz9IjmRe7wOeFlqGhIaZPnw6VSoUiRYqgV69e7PPFixejW7duSElJYeNnVlFi/fv3Z/qNcXFxajU2RowYASsrK+bIyWzQEklMTISjoyPatWuHuLg4eHl5ITAwEO/evUNsbCwePnyIo0ePYsGCBejSpQtzrhsZGaFly5Y4fPgwdu7cCScnJ1hZWWk1EiQnJ2P+/PlwcnKCkZGR2uJNlHCZM2cOTExM2LhTtmxZltp9/PhxqFQqmJiY5EpaoXPnzrC0tGTONnHeGBMTwwzB4uK3WrVqzND+6dMnGBoawsfHB4aGhlqzNerVq4ewsDA1CQBxoSNqamZXU0GMaM9KTqdjx44wNzfH9OnT8fHjR6SlpWH27NmwsLCAVCpFw4YNsXv3brW5QVJSEnx8fJj0lT6IC8bMc3elUokiRYqgd+/eUCqV8PT0RFRUFGrXrs0yJsR5uPjsis+/GMn16dMnlunZokULyGQylCtXjkUGN2/eXON5F+cy4p9EIsnS4ZeRRYsWQS6XM8kCcb3Up08fjawNETGaT1u6dFRUFLy9vaFSqfD+/fsspT5Ep5YYfZuSkgKZTIZly5bhwoULcHZ2VruvjGsxMas1qyxGfRCjIWfNmsWCoTI6D8qWLavWx82ePRuGhoZ4//49m0eIGWUjRoyAk5MTli5dCplMpmH8VKlUcHd3R8eOHfH48WNm2MzYB4rGsazmJmfPnmWZZRnXmGKNkObNmyMtLQ27d++GRCJBq1atYGpqiiZNmqg5dcV5lbimS0hIgImJCQYOHMj2W7Jkidq7D4BJTIlrT4VCAUdHR5QrVw5du3ZFdHR0lu0X+fjxIzZs2MBsAjlFnFOK6x/xnbKzs1ObgyUnJzP5P5FPnz6xZy0zAwcOZJHOlStXVnvG0tLSmLNRVzabKHl3584djW3iexkfH69mAPbw8NBwVrx48QKFCxdGaGioWr/64cMHFjSRcU7y5s0bjWAl4LNx1cjICC1atICTkxMcHBy0ZlNduXIFt2/f1vrO79mzB8bGxggMDESfPn2wcOFCvfT0hw4dCktLSxao1759e1SpUkWrraZXr14oXLiw3rJ+2lCpVKhRowacnZ3RpUsXtGnTBhYWFqhfv77W8yoUChQuXFjtuxfr5olOIlEyJzcF28eMGQOJRII9e/ZApVKhT58+zA6jjaSkJHTo0EHrfESpVLIApOTkZMjlcrV1+bJlyyCTybBp0yZcunQJHh4ean2XaIQl+pzFmRVitr/o0NQHMUAws5NGnK+IjnbRqSpm1ukaH8TAz/nz57Mgz8mTJ2PSpEkwMTHB+/fvMXXqVBgaGrK+7MiRI8wAntlpNnnyZBgYGODvv//GzZs3YWxsrDa3FJ26Bw8eRFxcHFv/ZaR3795MjiYzc+bMgZGRkV61glJTU1G0aFGdGfIiKpUKnp6eaNeuHZo2bYpixYpl+X6kp6ejdOnScHFxwZEjR5CSkgJbW1udRuumTZuiUKFCkEqlaNu2rd7vnhi4JhrNVSoV7OzstKoWiIiOoeDgYFbPTuTt27do3bo1iD5LcLVt2xbW1tbseW3SpInGek3Masx4b6LdMzsZOZEvNqLnZ4VzbSxZsoRFZFy6dEltsjJs2DDmUd22bVuWkejjx49Xm1yJf9o6ZnGy9erVK2YYyeoLFgeiNm3aZNuJJCcns2KIDg4ObOJx+PBhNS/W7du3WcXfgIAAzJ8/X6dsSkJCAuzt7dWiSTMiCAIqVKiAwMDALDXgk5OTmSwK8FmKRSwqW6ZMGZQrVw4GBgZqC39x8l6xYkWUL18e5cuXx8KFC5GUlISyZctqGIdnzZqlNrnKyOTJk2FpaQmFQoH4+HjY2NhkGR2YmZEjR2rVIhb1OBctWgRBEBAUFISIiAj8+uuvkEqlzCsJ/O+316adWKdOHTRo0ACvXr2CiYkJkxK6evUqLCwsNDqDGjVqMMNweHg4mwyJciOiA8jNzU3D8aJUKlG+fHn2DIh62x8+fNAYCLUxePBgeHt7s0mZOFnct28fWrRoAXt7e/zzzz8oU6YMSpQokSP9czGKRFvBNXEgdXNzU0ulCggIYA6wjx8/Yvr06Rg1ahRGjRqFsWPHYtGiRdi2bZtadFdGj784+dU3tS0pKUmtQw0KCspR1Iuood6nTx8AnxcBRKT27AOfU7IWL16crWFflBjYt28fHj16BEtLS0RERGDdunVYuXJltpGAd+7cyTKqITExESEhIShSpAiuXr2qlvKcHaKmmzhB79GjB4twPnfuHCwtLfHrr7/qdS6xyAnRZ/3PTp066Szco1Kp4ObmxiLoT548qeaxHzBgABwdHXM1QX7z5o3ae9OoUSONSK309HSUKlUKAQEBSE1NxdGjR9VqLTg4ODADjFggOauMHzHV7dWrV0zC4ujRo+w5DgkJgZ2dHTMW37t3D3K5HCYmJrCyslIbY8TvIrNzpn379rC3t0d8fDxsbW3VJunaHAUinz59ytEz8TUR0xqzMnYpFApERETA1NRUZ7qyIAjYs2cP6tatm22KqGi4F393bRPojCiVSjg7O6uNR4IgoGXLlrCystJak6Nt27ZqTsCMiJPvjJGi2qKCExMTUb58edjb2+uMfBWN1CJBQUHw9/eHRCLBxIkT0aFDB3h4eGQZLSLKEOhysH8JLi4ubOE+f/58yOVyNWORUqlkjo+MDuyM0nhiKq6uwtpdunSBs7Mzi/rRJe0npqnqktZSKpUoXLgw+vfvz7aFhISgbdu2SElJgb29Pfr37w9BEJizQts7NXnyZBgaGjKjwc2bN1mKdcY/IyMjBAYGol+/fti3b5/G9//+/XvUq1dPLasN+DwP8PDwgEwmQ6dOnTSyf0aNGgVHR0c0adJEbRweO3YsiD4XzhbPFxISopY1c/fuXZ1zNBFx0blixQqkpaXBxcUF7du3hyAIqFq1Knx9fdGwYUO4ubkhPj4eRkZGagYkse6ILmmd8ePHw9bWlgU9HDhwgKXcWlpaolixYtmOuWJghYODA8LDwzFu3Dg12RrRaaVNzzguLk5nNDTw2bhgamqKGjVqZFtoVBAEdOrUCYULF9b67A4bNgy2trbYvHkziD7LMWR0FDRv3hylSpWCSqWCra0tM2a0adNGTZ+0Zs2akEqlGDt2LNLT0yEIAjZs2AA7Ozu17MNXr17B2NiYSVvt3bs3R8W6xcjqZcuWITk5GWZmZpg2bRpbw2SOZLx16xZMTU1RuHBhGBkZqfWzL1++1CjwHhkZieDgYK3Xnj17NszMzNR++xIlSiAwMBBGRkYIDQ3FyZMncfHiRdy8eVNtPzGKTlsqfGJiot7O4lq1asHBwYE9v5n7kylTpjB9+A8fPsDf35/VrVIqlSyTCPhcbLd58+aIi4vTWrRN/E7F/kwQBJQqVQq1atVi+7Ro0QI+Pj7ZRgPu2LEDEokEgwcPRlpaGnr16gWiz5GrGQ3lYoBXaGiohpPon3/+UZuHiwXzMr5XgiCgbdu2MDU1ZQEQDRs21ChevXz5cpQrVw7lypVj2TdDhw5lz+7x48fRr18/dO/eHd27d0fDhg1ZhpuxsbFeutNv3rzBjh072G/bsmVLuLu7q80pt2zZomFsAYDKlSujWbNm7P9ifS9ddWcSExOxadMmFC5cWK1OmRiUUqlSJbi6umqV04iOjlaTdRK/x8qVK8PR0ZFlAVtbW+Po0aPMaKvNuXrhwgUYGxujcePGmD17NkaOHAl3d3dYWlpqXT81bNhQQ6+5X79+sLGxwYcPHxAbG4vatWvDyspKra+LjY2FsbExiAje3t4YPHgwNm/ejGvXrjHnTNOmTXMcjf3y5UsYGhqiR48e8PX1hbm5OaysrFCrVi21/vPTp0+wsrLKUTF2XTx58gS1atViEiAdOnTIsl8fOHAgnJyc2HsjZphk7EOGDh0KY2NjvQpHi4jySRklzgRBQJ8+fWBkZKQxB7xz5w5KlCgBU1PTbGvwAJ8jnzNmUjRq1IjVEQE+v5MSiYTZDRo0aAAfHx8mYSqup7SRUZ5YX+Lj4zX6ZFGu0N7eHvb29hoShxUrVlQLps2IOGcU50Pt2rVDsWLF4OTkxKSUP3z4ACsrK5iYmKBo0aJQqVRISEjQWB+9evUKZmZmagbXpUuXqn0PmefNPj4+zGYA/M+OkNnZJfLu3TuYmZmxgu9Z0bNnTxgaGuqlky8G1uqa32Tm2bNnzF4lOt91rYdEGano6OgcSz1lDpTKPD/NyIkTJyCVSjFy5Ei2RhPrswBA9+7dYWVlheXLl7P+PC0tDUePHlWT487M8OHD2e965swZeHl5oWbNmnpLi32xEV2fgiB5qXOWWRM94+Q+syZ6VsbrnESiv3v3DjKZDMuXL9eZopGZH374gRmOtKVjZyQhIQF169ZVM7pm9GIJgoDq1avD29sb586d0+v7FI2/2uRMRIOMPlXaIyIiUKVKFSgUCtjZ2bGXWxTlJyI1g4FKpULfvn3RunVrdO3alclciPqjO3fuzPaaImJExcWLFzFmzBiYmJjkKI1MNLRmNkiKv6H4Yi1fvhxSqRQGBgZo3bq1WkeQ2aMskp6eDjMzM9bZjxw5EqampizC3M3NTSPt+t69e1i3bp2GQT4tLY1pZImyQtp02GNiYiCTyWBqaqq2uK5evbpaxH5mrly5wopCWVtbY//+/XBzc2MOjdevX8Pa2hpFixaFRCLJlQ5au3btYG1trVacD/gcWWttbc2qsL969YoZLrJKudOGQqGAk5MT+vTpg1atWmlMfrNj586dmDFjhl4pytoQJwXHjx+HTCZT093NKYIgsMWU6BzJ6yrur169gpubG8zMzCCVSvXybgP/Sws/deoUgM+L0oxGlZwUyExLS8PVq1exefNmjBo1iqUKVq1aVeN3EPsl8boZI33S09Ph4OCQo9TAzPj5+bEiRZ6enlrPde3aNcjlctjb24OIEBgYiFmzZiEmJkZjgjBixAjY29vrfAY7deqEgIAAAP/TgOvYsSOKFSuGOnXq4MmTJ5DL5Zg3bx6AzxMINzc3vH79Gi1atAARoX79+ti1axd69uypdUL68uVLmJmZsf0zRumLhhdtUbYXL15kfeu3hiAIcHNz01kcXBAEdOvWDTKZTK9oNX0Qv4+zZ89iypQpsLKyynZCOGHCBEilUkybNg2CILAxV5djb82aNZBIJFoX+2IUTMZ3VKlUwsjIiBmU0tLSULduXZibm2td5Iv89NNPTOZBjHjdvXs3Jk6cCIlEAkNDQ61FmjOSMaJGG+np6di+fTsaNGiAsLAwjejcjPdw7do1NmcRazOIkYNxcXEwNjbG+PHj2TGik0nMuBHH6c6dO7MMmbS0NDRo0EBn0TFxjHFxcVGTpMtMWlqaRjRhfHw8ypcvD29vbxYRnnFMHDRoEFxcXFh6cMa5YIsWLeDu7q7WR8bGxsLCwkJjvLh58yY2btyI3bt34+jRo3jw4EG2c0Xgf1HMGVNyRe1YXYsF0dFtbGzM5sjA/3RpM2qFt23bVs0J06JFCxgYGOg0Ioh1eWrUqMG+53nz5kEulzPHwpEjR5iTUJwbZ3SmivvpytoUnSGhoaHw9PRk76YY9a5vXZibN29i+PDhqFevHmxsbGBvb4+TJ0/i48ePcHV1RZ06dXK9Xjl9+jQsLS1Rvnx5rUEX//zzD6ZPn850QHUF+YjRydbW1qzwW1paGhwcHNClSxe1wJZGjRoxY6S7uzsrcAh8fu60PQ9i9LZY+Ktfv36wtrbOVYaRSL169VClShUWLXv37l2m/ZrRsZuYmAg/Pz+ULFkS7969g4+PD0JDQ6FUKvHq1StUq1YNFhYWauswsT/QVn+ne/fuCAoKUtsmRqNllhXTRosWLTRkue7evQsPDw/Y2Nhg48aNWT4PcXFxLIhl165dsLS0hKOjo9p7LL6vfn5+kEqlkEqlakb2KlWqoEWLFkhOTlYLSmrevLlG25o1a8YCmUTEcf7ChQt49uwZk4rRh4ULF4KI4OnpCQMDAyxbtkzjfgXhcwFAXdmExYsXZwapWrVqoUaNGhr7JCUlsfe+adOmzNGiC0EQMGfOHMjlcpQpUwY+Pj4g+lwYunTp0ihdujSqV6+OuXPn4urVq9nqAj99+hR9+/ZlAREmJiZMKlLf72rUqFEoVKgQ+35mzJgBMzOzbPtsUUtbDIAoX748ateuzd5zMShQRKVSoXDhwlrnp1evXkXDhg0xZMgQbNiwAXXr1oVMJkP9+vWzrIWyefNmmJiYwMLCAu7u7ggLC9NpzBWNYmLwyosXL2BkZKT2Hj9//lzD2TVhwgSYmppi27ZtrLB6Rgdxly5d9BrftCE6zQMCAvDXX3/h5MmTMDQ0VFuvi/OvnMhH5hViVqiYEdKhQwcNx19iYiKTAskOQRBYNl5G+SSR5ORkFCtWDFWqVGH3f+LECZibm8PPzy/brCyR3r17swAp0Q6RURYtNTUVLi4uaNu2LQuI27p1KwRBQIcOHWBoaKjV4SpmAOqaw2dFmzZt4OPjA0EQ2Lxl0KBBmDJlCqKjozVsSFkVk844ZwT+F7BIpJ7lIQYTZMzAzyzV1KVLF9jZ2amNk4IgoGPHjjAwMMCRI0cQGRmpFgjQtm1bNce2uLbOqibOkCFDYGlpmeV4LBbI1rdQuqid7ubmpneApCAIWLFiBSwtLbX26Rn3O3v2bJ7YeefNmwcjIyONbESVSoWiRYuiRo0aUCgUSE9Ph62tLbNHvn37FiYmJrnK9IiPj0evXr1YLTW5XK72bGTHFxvRDx06BEtLS60vulKpxJo1a9R0WvOCwYMHo3LlymjdujXS0tJY5KJCoUD79u1RuXJlnZ4eXejSRBepVq0awsLCMHPmTJiZmWW7wBY1d/XRJteF6MUS0zdzYjAQBAE1atSAl5eXRvRA3bp1ERgYqNdDv2LFCkilUmY0FycCKpUKAQEBGhNYbTx+/Bh9+vRBnTp1cmyAMzU1xaBBg2BmZqa3LpqILkmXESNGwNHRUU3r3d7eHuHh4RrtEwQBzs7OGDZsmNr28+fPqy2u4+PjUbx4cTRs2BC//fZbjqNlmzZtigoVKrBFra5o3Tlz5mh0FDNmzICJiQlu3ryJoUOHIjg4mKWHioVjxAJRYsSXoaGhmhHz559/BhHlatADPkfIOTo6IiIiQu25ql69OiIiIhAXFwcDAwMsXLgQ48aNg5WVVa704YYPHw5LS8scLRTyCtHIa2pqilq1an1RyiDw2QkodtpZFQz6Em7dugUrK6ssB8HMpKenw8jICPPmzcP79++1TvRzi0KhwLZt21CsWDEULVqUyav8/fffcHFxQUBAgFrfWqZMGbRr144tznVF/ehDjx494OPjg8TERBBpz5wAPmcZREVF4eTJk1n2kaLhVZvOrCAIKFKkiNpCSNTllslkbJLbvn17uLi4MC1c0TAmCAI2b96McuXKsUmfrjFt6tSpbJ+MCyMxolub5rRYhDS74lYFRXR0tMa84a+//sL48eOZEUrX75cb0tLSYGxsjDlz5iA8PDzLeiQiSqUSo0ePBtFnWS5zc3MNGZeMiAZkUZ4qI+PHj0ehQoU0tpcoUYJl240ePRoGBgbZFrEU9dePHz+O0aNHw9raGqmpqVCpVAgLC4OBgYFWjdSMiHrjmcc9lUqFhQsXwtHRkUWplC9fnhmsM96bIAgsulHMWBSjazNG9Q4dOhQGBgZsLK1fvz7Kli2L1NRUWFpaYsKECazYekY5I/EauhCNNtlpu/v4+KhFmotznX79+mH48OEaMkBiX+Tu7q7xnIjf/erVq1n7xOyErHQrc4oYJQd8XlAXKlRIo8ZGRt69e8f6iIyOEaVSCR8fHzWD/NSpU1nB4aSkJCZLoMvpPXbsWLW6PMBno5mdnR2IPtdMERHlJ6ytrdUMKmJmlq45rhhUktn4nJKSgk6dOuVYjxz4vPCqWbMm5HI5k4XSlkGSEy5fvgw7Ozv4+/urZQ3t2rUL1tbWMDY2RuvWrXH06NEsn93g4GANp6g4fhD9T75v7ty5LLpRV9+ijcjISBQqVAg3b96EkZGRXvJ9WSEasOrWrQsfHx+164hGhPT0dLRo0QLm5ubs9zpz5gwkEgk6dOgABwcHFC5cWCMrJD09HY6OjvD29sbatWvV5ug1a9ZUiw4GPhvBs5MMExEju8uWLYs//vgDJ0+ehLW1NUqUKIGoqCgQERo1aqRT7kmUFxADZp48eaKhdSsIAlq1aoXmzZtjxYoVGhIWAwcOhIeHB06cOKHmLBANSOJa4M2bN1oLWovvcOPGjTFy5EhYWlpmmw2RkdGjR8PT0zPXNc2io6Ph7++P58+fq0ldZUYQBGzZsoUZK/TJBD1z5gxKly6NVq1aqUkOZqZjx45wdXXVOie/ffs2TExMWKH627dvY+rUqXB3d4ezs7PecyDRkSdGZDZu3FivebVSqURAQAAqV67M1o1iUFZ4eLhGkT9xXqkrOyojCoUCffv2ZQ7GrNDXyJWSkoKiRYvC1NQUkyZNYnKlmQ30rVu3hoeHB5RKJZKTk7XWQIiLi8PZs2dzVBRbG69fv8bs2bPVfqutW7dCIpEgKCgItWvXRpEiRfSupZPXCIIAT09P5tR3d3dXm1OIiMESK1euxP379/H+/XutTitRXmvixIk6vzcx63/ZsmU4ePAgjI2NUadOnRxlD4qBAHFxcex8GaN7gc/rIalUipIlSyI4OJg9q2lpaahatSrs7e016ruIdgwxIConiO3YuXMnHB0dmYybLsTMjsyOa5VKBUdHR7U5o1KphIuLi0ZNw/fv36Nt27Zq89KM9R5iYmIgkUi02hzS09MRFhYGc3NzWFpaqgXDLly4kGW4Ap8zEi0sLLI0ZL969QpGRkYahUdFrl27BmNjY3Tu3DlH79SKFStyVevm/fv3X+RgzwmiXFDm50Z04GTUvu/UqRNztkyZMgXGxsZfNMdWKBQ4duxYlprs2sgTTfSYmBi4uLigcePGSE5ORlpaGpYsWQJ3d3fY2Nhkq530LZCdEX3u3LkwMjJCeHi4XlqhycnJCA0NzVFaZGbatm2LoKAgeHh46NQzzoq//vqLaRKLiLIC2aXnirx48QJEn4vNOTo6qg32jx49ytXiJSfUq1cPEokEVlZWWqN7skPUns448S5XrpxG+k9cXJxOx0iLFi00fnMxCiEnToGsECU0pk6dCqlUqlUXVBdiRIO4OA0KCoKRkRF27tzJPJaiUT0tLQ2DBw/WkH8RBAH79+/P0XUzk1EiBvhfcVhx0v/DDz+gUqVK8PHx0SjGoy+iYdDOzu6rGwBFXWp3d3e9Ukez4+HDhzAyMmKpvPnF48ePNTIEsqNcuXJo27YtiwLLSQqiPjx79gxubm7w9fXFhQsX4OrqCm9vb4129uvXD15eXmjevDkCAwO/6JqiAU80kmUVzasPmSV+MiLq72Y0WImLo4zGcDFi1sLCAmXKlNHaB127dg2jRo3S+RukpKTA3d0dFhYWascrlUoYGxujfv36GpECffr0yXPndl4i9iWiUeuPP/6AVCqFpaUlOnTooKGDnRdUqVKFGZdyUlRz9+7dsLCwgKenZ7bGC29vbxa1l5HIyEitC8CmTZuidu3auHXrFuRyuVrEti5UKhVsbGwwfvx4eHh4qEVrJycn6z1mt27dGmXKlGH/f/DgAapUqcKCAzIai65cuYImTZpAIpEw3VgxksrT0xMeHh5ISUlB3759UaxYMbXrpKWloUKFCnB1dWURXaKDpF27dvD392fFPbMqIJWZM2fOwMzMLNsaKo0aNVKrHTB06FC4uLjo3P/Dhw9M41ubFm/Tpk3h5eUFhULBnNNi1G9eIUYTX7hwgRWfzC4Cz9fXFxKJJNuMJzEF+vXr1ywq0cHBQauRXhzDMka3i/z4448wNTVVW2C/e/cO1tbWWqPxrl+/nuWi0M/PT2/ZBn1RKBSsCL0ujdmccvv2bQQHB0MikSA6OpoZuRo3bqx329etW4eaNWuq9ediMcaMxjJxPi/eg76ZmmKxeisrK9jY2GQp66gPHz9+ZFIOGR1v4vzz9u3bzGGR2dAv1jZo0KCBzmy5mJgYJg3n7u6OHTt2AABcXV2/WL7h5MmTLINUJpOhVq1a7B3ZsWMHHBwc4O/vr3X90bx5c5QtW/aLri/KvvXt21etDpaotezj44Nff/0VM2bMgJGRkdZ2rF69ms0jviRDMjeIjgRRriK7Z+n9+/dZSrXlBtH4Ij4XIhmzuDOPzSqVKkfrnYSEBJaRLjqZ9ZFdAP5ngPf29lYrpilmW2d0lo0dOxY2NjY5CtLZtm3bF9kaMvPhwwcMGTKESUBoi/AU+54dO3ZgxYoVkEgkuc7yzS1bt25Fx44d0aJFC4SHh+fKaJtXjBo1CjY2Nvj777+ZETgzgiCgYcOGahH6me1jogFan7okXbt2hbm5OZOIzen6XRxTDh06hGHDhmnYeIDPc0YxaCLze/vu3TsUK1YMvr6+aobWwYMHa2Tk6Iuo4W1oaAg7O7tsx7QHDx6w/ifjOyN+j6LEc8Z7zqoGjog493n9+jVq1qyJ4sWL67T3JCUlsWAS0dYC/C9D4eLFi3j06BFcXV3VpJ100atXL9jZ2Wk4RI4dOwZnZ+cc1V/5nlAqlbC0tNRwIPTu3VsjE1t0Ml+5cgVOTk7o3r37124ugDwsLPrixQsEBgYiMDAQzs7OcHBwwNSpU3PkES9IsjOii7IeEolErZBAfiLqLstksiz1WbNi3LhxMDAwwPjx4xEfH49mzZqxBZ6+hISEgIjUJB2+FtOnTwcR6fTKZYco6SLK2ogL4JxoAYtFcDJ2WmFhYXpFK+qLWHXayckpx8YtQRAwceJErF+/HsnJyUhNTUVUVBQzOmVVQDMvETX7QkJCmIZhxsga0eud06yKzHTo0CHPFrw5JSYmJsuCvTnla3l4c0rPnj3h7++PoUOHwtnZOU8luUTu37/PJmfFihXTkD8C/pfRY2BgoKEPmlNevXrFouWkUmmeTEL69+/PZK5WrVqFI0eO4Pr160wDOaOjR4zEyjwxatSokd6RR7o4c+aM1roIP//8M9zc3EBE8Pf3Z0bIqlWr6jWZKyji4uIglUqxYsUKpKeno2TJkihfvvwXOfmyY9iwYUynOjsN9cy8fPkyS81kkR49esDb21tju6+vr9YsoBEjRsDFxQWVKlVC8eLF9c7eiYiIYO9Wxkl9ThCzFQYNGoS6devCxMQEnp6eOp9TlUqFIUOGgIiYwWvChAm4e/cu5HI5pk+fjpCQEK3R+s+ePYOdnR1MTU1ha2vL3k0x6jsiIgJ2dnY5XpTps/+IESPg6urK/l+pUqVs340yZcrojHy8du0aiIhJvH1JNqIulEolPDw8EBUVhaJFi+rUBM1Iz5499TL43bt3D0SfU9MjIyNRpkwZDBgwAC4uLhrjQEREBFxdXbUWARYEQavB78KFC3oVh8/M/Pnzcz0PzI4nT57k6RinUCiwaNEiWFlZsYLBeXH+4cOHq0kLKhQKWFhYwNTUFB4eHjk6l6jnmp20k740b94cROr1B2JjYyGVSmFiYgJ7e3utfVFaWhp+//13vfRUr1+/zoxQzZo1U8v6+BJUKhV++eUXjB8/XiNK8K+//oK9vT0qVKig9pynpKQwGcYvQTQCmZmZaTiXrl+/jvr167O1p646V2IdAolE8tXlLMQMK7lcjqioqK967YxUrlxZQ09XNPBrkzXNDWXLlkWbNm3w+PFjtYhyfRCLyYvyfSKVK1eGn58fsz0EBQUxydqC5sGDB5g0aZLO6OZq1aqhQoUK8PPzU8s4+i8iZqGJGSy6omIVCgWuX7+OEydOICwsTCM4aMqUKawWXHbEx8fD3d0dLVu2zFVAnyAIsLW1xcSJExEQEKAzk3Lr1q3o1q2b1jHsr7/+grW1NQv2SEpKQtGiRXNUvy4zYnatvplVkyZNglQqRWhoKE6dOoX+/fvDxMQEbm5uuc4YFwNIO3bsqNea4N27d1i2bJnanDM1NRUGBgbo2bMnChcujGLFiulVTFeU+pw4cSJevHiB2NhY5myuUaNGjoPivicy29aUSiUcHR3VpOoAsEzVkiVLqmUIfW3yxIj+4cMHTJo0CXZ2djAxMYGpqalGStu3TnZGdOBzMUQxFedrIHqxciuxAXx+0AYNGgRjY2NYWVlBIpFg+fLlOTqHqE2aU8NCXvD48WO0atUq1wXOMkq6CIKAnTt3gog00o+yQlwUix5NXd6yL0WMhomMjPzic4na9A4ODlqNk/mFmJK6c+dOjBkzBnZ2dmxx9OHDBxgaGmot9sr5tli1ahWkUikCAwPzdWF0/fp1tG7dWqdjQlygSaXSbCUo9MHb2xtEpJZy/iXcuXMH1atXZwvYjBEmGYt9ZcXz58/V5BTyGqVSicOHD6NSpUowNDTEunXrYGVlpaZ9+C1SoUIFREZGYt68eZBIJBpppnlNxjof+tYPyCliOm/GwmspKSkswi0zop5qTp0ss2fPBhGhSJEiudYhffbsGczNzeHu7o6IiAj8+OOPWo2lmZk1axZzuouLrv79+8Pc3FznfQKfo/UkEgkrOgr8b6JMRFlK5XwJohRFYmIiUlNT1XTodXH+/HmdxUqBz8ZlIoKvr69e31luEH/jjI7qrPj06ZNOXeOMKBQKpptvbGyMmTNnsjoyGef1Bw4cABHpXWT6v0hsbGy+GzUbNGgAIkLbtm1zdJxKpcLevXtzJaunjbNnz6Jp06Ya/U39+vURFBSkl/FAH0SpM1EuKC8jcHVx6dIlmJubo379+szIvn//fhCR3vrDuhAEgRW916WTf+rUKURFRWW5rt65c+f/tXfvwTHf3x/HX5srIZu6Jp2IVlzCuFSUtojQNDHouBSRllHGdKhOq7Q6jDFKVY3baGdS11HXVql2hhqtooIK6jpFWqK0STuNaShLW0ls3r8/fHd/NFly2c0ny/PxV+zy2ZPNOvl8zuf9PsdMnz69UrFUlGvQpRXXiC6ulaOuXHjlyhUTGRlpUlNTvfYab775pmnUqJF790B5zhNOnz5tUlNTS+wEysrKMhEREaZ3797uxXq3D5Wvzlw7oqSKte6437Ru3dpIKjH80pO1a9eW+BwlJye755WVRWXbivbu3ds89thjRip7h4L/+vbbb01ISMgd1z+V2S1aUFBQ7s9TZmamiY2NNZLcOzEru2utSZMm7mu5it4E79Spk5Fk2rdvX6aFNi4vvfTSHe9nSEiIWbBgQbmHd/qbRYsWmYCAAHe7r127dhlJpbYbc80/6dOnT1WH6VbpIvrkyZNNRESEiY2NNUuXLjXXr183I0aMMA0bNqyWQ8s8KUsRferUqUaSOXz4cJXE5HQ6zaJFiyq91dKYW6swx48fb5555plynzSfP3/eDB061KerAH1p8uTJJiAgwJ3kH3300XIlRFfR3FV0cm1jK8/W8rKYPn26kVSmLftlVdECSmUkJSWZNm3auItgtxs3bpyZMWNGlceE8nHt4JBk0tPTLY0lJiamRA+7inKdmAwcONArx7vdjRs3zM8//2wOHjxoNm/eXOn+ut5WUFBgRo0a5f65WnnBWxbTp083drvd2O32Sq1qKauLFy8aSeVe0Vke+fn5xmaz3dHP3TVsqLSirGtL6qhRo8r1Oq7WQWUduOhJRS8czp8/f8fJ/qVLl0zdunXvWXQ6duxYifOMF198sVyrksrL9V4dOXLE/X5X9hzvxIkTpl27dpWa4XAvly9fNmFhYXcdKl5Rbdu2NVFRUUa61X/7xo0bJiwszD287++//zbNmjUzSUlJPtmlhLKbPXu2kWQWL15sdSilKiws9Mln5OLFi2b58uVVdo67Y8cOExISYrp06WJycnLM6NGjTdOmTb3yvSUnJxtJPpuN42sjR440DRo0sHRxTGFhoYmOjjYPP/ywGTRokOnZs6epVauWV3eOuorG/fr18zjMsCK2b99uAgMDTYsWLUxQUNA9W25VF06n0zRv3tx06tSJ3wPmVs9rSSV6w3viWu3suhFdUFBgatasWeldt+Xhqjt4GnpfVn/++afZt2+fWb16tVmyZIklxV6Hw2E2b97stQ4Yw4cPNzabrVLnce+//77p379/uf9PFxUVmT179pht27aZzz77rEK79/xRYWGhad26tencubNxOp1m9OjRHmt2rtaDpc39qiqVLqK3bNnSrF69usSJzNSpU02tWrU8DiOqbspSRL9w4YIZOXJkmafbonq4ePGimT17tklPTzcff/xxhfq49+rVyyQkJJiMjAwzfvx4U6NGDa+t4HFxFeddQ9j81f79+6tNARYVU1BQ4L7p5MtCUFkcPHjQaz3ZXSs/vHmjyp8UFxebuXPnmujo6DL1BbSSqw92vXr1KjQPoyKaNWtWptYYlREfH3/HqlHXlvPSTrILCwvNzJkzy7SC+HZFRUVm3Lhx1epGzooVK0yrVq3KfXG1d+9eExcX57PWgK5zv7Vr15r58+ebmjVr+s1OqQMHDvhka69rS7preKkxt1bXJyYmGmOM+xzI1zNxcG/Hjx83ISEh5syZM1aHct/LzMw0MTExpm7duqZOnTqVvknpMnXqVBMeHu43eee/8vLyzMmTJ60Owxw7dsxMmDDB9OjRw9SvX9/r1x+XLl1y7zgs786Pe/nwww+NJJOcnOzV4/ra+fPnvXqjwp+dO3fOBAYGlqvuFRcX556Ts2/fPvcN/ari6td/++963HLy5Emzbt06q8N44GRkZBhJZunSpaZevXpm0qRJpf694uLiKlvU7Emli+h3u/u4fPlyExoaWupE24o6cuSISUhIMImJiSY1NbXEScfu3btNo0aNTPfu3cs1qbksRXQ8uG7fOi3Jaytjb+ca7umvJ9K3c20xPn36tNWhoII6duxoIiIiLNnN4Cu5ubkmKCjIPfwW1VdRUZFp3769T1vd/NcPP/xwR6sVX5g4caKJiopyb8P9b09uVL3o6GgzZcoUM3DgwBJ9dR9EM2bMMJLMggUL3I8tWbLEBAYGmi+//NLYbLY7noO1fNUyCCVdunTJPfMhMzPTK8e8evWq37VAfVC1a9fOZwuElixZUmrbAviPX3/9tVyr8seOHetuLzlz5swqv+a6fPmysdlslrWCAkozbNgw92BjV2uX6shmjDHyoa+++kppaWlyOBxeOV5eXp7sdrvCwsI0ZcoUxcfHKzU11f18RkaGtm7dqvnz55fruA6HQxEREbp69arsdrtXYsX9o7i4WL/88oucTqckKTo6WmFhYRZHVX2dOXNGK1as0Jw5c2Sz2awOBxWwcOFC/fbbb1qwYIHVoXhVTk6OYmJi+FzCEsePH1eHDh20fv16Pf/88+rXr59u3rypbdu2WR3aAyslJUXh4eHKzMzUqFGj9N5771kdkqW2bdum5557TtnZ2WrcuLGkW3nzkUceUWhoqDp27Kg9e/YoMDDQ4kiBqmeMUXZ2tlq0aGF1KKhir732mtLT03X06FF16NDB6nDg5zZt2qTU1FTl5uZq5MiRCgsL05YtW6o0hq+//lqdO3dWRERElb4u4EleXp7i4uIUGRmpM2fOVNvr9SBfv0Dv3r2VkZHhteNFRUW5vw4ODlZQUMlv4fPPP9ehQ4c0ePBgvf7666Uep6CgQAUFBe4/e6vIj/tTQECAYmNjrQ7Db8TFxWnu3LlWh4FKmDBhgtUh+ISrKARYIT4+XikpKZozZ47S0tJ06tQpDRo0yOqwHmitWrXSmjVrdPXqVXXt2tXqcCzXu3dv5eTkKDIy0v1Y48aN1aZNG507d04fffQRBXQ8sGw2GwX0B1Rqaqq+//57tW3b1upQcB/o0aOHpFuF7P3792vWrFlVHkOvXr2q/DWBu4mKitKmTZsUFBRUbQvokuTzlei+kpOToxdeeEEZGRkKDg52P379+nWFhIRIkvr37693331Xjz/+eIl/P336dM2YMaPE46xEBwAAvrJr1y4lJyfriy++0MCBA7Vq1SqNGDHC6rAeWIsXL9Yrr7wiScrPz1e9evUsjqh62rFjh27cuKG+fftaHQoAAH6vffv2+vfff3X27Fl2OAB+pNoW0fPy8jR48OASj2/ZskVBQUHq27evli9fftfVAIsXL1ZoaKhGjRpV4rnSVqLHxMRQRAcAAD5jjFHHjh118eJF/f777zpy5EipN/tRNTIyMvT000+rZcuW+vHHH60OBwAAPADeeOMNLVy4UA899JDy8/PZ5QX4CZ+3c6moqKgofffddyUedzqdGjBggKZNm1ZqAd3hcLiL4Pv27dPLL79c6vFDQ0MVGhrq3aABAADuwmazadKkSUpLS5PNZlOrVq2sDumB1rJlS0lSly5dLI4EAAA8KJKSkrRw4UIlJiZSQAf8SIDVAZTXxo0blZmZqZkzZ6pHjx7asGGDJGnMmDHu55944gl16dJF0dHRSkxMtDJcAACAOwwaNEhNmzZVbGwsQ6otFhkZqaSkpDuG1AMAAPhSYmKiQkNDlZycbHUoAMqh2rZzqWoOh0MRERG0cwEAAD63d+9e5efna+DAgVaHAgAAgCr2008/KTY21j3TD0D1RxH9fyiiAwAAAAAAAAD+iyL6/xhjdO3aNYWHh8tms1kdDgAAAAAAAACgGqCIDgAAAAAAAACAB343WBQAAAAAAAAAgKpCER0AAAAAAAAAAA8oogMAAAAAAAAA4EGQ1QH4A9fQUQAAAAAAAADA/SU8PFw2m83j8xTRyyA/P18NGza0OgwAAAAAAAAAgJddvXpVdrvd4/MU0csgJCREkpSbm3vXNxMAKsLhcCgmJoYcA8BnyDMAfI08A8DXyDMAfCk8PPyuz1NELwPXUn673U6iBuAz5BgAvkaeAeBr5BkAvkaeAWAFBosCAAAAAAAAAOABRXQAAAAAAAAAADygiF4GoaGhevvttxUaGmp1KADuQ+QYAL5GngHga+QZAL5GngFgJZsxxlgdBAAAAAAAAAAA1REr0QEAAAAAAAAA8IAiOgAAAAAAAAAAHlBEBwAAAAAAAADAA4ro9zBx4kR169ZNw4YNU2FhodXhAPBj165d05NPPqnatWvr1KlTkqQNGzaoc+fOSkpKUm5uriQpKytLCQkJ6ty5s3bu3GllyAD8zNGjR9WtWzd1795dQ4YMUVFREXkGgFedOnVKXbt2Vffu3fXss8/q+vXr5BkAXrd+/Xo1aNBAEtdMAKoHBovexfHjx7VgwQKtW7dOs2bNUpMmTTR06FCrwwLgp27evKm//vpLb731liZOnKi4uDglJCRo3759Onz4sFavXq1ly5ZpwIABmjdvniIjI9WrVy9lZmZaHToAP5GXlye73a6wsDBNmTJF8fHxmj9/PnkGgNcUFRUpODhYkjRjxgzFxsYqPT2dPAPAa4qLi5WamqoLFy7o0KFDXDMBqBZYiX4XBw4cUM+ePSWJpAyg0oKCgtyrKSQpOztbrVu3VkhIiLp27aqTJ09Kkv744w81b95cdrtd9erVU35+vlUhA/AzUVFRCgsLkyQFBwfr7Nmz5BkAXuUqoEvSP//8o8aNG5NnAHjVJ598osGDBysgIIBrJgDVBkX0u7hy5YrsdrskKSIiQpcvX7Y4IgD3k9tzjCQ5nU5J0u0bhMg9ACoiJydHO3fuVEJCAnkGgNft2LFD8fHx2r17t4KDg8kzALzG6XRq48aNSktLk8Q1E4DqgyL6XdSpU0cOh0PSrcRdt25diyMCcD+5PcdIUmBgoCQpIOD/UzO5B0B5ORwODR8+XCtXrlTDhg3JMwC8LiUlRcePH9fgwYO1Z88e8gwAr1m3bp2GDBniziFcMwGoLiii38VTTz2lb775RpK0fft2de3a1eKIANxPmjVrpqysLBUWFmr//v1q166dpFvtGLKzs+VwOHT58mXVr1/f4kgB+Aun06lhw4Zp2rRpatGiBXkGgNcVFBS4v46IiFDt2rXJMwC8JisrS2vWrFGvXr2UnZ2tZcuWkWMAVAsMFr2HiRMn6tChQ2rcuLFWrlypkJAQq0MC4Mf69OmjEydO6JFHHtGYMWNUo0YNffDBB6pRo4bWrFmjmJgYZWVlafTo0XI6nXrnnXeUkpJiddgA/MT69ev16quvqm3btpKksWPHyhhDngHgNVu3btW8efMUEBCgBg0aaNWqVdqyZQt5BoDXdezYUUeOHNGnn35KjgFgOYroAAAAAAAAAAB4QDsXAAAAAAAAAAA8oIgOAAAAAAAAAIAHFNEBAAAAAAAAAPCAIjoAAAAAAAAAAB5QRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgAUV0AAAAAAAAAAA8oIgOAAAAAAAAAIAHFNEBAAAAAAAAAPDg/wAdcx3Hziih2QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9fc/8FeSps3qSCfdm05KKXuDLEHEgagMcQsqTgTFhYiICxU3IiAiIh+WCIoIypBRaGnpbmlL997pSJM0Ob8/+Ob+qG2ZhRY8z8fj/ci+933TNLn33PM+bxERERhjjDHGGGOMMcYYY4wx1oa4qzvAGGOMMcYYY4wxxhhjjHVXHERnjDHGGGOMMcYYY4wxxjrAQXTGGGOMMcYYY4wxxhhjrAMcRGeMMcYYY4wxxhhjjDHGOsBBdMYYY4wxxhhjjDHGGGOsAxxEZ4wxxhhjjDHGGGOMMcY6wEF0xhhjjDHGGGOMMcYYY6wDHERnjDHGGGOMMcYYY4wxxjrAQfT/Q0TQaDQgoq7uCmOMMcYYY4wxxhhjjLFuwqKrO9Bd1NfXw9bWFnV1dbCxsenq7jDGGGOMMcZYt2U0GlFUVISKigrY2NjAzs4OYrEYFRUVqKyshLOzMwIDAyESibq6q4wxxhhjV42D6IwxxhhjjDHGOkREKCgowOHDh3HgwAEcPXoUZ8+ehcFguODrPDw8cMstt0CtVkOr1aK5uRkikQgSiQQKhQK9e/dGv379YGdnh6NHj+Lw4cOorq6Gg4MDHB0dAQANDQ1obGyEjY0NnJ2dYW9vD4PBgObm5lbNzs4OI0eORP/+/WFpaXk93hbGGGOM/YeIiOuXAAA0Gg1nojPGGGOMMcb+s/R6PWJjY5GcnIyioiIUFhYiIyMDycnJqKurAwD06tULw4cPR0hICPz9/eHs7IyGhgbU1tbCaDTCyckJDg4OyM3NxV9//YVDhw5Bq9VCLpdDJpOBiGA0GqHRaJCRkQGTySSsPyQkBB4eHqiqqkJlZSVEIhFUKhUUCgU0Gg3Ky8tRU1MDqVQKmUzWqpWVlUGj0UChUGDMmDGYOnUqpkyZArVa3VVvJ2OMMcZuIhxE/z8cRGeMMcYYY4zdTKqqqnDixAnExMRAr9dDoVBAJpOhpqYG5eXlqK2thVgshlQqRXl5OY4cOYKmpiaIxWK4urrC3d0dgYGBCAsLQ3h4OAYNGgQnJ6dO619DQwPi4+NRU1ODwYMHX9KyiajdEjFGoxHx8fH4+++/8euvv+Lo0aOwsLBAVFQU+vXrh6ioKHh5ecHFxQXu7u5wcHDotO1gjDHG2M3vhg6inzp1Cs8//zzEYjFcXFywceNGhIaGwt3dHQDw2muvYdy4cZe0LA6iM8YYY4wxxrRaLY4fP46///4bZWVlsLGxgbW1Nfz9/REVFYXg4GBIJJKrWofRaAQAiMXiTqsZ3tjYiMOHD+PYsWNISkpCUlISzp49CwBwcHCASqVCU1MTmpuboVar4ezsDDs7OxARDAYDrK2tMWLECNxyyy3o3bs3pFJpp/SrqxQVFWHnzp2Ijo5GbGws0tPTcf6hr7e3NwYMGIC+ffsiPDwcoaGh8Pb2hlgs7sJeM8YYY6y7uqGD6KWlpbCxsYFCocCrr76KPn364P3330dsbOxlL4uD6IwxxhhjjN3YGhoa8M8//+Cvv/7CmTNn0NTUhKamJqjVagQHByMgIAC5ubk4duwYEhISYGNjA1dXV6jVamg0GlRXVyM/Px86nQ6Ojo7w8fFBQ0MD6urqUFJSAgCQy+WIjIxEVFQUQkND0dTUhIqKCjQ1NcHe3h6Ojo6QyWRobGxEQ0MDiouLkZ2djZycHFRXV6OhoQE6nU7os4WFBdzd3eHl5YXw8HA8+uij6Nu370W31WQyITExEX/++Sf27t2LI0eOQK/Xw8XFBREREejVqxeioqIwePBg+Pr6/ucn+NRqtSgtLUVZWRny8vIQGxuLkydPIj4+HvX19QAAS0tLeHl5wcfHB+PHj8cTTzwBW1vbLu551yIi1NTUQK1W/+c/Q4wxxv7bbugg+vkWL16MyMhILFq0SBii98UXX8De3v6SXs9BdMYYY4wxxro/o9GIiooKlJSUoLS0FPn5+YiLi8OpU6eQmJgIg8EANzc39OnTByqVCnK5HJWVlUhPT8fZs2fh5uaGwYMHIyoqClqtFiUlJaiuroatrS3s7e3h6emJUaNGITw8vFVWcm1tLU6fPi2sKy4uDhkZGbC2toajoyMUCgWqq6tRWVkJvV4PpVIJpVIJFxcX+Pv7w8/PD05OTkKNb5FIBJPJBK1Wi6KiImHizoKCAvTv3x/Tpk1Dr169EBoaiubmZpw5c6ZVS05ORkVFBRQKBUaNGoUJEyZg/PjxCAoK4mDnZTBPmpqSkoKsrCzk5eUhMzMTe/bsgVwux5w5c3DLLbfAz88PPj4+N/WkpUSEoqIinDlzBmlpacJkr0VFRbC1tUVERAQCAwNhYWEBAFCr1ejTpw+ioqLg5+d31SM0GGOMse7spgii5+fnY/r06Th48CA0Gg0cHBzwww8/IDY2Fp999lm7r9HpdK0yQDQaDTw9PTmIzhhjjDHGWBcqLS1FamoqGhoa0NDQgIKCAqSlpSEtLQ0FBQUoKytrNRmlWCxGWFgY+vbti/79++OWW27pMJBsNBo7NdBnMpnalP8gIhDRFZUFaWlpwZ49e/DNN9/g4MGDaGpqavW4QqFAYGAgevbsieDgYIwaNQpDhw6FlZXVVW0Ha6uoqAgrV67EqlWroNFoAJwbNTBkyBBMmDABo0ePRmBgIBwcHG6IkxZEhIyMDCQlJSE5ORmZmZkoLi4WTiJptVpotVrhf8vCwgJ9+/bFiBEj0KdPH+Tl5SEhIQFnz54VnlNWVoaCggIA5/4PHR0d4ezsLIysOL8FBgYKZVcZY4yxG1GnBNFra2uxd+9eFBUVQSQSwdXVFRMmTLguM6FrNBrcfvvtWL16NXr27Cncr9VqMWHCBBw+fLjd17311ltYsmRJm/s5iM4YY4wxxlhrRqNRCGo7Ozt3Wr3spqYmJCUlIT4+HjExMfjnn3+QmZnZ6jnW1tYIDQ1FSEgIfHx84Orqih49esDV1RWurq5wdna+KbODTSYT8vLykJqaCoVCgZ49e8LNze2GCNjeTIxGIwoLC3H27FmkpKRg3759+Pvvv9HQ0AAAUKlUCAkJwZAhQzB06FCMHDkSzs7OXdzrc6qqqrBv3z788ccf2Lt3L0pLSwEALi4uCAoKgru7O1xdXeHg4AC5XA65XA53d3cEBQXB19f3kv7PKysrERcXh7y8PJSXl6OsrAyFhYXIz89Hfn4+KioqAAAikQjz5s3Du+++C5VKdU23mzHGGLsWrjqIvmbNGrz//vu47bbbhDPLhYWF2LNnDxYuXIhHH320UzraHqPRiDvvvBPPP/88xowZA71eDyKClZUV9u7di82bN2Pt2rXtvpYz0RljjDHGGOtYVVUVNmzYgDVr1iA5OVm4X6FQYNiwYRgxYgQAoKKiolUzGo0YMmQIRo0aBU9PT+Tn5yMvLw+5ubnIy8tDfn4+qqqqUFdXh+bmZgCARCJBWFiYsNw+ffrA1tYW1tbWkMvlHDhm3Yper0dycjJycnKQk5ODxMREHD16VJjItV+/fpg4cSIGDx6MsLAweHp6XtPPsNFoxNmzZ5GVlYX8/Hzk5OTg4MGDOHnyJIgIvXr1wq233opx48YhMjISTk5O16wv/6bValFQUIBdu3bhzTffhKOjI1auXInbb7+dy78wxhi7oVx1ED0oKAinTp1qcza5vr4effv2xZkzZ66qgxeyadMmzJs3D7169QIAPPnkk/jggw+gVCphZWWFtWvXwtPT85KWxTXRGWOMMcbYfx0R4eDBg1i9ejW2b98Ok8mEO+64A+PHj4etrS0UCgVSU1Nx4MABHDt2DJaWlnBycoKzs7NwaTAY8M8//yA9PV1Yrlqthre3t9AcHR1ha2sLtVqN0NBQhIWFQSaTdeGWM3b1SkpKsH//fvz+++/Yu3cvampqAAA2NjYYNmwYRo8ejeHDh8Pd3V2YgPZymUwmnD17FsePH8fx48dx6tQpJCcnC6V/JBIJ3N3dMWjQINx6660YP358tymjkpOTgzlz5mDfvn1wd3fHrFmz8Mgjj7QaUc4YY91JS0sLqqqq4ODgIMwHwf67rjqIHhwcjIMHD6JHjx6t7i8pKcGoUaOQkZFxVR28XjiIzhhjjDHG/kuamprw008/YfPmzdBqtRCJRCgqKkJOTg569uyJxx9/HLNnz77i0hSlpaWorKyEt7c3rK2tO7n3jHVvJpMJ+fn5SElJwenTp3Ho0CEcOXIEWq1WeI5arRbq2/v4+LQ6GeXk5AQ7OztkZGTg5MmTOHXqFNLT05GZmSmM4AgKCsKAAQMQGRmJiIgIoeRPdw70EBFiYmLwww8/YNOmTaipqcGUKVOwcOFCDBkypKu7xxi7idTX1yMuLg7V1dXCPCVVVVUoKSlBZWUl5HI5bGxsWrX6+nqcOHECJ06cQHZ2Nqqrq0FEUKvVGD9+PCZNmoRbb72125TtYtfXVQfRd+/ejfnz5yM8PLxVOZeUlBSsWLECkydP7pSOXmscRGeMMcauHZ1Oh+zsbGRmZiIzMxPl5eWQSqWwsrKCpaVlq0srKytYWFigtLQUOTk5KCwsBABYWlrC2toaUVFR6N+/P8LCwiCXy7t4yxi7sZhMJkRHR+N///sf1q9fj7q6OowbNw6urq4gIiiVStx///0YPnw4l1BhrJPpdDokJyejvLwcFRUVKCwsREZGBtLT01FQUICKigq0tLS0eZ1KpUJUVBRCQ0PRs2dPhISEYMCAAbC3t++Creg8Op0OGzduxIcffoj09HSEhIRg4sSJmDhxIkaOHNlpcy8wxm5eRISioiLExMQgJSUFpaWlKC0tRXp6OlJTU9FeyNPR0RFOTk5obm6GRqNBXV1dq+/ewMBADBw4ECEhIXBxcYG9vT0SEhLw+++/IyYmBsC5sl3jxo2Dn5+fMEeLm5sbnJycuFTVTaxTJhY1Go04efIkiouLQURwd3fHgAEDuuyD89JLL+HEiRPw8vLCunXrLmmiIQ6iM8YYY1fPZDLh2LFjiI+Px5kzZ4SWl5cn7MQqlUq4urrCYDBAr9dDp9MJlwaDQViWXC6Hr6+vUEvWYDCguroaSUlJwo6upaUlbG1tYWNjI1yGhYVh5MiR3WpyN8a6ktFoxJEjR7B161Zs374dxcXFcHFxwezZszF37lz4+fl1dRcZYzgXDKqtrRXmF6iuroafnx+Cg4Nv6qCMyWTC77//jh07duCPP/5AcXExevTogdmzZ+PRRx/lci+MMUFVVRViYmJaNfOkyQ4ODnB3d0ePHj3g5+eH/v37o3///kKigMlkglqtbhMjJCLodDpoNBpYWlrCzs6uw/WXlZVh79692LNnDw4dOoTS0tJWgXqxWIzAwECMGTMGY8eOxZAhQ+Di4nJN3gt2/XVKEL07iY+Px4oVK/Djjz9i2bJl8PX1xYwZMy76Og6iM8YYY1fGYDDg9OnT2L59OzZu3IiCggJYWloiMDAQPXv2FFpgYCACAwPh4uLSYYYrEUGv10Ov10OlUrX7vObmZiQkJODMmTOoq6sTMkg0Gg1qampw6tQpZGVlAQBCQkIwcuRIjB49GpMnT4ZCobim7wW7+RiNRjQ0NEAkErVpjY2NqKmpQV1dHSwtLaFSqWBrawsHB4dLyuLW6XSQSqXCEOOO1NTUIDo6GrW1tXBycoKjo6OQRWVlZQUiQn19PWpra4VWUlKCtLQ0pKam4tChQygvL4eHhwemTp2KqVOnYsiQITd1UI4xdmMiIsTHx+P777/Hjz/+iJqaGvTq1QtTpkzBuHHj0KNHD9jb20Mmk6G5uRlarRYuLi6wsrLq6q4zxq5AWVkZDh48iMTERIjFYkilUlhbW8PHxwe+vr7QaDStAubmCZzt7OyEILm5dcX8Dy0tLSgrK0NJSQlKSkpQXFyM06dPY9++fcjOzgYAuLi4oHfv3hg/fjzuueceeHt7AwAaGxtRXl4OZ2dnKJXK6953dvk6NYi+bds2TJ06tbMWd0W++uorqFQqzJ49G6dOncK6devwxRdfXPR1HERnjDHGOmYedbZ3716cOnUKIpEIUqkUFRUViI2NhVarhVqtxn333YdZs2Zh0KBBXRqgKyoqwqFDh4SWkZEBGxsbTJ8+HVOmTBGyTWQyGcLDw9GzZ08eNv4fQETIzc3FkSNHkJWVhZKSEpSXl8PBwQGBgYHw9PREQUEBUlNTcebMGRQWFqK0tBRGo/Gy1qNUKoXhvc3NzWhqaoJEIkGPHj3g6uqKqqoqJCQkIDMzExKJRBgGbM6MMgfgRSIRysvLW03Q+W8KhQLNzc0wmUxtHnNxcUFoaCj69euHqVOnon///hcN2DPGWHfR3NyM3377DTt37sRvv/2G6urqdp/n5uaGpUuX4sEHH+STg4x1sZaWFuEEV11dHSoqKlBZWQmNRgOtVoumpibk5+cjOzsbaWlpwjyKHh4eEIvFMBgMqK2tbTV/hFwuF8o5mltAQEC3LzuXm5uLU6dOITExEadOncL+/fuh0+kQHh6O2tpaoWQlAFhbW8PR0VEobXmxZm1tjcjISAwcOBD+/v7d/r24WXRqEN3KygrvvfceXnjhhQ6fQ0TX9I/77rvvIjQ0FHfeeSeysrLw5ptv4qeffmrzPJ1OB51OJ9zWaDTw9PTkIDpjjDGGc0OrCwoK8Ndff2Hv3r3Yt28fampqoFarMWjQIFhYWMBgMMDa2hqDBg3CkCFDEBUVdUkl1LrC2bNnsW7dOqxbtw5FRUVtHpdKpRgxYgQefvhh3H333VdUa12r1UIsFnM2XCeJjY3F7t27YWNjAycnJyED28nJCWKxGDU1Na2aOQPbnBlu3tc7v+Xk5KC4uBjAuaCLq6srnJ2dUVFRgTNnzghJFSEhIQgKCoKnpyfc3d2FusNEJAwHNtcPV6vVsLW1hcFgQENDA2pqapCTk4Ps7GyUlZVBoVBAoVDAYDAIWUp2dnbo3bs3evXqBYPBgMLCQpSUlAjB+vN3z21sbDBw4EAMHjwYzs7OqKqqQmVlpdCqqqogl8thZ2cHOzs7qNVq2NnZwcnJCWq1+vr/4Rhj7BpoaWlBeno6qqurUV1djebmZsjlckilUvzwww/YvHkzwsPD8cgjj2Dw4MHo06cP/x4zdpmICC0tLTAYDMI+rUgkgslkEiYet7Kygru7OxwcHJCQkIDDhw/jxIkTyM3NRX5+PiorKy+4DisrK3h4eMDf3x+BgYEYOnQoRo0aBVdX11b9KC8vR05ODuRyOcLCwrr1hMmXqr6+Hrt378Zff/0FFxcX9OzZE66urqisrERxcTGqqqra3X9tr5n3N4Fz5S1FIhGICI6Ojhg8eDCGDh2KkJAQYbJqDw8PDrR3gk4Nou/duxf33nsvHnzwQaxcubLVH8hoNGLDhg147733LphNc7W+/vprKJVKzJ49G7Gxsfj+++/bzUR/6623sGTJkjb3cxCdMcbYzUqj0eDQoUPIyclBfn4+ampqYG1tDRsbG2Fn1bzDmpmZiaamJohEIgwYMAC33norJkyYgP79+9/QO7FGoxEFBQVQqVSwsbFBfX09UlJSkJCQgG3btuHQoUOwsbHB+PHjMXr0aAwfPhx2dnaQSqXCa/Py8lBWVoaGhgY0Njbi7NmzQg14IoK1tTWcnZ3h6+uLnj17wtvbGy0tLWhsbERTUxOamprQ2NgIkUgkvP/Nzc2oqKhAVVUV/P39MWzYMAwZMgSenp5tMoebm5uRnZ2NM2fOoL6+HlKpVJiINSsrC/n5+fD398eAAQMQEREBvV4PjUaD5uZmWFpaQiaTwdXVFZ6enlf8HiYlJaGpqQk+Pj7o0aPHFWU363Q61NbWorm5udVBQWFhIT777DMcOHAAarUaer0ejY2NF12eOaBtZ2cHW1tbyGSyNlk7PXr0wNChQzF06NA2E/KZS6JYW1vzQQZjjN1gTpw4gcWLF+PgwYPQ6XSwtLREREQEoqKi0LdvX/Tt2xfh4eEcWGc3rbKyMhw/fhzHjh3D2bNnYWNjAzs7O8hkMrS0tKClpQVGo1EIkms0GlRVVQknpqqrq6HRaFotUyqVwsbGBg0NDa2SUM+nVCoxYMAABAQEwNvbG66urlAoFJDL5bC2thYSIWxsbCCTyXhEXCeqrq5GTEwMMjMzAZwbwVhQUICjR48iJiam1d8sODgYDz/8MB544IFWJyy6g6amJiQkJCA2NhZnz54V5gWRSCSwsbGBSqVCdXU1SkpKUF1dDRsbGzg4OEClUgnHVVKpFB4eHvDw8EBgYCAiIyMREhICS0tLoVyohYUFJBIJ9Ho9zpw5g+TkZBQXF0MsFkMikcDPzw+33XbbBfva6TXRExISMHnyZPTr1w8//fQTJBIJ1qxZgw8++AB1dXV45pln2g1ed5Z/10T38/PD9OnT2zyPM9HPnc0vKChATk4OmpubIZPJIJPJhABKYWEhLCwsoFKpoFQqhUvz7MdFRUWor6+HRCJp1UQiEUpKSpCXl4eioiI0NTVBp9NBIpEgMDAQwcHBCA4ORkhICIKDgxEUFNRtMxcZY+xGZjKZkJmZiWPHjmHHjh3Yu3cv9Ho9rKys4OXlBQcHBzQ0NKCurg4A4OzsDCcnJ3h7ewt1zAcPHgwHB4cu3pLrJzs7Gxs2bMC+fftw8uRJYQLTf5PJZFCpVFCpVHB3d0efPn0QGRkJCwsLVFRUoKysDNnZ2cjMzER+fj6srKygUCigVCqFzGTgXEZKXV0dZDKZkDlsLiUCQNghdHJyQl1dHaqqqlBVVYX2dt8sLS3h7+8PDw8PZGZmIjc394Lb6uHhgaFDh8LHx0cIxDc1NaG2thYajQZSqRQymQxSqRQGgwEGgwFFRUWIjo5GfX29sBwrKyv06tULQ4YMweDBg+Ht7S18lswBaXM5oN27d+PEiRPIzMxEQUFBu9sBAP3798fLL7+MO++8ExKJBFqtFpWVlcJOtXliKHOzs7PjfQnGGGPQ6/VISEhAdHQ0Tp06hbi4OKSmpsJoNMLCwgK9e/fGiBEjMGrUKIwcORK2trZd3WXGLovJZEJhYSEyMzORnp6OEydO4NixY0L9bU9PTwQFBaGhoUFIVjDv55mbRCKBra0t7O3tWzUbGxtYWlpCKpXCZDIJ+6lKpRL+/v7w8/ODTqdDUVERysvLERYWhj59+nBJxG5Ir9ejtLQUFRUVKCgowJYtW7Bt2zYYDAYMHDgQEydOxLhx49C7d+8rGoF7KbRaLU6dOoWKigpotVpotVqIRCKIxWI0NDQgPj4esbGxSElJgdFohKWlJfz8/ODs7AxHR0cQEerq6tDQ0AC1Wg1XV1fY29sLJ4AaGxuF4yvz57KgoEAokyORSGBhYdEq9ms+iWMug6hSqUBEMBqNmDRpErZt23bBbbomE4sWFRVh0qRJAIDKykoYDAY8//zzeOaZZ2Btbd3Zq2vjpZdewokTJ+Dl5YV169Zd0kHVf6UmeklJCbZu3Yqff/4ZJ06c6LDGp1wuh6enJ4xGIxobG4VsO/PHxdbWFh4eHrCxsYHRaGzVTCYTXFxc4OPjAw8PDyiVSshkMuFsT1paGtLT04VhPkqlEqNHj8a4ceMQEREBLy8veHh48MEw6xARQavVoqKiAidPnsThw4dx8uRJVFRUoKamBkajEX379sXgwYMxePBgDBo0CE5OTl3dbcaui/z8fOzatQu7d+/G8ePHhQD5kCFDMG3aNNxxxx3w9vbmLJBLYN65a2xshMFggEgkgqenJ7y9vWFra3tNs5XLy8tx8uRJ5OXlIT8/H1VVVbCzs4O9vb0w/LNnz55Qq9VCgNva2rpVLdjy8nKkpaVBLpfDxsYGVlZW0Ov10Ol0OHv2LI4ePYpjx46hrKxMWIZSqYSdnR2sra1hNBqh1Wqh1+shlUohlUrh6OiIIUOGYOjQoVCr1cjJycHZs2dx6tSpVgdwZpaWlnByckJzczOqqqrg4OCAkSNHChPNmifGPD9r3NraGn5+fpwNzhhjrFNotVqhJnF0dDQOHTqE/Px8WFhYYPTo0bjzzjsxevRo9OzZk2uqs26hqKgIn3/+OQ4fPoyGhgYhHmMe1WiOy1hYWKBPnz4YMmSIkMxwpSMN2c2vtrYW27Ztw++//479+/dDo9FALBYLI2dNJhNaWlrg6OiIyMhIobm6ul7Sfnl9fT2OHz+OQ4cOCTEavV7f7nMtLCzQq1cv9OvXT2jh4eGdEgfUaDRITExEcnIyWlpaIJPJYGlpCaPRCL1eD7FYjODgYISFhbUZmXoxnR5Er6urw2effYaVK1cKw8Cjo6PRq1evzlxNp7uZgui1tbU4fPgwEhISkJKSgjNnzqC6uhp1dXWora2FVCrFhAkTMHHiRPj7+8PX1xcqlQrNzc1obm6Gg4MDnJ2d2/yTmAOX5hqgV6uyshJpaWk4evQo/vzzTxw5cgQGgwHAubNDQ4cOxR133IEpU6YgMDDwqtfHrh3zmbumpiacPXsWZ86cQWlpKezs7ODo6AgHBwfhUqvVIicnB7m5uSgtLUV5eTmqq6vh4eGB4OBgeHh4oLS0FPn5+SgvLxeGnlVVVQmvKysra/VlHBAQgCFDhghnJs0Zj8ePH0dZWZnwHGdnZ2g0Gmg0GtjZ2cHLywvu7u5oaWlBQ0MDmpubhWCOWq1GYGAggoKCIJVKkZmZiaysLBCRUFesb9++CA0NFbIsT58+jezsbAwdOrTNzOB1dXXIy8tDXl6eEJAzmUzw9fUVvrzz8vJw+vRplJeXIyAgAMHBwZf8g3U+8+gPOzu7bhWEqq6uxh9//IG///4bOp1OyIgwB++srKwQERGByMhIBAQEwNbWFkqlUqjvZjKZ+MDmPPX19UhLS2vVUlNTkZWVBQsLC4wcORKjR4/GgAED0K9fP66NzK6LqqoqYbJOc9Z4eXk5AGDChAldPuEsY4wxBgA5OTnYs2cPduzYgYMHD6KlpUWovaxWq2FpaSlk5J5/aWlpCWtra3h4eMDT01NoarW60/e7a2pqEBsbi+LiYkRGRt40daHZOeZSitnZ2cjLy4NGo0FDQwMSEhLw888/Qy6X4/bbb4darRaqApibuWSFeTQhY5fLYDAgPj4eiYmJSExMRFFRkVBdoqSkBKdPnxaSsZycnNC7d29hdKw5HuLk5ASDwYAjR47g0KFDiIuLg9FohJOTE0aMGIGRI0di+PDh8PDwgEKhgEwmA3AuC1wkEt2QxwSdGkRftGgRvv76azg4OODll1/GzJkz8fTTT2PPnj3YvXs3+vfv31mr6nQ3chBdr9cjOjoa+/btw/79+3Hy5EmYTCbY29sjLCwMwcHBcHR0hK2tLdzd3XHbbbd1y2CKVqtFfn4+CgoKcObMGezZswf79+9Hc3MzQkJCMGXKFAwbNgxSqRQikQguLi68I3GFTCYT8vLykJycjKamJmEW7NjYWBw9ehQJCQntljCwsrKCg4MD7O3t0dLSgurqatTU1KC5ubnd53ZUN81MpVLB2dkZdnZ2KCgoQEVFhfCYTCaDi4uLsNNqa2sLX19f+Pr6okePHlCr1bC3txfOjLaHiJCbm4vo6GghI9fW1hbW1taora1Ffn4+ioqKYGlpCZVKJWRpmssGnD17VjixIxKJhOzdiooKoZSB+QclLi4O1dXVwrpDQkIQEBCA/Px85OXloba29oLvhUwmE95Hc9AYANRqtXBm1svLCyqVCnK5HOXl5cjLy0NhYSFqamqg0WhQXV2N4uJiYV2Wlpbo0aNHu83V1VW4bm9vLwz30+l0wntrYWEhnHSwsrKCo6MjFArFRQ8QmpqakJycjNOnTyMzMxN5eXnIyclBfHw8jEYjIiIihEn4WlpahL9xQ0MDUlJSWn2exGIxxGKx8Hm0s7ODh4cH3NzcYGVlJfzwarVaNDY2wsLCQvichISEoG/fvvDx8elWJxMuxGQyoaKiAoWFhSgqKhImGxSJRFAqlRCLxUhMTBTKYZh5eXkhJCQEoaGhGDhwIG699VYenswYY4wxdgnq6uoQFxeHhIQEJCUlob6+Hnq9Hnq9HgaDoc1lbW0tioqKWo3qVigUcHZ2hoODgzBKzJw5bM4ebmlpgY2NDWxtbSGXy4VR3M7OzggODkZAQABKS0uRmpqKpKQkZGVlteqnQqGAj48Pmpub0dTUBGdnZwwaNAgDBw4Ujs9MJhOUSqUwKXfPnj159OF1UldXh99++w1JSUlITU1FQUFBq8fNxyNNTU2oq6trcxwtFouhVCrh6uqKOXPm4LHHHrvhYlPs5kFEQpLf6dOnkZiYiJKSEiFJ5vz6+e7u7hg5cqQQOA8KCrphjr8vV6cG0UNCQrBo0SLMnDmz1RmFN954A5988gk2btyIO+64o1PWderUKTz//PMQi8VwcXHBxo0bIZVKERgYKGSAvvbaaxg3btwlLa+7B9GJCPn5+YiLi0NcXBwyMzNRU1ODmpoapKamorGxEQ4ODhgzZgzGjh2LsWPH3lCBo440NjZi3759+PXXX7F79+5WQVbgXNmZvn37YtSoUZg8eTL69+9/wZ0EcwbwtR6G39VKS0uxc+dOxMXFwdnZGW5ubjCZTEhKShKGtZxfz9bM29sbw4YNQ79+/YSzhMD//8HXarWorq5GVVUVpFIp7O3tYWdnB7lcLtTO9fX1RWBgIOzt7YXh+5WVlcKllZUVfH194ePj0+Z/rbq6GkVFRejRowccHR27/G/U0tKCnJwctLS0wM/Pr9VERI2NjYiOjsaBAweQkJCAqKgojB07FgEBAThy5Aj27duHoqIieHl5wcfHB97e3kKzsbGBVCoFESErKwupqakoLCxEcHAwIiMj4eTkhLNnzyIjI0OYYCM2NhalpaVC7S6JRCJkwJj/DnZ2dnBzc4ObmxtkMhnKyspQWlqKkpISlJaWCq2srKzDUk4XI5PJ4OjoCCcnJ9jZ2UGv1wsTJZon9aitrRWyxs3b7uXlhcGDB+O2225rk6X/7/c8IyMDeXl5qKurQ11dHUwmE6RSKcRiMSorK4XAsl6vh9FoBBG1qoVmLi9hLhllfn/MByp2dnZwcnKCo6MjVCoVFAoFLC0t0dzcDK1WK4zKaW5uFnZkXV1dERAQgNDQUAQGBl7WMDMiQmNjIyorK5Gfn4/c3FxUVFSgR48e8PLygslkwp9//ok//vgDSUlJwokb4Nwwtx49egD4/99fYWFhGDBggDBBVlBQEFQq1RX9PRljjDHG2OUzGo0oLS1FQUGB0CoqKoQkI0tLS2H/1DwfikQiEWpMm+cMA86VXE1PT0d2djacnZ0RGhqKsLAw9O3bF/3794eHhwfi4+MRHR2NwsJCYdLGgoICREdHIyUlpcM5RlxcXDBu3DiMGjUKISEhCAoK+k/NdXM5GhoakJWVhaysLBQXFwuZsjKZTKgZbmlpKYyilUqlkMvl0Ov1+OGHH/Djjz+isbERnp6eCA0NhY+PjxCbMP99zMcttra2wsjo86sDdPXxL2OXSqfTCfMUeXp6/mc+u50aRCeiDt+47777DvPmzcNHH32EefPmXfW6SktLYWNjA4VCgVdffRV9+vTBtGnT0K9fP8TGxl728rpLEN082efZs2eRnZ2NrKwsxMfHt8pydXFxQUhIiHCW29/fH+PGjUOfPn1u6rPMRqMRxcXFQlmHwsJCnDx5EtHR0di/fz9qamrg4OAAuVyOuro6NDU1wdraGmq1GlZWVigpKRGGoyiVSnh6esLLy0u47NmzJ8LDw9GzZ89uW4+9ubkZWVlZyMjIQEZGBnQ6HeRyOaysrFBZWYmioiJkZGTgxIkTEIvFCAsLE2YxFovFCAkJQa9evRAREYGIiAiEh4fD1tZWGE7THU8gsf+PiITME1tb2ysehWEymYSSC6WlpaipqYG1tbUwMV9tbS2qq6uFE07W1tbQ6XSorKxs1aqrq2FlZSUcGJgvzdn5YWFhrU7GXG+lpaXChFJNTU3CxMe1tbUoLy9HZWWlEPg3GAzC5MpyuVyoz9zQ0ICSkhIUFRUJGf4ikUiYGNLKykr43bOxsUHv3r0RGRkpjOyIi4tDcXFxq8A4cO47qLGxUbjt6OiI8ePHC3UM3d3d4eHhAWdn55v6e50xxhhjjJ1jMpmuaL+vsbERWq0WFhYWEIlEaGxshEajQWFhIfbv348///wTp0+fFgK5/v7+uP/++zFjxgyEhoZ29mZ0mfr6emRmZqKkpAQODg5wdXWFXC4XRgYbDAa4u7vDzc0NOp0OhYWFyM/PR0xMDI4ePYrU1FThPTIfwxiNxjb78e05P3v8QglDjLEb2zWZWLQje/bswX333dcq7b8zLF68GJGRkbjrrrsQHBwMFxcXuLu744svvuiwSLxOp2tVakKj0cDT07NNEL25uRm7d++Go6OjUNP5/ADLlZxtaWlpwbFjx7Br1y6kpqaiubkZOp0OpaWlyMvLE8oWiMVieHl5oXfv3oiKihKam5vbZa/zZtfS0iKUtCEi2NjYQKlUor6+HtXV1Whuboabmxvc3d0hlUqFH0xz1kBeXp5Qs9XCwgJBQUEIDw9v1Xx9fa9JzSbzRDfx8fFIS0uDo6Mj/P39W2Ujp6enIyMjA7m5uUImslqthlKpFDJn7e3t4eHhAW9vb0yYMAG33367kGVgMplgMpm49A1jV6GiogJpaWnIzMxEfX09mpqahBnGgXPzPCQkJCAhIQESiQR9+/YVysmYyyCZT9oplUo0NDSgoKAAer0evXr14mA5Y4wxxhi7JpqampCZmYn09HTs27cP27ZtQ21tLXr37o3p06fj/vvvh7e3d1d385Lp9XoUFhbiyJEj+PPPP3Hw4EEUFRVd9nJEIhFCQ0MxdOhQDBo0CCEhIcKoavM+fktLC2pqalBVVSVkoEulUrS0tAhleiIjI7k2OWP/Adc1iA4AcXFxiIqK6rTl5efnY/r06Th48CCkUimqqqrg4OCAH374AbGxsfjss8/afd1bb72FJUuWtLn/30H07OxsBAQEtLsMhUKB3r17o0+fPvD29oaFhYVQu9lc5/nMmTOIiYlBUlISGhsbhTOeNTU1cHFxwcCBA4VMYicnJ/j7+8PPzw/+/v7w8vLqthnRN6Pq6mqkpKQgOTm5VTOPAJDJZAgNDUV4eDhcXV3b1LALDg6GjY0NLCwsYGVlBWtr6zYnWWpra3H69GlhdEF8fDzS09NhNBohkUjg7++P6upqoQyFRCKBn58fgoODERQUhKCgIOF6dyh3whhry3yii4PijDHGGGOsO9LpdPjjjz/w008/YdeuXdBqtRg6dChmzJiBadOmwcnJqau72MaJEyewfPlyHD9+XEiAE4lE6NOnD8aOHYuIiAgEBgbCzc1NGI2t1Wrh6ekJb29vWFpaori4GEVFRbCyshLmWeKYC2PsUl33IPrlKi0txT333NPm/l9//RUWFha4/fbbsXr1avTs2bPV41qtFhMmTMDhw4fbXe6lZqITEWpra4XyBVVVVUKtXPOMtfHx8SgpKUFLSwsMBkObyRSDgoIQGRkJW1tbYXK+CRMmXLR+N+t6RISysrJWQfWkpCRUVlbCwsICYrEYxcXF7Y6usLa2ho+PDxwdHVFRUYHS0lIhOC6TyYQTMObWq1cvYdiYRqNBZWUlPDw8+EedMcYYY4wxxtg1UV9fj507d2LTpk3Yu3cviAhRUVEYNWoUbrnlFowePbrLSjRWVVXhwIED+Pbbb7Fv3z4EBwfj/vvvF8of9u3bF46Ojl3SN8bYf0+3D6J3xGg04s4778Tzzz+PMWPGADg3pIeIYGVlhb1792Lz5s1Yu3btJS2vM2uiNzc3o6KiAlVVVfDx8YGdnd1VLY91b0SE0tJSZGRkoLGxES0tLdBqtSgoKEBubi6qqqrg7OwsTCLYp08fBAUFcWkVxhhjjDHGGGPdRmVlJXbu3IkDBw7gwIEDKC4uhkqlwsSJEzF58mQMHz4cPj4+nTYi2mAw4ODBg0hISEBGRgZycnJgNBohFotRXV2NhIQEEBH69OmDRYsW4e67774mJVYZY+xS3LBB9E2bNmHevHno1asXAODJJ5/EqFGjMGnSJCiVSlhZWWHt2rXw9PS8pOV1l4lFGWOMMcYYY4wxxroSESElJQW//PILduzYgbi4OADnJtEcNmwYhg4diqFDh8LR0VGYgLOurg41NTVoamqCWq2Gk5MTevToAQcHByHwXldXh+joaOzYsQNbtmxBdXU1lEolgoKC4O/vD6lUCpPJBLlcjhEjRmDMmDGXHNdhjLFr6YYNonc2DqIzxhhjjDHGGGOMtVVVVYVjx47h6NGjOHLkCGJiYqDX6y/ptTY2NvDz84NOp0N6ejqICF5eXpg+fTqmT5+OiIgInu+LMdbtcRD9/3AQnTHGGGOMMcYYY+zidDod4uPjUV9fDwsLC0gkEtja2kKtVkOpVKKmpgYVFRUoLi5GdnY2srKyYGFhgYEDB2LQoEHo2bMnB84ZYzcUDqL/Hw6iM8YYY4wxxhhjjDHGGPs3DqL/HyJCfX09rK2t+WwoY4wxxhhjjDHGGGOMMQAcRGeMMcYYY4wxxhhjjDHGOiTu6g4wxhhjjDHGGGOMMcYYY90VB9EZY4wxxhhjjDHGGGOMsQ5wEJ0xxhhjjDHGGGOMMcYY6wAH0RljjDHGGGOMMcYYY4yxDnAQnTHGGGOMMcYYY4wxxhjrAAfRGWOMMcYYY4wxxhhjjLEOcBCdMcYYY4wxxhhjjDHGGOsAB9EZY4wxxhhjjDHGGGOMsQ5wEJ0xxhhjjDHGGGOMMcYY6wAH0RljjDHGGGOMMcYYY4yxDnAQnTHGGGOMMcYYY4wxxhjrAAfRGWOMMcYYY4wxxhhjjLEOcBCdMcYYY4wxxhhjjDHGGOsAB9EZY4wxxhhjjDHGGGOMsQ7c0EH0+vp6DBw4ECqVCsnJyQCAzZs3Y/DgwbjllltQUFDQxT1kjDHGGGOMMcYYY4wxdiO7oYPocrkcu3fvxj333AMAMBgM+Pjjj3Ho0CEsXboUS5cu7eIeMsYYY4wxxhhjjDHGGLuR3dBBdAsLCzg5OQm3MzMzERYWBktLSwwdOhRJSUld2DvGGGOMMcYYY4wxxhhjNzqLru5AZ6qtrYWNjY1w22g0dvhcnU4HnU4n3CYi6PV6ODo6QiQSXdN+MsYYY4wxxhhjjDHGGLsx3NCZ6P+mVquh0WiE2xKJpMPnLl++HLa2tkKzs7ODs7Mz6uvrr0dXGWOMMcYYY+yqmEwmbN26Fa+++ioMBkNXd4cxxhhj7KZ1UwXRAwICkJqaCr1ej6NHjyIiIqLD5y5atAh1dXVC40lIGWOMMcYYYzcCIsKuXbsQFRWFadOm4b333sPjjz8OIurqrjHGGGOM3ZRu+HIukyZNwunTp5GRkYE5c+bg+eefx8iRIyGTyfDDDz90+DorKytYWVldx54yxhhjjDHG2NUpKyvDnDlzsHPnTowcORL//PMP8vLyMGvWLHh7e2PJkiUXXYbRaMSyZcvw7bff4qWXXsLTTz8NqVR6HXrPGGOMMXZjEhGnKwAANBoNbG1tUVdX16quOmOMMcYYY6z7SEhIwJo1ayCRSODu7g47Ozukp6cjISEBJpMJq1atQkBAQFd3s9MREbZs2YKnnnoKYrEY33zzDe666y5hPqfly5fj1VdfxfLly/HEE0/A3t6+3eWUlJRg5syZOHjwICZMmIC9e/ciJCQEb7/9NgYMGAAPDw+IRCLodDoUFhbC3d0dMpnsem4qu0pEBJ1Oh8bGRhiNRjg7O3d1lxhjjLEbHgfR/w8H0RljjDHGGOueiAh//fUXPvzwQ/z5559wd3eHSqVCUVERGhoa4Ovri969eyMlJQVVVVXYunUrRo8eDQBobm5GUlIS4uLikJSUhMjISNx///1QqVRdvFWXLjs7G8888wz27NmDqVOn4uuvv4aTk1Or5xARXnjhBaxcuRISiQTDhg3D9OnTMXPmTKhUKuj1eqxevRpvvfUWpFIpNm7ciNGjRyM+Ph7PPvssjhw5AgCwsbGBQqFAaWkpAMDJyQnPPPMMnnrqKTg4OHT6tjU0NKC8vBx+fn6dvuz/kr1792Lz5s1ITk5GamoqGhsbhcfmzJmDlStX8khsxhhj7CpwEP3/cBCdMcYYY4zdbBobG5GRkYHS0lKUlpbCwcEBgwcPvmEyU1taWrBlyxZ88MEHOH36NPr06YMFCxZg2rRpsLA4V5lSr9fD0tISAFBTU4N7770XBw8exN13342MjAykpKSgpaUFEokE/v7+yMzMhFKpxIwZM7Bo0SL4+Ph04RZe3IoVK/Daa6/BxcUFn332GaZMmSJkn7enuLgYu3fvxi+//IK9e/dCpVJh2rRp+Pvvv5Gbm4sHHngAH374YavPABEhNzcXycnJSE5ORnNzM3x8fODq6opdu3Zh7dq1EIvFeOqpp7Bw4cI2Afwr9c8//2DWrFnIz8/HXXfdheXLlyMoKKhTlv1f8vfff2PChAkICgpC//79ERoaih49ekClUiEnJweLFi1CVFQUNm/ejKKiIvz5559obGzE/Pnz4eLi0tXdZ4wxxm4IHET/PxxEZ4wxxhhjN4Pc3FysX78ef/31F6Kjo2EwGNo8JyAgAB9//DFuv/3269KniooK/P3339i7dy8OHz6Mfv36YeHChYiKihKeU19fj6qqKlRXVyM1NRW///479u7di+rqaowfPx4LFizAmDFjLhhABs4F3hctWoQDBw4gMjISffv2RVRUFCIiIiCXy5Gfn4+1a9di1apVqK2txcsvv4yFCxdCoVBc67fhsq1evRpPPPEEXnjhBSxduhRKpfKyXp+fn49Vq1Zh48aNiIqKwtKlSxEWFnbZ/aioqMDKlSuxcuVKAMBzzz2H+fPnQ61WX/ayAKC6uhorVqzAe++9h6FDh2LmzJlYvnw5CgsL8cQTT+Cdd97psBwNay09PR2DBw/GgAED8Ntvvwknl8534sQJTJ06FUVFRQAAW1tbiEQimEwmvPXWW5g3bx7XxGeM3TCI6KL7AoxdC9c0iH7q1Cn07dv3Wi2+U3EQnTHGGLs0BoPhogfbTU1NWL9+PX788Ue8/PLLmDJlynXqHWP/XQUFBVi2bBnWrFkDpVKJW265BWPGjEH//v3h5uYGZ2dnlJSU4Pjx4/j+++9x8OBB/PnnnxgxYkSbZW3cuBG//fYb5syZgxEjRlzRwerBgwexevVqnDhxAtnZ2QCAsLAwDB8+HHv37kVOTg6GDBkCo9GIzMxMVFdXt3p9VFQUJk2ahHvuuQe9e/e+sjflAhoaGvDuu+9ixYoVsLOzw4ABAxAaGorRo0fj1ltv7bT1VFZWYtWqVfjuu+9gbW2NgQMHYtCgQZg4cSLc3Nw6fJ05u/iJJ57AF1980S0CBpWVlfjwww/x+eefw9LSEvPnz8fUqVOxY8cObNiwASaTCStXrsTEiRMBnAvwrlixAg0NDXBycoJCocDhw4dx4sQJiMViLFmyBC+//DIkEgmam5vx5Zdf4u2334ZUKsXy5csxYsQI5Ofno7y8HLfeeus1KSdzI9i6dSueffZZNDY2QiQSQaVSYfjw4Rg9ejTef/99yGQyHDt2DLa2th0uo6ysDNu2bUOfPn3Qv39/1NXV4Y033sCqVavg4eGBhx9+GA899FC3H5nBGPvvOXPmDL744gucPn0aubm5KCsrw4wZM/Duu+/C1dW1q7vH/kOuaRDdy8sL+fn512rxnYqD6Iwxxlj7iAi//fYbfvvtN+zbtw+5ubkYNWoU7r77bkRERODs2bPIyspCTU0NAECn02H79u2oqalBcHAwMjIy8N133+Ghhx7q2g1h7CZVVFSE5cuXY/Xq1bCxscHLL7+MJ5988oJZyzqdDpMmTcKpU6dw+PBhREREADj3//7BBx/glVdeQY8ePVBaWoo+ffrg+eefx3333SfUVD5z5gy+++47tLS0QK1Ww8XFBZMnT4abmxtMJhPeeecdvPXWWwgPD8fo0aMxaNAgDBs2DJ6engDOZYtv374dGzZsgL29PXr27Ak/Pz84OjrCwcEBHh4e163kTFZWFlatWoWUlBSkpKQgPz8f8+bNw4oVK4QyMVfC/HdZu3YtiAgzZsyARCJBdHQ0UlJSYDKZMHDgQNx111248847hTImRIT4+HiMGTPmgtnFXam0tBTvvfcevvnmG+h0OigUCtx9990oLS3F/v37MX36dFhaWmLDhg1wd3eHv78/KioqoNFo0L9/f0ycOBGTJk1q9yRCaWkpXnnlFaxfv77V/T169MCaNWswadKk67WZXY6IsGzZMrzxxhu46667MHToUABAeXk5Dhw4gFOnTsHBwQEnTpyAr6/vFa0jISEBX3zxBX7++Wc0NjZizpw5+OyzzzgznTF23ej1epSWlsLLy6vV/fHx8Vi6dCl++eUXODs7Y+zYsfDx8YGVlRVWrlyJ5uZmLFiwABMnTkSvXr0gl8uvuA8ajQbz589Hbm4udu7c2S1Hp7Gud9VB9Hvvvbfd+4kIe/bsQUNDw9Us/rq50YPoycnJWLt2Lezt7TF9+nT4+/t3dZcYY4xdRw0NDViwYAFKS0sxc+ZMTJ48GVZWViguLkZmZibUajW8vLxgZ2d32dmMb775JpYuXYrAwECMGzcOAQEB2LNnD/7++28YjUYAgJubGxwdHSESiSASiTBixAg8//zz8PLywtNPP41Vq1bhww8/xPz587tFNiW7+TU2NuK1117D7t27MXjwYIwdOxa33nrrTVX/9/xAplKpxIIFCzBv3rxLnjBTo9Fg1KhRKCkpwUMPPYSwsDCcOHECX3zxBd58800sXrwY+/fvx6effoo9e/agR48eeOKJJ5Camopt27YJAe+amhpUVlaCiDBu3Di0tLTg77//xltvvYXXXnsNEonkGr8TnYeI8M033+C5557DgAEDsHTpUtTW1qK8vFxotbW1mDVrFiZMmNDuMv79d3n++ecxd+7cVnXEa2pqhLrlf/zxB5qamhASEoLg4GBER0ejpKQEISEhOHbsGOzs7K7T1l++wsJCxMbGYsyYMbC2tgYR4ccff8QLL7wACwsLvP7663j88cevaELLxMRE1NTUwMvLC2KxGE8++ST27NkjlHvprLrs3ZVOp8MjjzyCn376CUuWLMEbb7zR5vezpqYGRqMRjo6OV72+hoYGrFmzBgsWLMDw4cOxdevWKy7Xw9i1UF1djUceeQTe3t5CaambTUlJCbKysjBs2LAbcn85NzcXp0+fxq233gqZTNbmcfMk4cC5snJKpRLfffcdPv/8c5SUlODBBx/EihUrYGNjg3feeQfLli2Dv78/FixYgFmzZrVaZm1tLd5++218+eWX0Ov1kEgk8PLygpWVFSQSCYxGI+rr69HQ0AC1Wo3g4GAEBwejT58+GDBgAHr27AmxWAwAOHDgAB566CFUV1fDZDJh8uTJ+Pnnn2/IvwG7xugqqdVq2r17Nx08eLBVO3DgADk7O1/t4q+buro6AkB1dXVd3ZVLVlJSQmvXrqURI0YQAHJxcSGVSkUAaODAgXT06NEOX9vU1EQVFRXXsbeMMcauRnNzM61evZrS0tLaPJaamkohISGkUqmoX79+BIBsbW3Jzs6OALRqrq6uFBsbe8nr/fzzzwkAvffee20eq6qqosTERGpoaLjgMkwmE7366qsEgKZPn061tbWXvH7GrsSBAwfIz8+PZDIZPfLIIxQVFUUikYisrKzoqaeeotzc3C7p1/Hjx+n222+nhx56iPLy8q54OWVlZTR//nySy+VkZ2dHS5cuveJ92NLSUrrzzjvJ09OTAJBIJKKvvvqqzfNSU1Np7ty5JJfLyd/fn1atWkVarVZ4vKamhr799lsaOnQoeXt70969e694+7qDo0ePkqurq/DdKRaLycXFhXr16kXh4eEEgKZNm0aFhYXCa8rLy+mll14iuVxOtra29Pbbb1/S36WxsZF++eUXevDBB2nUqFH0yiuv0O7du6m+vv5abuI1pdPpSKfTdeoyTSYTffPNN6RSqUihUNCLL77Y6v2/mWg0Gho7dixZWVnRzz//fF3XffDgQbK3t6eePXvSrl27SK/XX9f1M9aelJQU8vf3J6VSSQBo48aNXd2lTmMymejYsWM0ffp0srCwIAA0c+ZMamxs7OquXbLm5mZaunQpyWQyAkBOTk70xhtvUE5ODplMJiIiys7OpnHjxrU5NrGysqLHH3+cPv30U7KzsyMnJyfq3bs3SSQSeuutty76HaTVaikmJoZWrVpFCxcupBdffJGee+45evHFF2nx4sX0wQcf0MKFC2nKlCkUEBAgrFcul5NKpSKpVEoAaOTIkZSTk0Pbtm0jALR06dLr8daxG8xVB9HvuusuOnjwYLuPTZgw4WoXf93cSEH0v//+m/r27Ssc6IwcOZI2b95Mer2eGhsb6eeff6aBAweSVCqlb775ps3rU1JSqGfPnmRvb0+pqaldsAWMMcb+rbGxkaqrq9t9zGAw0F133SXs9A0cOJDeeecdeuWVV+jhhx8mpVJJoaGhQoA9LS2N3nrrLVq2bBnt3LmT0tLSKDo6mjZv3kz9+vUjFxcXysnJuWiffv75ZxKJRPTCCy8IO8BXY9OmTWRjY0O+vr4UHR191cvraiaTiVatWkVffvklGY3Gru7ODaW5uZm2bNlCW7ZsocrKyk5d9jfffEMAaPjw4XTmzBnh/oqKCnr33XfJ0dGRLCwsaNasWRQdHd0pn+2LOXPmDE2ZMoUAUGhoKLm4uJBMJqPXXnuNNBrNJS+noqKCXn75ZVIoFGRjY0OLFy+mmpqaTutnXV0dlZSUXPA5zc3N1NLS0mnr7M7q6uooKSmJysvLW22zyWSiH3/8kZydnUkqlZKLiwv5+PiQQqEga2treuONNzr178Jaq6yspNdff51sbGwIAKnVaoqKiqKxY8fS8OHDaeDAgbRo0aKLBvGbmproueeeo5EjR7b7+1tSUkJvvPEGBQYG0osvvnjdAloVFRXUv39/sra2pgMHDlyXdf5bZmamcLzp4OBAjz32GL366qu0ePFiWrNmDf/msetq165dZG1tTeHh4ZSdnU0zZ84ka2trys7O7uquUXFxMf3222+0ZcsW2rx5M/32228d/kYWFBTQihUr6J133qFNmzbRwYMHafHixRQYGEgAyN/fnz755BP6/vvvSaFQUO/evSk5Ofm6/b999dVXpFAoaOrUqfS///2P8vPzKS4ujvbs2XPB5IO9e/dSYGAgWVhY0MKFCyk+Pp7mzZsnnPBwc3Oj2267jeRyOXl5edGuXbsoMzOT9uzZQ99//z2Vl5cLyyopKaH77ruPIiMjKSYm5ppsZ01NDe3bt48+/vhj+vjjj+nLL7+kbdu2tXqflyxZQgDof//73zXpA7txXXUQvTuaP38+DRs2jGbMmHHJGRA3ShA9OTmZrK2taciQIbRhw4ZWXzjn0+v1NG/ePAJADz/8MO3fv58KCwtp27ZtpFKpKCwsjMLCwsjDw4Py8/Ov81aw7ig5OZni4uIoOzv7sg7oGWNXr6KigsLCwsjFxYVSUlJaPWY0GmnmzJlkYWFBW7dupf/97380efJksrGxIR8fHxo4cCDNmzfvkjMWy8rKyM/Pj4KDg6mqqoqMRiOdPXuWUlJSqKmpiYiIoqOj6fbbbxcyYTpz5/3s2bM0aNAgsrKyouPHj3facq83vV5Pc+bMEU5s3HrrrVRaWtrV3ep2TCYT/fTTTzRjxgx6+eWXhSwhR0dH4b0TiUQUFRVF9957L82dO5eWLFlCZWVlV7S+7777jgDQM8880+HntqGhgT7++GPy9fUlANS3b1/auXPnZQXTTSYTNTQ0UH5+PsXHx9OBAwfo9OnTVFFR0WY5J0+eJHt7e/L19aUff/yRWlpaSKPR0GuvvUYymYxcXFxo9erVFwxM6/V6euedd0ilUpFKpaLXXnuNqqqqLrm/7Nqoqamhzz//nJYuXUqvvvoqLV++vNNPCrGO1dTU0KZNm+jdd9+lJ554gqZNm0azZs2imTNnklQqpQEDBtDZs2fbfW1CQgKFhYWRlZUV2dra0siRI6m5uZmIzmWBz507lywtLUmpVNJ9991HMpmM/P39O0we6wz19fX0ySefkLu7Ozk5OdGpU6eu2bouVUJCAi1cuJDCw8PJ19eX3N3dSSQS0T333CPsMzB2rZhMJnrvvfdIJBLRHXfcIRyj1tXVkZ+fHw0cOPC6jZQwmUyUkZFBGzdupNdee43uvPNO8vDwaJNVDYAGDx4sJCtqNBr6/vvv6ZZbbiGRSEQymYwcHByE51pbW9NDDz1Ef/75Z6v9loSEBPL39ycAZGlpSYGBgTRt2jRau3YtFRcXd/r2/fXXXySRSGjy5MnCCbTzm0KhoG+//bbVPk5BQQHdc889BIBGjRrV5himtraWdu7cSa+88gqNGTOGXnrppRtmhJXJZKIZM2aQSCSi5cuXX5eEi5uFwWCgrVu3UlJSUld35Zq46YLocXFxNHPmTCIieueddy55mM+NEEQvLy8nX19f6tWr1yUHOdeuXSucATS3adOmUX19PRUVFZGPjw8FBwd3GIxnNz+TyUSvv/56q8+IhYUFPfnkkxfNRmOMXb2amhrq06cPOTk5UXh4ODk5OQk7HYWFhTR79mwSi8W0efPmTltnRkYGOTg4kIuLCykUilb//05OTgSAgoOD6YcffrgmGafNzc00bNgwcnJy6jDA0Z1VVVXR+PHjycLCgtasWUN79uwhZ2dncnFxoXXr1gmBmP+6kydP0uDBgwkARUVFkY+PD4nFYlKr1fTCCy9QWloa5efn07p162j27Nk0ZswY6tOnD1lbW5OLiwv98ccfl7W+devWkUgkoieffPKSDnZaWlpo9+7ddMsttxAAGjt2LCUmJpJOpyOtVkslJSW0c+dOWrRoEd155500fPhwCgsLI1dXV7K0tGz3wNl8QPzUU09Reno6HThwgFQqFQ0ePLjdTNe8vDyaOXMmAaBevXrRV1991WafLDU1lfr160cSiYTmz5/P5fgYuwQxMTHk5+dHtra29OKLL9L27dspMzOT1q9fT3fffTdZWlpSr169KCkpiY4cOUJWVlZ0//3307Fjx8jPz49UKhW9//77woiCjIwMGjp0KAGgd99997ICKlqtlnbu3Enx8fFkMBhaPVZeXk5btmyhp59+mtRqNVlYWNDs2bO79W/jjh07SC6X05AhQ/j7iF0zTU1NNGPGDAJAr7/+epsT49HR0WRhYUFqtZoGDRpEjz766BWfgL+QuLg4euqpp4QT7wDI3d2dxo4dSwsXLqStW7dSbm4u1dTUkEajoUOHDlHPnj3J0tKSJk+eTHK5XAgyr1mzRihpWFtbS4mJiRc8GaXRaOjXX3+lzz77jF544QUaMGAAiUQiAkCTJ0+m06dPd8o2Zmdnk729PY0bN074jsrMzKTdu3fTyZMnKSsrix5//HECQHfeeSe98cYbNHz4cLK0tCQXFxfauHHjTRlkNhqNQpzk3nvvvWj5yv+65uZm+vbbb4WTPy4uLu2WXDOZTFRZWXlN/l+vh04Nom/durUzF3dFvvzyS1q/fj0REcXGxtLTTz/d7vOam5uprq5OaAUFBV0WRDeZTPTzzz/T119/3eFZxaamJho2bBg5Oztfdh1Pg8FAZ86coZ07d9Ivv/zS6gvuzJkz5OzsTFZWVjRu3Dj6+OOPefjpf4jBYKBHHnmEANCyZcsoNjaW9u/fT8uXLye1Wk0KhYLefPPNTq9peSkqKytp+/bttHHjRlqzZg0dPHiw1Wd3586d1LNnTxo0aBC98sortHfvXq7Z2MVMJhPt2bOH3n77bfr6669p+/btdPToUcrKyrphsg6uN41GQ4MGDSK1Wk0JCQlUUVFBkZGR5OjoSLfeeiuJxWJSKBTC71pnio2Npaeeeoo++ugj2rNnDx06dIi+//57Wrx4MW3ZsuWal2uoqKggPz8/Cg0NpdTUVPr0009p6NCh5O/vT8HBwRQREUHz5s2j2NjYbrFj3tLSQseOHaMHH3xQqHe8f/9+4XFzXWkA5OzsTG+88cZN87mvqamhn376ie6//34aNGgQzZ49m5YvX07JycntPv/8zLGIiAj6+++/hcf0ev1Fv6tLSkro1ltvJQA0Z84c+uWXXygrK4saGxspLy+PYmJiKCYmhvLz86m+vp42bdokBOsfe+yxyx45YTKZaNeuXa3qZJ7fevToQRMmTKBZs2bRs88+S0uWLKHPP/+cNm7cSH/88QedPHmSMjIyKDo6mrZu3UqvvfYaOTs7Cyelx44de9HPwokTJ2jSpEkkkUhIIpHQkCFDaPTo0TRixAiSyWQUFBREJ06cuKztYuy/rra2lubOnUteXl6t/qcHDBhAH3zwQaua/lu2bBGCUwMHDqSsrKw2yzMajfTmm28SAJo1axZptVqqqqqiX3/9lX788UfKyspq9Xul0Wjoww8/pB49egjrViqV1K9fPwoKCiK1Wi3c7+/vTy+++OJVzZVwPUVHR5OTkxO5ubnRF1980eq9ZOxqFRYWUr9+/Ugul19wToBjx47RsmXL6MEHHyQ7Ozt68MEHr3idJpOJTp48SWfPniWj0UilpaX02GOPkUgkIi8vL3rqqado165dlxQraWpqoldeeYUGDhxI7777bqf+X5eXl9PatWuFfZa77rqLpk6dSkFBQWRnZ0fPPvvsJa2vubmZYmNj6dtvv6WQkBDy9/e/6Ai37du3k6OjIzk4ONDdd99Nn3322X9inqOtW7eSUqmkqKioazIK4GZgMBho7Nixwkilffv2kbu7Ow0aNEhILvrjjz8oKipKSPKVSCS0Zs2aLu13bW0tbdmyhb799lv64IMPLmkOkk4NoltaWtLHH398wedc6wPhZcuW0Y4dO4jo3Nmz6dOnt/u8xYsXt3ugdL2D6LW1tTRt2jThQyQSiWj48OH0ww8/CAeZ5uGGMpnsmgx9LywspE8++YQmTJhAVlZW1Ldv3w6/DHU63UW/KJuamqimpoaampr+MzUzu5Oamho6duwYrVmzhhYsWECTJ0+mgIAA6tWrF61du5Z0Oh21tLTQH3/8QaNGjSILCwv64Ycf2iynurqaXnnlFZJKpRQVFUXp6enXpf8NDQ20bNkyoc7l+a1v3760ceNGIWvv1ltvpfvuu49cXFyEQMeiRYu6dfaOmclkolOnTtEvv/xCa9asoa+++opOnDhxQ54IMBqNtGXLFurTp49Qm1QsFrf5+02ZMqXVTl1SUhKtXLmyS07SdAdlZWXUr18/sra2ppMnTwr3V1VV0dChQ2nQoEH07bffdusRUlcrLS1NmPxUKpXS7bffTi+//DK9+OKL9PjjjwuT+oWFhdGHH354XXdcy8vLaePGjfToo48KB3IAyMfHh5YtW9bhSJ309HSaN28eKRQKGjRoUId17q+Hs2fP0uTJk+mZZ56htWvXUmJi4mXthyUmJtKsWbOESa6ioqJo1qxZNHDgQLK2tiYrKyv68ccfW71Gr9cL2Uqvv/56m6zLS2U0GunTTz9tNeT5Qu2WW26hHTt2XNV+pk6noy1bttD69evpxx9/pG3btlFeXt4VLbO5uZm+//57euWVVy4ruFRRUUHffPMNTZ8+naZPn06zZs2ixYsX31CTizHWHeXn59Pu3bupqKiow+f88MMP9N577110X2zTpk0kk8lalaUyNxcXFwoJCRG+u6RSKT366KOUmJhIhw8fpg8++IAeeeQRevHFF+m9996jn376iQoKCjp7c6+L3NxceuCBB0gsFpO7uzs9/vjj9Mwzz9DChQuvWS3jm11iYiLt3r2btmzZQr/++utNeyyt1WrpkUceodGjR9OcOXNoxYoVtGvXLsrIyKAjR45Qjx49yNPT87JKGn311VckEokoLi7usvtTU1PTau4hmUxGCoWC1Go1ffHFF1e8L3Mt6fV6+vbbbykiIoJGjRpFzzzzDC1YsEAY0XL//ffTqlWrKDExkQoKCmjfvn302Wef0SOPPEKRkZHCvp1YLKY+ffq0KcXSkZaWlv/knAjx8fHk7u5Onp6elJiY2NXd6XZeeuklkkgkrRKMTpw4QZaWlvToo4/S3LlzCQCNHj2aVqxYQVu2bKEnnniCANA777xDRqORdu3aRePHj6dp06Zd9u9iS0vLZf+f1tXVCfELkUhEdnZ2NHv27Iu+rlOD6H/88QfZ2NjQM8880+aAo6WlhdatW0dBQUGduco2vvrqKyFjLyYmpltmopeVldE///xDq1evJj8/P7KxsaEtW7ZQVVUVrVu3jsaPH08AyNPTk5588kmytLSkiIiI61JT6PTp02RnZ0dDhw5tNVzFYDDQ2rVrycvLiywtLemdd95pdwfzp59+alU+RiaTdfjcm5lWq6W0tDT67bffaMOGDbR//35KS0vrtCwNrVZLTz/9ND3wwAP0888/U1lZGW3ZsoUmTJggZNGIRCLy8fGhiRMn0osvvihMaObp6Une3t5CYOrPP/+84LpiY2OpZ8+eJJfL6b777qMhQ4ZQjx49yMvLi4YPH06zZs2iJ598kp5//nl66aWXaN68efTII4/Q/Pnz2z1TbzQaKSsri3bu3Ek//fQTbdq0iX788Ud666236N577yUXFxeSSqXCWfTGxkZqaWmhvXv3CkPu1Wo1bdiwQfieMZlMFBcXR08//TTZ2tqSVCqldevWdcp7bTKZqKCggLZt20aLFi2it99+m3bt2kX5+fkXDKw0NDTQyZMnaf/+/bRjxw46ePCg8H78/fffwpDg80vomDOUpk6detESSyaTierr66m0tLTLsnT1ej19//33FBwcLASx/vrrLzKZTNTS0kLl5eWUlJRE+/fvp2+++Ybc3NxIqVTS4sWLhSxTAPTggw92i0zjq2E0GtucDEhISKD58+fTJ5980ubvmZ2dTQEBAeTi4nJFO/s3k1OnTtH69evbDTYbDAb6/fff6b777iMrKysSi8U0YcIE+uKLLy57MqnMzEz6/vvvae7cuXT//ffTnj172j0ISE1NpeHDhwvfpb169aKHHnqIVqxYQQcPHrzkA4eYmBiyt7enyMhIKi8vp7KyMlq9ejW98MILtGrVKjp27NhVBUbr6+vp8ccfp5kzZ3aYMTlq1ChycnKinj17CtvTo0cPmj17Nv3vf/9r9zfJZDLRwYMHaeLEicJvxkcffdRm/hStVksPPvggAaCFCxfSsWPH6IsvvqARI0aQhYVFp34HFxUV0R9//EEbNmygvXv3UlxcHJ06dYp+//13Wr9+/U1bc5Ex1n3FxMTQ888/T+vXr6ecnByqqqqi3bt306uvvkrPPvssLVu2jFavXv2fmHsqIyODHn74YerXrx/16tWLXF1dSSwW04IFC/7zddMPHDhAY8aMoccff5xWrVol1Mn+t4aGBnryySfbnJRZtGjRde7xtafVamnChAkkk8no7rvvpt69e7cpLThkyJDLnmdGr9dTcHAwjRkzpt3jipaWFqqoqKD09HQ6duwYHT16lOLi4mj//v3k6+tLdnZ29NNPP9GePXvok08+oWXLlt2Qc1zU19fTihUrKCoqiiQSSav31dLSkiIjI+nRRx+lL7/8ko4fP84n6S9DQUEBRUZGkrW1Nb3yyiuUkJBwwx/DdoaffvqJANCnn37a5rHVq1cLNfW/+uqrVu+XyWSit99+Wzg+AUD9+/cnV1dXsrGxoW+//ZZSUlJo+/bttHz5cnrooYdo8ODB5O/vT48//jj9+eeflJGRQYsWLSIXFxdycHCgjz/+uFVZzY7+PjqdjsaMGUO2trYUGxt7WSeGOr0m+unTp8nDw4PuvPNOampqIp1OR1999RX5+PiQWq2mN998s7NX2cq/a6L/9NNPl/S661ET3WAw0FNPPdXqi2zo0KHtBgISExNp9uzZpFKp6IUXXriuQ+Sio6NJpVLRqFGjaMmSJfTYY49RUFAQAaB77rmH5s+fL5yx/P3336m0tJT0ej298MILBJybhG7Lli30448/0osvvkgSiYSioqIoISHhuvTfZDJReXk5HT58mD755BOaOXMm3XPPPe3WY7oW9u/fL2Qs/rs5ODjQp59+2m7mbWFhIc2cOZNmzZpFCxYsoM8//7zdzGSNRkOjR48muVxOvXr1arX8wYMH06pVqyg+Pr7dH8SkpCR69NFH6bHHHqPjx49f8pd+Q0MDPfvsszRkyBB64IEHaPHixbRo0SKaMWMGDR06lCIjIyk0NJQCAwMpIiKCBg0aRDY2NhQQECCcqY2OjqbJkye32UkyNycnJxo5ciQ999xzF8wkT01NvWD9xcbGRnrssccIAC1YsOCqMjiSkpJaBbvd3NxaDb1VKpUUERFBU6dOpffff5+OHDlCSUlJ9Oyzz7abSX/+D0S/fv1o165dVFZWRgaDgXQ6HR0/fpzef/99cnZ2Jk9PT4qNjRW2aefOnfTqq6/SbbfdJpzMMi/Tzs6ObrnlFnrttdfozJkzV7y9/1ZbW0uHDh2izz//nHbs2CH8IDU1NdGXX34pnIyZMmXKJY2Sqauro3nz5pFIJKLIyEjasGEDff/99wSAlixZctHXV1RUUEJCAh0+fJj++uuvbpHBnp6eTq+99hp5e3uTRCKh3r1702OPPUbDhg0TPtdSqZSkUilNmTKFZs+eTXfeeSc5OTlRQEDAZQeC/8uqq6vpm2++odGjR5NUKhUC3OvWrbvgZ6GlpYVeeukl4f8lJCSEwsPDCQAFBATQsmXLKCYmhlpaWmjVqlUkl8spODiY1q9ff9WZ74mJieTi4kL29vYkFotJLBaTr6+vMFJDLpfTvffeS9u3b2/zO19eXk5ff/01ffbZZ7Rq1Sr6+eefKScnh0wmEyUlJVFwcDAplUpyc3MTTjyef7D35ZdfEgD666+/iOjcQdX+/ftp4cKF1Lt3bwJAtra29Nhjj9GqVato7dq1tGrVKho4cCABoPDw8Faj4tpjMpno448/FrZHKpVS3759W2WhMMYY+28xGAy0fPlysrKyosDAQDp8+HBXd6lT7dy5k77++uuLPm/r1q1kaWlJffr0oYiICCGgOXToUNq4cSPl5+dTXFwcbd++nQIDA0kul9OXX35JxcXFVFNTQ8uXLycAtH37dmGZN3rArqmpicaPH09yuVzYPyE6t12FhYX0999/0//+978rnltm586dBIB+//13ys/Pp+eff54CAgKEUY8dtf79+98QI5kvV0NDAx04cIB27dpFmZmZN+3IhutJo9EIc1gAoIiIiEvO4r9Uer2eoqOj24wgzczMpBUrVrQ5foyOjqZPPvnkun8/lJSUCMdOs2bN6nD9mzdvbjfhx2zdunU0ffp0OnLkCJlMJqqurhZKDpubjY0N9e/fn2bNmkXz5s0jPz8/4TFbW1uaN28ePfbYYyQWi8nb25vuuOMOCgoKIgsLCwoMDKS5c+fSTz/9RH/99RedOHGCpk+fTpaWllc0Wfg1mVi0sLCQIiIiKCIigtzc3MjJyYmWLVt2yZNhXq358+fTsGHDaMaMGZccZLnWQfTa2lqaMGECWVhY0IoVKygpKalbn5k/dOgQOTo6kouLC/Xr14+mT5/ealheTEyMEIQwBwIsLCzos88+a/PPY36uhYUFLV68+IoCX01NTfTuu+/SlClTaOXKlW2+OEwmE/3+++80atSoVj+SMpmMBg0aRG5ubuTu7i5MvrFnzx7q1asXhYaG0meffXZZf/etW7fSww8/TO+88w5t2rSpVdAiNzeXHBwcaMyYMXTgwAHKy8ujhoYGysrKooMHDwr/2P7+/rRx40bhhywtLY28vLzI1dWVhg8fTv7+/kKQVC6X04gRI2jRokW0Y8cO6t+/P9nY2NA///xDROcmJfvhhx86/cv7amVlZVHv3r1JLpfT6NGjheDVhx9+SHv37qXCwkKqr68njUbT6XWDTSYTffLJJ8KXqIeHBymVShowYADt2bOnwy94k8lEtbW1QmDUwsKCgoOD6X//+58w/NdkMlFeXh7t3LmTPvroI3ryySdp1KhRrUZgODk50SuvvEIxMTGUnZ1N5eXllJycTD/++CO98sorbeYm+Lf8/Hzq378/yWQymjhxonBSxtXVlSZOnEgvv/wyffbZZ7Rx40bavn07vfPOO3TXXXeRvb09Aecmx/vqq69o06ZNtHv3bvruu+/oySefpEGDBlGvXr0oMjKSoqKiqH///jRo0CAaPXq0UO5h69at9PTTT1NISIiwPeaApVqtppkzZ5KLiwuJxWKaPn36FZ0c02g0rbZ/6dKlBIA+//xzys/Pb7ODV1lZSc8++6yQrW9unp6etHLlyi7LoFiyZIlwEuOJJ56gL7/8kh599FGKiIigW265hbZs2UJ6vZ4qKiro008/peHDh9OwYcNo0qRJ9Nhjj92wk6l0BxqNhnbs2EGTJ08mAOTh4UHPPfccffTRR/Tzzz9TQkICGQwGqq+vpylTppBYLKYPP/xQGA1iMpnoyJEjNH36dFKpVMJJMQD0xBNPdOpnKiMjg+bOnUvfffedMCJBq9VSXFwcvffeexQZGUnAuckoZ8+eTVu3bqW5c+eSTCYjiURCMplMyCI3b6tcLqfw8HBKS0ujxsZGevfdd8na2pqcnJxo48aNdPbsWVIqlTR37twL9uuNN94gX1/fVssfMWIE/fbbb5e1I56SkkKnTp3iCVUZY4wJ0tLSaMiQIQSA5s2bd9X7+42NjZSWltZJvWstPz//opOkNjU10Zw5c4Tfy3+XM0tOTqY9e/bQ/v376aOPPiKRSET333+/cOzb2NhIW7ZsEUbWnt8GDBhAGRkZrZZnMplo6tSpZG1tTQkJCfTdd99RcHAw+fn5CYk2N5LKykoaMWIEKRQKOnDgwDVZh8lkopEjR5KDg4Mw6ei8efPovffeo9WrV9P27dvp0KFDlJSURCkpKRQbG0vHjh3rFok57Mai0+lo165d1KtXL7K3t6djx44Jj50+fZo+//xzmj9/Pt1zzz00depUeuKJJ+jVV1+lXbt2tYoD6vV6Sk5Opp9//plef/11Gj9+fKu4QkhICL3++us0adIkYX/d1taWtm/fTiaTiT777DPhGHnLli3XbHvT09Ppo48+omeffZbuv/9+6tevHwHnygFNnjz5mhyPx8TE0KFDh9odeW+uRLBt27ZW605LS6MZM2bQhAkT6LnnnqOVK1fSk08+KSQFm5tIJLri96vTg+i1tbX09ttvk4ODA8nlclIoFDdEzaDLDaK3tLR0WBu8oqKCPvzwQ4qMjKTIyEgaN24cBQQEtJmErLu72AF0S0sLZWRk0LZt22jZsmUXzETV6XT05ptvkoWFBUVERFxy+QLzpKteXl5kYWFBQ4YMEQJ6fn5+NH36dHr//feFHbQhQ4bQu+++S1u3bqXExEQhg66oqIiioqJIpVLR2LFjCTg3Q/Y999xDEomEVCpVmx2h9hw+fJgkEgkFBAQIAUtHR0fatGkTabVa6tu3L3l7e19w6FdSUhLddtttQhbk8uXLyd7ensLCwlrVftLpdBQdHU0rVqygqVOnChnMTk5Ol1Ufris1NjYKddd+/vnn6372e//+/fTMM8/QG2+8QR999FGrz4m5Bnl1dTVt2bKFpk6dKgTTzMPd3nrrrUsOChkMBjp16hTt3r27UwJJ5pI9I0eOpA8++KDNjnVHr9mwYQMNHTq0VVBMJBJRaGgozZo1i5555hl66qmnaM6cOfTYY4/RI488QtOmTaOgoCDhNX5+fvT4448LZRIMBgMlJyfTK6+8QqGhofToo492asa7yWSiRx99VOivhYUF+fr60ujRo2nmzJlka2tL1tbW9O6779KJEycoLS2NYmNj6YEHHiCJREIuLi7066+/dlp/zHJycjrMRDbPq7FkyRKeTKuLJSUl0UMPPURBQUFtyom5uLiQSqWi3bt3d/h6nU5Hhw4dorfeeuuafI4uRVpaGi1evJh69uxJwLmJSd955x3ht8Q8i/3OnTtpwYIF9Oqrr7bZWS0pKRHmWLGzsyMvL6/LSl5oaWnhIDhjjLFO1dLSQitXriSFQkEeHh709ttvU25u7mUvZ9euXeTj40MAaNKkSZe0X3wpmpub6fXXXyeJREJKpZLeeOONNsf4LS0ttHv3bmGOslWrVtGsWbNIoVBQUlISmUwm+vDDD9vMBzRv3rwOSwSYy36ePHmScnJyOnyeRqMREltEIhHdcccd1L9//4tOuNndZGRkUEBAADk6OtLRo0ev6bri4+OpX79+tGLFiptmgnfWfdXU1NDw4cNJLpfTm2++KQSXpVIpBQQE0JgxY2j8+PHUt29fcnNzE5Ikx4wZQ+Hh4UJsyzzqfdKkSfT+++9TdHQ0/fbbb/TAAw+QtbU1RUZG0tq1a6mkpISmTp1KwLn54gDQ888/T5MnTyZ3d/dOT1z+5ptvhOoHCoWCwsLCaPTo0TRr1ixav379RU8+didVVVWUnZ1NCQkJVzXypFOD6K+88grZ2tqSn58frVq1ihoaGujBBx8kZ2fnVpOmdUeXE0TPz8+nwYMHtzkwr6mpoccff5wsLS3J0tKS7rvvPpo7dy5NnTqV7rjjjm6XKdwV4uPjKTIykhQKBR06dOiCzy0rKxOyDKdMmSLsLGk0Gtq2bRs999xzNGTIEJLJZNSvXz/6448/LlqjeurUqeTr60tbtmwRnltYWEjTp08nqVRKf//9d4evLy4uph49etCIESOE4HxhYSHde++9BIC8vb1JJpNdcoA7NjaW7r77bgJAw4YNu+jkcyaTic6ePdulk9Td6EwmE+3Zs4eGDRvWJqu5b9++wuiCgwcPdjhp4I3CaDSSRqMRMv4vRX19/QUn3LqWTCYTpaSk0G+//UZffvklLVy4kO69914aNGgQzZs3r8OsbfPEiQBozpw5reZyaG8dJSUllJubSzk5OR3+jZubm+m1114jiURCVlZW9Nxzz1FJSQkZjUYqKCigV199lQDQ8uXLO2XbWecxDwE8dOgQffLJJ/T000/fECfyzUwmE2VmZl7ViZlff/2V+vXrd82yvBhjjLHLlZ2dTQ8++KBwsnvixIltRhYXFha2mU8pMzOT7rjjDgJAEyZMoDVr1pCPjw9JpVIaN24chYeHk0qlIkdHRxoxYgTNnTv3kofnR0dHtxotvXDhQpLJZGRvb0+TJ0+mp59+mubPn08eHh5CyY/k5GQiOpcoFBERQYGBgTRjxgwCQK+88grl5+dTdnY25eXldcr7Zn4PFi1aROnp6UR0LiN+5syZBIAef/xx4f7uaufOnaRWqykkJITLGLKbUlNTE911110kFovptttuo19++aXdcogmk4nS0tLo/fffp8mTJ9OTTz5JX375JR06dOiCSZjtZWF/9tln5OXlRZs3byaic8lfcrmc5s+ff0XbYJ7T7HwbNmwgADR16lTavn17t66kcT11ahDdXEP032/+66+/Tkqlkn755ZfOXF2nutQg+p49e8jBwYE8PT2FSRxXrFhBf/75J7m7u5OtrS29//77N9QZmeutsbGRbrnlFlIqlXTkyBEyGAz05ZdfkouLCwUHB9NLL71E3377LTk7O5OTkxPt3Lnzgsu73Nmh2wu06/V6Gjt2LNnZ2bU7TFCv19OwYcPIzc2t3UlOtm3bRj179qQNGzZcVl+IzpVj4SFk159Wq6WTJ0/SDz/80KlZ1ez6M5lM9M0335BcLidnZ2d66KGHaPPmzbR37176+OOP6dFHHxXq9P97+KyPjw899thj9M0339C3335LX331FfXq1YukUim9/fbbtHTpUrK1tSUrKyuSyWTC6ziAzhhjjDF2eerr62ndunXk7e1NSqWSvvjiCzp58iTdc889JBKJSKFQ0Ny5c+n48eP07LPPklQqJQ8Pj1YJUFqtlt599126/fbb6emnn6YPPviAlixZQvfddx8FBAQQABo3bhwdO3aMtFptm2O/pKQkuvPOOwkARUZGUnx8vPBYUVERvfzyy3TbbbdReHg4ubq60uOPP04xMTFtlpOZmUm2trYkl8tp06ZN1/y9O5/JZKJPP/2UnJ2dhZMSF0tQu94KCgrorrvuIgA0efLkNidIGLvZdHWQ+d133yWJRHLZ5VbNo8JdXV1p3759RHRurkmZTEYPPfTQDT8XQ2cTERGhkxARRCJRu4999913mDdvHj766CPMmzevs1bZaTQaDWxtbVFXVwcbG5tWjxERDh8+jE8++QQ7d+7EpEmT8MMPP0CtVuPVV1/F+++/DwAYO3Ys1q5dC09Pz67YhBtKY2MjbrvtNpw6dQqenp5IT0/HAw88AAsLC/z2228oKyvDpEmTsHbtWri4uFyXPtXV1WHIkCHQarV4/fXXERUVBQcHB2zatAnr1q1DVlYWDh06hCFDhlyX/jDGLk9mZiZWr16NPXv2IDk5GQAgk8kQEhKCsLAwhIWFISQkBEqlEsC57/1Dhw5h//79SE1NBQBIJBJERkZizZo16N27NwCgpqYG69atg0Qigb+/P4KDgxEQENA1G8kYY4wxdoOrr6/Hyy+/jK+//hoA4O/vj5deegnl5eX46quvUFZWBhsbGyxatAjPPfcc5HL5JS2XiLBjxw688cYbwr6dVCqFUqkU4hS1tbXw9fXFkiVLMH36dEgkkivejuTkZEilUgQFBV3xMq5Gc3MzNm/ejI8//hiJiYkYO3Ysli5dikGDBnVJf4Bz+82ffPIJPvnkE6hUKqxcuRLTpk3rME7EGOscer0evXv3RklJCfr374+oqCjcddddrb4PEhIS8NVXX2Hu3Lno06cPAOCdd97BG2+8gT59+uD06dOYP38+tm7dCnt7exw5cuSSv3//Kzo1iH4xe/bswX333QeNRnO9VnnJOgqinz17FtOmTUNcXBxCQ0Mxf/58PPTQQxCLxcJztmzZAo1Gg4cffrjV/ezCGhoaMHXqVBiNRnzwwQeIiooCAJhMJhQUFMDLy+u6/9jm5eVh6tSpiIuLg/lfw8rKCnfffTfmzZvHAXTGbhCFhYVobm6Gr6/vJR0cXegkMGOMMcYY63zHjh1DRUUFJk+eLOyv6XQ6HDx4EFFRUXBycrqi5RqNRvz9998oKyuDRqNBY2OjcGzn5uaGe++9F5aWlp22HV3NZDLhl19+wZtvvomUlBQsWrQI77zzznWLTej1esTExGD37t346quvYDAY8NRTT+GNN96Ara3tdekDYwzIycnBhg0bEBcXh5iYGBQXF+O2227Dyy+/jK1bt+KLL76ApaUlWlpa8Oabb8LHxwezZ8/GkiVL8Prrr+ODDz7A66+/DrVajdjYWHh7e3f1JnU71zWIDgBxcXFCsLQ76SiI3tzcjIceeggPP/wwxo8fz0GW/4iGhgacPn0aRUVFGD9+PNRqdVd3iTHGGGOMMcYYa5fRaMTHH3+Ml19+GdOmTcP3339/TbNIi4uLMW/ePPzxxx/QarWwtrbGE088gQULFly30eSMsfaZTCZs3rwZixcvRmZmJlQqFRYvXownn3wS7733HpYvXw6j0YgHHngA69evF2KdiYmJkEqlCAkJ6eIt6J6uexC9u7pQORfGGGOMMcYYY4yx7m7Hjh2YOXMmIiIi8MUXX6Bfv36dvo7du3fjoYcegqWlJebPn4+RI0ciMjISFhYWnb4uxtiVa2lpwb59+xAREQF3d3fh/pMnT2LXrl14/fXXYWVl1YU9vLFwEP3/cBCdMcYYY4wxxhhjN7qTJ09i9uzZyMjIwKRJk7Bo0SIMHTr0qkfWGwwGvPzyy/jkk08wefJkrFu3Do6Ojp3Ua8YY695u2CB6fX09xo4di5SUFERHRyM8PBwAsHnzZnz66aeQy+VYv379JU/yyUF0xhhjjDHGGGOM3QyMRiM2b96MpUuXIj09HZ6enrj77rsxevRoeHh4wNXVFSUlJYiJiUFcXByqqqrQ2NgIAHjmmWdw2223tVpeSUkJ7r33XkRHR+Ojjz7Cs88+y+VuGWP/KTdsEL2lpQU1NTVYsGABXnrpJYSHh8NgMGDYsGH4559/EBMTg/Xr1+Pbb7+9pOVxEJ0xxhhjjDHGGGM3E6PRiH/++Qfbtm3Dtm3bUFJS0upxiUSC8PBw9OjRAyqVCiUlJTh27Bhuu+02vPbaa6iurkZaWhpWrFgBsViMLVu2YMiQIV20NYwx1nVu2IJVFhYWbWbrzszMRFhYGCwtLTF06FC89NJLXdQ7xhhjjDHGGGOMsa4lkUgwatQojBo1CitXrkRZWRmKi4tRXFwMR0dHREZGtpqAlIiwfft2vPjii0KwXKFQYMyYMVi9ejVPGsoY+8+6YYPo7amtrW2VRW40Gjt8rk6ng06nE25rNJpr2jfGGGOMMcYYY4yxriIWi+Hq6gpXV1f07du33eeIRCJMnToVEydORFxcHLy9veHu7g6xWHyde8sYY91Ltw+il5aW4p577mlz/6+//gp7e/tW96nV6lbBcIlE0uFyly9fjiVLlnReRxljjDHGGGOMMcZuAgqFAsOGDevqbjDGWLfR7YPoPXr0wJEjRy7puQEBAUhNTYVer0dMTAwiIiI6fO6iRYvw4osvCreJCHq9HtbW1lfdZ8YYY4wxxhhjjDHGGGM3h24fRL+QSZMm4fTp08jIyMCcOXPw0EMP4fnnn8fIkSMhk8nwww8/dPhaKysrWFlZXcfeMsYYY4wxxhhjjDHGGLvRiIiIuroTjDHGGGOMMcYYY4wxxlh3xDNDMMYYY4wxxhhjjDHGGGMd4CA6Y4wxxhhjjDHGGGOMMdYBDqIzxhhjjDHGGGOMMcYYYx3gIDpjjDHGGGOMMcYYY4wx1gEOojPGGGOMMcYYY4wxxhhjHeAgOmOMMcYYY4wxxhhjjDHWAQ6iM8YYY4wxxhhjjDHGGGMd4CA6Y4wxxhhjjDHGGGOMMdYBDqIzxhhjjDHGGGOMMcYYYx3gIDpjjDHGGGOMMcYYY4wx1gEOojPGGGOMMcYYY4wxxhhjHeAgOmOMMcYYY4wxxhhjjDHWAQ6iM8YYY4wxxhhjjDHGGGMd4CA6Y4wxxhhjjDHGGGOMMdYBDqIzxhhjjDHGGGOMMcYYYx3gIPr/ISJoNBoQUVd3hTHGGGOMMcYYY4wxxlg3wUH0/1NfXw9bW1vU19d3dVcYY4wxxhhjjDHGGGOMdRMWXd0B1jEiQnl5OXJzc5Gbm4u8vDzk5+ejoKAAFRUVaG5uRnNzM7RarXBdIpFAJpMJTS6Xd3hbpVLBwcEBjo6OrS5tbGygUCigVCqhUCi6+m244RARTCYTWlparrgZDIZWt41GI0wmk9DM62ivnf+YSCSCQqGASqWCUqkU2r9vW1padvXbxthNg4jQ0NCAqqqqVq26uhoNDQ3QarVoamoSWn19PcrLy1FWVgaNRtPud0B7o6TEYjFsbW1ha2sLOzs74dLe3h5OTk5wdHSEk5OT0My3+XudMcYYY4zdDAwGAxoaGtDU1ASlUgkbGxuIxZwryhi7NkTE9UsAABqNBra2tqirq4ONjc11W69Wq0VmZiYyMjJw9uxZIWBubs3NzcJzbWxs4OXlBU9PT7i4uEChULQKkMtkMphMpjaB9X/fNl+vr68Xgjsmk6nd/imVSvTo0QPOzs6wtraGtbU1VCpVm8v27jv/Ui6XQyQSXdP38t+B5ZaWFmi1WjQ2NgrBqqu5rtVqLzkI3lVEIhHEYrHQTCYTDAbDRV8nlUqhVCohlUpbNQsLC8jlctjb28PBwaHddv5jdnZ2vNPCbijm70yNRoPy8vI2rbq6GrW1tdBoNGhuboZer4fBYBDa+bd1Op3wXdHed6pUKhW+DxUKhdBUKhWcnZ3h7OwMW1tb4X/P/H8okUja/b9qaWmBRqNBbW0t6urqUFtbi5qaGlRXV6OyshIVFRVobGxs8zqFQtEqqO7s7CwE2s3XbW1thROp519aWVld8+9yxhhjjDH230NEqK2tbZVEWFhYiMLCQlRUVKChoaFN0+v1rZZhTjJRq9VQq9WwtrZute9qvt7efR1dl0gksLS0hJWVFaysrFpdN9+Wy+XCPr6Liwt69OgBFxcXuLi4QCaTXZP3izF2/XEQ/f9cyyA6EaGsrAzp6enIyMhAenq6cD03N1fIMLSxsYGvry98fHzabXZ2dp3aLzOTyYS6ujpUVlaiqqpKOJPb0NCA8vJylJSUoKysTPihqq+vb3Vpzqy8EJFI1Cqwbg6qm5tYLO7wtrl/tbW1aGhogMlkapOZbTQar2jbRSKRECA6P1jU3nWZTCYEt66kXc1rJRKJEEj7d6Dc3DoKbBkMBjQ2NqKxsRENDQ0XvG4OBpozYQ0GA7RaLaqrq9tk1TY1NbVZl1gshqOjoxCIMwcGz7/t4OAAtVoNe3t7qNXq63KChd1Yzh/NYTQaW43IMF8aDAZoNBrhu6Gurq5Nq6ysRFlZGcrLy4WTYP9eRkffXUqlEk5OTnBwcBCyvWUyGSwtLYXg9r+vW1paQqFQQC6Xw8bGptUIHwcHByiVyuv+WddqtUJAvaKios318vJy4XZFRQVqamouuDyxWAyFQgFra2u4urrC1dUVbm5ucHNzE26bDxg8PDxgYcED3hhjjDHG2DlEhOLiYsTFxSEzM7NVwDw3NxcajUZ4rkwmg6enJzw8PODi4gJra2thVPX5TalUQi6Xo7GxETU1NUJiSU1NDRoaGlqt+/zLS73e0tICvV4PnU4HnU7X6rq5mZMVtVptmxGkdnZ26NGjhxBYN1//920nJyfed2asm+Mg+v/pjCB6Y2MjMjMzcebMGaGZg+bmHwOJRAI/Pz8EBwcjKCgIwcHBwnVHR8fO3KTrqqWlBY2Nja0C6+0F283XzT8u5mYuQ9LedfPZZDs7O6hUKiGYbL48v51/n0QiaZXt2V6AnLMqr1xzc7NQosIcWK+srBQCc+c3c4CuvexcS0tLIVNArVbDzs6uzZn9a3H9/JMal5o9bzKZoNFohO3V6XRtArwmk0kondRRk0gkrT7/5gac22EzZztcz8+myWSCXq8XdgrNl+2NbDl/VIv5Nec38+sv5bHm5mYh6N3Q0CC8l1dCKpUKZU1sbW3h4OAgBHQVCoVwQur8S/P3gbW1dauTPkqlspPf4RuDwWBAZWUl6urqWo3G+fdlXV0dSktLUVxcjOLiYpSUlKC0tLTV/7iVlRXCwsLQq1cvRERECM3Z2bkLt5AxxhhjjF0vBoMBcXFx+Oeff/DPP//gxIkTKCsrA3BudKSvry+8vb3bJBB6e3vDycnphjtWNxqNqKysRGlpKUpLS1FWViZc//d91dXVrV4rEong5OQEV1dX+Pv7IyAgoFVzd3fnUd+MdTEOov+fywmiV1dXIyUlBSkpKUhNTUVKSgoyMjJQVFQkPMfBwQGBgYFCoNx86e/vz/Wn2X+SyWQSAu7mzABz6Ynzb9fV1bU6q9/RWf/zr3eGf2f/i0SiVlnQ5gD59WJhYQEbGxtYWloK/bCwsBBOBJhL9ZzfTCZTm+GF/z6BoNVqUVtbi9raWqE8iV6vv+IyROY+mTOxze1y7jMHvlUqVavRFxe6NL8/5oC5OVP8RtvRvpn8+6AhPT0dSUlJSExMREpKijB6xdXVFX369GnVfH19+W/HGGOMMXaDa2hoQHR0tBA0j46OhlarhUKhwKBBgzBkyBD07dsXUVFR8PT0/E/v/+l0OmFepPOD7EVFRcjOzkZWVhby8vKEY1ArKyv4+fkhICAAnp6ewojQ80eHOjo6cqCdsWuIg+j/p6MgemVlJb788kucPXtW+CIznzmVSCQIDAxEWFiYECgPDAxEYGAgHBwcumpTGPtPISK0tLRccsDdfP3fdezbC5i3V1bH2toajo6OsLe3F7LKz38OgFbD+dprRNSqHt/5DTgXjKyvr0d9fT30er2wbqPRKAS+xWJxmxr2YrG43eGF5ze5XA61Wg1bW1vI5fI2we3zg+7m+n7/nnvB3KysrHgnjV0So9GIs2fPIjExEfHx8YiLi0N8fDxKS0sBANbW1ggODkZISAhCQkIQGhqKkJAQ+Pr68rBWxhhjjLFuqqKiAkeOHME///yDI0eOIC4uDkajEQ4ODhg2bBiGDx+O4cOHo0+fPpBKpV3d3RuOXq9Hbm4usrKyhHhUVlYWCgsLUVJSgoqKilbPt7CwgIuLC9zc3ODu7g53d3d4eHgI152dnWFvbw97e3uu1c7YFeAg+v/pKIheVlaG3r17w8/PD/7+/vDz80NoaCjCwsLQs2dPzipnjDHGrlBpaSni4uKQnJyMtLQ0pKWlITU1FfX19QDOlegJCAhAUFBQm8YnqxljjDHGrh+DwYC0tDScOnUKx48fxz///IP09HQAgLe3txAwHzZsGIKDgznZ5jrQ6/UoKytDSUmJUGLRXG6xqKhIaO3NeySTyYSAurOzs1AG8/zr59+2srLqgi1krHu57CC6eZJBd3f3VvenpKQgLCysUzt3PV3LiUUZY4wxdmnME06lpaUhIyOjVcvLyxOe5+Dg0CqoHhgYKNTRVKvV/+nhwYwxxhhjV8NgMCA5ORmxsbE4deoU4uLikJiYCJ1OB5FIhNDQUCFoPnz4cHh6enZ1l9kFNDU1obi4GBUVFUJJVXOrrKxERUUFysrKhNZe0N3W1vaigXZzU6lUXbCVjF17lxVE37p1K1544QXY29uDiLB69WoMHDgQABAVFYW4uLhr1tHL8dJLL+HEiRPw8vLCunXrLilbnIPojDHGWPfW1NSEzMzMNsH19PR0NDQ0CM+zsbERJqUyD1t1cHAQsm3+fV0ul3fhVnUeIoLBYGg1ge/5ZazOvzQaja1KSYnFYohEIhgMBjQ3N8NgMEAikbQpG2WemLmjZn5cIpHwiQzGGGPsBmAymZCZmYmYmBjExMTg5MmTOH36NJqbmyGRSBAaGoqoqCihRUZGcpD0JqfX61sF1s2129u7XVFR0WbuMIVCccFAu7ncjJubG2e4sxvKZQXRIyMjsW/fPjg5OSE2NhYPPvggXnvtNcyYMQN9+vRBfHz8tezrJYmPj8eKFSvw448/YtmyZfD19cWMGTMu+joOojPGGGM3JiJCZWUlcnNzhZaTk4O8vDxUVlYKmTY1NTVob7fHPJxVqVTCwsICUqm01eW/r//7tkQiabdf5z/PPAFwS0sLJBKJ0M6f8+Bige+L3afX66/1W31ZLhZol0qlUCgUsLGxgbW1tTC3gzmgLxaLYWFhAZVKBWtra1hbWwvPba+pVCqoVCoePs4YY4x1gIhQVFQkBMtjYmIQGxuLuro6AEBgYCD69++P/v37Y8CAAYiMjIRCoejiXrPuzGg0orq6usMg+79v/3t/1cnJqVXd9n9f9/Ly4pM2/wEmkwn19fWoq6tDXV0dNBoNtFqtcAxlbnq9/oK3O7rPYDDAZDK1aTqdDvX19dBoNBg6dCi+/vrrC/bzsmbrMhgMcHJyAgD069cPhw8fxt13342srKxuk210/PhxjB8/HgBw6623Yt26dZcURGeMMcbYjUkkEsHJyQlOTk7o379/h88zGo2oq6tDdXU1qqqqhOB6VVUVqqqqoNVq0dLSIgS7zw98m5s507uxsVG43V5g3jzpsXkZ5uCxOWB+fjMH1tub3NfGxqbDiX8vNCnwhR6ztLSEhYUFiAgmkwlEJDSpVAorKytIpVIYjcZ2d0A72jG92GPtPd7U1ASNRgONRiNM6nx+vwwGAxoaGoTJljUaTZtsp39TKpWwsbGBo6MjHB0dYWdnJ2y7+e9gaWkJa2vrdkcnKBQKyOVyYWJlntyWMcbYjYSIUF1djezsbKFlZWXhzJkzyMjIQHV1NQDAzc0NAwYMwMKFC9G/f3/069cParW6i3vPbjQSiUTYDw8PD7/gc4kIdXV1KC4uRmFhoVCz3Xz95MmT2L59e5sJUx0cHODr6wtfX1/4+PgI1319feHt7c2TpHZDRISysjIhuSk3Nxd5eXnCSRXzsZdOp0NTU5MwJ9al+veI2X+Plj3/tvnYRyKRtEnYkclkcHZ2ho2NDaKioi663ss6KnB2dkZiYiIiIiIAnPsg79u3Dw8++CASExMva4OvldraWri5uQE4V7PJ/APxbzqdDjqdTrit0WiuS/8YY4wx1jUkEokQKA0ICOjq7rArQETQarVCUN3czg+0m4PtVVVVqKioQG1tLerq6oQgvrnV19ejqqoKjY2NF1ynhYUF5HI5FArFFTXzay0tLYWTA1KpFEqlEgqFAkqlstV1uVzO2fSMMcYuyGg0oqCgANnZ2Th79myrgHl2dnar+IaDgwP8/f0RFBSE2267DeHh4ejfv78QN2HsehGJRLCzs4OdnR1CQ0M7fJ5OpxMmR83Pz0dOTo7QTp06hfz8fLS0tAjPd3V1ha+vLwICAtCrVy9ERESgZ8+ecHFxuWnKNnY3548ENgfJ/329ublZeL5arYa3tzdcXV0RGBiIQYMGQS6Xw8rKCnK5HLa2tkKzsbGBra0t5HJ5h4HxrtpXvqwg+oYNG9pk41haWmLTpk2YN29ep3bsSqnVauEHo7a2Fvb29u0+b/ny5ViyZMn17BpjjDHGGLsKIpFICE67uLh0yjJ1Ol2rCba0Wq3QmpubodVq0dTUJFz+uzU0NKC8vLzdx5qamtodqXAxCoUCKpXqguVrOipvo1KpoFQqhUulUgmpVNop7xVjjLHry2AwICMjA/Hx8Th9+jRSU1ORnZ2N3NxcGAwGAIBYLIanpyf8/f3Rr18/3HffffD394efnx/8/f1ha2vbxVvB2OWxsrISMs3b09LSgqKiIiFoa24ZGRn4f+zdeXhU5dk/8O/smSyTZbLvCSSEJRDCviNIpQiKLy5FrdrX1qViq2+tVm3dWpdarXVpbevWasXa1qWKIhUVkB3CTlgSsu/7ZJLJLJlz//6gc34ZkkACCQH8fq7ruc7JZOacZyaZmXPucz/389577/klSFgsFiQlJSE1NbVbS09PR3h4+DlTWeNc0t7ejqqqKrVVVlaitLTUL0h+4uvsGylwySWXqOu+dqF8DvWrJvr54MSa6Onp6Vi+fHm3+/WUiZ6UlMSa6EREREQ0IEREHabqdrvVCVc9Hg/a29vR3t4Oh8PR4/qJmfUnZt93zcI/1eF8cHAw4uPj/SbyOrH2aFxcHEvXEBENIbvdjv3796sB8927d+PAgQNq3CI9PR1jxozBsGHD/FpKSgqMRuMQ957o3KAoCoqKilBUVITa2lrU1NSgvLzcL1O6ra1NvX9oaKh6wSk9Pd1vPTk5+YI7NnK5XKiuru4WIO/6c1VVVbdqHSEhIUhJSVHL6fiC4771sLCwb8TFiNMOor/33ntYtmzZQPdnQNxzzz3Ytm0bkpOT8cYbb/TpC4UTixIRERHR+UZRFL+guy8I39bWpi6bmprUEyRf/dHKykq/hBKtVovY2Fi/wHrXZXJyMpKSkpjVTkR0hkQEJSUl2LJlC7Zs2YIDBw7g6NGjqKqqAnB8Yu4xY8YgJydHbePGjbtgMjmJhpKIoLm5GcXFxWqw3VcSqaioCGVlZfB6vQCOl4JMSUnpFlxPTU1FSkoKIiMjhzxwLCJob29X53hqbGxEQ0MDGhsbUVNT0y043tjY6Pf4gICAbokWJ7a4uDiEhIQM0TM8t5x2EN1kMuGpp57C3Xff3et9RGTI/6H6ikF0IiIiIvqm8E0813VCr56WLS0t6mN0Oh2Sk5ORkJCAmJgYREdHqy02NhYjR45ERkbGBZe1RUR0JpxOJ/Ly8rB582Zs2bIFmzdvRm1tLQAgMzMT48ePR2ZmJjIyMjB27FiMHDmSmeVEQ8Tj8aCsrKzHAPuJ8w2YTCaEhYXBYrH4teDgYAQEBPTaTCYTgOOJEL01p9PZ6yjEE0ck+oL+XRmNRsTGxvYYFO/avikZ5APltIPoa9aswdVXX40bb7wRzz//vN+L7vV68dZbb+Gpp57C4cOHB6yzg4lBdCIiIiIif+3t7WodTN9JZHV1Nerq6vyab4Ivk8mEzMxMJCYmqpnsvpaWlob09HQGh4joglZRUaEGy7ds2YJdu3bB4/EgMDAQU6ZMwbRp0zB9+nRMnToVVqt1qLtLRH3kS0AoLS1FaWkpysvL0draitbWVthsNnW9ra0NLpcLTqezx+YbCajVantsGo0GJpPppPPidG2hoaGwWq2IjIxUl0FBQQyOD4Izqom+d+9eLF68GBMnTsTKlSuh0+nw2muv4emnn4bNZsOdd9553kzeySA6EREREVH/iQjq6+tx8OBB7N+/H4cPH/YrG1NbW6vWbdfpdEhLS0NiYiJiY2MRExPT4zI6OpoZ7UR0znO73dizZ49f0Ly8vBwAkJaWhunTp6tB8+zsbH6uEdF5VbWD/J3xxKKVlZVYtGgRAKChoQEejwd33XUX7rzzzvOqZg6D6EREREREA8/j8aC6uhpFRUU4evQojh49qgbXa2pqUFtbi6amJr/H+OqQDhs2DAkJCQgNDUVoaChiY2ORmJiIpKQkJCUlISIigieiRHTWuFwubN26FV999RXWrVuHbdu2wel0wmQyYeLEiWrAfNq0aYiNjR3q7hIR0QA6oyC6zWbDCy+8gOeffx4OhwMajQZbt25Fdnb2QPbxrGAQnYiIiIhoaLhcLtTV1amB9fLycrX+aE1NDWw2G1paWvxKxwCA2WxWg+pdg+tdbwsPD2egnYhOS1NTE/Ly8rB161asW7cOmzdvhtPpRHh4OObMmYNZs2ZhxowZyMnJUescExHRhem0g+j3338/Xn75ZVitVtx333247rrrcMcdd2D16tVYtWoVJk2aNNB9HVQMohMRERERndu8Xi/q6upQXl6O8vJyVFRUdFuvqqrym2QrMDDQL7A+atQo5OTkICcnB5GRkQywExEAoK2tDXl5edixY4faiouLAQAWiwWzZ8/GRRddhIsuughjx46FTqcb4h4TEdHZdNpB9JEjR+L+++/Hdddd5/fl8Ytf/ALPPfcc3n77bVx++eUD1tHBxiA6EREREdH5r7OzEzU1NT0G2MvKynDw4EG0t7cDAEJCQpCcnKyWjhk+fDiGDx+OYcOGIS0tjZOgEl2gXC4X9u/fj+3bt6sB80OHDkFRFAQGBiI3NxeTJk3CxIkTMWHCBGRkZECr1Q51t4mIaAiddhD9ZIXwX331VaxYsQLPPPMMVqxYcUYdPFsYRCciIiIiuvB5vV4cO3YMe/fuRWlpKcrKylBcXIxjx46hqKgILpcLAKDVahEXF4fY2NhuyxPXzWbzED8rIuqNw+HAvn37sGvXLrUdOHAAHo8Her0eY8eOxeTJkzFp0iRMmjQJI0eO5ASgRETUzRlPLNqb1atX45prrkFra+tgbH7AMYhORERERPTNpigKKisrcezYMRQUFKCiogLV1dWoqalRlzU1NX512QGok56eLNgeFxeHiIgIZrMSDZL29naUlpaq7989e/Zg165daoa5wWDAmDFjkJubi9zcXEyYMAHjxo1DQEDAUHediIjOA4MWRAeAXbt2ITc394y3k5eXh7vuugtarRYxMTF4++23YTAYkJGRgYSEBADAgw8+iAULFiA/Px+33HILvF4vfvnLX+Liiy/u0z4YRCciIiIiolNRFAVNTU1+gfWuAfaut9lsNr/H6vV6xMTE+AXWo6OjERQUhKCgIOj1enR0dMDhcEBEEBgYCLPZjMDAwB7XDQYD9Ho9DAaDuh4YGIjQ0FDWeqcLhoigqakJVVVVOHbsGI4dO4aysrJu7zm73a4+JiAgAGPHjlWD5bm5uRg9ejQn/yQiotM2qEH0gVJTUwOLxYLAwEA88MADGD9+PK666ipMnDgRO3fu9Lvv0qVL8Zvf/AYxMTFYuHAhNm/e3Kd9MIhOREREREQDqaOjA7W1tScNttfV1aG9vR0OhwMej0cNkvse77u9P/R6PaxWKywWCwICAhAQEICIiAjExMQgOjq6x2VUVBQMBsNgvAx0GpxOJ0pKSlBXV4eGhga/1tjYiObmZrS0tKCjowMajQZarRYulwutra1obW2FiECv13drvv+H/jSz2YyIiAhYrVaEh4erF3G6tv5MsunxeNDS0oKmpia1NTc3o66uDrW1td1aXV2d3+iPoKAgpKSkIC4uzm/UR0xMDFJTU5Geno7Y2FiO+iAiogF1XhT6io2NVdd9GRbA8dmz58yZg4SEBLz00kuIiIhAdXU1MjIyAABWqxUNDQ2IjIzstk2Xy6XWOwRw3pSdISIiIiKi84PZbEZqaipSU1PPaDudnZ1qQN3hcKjrnZ2d8Hg8fsu2tjY0Njaivr4ebW1tcDqd6OjoQGNjI44dO4bNmzejrq6u2/mPRqNBXFwckpKSem0xMTH9CpZSdyKCxsZG9UJK1+a7rbi4GBUVFeia76bVamG1WtUWHh6O1NRUmM1miAgURYHJZILFYkFISAi0Wi06Ozv9msfjgcvlgtPp9GsNDQ3dbuvaOjo6oCjKSZ+X0WjsMQCv1Wqh0WigKIoaOO+aMd5VYGAgYmJi1DZp0iS/n+Pi4jBs2DDExMRwpAUREZ1150UQ3aesrAxr167Fz3/+cwDApk2bYLVa8eabb+KRRx7BCy+84HegERoaiqamph6D6E8++SQeffTRs9Z3IiIiIiKi06HX6xESEoKQkJAB22ZHRwfq6+vVTN+qqipUVFSgvLwc5eXl2L9/P8rLy+FwOPz6kZCQgMTERERFRcFqtSIyMtIvsBscHIygoCAEBwf7rQcGBvYr8OnxeODxeCAifg04HrA1Go1Dnmnc0dHhl03ta42NjX7txNtOHFkQFhamZlQnJiZi5syZGD58ONLT0xEXF4fIyEiEhYUN2fMVEdhsNjUDvqOjQ72Q41v3Bdu7Bt6dTicURYGIQKvVIiwsDBEREYiIiEB4eLjfui/DnYiI6Fx1TpVzqampwZVXXtnt9o8++gh6vR5LlizBK6+8gszMTL/fd3R04JJLLsGGDRswdepUbN26FQCwePFi/OUvf+lzJnpSUhLLuRAREREREeF48LS5uVkNrPtaRUWFWlbEtzyx/vuJNBoNAgMDERAQAJPJBJPJpK5rtVq0t7ejra0N7e3taG9v71MJG51OB6PRCJPJpAbWTSaTOnq5azMYDGoQNzQ0FHq9HlqtFlqtFjqdDlqtFh6PB21tbbDb7Whra1ObLyDcNYvb4XD4nU92FRYW5pc1brVa1XIoVqu1WxkSs9l8Wn8fIiIiOnvOqUz02NhYbNy4sdvtXq8XS5cuxUMPPaQG0N1uN0QEJpMJGzZswPDhw9VtFBQUICYmptcsdADqgRsRERERERF1p9Fo1GzhcePGnfS+Ho8HNptNDYb7AuInrvuC0b7my1b2Za37MteDgoJgMBjU7HWNRqOuezweuN1uv+ZyudRl1/IlvnW32w2bzYbCwkK0tLTA6/VCURQoiqKu63Q6NeM/JCQEYWFhSExMhNlsVsuT+IL/vjrhXZsvo5olb4iIiC4851Qmem/eeecdrFixAtnZ2QCA22+/HXPnzsWiRYsQFBQEk8mE119/HUlJScjPz8ctt9wCr9eLxx57DAsWLOjTPjixKBERERERERERERGd6LwIop8NDKITERERERERERER0YkYRP8vEYHdbkdISAhn+iYiIiIiIiIiIiIiAAyiExERERERERERERH1SjvUHSAiIiIiIiIiIiIiOlcxiE5ERERERERERERE1AsG0YmIiIiIiIiIiIiIesEgOhERERERERERERFRLxhEJyIiIiIiIiIiIiLqBYPoRERERERERERERES9YBCdiIiIiIiIiIiIiKgXDKITEREREREREREREfWCQXQiIiIiIiIiIiIiol4wiE5ERERERERERERE1AsG0YmIiIiIiIiIiIiIesEgOhERERERERERERFRLxhEJyIiIiIiIiIiIiLqBYPoRERERERERERERES9YBCdiIiIiIiIiIiIiKgXDKITEREREREREREREfWCQfT/EhG0trZCRIa6K0RERERERERERER0jtAPdQfOFXa7HaGhobDZbLBYLEPdHSIiIiIionOC3W5HQUEB6urq0NjYiPb2dsTHxyMtLQ1paWkIDAwc6i4SERERDSoG0YmIiIiIiEhVU1ODVatWYdWqVdi1axfKy8v9fq/RaNQRvFqtFqNHj8bkyZMxZswYREVFISoqCkFBQdDpdNDr9RgxYgRCQkKG4qkQERERDQiNsH4JAKC1tZWZ6ERERERE3zBOpxMHDhyAw+GAy+VCcHAwcnNzYTKZhrprg6KiogKlpaWorq5GQ0MDFEWBoihobm7GwYMHceDAAeTn50Oj0WDGjBmYMWMGRo0ahaysLMTFxSEiIgIBAQGorq5GcXExDh06hB07dmDbtm0oKChAR0dHt33qdDpMmjQJF110EXJycjBq1CgMGzYMBoMBwPFAvFY7MJVGfae3Go1mQLZHREREBDCIrmIQnYiIiIjowuZ0OlFWVoaysjIcPXoUa9aswdq1a+FwOPzuZzKZMGXKFIwaNQqBgYEICgpCYGBgtxYcHIzo6GjExcUhJCQE9fX1qK2thdfrRVJSEmJjY6HRaGCz2VBfX4+Ojg54vV4AQFJSEqxW66AGe0UEbW1tqKqqwqpVq7By5Urs2rVL/b1Wq4Ver4dGo0FwcDBGjx6NMWPGYMqUKVi0aBEiIyP7vU+Hw4H6+no4HA54vV64XC7s3LkTX375JdavX4/a2tpujwkODsb06dMxZ84cjB8/HomJiUhISAAAtLS0+LXm5uZut7W0tKChoQE1NTWoqamB0+kEcDyQHhcXh8zMTKSlpcFut6O2thaNjY3wer3wer3QarWwWCywWCxISkrCxIkTMXHiRIwZMwbBwcGn+cqfnzweD/bv349t27Zh3759GDt2LK644grExsYC+P/ziBkMBhiNRuj1HNhORETfHOd1ED0vLw933XUXtFotYmJi8Pbbb2PUqFHqAdeDDz6IBQsW9GlbDKITEREREV0YnE4nDh8+jNLSUpSWlmL//v3YsWMHDhw4oAaxtVotpk+fjksvvRTz5s1DaGgoAgIC0NDQgI0bN2LDhg0oKSmBw+FQW3t7e4+Z1r3xZVp7PJ4efx8WFob09HTEx8cjNjYWkZGRasBer9dDURR4vV6EhIQgOjoaMTExagsKCoKIwOVyoampCUeOHMGRI0dw+PBhdVlVVQW32w3g+IWBxYsX4+qrr8bo0aMRFxeH8PDws56x3djYiEOHDqG4uBiKogAAqqursWHDBmzcuBF2u/2U27BYLAgLC/NrVqsVsbGxiI2NVV8br9eL8vJyFBQUoKSkBBaLBTExMYiMjITBYIBWq4XX64XdbofNZkNRURH27t2rvma+APySJUtw/fXXIyYmZlBfm7PF6/WiqKgIpaWlKCkpwYEDB7B9+3bs3r0bTqcTer0ew4cPR0FBARRFQW5uLux2O0pLS+FyudTtaLVamEwmGI1GpKWlYe7cuZg7dy4mT56sXkAiIiK6UJzXQfSamhpYLBYEBgbigQcewPjx4/HrX/8aO3fu7Pe2GEQnIiIiIjr3iQhKSkpw8OBB5Ofno6SkBMHBwbBarXC5XFi3bh02b96sBvuMRiOysrIwadIkTJo0CSNGjEBycjISEhJOq2SLoihwOp1wOByw2+2oqalBdXU17HY7oqOj1eBheXk5ysrKoNFo1DrhZrNZDY6XlpaisLAQRUVF6jYaGhrQ0dEBh8MBj8cDnU4HrVaL9vZ2NeDsYzQa4fF40PV0Tq/XY9iwYRgxYgSysrKQlJSEqKgoREZGYtKkSef8eY7X60VlZSUqKytRUVEBrVaLsLAwhIeHq8Fyi8UyqBnQbrcb+/fvx6FDh1BQUIB9+/Zh9erV8Hq9uOSSS9SkrREjRuDiiy8+b7Kxi4qK8OGHH2LdunXYsGEDbDYbgOPZ+unp6Zg8eTImT56MKVOmICcnB2azGY2Njfjoo4/w1VdfISoqCikpKYiJiVFHGLjdbrhcLrhcLuTn52PdunUoKSkBAERFRWHs2LHIyMhAeno6srKysHDhQvXCEhER0fnmvA6id/Xwww8jJycH999/P2JiYpCQkICXXnoJERERfXo8g+hEREREROcOp9OJI0eOoKSkBNXV1aiqqsKePXuwdetW1NfXAwBCQkKQlpYGh8OBxsZGiAhmzZqFefPmYerUqUhNTUV0dPSA1dseKl6vF42NjaitrVVbU1MTTCYTzGYzQkNDMWLECKSnpzNIOQiamprwzjvv4P3330dpaSkqKirgcrmQnJyMH/7wh/je976H6Ojooe6mH0VRkJ+fj7Vr1+Lvf/87tm3bhoCAAMyYMQNz5szBtGnTkJaWhqSkJBiNxgHbb1lZGXbt2oU9e/Zg//79OHbsGIqKimC325GQkIAVK1bgBz/4AaxW64Dtk4iI6Gy4IILoZWVlWL58OdatW4fW1lZYrVa8+eab2LlzJ1544YUeH+O7Yu7T2tqKpKQkBtGJiIiIiAaQ1+tFdXU1nE6nWvrBZDLBZDLB6/Vi8+bN+PLLL5GXlwen0wmPx4PGxkYUFRWp2dc6nQ4xMTEYNWoUpk2bhilTpmDcuHFISEhgyQg660QEu3fvxksvvYSVK1fC5XIhMzMT06dPR2pqKnQ6HfR6PRITE5GVlYWMjAx0dnaitbUVLpcLMTExCAsLO6P/XbvdjtWrV2PLli04evQojh49CrfbjYiICFgsFuTn56OhoQEGgwELFy7EtddeiyVLliAoKGgAX4m+EREcPHgQzz//PN566y243W6MGDECEydOxMyZM7FkyRLEx8ef9X4RERH1x4AE0ZubmyEiiIiIQH19PTZs2IARI0ZgzJgxA9HHk2ptbcWSJUvwyiuvIDMzU729o6MDl1xyCTZs2NDj4x555BE8+uij3W5nEJ2IiIiI6Ljm5mZs27YNpaWlaG9vh8PhQHJyMmbMmIH09HQ0Nzdj69at2LlzJ0pLS1FWVoa6ujq1xEhraysqKirUOuS9iY2NxbRp0xASEgKDwYDQ0FCMHDkSo0aNwrBhwxAZGQmdTnc2njJRvzQ0NOA///kPNm/ejM2bN6sTy7rdbjQ3N/f6OLPZjISEBMTHxyMhIQEpKSnIyMjA8OHDYbVaYTQa1QtORqMRXq8X+/btQ15eHjZs2IC1a9fC5XIhIyNDDdSbzWY0NTWhubkZw4cPx9y5czFt2jQEBgaexVfk5Orq6vDJJ58gLy8PO3fuxM6dO+H1ejFp0iTMnTsX48aNw9ixYzFy5MjzplQOEV24FEVBW1ubOol1e3s7xowZg5CQkKHuGg2BMw6iv/rqq3jyySehKAruvfdevP322xg7diw2bNiAH/3oR7jlllsGqq/deL1eLF26FHfddRfmz58Pt9sNEYHJZMKaNWvw7rvv4vXXX+/xscxEJyIiIqJvqpKSEuzcuROHDx9GYWGhWoPb19xuN6qrq3HkyBEAx+smBwUFwWw2q6VUwsLC0NLSAgCIjIxEeno6kpOTER0dDZ1Opz4mOTkZycnJCAwM9Kuh7HK5oCgKJk6ciKysLGaU0wWntbUVR44cwbFjx2AymWCxWGA0GlFTU6PWfve1kpISlJeX41Sn58HBwZg0aRIuu+wyLF26FKmpqWfnyQySpqYmfPrpp/joo4+wfft2lJaWAjj+PKdMmYKZM2fiyiuvPCsJekT0zSQiqK2txYEDB7Bv3z7s2bMHe/bsQUVFBWw2W7c5SfR6PaZPn46LL74YI0eORFpaGpKTkxEWFsaSahe4Mw6ijxs3Dtu2bVOzUoqLixEVFYXW1lbMnj0be/bsGaCudvfOO+9gxYoVyM7OBgDcfvvtePrppxEUFASTyYTXX38dSUlJfdoWa6ITERER0YWupqYGDz30EF577TUoioKIiAhkZmaqGeBdm9VqxZQpUzB16lQMGzZMDXI3Nzdjy5Yt2LVrF1JTUzF9+nSkpaUxCE50hpxOJ4qKimCz2eB2u9XmcrkgIhg9ejQyMjIu6FEZLS0t2LdvH7Zs2YJNmzbh66+/RktLC3JycrB8+XIsXLgQY8aMOe/nOSCigSMiyMvLw+eff46ioiIUFxejvb0dFosFFosFKSkpGDduHLKzs+HxeFBdXY2Kigrk5+fjwIEDOHDgABobGwEAgYGByM7ORk5ODtLS0hAeHo7Q0FB1cmuj0YgtW7ZgzZo1WL9+vTpJs09QUBAyMjKwbNkyXHnllcjKyhqKl4QGyRkH0XNzc7Fr1y4AQE5Ojl/QfPz48di9e/cZdfBsYRCdiIiIiC40dXV12LdvH44ePYr8/Hz89a9/hcFgwMMPP4zrrrsOkZGRQ91FIqJeud1urF69Gn/729+watUqOJ1OREVFqROjpqamYvTo0Zg6dSrLKxBdoEQEdXV1KCsrQ2lpKSorK6EoCgwGA5qamvD3v/8dhw4dQmhoKIYNG4a0tDRYLBbY7XbYbDYUFhaiuLjYb5t6vR6ZmZkYM2aM2rKzs5GWltbnC5UigubmZhQVFaG8vBw2mw3Nzc3Yvn07Vq1ahba2NqSmpmLatGmYOnUqcnJyMGrUKB57ncfOOIg+efJkbNiwAQEBAbDZbAgNDQVwfKKT2bNnM4hOREREvXI6nSguLkZFRQUqKiqg0+kQGxurtsjISL9sM99B9OHDh1FXV6dO3uZyudDS0gKbzYYxY8Zg/vz5HE5JFzxFUVBVVaVmXZWXl6OjowMulwu1tbXYsmULjh07BuD4yWJ6ejoWL16MBx98EBEREUPceyKi/nE6ndi8eTPWrl2LXbt2obS0FCUlJXA6ndBqtRg3bhxycnLU+RRmz57NwDrROU5RFBQUFODIkSOw2Wyw2+1oaGhQA+a++Va6lmM2m83Q6XTweDwwGAy4/PLLccMNN2D+/Pm9BsBtNhvy8/MREBCAuLg4REVFDeqono6ODvznP//B+vXrsXXrVuTl5cHtdgM4XgJv1KhR6rwvJpMJer0esbGxWLBgAYKDgwetX3RmzjiI3tbWhqCgoG7DN+vq6lBRUYHc3Nwz6uDpuOeee7Bt2zYkJyfjjTfegNFoPOVjGEQnIiIafE1NTfjss8/w5ZdfYufOnTh48CA6Ozt7vb9Op4PVaoVOp4OIwOFwoLW1tcf7ajQaBAYGor29HVarFVdccQUmTJiAYcOGYfjw4UhKSuIkZeTHbrfjq6++gtfrRWRkJMLDw6EoClwul1pCwe12IzQ0FBMnThyUCzMulws7duzAli1b1EC4zWZDdnY2Jk+ejMTERFRUVKCsrAw1NTVobGxEY2MjysrKUFJSop6QAUBUVJRa1jA8PByTJ0/GtGnTMGHCBKSlpfH/n4guOIqi4MiRI9i0aRM2bdqEAwcO4PDhw2hra4PJZMK3vvUtLFu2DFddddU5NcEq0TdNbW0tPvvsM3z++edoamqC2+1GW1sbDh48iLa2NvV+er0eERERSElJQUpKCpKTk7uth4eHn3cl5NxuNwoLC5Gfn+/XiouL4fF44PV60dnZCZPJhAULFiA7O1u9beTIkVi4cCESExOH+ml8451xEP1cs3v3bjz77LP429/+hscffxxpaWm49tprT/k4BtGJiIgGnojg0KFDWLVqFVatWoVNmzZBURQ1QDhhwgSMHj0aSUlJiI+Ph6IoqK2tRU1NDWpqalBbW4v6+nooigKNRoOAgAAMHz4cI0aMUO/f2dkJo9EIi8UCjUaDPXv24N1338W///1vFBQUwOv1Ajh+UJ6amqpOcGg2m5GYmIi5c+di1qxZCA8PH+JXi06XoihobGyEiMBoNEKv18Pj8cDlcsHhcKC5uVltTU1NaGpqwtdff40vvvjCLwh9MiEhIZg3bx7i4+NRXl6OiooKuFwuGAwG6PV6tLe3qxlUAKDVahEYGIisrCyMGjUKcXFx6OzshMfjQUtLC2pqalBVVYU9e/bA5XIhODgYw4YNQ1JSEoKDg7Fnzx4cPnxY3X90dDTi4uJgtVphtVqRmJiItLQ0pKenqyUNGCAiIjp+7FFUVISPPvoI77//PjZt2oTQ0FB873vfw2233YbMzMyh7iLRBU1RFJSXl2PXrl3YsGED1q9fj927d0Oj0WDChAlISkqC0WiE2WzGyJEjMX78eIwePRoREREwmUznXYB8oBQXF+PDDz/Ehx9+iLKyMjV549ixY1AUBWPGjMGMGTMwefJkTJo0CaNGjbqg58g4Fw1oEP29997DsmXLBmpzp+UPf/gDgoODccMNNyAvLw9vvPEGXnrppW73c7lcfsNBWltbkZSUxCA6ERHRGWpoaMDatWvx5ZdfYu3atSguLobZbMaCBQuwePFiLFq0CAkJCWelLx6PB2VlZSgsLMSxY8dw7NgxVFZWwuFwwOFwoKCgAGVlZdBoNJg6dSquvPJKXHnllUhOTj4r/bvQOJ1O6PX6Ac14VhQFNTU1KCsrU8v+nNiqqqrg8Xj6tD2NRoOwsDCMHTsWV1xxBZYsWQKLxYKGhgY0NTVBp9PBZDLBaDSqy+rqanz++ef4z3/+g5aWFiQlJSEpKQkBAQHweDzo7OxEUFAQQkNDERISAo1GA0VR0NraikOHDuHgwYNoaGhQJ+wMDQ1FTEwMYmJiMH78eMyePRvjxo3rdiJks9lQX1+PhIQEmM3mAXtNiYi+SYqLi/Hyyy/jtddeQ1NTE7Kzs3HFFVfgmmuuwahRo4a6e0QnpSgKdu/ejcrKSvUYKyoqCqmpqQgLC1MDzg6HA4cPH0Z+fj6qq6sRGBiIoKAgBAcHIygoCEFBQbBarYiNjUVERAS8Xi9aWlpQX1+P/Px87N+/H1VVVUhLS0NmZiYiIiLQ2NiIhoYGv+ZwOODxeKAoCmJiYpCcnIyIiAiUlZWhoKBAPeb2xdtSU1Mxe/ZszJ8/HwsXLkR0dPRQvpznpaamJqxduxb/+c9/sG3bNhw8eBAigqCgIOTm5mLixInIzs7G6NGjMWrUKJaDGUQDGkQ3mUx46qmncPfdd/d6HxEZ1KtKTzzxBEaNGoWlS5eisLAQDz30EFauXNntfo888ggeffTRbrcziE5ERHR6iouL8fTTT+P111+H2+3GyJEjMX/+fCxatAhz5849Z4OAJSUl+Oqrr/Dhhx/is88+g9vtxqxZs/C9730PV155pV891erqanz22WfYv38/XC4XnE4ngoKCkJiYiISEBDQ2NuLQoUMoKChAe3s7PB6PGmT11W1MS0vDsGHDkJWVhYkTJ2Ls2LEwmUxD+Ar0ndvtVk+ofFnYWq0WX3/9Nd577z2sX78eXq8XoaGhCAsLU4PCOp0OoaGhCA0NRXx8PMaOHYtx48YhNjYWOp0OWq0WtbW1an1bXw1MXx3MrtnivhEEvpaUlITExETExcVBq9XC7XbD4/GoQfCAgABEREQgPDwc4eHhsFgsfnX2iYjom6GjowOrV6/G+++/j48//hitra2YPXs2brvtNixduvScPU6hbx4RwZdffol33nkHn3zyCWpqanq8n6+0stPp9CuPaLFY4HQ6ex1tp9Pp1JGaPlFRUUhISEBxcTFsNpvffSMjIxEZGQmr1YrAwEAYDAZoNBrU1taivLwcDQ0NSE5OxvDhw5GRkaEux4wZg6SkpAF4Ragru92OXbt2YceOHdi+fTt27dqFoqIi+MK7aWlpGD16tDph6ujRo5GVlYWAgIAh7vn5b0CD6GvWrMHVV1+NG2+8Ec8//7xfsNzr9eKtt97CU0895Tc0daC9/PLLCAoKwg033ICdO3fiL3/5CzPRiYiIBonH48GaNWvw1ltv4b333kN4eDjuvvtu3HTTTYiPjx/q7vVba2sr/v3vf+PNN9/EF198AYPBgLi4OERGRsLj8WDfvn3QaDTIyMhAYGAgTCYT2tvb1TrWJpMJmZmZGDFiBCwWi1rqw5eB7JtI9dixYygoKEBnZycMBoNaxsM3vLWzsxOKoiA0NBTh4eEwm81obGxEbW0tAGD8+PGYOHEioqOj0dbWhra2NvXkyXf8pdFoel3v7OyE0+lER0dHt3bi7TabDUVFRTh27Bjq6up6fN10Oh3mzZuHyy67TO2rzWZTD+Y9Hg9aW1vR0tKC0tJS7N+/Hw6Ho8dtRUdHIyUlBampqWoNTF8dzKSkpPOyDiYREZ1b3G43PvjgA/zxj3/EunXrYDKZMGPGDFx00UVqWa2IiAhMmzaNgScaVK2traioqIDdbkd7ezsOHjyIP/zhDzh8+DAyMjJw2WWXYfHixRg5cqRaI7umpgalpaUoLy+HVquFyWRCUFAQRowYgZEjR6oxLY/Hg/b2drS3t6OtrQ2NjY1qucSAgACEhYXBarVixIgRiImJAXA8gN/Q0ICWlhZERkYiNDSUyQfnAYfDgUOHDuHAgQNqO3jwIMrLywEcLzOYkZGBESNGwGg0wuv1wmg0IiMjAyNHjlQnZT7XjrFFBBUVFSgoKEBxcbFfa2hoQEhICEJDQxEUFASdTge9Xg+r1YrU1FSkpqais7MTTU1NaG1tRVhYGGJiYpCQkIBx48adVsb+gNdE37t3LxYvXoyJEydi5cqV0Ol0eO211/D000/DZrPhzjvv7DEDfKCcWBM9PT0dy5cvP+XjWBOdaGApioIdO3bg008/xaFDhyAiEBEEBwcjNjYWsbGxak3krlmedOZsNhvq6urUTNC+TK5M3yw1NTXYvHkz8vLycPToURw9ehTNzc0wGAwwGo0YMWIEvv3tb2PhwoWIiIhQM659F6AbGhqQl5eHHTt24PPPP0dDQwNGjx6NH/zgB/j+97+PoKCgoX6KA6K8vBz//ve/UV1djYaGBng8HsybNw+XXHIJoqKiut2/ra0NZrO5z7UJnU4n9u3bh507d6KgoADl5eUoLy9HZ2cn9Ho9NBoNWltb0dTUhPb2dkRFRSE6Ohoejwf79+/vc/mSvtLpdDCbzX4tICAAISEhavZ8cnIyoqKiYLVa/UqZZGVlISIios/78nq9KCoqQmNjIxRFgdfrRXR0NJKTk5kJSEREZ9WRI0ewevVqfPnll9iwYYNfFm5ISAguv/xyXHnllbj44osvmGMcGhoigl27duHjjz/G6tWrcfToUbS0tPjdR6fT4YorrsCKFSswe/bscy6oSecXm82GgwcPqkH1o0ePQlEU6HQ6OJ1OHDlyBFVVVQCA5ORkXHrppZg2bZqa3JOQkDAoFxJFBHV1dTh8+DAqKyvhdDrVRB6n0wmHw4GDBw9i69atahKRRqNBQkKCOidQVFQU7HY7bDYbHA6HepGprq4OxcXF6nvLbDYjJCQELS0t6ugMrVaLMWPGYPz48ero1jFjxmDmzJkn7fegTCxaWVmJRYsWAYB60nnXXXfhzjvvPCvBsnvuuQfbtm1DcnIy3njjjT4FkBhEP341ftOmTYiNjUVWVhY/rKkbt9uN7du3Y8OGDdDpdBg1ahQyMzPVLMXi4mIUFRWhqKgI+/fvR319PcLDw5Gbm6sGldra2tTJ1JxOJ7RaLbKzs5Geno6EhAS1xcfHq+un87nh9XpRVlaGmpoaeL1eeL1etLW1ob6+3q+mm81mw8SJE7Fo0SKMGTNmyP/vRQRer9evnrDH41Fr6UZERECr1UJE0NTUhPLychw9ehSHDx/GwYMHsWvXLhQWFvptMzk5GfPnz8e8efMwf/58xMXFne2nRUPI6/UiPz8fmzZtwubNm7Fp0yYUFRUBAOLj45GVlYXMzExERUXB4/HA6XRi586d2LJlS7dhnl0FBARg/PjxmDVrFq699lqMHTt2yN8/3yRutxsHDhxAS0sLQkJCEBQUBIPBoGZ+n2qp1Wq7BcwHso45ERHR+crtdqOtrQ2VlZX44IMP8O677yI/Px9GoxGzZs3ChAkT1GP2wMBAREVFITIyUp3wOT4+npP9fcP5srnr6upQW1uLgwcPYsOGDfj6669RW1uL0NBQLFy4EDk5OUhJSUFSUhIsFguCgoLU7G+is8Vms2HLli349NNP8cknn6jnij5RUVFqoDkhIQFJSUkYM2YMcnJykJSU1Os5YHt7O/Ly8rB9+3Zs27YN+/btQ0dHhxqbaW1t9bu/0WhEQEAAAgICYDKZkJGRgalTp2LKlCnIyspCSkpKv0pgtra2qtsEjr8vW1tbUVJSgh07dmDbtm04cOAAKisrUVVVhSVLluCDDz446TYHPIhus9nwwgsv4Pnnn4fD4YBGo8HWrVuRnZ09kLsZcN/UIHpdXR3Wr1+Pjz76CB9//LF61T05ORkXXXQRDAYD7HY7nE6nOtSna2tpacHu3buxZ88eiAji4uIQHR0Np9OJ5uZmtLa2wmAwqG8EX1MUBTabDTabDeHh4cjJycH48eORk5OjDiOioed2u7Fnzx58+eWX+Oqrr7Bx40Y4HA6EhoaqH0BdhYeHIz09Henp6RgxYgQuueQSTJ06tcfAjKIoOHz4MDZv3oxt27ahrKwMlZWVqKys7HY1PiQkpFtgPSEhwa/+bXt7OwoLC3HkyBEcPXoUBQUFfiWburJYLIiMjERUVBTMZjO2b98Oh8OB2NhYjBw5Uq1VPGXKFEyYMKHPWZG+Ug/r1q3D+vXrcezYMWg0Gmi1WrWUglarhVarhV6vh06nU5uiKKiurlYnPAwICIDFYoHX60VjY6O6D51OB6vVCpvN5vf8IiMjkZWVhdzcXEyYMAHJycmw2Wxobm5W/4b79+8HAIwcORIXXXQRUlJSYLVaERMTg9zc3POy9Ab9fzabDatWrUJhYSE8Hg9cLhf279+PLVu2oLW1FTqdDuPHj8eMGTMwffp0TJ8+HYmJib1ur6WlBevXr4fT6YTJZFJrS5tMJlgsFowYMUKdMZ6IiIjoQnb06FF89tlnavawbz4Ph8OB+vp6OJ1O9b5GoxGjRo3CuHHjMG7cOOTk5GDcuHF+I7bq6uqwadMmbNq0CdXV1XA4HHC5XGrQaNy4cWhubkZpaSmKiorU8gwVFRVwu91wu92wWq3Izs7GmDFjkJaWhtjYWERGRqK6uhqFhYVobGzErFmz8K1vfQthYWFD8Kp9M7S3t/slNe3cuRM7d+70O4czGo2YPHkyZs2ahYsvvhizZs3icTSds9rb21FRUaE232hZX7ympKREjdlYLBakpaUhLS0NVqtVHbl85MgRHDhwAIqiIDAwEBMnTkRubi5CQkLU0a8ZGRnIyspSR6IOZdkgr9cLh8NxygTOAQ2i33///Xj55ZdhtVpx33334brrrsMdd9yB1atXY9WqVZg0adJA7WrAXehB9OrqamzZsgV79+5FXV2dOgPzoUOHAABjxozBsmXLcPnll6OmpgZr1qzBxo0bodPpEBISApPJhJaWFjQ2NqKxsRFNTU1QFAVarRZZWVnIycmBwWBQ62uZzWZ18i5f3dWuDQDCwsJgsVhQV1eHvXv3wm63AwDi4uIwfvx4TJ8+HXPmzMGkSZPOmwnXzmVtbW3YvHkz1q9fj6KiIjQ1NaGpqQkajQaBgYEIDAyE2WxGYGAgFEXBgQMHcOjQIXg8HgQHB2PWrFm46KKLMG/ePOTk5ECr1aKqqgpHjhxBeHg40tLSBuzgzOFwoKqqSv2Q7rru+7mqqqrbRClJSUkYMWKEWo94xIgRSEhIUAPWwcHBsFqt3UanOJ1OfP3111i3bh0KCwtRWFiIQ4cOoaOjA3q9HqNHj1abb5IWX3O5XLDZbNi7dy/27t0Ll8sFs9mMadOmqZntiqKo5WwURYGiKOjs7FQz5Ds7O6HRaBAbG4uEhASEhYWhra0NdrsdGo0GMTExiImJgcfjQW1tLerr6xEWFqZeVMjIyIDVaj3l61pbW4t169bhiy++wNdff42amhq/CxZJSUmYOnWq2nzP92TZxTabDdu2bcPhw4eh0WjUYWHV1dWorq6GVqtFXFwc4uLiYLfbUVpaisrKSni9Xmi1WhgMBsTHxyMpKQmpqanIyspCVlYWtFotDh06hIMHD8JqtWLmzJnMyDiB1+vFvn37sGnTJnz22Wf4z3/+A4/Hg9jYWBiNRhgMBowYMUINmk+aNIlDkImIiIgGmIigra0N5eXl6rwn+/btw969e3HgwAH1/NeXiOT1etHe3g7gePJaeno6zGYzDAYD8vPzu40qjYiIwJgxY5CdnY3U1FT1OK+2thb79+/HgQMHUF5ejo6ODvUxMTExCAkJQWFhIXQ6HaZMmYJJkyYhNzcXs2fPRmpq6ll7fYaCiKCjowMajaZbQpTL5UJjYyPsdjscDgeSk5P7dC7l4/V6cfjwYaxZswYff/wxvv76a3X0ZmxsLCZMmIBJkyYhOztbTTIcrJIYRENBRFBZWYk9e/YgPz9frUjgmx/KaDQiJSUFU6ZMwZQpUzBq1KgLZsTrgAbRR44cifvvvx/XXXed3/ClX/ziF3juuefw9ttv4/LLLx+QfeXl5eGuu+6CVqtFTEwM3n77bRgMBmRkZCAhIQEA8OCDD2LBggV92t6FGEQ/ePAg3nzzTfzzn/9EcXExgONfpr4P8rS0NMyZMwdz5szpdwaqL5PcZDIhMDDwjPuqKAqKioqwZ88e7N69G3l5edi8eTPsdjsCAgIwdepUzJkzB6NHj4bD4YDdbkdrayvsdjvsdjuioqLUK/2pqalq0K+zsxMbNmzAzp07ERoaioiICL9MeqPRqNZzDQ4ORnh4+JBe/RKRMy6H4PV60dzcjMbGRhQXF2P9+vVYt24ddu7cic7OTkRFRWHMmDGwWq0IDw9XDzAcDoe6VBRFzZ7wZTafa1fKfeVMRETNkh3I2t+dnZ1qFu+ePXtw8OBB5Ofno6Ojw29UhW8Sl+zsbOTm5mLixImYOHHieXPhx+v1oqqqCjt27MDWrVuxdetW7Ny5Uz0I903MER8fj9TUVCQnJ6vDW4uLi3H06FH1b6DVatVJEn2BcxFBdXU1ampqEBwcjOTkZCQkJMBoNEJRFDidTlRVVaGiogL19fVqvzQaDbp+PWm1WuTk5GDy5MnIzc3FmDFj1IC972r3ic1kMqkzyWdlZSE8PPysv76D4dChQ3j++eexcuVK2O12GAwGTJ06FcuWLcOyZctOml1ORERERGdPZ2cnCgoKsHfvXpSWlqrJPXFxcZgxY0aPx20NDQ04ePAgoqKikJSU1KfSlr5RwvX19YiNjVUnzCsrK8Pq1avx1VdfIS8vTw3Qz5w5EzfccAOuueaaCyb+sXPnTvz+97/Hhx9+6De5eWJiojqC8ujRoygpKYGiKH6PTUpKQnZ2NmJjYxEREYGQkBC43e5u8wIVFRVh9+7daG9vh8lkwvz583HppZdiwoQJGDFiBDP+iS5wAxpEP1kA8NVXX8WKFSvwzDPPYMWKFWe8r5qaGlgsFgQGBuKBBx7A+PHjcdVVV2HixInYuXNnv7d3IQTRFUXBrl27sGrVKnz00UfYvXs3IiIicM0112DevHmYNm2aeoHhfNDZ2Ym9e/diw4YNWL9+Pb7++ms0NTUBAEwmE0JCQmCxWBAcHIzKykp1uJTFYsHYsWORkJCAL774Ag0NDQgODlaDwyej1WoRERGhlvoIDw9Xr/Tr9XoYDAYYDAa1bElaWhqampqwb98+5Ofno7OzE0ajEWazGdHR0YiNjUVYWJga9LfZbL0ubTYbOjo6EB8fj4yMDCQmJqK9vR0tLS1wuVxqtnhQUJDafD+bTCYcPnwYO3fuxIEDB/zqGMfExGDu3LmYM2cO5s6dy3r3dEq+sjS+YaANDQ3qsK2ysjJYLBbEx8cjMTEREyZMwLRp05CZmXnG/1d2ux1HjhxRR0CMGTMGo0aNQm1tLdavX4/169cjLy8Phw4dOuV7+cQgPABkZWVh8uTJCAoKgtfrhYggKCgIwcHBiImJwYwZMzB27FjodDr1Io3JZOo2a7dv0sfBpigK9u3bhw0bNqCqqgrNzc0oKCjAV199hdjYWPzgBz/AggULMHHiRE7ESERERESn1NLSgk8++QRvvvkm1q5di6CgINx888340Y9+hLS0tKHuXr81Njbi3XffxRtvvIGdO3ciJSUFN954IxITExEUFASPx6OWWvF4POqo5bi4OISEhMBsNqOoqEgdNVBfX4+mpibY7Xa1lrIvYctkMqnnPxMmTMCUKVM4ypPoG2ZQJhbtzerVq3HNNdd0q6N8ph5++GHk5OTgiiuuQFZWFmJiYpCQkICXXnrJr+5YV74riT6tra1ISko674LoDocD//nPf7Bq1Sp88sknqKmpQWhoKC655BJ85zvfwaWXXjqg2blDSVEUtLS0IDg4uNtzEhFUVVWpJTX27duHkpISzJ07F8uWLVMnf7HZbGpJmsbGRng8HjVA3tbWpk426Zt8sqmpCR6PR81W9603NjaivLxcDeTFx8dj9OjRCAgIgNvthsPhQF1dHWpqamCz2dSAf2ho6EmXZrMZFRUVKCgoQGVlpZodbzKZ4HA44HA40N7e7td8GeTDhg3DxIkTkZOTg7i4OFitViQkJGDYsGEMmtMFxeFwoKCgABqNxu+gtmvT6/Vwu91oampCfX099uzZg61btyIvLw9ut1sdLeVwONTJbt1uN8LCwhAbG4uysjI4HA4Ax+vNJycno729HdXV1WhtbUV2djbmzJmD2bNnIzc3F+np6b2+z0QEZWVlyM/PR0hICOLj4xEREYGmpibU1taira0NFosFFosFDQ0N2LZtG7Zu3Yr169ejoaEBJpMJCQkJCA8PR3R0NJYvX45rrrnmgvlsJyIiIqKzr7KyEn/4wx/wxz/+ES0tLZgzZw6WLVuGpUuXIj4+/pw8h7Tb7eoI2o0bN2Lt2rVQFAULFy7ErbfeikWLFnFSVyIaNGc1iA4Au3btQm5u7oBtr6ysDMuXL8e6detgMBjQ2NgIq9WKN998Ezt37sQLL7zQ4+MeeeQRPProo91uPzGI3tzcjLvuugvh4eFqhnJ6ejqGDRuGuLg49X4BAQFntcaP3W7H73//ezz77LNoaGhAVlYWFi9ejMWLF2P69OnnXOmNC5Hb7UZ5eTlCQ0MRGRnZ6/0GokQLEQ0up9OJ7du3Y926dWhqakJycjKSk5PhcrlQXFyMsrIyBAcHq1krO3bsUCePBY6PgElPT1cnjvVNJAsAhYWF6iiavggMDMSkSZMwc+ZMzJ8/H9OmTWMNRSIiIiIaFA6HA++88w7+8Y9/4Msvv0RnZyfMZrNanjEuLg6xsbEYPXo0rrnmmrNSItHhcGDXrl3qfFhHjhzBli1b1IkKLRYLJk+ejMWLF2P58uWIjo4e9D4REZ31IHp/1dTU4Morr+x2+0cffQS9Xo8lS5bglVdeQWZmpt/vOzo6cMkll2DDhg09brevmeiVlZX4zne+o07C2NDQgM7Ozm7b02g0iIyMRGxsLHJycnDxxRdj3rx5iI6OVmfuPp1AanNzM0pKSlBaWoqysjJ1+dVXX8Fut+Pmm2/G3XffjYyMjH5vm4iIzkxtbS12796N3bt3o6yszG8CWd96SkoKcnNzkZ2drU6a29jYiIiICHXSJ1/Jp+DgYIwePfqCmXiFiIiIiM4fTU1N+Oqrr1BeXo7q6mq/dvjwYej1evzP//wPrr/+esybN29AEz2amprw3nvv4aOPPsLatWvVCVkDAwORlpaGqVOnYurUqZg2bRqysrKYcU5EZ905H0TvjdfrxdKlS3HXXXdh/vz5AI5nBvsmuFuzZg3effddvP76633aXl9ronu9XlRUVODYsWOora1VA+NtbW2ora1FVVUVtmzZgt27d3d7rFarhU6nQ2BgIIYNG4bMzExERkaqkzkajUZEREQgNDQUBQUF2Lp1q5rlCByvA+7LjszJycGPf/xjJCUl9edlIyIiIiIiIiLql5qaGrz11lt4/fXXcfjwYQQGBmLBggVYsmQJLr30UsTGxvZpOyKCiooKVFZWwmazoa6uDh988AFWrVoFr9eLmTNnYsmSJfjWt76F1NRUhISEcGQ3EZ0Tztsg+jvvvIMVK1YgOzsbAHD77bdj7ty5WLRokTrR4uuvv97nIPNATyxaX1+PjRs3wm63w+v1+jW73Y7CwkIUFBSgqakJZrMZZrNZrbXd3NysXmmdPHkyMjIykJycjOjoaH55EBEREREREdGQEBEcOnQIH3/8MT7++GNs2bIFiqJg8uTJWLJkCZYsWYKxY8eqsYvW1lbs3LkT27ZtU1tNTY3fNnNzc/Hd734Xy5cvR0xMzFA8LSKiUzpvg+gDbaCD6EREREREREREF7KGhgZ8+umn+Pjjj7FmzRrY7XZERkZCq9Wio6MDbW1tEBGEhIRg8uTJmDJlCqZMmYL09HRYLBaEhYUxBkNE5wUG0f+LQXQiIiIiIiIiotPjdruxfv16bN68GTqdDmazGVarFZMnT0ZWVha0Wu1Qd5GI6LQxiP5fDKITERERERERERER0YkYRP8vEYHdbuekFURERERERERERESkYhCdiIiIiIiIiIiIiKgXLEhFRERERERERERERNQLBtGJiIiIiIiIiIiIiHrBIDoRERERERERERERUS8YRCciIiIiIiIiIiIi6gWD6EREREREREREREREvWAQnYiIiIiIiIiIiIioFwyiExERERERERERERH1gkF0IiIiIiIiIiIiIqJeMIhORERERERERERERNQLBtGJiIiIiIiIiIiIiHrBIDoRERERERERERERUS8YRCciIiIiIiIiIiIi6gWD6EREREREREREREREvWAQnYiIiIiIiIiIiIioFwyiExERERERERERERH1gkF0IiIiIiIiIiIiIqJeMIj+XyKC1tZWiMhQd4WIiIiIiIiIiIiIzhHnTRA9Ly8Ps2bNwpw5c3D11VfD4/EgIyMDc+fOxdy5c/H5558DAPLz8zFz5kxMmzYNa9eu7fP27XY7QkNDYbfbB+spEBEREREREREREdF5Rj/UHeirhIQErFmzBoGBgXjggQfw4YcfIjQ0FOvWrfO73wMPPIA33ngDMTExWLhwIS6++OKh6TAREREREdE3hNfrRVtbG5xOZ7+bx+MBAGg0GrWd+LPX64XH40FnZ6e67OzshKIo8Hq9UBTFr514W39/7uk2AIiIiEBUVBSio6PVZdd1q9WKkJAQaLXnTb4aERER9cF5E0SPjY1V1w0GA/R6Pdra2jBnzhwkJCTgpZdeQkREBKqrq5GRkQEAsFqtaGhoQGRk5FB1m4iIiIiI6LwjImhubkZdXR1qa2tRV1eHuro61NfXo76+3m+9vr4ejY2NaqC5LzQaDcxmMwICAmAwGNR9+spr+tZ9Ta/Xq813PqjT6aDT6aDVatWlr3X9+WS/822nL/dVFAVNTU0oKytDXl4e6urq0NTU1O25abVahIaGIiYmBgkJCUhISEB8fDwSEhIQFxeHsLAwhIaGIiIiAnFxcTCbzQPzRyMiIqJBc94E0X3Kysqwdu1a/PznP8fs2bNhtVrx5ptv4pFHHsELL7zgV9M8NDQUTU1NPQbRXS4XXC6X+nNra+tZ6T8REREREdHZpigKbDYbGhoa0NjYqDZfgPzEZV1dHTo7O/22YTAYEBUVpbb4+Hjk5OSoP4eFhamB8VM1vV6vZpyfzzweDxobG9XXrKmpCS0tLWhubkZNTQ0qKytRWFiI9evXo6qqSs267yo0NBRxcXGnbBaLZUheM4/HA4fDgY6ODnR0dKjrXZdutxterxderxcmkwnBwcEICQlBcHCwXwsKCmKWPhERnZfOqyB6a2srvvvd7+KNN96AwWCA1WoFAFx11VV49dVXAcDvC7mlpQURERE9buvJJ5/Eo48+OvidJiIiIiIiOgOKosBut6O1tRVtbW1qa29v9/u5ra0NNptNDZB3DZg3NTX1mCkeGhqK6OhoxMTEIDo6GtOmTfP7uet6aGjoBRH4HkgGgwGxsbF+I6d7oygKmpubYbPZ1L9TTU0Nqqur1VZZWYmdO3eiurq623xdZrMZsbGxiImJ6TFAHRgYCLPZrGa2d3Z2wuv1qqVvOjs7ew2CnyxA7vV6B/Q1CwoK6tb34OBgWK1W9fnFxMSo67GxsYiKioJOpxvQfhAREfXHeRNE93q9uO666/DQQw8hMzMTbrcbIgKTyYQNGzZg+PDhAI6XfSkoKEBMTEyvWegAcP/99+P//u//1J9bW1uRlJR0Vp4LERERERFd+HzZ376Atq91/dlms0Gj0UCr1cLr9aK1tRU2m81veWIwtSe+wKTFYoHVaoXVasXw4cMxdepU9Wdfi4yMVNdNJtNZeCUIOJ7w5Xvd+6K9vd0vwO5rdXV16gWUxsZGtLW1wW63+wXDNRoNdDqdWq7GVwrHbDarwXbfMiwsDHFxcX5B+BPvc+LyxHWTyaSW13E6nd0u7vj62NvtdrsdFRUVyMvLQ01NDWw2m99rodFoEBMTg+HDhyMjI8OvDR8+HEFBQYPxJyMiIlJppGv9k3PYO++8gxUrViA7OxsAcPvtt+Ppp59GUFAQTCYTXn/9dSQlJSE/Px+33HILvF4vHnvsMSxYsKBP229tbUVoaChsNhssFstgPhUiIiIiIjpPdXZ2oqKiAiUlJSgrK0N9fX2PwXFfBnhPWbwhISFqIDssLAzA8YC7r5a2xWKBxWJR17ve1jUD2Rc4DwwMZIkMuqA4nU7U1dWhpqYGtbW1ammcgoICtbW0tKj3j4+P7xZcz8jIwLBhw1hznoiIBsR5E0QfbAyiExERERGRiKC+vh4FBQUoKipCcXExSkpK1GV5eblfYLxrQDwyMlJtXX/uuh4REcHsb6IzJCJobGz0C6p3bV1HbyQmJqpB9VGjRmHKlCkYP34834dERNQvgxpE/9WvfoWf//zng7X5AcUgOhERERHRN8PJAnCFhYVobW1V7xsVFYW0tDSkpqZ2WyYnJzPLlegcIyKoq6vr8f19+PBhuFwuGI1GjB8/HlOnTsW0adMwdepUJCcns+Y/ERH1asCC6Pfee6/fzyKCV199FT/4wQ8AAE8//fRA7GbQMIhORERERHRh8Hq9qKioQFlZGUpLS1FaWqqu+5YOh0O9f1xcXI91locNG8Zay0QXELfbjX379mHr1q1qO3bsGIDj86tNnToVM2bMwKxZszB+/HgYjcYh7jEREZ0rBiyInpqaiqlTp2LRokXwbfKee+7BM888AwC48cYbB2I3g4ZBdCIiIiKi84cv2/TIkSM4evSoXzt27Bjcbrd6X6vViuTkZKSkpPgthw8fjuHDhyM4OHgInwkRDaW6ujps27YNW7duxZYtW7Bt2zY4HA6YzWZMnToVM2fOxMyZMzFt2jSEhIQMdXeJiGiIDFgQvaOjA48//jiOHDmCJ598EsOHD0d6ejqKiooGYvODjkF0IiIiIqJzh4jAbrejqqoKVVVVqKysRFFRkV+w3Fd2RaPRIDU1FZmZmRgxYgQyMzMxbNgwpKSkICkpiUFyIuozj8eD3bt3Y+PGjfj666+xceNGNDQ0QKfTYfz48Zg9ezZmzZqFmTNnIjIycqi7S0REZ8mA10QvLCzEPffcgxEjRuDvf/87SktLB3Lzg4ZBdCIiIiKis8Pj8aCyshJlZWVqkLyn1t7e7ve46OhoNUjetaWnpyMgIGCIng0RXchEBEeOHMHXX3+NDRs24Ouvv1bjHKNGjVKD6rNmzUJSUtIQ95aIiAbLoE0s+tFHH2Hr1q144oknBmPzA45BdCIiIiKiM+d2u1FdXY3KykpUVFSgsrISlZWVKC8vR1lZGcrKylBdXY2upyGBgYFISEhAfHz8SVtgYOAQPjMiouPKysr8guqHDh0CcLzMrS+oPnv2bGRkZHCyUiKiC8SgBdHPNwyiExERERGdnIigpqYGx44dQ1FRESoqKtRAuW9ZV1fnFyA3m81ISEhAUlISkpOT/VpSUhISEhIQEhLCQBMRnbfq6+uxceNGNai+e/duKIqCqKgojBs3DtnZ2cjJycHMmTORlpbGzzuiC5jX64XL5YLT6exX83q9MBqNMJlMvTbfZ4dWq0VkZCSio6NhNpuH+Bl/cwxKEP29997DsmXLBnqzg4pBdCIiIiL6pmtra0NTUxOam5vVYHnXVlRUBIfDod7farUiISEBiYmJfsuu62FhYQwYEdE3SmtrK7Zs2YLNmzdj//792L9/PwoLCwEA8fHxmDp1KsaNG4exY8di4sSJSExMHOIeE9GpeL1eVFdXo7y8HOXl5aioqEBVVRWqq6tRXV2trvvma+kPg8EArVYLt9uN/oZpg4ODERMTg+joaMTExCA2NhZxcXHdljExMTAYDP3uG/1/gxJEN5lMeOqpp3D33Xf3eh8RGbSD6XvuuQfbtm1DcnIy3njjDRiNxlM+hkF0IiIiIrpQdXZ2orGxETU1NerJXteTvpKSEhQVFaGlpcXvcXq9HqmpqRg2bFi3lp6ezvIqRER91NzcjE2bNuHrr7/Gzp07sXfvXjQ2NgIAkpOTMWPGDOTm5mLs2LHIzs5GbGwsL0ASnSUigvr6ejVAfmLzzeHi9XrVxwQFBSE+Ph5xcXHqMi4uDhERETCbzQgICOhTM5lM0Ol0aj86Ozvhcrl6bD5erxcNDQ2oq6tDXV0damtrUVdXh5qaGvVY78SRgQAQGRmJ+Ph4tYReT8uoqChotdqz88KfZwYliL5mzRpcffXVuPHGG/H888/7ffB7vV689dZbeOqpp3D48OGB3jV2796NZ599Fn/729/w+OOPIy0tDddee+0pH8cgOhERERGdC7xeLxwOB9ra2tDe3g6n04mOjg50dHT0uN7e3t6ttba2or6+Xm1NTU3d9hMREaGe8KWlpSEtLQ0pKSmwWq0IDw9HdHQ0EhMTodfrh+BVICK6sIkIqqqqsG3bNmzcuFHNWveN9rFarcjOzsbo0aPVz+fU1FSkpKQgMjKSAXaifnI6nSgqKkJhYSEKCwtx7NgxFBYWoqioCOXl5X5BapPJhMTERCQlJXVrvnJ0oaGh5/T7sLOzE/X19WpQ3besqqpS56upqqpCTU0NFEVRH2c0GpGcnIyUlBS/zx1f+yYfGw5aTfS9e/di8eLFmDhxIlauXAmdTofXXnsNTz/9NGw2G+688048+uijA77fP/zhDwgODsYNN9yAvLw8vPHGG3jppZdO+TgG0YmIiIjoVEQEDocDdrtdbW1tbRARNWunawC8ra2t3+sdHR197o9Op0NQUFC3FhISgqioKLVFR0cjKioKMTEx6pBek8k0WC8TERGdBkVRUFRUpJaA2b9/P/Lz81FaWor29nb1foGBgX5Bra5BrsTERMTFxbFsA33j2Gw2VFRUqKVWfOvFxcUoLCxERUWFmpkdGBiI4cOHY/jw4UhPT1cD474WFRV1TgfIB1JnZydqa2vV4Hp5eTlKS0vVVlJSgvr6evX+Wq0W0dHRfhO/+7Lxu/4cHR2tZthfKAZ1YtHKykosWrQIANDQ0ACPx4O77roLd955J0JCQgZln0888QRGjRqFpUuXorCwEA899BBWrlzZ7X4nDoVobW1FUlISg+hEREREFwAR8cvSdjgccDgc6npvt3UNjp/YWltb0dbW5petcyp6vR7BwcEIDg5GUFCQ37Iv64GBgTCbzX4tICBAXf+mZgIREX2TiAiamppQUlLiF9jqut61HJdGo0FMTAwyMjKQmZmpLjMzMzF8+HBeRKXzTm8B8q5Lu92u3l+j0SAuLg6JiYlIS0tTA+bDhw/HsGHDWC6pnxwOB8rKylBaWqqWtvFltftabW2t3zGyVqtV67H7AuthYWEIDQ1FaGgoLBaLut71Z4vFcs5eBBy0o26bzYbXX38dlZWVcDgc0Gg02Lp1K7KzswdrlwCA8PBwtYh/S0sLIiIierzfk08+OSiZ8ERERHTu8Xq9qK+vVw/wWlpa0NzcjPb2dnR2dnZrWq0WBoMBer0eBoNBneyno6OjW+C1s7MTwPGD9a7txNu69qVr6+zshE6nU2si+lpAQABCQ0MRFhaG4OBgKIoCr9cLjUajZhvr9Xq43W643W71/l0PRC0Wy5BmgHi9XtTV1aGxsbHb66PVauH1etX+n6y5XC44nU41Y7uvrS+5Ir5M7sDAQAQGBiIkJERtkZGRSEtL87vN1ywWi7oeHBwMjUYDRVEgIggMDFSD4X2Zm4eIiOhkNBoNrFYrrFYrJkyY0ON9WltbUVpaisrKSjWwWFBQgL179+Kf//ynGicxGo3IycnBlClT1DZs2DAGFGnI+C4SFRcXd2tlZWU9BshjY2ORlJSExMREfOtb31JLr/iWHI0xsAIDA5GVlYWsrKxe7+M77u8pwF5dXY28vDy0tLSgtbUVNpsNbre7122ZzeYeg+0hISEwmUwwGo0wGAwwGo1+6325zWQy9Zi80pdzpkHJRL///vvx8ssvw2q14r777sN1112HO+64A6tXr8aqVaswadKkgd6l6sSa6Onp6Vi+fHm3+zETnYiI6MLg9XpRWVmpHmxXVFT4HbT5av11nQgIOJ4hHBQUpAbLuzZFUeDxeODxeNDZ2QmPxwNFUdRAq6+ZzWYYDAaIiNoA+P3c9TbgeNBWr9dDp9OpTVEUOJ1Ov4mDOjo6YLPZ0NLSogbqT4dOp1MPHH1Np9N1C2p3DfxrtVr1teh6MUGv10Or1ar38TWPx6P23+l0wul0or29HbW1td1e99MVEBCgBqz703wXHHx/M9+6b2kwGBg4ICKiC5qIoK6uDkePHsXevXuxbds2bN26FYWFhQCO118fN24cxowZg+zsbEyaNAmjR4/maCcaMG1tbT0GyYuLi1FSUuIXJA8JCVHnaulaZqVrgJxJCuc/p9MJm82mBtVPtu77ubW1FW63Gx6PR0226W29v5YuXYoPPvjgpPcZlCD6yJEjcf/99+O6667zi+T/4he/wHPPPYe3334bl19++UDvVnXPPfdg27ZtSE5OxhtvvNGnNxdrohMREZ3bvF4vSkpKsGPHDmzfvh379+9XM1Q8Ho96v6ioKHWG+Z5aTEwMwsPDERgYeF4ET0UEbrcbWq0WOp0OIqLWzlYURc2q8B2Idj3o9B1ontg6Ozt7DfSLiJr13vUigm+96318mdd6vR4BAQFqNr2v3EhcXBwSEhLUCdB89/c9Vq/Xdwvw+7JLegr6ExER0cBpbGzE9u3b1eOqAwcOoKCgQE0cmDRpkpqtPnXqVMTHxw91l2mIud1uNDc3o6mpqdfW2NjY7TabzaZuw2QyITU1VQ2Up6Wl+f0cERHB4z46IyKinsOcGGB3uVw9zkkUFxeHb3/72yfd7qAE0UWk13/4V199FStWrMAzzzyDFStWDPSuTxuD6ERERENLURSUlJTgwIEDyM/PR01NDRoaGlBbW6vW/fQFy9PS0pCTk4P09HSkp6erB90pKSkwm81D/EyIiIiIzk8OhwN5eXlqtvq2bdtQUVEBAEhMTMTUqVPVwPqECRMQGBg4xD2m0yUiaG5uRm1tLWpra1FXV6eu19fX9xggb2tr63FbwcHBiIiI6LGFh4cjISFBDZbHxsaqk7ETnU8GdWLR3qxevRrXXHONWpPrXNBbEL2pqQlz5szBqFGjMGrUKIwePRqjRo1CRkYG6ysRERGdBhFBTU2NmvHkawcPHoTD4QAAhIaGIjExEZGRkYiMjERKSgrS09MxfPhwTJgwAZGRkUP8LIiIiIi+GSorK/2C6jt37oTD4YBOp8PYsWPVwPr06dMxfPhwZhEPIRFBfX29GgzvqfmC5XV1dX6jOYHjNfNjYmIQFRUFq9Xaa2D8xMbyKvRNMCRBdADYtWsXcnNzh2LXPeotiF5TU4PHHnsM+fn5yM/PR319PYDjdVQzMjIwcuRIZGVlYcSIEeoyNDR0qJ4GEfWToih+E9e5XC513bfUarUIDg72q8Xb14n6vF4vXC5Xj6UTemoAelw/8ee2tja0trbCbrfD6/Wqw5V89ZMdDodfyYWTfdRrtVq1PvDJmq/+M2sjUl+JCGpra3Ho0CEcPnwY+fn5OHDgAPbv34/GxkYAxyepGTVqFLKzszFmzBiMHj0aY8aMQXx8PE/AiIiIiM5BnZ2dOHDggF9g/dChQwCOl9WbPn06ZsyYgenTp2PChAkICAgY4h5fWBobG3HkyBEUFhaqE7jX1NTg0KFDyM/P96svDgBBQUGIiYlRW3R0tN/PXW8LDQ3lMThRL4YsiH6u6Ws5l/r6ejWgnp+fj8OHD+Pw4cPq8CYAiIuLU2et7doSExM5ZIW+0drb29UAb3t7O9rb29X13pa+9c7OThgMBhgMBni9Xr9At6++la9esEajOWVg3Ld+4pX3vjKbzWpQPSgoCB6PR91u18kBz2QywNNlNBoRFBTU66SBJ/J6vXA4HOjo6OjT9g0GA8xms9/EiiaTSf29VquF2WyG2WxW6yL3tG4ymdTaySeu93ZbeHi4+tzo3NHa2orCwkIUFBSoyyNHjuDw4cNoaWkB8P8vPvsmrPIFzdPT0/ndSERERHSea2lpwdatW7Fp0yZs3rwZ27ZtQ3t7O3Q6HYYPH+43sn/06NHIzMxkcL0XiqKgpqZGLWdYUlKCwsJCHDlyBEeOHEFDQ4N635CQEFitVkRHRyMrKwujRo1CZmYm4uLi1MB4UFDQED4bogsHg+j/daY10e12O44ePaoGDXzt6NGjcLlcAI5n2/ky1n1txIgRyMzMPG/rt/omHRvo1tnZCZ1OB51OB71e3+NSq9X2mMUbFBQEi8UCi8UCo9EIvV4Pg8HQbdl1nQG5/lEUBTabDQ0NDWhoaEBLSwtaWlrUCe1aWlr8aqv5Wnt7+ym37QvM+jKffUu9Xq9ODKHVatWJ53yBVr1er2Zji4jf5HQ9Lftzm9frRVtbG+x2e4/L9vZ2GAyGXgPDJpNJ/T/rSwPQ43rXn4ODg2GxWBASEqJeONDr9QgNDT3tg1FFUfwuXnRtDodDDbT3tO50OtU+KoqCjo4OdHR0wOl0qutdf+56ocHpdEJRlD7302g0wmq1IjAwUJ3IsGugvadmsVgQHh6OsLAw6PX6bq+5wWBQPze6tvNl4smB1tHRgcbGRvU93rWdeHtlZaU6SgsArFYrhg0bhhEjRmDkyJFqS09PZxk0IiIiom+Izs5O7Nu3Dzt27FCTEA8ePIjq6moAxxNvfMF1X2Ddl3wYGRl5wSZZOJ1Ov3Pkmpoa1NTUqMHy0tJSlJWVwe12q48JDw9Xj6+7toyMDNakJzqLGET/r8GaWNTr9aK0tNQvsO5rvqCDRqNBSkoKhg0bhqSkJCQnJ/stk5KSEBwcPGB96kpRFLS0tKj1sHzNN5FEa2urOmNt16Chr51uFm9vtFqtGtxWFAWdnZ3wer39CrCd6X59AfaTNZPJ1GNmbdcAv2/Zdf1kt/mWXTN8uzZfSQ2TyeQX/PNtrz/BPhFBa2urGgxrbGxEY2OjWh6kp9bW1oaWlhbU19ejsbERXq+323Z1Oh1CQ0MRFhaGsLCwHoeI+TKJTwySBwUFISAg4II9WKKT6+zs9MviPzHI7nK50NHRgZaWFvV/tqOjQ/39qZrNZkNzczOcTme/+qXVatWAemhoaI+B9t5a1/sHBQUN2f+2oijqZ3pfguINDQ1qXfKujEajWp+8a4uNjcXw4cPVFh4ePgTPkoiIiIjOB83NzX6j+w8ePIj8/HxUVlaq99HpdIiJiUFsbCzi4uIQGxurtq4/m81m9XzYd27sS+rxxRF6Wp6slCZwPEbjO9fX6/XweDzqKGbfiOeGhgZUV1ejtrZWHX3sO8/ummDWNdHMZrN1m5hTo9Go8/+kpqb2uBzIGBURnT4G0f9rsILoJ+OrY+ULqhcXF6O8vBxlZWWoqanxq2EcHh6OpKQkJCQkID4+Xr0y2zWQ2nUdOD6rti8o6lu2tbWpASm73Y76+vpu5SYMBgOio6MRFRWF0NDQbrWgu66bzeY+BZ372noLMvm+7LxeLzo7O9HZ2QlFUXrM4G1vb1efr9vtVrOXfcuu6z3d1ltmfNeffQG9E7NsT/yCPtmXd0+3+Z7b6dDpdAgPD1dr8nd9zbqu+7Kqe9qPXq9HSEhIjy04OBhhYWGIiorqFkTz7ZdlNuhc53K5/A6cfc3j8cBut8Nms6G1tfWkrbf7nGykhUajQUhISJ+D7haLRR1d0bWu/YlL37rL5UJTUxOam5v9lhUVFd0yWYDj7/UT38dWq7XHILmv8f1NRERERIOlpaUFR48eRVVVlZqdXV1dra772onHtUPNNwJeRKDRaNTjel9ymW/d13xJKL5Es6ioKM45RXSeYBD9v4YiiH4ybrcblZWVKC8vVwPr5eXlqKqqQmVlJZqamroFUroGVIDjZTF85R58y+DgYLW8RHBwsN8EEtHR0YiOjuZEEkOss7PTr0zGiTXCXS5Xt7+51+tVM8tbWlqg0WjUcji+LPeuLSgoyC9oZrVaYbVaERAQwL890Wnq7OxUJ3w9k2D8iRMB9YVWq0V4eDjCw8MRERGhrickJCA1NRXJycmIjY1V3/MWi4XvdSIiIiI6r4gImpub1YC6ryykLw7ia72N+u46MhzovYSm1+tVE+Y6OzthNBphNBphMBjUpdVqVbPhieibgUH0/zrXguhERPTNpCgK7HY7Ojs7uw1N7W3pq4tPRERERERERAOPY0aIiIjOIVqtVi3LRERERERERERDj5no/yUisNvtCAkJYTYfEREREREREREREQFgEJ2IiIiIiIiIiIiIqFfaoe4AEREREREREREREdG5ikF0IiIiIiIiIiIiIqJeMIhORERERERERERERNQLBtGJiIiIiIiIiIiIiHrBIDoRERERERERERERUS8YRCciIiIiIiIiIiIi6gWD6EREREREREREREREvWAQnYiIiIiIiIiIiIioFwyiExERERERERERERH1gkF0IiIiIiIiIiIiIqJeMIhORERERERERERERNQLBtGJiIiIiIiIiIiIiHrBIDoRERERERERERERUS8YRCciIiIiIiIiIiIi6gWD6EREREREREREREREvWAQnYiIiIiIiIiIiIioFwyi/5eIoLW1FSIy1F0hIiIiIiIiIiIionMEg+j/ZbfbERoaCrvdPtRdISIiIiIiIiKiPqitrWVCJBENOgbRiYiIiIiIiIjovHPgwAEkJCRg5cqVQ90VIrrAnXdB9Ly8PMyaNQtz5szB1VdfDY/Ho/5u3bp1SEpKwty5czF//vwh7CUREREREREREQ2mX/3qV/B6vXjyySeZjU50Cm1tbUPdhfPaeRdET0hIwJo1a7B+/XoMHz4cH374od/vr7nmGqxbtw5ffPHF0HSQiIiIiIiIiIhUn3zyCd5+++0B3eahQ4fwj3/8A9/97ndx8OBBfPrpp+rv3n//fVx66aXYu3fvgO6T6Hx15MgRRERE4Kuvvhrqrpy3zrsgemxsLAIDAwEABoMBer3e7/fvvfceZs2aheeff/6k23G5XGhtbfVrREREROc6t9s91F2gQdbR0YGPP/4Y//u//4ubb74ZiqIMdZfOWRUVFZg7dy4qKyuHuivfSFVVVQMeFCOiC095eTm+853v4Pvf/z7q6uoGbLu/+tWvkJiYiFdeeQVTpkzB008/DQA4fPgwbrjhBqxfvx4TJkzAvffei/b29gHbL9H56KOPPoLH48Gzzz471F05Y+vXr8f//M//oLOz86zu97wLovuUlZVh7dq1WLx4sXrbxIkTceTIEXzxxRf47LPPkJeX1+vjn3zySYSGhqotKSnpbHSbiIiI6LQ0NTVh3rx5sFgsuOmmm7Bz586h7hINgs2bNyM6OhqXXXYZNm7ciNdffx0vv/zyUHfrnPXxxx9j/fr1eOKJJ4a6K984Xq8XV199Na6//nps2rRpqLtDROcoEcGKFSsQEhICnU6HF198cUC2e+TIEfz973/Hz372M5hMJtx3333YsGEDvvzyS1x11VVISkpCeXk5HnvsMbz44otYunTpgOyX6Hy1evVqBAcH45NPPkFBQcFQd+eMrFy5Eh988AHeeuuts7rf8zKI3traiu9+97t44403YDAY1NuDg4NhNBphNBpx2WWXnXTYzv333w+bzaa28vLys9F1+oY5duwYfvzjH2Pz5s3nVX2286mvNHDKysrwzjvvDHU3iM55GzZswDPPPHNW93n06FFMnToV+/btw09+8hOsW7cOkyZNwj333HNW+0GDS0Rw3333ISMjA4cOHcLRo0dx22234b777kNJSclQd++c9NVXX0Gr1eKVV15BWVnZUHdnUCxcuBCLFy8esGz79evXD0jm1m9/+1ts3rwZCQkJePzxxwegZzSY3G43Nm7cONTdoCGwd+9e/OY3vxmy/X/wwQf46KOP8OKLL+LWW2/FSy+9BLvdfsbbfeKJJxAbG4v//d//BQBcdtllyMzMxOLFi3Hs2DH885//RHh4OB544AH89a9/xdq1a1nahb6x7HY7Nm7ciEceeQSRkZF+F7N++9vf4vLLL4fL5RrCHvaP7/vsl7/8pd9cmYNOzjOdnZ2yePFiWbt2bbff2Ww2dX358uWyfv36Pm/XZrMJAL9tXGj+8Y9/SFpamrhcrqHuyjfGHXfcIQAEgGRnZ8szzzwj27ZtO6f/Bh9//LEkJydLeXn5UHeFzrJbb71VtFqtNDY2DnVXiIZUcXGxdHR09Pi76upqiYyMFADy6aefnpX+7NixQ8LDwyUrK0sKCwtF5Pjx0I9//GMJCQnpta90/lm7dq0AkE8++US9zWazSVJSkixYsEAURRnC3p17FEWRqKgo+dGPfiRWq1VuvfVW9Xdvv/22/PnPfz6j7f/73/+WDz744Ax7eWZsNptoNBoxGAwSFhYmb7755hn9Hxw6dEgAyG9/+9sz6tf+/fvFaDTKPffcI2+//bYAkJ07d/b58YqiyMGDB8+oD9Q/t9xyiwCQo0ePDnVX6CybP3++AJD8/Pyzvu+WlhaJj4+XJUuWiKIoUl5eLgaDQZ555pkz2m5dXZ3o9Xp59tln/W5/5ZVXBIC88cYbfre73W5JSEiQH/zgB2e0X6Iz1dbWJv/617/E4/Gc1f1+8MEHAkCOHTsmDz74oAQHB0tLS4u89dZbAkA0Go3cdtttZ7VPp6uxsVEAyD333CMA5NVXXz1r+x6QILrdbpe8vDxpbm4eiM2d1MqVKyUiIkLmzJkjc+bMkb///e9yyy23iMjxD8xJkybJtGnT5J577unXdi/0ILqiKJKTkyMA+nVxgU5fZ2enxMTEyF133SVr1qyRpUuXSkBAgACQgIAASUpKksjISAkNDZUnn3xyqLsrIsffBwkJCQJAHn300aHuzpDZu3evPPXUU0PdjbPK9/8KQP7+97+f9f0fPXpUPvroo7O+3/NVS0uLvP322xd0QK2mpmZInl9eXp4YDAbJyMiQr776yu93iqLI4sWLJTo6WmbMmCHp6enicDgGbN+KoshPfvIT+fe//63eVlRUJNHR0TJ16tRux1n5+fkCQD788MMB6wMNHUVRZMaMGTJp0qRu//urV68WAPL6668PUe/OTQcPHhQA8vnnn8uvf/1rMRgMUlRUJD/72c8EgFgsFuns7DytbbvdbomNjZUpU6YMcK/7x3dhZdOmTXLdddcJAPnb3/522ttbuXKlAJCoqCix2+2ntQ2XyyXjx4+XUaNGSUdHh3g8Hhk2bJj8z//8T7/7sXz5cvWzbd++ffKtb31Lbr755n736fHHH5epU6eK0+ns92O/Cd544w01sefE4CKdPq/Xe84fi+Xl5QkA0Wq18n//939+v3O73YPe/4ceekgCAwOltLRUve1///d/JT4+/ozer7/73e/EYDBIfX293+0nu0D3y1/+UsxmszQ1NZ32folOl6Io8t5770lSUpIAkD/+8Y9ndf+33HKLZGZmiohIZWWl6PV6Wb58uRgMBrnpppvkz3/+swCQN99886z263R8/PHHAkCKiorkqquukpSUlLOWqHpaQfSuV+/Wr18vKSkp8u1vf1tSU1PP2yDI+RREX7VqlV+mTV9s2LBBAIhOp5Nf/OIXg9Qzf62trfL0009LW1vbWdnfUNu+fbtfNuAXX3whAGTr1q3qbS6XS7Zu3Sq//e1v5Re/+IU88cQTalbI73//e7/ttbe3D1jfPv/8c3njjTdOeZC0YsUKCQoKkm9/+9uSnJx82iee57ubbrpJAEhlZeVQd+Ws2bhxowCQ4OBgufHGG8/qvletWiUWi2VAs+Dvvfde+dnPfjYg2zoXPfHEE2rgaKB9+umn8sUXXwz4dvvj0KFDYjKZ5P777z+r+21vb5cRI0bI2LFjZebMmQJAvve978mOHTvE6/WqB5cff/yxHDp0SAwGgzz88MMDtv/NmzerQY5f/OIX0tDQICNHjpRhw4ZJXV1dj4/Jzs6Wa6+9dsD60FdHjx6VgoKCs77fgWKz2c65UWGff/55tyz0rhYvXiyzZs06y706t7300ktiMBikra1N2traJCoqSqKiokSj0ch3v/tdASB5eXmnte1//OMfAkAiIyMHuNf986tf/UpCQ0PF6/WKiMgll1wikydPPu3t3XfffRIRESFGo1GeeOIJ9faioiJ54YUX5I033pAPPvhAKioqeny8oihyww03iMFg8Ms892V/9jW7/IorrpCUlBQJDQ2VpKQkufnmm0Wn06kX9Pub9JOdnS0A5L777uvX4841LpdLbrnlFnnrrbcGbJu7d++WgIAAufnmm2XMmDEnzcTdsGGDFBUVDdi+L1THjh2Tn/70p2K1Ws84c7O5uXlQL/4sX75c0tLS5Ec/+pFERkaq++ro6JDRo0fL0qVLBy0j1uPxSEJCQrfYxaFDh0Sj0ZzRaKGcnJx+XbgTOZ6gYTAYzngkzokKCgrkrbfekvvvv19++MMf8mIeddPR0SFLliwRALJo0SKZP3++ZGRkqN/tg01RFElKSpIf//jH6m3XXnutAJD58+eLy+USRVHkpptuErPZLPv27Tsr/Tpd9913n8THx4uiKHLgwAHRaDRy3333ycqVK+WPf/yjbN++fdD2fVpB9PHjx6vrs2bNkgMHDoiISHl5ud/vzicnC6I3NDSc0RdLfX29rFy5ss9vEIfD0Wuws7W1VeLi4gSA7N+/v899WLZsmYwcOVKuvPJKmTp1ap8fdyYeeOCBb0xG84EDBwSA3HHHHeptt956q6Smpp4ycK0oitx9992i0WjkzTfflJUrV8rUqVPFYDCcNCP42WefPWWgq7m5Wb73ve+pQZmbbrqp1y/1LVu2iEajkd/97neyZcsWASCfffbZSbd/IfJ6veoJ3CuvvDLU3Tlr/u///k9iY2PlJz/5icTExJyVL3RFUeTJJ58UjUajDjN99913z3i7brdbLBaL6HQ6OXLkSK/3O90MvHPBpEmTBIBMnz59QDOIampqxGw2CwC59tprpaamZsC23VeKoshFF10kOp1OTCaTFBcXn7V933bbbWI2myU/P1+8Xq/86U9/EqvVKgAkLi5OAgMD/YIPDzzwgJhMJlm9erX8+c9/lttuu002btx42vv/wQ9+IMnJyfLEE0+IRqORsLAwiYiIOOn/8WOPPSbBwcEDmhF/Ki6XS9LS0vp8zFdTUyMff/xxv/ahKIo8+uijkpKS0usFhNPldDplxIgRkp2dfdr/4y6XS818iYmJkaioKHnooYfE7Xaf1vZOloXu88gjj0h0dHS/t/3OO+/Ic889d1r96klNTc05cwHiyiuvlBkzZqg/v/DCCxIYGCjvv/++OJ1OCQgIOO1gyUUXXSQGg2HIk2yWLFkiF198sfqzbzj26V4cWLhwoSxevFhWrFghYWFh0tzcLNu3b5fIyEjR6XTqMeP06dN7fPwvfvELASArV670u93lckliYqIsXrz4lCWm2traxGw2y29+8xspLS2VOXPmSHBwsDz99NPidDpl0qRJMmnSpD4fi1RVVQkAmTZtmmg0Gvn666/79mKcY7xeryxfvlwdtToQ5W7a2tokPT1dcnNzpaOjQ2655RYZPXp0r/dPSEiQcePGDUhQtbi4WB5++GG566675M4775SHHnrojLfb12OeqqoqGTdu3Gm/T07mmWeeUb+js7OzJSEh4bSPxbxer2RmZkpGRka/yiH1VUlJieh0OnnhhRfU0Wu+Y+1HH31U9Hq96HQ6uf3229Xn8O6776plSM80GPzRRx/1Wurpmmuukbi4OGltbe33dnfv3i0ATiuB87rrrpNhw4YN2LnO0aNHxWg0CgB1RPdAlQF76qmnJDc397SPLc53iqLIvffeK88///xQd0W+/PLLXi8un4qiKPKd73xHAgIC5P333xdFUdR4y9kaTbp///5u8Z0jR47IzTff7DfStb29XcaOHTsoMcOamhqZOHGiTJo0SRYuXCj33XffaSdtzpgxQ6666ir1Z99Iva5twYIFg1KF44yD6BMnTvT7XU5Ozpn1aIj0FkQ/dOiQ6HQ6+fLLL/u9zY6ODvn1r38tFotFAMiGDRtO+Ri73S6xsbHy9NNP9/j7n/3sZxIQECChoaF9zrIsLS0VrVYrf/jDH+RPf/qTaLVaaWlp6ddz6a/q6moJDAyU2NhYCQ4OHvAT4FPxeDzyj3/846zVif3+978vGo1GdDqdHDp0SDwej0RGRsq9997bp8d7vV41YwqAzJs3T5YuXSparbbHIZe+rOGkpKReD24OHDgg8fHxYrFY5JVXXpE333xTjEajzJw5s9vfo729XbKzs2XixInS2dkpiqLImDFjZNmyZf1+Lc53O3fuFAASFhYmS5cu7fE+HR0d8sADD5w0sHU+URRF0tLS5NZbb5Uvv/xSAMiuXbsGfb/vvvuuAJCf//zn4vV6ZcyYMXLTTTf1ev8vv/yyTyM01q9fLwAkKChIli9f3uN93nzzTTEYDH36XD7XlJeXCwD1YGHNmjUDtu177rlHQkJC5A9/+INYrVYJCwuTu+66S9auXXvWgma+unzvv/++xMXFyXe+852zsl/fid7LL7/sd7vH45F169bJT37yE1m2bJnfxZf29nZJSUlRh0mHhobKyJEjT+uAsL29XSwWizpa7LPPPpPc3NxTBoN89Y3ff//9fu/zRCUlJX0KcLzwwgvq99WpLug7nU6ZOHFin4+DfI/xfSfq9Xr55S9/2afH9dUzzzyjZrxmZmae1hwgt99+uxiNRrn33nvll7/8pdx5552i0+kkNzdXTS7pj7179woAv1I+J/r73/8uAPo1DH3dunWi0+nEbDYPyAi3DRs2SFBQkFx//fVnvK0zpSiKREZGys9//nO/27se+82dO1cuv/zyfm/bF2z68Y9/LABk9+7dZ9jb06MoikRHR/s9R19mp6+cZdf7fvDBB5KTkyPz5s3rdZvx8fHywAMPSFVVlZjNZlmyZIkEBQXJtGnTpKGhQdxut7z88sui0WiktrbW77G+bPNf//rXPW77n//8pxiNRhk7duxJ3wfvvfeeAFDneFAUxe9CoO97vGugvqSkpNdA5ZtvvikApKqqSmbMmCFpaWn9Dsy53W658cYbZcWKFf163EBRFEV++MMfilarlbfeektGjhwp48ePP+Pv3meeeUb0er06cugvf/mLaDSaHsuwNjQ0qJ/tv/vd7/q1n+3bt8vLL78s//rXv+Szzz6T66+/XnQ6nYSFhcmoUaNk1KhRJx1pIyLy4osvnnSE3W9/+1vJyMjo00Vj30jf3o4DT1dxcbEEBATI7bffLu3t7eqxw+lm73/11VcCQIYNGyYGg0GeffbZAU1k+fGPfywRERHqyPAZM2bIggULpLCwUEwmk/zsZz9T39ePPPKImnw1efJk0el0kpaWJu+9995p73/JkiWSm5vb4+9KSkokICDgtEYd3nXXXRIVFXVawWVf8HLVqlW93qehoaHPx9f33nuvhIeHq6NpR48ePSDfkV6vVz3GHMgL4afa51CMMvR6vfL000/LhAkTZMeOHertvou2MTExQzpCfv/+/aLT6WTMmDGndSz10EMPCQD55z//6Xf7jBkzZObMmQPVzZN6+umnxWw29yk+tmrVKrWM3EB67LHHxGw2y80336xm5Z/O+UtHR4cYjUa/iysej0eqqqqkra1NOjs75R//+IeMHTu2x3O7k+nL5+9pBdF1Op1ERUVJZGSkmEwmqa6uFpHjGQjZ2dmns8l++clPfiIzZ86Ua6+91u/AwuPxyI033igzZ86UH/3oR/3aZm9BdEVRJDExUe68885+bc/pdEpWVpbo9Xq54447xGAwyIsvvnjKx/lOTGNjY7sFR31XOR955BG57bbbJCkpqU9/5Pvuu09CQ0PFbrdLUVFRn654dXR0yE033STHjh3zu/2dd96Rq6666pT7veOOOyQsLEwKCwvFYrHIXXfddcp+DqSXX35ZAMicOXMG/YJBXV2dmEwmeeihhyQ1NVWWLFkia9as6fcES76TFl9Awuv19ljqxev1yuTJkyUjI0O0Wm2v/1dLly6V4cOH+wUHNm/eLNHR0ZKamqqe3NjtdpkzZ44EBQX5nSQ+//zzotfrT5ml9+WXX/bpNVYURaqrq8/5EjGPPfaYWCwWeeSRRyQoKKjb+9Dtdsvll18uAGT27NnnfB3EI0eO+NUg7MmePXvUYKzL5ZLg4GB5/PHHB7VfiqLIhAkT/LLrfvrTn0psbGyPny/PPPOMAJCf/OQnp9z2fffdJ9HR0WoQ4MThaDU1NRIeHi46nU5Gjhx5zmRU9tVLL70ker1empqaZMqUKTJ16lT1/3DHjh2nffBbV1cngYGB8uCDD4rI8VFUP/7xj9WsmsjIyAHPCvd6vfL888/LihUrZNOmTdLU1CTR0dFy9dVXi8j/r+G6efPmM9rP559/LldddVW3upldZWVlycKFC/v9ni4qKpJ169aJ3W6X7du3n3bd6r/97W9+QaX+GDt2bI+BgsOHD0tOTk6fsq09Ho+EhISc8r3f2toqUVFRcv3114vVaj3lxeIf/vCHYjQaZcSIETJ+/PhTfgc4HA6ZM2eOGI1GWblypdx6660SGxs7YO/Turo6sVgscscdd0hhYaGkpKRIampqv/63X3/9dQHQbRj6jh07ZOTIkRIQENDvi6y//e1vxWQynfTkxpd5t2XLlh5/X1RUJFOmTJHXXntNvF6vlJaWSlRUlDonzsky9vqSbegLoPtqeQ5UhqeiKFJQUCB//vOf5eGHHz7p+7QrX1bV2rVre73Pww8/LBEREac8bn333Xfl4osvVof//uhHP5KoqCiprKwUAPKvf/2r70/oDPzlL3+RWbNmqf0tLi5WS0h15TtG8Z237Ny5U8aPHy8AJDMzs9egXn19vV8m6k9/+lMBIIsXL/YLDNTV1YlGo/H7LPPVT+2asdqTvXv3yujRo8VkMvVau/26666TcePGnfS1WLp0qaSkpMiaNWtkwYIFAqDXC2rf/e531USuwsJCCQoKkttvv/2k2++qs7NTrrnmGvXC3YkXD3zcbrf8+c9/lsOHD/d523317LPP+n2u5OXliV6vlwceeECOHTsmDz/8sMydO7dfk4K2t7dLdHS0fP/731dvO3r0aK+jTX0B3Xnz5klISIhUVVX1eV++cjq+lpSUJM8//7wavPUl6FxzzTU9Pr6wsFDN7u4p2/ODDz4QjUYjwKkn9c7PzxedTic5OTmi1+v79TxOZdmyZRIfH69eUG9qahKNRiN/+ctfTmt7N954owwbNkycTqf85Cc/EQDy7W9/u9f/wf5obGyUoKAgv4twf/nLX9QgeXJysvr3efDBB9UEFF8J0Pz8fFm0aJEAOK1RdhUVFaLVak8awHrooYfEaDT269jH5XJJZGSk3H333f3uk8jx/8WZM2dKSEhIjyNgd+3apQave/u+7dqXqKgovxIZDz30kISGhp7xccvXX38tAGTKlCkSGhraY1KioijyySefnFY2f0/++te/qheffMeOu3btku985zuDdm5YWVmpjkhOT0+XgIAA+dvf/iavvfaaAFA/m89kpOeZUBRF5s2bJykpKWI2m/s9Ma3v+L5r+TSfDz/8sE//Z/2xevVqueGGG+Tmm2+W22+/XR588EF5+eWXZcKECbJo0aI+bcPr9crIkSPliiuuGLB+eTweSUxM9Ps+mj17tt9owr7yJZSe6jhUURS57rrrJC4u7pQXD1wul9x+++1+7+XeDMjEoj7Nzc1nfKJ7Krt27ZLrrrtORI7XCHz77bfV373//vvqyf/3v//9fl05OVk5lzvvvFMSEhL6dVX4k08+8bt6M27cOL9/mJ54PB5JTU2VGTNmCIBuX8aLFy+WlJQUcTgc6j+Ob9Iz31CXEw+I2tvbJSIiwm8SkfT09FNmWfhqqM+fP189UK6trZWwsLBTZkodO3ZMDAaDOjHjr371KzEajVJSUnLSfQ4Ut9stKSkpMn36dAkLC5Nx48apF3p64htC/dprr53W/n75y19KQECANDQ0qFli48aNk2HDhp1xgFVRFLnrrrsEgDo6wfdBvG7dOrnhhhskNja22xVRXwZVT4GckpISGTt2rHrgMH36dLFYLN3eL42NjWIymXrNNhL5/5lC8+fP7zV78c0335TRo0erJSIuuuiiczqQPm3aNFm2bJkaWP7Pf/6j/s7r9cr1118ver1ePfHs79VTRVFk/fr1cv3114vFYul3iYP+WLVqlZjNZhkzZsxJP79OPNi7/PLLB73uru9ErWuWh28egROz4H0ZMunp6RIeHn7KDIDs7Gy58cYbxe12S3p6ercsxKuuukoiIyPlq6++OmmWq9frlY0bN8qPfvQjGTFihN//Ql+98sorsmzZMhk7dqyEh4cPSImkiy++WBYsWCAix7OVAcjzzz+vXtE/nYMRkeMXH4KDg6WhocHvdkVRJC8vT4xGo7zwwgtn3H+fsrIymTt3rmg0GrVMWUhIiISEhKjzEXi9XsnJyfG7UNAfXU9KAcgNN9zQ4/18gaqBCJRdeeWVkpSU1O+RUBdffLHMnj37tPb5y1/+UoKCgrpl59177719zsDwZbSnpqae9PPi4YcfFpPJJGVlZXLHHXdIfHx8r5/pb7/9trp/X733V1999aT9uO+++8RoNKpZ677vs4GqD3z77bdLaGioGqgtLS2V9PR0GTlyZI+ZmV15PB757LPPxGQy9XoS5QtanRjAc7vdJz3JXbJkiVx00UUn3X97e7sAvU8K+PDDD4ter1cDJOPHj5eUlBSpr6+XESNGdDsO3b17t9x3330ybtw4ASAzZ86Uv/71rz1meW7cuFGCgoLkoosuEpvNJllZWX4XQU/Xv/71L0lNTVVHcwQGBkpUVJS8++67oiiKtLW1ycaNG3u8GPziiy+KwWA46XeCb3TV3r17e/y9w+FQExZiYmLU74TQ0FC5//77RVEUsVgsJz0WGkjz5s3zuzDgO648MXhSUVEhOp1Ofv/738sHH3wgZrNZcnNzZd26ddLa2iomk0meeeaZbtv3TVLqCwLb7Xb529/+1uMx3PTp0/1G5D3++ONiNpv7lDjhcDjk+uuvF6PR6JdVKHL8RNWXrHAyR44cUf+fc3JyZOnSpRIQENDtgpeiKBIXFyc//elP1duee+450Wg0fRpV5/V65YYbbhCdTievvPKKGI1GefbZZ3u877/+9S/1+2TatGl+qK9JNAABAABJREFU56FnQlEUSU1Nlf/93//1u/3xxx9XA8chISESGxsr2dnZfc6EfO6550Sn0/ldUPGN4HjooYe63f/5558Xo9EodXV1EhUV1ecs7paWFtFoNPLqq69KY2OjHD16tMcM4aefflpMJlOPn7UrVqyQyMhIiY+Pl0suucTvO3/Xrl0SGBgoV155paSmpvqVz+zJ5ZdfLmlpaVJbWytBQUGn/F/rK9/758S/+9ixY7v97frCbrdLUFCQ33Ho6tWrJTo6WmJjY89o3htFUWT58uUSEhLidyG9ra1NHSXfteSIoijy2muvdUvE6OzslAkTJkhOTk6/z98ee+wxCQwMPGk5rLa2NklMTOx19G9PfIHH3j7X+8Jms8l3vvMdASC33XabrF+/XrZv3y6vvvqqBAQEyIQJE9TkipP55z//KQD8Rt74RpZ1vdijKEqPx1Z1dXW9Ht/eeuutkpSUJHV1dRIWFtbjnHi+ScdnzJgxIGUqr7vuOklISBCr1Srh4eFqcNtX2nCgS2McOXJEIiMj1f/3jo4OufHGG9VjgltvvVW8Xq9acnQo+D73P/30U/Wc9J133unTY+12u4SHh8u1117b49/Z6/VKRkbGgI3+dzqdkpCQIKmpqTJlyhTJycmRpKQktVRbf0rVvvrqq6LRaPp14fZkeipF53svd51DsC+eeuopCQoK6tPo2aNHj4pWqz3pOWx1dbXMnDlTDAaD/OlPfzrlNgc0iH42/P73v5e//vWvInI866Lrl+hPf/pT9Y39r3/9S37zm9/0ebsnC6L7gj3btm3r8/ZuvvlmyczMVN8sN9xwg0yaNOmkj/EdKO/atUsuvfRSyc7OVh/vC5z6hoD4yi/4vrB9WZonltPxZUt1vbp7yy23SFZW1kn78txzz4lWq/U7cb3pppskIiJCcnNzZdq0ab1+4F9//fUSFxenHuDZ7XaJiYk5a5MV+jIX9+3bJ/v27ZP4+HjJyMjoNaDhCxxERUX1+yquy+WS2NhYdUitoigydepUATBgE+IpiiI///nPBYA88MADkpiYqF4VLCwsFL1e3+1E6Xvf+54kJCT0egXcbrfLZZddJsDxsiW9Tbxw7bXXSmpqao+Tw3q9XpkwYYKkp6eLTqeTe+65p9t9vvjiC9HpdLJ48WJ57rnn5MUXXxSNRtPryclQq6+vF41GI6+99po6CqXr1cg777xTNBqNWqt+4cKFavZIXyiKIhdffLEAkOHDh6tfbINRm/uvf/2r6HQ6mTZtWo/BwY6ODvVgLjs7W704KXJ8JIdOpztlQOlMLFq0SMaOHev3OeLLgu96pf4f//iHaDQa+eEPfyjHjh1TT9J64yt14vsb+YZ4v/rqq1JbW6t+WfuGiP/sZz8Tk8nU7QDB6/XKRRddJMDxWti+zNveHDp0qNvFxZaWFtHr9ZKbmyu33367TJ48WdLS0vwCVLW1tf2q3drU1CR6vV4dnaIoivo3Tk9PlxtuuEG0Wm2fMzl96uvrJSgo6KRlwmbNmjVgB3lbtmyRsLAwSUxMlC+//FK8Xq988cUXcvPNN3fLCvIFwW699dZ+1VItLi6W8ePHi8FgkGeeeUadFLSnrNU//vGPA/Y/f/jwYdHpdD3WYV6/fr1ceeWV8txzz8m+ffvU///S0lLRaDS9Bkf7ss8T3+eKokhycrIAOOVJoIh/cKi3+TZqa2slODhYDVZt3bpVgP8/wa2iKPL222/LPffcI8uWLZPAwEC57rrr1Od57bXXSnR0dK8n1Hv27BGdTtftwtbChQslNzf3jC9M79+/X7Rabbe/zeHDh9WTxZ4CP19//bVcfPHFEhQUJMDxWtEn+9x/5JFHJDAwUB3arSiKLFq0SFJTU3t87h6PRywWS5/K1iQnJ/f4PlUURbKysuSGG26QDRs2yLhx48RsNqsnKz/96U/95rsoLy8Xk8kk0dHR8t3vfld+97vfqSfLMTExUlZWpm67ra1NkpKSZNasWeqxne+z9HTLSdXW1sqVV14pAOSyyy6TVatWSUtLi9TU1MiyZcvUCzq+Y9GeanMuW7bslBd8HQ6H3wVAm80mw4cPl7CwMMnKypLk5GQxm83yyiuviMvlkp/97Gei0WhEo9GowdqcnJxupVMGg91uV2uw++p83n333ZKWltbj/a+44gqxWq2i0Wjkqquu8vtuueyyy2TatGndHvPb3/5WzGZzn4JhTz75pAQGBqrHC8OGDev1QmRPnE6nTJ48WVJSUvwmDfcFffoyadkHH3wgq1evFkVRpLW1VeLj47tlxvlGJHS90O12u2XUqFEyY8aMU35uPPTQQ6LRaNTjgquvvlpGjRrV4+NuvPFGGTlypLz77rtqdvxAXHzdtWtXt+cgcjyA+dBDD8lbb70l7e3tsn//fjGbzXLjjTee8nk5HA6JjY2V733ve91+d9lll/V4Eez73/++ei7py1i+6qqr5JlnnjlpkMM3AvdUGfpVVVWi1Wq7BSkaGhokMDBQHn74Yfn000/Vi69Op1NWrlwp8fHxMnHiRGlvb5c77rjjpHNO+RLBfEGu2267bUBGM7ndbhk9enSP/1MrVqyQ4cOH93ubvtI6J14krK6ulgULFohGozntUlK+v9+JcxeIHA9A3XLLLX3+TvV913cdGX0qvlIkfbm48M477wiAPpfPvfTSSwekhLCiKPKnP/1JTCaT3yiKG264QRwOhxqbOVkMaMGCBd3mj1AURYYPHy4333yz+vPVV18tF110kV8gvaioSMxmc48j9l0ul0RERKjf988//3y3/wdFUWTKlCkycuRIsVgsMnv27B7P2fvzeiQkJMhPf/pTqaurk5tuukmmTJkib7/9trhcLpk5c6akp6ef0T666ujokJycHMnMzPS7UKwoirz44ovywx/+UD3uv/XWWyUtLW3QRoBv27ZNvvWtb3U7tmtvb5fk5GRZvHix2jffxam+lHD63e9+Jzqd7qTJpL6R032pt/7/2LvPqKiurw3gexpDnaH3ooAKoihYsIANu6KIvfeusbfYe+xRo8auSewaY0nUxG6MSdSosXfFrgjS28x93g+894ZhCjMUMfmf31qulQxTDsPMvefus8/eaWlpmDBhgt77rlq1CmKxWOtYrFKpDC7Y6JKeng4XFxeTdnUZ0qhRI625nEqlgr+/v94dSvq0bNnSpESO7t27w93dXWc88OTJk/Dw8ICbm5vRCeGFDqJ/rO2NvLlz5wqrpvfv39dYIe/fv79wYPnll18MBjEzMjKQmJgo/OMDL/oubhwdHY2uQa7r/osXLzY4aeVLG0RGRgL4J2jwyy+/4Pjx45DJZOjRo4fGB3/q1KlQKBRCNiWfwZ57dadGjRpo3Lixxmvt3r0bRGSwBmi3bt0QFhaGjh07wsnJSaj3tnbtWhw6dAhEumubnjt3DiKRSCvrjQ+e6iszcPbsWdSoUQOTJ08uVMMZlUqFMmXKaKxm37p1y2DZkxUrVkAmk0Eul+ttgvrNN9+ga9euWtk3fO3e3I1/Lly4ABsbmyJpBpTb/PnzQUSQyWQa72P//v3h6OgoLADExsYKNfUMUalUWL16tcF6trdv34aVlZXO1VN+cvbrr79i6dKlGoFLIOf7aWdnh8aNG2v8TUeOHAm5XI7bt2+b9Pt/DHzWJJ8FO2DAAGFSzC/OrF69Wrj/zZs3IZFIdGZ76cIHutasWQOO4/Dw4UOYm5trZE+ZIj4+Hr1799Y44GdnZ2P69OkgIvTp0wfZ2dlo2LAhKlasKEzczpw5A0tLS1hYWAjbb3Mfy3Nn5V69ehVjxowpUBa2Pnwj3m+++UbrZ7mz4G/cuAFzc3N07txZGHvLli1RuXJlvZOAdevWQSwWCzWDVSqVEBgiIpiZmaFFixbC41NTU1G6dGmtiS0/cd61axfUajUmTJgAJycnvRm6rVq1goWFhcbEkq/5zl8c3b17F2ZmZkLN6/fv3yMwMBASicToGsf8MSf35Onu3bvYunUrMjMz8erVK73vrT4cx2HQoEGwsrIyGHyfMmUKHB0di2QCW7duXVSqVMno33vTpk2QSCSIiooyui6+o6MjfH19hUxEjuNQp04d+Pv7a2XatmnTpsAZ/Lr0798fDg4OGkH5Fy9ewMnJCR4eHsIFm7OzMzp16oSYmBhYWVkVakGtWrVqqFevnvD/58+fBxGhTZs2MDMzy3eReObMmXBwcEC5cuU0FtV4KpUKrVu3hlKp1AgOly1bFt27d4darcbgwYNBlFPbtWHDhhg1apTG7/Ts2TNYWloiIiIC7dq1Q8OGDTF58mQkJiZCpVKhWrVqqFChglawg99xcfbsWZw6dQrR0dEm10nnOA6NGjVCmTJldAZTTp06BZlMhn79+ml8xm/fvg2lUomQkBB88cUXOH/+fL41WN+8eQO5XI758+cD+Od4IpPJdF6M8GWAjNmq3KhRI50Ze3///TeI/qnxqlKpNL7P/LZwfsvw8OHDYW9vr/W5uHfvHjw8PDRKG02aNAlyuVyjxB+/i69y5com1++Ni4uDu7s7HB0dsXPnTp3HlH379mHo0KFYt24d5syZo3FuBnICNI6OjsLx1JDw8HBhAXDs2LGwsLDAnDlzMHLkSPTt21drHnTmzBmN3aBt27YV5ueGXLx4UdiazNc5DQ8PR0REhN6yJrkdOHAARIRhw4YJ5fRq1aqlty8Ef60wadIkrb8BvyU/74V2z549803q4fHn6h9//FFIKDK1j8iTJ09gb2+PFi1aCGPs378//P39C3Qu2b59O4g0S5EsWbIEcrlc67ieN2s4LS0NP/74o8ZF9OXLlyGRSDQylfnjTd7AmUql0ri+4zgObdq0gZ2dXYH6KuQ2depU2NraGlXfmU8OyC+jcMWKFZBIJDqvvebPnw9ra2ut69Lq1asLCyUcx2HOnDkIDw8XdpN+/fXXOl+LL5tkzN+0adOmWkHHOXPmwNzcXChhMmDAAFhaWsLR0RFEOeVl+O8/v9v71q1bWs+dnp6OqlWrokqVKsLnjV9kyX2NYqrk5GR07NhR7+4G/to69zHKGPXq1dPbv8CY/lo//fSTzszgu3fvwsrKymCfIVP17dsXtra2RvU54zhOqAFtTJmKvHEQQ/jeVQUtn6NLfHw87ty5g6tXr+L69evC51ilUiEwMFBvCQy+TK6uBIgJEybAwcEB2dnZ2LBhg3AdkjuDuWvXrsLCad5dB/z5gD8/ZWVlITAwEJUrVxauNfhj1bFjx3D+/HlYW1ujQYMGBd7xff/+feGYr8u9e/dgYWGBzz77DPHx8Zg9ezbKli1b4LrZw4YNg1wuN2qhiP9dr169qvWzuLi4AvWiyY0v1Zp3x/DMmTNhZmamcRxNTEyEu7t7vnXvs7Ky4O3trXNOnVtCQgLMzMyMaoLO75zTFTvgs9CLsmcNf2wuSH/Dly9fCrtg+DJiuq5Pv/rqq3wXGnJTq9Wwt7c3aYfR3bt3IRaL8dVXXwm3PXz4EDExMSDK2YlpyvG70EF0Y/7gRblitHr1aiET/eLFixqZ6OPHjxdOJHv27DGYic4HmfL+05cd1adPH5QpU8ao34WfaObO7v3ll18MrtDzjzly5AiAnPescuXKCA0NhY2NDZo0aaI1sbp79y6Icrq316hRA2lpaXBzcxPeE34rUd5mIHFxcflmvJUvXx5DhgzBy5cvoVQqIRaLUa1aNahUKqEBYIsWLTQek5aWhrJly6JmzZpaB++0tDQ4Oztj0KBBGre/f/8effv2BREhKCgIEokEtWrVyreG87Vr17S2hwL/rGTn/Vm3bt3g4eGhM3OsVatWqFevHsaMGaOzCeqiRYuEi9+QkBBhgnf27Fl4e3ujSZMmWs9ZXKuk33zzjdbf7enTp7CwsIC/vz/27t2LUaNGwc7Orshqo/Hvae6DTkpKCtzd3YW6xRzHoUuXLjA3N0eLFi0wceJEBAQEoGzZslqZnfznpHr16oVaMDHG999/j9atW6NNmzZo3769zmyM3Lp27arROJmfwOzatQvm5uZCRkFufGkAY+rf8hd6uQOtc+bMgUQiMSojK68FCxaAKGe72/jx43H9+nWEhYVBLBZj5syZwueQD57s27cPjx49goODA+rUqYOlS5di4MCB6NKli1ZgMiAgADY2NsLz+/v7652UqdVqnDx5EqtWrcKoUaOwYMECgxM4Qzsl+Izgly9fonz58ggKCtIYGz+J0hds0hcMff78ObZv346xY8dq1cbkj8/8dv2MjAyULl0aUVFRwn1Onz6t89gC5BzH+Elw7izqbt26ITg4WOO+kydPhpmZGa5evYqaNWvCzs5Ob6aQLjExMahevbrB+1SrVk34bhpj1qxZWgtEuvABicJOVPmMJlMbVR05cgRWVlYIDg7GvHnzcObMGfz+++8YN24c/Pz84OrqiubNm2Pw4MGQSqWoV6+eVmma27dvw8zMTCj9BuRMchUKBWbNmlWo3yu358+fw8bGBiEhIXj+/Dmys7NRt25duLm54c2bN0hLS8Px48cxadIkVK9eHWKxuNCZrt9//z2ISNjZMHz4cLi7u+Phw4cgIuzevdvg4zt06IA6depgwYIFMDc31zh28w3vJBKJViMuvpRMr169hJ08hmzduhVhYWFo3Lgx2rRpAwsLC2ExQSQS6cwC4TgOgYGBQia4Uqk0edGBb5JkqBwdvzjcqlUrvHr1CnFxcfDz80P58uVN7q/Sp08feHh44N27d3B1dUWbNm2wcuVKndl2CxYsgKWlpVGZksOHD0dgYKDW7VOmTIGtra3e5+ADgJMmTcLLly8hl8v1fub592rz5s24e/cuZDIZpk+frnU/vkSPqSUtunfvDltbW6MDj/Hx8ZBIJBoJGvzxyJisocmTJ8PJyQk3b96EVCrFnDlzTBrv+PHjUapUqXzvN3DgQDg7O6NXr17o2bMnevTogR49eiAiIgLm5ub51vwdNGgQ/Pz88P79e5ibm2PWrFmQy+UGG8rlPcbx+F1LeRNIKleurHMuowu/63XQoEHo2rWrxg5bUxw5cgQikQg+Pj6Ijo6GnZ1dvr0UDI2pbt26KFOmjHCMatq0qd6MNL5+9aRJk4RyBHxJoszMTAQHB6NSpUoa11gqlQqenp5apRP4hcncASN+QahBgwaFagZZoUIFkwIfAwcOhLm5ud5+F5mZmfDw8ED37t11/pwvx5i7HIZarYalpaXO6+fs7GwMGjQIZmZmOnevNmrUSMjUzA+/EMIHpTIyMuDi4qLxficlJaFZs2YYNWqUVtJNamoqzM3NtRJYsrOzhZI/ebPm69Wrp3Nu+ODBg3xLgty5cwdBQUGwsrLSWT8bgJDAYEqgng/AGkp66N+/v97s2+fPn8PS0hL29vYaOz0yMjIQEhKCsmXLFulOV76kSMeOHQ0u9mRlZQnX9qbU0OYTT/LrJ9ayZUuUKVOm2K8hefznVdfnfvLkyVAoFDozsy9evAiinJ2w1tbW6NOnD1q1agUfHx+kp6cLu0/WrFmDyMhIeHh4aCSWtG/fXusa4urVq7CyskJMTAzUajVq1KihUR2AT3TM+/m/d++eUT1M1q9fD7FYbLD8zrJly0BEsLa2Fnaz6YqF5Icv7ZE7vmBIZmYmlEqlMBeJj49Hjx49hHJwRNpNO4319OlTYdfbkCFDhNtVKhVcXV11lo9avXo1RCKRwWsiPjlPV+A/r+jo6HwXuPmYTEBAANzc3LS+A/qy0AuD3yWkUChQtWpVdOnSRdgdlp8KFSpAJpOhW7du6NixIxwcHHRmgqekpMDOzs7ocj18WWtD/XB06dq1K9zd3TFs2DDUrl0bZmZm8PDwwHfffWfy+bvQQfSjR49CoVBg+PDhWm+mSqXC5s2bUa5cucK+jCBvTfTcgYe8NdENTaxNyUQH/rmgMCZ4MHz4cHh6emq8H2/fvtUKsOQWFRWFChUqaDyGzzisUqWK3oBoWFgY7OzshJWbSZMmwdbWFunp6Rg6dChcXV11nuiqVKmid1UsJSUFYrFYKJmwbt06yGQyjZMHnwWRO/A3btw4gxnGc+bMgVwuFyZ8qampKF++PJRKJdasWQO1Wo3z58/D29sbdnZ2eic1mZmZKF26tFZJGr5hja5t67dv39aZIc83UpszZw7i4uI0mqAmJydjwoQJICJMmTIF165dg6urK8qWLStMDmrWrKnVfLUkXL9+Hc2aNRNOIsZkZpnis88+g0wmw6ZNm7B9+3Z0794dZmZmGtuYUlNTMW3aNDRr1gyenp7w8vLSG1i+cOECxGIxZDIZrKys4OHhYXKzEI7jMGvWLEyePBnr1q3DyZMnNQK327dvh1gsRvXq1dGsWTOEhYWBiPQGeFQqFRwcHPD5558Lt6WkpEAul0MsFiM0NFTngf/du3cICAgwqr55gwYNtD6ffBPi2rVrm5Q5oFar4evri86dO2P+/PkwMzMDUU6ZGF1ZH5GRkahYsSIqVKgAX19fvRfevPXr1yMmJgYHDhwQLhz1BT35IKxMJhMa3kZFRemcVN66dQsymUyo8Z/XkydPQEQIDAyEhYWF1o4OtVqNsmXL6tz2VZimqBMmTIBUKsWFCxeEcla5X9tQoJXPfvf39xeyHVUqFezt7TWCtUDO98THxwdyuRxWVlb4448/EBISYlTd0bS0NFhaWgrZrfrwzXF1BdOSk5Nx69YtvH//HhzHCZNhY96z1NRUyGQyoye8QM778OWXX2osjLZp0wZly5YtUKbM5cuX0aRJE2GBhyinFNfAgQMxefJkNG/eHF5eXhg+fLjei7xp06ZBJpMJx25+kcmUkm3GuHr1Kjw9PeHu7o5evXpBLBbj9OnTOu+bnJxc6AtCfoG7cePGUKlUcHFxEZpuBQcH55sJU6FCBQwePBivXr2CRCLRWFSZN2+e3sxHfueKWCwWkhxMERsbi65duwoZuPocOHAA0dHROHr0KJ48eWJS+ZusrCyUK1cODRo0yHfiv3//fjg5OcHBwQGhoaFwdHQs0HmezwwPCgqCtbU1nj17BrVajYiICK3t0E2bNjX6IvSrr76CTCbT+LxwHIcyZcroLNuQW69evRAUFITRo0dDoVAYLF/UvXt3KJVKhIeHa5Whyq1ly5YoV66cxvf5559/Rps2bXQ+hs8iNbX5bmRkpMZ71LlzZwQEBBh1Iffzzz8L5xU/Pz+T+xWsXbsWYrHYYOCIL5+kqyFVSkoKfHx80LhxY73j5Wti89+B7t27C4tGBe031aRJE43dKVlZWSb3thgxYgRcXFxgbm4u9DoqiJ9//hljx45Fw4YN4efnZ3AXZH5u3rwJhUIBT09PHDx4EJaWlnrnFI8fP4aFhQVsbGwwcuRI7Nq1CwqFAlWqVMGIESMglUp1ZkHywbHci/gTJ06Eo6Oj1rnr+PHjEIlEGDt2rMEeTPrwGXqmLCy/f/8elpaWenfQ8teQ+q5bU1NTIZVKNa6L+CxUfSWaMjIyEBYWBi8vL41dLiqVCjY2Njqb5umSlpYGhUKBCRMm4K+//sL48eMhEolMCvw0b95co4cEx3Ho06ePzoVeIGdnS96gS3p6Ovz8/GBubq4zGJOWloYFCxbA2toaAQEB+e4wLlu2rEYALvfY8h5zMjIy0LdvX1hbWxssjcEfu3QFlnv27AlHR0fY2Nhg+PDhwu0jR46EmZmZUf0ATLVt2zZIpVJUr15d5w6HFy9eoEmTJpBKpSbPB1QqFfz8/IRSVrrwu7aM2dlTVFQqFQICArQWiTIzM+Hm5qa31AXHcfDx8YFYLBZKud2+fRsSiQSLFi1CkyZNULZsWWRnZ+PZs2ewtbVF+/btcfv2bWEnrq7j2oEDByASidC0aVOt72tGRgZkMplW2Z2oqCj4+Pjke77s2rUrqlatmu/70bdvX0yYMAGvXr0yKVDMe/r0Kezs7NCmTRuTFma7dOmC4OBgxMXFISQkBPb29hgzZgy2b9+OmJgY2Nra5puIqcukSZOgUCjQt29fjRgen2Sl6/ogMzMTpUqV0lvmkk+IzVsRQh9+EUnfYvu9e/dgbW2NLl26CN+D3FnzxZGFzrt8+TLmz5+Pvn37Co3qq1Spgh07duCvv/7C06dPtRJV+UXCbt26CU16De28nzBhApRKZb7zs+vXr8PR0RFVqlQxupwu786dO1AoFEIc4csvvyxwaaIiqYnOXyhGR0cjLS0NmZmZWL16NUqVKgU7OzudjUsKY8yYMQgPD0eXLl2QmZkpZG9lZ2ejR48eCA8P1ziZGMNQTXQg50RrY2Ojc/vw3bt3hQOHWq2Gh4cHPvvsM637ubm5aQToeLouWIGcye6yZcv0ZhkAOQGn3IFKfiK2YcMGKBQKna8H5GTVuLq66jxw8as7uSeVed8XfntKUFAQlixZgr1790IsFhucYMfHx8PKykoIKg0aNAgWFhZaE7z4+HgEBQWhSpUqOoMKq1atEoInuQ80/PYufWUnOnfuDG9vb43AEh8c5FdsZ8+eDZlMhrJlywqNfHJnAD148AClS5eGjY0NVq1aVaisk+Lwyy+/oFevXvkGSE2VmZmJiIgI4X2XSqX5NtnK76R4+vRprFy5EkuXLkVISAjKly9v1DZWHn+ycXd3F1aPAwMDsWPHDuzYsQNisRg9evQQLnb4khUikUgray4+Pl5oFJo3mN+8eXPY29trNbLKLTExEdHR0SAiTJ8+XWdwMDExUWdWGP9eiMViDBkyxOjJBF9TlL+4vn79Or744gu9WSd8jUiFQlGgUkN16tTR2dyRL88watQo4fv6008/wdraGqGhoRpZ3+np6ahUqRICAwMNluQIDAwUjmO6LF++HFKpVOuigm9MWpD6kVlZWahZsyZ8fHxgb2+vMys4JiZGawsyANSvXx+RkZFYuHAhzM3NkZycLBxHdS1o/Pjjj7C1tRUmP9OmTTNqG/fy5cshFovzzWbks1v4utZJSUno2LGjUB+b/8cHaCZMmGD056527dpo166d8P+HDh1Ct27dcO7cOZ3PwddJ9fX1xfPnz3Hnzh2IRCKTGtvoolKpcOXKFfz6668mB+NTU1Ph7u4ulEiYMmUKHBwciqXh8cuXL1G1alUQkcnZrwXBHxfnzp2rMfHPr1RAVlaWxgJJq1atEBoain379gkNaw1tm5w9e7bJOwvyevTokUkLCaY0YuW/O8Y2IXv79i3atm0LuVxucvmKvGMkIo0dm/fu3YO5ubkQbMnKyoKVlZXRAUr+oi53H4crV65o7GbUh9+tkLuslD7v37+Hq6trvtn7fLYdf1798OGD0Cg4b/Z6YmIiPD09DQaT9eGbiH748AHx8fGQy+V6A6d5paSkCA0q9W1TN4TPetdXkhD4p/SJvubRfDKOvl1HfH8ePgDIn0NkMpnJQX8ev8DL77Dky1qY0hiO/90lEkmBAsTFJTY2Fo0bNxbOZ4bO+48ePdK4jrly5QpcXFwMJp3wAeXcgcCgoCC9NeFnzpwpXDdUq1ZNo2FjfhYsWKBVDs4YgwcPhqurq1YggeM4hISE5NsLo1q1ahqZ6nyg2dDf+dmzZ3ByckKjRo2E7zC/81nfIrEu/fr105iPmLoT66uvvoJUKhVKgX322WcGg6t8ObfcPbL4a77w8HBYWloKx/qEhASsX78eXl5ekEqlGDp0qFG7e/v164cKFSoAyEmwGTp0KGrUqCHs6G7SpAm2bduG/fv3w9/fHxKJJN/Sm9nZ2XBwcMCECRM0buevedesWYOFCxdCIpHg+vXrwnHmyy+/zHe8BfXHH3/Az88P1tbWmD59Ok6fPo3ExEQsXLgQ1tbWcHR0LHAJyDVr1kAsFus91jZr1gwBAQHFMl8zhC+PlbuEEJ8VbGhBcPTo0RCJRBrfjaFDh8Lc3Fxr4YzPeOf/SSQSvbu1+J3IunrUhYaGaiyo842EiXTvps19Pw8PD509zgzhY0LGBm+zsrJQq1YteHt7G13Skcc3cS1TpgycnJw0kjnj4+Ph7e2NiIgIrc/HgwcPULNmTQwYMEArdpOeng5HR0d89tlnQok0/vqyd+/eBkuP8aVedWX589c/xmZLp6amwsrKSue1wvv37xEcHAx/f38kJSUJuzO7dOki3GfBggVFnoWuC8dxOH78OOrVq6fxeXV3d9c4F61atUo4RmdnZ+PEiRMGz3F8hQ19CcdATiKes7MzKleurLH7xtTxF4Uiayz6/PlzBAcHIzg4GO7u7nBycsLcuXOLrKREccsviA4AHTt21Cj1AOR8qN3c3CCVSrFu3Tr88ccfICKcOnVK6/FNmzbVKoEC5JR4MDMzK/CHIa+IiAhYW1tDJBLpbXjAB+B0fdFWrFgBMzOzfAM6586dQ7NmzYTarlWrVs33AnjUqFGwtbUVMtn11db7/fffIRKJtLbqpaamCtuizczMsHz5cuFnEydOFGqP6XLjxg2IRCKsW7dOuG3mzJlQKpXCwTY5ORndunXDiBEjsGnTJp3Bxg8fPpjctO+/QKVS4dmzZ0hOTi7ycjVXrlyBWCzWW4IpMTFRY2GAL7fBZwVkZWXht99+Q/PmzYWDebdu3bROomq1Gr169YJEIkGbNm0wZMgQDBs2DAqFAhYWFjrrir5+/dqoGl1qtRqzZ8+GSCRCgwYNtEqG8E379H0n+W7ffNDhr7/+QoMGDVC6dGn07NkTW7Zs0cgabNWqFSpVqmTS32Lu3LkmXeTkxm8RzNsEs3v37jobBV69ehUeHh5wdXUVgrkjRowQSpkYsnXrVkyePFnv75aUlIQqVapALpcLTWAPHz6McuXKae0CMsXjx49ha2sLKysrrb8f8E9AIvex+vnz50IJCz4jd8eOHfnWUM/92eSDULrOG7zk5GQ4Ozvnm2kK/DMRHjVqlNAAx9raGuPHj8fWrVtx+vRp7NmzB0uWLMGmTZtMer8+//xzODk5geM4IRjNXwxUrVpVKzjTuXNn+Pr6wsvLCwEBAWjXrh3c3NxMzh4oahs3bgRRzvbcqlWr6q05XBRSU1Nx4MCBj7LoymdM8QsX/N+Wv+DWN5m/deuWxmeQbxrJB4TWr19fbGXKCorPfsp9sa1rjHFxcbCzsytQuRxj6u8b8tdff2H48OFa85LVq1cLxwp+Md/YnRD8zsncO58mTZoEe3v7fOdtycnJkMvlsLa2NmrOefbsWcyZMyffv33ubPTBgwfD2toavXv3hlwuF/4+KpVKyK42tCitz9OnT4X3bNWqVSYHdSMjI3XWkjcGf2zXFyAHckr/WVhYGAx4t2vXDs7OzjoDB8uWLYNcLhc+cxzHoXz58kbXL9fl7du3Gk0cv/vuOxCRSYELfgt969atCzyO4sI3BezZs6fJx9cHDx5g5syZBksotWrVCvb29nj06JGQVWeoXMDbt2/xzTffIDIyEjKZzOjFiho1ahTos8kvvOQtB8KXCM2v6e+IESPg4+MjvHczZswwqu8J3/jz4MGDAP5pRm/K8fLVq1fYvHkzLly4YPDaWx/+77FlyxZERUVBLBZr7TbOiy/nNHPmTDx58gQWFhYYP3480tLSUL9+fVhbW6N+/frCglu7du20ms4bwl/b/vjjj/D09ISDgwO6d++OefPmYfny5QgPDxfOq40aNTI6oaVfv34a53OO4xAeHo6goCBkZ2cjIyMD/v7+qFWrFhwdHTX6/hSXpKQkDBw4EEqlUiPoO3z4cJMDo7nx5V/zllICcnYx8+eAjy0zMxPu7u7o16+fcFutWrU0dkPokpycrFUv/O3bt7CxsdGZmHT79m2cO3cOJ0+eNHitxDfe1LXTZMCAAahYsaLw/w8ePBD+RnkXY3LjFw517eTID988k88Cv3PnDhYtWoRFixZhyZIlOHDggHDd8/nnn0MikRSojnpycjLMzc3h5uamsyfCuXPnIBaLMXr0aDx9+hQcx2Hfvn1QKBTw8vKCWCxG//79Nd53/nt7584dZGVlwdbWFtOmTUN6ejoUCoXBZODs7GyULVsWTZs2Fa5r0tPTMW/ePFhZWaF69eomZ9rzC3G8uLg4VK5cGQ4ODhqLBvPnz4eFhQUSExNx9epVmJmZGV0Opag8ffoUf/75pzAfz91frUWLFho74YxRo0YNnf0Hbty4IfQYqFix4icRhyuSIPqHDx8wa9YsODg4wMLCApaWlgWq71uSjAmi80Gw3OUgOnbsCDs7O/Tp0wdEhNKlS8PR0VFnIHfChAnw8vLSuj04OFgjs6+w+JqehrYGJyUlQSKR6Axi9+zZM9+tPLmlpKTgxx9/NKqjcGxsrDA5iY6ONnhgGTlyJCwsLDSyLr/44gtIpVI8fPgQTZo0QaNGjQD8s5U5vw7g7du3h5ubm5CVExERgTZt2hjzazLFbPjw4bCystJadd+zZw+cnJzg4uIiHFeWLFkCiUSi8wR64cIFfPnll3qzFFQqFaZOnYomTZogODgY3t7eGDNmjMEdH6Y4ceIEXF1d4eTkpJGJ0bt3b511bHPjSyY0bNgQIpEIgYGBGD58OCpVqiQExW7duiXUbuMvjD8GtVqNwMBAtGrVSriNXzTMvTCV26tXrxAZGQmRSIRu3boVaXZMeno6+vfvDyJCuXLlQJRT57Sw554//vhD74UnH7zKXfNy6dKlMDMzExY4qlevjjZt2iAoKMjohk5qtRqurq4YPXq03vvMmTMHZmZmRjddGThwIPz9/bF27doivejgtxbfvHkT8+bNExod//TTT6hatSrc3NyEC+mEhASYm5tjwYIFuHv3rpD5l98ulo9BpVIhKCgIVatWNaksyL8BHyjLvRON4zh4enrq3aXHZ/fw50aVSoWNGzcWuv59cUpLS4NSqRR2tx0/fhz29vbo06ePECC+evUqAgICoFQqi+wYXxT4PiJWVlbo3r07FAqF0Vn4HMfByspKWHTmOA5+fn4aF/eGjBs3rsizFPmFwGHDhoGIsHLlSqF0VZMmTZCWloa2bdtCLBab1PQ4r9DQUHTs2BFVqlTROBcZIyMjw6TdbrllZ2dDKpVqbZHPrX79+joTZXJ78eIFFAqFzmzmxo0ba237/vvvvwtdkqFFixZQKpU4deoUxo8fD29vb5Of4+zZs0afe/5L3r9/D19fX6EPh0wmMyrgm5WVhXr16sHBwSHfUlAvXrzQyng3RdOmTRESEqJxPRUVFYWgoKB8gzd8KTN+d0ZMTIzeJpe58VndoaGh4DgO3bt3N+m6sagEBgZCLBbDxsbG6B0mEydOhFwuR506deDu7i4k+6WkpKBjx45o0qQJVq9eXaBGsXw5Qj5DWNdzPHjwAL/99ptJgTU+o5U/FvBJN7mvMfhEl9zXuB+DSqXC1atXsXbt2kKVaMpt7ty5kMvlWoukbdq0QWBg4EfPQufNnz9fKEt7+fJlrUxyU1y/fr3Y5iTr1q3TWNTiSzvFxMTAz89P72ePr4duav8XICe4zScrjBs3DlKpFBYWFlAqlbC2tgYRwcfHByNHjoRIJDK69JMuZ8+eNViyhd+JSUSwtbUFEaFt27b48OGDECMbPnw43r17h+fPn6N69eoaPTW6du2KSpUqCXG//DK7+abCMpkMoaGhKF26NKRSKUaNGmWwZJ4uBw8e1Njd8PbtWwQHB2tl3QM5MTWRSIRVq1YhKCgIlSpVKtEEpWrVqgnzsvT0dFhYWBi9W5DHL8jy3/3s7GyhbJGdnR0GDx78UY9vhhQ6iD5x4kQolUr4+vpi7dq1SElJQc+ePeHs7KyzAcOnypggeu5yEFu3bhW23fDBiTVr1kAqlaJ///46H8/fP3f2D78FN79ayqZISUlBxYoVtbo85xUWFqYz+65ChQo6V4CLSv/+/eHt7Z1vyZHk5GT4+PggPDwcP/zwAy5cuCB8gYCcjHmZTIakpCSh9mh+k6gXL17AyckJTZo0EcprGLooYj6ehIQEuLi4oFWrVjh8+DD27t2Ldu3aCQsulStXhr29PY4dOwZbW1u9Neg+BW/evEGTJk0gk8nw888/Q61Ww8XFJd8tchzHYezYsXB0dMTKlSs1LvgfPnyIoKAgKJVKtGzZEjY2NkXaMMgYfPbunDlzsHHjRlSrVg2VKlUyOKFVqVTCNudmzZoVeXbMpk2bULduXRw+fPijZMpWqFBBIzhetWpVjQyyRYsWCQuFpkyu+/Xrh7JlywLI+RwsWbIEX3/9NbKysvD+/XsolUqdZcL04S+oZDJZoRtW5saXRZg9e7bQD4X38OFDSKVSYdL09ddfQywWC1n9N27cQJ8+fQqUdVYc+NrMRGRSR/ZPXXZ2NqZMmaL1Ow0ZMgReXl46v68zZsyAk5PTxxpikRk4cCA8PT2xe/dumJmZISwsDEqlEs7OzkJd2EqVKunt1VKSkpOThdJVxjbk44WGhgpBc77chqGdLB9Dy5YtQUQICwsTPmN8c25/f39YWFgYLAtjjFmzZgn9Pwr7XKby9/fXu9CZmJhodL8Ifvt37vNDamoq5HK5RtmfovLhwwdERkbCzMwMXl5eGg2zmfzduHFD2N3LJ+4Y4/379/D390dgYKDBoNSyZcsgkUgKvBuZb7bOlyLht8Tn1+AZyJlrVK9eXQic+/v7C32h8sNnu//www/w8/MzaX5SVObNm4eAgACTFntTU1OFRoTFkdHcvHlzjBo1yqgm0cbKysqCvb09RowYgYEDB4KItJI0OI7DwoUL/1WxF33i4+NhbW2tkQgQGxsLsVisVfr2Y4/LysoK06ZNQ+/eveHl5fXRmpuagi/pyJf7HDp0KMqVKyccK/RluBtTD92QyZMng4hgYWGB2bNna+zKunTpErp37w6ZTIbGjRsX+87MZ8+e4dChQ5g1axa2bNmicX3IJxfl/vfDDz8IP+fLIlarVg1VqlQx6vUuX76Mr776Cr1790aXLl10JvkZIzMzE7a2tujcuTP69esHhUIBZ2dnvcc4fteTXC4v8aSXlStXQiqV4u3bt8JnzdSFtffv38PMzEwoczV79myIxWJ89913Jb6DOa9CB9EDAgKwdetWrYuyKVOmwMrKSuND+SkzJogO5GQM9uvXD2KxGNbW1lpB6AcPHugtYXPz5k2tC52RI0fC2dm5wNkxhTFhwgStuuipqakQi8V6M0uLgkqlMnrL3/HjxzUayFlYWAgBmYcPHwoXItOnT4dCoTDqC3bs2DFhMkxEJm3VY4rX9u3bhZqSRARHR0fs3LkTHMchISEBNWrUABHBxsYGb968KenhGpSVlYVmzZrByspK2LpvbJBDXzA4MTFRWJHV1Sm8uGVkZCAyMlLYvikWi43+ne7cuVPo0gifgrFjx8LV1RV///03NmzYACLC7t27hZ/zmUj8Ap+x+GDTrVu3hMbFIpEIvr6+aNmyJaysrEzKWklLS4OFhQWCg4P1NgQsqJo1a0IqlcLGxkYrI2DQoEGwt7fHhw8f9G7L+1RwHIcGDRpolWn7r+KzhXXVZG7fvr3J2y4/Bb///rtwvujUqRMyMzPx8uVLtG3bFkSEESNGFLie9Mdw69YtKBQKk+dcnTt3Rnh4OICcoI2ppb2Kw5UrV1C+fHmtbKnWrVvD0dFR6D1TGHzChIuLy0efNzdp0kRvSRO+1rwxDWg5jkN0dDQcHBzw6tUrJCUlCfWhi2uxJzMzEz169AARaTW7ZvK3f/9+EJHJSTd37tyBra0tQkNDdZYeSkxMhJOTk0ZdclPxtXH5uUKFChXg7Oxs9HGPz6I8e/asUJrOWPXq1UOZMmW0duh9LAU95v3222+YMmVKiR8zTcHPCy0sLLB27dp/1dgLYvTo0bC1tRXm0ZMnT4aNjU2JlwkePnw4HBwcIJfLMX/+/BIdiz6ZmZkaDaRDQ0PRs2dPIUA7ZcoUrccUtB56bgkJCZgxY4bBXUvx8fGfRDD0woUL+P777/HTTz/h/PnzGt8nflGciPLtWVAc+F3WpUqVwpQpUxAbG6v3vnyt/tzljUtKXFwcZDIZvvzyS4wYMaLA5VXbtWuH4OBgXL16FTKZDJMmTSqG0RZeoYPoht6c9evXQy6X62ykV1CXLl1CeHg46tSpg/bt22tNok+dOgVPT0/UrVvXqC1pPGOD6MA/gXRfX1+TMgeys7Mhl8uFbbRZWVlwdnbGqFGjjH6OoqSrLjpfb0xXF/CSolar8erVK/z+++9aq2zly5dH7969UaFCBXTt2tXo5+RXS729vf/zE5F/m9evX+PFixeIj4/XWuFPTk5Gx44dC92U8GNJSUlBzZo1QURQKpVFctGfnZ2NDRs2lPh2puzs7I+eCf8p4JvO8P9CQ0O1Fgdq1aqVb0OvvFJTU2Fubg53d3dIJBJs3boVf//9N1q3bg0i0jnpzc+FCxeKpRHcxIkTQUQ6G20/f/4c5ubm6NSpU771Yz8FHz58+KTKfBS3Zs2aoXz58lpZQOXLly+RhbnC4jgOzZo1w8iRI7WSOT6FmonGSE1NNXkewu8c4GvZF7QUxMeQmZlZZOcKjuNQsWLFfJuiFochQ4Zo1Srl9e/fH+XKlTP6ud6+fQtnZ2fUqlULPj4+sLS0LPZdkRzHYefOnSU+d/i3unv3boGyJ69evQo3NzeULl0ad+/e1fjZxIkTYWFhUaDSIbn9/PPPiImJQatWrdCiRQu9zWt1yc7ORunSpVG+fHkQGW48mNeZM2eEuZChQA9TeFevXkV0dHSBM1z/bZ49ewaZTIbFixcjIyMDTk5OesvRfUwPHjyASCSCXC7/pOcY1apVQ48ePZCamgqJRCL0C+jZsyfKlSsHjuOQnp6OFStWoGvXrggODi5wPfT/osaNG0MkEpXILtWEhAT8+eefRp1v1Go1zp49+8nEstq0aYPQ0FCULVtWb2WO/PAlbby9vVGxYsVPYtFFlyJrLKrPTz/9BBsbmyJ7vlevXgkBi0mTJmlkAAI5QfSCFNU3JYjOK8hkKnfHZD6zIb8me8VFV130r776CjKZ7JP9wOY1fvx4WFlZgYjw/fffG/247OxstGnTRmjiyDDF5f3796hcubLR9WqZTxvfpObs2bN6F1HfvHlToMl1VFQU5HK5VpmCBw8elFgNSF2uXr2KFi1a6O2yPmbMGBAR7O3t/zXnkv8Vv/32m9biRmZmJqRSaYluk2ZMs3PnThDlNL5zdXUt0tIBn7qsrKyP0qQ3ryVLlsDS0lLrYpXP4DO2DAaPL7lVv359ozLYmX+vJ0+eIDAwEA4ODvjpp58A5DSrlcvlBpvWfSwrVqwQdr+ZumOwQYMGOvt9MUxh9erVCx4eHti0aVOx7tQx1ZAhQww26PwUDB48GOXLlxcWuvhYE3/eWbp0KXx9fSGTyVC7dm0MHDgQa9as+STL05SEEydOYM6cOSU9jH8dPrZJRNi/f3+BniMrKwtOTk6QSqW4cuVKkY6vKIkAgIrZX3/9RaGhoUX+vNOnT6fKlStTmzZthNtOnz5NvXv3Jk9PT2rXrh2NGDFC52MzMzMpMzNT+P+kpCTy8vKixMREUigURT5WXp8+fejs2bMUGhpK+/bto7CwMPrtt9+K7fXyU7NmTSpVqhTt2LFDGN+1a9fo8uXLJTYmU5w7d47q1KlDlpaW9O7dO7K0tCzpITGMFgDEcRxJJJKSHgrzCXv9+jUlJSVR2bJlS3oohRIXF0e+vr7Uu3dvWr58eUkPh8mjUaNG9PbtW7py5QqJxWK6efMmVahQgU6fPk1169Yt6eExRrh69SqFhIQQEdGcOXNo8uTJJTyi/74DBw5QdHQ0vXr1ilxdXYXbT548SZGRkXTs2DFq3LixSc8ZGxtLXl5eJBKJinq4zCcmPj6eunbtSkePHqXevXtTQkIC/fHHH3Tv3j2ytrYu0bGlpKSQl5cXOTs70927d0167KtXr+jdu3cUHBxcTKNj/lfdvn2bypcvT1ZWVlSjRg06fvx4SQ/pX2PTpk3Uv39/mjx5Mi1dupQ+fPhAUqmUMjMzycnJiZKTk6lx48a0YsUKKleuXEkPl/mPyMrKInd3d0pKSqL379+TjY1NgZ5nz549pFarqVOnTkU8wqIj/RgvUhwB9NjYWDp+/DhNmTJF4/aqVasKE4DWrVtTeHg4ValSRevx8+fPp5kzZxb5uPJTtWpV2rx5M4nFYlq5ciX17Nnzo48ht3r16tGWLVsIObsS6M8//6RatWqV6JhMUbNmTbKzs6PIyEgWQGc+WSKRiAXQmXy5urpqBGf+rRwdHenatWvk7Oxc0kNhdJg6dSrVrVuXDh06RK1bt6abN28SEVFQUFAJj4wxFr/QZmFhQQMHDizh0fxv8PX1JSKihw8fCsfpFy9eUJcuXahu3brUoEEDk5/T29u7SMfIfLrs7e3pp59+ok2bNtHo0aMpKSmJNm/eXOIBdCIia2trWrZsGaWlpZn8WDc3N3JzcyuGUTH/6wIDA6lVq1Z08OBBGjp0aEkP51+latWqxHEcbdiwgapVq0ZSaU7ITy6X09atW0ksFlOrVq3YAi5TpMzMzGjkyJH04MGDAgfQiYjat29fhKMqHh8lE70gXr9+Te3atdO6/eDBgySVSikqKorWr19vMGNvzZo1JJfLqU+fPlo/K6lM9IyMDLpy5QqFhYWRWCwuttcx1rFjx6hp06Z0+fJlmjdvHu3bt48OHjxIUVFRJT00o50/f548PT3Jx8enpIfCMAzDMJ+8evXq0Z07d2jJkiV07949+vrrr+nNmzclPSzGBIGBgRQZGUlfffVVSQ/lf0JqaipZW1vT1q1bqUePHpSZmUl169alFy9e0OXLl9miIWO0Z8+e0ZEjR6hv374swYJhDLhx4wYtW7aM1q5dKwSCmfypVCqysbGhjIwMmjRpEs2bN6+kh8Qw/ymfbBBdH7VaTdHR0TRy5EiKjIzU+nlSUpIQBO/SpQsNGjSI6tSpk+/zJiUlkVKpLPYg+qcmJSWFbG1tydLSkjiOo23btlHr1q1LelgMwzAMwxSTFy9e0IgRI2jfvn0kk8koPDycTp48WdLDYkwQHx9P1tbWZGZmVtJD+Z/h7u5Ocrmc6tatS3FxcXT8+HE6d+4cVatWraSHxjAMwzCCWrVq0YULF+jAgQPUqlWrkh4Ow/ynlHwqtIl2795Nv/32G82ePZvq1atHu3btIiIStrPu3r2bqlevTrVq1SIPDw+jAuj/y6ytrSkiIoIcHBzowoULLIDOMAzDMP9xHh4etHfvXjp58iSFhoZSy5YtS3pIjIns7e1ZAP0jW79+PTVs2JBu3bpFFy9epPXr17MAOsMwDPPJ4csZ16hRo4RHwjD/Pf+6TPTi8r+aiU6U87vLZDKysLAo6aEwDMMwDMMwDMMwDMMwBXDx4kXauXMnLVmypKSHwjD/OSyI/v/+l4PoDMMwDMMwDMMwDMMwDMMwjG4siP7/AFBycjLZ2NiwTsUMwzAMwzAMwzAMwzAMwzAMEbEgOsMwDMMwDMMwDMMwDMMwDMPo9a9rLMowDMMwDMMwDMMwDMMwDMMwHwsLojMMwzAMwzAMwzAMwzAMwzCMHiyIzjAMwzAMwzAMwzAMwzAMwzB6sCA6wzAMwzAMwzAMwzAMwzAMw+jBgugMwzAMwzAMwzAMwzAMwzAMowcLojMMwzAMwzAMwzAMwzAMwzCMHiyIzjAMwzAMwzAMwzAMwzAMwzB6sCA6wzAMwzAMwzAMwzAMwzAMw+jBgugMwzAMwzAMwzAMwzAMwzAMowcLojMMwzAMwzAMwzAMwzAMwzCMHiyIzjAMwzAMwzAMwzAMwzAMwzB6sCA6wzAMwzAMwzAMwzAMwzAMw+jBgugMwzAMwzAMwzAMwzAMwzAMowcLojMMwzAMwzAMwzAMwzAMwzCMHiyIzjAMwzAMwzAMwzAMwzAMwzB6sCA6wzAMwzAMwzAMwzAMwzAMw+jBgugMwzAMwzAMwzAMwzAMwzAMowcLov8/AJSUlEQASnooDMMwDMMwDMMwDMMwDMMwzCeCBdH/X3JyMimVSkpOTi7poTAMwzAMwzAMY4S0tDRatGgRZWVllfRQGIZhGIZhmP8wFkRnGIZhGIZhGOZfaffu3TR+/Hj65ZdfSnooDMMwDMMwzH8YC6IzDMMwDMMwDPOv9P333xMR0c8//1zCI2EYhmEYhmH+y0RgRcCJiCgpKYmUSiUlJiaSQqEo6eEwDMMwDMMwDGNASkoKOTo6kkwmIw8PD7pz505JD4lhGIZhGIb5j2KZ6J+Iixcv0q1bt0p6GAzDMAzDMAzzr3D06FHKzMykadOm0d27d+np06clPaRP3rNnz8jJyYlOnTpV0kNhGIZhGIb5V/nXBdEvX75MERERVLduXerQoQNlZ2cLPzt9+jR5eXlRvXr1KDIysgRHaRoA1L59e2revDmlpqbqvE9WVhYdO3aM2MYBhmEYhmGKw6FDhyguLq6kh8EwRtu/fz8FBwdT//79SSwWs7roRtiyZQvFxcXRuHHjiOO4kh4OwzAMwzDMv8a/Loju4eFBx44dozNnzpC/vz/98MMPGj/v2LEjnT59mk6cOFEyAyyAixcv0tOnTyk2NpZmzJih8z7ffvstNW3alPbv3/9xB8cwDMMwzH/eq1evqFWrVrRw4cKSHgrDGCUrK4t+/PFHatOmDdna2lJYWBgdO3asxMf0KeM4jrZs2UKVKlWiy5cv0759+0p6SEXm119/pU2bNpX0MBiGYRiG+Q/71wXRXV1dydLSkoiIZDIZSaVSjZ/v27ePIiIiaPny5QafJzMzk5KSkjT+lZQ9e/aQs7MzzZo1i5YtW0ZXr17Vus9PP/1EREQjR47Um61elBISEqhTp0707NmzYn8thmEYhmFK1sGDB4koJ7OX7Xpj/g1OnTpFiYmJFBMTQ0REjRs3puPHj5NarS6R8Wzfvp2cnJzo8uXLJfL6xjh37hw9evSIli9fTk2bNqUpU6aQSqUq6WEVienTp9PQoUONuqYD8MmV0Tx8+DAdPny4pIfBMAzDMIwBBQqip6ena2z/O3HiBC1ZskQI9H4MsbGxdPz4cWrZsqVwW9WqVenu3bt04sQJOnr0qMFJ7Pz580mpVAr/vLy8PsawtQCgPXv2UExMDE2YMIECAwOpf//+GhcAWVlZ9Msvv1CfPn3o3bt3NHv27GIf1/jx42nXrl20c+fOYn8thmEYhmFK1oEDB8jW1pYePHhAN27cKOnhMJ+Ya9eu0cWLF0t6GBr2799Pvr6+VLFiRSLKCaJ/+PCBLl26VCLj2b17NyUlJVHLli0pNja2RMaQn82bN5Ovry/VqVOH5s2bR/fu3aMtW7aU9LAKLSEhgc6cOUMZGRlG7drdtm0bBQUF0e7duz/C6AwDQF988QVFRUVR586d6c2bNyU9JIZhGOZf6vXr17R+/XpauXIlLV68mO7fv1/SQypS165dI3t7e6pTpw7NmDGD/v77748+hgIF0WvUqCGs8s+fP5/mzp1LAOjrr7+msWPHFukAdUlKSqLu3bvT5s2bSSaTCbdbW1uTmZkZmZmZUatWrejatWt6n2PSpEmUmJgo/CupjOtLly7R06dPqX379iSTyWjdunV0+fJl2rhxo3Cf8+fPU3JyMg0bNowmTZpES5Ysodu3bxfbmM6cOUMbNmwgpVJZ4ttiGea/rLiyPdPS0thFGPM/CQD16dOHlT4zUVJSEp04cYI+//xzUigU9P3335f0kBgdkpOTKTk5WeO2tLQ0CgsLo6ZNm9K8efPojz/+KPLXPXr0KNWsWZPCwsJowoQJlJmZafD+d+7coenTpxf5OHJTq9V04MABatOmDYlEIiIiql69eonNXbOzs+nkyZP02Wefkbm5OTVv3pwSExMpNTWV7ty5U6I7XnnJycm0Z88e6tWrF4lEIgoJCaGOHTvSzJkzKT09vaSHVyhHjx4ltVpN5cuXp23btuV7/127dhER0YABA0q0Ga1KpaKhQ4fSpEmTaOzYsSSRSD5KshTDMAzz3wOAWrZsSQMGDKBx48bR5MmTqVGjRp/EHKSobN26lcRiMTk6OtKKFSuoevXq9OLFi487CBRA+fLlhf+uUqUKMjMzAQBqtRoVK1YsyFMaTaVSoWXLljh+/LjWzxITE4X/7ty5M86cOWP08yYmJoKINJ7jYxg3bhycnJyQnZ0t3Na+fXuUKVMGarUaADB27Fi4ubmB4zikp6fDz88PjRo1KpbxpKeno1y5cqhduzaWLl0KMzMzpKSkGP345ORkjB07Fjdu3CiW8TFMcXrz5g1OnjyJVatWYceOHVo/f/LkCZKSkorktR49egR3d3esXbu2SJ4PADiOw65du+Du7g6xWIyePXvi4cOHeu+vVquxbNkyVK1aFe/fvy/w66akpOD3338v8OOZovP06VM8f/5c6/Znz56B47gSGNHHdfbsWRARKlas+En+vmlpabhz505JD0PLrl27QER4/PgxunTpgkqVKpX0kP6nJCcnY/ny5ahTpw7u3bun8z5qtRphYWFo0KCBxu38365Ro0awsbEBEWH+/PlFNrbdu3dDJpMhKioK8+fPh0wmQ6VKlfDgwQO9j+nevTuISO/vUhT2798PIsLFixc1bo+JiUFISAhOnTqFP//8U+vcxnEcunbtip07dxbpeM6cOSOM59atW7C1tYW5uTmICEQEOzs7LFy4EGlpaUX6uqbYuHEjRCIRnj59Ktx27949SCQSLF68ON/HcxyH9evXY8SIEejatStiYmKwcuVKPHv2rDiHbZROnTqhSpUqWLt2LcRiMV69eqX3vomJiTAzM8P06dPh7e2NiIgIqFSqjzjaHFlZWWjfvj0kEgk2bNgAAPjiiy8glUqL9LvDcRzOnj2L9PT0IntOhmGKz5s3b7Bw4UKN8+yrV68wY8YM9OvXD1OnTsXXX3+NhISEkhsk80ni50anTp0CkBNvsLa2Rp8+fT76WI4ePYorV64U6XOq1Wp4eXlhyJAhAHLO50qlEmPGjCnS18lPgYLo9evXx/nz5wEArVq1wosXLwAAHz58KPYg+vbt22Fvb4+6deuibt262LlzJwYMGAAAWL9+PapVq4aaNWti7NixJj1vSQTROY5DqVKlhPHzLly4ACLCgQMHAOQsWuT+4PMXTMURqJ42bRpkMhlu3ryJ27dvg4jw448/GvXY9+/fIywsDEQEb29vvHnzpsjH91+QlJSEGzdu4MOHDyU9FJPExsb+pxdHDh8+DIlEAiKCVCoFEWHdunXCz69cuQJra2s0bdq0SF6vS5cukEgkEIlE2L17d6Gf7+rVq2jcuDGICG3atMHixYvh4uICqVSKFStWaN0/NjYWDRo0EC7wv/322wK97unTp+Hr6wsiQq9evUxadPu3evz4MTZu3Ihu3bohLCwMAwYMwMaNG4VzoS5nzpyBt7c3/vjjjyIZw61bt7BkyRJhsRXIWWQuW7Ys3N3dNQII/IRq2rRpJr/O5cuXkZqaWiRj/hhat24tBBJ/++03ox+Xnp6OcePGYdOmTcU2tpcvX6JKlSoQiURYtmzZJxXk79y5MypXrgwA2LNnD4hI5wLc5s2b0b59+xIJOP1XLVq0CHZ2dpBIJLC2tkaPHj103m/Tpk3C8fr+/fvC7dHR0ahWrRqAnGPAjBkzQET44osvCj22AwcOQCwWo2vXrsjKygIA/PXXX/Dy8kL79u11PiYpKQmWlpYgIixfvrzQY9CnXr16qFmzptbt33zzjfA+ERECAgI0jpP8QptUKsWxY8eKbDyff/45HB0dhde6cuUK5s2bh2+++QYnTpzAkCFDIJVK4eHhgT///LPIXtcUERERaNiwodbtAwYMgIODQ77z0jVr1oCIEBgYiDp16qBu3bqQyWTCIk5JBWkzMzOhVCoxc+ZMvH//HjKZDF9++aXe+2/fvh1EhKdPn+Ls2bMQi8WYMGFCsSxwcByn81iflZWFtm3bQiaT4YcffhBuT0tLg6enJzp06FAkr5+QkIA2bdqAiFCqVCns27cv33PP/fv3C3SNkpaW9p8+N6jVasTGxpb0MDQcOXJEK2kwPj5eiJEwwJ9//olp06YV2ZwrJSWl2OfFI0aMEM5hjRs3Rvfu3WFmZgYrKytUqVJFSJZq1qzZJzWX/K9r0aIFvvvuu5Iehl5qtRoVKlRAZGSkxu3r168HEeHgwYMfbSwvXryAhYUFXF1dERcXV2TP+9tvv4GIcPr0aeG2zz//HFZWVoVKCDRVgYLojx8/Rt26ddGoUSNER0fD0dERzZo1Q2hoKI4ePVrUY/woiiOIfurUKYOB5IsXL4KI8Msvv2j9rGbNmqhbty4eP34MIsLevXuFn2VlZcHFxQXDhw/XeExWVlahDqRpaWmwsLDAxIkTAeRM/Ly9vfHZZ5/l+9hXr16hYsWKcHBwwP79++Hi4oLatWsjIyOjwOMx5Pz58zhy5IjGbR8+fEBMTIywwPMp4TgOkydPhr29vXBSrFGjhsaFXVG5f/++xs6GotK4cWNIJBJMnz5deH61Wo2bN29qTZrfvn2LjRs3/mtO7BkZGfDz80NkZCTu3LmDrKwsDB48GDKZDL/++iuePXsGd3d3uLm5gYhw4sQJ4bFqtRq//PILXr58qff5z5w5oxE8vXz5MogIX3/9Nbp27QqZTIaff/65QGP/9ddf0axZMxARfH19cejQIeFnqamp6N69O5RKJZKTk4XbX716BXt7e3h6euL48eOoUqUKOnXqZNLrqlQqDB8+HESEiIgILFu2DJaWlggMDMT169cL9Lt8qhITE3H8+HGMHTsWAQEBICKIxWJUqVIFXbp0QVBQEEQiETw9PYVAU27Hjx+HhYWFSYHsdevWaVxY57Zr1y5YWVmBiDQukvbt2wcigq2tLerUqYOsrCzcuHED1tbW8PLyglgsNmmH1saNG0FEaNGiRYGPVcnJyZgyZYrO7Piidu/ePYhEIqxbtw6lS5fWCkbqOx49fPgQISEhEIvFICIsWbKkyMd2/fp1eHt7w93dHQMGDAARYejQoUYfq9VqNZ48eVLk4wJyAlAKhQIzZswAkPM3Mzc318pMffTokRAcXb16tc7n4jgO9+7d+9cc+wti4sSJ6NevX5Gcv//8808QEfr164cnT55g2bJlkEqlWn/rxMREuLi4IDo6GgqFApMnTwaQEyAzMzPD0qVLNe4/ffp0EBEWLlxo8PUN/Z04jkNoaCgiIyO1ftdFixZBLpfrzILbvHkziAhBQUFFtuic17Vr10BE2LVrl86fv3nzBvfv38eOHTu05tl9+vRBqVKl0LJlS1hbW+Py5ctFMib+fGDI/fv3UbFiRURERBTJa5rizp07ICJs375d62fPnz+Hubk5pk6dqvfxN2/ehLm5OQYPHqxxe0JCAjZv3gypVIrZs2cX+biNcfz4cRCRkPHWunVrYWFJl5iYGFSvXl34/9mzZ4OIYGNjg+7duxfZHObGjRvw8vKCt7c3Bg4ciL179+Lo0aM4ePAgWrduDTMzM51BDX7BrLCL7pcvX4avry+USiXWrVuH5s2bg4jQpEkTvddnT58+hY2NDRo1amTycbxOnToFety/Bb+I1Lx58yJLiCiMjIwMODo6wtfXV+M67MsvvxSuNefOnSss5Fy6dEkj8PRvdevWLURERMDc3BxyuRyWlpb46quvdN43IyMD/v7+IKICX2fllpiYiICAANjb22PBggVISUnB48ePMWzYMNjb2xfJ+5uSkgKlUomRI0diy5YtqFGjBnx9fbFw4UKNc+73338PItJ7rcAULT65tHHjxgV+jqysLBw5cqTYknb5Oc+FCxc0buc4Di1atICLiwsuXrxYLHGivIYMGQI7OzvY29ujY8eOOu/z+++/Y/78+SbNp0eNGgUXFxeNY96bN29gbm6OmTNnFnrcxipQEJ138+ZN/PDDD9izZw8uXLjw0Vafx4wZg/DwcHTp0kUoJQMA2dnZ6NmzJ8LDw40K/OZWlEF0juMwYcIEEBHMzMzQs2dPnVsZxowZA0dHR50fZD4TrG/fvpBKpVoZARMnToRSqRRWQpOTk1GuXDkMGzZM77i++uorVK1aVW+m6NGjR7Uy3Pv3749y5crpvH98fDw2btyI9u3bQ6lUws3NDTdv3gSQk01vZmaG3r17F/lkKjMzE56enpBKpUJAiOM4tGvXTsiQ0RXIKikqlQr9+vUDEWHkyJHYtm2bcJFpaimP1NRUjWBoXufOnRO2DXfr1g2bNm3CN998g82bN+Pw4cMFzhJOTk6GmZkZateuDbFYjJo1a6J///5wdXUFEWHBggUa9x80aBCICFu3bi3Q631sixYtgkQiET6/QM7nLCIiAi4uLqhYsSK8vb3x8uVLhIWFoWrVqsIBn/+uExEqVKiASZMmaRxH9u7dC6lUCjMzM3z//fcAgIYNGyIgIADZ2dnIyspCixYtYGVlZXKGy08//SQEK7777judx5InT55ALBZjzZo1wm2jR4+GUqnE27dvAeTsQLG1tTXppMpnNy9btkx4L27duoUKFSrA1dX1k8xI//DhAzp06GD01rJly5ahbNmywt/X1dUVffv2xf79+7WCR1euXAERae0qOHr0KMzNzdG0aVM0atRIa/K1d+9ehIaGanyvb926BbFYDJFIhI0bNwq3p6amYtSoUSAidOrUCY0aNUKZMmWEBdTq1aujbt26OHfuHKRSKQYOHAh/f39UrFgRHz58QJ06deDp6WnUSv2uXbsgFovRpEkTiESiAmWxJyUlITw8XNgdoc+GDRvQq1cv7N27t1CfmyFDhsDJyQnp6en44osvIJfLhd9127ZtcHBw0Fq0PnLkCGxtbeHr64u//voLn3/+uXDhWVTu3bsHhUKB4OBgoezB2rVrIZFI0KtXL6OeY+DAgZBIJAbLMxXUsWPHQES4evWqcFurVq1Qq1Yt4f85jkOTJk3g5eWFTp06wdbWVjh+ADkXF5MmTULp0qVBRB91IvsxxcbGCjuV+EB2YbRu3Rply5YV5s8pKSlwcHDQmsuNGzcOFhYWiI2NxcCBA+Hh4QGVSoVNmzZBJBLp3AUzYcIEiEQivZ+Z7Oxs+Pj4IDIyUuPcx+N3RerajfjixQuIxWKsX79e62f16tVD/fr1sWTJEpibmxdLdm+fPn30LlrmxnEcgoKCEBMTAyDn/bWxscGMGTOQkpKC6tWrw8XFBd98802hxvn27VuIRCKj5jwHDhwAEeHs2bPCbampqTh48GCxXkeNHTsW9vb2erPFx40bBysrK7x+/VrrZ+np6ahUqRLKly+vNwOT/4w+fvzY6DGdO3cO/fr1MzmDPTU1FQsXLhQSlT777DN4eXkJ1xu7d+/WW04oJSUFFhYWWvPWO3fuYObMmfDy8kJoaKhJ4wFyMv2ioqLw999/A8g5jzs7OyM4OBjDhw9HmTJlNHZIWFhY4PDhwzqfS6VSITg4GBUrVizw5/Ly5ctC1uqjR4+E2/fu3QsiEuajuXEch8aNG8Pa2hpEpJWsZMilS5eE3+2bb74p0JgL49mzZ7h586bGNWdCQgJOnDhRZN+rsLAwVK5cGYGBgSCiIiuPoFKpEBMTA09PT1SqVAmRkZEYMmQI1q9fb3AH8LZt24T3nE+g4TgOgYGBaN++vbCY2qhRI2HHqFQq/STKLxVEdna2MLcrV64cli1bhpUrV6JDhw4wNzfX2KHFmz17NqRSKcqVK4datWoVKiahVquFhWw+PuPg4ACJRAIHBwe4ubkJ55rC4EtS5Zc4wc/LSpUqVaJlwv5XzJ8/H0QEc3Nzo85ZarUajx8/xuPHj/Hw4UMsWrQIXl5eICK9O/lyy8rKwtGjR7Fz505cvnw533Ky2dnZKFu2LFq2bKnz5y9fvoS7uzuICFZWVmjcuLHGuaEoPXr0CDKZDPPnzxcC+7mTvt6/f48BAwZAJBKZtHNYrVbD09MTQ4cO1frZ0KFD4eDg8NHiD4UKopeEv/76C127dgUAzJkzB9u2bRN+9v333wsXNf369TMpI7mogugqlUrIMps/fz4WLFggZADmXhVKTU2Fvb09Ro8erfN5srOzUapUKRAR6tWrp/Xzhw8fgoiwZcsWABACK/o+iFu2bBF+vmrVKp2vOWrUKHh6emqcYPjJVt4D+YcPHxAYGAixWIwaNWpgxowZWgHArVu3goiwf/9+3W9WAfHZkSEhIXByckJsbCxWrVoFIsL06dMhFou1srIMycrKwvHjx4ulvEp6erpQ7zDvxVXv3r1ha2trUtkbftu2vknAgAED4O3tjSlTpqBixYoaE3YiglwuR5MmTbR6CiQnJ2PixIl6y1H88MMPwhby3377DYGBgShTpgzGjBmD1q1bw9XVVchqef/+PSwsLGBvbw8HBweNQMun6M2bN1AoFDoXoN68eQMvLy8oFAphIsvXPd21axfWrl0LIsKcOXOwfft29O7dG1ZWVvDx8cHJkyeFAHqnTp3QoUMHiMViDB48WCtzICkpCXZ2dlq7SwxJTU1FqVKl0KhRo3xXcGNiYhAYGAiO4/DmzRtYWFhoBEX/+OMPEBHOnTtn9Ou3a9dOKP+Q2+PHjyGTybQuUD8F/HGyQoUK+e6S4TM8o6KisGXLFly/fj3f97l27dqoX7++8P8vX76EtbU1WrRogYyMDMydOxdKpVLjefjFv/Hjxwu3tW3bFj4+Pujfvz+ICF9++SWWL18OFxcXYZs6x3G4evWqUHbo9OnTICL89NNPAP7JRLK3txeCaLGxsbCzs0N0dLTBBZODBw9CKpWiW7duUKvVmDt3rsnZLklJSahduzYUCgXGjh2rtYODt2LFCmGbOR9YMKY2b178cYfPpn7z5g1kMhmWLVuGn3/+GTKZDI6OjrC2tsalS5cA5Gzpl0qlaNGihcaiyKxZswyeK001YMAAuLq6as0vli5dCqlUmu8xks9+k0qlxRKcHjx4MEqVKqVxXtm8eTNEIhEOHz4MtVqN7777DkSEw4cP4+3bt7Czs0OfPn2gVquxcOFCSKVS2Nvbo3///sLFJf8+/5eMHj0atra2mDp1KohIYw5qqr///htEpFVCaObMmTA3NxfmBjdu3IBMJsOsWbMA/HO8Pnr0KBo1aqRzjgjkP8/kz2Vubm6QSCQYNWqUxoVht27d4Ovrq/e416hRI9SpU0fjNn735JYtW3Dr1i2NY5I+/Ofr/PnzGokx+rx9+xZyudzouu8rV66ERCLBixcv8O2334KIhAvHt2/fCmXQbG1tMWbMmAIlYfDBLEN1uHl8/6gmTZoAyAmEtG/fHkSEBg0aGPUcpuIzVkeOHKn3Pu/fv4dSqUT//v01go5JSUno3bs3zMzMcO3aNb2PT0pKgru7O6Kjo40a06ZNm4RSMKYmXHz99dcgInh6euLChQsoVaqUUB8VyNlZa2NjozOznr+u0VfTn1+YMmVb+IcPH4Qa+GKxWDjmV6hQQeP4/vLlS8TGxuL169f5loP4+++/IZfLtTL/jREbGws3Nze9iVMhISFo27at1u389dVPP/2EunXrIigoyOjkin79+sHT0xPt27eHk5NTgbbVq9VqjBo1CtWqVUNwcDCCgoIwduzYfIO+HMehfPnywmeiR48eqFu3rlCiUdfuC1Pdu3dPmPurVCosX768yLKb+XnQ6NGjMWTIELRt21a4xhaJRHrjGbVr10aDBg1QrVo1IUGDP67z861vv/0WFSpUQP/+/XHo0CEoFApMmDCh0GM2RVZWFl68eIF3794V+Dk4jkPnzp0hFosxbtw4jaBxSkoKSpUqhQYNGmjMYx4/fgxzc3OMHz8eP/74o9auJFPNmzcPRP+U23306BFGjRqF5cuXIyUlBStXroRUKtW5EGnK7xkcHIxWrVoZdf+7d+9CJpMVKNHlU5SSkoLVq1djxowZGD16NEaOHIlZs2bhq6++KrbdmMYKCwsTFtB0Xc/k1aNHD40YjEwmQ69evfDFF1+ASLPKRG6xsbHo37+/RvUC/l9ISAjmzJmjs7fSunXrQET466+/9I4pPT0dv/76KxYuXIjSpUujXLlyRVpqhdezZ0+4uLgI558OHToI89HGjRtDqVRCoVBgxYoVcHV11TtPzUtXKRfe48ePIZFIDJZyK0qFDqLr+wAUl1WrVgmTrUuXLmmsRIwbN07ITN67dy8WLVpk9PMWRRBdrVajS5cuEIvF2Lx5s3B7dna21rbW9evXG8wQAnKyIA1tx23cuDFq1qyJP/74A2KxGF988QWqVq2KSpUqaUx69u/fD4lEgn79+qF9+/bw9/fXuSofGBiIfv36adyWkJAAsViskTGtUqnQokULKJVK3Lp1y+B70rhxY5QtW9bgRYlarcaGDRvg7e2db11mlUqFMmXKoE2bNnj79i18fHxQvnx5mJmZCUHQwYMHQ6FQ5HsSe/LkCSZMmAAXFxcQEXr27KnzfllZWfj+++/xxRdf4Pbt28LtcXFx2LlzJ06dOqV1kZmZmYk1a9bA09MTcrlcZ/Dp3bt3sLe3R/fu3Q2OM/d4+RU7XZO2zMxM2NnZYdKkScJt6enpyMjIQHZ2Nu7duyc0kbS0tBQuhjiOQ6dOnYTsVl0GDBiAsmXL6vzZnTt3IBKJNJoiyeVy3LhxQ8iILwqpqalYtGiRkNmzf//+fDMKdu3ahYULFxq838CBA2Fra6v3JPL8+XOtbKaWLVvCxcUFEokEQ4cO1Xj+R48eoW7duiAiSCQSdO7cGdnZ2Ro7EmrXrq01Jj5wYuzka8KECZDL5TozL/LiJ9U///wzxo8fDxsbG40LHLVaDScnJ6GUU34+fPgAuVyu9xg7ePBg2Nvbf/RGzUDOMeLnn39Gz549hW2sQM7OKalUip49e0Imk2HKlCkGn2fDhg0QiUQGy/TkxQca+eNE79694eDggPj4eADAiRMnQERC1qdarYaDg4Ows+bGjRtCeYctW7aA4zihLqJYLEavXr20sgY6d+4Md3d3REZGajTT5DgOCxcu1FpU3b9/P0QiEYKCgrSOI+np6Rg9ejREIhHatGkjnEc4jkNMTAxsbGyMmsRyHIcGDRpAoVDg999/B8dxqFWrFipWrKhxbuIXocaMGQOO43D//n0MGTJEI6sqt8zMTHz//feYO3eu8J7yrzdx4kTI5XKNgEWnTp3g5eUFa2trNGvWDAkJCahevTqcnJwwffp0iEQi9OjRQ2eQYOjQobCwsCh0E9C4uDiYm5vrLHPw7t07SKVSvduQgZzvrlQqxbBhw9CrVy/4+fkV6e6ua9euwdzcHJ9//rnG7R8+fEDVqlVBRPDz89PajskH9mvUqCEsAvELU5mZmQgJCUH58uWLpEayMYFVfbKzszF//nw0b9680NkpCQkJsLa2xueffw6O49CjRw/I5XKtxpbG6ty5M7y9vbXmR+/fv4e1tTWGDBmCkSNHQi6Xw9/fXwga8AGj+vXra83P8powYYJWOS/e+PHj4eLiorFzo2vXrsJiq5mZmcF5NB+Qzp15PGvWLFhZWSE5ORkcx8HHxyffxeHcNcwtLS0RFhaGgIAA2NraQi6Xw83NDUFBQYiKisLs2bPRr18/WFhYGH3h9+HDB1haWmLmzJmIjIxE3bp1te5z//59TJgwATKZrEBByx49epjUjJfPzLp06RIWL14MIsKUKVPg6uoKZ2fnQgV6dOF7KenacZDb0qVLQUQoXbo0vvzySyxcuBCOjo4wMzPTuesgr507d+a7cMJxHMaNGwciwoABA9CgQQOdte0NCQsLQ3h4OGrWrCkESvOWEx05ciSsrKy0zlmdOnXSmQDA4xeCTEkA4udvT548weLFi2FjY4Py5csXujcUf5w15Vo7KSkJwcHB8Pb21rsgs3jxYq1yTM+fP4dSqRR2R/ElR435u/PfsVmzZuHly5dQKBRa/b54hoLykyZNgkgkQvfu3TF06FD069cPSqUSUqkUPXr00Djv53by5EkQERYtWoRRo0ahUqVKaNmyJdasWYMKFSrkW2bJGDNmzICNjY3GcbhWrVqoXLlyoUp7xcbGwtraWudxJyUlBb6+vujdu7fWz/hF2D179gjH0Dt37qBz584oW7as3nnCmDFjYGtra3BXc1HZt2+fUAaTKGd3/owZMwpU6pU/Nukr4cXvqMu9KN2qVSt4eHgI56Nq1aohPDy8QHOoEydOQCQSGSx5FR8fD3Nz80L1I+F3lJuyODNp0iTI5fJi2alYVNRqNc6dO4eRI0caXNT67LPPIJFI4ObmhnLlyiEwMFDo71WuXLli3a314cMHbNu2TedrvHjxQljwdXZ2zvd6mS85N336dPz88884duyYcDzmOA7R0dFwdnbWOY9p27YtHBwcMHHiRFy5cgXx8fH4448/sHXrVnTs2FEo55l77vf27VuTYkpAzrzH0dER4eHhRdrPhN9Nnbsf27t37+Dv7w8/Pz+0bt0a06ZNE96PwYMHw8fHx6jv5ciRI+Hq6qr3c9CrVy8olcqPUla20EF0XbUY8yrKC765c+cKE5v79++jc+fOws/69+8vbNP/5ZdfNIKJeWVkZCAxMVH49+zZs0IH0WfOnAki7e38wD8T5j///FNYZYyKijL4fElJSejataveFXg+m8Lb2xuhoaHIzs7GxYsXIRKJsHTpUrx//x6ff/45zMzMhEZgfAZT3m18T5480TtRq1mzpkbGwsSJEyEWi43a5nf16lWIRCK9GX1//vknqlSpImQBNWrUyODz8RcCfFOmv/76CxYWFggNDRVOynFxcbC3t9c56cg9LgcHB9jZ2WHYsGEYPXo0JBKJRmZKWloapk2bJmx9MTc3BxGhcuXKqFOnjjBx5/8GEyZMwIQJExATEwMPDw+IRCJ06dIFd+/e1TsOPuuD76BsyOTJk4WSAHkbRgDAoUOHQET5HjhSU1NRqVIllC5dGu/fvxeyKTp06KBzJwPHcfD09DSYwRQdHY1y5coJpXb4LY58XcfC9EpIS0vD0qVLhZNo3759hYaYVapU0RnASE5ORs+ePYW/D5+dynv//j3WrFmDmjVrCpm+prh+/TrEYjFatmyp84JArVbjq6++wrhx4zR+znEcNmzYoDPwHR8fDxsbG42MZH3+/vtvk+qPchyHSpUqISIiAlZWVloBMyAnCGBsY2g+U0tfnevnz59DLpd/1JIOHMdh9erVwveVz2wePXo0OI5DZGQk/P39kZGRgRkzZkAikRhcra9fv77O75khubP9Ll26pHXsS0pKglgsFkq0/PXXXyAiHDt2DGXKlEGdOnUQGRmJ8uXLCxMEjuOwa9cuvcHc+/fvC+UljG0Oe+nSJURERAgLOv3798f06dMRGBgIMzMzLF68WGuCkpiYCEdHR6MCTHypn9zfe35xYPXq1fjzzz+FbXx5F6HUajVatWoFpVIpfE/u3r2L4cOHw8HBQbgQc3Nzw6FDhxAbG4sWLVqAiLQ+13x2frVq1YQA6rt371CuXDkQET777DO9F7+pqakoU6YMqlevrvM7npKSojeTMbe5c+dqBfdzi4qKQlhYmPD/2dnZ6NWrF8LCwlCtWjUoFArUq1cPWVlZQqDg119/zfd1jZGUlISyZcuiUqVKOrcCcxyH8+fPo1u3bqhQoYLGAp9KpUL16tXh6uqqM+B3/fp1mJmZGd3kneM4XL58WeOC4v379+jUqROsrKwKNCG+f/8+atasCbFYDLlcrjeoY6z58+fDzMxMmPhnZGQgKChIZ0anLo8ePcL+/fsRFxeH+/fvQywW611AGTNmDIgICoUCM2fO1Jqb8oFXqVRqMJj89OlTiMVinTXsg4KCNMoJ8QHQefPmYd68eTA3Nzf43CkpKbCyshLOQxzHwd/fX6MXwaBBg+Dv76/3OdLT0+Ht7Y3o6Gj8+eefWLhwIXr06IFRo0bhiy++wIoVKzBjxgwMHz4cjRo1glKpBBFh0KBBep9Tl/79+8PR0REikUgjySUvPpNLX81/XTiOg6urq1Hnbp5KpYK/vz8qVaoEsVgsPPbNmzdo1KiRkIiQW2pqaoGDdQ0bNkTt2rWNuu+lS5fQpUsXSKVSoSzY06dPjXosv4Dq5uamN8mGDxItWrQIHMcJdX1zl5MyhN/hsHv3bmRmZuKzzz5D+fLltQJzSUlJ8PT0RPPmzYVzzJs3b2BtbZ3v3Kl06dJaZUF//vlnnZm0CQkJQv3i3LcVxZZyvlSlUqk0qkyOWq1GixYtNHZP6vLixQuN5Be+Xq6bm5tGoLpr165wdXXNN+C6YsUKSCQSIelg5cqVINKuy3v06FHI5XJMmzZNa3GU372cd+EuKSkJy5Ytg52dHUJCQnQek9q3b4+AgACd8YYpU6bA3t6+UME3/tiW97ry/PnzJs29dD1vy5Yt4e7urnc39MyZM4WFydwGDx4MNzc3ZGVlISMjA05OTujYsSNkMpnBvi58iUdDi/dAzpzvs88+M/i527Nnj86EByAnWVAsFiM6OhobN27E4cOH8fnnn0MqlSIwMNCkmvKnTp2CRCLBuHHjDN6vW7dusLW1RbNmzeDp6akVkzl8+LDRWcR5NWvWDNWqVcv3c9S9e3f4+/vr/Cxu3LhRKzaVmJiIevXqoWfPnjh9+jQ6duyIsmXLmnSsT0lJgaurq96m5EDO/MXU8yaQs3umsI2wd+3aJVyT8fP4sWPHar2X/E7mOXPmaD0Hv6hX0O+aMYYNGwYiQkxMjNaceM2aNZBIJIiPj0eXLl1QpUoVg88VExMDX19fvUmkL1++hK2trVai4du3b/NtjJ2WloYBAwbAzMxM2PHZs2dP2NnZmbxw+9tvv8Hc3BwdOnTQ+szu2rULc+bMMWkHQGZmJurUqQNvb2+jF8v4BLP8ElJevHgBDw8PnaVceImJiahUqRI8PT2LvWxVoYPoR48ehUKhwPDhw7XefJVKhc2bN+utqV0Qq1evFjLRL168qPFGjh8/XshE37Nnj8EMGr5OWN5/BQ2i85NAfRMzlUqFcuXKISoqSriwL2ymSVZWFlxdXSGRSDQaIw0dOhSWlpZQKBSwtLTExIkTNT7I4eHhWpNpvj6rriZRM2bMgJWVFWJiYoQMW1O22/fs2RNOTk5a7+2PP/4Ic3NzhIaG4vz581i+fDnMzMz0Ttb4QGDeQPvt27e1tg2uXr1a7xfy2rVrcHBwQGhoqDBZTEtLg4uLixD85bPM+CZKV69eRXp6Ovbt24cOHTogKioKa9euxfPnz3Hu3DkMGDAADg4O8PHxQcOGDTF8+PB8M36AnAlvlSpV0KBBA4P345vJDh06VFhIyLtVvnPnzqhQoUK+rwnkXMzb29ujatWqkEqlGDVqFFQqFSpXroywsDCN7zK/mmro88pvr+natSuISCPLvUGDBnB1dTU4odclMzMTK1asELaa9+nTRyML9+TJkwgNDdUob5GRkYHdu3ejbNmysLKywpYtW4Ttd2vWrEFKSorweZZIJGjevDl27dpVoIW+W7duFXnj3IkTJ8La2lrvNtinT5/im2++QaVKlRAQEGDS6/MLNlZWVjovBPnPlTEXy5GRkRplS3QZNWoUFArFR+mUnZiYKGyH79Wrl7BY+dVXX4GIUL9+fRCRUH80MzMTwcHBCAgIwOTJkzF79myNrLPnz59DJBJplVkwxvjx42Fra4uaNWvq3AodHBws7PhZtGgRLCwskJGRgZ9//lk4D5laAmvUqFEICAgwqQwBx3HYvXs3WrdujSpVqsDFxQU1atQw+D3lA8K5s/NVKpXGxZ9KpUJQUJDOBYhevXoJzTs9PT0xb948nRcKHz58QJkyZVChQgVER0dDJBLB2dkZ48aNw40bN/D8+XOhQZq5uTnc3d2F7bV5f8edO3dqXXS/ePECe/fuzfd7f+HCBYjFYq0J/dWrV+Hn5ycsqi5btkznuTMzMxPu7u5aO7xy4793/G6X5cuXQyQSoWfPnujfvz9Gjx4tfF/VajW8vb0LHQwGct6bLl26wNra2uBCryEpKSkGA0ULFiyASCTC8uXL9b7XWVlZ2LZtGypXrgyinJJj3bt3x4YNG+Du7g5bW1uUKlUKVapUMfrzzXEcvv76a1haWsLX1xfnz58Xyj/o+pwAOT1j9u3bp/F9jY2Nxf79+3Hv3j2kp6fD1dVV62/JZ3TmN3fkOA5hYWEgIohEIjg4OMDFxUVvHdOEhASsWrVK7/Hz9evXQimi/LRt21YrwMQnTuRN+pg2bZqQ1GBMvf7u3bujbNmyuHjxIlq3bg0iwsmTJ4Wf8/W/9e2Y4vuRGPsZVKvVuH//vslZU/yCpa5gVF7Dhw+HVCrNN7mBbyrOJyCYGpjZsGEDiHJKuOT+3KWlpSEoKAjBwcHCOf7mzZtwcXFB1apVddb5BnLmYZ9//rlQk5uXt/yjsV6+fGnSTizeq1evULFiRTg6Oups2jpw4EB4e3sLx/6srCy4u7sbHeAZP3487O3tjZr/8J+/nTt34tatWyhdujRcXV3znef06dNHI6ng+vXrICL4+PhoBfunTZsGCwuLYinDA+QcC3x8fFCjRo18j4H8Ditjkpxyz+P4TOa8TU6fPHmSb0CHr8GdezGRr+nesGFDjfvWrVsX7u7ukEqlqFixIn744Qf88MMPWLlyZb59tK5duwYnJydUrFhRI1D08uVLSKVSLF++XOfj+OsTfTV3P3z4gEuXLuk8h/N+//13EJFWKUwAaNOmDby9vQ0eky5evIjQ0FB8+eWXwjE/JSUFCxcuzHfOx++MyF3yKCkpCdbW1holPCZPniycQ/PbpdOhQwf4+/sbDNSuX79eSEjR9X1JSUmBQqGAhYWFVkIB/3sNGTJE6zX+/vtvVK1aFfb29kYdX54/fw4nJyfUr18/39JC7969Q0REBKKiojBp0iQcPHhQ4/PEcRyqVq2K6tWrm7So8uHDB8hkMr2fsdz4nb+5z4PAP9fxRIQdO3YIt/fr1w9WVlbCnLIgiV1AzsKVWCzW2DHP4zgOpUqVMhhj0SU2NhY+Pj6QyWRGJW/8+uuvaN68ucY56s8//xRKY54+fRpqtRpffvklxGIxoqKiNOp88yVA9I0xKioKZcqUKZammE+fPoWZmRmio6NhYWGB8PBwjflXkyZNhOsavtyhvu8Z3yPL0II98E+p5dy7DpYtWwaZTJZv6aOMjAxUrVoVpUuXFhKXjNk1pAuflLtu3Trhttu3b0MulwvXbPXq1dMq53bnzh2Eh4fj2LFjAHI+Z7169YKZmZlJ5WGzs7Ph6Oiot8xUXFwcxo0bB3Nzc9jZ2WnNcfJ68eIFvL29hX5gxaVIaqJfvXoVnp6eiI6ORlpaGjIzM7F69WqUKlUKdnZ2RVqnKW9N9NxbQvLWRDdUpL4oM9GvXr0KKysrtGvXzuBFOb/KzjclKYoM/e+//15rYpyQkIBatWph1KhROktD8PWtc2cItGnTBuHh4Tpf4969e6hTpw6aNGmCjh07YsmSJSaNPTY2Fubm5pg0aZLwuD179kAmk6F169bCRPjBgwcGJxN8E0Vjsrazs7MRGBioVR/txo0bcHR0REhIiNbF6ZIlSyCVSvHo0SMh4FicK548PoiSOyv25s2biImJES48+SZJ169fh0qlgp+fn0ZTipSUFFhaWmLevHlGv+4vv/wCsViM8PBwYWLOZzrm/l7Nnz8fVlZW+V6w1K5dW7ggzO3169cIDg6Gvb29SavZgwYNglgsRs+ePfVegGdmZmLkyJFCRi2/wh0RESFclHMch88++0wIxPHZkcV1wVMYfL3yKVOmCJ/bzMxMbN68GRUqVBAmWBUrVjQpiwPIyfhzc3PTmYUO5Bw3JBKJRgNSXfJmMBn6XaysrEzKzjPVq1evsH79evj7+0OhUGDPnj1a9+FLhjRv3lzj9qtXr6Jy5crw9vaGk5OTxk4cPjBWkJPvw4cPDZZdGjBggLDY1aRJE41Go3379kXDhg1NPjfwC0jFLSEhAQqFAmPGjAGQc5xt1qwZ7OzshO82X9Lm999/13r8mzdvMGLECBw5ciTfC5gbN27AxsYGAQEB2LBhg9YFKsdx2Lp1K8aPH1+sk6TJkydDKpWia9eu2LZtG9atWwdzc3OEhIRg27ZtaNu2LWQymc6GVXydZENZ1Hzt3unTp+P169dQKBQYOHCgwfEolcpCb73kvxdFUStWH7VajdGjR4Mop2xDVlYWsrKycO3aNaxevRrt2rUTjtmNGzfG4cOHsWDBAqEBWqNGjfDs2TP8+eefkEgkQk1wXnp6On744Qf06tULI0eOxOHDh3Hv3j00a9YMRISBAwcKF2McxyEqKgqOjo5ax/7cDfE8PT0xZswY4XzG/7O0tIRIJNLaERIbGwui/Bvp8VvNt27diq1bt6J3796FLoe4detWo7J3+cSN3MejVatW6Wxar1arhT4NxpSp+eWXX4T3qEyZMlq1rfmm5Lm39fLev38PW1tbjVrWxalevXpGBWqzs7MRGRkJa2troaxWXnFxcUJt1ICAAIMLRfpkZmZi+fLlOi+Wr169KsxVbt68CWdnZ1SoUAH+/v6wsrLC5s2bNUp38YsRcrlcmIctX74cy5cvR3R0NJRKZb41uIvS+/fvUb16dSgUCo1rsczMTNjb22tthZ82bRqsra2Napzm6uqqs4eNPm3btoWjoyOUSiWCgoKMyqrjSxXxO4g+++wzODk5ISQkBJaWlvj2229x5coVHD9+HDY2NsI5sbhcuHABEonEYAkBfjeqrixOXfhA0MWLF2FnZydcW+fVpk0bVK1aVe/z8EHDvAFm/rqFn6tevnwZRDnlR65cuSIsnPL/mjZtmm/prps3b8LV1RUBAQFCUs2sWbNgaWmpNwiuUqng4OCgsxH069evhfMNEcHR0VFneazhw4fD3d1d57zlzp07kEgkens0qFQqVKlSBc7OzpBIJHB1dUX79u2Fkgz9+/c3+DsDOTsjcyeuLF68GBKJRCPT8tmzZ5BIJEaV0OQXBfQtKgM5PS9CQ0NRunRp+Pr6avU9W7duHUQiETw8PFC/fn3heMQH0HNfx+T17t07uLi4aOwS0SX3Domi6q/166+/QiQSYdmyZXrvc+vWLY1x8fPavO+BLhzHoVy5chqVEoB/Yi81a9aEnZ0dnj9/LtRpX7duHTiOw5kzZ4Sm16bKyMgQGr/r+n1MTdJ59eoVypQpAx8fH9SsWROurq56+6YBOXMBS0tLSKVSuLu7486dO4iLi4O3tzfCwsK0vts//fQTbGxsEBgYiNu3b+P69esQiUQGd0jwi+F83OvixYto0qSJ0bszs7Ky9C4cDRgwAI6OjkhOTsaFCxfg4OCAsmXL4q+//hIWUVauXAkAQsyQT0JISEjAkiVL8Ndff4HjOLRu3Rr+/v75Bvs5jkN4eDgqVKgAlUoFjuNQsWJFtGvXzqjf59GjR7C1tRViIIUpK9W3b1+hZKdarUbt2rXh7++Pt2/fYuvWrfD390eNGjU0vhd8CWuinJKOs2fPLnDsrF+/fjrLVWZnZ8Pf3x/W1taYOnWq0dd7N2/ehK2trVHHVyDnmDhx4kScPHnS6ISdImss+vz5cwQHByM4OBju7u5wcnLC3Llz850QFcSYMWMQHh6OLl26IDMzU8jKys7ORo8ePRAeHm5Sgz5Af010fiu9rjf01atXGD58OMzMzFCpUqV8V/eys7OFk7UpW0WLmlqtRpkyZdC4cWPholahUBhdGqIgJk2aBCKCtbU1QkJCIBaL0aVLF633tVy5cnqz9qKiolClShWjL1T4Exa/QhYfH4/SpUujYsWKOlcPU1NT4ezsjEaNGsHc3Nxg9mBR4pvI8hPY7OxsoRatk5MTLl68iAYNGmgscqxZswZisVhY7d2+fTuIyOQuy5cvX9Y6ILVu3RpeXl5C5kF4eDhat26d73MdPHgQRLprGcfHx6NmzZqwtrbGN998k+93hc8cMWbVH8jJNqpevTpGjx6tM5NWrVZjyJAh6NGjh1FbYksS3/zSwcEB9evXF7YktmrVCt9//32hGvMkJSUZPMnWrVtXZ1dvjuOExy1ZsgRmZmYGs3Z4M2bMgEwm05kZURhPnjxBrVq1QJRTKzwyMtJgbfjff/9dby1N4J/GbgqFAvfv30doaKjRJRp06dKli94LUr4Uzrt372BpaanRgDX3+/yp+vzzz2FlZYW4uDgMHDhQyChTKBQ4c+YM/Pz88i1VZqzExMQSfz8yMzMxa9YshISECBchffr00cgg5gOkP/74o3Abn/GUX4kyIKd2vp+fH3r16gV7e3uDWWR37tzRmUFsigsXLsDMzKxAW3sLYsOGDZDJZEKPEKKcfhG1atXC1KlTtbJb1Go17t69q/G35xczTp06hR07dqBLly5QKBQgIpQvXx5eXl7C38fV1VXjb8F78+YNnJ2d0bJlS415RPfu3VGqVClcvHgRffv2hYODA1q0aIFvvvkGT58+xdGjRzF79my9F3cRERFo1qyZxm25Lzb52rnVq1cv0vKGxuJLCNavX194T5s3b663IWl6errORTBdVCoVxo4dix07duhdGIuMjESlSpU05iccx2HkyJGwtrYuVBM2U2RnZxt9PElKSkKvXr1AlFPqLu/5o3PnzrCzs8Ovv/5abH/TRYsWgSinOXTFihXx7t07JCUlCaXq7Ozs0KhRI2Gn1fjx45GWloYdO3agRo0akMlkwq7U6dOnF8sYDUlKSkKtWrXg6+srLPLymeF552nPnj2DWCzGmjVrkJ6ejps3b+oMmvHlGHRluOvz4sUL4b0y9gL8+fPnQsA3LS0Ntra2mDBhAlJTU4UeQrkDr4WtfW4Mvhkdf02T2/3796FUKtG6dWujP+OJiYkwNzeHra0tXFxc9J53+CxFfRmu9erV01lKhd+BzTdI7NatG3x8fITAUnZ2Nu7fv483b96Y1Pfi7t278PPzg6OjI06fPg0PD498AyVdu3ZFSEiI1u8fEhICd3d3/PLLL9i+fTvatWsHuVyusVialZUFJycngwslY8aMgVQqxdmzZ7V+xpeI+u2333D//n307t0bISEhmD17ttHXbHwS3uPHj3Hw4EFIJBKdC0lHjhwxGOjMrVatWggODtZ5Pfbu3TtIJBKsXr0aT548gY+PD/z9/YXvD78zPCoqSthFuW7dOmHHV349h4B/Fn0MZc/y17aGgv0FMXz4cFhaWuqsIc5XFsgdCIyJiUH16tWNfv5FixbBzMxMo+RlVFQUqlatiri4OLi5uaF+/fpwc3ND06ZNi+wcsnbtWohEIq3EjcWLF8Pc3By+vr7CjntD4uPjUaFCBbi5ueHBgwd4/fo1PDw8UKNGDZ0JOwcOHICZmRmaNWuGx48fo3z58nB1dUXdunXh4OCgd+fP7du3ERgYKMSGSpcune+xoE2bNvD19cW8efMglUphYWEBBwcHg+UVOY7Dd999BxcXF9SsWVNrMeThw4eQSqUaFSzu3buHypUrw8zMDG3atNFaRAkICED//v2RlpaG8PBwjWSCvDtHDOFLXa5du1b47/yased26NAheHp6FroG+IcPH+Dp6YmGDRsKjY5zN+88evQoiP4p0/nw4UOIxWIsX74cCxYsEMqKGvPd14V//ryJIfycoSAlhaZOnQqFQpFv0tHbt2/h6uoqNDrPnSxmSJEE0T98+IBZs2bBwcEBFhYWsLS0zDfV/lOjL4h+48YNSCQSVKtWTTipvn//HhMmTIClpSWUSiXmzJlj9PaY7du3o1SpUh+loYchBw4cgEwmQ6NGjYRJaUGbYxlDpVLh8OHDWLhwIfr27YtZs2bpvOAaPXo03N3dtU4or169gkQi0VtbXRf+wjUkJATZ2dlo3rw57OzsDE5a+IuW4OBgvdusi8Py5cshkUgQGxuLxYsXQyQS4fDhwwgLC4OlpSWICN99951wf35ruZ2dHfr06YMaNWqgVq1aRTKWhw8fwsvLC0qlEmvXrs23cVlueYMhuaWkpCAqKgpEOSUYWrdujalTp2L58uXYuXOnkCWVnZ2N4OBgVKlSpVgbiHyqsrOz8cMPP2DWrFlo27Yt+vXrZ1RpoKLAfw737dsn3Pbo0SMEBATAxsYGERER8PT0RExMjFHPl56eDj8/P40dIdnZ2di8eTNmz56N8ePHY8qUKUYF5HkfPnxAhQoV4OPjg61btxZqUSG3xMREoekJkXbfCFNwHKd3Unz79m0QkVA2IW9Zpk/d27dvYWFhgUqVKoGIsHHjRiQlJSEiIkLISDB0HPg3e/Hihc6JHMdxiIiIQGhoqPB350sJGdMciq8HSET4+uuv871/jRo1ULduXYO7D/R9/l69egV3d3fUqlWrUA07TXXu3DkMHjwYy5cvx9mzZ01OsOBLMPHvU+XKlTF9+nTh2MhxHO7du4ft27cbPCbs27cPRP+ULXj16lW+NWTzw2d186/LNwOcPHkyOI4T/r66Avsfy9GjRyESiTBx4kSkpqbC3NzcYMnDonTu3Dl4eHhALpdj8uTJWLp0KcqXL29S1mxJ2bVrF2xtbeHn5yfsbtMVZCkOarUaTZo0QUhIiNZn+syZM5g1axaioqJQuXJlvXWJS9qtW7cgkUiwcOFCADm1q/U1YG3dujVkMpmwk8va2horV67UmAe2a9cOwcHBJged8ksg0KVMmTIYPHiwUOqEX6jnOA5//vknLl68iLt373606zm1Wo3GjRvD2dlZa4EhMjISfn5+Ju/K4ksR5Z7z5ZWeng6lUqkzOMIHiPWVe+TLFRw9ehRSqTTfHmrGiouLQ506dYTzgaH+NsA/wVg+wJyeno769evD1tZWI16RmpoKPz8/REREQK1WQ61Wo0+fPhCLxQbjGllZWahbty6cnZ01Am3x8fFwdHQ0WKvaGCkpKbC2tkbr1q1hbm6OmJiYQl8fXbt2DTY2NmjZsqXWc/H1zPkFzgcPHkChUAjJIXwteL5sUO/evYXdWp999pnR388+ffrA2tpa53X527dv4ejoiA4dOhTm19QpOTkZpUqV0tqtznGcsEPCz88PWVlZSElJgYWFhUnNQhMSEuDq6opWrVqB4zi8fPlSWJQA/tlZb2trq7e3VEFkZWWhdOnSWtdoDRo0QPPmzTF27Fi4uLgIx0KVSoXx48drxX+6du0KW1tbjWvPP/74A3K5HLVr18bWrVuRmJiIU6dOCdf1bdu2FeaUb968QVBQEEQikc5Fv9ySkpKEcpy54xz68CVm+fnM69evUbZsWQQEBOi8lnzw4IGw0BwdHQ0vLy84ODhojKt3795wcXHR2q2VkZEhJLaFhoZq/Gz48OHw8fFBVFQULC0tce7cORw5cgQ9evRAq1atTCo5061bNzg7O6NLly7w8PAw+btdVIswfEKQWCzWSrLhOA41atQQstEHDhwIZ2dnIVb2xx9/YOnSpQVOfMrMzIStra3WeaZp06aoVq1agZ6Tv942tOtTrVajefPmcHJywsuXL3H58mXMmjVL2HVgSKGD6BMnToRSqYSvry/Wrl2LlJQU9OzZE87OzoVuRPAx6QuiAzkfjDJlysDCwgL9+vWDQqEQmvMZym781J04cQJKpRIymQyOjo4lnvHHj0nXhGjRokWQy+Umv998A6N69epBJBLlu7qXkpKC4cOHG8xqLQ7JycmwtbVFu3btYGFhITQoSk1NRVRUFLy8vLQCJg8ePMDkyZPh7+8PIsq3DIcp4uPj0bFjR2GCaswWNmM9fPgQixYtQnh4ODw9PYWGrd7e3ti/fz8WL14MsVhcrIs6jG4qlQqdOnWCTCbDwYMHcfv2bXh4eMDPzw/z5s1Dhw4dEBwcbFRJJd6RI0dAlFM2Ij4+Ho0aNYJIJIKLi4uwRcvPz8+oVfTs7Gw0adIESqWyWBYWrl69CrlcXiTlMvRRq9WwtbWFra0t7Ozs/pULRSNGjBCChLyUlBS0atXKYMOX/zJ+S/v333+PP//8EzKZzOgdcSqVCp6enggNDTXq88Bn/QQHB+u8sP/tt9/g4OCA7t27a2Slpaeno3bt2nB3dy9QreOS9vDhQ2zatKlQzYI4jkPjxo1RunRpoXm4lZWVSQt5eb158wYSiQRr167FtWvXIJfLUa1aNRARevfujYiICJN20RUXvhlp9+7dQUR6Gz8Wh5SUFEydOhXm5uaQyWTo0KEDjh07VuLviTEeP36MgIAAODg44ODBg3BxcRGCI8VNpVJ9EnPzwhg6dCgUCgUePHgAc3NzIaCe1507dzBt2jRs2rQJp0+fxuDBg0FEqFGjBvr27Stk+Bm7Q7GwBgwYgICAAISHh+fbt+hjef36tZA8w+NLKv3www8mP9/9+/eNSpLp168fSpUqpfGZf/HiBZRKpcHeCVlZWShVqhQsLS1hY2NT4L5jumRmZmLIkCHo2LFjvveNi4uDWCzGhg0bkJSUhMaNG8Pc3Fxn3V6+rOXq1avRv39/iEQioxbM3rx5Ay8vL6FvwePHjzFw4EDY2NgUSfnI3r17g4gQGRlZZOX7jh49ColEotXgvXHjxlp9j/jydNu2bUPXrl3h5+cnHJv4nd79+/c36XiVmJgIT09PnYsMXbp0gb29fbHtVOIz6HMHy/gd1cuXLxey5PmFd1PjAvzjdu3ahS+++ALm5uYa84w1a9borLFfWJs3bwbRP2WUEhMTIZVK8dVXXwnzVD4+xy8Quru7C+8zn1ipq4fGkSNHhMUriUQCIkKFChWwadMmraBxfHy80TvaOI7D9evXjT6nbtq0SeiBCORkjdvb2yMyMlKjwkFaWhrKlSuH0qVLCxnUcXFxaNq0KUQiEezs7IQdjYbq0P/6669ac20+Q1oqlRrVg8KQ2NhYWFhYaF1XlYRhw4bBz89P57GazxbfsmULzMzMTCohbIyePXvCx8dHWJjmy6MWpD8ZLzQ01GDi37Jlywqc5FLoIHpAQAC2bt2qdeE3ZcoUWFlZFeikbsilS5cQHh6OOnXqoH379lrlQE6dOgVPT0/UrVvXpEmPoSA6kHMBMHjwYCiVSowYMeKjbT8tbjdv3kSpUqUM1mD9mDIzM7VKy3Ach/Llyxs1UdKlVatWICLMmDGjqIZZLCZOnAiinCYuueuh5VfvmOM4PHz4sMgvtPjtTwXdmmOK3HVsxWKxyeWYmKKTlZWFtm3bwszMDA4ODqhQoUKhA27t2rUTgub29vYaDdgePnyI4OBgWFpa6qxpntuQIUMglUoL3ZTZkCNHjmDnzp3F9vxATi10IjI6o/9Tk5iYiB07dvwrAmAfU8OGDREYGAgfHx9Ur17dpEzvmzdvmpSRdPXqVQQFBQkTWX7R5/Lly1AoFKhcuTIcHR1hbW2NUaNGISoqCtbW1jAzM9Poh/K/6M6dO5DJZJg0aRKcnJxMqq+sT+PGjVGzZk0EBAQgODgY6enp+O6774QtrkW9Hb0gOI4TAjF5A2Ify7t37/Jtevcpio+PF4IHdnZ2/8pFqJLy7t07KJVKlC5dGiKRyKRFsHPnziE0NBQVK1bEsGHDsHfv3o+2qLBz504hkaS45wSm4He6/Pbbb+A4DlWqVNGqVVvU+L4KfO1hjuMQHR0NFxeXfJvHr169GkSEUaNGFdv4jFGrVi3Ur18foaGhsLGxMdgIuF+/fhCJRBCJRCY15L106ZKQGMT/W7x4cVEMH3fv3sWQIUOKvEwu3x9l9uzZ4DgOcXFxGlnTufFl1MzMzLR+r4ImhEyfPh02NjYaiSt8zXZjS2IU1PDhwyGRSHDo0CGhBF9ERAQAoGPHjvDy8kLbtm0RHBxcoOePiYmBs7MzfH199ZZ4LGp8U9+aNWuC4zghmP/w4UNkZ2fDzs4OU6dORXp6Ory9vdGwYUO4uLigXr16iI+Ph6enJxo3bmzwePL06VOsWLECR48e/WSuA06fPg2ZTIYBAwYIYxozZgzkcrlWwoBarcY333yDBQsWYPHixdi8ebPRdbB5SUlJqFatWpH1FZo6dSpEItFHT+LMi+M4ve8Fn40uFouhUCiKvB/VnTt3YGVlhe7du4PjOEyYMAG2traF6udiqATttWvXIJPJCnxuKnQQ3dCXZ/369ZDL5UalxBvr1atXwps5adIkrbqgp06dKlCDl/yC6P9lKpWqWDodF1S7du1Qo0YN4f/5GlH8KqKpnj17hi+//PKTz+Z5+fIlgoODDU7s/ss4jsP+/fvRtWvXYm0UyOQvMzMTHTp0QERERL4XSMZ49uwZrK2tUaFCBZ01CFNSUtC+fXvIZDK9ux7Wr18v1I37t5s+fTqIyKTyVMyn78KFC0KQzZjmdYWVnp4u1GL19vbG0qVL4eDggOrVqyMxMREJCQkYMWIElEol6tWrh3nz5n3U7ONP2YQJE4QgB99bpDA2bdoEopwGpLnf4+PHj2P8+PGfzIVmRkYGoqOjNXoxMMbJyMjA2LFjTapXyuRYsmQJiEgru/VT9vr1a6Hm+cdo3G0svlFl5cqVhUB/7tq1xUGtVsPLywuDBg3CmzdvMGTIEKFmfH7S09MxatSoIsnGLoy5c+eCKKdnxpUrVwzeNyEhAREREdi8ebPJr/P48WOcPHkSx48fx/nz5z+ZY78hs2bNAhFh5MiRQhlPXcmCCQkJ8Pb2hrm5eZFcGwD/NL3MXUKxd+/eKFWqVLFft6tUKkRHR8PCwgIzZ87UKE10+/ZtoURhQZPwXr58KTR+PHnyZFEO3SB+V/+OHTvQt29fBAQECD/r0qULQkJCsGTJEkgkEty5cwdnzpyBRCKBt7c3rKysPvneYfrw87AlS5YIDWQ/Vtm6wsrOzv5XlMLks9EnTZpULM/PN/Ves2YNHB0dMWLEiEI934sXLyASibBx40aN2/mmroGBgQU+vxdZY1F9+O67xWHatGladWtPnTqFUqVKITw83ODWjLz+l4Ponxq+YzwfbBs8eHCBakQxDPPpePbsmcE+A0lJSbC1tRVKGeV26dIlyOVyoYn0v93p06chkUhKPOOAKXqLFy/W2VysON29excxMTEgIlSqVOlfXWbuY0lOToanp6fQ9K6wEhISUKZMGXzzzTdF8nwM81+SmZmJRo0aFfnu5OJWq1atEmnKmp8//vgDIpEI5ubmaNq06Ud5zYkTJ8LKygrW1tZQKBRYvHjxvyJAzHv27Bm6dev2rw0QFrfVq1cLnylDi123b98udPmKvCpVqiTsNk9MTISlpaXGjvTilJaWhoiICBCRkL3N45s4F6Zp4759+9CuXbuPnsjXunVreHt7w83NDaNHjxZu5/sDKBQKjSoEfLm3j1Uuq7hMmDABIpEIrq6uqFmzJosdFTGO43D48OFCZYfnp2/fvkKSi66G1qZq0KCBVnUSvjxVYUoqFXsQHYBJXdSN9fTpU9SqVUtry0FycjIyMzORmZmJpk2b6m3alpGRgcTEROHfs2fPWBD9E/H27Vs4ODhAJpMJzS2Ka8WLYZhPx9SpU2FpaanRRC0uLg4+Pj6oVq3aJ5UNVlglnZXF/Pf8/fffbBePCd69e1ekFwL/poASwzD5M9QkvKQNGDDAqKaaReXu3bvw9PTE2LFj/5UlmZj87dmzB2ZmZgXKwC+M+fPnw9LSEikpKVizZg3EYnGRNtzMT3x8PNq3b69V6u7NmzdYt27dJ3sMMOTevXuQyWRagcL4+HhIJBJYWlpqlCXjOA5Xr179V/6uuanVasTExMDCwkJoBs78u6SmpiI4OLjIFog3btwIkUgk9IhKTk6Gu7s72rZtW6jnFQEAfYJev35N7dq107r94MGDJJVKKSoqitavX09ly5bV+xxr1qwhuVxOffr00frZjBkzaObMmVq3JyYmkkKhKNzgmUL78OEDbd68mb766iuKjY2lW7duUZkyZUp6WAzDFKO4uDjy8fGhMWPG0KxZsygpKYlat25N169fp7/++ou8vb1LeogMwzAMwzAlKiMjg27dukWhoaElPRTmPyQlJYWsrKxIJBJ9tNd89OgR+fn50Y4dO2jRokXk4eFBBw8e/Giv/181btw42rRpE718+ZLkcrlw+6BBgyggIIBGjhxZcoMrRmq1mt69e0eurq4lPRSmgLKyskitVpOFhUWhn+vDhw/k4eFBTk5ONGTIEHr27Blt2LCBbt++TaVKlSrw836yQXR91Go1RUdH08iRIykyMlLr50lJSUIQvEuXLjRo0CCqU6eO1v0yMzMpMzNT43FeXl4siP6JUavV9ObNG3J3dy/poTAM8xGMGjWKtmzZQufPn6dOnTpRbGwsHTp0iCIiIkp6aAzDMAzDMAzDFKGwsDBKSkqiO3fu0MGDBykqKqqkh/Svp1ar6f379+Ts7FzSQ2GYEvX333/T0qVLaceOHZSVlUUzZsyg6dOnF+o5/3VB9B07dtCwYcOoYsWKREQ0ePBg6tixIw0cOJDWrl1LGzZsoHXr1pFUKqXatWvTokWLjHrepKQkUiqVLIjOMAxTgp4/f06+vr5EROTm5kY//fQTBQUFlfCoGIZhGIZhGIYpasuWLaPRo0eTu7s7PX36lKRSaUkPiWGY/5i3b9/SL7/8Qu3atdPYnVEQ/7ogenFhQXSGYZhPw7hx4+iPP/6g3bt3s+14DMMwDMMwDPMf9eLFC/Ly8qLJkyfT7NmzS3o4DMMwBrEg+v9jQXSGYRiGYRiGYRiGYZiP57fffqPKlSuTpaVlSQ+FYRjGILZXhmEYhmEYhmEYhmEYhvnoatWqVdJDYBiGMQrLRP9/ACg5OZlsbGw+akdqhmEYhmEYhmEYhmEYhmEY5tPFgugMwzAMwzAMwzAMwzAMwzAMo4e4pAfAMAzDMAzDMAzDMAzDMAzDMJ8qFkRnGIZhGIZhGIZhGIZhGIZhGD1YEJ1hGIZhGIZhGIZhGIZhGIZh9GBBdIZhGIZhGIZhGIZhGIZhGIbRgwXRGYZhGIZhGIZhGIZhGIZhGEYPFkRnGIZhGIZhGIZhGIZhGIZhGD1YEJ1hGIZhGIZhGIZhGIZhGIZh9GBBdIZhGIZhGIZhGIZhGIZhGIbRgwXRGYZhGIZhGIZhGIZhGIZhGEYPFkRnGIZhGIZhGIZhGIZhGIZhGD1YEJ1hGIZhGIZhGIZhGIZhGIZh9GBBdIZhGIZhGIZhGIZhGIZhGIbRgwXRGYZhGIZhGIZhGIZhGIZhGEYPFkRnGIZhGIZhGIZhGIZhGIZhGD1YEJ1hGIZhGIZhGIZhGIZhGIZh9GBBdIZhGIZhGIZhGIZhGIZhGIbRgwXR/x8ASkpKIgAlPRSGYRiGYRiGYRiGYRiGYRjmE8GC6P8vOTmZlEolJScnl/RQGIZhGIZhGIZhGIZhGIZhmE8EC6IzDMMwzCfq1atXdOjQIYqLiyvpoTAMwzAMwzAMwwjev39PY8eOJS8vL2rbti1t2rSJ3rx5U9LDYphiIy3pATAMwzAMo2nlypW0atUqunv3LhEROTg40LJly6hbt24kEolKeHQMwzAMwzAMw/wvAUB79+6lR48ekUQiofj4eFq9ejWp1Wrq2rUr/f3339SvXz+SSqXUt29fmjRpEnl7e5f0sBmmSInwHysC/uTJE6pWrRoFBQUREdGePXvIyckp38clJSWRUqmkxMREUigUxT1MhmEKKDs7m/744w/6+eef6cyZM6RQKKhMmTIUGBhIHTp0IKVSWdJDZJhCuX79OlWqVInatm1L7dq1o4oVK9LcuXNp+/btVL9+fQoLCyMbGxvy9/en9u3bs6A6wzAMwzAMwzAasrOz6bvvviOFQkFt27Yt1HNlZGTQoEGDaOvWrWRnZ0ccx5FIJKLu3bvTlClTyNnZmYiI4uLiaOPGjbRo0SJKSkqili1bUtmyZcnX15dsbW1JLBaTmZkZRUZGkpWVVVH8mgzzUf0ng+hjx46lvXv3mvQ4FkRnmI8vKyuLfv/9d/rtt9/IzMyM7O3tyc3NjerWrUvm5uZa9z958iT16dOHnj59Svb29lSvXj3KzMyke/fu0aNHj8jKyoqGDRtGw4YNIwcHB5JKpSQWs6pVzL9L8+bN6cGDB3Tz5k2SyWTC7UeOHKHZs2fTmzdvKDk5md69e0dTp06lWbNmleBoGYZhGIZhGIYpKRkZGXTixAn6/fffyc3Njfz8/Oj58+c0d+5cevz4MZmbm9O9e/fIy8vL6Oe8efMmHT58mNzc3MjZ2ZmmTZtG169fp/Xr11O3bt3yfXxycjKtWrWKjh8/To8ePaLY2FhSq9XCz4ODg+nQoUPk7e1NarWavvjiC/ruu++oRo0a1KxZMwoLCyNLS0syNzcna2trljTEfDL+k0H0mjVrkr+/P0VERNDcuXN1fuEyMzMpMzNT+P+kpCTy8vJiQXSGKWaZmZl06NAh+vbbb+nEiROUmppKNjY2BIBSUlKIiITV8pYtW5KzszMplUpau3YtrVq1iurVq0fz58+natWqkUQiEZ731atXtGTJEvr6668pNTVVuD0gIIC++eYbqlat2kf/XRnGVCdOnKCGDRvS3r17880YWbRoEY0fP56WLl1Ko0aN+kgjZJiikZaWRi1btqSEhATq1KkTderUiXx8fEp6WAzDMAzDMMUqOzubnj9/To8fP6YLFy7Q2bNn6e+//yY/Pz8KDQ2lmjVrUtu2bcnMzMzg88TGxtKECRPo0KFDlJqaSs7OzhQfH08qlYqIiNq2bUtjxoyhNm3aUJMmTWjr1q1Gje/333+nJk2aUFZWFmVkZBARkZeXF+3fv5+qVKlS4N85IyODOI6jhw8fUtu2bSk9PZ1Wr15NS5cupQsXLlCHDh3oxo0bdOPGDY3HduvWjb799tsCvS7DFLX/XBA9MzOTVCoVWVpaUv/+/al58+YUExOjdb8ZM2bQzJkztW5nQXSGKR4PHz6kFStW0LfffksJCQlUvXp1iomJoYYNG1LlypVJIpFQVlYWPXjwgHbt2kXbtm2jhw8fCo+3sLCgBQsW0NChQw1ml79//56OHz9OmZmZlJ2dTV9//TVdvXqV5syZQ+PGjWOZ6cwn5fnz53TkyBFq3rw5ubm5UdWqVcnc3JzOnz9vVMbFpEmT6IsvvqBVq1bR4MGD9T7mwYMH9PTpU3r79i0BoM6dO7OMDqbEqNVqat++PR07doyaNm1KP/30E2VkZFClSpWoUaNG1LRpU2rQoAH7jDIMwzAM85+RkpJCbdu2pePHjxPHcUSUkzxWu3ZtCgkJocePH9Ply5eFrPGJEydSnz59tHZoA6Bt27bR0KFDSaFQ0JAhQyg6OpoCAgJIrVbT8+fPCQCVLl2aiIi+/vprGjJkCF2+fJlCQkIMjvH8+fPUrFkzqly5Mv34448klUrp5cuX5OrqWqTlV96+fUvR0dF04cIFKlWqFH377bcUHh5ORETPnj2jmzdvUmZmJp0+fZpWrFhBjx49YskWzCfhPxdEz+3IkSN04cIFnVvdWSY6U1A///wzJSYmUkxMjEYmNKPb3bt3adKkSfTDDz+Qvb099e3bl3r16kWBgYEGHweA3rx5QwkJCZSQkEA+Pj7k4eFh8utnZWXR9OnTacGCBeTo6Ej+/v7k5+dHn3/+eb5jYJjilJGRQbVq1aIrV64QEVFQUBDdvHmTzp8/T7Vq1TLqOQDQ8OHDadWqVVS5cmWaPn06tW7dWgg+8ufAo0ePajzuwIED1KpVq6L9hZj/SYcOHaJRo0aRWq2mmjVrUu3atal79+4G51JjxoyhL7/8kn744QeKioqi5ORkOnToEB07dox++eUXevXqFc2fP58mTpz4EX8ThmEYprgAoOTkZHadzfzPyszMpKioKLpw4QJ98cUXVKZMGfL29qYyZcpoxRRu3bpFc+fOpZ07d5JSqaRmzZpRy5YtSalU0pUrV+j06dN0/Phx6tatG61cuZJsbW0NvrZKpaKKFSuSh4cH/fLLL3Tz5k3avn07PX/+nJKTkyklJYXUajUBoIsXL1K1atXo8OHDxV6zPCMjg3bv3k3R0dF6jw2pqf/H3lmHRZW+ffyeoLsEEZAQBJQQC7uLFQxU7Mbu7nbtXtu1XXXNtWONVdcO7FXXrhUVFJCamfN9//A9z49hZmBAEN19PtfF5eWZE8+ZOeeJO773J3JxcaGuXbvSrFmz8rU9HI4+5IsRfc+ePVSnTh0yMTHJ61NnS2JiIllYWBDR5wg9Pz8/at++fbbHZaeJrlQqadKkSbRmzRrau3cvBQcH53XTOQXI77//TgcPHqTLly/TgwcPqGPHjjRmzBgyNTVl+8THx1O/fv1o48aNREQUHBxMs2fPplq1ahVUs7953r9/T6VLlyapVEojRoygdu3aFUi/QER09uxZOnr0KD169IiOHTtGLi4udO7cuW8m0lGpVJJcLi/oZvynuXXrFi1dupQSExOpffv2VLNmzXzNXOjRowetXbuWDh8+TE+ePKHt27eTl5cXzZ8/P8fnOn36NE2cOJGOHTtGJiYmZGdnRyYmJvTgwQPy9/en0aNHU2hoKDk4OFD9+vVJJpPRqVOn8v6mOP8ZXr58SQMHDqRt27ZRvXr1yM/Pj86dO0dXr14lV1dX2rx5M5UrV07tmKSkJJoyZQrNmDGDFi1aRH369NE4LwAaPXo0zZgxgw4ePEh169YlIqIbN27Q33//TU2aNNHZb3/48IGsrKy+mX49OxISEmjBggV069YtevXqFb17946cnJxYOnePHj2+uA8CQAsXLqTHjx/T5MmT2Rw5v0lNTdWInFMoFCSVSnkAAofzHyM+Pp66d+9Ou3btouPHj1OVKlUKukkczldFqVRSVFQU7d+/nw4dOkTVq1fX67j79+/Txo0bae/evRQTE0NERFZWVlSqVCnq1asXNW/eXO827Nmzhxo1akQBAQF08+ZNsre3J19fX7K0tCRzc3OSyWQkkUiocOHCNGnSJDU7SEEzbNgwWrFiBb148YLMzc0LujnfHAAoPj6erKys+Bzra4B8wMTEBA4ODmjZsiV27dqFtLS0/LiMVg4cOICQkBBUrlwZ7dq1g0Kh0Ou4jx8/gojw8eNHjc9evHiBqlWrQiqVomjRonBxccHLly/zuumcAkAQBEyfPh1EBDc3NzRr1gw9e/aEoaEh3N3dsXbtWqxYsQLDhg2Ds7MzrKyssG7dOpw9exYVK1YEEcHPzw/dunXDunXrcP78ebx69Qoqlaqgb63AUSqVqFevHuzs7PD06dOCbo4ax48fBxFh27ZtBd0UpKamon///jA1NcXevXv1Oub9+/dISUnJ55b9+0hPT8esWbNw+fJltk0QBOzfvx/VqlUDEaFw4cIoXrw4iAju7u5o2LAhatWqhRo1auDUqVN51paNGzeCiLBy5co8OycA/Pnnn5g/fz7GjRuHvn37Ytu2bRr90c6dO0FEOH/+fJ5em/PvRxAEnDhxAs2bN4dcLkehQoWwefNmCILA9vn7779RtmxZyOVyTJw4EYcPH8a5c+ewbNkyODk5wcjICFOnTs3yOuL4YWtri9u3b2PYsGGQyWQgIrRv3x6fPn1S2z8+Ph59+vSBVCpF48aN8e7dO73uJz4+HitXrkR4eDjmzp2rMWdMT0/Hzp070aBBA4SEhGDjxo1QKpU6z3fz5k3069cPQUFBmDRpEt6+fat1P0EQsHnzZhQuXBimpqaoWbMm2rZti/79+yMqKgply5aFRCLB6NGjtR7/+vVrdOvWDWXKlIGLiwuMjIzg4OCAgIAANGzYEBs3bkRqairi4+PRuHFjEBFMTEzg4eGB06dP6/XdZG7vTz/9hFq1asHb2xvGxsaQSqUwMjKCra0tFi1axPZVKBTo1KkTzM3NcfLkSbb98ePH8PLyQt26dfWem3M4nO+fEydOwMXFBdbW1ihZsiRcXV0RFxdX0M3ifCdknF+IpKSkfFfPUGxsLCIiIiCXy/Ve62njxYsXePTokdbvRB8EQUDLli1Rv359bN++/ava6L6Up0+fQiaTYfHixQXdlG8CQRCQnJyMO3fuYNy4cfD09AQRQSKRwNbWFi1atOC2gnwkX4zowcHBSEpKwi+//ILGjRujUKFCaNeuHfbt2/fNTpx1GdHv3r0Le3t7FClSBKdOncLLly/h4uKCkJAQJCUlFVBrOXmBIAgYMmQIiAjjxo1TG5Du37+PunXrgogglUrh4eGBVq1a4cWLF2rH79mzB927d0eJEiVAROzP3NwcU6dOVRucBEH4TxnXx44dC6lUiqNHjxZ0U7TSoEEDeHt7Iz09vcDacP/+fZQqVQqGhoYoV64cDA0NcfDgQZ3737x5E61bt4ZUKoVUKkXx4sXRsmVLPHjw4Cu2+vulX79+7B2NiIjAxo0bERoaCiJCxYoVsXXrVqSnp0MQBPz555/o1q0bIiIi0KJFCwQGBqJQoUJ49epVttf55ZdfsGnTJrVtz549Q8OGDREaGooKFSrAxMQE7dq1y/VE+EtQKpXw9vZGZGTkV7825/umR48eICL4+vpiwYIF+PDhg9b90tLSMHz4cEgkErWxsU2bNnjy5Ile13r//j08PT0hkUhgZGSEKVOmYN26dTAxMUFQUBB27NiBdevWYerUqXBwcIC5uTkGDhwIW1tbODs749ixYzrP/fbtW3Tu3BlGRkaQSqUoV64cJBIJgoKC8Pvvv2Pr1q3o2rUrnJycQEQoV64cGjRoACJC8eLFsX37drV3986dO6hSpQqICIUKFUKzZs1gYmICExMTdO7cGatWrcLVq1dx8eJFTJgwASEhISAiREZG6nQyz5gxA0Sk1peoVCosWbIEVlZWsLe3R9euXTF27FgsXLgQU6ZMQe/evVG1alUQEezt7eHm5gYrKyv89ttvePjwISpVqgSJRIJhw4YhNTVVr98hKSkJUVFRICKEh4dj8ODBmD9/PpYtW4ZFixahc+fOICIMHz4cqampaNasGWQyGUqVKgUTExMcPnwY9+/fh6urK1xdXSGTyTB06FC9rs3hcL5vzp8/D5lMhmrVquHZs2d4+vQprKys0KJFC9aH3rhxA4sXL8bAgQMRERGBtm3bYubMmTh06BBevXpVIPOkrBAEAePGjUOrVq2+ubZ9CTdu3EDXrl2xdOlSvccH4LOzeffu3Thx4oTauvfNmzc4cuQI1q1bh1mzZmHChAlYuHAhNm3ahMePH+t17p9//hl2dnbYuHEj23bmzBkUKVIERARnZ2fUq1cPy5cvZwZDlUqFXbt2ITo6Ghs2bMCHDx8gCALOnz+PwYMHo1WrVhg5ciSWL1+utq7PL3bv3o1ChQrBzs4Oe/bsyffr/Ztp3rw5fHx8mD3lW3n/9G3H3r174e/vj/nz56ttT0hIwMqVK9G/f3/UqVMH0dHROgM27t27h2LFirHAEiKCpaUlunTpgi1btmDVqlWYOHEiTExMULduXSQnJ3/x/XE0yRcjeqlSpdT+n5CQgA0bNiA8PBxOTk75cckvRpcRXaFQYOTIkWrRRDExMTA3N0eTJk2+mZeXox+CIODOnTtYuHAhatasCSLCwoULde774sULvb20Hz58wLVr1/Dbb7+hf//+kMlk8Pf3x6pVqxAdHQ1nZ2dYW1uje/fu+PPPP/+Vz44gCLh48SIztPz4448F3SSdXL9+HRKJBEuWLPmq101JScGuXbvQokULGBsbw9vbG1euXEFaWhrCw8NhZGSE/fv3qz0fly5dYtGEbm5umD9/PlasWIF+/frBw8MDlpaW2L17NwDg4cOHiI6Ohq+vL7y9veHl5YWBAwf+pxw42li3bh2ICAsWLMD69evh7e3NjGOHDx/O9n188+YNChcujOrVq2cZibpr1y5mOBw1ahQEQcC9e/fg5uYGNzc3dO7cGZ06dcKQIUMK1BG7bNkySCQS7oD5D6FUKnH48GH0798f3t7eqF69Ot6/f6/38StXrgQR4aefftJ7/EpISMDTp09x8+ZNPHr0KMdtvnnzJjp37ox79+6xbdevX4eXlxdbPJiZmaFNmzYsQ/DFixeoWbMmJBIJpk6dqtZWQRCwadMm2Nvbw8bGBjNmzGDHXbp0CaVLl2bn9ff3x8CBA3H9+nV2/KVLl5gxvWHDhnj69ClWrFgBExMT+Pr6qkV2vX37FhMnToS/vz+kUik7r5WVFZo3b47Dhw9nee+CIKB9+/YwMjLC+vXrMXToUHbfnTt3zjLa/q+//sLAgQPRpEkTPHz4kG1XKpWYPn06DAwMEBgYiBs3bkAQBLx//x7nzp3D3Llz0bRpUwQEBCA8PBxDhw5FQEAAzMzMsszcmjt3LogIRYoUgaGhIXbv3o2UlBSEhYXB0NAQhQoVQvHixfHixQvMmzcPRIQtW7Zkef8cDuf7JjU1Ff7+/ihbtqxaEN3WrVtBROjduzfKly8PIoJcLoePjw/q16+PChUqwMzMjPWZ9vb2qFu3Lvbt2/dNrJ0mT57M2paVs/ZbJT09HdeuXcPRo0dx5swZnD9/Hp06dYJEIoGzszP7d8KECejSpQuKFy8OKysr9O/fn40ngiDg3bt3mDdvHlxdXdXG45o1a7Ko2IxGPicnJxgaGoKIYGdnl60h/e+//4aZmRk8PDxARGjXrh1mzJgBuVyOypUrY+PGjRg1ahTq1q0LiUQCR0dHDB48GL6+viAidpyBgQGcnZ2Zk7tKlSooWrQoZDIZ7O3t1TKm8oKnT5+iU6dOqFSpEgoXLswCd/755588vc5/kT///BNEhKpVq8Lb2xvm5uaYNWuW2j5nzpzBhAkTNDIW84vNmzfD2toaQ4YM0Tmnjo2NRatWrVgQSkb7099//40SJUpAJpOhePHiaNiwISQSCSZNmqRxnrdv38LLywu+vr5YunQpNmzYgIMHD2o1lB87dowb0vORfItE14U2uZS8ZvDgwahcuTJat26ttwE0KzkXbYjp8OvXr/+SpnJyQHJyMi5fvozTp0/jyJEjOfIev3z5EtOnT2cyDQYGBqhevTp27NiRb+2NiYlhUa4+Pj4YOHAgRo4cySYbJiYm8PLyQtWqVdGqVSsMHjwYS5Ys+aKOTqVS4eXLl2qTzOTkZPTu3RuNGjXKt05UjMoPDAxkC+nJkyd/84bb9u3bw9HRMUeGpJyiVCpx5coVzJw5E/Xr12cLg6CgIEybNg0JCQls39TUVISFhYGI4Orqis6dO7OMCG9vb6xevVqjT/vw4QOaNGkCIkKNGjUgk8lQqFAh9OnTB0OHDkWvXr0gkUjQs2fPb2LxURBcunQJRkZG6NSpE/sOFAoF7t69m6Pv5MSJE5BKpRg3bpzWz69cuQJTU1NERkayKNLIyEgUKlQIfn5+XyXiRV+Sk5Ph4OCAXr16FXRTOHqQnJyMs2fP6r3/sWPH1FKd4+PjUadOHda3dO3aFfb29ggODtZL+uTChQswNDRE9+7dc9X+vCYtLQ2vX7/WGS2nUqkwbtw4EBGaNWuGN2/e4Oeff2YGm+bNm+P169caxymVShw/fjzbd3Xnzp1wdnaGXC4HESE6OjpLp1hSUhL+/PNPnDlzJkcZmSkpKahQoQKICA4ODujatSv+/PNPvY/XxbVr11CyZEkYGBjAysqKGTqMjY1RrVo19OjRAw0aNICHhweCgoJw69atbM+5ZcsWeHl54ciRI2xbamoqWrRogZCQEGZAEAQBrVu3hqmpKdauXYv4+Pgvvp/8QhAExMXFfbNZtBxOQXPo0CEMHz5cax8xfvx4yOVyNUekSOfOnSGRSFCvXj3s2LFDY26rUqnw8OFD7Nq1CxMnTkSlSpVARKhUqRKOHz9eYPPZhQsXgogwefJkhISEoEaNGgXSDhGlUonr169jxYoV6NGjB2bPns2ym2JjY7FkyRJERkYiPDwcDRs2RIUKFWBsbKxm4BbHl59++gnp6en466+/0LFjRxgZGSEgIAA9e/bEsGHDYGdnB6lUCj8/P1haWjLnR7t27RATE4OrV69i+vTpiIiIwIABA7BlyxY8ePBAbe0pCAJev34NT09PBAYGIjExUed9Va5cGR4eHkhISMD69ethbm4OIsKwYcM0sojv37+P7t27w9zcHBEREWycfPbsGRYsWIBBgwbhxIkTakEw7969Q61atSCXy7F48WK9n6m3b99iw4YN6NatG4KDgzF06FA2FxGzrooUKYK2bdti7Nix2LNnz392/ZXXCIKAzp07IywsDAMHDkT37t1BRBg0aBCUSiVmzZrFIrQDAwNx//79fG3P4cOHYWBggEqVKsHMzAzW1taYMGECrl69CpVKhbdv32LUqFGwsLCAnZ0dNmzYAEEQMHjwYBARBgwYABsbGxQrVgx37txh5xWz+c+cOcO2paSkoFKlSnBwcNA7KOX48eMwMTFB+/bt8/ze/+vkixE9Y8TQ1+bq1ato06YNAGDKlCkaKfW6yKkRHQBatWoFW1tb7lnMRwRBwLlz59C9e3e1hR4RwdraGufOncvyeJVKhQkTJkAqlcLY2BitW7fG/v37v1oEqEql0ng+VCoVTpw4gXnz5mHo0KFo3bo1qlWrxlJz+vfvr/N8aWlpOr2N3bt3Z572ihUrYv/+/bh16xZKliwJY2NjmJiYoHHjxjqjaLUZvJOSknD79m21bQkJCRg1ahR69+6NVatW4ciRI8zQW7t2bRw8eDDLSN1vCTGt1N7eHsuXL8+zdsfHx2P16tVo0qQJbGxsQEQwNTVFvXr1MGPGDLWBMjMKhQL79+/HgAEDUKJECZQuXRpbtmzJsm2CIGDWrFkoU6YMFi5cqPGM/Pzzz2yw/v3339G5c2cULlwYtWrVwty5c3Hr1q0cpW5+Tzx9+hRFihRBuXLl8kQbbvLkySxCIKNh5fHjx3B2dkbZsmVZ9MMvv/wCAwMDlC5dWqc2ckEyefJkGBkZ5SpCmPP1SEhIYJr9K1asyHZ/8X23tbXFggULcPfuXfj6+sLGxkYt6+LGjRuwt7dHUFCQzufzzZs32LVrF1xcXFC+fPnvrp/YsWMHc1yKBpsDBw7kybk/fvyI0aNH56szHvjsKL1w4UKej6spKSmYO3cupk+fjl9//ZVlROUHmQ0Inz59Qv369ZkRpn79+rh582a+XDunJCQkYPDgwXBxcYGBgQGICCVKlOC1kDicTJw9exbGxsbsPSlfvjzmz5+PO3fu4ObNmzAwMMDYsWO1HqtUKvHmzRu9ryUIAg4ePIhSpUqxmjUjR47E2bNnvygQ5u3bt7hx44ZOaTKR27dvo2vXriAiDBkyBIIgsIC6jIau/OL58+dYvHix2lpNpVKhVq1aTHrUz88PRkZGLJNKJpNBJpOhatWqCA8PR0REBNq0aYM5c+bg1KlTePz4Me7cuYPLly9rNWZr67eXLVuGXr16YcaMGdi6dSuePXuWq/u5efMmzM3NERkZybKhrl69yozus2bNgkQiUatF9Pjx4zz/rhUKBfr37w8igoWFBUqVKoWoqCgsXbpUa6T8wYMHYWdnx77jli1bwsDAAAEBAdi+fTucnJzg6+v7TQXN/NtZtGgRJBIJyzwYPnw4rly5Am9vb1haWmLmzJnYu3cvbty4kadz2AsXLsDMzAw//PAD0tPT8c8//6B3794wNTVljikzMzOYmZlh2LBhiI2NZccKgsCeu7p162ro+ysUClSuXBlubm64desWNmzYgFq1asHY2Dhb21dmVq1aBSLCH3/8kSf3zflMvhjRC5LFixdj3bp1AIDLly+jd+/eWvdLTU3Fx48f2d/z589zbESPjY2Fvb09WrRokSdt5/yPxMRELFu2DAEBASxybsyYMbhw4QLu3r2Le/fuoXLlyjAzM8PRo0fx+vVrDBo0CObm5qhbty7OnTuHT58+oXnz5kzz/FuOdhKZPXs2JBKJ1oJ/Fy5cgJeXFxwdHbF161YIgoD4+Hi0adMGRMRkO9asWcMi4CUSCfz9/XHz5k3s2bMHUqkUvXr1UpsYJSUlYcyYMTAzM8OoUaPYQv358+cssrxBgwa4ePEiDh06BDc3N5iZmcHX15fJVhQrVuy79bS/fPkS7du3Zwvl3r17Y8mSJXpF3mXmxo0baNKkCQwNDSGRSFCpUiVMmDABp06dKvDiLUuWLGEOKE9PTwwcOBD16tVjE24xfbN+/fo4evToN/dbCoKA58+f5yi7ITY2FsWLF4e7u3ueGUBUKhXGjBkDqVSK0NBQ7N+/H+3atYOBgQHc3Nw0NNMfP3781VIKc0pSUhJcXFwQERFR0E3JNwRBwM2bNzF58mQ0bdoUO3bs+OYzZDISHx+P0NBQWFpaonHjxpDL5Th+/LjO/WNiYmBsbIw2bdogOjqayYh4e3trDXC4efMmHBwcUKRIEezbtw/A58n7ypUrWcqpmH76/PnzfLvP/OT27duYN2+e3hqsnK/Hixcv8NNPP8Hf3x8mJiZYtWqV2tjz5s0bLFiwAOXKlUP58uWxatWqfOtPFQoFtm3bhiJFisDExAQDBgzATz/9hI0bN8LV1RVeXl5Mzz8tLQ0nTpzA1q1bsXr1aixcuBDTpk3D6NGjsWLFim9u/ORw8pr79+/Dzs4OVapUQUJCArZv387km8SMXz8/vzx3vIqBSN26dWNBKkQEGxsbhIWFYcOGDWoZnrq4desWunTpwubAotRWkyZNcPjwYahUKnz48AEbN25kDr/ChQtj9uzZ7P1WqVQoUaIEGjRokKf3mJnU1FSUKVMGRIQ5c+aw7YsXLwYRYfPmzSw47OPHj9i4cSM6duyIxYsXqxnuvjV27drFJGAyR8YTEQYPHvzV2nL8+HHMnDkT3bp1Q8WKFVk0s6+vLwYMGIDDhw9j7NixkEgkaNCggdpcPyYmBiVLlmTRzzlxDnHyhq1bt8LX1xe//fYb2/bx40e0atWKOfnEZy0iIgJLly79InWMixcvws7ODhUqVNCYk6SmpuLEiRMYNWoUJkyYkGWB+bNnz+rMdHv69Cmsra1Z20uWLJkrTX2VSoXQ0FCULFmyQOvA/dvIdyP69u3b8/sSakydOhW7du0CADx48ACtWrXSut/48eO1dtg5faF++eUXEBFWr1793UTfAp9f3MwTmxMnTqBixYqYOXNmgS0A7t69i379+sHS0hJSqRSNGjVik5nMiJFMhoaGMDExgaWlJQYMGAB/f3+me2ZmZoadO3cWwJ3kDoVCgdKlSyMgIIAZXZVKJaZOnQq5XI5y5cox6Y769evD1dUVlpaWLD1IRBAEHD9+HPPmzVPr3EVN23r16mHQoEGYOnUqXFxcYGRkhObNm0MqlaJu3bo4ceIEihQpAjc3NyxevBh+fn7sHalTpw4zRiQlJeHatWvfXXSiNs6dO4eoqCj4+/tDLpfDwMBALS09KwRBwMKFC2FkZARfX1/MnTv3m4xCOHToEM6dO6fhRDl27BhWrVqFsWPHMk3g0NDQrxJdkx1bt25Fo0aN4ODgACLSqhGnjYSEBJQpUwaFChXKF93vs2fPMn1iNzc3zJkzJ9tIpm+RX3/9FUSE/fv3F3RT8pyYmBg2HogRRkQEPz8//PLLL9+8oevFixcICQmBjY0NLl26BIVCgbp168LGxkarQfzDhw8oVqwYgoODWTbKjRs3MGbMmCwj9Z4+fcqMBJGRkUz2rHnz5tiyZUuuI804HH1JTk5GdHQ0m580bNgQJUuWZGNxo0aNEBYWBolEAisrK0yaNClP5h2PHj1C586dERQUxIx/4eHhGg6Xx48fw9PTE66urmjZsiWTMsgog2NnZwcXFxcQ0Xc17+RwckJKSgpOnDgBLy8vFC9eXGNsSUpKwsGDBzFixAitMi55SVpaGq5evYpff/0VU6ZMQeXKlZlcZnBwMOrXr48uXbrg999/Z+P98+fPWaFkZ2dnTJs2DWfOnMHmzZsxZcoUFryVMROlfPnyWLdundZgmE2bNoGIcPny5Xy7z379+sHQ0BBNmzaFgYEBrly5gmfPnsHc3BzdunXLt+t+DXbt2sWyoS5cuIBjx45h3bp1WLlyZYGuLT98+IAdO3aga9eurF+XSqWYMmWKVptESkoK1qxZk6/yoJzcoVQq8eLFC5w5cwbTpk1D1apVIZPJ4Obmht9//z3H59u/fz9MTU0RGhqa77/35cuXsW3bti92hl25cgVSqRRz587No5Zx8t2IbmhomO0PlpcL2SVLlrBI9EuXLuVrJDrwue3NmjUDEcHR0RE9evTAkiVLsHHjRuzevRu7du3C1q1bsXv37hxrKqpUKmzZsgVTpkxB3759MXjwYJ3aYTnhr7/+QkhICAwNDREeHo7Vq1ezaGYfHx8QEXr27PlVNSBv377NFvEODg4YOXIk03TLirS0NPTr1w/jxo1jqTBKpRKbN29Go0aNEBMTk99Nz3OuXr0KmUyGwYMHY8KECXBzc4NEIsHo0aOZB3HXrl0oUqQIqlevziKj9GX58uWoU6cOfHx8YGpqisaNG7NCMUePHmVpaiEhIczTrlQq8euvv2Lbtm3fvOEpL0hJSUGDBg1gbm6OK1eu6NzvzZs32LZtG3t2+/fvnyeSIQWJIAg4cOAAM94VZBTL0qVLmQbmmDFj0KFDBxgbG6sVyouNjcWiRYuwadMmnD59GgcOHEDfvn1RtGhRWFpa4urVq/nWvsTERPz555/ftV6uIAioXbs2vLy8vslnVxAELF68GK6urujYsaNOyQeVSqW2sNmzZw/MzMxQqlQpHDhwgC3Gzp49i4YNG4KI0L59e+ZkTEpKwooVK7It9phfJCQkqMmMHTlyhEWIZzRExMfHw9fXF66urjh9+jTb/ubNG9SvXx+Wlpa5choJgoB169axbJT8fG84HF1s2rQJ5cuXR8OGDdGnTx8sW7ZMLYrr0aNHGDhwIORyOfz8/PD777/jt99+Q5cuXeDt7Y1ixYrBz88PZcuWRevWrTFhwgSsXLkS69evx5YtW3DmzBkkJCRApVJh4cKFMDMzg4uLC7p164aFCxdmWXfgxYsXCA0NRXBwMCZOnIiYmBh8/PhRrf8XBAENGzaEq6trnszXOZz84q+//kKHDh3g7e2NevXqoW/fvliyZAnL5M3M8ePHUatWLRa5XbRo0W9SCu7JkyeYO3cuevbsiSZNmrCMqtKlS2PIkCEwNTWFo6MjVq1apdUoLggCzpw5g969e2P+/PnZOpEVCgWKFSuGWrVq5cv6aMeOHSD6XNA7LS0NISEh8PHxQb169eDs7PxdBm98b4gZjZnlTTnfL48ePUL16tVBROjRowdOnjyZrWKBQqHATz/9BJlMhoiIiG82y1gXvXv3hoWFxXebVfqtke9G9EOHDsHS0hJ9+/bVGFyUSiXWrFmD4sWL59n1Mmui//LLL3odlxtNdBGVSoWzZ89i8ODB8PLyYilAmf9q1Kiht366UqlEx44dmVG5ZMmSMDU1RVhYWK4NNiqVCqtWrYKpqSl8fHzw448/skItDg4OWLNmDdtHJpMhPDw8y0KUffr0QXBwMDZv3qw1Cv/Jkyf47bffcO7cObx+/Vrr5OL9+/cYPHgw5HI5ihUrhg0bNvwropq/lOHDh4OIYG5ujujoaK2GXKVSmS8TtidPnmDatGn/+QVgUlISypYti0KFCuHvv/9W++zixYsstVJ0Pv3bInljY2NhY2ODzp07a/38/v37mDBhQr5N4NeuXQsiUhs7kpKS4OrqivDwcABAXFwcAgICmGSF+Ofm5oYePXrg2rVr+dK2fxt3796FgYEB+vTp80299//88w9++OEHFiEtRgNVrlwZHTt2xPDhwzFw4EBUqVKF6Q5WqlQJrVq1gkQiQdOmTXXWv9i4cSNMTEwQGBiIsWPHMuchEaFdu3Z5El2ij2xMTEwMunTpAmNjY8hkMpQuXRotWrRg+t3anFjPnj1DpUqVIJVKMXr0aCxYsABWVlawsbHJM71vDudb5saNG6zgKhGhePHi6NevH4YNG4aBAweic+fOqFy5MgoVKqR1Pi5mNvXq1Usv6Yec8OjRIxgbG2PYsGF5el5t7NmzBzVq1MCIESNw9erV/0SQw3+N9PR0zJw5E3/99Veuz6FQKHDq1Cls3LgRs2fPRvPmzZmEX58+fdC4cWOWhSlG3IaGhuLHH3/EH3/8gcjISDXN85iYmO9GFk0QBBw+fBg1a9aEXC7HwIED83zeeujQIRARFi9enONjP336hPnz58PV1RVOTk4IDw/H+PHjMWTIEDRt2hTm5uZo1qwZe7fv3bvH5E92796dp/fB4fyXEJ3pYsFaURp3wIABTIY1Li4Ojx8/xty5c+Hm5lYggaZ5RVxcHJydneHm5pZlgCBHP76KJnpMTAxcXFzQuHFjJCcnIy0tDUuWLIG7uztsbGwwbty4PL3e4MGDUblyZbRu3VpvHeIvMaJnRhAEJCcnIzY2Fu/evUNCQgJOnDgBJycnODs7q0WPaUOhUKB169aQSqVqhVEPHz4MuVyOLl266D1Rfvz4Mfr06YOKFSvCwsICRISuXbuqGRbevHmjYTg5cOAATE1NERERobWj+OuvvyCVSpmHv3jx4ujcuTPat2+PZs2aoWjRohqLFgMDAzg5OcHf3x/+/v4sHdbExARTp07lxvMMpKWlYe/evd+UQeu/SGxsLLy9vWFmZobevXvj5s2bGD9+PGQyGcqUKYNNmzZ9k7IteYUYCS5WuQc+R8IOHjyYpblGRUXleuGuUCjw6NEjtePT09OxcOFCSKVSdO3aVWOhtn37dhARfvnlF4SGhsLOzg63b99GQkICbt++jbt373JDQi6YMWMGZDIZLC0t0b9//zx/rt+/f49Tp05h79692S6+Y2NjMW7cONja2sLBwQF79+4F8PnZ2LhxIxo3bozQ0FB4eHjA09MTzZs3x4wZMzBz5ky0bNkSJUuWxNixY7O9zo0bN1CsWDEYGRmhd+/eePLkCdauXQsrKys4OTmpaSvqQ0pKCo4fP47Ro0cjNDQUcrkc69ev17pvXFwcM0y4uLhg6tSpWL58Odq1a4eSJUvqTBkWySjzJZFI0K1bt2+yeC2Hk1+oVCocPHgwW+OiSqVi2acxMTFYu3Ythg0blq9FtiZNmgS5XJ6ryMU3b95g586dOHbsGGJiYrQa+T99+oQePXqAiFCuXDnmBAwKCvpXz0n+a6hUKrRt2xZEBGtra5w8eVJjH6VSiVOnTmH+/PkYO3YsevXqhYEDB2LevHnYvHkzevXqxZxGRARLS0sEBgZi2bJlGuuu1NRUXL58GcuXL0fTpk2ZsdbZ2RkbN2787udW+Wn479GjB0xNTbPMBFMqldiyZQs6deqEtm3bolWrVnBwcIBMJkPbtm0xcuRI1K5dG/b29vDy8kLt2rXRv39/DaP/3r17MXny5Hy7Fw7nv4RCocCtW7ewadMm9OzZE4ULF9awYcnlcrRr1+67D8569uwZypQpA2NjY6xfv/6779N1IQgCrl27hvv37+fbNSQAQF+Bly9fUlhYGBERvXv3jhQKBQ0YMID69u1LFhYWX6MJWZKQkEBWVlb08eNHsrS0zJdrvH79mqKiouj06dNUs2ZN6tWrF/n5+dH+/ftp//79FBcXR3Z2dvTp0ye6evUqbd68mZo3b652jg0bNlD79u2pY8eOFBQURMbGxlSkSBGqVKkS2drasv1UKhUtWrSIRo8eTZaWllSzZk0KDAykSpUqUeXKlfVq78GDByk8PJw6d+5My5cvJ4lEwj5r06YN/fHHH/Tw4UO6fv06zZo1i54/f04GBgZkaGhIgYGBVK1aNSpTpgzFxcXR48eP6cWLF/T+/XuKi4sjQRDIxcWFXF1dqUqVKuTi4pI3XzKHk8e8e/eOFi1aRMuWLaPY2FiSyWQ0duxYGjVqFBkYGBR08/IVlUpFoaGhpFQqadeuXbR8+XJasWIFpaWl0YgRI8jFxYU6depEa9eupQ4dOuh1ToVCQcePH6ft27fT7t276d27d+Tj40Pt2rUjR0dHmjZtGj1+/Jh69OhBP/30E8lkMrXjAVD9+vXpyJEjZGFhQcePH6cyZcrkx+3/53j+/DktXbqUVqxYQcbGxnT8+HHy8fEhIqLU1FQ6ePAg1a9fn0xMTLI8T3p6Ok2cOJEuXrxIsbGx9Pr1a3r79i37vEWLFrR+/XoyMjJSO+7vv/+mOXPm0Nq1a0kqlVKXLl1o9OjR5OjomPc3+/8oFApKTU1Vm4e8fPmSevToQfv27aM2bdrQggULyM7OTuvxCQkJtH79etq9ezf9+eeflJqaSvb29lSzZk36+PEj/fnnn3T9+nXy9PRkx1y8eJGioqLow4cPtGjRImrZsiXJ5fJctf/mzZskCAIFBQXl6ngOh5P3pKamUmBgIKWnp1ObNm0oPDycUlNT6cCBA3TixAmqVKkSjR49mhwcHNgxAGjjxo3Uv39/io+PZ9tlMhmVL1+eatWqRVKplO7evUvnzp2jd+/e0dy5c6l79+6kVCrp+PHjFB0dTWZmZnTq1Cm1c3O+PwBQ3759acmSJbRixQrasmULnT59mpYsWUJubm706NEjunLlCv32228UGxtLxsbGZG9vT3Z2dpSamkrPnj2jlJQUcnFxoZYtW1JUVBT5+fmRmZmZ3m1ITU2lK1euUFBQEJmbm+fj3X7/JCUlUVBQEDk5OdGpU6fU5q6CINAvv/xCU6ZMoXv37lFwcDBZWFiQTCYjPz8/Gjx4MHl5eRVg6zkcjoggCHThwgX666+/yMLCgiwsLCggIICcnZ0Luml5QmpqKvXs2ZPWrl1Lfn5+1Lp1a2rTpg15eHhke+ydO3do+vTp1LNnT6pQocJXaK1+fPz4kWJjYyk2NpZOnTpF69evp7/++ouIiEJCQigqKopKlixJtra25OzsTG5ubl9+0Xwzz2fgw4cPmDRpEuzs7GBiYgJTU1PcuHEjX671+PFj2Nvbo1q1aqhWrZreer55GYmeFQqFAps2bULFihWZd8vExATh4eHo3bs3WrZsibCwMBZ5p425c+fC3t4eZmZmajIGJUqUQM2aNVG1alV4e3tDIpGgT58+X3RPoqTC2LFjmbfq7t27kEgkuUpb43C+V1JTU7F9+/bvUmf/S7h48SIkEgmLYBowYABevnzJPu/YsSPMzMyyjL5JSUnBnj170KFDB1Zp3MvLC8OHD8e2bdvQrl07mJqaMtmO7MaH+/fvo2zZslqjsjhfzqtXr+Dv7w9HR0fcunULJ0+eZMUmAwMDs4z8/PjxI2rXrg0DAwNERkaid+/emDRpErZs2YIbN25g27ZtMDIyQs2aNfHx40e8ePECu3fvRmRkJCQSCRwcHDB58mS8e/fuK96xJoIgYMOGDbCxsYGjoyNOnTql9vmzZ8/Qp08fmJubQyaToUGDBpgzZ45amvvHjx/h4eGBihUrQqFQIC0tDVOmTIGBgQHKly+vUbyQw+H8e7h16xbatWunJhXl6OiI5s2bw9LSEhYWFhg3bhyWL1+OOXPmICwsDESE1q1b4/Hjx3jw4AHOnTuHZcuWITIyEjY2NihUqBCqVauGnj174u7duxrXvHfvHhwdHREcHMzqBGUmPj4ehw4dwpIlS7LVgM1LtGUGKxQKXLly5V8bDZdbXrx4gZ49e4KIsHLlSgCfv78OHTqwZ0kmk8HX1xdDhw7F2bNnNaKsBUFAXFzcdyO78m/g9OnTkEgkaNKkCavr9ffff7OCp+Hh4bhw4UIBt5LD4fzXEWWu2rZty+yJbdu21Rm5nZqaigkTJsDAwADGxsYwNjYucDmpe/fuYfLkyawYdEa7aps2bXDw4EFs374dkZGRMDY2VttnzZo1X3z9fDeijxgxAlZWVvD09MTy5cuRlJSEDh06oFChQrh48WKeX+/x48eIjIzM8XFfy4iekZiYGBw4cOCLChMIgoBHjx5h3bp16NatG1q2bIl27dqha9euWRZIygnTp08HEaFp06Z48+YNWrVqBVdXVy6/wuH8R1ixYgUWLVqkNa08ISEBxYoVQ6lSpdQKMAmCgCNHjqBVq1ZMSsrPzw9jxoxBTEyMxqI5MTExx0VyOflHbGwsgoKCWDp3xYoVsWvXLhQvXhxmZmb46aefcPjwYRw/fhynT5/GhQsXcPbsWQQGBsLKygrHjx/Xee5Tp07B2tqaFSij/68rsGzZsizrcBQEr169QrVq1WBkZIStW7cCALZu3QorKys4ODhgzJgxWconnDlzhkkTBQQEQCaTYcSIEXpLzXE4nO8bpVKJP//8E5cvX2YGzbdv32LAgAEwNDRk9W+KFy+eYwkpbdy8eRO2trYICgrCnTt32PYrV66gfPnyagvJ8uXL52jdk5SUhLt372L9+vXo0aMHKlasiLp166JVq1aYOnWq1vpIwGfHt4ODA5o2bcpkCpOSktCgQQMQEVq0aPFVDfqZOXXqFGbPnq2XMT8+Ph6//vorzp07l6drRqVSiX379qFRo0aQyWQwNTXFwoUL1fYRBAFXrlzBw4cPkZ6enmfX5uQdW7duhZOTE0xMTNCpUyeYmprCw8ODB31wOJxvkqSkJCxevBjOzs6QyWSIiorCunXr8PLlS9y+fRtjxoyBu7s75HI5xowZg/j4eERGRkIqlWLp0qV50oa4uDh06dIFoaGh2LFjh1rg7ogRI7B9+3a2r0qlwpgxY9jcqVWrVtiwYQNOnDiBW7duaa2FlZqaiufPn+PGjRto3749TExM1AL2bt68iXnz5uHXX3/F+fPn8ebNm2zbnO9GdF9fX6xbt05jYjVmzBiYmZnluRfj8ePHcHJyQuXKlTFy5Ei9oxsKwoj+PbFt2zbY29vD3t4eEokkz14aDofz/XP16lUULlwY5ubmWLhwIa5cuYLatWuDiFCyZElMmjSJV7X/Dnn//j2ioqKwZMkSZvxJTExkGq3a/lxcXHDz5s1sz33nzh1MmTIFu3btwrNnz77pSMTU1FS0bt0aRITq1avn2OgzevRoEBFKly6Nq1ev5m9jORzOd0N6enq+RApfv34dvr6+MDY2xvz58zF+/HjI5XIEBwdj7dq1uHfvHi5dugQrKytUrFhRZ/2dxMRErFy5EhUrVoSVlZVaX+/n54fWrVsjMjIS1apVg0wmQ7du3TT68vfv38PHxwfu7u4wNzdHcHAwrl69ivLly8Pc3BwTJkyAlZUV3Nzcsq0ZlR+sXr2aFdScOnUq256YmIhOnTqhcePGmD17No4ePYrevXszx3JGB/DUqVPx+vXrXF3/6dOnGD9+PCucHRwcjKVLl/L16HdMQkIChg8fDmNjY/Ts2ZPXt+JwON88ycnJmDdvHkqVKqU2xllZWaFz585qRmelUok+ffqwDJtHjx7l+rr79u2Ds7MzLC0tUa1aNRARypYti3r16oGIWCBey5Yt8ezZM5a5PHXq1FwFXiUnJyMwMBA+Pj74+PEjFixYAENDQzYPICL88MMP2Z4n343oWS2MV65cCSMjIyxatCjPrpeamoqkpCQIgoAuXbpgx44dOvf7+PEj+3v+/Dk3omfDP//8g6ZNm6JkyZI8Cp3D4ajx4cMH9OrVi0m/FC9eHLt37/6mjaOc3BMbG4unT5/i77//xp07d3D9+nVcunTpXzuGCoKA0aNHw9raGmvWrMnRc61QKHDs2DGtRbo5HA4nP0hOTka/fv1YUbTx48drZMBcuHABlpaWCAoKQmRkJOrVq8fkMKtWrQpzc3NIJBI0aNAAM2bMwMaNG3H8+HG8f/9e43qrV69m8o8i6enpqFGjBmxtbfHgwQNcv34dbm5uICI4ODjg8uXLAIAnT56gcuXKkMvl2LRpU7b3dufOHaxZsybLjB6lUpllP61UKjFy5EgQEaKjo1lk244dOxAbG4uyZcvCwsIC1apVY6ngDg4OGDduHJ48eYJr165hw4YN6NChA4yNjSGXy9GxY0eNIpDaSE1Nxc6dO9GgQQNIJBKYm5sjOjoaly5d4nOmfxF8zOdwON8jsbGx2LJlC3bv3q3T5icIArZv3w4XFxcYGxtj6NCh2LFjB+7cuZNt33f27FkMHjwYvr6+ICLUr18fz58/BwCcOHECVatWRfny5bF+/Xqkpqbil19+gY2NDSQSCczMzLBr164vur979+7BwsICjo6OICL0798fKSkpiIuLQ0xMjF6y41+tsKguDh48SFFRUZSQkJCj4/755x9q1qyZxvY9e/awApsHDx6kc+fO0aRJkzT2mzBhAk2cOFFje34WFuVwOJx/OxcvXqRHjx5RZGTkv77wKue/hyAIJJVKC7oZHA6Hoxdnz54lc3NzCgwM1Pr5+fPnady4cSSVSsnc3JyMjIxIIpEQEZG3tzd17NiRihYtqte1ZsyYQSNGjKD27duTRCKh27dv0/Xr1+no0aNUrVo1IiKKjY2lmTNnUo8ePahYsWLsWIVCQdHR0bRu3TqaO3cu9ejRg3bs2EHr1q2jlJQUcnNzI3t7ezpx4gTdunWLiIh69epFixcv1mjHuXPnqF27dmRjY0Nbt25VK+xMRHTkyBEaNmwY3bhxg2bOnEmDBw8mIqJWrVrR3r17ydnZmRISEujgwYMUEhJC6enpdPfuXSpevDgZGxtrXC8+Pp7WrVtH48ePJzs7O9q8eTOVL19ebZ9Pnz7Rnj17aNeuXXTw4EFKSkqismXLUrdu3SgqKkqtuDWHw+FwON8DSUlJNHnyZFq5ciUrim5lZUXh4eEUGRlJDRo0ICMjI7b/H3/8QdWrVycnJycKCwujJk2a0A8//MDmHbp49eoVzZo1izp06EDBwcFf3O6dO3fSyJEjac6cOdSwYcMcH1/gRnQioqtXr1JISEienCsxMZFNREaOHEl+fn7Uvn17jf3S0tIoLS2N/T8hIYFcXV25EZ3D4XA4HA6Hw+FwcgAAmjhxIm3atIkKFSpEjo6O1LFjR4qIiND7+FGjRtH06dPJ3NyckpKSqEaNGuTi4kLPnj2jV69eUbly5ahFixb07Nkz6tu3L/3888/UuXNnIiJSKpU0ZcoUmjJlCpUpU4bevn1L79+/p9WrV5O/vz8dP36cduzYQcePH6dKlSrR7NmzKTQ0lF0/JSWFatSoQe/evaPDhw+Tl5dXju7/8ePH1KpVK7py5QpFRUWRr68vFS1alE6ePEm//vorJSUlUZkyZahRo0bUpEkTKlGiRI7Oz+FwOBzOtwgAio2NpTt37tDJkydp586ddOvWLYqMjKTt27ez/WrXrk3v37+nK1eufNdBSd+EET0vOXjwII0ZM4ZMTU3Jw8ODVq9eTXK5PNvjEhISyMrKihvRORwOh8PhcDgcDqcAWL9+Pd27d486dOhAPj4+Ovfr1q0brVu3jnbs2EE3btyglStX0rNnz2jcuHE0evRo+vTpE3Xp0oV27NhBRERyuZxCQ0Np0KBB1LhxY62RbwqFggCQoaFhrtquUCho2rRpdOjQIbp//z69f/+ePDw8qH379tS+fXuNqHgOh8PhcP6NbNiwgdq3b08HDx6k+vXr07lz56hixYq0fft2ioyMLOjmfRH/OiN6buFGdA6Hw+FwOBwOh8P59klLS6MaNWrQuXPnyMTEhKKioqhfv35UqlQptg8A2rt3LxkZGVGlSpXI3Nz8q7YxISGBzM3Nv+uIOw6Hw+FwcgoAqlmzJr18+ZJu3rxJkZGR9OjRI7p169Z3PyZyI/r/w43oHA6Hw+FwOBwOh/N98PbtWzpw4ABFRESQjY1NQTeHw+FwOBzO/3Pr1i0KDg6mli1b0qZNm2jDhg3Utm3bgm7WF8ON6P8PN6JzOBwOh8PhcDgcDofD4XA4HM6XMXDgQJo/fz55enrSvXv39JLa/tb5vuPoORwOh8PhcDgcDofD4XA4HA6H880wYcIEKlWqFE2fPv1fYUAn4pHoDB6JzuFwOBwOh8PhcDgcDofD4XA4nMzwSHQOh8PhcDgcDofD4XA4HA6Hw+FwdMAj0f8fAJSYmEgWFhYkkUgKujkcDofD4XA4HA6Hw+FwOBwOh8P5BuBGdA6Hw+FwOBwOh8PhcDgcDofD4XB0wOVcOBwOh8PhcDgcDofD4XA4HA6Hw9EBN6JzOBwOh8PhcDgcDofD4XA4HA6HowNuROdwOBwOh8PhcDgcDofD4XA4HA5HB9yIzuFwOBwOh8PhcDgcDofD4XA4HI4OuBGdw+FwOBwOh8PhcDgcDofD4XA4HB1wIzqHw+FwOBwOh8PhcDgcDofD4XA4OuBGdA6Hw+FwOBwOh8PhcDgcDofD4XB0wI3oHA6Hw+FwOBwOh8PhcDgcDofD4eiAG9E5HA6Hw+FwOBwOh8PhcDgcDofD0QE3onM4HA6Hw+FwOBwOh8PhcDgcDoejA25E53A4HA6Hw+FwOBwOh8PhcDgcDkcH3IjO4XA4HA6Hw+FwOBwOh8PhcDgcjg64EZ3D4XA4HA6Hw+FwOBwOh8PhcDgcHXAjOofD4XA4HA6Hw+FwOBwOh8PhcDg64EZ0DofD4XA4HA6Hw+FwOBwOh8PhcHTAjegcDofD4XA4HA6Hw+FwOBwOh8Ph6OC7M6JfuXKFqlSpQtWqVaMWLVqQQqFgn508eZJcXV2pevXqVKtWrRydFwAlJCQQgLxuMofD4XA4HA6Hw+FwOBwOh8PhcL5TvjsjepEiRejw4cP0xx9/ULFixWj37t1qn0dFRdHJkyfp2LFjOTpvYmIiWVlZUWJiYh62lpMT4uLiSKVSFXQzOBwOh8PhcDgczjdOamoqxcTEFHQzOBwOh8Ph/Ef47ozoTk5OZGpqSkREBgYGJJfL1T7fsWMHValShRYsWFAQzePkEkEQqESJEjR9+vSCbgqHw+FwOBwOh8P5xlm3bh2VK1eOkpKSCropHA6Hw+Fw/gN8d0Z0kWfPntHvv/9ODRs2ZNvKlClD9+7do2PHjtGhQ4foypUrOo9PS0ujhIQEtT9OwfHgwQP6559/aNWqVSQIQkE3h8PhcL5Lzp8/T5cvXy7oZnC+gF27dtHbt28LuhkcDofzzXPnzh1SKBR069atgm4Kh8PhcDic/wDfpRE9ISGB2rVrR2vWrCEDAwO23dzcnAwNDcnQ0JAiIiLo+vXrOs8xbdo0srKyYn+urq65bg8AUiqVeu374sULWr58ea6v9W/l0qVLRET05MkT+uOPPwq4NRwOJzsUCgUtWrSIUlNTC7opnAwMGDCAhgwZUtDN4OSS2NhYatq0Kf38888F3RQOh8P55nnw4AEREd24caOAW8LhcL4leIAkh8PJL747I7pKpaI2bdrQuHHjyMfHR+2zjJ3l6dOnqVixYjrPM3LkSPr48SP7e/78ea7a8+bNGypbtixFRETotX+3bt2oR48e9PDhw1xd79/KxYsXqVixYlSsWDFau3ZtQTeHw/nuOHDgABUrVoxSUlK+yvWOHj1K/fr1o127dn2V63GyRxAEunXrFt28eZMXyc4j0tLSaMWKFV+tXsrRo0eJiOjevXtf5XoczrcGl+Xg5ATRiJ5V4BSHw/lvsW/fPrK3t+dzqX8hJ06coNevXxd0Mzj/cb47I/qvv/5KZ8+epcmTJ1P16tVp69at1L17d/ZZuXLlqGLFilSkSBGqWrWqzvMYGRmRpaWl2l9OefToEVWqVInu3btHBw8epD///DPL/Q8cOEAHDx4kIqI9e/bk+Hr/Zi5dukTlypWjjh070vbt2//zBV6VSiUdP36cG8Lymbi4OPL396fz588XdFO+mLlz59LDhw/p5MmTX+V64nUy92Xbtm2jgQMHfpU2cNR5/Pgxffr0ieLi4ujVq1df5ZqCIPyr++sff/yRunfvTt27d/8q/fHhw4eJiOj+/fv5fq1/Cx8+fNA7G5DzbXPkyBGysLAgf39/6t+/P129evWLzvf333/T2bNn86h1nG8NhUJBjx8/JplMxo3oHA6HMX36dFIoFDz7/19GWloa/fDDDzRjxoyCbkqe8F+x8ygUCjpx4gR9+vSpoJuSd4ADAPj48SOICB8/ftRr/7t378LR0RHe3t54+PAhSpQogQYNGujcPy0tDcWLF0fNmjURFhaGatWq6dw3JSUFgiDk9Ba+W9LT02FkZIR58+bh6dOnkEgk+Pnnnwu6WQXK9u3bQUQ4fvx4QTflX8369etBRGjUqFGenzspKQmvXr3K8/Nq4++//wYRQSKRoE+fPnodk5CQ8EXXLFu2LGQyGaysrJCeng4AEAQBJUuWhFQqxdu3b7/o/PmNIAi4f/9+QTcjT9m5cyeICESEAwcOZLv/iRMn0Lx5c6hUqlxfs3379nB3d2fPQE741se5mzdvwsDAANWrVwcRYfXq1fl6PZVKBUdHR5iamsLOzi5fr/VvQRAEeHp6om/fvgXdlG+Ou3fvYuLEiRrbnz9/jnfv3qltEwQBu3fvhkKh+FrNw9GjRzXaMWjQIDg6OqJr165wdnaGra3tF/VPNWrUgJOT0xedg/Ptcv/+fRAR6tSpAwsLi29+TPna3Lt3D0lJSQXdDK2oVCp8+vSpoJvxr2L37t14+vRpQTcjR4wYMQIbN27M03OeP38eRIRSpUrBxsYGycnJeXr+y5cv4+bNm3l6To5+nDhxAkSEChUqFHRTvphffvkFtra2uHr1akE3RW+USiV27tyJlJQUvfZ/+PAhhg4dCkdHRxARxo4dm88t/HpwI/r/k1Mjev/+/VG4cGG8efMGALBp0yYQEa5cuaJ1/7lz50IqleLGjRtYvnw5ZDKZxuIB+GxQLlKkCJYtW5b7mykAHjx4gPj4+Fwde+XKFRAR/vzzTwBA7dq1UaVKlTxs3ffHuHHjQERo2LBhQTflX02zZs1gYGAAiUSChw8f5um5o6OjUahQIb37lC9h5MiRsLKyQseOHeHp6ZnlQvLs2bOIiIiARCLBjh07cnW9jx8/QiqVonv37mrOHvFdJiJs2LAhV+f+Wvz+++8gIpw8ebKgm5JnTJgwAfb29rCwsMD06dOz3b9v3756G9y1cfjwYfZ7b926NUfHrlmzBt7e3mwM/dZQKpUoX748fH19kZqaii5dusDU1BR37tzR63iFQoFJkybh2bNnel8zJiYGRIQePXqAiLTOETjqXL9+HUQEQ0PDHH3X/wVat24NIsLLly/VtoeEhKBFixZq286cOQMiwr59+75K2xISEiCXyzFixAi17eXKlUObNm0A/K+Pvn37drbn++effxAVFYXY2Fi27d69e6x/unjxYt7eAOebYP/+/SAiLFu2DESER48eFXSTAAD79u3DqVOnCrQN//zzD4yNjVG1alWkpaUVaFu0MW/ePLi4uHyTbcsp06ZNw6pVqwq0DUlJSTAwMPiu1o1iH21hYYHXr1/n2XlbtGgBLy8v5mRbu3Ztnp37n3/+gZWVFfz9/bnTrgAYPXo0iAjGxsa5Ct7Jb86dO4eePXtmu9+KFSsgkUggkUi+KAhEEARcvnz5qzyLr1+/Ro0aNUBEmDt3brbtWrp0KYyNjWFjY4O+ffuiYcOG8PLy0mjrt/g76kOujejnz59nk5XTp09j1qxZ2LNnT5417GuTUyN61apV0bx5c/Z/hUIBLy8vREZGauz77t07WFlZoVevXgCAV69egYiwfv16jX1Fo0TGc+vLtWvXCiT6U6VSwdnZGe3atcvV8cuWLYNMJmMRCaJD4u+//9Z5THp6OlJTU3N1va/Jy5cvsWjRohx3bk2bNoWRkRGICHfv3tW6z2+//cY94Rl48uSJxvf88uVLndHGqampMDc3x+jRo2FnZ4cBAwbkWVsSExNhZmYGIsKoUaPy7LzaSE9Ph5OTE3r37o19+/aBiPDXX39p3bdFixYgIvj6+iIgIAAhISG5GnjFheu9e/fg7OzMvrt+/frB0dERwcHBaNmyZa7v6fnz57h3757Oz5VKJQ4ePPhFA+/06dNBRKhYseJ3MxFOT0/HggULdEaWNW3aFLVq1ULFihXRunXrbM9XrVo1EBHq16+vc5/9+/cjLi5OY3tycjI8PT1Ro0YNVKlSJUeOz/T0dLi5uYGIEBYW9k1+/wsXLgQR4fTp0wA+L1D9/PwQGBioV7SumE3UuHFjva85Y8YMmJqa4sKFCyAinD17Ntftzy3nzp3L86it/GTatGkscl+fhUtumTt3LkJCQvLt/HlNXFwcm0Ns376dbY+Pj4dEIoGlpaVa/zlmzBgQEWbMmPFV2nfo0CEQkdp3mpSUBLlcjqVLlwL4PC/XNzNx/vz5ICIMHDiQbRs6dChsbGxgY2ODcePG5f1N/Ad5//492rdvXyB9kzbmz58PY2NjPHv2DESEXbt2ZXvMvXv38nXMUSqVcHR0RJkyZXTu8/TpU3Tt2jVfDcijR4+GiYkJDA0N0blz529unK1atarev9m3zOnTp5kh+MOHDwXWjoMHDzKnoa6APl2kpqYWSLbOgAEDYGdnBxsbG3Tt2jVPzvn48WNIpVL89NNPAIB69eohNDQ0T84NAO3atYOhoWGBzdG+d770WQsNDUXRokVBRLh27VreNSyP6NKlC4goy0z0BQsWgIjQu3dvDBgwAIUKFcp1FuDGjRvZOi4vHVGZOXXqFJycnODk5IRSpUpl+U69f/8eTZo0YUFBon3v6NGjGkENv/76K6ysrL5a3ykIAs6fP58n42GujOj9+/dHpUqVUL58eYwePRrVq1fHrFmz8MMPP+SpIeprkhMjuiAIsLS0xI8//qi2fdWqVVqjZlauXAmpVIp//vmHbStXrhyaNWumce5u3bqBiFC0aNEctf/Ro0cwNjbO0hiSHQkJCejVqxdWrFgBpVKp93Fi2pSpqaleEhGbN2/GoEGD2P+7dOmCoKAg9n/Rm75o0SKd5wgPD4eVlRX69++fpbGtoOnVq1euBlofHx/06NEDTk5O6N69u8bniYmJMDU1zZGB5t/Mzz//DCJC6dKlsWvXLsTGxmLw4MEwMjKCvb29VqOQ6LC6ceMGRo4cCQsLC63v/+zZszXe9exYs2YNJBIJ2rdvzxZ4In///bfeaVD6sGvXLhARYmJi8OnTJxgZGWn1EIsRH3PnzoVKpcKRI0dARPj999/ZPufOncOECROyvebQoUPh7OwMQRDQvXt3eHl5IS0tDfb29hg8eDDGjx8Pa2vrXBu5a9WqheDgYJ2f//TTT1/soGjTpg2srKzyPfry+PHjeSbrI/7WI0eO1Pq5t7c3BgwYgB49eqBkyZJZnksQBFhbW8Pf3585RDKzdu1aEBGaNGmi8dmoUaNgaGiIe/fu4ddffwUR4fr16+zz1NRUnZMUUUZpxowZIKIs+/r85tSpUzh69KjatvT0dFhaWmr0vefOnQMRYf/+/dmet1q1arC1tc1RtkOtWrUQFhaGpKQkEBHWrFmj930AwJ07d5CYmKjXviqVSuP32bp1K4gIkydPztF1c8revXuxYMGCPDlX1apVERERgenTp8PAwEBrNLogCHj//n2uryEIAooXLw4iwpMnT76kuV+NxYsXQyaTwcHBQW2+ldHQkjFStmzZsiAidOjQ4au0b+TIkawdYvT48ePHQURqwQEBAQF6GVdq1KgBAwMDGBkZ4dmzZ0hNTYW9vT0GDBiA1q1bf5MOkOTkZPTq1QujRo3Cpk2bsgwc0YfXr1/nuM/ICfHx8QgJCQERwcbGRmeAR16wbt06vTJye/fujRIlSkAQBNjZ2WmVL8qI+IxldCzlNX/88Qd7tp8/f651n0GDBoGIcO7cuXxpQ2JiImxsbDBgwAA2js+ZMyfPzn/jxg0sXLgw14aIjx8/Qi6XQyqV5ouc4tciPT0dJUqUQGBgIAwNDb+aE1IbgwcPhrOzM7y9vXP0nX769AnFixfH4MGD869xWkhKSoKVlRWGDx+OhQsXQiKR5IlRdODAgbCxsWHBJuK8OS/OLUqJrFixAu7u7ujUqdMXn/O/RExMDFxdXeHr64t9+/bluP/48OEDZDIZ5s2bB5lMhuXLl2d7zJYtWzB79my9zn/+/HlUq1bti4I0PTw8QET47bfftH4eGxsLqVSKfv36sShyIsLhw4dzdb3y5cujZMmScHR0hIODAxYvXoyFCxdi1KhRemebC4KQpWPj06dPsLa2RpUqVfD69WsW7KptPpycnIwyZcrAxsYGO3fuVPtMdDCLtmKlUglfX1+911V5gRgglRfZKbkyoosTlpSUFNjZ2bGHTalUZrtw/1bJiRH94cOHWlPg09LS4OLigujoaLXtDRs2RNWqVdW2TZ06Febm5movqlKpRKFCheDl5QUiUjO6Z0d4eDjzjOZGW+nx48coWbIkTExMQEQIDg7GH3/8odexo0ePhoWFBSQSSbaasYIgwNvbG0SEEydOAPi8SMr8nVWpUkWr4Qb4nycrKioK9vb2LJp0+vTpOZrUt23bFv369cuyrRlTg3NKUlISLC0tQURo1aqV3sclJydDKpVi5cqVmDJlCoyNjTXaIXZg5ubm/4pUyC/h8uXLMDIyQtOmTZl2sVQqhbm5OQYMGKAzkq13795wd3eHIAh4/vw55HK5hmFH/J7NzMxyFJ1ZtWpV1KpVCwkJCShUqBDatWsHpVKJiRMnQiqVYujQoV983yJhYWEoW7Ys+3/9+vVRu3Ztjf2mT58OU1NT5hEWBAHBwcGoV68egM9R+4UKFdKrHyxbtiyLdBaj0qdNm8acEpcuXcq1VMqLFy8gkUgglUq1tuPt27ewsbGBm5sbpFIpzpw5k+NrAEBQUBCio6NRrVo1BAUF6R0ZoVQqcfz4cb0mfykpKTAxMUHnzp1z1cbMtG3bFkQEIyMjDfmhpKQk1gcvWbIEcrk8y4ng06dPQUTYtm0b7O3tNfrCa9euwdjYmBlNMmaaXbp0CXK5nBks0tPT4ezsjG7dugH4/E46ODigWbNmGo4UlUqFEiVK4IcffgAA9OnTB0ZGRrh161buv5hcsmbNGshkMg2ndWaJMRFBEBAYGKg14ywjosTIli1bUK5cOYSEhGT7fCUlJcHQ0JD1Qa6urjqdJdpYv349ZDKZ3gvh/v37w9PTExcuXADw+Z5NTEwgl8tRvXp1va+bG0SD55eMr8Bno55MJsPSpUuRmJgIOzs79OjRQ2O/efPmwdjYGJcvX1bbrlKp9Ir+uXbtGjOK5aeRMi8pXbo0IiIi0KpVK7WIodGjR8PBwQH29vbMCRkbG8ui0zOOJflJxYoVUaVKFRARNm/eDACYNGkSrK2t1d6V6OjobNcV79+/h0wmw6xZs2Bvb4/o6GjmELp9+zZ++eUXEBFevHiRZ+1XqVTYs2fPF9UWWbZsGSQSCYoUKcL6dX3kSNLS0tC0aVM1pyUATJw4UW1u/aVcuXIFS5cuxZUrV/Du3TuUK1cOtra2OHnyJEqUKIGiRYtqdRCfOXMG69aty/V1k5OTYWtrCysrq2znXXXr1mXBJDVr1kTTpk117qtSqVCqVCkQESIiInLdvuzo27cvHB0dIZfLsXjxYo3P09PT2Vxr4cKFap9t3749T2pvzJ8/HzKZjBk5hg8fDqlUmicBAwcPHoS5uTmICI8fP87VOUTD5qBBgyCXywtU1u3169da7+PUqVPZRkfOmDEDUqkU165dQ5cuXVC4cOE8zZI+c+YMypcvr1f9nuDgYHTo0IE5TfQ1Gg8fPpw5xr5mhvfKlSshkUjw6NEjpKenw9fXF9WqVcP58+fRt29flCpVKseOxY8fP8LCwkJt7qRQKODs7Kw1IA34PK87c+YMoqOjs/zO0tLS4Ofnh4oVK0KlUmHy5MkwNTXVuk75+PEjJk2aVKCZCbp49+4d6tWrhyVLlnzV6+7btw9mZmYICQlBrVq1QESoXbs2zpw5o7cx/bfffmNKBUFBQXo52AMCAmBsbKzxW2zbtk2j32nWrJnWub++PHr0iM0VR48erXWftWvXQiKRMBufIAjw8fHJVQCDuNbevXs33rx5g/DwcCZvaG1tDUtLS43AmpUrV6Jz58744YcfULZsWbi5ucHY2BhOTk548OCBzjZnVIhISEiAkZGRhnNCEAS0adMGJiYmOm2R/fr1Q+HChaFUKlkAlqmpKYYNG5bj+88pt27dgpGREYyNjVGqVKkvjkbPtRE9PT0dHz58gKWlJXswxQ4mvxk8eDAqV66M1q1bqxkQFQoFOnTogMqVK2dpHNVGTozoO3bsABFpTZsYPXo0rKysWKRpUlISjI2NNR60mzdvgohw8OBBtk2MXtiyZYuG0SIr9uzZw47z8PDQ0LrMjj///BMODg7w9PTE7du3ce7cOZQrV04tlV1k3759aNWqldqDFxAQgHbt2qFmzZpZFkzNeI+Ojo4oW7YsEhMTIZVKsWLFCrX9xo0bp7WglEqlQnBwMJNgSElJwYYNG9CoUSPmAGjUqFG20WJpaWkwMTGBkZGRVt1ZQRDQr1+/bHVWZ86cqVNP+Oeff4ZEIsGAAQMgl8v1jka9evUqi1B59+4dTExMMGnSJLV9wsLCULhwYRARjh07ptd5c0NSUhJu3bqFV69eFZixXhAETJw4UWs0+Lt371C0aFGULVuWTf5OnTqFWbNmMQNNw4YNERgYqPbMCoIAV1dXtX6iZcuW8PT0ZJFDV65cgbGxMRvss3ofMzq8xCKfYqEcUaszNDQUEokEfn5+KFKkiF5G26NHj2Lo0KGYPHkyFixYoDHAXbx4EVKpVM0bv3DhQhgYGGgMnOXKldMw/olOgsuXL6NKlSqwsLDQavy+d+8eu0dRD118Z1NSUmBqagpDQ0OUKlUKwP8KJA4ZMiTbe8zMrFmzIJFIQEQ4cuSIxuc9evSAlZUVXr16hYoVK8LDwwMfP37Ep0+fsHz5cgwbNgxHjx5FWloaUlJScPDgQQwZMgQxMTHsHOnp6TA0NMTChQvx559/qhlysmPSpEkgIr08/KKmr62t7RdrvqWlpcHKygpDhgxBkSJFNIwFogTI5cuXmb5xxnvOzN69e0FEePr0KUaNGgULCwtmEIqLi4OHhwdCQkKQnJyMunXromjRokhKSsLVq1dhY2ODcuXKqS24Jk2aBFNTU+zatQsWFhYoWbIkDAwM0LRpU7V7F68rji3Jycnw9/dHoUKFMG/evFxnaehrEAU+v/+inI9oVMmoGy06IbQZcObPnw8DA4MspdOio6NRpEgRpKens99Cm3xbRkRnlOgIrl27dpYGoYwsXrwYRAQrKyu9Im4/fPgAU1NTWFtbw8DAAFOmTIGLiwvKlSuH6dOnw8jIKN8kXdLT02FqagoiwsyZM7/oXNu2bVOLhhGj0TMXVitZsiSICO7u7my8v337Ntzc3PSauA8fPhx2dnYoUaLEF0VqX79+/atE24ja+r/99hsWLVoEAwMD9l5Vr14dTZo0QZs2bVh/LY4DAwcOhLm5+RctLPQxwnz69AkGBgZYvHgxSpYsyaL56taty5xrIqtXr4ZEIlGbmz98+FBtfBMzW16+fIk5c+ZAJpOhZMmSqFy5MoD/GdkzzzNzy7t37xAWFgYiQrNmzXL1falUKvj6+rJgkdjYWJibm2vM9X755RcNx43YV2TWk69bty6ICJUrV/7ixeHt27eZoZToc9Fya2trJhPx7NkzODs7o1SpUhp9RY0aNTSChHKCmFlIlH2tDQ8PD/YODxgwAF5eXjr3FQ0BrVq1goGBwRdlp+hClLfs378/6tSpgzp16mjss3v3bhARC7DISEhICKytrb8oW1GhUKBo0aKstoDYrkaNGsHCwkIvGchnz55plY0Ta3rVrVsXEolEZzSfIAg4cuSIzroePXr0QLFixfDu3TsYGhpmq6+bXwiCgLJly8LW1lYtMEHsE318fHTKIz558gSmpqZMQuru3bsgIr3kp/Th7Nmz7B3MznEfGxvL5hnp6enw9PTM9hjgc0aBXC5nARq5rZOUU8Qgnoz67QcOHGDvfeHChWFtba0RYJcdy5Ytg1Qq1cgAmTx5Mog+y+tdunQJSqUSN2/exPLly1GmTBkQEQwMDODj46Oz2O3o0aMhk8mY8/LFixeQSqVMfiwjK1asANHn7Oi8qG3z7t27XMm3Hjp0CNHR0ezYly9fsuzT/K499/TpU4wcORLdunVDkyZNIJVK0bhxYyQlJUEQBOzduxd+fn4gIpQtWxabN2/Odtzq168fihYtCkEQ0LVrVwQGBma5/5MnT9gzlfG9vHHjBohILZMgNjYWBgYGWc5NVSoV2rdvj02bNmn9XLT7VKlSRWvfDwCRkZEoX7682rbx48fDwsIix/Pujh07ws3NTU09IjExEYIg4OnTpxr2AXG9W6pUKURERKBr164YPXo0FixYAE9PT1SoUEHrOqpSpUoawXlNmjRBuXLl1LbNnDmT2SN1IWb0Hjt2DIGBgahduzaioqLyVHJJG6mpqQgMDESJEiXYGKwrWHjGjBl6ZRXlyog+d+5ceHl5wd3dHYsWLUK9evXQp08fhISEYMyYMbk5pd5cvXqVTQymTJmi9iDv3LmTeX66du2aI0+SLiP6o0ePULFiRTWJljFjxsDR0VHref766y8W3Qf8z9ue2YssCAI8PT3Voqb69evHjGuFChXS67v89OkT3N3dUa9ePSbiL5FI9JY4OX36NExNTVG5cmU1o4BKpYKrq6tGsYMGDRqoGRQfP37M7nfdunUgyrqwT/v27eHl5cVSKsXCdpm9v2LKVObt4jW0/bbJycnYuHEjnJ2dYWJighkzZujskE+dOsU6Vm1pPmJhTyLdBRJTU1NhbGyMIkWKaO34ypUrhwYNGiA+Ph6mpqZaZTKSk5OxZMkStSgIcUEoPos9e/aEvb090yWOjY2FTCbDokWLULhw4S9Kwbty5YqGdzY9PR1Lly5FgwYNmKaq+GdsbAwrKysUKlQILVq00IiE0sZvv/2mtRrzuHHjsGbNmiwHTaVSiejoaBallVGbWRAE1K9fH3Z2dllWoxczFzIahsXIwoxSJjExMbC0tGTppW5ubihTpgySk5Ph6+uLjh07aj2/ODnr378/FAoFxowZoxZBpVAoWKrVsWPH2CCWXZT2zz//DKlUCmdnZzg6OsLQ0BAWFhbYu3cvgM8TbEtLS4SGhqpN+kQj/u7du9k2US8088Cfnp6OokWLwtbWFjKZDCdPnoSJiYlG2q+HhweKFi2Kly9fsgV8xj6tcePGICLMnz+fbevcuXOunKrBwcGIjIyEra2txjtz9epVSCQSdp2HDx/C3Nwc5cuXh62tLSQSCYvwMjc3Z8a6zJOl27dvq0XsicVOslu4njp1ClKpFHK5XG2Bqovhw4ezdyi3qXoiogzD9evXmQZexohDUTYsOTkZHz58yNZwO2XKFFhbW7NMDJlMhu7du2PgwIHw9fWFra0t65cePHgAIyMjREVFwcbGBmXLltUoJP369Ws2Aa1Tpw4SExOxd+9eGBgYoEmTJrh06RJevXqFSpUqoWLFimrHvnjxAp06dYJMJoOzszMrVKsvv//+O9zd3dmi69SpUxr9yurVq2Frawu5XM6eiXHjxuHFixcgUk/v79Chg05j9Nu3b2FgYKD2rGfk/fv3MDExwZQpU9i2Zs2awcXFJcvnq3///nBzc2Pt7tWrV7YRuG/evMGAAQNYRN+qVasglUqzjX766aefWJTi4MGD2aL15cuXLIo+v5yzYupq8eLFUaxYsRxpY545cwYjRoxgC4ZOnTrB39+ffZ5RwkBEvJ/FixfDzs4O9evXx+nTp2FjYwMiQqVKlbK8piAIKFq0KLp3744BAwao/UbA5/dOn+c1PT0dxYoVg1Qq1eoczOr658+fx5EjR/Q2jIq1KdLT01lWxZkzZ5Cens76d7EPef36Ndq3b4+goCBWUyO3BVp3794NMzMzXLp0Kcv9ROfizZs3MWjQIBQpUgQKhQLm5uaYNm2a2r537twBETHJpU+fPsHGxgZ169Zl30dkZCRbzCUnJ7PI7oz9X9WqVREeHq7Xfbx48QKDBg1C8+bNcePGDbXPzpw5Azc3N9jZ2WHYsGEgolwVFBT784yLuA4dOsDb25vdV1JSEmxsbGBtba02xrdr1w5EpNaPKpVKWFhYsDoXhw4dUvssJ0b1Dx8+wNvbGyVKlMDbt29x5swZLFiwQCNbSHy2fvnlF7ZNdFhkboO+iMa1sLAwhIaGajhVMpKWlsayNoHPmUVEpFXS6tOnTyhSpAiaN2+Of/75R8O4kFeITtPTp09j8eLFkMvlGmNlo0aNEBISgl69eqnNkT58+ACpVJql8+DNmzdo2rQpli1bprM2iph5kdmJnpiYiMDAQLi7u2eZBXTkyBGYmpqibNmyas+dGBDSu3dvKBQKBAYGas2yO3v2LCpUqMCCRzIH4AiCAA8PD/Tu3RvA5/ExICCgQDTbjx07BqLPUdgBAQFISkpCTEwMTExM0KRJE/j5+cHKykrrsyz2sxmzURo1agRfX98sxzWVSqXTUCty/vx5WFhYoEqVKsxJLmaNaUPMvBGDAUR52awKKqtUKlSoUIEVTy9durROGZjExETs3r07z3TTz549CyLNjP7Vq1fj6NGjUCqVmDZtGgwNDXMkh1imTBmtfYZCoWDF7ImIrQ0kEglq1aqFffv24c6dOzA2NtYahCn2LZmDucLDw1G6dGmN/du0aQMPDw/Y29sjICDgizItxPdWLpfrHewDfLaXyGQyVp+rWbNm8PDwgIuLC7p37w4TExOtwT3x8fG4ePHiF0tN9erVCyYmJihdujRq166NKVOmaA2MPHDgAOrUqQMiYutbXZQoUQJdunQB8NlRIZPJdPaDwOe5rlwuR/ny5dWCPEXdcrlcztY5c+bMYcFgujKVNmzYwGwh2pwabdq0QenSpdn6KvP9irXYMq4PgP/ZDnMiM/b27VsYGRlh+vTpOvcJDw9HcHAw61vDwsLg7++v9T0+e/YspFKphpyjuF7OPCaJ44z4/e3atQsSiSTbDFqx/xclEk+ePMkCl7L6LYHPY2SnTp00MrGzQ6lUok+fPjA0NERMTAwEQYCfn5/WQCVRHjtzkII2cl1Y9O3bt8zoGh8fj23btuH8+fO5PZ3eLF68mKUJXr58mQ3CwGedXnFCun37dsyaNUvv8+oyoqekpMDMzEyt42zYsGGW2uNly5ZlA1GnTp10GpJETdmjR49CpVLBxcWFGa0bNmyo04sFfE6l2L59O8LCwmBoaMgMWikpKXBycmKdTFaIg3T16tW1Dug9e/aEh4cHe/kSExNhaGgIAwMDlC9fHoIgsKjXjx8/smKKujQJP3z4ABMTE0ydOpXdo9gZZe7IU1JSNLSdk5OT4erqmq13PSEhAf3798/ScDVhwgTY2NigVatW8PLyUutQ5syZA6LPer2+vr46U8DEYjJEpPGsiUZasWCOqG8uTiYFQcC2bdtYcQxRBgEAhg0bpiYv8PLlS1haWrJ9RK3T2NhYdOnSJdfZH7dv34ZcLkeDBg3UJq+jRo2CVCpFzZo1MXfuXJw6dQr79u3D2rVrsXDhQsyaNQtjx46Fu7s78+xnNcmpU6cOpFKp2iTiwYMH7LurW7euhhFc1LBt3bo1pFIpZs2aBZlMxgrFAP9biOvSHct4rsyd5cSJE2FlZaXx3CUkJGDJkiUICAhA4cKFmTFh1KhRsLW1VfPQCoKAUaNGgYjQtGlTyGQyNGjQgE1QMhIfH8/6FtEok/E3Bz4/86KOtBgl27NnT2YwSkhIQKNGjSCRSNCrVy+Ym5ujatWqWtPJixcvrnZ+8T3VZlwTC5yIhvPQ0FC1opSi7IeRkRFKliyJrl27Mj10kU2bNsHU1FTtN965cyeIsi4QnJlbt26x96Zhw4aoW7cu+0wQBFSpUgX+/v5qv9v69etha2uL/v374+HDhxAEAdeuXcOPP/6IGTNm4NatW+jTpw88PT3ZMWK2jziG3blzB4aGhlkOmu/fvy9moFMAAD7nSURBVIeLiwuqVKmCsWPHwtLSMttIu1KlSqFt27bw9PRUSzu8d+8eWrZsqbVgpy6io6NZVXNBEBAaGorAwED2fPTt2xfFixdn+7u7u2eZCdC8eXM1mbGWLVuCiODh4YGWLVtqTKDFCHxtBnSRESNGoHPnzmrfy969ezWccbre2fv376NUqVKoWbNmtt8H8HncFp1s1atXx8iRI1nB0pCQEBw+fBgqlYoZu9q1a4clS5Zg5cqVag40Nzc3NWekr69vlkUqs1r0z5w5E4aGhmrvghj1kjHzLDNBQUFqBokFCxbAyMhIa32SN2/eoF+/fjAxMYGZmRlmzpwJQRBYv5pxYfru3TsMGTKERV0KgoCAgAA1ubRTp06xOYRKpYK9vX2+BUQsWLAAhoaGWmsyiLx9+xa1a9fWSLEXo3+HDRsGQRDg5OSk8YyPHj0aZmZm7N0aOnQo7OzskJ6ejsOHD0MikUAikaBq1aoYMmQIbG1tszTeiFEzJ06cYKnEYqDAkydPIJVKIZPJsjWkLlmyBBKJBOXKlYONjU2WiwBBEHDv3j3MmDGDRWoRERo2bJitJEliYiJsbW2ZZJhCoYCpqSlmzZrFslXOnz/PJFxWr14NR0dHDBs2jKUi58b4GRcXBycnJxBp1lAYPXo0GjRowOZZY8eOhZ2dHVQqFSswKhr1M2c/qlQqWFtbs4XdypUr2fexbds2NkcX55XA5zHB09NTLbhh5syZMDExyTLS6+PHj+jWrRsMDQ1hZWUFT09PSKVS9O7dG0uXLmURi+XLl2dzlq5du8LU1FRntKou6tatq1HYW5zTiGupn376iRlVxXVPcnIyLCws4ObmBgMDAzZ3F7MPTp48iYoVK6JMmTLMAVOsWDEEBATodPbEx8djxowZ2LlzJx49eoSGDRvC2tpaZ2p3RipUqKAWTSoGgTg4OKitzzJz//59re+daIQ+ePAglixZAplMplPaUoz8FQMSxCxOsQZRUlIS7ty5g5iYGAwZMgSGhobsvatbt66GzGZuyCz7OGDAABQuXBgqlQrPnz/XCF74559/WBCMmGUhzuHESFw3NzeEhYVpvd6UKVOYlriVlRXGjh2rkWUZEhKic/345MkTFCpUCJUrV9Y6f9m1axcMDQ1RtWpVmJqaIjIyEiqVCnv37oVUKkXfvn3Z9fr27asR+S8WKA4ODsbixYthYGCgEYx1//59EP0vGEt03uVGivRLqVu3LoKCgnDjxg2YmZmhcePG8PDwYBkWHz58QFhYGKRSqYZcaEhIiEZmkhgkM3ToUJ1SN9OmTYOTk5NOg5EoZ1SpUiUkJiYyqdzq1avrHKuio6PV1oLp6ekoU6YMXFxctGbNC4LAokZFu8mCBQt0Ztn169cPRJ/lN3Jb4+fPP/9EkyZN4O/vD0NDQ421d2bi4+NhYWGB4cOH63V+cd2dMYAoM0qlElu2bMHMmTNx4sQJjfWTWKA6YxDBkSNHIJfLER0drfH9i0oAGZ9dQRDg4uKCwYMH4/bt23ByckLJkiVzlZmjUqnQuHFjmJubo3HjxpBIJNk6/zL+ttHR0UhOTsbKlSvh7u4OHx8fPHnyhPWzGdv98uVLuLi4qM3VMwfK9e/fH7169crW4aVUKuHk5KRWjyU7QkJCspTZev36tZrTVvy9M88ZMlK/fn3UqlWLjUuPHz/GmzdvYGRkhLFjx8Le3h49e/ZkdoKoqCiMGzcOdnZ2Gvf46dMnuLi4IDw8HCVLlkSJEiXU5hOCIKBw4cIYOnQom99mDmgV5zuZnfPAZwk+fbNPAbCs0ayyYkVn/dmzZ5nTW1cUPfC5/5bL5WqBEAMGDIC9vb3G85uQkABjY2PMnDkTW7ZsgVwuR/PmzfVytIm2EzFrTlz7Z65PlRFBEFjAnq7g0WvXruGHH35AQEAAxowZg6tXr2L16tXMeZZRslfMWsncT0dERMDFxSVbgz7wBUb0gmLq1KnMMPngwQM1remMelZHjx7N0huSmpqKjx8/sj9xsqNNzqVp06ZqqRdFihTJ0tgiDkRv3ryBg4ODzgEgLS0NYWFhMDU1ZYZbcTI4efJkDS+WSqXCwYMH0aRJExbxV6JECY1I6ZkzZ8LAwEBnQRvg84NmZWXFBmltiBGnYhS+KGMjesWPHj2KOnXqqBm6OnTowAw9mREfWHEReOvWLUilUo2oRJGaNWuqTc5nzJgBuVyulzacIAjw8vLS6UyoWrUqmjRpwiY84qJR9N6Lz050dDRKlCih9RxTpkyBhYUFoqOjYWNjo2ZY6tmzJ5ydnZnRVZTvWbhwIRYsWMAWYz/88ANatGiBIkWKqHkKM3vSxe/8zJkzqFSpEho0aADgs7Mooycwq+8j80S7Vq1arPCd2KnGxMRALpdrpBRrIz09HWvWrEGhQoVYJkRmRNkcIlLTX5syZQrMzMywY8cOuLi4wMTEBB4eHnB3d0eRIkWYvr+BgQHL6mjUqBFLPwc+T3711bRaunQppFIp7ty5g+3btzNDYVbfV0aDuag7Jk6sBEFghaHETIYjR46wQpXZORRHjBgBW1tb5lTZtm0be6fFv/Hjx2vcm0qlYlkStWrV0tnJDxs2DObm5iwSqXr16uyZyYxCocCJEyfYtXr37g1fX1/2uZjW+scff7DnJXMUtiAIGgbhhIQEGBoaYsyYMXobi0eOHMl0GX/88UdYWloyI6K4QM7OaaINUfZB7BPHjBkDJycntX2mTp0KmUymEUWZkpKC48ePo3bt2rCxscGzZ8/Y+6xLyglQT68V5SAUCgUEQWBRF5kdjhMnTkT9+vU15KiUSiUcHBzUtPRFg5hYfK169epo3rw5+zwiIkKtb85M8eLF1Ra3KSkpWUanpaamYunSpToN6FkRFxeHy5cv47fffsP27duzfGdFI2t2E5hPnz4hNDQU5ubmWLZsGRsrVSoVjh49iooVKzKDhEQiwbx583ReNyoqChUqVADweeFGlHXRGdHYkVljOz4+HkWKFEH79u3VtouTa11ODYVCAUNDQ7UCq+LkN3Nm1/v37+Hv7w8bGxtMnDhRTZJAvE7G+YlYvDUsLAwqlYpFgGVlKG3WrJnOcflLiYqKYnJsfn5+as+syI8//ggiUstESUpKgpGREUqXLg2iz9IjmRe7wOeFlqGhIaZPnw6VSoUiRYqgV69e7PPFixejW7duSElJYeNnVlFi/fv3Z/qNcXFxajU2RowYASsrK+bIyWzQEklMTISjoyPatWuHuLg4eHl5ITAwEO/evUNsbCwePnyIo0ePYsGCBejSpQtzrhsZGaFly5Y4fPgwdu7cCScnJ1hZWWk1EiQnJ2P+/PlwcnKCkZGR2uJNlHCZM2cOTExM2LhTtmxZltp9/PhxqFQqmJiY5EpaoXPnzrC0tGTONnHeGBMTwwzB4uK3WrVqzND+6dMnGBoawsfHB4aGhlqzNerVq4ewsDA1CQBxoSNqamZXU0GMaM9KTqdjx44wNzfH9OnT8fHjR6SlpWH27NmwsLCAVCpFw4YNsXv3brW5QVJSEnx8fJj0lT6IC8bMc3elUokiRYqgd+/eUCqV8PT0RFRUFGrXrs0yJsR5uPjsis+/GMn16dMnlunZokULyGQylCtXjkUGN2/eXON5F+cy4p9EIsnS4ZeRRYsWQS6XM8kCcb3Up08fjawNETGaT1u6dFRUFLy9vaFSqfD+/fsspT5Ep5YYfZuSkgKZTIZly5bhwoULcHZ2VruvjGsxMas1qyxGfRCjIWfNmsWCoTI6D8qWLavWx82ePRuGhoZ4//49m0eIGWUjRoyAk5MTli5dCplMpmH8VKlUcHd3R8eOHfH48WNm2MzYB4rGsazmJmfPnmWZZRnXmGKNkObNmyMtLQ27d++GRCJBq1atYGpqiiZNmqg5dcV5lbimS0hIgImJCQYOHMj2W7Jkidq7D4BJTIlrT4VCAUdHR5QrVw5du3ZFdHR0lu0X+fjxIzZs2MBsAjlFnFOK6x/xnbKzs1ObgyUnJzP5P5FPnz6xZy0zAwcOZJHOlStXVnvG0tLSmLNRVzabKHl3584djW3iexkfH69mAPbw8NBwVrx48QKFCxdGaGioWr/64cMHFjSRcU7y5s0bjWAl4LNx1cjICC1atICTkxMcHBy0ZlNduXIFt2/f1vrO79mzB8bGxggMDESfPn2wcOFCvfT0hw4dCktLSxao1759e1SpUkWrraZXr14oXLiw3rJ+2lCpVKhRowacnZ3RpUsXtGnTBhYWFqhfv77W8yoUChQuXFjtuxfr5olOIlEyJzcF28eMGQOJRII9e/ZApVKhT58+zA6jjaSkJHTo0EHrfESpVLIApOTkZMjlcrV1+bJlyyCTybBp0yZcunQJHh4ean2XaIQl+pzFmRVitr/o0NQHMUAws5NGnK+IjnbRqSpm1ukaH8TAz/nz57Mgz8mTJ2PSpEkwMTHB+/fvMXXqVBgaGrK+7MiRI8wAntlpNnnyZBgYGODvv//GzZs3YWxsrDa3FJ26Bw8eRFxcHFv/ZaR3795MjiYzc+bMgZGRkV61glJTU1G0aFGdGfIiKpUKnp6eaNeuHZo2bYpixYpl+X6kp6ejdOnScHFxwZEjR5CSkgJbW1udRuumTZuiUKFCkEqlaNu2rd7vnhi4JhrNVSoV7OzstKoWiIiOoeDgYFbPTuTt27do3bo1iD5LcLVt2xbW1tbseW3SpInGek3Masx4b6LdMzsZOZEvNqLnZ4VzbSxZsoRFZFy6dEltsjJs2DDmUd22bVuWkejjx49Xm1yJf9o6ZnGy9erVK2YYyeoLFgeiNm3aZNuJJCcns2KIDg4ObOJx+PBhNS/W7du3WcXfgIAAzJ8/X6dsSkJCAuzt7dWiSTMiCAIqVKiAwMDALDXgk5OTmSwK8FmKRSwqW6ZMGZQrVw4GBgZqC39x8l6xYkWUL18e5cuXx8KFC5GUlISyZctqGIdnzZqlNrnKyOTJk2FpaQmFQoH4+HjY2NhkGR2YmZEjR2rVIhb1OBctWgRBEBAUFISIiAj8+uuvkEqlzCsJ/O+316adWKdOHTRo0ACvXr2CiYkJkxK6evUqLCwsNDqDGjVqMMNweHg4mwyJciOiA8jNzU3D8aJUKlG+fHn2DIh62x8+fNAYCLUxePBgeHt7s0mZOFnct28fWrRoAXt7e/zzzz8oU6YMSpQokSP9czGKRFvBNXEgdXNzU0ulCggIYA6wjx8/Yvr06Rg1ahRGjRqFsWPHYtGiRdi2bZtadFdGj784+dU3tS0pKUmtQw0KCspR1Iuood6nTx8AnxcBRKT27AOfU7IWL16crWFflBjYt28fHj16BEtLS0RERGDdunVYuXJltpGAd+7cyTKqITExESEhIShSpAiuXr2qlvKcHaKmmzhB79GjB4twPnfuHCwtLfHrr7/qdS6xyAnRZ/3PTp066Szco1Kp4ObmxiLoT548qeaxHzBgABwdHXM1QX7z5o3ae9OoUSONSK309HSUKlUKAQEBSE1NxdGjR9VqLTg4ODADjFggOauMHzHV7dWrV0zC4ujRo+w5DgkJgZ2dHTMW37t3D3K5HCYmJrCyslIbY8TvIrNzpn379rC3t0d8fDxsbW3VJunaHAUinz59ytEz8TUR0xqzMnYpFApERETA1NRUZ7qyIAjYs2cP6tatm22KqGi4F393bRPojCiVSjg7O6uNR4IgoGXLlrCystJak6Nt27ZqTsCMiJPvjJGi2qKCExMTUb58edjb2+uMfBWN1CJBQUHw9/eHRCLBxIkT0aFDB3h4eGQZLSLKEOhysH8JLi4ubOE+f/58yOVyNWORUqlkjo+MDuyM0nhiKq6uwtpdunSBs7Mzi/rRJe0npqnqktZSKpUoXLgw+vfvz7aFhISgbdu2SElJgb29Pfr37w9BEJizQts7NXnyZBgaGjKjwc2bN1mKdcY/IyMjBAYGol+/fti3b5/G9//+/XvUq1dPLasN+DwP8PDwgEwmQ6dOnTSyf0aNGgVHR0c0adJEbRweO3YsiD4XzhbPFxISopY1c/fuXZ1zNBFx0blixQqkpaXBxcUF7du3hyAIqFq1Knx9fdGwYUO4ubkhPj4eRkZGagYkse6ILmmd8ePHw9bWlgU9HDhwgKXcWlpaolixYtmOuWJghYODA8LDwzFu3Dg12RrRaaVNzzguLk5nNDTw2bhgamqKGjVqZFtoVBAEdOrUCYULF9b67A4bNgy2trbYvHkziD7LMWR0FDRv3hylSpWCSqWCra0tM2a0adNGTZ+0Zs2akEqlGDt2LNLT0yEIAjZs2AA7Ozu17MNXr17B2NiYSVvt3bs3R8W6xcjqZcuWITk5GWZmZpg2bRpbw2SOZLx16xZMTU1RuHBhGBkZqfWzL1++1CjwHhkZieDgYK3Xnj17NszMzNR++xIlSiAwMBBGRkYIDQ3FyZMncfHiRdy8eVNtPzGKTlsqfGJiot7O4lq1asHBwYE9v5n7kylTpjB9+A8fPsDf35/VrVIqlSyTCPhcbLd58+aIi4vTWrRN/E7F/kwQBJQqVQq1atVi+7Ro0QI+Pj7ZRgPu2LEDEokEgwcPRlpaGnr16gWiz5GrGQ3lYoBXaGiohpPon3/+UZuHiwXzMr5XgiCgbdu2MDU1ZQEQDRs21ChevXz5cpQrVw7lypVj2TdDhw5lz+7x48fRr18/dO/eHd27d0fDhg1ZhpuxsbFeutNv3rzBjh072G/bsmVLuLu7q80pt2zZomFsAYDKlSujWbNm7P9ifS9ddWcSExOxadMmFC5cWK1OmRiUUqlSJbi6umqV04iOjlaTdRK/x8qVK8PR0ZFlAVtbW+Po0aPMaKvNuXrhwgUYGxujcePGmD17NkaOHAl3d3dYWlpqXT81bNhQQ6+5X79+sLGxwYcPHxAbG4vatWvDyspKra+LjY2FsbExiAje3t4YPHgwNm/ejGvXrjHnTNOmTXMcjf3y5UsYGhqiR48e8PX1hbm5OaysrFCrVi21/vPTp0+wsrLKUTF2XTx58gS1atViEiAdOnTIsl8fOHAgnJyc2HsjZphk7EOGDh0KY2NjvQpHi4jySRklzgRBQJ8+fWBkZKQxB7xz5w5KlCgBU1PTbGvwAJ8jnzNmUjRq1IjVEQE+v5MSiYTZDRo0aAAfHx8mYSqup7SRUZ5YX+Lj4zX6ZFGu0N7eHvb29hoShxUrVlQLps2IOGcU50Pt2rVDsWLF4OTkxKSUP3z4ACsrK5iYmKBo0aJQqVRISEjQWB+9evUKZmZmagbXpUuXqn0PmefNPj4+zGYA/M+OkNnZJfLu3TuYmZmxgu9Z0bNnTxgaGuqlky8G1uqa32Tm2bNnzF4lOt91rYdEGano6OgcSz1lDpTKPD/NyIkTJyCVSjFy5Ei2RhPrswBA9+7dYWVlheXLl7P+PC0tDUePHlWT487M8OHD2e965swZeHl5oWbNmnpLi32xEV2fgiB5qXOWWRM94+Q+syZ6VsbrnESiv3v3DjKZDMuXL9eZopGZH374gRmOtKVjZyQhIQF169ZVM7pm9GIJgoDq1avD29sb586d0+v7FI2/2uRMRIOMPlXaIyIiUKVKFSgUCtjZ2bGXWxTlJyI1g4FKpULfvn3RunVrdO3alclciPqjO3fuzPaaImJExcWLFzFmzBiYmJjkKI1MNLRmNkiKv6H4Yi1fvhxSqRQGBgZo3bq1WkeQ2aMskp6eDjMzM9bZjxw5EqampizC3M3NTSPt+t69e1i3bp2GQT4tLY1pZImyQtp02GNiYiCTyWBqaqq2uK5evbpaxH5mrly5wopCWVtbY//+/XBzc2MOjdevX8Pa2hpFixaFRCLJlQ5au3btYG1trVacD/gcWWttbc2qsL969YoZLrJKudOGQqGAk5MT+vTpg1atWmlMfrNj586dmDFjhl4pytoQJwXHjx+HTCZT093NKYIgsMWU6BzJ6yrur169gpubG8zMzCCVSvXybgP/Sws/deoUgM+L0oxGlZwUyExLS8PVq1exefNmjBo1iqUKVq1aVeN3EPsl8boZI33S09Ph4OCQo9TAzPj5+bEiRZ6enlrPde3aNcjlctjb24OIEBgYiFmzZiEmJkZjgjBixAjY29vrfAY7deqEgIAAAP/TgOvYsSOKFSuGOnXq4MmTJ5DL5Zg3bx6AzxMINzc3vH79Gi1atAARoX79+ti1axd69uypdUL68uVLmJmZsf0zRumLhhdtUbYXL15kfeu3hiAIcHNz01kcXBAEdOvWDTKZTK9oNX0Qv4+zZ89iypQpsLKyynZCOGHCBEilUkybNg2CILAxV5djb82aNZBIJFoX+2IUTMZ3VKlUwsjIiBmU0tLSULduXZibm2td5Iv89NNPTOZBjHjdvXs3Jk6cCIlEAkNDQ61FmjOSMaJGG+np6di+fTsaNGiAsLAwjejcjPdw7do1NmcRazOIkYNxcXEwNjbG+PHj2TGik0nMuBHH6c6dO7MMmbS0NDRo0EBn0TFxjHFxcVGTpMtMWlqaRjRhfHw8ypcvD29vbxYRnnFMHDRoEFxcXFh6cMa5YIsWLeDu7q7WR8bGxsLCwkJjvLh58yY2btyI3bt34+jRo3jw4EG2c0Xgf1HMGVNyRe1YXYsF0dFtbGzM5sjA/3RpM2qFt23bVs0J06JFCxgYGOg0Ioh1eWrUqMG+53nz5kEulzPHwpEjR5iTUJwbZ3SmivvpytoUnSGhoaHw9PRk76YY9a5vXZibN29i+PDhqFevHmxsbGBvb4+TJ0/i48ePcHV1RZ06dXK9Xjl9+jQsLS1Rvnx5rUEX//zzD6ZPn850QHUF+YjRydbW1qzwW1paGhwcHNClSxe1wJZGjRoxY6S7uzsrcAh8fu60PQ9i9LZY+Ktfv36wtrbOVYaRSL169VClShUWLXv37l2m/ZrRsZuYmAg/Pz+ULFkS7969g4+PD0JDQ6FUKvHq1StUq1YNFhYWauswsT/QVn+ne/fuCAoKUtsmRqNllhXTRosWLTRkue7evQsPDw/Y2Nhg48aNWT4PcXFxLIhl165dsLS0hKOjo9p7LL6vfn5+kEqlkEqlakb2KlWqoEWLFkhOTlYLSmrevLlG25o1a8YCmUTEcf7ChQt49uwZk4rRh4ULF4KI4OnpCQMDAyxbtkzjfgXhcwFAXdmExYsXZwapWrVqoUaNGhr7JCUlsfe+adOmzNGiC0EQMGfOHMjlcpQpUwY+Pj4g+lwYunTp0ihdujSqV6+OuXPn4urVq9nqAj99+hR9+/ZlAREmJiZMKlLf72rUqFEoVKgQ+35mzJgBMzOzbPtsUUtbDIAoX748ateuzd5zMShQRKVSoXDhwlrnp1evXkXDhg0xZMgQbNiwAXXr1oVMJkP9+vWzrIWyefNmmJiYwMLCAu7u7ggLC9NpzBWNYmLwyosXL2BkZKT2Hj9//lzD2TVhwgSYmppi27ZtrLB6Rgdxly5d9BrftCE6zQMCAvDXX3/h5MmTMDQ0VFuvi/OvnMhH5hViVqiYEdKhQwcNx19iYiKTAskOQRBYNl5G+SSR5ORkFCtWDFWqVGH3f+LECZibm8PPzy/brCyR3r17swAp0Q6RURYtNTUVLi4uaNu2LQuI27p1KwRBQIcOHWBoaKjV4SpmAOqaw2dFmzZt4OPjA0EQ2Lxl0KBBmDJlCqKjozVsSFkVk844ZwT+F7BIpJ7lIQYTZMzAzyzV1KVLF9jZ2amNk4IgoGPHjjAwMMCRI0cQGRmpFgjQtm1bNce2uLbOqibOkCFDYGlpmeV4LBbI1rdQuqid7ubmpneApCAIWLFiBSwtLbX26Rn3O3v2bJ7YeefNmwcjIyONbESVSoWiRYuiRo0aUCgUSE9Ph62tLbNHvn37FiYmJrnK9IiPj0evXr1YLTW5XK72bGTHFxvRDx06BEtLS60vulKpxJo1a9R0WvOCwYMHo3LlymjdujXS0tJY5KJCoUD79u1RuXJlnZ4eXejSRBepVq0awsLCMHPmTJiZmWW7wBY1d/XRJteF6MUS0zdzYjAQBAE1atSAl5eXRvRA3bp1ERgYqNdDv2LFCkilUmY0FycCKpUKAQEBGhNYbTx+/Bh9+vRBnTp1cmyAMzU1xaBBg2BmZqa3LpqILkmXESNGwNHRUU3r3d7eHuHh4RrtEwQBzs7OGDZsmNr28+fPqy2u4+PjUbx4cTRs2BC//fZbjqNlmzZtigoVKrBFra5o3Tlz5mh0FDNmzICJiQlu3ryJoUOHIjg4mKWHioVjxAJRYsSXoaGhmhHz559/BhHlatADPkfIOTo6IiIiQu25ql69OiIiIhAXFwcDAwMsXLgQ48aNg5WVVa704YYPHw5LS8scLRTyCtHIa2pqilq1an1RyiDw2QkodtpZFQz6Em7dugUrK6ssB8HMpKenw8jICPPmzcP79++1TvRzi0KhwLZt21CsWDEULVqUyav8/fffcHFxQUBAgFrfWqZMGbRr144tznVF/ehDjx494OPjg8TERBBpz5wAPmcZREVF4eTJk1n2kaLhVZvOrCAIKFKkiNpCSNTllslkbJLbvn17uLi4MC1c0TAmCAI2b96McuXKsUmfrjFt6tSpbJ+MCyMxolub5rRYhDS74lYFRXR0tMa84a+//sL48eOZEUrX75cb0tLSYGxsjDlz5iA8PDzLeiQiSqUSo0ePBtFnWS5zc3MNGZeMiAZkUZ4qI+PHj0ehQoU0tpcoUYJl240ePRoGBgbZFrEU9dePHz+O0aNHw9raGqmpqVCpVAgLC4OBgYFWjdSMiHrjmcc9lUqFhQsXwtHRkUWplC9fnhmsM96bIAgsulHMWBSjazNG9Q4dOhQGBgZsLK1fvz7Kli2L1NRUWFpaYsKECazYekY5I/EauhCNNtlpu/v4+KhFmotznX79+mH48OEaMkBiX+Tu7q7xnIjf/erVq1n7xOyErHQrc4oYJQd8XlAXKlRIo8ZGRt69e8f6iIyOEaVSCR8fHzWD/NSpU1nB4aSkJCZLoMvpPXbsWLW6PMBno5mdnR2IPtdMERHlJ6ytrdUMKmJmlq45rhhUktn4nJKSgk6dOuVYjxz4vPCqWbMm5HI5k4XSlkGSEy5fvgw7Ozv4+/urZQ3t2rUL1tbWMDY2RuvWrXH06NEsn93g4GANp6g4fhD9T75v7ty5LLpRV9+ijcjISBQqVAg3b96EkZGRXvJ9WSEasOrWrQsfHx+164hGhPT0dLRo0QLm5ubs9zpz5gwkEgk6dOgABwcHFC5cWCMrJD09HY6OjvD29sbatWvV5ug1a9ZUiw4GPhvBs5MMExEju8uWLYs//vgDJ0+ehLW1NUqUKIGoqCgQERo1aqRT7kmUFxADZp48eaKhdSsIAlq1aoXmzZtjxYoVGhIWAwcOhIeHB06cOKHmLBANSOJa4M2bN1oLWovvcOPGjTFy5EhYWlpmmw2RkdGjR8PT0zPXNc2io6Ph7++P58+fq0ldZUYQBGzZsoUZK/TJBD1z5gxKly6NVq1aqUkOZqZjx45wdXXVOie/ffs2TExMWKH627dvY+rUqXB3d4ezs7PecyDRkSdGZDZu3FivebVSqURAQAAqV67M1o1iUFZ4eLhGkT9xXqkrOyojCoUCffv2ZQ7GrNDXyJWSkoKiRYvC1NQUkyZNYnKlmQ30rVu3hoeHB5RKJZKTk7XWQIiLi8PZs2dzVBRbG69fv8bs2bPVfqutW7dCIpEgKCgItWvXRpEiRfSupZPXCIIAT09P5tR3d3dXm1OIiMESK1euxP379/H+/XutTitRXmvixIk6vzcx63/ZsmU4ePAgjI2NUadOnRxlD4qBAHFxcex8GaN7gc/rIalUipIlSyI4OJg9q2lpaahatSrs7e016ruIdgwxIConiO3YuXMnHB0dmYybLsTMjsyOa5VKBUdHR7U5o1KphIuLi0ZNw/fv36Nt27Zq89KM9R5iYmIgkUi02hzS09MRFhYGc3NzWFpaqgXDLly4kGW4Ap8zEi0sLLI0ZL969QpGRkYahUdFrl27BmNjY3Tu3DlH79SKFStyVevm/fv3X+RgzwmiXFDm50Z04GTUvu/UqRNztkyZMgXGxsZfNMdWKBQ4duxYlprs2sgTTfSYmBi4uLigcePGSE5ORlpaGpYsWQJ3d3fY2Nhkq530LZCdEX3u3LkwMjJCeHi4XlqhycnJCA0NzVFaZGbatm2LoKAgeHh46NQzzoq//vqLaRKLiLIC2aXnirx48QJEn4vNOTo6qg32jx49ytXiJSfUq1cPEokEVlZWWqN7skPUns448S5XrpxG+k9cXJxOx0iLFi00fnMxCiEnToGsECU0pk6dCqlUqlUXVBdiRIO4OA0KCoKRkRF27tzJPJaiUT0tLQ2DBw/WkH8RBAH79+/P0XUzk1EiBvhfcVhx0v/DDz+gUqVK8PHx0SjGoy+iYdDOzu6rGwBFXWp3d3e9Ukez4+HDhzAyMmKpvPnF48ePNTIEsqNcuXJo27YtiwLLSQqiPjx79gxubm7w9fXFhQsX4OrqCm9vb4129uvXD15eXmjevDkCAwO/6JqiAU80kmUVzasPmSV+MiLq72Y0WImLo4zGcDFi1sLCAmXKlNHaB127dg2jRo3S+RukpKTA3d0dFhYWascrlUoYGxujfv36GpECffr0yXPndl4i9iWiUeuPP/6AVCqFpaUlOnTooKGDnRdUqVKFGZdyUlRz9+7dsLCwgKenZ7bGC29vbxa1l5HIyEitC8CmTZuidu3auHXrFuRyuVrEti5UKhVsbGwwfvx4eHh4qEVrJycn6z1mt27dGmXKlGH/f/DgAapUqcKCAzIai65cuYImTZpAIpEw3VgxksrT0xMeHh5ISUlB3759UaxYMbXrpKWloUKFCnB1dWURXaKDpF27dvD392fFPbMqIJWZM2fOwMzMLNsaKo0aNVKrHTB06FC4uLjo3P/Dhw9M41ubFm/Tpk3h5eUFhULBnNNi1G9eIUYTX7hwgRWfzC4Cz9fXFxKJJNuMJzEF+vXr1ywq0cHBQauRXhzDMka3i/z4448wNTVVW2C/e/cO1tbWWqPxrl+/nuWi0M/PT2/ZBn1RKBSsCL0ujdmccvv2bQQHB0MikSA6OpoZuRo3bqx329etW4eaNWuq9ediMcaMxjJxPi/eg76ZmmKxeisrK9jY2GQp66gPHz9+ZFIOGR1v4vzz9u3bzGGR2dAv1jZo0KCBzmy5mJgYJg3n7u6OHTt2AABcXV2/WL7h5MmTLINUJpOhVq1a7B3ZsWMHHBwc4O/vr3X90bx5c5QtW/aLri/KvvXt21etDpaotezj44Nff/0VM2bMgJGRkdZ2rF69ms0jviRDMjeIjgRRriK7Z+n9+/dZSrXlBtH4Ij4XIhmzuDOPzSqVKkfrnYSEBJaRLjqZ9ZFdAP5ngPf29lYrpilmW2d0lo0dOxY2NjY5CtLZtm3bF9kaMvPhwwcMGTKESUBoi/AU+54dO3ZgxYoVkEgkuc7yzS1bt25Fx44d0aJFC4SHh+fKaJtXjBo1CjY2Nvj777+ZETgzgiCgYcOGahH6me1jogFan7okXbt2hbm5OZOIzen6XRxTDh06hGHDhmnYeIDPc0YxaCLze/vu3TsUK1YMvr6+aobWwYMHa2Tk6Iuo4W1oaAg7O7tsx7QHDx6w/ifjOyN+j6LEc8Z7zqoGjog493n9+jVq1qyJ4sWL67T3JCUlsWAS0dYC/C9D4eLFi3j06BFcXV3VpJ100atXL9jZ2Wk4RI4dOwZnZ+cc1V/5nlAqlbC0tNRwIPTu3VsjE1t0Ml+5cgVOTk7o3r37124ugDwsLPrixQsEBgYiMDAQzs7OcHBwwNSpU3PkES9IsjOii7IeEolErZBAfiLqLstksiz1WbNi3LhxMDAwwPjx4xEfH49mzZqxBZ6+hISEgIjUJB2+FtOnTwcR6fTKZYco6SLK2ogL4JxoAYtFcDJ2WmFhYXpFK+qLWHXayckpx8YtQRAwceJErF+/HsnJyUhNTUVUVBQzOmVVQDMvETX7QkJCmIZhxsga0eud06yKzHTo0CHPFrw5JSYmJsuCvTnla3l4c0rPnj3h7++PoUOHwtnZOU8luUTu37/PJmfFihXTkD8C/pfRY2BgoKEPmlNevXrFouWkUmmeTEL69+/PZK5WrVqFI0eO4Pr160wDOaOjR4zEyjwxatSokd6RR7o4c+aM1roIP//8M9zc3EBE8Pf3Z0bIqlWr6jWZKyji4uIglUqxYsUKpKeno2TJkihfvvwXOfmyY9iwYUynOjsN9cy8fPkyS81kkR49esDb21tju6+vr9YsoBEjRsDFxQWVKlVC8eLF9c7eiYiIYO9Wxkl9ThCzFQYNGoS6devCxMQEnp6eOp9TlUqFIUOGgIiYwWvChAm4e/cu5HI5pk+fjpCQEK3R+s+ePYOdnR1MTU1ha2vL3k0x6jsiIgJ2dnY5XpTps/+IESPg6urK/l+pUqVs340yZcrojHy8du0aiIhJvH1JNqIulEolPDw8EBUVhaJFi+rUBM1Iz5499TL43bt3D0SfU9MjIyNRpkwZDBgwAC4uLhrjQEREBFxdXbUWARYEQavB78KFC3oVh8/M/Pnzcz0PzI4nT57k6RinUCiwaNEiWFlZsYLBeXH+4cOHq0kLKhQKWFhYwNTUFB4eHjk6l6jnmp20k740b94cROr1B2JjYyGVSmFiYgJ7e3utfVFaWhp+//13vfRUr1+/zoxQzZo1U8v6+BJUKhV++eUXjB8/XiNK8K+//oK9vT0qVKig9pynpKQwGcYvQTQCmZmZaTiXrl+/jvr167O1p646V2IdAolE8tXlLMQMK7lcjqioqK967YxUrlxZQ09XNPBrkzXNDWXLlkWbNm3w+PFjtYhyfRCLyYvyfSKVK1eGn58fsz0EBQUxydqC5sGDB5g0aZLO6OZq1aqhQoUK8PPzU8s4+i8iZqGJGSy6omIVCgWuX7+OEydOICwsTCM4aMqUKawWXHbEx8fD3d0dLVu2zFVAnyAIsLW1xcSJExEQEKAzk3Lr1q3o1q2b1jHsr7/+grW1NQv2SEpKQtGiRXNUvy4zYnatvplVkyZNglQqRWhoKE6dOoX+/fvDxMQEbm5uuc4YFwNIO3bsqNea4N27d1i2bJnanDM1NRUGBgbo2bMnChcujGLFiulVTFeU+pw4cSJevHiB2NhY5myuUaNGjoPivicy29aUSiUcHR3VpOoAsEzVkiVLqmUIfW3yxIj+4cMHTJo0CXZ2djAxMYGpqalGStu3TnZGdOBzMUQxFedrIHqxciuxAXx+0AYNGgRjY2NYWVlBIpFg+fLlOTqHqE2aU8NCXvD48WO0atUq1wXOMkq6CIKAnTt3gog00o+yQlwUix5NXd6yL0WMhomMjPzic4na9A4ODlqNk/mFmJK6c+dOjBkzBnZ2dmxx9OHDBxgaGmot9sr5tli1ahWkUikCAwPzdWF0/fp1tG7dWqdjQlygSaXSbCUo9MHb2xtEpJZy/iXcuXMH1atXZwvYjBEmGYt9ZcXz58/V5BTyGqVSicOHD6NSpUowNDTEunXrYGVlpaZ9+C1SoUIFREZGYt68eZBIJBpppnlNxjof+tYPyCliOm/GwmspKSkswi0zop5qTp0ss2fPBhGhSJEiudYhffbsGczNzeHu7o6IiAj8+OOPWo2lmZk1axZzuouLrv79+8Pc3FznfQKfo/UkEgkrOgr8b6JMRFlK5XwJohRFYmIiUlNT1XTodXH+/HmdxUqBz8ZlIoKvr69e31luEH/jjI7qrPj06ZNOXeOMKBQKpptvbGyMmTNnsjoyGef1Bw4cABHpXWT6v0hsbGy+GzUbNGgAIkLbtm1zdJxKpcLevXtzJaunjbNnz6Jp06Ya/U39+vURFBSkl/FAH0SpM1EuKC8jcHVx6dIlmJubo379+szIvn//fhCR3vrDuhAEgRW916WTf+rUKURFRWW5rt65c+f/tXfvwTHf3x/HX5srIZu6Jp2IVlzCuFSUtojQNDHouBSRllHGdKhOq7Q6jDFKVY3baGdS11HXVql2hhqtooIK6jpFWqK0STuNaShLW0ls3r8/fHd/NFly2c0ny/PxV+zy2ZPNOvl8zuf9PsdMnz69UrFUlGvQpRXXiC6ulaOuXHjlyhUTGRlpUlNTvfYab775pmnUqJF790B5zhNOnz5tUlNTS+wEysrKMhEREaZ3797uxXq3D5Wvzlw7oqSKte6437Ru3dpIKjH80pO1a9eW+BwlJye755WVRWXbivbu3ds89thjRip7h4L/+vbbb01ISMgd1z+V2S1aUFBQ7s9TZmamiY2NNZLcOzEru2utSZMm7mu5it4E79Spk5Fk2rdvX6aFNi4vvfTSHe9nSEiIWbBgQbmHd/qbRYsWmYCAAHe7r127dhlJpbYbc80/6dOnT1WH6VbpIvrkyZNNRESEiY2NNUuXLjXXr183I0aMMA0bNqyWQ8s8KUsRferUqUaSOXz4cJXE5HQ6zaJFiyq91dKYW6swx48fb5555plynzSfP3/eDB061KerAH1p8uTJJiAgwJ3kH3300XIlRFfR3FV0cm1jK8/W8rKYPn26kVSmLftlVdECSmUkJSWZNm3auItgtxs3bpyZMWNGlceE8nHt4JBk0tPTLY0lJiamRA+7inKdmAwcONArx7vdjRs3zM8//2wOHjxoNm/eXOn+ut5WUFBgRo0a5f65WnnBWxbTp083drvd2O32Sq1qKauLFy8aSeVe0Vke+fn5xmaz3dHP3TVsqLSirGtL6qhRo8r1Oq7WQWUduOhJRS8czp8/f8fJ/qVLl0zdunXvWXQ6duxYifOMF198sVyrksrL9V4dOXLE/X5X9hzvxIkTpl27dpWa4XAvly9fNmFhYXcdKl5Rbdu2NVFRUUa61X/7xo0bJiwszD287++//zbNmjUzSUlJPtmlhLKbPXu2kWQWL15sdSilKiws9Mln5OLFi2b58uVVdo67Y8cOExISYrp06WJycnLM6NGjTdOmTb3yvSUnJxtJPpuN42sjR440DRo0sHRxTGFhoYmOjjYPP/ywGTRokOnZs6epVauWV3eOuorG/fr18zjMsCK2b99uAgMDTYsWLUxQUNA9W25VF06n0zRv3tx06tSJ3wPmVs9rSSV6w3viWu3suhFdUFBgatasWeldt+Xhqjt4GnpfVn/++afZt2+fWb16tVmyZIklxV6Hw2E2b97stQ4Yw4cPNzabrVLnce+//77p379/uf9PFxUVmT179pht27aZzz77rEK79/xRYWGhad26tencubNxOp1m9OjRHmt2rtaDpc39qiqVLqK3bNnSrF69usSJzNSpU02tWrU8DiOqbspSRL9w4YIZOXJkmafbonq4ePGimT17tklPTzcff/xxhfq49+rVyyQkJJiMjAwzfvx4U6NGDa+t4HFxFeddQ9j81f79+6tNARYVU1BQ4L7p5MtCUFkcPHjQaz3ZXSs/vHmjyp8UFxebuXPnmujo6DL1BbSSqw92vXr1KjQPoyKaNWtWptYYlREfH3/HqlHXlvPSTrILCwvNzJkzy7SC+HZFRUVm3Lhx1epGzooVK0yrVq3KfXG1d+9eExcX57PWgK5zv7Vr15r58+ebmjVr+s1OqQMHDvhka69rS7preKkxt1bXJyYmGmOM+xzI1zNxcG/Hjx83ISEh5syZM1aHct/LzMw0MTExpm7duqZOnTqVvknpMnXqVBMeHu43eee/8vLyzMmTJ60Owxw7dsxMmDDB9OjRw9SvX9/r1x+XLl1y7zgs786Pe/nwww+NJJOcnOzV4/ra+fPnvXqjwp+dO3fOBAYGlqvuFRcX556Ts2/fPvcN/ari6td/++963HLy5Emzbt06q8N44GRkZBhJZunSpaZevXpm0qRJpf694uLiKlvU7Emli+h3u/u4fPlyExoaWupE24o6cuSISUhIMImJiSY1NbXEScfu3btNo0aNTPfu3cs1qbksRXQ8uG7fOi3Jaytjb+ca7umvJ9K3c20xPn36tNWhoII6duxoIiIiLNnN4Cu5ubkmKCjIPfwW1VdRUZFp3769T1vd/NcPP/xwR6sVX5g4caKJiopyb8P9b09uVL3o6GgzZcoUM3DgwBJ9dR9EM2bMMJLMggUL3I8tWbLEBAYGmi+//NLYbLY7noO1fNUyCCVdunTJPfMhMzPTK8e8evWq37VAfVC1a9fOZwuElixZUmrbAviPX3/9tVyr8seOHetuLzlz5swqv+a6fPmysdlslrWCAkozbNgw92BjV2uX6shmjDHyoa+++kppaWlyOBxeOV5eXp7sdrvCwsI0ZcoUxcfHKzU11f18RkaGtm7dqvnz55fruA6HQxEREbp69arsdrtXYsX9o7i4WL/88oucTqckKTo6WmFhYRZHVX2dOXNGK1as0Jw5c2Sz2awOBxWwcOFC/fbbb1qwYIHVoXhVTk6OYmJi+FzCEsePH1eHDh20fv16Pf/88+rXr59u3rypbdu2WR3aAyslJUXh4eHKzMzUqFGj9N5771kdkqW2bdum5557TtnZ2WrcuLGkW3nzkUceUWhoqDp27Kg9e/YoMDDQ4kiBqmeMUXZ2tlq0aGF1KKhir732mtLT03X06FF16NDB6nDg5zZt2qTU1FTl5uZq5MiRCgsL05YtW6o0hq+//lqdO3dWRERElb4u4EleXp7i4uIUGRmpM2fOVNvr9SBfv0Dv3r2VkZHhteNFRUW5vw4ODlZQUMlv4fPPP9ehQ4c0ePBgvf7666Uep6CgQAUFBe4/e6vIj/tTQECAYmNjrQ7Db8TFxWnu3LlWh4FKmDBhgtUh+ISrKARYIT4+XikpKZozZ47S0tJ06tQpDRo0yOqwHmitWrXSmjVrdPXqVXXt2tXqcCzXu3dv5eTkKDIy0v1Y48aN1aZNG507d04fffQRBXQ8sGw2GwX0B1Rqaqq+//57tW3b1upQcB/o0aOHpFuF7P3792vWrFlVHkOvXr2q/DWBu4mKitKmTZsUFBRUbQvokuTzlei+kpOToxdeeEEZGRkKDg52P379+nWFhIRIkvr37693331Xjz/+eIl/P336dM2YMaPE46xEBwAAvrJr1y4lJyfriy++0MCBA7Vq1SqNGDHC6rAeWIsXL9Yrr7wiScrPz1e9evUsjqh62rFjh27cuKG+fftaHQoAAH6vffv2+vfff3X27Fl2OAB+pNoW0fPy8jR48OASj2/ZskVBQUHq27evli9fftfVAIsXL1ZoaKhGjRpV4rnSVqLHxMRQRAcAAD5jjFHHjh118eJF/f777zpy5EipN/tRNTIyMvT000+rZcuW+vHHH60OBwAAPADeeOMNLVy4UA899JDy8/PZ5QX4CZ+3c6moqKgofffddyUedzqdGjBggKZNm1ZqAd3hcLiL4Pv27dPLL79c6vFDQ0MVGhrq3aABAADuwmazadKkSUpLS5PNZlOrVq2sDumB1rJlS0lSly5dLI4EAAA8KJKSkrRw4UIlJiZSQAf8SIDVAZTXxo0blZmZqZkzZ6pHjx7asGGDJGnMmDHu55944gl16dJF0dHRSkxMtDJcAACAOwwaNEhNmzZVbGwsQ6otFhkZqaSkpDuG1AMAAPhSYmKiQkNDlZycbHUoAMqh2rZzqWoOh0MRERG0cwEAAD63d+9e5efna+DAgVaHAgAAgCr2008/KTY21j3TD0D1RxH9fyiiAwAAAAAAAAD+iyL6/xhjdO3aNYWHh8tms1kdDgAAAAAAAACgGqCIDgAAAAAAAACAB343WBQAAAAAAAAAgKpCER0AAAAAAAAAAA8oogMAAAAAAAAA4EGQ1QH4A9fQUQAAAAAAAADA/SU8PFw2m83j8xTRyyA/P18NGza0OgwAAAAAAAAAgJddvXpVdrvd4/MU0csgJCREkpSbm3vXNxMAKsLhcCgmJoYcA8BnyDMAfI08A8DXyDMAfCk8PPyuz1NELwPXUn673U6iBuAz5BgAvkaeAeBr5BkAvkaeAWAFBosCAAAAAAAAAOABRXQAAAAAAAAAADygiF4GoaGhevvttxUaGmp1KADuQ+QYAL5GngHga+QZAL5GngFgJZsxxlgdBAAAAAAAAAAA1REr0QEAAAAAAAAA8IAiOgAAAAAAAAAAHlBEBwAAAAAAAADAA4ro9zBx4kR169ZNw4YNU2FhodXhAPBj165d05NPPqnatWvr1KlTkqQNGzaoc+fOSkpKUm5uriQpKytLCQkJ6ty5s3bu3GllyAD8zNGjR9WtWzd1795dQ4YMUVFREXkGgFedOnVKXbt2Vffu3fXss8/q+vXr5BkAXrd+/Xo1aNBAEtdMAKoHBovexfHjx7VgwQKtW7dOs2bNUpMmTTR06FCrwwLgp27evKm//vpLb731liZOnKi4uDglJCRo3759Onz4sFavXq1ly5ZpwIABmjdvniIjI9WrVy9lZmZaHToAP5GXlye73a6wsDBNmTJF8fHxmj9/PnkGgNcUFRUpODhYkjRjxgzFxsYqPT2dPAPAa4qLi5WamqoLFy7o0KFDXDMBqBZYiX4XBw4cUM+ePSWJpAyg0oKCgtyrKSQpOztbrVu3VkhIiLp27aqTJ09Kkv744w81b95cdrtd9erVU35+vlUhA/AzUVFRCgsLkyQFBwfr7Nmz5BkAXuUqoEvSP//8o8aNG5NnAHjVJ598osGDBysgIIBrJgDVBkX0u7hy5YrsdrskKSIiQpcvX7Y4IgD3k9tzjCQ5nU5J0u0bhMg9ACoiJydHO3fuVEJCAnkGgNft2LFD8fHx2r17t4KDg8kzALzG6XRq48aNSktLk8Q1E4DqgyL6XdSpU0cOh0PSrcRdt25diyMCcD+5PcdIUmBgoCQpIOD/UzO5B0B5ORwODR8+XCtXrlTDhg3JMwC8LiUlRcePH9fgwYO1Z88e8gwAr1m3bp2GDBniziFcMwGoLiii38VTTz2lb775RpK0fft2de3a1eKIANxPmjVrpqysLBUWFmr//v1q166dpFvtGLKzs+VwOHT58mXVr1/f4kgB+Aun06lhw4Zp2rRpatGiBXkGgNcVFBS4v46IiFDt2rXJMwC8JisrS2vWrFGvXr2UnZ2tZcuWkWMAVAsMFr2HiRMn6tChQ2rcuLFWrlypkJAQq0MC4Mf69OmjEydO6JFHHtGYMWNUo0YNffDBB6pRo4bWrFmjmJgYZWVlafTo0XI6nXrnnXeUkpJiddgA/MT69ev16quvqm3btpKksWPHyhhDngHgNVu3btW8efMUEBCgBg0aaNWqVdqyZQt5BoDXdezYUUeOHNGnn35KjgFgOYroAAAAAAAAAAB4QDsXAAAAAAAAAAA8oIgOAAAAAAAAAIAHFNEBAAAAAAAAAPCAIjoAAAAAAAAAAB5QRAcAAAAAAAAAwAOK6AAAAAAAAAAAeEARHQAAAAAAAAAADyiiAwAAAAAAAADgAUV0AAAAAAAAAAA8oIgOAAAAAAAAAIAHFNEBAAAAAAAAAPDg/wAdcx3Hziih2QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -281,7 +281,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABZsAAAPtCAYAAADopbGPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3z0lEQVR4nOz9f3RV9YHv/79CMgkI5EgCBMXg2LEznYhWK4ny46RMMbkJir2zsMsRVvGUSYq3v7h3jHrb2mtvF5Z1p7hunSVVxNbYVXunCmWqXlOI3KIIjAkIjl5nHLuuQNpOQmlMDo5yQuL784ffnC8J55Bzst/7Z56PtVhLOG/Pfu/kmX123mdnp8AYYwQAAAAAAAAAgAOT/J4AAAAAAAAAACD8WGwGAAAAAAAAADjGYjMAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDAAAAAAAAABwjMVmAAAAAAAAAIBjLDYDAAAAAAAAABxjsRkAAAAAAAAA4BiLzQAAAAAAAAAAx1hsBgAAAAAAAAA4xmIzAAAAAAAAAMAxFpsBC5577jn92Z/9mT7+8Y/rscce83s6CKm//Mu/1IwZM3TLLbf4PRWEVFdXl5YuXaqqqipdddVVevrpp/2eEkLo1KlTqq6u1tVXX60rr7xSW7du9XtKCKn3339fl156qVpaWvyeCkKqqKhIV199ta6++mo1NTX5PR2E1DvvvKO/+Iu/UFVVla688kr9+7//u99TQsi89dZb6WPR1VdfrSlTpugf/uEf/J4WQuh//s//qSuuuEJVVVX62te+JmOM31NyRYGJ6p4BHhkcHFRVVZV+9atfqbS0VJ/61Kf0yiuvqKyszO+pIWR+9atf6b333tMTTzyhbdu2+T0dhNC//du/qaenR1dffbVOnDihT33qU3rrrbc0depUv6eGEBkaGlIqldIFF1yg999/X/Pnz1dnZ6fKy8v9nhpC5pvf/KbefvttzZs3T5s2bfJ7OgihmTNn6uTJk35PAyH36U9/Whs2bFA8Hldvb69KS0tVVFTk97QQUu+9957++I//WMeOHeMcG3n5/e9/r+uvv17/9//+X/3RH/2RamtrtWnTJi1cuNDvqVnHlc2AQx0dHbriiis0d+5cTZ8+XcuXL9fOnTv9nhZC6C/+4i80ffp0v6eBELvooot09dVXS5Jmz56tsrIy9fb2+jsphE5hYaEuuOACSdLp06c1NDQU2asu4J63335b//Iv/6Lly5f7PRUAE9jwok48HpcklZWVsdAMR5555hktW7aMhWaMy+DgoE6fPq0zZ87ozJkzmj17tt9TcgWLzcB5fPjhh/rEJz6he+65Z8S/79y5U8XFxXr66af1u9/9TnPnzk0/dskll+i3v/2t11NFgOXSETCWfDs6ePCgPvzwQ1VWVno5TQRcrh319fXpk5/8pC655BLdfffdmjlzph/TRQDl2lBLS4s2btzoxxQRArl2lEwmde2112rJkiV68cUX/ZgqAiyXjt5++21NmzZNN998sz71qU/pu9/9rk+zRVDle4791FNP6dZbb/VyigiBXDqaNWuWWlpaNG/ePF188cW64YYb9Cd/8ic+zdhlBsB5tba2munTp5ve3l5jjDFHjhwx06dPN9/73veMMcY89dRT5stf/nJ6/N/+7d+aTZs2+TJXBNdYHQ371a9+ZVauXOnHFBECuXZ08uRJ8+d//udm3759fkwTAZdrR8YY093dbRYtWmS6u7u9niYCbKyG/uEf/sG0tLQYY4x5/PHHzZ133unbXBFcuRyLfvvb3xpjjHn99dfNvHnzTH9/vy9zRXDl8r1aWVmZOX78uDl9+rRZunSp2bVrl59TRgDlem7U399vZs6caT744AM/pomAG6uj3t5eU19fb/7whz+Y999/33z60582L774op9Tdg1XNmPC+td//decxq1evVozZ87U3/3d3+k3v/mNbrzxRn3+859P/7KbuXPnjriS+Te/+Y0uuugiV+aM4LHVESY2mx2lUin95V/+pb7+9a9r0aJFbk0ZAeTG8aiiokJXXXWVXnrpJdvTRQDZaugf//Ef9fd///f64z/+Y7W0tGjr1q36zne+4+bUESA2j0UXX3yxJGn+/PmqqqrK+bkRfrY6uuSSS1RdXa3KykqVlJRo+fLlOnLkiIszR5DYPjf6xS9+of/wH/6DJk+e7MZ0EVC2OnrhhRd0+eWXq6ysTFOmTNGNN96of/zHf3Rz6v7xe7Ub8MPLL79spk6dal544YWcxj/yyCOmrKzMXHnllWbFihVmcHAw/diZM2fM5Zdfbn7zm9+YZDJpLr/8cnPy5Em3po4AsdnRMK5snnhsdvThhx+av/qrvzL33XefS7NFUNnsqLu7O331YH9/v6mqqjKvvfaaK/NGcLjxmmYMVzZPNDY76u3tNadPnzbGGNPV1WXmzZtn/vCHP7gybwSL7e/Vrr76atPb22uGhobMTTfdZJ599lm3po4AceN17aabbjLPPPOM7akiwGx2dODAAXP11VebDz74wAwODprly5ebf/iHf3Br6r5isRkT1iOPPJLzQePUqVNm8uTJZv78+ea999475/Ff/OIX5uMf/7j5kz/5E7NlyxY3pouAstlRfX29mTlzppkyZYqZO3eu6ejocGPKCCBbHe3du9cUFBSYT37yk+k///RP/+TWtBEwtjo6ePCg+eQnP2muuuoqc+WVV5of/OAHbk0ZAWPzNW0Yi80Tj62O9u3bZ+bPn2+uuuoq88lPftLs2LHDpRkjiGwej55//nkzf/58c8UVV5j/8l/+ixvTRUDZ7Kivr8/Mnj3bpFIpN6aKALPZ0Te+8Q3ziU98wlRVVZmvfvWr5sMPP3Rjyr4rMIZfL45oeuONN3TllVeOOe6CCy7Qv//7v593TCKR0M9+9jNdeOGFeuedd/ixmQmEjmADHcEGOoJTNAQb6Ag20BFsoCPYQEf2Ffk9AcAtf/qnf6p//ud/zvr4rl279Dd/8zd68MEHz/s83/rWt/S///f/1j/+4z/qhhtu0A9/+EN9+ctftj1dBBQdwQY6gg10BKdoCDbQEWygI9hAR7CBjlzg96XVgB86OjrMBRdcYB577LHzjtu6dauZMmWKOXDggDHGmA0bNph58+aZgYEBL6aJgKMj2EBHsIGO4BQNwQY6gg10BBvoCDbQ0fiw2IwJKZVKmZ07d553zPPPP2+Ki4vN9u3b0//W399vLrzwQvPDH/7Q7SkiBOgINtARbKAjOEVDsIGOYAMdwQY6gg10ND4sNgMZHDx40EydOtV8//vfP+exb33rW+bjH/941t+6DgyjI9hAR7CBjuAUDcEGOoINdAQb6Ag20FFm/IJAAAAAAAAAAIBjk/yeAAAAAAAAAAAg/FhsBgAAAAAAAAA4xmIzAAAAAAAAAMAxFpsBAAAAAAAAAI6x2AwAAAAAAAAAcIzFZgAAAAAAAACAYyw2AwAAAAAAAAAcY7EZAAAAAAAAAOAYi80AAAAAAAAAAMdYbAYAAAAAAAAAOMZiMwAAAAAAAADAMRabAQAAAAAAAACOsdgMAAAAAAAAAHCMxWYAAAAAAAAAgGMsNgMAAAAAAAAAHGOxGQAAAAAAAADgGIvNAAAAAAAAAADHWGwGAAAAAAAAADjGYjMAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDAAAAAAAAABwjMXmiDl16pSuu+46TZs2TW+88caIxwYHB5VIJBSPx7V+/XqfZggAAAAAAAAgilhsjpgpU6boueee0y233HLOY88++6wuueQS7d27V++//77279/vwwwBAAAAAAAARFGR3xOAXUVFRZo1a1bGxw4cOKCbbrpJktTQ0KD9+/dr0aJF54xLpVJKpVLpvxtjNDAwoJkzZ6qgoMCdiSNy6Ag20BFsoCPYQEdwioZgAx3BBjqCDXSEbLiyeQLp6+tTaWmpJCkWi6m3tzfjuI0bNyoWi6X/XHjhhZo9e7ZOnTrl5XQRcnQEG+gINtARbKAjOEVDsIGOYAMdwQY6QjYFxhjj9yRgXyKRUEtLi+bPn5/+t3vuuUc33nijamtrtW3bNh09elQtLS3n/L+j351KJpOqrKxUf39/erEaGAsdwQY6gg10BBvoCE7REGygI9hAR7CBjpANt9GYQK6//nrt2rVLtbW12rlzp9auXZtxXElJiUpKSjyeHaKGjmADHcEGOoINdASnaAg20BFsoCPYQEfIhttoRNDy5cu1a9cuNTc3q7W1VevWrZMkrVixQl1dXYrH45oyZYoWLlzo80wBAAAAAAAARAVXNkfQ888/P+LviURC0ke/PPCJJ57wYUYAAAAAAAAAoo4rmwEAAAAAAAAAjrHYDE/09PSosbFR5eXlamxsVE9Pj99TAgAAAAAAAGARi83wRCKRUHt7u3p7e9Xe3p6+tQcAAAAAAACAaGCxGZ7o6OjQ0NCQJGloaEidnZ0+zwgAAAAAAACATSw2I6vNmzerqqpK1dXVjp+rpqZGhYWFkqTCwkIrz4lwsNkRJi46gg10BBvoCE7REGygI9hAR7CBjjBagTHG+D0JBFsymVQsFlN/f79KS0vH9Rw9PT1KJBLq7OxUdXW1WltbVVFRYXmmCDIbHQF0BBvoCDbQEZyiIdhAR7CBjmADHWFYkd8TwMRQUVGhtrY2v6cBAAAAAAAAwCXcRgMAAAAAAAAA4BiLzQAAAAAAAAAAx1hsjqCWlhbF43GtXr1aAwMD6X/fs2ePKisrtXTpUi1btszHGQIAAAAAAACIGhabI+bw4cPq7u7W3r17VVVVpW3bto14/NZbb9WePXu0e/dun2YIAAAAAAAAIIpYbI6YAwcOqL6+XpLU0NCg/fv3j3h8+/btisfjevDBB/2YHgAAAAAAAICIKvJ7ArCrr69PF198sSQpFoupt7c3/diCBQv01ltvSZI++9nPasmSJbr22mvPeY5UKqVUKpX+ezKZdHnWiCI6gg10BBvoCDbQEZyiIdhAR7CBjmADHSEbrmyOmBkzZqS/wPv6+lRWVpZ+bNq0aSouLlZxcbFuvvlmvfbaaxmfY+PGjYrFYuk/lZWVnswd0UJHsIGOYAMdwQY6glM0BBvoCDbQEWygI2RTYIwxfk8C9hw+fFgPPPCAfvKTn+j+++/Xxz72Md12222SPnqXqbS0VJK0atUq3XHHHaqtrT3nOTK9O1VZWan+/v70/w+MhY5gAx3BBjqCDXQEp2gINtARbKAj2EBHyIbbaETMNddcozlz5igej2vevHm66667tG7dOm3ZskVPPfWUHn30URUVFWnx4sUZF5olqaSkRCUlJR7PHFFDR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw2JzBG3atGnE37ds2SJJampqUlNTkx9TAgAAAAAAABBx3LMZAAAAsKCnp0eNjY0qLy9XY2Ojenp6/J4SAAAA4CkWmwEAAMRCIZxLJBJqb29Xb2+v2tvblUgkso6lNwAAAEQRi80AAADKb6EQyKSjo0NDQ0OSpKGhIXV2dmYdS28AAACIIhabAQAAlPtCIVekIpuamhoVFhZKkgoLC1VdXZ11bD4L0zQHAACAsGCxGQAAQLkvFHJFKrJpbW1VXV2dysvLVVdXp9bW1qxj81mYpjkAAACEBYvNyGrz5s2qqqo67zc/wFjoCDbQEWwYq6NcFwrzuSIV0XO+jioqKtTW1qaTJ0+qra1NFRUVWZ8nn4VproKOFl7TYAMdwQY6gg10hNEKjDHGrSd/7rnndOedd+rDDz/UPffco6amJrc2BRclk0nFYjH19/ertLTU7+kgpOgINtARbHDaUWNjo9rb2zU0NKTCwkLV1dWpra3NhZkiyLw8HuXTHH2GB69psIGOYAMdwQY6wjDXrmweHBzU3/zN3+j//J//o1dffVX/43/8D/X29rq1OQAAAE/kc0UqV5nCBq6CBgAAQFi4ttjc0dGhK664QnPnztX06dO1fPly7dy5063NAQAAeCKfWyXkc69dFv6QTT7NcS9oABKvKQAA/+S92Pzhhx/qE5/4hO65554R/75z504VFxfr6aefliT97ne/09y5c9OPX3LJJfrtb3/rcLoAAADhkc9Vpiz8wQY3roJm0QoIH7fe7HRjrN/bD9t+AUDgmXFobW0106dPN729vcYYY44cOWKmT59uvve976XHPPXUU+bLX/5y+u9/+7d/azZt2jSezSFPd955p1myZIlZtWqVSaVS6X8/c+aMuf32282SJUvM1772tZyfr7+/30gy/f39bkwXE0S2jrq7u01DQ4MpKyszDQ0Npru7O+tz5DrWjecM21i/t+8WjkewwcuOGhoaTGFhoZFkCgsLTUNDQ9axZWVlRlL6T3l5edaxfn8tIhrHo1z7zKdj5C4KDcF/2TrK5zUln69xN8b6vf2w7ZcbOB7BBjrCsHEtNp85c8Zcdtll5tvf/rbp6uoyc+fONV/60pdGjNm3b5/5j//xP6b//rWvfc08+eSTzmaLMb366qtm9erVxhhjNmzYMOJj/vOf/9x885vfNMYY09TUZPbt25fTcwb1gME32uH6GGTrKEwndmEa6/f23RLU41FU8aaFc8P7Wl5ePua+uvW16PfHO6qicDzKtU/eCHGHl2/EB2Gs39sPwn65wcY5dj5f426M9Xv7YdsvN0ThNQ3+oyMMG9diszHGPPLII6asrMxceeWVZsWKFWZwcHDE42fOnDGXX365+c1vfmOSyaS5/PLLzcmTJx1PGOe3efNm88QTTxhjjDl48OCIq8vvuusu8+KLLxpjjNm2bduIK9HPJ6gHDL8XvYzx/4Q1TIsNNq668PvELkxj/d6+W4J6PAoTt44xvGnhXD4L025cseb3gk3YBLUjNwThjZAgjLXNyzfigzDW7+0HYb/cMNabFn6+2UkbnBthYqEjDBv3YvOpU6fM5MmTzfz58817772XccwvfvEL8/GPf9z8yZ/8idmyZcu4J4nc3X///WbHjh3GGGPefvttc9ttt6Ufa25uNocPHzbGGNPe3m6+/vWvZ3yO06dPm/7+/vSfrq4uaweMDz74wHzwwQcmlUqZ06dPj/j78H+fPn06p8dmzJgx4hvtsrKyrP/fsWPHTH19vZkxY4apq6szx48fT489ffr0iLHHjx9Pj62vrzfHjx/POO/Tp0+b+vp6M2nSJCPJTJo0ydTX12ed9+ixdXV1Gfc3n+fM9DHItE+pVGrE83pxApNrR2efWA3vb7bP4/k+Nmd/HOvq6s4Zl89zZmtjrM+N222kUqlz9m147FjPObz9sdoY/ZyjPxZnbz9IHQ2zeYzJ97HRH9dsHdl4LNP2jx07Zurq6tLHrqNHj3p6jMk2NtM+jR7r9psWUewon+NRts/NeI+x+XaUz/EoW8eZPhZHjx41dXV1ni0S5tNRGBrK57Hjx4+nP9b19fXm2LFj4zpujPc1LdvYbPPONDbb/nr5upZrQ6PfTDrfOe75vr5Hf8xzPRa4dfy3tf3RH4vzbX90R9m+f8jUUaaxUX1NG/5eqaysLP29UraO8jkeZBub7fuv4XHn+/4rn+0Pv6YMj812bjT6NWX068/ojjKNPd9rWqbnzPaalsubA0HtKEyva/mcY4dxn7ySa0fDb35lWo/Jdjw6e+xYx6Ph88ZsxwO31oNy3X4+36udfTzIdD6c6Rg7evtBOMce92Lz7bffbiZPnmzmzJnjacw4vx/84AfpK5s7OztHXNl89913p69sfvrpp7Ne2XzfffeNOGEa/hO0xeYgLCi6cdKcz3Pm8w281yfCuXZ09hVFub7wjHUifPTo0RHjjh07ltdzjvXCE4YT4VxP7oN+Ipzv8cjmMSbfx9xc4MnlBCbXNy3cOsYE+U2LKHaUz/Eo14XhICxaRaWjMDTk1jfl+byB6vciYaaW3Tw/yrUhN96IH2usF8d/v9+IzzY2W0e5vmkR5GORMRP7eBTGffIKHdGRlx35/brGBWben2OPa7H53nvvNTNnzjRHjhwxM2fONA899NB4ngYuGH3P5p/+9Kfpx0bfs3n//v0Zn+P0afeubM5FvrebsP3jxn7/Mo3x/Pip7R+Ps8HvjhANE70jN+636NYxxq2xNkz0jnL9ePv948bGBPu2PhO9o1yF6Uf38x3rVK4NBeHY68ZYv7cfhP2ygWMRbMj3eBSGe6KH5RZKUZJrR37f4tHv7Ud5v7LJe7F569atZsqUKebAgQPGmI8WNOfNm2cGBgby3jjcceedd5olS5aYVatWmVQqZb74xS8aYz66j/aaNWvMkiVLzFe/+tWcn8/r++64cdLv1jcdYTph9fpEeDTu3wQbotBRPie3bt6X169jQRBEoSM3+L1gY0xwFwkzoSPngtCcn8dEGoINdAQbgnoPeb+3b4z/C95hWkSno4m3X9nktdj8/PPPm+LiYrN9+/b0v/X395sLL7zQ/PCHP8x74wgHr09g3LhSKSzfdEQZJ8KwIQodBeHNr4kuCh1FVZher+kITtEQbKAj2JCtI7+vnPR7+8b4v6AXhTfi/X7D2O/tR3m/ssl5sfngwYNm6tSp5vvf//45j33rW98yH//4x83g4GDeE0DwReHKZviPE2HYENSO3Lpa2e/FtKgKakcIFzqCUzQEG+gINnBFqve3+PJ7wd0NHI8wbJJydO211+q9997T+vXrz3nsO9/5jv71X/9VhYWFuT4dkFVra6vq6upUXl6uuro6tba2+j0lADivRCKh9vZ29fb2qr29XYlEIuvYmpqa9OtlYWGhqqurs46tqKhQW1ubTp48qba2NlVUVNieOgAAAJBRPt+buzHW7+1L+Z27uzHWre0Dbiowxhi/J4FgSyaTisVi6u/vV2lpqd/TQUjREWzwsqOenh4lEgl1dHSopqZGra2tWRd7y8vL1dvbO+LvJ0+ePO/zdnZ2qrq6+rzPC3dwPIINdASnaAg20BFsoKPs8jl3d2OsW9t3Ax1hGIvNGBMHDNhAR7DBy44aGxvV3t6uoaEhFRYWqq6uTm1tbY7Hwn8cj2ADHcEpGoINdAQb6Ag20BGG5XwbDUw8mzdvVlVVFT96AUfoCDbY7Kinp0eNjY0qLy9XY2Ojenp6Mo7r6OjQ0NCQJGloaEidnZ1Zn5Pb/4QDxyPYQEdwioZgAx3BBjqCDXSE0biyGWPi3SnYQEewwUZHuV6FzNXK0cXxCDbQEZyiIdhAR7CBjmADHWEYVzYDAEIv16uVpdyvWOZqZQAAAAAA8sNiMwAg9BKJhNrb29Xb26v29nYlEomsY3P9Lc0VFRVqa2vTyZMn1dbWxi/xAwAAAABgDCw2AwBCj/srAwAAAADgvyK/JwAAgFM1NTUj7q98vl9OMXzFMgAAAAAAsIsrmyOmpaVF8Xhcq1ev1sDAwIjH9uzZo8rKSi1dulTLli3zaYYAYB9XKwMAAAAA4D8WmyPk8OHD6u7u1t69e1VVVaVt27adM+bWW2/Vnj17tHv3bh9mCADu4P7KAAAAAAD4j9toRMiBAwdUX18vSWpoaNDjjz+uVatWjRizfft2vfLKK7rlllu0fv36jM+TSqWUSqXSf08mk+5NGpFFR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw5XNEdLX16fS0lJJUiwWU29v74jHFyxYoLfeeku7d+/WL3/5Sx06dCjj82zcuFGxWCz9p7Ky0vW5I3roCDbQEWygI9hAR3CKhmADHcEGOoINdIRsCowxxu9JID/d3d265ZZbzvn3xsZGVVZWas2aNTp48KBaW1v10EMPZXyOhx9+WCUlJVq7du05j2V6d6qyslL9/f3pxWxgLHQEG+gINtARbKAjOEVDsIGOYAMdwQY6QjbcRiOE5syZo5dffvmcfz98+LAeeOABrVmzRjt37tTixYtHPJ5MJtNf8Hv37tUdd9yR8flLSkpUUlJif+KYUOgINtARbKAj2EBHcIqGYAMdwQY6gg10hGy4jUaEXHPNNZozZ47i8bjefPNNrVy5UpK0bt06SdJTTz2lmpoaLVq0SHPnzlVtba2f0wUAAAAAAAAQIVzZHDGbNm0659+2bNkiSWpqalJTU5PXUwIAAAAAAAAwAXBlMwAAAAAAAADAMRabAQAAAAAAAACOsdgMAAAAAAAAAHCMxWYAAAAAAAAAgGMsNiOrzZs3q6qqStXV1X5PBSFGR7CBjmADHcEGOoJTNAQb6Ag20BFsoCOMVmCMMX5PAsGWTCYVi8XU39+v0tJSv6eDkKIj2EBHsIGOYAMdwSkagg10BBvoCDbQEYZxZTMAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDAAAAAAAAABwjMVmAAAAAAAAAIBjLDZHyKlTp3Tddddp2rRpeuONN855fHBwUIlEQvF4XOvXr/dhhgAAAAAAAACiisXmCJkyZYqee+453XLLLRkff/bZZ3XJJZdo7969ev/997V//36PZwgAAAAAAAAgqor8ngDsKSoq0qxZs7I+fuDAAd10002SpIaGBu3fv1+LFi06Z1wqlVIqlUr/PZlM2p8sIo+OYAMdwQY6gg10BKdoCDbQEWygI9hAR8iGK5snkL6+PpWWlkqSYrGYent7M47buHGjYrFY+k9lZaWX00RE0BFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2RQYY4zfk0B+uru7M94q45lnnlFZWZkSiYRaWlo0f/78EY/fc889uvHGG1VbW6tt27bp6NGjamlpOed5Rr87ZYzRwMCAZs6cqYKCAvs7hEiiI9hAR7CBjmADHcEpGoINdAQb6Ag20BGy4TYaITRnzhy9/PLLef9/119/vXbt2qXa2lrt3LlTa9euzTiupKREJSUlTqeJCY6OYAMdwQY6gg10BKdoCDbQEWygI9hAR8iG22hEzPLly7Vr1y41NzertbVVkrRu3TpJ0ooVK9TV1aV4PK4pU6Zo4cKFPs4UAAAAAAAAQJRwGw0AAAAAAAAAgGNc2QwAAAAAAAAAcIx7NsMRY4xOnTrl9zSQp+nTpwfqhv10FE50BBvoCDYEqSMaCi86glNBakiio7CiI9hAR7BhvB2x2AxHTp48qdmzZ/s9DeTpxIkTmjVrlt/TSKOjcKIj2EBHsCFIHdFQeNERnApSQxIdhRUdwQY6gg3j7YjFZjhSXFwsSerq6lJpaanPs7EnmUyqsrIysvs1/HkLCjoKFzryFh15i47CJYgd0VD40JF3otpREBuS6Chs6MhbdOQtOgoXpx2x2AxHhi+nLy0tjdQX1rCo7leQfpxGoqOwoiNvRXW/6MhbUd2vIHVEQ+FFR96J6n4FqSGJjsKKjrwV1f2iI29Fdb/G2xG/IBAAAAAAAAAA4BiLzQAAAAAAAAAAx1hshiMlJSW67777VFJS4vdUrGK/vBXUeTnFfnkrqPNyiv3yVlDn5RT75Z0gzsmGqO6XFMx9C+KcbGC/vBXUeTnFfnkrqPNyiv3yVlDn5RT7lVmBMcZYnhMAAAAAAAAAYILhymYAAAAAAAAAgGMsNgMAAAAAAAAAHGOxGQAAAAAAAADgGIvNcKSlpUXxeFyrV6/WwMCA39Ox4ujRo5o1a5aWLl2qpUuX6ve//73fU3Lk1KlTuu666zRt2jS98cYbkqSf/exnWrhwoT7zmc+oq6vL5xnSURjQkT+i1BEN+YeOvBXFjqLUkERHfqEj79FR8NGRP+jIe3QUfFY7MsA4vfrqq2b16tXGGGM2bNhgnnzySZ9nZMc777xjVq5c6fc0rDlz5ow5ceKEuf32283rr79uBgYGTE1NjUmlUubll182zc3Nvs6PjsKBjvwRpY5oyD905J2odhSlhoyhI7/QkbfoKBzoyB905C06CgebHXFlM8btwIEDqq+vlyQ1NDRo//79Ps/Inn379ikej+sb3/iGjDF+T8eRoqIizZo1K/33t99+W1dccYWKi4u1ePFivf766z7Ojo7Cgo78E5WOaMhfdOSNKHcUlYYkOvITHXmHjsKBjvxDR96ho3Cw2RGLzRi3vr4+lZaWSpJisZh6e3t9npEdF110kX7961/rpZde0okTJ7Rjxw6/p2TV2Z83SRoaGvJxNnQUVnTkjSh3REPeoSPvRLWjKDck0ZFX6MhbdBROdOQNOvIWHYWTk45YbMa4zZgxQ8lkUtJHEZaVlfk8IztKSko0depUFRQUaOXKlTpy5IjfU7Lq7M+bJBUWFvo4GzoKKzryRpQ7oiHv0JF3otpRlBuS6MgrdOQtOgonOvIGHXmLjsLJSUcsNkdMpht6DxscHFQikVA8Htf69esdb+v666/Xrl27JEk7d+7U4sWLHT9nEJw6dSr93y+99JIuv/xyH2dj3+WXX64333xTAwMD2rdvn6666ipf50NH4URH3ohyRzTkHTryTlQ7inJDEh15hY68RUfhREfeoCNv0VE4OemowIT9piIYYXBwUO+++67uuusutbS0aP78+enHduzYoUOHDmnDhg1qbm7WF77wBS1atMjR9lpaWvTKK69o3rx5evzxx1VcXOx0F3zX1tame++9VxdccIEuu+wy/ehHP1JRUZHf03Jk+fLlOnLkiC699FKtW7dOkydP1oMPPqjJkyfrxz/+sSorK32dHx2FAx15L2od0ZA/6MhbUewoag1JdOQHOvIeHYUDHXmPjrxHR+FgqyMWmyMqkUics9h8991366abblJtba22b9+ud955Ry0tLef8v6lUSqlUKv13Y4wGBgY0c+ZMFRQUeDJ/hB8dwQY6gg10BBvoCE7REGygI9hAR7CBjpANt9GYQHK9KfvGjRsVi8XSfy688ELNnj17xI8IAGOhI9hAR7CBjmADHcEpGoINdAQb6Ag20BGy4crmiMp0ZfM999yjG2+8UbW1tdq2bZuOHj2a05XNyWRSlZWV6u/vH/GbKIHzoSPYQEewgY5gAx3BKRqCDXQEG+gINtARsgn3zUSQl+GbstfW1mrnzp1au3ZtxnElJSUqKSnxeHaIGjqCDXQEG+gINtARnKIh2EBHsIGOYAMdIRtuoxFBy5cv165du9Tc3KzW1latW7dOkrRixQp1dXUpHo9rypQpWrhwoc8zBQAAAAAAABAVXNkcQc8///yIvycSCUlSUVGRnnjiCR9mBAAAAAAAACDquLIZAAAAAAAAAOAYi80AAAAAAAAAAMdYbAYAAAAAAAAAOMZiMwAAAAAAAADAMRabkdXmzZtVVVWl6upqv6eCELPZUU9PjxobG1VeXq7Gxkb19PRYmCHCgOMRbKAj2EBHcIqGYAMdwQY6gg10hNEKjDHG70kg2JLJpGKxmPr7+1VaWur3dBBSNjpqbGxUe3u7hoaGVFhYqLq6OrW1tVmeKYKM4xFsoCPYQEdwioZgAx3BBjqCDXSEYVzZDCA0Ojo6NDQ0JEkaGhpSZ2enzzMCAAAAAADAMBabAYRGTU2NCgsLJUmFhYX8mA4AAAAAAECAsNgMT3CvXdjQ2tqquro6lZeXq66uTq2trX5PCQAAAAAAAP8/LDZHUEtLi+LxuFavXq2BgYH0v+/Zs0eVlZVaunSpli1b5umcEomE2tvb1dvbq/b2diUSCU+3j2ioqKhQW1ubTp48qba2NlVUVPg9JQA4L95sBQAAADCRsNgcMYcPH1Z3d7f27t2rqqoqbdu2bcTjt956q/bs2aPdu3d7Oi/utQsAmIh4sxUAAADARMJic8QcOHBA9fX1kqSGhgbt379/xOPbt29XPB7Xgw8+6Hhb+Vytxb12AQBRkc/rH2+2AgAAAJhIWGyOmL6+PpWWlkqSYrGYent7048tWLBAb731lnbv3q1f/vKXOnToUMbnSKVSSiaTI/5kks/VWvnca5cfOY6GXDsCzoeOYIPtjvJ5/cvnzVZe/4ItLMcjOgqusDSEYKMj2EBHsIGOkA2LzREzY8aM9Bd4X1+fysrK0o9NmzZNxcXFKi4u1s0336zXXnst43Ns3LhRsVgs/aeysjLjuHyu1srnXrv8yHE05NoRcD50BBtsd5TP618+b7by+hdsfh6P8llApqPg4jUNNtARbKAj2EBHyKbAGGP8ngTsOXz4sB544AH95Cc/0f3336+Pfexjuu222yRJyWQyfdXzqlWrdMcdd6i2tvac50ilUkqlUum/J5NJVVZWqr+/P/3/S1JjY6Pa29s1NDSkwsJC1dXVqa2tzfE+lJeXj7giu7y8XCdPnnT8vPBWrh0B50NHsMF2R7z+TUx+Ho/yaS6fjnp6epRIJNTR0aGamhq1trbyy3ddxGsabKAj2EBHsIGOkA1XNkfMNddcozlz5igej+vNN9/UypUrtW7dOknSU089pZqaGi1atEhz587NuNAsSSUlJSotLR3xJ5N8rtbKR64/csyPiQZbrh0B50NHsCHXjnJ9XfH79Q/+sH08cuve3/l0xFXQ3uI1DTbQEWygI9hAR8iGK5sxpmQyqVgs5tm7U8NX2XR2dqq6ujrrVTZuXVkGd3jdEaKJjmBDto78fl3J9fXv7LFckeqfTB3l83nJp7d8xubTUa5XQdObO3hNgw10BBvoCDbQEYax2IwxBfWAwY8bh0tQO0K40BFsyNZRmF5X/F4YR+aO3L7dRS4LyPnIdb705g5e02ADHcEGOoINdIRh3EYDocWPGwMAbArT60o+t1WAd9y63UU+v2g5H7neEiaf/eI2ZwAAABMbi80IrXzumck3PgCAsbh1L2Y35LNQyWugd/L5vASht1wXsbkPNAAAAHLFbTQwpij8KMR47nXIfQntikJH8B8dwYYodJTPbRW4BYI7znfPZtu3u/CbG/eBRjSORfAfHcEGOoINdIRhXNmMCSGfH//kihwAQNDlc1uFXF8DuQLaObdud+G3fPaLq+4BAAAmNhabkdXmzZtVVVUV6HtW5iqfb3y4D6ZdUeoI/qEj2DBRO8r1NZA3W3MzUTvKVT63B5mozdEQbKAj2EBHsIGOMJqrt9H4y7/8S+3Zs0fLli3Ttm3b3NoMXBaFH4Vw68eNueVG7qLQEfxHR7BhonWU62tgPrc/4PVv4nXkhoneHA3BBjqCDXQEG+gIw1y9svlrX/uafvzjH7u5CSAn+fz4J1fkAACixO9fAsetEpANv3gQAAAgelxdbP6Lv/gLTZ8+3c1NANa5cR9MAACCLp83W/ldCLDBreYABANvNgLAxJT3YvOHH36oT3ziE7rnnntG/PvOnTtVXFysp59+2trkgKDjl+AgqOgNQL7c+iVwLBIiG37xIOCefL4O3Bqb65uNQZirW2MBYEIy49Da2mqmT59uent7jTHGHDlyxEyfPt1873vfO2fsr371K7Ny5crxbAbjdOedd5olS5aYVatWmVQqlf73M2fOmNtvv90sWbLEfO1rX8v5+fr7+40k09/f78Z0Q627u9s0NDSY8vJy09DQYLq7u7OObWhoMIWFhUaSKSwsNA0NDR7O1H9R6Gj4811WVjbm59vv541qb1HoCP6jI+fcev3L53jo1jE5V3TkrSiec9EQbMjWUT5fB26NLSsrM5LSf8rLyz3dvt9jeU3DRENHGDauxeYzZ86Yyy67zHz72982XV1dZu7cueZLX/pSxrEsNnvr1VdfNatXrzbGGLNhwwbz5JNPph/7+c9/br75zW8aY4xpamoy+/bty+k5OWDYkevJlls4gcksn4+LW9+8uvG8bvVGR4gCOvKWW4uEfi8o0lFw5fMa6OfrWpAbCtMimVtz9Xu/cpWto3y+Dtwam+txOghzdWMsr2mYaGx0FJZjL85vXIvNxhjzyCOPmLKyMnPllVeaFStWmMHBwYzjWGz21ubNm80TTzxhjDHm4MGD5stf/nL6sbvuusu8+OKLxhhjtm3blvFK9Ex44bHDjXfA3di+W7zsyK0FZLcWcN143jAtjOeD4xFsoKPgcmthwA10FFxhWeDJ1lAQFk/DdJVnmK5edUOQr2zO9c3GIMzVjbG8pmGisfG65sZPxIXtjUa/98vGx2Dci82nTp0ykydPNvPnzzfvvfdexjH19fVm5syZZsqUKWbu3Lmmo6NjvJtDju6//36zY8cOY4wxb7/9trntttvSjzU3N5vDhw8bY4xpb283X//61zM+x+nTp01/f3/6T1dX13lfeD744APzwQcfmFQqZU6fPj3i78P/ffr0aVceO/vvZ2/fjceczvvo0aOmrq7OlJWVmfr6enP06NGM/199fb2ZNGmSkWQmTZpk6uvrs87t2LFjpq6uzsyYMeOc5xy9TzNmzPD0BCbfjvIx1uenrq5uxMewrq4u6+dn9MelrKws6+c10+fGRnPZPudOmjt+/PiI3o4dO5b1/xseO9zR8NhM8w56RxyPwrFPZx8PvTiJo6PwdDT6eFhXV5f1/zv7WO/FImE+HYXl4x3Fhk6fPm2OHj1q6uvrTVlZmamrqzNHjx7N+v95+bqWa0Nnf6M9+nxj9MfnfOcQoz+u+ZxvZDo/yvYxzzbWyflOtmNBplbOt/3RHWU778vUUaaxYToWnb1YUFdXZ44fP561o2PHjo34mjl+/HjWjvI5x8z1a/f48ePp7dfX14/Y/uj/L5/tD3+vNPr7r0wd5fq9WraxUX1NG+5oxowZOXd09tixOhr9/UcuzzlWR8PPmUtHY23/7I5Gf899vo4yfX/u5Wu1V9x4Xct2THfyupbP9/FjPacXHWVaz8jltfJ8a0deH4/y/gWBw77yla9Ikk6ePJn+ZR2j7dy5U7///e/1/vvv6ze/+c15f5EH7JgxY4aSyaQkqa+vT2VlZTk9draNGzcqFoul/1RWVro/8QmgoqJCzzzzjH73u9/pmWeeyfpLcDo7O/Xhhx9K+ugXch48eDDrczY3N2v37t1699139cILL6i5uTnr2AULFmjSpI++5Mf6xTo2+NnRwYMHR3wMDx06lHXs2R+XSZMmacGCBVnHbt26VTfccIPKysq0bNkyPfbYY1nH9vT06Oabb9bFF1+sm2+++by/OOSxxx7TsmXLVFZWphtuuEFbt24daxfHNNzbb3/72/P2JklNTU05d1RdXT1hOoJ7ho9dY/3CIFvoKDy2bt2a8/FweGx5ebnq6urU2trq6tzoKDyGXwP/7d/+bczXQC/Pj3Jt6OxfqjnWuWA+5435jD379X6s86PRY6+99lrrc83nXC7b9t0ae/Z5pxe/BDXXjoZ/AWcu54L5nDfmMzZX493+s88+a33sWN+rnT12rGNMFF7Thn/J47vvvqvdu3erqakp63M2NzfrhRdeyGlsrt9/5Pucw2NfeOEFK9sfnoMbY4e/X5wzZ855v18cHnfRRRdpxYoVY/7yyptvvtmzX17pxutaPq8/ub6uuPVa6VZHua5nuPW6auV1bTzvXtx7771m5syZ5siRI2bmzJnmoYceGs/TwAWj79n805/+NP3Y6Hs279+/P+Nz5HsFGOxy67YO+dwz0wY/O3Ljx/vcnEM+3PixHjqCDfm06fWPitIRbKCjaPLydW08V4AF/fYH+YwN01zd2i8bOBbBhlw78vu+135v382xuR47gnxrKDde19z4XR9ufQyj2oaNjvJebN66dauZMmWKOXDggDHmowXNefPmmYGBgbw3DnfceeedZsmSJWbVqlUmlUqZL37xi8aYj36x45o1a8ySJUvMV7/61Zyfj/s3eSuKv23dGH/u2ezVgmgmbi2mufE5pyPYEOQT4dHoCDbQEZwa696Wfi2euiVMc82H33PlWAQbgnrvb7+37+ZYvxfc3WDjdS0fuT6vW68/fr+JGuTzhbwWm59//nlTXFxstm/fnv63/v5+c+GFF5of/vCHeW8c4cAJTHD5fXKbj4nWkVuLaW6cQNARbAjyFfKj0RFsoCM4RUOwgY5gQ1Df/PJ7+26O9XvB3Q0T7XgU1TdRbSgwxhjl4NChQ/r0pz+t+++/X+vXrx/x2H/7b/9Nf//3f69//ud/znr/ZoRXMplULBZTf3+/SktL/Z4OQmqiddTT06NEIqHOzk5VV1ertbXVyj3tGhsb1d7erqGhIRUWFqqurk5tbW0WZhwOE62jMAlTm3QEG+gITtEQbKAj2EBH3sv1+8V8vq9063vQXNERhuW82IyJiwMGbKAjO/w+gfAbHXlruLeOjg7V1NQE+uQ2H3QEG+gITtEQbKAj2EBHsIGOMKzI7wkAAHI3/JvFgfHKZwF5+DeQDw0Nqb29XYlEImt/tAkAAAAAmOT3BAAAgHeGF5B7e3vTC8jZdHR0aGhoSJI0NDSkzs5Oj2YJAAAAAAgjFpsBAIiAnp4eNTY2qry8XI2Njerp6ck4Lp8F5JqamvTvYigsLFR1dbX9iQMAAAAAIoPFZmS1efNmVVVVsbgAR+gINtDR2HK9YjmfBeTW1lbV1dWpvLxcdXV1am1tdWHm3qEj2EBHcIqGYAMdwQY6gg10hNH4BYEYEzd5hw10BBvoKLvy8nL19vaO+PvJkyfPGRemX+TnFjqCDXQEp2gINtARbKAj2EBHGMaVzQCA0Mv1FhJhk89+5XrF8vAv8jt58qTa2tom3EIzAAAAAMA9LDYDAEIvn196F6aF6Xz2K2q3vAAAAAAAhA+LzQCA0Mvnl97luoCbz6K0W2Pz2S+uWAYAAAAA+I3F5ohpaWlRPB7X6tWrNTAwMOKxPXv2qLKyUkuXLtWyZct8miEA2JfPL73LdQE3n6uK3Rqbz34BAAAAAOA3Fpsj5PDhw+ru7tbevXtVVVWlbdu2nTPm1ltv1Z49e7R7924fZggA7sjnFhK5LuDmc1WxW2O5NQYAAAAAIEyK/J4A7Dlw4IDq6+slSQ0NDXr88ce1atWqEWO2b9+uV155RbfccovWr1+f8XlSqZRSqVT678lk0r1JI7LoCDbk2tHwLSRy0draqkQioc7OTlVXV2ddwK2pqVF7e7uGhobGvKrYrbH57Bey43gEG+gITtEQbKAj2EBHsIGOkA1XNkdIX1+fSktLJUmxWEy9vb0jHl+wYIHeeust7d69W7/85S916NChjM+zceNGxWKx9J/KykrX547ooSPY4EZHud7bOJ+rit0aCzs4HsEGOoJTNAQb6Ag20BFsoCNkU2CMMX5PAvnp7u7WLbfccs6/NzY2qrKyUmvWrNHBgwfV2tqqhx56KONzPPzwwyopKdHatWvPeSzTu1OVlZXq7+9PL2YDY6Ej2EBHsIGOYAMdwSkagg10BBvoCDbQEbLhNhohNGfOHL388svn/Pvhw4f1wAMPaM2aNdq5c6cWL1484vFkMpn+gt+7d6/uuOOOjM9fUlKikpIS+xPHhEJHsIGOYAMdwQY6glM0BBvoCDbQEWygI2TDbTQi5JprrtGcOXMUj8f15ptvauXKlZKkdevWSZKeeuop1dTUaNGiRZo7d65qa2v9nC4AAAAAAACACOHK5ojZtGnTOf+2ZcsWSVJTU5Oampq8nhIAAAAAAACACYArmwEAAAAAAAAAjrHYDAAAAAAAAABwjMVmAAAAAAAAAIBjLDYDAAAAAAAAABxjsRlZbd68WVVVVaqurvZ7KggxOoINdAQb6Ag20BGcoiHYQEewgY5gAx1htAJjjPF7Egi2ZDKpWCym/v5+lZaW+j0dhBQdwQY6gg10BBvoCE7REGygI9hAR7CBjjCMK5sBAAAAAAAAAI6x2AwAAAAAAAAAcIzFZgAAAAAAAACAYyw2AwAAAAAAAAAcY7E5Qk6dOqXrrrtO06ZN0xtvvHHO44ODg0okEorH41q/fr0PMwQAAAAAAAAQVSw2R8iUKVP03HPP6ZZbbsn4+LPPPqtLLrlEe/fu1fvvv6/9+/d7PEMAAAAAAAAAUVXk9wRgT1FRkWbNmpX18QMHDuimm26SJDU0NGj//v1atGjROeNSqZRSqVT678lk0v5kEXl0BBvoCDbQEWygIzhFQ7CBjmADHcEGOkI2XNk8gfT19am0tFSSFIvF1Nvbm3Hcxo0bFYvF0n8qKyu9nCYigo5gAx3BBjqCDXQEp2gINtARbKAj2EBHyKbAGGP8ngTy093dnfFWGc8884zKysqUSCTU0tKi+fPnj3j8nnvu0Y033qja2lpt27ZNR48eVUtLyznPM/rdKWOMBgYGNHPmTBUUFNjfIUQSHcEGOoINdAQb6AhO0RBsoCPYQEewgY6QDbfRCKE5c+bo5Zdfzvv/u/7667Vr1y7V1tZq586dWrt2bcZxJSUlKikpcTpNTHB0BBvoCDbQEWygIzhFQ7CBjmADHcEGOkI23EYjYpYvX65du3apublZra2tkqR169ZJklasWKGuri7F43FNmTJFCxcu9HGmAAAAAAAAAKKE22gAAAAAAAAAABzjymYAAAAAAAAAgGPcsxmOGGN06tQpv6eBPE2fPj1QN+yno3CiI9hAR7AhSB3RUHjREZwKUkMSHYUVHcEGOoIN4+2IxWY4cvLkSc2ePdvvaSBPJ06c0KxZs/yeRhodhRMdwQY6gg1B6oiGwouO4FSQGpLoKKzoCDbQEWwYb0csNsOR4uJiSVJXV5dKS0t9no09yWRSlZWVkd2v4c9bUNBRuNCRt+jIW3QULkHsiIbCh468E9WOgtiQREdhQ0feoiNv0VG4OO2IxWY4Mnw5fWlpaaS+sIZFdb+C9OM0Eh2FFR15K6r7RUfeiup+BakjGgovOvJOVPcrSA1JdBRWdOStqO4XHXkrqvs13o74BYEAAAAAAAAAAMdYbAYAAAAAAAAAOMZiMxwpKSnRfffdp5KSEr+nYhX75a2gzssp9stbQZ2XU+yXt4I6L6fYL+8EcU42RHW/pGDuWxDnZAP75a2gzssp9stbQZ2XU+yXt4I6L6fYr8wKjDHG8pwAAAAAAAAAABMMVzYDAAAAAAAAABxjsRkAAAAAAAAA4BiLzQAAAAAAAAAAx1hshiMtLS2Kx+NavXq1BgYG/J6OFUePHtWsWbO0dOlSLV26VL///e/9npIjp06d0nXXXadp06bpjTfekCT97Gc/08KFC/WZz3xGXV1dPs+QjsKAjvwRpY5oyD905K0odhSlhiQ68gsdeY+Ogo+O/EFH3qOj4LPakQHG6dVXXzWrV682xhizYcMG8+STT/o8Izveeecds3LlSr+nYc2ZM2fMiRMnzO23325ef/11MzAwYGpqakwqlTIvv/yyaW5u9nV+dBQOdOSPKHVEQ/6hI+9EtaMoNWQMHfmFjrxFR+FAR/6gI2/RUTjY7IgrmzFuBw4cUH19vSSpoaFB+/fv93lG9uzbt0/xeFzf+MY3ZIzxezqOFBUVadasWem/v/3227riiitUXFysxYsX6/XXX/dxdnQUFnTkn6h0REP+oiNvRLmjqDQk0ZGf6Mg7dBQOdOQfOvIOHYWDzY5YbMa49fX1qbS0VJIUi8XU29vr84zsuOiii/TrX/9aL730kk6cOKEdO3b4PSWrzv68SdLQ0JCPs6GjsKIjb0S5IxryDh15J6odRbkhiY68QkfeoqNwoiNv0JG36CicnHTEYjPGbcaMGUomk5I+irCsrMznGdlRUlKiqVOnqqCgQCtXrtSRI0f8npJVZ3/eJKmwsNDH2dBRWNGRN6LcEQ15h468E9WOotyQREdeoSNv0VE40ZE36MhbdBROTjpisTliMt3Qe9jg4KASiYTi8bjWr1/veFvXX3+9du3aJUnauXOnFi9e7Pg5g+DUqVPp/37ppZd0+eWX+zgb+y6//HK9+eabGhgY0L59+3TVVVf5Oh86Cic68kaUO6Ih79CRd6LaUZQbkujIK3TkLToKJzryBh15i47CyUlHBSbsNxXBCIODg3r33Xd11113qaWlRfPnz08/tmPHDh06dEgbNmxQc3OzvvCFL2jRokWOttfS0qJXXnlF8+bN0+OPP67i4mKnu+C7trY23Xvvvbrgggt02WWX6Uc/+pGKior8npYjy5cv15EjR3TppZdq3bp1mjx5sh588EFNnjxZP/7xj1VZWenr/OgoHOjIe1HriIb8QUfeimJHUWtIoiM/0JH36Cgc6Mh7dOQ9OgoHWx2x2BxRiUTinMXmu+++WzfddJNqa2u1fft2vfPOO2ppaTnn/02lUkqlUum/G2M0MDCgmTNnqqCgwJP5I/zoCDbQEWygI9hAR3CKhmADHcEGOoINdIRsuI3GBJLrTdk3btyoWCyW/nPhhRdq9uzZI35EABgLHcEGOoINdAQb6AhO0RBsoCPYQEewgY6QDVc2R1SmK5vvuece3XjjjaqtrdW2bdt09OjRnK5sTiaTqqysVH9//4jfRAmcDx3BBjqCDXQEG+gITtEQbKAj2EBHsIGOkE24byaCvAzflL22tlY7d+7U2rVrM44rKSlRSUmJx7ND1NARbKAj2EBHsIGO4BQNwQY6gg10BBvoCNlwG40IWr58uXbt2qXm5ma1trZq3bp1kqQVK1aoq6tL8XhcU6ZM0cKFC32eKQAAAAAAAICo4MrmCHr++edH/D2RSEiSioqK9MQTT/gwIwAIjp6eHiUSCXV0dKimpkatra2qqKjwe1oAAAAAAIQeVzYDACaURCKh9vZ29fb2qr29Pf2GHAAAAAAAcIbFZgDAhNLR0aGhoSFJ0tDQkDo7O32eEQAAAAAA0cBiMwBgQqmpqVFhYaEkqbCwUNXV1T7PCAAAAACAaGCxGQAwobS2tqqurk7l5eWqq6tTa2ur31MCAAAAACASWGxGVps3b1ZVVRVX/cEROoINNjuqqKhQW1ubTp48qba2Nn454ATC8Qg20BGcoiHYQEewgY5gAx1htAJjjPF7Egi2ZDKpWCym/v5+lZaW+j0dhBQdwQY6gg10BBvoCE7REGygI9hAR7CBjjCMK5sBAAAAAAAAAI6x2AwAAAAAAAAAcIzFZgAAAAAAAACAYyw2AwAAAAAAAAAcY7E5glpaWhSPx7V69WoNDAyk/33Pnj2qrKzU0qVLtWzZMh9nCAAAAAAAACBqWGyOmMOHD6u7u1t79+5VVVWVtm3bNuLxW2+9VXv27NHu3bt9miEAAAAAAACAKCryewKw68CBA6qvr5ckNTQ06PHHH9eqVavSj2/fvl2vvPKKbrnlFq1fvz7jc6RSKaVSqfTfk8mku5NGJNERbKAj2EBHsIGO4BQNwQY6gg10BBvoCNlwZXPE9PX1qbS0VJIUi8XU29ubfmzBggV66623tHv3bv3yl7/UoUOHMj7Hxo0bFYvF0n8qKys9mTuihY5gAx3BBjqCDXQEp2gINtARbKAj2EBHyKbAGGP8ngTsefjhhzV16lStWbNGBw8eVGtrqx566KGM40pKSrR27dpzHsv07lRlZaX6+/vTC9nAWOgINtARbKAj2EBHcIqGYAMdwQY6gg10hGy4jUbEXH/99XrggQe0Zs0a7dy5U4sXL04/lkwm01/we/fu1R133JHxOUpKSlRSUuLJfBFddAQb6Ag20BFsoCM4RUOwgY5gAx3BBjpCNtxGI2KuueYazZkzR/F4XG+++aZWrlypdevWSZKeeuop1dTUaNGiRZo7d65qa2t9ni0AAAAAAACAqODK5gjatGnTiL9v2bJFktTU1KSmpiY/pgQAAAAAAAAg4riyGQAAAAAAAADgGIvNAAAAAAAAAADHWGwGAAAAAAAAADjGYjMAAAAAAAAAwDEWm5HV5s2bVVVVperqar+nghCjI9hAR7CBjmADHcEpGoINdAQb6Ag20BFGKzDGGDeeuKurS5///Od14sQJFRUV6Vvf+pY+97nPubEpuCyZTCoWi6m/v1+lpaV+TwchRUewgY5gAx3BBjqCUzQEG+gINtARbKAjDCty7YmLivT9739fV199tU6cOKFPfepTWr58uaZOnerWJgEAAAAAAAAAPnHtNhoXXXSRrr76aknS7NmzVVZWpt7eXrc2BwAAAAAAAEt6enrU2Nio8vJyNTY2qqenx9Oxfm8/CGPd2j7gKpOnoaEh82d/9mfm7rvvHvHvv/zlL80f/dEfmaeeeuqc/6ezs9NcccUV+W4KAdHf328kmf7+fr+nghCjI9hAR7CBjmADHcEpGoINdAQbsnXU0NBgCgsLjSRTWFhoGhoasj6HG2P93n4Qxrq1fTdwPMKwvK9snjRpkr7+9a/r4Ycf1rvvvitJeu211/S5z31O3/3ud8+5L/Mf/vAHrVmzRo8++mj+K+EYl5aWFsXjca1evVoDAwPpfx8cHFQikVA8Htf69et9nCEAYCLjqgsAAIDg6+jo0NDQkCRpaGhInZ2dno71e/tBGOvW9r0U1avD/R7r9/bPazwr1GfOnDGXXXaZ+fa3v226urrM3LlzzZe+9KVzxp0+fdrE43Hz4x//2PGqOHLz6quvmtWrVxtjjNmwYYN58skn04/9/Oc/N9/85jeNMcY0NTWZffv25fScvDsFG+gINky0jrq7u01DQ4MpKyszDQ0Npru7O5DPma+gXnWR68cmn49hmMb6vX03x7ohCscjv9uY6KLQEPxHR7CBK5uDOzYKVzZH9WPo91i/t38+41psNsaYRx55xJSVlZkrr7zSrFixwgwODo54/MMPPzR/9Vd/Ze67777xbgLjsHnzZvPEE08YY4w5ePCg+fKXv5x+7K677jIvvviiMcaYbdu2me9973s5PWdQT2CC8M1rVL/Zd0NQO0K4RKGjfL4W3ThhzOc53TrGlJWVGUnpP+Xl5Y72KV9OT4SDcGIX1RPWKHxD5Tc3jjFufV6CcM7j5/lRUBtCuNARbBjrjfjy8vKcj6c2x/q9/SCMdWv7bsjWUT7n/m6M9Xv7Ud6vbMa92Hzq1CkzefJkM3/+fPPee++d8/jevXtNQUGB+eQnP5n+80//9E/j3RxydP/995sdO3YYY4x5++23zW233ZZ+rLm52Rw+fNgYY0x7e7v5+te/nvE5Tp8+bfr7+9N/urq6zvvCM2PGDFNXV2eOHz9uTp8+bT744APzwQcfmFQqlf7vY8eOmfr6+hFjhx87ffr0iP/v+PHjpq6uzsyYMcPU19ebY8eOZXzO+vp6M2nSJCPJTJo0ydTX16ef5/Tp02OOPfs5z/7/xhp79rxHj62rq8u4T6lUytTV1WUcO9ZzDm9/9D6lUqms2x+9T6O378U35X52dPTo0RHjjh07ltdzZuvo+PHj6bH19fUjtj/6Y55rx6dPnzbHjh0bMfbo0aNZOzp69GjGsaOfM9v2M3WUbfuZOhrevlfflOfa0Xhk+txl+ljafiyfY9eMGTNGvNCXlZVlbW705zXb9s/3nKPn7eR4mOuxK0jHo9EnVmVlZRk/jpk+htk+/5nG5vO5sdHGWGPH00auz3m+7WdqI9vYTL2PHuv2mxb5HI/8Or7k+7WY68fb1ud7vOdG2cZmO/ZlGpvtmOnl+VFYzrHdOo/w+9wo29hsHY0+nzx69Ggoz41sH4/c6ChM59j5dBSlc2w/X9eyneO68VhU9skruXZ09hvRo7//Gf3xOd/3H+P9XoW1I+/Xjsa92Hz77bebyZMnmzlz5ngaM87vBz/4QfrK5s7OzhFXNt99993pK5uffvrprFc233fffSO+SRj+E7QDht/flOf7DdX5vqHL9TnD9E25nx2NPjjn+5y88ATnTYtcOxoPv04w8zl25dNcrifN+RyP3VpQHP7my6urLmwfj7ItZIX9eOTGa/VEPR7ZPr7ks7iSz9dirh9vt17Tcj03yjY227Ev2xtCmb6evDw/Css5tltft36fG2Ubm62jXN+0COqxyK03LdzoKEzn2Pl0FJXXNGNYbA7bPnkl3+NRWVlZzsejs8dm+7gOnx+VlZWd9/wo03Nm+9gNv/k1/Jy5vPk11vZPn/7/v/k1PDaXN79Gjx39nNm2f77vvzI95+iPxfD2nXyvNq7F5nvvvdfMnDnTHDlyxMycOdM89NBD43kauGD0PZt/+tOfph8bfc/m/fv3Z3yO06fHdwWY15fsB+HHcqP6Y8w2+NmR320GYazf27cl147CZDw/Ym5zUTaf5wzyMSYfuXbk948z+j3W7+27OdYGP49Hbt/Gwq82gnDO4+WxKyzn2G6N9Xv7QdgvG3LtyK2vA78/hmEayzk2oo6OkE3ei81bt241U6ZMMQcOHDDGfLSgOW/ePDMwMGB9chifO++80yxZssSsWrXKpFIp88UvftEY89EvdlyzZo1ZsmSJ+epXv5rz8wX1Ju9B+OY1qt/su8HLjvxuMwhj/d6+W7y8L6Hb9we1/bXoxn1Hw3SMyQf3t4QNXnaUzyJEmL4Wg3DO4+fHK6jn2G6N9Xv7QdgvN3h9j1S/P4ZhGss5NiYaOsKwvBabn3/+eVNcXGy2b9+e/rf+/n5z4YUXmh/+8IfWJ4dgCOovC0C4eNlRENr0e6zf23eLlycwYfoGIShzCAtOhGGD047yeYOIr+9oCvI5dlTPTfzeLzd4/aaF3x/DMI3lHBsTDR1hWIExxigHhw4d0qc//Wndf//9Wr9+/YjH/tt/+2/6+7//e/3zP/+zCgsLc3k6hEgymVQsFlN/f79KS0v9ng5Cio5gg5cdlZeXq7e3d8TfT5486XisW4Iwh7DgeAQbnHbU2Nio9vZ2DQ0NqbCwUHV1dWpra8s4tqenR4lEQp2dnaqurlZra6sqKiqc7gJ8xrEINmTrKJ/jBscYcDyCDXSEYUW5Drz22mv13nvvZXzsO9/5jr7zne9YmxQAAH6rqakZsRBUXV1tZaxbgjAHALnr6OjQ0NCQJGloaEidnZ1Zx1ZUVGRdiAaATPI5bnCMAQDYNMnvCQAAEEStra2qq6tTeXm56urq1NraamWsW4IwBwC5q6mpSf9EIG8QAQAAICpyvrIZAICJJGxXBAVhDsBEN/yj6B0dHaqpqTnvj6K3trae82PrAAAAQNix2AwAAABYkEgk0rezaW9vVyKRyPomEG8QAQAAIIq4jQay2rx5s6qqqvixTjhCR7CBjmADHcGG83WUz32YMXFxLIINdAQb6Ag20BFGKzDGGL8ngWDjN4rCBjqCDXQEG+gINmTqqLGxccQv6qyrq+PqZWTFsQg20BFsoCPYQEcYxpXNAAAAgAX8ok4AAABMdNyzGQAAALCA+zADAABgouPKZgAAAAAAAACAYyw2R0xLS4vi8bhWr16tgYGBEY/t2bNHlZWVWrp0qZYtW+bTDAEAAAAAAABEEYvNEXL48GF1d3dr7969qqqq0rZt284Zc+utt2rPnj3avXu3DzMEAAAAAAAAEFUsNkfIgQMHVF9fL0lqaGjQ/v37zxmzfft2xeNxPfjgg15PDwAAAAAAAECE8QsCI6Svr08XX3yxJCkWi6m3t3fE4wsWLNBbb70lSfrsZz+rJUuW6Nprrz3neVKplFKpVPrvyWTSxVkjqugINtARbKAj2EBHcIqGYAMdwQY6gg10hGy4sjmEuru7tWTJknP+GGPSX9x9fX0qKysb8f9NmzZNxcXFKi4u1s0336zXXnst4/Nv3LhRsVgs/aeystL1fUL00BFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2RQYY4zfk4Adhw8f1gMPPKCf/OQnuv/++/Wxj31Mt912W/rxZDKp0tJSSdKqVat0xx13qLa29pznyfTuVGVlpfr7+9P/PzAWOoINdAQb6Ag20BGcoiHYQEewgY5gAx0hG26jESHXXHON5syZo3g8rnnz5umuu+6SJK1bt05btmzRU089pUcffVRFRUVavHhxxoVmSSopKVFJSYmXU0cE0RFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2bDYHDGbNm0659+2bNkiSWpqalJTU5PXUwIAAAAAAAAwAXDPZgAAAAAAAACAYyw2AwAAAAAAAAAcY7EZAAAAAAAAAOAYi80AAAAAAAAAAMdYbEZWmzdvVlVVlaqrq/2eCkKMjmADHcEGOoINdASnaAg20BFsoCPYQEcYrcAYY/yeBIItmUwqFoupv79fpaWlfk8HIUVHsIGOYAMdwQY6glM0BBvoCDbQEWygIwzjymYAAAAAAAAAgGMsNgMAAAAAAAAAHGOxGQAAAAAAAADgGIvNAAAAAAAAAADHWGyOkFOnTum6667TtGnT9MYbb5zz+ODgoBKJhOLxuNavX+/DDAEAAAAAAABEFYvNETJlyhQ999xzuuWWWzI+/uyzz+qSSy7R3r179f7772v//v0ezxAAAAAAAABAVBX5PQHYU1RUpFmzZmV9/MCBA7rpppskSQ0NDdq/f78WLVp0zrhUKqVUKpX+ezKZtD9ZRB4dwQY6gg10BBvoCE7REGygI9hAR7CBjpANVzZPIH19fSotLZUkxWIx9fb2Zhy3ceNGxWKx9J/Kykovp4mIoCPYQEewgY5gAx3BKRqCDXQEG+gINtARsikwxhi/J4H8dHd3Z7xVxjPPPKOysjIlEgm1tLRo/vz5Ix6/5557dOONN6q2tlbbtm3T0aNH1dLScs7zjH53yhijgYEBzZw5UwUFBfZ3CJFER7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw200QmjOnDl6+eWX8/7/rr/+eu3atUu1tbXauXOn1q5dm3FcSUmJSkpKnE4TExwdwQY6gg10BBvoCE7REGygI9hAR7CBjpANt9GImOXLl2vXrl1qbm5Wa2urJGndunWSpBUrVqirq0vxeFxTpkzRwoULfZwpAAAAAAAAgCjhNhoAAAAAAAAAAMe4shkAAAAAAAAA4Bj3bIYjxhidOnXK72kgT9OnTw/UDfvpKJzoCDbQEWwIUkc0FF50BKeC1JBER2FFR7CBjmDDeDtisRmOnDx5UrNnz/Z7GsjTiRMnNGvWLL+nkUZH4URHsIGOYEOQOqKh8KIjOBWkhiQ6Cis6gg10BBvG2xGLzXCkuLhYktTV1aXS0lKfZ2NPMplUZWVlZPdr+PMWFHQULnTkLTryFh2FSxA7oqHwoSPvRLWjIDYk0VHY0JG36MhbdBQuTjtisRmODF9OX1paGqkvrGFR3a8g/TiNREdhRUfeiup+0ZG3orpfQeqIhsKLjrwT1f0KUkMSHYUVHXkrqvtFR96K6n6NtyN+QSAAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDEdKSkp03333qaSkxO+pWMV+eSuo83KK/fJWUOflFPvlraDOyyn2yztBnJMNUd0vKZj7FsQ52cB+eSuo83KK/fJWUOflFPvlraDOyyn2K7MCY4yxPCcAAAAAAAAAwATDlc0AAAAAAAAAAMdYbAYAAAAAAAAAOMZiMwAAAAAAAADAMRab4UhLS4vi8bhWr16tgYEBv6djxdGjRzVr1iwtXbpUS5cu1e9//3u/p+TIqVOndN1112natGl64403JEk/+9nPtHDhQn3mM59RV1eXzzOkozCgI39EqSMa8g8deSuKHUWpIYmO/EJH3qOj4KMjf9CR9+go+Kx2ZIBxevXVV83q1auNMcZs2LDBPPnkkz7PyI533nnHrFy50u9pWHPmzBlz4sQJc/vtt5vXX3/dDAwMmJqaGpNKpczLL79smpubfZ0fHYUDHfkjSh3RkH/oyDtR7ShKDRlDR36hI2/RUTjQkT/oyFt0FA42O+LKZozbgQMHVF9fL0lqaGjQ/v37fZ6RPfv27VM8Htc3vvENGWP8no4jRUVFmjVrVvrvb7/9tq644goVFxdr8eLFev31132cHR2FBR35Jyod0ZC/6MgbUe4oKg1JdOQnOvIOHYUDHfmHjrxDR+FgsyMWmzFufX19Ki0tlSTFYjH19vb6PCM7LrroIv3617/WSy+9pBMnTmjHjh1+T8mqsz9vkjQ0NOTjbOgorOjIG1HuiIa8Q0feiWpHUW5IoiOv0JG36Cic6MgbdOQtOgonJx2x2IxxmzFjhpLJpKSPIiwrK/N5RnaUlJRo6tSpKigo0MqVK3XkyBG/p2TV2Z83SSosLPRxNnQUVnTkjSh3REPeoSPvRLWjKDck0ZFX6MhbdBROdOQNOvIWHYWTk45YbI6YTDf0HjY4OKhEIqF4PK7169c73tb111+vXbt2SZJ27typxYsXO37OIDh16lT6v1966SVdfvnlPs7Gvssvv1xvvvmmBgYGtG/fPl111VW+zoeOwomOvBHljmjIO3Tknah2FOWGJDryCh15i47CiY68QUfeoqNwctJRgQn7TUUwwuDgoN59913dddddamlp0fz589OP7dixQ4cOHdKGDRvU3NysL3zhC1q0aJGj7bW0tOiVV17RvHnz9Pjjj6u4uNjpLviura1N9957ry644AJddtll+tGPfqSioiK/p+XI8uXLdeTIEV166aVat26dJk+erAcffFCTJ0/Wj3/8Y1VWVvo6PzoKBzryXtQ6oiF/0JG3othR1BqS6MgPdOQ9OgoHOvIeHXmPjsLBVkcsNkdUIpE4Z7H57rvv1k033aTa2lpt375d77zzjlpaWs75f1OplFKpVPrvxhgNDAxo5syZKigo8GT+CD86gg10BBvoCDbQEZyiIdhAR7CBjmADHSEbbqMxgeR6U/aNGzcqFoul/1x44YWaPXv2iB8RAMZCR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw5XNEZXpyuZ77rlHN954o2pra7Vt2zYdPXo0pyubk8mkKisr1d/fP+I3UQLnQ0ewgY5gAx3BBjqCUzQEG+gINtARbKAjZBPum4kgL8M3Za+trdXOnTu1du3ajONKSkpUUlLi8ewQNXQEG+gINtARbKAjOEVDsIGOYAMdwQY6QjbcRiOCli9frl27dqm5uVmtra1at26dJGnFihXq6upSPB7XlClTtHDhQp9nCgAAAAAAACAquLI5gp5//vkRf08kEpKkoqIiPfHEEz7MCAAAAAAAAEDUcWUzAABAHnp6etTY2Kjy8nI1Njaqp6fH7ykBAAAAQCCw2AwAAJCHRCKh9vZ29fb2qr29Pf0TRAAAAAAw0bHYDAAAkIeOjg4NDQ1JkoaGhtTZ2enzjAAAAAAgGFhsBgAAyENNTY0KCwslSYWFhaqurvZ5RgAAAAAQDCw2I6vNmzerqqqKb6LhCB3BBjqCDbY6am1tVV1dncrLy1VXV6fW1lY7E0QonK8j7ueNXPCaBhvoCDbQEWygI4xWYIwxfk8CwZZMJhWLxdTf36/S0lK/p4OQoiPYQEewgY5gQ6aOGhsb1d7erqGhIRUWFqqurk5tbW0+zxRBxbEINtARbKAj2EBHGMaVzQAAAIAF3M8bAAAAEx2LzQAAAIAF3M8bAAAAEx2LzQAAAIAF+dzPm/s7AwAAIIqK/J4AAAAAEAUVFRU536M5kUik7+/c3t6uRCLB/Z0BAAAQelzZHEEtLS2Kx+NavXq1BgYG0v++Z88eVVZWaunSpVq2bJmPMwQAAJjYuL8zAAAAoojF5og5fPiwuru7tXfvXlVVVWnbtm0jHr/11lu1Z88e7d6926cZAgAAgPs7AwAAIIq4jUbEHDhwQPX19ZKkhoYGPf7441q1alX68e3bt+uVV17RLbfcovXr12d8jlQqpVQqlf57Mpl0d9KIJDqCDXQEG+gINtjuqLW1VYlEQp2dnaqurj7v/Z0RDRyLYAMdwQY6gg10hGy4sjli+vr6VFpaKkmKxWLq7e1NP7ZgwQK99dZb2r17t375y1/q0KFDGZ9j48aNisVi6T+VlZWezB3RQkewgY5gAx3BBtsdDd/f+eTJk2pra1NFRYWlmSKoOBbBBjqCDXQEG+gI2RQYY4zfk4A9Dz/8sKZOnao1a9bo4MGDam1t1UMPPZRxXElJidauXXvOY5nenaqsrFR/f396IRsYCx3BBjqCDXQEG+gITtEQbKAj2EBHsIGOkA230YiY66+/Xg888IDWrFmjnTt3avHixenHkslk+gt+7969uuOOOzI+R0lJiUpKSjyZL6KLjmADHcEGOoINfnbU09OjRCKhjo4O1dTUqLW1lSuhQ4hjEWygI9hAR7CBjpANt9GImGuuuUZz5sxRPB7Xm2++qZUrV2rdunWSpKeeeko1NTVatGiR5s6dq9raWp9nCwAAgLEkEgm1t7ert7dX7e3tSiQSfk8JAAAAyIgrmyNo06ZNI/6+ZcsWSVJTU5Oampr8mBIAAADGqaOjQ0NDQ5KkoaEhdXZ2+jwjAAAAIDOubAYAAAACrKamRoWFhZKkwsJCVVdX+zwjAAAAIDMWmwEAAIAAa21tVV1dncrLy1VXV6fW1la/pwQAAABkxG00AAAAgACrqKhQW1ub39MAAAAAxsSVzQAAAAAAAAAAx1hsRlabN29WVVVV1vsC9vT0qLGxUeXl5WpsbFRPT4/HM0QYjNURkAs6gg10BBuC3hHnZ8EX9IYQDnQEG+gINtARRiswxhg3nvjUqVP6zGc+ozNnzmhoaEhf+9rX1Nzc7Mam4LJkMqlYLKb+/n6Vlpam/72xsVHt7e0aGhpSYWGh6urq+BFPZJWtIyAfdAQb6Ag2BLUjzs/CI6gNIVzoCDbQEWygIwxz7crmCy64QC+++KKOHDmiV155RRs3btQf/vAHtzYHH3R0dGhoaEiSNDQ0pM7OzqxjucoGAADAffmcnwEAAAC2ubbYXFhYqAsuuECSdPr0aQ0NDcmli6jhk5qaGhUWFkr66PN9vh+ZSCQSam9vV29vr9rb25VIJLKOZWEaAICJiXMA5/I5PwMAAABsy3ux+cMPP9QnPvEJ3XPPPSP+fefOnSouLtbTTz+d/re+vj598pOf1CWXXKK7775bM2fOdD5jBEZra6vq6upUXl6uuro6tba2Zh2bz1U2uS5M8w1pfvh4AQCCLp83p5FZPudnnBsA0ZXP1zfHAgCATXkvNk+aNElf//rX9fDDD+vdd9+VJL322mv63Oc+p+9+97v63Oc+lx574YUX6rXXXtM777yjn/70p7xoeaSlpUXxeFyrV6/WwMBA+t8HBweVSCQUj8e1fv16x9upqKhQW1ubTp48qba2NlVUVGQdm89VNrkuTIftG9JcT+LcOjEM6sfLjf1162MYprF+bx9AtLl1LOAWEM7lc34W1HMDAM7l8/Xt1k+hhum8NUz7BQCBZ8bhzJkz5rLLLjPf/va3TVdXl5k7d6750pe+dN7/54477jBPPfXUeDaHPLz66qtm9erVxhhjNmzYYJ588sn0Yz//+c/NN7/5TWOMMU1NTWbfvn05PWd/f7+RZPr7+8c9r+7ubtPQ0GDKy8tNQ0OD6e7uzjq2oaHBFBYWGkmmsLDQNDQ0ZBxXVlZmJKX/lJeXj7n9srKyMbfv1thc9yvXcfmOzefj5YZsHbmxv259DMM01u/tu8XG8QgIakf5vKb4/bxuHQv8PsbkI6gd5cPvcwO3uHUuZ1u2hoJw3urGWL+3H1XZOsrn6zufsVE9bw3TfrkhCq9p8B8dYdi4FpuNMeaRRx4xZWVl5sorrzQrVqwwg4ODIx7v7u5OB9bf32+qqqrMa6+95my2GNPmzZvNE088YYwx5uDBg+bLX/5y+rG77rrLvPjii8YYY7Zt22a+973v5fScXh8wcl2Y9vvkId+xuZ7EBeHE0A1engi79TEM01i/t+8WTmCc4xv44HYUpgVct44F+bw57begdpQPv88N8uHGG/z5jrXNyzfigzDW7+0b4/8iuhu87iiq561h2i83ROE1Df6jIwwr0jitXr1a//k//2cZY/S//tf/St8iYdhvfvMb/fVf/7XMRwva+spXvqKrrrpqvJtDjvr6+nTxxRdLkmKxmHp7e0c8VlpamvGxs6VSKaVSqfTfk8nkebd5+vRpSR/dYmX48z389w8//FCSVFBQIEk5PTZjxgzt2LFjxGNnb2P4/9uyZYuam5t18OBBXXvttXr00UeVSqVkjFFBQYEKCgrSY1955ZURP5bb0dGRcd4FBQVjjj173tnGZtrfa6+9Vrt379aHH36oSZMm6VOf+pROnz59znMuWLBAL7zwQnrctddem37Os/dp0qRJ54w9+znP3qeCggI98sgjam5u1quvvqrq6urz3sPRhlw7qqmpUXt7u4aGhtL7O/x5HN7P4X3O9rGRRnY0+mOd73Nm6+h82x/9MR9r7Pk+58OfxyB2dPb2vfjFU34fj/J5bPTHdfTHzuZjmbbf09OjpqYmHTx4UNXV1Xr00UdVUVFxzrzXrFmT/nzv2rVLa9as0S9+8YuMz5ltbKa5dXd3Z9x+pn36t3/7NzU3N+vQoUOqqalRa2vreX/U36l8O8qV7d7yef05ceKE/vqv/zr98d66datmz56d8XOT7Xmd9JbPcSufr6FYLKYdO3aM2H4qlTrv10lJSYmjz2Ou8ukoLMeiLVu2qKmpSYcOHdKCBQv0yCOPZGwjW29e7tPnP//59OvPrl279PnPf17PPvtsxv3N1PzAwEDGj8XosW7euiXXhkbfTqajoyPrecz5jhtOjjHnO8cd7zHGrXPs823fSUeZxj733HPndHT2uOFbULS1teUWxTjk2lFra6sSiYQ6OjrO+V5peD/P931Vto6cnONmOx8N0zn26PPh4bGZXqs4x47GOXYY92ny5Mnn/XzaQkd0lE3e92we9pWvfEWSdPLkyXMWmiXp2muv1ZEjR/Taa6/pn/7pn/Sf/tN/GvckkbsZM2akv8D7+vpUVlaW02Nn27hxo2KxWPpPZWWl+xMfh4qKCj377LP67W9/q2eeeea8CxXV1dWaNOmj3Idf+N0Ye+2112Ydu3XrVi1btkxlZWW64YYbtHXr1ozjHnvssZzG5fOc0kcfr2eeeSanezjakGtHw7/IqKysTMuWLdNjjz2W9Tm3bt2qG264Ycyxo8eN9THM5Tmljz43w2NvuOGGMce68Xn0u6Phsbn84ikbwnI8cktPT49uvvlmXXzxxVqxYsV579/X3Nys3bt3691339ULL7yg5ubmjOM6OzvTJxAffvihDh48mPU58xmb6/bPHuvVfWLD0lE+rz9NTU05f7zzea3KVT7HjeGOL7roIt18882hvQ9lWDrKx/C5we9+9zs9++yzWc8N8uktH/m0cfDgwRHHo0OHDmUdu2DBgpybP3us2ws8uTZ09u86cfO81evzYbfOsfP5fOfTUa5jzx7nxb3mc+1o+P7tuXyvNHwsyGVsPueYuY4N0zl2PmM5x0bU5drR8D3JL7744jFf78/+/sfW2J6eHq1YscLV7Y/1vdp4xo51fjTe58x1rKN7yJtxuPfee83MmTPNkSNHzMyZM81DDz00nqeBC0bfs/mnP/1p+rHR92zev39/xuc4ffq06e/vT//p6uoK/Y9C5PNjuW6NnWii2BG8N9E7cuPHWsP0Y7W2hKWjfF5TxvN7C8Z6Xrd+FNyt2xR4/aPrYenIDW79ngy3b5UQtHO5XBsKwnmrG2P93r4x/t8exIaJfCyCPfkej6J2r3fYkWtHft9Gye/tR3m/ssl7sXnr1q1mypQp5sCBA8aYjxY0582bZwYGBvLeONxx5513miVLlphVq1aZVCplvvjFLxpjPvrFjmvWrDFLliwxX/3qV3N+Pu67AxvoCDZEoaN8ToTduC97mL6Bd0sUOnLjY+jW58WtNxfoyDtBeJMqim/wT6SGgsLvRXQ30BFsCOo95N1+U3Ii/3JVN3j9C0v9vn+632P93v755LXY/Pzzz5vi4mKzffv29L/19/ebCy+80Pzwhz/Me+MIB05gYAMdwYYodBSEK/ncENQrCTPxsiO3Tvrd+BiGbVGYX6bkHbeuuvf7DQO/TaSG4B46gg0TbZHQ70X0fMZG4YKOqH4M/R7r9/bPJ+fF5oMHD5qpU6ea73//++c89q1vfct8/OMfN4ODg3lPAMHHCQxsoCPYEIWOJvqVfEHgZUd+n/Tnw625utWx3x/bKByP3BCmN8n8RkOwgY5gw0RbJPR7ET2fsUG+Vd1o2Try+zZKfm8/yvuVzbju2YyJhRMY2EBHsCEKHfm9QAZvO/L7pD8fYVv483u+UTgeucHvz0uY0BBsoCPYMNEWCf1eRM9nbBSubMbEU2CMMQLOI5lMKhaLqb+/X6WlpX5PByFFR7AhqB319PQokUioo6NDNTU1am1tzfqb3IfHdnZ2qrq6+rxj4Q4vO2psbFR7e7uGhoZUWFiouro6tbW1ubpNeCOoxyOEBw3BBjqCDROto3zOx/0e69b23TDROkJ2LDZjTBwwYAMdwYagdsSCYrh42ZHfJ/1wT1CPRwgPGoINdAQb6Ag20BGGFfk9AQAAwq6jo0NDQ0OSpKGhIXV2dvo8IwRFRUUFbzwAAAAAmDAm+T0BBNfmzZtVVVWl6upqv6eCEKMj2BD0jmpqalRYWChJKiwsDOw8J7qgd4RwoCM4RUOwgY5gAx3BBjrCaNxGA2PiRyFgAx3BhqB2xK0SwiWoHSFc6AhO0RBsoCPYQEewgY4wjNtoAADgELdKAAAAAACA22gAAJBRT0+PGhsbVV5ersbGRvX09Pg9JQAAAAAAAo3FZgAAMkgkEmpvb1dvb6/a29uVSCT8nhIAAAAAAIHGYnPEtLS0KB6Pa/Xq1RoYGBjx2J49e1RZWamlS5dq2bJlPs0QAMKho6NDQ0NDkqShoSF1dnb6PCMAAAAAAIKNxeYIOXz4sLq7u7V3715VVVVp27Zt54y59dZbtWfPHu3evduHGQJAeNTU1KiwsFCSVFhYyG9XBgAAAABgDCw2R8iBAwdUX18vSWpoaND+/fvPGbN9+3bF43E9+OCDXk8PAEKltbVVdXV1Ki8vV11dnVpbW/2eEgAAAAAAgVbk9wRgT19fny6++GJJUiwWU29v74jHFyxYoLfeekuS9NnPflZLlizRtddee87zpFIppVKp9N+TyaSLs0ZU0RFs8LOjiooKtbW1ebY9uIfjEWygIzhFQ7CBjmADHcEGOkI2XNkcQt3d3VqyZMk5f4wx6S/uvr4+lZWVjfj/pk2bpuLiYhUXF+vmm2/Wa6+9lvH5N27cqFgslv5TWVnp+j4heugINtARbKAj2EBHcIqGYAMdwQY6gg10hGwKjDHG70nAjsOHD+uBBx7QT37yE91///362Mc+pttuuy39eDKZVGlpqSRp1apVuuOOO1RbW3vO82R6d6qyslL9/f3p/x8YCx3BBjc66unpUSKRUEdHh2pqatTa2qqKigpbU0YAcTyCDXQEp2gINtARbKAj2EBHyIbbaETINddcozlz5igej2vevHm66667JEnr1q3Tli1b9NRTT+nRRx9VUVGRFi9enHGhWZJKSkpUUlLi5dQRQXQEG9zoKJFIqL29XUNDQ2pvb1cikeB2GRHH8Qg20BGcoiHYQEewgY5gAx0hGxabI2bTpk3n/NuWLVskSU1NTWpqavJ6SgAQKB0dHRoaGpIkDQ0NqbOz0+cZAQAAAAAQDdyzGQAQej09PWpsbFR5ebkaGxvV09OTdWxNTY0KCwslSYWFhaqurvZqmgAAAAAARBqLzQCA0Bu+NUZvb2/61hjZtLa2qq6uTuXl5aqrq1Nra6tn8wQAAAAAIMq4jQYAIPTyuTVGRUUF92gGAAAAAMAFXNkMAAg9bo0BAAAAAID/WGwGAIQet8YAAAAAAMB/LDYjq82bN6uqqoorBOEIHcGGsToavjXGyZMn1dbWpoqKCo9niDDgeAQb6AhO0RBsoCPYQEewgY4wWoExxvg9CQRbMplULBZTf3+/SktL/Z4OQoqOYAMdwQY6gg10BKdoCDbQEWygI9hARxjGlc0AAAAAAAAAAMdYbAYAAAAAAAAAOMZiMwAAAAAAAADAMRabI+TUqVO67rrrNG3aNL3xxhvnPD44OKhEIqF4PK7169f7MEMAAAAAAAAAUcVic4RMmTJFzz33nG655ZaMjz/77LO65JJLtHfvXr3//vvav3+/xzMEAAAAAAAAEFVFfk8A9hQVFWnWrFlZHz9w4IBuuukmSVJDQ4P279+vRYsWnTMulUoplUql/55MJu1PFpFHR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw5XNE0hfX59KS0slSbFYTL29vRnHbdy4UbFYLP2nsrLSy2kiIugINtARbKAj2EBHcIqGYAMdwQY6gg10hGwKjDHG70kgP93d3RlvlfHMM8+orKxMiURCLS0tmj9//ojH77nnHt14442qra3Vtm3bdPToUbW0tJzzPKPfnTLGaGBgQDNnzlRBQYH9HUIk0RFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2XAbjRCaM2eOXn755bz/v+uvv167du1SbW2tdu7cqbVr12YcV1JSopKSEqfTxARHR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw200Imb58uXatWuXmpub1draKklat26dJGnFihXq6upSPB7XlClTtHDhQh9nCgAAAAAAACBKuI0GAAAAAAAAAMAxrmwGAAAAAAAAADjGPZvhiDFGp06d8nsayNP06dMDdcN+OgonOoINdAQbgtQRDYUXHcGpIDUk0VFY0RFsoCPYMN6OWGyGIydPntTs2bP9ngbydOLECc2aNcvvaaTRUTjREWygI9gQpI5oKLzoCE4FqSGJjsKKjmADHcGG8XbEYjMcKS4uliR1dXWptLTU59nYk0wmVVlZGdn9Gv68BQUdhQsdeYuOvEVH4RLEjmgofOjIO1HtKIgNSXQUNnTkLTryFh2Fi9OOWGyGI8OX05eWlkbqC2tYVPcrSD9OI9FRWNGRt6K6X3TkrajuV5A6oqHwoiPvRHW/gtSQREdhRUfeiup+0ZG3orpf4+2IXxAIAAAAAAAAAHCMxWYAAAAAAAAAgGMsNsORkpIS3XfffSopKfF7KlaxX94K6rycYr+8FdR5OcV+eSuo83KK/fJOEOdkQ1T3SwrmvgVxTjawX94K6rycYr+8FdR5OcV+eSuo83KK/cqswBhjLM8JAAAAAAAAADDBcGUzAAAAAAAAAMAxFpsBAAAAAAAAAI6x2AwAAAAAAAAAcIzFZjjS0tKieDyu1atXa2BgwO/pWHH06FHNmjVLS5cu1dKlS/X73//e7yk5curUKV133XWaNm2a3njjDUnSz372My1cuFCf+cxn1NXV5fMM6SgM6MgfUeqIhvxDR96KYkdRakiiI7/QkffoKPjoyB905D06Cj6rHRlgnF599VWzevVqY4wxGzZsME8++aTPM7LjnXfeMStXrvR7GtacOXPGnDhxwtx+++3m9ddfNwMDA6ampsakUinz8ssvm+bmZl/nR0fhQEf+iFJHNOQfOvJOVDuKUkPG0JFf6MhbdBQOdOQPOvIWHYWDzY64shnjduDAAdXX10uSGhoatH//fp9nZM++ffsUj8f1jW98Q8YYv6fjSFFRkWbNmpX++9tvv60rrrhCxcXFWrx4sV5//XUfZ0dHYUFH/olKRzTkLzryRpQ7ikpDEh35iY68Q0fhQEf+oSPv0FE42OyIxWaMW19fn0pLSyVJsVhMvb29Ps/Ijosuuki//vWv9dJLL+nEiRPasWOH31Oy6uzPmyQNDQ35OBs6Cis68kaUO6Ih79CRd6LaUZQbkujIK3TkLToKJzryBh15i47CyUlHLDZj3GbMmKFkMinpowjLysp8npEdJSUlmjp1qgoKCrRy5UodOXLE7ylZdfbnTZIKCwt9nA0dhRUdeSPKHdGQd+jIO1HtKMoNSXTkFTryFh2FEx15g468RUfh5KQjFpsjJtMNvYcNDg4qkUgoHo9r/fr1jrd1/fXXa9euXZKknTt3avHixY6fMwhOnTqV/u+XXnpJl19+uY+zse/yyy/Xm2++qYGBAe3bt09XXXWVr/Oho3CiI29EuSMa8g4deSeqHUW5IYmOvEJH3qKjcKIjb9CRt+gonJx0VGDCflMRjDA4OKh3331Xd911l1paWjR//vz0Yzt27NChQ4e0YcMGNTc36wtf+IIWLVrkaHstLS165ZVXNG/ePD3++OMqLi52ugu+a2tr07333qsLLrhAl112mX70ox+pqKjI72k5snz5ch05ckSXXnqp1q1bp8mTJ+vBBx/U5MmT9eMf/1iVlZW+zo+OwoGOvBe1jmjIH3TkrSh2FLWGJDryAx15j47CgY68R0feo6NwsNURi80RlUgkzllsvvvuu3XTTTeptrZW27dv1zvvvKOWlpZz/t9UKqVUKpX+uzFGAwMDmjlzpgoKCjyZP8KPjmADHcEGOoINdASnaAg20BFsoCPYQEfIhttoTCC53pR948aNisVi6T8XXnihZs+ePeJHBICx0BFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2XBlc0RlurL5nnvu0Y033qja2lpt27ZNR48ezenK5mQyqcrKSvX394/4TZTA+dARbKAj2EBHsIGO4BQNwQY6gg10BBvoCNmE+2YiyMvwTdlra2u1c+dOrV27NuO4kpISlZSUeDw7RA0dwQY6gg10BBvoCE7REGygI9hAR7CBjpANt9GIoOXLl2vXrl1qbm5Wa2ur1q1bJ0lasWKFurq6FI/HNWXKFC1cuNDnmQIAAAAAAACICq5sjqDnn39+xN8TiYQkqaioSE888YQPMwIAAMDZenp6lEgk1NHRoZqaGrW2tqqiosLvaQEAAACOcGUzAAAA4LFEIqH29nb19vaqvb09fXEAAAAAEGYsNgMAAAAe6+jo0NDQkCRpaGhInZ2dPs8IAAAAcI7FZgAAAMBjNTU1KiwslCQVFhaqurra5xkBAAAAzrHYDAAAAHistbVVdXV1Ki8vV11dnVpbW/2eEgAAAOAYi83IavPmzaqqquJKGzhCR7CBjmADHcEGWx1VVFSora1NJ0+eVFtbG78ccALhWAQb6Ag20BFsoCOMVmCMMX5PAsGWTCYVi8XU39+v0tJSv6eDkKIj2EBHsIGOYAMdwSkagg10BBvoCDbQEYZxZTMAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDAAAAAAAAABwjMVmAAAAAAAAAIBjLDZHUEtLi+LxuFavXq2BgYH0v+/Zs0eVlZVaunSpli1b5uMMAQAAAAAAAEQNi80Rc/jwYXV3d2vv3r2qqqrStm3bRjx+6623as+ePdq9e7dPMwQAAAAAAAAQRUV+TwB2HThwQPX19ZKkhoYGPf7441q1alX68e3bt+uVV17RLbfcovXr12d8jlQqpVQqlf57Mpl0d9KIJDqCDXQEG+gINtARnKIh2EBHsIGOYAMdIRuubI6Yvr4+lZaWSpJisZh6e3vTjy1YsEBvvfWWdu/erV/+8pc6dOhQxufYuHGjYrFY+k9lZaUnc0e00BFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2RQYY4zfk4A9Dz/8sKZOnao1a9bo4MGDam1t1UMPPZRxXElJidauXXvOY5nenaqsrFR/f396IRsYCx3BBjqCDXQEG+gITtEQbKAj2EBHsIGOkA230YiY66+/Xg888IDWrFmjnTt3avHixenHkslk+gt+7969uuOOOzI+R0lJiUpKSjyZL6KLjmADHcEGOoINdASnaAg20BFsoCPYQEfIhttoRMw111yjOXPmKB6P680339TKlSu1bt06SdJTTz2lmpoaLVq0SHPnzlVtba3PswUAAAAAAAAQFVzZHEGbNm0a8fctW7ZIkpqamtTU1OTHlAAAAAAAAABEHFc2AwAAAAAAAAAcY7EZAAAAAAAAAOAYi80AAAAAAAAAAMdYbAYAAAAAAAAAOMZiM7LavHmzqqqqVF1d7fdUEGJ0BBvoCDbQEWygIzhFQ7CBjmADHcEGOsJoBcYY4+YG3n//ff35n/+5Pve5z2nTpk1ubgouSSaTisVi6u/vV2lpqd/TQUjREWygI9hAR7CBjuAUDcEGOoINdAQb6AjDXL+y+f7779d1113n9mYAAAAAAAAAAD5ydbH57bff1r/8y79o+fLlbm4GAAAAAAAAAOCzvBebP/zwQ33iE5/QPffcM+Lfd+7cqeLiYj399NPpf2tpadHGjRudzxIAAAAAAAAAEGh5LzZPmjRJX//61/Xwww/r3XfflSS99tpr+tznPqfvfve7+tznPidJ+sUvfqE//dM/1Z/+6Z/anTEAABi3np4eNTY2qry8XI2Njerp6fF7SgAAwLJ8Xu/9Huv39gEAlplxOHPmjLnsssvMt7/9bdPV1WXmzp1rvvSlL40Y81//6381l1xyibn00ktNeXm5KS0tNf/9v//38WwOebrzzjvNkiVLzKpVq0wqlUr/+5kzZ8ztt99ulixZYr72ta/l/Hz9/f1Gkunv7x/x793d3aahocGUlZWZhoYG093dnfU53Bjr9/aDsF9h4mVHfn8OgzDW7+27JVtHUeXG56ahocEUFhYaSaawsNA0NDR4uv18x7phonUEd9CRc34fC/yeQ1DPsd0a6/f2g7BfbsjWUT6v936P9Xv7xvjfRlA7AvJBRxg2rsVmY4x55JFHTFlZmbnyyivNihUrzODgYNaxjz/+uLnzzjvHuynk4dVXXzWrV682xhizYcMG8+STT6Yf+/nPf26++c1vGmOMaWpqMvv27cvpOYN6AuP39oOwX1E4gfH7YxjVsX5v3y1ROIHJ52vRjc9NWVmZkZT+U15e7un28x3rhih0BP9FoSO/zw2CcM7j5/EoqOfYbo31e/tB2C83ZOson9d7v8f6vX1j/G8jqB0B+aAjDBv3YvOpU6fM5MmTzfz5881777133rEsNntn8+bN5oknnjDGGHPw4EHz5S9/Of3YXXfdZV588UVjjDHbtm0z3/ve9zI+x+nTp01/f3/6T1dXV04nMGVlZeb06dPmgw8+MB988IFJpVLp/54xY8Y5Y4cfO3369Ij/73xjx3rO4ec5ffp0zttPpVIj/r9ct3++saP3KZVKZR2bz3OePTaVSpn6+nozadIkI8lMmjTJ1NXVZdynVCpl6urq0mO9OIHxs6PztUFH53Z0vucc/bEYPfZ8J+1edjQs0+cj08fH9mPHjh0z9fX1ZsaMGaaurs4cP348a0ejv27r6+s97Wis7U/kjoYXqDJ9Hs/++Bw9enTE5/vo0aNZWxk99tixY1Y6On78eHpsfX29OX78eNaOjh8/burq6tJjjx07lvP2s/Wf63Oeb/uZOjp27NiIsUePHs3a0dGjR01dXZ1nC6X5Ho9y5ddx6/Tp01mPB056G/05Pd/283n9O/s8ZvQ5z9nPmW1strl5eTwKyzm2W8d/v8+Nso3NtY2ysrJQvaadvXg5/PWdraPznRs4OY/I9RiTz7mRk+0PHze86igK50bD/Hytyva64sZjUdknr9ARHWWT9z2bh33lK1+RJJ08eVKFhYXnHZtIJLRp06bxbgp56OvrU2lpqSQpFoupt7c3p8fOtnHjRsVisfSfysrKjONqamrSn/tJkyZpwYIFWedVXV2tSZMmWR3rxnM6HXvttddmHbtgwYKcxuaz/c7OTn344YeSPvrlnYcOHco69uDBg+mxQ0ND6uzszDrWBj87Gv2xDkIbQe5ovNsvLCxUdXV11rE25NqR35qbm/XCCy/o3Xff1e7du9XU1JR17Oiv24MHD2Yd68bn8bHHHtOyZctUVlamG264QVu3bvV0+1JwO0okEmpvbx/z8zj6893c3Jx1207Gnq+jpqam9NgXXnhhzLG7d+9Oj802h3y3n8tz5ju2ubk577G9vb1qb29XIpHIOtaGsByP8pHr8Sif3vKRz3Hj7POYfM55xhrr5fEoLOfYTsf6eW7ix9igvqa1traqrq5OZWVlWrZsmR577LGsz7l161bdcMMNOY3N5zwi17GPPfZYevs33HCDte1v3bo157FutBGFcyPgfHLtaPj+6RdffLFuvvnmMe+1fvPNN1sd29PToxUrVri6/RUrVlgfe9FFF425X+N5zlzHOrrf/XhWqO+9914zc+ZMc+TIETNz5kzz0EMPOVrxhj0/+MEP0lc2d3Z2jriy+e67705f2fz00087vrJ5+Aqw8vLynH+c0eZYv7cfhP0K8o9m+dmR35/DIIz1e/u2uHUlYS7y+TFst35M0+/PzUTrKEw/7hvVH2N2a6wNfh6P3OLG7XfGc7sLP895vDweheUc262xfm8/CPtlQxSPRUHgdxt0hDAaz09aBP12R2Ea6/f2zyfvxeatW7eaKVOmmAMHDhhjProv8Lx588zAwEDeG4d9o+/Z/NOf/jT92Oh7Nu/fvz+n5+S+O8EV5BOY0egINnjZURQWNpCZ0/ukBuHELqonrF6fCDvh5fHI7V+ANtbxKAiflzCd8+SKcyPYQEewIai/sNTv7QdhrFvbd0NQ7yHv9/ajvF/Z5LXY/Pzzz5vi4mKzffv29L/19/ebCy+80Pzwhz/Me+Nwx5133mmWLFliVq1aZVKplPniF79ojDHmzJkzZs2aNWbJkiXmq1/9as7PxwkMbKAj2OBlR+O5ki/oCxv4yFjfUHF1XvDnmu9YN0Thza9c5fOx9vqK8zDj3Ag20BFsCOovLPV7+0EY6/c5QD7oaOLtVzY5LzYfPHjQTJ061Xz/+98/57Fvfetb5uMf/7gZHBzMewIIPk5gYAMdwQYbHeX6jr/fJ2twD8cj2BDUN7/8Xuzl2Jk7jkWwgY5gA1ekBndsmM4BnF7Q4dZYv7cf5f3KZlz3bMbEwgkMbKAj2GCjo1wXQvy+ahLu4XgEGybSlc354NiZO45FsIGOYANXpAZ3bJjOATgeYRiLzRgTBwzYQEewwUZHfr/jD/9xPIINftyzOQy3F0HuOBbBBjqCDVyRGtyxYToH4HiEYQXGGCPgPJLJpGKxmPr7+1VaWur3dBBSdAQbbHTU2Nio9vZ2DQ0NqbCwUHV1dWpra7M8UwQZxyPYQEdwioZgAx3BBjqCDXSEYZP8ngAAAE719PSosbFR5eXlamxsVE9PT9axra2tqqurU3l5uerq6tTa2urdRAEAAAAAiDAWm5HV5s2bVVVVperqar+nghCjI9gwVkeJRELt7e3q7e1Ve3u7EolE1ueqqKhQW1ubTp48qba2NlVUVLg0awQNxyPYQEdwioZgAx3BBjqCDXSE0biNBsbEj0LABjqCDdk6Ki8vV29v74i/nzx50o8pIgQ4HsEGOoJTNAQb6Ag20BFsoCMM48pmAEDo1dTUqLCwUJJUWFjIu+oAAAAAAPiAxWYAQOhxH2YAAAAAAPxX5PcEAABwavg+zAAAAAAAwD9c2RwxLS0tisfjWr16tQYGBkY8tmfPHlVWVmrp0qVatmyZTzMEAAAAAAAAEEUsNkfI4cOH1d3drb1796qqqkrbtm07Z8ytt96qPXv2aPfu3T7MEAAAAAAAAEBUsdgcIQcOHFB9fb0kqaGhQfv37z9nzPbt2xWPx/Xggw96PT0AAAAAAAAAEcY9myOkr69PF198sSQpFoupt7d3xOMLFizQW2+9JUn67Gc/qyVLlujaa68953lSqZRSqVT678lk0sVZI6roCDbQEWygI9hAR3CKhmADHcEGOoINdIRsuLI5hLq7u7VkyZJz/hhj0l/cfX19KisrG/H/TZs2TcXFxSouLtbNN9+s1157LePzb9y4UbFYLP2nsrLS9X1C9NARbKAj2EBHsIGO4BQNwQY6gg10BBvoCNkUGGOM35OAHYcPH9YDDzygn/zkJ7r//vv1sY99TLfddlv68WQyqdLSUknSqlWrdMcdd6i2tvac58n07lRlZaX6+/vT/z8wFjqCDXQEG+gINtARnKIh2EBHsIGOYAMdIRtuoxEh11xzjebMmaN4PK558+bprrvukiStW7dOW7Zs0VNPPaVHH31URUVFWrx4ccaFZkkqKSlRSUmJl1NHBNERbKAj2EBHsIGO4BQNwQY6gg10BBvoCNmw2BwxmzZtOufftmzZIklqampSU1OT11MCAAAAAAAAMAFwz2YAAAAAAAAAgGMsNgMAAAAAAAAAHGOxGQAAAAAAAADgGIvNAAAAAAAAAADHWGwGAAAAAAAAADjGYjOy2rx5s6qqqlRdXe33VBBidAQb6Ag20BFsoCM4RUOwgY5gAx3BBjrCaAXGGOP3JBBsyWRSsVhM/f39Ki0t9Xs6CCk6gg10BBvoCDbQEZyiIdhAR7CBjmADHWEYVzYDAAAAAAAAABxjsRkAAAAAAAAA4BiLzQAAAAAAAAAAx1hsjpBTp07puuuu07Rp0/TGG2+c8/jg4KASiYTi8bjWr1/vwwwBAAAAAAAARBWLzREyZcoUPffcc7rlllsyPv7ss8/qkksu0d69e/X+++9r//79Hs8QAAAAAAAAQFSx2BwhRUVFmjVrVtbHDxw4oPr6eklSQ0MDi80AAAAAAAAArCnyewLwTl9fn0pLSyVJsVhMvb29GcelUimlUqn035PJpCfzQ7TQEWygI9hAR7CBjuAUDcEGOoINdAQb6AjZcGVzCHV3d2vJkiXn/Mm2eDxsxowZ6S/+vr4+lZWVZRy3ceNGxWKx9J/Kykrr+4DooyPYQEewgY5gAx3BKRqCDXQEG+gINtARsikwxhi/JwG7EomEWlpaNH/+/BH/vmPHDh06dEgbNmxQc3Oz1q5dq4ULF57z/49+d8oYo4GBAc2cOVMFBQWuzx/RQEewgY5gAx3BBjqCUzQEG+gINtARbKAjZMNic8QsX75cR44c0aWXXqp169YpkUho3bp12rJliwYHB/XXf/3X+n//7//pmmuu0d/93d/5PV0AAAAAAAAAEcFiMwAAAAAAAADAMe7ZDAAAAAAAAABwjMVmAAAAAAAAAIBjRX5PAOFmjNGpU6f8ngbyNH369EDdsJ+OwomOYAMdwYYgdURD4UVHcCpIDUl0FFZ0BBvoCDaMtyMWm+HIyZMnNXv2bL+ngTydOHFCs2bN8nsaaXQUTnQEG+gINgSpIxoKLzqCU0FqSKKjsKIj2EBHsGG8HbHYDEeKi4slSV1dXSotLfV5NvYkk0lVVlZGdr+GP29BQUfhQkfeoiNv0VG4BLEjGgofOvJOVDsKYkMSHYUNHXmLjrxFR+HitCMWm+HI8OX0paWlkfrCGhbV/QrSj9NIdBRWdOStqO4XHXkrqvsVpI5oKLzoyDtR3a8gNSTRUVjRkbeiul905K2o7td4O+IXBAIAAAAAAAAAHGOxGQAAAAAAAADgGIvNcKSkpET33XefSkpK/J6KVeyXt4I6L6fYL28FdV5OsV/eCuq8nGK/vBPEOdkQ1f2SgrlvQZyTDeyXt4I6L6fYL28FdV5OsV/eCuq8nGK/MiswxhjLcwIAAAAAAAAATDBc2QwAAAAAAAAAcIzFZgAAAAAAAACAYyw2w5GWlhbF43GtXr1aAwMDfk/HiqNHj2rWrFlaunSpli5dqt///vd+T8mRU6dO6brrrtO0adP0xhtvSJJ+9rOfaeHChfrMZz6jrq4un2dIR2FAR/6IUkc05B868lYUO4pSQxId+YWOvEdHwUdH/qAj79FR8FntyADj9Oqrr5rVq1cbY4zZsGGDefLJJ32ekR3vvPOOWblypd/TsObMmTPmxIkT5vbbbzevv/66GRgYMDU1NSaVSpmXX37ZNDc3+zo/OgoHOvJHlDqiIf/QkXei2lGUGjKGjvxCR96io3CgI3/QkbfoKBxsdsSVzRi3AwcOqL6+XpLU0NCg/fv3+zwje/bt26d4PK5vfOMbMiH/HZpFRUWaNWtW+u9vv/22rrjiChUXF2vx4sV6/fXXfZwdHYUFHfknKh3RkL/oyBtR7igqDUl05Cc68g4dhQMd+YeOvENH4WCzIxabMW59fX0qLS2VJMViMfX29vo8Izsuuugi/frXv9ZLL72kEydOaMeOHX5PyaqzP2+SNDQ05ONs6Cis6MgbUe6IhrxDR96JakdRbkiiI6/QkbfoKJzoyBt05C06CicnHbHYjHGbMWOGksmkpI8iLCsr83lGdpSUlGjq1KkqKCjQypUrdeTIEb+nZNXZnzdJKiws9HE2dBRWdOSNKHdEQ96hI+9EtaMoNyTRkVfoyFt0FE505A068hYdhZOTjlhsjphMN/QeNjg4qEQioXg8rvXr1zve1vXXX69du3ZJknbu3KnFixc7fs4gOHXqVPq/X3rpJV1++eU+zsa+yy+/XG+++aYGBga0b98+XXXVVb7Oh47CiY68EeWOaMg7dOSdqHYU5YYkOvIKHXmLjsKJjrxBR96io3By0lGBCftNRTDC4OCg3n33Xd11111qaWnR/Pnz04/t2LFDhw4d0oYNG9Tc3KwvfOELWrRokaPttbS06JVXXtG8efP0+OOPq7i42Oku+K6trU333nuvLrjgAl122WX60Y9+pKKiIr+n5cjy5ct15MgRXXrppVq3bp0mT56sBx98UJMnT9aPf/xjVVZW+jo/OgoHOvJe1DqiIX/Qkbei2FHUGpLoyA905D06Cgc68h4deY+OwsFWRyw2R1QikThnsfnuu+/WTTfdpNraWm3fvl3vvPOOWlpafJwlAAAAAAAAgKgI95I78pLrTdlTqZRSqVT678YYDQwMaObMmSooKPBkrgg/OoINdAQb6Ag20BGcoiHYQEewgY5gAx0hG+7ZPIHkelP2jRs3KhaLpf9ceOGFmj179oj70QBjoSPYQEewgY5gAx3BKRqCDXQEG+gINtARsuE2GhGV6TYao+/ZvHbtWi1cuPCc/3f0u1PJZFKVlZXq7+9PXxkNjIWOYAMdwQY6gg10BKdoCDbQEWygI9hAR8iG22hE0PANvd966/9r7/+Dq7juPP//JaTRhQC6lsQv2xEeJ06NR8HesDayMRJh40grvHZSWzDlMtTCHQKWK6mEmbFwNomzzs4Hh9rYnolTJg7JJJZTcXaCIbjilDHWsoWNQWt+GDL2MsU6iQXsVgRxFN0rx3AF8vn+4dL9InEv3Faf7tPdPB9VqkLqVt933/vq093vbjVH1dHRoZ6eHm3atEl33XWXnnvuObW0tGju3LlFG82SlEqllEqlQq4aSUOOYAM5gg3kCDaQI/hFhmADOYIN5Ag2kCOUQrM5gV544YVR32cyGUlSVVWVnn76aQcVAQAAAAAAAEg6ntkMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9mMkjZu3KjGxkbNmzfPdSmIMXIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHGGsCmOMcV0Eoi2XyymdTiubzaqmpsZ1OYgpcgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcYQR3NgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMA3ms0AAAAAAAAAAN9oNidQZ2enWlpatHz5cg0NDRV+vmvXLjU0NGjRokW6/fbbHVYIAAAAAAAAIGloNifMoUOH1NfXp927d6uxsVFbtmwZNf3uu+/Wrl27tHPnTkcVAgAAAAAAAEiiKtcFwK6enh61tbVJktrb2/XUU09p2bJlhelbt27Va6+9pqVLl2rt2rVFl5HP55XP5wvf53K5YItGIpEj2ECOYAM5gg3kCH6RIdhAjmADOYIN5AilcGdzwgwMDKimpkaSlE6n1d/fX5h288036+jRo9q5c6defPFFHTx4sOgyNmzYoHQ6XfhqaGgIpXYkCzmCDeQINpAj2ECO4BcZgg3kCDaQI9hAjlBKhTHGuC4C9jz55JOaPHmyVqxYoQMHDqirq0tPPPFE0flSqZRWrVp1wbRiV6caGhqUzWYLjWzgUsgRbCBHsIEcwQZyBL+CyNDJkyeVyWS0b98+NTU1qaurSzNnzrRVMiKIsQg2kCPYQI5QCo/RSJhbb71Vjz32mFasWKEdO3ZowYIFhWm5XK6wwe/evVv33Xdf0WWkUimlUqlQ6kVykSPYQI5gAzmCDeQIfgWRoUwmo+7ubg0PD6u7u1uZTEbbt2+3+hqIFsYi2ECOYAM5Qik8RiNh5s6dq1mzZqmlpUVHjhzRkiVL1NHRIUnavHmzmpqadNttt+nqq6/WwoULHVcLAAAAYLz27dun4eFhSdLw8LD279/vuCIAAHC5487mBHr00UdHfb9p0yZJ0urVq7V69WoXJQEAAACwrKmpqXBnc2VlpebNm+e6JAAAcJnjzmYAAAAAiKGuri61traqvr5era2t6urqcl0SAAC4zHFnMwAAAADE0MyZM3lGMwAAiBTubAYAAAAAAAAA+EazGQAAAAAAAADgG81mlLRx40Y1NjbyH43AF3IEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHGGsCmOMCWrhVVVVmjNnjiTp5ptv1j/90z8F9VIIUC6XUzqdVjabVU1NjetyEFPkCDaQI9hAjmADOYJfZAg2kCPYQI5gAznCiED/g8ArrrhChw8fDvIlAAAAAAAAAAARwGM0AAAAAAAAAAC+eW42v//++7r++uv15S9/edTPd+zYoerqaj377LOFn+VyOd10001qbm7Wyy+/7L9aAAAAAABwUSdPntTixYtVX1+vxYsX6+TJk65LAgBcJjw3mydMmKCvfOUrevLJJ/XHP/5RkvSrX/1Kf/VXf6VvfvOb+qu/+qvCvL29vTp48KC+973vacWKFcrlcvYqh3McwLjHZxCuoN5vL8vlM/fP9Xvo+vUBG6IwbrEtAUBpmUxG3d3d6u/vV3d3tzKZjOuSIo19CoAgXXZjjBmHs2fPmmuvvdZ84xvfMCdOnDBXX321+fznP3/R32lvbzf79+8fz8vBo/vvv980NzebZcuWmXw+X/j52bNnzcqVK01zc7P50pe+VPbystmskWSy2eyon7e3t5vKykojyVRWVpr29vaSy+jr6zPt7e2mrq7OtLe3m76+Pu8rFhIvtQaxXl6W6eUzcK1UjuIkqMx7WW6cPvMglMpRnLaboHIUp3HWtSSMR64FNW7FaVuOao6SOhYkcb2imqEoiML+Ly6ZK5Wjuro6I6nwVV9f76hCd1zvU+KSIWMYj5LCdebIUWmux5iwszGuZrMxxnzve98zdXV15oYbbjB33XWXOXfu3Kjp/f395syZM8YYY06cOGFmz55t/vCHP/irFpf0+uuvm+XLlxtjjFm/fr155plnCtN+/vOfm6997WvGGGNWr15t9uzZU9YybRzABHGiGdTG4voE2ssy43QQGeaOJ6hBN6jMe1luufO6PtAIio2LX67fw6By5LrxFidRPRB2vd0GNR5GYewMQlRz5PqYK6h5k3iTQ1QzZIz799D18bjX5bpk49jItSiMG172KUGc17kW1fHI9VjkVRBZjtO4ZePGINfvoRdBHTsHMcaEnY1xN5sHBwfNxIkTzZw5c8y77757wfQ9e/aYOXPmmBtvvNH8m3/zb8y2bdv81Ikybdy40Tz99NPGGGMOHDhgvvCFLxSmrVu3zrz88svGGGO2bNliHnnkkaLLOHPmjMlms4WvEydOXPIAZsKECaatrc2cOXPGnD592pw+fdrk8/nCv2tra0dtWHV1dYVpZ86cGfV7bW1tZsKECaOWW2yZxeYbWc6ZM2dGzZvP58uedrFaz/+9i807dp3y+bxpbW0dVW9ra6vnZY6te+x7cP4yx65vb2+vaW1tDW1HXW6ORgbS2tpa09raao4fP14yR8Xe12LTxr7XF8umlxxdKpvjzVGpz9FPjkrV6mfbiHKOxu686+rqPH3mfnPk5X0NKkdexqNytykvWTl27JhpbW01tbW1pq2tzfT29l7y98JSbo5GFFvn8Y5Hvb29pq2trTDGHTt2zMp4dPz48cJy29razPHjxz1v1+PdNsrJ8XjHo1I5LrZO52+jYRw0l5OjIPZpI5/3+dvXsWPHxjUWjPc4ws/nbWOfViobpfJdbLmltouRbTSM/ZrXscgLm+OW1228VD79jFuuj8e9ZG5k/xe1Y6PzmxU2x6MgjiO8HBt5yWZQ2Sg2r999WlSPsUfYHmPK3a+5Pjbymv8gcuTlnH9s5oK+EF9ujrz0joI4Hg2qd+T6+MjLMV/Y49G4m80rV640EydONLNmzTKnT4d3woiLe/jhhwuN/bfeesvcc889hWlr1qwxhw4dMsYY093dbb7yla8UXcZDDz00KoQjX34OYLwMGOUeXJY6APS74wlqwLjYxn2xZV7spPz8g9tLNXfCPikvN0dedjzHjh0b1bQ5/3M8/z2/WDZs5Gjk/baVo1KfY7EcnT/wj/3Mx7vj8dIkTFKOzh+7/OaoWDbDzpGX8ajU+DveBoLXA+GR3wuL1/3apRqFYxvIvb29Jd9XLxctvIxHXk7Myz2h83JheGSZIzm+WPOz1Lx+czQyHtbX14dyYl5OjryMRV62TdfN/aAaf+UeG3k5KS9VQ6mxKMz9Wrlj0XgU2/79ZM7PRfNSmQuqoRjE8fh4G0FROjYKKhtBHEdcKm/jHY+8ZKPcY+xSOfK7T4vqMbaXi6jlnqt52a+5PjY6/1xt7LmS3zGm3BxF+UJ8uTnycmOQl+NR170jL+ORl3P+IHpHYY9H42o2P/jgg2batGnm8OHDZtq0aeaJJ54Yz2IQgO9+97uFO5v3798/6s7mBx54oHBn87PPPuv7zmYvRnZS5ZwQlnt7f9B/XldOrUGsl5dlehH2nxuXm6Mg/rw6Cn9OEtTnWK6g3oOo5iiI9ztuOSp33ij8+WnYys1REGNMFB4hEcR6BcX12Hkx5eQoiD+RHO9y43DMFdTxWVTHriCOsb1wPf4HleOgslHucqN6bBQFrseYoPYpQZzXRTVHrs8pXB8bRWHeKGS+FNc5cj3GBHXsHMQYE/Z45LnZ/IMf/MBMmjTJ9PT0GGM+eC7w7NmzzdDQkOcXh31jn9n805/+tDBt7DOb9+7dW9Yyw35+k9eGSRR33sW4PoF23URw8axd24NunAS1fUQ1R0GI2xhTrigctLt+/p7f/4sg6PfFVTMtqeNhUIrlKG4nM0Ecc0VhHxzUtmRb2MfYrscj18cQxri/OB2EqD5r15jkHrtfTjly/X80uD428jpvkDeKxOH47FLPbHZ1HBHUeV0UjmOCYGM88tRsfuGFF0x1dbXZunVr4WfZbNZcccUV5oc//KHnF0cw7r//ftPc3GyWLVtm8vm8uffee40xxpw9e9asWLHCNDc3my9+8YtlLy/KBzDlcr3zjgLXA5aNHQ+fYzCifLV8rKiOR3HKZtwapUHwe/ErCttMnN7vpCqWo7idzMDtexv2Pi2oC6NJbJh44Xq9onpsZAz7Hy+imqOgLowGsb5BHRuR4/JFeTwqF5+3ne2z7GbzgQMHzOTJk823v/3tC6Z9/etfNx/72MfMuXPnPBeA6EvCgOF65w07OeJzDEac3teojkdxeg9dnwgY4/5OcL8Xv+L0eRsTv3rjwu94xMkMonxnM+LD1V+hlvPXSex/4iPsO1JdS+p6uRbVczUv+LztqDDGGAEXkcvllE6nlc1mVVNT47ocxBQ5gg3kyL+TJ08qk8lo//79mjdvnrq6ujRz5sxQa1i8eLG6u7s1PDysyspKtba2avv27aG9PjmCDX5zFIVtEW6FPRaRuWQKO0eu9+EIBsdGsIEcYUSV6wIAAEB4Zs6c6fyksKur64KGB3C5icK2iMsLmYMN+/bt0/DwsCRpeHhY+/fvd1wRACBqaDYDAIBQ0fAAACCempqaRt3ZPG/ePNclAQAiZoLrAgAAAAAAQPR1dXWptbVV9fX1am1t5a+TAAAXoNmMkjZu3KjGxkauVsMXcgQbyBFsIEewgRzBLzIEG1zlaOSvk9555x1t376d537HHOMRbCBHGIv/IBCXxEPeYQM5gg3kCDaQI9hAjuAXGYIN5Ag2kCPYQI4wgjubAQAAAAAAAAC+0WwGAAAAAOAydfLkSS1evFj19fVavHixTp486bokAECM0WwGAAAAAOAylclk1N3drf7+fnV3dyuTybguCQAQYzSbE6azs1MtLS1avny5hoaGRk3btWuXGhoatGjRIt1+++2OKgQAAAAARMW+ffs0PDwsSRoeHtb+/fsdVwQAiDOazQly6NAh9fX1affu3WpsbNSWLVsumOfuu+/Wrl27tHPnTgcVAgAAAACipKmpSZWVlZKkyspKzZs3z3FFAIA4o9mcID09PWpra5Mktbe3a+/evRfMs3XrVrW0tOjxxx8PuzwAAAAAQMR0dXWptbVV9fX1am1tVVdXl+uSAAAxVuW6ANgzMDCgq666SpKUTqfV398/avrNN9+so0ePSpI++9nPqrm5WTfddNMFy8nn88rn84Xvc7lcgFUjqcgRbCBHsIEcwQZyBL/IEGwIIkczZ87U9u3bfS8H8cF4BBvIEUrhzuYY6uvrU3Nz8wVfxpjCxj0wMKC6urpRvzdlyhRVV1erurpan/nMZ/SrX/2q6PI3bNigdDpd+GpoaAh8nZA85Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5QikVxhjjugjYcejQIT322GP6yU9+oocfflgf+chHdM899xSm53I51dTUSJKWLVum++67TwsXLrxgOcWuTjU0NCibzRZ+H7gUcgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcoRQeo5Egc+fO1axZs9TS0qLZs2dr3bp1kqSOjg5t2rRJmzdv1ve//31VVVVpwYIFRRvNkpRKpZRKpcIsHQlEjmADOYIN5Ag2kCP4RYZgAzmCDeQINpAjlEKzOWEeffTRC362adMmSdLq1au1evXqsEsCAAAAAAAAcBngmc0AAAAAAAAAAN9oNgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMA3ms0AAAAAAAAAAN9oNqOkjRs3qrGxUfPmzXNdCmKMHMEGcgQbyBFsIEfwiwzBBnIEG8gRbCBHGKvCGGNcF4Foy+VySqfTymazqqmpcV0OYoocwQZyBBvIEWwgR/CLDMEGcgQbyBFsIEcYwZ3NAAAAAAAAAADfaDYDAAAAAAAAAHyj2QwAAAAAAAAA8I1mc4IMDg7qlltu0ZQpU/Tmm29eMP3cuXPKZDJqaWnR2rVrHVQIAAAAAAAAIKloNifIpEmT9Mtf/lJLly4tOv3555/Xhz/8Ye3evVvvvfee9u7dG3KFAAAAAAAAAJKKZnOCVFVVafr06SWn9/T0qK2tTZLU3t5OsxkAAAAAAACANVWuC0B4BgYGVFNTI0lKp9Pq7+8vOl8+n1c+ny98n8vlQqkPyUKOYAM5gg3kCDaQI/hFhmADOYIN5Ag2kCOUwp3NMdTX16fm5uYLvko1j0fU1tYWNv6BgQHV1dUVnW/Dhg1Kp9OFr4aGBuvrgOQjR7CBHMEGcgQbyBH8IkOwgRzBBnIEG8gRSqkwxhjXRcCuTCajzs5OzZkzZ9TPt23bpoMHD2r9+vVas2aNVq1apfnz51/w+2OvThljNDQ0pGnTpqmioiLw+pEM5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5Qik0mxPmjjvu0OHDh3XNNdeoo6NDmUxGHR0d2rRpk86dO6fPfe5z+u1vf6u5c+fqO9/5jutyAQAAAAAAACQEzWYAAAAAAAAAgG88sxkAAAAAAAAA4BvNZgAAAAAAAACAb1WuC0C8GWM0ODjougx4NHXq1Eg9sJ8cxRM5gg3kCDZEKUdkKL7IEfyKUoYkchRX5Ag2kCPYMN4c0WyGL++8845mzJjhugx4dOrUKU2fPt11GQXkKJ7IEWwgR7AhSjkiQ/FFjuBXlDIkkaO4IkewgRzBhvHmiGYzfKmurpYknThxQjU1NY6rsSeXy6mhoSGx6zXyuUUFOYoXchQuchQuchQvUcwRGYofchSepOYoihmSyFHckKNwkaNwkaN48Zsjms3wZeR2+pqamkRtWCOSul5R+nMaiRzFFTkKV1LXixyFK6nrFaUckaH4IkfhSep6RSlDEjmKK3IUrqSuFzkKV1LXa7w54j8IBAAAAAAAAAD4RrMZAAAAAAAAAOAbzWb4kkql9NBDDymVSrkuxSrWK1xRrcsv1itcUa3LL9YrXFGtyy/WKzxRrMmGpK6XFM11i2JNNrBe4YpqXX6xXuGKal1+sV7himpdfrFexVUYY4zlmgAAAAAAAAAAlxnubAYAAAAAAAAA+EazGQAAAAAAAADgG81m+NLZ2amWlhYtX75cQ0NDrsuxore3V9OnT9eiRYu0aNEi/f73v3ddki+Dg4O65ZZbNGXKFL355puSpJ/97GeaP3++PvWpT+nEiROOKyRHcUCO3EhSjsiQO+QoXEnMUZIyJJEjV8hR+MhR9JEjN8hR+MhR9FnNkQHG6fXXXzfLly83xhizfv1688wzzziuyI63337bLFmyxHUZ1pw9e9acOnXKrFy50rzxxhtmaGjINDU1mXw+b1599VWzZs0ap/WRo3ggR24kKUdkyB1yFJ6k5ihJGTKGHLlCjsJFjuKBHLlBjsJFjuLBZo64sxnj1tPTo7a2NklSe3u79u7d67gie/bs2aOWlhZ99atflYn5/6FZVVWl6dOnF75/66239PGPf1zV1dVasGCB3njjDYfVkaO4IEfuJCVHZMgtchSOJOcoKRmSyJFL5Cg85CgeyJE75Cg85CgebOaIZjPGbWBgQDU1NZKkdDqt/v5+xxXZceWVV+rXv/61XnnlFZ06dUrbtm1zXZJV539ukjQ8POywGnIUV+QoHEnOERkKDzkKT1JzlOQMSeQoLOQoXOQonshROMhRuMhRPPnJEc1mjFttba1yuZykD0JYV1fnuCI7UqmUJk+erIqKCi1ZskSHDx92XZJV539uklRZWemwGnIUV+QoHEnOERkKDzkKT1JzlOQMSeQoLOQoXOQonshROMhRuMhRPPnJEc3mhCn2QO8R586dUyaTUUtLi9auXev7tW699Va99NJLkqQdO3ZowYIFvpcZBYODg4V/v/LKK7ruuuscVmPfddddpyNHjmhoaEh79uzRjTfe6LQechRP5CgcSc4RGQoPOQpPUnOU5AxJ5Cgs5Chc5CieyFE4yFG4yFE8+clRhYn7Q0Uwyrlz5/THP/5R69atU2dnp+bMmVOYtm3bNh08eFDr16/XmjVr9Nd//de67bbbfL1eZ2enXnvtNc2ePVtPPfWUqqur/a6Cc9u3b9eDDz6oD33oQ7r22mv1ox/9SFVVVa7L8uWOO+7Q4cOHdc0116ijo0MTJ07U448/rokTJ+rHP/6xGhoanNZHjuKBHIUvaTkiQ26Qo3AlMUdJy5BEjlwgR+EjR/FAjsJHjsJHjuLBVo5oNidUJpO5oNn8wAMP6M4779TChQu1detWvf322+rs7HRYJQAAAAAAAICkiHfLHZ6U+1D2fD6vfD5f+N4Yo6GhIU2bNk0VFRWh1Ir4I0ewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUrhmc2XkXIfyr5hwwal0+nC1xVXXKEZM2aMeh4NcCnkCDaQI9hAjmADOYJfZAg2kCPYQI5gAzlCKTxGI6GKPUZj7DObV61apfnz51/wu2OvTuVyOTU0NCibzRbujAYuhRzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRyiFx2gk0MgDvY8ePaqOjg719PRo06ZNuuuuu/Tcc8+ppaVFc+fOLdpolqRUKqVUKhVy1UgacgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcoRSazQn0wgsvjPo+k8lIkqqqqvT00087qAgAAAAAAABA0vHMZgAAAAAAAACAbzSbAQAAAAAAAAC+0WwGAAAAAAAAAPhGsxkAAAAAAAAA4BvNZgAAAAAAAACAbzSbUdLGjRvV2NioefPmuS4FMUaOYAM5gg3kCDaQI/hFhmADOYIN5Ag2kCOMVWGMMa6LQLTlcjml02lls1nV1NS4LgcxRY5gAzmCDeQINpAj+EWGYAM5gg3kCDaQI4zgzmYAAAAAAAAAgG80mwEAAAAAAAAAvtFsBgAAAAAAAAD4RrM5gTo7O9XS0qLly5draGio8PNdu3apoaFBixYt0u233+6wQgAAAAAAAABJQ7M5YQ4dOqS+vj7t3r1bjY2N2rJly6jpd999t3bt2qWdO3c6qhAAAAAAAABAElW5LgB29fT0qK2tTZLU3t6up556SsuWLStM37p1q1577TUtXbpUa9euLbqMfD6vfD5f+D6XywVbNBKJHMEGcgQbyBFsIEfwiwzBBnIEG8gRbCBHKIU7mxNmYGBANTU1kqR0Oq3+/v7CtJtvvllHjx7Vzp079eKLL+rgwYNFl7Fhwwal0+nCV0NDQyi1I1nIEWwgR7CBHMEGcgS/yBBsIEewgRzBBnKEUiqMMcZ1EbDnySef1OTJk7VixQodOHBAXV1deuKJJ4rOl0qltGrVqgumFbs61dDQoGw2W2hkA5dCjmADOYIN5Ag2kCP4RYZgQxA5OnnypDKZjPbt26empiZ1dXVp5syZtkpGBDEewQZyhFJ4jEbC3HrrrXrssce0YsUK7dixQwsWLChMy+VyhQ1+9+7duu+++4ouI5VKKZVKhVIvkoscwQZyBBvIEWwgR/CLDMGGIHKUyWTU3d2t4eFhdXd3K5PJaPv27VZfA9HCeAQbyBFK4TEaCTN37lzNmjVLLS0tOnLkiJYsWaKOjg5J0ubNm9XU1KTbbrtNV199tRYuXOi4WgAAAACAS/v27dPw8LAkaXh4WPv373dcEQAgzrizOYEeffTRUd9v2rRJkrR69WqtXr3aRUkAAAAAysAjDRC2pqamwp3NlZWVmjdvnuuSAAAxxp3NAAAAABARI4806O/vLzzSAAhSV1eXWltbVV9fr9bWVnV1dbkuCQAQY9zZDAAAAAARwSMNELaZM2fyjGYAgDXc2QwAAAAAEdHU1KTKykpJ4pEGAAAgdmg2AwAAAEBE8EgDAAAQZzSbUdLGjRvV2NjI3RTwhRzBBnIEG8gRbCBH8OtSGRp5pME777yj7du3X/Q/Bzx58qQWL16s+vp6LV68WCdPngyqbEQMYxFsIEewgRxhrApjjHFdBKItl8spnU4rm82qpqbGdTmIKXIEG8gRbCBHsIEcwS8bGVq8eLG6u7s1PDysyspKtba28uzdywxjEWwgR7CBHGFEoHc2v/322/p3/+7fqbGxUTfccIP+9Kc/BflyAAAAAHDZ4D8TBAAAURNoszmTyejv//7vdeTIEb388stKpVJBvhyAi+DPLAEACBb7WoTNy38mSD4BAEAYAms2/+///b/1Z3/2Z2ppaZEk1dXVqaqqKqiXA3AJmUxG3d3d6u/vV3d3tzKZjOuSMA7lnihyQnn54TP3j/cQfnnZ15I32ODlPxPkWBAAADdcH/d5eX0btXpuNr///vu6/vrr9eUvf3nUz3fs2KHq6mo9++yzkqS33npLU6ZM0Wc+8xn923/7b/XNb37Tc3HAxbjeWIMS1HrxZ5bR5eUzL/dEkYaHf3F7X2gi+Md7CL+87GvJG2zw8p8JciwIRFfcjjvjjvc7upL62bg+7vPy+lZqNePQ1dVlpk6davr7+40xxhw+fNhMnTrVPPLII4V5Nm/ebOrq6szx48fNmTNnzKJFi8xLL700npeDR/fff79pbm42y5YtM/l8vvDzs2fPmpUrV5rm5mbzpS99qezlZbNZI8lks9lRP+/r6zPt7e2mrq7OtLe3m76+PmvrUI729nZTWVlpJJnKykrT3t4e6usb4+09KHdeL+vl5fVdv19RzVFQgvps6urqjKTCV319va/5vL6+a6VyFIQ4vS/GlP+ZBzFuxU2pHHnZbuCe63wWy1EQ4zk+4PrzDkKY+zRjgjvGLBf7n2CEnSPXkpoN18edSchRnM6Nk8pGjpL62Xg57gtinPPy+jaOUcfVbD579qy59tprzTe+8Q1z4sQJc/XVV5vPf/7zo+bZu3ev+ff//t8Xvv/Wt75lvvWtb43n5eDB66+/bpYvX26MMWb9+vXmmWeeKUz7+c9/br72ta8ZY4xZvXq12bNnT1nLLDVgBHXAWu68UThJ8/IelDtvUE3Ckfe1vr4+Miflxrg/8QlKUA2Hcpcb1Ou7/gzCPBAOaowJ6j0MIhtJPdizMR655npb9CKoBpPrz6tYjrzsa13XHwVBfd5x2T7Cbu64zif7n2DQJLSTDdcXWFyf20b1xiDXN/DAGxvjURDnplG42Ol6Hxj264+r2WyMMd/73vdMXV2dueGGG8xdd91lzp07N2r62bNnzSc+8QnT399vhoeHzZ133mmef/758b4cyrRx40bz9NNPG2OMOXDggPnCF75QmLZu3Trz8ssvG2OM2bJly6g70c935swZk81mC18nTpwo6w6wuro6c+bMGXP69Glz+vRpk8/nC/9ua2szEyZMMJLMhAkTTFtbW2HamTNnRv3exea91DJHlnPmzJlR8x4/fty0tbWZ2tpa09bWZo4fPz5qmef/3vHjx01ra2th3mPHjhV9/TNnzpja2toL3oNi65TP50vOO3aZpdZ/7Dpdapml3ouwuMxRb29v4fNubW01x44dK7nMY8eOjZp35K8x/Oao1GdTzmfe2tpaMke9vb2mtbXV1NXVmba2NtPb21t0mSM5HplvJMfFclTq9YvlqLW1tTBvGCd/5eZoRLHPo5zPvFiOzl/XsWOMnxxdaowb73h07NixotkYmyMv2bzYGDc2RyOvP1Lr+dmMy3h0/sHl2M/x/Pdn7BjT29t7wXsX9HjkJUdjP6tSr19szLExzct+zct4NDafQZ8oehmPvIxF5+et1HvqZSwoNe/FsnCpaV5e30tOxo6z53/e5/9eqWOeUnUXW+6l1jcMQezTgtpugxj/be1/xrtO481/udPC4jVHXtjOXLljh5fzukvlaLz7v/EcjxfLvI39X5SOsc9vOl3qeDiI8SiobJTbcwhqjL3cxqORY+xix7jlfOal3tcgekdBHWOXe67mpXfk5Ziv1OsXW6eRMc7PjYrjbjYPDg6aiRMnmjlz5ph333236DwvvPCCmTNnjvn4xz9u/vZv/3a8LwUPHn74YbNt2zZjjDFvvfWWueeeewrT1qxZYw4dOmSMMaa7u9t85StfKbqMhx56aFSwR7787HguNvCPtxFS7CTNxoDhZcfj5aCk3BOqoJqEYe94XObIS5MwqB2Plxx52fEEcQDjZccTdnOn3ByNKGdn7/WixcgYc7EmYZwOhP2McbaahFEdj8rNUalGVpjjkZcclXuyX+6FmNOnvTU/vTStvFxEDfvil5cclTMWRWG7LbdJOJ592thl+jmZKnUcVWp/V2y5UWg2B7FPC6oREsT4H9QxdrmNv1Lzxq254zVHXpSTOS/7inI/81IXk4q9z0FdtPdygaPc87rxXLQJ669Qy82RlxuDvIw55X42QWdj7Dl3WGPs5TYeeTnn93IxvtzekZccBXVBy8u0cscYL/vqsHM07mbzypUrzcSJE82sWbNCDTMu7rvf/W7hzub9+/ePurP5gQceKNzZ/Oyzz/q+szmoP8UL4k8Ggno+jZf3IIjHWLh+NMbFuMxRUJ93UNmIk7D/rLXcHHkRxJ/NBfX4myBqDWrcivLjWGznKApjTBD71aD21UHNG/Y4G8R4VC7XOXKdTWOCO+4MczxymSGvghj/g9r/BJ25qD2OxXWOgjiOicJY4Hq9wlZujoLaZoI4Nonb+VcQ+YjqMXZQjy1xfYwb1Ptdbpaj/DiYcTWbH3zwQTNt2jRz+PBhM23aNPPEE0/YrgvjNPaZzT/96U8L08Y+s3nv3r1lLdPGc3dcN2VdN7sRbo6i0ARJKtcHcTaeJxfE5xiFkyTX4rQt+R2PojDGBNEIisLFN9djjBdR/Q9LXTdMonBhNi7jbBKetWuM+zHd9cUY103psHMU5HtoeywIajxyvV5BuNQxtu3xNIiLVEEJ6nm/Xt+DuP5/FkHWVW4+onCxMwiuX/9iPDebf/CDH5hJkyaZnp4eY8wHDc3Zs2eboaEh68VhfO6//37T3Nxsli1bZvL5vLn33nuNMR88R3vFihWmubnZfPGLXyx7eUk4EE7qiW6chJmjoD5vsuGezf9oMg5/ZRCnzAV1F3QQ/I5HcRtjyt0+4nTBIAqSsF8LomESt2y4HI+ScIxtjPt9VZwuxgQh7By5PubywnWDK07C/o/dXG83Xri+ySCoC75BsHHRIk5cv99Rfl89NZtfeOEFU11dbbZu3Vr4WTabNVdccYX54Q9/aL04RENSDoThFjmCDaVy5HpHD29cn2BcbuOR67s+kioJOYrTxbegcGdz/Lm+GOP6GCTsHMVpG49Tra7ZyFGcLkR44fovv+LUxL/c9muu3+8oK7vZfODAATN58mTz7W9/+4JpX//6183HPvYxc+7cOavFIRoutwEDwSBHsCHsP81CMFyfYDAewQZylAwuxyMyFG1BPL4tCOQINoT96Mw4cf2XX3Fq4l9u45Hr9zvKKowxRsBF5HI5pdNpZbNZ1dTUuC4HMUWOYEOpHJ08eVKZTEb79+/XvHnz1NXVpZkzZzqsFFHGeAQbyBH8IkPJ4PoYhBzBBnJUmpdtPIjxwPUY4wU5wogq1wUAAODXzJkztX37dtdlAACAywzHIECyednGgxgPGGMQRxNcFwAAAAAAAAAAiD+azShp48aNamxs1Lx581yXghgjR7CBHMEGcgQbyBH8IkOwgRzBBnIEG8gRxuKZzbgknrsDG8gRbCBHsIEcwQZyBL/IEGwgR7CBHMEGcoQR3NkMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9mcMJ2dnWppadHy5cs1NDQ0atquXbvU0NCgRYsW6fbbb3dUIQAAAAAAAIAkotmcIIcOHVJfX592796txsZGbdmy5YJ57r77bu3atUs7d+50UCEAAAAAAACApKpyXQDs6enpUVtbmySpvb1dTz31lJYtWzZqnq1bt+q1117T0qVLtXbt2qLLyefzyufzhe9zuVxwRSOxyBFsIEewgRzBBnIEv8gQbCBHsIEcwQZyhFK4szlBBgYGVFNTI0lKp9Pq7+8fNf3mm2/W0aNHtXPnTr344os6ePBg0eVs2LBB6XS68NXQ0BB47UgecgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcoZQKY4xxXQS86evr09KlSy/4+eLFi9XQ0KAVK1bowIED6urq0hNPPFF0GU8++aRSqZRWrVp1wbRiV6caGhqUzWYLzWzgUsgRbCBHsIEcwQZyBL/IEGwgR7CBHMEGcoRSeIxGDM2aNUuvvvrqBT8/dOiQHnvsMa1YsUI7duzQggULRk3P5XKFDX737t267777ii4/lUoplUrZLxyXFXIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHKEUHqORIHPnztWsWbPU0tKiI0eOaMmSJZKkjo4OSdLmzZvV1NSk2267TVdffbUWLlzoslwAAAAAAAAACcKdzQnz6KOPXvCzTZs2SZJWr16t1atXh10SAAAAAAAAgMsAdzYDAAAAAAAAAHyj2QwAAAAAAAAA8I1mMwAAAAAAAADAN5rNAAAAAAAAAADfaDajpI0bN6qxsVHz5s1zXQpijBzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRxirwhhjXBeBaMvlckqn08pms6qpqXFdDmKKHMEGcgQbyBFsIEfwiwzBBnIEG8gRbCBHGMGdzQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZnOCDA4O6pZbbtGUKVP05ptvXjD93LlzymQyamlp0dq1ax1UCAAAAAAAACCpaDYnyKRJk/TLX/5SS5cuLTr9+eef14c//GHt3r1b7733nvbu3RtyhQAAAAAAAACSimZzglRVVWn69Oklp/f09KitrU2S1N7eTrMZAAAAAAAAgDVVrgtAeAYGBlRTUyNJSqfT6u/vLzpfPp9XPp8vfJ/L5UKpD8lCjmADOYIN5Ag2kCP4RYZgAzmCDeQINpAjlMKdzTHU19en5ubmC75KNY9H1NbWFjb+gYEB1dXVFZ1vw4YNSqfTha+Ghgbr64DkI0ewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUqpMMYY10XArkwmo87OTs2ZM2fUz7dt26aDBw9q/fr1WrNmjVatWqX58+df8Ptjr04ZYzQ0NKRp06apoqIi8PqRDOQINpAj2ECOYAM5gl9kCDaQI9hAjmADOUIpNJsT5o477tDhw4d1zTXXqKOjQ5lMRh0dHdq0aZPOnTunz33uc/rtb3+ruXPn6jvf+Y7rcgEAAAAAAAAkBM1mAAAAAAAAAIBvPLMZAAAAAAAAAOAbzWYAAAAAAAAAgG9VrgtAvBljNDg46LoMeDR16tRIPbCfHMUTOYIN5Ag2RClHZCi+yBH8ilKGJHIUV+QINpAj2DDeHNFshi/vvPOOZsyY4boMeHTq1ClNnz7ddRkF5CieyBFsIEewIUo5IkPxRY7gV5QyJJGjuCJHsIEcwYbx5ohmM3yprq6WJJ04cUI1NTWOq7Enl8upoaEhses18rlFBTmKF3IULnIULnIUL1HMERmKH3IUnqTmKIoZkshR3JCjcJGjcJGjePGbI5rN8GXkdvqamppEbVgjkrpeUfpzGokcxRU5CldS14schSup6xWlHJGh+CJH4UnqekUpQxI5iityFK6krhc5CldS12u8OeI/CAQAAAAAAAAA+EazGQAAAAAAAADgG81m+JJKpfTQQw8plUq5LsUq1itcUa3LL9YrXFGtyy/WK1xRrcsv1is8UazJhqSulxTNdYtiTTawXuGKal1+sV7himpdfrFe4YpqXX6xXsVVGGOM5ZoAAAAAAAAAAJcZ7mwGAAAAAAAAAPhGsxkAAAAAAAAA4BvNZvjS2dmplpYWLV++XENDQ67LsaK3t1fTp0/XokWLtGjRIv3+9793XZIvg4ODuuWWWzRlyhS9+eabkqSf/exnmj9/vj71qU/pxIkTjiskR3FAjtxIUo7IkDvkKFxJzFGSMiSRI1fIUfjIUfSRIzfIUfjIUfRZzZEBxun11183y5cvN8YYs379evPMM884rsiOt99+2yxZssR1GdacPXvWnDp1yqxcudK88cYbZmhoyDQ1NZl8Pm9effVVs2bNGqf1kaN4IEduJClHZMgdchSepOYoSRkyhhy5Qo7CRY7igRy5QY7CRY7iwWaOuLMZ49bT06O2tjZJUnt7u/bu3eu4Inv27NmjlpYWffWrX5WJ+f+hWVVVpenTpxe+f+utt/Txj39c1dXVWrBggd544w2H1ZGjuCBH7iQlR2TILXIUjiTnKCkZksiRS+QoPOQoHsiRO+QoPOQoHmzmiGYzxm1gYEA1NTWSpHQ6rf7+fscV2XHllVfq17/+tV555RWdOnVK27Ztc12SVed/bpI0PDzssBpyFFfkKBxJzhEZCg85Ck9Sc5TkDEnkKCzkKFzkKJ7IUTjIUbjIUTz5yRHNZoxbbW2tcrmcpA9CWFdX57giO1KplCZPnqyKigotWbJEhw8fdl2SVed/bpJUWVnpsBpyFFfkKBxJzhEZCg85Ck9Sc5TkDEnkKCzkKFzkKJ7IUTjIUbjIUTz5yRHN5oQp9kDvEefOnVMmk1FLS4vWrl3r+7VuvfVWvfTSS5KkHTt2aMGCBb6XGQWDg4OFf7/yyiu67rrrHFZj33XXXacjR45oaGhIe/bs0Y033ui0HnIUT+QoHEnOERkKDzkKT1JzlOQMSeQoLOQoXOQonshROMhRuMhRPPnJUYWJ+0NFMMq5c+f0xz/+UevWrVNnZ6fmzJlTmLZt2zYdPHhQ69ev15o1a/TXf/3Xuu2223y9Xmdnp1577TXNnj1bTz31lKqrq/2ugnPbt2/Xgw8+qA996EO69tpr9aMf/UhVVVWuy/Lljjvu0OHDh3XNNdeoo6NDEydO1OOPP66JEyfqxz/+sRoaGpzWR47igRyFL2k5IkNukKNwJTFHScuQRI5cIEfhI0fxQI7CR47CR47iwVaOaDYnVCaTuaDZ/MADD+jOO+/UwoULtXXrVr399tvq7Ox0WCUAAAAAAACApIh3yx2elPtQ9nw+r3w+X/jeGKOhoSFNmzZNFRUVodSK+CNHsIEcwQZyBBvIEfwiQ7CBHMEGcgQbyBFK4ZnNl5FyH8q+YcMGpdPpwtcVV1yhGTNmjHoeDXAp5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5Qik8RiOhij1GY+wzm1etWqX58+df8Ltjr07lcjk1NDQom80W7owGLoUcwQZyBBvIEWwgR/CLDMEGcgQbyBFsIEcohcdoJNDIA72PHj2qjo4O9fT0aNOmTbrrrrv03HPPqaWlRXPnzi3aaJakVCqlVCoVctVIGnIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHKEUms0J9MILL4z6PpPJSJKqqqr09NNPO6gIAAAAAAAAQNLxzGYAAAAAAAAAgG80mwEAAAAAAAAAvtFsBgAAAAAAAAD4RrMZAAAAAAAAAOAbzWYAAAAAAAAAgG80m1HSxo0b1djYqHnz5rkuBTFGjmADOYIN5Ag2kCP4RYZgAzmCDeQINpAjjFVhjDGui0C05XI5pdNpZbNZ1dTUuC4HMUWOYAM5gg3kCDaQI/hFhmADOYINNnJ08uRJZTIZ7du3T01NTerq6tLMmTMtV4ooYzzCCO5sBgAAAAAAwLhlMhl1d3erv79f3d3dymQyrksC4AjNZgAAAAAAAIzbvn37NDw8LEkaHh7W/v37HVcEwBWazQAAAAAAABi3pqYmVVZWSpIqKyt5fi9wGaPZnECdnZ1qaWnR8uXLNTQ0VPj5rl271NDQoEWLFun22293WCEAAAAAAEiKrq4utba2qr6+Xq2trerq6nJdEgBHaDYnzKFDh9TX16fdu3ersbFRW7ZsGTX97rvv1q5du7Rz505HFQIAAAAAgCSZOXOmtm/frnfeeUfbt2/nPwcELmM0mxOmp6dHbW1tkqT29nbt3bt31PStW7eqpaVFjz/+uIvyAAAAAAAAACRUlesCYNfAwICuuuoqSVI6nVZ/f39h2s0336yjR49Kkj772c+qublZN9100wXLyOfzyufzhe9zuVzAVSOJyBFsIEewgRzBBnIEv8gQbCBHsIEcwQZyhFK4szlhamtrCxv4wMCA6urqCtOmTJmi6upqVVdX6zOf+Yx+9atfFV3Ghg0blE6nC18NDQ2h1I5kIUewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUqpMMYY10XAnkOHDumxxx7TT37yEz388MP6yEc+onvuuUfSB1eZampqJEnLli3Tfffdp4ULF16wjGJXpxoaGpTNZgu/D1wKOYIN5Ag2kCPYQI7gFxmCDeQINpAj2ECOUAqP0UiYuXPnatasWWppadHs2bO1bt06dXR0aNOmTdq8ebO+//3vq6qqSgsWLCjaaJakVCqlVCoVcuVIGnIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHKEUms0J9Oijj476ftOmTZKk1atXa/Xq1S5KAgAAAAAAAJBwPLMZAAAAAAAAAOAbzWYAAAAAAAAAgG80mwEAAAAAAAAAvtFsBgAAAAAAAAD4RrMZJW3cuFGNjY2aN2+e61IQY+QINpAj2ECOYAM5gl9kCDaQI9hAjmADOcJYFcYY47oIRFsul1M6nVY2m1VNTY3rchBT5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5wojA7mw+evSoPvGJTxS+Jk2apOeeey6olwMAAAAAAAAAOFQV1IL/4i/+QocPH5Ykvfvuu/rzP/9ztba2BvVyAAAAAAAAAACHQnlm8y9+8Qvdfvvtmjx5chgvB1w2Tp48qcWLF6u+vl6LFy/WyZMnrcwL//hsAMA7xkMAAAAg3jw3m99//31df/31+vKXvzzq5zt27FB1dbWeffbZC35n8+bNuvvuu8dfJRCioJqE5c7rZZmZTEbd3d3q7+9Xd3e3MpmMlXlRXBQ+myByRGMcQJCCGjsZjwAAAIAIMuPQ1dVlpk6davr7+40xxhw+fNhMnTrVPPLIIxfMm81mzbRp08zp06fH81IYh/vvv980NzebZcuWmXw+X/j52bNnzcqVK01zc7P50pe+VPbystmskWSy2WwQ5Yair6/PtLe3m7q6OtPe3m76+vpKztve3m4qKyuNJFNZWWna29tDndfLMuvq6oykwld9fb2VeYMQ1RwFlY2gPpsgchTUvEGIao4QL+SoOC/jYRTGTsajy0tQ+fQyr21kCDaQI9gQdo6CGHuDGs9d7ie8cl3r5TYeuX6/o3xsNK5m89mzZ821115rvvGNb5gTJ06Yq6++2nz+858vOu+Pf/xjs3z58vG8DMbh9ddfL7zf69evN88880xh2s9//nPzta99zRhjzOrVq82ePXvKWmZUdzxRONENYt6gTrSTcFIep2wE9dkEkaMkXLQIYucZhZ13XBomcWMjR+WKwmdY7nJdj1tBLjcIxXIUhc87TuJ0M0AQLreTcgSDHMGGsHNU7tgb1H4iiFq91huEJJzzx0lQ2XB97G4jR+NqNhtjzPe+9z1TV1dnbrjhBnPXXXeZc+fOFZ3vzjvvNL/4xS/G+zLwaOPGjebpp582xhhz4MAB84UvfKEwbd26debll182xhizZcuWoneiG2PMmTNnTDabLXydOHHioifltbW1prW11Rw/ftycOXPGnD592pw+fdrk8/nCv8+cOVP2tLa2NjNhwgQjyUyYMMG0tbUV/b1i840s58yZM6Pmra2tHXVCWldXN2qZ5/9eua9fbN7W1taS69va2lp03kstc+T1x65TPp83x44dM62traaurs60tbWZ3t7eouuUz+dNb2+vaW1tNfX19aHs+ILI0cU+m/Pf87Hv9fnZGLvMYtkolaNLZeP83zt+/Pioz+bYsWMlc1TqcwwrR6VyXCxH579+GAcw5ebo/B3ipT7zIHLkZTzykqMgxqORbNbW1l4ym6XmLZajUut7sWlhsZ2j3t5e09bWVhi3ent7S+7XgsrR8ePHCzW0tbWZ48eP+87RxfaVY3N0qf1qGPu1KI5HQYxFQW63I+/3yLyl3m8vr19qmX72afl8vuT+uth4U2zeUmPR2HmDvGhR7lg0otg2Xez9KXeal8/RxhjvJ0de1nfkGLdYjoNepyjv04I6VwtiPPKyTwtqPPKSo2Lz+hljz19mWE1Kr+ORF+WMXeUecwR1XudlO/dzzHOx/kAQY1eY+zRjgtmvHTt2bNRx9vnjwXjHo2LLtHGMHVQ2yj0+KvX65WRjZN5imbKRo3E3mwcHB83EiRPNnDlzzLvvvlt0noGBATNjxoxRj3JAsB5++GGzbds2Y4wxb731lrnnnnsK09asWWMOHTpkjDGmu7vbfOUrXym6jIceemhUsEa+/DR3vAwY5W6wcWsSnn8AcbGdSanXj9uBcBA5Kveg5GLZGLvM8TR3Rj6bi+14Sn0exT7z8ZxQ2cxRlC9alJujsXc4XuwzDyJHXsYjLxe/vBzAXOxg4/y6/TSwy2kSRvGEynaOih0Altp2g8qRl/1auTny0vz0kqOg9mtRHI+CGIuC3G7LvdgY1IX4i534nL/MUidepXJSahstlq8wL1qUOxZ5aRJ6OcYez3Zr86KFl9cP6qJFuU3CM2fOlLywGJd9WlDnakGMR64vxHvNUbnjUZRv6Cg3R+NR7LMb7zFH0Od1Ni/aezke95I5L+Px+bVGMUc2s+FlPIrCjUFeslHu8VEQx3y2xqNxN5tXrlxpJk6caGbNmmVOn+Z5zFHx3e9+t3Bn8/79+0fd2fzAAw8U7mx+9tlnfd/Z7PqRAuP5k4WwTkjhNkdkIznKzZHrMSZO87p+nrjXeW2wnaMovC9B1OBlPLwcx85ychSFz9v1I76C2j6CymeYWXa5TzPG/dgVhUfquD5esMH1uVqcxhjX80b5UXXl5igo5Y69Qe0norDccj/zKJ/bBpGjOG2LQWXD9bG7jRyNq9n84IMPmmnTppnDhw+badOmmSeeeGI8i0EAxj6z+ac//Wlh2thnNu/du7esZZZ67k5QByXlBvtyPNGNMxs5Ihu41LN2be48o7DzDmLeKDQxovisXWPcn/hE4SQJ5bvYM5tdft6um2lks3ylxqIoNPeDqCEKDWTXTYwghH2uFqcxxvW8Qb1+EKL6rN2g9hNBbbdB7NtdjzFe2MhRUrfFqF4ID4rnZvMPfvADM2nSJNPT02OM+aChOXv2bDM0NGS9OIzP/fffb5qbm82yZctMPp839957rzHmg//YccWKFaa5udl88YtfLHt5Npo7rneecM9GjoCoHgjHSdyaYUHwm6MojFtRqOFyF+Z45Poi1eV2ghQWG03CoJr7QdQQhQtqrpsYQQj7XC1OY4zreeM0dl5ux9iut1tjgrnJwTUb/wn35b4tJoWnZvMLL7xgqqurzdatWws/y2az5oorrjA//OEPrReHaLCx42GDxeV2AINgkKPoitNBHDmCDeQIfoX51zpeua4hTuuVhH2a63WAe5fbPi1OmY9TrTYuoiIZKowxRmU4ePCgPvnJT+rhhx/W2rVrR037L//lv+if//mf9a//+q+qrKwsZ3GIkVwup3Q6rWw2q5qaGtflIKbIEWwgR7CBHMEGcgS/yBBsIEewgRzBhlI5qq+vV39//6jv33nnHRclIiQTyp3xpptu0rvvvntBo1mS/v7v/17/5//8HxrNAAAAAAAAACRJTU1NhX5hZWWl5s2b57giBK3sZjMAAAAAAAAAlKurq0utra2qr69Xa2ururq6XJeEgFW5LgAAAAAAAABA8sycOVPbt293XQZCxJ3NKGnjxo1qbGzkTxzgCzmCDeQINpAj2ECO4BcZgg3kCDaQI9hAjjBW2f9BIC5f/GcBsIEcwQZyBBvIEWwgR/CLDMEGcgQbyBFsIEcYwZ3NAAAAAAAAAADfaDYDAAAAAAAAAHyj2QwAAAAAAAAA8I1mMwAAAAAAAADAN5rNCdPZ2amWlhYtX75cQ0NDo6bt2rVLDQ0NWrRokW6//XZHFQIAAAAAAABIIprNCXLo0CH19fVp9+7damxs1JYtWy6Y5+6779auXbu0c+dOBxUCAAAAAAAASKoq1wXAnp6eHrW1tUmS2tvb9dRTT2nZsmWj5tm6datee+01LV26VGvXri26nHw+r3w+X/g+l8sFVzQSixzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRyiFO5sTZGBgQDU1NZKkdDqt/v7+UdNvvvlmHT16VDt37tSLL76ogwcPFl3Ohg0blE6nC18NDQ2B147kIUewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUqpMMYY10XAm76+Pi1duvSCny9evFgNDQ1asWKFDhw4oK6uLj3xxBNFl/Hkk08qlUpp1apVF0wrdnWqoaFB2Wy20MwGLoUcwQZyBBvIEWwgR/CLDMEGcgQbyBFsIEcohcdoxNCsWbP06quvXvDzQ4cO6bHHHtOKFSu0Y8cOLViwYNT0XC5X2OB3796t++67r+jyU6mUUqmU/cJxWSFHsIEcwQZyBBvIEfwiQ7CBHMEGcgQbyBFK4TEaCTJ37lzNmjVLLS0tOnLkiJYsWSJJ6ujokCRt3rxZTU1Nuu2223T11Vdr4cKFLssFAAAAAAAAkCDc2Zwwjz766AU/27RpkyRp9erVWr16ddglAQAAAAAAALgMcGczAAAAAAAAAMA3ms0AAAAAAAAAAN9oNgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzStq4caMaGxs1b94816UgxsgRbCBHsIEcwQZyBL/IEGwgR7CBHMEGcoSxKowxxnURiLZcLqd0Oq1sNquamhrX5SCmyBFsIEewgRzBBnIEv8gQbCBHsIEcwQZyhBHc2QwAAAAAAAAA8I1mMwAAAAAAAADAN5rNAAAAAAAAAADfaDYnyODgoG655RZNmTJFb7755gXTz507p0wmo5aWFq1du9ZBhQAAAAAAAACSimZzgkyaNEm//OUvtXTp0qLTn3/+eX34wx/W7t279d5772nv3r0hVwgAAAAAAAAgqWg2J0hVVZWmT59ecnpPT4/a2tokSe3t7TSbAQAAAAAAAFhT5boAhGdgYEA1NTWSpHQ6rf7+/qLz5fN55fP5wve5XC6U+pAs5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5Qinc2RxDfX19am5uvuCrVPN4RG1tbWHjHxgYUF1dXdH5NmzYoHQ6XfhqaGiwvg5IPnIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHKGUCmOMcV0E7MpkMurs7NScOXNG/Xzbtm06ePCg1q9frzVr1mjVqlWaP3/+Bb8/9uqUMUZDQ0OaNm2aKioqAq8fyUCOYAM5gg3kCDaQI/hFhmADOYIN5Ag2kCOUQrM5Ye644w4dPnxY11xzjTo6OpTJZNTR0aFNmzbp3Llz+tznPqff/va3mjt3rr7zne+4LhcAAAAAAABAQtBsBgAAAAAAAAD4xjObAQAAAAAAAAC+0WwGAAAAAAAAAPhW5boAxJsxRoODg67LgEdTp06N1AP7yVE8kSPYQI5gQ5RyRIbiixzBryhlSCJHcUWOYAM5gg3jzRHNZvjyzjvvaMaMGa7LgEenTp3S9OnTXZdRQI7iiRzBBnIEG6KUIzIUX+QIfkUpQxI5iityBBvIEWwYb45oNsOX6upqSdKJEydUU1PjuBp7crmcGhoaErteI59bVJCjeCFH4SJH4SJH8RLFHJGh+CFH4UlqjqKYIYkcxQ05Chc5Chc5ihe/OaLZDF9GbqevqalJ1IY1IqnrFaU/p5HIUVyRo3Aldb3IUbiSul5RyhEZii9yFJ6krleUMiSRo7giR+FK6nqRo3Aldb3GmyP+g0AAAAAAAAAAgG80mwEAAAAAAAAAvtFshi+pVEoPPfSQUqmU61KsYr3CFdW6/GK9whXVuvxivcIV1br8Yr3CE8WabEjqeknRXLco1mQD6xWuqNblF+sVrqjW5RfrFa6o1uUX61VchTHGWK4JAAAAAAAAAHCZ4c5mAAAAAAAAAIBvNJsBAAAAAAAAAL7RbAYAAAAAAAAA+EazGb50dnaqpaVFy5cv19DQkOtyrOjt7dX06dO1aNEiLVq0SL///e9dl+TL4OCgbrnlFk2ZMkVvvvmmJOlnP/uZ5s+fr0996lM6ceKE4wrJURyQIzeSlCMy5A45ClcSc5SkDEnkyBVyFD5yFH3kyA1yFD5yFH1Wc2SAcXr99dfN8uXLjTHGrF+/3jzzzDOOK7Lj7bffNkuWLHFdhjVnz541p06dMitXrjRvvPGGGRoaMk1NTSafz5tXX33VrFmzxml95CgeyJEbScoRGXKHHIUnqTlKUoaMIUeukKNwkaN4IEdukKNwkaN4sJkj7mzGuPX09KitrU2S1N7err179zquyJ49e/aopaVFX/3qV2WMcV2OL1VVVZo+fXrh+7feeksf//jHVV1drQULFuiNN95wWB05igty5E5SckSG3CJH4UhyjpKSIYkcuUSOwkOO4oEcuUOOwkOO4sFmjmg2Y9wGBgZUU1MjSUqn0+rv73dckR1XXnmlfv3rX+uVV17RqVOntG3bNtclWXX+5yZJw8PDDqshR3FFjsKR5ByRofCQo/AkNUdJzpBEjsJCjsJFjuKJHIWDHIWLHMWTnxzRbE6YYs9YGXHu3DllMhm1tLRo7dq1vl+rtrZWuVxO0gchrKur873MKEilUpo8ebIqKiq0ZMkSHT582HVJVp3/uUlSZWWlw2rIUVyRo3AkOUdkKDzkKDxJzVGSMySRo7CQo3CRo3giR+EgR+EiR/HkJ0c0mxNm0qRJ+uUvf6mlS5deMO3555/Xhz/8Ye3evVvvvfee7z9duPXWW/XSSy9Jknbs2KEFCxb4Wl5UDA4OFv79yiuv6LrrrnNYjX3XXXedjhw5oqGhIe3Zs0c33nij03rIUTyRo3AkOUdkKDzkKDxJzVGSMySRo7CQo3CRo3giR+EgR+EiR/HkJ0dVAdYFB8Y+Y+V8PT09uvPOOyX9/5+Tc9ttt437tebOnatZs2appaVFs2fP1rp168a9rCh59dVX9eCDD+pDH/qQrr32Wv1//9//57ok3+644w4dPnxYR48eVUdHh/7mb/5Gn/zkJzVx4kT9+Mc/dlobOYoPchS+pOWIDLlBjsKT1BwlLUMSOXKBHIWLHMUHOQofOQoXOYoPWzmqMHF/gjWKymQy6uzs1Jw5cwo/u/fee/X5z39en/jEJ/Q//sf/0P/8n/9T3/zmNy/43Xw+r3w+X/jeGKOhoSFNmzZNFRUVodSP+CNHsIEcwQZyBBvIEfwiQ7CBHMEGcgQbyBFK4TEal5Fyn5OzYcMGpdPpwtcVV1yhGTNmjPoTAeBSyBFsIEewgRzBBnIEv8gQbCBHsIEcwQZyhFK4szmhit3ZvG3bNh08eFDr16/XmjVrtGrVKs2fP/+C3x17dSqXy6mhoUHZbHbU/0QJXAw5gg3kCDaQI9hAjuAXGYIN5Ag2kCPYQI5QCs9sTqCxz1jp6enRpk2bdNddd+m5555TS0uL5s6dW7TRLH3wP2qmUqmQq0bSkCPYQI5gAzmCDeQIfpEh2ECOYAM5gg3kCKXQbE6gF154YdT3mUxG0gf/eeDTTz/toCIAAAAAAAAAScczmwEAAAAAAAAAvtFsBgAAAAAAAAD4RrMZAAAAAAAAAOAbzWYAAAAAAAAAgG80mwEAAAAAAAAAvtFsRkkbN25UY2Oj5s2b57oUxBg5gg3kCDaQI9hAjuAXGYIN5Ag2kCPYQI4wVoUxxrguAtGWy+WUTqeVzWZVU1PjuhzEFDmCDeQINpAj2ECO4BcZgg3kCDaQI9hAjjCCO5sBAAAAAAAAAL7RbAYAAAAAAAAA+EazGQAAAAAAAADgG83mBOrs7FRLS4uWL1+uoaGhws937dqlhoYGLVq0SLfffrvDCgEAAAAAAAAkDc3mhDl06JD6+vq0e/duNTY2asuWLaOm33333dq1a5d27tzpqEIAAAAAAAAASUSzOWF6enrU1tYmSWpvb9fevXtHTd+6dataWlr0+OOPuygPAAAAAAAAQEJVuS4Adg0MDOiqq66SJKXTafX39xem3XzzzTp69Kgk6bOf/ayam5t10003XbCMfD6vfD5f+D6XywVcNZKIHMEGcgQbyBFsIEfwiwzBBnIEG8gRbCBHKIU7mxOmtra2sIEPDAyorq6uMG3KlCmqrq5WdXW1PvOZz+hXv/pV0WVs2LBB6XS68NXQ0BBK7UgWcgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcoZQKY4xxXQTsOXTokB577DH95Cc/0cMPP6yPfOQjuueeeyR9cJWppqZGkrRs2TLdd999Wrhw4QXLKHZ1qqGhQdlstvD7wKWQI9hAjmADOYIN5Ah+kSHYQI5gAzmCDeQIpfAYjYSZO3euZs2apZaWFs2ePVvr1q1TR0eHNm3apM2bN+v73/++qqqqtGDBgqKNZklKpVJKpVIhV46kIUewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUqh2ZxAjz766KjvN23aJElavXq1Vq9e7aIkAAAAAAAAAAnHM5sBAAAAAAAAAL7RbAYAAAAAAAAA+EazGQAAAAAAAADgG81mAAAAAAAAAIBvNJsBAAAAAAAAAL7RbEZJGzduVGNjo+bNm+e6FMQYOYIN5Ag2kCPYQI7gFxmCDeQINpAj2ECOMFaFMcYEtfB//Md/1D/90z/JGKNPf/rTevzxx1VRURHUyyEguVxO6XRa2WxWNTU1rstBTJEj2ECOYAM5gg3kCH6RIdhAjmADOYIN5AgjAruz+fe//72eeOIJHTx4UG+88YYOHjyo//W//ldQLwcAAAAAAAAAcCjQx2icO3dOZ86c0dmzZ3X27FnNmDEjyJcDAEnSyZMntXjxYtXX12vx4sU6efKk65KAxGO7AwDYwj4FAID48txsfv/993X99dfry1/+8qif79ixQ9XV1Xr22WclSdOnT1dnZ6dmz56tq666Sp/+9Kf10Y9+1E7ViB3XB4yuXx/hymQy6u7uVn9/v7q7u5XJZErOm9RsJHW9EF1etru4Y/sCSovb9hG3ei8Xl9M+JQritB3EqVYA8cMYY4kZh66uLjN16lTT399vjDHm8OHDZurUqeaRRx4pzNPf32/a2trMH/7wB/Pee++ZT37yk+bll18ez8vBo/vvv980NzebZcuWmXw+X/j52bNnzcqVK01zc7P50pe+VPbystmskWSy2ey4a2pvbzeVlZVGkqmsrDTt7e3jXlYcXx92clSuuro6I6nwVV9fX3LepGYjqesVZo7gjZftzjW/OYrC9tXX12fa29tNXV2daW9vN319fVbmjRPX6+U3R67rD0oUtg8vXNbLPq20OO1TXAv7XM312BWnWuOE8Qg22MiR6+02qOMC1+sVtnE1m8+ePWuuvfZa841vfMOcOHHCXH311ebzn//8qHk2b9486mff+ta3zH/7b//NX7W4pNdff90sX77cGGPM+vXrzTPPPFOY9vOf/9x87WtfM8YYs3r1arNnz56ylmljwAjigNHLxurl9eM0CMSp1jAPYLzsIJJ6MpPU9SqVoyC2haQ284KqNU4nf35zFIXty8v7HcRBs+vP0Bj3Tc1iOfLyvsRpmwnqmCuoGrxwuT2H3dwJar8WxGcT1Pbh+nghCGGfq7kee4Oq1XU2kpCjOK1vnMZD16/vRRIufgXVO3I9doZtXM1mY4z53ve+Z+rq6swNN9xg7rrrLnPu3LlR03t6eswnPvEJc/r0aXPu3Dlzxx13mOeee853wbi4jRs3mqefftoYY8yBAwfMF77whcK0devWFe4u37Jly6g70c935swZk81mC18nTpy46El5bW2taW1tNcePHzdnzpwxp0+fNqdPnzb5fL7w77a2NjNhwgQjyUyYMMG0tbUVpp05c2bU7x0/fty0traa2tpa09bWZo4dO1b2MkeWc+bMmbJfP5/Pj/q9S81bqm5b087/fmxtY6eNrbW1tfWSvxeWcnM0otg6j/d97e3tNW1tbaaurs60traaY8eOecrmxd5zv9PCylGpHNtap6jl6Pyd99jPcez7c+zYMdPW1jZq7Cr2vra2tpbMhp8cHT9+vPD6bW1to15/7Hte7njoJStexrhSr18sK8eOHTOtra2mrq7OtLW1md7e3pI5Ov+9DeNgy3aOxmajtbX1kuPRSN4uNh552QZra2tHHQjX1dWV/L1Lzet12/CaI9vj6Mi0sesVdJOwnBx5GYsu9rmEtd2W+357ef1SxyZ+j42KbXel6h673fX29pZc3zDHoyCOsYPabr0cR4znePRSx0al9inFslIsGzZyVO52E9V92ohy3nMv52rl7lOiMB6VqtVvjsqt28u2cbnlKIjjCC/H2EHt17zkqLe3d9T20dvbm/gclWNss7eurs5K5so97giqz+Rl7BzZB56fjWJ1ezlXHO953Xib+ONuNg8ODpqJEyeaOXPmmHfffbfoPF/96lfN9ddfbxobG80Xv/hF8/7774/35VCmhx9+2Gzbts0YY8xbb71l7rnnnsK0NWvWmEOHDhljjOnu7jZf+cpXii7joYceGrURjHzZaO6MNP9sHAgX21gvteMZOWC92I7HyyAw3pOmi03zMgiUqrXYjmdkZxbWVc5yczSinAOYIN7zYtm0cQATRJOw1EHJxXI0knkbB/dRzlEQByUXG2P8jEeuL355GeOCumgRdpPQdo7GXtAaaWQVe8+9XLQo1jQKM0dBNRu8ZKXUwXUUTqjKyVFQJ0iut9vxnCCV0yQsd59W6pinVN2lLggVW9+R7bm+vj7w/VoQx9hB5ehiTbrxHo8GdWx0sdf3k6O479PGc9HC5rlaUONRqWPccl7/Yk1CLzkqt0no5VwtqjkaUezzGPv+eLmI6udCuI1jI1vjoZ8clXvxK0k5KkdQF+6D6A94ufkjiAscYVxEHu8x9ribzStXrjQTJ040s2bNMqdPh3eXGy7uu9/9buHO5v3794+6s/mBBx4o3Nn87LPP+r6zOag/Oyx3uUH9GYLrP9sL6k+jw/6zjXJzFKc/Cwrq/Xb95zeuX/9iys2Rl7qCGGOCeH2v8wYxxgQ1zichR+UK+s99y2mQlTtvFP40Oaj3wIZychRU/UFtt0GMG15EYZwNUxDH2EFtt0HMG7ccud4+SnG5TzPG29hVbj6DOsYPapwNIvNRzZEXrt/DOI2HXuq93HIUxHYbpccI2hw7gzpesHEcNa5m84MPPmimTZtmDh8+bKZNm2aeeOKJ8SwGARj7zOaf/vSnhWljn9m8d+/espZZ6rk7rg8YgzrJdH1QMp6TRJsDVlBs5CjsnedYUTj5C+JzdP36XlzqWbtBHJTYbOZ5ef2g5g2qVi/CbhKOZSNH5YrT9hW3RqlrF3tmc9KOTYJar6COeVwfL5Qr7GOjoPZrQVzQ8sL1/jqq+7QojKdBNBSDEmQT3XY2g2Dzmc1xuhDuajz0Uu/lliMvyl3fuJ3TBDF2ht138dxs/sEPfmAmTZpkenp6jDEfNDRnz55thoaGPL84gnH//feb5uZms2zZMpPP5829995rjPngP3ZcsWKFaW5uNl/84hfLXl6YJ+VBLjcIQTQfgxoIXR/E2TgQdn3QHNQA7fo/ZXH9+l6EfSAchKAOGIPYPly/V0EJ80A4Tg2yKDQUXb8HXoR9QlUu1+OGF3E7+bPNxjF2XNbVmHht38a43z7KFfaNQV64vhARlCi8t7ZFdZ8WVAM5CuJWbzmimqO4jTHlZiMKF01K8dRsfuGFF0x1dbXZunVr4WfZbNZcccUV5oc//KHnF0c8RHXAiIIgmo9JbeIn4c5m11e1vS63XK5f3wvGo9Jcbx9xEtUcud6+ghKnMcaLqObIC9fjRpw+7yAkIUNexO3zdr19lCvsG4OCEJf3ekSc3ttyRXU8SuJ7nWRRzVHcxpgkKLvZfODAATN58mTz7W9/+4JpX//6183HPvYxc+7cOavFIRqiOmBEQVLvPAnC5Xb3jheu18v163vBeFRanD5H18hRuJKazSTkKKmfTVwkIUNJFpftIwk5ist7nWRJyBHci2qOGGPCV2GMMQIuIpfLKZ1OK5vNqqamxnU5iClyBBvIEWwgR7CBHMEvMgQbyBFsIEewgRxhxATXBQAAAAAAAAAA4o9mMwAAAAAAAADAN5rNKGnjxo1qbGzUvHnzXJeCGCNHsIEcwQZyBBvIEfwiQ7CBHMEGcgQbyBHG4pnNuCSeuwMbyBFsIEewgRzBBnIEv8gQbCBHsKFUjk6ePKlMJqN9+/apqalJXV1dmjlzpsNKEWWMRxjBnc0AAAAAAAAYJZPJqLu7W/39/eru7lYmk3FdEoAYoNkMAAAAAACAUfbt26fh4WFJ0vDwsPbv3++4IgBxQLMZAAAAAAAAozQ1NamyslKSVFlZyTN5AZSFZjMAAAAAAABG6erqUmtrq+rr69Xa2qquri7XJQGIgSrXBcCuzs5Ovfbaa5o9e7aeeuopVVdXF6bt2rVL/+k//Sd99KMfVWVlpXbu3OmwUgAAAAAAEFUzZ87U9u3bXZcBIGa4szlBDh06pL6+Pu3evVuNjY3asmXLBfPcfffd2rVrF41mAAAAAAAAAFZxZ3OC9PT0qK2tTZLU3t6up556SsuWLRs1z9atW/Xaa69p6dKlWrt2bdHl5PN55fP5wve5XC64opFY5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5Qinc2ZwgAwMDqqmpkSSl02n19/ePmn7zzTfr6NGj2rlzp1588UUdPHiw6HI2bNigdDpd+GpoaAi8diQPOYIN5Ag2kCPYQI7gFxmCDeQINpAj2ECOUEqFMca4LgLe9PX1aenSpRf8fPHixWpoaNCKFSt04MABdXV16Yknnii6jCeffFKpVEqrVq26YFqxq1MNDQ3KZrOFZjZwKeQINpAj2ECOYAM5gl9kCDaQI9hAjmADOUIpPEYjhmbNmqVXX331gp8fOnRIjz32mFasWKEdO3ZowYIFo6bncrnCBr97927dd999RZefSqWUSqXsF47LCjmCDeQINpAj2ECO4BcZgg3kCDaQI9hAjlAKj9FIkLlz52rWrFlqaWnRkSNHtGTJEklSR0eHJGnz5s1qamrSbbfdpquvvloLFy50WS4AAAAAAACABOHO5oR59NFHL/jZpk2bJEmrV6/W6tWrwy4JAAAAAAAAwGWAO5sBAAAAAAAAAL7RbAYAAAAAAAAA+EazGQAAAAAAAADgG81mAAAAAAAAAIBvNJtR0saNG9XY2Kh58+a5LgUxRo5gAzmCDeQINpAj+EWGYAM5gg3kCDaQI4xVYYwxrotAtOVyOaXTaWWzWdXU1LguBzFFjmADOYIN5Ag2kCP4RYZgAzmCDeQINpAjjODOZgAAAAAAAACAbzSbAQAAAAAAAAC+0WwGAAAAAAAAAPhGsxkAAAAAAAAA4BvN5gQZHBzULbfcoilTpujNN9+8YPq5c+eUyWTU0tKitWvXOqgQAAAAAAAAQFLRbE6QSZMm6Ze//KWWLl1adPrzzz+vD3/4w9q9e7fee+897d27N+QKAQAAAAAAACRVlesCYE9VVZWmT59ecnpPT4/uvPNOSVJ7e7v27t2r22677YL58vm88vl84ftcLme/WCQeOYIN5Ag2kCPYQI7gFxmCDeQINpAj2ECOUAp3Nl9GBgYGVFNTI0lKp9Pq7+8vOt+GDRuUTqcLXw0NDWGWiYQgR7CBHMEGcgQbyBH8IkOwgRzBBnIEG8gRSqkwxhjXRcCbvr6+oo/K+MUvfqG6ujplMhl1dnZqzpw5o6Z/+ctf1n/4D/9BCxcu1JYtW9Tb26vOzs4LljP26pQxRkNDQ5o2bZoqKirsrxASiRzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRyiFx2jE0KxZs/Tqq696/r1bb71VL730khYuXKgdO3Zo1apVRedLpVJKpVJ+y8RljhzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRyiFx2gkzB133KGXXnpJa9asUVdXlySpo6NDknTXXXfpxIkTamlp0aRJkzR//nyHlQIAAAAAAABIEh6jAQAAAAAAAADwjTubAQAAAAAAAAC+8cxm+GKM0eDgoOsy4NHUqVMj9cB+chRP5Ag2kCPYEKUckaH4IkfwK0oZkshRXJEj2ECOYMN4c0SzGb688847mjFjhusy4NGpU6c0ffp012UUkKN4IkewgRzBhijliAzFFzmCX1HKkESO4oocwQZyBBvGmyOazfClurpaknTixAnV1NQ4rsaeXC6nhoaGxK7XyOcWFeQoXshRuMhRuMhRvEQxR2QofshReJKaoyhmSCJHcUOOwkWOwkWO4sVvjmg2w5eR2+lramoStWGNSOp6RenPaSRyFFfkKFxJXS9yFK6krleUckSG4oschSep6xWlDEnkKK7IUbiSul7kKFxJXa/x5oj/IBAAAAAAAAAA4BvNZgAAAAAAAACAbzSb4UsqldJDDz2kVCrluhSrWK9wRbUuv1ivcEW1Lr9Yr3BFtS6/WK/wRLEmG5K6XlI01y2KNdnAeoUrqnX5xXqFK6p1+cV6hSuqdfnFehVXYYwxlmsCAAAAAAAAAFxmuLMZAAAAAAAAAOAbzWYAAAAAAAAAgG80mwEAAAAAAAAAvtFshi+dnZ1qaWnR8uXLNTQ05LocK3p7ezV9+nQtWrRIixYt0u9//3vXJfkyODioW265RVOmTNGbb74pSfrZz36m+fPn61Of+pROnDjhuEJyFAfkyI0k5YgMuUOOwpXEHCUpQxI5coUchY8cRR85coMchY8cRZ/VHBlgnF5//XWzfPlyY4wx69evN88884zjiux4++23zZIlS1yXYc3Zs2fNqVOnzMqVK80bb7xhhoaGTFNTk8nn8+bVV181a9ascVofOYoHcuRGknJEhtwhR+FJao6SlCFjyJEr5Chc5CgeyJEb5Chc5CgebOaIO5sxbj09PWpra5Mktbe3a+/evY4rsmfPnj1qaWnRV7/6VRljXJfjS1VVlaZPn174/q233tLHP/5xVVdXa8GCBXrjjTccVkeO4oIcuZOUHJEht8hROJKco6RkSCJHLpGj8JCjeCBH7pCj8JCjeLCZI5rNGLeBgQHV1NRIktLptPr7+x1XZMeVV16pX//613rllVd06tQpbdu2zXVJVp3/uUnS8PCww2rIUVyRo3AkOUdkKDzkKDxJzVGSMySRo7CQo3CRo3giR+EgR+EiR/HkJ0c0mzFutbW1yuVykj4IYV1dneOK7EilUpo8ebIqKiq0ZMkSHT582HVJVp3/uUlSZWWlw2rIUVyRo3AkOUdkKDzkKDxJzVGSMySRo7CQo3CRo3giR+EgR+EiR/HkJ0c0mzFut956q1566SVJ0o4dO7RgwQLHFdkxODhY+Pcrr7yi6667zmE19l133XU6cuSIhoaGtGfPHt14441O6yFH8USOwpHkHJGh8JCj8CQ1R0nOkESOwkKOwkWO4okchYMchYscxZOfHFWYuD9UBE51dnbqtdde0+zZs/XUU0+purradUm+bd++XQ8++KA+9KEP6dprr9WPfvQjVVVVuS7LlzvuuEOHDx/WNddco46ODk2cOFGPP/64Jk6cqB//+MdqaGhwWh85igdyFL6k5YgMuUGOwpXEHCUtQxI5coEchY8cxQM5Ch85Ch85igdbOaLZDAAAAAAAAADwjcdoAAAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAjUokWL9Dd/8zeuy7jAokWLVFFRoYqKCh0+fFiSlMlkCj977rnnnNYHAAAQNzSbAQAAAFy21qxZo9/97neaM2eOJOnxxx/X7373O8dVAQAAxFOV6wIAAAAAwJUPfehDmjVrVuH7dDqtdDrtsCIAAID44s5mAAAAAKF58cUX1dzcrCuuuEL19fW688479Zvf/GbUPIODg1q+fLkmT56sK6+8Uv/4j/94yUdxfOYznyk8/mLs1y9+8YuA1woAAAASzWYAAAAAIfrTn/6kv/u7v9P+/fu1c+dOTZgwQf/xP/5Hvf/++4V5/u7v/k579uzRL37xC3V3d2v37t16/fXXL7rcp556Sr/73e/01ltvSZJeeOEF/e53v9Pvfvc73XHHHYGuEwAAAD7AYzQAAAAAhGbJkiWjvv/hD3+oGTNm6MiRI5ozZ44GBwf19NNP66c//aluv/12SR80kq+66qqLLre+vl6S1NPTo4qKCjU3N2vq1KnBrAQAAACK4s5mAAAAAKH5zW9+o2XLlukjH/mIampqdO2110qSjh8/Lkn67W9/q7Nnz6qpqanwO+l0Wn/xF39R1vL/5V/+RX/+539OoxkAAMAB7mwGAAAAEJq77rpLDQ0N+sEPfqCrrrpK77//vubMmaOhoSFJkjFGklRRUTHq90Z+fin/8i//ohtvvNFu0QAAACgLdzYDAAAACMUf/vAH/eu//qsefPBB3X777frLv/xL/fGPfxw1z0c/+lH92Z/9mfbt21f4WS6XKzyL+VJ6e3vLvgsaAAAAdnFnMwAAAIBQ1NbWqr6+Xt///vd15ZVX6vjx4/rP//k/j5pn6tSpWrlypdatW6e6ujrNmDFDDz30kCZMmHDB3c7FvP/++zp27Jj+7//9v7r66qvL+h0AAADYwZ3NAAAAAEIxYcIE/fM//7MOHjyoOXPm6G//9m/1yCOPXDDfP/zDP2j+/Pm688479elPf1oLFizQX/7lX2rixImXfI0vfelL2rNnj66//vqyH70BAAAAO7izGQAAAECgdu3aVfj3pz/9aR05cmTU9LFN4alTp+qZZ54pfP+nP/1J//W//lfde++9l3ytxYsX68SJE/4KBgAAwLhwZzMAAACASDl06JD++3//7/rNb36j119/XcuXL5ckffazn7X+Wt/97nc1ZcoUvfHGG5Kk++67T1OmTLH+OgAAAJeDCsPflgEAAACIkEOHDmn16tU6evSoqqurddNNN+kf/uEfdMMNN1h9nf/3//6fTp8+LUmaPXu2qqurderUKeVyOUnSlVdeqcmTJ1t9TQAAgCSj2QwAAAAAAAAA8I3HaAAAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMA3ms0AAAAAAAAAAN9oNgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMA3ms0AAAAAAAAAAN9oNgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMC3/x8cCVziXTSlhAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABZsAAAPtCAYAAADopbGPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3z0lEQVR4nOz9f3RV9YHv/79CMgkI5EgCBMXg2LEznYhWK4ny46RMMbkJir2zsMsRVvGUSYq3v7h3jHrb2mtvF5Z1p7hunSVVxNbYVXunCmWqXlOI3KIIjAkIjl5nHLuuQNpOQmlMDo5yQuL784ffnC8J55Bzst/7Z56PtVhLOG/Pfu/kmX123mdnp8AYYwQAAAAAAAAAgAOT/J4AAAAAAAAAACD8WGwGAAAAAAAAADjGYjMAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDAAAAAAAAABwjMVmAAAAAAAAAIBjLDYDAAAAAAAAABxjsRkAAAAAAAAA4BiLzQAAAAAAAAAAx1hsBgAAAAAAAAA4xmIzAAAAAAAAAMAxFpsBC5577jn92Z/9mT7+8Y/rscce83s6CKm//Mu/1IwZM3TLLbf4PRWEVFdXl5YuXaqqqipdddVVevrpp/2eEkLo1KlTqq6u1tVXX60rr7xSW7du9XtKCKn3339fl156qVpaWvyeCkKqqKhIV199ta6++mo1NTX5PR2E1DvvvKO/+Iu/UFVVla688kr9+7//u99TQsi89dZb6WPR1VdfrSlTpugf/uEf/J4WQuh//s//qSuuuEJVVVX62te+JmOM31NyRYGJ6p4BHhkcHFRVVZV+9atfqbS0VJ/61Kf0yiuvqKyszO+pIWR+9atf6b333tMTTzyhbdu2+T0dhNC//du/qaenR1dffbVOnDihT33qU3rrrbc0depUv6eGEBkaGlIqldIFF1yg999/X/Pnz1dnZ6fKy8v9nhpC5pvf/KbefvttzZs3T5s2bfJ7OgihmTNn6uTJk35PAyH36U9/Whs2bFA8Hldvb69KS0tVVFTk97QQUu+9957++I//WMeOHeMcG3n5/e9/r+uvv17/9//+X/3RH/2RamtrtWnTJi1cuNDvqVnHlc2AQx0dHbriiis0d+5cTZ8+XcuXL9fOnTv9nhZC6C/+4i80ffp0v6eBELvooot09dVXS5Jmz56tsrIy9fb2+jsphE5hYaEuuOACSdLp06c1NDQU2asu4J63335b//Iv/6Lly5f7PRUAE9jwok48HpcklZWVsdAMR5555hktW7aMhWaMy+DgoE6fPq0zZ87ozJkzmj17tt9TcgWLzcB5fPjhh/rEJz6he+65Z8S/79y5U8XFxXr66af1u9/9TnPnzk0/dskll+i3v/2t11NFgOXSETCWfDs6ePCgPvzwQ1VWVno5TQRcrh319fXpk5/8pC655BLdfffdmjlzph/TRQDl2lBLS4s2btzoxxQRArl2lEwmde2112rJkiV68cUX/ZgqAiyXjt5++21NmzZNN998sz71qU/pu9/9rk+zRVDle4791FNP6dZbb/VyigiBXDqaNWuWWlpaNG/ePF188cW64YYb9Cd/8ic+zdhlBsB5tba2munTp5ve3l5jjDFHjhwx06dPN9/73veMMcY89dRT5stf/nJ6/N/+7d+aTZs2+TJXBNdYHQ371a9+ZVauXOnHFBECuXZ08uRJ8+d//udm3759fkwTAZdrR8YY093dbRYtWmS6u7u9niYCbKyG/uEf/sG0tLQYY4x5/PHHzZ133unbXBFcuRyLfvvb3xpjjHn99dfNvHnzTH9/vy9zRXDl8r1aWVmZOX78uDl9+rRZunSp2bVrl59TRgDlem7U399vZs6caT744AM/pomAG6uj3t5eU19fb/7whz+Y999/33z60582L774op9Tdg1XNmPC+td//decxq1evVozZ87U3/3d3+k3v/mNbrzxRn3+859P/7KbuXPnjriS+Te/+Y0uuugiV+aM4LHVESY2mx2lUin95V/+pb7+9a9r0aJFbk0ZAeTG8aiiokJXXXWVXnrpJdvTRQDZaugf//Ef9fd///f64z/+Y7W0tGjr1q36zne+4+bUESA2j0UXX3yxJGn+/PmqqqrK+bkRfrY6uuSSS1RdXa3KykqVlJRo+fLlOnLkiIszR5DYPjf6xS9+of/wH/6DJk+e7MZ0EVC2OnrhhRd0+eWXq6ysTFOmTNGNN96of/zHf3Rz6v7xe7Ub8MPLL79spk6dal544YWcxj/yyCOmrKzMXHnllWbFihVmcHAw/diZM2fM5Zdfbn7zm9+YZDJpLr/8cnPy5Em3po4AsdnRMK5snnhsdvThhx+av/qrvzL33XefS7NFUNnsqLu7O331YH9/v6mqqjKvvfaaK/NGcLjxmmYMVzZPNDY76u3tNadPnzbGGNPV1WXmzZtn/vCHP7gybwSL7e/Vrr76atPb22uGhobMTTfdZJ599lm3po4AceN17aabbjLPPPOM7akiwGx2dODAAXP11VebDz74wAwODprly5ebf/iHf3Br6r5isRkT1iOPPJLzQePUqVNm8uTJZv78+ea999475/Ff/OIX5uMf/7j5kz/5E7NlyxY3pouAstlRfX29mTlzppkyZYqZO3eu6ejocGPKCCBbHe3du9cUFBSYT37yk+k///RP/+TWtBEwtjo6ePCg+eQnP2muuuoqc+WVV5of/OAHbk0ZAWPzNW0Yi80Tj62O9u3bZ+bPn2+uuuoq88lPftLs2LHDpRkjiGwej55//nkzf/58c8UVV5j/8l/+ixvTRUDZ7Kivr8/Mnj3bpFIpN6aKALPZ0Te+8Q3ziU98wlRVVZmvfvWr5sMPP3Rjyr4rMIZfL45oeuONN3TllVeOOe6CCy7Qv//7v593TCKR0M9+9jNdeOGFeuedd/ixmQmEjmADHcEGOoJTNAQb6Ag20BFsoCPYQEf2Ffk9AcAtf/qnf6p//ud/zvr4rl279Dd/8zd68MEHz/s83/rWt/S///f/1j/+4z/qhhtu0A9/+EN9+ctftj1dBBQdwQY6gg10BKdoCDbQEWygI9hAR7CBjlzg96XVgB86OjrMBRdcYB577LHzjtu6dauZMmWKOXDggDHGmA0bNph58+aZgYEBL6aJgKMj2EBHsIGO4BQNwQY6gg10BBvoCDbQ0fiw2IwJKZVKmZ07d553zPPPP2+Ki4vN9u3b0//W399vLrzwQvPDH/7Q7SkiBOgINtARbKAjOEVDsIGOYAMdwQY6gg10ND4sNgMZHDx40EydOtV8//vfP+exb33rW+bjH/941t+6DgyjI9hAR7CBjuAUDcEGOoINdAQb6Ag20FFm/IJAAAAAAAAAAIBjk/yeAAAAAAAAAAAg/FhsBgAAAAAAAAA4xmIzAAAAAAAAAMAxFpsBAAAAAAAAAI6x2AwAAAAAAAAAcIzFZgAAAAAAAACAYyw2AwAAAAAAAAAcY7EZAAAAAAAAAOAYi80AAAAAAAAAAMdYbAYAAAAAAAAAOMZiMwAAAAAAAADAMRabAQAAAAAAAACOsdgMAAAAAAAAAHCMxWYAAAAAAAAAgGMsNgMAAAAAAAAAHGOxGQAAAAAAAADgGIvNAAAAAAAAAADHWGwGAAAAAAAAADjGYjMAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDAAAAAAAAABwjMXmiDl16pSuu+46TZs2TW+88caIxwYHB5VIJBSPx7V+/XqfZggAAAAAAAAgilhsjpgpU6boueee0y233HLOY88++6wuueQS7d27V++//77279/vwwwBAAAAAAAARFGR3xOAXUVFRZo1a1bGxw4cOKCbbrpJktTQ0KD9+/dr0aJF54xLpVJKpVLpvxtjNDAwoJkzZ6qgoMCdiSNy6Ag20BFsoCPYQEdwioZgAx3BBjqCDXSEbLiyeQLp6+tTaWmpJCkWi6m3tzfjuI0bNyoWi6X/XHjhhZo9e7ZOnTrl5XQRcnQEG+gINtARbKAjOEVDsIGOYAMdwQY6QjYFxhjj9yRgXyKRUEtLi+bPn5/+t3vuuUc33nijamtrtW3bNh09elQtLS3n/L+j351KJpOqrKxUf39/erEaGAsdwQY6gg10BBvoCE7REGygI9hAR7CBjpANt9GYQK6//nrt2rVLtbW12rlzp9auXZtxXElJiUpKSjyeHaKGjmADHcEGOoINdASnaAg20BFsoCPYQEfIhttoRNDy5cu1a9cuNTc3q7W1VevWrZMkrVixQl1dXYrH45oyZYoWLlzo80wBAAAAAAAARAVXNkfQ888/P+LviURC0ke/PPCJJ57wYUYAAAAAAAAAoo4rmwEAAAAAAAAAjrHYDE/09PSosbFR5eXlamxsVE9Pj99TAgAAAAAAAGARi83wRCKRUHt7u3p7e9Xe3p6+tQcAAAAAAACAaGCxGZ7o6OjQ0NCQJGloaEidnZ0+zwgAAAAAAACATSw2I6vNmzerqqpK1dXVjp+rpqZGhYWFkqTCwkIrz4lwsNkRJi46gg10BBvoCE7REGygI9hAR7CBjjBagTHG+D0JBFsymVQsFlN/f79KS0vH9Rw9PT1KJBLq7OxUdXW1WltbVVFRYXmmCDIbHQF0BBvoCDbQEZyiIdhAR7CBjmADHWFYkd8TwMRQUVGhtrY2v6cBAAAAAAAAwCXcRgMAAAAAAAAA4BiLzQAAAAAAAAAAx1hsjqCWlhbF43GtXr1aAwMD6X/fs2ePKisrtXTpUi1btszHGQIAAAAAAACIGhabI+bw4cPq7u7W3r17VVVVpW3bto14/NZbb9WePXu0e/dun2YIAAAAAAAAIIpYbI6YAwcOqL6+XpLU0NCg/fv3j3h8+/btisfjevDBB/2YHgAAAAAAAICIKvJ7ArCrr69PF198sSQpFoupt7c3/diCBQv01ltvSZI++9nPasmSJbr22mvPeY5UKqVUKpX+ezKZdHnWiCI6gg10BBvoCDbQEZyiIdhAR7CBjmADHSEbrmyOmBkzZqS/wPv6+lRWVpZ+bNq0aSouLlZxcbFuvvlmvfbaaxmfY+PGjYrFYuk/lZWVnswd0UJHsIGOYAMdwQY6glM0BBvoCDbQEWygI2RTYIwxfk8C9hw+fFgPPPCAfvKTn+j+++/Xxz72Md12222SPnqXqbS0VJK0atUq3XHHHaqtrT3nOTK9O1VZWan+/v70/w+MhY5gAx3BBjqCDXQEp2gINtARbKAj2EBHyIbbaETMNddcozlz5igej2vevHm66667tG7dOm3ZskVPPfWUHn30URUVFWnx4sUZF5olqaSkRCUlJR7PHFFDR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw2JzBG3atGnE37ds2SJJampqUlNTkx9TAgAAAAAAABBx3LMZAAAAsKCnp0eNjY0qLy9XY2Ojenp6/J4SAAAA4CkWmwEAAMRCIZxLJBJqb29Xb2+v2tvblUgkso6lNwAAAEQRi80AAADKb6EQyKSjo0NDQ0OSpKGhIXV2dmYdS28AAACIIhabAQAAlPtCIVekIpuamhoVFhZKkgoLC1VdXZ11bD4L0zQHAACAsGCxGQAAQLkvFHJFKrJpbW1VXV2dysvLVVdXp9bW1qxj81mYpjkAAACEBYvNyGrz5s2qqqo67zc/wFjoCDbQEWwYq6NcFwrzuSIV0XO+jioqKtTW1qaTJ0+qra1NFRUVWZ8nn4VproKOFl7TYAMdwQY6gg10hNEKjDHGrSd/7rnndOedd+rDDz/UPffco6amJrc2BRclk0nFYjH19/ertLTU7+kgpOgINtARbHDaUWNjo9rb2zU0NKTCwkLV1dWpra3NhZkiyLw8HuXTHH2GB69psIGOYAMdwQY6wjDXrmweHBzU3/zN3+j//J//o1dffVX/43/8D/X29rq1OQAAAE/kc0UqV5nCBq6CBgAAQFi4ttjc0dGhK664QnPnztX06dO1fPly7dy5063NAQAAeCKfWyXkc69dFv6QTT7NcS9oABKvKQAA/+S92Pzhhx/qE5/4hO65554R/75z504VFxfr6aefliT97ne/09y5c9OPX3LJJfrtb3/rcLoAAADhkc9Vpiz8wQY3roJm0QoIH7fe7HRjrN/bD9t+AUDgmXFobW0106dPN729vcYYY44cOWKmT59uvve976XHPPXUU+bLX/5y+u9/+7d/azZt2jSezSFPd955p1myZIlZtWqVSaVS6X8/c+aMuf32282SJUvM1772tZyfr7+/30gy/f39bkwXE0S2jrq7u01DQ4MpKyszDQ0Npru7O+tz5DrWjecM21i/t+8WjkewwcuOGhoaTGFhoZFkCgsLTUNDQ9axZWVlRlL6T3l5edaxfn8tIhrHo1z7zKdj5C4KDcF/2TrK5zUln69xN8b6vf2w7ZcbOB7BBjrCsHEtNp85c8Zcdtll5tvf/rbp6uoyc+fONV/60pdGjNm3b5/5j//xP6b//rWvfc08+eSTzmaLMb366qtm9erVxhhjNmzYMOJj/vOf/9x885vfNMYY09TUZPbt25fTcwb1gME32uH6GGTrKEwndmEa6/f23RLU41FU8aaFc8P7Wl5ePua+uvW16PfHO6qicDzKtU/eCHGHl2/EB2Gs39sPwn65wcY5dj5f426M9Xv7YdsvN0ThNQ3+oyMMG9diszHGPPLII6asrMxceeWVZsWKFWZwcHDE42fOnDGXX365+c1vfmOSyaS5/PLLzcmTJx1PGOe3efNm88QTTxhjjDl48OCIq8vvuusu8+KLLxpjjNm2bduIK9HPJ6gHDL8XvYzx/4Q1TIsNNq668PvELkxj/d6+W4J6PAoTt44xvGnhXD4L025cseb3gk3YBLUjNwThjZAgjLXNyzfigzDW7+0HYb/cMNabFn6+2UkbnBthYqEjDBv3YvOpU6fM5MmTzfz58817772XccwvfvEL8/GPf9z8yZ/8idmyZcu4J4nc3X///WbHjh3GGGPefvttc9ttt6Ufa25uNocPHzbGGNPe3m6+/vWvZ3yO06dPm/7+/vSfrq4uaweMDz74wHzwwQcmlUqZ06dPj/j78H+fPn06p8dmzJgx4hvtsrKyrP/fsWPHTH19vZkxY4apq6szx48fT489ffr0iLHHjx9Pj62vrzfHjx/POO/Tp0+b+vp6M2nSJCPJTJo0ydTX12ed9+ixdXV1Gfc3n+fM9DHItE+pVGrE83pxApNrR2efWA3vb7bP4/k+Nmd/HOvq6s4Zl89zZmtjrM+N222kUqlz9m147FjPObz9sdoY/ZyjPxZnbz9IHQ2zeYzJ97HRH9dsHdl4LNP2jx07Zurq6tLHrqNHj3p6jMk2NtM+jR7r9psWUewon+NRts/NeI+x+XaUz/EoW8eZPhZHjx41dXV1ni0S5tNRGBrK57Hjx4+nP9b19fXm2LFj4zpujPc1LdvYbPPONDbb/nr5upZrQ6PfTDrfOe75vr5Hf8xzPRa4dfy3tf3RH4vzbX90R9m+f8jUUaaxUX1NG/5eqaysLP29UraO8jkeZBub7fuv4XHn+/4rn+0Pv6YMj812bjT6NWX068/ojjKNPd9rWqbnzPaalsubA0HtKEyva/mcY4dxn7ySa0fDb35lWo/Jdjw6e+xYx6Ph88ZsxwO31oNy3X4+36udfTzIdD6c6Rg7evtBOMce92Lz7bffbiZPnmzmzJnjacw4vx/84AfpK5s7OztHXNl89913p69sfvrpp7Ne2XzfffeNOGEa/hO0xeYgLCi6cdKcz3Pm8w281yfCuXZ09hVFub7wjHUifPTo0RHjjh07ltdzjvXCE4YT4VxP7oN+Ipzv8cjmMSbfx9xc4MnlBCbXNy3cOsYE+U2LKHaUz/Eo14XhICxaRaWjMDTk1jfl+byB6vciYaaW3Tw/yrUhN96IH2usF8d/v9+IzzY2W0e5vmkR5GORMRP7eBTGffIKHdGRlx35/brGBWben2OPa7H53nvvNTNnzjRHjhwxM2fONA899NB4ngYuGH3P5p/+9Kfpx0bfs3n//v0Zn+P0afeubM5FvrebsP3jxn7/Mo3x/Pip7R+Ps8HvjhANE70jN+636NYxxq2xNkz0jnL9ePv948bGBPu2PhO9o1yF6Uf38x3rVK4NBeHY68ZYv7cfhP2ygWMRbMj3eBSGe6KH5RZKUZJrR37f4tHv7Ud5v7LJe7F569atZsqUKebAgQPGmI8WNOfNm2cGBgby3jjcceedd5olS5aYVatWmVQqZb74xS8aYz66j/aaNWvMkiVLzFe/+tWcn8/r++64cdLv1jcdYTph9fpEeDTu3wQbotBRPie3bt6X169jQRBEoSM3+L1gY0xwFwkzoSPngtCcn8dEGoINdAQbgnoPeb+3b4z/C95hWkSno4m3X9nktdj8/PPPm+LiYrN9+/b0v/X395sLL7zQ/PCHP8x74wgHr09g3LhSKSzfdEQZJ8KwIQodBeHNr4kuCh1FVZher+kITtEQbKAj2JCtI7+vnPR7+8b4v6AXhTfi/X7D2O/tR3m/ssl5sfngwYNm6tSp5vvf//45j33rW98yH//4x83g4GDeE0DwReHKZviPE2HYENSO3Lpa2e/FtKgKakcIFzqCUzQEG+gINnBFqve3+PJ7wd0NHI8wbJJydO211+q9997T+vXrz3nsO9/5jv71X/9VhYWFuT4dkFVra6vq6upUXl6uuro6tba2+j0lADivRCKh9vZ29fb2qr29XYlEIuvYmpqa9OtlYWGhqqurs46tqKhQW1ubTp48qba2NlVUVNieOgAAAJBRPt+buzHW7+1L+Z27uzHWre0Dbiowxhi/J4FgSyaTisVi6u/vV2lpqd/TQUjREWzwsqOenh4lEgl1dHSopqZGra2tWRd7y8vL1dvbO+LvJ0+ePO/zdnZ2qrq6+rzPC3dwPIINdASnaAg20BFsoKPs8jl3d2OsW9t3Ax1hGIvNGBMHDNhAR7DBy44aGxvV3t6uoaEhFRYWqq6uTm1tbY7Hwn8cj2ADHcEpGoINdAQb6Ag20BGG5XwbDUw8mzdvVlVVFT96AUfoCDbY7Kinp0eNjY0qLy9XY2Ojenp6Mo7r6OjQ0NCQJGloaEidnZ1Zn5Pb/4QDxyPYQEdwioZgAx3BBjqCDXSE0biyGWPi3SnYQEewwUZHuV6FzNXK0cXxCDbQEZyiIdhAR7CBjmADHWEYVzYDAEIv16uVpdyvWOZqZQAAAAAA8sNiMwAg9BKJhNrb29Xb26v29nYlEomsY3P9Lc0VFRVqa2vTyZMn1dbWxi/xAwAAAABgDCw2AwBCj/srAwAAAADgvyK/JwAAgFM1NTUj7q98vl9OMXzFMgAAAAAAsIsrmyOmpaVF8Xhcq1ev1sDAwIjH9uzZo8rKSi1dulTLli3zaYYAYB9XKwMAAAAA4D8WmyPk8OHD6u7u1t69e1VVVaVt27adM+bWW2/Vnj17tHv3bh9mCADu4P7KAAAAAAD4j9toRMiBAwdUX18vSWpoaNDjjz+uVatWjRizfft2vfLKK7rlllu0fv36jM+TSqWUSqXSf08mk+5NGpFFR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw5XNEdLX16fS0lJJUiwWU29v74jHFyxYoLfeeku7d+/WL3/5Sx06dCjj82zcuFGxWCz9p7Ky0vW5I3roCDbQEWygI9hAR3CKhmADHcEGOoINdIRsCowxxu9JID/d3d265ZZbzvn3xsZGVVZWas2aNTp48KBaW1v10EMPZXyOhx9+WCUlJVq7du05j2V6d6qyslL9/f3pxWxgLHQEG+gINtARbKAjOEVDsIGOYAMdwQY6QjbcRiOE5syZo5dffvmcfz98+LAeeOABrVmzRjt37tTixYtHPJ5MJtNf8Hv37tUdd9yR8flLSkpUUlJif+KYUOgINtARbKAj2EBHcIqGYAMdwQY6gg10hGy4jUaEXHPNNZozZ47i8bjefPNNrVy5UpK0bt06SdJTTz2lmpoaLVq0SHPnzlVtba2f0wUAAAAAAAAQIVzZHDGbNm0659+2bNkiSWpqalJTU5PXUwIAAAAAAAAwAXBlMwAAAAAAAADAMRabAQAAAAAAAACOsdgMAAAAAAAAAHCMxWYAAAAAAAAAgGMsNiOrzZs3q6qqStXV1X5PBSFGR7CBjmADHcEGOoJTNAQb6Ag20BFsoCOMVmCMMX5PAsGWTCYVi8XU39+v0tJSv6eDkKIj2EBHsIGOYAMdwSkagg10BBvoCDbQEYZxZTMAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDAAAAAAAAABwjMVmAAAAAAAAAIBjLDZHyKlTp3Tddddp2rRpeuONN855fHBwUIlEQvF4XOvXr/dhhgAAAAAAAACiisXmCJkyZYqee+453XLLLRkff/bZZ3XJJZdo7969ev/997V//36PZwgAAAAAAAAgqor8ngDsKSoq0qxZs7I+fuDAAd10002SpIaGBu3fv1+LFi06Z1wqlVIqlUr/PZlM2p8sIo+OYAMdwQY6gg10BKdoCDbQEWygI9hAR8iGK5snkL6+PpWWlkqSYrGYent7M47buHGjYrFY+k9lZaWX00RE0BFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2RQYY4zfk0B+uru7M94q45lnnlFZWZkSiYRaWlo0f/78EY/fc889uvHGG1VbW6tt27bp6NGjamlpOed5Rr87ZYzRwMCAZs6cqYKCAvs7hEiiI9hAR7CBjmADHcEpGoINdAQb6Ag20BGy4TYaITRnzhy9/PLLef9/119/vXbt2qXa2lrt3LlTa9euzTiupKREJSUlTqeJCY6OYAMdwQY6gg10BKdoCDbQEWygI9hAR8iG22hEzPLly7Vr1y41NzertbVVkrRu3TpJ0ooVK9TV1aV4PK4pU6Zo4cKFPs4UAAAAAAAAQJRwGw0AAAAAAAAAgGNc2QwAAAAAAAAAcIx7NsMRY4xOnTrl9zSQp+nTpwfqhv10FE50BBvoCDYEqSMaCi86glNBakiio7CiI9hAR7BhvB2x2AxHTp48qdmzZ/s9DeTpxIkTmjVrlt/TSKOjcKIj2EBHsCFIHdFQeNERnApSQxIdhRUdwQY6gg3j7YjFZjhSXFwsSerq6lJpaanPs7EnmUyqsrIysvs1/HkLCjoKFzryFh15i47CJYgd0VD40JF3otpREBuS6Chs6MhbdOQtOgoXpx2x2AxHhi+nLy0tjdQX1rCo7leQfpxGoqOwoiNvRXW/6MhbUd2vIHVEQ+FFR96J6n4FqSGJjsKKjrwV1f2iI29Fdb/G2xG/IBAAAAAAAAAA4BiLzQAAAAAAAAAAx1hshiMlJSW67777VFJS4vdUrGK/vBXUeTnFfnkrqPNyiv3yVlDn5RT75Z0gzsmGqO6XFMx9C+KcbGC/vBXUeTnFfnkrqPNyiv3yVlDn5RT7lVmBMcZYnhMAAAAAAAAAYILhymYAAAAAAAAAgGMsNgMAAAAAAAAAHGOxGQAAAAAAAADgGIvNcKSlpUXxeFyrV6/WwMCA39Ox4ujRo5o1a5aWLl2qpUuX6ve//73fU3Lk1KlTuu666zRt2jS98cYbkqSf/exnWrhwoT7zmc+oq6vL5xnSURjQkT+i1BEN+YeOvBXFjqLUkERHfqEj79FR8NGRP+jIe3QUfFY7MsA4vfrqq2b16tXGGGM2bNhgnnzySZ9nZMc777xjVq5c6fc0rDlz5ow5ceKEuf32283rr79uBgYGTE1NjUmlUubll182zc3Nvs6PjsKBjvwRpY5oyD905J2odhSlhoyhI7/QkbfoKBzoyB905C06CgebHXFlM8btwIEDqq+vlyQ1NDRo//79Ps/Inn379ikej+sb3/iGjDF+T8eRoqIizZo1K/33t99+W1dccYWKi4u1ePFivf766z7Ojo7Cgo78E5WOaMhfdOSNKHcUlYYkOvITHXmHjsKBjvxDR96ho3Cw2RGLzRi3vr4+lZaWSpJisZh6e3t9npEdF110kX7961/rpZde0okTJ7Rjxw6/p2TV2Z83SRoaGvJxNnQUVnTkjSh3REPeoSPvRLWjKDck0ZFX6MhbdBROdOQNOvIWHYWTk45YbMa4zZgxQ8lkUtJHEZaVlfk8IztKSko0depUFRQUaOXKlTpy5IjfU7Lq7M+bJBUWFvo4GzoKKzryRpQ7oiHv0JF3otpRlBuS6MgrdOQtOgonOvIGHXmLjsLJSUcsNkdMpht6DxscHFQikVA8Htf69esdb+v666/Xrl27JEk7d+7U4sWLHT9nEJw6dSr93y+99JIuv/xyH2dj3+WXX64333xTAwMD2rdvn6666ipf50NH4URH3ohyRzTkHTryTlQ7inJDEh15hY68RUfhREfeoCNv0VE4OemowIT9piIYYXBwUO+++67uuusutbS0aP78+enHduzYoUOHDmnDhg1qbm7WF77wBS1atMjR9lpaWvTKK69o3rx5evzxx1VcXOx0F3zX1tame++9VxdccIEuu+wy/ehHP1JRUZHf03Jk+fLlOnLkiC699FKtW7dOkydP1oMPPqjJkyfrxz/+sSorK32dHx2FAx15L2od0ZA/6MhbUewoag1JdOQHOvIeHYUDHXmPjrxHR+FgqyMWmyMqkUics9h8991366abblJtba22b9+ud955Ry0tLef8v6lUSqlUKv13Y4wGBgY0c+ZMFRQUeDJ/hB8dwQY6gg10BBvoCE7REGygI9hAR7CBjpANt9GYQHK9KfvGjRsVi8XSfy688ELNnj17xI8IAGOhI9hAR7CBjmADHcEpGoINdAQb6Ag20BGy4crmiMp0ZfM999yjG2+8UbW1tdq2bZuOHj2a05XNyWRSlZWV6u/vH/GbKIHzoSPYQEewgY5gAx3BKRqCDXQEG+gINtARsgn3zUSQl+GbstfW1mrnzp1au3ZtxnElJSUqKSnxeHaIGjqCDXQEG+gINtARnKIh2EBHsIGOYAMdIRtuoxFBy5cv165du9Tc3KzW1latW7dOkrRixQp1dXUpHo9rypQpWrhwoc8zBQAAAAAAABAVXNkcQc8///yIvycSCUlSUVGRnnjiCR9mBAAAAAAAACDquLIZAAAAAAAAAOAYi80AAAAAAAAAAMdYbAYAAAAAAAAAOMZiMwAAAAAAAADAMRabkdXmzZtVVVWl6upqv6eCELPZUU9PjxobG1VeXq7Gxkb19PRYmCHCgOMRbKAj2EBHcIqGYAMdwQY6gg10hNEKjDHG70kg2JLJpGKxmPr7+1VaWur3dBBSNjpqbGxUe3u7hoaGVFhYqLq6OrW1tVmeKYKM4xFsoCPYQEdwioZgAx3BBjqCDXSEYVzZDCA0Ojo6NDQ0JEkaGhpSZ2enzzMCAAAAAADAMBabAYRGTU2NCgsLJUmFhYX8mA4AAAAAAECAsNgMT3CvXdjQ2tqquro6lZeXq66uTq2trX5PCQAAAAAAAP8/LDZHUEtLi+LxuFavXq2BgYH0v+/Zs0eVlZVaunSpli1b5umcEomE2tvb1dvbq/b2diUSCU+3j2ioqKhQW1ubTp48qba2NlVUVPg9JQA4L95sBQAAADCRsNgcMYcPH1Z3d7f27t2rqqoqbdu2bcTjt956q/bs2aPdu3d7Oi/utQsAmIh4sxUAAADARMJic8QcOHBA9fX1kqSGhgbt379/xOPbt29XPB7Xgw8+6Hhb+Vytxb12AQBRkc/rH2+2AgAAAJhIWGyOmL6+PpWWlkqSYrGYent7048tWLBAb731lnbv3q1f/vKXOnToUMbnSKVSSiaTI/5kks/VWvnca5cfOY6GXDsCzoeOYIPtjvJ5/cvnzVZe/4ItLMcjOgqusDSEYKMj2EBHsIGOkA2LzREzY8aM9Bd4X1+fysrK0o9NmzZNxcXFKi4u1s0336zXXnst43Ns3LhRsVgs/aeysjLjuHyu1srnXrv8yHE05NoRcD50BBtsd5TP618+b7by+hdsfh6P8llApqPg4jUNNtARbKAj2EBHyKbAGGP8ngTsOXz4sB544AH95Cc/0f3336+Pfexjuu222yRJyWQyfdXzqlWrdMcdd6i2tvac50ilUkqlUum/J5NJVVZWqr+/P/3/S1JjY6Pa29s1NDSkwsJC1dXVqa2tzfE+lJeXj7giu7y8XCdPnnT8vPBWrh0B50NHsMF2R7z+TUx+Ho/yaS6fjnp6epRIJNTR0aGamhq1trbyy3ddxGsabKAj2EBHsIGOkA1XNkfMNddcozlz5igej+vNN9/UypUrtW7dOknSU089pZqaGi1atEhz587NuNAsSSUlJSotLR3xJ5N8rtbKR64/csyPiQZbrh0B50NHsCHXjnJ9XfH79Q/+sH08cuve3/l0xFXQ3uI1DTbQEWygI9hAR8iGK5sxpmQyqVgs5tm7U8NX2XR2dqq6ujrrVTZuXVkGd3jdEaKJjmBDto78fl3J9fXv7LFckeqfTB3l83nJp7d8xubTUa5XQdObO3hNgw10BBvoCDbQEYax2IwxBfWAwY8bh0tQO0K40BFsyNZRmF5X/F4YR+aO3L7dRS4LyPnIdb705g5e02ADHcEGOoINdIRh3EYDocWPGwMAbArT60o+t1WAd9y63UU+v2g5H7neEiaf/eI2ZwAAABMbi80IrXzumck3PgCAsbh1L2Y35LNQyWugd/L5vASht1wXsbkPNAAAAHLFbTQwpij8KMR47nXIfQntikJH8B8dwYYodJTPbRW4BYI7znfPZtu3u/CbG/eBRjSORfAfHcEGOoINdIRhXNmMCSGfH//kihwAQNDlc1uFXF8DuQLaObdud+G3fPaLq+4BAAAmNhabkdXmzZtVVVUV6HtW5iqfb3y4D6ZdUeoI/qEj2DBRO8r1NZA3W3MzUTvKVT63B5mozdEQbKAj2EBHsIGOMJqrt9H4y7/8S+3Zs0fLli3Ttm3b3NoMXBaFH4Vw68eNueVG7qLQEfxHR7BhonWU62tgPrc/4PVv4nXkhoneHA3BBjqCDXQEG+gIw1y9svlrX/uafvzjH7u5CSAn+fz4J1fkAACixO9fAsetEpANv3gQAAAgelxdbP6Lv/gLTZ8+3c1NANa5cR9MAACCLp83W/ldCLDBreYABANvNgLAxJT3YvOHH36oT3ziE7rnnntG/PvOnTtVXFysp59+2trkgKDjl+AgqOgNQL7c+iVwLBIiG37xIOCefL4O3Bqb65uNQZirW2MBYEIy49Da2mqmT59uent7jTHGHDlyxEyfPt1873vfO2fsr371K7Ny5crxbAbjdOedd5olS5aYVatWmVQqlf73M2fOmNtvv90sWbLEfO1rX8v5+fr7+40k09/f78Z0Q627u9s0NDSY8vJy09DQYLq7u7OObWhoMIWFhUaSKSwsNA0NDR7O1H9R6Gj4811WVjbm59vv541qb1HoCP6jI+fcev3L53jo1jE5V3TkrSiec9EQbMjWUT5fB26NLSsrM5LSf8rLyz3dvt9jeU3DRENHGDauxeYzZ86Yyy67zHz72982XV1dZu7cueZLX/pSxrEsNnvr1VdfNatXrzbGGLNhwwbz5JNPph/7+c9/br75zW8aY4xpamoy+/bty+k5OWDYkevJlls4gcksn4+LW9+8uvG8bvVGR4gCOvKWW4uEfi8o0lFw5fMa6OfrWpAbCtMimVtz9Xu/cpWto3y+Dtwam+txOghzdWMsr2mYaGx0FJZjL85vXIvNxhjzyCOPmLKyMnPllVeaFStWmMHBwYzjWGz21ubNm80TTzxhjDHm4MGD5stf/nL6sbvuusu8+OKLxhhjtm3blvFK9Ex44bHDjXfA3di+W7zsyK0FZLcWcN143jAtjOeD4xFsoKPgcmthwA10FFxhWeDJ1lAQFk/DdJVnmK5edUOQr2zO9c3GIMzVjbG8pmGisfG65sZPxIXtjUa/98vGx2Dci82nTp0ykydPNvPnzzfvvfdexjH19fVm5syZZsqUKWbu3Lmmo6NjvJtDju6//36zY8cOY4wxb7/9trntttvSjzU3N5vDhw8bY4xpb283X//61zM+x+nTp01/f3/6T1dX13lfeD744APzwQcfmFQqZU6fPj3i78P/ffr0aVceO/vvZ2/fjceczvvo0aOmrq7OlJWVmfr6enP06NGM/199fb2ZNGmSkWQmTZpk6uvrs87t2LFjpq6uzsyYMeOc5xy9TzNmzPD0BCbfjvIx1uenrq5uxMewrq4u6+dn9MelrKws6+c10+fGRnPZPudOmjt+/PiI3o4dO5b1/xseO9zR8NhM8w56RxyPwrFPZx8PvTiJo6PwdDT6eFhXV5f1/zv7WO/FImE+HYXl4x3Fhk6fPm2OHj1q6uvrTVlZmamrqzNHjx7N+v95+bqWa0Nnf6M9+nxj9MfnfOcQoz+u+ZxvZDo/yvYxzzbWyflOtmNBplbOt/3RHWU778vUUaaxYToWnb1YUFdXZ44fP561o2PHjo34mjl+/HjWjvI5x8z1a/f48ePp7dfX14/Y/uj/L5/tD3+vNPr7r0wd5fq9WraxUX1NG+5oxowZOXd09tixOhr9/UcuzzlWR8PPmUtHY23/7I5Gf899vo4yfX/u5Wu1V9x4Xct2THfyupbP9/FjPacXHWVaz8jltfJ8a0deH4/y/gWBw77yla9Ikk6ePJn+ZR2j7dy5U7///e/1/vvv6ze/+c15f5EH7JgxY4aSyaQkqa+vT2VlZTk9draNGzcqFoul/1RWVro/8QmgoqJCzzzzjH73u9/pmWeeyfpLcDo7O/Xhhx9K+ugXch48eDDrczY3N2v37t1699139cILL6i5uTnr2AULFmjSpI++5Mf6xTo2+NnRwYMHR3wMDx06lHXs2R+XSZMmacGCBVnHbt26VTfccIPKysq0bNkyPfbYY1nH9vT06Oabb9bFF1+sm2+++by/OOSxxx7TsmXLVFZWphtuuEFbt24daxfHNNzbb3/72/P2JklNTU05d1RdXT1hOoJ7ho9dY/3CIFvoKDy2bt2a8/FweGx5ebnq6urU2trq6tzoKDyGXwP/7d/+bczXQC/Pj3Jt6OxfqjnWuWA+5435jD379X6s86PRY6+99lrrc83nXC7b9t0ae/Z5pxe/BDXXjoZ/AWcu54L5nDfmMzZX493+s88+a33sWN+rnT12rGNMFF7Thn/J47vvvqvdu3erqakp63M2NzfrhRdeyGlsrt9/5Pucw2NfeOEFK9sfnoMbY4e/X5wzZ855v18cHnfRRRdpxYoVY/7yyptvvtmzX17pxutaPq8/ub6uuPVa6VZHua5nuPW6auV1bTzvXtx7771m5syZ5siRI2bmzJnmoYceGs/TwAWj79n805/+NP3Y6Hs279+/P+Nz5HsFGOxy67YO+dwz0wY/O3Ljx/vcnEM+3PixHjqCDfm06fWPitIRbKCjaPLydW08V4AF/fYH+YwN01zd2i8bOBbBhlw78vu+135v382xuR47gnxrKDde19z4XR9ufQyj2oaNjvJebN66dauZMmWKOXDggDHmowXNefPmmYGBgbw3DnfceeedZsmSJWbVqlUmlUqZL37xi8aYj36x45o1a8ySJUvMV7/61Zyfj/s3eSuKv23dGH/u2ezVgmgmbi2mufE5pyPYEOQT4dHoCDbQEZwa696Wfi2euiVMc82H33PlWAQbgnrvb7+37+ZYvxfc3WDjdS0fuT6vW68/fr+JGuTzhbwWm59//nlTXFxstm/fnv63/v5+c+GFF5of/vCHeW8c4cAJTHD5fXKbj4nWkVuLaW6cQNARbAjyFfKj0RFsoCM4RUOwgY5gQ1Df/PJ7+26O9XvB3Q0T7XgU1TdRbSgwxhjl4NChQ/r0pz+t+++/X+vXrx/x2H/7b/9Nf//3f69//ud/znr/ZoRXMplULBZTf3+/SktL/Z4OQmqiddTT06NEIqHOzk5VV1ertbXVyj3tGhsb1d7erqGhIRUWFqqurk5tbW0WZhwOE62jMAlTm3QEG+gITtEQbKAj2EBH3sv1+8V8vq9063vQXNERhuW82IyJiwMGbKAjO/w+gfAbHXlruLeOjg7V1NQE+uQ2H3QEG+gITtEQbKAj2EBHsIGOMKzI7wkAAHI3/JvFgfHKZwF5+DeQDw0Nqb29XYlEImt/tAkAAAAAmOT3BAAAgHeGF5B7e3vTC8jZdHR0aGhoSJI0NDSkzs5Oj2YJAAAAAAgjFpsBAIiAnp4eNTY2qry8XI2Njerp6ck4Lp8F5JqamvTvYigsLFR1dbX9iQMAAAAAIoPFZmS1efNmVVVVsbgAR+gINtDR2HK9YjmfBeTW1lbV1dWpvLxcdXV1am1tdWHm3qEj2EBHcIqGYAMdwQY6gg10hNH4BYEYEzd5hw10BBvoKLvy8nL19vaO+PvJkyfPGRemX+TnFjqCDXQEp2gINtARbKAj2EBHGMaVzQCA0Mv1FhJhk89+5XrF8vAv8jt58qTa2tom3EIzAAAAAMA9LDYDAEIvn196F6aF6Xz2K2q3vAAAAAAAhA+LzQCA0Mvnl97luoCbz6K0W2Pz2S+uWAYAAAAA+I3F5ohpaWlRPB7X6tWrNTAwMOKxPXv2qLKyUkuXLtWyZct8miEA2JfPL73LdQE3n6uK3Rqbz34BAAAAAOA3Fpsj5PDhw+ru7tbevXtVVVWlbdu2nTPm1ltv1Z49e7R7924fZggA7sjnFhK5LuDmc1WxW2O5NQYAAAAAIEyK/J4A7Dlw4IDq6+slSQ0NDXr88ce1atWqEWO2b9+uV155RbfccovWr1+f8XlSqZRSqVT678lk0r1JI7LoCDbk2tHwLSRy0draqkQioc7OTlVXV2ddwK2pqVF7e7uGhobGvKrYrbH57Bey43gEG+gITtEQbKAj2EBHsIGOkA1XNkdIX1+fSktLJUmxWEy9vb0jHl+wYIHeeust7d69W7/85S916NChjM+zceNGxWKx9J/KykrX547ooSPY4EZHud7bOJ+rit0aCzs4HsEGOoJTNAQb6Ag20BFsoCNkU2CMMX5PAvnp7u7WLbfccs6/NzY2qrKyUmvWrNHBgwfV2tqqhx56KONzPPzwwyopKdHatWvPeSzTu1OVlZXq7+9PL2YDY6Ej2EBHsIGOYAMdwSkagg10BBvoCDbQEbLhNhohNGfOHL388svn/Pvhw4f1wAMPaM2aNdq5c6cWL1484vFkMpn+gt+7d6/uuOOOjM9fUlKikpIS+xPHhEJHsIGOYAMdwQY6glM0BBvoCDbQEWygI2TDbTQi5JprrtGcOXMUj8f15ptvauXKlZKkdevWSZKeeuop1dTUaNGiRZo7d65qa2v9nC4AAAAAAACACOHK5ojZtGnTOf+2ZcsWSVJTU5Oampq8nhIAAAAAAACACYArmwEAAAAAAAAAjrHYDAAAAAAAAABwjMVmAAAAAAAAAIBjLDYDAAAAAAAAABxjsRlZbd68WVVVVaqurvZ7KggxOoINdAQb6Ag20BGcoiHYQEewgY5gAx1htAJjjPF7Egi2ZDKpWCym/v5+lZaW+j0dhBQdwQY6gg10BBvoCE7REGygI9hAR7CBjjCMK5sBAAAAAAAAAI6x2AwAAAAAAAAAcIzFZgAAAAAAAACAYyw2AwAAAAAAAAAcY7E5Qk6dOqXrrrtO06ZN0xtvvHHO44ODg0okEorH41q/fr0PMwQAAAAAAAAQVSw2R8iUKVP03HPP6ZZbbsn4+LPPPqtLLrlEe/fu1fvvv6/9+/d7PEMAAAAAAAAAUVXk9wRgT1FRkWbNmpX18QMHDuimm26SJDU0NGj//v1atGjROeNSqZRSqVT678lk0v5kEXl0BBvoCDbQEWygIzhFQ7CBjmADHcEGOkI2XNk8gfT19am0tFSSFIvF1Nvbm3Hcxo0bFYvF0n8qKyu9nCYigo5gAx3BBjqCDXQEp2gINtARbKAj2EBHyKbAGGP8ngTy093dnfFWGc8884zKysqUSCTU0tKi+fPnj3j8nnvu0Y033qja2lpt27ZNR48eVUtLyznPM/rdKWOMBgYGNHPmTBUUFNjfIUQSHcEGOoINdAQb6AhO0RBsoCPYQEewgY6QDbfRCKE5c+bo5Zdfzvv/u/7667Vr1y7V1tZq586dWrt2bcZxJSUlKikpcTpNTHB0BBvoCDbQEWygIzhFQ7CBjmADHcEGOkI23EYjYpYvX65du3apublZra2tkqR169ZJklasWKGuri7F43FNmTJFCxcu9HGmAAAAAAAAAKKE22gAAAAAAAAAABzjymYAAAAAAAAAgGPcsxmOGGN06tQpv6eBPE2fPj1QN+yno3CiI9hAR7AhSB3RUHjREZwKUkMSHYUVHcEGOoIN4+2IxWY4cvLkSc2ePdvvaSBPJ06c0KxZs/yeRhodhRMdwQY6gg1B6oiGwouO4FSQGpLoKKzoCDbQEWwYb0csNsOR4uJiSVJXV5dKS0t9no09yWRSlZWVkd2v4c9bUNBRuNCRt+jIW3QULkHsiIbCh468E9WOgtiQREdhQ0feoiNv0VG4OO2IxWY4Mnw5fWlpaaS+sIZFdb+C9OM0Eh2FFR15K6r7RUfeiup+BakjGgovOvJOVPcrSA1JdBRWdOStqO4XHXkrqvs13o74BYEAAAAAAAAAAMdYbAYAAAAAAAAAOMZiMxwpKSnRfffdp5KSEr+nYhX75a2gzssp9stbQZ2XU+yXt4I6L6fYL+8EcU42RHW/pGDuWxDnZAP75a2gzssp9stbQZ2XU+yXt4I6L6fYr8wKjDHG8pwAAAAAAAAAABMMVzYDAAAAAAAAABxjsRkAAAAAAAAA4BiLzQAAAAAAAAAAx1hshiMtLS2Kx+NavXq1BgYG/J6OFUePHtWsWbO0dOlSLV26VL///e/9npIjp06d0nXXXadp06bpjTfekCT97Gc/08KFC/WZz3xGXV1dPs+QjsKAjvwRpY5oyD905K0odhSlhiQ68gsdeY+Ogo+O/EFH3qOj4LPakQHG6dVXXzWrV682xhizYcMG8+STT/o8Izveeecds3LlSr+nYc2ZM2fMiRMnzO23325ef/11MzAwYGpqakwqlTIvv/yyaW5u9nV+dBQOdOSPKHVEQ/6hI+9EtaMoNWQMHfmFjrxFR+FAR/6gI2/RUTjY7IgrmzFuBw4cUH19vSSpoaFB+/fv93lG9uzbt0/xeFzf+MY3ZIzxezqOFBUVadasWem/v/3227riiitUXFysxYsX6/XXX/dxdnQUFnTkn6h0REP+oiNvRLmjqDQk0ZGf6Mg7dBQOdOQfOvIOHYWDzY5YbMa49fX1qbS0VJIUi8XU29vr84zsuOiii/TrX/9aL730kk6cOKEdO3b4PSWrzv68SdLQ0JCPs6GjsKIjb0S5IxryDh15J6odRbkhiY68QkfeoqNwoiNv0JG36CicnHTEYjPGbcaMGUomk5I+irCsrMznGdlRUlKiqVOnqqCgQCtXrtSRI0f8npJVZ3/eJKmwsNDH2dBRWNGRN6LcEQ15h468E9WOotyQREdeoSNv0VE40ZE36MhbdBROTjpisTliMt3Qe9jg4KASiYTi8bjWr1/veFvXX3+9du3aJUnauXOnFi9e7Pg5g+DUqVPp/37ppZd0+eWX+zgb+y6//HK9+eabGhgY0L59+3TVVVf5Oh86Cic68kaUO6Ih79CRd6LaUZQbkujIK3TkLToKJzryBh15i47CyUlHBSbsNxXBCIODg3r33Xd11113qaWlRfPnz08/tmPHDh06dEgbNmxQc3OzvvCFL2jRokWOttfS0qJXXnlF8+bN0+OPP67i4mKnu+C7trY23Xvvvbrgggt02WWX6Uc/+pGKior8npYjy5cv15EjR3TppZdq3bp1mjx5sh588EFNnjxZP/7xj1VZWenr/OgoHOjIe1HriIb8QUfeimJHUWtIoiM/0JH36Cgc6Mh7dOQ9OgoHWx2x2BxRiUTinMXmu+++WzfddJNqa2u1fft2vfPOO2ppaTnn/02lUkqlUum/G2M0MDCgmTNnqqCgwJP5I/zoCDbQEWygI9hAR3CKhmADHcEGOoINdIRsuI3GBJLrTdk3btyoWCyW/nPhhRdq9uzZI35EABgLHcEGOoINdAQb6AhO0RBsoCPYQEewgY6QDVc2R1SmK5vvuece3XjjjaqtrdW2bdt09OjRnK5sTiaTqqysVH9//4jfRAmcDx3BBjqCDXQEG+gITtEQbKAj2EBHsIGOkE24byaCvAzflL22tlY7d+7U2rVrM44rKSlRSUmJx7ND1NARbKAj2EBHsIGO4BQNwQY6gg10BBvoCNlwG40IWr58uXbt2qXm5ma1trZq3bp1kqQVK1aoq6tL8XhcU6ZM0cKFC32eKQAAAAAAAICo4MrmCHr++edH/D2RSEiSioqK9MQTT/gwIwAIjp6eHiUSCXV0dKimpkatra2qqKjwe1oAAAAAAIQeVzYDACaURCKh9vZ29fb2qr29Pf2GHAAAAAAAcIbFZgDAhNLR0aGhoSFJ0tDQkDo7O32eEQAAAAAA0cBiMwBgQqmpqVFhYaEkqbCwUNXV1T7PCAAAAACAaGCxGQAwobS2tqqurk7l5eWqq6tTa2ur31MCAAAAACASWGxGVps3b1ZVVRVX/cEROoINNjuqqKhQW1ubTp48qba2Nn454ATC8Qg20BGcoiHYQEewgY5gAx1htAJjjPF7Egi2ZDKpWCym/v5+lZaW+j0dhBQdwQY6gg10BBvoCE7REGygI9hAR7CBjjCMK5sBAAAAAAAAAI6x2AwAAAAAAAAAcIzFZgAAAAAAAACAYyw2AwAAAAAAAAAcY7E5glpaWhSPx7V69WoNDAyk/33Pnj2qrKzU0qVLtWzZMh9nCAAAAAAAACBqWGyOmMOHD6u7u1t79+5VVVWVtm3bNuLxW2+9VXv27NHu3bt9miEAAAAAAACAKCryewKw68CBA6qvr5ckNTQ06PHHH9eqVavSj2/fvl2vvPKKbrnlFq1fvz7jc6RSKaVSqfTfk8mku5NGJNERbKAj2EBHsIGO4BQNwQY6gg10BBvoCNlwZXPE9PX1qbS0VJIUi8XU29ubfmzBggV66623tHv3bv3yl7/UoUOHMj7Hxo0bFYvF0n8qKys9mTuihY5gAx3BBjqCDXQEp2gINtARbKAj2EBHyKbAGGP8ngTsefjhhzV16lStWbNGBw8eVGtrqx566KGM40pKSrR27dpzHsv07lRlZaX6+/vTC9nAWOgINtARbKAj2EBHcIqGYAMdwQY6gg10hGy4jUbEXH/99XrggQe0Zs0a7dy5U4sXL04/lkwm01/we/fu1R133JHxOUpKSlRSUuLJfBFddAQb6Ag20BFsoCM4RUOwgY5gAx3BBjpCNtxGI2KuueYazZkzR/F4XG+++aZWrlypdevWSZKeeuop1dTUaNGiRZo7d65qa2t9ni0AAAAAAACAqODK5gjatGnTiL9v2bJFktTU1KSmpiY/pgQAAAAAAAAg4riyGQAAAAAAAADgGIvNAAAAAAAAAADHWGwGAAAAAAAAADjGYjMAAAAAAAAAwDEWm5HV5s2bVVVVperqar+nghCjI9hAR7CBjmADHcEpGoINdAQb6Ag20BFGKzDGGDeeuKurS5///Od14sQJFRUV6Vvf+pY+97nPubEpuCyZTCoWi6m/v1+lpaV+TwchRUewgY5gAx3BBjqCUzQEG+gINtARbKAjDCty7YmLivT9739fV199tU6cOKFPfepTWr58uaZOnerWJgEAAAAAAAAAPnHtNhoXXXSRrr76aknS7NmzVVZWpt7eXrc2BwAAAAAAAEt6enrU2Nio8vJyNTY2qqenx9Oxfm8/CGPd2j7gKpOnoaEh82d/9mfm7rvvHvHvv/zlL80f/dEfmaeeeuqc/6ezs9NcccUV+W4KAdHf328kmf7+fr+nghCjI9hAR7CBjmADHcEpGoINdAQbsnXU0NBgCgsLjSRTWFhoGhoasj6HG2P93n4Qxrq1fTdwPMKwvK9snjRpkr7+9a/r4Ycf1rvvvitJeu211/S5z31O3/3ud8+5L/Mf/vAHrVmzRo8++mj+K+EYl5aWFsXjca1evVoDAwPpfx8cHFQikVA8Htf69et9nCEAYCLjqgsAAIDg6+jo0NDQkCRpaGhInZ2dno71e/tBGOvW9r0U1avD/R7r9/bPazwr1GfOnDGXXXaZ+fa3v226urrM3LlzzZe+9KVzxp0+fdrE43Hz4x//2PGqOHLz6quvmtWrVxtjjNmwYYN58skn04/9/Oc/N9/85jeNMcY0NTWZffv25fScvDsFG+gINky0jrq7u01DQ4MpKyszDQ0Npru7O5DPma+gXnWR68cmn49hmMb6vX03x7ohCscjv9uY6KLQEPxHR7CBK5uDOzYKVzZH9WPo91i/t38+41psNsaYRx55xJSVlZkrr7zSrFixwgwODo54/MMPPzR/9Vd/Ze67777xbgLjsHnzZvPEE08YY4w5ePCg+fKXv5x+7K677jIvvviiMcaYbdu2me9973s5PWdQT2CC8M1rVL/Zd0NQO0K4RKGjfL4W3ThhzOc53TrGlJWVGUnpP+Xl5Y72KV9OT4SDcGIX1RPWKHxD5Tc3jjFufV6CcM7j5/lRUBtCuNARbBjrjfjy8vKcj6c2x/q9/SCMdWv7bsjWUT7n/m6M9Xv7Ud6vbMa92Hzq1CkzefJkM3/+fPPee++d8/jevXtNQUGB+eQnP5n+80//9E/j3RxydP/995sdO3YYY4x5++23zW233ZZ+rLm52Rw+fNgYY0x7e7v5+te/nvE5Tp8+bfr7+9N/urq6zvvCM2PGDFNXV2eOHz9uTp8+bT744APzwQcfmFQqlf7vY8eOmfr6+hFjhx87ffr0iP/v+PHjpq6uzsyYMcPU19ebY8eOZXzO+vp6M2nSJCPJTJo0ydTX16ef5/Tp02OOPfs5z/7/xhp79rxHj62rq8u4T6lUytTV1WUcO9ZzDm9/9D6lUqms2x+9T6O378U35X52dPTo0RHjjh07ltdzZuvo+PHj6bH19fUjtj/6Y55rx6dPnzbHjh0bMfbo0aNZOzp69GjGsaOfM9v2M3WUbfuZOhrevlfflOfa0Xhk+txl+ljafiyfY9eMGTNGvNCXlZVlbW705zXb9s/3nKPn7eR4mOuxK0jHo9EnVmVlZRk/jpk+htk+/5nG5vO5sdHGWGPH00auz3m+7WdqI9vYTL2PHuv2mxb5HI/8Or7k+7WY68fb1ud7vOdG2cZmO/ZlGpvtmOnl+VFYzrHdOo/w+9wo29hsHY0+nzx69Ggoz41sH4/c6ChM59j5dBSlc2w/X9eyneO68VhU9skruXZ09hvRo7//Gf3xOd/3H+P9XoW1I+/Xjsa92Hz77bebyZMnmzlz5ngaM87vBz/4QfrK5s7OzhFXNt99993pK5uffvrprFc233fffSO+SRj+E7QDht/flOf7DdX5vqHL9TnD9E25nx2NPjjn+5y88ATnTYtcOxoPv04w8zl25dNcrifN+RyP3VpQHP7my6urLmwfj7ItZIX9eOTGa/VEPR7ZPr7ks7iSz9dirh9vt17Tcj03yjY227Ev2xtCmb6evDw/Css5tltft36fG2Ubm62jXN+0COqxyK03LdzoKEzn2Pl0FJXXNGNYbA7bPnkl3+NRWVlZzsejs8dm+7gOnx+VlZWd9/wo03Nm+9gNv/k1/Jy5vPk11vZPn/7/v/k1PDaXN79Gjx39nNm2f77vvzI95+iPxfD2nXyvNq7F5nvvvdfMnDnTHDlyxMycOdM89NBD43kauGD0PZt/+tOfph8bfc/m/fv3Z3yO06fHdwWY15fsB+HHcqP6Y8w2+NmR320GYazf27cl147CZDw/Ym5zUTaf5wzyMSYfuXbk948z+j3W7+27OdYGP49Hbt/Gwq82gnDO4+WxKyzn2G6N9Xv7QdgvG3LtyK2vA78/hmEayzk2oo6OkE3ei81bt241U6ZMMQcOHDDGfLSgOW/ePDMwMGB9chifO++80yxZssSsWrXKpFIp88UvftEY89EvdlyzZo1ZsmSJ+epXv5rz8wX1Ju9B+OY1qt/su8HLjvxuMwhj/d6+W7y8L6Hb9we1/bXoxn1Hw3SMyQf3t4QNXnaUzyJEmL4Wg3DO4+fHK6jn2G6N9Xv7QdgvN3h9j1S/P4ZhGss5NiYaOsKwvBabn3/+eVNcXGy2b9+e/rf+/n5z4YUXmh/+8IfWJ4dgCOovC0C4eNlRENr0e6zf23eLlycwYfoGIShzCAtOhGGD047yeYOIr+9oCvI5dlTPTfzeLzd4/aaF3x/DMI3lHBsTDR1hWIExxigHhw4d0qc//Wndf//9Wr9+/YjH/tt/+2/6+7//e/3zP/+zCgsLc3k6hEgymVQsFlN/f79KS0v9ng5Cio5gg5cdlZeXq7e3d8TfT5486XisW4Iwh7DgeAQbnHbU2Nio9vZ2DQ0NqbCwUHV1dWpra8s4tqenR4lEQp2dnaqurlZra6sqKiqc7gJ8xrEINmTrKJ/jBscYcDyCDXSEYUW5Drz22mv13nvvZXzsO9/5jr7zne9YmxQAAH6rqakZsRBUXV1tZaxbgjAHALnr6OjQ0NCQJGloaEidnZ1Zx1ZUVGRdiAaATPI5bnCMAQDYNMnvCQAAEEStra2qq6tTeXm56urq1NraamWsW4IwBwC5q6mpSf9EIG8QAQAAICpyvrIZAICJJGxXBAVhDsBEN/yj6B0dHaqpqTnvj6K3trae82PrAAAAQNix2AwAAABYkEgk0rezaW9vVyKRyPomEG8QAQAAIIq4jQay2rx5s6qqqvixTjhCR7CBjmADHcGG83WUz32YMXFxLIINdAQb6Ag20BFGKzDGGL8ngWDjN4rCBjqCDXQEG+gINmTqqLGxccQv6qyrq+PqZWTFsQg20BFsoCPYQEcYxpXNAAAAgAX8ok4AAABMdNyzGQAAALCA+zADAABgouPKZgAAAAAAAACAYyw2R0xLS4vi8bhWr16tgYGBEY/t2bNHlZWVWrp0qZYtW+bTDAEAAAAAAABEEYvNEXL48GF1d3dr7969qqqq0rZt284Zc+utt2rPnj3avXu3DzMEAAAAAAAAEFUsNkfIgQMHVF9fL0lqaGjQ/v37zxmzfft2xeNxPfjgg15PDwAAAAAAAECE8QsCI6Svr08XX3yxJCkWi6m3t3fE4wsWLNBbb70lSfrsZz+rJUuW6Nprrz3neVKplFKpVPrvyWTSxVkjqugINtARbKAj2EBHcIqGYAMdwQY6gg10hGy4sjmEuru7tWTJknP+GGPSX9x9fX0qKysb8f9NmzZNxcXFKi4u1s0336zXXnst4/Nv3LhRsVgs/aeystL1fUL00BFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2RQYY4zfk4Adhw8f1gMPPKCf/OQnuv/++/Wxj31Mt912W/rxZDKp0tJSSdKqVat0xx13qLa29pznyfTuVGVlpfr7+9P/PzAWOoINdAQb6Ag20BGcoiHYQEewgY5gAx0hG26jESHXXHON5syZo3g8rnnz5umuu+6SJK1bt05btmzRU089pUcffVRFRUVavHhxxoVmSSopKVFJSYmXU0cE0RFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2bDYHDGbNm0659+2bNkiSWpqalJTU5PXUwIAAAAAAAAwAXDPZgAAAAAAAACAYyw2AwAAAAAAAAAcY7EZAAAAAAAAAOAYi80AAAAAAAAAAMdYbEZWmzdvVlVVlaqrq/2eCkKMjmADHcEGOoINdASnaAg20BFsoCPYQEcYrcAYY/yeBIItmUwqFoupv79fpaWlfk8HIUVHsIGOYAMdwQY6glM0BBvoCDbQEWygIwzjymYAAAAAAAAAgGMsNgMAAAAAAAAAHGOxGQAAAAAAAADgGIvNAAAAAAAAAADHWGyOkFOnTum6667TtGnT9MYbb5zz+ODgoBKJhOLxuNavX+/DDAEAAAAAAABEFYvNETJlyhQ999xzuuWWWzI+/uyzz+qSSy7R3r179f7772v//v0ezxAAAAAAAABAVBX5PQHYU1RUpFmzZmV9/MCBA7rpppskSQ0NDdq/f78WLVp0zrhUKqVUKpX+ezKZtD9ZRB4dwQY6gg10BBvoCE7REGygI9hAR7CBjpANVzZPIH19fSotLZUkxWIx9fb2Zhy3ceNGxWKx9J/Kykovp4mIoCPYQEewgY5gAx3BKRqCDXQEG+gINtARsikwxhi/J4H8dHd3Z7xVxjPPPKOysjIlEgm1tLRo/vz5Ix6/5557dOONN6q2tlbbtm3T0aNH1dLScs7zjH53yhijgYEBzZw5UwUFBfZ3CJFER7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw200QmjOnDl6+eWX8/7/rr/+eu3atUu1tbXauXOn1q5dm3FcSUmJSkpKnE4TExwdwQY6gg10BBvoCE7REGygI9hAR7CBjpANt9GImOXLl2vXrl1qbm5Wa2urJGndunWSpBUrVqirq0vxeFxTpkzRwoULfZwpAAAAAAAAgCjhNhoAAAAAAAAAAMe4shkAAAAAAAAA4Bj3bIYjxhidOnXK72kgT9OnTw/UDfvpKJzoCDbQEWwIUkc0FF50BKeC1JBER2FFR7CBjmDDeDtisRmOnDx5UrNnz/Z7GsjTiRMnNGvWLL+nkUZH4URHsIGOYEOQOqKh8KIjOBWkhiQ6Cis6gg10BBvG2xGLzXCkuLhYktTV1aXS0lKfZ2NPMplUZWVlZPdr+PMWFHQULnTkLTryFh2FSxA7oqHwoSPvRLWjIDYk0VHY0JG36MhbdBQuTjtisRmODF9OX1paGqkvrGFR3a8g/TiNREdhRUfeiup+0ZG3orpfQeqIhsKLjrwT1f0KUkMSHYUVHXkrqvtFR96K6n6NtyN+QSAAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDEdKSkp03333qaSkxO+pWMV+eSuo83KK/fJWUOflFPvlraDOyyn2yztBnJMNUd0vKZj7FsQ52cB+eSuo83KK/fJWUOflFPvlraDOyyn2K7MCY4yxPCcAAAAAAAAAwATDlc0AAAAAAAAAAMdYbAYAAAAAAAAAOMZiMwAAAAAAAADAMRab4UhLS4vi8bhWr16tgYEBv6djxdGjRzVr1iwtXbpUS5cu1e9//3u/p+TIqVOndN1112natGl64403JEk/+9nPtHDhQn3mM59RV1eXzzOkozCgI39EqSMa8g8deSuKHUWpIYmO/EJH3qOj4KMjf9CR9+go+Kx2ZIBxevXVV83q1auNMcZs2LDBPPnkkz7PyI533nnHrFy50u9pWHPmzBlz4sQJc/vtt5vXX3/dDAwMmJqaGpNKpczLL79smpubfZ0fHYUDHfkjSh3RkH/oyDtR7ShKDRlDR36hI2/RUTjQkT/oyFt0FA42O+LKZozbgQMHVF9fL0lqaGjQ/v37fZ6RPfv27VM8Htc3vvENGWP8no4jRUVFmjVrVvrvb7/9tq644goVFxdr8eLFev31132cHR2FBR35Jyod0ZC/6MgbUe4oKg1JdOQnOvIOHYUDHfmHjrxDR+FgsyMWmzFufX19Ki0tlSTFYjH19vb6PCM7LrroIv3617/WSy+9pBMnTmjHjh1+T8mqsz9vkjQ0NOTjbOgorOjIG1HuiIa8Q0feiWpHUW5IoiOv0JG36Cic6MgbdOQtOgonJx2x2IxxmzFjhpLJpKSPIiwrK/N5RnaUlJRo6tSpKigo0MqVK3XkyBG/p2TV2Z83SSosLPRxNnQUVnTkjSh3REPeoSPvRLWjKDck0ZFX6MhbdBROdOQNOvIWHYWTk45YbI6YTDf0HjY4OKhEIqF4PK7169c73tb111+vXbt2SZJ27typxYsXO37OIDh16lT6v1966SVdfvnlPs7Gvssvv1xvvvmmBgYGtG/fPl111VW+zoeOwomOvBHljmjIO3Tknah2FOWGJDryCh15i47CiY68QUfeoqNwctJRgQn7TUUwwuDgoN59913dddddamlp0fz589OP7dixQ4cOHdKGDRvU3NysL3zhC1q0aJGj7bW0tOiVV17RvHnz9Pjjj6u4uNjpLviura1N9957ry644AJddtll+tGPfqSioiK/p+XI8uXLdeTIEV166aVat26dJk+erAcffFCTJ0/Wj3/8Y1VWVvo6PzoKBzryXtQ6oiF/0JG3othR1BqS6MgPdOQ9OgoHOvIeHXmPjsLBVkcsNkdUIpE4Z7H57rvv1k033aTa2lpt375d77zzjlpaWs75f1OplFKpVPrvxhgNDAxo5syZKigo8GT+CD86gg10BBvoCDbQEZyiIdhAR7CBjmADHSEbbqMxgeR6U/aNGzcqFoul/1x44YWaPXv2iB8RAMZCR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw5XNEZXpyuZ77rlHN954o2pra7Vt2zYdPXo0pyubk8mkKisr1d/fP+I3UQLnQ0ewgY5gAx3BBjqCUzQEG+gINtARbKAjZBPum4kgL8M3Za+trdXOnTu1du3ajONKSkpUUlLi8ewQNXQEG+gINtARbKAjOEVDsIGOYAMdwQY6QjbcRiOCli9frl27dqm5uVmtra1at26dJGnFihXq6upSPB7XlClTtHDhQp9nCgAAAAAAACAquLI5gp5//vkRf08kEpKkoqIiPfHEEz7MCAAAAAAAAEDUcWUzAABAHnp6etTY2Kjy8nI1Njaqp6fH7ykBAAAAQCCw2AwAAJCHRCKh9vZ29fb2qr29Pf0TRAAAAAAw0bHYDAAAkIeOjg4NDQ1JkoaGhtTZ2enzjAAAAAAgGFhsBgAAyENNTY0KCwslSYWFhaqurvZ5RgAAAAAQDCw2I6vNmzerqqqKb6LhCB3BBjqCDbY6am1tVV1dncrLy1VXV6fW1lY7E0QonK8j7ueNXPCaBhvoCDbQEWygI4xWYIwxfk8CwZZMJhWLxdTf36/S0lK/p4OQoiPYQEewgY5gQ6aOGhsb1d7erqGhIRUWFqqurk5tbW0+zxRBxbEINtARbKAj2EBHGMaVzQAAAIAF3M8bAAAAEx2LzQAAAIAF3M8bAAAAEx2LzQAAAIAF+dzPm/s7AwAAIIqK/J4AAAAAEAUVFRU536M5kUik7+/c3t6uRCLB/Z0BAAAQelzZHEEtLS2Kx+NavXq1BgYG0v++Z88eVVZWaunSpVq2bJmPMwQAAJjYuL8zAAAAoojF5og5fPiwuru7tXfvXlVVVWnbtm0jHr/11lu1Z88e7d6926cZAgAAgPs7AwAAIIq4jUbEHDhwQPX19ZKkhoYGPf7441q1alX68e3bt+uVV17RLbfcovXr12d8jlQqpVQqlf57Mpl0d9KIJDqCDXQEG+gINtjuqLW1VYlEQp2dnaqurj7v/Z0RDRyLYAMdwQY6gg10hGy4sjli+vr6VFpaKkmKxWLq7e1NP7ZgwQK99dZb2r17t375y1/q0KFDGZ9j48aNisVi6T+VlZWezB3RQkewgY5gAx3BBtsdDd/f+eTJk2pra1NFRYWlmSKoOBbBBjqCDXQEG+gI2RQYY4zfk4A9Dz/8sKZOnao1a9bo4MGDam1t1UMPPZRxXElJidauXXvOY5nenaqsrFR/f396IRsYCx3BBjqCDXQEG+gITtEQbKAj2EBHsIGOkA230YiY66+/Xg888IDWrFmjnTt3avHixenHkslk+gt+7969uuOOOzI+R0lJiUpKSjyZL6KLjmADHcEGOoINfnbU09OjRCKhjo4O1dTUqLW1lSuhQ4hjEWygI9hAR7CBjpANt9GImGuuuUZz5sxRPB7Xm2++qZUrV2rdunWSpKeeeko1NTVatGiR5s6dq9raWp9nCwAAgLEkEgm1t7ert7dX7e3tSiQSfk8JAAAAyIgrmyNo06ZNI/6+ZcsWSVJTU5Oampr8mBIAAADGqaOjQ0NDQ5KkoaEhdXZ2+jwjAAAAIDOubAYAAAACrKamRoWFhZKkwsJCVVdX+zwjAAAAIDMWmwEAAIAAa21tVV1dncrLy1VXV6fW1la/pwQAAABkxG00AAAAgACrqKhQW1ub39MAAAAAxsSVzQAAAAAAAAAAx1hsRlabN29WVVVV1vsC9vT0qLGxUeXl5WpsbFRPT4/HM0QYjNURkAs6gg10BBuC3hHnZ8EX9IYQDnQEG+gINtARRiswxhg3nvjUqVP6zGc+ozNnzmhoaEhf+9rX1Nzc7Mam4LJkMqlYLKb+/n6Vlpam/72xsVHt7e0aGhpSYWGh6urq+BFPZJWtIyAfdAQb6Ag2BLUjzs/CI6gNIVzoCDbQEWygIwxz7crmCy64QC+++KKOHDmiV155RRs3btQf/vAHtzYHH3R0dGhoaEiSNDQ0pM7OzqxjucoGAADAffmcnwEAAAC2ubbYXFhYqAsuuECSdPr0aQ0NDcmli6jhk5qaGhUWFkr66PN9vh+ZSCQSam9vV29vr9rb25VIJLKOZWEaAICJiXMA5/I5PwMAAABsy3ux+cMPP9QnPvEJ3XPPPSP+fefOnSouLtbTTz+d/re+vj598pOf1CWXXKK7775bM2fOdD5jBEZra6vq6upUXl6uuro6tba2Zh2bz1U2uS5M8w1pfvh4AQCCLp83p5FZPudnnBsA0ZXP1zfHAgCATXkvNk+aNElf//rX9fDDD+vdd9+VJL322mv63Oc+p+9+97v63Oc+lx574YUX6rXXXtM777yjn/70p7xoeaSlpUXxeFyrV6/WwMBA+t8HBweVSCQUj8e1fv16x9upqKhQW1ubTp48qba2NlVUVGQdm89VNrkuTIftG9JcT+LcOjEM6sfLjf1162MYprF+bx9AtLl1LOAWEM7lc34W1HMDAM7l8/Xt1k+hhum8NUz7BQCBZ8bhzJkz5rLLLjPf/va3TVdXl5k7d6750pe+dN7/54477jBPPfXUeDaHPLz66qtm9erVxhhjNmzYYJ588sn0Yz//+c/NN7/5TWOMMU1NTWbfvn05PWd/f7+RZPr7+8c9r+7ubtPQ0GDKy8tNQ0OD6e7uzjq2oaHBFBYWGkmmsLDQNDQ0ZBxXVlZmJKX/lJeXj7n9srKyMbfv1thc9yvXcfmOzefj5YZsHbmxv259DMM01u/tu8XG8QgIakf5vKb4/bxuHQv8PsbkI6gd5cPvcwO3uHUuZ1u2hoJw3urGWL+3H1XZOsrn6zufsVE9bw3TfrkhCq9p8B8dYdi4FpuNMeaRRx4xZWVl5sorrzQrVqwwg4ODIx7v7u5OB9bf32+qqqrMa6+95my2GNPmzZvNE088YYwx5uDBg+bLX/5y+rG77rrLvPjii8YYY7Zt22a+973v5fScXh8wcl2Y9vvkId+xuZ7EBeHE0A1engi79TEM01i/t+8WTmCc4xv44HYUpgVct44F+bw57begdpQPv88N8uHGG/z5jrXNyzfigzDW7+0b4/8iuhu87iiq561h2i83ROE1Df6jIwwr0jitXr1a//k//2cZY/S//tf/St8iYdhvfvMb/fVf/7XMRwva+spXvqKrrrpqvJtDjvr6+nTxxRdLkmKxmHp7e0c8VlpamvGxs6VSKaVSqfTfk8nkebd5+vRpSR/dYmX48z389w8//FCSVFBQIEk5PTZjxgzt2LFjxGNnb2P4/9uyZYuam5t18OBBXXvttXr00UeVSqVkjFFBQYEKCgrSY1955ZURP5bb0dGRcd4FBQVjjj173tnGZtrfa6+9Vrt379aHH36oSZMm6VOf+pROnz59znMuWLBAL7zwQnrctddem37Os/dp0qRJ54w9+znP3qeCggI98sgjam5u1quvvqrq6urz3sPRhlw7qqmpUXt7u4aGhtL7O/x5HN7P4X3O9rGRRnY0+mOd73Nm6+h82x/9MR9r7Pk+58OfxyB2dPb2vfjFU34fj/J5bPTHdfTHzuZjmbbf09OjpqYmHTx4UNXV1Xr00UdVUVFxzrzXrFmT/nzv2rVLa9as0S9+8YuMz5ltbKa5dXd3Z9x+pn36t3/7NzU3N+vQoUOqqalRa2vreX/U36l8O8qV7d7yef05ceKE/vqv/zr98d66datmz56d8XOT7Xmd9JbPcSufr6FYLKYdO3aM2H4qlTrv10lJSYmjz2Ou8ukoLMeiLVu2qKmpSYcOHdKCBQv0yCOPZGwjW29e7tPnP//59OvPrl279PnPf17PPvtsxv3N1PzAwEDGj8XosW7euiXXhkbfTqajoyPrecz5jhtOjjHnO8cd7zHGrXPs823fSUeZxj733HPndHT2uOFbULS1teUWxTjk2lFra6sSiYQ6OjrO+V5peD/P931Vto6cnONmOx8N0zn26PPh4bGZXqs4x47GOXYY92ny5Mnn/XzaQkd0lE3e92we9pWvfEWSdPLkyXMWmiXp2muv1ZEjR/Taa6/pn/7pn/Sf/tN/GvckkbsZM2akv8D7+vpUVlaW02Nn27hxo2KxWPpPZWWl+xMfh4qKCj377LP67W9/q2eeeea8CxXV1dWaNOmj3Idf+N0Ye+2112Ydu3XrVi1btkxlZWW64YYbtHXr1ozjHnvssZzG5fOc0kcfr2eeeSanezjakGtHw7/IqKysTMuWLdNjjz2W9Tm3bt2qG264Ycyxo8eN9THM5Tmljz43w2NvuOGGMce68Xn0u6Phsbn84ikbwnI8cktPT49uvvlmXXzxxVqxYsV579/X3Nys3bt3691339ULL7yg5ubmjOM6OzvTJxAffvihDh48mPU58xmb6/bPHuvVfWLD0lE+rz9NTU05f7zzea3KVT7HjeGOL7roIt18882hvQ9lWDrKx/C5we9+9zs9++yzWc8N8uktH/m0cfDgwRHHo0OHDmUdu2DBgpybP3us2ws8uTZ09u86cfO81evzYbfOsfP5fOfTUa5jzx7nxb3mc+1o+P7tuXyvNHwsyGVsPueYuY4N0zl2PmM5x0bU5drR8D3JL7744jFf78/+/sfW2J6eHq1YscLV7Y/1vdp4xo51fjTe58x1rKN7yJtxuPfee83MmTPNkSNHzMyZM81DDz00nqeBC0bfs/mnP/1p+rHR92zev39/xuc4ffq06e/vT//p6uoK/Y9C5PNjuW6NnWii2BG8N9E7cuPHWsP0Y7W2hKWjfF5TxvN7C8Z6Xrd+FNyt2xR4/aPrYenIDW79ngy3b5UQtHO5XBsKwnmrG2P93r4x/t8exIaJfCyCPfkej6J2r3fYkWtHft9Gye/tR3m/ssl7sXnr1q1mypQp5sCBA8aYjxY0582bZwYGBvLeONxx5513miVLlphVq1aZVCplvvjFLxpjPvrFjmvWrDFLliwxX/3qV3N+Pu67AxvoCDZEoaN8ToTduC97mL6Bd0sUOnLjY+jW58WtNxfoyDtBeJMqim/wT6SGgsLvRXQ30BFsCOo95N1+U3Ii/3JVN3j9C0v9vn+632P93v755LXY/Pzzz5vi4mKzffv29L/19/ebCy+80Pzwhz/Me+MIB05gYAMdwYYodBSEK/ncENQrCTPxsiO3Tvrd+BiGbVGYX6bkHbeuuvf7DQO/TaSG4B46gg0TbZHQ70X0fMZG4YKOqH4M/R7r9/bPJ+fF5oMHD5qpU6ea73//++c89q1vfct8/OMfN4ODg3lPAMHHCQxsoCPYEIWOJvqVfEHgZUd+n/Tnw625utWx3x/bKByP3BCmN8n8RkOwgY5gw0RbJPR7ET2fsUG+Vd1o2Try+zZKfm8/yvuVzbju2YyJhRMY2EBHsCEKHfm9QAZvO/L7pD8fYVv483u+UTgeucHvz0uY0BBsoCPYMNEWCf1eRM9nbBSubMbEU2CMMQLOI5lMKhaLqb+/X6WlpX5PByFFR7AhqB319PQokUioo6NDNTU1am1tzfqb3IfHdnZ2qrq6+rxj4Q4vO2psbFR7e7uGhoZUWFiouro6tbW1ubpNeCOoxyOEBw3BBjqCDROto3zOx/0e69b23TDROkJ2LDZjTBwwYAMdwYagdsSCYrh42ZHfJ/1wT1CPRwgPGoINdAQb6Ag20BGGFfk9AQAAwq6jo0NDQ0OSpKGhIXV2dvo8IwRFRUUFbzwAAAAAmDAm+T0BBNfmzZtVVVWl6upqv6eCEKMj2BD0jmpqalRYWChJKiwsDOw8J7qgd4RwoCM4RUOwgY5gAx3BBjrCaNxGA2PiRyFgAx3BhqB2xK0SwiWoHSFc6AhO0RBsoCPYQEewgY4wjNtoAADgELdKAAAAAACA22gAAJBRT0+PGhsbVV5ersbGRvX09Pg9JQAAAAAAAo3FZgAAMkgkEmpvb1dvb6/a29uVSCT8nhIAAAAAAIHGYnPEtLS0KB6Pa/Xq1RoYGBjx2J49e1RZWamlS5dq2bJlPs0QAMKho6NDQ0NDkqShoSF1dnb6PCMAAAAAAIKNxeYIOXz4sLq7u7V3715VVVVp27Zt54y59dZbtWfPHu3evduHGQJAeNTU1KiwsFCSVFhYyG9XBgAAAABgDCw2R8iBAwdUX18vSWpoaND+/fvPGbN9+3bF43E9+OCDXk8PAEKltbVVdXV1Ki8vV11dnVpbW/2eEgAAAAAAgVbk9wRgT19fny6++GJJUiwWU29v74jHFyxYoLfeekuS9NnPflZLlizRtddee87zpFIppVKp9N+TyaSLs0ZU0RFs8LOjiooKtbW1ebY9uIfjEWygIzhFQ7CBjmADHcEGOkI2XNkcQt3d3VqyZMk5f4wx6S/uvr4+lZWVjfj/pk2bpuLiYhUXF+vmm2/Wa6+9lvH5N27cqFgslv5TWVnp+j4heugINtARbKAj2EBHcIqGYAMdwQY6gg10hGwKjDHG70nAjsOHD+uBBx7QT37yE91///362Mc+pttuuy39eDKZVGlpqSRp1apVuuOOO1RbW3vO82R6d6qyslL9/f3p/x8YCx3BBjc66unpUSKRUEdHh2pqatTa2qqKigpbU0YAcTyCDXQEp2gINtARbKAj2EBHyIbbaETINddcozlz5igej2vevHm66667JEnr1q3Tli1b9NRTT+nRRx9VUVGRFi9enHGhWZJKSkpUUlLi5dQRQXQEG9zoKJFIqL29XUNDQ2pvb1cikeB2GRHH8Qg20BGcoiHYQEewgY5gAx0hGxabI2bTpk3n/NuWLVskSU1NTWpqavJ6SgAQKB0dHRoaGpIkDQ0NqbOz0+cZAQAAAAAQDdyzGQAQej09PWpsbFR5ebkaGxvV09OTdWxNTY0KCwslSYWFhaqurvZqmgAAAAAARBqLzQCA0Bu+NUZvb2/61hjZtLa2qq6uTuXl5aqrq1Nra6tn8wQAAAAAIMq4jQYAIPTyuTVGRUUF92gGAAAAAMAFXNkMAAg9bo0BAAAAAID/WGwGAIQet8YAAAAAAMB/LDYjq82bN6uqqoorBOEIHcGGsToavjXGyZMn1dbWpoqKCo9niDDgeAQb6AhO0RBsoCPYQEewgY4wWoExxvg9CQRbMplULBZTf3+/SktL/Z4OQoqOYAMdwQY6gg10BKdoCDbQEWygI9hARxjGlc0AAAAAAAAAAMdYbAYAAAAAAAAAOMZiMwAAAAAAAADAMRabI+TUqVO67rrrNG3aNL3xxhvnPD44OKhEIqF4PK7169f7MEMAAAAAAAAAUcVic4RMmTJFzz33nG655ZaMjz/77LO65JJLtHfvXr3//vvav3+/xzMEAAAAAAAAEFVFfk8A9hQVFWnWrFlZHz9w4IBuuukmSVJDQ4P279+vRYsWnTMulUoplUql/55MJu1PFpFHR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw5XNE0hfX59KS0slSbFYTL29vRnHbdy4UbFYLP2nsrLSy2kiIugINtARbKAj2EBHcIqGYAMdwQY6gg10hGwKjDHG70kgP93d3RlvlfHMM8+orKxMiURCLS0tmj9//ojH77nnHt14442qra3Vtm3bdPToUbW0tJzzPKPfnTLGaGBgQDNnzlRBQYH9HUIk0RFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2XAbjRCaM2eOXn755bz/v+uvv167du1SbW2tdu7cqbVr12YcV1JSopKSEqfTxARHR7CBjmADHcEGOoJTNAQb6Ag20BFsoCNkw200Imb58uXatWuXmpub1draKklat26dJGnFihXq6upSPB7XlClTtHDhQh9nCgAAAAAAACBKuI0GAAAAAAAAAMAxrmwGAAAAAAAAADjGPZvhiDFGp06d8nsayNP06dMDdcN+OgonOoINdAQbgtQRDYUXHcGpIDUk0VFY0RFsoCPYMN6OWGyGIydPntTs2bP9ngbydOLECc2aNcvvaaTRUTjREWygI9gQpI5oKLzoCE4FqSGJjsKKjmADHcGG8XbEYjMcKS4uliR1dXWptLTU59nYk0wmVVlZGdn9Gv68BQUdhQsdeYuOvEVH4RLEjmgofOjIO1HtKIgNSXQUNnTkLTryFh2Fi9OOWGyGI8OX05eWlkbqC2tYVPcrSD9OI9FRWNGRt6K6X3TkrajuV5A6oqHwoiPvRHW/gtSQREdhRUfeiup+0ZG3orpf4+2IXxAIAAAAAAAAAHCMxWYAAAAAAAAAgGMsNsORkpIS3XfffSopKfF7KlaxX94K6rycYr+8FdR5OcV+eSuo83KK/fJOEOdkQ1T3SwrmvgVxTjawX94K6rycYr+8FdR5OcV+eSuo83KK/cqswBhjLM8JAAAAAAAAADDBcGUzAAAAAAAAAMAxFpsBAAAAAAAAAI6x2AwAAAAAAAAAcIzFZjjS0tKieDyu1atXa2BgwO/pWHH06FHNmjVLS5cu1dKlS/X73//e7yk5curUKV133XWaNm2a3njjDUnSz372My1cuFCf+cxn1NXV5fMM6SgM6MgfUeqIhvxDR96KYkdRakiiI7/QkffoKPjoyB905D06Cj6rHRlgnF599VWzevVqY4wxGzZsME8++aTPM7LjnXfeMStXrvR7GtacOXPGnDhxwtx+++3m9ddfNwMDA6ampsakUinz8ssvm+bmZl/nR0fhQEf+iFJHNOQfOvJOVDuKUkPG0JFf6MhbdBQOdOQPOvIWHYWDzY64shnjduDAAdXX10uSGhoatH//fp9nZM++ffsUj8f1jW98Q8YYv6fjSFFRkWbNmpX++9tvv60rrrhCxcXFWrx4sV5//XUfZ0dHYUFH/olKRzTkLzryRpQ7ikpDEh35iY68Q0fhQEf+oSPv0FE42OyIxWaMW19fn0pLSyVJsVhMvb29Ps/Ijosuuki//vWv9dJLL+nEiRPasWOH31Oy6uzPmyQNDQ35OBs6Cis68kaUO6Ih79CRd6LaUZQbkujIK3TkLToKJzryBh15i47CyUlHLDZj3GbMmKFkMinpowjLysp8npEdJSUlmjp1qgoKCrRy5UodOXLE7ylZdfbnTZIKCwt9nA0dhRUdeSPKHdGQd+jIO1HtKMoNSXTkFTryFh2FEx15g468RUfh5KQjFpsjJtMNvYcNDg4qkUgoHo9r/fr1jrd1/fXXa9euXZKknTt3avHixY6fMwhOnTqV/u+XXnpJl19+uY+zse/yyy/Xm2++qYGBAe3bt09XXXWVr/Oho3CiI29EuSMa8g4deSeqHUW5IYmOvEJH3qKjcKIjb9CRt+gonJx0VGDCflMRjDA4OKh3331Xd911l1paWjR//vz0Yzt27NChQ4e0YcMGNTc36wtf+IIWLVrkaHstLS165ZVXNG/ePD3++OMqLi52ugu+a2tr07333qsLLrhAl112mX70ox+pqKjI72k5snz5ch05ckSXXnqp1q1bp8mTJ+vBBx/U5MmT9eMf/1iVlZW+zo+OwoGOvBe1jmjIH3TkrSh2FLWGJDryAx15j47CgY68R0feo6NwsNURi80RlUgkzllsvvvuu3XTTTeptrZW27dv1zvvvKOWlpZz/t9UKqVUKpX+uzFGAwMDmjlzpgoKCjyZP8KPjmADHcEGOoINdASnaAg20BFsoCPYQEfIhttoTCC53pR948aNisVi6T8XXnihZs+ePeJHBICx0BFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2XBlc0RlurL5nnvu0Y033qja2lpt27ZNR48ezenK5mQyqcrKSvX394/4TZTA+dARbKAj2EBHsIGO4BQNwQY6gg10BBvoCNmE+2YiyMvwTdlra2u1c+dOrV27NuO4kpISlZSUeDw7RA0dwQY6gg10BBvoCE7REGygI9hAR7CBjpANt9GIoOXLl2vXrl1qbm5Wa2ur1q1bJ0lasWKFurq6FI/HNWXKFC1cuNDnmQIAAAAAAACICq5sjqDnn39+xN8TiYQkqaioSE888YQPMwIAAMDZenp6lEgk1NHRoZqaGrW2tqqiosLvaQEAAACOcGUzAAAA4LFEIqH29nb19vaqvb09fXEAAAAAEGYsNgMAAAAe6+jo0NDQkCRpaGhInZ2dPs8IAAAAcI7FZgAAAMBjNTU1KiwslCQVFhaqurra5xkBAAAAzrHYDAAAAHistbVVdXV1Ki8vV11dnVpbW/2eEgAAAOAYi83IavPmzaqqquJKGzhCR7CBjmADHcEGWx1VVFSora1NJ0+eVFtbG78ccALhWAQb6Ag20BFsoCOMVmCMMX5PAsGWTCYVi8XU39+v0tJSv6eDkKIj2EBHsIGOYAMdwSkagg10BBvoCDbQEYZxZTMAAAAAAAAAwDEWmwEAAAAAAAAAjrHYDAAAAAAAAABwjMVmAAAAAAAAAIBjLDZHUEtLi+LxuFavXq2BgYH0v+/Zs0eVlZVaunSpli1b5uMMAQAAAAAAAEQNi80Rc/jwYXV3d2vv3r2qqqrStm3bRjx+6623as+ePdq9e7dPMwQAAAAAAAAQRUV+TwB2HThwQPX19ZKkhoYGPf7441q1alX68e3bt+uVV17RLbfcovXr12d8jlQqpVQqlf57Mpl0d9KIJDqCDXQEG+gINtARnKIh2EBHsIGOYAMdIRuubI6Yvr4+lZaWSpJisZh6e3vTjy1YsEBvvfWWdu/erV/+8pc6dOhQxufYuHGjYrFY+k9lZaUnc0e00BFsoCPYQEewgY7gFA3BBjqCDXQEG+gI2RQYY4zfk4A9Dz/8sKZOnao1a9bo4MGDam1t1UMPPZRxXElJidauXXvOY5nenaqsrFR/f396IRsYCx3BBjqCDXQEG+gITtEQbKAj2EBHsIGOkA230YiY66+/Xg888IDWrFmjnTt3avHixenHkslk+gt+7969uuOOOzI+R0lJiUpKSjyZL6KLjmADHcEGOoINdASnaAg20BFsoCPYQEfIhttoRMw111yjOXPmKB6P680339TKlSu1bt06SdJTTz2lmpoaLVq0SHPnzlVtba3PswUAAAAAAAAQFVzZHEGbNm0a8fctW7ZIkpqamtTU1OTHlAAAAAAAAABEHFc2AwAAAAAAAAAcY7EZAAAAAAAAAOAYi80AAAAAAAAAAMdYbAYAAAAAAAAAOMZiM7LavHmzqqqqVF1d7fdUEGJ0BBvoCDbQEWygIzhFQ7CBjmADHcEGOsJoBcYY4+YG3n//ff35n/+5Pve5z2nTpk1ubgouSSaTisVi6u/vV2lpqd/TQUjREWygI9hAR7CBjuAUDcEGOoINdAQb6AjDXL+y+f7779d1113n9mYAAAAAAAAAAD5ydbH57bff1r/8y79o+fLlbm4GAAAAAAAAAOCzvBebP/zwQ33iE5/QPffcM+Lfd+7cqeLiYj399NPpf2tpadHGjRudzxIAAAAAAAAAEGh5LzZPmjRJX//61/Xwww/r3XfflSS99tpr+tznPqfvfve7+tznPidJ+sUvfqE//dM/1Z/+6Z/anTEAABi3np4eNTY2qry8XI2Njerp6fF7SgAAwLJ8Xu/9Huv39gEAlplxOHPmjLnsssvMt7/9bdPV1WXmzp1rvvSlL40Y81//6381l1xyibn00ktNeXm5KS0tNf/9v//38WwOebrzzjvNkiVLzKpVq0wqlUr/+5kzZ8ztt99ulixZYr72ta/l/Hz9/f1Gkunv7x/x793d3aahocGUlZWZhoYG093dnfU53Bjr9/aDsF9h4mVHfn8OgzDW7+27JVtHUeXG56ahocEUFhYaSaawsNA0NDR4uv18x7phonUEd9CRc34fC/yeQ1DPsd0a6/f2g7BfbsjWUT6v936P9Xv7xvjfRlA7AvJBRxg2rsVmY4x55JFHTFlZmbnyyivNihUrzODgYNaxjz/+uLnzzjvHuynk4dVXXzWrV682xhizYcMG8+STT6Yf+/nPf26++c1vGmOMaWpqMvv27cvpOYN6AuP39oOwX1E4gfH7YxjVsX5v3y1ROIHJ52vRjc9NWVmZkZT+U15e7un28x3rhih0BP9FoSO/zw2CcM7j5/EoqOfYbo31e/tB2C83ZOson9d7v8f6vX1j/G8jqB0B+aAjDBv3YvOpU6fM5MmTzfz5881777133rEsNntn8+bN5oknnjDGGHPw4EHz5S9/Of3YXXfdZV588UVjjDHbtm0z3/ve9zI+x+nTp01/f3/6T1dXV04nMGVlZeb06dPmgw8+MB988IFJpVLp/54xY8Y5Y4cfO3369Ij/73xjx3rO4ec5ffp0zttPpVIj/r9ct3++saP3KZVKZR2bz3OePTaVSpn6+nozadIkI8lMmjTJ1NXVZdynVCpl6urq0mO9OIHxs6PztUFH53Z0vucc/bEYPfZ8J+1edjQs0+cj08fH9mPHjh0z9fX1ZsaMGaaurs4cP348a0ejv27r6+s97Wis7U/kjoYXqDJ9Hs/++Bw9enTE5/vo0aNZWxk99tixY1Y6On78eHpsfX29OX78eNaOjh8/burq6tJjjx07lvP2s/Wf63Oeb/uZOjp27NiIsUePHs3a0dGjR01dXZ1nC6X5Ho9y5ddx6/Tp01mPB056G/05Pd/283n9O/s8ZvQ5z9nPmW1strl5eTwKyzm2W8d/v8+Nso3NtY2ysrJQvaadvXg5/PWdraPznRs4OY/I9RiTz7mRk+0PHze86igK50bD/Hytyva64sZjUdknr9ARHWWT9z2bh33lK1+RJJ08eVKFhYXnHZtIJLRp06bxbgp56OvrU2lpqSQpFoupt7c3p8fOtnHjRsVisfSfysrKjONqamrSn/tJkyZpwYIFWedVXV2tSZMmWR3rxnM6HXvttddmHbtgwYKcxuaz/c7OTn344YeSPvrlnYcOHco69uDBg+mxQ0ND6uzszDrWBj87Gv2xDkIbQe5ovNsvLCxUdXV11rE25NqR35qbm/XCCy/o3Xff1e7du9XU1JR17Oiv24MHD2Yd68bn8bHHHtOyZctUVlamG264QVu3bvV0+1JwO0okEmpvbx/z8zj6893c3Jx1207Gnq+jpqam9NgXXnhhzLG7d+9Oj802h3y3n8tz5ju2ubk577G9vb1qb29XIpHIOtaGsByP8pHr8Sif3vKRz3Hj7POYfM55xhrr5fEoLOfYTsf6eW7ix9igvqa1traqrq5OZWVlWrZsmR577LGsz7l161bdcMMNOY3N5zwi17GPPfZYevs33HCDte1v3bo157FutBGFcyPgfHLtaPj+6RdffLFuvvnmMe+1fvPNN1sd29PToxUrVri6/RUrVlgfe9FFF425X+N5zlzHOrrf/XhWqO+9914zc+ZMc+TIETNz5kzz0EMPOVrxhj0/+MEP0lc2d3Z2jriy+e67705f2fz00087vrJ5+Aqw8vLynH+c0eZYv7cfhP0K8o9m+dmR35/DIIz1e/u2uHUlYS7y+TFst35M0+/PzUTrKEw/7hvVH2N2a6wNfh6P3OLG7XfGc7sLP895vDweheUc262xfm8/CPtlQxSPRUHgdxt0hDAaz09aBP12R2Ea6/f2zyfvxeatW7eaKVOmmAMHDhhjProv8Lx588zAwEDeG4d9o+/Z/NOf/jT92Oh7Nu/fvz+n5+S+O8EV5BOY0egINnjZURQWNpCZ0/ukBuHELqonrF6fCDvh5fHI7V+ANtbxKAiflzCd8+SKcyPYQEewIai/sNTv7QdhrFvbd0NQ7yHv9/ajvF/Z5LXY/Pzzz5vi4mKzffv29L/19/ebCy+80Pzwhz/Me+Nwx5133mmWLFliVq1aZVKplPniF79ojDHmzJkzZs2aNWbJkiXmq1/9as7PxwkMbKAj2OBlR+O5ki/oCxv4yFjfUHF1XvDnmu9YN0Thza9c5fOx9vqK8zDj3Ag20BFsCOovLPV7+0EY6/c5QD7oaOLtVzY5LzYfPHjQTJ061Xz/+98/57Fvfetb5uMf/7gZHBzMewIIPk5gYAMdwQYbHeX6jr/fJ2twD8cj2BDUN7/8Xuzl2Jk7jkWwgY5gA1ekBndsmM4BnF7Q4dZYv7cf5f3KZlz3bMbEwgkMbKAj2GCjo1wXQvy+ahLu4XgEGybSlc354NiZO45FsIGOYANXpAZ3bJjOATgeYRiLzRgTBwzYQEewwUZHfr/jD/9xPIINftyzOQy3F0HuOBbBBjqCDVyRGtyxYToH4HiEYQXGGCPgPJLJpGKxmPr7+1VaWur3dBBSdAQbbHTU2Nio9vZ2DQ0NqbCwUHV1dWpra7M8UwQZxyPYQEdwioZgAx3BBjqCDXSEYZP8ngAAAE719PSosbFR5eXlamxsVE9PT9axra2tqqurU3l5uerq6tTa2urdRAEAAAAAiDAWm5HV5s2bVVVVperqar+nghCjI9gwVkeJRELt7e3q7e1Ve3u7EolE1ueqqKhQW1ubTp48qba2NlVUVLg0awQNxyPYQEdwioZgAx3BBjqCDXSE0biNBsbEj0LABjqCDdk6Ki8vV29v74i/nzx50o8pIgQ4HsEGOoJTNAQb6Ag20BFsoCMM48pmAEDo1dTUqLCwUJJUWFjIu+oAAAAAAPiAxWYAQOhxH2YAAAAAAPxX5PcEAABwavg+zAAAAAAAwD9c2RwxLS0tisfjWr16tQYGBkY8tmfPHlVWVmrp0qVatmyZTzMEAAAAAAAAEEUsNkfI4cOH1d3drb1796qqqkrbtm07Z8ytt96qPXv2aPfu3T7MEAAAAAAAAEBUsdgcIQcOHFB9fb0kqaGhQfv37z9nzPbt2xWPx/Xggw96PT0AAAAAAAAAEcY9myOkr69PF198sSQpFoupt7d3xOMLFizQW2+9JUn67Gc/qyVLlujaa68953lSqZRSqVT678lk0sVZI6roCDbQEWygI9hAR3CKhmADHcEGOoINdIRsuLI5hLq7u7VkyZJz/hhj0l/cfX19KisrG/H/TZs2TcXFxSouLtbNN9+s1157LePzb9y4UbFYLP2nsrLS9X1C9NARbKAj2EBHsIGO4BQNwQY6gg10BBvoCNkUGGOM35OAHYcPH9YDDzygn/zkJ7r//vv1sY99TLfddlv68WQyqdLSUknSqlWrdMcdd6i2tvac58n07lRlZaX6+/vT/z8wFjqCDXQEG+gINtARnKIh2EBHsIGOYAMdIRtuoxEh11xzjebMmaN4PK558+bprrvukiStW7dOW7Zs0VNPPaVHH31URUVFWrx4ccaFZkkqKSlRSUmJl1NHBNERbKAj2EBHsIGO4BQNwQY6gg10BBvoCNmw2BwxmzZtOufftmzZIklqampSU1OT11MCAAAAAAAAMAFwz2YAAAAAAAAAgGMsNgMAAAAAAAAAHGOxGQAAAAAAAADgGIvNAAAAAAAAAADHWGwGAAAAAAAAADjGYjOy2rx5s6qqqlRdXe33VBBidAQb6Ag20BFsoCM4RUOwgY5gAx3BBjrCaAXGGOP3JBBsyWRSsVhM/f39Ki0t9Xs6CCk6gg10BBvoCDbQEZyiIdhAR7CBjmADHWEYVzYDAAAAAAAAABxjsRkAAAAAAAAA4BiLzQAAAAAAAAAAx1hsjpBTp07puuuu07Rp0/TGG2+c8/jg4KASiYTi8bjWr1/vwwwBAAAAAAAARBWLzREyZcoUPffcc7rlllsyPv7ss8/qkksu0d69e/X+++9r//79Hs8QAAAAAAAAQFSx2BwhRUVFmjVrVtbHDxw4oPr6eklSQ0MDi80AAAAAAAAArCnyewLwTl9fn0pLSyVJsVhMvb29GcelUimlUqn035PJpCfzQ7TQEWygI9hAR7CBjuAUDcEGOoINdAQb6AjZcGVzCHV3d2vJkiXn/Mm2eDxsxowZ6S/+vr4+lZWVZRy3ceNGxWKx9J/Kykrr+4DooyPYQEewgY5gAx3BKRqCDXQEG+gINtARsikwxhi/JwG7EomEWlpaNH/+/BH/vmPHDh06dEgbNmxQc3Oz1q5dq4ULF57z/49+d8oYo4GBAc2cOVMFBQWuzx/RQEewgY5gAx3BBjqCUzQEG+gINtARbKAjZMNic8QsX75cR44c0aWXXqp169YpkUho3bp12rJliwYHB/XXf/3X+n//7//pmmuu0d/93d/5PV0AAAAAAAAAEcFiMwAAAAAAAADAMe7ZDAAAAAAAAABwjMVmAAAAAAAAAIBjRX5PAOFmjNGpU6f8ngbyNH369EDdsJ+OwomOYAMdwYYgdURD4UVHcCpIDUl0FFZ0BBvoCDaMtyMWm+HIyZMnNXv2bL+ngTydOHFCs2bN8nsaaXQUTnQEG+gINgSpIxoKLzqCU0FqSKKjsKIj2EBHsGG8HbHYDEeKi4slSV1dXSotLfV5NvYkk0lVVlZGdr+GP29BQUfhQkfeoiNv0VG4BLEjGgofOvJOVDsKYkMSHYUNHXmLjrxFR+HitCMWm+HI8OX0paWlkfrCGhbV/QrSj9NIdBRWdOStqO4XHXkrqvsVpI5oKLzoyDtR3a8gNSTRUVjRkbeiul905K2o7td4O+IXBAIAAAAAAAAAHGOxGQAAAAAAAADgGIvNcKSkpET33XefSkpK/J6KVeyXt4I6L6fYL28FdV5OsV/eCuq8nGK/vBPEOdkQ1f2SgrlvQZyTDeyXt4I6L6fYL28FdV5OsV/eCuq8nGK/MiswxhjLcwIAAAAAAAAATDBc2QwAAAAAAAAAcIzFZgAAAAAAAACAYyw2w5GWlhbF43GtXr1aAwMDfk/HiqNHj2rWrFlaunSpli5dqt///vd+T8mRU6dO6brrrtO0adP0xhtvSJJ+9rOfaeHChfrMZz6jrq4un2dIR2FAR/6IUkc05B868lYUO4pSQxId+YWOvEdHwUdH/qAj79FR8FntyADj9Oqrr5rVq1cbY4zZsGGDefLJJ32ekR3vvPOOWblypd/TsObMmTPmxIkT5vbbbzevv/66GRgYMDU1NSaVSpmXX37ZNDc3+zo/OgoHOvJHlDqiIf/QkXei2lGUGjKGjvxCR96io3CgI3/QkbfoKBxsdsSVzRi3AwcOqL6+XpLU0NCg/fv3+zwje/bt26d4PK5vfOMbMiH/HZpFRUWaNWtW+u9vv/22rrjiChUXF2vx4sV6/fXXfZwdHYUFHfknKh3RkL/oyBtR7igqDUl05Cc68g4dhQMd+YeOvENH4WCzIxabMW59fX0qLS2VJMViMfX29vo8Izsuuugi/frXv9ZLL72kEydOaMeOHX5PyaqzP2+SNDQ05ONs6Cis6MgbUe6IhrxDR96JakdRbkiiI6/QkbfoKJzoyBt05C06CicnHbHYjHGbMWOGksmkpI8iLCsr83lGdpSUlGjq1KkqKCjQypUrdeTIEb+nZNXZnzdJKiws9HE2dBRWdOSNKHdEQ96hI+9EtaMoNyTRkVfoyFt0FE505A068hYdhZOTjlhsjphMN/QeNjg4qEQioXg8rvXr1zve1vXXX69du3ZJknbu3KnFixc7fs4gOHXqVPq/X3rpJV1++eU+zsa+yy+/XG+++aYGBga0b98+XXXVVb7Oh47CiY68EeWOaMg7dOSdqHYU5YYkOvIKHXmLjsKJjrxBR96io3By0lGBCftNRTDC4OCg3n33Xd11111qaWnR/Pnz04/t2LFDhw4d0oYNG9Tc3KwvfOELWrRokaPttbS06JVXXtG8efP0+OOPq7i42Oku+K6trU333nuvLrjgAl122WX60Y9+pKKiIr+n5cjy5ct15MgRXXrppVq3bp0mT56sBx98UJMnT9aPf/xjVVZW+jo/OgoHOvJe1DqiIX/Qkbei2FHUGpLoyA905D06Cgc68h4deY+OwsFWRyw2R1QikThnsfnuu+/WTTfdpNraWm3fvl3vvPOOWlpafJwlAAAAAAAAgKgI95I78pLrTdlTqZRSqVT678YYDQwMaObMmSooKPBkrgg/OoINdAQb6Ag20BGcoiHYQEewgY5gAx0hG+7ZPIHkelP2jRs3KhaLpf9ceOGFmj179oj70QBjoSPYQEewgY5gAx3BKRqCDXQEG+gINtARsuE2GhGV6TYao+/ZvHbtWi1cuPCc/3f0u1PJZFKVlZXq7+9PXxkNjIWOYAMdwQY6gg10BKdoCDbQEWygI9hAR8iG22hE0PANvd966/9r7/+Dq7juPP//JaTRhQC6lsQv2xEeJ06NR8HesDayMRJh40grvHZSWzDlMtTCHQKWK6mEmbFwNomzzs4Hh9rYnolTJg7JJJZTcXaCIbjilDHWsoWNQWt+GDL2MsU6iQXsVgRxFN0rx3AF8vn+4dL9InEv3Faf7tPdPB9VqkLqVt933/vq093vbjVH1dHRoZ6eHm3atEl33XWXnnvuObW0tGju3LlFG82SlEqllEqlQq4aSUOOYAM5gg3kCDaQI/hFhmADOYIN5Ag2kCOUQrM5gV544YVR32cyGUlSVVWVnn76aQcVAQAAAAAAAEg6ntkMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9mMkjZu3KjGxkbNmzfPdSmIMXIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHGGsCmOMcV0Eoi2XyymdTiubzaqmpsZ1OYgpcgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcYQR3NgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMA3ms0AAAAAAAAAAN9oNidQZ2enWlpatHz5cg0NDRV+vmvXLjU0NGjRokW6/fbbHVYIAAAAAAAAIGloNifMoUOH1NfXp927d6uxsVFbtmwZNf3uu+/Wrl27tHPnTkcVAgAAAAAAAEiiKtcFwK6enh61tbVJktrb2/XUU09p2bJlhelbt27Va6+9pqVLl2rt2rVFl5HP55XP5wvf53K5YItGIpEj2ECOYAM5gg3kCH6RIdhAjmADOYIN5AilcGdzwgwMDKimpkaSlE6n1d/fX5h288036+jRo9q5c6defPFFHTx4sOgyNmzYoHQ6XfhqaGgIpXYkCzmCDeQINpAj2ECO4BcZgg3kCDaQI9hAjlBKhTHGuC4C9jz55JOaPHmyVqxYoQMHDqirq0tPPPFE0flSqZRWrVp1wbRiV6caGhqUzWYLjWzgUsgRbCBHsIEcwQZyBL+CyNDJkyeVyWS0b98+NTU1qaurSzNnzrRVMiKIsQg2kCPYQI5QCo/RSJhbb71Vjz32mFasWKEdO3ZowYIFhWm5XK6wwe/evVv33Xdf0WWkUimlUqlQ6kVykSPYQI5gAzmCDeQIfgWRoUwmo+7ubg0PD6u7u1uZTEbbt2+3+hqIFsYi2ECOYAM5Qik8RiNh5s6dq1mzZqmlpUVHjhzRkiVL1NHRIUnavHmzmpqadNttt+nqq6/WwoULHVcLAAAAYLz27dun4eFhSdLw8LD279/vuCIAAHC5487mBHr00UdHfb9p0yZJ0urVq7V69WoXJQEAAACwrKmpqXBnc2VlpebNm+e6JAAAcJnjzmYAAAAAiKGuri61traqvr5era2t6urqcl0SAAC4zHFnMwAAAADE0MyZM3lGMwAAiBTubAYAAAAAAAAA+EazGQAAAAAAAADgG81mlLRx40Y1NjbyH43AF3IEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHGGsCmOMCWrhVVVVmjNnjiTp5ptv1j/90z8F9VIIUC6XUzqdVjabVU1NjetyEFPkCDaQI9hAjmADOYJfZAg2kCPYQI5gAznCiED/g8ArrrhChw8fDvIlAAAAAAAAAAARwGM0AAAAAAAAAAC+eW42v//++7r++uv15S9/edTPd+zYoerqaj377LOFn+VyOd10001qbm7Wyy+/7L9aAAAAAABwUSdPntTixYtVX1+vxYsX6+TJk65LAgBcJjw3mydMmKCvfOUrevLJJ/XHP/5RkvSrX/1Kf/VXf6VvfvOb+qu/+qvCvL29vTp48KC+973vacWKFcrlcvYqh3McwLjHZxCuoN5vL8vlM/fP9Xvo+vUBG6IwbrEtAUBpmUxG3d3d6u/vV3d3tzKZjOuSIo19CoAgXXZjjBmHs2fPmmuvvdZ84xvfMCdOnDBXX321+fznP3/R32lvbzf79+8fz8vBo/vvv980NzebZcuWmXw+X/j52bNnzcqVK01zc7P50pe+VPbystmskWSy2eyon7e3t5vKykojyVRWVpr29vaSy+jr6zPt7e2mrq7OtLe3m76+Pu8rFhIvtQaxXl6W6eUzcK1UjuIkqMx7WW6cPvMglMpRnLaboHIUp3HWtSSMR64FNW7FaVuOao6SOhYkcb2imqEoiML+Ly6ZK5Wjuro6I6nwVV9f76hCd1zvU+KSIWMYj5LCdebIUWmux5iwszGuZrMxxnzve98zdXV15oYbbjB33XWXOXfu3Kjp/f395syZM8YYY06cOGFmz55t/vCHP/irFpf0+uuvm+XLlxtjjFm/fr155plnCtN+/vOfm6997WvGGGNWr15t9uzZU9YybRzABHGiGdTG4voE2ssy43QQGeaOJ6hBN6jMe1luufO6PtAIio2LX67fw6By5LrxFidRPRB2vd0GNR5GYewMQlRz5PqYK6h5k3iTQ1QzZIz799D18bjX5bpk49jItSiMG172KUGc17kW1fHI9VjkVRBZjtO4ZePGINfvoRdBHTsHMcaEnY1xN5sHBwfNxIkTzZw5c8y77757wfQ9e/aYOXPmmBtvvNH8m3/zb8y2bdv81Ikybdy40Tz99NPGGGMOHDhgvvCFLxSmrVu3zrz88svGGGO2bNliHnnkkaLLOHPmjMlms4WvEydOXPIAZsKECaatrc2cOXPGnD592pw+fdrk8/nCv2tra0dtWHV1dYVpZ86cGfV7bW1tZsKECaOWW2yZxeYbWc6ZM2dGzZvP58uedrFaz/+9i807dp3y+bxpbW0dVW9ra6vnZY6te+x7cP4yx65vb2+vaW1tDW1HXW6ORgbS2tpa09raao4fP14yR8Xe12LTxr7XF8umlxxdKpvjzVGpz9FPjkrV6mfbiHKOxu686+rqPH3mfnPk5X0NKkdexqNytykvWTl27JhpbW01tbW1pq2tzfT29l7y98JSbo5GFFvn8Y5Hvb29pq2trTDGHTt2zMp4dPz48cJy29razPHjxz1v1+PdNsrJ8XjHo1I5LrZO52+jYRw0l5OjIPZpI5/3+dvXsWPHxjUWjPc4ws/nbWOfViobpfJdbLmltouRbTSM/ZrXscgLm+OW1228VD79jFuuj8e9ZG5k/xe1Y6PzmxU2x6MgjiO8HBt5yWZQ2Sg2r999WlSPsUfYHmPK3a+5Pjbymv8gcuTlnH9s5oK+EF9ujrz0joI4Hg2qd+T6+MjLMV/Y49G4m80rV640EydONLNmzTKnT4d3woiLe/jhhwuN/bfeesvcc889hWlr1qwxhw4dMsYY093dbb7yla8UXcZDDz00KoQjX34OYLwMGOUeXJY6APS74wlqwLjYxn2xZV7spPz8g9tLNXfCPikvN0dedjzHjh0b1bQ5/3M8/z2/WDZs5Gjk/baVo1KfY7EcnT/wj/3Mx7vj8dIkTFKOzh+7/OaoWDbDzpGX8ajU+DveBoLXA+GR3wuL1/3apRqFYxvIvb29Jd9XLxctvIxHXk7Myz2h83JheGSZIzm+WPOz1Lx+czQyHtbX14dyYl5OjryMRV62TdfN/aAaf+UeG3k5KS9VQ6mxKMz9Wrlj0XgU2/79ZM7PRfNSmQuqoRjE8fh4G0FROjYKKhtBHEdcKm/jHY+8ZKPcY+xSOfK7T4vqMbaXi6jlnqt52a+5PjY6/1xt7LmS3zGm3BxF+UJ8uTnycmOQl+NR170jL+ORl3P+IHpHYY9H42o2P/jgg2batGnm8OHDZtq0aeaJJ54Yz2IQgO9+97uFO5v3798/6s7mBx54oHBn87PPPuv7zmYvRnZS5ZwQlnt7f9B/XldOrUGsl5dlehH2nxuXm6Mg/rw6Cn9OEtTnWK6g3oOo5iiI9ztuOSp33ij8+WnYys1REGNMFB4hEcR6BcX12Hkx5eQoiD+RHO9y43DMFdTxWVTHriCOsb1wPf4HleOgslHucqN6bBQFrseYoPYpQZzXRTVHrs8pXB8bRWHeKGS+FNc5cj3GBHXsHMQYE/Z45LnZ/IMf/MBMmjTJ9PT0GGM+eC7w7NmzzdDQkOcXh31jn9n805/+tDBt7DOb9+7dW9Yyw35+k9eGSRR33sW4PoF23URw8axd24NunAS1fUQ1R0GI2xhTrigctLt+/p7f/4sg6PfFVTMtqeNhUIrlKG4nM0Ecc0VhHxzUtmRb2MfYrscj18cQxri/OB2EqD5r15jkHrtfTjly/X80uD428jpvkDeKxOH47FLPbHZ1HBHUeV0UjmOCYGM88tRsfuGFF0x1dbXZunVr4WfZbNZcccUV5oc//KHnF0cw7r//ftPc3GyWLVtm8vm8uffee40xxpw9e9asWLHCNDc3my9+8YtlLy/KBzDlcr3zjgLXA5aNHQ+fYzCifLV8rKiOR3HKZtwapUHwe/ErCttMnN7vpCqWo7idzMDtexv2Pi2oC6NJbJh44Xq9onpsZAz7Hy+imqOgLowGsb5BHRuR4/JFeTwqF5+3ne2z7GbzgQMHzOTJk823v/3tC6Z9/etfNx/72MfMuXPnPBeA6EvCgOF65w07OeJzDEac3teojkdxeg9dnwgY4/5OcL8Xv+L0eRsTv3rjwu94xMkMonxnM+LD1V+hlvPXSex/4iPsO1JdS+p6uRbVczUv+LztqDDGGAEXkcvllE6nlc1mVVNT47ocxBQ5gg3kyL+TJ08qk8lo//79mjdvnrq6ujRz5sxQa1i8eLG6u7s1PDysyspKtba2avv27aG9PjmCDX5zFIVtEW6FPRaRuWQKO0eu9+EIBsdGsIEcYUSV6wIAAEB4Zs6c6fyksKur64KGB3C5icK2iMsLmYMN+/bt0/DwsCRpeHhY+/fvd1wRACBqaDYDAIBQ0fAAACCempqaRt3ZPG/ePNclAQAiZoLrAgAAAAAAQPR1dXWptbVV9fX1am1t5a+TAAAXoNmMkjZu3KjGxkauVsMXcgQbyBFsIEewgRzBLzIEG1zlaOSvk9555x1t376d537HHOMRbCBHGIv/IBCXxEPeYQM5gg3kCDaQI9hAjuAXGYIN5Ag2kCPYQI4wgjubAQAAAAAAAAC+0WwGAAAAAOAydfLkSS1evFj19fVavHixTp486bokAECM0WwGAAAAAOAylclk1N3drf7+fnV3dyuTybguCQAQYzSbE6azs1MtLS1avny5hoaGRk3btWuXGhoatGjRIt1+++2OKgQAAAAARMW+ffs0PDwsSRoeHtb+/fsdVwQAiDOazQly6NAh9fX1affu3WpsbNSWLVsumOfuu+/Wrl27tHPnTgcVAgAAAACipKmpSZWVlZKkyspKzZs3z3FFAIA4o9mcID09PWpra5Mktbe3a+/evRfMs3XrVrW0tOjxxx8PuzwAAAAAQMR0dXWptbVV9fX1am1tVVdXl+uSAAAxVuW6ANgzMDCgq666SpKUTqfV398/avrNN9+so0ePSpI++9nPqrm5WTfddNMFy8nn88rn84Xvc7lcgFUjqcgRbCBHsIEcwQZyBL/IEGwIIkczZ87U9u3bfS8H8cF4BBvIEUrhzuYY6uvrU3Nz8wVfxpjCxj0wMKC6urpRvzdlyhRVV1erurpan/nMZ/SrX/2q6PI3bNigdDpd+GpoaAh8nZA85Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5QikVxhjjugjYcejQIT322GP6yU9+oocfflgf+chHdM899xSm53I51dTUSJKWLVum++67TwsXLrxgOcWuTjU0NCibzRZ+H7gUcgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcoRQeo5Egc+fO1axZs9TS0qLZs2dr3bp1kqSOjg5t2rRJmzdv1ve//31VVVVpwYIFRRvNkpRKpZRKpcIsHQlEjmADOYIN5Ag2kCP4RYZgAzmCDeQINpAjlEKzOWEeffTRC362adMmSdLq1au1evXqsEsCAAAAAAAAcBngmc0AAAAAAAAAAN9oNgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMA3ms0AAAAAAAAAAN9oNqOkjRs3qrGxUfPmzXNdCmKMHMEGcgQbyBFsIEfwiwzBBnIEG8gRbCBHGKvCGGNcF4Foy+VySqfTymazqqmpcV0OYoocwQZyBBvIEWwgR/CLDMEGcgQbyBFsIEcYwZ3NAAAAAAAAAADfaDYDAAAAAAAAAHyj2QwAAAAAAAAA8I1mc4IMDg7qlltu0ZQpU/Tmm29eMP3cuXPKZDJqaWnR2rVrHVQIAAAAAAAAIKloNifIpEmT9Mtf/lJLly4tOv3555/Xhz/8Ye3evVvvvfee9u7dG3KFAAAAAAAAAJKKZnOCVFVVafr06SWn9/T0qK2tTZLU3t5OsxkAAAAAAACANVWuC0B4BgYGVFNTI0lKp9Pq7+8vOl8+n1c+ny98n8vlQqkPyUKOYAM5gg3kCDaQI/hFhmADOYIN5Ag2kCOUwp3NMdTX16fm5uYLvko1j0fU1tYWNv6BgQHV1dUVnW/Dhg1Kp9OFr4aGBuvrgOQjR7CBHMEGcgQbyBH8IkOwgRzBBnIEG8gRSqkwxhjXRcCuTCajzs5OzZkzZ9TPt23bpoMHD2r9+vVas2aNVq1apfnz51/w+2OvThljNDQ0pGnTpqmioiLw+pEM5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5Qik0mxPmjjvu0OHDh3XNNdeoo6NDmUxGHR0d2rRpk86dO6fPfe5z+u1vf6u5c+fqO9/5jutyAQAAAAAAACQEzWYAAAAAAAAAgG88sxkAAAAAAAAA4BvNZgAAAAAAAACAb1WuC0C8GWM0ODjougx4NHXq1Eg9sJ8cxRM5gg3kCDZEKUdkKL7IEfyKUoYkchRX5Ag2kCPYMN4c0WyGL++8845mzJjhugx4dOrUKU2fPt11GQXkKJ7IEWwgR7AhSjkiQ/FFjuBXlDIkkaO4IkewgRzBhvHmiGYzfKmurpYknThxQjU1NY6rsSeXy6mhoSGx6zXyuUUFOYoXchQuchQuchQvUcwRGYofchSepOYoihmSyFHckKNwkaNwkaN48Zsjms3wZeR2+pqamkRtWCOSul5R+nMaiRzFFTkKV1LXixyFK6nrFaUckaH4IkfhSep6RSlDEjmKK3IUrqSuFzkKV1LXa7w54j8IBAAAAAAAAAD4RrMZAAAAAAAAAOAbzWb4kkql9NBDDymVSrkuxSrWK1xRrcsv1itcUa3LL9YrXFGtyy/WKzxRrMmGpK6XFM11i2JNNrBe4YpqXX6xXuGKal1+sV7himpdfrFexVUYY4zlmgAAAAAAAAAAlxnubAYAAAAAAAAA+EazGQAAAAAAAADgG81m+NLZ2amWlhYtX75cQ0NDrsuxore3V9OnT9eiRYu0aNEi/f73v3ddki+Dg4O65ZZbNGXKFL355puSpJ/97GeaP3++PvWpT+nEiROOKyRHcUCO3EhSjsiQO+QoXEnMUZIyJJEjV8hR+MhR9JEjN8hR+MhR9FnNkQHG6fXXXzfLly83xhizfv1688wzzziuyI63337bLFmyxHUZ1pw9e9acOnXKrFy50rzxxhtmaGjINDU1mXw+b1599VWzZs0ap/WRo3ggR24kKUdkyB1yFJ6k5ihJGTKGHLlCjsJFjuKBHLlBjsJFjuLBZo64sxnj1tPTo7a2NklSe3u79u7d67gie/bs2aOWlhZ99atflYn5/6FZVVWl6dOnF75/66239PGPf1zV1dVasGCB3njjDYfVkaO4IEfuJCVHZMgtchSOJOcoKRmSyJFL5Cg85CgeyJE75Cg85CgebOaIZjPGbWBgQDU1NZKkdDqt/v5+xxXZceWVV+rXv/61XnnlFZ06dUrbtm1zXZJV539ukjQ8POywGnIUV+QoHEnOERkKDzkKT1JzlOQMSeQoLOQoXOQonshROMhRuMhRPPnJEc1mjFttba1yuZykD0JYV1fnuCI7UqmUJk+erIqKCi1ZskSHDx92XZJV539uklRZWemwGnIUV+QoHEnOERkKDzkKT1JzlOQMSeQoLOQoXOQonshROMhRuMhRPPnJEc3mhCn2QO8R586dUyaTUUtLi9auXev7tW699Va99NJLkqQdO3ZowYIFvpcZBYODg4V/v/LKK7ruuuscVmPfddddpyNHjmhoaEh79uzRjTfe6LQechRP5CgcSc4RGQoPOQpPUnOU5AxJ5Cgs5Chc5CieyFE4yFG4yFE8+clRhYn7Q0Uwyrlz5/THP/5R69atU2dnp+bMmVOYtm3bNh08eFDr16/XmjVr9Nd//de67bbbfL1eZ2enXnvtNc2ePVtPPfWUqqur/a6Cc9u3b9eDDz6oD33oQ7r22mv1ox/9SFVVVa7L8uWOO+7Q4cOHdc0116ijo0MTJ07U448/rokTJ+rHP/6xGhoanNZHjuKBHIUvaTkiQ26Qo3AlMUdJy5BEjlwgR+EjR/FAjsJHjsJHjuLBVo5oNidUJpO5oNn8wAMP6M4779TChQu1detWvf322+rs7HRYJQAAAAAAAICkiHfLHZ6U+1D2fD6vfD5f+N4Yo6GhIU2bNk0VFRWh1Ir4I0ewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUrhmc2XkXIfyr5hwwal0+nC1xVXXKEZM2aMeh4NcCnkCDaQI9hAjmADOYJfZAg2kCPYQI5gAzlCKTxGI6GKPUZj7DObV61apfnz51/wu2OvTuVyOTU0NCibzRbujAYuhRzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRyiFx2gk0MgDvY8ePaqOjg719PRo06ZNuuuuu/Tcc8+ppaVFc+fOLdpolqRUKqVUKhVy1UgacgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcoRSazQn0wgsvjPo+k8lIkqqqqvT00087qAgAAAAAAABA0vHMZgAAAAAAAACAbzSbAQAAAAAAAAC+0WwGAAAAAAAAAPhGsxkAAAAAAAAA4BvNZgAAAAAAAACAbzSbUdLGjRvV2NioefPmuS4FMUaOYAM5gg3kCDaQI/hFhmADOYIN5Ag2kCOMVWGMMa6LQLTlcjml02lls1nV1NS4LgcxRY5gAzmCDeQINpAj+EWGYAM5gg3kCDaQI4zgzmYAAAAAAAAAgG80mwEAAAAAAAAAvtFsBgAAAAAAAAD4RrM5gTo7O9XS0qLly5draGio8PNdu3apoaFBixYt0u233+6wQgAAAAAAAABJQ7M5YQ4dOqS+vj7t3r1bjY2N2rJly6jpd999t3bt2qWdO3c6qhAAAAAAAABAElW5LgB29fT0qK2tTZLU3t6up556SsuWLStM37p1q1577TUtXbpUa9euLbqMfD6vfD5f+D6XywVbNBKJHMEGcgQbyBFsIEfwiwzBBnIEG8gRbCBHKIU7mxNmYGBANTU1kqR0Oq3+/v7CtJtvvllHjx7Vzp079eKLL+rgwYNFl7Fhwwal0+nCV0NDQyi1I1nIEWwgR7CBHMEGcgS/yBBsIEewgRzBBnKEUiqMMcZ1EbDnySef1OTJk7VixQodOHBAXV1deuKJJ4rOl0qltGrVqgumFbs61dDQoGw2W2hkA5dCjmADOYIN5Ag2kCP4RYZgQxA5OnnypDKZjPbt26empiZ1dXVp5syZtkpGBDEewQZyhFJ4jEbC3HrrrXrssce0YsUK7dixQwsWLChMy+VyhQ1+9+7duu+++4ouI5VKKZVKhVIvkoscwQZyBBvIEWwgR/CLDMGGIHKUyWTU3d2t4eFhdXd3K5PJaPv27VZfA9HCeAQbyBFK4TEaCTN37lzNmjVLLS0tOnLkiJYsWaKOjg5J0ubNm9XU1KTbbrtNV199tRYuXOi4WgAAAACAS/v27dPw8LAkaXh4WPv373dcEQAgzrizOYEeffTRUd9v2rRJkrR69WqtXr3aRUkAAAAAysAjDRC2pqamwp3NlZWVmjdvnuuSAAAxxp3NAAAAABARI4806O/vLzzSAAhSV1eXWltbVV9fr9bWVnV1dbkuCQAQY9zZDAAAAAARwSMNELaZM2fyjGYAgDXc2QwAAAAAEdHU1KTKykpJ4pEGAAAgdmg2AwAAAEBE8EgDAAAQZzSbUdLGjRvV2NjI3RTwhRzBBnIEG8gRbCBH8OtSGRp5pME777yj7du3X/Q/Bzx58qQWL16s+vp6LV68WCdPngyqbEQMYxFsIEewgRxhrApjjHFdBKItl8spnU4rm82qpqbGdTmIKXIEG8gRbCBHsIEcwS8bGVq8eLG6u7s1PDysyspKtba28uzdywxjEWwgR7CBHGFEoHc2v/322/p3/+7fqbGxUTfccIP+9Kc/BflyAAAAAHDZ4D8TBAAAURNoszmTyejv//7vdeTIEb388stKpVJBvhyAi+DPLAEACBb7WoTNy38mSD4BAEAYAms2/+///b/1Z3/2Z2ppaZEk1dXVqaqqKqiXA3AJmUxG3d3d6u/vV3d3tzKZjOuSMA7lnihyQnn54TP3j/cQfnnZ15I32ODlPxPkWBAAADdcH/d5eX0btXpuNr///vu6/vrr9eUvf3nUz3fs2KHq6mo9++yzkqS33npLU6ZM0Wc+8xn923/7b/XNb37Tc3HAxbjeWIMS1HrxZ5bR5eUzL/dEkYaHf3F7X2gi+Md7CL+87GvJG2zw8p8JciwIRFfcjjvjjvc7upL62bg+7vPy+lZqNePQ1dVlpk6davr7+40xxhw+fNhMnTrVPPLII4V5Nm/ebOrq6szx48fNmTNnzKJFi8xLL700npeDR/fff79pbm42y5YtM/l8vvDzs2fPmpUrV5rm5mbzpS99qezlZbNZI8lks9lRP+/r6zPt7e2mrq7OtLe3m76+PmvrUI729nZTWVlpJJnKykrT3t4e6usb4+09KHdeL+vl5fVdv19RzVFQgvps6urqjKTCV319va/5vL6+a6VyFIQ4vS/GlP+ZBzFuxU2pHHnZbuCe63wWy1EQ4zk+4PrzDkKY+zRjgjvGLBf7n2CEnSPXkpoN18edSchRnM6Nk8pGjpL62Xg57gtinPPy+jaOUcfVbD579qy59tprzTe+8Q1z4sQJc/XVV5vPf/7zo+bZu3ev+ff//t8Xvv/Wt75lvvWtb43n5eDB66+/bpYvX26MMWb9+vXmmWeeKUz7+c9/br72ta8ZY4xZvXq12bNnT1nLLDVgBHXAWu68UThJ8/IelDtvUE3Ckfe1vr4+Miflxrg/8QlKUA2Hcpcb1Ou7/gzCPBAOaowJ6j0MIhtJPdizMR655npb9CKoBpPrz6tYjrzsa13XHwVBfd5x2T7Cbu64zif7n2DQJLSTDdcXWFyf20b1xiDXN/DAGxvjURDnplG42Ol6Hxj264+r2WyMMd/73vdMXV2dueGGG8xdd91lzp07N2r62bNnzSc+8QnT399vhoeHzZ133mmef/758b4cyrRx40bz9NNPG2OMOXDggPnCF75QmLZu3Trz8ssvG2OM2bJly6g70c935swZk81mC18nTpwo6w6wuro6c+bMGXP69Glz+vRpk8/nC/9ua2szEyZMMJLMhAkTTFtbW2HamTNnRv3exea91DJHlnPmzJlR8x4/fty0tbWZ2tpa09bWZo4fPz5qmef/3vHjx01ra2th3mPHjhV9/TNnzpja2toL3oNi65TP50vOO3aZpdZ/7Dpdapml3ouwuMxRb29v4fNubW01x44dK7nMY8eOjZp35K8x/Oao1GdTzmfe2tpaMke9vb2mtbXV1NXVmba2NtPb21t0mSM5HplvJMfFclTq9YvlqLW1tTBvGCd/5eZoRLHPo5zPvFiOzl/XsWOMnxxdaowb73h07NixotkYmyMv2bzYGDc2RyOvP1Lr+dmMy3h0/sHl2M/x/Pdn7BjT29t7wXsX9HjkJUdjP6tSr19szLExzct+zct4NDafQZ8oehmPvIxF5+et1HvqZSwoNe/FsnCpaV5e30tOxo6z53/e5/9eqWOeUnUXW+6l1jcMQezTgtpugxj/be1/xrtO481/udPC4jVHXtjOXLljh5fzukvlaLz7v/EcjxfLvI39X5SOsc9vOl3qeDiI8SiobJTbcwhqjL3cxqORY+xix7jlfOal3tcgekdBHWOXe67mpXfk5Ziv1OsXW6eRMc7PjYrjbjYPDg6aiRMnmjlz5ph333236DwvvPCCmTNnjvn4xz9u/vZv/3a8LwUPHn74YbNt2zZjjDFvvfWWueeeewrT1qxZYw4dOmSMMaa7u9t85StfKbqMhx56aFSwR7787HguNvCPtxFS7CTNxoDhZcfj5aCk3BOqoJqEYe94XObIS5MwqB2Plxx52fEEcQDjZccTdnOn3ByNKGdn7/WixcgYc7EmYZwOhP2McbaahFEdj8rNUalGVpjjkZcclXuyX+6FmNOnvTU/vTStvFxEDfvil5cclTMWRWG7LbdJOJ592thl+jmZKnUcVWp/V2y5UWg2B7FPC6oREsT4H9QxdrmNv1Lzxq254zVHXpSTOS/7inI/81IXk4q9z0FdtPdygaPc87rxXLQJ669Qy82RlxuDvIw55X42QWdj7Dl3WGPs5TYeeTnn93IxvtzekZccBXVBy8u0cscYL/vqsHM07mbzypUrzcSJE82sWbNCDTMu7rvf/W7hzub9+/ePurP5gQceKNzZ/Oyzz/q+szmoP8UL4k8Ggno+jZf3IIjHWLh+NMbFuMxRUJ93UNmIk7D/rLXcHHkRxJ/NBfX4myBqDWrcivLjWGznKApjTBD71aD21UHNG/Y4G8R4VC7XOXKdTWOCO+4MczxymSGvghj/g9r/BJ25qD2OxXWOgjiOicJY4Hq9wlZujoLaZoI4Nonb+VcQ+YjqMXZQjy1xfYwb1Ptdbpaj/DiYcTWbH3zwQTNt2jRz+PBhM23aNPPEE0/YrgvjNPaZzT/96U8L08Y+s3nv3r1lLdPGc3dcN2VdN7sRbo6i0ARJKtcHcTaeJxfE5xiFkyTX4rQt+R2PojDGBNEIisLFN9djjBdR/Q9LXTdMonBhNi7jbBKetWuM+zHd9cUY103psHMU5HtoeywIajxyvV5BuNQxtu3xNIiLVEEJ6nm/Xt+DuP5/FkHWVW4+onCxMwiuX/9iPDebf/CDH5hJkyaZnp4eY8wHDc3Zs2eboaEh68VhfO6//37T3Nxsli1bZvL5vLn33nuNMR88R3vFihWmubnZfPGLXyx7eUk4EE7qiW6chJmjoD5vsuGezf9oMg5/ZRCnzAV1F3QQ/I5HcRtjyt0+4nTBIAqSsF8LomESt2y4HI+ScIxtjPt9VZwuxgQh7By5PubywnWDK07C/o/dXG83Xri+ySCoC75BsHHRIk5cv99Rfl89NZtfeOEFU11dbbZu3Vr4WTabNVdccYX54Q9/aL04RENSDoThFjmCDaVy5HpHD29cn2BcbuOR67s+kioJOYrTxbegcGdz/Lm+GOP6GCTsHMVpG49Tra7ZyFGcLkR44fovv+LUxL/c9muu3+8oK7vZfODAATN58mTz7W9/+4JpX//6183HPvYxc+7cOavFIRoutwEDwSBHsCHsP81CMFyfYDAewQZylAwuxyMyFG1BPL4tCOQINoT96Mw4cf2XX3Fq4l9u45Hr9zvKKowxRsBF5HI5pdNpZbNZ1dTUuC4HMUWOYEOpHJ08eVKZTEb79+/XvHnz1NXVpZkzZzqsFFHGeAQbyBH8IkPJ4PoYhBzBBnJUmpdtPIjxwPUY4wU5wogq1wUAAODXzJkztX37dtdlAACAywzHIECyednGgxgPGGMQRxNcFwAAAAAAAAAAiD+azShp48aNamxs1Lx581yXghgjR7CBHMEGcgQbyBH8IkOwgRzBBnIEG8gRxuKZzbgknrsDG8gRbCBHsIEcwQZyBL/IEGwgR7CBHMEGcoQR3NkMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9mcMJ2dnWppadHy5cs1NDQ0atquXbvU0NCgRYsW6fbbb3dUIQAAAAAAAIAkotmcIIcOHVJfX592796txsZGbdmy5YJ57r77bu3atUs7d+50UCEAAAAAAACApKpyXQDs6enpUVtbmySpvb1dTz31lJYtWzZqnq1bt+q1117T0qVLtXbt2qLLyefzyufzhe9zuVxwRSOxyBFsIEewgRzBBnIEv8gQbCBHsIEcwQZyhFK4szlBBgYGVFNTI0lKp9Pq7+8fNf3mm2/W0aNHtXPnTr344os6ePBg0eVs2LBB6XS68NXQ0BB47UgecgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcoZQKY4xxXQS86evr09KlSy/4+eLFi9XQ0KAVK1bowIED6urq0hNPPFF0GU8++aRSqZRWrVp1wbRiV6caGhqUzWYLzWzgUsgRbCBHsIEcwQZyBL/IEGwgR7CBHMEGcoRSeIxGDM2aNUuvvvrqBT8/dOiQHnvsMa1YsUI7duzQggULRk3P5XKFDX737t267777ii4/lUoplUrZLxyXFXIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHKEUHqORIHPnztWsWbPU0tKiI0eOaMmSJZKkjo4OSdLmzZvV1NSk2267TVdffbUWLlzoslwAAAAAAAAACcKdzQnz6KOPXvCzTZs2SZJWr16t1atXh10SAAAAAAAAgMsAdzYDAAAAAAAAAHyj2QwAAAAAAAAA8I1mMwAAAAAAAADAN5rNAAAAAAAAAADfaDajpI0bN6qxsVHz5s1zXQpijBzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRxirwhhjXBeBaMvlckqn08pms6qpqXFdDmKKHMEGcgQbyBFsIEfwiwzBBnIEG8gRbCBHGMGdzQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZnOCDA4O6pZbbtGUKVP05ptvXjD93LlzymQyamlp0dq1ax1UCAAAAAAAACCpaDYnyKRJk/TLX/5SS5cuLTr9+eef14c//GHt3r1b7733nvbu3RtyhQAAAAAAAACSimZzglRVVWn69Oklp/f09KitrU2S1N7eTrMZAAAAAAAAgDVVrgtAeAYGBlRTUyNJSqfT6u/vLzpfPp9XPp8vfJ/L5UKpD8lCjmADOYIN5Ag2kCP4RYZgAzmCDeQINpAjlMKdzTHU19en5ubmC75KNY9H1NbWFjb+gYEB1dXVFZ1vw4YNSqfTha+Ghgbr64DkI0ewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUqpMMYY10XArkwmo87OTs2ZM2fUz7dt26aDBw9q/fr1WrNmjVatWqX58+df8Ptjr04ZYzQ0NKRp06apoqIi8PqRDOQINpAj2ECOYAM5gl9kCDaQI9hAjmADOUIpNJsT5o477tDhw4d1zTXXqKOjQ5lMRh0dHdq0aZPOnTunz33uc/rtb3+ruXPn6jvf+Y7rcgEAAAAAAAAkBM1mAAAAAAAAAIBvPLMZAAAAAAAAAOAbzWYAAAAAAAAAgG9VrgtAvBljNDg46LoMeDR16tRIPbCfHMUTOYIN5Ag2RClHZCi+yBH8ilKGJHIUV+QINpAj2DDeHNFshi/vvPOOZsyY4boMeHTq1ClNnz7ddRkF5CieyBFsIEewIUo5IkPxRY7gV5QyJJGjuCJHsIEcwYbx5ohmM3yprq6WJJ04cUI1NTWOq7Enl8upoaEhses18rlFBTmKF3IULnIULnIUL1HMERmKH3IUnqTmKIoZkshR3JCjcJGjcJGjePGbI5rN8GXkdvqamppEbVgjkrpeUfpzGokcxRU5CldS14schSup6xWlHJGh+CJH4UnqekUpQxI5iityFK6krhc5CldS12u8OeI/CAQAAAAAAAAA+EazGQAAAAAAAADgG81m+JJKpfTQQw8plUq5LsUq1itcUa3LL9YrXFGtyy/WK1xRrcsv1is8UazJhqSulxTNdYtiTTawXuGKal1+sV7himpdfrFe4YpqXX6xXsVVGGOM5ZoAAAAAAAAAAJcZ7mwGAAAAAAAAAPhGsxkAAAAAAAAA4BvNZvjS2dmplpYWLV++XENDQ67LsaK3t1fTp0/XokWLtGjRIv3+9793XZIvg4ODuuWWWzRlyhS9+eabkqSf/exnmj9/vj71qU/pxIkTjiskR3FAjtxIUo7IkDvkKFxJzFGSMiSRI1fIUfjIUfSRIzfIUfjIUfRZzZEBxun11183y5cvN8YYs379evPMM884rsiOt99+2yxZssR1GdacPXvWnDp1yqxcudK88cYbZmhoyDQ1NZl8Pm9effVVs2bNGqf1kaN4IEduJClHZMgdchSepOYoSRkyhhy5Qo7CRY7igRy5QY7CRY7iwWaOuLMZ49bT06O2tjZJUnt7u/bu3eu4Inv27NmjlpYWffWrX5WJ+f+hWVVVpenTpxe+f+utt/Txj39c1dXVWrBggd544w2H1ZGjuCBH7iQlR2TILXIUjiTnKCkZksiRS+QoPOQoHsiRO+QoPOQoHmzmiGYzxm1gYEA1NTWSpHQ6rf7+fscV2XHllVfq17/+tV555RWdOnVK27Ztc12SVed/bpI0PDzssBpyFFfkKBxJzhEZCg85Ck9Sc5TkDEnkKCzkKFzkKJ7IUTjIUbjIUTz5yRHNZoxbbW2tcrmcpA9CWFdX57giO1KplCZPnqyKigotWbJEhw8fdl2SVed/bpJUWVnpsBpyFFfkKBxJzhEZCg85Ck9Sc5TkDEnkKCzkKFzkKJ7IUTjIUbjIUTz5yRHN5oQp9kDvEefOnVMmk1FLS4vWrl3r+7VuvfVWvfTSS5KkHTt2aMGCBb6XGQWDg4OFf7/yyiu67rrrHFZj33XXXacjR45oaGhIe/bs0Y033ui0HnIUT+QoHEnOERkKDzkKT1JzlOQMSeQoLOQoXOQonshROMhRuMhRPPnJUYWJ+0NFMMq5c+f0xz/+UevWrVNnZ6fmzJlTmLZt2zYdPHhQ69ev15o1a/TXf/3Xuu2223y9Xmdnp1577TXNnj1bTz31lKqrq/2ugnPbt2/Xgw8+qA996EO69tpr9aMf/UhVVVWuy/Lljjvu0OHDh3XNNdeoo6NDEydO1OOPP66JEyfqxz/+sRoaGpzWR47igRyFL2k5IkNukKNwJTFHScuQRI5cIEfhI0fxQI7CR47CR47iwVaOaDYnVCaTuaDZ/MADD+jOO+/UwoULtXXrVr399tvq7Ox0WCUAAAAAAACApIh3yx2elPtQ9nw+r3w+X/jeGKOhoSFNmzZNFRUVodSK+CNHsIEcwQZyBBvIEfwiQ7CBHMEGcgQbyBFK4ZnNl5FyH8q+YcMGpdPpwtcVV1yhGTNmjHoeDXAp5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5Qik8RiOhij1GY+wzm1etWqX58+df8Ltjr07lcjk1NDQom80W7owGLoUcwQZyBBvIEWwgR/CLDMEGcgQbyBFsIEcohcdoJNDIA72PHj2qjo4O9fT0aNOmTbrrrrv03HPPqaWlRXPnzi3aaJakVCqlVCoVctVIGnIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHKEUms0J9MILL4z6PpPJSJKqqqr09NNPO6gIAAAAAAAAQNLxzGYAAAAAAAAAgG80mwEAAAAAAAAAvtFsBgAAAAAAAAD4RrMZAAAAAAAAAOAbzWYAAAAAAAAAgG80m1HSxo0b1djYqHnz5rkuBTFGjmADOYIN5Ag2kCP4RYZgAzmCDeQINpAjjFVhjDGui0C05XI5pdNpZbNZ1dTUuC4HMUWOYAM5gg3kCDaQI/hFhmADOYINNnJ08uRJZTIZ7du3T01NTerq6tLMmTMtV4ooYzzCCO5sBgAAAAAAwLhlMhl1d3erv79f3d3dymQyrksC4AjNZgAAAAAAAIzbvn37NDw8LEkaHh7W/v37HVcEwBWazQAAAAAAABi3pqYmVVZWSpIqKyt5fi9wGaPZnECdnZ1qaWnR8uXLNTQ0VPj5rl271NDQoEWLFun22293WCEAAAAAAEiKrq4utba2qr6+Xq2trerq6nJdEgBHaDYnzKFDh9TX16fdu3ersbFRW7ZsGTX97rvv1q5du7Rz505HFQIAAAAAgCSZOXOmtm/frnfeeUfbt2/nPwcELmM0mxOmp6dHbW1tkqT29nbt3bt31PStW7eqpaVFjz/+uIvyAAAAAAAAACRUlesCYNfAwICuuuoqSVI6nVZ/f39h2s0336yjR49Kkj772c+qublZN9100wXLyOfzyufzhe9zuVzAVSOJyBFsIEewgRzBBnIEv8gQbCBHsIEcwQZyhFK4szlhamtrCxv4wMCA6urqCtOmTJmi6upqVVdX6zOf+Yx+9atfFV3Ghg0blE6nC18NDQ2h1I5kIUewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUqpMMYY10XAnkOHDumxxx7TT37yEz388MP6yEc+onvuuUfSB1eZampqJEnLli3Tfffdp4ULF16wjGJXpxoaGpTNZgu/D1wKOYIN5Ag2kCPYQI7gFxmCDeQINpAj2ECOUAqP0UiYuXPnatasWWppadHs2bO1bt06dXR0aNOmTdq8ebO+//3vq6qqSgsWLCjaaJakVCqlVCoVcuVIGnIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHKEUms0J9Oijj476ftOmTZKk1atXa/Xq1S5KAgAAAAAAAJBwPLMZAAAAAAAAAOAbzWYAAAAAAAAAgG80mwEAAAAAAAAAvtFsBgAAAAAAAAD4RrMZJW3cuFGNjY2aN2+e61IQY+QINpAj2ECOYAM5gl9kCDaQI9hAjmADOcJYFcYY47oIRFsul1M6nVY2m1VNTY3rchBT5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5wojA7mw+evSoPvGJTxS+Jk2apOeeey6olwMAAAAAAAAAOFQV1IL/4i/+QocPH5Ykvfvuu/rzP/9ztba2BvVyAAAAAAAAAACHQnlm8y9+8Qvdfvvtmjx5chgvB1w2Tp48qcWLF6u+vl6LFy/WyZMnrcwL//hsAMA7xkMAAAAg3jw3m99//31df/31+vKXvzzq5zt27FB1dbWeffbZC35n8+bNuvvuu8dfJRCioJqE5c7rZZmZTEbd3d3q7+9Xd3e3MpmMlXlRXBQ+myByRGMcQJCCGjsZjwAAAIAIMuPQ1dVlpk6davr7+40xxhw+fNhMnTrVPPLIIxfMm81mzbRp08zp06fH81IYh/vvv980NzebZcuWmXw+X/j52bNnzcqVK01zc7P50pe+VPbystmskWSy2WwQ5Yair6/PtLe3m7q6OtPe3m76+vpKztve3m4qKyuNJFNZWWna29tDndfLMuvq6oykwld9fb2VeYMQ1RwFlY2gPpsgchTUvEGIao4QL+SoOC/jYRTGTsajy0tQ+fQyr21kCDaQI9gQdo6CGHuDGs9d7ie8cl3r5TYeuX6/o3xsNK5m89mzZ821115rvvGNb5gTJ06Yq6++2nz+858vOu+Pf/xjs3z58vG8DMbh9ddfL7zf69evN88880xh2s9//nPzta99zRhjzOrVq82ePXvKWmZUdzxRONENYt6gTrSTcFIep2wE9dkEkaMkXLQIYucZhZ13XBomcWMjR+WKwmdY7nJdj1tBLjcIxXIUhc87TuJ0M0AQLreTcgSDHMGGsHNU7tgb1H4iiFq91huEJJzzx0lQ2XB97G4jR+NqNhtjzPe+9z1TV1dnbrjhBnPXXXeZc+fOFZ3vzjvvNL/4xS/G+zLwaOPGjebpp582xhhz4MAB84UvfKEwbd26debll182xhizZcuWoneiG2PMmTNnTDabLXydOHHioifltbW1prW11Rw/ftycOXPGnD592pw+fdrk8/nCv8+cOVP2tLa2NjNhwgQjyUyYMMG0tbUV/b1i840s58yZM6Pmra2tHXVCWldXN2qZ5/9eua9fbN7W1taS69va2lp03kstc+T1x65TPp83x44dM62traaurs60tbWZ3t7eouuUz+dNb2+vaW1tNfX19aHs+ILI0cU+m/Pf87Hv9fnZGLvMYtkolaNLZeP83zt+/Pioz+bYsWMlc1TqcwwrR6VyXCxH579+GAcw5ebo/B3ipT7zIHLkZTzykqMgxqORbNbW1l4ym6XmLZajUut7sWlhsZ2j3t5e09bWVhi3ent7S+7XgsrR8ePHCzW0tbWZ48eP+87RxfaVY3N0qf1qGPu1KI5HQYxFQW63I+/3yLyl3m8vr19qmX72afl8vuT+uth4U2zeUmPR2HmDvGhR7lg0otg2Xez9KXeal8/RxhjvJ0de1nfkGLdYjoNepyjv04I6VwtiPPKyTwtqPPKSo2Lz+hljz19mWE1Kr+ORF+WMXeUecwR1XudlO/dzzHOx/kAQY1eY+zRjgtmvHTt2bNRx9vnjwXjHo2LLtHGMHVQ2yj0+KvX65WRjZN5imbKRo3E3mwcHB83EiRPNnDlzzLvvvlt0noGBATNjxoxRj3JAsB5++GGzbds2Y4wxb731lrnnnnsK09asWWMOHTpkjDGmu7vbfOUrXym6jIceemhUsEa+/DR3vAwY5W6wcWsSnn8AcbGdSanXj9uBcBA5Kveg5GLZGLvM8TR3Rj6bi+14Sn0exT7z8ZxQ2cxRlC9alJujsXc4XuwzDyJHXsYjLxe/vBzAXOxg4/y6/TSwy2kSRvGEynaOih0Altp2g8qRl/1auTny0vz0kqOg9mtRHI+CGIuC3G7LvdgY1IX4i534nL/MUidepXJSahstlq8wL1qUOxZ5aRJ6OcYez3Zr86KFl9cP6qJFuU3CM2fOlLywGJd9WlDnakGMR64vxHvNUbnjUZRv6Cg3R+NR7LMb7zFH0Od1Ni/aezke95I5L+Px+bVGMUc2s+FlPIrCjUFeslHu8VEQx3y2xqNxN5tXrlxpJk6caGbNmmVOn+Z5zFHx3e9+t3Bn8/79+0fd2fzAAw8U7mx+9tlnfd/Z7PqRAuP5k4WwTkjhNkdkIznKzZHrMSZO87p+nrjXeW2wnaMovC9B1OBlPLwcx85ychSFz9v1I76C2j6CymeYWXa5TzPG/dgVhUfquD5esMH1uVqcxhjX80b5UXXl5igo5Y69Qe0norDccj/zKJ/bBpGjOG2LQWXD9bG7jRyNq9n84IMPmmnTppnDhw+badOmmSeeeGI8i0EAxj6z+ac//Wlh2thnNu/du7esZZZ67k5QByXlBvtyPNGNMxs5Ihu41LN2be48o7DzDmLeKDQxovisXWPcn/hE4SQJ5bvYM5tdft6um2lks3ylxqIoNPeDqCEKDWTXTYwghH2uFqcxxvW8Qb1+EKL6rN2g9hNBbbdB7NtdjzFe2MhRUrfFqF4ID4rnZvMPfvADM2nSJNPT02OM+aChOXv2bDM0NGS9OIzP/fffb5qbm82yZctMPp839957rzHmg//YccWKFaa5udl88YtfLHt5Npo7rneecM9GjoCoHgjHSdyaYUHwm6MojFtRqOFyF+Z45Poi1eV2ghQWG03CoJr7QdQQhQtqrpsYQQj7XC1OY4zreeM0dl5ux9iut1tjgrnJwTUb/wn35b4tJoWnZvMLL7xgqqurzdatWws/y2az5oorrjA//OEPrReHaLCx42GDxeV2AINgkKPoitNBHDmCDeQIfoX51zpeua4hTuuVhH2a63WAe5fbPi1OmY9TrTYuoiIZKowxRmU4ePCgPvnJT+rhhx/W2rVrR037L//lv+if//mf9a//+q+qrKwsZ3GIkVwup3Q6rWw2q5qaGtflIKbIEWwgR7CBHMEGcgS/yBBsIEewgRzBhlI5qq+vV39//6jv33nnHRclIiQTyp3xpptu0rvvvntBo1mS/v7v/17/5//8HxrNAAAAAAAAACRJTU1NhX5hZWWl5s2b57giBK3sZjMAAAAAAAAAlKurq0utra2qr69Xa2ururq6XJeEgFW5LgAAAAAAAABA8sycOVPbt293XQZCxJ3NKGnjxo1qbGzkTxzgCzmCDeQINpAj2ECO4BcZgg3kCDaQI9hAjjBW2f9BIC5f/GcBsIEcwQZyBBvIEWwgR/CLDMEGcgQbyBFsIEcYwZ3NAAAAAAAAAADfaDYDAAAAAAAAAHyj2QwAAAAAAAAA8I1mMwAAAAAAAADAN5rNCdPZ2amWlhYtX75cQ0NDo6bt2rVLDQ0NWrRokW6//XZHFQIAAAAAAABIIprNCXLo0CH19fVp9+7damxs1JYtWy6Y5+6779auXbu0c+dOBxUCAAAAAAAASKoq1wXAnp6eHrW1tUmS2tvb9dRTT2nZsmWj5tm6datee+01LV26VGvXri26nHw+r3w+X/g+l8sFVzQSixzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRyiFO5sTZGBgQDU1NZKkdDqt/v7+UdNvvvlmHT16VDt37tSLL76ogwcPFl3Ohg0blE6nC18NDQ2B147kIUewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUqpMMYY10XAm76+Pi1duvSCny9evFgNDQ1asWKFDhw4oK6uLj3xxBNFl/Hkk08qlUpp1apVF0wrdnWqoaFB2Wy20MwGLoUcwQZyBBvIEWwgR/CLDMEGcgQbyBFsIEcohcdoxNCsWbP06quvXvDzQ4cO6bHHHtOKFSu0Y8cOLViwYNT0XC5X2OB3796t++67r+jyU6mUUqmU/cJxWSFHsIEcwQZyBBvIEfwiQ7CBHMEGcgQbyBFK4TEaCTJ37lzNmjVLLS0tOnLkiJYsWSJJ6ujokCRt3rxZTU1Nuu2223T11Vdr4cKFLssFAAAAAAAAkCDc2Zwwjz766AU/27RpkyRp9erVWr16ddglAQAAAAAAALgMcGczAAAAAAAAAMA3ms0AAAAAAAAAAN9oNgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzStq4caMaGxs1b94816UgxsgRbCBHsIEcwQZyBL/IEGwgR7CBHMEGcoSxKowxxnURiLZcLqd0Oq1sNquamhrX5SCmyBFsIEewgRzBBnIEv8gQbCBHsIEcwQZyhBHc2QwAAAAAAAAA8I1mMwAAAAAAAADAN5rNAAAAAAAAAADfaDYnyODgoG655RZNmTJFb7755gXTz507p0wmo5aWFq1du9ZBhQAAAAAAAACSimZzgkyaNEm//OUvtXTp0qLTn3/+eX34wx/W7t279d5772nv3r0hVwgAAAAAAAAgqWg2J0hVVZWmT59ecnpPT4/a2tokSe3t7TSbAQAAAAAAAFhT5boAhGdgYEA1NTWSpHQ6rf7+/qLz5fN55fP5wve5XC6U+pAs5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5Qinc2RxDfX19am5uvuCrVPN4RG1tbWHjHxgYUF1dXdH5NmzYoHQ6XfhqaGiwvg5IPnIEG8gRbCBHsIEcwS8yBBvIEWwgR7CBHKGUCmOMcV0E7MpkMurs7NScOXNG/Xzbtm06ePCg1q9frzVr1mjVqlWaP3/+Bb8/9uqUMUZDQ0OaNm2aKioqAq8fyUCOYAM5gg3kCDaQI/hFhmADOYIN5Ag2kCOUQrM5Ye644w4dPnxY11xzjTo6OpTJZNTR0aFNmzbp3Llz+tznPqff/va3mjt3rr7zne+4LhcAAAAAAABAQtBsBgAAAAAAAAD4xjObAQAAAAAAAAC+0WwGAAAAAAAAAPhW5boAxJsxRoODg67LgEdTp06N1AP7yVE8kSPYQI5gQ5RyRIbiixzBryhlSCJHcUWOYAM5gg3jzRHNZvjyzjvvaMaMGa7LgEenTp3S9OnTXZdRQI7iiRzBBnIEG6KUIzIUX+QIfkUpQxI5iityBBvIEWwYb45oNsOX6upqSdKJEydUU1PjuBp7crmcGhoaErteI59bVJCjeCFH4SJH4SJH8RLFHJGh+CFH4UlqjqKYIYkcxQ05Chc5Chc5ihe/OaLZDF9GbqevqalJ1IY1IqnrFaU/p5HIUVyRo3Aldb3IUbiSul5RyhEZii9yFJ6krleUMiSRo7giR+FK6nqRo3Aldb3GmyP+g0AAAAAAAAAAgG80mwEAAAAAAAAAvtFshi+pVEoPPfSQUqmU61KsYr3CFdW6/GK9whXVuvxivcIV1br8Yr3CE8WabEjqeknRXLco1mQD6xWuqNblF+sVrqjW5RfrFa6o1uUX61VchTHGWK4JAAAAAAAAAHCZ4c5mAAAAAAAAAIBvNJsBAAAAAAAAAL7RbAYAAAAAAAAA+EazGb50dnaqpaVFy5cv19DQkOtyrOjt7dX06dO1aNEiLVq0SL///e9dl+TL4OCgbrnlFk2ZMkVvvvmmJOlnP/uZ5s+fr0996lM6ceKE4wrJURyQIzeSlCMy5A45ClcSc5SkDEnkyBVyFD5yFH3kyA1yFD5yFH1Wc2SAcXr99dfN8uXLjTHGrF+/3jzzzDOOK7Lj7bffNkuWLHFdhjVnz541p06dMitXrjRvvPGGGRoaMk1NTSafz5tXX33VrFmzxml95CgeyJEbScoRGXKHHIUnqTlKUoaMIUeukKNwkaN4IEdukKNwkaN4sJkj7mzGuPX09KitrU2S1N7err179zquyJ49e/aopaVFX/3qV2WMcV2OL1VVVZo+fXrh+7feeksf//jHVV1drQULFuiNN95wWB05igty5E5SckSG3CJH4UhyjpKSIYkcuUSOwkOO4oEcuUOOwkOO4sFmjmg2Y9wGBgZUU1MjSUqn0+rv73dckR1XXnmlfv3rX+uVV17RqVOntG3bNtclWXX+5yZJw8PDDqshR3FFjsKR5ByRofCQo/AkNUdJzpBEjsJCjsJFjuKJHIWDHIWLHMWTnxzRbE6YYs9YGXHu3DllMhm1tLRo7dq1vl+rtrZWuVxO0gchrKur873MKEilUpo8ebIqKiq0ZMkSHT582HVJVp3/uUlSZWWlw2rIUVyRo3AkOUdkKDzkKDxJzVGSMySRo7CQo3CRo3giR+EgR+EiR/HkJ0c0mxNm0qRJ+uUvf6mlS5deMO3555/Xhz/8Ye3evVvvvfee7z9duPXWW/XSSy9Jknbs2KEFCxb4Wl5UDA4OFv79yiuv6LrrrnNYjX3XXXedjhw5oqGhIe3Zs0c33nij03rIUTyRo3AkOUdkKDzkKDxJzVGSMySRo7CQo3CRo3giR+EgR+EiR/HkJ0dVAdYFB8Y+Y+V8PT09uvPOOyX9/5+Tc9ttt437tebOnatZs2appaVFs2fP1rp168a9rCh59dVX9eCDD+pDH/qQrr32Wv1//9//57ok3+644w4dPnxYR48eVUdHh/7mb/5Gn/zkJzVx4kT9+Mc/dlobOYoPchS+pOWIDLlBjsKT1BwlLUMSOXKBHIWLHMUHOQofOQoXOYoPWzmqMHF/gjWKymQy6uzs1Jw5cwo/u/fee/X5z39en/jEJ/Q//sf/0P/8n/9T3/zmNy/43Xw+r3w+X/jeGKOhoSFNmzZNFRUVodSP+CNHsIEcwQZyBBvIEfwiQ7CBHMEGcgQbyBFK4TEal5Fyn5OzYcMGpdPpwtcVV1yhGTNmjPoTAeBSyBFsIEewgRzBBnIEv8gQbCBHsIEcwQZyhFK4szmhit3ZvG3bNh08eFDr16/XmjVrtGrVKs2fP/+C3x17dSqXy6mhoUHZbHbU/0QJXAw5gg3kCDaQI9hAjuAXGYIN5Ag2kCPYQI5QCs9sTqCxz1jp6enRpk2bdNddd+m5555TS0uL5s6dW7TRLH3wP2qmUqmQq0bSkCPYQI5gAzmCDeQIfpEh2ECOYAM5gg3kCKXQbE6gF154YdT3mUxG0gf/eeDTTz/toCIAAAAAAAAAScczmwEAAAAAAAAAvtFsBgAAAAAAAAD4RrMZAAAAAAAAAOAbzWYAAAAAAAAAgG80mwEAAAAAAAAAvtFsRkkbN25UY2Oj5s2b57oUxBg5gg3kCDaQI9hAjuAXGYIN5Ag2kCPYQI4wVoUxxrguAtGWy+WUTqeVzWZVU1PjuhzEFDmCDeQINpAj2ECO4BcZgg3kCDaQI9hAjjCCO5sBAAAAAAAAAL7RbAYAAAAAAAAA+EazGQAAAAAAAADgG83mBOrs7FRLS4uWL1+uoaGhws937dqlhoYGLVq0SLfffrvDCgEAAAAAAAAkDc3mhDl06JD6+vq0e/duNTY2asuWLaOm33333dq1a5d27tzpqEIAAAAAAAAASUSzOWF6enrU1tYmSWpvb9fevXtHTd+6dataWlr0+OOPuygPAAAAAAAAQEJVuS4Adg0MDOiqq66SJKXTafX39xem3XzzzTp69Kgk6bOf/ayam5t10003XbCMfD6vfD5f+D6XywVcNZKIHMEGcgQbyBFsIEfwiwzBBnIEG8gRbCBHKIU7mxOmtra2sIEPDAyorq6uMG3KlCmqrq5WdXW1PvOZz+hXv/pV0WVs2LBB6XS68NXQ0BBK7UgWcgQbyBFsIEewgRzBLzIEG8gRbCBHsIEcoZQKY4xxXQTsOXTokB577DH95Cc/0cMPP6yPfOQjuueeeyR9cJWppqZGkrRs2TLdd999Wrhw4QXLKHZ1qqGhQdlstvD7wKWQI9hAjmADOYIN5Ah+kSHYQI5gAzmCDeQIpfAYjYSZO3euZs2apZaWFs2ePVvr1q1TR0eHNm3apM2bN+v73/++qqqqtGDBgqKNZklKpVJKpVIhV46kIUewgRzBBnIEG8gR/CJDsIEcwQZyBBvIEUqh2ZxAjz766KjvN23aJElavXq1Vq9e7aIkAAAAAAAAAAnHM5sBAAAAAAAAAL7RbAYAAAAAAAAA+EazGQAAAAAAAADgG81mAAAAAAAAAIBvNJsBAAAAAAAAAL7RbEZJGzduVGNjo+bNm+e6FMQYOYIN5Ag2kCPYQI7gFxmCDeQINpAj2ECOMFaFMcYEtfB//Md/1D/90z/JGKNPf/rTevzxx1VRURHUyyEguVxO6XRa2WxWNTU1rstBTJEj2ECOYAM5gg3kCH6RIdhAjmADOYIN5AgjAruz+fe//72eeOIJHTx4UG+88YYOHjyo//W//ldQLwcAAAAAAAAAcCjQx2icO3dOZ86c0dmzZ3X27FnNmDEjyJcDAEnSyZMntXjxYtXX12vx4sU6efKk65KAxGO7AwDYwj4FAID48txsfv/993X99dfry1/+8qif79ixQ9XV1Xr22WclSdOnT1dnZ6dmz56tq666Sp/+9Kf10Y9+1E7ViB3XB4yuXx/hymQy6u7uVn9/v7q7u5XJZErOm9RsJHW9EF1etru4Y/sCSovb9hG3ei8Xl9M+JQritB3EqVYA8cMYY4kZh66uLjN16lTT399vjDHm8OHDZurUqeaRRx4pzNPf32/a2trMH/7wB/Pee++ZT37yk+bll18ez8vBo/vvv980NzebZcuWmXw+X/j52bNnzcqVK01zc7P50pe+VPbystmskWSy2ey4a2pvbzeVlZVGkqmsrDTt7e3jXlYcXx92clSuuro6I6nwVV9fX3LepGYjqesVZo7gjZftzjW/OYrC9tXX12fa29tNXV2daW9vN319fVbmjRPX6+U3R67rD0oUtg8vXNbLPq20OO1TXAv7XM312BWnWuOE8Qg22MiR6+02qOMC1+sVtnE1m8+ePWuuvfZa841vfMOcOHHCXH311ebzn//8qHk2b9486mff+ta3zH/7b//NX7W4pNdff90sX77cGGPM+vXrzTPPPFOY9vOf/9x87WtfM8YYs3r1arNnz56ylmljwAjigNHLxurl9eM0CMSp1jAPYLzsIJJ6MpPU9SqVoyC2haQ284KqNU4nf35zFIXty8v7HcRBs+vP0Bj3Tc1iOfLyvsRpmwnqmCuoGrxwuT2H3dwJar8WxGcT1Pbh+nghCGGfq7kee4Oq1XU2kpCjOK1vnMZD16/vRRIufgXVO3I9doZtXM1mY4z53ve+Z+rq6swNN9xg7rrrLnPu3LlR03t6eswnPvEJc/r0aXPu3Dlzxx13mOeee853wbi4jRs3mqefftoYY8yBAwfMF77whcK0devWFe4u37Jly6g70c935swZk81mC18nTpy46El5bW2taW1tNcePHzdnzpwxp0+fNqdPnzb5fL7w77a2NjNhwgQjyUyYMMG0tbUVpp05c2bU7x0/fty0traa2tpa09bWZo4dO1b2MkeWc+bMmbJfP5/Pj/q9S81bqm5b087/fmxtY6eNrbW1tfWSvxeWcnM0otg6j/d97e3tNW1tbaaurs60traaY8eOecrmxd5zv9PCylGpHNtap6jl6Pyd99jPcez7c+zYMdPW1jZq7Cr2vra2tpbMhp8cHT9+vPD6bW1to15/7Hte7njoJStexrhSr18sK8eOHTOtra2mrq7OtLW1md7e3pI5Ov+9DeNgy3aOxmajtbX1kuPRSN4uNh552QZra2tHHQjX1dWV/L1Lzet12/CaI9vj6Mi0sesVdJOwnBx5GYsu9rmEtd2W+357ef1SxyZ+j42KbXel6h673fX29pZc3zDHoyCOsYPabr0cR4znePRSx0al9inFslIsGzZyVO52E9V92ohy3nMv52rl7lOiMB6VqtVvjsqt28u2cbnlKIjjCC/H2EHt17zkqLe3d9T20dvbm/gclWNss7eurs5K5so97giqz+Rl7BzZB56fjWJ1ezlXHO953Xib+ONuNg8ODpqJEyeaOXPmmHfffbfoPF/96lfN9ddfbxobG80Xv/hF8/7774/35VCmhx9+2Gzbts0YY8xbb71l7rnnnsK0NWvWmEOHDhljjOnu7jZf+cpXii7joYceGrURjHzZaO6MNP9sHAgX21gvteMZOWC92I7HyyAw3pOmi03zMgiUqrXYjmdkZxbWVc5yczSinAOYIN7zYtm0cQATRJOw1EHJxXI0knkbB/dRzlEQByUXG2P8jEeuL355GeOCumgRdpPQdo7GXtAaaWQVe8+9XLQo1jQKM0dBNRu8ZKXUwXUUTqjKyVFQJ0iut9vxnCCV0yQsd59W6pinVN2lLggVW9+R7bm+vj7w/VoQx9hB5ehiTbrxHo8GdWx0sdf3k6O479PGc9HC5rlaUONRqWPccl7/Yk1CLzkqt0no5VwtqjkaUezzGPv+eLmI6udCuI1jI1vjoZ8clXvxK0k5KkdQF+6D6A94ufkjiAscYVxEHu8x9ribzStXrjQTJ040s2bNMqdPh3eXGy7uu9/9buHO5v3794+6s/mBBx4o3Nn87LPP+r6zOag/Oyx3uUH9GYLrP9sL6k+jw/6zjXJzFKc/Cwrq/Xb95zeuX/9iys2Rl7qCGGOCeH2v8wYxxgQ1zichR+UK+s99y2mQlTtvFP40Oaj3wIZychRU/UFtt0GMG15EYZwNUxDH2EFtt0HMG7ccud4+SnG5TzPG29hVbj6DOsYPapwNIvNRzZEXrt/DOI2HXuq93HIUxHYbpccI2hw7gzpesHEcNa5m84MPPmimTZtmDh8+bKZNm2aeeOKJ8SwGARj7zOaf/vSnhWljn9m8d+/espZZ6rk7rg8YgzrJdH1QMp6TRJsDVlBs5CjsnedYUTj5C+JzdP36XlzqWbtBHJTYbOZ5ef2g5g2qVi/CbhKOZSNH5YrT9hW3RqlrF3tmc9KOTYJar6COeVwfL5Qr7GOjoPZrQVzQ8sL1/jqq+7QojKdBNBSDEmQT3XY2g2Dzmc1xuhDuajz0Uu/lliMvyl3fuJ3TBDF2ht138dxs/sEPfmAmTZpkenp6jDEfNDRnz55thoaGPL84gnH//feb5uZms2zZMpPP5829995rjPngP3ZcsWKFaW5uNl/84hfLXl6YJ+VBLjcIQTQfgxoIXR/E2TgQdn3QHNQA7fo/ZXH9+l6EfSAchKAOGIPYPly/V0EJ80A4Tg2yKDQUXb8HXoR9QlUu1+OGF3E7+bPNxjF2XNbVmHht38a43z7KFfaNQV64vhARlCi8t7ZFdZ8WVAM5CuJWbzmimqO4jTHlZiMKF01K8dRsfuGFF0x1dbXZunVr4WfZbNZcccUV5oc//KHnF0c8RHXAiIIgmo9JbeIn4c5m11e1vS63XK5f3wvGo9Jcbx9xEtUcud6+ghKnMcaLqObIC9fjRpw+7yAkIUNexO3zdr19lCvsG4OCEJf3ekSc3ttyRXU8SuJ7nWRRzVHcxpgkKLvZfODAATN58mTz7W9/+4JpX//6183HPvYxc+7cOavFIRqiOmBEQVLvPAnC5Xb3jheu18v163vBeFRanD5H18hRuJKazSTkKKmfTVwkIUNJFpftIwk5ist7nWRJyBHci2qOGGPCV2GMMQIuIpfLKZ1OK5vNqqamxnU5iClyBBvIEWwgR7CBHMEvMgQbyBFsIEewgRxhxATXBQAAAAAAAAAA4o9mMwAAAAAAAADAN5rNKGnjxo1qbGzUvHnzXJeCGCNHsIEcwQZyBBvIEfwiQ7CBHMEGcgQbyBHG4pnNuCSeuwMbyBFsIEewgRzBBnIEv8gQbCBHsKFUjk6ePKlMJqN9+/apqalJXV1dmjlzpsNKEWWMRxjBnc0AAAAAAAAYJZPJqLu7W/39/eru7lYmk3FdEoAYoNkMAAAAAACAUfbt26fh4WFJ0vDwsPbv3++4IgBxQLMZAAAAAAAAozQ1NamyslKSVFlZyTN5AZSFZjMAAAAAAABG6erqUmtrq+rr69Xa2qquri7XJQGIgSrXBcCuzs5Ovfbaa5o9e7aeeuopVVdXF6bt2rVL/+k//Sd99KMfVWVlpXbu3OmwUgAAAAAAEFUzZ87U9u3bXZcBIGa4szlBDh06pL6+Pu3evVuNjY3asmXLBfPcfffd2rVrF41mAAAAAAAAAFZxZ3OC9PT0qK2tTZLU3t6up556SsuWLRs1z9atW/Xaa69p6dKlWrt2bdHl5PN55fP5wve5XC64opFY5Ag2kCPYQI5gAzmCX2QINpAj2ECOYAM5Qinc2ZwgAwMDqqmpkSSl02n19/ePmn7zzTfr6NGj2rlzp1588UUdPHiw6HI2bNigdDpd+GpoaAi8diQPOYIN5Ag2kCPYQI7gFxmCDeQINpAj2ECOUEqFMca4LgLe9PX1aenSpRf8fPHixWpoaNCKFSt04MABdXV16Yknnii6jCeffFKpVEqrVq26YFqxq1MNDQ3KZrOFZjZwKeQINpAj2ECOYAM5gl9kCDaQI9hAjmADOUIpPEYjhmbNmqVXX331gp8fOnRIjz32mFasWKEdO3ZowYIFo6bncrnCBr97927dd999RZefSqWUSqXsF47LCjmCDeQINpAj2ECO4BcZgg3kCDaQI9hAjlAKj9FIkLlz52rWrFlqaWnRkSNHtGTJEklSR0eHJGnz5s1qamrSbbfdpquvvloLFy50WS4AAAAAAACABOHO5oR59NFHL/jZpk2bJEmrV6/W6tWrwy4JAAAAAAAAwGWAO5sBAAAAAAAAAL7RbAYAAAAAAAAA+EazGQAAAAAAAADgG81mAAAAAAAAAIBvNJtR0saNG9XY2Kh58+a5LgUxRo5gAzmCDeQINpAj+EWGYAM5gg3kCDaQI4xVYYwxrotAtOVyOaXTaWWzWdXU1LguBzFFjmADOYIN5Ag2kCP4RYZgAzmCDeQINpAjjODOZgAAAAAAAACAbzSbAQAAAAAAAAC+0WwGAAAAAAAAAPhGsxkAAAAAAAAA4BvN5gQZHBzULbfcoilTpujNN9+8YPq5c+eUyWTU0tKitWvXOqgQAAAAAAAAQFLRbE6QSZMm6Ze//KWWLl1adPrzzz+vD3/4w9q9e7fee+897d27N+QKAQAAAAAAACRVlesCYE9VVZWmT59ecnpPT4/uvPNOSVJ7e7v27t2r22677YL58vm88vl84ftcLme/WCQeOYIN5Ag2kCPYQI7gFxmCDeQINpAj2ECOUAp3Nl9GBgYGVFNTI0lKp9Pq7+8vOt+GDRuUTqcLXw0NDWGWiYQgR7CBHMEGcgQbyBH8IkOwgRzBBnIEG8gRSqkwxhjXRcCbvr6+oo/K+MUvfqG6ujplMhl1dnZqzpw5o6Z/+ctf1n/4D/9BCxcu1JYtW9Tb26vOzs4LljP26pQxRkNDQ5o2bZoqKirsrxASiRzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRyiFx2jE0KxZs/Tqq696/r1bb71VL730khYuXKgdO3Zo1apVRedLpVJKpVJ+y8RljhzBBnIEG8gRbCBH8IsMwQZyBBvIEWwgRyiFx2gkzB133KGXXnpJa9asUVdXlySpo6NDknTXXXfpxIkTamlp0aRJkzR//nyHlQIAAAAAAABIEh6jAQAAAAAAAADwjTubAQAAAAAAAAC+8cxm+GKM0eDgoOsy4NHUqVMj9cB+chRP5Ag2kCPYEKUckaH4IkfwK0oZkshRXJEj2ECOYMN4c0SzGb688847mjFjhusy4NGpU6c0ffp012UUkKN4IkewgRzBhijliAzFFzmCX1HKkESO4oocwQZyBBvGmyOazfClurpaknTixAnV1NQ4rsaeXC6nhoaGxK7XyOcWFeQoXshRuMhRuMhRvEQxR2QofshReJKaoyhmSCJHcUOOwkWOwkWO4sVvjmg2w5eR2+lramoStWGNSOp6RenPaSRyFFfkKFxJXS9yFK6krleUckSG4oschSep6xWlDEnkKK7IUbiSul7kKFxJXa/x5oj/IBAAAAAAAAAA4BvNZgAAAAAAAACAbzSb4UsqldJDDz2kVCrluhSrWK9wRbUuv1ivcEW1Lr9Yr3BFtS6/WK/wRLEmG5K6XlI01y2KNdnAeoUrqnX5xXqFK6p1+cV6hSuqdfnFehVXYYwxlmsCAAAAAAAAAFxmuLMZAAAAAAAAAOAbzWYAAAAAAAAAgG80mwEAAAAAAAAAvtFshi+dnZ1qaWnR8uXLNTQ05LocK3p7ezV9+nQtWrRIixYt0u9//3vXJfkyODioW265RVOmTNGbb74pSfrZz36m+fPn61Of+pROnDjhuEJyFAfkyI0k5YgMuUOOwpXEHCUpQxI5coUchY8cRR85coMchY8cRZ/VHBlgnF5//XWzfPlyY4wx69evN88884zjiux4++23zZIlS1yXYc3Zs2fNqVOnzMqVK80bb7xhhoaGTFNTk8nn8+bVV181a9ascVofOYoHcuRGknJEhtwhR+FJao6SlCFjyJEr5Chc5CgeyJEb5Chc5CgebOaIO5sxbj09PWpra5Mktbe3a+/evY4rsmfPnj1qaWnRV7/6VRljXJfjS1VVlaZPn174/q233tLHP/5xVVdXa8GCBXrjjTccVkeO4oIcuZOUHJEht8hROJKco6RkSCJHLpGj8JCjeCBH7pCj8JCjeLCZI5rNGLeBgQHV1NRIktLptPr7+x1XZMeVV16pX//613rllVd06tQpbdu2zXVJVp3/uUnS8PCww2rIUVyRo3AkOUdkKDzkKDxJzVGSMySRo7CQo3CRo3giR+EgR+EiR/HkJ0c0mzFutbW1yuVykj4IYV1dneOK7EilUpo8ebIqKiq0ZMkSHT582HVJVp3/uUlSZWWlw2rIUVyRo3AkOUdkKDzkKDxJzVGSMySRo7CQo3CRo3giR+EgR+EiR/HkJ0c0mzFut956q1566SVJ0o4dO7RgwQLHFdkxODhY+Pcrr7yi6667zmE19l133XU6cuSIhoaGtGfPHt14441O6yFH8USOwpHkHJGh8JCj8CQ1R0nOkESOwkKOwkWO4okchYMchYscxZOfHFWYuD9UBE51dnbqtdde0+zZs/XUU0+purradUm+bd++XQ8++KA+9KEP6dprr9WPfvQjVVVVuS7LlzvuuEOHDx/WNddco46ODk2cOFGPP/64Jk6cqB//+MdqaGhwWh85igdyFL6k5YgMuUGOwpXEHCUtQxI5coEchY8cxQM5Ch85Ch85igdbOaLZDAAAAAAAAADwjcdoAAAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAAAAAB8o9kMAAAAAAAAAPCNZjMAAAAAAAAAwDeazQAAAAAAAAAA32g2AwAAAAjUokWL9Dd/8zeuy7jAokWLVFFRoYqKCh0+fFiSlMlkCj977rnnnNYHAAAQNzSbAQAAAFy21qxZo9/97neaM2eOJOnxxx/X7373O8dVAQAAxFOV6wIAAAAAwJUPfehDmjVrVuH7dDqtdDrtsCIAAID44s5mAAAAAKF58cUX1dzcrCuuuEL19fW688479Zvf/GbUPIODg1q+fLkmT56sK6+8Uv/4j/94yUdxfOYznyk8/mLs1y9+8YuA1woAAAASzWYAAAAAIfrTn/6kv/u7v9P+/fu1c+dOTZgwQf/xP/5Hvf/++4V5/u7v/k579uzRL37xC3V3d2v37t16/fXXL7rcp556Sr/73e/01ltvSZJeeOEF/e53v9Pvfvc73XHHHYGuEwAAAD7AYzQAAAAAhGbJkiWjvv/hD3+oGTNm6MiRI5ozZ44GBwf19NNP66c//aluv/12SR80kq+66qqLLre+vl6S1NPTo4qKCjU3N2vq1KnBrAQAAACK4s5mAAAAAKH5zW9+o2XLlukjH/mIampqdO2110qSjh8/Lkn67W9/q7Nnz6qpqanwO+l0Wn/xF39R1vL/5V/+RX/+539OoxkAAMAB7mwGAAAAEJq77rpLDQ0N+sEPfqCrrrpK77//vubMmaOhoSFJkjFGklRRUTHq90Z+fin/8i//ohtvvNFu0QAAACgLdzYDAAAACMUf/vAH/eu//qsefPBB3X777frLv/xL/fGPfxw1z0c/+lH92Z/9mfbt21f4WS6XKzyL+VJ6e3vLvgsaAAAAdnFnMwAAAIBQ1NbWqr6+Xt///vd15ZVX6vjx4/rP//k/j5pn6tSpWrlypdatW6e6ujrNmDFDDz30kCZMmHDB3c7FvP/++zp27Jj+7//9v7r66qvL+h0AAADYwZ3NAAAAAEIxYcIE/fM//7MOHjyoOXPm6G//9m/1yCOPXDDfP/zDP2j+/Pm688479elPf1oLFizQX/7lX2rixImXfI0vfelL2rNnj66//vqyH70BAAAAO7izGQAAAECgdu3aVfj3pz/9aR05cmTU9LFN4alTp+qZZ54pfP+nP/1J//W//lfde++9l3ytxYsX68SJE/4KBgAAwLhwZzMAAACASDl06JD++3//7/rNb36j119/XcuXL5ckffazn7X+Wt/97nc1ZcoUvfHGG5Kk++67T1OmTLH+OgAAAJeDCsPflgEAAACIkEOHDmn16tU6evSoqqurddNNN+kf/uEfdMMNN1h9nf/3//6fTp8+LUmaPXu2qqurderUKeVyOUnSlVdeqcmTJ1t9TQAAgCSj2QwAAAAAAAAA8I3HaAAAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMA3ms0AAAAAAAAAAN9oNgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMA3ms0AAAAAAAAAAN9oNgMAAAAAAAAAfKPZDAAAAAAAAADwjWYzAAAAAAAAAMC3/x8cCVziXTSlhAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -304,7 +304,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABZkAAAO7CAYAAAA2h4pYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXzU1dn+f82+zySTheyEfV8VRXbUWkWUaqu1dUPtU9tqfSy19aGKVavCY+3Tauu3pe7aVutScde6IiJUBEGQxQABspJ19n3m8/sjv/twZpKQEJLMJLnfr9e8yDLLIXPP+Zxz3fe5bpWiKAoYhmEYhmEYhmEYhmEYhmEYpgeo0z0AhmEYhmEYhmEYhmEYhmEYZuDCIjPDMAzDMAzDMAzDMAzDMAzTY1hkZhiGYRiGYRiGYRiGYRiGYXoMi8wMwzAMwzAMwzAMwzAMwzBMj2GRmWEYhmEYhmEYhmEYhmEYhukxLDIzDMMwDMMwDMMwDMMwDMMwPYZFZoZhGIZhGIZhGIZhGIZhGKbHsMjMMAzDMAzDMAzDMAzDMAzD9BgWmRmGYRiGYRiGYRiGYRiGYZgewyIzwzAMwzAMwzAMwzAMwzAM02NYZGYYhmEYhmEYhmEYhmEYhmF6DIvMDMP0Ka+//jrGjRuHMWPG4NFHH033cJgM5aKLLkJ2dja+853vpHsoTAZSVVWFRYsWYeLEiZg6dSpeeOGFdA+JyTC8Xi9mzZqF6dOnY8qUKXjkkUfSPSQmQwkEAhg+fDhuueWWdA+FyVC0Wi2mT5+O6dOn4wc/+EG6h8NkIJWVlVi8eDEmTpyIKVOmwO/3p3tITAaxb98+MYdMnz4dJpMJ69atS/ewmAzj97//PSZNmoSJEyfipptugqIo6R5Sr6BSBsv/hGGYjCMWi2HixIn48MMPYbfbMXPmTPznP/+B0+lM99CYDOPDDz+Ez+fDU089hRdffDHdw2EyjLq6Ohw9ehTTp09HQ0MDZs6ciX379sFisaR7aEyGEI/HEQ6HYTabEQgEMHnyZGzZsgU5OTnpHhqTYdx2222oqKhAWVkZHnjggXQPh8lAcnNz0dTUlO5hMBnMwoULcc8992D+/PloaWmB3W6HVqtN97CYDMTn86G8vByHDx/mdSsjaGxsxOzZs/HVV19Bp9NhwYIFeOCBB3DGGWeke2gnDVcyMwzTZ3z22WeYNGkSiouLYbPZsGTJErzzzjvpHhaTgSxevBg2my3dw2AylMLCQkyfPh0AkJ+fD6fTiZaWlvQOiskoNBoNzGYzACAUCiEejw+aihCm96ioqMDevXuxZMmSdA+FYZgBColC8+fPBwA4nU4WmJlOefXVV3HWWWexwMy0IxaLIRQKIRqNIhqNIj8/P91D6hVYZGYYpkckEgmMHz8et956a9LP33nnHej1erzwwguora1FcXGx+F1JSQlqamr6e6hMGulOnDBDmxONkc8//xyJRAKlpaX9OUwmjXQ3RlwuF6ZNm4aSkhL88pe/RG5ubjqGy6SB7sbILbfcgtWrV6djiEwG0N048Xg8OOWUUzBv3jysX78+HUNl0kR3YqSiogJWqxUXXnghZs6cifvuuy9No2XSwYmuW59//nl897vf7c8hMmmmOzGSl5eHW265BWVlZSgqKsLZZ5+NUaNGpWnEvYzCMAzTQ5588knFZrMpLS0tiqIoyvbt2xWbzab89re/VRRFUZ5//nnlhhtuEPe///77lQceeCAtY2XSR1dxQnz44YfKt7/97XQMkUkz3Y2RpqYmZcKECcrGjRvTMUwmjXQ3RhRFUerr65U5c+Yo9fX1/T1MJo10FSPr1q1TbrnlFkVRFOWJJ55Qfv7zn6dtrEz66M5cUlNToyiKouzcuVMpKytT3G53WsbKpIfu7G+cTqdy5MgRJRQKKYsWLVL+/e9/p3PITD/T3TWJ2+1WcnNzlWAwmI5hMmmkqxhpaWlRzjnnHKW5uVkJBALKwoULlfXr16dzyL0GVzIzDNMhX3/9dZf3ufzyy5Gbm4uHHnoI1dXVOP/883HllVeKZjrFxcVJlcvV1dUoLCzsszEz/U9vxAkzuOmtGAmHw7jooouwcuVKzJkzpy+HzPQzvT2PDBs2DFOnTsXHH3/cF8Nl0kBvxMjmzZvx3HPPoby8HLfccgseeeQR3H333X09dKYf6a25pKioCAAwefJkTJw4sVvPywwMeiNGSkpKMGvWLJSWlsJgMGDJkiXYvn17H4+c6S96c03yyiuv4Jvf/CaMRmNfDZdJA70RI++99x5Gjx4Np9MJk8mE888/H5s3b+7rofcP6Va5GYbJPD755BPFYrEo7733Xpf3/ctf/qI4nU5lypQpygUXXKDEYjHxu2g0qowePVqprq5WPB6PMnr0aKWpqakvh870I70VJwRXMg8+eitGEomEctlllym//vWv+3C0TDrorRipr68X1YZut1uZOHGismPHjj4bN9N/9Pa1RlG4knkw0ltx0tLSooRCIUVRFKWqqkopKytTmpub+2zcTP/Rm/ub6dOnKy0tLUo8HleWLl2qvPbaa305dKaf6O3rzdKlS5VXX321L4bKpIneipFNmzYp06dPV4LBoBKLxZQlS5Yo69at68uh9xssMjMM0yF/+ctfujWBer1exWg0KpMnT1Z8Pl+737/yyivKmDFjlFGjRilr167tq+EyaaK34uScc85RcnNzFZPJpBQXFyufffZZXw2Z6Wd6I0Y2bNigqFQqZdq0aeL25Zdf9uWwmX6kN2Lk888/V6ZNm6ZMnTpVmTJlivL//t//68shM/1Mb11rCBaZBye9EScbN25UJk+erEydOlWZNm2a8vLLL/fhiJn+prfmkjfffFOZPHmyMmnSJOVnP/tZXw2XSQO9FSMul0vJz89XwuFwXw2VSRO9FSO/+tWvlPHjxysTJ05UfvrTnyqJRKKvhtyvqBSFW28zzFBk165dmDJlSpf3M5vN8Pv9nf5++fLl+Oc//4msrCxUVlbycaBBBscJ0xUcI0xXcIwwXcExwnQHjhOmKzhGmK7gGGG6gmPk5NCmewAMw6SHsWPHYs+ePZ3+/t///jdWrFiBBx98sNP7rFq1Cm+88QY2b96Ms88+G4899hhuuOGGvhgukyY4Tpiu4BhhuoJjhOkKjhGmO3CcMF3BMcJ0BccI0xUcIydJukupGYbJPD777DPFbDYrjz76aKf3eeSRRxSTyaRs2rRJURRFueeee5SysjIlEon01zCZNMNxwnQFxwjTFRwjTFdwjDDdgeOE6QqOEaYrOEaYruAY6RoWmRmGaUc4HFbeeeedTn//5ptvKnq9XnnppZfEz9xut5KVlaU89thj/TFEJgPgOGG6gmOE6QqOEaYrOEaY7sBxwnQFxwjTFRwjTFdwjHQNi8wMw5wQn3/+uWKxWJQ//OEP7X63atUqZcyYMZ12c2eGDhwnTFdwjDBdwTHCdAXHCNMdOE6YruAYYbqCY4TpCo6RNrjxH8MwDMMwDMMwDMMwDMMwDNNj1OkeAMMwDMMwDMMwDMMwDMMwDDNwYZGZYRiGYRiGYRiGYRiGYRiG6TEsMjMMwzAMwzAMwzAMwzAMwzA9hkVmhmEYhmEYhmEYhmEYhmEYpsewyMwwDMMwDMMwDMMwDMMwDMP0GBaZGYZhGIZhGIZhGIZhGIZhmB7DIjPDMAzDMAzDMAzDMAzDMAzTY1hkZhiGYRiGYRiGYRiGYRiGYXoMi8wMwzAMwzAMwzAMwzAMwzBMj2GRmWEYhmEYhmEYhmEYhmEYhukxLDIzDMMwDMMwDMMwDMMwDMMwPYZFZoZhGIZhGIZhGIZhGIZhGKbHsMjMMAzDMAzDMAzDMAzDMAzD9BgWmRmGYRiGYRiGYRiGYRiGYZgewyIzwzAMwzAMwzAMwzAMwzAM02NYZGYYhmEYhmEYhmEYhmEYhmF6DIvMDMMwDMMwDMMwDMMwDMMwTI9hkZlhGIZhGIZhGIZhGIZhGIbpMSwyMwzDMAzDMAzDMAzDMAzDMD2GRWaGYRiGYRiGYRiGYRiGYRimx7DIzDAMwzAMwzAMwzAMwzAMw/QYFpkZhmEYhmEYhmEYhmEYhmGYHsMiM8MwTD+iKAo8Hg8URUn3UJgMhuOE6QqOEaYrOEaYruAYYboDxwnTFRwjTFdwjAwdWGRmGIbpR7xeLxwOB7xeb7qHwmQwHCdMV3CMDD7uvPNOPPnkk9i0aRNOP/10LF68GJWVlQCA2267DXPnzsWPf/zjbj8fxwjTFRwjTHfgOGG6gmOE6QqOkaEDi8wMwzAMwzAMk0aamprwyCOPAADuvfdevPXWW3j44YexZs0aHDlyBAcOHMDGjRths9mwadOmNI+WYRiGGWx8+9vfxqFDhzpMdDIMw3QXFpkZZojT1NSEvXv3IpFIpHsoDMMwDDMkuf/++3HVVVcBAILBIJxOJyZOnIiKigps27YNc+fOBQDMnz8fmzdv7vA5wuEwPB5P0o1hGIZhjkckEsFFF12E//znPwDaJzoZhmFOBBaZGWYI89vf/haFhYWYMGECTj31VBw4cCDdQ2IYhmGYIUVVVRW8Xi/GjRsHAElJX0VR4PV6YbVaAQAWiwU+n6/D51m9ejUcDoe4lZaW9v3gGYYZUHg8HhQXF2PRokU466yz0j0cJgMIh8P42c9+hrPPPhtA+0RnZ4/hpCbDMB3BIjPDDFFee+01/PKXv0QsFoNarcYXX3yBOXPm4PDhw+keGsMwDMMMGVavXo1bb71VfK9SqcTXarUaVqsVfr8fAOD3+2G32zt8npUrV8LtdotbVVVV3w6cYZgBx+7du/GjH/0IH330Ed5///10D4fJAGw2GxYsWCC+T010dgQnNRmG6QwWmRlmCJJIJPCLX/wCAPCzn/0MR44cwdSpU9HQ0IBly5YhHA6neYSZDXuWMQzDML3Fli1bsHz5cqxZswZr1qyByWRCU1MTdu/ejfLycsyYMQMbNmwAAGzYsAEzZ87s8HkMBgPsdnvSjWEYRuarr77C22+/jQULFuCJJ57o8D5cpTq0SU10dgQnNRmG6QxtugfAMEz/88EHH2Dfvn2w2Wy46667YLPZ8MYbb2DmzJnYsWMH7rzzTqxevTrdw8w4IpEIvvvd72LLli0AjnmW1dfXY82aNVi7dm2aR8gwJ46iKFAUBYlEQlSs0AZDpVIl3ZiTx+PxYMKECRgzZgw0Gg3uuece3HzzzTCbzXj88ccxYsSIdA+R6WfomvLkk08CAMaPH4+lS5dCpVLhmWeeQXl5OUaPHo05c+Zg7NixmDdvXhpHyzDMQKa8vBz3338/Zs2ahXPOOQdLly5FXl5e0n1Wr16Nu+66K00jZNINJTobGhpQXl7e4X0MBgMMBkP/DoxhmAEBi8wMMwT561//CgC46qqrYLPZAAAlJSVYu3YtLr74Ytx///24+OKLMWvWrHQOM+Mgz7LHH38cwDHPMqfTeVzPMrkynKtBmExCURTEYrEkkZluQFsFCwnMarU66XsWnXsGHVVetWoVAGDp0qWcrGIAAMuXLxdfpzb3u/fee/t5NAzDDEZmz54Nk8kEtVqN2bNno7Kysp3IvHLlSqxYsUJ87/F42A5hCLFq1aqkRCfDMMyJwHYZDDPECIfDePPNNwEkb2gB4KKLLsL3v/99JBIJ3HjjjUmeXAx7ljGDC1lgjsViiMfjiEQiIjESCoUQCAQQDAbFz8LhMKLRKKLRqHhMZ7HPdEzqUeXuNNgB+PgywzAMc/LccccdePfdd5FIJLB161aMGjWq3X3Yemdo8uSTT6K8vByzZ8/G5s2bsWnTJowePTrdw2IYZoDBIjPDDDHWr18Pv9+PoqIinHLKKe1+/8ADD8Bms+Gzzz7DU089lYYRDhzYs2xoU1VVhcWLF2POnDlYs2ZNhx7dt912G+bOnYsf//jHaR5teyhJQkJxJBJBNBpFKBRCMBhEKBQSQrPP54Pf7xeicyQSEfdnwfnEoKPK7733Hp566qluJasATlgxTKajKAri8ThisVjS3MjzIpNJrFixAmvWrMH8+fPxne98Bzk5OekeEsMwDDOIYJGZYYYYr7/+OgBgyZIlHR53LywsFMe477jjDm4CeBxSmzN1BFeDDF4efPBB3Hnnnfj000/x7rvv4vbbb8dbb72Fhx9+GGvWrMGRI0dw4MABbNy4ETabDZs2bUr3kJOQrTFisRgSiQTC4bD4t7W1FQ0NDWhoaEBTUxNaWlrg8XiE4CyLzXKFM4vNx2f27Nk444wzoNfrMXv27G4lqwBOWDFMpkE2Q/F4vF3CTbYfisfj6R4qwwiKi4vx4YcfYuPGjbj++uvTPRyGYTKU1GIawuPxoLi4GIsWLcJZZ52VxhEymQp7MjPMEOPDDz8EAJx77rmd3uenP/0p/vCHP6C6uhqPPfYYfvKTn/TX8AYU7Fk2tPnVr34Fh8MBoK0aWKPRJHl0b9u2DXPnzgUAzJ8/H5s3b8YZZ5zR4XOlw7tb9l4moRlo+7+0trYCaKt2DgQCiEaj0Gq1MJlM0Ov1MBqNMJvN0Ov10Gq10Gq10Gg00Gg04m+h0WiEhzNzjDvuuAPnnHMOvvGNb2Dr1q0wGAxdNtgBuMlOf0PiIAmEOp3uuEkAZnAiJ+Pk+TL193LjVEKj0UClUnHSjWEYhhlwUDHNwoULcdZZZ+GGG26AzWZr11ukM7gv0dCFRWaGGUK0tLRg165dANpEr84wGo341a9+hRtvvBH33XcffvCDH0Cv1/fXMDOeJ598EkDbsffU5kzM0MHpdAJoa6Q5c+ZMfPHFF+J3iqLA6/XCarUCACwWC3w+X6fPle5O7rKAEggEALSNeffu3fB6vUn3NZvNyMrKQlZWFsxmMywWSzuxWavVIpFIQK1Ws9icwooVK3DFFVfg7rvvxlVXXYVp06ZxsipDkIXl1OpTRVFgNBrTNDKmr5DnvtSfdSYOy79PJBLipigKVCoVtNq27VU8Hue5j2EYJo0oiiJOmcjJQGpondrYmpKDTPtiGrq2UW+Rd999F9dccw2uueaaDh+f7r0Nkz64JINhhhAbN24EAIwdOxb5+fnHve8PfvADFBUVoaamBi+++GJ/DI9h2kGiTzQaTWpKR/YM3bVmKC8vx/jx4zF9+nRMnz4d//znP3tlfH/729+wbt06rFmzpp3tgdVqhd/vBwD4/f7jWqWkwwpBpVKJMctfk7jW3NwMr9cLnU4Hl8uFffv2Ye/evdizZw92796NvXv3oqqqCo2NjWhtbU3ycg6Hw8KzmfxJM72RaEVFBebMmYOxY8fitNNOw+7du/vkdVKPKnODnfSTSCQQiURE/AaDQVHZT6jV6n6LEaZvka8rZG8h32SrC7LDiMViYi6Tv6Z5jh739ddfY/HixZg2bRoWLFiA3bt3cwU8045zzjkHU6dOxfTp0zF//nxs37493UNiMgy+3pwciqIgFArB5XLB5/MhFAoJize60fXe7/fD6/XC4/GgtbVVPCYSiWTsSRSXyyX2NNOnT8fYsWOh1WrR0tLSa6/hdDqh0WhEMY3JZALQvrdIY2Njh49nm7f08/bbb+PUU0/F1KlTMXv2bOzYsaNfXpcrmRlmCPHJJ58AOH4VM2EwGPCjH/0Id9xxB/70pz/h+9//fl8Pj2GSPCxTjx/L1QcAhCCgUqm6dZT9xRdfxOTJk3ttrP/5z3/w1FNP4dVXX4Verxce3WR7MGPGDDz33HO48cYbsWHDBlxwwQWdPlc6rBBSRXGNRoNYLCb+jlTBHI/HcejQISiKIhbdRqMRDocDBQUFGDZsGIqLixEOh2GxWGCxWBCLxaDX66HRaKAoCjQaTdLrZGKVyPXXX48f/vCHWL58OV588UVcd911GeejzfQuiURCeOmSYChXMNvtdlHdpNPpOEYGOHRt6Ug0oDkptUK5s+eg6xPdR6fTAWg7qXD11Vdj+fLlWLduHa6//no+8cS04/nnn0dWVhYAYN26dbj22muxbdu29A6KySj4enNyBAIBYdVAvUYikYhIIFMFM53A0+l0Yn1KiedIJAKNRgOLxSKqeDOFrKyspOTUAw88gPXr14tTlr0FFdOsW7dO/Gz27NkwmUxQq9WYPXs2KisrkZeX1+6xbPOWXlpbW3HFFVdgw4YNmDBhAtavX4/LL79cnGrvSzi1zjBDiM8//xwAOvWFTeW//uu/oNPpsGnTJmzdurUvh8YMYWijHo1GRZXy/PnzMWvWLDidTkyePBmnnXYa7rjjDlFBBhxrkkZH4fq72uCee+5BfX09zjvvPCxatAi/+tWvsHTpUlx33XVYuXIlysvLMXr0aMyZMwcNDQ2YN29ev46vK6h6OdXSgioVSBiuqakBAOj1ehw+fBh1dXWorKzErl27sH37duzcuRN79uzBkSNH4Ha70dLSglgsllQtIjcFpMrBk3m/FEXBnDlzMH36dJjNZowZMwbTp0/H7bff3qPna2howLZt23DFFVcAAL797W+jsrIShw4d6vEYmfRyvBihOcPn88Hj8cDlcsHtdrdrdEsxajAY0NjYyDEyQCFhOBaLtTsqvXDhQsyaNQt2ux0TJkzAqaeeilWrViUJzCRAk/BAVczBYFDcEokEGhoasGPHDlx22WUA2mLk0KFDvRoj3Iip/+nt6w0AITADgNvt5mr3AQ6vSTIL2kvQtb61tRU+nw9erxderzepupau/y6XCy0tLfD7/VCpVNDr9VCpVIjH4/B4PO3WBydKX8wjMk888QSuu+66XnkugoppXnrppSTbzDvuuAPvvvsuEokEtm7dilGjRvXq6w5VejtGDhw4gPz8fEyYMAEAsHDhQhw+fLhfEpqZlZJhGKbPUBRFTCozZ87s1mMKCgpwySWX4B//+AceffRRnHLKKX05RGYI0VHFslxB9u677wIARo8ejVdffRWlpaVJj73ssstw8OBBqNXqJLFSpVLhtddeS7o/cfnllyORSOD000/H6tWrO8y6nwivvfZau5+lVqzde++9J/UafQkJJ2q1GolEAlqtFnq9XnjPZmVlobGxUSwsDx48CABwOBxQFAUejwf19fVoaWmBy+WC1+uF3+/H8OHDEYvF4HA4YDQaEQqFYDQaxftE1c3k2dwTz1KVSoVPP/0UQNs89f7776OsrCzpPt/5znewf//+Dh+fGiNVVVUoKioSlSoqlQplZWU4cuTIcZvxMZlLZzESj8fh8/kQCASwfPlyUaVPUHLlueeeQ3Z2NgwGA9RqNcfIAIXsLohUz81PP/0UiUQCRUVFeP3115PmhUQigcsvv1zMffLPgbZNfVFREQAgGAyiqqoKBQUFMBgMwqO+t2OEGzH1P719vSGuuuoq0Yz77bff7uVRM/0Jr0kyB0VRRG+RWCwGj8cjbDFSG7XSGhSAEJbj8ThCoRC0Wi1yc3MBANFoNEl87gl9NY8AwKZNm9Dc3IylS5f2aGydIRfTAMDixYtxySWXtOstkpOT06uvm04oPmQP79R9puzj3dN9TEf0doyMGTMGjY2N2Lx5M2bPno2XX34ZPp8Phw4d6rYW1FNYZGaYIcLhw4fhcrmg0+kwadKkbj/ummuuwT/+8Q88//zzePDBB7kBINMjOmqSJP+uo6PJ9fX1iMViGDVqFLRabZJNBjVIMxqNUKvViEajANoqDju60H/88ccoKytDNBrF7bffjquvvhpvvvlmX/13BwS0SJIb9Gm1WsTjcdjtdkSjURQWFiIcDqOhoUEceTObzfjjH/+ITz/9FE888QRaW1tx8OBBBAIBBAIBRKNRDB8+HIqiwOFwwGQyCaGZIAsNet9J9DnRRVpdXR2i0Wi7RRiAE/aST33tTPXhY04MipHS0lIEg0FRzRQKhbBmzZp2m0yKWbPZ3G4+4RgZOHR0XaETGzKxWAyHDx8WMUK2QZFIBMCxRr8ajQbxeByBQEC873q9XtxPtgQigTk1CdobcCOmrkm11uotevN6AwBPP/00AOCpp57CL37xiyG/JhkM8Jok/VAFcyKREAIzzduRSAQej0fsGYC2eZws7xRFQTgchtFohNFoRH19Pex2OywWCyKRCHw+H+x2+0lZZ/T2PAIAjz/+OK666qpet/ToqJiGoATZYEFuEHm8z5q8n5WhBHZvCM+9FSMOhwMvvfQS/ud//gderxfz5s3DxIkThb1XX8IiM8MMEb744gsAwKRJk05IKF68eDEKCwtRV1eHt99+GxdeeGFfDZEZRHTHWzk1Q5zaaGnbtm2YNGkS3G43DAYD7Ha7EEYvvfRSHDhwQAiT8vO/9tpr7S7M9L1Op8PNN9+MsWPH9vWfYEAgi8xUzUzvS3Z2NhKJBIYNGyaqQFpbW1FXV4d77rkH99xzD+bPn48//elPeP/991FfX5/UBIuqbVQqFYxGI8LhsBDt6AgiicvkrX2ifs1ffvklZsyY0eHvTiTbX1paiurqasRiMWi1WiiKgqqqqg4XeMzA4ssvv8T06dPhcrng8Xjg9/sRCoUQCoVw2223oaamRgiPsnVM6jzCMTJwSPVe7mzDR6LDrl27MG3aNJhMJgSDQSEc6/V6XHXVVThw4EBSRTRdhx577DEUFhaKBN3w4cNRW1srXrMvYoT8NjtrxDRr1iycc845WLp0aYendVauXIkVK1aI7z0eT6fVcZlG6joi9Za61gCOif69UWnWW9ebVK6++mr86Ec/QnNz86CqCByK8Jok/dBJjVAoJBKDiURCnLajeZ+uEZFIBDqdDj6fD2azWcyp1H+EhGe73S6ex263i8TiidLb84jf78c///lPfPbZZz0az1CHxGU58aAoitib0E1OXtIaIPXrjq4/Pal47s0YWbBgAT766CMAbZ+NgoICYZ/Rl7DIzDBDBLLK6GzS6gyNRoPvfe97+L//+z8888wzLDIzx4U24nRBThWR5X/lx9DRJPl3dXV14ihyOBxGLBYT2ddnn30W0WgUer0eBoNBeGUSkUhECEZUXUseiM8+++wJfw4GKyTskuALICkJRYJGPB5HJBJBOBxGZWUltm/fjttuuw133XUXbr31VowdOxZ/+ctfkrpay5XJTqcTer0esVhMvCY9r06nE3ESi8U6rDbsjJqaGpSUlHT4uxPJ9ufn52PGjBn429/+huXLl+Oll15CeXk5H0sd4CiKgsrKSuTm5uLo0aOiERDNM/feey80Gg2sViscDoeoYu6oGohjZGCQKjAfbz6hSqS6ujoh3pBAYbFYoNfr8dJLLyEYDKK5uRkAYLPZoNPp0NraKo5bGwwG6HQ6FBUVYfr06Xj22Wf7NEYGYyMmufK8s7VDT6C1gUqlEg2+eio299b1xuPxwOfzifXNyy+/jJycnF5v2MX0P7wmSS/U8yMejyMYDIoKZp/PB7/fj2g0Co/Hg2AwmPQ4nU4Ho9GIWCyGQCAAi8UCs9ks5o94PI5oNAqr1QqdTgePxwObzdajyuHeihHihRdewNSpUzF+/PgTfuxQhvYc8t4ROLbfofVB6nWJ9jayuAwc20/JPW46ayBMgjPdP/Wa1JsxUldXh8LCQgDAb37zG5x55pkYPXr0CT1HT+AuAwwzRKBK5p548Fx++eUAgDfeeEP4XDEMQZt68nqkxki02JMv0PQvNWGix1DjPmo853A48M1vfhOff/45fvKTnwBAklBAF23ZV5iadNDv6flramqwePFiTJ06FVOmTMH69evFMVUGYjEkV3HKxwdzcnJQUlKC0aNHY8KECSgvL4darcaOHTtw0003ob6+HhdffDF+8YtfQKVSoaWlBVVVVTh06BCqqqrg8/ngcrlEsyy5IpBiQV6oU8x0h7lz52Ljxo2iOc7JsHbtWqxduxZjx47FmjVr8Nhjj530czLpQW72M2bMGGzatAk333wzQqFQkmClVqtht9uRm5uL3NxcWK3W424a+ypGUpu5bdq0CaeffjoWL16MyspKAMBtt92GuXPn4sc//nGvvOZgRRYnu0pY0f3mzJnTbh6hOUhRFLhcLgBtwrOiKGhpaRGWP0ajETqdTtz6eh4ZTI2YaJMfDocRCoXE2iG1V4N8/1TbrVRBWr6WkW0JPZaaC/e08WxvXW/cbje+9a1vYcqUKZg2bRoefvhhvP76671u78H0P7wmSS+UJJQbtIZCIfh8PoRCITQ0NCAYDMJkMqGgoEAUn0QiEXi9Xhw9ehQtLS1obW1FY2MjWltbEQgE4PF44PF4RANBagaYuqboDr0ZIwDw2GOP9XrDv8EOVafLAnMikRAn3eha4ff74ff7EQgERJNfsgYMBAIieREMBsXzhcNhBINBUUmfKkbTa9G1jwqhZHozRlatWoXx48dj9OjROHz4cL/NIyqFDX4YZkhQXFyM2tpafPLJJ5g7d+4JPVZRFIwYMQKHDx/Gyy+/jG9961t9M8ghgMfjgcPhgNvtht1uT/dwTgq5OYK8KexoA0j37wwSNEkoVhRFXNiBNh9gq9Uq7h8MBhGLxQC0b8IgV8nSa+p0uh4fbUsH/R0ncvUficDyEbJQKCSsMioqKvDVV1/h0KFDiMVisFqtuP3223HKKafgX//6F/785z8DAEaMGIHhw4dj+PDhGDFiBKxWK5xOJ7RaLQwGg6gSASCOJ3a3ApEZXHNJb5JIJBAMBuF2u0XFYGqlCtA252RnZ8PpdMJms51UhePJcsstt+CCCy4QzdyAtuqk+vp6PPjgg7jtttvwy1/+Es899xx++ctf4qKLLsIZZ5zR5fMOxRiRk1Sdzfl0zaAqJrL0UalUYnMIAHa7HYqioL6+HsAxeyEAolGqLDD3VvOf43HBBRfg0KFDwlaBGjE5HA5cccUViEQiuOqqq3D99dd36/nSFSNUIZjaUIlsRuh97Exw7i5kl0GxIFednWxl81BiKM4lzImR7hhJJBJwuVziX+q90NTUhGAwiMbGRiQSCTidTtTV1YnTKUDbeoD2GGTrptfrYbFYYDKZYDQaYbVaYTAYYDKZYDKZYLFYRJLRYrEMqD1Gukh3jABt+51QKJRUrBQMBkUFPNn+0f6WGgCmkrrvpN5B9LVOpxPXFo1GI/p8yPtkec9D64nBAttlMMwQ4OjRo6itrYVKpcK0adNO+PEqlQoXXXQR/vCHP7DIzHQoLtPFsquGCQRdhMnuQhYTo9EovF6vEJFpMSdDF2rZlkNeBFAlrnx0jheAnUMLo1gsJoQSsrKQG1nQe6bX62E0GnHgwAH4fD6sXLkSV1xxBS6//HJUVFTgvffeQ3V1NYxGI8xmMzQaDUaOHAmXy4Xs7GyRwadFGTX/I+sOem970gyQGZpQUsTr9cLtdosKk4488sxmM3Jzc5GVlQWTyZT2GEtt5qbRaOB0OuF0OlFRUYFt27aJ5PD8+fOxefPmDkVmOhlCeDye/vkPZBCyEEwnJjpCFh7Jl5PmNfKVj8Vi0Ov14jkTiYQQH6hKtj8FZmBwNGJKJBJJcUrXgWg0ikAgkPS+pfotp1Yuy/cjUo8zy9cSet+pYXA0Gk36WU9IHZ88hv6KC4YZypAlBgBxKoKqkyORCFpbW8V+ZdeuXQDaik8cDgc8Hg8ikYiwe9NoNOJaEAqFhEDo9XphNpths9lgNpsRCoVgsVhgtVoRi8WEGM2f98ylI4HZ5/MlVTZT8lneU8qCsCwu016FKpFpTUDPYTAYxDqDPMFtNpuwrJKLeSKRyKAqrmGRmWGGAGSVMXbs2KRq0BOBRObXXnsN0Wh0UGXbmK6RG/mRkCx7Kcs/o6yv3ISHBEqDwSC8zlKho0rklaZSqWCz2WA0Gtvdl4QieXMnC92RSERsXJnuQRtw8k0mr+RoNAqj0Siy9TqdTiQHzGYzKioq0NraimeeeQZffvklbr75ZuzcuRNHjx5FY2MjdDodTCYTqqqqMHz4cHi9XthstqQKABKZZbEbgPg5wxwPmjtcLpfwXSQvRoLEQYfDIaqXM2WOSG3mRtdsoG3u9Xq94tptsVjEZjqV1atX46677ur7AWcwNI+leigSFBPUUEun0wlRORgMik0hCRIqlQp5eXnw+/1JSTidTieEZhYSuw8J+sAxm6tIJJKUEJLXEt1NXKfeJ/X9oCQmvaeU6Far1eJ1jueRmfpaHVWidQbFC8dJ/9DdxERqMoLfn4FJPB4X87NscUA2GS0tLQiFQkmN/yZNmgSr1Qqv14thw4ZBrVYjGAyirq5O7ENoL0InLY1GI4xGI2w2G2w2GxwOB0KhEMLhMKxWq0ieWSwW3iNnICQky+IxWZ+QRQYJ0HSdopNxqXYWQNv8YTabYTQaxT6FriW0V6LG6larVRTUuN1umM1mWCwWcW2g9QYJ0x3NQ6lzWKYX4bDIzDBDANqwnkyzs7lz5yI3NxdNTU3YsGEDzjzzzN4aHpOBpDbh6ehfyt7KmdjOvHSpmjgcDsPj8cDpdCI7O1u8Fi0G5WND1NDP5/OJ48ypgqPcRI6eixaRJIrT/ZiukRsBkueoVqsVCyz5WBgtvElorqurw44dO3DzzTdj8eLFWLduHZqbm5GdnY1Dhw5Bp9OhtrYWxcXFSV2ZySKFBL/UMTBMZ9BGQPZKDIVCYvEfjUZFbOn1etjtdmRnZ2dE9XIqcjO3c889V/ycNig1NTUA2jrJd3bMdOXKlVixYoX43uPxdNiNfiDRUXVoV6ReF1Kfj5JYtBmkKlq6lqUiJ8AACIG5O4Ikk4xcDabX65PEHLIwSW3KRe+/3Fi4IzsNGbpOyUeX6Sg0zQfxeDypnwOteWjeSBUd5TVQKrJgScgiJ1WpyUeomZNHXo/K/wLJvuqE/D519D7IXt78PmU2sVhMVC3L+wiv14twOCy8lf1+P1paWhCJRISI+P7773f6vA6HQ6wfotGoEK+pZ0wgEIDX60UgEIDD4RCFLZFIBDabDYlEAnq9HmazedBUpQ50SGCWT8lQYoJiiPy1ZZ9kWi+QrZY8b+j1epHQANpsHbOzs5OuUVSU4/V6heUKPb9KpRJCs16vFx7O4XBYrCtS7SdToQKuTJyvWGRmmCFAb4jMGo0GF154IR5//HG8/PLLLDIPQkiUTfVATPVVlquLUo8VkbhjMBiSRGGqMPZ6vQgGg/B6vcI2wePxiE2/vOGjn9Hr0tG0440/HA4nVa7RuHvSAXqoQkfD6X2n94TEZlr80MKG3muz2Yyqqiq43W6sW7cOQNvfv6mpCQaDAUeOHBHHEEmwkf0x6bg6cPxj7gwDHKtebm5uhsvlSmpKS597OrpqMpmQlZWVUdXLMtTM7dVXXxXJm6amJjQ0NKC8vBwzZszAc889hxtvvBEbNmzABRdc0OHzGAwGcQxzMCA3CQWOJblOBvnEBgBhpaDX60WVkyxqJxIJeL1ecY2TLYQyMZYyHXo/NRoNotGoEJQ1Gk27v3M8HkcgEOjQ9kZGTooDEH0d5NjRaDSi7wOtYUgAoCPxcvPg1MenkurH2VkcyGsmijWucjw56P2mEwi0vpS/Tl27plYsA+0FZbIJo2QEWeGc6Gc81cKN1qRdCdxM94jFYggEAknJwkAgIKqVQ6EQmpub0dLSArfbjZaWFgSDQdGoj/YJVI1MiefGxkY0NDTA7XbD7XYnvSb55dKJF4vFIoTJcDgMp9MpPudWq1UklthCI/1Qhbm8r6HqZGrYR8kEn88nbDN8Ph8CgUCStZOMSqVCdnY2HA4HVCqVaAZoNptRUFAghGqyUiEROTs7G8FgEH6/XzQPputPJBIRc1Bn0PWN/m/kIZ1pxRO862aYIcC2bdsAADNnzjyp57nooovw+OOP45VXXsFDDz2UUZMZ03M6at6XetwwNZNK2dbUSmG/34+GhgYoigKtVovCwkIUFxdDr9eLY99AmxhCnXkJ8r6UGyXQ4l8+wtTZMaJQKCQWnQaDIWkzy7F6YpCPpbyxV6vVMBgM4ogxvVe0OCKBq7a2VnjbAUBrayvy8vLg8XhQV1eXtMmWRWb6V36v2CqDSYWqTT0eDxoaGuD1etstyE0mk6hWpKOtJpMpY6uK7rnnHtTX1+O8884DANx7771YunQpVCoVnnnmGZSXl2P06NGYM2cOxo4di3nz5qV5xH2PXJFI9NY8LltqdNRUTk56ysInXaO4IrXnyKIfVYBptVq43W6xbtBoNDh69GhSoln27Cf/SvIgl+8nQ/0cKMns8/mgVqtht9uFyB2Px0ViJhgMQq1Ww2g0isekVsHK1z658plIFZ1lqwzy++TkRM8g4Z/+jrKXqeyjnlrdLtugAMc+/3Qigd5Xs9kshEQSCUls7sgWR14bd1VxKCO/fqZekzKVUCgkEspUWOL3+8W/oVAILS0tQmBuamoSfRqoyIXwer2ora0V38+aNQs/+9nPxDq2trYWR44cQWVlpYgFssYAICpdKd5ycnLE+x+Px2GxWISIaTQaO7VBYPoOqkIHjs0fJCKHQiHRRD4YDIom0S0tLWJvSvOLfCpGtsagWNPpdBg+fDjUajUCgQAOHjyY9H0gEIDFYkE0GoXL5RJWKx6PByqVCgaDQSSw5VPB8j6L5gqKIUrCUyU/xVmmwCIzwwxy3G43Dhw4AODkKpkB4KyzzhLVil988cVJi9ZMeiGxJvWYYWfHT+WKHNrU0SLb5XK1E3pisRiqqqpgNpvhdDrh8XgQDAbFposu4qkbdqouoguqPI6O/DVpEUH3o0aCNB6uYu45HXmaUuYdQLvOylT5Y7VaUVtbK+Jk3LhxqKysRENDg8i2pwrNhNyEiRfkjEwikRDd4hsbGzusMJE7wNtsNuGPmMmx1FEzt82bNyd9f++99/bXcNJOZwJzb76HJCzJooCcWJWTmwALzL2FfCqK/uZUqWwwGBAOh1FfXw/g2FqAEkqdicnAMeEOOBY/shVHbm5u0ibfYrHAYrGI+1GlYiKRECIWVbnKDSK72+RYp9PBbDaLMdE1jZL6XM18YpA4RKfnqIKUhD868i6vYwEkiTOUEKeKdjqZRclzn88HjUYDq9UqvNplOzgA7dafx0OuWk49GUjPSTHO80nX0MkGoO3z5Xa7EQgEEAwGhWBIFhkejwfNzc3CSqu1tVXM5ePHj8eMGTPgcDjgcrmwc+dOfPXVV9iyZQs+//xzfPe738XVV18t3pNIJIIdO3bgjTfewKFDh+B2u2EymRCJROB2u8WpFro+UDFNIpEQgjQJjdQ4m68hfY8sMNNpSTk5GQwGEY/Hxd7U5XKJBpFutxuhUEgkQjsiKytLCMlerxf79++H3W7H6NGj4Xa7cfjwYRQXFyMrK0uctqMKeJ/PB7PZLGLIbDYLe5WOTqN1tBeT91/0fyEP6EyAd94MM8jZsWMHAKC0tBQ5OTkn9Vwmkwnf/OY38fLLL+OVV15hkXkAQ9lP2eNQPmKYKjTTxoigzZbb7RY/N5lMGDZsGLKzs6HT6XDgwAE0NzfD5/PBZrOhubkZQJtvFT2GMrckOspVsoTs0RsMBkXlCY1broyiCiRaWHDFUM+Q/2bxeDxp8y6/d6mPoQ35gQMHYDab0dLSgkmTJuH666/Hv//9b3zwwQeoqqqC0WhEVVUVRowYAZfLleTPLcNCM0PQUcajR4+ipaUlyboFaIsV6vRuMplgtVrZE3EAItseyPT2iRRZUJaFKRKnZLsEEgTk0zXMyUHXEfLDpsrgpqYmAEB2djZqa2vR2toqHkPCbapfJQl25LFst9tFc8+jR4+ivr4eTU1N8Hg8GDlypGgAFo1GkZ+fLwTKaDQqnl9uPHg8ZO9mOaai0SjcbrdIegEQz9tZ7wqmPfS3pCPtJChSs0iqYvV4PKKSNbXggYRl8toNBoPCHxVoEwB1Op14n9xuN7RaLSwWi7BXkeeFVEjIlm/Hs0+hanz6F8CgsjnqK+hvRadQyPKAmra5XC74fD7hwRwIBOB2u4XAXFJSghUrVmDixIntnrumpgZ/+9vf8OGHH+K5555DVlYWvvWtbwFoi59Zs2Zh5syZWLt2LT777DPk5uaiubkZwWBQNBC0WCxwu93IyckRvWTIHkGtVidVxwPHkmicZOh9yCIDaPt8knUFCcyBQECIycFgEA0NDfD7/fB6vWhtbU1KMFGVsV6vh9FohE6nQ2NjI1wuF1wuFwwGA0499VR4vV54PB58+eWXmDVrFhoaGlBTU4MRI0bA4XCI1zKZTOLUjMlkEuMJBAKdJjXleYcKeWgPJl9/MqmPDYvMDDPI6S2rDGLZsmVCZB7qXewHIqn+gOTnJB+76apaiHyU5cVxWVkZcnJykhZK9Dx6vR5NTU1QFCVpMaXX65O8LeWGTKmbebLXoPGmjkmuBpEvtJlgtxAOh3HppZeiqakJy5cvx3/913+le0hdIgv7tCmi476yZQpwbOMvex5qtVocOHAAWq0WTU1NWL9+PZYsWYLa2lrs3bsX1dXVGDVqFKqqqjBy5Ei0trbC6XS2G4eiKFzxMcShjZnL5UJdXR0aGxvh8XiEp6LNZoNarRZfW61WIQ5w3AwsOvPB7W1hN1VYJkGxI/GPjrRTVSsnLXoHep/ldQQ1t8zOzsa+ffsQi8WgUqlgs9ng9XpRU1Nz3MqyVIxGI2bPno0FCxZg+/bt8Hg8+PrrrzF58mR4PB5EIhHU1taitLRUHIsmn0y73S6sE2SvZ9l6Qa6SJSi2gsGgqFijGErtFcEcH9kGLRQKCauEUCgkKg0bGxvhdrsRDoeFHy8JRFS5TMlHt9sNu92O3NxcAG3WC1lZWTAajSJRQf0nFEURvrwkMpEAlGqbciLI/Sxk8ZytM7pGtj+hamGaP2hPQw35otEovF4vfD4fEokEysvL8cADD4jEQirFxcW49dZbMXbsWKxduxYvvvgili1blvT+UpwBbXPLqFGjsH//fphMJlE1S3YHZAdktVrR0tIimsKRcCknx4LBIMxms+hJwpw8FBcajSbJXicSiYi9JIm+dXV1CAaDIhFJAnVjY2OS9Z/MlClTMHv2bNTV1aG6uhobN27E5MmTUVRUhNraWmzZsgXz588XdiszZsxAJBIRiRGdTge/349EIoGsrCwxz3UnsRmNRtHa2ioKugAMPZH59ddfx89//nMkEgnceuut+MEPftCXL8cwTAf0RtM/mfPPPx9qtRo7duxAZWUlRowY0SvPy/Q9sj0GbajJZoIWugQ1dKMqI8q0yh7KOp0OWVlZUKvVaG5uRiQSQUFBgcjY030NBoO4UJNgSAIzbdLkamRZ1CSRWKPRwGKxJFWUyJs9eSEobwgzQWR6/vnnce655+L666/HueeeiyuvvDKjfLM6g94XufJKFu/lY+WyEEzvi1qtxpEjR9Dc3Iy33noLe/fuxfnnn4+amhqR8Ver1aivr0dRURFaW1uTTluQwEwLskx4L5n+haqVmpubUVVVhaampqR5KpFIQKVSwWq1isZ+8hF1ZmDRkch7IgKzbMWQ6qUr3ye1gplEKeBY41N6bRaY+wb6G9OGOhAIQFEUmEwmVFRUIBaLwWw2o7m5GQcPHkx6rNVqFZ91s9ks/E61Wq2oTjt06BA8Hg8++ugjjB07FmeeeSZ27NiB+vp67Ny5E6eeeio8Hg+8Xi8OHz6MoqIiOJ1OuN1uxONxtLa2CrHZYrF0O2FNIiKJmlStyn6sJwatS8kvlTx36Vi73+9HTU0NQqEQGhoaRCM4EnFoXWI2m+Hz+USFKdDmxVtWVgaj0QiXywW1Wg2HwyGuG5FIJOl0HY1FRq5epnXoiVpf0PqG1lg8vxwf2QuXoK/9fr8omCGhjvYuAHDjjTd2KjDLLFmyBGvXrhWCo8ViwaZNm/DJJ5/g66+/FsmLb3zjG3jnnXcAAMOGDUNNTU2StztZ81DlKlWqWq1WIQ5SVW0ikYDP54PRaMy45m0DFdkuh2yvyFaH9qfhcBhHjx4VySqv14tYLIampiZh2WQ0GjFu3Djk5uYiFouhuroaBw8exM6dO7Fz506cd955+Na3voXXXnsNu3btwimnnILi4mLU1NRg+/btmDJlCmpqarB7927MmjULBw8eRDgcFgkFmtuysrKQlZXVroGtvJ+i0zterxeRSAQejwdOp/OELHz6kz5bhcdiMaxYsQIffvgh7HY7Zs6ciYsvvrjDSiWGYfqO3haZc3NzMX/+fKxfvx6vvvoq/vu//7tXnpfpW44nMJOXEwBYLBYAgMfjQWNjY5KgA0BszmOxGOrr67F///6k32dnZ2PRokVJnshyMz75gqlWq0WlEHDMOkPuGC5v7NRqdbcy/XLDhExg69atuO6666BWqzFlyhTs2bOn3eeRFpuEx+Pp72F2CAnNJMzIAozRaEyqBKT3l8R9uYqouroalZWVePjhh8UiKBwOQ61Wiypmk8kEl8sFp9OZ9LegjR8LzUMHmmMCgQDq6upw5MgR1NbWIhKJwGazieoNEptycnJgt9szurkfc+J0V2BOTYZ1575yBTNwTByUK6DoRA0LzL2PbM0lNwUmsUin0+HgwYPCIqu4uFhUBpMPq8lkQnZ2NgoKCsSN3qdEIoEvv/xSiEMajQZnnnkmvvjiC9TV1eGLL77A3LlzYTQa0djYiNraWuTl5aG4uBg+nw8ej0eIza2trTCZTDCZTEkVp6lN/mTk00CpSVqma6LRqPBfjkajojrV5XIhFAqhuroaoVBIXBdcLpc44SKj1+uRl5cHRVFQU1ODsrIy6HQ6HD58GFarFcOGDYNOpxO2LOTXbDAYxCkaAKLfBK1fZWsdGY1GA6fT2e1EJ1e3dx+67icSiSSrgHg8LgpUCPrM0b/Dhg3r1mtQ1TpVi/7xj39M2ueMGzcOl1xyCQ4dOoTa2lpotVqUlJQIkZk85idNmoT6+nqxls3Ozhbzl8/ng8lkQk5ODrKyshAIBIQAqlKpYDKZTv6PNcShWEitdKfkQyAQEF7MXq8XXq8XKpUKjY2NOHr0KOx2O6699lqcc8457YqCGhsb8fzzz+Pll1/GW2+9BavViuuuuw6PPvootm7diiuvvFJ4g0ejUWGPUVNTg/Lychw4cABerxcFBQWiulpuIJjaOFbeS+l0OtjtdrS0tCAej4tqedqbxePxjPH77zOR+bPPPsOkSZNQXFwMoC0z9M477+B73/teX70kwzAphEIh7N69G0Dv2WUAbZYZ69evxyuvvMIi8wCABBvZw5hsD8i/jryhamtrkwQ+qlSNRqPw+/3tFvFarRZOpxMGgwFHjx5Fa2srPvvsM5x66qkAjh1Voq/pMVTNLFeMyVXLsif0iQiL8nHrTBEFvF6vqKCwWCxJ1eDE6tWrM9J+JtU2Q17IUPMiORFgtVrbdXSnxVFtba04fgq0Nc2YPHkyvvzySzQ1NWH48OEizqxWK0KhEIDkqkQWmgc/NC/5/X5UVVVh//79QlAAIE5MUOVHfn4+bDYbjEYjx8YAR56zu3MUXRaX5Qrl7jxGbtxGVYgUY7K4zAJz75EqAsmV51RN3tDQAEVRcPToUQSDQXGU+KOPPury+a1WK6ZPn4758+cjPz8f06dPh8PhwOuvv449e/agtLQUM2fOxObNm9Hc3IwvvvgCCxYsED0CGhsboVarUVJSApvNJjw6qSKRmgjK6PV6DBs2rEPbDNn+i/7PQOasTTIVWqOSPRqtV2ntRB67ZNsWi8XE2mLcuHEYPnw4YrEY9u3bh5qaGtTU1GD8+PEIhUI4cuQIcnNz4XQ6kwQ/p9OZVF0IQCQWqEkgVUjb7XZkZWUBQJKXezgcRjweh8/nE78/kf8zc3xUKpVoDir3ciGbE7kIhfYZWq0WsVgMH3zwAb773e92+Rput1sIk6+++ir2798Ps9mM888/H6eddho8Hg/ee+89HDp0CABw3nnnic+1xWKBw+HAkSNHUFNTg8mTJ2Pfvn2iYragoEA0PQ8Gg6iurobD4UBeXp7wDaakWqYIhZ3Z/Q0UG0DaD8r9ZOja7/P5kmxxcnJy8MUXXyA3NxcPPfQQCgoKOnzOvLw83HDDDZg8eTLuuusuvPTSS7j00kuxcOFCfPjhh9i0aRMWLlyI9evXY+fOnfjmN7+J7du348iRIygvLxeWGkePHsWYMWOEBSWdKE4t7iKam5thsViQk5MDm80mGl9qtdok73g6/ZluTvgql0gkMH78eNx6661JP3/nnXeg1+vxwgsvAABqa2uFwAxAZHkYhuk/du7ciXg8jtzc3KTP48mybNkyAMDHH3/cqV8RkznQAlhuSEOLePnYWWVlJcLhMHQ6HRwOh8jqHj58WAiEiUQCer0eTqcT5eXlmDlzJubOnYu5c+fizDPPhEqlQk1NTVKzntQLJgkHsjiZ2jGXOJGFt1x1QseMMgGr1Sp8JP1+P+x2e7v7rFy5Em63W9yqqqr6e5idQkIzfU1/144WQ+SfaTabYbPZkJeXh/LycpSXl2PkyJEYP348CgsLMXnyZJx33nmYOHEiVCoV3G43CgsLAUAs/AAIf0X5+CNvxgYvsVgMfr8fra2t2LNnDzZv3owtW7agqqoqqaLMbDYjLy8PhYWFcDgcLDAPEmiuOV6TP1kkTp0b5Eol+SbfhyojaR4xmUwwGo1CYKbkGAvMvY88d9P7KP9cri53u93Q6XSoqanBnj17oFarMXnyZCxbtgxXXnklrrzySlx88cVYtGgRxowZA4PBAJ/Ph08++QRr1qzBunXrEIvFMGLECMyePRsAsGnTJgBtRRc6nQ4ejwdHjx5Ffn4+hg8fDgA4evQofD6f8HkvLCxMmmcoIU5xQT6bqdAxeBLCMjEBnqnQXE/JbbKUoKIIl8slqsyBNqsVAPjJT36CH/7wh3j33Xfx6quv4o477sC1114LlUqFvXv3Ij8/H2azGU1NTfj6669F88dAIICamhpUVlaiurpaNAULBoNoaWlBc3OzsJAjUaq2tlbYuNntdmRnZwthWe5d0RWyBUQmrW3C4TCWLVuGuXPn4pFHHkn3cARU5asoimiqSU2/NRoNjEajaN5pNBrF6cxnnnkGu3bt6vL5N2/eDAAoKCjAtm3boFarccstt2Dy5Ml44YUX8Oijj+LQoUPQ6XRYtmwZ5syZI0TKrKwsjBo1CkBbI0G3243JkyfD4XBAURTU1dWhqakJw4YNE/sAt9uNo0ePwmAwCLsNsg7KBMjub8OGDXjhhRfEdbKzn2cKqScE5BMlkUgE8XhcNBANh8Mwm81Cp7zmmms6FZhlFi5ciJEjRyKRSKCiogJz5swBABw8eBCjRo0S16R4PA6bzYZ4PI66ujrk5eXBbreLmLDb7SgpKcHw4cNRVFSEYcOGIT8/H/n5+cjLy0N2draIe7/fj+rqasRiMfEzSraRsNxVb6X+4oSvcmq1GitXrsSf//xnMbnv2LEDl1xyCe677z5ccsklADoWBngDwDD9CzX9mzFjRq9+/kaOHInJkycjHo/jzTff7LXnHWhk6iJMRq7YkisuaLNNC3jyn6LuyF9++SUOHTqU1JG3ubkZFRUV2LZtGz7++GO8/vrrePzxx7F69Wq88cYbsFqtKC0tBdCWaCRoY5Uag6mCZerx5Y4e0xlURZKJFa8zZ87Exx9/DEVRsH37dowbN67dfQwGA+x2e9Itk6CKEABJG2yKjVT/U5vNBpPJBIvFgtzcXBQUFGD06NHIzc3FsGHDoNVq8cEHH+DFF18Uj3U4HMjOzgaApCNfJDTLt0xZgDO9AyWIyB5j69ateP/997Fjxw7RMd7r9UKn02HYsGEoKSlBaWkpHA4He50OMlKvVXIzHFkwln9H17NwOCz+pa/lx8td2vV6PRwOB9RqtUgCkv8yebFmqhjY2doj09ckqSIzfZ/qz0wVq1TZ7HA4sGLFCixcuBB79+7FP//5Tzz99NN499130dzcjNmzZ+Ouu+7CD3/4Q0ycOBGKomD9+vV47LHHEI/HMWPGDOj1eni9XjQ1NcFoNIrCCyqUyM3NFZ69TU1NYpx06iorKwvDhg1DcXEx8vLykuwQUm284vG4ED7JYzXTGhJnKrQmBSCs3Wg+AJB04o2g98JsNiMUCmHUqFEwmUyIx+O44IIL8NOf/hQqlQqfffYZQqFQ0jqVbA/kxnGHDx/G4cOHYTAYRFPAqqoqJBIJYbcRjUZRU1OTFNPkx0xCeGcViTK0ViURPVPWNpkqItKpS+CYxR7Z2JjNZjgcDuj1epjNZtjtdpjNZhgMBsRiMdx+++1CRO4In8+Hv/3tb+J1AOCss85CdXU11q5di6qqKuh0OsyePRsrVqwQyStKihgMBmRlZWHkyJEAgC1btqC5uRnjxo3DyJEjodVqEQgEsG/fPpjNZlFY4fV64ff7xVwhV92mm61bt2LevHlJdn/H+3kq4XAYHo8n6dYfHG9NKFtr0ftstVrF57U73t3AsQQBkLx/oT4PRUVFANrsNejr5uZmqFQqcf0hH2igbR4zmUzCBs5ms8Fut8PpdKKoqAglJSUwGAxIJBKor68XNoU0lkQiIebC1D5L6aBHq6fLL79clJJXV1fj/PPPx5VXXolbbrlF3IdMr4nq6mrxYWIYpn/YsmULAGDWrFm9/txUzbxu3bpef+6BQqYuwgi5ajm1IkRu+EdHD2OxGHbv3o3GxkYAbRfKuro67Nu3DxUVFairq0MkEoFWq0Vubi5KSkrgcDgQi8WwadMmvPzyyyL763K5ACRf6MmrV84wy56bJBTIR0y7Eo/oOCVdTGlDmEniwHe/+128++67OO200/Dtb397QDT96whZaJabMlJFgFyJI1c001HUnJwclJeXY8SIEbDb7VCr1eK9njx5MkwmE2w2G4C2RXtubq7YvNPzy0Jzd/xXmcyHmvt5PB5UVlZi48aNeP/991FdXZ30HlssFpSVlWHkyJEoKyuD3W7PiCOBTO9AGzMSe2QbjFRBUq5YJi/LYDAojhuTyBwKhYTfJc0bJD7rdDpROQ8MHIEZGLjVZfL1Qf5erjBLJBJwu92IxWI4cOAAAOD73/8+Xn31Vfzwhz/E888/jy1btgi/5b/97W+45ZZbcNVVV+Hrr7/Gddddhx/84AfQ6/XYu3cvPvzwQ2i1WiEgk8jRUfKbxKvOBB65KRQ1h8vLy0uah6gxEzUIo+u9XMXMSbHOIcGO7EZkSzUAQlRRFEVUDlPi/rHHHkNRURGuu+46/O///q/QHRYvXoxf/OIXMJvNOHjwIDZs2ACfzycEyUAggMrKSuHTbLfbEQ6HsX37duj1epSXlwMAjhw5gmAwiLKyMqjVaoTD4SQLMLVaLQoEQqEQmpqa0NDQII7Cd1aAJ8dIaoPBdNEdETFdAqLRaBSfI7vdLpp+Ul8GKtQwGAzIzs5GdnY29Ho9QqEQ7rzzTjzyyCMizohIJIL77rsPjY2NsNvtovq0oKAAb731FhRFwYwZM/CLX/wCy5YtS7JDoWrphoYGAMCUKVNQUFCAeDyOzZs3o6qqCnl5eZgyZQpsNhsSiQS+/vpr6PV6IUxSA0pa86aOL110ZvfXHRtAoM0K0OFwiBslePoa2dMYSJ536aSSTFNTE8aOHQsAePbZZ7u8dlZVVeEXv/gF/H4/RowYgXHjxgndkxIeFBehUEj8rejUC/WwATq/3qRiMBhQXFws5pimpiZhIQNA2FnKDUzTKTT3aAWl1Wpx66234qGHHsKSJUswc+ZMPPTQQ0n3Oe2007Br1y7RRf7NN9/EN7/5zV4ZNMMw3ePzzz8HAOGP25uQyPz2229n3Eamv8jkRRhw7KihbJMhV0uEQiF4PB7EYjG4XC5RlaFSqXDw4EHs3r0bLS0tSCQSwpfX7Xajvr4eNTU1sNls+NGPfoQrrrgCKpUKO3bsENU7qT7MJBjL1gvkb6fX65MEZWoI2FnjFBLNyauPNiHk/5tp4oDRaMTLL7+MLVu24Cc/+Um6h3NSkNBMVej0NVWiBoNBhEIhIfKo1WrRMdtmsyE3NxfZ2dkoKyvD+PHjMWbMGEybNg1OpxOHDh0SizSz2Qy1Wo2cnByxgSe/w8EoNGd6BWJfQCKCz+dDc3Mz9uzZg3feeQdvvPEG1q9fjy1btohklcPhwMSJEzFhwgQMHz4cVqu1242VmMyG5nO5iZbs1UvXJIoXuqWKyDT/UCNbWSimBmKUxIxGo3C73R0KzHJjt0zlZKrL0rkmIVLFNprH5ZMqNL+XlZVh8+bNwo5x4cKFuOWWW3DHHXfgxhtvxDe+8Q3Y7XY0NjbiwQcfxKpVqzB27Fh85zvfAQCsX79eJDCAtj1sOBwWp63y8vIAtMUIiUSplWyJRAIulwu1tbUiZiwWC4qKimA2m8X94vG4aBhIidZUQT3TYyudyO+TPAcAx6rFNRoNsrKyoFKpMH78eABtf/fS0lK0trbisccew/jx4zFhwgR8+eWXuO+++3DTTTfhX//6FyZNmoTRo0dDo9GgqakJO3bswIEDB5CXl4eysjLE43HRLP2UU04B0NZjyuFwoKSkBABENWtubi6AtspEOZ7NZjNyc3OThGO/34+WlhYhOKeKSnIygpJs6aa7vUTSJSCSgKdWq2GxWGCxWERs2Gw2WK1WOJ1OmM1mZGdni68B4KWXXsKPfvQjbNq0SRTb3Hvvvdi2bRsMBoOoKD7vvPPwwQcfAADOOeccXHrppaIQQmbMmDEAgN27d6OpqQlqtRqnn346SktLoSgKtm7dirq6Ouj1eowfPx5msxmxWAy1tbVCMAwGg0mVqJkQA0Dndn/dsQEE0mcFKDdnpX9p70nXeKvVKj7LiUQCdrsdFosFe/fuxY033oiNGzcmJX18Ph82b96M++67D9deey3279+PrKws3H777YhEIvjXv/4FoK1oRqPRiGuryWRq588fCoXEde9EiiVUKhVyc3PhcDgAtFVJG43GJKFZfk6yBkkHPV6hX3755bj55puhKAqeffbZdkd/tFotfve732Hx4sVIJBL45S9/KbLIDMP0PcFgUPhP9UUl8ymnnCJOLHzwwQdYsmRJr79GppPJDd1oQ5569JiEulAoJI7pNDc3IxQKQaPRoLm5GdXV1QDaFvUejwd79uzp8CK1c+dOvPfee3jwwQcxcuRIHDhwIMkmAzh2oZMb32i1WiESk1/h8S6yJDRQZVuqsEgCAW/e+ge5mYqcNJCTGjIk/tN9tVotIpEI/H6/6Awue7ubzWYMGzZMxK3D4UBra6uIGYPBkJSdHwiiUFdQBeL111+Pc889F1deeeWArXjvDrSxI4H566+/xvr167F169akWEgkErDZbDjllFMwefJklJSUwGKxsMA8SJBP2QAQR4U72xSR+EinXsiWgIRlGaPRKASlcDgsxGm5oSjQXmAeCFWmJ1NdlolNZum9oPeVvgaA0tJS/PWvfwUA3HLLLR2uNSORCF5//XX89a9/xaZNm/D0009j+fLleOmll+Dz+VBfXy8qTu12O/bv3494PA673Y6cnBwkEgkcOHAAkUgEer1eCM+KoiAQCIjrDwBRHUmberofXdMoKWK325P2xpkkMmdq0y56z9Vqtaj4SxWZFUVBQUEBXC4XioqKoNFoUFdXh6uuugr33nsvNm/ejHA4jD/96U/C+qAjiouLkZubC5fLhS1btmD48OG45JJL8K9//Qtbt27FKaecgvLychw6dAgVFRWYPHkyqqur4Xa7RRV1c3MzotEoWlpakjQOnU6H7OxscWqQEmKJRAJ+vx9+vx8WiyUpCUEe8JQES7elSnd7iaxYsUJ87/F4+k1o1ul0ogmgyWRCOByGxWKBoijCA5n2QPSZpErhQCCA2tpa3HXXXSguLhanNvV6Pb7xjW/g888/x9ixY4UFweTJk7Fo0SJ4vV5s3boVR48eFa9TVFSE0tJSjBgxQpzEWrZsGdRqNU455RRoNBocOnQIO3bsEA1Cy8rKsHfvXjQ1NYmqeEqw0PyQKQUUZPc3adIkbN++Hffee+9xf56K7DXdn9DfUa5elpvPA8eukZR82Lt3L5YtW4Y333wTBw8exKpVq6BWq5GdnZ3UXJQ4/fTTcdNNN6G5uRm///3v0djYCJPJhCVLlqCxsVEI6nJfOvoc0Ynh1OtEd1CpVMjJyRF+8i0tLSgoKBAnJjweD5xOp/gM0Gekv9c2PV6l33jjjQDaSrU7++NceOGFuPDCC3v6EgzDnATbt29HPB4XHnK9jVqtxre+9S08/PDDeO6554akyJzJizDKmtIGXq7gikaj8Hg8SCQSaG1tRSgUgsFgQGVlJVpaWqDVamE2m7F+/XqxsRo1ahRmzZqFkSNHwmq1orGxEX//+99RV1eHV155RVQV0KaWRGO5+kT2JSRPOxK9O2rcRRYeHS22aMEo+wMz/Ueq0Awkv8d0H+DYYpner1gsJoRnsjuJxWJQq9WiiqS5ubnDI2QkPKtUKuEpTvE0kI8hb926Fdddd11SBeKMGTOS7kObVSIdFYi9QSKRQCAQEE23tm3bho8++gh79uxJSh5kZWWhvLwcp59+OqZMmYKioiKYTCYWmAcJssBMt1ShWP48k2BDR0B9Ph8CgUBS9WNWVhZ0Oh38fj9CoRCqq6sxevRocb2hjR0lu+RTMwNFYAZOrrosncIQkVqlKieSKQZIZKypqUEsFsO0adM6XWfq9XpcfPHFyMnJwV133YWXX34ZV199NbKzs1FfX4/a2lpEo1FotVoYjUYcOnQIADBhwgQAbY2afD4fNBoNRo0aJa5TlIAH2mImOzsbZrO5XVz6fL6kSmmr1dpub5wpXrtAZiY1ZS9m+vsDx4RnWlPKlhSxWAx5eXmor68Xp+gURcGqVavw7rvvAgCWLl2KmTNnIhgMorq6Gl999RW++uor1NTUoKamBqeeeipisRgOHz6MXbt2Ye7cudiwYQO2b9+OSZMm4dChQ3C5XMJKheYbSkbU19ejqakJJpMpqaqdxmoymWAymURi1e/3i4RELBZDdnZ20im+TKE7ImK6BETCbDaLdWB2drbYSwDHGr0lEgk4nU60tLSIQgfybKZTmUDbaanbb78d69evB9B2AnjHjh0AgNmzZ8Pn8+G5555LOrnb2NiI/fv3J41JbnquUqkwdepUVFdXIxgMwufzCSsPKrAIhULCyoOEcgDiBGq6r0nf/e538b3vfQ9PPPEErrnmGvzxj3/E+eef3+7n6Z4/UqHPEu0PyL5IFpgVRYHNZoPX68Xw4cNx+PBh7N69GwsXLkQ8HsemTZvQ3NyM5uZm8byFhYU49dRTMXXqVASDQTz22GOiMMLhcOCaa65BJBLB22+/DUVRMGrUKKjVatTV1QEAioqKEAgExHPm5eVBURR4PB54vV4x3+n1enEKlOxhZFQqFZxOJwKBgJj77HY7WltbhQ0YNRukuTW1d0Bf06OV+qpVq/DGG29g8+bNOPvss/HYY4/hhhtu6O2xMQxzEpBVxqxZs/rsInX55Zfj4Ycfxr/+9S/8+c9/FhfHoUKmLsJosy7bZNACV1EUsQkNh8MIBAIwGAxobm5GS0sLHA4HtFot3nnnHQBtmdorr7wSo0ePbvc6oVAIf/7zn1FZWYn8/HwAx454yf55JAoajUax0KKGS1RhFggEkjZvZIsgo1arxU32dmbSAwnNtJBP9UAj6P2i+1BFAfmqajSapA247EWXetQYgGjoI4tLwDHhaCDGxUCtQDxRqLFSS0sLqqqqsHHjRnzyySdJPTwAwOl0YtasWZg9ezYmTZqEwsJC4bvIDHxkG6fUamYSfmneIGsn+ebxeBAMBtHc3Ay32y3mgezsbJxzzjlQFAV79uyB1+sFcMxLN5FIiGSWRqMZkAIzcHLVZekWhjqioyaAlFA7cuQIgDabjK6YP3++qFRsaGgQz0EJuWHDhokGbtnZ2cjLy0NtbS3cbjdUKhVGjx4Ns9kMv9+fZIPgcDiEMCQTjUaF/zIAISimxpL8/8uEOMvEpCa973Kimk69AcmViXICm8b12WefiZ+9++670Gq1uOeeezq06nS5XHjxxRfxyCOP4PPPP8fFF18skp0///nPAbTZYMhCVUfvm8PhgM/ng8/nQ1VVFXJzc0VCS06cW61WYR1mNBoRCoXQ2toq/sYk0Ml/g3ST6SIi0PZ3os8rCYZUvUkCG61PHQ6HsERwu90IhUK46KKLMGrUKESjUcyaNQtWq1XYpdTX1ydZte3YsQOhUAg5OTk47bTTxMnPqqoq1NXVIR6PQ6PRtLOnJH954FiihHx0g8EgotGoiIlAICCq29MlDKZCdn8d0dnPMwH5M6TX6xGNRqHT6aDX6xGLxWA0GhEIBJCdnS3muTFjxghvdqAtuUAnFGhOcrlcqKurS7L9MBqNOOOMMzB16lTRwwgAcnJyMH36dGzbtk2cwLBYLOL3WVlZMBgMqK6ubufBTWsdl8sl4sVgMIi1EZ2KAI6dFFapVLBarXC5XAiHw7DZbNDpdKKQJ+NF5kcffRS/+93v8MEHH2DatGm4+eabcf/99+OHP/whN2BhmAyiL/2YidmzZ2P06NHYv38/Xn75ZVxxxRV99lqZSKYuwmihKnflJn9D8qZUqVQik1pUVIStW7dCq9VixowZeOCBB6BSqXDjjTdiyZIlnS546SJrsViESJRqoWAymYRgZrFYROWyy+USVUHkRUZWCLJ4KPv+ZsLCm0mG3mu1Wp20kZZFYdqg0f0o6UCicGqDL3peuTKZfkfdl1UqFXw+X1IyQt6YDrRYGSgViD2FNkxUvbxv3z6sX78en3/+eTtBPT8/H6effjpOP/10jB49Gvn5+WJzMNDe194kU4+49wT5My8LzHq9PimRoChKUkM/n88Hj8eDhoaGJBGQxKDW1lZ8/fXXolEXVUQ2NjYmJTvpaPpAFJiBgVtd1lkiUr6+p/6OKprJg/J4BAIBcT2Ix+OiqpDmmKKiIrFuGTFiBILBIOrr6wEA5eXlsFqtIgkGtAnycl8AGbL7Adri7Hg+8XKFfibEWqYnNeXrPiWkCdlKgoQ5lUqF//znP/D7/WhsbIRarcb999+PxYsXd/j8WVlZ+MEPfoCCggKsWrUKn376KaxWK0KhkDgSr1arxd9F9lQFkkWdoqIi1NTUiNfuCI1Gg6KiIlGIYzQaYbFYxIkLo9EoxFEAGZFMPZ64mElQFXA8HhfrKLPZDI/HA5vNhnA4jKysLLGv8Pl8cDqdaGhowIcffogJEyZg3rx54vlmzpyJDz74AJ9++inOOussHD16FLt27RKV7FOnThVFNyUlJRg3bpy4jlksFtFQ1ufzoaamRjQvpZNYQHICh9Y2LpcLPp8Pubm5MBgMopntQLw+ZQK0xyDxn6wZqXk90DYPtLa2YtiwYaivr0c0GsX48eMRjUbx9ddfi9MOHWG1WjF69GiUlJRAp9OhqqoKb7zxhvj9mDFjUFBQgO3btwNou36NGDECFRUVwpbJ4XCguroaiqIIWw6z2ZzU4yYQCIiK9876X+Xk5CSdKAWO7Yfk7/u7Mv6EZrG33noLN9xwA5599lnMnj0bAPDTn/4UDzzwAJ555hlce+21fTJIhmFOnC1btgDoW5FZpVLhiiuuwJ133omnnnpqyInMmboIS60QA9o3kTCbzeJoGW3Epk2bhs2bNwNoszs6//zzO32N/fv3i2pnrVYLRVGQn58PlUoljrTrdDohMssX0dbWVtFBnrwNQ6GQyLTKAjMvsAYOJAx3hHwknqo0Uo/KU9x2BFVBJxIJeL1e0UjQ5/MJGxhZ4B5ocTNQKxC7A1WitrS0oLq6Gtu3b8dHH32Effv2tZuXysrKcOqpp+KUU07BiBEjkJOTA71eD4PBMKDez74gE4+49wT5lA3NAVSpI88f5IdLArPL5UJrayuqqqpEIy2VSoUpU6bg3HPPxSeffIKDBw+KhkpA28ZusAnMwMCtLkuF3m8SAfR6vRB0DQYDAoGAEEO3bNnSqWhIvPTSS1AUBeXl5Th48CAAiN4hQNsJiaamJmi1WhQUFAjbDGoMFgwGhcBss9mSrAwISnyQ+K3X62G1WjuNIzkRmikJ0ExMaspVw/R1PB4XcUDXinA4LCryqIqZrLvoPbn22mu7jBXg2P6osbFRWF3Q+09CJH1NR9KpUbU87oKCAiEmElT57vf7EY1GUVdXl3QikIQuKgqh/9/x1lFMe2heJ/sR6uFhNpsRCASE5zqd5IzH4wgGgygqKkJtbS0effRRZGVlYezYsQCASZMmiTmD3ptdu3bhtNNOAwDx+G3bton46Ir8/HzMmDEDgUAATU1NaGhoQCKRgMViEcIzVTPX1dWhsLBQFOT4fL7jzi9M5+h0OtHjwWQyIRAICJu+eDwOnU4Hu90u5jay3VGpVDjrrLOg0+kQCoVEYRatRSkBdfToUezdu1e8nkajwfDhw4XXO61DCgoK4HQ6xTVJp9PBZrOJucZkMiE/Pz8puWQwGERlfjQaFeMgC0naH9tsNjEfUuNZ4Ni1Jp02Td0Wmbdu3YpLLrkE999/Py6++GLxc7vdjp/+9KdYs2YNrr766rQb1TMM01alQBNfX4rMAHDVVVfhrrvuwnvvvYd9+/Zh3Lhxffp6TNfIYl3qv3KTEfo5HdOxWCziokdduztiy5YtuP/++xGNRjF27Fg0NDSIRjdA23VBpVIhPz9fLJzp2kC+hi0tLaKqWr5uyGMfqALAUEP20ezMI1uuVKOjXrQAovf8eBsr2a+TxKdIJAKLxSKq11I9nAdS/GR6BWJPofeqoaEBBw4cwKeffoqNGzeK6kFCrVZj7NixmDFjBiZPnozi4mJkZ2fDYrG0Ex+HKpl4xP1EkRu3yp6THQnMwWAQfr9fNLYhb926urokj8T6+nqUlZWJI650DFa25SEhgpr7kVXGQJkfBgvye6zRaJL8+oE2AY9OqpC4SLz99tsYO3Ysli1b1mH/hnXr1uHpp58GAHz729/Ge++9BwAYPnw46urqYLfbxVqHGsu6XC4AbT6biqKI9Y/Vam0nMCcSCVFNRmsUo9HYzqNZhprV0v8xEypUgcxMasp9HqLRqBAJaX3o8/mEEEfrDYqPWCwmBDkAuPLKK7v1mhs3bgQA5ObmCu9eOspeWlqKnTt3AmhLVFBspAry4XA46eg84fF4xEktoL3HbqoNiFzFzPPSiUEWOSTculwu6PV6BINBaLVaWCwW8Vm02WyiN01+fj4aGhrw29/+Ft/73vewcOFCaDQanHHGGXjxxRfR3NyMrKwsYT8AtCVlNm3aJCreqcgmNWGu1Wphs9mQk5MDo9GIr776KskSwWKxYMyYMeK9JiufUCiEmpoa5OTkiP4DdPKA10EnhrwGIKtFKmTS6/XCqoYsG8vKyhAIBHDkyBGRgASO7Vk6wmQyoaSkBHl5eYjH40kezjabDXl5eQiFQuJnlOgm4To7O1tYudBeJtU+jPrZmM1m8T1Bthly01x6bXl/T4nc/qTbV7tTTjmlw+M0AHD33Xfj7rvv7rVBMQxzcmzZsgWKoqC0tBTDhg3r09caMWIEli5ditdeew0PP/wwHnrooT59PaZrOspckk0BZTz9fj90Op04SgYAX331FcaMGYPdu3fj6aefhtPpxOTJk6HRaOD1erFjxw68+eab2LZtG4C2RRFtsIqKimA0GmG1WmEwGJKaogAQ2XoAYoMfiUSSRGW1Wp1xFT9M18iLL1ocHa8Jn2ydIXs5Ex3FL4nMFMfk5+z1esURVFloHmiJikw9FXEyUNV5bW0tdu3ahY8++ghffPGFqKAjDAYDJk6ciEmTJmHMmDEYNmwYcnNzRYVGpggz6SbTj7h3hZyMou+BNoGA7HaAtvkhFArB5/PB7/ejqakJR44cQW1tLY4cOSKuEdSoBwB27NiBeDyO3NxcBIPBpKQnCcwUSywwpxdKLpLfruyNbTab4fP5hJ8qNUIaN24c9u3bh4ceegjvvfcezjzzTJSWliIej+PgwYN4//33UVlZCQA477zzsHfvXvh8PuTn54uTWlOmTBEVzbJoSNWEgUBA+OjKAjOdxJAFb7VaDbPZfFwRlsRSun8m2f1kalKT/FITiYTwrKXKXrIjkI+My9YolMhWFAVHjx7tsDpb5uOPP8YDDzwgXhdoK66ora0VwlMikUBeXh7sdjv27NkDAKL/CNBm11FVVSXW1sOGDUM0GoXb7UYwGBTrEZVKhYKCgiQvabkyWhYpuVjvxKGkFFV72mw2eDwe4dfscDhExX40GoXdbkdLSwvUajWGDRuGo0eP4umnn8arr76KUaNGieuKxWKB2WyGy+USYh31A9DpdDj99NNFX4DU03p0kxuzqVQqOBwO5OXltUti6fV6FBcXo7a2FpFIRCTGyH7D4/Ec15KH6RhKNiiKIhLQZMtIySmyUwmFQrBYLFi8eDFqa2tRXV0Nv9+flAzNyspCbm4uCgoKUFBQgGg0iiNHjuDo0aPiNZ1Opzj9IPsmy+tZs9kMu92ORCKBlpaWTkXs1ORFV+h0OhEnkUhEPD4dlsYcqQwzCNmwYQMAJPlM9SU//elP8dprr+HJJ5/EPffc0+XijulbUqtG4/E4tFqt8GU2GAwIh8NwOp04evSoWIw1NzejvLwc+fn5qKurw6233ioujHQMkZ6zuLgYeXl5YpGWnZ0No9GI7Oxs4T9XV1cHRVGg1+ths9nE4+WMq1qtbtfwQPZ0ZjKf1CNZlDjoKnMui83y4zp6DAnXJEqr1WqxCZSPE9JxMhkWlPof8l2vrKzE559/jo8//hh79+5tt2B2OByYOHEiRo8eLeae3NxcOBwOYbvDtJGJR9y7iyyiqFSqpCo+EvHkhJPH44HP50NTUxMOHjyIqqoqcfQ0NzcXl156KXbt2oXDhw/DarUiHA5Dp9MJb0K5Al6uYGYLpvRCcz41fKUjyPF4HGazGbFYDFarFYlEAsFgUCSqDQYDxowZg0OHDmH37t3YvXt3u+c2mUxYuHAhXC6XaCQ8bNgw4cFqNBoRjUZhsViQl5cnTvs5nU4Ax6piUysGZWsMrVYrEhadxRB569J1KBOTGpma1KRGedQQmsR/EpxJKKH1Bq0do9Eo1Gq1SL796Ec/wvXXX49FixYhLy9PrFEaGhqwbds2vPbaa9i0aROANl9WtVqN3NxcYX9w+umnixibNWsWDhw4gEgkAqPRiLy8PABtcUFNJI1GI0pLS8W6NSsrK6mKneYiqix0u91IJBLQaDSikXGqhypzYhiNRmExYTQa4fV6k5qk5ebmoqmpSVw3yboPOJZ0crlc2Lp1K4C2tcmcOXPwz3/+E8CxSnNKchQXF+Pw4cNJyQH5My4LzdR/hIpnWlpa4Pf7YbPZ4HA4xOOMRiPKysrQ2Ngo+g9QJbZWq4XH4xHXNqZ7UIKPPos6nU7sS+mkXTwex7Bhw9Dc3Ayfz4cjR47A4XBg8eLF4npAjafJi7+5uRk7d+4Uz0vFVoWFhWhpaRFNh+UkKtlJGo3GpMZ9BNlFyUVWcm8l+loWpKmymby9ac9Pwjo9bzrmFV69M8wghETmBQsW9MvrnX322ZgwYQL27NmDBx98EKtWreqX12U6Rhbj5A0ddb22WCyIRqMwGAziSGJxcTEOHDiAQ4cOYeTIkRg2bBgqKipE8wmg7Zig1WpFTk6OqFYuLCyEzWaD2WwW/qnZ2dliw2Y0GkUFh6IoCIfD4uKb6r9MZNqGjDk+HR0lkyuPu3ovUxtWdERqU0CqXCIvZqp+U6lUYoMqC99arZaPGvYT0WgUzc3N2LdvHzZt2oRNmzYlHT0kioqKMG7cOBQWFopTNwUFBcjJyYHFYuHNdgqZeMS9O8gNreiaJB8hl5OMkUgEoVAIXq9XWKxUVlaipaUFkUgE06ZNw/Lly7Fnzx58/PHHACCSnUVFRdDr9eJEDQnMVD0kN5Fl0gdVMMsbfRIPqQFaNBoVlhYFBQVobGyESqXCmDFjhHgXCASgVqths9lE5XNdXR2ANgEpKysLPp8PJpMJU6dOFX6YEyZMENWIKpUKTqdT2LMAyaeuotGo+LnZbIbRaDxu/NDYSXiShSWme1AFnqIowjIl9dodj8dht9vhdruRm5uLxsbGJGG3paUFq1evxurVq2E0GkUFozzXqFQqIfI5HA5YrVbEYjGMHDkSTU1NUBQFY8aMgUajEQmucePGQa1Ww+12o76+XlRHygKz/PwU68FgENFoFOFwOKkqMjs7W6yLAV77ngxykiEej8PhcMDlconTETqdTjRVo/dApVKJ0xIOhwM5OTmwWq2wWCywWq145plnEI1GkZ2dLax1IpGIqC6moh2j0XhC6xVKrIZCIXg8HhQVFYmEularRWFhIfx+PxoaGhCLxeB2u2EymWAymYT39PFsephk6HNIPszU/4e8moPBIEKhEHJycuB0OlFdXQ232y0sUY6HXq9HaWkpSkpK4Pf7hZc3VdfL4jIJ3PJ6iNZs3TnpktpQPbWnDc2bBCVx01WswSIzwwwyotGoyNDPnz+/X15TpVLhjjvuwPe+9z088MADuOGGG0R1CNP/yB5UtJGLRCIwGAziAkQLdKfTKTZE5eXlOHr0KPx+PwwGAyZNmiSqn8nHEmgTMpxOJ7Kzs6HT6ZCVlSWOnFJFqVqthtPpFFUDJFbLdhg0Pro/LcpZDBxYyF2cZWgh3xtioVwVQkkTACJxoiiKqAwBICpaZHgD17fQZrm+vh67d+/Gpk2b8Pnnn4sNOqHVajFq1CgMHz4cOTk5KC0tRWFhofC1I985JplMPeLeFXICiqq9ZKEROCZEB4NBeDweHD16FAcOHMD+/fvR2tqKuro6eDweHDlyBHPnzsU//vEPAG1H1+12O/Ly8pCVlSU6tms0mnYCc6qXIZMeaOMbDodF8ps2yRaLBYlEQohvhYWFaGhogE6nQ2trq2gibDQakyr5adNuNpthsViEhZLT6RQVhwAwatQo2Gw27N+/HwBEsyW5spSSNHRNAdrWPLL43BFUpUrxThVpzIlB84O8VqSTUSQeut1uFBUVCQsBt9sNm80mxB2fzwefzyeSVrLFBvl+W61W6HQ6FBQUiCRHSUmJWC/n5+dj+PDhIlZGjBgBh8OB2tpa4XVvsVhQXFwMoK2ymTx0U5Pcqf8/k8kEs9ksGtLRz8m2g+kZer0+ycvbarXC5/OJn1GMAMeKG3Q6nbC0iMfj7cRFh8Mh5gSHwyGaxVERhclkgkajgd1uT1rrdrTWpBM1ZKPR0tKCcDiM2tpalJSUiIKNyspKtLa2iqQpJcGi0ag4uZNIJLghYDchMZcShkajEcFgUPxtZaFZrVZjwoQJCIfDaG5uhtfrTTodqdFoYLFYhG2G0+kU1c9UXEXiMlUY02ed5gRKTNDnnaw7UoVjubjmRKCEeroTnHz1Y5hBxrZt2xAIBOB0OjFhwoR+e91LL70U9913H3bu3InVq1fjt7/9bb+9NpMMXWDkCyMtnOlIGdB2pM/j8ST5FpaXl8Pr9cLn84nFMomItDCnY+xU2azX65OOJ5PgrCgKXC6X2CzIYyFRmZ6bNha8KRuYUMIgtaJZtrfozddKJBJiI0pCczweRzgcFo2j5AZBBAvNfQMJMjU1Ndi5cye2bNmC/fv3txOYs7OzMWrUKBQWFsJut6OkpATDhw9HSUkJ8vPzu6wUHMpk6hH34yHPCfJxYqoyps9sNBpFIBAQFYIVFRU4ePAgjh49itraWvE5DoVCeOaZZxCJRGC321FQUACHw4Fhw4aJhKcsMFNyNJ0d1pn2yEeYqTkaVZuSXYbT6RQNj1pbW0XT4EAggHA4nPSekhhD1WAWiwUOhwN6vR4+nw9qtRpjxoyB0WjEvn37ALQJhIWFhfB4PKJKkY6uK4oCr9crTsyYzebj/n9Sq8jSdTx5sKDRaMQ13WAwIBaLiapmi8UiRMCioiLU1taiqKgIjY2NYl4JBoPtmmjRGlOlUol1K8WMRqNBWVmZELIp6Uke3sOHD4fdbsfBgwfFXEQnbuSmcKnQ+la+0VpJfgyNm699Jw/9HalYRj4B5/f7hT0KefW73W4hSFOSgOKFriE0p5BtBSV4KSGeWlQlX+tkqyhqOKhWq0XFdHV1NcLhMBobGzFs2DC0traiqakJwDGrHrLMANqspKiYwuv1ihN8zPGRfbvp8xYKhcS/ZrNZnIJsamqCSqVCbm6umBdkG0c6MeHxeFBXV5eUuDCZTCK+zGZzUvNPqkanYhnZ0qKn/ye6yQ0CMyUeeDfPMIMM2Y+5P6t21Go11qxZg/PPPx+///3vcfnll2P69On99vpMMrSYjkajwl6AFuvyxTI7Oxter1ccO/V4PCIrnwoJzXRslKoGaJFOWXoASR7OwDHhW7ZPoIsiLea4ymxgQ4ubVGFXbspzMpBgJYtWVAFJjSTD4XBS1ZksNA+0ZoADhXg8Dp/PJ/xSv/jiC7hcrqTGdAaDAWVlZSgqKhLVymVlZRg+fDhKS0uRk5PD78sgRN5ApXZEp6Y04XAYwWAQra2tqKmpEQJzVVWVSH4S+fn5IpFUVlYGi8WCkpISaLVaZGVlJXnmarXapKZaLDRnFrKFl16vF0JzMBgUaxE6LUXrE7/fD5PJ1K6PAyUWqGqMxGaNRiOOwHu9XmHVlZ2djfz8fDQ0NIjnItGHTl3RdcZmsx13bZIqMFOynek5tD4lywy/3y/WF4qiCH9dh8MBRVFQV1eHgoIChEIhtLS0IBQKwel0JonM9LwUT0CbIOl0OpNOPIwYMQIGg0EkJ8jTnvya9Xo97Ha7qHolaL6hcdJYU+ed1JMdlAjja1/vYTAYoNFo4PP5hJUFxRA1AjQYDPB6veJUBVWiy1XoWq0WOp1OFNHo9fp21xmHw5H0uiQyytA1iNao1BTZbDajoKAANTU1ojcOoVKpUF5ejrq6OoRCIbjdbvFaXq9X7NHkniTM8aEeQ5FIRPgsA23ibygUEuIvzRsej0ecWjgeVLEsn5qipACdwqDrSKqlBYAkoVgWjlP3TZ19namwyMwwg4z3338fQP/5McssWbIE3/nOd/Diiy/iuuuuw6effppx/pBDCVq4UiWxfCGj34dCITgcDuFxSJtyeXFOF1BqXkEeUlR5LC+SqVqEKjZooS03dZKrl+k5B8IFM5UdO3bghhtuQDQaxY033ogrr7wS69atw3333Yfc3Fz87W9/Q3Z2Nq677jpUVFTg7LPPxq9//et0D7tPodhKFZo7a+h3IsgCM8UWfU8+jtQgg3xfOztuxoJm7xCNRuF2u3Ho0CFUVFRg7969oiqwsLAQarUaZrMZ+fn5yMnJER21hw8fjrKyMpSUlIjqU2ZwIVcxy/MCXVvoqLjf70drayuOHDmCiooK7N+/H0eOHEE4HIZKpcLIkSNx4MABqFQqcSS5rKxMCM1arRbZ2dlJG3+yPZDnCP68Zx5U5RWPx8Xag0QAEprp9JTb7RY9H8hfE0DSWgM4Zocgb/rJLoHmH0VR0NzcDACislWn08HlconrBVUbUuK8IzqyO2CB+eShdWQsFhON3EKhkGgEqNVqhW2Gw+GAzWbDoUOHoNFoYDabhWAkzzcAktabcvWwSqXCsGHDYLPZhD2H1WqFzWZLalJNlatyLxGDwdCuIWFH6w7Zsic1Zpneh2KECl4cDocQmik+KKlFsZX6vqXOKeSDTM3brFarWLtQlWpHyCc1ZX9walBKTQiPHj2KwsJCkXzzeDyYNGkSjhw5gsbGRng8HuTm5iIejwt7uGg0KsbPdI3sz0zrhHA4DLPZLHzT5etSqnWFvI9N/SxTtbS8nqW4oCp2eRx0umGwzgMsMjPMICIYDOKjjz4CAJx77rlpGcMf//hHvP/++9i2bRtuuOEGPPLII4N2Ah0I0LHUeDyOWCyWVMERiUTExY82SJTFpWw+XUhJTKaLKi2Y6Hv5JgvL8gZfztSScD2QN2S/+c1v8Pe//x0lJSWYN28errzySvzhD3/AJ598gvfeew9r167FvHnzkJeXh8cffxyXXXYZampqhIffYEUWgOWjit2hMx8y+We0UQuFQknVyfKmNBwOC7ETOFaRIi8SWWjuOeQ/2traiqqqKnFL9b4sLy9HVlYWbDYbdDod8vLyUFZWhtLSUhQUFMBisQzoOYDpHPnzD7SdKqCfRSIRRCIR+P1+NDU1obKyEhUVFaioqEBtbS0URUF2djZ+/vOf4+GHHwbQ5q9rNBpRUlIiKuFJdNTpdEJgpmuLfB0CwHGWoeh0OrHhJ4GPRMHs7Gy43W6oVCrRP4LWMqnJAznhLSMnHqgRMj2Ofk4xCRyzLjiefQGdoElt4MTXk96D1qNU4U7WKiQKkW1bc3MzNBoNRo8ejXg8jqNHjyZd+ztDpVKJaxPZIgBt8WKxWMT39N7Kjbno1J5cSEGkCk+yAMX0L2RZoNfr4ff7YbVaYTQahZUGWSeQZy6tH+W9j7xPIbFZq9UKyxXg+AJzKlTlSmtYEprpBEV9fT1KSkpw6NAhNDc3IxAIoLCwEF6vV4wXgEieaLVaBINBPkHRTWTbDPLhJ09mOtGQmpw63nPRZz1VMJYbTcrWOLIv92CHRWaGGUSsX78eoVAIpaWlmDhxYlrGUFBQgGeffRZLlizBY489hsLCQtx9991DYkLNVCiLTkd16CJKi3iVSiUy53IjHnpsqpAsL6JTqzE6uiinisupthkDlT//+c/Iy8sTdhAulws5OTnQ6/WYP38+1q5dC5PJhHnz5gEA5s6di88++wwXXXRRu+cKh8NJC5HuHNHKZGRLlu4id13uDIo98uSUq8dogU0VCDK0WU1trDNUFnu9CXVGb21tRW1tLerr6+H3+xGPx8Ux4kQiAZPJhLy8PBiNRhgMBmRnZ6OgoEDYY7AoM3iRE4y0ySLxkCqv/H4/GhoacODAAezbtw8VFRXCHmPmzJlYuXIlnn/+edTV1UGn04lq+KysLBQXF8NkMolGTHS6Rj6lk9rFnWMtM6FrhbwmkUWArKwsRKNReL1esZbp6IQcrWPkk1Spp6Tk01OpHuGycAgg6VqUWqGaKirKAiTTO1CVMDXxJcsTeu/D4TD0ej0KCgrgdrsRDAahVqtRWFiI0tJSMddQ82p6zs6aTMuWCLRW1ev17b6n2CLk03uDuSpxIEM9ZKh62G63IxqNwmAwCIsM+fQmrS3l+YISWLSeoTiyWCwn3LCRqqEBiMaUDodDnIxwu92i6WkwGMTBgwfFY8mbnn6XnZ2NWCwmfIWZrqEqdppb6H0kT266HsinITuqYk79rMune1P3M2SnM5TmBxaZGWYQ8fbbbwNoq2JO50T2zW9+E7/73e/ws5/9DPfccw+qqqrw+9//HtnZ2eI+X3/9Nd544w28+eab2LNnD0wmE+bPn4///u//xrRp09I29sGM3GxHtreg6h76fUePk8Vm2StKrtLo6KigfN/BtgjPy8sDANx+++247LLL4PV6YbVaAbRtWHw+X4c/64jVq1fjrrvu6p+BZyiyV2FHopBcNUQislyJRgs6WiDS1w6HAy6XC4lEAqFQKEmgoA3iYInJviaRSCAYDMLtdqOhoUE04SIvwlAohKKiInHUmEQbh8OBgoICFBQUwG63H/cIOjOwkT2Q6WuqEiOB2ePxoKGhAV9//TX27t2L/fv3IxgMQqVS4eqrr8b3v/99bN26FS+++CKANusVq9WKoqIi5OfnIysrS1SlpTb4o+axqR3h+TOeuVDiG0BSQyYSAXQ6nbDJkCvkyc6rM/uB41kUyEKznKBMbV7bGbK4yLHVN5BYQz6mVqsVfr8fRqMxyQbF4XDAbrfD7/fD5/OJz/7xmknLAiG9j8Ax31ZKQMuJC1lkkk/z8fuf+cgV6STs0ilP6g8g2/CkFtjQ+y3bIlAc9nQ8ZL8RDAYRjUaFpYff70coFEJWVhYURRG/t1qtKCwsFHNUNBqF0WiEz+dDJBJhkfkEoPdQtrGgpBKdlknt5dDRiVx5j0vzgHwNkU8BDzVYZGaYQcRbb70FIH1WGTI333wzDAYDbrjhBjz11FN46aWXsGDBAuj1emzfvh2HDh1q95j9+/fjqaeewqpVq/DrX/+aF259AAnJZJEhXzSB9gIxPSb1Ipr63nR0IabHDhb/uYceegjPP/+8+P62227DF198gYaGBqxevRqtra3w+/0AAL/fD7vdLjZF9LOysrIOn3vlypVYsWKF+N7j8YiGM0MFOe462xgCSDomTRtDaqZClc0ARHVcKBRCfn4+WlpahOdaKiw0d00ikUAgEIDX64XH4xFHN2nuKCkpAQBRoUxNm5xOJ/Ly8oQn81BcbA8VKNkj2yVRRSFZZJD3JAnMBw4cQDQahcViwapVq3DqqaeisrIS99xzDxRFgdPphNPpRHl5uWjYZjKZYLFYkjb/cnOv1Aoi/mxnNlR1TCerqILVaDQKWwo6Gt4RtIbpKCFOyEnujtYjna1vUr/u7PFM30DVf3TdNpvN4mutVotwOIxIJAKVSgWbzQaLxSKSEXTrqCgidV6Qk1UUg6nVzrLPN7//AxOqIiYLlnA43O1TdzqdLqm6vTcwmUyiSSE1aNfr9fB4PEmJN2pW2NLSInymKUECHLOn4rjsPrRfoJ4usne73HxUvn9XyEnNoZ6AZJGZYQYJu3btwtdffw29Xo+zzjor3cMBAPz4xz/GpEmTcMMNN2DXrl148803xe90Oh0WLlyI888/H3PnzkVrayv++te/4qWXXsJdd92FyspKPPbYY8cVm5ieQUKzXPnZkQ9uR0eD5BvdP9V7M3XDN1i46aabcNNNN4nvX3rpJezatQt/+9vfALT5RzY2NiIUCmHDhg2YOXMmZs6ciTfeeANLly7FJ598gt/+9rcdPjcd9x7KqNVqUTlAHp0ARCPK1AW0/DUJz7L9RXZ2NpqamkSFZG5uLlpaWoQ1SWq8sxjVOVTB7Pf7xbFSaq6Yn58vklby31+n08FutyM3N1ccRea/7+CGPockLlNFUCgUQjQaRUtLC+rr67F//34hMMdiMRQUFGDNmjUoKSnBwYMHceutt8Lv98NsNqOoqAjl5eVwOp0oKSmBwWCA3W4Xx+nlzy0dcQWSG8wOJjpqOEt8+eWX+Na3voWysjIUFxfj73//expHemJQsyXyyTQajUnzCiUuOjol1VEFs1x1mHofeY3CnrmZD1UCUuUyNdujRKdsewB0z3+d4ooSVRQHqXOKLERxjAwe6L02GAxJfszyHEPzQ1+fWNDr9XA4HAgEAmLOczgc4tpJYrhcIKFWq4VdH3NykA8/JcnlOOjsRGXqnpjmHJ4jjsHqDcMMEv75z38CaKtidjgcaR7NMRYsWIAvv/wSn332Gb744gvE43FMmDABs2bNgs1mS7rvOeecg8cffxw//OEP8fTTT0Or1eLRRx/lSbsPkI8Bys2R5N93toFL5US9dwcLd955J4xGI84880wAwPvvv48VK1Zg4cKFMJlMeOmll+B0OvHUU0/hjDPOwOLFizutZGaOJTvkI8tqtTqpwZKMvAjU6XSiogmA8M3LysqCy+USi/fs7Gx4vV4Eg0FR/STDG8n2kM0IVXrQxstkMgnxRxZrEomEEAKtVqtolMMMbuTKQRKZUwXmhoYGHDp0CPv370dlZSVisRiGDx+OBx54ANnZ2di0aRNWr16NQCAAo9GI4cOHY+TIkaJhJG3GSSCgiiEg+To0GJOcREcNZ4ndu3fjrrvuSvrZQIHEPJrvSTykeOpsnSKLxbLtRSqpvSSYgYVGo4HZbBa+qfQ92fDIp/Fkkaijk3mp8wOJTPIcwuLy0KEzq8D+RKPRwGq1IhqNIhgMCpsg2RuY5jVqQKgoirDg6yu/38Ga1OwI2kuQnVtnhVdM91ApqX9BhmEGHIqiYOzYsdi/fz/+8Y9/4Hvf+166h3RSvPzyy/jOd76DRCKBW2+9FWvWrEn3kHoNj8cDh8MBt9sNu92e7uEwGcpQjZNUkRlo2wB0ZHFB0HH5SCQijhHS48gyw+/3iwWj3OBDpWprAEK+abLvXqbTHzFCTf7IF5DeB9kXWxaXqbkidXTnjufppb/mEdkmg5psUvVVLBZDc3MzXC4XDhw4gK+//hqHDh1Cc3MzcnNz8fDDD0Ov1+Oxxx7D66+/DqDtSHx5eTnGjBmDYcOGYfjw4aJ5pEajEZWMVDkvf2ZTG3MNNhobG0UF2/z58/Hpp5+K361atQqffvopotEoVq5cifPOO6/d4ztqMltaWppR1xq5svBk4GPLvUcmrUnIgkdOPlNiS15DpJ6yI6g6NdVqh5A9mZnuk0kxMpCh9RUVTnQl1Wk0Gthstj657n3nO9/B7373O5HU3LRpk/jdc889h2g0ekJJTY6RoQOXljDMIGDr1q3Yv38/TCYTLrjggnQP56S56KKL8Mgjj+C6667D//7v/yI/Pz/Jr5ZhmMGJfMSdBIZEIiGqOWR/RdpAUuWbXOlEQheJ1dTggwRnghbzqcfehmp1voyiKMJWRKVSwW63w+v1JlUuA0j6+5PwRw0ZeZM+NEi1TpJ9dL1eLyKRCKqrq4WdkMvlAgAsWbIE69atw6uvvio+lzk5OSgrK8PIkSNRUFCA4uJicSohVWCWvXcHc/WyTGrDWZmpU6fi+9//PoqLi3H22WfjnHPOaTeXDYQms1RZSJWosmDYkbUXkOyXPFRiYahCiQNKRhzPJoOuX6kn81IrnYFjnrscN0w6ocSpVqsV1fp0kxMntObqSyuyP//5zyKpmfoaX331FT799FM88sgjJ5TUZIYGLDIzzCDgkUceAQBceOGFsFqtaR5N73DttdeiqakJt956K37+85+jtLQUl1xySbqHxTBMP0ACgdzdmaqP6HckPkSjUVHFBBzrDk+Po+O0BoNBVEDJldJk+UBHtFM91oYqskhPvthGo7Hd/ehoobwx4k360EI+zks3Oi0QCATQ3NyMaDQqNph0wuDpp58Wz2EwGFBYWIiysjKUlJSgpKQE2dnZsFgsokqLBGaKs6EgKHbVcFbmm9/8pqgOGzlyJJqbm5Gfn590n4HUZPZ4czEfZWYoGUHXe7LJ6MhTtbPkhNw8lGOIyTRSLRz6m6GQ1GT6BhaZGWaA09raKhqP/fjHP07zaHqXX/ziF6iqqsKf/vQnXHnllSgqKsLcuXPTPSyGYfoBEi1lAVkWPkmAIJGYGo0BSDpmTRtRqoJWq9XieXQ6HYxGo7DZoNdKbWLHtCGLPXI1DVkU8N9r6JFaXUrVhQBEo65AIADgWPJo0qRJ2LNnD2KxGEwmE7KyspCfn4+SkhIUFBSgqKgIZrMZdrsdBoMhqYKZmjDJVcyDma4azspcc801uPfeezFixAgcOXIEubm57e4zWJrMDvb3nTkxaL0gIzeLlBPLtHYYCvMHw5wIQzmpyfQuQ7tMh2EGAU8++SQCgQAmT56MBQsWpHs4vYpKpcIf/vAHLFu2DOFwGBdeeCH27duX7mExDNOPdNbdO/UYtXy/VMGTNpRUEUIezACSfJxTn3soQ5Wjer0eRqMRJpMJRqNR3EwmE0wmE1tjnCQ7duzAvHnzcPrpp+OZZ54BAKxbtw6nnXYalixZgpaWFiiKgmuvvRbz58/PuKogEpdlawNK8kSjUQDHBMFx48aJn48ePRrjx4/HxIkTMXXqVEyZMgUTJ07EiBEjkJOTg9zcXNHA02w2C5F5qFce3nnnnaioqMCZZ56JRYsWIR6P4+c//zlaWlpw55134rrrrsPixYvxP//zP0P+NAYztKHrvlarFRXP5Lc8VOcPhjkeN910Ez755BNxCwQC2LVrlzgxLXPNNddg7969CIfDx01q2u32pBszNOBKZoYZwITDYfz+978HANx4442DcsGk0Wjwj3/8A4sXL8Znn32G8847D5s2bcKwYcPSPTSGYfoJ+di0XDkpH3+VvRfln6V+nUgkhJ+jXBlNFbl030QiMaSrc2mDzvQtv/nNb/D3v/9dNNa58sor8Yc//AGffPIJ3nvvPaxduxbz5s1DXl4eHn/8cVx22WWoqalBcXFxu+fKFP/D1GPpxcXFcLvdiMViGDt2LILBoPBQt9lsyM3NRXZ2NsxmMywWi0gCydYYXDHfxs6dO9v97He/+x0AwOl0YuPGjf09JIZhGGYQcuedd8JoNOLMM88EALz//vv45S9/idtuu00kNRVF4aQm0w4WmRlmALN27VpUVVWhuLgYV111VbqH02eYzWa89tprOOOMM3Dw4EFccMEF+PDDD2GxWNI9NIZh+plUIVkmtapSFqLpMbJQ3Vn3ednHcSgLWkzfk9pYx+VyIScnB3q9HvPnz8fatWthMpkwb948AMDcuXPx2Wef4aKLLmr3XJnmf0iNODUaDYYPH47m5mYYjUbk5eUJOwyLxQKz2Qyz2SzE5VRhmW78WWQYhmGY/oGTmkxP4ZQDwwxQvF4v7r33XgDAqlWrYDKZ0jyiviU/Px9vvfUWcnJysGXLFixfvrxDcagviUajmD17tvg+9UgzwzDpRa54pmOysmjV2U1u+EfVkgzTH6Q21vF6vaKBr8Vigc/n6/BnHbFy5Uq43W5xq6qq6vPxk/Ar/0veqAaDQaxN7HY7RowYgTFjxmDkyJEYPnw4CgsLkZeXh6ysLFgsFlgsFmHLIh9v56PtDMMwDMMwAwPeRTHMAOVXv/oVGhoaMHr0aFx77bXpHk6/MHbsWLz66qvQ6XR48cUX8ac//anfXrulpQXnnnsuDh48KH5GR5pvvPFGrF27tt/GwjDMiUECckcidKoQTQLz8SqmGaanPPTQQ5g3b564vfXWW7jvvvvQ0NCAm266CVarFX6/HwDg9/tht9s7/FlHpMP/sKPPluyhbrfbkZOTg6ysLGRlZSEnJwf5+fnIycmBw+GAzWYT4jJ5gLO4zDAM039wEQ3DML0Ji8wMMwD59NNP8fDDDwNoO2pLDayGAnPmzMEDDzwAAPj5z3+Ozz//vF9e1+/34/e//z0mTpwIAO2ONG/evLnDx4XDYXg8nqQbwzCZgSw4d1Tx3BcC15dffomRI0di0aJFuPzyywHwhm4o0VVjnezsbDQ2NiIUCmHDhg2YOXMmZs6ciY8//hgA8Mknn2DGjBnp/C+0g04CkK2FVquFwWAQzfqMRiOsVitsNpu4Wa1WWCwW0dxPbsrF1hgMwzD9AxfRMAzT27DIzDADjObmZnzve9+Doii4+uqrcfbZZ6d7SP3OT3/6U1x88cWIRqO49NJL4XK5+vw1S0tLMXXqVPF9d48vr169Gg6HQ9xKS0v7fKwMw/QMuSKzr9i9ezfuuusufPTRR/j73/8OgDd0Q5k777wTFRUVOPPMM7Fo0SLE43GsWLECCxcuxP3334+f/OQnWLBgAZqamnDGGWdg1KhRKCsrS/ewk1Cr1eJGCRqDwQCj0Sia+dHNbDaLqmUSlynBM9Sb+jEMw/Q3XETDMExvw43/GGYAEY1G8f3vfx9HjhzB6NGj8eCDD6Z7SGlBpVLhsccewxdffIHKykosX74c//rXv3rVR/Whhx7C888/L76/7bbbcN5554nvu3t8eeXKlVixYoX43uPxsNDMMEOYr776Cp9++ikeeeQRrFy5EmeccUa7Rm8dEQ6HEQ6Hxfe8oRscdNRYZ9myZVi2bFnSzx5//PH+GlKPkAVilUrVrmeCbKchW9IwDMMw6aO0tDRpX3IiRTSZ1GiWYZjMgSuZGWaAkEgk8IMf/AD//ve/YTKZ8NJLL8HhcKR7WGkjKysLzz//PPR6PV555RXcfffdvfr8qUeaZYEZ6PhIc0ekwyOTYZjMZerUqfjTn/6E119/Hb/+9a/hdrv5VAQz4JH9mHU6XdKNqpVlKwwWmBmGYfqfjvoCyJxIEU1/N5plGGZgwCIzwwwAotEorrnmGjz99NPQaDR44YUXkqwbhiqnnnoq/vKXvwAA7rrrrqTK4/4g9UgzMzRZvnw5PvroIwDtvXUVRcG1116L+fPnc8XHECV1Q6fX6zFhwgTY7XaMHDkSRqORN3TMoCG1YpkqnFlUZhiGST9cRMMwTF/DdhkMk+EcPXoUV1xxBd577z1oNBo89dRTOP/889M9rIzhmmuuwc6dO/H73/9eNNG69NJL++z1SEwEOj7SzAwtdu/ejXXr1mH58uUAjnnrvvfee1i7di3mzZuHvLw8PP7447jssstQU1OD4uLids/DVgiDl5tuugk33XST+P7b3/42xo0bhxEjRuDIkSPIy8vr9obOYDD017AZhmEYhhmCUBENnZxlGIY5EVhkZpgMJRKJ4Mknn8Ttt9+OxsZGmEwmPPfcc7jwwgvTPbSM4/7778fRo0fxj3/8A5dddhn+85//4O6774bFYkn30JhBzm9/+1tcddVVANo3S1m7di1MJhPmzZsHAJg7dy4+++wzXHTRRe2eh73thg533nknrrvuOiiKgv/5n/+BWq3mDR3DMAzDMGmDi2gYhuktWGRmmDSiKApCoRCCwSD8fj9qa2tRUVGBjRs34qWXXkJjYyMAYPLkyfjnP/8pOv8yyWi1Wjz99NPIycnBH//4R/zf//0fnnjiCVxxxRVYtGgRRo8ejaKiIlgsFhiNRj62y/QKW7ZswYgRI5BIJAB03Cyluw1UuEHk0GHKlCnYuHFj0s94Q8cwDMMwDMMwzECHRWaGSRNffvklzjzzTDQ3N3d6n8LCQtx666348Y9/DL1e34+jG3hoNBo89NBDOOecc/Df//3fOHjwIP74xz/ij3/8Y9L9TjnlFPznP/+BRqNJ00iZgcpDDz2U5PtdUVGBiooK/N///R+AjpulpP6srKysw+dmKwSGYRiGYRiGYRhmIMMiM8OkialTp6KpqSndwxh0LF26FEuXLk33MJhBiOyt6/P5cNppp+HCCy/EoUOHsG7dOnzyySftvHVnzpyJN954A0uXLsUnn3yC3/72t2n+XzAMwzAMwzAMwzBM76NSFEVJ9yAYhmGGCoqiwOv1wmazsW3HIOHOO+/EokWLsGjRIrzyyiu47777hLeu0+nEddddhz179mDx4sW47777uvWcHCdMV3CMMF3BMcJ0BccI0x04Tpiu4BhhuoJjZOjAIjPDMAzDMAzDMAzDMAzDMAzTY9TpHgDDMAzDMAzDMAzDMAzDMAwzcGGRmWEYhmEYhmEYhmEYhmEYhukxLDIzDMMwDMMwDMMwDMMwDMMwPUab7gEwzFCBzO6ZzCQTmhBwjGQ2mRAjAMdJJsMxwnSHTIgTjpHMhmOE6YpMiBGA4yST4RhhukMmxAnHSGZzojHCIjPD9BNerxcOhyPdw2A6we12w263p3UMHCOZTSbECMBxkslwjDDdIRPihGMks+EYYboiE2IE4DjJZDhGmO6QCXHCMZLZnGiMqBRFUfpwPAzD/P90laHzeDwoLS1FVVVV2if6zhjMY8zkLO5A+LsTA2WsPRlnJsQIMPDjZKCMEzjxsXKM9A4DZZzAwJ1LBnqMAANnrIMtRoDB/bdPF3y9SQ8DZZwAx0g6GShj5etN+hjM4+RKZobJUFQqVbc+yHa7PaMnJoDH2Fd0FSMD6f80UMY6UMYpM1jiZKCMExhYYwU4RtLBQBorMHhiBBg4Yx0o4yS6s24dKP+ngTJOYGCNFRg8c8lAGScwsMYKDJ4YAQbOWAfKOAm+3vQ/fTlObvzHMAzDMAzDMAzDMAzDMAzD9BgWmRmGYRiGYRiGYRiGYRiGYZgewyIzw2QIBoMBv/71r2EwGNI9lE7hMaaHgfR/GihjHSjjPBEGyv9poIwTGFhj7Q4D5f8zUMYJDKyxdoeB9P8ZKGMdKOM8EQbK/2mgjBMYWGPtDgPl/zNQxgkMrLF2h4H0/xkoYx0o4zwRBsr/icd5DG78xzAMwzAMwzAMwzAMwzAMw/QYrmRmGIZhGIZhGIZhGIZhGIZhegyLzAzDMAzDMAzDMAzDMAzDMEyPYZGZYRiGYRiGYRiGYRiGYRiG6TEsMjNMmvnyyy8xcuRILFq0CJdffjkAYN26dTjttNOwZMkStLS0pHmEbYTDYSxbtgxz587FI488ku7hJOHxeFBcXIxFixbhrLPOwqZNm3D66adj8eLFqKysTPfwToqBEh9AZscIMHjjhGOk9+AYyQw4TtLDQIoTjpH0wDHSe3CMpJ9MjxGA4yQTyPQ44RhJPxwjKSgMw6SVZ599Vnn66aeTfrZw4UIlHA4rb7zxhnLfffelaWTJPP3008r/+3//T4nH48o3vvENJRgMpntIgk2bNil33323+P78889Xmpubla+++kr54Q9/mMaRnTwDJT4UJbNjRFEGb5xwjPQeHCOZAcdJehhIccIxkh44RnoPjpH0k+kxoigcJ5lApscJx0j64RhJhiuZGSbNfPXVV3jyySexYMECvPXWW3C5XMjJyYFer8f8+fOxefPmdA8RALB161bMmzcParUaU6ZMwZ49e9I9JMFXX32Ft99+GwsWLMATTzyBYDAIp9OJiRMnoqKiIt3DOykGSnwAmR0jwOCNE46R3oNjJDPgOEkPAylOOEbSA8dI78Exkn4yPUYAjpNMINPjhGMk/XCMJKPt9WdkGOaEmDp1Kr7//e+juLgYZ599Nl544QVYrVYAgMVigc/nS/MI2/B6vRk5LgAoLy/H/fffj1mzZuGcc86BSqUSv1MUJY0jO3kGSnwAmR0jwOCNE46R3oNjJDPgOEkPAylOOEbSA8dI78Exkn4yPUYAjpNMINPjhGMk/XCMJMOVzAzTzzz00EOYN2+euOn1ekyYMAF2ux0jR46E0WiE3+8HAPj9ftjt9jSPuA2r1ZqR4wKA2bNn44wzzoBer8fs2bOTJk61emBNcwM1PoDMjhFg8MQJx0jfwTGSGXCc9A8DOU44RvoHjpG+g2Mk/WR6jAAcJ5lApscJx0j64RhJZuBEHcMMEm666SZ88skn4vb0009j7969CIfDOHLkCPLy8tDY2IhQKIQNGzZg5syZ6R4yAGDmzJn4+OOPoSgKtm/fjnHjxqV7SII77rgD7777LhKJBLZu3QqDwYCmpibs3r0b5eXl6R7eCTFQ4wPI7BgBBk+ccIz0HRwjmQHHSf8wkOOEY6R/4BjpOzhG0k+mxwjAcZIJZHqccIykH46RFHrd5ZlhmBPiyy+/VObMmaOcccYZyiuvvKIoiqKsW7dOOe2005SFCxcqTU1NaR5hG8FgUPnWt76lnHrqqcrDDz+c7uEkUV1drSxatEiZM2eO8pe//EXZtGmTcvrppyuzZ89WKioq0j28k2KgxIeiZHaMKMrgjROOkd6DYyQz4DhJDwMpTjhG0gPHSO/BMZJ+Mj1GFIXjJBPI9DjhGEk/HCPJqBRlABu1MAzDMAzDMAzDMAzDMAzDMGmF7TIYphdRFAUej2dAm+wzDJN+eC5huoJjhOkKjhGmKzhGmO7AccJ0BccI0xUcI0MHFpkZphfxer1wOBzwer3pHgrDMAMYnkuYruAYGXzceeedePLJJ7Fp0yacfvrpWLx4MSorKwEAt912G+bOnYsf//jH3X4+jhGmKzhGmO7AccJ0BccI0xUcI0MHFpkZhmEYhmEYJo00NTXhkUceAQDce++9eOutt/Dwww9jzZo1OHLkCA4cOICNGzfCZrNh06ZNHT5HOByGx+NJujEMwzBMd/j2t7+NQ4cOdZjoZBiG6S4sMjMMwzA9QlEUPProo7juuuvw9ttvp3s4DMMwA5b7778fV111FQAgGAzC6XRi4sSJqKiowLZt2zB37lwAwPz587F58+YOn2P16tVwOBziVlpa2m/jZxiGYQYmkUgEF110Ef7zn/8AaJ/o7AhOajIM0xksMjMMwzA94p577sF//dd/4fHHH8d5552H5557Lt1DYhiGGXBUVVXB6/Vi3LhxAIBEIiF+pygKvF4vrFYrAMBiscDn83X4PCtXroTb7Ra3qqqqvh88wzADCo/Hg+LiYixatAhnnXVWuofDZADhcBg/+9nPcPbZZwNon+jsCE5qMgzTGSwyMwzDMCdMVVUVfvOb3wAATjnlFADAjTfeCJfLlcZRMQzDDDxWr16NW2+9VXyvUqnE12q1GlarFX6/HwDg9/tht9s7fB6DwQC73Z50YxiGkdm9ezd+9KMf4aOPPsL777/f4X24SnVoYbPZsGDBAvF9aqKzIzipyTBMZ7DIzDBon9VnLyqGOT5/+ctfEI1GsWjRImzevBkTJ05Ec3Mz/vd//zfdQ2MYhhlQbNmyBcuXL8eaNWuwZs0amEwmNDU1Yffu3SgvL8eMGTOwYcMGAMCGDRswc+bMNI+YYZiByldffYW3334bCxYswBNPPNHhfbhKdWiTmujsCE5qMgzTGdp0D4BhMgHK6q9atQoAsHTpUrz11luor6/HmjVrsHbt2jSPkGEyB0VR8MILLwAArr/+emi1WqxevRrLli3DX/7yF9x+++2wWCxpHiXTXyiKgkQiAUVRxE1GpVK1u9HPhyIejwcTJkzAmDFjoNFocM899+Dmm2+G2WzG448/jhEjRqR7iEw/s2XLFgDAk08+CQAYP348li5dCpVKhWeeeQbl5eUYPXo05syZg7Fjx2LevHlpHC3DMAOZ8vJy3H///Zg1axbOOeccLF26FHl5eUn3WblyJVasWCG+93g8LDQPISjR2dDQgPLy8nQPh2GYAQaLzAyDY1n9d999F9dcc43wonI6nZ16UQFtx8nC4bD4no+TMUOB3bt3o6KiAnq9HkuWLAHQlpgZOXIkDh78/9g77/i2y2v/f7S3LM94xbGzCVmENiQhZJCE1UAICRcou7wuHVDaci8tKSuhjBToooVCaRkX2tKUUHYYYSaEkJAJmc5wbMdT1pa1pd8f/p0nj2Q507Zk+7xfL71sS/JXj62jZ5zxOQfw97//HTfffHOGR8n0JIlEArFYLMm5nM7RLDuUT+TWn+GgJtMVN9xwg/g+tbnfgw8+2MujYRimPzJlyhQYDAYolUpMmTIFBw8e7ORk1ul00Ol0GRohk2nuueeepEAnwzDMicByGQyDI1H91atX44UXXjguLSqAy8mYgckbb7wBAJg7d64oj1MqlfjRj34EAF2WXzJ9G3Ish8NhhMNhRKNRRCIRhEIhBINBBAIBBAIBtLe3o729HX6/Hz6fD+3t7eKxQCCAYDCIUCiEcDiMSCSSdAuHw+KxaDSKWCx21Dm4L5Jaqnw8DXYA1shkGIZhTp17770XH3zwAeLxODZt2oRhw4ZlekhMlvD888+jsrISU6ZMwfr16/HFF19g+PDhmR4WwzB9DHYyMww6ovpTp06FVqvFlClTjkuLCuCmB8zA5LPPPgMAnH/++Un3X3311VAqlVi/fj327duXiaH1KnV1dZg9ezamTZuG5cuXp9Vyv+uuu3D22Wfjhz/8YYZHe2rE43FEIhHh+O3Kuez1euH1euHz+eD3++H3++H1euHxeOD1euH3+9M6nelGzmX5Rs5oypTu63BQk2GyF7kyg279Yd5hGOL222/H8uXLcc4552Dx4sXIz8/P9JAYhslCUs85RGovK4ZJheUyGAYdUf3zzjsP8+bNw6ZNm6DT6Y5Li4rLyU4eOsjJmYpKpRIqlarfl8v3ZWKxGNatWwcAOOecc5IeKy4uxrx58/Dee+/h73//O+67775MDLHX+MMf/oClS5di5syZmDNnDj744IMk2YO77roL+/fvx+eff46f//zn+OKLLzB16tRMD/uEicViiEajSCQSwsmc6gSOx+OIRqPCUUxSGsCRz7VarYZWq4VWqxX3yTeFQgGlUilu8s8qlQrxeBwKhQJqtfqowb9sJ7VUecOGDeKxYwU1WSOze0iVeJEhuxsI0i39jXTSPTLpZHlkiZ90vyOTOj8xTF+krKwMH3/8caaHwTB9gnQycANlf5B6zrnllltgsVg6yb4xTCrsZGYYdET1r7nmGtx///247rrrMGHCBNai6iHoAEhOK5l4PI5YLAatVjsgFu++yNdffw2PxwOLxYLx48d3evzqq68WTuZ77723X7+Pv/zlL5GTkwOgwxGrUqmStNw3b96Ms88+G0CHQ379+vVdOpmzVd+dHMr0mSWJjFgshmAwiHg8jnA4DJ/PJ7KQfT4fQqEQIpEIEokEVCoVNBoNdDodjEajcDbrdDro9XqoVCoAEI5olUqV5GSmn+nxSCSS5Jjua3BQs3c5WmaqvAal2pJSqeS1qI8g7yuO9bzjuRZ9TW1SSvZD98lzFcMwDNM/oKQK2u+mQ6lUQq1Wi8SH/rgOpJ5z1OoO12FqL6sbb7wx7e9n69mG6XnYycwwSB/VT226w5w6VHIvH/QoKwiAcDyHw2FoNJoBEynuS3z++ecAgGnTpgnnoMzChQthNBpRXV2NjRs3YvLkyb09xF4jLy8PAPCXv/wFkyZNwpYtW8RjiUQCXq8XZrMZAGAymeDz+bq81sMPP4xly5b17IBPENpk01facEciEQSDQfE3tre3IxKJwG63w+v1IpFICN3lWCwGhUIBrVYLg8EAlUoFg8EAq9UKi8UCr9crnM16vV5s5mnzrtFokjKY4/E4VCqVcCrRPNGX4KBmzyJXychOwa6aU8pQMAPoWK9CoRB0Ol2fs7GBRLqgtXzgp/1FV9nK6YIQqcjBLvn3otGomKvYRhiGYfo2iURC9AdJVwlD64VCoRBJFuFwWOxz++Ke9GiknnMMBgOAI7Jv3/72t3Heeedh/vz5nZqHAtl5tmF6h75bb8owTJ8h3aKtUqmg0+mg1WpFJFir1YrnUwMwclalOqeJ2267DZWVlVAoFPjmm2969e8aiJAj9dvf/nbax81mMxYsWAAAeOmll3ptXJnipZdewmuvvYbly5d30nI3m83w+/0AAL/fL5okpiMb9d3J4UvOOtJkJgez2+1Ge3s7fD4famtr4fF44HA4cPDgQdTU1KCxsREtLS1obm5GXV0d9u7di0OHDqG5uRlNTU2oqamBw+FAIBCA2+2G3W5HIBAQrxcOh+H3+0XGNM0h5PBOF7Q6WYLBIC699FKMHDkSEydOxAUXXICamppTvm46KKj5+eef4/vf/z432OkG5KaU8pqRGhyJxWIiO5++lzObZZuiG2XH9qaNMMcH6cPLZcwUHJAbkAYCAfE+yoGE1EamZA9ygIIc0KRDHw6HxXWAzsHz8847D+PHj8fEiRNxzjnnYOvWrb38X2H6CsuWLeO9K9MlPJf0LvF4HIFAAKFQSDiSlUolIpEIfD4fnE4nnE4nXC6X2P+SPFwikUAoFILf70/roD4VjnbOra6uxrRp0zBy5EhMnjwZO3fu7LbXJeRzDpHay4r60KSSjWebgUYoFMKtt96KESNG4PTTT8c111zTK6/LTmaGYXoUchaRw4pKTOlwl5p9pNPpOumSkgMhFAp1yjJavHgx1q5diyFDhvT8H8Ng27ZtAICJEyd2+Zyrr74aALBixYpjli/3Zb788ku88MILWLlypcjUtdvt2LlzJyorK3HGGWdgzZo1AIA1a9Zg0qRJXV5Lp9PBarUm3TINfdbI6ULBHwBJAaDGxkZEIhHhUA4EAvB4PGhsbER1dTX27t2LmpoaNDU1wel04vDhw6ipqRGO5bq6OgSDQcRiMbjdbrS1tSGRSAhpiEgkgvb29iTnsyzj0V2O5ptvvhl79uzB1q1bMX/+fNx8882nfE2mZyEnMDn/5MaUcqNKeg41qJSbTVIDykQiIQKd0WhUBI3kLFm2keyB3leCKiioSah8P+0fyOlMwSuaOygbmuyIAlp0I9kfuh49j0qH6TWAjnVv+/bt2Lp1K/7nf/4H3/ve97r17+ZGTP2DzZs3Y/369aioqMj0UJgspafnEuYI8Xhc7DMBQK1WIxAIoK2tDT6fr9M+k4KZfr8fHo8Hfr9f7BVor9FdjuajnXO///3v4+abb8bevXvx85//HDfddFO3vCaRes4h7r33XnzwwQeIx+PYtGkThg0blvb3s/FsM9C48847oVQqsXfvXuzYsQOPPvpor7wuO5kZhukR0mUvKxQKzJgxA5MmTUJeXh7GjBmDCRMm4K677hK/RyVHpD+aWn6U6pieMWMGysvLe/ePG6BEo1F8/fXXAIAJEyZ0+bx58+YhLy8Pzc3N+OSTT3ppdL3PAw88gKamJlx44YWYNWsWfvnLX2L+/Pm46aabsGTJElRWVmL48OGYNm0aWlpaMH369EwP+YSQszkpo4+czR6PB4lEAi6XS2yqHQ4HlEolnE4nampq0NraikAggGAwCI/Hg5aWFuzduxctLS1ob29HbW0t3G43gsEgamtrEYlEYDKZEI/H0dzcDIfDgcLCQiGZEQgExDjC4TDmzJmDyZMnw2aziezSu++++6T+Vr1ej4suukjMM1OmTMGBAwe689/JdCOyc5kylGX9RLLZefPmYfr06SgrK8NZZ52FOXPm4Ne//rWQOJAdh5SVT8GNVAcm20j2IOsvK5XKpACYWq2GwWCA2WyG2WyGyWSCXq9PahhKwW6VSoW5c+di+vTpKC8vx5QpU3Duuefi17/+dZIDmZwJKpVKHLQpUE7PI8e2zWYT43S73d3epJQaMa1btw4ffPABvF4vAIhGTJ988gk+/PDDbn3NgUwikcC0adMwceJEGI1GjBgx4pTWGqAjSHvLLbfgySef7Fel9QOZnrCTnp5LmA7IwSxnL7e1tSEQCACAkHijHiK0f5D7ZITDYXi9XgQCAcydOxdTpkyByWTqFjvo6pzb0tKCzZs3i8zURYsWiUrC7iL1nLNs2TLs3LkTt99+O5YvX45zzjkHixcvRn5+fre9Zl/geJsFn8x1u3Me8fv9eO655/DQQw+JtaakpKTbxns0WJOZYZhuJzW7UKFQiOyy999/HwAwcuRIvPHGGygvL4dOpxNOgcsvvxz79u1Luh5pM7/yyisoLy9HNBqFRqPp9b9roLNnzx6EQiGYzWYMHTq0y+dptVpcfvnlePrpp/GPf/wDc+fO7cVR9h5vvvlmp/tStdwffPDB3hpOj0Kfz9Tv3W43EokE6uvrAXRkLRw+fBhmsxlXXXUVxo8fD4VCgYMHD+Ljjz/G5s2b0dTUhFgshqKiIjQ0NIimIgcPHsSoUaMwcuRI7N+/H16vF3V1dRg9ejSampoQDAYRDofFpv7dd9+FSqXCyJEj8c4772D48OFJB/bFixd3mkuIN998E4MHD+7y73388cdx8cUXn/o/jul2ZIkEWXuZoIaQfr8fr732GoCOyos33ngDw4cPT6qWIRuRZTFI8/vll1/GsGHDujxEsI1kBvm9IocAOQP0en1SthUhO4eJaDQKl8uFt956CwAwbtw4vP/++xg2bJiYRxKJBBYtWoTq6mphA6T3TDYyevRo8VxyUlx33XWiz8e7777brX8/N2LqXRQKBdatWwcAKC4uxocfftgp+/hE15p7770X11xzDaqqqnpm0Eyv0xN2AqBH5xLmiEQGzd2JRAIOhwMAoNFooNVqYbfbhfRdKiqVCvn5+dDr9aJK6vXXX4fJZMLw4cPx5ptvYtSoUd22N5Wpq6tDaWmpWAMUCgUqKipQW1t71CbSJ0K6cw6R2suqP0N7Taqg7KqnB+1J6CvQuak0kdpYmL7vznlk//79yM/PxwMPPIDVq1fDYDBg6dKlvVLtxE5mhmG6FXIAEEqlMknmQqPRwOl0IhqNYsSIEUL/ig49zz33XNrr6nQ6aDSaTqWwTO9BenATJkw4ZkbFd7/7XTz99NN49dVX8eSTT0Kv1/fCCJnuhDbc9D1thOjzJ0vgRKNRmM1modl9zz33JGW7Dx8+HPPmzcNXX32FX//612htbUVBQQFUKhV27dqFBQsWoLq6Gnv27EFlZSXGjRuH7du3w+VywePxoLi4WGQ7m81mIYPQ2tqKSCSCioqKJIcLALzyyisn9Xc/9NBDqK6uxlNPPXVSv8/0DJStmk7GBehYW3Q6HWKxGOx2O4AO2/T5fIjFYhg3bhyADuei3++HQqHAihUrxFzmdrvh9/thNBqTnIzpYBvJHPIBT6PRJGU0H2/wmTTlqZEolTqnaqIrFAq8+uqrSCQSCAQC8Pl8UCgUKCgogM/nS5LJkPm///s/AMALL7yAO+64A++8886p/MlJcCOmDijYkKqrTmsVZarLTSBPBZKFSidvcSJrzRdffIGNGzcmSZ0w/YfushOiJ+eSgU4sFkuStYhEIqIyRKvVwufzobGxUTyfqmJkneZoNIqWlhbodDqUl5fD6/UiHA6jpaUFkUgEZWVlCAaD0Ov1Yh462b1pOlLntu7MqmWOVGXLfo2uSD0bHS/kkJYbDDc1NXXLPBKJRHDgwAGMGTMGy5cvx7Zt2zB37lzs3Lkz7f6gO2EnM8Mw3YK84QeObPQpw0ihUMBoNEKtVmPNmjU444wzoNVqha4Vcf3114sGAuTkoon7rbfewqBBg5Iyhpjeg/SYjyaVQVD5cX19PVatWoWFCxf29PCYboY+w7T5IWdcaoCBytRJ3xZAlxrp3/rWt/DAAw/g9ttvx65du3DJJZegpqYGu3btwtixY7Fr1y7s2bMHs2fPRmFhIZqbm+F2u5GbmwuDwZCUTRKPx/HNN99g/Pjx4meZk8kWeeyxx/Dqq69i9erVMBqNx/NvYnoBkiYgKLABdNijwWAQAQa32w2g45CYl5eH7du344wzzgDQkbXZ3NwsDmI/+clP0NDQIKpt4vG4sO+XX34ZVVVVSRkpANtIpqHPOWWsyw34fD6f+Fl2OqrVamg0GvFYKBRCLBaDUqlEbm4uvvrqK2EjqcjzCNmcWq1GPB7Hyy+/jBEjRnQ51uuvvx4/+MEP0NbW1q3lxNSIiTL1gQ75FoPBAKVSKRoxpTtELlmyBLfffrv42ePxHHfmXDZAwaau+j3IEk/kGKDm0qficJbnkVROZK359NNPsXv3bpHFXF9fj/PPPx9//etfceGFF57U2JjsobvsJJWemksGIuQ4pLNnPB4XPUZo/mhqakI8HodCoYDNZoPBYBA/G41GWCwWKBQKuFwu1NfXIxQK4dChQ6iqqoLL5cK2bduSAtuRSERU03RXJvPgwYNRX1+PaDQKtVqNRCKBuro61nnvBuRm0rLjnvaeqYFNcg7LEmz0+LEc//RalKSnUCiwadOmbplHhgwZAqVSKXolTZgwAVVVVdixYwdmzZp1fP+Mk4SdzAzDnDK0YMuHPwBob28H0LHBl7PDDh8+LPSl9Hq9KH8HgFdffVVkF9HzSf/VaDQmObGZ3oUymY/W9I9QKpW48sor8dhjj+Ef//gHO5n7IEqlUjjdVCqVkKmJRCIwGAwIBAIwmUyiSV8oFEJRURFaWlqwfv16XHDBBWmvO2rUKMycORMfffSRcBTs27cP559/Pnbt2iWyUOUmbMCRjZrs8GtoaEBpaal4XA4+nWi2yG9/+1v885//xOrVq5O0EJnMQgc04Mhmvqu1BUi2D4VCIdabUCiEpqYmAB22FYvF8Ic//AH5+fnIzc1FS0sL4vG4cNSRQ0pei3rKRurq6nDdddchFArhkksuwcyZM/HTn/4URqMRzz77LKqqqnDXXXfhk08+wfjx4/HnP/+52147W0g9yB0vKpUKer0ewWCwy8xiavxHgW56jlarhVKpTNqTpELzSCAQgNfrhUKhQF5engh4ySWvXq8XPp9PzEn/+c9/kJ+fL7KPuwNqxPTGG290asR03nnnYd68edi0aRPuuOOOtL8v64j2NUiHnZAP9bJsDgVI6edoNJokh0MOgRNxOh+PjRwPd955J+68807xc2VlJd566y2MHTv2uK/BZC/dZScej6fH55KBCDWIpSZ91FiamkpTQ1iaLyKRCNra2jpdR61Wo7i4GEOGDMHo0aOxb98+BAIBHDp0CIMHD0ZTUxOKiorE80OhkNBy7q5M5qKiIpxxxhl46aWXcMMNN2DlypWorKzsNqmMgYrcYFy+jxqUE7KTWYaqqrRabacAt0xq3xtyNFOwoLi4GOFwOKkvFXBi80hBQQHmzJmD9957DxdddBEOHTokpAl7GlaQZxjmlEgtYdZoNNBoNEkHAbVajVAoJDRVp02bhs8//1w0KwAgGoc1NzejtbUVdrtdRAppIqfXkCfrW265RWTMzp07t1O5K9M9JBKJE3IyAx2SGUBHBjrrPvY95MxlOsyTU4MyOCmbgzRCqXP0iy++KMoO0zFmzBgAgNPphF6vFxs4AMKhSHMIabbT4/K4pk6divXr1+OGG24AcPKlgvX19fif//kfuFwuzJ49GxMnTsRZZ511Utdiug9Zfonsj+xCpVJ1cjADgNlshkKhQDgcRiAQwNlnn43PP/8cV111FYCOktchQ4YkSfh4PB4RUKHrkfOKJBh60kZSm7ndfffdWLVqFZ544gksX74ctbW12L9/Pz7//HNYLBZ88cUX3fK62YCcMUQ3uadDKvT+yAcyrVYLi8UCo9EIg8GQdKPyZqAj8B2LxcR7S3sXshF5TyKPjxzMQMfcJ9ukHPxyu9249NJLMW7cOEyYMAFPPPEE3nrrrW4Nig/ERky0z6TPvkKhgE6nQzweh8vlQmtrKxwOB1wuF1wuF5xOJxwOB/x+v0iAoPeJbC0YDKK9vR1+vx/t7e1ob29HIBBAIBAQP9Pjfr8fZ5xxBtauXYsrr7xS7GVluR6GAXDUueRE6I25ZKARj8eFNFIsFoPP54PP50MwGITb7Ybb7YbH44HL5UJbWxtaWlpgt9vh8/nQ3t4uslqpSqK+vh7r1q3D/v37UVFRAZ1Oh3A4jMOHD2P69On46quvcP3114vXDwQCXVZgHI2jnXOffvppPP300xg5ciSWL1+Ov/3tb93yvxqIUNAhEAgIZzI1haa1hJoAk73QzefzIRAIiCqbUCgEr9cLp9OJlpYWtLS0wOFwwOPxCFuizHiVSgWNRgO9Xg+j0QidTodp06Zh/fr1uO6660TT85PlqaeewiOPPIJx48ZhwYIF+Mtf/tIrzf8UCV4dGabb8Hg8yMnJgdvtFs6W/gxt/GkaoawgAPB6vV1OihqNRjipotEo3G53Uik0kZOTIzSdKQKsUCiSXofpHRoaGlBWVgalUgmfzyd0II9GIpHAaaedhj179uCFF17Adddd1wsj7R9ky1xCjS7I2RcKhcRh3+PxwO/3o76+Hj6fDzU1NQgGg6ivr4fL5cKZZ56JZcuWJekkE2+88QaefPJJTJs2DSqVCm63G9dddx02btwIo9GIK664Alu3boXf78fo0aNhNBrR0NAApVKJvLw8hEIhaDQaqFQqqNVq4TTSarUD5hCWLTbSU8hSSrQJJ0kEoKPjOx34EomEyB5RqVTwer3wer3QarUoKCiAy+VCS0sLFAoFhgwZglgshrq6OgDAoEGDRFaqTqcT9kRObbKtnsThcCAnJwcqlQqzZs2CSqXChx9+CAA499xzcdttt6Gurg4//vGP8eabb2Lfvn342c9+1uk66Zq6DR48OKttRJbZkpE/1zJ0EEw9vqQ2z5HlfoAjB3wqd3Y6nSKwoNfrk7KF4vE44vE4otFoUhBdp9PBbDYLe6ESagBdZitlO9k+j6TKY5BdOJ3OpH2jSqUSgYdYLJZUwkxotVoxR3Tne9UdchzZTrbbCZN5stlGZP3lcDiM9vZ2RKNR4WQOBALw+/1JQU66pftcq1QqcQ6ifWh5eblYZ7RaLXJzc4Usk9VqFdeg9WYgkq02QvtNuRqGgpH0GMmpUGWM/Nx0ZxHKZD4W9HuUpEfJPKlyHbQ/7Sv0nZEyDJNVHM3BDHQcvmhCpoMebf6pTKm9vT0pw9VkMsFoNMLhcIgMETowy91a++JBrq9DesyjRo06Lgcz0LHwfve738V9992HF198kZ3MfRD58yZvuqnRH0lkBINBFBUVob6+HoWFhfD7/di0aRMeffRR3HHHHZ02Rvv37wcAlJWV4fDhw+L6QIezhrIHgY7MQcpiNhgMwrFA4+oNJyDTu9D6AhwpPUw95JF9yIRCIZhMJnGAo87xra2tADpKB9VqtbA5k8kkHIYajUY4imSHdW+Q2syNGmgCHf8Lr9cLs9ksxkyO9lT6WlM3KhEFjsgY0D6BZLNSUSgU0Gg04nmE7HROdUCr1Wro9XpRFt3e3g6LxSKaQpL8SlcoFArR9InsTh6b3BiV6T6ogoUO8xREtNvtwpGs0Wjg8Xjg9XrTZhWTA1itViMajSbJ35DTmUqa5ceIdI215CAEcESOg8ZDCRFMdkLvn1wpKQel+PPcv4hGo2LeDoVCIpOUsko9Ho/QZKZs1NRApk6nQ05ODsxms0i6oHWY5peDBw+KCppQKAS73S6q/Dwej3A0k+yCTqdjO8sCYrGYOGMAHe+n1+sVUm2U2Uw2QnOHXF1N76O81tAeloLTFJSmwDrtX2j9kCt1DAaDqMySHd3xeDztfjgbYSczwzAnTGomUbrMYppo5d+hw7xKpYLL5RKTularRU5ODtRqtTj0pTZ2okl8oEZ/M82JSmUQ1157LZYuXYrVq1ejurr6qE2SmOyDmmaFw2GoVCqxwaENVk5ODmKxGAoKCpBIJJCXlweHw4Fhw4ahuroan376KTweD+68806x2fb5fPj8888BAGeccYZwONN8kdrwU6PRiFJ1ariVqsGbKnXA9F3kACZVrsgSFnq9PskBTe87bdzlbF6VSoWGhgYkEgmYTCbYbDbRtVt2KMm6eZRR0tsZI3IzN1nPXKlUwmw2C8e43+/vMgOorzV1kx3M9P/uSudQhuYlanaUrsGOrM8cjUZFg0gqPQ2FQkKbOLWRjywRRJlFCoVCNAwEOrLRZJ1fnnu6F/osy1lcCoUCra2tIjswGo2iubkZAMShnuYBykCUM8Qog5myzEh7k5DtiuaAdNUMcraaXO1Dc1ckEoFOp+MAaJYgZx9SksuxSOdslucaeg7ZGAcWshPZwUwZzFSJ5/V64Xa7EQgEhKM5EokkaTZTwJmcgC0tLQCA4uJiWCwWkRFNj5Oj2mg0Qq/XiyoljUYjsneVSqXQfTYYDDxPZJDUZDaNRgOn0ykCCSSvQl+pkjO1ISDNAbS2BINBse7QaygUClgsFlitViH1JiffRSIRUTlFck1GoxFms1nYC8k/9YUABTuZGYY5YeQykeMtEaXDGWUokqahxWKByWQSpSnkTKLDH236ycGc7ZNqf+VkncxVVVW44IILsGrVKvzlL3/Bo48+2v2DY3oU+uxFIhEhWUCZgeS8oyBSYWEhwuEwfD4fJk2ahO3bt2PLli24+eabsXjxYgwbNgyvvPIKfD4fKioqMHbsWLz88ssAOjI0AYjuyuQ8pp8BpM06ksfJ9G1SNf7TyZ901biMsk2i0ahoAufxeBCLxaDValFSUgKXy9VpjSFZjFSHVG+S2szNYDDAbrejpaUFlZWVOOOMM/Dyyy/j1ltvxZo1a3DxxRenvU5fa+qW2swzNTvoeDha1mFqZnQikRDVEHKzYpLjokNiuteWM41o7iO4uqp7kTPLFAoF9Hp9JwdzMBiEy+USz6WquEgkIpIgZL1Leo91Ol2SPAo1n6aSZfp9uVKCgltGozFpH5oa7CAnAGVg6/V6diBlEAoiUCCBAk+ppe5yg1f6ejwaqPJzKCA6kCS7sh1yGNP3JIdBDman0wm/3w+n0ynmEzmjNZXCwkLk5OQgHA6jqakJTU1NYm9B0o7kgCSHoclkgtvthsVigVarhdvths1mg1KpFBW9bDeZQ05o0Ol0cLvdYs9AjmWv1ys0vCnwGQqFkpLtaO9AzmStVivWmWAwCIPBALVaDY/HA4/HI9YektQgJ3VOTo6wCzkokpubC6VSKXoBBAKBrA9kspOZYZjjhjbRlMnTlWZiKhT5ow0fZSLm5uaKA3EsFoPT6RTXpcWWNvR9Ve+wv3CyTmYA+OEPf4hVq1bhueeew69+9aukhltM34AccOSwAyCyms1mM8LhMAYNGoRgMIhBgwaJz/yCBQvw5Zdf4tChQ0kNSbRaLX72s58llbvbbDYAR5pzGY1G+Hw+eDweIdESDAZFwydZvgNgJ3NfhwIKsoP5eOd8WTuXHMyhUAjRaBRqtRplZWUIhUJCNoOawSmVSuh0OuGAykQGM5DczA0AHnzwQcyfPx8KhQIvvvgiKisrMXz4cEybNg0jR47E9OnTe32MPYnclA3oPvkJcgJS5hjtYSg7mbKDqHyeHFJ0+JPHR05HshEKlHMGY/ciN3lVqVQiY8vtdouAYyQSgcvlQiQSET09fD4f/H6/+N3UdUGn08FgMAg5HbVaLcqX6XdMJpMoa6aKPdrzUgNAWvMMBkMnHXC6LiVVBIPBtM1JmZ5F/izT+0jNGmW5EwBJEhkE7XdSs5nl4DYFLCijXnY8cXZq5pEbhVIvB3IU+v1+uFwu+P1+OBwOeL1eOBwO8Vw5AG00GqFSqWC329Ha2orW1lYUFRVhzJgxsNvt8Hq9OHToEICO7GaSdyNt5ng8DrPZDK/XKzKaXS4X8vLykmQVYrFYpzmF6VloPwB0rA/Ud4bWe2oUGYvF4PF4xDzi9XqTel/IaDQasdYEg0GRkCNXU1FVDTWaTUWtVsNmsyEnJ0c4uNva2pCbmwu9Xi/2uHT9bA1QsJOZYZjjgjZqtDFLlcPoinA4nFSemkgkoFKpxAJL13a5XKLkXXYs01fesGUOv9+P6upqAMCECRNO+PcvuugiDB48GHV1dVixYgVrM/dRSC6DDljk6I1Go7BYLIhEIsjPz0draytKS0tRU1OD3bt347rrroPH48Fnn30Gu92OiooKXHXVVRg+fDhcLheAI5IAtIFyOBzIy8uDz+dDc3MzxowZA6BjPqENFcnqpCuVZ/oOcikzcSIN96iUkZxF9DUWi0GlUomGpY2NjUnXpkwSOYs1Uw7DN998s9N969evT/r5wQcf7K3h9BrUq4GcNLJ8Rne+DySRQId+eh3KNqL76LBPpa40Brm/hF6vTwqOcfC7eyHnPQWAqMpN1j9tbm5GNBqFy+VCKBSCw+EQWWaUAZYqxaLX62EwGOByuWA0GpGTkyPmDqvVCp1OJxzJAGA2m5GXl4f8/HyR2UxVeE6nE263GyaTCSaTqZM+t06nE03GIpFIUsCC6TmoEkbONmxvbxfOI3ICU1UlkJzJTI5l+pp6Sxf80ul0yM/Ph0qlEsk0fr9fOJOY3keuOlEqlXC5XKLaTnYSOp1O+Hw+OBwOJBIJqNVq7N27t1MjeqVSienTp+O0007D5s2b0dLSgpaWFsybNw/nnnsuduzYgf3796OpqQlKpRKnn346HA6HyJ4GAKvVCrfbjcLCQiQSCTgcDhQVFYk9L/UG4KBU7yFXIiiVyqTeDLLzn+aQ9vZ2EYygvQPpNFP2ukajEeuVWq2G0WiEyWRCe3u72DvQ/ob6PFBwkiSiotEo7HY7XC4XiouLxbzldDphs9lgNBpFIJP2zlSBl022w05mhmGOCkX9aeMPHJ+DmTZ4NBFSBoFarUZeXl7SppxKmGT9Tco+oo0fkzm+/vprJBIJFBcXY9CgQSf8+yqVCt///vdx991345FHHsE111zDB/M+CB3EqHmS3CAtkUhAr9fDZrOJjdqIESNQXV2NN954A//1X/+Fhx9+uNM13W43gI4MMqVSicLCQtTV1aGlpQUjR45EXV0dvF4vfD4frFar0M2jzAAaD23QWBu175DOuUz2dDzzAwUuSYeVDvjkaFYqlSgvL4dOp0NTU5OwF7lMntYa+X6m91CpVGKPITtuU0vZ6ftTgQLW8n6GHICyI4mcAoTchJKqcORqLraZ7oWcf/JcTlIYOp0OjY2NQgonHA6jtbUV7e3tcLlcIiuM9DTp802Hd4/HA5PJJDQvc3NzYbFY4HK5oFKpUFRUBJ1Oh1AoBJ/PB5/PB5VKhYKCAlEqT47oeDwOr9cLr9cLo9EIq9Uq9qpka7Kzm+lZSCaJzht0rvD7/QgEAmhvbxfZzHKZO+1r5ECjvCbIa5FSqYRerxeZ7ORgamhoQElJCUwmk5BtokxW+RqplVfcR6L7kSshqJ8HBXvocx0IBERlBFXQKpVK0eC8qqoK48aNAwDs2bMHe/bswWeffYYdO3Zg6dKl2LJlCzZs2IAPPvgAGo0GF110EVwuFz777DPU1NTgm2++wezZs7Fnzx4hmxEKhaBSqeB0OlFcXIxgMIi2tjaUlJTAaDSKZCx2NPceqdJctM5TkIrmC5o/KBhhs9mwd+/eLqVVZHmlSCQCr9cLk8kEi8WCQCAAg8EAnU6HRCKR1MTZYrGgsLBQyKVFIhEcPnwY5eXlItjqdDpFRjPNdbSniUajInEiG2AnM8MwXUJdUOUD3/E4AOLxuNhgyR1WafPW1tYGm80mmqbIGpmyY5kOCExmORWpDOKWW27Bo48+ih07dmDlypW4/PLLu2dwTK9Cn30580er1QrtuWAwiLy8PPj9fqhUKpx22mnYtWsX/vWvf2HPnj2YNWsWSkpKRIftzz77DABQUVEBAMLJ7HA4oNVqUVxcjMbGRtTW1mLMmDHw+XxJkXtyJNB4YrEYzxlZTjrnsuzsPdrhStY9pcoacjLL2UskkaHT6UT3eOCIxjM5FimYma3lhv0d2QmY6mRO1UQlp8ypBpLo/ZZ1WqkyggJksvNYzqylscrjYXoWueyd9pXkMHQ4HKLknZyHlAUmU1xcjNzcXOE4jsfjsFgscDqdCIfDKC0tRSQSQWNjI9RqNcrLy0XmYTgcRnNzM1paWpCXl4eioiLhLPD5fCLDLRAIIC8vTwQiqGEuVfzw/NIzUEILOfR9Ph+CwaB4r30+H7xer8hipUxBek9kJzNlA2q1WhF0JMkWyoSnhlwmkwmjRo2C0+lEe3s7WlpaUFFRIbIMyR7lBJ1UlEoljEYjzyPdiPzekiQByR+Ew2HR1I903OPxOAwGAzZu3AiFQoGf/OQnuOCCC5I+r3v27MFjjz2G2tpaLF++HE899RTKysrwn//8B++//z6mT58Om82Giy++GO+++y6qq6vR2NiIMWPGYMeOHQiFQtBoNDAajWL/QlIZbrcbubm5wrYoUE5BcKbnkHtCyNUN1ACSEhni8Tg8Ho+wq+3btwMAcnNzUVBQkDS/UJIDSSzpdDpYLBYRQLBYLMIerVYrcnNzhZ+EgpZmsxmjRo1CS0sL/H4/GhoaUFlZKap1nE6naB4oO5vpugaDISvmFD6JMQzTiVTnMk28qZqZcpkxHdLkxie04afn+v1+seGKRqMoLS0VWUNyFhllg3CWUHbQHU5mm82Gn/70p1i2bBmWLVuGhQsXDhhnYCgUwn/913/BbrfjhhtuwH//939nekgnTWo3ZcrEofeSmveVlpaioaEBKpUKU6ZMwZdffomtW7di69at4rBGTdkUCgVmzpwJ4EimIDmAysvL0dzcLLKZCwoK0NLSgmAwKDZRdA3aKHI2c/ZCGYZyNtexnMvyWkK/K5cJytkcAGAwGFBSUiKacZEOM8lkkEOB7JcdzJlHdihTdrOc9QccadpFjd9OZX8gO7RJ45eyYClbkaA9DJW+95SkB9NBapNXeY/Y0NCASCQCj8cjnIdOpxOhUAjBYFA4lxUKhShLb21tFU26zj//fFEdQ5nLfr8fBw8exPjx4xEKheD3+1FTUwOVSoWKigqUl5eLBmFtbW1oa2tDTk4OiouLUVRUhFAoJLIi29raUFBQIGQ+SM4pHo9zRV4PQI4bcszJWaperxcul0s02iLnMAUlCVqDZC1VCj7q9XpYrVYRgMrLy8OoUaPQ2NgonD9VVVWoq6sT+uCUZUhBBtl5BRwJ1Ms68NynpPuQJR1pH0ma/HSTNW2BIxV1CxcuFH0RZEaNGoXHHnsMP/zhD3H48GGsXr0aF154Id59910EAgE4HA6UlJQgkUgk7UuHDx+OnTt3ChugecBut2P48OFoa2uD1+uFxWIRGvEUSAuFQmwXvQit63J/CJpXvF6vcASTJMrYsWOxbt06fPLJJ52updPpMHz4cFEVEwqFYLPZYLFYRGNBqsz0eDwYPnw4xo4dC7vdjsOHD8Pn82H//v0YPXo0Dh06hFAohObmZpSVlcHtdosACUkV0n6WHNzZMqf0qJt74cKFyM3NxeLFi3vyZRiG6SbkZhmyw5juk7XM6MBHm3La3NHzKFpMjmkSzSdok0eLPB306eDGWULZw5YtWwCcnB6zzE9/+lPk5uZix44d+NOf/tQdQ+sTrFixAhdccAHWrFmDf//730ftXp3tpJaxyw06gSNOZpPJhIKCApFZdNFFF2Hs2LFQq9UIBoNwOp2IxWIoKCjAjTfeiMrKSkSjURw8eBBAR9kY0DEvFBUVAQBaWlpgNpthNBoBICmYRYEx+X4me6D3ibItAIjAJDXJkR1/JFHg9/vh8Xjg9/tFtiCVq9N9tLFWKBSw2WwoKysTQQ/SXpQ1/qliRs5kZjIHZXoCEJ3W5WxCWSeV5hvaq5yoFEFq82KlUinsDzjS6Ekub6d5hTLPAM5i7i3k7HLKQPb7/UKPmT7fPp9POJjPPfdc/O53v8Ojjz6K3/zmN/j973+PGTNmAADef/99fOc730F+fr4ooy8vL0c0GsXmzZsRDAYxZswY4Vg8ePAgNm/ejEQigaqqKlitVgAdTqk9e/agtrYWGo0GhYWF4lDvdDo7NR1MzcpnTh25KRetE263Gw6HAy0tLWhqasLhw4fR0NCAw4cPo7m5GY2Njaivr0ddXR0OHTqEuro6NDQ0oLm5GU6nE06nEw0NDbDb7ULPuaWlBUVFRVCr1XA4HHC73Rg5ciQACJvLzc0F0PHe0/6O9FgtFou4Wa1WmM1mmM1modPNe5XuRf7MpfbrIEevfDYFgJqaGgBI62AmcnJyMH/+fAAdZyKv1yvWjZycHDQ3N4uKPQA4/fTTodFoxLxA8jpUwev3+5PmDABCOx6A2C8xPUfqXhQ4MleTvArNM+ToBTqSaF588UXs378fGo0G48aNw8yZM/Gtb30Lubm5CIVC2LFjB/bs2YPhw4dDpVIJOSe1Wi0CpCQ/uW/fPhw8eBDl5eUYO3YsFAoFXC4X2tvbUVpaCqBj/Wtvb0dOTg7MZjOAjibpVAlOe1vgiIM80/RoGtltt92G733ve3jhhRd68mUYhjlFaNElB3K6CYoO5LJGMkX26HepRETOOJIdyzk5OTCZTGhoaEh6noyczcxZQpknEokInbIzzzzzlK5ls9nw61//GjfffDPuueceLFq0CIMHD+6OYWY1mzZtwk033QSlUolx48Zh165dOOOMM5KeQ9Fugsr7s4nUxlzk2JMdQKSr3NraioKCAmg0GjQ2NuLAgQPQ6XSYO3euaHJBm6VwOIwNGzagpqZGyGyMGjVKvG5ubi6amprg9/tFhlptba0oOVSr1UI2gzKZOXMseyAHszzXy5UywJEMZ8o+ltcHymKmdYYek38mp6PdbsehQ4dw+umnQ6/XCydAajNZWssGSjVFtiI7cWkOoQCDXDVFpGYwkx0dK6tZdi7QzwBERhv1iyDJHQqgydIYQHKWHO9Pegb54E9ZzIlEQmRwBQIBOJ1OBAIBUeFCDWTnzJmDzZs34y9/+QtisRimTJmC//3f/8VNN92EcDiM9evXY/Xq1bjmmmvw5JNP4sCBA5gwYQJKS0uxceNG7N+/H3V1dZg8eTKGDRuG/fv3w+PxiPtPP/10lJaWCqdkW1sbgsEghg8fjtzcXDQ3N4vAmcFgYBvpIRKJBNrb20U2KjlbfD4fWlpahLO5ra0Nfr8fLpdLOP9JLzkejwsnYHt7O5xOJwoKCmCxWERgY+zYsWhqasKBAwcwe/ZsbNy4ES0tLaIRMWWcms1m0S/i8OHDMBgMopSdstpTSdWDZboHtVotegHRHjCdw02WSiBnrs1mO+q1y8rKAHQ4helcNGTIEOzbtw+ffvopEokEdDodzj33XAwePBgOh0MEHXQ6HWKxGEwmk5DgGT58uJjTSIuZ+gaQTBCteUzPQnsD2lfSZ5vmCp/Ph0Qigfz8fLz99tsAOpra33jjjSL4CHTY1fbt2/G3v/0Ne/bswdtvv42lS5fi9ddfh91uR1VVlchEdjqdmDhxIrZu3Yp9+/Zh+PDhMJlMyMnJgcvlgt/vx6BBg5Cbmwun04nW1lYMGTIEZrMZKpUKbrdbNBSUe0tQlUSm55YeffXZs2eLbCSGYbIPObtM1rmkQ7usJUe6Z7RhczgcojMvdd2mG2WXkYPZaDSioqJCdNIFIF6PSN1wsYMoO9i9ezdCoRAsFguGDRt2yte76aabMHXqVPh8Plx99dVJZYv9FdLYAjoyfOVGD8TDDz+MnJwccctG53tqFp/8maVGagBE9+N4PI7c3FyMHz9e6BQeOnQI+/btw+7du/Hll1/iww8/xJo1a7Bjxw74/X4YjUbMnTsXNpsN8XgcLpcLhw8fBnAkW1qtVovMIcqMpflKdkByhlDmSedgJmkLyrwwGo3iECVXz7S3tyfpalKmmtPphMPhEBnO1JyFiEajaGxshNPpRDQaTWomKEtzcKO/zCPPKdTEk3QHaf8h3+Rqq9T7KBhBgYfUSiyaEyhwQXZIP1M2pNPpFPqLsgNcnu8yfXjrr8iBTIVCIdZKv9+PRCIhmriRYzkcDotS97KyMvzpT3/C2rVrhe7u2rVrceONN6KhoQELFiwAAGzfvh0WiwVz5swBALz33nsYM2YMFi9ejMLCQoTDYaxduxZr167FaaedhkmTJgnH0JYtW1BfX4/KykqRoeb3+2G325NkVjgDsWeRP7s0X5BsATmMSa+7tbUVDodDNHnbtWsXDhw4gJqaGlRXV6O+vh4FBQVQKpUiKFlcXCx0l4EOpyKtUZFIBEqlUjiWDhw4gHA4jJKSErHPCwQCaGtrw+HDh1FTU4Pm5uakJAIg+53MoVAICxYswNlnn41nnnkm08M5bijpIR1yUgTtA2ifCgDV1dVHvTZ9rjUajdDlLSsrwyeffIJEIoGhQ4fi7LPPRktLC9566y189NFHSCQSKCwsFBV5Xq8XOp0OkUgETU1Nwk/W1tYm1huq6AGOBEIzRVd20FftQ0YOaFIFJO0VKNO9vb0dkUhErEW7du0CAFx88cX4yU9+kuRgpmtNmDABv/nNb3D66acjGAxi27Zt+O53vwugIwt+zpw5UCgUOHDgAKxWq2hG63A40o4zPz9f9LGhAJjBYIDBYAAAkVGfbZzwzBaPxzF69Gj84he/SLr/vffeg1arxb///e9uGxzDMD2H3DBJdi5TYwS6yeXJqY5k+TE66JOThzZhgwcPFg2YACRlQtNkKUtkUJYZH/6zg82bNwMAzjjjjG7ZDCuVSrzwwguwWCxYs2YNfvnLX57yNbMds9ksMrL8fn+nTQkALFmyBG63W9zq6up6e5hHhZw5wJEsvtQsP9rwtLe347TTToPBYBANViorKzFmzBhUVlaKyLzVakVOTg4KCgowZMgQTJw4EVOmTEEgEMDXX3+NL7/8Ejt27IDH44FSqRTNAYGOqgjSYCa7JCcSjXMgBDCyHVmagLpjAx2HNIvFAr1eLxriaLVa4eyjckJyKpMmKjkf6Ro5OTkoLS3FyJEjMWnSJJSUlADosFfasKeTyTieBrZMzyI396OGepSdCByRTKEqj1AolBQElw+D9LlP1eqWb1R5Rc5ouracMU0He7mRGJDsZOYAeM8h63CHQiHh6Jf1dKmMmBzM8Xgcer0e77//PuLxOC688EL861//wooVK0RjtmXLlqG0tBRFRUWIxWLYuXMnpk2bhkGDBqG9vR3vvPMOCgsLsWjRIsyYMQM6nQ6tra1YuXIlYrEYpk+fjqFDhwLocES1tbXBYrGI+YYc3WQbqWX6vJ/tPijhBUDSVypvJ/1UOrN4vV4olUoEAgHU1dUhHo9j8ODBOP3002EymeB0OvHRRx/hsssug8lkwsGDB8Veo6mpSbwuBblJFrCiokKUtW/atAk7d+5EOByGzWZDbm6ukN2hLMj6+nq0tbV1solsDYb3ZZk3kiKJxWJi3dfpdCLITPKMtGel9/vll18+qsxAQ0MDgA6nH0m7kYTCiBEjEI1GsXv3bjQ2NiIYDEKhUKC8vBxTpkwRiSMtLS3iPExNI7VaLRKJBOx2u0jsosZ/6Sp+e5Ou7KAv2wchy//RPoCCzrLTmf62/Px8NDY2wmAw4Hvf+95Rr63RaITEZFtbG0aMGAGbzSb2HuXl5QCAQ4cOIScnB8CRClaa18hOqPJTfg5wxM7lCq1sCl6d8AiUSiWWLFmCP//5z0JDZtu2bbj88svx0EMP4fLLL+/2QTIM073QJEdOZdm5LHfmpU7L5MyhTGba8Hu9XpH543A4YLfb0draipaWFjQ2NmLfvn345ptvsH///qRJUC5VBY5MhuS84kNc9kBO5kmTJnXbNUeMGCEi348++ij+/Oc/d9u1s5FJkybhs88+QyKRwNatW5OkIAidTger1Zp0yybkzZhSqUz6HNNhicq1yKkzYcIElJWViQzFaDQKrVaLnJwcFBYWori4GIMGDUJeXh50Oh3a29tRX1+PpqYm0fVbrVZj0KBBmDhxYtL/RKlUiqwhuTEplcTL2c1MZiDHHtDhfJE3zkajUdhNOBwWDbU8Ho9o2OR0OuFyuWC329HY2Ii6ujocPHgQhw4dgsPhgNlsxujRozFkyBDk5+dDo9GITDSyT5LEINtMlXxiMgNluAPoFHSm8mVyMgJH5hg5C1l2FtPz6ft0P9PvpDqWNRoNrFYrCgsLxVwEICkDn14/W7SY+2t2mTxfUGCW7IASG6gRE30fj8dFc+If/vCHeOCBBzB8+HAMGzYMjz32GHQ6HTZt2oSPPvpINC/euHEjVCoVLr30UigUCmzZsgV79uwRDZ2uuuoqlJWVIRqN4t1330UkEsHo0aOFY4CcTalOZQqiUfPKbDrw9xdo3lAqlZ2czMCRBBrgSNBo1KhROHjwIKxWK15//XV8/vnnWLVqFbZs2YLrr78eAPDPf/4T3/rWtwAc0VqWGwyTXns4HMZ7772H2tpalJeXi0xUj8eDuro67NmzB3v27IHT6YTJZErKcKYqULoegIw6EI/Gpk2bMH369CSZt1RCoZBoXka3bIB0/IEjjjpZ55/2A+RkBjr2r9u3b8czzzzTpeN/9+7dADqcjYlEAiaTCdFoFCaTCe3t7YhGozCbzSguLsbQoUMxa9YsTJkyRezvq6qqAHRoQJM0GDmpad2j/6F8Fs6kjXRlB8djH0D22oh8hpHnDgBJwWnZyU/2MnjwYNEbpisOHjyIN954A0CHPresAa5UKsVa0tTUJBzIXWUyA0jSYSZSA1XyeScbApsntepdffXVKCgowOOPP476+np85zvfwbXXXov//d//7e7xMQzTjdDBjg5ndNAi5zIAkVWmVCrh8/lE6ahcrmy324VDgDJK5AwjOYsjGAyisbFRLM7UvIXKlACI5kuUYZYNkyPTQU84mQHgiiuuwNKlSwEAt956K15//fVuvX42ccUVV+CDDz7A5MmTsWjRoqzo+nuiyJuZ1A24fIAmR7Ddbkc8HkdlZSUmT56M0047DWVlZcjPzxfa7EajEQaDAXq9XmgYWq1W5OXloaSkBFVVVRg5ciSKi4uFY1uGDg/RaFR8T3OK3CG6L9DXnUOpUAYIAKFzS9/L7xXpzJGeJmUu2+121NfX49ChQ7Db7SKLmZyMDocDGzduxFdffSVes6mpCZFIRGgaAh0HR3I0U8UMZTExmUP+XKpUKlHuSY34SE+QAlJ5eXmwWq1C55YOfuRMDgaD4mvqjZzNqY2LKaONbrIjGUguZ6f5JFuCE/01u4zsgjKY5aZLlNEcDAaTGgLS+zp79mzcdNNNSdcrLS3FtddeCwB44oknMHnyZAAdTma3242KigpMmzYNAPD222+L99xoNGL+/PmiiRNlLdJBn/bL5BQwmUwigAEAer0+yaHATubuIXVdkZNX6HMr/7/pPSBbqaqqSuqHodfrcfvttwPoKIPPy8sDcCQzvaGhQWSrv/XWW6ioqIDBYEAgEMDOnTvxxRdfYO/evQgEAsJpSc5Dl8uFffv2Yc+ePbBYLCgsLATQ4WgOBoNJElHZmM3cl2XeaJ0HkpOYSNJGqVTCaDTCZDJBr9cjFosJu3j11Vdx3333JWWxAx1BhK+//hpAh5wKAOFotFqtSCQSsNlsUKlUCAaDcDgc2LJli5B7A4ChQ4cKR3NLS4tYixoaGsS5wOPxJM2D9Pdkiq7s4HjsA8heG5EdsjSPkP8i1ZdB6z69R/X19V3+vfF4HO+88w5+9rOfwefzYfTo0ZgxYwb+85//wO/3w2QyobS0VDT9a25uFvbU3NyMQCAg7IqSeQEkBb9Tncpynywge3pGnJSSuFqtxi9+8Qv88pe/xMqVKzFp0iQ8/vjj3T02hskooVAI//Vf/wW73Y4bbrgB//3f/53pIZ0StGlPLSOlTTEd/t1ut7gvHo+L0jDKeJazSchZTWVHRUVFGDVqlNhMJRIJeL1e7NmzBy6XC9FoVGQI0CRIhzvqKM+b8ewhHo9jy5YtAE696V867r33Xhw+fBjPPPMMrrzySnz88ceYMmVKt79OptHr9fjPf/6T6WGcEvKGRT7QAUc28VQq6vP5EI1GUVtbC41Gk9RIlKojjkUikRDSPDI6nQ46nQ4ajSZJbkev1yc1e4lGo8LZmA0NMI4FOYe+//3v44ILLsC1117bJ4MRBDkCqCKGfqb5nhzF4XBYrCd+vx9er1fc397eLhpB5ubmYuLEiaiqqkI8Hsfhw4exefNm7Nu3D9/+9rcRjUZRX18PAKLMlBzMqTIZ2bD5HsjImUFqtVqUqAJHqhHoPQ8EAmhpaUnSM6UML3L+nsj72VVjY5VKhbKyMmi12qQDfmplVbbMI101k+3LTWbTSR3JwUJaE8jJHAgEEI1GsX//fgAdzebT2cK1116LV155BYcOHcI333wjGvq99dZbuPrqqzFnzhxs2rQJbW1tOHTokHACqVQq5OXlwel0iv9Xa2srgA6nElVdAB2ZjeSY1Ov1UKvVYn3ipl3dh/zZlZ3K8r5Crlyh5zQ2NgLo0OOuqalBZWWluGZubi6GDBmCQ4cOiWt//fXXOP300+F0OnHo0CHo9Xo4HA588MEH0Ov1KCgoEHNFLBYTlThAR0+K0aNHQ6FQoLGxUTikJ06cCLPZLBJ25HNSLBbLOjs5Xpk3ctIDHXNJtjgR6f9JUlmJRAIajUbsIc1mM9rb22Gz2dDS0gK/34/Zs2dj7dq1+PLLL/HVV1/hrLPOwplnnom8vDysWrUKkUgEw4cPR35+PoDkbHRyYpPGs1arRXNzM/bv3y8aBnq9XiHXUl9fD5fLJQIbLS0tQk6hvb0dZrM5KTifKbqyg+OxDyB7bURu/Cj3hyLktZ/W/ZaWFgwePBh1dXV44IEHsGTJEpGFHI/H8dVXX+HFF1/E3r17AQATJkzAJZdcgscff1wEJBcsWAC1Wi0+/z6fDxqNBvn5+Whra8Pu3btRWVmJtrY2NDc3o7S0VOxhU5ErNlJ7SGQDJ71buvrqq4V22j//+c+0f9D555+Pyy+/HO+88w7Ky8uxcePGUxosw/Qmx5MRkq1lIKnQ5CM7l+WSMjp402GOnMl2ux1utxstLS2oq6vDvn370NDQILKY6feplLGmpgbvvfceampqoNPpoNfrxaaNNO7IKU0OAJVKBY1GIzLNmOxh165dohlbOomHU0WhUODJJ5/E/PnzEQwGcfHFF2Pfvn3d/jrMqSOXicdiMREYApCUNRSPx1FaWiocpKl6p3LmoFarhU6n63QflTTSTY7K05zb1tYmHNBWq1VkrchNwoi+kM3cl0tTU5EdAeRUljNyQqEQWltbRQMvt9sNh8OB+vp6NDQ04PDhw9i7dy8OHjwopJd27tyJf/3rX3C5XLDZbKLUkKitrUUsFhO2Q44HWSbjaA2BmN5DlqCQD3iypIrFYoHP50NjY6O4T66mkPWVUyUxjnZLlcmgzENyFMkHtdQsMsqEzwZOJbssWzPLZLuQM8voMdrDyk2j9Xq9aLgla/bLmM1mkeH817/+FZdccgkA4KOPPoLD4YBOpxNNjUkGA+g4/B86dAgAUFRUBKfTiba2NigUChQXF4u+CYWFhYjH48JOc3JyxPjkdTKb6IuVM7IWM+n3Ax2fY3Lsm81mUYlJlVIkcTF27FgkEgk8/fTTna49d+5cAMDrr7+OYcOGCf1mlUqFhoYG1NTUiMzGQCCA+vp6HDhwAIcOHUI4HEZZWZmQBnO5XFi/fj2USiXOOOMM6HQ6IQlF0hqk10u2kY2yXn1d5k12EtI+RK/XCyezUqmExWKBTqcTTuPW1lacf/75mDhxImKxGNatW4c//vGPWLZsGTZs2ACNRoMf/OAHoiEkzVk+n0/YBgXLhgwZAuBIc2q/348PP/wQ27Ztw9dffy1e0+l0iqZutL5QNQ+RyeBmV3ZwPPYBZK+NyPsJuYopVSpUr9fDaDRCr9fD4/Fg8uTJ0Ol0Qmrnvvvuw69+9Stce+21uOeee7B3714YDAYsWLAARUVFeOONN+BwOGCxWHDDDTcIySYKeAAdTvoxY8YA6NjLqlQqWK1WxONx1NbWinHKUBU6AJGNT39DtuxzT9pqb731VgAdJbFd/THvvfceWltbhc7it7/97ZN9OYbpdY7n0J+tm/VUUhvgkGxGIpEQmUQul0scsNra2uBwONDU1IQDBw6Ig39tbS327t2LHTt2YPfu3di5cydCoRDOO+88XHDBBSIDZMOGDeI1ampqAHRsvOnAQ+VK5BBQq9VZuREf6Kxbtw4AcNZZZ/XYoqVWq/Hyyy/jzDPPhN1ux0UXXSQyQpjsgmyAsg0pc0iWq6BsrrKyMlRUVKC0tBSlpaUoLCyEwWAQG3wKQul0OtElmaQzUm8GgwEmk0nczGYzzGYzrFYrysrKRAk9jU8epzzebKYvO4dkZK1dcuymat+1tbWJzGWXy4XW1lbU1taivr4ee/fuRUtLCyKRCIxGIyZOnIh58+ahsrISsVgMGzZsAACx8S4sLITf70dLSwuAI1nMOp1OyGRQRlu2lBAOZOQsZnLaykEgahoMQLynpGVZWVkJm80mDuSk3e1wOEQmIe1d3G43/H4/IpGIOLAVFBSguLgYgwcPxtChQzFkyBCUlZWhqKgIAIQjmg6d5ASXnczZwqlkl2Vrk1k5syy1XDx1Dqf7aQ0ip09XLFq0CHl5eWhubobL5cKIESMQiUTw8ccfA0BSUBTo2DOvXr0a0WgUgwYNwqBBg7Bjxw4AHWub1+tFOBwWPQNo3bNarVCpVOI62SrN0xdlVej8AnT8XylTnAJFAJCXlwetVguz2QyTyQSFQiFsgzIHX3nllU4B2u9///uwWq3Yvn072trakJ+fj+bmZtTW1iInJwfxeBz19fWoq6tDJBJBZWUlSktLoVAo0NzcjPXr1yMWi2H+/PnCufjNN98IvXegw7ZSNVRprsvG/Ul/kHmjOZvsg9Yc2nuSZIbRaMSQIUOgVCpRU1MDm82GX/7yl7jmmmvwrW99C6NHj8bs2bPx29/+FuPGjUNBQQGADukTlUqF9vZ2UV0Rj8fhdrvFXsVqtYokLnmts9vtMJvN4hwOHJl/SCpIHnOmSLWDP/7xj9i5c2eftw/5s5h6dpATXMxmMxQKhQgQ7du3D4sWLcLQoUMRCASwfv16rF27Fna7HSaTCRdddBHOP/981NTUoKWlBQaDAdOmTcO8efPQ0NCAN998EytXrsTzzz+PUCgElUoFi8UiZAKBDs1umkfsdruoGqcxKhSKpEoZtVrd6fFs4KS8Ovfccw/efvttrF+/HnPnzsXf/vY33HLLLd09NobJKMdz6M/WMhAZyvyQM3TofjpIuVwuxGIx+P1++P1+OBwOOBwOBAIB2O124YBOJZFIYO/evfjHP/6BO+64AxaLBQcPHhQaeXv27EEkEklafOQSZpocuYQ5OyEnM2kW9hQmkwlvvfUWpkyZgurqalx//fV488032SayDMoEpTmFqg9isVjSY06nE1qtVmQIkuNGvobsvEl9n2VNd8oKoeCYPBaj0SgymOk+Gos8RnJsZUupezr6emkqIevYpWpOUjAzEAigvb0dHo8Hzc3NcDqdqKurQyAQgNfrFVVypaWlOPPMMzFy5EjodDrU1NSIJmBUIl9VVSWyDQ0GQ1JVDK0rqQeIvkp/k/Ciz6P8eQc67MblcgHoeE8LCgrQ0NCAurq6tFUJNE/QfqYrKChFzieCrqlUKpO0oeXqDXm+ygYoi+z000/H1q1b8eCDDx71fhkK8mUbcuZ46n5Tfm/l94Wq6aqrq+HxeLrMktPpdJg7dy5WrFiBLVu24Nxzz0V1dTW+/vprLFq0SDiJTSYTEokEPv30UzQ0NECj0eDcc8/Fvn374PF4oNFoMHToUDH/lJWVIRQKCYkXucQ9mzLKUumLsipy5rJCoRDrpclkEvq55AgymUzwer0wGAzi3GO32zF06FAcOHAAn376KS6++GJx7eLiYjz11FO48cYb8dlnn+G8887DmDFjsHPnTmzevBkXXXQRcnJysHnzZjQ1NaGpqQnnn38+LrnkEnz11Vf46quvsHHjRowcORKjR4/GoUOH0N7eLtY8oEO/l+YXed+SrfQHmbdUqSMKPNMcGAqFYDabEY1GEQqF8O1vfxu7d++G3W7HG2+8gdNPPx0//OEPO1VOFRYWQq1WIxKJoKKiQmi2A0AgEEBhYSECgQB0Oh1Gjx4N4IieO2EwGJL2JlRlQ4H5bGkaejQ76Mv2QRJq1GCc7qNeDcFgUDR2pPeOJC127NiB8ePH4/LLLxeSSTk5OXC5XNiwYQOi0ShUKhVGjx6NRCKBw4cPJ2lzE1qtFjNmzBDrcUlJCRobG+F2u2GxWKDX6xEMBsVcAnSsZdSrADiyZtG6czxyhL3FCVvuX//6V/zmN7/Bm2++iQkTJuCnP/0pHnnkkbR6JgzTlzmeQ3+2loEQclYZbbSogy3QcZhzOp2IRCJwuVxwu92ora1Fc3Mz6urqUF1dDbvdDrvdLrKZnU4nJk6ciN/85jdYsmQJVCoVGhsb4XQ6k5oi1NXVweVyQalUikggOZQpy0x2BDDZR285mYEOm3njjTeg0+nw9ttv4w9/+EOPvyZz4tCmmDbBciMukroAIDR1ySkoVy7Q557kDI52o+fQoYCi9PF4HD6fT0j6UGdvIH3Ti2zPZu7rpalEavYNNX8lff9AIAC/3w+3243Dhw8LzUKn04m9e/di165dOHToEGpra7F+/XrccccdCAaDorohNzcXzc3N8Hq90Gg0yM3NhcfjEdnLwJFAJt36SxZzX8w+PB5SG+0pFApxcLPZbNi9ezdqamoQi8VECStJaRw4cADV1dXYt28fqqurUVtbC7fbDZ1Oh/LycgwaNEg00fF4PMK+ZGifR2XtwBH7lZtGZRP9NbuMoP+7nIlIn2GSXaLsrfLycgSDQdx3331H/UzQ+hCLxUQmosfjQTAYFDZRVlaGTZs2Yffu3VAoFJg3bx4CgYBwKo8dOxZOpxPxeBxGoxG5ubkio4z2uXJANVvnnL5YOSPLblHgWqlUQqfTdXLe0rnCaDRCrVaLCggqSd++fXun60+fPh1/+9vfoNFo8P777+Pcc8/FFVdcAQB45513MGHCBCxbtgyzZs0C0FGt7fP5MHPmzCS5Feo7Y7FY0NzcjEgkAq1WK3S8gSMOx1R9aaZ7kR20VFVgNBpFHw/aKwwZMgQKhQJNTU24+OKLcfbZZ0OpVGLHjh343e9+hz/+8Y/47LPPUF9fD7/fj6amJvGe0V7NbrfDarWKeWbGjBmYPn262KcVFBRg7NixsFqtKC0tRVFREdxud1IATdaRzsZmkP0N+n/HYjFxlpHldrRaLYxGI3JycqDX62E2m0WA4eDBg3j33Xfx1VdfYevWrXjnnXewbt06RKNRDBkyBGPGjIHP54Pf74dWq8XQoUNxxhlnYMqUKZg5cyYuuugifPe738WQIUPgdrtRU1OD3bt3A+iYO2RZKKVSKYJVFECjDPhsbjJ7QrumVatW4ZZbbsE///lP0Zzpxz/+MR577DG8+OKL+N73vtcjg2SYTHA8GSHZDk08qVFR0sx0uVzCwez1ekUEra6uDuFwGE1NTWhtbU3KZgA6skaMRiPOO+88ET1zOp1igqysrBRRu7y8PJG5SA27ZCdTNk2IzBHsdrtoXjB16tReec3x48fjd7/7HX70ox9hyZIluPjii8XmnckO6JBP+pgqlQpGo1Fkn1KHdZpz5MMTOW1SI+2p5V30u3LpPDmJafNN2c2khUlzFDmzqQu93AAwm7OZr7jiClx11VV47rnncOONN/ZZ51AqpPEfDAZFRobH48Hhw4fR2tqK+vp6tLW14eDBg6J5zty5czF58mT88Y9/hNPpRHV1tWjqV1JSIhw+Q4YMQXNzM4COjTetK5SNIh/esjWj8EToi9mHR0NuliTreJMDSa1Wo7GxEQ6HQ2gj7tmzp1MzUBmys+bmZphMJsybNw8jRoxAKBRCY2Mj6uvrUV9fj9LSUqHrSg42ymqigxrZUDaVnxL9MbvsaOXLZCdms1lI7ZhMJrjdbiFt8Nlnn+GKK67A1VdfjalTp6K0tBTxeBz79+/HG2+8gVdffRVAhzNx7dq1AIDy8nKsXr0akUgEhYWFsNvtosz9nHPOgV6vF82Pq6qqRNADAEpLSxGLxcQ+22AwiPHLf0820pcrZ1LPM9RIlh4DjjiP6KvZbIbL5RLBBXoPU5kxYwbmzZuHd955B19//TXuuOMO7N27F1u2bMHu3bsxduxYXHLJJdi2bRucTiccDgcGDRqU5OQm+ZnS0lKxbpWXl8Pj8YhAGckkZENjt/6M/BnU6XQIBoMiAEEJT+FwGH6/H2eeeSa++uorrFu3DosXL8bZZ5+N1atXY+vWraipqRHSjzKDBg3C8OHDYTKZ4Pf7MXToUGzbtk00fJQz1hUKBUaOHImCggLU1NSIwFZJSYmwH4PBAL/fn3VBzf4KnWXi8XiSzjtJ7NBZJhaLiSxm4EjAorm5Wey5FAoFqqqqUFpaisOHD8Pj8UCr1WLUqFFQKBRwOp2icezRMBqNKC8vx86dOxGLxURT81AoJPZBFIS3Wq1JVerZViFx3Fa8adMmXH755XjkkUdw2WWXifutVit+/OMfY/ny5bj++ut5omT6DX390C9n7skbL3IGhUIhhMNhOJ1OeDweNDY2ioxlv9+PmpoasQktLS3FnDlzMGbMGKxbtw5vvvkmtmzZIhbCyspKsTEfOnQonE4ngI6SItoEkg4zOZm5CVN288UXXwAAxowZg9zc3F573R/84AdYuXIlPvzwQ/zgBz/A+++/n9WHtYEIfaZpc6PRaGAymRAKhYTWOz1PJlWfUtbLTYfsTCbHD5UoksNa7u5N2Qd0gCAnM228aE7MRkdzfyhNBZI1JmOxmFhnQqGQkMNobGxEW1sb6uvr0dTUJA5b48ePx89//nPRif25556D0+lEKBQSDbmKi4uFjmpZWZkIZspOBTlzWdbW7escb/bhsmXLentox026IFWqbAZlEyuVSjQ1NYmKLHIMmUwmUY5Mmob5+fkYMWKEOPjt2rULPp8Pq1evxmWXXQadTofKykq0tLQIe9RqtaLjO5WgAkdsKDWblulZ5MayFIhMfQ+oUaxOp4PZbEY4HEYgEMCoUaNEAOHXv/51l69x5ZVXYseOHfjss88AdMwntNcZNmyYcD5PmjQJRqMRmzdvBtDhCBo5ciSqq6sBdGTYWywWIbNBVTZA33Ay90VZFVmqi9Z0yvajQFVqVTXZD1UzkP76+vXrsX///qQkhgMHDuCZZ57BO++8AwCYOHEi/vGPf4ggw+jRo9HW1oaXX34ZTqcTBoNBBDppfSoqKsLOnTsBdGQjulwuaLVa5OfnC+dzXl6eaG5JtsJzTM9A8zg5EeX7SFaL7Co3NxeVlZWoqanBa6+9hrPOOgtz5szBjBkzsHv3btH4vr29HRqNBsOHD8cFF1yAb775RlQzFBYWIi8vD21tbXC73cjJyUEikYDdbkdzczPsdntSVXF5ebk4ZxcWFiY1NE3V72a6H4VCIaQx4vE4LBYLnE4n1Gq1cDDL///8/Hy43W6x9yotLYXFYhFZ0Ha7XXzOy8rKkJeXJ/whAITNxePxTp9/vV4Pk8kErVYrErxUKhUKCgpEdUReXp54baPRCI1GI6p3yJazieN2Mp955plpN7QAcP/99+P+++/vtkExTDbQ1w/9sgi83MwkEokgGAwiHA7D5XKJstPW1lYhe3HgwAFRUnjLLbdg7ty5YvL66KOPAHRkBtCGPCcnB4FAADabTXQ5pQxmKqMnBzNlBvWH8uX+zKeffgqgd6QyZBQKBZ566imMGzcOq1evxquvvopFixb16hiYo0OOItKQkzOYdTpd0v20oaeNPnE8VQw0V9ABkrJ+DAYDIpEIwuGwODyk6t3R75GzUz6gskRPzyFLH5CESSgUEo3aWltb4XK5UFdXB7vdLhzMCxcuxC233CLWGaqkATo0DmOxGHJyctDc3CwOhJTNYTabxZoiry1yw7/+QF/OPpSRg1TUGwI4oudNEjt0sJIbCFdWVmLPnj3YuHFjp+uqVCosXLgQU6ZMwciRI/Gf//xH7G8GDx4s9j0AhNYh2RA5IGjeSA1WMD2PvB6Qkzkej8NsNsPn88FisSCRSIj5IBqNwmazAeiYI6ipI1VK0B7YYDBg+PDhqKysRHV1NYLBIBQKBYYNGyaa+ZWXlwvnwPjx46FQKERQY/DgwTjttNNw6NAhBAIBqFQqlJeXIxqNJuliAsmNLbPZbvpiEo0cOKbGwcFgEC6XC2azGW63W3y+ZZ114Ig8hcPhwFlnnYUvv/wSF1xwASZOnAitVouampqkBpgXXnghVqxYgcbGRgDAeeedh23btuHZZ58VQZDrrrsODodDOKVHjRolgg55eXkiO7WwsFAk92i1WmErVHHC+5Gehf63ct8QChAZDAYh7bZ//37MnTsXb7/9NhobG0UgSoakEpRKJUKhkKiOADref2o8C3TYnMPhwJ49e8Q8AXS83yUlJcjJyUFDQwMSiQTMZjMKCgpEpqvRaExqXM30HLRnJKevxWKB1+sVZxkguVEnJc0Fg0H4fD54vV6xjwA6ApC0DjmdTiiVSgwZMgR6vR4ej0fMUfJ15YACZUWTXAcFMHJycpIyls1ms+gHQPdlG/1j580wTCdkrS86vAUCAdGllBowNTQ0wOVyobGxER6PB/v370c8HsfUqVNx3333JR1k9+7diw8//BAA4Ha7EY/HRUmiVqsV5YMmkwl5eXnwer1JWnoUacs23SCmM6tXrwYAzJkzp9dfe/jw4bjjjjvwq1/9CkuWLMEll1ySVc0MmGRHETU9AiCyiOWmfXJ5Kz1+IocqmjvoWolEQlRGkOOIpBJkKEMhHA7DZDKJ5oHyeJnuhQ73lOUeDAYRCATEZpwczFQtAwCLFy/Gj370oySb2LhxIyKRCAoKCrBnzx4AHZlklCU2ZMgQocVMTmR6/1OdzP3lve6L2YfpoPeEylRTG3zG43FEIhGh6V5bWwug44D/3nvviaqFoUOHJnVjr6urw8qVK1FeXo7y8nIUFBSgtrZWHPDJYZSTkwO1Wi2CGJSFRLYkNyblfUrvQXZB87TcmMvn88FgMMDn88FmsyEUCokssby8PLS3t4s9qdlsxsiRI5OkCOLxOA4cOACgw/ljNBpF+bHNZhMSHSNGjIDP5xMVL6NHj0ZxcTEOHDgAv98vSqLVajXsdrtwHOr1+qQACZB9Ot4yfTGJRnYGBYNB5ObminNLTk4O3G63cOySI0eu5lQoFNiwYQMWLFiARCKBDRs24MsvvxTXp8xSo9EoKmQMBgMqKiqwf/9+IdNUUVGBUaNGYcOGDUm9AmbOnIk1a9aI55DD2WazCSeUxWIR8h5kn9k+X/d1aE6Jx+MwmUxCxoAeo4SHYDCInTt3YuHChdixYwf27dsHt9stKvQIcvQRBoMBOTk58Pv9ovKhsLAQNTU1wuGsVquFDnNOTo6QCgM6FAEqKyuFLZH0lxx8pUQJpmfQaDSiuookS+LxOHJzc9Ha2iqymoEj+0vSaKYG43SLRCIie5kczq2trSJRt6vgtVydSYEMGhtVaAId5xpaA2l+o/NQtpG9KyDDMCeNXN5BkxA5l8PhsIimNTY2ilLkWCyG+vp6xONxzJo1C/fff3/SJtnv92PZsmWIx+OoqqpCOBwWi6tCoUBlZSVisRi0Wi0qKytFFhJNppzF3Hdobm7Gtm3bAGTGyQwAd9xxB5566ilUV1fjmWeewY9+9KOMjINJT2oZGQCRXZYOOSv5ZD778uvJm614PI5wOIxIJNLJyazRaMShPxKJiANqNBrN6qZMfRXK4qP/dzgcRjgcFjq5ra2tsNvtCAaDqK2tRSwWw7e+9S384Ac/SHovYrEYXnzxRQDAhAkTUF1dnVRKX1BQILI7qIkPOQepaoYOaf0pS6wvZh92hZy5IzuaSW4nEAggkUigra1NBJWoMeZpp52GhQsXIi8vT1wvkUjgxRdfxPbt27Fp0yaUl5cLG9Hr9YhGo8KpXFpaCq/XKzKGaJ8jazDLPzO9h1qtFlUr5AimJnvt7e3Iz8+H3W5HUVERmpuboVQq4fF4RCUNOQq8Xm9SE0e9Xg+VSiWCMAqFAgaDAVarVTSGs1gsovQ4Pz8fI0eOhN/vx+7du0W1TlVVlchQDIfDUCgUQk6MSq4BiNdguhe9Xg+fz4dYLAadTieyDim7OBwOw2g0IpFIiF4MGo0GHo9HaO6+/vrrUCgUOOuss+D1euHz+UR5PH32qXSdGrlRMIKckxT4VKlUGDlyJEaMGIH169fD5/NBr9cLOyUNVToPkRYz2RmtV0zPQY0io9EozGazaJpG39P6QIFvr9eLiooKTJo0CU6nE42NjSITPXXfKydMUWBKq9UiHA7D4XBAoVCgrKwMw4YNE8kXhw8fRktLC4COZoCDBw9O6qWQk5Mjrk171lAoJCRfmO5HrraktYecwjTHUICI9gyxWKyTfnY0GoVCoUBOTg6KiooQiUTEvsNoNMJkMonndAVdn27yWcVsNossarJDWtuyEXYyM0w/h0rXI5GIWMiCwSAcDgdCoRDa2tqErpnP50N5eTnuvffepIkzGAxiyZIlOHjwIEwmE2w2G5RKJUpKSqBWqzF48GAxMQ4dOjRJHJ8mSYoYkzOAyV4oW33ixIkoLCzMyBgsFgvuu+8+3HrrrVi6dCmuu+66TpIITGaQG00ARxpmyffJWrin6tCl+YuuKzscKRsoHQqFQjR7CYVCIrhFztBszjTri5CzkN4X0r5tb28X643dbofH44Hb7YZOp8Mdd9yRtB4kEgk88cQT2LNnT9JGf8iQIfD7/dBoNMjJyRHVM+TMIU1UWm/kW3+hL2YfdoV8UCfHIH3OSWeXtA+j0Si2b9+ORCKBqVOnYt68efjmm28QCAQwduxYDBo0CAqFAqNHj8b27dvR0tKCaDQqssjy8vKEzIrRaERubq7IjrZYLACQlEEkl1czvYusa0z7x2g0KrKV1Wq1yFotLS1FU1MTVCoVTCaTCBwAEI5Ggt5TtVoNvV4v9CxNJpM4uCsUClitVpSUlCAWiyU1+jKbzaioqIBGo4HD4UhyRiuVShEUAToczLy29AzktKU13WazCVkm+pwbDAa0t7fDbDYjEokgPz8fTU1NcDgcmDhxIurq6tDW1oZAICACDBSgJNuQ1xWj0SiCmQDEffQ++3w+odus0WjwrW99K6n6grKYDQYD1Gq1sBW6PtOzyA7EaDQKq9UKt9st5hcKTiUSCbS3t6OtrU2cYQk636buKeS+D3IShdFoREFBgciMTyQS8Pv9OHz4cJKeL61dVG1jNpuT5g6tVivWR8qYZXoGqnihbGafz4dIJAKbzYZgMIhIJCLWCrfbDbVaDa1Wm9S0WNZFdrlcADrsr7CwULyP9Lmn91JuUJ3urEQBUYPBIBqd0/1yL4BshK2VYfox5AyiLOZYLCZKAam0kA5i5Ky58sorkzKkGhsbcffdd2PXrl3QaDQYMmQINBoNSktLYTKZUFxcDIPBAI1Gg7KyMlEmolarRRYZTah0iGOymw8++AAAMG/evIyO4+abb8bvf/977Nu3D3/4wx9w1113ZXQ8TAdyU1H6jJ+KHMbRkLOj5aZh4XA4ycHc1WGNsptoc6bT6ZKajnG2WfdBWczkYCZnYSQSgcfjgcPhEJnnQIfOJTViAoD29nb8/ve/F/NPZWUlEokEbDYbDAYDlEoliouLhR2YTCaRwUhZivImP7XRJJM9yHqTdLALh8PiMB6NRkUAvKGhAdFoFKNGjYLL5cJ3v/tdcdBSKpW4+eabsWjRIjEHUBZZPB6HXq+HxWIRpe4lJSUIBAIiO5FKqVOzmOWDH9N70PpBcgLUiCkSiaCwsBCtra0wGo0i85D2nOQ0oqawVLEiN3MkpxLNHbIz0Wq1wmq1IhaLwePxiPFYLBYUFRXBYrEgGo3CbreLgGd+fj40Go2QaKASag5O9CxU2k77gMLCQtEglBx6VN5OwYDi4mK0tLTA6/UiJydHlLnLMn70vU6ng8FgEBmCarVaZMCnCyAoFAqRfGO1WlFbWyuCoEVFRSJrNScnB5FIRNgPyfQwPQudQWkvotfrRbIVaTObzWaxr6CsZ+CIRAvNH6lyj/L7JydWKBQKBINBEaiS5VGUSiUqKiqSKnFoPTMYDEljp+QsShLj83PPQVIXVJFtMpng9/vh8/nE/EGNhinRgT7P6ZJdqDktXZfuS32PASQl48hNzimwIe+baax9YX/L1sow/Rg6wJGjmZzNwWBQHLJIQ5kWVYfDgUgkgsbGRrzzzjtYsWIFgsEgtFothg0bBrPZjLKyMuTm5qKgoAA5OTnQ6XSi+R/QsQmkMjDalPWVSXGgE4/H8f777wPIvJNZo9Fg2bJluPrqq/Hoo4/iRz/6kShNzQa2bduGW265BZFIBLfeeiuuvfZavPbaa3jooYdQUFCAl156Cbm5ubjppptQXV2NuXPn4r777sv0sE8ZWesydbPdXZ2w5YxY4EiEv729PakRCmWmdXWwpywAclyRA5yzmbsX+f2iwAA1mfV4PMJ5CBwJCAwbNgxAh77/hx9+iH/+85+ixLiyshJmsxkmkwklJSXQaDQYNGiQWE8sFgtUKpXIDiOHADkLeK3JXijzh+Qx6JBGQYlQKITW1lZEo1GhZWgymbBx40YcPHgQQEejNrPZjN27d+Opp57C8OHDk+YgCnbn5+cnNWgrKCgQWqlms7lTk7bUBqVM7yMf9nU6nSg/p8xjv98vSsr9fj9sNhvy8vKSdC9l6SRaAzQajTjkk0PJYrFAo9GIYAPQUTGQm5uLvLw8EaR0uVxCfkWpVIrHaM9LGbY85/Q85Mwn3VSNRgOr1QqPxwOTyYRAIACr1SoynWlPMmjQICiVSrS3t4vmjwBEFrNcDUMOZb1enyT5R9WYlDSTKgFGAQqz2YzS0lLRyM1kMkGn0wkbooAH0zvQ+ZOC32azWczzVqsVfr8fSqVSSK/Je1yyD9pbyNmj8n6X9kAU3KJACEHSOiUlJUlJEXJlYLrmbRQ8k5tpM92PHHQOhUIwmUzCHrxeL2w2G6LRqJBikvvAyH1n6Fp0zqDAZ2qjZjnImU6KJbVilK5LttgX4BmOYfohcpaQ3OyKJixa4KgzdygUwvTp07F582Y8++yzePbZZ5OuZ7PZMGTIEBgMBpSXl8Nms2HQoEHIycmBwWAQUWCaACn6JjuYWaOub7Bx40Y0NDTAYrFgxowZ1RswSQABAABJREFUmR4OrrzySixfvhxff/01Hn30UTz00EOZHpLgV7/6Ff7+97+jvLwc06dPx7XXXovf//73WLt2LVavXo2nn34a06dPR2FhIZ599llceeWVOHz4MMrKyjI99FNC7rRMyJ/tU9kI00aLyheBjo0+lTISarVaZCenOp7pd6gUUqvVigNGMBiEwWAQzlDOZu4e5HWGHIeUeUGOGHr/xowZg927d+Pxxx/HCy+8IByCQMdhfPDgwSKzsKysDAaDQTiYdTodTCaTcCxTQDPVwdxXNuEDDfmzTYfwWCwmsoupU7vX60VbWxucTiei0Sh27twJl8sFm82Gn/zkJzj77LOhUCjw29/+FqtWrcK//vUvXHXVVeI15PJjsj+dTieyIAGIDDHgyFzWXUEy5uSRtUipXJmCDjabDfF4HIFAAGazGVqtFk6nE4lEAvn5+WJPS3tfpVIpGnsBEFnM5DiiuV+j0SA3NxcWiwVKpRLRaBRut1tohBN6vR42m01kKtJ42cHcu1AFS3t7OyKRCCwWi8hUtdlscDqdyM3NhcPhEFIrVL5usViETA5dixzKcvYy7Rto3pCd0rJzWZZLoOdTtSgAodFM8xBlSzO9CzlwqQqO5gEAIkmKtHZTob2GPJd0BTURlftEaDSaLpMhaJ/UVaPZ7tpbM8dGq9UiEAiIzOHc3Fx4vV4R/AY6nMMkXSE3K5ZvAMTaQ0EJWke0Wq0IcnTVw0ZG7mXV13rJsJOZYfohcrd2mgSBIwcpk8kEoCMLpKSkBI2NjTh8+DAuu+wyvP/++/D5fFCpVMjNzYXNZkNubi70ej0GDx4Mi8WCkpISmEwmWCwWsXCSc5ki/iSXwRnMfQvS/LzooouyYiOsVCrxq1/9Cpdeein+8Ic/4LbbbkNxcXGmhwUA+POf/4zCwkKhs+VyuZCfnw+tVotzzjkHTz/9NAwGA6ZPnw4AOPvss7FhwwYsXLiw07Xkxh8Akkp2sw058i7fR1mA1AClK1Kbfcn3pzp5KNuHHJR0KKCMta4gJzJJZFgsFuEwkBtvxONxdkh2A/JGm7J56PBEX8kpMHLkSEyaNAmbN28WDuacnBzYbDYUFhZCrVZj0KBByMvLg9lsRlFRkXAOUWYjbd5Tm6Owgzl7oawe4IgMDlVWxWIxuN1uhMNhtLa2wu/3o7W1FeFwGIcPH4bH48GQIUPw0EMPJUmsXH755Vi1ahW2bNmCyy+/HACSDm9arbZTw1A54zk1c5mey87mzELBAFon8vPz0dbWhkgkAqvVKpq56fV6FBYWIhwOw+fzddpnkjOSKutkZ6FWqxV7WIVCITLWUiEnsslkEs1mqfESZdXy/rb3oeSVUCiEcDiM/Px8NDc3Q6PRCCdyfn4+nE6naP5IWYW0B5ETYPR6vQhkkp1oNBoh1STr8h4NmnuoWSBlV9N9RqOR7SUDUBayUqkUDaEpUz0QCIiKB7mCLvU9p7mAqh+AI70oKChG8mxykD1VroeuR72QgK7lU+T1ie2mZ5E13yn4TdI5wWBQBChkmZ3UhuPpoLXCbDZDpVKJfRC9JiVIpJNf6cvSXexkZph+CC169D0hR3JtNhtcLhcGDx4Mp9OJuro6AMBpp52GaDQqIvUqlQqFhYXIz8+H1WrFoEGDRFduiuzShowcy7SZpwW1r06QA41EIiGczOkcoZnikksuweTJk7FhwwY8/PDD+MMf/pDpIQGAaIp4991348orr4TX6xXNCU0mE3w+X9r70vHwww9j2bJlvTPwU4RkdihTLLXUvCsHTaoExrFeQ61WJ2Ul0pxEjgDKDkl38CMHs5yBQFp8pMtHDlF2Sp4aqQFNuZIGgMgOOv3007Fx40Z89NFHUKvVmDhxopAwoTXEZrOhqKgIBoMB+fn5MJvNSdnL5ACQ9ZdJw+54soyYzCFrdssSXpFIBH6/H+FwGM3NzQiHw2hqakIsFkNLSws8Hg8qKirw2GOPiUxVory8XHR/t9vtADo7iOkQSEEm2geFQiEYjUaEQiERGDtWgIzpHSi7lOZrjUYjHIYko1FQUCDWAqpaSW3ClJr5RU3cNBqNWIfkAz8FquS9rdwwVq7QYAdz5iGnP0kcFBQUoLW1NUn3tKioCD6fTzSOldFoNEI3lZJhDAYDcnJyoFAohENJfj6tPXL1A93kjGYKlFDGO8k7sb1kFvpMk3SGWq0W0kkkKSlLU1AWKe0vUqXhyAlIme/ytUjfOVU6IxVqQJlKIpEQ+1c+S/cOFJCiQAStD/TZl5P4UhNm5PuAIw5kuYmtLMVCwc/+CjuZGaYfImcEpjazMRgMCAQCKCoqgt/vRyAQwNChQ+Hz+YSwPWkF5eTkCEmMwsJCWCwWmM1mGAwGcdiXy4JoQu1rukFMB7t27cLevXuh1Wpx4YUXZno4AoVCgQcffBDz5s3DU089hf/5n/9BRUVFr4/j8ccfx4oVK8TPd911F7Zs2YKWlhY8/PDDcDqdwiHq9/thtVphNpuT7utq3EuWLMHtt98ufvZ4PBg8eHAP/jUnD+mW0QaMNr/H0jKVGzGlRujlr3Sjsmja7BsMBtGo1Gg0wmQydbnplktXXS6XyGhOzcKWD4fMyUG2IDubgSPBiEGDBqG2thbBYBCjRo1CfX09/H4/tFqtyBKxWCxJ+v65ubnQaDQwGo3i8EbSGLTuUPYH/czvYfZCzmU544syhSiby+PxoL29HW1tbQiFQkIyw2q14qGHHkp7CKfsIK/XK+ZZuXKKmv+RwygcDgsHlKzdSs7l1KxnJnNQkJF0MZVKJQoKCoTDkHQu5coJyiIEjuhXUvWDXAovZypS9irtWWWnIb2+PK/RtSkrkskc5OiX9UsLCgrgcDhgNBqhUqng9/uhUqlgtVqTMhFTk2Byc3PFc2QnI+01KAOZHIdHq3ZIDaaTHfK8kh3Q5570jqm67Xh1suUAFs0T8j5IlmChvaxc5SVLwVEQPXUuIQcz2VE6vWamZ6CAkNxAlt5jgs4px7sGyA3MB4ome///CxlmACI7TVQqleh0HA6HRZO/SCSCwYMHw263w+PxCIeyjMFggM1mg8VigdFoFBp4cqYHLbS06HL2ct/ltddeAwDMmTOnU5OCTDNnzhzMnj0bH3/8Me6//3789a9/7fUx3HbbbbjtttvEzytXrsQ333yDl156CUDHIaW1tRXBYBBr1qzBpEmTMGnSJLz99tuYP38+1q5di0cffTTttemg2xcgxx5lBsqZYADSBpfk6D4FpQCIjI/UDOjURhpGoxHAkezYozmYZciRGQgEEA6HxTxIGcz0OhwQO3lS3ze5HD0SiYisQ7vdDo1Gg6qqKvF+0/pBkibUiEsOZNKGnJxAlLlOpYq81mQ/dMCiTB6SHAA6pG/i8TgcDgei0SgcDgdisRgaGxsBALfeeisGDRqU9rqhUEhkMFOGqc1m69ScVKvVCkkiqiyR55xUhxHbVHZAmafk+AuFQjAYDDAajWhvbxdl7qTRDqDLQAHZBD2XqmDI+UNZ9UdDrthjG8kOKAAdDAaFHEZeXp6oGqPPfiQSEWsScCRjkQKZqVnH1BdA7v+Qah+pWa2pj8nrFpN9yBnIcqVdqnQbVUvRLd1nX+4nQuucfB25wjddlYV8HQqa0X6XtMKZ3oPOORqNJimBIjVJJfVrV8EnOSFvoKwd7GRmmH4KTWKUvaHRaMSCZbPZRJlhcXGxaHpA5e/kmNFqtUladHJGiJy1TLfj0Stjspd///vfALJLKoOgbOZp06bh+eefx89//nOMHDkyo2NaunQp9Ho9zj33XADAhx9+iNtvvx0zZ86EwWDAypUrkZeXhxdeeAFTp07F7NmzM5KB3RPQPCFnJwPocg6QM5hps0yN+I4GHQTlxhkAhMzC8UAZA7IzmfQYj7YpZI6PVG1uuQs7lYzabDahyUwOR3ISGwwGEZzU6/VJWcv0HNqcy05DXmv6BqllpHQAp2A3Ne+MRCIIBoOIx+MwGAwIhUIoLS3FrFmzurz2+++/j0gkgqKiItTU1AAAKisr0dLSAgCwWq2dKrtkuqq+yGbb2rZtG2655RZEIhHceuutuPbaa8Vj27dvx6WXXoqKigqUlZXh73//ewZH2j1QpQJlnMsNrKkBE2Uxp65HNB9RqTNlH5P9pVt/5IZudA3KWOtrjZcGCuRoVqlUCAaDosKB1hzKeAbSByFkm6IKNKpsSO2XITuOU53MqWsh20rfQc5uP9nfT+e0lgOrqXrP8pxC62NqtiwFw5jMIWswH4vUuSC1WnMgwVbLMP0Q0hYkDSDK3iMtsVAoBKvVCr1ej0AgAJVKJTIFUzfkFMmjJkupnZXln5m+yzfffIOtW7dCo9Hgsssuy/Rw0jJ16lTMnz8fb731FpYsWYKVK1dmdDxff/11p/sWLFiABQsWJN337LPP9taQehWK9KcerLp6LpAsTyFrzaWrfkidV8hxGQqF4Ha7YbPZjrn5jsViomkgZSQdbZzMiSO//7Tm6HQ6BINBmM1m4QCiElLgyAGL3vt0DmVZD5WCF1wp0/eQNbrlbK/Ux4Ajmau5ubkAgJKSki7f6+3bt+Mvf/kLAGDcuHFoaWmBXq+H1WrF7t27oVQqRc8Jsj+j0SgyHNVqtZiD5MZO8tds5Fe/+hX+/ve/o7y8HNOnT09yMu/cuRPLli1Lui+VvtRklqAGfpRxLDcaBY44/uh9kw/2qdIXqUFFSpg4WnYh0zegJBjKOlar1bBarSI4ITv8gCPZpTqdDkajUQSeqadDaoMucmSnMpAdSUx6Up3WqTZ4tB4ltLeWpZ8yxUALap4qPBccgZ3MDNMPIYkMOpTToZ90p6i7qXzoJ+TDv9z4pCvnMk+k/QPaHFx00UXIz8/P8Gi65qGHHsKqVavw6quv4u2338Z3vvOdTA9pwHM8cwBleZCDSXZOn4g+mdlsFvIapLuY7uBHes7t7e1CloGCagCSMqN5Djs16L2l94C0A41GIyKRiNAdTPd75OAhx3Gq3rJcLcPZy30TObOHnDup2T70vpLtkG7ytm3bsG7dOkydOlV8Tu12O1599VW8+uqriMViGDJkCFpbW6FQKPCtb30LGzduBABMmDABwWAQe/bsAdBRtRWLxYS8Bmm5ynYoZ+JnK3/+859RWFjYqSkZAOzYsQPr1q3DM888gyVLlqTtrdCXmsymQnMDrSOykyZVN/lo0B6XEyT6H+QMpkoachRThimR2heCGgWnQsFtlkhhTgXaw8hZznLgVc5szqZg10AMajLdgyLBdaIM022QtrHb7c6opq28AQcgSnBoQZMzQdI1CUx346zl/ks8HkdlZSXq6urw73//G4sXL870kI7KHXfcgcceewxDhgzBjh07YDKZMj2kbidb5pLuhLrAAxDdvUlDkUoC5Y21nOmR2jCQyusJOcOVyvDlx0wmk8hio2Y+lE1J2vJ9jWyxEWqoJh+c6L2WdexSocOU7EhOV5rOjf1OnmywEVkegz7zwWBQyBvY7XaEw2HU1NRAqVTim2++Ec2Stm/fDqDDQTxo0CC4XC7U1tYKeyopKUFBQQGUSiWqqqqEc7qqqgolJSXCoWy1WlFVVQW73S7kw6gpE9kXBTH6ijNpyZIlKCkpSeoT8O9//xtjx45FWVkZ5s6diy+++KJTAC7doX/w4MEZn0dOlnR6melKlVny4tTIhrnkZEiV6aEs0qMha/7z2nP89FUbYbqmtbVVBDXPOeccrFu3Tjx2zz33YN26dYhEIl0GNZcuXZo2qMk20v/hTGaG6YfQwUmpVCIajYqNNTmbU0vX5d+jDZUcUeUywv7NmjVrUFdXB6vVivnz52d6OMdk6dKlWLFiBQ4dOoRly5bhkUceyfSQmOOA5hJyOGk0GuGUDAQC4nHgSGDsaNei6gy6HjmNCXIcka4i/Z5erxfPpTmOOXnk9YXWj9Su2101RurqBnQto8L0Xei9JNugzzs5dCKRCEpLS9HQ0IBEIoFRo0Zh//79aGpqQlNTk7iOzWZDbm4urFYrNBoNioqKYDAYhESGWq0WDubCwkKYTCY0NzcD6LArnU4nypnlBpLZaG+PP/44VqxYIX6+6667sGXLFrS0tODhhx9Oeu75558vDu5Dhw5FW1sbioqKkp7Tl5rMHg8nopfJDDzS2YesEy8HJGjdyrY5gGEyRWFhIQDg7rvvxpVXXpn02Pjx4/Hd735XBDXPO++8TvPwkiVLcPvtt4ufKajJ9H/Yycww/RhyDlOGGQDxM5C+SUW2luwwPcfzzz8PAFi8eLFojpLNmEwmPPHEE7j44ovx29/+FldccQXOPPPMTA+LOQ6o1JmcyFqtVuhsdlXuTI4gILkqA4CQ80lt9kRf5QMkZSXJzmtuqHLqULMbqpCRS9qJdLrdqWuLLFswkNaedJqHr732Gh566CEUFBTgpZdeQm5uLm666SZUV1dj7ty5uO+++zI97OMmNZuUPosU+LFYLPB6vRg0aBAaGhqQk5ODaDSK1tZW6PV6jB49WjSMVKlUMBgMIohus9lQUFAgtFfz8vJESbzZbIbJZIJCoRAN3qiBsayXKet9Z2PA6bbbbkvKVl65ciW++eYbvPTSS52ee+ONN+LBBx9EVVUVamtrUVBQ0JtDZZg+gSzvxDDMETioyXQXLJfBMN1ItpcKpZYSUum4nD02UA72TAcOhwNlZWUIBoNC+7KvcMUVV2DFihUYN24cvvrqqyS9vb5Ots8lp0K6hicU/IrH40kav7KWc6qeK13jaBnPXWnHk6OrL8932WgjcoYY/ZxK6noz0NeexYsX4ze/+Y3QPPziiy8wa9YsvP/++1i9ejW2bduG6dOn46233sKvf/1rXHnllfjNb36DsrKyY147G2xEbrgWiUSEnE00GhWa6R6PB4FAAMFgEM3NzQiFQgiHw3C5XMLBnEgkhL632WyG2WyGWq2G2WxGbm4u9Hq90GM1GAxJASRqokRzATmp6ascyMp2xo0bB71eL2SiPvzwQ/z85z/HXXfdhcOHD+MHP/gBEokE7rzzTlxyySXHvF422AiT/bCdMMeCbaT/sXLlSqxcuRIvvfRSpyDsokWLRFBz9uzZWLt27TEDtWwjAwdO4WGYAYR8oGcYAHjhhRcQDAYxYcIETJkyJdPDOSH+9Kc/4aOPPsLXX3+NBx98sM82MxpoUBYhyfnIDmR5fkqVv+jqOuQcOt5s2YGWKdubcIbYiZPayM3lciE/Px9arRbnnHMOnn76aRgMBkyfPh0AcPbZZ2PDhg1YuHBhp2tlY5Md+pxGo1Go1eqkz6nRaEQgEBCyF0qlEhUVFfB6vfB4PNDpdJ0CFSqVCnq9XjiayfFMzb5S5VYomCTPO6nNJrMxg7krvv766073/eY3vwEA5OXl4fPPP+/tITEMwzD9kKVLl0Kv1+Pcc88FkBzUXLp0KW666SYR1OxL6yjT87CTmWEYZoASi8Xw5z//GQDwwx/+sM853QoLC/HEE0/giiuuwEMPPYSFCxdi4sSJmR4Wc5xQJqHcMI5IdSylVlzQc9I5llNhxzKTzaRqHnq9XpjNZgAd0kA+ny/tfel4+OGHszLYJmufy05f+myGQiHRADQYDEKr1cJqtYrsZ6pwkJsRa7Va6PV60bCPMpIp8CTLf8nNJeXvs1GDmWEYhmGyAQ5qMicLO5kZhmEGKP/+979RXV2N3NxcXH311Zkezklx+eWXY8WKFVi5ciVuuOEGbNy4ERqNJtPDYo4T2RHUlVa8/DUd8u91pTPPMNnCsTQPnU4n/H4/AMDv98NqtcJsNifdV1FRkfba2dpkh7KISdqGsocVCgVisRiUSqXQ9Var1TAajYjH46KxJ0l7yU5mOSOZnMVyL4muvpczmhmGYRiGYZjuhXdYDMMwA5BYLIb7778fAHD77beLLLm+hkKhwBNPPIH8/Hxs27atU2MKpu/QVePRYzmJUzMWZScUO5iZbOO2227D2rVrxa29vR3ffPMNnnnmGQBAbm4uWltbEQwGsWbNGkyaNAmTJk3CZ599BgBYu3YtzjjjjLTX1ul0sFqtSbdsgZy71IBTrVaLpkA6nQ56vR5Go1HIYJhMJlgsFuTk5MBms8Fms8FqtcJisYib2WyG0WgUv6/X68X3Op0OWq1WNAdVq9XQarUi85lhGIbpIBKJJEnmvfbaa5g8eTIuuugiOByODI6MYZi+CO+yGIZhBiD/93//h127diE3Nxc//vGPMz2cU2LQoEH44x//CAB44IEHsH379gyPiGG6Zvv27Rg6dChmzZolKgj4QDdwWbp0Kaqrq3Huuedi1qxZiMViuP322zFz5kw88sgj+NGPfoQZM2bAbrdj6tSpGDZsWJeZzH0BksnRarVJzl/ZUWwwGGA0GmEymZKcziaTCUajUTT3MxgMSc5ljUaT5FSm16HX4qATwzBMMg6HAxdccAEOHDgg7vv973+PtWvX4tZbb8XTTz+dwdExDNMXYbkMhkHHof/SSy9FRUUFysrK8Pe//x2vvfYaHnroIRQUFOCll15CXl5epofJMN1CY2Mj/vd//xdAR3l1Tk5Ohkd06lx55ZVYsWIFXnvtNdx4441Yv349y2YwWcnOnTuxbNkyXHvtteI+OtCtXr0aTz/9NJYsWZLBETK9STrNwwULFmDBggVJ9z377LO9NaReQW7cSc0/4/F4UnPAdNrs9JWqF2RZHHYiMwzDnBh+vx+/+93vcNtttwFA2uaz6cjGRrMMw2QHnMnMMDhy6P/kk0/w97//HQBHcZn+icfjwaWXXgqHw4GJEyfiZz/7WaaH1C0oFAr8+c9/Rm5uLjZv3oxHH30000NimLTs2LEDzz//PGbMmIFVq1Z1OtCtX78+7e+FQiF4PJ6kG8P0dchZLMtZpLuR/AXJa1B2MkvjMAzDnDyDBw/G+PHjxc8n0mg2JydH3LJB/59hmOyAncwMAz70M/2baDQKu92O1157DWeddRY2bNiAvLw8/Pvf/4Za3X8KWoqLi/H4448DAO677z689957vfK6N9xwAz755BMAnWUPEokEvve97+Gcc87BsmXLemU8THYzfvx4/OlPf8Jbb72F++67D263mw90DPP/kXXZUzXW2ZnMMAxzajz++OOYPn26uK1atSrp8dRGs11p+y9ZsgRut1vc6urqenzsDMP0DdjJzDDgQz/Tfzh48CAeeughnH/++Rg+fDgsFgs0Gg0KCwuxcOFC7N69GyUlJXj//fcxfPjwTA+327n66qvx3e9+F9FoFJdddhlWr17do6+3c+dOvPbaa+Ln1AqItWvXorCwEGvWrMGuXbtw+PDhHh0Pk32kHui0Wi1OO+00WK1WDB06FHq9ng90DMMwDMP0OKnNZy+88MKkx9M1n01HNjeaZRgms/SfFDaGOQEef/xxrFixQvx8xx134LTTTgOAEz7033777eJnj8fDjmam10kkEvj444/x+OOP44033uikY0lUVFTgiiuuwC9+8Qvk5+f38ih7B4VCgeeeew5tbW147733cP755+Oee+7Bz3/+cxiNxm5/vUcffRTXXXcdgPQ6dgaDAdOnTwcAnH322diwYQMWLlzY6Tqsbdd/ue2224TWIQAsWrQIo0aNQlVVFWpra1FYWHjcBzqdTtdbw2YYhmEYZgBCzWcNBgNWrlyZ6eEwDNPHYCczMyDhQz/TH6itrcUrr7yCZ555Brt37xb3z507FwsWLMCECRNQXFyM3Nxc2Gy2fiWNcTS0Wi1ee+01/OhHP8Jzzz2HZcuW4amnnsL111+Piy++GN/+9re75XO7ceNGVFVVIR6PA0ivY3ci2nYspzEwWLp0KW666SYkEgnceeedUCqVfKBjGIZhGCZjkOwbkL75LMMwzPEyMDwODHMM+NDPZCvvv/8+vvrqKwSDQQQCAfj9ftTW1mLXrl04cOCAeJ7JZMINN9yAW2+9FaNHj87giLMDvV6Pv/3tbzj//PNx5513oqamBo888ggeeeQR6HQ6DBs2DMOGDcOgQYNgtVphsVig1WqhUqlQXFyMq666ClqtNumaqRUQ1dXVqK6uxm9/+1sA6XXsUu+rqKhIO16uihg4jBs3Dp9//nnSfXygYxiGYRiGYRimr6NIdFVXzTDMCePxeJCTkwO3283aVMwp4/f7kZOTg1gslvZxlUqFs846C9dddx2uuuoqtrkuCIfDeOutt/Dyyy/jk08+QWtr6zF/580338T8+fO7fNzn82Hy5MkoKipCTU0NbDYb1q5di+985zt477338NFHH2HTpk2YMWMG3n77bTzyyCO44oor8Oijj3bpaJbhuYQ5FmwjzLFgG2GOBdsIczywnTDHgm2EORZsIwMHzmRmGIbJUkwmE6LRaKaH0efRarW47LLLcNlll3XbNc1mM3bu3AmgoxJi1qxZMJvNnSog8vLy8MILL2Dq1KmYPXv2cTmYGYZhGIZhGIZhGKavwZnMDNONJBIJeL1eWCwWKBSKTA+HYZg+Cs8lzLFgG2GOBdsIcyzYRpjjge2EORZsI8yxYBsZOLCTmWEYhmEYhmEYhmEYhmEYhjlplJkeAMMwDMMwDMMwDMMwDMMwDNN3YSczwzAMwzAMwzAMwzAMwzAMc9Kwk5lhGIZhGIZhGIZhGIZhGIY5adSZHgDDDBRI7J7JTrKhCQHbSHaTDTYCsJ1kM2wjzPGQDXbCNpLdsI0wxyIbbARgO8lm2EaY4yEb7IRtJLs5URthJzPD9BJerxc5OTmZHgbTBW63G1arNaNjYBvJbrLBRgC2k2yGbYQ5HrLBTthGshu2EeZYZIONAGwn2QzbCHM8ZIOdsI1kNydqI4pEIpHowfEwDPP/OZEIncfjweDBg1FXV5fxST8d/XF8fTWKm63vRbaOCzj5sWWDjQA8l/QWfXUeAdhGepO+aidsI70H20jm6Y/jywYbAdhOepMTHR/bSPfTH8eXDXbCNtJ79IaNcCYzw/QSCoXihCcaq9WalZMTwePrXk7GRohs/VuzdVxAdo/taPBc0rtk89i6gm2k98n28aXCNtL7ZPv4UmEb6X2yfXzpYDvpfbJ9fKmwjfQ+2T6+VNhGep+eHB83/mMYhmEYhmEYhmEYhmEYhmFOGnYyMwzDMAzDMAzDMAzDMAzDMCcNO5kZJgvR6XS47777oNPpMj2UtPD4sods/VuzdVxAdo+tu8n2vzWbx5fNY+tOsv3v5PFlnmz/G3l8mSfb/0YeX3aQ7X8njy/zZPvfyOPLPNn+N/L4uPEfwzAMwzAMwzAMwzAMwzAMcwpwJjPDMAzDMAzDMAzDMAzDMAxz0rCTmWEYhmEYhmEYhmEYhmEYhjlp2MnMMAzDMAzDMAzDMAzDMAzDnDTsZGaYLCMSiWDKlCni59deew2TJ0/GRRddBIfDkcGRdRAKhbBgwQKcffbZeOaZZzI9nE4sWrQINTU1+OKLL3DWWWdh9uzZOHjwYKaH1SNkq61ks42wfWTePohsthNgYNgK28ipMRBsBMhuO2EbyQ7YRk6NgWAn2WwjQPbbCdsI28ixGAg2AmS3nbCN/H8SDMNkDW1tbYlzzz03UVhYKO6bOXNmIhQKJd5+++3EQw89lMHRdfB///d/iSeffDIRi8US8+bNSwQCgUwPKZFIJBKhUChx6aWXJsrKyhIHDx5MfOc730m0tbUlduzYkbj55pszPbxuJ5ttJRtthO0je+yDyEY7SSQGjq2wjZw8A8VGEonstxO2kczDNnLyDBQ7yXYbSSSy107YRthGjsVAsZFEIvvthG2kA85kZpgswu/343e/+x3GjBkDAHC5XMjPz4dWq8U555yD9evXZ3iEwKZNmzB9+nQolUqMGzcOu3btyvSQAHREDn/2s59h7ty5AIBAIIC8vDyMGTMG1dXVGR5d95PNtpKNNsL2kT32QWSjnQADx1bYRk6egWIjQPbbCdtI5mEbOXkGip1ku40A2WsnbCNsI8dioNgIkP12wjbSATuZGSaLGDx4MMaPHy9+9nq9MJvNAACTyQSfz5epoQmycUwAYLFYMGPGDPFzPB4X3ycSiUwMqUfJZlvJprEQbB/Z955k45iAgWMrbCMnz0CxESD77STbxkOwjWTPe5Jt45EZKHaS7TYCZOeYALYRIHvej2wcEzBwbATIfjvJtvEQvW0j7GRmmAzy+OOPY/r06eK2atWqpMfNZjP8fj+Ajsid1WrNxDCTyMYxpUOhUIjvlcq+P9X1JVvJprF0BdtH5t+TbBxTOvqLrbCN9Bz9xUaAvmcn2TaermAbyRzZNp6j0V/spK/ZCJCdY0oH20jmyMYxpaO/2AjQ9+wk28bTFT1tI+puvyLDMMfNbbfdhttuu63Lx3Nzc9Ha2opgMIg1a9Zg0qRJvTi69EyaNAmfffYZTj/9dGzduhUPPvhgpoeUFoPBALvdjpaWFlRWVmZ6OKdMX7KVvmAjbB88lxwv/cVW2EZ6jv5iI0DfsxO2kd6HbaTn6C920tdsBOg7dsI2kjnYRnqfvmYnbCMdsJOZYbKc22+/HTNnzoTBYMDKlSszPRxcccUVuOqqq/Dcc8/hxhtvhF6vz/SQ0nLPPfdg/vz5UCgUePHFFzM9nF4hW2ylL9gI2wfPJcfLQLIVtpGTYyDZCJBddsI2kp2wjZwcA8lOsslGgL5jJ2wjmYNtJDvJJjthG+lAkehvQi0Mk0ESiQS8Xi8sFktSGQLDEGwjDMN0BzyXMMeCbYQ5FmwjzPHAdsIcC7YR5liwjQwc+rZIC8NkGV6vFzk5OfB6vZkeCpOlsI0wDNMd8FzS/1i6dCmef/55fPHFFzjrrLMwe/ZsHDx4EABw11134eyzz8YPf/jD474e2whzLNhGmOOB7YQ5FmwjzLFgGxk4sJOZYRiGYRiGYTKI3W7HM888AwB48MEHsWrVKjzxxBNYvnw5amtrsX//fnz++eewWCz44osvMjxahmEYpr+xaNEi1NTUpA10MgzDHC/sZGYYhmEYpl8SCoXgdrszPQyGOSaPPPIIrrvuOgBAIBBAXl4exowZg+rqamzevBlnn302AOCcc87B+vXr014jFArB4/Ek3RiGYRjmaITDYSxcuBBffvklgM6BToZhmBOBncwMwzAMw/Q7PvroI5SWliI3Nxe/+MUvwC0omGylrq4OXq8Xo0aNAgDE43HxGGkYms1mAIDJZILP50t7nYcffhg5OTniNnjw4J4fPMMwfQqPx4OysjLMmjULc+bMyfRwmCwgFArhZz/7GebOnQugc6Czq9/hoCbDMOlgJzPDMAzDMP0Ku92Oyy+/HA6HA4lEAo888gjefPPNTA+LYdLy8MMP4xe/+IX4WW6Io1QqYTab4ff7AQB+vx9WqzXtdZYsWQK32y1udXV1PTtwhmH6HDt37sQPfvADfPLJJ/jwww8zPRwmC7BYLJgxY4b4OTXQmQ4OajIM0xXsZGYYdI7qsxYVczRYs4xhspvHHnsMDocD48aNw09+8hMAwAMPPJDhUTFMejZu3IgbbrgBy5cvx/Lly2EwGGC327Fz505UVlbijDPOwJo1awAAa9aswaRJk9JeR6fTwWq1Jt0YhmFkduzYgXfffRczZszAc889l/Y5nKU6sEkNdKaDg5oMw3SFOtMDYJhsgKL699xzDwBg/vz5WLVqFZqamrB8+XI8/fTTGR4hkw2Ew2FcccUV2LhxI4AjmmVsJwyTPYTDYfztb38DANx///2YNm0annzySWzcuBE7d+7EmDFjMjo+j8eD0047DSNGjIBKpcIDDzyAn/70pzAajXj22WdRVVWV0fExvQ+tKc8//zwAYPTo0Zg/fz4UCgVefPFFVFZWYvjw4Zg2bRpGjhyJ6dOnZ3C0DMP0ZSorK/HII4/g29/+Ns477zzMnz8fhYWFSc95+OGHsWzZsgyNkMk0FOhsaWlBZWVl2ufodDrodLreHRjDMH0CdjIzDI5E9T/44APceOONQosqLy+vSy0qoCPSHwqFxM8c6e/fkGbZs88+CwDHZSdsIwzTu7z++uuw2+0oKSnB/PnzoVarce655+K9997DO++8k3EnMwc1ma644YYbxPepzf0efPDBXh4NwzD9kSlTpsBgMECpVGLKlCk4ePBgJyfzkiVLcPvtt4ufPR4PyyEMIO65556kQCfDMMyJwHIZDIMjUf3Vq1fjhRdeOC4tKqB39KhisRgikYi4RaNRxGIxbmKVAVizjGGyn3/9618AgOuvvx5qdUcs/cILLwQAvPvuuxkbF5Faqnw8DXYALl9mGIZhTp17770XH3zwAeLxODZt2oRhw4Z1eg5L7wxMnn/+eVRWVmLKlClYv349vvjiCwwfPjzTw2IYpo/BTmaGQUdUf+rUqdBqtZgyZcpxaVEBPa9HFY/HhSMzkUgkOZzD4TAikQji8Tg7nDMEa5YxTHYRCoXw3nvvAQAuu+wycT85mT/77DPRQC1TZHNQk2EYhunf3H777Vi+fDnOOeccLF68GPn5+ZkeEsMwDNOPYLkMhkFHVP+8887DvHnzsGnTJuh0umNqUQG9p0eVSCQQjUbFz7JTQqVSQalUiq+y45PpWVizjGGyi08//RQ+nw/FxcU488wzxf0jRoxAeXk56uvr8dVXX2HmzJkZG2NqqfKGDRvEY8cKavZ0+XIikUAikRABznROb1pn6CuvOQOLRCKBYDCIeDwOjUYDjUbDNsAwfYiysjJ8/PHHmR4GwzBZTl1dHa677jqEQiFccskluPPOOwF07i3y4YcfZnikTLbBTmaGQUdU/5prrsH999+P6667DhMmTMgKLSo6uKUe9MPhsPheqVQKJ7N840Nfz8OaZQyTXbz55psAOnSOZYetQqHAWWedhfr6emzYsCGjTuZsDWomEglEIhGx3pDDmW4EOZbpRmsQBzkHDhTojkQiCIVCMBqNUKlUGR4VwzAMwzDdxR/+8AcsXboUM2fOxJw5c3DLLbfAYrF06i3CMKmwk5lhkD6qn9p0JxPIB3kiEokkPYcyzqLRqHAwq9Vqdjb3IM8//zyAjrL3bLAThmE6nKJvvPEGAODiiy/u9PjkyZOxcuXKpMzhTJCtQc1oNJqUyRyLxQCgk6M51cksZzVzVU3/R6FQQK/XIxgMCidze3s7zGYzjEYjv+8MwzAMcxSoQpn6LHVVPSbvq9RqNTQazVEr3rqbX/7yl8jJyQHQ0SOK+pxQb5EPPvgAN954I2688ca0vx8KhRAKhcTP3Etk4MCazAyT5ZCjOHVRUavVMBgMCAaDaG9vRzAYFJM53cLhsHAc9Feqq6sxbdo0jBw5EpMnT8bOnTszPaSsg4IQ4XC4k43IdkIbnf5mL2wjA4Ovv/4atbW10Ov1mDt3bqfHJ0+eDAAZdzJTUPPzzz/H97///axpsEPZqQqFQjSXjUQiCAaDSetLMBhEIBAQ6w71B5Bv4XBYzCuyvFN/YdmyZVAoFPjmm28yPZSMoFKpYDQak/YlPp8PDoejX77fJwKvNwwA3HbbbaisrEw7T7CNMMcD20n/gvZUPp8PTqcTXq8XgUAgaa8ky5XJSWShUAh+vx8ulws+n08kAVRWVmL06NGYOHEiJk6cKBpfdxd5eXlQqVT4y1/+gkmTJsFgMIjXlXuLtLa2pv197iWSeYLBIC699FKMHDkSEydOxAUXXICampoef112MjNMlqNQKJIyw6gkNRqNIhAIiANdPB5HOBxGIBBIcgjQYZ+cBv2N73//+7j55puxd+9e/PznP8dNN92U6SFlDbShiUQind5/OTORmkpGo9GkppLypqcvwzYyMCCpjDlz5sBoNHZ6nDSaa2tru9wQD2QoA1XW/5flM+hnWltkhzKtO6nzhzyn9JeA5+bNm7F+/XpUVFRkeigZRaFQwGKxiM9aNBqF3W7H/v37B3S2Eq83DAAsXrwYa9euxZAhQzo9xjbCHA9sJ/2HSCQCj8cDr9ebJHlJ57T29nZ4PB44HI6km8vlgt/vT6piDofD8Hg84jqvvPIKtm7diq1bt+KKK67o9rG/9NJLeO2117B8+XJx35QpUzB16lRotVpMmTIFBw8eTPu7S5YsEY3v3W436urqun18zLG5+eabsWfPHmzduhXz58/HzTff3OOvyU5mhukDUEkyOZupXEXOGJId0JR9RllnlMGaztnYmyQSCUybNg0TJ06E0WjEiBEjMHHiRNx9990ndb2WlhZs3rwZ11xzDQBg0aJFOHjwYK9E6LIdCjrI2YlUniVnHnaVxUzl8umyEnvSfthGmJOFnMyXXHJJ2sctFguqqqoAdJT6McmkaurSocZgMMBoNMLj8SAQCAgncyAQgM/ng9/vRygUQiwWS1pzyMEsO5xp7umNbNfunkuAjtLPW265BU8++STLQuCIozk3Nzcp4N3Y2IjGxkaRbZWt9MX1pq6uDrNnz8a0adOSDv0ejwdlZWWYNWsW5syZ022vNxDoiblixowZKC8v73Q/70n6J31xLmF6nng8Dp/PB6/Xi2g0igsuuAAzZ85EeXk5Jk2ahOnTp2Pp0qXw+XxiP+X3+8X39LtutxttbW2IRCJQKpVIJBLw+Xw9Pv4vv/wSL7zwAlauXAmtVivuv/fee/HBBx8gHo9j06ZNGDZsWNrf1+l0sFqtSTfm6HQ1l9x1113ibH4i1cd6vR4XXXSR2LNOmTIFBw4c6PG/gzWZGaYPQHIZ8XhcOJhpUtFoNCLbTK/XQ6PRwOv1IhaLIRwOi8VIpVIhHo8nNQfsbd1MhUKBdevWAQCKi4vx4YcfdsoGW7x4Mfbt25f29998882kUpu6ujqUlpaK/4lCoUBFRQVqa2uP2kCrvxOPx4WDiN5fWRMr3fNlyDbIdoAj2c7kNJAbfqXqhp8KbCPMydDY2Igvv/wSQEfTv644/fTTcfDgQezYsQOzZs3qpdH1DUj6gNYa+kyHw2EEg0EAHeuN0WgUQSxyLtN6o9PpxJoUjUahVquhVqvF/EHzRiwWEwHT7pw/ZLp7LgE6DlbXXHONCFYwHWi1WpSWluLQoUNi7fF4PPD7/Rg8eHCPNqw8FfrienOqjZhYI7MzPTFXdAXvSfonfXEuYXqWSCQCv98vzlgajQZvvvkmPB4Ppk2bhueeew4FBQUiMxkA7rzzzqRsX9obKRQKPPHEE6ioqIBer0dOTo5wMl599dWIx+M466yz8PDDD6OwsLDb/oYHHngATU1NuPDCCwEAs2fPxuWXX96pt0h+fn63veZAh+aSRCKBkpISrFq1CmVlZYjFYmhvbwcAXHPNNUmOYtlOjrUePf7442n71nQ37GRmmD4GOQJSm/rRYqbVapGfn49gMAiv14t4PI5gMAiNRtPJyZwpZ3NjYyMikUjacuNXXnnlhK6VOu7+UI59KlC2MtDZwUzNIygCmkgkRAa8SqUS98nOZGoiSQ5n2iylPo8czt1lS2wjzInw+uuvAwDOOusslJaWdvm8sWPH4q233hqwWrpHQ6FQQK1WIxqNCgcwzRUyeXl54uAbi8VElg05oyngSWWg0WgUWq1WrF00b5Azm16rp5rZdNdc8sUXX2Djxo1J2aPMEVQqFaqqqtDW1oa2tjZxINq7dy9KSkqQn5+ftdnffWm9OdVGTA8//DCWLVvWrWPqL3SnHRwN3pP0X/rSXML0DIlEQkiIAR3vYzweR2trK+LxOJqamhCJRGA2m4XsJcla3nnnnZ2up9FooNVqodFohJORqojeeustDB06FDqdDnfffTeuv/56vPPOO932t1CFYDo+/vjjbnud/ojcNFtO2CLkzzdVGwMQWtyHDx9GOBxGcXFx0j5coVDgH//4R9J1CaVSCa1WK873qTz00EOorq7GU0891a1/azrYycwwfYTUyQjoKGP2+/1iAWpvb0c4HEZLSwvMZjPy8/Ph9XqFVEY8HodWqxXlFmq1GrFYrNedzdu3b8cZZ5yR9rETifQPHjwY9fX1ImMukUigrq5uQGtlynIoCoVCbHLove4qa0mhUMBkMkGr1QqZDLn7MZDsSE6FFkW6FtnSydoU2whzIvznP/8BACxcuPCozzv99NMBsFxGV8ja/4lEAlqtFqFQSKwPkUgEdXV1KC4uhsFggEqlgs1mQ05ODjweD1pbW8XzbTYb2tvbEY/HEQqFoFQqodFoxGtR0IoaDcoBre6ku+aSTz/9FLt37xZZzPX19Tj//PPx17/+VWT5DHQUCgUKCgpgNBpx4MABIZdSV1cHr9eLioqKTrIs/4+98w6Pskrf/z29z2TSSYHQi4KCICCggF1Rv8q6uosNXde2srZ1Rd0V1wKWdde27trr2rCsimURFwUkKlVqSEI6KTOZZHqf9/dHfs/hzGQCIaRMkvO5rlyQycz7vjNz3lPucz/Pkwr0p/EmPT0dADosxDRt2jScccYZWLBgQVJH29KlS3Hbbbex310ulyjGhLb+aNu2bTj++OPj8tITl1xySYft4KOPPkJhYSGLyjjUvEfMSQY2/akvEXQvfH5lvogf5VSmNAdbt27FmDFjWApCr9fLjvHAAw+gvr6eiY68iLh8+fK4HO8ajQYFBQUIhULQarW45ZZbMGbMmF59z4KDkLZCDvOjTQu3Y8cOHHfccUyj4Y9/+eWXMydz4ljz3nvvYdiwYdBoNHHz6ccffxwffvghvv7666R1a7obITILBP0E6kRod4oGH71eD4/HA0mSkJWVhdbWVoRCIZbfiVwuAOLcq7RzSh0X7yjrqfBloq6uLmmuOuDIdvqzs7MxefJkvPnmm7jqqqvwwQcfoKioaNCGktEABLS5yvx+P4A2gZmKQNLvNPhQHtVoNAqPxwO9Xg+j0cg2I8iJyFc85qG2wrcZfkeWfj/S1BqijQg6S2trK7755hsAwP/93/8d8rnHHnssAGDnzp0d7vQPZsjNHA6H41IzhUIh6PV6+Hw+RCIR1NbWwmg0wmq1QqPRQCaTwWKxQKPRoLa2Fj6fD5mZmcjMzITP54PH42FiMw+NOdR3KRQKlmKju76b7upL7rrrrjiXUVFRET777DPWpgQH0ev1GD9+PEpKSliBIo/Hg3379mHYsGG9ssA5EvrbeEOFmD7++GP22IwZM6DT6SCXy1khpmQis0ajSdn0Jb0FzZ95QUCSJFRWVmLIkCFJ04u9/vrrhzwmX8wLiK+Tws+HxJxkYNPf+hLB0UPist/vZ/0JXwuJL4gsSRLq6+uZCYxIS0tDVlYW/vGPf6C5uRk+nw9KpRIWiwVqtZoVqyZBWqFQoL6+HmlpaTCZTAgEAnj77bc73OAQ9Bz0fSfbnATai8DJ5rb8eoTWyk1NTcjPz2d1Tng39HPPPRd3LBpvKGowGo3C7/dDq9VCoVDgiSeewNtvv42vv/4aaWlp3fXWD4lMErEXAkG34XK5YLFY4HQ6eyS5PYl95DCVyWTQaDQsLYZer2fOM4/Hk3SibLFYoNVq4ff74zrEjtJo9AQlJSVYsGABpk+fjjfffPOoj3XVVVehubkZZrMZr732GnMrpiI92UYotF0ulzMHMg025Gg2mUzQarVxgxyFdlERCavVGuc4BA4K2Py/hxo+EsVnXlzuTGqNwdxGBEfGyy+/jGuuuQbjx4/H7t27D/ncQCAAg8GAWCyGAwcOYMiQIb10ld1PT/UlfE532qyinMuUfomvdK5UKqHT6ZhY7HQ6AQAFBQXQ6XTw+/2dyvtK4jKNPyqVql1aqK7QnX0JT3eKzDU1NbjiiisQDAZx/vnn45RTTsEtt9wCvV6Pl19+GcOHD8c999yDtWvXYtKkSWyBcTh6ek5yOCRJQmNjI2pra6FQKKDT6SCTyZCRkZFS6TP603jzww8/4N5778Unn3zCXMwAcPvtt+OMM87A6aefjjPPPBPvvPNOp/Jk9nUb6S14UbmjAtj79u3DxRdfjGnTpuHll18+7PGShULTXOe2227DqlWr0NjYiIyMDJhMJpSWlkImk/XLOclgaSdHS3/qS7qbwdZGaOOcjDrhcJgVP+aFZVqb0b/V1dX485//jHHjxuGRRx6B2WxGdXU1Kisrk/ZLMpkMw4cPZyYitVoNvV4Pp9OJW2+9lfVBo0ePxpNPPpnSGxEDrY1EIhG2vgYOpqWkdTjfBhLpyIAVi8UQiURQWlqKK664ApMnT8aTTz7JjF4dmb34+bNGo2GbnHa7HcOHD8eIESNgMpkAtG02Ux2bnkKIzAJBN9LTnScJfHzeXZVKxXasZDIZjEYjc6BFIhHmYJUkCUqlEnq9nnU8kUiECQgE5cbk/02VheBAoCfbCH3PvItZpVIxgYechh3hdDoRDAah0+nYQHQoeHczDaL84JfM4ZwoLtOA3NPuecHAZfbs2diwYQOWL1+eNJ9dImPHjsW+ffvw3//+F6effnovXGHP0Bsis0ajYRuS1K/QQokcOsmmkTqdDkOGDIHP52M5BNVqNWQyWdzmJ18UkKC0GiQ608R5IPcPd9xxB8477zxWzA0A3n//fTQ0NODJJ5/EPffcgzvvvBPvvPMO7rzzTlx44YWYOXPmYY+bKgu6QCCA6urquLZiNBoxZMiQHtvMHqicd955qKysZAIyFWKyWCy47LLLEAqFcMUVV+C6667r1PH6so3wm9aJcweaKxztvc/PTxLh5yMk1NAGerIfus7EPPXJoKgMeg/0vvjFf38iVfoSQeoyWNoICYvkXg0Gg/D5fExwDgaDzOjD17Gh/kMmk0Gv10OSJDQ0NDCDDwBkZWWhsLAQJpMJoVAI1dXVqKurA9DmdjYajVAoFDAYDOwnPT2drf/VanWffCadZSC1kVgsxua35CKmuketra1Jx5zE3MzJ8q4njjc0JiVLxUFrZ368ofmzWq1m824qyt2biHQZAkE/ghfrVCoVW+RrNBpWNMDtdrOOhh/gKO8lheeQU0yv1zORmndIk1gZi8XY8QbyIn8gkCj2yGQyNshptdrDhsiSC76jkJ9EaCHYkWs+8Xn8go7+zxcTPJTDuSPHEB1fiNSDk59//hkbNmyAQqHAlVde2anXHHPMMdi3bx927drVr0XmnoK/j2hBBLSNGenp6fD5fPB6vcwtwRcApbFJqVTCbrez4+h0Omg0GrbZGQgEmLNHq9XCZDLB7/cjGAwydxCl7KDjqVSqATsOJRZzo886PT0dpaWl2LJlC2bNmgUAmDNnDoqLi5OKzLTAJTrjIO8NtFotRo0ahbq6OrYo8/v9qK+vR3Z2dq8vfvoz/b0QE1/r4VA5K3khl49s6Cx8MS2C5h50DXwIO399ya6Z/j3UD52DX/STw4yuPxAIsCJeAoGgf0B9ht/vZy5l2kSnIn+UIoPMXZFIhNVDOlRfp1KpMHLkSIwaNQqtra2oqalBRUUFFAoFcnJyMHLkSPz4449obW1FNBpFWloa/H4/lEoltFotwuEw1Go1+1fQO5AZQy6XswjhSCSC5uZmtkal6C1qI51dX9PamHfBA/Ebs3QO3j1N6TDJwBGLxaDVahEMBtlY1FsIkVkg6EfQ5JU6FoVCwcKYqUptsrxAfF44GuhIGAgEAiyMlUKhKb8ULXZjsVjcLpkgNUksFNFRFduOoHbCT4b4nM3U5vgwdl7U4B1H/KSK34Gla+EHxWSCM3/NnQ244Y87EIUoQXuWLVsGAFi4cGGnU1+MGzcOQFsoqqA9dB/RBDfRMWEwGKDT6RAIBOLEYB6616nStUwmi8tZSgsicgRFIhFYLBaYTCZ4vV54PB7WZ4TDYahUKlYAaSCKzYnF3LZu3cr+JkkS3G43jEYjAMBgMMQ5n3iWL1+O+++/v+cvuAvI5XIUFBTA6XTCbrezftrhcMBkMrHFmGDgQhtIyQSXxMLB1Afx8wc+52RH0PyVT+lDc41AIMDmuMlyMicW2jocvOOMoOsnhyP1WZFIhC3+KepMCEICQeoTiUTg8/lYOgyPx8NqTQQCAfj9fni9XrYGp/6Hnz9Rn6bRaGAwGGA2m5GWlgaDwYBQKISysjJ89dVXSaMk5HI5Jk+ezIxiMpkMVquVidqBQIAZz0StkeQk9vcEX6z1SNOE0nFUKhX7zN1uNzNTpKWlwe12o6Wlpd1rab1O0en8GMRHrfPj2eE2ZklgJvMhvw7XarUIBALQ6/W9puMIkVkg6GfwIrNarWYTZirMRLua5ESmzo93dSQL/fP5fJDL5TAYDGxyzP+d8m3y7gxBakH5l/nikDSY0OByJE4gahcE70BSKBTQarVsQUbOO75d0GQsMWRMoVDEhchTODzvck50JnfkGgLincz0GXRlwiBITcLhMMrLy2EymZCfn88e//jjj/HRRx9BJpPhvvvu6/TxSGTeu3dvt1/rQIEXQug+DIVCbKNRLpdDr9dDr9fHpV1KdPPx9x+9DjjokFYoFCx6wuFwwGKxQCaTseI25IxOFJvJ3TyQxGa+mNtZZ53FHpfL5TAajSxk1uv1dhhmunTpUtx2223sd5fLhcLCwp698CNAJpOxhXVLSwtrL263G5FIBCaTacB8n4J4+NoQANgmdWLBPB61Ws02H8jRRQ4+2rxKPEcwGIyblyiVSuY2pHkHzWOA9ik7kkVL0fUS/Py5Iyg3plqtZn0WCcu0yUb9myC14DcOjiRqjtoO35Y6crsDBwt88fNfQeogSRJLgxEKheB2u+H1euF2u+H3++F2u9n/SXj2+/1xfQp9v501v1itVuTm5rI1d0tLCw4cOIDNmzcjOzsbOp0OLpeLOWf5SGZa6/fHdDw9BR+10pkNRHL70rr0UMflzRTAwRSlQFtqE4/HwwRmvV4Pk8nEUml4PJ64jVD+uHyKJ/45NP4la19UG4XW58nSOpGjObEuU08hRGaBoJ9CEx+NRoNAIMA6JZVKxcKS+Z27RBdpothHHZbX64VarWbVainUJxQKsYFSpNBITXiRWaVSsUJdSqWSDWxpaWkdDpy0AKQwG/qdwuIBsB3VaDTK2gqlYvH7/dDr9QDA3GodwRcoAMDStPCTsY5SZvCTdyBe0OIn7bFYTOQV78fEYjH8/e9/x4MPPsgmaiNHjsRpp50Go9HIip/dcsstmDBhQqePK5zMh4dPycRH0Ph8Puh0urg+hEQiflOH3wwF0G6sIJciHZv6qtbW1rjroA1UErgpzJz/GQhj0Q8//IDXXnsNn3zyCRPW7HY7mpqaUFRUhMmTJ+Odd97B7373O6xbtw7nnXde0uNoNJrDpkVKBVQqFbKysuByuRAIBCCXyxEMBqFSqXptASToPXiBWSaTIRwOs98TxV1+PKd7X6vVMgMEX0CLoqr4DXA6hlqthiRJaGlpYQtuWrhTv0LHORqor6S+j85D8+pQKMSuhRel1Wo1QqFQXM5mQd+QWFfkcGLUoean/O+8Sz6ZaJ0oMpO4xbcnQd8QiURYRBVFV7lcLvZ/h8MBn8+HlpYWeDwe+P1++Hw+th5PRK1WIz09HRaLhaXNociw7OxsmEwmNDU1Yffu3di+fXvca4cPH45YLIampiZYrVakpaWhtbUVWq2W9ZEU6RUOh0V/8v+RJCkuBSTda4lRv/RculdpncvnN0683/lj8mYuAKy/dzgcANoi1YxGI6qrq9ulMKM+gIRwihzmzxMIBODz+dhr+U1O/j0plUrmkHe5XDAYDHHjKj2PNj17GiEyCwT9DD6FADlVabLKT7KTQR0mdTJAvKOMJlh0LKPRyAo/8WI1726mzlcsCvse/jvgQ6f0ej2bLDkcDuj1elZ8hs8zRjuwOp2OOdllMhm0Wi0bRMmZQzlVQ6EQ2+jweDys8AENrnq9ng24tMtL7ZTaIO3CkrjND978ezqUa4j/DMgBQJN2EtrFxKv/IEkSbrrpJvzzn/8E0NYmQ6EQysvLUV5ezp531lln4ZFHHjmiY48dOxYAUF9fD5fL1e+Lj/QUdP/Q4oXEGZ/PF1dQhCaxOp2OPa8j4SZRaOadYeTGoXuX7nedTscKDpJLQ6PRxDkEqf/or2Lzgw8+iIaGBpx99tkAgIceeggLFiyATCbDG2+8gaKiIowaNQonnXQSxowZg9mzZ/fxFR89MpkMZrOZzTHoO/f5fCytgKD/Qwt9AOw+J7dxoruZh6IlaMM7EonAarWyOSoJxYlQ/xAKhdimVWLdkcSUHVqtlm2eUf9FYiD/w5s3SBQIBAJwOp2sf1SpVCylEO/Wjkaj0Ol0rL+k+TgVW+6P/VZvkCjW8t/L0aZHI+d7R+umRPc6/3/e8c6HuCf7ScyjSu+Bj+KjdstvoPbXIpH9nWAwCK/Xi1gsxoRlp9MJr9eLlpYWuFwutLS0oKWlhf2NIjcpZzM5inU6XVyRv4aGBhQUFGDBggXIz89HSUkJvvvuO1RXV7PzS5IErVbL+q2KigrI5XJkZWWhpaUFcrkcFosFXq+XRZ2RQzUcDkOr1fbhp5c68AVfaW3Ku815+EJ5fJ9DKSH5+SVfHJs0Fd6YpdVqmTFGp9PBYDCgrKyMbSxYrVbo9Xq0tLTAZrMlrWkUi8XgdDrhcDiY8O31ehEOh+Hz+eL6LIVCwSILw+EwPB4PsrOz2d/5KGFqL71hvhIzOIGgn5EouvFu0GTPTXR40mSIjkMTHHqMOk8aXE0mE0wmExs8yQXNhxeKFBqpQeLnzxfyo9xQNFBROHoiBoMhbgDVaDTMqcw7PMhpQc+j/OBOp5MtBAEgMzOz3Y4p5Tfzer3w+XxsIk4DObXpRMEoMeyQL3xAPwqFgk0sKDyVF8iEcNE/+Mc//oF//vOfkMlkePrpp3H99dfD5/Nh7dq1WL9+PTweD0466SRceumlR7wIs1gsyM3NRUNDA0pKSjBt2rQeehf9H1rAU95l3gVIE1V+sp4YQpgoJPNQzmf+b3Tv6nQ6+Hw+FnEzdOhQtLS0wO12szQ+tMGlUqmYw5mvHdCfxqNkxdyKi4vjfn/ooYd663J6DdrEVCqVcQstEiFFKoH+D58nlARnWjSTSEwiL+UypvynHo+HpVChaCyr1crCgvlUXHy9CBJ+gfYCs9/vB9A2t8nOzoZGo0FtbS3279/f4bzocCRGVpHjTC6XIzs7G0qlkvVber2etXUSF3vLWdZf4EPcO+M0J/Gks8Uh+eKyBI0dNJclcSmxyFayY/FzUhrDyITBu9o7unZquxSJotFo4gq6aTQa4WzuBUgoJBHS7XbHOZhtNhu8Xi8aGxvh9XrR3NwMn8+H1tZWOJ3Odg74SCTCUmosXLgQWVlZ+Pbbb1FbW8sMFIRKpUJeXh72798fJzgDbesojUaDxsZGZGZmQiZrKyhHtRr4jazEKLLBCr8JSevY5ubmuPkq6Rl8JAxtchsMBgAHx69kG1F03wKIq4elUChY3Qyr1YqqqioEAgEolUoMHToUDQ0N2L9/f9yGI6WKs9lsqKurYxuplOubdzHT2EnfsVqtZvm6dTodMjMzEYlEWJ0a3shFkUG9MeaI1bZA0M8gIY3Px5M4sPHpDYB4JwCRLD8mpVsgUUGS2goOmUwmlsyeroHEBT5fs0hN0Lck5ikmlwxNONLS0hAMBpkrMNFRo1Kp2gnMJNomtjE6Jjmm6bW0kNJoNOxciQMZtTez2YyMjAyWz4zcSvxgzu8cdyafFjn7aTClc5O4TPePIHWpqKjAnXfeCQB4/PHHcdNNNwEATCYTzjvvvA5TBRwJY8eORUNDA/bu3StE5sNA9xQJzXx4e2IYIs/hxgLqdyi8M/G5er2ehabqdDrk5uYiIyMDzc3NLIcvTZTpX/qhsUgUAe0fUFshJxAtoijqRtA/4fsIpVLJnMXkaJbL5cjJyWFptvjXOZ1Odq/n5OQw4dnn88FgMLB7PfF1Pp8Pbreb/Z5MYB4yZAiys7Oxf/9+lJSUtHM1U3HBREMFzZvJgU0Fv2iznN6bTqeDTqeDSqVCQ0MD1Go1MjMzAQA+n4/1l7Tgp75V9FXxeUcJPiSd/qXvhsRd2vikaLtknycJNLx7noplyeVylv6gI2dzonuZdzDTnJrC20ngIqGRcvvS86gNqNVq6PV6FjlK6ZJ0Oh20Wi2re3CkNVUERwYJeiTueTweNv/w+XwsPYbdbme/+/1+OBwOJgAee+yxOOusszBhwgSkpaXB6XTi3//+N1avXo3i4mK8//77WLhwIf773/+iuLgYHo8H+fn5mDJlCnbs2IGPPvoIQNsafvTo0VAoFCgpKYHdbodSqURWVhacTie0Wi1cLle7KGY+H+9gbyt0D1Of7XA42OdCG32U2oQ3J1BxR4owoYLLiUWw+fklaSVA27yVNjh1Oh2am5vh8XjYWLdr1y7W/1itVmRnZ8Nut6OkpISNj7QJ1trayuoi0SaC3W5n5+IZMmQIE8br6+uZkaawsBBer5cJ4rRxRev2nkSIzAJBP4QmvzS54V3KQPu0AnxBJt5dRpBrlAYo+ht1qonuDj5nERVlIrGZnGf9zUk2EOAHQPqXXOo0kGq1Wlawjx6nyQm/SKKd30SnB++GTyY0h0IhlreVRGZKRxAMBlFeXt4u76pOp4PFYoHJZGKFwPjCkzw0KSfnIr2/UCgEr9fLFn/kCuGvn8QofsEiSD3uvvtu+Hw+zJ07F7fcckuPnGPcuHH49ttvRV7mTkL3OX//JG5S0WYQ/5rOHJfyCPJCdTQahUKhgNVqZWGpFosFKpUKubm5SE9Ph91uZ+GDVE2bT6HBb3zym6qC1IRCiyncWJIktLa2QqPRMJePoH/Bbw7TPFQul7M5ZWZmZjuBGThYIJKKbfn9fphMJuYoJNdz4rncbjdbwJNoRGKk3++HTCbD8OHDYTAYsGnTJjQ2NgJoy5k5fPhwZGVlxS28SbS22WxobGxEfX09Ghoa2hVsIpGR+hy+aLLRaERaWhoaGhrY8SkPOTmcKVpssEdaUfoRgkwOia5juVzO3Ia8OYIvDklmGz4tHOX+p2NQFEUgEEBra2ucuEzjHV+HpKOUbby4TNcZDofR0tKC1tZWxGIxllKOz7lKArfRaGSCclZWFhPMKaqUcqsaDIZBLx52N+R4pY0NuudpA4mcpCQ2kyHG5/OxiF+FQoF7770XZ5xxBhunHA4HfvjhB2zcuBEAMGbMGNTV1aGkpAQKhQLXX389hg8fDgB45ZVXmMD8q1/9CpdffjnS0tIAADabDffffz+2bNkCh8MBtVoNt9sNlUqFjIwMBAIBGAyGOLe8EJnB7kOlUsnWhtRvNDU1dWhaMhqNrN/x+/0IBAIwGo3Q6/UdRjJQuiSaG5OLWaFQsDHGbDZj9+7diMVi0Gq1GDlyJOrq6rB69Wq2IUW6SV1dXVyNJJ/Ph7KyMnZOpVKJvLw8GI1GuN1u1NbWor6+HgAwatQoAEBTUxPy8vLQ3NyMnJwc1p/Qep/Wzj05L+6x0aympgaXX345mpqaoFQq8ac//QkXX3xxT51OIBh08GEesViMTYgo/ywPdaZ8YaZEeIc0dT7kBqVOkQq7qVQqluOXT01AkzBKd9CR2JzouBV0D3yYOoWX8qGkPBQWluhuTyYWJXOo06SaPz4tIPl0LDR4hsNh7Ny5k4WJqtVqJnD7/X7mMAIO5rCiHFp0PgphdLlccXn0VCoVjEYjMjMzoVQq4XA4mEhBLiHaRKGQf7Va3Q2fuKC72bJlC9555x0AwN/+9rcemwBRXua9e/f2yPEHIiQ0033L9+O82w/AEX1v/BjBjz3kuAAQ5/6iXKvRaJRtJJHzg0+hwUdnkMgsNkBTG8rDS7mZKQTU6XQiLy9PpBToZ/DzAz6HJc1VyHnVEfR90xyU30gmcZpScLjd7rjNbxKYqS2RwKzX61FcXMxym06cOBGFhYUsf3JZWRkOHDgAu92O5ubmpDmjyX3q8XjQ2NjYzllGIjml7AoEAsjKyoLdbmeOZnLrUxgzzU8GK7zDmFKIUF7TRGKxGJs3arVapKens76eBFpe6OchEwU9v7m5mc0/SSTii2zx8Gsu+p3GHpqP0mPV1dVsfutwOODxeNh10/xUqVRCq9VCpVJBp9MhJycHfr8fOTk57FiUTspoNMLv98NgMIjxq5PwubCB+LVnogMdaPv+qV2RuEwiIr0GaBMMbTYbJk+ejKqqKkiShI0bN2LXrl1wuVyoqKhAWVkZO252djZcLheL0AOA9957D7feeiuGDh2KV199FQDwxz/+ERdccEHce8jKysIjjzyCRYsWoampCV6vF3q9nqVjoTU6v6HXmajPgUyiQYn6AYVCwQrSazQaZmyiIo+UV5vSV1D7cLvdbHOT6kXQfU+5u4E2gdpmswFoGyNI+NVoNKioqAAAZGRkwGq1Ys2aNUyMptoUO3bsYBuwVqsVJpMJ33zzDVtHn3jiiTjttNMwefLkuAgvh8OB9957D59//jnKysowfvx4Nk9WKBRIT09Pmrqn34rMSqUSf//733H88cejqakJU6ZMwTnnnHPYCYVAIOgcJArzg8vhwoMPNzHhHbCJi37+OUajEQaDgU3EaGLHC858ISa6JnLBJuYmo4ldsrydgs7B5wSkdkET9sRK1bRTz+dXJnGZT41BLsNkgxD9jYTmxA0KajP0b0VFBStMMX78eOh0OgBgTiWn0wmn08kmeLzofDhCoRAcDgccDgcMBgOKiorgcDiYC4VCgxI3ZoSzMfX485//DAD49a9/jeOPP77HzjNu3DgAEE7mLkCbUSQ2A+2jZ47URcOnauKhyTWJzpWVlUmFBwpxJ1can3eOz9VJG2C0CSrGm9RDJpPBZDJBrVajqamJLaL379+PrKwsWK1W8b31E/i5BMGPuzRn6Oi1tAinIqM6nY45CfkiR9RP0GY3CYQkNgNAUVERDAYDNm7ciNbWVqhUKpx44oksKmLz5s0oLy9POj9NS0tDdnY2srKy0NzcjM2bN2Pfvn1xz7NYLNBqtSxdB/VTFosFFosFNpsNubm5cLvdsFqtrAYFH0U2WHOp8kWzyOlN35tarYbRaGQCPIlCVNcjEAigqakJWVlZLFqP6pEkup8pfz8AlkuX5oQymYyZZwj6fqiwWqKDnYfEnNraWlRWVgJoGxdrampYRGhra2vSYxgMBmRkZCAYDCI/Px8NDQ1sDOXXU7RZI0wSHUNtKbG456Gg9QxFSlBqHlrXBoNBlusdAAoKClBeXo7KykoMHToU1dXV+O9//9vuuCRk6vV6OBwOqFQqjBkzBrFYDHv27MGHH36IY445BuFwGMceeyzOP//8pNdnMBiwYMECvPzyy+1SsfA5wYXI3AbdY3K5PG4DkDYLLBYLS8dGmkVmZibbdAqFQmhpaYHRaITJZGJCckf1jBQKBQwGA+x2O1sPt7S0MONVQ0MDgLaUFoFAAF9++SWAtu91/PjxKC4uRlVVFYA2EfrUU0/Fzz//jA8//BAAMHHiRPzmN79hzvdE0tPTcf3110Ov12PlypWw2+3Iyspi62gq1k1jDW2sdPb+6Co9JjIPGTKEJZzOzs5Geno6EwAEAkH3wIf98zkyEwv9dZZkz6WBi6+aSvnyaEJGz6F0CdRpkxOV343v6LwkMIiw5q7Bp8ogtx8NcIk5LfnK6Xq9ngk8/OS3M8Wz+I0OOh7fHgmv18t2j8eMGQOdTodwOIwDBw6wSTcf/kiv5x0I9L74AgYajYaFMLW2tqK+vh5erxclJSUYOXIkWltb2eSQjknishCZU489e/Zg1apVkMlkWLZsWY+ei5zMpaWlLDWDoPPQvcinbuLzTB6pUEJ9UCK8+3HXrl1scUXhi6FQCE6nE4FAgBVWIZHB5/Mx0YHf/KQxib53ITanJhqNBnl5eaipqUEkEkEwGERlZSXq6+sxbtw4cc/2M/i5gVarRSAQgNvtRnp6etLn02JfLpezlFtarRYejwfhcBjNzc1x6Q3IAU9zDa1Wi6amJgDA0KFDYbFYsGnTJiYwz5w5E0ajERs2bMDWrVvZ/DctLQ2FhYXIyclBRkYG0tPTEY1G8cMPP+DTTz9lQoVGo8Fxxx2H4cOHs0JOTqcTJpMJEydOhFKpxPfffw+n04loNMryyVNaGJ1Ox+Y51BcN1pQZ/HyV3xhIS0uDUqlEQ0MDcyPK5XJYrVZkZWUxYScSiaC5uRlZWVlsHko5jRPXH9FoFC0tLWxNQ7ng+Y0KSoPQkahMxgyas+p0OtjtdmzZsoW55i0WC3744Qc21thsNrZOopRwWq2WiVeSJCErKwtNTU0YOnQompubYTAYWF0TjUbD5ulCZE4OFTZPVn+IH+OpPVCf5Pf7YbPZ4tzBFHVJ66ecnJy4/NqUyksulyM3N5eJ2rSZQY5XrVYLq9WKIUOG4Pjjj8esWbMQCoVwww03oLKykp1n3rx5h5yHZGdnA0DcuoiHb+PdOZ8JBoP45S9/CbvdjquuugrXXnvtIR/va/i6QmQ0oihYoG2caGlpQU1NTbvXms1m5Ofnsw0hj8eDSCSCnJwclj6DIueAtn6A5pv19fUs5ShpIzJZW7FBAMjPz0dzczN27twJoG0NUlhYiDfeeIOJwGeccQZmzpwZJzBfeeWVuOiiizr1nS5cuBAffPABbDYbrFYr+zyofwXau/l7kiMeyWKxGCZMmIALLrgAjzzyCHv8q6++wnnnnYe33nqrXVqMTZs2IRaLobCw8OivWCAQxMEv9vkiGHzKgq4eN7HIBe32lpSUJN3NI6GQJvt8MSYSB2lg59Mg8DuxfMoNsfDvOrT4IgcQDx/STiIRXyThSArQ8JO3xIk8/Z0WehkZGTAajdi3bx82bdp0SFfIkWA0GjFs2DCMHTsW1dXV8Hg8qKioQF5eHpsUkPuFF8UEqcXf/vY3AMAFF1yA0aNH9+i5hg0bxopTVlVVYcSIET16voFK4mKtqySmzCDHFvUjVJBHrVazSAh+sdXU1MRypXo8HpaPkxbmtClFxU94sZnSc4hNp9RDoVBg2LBhsNlsqK2tZekzfvzxR4wbN44tpASpCd3TFGkHtAlBZrOZ5cE1mUzt0qBQZBMA5lAFwIo2+Xw+NmfRarVsc7q6uhpAmzh54MABAGBicUNDAxoaGiCXyzF9+nSYzWZ8+eWXLNflyJEjMXXqVCbmAEBLSwu+/PJLFBcXM1eY2WzG3LlzMWbMGLz99tt49dVXk85l0tLSsHjxYmzcuBEejyeuuGUgEGCb7Xw/NljnJdTPq1Qq5jyklGn79++P+1zIbej1ejFs2DAmzIZCIbhcLlgsFvbcRHNLOByG3W6Py4lMjkMaGxobG+P+np6eDrPZzK6HwtCdTidaW1tRXl4Ou93O1ktU0Pqrr74C0NYOtm3bBplMhoyMDPzwww9x791isWD48OFs84TSdcjlcgQCgbgIUPrpDcd7qoqIHREKhVjkA20yUMpHypVN91piwUaC0mXwa6Lc3FxUVlaitbUVJ510Eg4cOIDGxkaWtoQKxPFGG4qeojmHTCaD3W7H119/ja1bt+LGG2+E0WiEx+NBbW0tAHToUiXq6uoAgK2lAcRFDCdGIHcX7733Hs466yxcd911OOuss3D55ZdDq9V2+HhfQ2IyAJY3m8953NjYyO5Vo9HI7mmPxwOXywWfz4fRo0dDq9WisbERgUAALS0tyMzMZO+Pj9CJxWKoq6tjAjO538n8BLQZbz0eDxOYZ86ciby8PDzzzDPw+XzIz8/HokWL2IbrunXrAABnnXUWFi5c2On3Tuv9jlztve1wP2KRWS6XY+nSpbj55ptx1113wWq1Yvv27bj44ovx8MMPtxOYm5ubccUVV+DFF1/stosWCATtIbGZT0fBdyidEW2T/T0xDy9N7uRyOTIyMlh4ssvlYgU3/H4/1Go1m5TxhZhoIkfHpkGZF8dpgD9UDulUIJUmYfxi7nADSUeiM4AuVTinQS2xrQBtYwYtFjMzM1FaWsoKYZhMJuTk5LD8zLT4oirc5Irnr4+chzSxohxau3btwt69e3Hccccxl1RraytLlZE4+PIbJ4K+x2az4fXXXwcA3HbbbT1+PoVCgTFjxmDHjh3Yu3evEJlTANooJScZvxlJIg4Jx+vWrUN1dTUkSYJer0dubi6Kioogk8lQX1/PCpAGAgFoNJo4NzO/AUp9CY1NXen/BD2LTCZDdnY2NBoN9u3bxwpnff/998wdlsrzhJ6gv7jLePcypcii/9M43dLSEifshkIh5kZOT0+H0WiMOyYJA7FYLK5uA4mFJOzQPZ6bmwsAzLk2fPhwWK1WlJaWoqysDHK5HGeeeSYrmAS0bWp9/vnn+PHHH9n8IzMzE/PmzcPUqVPx008/4cYbb2SC6OjRozF16lRkZmbC4XBg7dq1qKurw5NPPolrr70WxcXFcLlcMJlM8Hg8rNgxLxzSZzMY4U0JJBIZDAY0Njay9pKfn8/qwRw4cACBQAB1dXUoLCyE1WqFw+GA2+2GTqdL6vSNRCKw2WxsU1Gj0bCcqSaTiaW2oHMXFhYiPT2dhbtv3boVtbW1HaZyS0tLw7Bhw7B//34WDp+fn48NGzYAAAoLC/HNN99ALpdj0aJFGDNmDF577TWUlZWxNDCRSCQu8pCEzsSaB70xd01VETEZlFMXaNuoMBgMcDqdaGlpSRohlQgVXaypqYEkSTCZTHA6nZDJZBg3bhx27doFt9uNjRs3YtiwYfB4PHC73dBoNOw7SiYwm0wmZGVloaCgAIFAABs2bEBzczO+/fZbmM1mlgcYQLuIU55YLIb//e9/AMDaN9XIoD6QfoAjT1d2KDZv3oxrrrmG5a/fs2cPJk+e3OHjiZBrn0iW67y74DdhyL1L/0qSxERfcizzn3kgEEBlZSUCgQBqa2sxcuRI5OTkoKGhAW63GxkZGUmd4hSNS8aGlpYWtpkYi8VgtVphNpuZcHzSSSfhmGOOwcsvvwyfz4eCggJce+21cddCm6ZlZWVwOp1xG2eH4vvvv0csFoPZbGbtkNokXXeio78n6VJMzqJFi3D//ffjqaeewjXXXINzzz0Xl19+Oe6444645wWDQVx44YVYunQpTjrppG65YIFA0DHUgfBiGv9YZ1/PT2ASj0kTrIyMDBQWFmLr1q0oKSlhOTANBgM0Gg3MZjMramI0GlmhDbVazfLwkYjM78Ly6Rf4auSpuPBPpUkY//mQc49CvnixJhm8INyVz/lwojafamXLli0AgGOPPRZTpkyBTCZDZWUlduzYgfr6erhcLvj9/sPmvwPa3nNWVhaGDBkClUoFn8+HLVu2YOjQodBoNGhtbWWLVz4nMwlYQmROHZ577jkEg0FMmzYNs2fP7pVzjh07Fjt27EBJSQnOOeecXjmnoGP4lBl83melUske93g8KC8vZ/nrgDa3yv79+7F//36YTCaMGzcOeXl5aGhoQCAQYBXCSWwOh8PQaDRMWCYXGwAWziz6hdTDYrFg8uTJ2L59O+rr6xGNRlFRUYHa2lrMnz+/nRg5kOkv7jJ+85vmdyQEpKen48CBA+2Ks5Fwq9frkZaWlvSYyQQZcqsZDAY2d6B0YMDB4k9UeI8KMU2ePDlOYPb5fHjqqaeY0D1y5EicfPLJmDBhAuRyOdasWYMVK1ZAkiSMGjUKN910EyZOnBh3LYsWLcJjjz2G//3vf1i5ciWmTp2KhoYGeDweVgyQUnnx5orBmks1MWoSiM+nOmTIECYcm0wmDBs2DBUVFcx9aLFYmMGFNi0S+/CWlhbEYjGWf5W+/7S0NJjNZmzbtg1Amxg8dOhQ5lL97rvvmEMeAEuFQa9TKBSs2NvKlSvZd5mXl4eNGzciFoshMzMT33zzDQDgvvvuY7l309PTcdNNN2Hfvn2wWq3wer0wGAydEkZ7ms6IiL0pIHaEJEksspbSF9TW1rLrIlczbSqT4YrWRWq1GnK5HHv37mXr2JEjR+LAgQOIxWIoLy/HrFmzsHPnTuZY1Wq1ne5XKU/vggULYLVa8dZbb2HPnj0s2oIKmFLe3mSsXr0atbW1LJKD0u1Q9DBtkPP1j7oLt9vNxlaDwcDE/I4eT2T58uW4//77u+16DgWNAQBYjSi6H+n6MjMzkZ+f3+4z0mq1KCoqwt69e1kRWRpnOjIl8fn/MzIy2LyUz8E9YcIEfPHFFwDa0kUec8wxcDqd2LdvH2QyGS699NJ249mCBQuwZs0alJWV4cYbb8TChQtxxhlnHHKOU1FRgeeffx5AWx8mSRJ0Oh1kMhlz9ZPmwt8DPUmXRGalUok//vGPuPvuu/HBBx9gypQpeOqpp+KeI0kSrrrqKsyfPx+XX355t1ysQNCbpJoj5Eg4mkGGHCD0eloU0OM0AXQ4HFAoFNixYwd7LTlRAaC+vh5msxlWqxXhcBgqlSpObOZDlhOvlXcw86kdUm3hn0qTMEplQon9Sbynyur8Z83nnks8xpFCGwFAxzm96Tukgj1qtZp9Th999BGKi4sP+94AsPfG51NtbGxk6TiKioqgVqtRXV2NnJwcmEwmtLS0IC0tjbmZ+fy7g3VBl2oEAgE8++yzANpczL11n1Pxv7179/bK+Q5Ffx5vuhuZTBa3GUluIerfGhsbAbTlKJw7dy6am5tRXV2NyspKuN1u/PTTT9DpdJgwYQITm8nVTGIz5V7UarWIRqNMdCYBKLFYqiA1UCqVmDJlCkpKSrB3717m/vv3v/+NGTNm4Nhjjx0U39vRuMv6UhjqTN/OFzBOtqj3+XwIhUJQqVRxIjKN63RfA2Ch7zKZDFqtFi6XC263G9nZ2ew8iTmQf/jhB9jtdlitVvz617+Oi3I5cOAAHn/8cUiShLPPPhtLlixpl+oDaAtbvuOOO7Bnzx40NDSw90HuNgqp5tPFiToR8YYH2hSgzUEerVaLzMxM2Gw2NDU1wWw2Iy0tjaVFoHzHBOV0B9rEIOr/ZTIZcnNzmYickZGBYcOGAWgTqT7//HM4HA7I5XKMGjUKI0eOREZGBsrKyrBz5058//33cYXFJEmC1WpFa2srcxXKZDKWIuPGG2+MK+5GURjNzc0wmUwIBAJxc+a+nKN2RkTsTQGxIwKBAMt/q9VqUVdXx0wlZrMZbrcbDQ0NzHGsUqlgsViQm5vLoivIrSqXyzF69GhoNBqMGDECZWVlrG0oFAoUFBSwtBsdGblkMhnMZjOGDBkCr9eLXbt2weFwYOvWrWwzymazsfQYVqsVFRUV2LBhA84+++x278/lcuGZZ54B0ObAVavV0Ov10Ov1LF0GRXbybubuwmg0MhHf6/Wy/PgdPZ7I0qVL46ITXS5Xj6TPpfQnAFjfykeIkEM9mcBMJD5OUbi0EZHsnLxGQe2OzHgFBQUIhUJoamqCTCbDtGnTAID9XaVSJTVT5eTkYMWKFXjsscdQVVWFV199Ff/+979x4oknYurUqRg7dizbSDtw4AC+/fZb/Oc//0EoFEJBQQFb55rNZmi1Wqa78EIzXXNP0uXqAosWLcItt9wCSZLw9ttvt2vUGzZswLvvvotJkybh448/BgC88cYb7XZ7BYJUJdUcIb0F7zbh/1WpVIhGo0wgpsJtQFtHdd5558HlcmHNmjUs0X0gEIDT6WQTQhKbDQYDtFptXNVk3s1MThdeKKXzpJLQnGqTMD5dCgkmfDXZxNxjtDjqykSWzxFH8ANusrAi2oAwGAyQy+UoKSlBcXExZDIZpkyZgpEjRyItLY2Fg+3atQvffvsttm/f3uEuuclkQl5eHhQKBSorK6HT6ZCbm8vCLNPS0uD3+2EwGOJyMtNEXhSP6nveeustNDU1obCw8Ijyjx0tVPyvpKSk187ZEYN1vOHhXcw0GaaweBKUXC5XXB5ml8uFtLQ0rFu3Dg0NDaxvkSQJmzdvhlarxdixYzFixAjYbDa43e64oks0ppGwDBwUnYTQnJpQCHNOTg7++9//orm5GcFgEP/973+xdetWXHzxxcwdNlA5GndZXwlD/KJfoVCgpaUFANp9VxTq7na7kZaWFpf6wOfzsfdEKXFMJhO0Wi0Lcfd4PDAajSw/psPhQEZGBnJyctDU1ISKigoUFRWhoKAA+/btw86dO3HccccxNxnNkzIyMtrlSf3qq68QDodx/PHH49Zbbz1k/6DRaHDxxRfj6aefxt69e2GxWJjIHAwG2XkSncyDOd8uP9cnkbmjezkjIwMOhwPhcBhOpxNpaWmszXs8nrjxkz+uUqlkgjO5+Uj04cPSf/jhBzgcDuh0Opx55plIT0/Hpk2b8MorrzDxCWhry0OGDIEkSaiursbWrVsBtAldLpeLFYe77bbbsGjRorj3oNfrMXLkSJSWlsLv90OpVHZYMyRRyOxpOiMi9paA2BGSdLAovV6vh81mQzgchlKphMFgQGVlZbv1DeXlttvtGDFiBDIzM+PS81A/MHz4cOj1etTV1bHNzMSaNfy/9N1REcmGhgbMmjUL6enpWL16NaqqqjBjxgzodDr4/X5kZWUBAGuna9euxe7duzFhwgR2rdFoFA888ACam5uh0+lYbnC5XM7W0TRPohQa3b2mmTJlCr777jscc8wx2LZtGx566KFDPp4IpTjrafi0JaFQKK42FfUlQ4YM6fDekSSJucmNRiNLuQigw9oP/LHIvKXRaFj/QLUH6HHa1MjOzkZOTg4aGxvx5JNPwmKxsJpFRqMRZrMZ6enpuPvuu7Fz50588sknqKqqwvr167F+/foOP4Nx48ax9G9Wq5VFlZNxg9+MAFJYZP7d734HoC0MIFmDnj179qDNLSUYGKS6I6Qn4TseCiWmXHeBQABmsxkOh4OFYfj9fvzwww9wOp34+eef2Wvr6uqg1+uRkZEBr9cLrVaLjIwMWK1WlrNZp9PFhfqQsMynNuD7mFQSmlNxEkafFe208zlHqU+mTYPEInidGXDo+TSg06KIXO78IhI4WJiCJmjAQXcRhRZNmTIFv/zlL9k5IpEIHnjggTiHs1KpRG5uLsxmMwujPHDgANxuN0pKSqBQKDBy5EhIkoSamhoUFhbCZrNBo9EwhwO5nwZ7aGoqIUkSK/jXkSusp0glJ/NgHm8AtOufaFLMu4uj0ShbkJnNZrhcLmzYsAEWi4WFOhNGoxHp6emIxWLYvn075HI5CgsLkZWVxSrQ8wW4IpEIKyZIrg9Jkjp0sAj6HqvVioULF+Krr77Cjh07EIlEUFlZiWeeeQYXXnghRo4cOWC/u6Nxl/XmnISfW/BRT9FolF1nYkoMnU7HivvZ7Xbk5eWxv5FYQDnWI5EIXC4XgsEgzGYzTCYT3G43bDYbsrKy0NDQgAMHDsBsNqOwsJCJefv27cPYsWOxefNmOJ1OfPXVVzj33HOhUCgwefJkrF69GmVlZfjkk09w/vnnszknRVGccMIJnWpbc+fOxTPPPIPKykpMmzaNOZgplJs+o94uRpyqm5p8Qa3D5aqlujBNTU2w2WywWCxMZCZHc+LGIbkd6fHE4m/0vMbGRrb5PG/ePOj1erzyyitsrmA0GnH88cdDqVRi165d2LhxY9wxtFottm/fDkmSkJubiwcffBAnnHBC0vdxwgknoLS0lM2dyRiS+Hn0Np0REXtLQOyIYDDIUipGIhHWp5hMJuzfvx9A21whLy+P5bn1er2or6+H0+lEbW0tMjMzodPpWH9jt9vjzE0AmDh4OBQKBSZNmoQdO3bA7/ejqamJFXOja0tPT0ddXR1L5dfQ0ICTTz4Z3333He666y489thjGDt2LILBIB577DFs2LABSqWSrZtJhFQoFExk5h3M3T3mXXLJJfjVr36FV155BYsXL8bTTz+Nc889t93jfd1/dNR/qtVqdh919D2SwEwbnxkZGayvNxqNLGc6tTfSL2gtzffntM4E2sarnJwcVrtq27ZtLHrh6quvxqeffordu3fHFbpNRKPR4Pjjj8esWbNgt9tRWVmJysrKOFF7/PjxGDFiBOtH0tPT2aYbFdbl2wlpLSmZk/lPf/oTVq1aheLiYpx22ml46aWXcNNNN3X3tQkEfUoqO0J6A97xKUkS26WlCUVaWhpaW1uRl5eHiooKNDQ0wGazsdcXFBSwfHs+nw8HDhxAeno6vF4vbDYb0tPT2a4xhf7w4T587iCaRPD5M1NBaE7FSRjtqNOki3fG8I5xEoZpMtuZFCuSJLEwJPqdr9YcDofZzjFfLZzC3WlCFAgEYLfbYTKZALSFoPJpLNasWYPi4mKo1WosWLAAp5xyCkaNGtUurDUUCmH79u346KOPsHnzZuzbtw8jR46EyWRCQ0MDhg4dCrvdjoKCAuZ4Ive1yMucGqxZswa7du2CwWDAb37zm14995gxYwC0LShbW1uT5v/sLQb7eMOLUbRI4iuo03NIEMjIyIDP54Pb7Y6bnE+YMAGVlZXMzabRaJCdnQ2tVouqqipUVVVBLpcjMzMTGo0GSqUyLge8TqdjgrdGo0EoFBJCcwqjVCpxzjnnID8/H6tWrUIsFoPX68W///1vTJgwAeedd16fL357gqNxl/XmnIQXyfhwderfqDh0IpmZmaiurmZ5dvn7EmgTkWQyGbxeL7xeL4LBIBwOR1zKBNqUCgQCqKmpwfDhw3Hsscdi06ZNKCsrQ05ODs4880x8+OGHqKqqwueff46zzjoLmZmZuPjii/HOO+/gu+++gyRJOP/88yGXyzFkyBAAwO7duzv1/i0WC/Ly8lBXV8c2ukmQSNyo5+dVPT0nSbVNTZqTEom5mTsiPT2duZlbWlqQnp7OvnOn08mKdZEDlT53jUbDhMRIJMLchiRIkcFh9OjRSEtLw/PPP4+6ujoolUqcccYZMJlM+Pe//x2Xq3no0KGYPn06Vq1axTY9L7jgAtx+++1srpsMygfOh/YfLl1Gb8xZU01ETIR3MWs0GuZGNpvNqK2tBdAmFo4YMSLu8zKbzYjFYnA6nezzLSoqglKpRHNzc7ti47SGIaGO3MIajYalgPT7/aiqqoLP54PL5WJCciAQYO54OmZOTg7q6urg8/kwYcIE7N69G8OGDcOIESOwf/9+XHPNNZgwYQIaGhqY4D127Fj4fD5kZGQw5zLQttlGBi3e2NOdaLVafPTRR0n/1tHjfUGiyEzfOR8RTfnbeYLBIOrq6lj/lpWVhdbWVkiSxApC2my2uHuR+oz09HTo9Xo4nU6EQiG2mWowGNDa2oqqqipkZmZi6tSpKC4uxqZNm1BVVYVx48ahoKAAixYtQigUQn19PVpbW9m81el0wm63o6GhAcFgEKWlpezcer0ep59+OiwWC9RqNSKRCMrLy9kGWGFhIVvrp6enM5MVLzTz8+ye5IjP8OKLL+Kvf/0rPv30Uxx33HG45ZZb8Oijjx62QJNA0N/orCOEdqCcTierTDxQoI6IOiZKlUFFD6xWKwwGA4YNGwa5XA6LxcIGuHA4jBtuuAHnn38+MjMzEY1GYbPZsHv3bpSVlWH//v0oKSlBdXU1y6vmdDpZqBEt/BMn5SQ0pIIL9ZJLLsHq1atx4oknYuHChSk1CaPCWXxoF4nC9FnyAvPhil1RHkH+cydRmcI/6Xgmkyku1JHCHX0+H8t399NPP+GYY45hFb5XrlzJFl0UojR69Gj85je/YSFAiajVakybNg0PPfQQfv/730Mmk6G8vJwVqGxtbUUgEIDX62XuaVp80oRERNz0LX//+98BAIsXL+51kZccLkDfp8wQ4008sViMhTBTjkONRsOcGWq1GkOGDGGbZiTQNzU14frrr8f555+P9PR0BINB1NTUoKysDC0tLQiFQohEImhqakJNTQ2qqqpgt9sRCASYYO12u1mxwHA4zEIv+5pgMIgLLrgAs2bNwgsvvNDXl5MyyGQyHH/88bjppptgNpvZBurOnTvx1FNPoaqqKiW+v+4kce7x9NNPY/fu3Sk9J+E3kki87CgVgkqlYsIc5bzlU3Hx9316ejpb3DudTmRlZTEnLI0pTqcTLS0tGDJkCPLz8wEAW7ZsgdVqxTnnnMPSba1cuRJOpxPTpk3DL37xCwDAunXr8OGHHyIWi2Hu3LkAgI0bN8bVIzkUiQ5DPl0X/zvRG3Pbzm5qWiwW9tOTEXiJOUIjkQj73A6lL9CGIdCW5zYWizERiYRm+qz5+S4v5FKBbGpP5eXlsNvtUKlUOOGEE/Dmm2+irq4OBoMB119/PSorK7FixQpUV1dDp9Ph7LPPxmOPPYbHH38ca9aswc8//wyj0Yi//vWvWLZs2SEFZgDt5qLJDB983t/eMkWQuPjTTz/hxhtv7JVzHgm8GEyCs0wmY2tItVqNoqKipJ8XpXSkNAgKhQLDhg3D5MmTMXnyZEycOBFjx45FUVER0tPTmTOV1k/BYBAulwsHDhxAa2srTCYTcnJyALStczr6LiVJQlFREQBgz549uPDCCwG0pZi97rrrMH/+fMRiMezcuRN2ux2ZmZlYtGgRfD4fS3egUCjY5hxFqtJaj97LYCYxlUkgEGDfc0VFBaqqqtDU1ISGhgaUl5djz549cLlckMlksFqtzK2s0WigVqvh8XiY0Y5yv1PB1paWFtaPBgIBNt4Eg0HodDqEQiFs3rwZubm5mDlzJpRKJWw2G9atW4e3334br7/+Oj755BNs374d1dXVaG5uht/vh0ajwbBhw3DyySfj1FNPxcyZMzF27Fi2UVlRUYFt27bhxx9/xJYtW+B0OmEwGDBnzhy2gTZ8+HBmpKA2wm9G9EY7OaLtji+++AI33XQT3n77bcyYMQMAcPPNN+Pxxx/HG2+8gauvvrpHLlIg6AtSzRHSHfAT285MWGjHlpzE/M4gX52XfqqrqzFy5Ejs378fjY2NeP7553HuuefirrvuwsqVK/HZZ5+xMMnW1laWPiM9PR0WiwWZmZlsZ1iv18cVfOLTHPCDaV+6UA+1w5sK0PdH3yGf+4/+ThsJh/ocadHOv4YEIABMfKZCA263m4UUaTQaWK1W2Gw2NDY2YsKECaipqYHNZsOGDRuwYMECfPjhh9iyZQsOHDiA8847D7Nnz8Ybb7yBXbt2Yfny5bj11ltZqFtH7/Occ85BXV0dVq5cyfKtejwe5ng0Go0IhULss0h0Dwl6n5KSEqxatQoymQxLlizpk2sYO3YsDhw4gL1792L69Ol9cg3AwBxvjgR+IwxA3KYVTZQpeoaeL5PJkJeXh/r6egwZMoQJxi+99BKuvPJKnHjiidi1axe+//57VFVVob6+HkCb0ycnJ4cdt7W1lS0UMzIy2KZmYs75vnY0p2qIe6qQlpaGW265BR988AF27tyJWCwGj8eDV155BSeeeCJOPfXUAXP/9Bd3GQ9/j9P/DyX+GwwGlkOdXscfh1CpVEhPT0draysikQg8Hg8rCufz+VjO1draWphMJkycOBGtra3wer3YsmULpk+fjgsvvBCrVq2C3W7Hu+++i/nz52PmzJlQKBR47733sHHjRkiShIULF+Kss87Cl19+iQceeABPPPEECgoKOnwPZKQg8QtAu7yYvSkcEqmWVoVPp0KuQxL2vF4vy1+bDKvViubmZpab2Wq1wmq1oqWlBR6PJy7ajtYSZIJQKpUsEoZMMrR5MGnSJOzZswelpaVQqVS49tprsX79eqxatQoAcPbZZ+OXv/wlE5l27dqFH3/8EQqFAi+++CKr+XAoYrEYvvjiC/YZkOGDrwsAHGwjqZQusK/h06lQmgOtVsvG+aFDhyYV0kgcBNqczgSZU1wuF7xeb7u+iQxWNA8goZmERjpXLBZjGyMqlYq5jiVJQjAYxIQJE/Dpp5+ivr4e4XAYp512Gr7++mu8+OKLuPzyy3Hddddh3759bPPn9ddfB9AWHRyJRJCWlsZyMvNmIhKcB2vUFfUbfLQun6rRYrGwzUb6/gm9Xs/qTgFt7Yiib2QyGUwmE3Q6Hbv3VCoVHA4H0zMoTRNFwJHITJsfO3fuhMlkwrx58+BwOFBdXQ273Y5QKMTSXnSGCRMmsCge6i+1Wi3S0tIQCoWwe/duSJKEYcOGxaU55bWa3ir6BxyByLx582ZcfPHFePTRR3HRRRexx81mM26++WasWLECV1555aDfQREMHFI9VKgr8Lv3BAm1h6q2Sn/j8/0mprWgcKKGhgYolUpUV1fD7Xbj448/xubNm/Htt9+yiZ3NZoNSqYTRaITNZoPJZEJ6ejqysrJgtVqRlZXFQkGMRiMTOSlHJ+8EOZwDV9AGLzgfKbxzXKVSscWSQqFgu75UsZnyJQNti36ZTIaMjAwYDAZ4vV6Ul5dj8uTJ2Lp1K5qammC32zFjxgxs27YNDQ0NeOGFFzBy5EhcfvnleP3117Fu3Trs2bMHV199NebOnXvI6580aRJWrlwJn88HrVYLr9fL3MvAQecDtR0hMvctTz31FABgwYIFGD16dJ9cw7hx4/C///2vz53MA3G8ORJ4AYrP7a7T6eI2Fa1WK5xOZ7som/r6egwdOhTV1dVwOp345z//iYsvvhgTJ05EWloaXn/9dTQ3NyMUCrHCMLQYsVqtbEHg9XqRkZHBHEs0/tD3QW6QviDVQtxTEYVCgV/+8pc47rjj8M4777DNguLiYpSVleEXv/jFIYv/CLoXWshGo1EmtoRCIWi1Wvh8PrS2tsJoNCaNVEocmxOLCvNQ30AL/3A4zBb+fNqM6upqjBgxAieccALWr18Pm82GHTt2YOLEibjkkkvw5ZdfoqGhAV988QUmTJiAOXPmQC6X45133kFxcTGCwSCuvfZalJSUoKKiAjfddBN+85vf4Mwzz4xL+xGNRrFu3To8/fTTAIBjjjkGgUCAhdmTWEWfER++3BuL/1Tb1FQoFCwyjtIP8HlNyZmaDJlMhrS0NNhsNni9XhZhKUkSWltb4wwRVqs1TvDX6XRx81Wv18vqzYwfPx6vvvoqAODUU09FZmYm/vOf/wAAbrjhBsyfPz/uOijfazQaxeuvv46rr74aI0eO7PA9RyIR/PWvf8XWrVuZQcNoNLL1lFwuZ+MfbwgZrCIiTzQaZeKcJEnw+Xzs+5YkCRaLpcNibU6nk60daXz3eDxwOBxxgp9CoYBer2e1gzrqo9xuN1wuV9ymEc1fyEVKNSQqKysxbtw4zJkzB9988w0++OADXHLJJXA6nfjpp5/wyiuvwGKxIDc3F01NTUwMHTp0KCtoSKklyc2s1WpZ7ZmBsonaFfh0OHq9Hl6vF0qlEtFoFMFgEHK5nNXk4ItM82mK5HJ5nJmACuclzvkUCgXS0tJYm6Eo73A4zL4DMjup1Wq43W72I5PJUFRUhIkTJ8aNZfwmEq1bfT4fnE4nmpqa4HA42uVuTjRnAG3pd8iQQddFOklvFv0DjkBkPuGEE5KG0wDAX/7yF/zlL3/ptosSCFKBVHepdoVkk3O+UFtnHBXUaVMIczAYZAMpTZ7NZjN0Oh0rulJTU8MWFUQkEmEOMrlcDrPZzATm3NxcZGZmIicnB6FQCDqdDiaTiYUtU4dKnaUQmnsOXvChyS79TqFEQFuKDD4cFDgYMqRUKjF+/Hjs2bMHXq8XLS0tKCoqgt1uR0tLC5xOJwoLC1lBjvLycgDA1KlTsW/fPtjtdjz66KN46623WI5m3oEAtIXJv/nmmwDaKggHg0E22B9qMBUic9/Q0tLCFnC33HJLn10HuY36uvjfQBxvjgQae6i/of8nborK5XKkpaXB5/OxjTNy8dhsNigUCtTU1MDn8+Gtt97CvHnzsHr16nY5VOVyOau+TYs3Ck+NRqPw+XzIzs5OmpqJJuu9zWDP230kjB07FnfeeSf++c9/wuFwQJIk2Gw2vPrqq5g9ezZmzJjRoWgl6D4S7xNaiPP/r6mpYcIgFSkmsQ84KN6RMNhRcVi6pymvKkUqRCIRmEwm5jy02+3IysrC5MmTsXnzZlRVVUGSJBx77LG46KKLUFxcjC1btmD37t2orq7GKaecgl//+td4++23sXXrVtjtdvzhD3/As88+i127duHJJ5/ECy+8gAkTJsBqtcLj8WDv3r1MIOILF5JblopJAYjLqdpbruZU29TkDSwkMofDYWZOsNlsLM1JMviIE8JgMCAYDDKRWa/Xs3ueX/fw81vaoCMHKvWxubm5LHUSgHbzTwAYMWIEbrjhBjz33HP4/PPP8fnnn2Py5Mk47bTTMH36dAwbNgxKpRJutxvFxcV45ZVXsGfPHnY8ErRI2CTHqlqtZm5Vyi092OGNLtS/RyIR+Hw+KBQK5Ofno66uDn6/n6WySCzeSZvJDQ0NrI3I5XKYTCaWkouMWTQP4NMPAgejLQKBABubKaoTOJjqZdy4cfjxxx+xceNGqFQqzJs3D3V1dSgpKcGbb76JKVOmIC8vD2vWrIkTEjUaDfLz8xEOh5lhR6VSIS0tDSqVCjqdjq27qa0MVsjwFovF4grOa7VaFp1G93eiOEv3FfXB1A4o5zFF6/JzTvoeWlpa4sTlcDjMUpt4vV62gURO9mAwmNRNzV8XvR8aK6iuiN/vh91uR2NjI1paWuKuPzc3F+PHj4fX64XdbodMJoNOp2Ptgq/J1FsREaKnEggGEbRrlyxE8VBiMy34eecnPYd26gKBAJRKJdRqNfR6PUwmE6xWK9LS0lBXV8fSJzQ2NrJjjB49Gq2trbDZbExwPnDgAOrq6pCXlweHw4GcnBzk5eUhFAqxkBV6PT+gCqG58/A56ngBJTHvGy8o88IKhTaSo51EGQrjsVgscbuuNGHPz89nizwq3qXX6+FyueB2u2GxWKDX6+FwOFg+5YKCAhiNRjQ2NqKurg7/+te/8K9//QtDhw5FQUEB1Go1bDYb9uzZg1gsxir+AmBFX6id0ASxL8JTBfG8+OKL8Pl8mDRpEubNm9dn1zFu3DgAfZ+TebBDk3dynqpUKjYhT4zAkMlkMBgM0Gg0cf0LLboUCgUaGhrgcDjwv//9L875MXv2bJSUlMBms7G8jA0NDbBarSyHMxW0DYVCyMvLi9vYJPoidUaqhbinOjqdDr///e/xzTff4NtvvwUA+P1+bNiwAdXV1TjjjDOQnZ3dx1c5sKHw/3A4jHA4DKPRyHKjU3sOhUJobm5m9yOPWq2G1WqF1+uNc592BDnMWlpaEAwGYbFY0NzcjGAwiPT0dDQ3N6O2thZqtRp5eXmIRCIsH2ZLSwvGjx+Pk046CUVFRfj666/hcrmwatUqFBQU4KKLLsLnn3+OmpoavPDCCzjppJNwwgkn4IsvvoDNZsOmTZvirsVgMKCwsBAqlQpyuRxGoxEmkwmZmZnQ6XRMIOoLATHVNjX5vpTma+FwmLmLnU4nFAoFsrKy4saCUCgEu93O0igl5mPm8zn7fD5Eo1FWHBAAPB4PdDodWltb0dzcjDFjxkCpVCIUCmH//v0YPnw4Ghsb8fnnn+Oaa67BzJkzsXHjRjz44IMYOXIkjj32WBQWFiIjIwNpaWlYtGgRZs2ahZdeegnffvsttm7diq1bt7L3SAI6QaleKJpTrVazHOMWi4XNX/kUGoNdZObFQsqnHQqFmJtZq9WiuLg4bp1bWFiI8ePHw+Vysegei8WC6upqtqlttVphNpvZZgL/PRGUt5s2ukhYpMgooG0tbTabmRhYUFCAiRMn4sCBA6itrcU333yDrKwszJgxAxaLheXVBdoKENLcx+fzMWeuQqFARkYGjEYjDAYDjEYj24ygtBl8OofBCDm5/X4/K77n8/kQDoeZm5dMDCQY82taWhcaDAaoVCpEIpGkbYBc9KR3UKomXtz2+/1QKBQwGo2svogkSazfp81U2gRLVuiTvvtAIMD6N6CtzxgzZgxb65I72ePxoK6ujqX40Ov1LHJGJpMxYZzm2r2BTBI2LoGg26DKpU6nM+kCMFXgi2AkgzohPm8eLzbSbn7ioEadqc/nQzAYhMfjQUtLCxMI6+rq2CSfwpYvvfRSnHDCCVizZg2++eYbNnlQq9XIzc3F0KFDUVhYiLy8PGRmZrLCT9TB0w4dvwuZyvR1G6EwnCPt+unzBdom/7yTgNweFF6mVqtZ4T0+dJu/BhKQKN1GOBxm4UShUAjRaBQtLS1obW2N+93j8cQNuDyFhYWwWq2Qy+XQ6/UoKCiASqXC0KFDodVqkZmZyYQo2hyhgpaCg0iShHfffRcvvPACFAoFFi5ciGuvvbbbRLVgMIiRI0eirq4OL730Up/Wc6iqqmITe5/P168WcH3dl3Q3iX0TpbchR0bixJicSzTp9/l8cLvdaG1tRWNjIxobG1FfX49AIICysjJEo1HMmTMHd9xxBxoaGvDjjz/iu+++i6vcTRE0Go0GBQUFMJlMyM/PZ84yo9HIwlN7W2h+7bXX4PV6ccMNN+C0007DqlWrDutAHGhtpKs0NTXhxRdfZEV1KAfjjBkzMHny5H5133c3Pd1GKNcpOQFjsRgTemjORoWeCQpl12g0CAQCrCYECSyHw+v1xs1LqAAccLCQYEFBATIzM9HU1IRt27axea3BYEB+fj4yMzNRUlKCrVu3MhGAcj1XVVWxc1E6ML5YKEXtkXiRlpYGs9mMzMxMFrGnUqmYSESCgV6vT9k5bE+3ExLV1Go1fD4ffD4fE+htNhuAg0KSXC5nGxdEZmYmLBYLc5bS8+laXS4XC4kn80s4HGZ5fKkoW1NTE0thMW3aNHz88cdwOp1Qq9WYOXMmKisrsW7dug7XUDqdDrm5ubBarWhtbUVVVRUqKyvj2rfFYmH9EAlVJpMJ2dnZsFqt7F+dTseERZPJBJVK1WGxzFSgN/oSl8vFhEJKV0A5lMPhMBMGyZF84MAByGQyzJs3D7t372aF4Mg8pVarkZ2djUgk0q7IJJ9eIBKJsD7EYrGw4m8UeZmXl4ddu3ZBJpNh3LhxKC4uhiRJSEtLQ15eHsxmM/bt24eff/45zj1PJpr6+vqkkVs091CpVKzwnMFgYAU5acPdYDCkbN/B09NtJBwOs3uNTFCUOrEjaM1Ikdr8c3ltIRaLxRWcBA6mUEusH8CndKFc0RShwZ9Xq9XGrUFJbyEXPZ2TBOnDrd2pFhKJyrTWJQMgCdC9MXcVIrNA0I30pwUdv6OXDNr5oufSJF8ul7PQEdqZTxzYotEoPB4PQqEQAoEA3G43mpub2U5uTU0N6urqmFg4evRo3HXXXUhPT8dnn32G999/ny1CTCYThg4dipEjRyIvLw+FhYVsgFWpVHFOEF4ITVX6uo2QUxA4GF5EdFQQL9FJSMUMqE2QaJxsYAbAcmDRufnJGi84k5hMYa2UT5E2K2jRSOISpU9RKpVsogW01QrIzs5mk0eLxQKTyQS9Xs8m9Xy7SfU205tIkoQlS5bgmWeeiXv83HPPxQcffNAtOd9eeOEF/Pa3v0VeXh7279/fp3nkYrEYjEYj/H4/SktLMWrUqD67liOlr/uSnoAvmgPEV5Cne5bGG+ozgIMCdSAQgMfjYXns6uvrUVNTg5aWFlRWVkKSJMyZMwe33XYbm9jv378f77//PtatWwegTSQoLCyEXq9HYWEhLBYLCgoK2GKP+hEaf3prYRcIBPCrX/0KtbW1WLx4MW688cbDvmYgtpGuEolE8Omnn2L//v1x4152djbOOuuspCHwg4HeaCO8+1Cj0SAajcYJvzTf5I0NNL+gv1OKCT6tDkUZ8Pkm6e8ulwuBQIDNZ8jpSOk4gLYUCrm5udBqtSgrK0NVVVWceKjVamEymWCz2VBdXR3nOAsEArDZbB0WLyTRmATFzMxM5mQmgVmv18c5mlM53L03xCESCLVaLex2O2KxGAsbdzqdSYtk6fV65hjk/24wGOLyqYbDYTgcDja+aDQaJl5LkhSX3qS8vBzV1dUA2tKvlZWVoba2lh07IyODiUYejwderxdutzup85GOzxc2pGsiIVmj0SAnJwcWiwVmsxm5ublQKpVMRNTr9dBqtUwIS1V6YyOC7mmn04lgMMjWCbThTOn5cnNzEQgE2Lg+evRollKLcl/r9XrmXib4yKjE9ZHb7WYbIbTZVVFRgUgkgry8PJSVlSEYDCIrKwtarRa7du2K6x8osoPSAdFmCADmbOUFaNrIpogOnU7H2rXJZGL57M1mc78QmIHeGW/4gnpUHJE2pXgtgz5jIH4TgSIIEtOjECQg82OFSqVixYbp8USxmTY1aCOSH+M6A5++MrFPobZK18yLzSQw01r+UNFA3YkQmQWCbqQ/Luho0p1soszvrtGEHoh3MycmyqfnkuhIiwufzweXy4WmpibU1taiqqoKVVVVOHDgAAuPXrx4MS666CIEg0G8++67ePfdd9mkobCwEKNGjUJhYSGKiopgMpmQlpbGHGW80JzKhTH6uo1QcRWauHeWxFQpQPxATgMe304OBZ/rjH54oSgYDCISicDr9cLlcrEB2e12w+v1titwRc4ncnxQaCXlB6f8WokuRLVa3W8mZ73BM888g5tvvhkymQx33XUXTCYTHnjgAfj9fixatAhvvPHGUX1ekUgE48aNQ3l5OZ544gnceuut3Xj1XeP444/H9u3b8emnn2LBggV9fTmdpq/7kp6CF5p5MQk4ON5Qvj0qpqXValnoLI03TqcTdrudjTeNjY2orq6GJEk4/vjjsXTpUhgMBnbeXbt24YknnkBjYyPUajWKiopgMBgwfPhwmM1m5Ofnw2QysbyZOp0urqhKKjJQ28jRUF5ejs8//zxugSdJEqZPn44ZM2YMuk3H3mojNKYDB1NeeL3eQ7qz6N4mBxa/WZ0MEnFobkORUDTPpXPFYjEmOgNtC3NKx+bxeGC325nISVBBQb5AWCwWixOKqL+iDSiFQgGDwQCr1Qqj0Yi0tDT2mFarZeHT/SHcvbcc7xTurVKp0NraGmdmUCgU7dpK4u+Uro/C4wnafGhtbWWbDDKZjG120PwSaDO3+Hw+7Nmzhx1Dq9XCZrMx13NH74HGBBINPR4PPB4PAoEAS5tisVjY+5HJZCzajiJoaD5LoiKJianuVu3JNhKJRJgbnfoNl8vF1gmULm/y5MnM7V1SUoKqqqq44qKU7oIK+vHpF5NFTCW7BuBgEcn6+np4PB6Wb72srAzAwbkKRThQP0RIksSMWNQ38qIh1TkiYwz1FyQu04YDXw+nP9Bb4w1pD/y6lYxV5EpOjOo+nLic7BxkdqLX09yU2iTQXmzmnwsgaUo23vBF18kXLewIEpXJQMWbqnrTxQwIkVkg6Fb684Iu0cGamBg+0fnMu5sBsIk9TeRot5meS+Kh1+tFa2sr6uvrUVFRgfLyclRVVTGX6qhRo3DLLbdg7NixqKiowMMPP4zKykrIZDIMGzYMRUVFKCoqwogRI2A2m2GxWNjkjMJWOjtA9AV93Ub4BVriTn0iHeVuBuIr4YZCobiFQGJbOtSEPHEQpYGUXCkURksLAJqs0+spnxqfU4uKSFJoIU0wdTpd3IYEtRdBG5WVlTjmmGPg8/niBODVq1fj7LPPRjQaxZtvvolFixZ1+Rxvv/02fv3rXyMzMxOVlZVxIl9fcckll+C9997D448/jttvv72vL6fT9HVf0pOQk5HvIxJdHzTWUEgpvY4WbSQ0OxwO1NXVoaKiAnV1daiqqkIsFkNeXh7uvvtuFBUVsWO6XC4sW7YM+/btg06nw4gRI2AymTBs2DBkZ2cjLS2Nhb4n5lRNRQZyGzka/H4/Pv/8c+ZWpNzA6enpWLx4McvtOhjorTZC80JaeGu1WiYa0uKZ0uOQ+4yv/5Ds/icHV2L/wJsfeEcz9Q/0f3K3JdsYp8JfJGaRS5XeB81PeJGZIGGcNqIyMjKg1WrZIp+KdZG7jD6LVKY32gk5znk3J7n+DiWu8AYC4GAETGJEHgkwPp+POZdpw4HaA4lD5J6vq6tDfX09O040GmXtkkLY6edIJRWLxcLyTCsUChQVFbFrJNMEpXejsPdUpqfaCJ8mIxwOw+l0wuPxIBwOM+eo2WzGCSecwMxRra2t+OmnnyBJElsDkFBLznDqQygPb2euw+l0MkFbo9HA5/Ohrq4OwMFignV1de1c9zSPoX6O/zdZuyHHO21Y0YYUieRqtTrlNx2S0ZtzEhLyE9OgJELjTVe0Axp7+E0EEpCpP6HHqU9K3HA4EnhhPHHTgi/uR++HUmVQqqHeTA+ZmrNigUDQ6xyuGBrtAtLuH3WivAM1HA4zNzHl0gMQJ+zRbjG5OjIyMpCZmYnS0lI0NDSgrKwMN998M+bPn4/LL78cTz31FB5++GEUFxejuro6LoxpxIgRbGeS/6HwSUF76Duk74zPv02iDXD4vN182A5N3mmwPdxOK9/WeBGJJl20QKAdWFoY6nQ6WK1WRKNRtsij9kc7tuREINcHLd6o2AL9jQ8vErTxwAMPwOfz4eSTT8bvf/979vjpp5+OP//5z7jvvvtw0003Ye7cuYes9N4RsVgMy5cvBwDccsstKSEwAweL/+3du7ePr0RA0KSfBCaaNPObnbwDiYdEGxpvNBoNE3WoP6AomltvvRWLFy/Gueeey6qAL1u2DLfeeisaGxtht9uhUCjgcrmgUqlgMpkQCASYS5Em9P2hHoDgIDqdDhdeeCFKSkrw3XffsYVgc3MzHn/8cZxzzjmYPn26GCO6ESoUTUIzRSHwP8DBzW3eIcYfgx/D+XuOwpBJNKbjGwwGqNVquN1uJvJS2DSJ0bxDmhcCADCRmPoicqTqdDpYLBb2WrpWmgPT+6UiogCY6Mz3RYnpyAYz9P1QbmtyNVN6A/pu+BQpNOcn0bcj6PsLBoNQq9XIyspCS0sLIpEI9Ho9ey318ZSKwWKxICcnB263G01NTcztTN8zzWPoGvi2QPNZfiODBHESEKnmQH5+PmsL5F6ltRSNf4MVSiNBKSvI2EKPa7VaTJ48mX1GXq8X27ZtY+kJ+Py0JNrTZ0qF8zoDX1wuEAiwNAQkmlLxUhKxEwVk3njDt+XE5/H9At9fkDGG0nWJOcehoe+L+nh+7sinWEocS470HKRv8GIzCdtms5lF3RFarTZuEywx4oL/l+DbSkftlfpDGh+pn0mM8OkthMgsEAg6DR9uwguMvOBIFVH5DpImATQp4wd8k8mEjIwMZGRkoLy8HJWVlXA6nawQ4IwZMzBr1izs3LkTHo8HDocDGo0GFosFdXV1TFzkRWYSMcUA3B4abHinx+HyQtFkh0RoPsVKomuZr2Cb7Nz8a4jEXV5a6JHIFIlEmCuZFgm0AOErBdOEjIQlCn3iJ5m0oysmaPGUlZXhtddeAwCsWLGi3STm7rvvxmeffYaffvoJv//977Fy5cojPse7776LHTt2wGw246abbuqW6+4Oxo4dC6AttFKQOtBGplwuZ30U9eskyiTLKw8cFKlpTKB7n9xAWq0WlZWV8Hg8eP7557FmzRpcc801mDhxIsxmM2644QYsW7YMDoeDiREWiwVerxdKpRKhUIgtFEhIGMwiQH9ELpdj/PjxyMvLw+rVq7F9+3YAbQLFSy+9hHXr1uHmm2/utfyFgwESXkkkooX/4V7TkbCc+Dwa6/n5AS3KLRYLi6ijOQAfQUWbWMkch9FolM2DyGVKRUoDgQD8fj97H1RYLjMzEwBYEUASiWiDihb8ot+Ih0RXtVrNotj4NQY9BziYdo1/nD5bfmyg75E2Lkj0N5vNzIVMgkwgEGAiHqWE8/v9UCqVyM/PZ/NSSs9Ez6HfjyTPqkajYfl7qX2RU5U2RkkoG6zzVbrHgIMOdUqDQN/juHHjmIvd4XBg+/btCIfDzGBCm000/lM/1JUUNWSgooJyBoOBfYdU7JzaIa2beCEzmcGGfgcORmjwIjMdgzbMB2tb6Co0l+xJkTVRbKaNJTJJ0DyCNJIjzcdMJI5TtP7lf/h83vSavkgNKURmgUBwxFAnxu/AkgCZTEQkQYAKBfKOUlr4WywWZGZmIicnBxUVFSzP1caNG7Fx40Z2rLS0NEhSW1VhrVYLr9fLBmJ+ISLczB2T6ApMDCukgYoX7ZP9DWifUiPxu6fXdBQaxE+66F/auCCnPC0AScyhXelDQYMqHwZF7iIhMLfnkUceQTQaxdlnn42ZM2e2+7tSqcSLL76IKVOm4IMPPsCqVatw7rnndvr4oVAI99xzDwDgzjvvRFpaWndd+lEjnMypDd3DdP/TZlWye5gXnPkoF36TiSJpTCYTqqurUV9fj/Lyctx9990YNWoU5s6di+HDhzOxKhQKwefzsdBHk8nENr8ikQiUSmVcATJB/8JiseDCCy/EsGHD8Pnnn8Pv98Pn82Hjxo3YuXMnbrvtNhx33HHiu+0m+LBdfqOY/zvdt3yUVWeheSYVeyJhivoMrVYL4GCdEd55mriBzoe104Y8/ZCopdVqYbFYWD+jUChYigd6PyQwkwjOh+oLt3xyyLFJ31GyuSpvLjmUI5EX7MgBy28OKpVK+P1+trYhoVCtVjN3IqV0IWGTro/y/xJ0XN7IwV83L4TzgiG5YslQwacAHMwbEfQ5ymQy+P3+uChLum91Oh2am5tRV1eHhoYGAGDCslKpZPmtKbc7Xyj8SKH0GlTcPhwOszzcWVlZce31aOYE1KZpnSyiHfoHvNhMKXh4QZnWosnMVonr4Y4ifqkv5GuV8OMPvR5Ar6fI4BEis0Ag6DLJxGYSeOn/vOuMfw11gIkFDjIyMpCTk4O6ujrU1tbC4XDA6/UiHA6zggeRSIRV9nW5XDAajfD7/XH5mIWYeHjouzjaY9AEnl+g8e6SjhYFhwoHisVirG1Q8UfeVZS4GKRr4Y9Nk3M6DrUJsaiLx+l04t///jeANsdyR0yaNAm33norHn/8cZY2o7MpL/75z3+ioqICubm5uOWWW7rjsruNMWPGAABsNhvsdjtzoAlSh8QoGj5NE39/U59GC1NaqGk0mrixRqfTsZz+VqsV9fX1cDgcKCsrY4V7gLbFa2ZmJsv/SAIDL17x0R1iIdg/USgUmDZtGoqKivDOO+/ghx9+gEzWVhTs/vvvx2mnnYbrrrsuZXNv90coVUVPHp9CpXlXM8076LtUq9Vx9zC/oOc30Pnc0PR4ophI6TqAg/Mr6ntIiKLf6dxijnpourOdJAtt552GFClHbScUCrFxg9pDYr+fzFXY2WumdkHmGz69EwnQqV4QsqchgY42fWm+T2mxAoFAnBEJOFjEj/IWk8BMhRePVnRTq9UwmUwsf3di/mWCN87QT6KjOfG5Hf1d0L9IXBvzRe5p0+Rw33FH5q/OtN9EN3NfIGZLAoHgqOHFZt4xAhx0hlBHxw+6Wq2WTeio46T8VtnZ2RgyZAhsNhtaWlpY0ZVIJAKtVovCwkI4nU7W2QaDQRgMhnaOWjFQ9x6JgyqQfJA81OtpEOUXeHTcZK5p3oHEhwslOqH4PFWCeN588034fD4cc8wxmDVr1iGfu2zZMrz33nuoqqrC/fffj0cfffSwx7fb7fjLX/7CXp8quZgJo9GI0aNHo7S0FFu2bMEZZ5zR15ck6AAaaxQKRdyEPRQKxeVap7/zVb/5aBeVSsUiaLKyspCVlQWbzQaHw8FyPup0OowaNYoVpaUwaQBxG1xCZB44ZGVl4brrrsPo0aPx5ptvwu12IxqN4quvvsK2bdtw3333oaCgoK8vU3AE0L1P0VuJTmX+Hk42P0h0NPNh0Idyq5JYRIIjLfpJ3OZdZ4LehW8TJCxTVAqNHbSBmZhrmdY6hyJxXEh0LSbWkeHbBjkPZTIZE0YHMzSG8ymy6Dsym82Qy+UsnQb/OVJhXqPRCK1WC7lcDpPJ1G33nEqlgsViabfRlJju4mjy/QoGBonpOpJtTtHjPPzjyfqRxHNQm+tKAcOeQIjMAoGg2+DdZrybNVneNOCgQ4HyWya6mtPT09Ha2srczDSR0Ov1cDqdAIDCwsK4hPp8/jxe3Bb0LokpMLry+sRdYN7d3FFqDnot/yMmeh0jSRL+9a9/AQCuu+66w35GBoMBzz77LM477zw88cQTuOyyyzBp0qRDvuaOO+5Ac3Mzjj32WFx99dXddu3dydSpU1FaWopNmzYJkbkfQJN2ytdMoey8U43/G72GnI18oVCj0YiMjAw0NTXBZrPB6XSyMYUcSsOGDWOboAAOuTAQ9G/UajXOPPNMjBkzBk8++SQqKioAAI2NjViyZAmuuOIKnH/++X02t9i+fTtuuukmhMNh/O53v8Pll1/O/vbzzz/j//7v/zB06FDk5+fjrbfe6pNrTFX4eUUi/P3ML+pJUKbXaDQa5ozm8wUnFqXj5x5UhClReBb0PXxaDopW4V3oJDiTozaxffAkhr/zz6f/JzNCUHvg6whQLuHBDm9Y0uv18Pl8MBqNcLlcCIVCrO4KQYUVNRoNS5dBjubuXgPwmxUCQWc5Gqd6VwxcfYUQmQUCQbfDT66TTcbo/+QKo9x5tPinnTiDwcAKAwYCAXg8HpaTS61WIz09nYkBfHGeZOFrgv4Ln9ajox3gxOfzTiJBxxQXF2PHjh3Q6XRxYsWhWLBgAS666CJ8+OGHuO6667Bhw4YOBZfPP/8cr732GmQyGV544YWUnYxPnToVb7/9NjZt2tTXlyI4AhLzNUuSFOdq5kPh6flAm3ud0umQ28lqtSInJwculwsulwuBQACxWCyuqjvlEk+WikmIzQMHmUyGESNGYPny5XjjjTfw5ZdfMlHx5Zdfxo8//oh77723XT7W3uCBBx7AW2+9hYKCAsyePTuu3969ezfuv//+TvflgoMkqw1B8GIz5fFNrGuR6DTjBW1+LkKil5ibpBaJ6VVog5EfY5LlRD2c2JM4T+U3IKhtUMQdAFYUXbSPNmjuHwwGkZ6ejmAwCKCtaCMVcuTT49HnR6kCKL+1oGuITc3U4mgNXL2JEJkFAkGPkZj+AGgf/kFQzl1+h58mDEajEYFAAGazOS4nF8FPIhKFRSEyDyxSdce2v0Iu5ksuueSIivE9+eST+O9//4vi4mIsX76cFfXjKS8vx6JFiwAAS5YswYwZM7rlmnuCqVOnAgB++umnPr4SwZFCC0yZTNbO1cw7CXlo8UnuMXI9mc1m+Hw+VvyNcnbSpieFPNLr6PyCgYler8e1116LqVOn4oknnoDb7QYA7Ny5E9dddx3uuusuHHPMMb16Tc899xyysrLi8gsTu3btwvfff48XXngBS5cuxdlnn93u9cFgkAk1QFtdC8Gh4UVBEhxJcO7s/U+bXsKdmtokptKgPNs0hvDfH603EtcZhwt/TwYVhhTtIx4+h7bf72emo0AgwNIC8MV96TGtVsuiBwRdR2xqCrqKTBLWC4Gg23C5XLBYLHA6nTCbzX19OSlPsrAzvnAcX+iNry7NF3DhQx9pkkETDcqvlkqTDNFGBKlCS0sL8vLyEAgE8P3332PmzJlH9PoXXngBv/3tbwEAr7zyCq666ir2t5qaGpx66qkoLS3FjBkz8O2336Z0eLDH44HZbIYkSaivr0dubm5fX9JhEX1Je3inGc/hCo6GQiEEg0GEw2EEg0H2eygUYsI1iQ8UnksOZxKcSYBKJUQb6T5aW1vxxBNPYNu2bewxrVaLhQsX4he/+EWvi0NLly7FkCFDsGTJEvbY+++/j2OPPRb5+fk47bTTsHHjxnbXtWzZMtx///3tjifaSNfg8zV3lHs31eahXWEw9yV8XuZk40tXoHZBa5WBsFnZU21EkiR4vd4OC+wR5Ebni2sKjg6bzcY2NefMmYPvv/+e/e1Pf/oTvv/+e4TD4SPa1KSaSoOtHxlsCCezQCDoMxKdztFoNC5nHRVSisVizFXAC9B8CDRN4hOF5YEwcRMIeoI33ngDgUAAEydO7JLL+Nprr8W+ffvw+OOPY/HixVi3bh0uvPBC7Nu3Dw899BAcDgeGDRuG999/P6UFZqAtfcL48eOxe/dubN68Geeee25fX5KgCyQrDAjE1wVITKdD4jFFz6jVaiYo8EV96LV8pXh6HR1PMHBJS0vDn//8Z3z99dd45ZVXEAwGEY1G8dFHH6G8vBxLliyB0Wjs9vM+9dRTeO+999jv99xzD7Zu3YqmpiYsX7487rlnnnkmW7iPGDECzc3NyM7OjnvO0qVLcdttt7HfadEv6BrJIiUEA4uOCnfx6xDezcyvOxL/35/C3VMFmUwGo9GISCSCcDjM1oJ8kT3a6BV0L1lZWQCAe++9F5deemnc3yZNmoRf//rXbFPzjDPOaPcdLF++POmmpmDgI0RmgUCQEtAkjq/+TeIzPZZY8C0xzxkt9pPlORMIBAc50oJ/HfHII48AAB5//HG8/PLLePnll9nfpkyZgo8++ggFBQVHf8G9wNSpU7F7925s3LhRiMz9HF5s5scUfuzg0zURfB5nPpomMcd/okNRiMyDA6VSiTPPPBNTpkzBY489hsrKSphMJtTW1uJvf/sbFi1ahOHDh3frvGPJkiVxbuUPPvgAO3fuxJtvvtnuuYsXL8ZDDz2E4cOHo7q6GpmZme2eQ04/gUDQNfiNSkHvwQv9gp5BbGoKugvROwoEgpSCRGI+3QX/O6XD4MOWKVyZnjNQwhMFgp7iu+++w+7du6HX63HZZZd1+ThyuRyPPfYY1q9fj0svvRQTJ07Eqaeein/+85/YuHEjhg4d2o1X3bOcfPLJAIBvv/22j69E0F3w+RpprKBxJVEIpOfROKNWq6HRaKDT6Vh+R/q/RqNhzil6fleFxe3bt2P27NmYPn063njjDQDAxx9/jBNPPBHnnHMOHA4HJEnC1VdfjTlz5ghXUB8jk8mQnZ2N5cuX47LLLoPZbEZ6ejoikQjeeecdFBcXJ93A6C6WLVuG0tJSzJ8/H3PnzkU0GsXtt98Oh8OBZcuW4ZprrsG8efNw1113iTmQQCAQCDrNkiVLsH79evbj8/mwc+dOvPDCC+2eu3jxYuzduxfBYPCQm5pmsznuRzA4ENtBAoEgJUms8M2HpCUrqsGHoInicALBofnHP/4BALjssstgsViO+nizZs3CrFmzjvo4fcm8efMAAD/88AN8Ph/0en0fX5Ggu6FNzCOlo0JO3THWJCus8/e//x3r16/H119/jX/961+YPXs2srKy8PLLL+PSSy9FXV0d8vPz2x1LFHXrPZRKJc4//3yceOKJeP311xEMBqFWq7Fv3z4AbZERPZGje8eOHe0e++tf/woASE9Px4YNG7r9nAKBQCAYfCxbtgxarRbz588HAKxZswZ33nkn7rnnHrapKUmS2NQUtEOIzAKBoF8g8pgJBN1DfX09PvzwQwDAjTfe2MdXkzoMHz4chYWFqKmpwYYNG3D66af39SUJUoSeHH+ee+45VlhHJpOhtbUVGRkZUKvVmDNnDv71r39Bp9Nh9uzZANo2dH788UdceOGF7Y4l8h/2LjKZDEOGDMFtt92G1atXo6mpCVarFV6vFzt27MDYsWNhMBj6+jIFAoFAIDhixKamoKuILQeBQCDoJOFwOK5AWmJIs0DQH3jhhRcQiUQwa9YsHHfccX19OSmDTCbDaaedBgBYtWpVH1+NYLCQWFjH7XazAnIGgwEejyfpY8lYunQpnE4n+6mpqemdNzHIUalUOPvss3H22WfDbDbDZDIBAA4cOACn09nOAS8QCAQCgUAwUBEis0AgEHQCh8OBs846C/v372ePUUjz7373O1ZETSBIZXw+H5555hkAwsWcjAsuuABA2waSEIYEPcFTTz2F2bNns58vvvgCDz/8MJqamrBkyRIYjUZ4vV4AgNfrhdlsTvpYMkT+w75DJpMhJycHc+bMQXp6OnQ6HVQqFQKBAHw+X4/maRYIBIKjQZhoBAJBdyJEZoFAIOgEXq8Xf/vb3zBhwgQAaBfSXFxcnPR1wWAQLpcr7kcg6Cv+9a9/wWazYfjw4bj44ov7+nJSjtNPPx06nQ5VVVXYunVrX1+OYAByuMI6VqsVNpsNgUAA69atw5QpUzBlyhR89913AID169dj8uTJffkWBIdAoVBg9OjRKCgogFarhVKphCRJCAaDYuNKIBCkHMJEIxAIuhshMgsEAkEnKCwsxKRJk9jvnQ1fXr58OSwWC/spLCzslesVCBLx+Xx47LHHALSF1fdEUar+jl6vxznnnAMAeO2113rkHD///DNGjBiBuXPnYtGiRQCEa2gws2zZMpSWlmL+/PmYO3cuotEobrvtNpxyyil49NFHceONN+Lkk0+G3W7HzJkzMXLkSAwdOrSvL1twGEwmE3JycqDX6yGXy0VRJIFAkJIIE41AIOhuxIxHIIBY9Avakyykmaez4csiR6YgVXj44YdRX1+PoUOH4sorr+zry0lZrr32WgDA66+/Dr/f3+3H3717N+6//36sXbsWb731FoDOuYbEgm5gsmPHDvz0009Yu3Yt1q5dC4VCgQsuuAA//PAD1q5di4yMDMhkMrz88svYuHEjHn744b6+ZEEnkclk0Ol0zNEsChcLBIJUQ5hoBAJBdyNEZoEAXV/0CwYuiSHNZ599dtzfk4U0J0PkyBSkAnv37sWjjz4KAPjb3/4GtVrdx1eUupx++ukYPnw4Wltb8fzzz3f78Xft2oVXX30VJ598Mr744otOu4bEgk4g6J/I5XIoFIq+vgyBQCAQJhqBQNDjCJFZIEDXF/3CWTa4SQxpFghSEb/fj1/96lcIh8M455xzcOGFF/b1JaU0crkcS5cuBQA8+OCDaGlp6dbjT5o0Cc888ww+++wz3HfffXA6nZ1yDYkFnUAgEAgEgqNBmGgEAkFPo+zrCxAIUoFJkybh17/+NfLz83Haaafh/fff73So0P3339+blyroY9auXcv+f8EFF+CCCy7ou4sRCA5DMBjEJZdcgm3btiErKwv//Oc/Rch2J1i8eDGeeOIJ7N27F7/97W/x3nvvdflze+qpp/Dee++x3//whz9g/PjxAIARI0ZAq9V2yjWk0Wig0Wi6dA0CgUAgEAgEnYFMNDqdDh988EFfX45AIOhnCCezYFCSGCqkVqsxfvx4mM3mI1r0C2eZQCBIVUpKSjB37lx8+umn0Gq1eP/990WKhU6iVCrx+uuvQ6lUYuXKlbj22msRCAS6dKxE19Drr7+OvXv3IhgMorq6GllZWZ1yDQkEAoFAIBD0BIkmGr4ugEAgEBwJwsksGJQsWbIES5YsYb8vXLgQY8eOxfDhw49o0S+cZQKBIBUIh8Ow2+2oq6vD5s2bsWrVKqxatQqxWAxpaWlYuXIlTjnllL6+zH7FtGnT8NJLL+Gqq67CSy+9hG+++QbXXHMN5s6di7FjxyIzM7NLx122bBmuueYaSJKEu+66C3K5XLiGBAKBQCAQCAQCQb9HiMwCAcSiXyAQ9F/uvvtuLF++POnfFixYgKeeegrDhw/v5asaGFxxxRXIzMzENddcg4qKCtx7773sb08++WTcZmVnmThxIjZs2BD3mEi9IxAIBAKBQCAQCPo7MkmSpL6+CIFgoOByuWCxWOB0OkUBBEFSRBsRCATdgehLBIdDtBHB4RBtRNAZRDsRHA7RRgSHQ7SRwYMQmQWCbkSSJLjdbphMJlFcS5AU0UYEAkF3IPoSweEQbURwOEQbEXQG0U4Eh0O0EcHhEG1k8CBEZoFAIBAIBAKBQCAQCAQCgUAgEHQZeV9fgEAgEAgEAoFAIBAIBAKBQCAQCPovQmQWCAQCgUAgEAgEAoFAIBAIBAJBlxEis0AgEAgEAoFAIBAIBAKBQCAQCLqMsq8vQCAYLFCye0FqkgpFCEQbSW1SoY0Aop2kMqKNCDpDKrQT0UZSG9FGBIcjFdoIINpJKiPaiKAzpEI7EW0ktTnSNiJEZoGgl3C73bBYLH19GYIOcDqdMJvNfXoNoo2kNqnQRgDRTlIZ0UYEnSEV2oloI6mNaCOCw5EKbQQQ7SSVEW1E0BlSoZ2INpLaHGkbkUmSJPXg9QgEgv9P4g6dy+VCYWEhampqerxjF+c6PKm4i9tfP8tUOld3ni8V2ggwONpJf31Poo2Ic3WGVGgnoo2k9rlEGxmY5+rO86VCGwHi20l//SwH6rlSsY0A/fOzHMjnSoV2ItpIap9POJkFghRFJpMlvbnNZnOv7R6Kc6U2oo0MrPP1FIOpnQzE99QbDKY2MpDP1ZOINjIwztWTiDYysM7XUyRrJwP5sxyo5+pJRF8yMM7Vk4g2MrDOJwr/CQQCgUAgEAgEAoFAIBAIBAKBoMsIkVkgEAgEAoFAIBAIBAKBQCAQCARdRojMAkEfodFocN9990Gj0Yhz9YNz9QUD9bPs7e9NtJP+d66B+J76koH6eQ7Uc/UFA/WzHKjn6gsG6mcp5iTdx0D+LAfqufqCgfpZDtRz9QUD9bMcyH0kjyj8JxAIBAKBQCAQCAQCgUAgEAgEgi4jnMwCgUAgEAgEAoFAIBAIBAKBQCDoMkJkFggEAoFAIBAIBAKBQCAQCAQCQZcRIrNAIBAIBAKBQCAQCAQCgUAgEAi6jBCZBYJe5qqrrsLatWsBAB9//DFOPPFEnHPOOXA4HJAkCVdffTXmzJmD+++/v8vn2L59O2bPno3p06fjjTfe6NFz8QSDQVxwwQWYNWsWXnjhhW45JgDU1NRg3rx5OOmkk7BixQps3LgR06dPx7x581BRUQEAuOeeezBr1izccMMN3XbevkK0ka4h2oloJ4disLUPQLSRrjDY2oloI11jMLWTgdxGANGXdAe90UaAgdeXDKY2AgzsvkS0ke5BtJGukXLtRBIIBL3Grl27JIvFIv3vf/+TJEmSTjnlFCkYDEqrVq2SHn74Yem7776T7rzzTkmSJOmSSy6Ramtru3SehQsXSpWVlVIkEpFmzJjRo+fief3116V//OMfUjQalU4//XTJ7/cf9TElSZJuv/12ae3atZIkSdL8+fOl+fPnS83NzdKuXbuk3/72t1JVVZV0ySWXSJIkSX/4wx+k77//vlvO2xeINtJ1RDsR7eRQDKb2IUmijXSVwdRORBvpOoOlnQz0NiJJoi85WnqrjUjSwOtLBksbkaSB35eINnL0iDbSdVKtnQgns0DQizz22GO44oorAACtra3IyMiAWq3GnDlzUFxcjM2bN2P27NkAgFmzZuHHH3/s0nmee+45DBs2DAAgk8l69Fw8dEy5XI6JEydiz549R31MALj77rvZtUajUQBAeno6JkyYgNLSUmzZsgWzZs0CAPb++iuijXQd0U5EOzkUg6l9AKKNdJXB1E5EG+k6g6WdDPQ2Aoi+5GjprTYCDLy+ZLC0EWDg9yWijRw9oo10nVRrJ0JkFgh6iZ9++gnDhw9Heno6AMDtdsNoNAIADAYDPB5P0se6QlZWFgDg3nvvxaWXXtqj5+LpiWMCbZ2kQqHA888/jylTpiAWi7G/SZLUY+ftbUQbOTpEOxHt5FAMlvYBiDZyNAyWdiLayNExGNrJYGgjgOhLjobebCPAwOtLBkMbAQZHXyLayNEh2sjRkWrtRNmjRxcIBjFPPfUU3nvvPfZ7aWkpSktL8cQTTwAAjEYjvF4vAMDr9cJsNrd7bOjQoV061z333IOtW7eiqakJy5cvR0tLS7ed61Ake0/dxZtvvomPP/4YH3/8Mc466yz2uFwuh9FoRF1dXY+ctycRbaT7vyvRTkQ7ORQDsX0Aoo2I8ebwiDYixpvDMRjbSEfvq7sQbeTovrdUaSeijRwZg7EvEW3kyBBtZGDPSYSTWSDoIZYsWYL169dj/fr1+PLLL5GRkYHzzz8fr776Km655RaoVCrYbDYEAgGsW7cOU6ZMwZQpU/Ddd98BANavX4/Jkycf8bnWr18Pn8+HnTt3sqTyVqu12851KOiYkiRh27ZtGDt27FEfEwB++OEHvPbaa/jggw+gVquh0+lgt9uxe/duFBUVYfLkyVi3bh0AsPfXHxBtpPvaCCDaiWgnh2agtg9AtBEx3hwe0UbEeHM4BmMbAURfciT0ZhtJPN9A7EsGYhsBBmdfItrIkSHayACfk/RoxmeBQNCO++67jyW0//jjj6UTTzxROuWUUyS73S7FYjFp8eLF0owZM6SlS5d2+RzHHnusNHXqVOmUU06RTjnlFCkSifTYuXj8fr/0f//3f9LUqVOlZ599tluOKUmStGDBAunYY49l72f9+vXS9OnTpRkzZkilpaWSJEnS3XffLc2cOVO68sorpVgs1m3n7gtEG+kaop2IdnIoBlv7kCTRRrrCYGsnoo10jcHUTgZyG5Ek0Zd0B73RRiRp4PUlg6mNSNLA7ktEG+keRBvpGqnWTmSSJEk9K2MLBAKBQCAQCAQCgUAgEAgEAoFgoCLSZQgE3YgkSXC5XBB7N4KOEG1E0BlEOxEIBEeL6EcEh0O0EUFnEO1EcDhEGxEcDtFGBg9CZBYIuhG32w2LxQK3293XlyJIUUQbEXQG0U4EgsHHsmXL8Oqrr2Ljxo2YPn065s2bh4qKCgBthWpmzZqFG264odPHE/2I4HCINiLoDKKdCA6HaCOCwyHayOBBiMwCgUAgEAgEAkEfYrfbWRGahx56CF988QWeffZZrFixAtXV1SgvL8eGDRtgMpmwcePGPr5agUAgEAw0Fi5ciMrKyqQbnQKBQNBZlH19AQKBQCAQCASCgU1rayueffZZ2Gw2LFq0CNOmTevrS0opHn30UVxxxRUAAL/fj/T0dKSnp6O0tBRbtmzBrFmzAABz5sxBcXExZs6c2e4YwWAQwWCQ/e5yuXrn4gUCgUDQbwmFQrjkkkvw008/ATi40dnQ0IAVK1bgX//6V7vXiPFGIBB0hHAyCwQCgUAgEAh6jObmZsyYMQP33nsvnnzyScyYMQPvvvtuX19WylBTUwO3242xY8cCAGKxGPubJElwu90wGo0AAIPBAI/Hk/Q4y5cvh8ViYT+FhYU9f/ECgaBf4XK5kJ+fj7lz5+LUU0/t68sRpADBYBC33norTjvtNAAHNzonTJiA0tLSpK8R441AIOgIITILBAKBQCAQCHqMO++8EyUlJSgoKMC5556LWCyGK664Alu3bu3rS0sJli9fjj/+8Y/sd5lMxv4vl8thNBrh9XoBAF6vF2azOelxli5dCqfTyX5qamp69sIFAkG/Y/fu3bj++uuxdu1arFmzJulzgsEgXC5X3I9g4GIymXDyySez3xM3OpMhxhuBQNARQmQWCNB+V1/kohIcCpGzTDDQkCSJ/QgE3cnOnTvxyiuvAADee+89/Oc//8GCBQsQCoXw29/+FtFotI+vsO/56aefcNVVV2HFihVYsWIFdDod7HY7du/ejaKiIkyePBnr1q0DAKxbtw5TpkxJehyNRgOz2Rz3IxAIBDy7du3Cl19+iZNPPpn1zYkIl+rgJnGjMxlivBEIBB0hcjILBDi4q/+nP/0JALBgwYLD5qISDD66krNMIEhlJElCJBJBLBaLE5hlMhnkcnncv/yiQyDoLE899RQkScJFF13E8gg///zzGDduHDZt2oS3334bl112WR9fZd9CY8qrr74KABg3bhwWLFgAmUyGN954A0VFRRg1ahROOukkjBkzBrNnz+7DqxUIBP2ZoqIiPProo5g2bRrOOOMMLFiwAFlZWXHPWbp0KW677Tb2u8vlEkLzIII2OpuamlBUVNTXlyMQCPoZQmQWCHBwV3/16tVYvHhxu6I7HSGKHgwuKGfZyy+/DKB9caaOXiPaiCBViUQiiEaj7Id3M5PArFAo2P+VSiUTnQWCw+H1evHOO+8AAG6++Wb2+JAhQ3DXXXfh7rvvxl/+8hdceumlUCrFlPSqq65i/y8uLo7720MPPdTLVyMQCAYiM2bMgE6ng1wux4wZM1BRUdFOZNZoNNBoNH10hYK+5k9/+lPcRqdAIBAcCSJdhkCAg7v6X3/9NV577bVO5aICRDjZYKMrOctEGxGkKpIkIRaLMYE5GAwiEAjA7/fD6/XC4/GwH5/PB7/fz/4NhUJMlBYIOuKTTz6B2+3GyJEjccopp8T97Xe/+x0yMjJQWlqKt956q4+uUCDoOtSHRiIRhEIhhEIhhMPhuLmBQJBq/PnPf8bq1asRi8WwefNmjBw5sq8vSZAivPrqqygqKsKMGTNQXFyMjRs3YtSoUX19WQKBoJ8hRGaBAG27+jNnzoRarcaMGTM6lYsKEEUPBjudaSeijQxcampqMG/ePJx00klYsWJF0hzd99xzD2bNmoUbbrihj6+2PSQQx2IxJoz4fD643W60traiubkZdrsdNpsNLS0tcDqdcLvd8Hq98Hq98Pv9CAQCQmwWdMhnn30GAPjFL37Rzv1uMpnwhz/8AUDbZpwQ5gT9BUozRBtzwWAQ4XCYbdiFQiHRngUpy2233YYVK1Zgzpw5+MUvfoGMjIy+viSBQJCCJK5ziMRaVgJBIkJkFgjQfldfo9HEFd3pCFH0YHCTWJwpGaKNDFyefPJJLFu2DN9//z1Wr16Ne++9F1988QWeffZZrFixAtXV1SgvL8eGDRtgMpmwcePGvr7kOHjRj4TmcDgMl8vFHMyUk6+hoQGNjY1oampCU1MTWltb4XQ6meAcCAQQiUSE2CxgRKNRfPnllwCAc889N+lzbrjhBlgsFpSUlOCTTz7pzcsTCI4Y6idJWCZxmdIO8S7mSCTSx1crECQnPz8f//vf/7BhwwZcd911fX05AoEgRUlc57jdbgAHa1mtXbsWa9as6eOrFKQiIgGeQIC2Xf3LLrsMf/nLX3DFFVfguOOOE7moUhzKHduXBclEzrLBzd133w2LxQKgTVBTKBRxObq3bNmCWbNmAQDmzJmD4uJiVvgskb7M3U33EAkolDrjwIEDiEajANruN6VSCZ1OB4PBAIPBAJ1OB61WC4PBAK1WC41GA7VaDZVKJfI2C/Djjz/C4XAgLS2tw3ZvNptx4403Yvny5XjkkUdwwQUXiHYjSAlojkE/fGohPpc9oVAooFQqEYlEoFKpWDFV0Z4FAoGg/8BH+QEH58iDsS9PXOdQ7YzEWlaLFy9O+npRl2jwIkRmgQAHd/V5EovuCFIDyn9ILiGZTAatVturg/+rr74KoC2Xt2gnPQs/2eMX/MDBiZ9cLj9kWpueIj09HQDw/PPPY8qUKdi6dWvcdbvdbhiNRgCAwWCAx+Pp8FjLly/H/fff37MXnAD/2SkUCigUCva31tZWRKNR+Hw+1NXVIRwOM5HZaDTCbDbDYrHAbDbDZDJBr9fDaDRCr9dDrVZDo9EwsVkwOPn8888BAGeeeeYhi/otWbIETzzxBIqLi7Fu3bq4vPcCQW/Ci8mJNRdIXI5EIklTYUSjUdaXCnFZIBAI+gfU5yfbPORRKBRQqVRQq9WDpn9PXOfodDoAB2tZTZs2DWeccQYWLFjQrngo0DdrG0FqIFZ/AoGgXyBJEst/yIehlpaWYtasWRgzZgxOPPFE7N69uw+vUtAd0EI/HA63C0mmBT4/KQyFQggGgx3mwPzyyy8xdepUTJo0CTNmzMD27du77VrffPNNfPzxx1ixYkW7HN1GoxFerxcA4PV6D5kqpa9yd5PQTC48lUoF4KCoX1NTg3A4jFAohAMHDqCsrAwlJSXYs2cP9uzZg9LSUlRUVKC+vh6NjY2w2Wws3Ybf70c4HO43KTRKS0tx0kknib6km1i9ejUA4Oyzzz7k83Jzc3HllVcCAB599NEevy6BIBESkRML9/GPB4NBVtzP6/Wyfk6j0cBgMABoE5rLy8sxf/58TJw4EdOnTxf9iCApS5YsQVFREWQyGXbu3NnXlyNIQcScpGegfj0QCMDtdsPtdsPn87GC1jz8vJ5/TSgU6u3LTkowGMTvfvc7jB49Gscccwwuu+yybj8Hv84hEmtZUR2aRERdotTgjDPOwKRJk3D88cdjzpw52LZtW4+fU4jMAoEgpZEkCeFwGD6fj/3wIvOSJUvw29/+Fvv27cOdd96Ja665pg+vVnA0UDElWtBT6gYSOUkAoH/5yaAkSUkniC0tLbjsssvwxhtv4Oeff8YjjzyCRYsWdcv1/vDDD3jttdfwwQcfQK1Wt8vRPXnyZKxbtw4AsG7dOkyZMqXDY/VF7m5ybMhkMqjVaqjVauj1emi1WubAJrHZbrejvr4eDQ0NqKiowK5du7Bnzx7s27cPJSUlKC8vR1VVFZqammCz2dDa2sqKBPaX4oDXXXed6Eu6iUAggC1btgBoSxVzOO644w7IZDKsWrVKCC6CXiUWi7HxhTYy6Yfy1NOYQ7nqSYiORCJobGyM2+D8/e9/j6uvvhq7d+/ukX5EFGIaGPziF7/A+vXrMWzYsL6+FEGKIuYk3UssFkMwGGT9OJlTeGOL3++Hx+OB0+lES0sLWlpaWJ+vUCggl8shSRL8fj/8fn+fz2vvuusuyOVy7Nu3D7t27cJjjz3WrcdPXOcQibWsRo4cmfT1oi5RavDee+/h559/xrZt23D77bfj6quv7vFzyqS+vjsEggGEy+WCxWKB0+kUHWkSJEnCrFmz4PP5sG/fPuTn58NgMGDBggV48MEH2z2fJgSBQACBQCAuTYLFYkFTUxOOP/542O12KJVKSJKEIUOGoLi4+JAFG/sS0Ubaw4cix2IxzJ8/Hz6fD2VlZRgyZAj0ej3OOOMM3HPPPcx5y7sLNBoNyykMAGq1mqVp2LRpE6644oo4B4jJZMK33357SNG3M5x33nmorKxkldkfeugh3H777SxH96hRo3DPPffgf//7H8aMGYNXXnml0yF2Pd1OSJQH2u4npVLJJs1utxt2ux3V1dXYv38/WlpasGPHDkiShKFDh8Ln88Fut7NjpaenIzc3FxkZGezfzMxMllaDhGvK19wdYYZH2pccjqamJowZM6Zf9SWpzMaNG3HSSSchOzsbDQ0NnfrOL774YqxcuRKXX345Xn/99V64yoGPGG86hjY158yZEzfeGAwGnHnmmbj33nvZuEQb3TQHsVgsMJlMqKurgyRJSEtLA9C2qTl9+nTU1tYyd3N39yN33HEHzjvvPJxyyik49dRT8fHHH8NkMqG4uBirV6/Gn/70pyM6nmgjh6e7xxueoqIifPbZZzj22GO76Wp7BtFODo2Yk6RuG6G1ZKL7WC6XIxQKtTMvHQqDwQCj0YhwOAwArB5JZ+juNuL1epGfn4/a2lpmDOluEtc58+bNw8UXXwyLxYLLLrsMoVAIV1xxRacLiKZqG0lGokTaWylSenK8AYDXXnsNTz/9NDZt2tQNV9sxIiezQCDoNWQyGb7//nsAbSHSa9aswdChQ+Oe84tf/AJlZWUs9y45IGUyGV599VXk5+czAbGxsRF5eXks36dMJsPQoUNRXV2dspMwwUF4cZnPhfnVV18hGo1i3LhxeP/991FQUAAAbBJ4zTXXoKqqKu5YNPivXLkSQ4cOZTnTRo8eDZvNhuLiYsyYMQMfffQRPB4PKisrj1pk/vTTT9s9lpij+6GHHjqqc/QU/OSJhF+dTsdSkZCj3OfzwePxwGKxoLW1FZIk4ZlnnsH+/fvx0Ucf4aeffoLD4YDT6URBQQG8Xi/8fj98Ph9ycnKYC9BkMjHntEqlgkKhOKoJ25H0Jcn49NNPUVhYyH6vqakRfUk3snHjRgBtIZWd/Z7/+Mc/YuXKlXj77bfx4IMPtvs+BYLugiKkotEoVq9eDUmSMHr0aHz66acYMWIE5HI5/H4/IpEIFi9ejP379wNo6xeov4zFYnj66aeRl5fH5igNDQ0YMmRIXJ2I7u5HRCGm3qe7xxvBwEPMSVIPSZIQCATixGW5XA6VSgWfz4eWlhY2F+bdzHykpEqlYkJyJBKB1+tFKBRCeno6wuEwAoEASzd3OLq7jZSXlyMjIwMPPvggvv76a+h0OixbtqxbI1mSrXOIxFpW/R3aeKa1SjKRObGWTU8UOe+p8eaKK65g39mXX37ZrdecDCEyCwSCXqe+vh7hcDipiPD+++8jFAqxcCXewUy7njqdDjKZLKlQJYIzUp+OxGV+gG9sbEQkEkFBQUFcUbpIJIKXXnoJAGA0GpkTQSaTwWAwIBQKMQFBpVLBYrHggw8+wF133QW3243Zs2djwoQJLPfwYIW/b0ggkcvl0Ov1bIOHvheKJvB4PKipqcG9996Lv/zlL7jvvvuwZ88ePPfcc9i/fz+qqqqYI4Qm9jk5OSz03GQyQafTMaG5OwoDHqovWblyZZc/E/pcBF2DNltmzpzZ6ddMnToV8+fPxzfffIMnnngCf//733vo6gSDGRISaAwCgIaGBkQiEYwfPx4ymQxerxfBYBCRSAR/+9vfALRFwOTk5LAxp7q6GrFYjG1oKpVKtuDki6h2dz8yGAsxJRb95T9T6rdJAOAf6266c7wRDEzEnKTvoUi9YDDIPjOFQgGNRgO/34+mpiYmIiuVSoTDYWaioNdTZCTNgYG2MUClUiEcDsPhcCAtLY0VyKb1SGforjYSDoexf/9+TJgwAStWrMD27dtx2mmnYffu3Un7fkFy+FSNye4xvl3wUbMEXzz9aA00PN093lCE4GuvvYY//OEPrDh3TyFEZoFA0Ov8/PPPmDx5crvHJUnCRRddhH379iWt7vv6669j5MiRUCqV0Gg0GDp0KGpraxGJRFg4WU1NjXDApRiJoiW/YIxGo3FF/Ig9e/Zg4sSJUCgU0Gq1LPRYkiRceOGFbAdXqVSyAV8mk+E///kPcnNzmZCgUqlw8sknY+3atQDaXFy5ubkYP358734IKQYJIfS5kztPoVCwz5omSvRdRSIRlJWVoaysDLfddhvuu+8+jB8/Hk888QTefPNNrFy5Ejabjd279L3wgk40Go1zTB+tq7mjvgQ4sp3+wsJC0Zd0I7yT+Uj44x//iG+++QYvvPAC/vSnP7EQTYGgO6D8y9SfAW0LxLKyMkyePBkymYy51cgFt2TJEtTU1LCNSdrElCQJzz//PMaMGcMWmUOHDkVdXR1zGPdUP0KFmD7++GP22IwZM6DT6SCXy1khpmRCw9KlS3Hbbbex310uV8q5bPn5As0RjgTeadadi/7uGm8EAxcxJ+lbSPSlPoOcy4FAAC0tLazfp3VkY2MjczrL5XJmquAhQ4TL5YJSqWRzZKfTCaPRCEmS4PP5YDAYOtXXdFcbGTZsGORyOaszc9xxx2H48OHYtWsX5s6de9jrEBx0u9O6hQw3icXmCd7JTD+8C56eQy5nGoe6Mgb11Hhz5ZVX4vrrr0dzc3OPzrGFyCwQCHqduro6lgKBiEaj8Hg8+Otf/4rW1lY2yBuNRigUCuh0OhgMBha2JJfLkZ2djcmTJ+PNN9/EVVddhQ8++ABFRUUilCwF4AVkGqB5sZkvtkGOZqBtcI5Go6isrERWVhar/AyATeA+/PBDlhM4MzMT0WgUfr8fQNtkUKlUsolBOByG3W5HXl4eAOCBBx7A/PnzMWrUqN7+SFIOEpnpeyD3nUKhYK4MfpJETr2ysjI0NDTglltuwZIlS3DKKafgqquuQmFhIZ588kk4HI44d59MJmPfL33ffBtQKBRddjUn60uII9npF31J91FbW4va2lrI5XJMmzbtiF57+umnY/Lkydi6dSueffZZ/PnPf+6hq0wtampqcMUVVyAYDOL888/HKaecgltuuQV6vR4vv/wyhg8fjnvuuQdr167FpEmT8Nxzz/X1Jfc7SGAGELeJLZfLUVVVhSFDhiAWi8Hn87G/RSIRPPPMMxg+fDjkcjncbjeampoQi8Ugl8tZP6lSqaBWq5Gfn9/j/QgVYvrkk0/aFWI644wzcPrpp2Pz5s34wx/+kPT1Go2m0zlEexsS/0nETySZUzmZu5lP+wS0CUq807yrdNd4Ixi4iDlJ35FMIKYUbgQVuiZHMwC2gehwONjzqG+loq/0f5VKhUgkAp1Ox+bOJDp7vV7o9frDzmW7q41kZmbi1FNPxVdffYVzzjkHVVVVqKiowNixYzt9jMFMNBqNi5ZWKBRxbYhfx/LjC782oggapVIZJywn5vjmhefOptnornbicrng8XjYOvijjz5CRkYGi4rqKUThP4GgG+lPCe37kpKSEixYsADTp0/HG2+8gXA4DKfTCbvdDpfLFbcANBqN0Gg0MJlMMJvN0Ol0caGoJSUluOqqq9Dc3Ayz2YzXXnsNxxxzTF+8rU4xkNsIDciJbmUaoBMf43Ne0SDtdrsRi8VQXl6O3/zmNzjuuOPw97//Henp6XGfl91uRywWQ1paGtRqdVyeSblcDo1Gw9rRjTfeiO+//x6RSAQzZ87E008/zQo1pSq91U7IXQyACcME7fD7fD643W40NjZi//792LNnD0pKSuD1egEAc+fOxfXXXw+j0Ygvv/wSzzzzDABg1KhRMBqNGDZsGPR6PTIyMmC1WqHRaGA0Gtm9rVQq49JnHIkIwPclb7755lF9Fv2tL0lVVq5ciYsvvhjHH388tm7desSvf+edd/CrX/0KmZmZqKqqgl6v74GrTC0Si7kBbamjGhoa8OSTT+Kee+7BnXfeiXfeeQd33nknLrzwwk6lIhnI482RIElS3PhADiWitLQUv/zlLzFt2jQ888wzTER2OBzQaDQwm81wuVzsGEqlEnq9HgqFghU0pX5s3759PdqPDNRCTFSci3eNyeVyJhYnOpoTc2PyC3w6XmJeTZpnkOB8pHQ03iTWEKFzkYMt2Zh200034T//+Q8aGhpYodyOnGmpQKq0k1RnMM9J+qqNJOZeJjdzOBxmZhPqD/j8zJIkwWg0wuv1MjNLYWEh8vLy0NjYiLq6OuaKplQJFH2nVquh0WhgMBig0Wig0+mYAUqn0zGDRTK6s43s378fV199NZqbm6FQKHDffffhwgsvPKpj9iSp0I/QZiZfm4A2mPl0jhT1xK9hk+Vl5k041O93JkozcexKHCu6q53U1NRg4cKF8Pv9kMvlyMrKwuOPP47jjz++y8fsDEJkFgi6kVToPPsTNDFoaWmB3W6Hx+OJ+7tarYbBYIDZbIbZbGaLuv7MQGsjvGDMD8S80EyuosTdYIJynPEOssS/DxkyJG5R6HQ6EQwG2YROq9UiFouxXWkqZEdCglqtPur8v71Jb7UTPvSbL2rFQ+HjbrcbNpsN1dXVKCkpQUlJCRobGwEAVqsVN954I2bOnIknnngC33zzDSwWC4YNGwaLxYK8vDzI5XIMGTIEBoMBarWaCc0k0pBQc6jJuSD1ueOOO/DXv/4VN9xwA/7xj38c8esjkQjGjBmDiooKPPPMM7jpppt64CpTC4fDAYvFAoVCgblz50KhUGDNmjUAgPnz57OUDTfffDM+/fRTlJWV4dZbb213nGRF3QoLCwfMeNNVKGUPudj4tBm0KKSxgz4/g8GAurq6uOPIZDLmBJbL5VCr1czBpNFo+mW/lQpzksQFP4Wt+/3+OKcyn5c5WS5mgsYyGlNIrOaRy+VHPd4cznlN16JWq7s1bUdfkArtRJDa9EUbkSQJfr+f3YOBQID9HggEWG79ZGsQvk9QKpWYMGECTCYTNm7cyKIlk0GpNuhHr9czsVmv17MxIdEUJej7fiQxPQb/OwnLVPyR5g2JOZmBg5uIJDDz/6ffaWzSarVsDXqotTAdlx8neFGbF7f7w1gi0mUIBII+IRaLwev1wuFwwOFwxIUzAW3Col6vh9lshsVi6VQIkqB34IVkfqDm02Pw/0/mZqbXHCrXokwmY99/4ndvMBiYO8Hr9bIwNb1eD7/fz9xP/KAu2k97yNlFE3TK/8dPYJRKJUwmE3Pq8U7k0tJSVFVVoaWlBQ899BCmTp2KX/3qV9i0aROcTid8Ph9kMhmGDBkCAGhuboZWq2XFPclJkjjhEkJz/4WK/h1pPmZCqVTi9ttvx+9+9zs8/vjjuO666zpVub0/k1jMjXeAS5IEt9sNo9EIoK3vS9yQJfpjUbfegB9zeHGZ+hhauPFRVEqlErm5uSy6hnfKUooMekz0V10nHA7H5USNRqOsCBfNMfi5RkfwC28qzsgvyGn8ou+KNhpCoVCcQNCZ77EjcTnRSU3znmAw2K83IgSCVIQXmGktEAwG4fF4EAgEEAgE4sRCvn4L3asajQZZWVkYNWoUZDIZE5iVSiXGjh0LnU6H8vJyNDU1IRAIsFoiZI7QarVM2Kbi41qtFnq9nhW51mg0QmxOAWKxGNu4pPGFvtNgMMjGg1AoxPr3jsYePo0gPw+gMYb+plKp4Pf74ff7oVKpYDQaodVq48a3ZGklDwe14UQndCoxsGftAoEgJYlGo3C5XHA4HHC73UkFZoPBAKvVirS0NGi12pTrPAcDyRxE/GBIf+MHysRF4eEWhomQA5kcYpFIBA6Hg52TBmmVSoX09HSWP4uc0BTGRjvTQlg+PDQ5IrdHMqFZLpezjR6lUgmtVgudTgeLxQKr1YrKykrYbDZs2rQJW7duZd+7x+OBwWBAWVkZjjnmGFbxmybjhMFgEELzACAUCmHTpk0A0Kl0Dh2xePFiLFu2DJWVlXj//ffxq1/9qrsuMWXhi7mdddZZ7HHK/UuuWq/X26EDqD8UdesLFApF3CIuEX5DkvpCp9MJ4GC+ToLSCvG5FYWA0DXIOQaAuckpPJ3EocR0GYmL8ERHc7LCTIkhzST4UuQOzVV4wTkx1QUftZVYR4IXr3koUojEimAwKITmXqKjdG1EokOwo7QmgtSF5v6xWIwJy263Gz6fj/1QGg2a39J3zqdpa21tRWlpKTuuUqnEnDlzEI1G8dlnn7XL88ynTdLpdP+PvfeOj7pK2/+v6b2mVwKBQOigNAEFC5bFZ+29oa592f3is66uDSxr3V0fdVdd93EV8YFVUVx7XwUFCwJKABMghPRkkum9/f7I7z6cmUwgQJKZJOf9es0LMpnMnGTu+ZxzrnPf1w2NRsOypgOBAPR6PYLBILRaLbsGkCAt9iTpge+3QAd/dG2mGKF4CoVCCXtX3t+fDixpL0x+3XTwzAvMVMFCcw0A2O12qNVqGI1GFn80plTXqVS9jFIlevHVO5lyHRMis0AgGDAoi8jlcsFutyMUCnUTmKmM3mq1wmw2Z9QFc6iRPKmlyjQ+2M/yGcu0CSSvy+SfTbZDoE2c2+1m3r5GoxFyuTzhRDkZ8u/OyspiVhkajQYejwc+nw+hUAgajYY9ns9cEPQMiSR8w8Tkzx6Vh+l0OuY5Roslo9GI+vp6NDU1MW87AGhpacH8+fNRXV2N+vp65OXloampCdOmTYPH40EoFErYxCcjhObBxbZt2xAMBmG1Wo+quaZWq8XSpUtxzz334JFHHsFFF100pOMguZmbRqOBzWZDW1sbysrKMG3aNKxZswa33HIL1q9fjzPPPDPl82RyU7d0QmIwPx9QPJFIQV/z10KCrDEoa40exzc3FRweJLoCXdd5v98Pn8/H7qcsM9rEpyJ5zujpfeCzyuj/dLBA3qok/iQfjvc0P/HiMnCgQRhvy6JSqZjQQAff4XA4oWGj4Ojh16NHmuAAIOGAIVOzAwVd0B4hHo+zDGan08ms3TweD9xud0IiCl3naf1K4h9d2yl5Zdq0aTAajXjttdcQCASQlZWF8ePHQyaTYffu3WhtbYXb7WZNAL1eL/R6PRMrQ6EQy2QmsRkA++zz1xtB/0MZ70QgEEAkEmEHA36/n4nMZI9Bnt7JjSOBrmu/TqdjCU8kMJNdGc0r4XCYNVjn+zhQPFosFjZ/HM4hF185zPdBotijXjfpvnYJkVkgEAwIdJF3Op1wuVwpSw01Gg2MRiMsFgsTHAV9R2/8kelxyaTK5qGSURKYk0VhKkklDAZDggDs8XiYwKzX6xOaMSV7KsrlcsTjcTgcDua9TM9F4wAONHWi/xNiQXdoSDShzyV10ub/drTx0uv1bNNOpYEkNnd2dqK9vR2xWAwLFy7Eeeedh6effhp2ux0qlQoWiwU//fQTZs2ahdbW1gQvzmRIxBEMDjZu3AigyyrjaBe4N998Mx555BFs27YNH330EU499dS+GGJG8sADD6ClpQWnn346AODBBx/E4sWLIZFI8PLLL6OsrAyjR4/Gcccdh4qKCsybNy/NIx58kLiQjFwuZ4dd1B+A99SkzZpEImGbzeRSVcHhwXtfy2QyRCIRJjCTAEC2VwBYeTEJ0SToJttt0XvMN/ejdQQJPpRhRvMb2WbQASrd11PmO58RTbZP5OedjFQqhclkYk3BKHvuSBsPCg5Ah+F8ljv9nxIekte6qRpF8v6pqQ4Ykm1WDkVyAkZyBiI9L41F9KE4fMj2ADggNlPCisvlgsvlgtPpZFnNANieE0DC35x6/6hUKphMJpjNZshkMtTW1rKs0zPPPBNKpRIvvvgi6urqEsai1+uh1WrhcrkSDpLo9QwGA6LRKOsdQ+MVYvPAwWsN5NFNdip0QEFNZyl+aD9Ln2f6vNLn2OPxJNiW6fV6GAwGdmhBArZSqUQ0GoVSqUQ8HodKpYJarUY0GkVnZyesVuth73HouhSPx1kmNMUbWX9Eo9G0V82InZtAIOh3otEoO112u91sIajT6RAIBCCRSKDVamEymWC1WqHT6cTE24eQCMsvnvkyQvqa//dQz8cv4kOhENuQ0cI/lWdoa2srxo4dy6wSOjo6AIA1YgIOiJiUQUJjpgwkjUbDPJipkQJlxNJz0eaVFgQiG6X38CfwVObHlw7zggplNFNWiEajgU6nw/79+5l/LB0IXHrppXj++efR0tICiUQCs9mMLVu24JhjjkFzczOCwSATclJljAkhZ3BAfsxHY5VBWK1W/OpXv8ITTzyBRx55ZEiLzG+//Xa3++hvSTz44IMDNZxhBc03tJHUaDTw+/3sWkRrEV6k4LOYBYcPVTvR39ButzPhmQTneDzOrEnq6+sTMst7gj/45uFttuj1ZTIZ1Go1IpEIEwZcLhez7OKzwWj9QOsbt9vdTVimuVMmk7FmUrFYjP1uGo2GxVkkEhHZzEcArTd5r1Qqb+dL3fmKOt5/nReN6UafZbVaDbVaDZVKlZBIQSX1JEjSwTufeMEL272NU1rz0gEXZb2LteqhofW+RCKBz+dj2cokGpIdI9no0f6Th9asRqORHTiFw2F88803+Oabb9jjxo8fD7VajcbGRtTV1UEqlWL8+PHo7OxEU1MTPB4PgsEgzGYzAMDhcABI9GTnM5kNBgM7oCKxma4bgr6HEmbo//R5DgaD8Hq9CVYZNpuNXbfpeuJwOLrZpVC1tV6vh0wmYz7gtO81mUwwmUwsu5muRfxhk1arZfOD1Wrt1ftP4/f7/UwUB8DmMsqep2sgzUnpQqyOBAJBv0EXdxIFaTKmk+VgMMgWdeTtqtFoxCKrD6FFOJCYyZzK8ylVw4Hk9yJ58U0Lajo9pfcW6Cp5p42dw+GA1+uFzWaDVquFzWZDPB5PyATjF+90o9ejcjQSAGKxGBOpCb1ezyZdOuUFIBZvhwll9NEhAr3ftOGmTR5l4ej1evZ/pVIJrVaLhoYGNDU1oaGhAU899RTOOOMMXHDBBVi9ejWam5vZ+7x161ZMmTIFLS0t7MAp1Xgo80eQ2fCZzH3BsmXL8PTTT+Pzzz/Hd999hxkzZvTJ8woEPLQZ5MUf2miSBRNlzvGN/8Ra5fChtQPQ9Xd3u93svmg0yhozqVQq2O125o2t0+mQn58PmUwGr9fL/Fb5jGapVMr6BWg0GoTDYbS3tyMcDsNut0MqlSI7O5uVMNNhNYnT1AuC/FyJVIefdD8dklPZPAmWVquVPY/D4WCiJokOQmTuPZSFzmfqkahITdf4LGbegxcA69XBHxrwYjMJy7QG0el0rOE0iVJ0CJKcxNBTYkay5Qa/fknl702xrNPpxHXlENC+g/7+vLcuiX30dUtLC4Cu9ys3NxcAYLPZ2M+4XC5WQRsOh5Gbm8ves6ysLEyZMgVA1/6C9iR5eXk455xz0N7ejn//+99obGxEMBiEwWCA3+9nh1XJnu56vR4OhwNGo5FdN0hspvWzyGrvW/hDH9o7UiM++tt7vV60trYiGo3C5/Ohvb29W4Ul9XVIlcWsUChQXFwMk8mEQCAAp9PJbB3NZjN7XjpsoMSZ5IzmnvaqdH3wer0pD7FoLvP7/bBaraxqhuIqXXsnITILBIJ+gcoeyRKBSgr5CyR5FJnNZpjNZnGK38fwWRW0iUpuhkICYm+hzRQvLkciEXg8HvY8WVlZyMvL6+aNTNYYbrebZW9QNjLva0X30YLO6/WyUlmNRgOz2cwsV4ADjbGUSiWb+Kk8lr4vODxIaOYz1imrmRZffDMMpVLJygxp06bRaNDY2Aifz4e33noLo0aNwqxZs7Bp0yY0NjYy79iffvoJkyZNQktLC8sgTEW6S78EB6elpQX79u2DRCLBzJkz++Q5S0pKcMkll2DlypV45JFH8Prrr/fJ8woEPDQP8hmJfOUPZb7S5pDmKMHhk1xBRQIhZZNR88X29nZ4vV4oFAqMHTsW7e3t+Oabb+ByuXr9WtnZ2Zg0aRKsViv27dsHu92OtrY2aLVa5OfnM6EhEolApVKxxAi+QRcvMNP7T1VWfr+/W4YkAPh8PtjtduTn57MNv8fjYdmOfIatoGd4YZe3S/H7/azMnaxVaK9BlXX8+pDeM2oqbjKZoFar2WE5xZ5Wq2XrSI/HA4PBwB5LMcqvfYlUNi3Jmc4kVNP1g/8+ZSfSvolfOwt6ht4DPqudt9qx2WwAgAULFuCCCy6AwWAA0JVRvHPnTnz++ef4/vvvmT1CVlYW2traMG7cOJx66qmwWCys+bjBYMD8+fPx5Zdf4tNPP8XmzZsxfvx4VFZWorGxES6XC2eddRY+++wzJl5SzAFgMUHWGmQdx++pKPuUb0oqOHL4A03gQCUEVSXRIXJbWxui0SgcDgfa2toAdB0qRKNRNDU1sSQYqVQKi8WCvLw85OTkQK/Xswrt2tpaAIDFYkFlZSXsdjs6Ojrg9XpRUlLCGg/yFdxklxKNRtHR0QGj0cj2OTR2OkjjrzdkvUKxRXYx0WgUdrud9SxKd9WMEJkFAkGfQot0WnyTJ1ayXy+VL1qtVnaqK+g7aKNM8NnM/AY6VddaIlUWM+9TSKVo9FxGoxFFRUUsQ4SHBGa1Ws3KyWgRRQIzX05Ki3GpVAqtVstOcCn73Wq1MmGANhC8xyNN3JnQMTwYDOKCCy6AzWbDVVddhV/96ldpHc/hkOzTTJsyvoEWxYxcLofBYGAZPOQ91tbWhra2Nuzdu5ctxACgsbERlZWVcDqd2LVrFyorK9Hc3JyQQcZv7ulQIt3vpyA1VGI6YcIEGI3GPnve2267DStXrsSbb76Juro6jBgxos+eWzC84e0V6HawRnOUbSYE5iOH1iVyuZwdIPN/e8oU83q9UKvVKC0txaeffsrWEDKZDLm5ubBYLMxLlSwqyKrLZrOhtbUVNpsNn3/+OUwmExYsWIBRo0Zh+/bt8Pl8qK2tRVlZGROnSOxWKpUJjZ540TB5XQWA2WtoNBrm50z+rC0tLSgqKmKZt/R4WneJKqueoeZbFBsej4ftK+i9IlsEvlydvscjl8sTrBEcDgeys7OZ6O/3+1mWtFwuZ1ZgtIehqjw6fEj2eU5eZ5LQ6ff7mU8vj1QqhdVqhcFgSFjX0F5JrVaLdc5BoPU9QZ8pek8o8z0UCiE7OxtLlixJuGYrFApMnjwZkydPxp49e/D3v/8dTU1NsNlsyM/Px65du1BYWIhp06Zh3bp18Pl8kEqlyM/Px7HHHouqqio4HA58/fXX7DlNJhNGjBiByspKbN++nSVRBAIBKBQKlkBBQnMwGERraytMJhOMRiOzeqFMW2oeKOaaI4d80QGwgyo6AKD9ot1uZ5nGbW1tkMlkyMvLw0cffdRtLUAVtHwVbVZWFk444QTk5+fjxx9/hN1ux9dff41p06axapyGhgaUlpayQySqpHA6ncjPz2ceyg6Hg1U9pLpmaLVadmhJ8yEdnGVlZcFms7HDT4VCkWBlmQ76TWR2u9048cQTWfnT0qVLB9XGWiAQHD5kpu92u5k9QrK4DBzIeszKyoLRaBQL7T6GP73lxVepVMpKUfkmCIczCdEmi7IueL+7+vp6bN++nZW6VlZWYtSoUQDAhENaoPOZHyQwU/kgQRs+KiuiU2c6AU6OG/pZ3iojExZor776Kk477TRcf/31OO2003D55ZdDrVane1i9hvdppq+Ty1BprqdSZcpKp4xmg8GAtra2hCy0YDCISZMm4aeffoLNZkNjYyMKCwvR0tICn8+XsMniDz+E0JyZkFVGX/gx80yYMAEnnXQSPv30UzzzzDN4+OGH+/T5BcMPPmuZRMZk2wX+II23AxLrlSOH/u4AWCNF+vvz6xS73Q6ZTAar1YoPP/wQ8XgcZrMZM2fOhMFgQEtLC1wuFzt8tlqtKCgogNVqZXNDIBDAzp078f3338PpdOKtt97ChAkTMHfuXOzcuRPNzc2ora1FTk4O8vLymIdrOByGWq1mZeupypNlMhm0Wi10Oh0TJHlMJhPq6+sRCATYXMb/7oKDkywwU7KKy+ViIjIdSLvdbmZ/QKXvJK7Q51an0zEv7ezsbJhMJthsNrjdbowfP549p8fjgVKpRCQSgVwuh1qtTrBnAZDg5UwCMx0aULZzqveZ1rpUGWaz2Zj4Td/nf3+xxukZmUzGEh7oa956j6xMACRUJaSivLwcy5cvx2OPPYaamhr4/X7odDqsX78ewIG9SywWQ1NTEwDAbDYjPz+fzQ3Z2dmYM2cO5HI5rFYrALDDSDpkkEgk7KApFovBZDIhFovB4XDA4/EgOzsbBoOBZe6TBYLoUXRk8F7MANj1gfawlCXsdrsRDofR0NAAABg7dixeeeUVAMDUqVNxxhlnoKKiAiaTCaFQCO3t7di7dy9+/PFHfPvtt+jo6MAbb7yBnJwc3HXXXWhsbMQnn3yCLVu2YO7cubBYLLDb7fD5fFCpVAiHw0wApoqdkpISZvuTPEeSV3soFILdbk84ACXICkav17N50WKxAMDQFJm1Wi2++OILaLVa+Hw+TJw4Eeeccw6ysrL66yUFAkGaII80j8eDjo4OdpHjO+gSKpUK2dnZyMrKEqe0/QS/OeY3zdSoRiaTJWR7kMjLb6Ap25kmZspOp0mbDhSofDGZYDCIrVu3QqFQoLCwkL0WLwTzQjOfGcJ7X/GNMfjSSeoIzsMLy4djAdLfbN68Gddccw2kUikmTZqEnTt3Ytq0aQmP4b3+ABxWSfBAwPs0A13vH2+bkpx5k52dzTZ4dNKuVqtZGXE0GsXIkSNRUVEBs9mMzz77DHv37kVZWRlyc3PR1tbG/C2B7g0phdCceVCjur7yY+b59a9/jU8//RTPP/887r33XlFOLDhsqBKHv/HzHKHRaJgHIoAE31YhMB8d/DzPryVI7I/H42hvbwfQNYd89dVXiMfjGDduHPR6PdatW8e+nwqz2Yxx48Zh2rRpKC8vx7Rp0zBhwgRs3LgRW7duRVVVFZqamvCLX/wC2dnZqKqqYrYcU6ZMgdPphN1uZ+89VefodDpotdpuzeKArixYykDLyclh3zMYDOxgnPfvzaS1SaZCJe3xeJzZYlCWciwWYwKz3W5He3s7YrEYnE4nq5JLxuVyobi4GEqlkgnS5eXl8Hg82Lp1K6ZOnQqlUgmHw5HgkRsIBNhak973cDjcK99cpVLJMtypLB7oWsvYbDaWrU9zmVjP9B6FQsE+o9SMkaz2+P8DXRVz7e3tyMnJ6fH5NBoNfvOb3+B3v/sd2traUFlZiWAwiLq6OgDA/PnzYbVaUVVVhdbWVtb4k4hGo/jiiy8gl8vR2toKAMjJyUF2dja2bduGQCAAg8HA9k0A0NHRgezsbFbJ0dLSAoPBgKysLCgUCni93gSLBREfhwcd5tA+kv7OdJAIIKG6BAAqKyvx/vvvAwAuvfRSXH311d3+7jk5ORg/fjwWL16McDiML7/8Ev/85z/R1NSEu+++G//85z9RUFCAlStX4uuvv8Y111yD9evXo76+HtOnT4fL5WLXEDp8aG5uRnFxMYsRajgcj8fhcDhgs9kSqogVCgW7LlGPnJaWFuTm5rJ9fypbn4Gm30RmOuUFwE5xxMQqEAwt6OJNRvk2mw1Op5MtBAGwEiOgq3ELlTkKf9X+g/cipo0cb3VBFhcymQwWiwUKhYKVAPHvXTJUUkriMiGVSpGXl4fCwkLk5ORApVJhx44dqKmpwc6dO9nhIk2I9DOUBUIiM4BuflTkoUWnuXQKTc2YeJKbGQKZsXB3u93Q6/UAuj4DfMMI4qGHHsKKFSsGemiHBb1X/EEBCc0+n49lMANdmwBqsEQCjU6ng81mY1nc4XAYH3zwAUaMGAGTyQSHw4Hdu3dj3rx5zKPM5/OxuOF9PEn0zoT3V9C1oP/uu+8A9H0mMwAsXrwYZWVl2LdvH1avXo2rr766z19DMLTgraD4+Y/+z/vNA13zE5Ut897+QmDuO2jukMlkrI8DzefAAZ9/rVaLrVu3Ih6Po7y8HDU1Ndi7dy+ArnmntLSUNUoKBAKw2WxoaWmBw+HApk2bsGnTJlgsFsydOxfHHXccTjjhBJSXl+PDDz+E3W7Ha6+9hrPOOgvz5s3D999/D5/Ph++//x5z5sxBUVER2tra0NnZiUgkArvdzpoGGgwGWCwWWK1WxONx1NXVJZRO+3w+Vr1F8M0keUSCRWoomQA40FfE7/ez+6jBNH8gQWKMRCLBMcccA71eD6fTiZKSEng8Hnz55ZdoaGjAmDFjYDQa0dnZiYaGBkyfPh179+7Fli1bkJOTg7FjxyIYDLKeH8m+zuS5TBYXKpWKVWuR8MP3FUkFNYak5nSZSibbvFECQyQSgVqtRjAYZO+HRqNhdhQ6nQ5erxdr167FDTfccNDnNJlMmD17Nj7//HO2rnS5XJDL5fD7/fjmm28Qi8VYQg5VgdKeqLm5mT1XdnY2pkyZAoVCgd27dzNveYqpQCAApVKJ9vZ2GI1GGI1GlpUfDoeRl5fH9gp0CJouS8me4iCT44PPYqbmnbwlE32u6TG0n83Pz0dnZye0Wi2uvPLKQ+4vFAoFTjrpJMyZMwdLly7F3r178fnnn+Occ87BhAkTUFVVhfr6eowYMQJ1dXXs807vp9/vZ9nr9fX1yM7OZtnOZNWTnDyV3AeArHwCgQDa2tpgtVrZnEprlnRVRhz2DBeLxTBu3Dj8/ve/T7j/ww8/hFKpxGuvvcbuczgcmDJlCoqLi3HbbbchOzv76EcsEAjSDl3AXS4XmpqaUFVVhaqqKlRXV6O9vT2hVIwWWxaLBcXFxcjOzhZ+YwME71NGflSUNSSXy5GXlweHw4Ht27ejubmZnZzz0Ia7tbUVTU1NsNvtrJEj3RwOB6qrq1FVVQWXywWZTIZx48ZBIpEkdOHlxWReZOY9fSkukkVEOvGlhVZyOSK/keMzuDMhzvR6PfPP8nq9Kf1q77jjDtaR2Ol0or6+fqCH2StIaKbSTyrxpAaN5KkJdAkJ1F05KysL2dnZKC4uRmlpKWvAYrfbsXXrVpaBRNYro0aNgsFgSDiRJw9waoTBv5Ygvfz000/w+XwwmUwYO3Zsnz+/TCbDTTfdBAB46qmnxPs+zKHrPWXAJgvH1MiLfDmTb3Q/HZC5XC54PB5WMg8c8F8WAnPfwc//fLYq/UvzAFVOmc1m7Ny5E3v37oVKpcIvf/lL3HfffbjllltwySWX4MILL8SVV16JW2+9FQ8++CCuu+46zJ49GxqNBna7He+88w4eeOABbNq0CUVFRbj44otRUFCAYDCIf//731AoFJg/fz4sFgvC4TC+//57KJVKlJaWYvLkyRgzZgxycnKY17LT6cS+fftQVVXFGjvx8OsSEkV5GwR+PZIJa5NMhOZ1qVTKbAN4wZfWUrQWHDNmDPbv3w+5XI4HHngAOTk5ePbZZ7F69Wo8+uij0Ov1eOihh6DRaFBTU4PRo0fDbDajra0NO3bswKxZs6BQKNDe3o4NGzZg+/btrKSdqjCp8TEJPD6fL8Gqo76+nsXCoewZ+LHT70dQTKQz+5Agm7f169fjtddeS8jczQSo7wutRdVqNdRqNbRaLTQaDeRyOUwmEwDgq6++wrfffnvI5ySdiv7+JEI2NjYiFoshKysLpaWlsFgsTNyjytxRo0ZhxowZOPPMM3HOOecwq5Xp06cD6GqMTAI1HZyEw2G4XC60t7fDYrEwSw2bzcZsAoEDfsLpoKc4yOT44K0c+QNMvsEvcEBcpmsLJcfS/rS3qNVqtqeh16PkOrfbzfqIdHZ2Jmih/F4pFAqhqakJtbW1rJEkWU8qFAq2NyShmtYk5CVN1w6qLOYrY9N1PTlskVkqleKOO+7AM888A7vdDgDYtm0bzj//fPzxj3/E+eefzx5rNpuxbds21NbW4v/+7/9YCYFAIBicUFap1+tlC7Rvv/0WW7Zswa5du9Dc3IzGxkZ24VapVMjJyUF+fj5KSkpY1uxQIRgM4pe//CXmzp2L559/Pt3D6QZfXkObcvI0zsrKwp49e9h12WAwoLS0FIWFhVAqlXA6nairq2PNMKjr7v79+7F9+3bs3r2b3fbu3Ys9e/Zg06ZNePbZZ1FVVcUaOwIHrB94vzTyMqOGPXQ/Dz2Gfge6j/+aoIk9eeOWCdlC06dPx5dffol4PI6tW7emFOFUKhXLaKBbJkMZyuS9zPtgks8m0PV+GI1GZGVlwWKxIDs7G9nZ2SgqKsLIkSORk5PDrDSysrIwduxYlrlB8RIOh9mCTQjNmQn5Mc+aNavfPnNXX3011Go1tm7dmtBwRzD0oY0h+SiSSEylr6mEZBKT6fF0o0wmEpfJvzUYDLJ9DV+BwYuEmUJPa4/Bsibh1yZ8E2KylqAGseFwGM3NzTAYDPjtb3+LwsJCPPvss7j66qtx5plnYvHixbjsssvwhz/8Aa+//jrUajUuuOAC3HvvvbjooouQm5sLn8+HV199Fa+//jo0Gg3OOussZGVlwe/3Y+vWrVAqlZg1axZUKhV8Ph9sNhuArrUDNfOaPHlyQsNRasrFW8FptVoUFxez34/Phqd/M6lXRKbCW3LRZ5Nf/5F4QmILCUOlpaUYP348Xn/9dQBdXv4A8Je//AVmsxlLliwBALz11ls4++yzodVqsX//fqxbtw5lZWUYN24cVCoV/H4/9u7di+3bt+PHH3+EzWaDRqNBQUEBey26fpAIBABOpxPV1dXYu3fvIb23eQu49vb2BLGJ/xukk82bN2PevHkJNm/JUNY3fxso+OuyVquFWq2GSqWCVquFwWCA0WiEWq1mQvNzzz2H6urqgz5nY2MjALAqSXpfaE87e/ZslJSUICcnB2VlZSgpKWF9hTweD+rq6rBnz56E9zQnJ4fZ49XX1yMcDsNoNDJLJsps3r9/P6v6JA9wOozgK3EGmp7ioDfxAaQnRpKreWluIZGZ3hv6nOl0OgBd+zC9Xg+Px4MPP/ywV6/V3t6Oe+65B9u2bWOHluFwGNu3bwcA5ObmsucPBAIoKCgAcOAwzeVywWQywWKxsJiWy+UwGo3Iz8+H1+tFR0cH4vE4DAYDRo8ejcmTJ2PixImYMmUKixmXy4VYLIZAINAtXgaNyAx0+ZRkZ2fjySefRENDA37xi1/g8ssvx3//93+nfHxeXh4mT56ML7/88qgGKxAIBh7KMqEGJp2dnaiursbXX3+Nzz77DJs2bcKuXbsSJg5qtFFSUoKysjIUFBQMyeYFmXySCyRu6PhmgAaDAfv27WNWBOXl5VAqldi6dSs2btyImpoa1qjAZrNh9+7d2LVrF5qamtDR0YFgMAiJRIKCggLMnz8f55xzDs4++2yMHTsWsVgMb7/9dsIimQRgmkD5bOXDjQledObFAtp4UJYAgATfxHRy4YUX4uOPP8bMmTNx7rnnDqqmfweDGgJSRjO9N9SpmTqlUxa6Wq2GTqeD1WpFTk4OLBYLcnJyUFBQgOLiYlgsFuzduxfff/99QnZzYWEhDAZDwuJMCM2ZxVdffQUAOO644/rtNbKysnDppZcC6MpmFgxt+INREoeTs/74zD/KYOaFZV5wpuZyvLjMQ4eedF2j5m+ZyGDMLuM39/y/yfdRebNCocCOHTsAAJdffjneeust/PrXv8YHH3yApqYmNv/bbDb88MMPWLlyJW644QbceuutqKmpwcyZM/G73/0OixcvhkQiwcaNG1mmMmUXUiMvhULB5uVkgc/v92PPnj3Mn1UqlWLkyJHQaDSYOHEiJk2ahMmTJ6OyspKJUx0dHYjFYgnCskqlSsjkFqSGt1RJhvxIAXSzDyBRn+7/f//v/2Hy5MkIh8N4+umnceKJJ2LcuHEIBAJ4+umncfrppyMvLw9utxvvvvsu3n33XQQCARQWFrIMdqDrvdy6dSt++OEHjB07FjNnzkRRUREkEgncbjc0Gg0mTJjAHm+321FdXX1QoVgikSA7O5s1v7TZbIjH42zsvD1YuuitzZvJZGK3kpKSARsfXa+BLlFYJpNBo9GwdaZer4dWq4XVaoVer0coFMJjjz3GxL9kOjs7meUXJXnQ/CKVSqFSqeD1erFz507Y7XbWe0itVqOyshLFxcWQSCSw2Wz46quvsH79enZoOXLkSMyaNQtyuRwdHR1oa2tjiRNkUcgfqAFdhxbUtwboXr05UPQUB72JDyA9McIfSiXPNfzniq7XtLfYsmULLrroIgDAn/70J6xcuTLl7xUKhbB582Y8+uijuOyyy/D1119DLpfj9ttvh0ajwd///ne0trZCp9PhmGOOgdPpZK9ntVqZ+E0C8f79+6HT6TBq1ChUVFRg1KhRMBqNqK2thc/ng1wuR3l5OcaMGYPm5mYWX1VVVSguLoZer0+o5u3p34HmiFZPcrkcv//97/GHP/wBa9euxfTp0/Hkk08mPKa1tRUajQZGoxEulwtffvklbrzxxj4ZtEAwEGSy39BAQCIebey8Xi9sNhtqa2uZvQJfjuHxeGAymZCfn4/CwkIUFxcjJycHer1+yJaaZnpDN5pQ+ZJiqVTKyv1kMhlKSkqwZcsWthiSSCSIRqNoaGhAZ2cngC5Rz+FwIBwOw263J0y6CoUCp512Gq6//npMnjwZjz76KCvfodP/5E0DZTLzCzhaZPFiJZU30WNofOTFltxll9/Q0eMyAbVajTfffDPdw+gXyNaEhGSKN76UnSfZt5AvayfRgO8KTteQcDgMvV6PgoICNDc3M6E5+bkz4VBhOEIi89y5c/v1dW655Rb87//+L9auXYumpiYUFhb26+sJBh7aLNG1gPdWJmQyGauCoVJ6vqyeriUH21zRBpPmEWpETBYZmVx11dPaI5PXJPzmnn9f6H66LzlTdfLkyfjkk0+wbt06AMCCBQtw8skno6SkBFKpFB0dHaipqcH333+P77//HlVVVfjv//5vXHvttTj33HNx4oknIhqN4v3338fGjRsxY8YM9to0X3R0dDBRx2q1AugSm6lpGJGdnc2qvejn+WzmeDzOPJzp8eSfqdFoEg7ABalJzvbm14oAmBUKvQf0eBJyiFAohFtuuQXXXXcd/vWvf6Gurg5XX301nE4nmpub8fjjj2PixIkYP348bDYb2traUFNTg5qaGkgkEkyYMAFnnnkm7HY7tmzZApfLhY8++gjnn38+KioqYDKZsGPHDrS1taG8vJz5hO/evRs+nw/bt29n1xT6HeRyOVQqFQwGAzQaDXJzc9Ha2gqPxwOFQgGTycTWUZFIJK3XoN7avC1btox97XK5BlRolslkrL8MHRSRyMwfMmZnZ0Mul8PhcODxxx/HpZdeipNPPjkhrl5++WWEw2FUVFSwtSXFICVS0J7IarXCYrGwBpStra3Q6/WYO3cumpubUVtbC5vNhs8//xwlJSWorKxEUVERjEYjvv76a3i9XjQ0NKCiogJ79+5lzf3cbjcTHqmfmVQqZWvqdNBTHPQmPoD0xEhP+wD6HNJnLDs7G/v374fRaIRcLkdtbS3GjRuHU089FR9++CFefPFFrFq1CqNHj0Z2djZisRja29uxb9++BD/1SZMm4fLLL0dDQwMeeeQRRCIRqFQqXHnllQiHw9iyZQsAoKSkBDKZDHq9Hi6Xi+1t3G43qqurUVFRAa1WC4/Hg5qaGkSjUajVaowZMwYqlQr79u1L8P7u7OzE/v37kZOTw+y+eFtK2vOn68DqiI9SL730UlYqsnr16m4TZkNDA44//nhMmTIF8+bNwy233ILJkycf9YAFgoGiNxkh6SwV6i/4Zn5erxd2ux319fXYvn07Pv30U7z33nvYuHEj6urqEi5cWVlZKCsrw8SJEzF27Fg2oQ7lxXSmnvTz2V280AyAddcGuqpMNm3aBLvdDoVCgaysLOzbtw8//vgjOjs74fV60dzcjK1bt2Lv3r2or69nv6PJZGIT5Ntvv401a9ZAJpOxhT81TpHJZN02VvwCgB4DHDjY4Muage7+WGq1mgmKtPjjG0mSd7MQHAcG2jxR93X+/8ke2zqdjnVcp7JGs9nMFu1msxkWi4V53nm9XjQ1NWHfvn2oq6tDNBpNsM6ghkAUL+nO/hmONDY2oq6uDlKpFLNmzerX15o6dSrmzZuHSCSCZ599tl9fSzDw0GEjHW7z/+czkai6yu/3sxv1B+js7ITdbofD4YDL5YLf72dzk1arhcViQWlpKYxGIxOYqXGXSqVi80smczTZZenMPiR42yu6Zif7ZJLHbXZ2NhOYf//73+P222/Hsccei7y8POTk5GDcuHE488wzsWLFCqxcuRKLFi1CPB7H888/j23btgEAxo8fDwBs7UNNBPPy8hCJRNjjSkpKoFar4XK5UFVVxQRms9mMCRMmoKysjDXw4rPk/X4/HA4H6uvr2WuQWA10JWfJZLKMyWTOZFuVZGu0ZJE52beY1pdKpRJff/019uzZA4VCgalTp2L+/Pl44IEHoFQqsWnTJlx33XWw2WwoLCxEPB7H9u3b8e6772Lbtm0oKCjAcccdh1GjRrHvPfvss8jLy8O5554LhUKBzs5OFpe8AEno9XqMHTsWarUa0WgUbrcbTqcTDocDdrsd7e3taGhowM6dO7Fr1y4AYKKi3W5PEJbTbZkxGGze+J4ger0ecrmcWWfodDrWqFMul8NisaCoqAjRaBQrV67E008/zQ6Avv32W3z//feQyWS45JJLmJhM74VEIkl4P6hSd8aMGaioqIBcLofH48GOHTsgk8lw3HHHsetqfX09PvroI2zcuBEOhwPTp0+HRCKBy+WCSqVCbm5uwu/U0dHB9lF+vz8h6SYd9BQHvYkPID0xwmd/8w3maU9C36fPXl1dHU488UQAwPvvv4/Ro0fj97//PUaOHIlIJIJdu3Zhw4YN+Prrr1FTU4NwOAyLxYJTTjkF1113HSoqKrB69WqsX78ekUgE5eXluPnmm+FyufDGG2/A7/fDarWisrKSrV+ArrgqLy+HVqtFJBLBzz//DKfTyQRmvV7PbHyAA370vAd0IBBgVTi89RT/76DKZAa6skkAMHPyZI455hhs3br1iAcmEKSb3mSEPPTQQ1ixYkWaRti3kBBJGze32w2XywW73Y7du3dj+/bt2LVrF1paWtjPWCwWaDQalJaWYurUqSgvL2ddcfkmbkOVTD3p5ycWEppp8qETesrCCAaDMBqNUCgU+PTTTwGAdT2mRTAAVFRUYM6cOZgyZQrKy8uhVqsRj8fx7rvv4qmnnsKmTZtwzjnnsIMWEojNZjNisRib2CORSEJDQvLCpFLS5MxXEi35WJJKpdBoNAnZsnz2i8hoTQ90GEDvC7+YI+j9p7J0akJJ2YP0fvLvK8VvKBRCW1sb5HI5NBoN/H5/QgdlQrz/Awv5I0+ePJktfPuTX//619iwYQOee+453HnnnQmZhGniLJ4AAQAASURBVILBC4nKfDUEwXvAk5clL/CRZVKyBQYA1mBu4sSJLFbcbjfrR6BSqaBSqRIymDP9+nE02WXpzj7sCZrDyWKJBPIff/wRALBo0SIsXLjwoM+RlZWFZcuWQSKR4MMPP8RHH32EKVOmMOHXYDCgs7OTiczjxo3Dzp074fV6oVKpUFlZCZvNhn379gHoio0RI0ZAJpPB6XSipaUlIYMtFWSFYDQa0dbWBqDrfeGbEac7viiJ5vrrr8dpp52Gyy+/PGNsvPgS91Q9OCjTndayFO+lpaV46KGHAAAXXXQRLBYLAODcc8/FzJkz8de//hXvvfcefvrpJwBdB0vjx4+HXC6H0+nE119/jU2bNuH888/Heeedh1deeQWNjY147733cOWVV8JoNKKjo4MdglBGIQlVBD2v1+tFMBhMyCokezeqJty1axcqKiqgVqsRCATg8XiYf2u67BGICy+8EBdffDH++c9/YsmSJRkTHzy8RZter4fD4WDXc61Wy+yTzGYzOjs7oVQqMXv2bHz33Xf49ttv8fPPP+P000/H+++/DwBYvHgx8vLyumXTU/N0Ep0p5iQSCQoLC5Gdnc163NhsNthsNuj1ekyYMAFtbW1ob29Hc3NzQhYq0DWvlZaWoq2tLSGb2WKxsGQvs9kMIH1CYXIcPPXUU/jFL36R0fHBJy6Rz7pCoUA4HGZ7RGryW1xcjIaGBnR0dGDhwoX4/PPP8fXXX0Oj0eCMM86AxWKBy+WC2+1m+5dYLIaOjg60tLSwuUUikaCiogKVlZUIhUL44IMP2Gc4Pz+fZc7X1NTA5/NBKpXCbDZDLpejoqICW7duRTQaRXNzM/u5nJychP1NUVER2tramFUgPTeJ1sk9jAalXcbdd9+Nd999F5s2bcLJJ5+M//3f/8XNN9/c12MTCNJKbzJCMnWxfriQWTxlArlcLrag3rVrF3766Sfs378/YdFDp8Tjx4/HtGnTMGLECJjN5mHViZ1OcidMmICtW7fiwQcf7PYYWvCkg2QPKolEwuI4Ho/D6XRCoVAgPz8fr776KgCgsrISH3zwAVpaWiCVSrFo0SKcc845CU1vCN5TWaVSYevWrYjH4ygoKGCbK7PZjEgkkuDJnZzFQyXOcrmc3fgsluTfKVlYpseR1Ua6N3DDHRKb+TL35CaUBInNlP3MW7vw1xvKcAwGgwmd5oGubA+5XJ5QbTIYhKKhwkBZZRBnn302ioqK0NjYiNdff535NA91hqqFF2X20Oee/2xTdjHNGVRaSt7KHo8Hfr+fVTWEQiEolUqUlJSwhk9k7bVnzx4m/tBmn7yXKYN5sFTA9LT2yOQ1SbJwmPx/PqOZrv1arZYddp988sm9fq0xY8bgww8/hMfjQTwex4YNGwAAY8eOxWeffYZ4PI7y8nJEo1EmKE+dOhUej4d9nZWVhdzcXLS3t6c8vODXMSRcaLVamEwmJlzG43F2KErPkQm9IjLZVoVEZn7NwEPiMo2Hsk7lcjl2794Nk8nUTZMoKSnBww8/jFtvvRXr1q3Dm2++idraWmzevBkqlQrXX3893G43Nm7ciH/9618oLCzE+eefjyeeeII1i6PXVavVCAaDLKM5lWWTRCKBXq9ne8hkwuEwamtr4Xa70dDQgKKiIiYc9fQzA81gsHlL/gzSXl2v1yMSibB/o9Eos29tb2/HVVddhffffx9NTU1Ys2YNgK6qhv/6r/9iB5rhcBgajQaBQIBZM9EBA4nMAJjHv16vh0qlgtPphMvlgsfjYfstyqD2er2ssmbkyJHsgIKSM1QqFTtko+emigje8nAgOVgcZGp88LaKpEfw/RYouSUSicBqtbJK9Hg8jgsvvBCfffYZ2tvbe9VguqSkBMXFxdBoNGhra0togGixWDBlyhQUFhaipaUFTU1NbB4YM2YMs3Ch3gBA156ZGkLW1taivr4eJpMJRqMRer0es2bNQltbG2KxGHJycqDVarF7924AYEJ/qhiJx+MDPu8ctsj8j3/8A3/605/w2WefYcqUKfjtb3+LRx99FNddd13Gl5cJBIdDbzJC0ikg9gVkT+B2u2Gz2ViJqd1ux/79+7Fz505UV1cnTKhA14XzmGOOwZw5czB+/HjWdXmwbND6ikw9yU1elPObO8rCIf+6srIyNpHOnDkTW7duRUtLC/Lz83HPPfegvLy8x9dxuVxYvXo1AGDKlCn44osvAACjR4+G0+lkWciRSARGo5HFBi2kgsEgNBoNOxkm8ZCaxCXPKZTpxsM3axpOsTcYoIxlWqAnC8zJJdOxWIw9lkRmXqimBSLFDv9coVCIbf4IITQPDAMtMisUCtxwww24++678dRTTw0bkTmTsw+PFFqD8IdLwIFqFT4jyePxwOfzsUor2sS7XK5u/uxutxtnnXUWZDIZdDodqqqqWKMmvtkbNYoaTAIzMDizy/jrfSq/Xb5HA/0/Eomwa7pWq+3V60SjUXzyyScAutYimzZtwp49e1hD6traWsjlcsyYMYNV3I4cORIGg4EJBLm5ubBarWhqamLjNRqN0Ol0LJHiYLESiUTYupn2DgdraDfQ9NZWJR2VmiS4UQUckLimpTUgfeZpLUtVlmeffTY7YEomJycHv/rVr3Dttdfiu+++w1//+ld8++23+Otf/4q3334bhYWFWLt2Lb744gtMmDCBvR6Jg0CXCEQ2KkajsddxyaNQKDBy5Ej8+OOPCfsrqjwU9A7eXzcWi8FsNsPj8bDDQ0pw4Q8wfT4fNm7ciFtvvRWbN2/G+vXrodFocNVVVzGbitGjR2Pnzp3sMxsMBqFUKtmBRigUQiwWQ11dHbuPR6fTsXmN7x9DB1FGoxFqtRqNjY0J2e5msxltbW2ssiIcDsPlcjFhlPZMgkPDN4FXqVQJFbPhcBhqtRperxc+nw8VFRWoqamB0+nEtm3bMH/+fGg0GuzZswf19fVwuVyIRqPQaDSsYblWq0UsFkNra2tCDGi1WowYMYI1ArXZbGhoaGDfp+oYiUSC7du3s/lNJpOxXlZZWVksKz4SiaCjo4MdaslkMqhUKsjlcjQ2NsLn87FrpVKpRDgcTugZQGS8yPz+++/j5ptvxurVqzF79mwAXWWLjz/+OF5++WVcffXV/TJIgSAd9CYjZDATi8VYMz+6SHZ2dqK9vR11dXXYuXNngjUGUVZWhjlz5mDOnDkYOXIkLBYL68I+WDZofUWmnvTTootvcgAgoTkbnaZqNBo0NjYCAObMmYNnnnkGAHDXXXcdVGBubW3F8uXL0dbWhry8PHR0dCAQCCAvL48tmktKShAIBCCRSJCVlZWQcSKXy5lgIJPJoNVqmQjOZwyQ0EwLA/r9SLwcbjE3WOltiTBfKs+L07TpJI81hULByuXj8Tj0ej37OVq0Ubd2ESP9h9frZU1NBkpkBoBf/epXuP/++/HNN9/gu+++S2jmNVTJ5OzDI4Gu6XyTPwDMtoKft5xOJwKBALPxIu9lPsPUbDbDZDKhrq4OPp8PgUAAWq2WbfB0Oh0TDcm7k7fKGEzXicGYXcaTbH/F30fNYWUyGUKhEPLz8+F0OrFhwwaMHj36oM8bjUbxzDPPYNeuXdBoNBg9ejTeeOMNAF0H4du3bwcAnHDCCaiurkYoFILRaMS4ceNQU1ODWCwGo9GIwsJC7Nu3D/F4HDqdDvn5+b0Wh+PxOBwOB4ADiSh85VUmiMyZbKvCe9DSGo+PF7lczppEAwcEaPp98vLyDvkaEokEM2fOxLHHHovzzjsPO3fuxNatW5k4HYvFsGfPHvZ89fX1ALr8wRUKBfPyJSuDI4FvTM2Xu2eKb/dggW+Mp1QqWcaywWBIaARLewvy83/11Vdx7bXX4vTTT+/2nDNnzsTOnTvR1NSErKwsOBwOZGVlwWazMUuw+vp6tqehKl4SgoPBYIJ3ON+cNhwOJ4iGRFFREaxWK9ra2uByuVBeXs4akpJvcygUYlV/goPDJ6XQfoFsMtRqNWKxGDQaDXw+HxwOByoqKmCz2VBbW4uqqioAXYdSM2bMYB7rXq8XHR0dTC8hDAYDSkpKYDQa2cEAn50skUhYP5pYLJagrchkMuTk5CAvLw8SiQRer5dl0RcWFrLG6PRvNBrtdqiuVCpZjyTqfxMOhxPmmnSsb3otMm/evBnnn38+Hn30UZxzzjnsfqPRiF//+td4+OGHceWVV2bE5CkQ9AWZnBFyNFDmkN1uR1NTE1paWpjITBfYPXv2JGxUga7F8qRJk3DCCSdg6tSpyM/PZ+VB4nOfWfCZQWRdQPep1Wr4/X72tc1mYxOw1+tl96dqdEn3v/POO3jllVfg8/mg1+tRVlYGh8MBnU6HnJwcxGIxmEwmdrqan5/PFl/AgRJoapZBDVJ0Oh30ej0CgQCzRqDFFGUUiKZ+QxsqcwPQzW6Dz3aORCKQSqWskkSn00EikcDhcCAWiyEUCrEYEfHSf3z77beIRqMoKioaUKuovLw8XHDBBVi1ahWeeuoprFy5csBeO11kcvbh4cL7L/MCMzXgIyKRCOx2O2us5nA40N7ezjKQgsEgRowYgRNPPBFGoxHffPMNgK69iUajQW1tLZxOJ7PkIYGZMlLJKkNcH/qfZKGQ7qP1I91HwqJWq02I+VdffRU5OTk444wzUr5ftbW1+Nvf/sY8dxctWoS1a9ciFouhpKQE7e3tkEgkmD59OhMWFAoFjj32WDgcDni9XkilUpSVlcHtdjPRqrCwsNfxEYvF4HA42PxDoiUdkGdKdU0m26rwTbsUCgUT7ChBwmAwwO/3w2g0orOzk3kY0zXkzTffxIUXXnjIjM94PI7Vq1czO5acnBzWBHHKlCn46KOP2P/pcGLkyJEADhzeHU0PArp+S6XShOaFmZTxPhiQy+VsPlEoFLBYLEyEMxgMCQkK4XAYZrMZHR0daG9vx+rVq3HppZeyzE9i5MiRyM3NRVtbGzQaDWssTc07FQoF8+ItLy+HTCaDy+Vi31MoFExcpmxmmu/4Kj25XA61Wo28vDwmJJM/t8PhYL1HOjo6YLFYEIvF2L5LxMehIbE1Ho8zQVmlUjGhme73+/2w2+0wGo04/vjjUVNTg+bmZrS3t7OqhWSys7OZsOz1euFwOFhMAGD9HagSRiKRsD2wRCKBwWCAwWCAUqlEMBjsZkmaDB2G8/shfo9PVcBWq5XNN/z1JB30WmQ+5phjUi5oAeC+++7Dfffd12eDEggygUzNUj0aKHu5tbUVDQ0NaGxsRGtrK1wuF9ra2lBTU8O8dHlycnIwe/ZszJ8/H+Xl5cjKyoJGoxGbswxFJpMldNXlMz+TFyZNTU0oKytDdXU1Pv/8cyxYsAAff/wx7r33Xpx//vmYPHkyFAoFmpubsXXrVnz55ZdsLsjJyUFRURGArsyY0tJStoEnewyz2QypVMqaLFFZMv9/KkX0er3MdoUWBgRldwzHjPnhSrLdBp/JTPdTJrPT6YRGo2FZLMnWKkJo7h8+++wzAMCCBQsG/O/761//GqtWrcLq1atx2223YeLEiYf18z6fD8899xx++uknTJo0Cddff/0RlT4PFJmcfdhbqFKBhGU+w1Or1SZk99FhuNvtht1uh81mQ3t7OxOaacPW1NSEyspKtLa2Mv/UGTNmsEN0AGxTLgTm9EFrEdog0wacP1jU6XSIx+PQarXMpsDn86G8vBx79uzBU089hXfeeQfz5s1DSUkJYrEYmpqa8MMPPzAhUKlUYuLEiaipqQHQtU4hkXLq1KmQSCRobW2FVCrFjBkzoFKp2GMLCwtZ42Ogq0Fyb+IjFovB7/ezQ3Ogy1aOsm759UsmkMlJNMkiMx0Q0eGyyWRCW1sbW0dS0oTT6YROp0N1dTUuvfRS3HrrrZg9e3a3Na/dbscXX3yB//u//2MHEqeddhpeeOEFuFwujBgxAg0NDejs7ITFYoFer8fu3buhUCgwfvz4BK/dZFsOEhVp3D0RDoexf/9+AEgQRTUaDVu3ZEqsZDp0EEHWOiqVCrm5uWhuboZSqUywy6A1pMViQWdnJ/bt24eXX34ZF154YYIXtkQiQXl5Odra2lI2U6P7LBYL6w9A0CFZsn8yLzrzvsvhcBg2mw1arRYGgwHFxcXYvXs32tvbWeY8zYUUb16vF3q9XmS7HwKJRAKVSoVAIMCSUoLBILRaLbOZoMcFAgF4vV54vV4UFRWhsrISgUCA9Xqgn6cKKI/Hg46ODlbVAHR9fukwO9kvnH6O4iMYDCb8LKFQKKBUKhOswihu+X+Te9uQCE3XD41Gwx6Trn2zuIIJBMMAyl52OBxoaGhAQ0MD6uvr4XQ62X27d+/ulr0sk8lQUVGB448/HscccwwKCwthMpm6bQYFmQWJcACYQEfinFKpZJliBoOBZRDL5XLs2bMHo0ePRmVlJXbu3IkXX3wx5fPr9Xrk5uYiOzsbUqkUOTk5rJzUbDbDYDAwL0ypVMqyovV6PSwWS7fGP/wmgGKVfo9khF/d8ITihEQKEiwkEgkrRaQGYJQJQp2kCSE09z2ffvopAODEE08c8NeeOXMmzjrrLKxbtw433ngjvvjii15vunbu3IkLLriACVMAsGrVKnzxxRcZ03gpmUzOPuwNdG3nG3rx4lsoFILf72cCJNli8F3cm5qamJUST3NzM7PFmDx5MmQyGWvgptPpoFQqEwRmuonrwcBC7zOVA1P2IWWXUbaZxWJBIBBgJepKpRIjR45EY2MjamtrUVtb2+25JRIJ6w9CooLZbIZGo4FSqcSECRPYHEGezGazGbt372aZbbm5uUwwBnDQbFhqmO33+xPWzlKpFBaLhZXPk6WLUqnMGFEok5NokudsACw7lBp5UdJETk4O2tvbUVRUhIaGBmRnZyMajWLnzp249tprYTQaMWrUKBiNRgSDQTQ3NzNxF+i6Xk6YMAG1tbWQSCQoLCxETk4O9u7dC6VSiVmzZjHf7uOOO475qAJdhxcUtzabDZ2dnQnXJpVKBY1Gw+KPbB18Ph86OztZ1itVF1LjavobZEqsZDoymYyt+Uhsps9ya2srNBoNIpFIQgao3W6HxWJh/YeeeeYZnHTSSZg8eTLLjKaDJtrr8oIkoVQq4fP5WEKNRqNJaExOr0eZzHSdoCxaiUQCl8uFQCCA6upqjB49GiaTCSUlJaivr4fNZoNGo2FCucvlgtFoRDweh8/nYxV8gp4he8ZIJMIEe2rGChwQmOlgMxgMsqopgj6LVFHFQ/7fvOcxNf5Uq9Usy5i3beGfV61Ws+uEVCpFOBxmcyQ9FyXVEMn7YN6aBThwYE9fJ2fqDxSSuNixCwR9hsvlgslkgtPpTJlllA5owWyz2VBfX4/9+/ejsbERgUAAra2t2LdvH/Mb4zEYDDjmmGNwwgknYOzYscjNzYXBYBAbs6NkoGIkuaESnfJT11qXy4VwOIzW1lY2qe3atYt1OFapVNi/fz/a29sRiUTYfTqdjmX3mEwmFBQUQK1WQ6vVwmKxsA0jTZg0QfILaBILAXQrlaZTZ/qaBHH6Xejnh3pGcyZeSzIJ8nOlBTxfjkhltcABXzbamGZKufJQwO12w2KxIBqNYt++fRgxYsSAj2H//v2orKyEz+fDI488gttuu+2QP/PSSy/hpptugs/nQ25uLpYsWYIXXngB7e3tuPTSS7Fq1aoBGPnhEwgEcPHFF6OhoQFLlizBTTfddMifyZTrCP95Bbo2foFAgG2CeKLRKPx+P+sR0dTUxEpXgS7xZu7cudi+fTva2trYIWc8HseoUaMwZswY1m2dNujUcIn8nmnzJxjYGCFxBABrpBUOh+H3+1nGGG3kfT4f2tra4PP50NHRwbIAPR5PQl8JygwzGAxsvUDrEblcjpycHCbMAF3Zp9OmTUMsFkN9fT0TpMeNGwe1Wo3W1la43W7I5XKMHDmy23wRi8Xgdrvh8/kSNvvk863VapmgSGsZyjQbzHPPQMYJ2ZVoNBo0NTUhHA7D6XSy9z4ej6O6uhqRSATNzc2sv0draysikQg6Ozvh8XgSPNt5LBYLtFotyzyUSqUYM2YMe7xOp8P48eNZU8Fp06ahtLSUHUioVCqMGzcOLpcLnZ2d3Roa90Za0Wg0MJlM7DVzc3OZbQYJ04ONdM43dO0gSGSz2WxMoPV6vfB4PHC73XA4HAgGg3A6nQn2AtnZ2XC5XPB4PJBKpRg5ciSzqKDrikqlgsFgYCJvbm5uQmP1nqCEH6/Xy/YzRqMRTqcTdrsdCoUCEydOhFQqhdPpRG1tLaLRKGQyGasOVSgU0Ov1LEs3k6oQekM6YoTmHfpc0nWEklNof8w3iKQ5JvmzTJXBdPjA21HSeoNPruKhQyXa65LoTT7eqcRjfu9Mvwt/gEGPo30xLy4DYD2z0oFIRRQIhjCRSARutxvNzc1obGxEY2MjWlpaEAgE0NzcjOrq6m6dcSUSCUpKSjBv3jzMnj0bpaWlsFqtLNtVMDigxUhyd1m66fV6uN1u5OTkMIuUsWPHorm5mS2+zGZzt8YmcrkcZrMZ2dnZTFw2mUxssUObd15YTt5YkfDNj5V+jiZmEgT5100uGxKZqcMXyvShQxEqTyPBmeC71NP9QmjuG9avX49oNIry8vK0CMwAUFpaiscffxw33XQTbr/9duh0Otx0000p39/29nYsW7aMicgnnXQSVq1ahfz8fCxevBgLFizAK6+8guuvvx7z588f6F/lkGRy9mFP8PYYBGX1UVYrAFYKTyKizWZDS0sLGhsb0dDQwOaFSZMm4cwzz8S///1vtLW1Qa1WIzs7G/F4HCUlJQkCM81PQmDOHPimROFwGEajEXa7nXlNRqPRhDLf/Px8dHR0QKlUwu12w+v19uhFSiKvXq+HQqGA0Whk2WTxeBxqtRojRoyAXq/H/v37mSAll8sxYsQI+Hw+NDc3s7UJCUcENSQm71X6WY1G0635NYkWAFiZtZhzeg9530ajUeY/Txmp9L4VFRWhsbERBQUFaGtrY/0/AoEAO1wIBoMIhUJsDSCXy1k/EADMD5f6OABAcXExNBoN83KfOnUqpFIp826m6wqfTa/RaJCTk8MONshCwe/3s8QOfgwkBNFrZmVlsZiiA3HB4UHVKlTFRnOO1WplfrsE2ec4nU7I5XJm2RcKhVjDNqVSiby8PPh8PpYtTWtHSqahwy0g0Xedt0sh0ZK3QTGbzQiFQqyRbXZ2NjweDztMsVgsMJlMqKysxN69e+Hz+ZgoS0lBZP2gUCiEP/Mh4G0zgK5DJK/Xy6qbaF6huKH3TqlUdjtASr6OUyYz7Uf4gy2lUskOHmmOo1igg7RU41QqleyQqSeLjJ7gG4emu2eWUIwEgiFIPB5HMBhkHU6bmppgt9vR3NzMBOYdO3Z08wPSaDSYNGkS5s+fj8mTJ6OgoABGoxFqtVoskAchtKDt6b0ju4y8vDzW6XjEiBHIyclhZaDUTIBOz8nbknyXKWuZFu4kLlO2cvKkTFlH/GRJwjdt7uiElyZV/rSW/xnB8IZigI8Ps9kMh8ORIGoR0WiUxaPYxB096bTK4Lnhhhuwc+dOPPXUU7jllluwZs0aXHTRRRg3bhxUKhVaWlrwxRdfYNWqVXA4HJBKpVi+fDn+8Ic/sAX4vHnzcO211+K5557DXXfdhS+++CKtv9NQINkegzKA+Ca0ZO1BG3yXy4X29nY0Njairq4ObW1trLz14osvxtSpU/HBBx9g+/btkMlkGDFiBGQyGfLz8zF+/Hjs2bMHAFjVDW3ySGBWqVRCYE4zfDMmyuwCDlzHqTeDVCqFw+FAQUEBXC4XVCoVjEYjIpEIEw6BLtGGMstoPcJnNZPYTKXp1LSNSpoVCkVCcyeFQoG8vDxotVqWgR8MBuH3+9kaRS6Xs/VP8vqKRCBgaGQwp4PkgwiPx8NENRJp9Ho9CgsL0dTUhLy8PFgsFjQ0NLBswmAwyDLKaR1LsUKeubS3kUqlyM7OZnY6QJc4WVBQwHzwqek02XaQHYvRaGQCFWVS8+JRqvUGfV+lUsFkMjERiRpeing5Msj7lqoIaB1IMURCM73nMpmMNfzU6XTsoJPmKnqfyQKQDi3pekPiM71OqmQsOjRQq9UIh8MIBAKIx+NQKpUso9dut8NsNqO9vR1OpxMGgwE//fQTE5bJDoS8mL1eL4vTQCDAml8KekYul0OpVLKmrLy4bDAYEAgE2GeVhF0AKfegtI/gq3LpM61Wq6HT6dhhaTgchs/n67GvHXkw0x6ahOhUmc2HgsZEhxzpvo4IkVkgGGLQ5Gq329Ha2sqEZfJ9IosMXmCWSCQoKirCzJkzMWfOHJSXlyM7O1t0sB0C8E11gMRsZqBLaPZ4PMjNzYXb7WYezakWLbRxp8072VnwN1q40SRMkxzvUdYTlOEBoMcyR4JeI51s27YNN998M8LhMG655RZcfvnlWLduHf74xz8iOzsbq1atgsViwTXXXIOamhqcfPLJuPfee9M65qECH8N8hojH4+kmMIdCIea/RptN3rdccGS89957AIBTTjklreOQSCT4n//5H5SUlOCee+7Bhg0bsGHDhpSPnTJlCp555hnMmTOn2/fuvvtuvPDCC/jyyy+xZcsWTJs2rb+HPmRJLjWlDXnyNTsej7NmO3QQXldXh7q6OnR0dDDrgng8jsrKSqhUKnz++ecAgDFjxkAul8NisWDSpEksg1mlUkGv1zPBkReYxWc+/ZBYR76TRqMRoVCINQKk0ma1Wo2srCz4fD5IpVKYTCaWGcqLciQc8pmG9H+1Ws36UvBNBmkjzle4UCWWXC6Hz+dLyFjmx86XyfOQoMDPR6La6sig5Ah636ihr06nS/C5NRgMqKioQE1NDWQyGUaOHAkAaGtr61HU4bFYLOwaQZmDBoMBFoslQTyk70ulUuafSg226dAiFfw6mNYdfLzS7wEcEEjFIdjRQ4kwZMVDQqLX603wuKXPqEajYVnvZJUgk8nY9+RyOTuQouZvZBlIYuShehXRdY8yp8mTm66FdBDhcDigUCiYVYvL5WKHpXRoK5PJEAgEWIySpYbg4NAcEw6H2SEjHSKRjQUdBPTm70kxwh860MFkKusU2uPS46lCl6p7U+17k5O2eHjxO1WWdboRIrNAMESgxQoJzG1tbXA4HKx0qLOzE62trQlNTYCuRda4ceMwY8YMTJkyBaWlpTCbzaKkfIhxsMWP0WhkzSsMBgOCwSBbzPClYVR+Qxs4WqBRuRYvLqd6fcoe4S0MgMRGL6k2dfxz0kI9Exbi999/P1555RUUFxdj3rx5uPzyy/HEE09gw4YN+OSTT/Dcc89h3rx5yMnJwQsvvICLLroIjY2NKCoqSvfQBw20AEvOJOBP+GnTSZn3QNdikjYVlIVGMcxnNGdCHA1Gdu/ejV27dkEul2PRokXpHg4kEgl+97vf4aKLLsLKlSuxceNG7N27F+FwGNnZ2ZgwYQLOOeccLFq0qMdrYVFREc4991ysWbMGf/vb3/D8888P8G8xNEhVMprqcxaJRJg/Znt7OxoaGrB3717U1dWhqamJbbKJn376iTXtqqioYPPPhAkTsHfvXgAHBGYSDKn0VAjMmYVcLmfZzPF4HCaTidlmkBhM61TK5KMmgVqtNuG5eOGOFwOBA4fstD7hN+r0c3zFV7LdEj2OSqJ7slqhQxV+/hFr6COHDgqoqaJer2fXFGrMSnsbiUSCyZMno6WlBa2trQCAgoICAAd8eflyc1pTUK8G4ECzRo1GwwREPnOZ4oq3JuB7hFAWYk8WcfQ7AQfWNLwIpVAooNFoRLz0MbRPCQQCCIVC0Ov17LPOv7ckMFPvF7oGkYhI84harWZiM9lkAGB7ot5AWdMejwexWAx6vR6dnZ0IhUKsQR351tN1KxQKISsrCx6Ph2UuU+M/ytQX89uhofddIpEk+K/zTRn5hCk+meVQJM8dtHdOZZ9yMCGa91fOhGSqo0GIzALBEIAWuKFQCA6Hg01YdCJrs9nQ0dHBBLzRo0ezLrWjR4/GscceizFjxiAvL481bBMMPeiUFUBCZg8t4qlEh28ckLyBozKy5MkzOYMZOOAllZzBfLAyHj7LNBNPZnmeeeYZ5OTkMNHS4XAgKysLSqUS8+fPx3PPPQeNRoN58+YBAObOnYtvv/0WZ599drfnosYPxMGyY4YTyaWnyfAbN8pSNplMzPOMMtZoEcn7nFG36UyOsUzl3XffBQAcf/zxMJlMaR7NAUpKSnDnnXce8c/feOONWLNmDdasWYMnn3ySZcALegffkI02WcnriXg8zkp/HQ4HWlpasG/fPuzevRv79u1Da2srm5tOOukkfPXVVywbzev1Ijs7m23ox4wZg+bmZgAHBGatVpvgaygE5syDYoPWrVqtlpUv85YmtCahTHS9Xs826cCBtUSycJwsKtMaJXl9wY+HREL6Wb7smB7Dw/eI4BsYk3glODqUSiXL7gsEArBYLMzWjX+/qaG1xWJBUVEROjs70dTUhFAoxITgVIkJarWa2apotVp2jeCzE+k6QsIk75lKsZK8vj3YeiUZWleLfjf9h0QiYVWXfr+f/d/n80GpVDJrQBKYee9bulbwGcyUFU2fcT4LvrdQRjyJyWSHodVqWYNCEpwphuk1gsEgDAZDwjipGaXg0JDQnKoHEG9T0dvPMZ8Zz9+AA3NEKvs+gt8/8/PUUEBc1QSCQQ4vMLvd7oRycYlEAo/H061sTKVSYezYsaisrMTEiRNRUlICk8l0UP9eweCHNnbkhUj3UQYPCcipoJNVygzgrTGSu98StOGjSZYXuPkx8d5Wgyn+cnJyAAB33XUXLrroIrjdbpZlQ5kKqe5LxUMPPYQVK1YMzMAHEXwzHAAJiz+5XJ7QQBLoWiy63e6Ehqa0yaBGY7RYp8x6IUAdPu+88w4AYPHixWkeSd8yb948jBgxAnV1dXjnnXdw/vnnp3tIg4ZkgTmVVUA0GoXX64XP50NHRwcaGxtRXV2Nmpoa1NXVsU3flClTcMMNN2Dv3r345JNPmOCkUChYQzbqHQCAZSDq9Xq26aeb+HxnJnw2MwknZJVB6wvKXqZyYj4bla9GSd6k8/9PXpvwpfIH29QnNyg+FCRAinjrO8hSgg6JLRYLq3CgCjzKVKVri0qlwujRoxMy0/lqKFr/8sIun3XIVz/Q4QP5ulMlFD1XcgPr5IONVCQfeggGBrK8oGQOg8GAcDjMLDFSxQovMtPhA1nqAF3xeaSWOBRv4XCYicx8UoROp0MgEEAwGGQN1js7OxOaXhOiR83hQ59rvgKFzx5OFpr5+Sa5wpafl3gLHB5+PuI//0P5GiBEZoFgkEMTo8/nYxdFqVSKSCQCt9vNyjEow1KhUKC4uBhjx47FqFGjkJOTIxr7DSN4P0TK4pTJZCyOUmUd89lBtDE7mLicDJWbJpceDbYJ9sknn8Srr77Kvr7zzjuxZcsWtLW14aGHHoLdbmf+Xl6vlzUc4u8rLS1N+dx33HEHli1bxr52uVwoKSnpx99mcMD7MspkMnadAxJ9uykO4/E4HA4HgANlcKFQiHUI12g0TGjms6EGUxymG4fDwRrjDTWRWSqV4uKLL8bDDz+M1atXC5H5MEjO5uQ/UyRAUwOctrY27N+/H7t27UJ1dTXLRjYajbjxxhuxYMECdHR04LnnngMA5ObmQi6Xo6ioiGWB8Yd3dONL23uy6RBkBiTKkkAYCoVYMz23283WJmQvwGcw88+RvHGn+0kY4tcpNJ/05e/Ar4/EPNK30AExlbeThzcdJlPDLhJ/STDixV++1wcPn61OTSMpq5gsDbRaLRONkuOPL2nnG4AJMheyYSGLDNoPUezwh1nAAZGZBGY+250Xm48UErelUin0ej08Hg+0Wi08Hg87VKX+AnV1dQAAs9nMREy+OlVw+EilUqjV6gT7Ct6aMdWBYW8sNIZydvLhIERmgWAQQ75etAinCdTn87FJyGQysckzLy8PRUVFKCkpQVFREeuKLBhe0MKKDiDi8TjbKCV30k21iTuY79yhXncwT7RLly7F0qVL2ddr167F9u3bsWrVKgBd/ubt7e0IBAJYv349pk+fjunTp+Pdd9/F4sWLsWHDBjz22GMpn5vKgQWJULYbbfBSLe4oA59KHgmz2QyNRgOv14u2tjaW6aTT6ViHaT5bbjDH5kCybt06hMNhjB8/HmPGjEn3cPocEpnfffddOBwOmM3mdA8p4+G7sSd/lmKxGHw+HwKBANxuN1paWrBnzx4mMJM10Ny5c7F06VKYTCb4fD6sWLECLpcLer0eFosFer0eJpOJZTNLpVLWhI0yDXmRWXyeMx/ysw0Gg4hGo/D7/azJH3l7Uxl7qqxi3r+St7sADlS98HMG/39eBOAzT5MPR5J/jn9tEWP9DwnNVN5O1gAqlQp2u531CqFeIrwg3FMmIh8zJB7S69BhVbJnKq0zxIHC4IcOKlUqFXufe7MXpnjpq6pfiUTCKhypuZ/P52OHJ+QlzfsHU5IQb9Eh9vFHB11DlEplSg/35J4wfCYzn908XMXknhAis0AwiOG7WFP5DC2w+FPXwsJCaLVaZGVloaioCFarlZWCCYYnfKYPnaSnyjSmf6lsUEyiB1i+fDnUajVOPPFEAMCnn36KZcuW4YQTToBGo8HatWthtVrx0ksvYc6cOVi4cGGPmcyC1NChBp8lCRzIJKEDEgDsceSz19HRgeLiYtYIrKmpCcFgEF6vlzUS4heJwhexd6xZswZAlxg7FJk0aRImTJiAqqoqrFu3DldddVW6h5Tx0KE2CTj8/T6fD8FgEHa7nQnMO3fuRHV1NQKBABQKBW666SacdtppzNt++fLlqKmpYZVXarUaRUVFUCgUKCgogFKpZJUilJnG22MM5Tlq27ZtuPnmmxEOh3HLLbfg8ssvZ9/78ccfcdZZZ6G0tBRFRUV45ZVX0jjS3kHrCkqG4MVBEgL5tUjyITgvBPSmVPlw+j3wrytIL2RF4vP5WHxYrVaEw2F4PJ4Ef+Rkb91UCRN0n1qthkajYQIT+bISfFWEiIOhBYmLKpUqIW56qubsj/dfJpMxP3pqLOr1eqHVaqFWq9n+jOZVWrdaLBamAQgP+L6B91cWHD2SuDByEQj6DJfLBZPJBKfTCaPR2K+vFY/HWfdttVrNmv3Z7Xb4/X6EQiGW4azVamG1WpGVlQW9Xi8uoGlkIGPkcKDFOe+bnLwwFwwcmRon6YKaK/FNNCgbhWKTGp/GYjF4PB7E43GYTCbk5ORAIpEgGo2ioaGBWcVQExc+A1LE+cGx2WzIz89HNBpFdXX1kMxkBoD7778f99xzD0477TS8//776R7OETMQ1xHy1AWQ8BkKh8PdBObdu3fj559/xs8//4xgMAiz2Yz77rsPFRUVAIAffvgBf/7zn2Gz2SCTyTBq1CiYTCaMHDkSer0eBQUF0Gq1MBgMMBgMUKlUCdnLw+Hze9555+FPf/oTiouLMW/ePGzcuJF9b82aNQiHwwnC86HIpLmGhJ5kkfBw4LNVh3Opcl+TKXFCjUN5uywA3TyYk0Vm/pCBspEpOSfZcoAs3kRFxOGRKTEyGIlGo+wAJRaLsWbgybGpVqtZA1QAbC3bX/T1oaaIkeGDSNsRCAYxfBYHlRKqVCrE43F26qrX62E2m1lDHLFgEqRCnOAKMhnKPguHwyxjORaLwev1JmQxUkYIde52Op3MKkgmk6GgoAB1dXWsrBY4IGxEIhFhm3EIXnvtNUSjUUyfPn3ICswAcMEFF+Cee+7BJ598go6ODmRlZaV7SBkLrT14ywHaMPMCc21tLfbu3Yu6ujoEg0FYrVY8/vjjKCwsxL59+7Bq1Sps2LABQNc6pqysDBaLBaWlpbBYLMjJyWHiMpUN0wHRcPrcPvPMM8jJyWEWaTxVVVX4+uuv8fzzz+OOO+7A6aef3u3nSbwgyK4kEyAhkDLzkrOUD2ZbkdyMSTA0IVsLsg0gsZn6NvR2DZsqY5W3zxAIBhKZTMYaEwaDQWg0GuYXTEk/dGDGV3poNJp+Hdf999+PV155hR1q8iLzjh07sGLFisM61BQMH4TILBAMUpJ942ijp9Fo2Am9VqtlJTdi0SQQCAYzlF0UiURY1hI1FAuFQkyIJm9rjUYDv98Pj8eDQCCAnJwc6HQ61mCFBAsqR6RNp7hW9sw//vEPAMBll12W5pH0L2PHjsWUKVOwbds2vPnmm7j22mvTPaSMh7cy8Hq9CAaDcLlc6OzsRHNzMxoaGuDxeOB0OgEAl1xyCb799lts2LAB27dvZ8+TlZWFgoIC5ObmIj8/H7m5uTCbzTCZTDAajcweY7hWH+Tk5AAA7rrrLlx00UUJ35s8eTIuueQSFBUV4eSTT8aiRYu6Xc8eeughrFixYsDGezQI0VjQE9TIlywFkjPgkw8kevJRFY37BJkC35iQ/OhTXf/4Crz+vj4O5UNNQf8iRGaBYJCSXApGjS+kUinr0K1SqfrNR0ogEAgGGt4bHDhwwMYftJEYTf+nRqjNzc0J3nXkwUxZIWTFIcqrU/PDDz/ghx9+gFKpHBaZKxdeeCG2bduGf/3rX0JkPgj0WaTPTyQSQTgcRiAQgNPphM1mg8vlgtvtThB+nn766YTnMZlMyMvLg8ViQWFhIbKzs5GdnQ2TyQSTyQStVsua8wwH72XiySefxKuvvsq+vvPOO7Flyxa0tbXhoYceSnjsqaeeykqQR40ahY6ODuTm5iY85o477sCyZcvY1y6XCyUlJf34GwgE/Qf1FxG+tIKhglQqhVqtZn1H+P3+QM97w+lQU9C3iGM7gWCQwjc3CYVC0Gg0LNOHykmHUwmpQCAYHlD2ER2i0Y3vGC+Xy1lGCHm3AmCdxCUSCQwGAwCwxTvvRy7ozvPPPw8AOOecc5CdnZ3m0fQ/F154IQDgs88+Q1tbW7+9zrZt2zBv3jzMmjULL7/8MgBg3bp1mDlzJs444wx0dnYiHo/j6quvxvz58zNuw8Y3zQyHwwgGgwiFQnC73QgEAnC5XCyTyWAwYPLkyVCr1VAoFDAYDCgoKEBlZSXGjh2LMWPGYNy4cRg1ahRKS0tZRrPJZIJOp4NWq4VGoxlWh+dLly7Fhg0b2M3n82H79u3s88izZMkS7Nq1C8FgEPv370/5OVWpVDAajQk3gUAgEGQetN5NboLaXzz55JOYN28eu73//vv44x//iLa2NixdujThsaeeeioqKythNBrZoWYyd9xxB5xOJ7vV19f36/gFmYMQmQWCQQrvJUaiCDUAEN7LAoFgqEMZTJTVyDd6ksvlUCgUrKJDo9HAaDQykcpisTDhizIx6ZqZ3GhFANjtdiaADpes3lGjRuHYY49FLBbD2rVr++11yPPw66+/xt/+9jcAwBNPPIENGzbglltuwXPPPYcNGzYgJycH69evx86dO9HY2Nhv4zkSKHuJspmpRJa80/V6PbRaLbO6GTt2LMaPH48xY8agoqICFRUVqKysxJgxYzBq1CgUFhaioKAAVquVHZqLtU0Xy5cvR01NDU488UQsWLAA0WgUt956Kzo7O7F8+XJcc801WLhwIW6//XZhASAQCASCXiMONQV9hbDLEAgGKQqFgmXkkcAy3DdfAoFg+EH2GOSpzDeJUigUzF4jGo1CKpUyaw2y1yBrDXH97JnnnnsOXq8XkyZNwoknnpju4QwYF154Ib7//nv861//wo033tgvr5HseehwOJCVlQWlUon58+fjueeeg0ajwbx58wAAc+fOxbfffouzzz6723Oly/+QPnfkiUoeqdSYyO/3o7S0FG63m92vVquh0Wig1+uh1+thNBqh0+lgMBhYYy+6CQubA/z000/d7vvTn/4EALBarfjqq68GekgCgUAgGIIsX74carWarfs+/fRT3HbbbbjzzjvZoWY8HheHmoJuCJFZIBikHE4XZYFAIBjqUBYzDwlfJDLL5fIEMZo/nKOfFQvlREKhEJ588kkAwH//938PK7Hv/PPPx+9+9zt8+eWX2LdvH8rKyvr8NZI9D91uN/R6PQBAp9PB4/GkvC8V6fI/pM8TXwWgVCoRDoeRm5sLh8OBUCgEg8EAuVwOpVLJRGa1Wp3QpJhv6icOzwUCgUAgSA/iUFNwpIidlEAgEPSScDiM2bNns6+TfTMFAkFmQY0ClUplQtOw5AxJ8rqjm+AA//jHP9Dc3IzCwsJujV+GOiNGjMBJJ52EeDyOv//9733ynIfyPNTr9fB6vQAAr9cLo9GY8r5UpMv/kCoH6LOjUqmgVquh0+mgVquRm5uL4uJilJaWorS0FMXFxcwSIz8/H9nZ2SyTWafTDTvfZYFAIBAIBIKhghCZBQKBoBd0dnbitNNOw969e9l9yb6ZAoEgM+GbBdKNsiUVCgUTm0Wz1ES8Xi/uv/9+AMCdd97JrEWGE2ST8b//+78IhUJH/XyH8jy0WCxob29HIBDA+vXrMX36dEyfPh1ffvklAGDDhg2YNm1ayudOp/8hf0ijVCqh0+lgNBqRlZWF3Nxc5OXlIS8vD7m5ucjNzUV2djZMJhP0ej10Oh30er0QlwUCgSANiCQagUDQlwiRWSAQCHqB1+vFX/7yF4wfPx4Auvlmbtq0KeXPBYNBuFyuhJtAIEgf1BiQspkVCgW7CXErkSeeeAItLS0YOXLksGn4l8x//dd/oaCgAG1tbXjttdf6/PlTNXJbtmwZTjjhBDz66KO46aabcPzxx8Nms2HOnDkoLy9HaWlpn4/jaKCmmzKZjH2m1Go181qmm8FgSGjkR5nLarVaWGMIBAJBGhBJNAKBoK8RnswCAYAff/wRZ511FkpLS1FUVIRXXnkF69atwx//+EdkZ2dj1apVsFqt6R6mII2UlJSgpKSEfZ3pHpkCgeDgkKAlhK3U7N69Gw888AAA4IEHHhiWWcxAV5Pdm266CXfffTdWrFiBCy+8EHJ53y2fU3ke/vKXv8Qvf/nLhPteeOGFPnvNvoYEZvq/XC5HPB4HkPg5o8eRf7r47AkEAkF6oSSapUuXAuieRNOTyJyuRrMCgSDzEZnMAgGAHTt2YMWKFfjPf/6DV155BYA4xR3upPLN5Ml0j0yBQCA4UmKxGK6//noEAgGcfPLJuPjii9M9pLTym9/8BtnZ2aipqcFLL72U7uFkHGQ1Q9UB5MlMN41Gw5r8KRQKkbUsEAgEGUJJSQkmT57Mvj6cJBqTycRufCKOQCAY3giRWSAAUFVVhRdffBHHH3883n//fWGFIOjmm3n66acnfD+Vb2Yq0umRKRgYrrrqKvznP/8B0N3HLh6P4+qrr8b8+fNFRrtg0LBixQp89tlnUKvVePbZZ4e9IGgwGPCHP/wBQJc3dUdHR5pHlJlQFjN/o8zl4R5DAoFAkAmIJBqBQNDfCLsMgQDA5MmTcckll6CoqAgnn3wyXnvtNWGFIDgk5Jup0Wiwdu3adA9HkAZ27NiBdevW4aqrrgJwoALik08+wXPPPYd58+YhJycHL7zwAi666CI0NjaiqKgovYMWCA7CypUrcd999wEA/v73v6O8vDzNI8oMbrzxRjz//PPYuXMnlixZgjfffJNZRAgEAoFAMBhYunQps8ZIxeEk0ahUqv4apkAgGMSITGbBsCT5FFepVKKyshJGoxGjRo2CWq0Wp7iClFDGKtDlm/nNN9/gP//5D7KystI3KEHaeOyxx3DFFVcASN0McvPmzZg3bx4AYO7cufj2229TPo+oihCkm1gshsceewxXXnklgC6LiMsvvzzNo8oc1Go1Xn75ZSiVSrz99tu47rrrEIlE0j0sgUAgEAj6lOTmswKBQHA4CJFZMCxJtkJYuXIldu3ahWAwiP379yMnJ0dYIQgEgoPy3XffYeTIkawpaCofO+FtJ8h0IpEI3nvvPcyfPx+33XYbgK458s9//nOaR5Z5HHPMMVi5ciWkUileeOEFHHfccfjwww8Ri8XSPTSBQCAQCI4YkUQjEAj6CmGXIRAAWL58Oa655hrE43HcfvvtkEqlwgpBIBAk8OSTT+LVV19lX9fU1KCmpoaJcal87JLvKy0tTfncd9xxB5YtW8a+drlcQmgW9Bl+vx9vvvkm2tvb4fP54PP5YLPZsGfPHnz77bdwOp0Aug5CHn/8cVx//fXCQ7cHLrzwQmg0GlxxxRX47rvvcNpppyE3NxezZ89GWVkZcnNzWZO7hQsXorKyMt1DFggEAoFAIBAIBgRJPB6Pp3sQAsFQweVywWQywel0iqxmQUpEjAwNPB4PZs6cidzcXOzbtw9msxkbNmzAL37xC3z44Yf47LPPsHnzZhx//PF499138eijj+LCCy/EY4891qPQzCPiRNCX/PnPf8att97a4/ctFguWLFmC3/72t+Jwo5c0NzfjkUcewYsvvshE+mRGjhyJvXv3DvDIDiCuI4JDIWJE0BtEnAgOhYgRwaEQMTJ8EJnMAoFAIBAcJnq9Hjt27ADQVQmxYMEC6PX6bhUQVqsVL730EubMmYOFCxf2SmAWCPqaZcuWJWTKC46egoICPPHEE3jiiSfSPRSBQCAQCAQCgSAjEJnMAkEfEo/H4Xa7YTAYRKmxICUiRgS9QcSJQCA4WsR1RHAoRIwIeoOIE8GhEDEiOBQiRoYPQmQWCAQCgUAgEAgEAoFAIBAIBALBESNN9wAEAoFAIBAIBAKBQCAQCAQCgUAweBEis0AgEAgEAoFAIBAIBAKBQCAQCI4YITILBAKBQCAQCAQCgUAgEAgEAoHgiJGnewACwXCBzO4FmUkmNCEQMZLZZEKMACJOMhkRI4LekAlxImIksxExIjgUmRAjgIiTTEbEiKA3ZEKciBjJbA43RoTILBAMEG63GyaTKd3DEPSA0+mE0WhM6xhEjGQ2mRAjgIiTTEbEiKA3ZEKciBjJbESMCA5FJsQIIOIkkxExIugNmRAnIkYym8ONEUk8Ho/343gEAsH/z6FO6FwuF0pKSlBfX5/2C31PDOUxDoZT3KH89x9IBnOMAIM/TjJ9fMDQjxEg89+HTB7f0Y4tE+JksF9HgKE9RhEjfcNQHmMmxAgg4mQgEDGSfobyGDMhTkSMDAwDFSMik1kgGCAkEkmvPsxGozFjL0yEGGP/IGJkYBkMY0zFUImTTB8fMDjGmIrexgiQ+b9jJo8vk8d2KIbKdQQQY+wvRIwMLINhjKkQcTJwZPr4ekLEyMAyGMaYjIiRgaW/xyga/wkEAoFAIBAIBAKBQCAQCAQCgeCIESKzQCAQCAQCgUAgEAgEAoFAIBAIjhghMgsEGYJKpcK9994LlUqV7qH0iBhjehkMv5sYY/rJ9N8v08cHDI4xHi2Z/jtm8vgyeWx9xWD4HcUY08tg+N3EGNPPYPj9Mn2MmT6+o2Uw/H5ijOllMPxuYowHEI3/BAKBQCAQCAQCgUAgEAgEAoFAcMSITGaBQCAQCAQCgUAgEAgEAoFAIBAcMUJkFggEAoFAIBAIBAKBQCAQCAQCwREjRGaBQCAQCAQCgUAgEAgEAoFAIBAcMUJkFgjSzI8//ohRo0ZhwYIFuPTSSwEA69atw8yZM3HGGWegs7MzzSPsIhgM4pe//CXmzp2L559/Pt3DYbhcLhQVFWHBggU46aSTsHHjRsyaNQsLFy5EbW1tuofXZwyGOMnUGAGGR5yIGDk6hkOMACJOjhQRH5kTH0BmxggxHGJlMMSJiJH0MhhiBMjcOBExImLkUAyHGAEGR5xkaowAaYqTuEAgSCurV6+Or1y5MuG+E044IR4MBuPvvvtu/I9//GOaRpbIypUr43/729/i0Wg0fsopp8T9fn+6hxSPx+PxjRs3xu+77z729S9+8Yt4R0dHvKqqKn7dddelcWR9y2CIk0yNkXh8eMSJiJGjYzjESDwu4uRIEfGROfERj2dmjBDDIVYGQ5yIGEkvgyFG4vHMjRMRIyJGDsVwiJF4fHDESabGSDyenjgRmcwCQZqpqqrCiy++iOOPPx7vv/8+HA4HsrKyoFQqMX/+fGzatCndQwQAbN68GfPmzYNUKsWkSZOwc+fOdA8JQNff74MPPsDxxx+Pf/7zn/D7/bBarRg/fjxqamrSPbw+YzDESabGCDA84kTEyNExHGIEEHFypIj4yJz4ADIzRojhECuDIU5EjKSXwRAjQObGiYgRESOHYjjECDA44iRTYwRIT5zI++VZBQJBr5k8eTIuueQSFBUV4eSTT8Zrr70GvV4PANDpdPB4PGkeYRdutzsjx1VWVoZHH30UM2bMwKJFiyCRSNj34vF4GkfWtwyGOMnUGAGGR5yIGDk6hkOMACJOjhQRH5nzXgCZGSPEcIiVwRAnIkbSy2CIESBz40TESOa8FyJG0stgiJNMjREgPXEiMpkFggHmySefxLx589hNqVSisrISRqMRo0aNglqthtfrBQB4vV4YjcY0j7gLvV6fkeOaPXs25syZA6VSidmzZydcOKXSwXuJG4xxkqkxAgzNOBEx0rcMxRgBRJz0FSI+Mue9ADIzRoihGCuDMU5EjAwsgzFGgMyNExEjmfNeiBgZWAZjnGRqjADpiZPBG30CwSBl6dKl2LBhA7utXLkSu3btQjAYxP79+5GTk4P29nYEAgGsX78e06dPT/eQAQDTp0/Hl19+iXg8jq1bt2Ls2LHpHhIA4J577sHHH3+MWCyGzZs3Q6VSwWazYceOHSgrK0v38I6YwRgnmRojwNCMExEjfctQjBFAxElfIeIjc+IDyMwYIYZirAzGOBExMrAMxhgBMjdORIyIGDkUQzFGgMEZJ5kaI0Ca4qRfnJ4FAkGv+fHHH+PHHXdcfM6cOfG33norHo/H4+vWrYvPnDkzfsIJJ8RtNluaR9iF3++Pn3XWWfFjjz02/te//jXdw2E0NDTEFyxYED/uuOPizz77bHzjxo3xWbNmxWfPnh2vqalJ9/D6jMEQJ5kaI/H48IgTESNHx3CIkXhcxMmRIuIjc+IjHs/MGCGGQ6wMhjgRMZJeBkOMxOOZGyciRkSMHIrhECPx+OCIk0yNkXg8PXEiiceHkGGLQJBm4vE43G43DAZDQimCQECIGBH0BhEngkMhYkQgEBwt4joi6A0iTgSHQsSI4FCIGBk+CLsMgaAPcbvdMJlMcLvd6R6KIEMRMSLoDSJOBIdCxIhAIDhaxHVE0BtEnAgOhYgRwaEQMTJ8ECKzQCAQCAQCgUAgEAgEAsEw5dxzz8W+ffuwceNGzJo1CwsXLkRtbW26hyUQCAYZQmQWCAQCgUAgEAgEfU48HkckEkn3MAQCgUDQA6FQCGeffTa++eYbAMCDDz6I999/H3/961/x8MMPp3l0AoFgsCFEZoFAIBAIBAKBQNCnVFVVoaKiAhqNBn/4wx8g2sAIBOnH5XKhqKgICxYswEknnZTu4QgygGAwiP/3//4fTj75ZACA3++H1WrF+PHjUVNT0+PPuFyuhJtAIBAAQmQWCAQCgUAgEAgEfUgkEsF5552H3bt3IxKJ4KGHHsKqVavSPSyBYNizY8cO3HDDDfjPf/6DTz/9NN3DEWQABoMBxx9/PPs6Foux//d0OPjQQw/BZDKxW0lJSb+PUyAQDA6EyCwQoPupvvCiEhwM4VkmEAgEAkHPrFu3Drt27UJ2djZuvvlmAMDy5cuFdYZAkGaqqqrwwQcf4Pjjj8c///nPlI8RWarDG4lEwv4vlaaWi+644w44nU52q6+vH6jhCQSCDEeIzAIBup/qCy8qQSqEZ5lAIDhaxKGmYDjwf//3fwCAa6+9Fo888giysrKwd+9erF27Ns0jEwiGN2VlZXj00UfxySef4KWXXkJ7e3u3x4gs1eGNRqOBzWbDjh07UFZWlvIxKpUKRqMx4SYQCASAEJkFAgDdT/V740UFiJP+4YbwLBMMJiKRCMLhMMLhcLqHIuAQh5qCoY7T6cR7770HALj44ouh0+lYNnNPmZMCgWBgmD17NubMmQOlUonZs2enPNwUWarDm7vvvhuLFy/GNddcgzvuuCPdwxEIBIMMITILBOh+qt8bLypAnPSni3g8jlgshmg0yoS0SCSS8L71B8KzTDCYiEajCIVCCAaDcDqdokw9QxCHmoKhzmeffYZgMIixY8di0qRJAIDLLrsMAPDJJ5+kzJwUCAQDwz333IOPP/4YsVgMmzdvRnl5ebfHiCzV4cmLL76IsrIyzJ49G5s2bcLGjRsxevTodA9LIBAMMoTILBCg+6l+b7yoAHHSP5CQsMxnZ4bDYUSjUcTjccTjcfb/gUJ4lgkyGYVCAQAIBALw+XxoaWmB3W4f0M+IoDviUHNwQPOK+LwcPl9++SUAYOHChWyeHDNmDI499lhEo1G89tpr6RyeQDCsWbZsGR5++GHMnz8f5513HrKystI9JIFAIBAMIYTILBCg+6m+SqU6pBcVIE76BwISl8PhMEKhEEKhECKRCKLRKMtm5sXlgRQEhGfZ8Ka+vh4LFy7Ecccdh4cffjilt+6dd96JuXPn4sYbbxzw8UmlUmi1WsjlcgSDQbjdbuzfvx9VVVUIhUIDPh5BF+JQM/PgDzEp+5/mG/5rqpgRwvPBWb9+PQBg/vz5CfdfcMEFAIA33nhjwMckEAi6KCoqwueff46vvvoK119/fbqHIxAIMpTkfQ6R3FtEIEhGnu4BCASZwLJly3DZZZfhvvvuwxVXXIEpU6Zg8eLFkEgkePnll9M9vGFJsiVGLBZjt3g8DolEAqVSyR5L8IJNf0OeZSJOhif/8z//g+XLl+OEE07ASSedhI8//hjvv/8+Wlpa8PDDD+POO+/Enj178NVXX+G2227Dxo0bMWfOnJTPFQwGEQwG2dd9ZYUgkUhgMpkQi8XgdDoRCATg8XjQ2NiICRMmoKioaEA/M4KuQ81FixbhlFNOSTjUbGtrO+ShpkqlGriBDnFojuHnlVTZyxKJhN2oYkYikUAulx/0UGC44na7sWXLFgDdReZzzjkHt912G/7zn/+go6NDZFAKBAKBQJChJO9zbr75ZhgMBtZb5O677073EAUZihCZBQIcONXn2bRpU5pGM7xJFpeTM5X5x0UiEcjlBy5jUql0QASzF198EUBX2buIk+HLH/7wB5hMJgBd/scymQxWqxVWqxU1NTX44YcfMHfuXABdYsumTZt6FJkfeughrFixol/GKZFIYLVaoVAoUFVVBbfbjba2NlRXVyMvLw9nnXUWO7AR9D/iUDN9pBKWqSomlcjMC8wAEoTlcDgMpVIpDmmS+OGHHxCLxVBSUtLN0qW8vBxTpkzBtm3b8O9//xtLlixJ0ygFAoFAMFihuZtsE3nrREpEoptUKoVMJoNcLheHw4dJ8j6H9tzUW+Tjjz/GkiVLepzL+yuBRpD5iE+ZQCDICHhbDJqU6BYIBOD3+xGJRKDVatkCIR6PY/fu3TjxxBMxYcIEzJkzBzt27EjzbyLoD5I9ufkydipl5z26eWpqanDcccehoqICM2fO7LMYsVqtkMlk+Pvf/47p06d389Z1u93Q6/UAAJ1OB4/H0+NzDYQVgsFgwDHHHAO9Xs9ep6qqCo8++mjK7vLDjf6Kk2SSS5VFg53+gzaiZINB1wm6hvDzjN/vRyAQSLDKoO+Fw2HE43F4vV789re/xYQJEzBt2jTWzE5wgK1btwIApk+fnvL755xzDgBhmSEY2ixduhRlZWWQSCTYvn17wvcGaq4RDG5EnKQmHA6z5sd+vx+hUIgJzfwhMt0XDodZFZ/D4YDL5UIwGBxStlcrVqxIea05WpL3ORqNBkD33iI9NfMVvUTSTyAQwFlnnYWKigpMnToVp512Gvbt29fvrytEZoFAkFZ4cZnf4PObfrLLoA0/iXkymQxLly7Ftddei59//hm33XYbrrnmmjT/RoK+INkjlReR+azDnh4fiUTY96+//npcd911qK6u7vMYWbVqFdatW4eHH364m7euXq+H1+sFAHi93oP6cQ+Ud7dCocCJJ56IGTNmsL9le3s7HnnkEaxZswaRSKRfXncw0J9xIhgYUl03+IqY5AOqQCCAcDjMHsNfZ+jzTFUz0WgUy5cvBwBs374dW7ZswSOPPJLG3zYzIauMqVOnpvw+icwfffQR3G73QA1LIBhQzjvvPGzYsAEjRozo9j0x1wh6g4iTROig1+12J2QuBwIBuFwu2O12dHZ2JvzrdDrh8/nYQTEARCIReL1eOJ1OhEKhQS82//DDD9i0aRNKS0v75fn5fQ6R3Fukp0QV0UskM7juuuvw888/Y+vWrVi8eDGuu+66fn9NITILBIIBIx6P47jjjsPUqVOh1WoxZswYTJ06FX/4wx8SmiyRuMxnhhLhcBhAl8Bss9mwdetWXHrppZBIJDj33HNRW1s7ICd0gr6Dt0gJhUKYM2cOpk6dCr1ej3HjxmHGjBm49957Ex7Hi0WpMpjpMa2trfjhhx9YxmFfxsg333yDl156CWvXroVSqezWCHLatGmsAdb69et7zOwbaKRSKU444QRcdtllkMlk6OjogMvlwmuvvYZbb721x4yETKKna8ldd911RM/X1tbWb3Ei6H9ICOavB9FoFCeccAJmzJgBi8WCiRMnYs6cOVi+fDmCwSCrivD5fHC73fB4PPD7/fD5fPB4PHA6ndBqtaxU1OFwYNWqVbjnnnvY6xYVFaXrV85YKJN52rRpKb8/YcIEVFRUIBQK4d133x3AkQ0NRCOmvqev5xMAOP7441FcXNztfjHXDE3EmqR/icfj8Pl8zHpBKpXC5/Ohs7OTzd9erxcej4fdvF4vu8/pdLLHRqNRAEAsFmOPTbXf7I/foa+vM8FgEDfffDP+9re/9Yt1V/I+h7jnnnvw8ccfIxaLYfPmzSgvL0/58wOVQNNb+EQEuqWqgE0nfR0narUaZ5xxBouP2bNnY+/evX055JQIT2aBQDBgSCQSfPXVV4jFYigqKsK7776LoqKihOzTJUuWsEUU2WLQ5L9q1SqUlZUxf63m5mYUFBQk+GKWlpZi//79B22gJUgvNMnz//L85z//AQCMGDECH3zwAYqLi5loDACXX355jxPkq6++ivLycva8tbW1KCwsZD5iEomkz2LkgQceQEtLC04//XQAwIMPPpjgrVtWVobRo0ezcsd58+Yd1ev1JRKJBOXl5Vi2bBkee+wx7Ny5E/F4HPv27cPNN9+M66+/HgsXLsxY7zqJRIKvv/4aAJCfn49PP/20WxbHeeedh927d6f8+bfffjuhbK++vr7f4kTQf9ChU/L1hP7/0UcfAQDGjBmDN954A/n5+QC6DqECgQBuuukm1NXVsefjrZieeeYZyGQyJiTX1dXBarXi8ccfxxdffAGNRoMVK1YIQY8jFAqhqqoKQM+ZzBKJBOeccw4efvhhvPHGG7jooosGcISDH9GIqe/p6/nkYIi5Zmgi1iT9C1UfAV3ztM1mQzQaTfD8TfZk5tevMpkMCoUCsVgMoVAICoWCCZ7hcBhOpxM6na5f+5P0x3XmnnvuwWWXXYaRI0f2y5iT9zkLFy7E+eef3623SCY38U0WlnuC9++WyWQJ/TgGkv6ej5588kmceeaZfTfgHhAis0AgGBD4LNTGxkaEw2Hk5+ezUiUSmZ977jkolUoYDAZ4PB62eFAqlZDL5eziL5VKWaM/fhLIpNNIQReHEpUJmuAlEgmam5sRDoeRl5fHxGWga6G4evXqhIWkTCYDAFYOFwgEoFar2WslLxL6KkbefvvtbvclN4J88MEH++S1+guj0Yh7770Xa9aswbp16xCJRBAIBPDkk09i06ZNuPXWW6FWq9M9zB6hOElVJvj6668f1nP1V5wI+h7aMPD+iz1lIrW1tbH5Buh6X8kf/amnnoLJZILRaIRKpWIx0NHRgY6ODkgkEtaoJhaLYd++fRg/fjweeugh7NixA4sWLcKOHTuQk5MzAL915lNTU4NIJAKDwXDQ0t1zzz0XDz/8MN577z34/X7m8yg4NKIRU//Rl/PJwRBzzdBFrEn6nlgsxqznSGAmywvquUDJSvw6QCaTQaVSQSaTsf4MwWAQarUa8XgcHR0d0Ol00Gg0bF2gVquh0Wj6VVzsqxjZuHEjvvvuu4SKlr4m1T6H+Pzzz/vtdfsKqpBNXh/y2gF/OEFVcARpDfQzPcE3mkxuGH2k9Md89Mc//hE1NTV49tlnj2psvUGIzAKBoF+hizafcbZ161ZMmjSJXcj508Ubb7wR+/btS5gQ6AK/evVqVFRUIBKJQCqVori4GI2NjYhGo5BKpYjH46ivr+83XyrBoaFFMIk+yd7JBN/1mZ+QKcvgu+++w+TJkwF0vf8KhQIymQw+nw+XXHJJN/8veq7XXnsNBQUFCAaDUKlUKC4uRkNDA0KhEJRKpYiRFMjlclxyySWYOHEiHnvsMbjdbsTjcXzzzTe44YYbcO+99/ZblsTR8uOPP/ZYln84J/0lJSVoaGhAJBKBXC4XcZKh8M18kjcDQNd1gD+MlEgk+OCDDzBx4kRIpVKo1Wo0NzcD6GrGuXTpUuzZsyfhOah88tlnn8WYMWMQi8UgkUgwcuRISKVSXHLJJZBKpZg2bRpGjhyJqqoqLFiwYKD+BBnNzz//DAAYO3bsQTdYxxxzDEpKSlBfX4+PPvoIv/zlLwdqiIMeq9UKAD02YpoxYwYWLVqExYsXpzz8eOihh7BixYoBHfPB4CsP+M0+T0+JBPR/+j4JArSuOFz6aj45GGKuGdqINUnf4/f7AXR9zu12OyKRCDweD6tI4g/NgK7rAK0VfD4fgC7bBhKTqVkg7Qn8fj/0ej3kcjkCgQBCoRC0Wi0UCkW/iM19FSNffPEFdu3axdbnDQ0NOPXUU/GPf/yDZR4PV+LxOGvyTNAek7QIuk8qlbJ1I4CEpIWDJTAcCj4r+kjmpL6ejx5//HG88cYb+OSTT6DVag9rLEeCEJkFAkG/wJ8IJnf7bWhoQGFhISQSCTQaDTo7O9nPPfPMM+z/KpUKJpOJnWDr9XomKkgkEuTm5mLq1KlYtWoVlixZgrVr16KsrGxYlpKlC35TmGoy7klkTrWJ5H++ubkZRUVF0Gg0kMlkiMVicDgciMVieOGFFyCTySCXy1nTSHoOo9GIcDjM7s/Ly8OUKVPw8ssv45prrhEx0gNSqRRTp07Fk08+iYcffhjV1dWIx+Po7OzErbfeiiuuuAL/9V//lXH2GY2NjSl9L4HDO+nPzc3FtGnTsGrVKlx11VUiTjKMVOIyXXMkEglUKhWUSmW3hbzf70djYyMKCwthtVphs9kAdAnMhYWFWLt2LYCubBePx4POzk52PaFrD9BVSZObm4uFCxfi448/xplnnom6ujrU1tZi7NixA/zXyFyqq6sB4JB/E7LM+J//+R+88cYbQmQ+TKgR07p169h9s2fPhkajgVQqZY2YUonMd9xxB5YtW8a+drlcvRZI+wryUKdqhP6ANvhyubzX81ZfzScHQ8w1QxuxJulbqOk70FWFQX0UotEovF4vIpEIJBIJ8vLyIJPJEAqFIJFIoNPpoNfr4XK50NTUxCo4lEollEolW1PQfZFIBAqFAmq1GkqlEh6PB3K5HBqNBnK5vE/F5r6Kkdtvvx233347+7qsrAzvvPMOJk6ceNRjHMxQRSt/cEkNnun7/B6UzzqWSCRQKBRMdKYENv7n+J/nq2WTY4T2tOFwGBKJhFVk95a+nI/+/Oc/Y/Xq1fjkk09gNpsP62ePFEl8uNZeCAT9gMvlgslkgtPpTLu5fbrgvY+SxWW63OzevRsXX3wxZs+ejVWrVsHr9cLhcCAej7NsM51OB5VKhUAgAL/fD6lUCr1ezxYbCoUCQFd57jXXXIOOjg4YjUa89NJLmDBhQtp+/0MxFGKEF5VJ9OcnXNo09iQwHwqZTIba2lqcddZZmDVrFl5++WU4nU6Ew2FIpVIYjUb2/gNdApHL5WKLTZPJhEAgAKCr4cGuXbvwq1/9Cp2dnYMiRoD0xkkoFMLq1avx1ltvsUWZRCLBtGnT8Pvf/z6jStt//vlnLF68GLNmzcKqVauO+rmuuuoqcS3JIEiMopJYXmTmxSmtVguDwdDt571eL7Zu3YorrrgCc+bMwZ///Gc4HA5IpVJWEhsOhxMyoeh7tLEk8Vqn06G6uhrXX3897HY7ZDIZ7r33Xpx99tkD8rcYDCxZsgQvvvgi7rvvvkN6A69fvx7HH388zGYzWltb+9ULcyjxzTff4K677sK///3vhGvxrbfeikWLFuGUU07BqaeeijVr1vTKJ3MgryO04eZ9MfnDZT4zuacbX7qcqtw5lSUXZaodSizqy/nk5ptvxltvvYWWlhZkZ2dDr9ezzLPBNtcAw2O+6QvEmqRvY8Tv97NM5o6ODtb8z+PxMGE4Ho9j7969KQ+sCgoKMHr0aCgUClbVSJCYSIKiQqGAQqGAUqmEWq2GSqVi31epVAmWWkdDX8YIz2AQmfv7OhKLxRAIBNhcQFacyQkKyfA2nFQFdySQSE02Lfw+GeiqHOX7SB2MvoqThoYGlJSUYNSoUWydrFKp8M033xzxc/YGITILBH3IcF6E8aIjb4+RXM5MEzn9DH8CSFkndF8kEoHb7QYAtpmKxWJsEgDQ5yfM/c1gjRE+U5nfEPJey8mPJ2hjSFmGydmGfFM/iUQCtVqdcNobCoXgdDoBdJUK03uf/HoOhwORSIRlNYbDYbZ4jMfjCeVQmU664yQWi+Gnn37CX/7yF9jtdkgkEsTjcWRnZ+Ouu+7KWPuM4US6Y6Q/4TMdec/F5PmEIB9FqmIgcZiuCwBgMBigUCjQ2NiYsNEkaCNJGwyZTAaNRoNoNAqFQgGNRsN6CCgUiozL6s8EjjvuOGzcuBH/+te/cMEFFxz0sdFoFCUlJWhubsbKlStx+eWXD9AoBzdnnnkm9u3bxwRkasRkMplw2WWXIRQK4YorrsD111/fq+cbiOtIcukyrQ+PNpM52XaLSpPpM0wVdTxyubxPPr/Ja6JkgfxoxYpMYyjPN4K+oT9ixOl0soxjp9MJt9sNr9fLfHbb29uZCG2xWJCdnQ0A6OzsREdHB3seuVzOqiODwSBCoVC3/SMJyiQSKpVKZrNBgjOJzYNlL5Fp9Od1hARmPks9EokgHA4f1GYt2daC7uP3qgf7l+ae5LlMqVTCaDSyZAaa/yiWhjpCZBYI+pDhuAij7BESAHoSl3uLTCZjpUt0QaaTP3pOEg/If3Mwke4YSVXuQ6TaDCX7JKbyTkzV1I9/bqlUCqVSCZ1Ol7Cxi8fjrPwtGcokBAC3282a+aXKViTC4TAcDkdCNjPfUVqIzIdPR0cHnnnmGWzZsoW93waDAZdeeilOOeUUIbSlkUyJkb6EF5f5W3IzH7VajUAgwOYEtVqd8volkUhYQyBCKpUetLkL0HX9ocqZcDjMNpv0PEJkTk1WVhY6OzuxZcsWTJ069ZCPf+SRR3D77bdj3Lhx+OmnnwbdfD4U6O/rCM3zlEFGm22+6o1fSwCJTYBTNVBK9XWqx9J6kuKKv45Q1uLhisCUjd1TRlwytAYZLGuPnhiK842gb+nrGCGbPDosdrvd8Pl8rCl8e3s7IpEITCYTJk2aBI/HA5fLBYVCAavViqysLLS0tKC6urrHBqf8wRTtNWm+p6xmEpm1Wi00Gg0ToZMTYgSHpr+uI+StTdfnUCjEROZQKMQSBPiDQV4g5n39+Zg4HC9l2qPSWICuecZsNkMikSAUCrGK3EyqCO0vxCdDIBAcMal8Mg8lLidnstJGnTYf0WiUXZyBLkFZoVCw8kq+pHaoZIj0J6kykOl+4mB/x2S/Zb4Db6qy1FTwp8smkwkA2PtMP0/ZA1RKGwgEoNPp2Akw0HX6ezCSS2dT/a6CwyMrKwu33XYbPvjgA6xbt44t4D788EPs2bMH11xzzSHfF4HgUCSLy3Qd4D+7tMmTyWRwOBwJh460WaDyV8piIQsmmkN4H+fkzSF1oucPuPj5ib9+irmnOx0dHay/wpgxY3r1MzfeeCMeffRR7Nq1C/fff39GNaQTHD28NyZ9JklYpqoDelxyFhhvi3E48M3/6FoAgPmrJnt09jYrMR6Ps9JrHuonwa87+DUurYsPp0xaIBCArf1pXRAKheD3+xGNRtHZ2ckEZo/Hg5UrV6Z8jpycHIwaNQpjx45FKBSC2+2Gy+VidhvJB9h0KERCoEajYeKyWq2GVquFVquFTqdjfs60LhGkBzrIJHuMUCiEQCCAcDjM4oUSBpKv3wQlIaWqdCFffxKd+ccBSNi3BgIBZGVlwWKxwOFwMDs2OpCgeY+v5D6c3zPVfj5TK2eEyCwQCA4bPnM5lbhMZYo8fAljMrx3EWW8kDAAHFhokIDA+8QKUsM3XkyVgZxMqsYFyRnMqQ4RaKLkswCSG+2Qfxq9j+FwmHkmJ9tjyGQyeL1eFmMKhYK95sEWcfF4nDWIJKsM+hl+4yc4fJRKJRYvXowxY8ZgzZo18Pv9UCqVaG5uxuOPP44lS5agsLAw3cMUDEJ6EpeTvVv1ej3MZjOi0Sjsdju7JqhUKiYmkbDDZzfT8/K2OckHbOS/mHx9ICGKHkdjGWwWTQPFzz//DAAoKSmBTqfr1c8YjUY8/fTTuOSSS3Dfffehuroao0ePRnV1NaqqqhAOh3HSSSfh7rvvRkFBQX8OX9DH8AJzJBJhIgCt8UgQ4O2ykkm22qLn5f+lx/FZaXQ9oJJ4+uxHIhEmCtGhUyAQYMkMPUHj51+PhI2eRAsALBOSniMajaa81gi6k8qOJFX1XSrP7uT1bPJaNtUamLdzE2QG9Nki4ZASkex2O4LBICQSCaqqqliFUWFhITtI8ng8aG9vZ7fDhQ6ctVotVCoV9Ho9TCYTE5z9fj9rLhgOh5kILdYGAw9dWymD2e/3IxgMIhAIIBgMsoSmSCTCRGcg0epCrVZDJpOx6zztZWnu6Ol91el0yMnJgUajgdPphMfjQUdHB/Lz86HRaODz+VglbvL+ujexwq+Re2Mt1Vd2UH2BEJkFAkGv4YVGXmQmSEjmNwy8uJxcAkkbjWAwyE4IqYSRz5YFDnhl0TgEqUkWl/mM42TvQKDnMtPkDObk5+cnvmRrDLPZzMqDACRkElEJEwDmecq/LmUYksBEkyWJTj35MXs8HrbQVKlUCSJzNBpNWXIr6D1SqRSVlZX4zW9+g9deew0NDQ0Aug4QXn75ZSxatAhTpkzJiIWNIPPpSVymjJNkz2S73Q6j0QiXy5XgucwLSqleg+8Ozl+n+OsaLd6TrXx8Ph97LSLZVkNwABKZx44de1g/d/HFF2PHjh144IEHsGbNmm7fr66uxtq1a/HZZ59ldNMrQSLkmUqf6Wg0ykRn2vzz0GYfQMJa5Ujt1/i1JF1blEolE6tMJhMbH401OdM4OXuZ1ieUBUmPIdGZ/k9fkzUICRgkaievewRd0IEEL6rQejOVwMIfQvB7i6OB3mMSmMT7lD7IVicQCLC9QyAQYHYZLS0tiEQiUKvVsNvt2LhxI/tZiUSC0tJSlJSUwGAwwOfzwel0sutOJBKBz+eD1+uF3+9ndgqUEUo2GWSVYTab4fF4oNfrYbVa2XhCoRCzSAiFQtDr9SKreQDhDyspg5luXq+XJTU5nc4eLVMIo9EInU7HqjNpHUqNn7VaLROLKSa9Xi+8Xi8sFguKi4sBAB6PB52dncjNzYXP52PzC12n6Lp2sLUkiebJcx9/EMbPNTRn0rWT5px0IkRmgUBwSHjvPF5gJqisiDYRwIGFWvICkCCRINmQPxW0WaCx8M8hOAC9R6kaMB5Ncx1+o0cLsWRIyInFYujs7IRCoYBer2cnx0DX+0gLPD4rnc+GpoMGXnRSq9Xw+Xxwu90sE4lej8qh6PfT6/UsjvjMJCEM9Q1WqxVLlizBl19+iW+//RbxeFdDxS+++ALt7e1YuHDhQTPCBMMbvuEXLy5TpiB/QMlXrcjlcjidTnatoOoXyipObvaV7BWfPFeQH57f70/IdiZBirqT02vTYl5kMffMkYrMAHD//fdj0aJFePPNNxEIBDBy5EhMmDABkUgEd911F3766Secdtpp+PHHH2GxWPp66II+hm/qRwIzZZD5fL6EagMATDziP++UXUx+xvznLrnRHolCsVgMfr8ffr+fCbwKhYK9TjQahVarBdDVUMxkMkEqlSZUUNDrJa93aD1LHrH0uiRkJEPNQklUp2ZPlAFNYxKA/a3pPaMbvSfJJeLJ4jLvn8qXtfeUmcxnOicfLvKHA1KptE+adKVqEAmgx/2R4MDfjOKA/nU4HGyfQev//fv3s/dNpVKxdUZdXR3q6uoAdDUFLCsrg0qlwu7du+HxeNhrkeBMojb1kSHrLIPBwBoP5ubmwu/3Iycnp1svIp1OB5fLBb1eL9bBAwS9Z8FgMOFG+8WOjg5W/eZ2uxOsNOjzzdtykhBttVphsVggl8sRi8XgdrvhdrsBdGUvFxUVsR4U7e3tsNvtALqy6akxJb0GCeEk/PJJU8nXHxKX+T07XSMoU5tP7iItRavVsuodmnfTfZgpRGaBQNAjtEHnhWW+SYtMJoNWq4VCoUhYaKcyzad/+c0/+dTRRZfPNqOf4Tf19DP0fbEoOwBNWrzQTJNvqozmVBkgBL0HfJYPvzCm951O+Kl5Tjweh81mg8vlYqVkNCnTRA2APZ4/VKBx8Q04SKCmsncqg+I9uwmJRAKDwQCZTMa+zzeLFPQdSqUSJ554IoqKivD5558z79uqqio4nU6cfPLJQggSJHAwcZkXlwBAq9XCYrEgFAqxMledTpcgMPNZZsmlgXzVDMEflAJImHuSx8ELGfxBqRCYDw6JzBUVFUf08/Pnz8f8+fO73T9v3jzMmjULu3fvxm9+85sevTcFmQFl9NG/lHwQiUSYFRb1Wti9e/dRHYAno9VqUVxcjDFjxsDj8aCtrY1da0wmE7PV0uv1iMfjcDqdMJvNUKlUCXYeyZAtT2dnJztYpa+BA7ZfJE6TiEEZ05TNTWIlHdqnO9Ms3ZA4xPuo0v95D9VUTRZ5b1S+tP1IspBpXlGr1cyijdbTfr8fcrn8sK0Q6DmSq/16en06UBEJEV3QXE3rBT5GnE4nfD4fXC4XHA5HQkYyIZFIMGbMGBQXF2P//v2w2+1MCAS61hRTpkyBTCbDq6++2q16ip6DEld8Ph+ys7MRiUSQm5vbo4UL7Xv0en1CDyFB38Nn7tL11u/3M3vG1tZWuN1uOJ1OJjTzVXQSSVczProOt7e3w2w2Q61WIx6Po7OzE3K5HCUlJcjLy2ONKL1eL6qrq6FWq1FRUYGRI0eitrYWdrudWaiQKK3VauH3+5llBt8fxO/3JyRHJO9Xac1J9h+p4AV2yrYmexBqWp0uhMgsEAi6wYvL/EWcFwloo6DX69kJMHDAPJ/PKkiVxUwX02Th8WDwWQDDfXHOkyww8x6HlCF4tGKrXC6HTqeDTqfrcbHNC/8SiSTBr5Der+T3mSZYylqgRQAJxDQRU8dn/hSXMoloc0AlTPQ6dIIMCIuVvobsM/Ly8vDvf/+bLd4bGhqwZs0anHLKKSgvLxei3DCGn0do7uBFAxJiCCpDVavVCIfDaGpqAtCVgUSfY6pioOtGT1YZyfCl+LyQTNUVlGlC8JnRB+snIDhAdXU1gCPLZD4YVqsVq1atwpw5c/Dyyy/j17/+NWbMmNGnryHoO/jMPv7whgTmaDSK1tZWtjbhKxmopJj8UNVqNdRqNVQqFduIJ/s0k4Dr8Xjg8/lQXV2N2tpaTJkyBePHj0ddXR0To6xWK2KxWILQ7HA4YDabodVqmSjOZy+ThYbH42Hj0+v1aGxsBAAYDAZkZWUlXIeoMRkJHFlZWQgGg/D5fDAYDOzwnioqhiOxWAw+n49lkZJ3Kgky0WiUlaJTnFCWKYm+vKhCccOXifOHhKl8m/nKFyqxl8lkMBqN0Ov1CUK31+uFRqM55N6Dt4fh4a2W+IMV2teQiEpr3eE+3/AiM60dvF4vyyol+wu6AUB2djbKysrQ2dmJvXv3orq6Grt378Ytt9yCyZMno7m5GUBX34BRo0ZBLpfj4osvRigUwsiRI3HiiSdCo9Ggvb0dmzdvxu7du+F2uxGLxWC1WmGz2ZCbm4u2tjYUFhaivb09odKJ3mONRgOPxyN8mvsZuiZQ1jAdUoXDYdhsNrjdbrS3t8PlcrFrbkdHRzfbDIvFArPZzCpVgK4Dy6ysLMRiMdTW1qK2thY5OTkYP348tFot9u/fj0AggB9//BElJSXIz89HS0sLGhsbMXLkSBajRqMRANi4qLKG5rtUdhiko5DlB0EVwPz8RI8LBoPwer0sC5+uXb3RVvoLITILBAJGKnE5WRxIfjzvn8lnEhystJgWeHz5G2WWHWxc9FhRWnYAOq3kfQfpa97/WCKRQKfTMR9T4MApMJ0A0/vOe5JR1iBt4lpbW1nmqlqtRlZWFvLy8tj7wZe7+nw+AAeEZX5xnpwZSBlAfHmkWq1mmz7+eTUaTY8TJ58JT6/DZ3GnI26CwSAuuOAC2Gw2XHXVVfjVr3414GPoL6xWKy677DK8/fbb2LdvH1vovPbaa5g7dy7mzp0rDoSGGXzWMF/u2pPnsl6vR1ZWFvPBAwC3282uMSqVCn6/nx0c8deNw8364qtiSLDQ6XTsmkmPocfRnCY4ONFoFLt37wbQ9yIzAMyaNQtXXHEFXnrpJdxxxx345JNP+vw1BH0Dv/6gzzwJzIFAgGUXu1wuVrLOV7hRNRJt9gmLxYL8/Hzk5uYiOzsbWVlZCSJtJBJBa2srqqur4XQ68f3332PcuHGoqKhAXV0dy2S0Wq1sTFQh4XA4YDKZ2DUoea1Ah91Al6hMdjoqlQrZ2dnd1hUymQzZ2dksAzIUCrFDb75SLF1rknRDAnM4HIbP52PNsajE3WazwW63MwGar3ahxAKtVssOAUgkosxjlUoFlUrVq78v2SJQhiE1llOr1TCZTJDL5ez99vl8PYrAvFBMUFa1RCKB1+tl4nny61OmPO8vm+5S93RD+z3+YJq3wqFDJRKYf/Ob3+C8885j83VDQwOee+45fPrpp3jyySfx2GOP4aSTTur2OiQChsNhlJSU4IQTTmCx89133+Gee+6By+VCSUkJe22FQgGPxwOlUonOzk7k5eWxAwq+txA9nmJV0Lfw9pC0l/X7/SwuOjs74XK5EA6H0dbWxmJFKpXCYrEgEomwLGdKlBk5ciR0Oh27Lmm1WowYMQKRSATt7e344osvYDKZMHPmTITDYTQ2NqK+vh5ZWVnQarXw+XxobGyEyWRCIBCAw+GARqNBKBSC0+mExWJhjQZ5kZk/pCBbGN76US6Xw+12d8tolkqlsFqtrBmlx+OBxWJJyI5OV+z1+6v6fD5UVlbi/PPPx+OPP97fLycQCA4CLW6TfY15EZcvJUklLtOCyO12M6EYSMxg5jMFeoL34D1YOVkqgVls+g9Af7tkiwxeyKFyzY6ODrjd7oRJjRbjZHtBp6S0iOvJbxAA8yiz2WwYN24c5HJ5wnPT/0kIopjoKTOQ7qPXo8mRFv+8xyN5Gib7npHNRigUYkI0H+PpiJ1XX30Vp512Gq6//nqcdtppuPzyy4eUH6NcLsdZZ52Fn376CW+//TZCoRAkEgk+++wz1NXV4ayzzoLBYEj3MAX9DC1o6XOa3MCJPrcEZYqk2rDz8wpfHZH87+FuwvnH841XyLKJEPYYh8e+ffsQCoWgUqlQWlraL6+xYsUKrFq1Cp9++il++OEHTJ8+vV9eR3Dk8BVJJJjxzf7a2trg8/nQ0dGR4NPsdDoT1pkmkwlZWVkwGo3MS5OEgJ07d7LH6XQ65OXloaSkBKNHj0ZRUREKCgqwc+dO1NTUYNeuXYhGo6isrEQ0GmUZzdT0z+fzsXJ4h8MBvV4PrVbb7XNP2c3kf0kVUwercCALLxKZjUYj84CnJoDpFADSBR02kIDs8/ng9/vhcrkQCoXQ0NAAv98Pu93O/HdpL0K2EvR3N5lMMJvNCIVCcLvdGDFiBACwuYaaS9MBJW/fR7HKC8NqtRparTYhK9JkMkGn07ExU0YiJWDQPogXkOVyOROOvV4vE7cIWpMCYK9P3r+8oDqchWY6CKa1OwD2vlCFBNnxXXzxxbjwwgsTfr64uBj33XcfLBYLXn/9dfz973/H3Llz4fP58M4776C2thYqlQpTp07F/v370dDQgOXLl0OpVGLs2LHIzc1l7zcATJkyBZs2bWJWgA6HAxaLhcUJZdIHAgFIJBJkZWUBAPP5pQSs5D1y8k3QO3i9gpKrqKLX4XAgHA4zoba9vR1OpxN5eXm48sorMXPmTLYH83g82LZtGz7//HN88803qK2thVwux/HHH89E4p07d8JqteL/Y++946Ousv//1/ReMumNJCSANBVEQYoIYldU7GVtrLrW3bWtZV1BRfja1u5H18ZallVZWVdFURClqoAgTUoI6XWS6b38/sjvXO5MJhAgyUyS+3w88oAkk3m/k7lzy+uc8zqjRo2C1WqF3W7HN998g5KSEgwfPhzl5eWwWq0wGo0si9jj8UAqlTI/fppzqIk1JXzxZ1Jao/jkMK1WC5fLFRN0pZ+lgFRLSwtrOEkBVLKZpH4jyaDHrzpv3jyMHz++py8jEAgOQrxQm+j7/GTNZ7cSKpUKRqMRKpWKbeiAA2JAvADQXffNly4KgTkWPjBArx8AtjGSSCRIS0tDVVVVTMkNwZcIHgqdTgeDwRBjl+F0OlFTUwOHw4Hdu3dj+PDh7PG02eZLzmkTdbCDGZX6UIk9/W6UscJ75fl8vg5jgjZxVI6v0WhYNnOyPBA3btyI2bNnQyqVYvTo0di5cyfGjBkT85h4Ae5QXZBTDYlEgmOPPRb5+fl44403WBb73r178frrr+OKK65Afn6+2ET3Qw5XXKYDv8PhQG1tLVtDZDIZ9Ho9MjIyYDAY0NraCpfLBZ1OBwAdgkRH4l1JFTa01nVWqih8MQ8P8mMeMmRIj/3tioqKcPnll+PDDz/EM888gw8//LBHriM4cuJL3KlygRoweb1etLS0sKwuvvkWcEB840vg9Xo9xo0bh9LSUlb+TCXPbrcb+/btw759+/DDDz+gtLQUJ598MkaOHAm1Wo2tW7diz549UCgUKC0txZ49e+DxeOByuZhtBQnNFFgPh8PQ6/Uxa1V8FR0JFGTzwFdh8MQ3qgPAKigS+QwPBPhxQecMSn4ggbmhoQFut5tlJMb34SB7E8ouLigogMfjwc6dOzF06FDk5OSwTOj4MUZQbxHKMqWACO0bqZFkW1sbNBoNjEYjq+qjvTMQKxgDiEl+4JuFKZVK6HQ6JjjRuun1euF2u1lWpcViYXYboVBowDeQ45Oj+MZolEwDALNmzUr4sxKJBL///e/x6aefYs+ePairq8Orr76K8vLymMcZjcYY79utW7fGfD8zMxP79u0DAGRnZ0OlUsHtdiMzMxMtLS3svez3+9kZxmq1IjMzk42tRPuNeGQyGRQKBfMYF3ROfO8g/mzodrtZNZxMJoPNZkN2djaee+45mEymmOfR6/Ws6rKmpgZvvfUWfv75Z6xYsQJnnHEGpk2bhm+//Ratra344YcfMHbsWJSVlWHHjh2oqKhAc3MzJk2axGyZDAYDy3SnPgBkmUQVwzabLcbah86r/D5ZrVZDLpejubmZrSNGo5FVV9DfgDKxyZ6FrCrJi5mvUO5tenQEUxT5/PPPx7Zt23ryUgKBIAHxIi1Bm2c+EsiXNcd7U1LEnh5PGa8kRlNWxpHeY6KvxYvi8V1YBQcOMHznaioXBNoXpL1797LXKC8vDxaLhVlZUCkXLwjxgj6fjc775un1emRlZbEFb9u2bbDZbMyfjB4f78MNHDzzh38s35SLF9OpDI2yGeh3439WrVbD7XazjUeyD3TUBARoF+sTHXrmz5+PuXPn9vatdTvp6em477778K9//Qu7d+9GJBKBw+HAO++8gxkzZuCkk04SgaJ+QiJbDH6jT3Y9dDiUSCQIhUKseVY8lNFot9thMpmg1+sPGgQ70oAFjT8+OzE+ECY4PHrKjzme++67Dx9++CE++ugj/L//9/9QWFjYo9cTHB70nqJ5gPaSbreb+WEGAgG0tLTA7/dDo9Fg3LhxLGNMIpHAYrEgOzsbbW1t2Lx5MxwOB1auXInVq1fjxBNPxLRp05CZmcmep76+Hvv27UNdXR327t2Lffv2YeLEiRg7diyi0Si2bduGHTt2wGQyobS0FLt27WKij0wmY9mRlHVM2dUmk6mDLQ/tQ8iuwePxoLGxEXl5eR1EoWg0yoLFVBrNP9dAhQ9GkrBLYglVx5G1RENDA4ADDdii0SicTidsNhscDgfKysoQCASwf/9+jB07Fna7Hbt370ZtbS1Gjx6N7OxsVkJPojZlDlOGPInABoMBRqORNZimMUFWKYFAABaLBTqdjmUz843f6KxE64vX6415brr/trY2Zh+j1WphsVig1WrR2trKAh10DarIG4jQ+6Sz9Zj/22dmZnb6PEajEcXFxSgvL8eyZctQXl4OnU6HK664AoFAgFU9SKVSGI1GNi7D4TA7i6jVajQ1NUGtVsNisaCpqQkqlQo5OTloaWlhtj30Hqe5rbm5GXq9HiaTiYmJfPIMn6UNHGgI6vP5oFAooNPpBvx80Rl8vx1eM6A1hwKedB6+6KKLOgjM8RQUFOBvf/sbvvrqK7z22mtYtmwZRo4cifvuuw/ffvstVq1ahU2bNqG5uRkXXngh1qxZA4fDge+++w6nnnoqqqqq4HQ6YTKZIJVKmT0GVRJnZ2ezLPz45AuCglF+vx+NjY3sazTGW1pa2PlWqVTCYDAgIyMDLS0t8Hq9UKvVrIKCAnFUedHbHLbIHIlEMGLECFxwwQX4f//v/7Gvf/311zj//PPxwQcf4NJLLwUA3HvvvXj66aexdu3a7rtjgUBwSBKJtPEWFrSY8R2QqSM4/T/RJKhSqVBUVASDwYC2trZOReYjEfRoAx9/36LpUmL4vxdFyGlhValUqKmpYX5gZWVlqKysxObNm1lH9KNBKpWirKwM48aNQ2FhISorK1FTU8NKpTsrAz2c15FKI3kbEMpm5AXoRPfGZysmW9TU6/Usk9ztdjMPOJ4HH3wQd999N/ucPOD6InK5HNdccw22bNmCTz/9lL1+X3/9Nfbu3YvLLrssKRseQfdBG9f47t60npBwQIKT3++PEYt1Oh0yMjJgNpuZ/6Hf74fNZkNNTQ3sdjvLxIgv9+uOqpn4MkXB0UGZzD0tMh9//PE49dRTsXLlSrz11luYM2dOj15P0HX4vQj9n+YIh8MBh8PBvCb9fj9ycnJgsVjw+uuvJ7TkGjVqFK699looFAp89913qKysxLp167B+/XqMHDkSU6dORWlpKfLy8nDCCSegpaUFa9aswf79+7F69WoEAgGcfPLJcLvdqKiowObNm3H66aejpKQEu3btgs1mQ0lJCWw2G7xeLwwGA0wmE+x2OwKBAMt2Bg4Ex2l/rFAokJmZidraWoRCITQ0NCAvLy9GEHK5XPD7/ZBIJDAajUxw5hs3DcR9LS+08aKQ3W5nDROpBBwAxowZg1WrVmHPnj0AgKFDh+KYY47Bjh07sGfPHpx00klobm7Gpk2bMH36dFitVrhcLqxfvx5Ae9Zzeno6zGYzzGYzLBYL89V2Op1obW1FW1sbE5wzMzNZAMHhcMSUobe0tMBisUClUrFMZ8pMj2/8SOXter0eBoMBwWAQ1dXVMUk8JEQXFRXBbDajubmZidtAcn27k91LhM6rvMUEeVzzlhORSARVVVUoKyvr9LmysrJQXl7O1qlJkybhxBNPxPvvv4/m5maYzWbo9Xom7NPZgf72vA94U1MTZDIZJk+ezPoQ5OTkoLGxEYFAgD2PyWRiQQOXyxVTJcU3CqTsZQpQUHZ/MBiE3W6HwWBIalZzZ+Mg2eMjEXzggaAzcaJzVyIkEgnOPvts2Gw2fPDBB1i+fDlOO+00nHfeeRg+fDjee+89VFdX43//+x+uu+46fPvtt2hsbMSqVaswffp07NmzB3a7HZmZmWweSE9PZ0HR/Px8Nr/Q+kjZ71QFEQgE0NzcDODAXrmtrQ21tbUxv5/X64XdbodCoUBGRgYLzlGj3GAwyM7CVEHYmxz21aRSKR588EG89tprzCR7y5YtuPTSS/Hkk08ygfm///0vhg4diqFDh3bvHQsEgoPCZ5YBsd7HtKGjKH18N2efz4e2tja0tLTE+ALR5CeVSuH3+7F3796YBkp0HZ6uboriPTLjs5dTWWD2+/244IILMGnSJPzjH//o1WvzkXC+aQ69ZuQJpVAokJaWhi+//BIbNmxgAjPZT/BZfRRsoBIjjUaDtLQ05ObmoqioCIMHD0ZRURHzM9y9eze++eYbZGZmMu8pErsPVRZ2OPCWGInK2w9FvKVLbzN27Fj88MMPiEaj2Lx5c0Ihhuxo+I++jEQiwfHHH4977rmHZQNFIhHs3bsXr7zyCjtACvoefAk8icfkAe9yuVgmoN/vh8PhgN1uZz6FmZmZGD16NAYPHoy2tjasXbsWS5YswWeffYatW7ciKysL2dnZAMBEab66IlXXgoFOb4nMAHDLLbcAAN56660OzYgHCp3tPZK9JwEOlC/Tv16vl5UwezweuN1uVh33r3/9C8FgEEOHDsUll1yCSy+9FGPHjoVMJsO2bdtw//3346uvvsLNN9+MO+64AyNGjGDZya+88gpeeukl1NXVAQAyMjIwc+ZMnHLKKQCAn376CS0tLRg5ciRrHtrS0gKdTgeLxQIArKQZaK84UqlU7HPyTwYOBLwBMEFcJpMhNzeXeWPya1okEoHVagXQ3rCQeo8AYFWBwMDLao7POgRiszf9fj8TXQKBAPLy8rB27Vo0NDRAr9dDqVRi9+7d+O6773DsscciGo3il19+QVFRESKRCL799luEw2Ece+yxLPPPZrOhvLwcGzduxPLly/Hxxx9j0aJF2LJlC3Q6HUaMGIFx48YhJycHANDc3MzEZqB9jJAIFI1GWcYxna0S2SvZ7XZWeWcwGBCJRJjALJfLkZ2djZycHGal0NLSwipEgdhKwM5sDnsa6iWyatUqfPzxx12y1etOaM/PC8vUE4jOLpSssHz58oM+Fz2OLHgKCgqwaNEiVFdXQy6Xo7CwEEOGDEFpaSkKCwuRm5vLXqPs7GxkZGQgLS0NJpMJWVlZyM/PR0VFBXw+HzIyMthYkcvlyM3NBdA+nxQWFsJgMDB7lGAwyPZMZJPicDhgtVpRV1eH+vp6hEIhGAwGlrzF99FJBp2Ng66OD9oH8h/dQXxvDhLt6T1E36cq0nXr1nX5ucnHGUBMMkJpaSn+8Ic/QK1WY//+/di4cSPOPvtsWCwWeL1ebN68GUOGDAHQnnGsVquZtY5CoWCis1wuh9FoRHp6OjIzM5Gens5sNgCwAJVGo0FmZiZcLhdqampY9UNBQQFKSkqQk5MDhUKBYDCI+vp6lphBdjt8kiAf3Ootjmh1u/rqq5GRkYEXX3wRNTU1OPfcc/G73/0O9957L3vM+vXrsWjRIhQXF+Pee+/FP/7xDzz22GPdduMCgaAjfEYr79NLAjLvgebz+VjXZo/Hw6L5Pp8PLpcLra2taGhoQE1NDRobG5GRkYHjjjuORe9poThY05OukCi6y2/cUllUSOYmjD/Q8a81fb2pqQlA+wK5cuVKeL1eVpoXDodZZs/WrVuxY8cO7Nq1C3v27MHu3buxc+dObN26FZs3b2aPqaysRDQaxbhx43DhhRfizDPPhFKpRHNzM8rLy9nBjP4GfCkTgA5BicOF9zM8FHyzSsp45p+jt7n88svxzTff4KSTTsLFF1/cr5r+HQqj0Yh77rkHxx9/PBsDDocDb7zxBjZs2JC0A5Tg8KFDEr2/qNIlGAwy8YhsdchvlTIoCgsLccIJJ8BoNGLDhg3473//i82bN6OxsZEduMrLy7FlyxY2JniBB0DMAUKQWvSmyHzRRRchPT0dNTU1+Oqrr3r8eqnI0R78ewJ+T8LvRUlYIf9joN1f+4svvgAA3HPPPXjttddw22234dZbb8UzzzyDf/3rX7jwwgshlUrx9ddf45577kFOTg5uuukmPPDAA5g4cSIUCgUqKirwwgsvoKqqCkD7XDFmzBgMHjwYALBv3z7I5XImKpN9AQkPgUCAeb7TIZxELP5rAGIEQEKhULCgmMvlYnMXCetyuZw1Xqb7i7f3GqjwXrud7Re1Wi1qa2thsViwdOlSfPnllzj++OPhdDrx1VdfITs7G4FAAGvWrGFVdL/++isWL16M+vp6lJSU4IQTTsC4ceMwdOhQZGZmQiaTwePxYPv27fj444+xc+dOqFQqlJWVYdSoUZBKpaxKkwTDtrY2mEwmJjTHN/LjIQsQoD2LWiKRMB9yuVyOoqIipKWlwWw2M2GbRGkaY2TVwP9NepuNGzdi8uTJMb1E4ukpARE4IO7ReVAul0Oj0bA+KxqNhr13Fy9ezBIfE0H3xZ8FKioqIJVK8ec//xm33norRo4cCa1Wi8zMTBQWFqKkpATFxcUoLi5GSUkJBg0ahKysLOj1emahMWjQIOTm5jJL2Ly8POTk5LCkG6A9y5kSdAoKCpCXl4fc3FxkZGRAq9WyputkJ9bS0oK6ujqW2UxCc6qNg66MD6DdCtBkMrGP7qrQjBeZaX9ICVRarTbm8atWrcLXX3990OeMRCLYsGED7r33XixbtgwAMHPmzJjH5OTk4NxzzwXQrnUqlUqcfvrpkMlkqK2tBQBYLJaYPkkul4utOYn6I8VDgUzyCifbjPT0dJSVlbGmuNnZ2TjmmGPY+kbBKgBMD6A1LD6Jrzc4ohO3XC7HX/7yF7z44os455xzMHbsWLz44osxj5k/fz6qq6uxf/9+PPPMM7jpppvwt7/9rVtuWiDoDZKZEXK4UEkyX4IW77NLFhgUPaV/rVYrbDYbXC4XGhoasHv3blRUVKC2thbNzc1oa2tDTU0Nli1bBrfbzSY/PpsDQIxIfLi+lryw3BfEZSKZm7BEG3Ra0DweDxOEtm7dyjKTt2/fjtWrV2PXrl2smQqV11DZTnxmudvtRlNTE3bs2IEvvvgCTz/9NPbu3YucnBzWvK6iooIJpzQuOrNPOVJvZP6+qDyRfme+TJ8CJwCY1QaRrPJ4tVqNTz/9FD///DNuu+22pNxDMpHJZLj44otx/fXXQ6FQsPlq2bJl+O9//5uwVHqgkerrDc0n4XCYWSnRvy6XC4FAAB6Ph5WeRyIRaDQalJaWYsyYMZDL5Vi5ciW++eYbthHPzs7GiSeeiLPOOgvjxo0D0B4coywOqsDhK1r4ypaB2DQrFXE6nSybtDeqF1UqFa6//noAwBtvvNHj10tFjubg31t7Elp7SXSLRCJMZKbGWhdeeCHOPffcDvu9jIwM3HXXXXjuuedgNBqxa9cuvPTSSwDa541LL70UDz30EPPkjc9kpMxFEnfJl5PP9ALASomB2ED2waqfurI37Sy4ThmNh/Nc/RVeJOIDFMCBfSTNK2eeeSbzHn311Vcxfvx4eDwerF27FjKZDD6fDytXroREIkFWVhai0SgqKiqwbNkyLFq0CJ999hkaGxsxevRo/O53v8OZZ56J3NxchMNhrF69mtkemM1mJlY3NzezZufky5yWlgYAzLM3EdRzQ6vVstJ3qiCkzENCp9OxzHa3252wYi/Ve4n0hIAIHHg/UhYzicxSqRRarRYGgwFarRZKpRIulwvPP/98wr9VKBRiVivxZ6Xs7Gykp6ezZJtoNMqEvKFDh6KgoACZmZmwWCywWCzIyMhAdnY2CgoKkJ2dDalUygJXlF3a0tLSQcyTSCRQKpXQaDTQarWwWq3Yu3cv6urq0NjYyLLn6fwbCASY0CyRSGJ67fQ2nY2DrowPoN0KkHpt2O12VFdXd8t90figPaJcLmdivU6nY009JRIJRo4cCQB46aWX8PTTT2Pnzp3MgtHhcGDz5s149913cdNNN2HOnDnYs2cPNBoN7rvvPpx44okdrk2BRVo7TSYTy2CurKxkc0hbWxv7G9Gcxou9fHZ7orMqrVMkFFsslg5rhlQqRUFBQUyiFwUsyLKK6O2z1hGnhFx99dX405/+hGg0in/961/C207Q76CMkFtuuQVnnXUWfve736VkBiK/oSfxJt5GgffMpMWKss5IaHY4HExUDIVCyMzMxLhx46DRaLBy5UqEw2GUl5cjGo1CrVYzIZn3x+IjzwNh85zMhm7xrzEtJoFAAE6nE16vF7W1tayZVkNDA3uMy+VCbW1twqimSqXC8OHDMWXKFEyYMIF1/m5oaMCmTZtQX1+PDz/8EA8++GDMQksZGOSZzAc8eB9DAMwn6kgzi0k0JwuYRNladC3adNLmQ5A8SkpKcN999+G9995DQ0MDFAoFampq8NFHH+Hcc8+F2WxO9i0mjVReb+IFZspkpmZIJDDTfKLT6dimt76+HsuXL2elhxKJhGXwZGdno6ysDBKJJKbygnxMlUole9/yB06+m3hfCUj2Z+gAn5mZyUSYnuamm27Cs88+iy+++AI1NTUoKCjoleumCkdz8O+pPUl8IybaA1BAinzatVottmzZAqlUiquuuuqgz3nsscdi3rx5uPPOO/HNN9/gD3/4A1snzGYzysrKWHNjwul0MtEwPz8fbW1trKlgZmZmjJWFwWBgWamU+ebxeJgIRaI0//vx+5ZoNMpsMvR6PfueRqNhnpher5c9D99cmX5+IPntHspPn/421DCWXsfp06ezx2i1Wrz88st46qmn8PHHH2PXrl2s3Ly8vBzl5eUYNGgQSktLIZPJUF1dDbfbjQ0bNmDDhg0oKirCrFmzcO655+Knn37Cr7/+ijVr1qCgoABqtZpZlZFYQ+caSm4gUTyRoMnvR2k88d6q9N7k/x46nY41O6SfiU/4SAbJ7iVC50vK8CY7EWp2Rn8vi8WCxsZGfPPNNzj22GNx8cUXxzzP8uXL4XQ6kZaWxoRa2lvR37uiogIAMHHiRIwaNQqNjY3YsmULlEole+/SmSPeT5nuye/349dff2XXTUtLS7iHa2trY/sdEs2pkXlLSwu0Wi10Oh2zQMjNzWXJM3xjyd6is3HQlfEBtJ8pe6IHC/8a0OtA/5rNZtZ0j5Iexo0bh40bN+L777/H999/DwDsDMmj1Wpx+umn4+KLL2YZ706nEy6XC3a7HfX19WzPQ8IyAOaj7vf7Y4TleJslunc6m/OVMZSdr9fr4fV64XA4YDAYoFKpEAqFYLfbO2Ro0/Pl5eWxeSQnJ4clmwFgFkS9bbtyxCLzHXfcAaA9NftQA54yDgSCvsTGjRsxe/bsmIwQytwk4hvjdWepUFfgG62Q0MgfwOMzmj0eD9tA2+12WK1WVuZMQjNNuNXV1TAYDOzQqNFoEAqFIJVK2QRKC15nmWb9nWRuwuJFZlrASOxpbm5GOBxGU1MT2tra4Pf70dTUxA5XdP8ZGRmQy+Xwer1obm6G3+9nNhlff/01FixYgNzcXAwdOhQTJ07EggUL4HQ6UVtby8YGvyHmM3coa4eaAPINvKhhZFfHC23s6PeVy+XQarXMG5YeE/98vB2LIPmoVCrMnj0bGzZswI8//sjG3rJly3D88cdjyJAhA2b+4EnV9SZeYKamOFTVwle3qFQqFBYWQiqVoqqqChUVFSxzkTa59fX12LFjB3v+GTNmYPLkycxugeYHlUrFfDD59zX9nw9iiSSH5NKbVhnEsGHDMHXqVHz//fd466238Oijj/batVOBozn499aehPafNIdQNhbN78ceeywyMjIO+bwjR45ERkYGWlpa0NDQwETm8vJyfPPNNwDa+x4A7fuKpUuXIhgMIicnBwUFBVi9ejUAMBGxrq4OoVCI+bqSmGgymdh+GABr+EbQAZ3/WltbGwKBAKRSKStZpscYjUbY7Xa0tbUhLy8v5m+UbFItqBmfycxb+RmNxg5roUKhwMMPP4yTTz4Z8+bNg9VqhdVqxciRIxEOh1FVVYWqqioolUqMHz8exx9/PFpaWrBp0yZUVlbipZdewmWXXYYTTzwRNTU1aG1txZYtWzB+/Hj2+sZnVdMelm8GFw+JmCSKUmM/AMy3Nx6tVgu73R4jTqXCGKFeIiNHjsTmzZsxb968Do/pKQGRILs7pVLJRETa91MfE8owb21txXPPPQcAmDVrFiQSCbZu3cq+Nm3aNGzcuJFluQIH9ht8pihwIHCanZ2NwsJCVvHbGbyASD66WVlZB32sXq/H8OHDAbSPtdbWVlRVVTFxUKvVxgiLVKlJYmZv0dk46Mr46Gmo4SYv+JMgm56ejkgkgtzcXNTV1cHj8eCMM86Ay+XCli1bYuyNsrOzMWTIEBQWFkKr1aK+vh5///vfY/bb8ZSVlbGAhsfjwW+//Qag3dKC9r28XSNB8wYJzCSWU/+CQCAAg8EApVKJQCCApqYmpKens6pijUaTMCGHGvtFIpEOSVa0/6b1p7fOWEckMj/yyCP44osvsH79esyYMQNvvfUWbr/99u6+N4EgqSQzI6QrkHjHi8zUEZeylmlzTxu2YDCI1tZWtLa2wu/3syZ/fCZoWloa87bavXs3srKyIJFIkJubyzbiNJHzDRlokh9IYl4yN2GUEUP/klcqva5+v5/5bAeDQZSXlyMQCCAtLQ2zZs3ClClTkJOTE7PYUHOSdevW4eOPP8bu3buxZMkSXH311QAQ4zEll8tjumfz5aAqlQp+v58tnPzP8FnMNG67mmVMCzYJTCRC8RYM8Y8fSEGPvoJEIsGJJ56IoUOHYtmyZcyrcOfOnbDZbBg7duyA895NxfUmkUUGv5643W72vtfr9fB4PFi9ejXbYNN7MhgMoqamJiY7kAKfe/fuhVqthtvthkKhYA1mNRoNE5o1Gk1MFhkAJjSHw2EhMieZZIjMQHsDwO+//x5vvvkmHn744QE1ZxzNwb+n9iS8yMwnQNC+gcQVOriPGDGiS8/b3NzMguMk3FRVVeHNN99kTd5OOOEEBAIBfP7556wB0hlnnIHy8nK0trZCLpdjxIgR8Hq9zN8yOzub2RhYLBbWuBQAK7XmiReZg8Eg2wNlZmZ2GH8mk4mJhxRgp/0L/zdLxv4kmUHNRNnMvNUK0J5FTMLfcccd1+l7e/r06Rg3bhz+/ve/49NPP8X27dtRUFCACy64ADt37kRVVRVWrVqFVatWYcKECbjpppuwYsUK/Pbbb6wK+8QTT8TXX3+N7du3Y/To0TGZh3SuAsAabNH/41+3aDQaM36AA1nMRqOxUxGf92HmbVbiLVd6m8svvxxXXnkl3nnnHdxwww1JCULI5XL4/X521lQoFNBqtbDZbExsTk9PRzQahclkQkVFBZ599ll88skn0Ov1zAJj9OjR7H07duxYdualeZB+NxJ4aQ9zzDHHxFRCmM1m6HS6GA9l4EAyi1qtZmJfZ5CtgcvlYl69UqkUGRkZ0Ol0+O233+D1etk9ORwO5j1NVWS9udbFj4OXXnoJ5557bkqMD9oTkg6hUCigVCrh9XpZAAJot/Hau3cvqqurIZPJMGPGDBiNRtazitYYWg/45zebzTAajdDr9TAajcjIyEBpaSnLMN+yZQu2bNkCn88HvV6PoUOHMpsqi8XSYS+v0WhYxbhEIoHFYmHNY6mi3GazwWQywWq1sjmYtJnKyko4nU5kZ2fHVNq0tbUxMTl+T0yJYL2dmHHYo/TNN9/Es88+ixUrVuC4447Dn/70Jzz11FO4+eabY3yGBIK+TrJLhQ4G78EcLyyTuOz3++HxeFiZYktLC/PhpcmUNrtKpRLjxo3DmDFjsGbNGrS1tbEyLqA9A0Sv18NkMkGtVrOFlCZ2EpcHksAMJG8TFt9ghz6oLIgONk1NTQiHw6ipqUEgEMC4cePw4IMPdijZI6RSKYqKilBUVITKykqsWLGCBRzC4TD+85//sKyBnJwcfPvttwCA3NzcmGwPvV4Pv98Pt9vNypX4iC1tkmjzHAgEWMbiwaAmGHzmfme/B//8gtTEZDJh1qxZ2LRpE2pqaqBUKtHW1obNmzdj6NChnZbf9UdSbb0hYSjeg9ntdsPtdjMPOfJ33bdvH/tZyvayWq0xzXhyc3MxYcIEDB48GG+++SbL0CkvLwfQngFClTLUfIuEZ6/XGyMq89nMyRJqBO2QyNwbfsw8s2bNYg0Aly5divPPP79Xr59MUvHgH5+lywfB6XMe/oB8MN5++21Eo1Ecf/zxsFgsqK2txeuvvw6fz4fS0lJcffXV8Hg8+Oyzz9DU1ASFQoGZM2ciGo2yqolRo0ZBrVZj9+7diEajMBqNzL5Do9FAoVDECIS0943/XYADIjOJrnwDMh5KxqC5k+Yo/sCf6n67PRXUjK82i2/szP9tDjWGjUYjHn30UZx11ll49NFHUVNTg4ULF+KNN96AXC7Hl19+ibVr12L9+vXYsWMHHnzwQRiNRvz0009YtGgR/vjHPyIzMxPNzc3Ytm0bTjzxRBYQcLlcMa8Vn0wRj8vlYhZOWq2WVY6STUtn0DmM9sb0/0T2LL0J9RJJJiSm8p679GEwGGCz2VjCUygUwllnnYWVK1eisrKSPQf1fHjvvfcgkUhwzjnnYM2aNQDAKino/UviMi/IkfBYWFjIGk02Nzezx3YGiZ8qlQparZZVRqjValaZUVNTg2OOOYb9DPWx2LVrF9ra2pCZmYlgMIi2tjaYzWYEg0EmZvYWBxsHyR4fiXyZpVIp1Go1PB4PcnJyUFFRgXA4jIkTJ7IKh927dyd8PvLbtlgs0Ol0UCqVMWdNCjpt2bIF33//fUzgzWKxYOrUqfjtt99gs9lYwpXH44FGo2FisUajYWPHYDCw9USpVMJiscDhcDALOoPBAIfDwQItJDRTsqBarWYZzxQ4ycjIiKmooL9PMtaawxKZly5dittvvx3/+te/MGHCBADAnXfeiWeeeQbvvfcebrzxxh65SYEgGaRCqVAiKLuMJjuKbAYCAeYHRiXMTqcTLS0tcDqdsNvtaG1thcvlYt+jsoybb74Zer0e77//PpqamiCRSFBYWAiDwYBBgwbBbDbDbDaz31ehULCoIW0Wu7oR4kWBvi4MJGsTxnsf8pkWtDBR2Q0A5veWnZ2NRx555JAb9nA4jIULF2LFihUAgKlTp6K+vh6ffvopKisrIZFIcP7552PdunVobGyETCZjUWK6nsFgQGtrKwKBAGQyGXQ6HRuT9H4JhULs/zSmu5LRzGdBxzfQoUBHXx9XAwnKJBo0aBB+++03yOVyhMNh7N69G/n5+R2y7fsrqbTekMBM6wpltLndbjidTmaTYbPZEAgE2Ps3Go2itbU1pqyUMghPOukkFBUVwefz4d1332UCMx3K09PT2UGMOsjLZDKYTCZ2gKB5TafTDYgx0VdIViYzNQB89tln8cYbbwwokTlVD/6JxEPe5gY4IBquWbMGV1111UGz8hYvXoyvv/4aEokEs2fPRn19Pf7v//4PHo8HxcXF+P3vf4+2tjZ8/vnncLlc0Gg0mDlzJsxmM1auXIloNIr8/HwUFRWhqakJbrcbUqkURqMRLpeLZaqRpQHNQfHw2ce016VDfWfl63x1VXxm6sEaC/YGyQxq0pjgBSJeTATahRgKQvz8888s4/NgjB8/HosWLcLdd9+NTZs24dFHH8XHH3+MoUOH4qKLLsJLL72E/fv3Y8GCBXjuuefQ2tqKvXv3YunSpZg6dSq++eYb/Pbbbxg3bhyMRiNaW1vhcDigUChYFQ+f5cwHN0OhEBtDRqMRUqmUrYMmk+mgSXgkOKlUqphkjWSPkVSAAsoUcKbEJvIsJpuMoqIi7Nu3D7t27cKtt97KrBIKCgqwdu1avPfeewDaA5PRaBTbtm0DANYQjrf5k0gkrGEjeaoD7a+r3+9HTU1NTMCJ9+zm+yPxFaYulwstLS1IT0+HyWRCfn4+rFYr8/rlx7bRaER2djYaGxvR1tYGnU4Hn8/H5hKyLBtIlTudwc8hfFYzBffC4TBGjx6NzZs3o6GhAUVFRTjllFNYw1vy+6YqWavVyhoUdpWsrCyUlpZCrVZj586dbE+bmZnJgkxqtRrhcJjdF9AuKsfv56VSKUwmE9xuN7M21Wq1LFELaBeRKYDl8/nYOkT9TpRKJRO/aVxTtS//N+sNujxCN27ciEsvvRRPPfUUZs2axb5uNBpx5513YsGCBbjuuutE2aKg35AKpSDx8OXLJDDTREoN3wKBAOx2O5qbm+FwONDS0oLW1lZ4PB7Y7XbWFI5oaWnBwoULmXAtl8tRVFSEzMxMDBo0CEajkXVYpoWeNoUymYyVZxxsI8SXT/IbbbFIHjl8xgfvxR3fPZbGLWXyHIzt27fjtddeY35kl156KbZv347NmzcjGo1CpVJh0qRJ2LFjB1s8TzrpJFRXV8Pv90OhUCAtLQ0ymQx6vR5OpxNutxsZGRmQSCRwuVzw+/0wGAzMo5G8xg6njGcgZs33d6jL9/bt25l9htVqRSAQQEFBQb/fW6TSekMZwyQwU+DS4XAgGAyipaWFlfu5XC44HA4mWFBDQMruKysrwznnnMPmg4ULF6KhoQFyuRw5OTmsTNRoNLJu8VqtFjKZjM0lQLvoQB56h2ORQfOKCD71DJFIhHkRkr9kb3LzzTfj2WefxZdffonq6upeqSQTJIYXlElEpMCxUqmERqOB0+lkmV179uzBI488gj/+8Y/IycmJea6Wlha88847WLp0KQDghhtugNFoxKuvvgqXy4WCggLcfPPN2LdvH1asWIFwOAyLxYLzzz8fOp0Oa9asgc/ng8FgwPHHHw+fz4e6ujoA7WsNZe6mp6ez/6vV6oQZyTyJLB4SEY1GYbPZWAUXZVoCB6x+4p+vN0lmUJMXhPi/De0LAbDxotFoYLPZ8MADD+Dpp5+GRqM56HPL5XKMHj0amzZtwr59+9haUVRUhMcffxwPPvggampqsGrVKlxwwQV49tlnsXPnTlx++eVMAGptbWUis9vtZpV5tF8FwM5gJB7TGFKpVOweeXGyMyKRCBOndTod+39Xz1YDAaVSiXA4DLVazcYkZXhSEk0oFMLgwYOxb98+/Oc//4FCoYBer4fNZmPv05kzZ2Lo0KF45513WGVEfn4+QqEQ6uvrARywsuCDByQoK5VKJjCr1eoOdgU8/HmMfLmDwSCam5vh9XqRnZ3NBHKr1dohgFJQUACHwwGv18v8p1tbW5GRkcH2WL3tzZyK8GsNBTKVSiWCwSCzYfP5fJg8eTLWrVuH+vp61NfXs3kn/rxMz2k0GmEymViVS3xAjLLpZTIZ01kIrVYLjUbDnttoNCIcDjOxmdYEg8HAgo9UnUvX12q1UCgUcDqdbLxR0gedj6jyDziQ6U/NAuk+6J5JRO/t+aTLCs8JJ5yQsJwGAB577DE89thj3XZTAkEqkAqlQjwkMMdnmIXDYSYcu1wuNDQ0oLW1FU1NTWhubobNZoPNZjuogb3D4YBKpYLZbEZBQQHy8vKQnZ0Nk8kErVbLNnxqtZo9j0KhOGSnUr7LuKD76ErZCwn4JFatW7cOv/76K4499tiYx/n9fvz000/4/PPPsXnzZgDtgs7xxx/PxGYAyMvLg8lkQkNDA3tMUVERW1ylUimGDh3KDlDxzQ6ofIk2zvzvIfxVBUD7mD322GPZHCaTyRAMBlFbW4usrKyUCPT1FKmy3tB7lzazfr+fCclerxdNTU0IBALMCiMcDsPn8zHxiLfHAIAff/wRFRUVuPnmm7Fw4UK0tbVBLpejsLAQGo0GWVlZ0Ov1MBgM0Ol0LJhpMpli5gI6SPBVHPz34qFsbN5SpyuWPILDo6qqCl6vF0qlEoMHD+716w8dOhTTpk3Dd999hzfffDNpPTIEsRmqVOlGmVhkT0FC3pAhQ7Bz5078+OOPuOaaazB8+HAUFRWxpqHbtm1jthLXXXcdSktL8fLLL7Og4w033IAffviBBThKSkpw5plnAmjf69hsNiiVSkyYMAFSqRQVFRWIRqMwGAzM61ev17MAt1wuZ4f+zn434MC8IpfLodFoEAgE0NLSglAoBLVaDYlEwhI+KMPMYrGwIByVXwNIar+IZAY1eXs9uVwOpVLJLACcTidMJhMikQjcbjfS09NRX1+P1atX44orrsBtt92GU089NUb8bmpqws8//4yVK1di1apV7O8+a9asmDVELpfDYrGgpqaGWblRVnkgEIixNqHXm29qTX0BaL/Kry2039VoNB08p3lxOh6yLaSkHbpP/m810FGpVGzuoA+fzwez2YzW1lakp6ejqakJoVAIw4YNQ2NjI2w2G9uLDBkyBFOmTEFtbS0+/PBDAO1N22bNmgWn04nvv/8ebrcbWq0WBQUFCIVC7JxLr7FKpYLb7WbVmXl5eTGvDVWU8kIh9ZPQarWwWCyw2+1oaWlhwfL09HRme0ANk4EDQf7Bgwdj586dMT2TXC4Xy3gnm8GBDtkokm83nSOp94ff74fNZsNZZ52FvXv3Yv/+/awyAWifkzMzM5GdnQ2LxQK1Ws3sJyipj29kSwkW8RgMBpYxTPdD/UQkEgn0ej37Oap24BvixkMVN5StTGI3BS8SCeT0c3wwjr9ub9saizRCgaAPkEhg9vl8CIVCsNls8Pl8qK+vR1NTE4vUkQczQRH+vXv3smi5SqXCoEGDoNfrkZ+fj/z8fOTl5SEtLQ16vZ5FjimqFu+3d7DGFHzZUCLE5qn74KO5dFigv29jYyNKS0tRXl6O++67D6WlpSguLgYANDQ0YM+ePWyRk0qlyM3NhdlsZlkYaWlpMJvNbNFSqVQwmUwwGAwseGAymZCXl4doNIqGhgbWPIOitQCYhyvdL3/vvL9qvAid6IPuVWQ09z+oyWh6ejpqa2vZWLHb7czeRwiFPUMkEmGb13iB2eVyoampCR6PB/X19fD7/XA6ncwfjqegoAClpaX4+eef4fF40NjYiDfeeAMejwcKhYKtOdnZ2dDr9dDpdNDr9VAoFKzze/xrzB/g+EzARO//REEuQc9ADW6GDBmStMqkm2++mYnMjzzyiKiQShK8SEYNmHw+H4xGIzweD3Q6HTIzM9HY2IhgMIjS0lJ4PB5UVVVh+/bt2L59e8zzjRo1CjNmzEBFRQU++ugjAO2WLCeddBI++eQTeL1eSCQSTJgwAePGjUNTUxO2bNkCr9cLhUKBiRMnQqvVYt++ffD5fJDL5az0nC+ppobWB1tXqMkwNWcymUxIS0uDz+dj2a/xSCQSpKWlsf07ZajxzeOSRTKDmvT+JIGZhDvKHjabzXC5XLBYLAgGg8jJyYHVakVlZSX+8pe/QKlUoqCgAHK5HM3NzR0CmyUlJbjuuuswc+ZMBINBVFZWYuvWrVixYgXq6+shk8kwfvx4fPbZZ4hGo6w5l8PhYK8Z2b/x/qnkr0prDz/PkL2Cw+Fgv5fJZEJLSwsaGhoQCARgNptZZn84HGaN14H2xpG051ar1Un3Y04l6FwTjUaZTQbtB0gMJqsumm8yMjJgMBigVCpht9uxfPly9lxTpkzBiBEjsGrVKuzbt48JgtOnT4dcLkdNTQ0AxGSjarValiHKB8BDoRCzNegMfjwolUrU1dXB4/Gw7NNQKAS73Y60tDTU19djx44dCIfD0Ol0yMrKQltbG/OPpwxcuVwOt9vN7AMHMpSlS4EaGi9ut5udW/1+P3bv3o2MjAyUlZWx9yAAZmficDhivLwPhUqlgl6vZ2I2vyclSzc63/LvaYPBwLKOeQ2FxlR8ryW5XM7WUPp95XJ5TIU4H9zlNRe9Xp/Q2qW3EDsxgSDFibfIIIE5EAjAZrPB4XCguroa9fX1qKqqQn19fYy4PHLkSJx55pkoKSnBiy++yATmtLQ05ObmMqP7goICZGZmsi7IarWaict8JD8R8SWEB2vKRpOpEIqOnPiSVLlcjkAgwHyftFototEosrKy0NTUBK1Wy3yTy8vLWaMtgjKNLBYLlEol84WyWCxQqVRs0TQajSxTg6K0KpUKMpmswyGLosNUTkSbQT4bnm/OR1mKVEp0qKY4fOazEBX6H0qlEsXFxbBarWwDH9+oScwh3Qff6I9EZt4Ko7GxEXa7HfX19QgEAmhoaIDVagXQ/t494YQTMHnyZIwdOxZpaWnYs2cP1q5dC6B90+zxeKBWq1FYWIi0tDR2CDQYDCyYaTQaE26CqTwUONAsrDORmX6PeMR46RlIZE6GVQZx0UUXISMjA3V1dfjiiy9wwQUXJO1eBjK0FyHRRqFQsL2IxWJh+0KJRMLENZVKBZ1OxxoYKZVKVm7c3NyM7777DkD7+/e4445DIBDAqlWrALTvYadNmwYAWL16NduD6HQ6jB8/njUVJfEwPT2dZQWaTCa2D+HnnXgfZb68mHpNhEIhtLa2QqvVIjs7Gx6Ph2U5AojZG1EzZroOb5kxUBMtaP9IGcT09wqHw8jMzITf70dmZibC4TCysrJgtVqhVCrhdruZ9QDfaFYqlaKkpARDhw5FQUEBpFIpNm/ejGXLlqGlpSXmLGIwGDBr1ix8/vnnqKqqgkQiwdSpU5kIOWzYMLS1tcFut7OzCgUleJ9lauLGPy95+La0tECn0yEtLY0Jz5SxSuOJr+40m81MNAQ67pEFYNmlVD3AZ5LTHkCtVsNut7P+L/yZRKlUssZ9TU1NqK6uZt/Lz8/HxIkTodfrUV1dzZrCFRYWstdbq9Wy14fsT2iPRJDACRyYR/j+Fl6vF1qtFjk5Oaivr4fT6YTBYEBbWxvq6+thMpmYpy/Q7pVeUVHBxhoFxID2+YvGjF6vH9B7G9ITSGSlahEKIvKNXVtaWmKsLeKRSCTQ6XTME54XrnmLn0gkAq/Xy5pgA2BNq3mvdrVazcYE2XBIJJKY7HS6Dv8a8j23aCxRpQxlWB/sd5DL5SyDme5HpVL1+jgRs5dAkMLwXj004VDmBEXBq6qqsH//flRXV6OhoYFNKKeeeiouu+wylJWV4fPPP8c999wTU+qTl5eHwsJCDBo0CDk5OTCZTKxcmSwy4sVjmkzjN8fxk2NnAjMtBgN5QewO+EWLDivU0drn8yEzMxOBQADp6emIRqNobm6GVqvF8OHD4XK52MIjl8uh1WrZ4qNWq2E2m1mknsRnnU7H/BWpWUH8okjlsXRQlEgkMVkfQPtiykdu+ZJH8qBLJC7HH/aAA+OMmiwM9Gh+f4QaWfj9ftjtdjbmKNuWxqHg6KGgDQnMbrcbLpcLPp8PjY2NcDgcqKurg9frZRYJcrkc55xzDmbNmsW6tANAXV0d5s6di2AwCJPJxOaQgoICZGVlIT09HQaDgWWBUBmgz+eLyWKORqMsoxo4MMeQmMM3jyJ4Ww3+4CHWnJ4hmX7MhEqlwg033ICnn34ar776areLzDabDc8//zw2bNiA4uJi3Hnnnb3e5LCvQBYZdNCneQU4YD3Q1tYGqVTKBEP6HpUFU8Yg0P7aUvNXEgfUajWGDBkCrVaLzZs3xwScBg8ejGHDhsHhcGDnzp0sg5jWEaBd1KP/056X5pr4ABWfOUg+8Q6Hg5VNUzYhNTwGwOZREqWo7Jlvet3bDcNTDRonCoUCKpUKoVCIWWbwawn593u9XlitVhgMBhawoIAj/U337NkTY/FG6HQ65ObmIiMjIyZIoVKpMG7cOOzYsQORSAQZGRmsgRzQ3mCLXkOz2cwER41G08EPl5rX2u12Jj55PB7WY8DhcDC7OIIsCgGwxCCdTsfGMy9aDnSoKtJut7P3En2d7AHa2tqgUChgsViYEA0cyCSmSkvgQBIMJcJs376dZYoC7V7taWlpaG5uZo93u92s8X0kEmECM1VgdVZVRXsYsoBRKBRIT0+H1WplXr1utxvNzc1s/pk6dSrq6uqwb98+uFwuFojx+XyQSqVwOp1M7Pb7/f3aSu5QSCQHGjXSusNXifj9fpZJLpFImOgPHNhT0tmCzqDUZLorkCUKaTV0P3xiAwVP6exN1+5M+KXKGYVCwc47tH5QvxNKOqR75u2HADAhms72ydgDi9OZQJDC8Jt0XmBubW1FQ0MDqqurUV5ejoqKCrYxHz16NO644w6UlpaisbER999/P3755RcA7RuYoqIiDBo0CMXFxcjPz0d6ejrLJCGBOX6xpLIkvlyns0yy+ImMFwjFQb974MUTElk1Gg0ikQiMRiMikQjy8vLQ0NCAzMxM6PV6VvLOL75UxqPVallGoUKhYM0eacGisRHvuRgf4SXiPabogMZnLVNGNB+UiPdg5T/ikclkCAQCh8x4FvR9VCoVMjMz4fP5Yg5pfr8foVAoKRH6/gQfxKQDkdfrRSAQQFNTE7Nj8vv9qKyshM/nw6BBg/CXv/wFRUVFMc9VU1ODv/71r7DZbFCr1Rg0aBBMJhMKCwuRk5MDi8UCo9HIApl8ySitc+Q7R+9v4MBBkReBOstOpsCDGBM9TypkMgPAH/7wBzz77LNYtmwZtm3bhlGjRnXL8/722284/fTTWQk1ACxcuBCffPIJ8wAWHIAOx0D7+5PKhGlvQnsBrVYLm83GDt5kfRG/V+Tndp1OB4vFAqC9jwjf4KigoAAZGRnw+XzYuXNnjAclldgD7Rmn9D3a+/AerMCBvQcd3umQT3MVidRer5cJFomqJyQSCRMg+MeI9eqAgEp2GSTU2+12WCwWVkpeUFCAmpoa1sgtHA4zuxWCRBRKlKEkBxJhKOjY1NQEoH1MFBcXQ6FQsK8NGjQIhYWFqKqqAgDmC03Zh7Sn1Wq1MJlMMRWmdA8ymYw1C6NABAmXJCzy90zZkARVjvLjRHAACtaQXQ29H0nQIxHW4/GwvSG9hnwSDFUZSCQSFjggqE+ERqNhlimZmZnsdaQGffS6UZPzzt7PMpmM9TPy+Xzwer0s8GUwGOB0OqFWq+H1elFbW8veDzabDSUlJcjKysKWLVvgcrngdruh0+ng8XgglUrhdrthMBjg8XhYIGygQk38SLjlz4V0ViQoEYonPjEuPjkh3taCxpxUKmUVDHQtet/SekbNZHnRl7KXDwX/WLKJIU2I1hdeg4m3ijuYkN0bDNwRKRCkOBRN45v8BQIBVlpTXV2NPXv2oKKiAm63GzKZDLfccgsuvPBCRCIRfPLJJ3jnnXdYiU12djYGDx6MkpISFBUVITs7m1ljkOVBvKBHpT78ho4yToHEmWTxguNA30z3FFRuyHszUTTbbDbD4XCgsLCQlf5pNBpkZ2ezaCsvDvOZOFS2SpYpFB3ly4boNe3sdeYfE/94suOIb5wS/7sdrAsuWbIczBNc0L+gDRXfKIPEAcrqEIeyw4e3yaB/6aBGNjeNjY0Ih8NMcC4rK8MTTzzRoSP6tm3bMG/ePDidTqhUKpSWliIzMxOFhYXIzc1lAjOVL1JQi0oAyQqKh+YMADEH+oPZX4j5oPdIFZF58ODBuOiii7B48WI899xzePvtt4/6ORsaGnDaaaehrq4OZWVluPXWW7FkyRKsWrUKl156KTZs2IChQ4d2w933LyhoRFll5IsZjUaZkGaz2ZjHbTAYhMPhSBgs1mq1MVYa9N7W6/Uwm83MjsPn88UEAiiATgd5CmzTNdRqNfR6fUz2Mome8dYZwWAwJuGDFxT5+ZMPlpP4BSDmGvzzD2RoXqeMZPr7ajQaeL1e5OXlobq6GhKJBCUlJWhpaYHT6YRMJkNBQUFM1mB8xi8vKJEgZDQaWWMuep2CwSB0Oh2GDx8eY69gNpvZeYhf4wwGA7u/RM3M6ZxEYihl51OCTmcl7rTfBg6scWq1WoyTBND7zuVyMc9l2kvQ35oPJCWCHzP8B32ND2DRfoUsd0wmE8LhMAtKJeof0dk1edsGGvd8FQWN/0AggPLycmRmZkKn0+HEE0/EL7/8ApvNBo/HA71eD7fbzapLNRoN3G43s2IYiFB1iM/nixF6aV7gm3XGnx3jE6UOdvbkiddFaH2inyXLDX4sUrLE4b5OUqmUZdGT2NyZNRz9XrTWJHNMSKIiBUwg6DYowkolPUcD3+TP6/XC5/PBarWisbGR+UZVV1fDarVCo9HgiSeewKhRo/DDDz/gnXfeQV1dHYD2RXDQoEEoLS1FaWkp8vPzkZaWxrKXedsDmpxpwxefLRCfjdrVyVhwgJ4YI/RBApzP50M4HIbT6WRlWlSKGl8mREIPHco0Gg0TlfkyIt73KpHIfDB43+RESw7fyZvgr8lHk+M3Ccn0ZN6yZQtuv/12BINB3HHHHfjd736HJUuW4Mknn0RGRgbef/99pKWlYfbs2dizZw9mzJiBRx99tEvP3Z3jpL9BBzbKWCHUajUMBsOAKTHtjjFC87zf74ff72fissvlQk1NDex2OyorK+F2u7Fnzx6o1Wq8+uqryMrKinmO//znP3jvvfcQiUSg1WoxePBg5OfnMzumtLQ0FgjgM4kIEor4+SnRnHGoAJSg92hubkZWVhYr9+U7mieD9evX4+STT4ZCoUBlZSVyc3OP+Lmi0ShmzJiBFStWYPjw4fjhhx+QkZGBYDCIGTNm4IcffsDJJ5+MNWvW9Pmx2BNrDQWr6F9KknC73QiFQpBKpQgGg6itrQUA5s9L/6f9Cc3lUqmUiXyd+RnT1/l9C58JxgvUlBlGxJc3x0NNURMd6hNVdJFATb6sdI34DLq+RHePk2g0CrfbjXA4DLfbzcaJw+FgWcINDQ0sAEEZgy6Xi2WRU2BApVJ1eJ1pDUkktGRnZyM3N5fZtgAHst7pObRaLRtnlDkbLyzRc9OZKT5xgt+/8nZw/F46ft/LB0f6Gr21b6X9Anme+/1+Nn74jE/6m8dXRh6sspYEw3jhPysriwnclH1/JL9jJBKB0+lk90fnNKfTyWw4wuEwCgsLccwxx7Cs/B9//BFut5ud08iCgYIiGo0m6WtwV+jJMUKJJzT/0vm3s7m7M+L3pvHEByj4uZ/mIv59TSJxd51NEq0vdJ34ZLBk0jdnMYGgn0NCGonMgUCANTRoaGhAXV1dTEfr8847D5s3b8ZTTz2FxsZGAO0LZXZ2NkpLSzF48GAUFRWxxn60QJG4yEf+40vS6bn4hTnZ0TFBO5RVHr8hJX9Ts9nMbFaowQ4vztKBjLxteR8o3hIjkeDLj4dEi3C8OBz/GH4h7OxgdqhNQbKb5zz++OP44IMPUFBQgMmTJ+N3v/sdnn/+eaxevRrffvstXn/9dUyePBmZmZl4++23ccUVV6C2thb5+flJu+f+AC8c2O12Nn+Rj3BGRobIau4ifNCGNuO05sT7igLAjBkzYgTmbdu24c0332SlpWlpaSgqKmJ+/1lZWbBYLCyoSUIOCUkEZfoAsfMAQRUVYt1JHbZt2wYAKCkpSYnD7YQJEzBp0iSsWbMGL730Ep588skjfq53330XK1asgFarxZIlS5hPrEKhwIcffohhw4Zh3bp1+PDDD3H11Vd316/Qb+D7JCgUCvae1mq18Hg8zI/3uOOOQ2trKxobG2MO4GSpQVV2vOAMHAhCk4jIZ7OSgEfBcv7wr1KpYhIoKAPuUPsIEgmUSiWbm2h/Ej9XxXM45dEDCfq7kGcqjRGDwcAySXNzc5GWloaGhgb2WsVX0BwMEuL4D7lczgRJAKyknTIM5XI5GxMU3OAzken7iQQjEpsp8SN+79vZvpj+FqJBbdeg/QKfvUqNzylAQR+80Ay0v95dya/kLSEzMzNhMBiYjRjQnsB1JFCmu9PpRCgUgk6nY8F5apDsdrtZJv/QoUMhl8sxevRorF+/np3nqNm73+9n/XiS5b2bKtAc6/f72ZmWLHP4igki0Xk2UQAiUZ8gHlqjaB3hq717IqOY5qlUX1NS++4EggEIHfbjM1MDgQAaGhoQDoeZjxTZDnz88cfs52UyGdLT09khv6SkBLm5uay0kEouaNPLT57xky8vAvJlJYLUgMrGg8FgjA8pHcDI35T3YeY3WwBiDmN0WKPNdSIhOB5+k8w/hs825q91sOaPtHDypU2JFvdUidS+9tprrAu6RNLu75aeng6lUokpU6bg9ddfh0ajweTJkwEAkyZNwk8//YSLLrqow3NRJinBNz8SJEYqlcJsNrMGUuTjWFVVBbPZjPT0dDFfHQTedoYCOxTcobFIawLNIdFoFDt37kR5eTlWrlzJGr9JpVLk5+ez7OX8/HxkZmYiLS2N+S/zB+hwONxB2OHXPoLmBPE6ph7U6+H4449P7o1w3HPPPVizZg1ee+01PPDAA0eUKdXS0oL77rsPADB37twOlhj5+fl46KGH8PDDD2Pu3Lm44oorRGl7HPS+DQQCbI9CVXIkiJD9m1QqRXFxMQAwgSh+n8Ifqvlqhs4yyuiD39cAHS13Djdwxd8HiRb8R3wZNh+oF3SExgZvrRKNRmEymVh2s1arRUlJCat04ccI/zeOt0BI1DiP/LWBA96sZOFGIjatU/EZiRRoOJiwQ9emwAqf4Ry/n6XHiuqcI0cqbW94TlZqfBbzoaDXgu8Lw2ea8xnN0WiUicIAWMXnkSKRtHsyU/NAvV7PxgvdEzVZbm1tRUlJCYxGI/NsJhuGYDAIr9fLbIMCgcCAT7CgOd3v97P3LL3G5NvcGV2t0E6kj8Q/D4nOA/l9LURmgSDF4LO4aLGk8hmXyxWzAA4ZMgSVlZUIh8OsVDwrKwt5eXkoLCxEXl4eLBYL9Hp9jPcyn1VBmym+7CI+Y1WIy6lLvNBMrx0Jn3z0NtEGlxZKfoMeL+LGL6a0EeM3RZ014EtUTtSV34nfwKWq93JmZiYA4K9//SuuuOIKOJ1OlmWj0+ngcrkSfi0R8+fPx9y5c3vnxvsRVNaqUChYMyYAaG1thd1ux6BBg/p0iXJPwh+yeMGZf1/TvF9SUoJt27bhiy++wBdffMGeQyKRwGKxIDc3F7m5uSgoKOjgv8x7/lNgNH6uIHE5vsGKOHynLps3bwaQWiLzzJkzccwxx+C3337Ds88+e0Rz6v333w+r1Ypjjz0Wf/zjHxM+5s4778QzzzyDPXv24D//+Q8uvfTSo731fgdvSUGeqfQv2V6QF2kiL3be25jmDxLk4gPgvOgcLwDwHMxC4XChexQBhiOHMlLJBiAajUKn08Hr9bJzC2WPHmm1BC9E0x6ZxgDdAyXe0GP57PYjzTIW46P3oNeI9nq8tR4v7sefXRKJ/zxk5cJDPvHdcc96vZ6dCShjnpBKpfB4PHC5XNi6dWvM1w0GA9ra2mLO6ZRtP9BFZuBAw0W+aSu9/w+WlXw0awLNHSIp4gBCZBYIUggSmHlP5PhSPLlcjlGjRmHr1q2Qy+UoLS1l5TcWiwVZWVksc9lkMrESQdpAUfYGf03alMeXdQlxuW9Am+RQKBTzuslksg7iET0+0eEsXkzuisjDb9oSPX93CESpIjK9+OKL+Oijj9jnDz/8MH755Rc0NTVh/vz5aGtrYxtSasRBTTroa4MGDUr43A8++CDuvvtu9jk1bhR0DYVCgYKCAjQ0NMDpdAIAa6CSnZ2NtLS0lBlHqcLBSkZp3tfr9bBaraivr8eoUaNQWVnJypuNRiPS0tKQnp7OPC4zMjKY5z+tPTQPUDCMf37KnOYtmkRmV9+AMpnHjBmT5Ds5gEwmw+OPP45LL70Uzz77LG6//fYYe5dDQT0tAOD//u//YqqAeAwGA+6880489thjmD9/Pi655BIxXuMg4YcyyuhvSc2t+CA4X9LO70XiD+68wHyo4HX8XkjMKamJVCplDfU0Gg1rVk4VNSQMxdsf8D+faE8LdKywI+Iz42m/m8jPW1hY9D0OR+DnM875j3j/bLIW7M4zMQnNHo8HQLv3Nz+vyeVy+P1+tkdSKpXIysqC3W4HENvYLn4fNdDh37+UsEfJV139+c4E6M6Cm4JYhMgsEKQQiSKshEKhwKBBg1BVVQWpVIoRI0YgEAgwLyqTyYT09HQmbFHmMkXo+eg9Lzp2ZkcgJsy+Bb2+tFmioAGflRj/+PiMdf5Qd6QLcX/mrrvuwl133cU+X7x4MbZt24b3338fQLsfbXNzM3w+H1atWoWxY8di7Nix+OKLL3Deeedh9erVePrppxM+NwlygiNHKpUiNzcXer0e9fX1MfYZlNUssoo6h58DNBoNJJL2JkRpaWloa2tjQU3gQJf3tLQ05rtsMplispe1Wi0TlamUk6B1qLNGSoLUxufzYefOnQBSK5MZAC6++GKccMIJ2LhxI5588kk8//zzXfo5v9+PW265BQBw88034+STTz7o4++66y48/fTT+OWXX7B27VpMmjTpaG+9SyRqOEv8+uuvuPDCC5llzQcffNAr99QZcrmcVeWRr7Lf72f+qfGiYSJhmBeaO6uyiw9sD6R9SX9ALpczoZka31FzNapy4RvrxVe3HUxUjn9MfMCBPFP5apv4JoKC/kuyM84lEgl0Oh1kMhk8Hg9MJhMLfvh8vg6iNiVRqNVqNpblcjlLMhLEQgkOZGGTSPtIdB4WHD1CZBYIUohEkx+JyD6fD0ajEYWFhXC73YhGo1AoFNBoNNDr9azBBXlF0SaJLw+TSCSdelUdrqWBIPXgN0vxJfBA4o35wUpLBQdnzpw5UKvVmD59OgBg+fLluPvuuzF16lRoNBosXrwYFosFCxcuxMknn4xp06Z1msks6B4kEgkTOisqKtDW1sYOqB6PB8XFxdDpdMm+zZQifh6g7ML09HS0tLQgOzsbJpOJZSQqlUro9XoYjUaYzWbo9XoYDAYmLlNjWZqP4r3+aX7i/VFFiWHfYtu2bQiHw8jIyEi5RqYSiQTz58/HGWecgVdeeQWzZ8/G6NGjD/lz8+fPx2+//Ybs7GwsWLDgkI9PT0/HlVdeibfffhuvvfZar4nMiRrOEjt27MDcuXNjvpZsaC4gSy+yzOks846voopv6EeJEmKv2v+Qy+XMr5tPiKGqzu7K0iRRLj6oSVaCItApSAYUXHG73TAYDKwCmZowU5CF5kGaV9PT01kAvycawfWloOahEOfc3kUS7UqLTYFA0CUcDgdMJhPsdvsRNZwhMSQUCrGGf5Tt4Xa7WWYeQVnKtDjx/nW871yiTZPI+kgORztGBAMDMU6Onmg0ioaGBtalm7LFLRZLv2gKeLRjhDKJqYGM3++Hz+eDz+eDw+Fg65DH40EoFGIlo2q1GjqdLuZf8kMkr1WCr8yRSCQdKivowC/Wn77Fm2++iZtuugkzZszAN998k+zbSchFF12EJUuWYPz48VizZs1BM9V27NiB448/HsFgEP/+979x2WWXdekaGzZswIknngilUomamhrm09+TNDc3s4azU6ZMwdq1a9n3HnnkEaxduxbBYBAPPvggzj777A4/n6jJbGFhYY+vNeFwGIFAIOb9zydWJNqLCp/L1KG39iTkLRsIBGLOO531/Ui0dsT/XKJSd4KyHEWV09Ej9q1HTzQaZf1FKIs/EAggFAqxxoO0n6V+LzTGyW6jO7nkkkvw7LPPsqDmunXr2PcWLVqEYDB4WEFNMUYGDiKTWSBIIeJ9xVQqFTsMGI1GGAwGdljnP/iO27yfJYnLtKES2coCgWCgIJFImD99eXk523y3trbC6XSisLCwU8/VgQCfwRUOh1nDo2g0CqPRyJqm6PV6tiZRWTOJynRAV6lULIuG/AwP1lAHQEzzJUHfYtOmTQBSzyqD56WXXsLy5cvx448/4rHHHuu0CaDb7cbll1+OYDCI884777Ca+I0bNw7jxo3Dhg0b8M477+D+++/vrtvvlPiGszzHHnssrrrqKuTn52PGjBk444wzOrzHktVklqryeP/TRL0c4u0yBAML3kuVkm54ca2rz3Ew4v2YBYJUgWzK6Pzv9/vZPjW+GpU+l0ql0Ov1PTJfvvbaayyoGf9e2b59O9auXYt//OMfhxXUFAwMhMgsEKQQ/Cab95+jTXn8Zpz3EOP/31kjDLGZEggEAw2NRoMRI0agsbGRbXCDwSAqKytRUFDQLZ3C+yK8nQU1PQLAbC+onJ1fb/gqGb5ahrLPDnYtEezsP6xZswYAMGHChCTfSecUFBTg5ZdfxnXXXYfHHnsMo0ePxiWXXBLzmHA4jBtvvBHbtm1DTk4O3njjjcMel7feeitmz56N119/Hffee2+3H/QP1XCW58wzz2TZYYMHD4bVau3Q+DCZTWaT7X8q6DvwCTRAbFVMvAVcZ/9P5N8t1h5BX4DEZvKvp6qz+CapfN+lnqCvBjUFyUfYZQgE3cjRloHwXW6pm3Iio/rOmpzwmyexmUpNRKmQoCuIcdIzuFwu1NbWss9NJhO0Wm2PZYH0JN0xRkgcpvWGfP/is5DjswsPFrRMFNwU61D/wW63Iy0tDdFoFPX19cjJyUn2LR2Uu+66Cy+99BLkcjlefPFF/OEPf4BEIoHNZsPvf/97LF68GHK5HCtWrMCUKVMO+/k9Hg/y8/Nhs9mwdOlSnHXWWT3wWxxg8eLFWLx4Md5///0Oc9bFF1+MefPmoaSkBNOmTcPq1asPOa+JtUbQFcQ4ERwKMUb6Pp0FNcvLy/HWW2/FPNbhcLDX+YorrsCLL77YIaiZLHsmQfLpWycqgaCfw2cxU4SS/4gvUeZLvig7JD7DTCAQCATt6PV6DBkyBAaDgdlAeL1etLW1dVtjob4Edd6mtUOpVEKlUkGtVkOj0UCj0UCr1bKMGn794dck8rumZjX0nCLQ2f9Yv349otEoSktLU15gBoDnnnsOV199NUKhEG677TYMGTIEZ555JoqKipjAvGjRoiMSmAFAq9XiuuuuAwC8+uqr3XnrCZkzZw727NmD6dOn49RTT0U4HMY999yD1tZWzJkzB7Nnz8a0adPwwAMP9LnAmUAgEAiSx1133YXVq1ezD4/Hg23btuEf//hHh8fecMMN+O233+D3+1FVVYWMjIwOj1GpVDAajTEfgoGBsMsQCFIMPgssURZzoseKTDGBQCDoGlKpFLm5ufB6vXA6nQDam656PJ4OjesGAlSWTL93oqoZ+r9A8MMPPwAAJk2alOQ76RpyuRz//Oc/ccIJJ+DRRx9FeXk5ysvLAQDDhw/H22+/fdS2H7feeiteeOEFfP755ygvL0dpaWl33HpCtm7d2uFrzz77LADAYrEwKxOBQCAQCI6GOXPmQK1WY/r06QCA5cuX4/7778fDDz/MgprRaFQENQUdECKzQJDCCPFYIBAIuh+JRAKtVgulUsmEZolEAp/PF9PEbiAhxGRBV/jqq68AADNmzEjynXQdqVSKP//5z7jpppuwYsUKNDc3Y9iwYZg4cWK3HIyHDRuGs88+G0uXLsVLL72E559//uhvWiAQCASCJCKCmoIjRYQcBAKBoIsEg8GYjKclS5bgpJNOwjnnnIPW1tYk3plAIDgS5HI5zGYzdDod+1o4HE7iHQkEqUtjYyM2bdoEADjjjDOSfDeHj16vx8yZMzF79mxMnjy5WzOv/vSnPwEA3n77bdZgVCAQCAQCgWCgIURmgUAg6AKtra0466yzsG/fPva1559/HqtXr8Ydd9yB119/PYl3JxAIjhSJRAKlUgmNRsP8hAUCQUcoi3ns2LHIzs5O8t2kFqeffjqGDx8Op9PZoUGSQCAQCAQCwUBBiMwCgUDQBdxuN/7+979jxIgRAACbzYb09HQolUpMmTIF69evT/hzfr8fDocj5kMgEKQe1GxV+MoJBIlZtGgRAGDmzJlJvpPUQyKR4M9//jMA4KmnnoLH40nyHQkEAkHXEJWaAoGgOxEnKYFAIOgChYWFOPbYY9nnTqcTer0eAKDT6eByuRL+3Pz582EymdhHYWFhr9yvQCBITX799VcMHjwYp556Kq6++moA4kAnSH0aGxuxbNkyAGDjVhDLddddh+LiYjQ0NODll19O9u0IBALBITnSSk2RRCMQCDpDiMwCAcShX9CRF198EZMnT2YfS5cujfm+Xq+H2+0G0J7lbDQaEz7Pgw8+CLvdzj6qq6t7/N4FAkHqsmPHDsydOxcrV67EBx98AEAc6ASpz9tvv41IJIKTTjoJZWVlyb6dlESpVGLu3LkAgAULFqCpqSnJdyQQCAQH50grNUUSjUAg6AwhMgsEOPJDv6D/ctddd2H16tXs4+yzz475flpaGpqbm+Hz+bBq1SqMHTs24fOoVCoYjcaYD4FAMHDZvn073n33XZxyyilYunSpONAJUh6fz4cXXngBAHDHHXck+W5Sm6uvvhrHHXcc2traxN9KIBCkPEdaqSmSaAQCQWcIkVkgwJEf+kVm2cDm7rvvxtSpU/HUU0/htttuS/btCJLE9ddfj5UrVwLoWAERjUZx4403YsqUKSzDTTCwOfbYY/Hyyy/j888/x6OPPgq73S4OdIKU5rnnnkNjYyMKCwtxxRVXJPt2UhqZTIa3334bMpkMH3/8Md59991k35JAIBAwuqtSUyTRCASCzhAis0CAIz/0i8yygQeJiQBwwQUX4Mcff8TKlSuRnp6evJsSJI0dO3ZgyZIl7PP4CojVq1cjMzMTq1atws6dO1FbW5u8mxUkhfgDnVKpxPDhw2E0GjF48GCo1WpxoBOkLFu2bMHjjz8OAJg3bx4UCkWS7yj1GTt2LB555BEAwE033YSvvvoqyXckEAgE7XRXpaZAIBB0hhCZBQOS7jr0i8wygWBg8/TTT+Paa68FkNjHbuPGjZg8eTIAYNKkSfjpp58SPo+oiui/xB/o/vnPf+K3336D3+9HVVUVMjMzxYFOkJJs2bIF55xzDnw+H84880xcc801yb6lPsMjjzyCq666CqFQCOeffz6eeeYZBIPBZN+WQCAQHBJRqSkQCI4GebJvQCBIBnfddRfuuusu9vnFF1+MYcOGoaSk5LAO/SqVCiqVqrduWyAQpBA///wzSkpKEIlEACT2seuqt938+fOFncYAYc6cOZg9ezai0SgeeOABSKVSdqDTaDRYvHhxsm9RMECJRqOor6/H1q1b8cknn2DhwoUIBoMYMWIEFi1aBIlEkuxb7DNIpVK88847CIVC+Oijj3Dffffhtddew7XXXotTTjkFo0aNQnp6OqRSke8jEAiST3yl5gUXXJC8mxEIBH0aITILBBCHfoFAcGhefPFFfPTRR+zzPXv2YM+ePXjuuecAJPaxi//aoEGDEj73gw8+iLvvvpt97nA4hP1OP2X06NFYs2ZNzNfEgU6QbFpaWjB+/Hjs27cv5uszZ87Eu+++C7PZnJwb68MolUosWrQIp59+Oh566CHs27cPc+bMYd+XyWQ49thjsWLFCvH3FQgEAoFA0C+QRKPRaLJvQiDoLzgcDphMJtjtduGXKUiIGCP9A5fLhZNOOglZWVnYv38/zGYzVq9ejXPPPRdff/01VqxYgY0bN+KUU07BF198gaeeegqXX345nn766U6FZh4xTgSHQowRgUBwtIh5RNAVxDgRHAoxRgSHQoyRgYMQmQWCbiQajcLpdMJgMIiyUkFCxBjpf8yZMwennnoqTj31VPz3v//Fk08+ySogLBYLZs+ejZ07d2LatGl48sknu/ScYpwIDoUYIwKB4GgR84igK4hxIjgUYowIDoUYIwMHITILBAKBQCAQCAQCgUAgEAgEAoHgiBHdJgQCgUAgEAgEAoFAIBAIBAKBQHDECJFZIBAIBAKBQCAQCAQCgUAgEAgER4wQmQUCgUAgEAgEAoFAIBAIBAKBQHDEyJN9AwLBQIHM7gWpSSo0IRBjJLVJhTECiHGSyogxIugKqTBOxBhJbcQYERyKVBgjgBgnqYwYI4KukArjRIyR1OZwx4gQmQWCXsLpdMJkMiX7NgSdYLfbYTQak3oPYoykNqkwRgAxTlIZMUYEXSEVxokYI6mNGCOCQ5EKYwQQ4ySVEWNE0BVSYZyIMZLaHO4YkUSj0WgP3o9AIPj/OdoIncPhQGFhIaqrq3t8IejNa/X29Tq7Vn+I4g7E1603r5UKYwToW+Okv16rs+uJMZLa1+rt66XyXNIdWUOp8Lfsy9c62HXEGBHXOtS1UmGMAGK9SZXriT1J95Hs1623r5UK40SMkdS+lshkFghSFIlE0i0Tg9Fo7LVoY29eq7ev19u/W1foi2Okt6/XX691OPTFcdJfr5WM63UFMUZS63r9eYwA/fdv2VvXSsXxAYgxMpCvdTiI9Sa1rpeK46QvjpHevl5/vVZXEWOkf11LNP4TCAQCgUAgEAgEAoFAIBAIBALBESNEZoFAIBAIBAKBQCAQCAQCgUAgEBwxQmQWCPoIKpUKjz76KFQqVb+6Vm9fr7d/t95EvG5971rJoL/+Lfvz+O9txOvW966VDPrr37K3rtXfxwfQP1+3/nytZNCf/5b9+XfrTcTr1veu1duIMZJa1xKN/wQCgUAgEAgEAoFAIBAIBAKBQHDEiExmgUAgEAgEAoFAIBAIBAKBQCAQHDFCZBYIBAKBQCAQCAQCgUAgEAgEAsERI0RmgUAgEAgEAoFAIBAIBAKBQCAQHDFCZBYIBAKBQCAQCAQCgUAgEAgEAsERI0RmgSBF2bJlCyZPnozx48fjvffeAwAsWbIEJ510Es455xy0trYiGo3ixhtvxJQpUzB37txuu7bf78cFF1yASZMm4R//+Ee3PW91dTWmTZuGiRMnYsGCBVi3bh3Gjx+PadOmoaKiAgDw8MMPY9KkSbj11lu75Zpz5szBu+++2yvXSgbJGif9aYwA/Xuc9LcxAoi5pLsRY0SMka7Q38aJGCPdjxgjR48YI31rjABinHQ34gwsxkhX6G9zSb86A0cFAkFKcvHFF0f3798fDYVC0QkTJkSj0Wh06tSpUb/fH/3iiy+iTz75ZPSHH36I3n///dFoNBq9/PLLozU1Nd1y7X/+85/RV199NRoOh6Onn3561Ov1dsvz3nPPPdGVK1dGo9FodPr06dHp06dHrVZrdPv27dGbb745WllZGb388suj0Wg0et9990XXrl17VNdrbm6O5uXlRd95553oueee26PXShbJGif9ZYxEo/1/nPS3MRKNirmkuxFjRIyRrtDfxokYI92PGCNijByK/jZGolExTrobcQYWY6Qr9Le5pD+dgUUms0CQorz22msoKioCAEgkEthsNqSnp0OpVGLKlClYv349Nm7ciMmTJwMAJk2ahJ9++qlbrk3PK5VKMXr0aOzcubNbnvehhx5i9xsOhwEAFosFI0aMwJ49e7Bp0yZMmjQJANjveDQ89dRTuPbaawEAXq+3R6+VLJI1TvrLGAH6/zjpb2MEEHNJdyPGiBgjXaG/jRMxRrofMUbEGDkU/W2MAGKcdDfiDCzGSFfob3NJfzoDC5FZIEhRMjMzAQB//etfccUVV8DpdEKv1wMAdDodXC5Xwq91Bz31vBaLBTKZDG+88QbGjh2LSCTCvheNRrv1utXV1XA6nRg2bBgA9Oi1kkmyxkl/GCPAwBgn/W2MAGIu6W7EGBFjpCv0t3Eixkj3I8aIGCOHor+NEUCMk+5GnIHFGOkK/W0u6U9nYCEyCwQpwosvvojJkyezj6VLl+LJJ59EU1MT7rrrLuj1erjdbgCA2+2G0WhM+LXuoKeeFwDef/99LFmyBAsWLIBEImFfl0ql3Xrd+fPn4y9/+Qv7vCev1ZukyjjpD2ME6J/jZCCMEUDMJUeDGCNijHSFgTBOxBg5OsQYEWPkUAyEMQKIcXI0pMoYAcRcksqkyjjpD2ME6NlxIkRmgSBFuOuuu7B69Wr24fF4sG3bNmYon5aWhubmZvh8PqxatQpjx47F2LFj8cMPPwAAVq9ejTFjxnTLvdDzRqNRbN68mUW4jpYff/wRCxcuxOLFi6FUKqHRaNDS0oIdO3aguLgYY8aMwapVqwCA/Y5Hys8//4zrr78eCxYswIIFC3r0Wr1JqoyT/jBGgP45Tvr7GAHEXHK0iDEixkhX6O/jRIyRo0eMETFGDkV/HyOAGCdHS6qMEUDMJalMqoyT/jBGgJ4dJ/KjujOBQNBjzJkzB2q1GtOnTwcALF++HHfffTemTp0KjUaDxYsXw2KxYOHChTj55JMxbdo0DBo0qFuuffnll+PKK6/EO++8gxtuuAFqtbpbnveJJ55AQ0MDzj77bADAvHnzcN5550EikeC9995DcXExysrKMHHiRAwdOpT5Eh0JP//8MwDg3XffBQAcc8wxPXatZJKscdIfxggwMMZJfxsjgJhLuhsxRsQY6Qr9bZyIMdL9iDEixsih6G9jBBDjpLsRZ2AxRrpCf5tL+tMZWBKNRqNHdXcCgYBB/jUGgyGm5EAgIMQYEXQFMU4Eh0KMEcGhEGNEIBB0B2IuERwKMUYEh0KMkYGDsMsQCLoRp9MJk8kEp9OZ7FsRpChijAi6ghgngkMhxkj/Y86cOXj33Xexbt06jB8/HtOmTUNFRQUA4OGHH8akSZNw6623dvn5xBgRCATdgZhLBIdCjBHBoRBjZOAgRGaBQCAQCAQCgSCJtLS0MF/BefPmYenSpXjllVewYMECVFVVoby8HGvWrIHBYMC6deuSfLcCgUAg6G9cfPHF2L9/f8JAp0AgEHQV4cksEAgEAoFAIBAkkaeeegrXXnstAMDr9cJiscBisWDPnj3YtGkTJk2aBACYMmUK1q9fj5NPPrnDc/j9fvj9fva5w+HonZsXCFIMq9WKzz77DJWVldBqtRg5ciSmT58OjUaT7FsTCFKOQCCAyy+/nHm0UqCzoaEBCxYswOuvv57kOxQIBH0JITILBAKBQCAQCARJorq6Gk6nE+PHjwcARCIR9j3yMNTr9QAAnU4Hl8uV8Hnmz5+PuXPn9vwNCwQpzEcffYSbbrqpQ5DFYrFg7ty5uO222yCVDtxiXofDgeHDh2PIkCGQyWRYvnx5sm9JkGT8fj/+/Oc/4+233wbQMdDZ2c+IoKZAIEjEwF1hBQKBQCAQCASCJDN//nz85S9/YZ/zDXGkUin0ej3cbjcAwO12w2g0JnyeBx98EHa7nX1UV1f37I0LBCnG0qVLcdVVV8HhcGDkyJG4+eabcdVVV6GwsBCtra248847cdNNN8UEcgYaO3bswB/+8AesXLlSCMwCAIDBYMApp5zCPo8PdCZi/vz5MJlM7KOwsLDH71MgEPQNhMgsEKA9+pqfn49TTz0Vp512mvCiEhwU4VkmEAgEgu7i559/xvXXX48FCxZgwYIF0Gg0aGlpwY4dO1BcXIwxY8Zg1apVAIBVq1Zh7NixCZ9HpVLBaDTGfAgEAwW3241bbrkF4XAY1113HX799Ve8/vrr+OCDD1BRUYEXXngBUqkUb7/9NubMmZPs200a27dvx1dffYVTTjkF77zzTsLH+P1+OByOmA/BwCE+0JkIEdQUCASdIewyBAIciOo/8sgjAIDzzjtPeFEJOiA8ywQCwdESX6r8xBNP4E9/+hO0Wi3efvttlJSUJPsWBb0MrSnvvvsuAOCYY47BeeedB4lEgvfeew/FxcUoKyvDxIkTMXToUEyePDmJdysQpCYvvvgiqqurUVRUhFdffTVGHJPJZLjrrrtgMplw/fXX44knnsDpp5+OKVOmJPGOk0NxcTGeeuopnHjiiTjjjDNw3nnnITMzM+YxwnpnYEOBzqamJhQXFyd8jEqlgkql6t0bEwgEfQIhMgsEOBDV/+abb3DDDTd0yYsKEH5UAw3hWSYQHJpoNIpoNIpIJML+z5dbJiq9lEgkLHNGKpVCIpEwgYDPqOkPiKCmoDOuv/569v/169fHfG/evHm9fDcCQd8hFArhlVdeAQA89thj0Gq1CR933XXX4YcffsDbb7+N22+/HZs2bYJcPrCOwxMmTIBGo4FUKsWECRNQUVHRQWR+8MEHcffdd7PPHQ6HsEMYQDzyyCMxgU6BQCA4HIRdhkCAA1H9b7/9FgsXLuySFxUg/KgGGsKzTCCIhcTkYDAIv98Pj8cDt9sNj8cDr9cLr9cLj8fDPuh7/Af/GPoZr9cLt9vNHu/z+RAIBBAKhfq8l2Z8qTIFq0aMGHHIoKYoXxYIBIKO/O9//0NtbS0yMzNx+eWXH/SxTz31FCwWC7Zu3cqE6YHE3/72N3zzzTeIRCLYuHEjSktLOzxGWO8MTN59910UFxdjwoQJWL9+PdatW4eysrJk35ZAIOhjCJFZIEB7VP/kk0+GUqnEhAkTuuRFBQg/qoGO8Cwb2FRXV2PatGmYOHEiFixYkNCj++GHH8akSZNw6623Jvluu4doNIpwOIxAIBAjDvt8Pvh8PvY1p9MJu90Om83Gxj7/f/4j0dcdDgfcbje8Xi97br/fD5/Px8Rqn8+HYDDY50RnEdQUCASC7uVf//oXgPZqgEOV8Kenp+PJJ58EADz++OMDLmB39913Y8GCBZgyZQouueQSpKenJ/uWBAJBChJ/ziHie1kJBPEMrPoggaAT/va3v+GMM87A6aefjo0bN0KlUh3SiwoQflQHI14s6W8l74DwLBvovPDCC5gzZw6mTp2K0047Dd98802M7cHDDz+M8vJyrFmzBvfffz/WrVuHk08+Odm3fURQtnIoFGLv7Wg0ilAoxL4eDodj/qX/d2abQXMCWWVIpVL2IZPJIJfLYz6nf+l7crkcoVAIQHuQRy6XQ6FQpPxcE1+q/NNPP7HvHSqoKcqXBYLE0NwSiUTYB2/bQ8TPNzS3CPoubrcbn3/+OQAcMouZmD17Np577jns3r0bL7zwArMvGgjk5+fju+++S/ZtCASCFCf+nHP77bfDYDB0sH0TCOIRIrNAgPao/jXXXIPHHnsM1157LY477jjhRXWYUIYjf7iLp78d6oRn2cDmoYcegslkAgCEw2HIZLIYj+5NmzZh0qRJAIApU6Zg/fr1nYrMqerdHYlEmE0FECssUxYxLzQHAgEEg0EmNPv9/g5iMxEv9MhkMigUCiYUSyQSJibL5XImLvMCNAnLcrmc3atSqUxpsVkENQ+fzny+EwUuEgUtBH0Tes3D4TDC4XCH1/twnifR8xJSqRQKhQIymSxl5w1B53z99dfwer0oKSnB2LFju/Qzcrkcc+fOxZVXXolnnnkGt99+OywWSw/fqUAgEPQd4s855F8f38vqhhtuSPjzqXq2EfQ8QmQWCJA4qh/fdEcQCx3S6ADYlYMfPT4UCjGBSCaT9cLddi/vvvsugPaydzFOBi50IH3jjTcwduxY/PLLL+x70WgUTqcTer0eAKDT6eByuTp9rlTs5B4KheDz+QAcCCL5fD4mIJOYTJvISCQCv98Pl8sFj8eDQCAAv98f46UcjUY7CIEkGpPATIKPWq2GRqOBWq1mj1coFFAqlWzuUCgUCAaDkMlkUKlUkMvl7HpqtTolBUYR1EwMLyTHZ6MeibBIULCCxpYg9eGDWUcqKvPiNC8oSyQSFtQiUZnmLolEApVK1Sf3JQOZr7/+GgBw/vnnH1aQ4LLLLsOTTz6JrVu34tlnnxXNNQWCAUqiwDW/Vx2owcf4c45GowFwwPbtxBNPxBlnnIHzzjuvQ/NQIDXPNoLeQYjMAoGgy5DQFH9oI3jRKH5R5g99JB4EAgEmFB3pAv7VV1/hr3/9KwKBALRaLV5//XUcd9xxR/w7Cvoffr8f99xzD77++msolUqMGTMG77//frc89/vvv48lS5ZgyZIlOOuss9jXpVIp9Ho9amtrAbSX8x6scU6qWSHwArNEImFCMonK9K/P50M0GoXP54PNZmOezA6HA16vlzUE5EVmAB2sL/gsQpVKBY1GA51Ox76u1Wqh1+sRjUYRCAQglUqh0WgQDochlUqhUqkQiUSgUChYtq/H44FGo4kRjO666y589tlnqKysxNatWzFq1Cj2vT179uC6665DS0sLzGYz3n33XYwYMaLb/7YiqNkOCYn8mnCox9O/B7M/oLWEF6kp814mk0GpVB6xiHiw8SM4evjXioevfkokBvB7E97Sh74XP/dQsBsAC2jRY3w+H6uGOFLEOOk9otEoE5nPPPPMw/pZqVSKxx9/HBdeeCFeeOEF/PGPf0RWVlZP3KZAcNiIeaTnoDUj3gauM+Kro2ivQV9PlgjdG2OEP+cQ8bZvFRUVCUXmVDvbDER68gx8MITILBAIDkp8RlA8vFfqwRZZWoiprJ3EBcqCViqVh71It7W14ZprrsGqVaswfPhwfP/997j66quxbdu2w/49BT0D/1rHlyfTeOjpDdoDDzwAqVSK3bt3QyKRoL6+vlue98cff8TChQvx2WefQalUdvDoHjNmDBYtWoQ77rgDq1atwvnnn9/pc6WSFUIkEmECs0wmg8fjgd/vZ4JxJBKB2+1mwrHD4YDNZoPf70dLSwv8fj+cTiccDgd77Sm7OBqNxthc8GIfiT06nQ5erxdtbW3QarUwGo0Ih8NwOp0wm80wGAwA2oV7hUIBrVbLhCESnrRaLQDA5/NBq9Wy8XXJJZfg/vvvx+TJkzv83rfccgtuvvlmXH/99fjkk08we/ZsrFu3rqf/3AMO/mCXCJoP4q1YutrgUSqVsnFEvt38euP1eqFSqY5IRDzY+BEcOYnEZapckEgkrPlnV8cA7Vs6G2cUmJJKpey6BoMBEomEzVeUAX8kiHHSe+zduxeVlZVQKBSYOnXqYf/8zJkzMW7cOGzYsAFPPfUUnnnmmR64S4Hg8BHzSM8QjUbh9XoTrg3xZ5FEgcxEUIVMb/cG6ekxEn/OIeJt3+67776EP59KZ5uBSk+dgQ+FEJkFAkFC+ENaIh9VykILBAIxfqu00KrValbmzj/npEmT4PF4sHv3buTn50Oj0eDss8/GvHnzDvtAV15ejqysLAwfPhwAMHXqVFRWVmLTpk1d9uUT9AwHO+DT90lEkkgkMdmF8WNEp9PhvPPOwxNPPHHY9+F2u/HOO++gpqaGjcXc3Nwj/8U4nnjiCTQ0NODss88GAMybNy/G9qC4uBhlZWWYOHEihg4d2mcOCoFAAEC7wExl5Py/JDBLJBLYbDY4HA64XC60tLQgEAigubkZgUAAbrcbra2t8Hg8nWaJUMayUqmEwWBAMBhkNiM6nQ6vvfYagsEgrFYr0tLSoFarccIJJ+DRRx9lwrfb7YZOp2MZzhKJBIFAACqVCtFoFH6/H2q1GgBwyimnJLyPpqYmbNq0CcuWLQMAXHzxxbjjjjuwf//+g/okC7pOvL83cMDKgoKUwWAQPp8PXq+3Ux/dRA0jZTIZW5MikQg8Hg/cbjcuuugiBAKBmPXmrLPOwt/+9jcAOGyhubPxIzgy+H0EQeuBVCqFz+frYDMUXynFlzNTEIGCZASNMRKzI5EIvF4vC1KdddZZ8Hq92LdvH/Ly8qDVanH22WdjwYIFRyQWiHHSe9CcPXnyZOh0usP+eYlEgsceewznnHMOXnvtNfzlL39JmJEnEByMROebo9m7AmIe6QniBWbepk0ikSAUCsHtdiMQCLCgJm+vRIlVvL0XPS8FtP1+PwtkH+oMnOpjJP6cM23aNFx66aUdbN/S09N79D5Snfj96pEGGbp7jPTkGfhQCJFZIBDEQNHa+PIhWlz9fj/cbnenGUW00LpcLvh8PphMJlbmKpFIsHbtWgBATk4Oli9fjtzcXJZlJpfLcckll2Dv3r0Jn/t///tfTJnNkCFD0NzcjPXr12PChAn49NNP4XK5sH//fiEyJ4lEGWmJMpYpO57GGflhKpVKrFmzBhKJhI2RQYMGxVzjcMZIeXk50tPT8cQTT+Dbb7+FRqPBnDlzcNpppx317/q///2vw9fibQ/6mscjvX8BQKlUwmq1AgDL3qBNtFKphNvtZtnKLS0tCAaDaG5uht/vh81mQ2NjI3vejIwMZGVlQaFQwOv1oqWlBa2trfB6vfB6vQCAtLQ0jB07Fs3NzXC5XHC73XjggQfgdDrx+OOP4+6778aYMWPQ2tqKXbt2YcqUKbjmmmtQVVUVM7ZovlmyZAmbXygA1hnV1dXIy8tjgS6JRIJBgwahqqpKiMxHCc0JvJBIthX0Wnm9XrhcrhgBmuaNUCgEr9cb8/OJ0Ov1yMjIQDQahcfjgc/nw5IlS6BWqzFixAgsX74chYWFrDml3+/HlVde2eW5RNC98IEr4EDmslwuh0QiYd7uQLtITMGo+EM7jR2PxxOzL1Gr1SxYxVdMRKNRuN1uWK1WtlZ9++238Pv9GD16NJYvX47MzEy2FzrcfYmgdyGR+Ywzzjji5zjrrLNYNvNzzz2H+fPnd9ftCQYIic43R7N3FfQMtIcFAK1Wy/Z8kUgEzc3NcDqdh3wOOqvQB/UDoSotsl0KBoPMUoJ+rq+NkUTnHCLe9q2/E9/n4WA9QyjwzdsCdqUnSHePkZ48Ax8KITILBAMcPhqbyGtZLpdDLpcjGAzCZrN1OBDSoZBEHhIUKNvR7Xaz8naivr4ewWAQgwYNYuIVTdKffPJJl+/dZDJh8eLFTIiaPHkyRowYcVReioLDhx8/8eJyZ/6nJCAplUp20OfFZhIt4xdX4PDGSDAYxL59+zBixAgsWLAAW7ZswYwZM7Bjxw6RrZSA+M0SHwQg8Q4AsrOzsWrVKkgkEpZ1SkJiNBpFY2MjJBIJZs2ahYsvvhh5eXkdruVyubBr1y789NNPWLZsGdra2rBixQo89NBDqK+vx9q1a7FlyxbMnDmTbejUajXy8vJQV1eHPXv24LPPPsPWrVsBtAvZ4XCYNVuk8ndeLDoYnZVJCo4MPuDE++HyjdXC4TDa2tqYgCyRSKDRaKDRaBAIBNDQ0BCzJsXbrFDFRDAYZELjoEGDYLFY4Pf7YbVaUVlZGTOXKJVKNq7//e9/iyZvSYAseWhcUDNPeg8GAgE21+h0uhjLG8LlcsFqtcaUL8tkMuj1ehgMhpjSXh6JRAK9Xg+FQoHa2lp4PB5YLBZUVVUhGAyiqKiI+cjTvHE4a46g9wgGg1ixYgWAoxOZJRIJ/va3v2HmzJl4+eWXce+99w74zDzBkcGfb+IR80hyIfEXOLDm0NcbGhpYwgPfcJpvXM1bPFKfEoLWHpPJxK4TDofhcrmgVqtjsprFGOk7xFdtH87P8RXhwIFzL1+91xndNUaSeQYWIrNAMACJF5UTlXnwkyCVHgPtk6RWq4VCoYDb7WZfp6wh+lm5XA6bzQafzwedThcTwfv1118xZswYdi90TeDwo7innHIKVq5cCaDd3D4nJ4fZZwiODH588A2WEi2IfLkYwdtf0M/wpezRaDSm7IyaLPGC1C+//IJjjz0WwWAwRnwADm+MFBUVQSqV4uqrrwYAHHfccSgpKcH27dtx6qmnHu2fqt8R3zAr/t9oNAq5XM6yPdLS0rBv3z5Eo1E0NzcDAFpbWwEAt912Gy699NJOr6XX63HCCSfghBNOwI033ojnn38eS5cuxfvvv493330XkUgE69evx3fffYfRo0cDaG/Od+GFF6Kurg4tLS249tprsXXrVnZf5PkMAB999BEGDx7MxvHBKCwsRE1NDUKhEHue6urqhBs8wcHpzBYjXkikDHiywKCsU6lUCpfLhbq6OgDth8G0tDTo9fpOAwV+vx8NDQ3w+XxobW1Fbm4uyy7auXNnp81gL7vsMpSXlyf8nsgs6zlonpdIJFCr1R0yfPjDfiILBJ/Ph6amJgAHmqzqdLoOFl0HI34s7dixgzVNin+OVMsuE7Tz448/wuVyISMjA8cff/xRPdd5552H448/Hps3b8YLL7yAxx57rHtuUjCg4M838Yh5JHmQRRKtO7xPsN1uh9frhUQiQW5uLqLRKCorK9HW1tZh76hUKpkdJCVZBYNBhMNh2O122O12GI1GmEwm9nXKalar1ZDJZGKM9AEoSYISbAi+aTnZtdHjEz0HBSZIbwkEAjFJFXyWO/8cP/30E4477jj4/f4OlcB95QwsRGaBYADBe0bFQ43Y+C7uAGIEZhKSXS4X6uvrYyZEav6Vm5vLss2o1DkQCDBPVACora1FQUEBm8QBsGyyw43i1tfXM3+hxx9/HNOnT0dZWdlhPYegnURWF4cDlQTRaxkKheDz+Zh3bqJFWC6Xs8YQ5GEWCoVQV1eH/Px8JlZRkybg8MZIRkYGTjvtNHz99dc455xzUFlZiYqKCgwbNuyIfsf+zsHKufjXjyL6tOlRKpWIRCJQKBRoaWkB0F6C3FVUKhUuvfRSLF26lGVBFxcXY/369aivr0dBQQEAdBAuP/74Y2zcuBHhcBhZWVkIBoMxmczxQazOyMrKYh2Xr7/+eixevBjFxcXCKuMwofc8IZVKYywQiGg0ira2NkQiEcjlclgslpisIhIQjUYjcnJy2M+2tLSwYEZeXh5MJhOA9vGTlpbGsj8AsGzUhoYGtumORqMs214ikeCTTz5JWlf4gQwFJnnLlETf7yyowGej5efnH/ZrGI1G2TylVCrh9/tj5hma345kzRH0Ht9++y0A4LTTTutSKfLBkEgkeOSRR3DxxRfjpZdewgMPPMAayAoEXYXON4kQ80hyIMst2g/ylTF+v58lRmRkZMDpdGLv3r3ssSQoUpIMiYQOh4M9P1XP0OMcDgecTicMBgO0Wi0TGalZdXV1tRgjKQz1doiv3Kb9Co0nn88X09Q8Hho7VH1HZ2M++aqz7Oiamhrk5uayjHmqAlQoFH3mDHx0K7JAIOgz0OGaRBrKOKaoLE1e/Ead/JeB9kVZr9fD6/WiqakJ0WgUSqUSZrMZZrMZMpkMgUCAHdyAA02V4kXLSZMmYc2aNbjqqqvYvRxpyfIjjzyCY445BmVlZaisrMRbb711RM8z0AkGg/B4PDGvFS2O5DnGe5DxXmR8aZnX60VbWxsaGxuZvxkv6lCWO40zslRpbW1FY2MjHA4HpFIppk2bhh9//BGzZ89mGQiHU6rE83//93946qmnMHr0aFxwwQV44403eq3xQV+Db6jFf85H3En0B8BK2kn04QNKlInaFaLRKBYuXAgAGDVqFKLRKDZu3Aigfb5Yv349/v3vfyMrKwu1tbUAgPT0dNjtdoTDYchkMjZ2abMnl8vZJpHu/fbbb0dBQQFqamowY8aMmIDU66+/jtdffx1Dhw7FggULxFxymFDGDtD+9ybbi0Sd1p1OJ4LBICQSSYzADIB5JkskEmRnZ7OftVqtqKiogMvlgsvlwt69e2OCDjQWKeBhs9kAAFOmTMHatWtxzTXXsIAX0C5MH644ebDxczRUV1dj2rRpmDhxIhYsWIB169Zh/PjxmDZtGioqKgAADz/8MCZNmoRbb721W66ZTPi5JNHhjPYObrc74byv0WgAoMNh/1CQH3NtbS3b2xgMBni9Xpx00kn46aefcPXVV8c0fDoSemqcCGJZvnw5AHSbv+QFF1yAwYMHw2az4cMPP+yW5xQMLOh8c8011xz1c4l55Oihsw1VufEe/V6vlyVMaTQaOBwO7NmzB9FoFEajEWazGT6fD7W1taiurkZNTQ0aGhpgtVrhcDjgdrvh8Xhgt9tRX1+PmpoaeDweJkg7HA40NDTA5XKxirpgMIgxY8Zg9erVYoykGGRzwvedUqlU0Ov1UKlU8Pl8aGxsRE1NDaxWK9xud6cJVED7npiaoDscDrS1taGtrQ2tra2w2+1wu93w+XwxTShp33zKKafgxx9/xM033wzgQCb+oXqTJCJZZ2BJVJgOCgTdhsPhgMlkYuUyqUQoFGKHa4qqHeyATV6ZtPhSdmBtbS18Ph8MBgMyMzNjosE1NTUAgJKSEkilUtaQR6FQwGw2d3o/fJZqfyfVxkh88IEyD+PHR3zZDzXto38TNYKkEnnKUo7PZqQF2O/3w+fzxUSNTSYTtFptTHMo8msdCJmHyRwnJOgrlUo4nU4mzNHr5PV6kZWVhQ0bNrCNtNVqhcvlYkGm3377DVOmTMFjjz12yNcrGo3i5ZdfxuLFiyGTyfDKK6/AarXivffeg0KhwIMPPohFixYhEAhg1qxZ2LlzJ3w+H04++WS2wacGowqFgomHGRkZzOM7kadrXyfV5hLaLMtksk5tC8jX2263AwDMZnOHbEGXy4Xa2lqoVKqYTPLdu3fDbrcjIyODjbNRo0ZBo9EgFAox2xZq7ufxeCCTydg6xWemUFA1Vbj33ntx/vnnY+rUqUww+/jjj9HQ0IAXXngBDz/8MO6//34sWrQI999/Py666CKcfPLJHZ4n3ifS4XCgsLAwZcYIQQcmACzYzY+XSCSC1tZWNu8bDIYOQYHW1lYWSNBqtTCZTOwxfGNZ+ggEAjHrDNls0OdkzUFe0VRlI0hNXC4X0tLSEAqFUF5ejsGDB3fL8z777LO49957cdxxx+GXX37pd+vGkZJq640g9Ui1MRIKhWKax9L5IRQKobW1ldm+yeVy+P1+NDc3MzG6oaGBCXrkq8tbr/H+unQ2USqVrJmgTCZj/6f1TaFQQKfTsb0Hf08DhVQbIwQ1EaazsFwuZwkzLpeLNTkn6DWkMyzv3Q3ENv6jSnGyvKCzSqLXXaFQwGAwsJ4ydG9kuQKgQzPjVEXYZQgEAwTKBqLS5YMRiURgt9vZQYv3RKRJzmg0xkyQJBTTYsw3d4oXIHmbjPjsaUHvQc0r+LFBCx8tanw50KHgF1HgQHMnp9MZ40lFWc0ymQxKpRIajQYmkwkSiYRlONpsNoTDYRgMBqjValbqFgqFUkoc6o/IZDL2eqnVavj9fvZeVigU8Hq9aG1txaBBg7B//36YTCZYrdYYQUYqlWLVqlX49NNPMWvWrE6vFQqF8Nxzz+HLL78E0C62abVavPLKKwDafTJ3796NQCCArKwslk2g0WiQnp6O+vp6dj0A7B6oRBFAh+CGoGfg55FEf+9gMAiHw8FEUGroFk9nWaS0ZlBDN5lMxl5vm82GaDTKPA/pYGk2mzsIzGq1+pBrYG/z0EMPMesPysy3WCywWCzYs2cPNm3ahEmTJgFoz8xev359QpF5/vz5mDt3bq/e+5FApZ9kaRKNRmNEZKlUirS0NNjtdlZ+LJfLodfr2euflpYGqVSK1tZWeDwe9pp35dp0sOcFZo1GwwRmCpAKUpdVq1YhFAqhuLi42wRmALjxxhvxyCOPYMuWLZ2+zwR9B+olQftPvg8NX6VFdoFir9A/4Jv8kZgLgGWT8mOgubmZJVG4XC4mNlJyBQXF+WZuvIioUCigVquh1WpZdTA1L+a/r9FoEAwGodFooNVqWSWnVqsV5+AkEi8wazQayOVyOBwO2O32mMC0Wq2Gx+NBY2Mj25PyQYhE8wtZZcSfRbRaLXQ6HTQaTUwT69bWVrjdbmRnZ7MztVqtZsHzYDAoRGaBQJA68NHXgxEMBpkoKJFIOojJcrmclUXzPstAR99TPgrHw1t29IWJsr9CiyIAlmkMtEdmbTZbQmGZIvRSqZQtdsFgkPmUHU5xDGUyu1wuNDc3Q6/XIzc3l230nE4n25zxzTWEyNyz8MEhEvHoIEY2OYFAABkZGaisrEQkEoHBYIDD4UBaWhra2towatQo/Prrr3jxxRchkUhw0UUXdbhOIBDAE088gR9++AFSqRT33XcfTjnlFMybNw/BYBCjRo3ClClT8NprrwFoF9eqq6sBtFdLtLW1AQCrspDJZEwg0mq1TMxMNUGxvxO/DkSjUVZaShgMBva6xUPzDr82UMUFcKApnNFoZGOSDoFpaWnsOhqNBiqVignMlG2Uioc5i8UCAHjjjTcwduxY/PLLL+x70WgUTqeT/b10Oh1cLlfC53nwwQdx9913s88pkzkVofclBTp9Pl9MVZNMJkNaWhoTkEOhEGw2G1QqFQwGA6RSKcuEt9ls8Hg8MQFtEo34bDMAbG9Dj9Hr9ZDJZGy+oAOdEJtSG96PuTtJS0vDpZdein/+85/44IMPhMjcB4lEIjGVdoezL+UzVIXo3HchwQ84YK/U0NDAgpEymQwulysmkOl2u+H3+5klF3kwUzA0GAx2SJriK+ioIaBOp2ONislqkmw7DAYDgPbzF2XyktAszsPJgU+kograuro6JiJTkMJut2P//v0saEW+zGTHcihob0EfAFjFXX5+PgoKCuDxeNDW1sa8wjMyMtjPKpXKGDE81REnL4FggHCoCZAWQDrIS6VSmEymDouewWCA3++HzWZjh3x6fhIs6Wfoe/GLssgwTD4UNQXaMwPpwO/z+VgTDBLrqLRcIpGwBZA2YIlI9JrGe4DrdDpIJBK2oXM6nXC5XNi3bx9KSkoQiURYWT1lxSfa4Am6H/49LZVKmais1Wrhcrmg1WpZIKK0tBR79+5FVlYWnE4ndDody1Y9+eSTsW7dOrzwwgvYs2cPbrvtNiaUORwOPProo/jll1+gUCjwt7/9DVOmTMGbb76J1tZWZGZm4sYbb8SuXbsQDAaRmZmJsrIybN++HUB70zdqDqdSqRCJRJgwFN9MLBVFxf4IVUBEIhG2BlCDP8ooUqvVMBqNBxX+6RDIZ8Y7nU6EQiGWAQscECmDwSBCoRCbr2hc6PV6lpFP107lsfD+++9jyZIlWLJkSUzTTBJCyYvc7XZ3WmZK1kR9BdoDkCUSVSnQGiKRSFimj8vlimkkazQaWW+ArKwslmVG8xaVRXs8HpahTM9Jh0aa22jfQ9nxYl+S+pAf84wZM7r9ua+88kr885//xEcffYTnn39eBCpTHDp/kDVOZ/tEPqOZ5gogNqNZJpMxcZEsDshCTtB3iD9nWq1WeDweSCQSqFQqVFdXIxQKwel0wuFwIBAIoK2tjZ2DPR4PW5fIto/WHt42gyoyqbcRefjabDbo9XqYTCZ4PB7odDqYTCbYbDbWENBms7GeRm63m/WwEPQe4XCYBZjVajVCoRAaGxvZPoKsPcrLy1k1rdfrhc1mY+dot9vNhGp+fPABK7Lfop8H2gOaJpMJ4XAYVVVVsNlsKCsrg1KpZF7eWq2WVfzxCUCRSCSl97OAEJkFggEBLzDHH57C4TBcLleMmTwtkokmMKPRCLvdjmAwCLvdjrS0NADokEHE/0vfp6wzfnEWJAf+UE2bGvLhBtoXW7PZHNOgqaamJiaDTiaTMT9Ur9fLmmB0lbS0NBQVFWHQoEHM09vn86G6uhrFxcXw+XwdsuZJxEr1xbUvQ4ct2sjwZX8EiTMFBQWoqKhAKBRCXl4e6urqUFZWhl27dsHlcuGKK67Av//9b3z55ZdYs2YNTj/9dGi1Wnz55ZdoaWmBRqPBvHnzMHbsWJSXl2PDhg2QSCT4/e9/D61Wi/379wMARowYAQBsM0hCNxBbpUFl93zASwhGvQM/ZggS+ID29ztlFHWGx+NhmcgUkIhEIqisrATQ3imbnsPlcnWwXuLLGhUKRUw2eyqvNz/++CMWLlyIzz77jFkItbS0oKmpCcXFxRgzZgwWLVqEO+64A6tWrcL555+f7FvuNsjDm4TgQCDQQSiXSqUwGo2sOVM4HGaBblob4puWejyeDusVZZtR0JLGJnAg2Crmi9SnubkZW7ZsAQBMnz6925//tNNOQ2ZmJpqbm7F8+XKceeaZ3X4NwdHDV9PFJ9JIJBJWZcf7mR4KClRTdirNSSQmijmib8DvBagKBmjPaqY9q81mg9vtht1uh8PhgNfrZZZ91DeALC0oMEG2GnyWK2WmyuVyloilVCpZkNNsNrNxlJ6eDqfTyYLiNpuNWT9RPxQR6OwdyCYDOBCMaGpqYtZrNFYo2EBWgeFwGG63G263m/l6U2CKKiiAAwFtsimlPQrtY8m6paCgADKZDA6HA9u2bcPQoUNhNBrhcDjQ0tKC3NxcZi1KdoZ8k/VURYjMAsEAIFFUn/yq+EMYeUod7DBOTdlaWlrg9XqZyMyLfuFwOMbgnkrXlErlQQVvQe/AZ53zUXO32818uNPS0mK8lSsrK+Hz+SCRSGA2m5kPb3V1dYdutyRck88dWV4AYBkCXq+XLbBFRUUoKSlBUVERysvLmQcaZc5ShJ/PlBQic89C71vyZbbb7QiHw9BoNPB6vTAYDKzZX3FxMcrLy5Gbm4u6ujr4fD6UlpaivLwcDocDzz77LP7+97+juroan3zyCbtGQUEB5s6di9LSUgDAd999BwCYOHEiioqKAIDZIFDzNtpg8eViNKfQv3K5POaAIegdZDJZzAYbABOMSSCMh97PwWAQLpeLVVEYjUZ2wK+oqIDP54NcLkdeXh4AMJ9lp9PJsgwTrS1dtYlKNk888QQaGhpw9tlnAwDmzZuH8847DxKJBO+99x6Ki4tRVlaGiRMnYujQoZg8eXKS77h7oQx1ah4Z3wiQUCgUSEtLYw1JHQ4Hq7bgoabDQLt4rNPp2CGP9j6893d89YMgtaG1YvTo0cjKyur251coFLj00kvx6quvYtGiRUJkTiEosBgIBDqcbeRyORMFaT8LHMhWpPUpPhgKgJ1ZSBQi6x6FQgGNRgO1Ws2sdkR2c+rDr/0OhwNA+/u6qqqKJdS43W40NzezqkkSed1uN7xeLxOSKZjR1tbGRMV4VCoVLBYLs1GwWCywWq1MYKZqUJvNhvT0dDgcDha0sNlsyMjIYEIl7bXFmtSz8HOISqVCU1MTIpEICzLt2rWLZS9brVZmjUH2XKFQCC6Xi2XEH6xiXKPRsCq+5uZmAEBWVhY0Gg1qamqg0WiYnrJ9+3YMGjQICoUCwWAQjY2NyMnJYdnQlG2f6vsWITILBP0cmiCBA1l90WiUlZ4C7Qsv+RLS5o02W/GZgHxXeH5yI79LivRlZWWxzRiVGYlGOqkBjQeKihL0uvJdbQGwcneZTIbi4mJIpVJs27aNCYBKpRJGoxFutxttbW2wWq0Js0bS09NRVlaGcePGIRgMoqqqCnV1daisrIRCoUBhYSEyMzNRX18Pq9WKkpISlmVPzbDokCDKV3sW/m9Nft0k/ni9Xvb3dzqdLDjgdDpRVlaGvXv3YtiwYaitrcW+ffvgcDjwzjvvYO3atdi0aRMCgQBGjhyJGTNmsIxFn8/HMtNOOeUUdh/xFjxkx+FyuaBQKJhYRFnMfGALSH1xsT/Bl/KReMz73AGIyR7iPeF5dDodsrOzEQ6HsX//frS2tkIikaC0tJQFxTIzM9HU1ITKykoMGzYMAGLsdMgmgw+UpTL/+9//Onxt/fr1MZ/Pmzevt24nKXQ16ExZzWTL43a7O+wtqKKGGuvwz80fLEVmYt9k6dKlALrfj5nn4osvxquvvoovv/xSBLaTDJ1jyBqJh84pXq8XTU1NbO9JYjQJzvQ1yjbkm1ADBxpXU5IEZTRTfwfy19VoNDHZzZSlKMZH6sAn0lBDcaA96E2CoMfjQUtLC9xuN1pbW5llpMPhYGOMeiX88ssvrCpKo9HghBNOQHFxMWQyGaqrq/Hjjz/C7Xajvr4ekUiEWSyYzWbWtLapqQklJSUx1TN2ux1ZWVmsMicrK4tVcJLFhlibeoZ4mwyv1wu/388yzHfv3s3GUW1tLSKRCEuMCoVCsNvtcDqdLBnH6/WyOQRoH4Okn9Bel87YFosFCoUCjY2NrMmx0WiE1+uF0WiEwWBAZWUl0tPTmcUGCc3URJDu/1DVgclEnNIFgn4O3/xALpezJkm0ESOT+6amJjYB8lAkn36WzwAymUwxj7VYLKitrYXL5YJMJkN6ejrUajUrL4rvoMtv8AS9B5/BRfDepfGlynw2qVwuxy+//MJe4/z8fNTU1GDjxo0dMgm24760AAEAAElEQVR5L+VAIACr1Qqr1YodO3Zg2rRpGDZsGDQaDcrLy7Fv3z5kZGTAbDazrr0UmAgEAvB6vcwvi/yuxNjpOeK9v6j0Lz5DNBwOw2g0std5xIgR2Lt3L/bv348LLrgA//73v/Hpp59i1KhROOWUU2IEZJ6ff/6ZeS8PGjSIfT3+eiQuJcpgJS9gCqTxPy/oeeLtkajCgQ7gHo8HdXV1CYVlskwwGo3Q6/VwOByorq5mB7KSkpIYH+L8/HwW/KIsEApw0pzhdDphMBiYMCGEotSFypCBrlnc0PpC2YmJng84kJ3IQ+OPspUEfYtQKMSCMjNnzuyx60yePBkGgwFNTU3YuHEjTjzxxB67lqBzSJyJt+QjIdjpdDJ/VODA3NDU1MQyWPneH10JOJLArNFooNPpoFKpoNPpEAgEWJM2Enf4QLgIWqUGvGcyrf98fwiHwwG73c56zNB5gyqpysrKUFhYiEWLFrHzz/Dhw3HttddixowZHWwKPB4P3njjDbz11ltobGyE2WyGx+NBZmYmQqEQFAoF8+iNRCKw2WzIzc2F3+9nFTx+vx9erxd6vZ41saUeBYLuhbfJoObAjY2NAMAEXrL2rKmpQSgUQnNzM1wuFxwOB2w2G8tiJi/vQ80rUqmUJd9R0hTNIxRkMJlMiEQicLvdLMBhNBqh0+kQDAbR3NyM7OxsqNVqlqjBN0tONYTILBD0Y/jmbiTI8AKzSqXqkHVKkTi+QQZlIhNyuTzGG5NQq9XMx46uk5mZyUo+nE4nTCYTE4FERmpyoE1xvMUJ0L7g8l8PBoMxGc6//fYbXC4X5HI5TCYT1q5dyw752dnZrAETicFqtRo5OTkwm82orq7Gr7/+CqfTiS+//BJnnHEGCgsLYbVaYbPZsG/fPowcORJGoxE2mw0OhwNGo5F1d9bpdADAFv++spH3+/247LLL0NLSguuvvx433XRTsm/pkNA8wFvd8B2UQ6EQi6ZHIhEYDAbmLadWq+HxeFiJ/969e/Hqq6/irrvugtls7nCt2tpaLFmyBAAwdepU9rpStgAA9tpTAIT3I0vkxSgymZMDze28V7JSqWRicDQahVKphMViYRnytN643W44HA7s37+frTcKhQKDBw/u0OhOLpdj8ODB2LVrF6xWK9LT0xGNRuF0OpGeng6g/eBHzf5I9E51D7uBSHzwOlHFE78fIT9CGiOJGh2S1RI1qOUzwqRSKbPciV/vBKnPmjVrYLVaYbFYMGXKlB67jlKpxBlnnIHFixfjiy++ECJzEqAG0LTG84Gh1tZW2O129j2FQsF6xlCTLlpb6urqWHUNCXpUIRff/A8As+AhD3eVSgWTyQSn0wm9Xs/EZp1Ox+YWPpuR/HkFyYEC3AqFggUayLfb4/EgHA7D6XSyhm2RSIRZGFx55ZVoaWnBK6+8AqBdcP7zn/+MKVOmdHrm0Gq1+NOf/gSfz4cPPviAZcb6fD4oFAp4PB5oNBq43W6oVComItbX18Pj8SA9PZ3Zz5lMJmg0Gng8HgSDQdbQWtA90BiIRCKsAtvpdDLhl5LiALAMZnpt7HY7Wltb4fP52BkVOHAe4ZsWk3gNtGfQu1wuNDQ0AADz7tbr9VCr1eysSxnslN2ekZEBAMyehyxODQZDh/NZKtKjM6BcLseoUaMAAOPGjcObb77Zk5cTCAQcJA4DB2wRHA4HO/hLpVK2qFL5qUKhYJsu8v7hBUOyv6BFj4QE8mCmTZ5EImE+VzU1NSyaS6VrVP5BhzyxgPYenTVejLclIKgRoEajQWNjIxszwWAQGzduBACYzWbI5XLs3bsXP/30U8LrGo1GTJkyBTNnzsTKlSvR0NCAb7/9Fueccw6GDBmCn3/+GU1NTSgsLGQis8vlYoss36iQBIJUXVjj+eijj3DWWWfhlltuwVlnnYXf/e53fULsIqubYDAY0xwSADvAkfBDDUx8Ph+GDRuGLVu2YOvWrbjxxhuxYMEC1NXVYe7cuZg0aRJKS0vZxm7nzp346aefEAqFUFRUhKlTp7LnX758Ofx+PwwGAzIzMwEgxuKHRKlE3oqEmFuSg0QiiRGK6+vrEY1GodVqkZ+fz2wzqGyVLyEFDmR9ZGdnw+12Y//+/fB6vYhGo9BoNMjIyIDRaERxcTH2798Pq9UKg8GAaDQKq9XKMkJsNhssFktMQxbho5k6xAvMFBSgUlC+tD0RKpUKBoOhw9cpO8jr9TL/QvJDJMsfsv6iYIegb0AByfPPP7/HX7dzzz2Xicxz5szp0WsJOuL3+9legyohfT5fTEWMSqWC2WyG1+vFrl272FpisVgQiUSwadMmAO1NYylJAjiQhENnnvhKPDrTyGQyZtOl0+lYTxK9Xs9EIbPZzLINSRhXq9V9Zo/an+BtuuRyOfPmJu9csk/hz8j02p933nk44YQTcMEFFwAA/vCHP+CWW27p8jwzfvx4fPDBB3C73ax6y2QyIRgMxiRl0Vma7pe+F58URt8Xe5bug+xIgPbgAFV3A+3V2fv27QMAFoTy+/1wOp2sUs7r9aKhoSGmOWRdXV2Xrp2enh7zWre1tUGv1yMtLY1l06enp6O+vh55eXmwWq2Qy+WwWq0oLCxEIBCA3W6HXq+HXC5n95iq9OjqbDabsXnz5p68hEAgSAD5hQEHFjNeYI5EIiwCRxmCtbW1MdnKBJUxk8E8LeB0AIyHzO3T0tKYt1VDQwOMRiMrUaEFU2Qz9z58SSEvwCXa3Pj9flitVgDtGSR79+5lpTxWq5UJNr/++mtMNkh2djYsFguUSiXcbjeqqqrgcDjwxRdfYNu2bbjwwguxdu1aNDU1YdmyZTj33HORk5ODhoYG7NmzB8cff3yMjxUf0JDL5UxkpnLJVGfjxo2YPXs2pFIpRo8ejZ07d2LMmDExj4mvFqD3ZzKRy+XskEfjhS/5IzE3HA4zz123240xY8Zgy5Yt2LlzJ4477jjce++9ePPNN1FVVYVvv/0W3377bYdrjRo1Ctdffz0UCgVaWlqwbNkyVFVVAQBmzJjBNuyUCZCeno7q6moAiMk+ovEBdK3sXtB9kMclcMAPE2jf1JN/ZWZmJiorK9HS0tLh56k3gEKhQCAQQF1dHbZt29bpJtpisWDYsGFMaHY6nVCr1Wy90+l0bK3T6XQIh8PMtkmMi+QTLzBrNBqEQqGYvQoPCT8k/qhUKhYY9/l8bJyRF6JSqYRarWbNBFtbW6HRaFiJKnWM9/v9CIfDnTYbFKQO0WiUicwXXnhhj1+PGnFu2LABTU1NPdJkUNA5JBbyFSkkMCsUClYpuXPnTmZ1oFQqUVZWBrfbzRpEjho1Cj/88APLFJXL5fjtt98SzjO84EzNhtVqNctapoqbzMxM+Hw+1tjN4/EgNzeXJdT4fD62JxH0HnxCCq0HEokEgUCAfY9s4Gh/29TUBKD9/f7zzz8jGo1i5MiRuP322w/r2tRXxGg0wuVyMUGRqm00Gg2r/KMKUZVK1aG6NN4aRtA9BINB9p7XaDSQyWTM6oIsTfx+P0vCowz3cDgMq9XKfJmDwSDMZjN+/vlnAO1713HjxmHEiBHIzs5mQW673Y7q6mrs3LkTO3fuZOdpoD3opdfr4XK54PF4WFNruVyOtLQ0tLa2siQLlUoFm80GnU7H9Bfe0jBVETOfQNAPobIgoH3yI+8egiL5ZrMZTU1N7HMqHZFKpSyqRp12qXFGImQyGRMYvF4vvF4vGhsbmZ9ZOByGw+GASqWCUqmEy+WCXq9n9yrEoN6jMxsBPusQaBcOq6ur2eJbUVHBOjJT9qHNZmNjLS8vD1lZWTAYDFAoFDAYDMjNzUVOTg5CoRA2bdqE5cuXo7KyEm+99RYuvvhi+P1+2O12LFu2DKeddhrz0GtqaoJOp2MeeuRZ5vP5WNYaZdj3BU9NKrEEwH6veObPn4+5c+f29q0dFApQkacdiX/0fqcxFAqFmJ1BW1sbjjvuOIwaNQrbtm3Dxx9/jAkTJuC2227D/v378euvv6Ku7v9j783DoyzP/v1z9i0zkz1ACIQdURBQEQQUFahr3drXurUub6vWlm9rW6u1ttZqtWpbpa0WbW2t2lqXSq19XXDBIuICyCIgBAjZyZ7MviXz+yO/6+aZEBQ1ZOM+j2MOksnkeW4y19zLtXyuWuLxOG63m5KSEo455hjGjBlDZWUlK1asUA03bDYbp512GpMmTSIQCLB69Wo6OjrIy8tTUXxpUCo6iHa7vceAiebQY2woKgcoq9WqDv8+n4/t27erg57H48Hv96s1obm5mV27du138LfZbCpTzGw2EwwGaWpqoqWlhTVr1jBy5EhKS0upqKhQWSpSkup2u1UXbovFopzfOsOs/+ne2T0YDGYE2kTKorscjhwEJUO5p2A3oPYsUmpqMpnU/sTlcqkDv8xvIu+kD/UDl02bNrFnzx5cLheLFy8+5PcbNmwY06dPZ8OGDbz66qtcfPHFh/yemgMjUgdWq5VRo0ZhMpn44IMPaG9vx2w2M2rUKEaOHMnWrVtVpd3EiRMpLy8nEAiQm5uL1WpVCXDZ2dm4XC4CgYBqKByLxTI03a1Wq9JAdbvdRKNR/H4/iUSC3NxcUqmUcjRXV1czcuRIYJ/UXFZW1qA83wxGmTfYtw+RfQXsO+/Iv8b3Q869oVCIhoYGJk+eDMCWLVt49NFH+epXv3pQ719VVRV///vfga6MWAloRKNRtd8QyYy8vDzVjNDr9ap1T15ndDr3t+0cyA4Gm31I1jHsk90xJtxlZ2crJ7DNZlMVVLJPSSaTmM1mQqEQhYWFan756le/yg9/+EOloXwggsEgq1ev5qWXXuKFF16gqamJ1tZWTjvtNHbs2EF9fT1jxoyhra1NOZ9FXtTr9RIMBsnJyVHa3XLmGsg9ij71Tqqzs5PJkyfzwx/+MOP5l19+GbvdztNPP62eCwQCHHPMMcybN48333zz849Wo9F8IsYGbtIAScrHrFarmlBFD0oauI0aNYoZM2Zw5JFHqqYHxcXF5OXlqcYXxqZakk0qUXuLxUJWVhZ5eXlkZ2erA11TUxPRaFRF36TkWUqYABVt1hx6ZANmLL8yRnedTiednZ1UVVWpjU9TU5Nq3CdNDxobG1UmWDAY5J133uH555/niSee4C9/+Qu//e1v+dGPfsT111/Ps88+y9ixY7n66qspKCggFArxxBNPUFpaisfjob29nZUrV6rN+c6dO1WGfUtLi8oCEJuRjZjRSTGQycrKUg6PcDi8n74swE033UR7e7t6SJZuf2MMOsjfXTbqYkPRaJRhw4YB0NDQQDAY5Atf+ALjxo0jlUrx1ltv8Yc//IG3334bu93OkUceyfHHH8/UqVNxuVysWbOG+++/n6eeeort27eTTqeZOHEiV111FSNHjmTt2rW8/PLLBAIBXC4Xs2bNoqKiAkBJ98iY7Ha7mku0k7nvMGYuS4kq7Gs8a7VaqaurI5FI4HA4OOKIIyguLmbv3r289957bNmyRZUgWiwWsrOzyc/PV1URksXm8/k45phjOPXUUxk9ejQA1dXVbNy4kWHDhmG1WlUWmWS4dnZ2EgqFlI0MlnljKCN7B+iaY9rb2zOqJpLJJO3t7bS2ttLW1rbfo729XTXdkWv4fD7y8vLUHkQy1pPJJJFIRO1D5LAp2origO6eWa0ZeEgW8+LFi1X1zKFm0aJFAKxYsaJP7qfZh6zhxoxU2FeJJw3cLBYLxxxzDCUlJbzxxhusXbuWdDrN2LFjqaurY8uWLSpovmHDBqxWK+edd55qZL1r1y4aGxvV+UQQJ1MgEKCpqUn929bWRkNDAy0tLaqnSCQSIZVKUVdXp6oijFWlgw2ReVu1ahVPP/30fpJWAxHR3YZ9yU/ytfFf6QUhc0hpaSkAy5YtIz8/nyuvvBKAe++9l69//evs2rXrY+9bVVXF1VdfTSQSYerUqUo+QdY4GYfYc05Ojvp7ut3ujP4VcGD5wv7gQHYw2OxDPodms1mdKeXzbrVacbvdyvHf/Qwh5yD5vXHjxhGLxSgqKuKuu+76RAczdAUTTjvtNO677z7Wrl3L6aefruQ4pkyZQjKZpKioKOM+3Rufix1JtrUwUP0nn/oEZjabuemmm/j2t7/NjTfeSE5ODhs3buTLX/4yv/jFL/jyl7+sXrtnzx5GjBjBhx9+yJlnnsnmzZt7PFxrNJrewXjQl6wtieQ6nU5Vopydna20hWw2G5MnT8bpdFJbW8v27dt7LGX+NFitVoYPH052djbhcFg12hD9I9HmjEajSpt2sGSlGhmMkdzumy7Yl/ElWVxVVVXKoRsIBIhGo6rxQXNzs8psN2aeWa1WRo4cqRq7tbW1UVNTQ1tbGy+//DKvvvoqJ598MhdffDH/+c9/2LlzJ88//zwLFiygrq6OlpYWtm/fTl5eHpFIhJqaGpxOJ6lUimAwiNVqVY3g/H6/cjpJ9+WBGMUVZs6cyX//+1+OPPJINmzYwB133LHfaxwOR48NrPob0XMX3fXuP4OuCH1xcbGSPHnrrbeYPXs2X/rSl9i2bRvr16+npqZGZQsdCI/Hw6RJkzjiiCOIRqO8//77KgsWYPjw4Rx99NFUVVURi8VUSbwcHo06zbr0vW+R7u0mk0k58kwmk1p/JOPU4XAwceJEysrKVKAA9sk2tbe3U1dXpzJOesJutzNlyhSOPfZYRo4cyYYNGwiHw2zcuJEJEyYQDodJpVLEYjHlZBTpHpfLpQ7+g0EXfShidLxYLBbVdEeeN2ayy+faGOA2PqQRYCwWo7W1NcOhIwdH6S0h64Vc12q1qgoZY1PZWCymM5oHKH0plSEsWrSIe+65hxUrVgzYjLGhilQmSTKLBJWTySShUEjtP7OyssjKyuKNN96gqqoKi8VCaWkpa9euVRV3os+cSqXIz8/nD3/4g6qYmjt3LtOmTaOkpISioiK8Xq9yGK9bt47nn39eBbxyc3NpaWnBbDbT3Nys5Hukqgq6EjPEkRiPx7HZbINuPhmsMm+CSJ3AvvNO9wQJh8OhqjJzc3PZu3cvN910EzfeeCOFhYX85je/4d133+WCCy7g7LPP5rLLLmPixInqHu3t7TzzzDM8/PDDhMNhRowYwfjx49myZQuTJ08mFAopqUmjfRj3Hj31EDFm0vc3B7KDg7EPGBg2YtxzGBspyrhE1iQSiQD7V/yKb8JYAWexWKivr+fuu+/mW9/6ltpDHAzBYFBJtHg8HrXflftIskT391+CD8lkUiXXyB5oINhKdz5Tms8ll1zCz372M5YuXcpVV13FmWeeyWWXXcb3v//9jNeJvshRRx3FlClT2LFjB8cee+znH7VGo+kRY6dkyQ4CMhrd2O127Ha7ct6MHz8eh8PB2rVrKS8vV9cSvUNZIERg3ngP6cAsOodS8ppIJKiqqqKqqor8/HzVeCkcDtPR0aE657rdbuLxuHImGhfhwcBga+hmLGc36unKwup2u6mrqyMYDKoMZXEwS4m6bMiMGfGFhYXKiZRMJpk4cSKzZs0iLy+PLVu2sGLFCrZu3cqrr77K+vXr+cY3vkFOTg7vv/8+K1euZM6cOTQ2NlJfX68y5ltaWlRmc3NzMyNGjCCVSqnSMwlSyOZhIDpohQsvvJCLLrqIP//5z1xxxRUD2kZ6wqhzbMwalo1ae3s7sViMY489ltdee41AIMArr7yCz+cjOzubI488kiOPPJJwOKzmEjms22w2pZEqXZzffvttdW+TyaQ27ul0mrKyMrWhkkZA4lCWjaKxqYrm0GPcwBu7ucO+zXooFMJkMlFaWsq6detUQ9H8/HyCweB++pgmkwm/34/P51MyGZFIhIaGBsLhMBs2bGDbtm0sWLCA+fPns3nzZmpqatixYwejRo1SvQPE0SyHPAl0SibtYFpvhgrGgIRknEt2sWi+S0JKMBhUzmP5vU9zH6Mtit437KvesVqtSlJMSmjF0TzQg5eHG3v27GHDhg2YzWbOOuusPrvvvHnzcDqd1NTUsG3bNqZMmdJn9z7csVgsOBwO4vG4+kyKXmljYyM5OTlAl3OoubmZ3bt3YzKZGDVqFK+//rpqNi57WXH6iq5zaWkp8+bNY/LkyUybNi2jiajdbmfcuHGMGzeO008/nZtuuony8nIVSI1EIpjNZrKysmhtbcXtdtPa2kp+fj6BQACn06n2TpFIBI/HM6jmk8Eq8ybIeRe61gKRIMjLy6O5uZnc3FzVMDgYDKr3p7GxkR/96Ed861vf4rnnnuPee+/l9ddfZ/ny5SxfvpwRI0YwYsQIgsEgO3fuVHvjGTNmcPbZZ/Pkk09isVg4+uijWb16NaWlpYRCISUXCV3OTbHrUCik1iVxenZ3NvcnB7KDg7EPGBg2ImdfY+ABMp35sg8BMqrBYV9QQH73vffe4+KLL+axxx7jvvvu46GHHmL+/PnMmTOHY489liOPPHK/c14wGOTtt9/mX//6Fy+88ALJZBKv14vZbKa8vByPx6P8MiJTKPfvntFudIIbk8cGGp9pd221WvnhD3/Ij370I5599llmzpzJ0qVLM14jE67D4aC6upqtW7cyduzYXhm0RtMXDLYsVTk4wz49IaMEgmQn5+fnU11drb7Oyspi48aNysE8ceJEbDab0r77tJPXiBEjmDhxIhaLhaqqKpqammhubqa0tFRlEhkzmV0ul9LMlOjcQCgROhgGU6TfmOVudMCJg9lmsxGNRlUTBNGmkwxmcTBLJrNs4N5+++0DNuaaOXMml1xyCd///vfZunUrf/3rX2loaODee+/lm9/8JieffDJvvPEGa9as4eSTT6a8vJzKykomT55MLBajpqaGkpISYrEYDQ0NFBUVEYlEaG9vV8GSeDyusuAHYiQXuj5/zz33XH8P4zMjDQChK/hk7HbtdruJRCLs2bOHSZMmsWjRIjZs2EBVVdUnZi4LxmYYQl5eHiUlJerAVl1dnbHxczqdWCwWlelo7NztcDgG1WEOBt96Y8ToNDSbzcrh3P3f/Px8tmzZQmtrKzabjdzcXNatW6eCDuLwFceirEmi3T1jxgxOO+00amtrefvtt2lsbOTll19m2rRpzJ8/H5/Px7Zt26isrGTkyJFKR09KY61WK6FQCJ/Pl9E8ZbDZymDGuA7BPukS2Rc4nU5cLhfV1dU9NiIWJCDtcDhwOp0q81gqL+x2u1rHWltbiUQi6hBstVqVQ0GCDSKzI3JMxoxmbR8Dg3/9618AzJ8/n/z8/D67r8vlYv78+axYsYIVK1ZoJ3MfI59l0Tj2+XwEg0GSySSJREL1kJH1Ijc3lzfffJNEIkFbWxvBYJD29nbC4bDScRc2bNig9JntdjvnnnsuS5Ys2S8r0Si3NG7cOMrLy1Vigzi/W1tblSRhTk4OjY2NjBgxApPJRGdnp0qsGSzzycHKvF1//fXq+0AgQElJSZ+NsTvG7M7Ozs6MStm8vDxCoRBer1f5qIxOXWkQnJOTw86dO/nVr37FhRdeyH333cemTZt49NFHeeONN6itrVVyGACTJ0/m0ksvxe/38/vf/x6Aiy66SJ25x40bx8aNG4nH4+Tk5FBXV8fevXsZPnw49fX1NDU1qb+ZMdAKHPBs1ZccyA4Oxj5gYNiIsYLX+PmTc4yxjxXsy2AWORXxS7S1tXHcccfx/vvvs3btWi666CLWrFnDnj17ePnll3n55ZfVdUtLSykoKCCdTlNfX09FRUXGPSZMmIDD4eDDDz/EarUyYcIEIpEIeXl5hMPhHscpvWjk+4E+l3zmFI5LLrmE73znO6TTaf7+97/v5xTatm0bV199tcoeuf/++w9Ks0SjGSgcTJbqQHEgQmYWs5SgQpeDSxyJEllva2sDupqaNDQ0sGPHDgCOOeYYNmzYwEcffaSuKQ/JQJSMY4fDgc/nIzc3l9zcXGKxGHv37lULcG5uLieeeCKtra3U1tZSXl7OiBEjVHa0zA3xeFxtDKSxmDRpGugMpki/MVggf1vRxoYux1xNTU1G88aWlhYlkWF0MKdSKRU8ADj66KM59thjycrKorm5mU2bNrF582bWr1/P+vXrmTt3Lrfeeis/+9nPePjhh1m/fj3Lli3j9ttvJ5lM8tZbb7F69Wq+8IUvsGnTJsrKyjjyyCMJBAI0NzeTk5NDIpEgGAyqjWEgECAvL0+VQQ7UcqGhgDh0xJkfi8VUho5USbS3t7Njxw5Gjx7NnDlzmDlzJk1NTUpSRUpepcGW/CsbaofDgdfrJTc3l5ycHEKhEI2NjezcuVONw2az4XA4Mpr8iZPZqJ02GLNTB9t6Y0SCm7IBhkwZBJEokDlEHL5r1qxRzunW1tYD/n8ikQjbt29n+/btvP7661x66aVceOGFvPfee7z33nts2rSJ9vZ2zjjjDKxWK5s3b6a6upqSkhISiQTxeFyVH5pMJjo6OpT0glTSaPoGaRAM+7K2RF5FyopF/9JisZCbm4vX61Wfe6mwaW9vJxgMsnfvXhUQ7Y7dbic/P5/hw4dTXFysqnFEdkka6lgsloy+EOKoFj1WLb0zMJBA7Xnnndfn9168eLFyMv+///f/+vz+vc1gCmqaTCacTqdKpInFYhQUFFBbW0sgEMDv99Pa2qqqY1paWlTDcgkytbS0ZKydxcXFjB49Gq/XSywWY/fu3VRVVfHUU0+xadMmli1bhs/nIxQK8cc//pHXXnuNzs5OPB4Ps2fPpry8XPUvaW9vV6+V6gebzUZWVhZ1dXUMHz5c7XcksWYwzCeDVebN6GS22WyqN5HP51MZq2PHjmXnzp0UFBRkNApsamqis7OTBQsWsHLlSv7xj3/Q2NjI1Vdfza9//WvC4TBbt26lqakJt9vNxIkTycvL429/+xt//etfATjllFM499xz+elPfwp0VQvv2LEjowFgbW0tkyZNor6+nubmZsaOHavGLfIqwIDIUD2QHRyMfcDAsBH5vMn+Q76XvV8sFss4P8p4JXgdCAQ47rjjeOedd4jH4xxzzDGsW7eOtWvXkpeXx2mnnYbNZuOjjz5i/fr1qol1dy3v4cOHU1hYqHwF8XicwsJC/H6/CkLl5ubS0dGhHPEy9xkT8CQQbqxOHoh85pPYt771LaBLd6gnZ9AJJ5zA5s2bP/vINJp+5mCyVAeKA9E42YiDRTZUTqeTvXv3Al3C8+IYlGZ+0pRz9OjRrFq1SjkaLRYLFRUVB4ykRqNR2traqKysBGDs2LGcc845tLe3895779HS0sLy5cuZNWsWRx99NBs3bqS2tlZ1hI5Go2qs8q90kxf5g4E6cQqDKdJvPEDLAitZZKKdKiXmUl4YDAZpa2sjHA6rfzs6OqitrVU6vD/5yU961OGqr6/nH//4B0899RSrV6/mO9/5Dg8//DDf/OY3ufvuu9mxYwevvvoq//M//8Pu3bupra0lHA5TVFREfX09iURCNRAbMWKEar6Sl5ennG0dHR3KGTAQNmNDGamOgK7Pq8w5HR0dSqNQmnK53W61OZNyVylDl42S1WpVTmLRj5fggcxX0GWvknUotisZzFLqLlnMIp0xGBlM640RCfBAl41IQNP4c+jKCJFMM7PZzJYtW1Q2cWNjo3rNUUcdpRq3jRo1SpUif/TRR6xatYqGhgZ+97vf8Y1vfIPZs2dTUFDAyy+/TEVFBf/6178455xziMVilJWVUVdXR0FBgXIWit1IyWwsFlMVP1pepW8wlq1KgFACEy6XS9lIQUEBI0eOxGKxEI/HqaiooLq6mtbW1gOWEEugWuRbEomECnqbTCaGDRvGqFGjcLlcNDY2Eg6HVVm70+lUQQiRVZHxSkBL0380NTWxatUqAM4555w+v780/1u5cqUKPAxmBpvUm8hhSRWdxWLB6XSqagNAVUi0t7crOQtj7xCn08kVV1zB2WefzfDhw/e7x3vvvcdNN93ERx99xPe+9z0eeOABfv3rX/Puu+8CXU61q6++mldffRXoahZntVrZvn07drudjo4Ompub1VpisVhwu93U19czfPhwlaQzWCokBqvMW3epCXEyd3Z2kpubq/SyRSbjqKOOYv369dhsNkaMGEFtbS3Nzc1cccUVPProo7z++us0NTXxne98B7/fz3HHHaeuv27dOn7xi1+ozOYvfvGLXHbZZSoQajKZGDlyJKWlpWzbto29e/dm7JdFFiEcDuNwOIhGoySTSeXklOqa/rSV7nbw29/+ljPPPHNQ2Yf4GKSiwOVyqeQWce7LvJ5IJNSZorW1lSOOOIItW7aQTqcZM2YM5eXlJBIJzjzzTNavX09dXR2vvfYaJpOJGTNmcMstt5CdnU1TUxMNDQ00NTXR2NhIZWUlkUhEyewMGzYMv9+vzuBFRUVkZWXR0dFBTk6Omkfy8/MxmUxkZ2erYLrX683Ivh6oiTWfaVS33HIL//nPf3jnnXdYuHAhf/rTn7juuut6e2waTb9yMFmqA8WBaMwOkowt6Dp0GfUy3W43e/bsAbomrl27dhEMBrHZbFRVVVFTUwOgGlyk02k8Ho9yPCaTSdxuNyNHjmTq1Knk5eWxfft2PvjgA3bv3s3999/PV77yFa699lrefPNN1q5dy3vvvUc8HufYY49l7dq1VFZWMmnSJOLxuHI0S9myNOAx6uwO5I3YYIz0Gw/oEoiw2+3U19fT2dlJIBAglUrR1tZGLBYjEAgQiUQIBALq58FgkMmTJ7N06VLV6K87RUVFLFmyhNNPP51rr72WLVu2sGrVKk4++WSOO+44duzYQUNDA2azmSOPPJLa2lrq6+uZNWsW9fX17N27l2nTplFZWanK2KSJpGTVplIpFYgYCNplQxkJAHV2duJyuVSJeSwWo7Ozk/z8fGKxGMFgUG2kPg9ZWVkZXbdlDMYmKk6nUzX1ku8H8nzxcQym9caIOJhFqkDWGtkAy/eynphMJnbs2EEymVSBK5vNRmlpKeXl5Tz22GPKEQldwcsvfelLnHrqqZxwwgn89a9/ZceOHfzpT3/i+uuvZ9y4cZx33nn861//ora2lpdeeokzzzyTxsZG1fBJMlXtdrtyGkq2UDKZVOvPQA9qDqbswwMh9iLztXzvcrnUQb2goIBRo0YBUFZWpgISgsvlwuPxkEgkiMVi6mAuchs5OTmMHz+evLw8WlpaqK6uVg0l6+rqcLlcTJo0idLSUtVEVCS8JBghZfkShJDse03/8MILL9DZ2cn06dMpLS3t8/tPnTqVwsJCGhoaWLNmDSeddFKfj6E3GUxSb4JUUMrn3efzZWQgylxiTDpIpVJqDfr+97/PBRdccMDrz5o1iwcffJArr7yStWvX8otf/IJt27YB8N3vfpeFCxeSSqWU0/mEE07Abrezfft2ysvLmTFjBs3NzbS0tFBUVERLS4sKRjQ2NjJs2DA1dgmQD2QGu8ybIImQHR0d5OXl0dTURCAQYObMmbz55pu0tLRw3HHH8d5776nql6amJurq6rjhhhv4zW9+w6ZNm1iyZAkLFixgxIgRNDc38/7776skq+zsbK655hrlgN64cSPQlTHvdDoZP34827Zto6KigmOPPZaWlhaam5vJyspSsi/CQDvLfJwdDBb7MJvNuFwuotGoqnJwu91YLBY8Hg/BYJBwOExWVhYtLS2qQjIajXL00Ueze/duJX/j8/nYuHEjZWVljBkzhsWLF2dU7q5fv/6A4/B6vYwZM0btK8THMnbsWMLhMOl0moKCAnw+HyaTiYKCArW3drvddHR0qKouaRY4kM89n3pH/cc//pFf/epX/Pvf/+boo4/mO9/5DnfffXfGQVCjGQocTJaqSEYYH/2BbK5Eb8jYhEn+Dy6Xi7a2NnWgdrvdfPjhh0CX83n79u2kUin27t1LW1sbdrud9vZ23n33XdatW8dHH33Erl272Lx5My+++CJ33303jz/+OGeffTa//OUvmTVrFp2dnfztb3/j7bffZvHixZxzzjmYTCY2btxIIBBgzJgxQFdWitFRKOXzorsG+2s3DkQuvPBCVqxYwaxZs7jgggsGdCTXKJHRvbmBBCkkK1EchxI1FXsqKSmhtraWnJwcfvOb3xzQwWxkwoQJHH300QDs3buXZDKpMpJKSkro7OxUJUU+ny9DQ02yySSrWcZs3IR17wKsOXQYs7dEE1lKP6WJWkFBAQUFBeTn56tHQUEBhYWFFBUVMXz4cNU4pbCwkJycHNUgsLCwkNLSUiZMmIDL5crQEPf7/eqeZrMZv9+f4WCWzITBymBab4wY1x5jY9hoNKrm9o6ODlpbW0mlUlRUVJBKpWhpaSEcDuP1egmHwyxfvpyNGzeqz700dNq9ezd33303d911F3a7nSuvvJJRo0YRjUZ5/PHH6ezsZPjw4ZxzzjlYLBbKy8vZvHkzRx55JNCl9y3SGMaNvTTbEZsxHvIGKpJ9uGrVKp5++ukeJSIGMsZguDiNjZVSImsiDV/Xr1+vbMLv9zNjxgyOPvpoYrEY77//vpL2qqiooLa2lrq6OsrLy1m/fj0vvPACf/vb36ipqWH27NksWrSIiRMnKifVhg0b+PDDDxk3bpwKdMt8IzYi45GxDbTD/+HE8uXLATj33HP75f5ms1llM69YsaJfxtCbHKzUm9/vV4/+DmjCvoy9dDqd0YdBAtCwT94L9knfALz55psZwaqemDhxInfeeSdms5nly5era7788ssqG1bmic7OTkpLS5kyZQqdnZ3U19cr+Q1ZT1pbW1WD00gkohJO9Hxy6JC/qzjejEEIv98PdElw5eTkqEonn89Hfn4+iUSCKVOmYLFY+PDDDwmFQtx5552MHj2aUCjECy+8wEMPPcSzzz5LZWUlDoeDc845h6VLl3LcccfR2dnJhg0beOGFF4CuwAV0Jd1Al5SL6H1L01sZqzHpR1dm9j42m001kU6n00QiETo7O9U5UwLL0KXBPn78eKAr0H3uueficDioq6sjmUxy+umn4/f7aWpqYs2aNfh8PpYsWcJll13GnDlzGDVqFIWFhYwaNYqpU6cyZ84cjjvuOIYNG6Yq6CQrvqSkhEgkgslkYuLEifj9fkwmE3l5eep8VVhYqGTeRJ4UGPDBqk91InvxxRe57rrrePzxx5k9ezYA3/72twkEAjz22GOHZIAaTX8hWarpdJoNGzYwadKk/h7SATGK2sO+A5yUBkOXI1kylYcNG6YOby6Xi40bN6os1UgkgtVqZePGjVRVVeHxeDjnnHP48Y9/zD333MNPfvITzj33XFwuF5s3b+aaa66ho6ODr3/966rj95NPPklFRQVHHnmkyvh48803OeKIIzCZTDQ3N6vJXBZZOdhJpqr8bCAvthLhff/99/nmN7/Z38P5WIx6TkZHPuyzl+7fizxGe3s7sM++zjvvPPLy8j7xnul0mhdeeIG33noLgEmTJnH//fdTWVmJx+Ph+OOP58knn2T37t1YLBZmzpyp9MDz8vKUdriUSQJKC1i+HuiaVEMJcfCKU1caqnk8HnXgMwaO5CHOPWPmYTQaxWazUVhYyIQJE5g4cSLDhg0jmUwq3VSr1UpRURE+n09tsBwOBwUFBcpxOBQczDC41hsjRiez0ekph3FxOEPXxj2ZTBIIBIhGo3g8HrZt20ZZWRkul4uLL76YRx55hH/+8588+eSTPP3001x++eVYrVZWrlzJH/7wB+x2O1/72tdwOp1UVFSouWX48OHMmzcPgHfffZesrCxyc3MzSk2TyaRygkswTQ79EuQcyKxbt4558+ZlZB92RyRnjI+BgjEgKM0iZf6Wyoe8vDwsFgu7du2ivLwck8nE9OnTOemkk9i+fTvPPfccu3btUhk/06dP58QTT+SMM87gvPPO47TTTuOYY44hOzubZDLJ+vXreeihh9i4cSNHHHEEZ5xxBtOnT8dqtdLU1MQHH3zA6NGjAVQpvtiC7EWM9qPpeyKRCK+88grQf05m2CeZIWMZzBys1Ft7e7t6VFVV9fUw90PkbGBf9YzJZMLv9ysnktvtxmq1qooHcaavWrWKa6+9loqKio+9x/z581XF0JYtWzCZTGzdupVf/vKXWCwW5syZA8DSpUvZuXMnZ555JjabjerqajWX1NfXq+CV7E0keQcys601vUt3J7OcJ6WniNfrBboC0NLEs7y8nPnz5wNdge2FCxcCXc1Ga2pquPvuu7nhhhtYvHgxs2bN4tRTT+Xaa6/loYce4sILL6SqqornnnuO22+/nT//+c/EYjHGjx/P3Llzgcy1T5zJVqtVrXvSHFIkHGStMa4/ms+PZC6Lozkej6s9YEdHh7KNUCjEhAkT8Hg8RCIRdu3axUUXXURhYSGxWIzt27czdepUTj75ZFWF9dJLL/Huu+/S3t5OXl4e+fn5OJ1O4vE4zc3NtLe3YzabKS0t5fjjj6e4uJjm5maSyST5+fkcc8wxyk6GDx+uZAILCwuVTefm5qp9tWRnD2T7OOhT2bp16/jyl7/M3Xffzfnnn6+e9/l8fPvb3+auu+4aEF0wNZreYrBkqYpmE+xztBmdhhJRl67K0nhPSlObmpqUA0hKmjdt2kQqlWLBggU899xz/OhHP+Lss8/mxBNP5Mwzz+Smm27iH//4B6NGjaK+vp7f//73mEwmzjnnHI455hg6Ojp45plnADj++ONxuVyqgZw4J2W+kG66RukDKU81vk7z+ZGIpxyijdnNPf0Lmd1rjZv1+vr6A94nmUyyevVqlixZwm233UY6nebEE0/kiSeeYMuWLdjtdk466SQeffRRduzYgcVi4bzzzmPXrl3s3r0bk8lEaWmp0uZ1OBzK6WiUfjHqew6GRpGDHaM2aUdHB9nZ2Rn6gz6fT2U9Saat3+8nJyeHnJwcsrOzycrKUr8TiURoaGhg9+7dlJWVUVVVpSL6ubm5lJaWqo0ggN/vV00xZDMm2s+DncGy3hgxZqaKdi6QUZ0ieoOxWExlLwcCAaxWK3v27KG9vZ1x48axbNkyvva1r1FcXKzmHJ/Px0UXXcSPf/xjAP7973+zdetWcnJyVEDz5ZdfVk7sqVOnqhLq3bt3U1xcDOxzYIpjU2wnEolgsVj2C84OVAZr9qFgzNoyfoYtFotyePn9fhKJhKqymjZtGiUlJTz99NPquaOPPprTTz8di8XC66+/zl//+lceeOABHn30UXbu3Mnxxx/P17/+df7nf/6HkSNH0tHRwTvvvMOjjz5Ke3s748ePZ8GCBVgsFqXN7Ha7e6yQSSaTas4b6PYxVHnllVeIRqOUlpYybdq0fhuHOJ7Wrl1LS0tLv42jNziYoOZArJwxIg32AFVeLnuS7OxsfD4fXq9X7RtMJhNr167l/PPP58Ybb+Sdd945YODo4osv5qyzzlJ6qVarlXfeeYc//elPXHrppUyePJl4PM7vfvc7zGazkhqpr6/H4/EoWTHYF5ySTGhZb7ST+dAi+wiZvyV7vLCwEOiqrCwqKiI7O5tUKkU0GmXChAl0dnbS2NjICSecQDqd5h//+Ae/+93vCIfDzJo1i4ULFzJ58mSampp48MEHufHGG3nwwQdZuXIlzc3NOBwOFi9ezDXXXKMc3CJTWVBQoPoiSSWe0+lUexhxchqrkTW9iySmAKoPg7HyQfbe4XCYefPmYbfbaWlpYe3atSxatIgTTzwRq9VKbW0tFRUVHH/88Zx00kmMGTMGi8Wi5EVFmi07O1tVPEyYMAGz2UxjYyPxeBy/38/xxx/PsGHDlIb32LFjsdlsmEwmpccMqMaVMie53e4B7WCGT6HJfMwxx/S4oQW47bbbuO2223ptUBrNQGCw6lEZnc7G5n/iFCwsLOS9994Dug6qZWVlpFIpamtr6ejoYO/evXR0dLBo0SJuu+22AzpwioqK+MlPfsL//u//8sorr/CDH/wAp9PJ//zP/7Bu3Tq2bdtGMBjE6/VSXFzMzp07aW5uxuv1qkxFyUaUpmLyvRzsRL5BL7S9gzhUOjo6VARXdKC6vw72OXKzs7Npa2ujuroar9dLWVkZ5513HscffzyTJk1S2pVNTU2Ul5fz4YcfKqeB2Wxm7NixNDU1YTKZyMrKIj8/ny1btgBdEdvp06ezfft2lXU3ffp0FQTJzc1V1/J6vXR0dKgIrhz6B7p291DCarUqG0qlUuTl5REKhVQWoBFp1icN+UQDDbo20aFQSDXlkdd7vV7y8vLUnCAOwtzcXNXNXQ5tIp8xFBiM6013qRo5xBmlB+QzKrq38n56vV42btxIUVERd91118c6MObMmcPixYt55ZVXeOaZZ/jJT37C7NmzVbDr3XffZcGCBZjNZsaPH8/69eupra1V+ojBYBCfz6caL4lklHwv1RGiMz5QGUyNZnuie8DY6GSWQ7XH42HHjh2qnHTcuHE899xz1NTU4HQ6Oeuss3j//ff517/+td/1W1paePXVV1m7di3f/va3KS0tZfTo0ezcuZMVK1bQ0tLCU089xRVXXEF2djbjx49n+/bt1NTUUFxcrMpnJcsJuux3IDVhOhwxSmX059++uLiYI488ki1btvD666/zpS99qd/G8nkZTE27DkQ6ncZutxOPx9Xewm63qwoWCSqm02lVVi6SgS+//DIvv/wybrebY489lmnTpjFhwgSKi4tVM6758+fzwgsvUF1dzb333suvf/1rnn/+eS644AKWLFnC7bffTm1tLe+8844KaLa1tSkJKGMDOuOeqXtjOk3vIn9fWV8cDof6+4fDYQoKCqisrCQWi1FfX8/UqVNZtWoVO3bsYO7cuVRWVrJ3717Gjx/P6aefzooVKygvL1dNaXsiJyeHiRMnMmXKFKZMmZKxjwgGg0rHe+LEicrhbLFYSCaT+P1+VQVm/Fr3ATh0SAWEVLWJc1ia7tXV1dHQ0MDkyZM55ZRTePvttwkEArz77rsMGzaMSy65hHXr1rFlyxaly20ymZQkqDQ1Nvb6kPfV4XBQXFxMTk4OsVhMBR08Hg8lJSVEo1GlxyxN0V0uF06nU+2n3W73oEiu0dar0Qwhum9axHljPEA3NDSQTCbJyspS0gTiEPB6vWzdupXi4mJuvvnmT5zEjjrqKNxuN5FIhPr6ekaPHk1eXp7q2tva2qois4LRMSGTfPf7yEFP/k/6YNd72O12otGoWgCl+ZXT6SSdTuNwOMjKylJZc+FwWJUMBQIBioqKcDqdNDY2snr1alavXt3jfeQ6ubm5qlmb1+vF5/ORTqfxer2MHDmSRCLB1q1bgS5H25QpU2hvb6ejoyPDKSk6ZtBlp0ZJmKHiaBwsiK6pOHx9Ph9ZWVlEo1FisZjaYMlBTxx7oVCI7OxsXC6XOgzm5uaqYFL30kBxPNntdnUINjaa0xvw/sX4XiQSCZUlLJID6XRaBR9aW1tJJBJKl1J02K+44oqDypA799xzeeWVV3j//feVY3j+/Pk888wzbNy4kQULFgAonfhgMKjKDTs7O3E6nSqTTOa+zs5OJdsB+zKzB+paMxgbzQrGrPcDOZslu0hsY9KkSbz33nvs2rULq9XK2WefzXPPPcfOnTsBOPbYY5k3bx4lJSWk02nKyspYvnw59fX1PPDAA9x88804nU4mTJjAiBEjePzxx2lvb2fr1q3MmDFD6X5HIhEVyJaxyFh1tmH/kkql+Pe//w30r1SGsGjRIrZs2cIrr7wyqJ3MgzGoKZjNZiXF5Xa7VbPhkpIS9uzZg9/vV2cf0WR2uVw4HA68Xi/t7e2quiYSifDf//6X//73vwe835gxY2hoaABQ8k85OTnk5uZSW1urmtdC114lGAwCmZm0RgkH7WQ+tBgdhtD1N/f5fLS2ttLS0sLIkSMpKSlh9+7dVFRUMH36dIqKiqivr2fLli188Ytf5J///Cc7d+7E5/Nx1lln0dLSQkNDA8FgUO0fJOFCHuFwmC1btlBdXa16iITDYZV0I2fjVCqFx+NRTkeRVBAZB2MSxUDdiwx2JAFGKqqMfRkKCwvZu3cvgUCAPXv2MGrUKBYtWsTWrVvZvn07e/fupb6+ntLSUtUUcOfOnTQ2NmYEziXolZWVpeYf2XeaTCYlQylOZ7PZrDLahw8fDnTtP+x2Oz6fT9mF8Vw80NEnNI1mkCOTpThqjJOPOOJkw5WTk6M6n7rdbqLRKC6XS2niykbqyiuvzGiqcSDKy8tVebsc2Hbt2kUwGFTC9clkkurqagDy8/PZvn070LWAdt+MGRdUvbgeGkTzKx6Pq016IBBQOmBZWVmkUikKCgqor69XHdULCwtpbW0FurLhfT4f4XCYeDyuFlar1YrdbldRVylnFF08i8VCVlYWTqdTBSegy4E8atQorFarKkOVhdlkMuF0OtUm3hi0GOhND4YqYkPiUJYNt8fjyXDYGTWZpat6W1sbDocjI7Ak2c493Qf2yRzoOWFgYZRpkjVGgoJGbVt5Xt7P4uJiPvjgA4CDLn8fO3askstpaWmhsLCQcePGAWRI98iaJ01wrVZrhuRB9wN+IpFQEhTy/EC1s8GcfWh8X0QiSw5NYjter1dlmMn/TZrEzp07lyeffJKqqipcLhdXXnmlau4oHH300YwbN45f/vKXNDc3s2LFCs4++2yga42ZMmUKa9asobGxcb8xiZ1234tIkEIYqLYxVHnzzTdpaWkhLy9P6Zv2J4sXL+a+++5jxYoVA3quGMrYbDY6OjpIJBJKf1kaxvr9ftrb28nPz1cl506nU+05pdms9IUIh8MkEgmSyWSGZj90zQsOh4NIJMLjjz8OwOzZs9m+fTsPPfQQNTU1mM1mjjjiCJ5//nmgq+KqqqoKu92eUZ0hVXrGniKaQ4M4DMXRbLFY8Pv9BAIB1fOjqKiIhoYGQqEQH330ETNnzuTVV1+lubkZq9XK+eefz0svvUQgEFCVv4KsCT01C25paVHnXSN5eXmcffbZrFmzBujqi5RIJHC5XOo6Xq9XfW21WnUSxSHG2KxaAgKhUAifz8fo0aPZs2cPDQ0NtLS0UFRUxKRJkygtLWXjxo3U1taq7Han08m4ceMYN26c6jkjWuzdzzWyZshcJTJdMg673U5xcTGxWIzOzk5sNht5eXkZVemDyS4Gz0g1Gs0BkUNSKpXKcDL31NhNnEISRcvNzQW6DvEvvfQS0JWh/EmUl5fzgx/8AIATTzwRn8/HRx99xB/+8AegazPmdrt58cUXicViSqdVHJXS0bV78zZp8KU5dFit1gy9btH39Hg8pNNpsrOzMZlMDB8+nKamJqxWK+3t7VitVvx+P+FwGIfDgdvtzjiAS3ap3W5X2ac2mw2bzYbb7cbj8WQ4i3Nzc/F4PCSTSRXBleCEZHzIAcFkMqlIv/wf7Ha7tpV+Qhz8yWRSyQ8Y3wvZYMn77fF4qK+vV9nPxmzLRCJBMBhUmyyv16sOeBJAa29vx+/3Z+gZGiseNH2PMTtLDs5GzWN5r8QGZHMcjUbJzc2lubmZbdu2qYZ9H0d9fb1aJySQIfOXcc2T5rZ5eXlqTQT2y+6VsYsmn1TVDOTsssGafWh0KJtMJlXpIHYiwWafz8fbb78NQElJCf/+979Jp9OMHTuWV155hbq6OrKysliyZAnDhw+nvLycYDBIcXGx6vWQlZXF+eefz8MPP8zKlStZtGiRclh3710hjWW9Xq86xIktGZuLdbdnTd/x7LPPAl1ZzAPhcH3iiSdit9vZs2cPu3btYvz48f09pMMOm82mqlLi8ThFRUXU1tYSiURU49CWlhZycnJwOBy0trbidDqJRCJKwi8WiymHUCKRUNJJ8oDMOcDj8eB0OikvL1dyBy6XiwULFvD888/T3t5OTk6OkjMaNWqUKnt3uVyqD4FxvzKQ15rBjCQ9iNyax+PBYrFQWFhIXV2dSoKaOHEimzZtIhwOU1FRwezZs3n77bepr68nGAyyePFiAoEAu3fvpqWlhWQyic1mw263q7nIuKY4HA5sNptaM0TmoLi4mNzcXNatW0csFsuo3JIeIxaLRTk6Yf/9iqb3MfbicLvdtLW1kUqlqKurU/InFRUVxONxampqqK2tJTc3l6OPPppJkyZRVlZGbW2tmkuMSFWmNEW32+3KNox7ZGNFbkFBAXa7XSVf2e12CgoK1LXlLD2Y6P8VW6PRfG5E2wlQpR/GRnqCcfNknNygSy+opKSE7du388QTT/C9731vv0ypdDrNrl27WL58OcuXLyeZTDJ8+HC+8Y1v8Oc//1lJJ5SWlrJo0SL+/ve/qw3ZwoULVRb18OHDlca76OzKuKBrgjZmFmlHYu8j73sikcBisSgdOa/XSyQSwWw2Ew6HsVgsRCIRnE4nPp+PSCSiIrWykZLorDTgEwewlG6LQ9LtdmOz2TKisbKgWiwWsrOzMw7ybrdbOZIlE1rGLlkqmv7DbrerTseflNVldCoZG062trbS1NSU8drGxkbVrCc7O5uWlhZlk+KA7ujoIBaLDfjuyocLH9c0VGxD9NTr6uqYPn06r732Gvfffz9ZWVlMnz79gNfeu3cvt99+OwAzZsxQwTDJchUdvL179yqphfHjx9PY2Kh0O7s7DwUth3DokWCA2WxWBybZf8i84HA4qKmpUXIqcvgX7e7m5mb8fj+XXXYZ//nPf3jppZdUwBpg/vz5LFmyhIKCAo4++mhV/rxq1SoWLVoEoA7wEuAWLcS8vDz1M9FAFCTwLV9r+o7Ozk4VVLngggv6eTRdeDweTjjhBFauXMkrr7yincz9gDhuw+GwWlMkM1WyQ4uLi2lsbFSvDYVCKpFCmtFGIhFVIi+O5mQymaHlLPtao8M5Ly+P7Oxs4vE4GzduBLqqREtLS2lpaVEl8oFAgPz8/Az5g+7/D82hQRy2Itnldrtxu90UFBTQ2NiosponTZrERx99pHqDHHfccWzevJlwOMzatWtVE8nc3FxCoZA6r/SEMUBhfG7r1q0ZjarHjRunkndEvjArKytjndEBzUOPOIIl4aqgoEDJiTY0NGCxWCgpKVHVc6FQiObmZpqbm7Hb7QwfPpzS0lLi8TixWExJb/RUyQeojGXB7Xaryl7oqugyNoAUfW6pAhyM8inayazRDAGkLFgWObvdnuFkln+j0ah6nd/vB7rKe6xWK1VVVUydOpXt27fz/PPP88YbbzB9+nQKCgro7OykqamJ7du3q1JT6CpPnTp1Kvfcc4+aPKdOnUpeXp4qLxPtzIqKCpUNO3bsWJVxJnpULpdLbcak6Z/83zSHBomsxmIxla0Rj8cxmUzKMeNyuYhEIrjdbhKJhNKyk0wSY4DAWKJuzGgWR7Nxo+5wOHA6nSorQDb20GUzLpcrIxosmy6JCA8ENm7cyHXXXUcymeRb3/oWl112GcuXL+cXv/gF+fn5PP744+Tk5HDVVVdRVlbGwoUL+elPf9rfw+41jBumj/ucijMZUO93Op2mqakpo7JBSlPj8ThtbW0EAoEMjfdQKEQ6nVb6z52dnaq0Xs8T/Yvxs208IEnZ8PDhw6mtrSUvL4/GxkYaGhoYOXIk1dXV/PCHP2T69OmccMIJlJSUqDmnurqaDRs28O6779LR0YHP5+O6664jlUrxn//8h7Vr12IymTjllFNobm7mhRdeALq0fP1+vwp6FhcXq6xVYxdxY5M3Y1a2pvcQuRzo+ttKGbNkM0sWs9/vZ+3atUCXU7qurg6TycSePXsIBoPk5eUxcuRIrr/+euWodrlc5OTkUFtby6pVq9iyZQv33HMP48aNY/HixTz22GO88sorzJ07N6PqRhzJxmoumYdEz7OnTGbtZO5b3n77bfbu3Yvf7+fUU0/t7+EoFi9ezMqVK1mxYgXf/OY3+3s4hyUWi0X1CpHPZ1FREe3t7coRWFBQQEdHB4FAQAWo4/G4cjqKQzkWixGPx5XD2Sj1ZXQ2SwKFyWTKaEZdUlJCPB6ntbUVi8XC5MmTCQQCmEwmRo8erYLoUoGj15pDj5xnjI5mcf6bzWYaGhpUsszYsWOprq4mGo1SU1PD+PHjSSQSlJeXE4vFMpIgTCYTfr+frKwsJZth7OUgMhqyjzUmc0lTSbmeNHmDLjuS8+9AOd8MdaRSVqT8zGYzBQUFRCIRQqEQHR0dGVVW2dnZRCIR2traSCQSSl70k5Czrpx35ZxsbEQtuFwusrOzsVqt6owj8hqDcb7QTmaNZohgdNTJIiXN9eTfaDTKsGHDqK6uVhutQCDAqFGj2L17N9u3b2fatGnKISyZYt3vU1JSojKQJZJfUFCgFnXZgEkZq2hU2e12Jk2aRG1tLYDKBoAuZ7NkJYimltxPc+gQR7LxfbDZbESjUWw2G/F4XOkqx+NxtRnqHqkVO5MFVDblPT3EHiGzlFqcy0ZntcvlUod7cVYPFH7+85/zxBNPMHLkSObNm8dll13Gfffdx1tvvcWrr77KsmXLmDdvHgUFBTzyyCN85StfoaamRnUiH6zIe2bUjzvQBsjY9E026NBVqi6OnYKCAiXRkk6niUQiNDU1EY/HaWxsxOl0KpkWaSQnJa+S0awdzX2PsYu7fC7lsytSKn6/n8bGRvVZliBBKBTC6/VSWlpKRUUFGzZsYMOGDQe814wZM7jyyiupqKjgscceUwe1s88+m0AgwIsvvkgymSQ/P5/Zs2fzzjvvEAqFcDgcZGdnqzVHDoPiPLTb7QcdLNF8OtLpdIYMhRz4Zb4XzUyn08nu3btVQ6WysjJSqRTt7e0Eg0HV7V32I0cccQSXXnopxx9/PFarlfLycm677TbKy8v57ne/y9KlS5k1axavvvoqdXV1LF++nIsvvlg5eSSLTdYut9u9X7aybs7V/4hUxhe/+EWlqT4QWLRoET/60Y94/fXXVRNSTd8jjuZYLKb2otKEOBgMqqSa3NxcfD6fcv45nU5yc3NJJBLK0Sh7CZmf5CEBJ1kzbDYbLpcLt9uN2WwmEokop3Zubi5FRUWqSnP8+PFqbNKPxJjNqNeaQ4vZbFYJCalUSmWr2+12RowYofaYEsSU/ab0hZk0aRIOhyPjnCPSbsZ7dA8+ijPb2KtGKrnk2iNHjlR2IBWeslZqJ3PfYazkloCBzWYjJydH6b7L3NDR0YHNZqOwsFDJ/hkbTEoQyiipIvtMCaz3pOMt0pPS0E8qLQDlYB6sAW69Mmo0QwTjwV4ObrFYTDXokuwwWXhDoRCFhYXU1NSojqqtra0kk0lKSkrIy8tTGyToWihlMpTsL5vNRlZWFm63W5V8yKHe5XIpZ6XJZKKgoEB1goauqL5ssjwej5qopZxN/k+DdXIdTEgpjmysrVaragAo2rjJZFK9Rhbj7pke8n6JE/njNtHGjGeRvjD+jjR0keekM+9A4sEHH1TZMiaTiba2NvLy8rDb7cyfP59ly5bhcrmU5uzcuXN57733OO+88/a7lmTSCNIoZqAh2cPGrMAD6cclk0laWlrU3ycnJ0fNCVIRkZ+fr5qGAipz3e12097eTlNTk8o0ys3NVSVl6XRaZSZ1dHQQjUZxOp16vuhD5G8tcgeC2IQc0H0+nyodFuew6Lx7PB7Gjx+vSp9Fhsdms+H1esnLy1Pvu+j9Q5f27qxZs6iqqmLTpk1A18HtqKOO4p133lH6iaNHj1YOZglYuVwuta5JhQagJXh6GZHSkQN2R0dHRnMtccbY7XZlF1VVVco5Lfqp27Zto6WlBa/Xy7e//W0WLVqU8T6NGTOGpUuX8oMf/ICPPvqIH/zgBzz44INceOGFKuh33HHHMWzYMAAqKioy5glZ57qXthp/ZnxOc+hJp9P885//BAaOVIYwY8YMNZetXLmShQsX9veQDluM87mUlkswW8rNxWFjtVpVBrM4fCTwlU6nVVahZBiKU7InjBqsBQUFFBQUqD2c2Wxm/PjxmM1mVUFTUFCA2Wzer2JPc2gRJ53Yh7FhnwQaWltb1TxfXFxMKBSivb1dOYR7wuv14vP5VFWenInErkTrG8hIxJFeNPI6i8VCfn6+sidJwtH0HTabTTWIlv0J7EvAkgQ46T8j2cVSqdsTcq3uyFnW+JDAUyKRyEh4kPsPZnvQM5xGM4QQrVLJLLNYLNhsNlKpFA6HQx3ic3JyVAlRcXGx0iZ0u91Kd0r0VgVxYlssFux2u5p8JXs1KytLOYfEMSjNMiQ7VcYoDmgpV5FJVCZUmWh1Y7e+wyiRIVIYsvjKAihOA3EwS5mY8Rryfhmdxt2fk697QpokCOKwGoh2UFBQAMCPf/xjvvKVrxAMBsnKygL2NVPs6bmeuPPOO/nZz37WNwP/jIgzV+gug2IkHo/T0tJCOp3GYrGQk5OD3W4nnU5TX18PdG3UjQ5mQQ6K2dnZeDwe9u7dSzQapbm5WR0MYrGY2rTLxi8ajQ76TdlgQuZ0CWqKNIYEE10ul3L+i1OxqKiItrY2FewMBAKqlLUnYrGYchJDV/WLrF+7d+8Guuxw3LhxAOzYsQPockL7/X4liSC2Kusi7NPmlUOgziDqPbpXqLS3t2c8JwfwnJwcdu7cCezTbDaZTDQ2NmK329m7dy8tLS2UlpZy1113KUdxd7xeL7/85S/51re+RVVVFbfeeiv33Xcfc+fOZfXq1Tz55JN873vfU03BWltblX22t7cruS7Ze4jTQYIVRk15zaFn7dq1VFZW4vF4WLx4cX8PJwOLxcIFF1zAsmXL+Pvf/66dzP2MnE3EURSPx9W+1OFwqAoayWQGVI8Qv9+vHL/yc6NjWZxLIj8oiRRyBrLb7YRCIeUkzM7OZsSIEYRCITVfFBYW4vV6SaVSav+kzzZ9i9VqxePxqECCZJeazWYKCwuJRCIEAgE6OjpwuVz4/X7i8TihUEjZg8vlIisrC4fDoZIbjE5B2He+dblcGecjY4KMsZFbUVFRhpZzd91uTd9gdBpLwEmkvsSfYrValcO5J0kduY4kWknAwFjFK9Wa8vsSADMicpIfVyE6WNBOZo1mCCETpVGzMBwO43K5AFQWcjQaJT8/H4fDQXt7O8OGDSM7O5tAIIDT6VSLaveGXt01dR0Oh+qeapQ3EMeysfRUSkjEuSzOQ4nmy9hk0Ra9YE3fIl2OZXNtXGCNzmXjoftAGnNiP8ZFuKf7yQGhe6aylBwNlIV26dKlPPXUU+r7m2++mQ8++ICGhgbuvPNOWltb1aYhHA6r0k3jc6NGjerx2jfddBPXX3+9+j4QCFBSUnII/zefjnQ6reYVyXw/0OczlUopB7Pdbic3N1e9NhwOk0gk1Obe+N4mEgnKysqUzMGwYcMoKipi5MiR1NfXEwgEaGlpUYeCaDSqAlyS3awdzX2HHLrFeSh6gyKJEQ6HMxyHDoeDUCiE2WzG5/PR3t6eUUHR/eAmQSmjxruxMZvH4yEnJwer1ZpxcPP5fBnauiIBZLPZVMBKnOLGw522md5DnMlms1kFJ+VAJk1lARWQsFgs7N27F0BVdIwcOZINGzbg9/u59957yc/P/9h7+v1+7rrrLr7xjW/w4Ycfsnz5cs477zw2bNhAXV0dW7ZsYcyYMezcuZOPPvpISXk1NDSQm5tLIBAgFoupijD5V+ao7g4FzaHjySefBODMM89U+9eBxEUXXcSyZct49tlneeCBBw5YzaPpO+T8I4k1khloDCLKXsTY/E8+3yJzINmpkpEaDAZ7/OzHYjG17mRlZTFixAhSqZSqQrPb7RQVFanmbsY5UdtL32MMRkjClew3HA4HRUVFBINBFWgwVt+JPUgyA3SdXaSKV/SYjXuZA+FwOFTDt0QiofYzTqdzwFVrHo6InUjSgQQk5PFZKhA+LkhtlJbs6Rw8mNFOZo1miCGHeVnk3G53huNFJtBIJKKcYJK9LFFUY1mrsemNcRI0yhiIU1mi8/Jao/PQ6DCQjGgZS/cNlzgTNP2D0bEjC2x3zcpPez3j7xodzj05oMVGBprTZ8mSJSxZskR9/+yzz/Lhhx+qJpc5OTk0NjYSi8VYtWoVM2fOZObMmfznP//hrLPO4q233uKee+7p8doStBmoGN8nCSodCGnQZ7fbycvLy3itZBKJI9BIU1OTyvSOx+NUVFRgMpkoKiqiqKiIdDpNMBiktbWVwsJC2tvblUNashKl1H4gOiaGGnKolxJjl8tFbm6uKjOVMlUpE47H4/j9ftWwSQ79kpkuZcoHkuExat6Jk1hwOp3qM2R0GshaYswMkUaixo7vunS5d5H1wmq1Koms7g30ZO8BXaXLZWVlpNNp1VBHfu+LX/ziJzqYheLiYq6++mp+/etf889//pMvfelLLFiwgP/85z+8//77zJ8/n507d1JZWcmcOXOorq6mqalJNSMOhUIMGzYsIxtSAhGSgTTQ1qWhRiqV4oknngDg0ksv7efR9Mz8+fMpLi6mpqaG//u//+tRAkvTPxidRN21U+VhMpmUhnI0GlX9HoxZpRLA9vv9mEwmpasq2Y2yrkhTUdnbmM1mcnNz8Xq9JBKJjOo1WbsGSuLE4YjxfCP7EjnrZmVl4fV6CYVC+9mD/K7b7VbBCKNsoOyHHA4HXq8XQGUzS3BV9h3itJZrSiBcM/CQygXJcjZmMRvf34+T0+ouJWnMdh7Kc4HeVWs0QxCJlMfjcUwmEy6XS0VmbTYbsVgso7RMMstEFsGYAWCcOLsf9I0lX+JQNjqQu5eLGCdYWeSNBzZxTA/lSXewIQss7DtkGxfW7shz8lrjcx+XCWa0rcFyiL/11ltxOp2ccsopALz22mtcf/31nHTSSbhcLp599llyc3N59NFHmTNnDieffPIBM5kHEx0dHR/rlDPq3Xb/LItjORqN0tHRkeFoFvkCIyKxIM7mSCSiMiPdbjeRSIRgMEh+fr7qFC0bQB2oOvTIQU2kVOx2OwUFBarxklQjSGaoHNRFc1lkeIyH94O9r0g3GfXapTmTrEPytbFpkyCHO20nvYtx7peMciDjsA5kVE0Z3wOpaPqsDbJmz54NQG1tLR0dHYwfPx6AxsZG5awOBAJkZ2cDXXOMBBqMGsziSEqlUhmSGYNlfRqsrFixgvr6evLz8znttNP6ezg9Yjabueiii7j33nv585//rJ3MAxRj1aVRM1eC0dJrxOPxqIocqZKSnxv3rcYMR8EoIebz+VTTMHE6A6oSRwczBxayjzBqekslVnZ2dsaeRM6x8tyB9Lq7n42MMoHdNXfFnvSZd3BgzDruzoGczIfze6tnO41miCIl7VLiI5lcUqouDmUpBZJDvmzGDnTYlwic0SkoGWLdSz6MGaziPOypKdxgcy4ernzcAtsTsuj25Jg26jUP1mju5s2b93vunHPO4Zxzzsl47pFHHumrIR0y5DMsm3E5NPX0mbXZbKoLd/dDmc/no7W1lXg8zp49e1Tnd4vFQnZ2tsoojMfjSrPOOAYpr08kEvj9flXaKA4ho9NTOw8PPeKolQ7cRv1Ct9utGjVKsEoyg+TwLr0C5PAlc0RPgazu2SDynHHdMQYwjdJM3QMY3YOkmkOD8e8rX4ujJRKJKKdvU1OTaqaWl5fH3r171R7k2WefZe7cuUyaNOkT79fQ0MBvfvMbAEpLS7FYLJSVlQEoORdAaTDDPtkXmTtknMb1q/tzmkPHX//6V6BLkmIgZ/f97//+L/feey//+c9/qKysHBIB5KGMOJyl34xo80YiEbWfsdlsZGdnqwCUyCpI8o0xK1quabfbcTqduN3uDFkx2NcwXe9FBi5GGQ15r3tyInfXYDaedY3SYd33L93PPIMtg3Xjxo1cd911JJNJvvWtb3HZZZepn23atIlzzz2XUaNGUVxcrCpQDkcGy/vZl2gns0YzhJHyHZG/MOrtiraQiNzLxqmnDuvG6xm/NmYpG7VzjXIHZrO5x4OZ8Xf15Dw0kff10zimNQMXkSKQg5Zk/RmrF6CrCZc4HRsbG5WcjsPhwGazMXLkSOrq6kgmkzQ2NtLY2IjH48Hj8ZCdnU1BQYFy7BjnBilrBQ7YKE47g/oecTSLDqasKYBq8GcymUgkEqo0VV5vbKLS/WB2oGoJY0WM0clsrJgBVJaz0YbE0aDno75BNP0lG9iYnRyJREilUkpiJSsri6amJvW5b21tpaioiPr6eq677jrOOOMMTjrpJMaMGYPb7SaRSNDS0kJNTQ1lZWVs2LCBTZs2qaa11157Lf/+97956aWXADjqqKNYuXIlABMnTmTbtm1AVwPXeDyunEPd5Z3EeaA59NTV1fHss88C8LWvfa2fR/PxTJo0iZNPPpk33niDhx56iNtvv72/h6Q5CIzazbFYLGM/A2QEMaFrLyFnGvl948/EqWh0SspZS68zgwdjr4buwQT5uTGxqqcEC+OZZ6jw85//nCeeeIKRI0cyb968DCfz1q1b+dnPfpbxnEYjaCezRjPEkQwdKfMR57JRT8q4mH5cFpn8230TZpTJkMZM3aUSgAwngHYsazSDC9Fgl4qI7hqHUg5qNpvJz8+nvb1dNccRB47MFfn5+Rndu0UTUV4jGnVSdWG8hnTvbmtrA/Y1CZXmYjJWTd/RvalOd21lOahLMFIc0pJNaswale+N0jvG+wAZFTHGg53co/shz2if2jYOLcas4EQigdPpVA0foathVk5ODi0tLdTW1jJ8+HAikQixWEw5nHNzc2lubiY7O5tkMklLSwvPP/88zz///Cfef9y4cUybNo2nn35alaxPnDiRDRs20NnZSUFBAZFIhLa2NqxWK+PHj2fXrl0Aqoko7HMyy17J+Jzm0PDAAw+QTCaZO3cuxxxzTH8P5xO59tpreeONN3j44Ye5+eabdS+AQYRICUpfAXEyH6xkU0/Xk/2NlsUYvBglVnraexxuPPjggxQUFKh9vpEtW7bw9ttv8/DDD3PTTTdx+umn7/f78Xg8oxGiNMbUDH30LKjRHCb05ASQTGORzOhJ1qAneQNj2U/3RaenyK+x8Z9GoxncWCwWXC5XRjdt0TgUmQur1UpOTg6pVEo5kGTeMWqzSkaRNJiUDBJjsxwjXq8Xj8dDY2OjOgz6/X4Aksmkek4f8voHY1Md4ICBTLEhKTHuqby0+9fdK2k+aS2CfRrN2rnct4j+dncZG+kVkU6n8Xq9BINBwuEwhYWFNDc3ZzR7tFqtNDU1UVRUhNfrpa2tjVgslnFglUZaEvzKysrCbrezfft2oCsg5fP5VH+KvLw83G43bW1t2Gw2pkyZwp49e1RVhsi3GPcsFotFHbC1k/nQEY1G+cMf/gDAd7/73X4ezcEhpeKVlZX8+c9/5pvf/GZ/D0nzKRE5pQMl2HSnpwrP7jJOmqGBfj+7Kn0AfvzjH/OVr3wl42fTpk3j4osvpri4mIULF7J48eL9Avx33nknP/vZz/psvJqBgz6FaTSHGcbMZsn8k8P/55U16ElzSi/SGs3QpLvGoTib5Wtx0LhcLjwej3Ikd9flNQajRN6nJx07yVYWB7ToOFutVmKxmHJeOxwO7QwaIHQPZPaU5Syv6837dZfOGMj0pHm4fPlyfvGLX5Cfn8/jjz9OTk4OV111FWVlZSxcuJCf/vSn/T3sj8XYfFi0t41IPwifz6dkM/Lz87Hb7WrOaG5uxuFwEAqFcDgceDweYF+1VU9OHQmmOxwO3G43TqdTZSz6fD7VjDQnJwe/3097ezvQ5awWR5OM3WQy4Xa71f5Ia3gfWu677z6ampooLS3l3HPP7e/hHBQ2m40f/OAHfPvb3+buu+/m61//+oDWkdYcGNmHaDSHM0uXLuWpp55S399888188MEHNDQ0cOedd2a89gtf+AI+nw+AsWPH0tzcTGFhYcZrbrrpJq6//nr1fSAQoKSk5BD+DzQDBe1k1mgOU4zOG2Mm88dpYcrvGX/f+LU+gGk0hx9GjUNjtrJRm9eINMsRx5Nku8rvHmgekTnJZrOpMldp3CPIODQDD2OWs6wx4mw+UImycY3p/u9QWX960jy87777eOutt3j11VdZtmwZ8+bNo6CggEceeYSvfOUr1NTUUFxc3N9D/1gkm10yj42NQkVyB7qqE1KpFNFoFL/fT1ZWFu3t7TgcDqLRqMp2TiaTSqbHGIQyNiE26nXb7XYV4JJ7Z2Vl4fF41NwjDZLFqSzZzPK8oEvgDy1GB8bPf/7zQeXsu+qqq7j99tupqKjgT3/6E9dcc01/D0mj0Wg+E0uWLGHJkiXq+2effZYPP/yQxx9/fL/XXnHFFdxxxx2MGTOGyspK1cjXiEiPaA4/9I5Jo9EAOoqv0Wg+H92diMambj05Eo2OIvk90cHrruluzGaW542NdnRDt8GFMch5uNNd87CtrY28vDzsdjvz589n2bJluFwu5s2bB8DcuXN57733OO+88/a71kDTPxTHbzweVw35pD+EOIIlKCUSG/F4XFUpiFZ7LBZTGt7GBsXdKx2MzmYJoDscDlwuF06nU9mbPG+z2dTeR7KojY2L5bU6cHVo+f73v08wGOTYY4/l4osv7u/hfCpcLhc333wzS5Ys4ZZbbuErX/kK2dnZ/T0sjUaj+dzceuutOJ1OTjnlFABee+01brjhBm6++WZuvfVWrrrqKtLpNDfeeKPez2ky0E5mjUaj0Wg0vYo4jrvTXW/XWEEhzqOPC3gZKyyMTiXtXNYMVrprHgaDQbKysgDweDyEQqEen+uJgah/KFnBUqkAmVrsxgaiotssTQMdDgder1cFlYxSK0J3bW7jvNC9KaQ4jGWOkbnDbDbv1zRSnOB6bjm0PPnkkzz22GOYzWbuv//+QemouOaaa3jwwQfZtm0bt956K/fdd19/D0mj0Wg+N5s3b97vuV/96lcA5Obmsnr16r4ekmaQoJ3MGo1Gc5Akk0nmz5/PO++8A7CfbmZubm4/j1CjGdh0lz3oTnfHs1G6p7sjabDKI2gObz5J87C1tZVwOAxAOBzG5/ORlZWV8dyoUaN6vPZA1T80VisYHcvSGBAyZXOSySROp1NlORtf373KQa5v/FrmCHE496TVLV/L90aHtGQy6znm0LJp0yauvvpqoOtzcMIJJ/TziD4bNpuN++67jy984QssXbqUc889lwULFvT3sDQajUaj6RcGX7hYo9Fo+oGWlhZOO+00du/erZ4T3cxvfetbLFu2rB9Hp9EMDcRBJFmHot0sDQal3F47fzSDlSVLlvDWW2+pRyQS4cMPP+Thhx8GICcnh8bGRmKxGKtWrWLmzJnMnDmT//73vwC89dZbzJgxo8drOxwOfD5fxmOgITIWTqcTt9uN2+1Wn3GHw4HT6SQrKwuv15vx//D7/WRnZ5OTk6P+lUd2dnbGw+fz4fV68Xq96lrytcfjwePxKF13yW42NgvUc8yhZ8+ePZxxxhkEAgFOOukkfvKTn/T3kD4Xixcv5n//939Jp9N87Wtfo6mpqb+HpNEcNMlkktmzZ6vvly9fzqxZszjjjDNoaWnpx5FpNJrBiHYyazQazUEQDof5zW9+w5QpUwD2082U7ObuxONxAoFAxkOj0Ry+bNq0ibFjx7JgwQIuueQSQB/oDmduvfVWysrKOOWUU1iwYAEdHR1cf/31nHTSSdx9991885vf5MQTT6SpqYk5c+Ywbty4A2YyD0Yky1ka9bndbqWhLI5oo6O4u/O5+/PGf71er3IoGx3Z4syWezkcjgx5Dc2hZevWrcydO5eamhqmTJnCc889NyQaK/76179m3LhxVFZWcv7552f0DdBoBio6iUaj0fQ2g39F12g0mj6gpKQko+x4MGtkajSa/mPr1q387Gc/47LLLlPPyYHu1VdfZdmyZdx00039OEJNX9KT5uE555zDOeeck/HcI4880ldD6ldEL1lkNIyyOd0ldD7pOkaJHe1AHhi8/PLLXHzxxbS0tDBlyhReeeUVcnJy+ntYvYLX6+X5559nzpw5rFq1iosuuognn3xSN47UDGgkiWbJkiXA/kk0B3IyD7RGsxqNZuCgM5k1GnRmmWZ/li5dyrx589TjxRdfzPh5d43MA5Ul33TTTbS3t6tHVVXVIR+7RqMZuGzZsoW//OUvnHjiibz44ou6KkKj+RjESWxs3me32z/xYbPZVCM/7WDuf6LRKDfddBOnnXYaLS0tzJo1i//+978UFxf399B6lSlTpvDMM89gt9v55z//yUUXXUQymezvYWk0B6SkpIRp06ap7z9NEo3f71ePgaD/r9FoBgbayazRsC+zbOXKlTzxxBPAwZUK6UP/0KW7bubpp5+e8fOedDN7YjBoZGo+H5dffjkrV64E9g9OpdNprrzySubPn68z2jUATJs2jd/97ne88MIL/PSnP6W9vV0f6DQazZDlhRde4Mgjj+Suu+4C4Nprr+XNN98kLy+vn0d2aFi0aBHPPfccdrudZ599ltNOO43W1tb+HpZGA+gkGo1Gc+jRTmaNhs+eWaYP/Yc33XUzNYcfW7duZfny5er77sGpt956i4KCAlatWsW2bduoqanpv8Fq+oXuBzq73c4RRxyBz+dj7NixOJ1OfaDTaDRDjt27d3P22Wdz9tlnU15eTnFxMc8++ywPPPAATqezv4d3SDnjjDN4/vnnycrK4vXXX2fOnDmsX7++v4el0egkGo1Gc8jRmswaDV2ZZRdffDHFxcUsXLiQp59++qAyy2666Sauv/569X0gENCO5iGOZKxCz7qZmsOLe+65h69+9atAzzp2LpeLefPmATB37lzee+89zjvvvP2uo7Xthi5LlixRWocAF1xwAZMmTWLMmDFUVlZSUFBw0Ac6h8PRV8PWaDSaz0Rrayt33nknS5cuJR6PY7Vauf7667nlllvU3vpw4Atf+AKrV6/mrLPOYvv27Rx//PH88Ic/5Ac/+AF+v7+/h6fRHBBJonG5XDz77LP9PRyNRjPI0E5mzWHJ0qVLeeqpp9T3P/jBDzjiiCMAPlVmmT70azSHL++//z5jxoyhs7MT6FnHTjeI1HTn1ltv5aqrriKdTnPjjTdiNpv1gU6j0Qx6Kisreeihh3jggQeUPMSpp57Kb3/7W7XHPtyYNm0a69at45vf/CbPPPMMd9xxB7/73e/48pe/zAUXXMCcOXO0w1kzINBJNBqNprfQTmbNYUlvZZZpNJrDh+7BqbKyMsrKyvj1r38N9Kxj1/25UaNG9XhtXRVx+DB16lRWr16d8Zw+0Gk0msFATU0Nb731FtFolGg0SltbG7t372bt2rVs3LiRdDoNwFFHHcUvf/lLTj/99MO+8WJBQQFPPfUUzz33HLfccgtbt27lj3/8I3/84x8BmDhxIhMmTKCkpITi4mK8Xi8ejwePx4PVasXv93PKKadgtepju0aj0WgGPnq10mjQmWUajeaTMQanQqEQs2bN4otf/CJ79uxh+fLlvPXWW/sFp2bOnMl//vMfzjrrLN566y3uueeeHq+tqyI0Go1GM9A56aST2LVr1wF/fuqpp3LNNddw3nnnYbFY+nBkAxuTycT555/Pueeey8qVK/nHP/7BihUrKC8vZ8eOHezYseNjf/++++7j//2//9dHo9VoNBqN5rOjncwaDTqzTKPRfDqysrLYunUr0BWkWrBgAVlZWfsFp3Jzc3n00UeZM2cOJ5988gEzmTUajUajGejs3Lmzv4cwqDGbzZxyyimccsop/T0UjUaj0WgOCaa01DVpNJrPTTqdJhgM4vV6D/vyQE3PaBvRHAzaTjSfhLYRzSehbUSj0fQGei7RfBLaRjSfhLaRwwftZNZoNBqNRqPRaDQajUaj0Wg0Gs1nxtzfA9BoNBqNRqPRaDQajUaj0Wg0Gs3gRTuZNRqNRqPRaDQajUaj0Wg0Go1G85nRTmaNRqPRaDQajUaj0Wg0Go1Go9F8Zqz9PQCN5nBBxO41A5OB0IRA28jAZiDYCGg7GchoG9EcDAPBTrSNDGy0jWg+iYFgI6DtZCCjbURzMAwEO9E2MrD5tDaincwaTR8RDAbx+/39PQzNAWhvb8fn8/XrGLSNDGwGgo2AtpOBjLYRzcEwEOxE28jARtuI5pMYCDYC2k4GMtpGNAfDQLATbSMDm09rI6Z0Op0+hOPRaDT/P4c6QhcIBCgpKaGqquqQLxRD8V6HQxR3KL5vfXmvgWAjcGjtZCi+b315P20jg/t+h9NcotebgX2vw8FGoO/+nkPtPjAwbAT0ejOQ73U42AgMvfetr+81EOxE28jAvpfOZNZoBigmk6lPNkg+n6/PopFD9V79hbaRwXOv/qQv7GQov2+Hg50MNRvp6/tpG+k9hur7pm2kd+mrv+dQu89AQK83g+de/YVebwbPvfoLbSOD514Hg278p9FoNBqNRqPRaDQajUaj0Wg0ms+MdjJrNBqNRqPRaDQajUaj0Wg0Go3mM6OdzBrNEMHhcPDTn/4Uh8Oh76XpkaH6vmkb6T2G8vum7aR3GMrvm7aR3mOovm/aRnqXvvp7DrX7HC7o9UZzMAzV903bSO8xVN+3gWojuvGfRqPRaDQajUaj0Wg0Go1Go9FoPjM6k1mj0Wg0Go1Go9FoNBqNRqPRaDSfGe1k1mg0Go1Go9FoNBqNRqPRaDQazWdGO5k1Go1Go9FoNBqNRqPRaDQajUbzmdFOZo1mELNx40bmzZvH8ccfz2OPPZbxs02bNjF27FgWLFjAJZdc8pnvEY/HOeecc5g7dy4PP/zwJz7/eamqquLkk0/mhBNO4K677lLPBwIBiouLWbBgAaeeemqv3W+o0xc2An1rJ9pGehdtI5qDYaitN9pGeh89l2gOhqE0l2j7ODQMJRsBbSeHgqFmI6DtpLfRe5J+JK3RaAYtF1xwQXrPnj3pVCqVnj17dsbP/v73v6f/+te/fu57/PWvf00/8MAD6Y6OjvSiRYvS0Wj0Y5//vHzve99Lr1y5Mp1Op9OnnHJKOhAIpNPpdHrNmjXp2267rVfucTjRFzaSTvetnWgb6V20jWgOhqG23mgb6X30XKI5GIbSXKLt49AwlGwkndZ2cigYajaSTms76W30nqT/0JnMGs0g5sEHH2T06NEAmEymjJ9t2bKFv/zlL5x44om8+OKLn/ke69atY968eZjNZqZOncq2bds+9vnPy49+9CPmzZsHQEdHB1arFej6/7z00kuceOKJ/PnPf+6Vex0O9IWNQN/aibaR3kXbiOZgGGrrjbaR3kfPJZqDYSjNJdo+Dg1DyUZA28mhYKjZCGg76W30nqT/sPb3ADQazWenoKAAgB//+Md85StfyfjZtGnTuPjiiykuLmbhwoUsXrwYi8Xyqe8RDAbJysoCwOPxEAqFPvb5z0tubi4ADz30EDNnzsTlcgFQWlrK3XffzXHHHcfixYs566yz1P9fc2D6wkagb+1E20jvom1E28jBMNTWG20jvY+eS7SdHAxDaS7R9nFoGEo2AtpODgVDzUZA20lvo/ck/Wcj2sms0Qwili5dylNPPaW+v/nmm/nggw9oaGjgzjvvzHjtF77wBXw+HwBjx46lubmZwsLCT33PrKwswuEwAOFwWF3zQM/3Bo8//jjLly9n+fLl6rnZs2fjcrkwm83Mnj2b8vJyvcD2QH/YCPS9nWgb+exoG9E2cjAcDuuNtpHPh55LtJ0cDEN9LtH28fkZ6jYC2k4+L4eDjYC2k8+D3pMMIBvpb70OjUbz2XnmmWfSF110Ubqjo2O/n51//vnpbdu2pWOxWHrOnDk9vuZg+Mtf/pL+/e9/n+7s7EyfcsopSk/oQM9/Xt555530woUL05FIJOP566+/Pv3SSy+lOzo60gsXLkw3NTX1yv2GOn1hI+l039qJtpHeRduI5mAYauuNtpHeR88lmoNhKM0l2j4ODUPJRtJpbSeHgqFmI+m0tpPeRu9J+g9TOp1O95+LW6PRfB6mTp2K0+nE4/EA8Nprr3HDDTdw8803U1NTwzXXXEM6nebGG2/ki1/84me6RywW46KLLqK6uporrriCcDjMmWeeydixYzOe/+Y3v9kr/6ezzz6bPXv2kJeXB8DJJ5/Ml7/8Zfx+P5deeimJRIKvfvWrXH311b1yv6FOX9gI9K2daBvpXbSNaA6GobbeaBvpffRcojkYhtJcou3j0DCUbAS0nRwKhpqNgLaT3kbvSfoP7WTWaDQajUaj0Wg0Go1Go9FoNBrNZ8bc3wPQaIYS6XSaQCCAjt1oDoS2Ec3BoO1E80loGxl63HrrrfzlL39hzZo1HH/88Zx88smUl5cDXdqCc+fO5dprrz3o62kb0XwS2kY0Gk1voOcSzSehbeTwQTuZNZpeJBgM4vf7CQaD/T0UzQBF24jmYNB2ovkktI0MLZqamnj44YcBuOOOO3jxxRf5/e9/z1133UVlZSW7du1i9erVeL1e1qxZc1DX1Dai+SS0jWg0GuGCCy5gz549PQY6Pwk9l2g+CW0jhw/ayazRaDQajUaj0fQjd999N1/96lcBiEaj5ObmMmXKFMrKyli/fj1z584FYP78+bzzzjs9XiMejxMIBDIeGo1Go9F8HIlEgvPOO493330X2D/QqdFoNJ8G7WTWaDQajUaj0Wj6iaqqKoLBIJMmTQKgs7NT/SydThMMBsnKygLA4/EQCoV6vM6dd96J3+9Xj5KSkkM/eI1GoxkkBAIBrrzySrxeL2PGjOGJJ57o7yENCOLxON/97ndZuHAhsH+g80C/o4OaGo2mJ7STWaPRaDQajUaj6SfuvPNOfvjDH6rvTSaT+tpsNpOVlUU4HAYgHA7j8/l6vM5NN91Ee3u7elRVVR3agWs0Gs0goaOjg/POO48///nPhEIh9uzZw6WXXsr999/f30Prd7xeLyeeeKL6vnugsyd0UFOj0RwI7WTWaOiKbBcXF7NgwQJOPfXUz6RFpdFoNBqNRvNpef/997n88su56667uOuuu3C5XDQ1NbF161ZKS0uZMWMGq1atAmDVqlXMnDmzx+s4HA58Pl/GQ6PRaDRw77338vrrr+PxeHjllVe44YYbAPje977H6tWr+3l0A4vugc6e0EFNjUZzIKz9PQCNZiCwdetWrrnmGm655RYAzjrrLF588UX27t3LXXfdxbJly/p5hJqBxAUXXMCvfvUr6urq+M53voPb7eaRRx5hzJgx/T00jUYzwAkEAhxxxBFMmDABi8XC7bffrueRw5z3338fgL/85S8ATJ48mbPOOguTycRjjz1GaWkp48eP54QTTmDixInMmzevH0er0Wg0g4vW1lbuvPNOAJYuXcqiRYtYuHAh1dXV/O1vf+OKK65g48aNuFyufh7pwEACnQ0NDZSWlvb4GofDgcPh6NuBaTSaQYF2Mms0wJYtW3jppZdYsWIFV1xxhdKiys3NPaAWFXTpUcXjcfW91qMa2iQSCS688ELlEJDGGB8XjNA2ojnckVLLdDq9X9llT2WYJpMp4zHU0EFNzYG4/PLL1dfdm/vdcccdfTwajUajGRr89re/pb29nalTp6p51mQy8cADD/DGG29QVlbGz3/+c37xi1/070AHCLfccktGoFOj0Wg+DdrJrNEApaWl3H333Rx33HEsXrw4w7FxIC0q6NKj+tnPftYXQ9QMAKQxxiOPPAJwUMEIbSOaw4l0Ok0qlaKzs5OOjg46OzuVtt/BOJgh08lssViwWq3YbLYh43DWQU2NRqPRaPqGjo4OHn74YQBuvPHGDPkHv9/PAw88wHnnncc999zDhRdeyNFHH91fQ+13pJqmtLR0v0CnRqPRHCxak1mjAWbPns2cOXOw2+3Mnj37oLSoQOtRHW58lsYY2kY0Q5V0Ok1nZyeJRIJoNEooFCIYDBIOhwmFQuoRDAZpa2ujra2N1tZW9fi459rb2wmFQoTDYSKRCKFQiHg8/rFBv8GCBDVfffVVHn300YOaR0A32dFoNBqN5tPy8ssvU11dTW5uLueff/5+Pz/33HM5//zzSaVSfP3rX6ejo6MfRqnRaDRDB53JrNEAP/nJT1i8eDGLFi1i3bp1OByOT9SiAq1HdbhzMMEIbSNDl6qqKr761a8Sj8f54he/yEknnbSftu7NN9/MypUrmTZtGg8++GB/D/lzk06n6ejoIJlMkkqllARGKpXa79HR0UFHR4fKbD5QRrPxOZPJhNlsxmw2qwxmu92Ow+FQ93W5XFgslj79f/cms2fPxuVyYTabmT17Nu+995762ScFNa+//nr1fSAQ0I5mjUaj0Wg+hieffBKASy65BKfT2eNrfvvb3/Laa6/x/vvv89vf/pbvfOc7fThCjWZg0v2cc+ONNwL79xZ57bXX+nmkmoGGdjJrNMD111/PpZdeym233cZXv/pVjj76aK1FpflEDqYxhmbocv/993Prrbdy0kknceqpp7JixYoMbd2bb76ZXbt2sXr1am644QbWrFnDnDlzerzWQJdCSKfTJBIJEomEymAWR7P8K49kMqkekhEkzunOzs4Mh7Lx+iKRYbVa1dc2mw2n04nT6SSRSODxeOjs7MTj8QxaR7MOamo0B4fMNRLMMn7dk8Y77JtXZA4xm81YLBbMZvOQkdzRaDQHRzKZ5N///jcAX/7ylw/4uhEjRnDPPffwjW98g5tvvpkzzzyTCRMm9NUwNZoBSfdzznXXXYfX692vt4hG0x3tZNZogOLiYt54442M5w43LSrjAa4nhnozrs+CboxxePOjH/0Iv98PdGn+WSyWDG3d9evXM3fuXADmz5/PO++8c0An80DV7hbnsjjAU6kUiUQiw5EsjmVxQkOX0zwcDhONRonH4ySTyU91X4fDgdvtxu/3q/tLRnRWVhYmkwmPx/Oxmb8DFR3U7MIYeOjuPIT9nYQWi0WvPUMcY1VER0dHr8rjSNDKbrdrO9JoDhNWrlxJW1sbhYWFnHDCCR/72quuuoq//e1vrFy5knPOOYc1a9aoPZ5GczjS/ZxjtXa5Drv3Frniiit6/P2BnkCjOXRoJ7NGc5jT0dFBIpEglUod9O9YLBZsNpvKODzULFmyhOeff56Kigo2b97MUUcdpX5WVlbG1772NZqamsjOzuYvf/kLU6ZMOaTj0Y0xBhcvv/wyP/rRj1T27Q9+8AO+9rWvfe7r5ubmAvDQQw8xc+ZMPvjgA/WzdDpNMBgkKysLAI/HQygUOuC1BqIUQmdnJ9FoVDkC4/G4ciSL09e4gUwmkwQCAYLBoHqtOJpljhHJjJ6CVuJQtFqtuFwuvF4vra2t+P1+CgsL1e8bf8/j8fTaHNRXc8nhGtTsLrVi1KI+WIxZqT39TH5+qNal/lhvDgfEudxdd90YdDAGI4xBCWC/uUSylsVW5HUSIHM6neqw3NtoG9EcDNpO+oZ//vOfQJfu8idVP5nNZv72t79x3HHHsW3bNi6++GKef/75QVs1pekZY0B7sCdPvfTSS/z4xz8mkUjgdrtZtmxZrzau7H7OcblcwL7eIscddxyLFy/mrLPOoqCgYL/fH6gJNIcT8Xic733ve7z88svY7XZmzJjB448/fsjvq53MGs1hSjqd7jHDsPvhvfuBD1Baq2azGYfDccgOa8KXvvQlbrjhBubNm7ffz66++mq+8Y1vcPnll/PMM89w1VVXsWbNmkM6Hs3gIZ1Oc/HFF/PGG28wbdo09uzZw+TJkzn//PPxer2f+/qPP/44y5cvZ/ny5Zx22mnqebPZTFZWFjU1NQCEw2F8Pt8BrzPQpBA6OzsJh8PKMRiNRkkmk0SjUVKpFJFIRGUtR6NR1dgynU4TCARob29Xr5FsZtFwhkzt5e4Zq3a7HafTqQ7f0lxw5MiRhMNhldVqtVpJJpPY7fZe+T/rueTQkUwmicfjGQ2VepJAgMxggxzuJavVqO19IMxmM06nE5vN1uv/D20jvU86nSYWi+0X6BaH8GcJRnTHarXidrvV/aLRqLYRTb+i7eTQk06neeGFF4AuJ/PBMHz4cJYvX878+fP5v//7P2666SbuvvvuQzhKTV9hDGYa1xWRabPZbIOqYqq1tZVLL72UVatWccQRR/Dmm29yySWX8OGHH/bqfYznHKF7b5Hy8vIencwDMYHmcOPGG2/EbDazY8cOTCYTdXV1fXLfwVdnqtFoPjdyyBIHsxzAsrKy8Hg8GY+srKyMh9vtVk4dyXSMRqMZTb1OOOEEpk+fjtvtZsKECUyfPp0f//jHn3m8J554IiNHjtzv+YaGBtavX8+ll14KwAUXXEB5eTl79uz5zPfSfDxGR09Pj89b3nwo7Aegra0N6Nrg5OXl9YpD99133+XRRx/l2WefxW63K43urVu3UlpayowZM1i1ahUAq1atYubMmZ/7nn1BOp0mEokox18kEiGZTCqncSAQUJnJTU1NVFZW0tbWRnt7OxUVFdTV1dHQ0EBNTQ01NTVUV1dTWVlJRUUFe/bsoaKigsrKSqqrq9Vrm5ubaWtro7W1lfr6empqamhra6OlpYW6ujoikQj19fUkk0lisRixWIyFCxdy7LHH9oqd6Lnk0CDBikgkkuFgjsfjBAIB2traVPZ7KBQiFAoRDAZpb2+nubmZhoYGQqEQVqtVrT9OpxO73Y7NZlPyB1JZI/eMRCJEo9FenUu0jfQ+shcRB7PVaiUej6tqCGPlA6CqUeLxuJoHEokEHR0dmEwm7HY7brcbr9eLx+NRe5VUKkUgECCVSqnARSwWI5lMDjobqaqq4uSTT+aEE07grrvuUs8HAgGKi4tZsGABp556aq/dT9P7+xI9l/QNu3btorq6GpvNxkknnXTQv3fssceqisV77rmH1atXH6IRavoKCWYaz6uyrqTTabXHlf3ugRpUGx9y7pEG11KhdaBzUG/PI7t27aKwsJAjjjgCgJNOOomKigrWr1//ma7XE93POcJPfvITVqxYQWdnJ+vWrWPcuHE9/r7D4cDn82U8hgqShCPVnZK493kC471tI+FwmD//+c/84he/UPY+fPjwzzy+T4POZNZoDjPEaSST4MFk80j0V8pPHQ4HdrtdTaiyuErm2RtvvEFnZyelpaU8//zzjBo1CqvVqkqTvvSlL7Fz584e7/Xvf//7oKOcVVVVjBgxQjkXTCYTo0aNorKyUjfi62VEi9foKPo4jKXrVqv1oLVzTSYTb7/9NgDDhg3jtddeY9SoURmv+TT2YzKZeOqppzj//PPxeDy0trbyz3/+s1eyX2+//Xb27t3L6aefDsAdd9yRoa1bWlrK+PHjOeGEE5g4cWKPmfgDkVgspuYH+VpkM0KhkJKsEOdvKpWipaWF1tZWEokELS0tRCIRAoEALS0tB20zADk5Ofh8PtLpNC0tLSrLubW1FZPJRE5OjpqDnnvuObxeL5MmTfrcdqLnkt5HHMxiS1arlVAoRCQSAdgvMzmdTqsMZrvdTmdnp8qaj0Qi2O12srOzcbvdB8w0koOkyLq8+eab2Gy2XplLtI30PsbmoA6Hg9bWVvW9y+UilUoRCoUyNB0PBqkkycvLw2azEQwGVbBD1iRZ01avXo3JZBo0NqIbMfU9vb0v0XNJ3yCyVLNnz1aVDAfLhRdeyKuvvsof//hHvvOd7/Dee+8NmgxXzf5IZQygzrAmkylDxkvWo2g0CqCymj+pZ1FP2Gw2HA5Hxtmnt+eRCRMm0NjYyDvvvMPs2bN57rnnCIVC7Nmzp9eSWrqfc04++WS+/OUv79dbJC8vr1fuNxiQoET3jHgjUpVps9k+1bzR2zaya9cu8vLyuP3223n11VdxuVzceuutfRKI1k5mjeYwQ5xGJpMJl8t1QK0xOayHw+GMA57FYsHr9aqMMpvNpq4pzmaAvXv3kkwmGTlypCp3TyaTuN1unnnmmV77/3SfvHuzUZCmC2Pjt4NFnEdSmibOI6PD2dj4SwIQIoUg9tN9cQU+lf2kUinuvPNO/vWvfzF37lzef/99zj33XDZv3qy0xj4r0rHcSHdt3TvuuONz3aOvkUxB6PpsSUO/zs5O9Tl3Op3s3r2bSCSCw+GgurqacDhMKpWioaGBeDxOY2MjwWAQgPz8fBYsWMDEiRPxer0kEglaW1upq6ujpqaG+vp69u7dSzAYpLW1ldbWVubOnUt9fT0tLS243W4CgQA5OTkEAgGcTqeS7Kmtre0VO5H/rxE9l3x20um0cjCbTCacTicNDQ3Ktsxms8pWPRA5OTkMGzaMaDRKMBgkkUjQ0NCQIdNk1PCWzbxoBiYSCWKxGI2NjdpGBiAi2QVdwe5gMKgaqPr9furq6jLsw+FwZGSxWywWdfg3Nh6Vg59kyI8ePRq/34/VaqW9vZ1QKERRUZHKOuvo6BhUNqIbMfUfdXV1g8ZONPuczCeffPJn+v077riDJ598krVr17JixQoWL17cm8PT9BEdHR1qzusuTSdSGVarFYfDoc6qcj45GIyfZfkcSwKWy+XaT1Kyt+YRv9/Ps88+y4033kgwGGTevHlMmTKlV2WgejrnCN17ixwOpFKpjGx4IKNPiOwpJFgRi8Ww2+3Y7fZP1ai8t2wkmUyye/dupkyZwl133cXGjRtZuHAhW7du7VHepDfRTmaN5jDC6AQ2OpjT6bRyJEmETjIXBWPEt62tjUQiQXZ2NhaLBbfbrSZVcSps376dGTNm4Ha7VdMwyaK+/PLLeyWTuaSkhOrqapVFnU6nqaqq6nFS1nw2jJszKU03NskwNoQTzV1xFovTR+xCnACfhNlsZsOGDcyYMaPHn3+aKO6GDRuora1l7ty5ABx33HGMGDGCjRs3fuaDx1BG3h+LxaKyOeT9i8Vi6nXBYBC3201jYyPhcBi/38+2bdtUNkgwGMThcPCd73yHCy644KA2vc3NzTz99NMsW7aMDz/8kBNOOIGysjISiYTKPBQnZSqVoqOjg82bNzNt2rQer/dp7ETPJb2LrCcmk4msrCzlxJPNeH19PYD6udPpxGKxKKmLUChEa2srsViMyZMnk52dTSAQIBAIqMz67uTk5JCdnQ10OS1lDL01l2gb6V1kLyK67DK/5ObmsnfvXuLxOBaLhby8PHw+30H3fpAAeUNDA9FolNbWVoYPH47b7SYYDCqntMwpHR0dbNq0adDYiG7E9PFI4EF03HtqMttdDx7ICHIfKPNsMNnJ4U46nWblypUALFiw4DNdo7CwkCuvvJKlS5fym9/8RjuZByEdHR2qekqqpKDLPqR3CHQ5nyV5yuFwZEgASp+I7nOInHvkrCxVdmazWSVlRCIR3G53xvrVW/MIdMlJip3H43GGDRum5DM0vYecgYxJODabTSVBpFIpzGazalpuMpmU30MCu8ZeNGJP3b8XestGRo8ejdls5pJLLgHg6KOPZsyYMWzZsuUzz4sHi3YyazSHETI5ShaQPNfc3NxjxNZsNuN2uzMWyFAoRCAQIBKJYLPZyMrKyogECw0NDZSUlKhNu8ViUTqvjz32mDoYfR4KCwtVl9TLL7+cZ599ltLSUl1u2EvIYR1QUX4JNkQiEYLBYI/OHiN2u11lkUkgwohxgZXM587OTsrLyykuLu7xmp8miiuHue3btzNp0iR27tzJrl27mDhx4kFf43BC3h+bzaYa+XUPTknTiGHDhvHBBx+oKH08HqekpIQ33ngDs9nM7373O4499tiDum86nWbr1q28/vrr6tqtra1AZjNScQiIk6Curo4RI0b0eM1PYyd6LuldZK1xOp1K8gK6Mm9kc1xYWMjw4cN7dB6Gw2F27txJNBqloaGBYcOGKSeyBLUk+CEb+NbWVlwul5qnLBYLHR0dVFdX96jpD9pG+hPjwdzYHwK63n+AUaNGfWr9fHEEyPVl/jA6CIzPp9NpampqBpWN6EZM+xBnsaxT3RtIfhak+Wx3Z/Ngs5PDmR07dlBXV4fD4WDOnDmf+TpLlixh6dKlvPzyyx+7lmgGFuLck8QJqagymUx0dnZSX1+fUdGRSCQIBoPq3Ct7CavVmpFUI/Jdcp7tCZH2MpvNav+TlZWl1pzemkegK+NVNHZ//vOfc8oppzB+/PhPdQ1Nz8j5R5JnBJvNRiKRoLq6ej+5jGg0SktLCz6fj/z8fBWMkKBnT+dg2JdR73A4sFgsvWYj+fn5nHrqqbz88succcYZVFRUUF5ezqRJkw76Gp8V3fhPozmMkInNeKgPBAJ0dHRgNpuVhpTb7SY3N5dhw4bh9/tVRqrJZMLr9Srhfmmk0xNz585l9erVqrGJRPiAjMjvwXDdddcxcuRIqqurWbhwYcYCumzZMpYtW8bEiRO56667+NOf/vTp/iiaAyKZgIBy3ESjUdWszahb5nK5cLlcOJ1OlQ0g12hsbKS1tRWLxbJfI0mPx6M2cy6XC4/How7JRvv5rBQVFbFs2TK+9KUvcfTRR3P++efzwAMPHNCBfbgj77c4/btvoJxOpyqvlvd/0qRJbNu2DUB9NmfNmnVQDuZ0Os0rr7zCl7/8ZZYsWUJZWRl+v5+ioiKamppU8y6n06m6f8O+8sRZs2bx7rvvfm47AT2X9CZGB6IEqpxOJ6FQCOhyNpeUlBwwO9Xj8ajggQQbYN9B0efzkZOTQ15eHiNGjFB6m8Zse7GROXPm9MpcAofORro3c1uzZg3HH388J598MuXl5QDcfPPNzJ07l2uvvbZX7jlQ6O74NTqHP412fiqVoq2tjcrKSvbs2aMqICTzNx6PZ+yBjM2fuu9XPg+Heh7RjZj2VViFw2ECgQChUIhYLKb2oxJkkuQHqaAwZjQbv5fXiC2Kw8noWID997WfB73eHFqklH/OnDlqP/pZGDduHPPnzyedTvP3v/+9t4anOYQkk0lCoVBGZZ6cLVKplKqUMZlM5OXlUVBQoJzAnZ2dhEIhGhsbqa6upqqqSv1bWVmpqvekh4TT6cTj8eDxeFRAVKS95B7QtV8Wp3RvziO33HILkydPZvz48VRUVOh55HMiTmFZW6QRJOzLVG9paaG+vp7Ozk7sdjsFBQWMHDmSYcOG4fF4gC7/SHl5OS0tLUBXgo4xeGG32/eTjxS7jcVinHDCCb1mI3/4wx+4++67mTp1Kueccw4PPfRQnzT/M6W1CJRG02sEAgH8fj/t7e0DcuMuGqlut1tlMjc1NRGPxzOcx59EOp2mqamJRCKhNJrFWSCROlmAJSonSCd5m832uTZ+g5WBbiOC6E4BKprf2tqqbMhkMuHxeEilUup543LicrkoLCzEbrdn/MzpdCqHoRzwpEGCbMaM5W2yMTzc6A87SafT6v31eDzU1dWpDXcikSAUCpGdnc2mTZuIRqMUFBTw1ltvMWvWLP75z3+STCY599xzuffee5kxYwaPPPLIx96vpqaGW2+9lbVr1wJdtlFaWqrK5O12O4WFhdhsNoqLi8nKylKBL5/Ph9frxev14nQ6ycrKOuR/n4HGQJ5L2tvbAfB6vbS2thIIBPD5fASDQZqbmxkxYsQnbnJjsRhbtmzBbDYfsGxQ2Lt3L9FoVEkrQFfVTUdHBy6Xq1cafR5Kvv/973P22WerZm4ATz/9NHv37uX+++/n5ptv5oYbbuDJJ5/khhtu4Lzzzjuo7LyBbCOSZSYOvqamJkwmE4WFhezatYvOzk6GDx+u9Ie7k06niUajhMNhwuFwRoABumyvsLAQq9VKLBajra2NdDqN2+3G7/crR0FPmpkDmbPPPps9e/aoRkvSiMnv93PppZeSSCT46le/ytVXX31Q1xvINmJEssqMwQIjYkdARhMv2Y9K6btR2s2IBMs9Ho+qlIF9Gq666dvg4itf+Qr/+Mc/uPXWW/npT3/6ua61bNkyrrnmGqZPn84HH3zQSyMcevT3XCLVl8beD3J+SaVSBINBdR4xm80UFhaSSqVob2/vUSISyAhQAaoHhNVqJZlMEolEMnoL+P1+JRkHqIxm+flA34scavrbRg6EOJe77yNEFkP6iLS2tiopuNzcXBXcTqVSOJ1OcnNzcTqdNDY27nctuZ7ZbFaSkhKksNlsxONxFSgV2ZbBzODZVWk0ms+NMTtRNuNut5t4PK40Vg/msGUymcjJyaGpqUlpNH8cubm5KovZZrP1Wkmj5tBgdDCLPUgTAoCsrCySySSVlZUZmT6ycIqmd0VFBR6Ph9GjR6smkrFYrMeF12KxkJubi8fjUfIqHR0dpFKpw35T1h/Ihrr7v4lEArfbTTQaVVnFra2tFBQUUFtbS35+PtClhV1WVsaECRN6vP7rr7/OT3/6U0KhEHa7XWWWp1IpLBYLRUVF2Gw2bDYbBQUFKktEtM6MMjyHYxBiMCHOGqmWAQ5amx3YzxnUHZlvABW4FKeS8ToDme7N3GQ+zM3NpaysjPXr1ytd+fnz5/POO+/06GQeTE3dZA+SSqWUjqXoHubm5tLU1KSa//l8PrUmRKNRIpGIaixpROYIn8+nmhK3t7cre7Pb7fh8PtXYSeaSwcTh2IhJdNiN+0ZxKotkTiAQIBaLfWKVnDiQjfOSyKuEQiFCoRAulwufz6euDRyWSRGDFaMec2/03rjgggu49tpr2bBhg5bMGKBI0FHmCGkQK9J+xj2HZJHu2rVL7R1Ex10ciN2rH2S+SafTNDQ09LgvaW9vp76+npycHHJzc2lvb6etrY38/Hw1l0hlsGbgII2qjVVUopUfjUYztLuhy37S6TTbt2/fby9bVVWlsps9Ho/qASF2aQx0SsZ0c3MzHo+HYcOGqaB4LBZTzu3BinYyazSHEbIhTyaT6rDvcrlUJDYQCKjS0k/CarVSWFhIKBTKyCwxCth3dHSQTCZpa2tTWljGZoNyyNMMHIwOZtlQ7d27l87OTqVVVltbq15js9koKioiOztbNdXo6OigsbGRmpoawuEwH330ESUlJRQXFxOJRDL0qaRESH7HZDKpTPueso00hw5jJrpsrI1NT6AruzQ7O5vm5mbl/K+urubII4+ktraWPXv2sGjRIlasWMFtt93GI488ktH0L5lM8vvf/55HH30UgOHDh2O321UZ2siRIzM24iUlJTidTsxmM8OHD1fliVJmJg/NwMXo7JWMc9H7/rj53/i+iuO1JyTIacwSMjb0GgxOxO7N3IzZclJhIH87j8ejZEe6M5iauok8gWSoZmVlqeaO+fn5JBIJAoEALS0tquS0O2azWZUqZ2VlYbFYiMfjRCIR1XhJyMrKwuv1Kq1OIKOCRjPwMDaiFmS9kKzE7gkLxoxlOdzLQ/Yd3XE6nXi9XtXEOhqNEo/HVbZ4PB7/1PItmv5j27Zt1NfX43Q6Of744z/39fLz85k9ezZr1qzh//7v//jGN77RC6PU9BbdHcwul4tkMkltbW1G0EnOJ1KJK0HNeDxOLBbLCEDJOVacy0bZHfmZUSrDbrcTDodpaWmhtbWVRCJBbm4u0WiUQCCg1p5EIjHoM1SHEt0dzE6nk0gkoppVG19nNptJJpM0NDQoW3M4HBQWFio5uMbGRhKJBDU1NRn3MSbHiPaySGdIElZlZaXqZSVO6MEc3NROZo3mMMJmsymHnjgNTSYTfr9faex+Gsev2Wz+2HKXzs5OVXIv19UKPQOXRCKhDt+yyDU3NwNdm7NEIsGuXbuAfUGGSCRCWVmZKkW2WCwMHz6cSZMmMXXqVHbv3k0gEKCiooL6+nqKiorIy8vLcDym02mam5sJhUK0t7crfVVN/2HUrhT9UmmYYsy4tNvtRKNRxo8fz4oVK3jvvff4+c9/zpo1a/jwww+54447+MlPfoLZbGb79u38/Oc/Z8uWLQAceeSRxGIxTCYTM2fOVPrwNpuNcePGYbfb1Tw1duxYtcEXZ6I4ogeDE/FwonuwwuhklkoF0Z7zer0HvI5IpiQSCXbs2EFJScl+sihyHYCcnJyM54GMpj0DHWMzt9NOO009L855ObSEw+EDrruDqambyWRSDUOlQiIWi5FIJGhpaaGgoEDJrYjDWIJRxobEIo3Q2tq6n4auBEbF7qRxk/zMuA5pBhapVCojM1ne+7a2NiXHI4jzRhpyGZGKKGkqbAycSmDcWGGVk5ODz+cjlUrR1NSkqnOi0WiGhqZm4CJZzCeccEKvOfTOOOMM7WQeoCQSCeX0k3WkqakJ2KfHHAwGVcKMVEaEw2GSySThcFglwHQPUEtFnfFh1G8XpCJvzJgxVFRUEA6HVYKEXNdkMpFIJHRwcwAhMimyH5HqKdi3lxW5QOPzct5tb2+npqaGjo4OJaVis9kyGtLKeiNrjtlsVs2NzWYzJSUlKqDa2NhIfn7+fpU7gxHtZNZoDiMOJENgdNIYpTQ+L8YmLEa9XdhXoqjpfySzy+iYSSQSquGWw+GgublZLYo5OTkkEgk++OCD/UpTOzo6qK6upqamhvHjxzNp0iRaWlqorq4mFotRUVFBZWUlOTk5FBcX43a7MZlMZGdnq0XcWOqubaTvkA1V97+5fFalo7I4+lpbWxk9ejRlZWXY7XY8Hg+BQIBwOMwdd9zBd7/7Xf71r3+xfft2XC6Xys70er2cfPLJbN26FavVyhlnnMGHH34IwJgxYzjqqKMoKyujs7OTrKwsJkyYQCQSwWQyqWxFaegEgyNT9XBC5gSjxAqgSv/8fj8tLS0qu+dAmEwmRo8eza5du4hEImzfvp2CggJKSkrUtcXBLFrvsM/hJPccDEgzt+effx673Y7L5aKpqYmGhgZKS0uZMWMGTz75JN/61rdYtWoVZ599do/XEf3YwYLMKXLAMspwNTU1kZ2dzahRo9TrRXNTZDB6ClpLIEo0DcVWksmkciSaTCZcLpdeXwYgkl1oDBg4nU5SqRTV1dUZ80s0GqWtrS1jH5JMJlXAPBwOZ8jH9ITIM+Xl5RGLxWhtbSUSiTB8+HAVvMjNzVW2p4PgAx+RjekNqQzhzDPP5JZbbuHVV18lHo8Pqnl2KGOsTHE6napnEHRVrzidTnbt2qXmE5F4lPlB5JRkrkgmkxnnD2k4bbPZVHKDBKdkvZV1rLy8nOrqaiZPnkxTUxPNzc0MGzaMVCpFOBwmKytLVe4Mlr3JUEYC1NC1F5H1xWQykUwmaW5uVmuLrEsdHR0EAoH9AtqCaHF/HHa7nZycHCWnUVFRoRpdB4NBlTAhlTeDdZ+incwazWGGdG83Hs7koP5x+qZGDTuj0/jjEKekSGUYNwODqdHOUEYOTkYds3g8rhzMTqeTuro61eQxOzubnTt3qvJVv9/PmDFjKCoqwul00t7ezvbt26mrq6OsrIzKykomTZrEUUcdRWtrK42NjUQiEVVSNmbMGAoKCjLsSUpdQTsQ+5LuTmajZiXscwjJITsUClFcXExZWRl1dXVMnjyZdevWsWPHDs4880zuuOMObrvtNj766CN13UWLFvGFL3yBBx98EIBLL72Ut99+G4B58+YxceJEVq9eDXR1dR8zZgxVVVVAl0yA1WpVchnG5pGagYPMJZKxbMwSEWciHFwAyefzKSmW5uZmGhsbSaVSjBkzBpPJpLIWjc5qo97uYDnI3X777ezdu5fTTz8dgDvuuIOzzjoLk8nEY489RmlpKePHj+eEE05g4sSJzJs3r59H3DuYTCZVLppIJLDZbOTn59PS0qIcfKFQCJvNpspHu2fKGzPMREqh+3piXOPMZjMul0tnpA5ApJGWYLPZcDgctLe3K8kUyQIzSqiIDFxbW1vGIV8CC8bmf+I4EltJp9PU1tZSW1vL+PHjcTqdxGIxGhoayMvLU80G7Xa7kt/Q+9eBS2dnp8pkXrBgQa9dd/r06QwfPpy6ujpWrVrFwoULe+3ams+OMZnJZrNlnF2ys7PZsmULyWQSp9OpHHqdnZ1qrgiHw4RCIWKxmMpm7r7GyHxhfDgcDpxOp9pjFBYW4vV6SSaTfPjhh5SWlhKLxWhpacHn82Vo9xolKzX9g0isQJc/Yu/everc2dzcrORTRK6pvb1dBR9kHTCZTMTjcaLRaMa+0yipIn4VkVuRiqr6+noARowYgc1mo7a2lpEjR9LZ2UkwGFRBrN5M/Otr9Cqp0RxGSAQVujbqovUom3Kfz6fKm8PhMNFoVB3+updtSOmix+MhOzt7v0mwo6NDHRY8Hg+AWrzF4aDpX6RkTBZOyRaSw5vL5aK6ulo1ZjKZTGzevBnoKkmbOnUqw4cPzzjQ5+TkMHv2bOrq6ti8eTPhcJhNmzbx0UcfMXHiRKZMmUIsFqOmpobW1lbKy8vxer3qwC/BiMGkpzoUMb4HgrwXokUXi8VU2f7evXsZN24c69atY8+ePQCcdtppHHvssbz99tuk02mOO+44vF4v3/ve9wA4/fTTaW1tJZVKMWHCBE499VSeffZZAKZNm8aRRx6psp+lQ7d0CpfAla6IGFgYncg2my0j0Gg2m6mvrycYDKrO3AeD3W6ntLSU7Oxsdu/eTWtrK16vV+n2yvXl/hLINGaxDnR6aub2zjvvZHx/xx139NVw+hQ5fImGrsPhID8/n2AwSCgUysg2gq55yOl0qrLUT3qPjR3bxUEwWOzicCKRSGT0g5BAQENDg9qjymFc9pIWi4XGxkblWALUHrOtre0Tm1JDV4BqzJgxBAIBdu7cSWlpqdLlzM7OxmQyEQgEKCwsVNlsHo9H29AAZevWrTQ1NeF2u5k1a1avXddkMrFw4UIee+wxVq5cqZ3MAwzZC8paIZV1yWQSu91Ofn4+77//Pul0WjUDlDUmEAgouchoNEooFCKVSpFOp7HZbEp72SjZJr0R3G43drud+vp6GhsbGTlyJOl0moqKCgoLC9X52Wq1Eo1Gcblc6tp6Duk/jPKg0hiys7OT5uZm5URuaWlRfoxEIqGCoLKvhX0NI419howJO2azWVVfyvtts9kYPnw4ALW1teTm5uL1emlublZVvS6XS0m7DNZzsHYyazSHCbJ4yqRqMplobm5WB3KPx0MymaSqqopIJPKJ2sniRI5EIrS1tTFq1KiMyKxkR0vEV7KQYHAd/ocq0txG7EGcNI2NjcC+DOZUKoXT6SQcDqvI69ixYznyyCNJJpNUVlaqDZnNZsPj8ZCbm8uwYcMoKiqioqKCHTt2EIlE+PDDD6msrGT27NlMmDCBjz76iEAgoDKGoGvxFYfAYNJTHcrIeyDZW8lkEr/fTywWU3azd+9ejjvuOACl2w1dDXO++MUvAl2bsbvvvpvW1laKi4tZvHgxv/3tbwE4++yz2bFjB8lkkvz8fI499lh27dpFOp1WwS/YJ38gDVy0fQwsjM06rVarWgeysrIIBoNUV1cDMHLkyB4bmkjWqTSAEyejzWZT80pdXR21tbVKGxz2BUCM99eBzMGBZKDJQU2e8/l8eDwelYkqjdcOxrFsRJwOxqwzzcBC9iPQ9bmVIGJjY6NyMHs8Hnbt2qV6ATQ3N6s9idlspqCggGAwyK5duzK0Mx0Oh2psHYvFsFgseL1esrOzSaVSBINBNm3axNFHH00gEGDPnj1MmzaNVCpFfX09I0eOVPrQsu7o5l0DF5HKmDt3bq+vAQsWLFBOZs3AQBJUZO2XvYAxOcrj8aiKOK/XS1VVlZLICIVCKtkmEons17DNeJ+cnByys7NVgo7b7VZ9Q3JycrDZbFRVVVFUVKT047OzswkEAmRnZ6s9syRzDVbn4WDHKA+ZTqdVlnJbW5vKXK6vr1dVtVJ9C13nGGkEG41GD0oeA/btaex2O6lUisrKSlwuF7m5ubS0tCi/jEhIyj7W2Lx4sKGdzBrNYYA4mI16yI2NjSoCZzKZaGhoyJjMbDYbbrdbdT81NjyRbDUpBRKxetEUkm6tgNJvNcpk6INe/2LMMjcuamIDVquV9vZ24vE4NpuN9vZ2mpubMZvNzJgxg2g0yvPPP09tbe0B7+H1epkwYQLTpk1j9OjRVFZWsnXrVgKBAG+99RYLFiwgPz+fQCBAMBhUDiOr1TrkpDLi8Tj/8z//Q1NTE5dffjlf//rX+3tIPSKfb2PjE+Pz8n7E43FycnKor68nlUrhcrmIRqN4vV5MJhNVVVVUVVVlNBzr6Ojg4YcfZt26ddhsNv7f//t//Pe//yWdTnPkkUcybNgw1qxZA8CUKVMAVNPJ3NxcAoGAyoaFTDvRDByMWsgiUSAN1rZv3w50vZ95eXlKlzkSiajmb9LgrSfa2tpU0zdjxQXsy14Um9ABqsHFgYLa0rTp89C9OkYz8DDuD8UJI42AoStY+dFHH9HR0YHb7WbPnj0EAgEsFgsTJ06kvr6etWvXqs+/7CfKysr2084U+YumpiasVivTpk1j7969bNy4kZkzZ9LS0sKOHTsYP3680oaWbGbRaY7FYioDXzOwECdzb0plCHLN9957j3A4/LnnJs3nR6QJxPknGcahUEidP40NQSXwLedfed5isVBTU4PdbmfRokVMmDABgOrqatauXcuePXtobm4mGo0yffp01adGmr1JhZXL5VJNzqFrbpMqUZGrlP2rnj/6HmNvBovFQl1dHYCq3A6HwzQ2NqpgogQyZR2Rn8G+/h+SsSySTPKAfc2v5b0Xe83Pz1e+lMLCQlpbW1XTSofDoZIrBvM555A6mcvLy7nyyiupr6/HYrHwzjvv6AlZo+ljjJIIEpULBAJ0dnaq8g/BZrPh8/nIyspSHXelqYoc9nJycpQeqsvlwul0UlFRQTAYVBOpaBNJWZEs5oDO/uhnjJsqs9msHMzBYFBlEkmpKXRtyJqbm7FYLIwcOZI333wzo7N7Tk4Ofr8fq9VKMpkkGAzS2tpKMBhk/fr1bNy4kdmzZzN9+nSKiopYtWoV4XCYDz/8kCOOOALo2gAaHcuyOA+VDdhTTz3FaaedxtVXX81pp53GZZdd1mMWZ38jkXTZKNlsNpLJpHLsyr/BYJBhw4bx0UcfUV1dzcSJE9m4cSPbt29n1qxZvPvuu9x///1897vfZdiwYWzdupW///3vlJWVYTKZuO666wiFQmzYsAGTycSpp56aobE5cuRINTeJHh50zR1GzTM4sHNK0/eILiqgMg2hS1qnqqpKSSHIftCoUWjEbDbj8Xjw+Xx4vV6l2VtZWanWMqfTSVNTk9pTyrU1g4+Ojo4eezVIs6R4PJ6hpSu6hvK7ksEm8gnSOFGuJX0G5B46w31gYZRxkyq3dDqt1oPs7GyampqUs6axsZFAIKCawr700ktq71JcXIzZbGb9+vVKUsPj8ajriWOwpKQEp9NJdXU169evZ+bMmdTX17N582bGjx9PNBpVY5ISeMl8lCCXyGZoBg6dnZ28+eabQO82/RPGjBlDSUkJVVVVrFmzRktmDACkEjMSiSjtZaleMOrmypohFZyBQEDNEfn5+axevRqbzcaDDz7IxIkT97vP5s2bWbp0KR999BEffPABN9xwAy+++CLt7e04HA6VsexyuYCuxtiFhYVKXzeRSKhKCKvVOqgzVAcrxvOv1WpVyXapVEolVslzgUBANRdOp9Ps3bsX2KeRnEqlVL+ig8Vms1FUVKRkoPx+P1lZWbS0tFBUVEQgEFB+GOlRMZjt5JA6mS+//HJuv/125s+fT0tLiz4AaDR9jGyEZZIUfWV5CB6PB7vdTigUYs+ePRkC992xWq2MGTOG0tJStbhbrVZSqRShUAifz5fhMDSZTBmNoHSznf7D2OjA6GBOJBLqQOd2u6moqFAR2ubmZvW1NGhzuVxMmzaNyZMn4/V6CYVCtLS00NHRoYIU1dXVbNiwgbq6OlavXk1TUxOnnHIKxx57LG+++SaVlZWMGTNGZSAYS5eGGuvWreOqq67CbDYzdepUtm3bxowZMzJeY3SCAAQCgb4epnLiJJNJVQ5sdDLL5zoajTJu3DgsFgvt7e1MnTqVjRs38v7773PJJZewbds2Kioq+M7/x95/x9ldVfv/+PP03qamTTqJJCGQ0BJS6BERpIgilyJFxasIXK6CyEcRlCL3p15BRVSQKgKCgHApAYEkmISQ3tukTZLpM6fN6XN+f8x37bzPyaQAycycyX4+HvPI1HN25uzZ5bXWeq2bby54fJfLxXe/+13MZjN//etfga5mf0OGDGHVqlUAVFZWqqwQ2NMtHFBjM3rZlXKUv78h81cuc3KYz+Vy6rCeSCSUJY9YYMj+I/NOMg1FYAyFQgwcOJDKykoWL15MIpFQARHp1p5IJJSADV17nwQ9NX0Xo02CZLyLhYF8vvj794fMnWg0isvlwufzqYtaJpNRgrW27Oo7dNeDQSobTCYTPp+PtWvXAl3nk1WrVmGxWBg2bBgvv/wy+Xye6upqqqqqmDdvHrFYTL3GTU1Nqkxe6OjooKmpCavVyqxZs1i1ahVLly5lwoQJqjIPYNu2bQwfPlztOYAqe89ms2SzWZ2N2MdYuXIlra2teDweTjjhhEP++CaTqcAyQ4vMfQNpzCfVUMFgkIaGBhKJBH6/n3A4rIKO8rdsTH6Szx133HHdCswAxxxzDL/73e/4/ve/z9KlS1m4cCE/+tGPuPfee2lsbOTkk09myZIlNDY2MmzYMHXPlsQrCZ5Lj5tSFg9LEfHihq59RirooCsgILYZ0FWRFw6HsdlsNDc3E4lElN3F+vXrC862JpMJl8u11z4mjSHdbjdWq5W2tjaam5upq6vD6XQyYMAAwuGwSpqJx+PY7XZCoZA6C3s8HuX1XIrnlcMmMq9evRqbzcaMGTMADrrBi0aj+exICYZRtOro6CCbzRbYZkgDgu3btxcY2UPXpu12u5WPYS6Xo729nWQyycaNG2lvb+fYY4/FbDYTCARoaWmhqalJNeOBPR1YjSb4mt7D2HjR5XKp8vLGxkblXdjQ0KDKzlpbW5U/aiaTwWKxMHnyZI4++mi2bdvGW2+9xebNmwua7kDXej9z5kwuvPBC1qxZw5w5c1i/fj3t7e2cddZZKhNk2bJlVFdXE4vF6OjoUIK3bNj9xbMsGo2qsj0p5Svmvvvu46677urpoe2FiH1yEI7FYuoiLUGESCRCQ0MDY8eOZc2aNdTV1TFu3DjWrFnDK6+8ws0338zrr7/OkiVLVCbZKaecwimnnML8+fPZuHEj0NXc79xzzyWZTLJixQoAVaIo65FkjcEekRkoEA+1mNj7GD33nU6nqoSwWq3s3r1bZatms1ksFgujRo3C5XKxefNm1q1bR3Nz834vXR6Ph5kzZ3L00UerLEWx5HA4HEQiEfx+v8pylYwV3aCr7yLnEUBVPcVisQKPQ6M/r1zijHY+xi7u8jkJ2En5q9/vV/udVEjkcjnVWE7TuxjPh/K3Kpd4t9tNa2srnZ2dar0AqKmp4c033ySfzzNmzBhqa2vVfmM2m2lvb1f7rN/vZ/To0QwaNIhjjjmGYDDISy+9xMKFC3n77bc5++yzWb16tQrs1tbWqmxmmR/Nzc1UVlaq5oSSWCHrmaZvIFYZ06dPP2y2fKeeeipPPfUUc+fOPSyPr/l0OBwOFVzO5/O43W46Ojq6rVwxmUw4HA61zoh9woHOCna7nauuuoqlS5eyYsUKysvLOfPMM3nppZeor69XvWZcLpcKkkHXXme329X+Bf0zoaYvk8lkVEWUzWZT3tvSLFI8uQGVtZxOp1XT13A4rBqRS6bxhg0bDjrRxefzccUVV7Bt2zbWrl1LQ0ODely32008Hsfr9aoGyMZEQOl5VGp8YpG5s7OTcePGccEFF/CLX/xCff6tt97i/PPP55lnnuErX/kKGzduxOv18qUvfYm6ujouueQSfvSjHx3SwWs0mr2RjGURZsTbTszsRZCx2+1s3bpVCdHGTTccDtPe3q4WXLvdzoABAxg/fjxer5d169bR1NTEihUrmDhxovJMzWQybN26lcrKShVVbm1tJRgMAqVtYF/qSDYydB3GxD+qsbFReYXF43E6OjpIJBK0tbUVeCKWl5dTVVXF8uXLeeWVVwpeS5PJpCwz2traaG1t5eWXX2b58uVceumlnHfeebz11ls0NDTw7LPPMn78eOX7LBd9aZBh3FjFk6rU8Xq9SjSNx+P4/f69vuf222/nlltuUR9HIpECT+OewmKxKJsMafooQl5HR4e6UDc1NTF69Ghqa2tVI7/m5mYaGxv561//ygknnMCsWbPI5XLE43HWrFnDk08+qZ7j7LPP5rTTTqOtrY0PPviARCJBIBBQWSSSWe/3+5UQZbPZCixdtNdq38BYIWG1Wsnn80SjUVWSKmKiCEU1NTUsX76c7du3FzyOxWLB7Xbjdrvxer1YrVbS6TT19fXE43HefPNNzjnnHCoqKmhublbl61KC2t7eTllZGW63m2g0qoTtvmhNc6RT7ItoMplobm5WWTtS4dLe3q7OMkaMwnLxucJut6vggrEMNhgMYjable93PB7XzQD7AMZeIYIIxB6Ph9raWmCPBY/JZGLFihXkcjmqqqqYP3++mksdHR2q+kqqYFasWMHy5cvVY1922WX87Gc/4//9v//HRx99pJoBbtu2jeOOO46mpiY1lsbGRoLBILFYjEGDBqlMSZ/PB2ihqK8hDfkOh1WGcMoppwCwaNGifnNG7Y5S6SUiSPJMPB4nm83i9XoLes/InmHs6yHZzbLerFmzRtlaHAh5HAlOOZ3OgqCpPG8xsmaUytqxr3lQavPDaOUm9zGXy6Uq6+Q1E7uTAQMGsGjRIqV/iOXvxIkT+dvf/qbOHaNGjWLSpEkMHz6csrIylaUu9+ht27bx0UcfUVdXx8MPP8zf//53Hn74YWpra1VgJJVKqec12n/JOeiIEZnNZjO333473/ve9/jhD39IKBRi+fLlfOUrX+Hee+/lK1/5CtD1Ys6dO5dly5ZRVVXFOeecw4knnsjZZ599yP8TGo2mCykHkcVPhDyxzZCmbp2dnWzYsAFAlRhv3ry5oJGSkXQ6zfbt29m+fTsDBw5kypQpbNq0icbGRhYvXswxxxxDTU0NO3fuJJVKUV9fr7rAZzIZYrGYet7+VF5YSpusXOSMHretra2kUilMJhMWi4WWlhaSySRtbW2qIZ+Una5Zs6bgolZeXk5ZWVmBDUswGOSUU04hl8sxe/ZstmzZwq9//WtmzJjBrFmzWLFiBdu3b2flypW4XC48Hg/19fWUl5cDe6K10nBQ/DZLfb5MnjyZOXPmMH78eJYtW8Y999yz1/c4HI4+YyklTUoku1387CRD1OfzEY1G2bp1K1OnTuX9999n586dfO5znyMYDLJhwwYWLlzIwoULCx7XbDZz7LHHMnPmTOLxOG+99ZZqHulyuTjrrLOwWCxEIhF1cPd6vSrQIYcsEZi1yNw3SCaTan1xOp00NjYCXedAabgjArPJZOK1115Tr5kEEZqbm5XICF3CY01NDSeffDKnn3468+bNY8OGDbz33nucf/75NDc3k8lklN+uw+FQ5Y3SfCeRSKi1pNTXkP6EUWA2m80q6xi69im5dAnGBjrGi9e+kDJlsVqQPaqpqYlQKITH41FBD7ET0z7NvYfRTg1Q5wnoes1l/ZcGTSaTidbWViwWCytXrlRVVlu3bgVQgQT5GGDMmDGUl5ezcOFCnn32Wa655houueQSPvroI9asWcPUqVNZsmSJCkg1NDQQCARoamqiurqaZDKp5qQEQjR9i1wup/yYD0fTP2Hs2LEEg0Ha29tZvnz5YbHl6AuUSi8RI8ZzqjEQKZmibrdbWRxIQoVUyIVCIdra2nj99de56KKL9vkc//rXvwAYP3487e3tKqN94MCBzJkzB5PJVCBuy7jkY/lcqawh+5oHBzs/+oIVIFCgi8j+4na7C8bWHUOHDuXDDz8E4D/+4z+44447yOfznHfeedx00037tFcxPq9UeEJX4HLo0KHU1tbu8xxjnDciMpcin6pO7PLLL6eiooIHH3yQuro6vvjFL3LllVfy/e9/X33PkCFDOPHEE6mpqcHhcHDuueeybNmyQzVujUZThGSTSTmIlBDLhU3EOrPZrA7f1dXV1NfXs2jRIlpbWzGbzUpU2r17N5s3b2b79u2kUimVqbp7927+7//+j7KyMiwWC21tbcybN4+NGzcSCASorKzEbDarLDMpLxTx4JOY5Pd1ZJOdO3cuL7zwgro490WKfbKTyaQqS/Z4POzcuZNMJqPKTKPRKJlMhnA4zJYtW8hkMlRWVnLUUUcRDAZZs2YNs2fP5p133mHevHl89NFHvP322zz44IP8/e9/Z8aMGQwZMoRUKsU777zDH/7wB9asWYPX61V+WC0tLXR0dNDW1kY2myUSiZDP54nFYupQVtwZvhS59NJLmT17NieddBJf/vKX+/xBXTJCAGV3IWsKdB3SRIhuamrilFNOwWKx0NDQgMvlYtasWUyePJmhQ4cyaNAgxo0bxxlnnMGFF16Iz+fjrbfeYu7cuUpgHjFiBBdccIHyuhQ7Dem4DBAIBAoy8WVsmt7FWNYnF7lkMqmagMqeJN52S5cuJZ/P4/P5iEQifPzxx6xevZqGhoaCssNcLsfWrVt57rnneOqpp5g+fTqhUIhkMkltba0KTIl3s9Dc3Ew0GlWXR/keTd9AAt6wp8pK5ojRh1vsVyKRCK2trbS2ttLS0kJrayttbW3K/gtQzf6cTid+v5/y8nKVxSoVVmIN1dzcTCKRwO12q6BVKpUquX0mlUpxwQUXMG3aNP70pz8d8PN9FWM/BpvNRj6fVw1DfT4fdXV1QFfwateuXWSzWbZu3apeSylz3rp1q2oIunnzZnbu3InH4+H666/ngw8+4I033uDRRx9VtlUdHR1UV1cDXaLH+PHj1fsmk4m2tjbcbjew5+xkvOiLOKDtVvoOy5cvp729HZ/Px/HHH3/YnsdsNjN16lQA5s+ff9iep7dZvHgx06dPL+glUkwqlVJJAcbkgN7E6L0sa7z8K5WTfr9f+fLb7XZMJhOjRo0C4JFHHikIUBlZv349//d//wfA+eefz4svvkgqlWLYsGEqCWfYsGGqgkpEb0m6KhaZS+EMu695cDDzA7qsAAOBgHrrjQpNKLRlMvaZkfuYBJplP5LgZlNTkwoabN68mXw+z5lnnslvf/vbAwrMW7Zs4cILL1QC8/jx43E4HMyZMwdABdeN88Nms6nxybzt7OwsyUrwT7U7Wq1WbrvtNh588EHOPfdcJk+ezIMPPljwPSeeeCINDQ20tbXR2dnJnDlzOProow/JoDWanqDUDuvpdFodhh0OhyozzWaz6pIVCAQKPO2WLFnCrl27sNlsDBw4kLq6OlauXMm2bdtUuXEymWTbtm0sWrSIHTt2YLVaSSaTfPDBB+oy39nZyc6dO/n4449VAy8RqSSK2dHRobKUSnGx7I5SPITJAUc2ULfbzc6dO1U3XbFLEasT8YkaNGgQq1atYvbs2SxbtoyOjg6sVitVVVWMGjWK448/nmnTpuHz+WhoaODRRx9l+/btjBw5koqKCgDa29tZt24d27ZtUxYubW1tJBIJotEo2WyWdDpdELk1enqXKk6nk3/84x8sWrSI73znO709nIPCarUqMdfY4FOyUaWDdyaTobW1lalTpxIIBNR6EY/HqaioYNCgQQDs3LlTiYn5fJ6ysjImT57MV77yFc444ww8Hg/pdJrVq1eTSCSw2+34fD7l1R0MBguCIsYDen+46JfafgOFnbrtdjudnZ3KP7Wjo0NlOJtMJhobG6mrq1OXrMWLF1NfX6/WkGAwiNPpJBAIcOyxx3Lddddx3nnnYbVaWb16NW+99ZbKGFu5ciWDBw9WdgiyjggiJMrlQYQoTe9ibPInlipyJhBxOZvNqsBjJBJRAQzxXpbH6ejooL29nebmZhoaGti1axd1dXXU1tayfv16wuEwfr9fZbV2dHSoC1s4HCYSiaiLHaAqvUqFfQW4Dybw3ZfOJPL6WiwWrFarCjpIUFOqIkR4lr9lmQNy9oSui/jatWsxmUxcfvnlvPfee9x6660MGTIEgEcffZRIJMKgQYM4+uijaWhoACAYDKq+QfF4XJ1dBTmLGDPhjEF7Td/A6McsQuPh4kgQmQ+2l0hfEBCNyD5h7Oki/8q8kGZsXq9X/b1Ho1HGjh1LPB7nhhtuYM6cOQV7wpo1a7jtttvI5XKceuqp+Hw+5s+fj8lkoqamRu05EtSWhKtQKFSQuGE8r5bC3WZf8+Bg5gd0WQGGw2H1VtyItacwivvG17yyshLoWudNJhOpVAqr1UpHR4eqkJOApOw1Igjvjw0bNnDRRRexfPlyfD4fN998M5///Oe555576OzspKqqCofDsddclL3PbDZjtVr3arxeSnzqVfjyyy/n5ptvJp/P8+yzz+610VqtVu69915mzpxJPp9n1qxZnHfeeZ95wBpNT1FKpUKdnZ0FTZckC1XKQaErK3Dt2rXk83mqqqpYt24d7e3t+P1+gsEg77zzDtDVtM3r9VJXV0dbWxt2u52KigqVmbZmzRoGDx6M3W5ny5Yt6mdCoZBaB7Zu3YrVamXIkCFqbFIWKw0R+urv8pNQSg3djBus+EXBntLlRCJBIpGgvb2dzs5OwuGwyl7esmWLCh4EAgEANm7c2K29ynHHHccxxxzD+vXrlcWKIBYbkiGdSCQoKyujvb0du92O1+slnU7jcDjUvyIm6uZdPY8Ih2JLYDzkJBIJdSCSUvSjjjqKfD7Pli1bVIBCsNlsVFdXU1NTw9ChQ5VQnMvliMVitLW1sXPnTtVIadCgQUo4lOYY0LW+OZ3OggaA/UFkLqX9Bgp9mCVTZ/fu3WptkWxmERMbGxuV97o0VSkvL2ft2rUqc11YtmwZr776Ktdccw1XXHEFjz/+OB988AEnnXQSZWVltLa2smrVKkaMGEFtba3a41pbW9WFrqmpicGDB6vS2f6y55Qqxj1H/JClQbFYVsgZQy7ewWBQrQ/JZBKTyaT8uv1+v2q+Jv6F4v0tVk/RaJQhQ4aoRjrhcJjy8nISiYRam/x+v/JAzGQyfcay6EAsXryY6667riDAPWnSpH1+3khfOZMY+0TIXtPc3AxAKBRSYoTb7WbTpk1ks1kaGhpIp9M0NTWRTqdVo+JcLkddXR3l5eX85je/USKgsHv3bn73u98B8N///d9YrVb+/e9/A13ZZcb9ReaGBNBkT5IziAhVxow4Te/z7rvvAnDWWWcd9ueS+SVzqD9SSr1EusMo4Bp9mGFPNZzX6yUWi6lzRU1NDZ2dnWzcuJE77riDyspKhg8fTnt7uzqnjBw5kttuu00lA0yaNEklbw0cOJBIJMKAAQOArrORePRKE2upKJZ1q6+vIfuaBwczP6DvWAEaf+der1fZeUryTCKRoKKiQtlqNTU1EQwGaWhoKNA2AGbPns2SJUuYPHlyt89VW1vLFVdcQVtbG8cccwy33norjzzyiBKpBwwYgMvlwmazEQwGcblcKslCqn3dbndB5nsp8qlF5htuuAHoyhjZVyT3C1/4Al/4whc+7VNoNL3KwRzW+4rXkGRamM1mddHK5/NqbH6/n2g0qryRXS4XW7duxWKxMHbsWJ555hmg6+D0r3/9a6+GTPLxyJEjMZvN7Ny5E5PJRFVVFWazmVwupwTHsrIylbm6detWBg4cqHx2xQNLSpT6+uZ6IErpEGaM7hsFOmmSE4vFiMfjqlmWNEqqra2lpaWFiooKhgwZwksvvVQQ0BgzZgxlZWU0NzezZs0ali1bxrJlyxg5ciTHHHMMJpOJ3bt3Ew6HaWlpoaWlBavVyogRI0in00SjUaxWK6lUSjWY83q9ZLNZbYvQy0jGsogwLperILNDhGaxP5FM41GjRnHssccWZHuZzWYVyFi5cuU+o/Jut5vKykq1lopFgpQ+SsaZrG2l2AyjO0ppv4Gu4JS8hm63m9bWVmWdIa8zdK03u3btwmQyKYFZgkgff/wxABUVFQwbNoxQKER1dTVr165lyZIlPProo9x8882MHz+e1atX88orr3Duuefy2muvsXbtWtxuN4MGDWLXrl0qE9XYaLalpYVQKEQikShZT7v+gAQkJMDZ0dGhBMZUKqWC4SLqyXll0aJF+33d/H4/gwYNYsiQISrwDV3ZsVu2bKGpqYm6ujqGDh2KyWQinU7T3t6uglbxeByHw4HdblfNkvvCZfhg+CzZZX3lTCLBAehax9va2sjlcsrqRs6UxmAWFIq80jdgw4YNVFRU8Le//Y0RI0bs9VwPP/wwyWSSE044gQsuuIC2tjbeeustAM4880xVviy/MwmmO51OlVEmSH+Rg8lm0/QM6XRa+TH3hMh80kknYTKZ2LZtG7t372bgwIGH/Tl7mlLrJSLs72+yeA2R7xcxeMeOHZx44omcdNJJ/OMf/6CpqUk1hjOZTMyaNYubbrqJlpYW1qxZg9lsZuDAgezatYsRI0YQiUSUHUcymaSmpkbdfZ1Op7ICFMGzFKpn9jUPDmZ+9CUsFouq7nY4HFRXV1NXV0ckEmHIkCFs2rQJp9OpEmqM/6ZSKRWIGDp0KNu3b+eKK67gxhtv5Nxzz2XQoEHKyumtt97ij3/8I7FYjDFjxnDppZdy1113kcvlKCsro6ysjM7OTux2O2VlZTidTioqKpSFi2RZBwKBgsbGpbjXfCqR+cc//jGvv/46CxYs4KyzzuLRRx/lu9/97qEem0bTq5RSlqpcxGw2G+3t7QAqs8dqtVJeXq7KukaNGsW8efOArqxTOWjPmDGDN998k7q6OsrKyrjgggtIJpOEw2FaW1v56KOPqK2txWq1MmzYMHK5HPX19WrhCwaDKmLb2trK4MGD8fv97N69m0GDBimzfblA9IfMslI6hBlFZmMTQGmOJV6Z4mMJXQEDad46adIkfvOb3wBw/PHHc/nllzNt2rSC/1tDQwN/+9vfeO6556itrVVd4ceMGcPMmTOZNGkS7733HqtWrWLbtm1UV1cTj8eV364xK80oLJfi5tpfkOxByTz0+XxqLZTqBGkmKY3ePmkJtpSKBYNBlc0IXYcsKWGTigqZs5Ld3l8adpXSfiON1KBLhJFgUS6XIx6PK1HIarWqBrNms5n6+np10dqxY4c6ZC9YsEDtSSaTiQsvvJAvfvGLvP766zzyyCP8+Mc/Zt26daxbt45hw4Zx0kkn8dFHH7F48WKGDBnCyJEjVYZjPp9XFTodHR34fD5gT8fuUg9slhoyV+RCLf7LmUyGVCqlmhUnk0nMZjNlZWUsXbpUzX+fz4fH4ylo1iRWTrLOrFu3TpUsT5w4kYEDBzJ27Fg8Hg9bt25l+/btjBs3jpaWFmXd5fF4iMfjKosN9oiepbDffJbssr5yJpHLs2QJy7ofCoVUtUNlZaXq5yN7kDSzrq+vJ5VKqYq6Bx98sFuBubm5mb///e8A/Nd//ReZTIb777+fRCLB2LFjMZlMrF69WgXdAXU2DQaDqoGk7IUy7v6y9/QHFixYQEdHB1VVVUyYMOGwP5/f72fChAmsXLmS+fPnc/HFFx/25+xpLr30Ui677DL+8pe/cM0115TkfU3WcvlX9v9sNquymEeOHMnmzZsZMmQIW7ZsUecKuc81NzfjdrsZN26cSqB68sknga5gg9y5KyoqqKurY+DAgep85Pf7aWpqUoKhjEEEz1KwQCieBw899BBf/OIXS25+SLKb/N49Hg8VFRU0NzcTj8cZPHgwdXV1BINB0uk0fr9f/StzIBqN0tnZqX7uvvvu47777uv2+T73uc8xZswYHn30UQCmTJlCPB5XDSgDgQAOh4PKykrcbjehUIiysjJsNhsOhwOPx1NgF1mK1kyfWGT+85//zC9/+Uv+9a9/ceyxx3LzzTfzwAMP8K1vfavfZBRpNFBaWapy6JXLm2QLASpal06nVXl7Y2MjVqsVq9VKc3MzXq+XcDhMXV0dVVVVqoOq0edy+vTpBINBNmzYoEqDvF4vHo8HQAna0WiU8vJy5fMbCoVobm6mqqqKTCajFngpTS2FC92+KKVN1vh7lvkiBxy5XIvQK/YIctE7//zz+dnPfgbAd7/7Xb7xjW90+7pVV1dz0003cc011/Dqq6/yxhtvsHr1ajZs2MCGDRs45ZRT+O1vf8ttt91W4MtlFJdlrMbHL+U50h8wm824XC7lgSkCXjKZxOVyKX9MsU2Q6HsulyOfz6tMMKvVqhqhyMdWq1VlOoowLf7x0sTU5XIpIciYlSrrWX+glPYbeV2BgnVCGqjJutLc3Ew+nycUCrFw4UKg6zWTLOSWlhZWrFgBdJWZer1eNm7cyD/+8Q9OOOEEjjrqKDZu3MjTTz/NF7/4RV599VXeeustxo0bxzHHHMOaNWuoq6ujoaGBCRMm0NHRQSaTUVnzsh+JMFQKpan7I5VK8dWvfpXm5mauvvpqvvnNb/b2kA6I7Pmyv8jrIAHNZDJJMplUVQpz584ll8vhdruxWCysXr16r8aNLpeLCRMmMGrUKJLJJHV1dYTDYWXPNH78eKZMmcKQIUPo6OigsbGR7du3M2LECHbv3k1bWxvDhw9XjYmNlIrI3B+yy4z7vZwJoSvIJsKNx+NRHs3Nzc3Ks1sCSsKXvvQlTj755G6f58EHHySVSjFx4kSGDx/OrbfeyqpVq3A4HFx00UVKBKisrCSbzeJ2u3E6nbhcLuWXKWc7aQYoe5mmbyB2f2eeeWaPrfGnnHJKvxaZpZdIqSHrtzGoLP/m83lls1RTU8PatWtV9mg8Hufoo49m69at1NXV8Yc//IFQKMT48eMZMWIETU1NtLW1sXr1apYuXYrJZOLcc8/l5ZdfBvZkR0sGrMPhKKj2MorMxqSfvs7+5kEpzQ+5d0i1t8fjKbBvFL0CuoIDUg0uPWRaW1uprq6mqalJzbFEIqEqs2BPwozD4SCZTLJy5UpsNhsXX3wx69atIx6PEwwGVePhyspKXC4XFRUVuN1uFbgUn2g5+0hzylLjE63Eb7zxBt/97nd5+umnmTJlCgDf+973iEQiPPXUU4dlgBpNbyGH9Xw+z7Jlyxg7duxe3+NwOPD7/QVvvYEscMYO6fl8XjXnEh+ho446isWLFwMwbtw4PvzwQ6ArGvvPf/4TgIsvvphbbrmFtrY2hg4dyuTJkzGbzcybN48333yTYcOGKd+qcDhMfX09DQ0N1NbW0traSjQaZefOnXR0dLB79251IZDLnFw6gZIvYS6lhm7dbVDGS1qxJYWxTCeZTCoB8Otf//oBNzu/388VV1zB008/zcMPP6wyNBcvXlzwuMVNnaSMTDLWZNyluLn2N4wXbckCCQQCKovZ5/PhdrvV62iz2dRF3eFwYLFYVHVFKpUiHo8rC5XW1laV/SoZzTJHfD4fZWVlKuPRKDAf7uY+PUkp7TfGyhnx1JWDuxyKpQGoxWJRZe8jR45kyZIlKmtx27ZtVFZW8sc//pF3332XV199lSeffBKv18vHH3+s7FrWrFnDxx9/zBe/+EUsFgtr1qzhxRdfJJvN4nK5yGQyLF26VHlAi62IZK0KpXCh2x8H09StL9HZ2VkgEMvrI3/r0BVQsVgsDBkyhHnz5pHL5aisrGT37t0sWbKEVCqF3+/nqKOOYsSIEco7cdGiRfztb39jy5YtfP7zn+eSSy7hc5/7HACrV69W55wRI0ZgNpuJxWJqrTL2iYDSbKhz6aWXMnv2bE466SS+/OUv89BDD7FmzZq9Pl8Kge/iyiWpkIE9ZwRJYjKKRZ2dnaox4LXXXtvtc7zyyisFdnDf/OY3WbVqFW63m3POOYe//e1vpFIp5YNps9kIhUJKADCbzQSDQcxms8pmBvr07/VIRETmnrDKEI6E5n+liDHIIOuG/N2mUimVjexwOJRNz4QJE7DZbLS0tDBw4ECOP/54XC4XbW1tzJs3j6eeeopf/vKX/OIXv+C1114D4LzzzmPQoEFKGJTnNfa7MVoddJdEo60AexZJTJFeD/l8nurqanVHFZ/kQCCA3W5XDandbjfl5eXY7XaqqqoYNGgQoVCIqqoqhg0bxtChQxk6dChDhgwhFAqp3hHHHXccp556KosWLVIJeBJAF6sMyV6W/cbtdqssZjmb9IXKo0/DQd/QFi9ezFe+8hUeeOCBgoid3+/ne9/7Hvfffz9f//rXdWRX028opSxVQS7/IjYHAgHq6uqU0T10+SSLn3JtbS0Wi4V4PE4ymWTUqFG8/vrrJJNJZsyYwRNPPIHdbmfz5s3cfffdvPvuu8yePbvgOcWsXkSkZDJJVVUVTU1NDBkyhKamJlVu73Q6lSeSCE66AqLnkINOd5kekm0qnXelKR90NVSRSO4f/vAHvve97+1T+M3n8yxfvpw333yTf/3rX+oSCPCVr3yF3/3ud+zcuROr1Yrdbsdmsym/MrvdrjZTERBLOfOwvyFZyqlUStndVFdXKz9eq9WqLC2Mjd/k8i6vtclkUhmNkm0i/pYdHR2qNF4Oa8ZGYbCnM3h/opT2Gzn4Wq1WZWuQy+XU62mxWFQVzNChQ3n77bcBVDl8ZWUlc+bMwe/389RTTzFs2DD12CeeeCK/+tWv+Na3vsWrr77KjTfeyLvvvsuHH37IunXrmDZtGrFYjK1btxY04jGbzdTW1jJ8+HCVRWK325WnuPGSV6qUmm+3iOBms1m99lKxYrPZVAb8qFGjmDt3LtlslurqatavX09TUxM+n49TTz2VTZs2sWXLFkwmEyNHjmT06NGqGe3y5cvZsGEDV155JTNmzGDAgAG8//77LF++nDFjxhAIBAiFQrS0tNDe3o7b7SYSiSibHxmTUCoBzf6QXWYU+Y37vLFEWKo7igPi8hpms1kGDBiwl0VCPp/n8ccf59577wVg+PDhah2SqomlS5cCXdnSfr9fXfSdTicDBgxQdj4Oh0MlbEDX717fdfsOkUiEjz76COjKZO4pJNlu8eLFpNNpbZ/SR5CGnOKbDl13Yr/fTyQSUQ3VWltbmTBhAkuXLqWuro7jjz+edevW0d7eTiwWY+zYscpTedeuXeqcW15ezrRp09TrL3drWRPa29sZMGBAQXVmJpPp9q5bKvtNf8FsNiurLLlXeDweBg4cyLZt20in01RVVbFz505CoRCNjY2UlZXR0NCAy+VixIgRbN++nVwux5AhQ1T1rzGAIPcdi8VSYB04ZMgQdf8uLy9XiToej4fKykp1rq6srCywpCvl/lUHfUs7/vjju/UIBLj77ru5++67D9mgNJq+QCmVCskFWjY1EZldLhcrV64Eug7ZixYtArq8ghYsWAB0ZdC9+eabQFdk/ic/+Qlms5l77rlHHZpGjRrFE088waJFi3juuedYunQpu3btIhqNqnJX6OqYms/nsdvtWK1WIpGIagomohHsKbeWxVlvtD2DzBPjBclsNqvXWYIAfr+fRCJBfX09Xq+X+vp6qqqqaG1t5bHHHmPJkiVceumlHHfccYRCIaLRKJs2bWLBggW88847qoMudG2Qo0aNorq6mmXLlimP3VAohMViwe/343Q61VuxyKwvc30LEZrT6TTJZBK3201VVRWRSIRoNEo6ncZisVBVVaVeSylxFjsF2BPUkMah4rMszyHZZEaBWTwx++OcKKX9Rg7DZrO5wPZAgpwVFRXq0u9wOMjn8wwaNIjly5cDexrJfve73y0QmIUZM2Zw3XXX8eijj/LYY49x9913qyY8r776KtAlFFVXV9Pe3k5tbS0VFRUEg0G2bdvGsGHDcDgcyrpDgpmlLjKXkm+3BB0ECSYVi82BQID29nZaW1txOBykUinlYTlt2jT+8Ic/FFharFmzBoDTTz+d66+/ntdee426ujoee+wxrr/+eo466ig2bdpEXV0d69at4+STT8bv99PS0kIsFlNZbMaLoaCrZnoWqVrK5/OqvFyqD2w2G+l0WonMEjiRRpESwARURY2wYcMG7r33XubOnQugKj5sNht+v181GrbZbPh8PlVxIyXLAwYMwOFwEAqFcLlc2O12vF4vJpMJm82mxcQ+xr/+9S9yuRyjR4/udj85XIwZM4ZQKERbWxvLly/nxBNP7LHn1uwf8d+Vil6xdotEIiQSCeW/29raysSJE1mxYgXbtm1j5MiROJ1OFi1aRH19veojMX78eM4991xGjhy5V4KDrFHS/0GeSxqpA6ofEaCSLOR9Tc9isVjweDzK/q9YaM7n86p5tPx9S7O/bDbL0KFDcblcxGIxZdFmDCjAnkCH2CrJXmcymSgrK8Pr9eJyuZQvs/SzCgQCOJ1O1bvCZDKVbBYzfMrGfxqNpm8iZYey2IkQZDab8Xq9ykv5qKOOUpf1yspKGhsbCQQCqovuGWecwciRI/d6/BNPPLHgIJVIJNi8eTMvvfQSf/7zn1UjQJPJhNfrpaOjg1AoRDqdxuPxqOxHEcTNZrMWmXsQYxMMi8VCLpfD5/MRDofx+/2qvFkavEWjUfx+v2rSVF1dTXNzM8uWLVPNeLrDarUWlBnl83mVtSaXN6fTSTAYxOPxEAwG1efsdrvy+QZ0pnsfQw49EsxKJpN4PB51OGprayObzdLU1ERZWRm5XI5wOHxQjy1BB8k0AdR8NJlMeDyeko3o9xeM+4vJZFLeqEZR0e12k0wmVVkidDXQkvJEsW8677zz9vk8N910E8uWLWPx4sXcc8893H///WQyGebOncvKlSvZvXs3u3fvprq6mkAgQHNzs1pvEokEDodDlRv2lwtdKfl2S8DBarWq8mHZ761Wq1oTBgwYoMrNR48erc4lZ511Fr/5zW9Ip9OMGzeOs88+m87OThYtWsTChQt57733qK2t5Y477uCVV15h7dq1PPvss/z3f/83Y8aMoa6ujm3btnHyySer/UR846HQIsM4nzU9h4i2Yqfm9XpJpVJEo1EcDgfpdHov2wypSoCuYKTFYmH9+vVcd911DBkyhDVr1rBkyRL1+KFQCL/fj8fjUYFth8OB2+1WlkvBYBCv14vf76eyslIFOaWySv7OLBZLv+oD0F+QNeOLX/xijz6vyWRiypQpvPHGGyxYsECLzH0IEZlzuRx+v59kMkkul1MN27LZLFVVVTQ2NhIOhznhhBNYtmwZu3fvxuVycckll9DY2MjHH39MOBxm8eLFLF68GJvNRk1NDVVVVdhsNnbu3KmqbGpqatTaY7fbC6rvioOacibR59neQYTmWCymGhK73W6CwSDt7e2qT5XoGKlUismTJ7NlyxZaWlpUsNzlcuFyuQ74fHJ/8fl8ygO8oqJC9aKQrPuKigqSyaTa71wuV0nPES0yazT9AMkGKfa1k0wnsc0Q/6Ht27eTz+cZNWoUa9euBbrKzCTz4/Of//xBPa804JkwYQLBYJAHHnhAbZ6JREKVpBR7HhaPVdMzGC9HEokVkdnlcpFKpZQtht/vx2w2E4lEVBYzdAkdUk5mLMuW0nSv14vX61Ubo2S1S8mp3W5XXlcej4fy8nLVXdfn8ykbDeg6KJbyBttfEa9cieCLRYLD4VBWOZlMRs0Z2NMQQ7JAiu0yZF4Y52hxVYaeC30LWcdlfTc2P5F/RdSTrxkvV5It0h02m42HHnqI6667jrVr1/LNb36TMWPGMHnyZK677jo6Ozv5+9//rnyf7XY7u3btYsSIEUSjUeXrbfSAL/X5czBN3SQrprcxiszyvswBh8OhhGen00lDQwOA6tw+YsQIFi1aRDqdZsKECfz4xz9W8+jUU09l7dq1/PKXv2Tbtm088MAD/OhHP+Khhx6itbWV+fPnM2XKFEwmE+FwmPb2diUyGz2sjeXtxoZMmp7FbrerkmNpBppMJnE6nWo+wJ7XRuxOBgwYQH19PcOGDWPLli28//77BY/rdrspKyvD5XKpjGSXy4XX61U2XT6fT2WUiVemz+fD4/FgsVjUx5JRZgx+avoGuVxOeeR+6Utf6vHnnzp1Km+88Qbz58/ne9/7Xo8/v6Z75EyZTqfJ5XIqI1WyVNvb2zGbzUpobmxs5JRTTmH16tW0tLTw/vvvM2jQIC6++GLy+Txr1qxh7dq1RKNRamtrqa2tLXiuc845h/Xr1wNQXl6u7kayb0nFnnxO1rX+WJVXKoh1RiwWUw3vy8vLVRNAScAbMGAA27dvp7m5mUmTJlFVVUV9fb2qqkkkEsRiMaV3GJP9JKFLLC+sVit+v1+JzcFgUAVbBw8erCygYI9neCmjRWaNph9gzFAVjAKN3W5X3bqrqqrYtWsXAGPHjuWtt94C4JhjjmHOnDkAbNmyhXA4TDqdZuvWrezYsYNMJsPgwYNVQ4Rixo8fD+zxgzb6HMolrrvGB/rQ3nMYOxp7vV5isRiZTEZd2ILBIBaLBYvFQjQaxWw243K5iEajWCwWAoEA0WhU+ZwaM9LlNRUxWQRleU6bzaYiuE6nE5/PpzKYJRPWbrfj8/lU87i+IJZousfoeyciM1DQrMJmsykhWf4Vr7JPig5K9Q26y8YpXsPl7zaTyagS0ubmZux2O6lUSpXFr169mmOOOWafzxUKhVTDnRdeeIENGzawYcMG/va3v3HmmWfyi1/8gv/6r/9i165djBkzRlVcGNcN415T6iJiKfl2G4VbmSfF5wCr1aoCUcFgkC1btgBdTYn/+Mc/AnDZZZep9ULsT44++mjuvvtufvSjH7Fp0yaee+45zjrrLF588UXef/99pkyZwpAhQ9ixYwerV69m2rRpqjJHMqjFsxv2ZDXrs0jPI/6V0hDa7XYru4zuMJ4bpQx+0KBBqvTZZrMpiwu5zLvdbuW5LA2ZxCJDvsdmsykfVZPJhN/vJxAIqMCErqLpmyxcuJCmpiaCwSAzZszo8ecXX16xH9T0HaSaSc6nsgfIXSYcDmOxWBg4cCC7d+9m69atTJgwgVgsxrJly9i1axe7du3CarVSXV3NKaecAqBsEsTix+v1smnTJpXdOnz4cJqamlSfIkAlZUDXmicitF5Tehe5Z6ZSKZLJpGo03tLSooKRmUyGUaNGsWnTJjZt2sS2bdsoKyujo6NDveaw59xrtVrVudPY1F4CnVJZLnuKNBWUqk2gwDqylNEis0bTDzBeoo1da+Vylkwm1aHd+H4sFlOlgBs3buRLX/oS//73v/n973/P73//+26fy+VyMWvWLL7whS9w3HHH4fF4WLlyJT//+c+BPVlsxsxEGZN8zbj46otdzyEHGrnMySXNbDarg5Z4RElWckdHB06nE7/fT0dHhyppFa9TEZktFovKXJTNWbKY5fPyuNJoRy58Ho9H+R5KtNfpdOq50YfpLkM0lUrR3NysGntVVFTQ2dlJW1sb6XRaNcEwBiGk4V93mEwmlY2SSCQwmUz9ruFfKVP8uomgKBkhLS0tQNe639TUxFFHHcXq1aupqalh06ZN3Hnnnfz5z39WDUaLSaVSrFixgoEDB3L++eezdOlSZbXx7rvvctttt3HUUUcpr3egoLGp8YAPpZ81VEq+3d1ZUMjnRNS12+1qjpSVlalGbGazWVXVjBkzhmQyyS9/+UtefvllMpkMxxxzDFdffTU33XQT99xzD2+99Rbjx49XVTizZ89m0qRJ7NixgzVr1jBkyBAGDx7MunXr2L17N5WVlXR2dpLNZlWmdanPjVJGBJhsNqu8MmGPrZfYM0nDJslErKioUH1BJMtYKqrcbrfKRJazjN/vx2KxEAwGlV2GyWSiurqayspK2tralMVGKBRSlYC60V/f5ZVXXgHg3HPP7ZWsv5NOOgmTycSWLVtoaGigurq6x8eg6R6TyaS8kTs7O3G5XMqDV/zZpSnbsGHD2LZtG1u2bMHv9/P5z3+eXbt2sWHDBjo6Oti5c2dBr5nucDqdDB06VNlODh06tMBWQQRusY2C0j+T9Aekf0dnZ6ey+IxEImQyGSorK9m1axfZbJZx48ZRV1dHJBJR1Vcmk4nBgwczePBgoKsaS/avYuTO43K51H05GAxitVoLetX0p74z+ram0fQDjJdqo9+uHLrC4TBHHXUUALW1tZx00kkAzJ8/n+nTp7NgwQL++te/cvHFF/Nf//VfPPfccyrbedCgQQwfPhyHw6Euaa+88oo63BkRAdHhcODxeNTB3+v1YrPZlOAoDb+0YNSzyO9bStwrKiqor69XAo1kBEUiEVwuF9lslkQiQUdHB4lEgkQiofyi5FJoLAkSewsRD+U1l/eNzf2kdNVqteJ2u3E4HCoTen/Co6ZvIJ5hIuQZBWaHw0F5ebkS+CorK0kkEkSjUeXjLBliUiommWWSBSBIQwxpHuh2u/W60YsYXxvjfiP/ZrNZdu/ezdFHH828efNYsWIFxx9/PAsXLlRZgiIYrV27lvPOO4+vfe1rnHzyyUrYWb9+PQsWLGDevHn7PLAPHDgQl8vFpk2bgC57JqMdD+yx65A1SK8pvYMx8A2FIrN49ZtMJhX8rKurA/ZUR91xxx28++676vFWrlzJf//3fzNjxgzOPvtsZs+ezcMPP8w111zDm2++yQcffEBZWRmf+9znWLduHbNnz2bq1KmqZLqtrQ2fz0cikVC9IkSA0PQ8xtJ2s9msssdCoRCtra1UVFSwa9cuysrKCprDxmIx7Ha7Or8Aai+RM4WIy5KNaCxB9vv9jBo1CqvVqs67wWCQ8vJy1VhQhGtN30T8mHvDKgO6rAjHjRvH6tWrWbBgARdccEGvjEPTPWJ709HRQTabVfY30rdBhOZ0Os2oUaPYvn07kUiEVatW4XA4mDhxIiaTiY6ODuLxOB0dHQWeuWLvJ+cLOdcOHjxYvV9RUaHOMT6fT61Xcm7S9C7GYEQ2myWdTjNgwABlMSqWKh0dHQwaNIixY8cCeywiw+EwjY2NBVV+Ho8Hp9OpEi+M1o+ijxjPpFKZ09/OqfqmptH0A4oztURkjsfjKrunublZdUhdtWoVY8aMYcOGDcyZM4cTTzyRRYsW8dJLLwFdUd1jjjkGk8mkxKFwOExlZSVVVVVEo1Ha2tqUd5FE58rLy3E4HFRXV2O32ykrK1MNwaQ7t1EE0If3nsWYGSq+hwMGDKC1tbWg/KuiooJMJkMmk1HZQJlMhkQiocqKpHTZKDIbBWV535jJLN7MEskVYVGEylLLGFq+fDnf/e53yWQy3HDDDVx55ZW8/PLL3HvvvVRUVPD0008TCoW47rrr2LhxI2eddRZ33nlnbw/7M5PP59Uh2263k8vlaGlpKRCY4/G4OrRJNlogEMBsNpNMJkmlUqppnDR+ikQiWK1WFaCSQ7jL5SKRSKighy5d7j2MNim5XE51wna73eRyOfU6Dh8+nMrKSpqamrDZbCr7sKamhu3bt1NVVUVLSwttbW08/PDDPPzww90+X0VFBcceeyxVVVXKN2/AgAFMmjSJ++67j1gspqov5OAue434E0sgQ9NzGPtEiB+lsQkSdAmCYpchl/ChQ4eycuVKACZMmMBLL73Eu+++i81m49e//jVjxozh+eef54knnmDu3LmsX7+esWPHsnv3bv76179y6qmnsnLlSv7xj38wceJEBg8ezM6dO/n3v//NyJEj8Xq9ZDIZ4vE4Xq9XCZsSANH0DtLor7Ozk2AwSFNTkxKLoSuo1NLSgtlsVh6YEoA0+l/KZV2qpKxWKwMGDMDhcKizhdfrZfjw4Spjbffu3erz5eXlwJ4gan+79Pcn1q1bx7p167BarZxzzjm9No6pU6eyevVq5s+fr0XmPohURoo4HAqF1FlF7hxtbW10dHQwcOBA0uk0zc3NpFIpFXwyPpbX6+32eUwmk2p4LgHLUCikgmbys7LX6ftv38Fqtap7RjqdVvvG7t27VYCytbW1IEGmGGkca7PZiMfjBb2o5F5TXKG7r340/QUtMms0/QARY/L5PE6nU/kxp9NpKioqCIfDtLW1MWjQIMLhMOFwWJV57Ny5k0gkwsiRI+no6KChoYGWlhZVxmpESjqsViuVlZVUVFQAe3wvPR6PauI2aNAg3G63OuDLgd/YCK4/Lqp9HREFc7kcyWRSlY9KB2YR/0SQ9ng8ZLNZUqmUyvqSzFKjl6Vkpov4ZxSZxedZ5qnYZkhGaqlmL//sZz/jmWeeYciQIUyfPp0rr7yS//3f/2XevHm88847PPLII0yfPp3Kykoee+wxvva1r7Fz505VWlWqGLO8rFYrLS0tKlrv9XrZsmVLQVNII3LQ9ng8qvGbBC6SySTZbFatUeKlKQdAKXtMpVIH1dFZc3iQzu3pdBqv10sikVBe2w6Hg2QyydatWxk3bhwff/wxsVhMXd46Ojqorq5WHs3y81IZYbPZVJBBMuGLS1XXrVunGn0ZA5ihUAir1YrP51NZJrLP6Oz33sGY3VMsMlutVuWRLOeN6upq3nzzTQBGjRrF17/+dQBuvPFGpk+fDsANN9zAOeecww9+8AO2bNlCe3s7o0ePpr29nTfffJOTTjqJnTt3smLFCqxWK0cddRTpdJra2lrVaDaVSqn9SLJhRWzWAayeR4LMcoGXoJSUE8OekvNYLIbb7Safz5PNZlVFlbGayul0EgqFcDgc6ud9Ph9Dhw5V3qzbtm1TZxiPx0N1dTUmk0lZgYEWgvoyzzzzDADnnHMOgUCg18YxZcoU/vznP2tf5j6M9AeRSrrKykoaGhqUZZKcSTKZDCaTSVm9STBdrAGNAS2jHVd395/Kykr1nGazWe07gEq60fQdZK2XhBaxkRRrjPLycjo7O9U9Gbrurm63G4/HQy6XUxW/gPIBl7uK8Sxk1EJK7d77SdAzXKPpB8hFKZVKKVFPMsySySRDhw5l27ZtRKNRampqcLlc1NfXKzE4HA4Tj8cJBAL4fD7luWvcSMVHSjZcaeQlWWJS6u7z+aioqMDr9VJTU4PT6aS8vLzA+F6yXTU9j2SGSvaoCM6wp7TM6/Wq11qyniUSK4cmY2YaoA5bRjG5GNmMjQ3DJKu5FHn44YfVQdJkMtHe3k55eTl2u50ZM2bwyCOP4HK5lDgybdo0PvroIy666KK9HiuVShUIs+IV1xcxNhRNp9Nq3D6fj+3bt5PL5VRzFZvNRjabJZlMqpLF9vZ21YhULHa8Xi+hUIhEIkE8HieTydDR0UFHRwfBYBCv16uE5kwmg8Ph0GJQLyF7jWQyizjk9XrVxSydTlNfX8+YMWOora0lHA5TXV2tRMWBAweqcneZT/tCurEb1xuHw0FZWZmqlCgrK8PtdlNZWanWMQlk6YBmzyNBbyOyz4iAJ6+7y+VSFhnijThkyBDee+89wuEwI0eO5LLLLit4rNGjR/PUU09xxx138MEHH7BmzRpGjRpFMplk7ty5VFZWUlZWRiqVYu3atXg8HpU9LyWwYrGSyWRUDwEtMvceEgCX1yMUChEOh5WvckdHB1arFb/fX3DZN5afS6DL+DcfCoUYPHiwamgse4/8TFlZGX6/X81ZEQnkLK3pe+TzeSUyX3755b06lqlTpwKwaNEiJVpq+hZS4SCicTKZVMKynGUkw1nuzbKeHOxdVRKtpApP9jebzUZlZWVBYo7uOdM3kWb10kgWYMCAAUojkaZ9xdnssmdAV8BSEh0kIcf4+EfS3UWvhBpNP0HEHED5C0rX1Fwux5AhQ2hqaiKRSFBWVobL5aKlpUVtjCLuyAYs5YKCbLjFi6N46Bn9mMvKyqioqMDlclFRUaEyEcVPVW+wvYvR+1gEY2Npj7Ghm4hIIhxJBlh3GIVmYzNAm82mOj3LvJJASClvtpWVlQD8v//3//ja175GNBpVhw+Px0MsFuv2c91x3333cdddd/XMwD8DEnyArjWnra0N6Co1bm1tVcLj0KFD97psSWONWCxGPB4vyGBuaWlRWfXl5eXkcjkikQipVIr29nby+Tw+n09ZAUmpo6bnMWYdJpNJQqGQanbj8/lUcFICCwMGDMDr9bJz504VhIlEIspGQwJexnXH6N9vtF6QA7v4QZvNZsrLywkGg6oiQ/YiyYbW2Yi9h/GCJa+vnFNkL/D5fGodkUZJY8aM4e233wbgyiuv7Fa48Xq9/OpXv+J3v/sdjz32GJs3b2bgwIH4fD6amppoampS1VWxWIxEIsGQIUNobW1VNlCpVEpluRmbmWp6Hgk6i8e/1WolFAqRSqXo6OhQzbrkHOLxeEilUnu9ZmazGZ/PRygUUlZfsocIIgR4PJ4Cz3CxDZOxaPom8+fPZ8uWLXi93l7zYxY+97nPEQgECIfDrFy5kkmTJvXqeDTdY/TezefzJJNJysvLSSQSyvrRYrHg9Xpxu917ZS8XP5a8GROxTCaTCrSbTCb8fn9B4hbQrxq79Uek2lJsITs7O/H7/fj9fuXJbWx6LwFq6QliTNCCPfft/mqJsT+0yKzR9BNkAxW/J2m6J5f9fD5PRUUF6XRaddEWDyIRw8T/Dii4cMnmuS/E/sDr9eLz+dRlwOfzKYFZmv9JR29N72M2m3E4HMAeMUAOVcYyMfleEZyN3weFBy7jY8v8k+wg+f5SDTQ8+OCDPP/88+rjO+64g6VLl9LY2Mh9991HW1sb8XgcgHg8jt/vx+v1Fnxu6NCh3T727bffzi233KI+jkQi1NTUHMb/zaej2CJFDlJOp1N5Ww4aNKhbUag4CyCbzRKPx4nFYsRiMeXt3NbWxuDBg6moqCAajRKJRJR9hghCxqCIpucxZh2mUinKy8uVUCiHcYvFQjKZJJfLKR/U9vZ2TCYTPp+PZDKpMtOlmSjsCVxKJqGsIXJ5gz1ZhmKnEgwGqaqqUnuPzBWdxdw7FDf7M74vf7vGYFXx1zweDzt27ADguOOO2+fzWCwWbrzxRo455hjuuusudu/eze7du5kwYYIKZsTjcYYNGwZAY2MjgwYNoqmpSXkyi8DcnZig6VmMDZDkMu9yuVTGeSaTUdnKQMG6YOz90NnZSSaTUZ7f0LVmybnUKPKI/ZeckwEVoNL0TZ5++mkALr744oJ7S29gNps5+eSTefvtt5k/f74WmfswZrMZj8ejMlUlY7mysrLgHCJ2CZ/m8aXvjNvtVk0GjeuKznTv+5jNZtxut7JXkXOnVGN3d76BPQF0OHIsMfaHnukaTT/CZDKpTrpWqxW3200ymVSZIdlsVjXmkyxCKS2WTVb8iOTgbmyoIm/Gxm7ipSvROpfLpRpzifgsF34tMPdd5HUpjrBLVLbYIuNABzDZlI1ioMyRUt10b7zxRm688Ub18YsvvsiqVavUhUcyOqVke/LkyUyePJnXX3+d8847j3nz5vE///M/3T62lPiWCvL6yetsFGgONnPUarUSCAQIBALk83lisZj6/dXV1TFq1CglRqbTaRKJhMou0xmHvYsx00/En0AgQCqVIhKJqGCjxWJRmYey9wQCAdUY8rNmC3o8HkKhkGr6JwKzzmLuXYzN/owd1I3/yl4jXtzSaBZg9erVBINBYrEYtbW1jBgxYr/Pd/rpp3Psscfym9/8hldffZVVq1bh8Xi47LLLmDNnDtu2bWP06NEkk0kSiQQWi4VUKqX2sVISmbtrOCusWLGCCy+8kKFDhzJ48GBlKVBqWCwWZc8llQ7SIEmajBqDXLIfSMWVIDZfPp8Ph8OhfJwluFBswyNnaC0E9V2SyaQK9l9xxRW9PJoupkyZwttvv82CBQv4zne+09vD0ewHEZqlr4QxeG1sTF8c2DbuZbDvbGbYU7VnfM5StgY8UhGtQ864IiJ3d04wVu8a/bmPZPQuqtH0M+SQLA1UJBpnLDPPZrMqK9Xv95NKpVTE7mAu5SIwi1+V3W5XDVdEhLbb7cp/WXyISlFYPNKRpllWq1VdwveVxWz04TQGKWCP3Up/mgM//elPcTqdnHHGGQC8++673HLLLZx66qm4XC5efPFFysrKeOKJJ5g6dSqnn376PjOZSwWjuCzNliQoZbVayWazNDc3U1lZ+Ylea8lulcaByWSSWCxGWVkZNputIONQ0zcweqpLxrI0vIlEIiqoJLYaclCXvae8vFw1FRW/wuKmOkYR0FiGKnY74pcolTRSTSOZKP1pvSkl5HUTf3bj5+TvWYJqTU1NjB49mrVr19La2ordbqe2tpYhQ4ZQV1fHAw88wJgxYw5Y2VFWVsZdd93F5Zdfzt13382qVav46KOPOP/883nllVf2ypY2Zh0JpTBfums4K6xZs4a77rqr4HOljPTyMGYyi++t+K0Hg0FsNpuqvoLCaggRlqUnQHdIQOpILGkuNV544QVaWlqoqalRZ6/e5pRTTgHggw8+2EuM1PQ9pGJCbPwk4FQcdJJ7y8FgFKQFWVdKsbG5cCQENfeH9LwSKwzjW/H9V1OIFpk1mn6IbKCS5SGbnDRUEVFIOnNLlFUaqogPUXFmjxzsjZuuCALGCJ4syJLNrJv89Q+MUfv9fQ8cONO5P7By5cq9PnfBBRdwwQUXFHzuscce66khHXYkkJTP58lkMrhcLqLRKNFolIqKCurr62lubiYejxMKhfB6vQeVFSaPJz7MgBIIjB8bRQRN72OsTkgkEirDUATfaDSqrHakFFUCnSJKS8O1T/q84t3scDjwer1KaBaLJp011HvI7z6Xy2Gz2UgkEntlMEejUSorK2lqasLv92OxWKitreVzn/scK1asoLGxkUAgQENDA5dddhnXX389F1100V5Nd6Arm37r1q1s3ryZDRs2qAaTxrLnXC6H2WxWc80Y9JT5VAoXxeKGs0ZWr17Nv//9b/70pz9x++2384UvfGGvny+lJrOC8aIvZ1SprpJzrNhoyH7T2dlZkK0oGBsUFwezNH2f3/3udwBcf/31fWaNnz59Ona7ne3bt7NhwwbGjh3b20PSHASSFNXdHVXuvsZ7cHGSw74+L4Hw/rCuHElBzQOhxeRPhhaZNZp+ihzKrVaryhQzHtLlki+CsnwsF7F9UdzYTS76IjIbs5l19rJG07+QdUWECo/HQzweJ5vNYjKZqKiooKWlhUQioTouy1og65F47Mr6I8Ewo7WKiJThcFg9ttPpVCWIOnDVt5DydqmIkUuXz+cDuoQtEaHltZdgp7HpWnGFhFCcPWLs/C5WTNJIVBqwaHoPORtIcxx5zaQyRrLfa2pqaG1tpb29nVGjRrFp0yZisRgDBw6kvr6eUChEJpMhFovxy1/+kgcffJBx48YxcOBAzGYz4XCYHTt2sHPnzr182r1eL8cddxyvvPIKgDoDSdWVCJLGpk19RbTaH8UNZ41MnDiR//iP/2Dw4MGcddZZzJo1a6//U6k0md0X8toZmwmL4GwsUS9Gzr+l8Bprumfx4sUsXLgQm83GN77xjd4ejsLj8TBjxgzeffdd3n77bS0y9wOK7Z2OVI7EoKbm0KBFZo2mnyNZysbMZdjjm+p0OpXAXOzF3J0lglwQjWKzoP2INJr+j91uV8GpRCJBKBSira1NNW4LBALkcjmVRSZC8sHgcrkIBAI4HA6amprUzwWDQVKplBIZtcjc95AAhM1mUxcLo0+3vGYSzJQS1e68UQ/muaQcXqpmtJ9q38LhcKjAgtvtJh6PK/sUj8dDJBIhkUgwevRoamtryWQyDB48WDVrGzhwIK2trVgsFiKRCO3t7WQyGZYvX87y5cv3ej7pQ+F0OlWG+0cffQRAeXk5NpsNt9uNx+MhEAgUVFpJn4C+eG45UMNZI5///Ofx+/0AjBw5kpaWFqqqqgq+p1SazB4Mct6UrOVMJrNXuXupl6tr9vD73/8egEsuuYTq6upeHk0hs2bNUiLz9773vd4ejkZzSDjSg5qaT48prw0ONZpDRiQSIRAIEA6H1UG/L2LMJMtms3uVBRV7Sxk9Mo12CMUZzfoQf2BKZY5oepe+Pk86OzuJx+MFntvSVMuIrDXFZYXFDVOMmY/FzSIDgQAmk0l93uPx6Gw0+v4cEQsUY8OUA32/cX7s6+vFHnhi2aH9VPemt+eIBJry+bxqACmfS6fTRKNRNU/a2tpoaWkhn88TDocJh8OkUini8bgSpI1VD+IJL4GGYs9/k8mEx+NRwrLT6WTgwIG43W6GDx+u/HzFC168wvs6L774Ii+++CJPP/30XqL4l7/8Ze655x5GjBjB6aefzrx58w4onPf2HDnUFK8Tmv7Brl27GDFiBOl0mnnz5jFt2rTeHlIBy5YtY9KkSXg8HuUtf6TR39aSI5F9BTU3b97Mo48+WvC9kUhEvc5f+9rXePDBB/cKanaXyVxTU6PnyBGATvfQaI5Aipu5ieAsGWXFlxKjv1R/bOCm0Wg+GdKhO5lMqrVDmnwaA1jdldh1h2S2CpKJKI8nuN1uLTCXCMUNUyR4KVnLxooZCWrub64Yv2a0yyj1/ai7xjovv/wy9957LxUVFTz99NOEQiGuu+46Nm7cyFlnncWdd97Z28M+KOS1z2Qy6n1jxnAwGCQejwNQVVWF3++nvb0di8VCIBAgFosRiUTw+Xxks1nVQNLYJLLYW9fYI0K+7vP5KCsrw+l0MmTIEKxWKz6fTzV/kozXUqC7hrO33nord9xxBz/96U+57rrryOfz/PCHP+yTmdmHGy0u90/+f/+//x/pdJrp06erRnt9iYkTJ1JdXU1DQwPvvfcen//853t7SBrNJ+bGG2/kxhtvVB+/+OKLrFq1iqeffnqv773mmmtUUHP79u1UVFTs9T1ibaQ58tAis0ZzhGMUnKGwkYH2pNJoNPtCrHjEF1OEH+mobezGLCJid8VTxR2ajeuNCMwWiwWXy3VEiib9AaOP8r4w+i7Lx8WP0R87eXfXWOd///d/mTdvHu+88w6PPPII06dPp7Kykscee4yvfe1r7Ny5k8GDB/f20A+IZJmbzWZSqZQSdOXckUqlsFgsSkAW7/XKykoikQjRaBS/308ulyORSChLBKPIvK83yXAWr+5AIEBVVRU2mw2/368EZnkrlbWlu4azv/zlLwEoKyvjww8/7OkhaTSHlaamJv7whz8AXWX7fXH9N5vNXHzxxTz88MM899xzWmTW9At0UFPzadEis0ajKUALyxqN5mAxduc2NhA1Zqt+Wq9TEYrEM1XTv+lv4vHBUtxYp729nfLycux2OzNmzOCRRx7B5XIxffp0AKZNm8ZHH33ERRddtNdj9cUmO8VNiOXvOpPJYLFYVANQaeSWyWRIp9PYbDZCoZBq6JZIJJTHe3GTSPnXKDybzWbVFNLr9ap1SqwxXC4XHo9HfV6j0fRNfvWrX5FIJDjhhBOYNWtWbw9nn1x66aU8/PDDvPTSS/z+978vCfsdjWZ/6KCm5tOib20ajUZzkGQyGWbMmMGCBQsA9ippLisr6+URajS9h2QwF1NsjWDMVjVi9HsXj/cjUXTUHFkUN9aJRqN4vV6gy388Fot1+7nu6MtNdqTyQURlCVAV2+vI+/KWyWRwu93q658UsVUxZi2L/7JkOut1RqPpm2zfvp3//d//BeDHP/5xn/5bnT59OjU1NezYsYPnn3+eq666qreHpNFoNL2CFpk1Go3mIGhtbeUrX/kKtbW16nPFJc233357L45Qo+mbiFWCRqPZd2OdxsZG7rvvPtra2pRPcTwex+/34/V6Cz43dOjQbh/79ttv55ZbblEfS5OdvoTYpkjmsojHEowqFp3lTb5mDFjtD8lmNvp3W61WnE5nged7XxatNJojndtvv51kMsmpp57K+eef39vD2S8Wi4Vvf/vb3HHHHTz44INceeWVen3RaDRHJNo8RaPRaA6CeDzOr3/9a8aNGwewV0mzZDcXk0qliEQiBW8ajUajOTK58cYbmTdvnnrr6Ohg1apV/OlPfwIgFArR1NREMplk7ty5TJ48mcmTJzNnzhwA5s2bx6RJk7p9bIfDgd/vL3jrq0gms9hWeDwe3G43brcbj8eDz+dT/4dAIEAgECAYDBIMBgmFQoRCIfVxd2/yM4FAAL/fj8/nw+v1qudzOBxaANJo+jALFy7kr3/9KyaTiV//+tcl8ff6zW9+E6fTyeLFi3n99dd7ezgHTSaTYcqUKerjl19+mZNOOolzzz2X1tbWXhyZRqMpRbTIrNFoNAdBTU0NEydOVB9/kvJl42W3r2WVaTSanmXFihWMHDmS0047jcsvvxzQF7ojmZ/+9Kds3LiRM844g9NOO41cLsctt9zCqaeeygMPPMB3vvMdZs6cSXNzM1OnTmXUqFH7zGQuVYweyk6nE4/Hg9fr3etfr9eLz+dTArRxbxUx2ShM+3y+vR7D5XLpygqNpo+TTqf55je/CcDVV1+9z8BaX6OyspKbbroJgO9///skEoleHtGBaW1t5Zxzzum2UvOGG27gkUce6fbndBKNRqPZF9ouQ6Oh69J/4YUXMnToUAYPHswzzzyj/XaPcLoraf7CF76gPi4uX95XxlgplC9rNJqeY82aNdx1111ceeWV6nPaeufIpbvGOhdccAEXXHBBwecee+yxnhpSn0AaBHZHd1YZ+/J5L4XsR41GU8jPfvYzVq5cSWVlJb/4xS96ezifiB/+8Ic8/vjjrF+/nptuuolHHnmkT69DUql54403AntXau5LZO7LPQA0Gk3vojOZNRr2XPrff/99nnnmGeDgoria/ktxSbNRYIbuS5q7o5TKlzUazeFn9erVPP7448ycOZM33nhDW+9oNJ8QEY+Nb9Iw1PjWl4UdjUbTPa+99hr33HMPAL///e9Vc9RSIRgM8uSTTwLwpz/9if/+7/8mm8328qj2zaet1Lz99tsJh8PqbceOHT0yXo1G0/fRIrNGg770az4dxSXNmiOTq6++mvfffx/Y2/Ygn89z7bXXMmPGDJ3xoQFg4sSJ/Pa3v+W1117jzjvvJBwOa+sdjUaj0RzxfPzxx1x22WXk83m++c1vcskll/T2kD4Vs2bN4qGHHgLg17/+NTNnztznXbKnefDBB5k+fbp6e+ONNwq+frCVmjqJRqPR7AstMms06Eu/5uARMRG6SpoXLlzI+++/T3l5ee8NStNrrFmzhpdffll9XFwBMW/ePCorK5k7dy5r165l586dvTdYTa9QfKGz2+0cffTR+P1+Ro4cidPpPGjrHZ01pNFoNJr+RmdnJ08++SSnn346sViMU089ld/+9re9PazPxA033MBzzz2H3+9n/vz5TJ06lVNOOYU//elPhMPhXhvXoarU1Gg0mn2hRWbNEYm+9Gs0mkPB//zP/3DVVVcBe/vYLViwgMWLFzN9+nQApk2bxkcffdTt4+iqiP5L8YXuySefZN26daRSKbZv305lZaW23tFoNBrNEUUikeC9997jzjvvZPz48Xz9618nFotxxhln8M9//hO73d7bQ/zMfPWrX2XlypVce+21WCwW5s+fz7e+9S2qqqr40pe+xFNPPdWrgvO+0JWaGo3ms6Ab/2mOSG688UbV4ADgy1/+MmPHjmXEiBGf+NLvcDh6atgajaYPsWjRIkaMGEFnZyfQvY/dwXrb6QYqRw4//elPue6668jn8/zwhz/EbDarC53L5eLFF1/s7SFqNBqNRnPISKVSbNu2jcWLFzN//nwWLFjA0qVLC7yKA4EAP/jBD7jtttv22fSzFBk6dCiPPvooP//5z3nqqad4/PHHWbt2Lf/85z+VmD5r1iymTZvG+PHj8fv92O12crkcuVxO/Y58Ph9+v19Vz7pcrkPqO19cqVncfFaj0WgOlv6zgms0nwF96ddoNAfiwQcf5Pnnn1cfb9y4kY0bN/KrX/0K6N7HrvhzQ4cO7faxb7/9dm655Rb1cSQS0fY7/ZRjjjmGDz/8sOBz+kKn0Wg0mv7AO++8w09+8hMikQjJZJJ4PE5DQwP5fH6v7x04cCCnnXYaZ5xxBl/96lf7dYXOwIEDufXWW/nBD37A6tWreeGFF3jhhRdYu3Ytr732Gq+99tonejyr1aoE52AwyE033aQq6zQajaY3MeW7W/E1Gs2nIhKJEAgECIfD/fqgpPn06DnSP4jFYpx00klUVVWxdetWgsEg8+bN44tf/CJvvfUW//rXv1i8eDEzZ87k9ddf54EHHuDSSy/lf/7nf/YpNBvR80RzIPQc0RwIPUc0B0LPEY1GcyjQa4nmQOg5cuSgRWaN5hCSz+eJRqP4fL5DWsKk6T/oOdL/+OlPf8ppp53GaaedxiuvvMK9996rKiDKysq47rrrWLt2Laeffjr33nvvQT2mnieaA6HniOZA6DmiORB6jmg0mkOBXks0B0LPkSMHLTJrNBqNRqPRaDQajUaj0Wg0Go3mU2Pu7QFoNBqNRqPRaDQajUaj0Wg0Go2mdNEis0aj0Wg0Go1Go9FoNBqNRqPRaD41WmTWaDQajUaj0Wg0Go1Go9FoNBrNp8ba2wPQaI4UxOxe0zfpC00I9Bzp2/SFOQJ6nvRl9BzRHAx9YZ7oOdK30XNEcyD6whwBPU/6MnqOaA6GvjBP9Bzp23zSOaJFZo2mh4hGowQCgd4ehmYfhMNh/H5/r45Bz5G+TV+YI6DnSV9GzxHNwdAX5omeI30bPUc0B6IvzBHQ86Qvo+eI5mDoC/NEz5G+zSedI6Z8Pp8/jOPRaDT/H6UcoYtEItTU1LBjx45e34Q+KQc7dh3F/WzoOdJzlOo8KeU5Agc3fj1HPjulPE9KaS3Rc6R30HOkZ9BzpOeQeVKKv/P+Pua+NkdKkVKcI0IprSV6jvQOh2uO6ExmjaaHMJlMJbfwFOP3+0v2/1AKY9dzpHcplbGX+jwpld/zviiF8Zf6HIHS+D3vi1IYu54jvUspjF3Pkd6lVMZePE9KZdxG9JgPL3ot6V1KYex6jvQuh3rsuvGfRqPRaDQajUaj0Wg0Go1Go9FoPjVaZNZoNBqNRqPRaDQajUaj0Wg0Gs2nRovMGo3mgDgcDu68804cDkdvD+UTU8pjLyVK+fdcymMvJUr991zq4y8VSvn3XMpjLyVK+fdcymMvJUr591yqYy/Fcesxaw5EKf++S3nspUQp/54P19h14z+NRqPRaDQajUaj0Wg0Go1Go9F8anQms0aj0Wg0Go1Go9FoNBqNRqPRaD41WmTWaDQajUaj0Wg0Go1Go9FoNBrNp0aLzBqNRqPRaDQajUaj0Wg0Go1Go/nUaJFZo9FoNBqNRqPRaDQajUaj0Wg0nxotMms0mv2SSqW44IILmDZtGn/60596ezifiEgkwuDBgznttNM488wze3s4/RY9RzQHopTnCOh50lOU8jzRc6Rn0HNEcyD0HOk9VqxYwciRIznttNO4/PLLe3s4+6UU50mpz49SoxTniKDnSs+g50j3aJFZo9Hsl+eff55zzjmHuXPn8sILL5BMJnt7SAfNmjVr+Pa3v83777/Pu+++29vD6bfoOaI5EKU8R0DPk56ilOeJniM9g54jmgOh50jvsWbNGu666y7ef/99nnnmmd4ezn4pxXlS6vOj1CjFOSLoudIz6DnSPVpk1mg0+2Xx4sVMnz4ds9nMMcccw9q1a3t7SAfN6tWrefPNN5k5cyZ/+ctfens4/RY9RzQHopTnCOh50lOU8jzRc6Rn0HNEcyD0HOk9Vq9ezeOPP87MmTN54403ens4+6UU50mpz49SoxTniKDnSs+g50j3aJFZo9Hsl2g0itfrBcDj8RCLxXp5RAfP8OHDeeCBB3jnnXd44oknaGpq6u0h9Uv0HNEciFKeI6DnSU9RyvNEz5GeQc8RzYHQc6T3mDhxIr/97W957bXXuPPOO8nlcr09pH1SivOk1OdHqVGKc0TQc6Vn0HOke6yH7JE0Gk2/xOv1Eo/HAYjH4/j9/l4e0cEzZcoUXC4XZrOZKVOmsGXLFiorK3t7WP0OPUc0B6KU5wjoedJTlPI80XOkZ9BzRHMg9BzpOR588EGef/559fEPfvADjj76aABGjhxJS0sLVVVVvTW8/VKK86TU5kepU4pzRNBzpWfQc6R7dCazRqPZL5MnT2bOnDnk83mWLVvG2LFje3tIB81PfvITZs+eTWdnJ4sXL2bUqFG9PaR+iZ4jmgNRynME9DzpKUp5nug50jPoOaI5EHqO9Bw33ngj8+bNU29PPvkk69atI5VKsX37dioqKnp7iPukFOdJoVHfsAABAABJREFUqc2PUqcU54ig50rPoOdI95jy+Xz+kD2aRqPpdySTSS677DLq6uq45ppr+M53vtPbQzpodu7cyRVXXEE6neaqq67i+uuv7+0h9Uv0HNEciFKeI6DnSU9RyvNEz5GeQc8RzYHQc6T3WLlyJd/+9rfJ5/P88Ic/5Etf+lJvD2mflOI8KfX5UWqU4hwR9FzpGfQc6R4tMms0h5B8Pk80GsXn82EymXp7OJo+iJ4jmoNBzxPNgdBzRHMg9BzRHAg9RzQHg54nGo3ms6LXkSMHbZeh0RxCotEogUCAaDTa20PR9FH0HNEcDHqeaA6EniP9j5/+9Kc8/vjjzJ8/n5NPPpnTTz+dLVu2AHDHHXcwbdo0/vM///OgH0/PEc2B0HNEczDoeaLRaD4reh05ctAis0aj0Wg0Go1G04s0Nzfzpz/9CYB77rmHN954g9/97nfcf//9bN++nc2bN/Phhx/i8/mYP39+L49Wo9FoNBqNRqPZG2tvD0Cj0Wg0Go1GozmSeeCBB7jqqqsASCQSlJWVUVZWxsaNG1myZAnTpk0DYMaMGSxYsICpU6fu9RipVIpUKqU+jkQiPTN4jUaj0WiOcJqamvjHP/6BzWbj4osvJhAI9PaQNJpeQWcyazQajUaj0Wg0vcSOHTuIRqOqK3lnZ6f6mngYer1eADweD7FYrNvHue+++wgEAuqtpqbm8A9eo9GUFJFIhMGDB3Paaadx5pln9vZwNJp+wVNPPcXw4cO5/vrrufbaaxk/fjxr167t7WFpNL2CFpk1Go1Go9FoNJpe4r777uO2225THxsb4pjNZrxeL/F4HIB4PI7f7+/2cW6//XbC4bB627Fjx+EduEajKTnWrFnDt7/9bd5//33efffd3h6ORlPyPPfcc1x11VV0dHRw3HHHMWrUKHbu3MlFF11EOp3u7eFpND2OFpk1GvaO6nfXdEejEb785S+zdetWPU80Go1G85lZtGgRV199Nffffz/3338/LpeL5uZm1qxZw/Dhw5k0aRJz584FYO7cuUyePLnbx3E4HPj9/oI3jUajMbJ69WrefPNNZs6cyV/+8pduvyeVShGJRAreNBrN3mzdupVvfetbANxwww0sXryYBQsWUF1dzfr16/ntb3/byyPUaHoe7cms0bAnqv/jH/8YgPPOO4833niD+vp67r//fh555JFeHqGmL5BOp7n00ktZtGgRsKc5k54nGo3mYIlEIhx99NEcddRRWCwWfv7zn3PzzTfjdrt57LHHGDFiRG8PUdPDyJ7y+OOPA/C5z32O8847D5PJpEpwR48ezSmnnMKYMWOYPn16L45Wo9GUMsOHD+eBBx7gxBNPZNasWZx33nlUVlYWfM99993HXXfd1Usj1GhKg2w2yxVXXEEkEmHq1Kn8+te/xmw2U1FRwT333MM3vvENHnjgAb73ve9hs9l6e7gaTY+hRWaNhj1R/dmzZ3PNNdfs1XRnX+gmO0cWqVSK//qv/+Kxxx4D9m7OtK+f0XNEozl48vm8euvs7Cz4OJ/Pq+8zmUyYzWYsFgtms7nAYqAvo4Oamn1x9dVXq/cXLFhQ8LV77rmnh0ej0Wj6I1OmTMHlcmE2m5kyZQpbtmzZS2S+/fbbueWWW9THkUhEe7xrNEXcc889fPjhh/h8Pp555hms1j3S2lVXXcUdd9xBQ0MDr7/+OhdeeGHvDVSj6WG0XYZGw56o/jvvvMMTTzyxV9OdfaGb7BxZ+Hw+Zs6cqT4+mHmi54hGs4d8Pk8ulyOTyZBKpUgmk3R0dBCPx4nFYkSjUaLRKLFYTL3J54xfi8fjdHR0kEgk1M8mk8mCv8m+SnGpsgSrxo0bd8Cgpi5f1mg0Gs1n4Sc/+QmzZ8+ms7OTxYsXM2rUqL2+R1vvaDT758MPP+Tuu+8G4OGHH96rCs1ms6nAsSQnaTRHClpk1mjoiupPnToVu93OlClT9mq6sy9KpcmOZARms1kymQyZTIZsNksul9uviK7ZPwczT0pljmg+OTt27OD000/nlFNO4f777+/Wo/uOO+5g2rRp/Od//mcvj7Z36OzsJJ1Ok0gklGAsArGIyyISy9fD4TAtLS00NTXR3NxMU1MTjY2NNDY2qvebm5tpaWmhpaWFaDRKMpkklUoRi8VIpVJ9el3TQU3NkUQ+nyeTyRQEhIyBomQySTqd1ucRjaaHuOWWW7j//vuZMWMGl1xyCeXl5b09JI2mpAiHw1x++eV0dnZyxRVXcPnll3f7fVdccQUAs2fPVs17S4nie45Q3MtKoylG22VoNHRF9WfNmsXZZ5/N4sWLcTgcNDc309jYyPDhw/f5cw6HA4fD0XMD/RTkcjnS6fR+L28Wi0W9lUrJeV9AmjPtb56UwhzRfDp+85vf8NOf/pRTTz2VM888k9mzZxfYHtxxxx1s3ryZDz/8kFtvvZX58+czderU3h72YUdEpUwmo4SjXC5HNptVb7lcTn1NAmDZbLbgffkZo2UGdAV3LBYLdrsdh8OB3W7H5XLhdDrxeDykUilyuRwul6tPrmfFpcofffSR+tqBgpqlWL5s3Hvy+bx6Tfria6M5dMg60F3Qx/i3bET+tq1WK1ardb9/DxqN5tMxePBg3nvvvd4ehkZTkuTzea699lq2bdvGiBEj+N3vfrfP7x0/fjzDhw9n69atvPPOO1xwwQU9ONLPTvE957vf/S4+n28v2zeNphgtMms0dEX1r7jiCu6++26uuuoqjj322IKmO6VKNpslnU4Dey51uVxOZc6ZTCZMJpMSgQCsVis2m00LAAfBj3/8434xTzSfjh/96EcEAgGg6+/KYrEUeHQvWbKEadOmATBjxgwWLFiwT5G5P3h35/N50uk06XRaicXysQjORvFZPjaKy8ZKC3mTx8vn85jNZux2OzabDYfDgdvtxuVyFVRneL1eADo6OnC73X1uLevPQc18Pq9eh87OTvW67Qvx0hZ/bfHYls9pSpdUKqXOH9BV1SCfM55BjL7qIi5ns1mAAsHZYrH0yv9Do9FoNBrhF7/4BS+99BI2m41nn312v1YyJpOJ888/n4ceeojXXnut5ETm4nuOeE4X97K65ppruv35/nC30Xw6tMis0dB9VL+46U6pIYIPdF3UstlswUJvJJvNqoueiAQ6k2jfPP7440BX2XupzxPNp6esrAyAP/7xj0yePJmlS5eqr+XzeaLRqBI8PR4PsVhsn49V6p3cc7kciURCCccdHR0qi1FEZhGcJUNZPi/isvF7jeJzd9jtdrxeLx6Ph0AgUBA8A9Shvy8Kzf0xqCkCooiDsMd/uzgTXRAh2SgyG8VlndFaukgFFXT5UobDYZXRbKxikMz24gCDzWbDarVit9vJ5XKkUinMZjM2mw2bzabng0aj0Wh6nN/85jfcfvvtADz00EOcfPLJB/yZc845h4ceeoj333//MI/u0FN8z3G5XMAe27cTTzyRWbNmcd555+3VPBRK/26j+fToU5pG008pzhQSgdnhcODxeHC73SpjWUrWRQgS0SeZTJJMJslms73qlXjjjTcyfPhwTCYTq1atKvjaxo0bOeWUUxgzZgwnnXQSa9as6aVRavoqqVSKG264gaOOOorx48crj7RDwdNPP83LL7/M/fffv5dHt9frVR5s8Xh8v9kOpezdnU6nicfjZDIZYrEYkUiEaDRKe3s77e3ttLa20tLSov5tbGykvr6ehoYG6uvr2bVrFzt37qSxsVH9TFNTE7t27WLbtm3U1tZSW1vLtm3bqK+vJx6Pk06naW1tVW/i8ZpIJJTILYJWLBZT4mdfWEskqPnhhx9y/fXXM2XKFBYsWMD8+fMZPXr0YXnOw4m8/rJPGP13xW9XslmSySSJRKLbN/Ho7ujoKPh+8e0+kO1TT/Dmm29ywgknMHHiRKZMmcLy5ct7dTx9FaPALK8noOZGdwEm8W3v6OhQf8/hcFh5rkugXL6WyWR6bT70hXVEU9q89dZbHH/88UyaNIkJEybwxBNP9PaQNH2M/a0zmp4lHA5z7bXXcvPNNwNw22238a1vfeugfnbatGmYTCY2bdrErl27DuMoDw/Ge45Q3MtK+tAUU8p3m/5Cb51JtMis0fRTjJ6HIjhbrVY8Hg92u52Ojg4ikYi6AErWoJStp1IpdQmUxl3JZJJMJrPP7MLDxSWXXMK8efMYNmzYXl+7/vrr+da3vsWGDRu49dZbue6663p0bP0dyVAUAcgo5hnLnvsyP/zhDzGbzWzYsIHVq1fzP//zP4fkcRcuXMgTTzzBiy++qHyBm5ubWbNmDcOHD2fSpEnMnTsXgLlz5zJ58uR9PlapdnIXITCTyRCJRJTIHIlElGDc3t6umvS1trbS1NREQ0MDzc3NRCIRJTw2NjaydetW1q9fz44dO2hubiYajaomgdFolObmZrZs2aKyIkWUjMViao0SoVmErXw+r+bvBRdcwNy5c/VacogQAVmQBoySwZxOp9XrJ69PseBsbABZLDwb1xoRnHtLbG5ra+OKK67gqaeeYsWKFfziF7/YZ7OfIx3ZFywWS0EFRyqVwmQy4fF46OzsJB6Pq3VDmgDK/JA5IW/hcFg19sxms0qUTqVSR9SZRDdiKn3y+Tz/8R//wV/+8heWLl3Ka6+9xvXXX080Gu3toWn6EPtbZzQ9x7/+9S8mTpzIX/7yF0wmEz/72c+47777DrpCLhAIcNxxxwGoO0GpUHzPEX7yk58we/ZsOjs7Wbx4MaNGjer250v1btOf6K27jbbL0Gj6KVJO2tnZic1mA1BemQCJREJ9r2SfwZ4mgGazWZW1Gn0Tiz+2Wq0FG20+n2fatGl0dHSwYcMGBg8ejMfj4bzzzuPnP//5p/q/zJw5s9vPNzY2smTJEt5++20AvvzlL3PDDTewdevW/Xqbag6MlCjLfDFibNaWSqWwWq04HI5DUsJ8qOdPPB7nL3/5C3V1dWqeDhw48DOPE+DnP/859fX1fOELXwDgnnvuKbA9GD58OKNHj1YR5OnTpx+S5+0riMCYyWSIRqMFwqAEryKRCNlslmQySTQaLbBTsNlsOJ1OduzYQV1dnfq8yWRi2LBhjBo1il/+8pdks1m2b99ORUUFgPKHmzlzJq2trcTjcdxut7LqkFJ9Wac8Ho/6/IknnqiqN4xCpV5LPjmyRkDXfhONRpX9gQj7RsRXV7y2ZR2RnxG7Jnkd5WdsNhu5XA6z2YzD4VBWUE6nU/kDdsehXks2b95MVVUVRx99NACnnnoq27ZtY8mSJfsNIB3JGPcPOXPU1NSwefPmgjOIBLgB9bdrfO3T6TQWi0XZaCQSCeVRLqK03W7HbrfvtQ/1tzOJbsTU8xyOOQTQ3t4OdAUIysvL+7znvmbf9OQ6o+kZcrkcP/vZz7j77rvJ5/OMHDmSJ5544lOd5WfOnMnSpUuZM2cOl1566WEY7eGh+J5z+umn85WvfGUv27fy8vJeHmnfQ+4Zcr6RM46ceeWOYtRRDvU60pt3Gy0yazT9FGNTv3w+r5rpiE+sCMZOpxOv16syyozCsix8ZrO5oDmgUYTOZDJKbBY/xX//+98ADBgwgHfffZehQ4cWjO2SSy5h06ZN3Y77n//8JzU1NQf1f9yxYweDBg1SQoPJZGLo0KFs375dC0OfEmPzNkECD7CnUZeIzOKvm81mcblc+xV9DoZDPX82b95MeXk5P//5z3nnnXdwuVz89Kc/PSSZXv/85z/3+lyxR/c999zzmZ+nL5LL5UgmkyobUcrdJds9lUoRDofJ5/NEIhFlG2K32xk3bhzDhg3j//7v/5g/fz7Q9bofe+yxTJkyheOOOw6fzwfAtddeC3TNhQ8//JChQ4fy2muv8eyzz9LQ0MDzzz9Pa2urWn9kbTKbzTz22GMMHjyYVCpFIBDAarUWlNgnEgl12NNrySdHBGaLxaLsSex2OxaLhaamJgDlme1yuUin02zcuHGfvQGgK+vF6XRiNpvVGpPNZrHZbNjtdhKJRMH7VqsVp9PZbUbRoV5LjjrqKJqamliwYAFTpkzhH//4B7FYjK1bt2qRuQg5X3R2dqpziLxGUhkFMGLECMrKypTFTSQSoa2tTfmyZzIZ5cstgrN4Nssa5HQ6cTgcat9yOBzY7Xb1fP3tTKIbMfU8h3oOmUwmnn/+eS6++GI8Hg9tbW289NJLBZmCmtKiJ9cZzeGns7OTa6+9lieffBKAb37zm/zqV79SfVY+KTNnzuQ3v/kNc+bMOZTDPOx0d88RintZHelITyu5G3eXpLUvJFnLarUe0nWkN+82WmTWaPopchETj2WXy0U8Hqezs5NoNIrf76etrU0JReXl5fj9flWaaswmAwrEG0Bd9ozZZ9KYx2KxsHv3bjKZzF6LI8Df//73Q/r/NNLbnp2lTD6fV96XgNqUREQU7HY7wWBQZY/KHEokEodEaAYO2fzJZDLU1tYybtw47r//fpYvX85ZZ53FmjVrum1SoTkw+XxeCbRiTWG0Pshms0q4kLJ3s9nMlClTVJOUO++8k7q6OiwWC2effTbnnnvuPjMhiudCKBQCusSqyy+/HJPJxMCBAwkGg/h8Pnw+H06nE4/Hg8lkIpvN0tLSgs1mIxQKqYCJWME4nU5AryWfhM7OTnWAFvEeIBgMKs/B8vJy1TQGoKGhQa0jbrdbZSVLprtURqRSKWw2G8OGDVOWCGLT5HQ61fsOh4NsNks8HleH8+7E5kO1lgQCAV588UV++MMfEo1GmT59OuPGjVOVQpo9yNkjl8vhdruJx+NqnjQ0NODz+YhGo2zbto1kMklVVRWVlZVUVVWpwFRjYyMtLS3q0pbJZHA4HFgsFuXpbLPZyOfzpFIpXC4XdrtdVVcUZ7r3lzOJbsTUexyqOZTNZrnvvvt45ZVXmDZtGosWLeLCCy9k5cqVBWumpvToqXVGc3i56aabePLJJ7FYLDz66KN8/etf/0yPN2PGDABWrVpFa2ur/jvvB8g5WJKt9iUqi24iZxnJaJaKcLPZrL5mtVpxuVw0NDQcsnWkt+42WmTWaPoxktkngrE0IhNh0OfzEYvFSKfTNDY2Ul5ejs/nw+v1FvgwyyJqFBXk8iYLq3wsXeCXLVvGpEmTuh3XoYrm19TUUFdXpxbmfD7Pjh07ul2UNftHyttl83M4HMortZh0Ok1TUxNVVVVYrVbcbrcSiQ5GaC4uHzJueJKBv3Tp0kMyf4YNG4bZbFbeqcceeywjRoxg9erVnHbaaQf8vWj2Rg5JIgqKj6p4dEtWq8/nY9euXZjNZr761a8yYsQIoKt5Wl1dHcFgkNtuu+2Af68rVqxQc6Gzs5N//etfAHi9Xp5++mna2tpUNYUEwsxmMw899BDDhw/H7/crUaqxsZHKysqCrEqHw6HXkk+IBKJkfwFUFrOQy+UKMli9Xq/KcJY54vF48Hg8VFRUkMvlaGtrU6JyOBxWQvPu3bvVHlScxWo2m0kmk1gsFjUG46HaOH+K+aR70cyZM1WH+FQqxYABA5R9hmYPYm0hQrAEo6WiClBWF7t372b37t3YbDZ8Ph9utxu3282gQYMYNmwYzc3N7N69W/UGsNvteDweZaORzWZxOp0qwCWiq3yvw+HAZDId0nmwL3pqHZFGTC+//LL63JQpU3C5XCqgt2XLlm5F5ttvv51bbrlFfRyJREoug1ISG4xnCHkz/u3LeaKY4s9Jtr08thERAiwWyyGbQ8uWLWPXrl1MmzYNgBNPPJFBgwaxfPlyTj/99IP4DWj6Kj2xzmgOL8899xy//e1vlfXdZZdd9pkfs7KykjFjxrBhwwYWLlyo7Cc0fR+5s8oZVN7vTqyVKnC5j4hVYLF9nBGr1YrP51NiczweP2QaSm/ebbTIrNH0Y0wmE3a7nWQyqWwQRBCUpn4ej4dEIkEul6OxsRG/34/X61V+h5JpJuXwcqmTn5WDvZShWywWOjs72bp1KwMHDiSXyxUID3DoovlVVVVMmjSJp59+mquvvpoXX3yR4cOH6/L2T4hkIYvA7HQ6lccudJW8i8VKZ2cnLS0tZDIZ4vE4gUAAk8mE0+lU80hK2o2ZhcUb9IHYunUr1dXV6rGMwtEnmT8VFRWceeaZvPXWW5x77rls27aNLVu2MHbs2E/6a9KAyhoEVKaiRPFFZE4mkwDK8uLoo49WAjOgMl2nT59+UAednTt3MmTIEABeeukl1q1bp8Sqyy+/nLKyMgKBAIFAAI/Hg81mY9y4cdTV1ZFMJkkmk8rvMpFI0NLSAuwRGnK5nF5LPiHGxm4iMsvvMxAIkEwmaW9vJxqNqqxlh8PB0KFDaW5uVo0Ajb68xbjdbgBcLheDBw9m+/bt6rWMxWLkcjk6Ojpwu92YTCa19pjNZux2u1p/jPOnmE+6F+3evVt5uv/sZz/jjDPOYPTo0Z/oMY4UnE6nWu+9Xi+xWAyn06kyjcU/2Zip3NraSmtrq3oMk8mEy+XC5/MpWxYJGI0YMYL29nay2SwdHR2qIiGbzeL3+zGZTAWVXIdyHuyLnlhHpBHTq6++ulcjplmzZnH22WezePFifvCDH3T78/K3WGp0dnaqc+snKUM+VJjNZrZv335I5pBc/NevX8/YsWPZtGkTmzdvZsyYMYdquJpeoifWGc3hY8eOHXzrW98C4I477jgkArMwZcoUNmzYwIIFC7TI3IeRIKbREnJfGPtTibVoOp1WDY2Ne5XR9ksCorKntbW14fF4cLlcdHZ2smXLlkOyjvTm3caU1/WgGs0hIxKJEAgECIfDfaqDqghDxhINKXUHVEm5+PBKVM3lcu2V8ZHNZgmHw0pIGjBggMpmBFQ22fr167nkkks44YQTePzxxws8mz8p3/3ud3nllVeor6+noqICr9eronjr16/n6quvpqWlBb/fzxNPPMH48eM/3S+qB+hrc8SYwSwX+ng8rrqcl5WVqcwwoaOjg7a2Nmw2G1VVVQWPZbTb2B9GgU+ECNmOTCYTmzdv5j/+4z844YQT+POf/6yafn2aOVRbW8u1115LS0sLFouFO++8k4suuugTPUZP09fmiSCCTmdnJ+FwWFlkdHR0qMZ+ra2tuN1uKioqWLBgAZMnT+bzn/+8eoz33nuPP//5zwQCAX72s58dsGHI+vXrVem3iNUjRozA4/HgdDopKysjFAoRCASw2+3k83mOOeYYnE4n9fX1qrnSwIED+f73v89bb71FU1MT5eXleDwe1q9fj81m02vJJ0D8+yUQ2draisViUVni4XCYlpaWfYpB4utubP6Xz+eVQBwMBgkEAgV2Gi0tLeTzeWpqarDb7bS3txf4QosPr5QmSpC1traW888/n5NPPpmnn376M/2/v/GNbzBv3jyy2SxTp07loYceIhgMfqbHhK6L7VVXXUUqleJLX/oSp556KjfffDNut5vHHnuMESNGcMcdd/D+++8zceJEHn744YN63N5eR6SyQTJOpepBqqvEZkUudca9YF+ZQsKgQYOoqalh586dyp7H4/Go1z8UChVkqG7fvp2LLrrokMyD3jyTnH/++WzdulWtm9KIKRAIcMUVV5BOp7nqqqu4/vrrD+rxenuOHAhpMFp8rhC7NllLjE1EZR0wNoHc11wqrqQy/mvMYAPYuHEjl156KVOmTPnMc+jZZ5/l3nvvVefxH/3oR3zta1/7TI95OOnr86SvIOeVw73OaA4Pl156Kc8//zxTpkxh7ty5h8T+T/jDH/7Af/7nf3L22WerRmxHGn11HZEzhwSm97VfyF5jzGg2JlEVI83Hc7kc7e3tqleNEAqFCIVCxGIxAGX3t2HDBr72ta8dkr2mt+42WmTWaA4hfXXxBFS2sfGgbrFYVAarHM4l6xn2XNIlQgfsdTkcMGAAFouFTCZDLBZTjyNZaMWLbnGG65FGX5sjIhbJa9bZ2UlDQwPQtfnJ62hEbAfEC9f4WspGnclkCqK1cuGT7DLx8jX+nGB8PJvNVpDJXJyl2F/pa/NEkNctk8kQjUaJxWIFQrP4sft8PsaNG8c//vEPfD4f//mf/6kqGtLpND/+8Y+pq6sjFArx7W9/mwkTJnT7fPl8nlWrVvHMM8+wY8cOAIYMGUIwGMRqtVJRUYHf78ftdnP88cfT3t5Oc3MzVquVkSNHUlFRQVNTE/X19djtdsrKyujo6CAUCqnmcm63+5BeJHqK3pwjiUSCbDarvJBlzQgGgyooJQJjIpFQItH+Du8Hg9PpZMiQIUo87OjoIBaLFVRHyB4j641UWvTl1/j73/8+559/PqeeeqpqSvrCCy9QX1/Pb37zG+644w5uvfVW/va3v3Hrrbdy0UUXMXXq1L0ep7umbjU1Nb26jkjwUdZ7CWinUqkCcbk42CiBB9mfALX22Gw2xo4di9/vJ5/PU19fT0tLCyaTibKyMhUwLy8vV1nuQIF9hqaLvrrXFM8b2JM1lslk1Fw3NinuDskeM2abGRtjy3MZ35evW61WZcGTyWTUc5nNZtxud4GI3d/pq/NEozlUfPDBB5x22mmYzWaWLFnCsccee0gfXywQpCfSkbR+CH1tHRFtxJiIJ1gslgJbQKN+IntGsV2TVHTLa5tOp5U2IthsNsxmszqryX1FEmIqKirU90qviVKk7564NRrNZ6I7n1s5LKfTaXV5czgcKnoHqDJKKX0vvrQa8fv9Sjiy2Wz4/X6i0SidnZ2q0Y+UxIrgKEJ3sX+npucxRl7Fy1E8mB0OR7cCM6AEXikLMpbeGv2oip8rFosRj8cLxIPuIsBms7mg9EhEBdlok8mkamxpvDRqDi/yWgDqQFaccShzJplMMnr0aLxeL9FolI8//lg1/bPb7dx6663cf//97Nq1i/vuu4+jjjqKE088kZqaGlwuF9FolC1btvDRRx9RV1cHdAmM1dXV+Hw+bDYbZWVleL1e3G43o0ePpqqqimAwSCKRIB6Ps2HDBiwWC8FgkPr6erXuwZ5MWuCIPOh/VoxBR7vdruwQ2tvbSSQS6nButFGyWCwq87k4i1lei2KPdkDtIx6PR9kgQNdr6PF4cLvdKtAhImQmkynwaE4kEtjtdpXt3Nf40Y9+RCAQAFAWU2VlZZSVlbFx40aWLFmi/FtnzJjBggULuhWZ+2JTN6mQsdlsBZcql8tVYH8gAYhi4dn492m1WvH7/YRCoYKGnQMGDCCdThONRslkMng8HuLxOC0tLVRVValzj7EZYV+cB5oujBnwgPL0jsVi3XpbSgC6eB2RKr2Dqa7aHzLvPB6PanTc0dGhmstqNJrSJp/Pc+uttwJw/fXXH3KBGWDChAl4PB4ikQhr167t05VyRwL5fF71qRJEs4hGo7S2thbsKUa7UDnbHuzz2O12ysvLqaysVAHKRCLBhg0b6OjoYNu2bQwePJhYLEZbWxuVlZWqz5Gcn0sNLTJrNP2M7jKWpaxQLCucTmfBImk2m3E6nSr7FFCCnoiJspgW+w8lEgl1wLdarQQCATo6Ogoy10TgNnoRpVIpZX+g6R1kjsi8gD3iUSaTIZFI4HQ6u22S43K56OjooKWlRWUvdtfBVjLcxZrFWJK0L29m2cxlPDabTT2Ww+FQUWARDWBPk0t50xe/Q4+xtF3WGGMTR+hq7mb83pkzZ/J///d/zJ07lzFjxhAKhYCuDMO7776bF154gXfeeYeNGzeycePGbp/XarVSVVWF3+9X4lQgEFAZzKNGjVK+uHa7nWOOOYbNmzfT1NTE7t27lcWGxWIpsFeQ+a/nyifHarWqA3cul8Pr9SpP5O6Ckka7JGMGyL4sEYqzPhwOhwqEGRHbFhGkJINE1plEIqGyrSXI0BczWaXT/B//+EcmT57M0qVL1dfy+TzRaFT9bXk8HlVaWUxfbuomwUdjNZQI/1Dogyj+uyIWyllCzi2NjY00Njbi8XgIBAJ4vV4qKiqIRqPE43FqampUr4Hm5mYGDBiAy+VSfQPi8fgRl4laKkiSgojEVquVtrY2ZckGqCC2nFOKM54FCUYX93WQ5yluQmz8OeOZWSyBIpGIalIqQrMOWPQ/ijPcu2sKaWwqqRMdSp/Zs2fz0Ucf4XK5uPPOOw/Lc1itVk488UTef/995s+fr0XmXqRYYHY6ndhsNqLRqLJmA5TNlzFBSqqx5IxSnM1sfA7jv9u3bwe67h9+v5/q6mqGDRvGli1bSCaT1NfXEwgEyOVyKtNbzisej6fk9BItMms0/QgpLyy+tBsvaZL9KYduo7BsNKU3HtiLO3Tvy3sI9mTASoMfY0a0NB6Ug70WmvsGxtfW7XYTj8dVEyabzUYgENirUVAgEFBCQVtbG5FIRGWrQdflz1heJHMymUyquWOxWPB6vQXlzHIhlMYJ4sfY2dmpMuFSqZQqIZLHLZ6TxjJXzWdHstZhj4Dc3TogQph838SJE1m1ahXbt2/nhRde4Atf+ALV1dXYbDZcLhdXXXUV559/PgsWLGDdunXU19eTTCax2+0qK1rWKrPZTCAQwOfz4fV6sdvtHH300Xs1sDCbzYRCIZqamsjlcsqv1el0Ku9xEZl1QOLTIQKMZFq4XC6CwSAej0fZIFgslgJ7JPlbLp4zxZd4434FqPfj8Ther1etGfl8nt27d+8zs1Hmj4zHZrORyWQwmUx9svHZ008/zcsvv8zLL7/MOeecoz5vNpvxer3s3LkTgHg8vs8y01Jo6iaBQPl7NGYti6goiOgse02x4ByPx1X1jfHxTSYTFRUVNDQ0kE6naWhoYMCAAXg8HhWQEKFZ7xF9h/z/1ytEkh/MZjP19fVKcLbZbMTjcZqamvbbQFhEYMlkTqVS3a7zxZ6axckUNptNPa80MK2vry+wYdFCc9/FGMzsrgeAfI/8252YfLBIso3sjZIMoSkNfv7znwPwrW99i+rq6sP2PFOnTuX9999nwYIFfOMb3zhsz6PZP8YGstLYvqWlRVlW2O12UqkUzc3NwJ47UCwWU3cho+AsZ5hiobm4R4CsDW1tbbS1tbFu3TrVTFrsK71er0rg83g8qopH7tilstdokVmj6UfIJUwyh40lzcbsIClxlmZqkjlqLE2Ui57xUCZ01xxFFli50EsZu5TEFmcQWSwWldHaXbas5vAj80MyUmUzlIywWCxGJpOhublZCUjGn62srFTfJ3YY3WGz2VR2O3QJwFIytnnz5m4DFsFgUGWjtbS0qMxZGUMikVCZ1uK3Khu+UYhwOBwl62fVlzBe0iRQYBQCZe3w+XzqZyS75/zzz+fJJ5+kpaVFNbAwXsZEdLLb7QwYMKAgY02+1+124/V6VcDDarVy7LHHMmDAgG7HK8KT0+mktbUV6BLgstksLperQEzQfDqcTqcS7Do6OlRWqgSajIgYLXRXHWHE7XZjs9nUniUZ0rFYTGWzx+NxOjo61JollghyCYjH42o86XRaCZjyfl9aFxYuXMgTTzzBq6++it1ux+Vy0dzcTGNjI8OHD2fSpEn87W9/44YbbmDu3Lmcf/75vT3kQ4JcvGTOGEUhWVvEZkWC38lkUs0NEfokuG61Whk0aJB67KqqKurr68lms9TX11NVVbWX0FyKGUL9FWPSg81mY9euXarUWDK9BAlESjPaWCymziLdIYFKCVDJnrY/JCDldrtVJZXP51MVXJKZr4Xm3sdYCSEC0oFe3+4CnLB3lnux+NydcGSsoBERymaz9fl+ABqYM2cOc+fOxW6384Mf/OCwPteUKVMAmD9//mF9Hs3+Me4zFouFjo4OJTCHQiEaGxtpa2sDUE3E5Qwr59LW1taCyj2jFmLUTGSdMCa1uFwuvF4vZrOZXbt2YTab8fl86rHlLpXL5dT7iURCWVSWQl8iveppNP0IOVDJoimIkGO0KZCLmhyOnE6nOqB1t0AWZzNLNqBx0ZRmYBLVk6/JRV+Exo6ODrWYGq0z+vqC2d8weitLljugMka9Xi/hcJhEIkF7e/teApLJZMLv9+P1ekkmk8oiReaGZB3JRm0ymVTDhw0bNhSMw+PxqEYIstm3t7czcOBAhg4dSkNDA8lkklgsRiAQUIJSMpkkmUxisVjw+XwqU14yJlOplLoEaD49xuZKxgxmuZhJdrP4pAJqrvj9fr7+9a/zwQcfsHHjRuVpKYep7pDSegkiBAIBhg4dqhpOOp1Otm/fzvr168lms5jNZoLBIGPGjMHj8Shh2Wq1kkwmlRgAXXYDxoCa5tMh2cISQJTyQalGEAFfbAug6/VwOBwF4n6xOCAZI5lMRgUqXS4XkUhECcvi2w1dVRXBYFA9XllZGdFolKamJmWRIVkpsifJxaCvCM0///nPqa+v5wtf+AIA99xzD+eddx4mk4mnnnqK4cOHM3r0aE455RTGjBnD9OnTe3nEhwfjuUIqVSQTFVAZ0BJEgK7g0eDBgwssWQSLxUJ1dTUNDQ1KaA6FQng8HjVvRSDUa0HvIvs2dP1dSsmyw+EgEokoAaCsrExdzLdt29btY0kfEDnPyrwy2hrIvtXZ2VmQLS/BC8k4c7vdJJNJnE4nfr+fbDaL3++nvb2dQCCgqv+0BUvvIOvDvjxS5e4ijRtlbzmQCF3cO6Q40ab4/mOxWNReZbfb1flGbIG6s3vS9A1++ctfAnDNNdcwePDgw/pcIjKvWbOG9vb2grOLpuco9vuXO4PcUdva2jCZTIRCIdauXUtnZ6fSKTZs2LCXlZecTfdXBSF6iJyDo9GoqroVyzmjPiL32UwmQzAYVPuaVO8ZLSJFy+lL6Fu3RtOPkMNOdwcnOTSLl60cgERcNC5Wxkyi7qL8Qi6XUwsk7BG3RYQyXtpEkJDn7ejowOv1KisEESe00NxzSBmoeKsWZyBaLBZCoZDKXu3o6FDNqYxIpqmUp4tPan19fYGwB7B582aVoVZWVkZVVRWpVEo1N6ipqcFut1NXV0d9fb0qhx8/fjytra20tbURDocJBAJUVlaqhl+5XI729nZyuRx+vx+Xy6XsOjKZjBaZPwNykII9Pt7FFzDomi/GZpFSpQBdGc7nnXeeKofevn07O3fupLm5mWg0WpAhZOzMXFlZydixYxkxYgSbNm2iqakJ6CorK7ZJqK+vp62tjRNOOEGVmsn3iDggF0ERqPR689kQf3a56ItAnE6n1cFX1gAJZnaXxSxBBZlTkpmaTCbVnHI6ncTjcSUcyWvo8/lIpVLs2rWLSCRCPp/H4/EQDAaJRCIqkGG329W+A3uaV/aFAOc///nPvT63YMGCgo/vueeenhpOn8HY4DWbzap54XA48Hq9tLS0kM1maWxsZODAgd2+jlarlQEDBtDS0kIikaC1tZVEIkFZWdleTdz62iXtSMJYiSeJEBIEb29vx2QyMXLkSNavX6/2AegSBcrKyshkMjQ1NVFfX68CUJ8UWX9kHBaLhXA4rOyA0uk0wWCQzs5OJUYEg0GVWS8BCz2PDj/y+y629pO9RJIWwuEwsVhsrwZeRqG52FPV6NFttNuQ5zBmJUryheyDUm1TUVGB3W5X4nY2m1Vl+Zq+w7Zt23jttdcAuPnmmw/781VVVTFq1Cg2b97MRx99xKxZsw77c2r2TzqdVpZKJpNJVcyUlZWxevVq8vk8FRUV7Nq1i127dgF7sp3lY9mzJMlOqseNVcISuBRbM0mYEZu5aDRKMBhUCRbGrObW1lY8Hg8+n0/tUcWWhVL11V01YW+gb90aTT9CLvTZbHavqJZ8XjKEpPRURAGjuCOZn0bLjOJyMclsNC5wRo+j7g7Z4i8UDodVNE4aDoqgrX3Meg7J4IF9i21SLmr0V94X0qygra1Nfa/dbsfj8SgBCLpK4X0+Hzt27GDJkiV7BS/Kyso4/vjjmTBhAmvXriUcDrNmzRomTJiA3W6noaGBcDisyqH9fj+xWIxIJEI0GsXn8xX47n4afz3NHuRvWvwtjcgBSr4vm81SVlZGa2sr8+bNY9KkSfh8PtLpNC0tLezYsYPt27cXXAwlOOV0OrHb7TidTrxeL0OGDKGmpkY9/siRI7FYLESjUZXx5nK5GDRoEGazmRUrVpBIJFR2m8vlUl7eckH0+/1KuABtl3EoKBYC5fJefACWjAxjZUx3FTKSwS6Zpsafl++RwITNZiOZTFJbW1sQXA2Hw4TDYWWFYBSaY7EYPp9Pjac4+7q3BWfN3sgck7JWEYEGDhxIY2MjqVSK1tbWAi/NbDZLNBpVc04yDKU6R7x1YU+2vbY86D3kTCmvEXQFp6VZ0rBhw1i7di0tLS1YLBaOOuooBg0axNq1a1m4cOFeNktGy519+cGLDVMmk6GlpYXGxsaCdUTWBQlwhEIhOjs7VfZhKBSivb2diooKJY6LBYveWw4f6XS6IGtQhBur1UpnZ6fyOy1uVtzR0aGCk8aKGeN+ZUyyEaGoWGSWhByxUvF6vcTjcRwOh/LLr6+vV829ZM2KxWLqDKLpG/zxj3+ks7OTM844g8997nM98pxTpkxh8+bNzJ8/X4vMvYTxPCl3U5fLxdatW4Guu8KaNWuUwLxx40bC4TA2m43y8nIWLVpEZ2enSp7YsmVLgSWc0Z7UWN1rrHyQu04ikSASiRAIBFTvqoqKCpXBLAGqfD5PR0cHfr9frTPGtUt0FYfDUVBV2ltokVmj6UdIdF0ywZxOp/IJkwwv2CMcSkmX0ce2mGL/ZSjMlBYh2li+KuKeiEGyyIo/mcvlUhkIUspsbABkzKrWh7HDg0RuYU8JTzHGgzns21ogm83S1tZGe3u7mhtWq5VAIKAaG8jziLi8evVq9fPSzE0ykVpbW5k9ezYTJ05kwoQJrFy5kvb2dmpraxk9ejRms5ndu3fT1taGx+PB4/Gocvrise9v3D1FKpXiq1/9Ks3NzVx99dV885vf7NXxfFK6E2Tlb9PhcJBKpXC73XR0dLB06VImTpzInDlz2Llzp2pWVowcroyPbRSrRSS02WwMHDiQzs5OtmzZwvr162lpaSl4rJUrVzJjxgyCwaCydpESOOg6LGYyGdVo0hg000LAoUPWeBF2jN6YUFgO393PdrfHGF8fo6e7WPDY7XY2b96s+gAMHjwYs9lMa2srTU1NxONxlS0iGWpSpihCkFFslv+D3W7Xe08fRMRiyWgHKC8vZ9euXSor2WQy0draqhrGGZFAt3g5NzY2UlZWBqCEyL5wOTvSMIp4VqtVnTnE5kACWC0tLVitVk499VSy2Swvvviiylr2er2MGTMGn89HbW0tmzZtKtgrrFarsvcSj+/m5mY2bdqkvseYdSYWDFarlUQioWyWjI2LI5EIoVCIlpYWBg0apOw2tNB8+Egmk0rMkeopmR8NDQ20tbXt1cCxsbFRidLSLDQejxfYfRntVYwiswjNxj1JBCOHw4HH41GVFeXl5aRSKSorK7HZbEQiEWXZE41GVbajy+Xqtd+fZg+pVIo///nPAHznO9/pseedOnUqzzzzzF7VSpqew6hjyB7S0dGhqvC2bt1KZ2enEpul2imXy7Fw4UIAhg4dyrp166itrQW6ziI+n48NGzZQW1u7l6Yi1cF2u131iInH48qKKZPJ4HQ6KS8vJ5PJUFFRQS6XIxAIqMxlt9tNOBwmEong8/kIhUIqoSaVSqm7vdls7nU7uMMmMq9fv55LL7204ONnn32WCy+88HA9pUZzxCNioZSUitdxsdWFlCGLl60xg0su4sbvNf5rfC4RmCVbyHhgK24CZyyjhi4fRUBlMRc3KjRmT/ZVv6FSRTYi2BNNNZlM6vWRg7VcmKDrdZAycyGdTiv7CpkfdrtdZRavX79elfU4HA5aWlrUZmy1WhkzZgxjxoxRr6vYpyxbtoz169ezYsUKAI4++mhWr17Nrl27CAaDVFRUKDGxublZ+WvK8wMFgkNvb7TPP/8855xzDtdffz3nnHMOV155ZUkKGcbMUfnbFwFfKiDC4TDRaJSjjjpK2ZuIT7f4K8MeP3DYY6XjdrvVOrBjxw6g63VsbGzk3//+t8pug64MMq/XSzQapb29nfnz5zN06FBgj42P0b9VvNXMZrMKPuis1cOHHHAl8xS6ss2MjWSL96TiPUYERUA19wIKKl9ESAyFQtTU1NDc3KyE5erqauXjnEgkyGazOJ1OJTRLY0Dp3l3sB60bNvVNpOJKhJ/iIGJTUxONjY0Aas0xNh+Ws4mUube2thIIBJSVmJyJND2HrMlWq1WdO8xms8pODgQCKmA5atQo3G43Tz31FNFoFL/fz4wZMxg+fDhvvPEGr7/+erfVS9lsltbWVuW9KeTzeeWBuWvXroJsNOjKbpNztLFZlJQ+iwDd2tpKVVWVEjNFlNB7zKFDrNWg6w4h+0Nra2tBFrrD4SAYDNLQ0KDOErlcjpaWFiX2yr4gvv3FwnLxOdgoMounqsvlIhaLKauMZDJJdXU1TU1Nyr6nra1NWbjF43EVyNLzovd58cUXaWxsZNCgQVxwwQU99rziy7xgwQK11ml6DuPfs9wVoevsIIGoVCqFy+Vi8+bNdHR0EAqFaG5upq6uDqvVyvHHH88//vEP0uk0FRUVXHnllfz1r39V1ivQVSkTCoXI5XK0traSTqdpbm5WXw8Gg2rvSSaTeL1eQqEQ2WyW8vJycrkc5eXlBedTyW4GVPVuWVkZgUAAl8ulAqTSd6s315nDdnoeO3Ysy5YtAyAWizF8+HDOPvvsw/V0Go3m/0PEnGKhWTKcxa9HsjSKS5qLbTPEf6x4oZKyjGJvIKMo6XQ6Vcaj8RCXyWRUVppkBRg98IwClNFYX4QLvSF/erLZbEFZqmTj7K9hgWSdysE8lUqpJgfG7/H5fITDYdWMTQSlWCymLnYWi4VRo0ZhsVjYsGEDb7/9thqPx+Ph+OOPV1mpCxcuZMWKFVRWVjJkyBDq6urYtGkTwWCQ8vJy2tvblQeWXEZdLpcSoWRcvX2YX7x4Mddddx1ms5ljjjmGtWvXMmnSpILvSaVSBVmexqzs3kZEnM7OTjwej7IqkCxmu92uSrxEyDE2zRCKG3KJJY+sEeXl5QwfPpy6ujp27NiBxWIhmUwyd+5cVfEg5WQWi4UxY8YwaNAgnn32WZLJJK2trWo9kTVE/pWMd2M2rRaSDj/GrD9jYMW4rhv3jOKGSiLWGH27I5GIsjfo7OxU2emzZ8/eq5GkzWajqqpKHc6z2Swul0sFTERU9nq9KktFehaIeKT3m76FMSBhMpnU2i9WOiIwV1RUkEwmqa+vL2hcKgFrKWd1OByEw2F8Pp9qFGr0hdccfmS/lgbR0CUUSkDA4/GoAHVVVRXr169XmVyXXXYZLpeLF154gUWLFgEwYcIETjjhBGpqagBYt24dO3bsoLW1lWg0qmwTJCNMPDih68wwYMAAzGYzdXV1JBKJAuseu91OW1ubqsiTcmkRLKWqR9YQufhrPhvGhlcSPMrn8wVWbE6nk8rKSux2O8uXL1eBab/fz6pVq9Qe0NraqhpVS0NyucNIVYvsT/vCZrPh8XhUY2IRhhoaGhg4cCC7d+9m+PDhqkJv6NChak9Lp9Mq0UbTezz88MMAXH/99T0aUJ44cSIul4v29nY2bNjQYzYdmi7k79psNqu1Q4JNAG1tbZjNZtrb24nH45SVlRGLxairq8PtdvOlL32JX//616TTaSZNmsT3v/99/v73v/Puu+/icDj49re/zQUXXKD+5gEVxFyyZAlz5sxh9uzZqsG93+9XFVXpdFoJzBUVFXslYHi9Xpqamhg8eLC6I0lvioqKChwOh/q/dNdrqSfpkb+oV199lTPPPFM1ftJoNIcXYxm7HGgk4i7RueLuxxKtF2HwYA7FRuHYeOmT5l7FZe3GsUn2tDyflLNL2ZvR51O87iTaJ6K55pNTLLA1NjYWNDuRf40dtWOxWEH01YgEEsLhsPLCzWQyJJNJYrGYEgDy+TyBQIBEIsE777xTcHiXuRaPx5kzZw6bNm3i61//OpFIRPktXnDBBTQ3N5NMJtm5cyfDhg1Tl7l4PF4gnMv/UTz6eptoNKqywD0ez15Z/gD33Xcfd911V08P7aAw2vBIFL29vR273a7+7q1WqyrRku8zZgsYm+WIsAwoW4JUKsXu3bsJBAKsX78e6LoYfvTRR0BXGdr27duVXxrA6tWrufbaawvsGCQ4Jt7O8n7Z/5+98w6Pusr+/3t6r8mkJwQIvQiIItIXBESwYe+urmV1XcvqV5dVFGV1dXXVLXZdV11dEWVtiMAqUgUpUoVQ05Mpmd7L74/8zuUzkwQCJpkZcl/Pk4dkkkxumJtbznmf9zGbkwKTmaBw7wkIg8wAWNDY5/O18kc9FrQukeqEPOIp4NPY2AigRTlCr7XdbkcoFEJtbS2kUinMZjMLYlGjpng8znyayXNVmCwRNq/kZAaU2AZa1iay6VIoFEztqtVqUV1dzSqshCXvpEQMh8PsHER7nU6nY+pU7s/cPQj3CXpdgJbXk5LTVKEHtPyNkzp1yJAhUKlUqK6uxqZNmyASiXDNNddg2LBhiMfj+OSTT/DFF1+0Sj4JocSTWCxmgYQtW7ZAr9fjjDPOQEVFBVavXg2PxwOZTAav18vOHtS0ieaJy+VCQUEBC0BTQ9RMaC6a7ZCCmTz7ASQFmPPz82E2mxGNRvHDDz/A6/VCJpNh4MCBLAFpNBrx008/MRuUpqYmZpNDohkhtO/QOYX2sWAwiEgkAqfTCbVa3ary0ul0wmKxoKmpCSaTie151N8kEAjw/jNpprKyEmvWrIFYLMbNN9/crT9bJpNh9OjRWL16NdavX5/RQeb27P6y2QaQ9hhKUsfjcWYpSuuJ0WjEwYMHIZVK0bdvX3z00UeQyWS444478K9//QuhUAinnXYa5s2bB5lMhgMHDgAAKioqMGvWLPTq1SvpZ4rFYpSUlKCkpATnn38+/H4/PvnkE/zjH/9AQ0MD3G43ysrKoNPpYLVaYbFYYLPZkJeXx2yigBYhlVQqRW1tLfr06YPc3FzYbDbWg4Q+TyLCrAoyx+NxDB48GBdccAH+9Kc/sceXLVuGOXPm4L333sOll16a9D0ffvghrrvuup8/Wg6H02HEYjE70FBJqTBQpFAoWNCFMvqpUGCI3qd/6YKXGiikLuCp3U4lEkmS9zNZdQBgZWe0EMZisSR1MwWfKSBAvkMUQOJ0HKEVikQiYaVBVJYqVHu19b1C31RShFqtVvba+nw+BINBpoomW454PJ7k1wwAFosFw4YNQ//+/ZnScN++ffjss89QV1eHpUuXYvbs2Th06BC7+PXq1Qt79+5FfX09ysrKoFQq4ff7kxr+CEsaM0WpSk1hgJZAOjVsEPLQQw/h3nvvZR+73W6mwsoEqNSTgjRGoxFut5tZCpC6WNhVmQI3BAWA6e9bIpEgNzcXBQUF2LVrF9xuN2sKqFAomFdmSUkJtm7dyrosDx8+HDt27IDb7caOHTuQSCSYOlEul0Mul7NSZvoZ5FNP4+EBpK5HWF5O6zmVDBKUlKDAYWo1BX1MSS8qSSbvfqfTyRTsQ4YMQSQSwaFDh+D3+6HT6VBcXMxKCpuammAwGKDRaFgSRKVSIRaLsaCF3W5HTk4O5HI5s9jgZA6plQhCdSOddaRSKRoaGthe4PP52gwySqVSVuYuXKtofeb+zN2DsFk02XYBYBUyAFhDNwAs0AuAqb/27NkDABg2bBiGDRsGAPjyyy+xZMkSAEBBQQG7wCuVSthsNlRWVmLfvn1M+Z6K2+3GypUrsXnzZlx44YXYuHEjCxhTNR4JOWjPol4j1H9EeK7ic+nkEfbYIGW42+1mAaGysjJWbbd9+3Z4vV7I5XKMHj0a+/btY+cusssqLi7Gjz/+yPYAElFQhdSAAQNQX1+PZcuWtSmwKCwsxOjRo7Fnz56kniVUGUhe0SKRCHq9HhKJBPX19ejVqxeronC73dBoNBlzTu1pvPPOOwCA6dOno6ioqNt//tixY7F69Wps2LABN954Y7f//I7Snt1fttoACn31aW2muzHZu0mlUlYFMXLkSHYXmTJlCkpKSlhVzYUXXsj+fi+66CIsWrQIu3btwowZM9CvXz9MmTIFU6dOxahRo1rFK9RqNa6++mpcfPHF+Mtf/oI33ngDVVVV6NWrF7RaLbNfcjqdyMvLg8vlgkKhgNVqxaBBg+B0OnHkyBGMGjUKoVAIHo8HHo8nqXKmverk7uKEg8xisRgPPfQQfvOb3+DBBx+EyWTCjz/+iEsvvRR//OMfWwWY3W431q5diw8++KDTBs3hcDoGBdroQk1BIFKCORyOYy5CwiBBe1BZs9PpTLockDm91WpNslWQyWRQq9VJamS6yFM3cOCouoWyd16vFxqNhv0OmeBrlm2ZXKGqNBAIIJFIsBJjCh7qdDokEglWUirsvi2EFPJUSkrKQr/fzz4WKkzj8TgMBgN69eqFXr16wWw2Mz9UmgeDBw+GTqfD66+/jm3btmH8+PGoqKjAzp07UV1djXHjxmH//v2sySQpUSkRQQErAGn3ohIyatQofPfddxgyZAi2bduGhQsXtvoahUKR0eWTYrGYKTxJCazX6xGNRhEIBFgQgBrntBVkFlrv0OdtNhtkMhkr77JarQBaDn+xWAyFhYWoq6tDJBJBr169MHfuXAQCAdZ4g8qcFQpFUpCZPqYOzcLyOJVKxSshuoFUxSntESKRiFXWtOXdL+wDQG/CpkwAWHM3j8cDqVSKIUOGYO3atW0GjPLz8zFkyBBUVVXB5XIhGo3CbDYjFovB5/NBrVYnNWNqbm5GTk5O0hgyZS3pyVCCmuaAQqFgQSaZTMYafgnXKFLCisVitlYJfVvJe1u4v/l8Pmi1WoTD4YxontMWp5K6jNZmqVTKzhUA2L4AJDcAJZUWfQ0A1gi0uLgYQMtcWbZsGQDgmmuuwfTp0yESiXDo0CHMnz8/qfGwWCzGwIEDcdppp2Ho0KGoqKiAyWRCXV0dnnzySezdu5ftM/RzhdZwlOigxrMUHBD2h6B1L5P3+ExGKFCgvZv+tnNycphl0p49e+BwOCCRSDBq1Cio1WpWGTVq1Ch89tlnAFr2hGg0irKyMmzduhUAcPXVV+O8886DVqvFf/7zH7z33nsAAJ1Oh1GjRqGgoAAejwfr169HfX09vvjiC1x66aXYvHkzq45xu93MPsVms0GhUKCxsRH5+fkAgCNHjjArFrKSo2RXJlTd9RTi8TgLMqdLBEm+zOvXr0/Lz+8o7dn9dcQGEMg8K0Dab4T9QlIbTefk5LDAcmlpKdsvdDodAKBfv36wWq149tlncc4552Do0KHMuu/ll1/Gt99+i8rKSlRWVuLVV19FQUEBLr/8clx77bVJFoJAS9Ls97//PUaMGIF77rkHR44cwZAhQ5ivskQiYWcRSqwHAgGWxHS73VCpVKw3lpB0n1tPakW7+uqr8dhjj+HFF1/ETTfdhPPOOw/XXnstfve737X62v/+97+YMWNGVmQ3OJxTEaEfEC2ukUiEdVOVy+WslJ8aYVBQkS7XQgUiBYlIuexyuZLUJrm5uWhqasLOnTvbHE8kEklq4KXX65lyiBZ8g8HAgsmkMhOJRPD5fNDpdGxsbTX96U6yNZMrvMiRikuhUKCoqAgHDx5sFaihcmMKOAubKEUiEdapOxQKsQQGBZ2Fl34ArJmfkLy8PEyaNAkzZsxAaWkp+vfvj3379mHbtm0YPHgwdu7cCbvdDrFYDI1GA7fbjUAgwC5sQqW+sOw2U7j88stx5ZVX4q233sKNN96YFXOkLSQSCTQaTVIDT7K0Se3ILrwUAkgK1CkUCpjNZrhcLjQ0NKC5uZnNF/IQq6urA9DiXffWW28BAObMmQO3242PP/4Y0WgURqMRoVCIVTooFAoolUpWGWE0GpNUsxR8TvfBqydAAUGgZY5QlQMApsYQBpFpXTlWUpNsleLxOJqbm9m6VVFRgWXLlsHv90OhUGDEiBEwGAyw2WzYuXMnGhsb4fV6MWfOHGzfvp01BiwoKGCly9Q8lALNqdURPCmRHmifp/2HEhD0OlGSgs4jlDSlqiqg5Yxx8ODBVmsSlazTmYKgc45Wq0UwGGTWXZnEqaQuE1Y7kL2J8NxKnwOOvjZCezYg2dMZaJkX9PpPmTKFJRxuueUWOBwOqFQqTJ8+HZMnT8aoUaNaNTUGWgIN1157Lf7whz+gqqoKAFolTemxcDgMvV6PQCAAn88Hh8PBEumkvic7qUybS9kGJanpvkBBm8OHD7Nzw7Bhw6DT6bBz5044nU7IZDKUlZWxuwe9BgaDgYlZLrzwQnampHOqVqvFF198gdzcXPbz/X4/Hn/8cfz3v//Fhx9+iGnTpuHQoUPweDyQSCRQKBTsZ1qtVuTn56OxsZE9R01NDbv30JnJ4/FALpcz2xZO17J69WocPnwYer0eF154YVrGQEHmnTt3wu12t1nhmAm0Z/fXERtAIPOsAIVJTQrK0rou3GeETUX79++PPXv2YOnSpbBYLPjVr36FhoYGHDx4EJ988gk++eQT9vxKpRKTJk1CLBaD0+lEZWUlGhoa8MILL+CNN97Avffei2uvvbbV3/msWbPQ0NCAhQsXor6+HoWFhcz7n2zbQqEQpFIpvF4vcnJyWNKdnkvYP4d+j3RyUrdwqVSK//u//8Pvf/97LF68GKNGjcKLL77Y5td++OGHuOWWW37WIDmcdJCNipBUKDgIHFVeUBYMaFkMKaAjVBufKGKxGGazGSKRCLt27WLPn5eXh+LiYgSDQTQ2NrJLnUajQSgUgsPhYCVvFouFKUFcLhfUajUMBgPL5tGCT4EE+l3SefnPtoZuwg2HNiEKwuXm5qK6upoFmC0WC5RKJWpqalBfX58UdCElMXkhx2IxeL1eFmgWXsRIsUqNIIVq9UgkArfbjaamJixatAjr1q3D7373O5x22mnYt28fdu/ejTPPPBMAmN1EakNI4WNCa5d0b65ClEpl0iEkmyE1llwuT+rATk326JKW2pwrHo+zBo1ks0KXQ/r7EFpZJBIJqNVq5ObmsmqMt99+myXHyFdeJBJBq9Wy8mTyYhYGDbJBvXwq7DcE2TDR60nrBVnz2Gw2Fkgi31Lh95LynNYOuoin2vkYDAaIxWJ8+eWXiMVisFgsuPDCC5naBABGjx6NxYsXw263Y8+ePZgwYQK+++47diEib1VqxBSJRJjPr1qtZmPI5LlzKiFsIiy0USGEDYXtdjs7Awg9FoGjqliDwYBDhw4hHo+juLgYFRUVCIVCqKmpYRUSzc3NMBgM7PuF/vEqlYqdZzIpOPhz1GWZdCZJtfAS+mtTAIDWeSGkEhb+HkLoeWhPAFruow6HA3379sU//vGPpMBhe9DzU6UXrQOU1KaxUCA5JycHdrsdLpcLkUgEFosFCoUiqfKLN5U8cVLPrjQ3KGjvcDiY8nDgwIEwGAz47rvvsHv3bgDA6aefjs2bNzPfdbJZicfjKCgoQENDA9544w3ceuutkEgkuOSSS/D555/D6/XikksuwTPPPIMzzjgDQMuesXDhQsjlcixatAgrVqzAwIED2XmW+k6QjVNTUxMsFgusViv0ej3UajWzcDKbzcy+iUQc3EKj6/nXv/4FALj00kvZ3bK7KSwsRK9evXDkyBFs2rQJU6dOTcs4jkd7dn8dsQEEMs8KUBiAFfaUEf5rtVrRp08f1NTUYN26dbjgggtQXl6Ow4cP4+WXX0Z5eTlmz54Nj8eDyspKVFVVoampiQmshPflXr16QS6Xw263o7q6GgsWLMDKlSvx3HPPtdqDrrnmGjz33HNwOBzo3bs3QqEQEwXq9XoWZBaJROwMq1KpWCUPNUMVWlClk5P+6VdffTXz3Xz//ffbPIC7XC5s3LgRM2bM+FmD5HDSASlCVq9ejUWLFiUtGtkCXdSpgZHwoi6TyVizNmHHZsrueb1eNDc3w263w+FwwOVywePxMEUaKU7IomDfvn3YunUrU4OdccYZ6NWrF9auXYsvv/wSmzdvxu7du/Hjjz9i3bp1aGpqwtixY1n3VavVioaGBhQWFkIsFsPv98PtdkOtVgMA81ONxWKtVC7poqMN3QwGA3tL5+Yq9FRO/T8UiUSor68H0GJbYTKZsH79ehw8eJCpuWKxGKxWK2pqatDc3MwCxFVVVbDb7fD7/XA6nbDZbKitrWWv944dO7B9+3b88MMP2LNnD5xOJwoKCjB37ly8+OKLuPXWW2E0GlFbW4snn3wShYWFkEgkcDgc7P+USuXpwk/+h8LfRXgB5HQtpO5TqVTQarWsyzo1sxFWQJA9AiWdJBJJ0lqUmiygQDUpF6dOnQqxWMwCzHl5edDr9ZBKpVCr1VCpVFCr1VCr1WwcdFikpFamz4mO7DehUIgl5YR+lJkEWeaQVUooFGJe3nRYpvfJukImk0GhUMDn86G+vh5WqxXNzc1wuVxwuVxobm5mHzudTrhcLjQ1NWHr1q3YvHkzYrEY+vbti8suuywpwAy0XITGjBkDAGhsbIRGo8GIESMAAFVVVejTpw9rPEmKWWH/ACD9vnanOhSA8/v9zKaJ+kTQ+YXeKChcU1PD1n+z2cwuu4TwIklVD+eccw4aGhqwZMkSbNq0iVXHUM8AUqGSBVQgEGBrFPWuyJS58HPUZZl0JhGe4UQiUZLKTHg2EVYt+f1+lhQge6VU6PcWNpzftm0bAOCqq67qUIAZOFrKTudQurST57/wZ9hsNhgMBlgsFpZAq6urQzQaTbKHy4S7RCgUwgUXXIBx48bhtddeS/dwjouw6Z6wUopeD7LEKCoqgkqlwqJFi1iAuaKiArt27cJXX30FAJg4cSKbH8Kmb1999RUeeOABbN68GSNGjMA777yD8vJyNDU14eabb8bmzZvZeMRiMebPn4/LLruM2XSQhz/tWaRo9/l8aGxsRDQahdvthsPhYJUXdrsdjY2NLHFGjbaP1aiS8/Pw+/1YtGgRgPRZZRBjx44FkNmWGWT3l0gksG3bNgwYMOCYj6eiUCiYcl9YuZxuhBVKlGgIBALMBtDr9aKoqAjhcJgJaseNGweJRILDhw/j008/xTfffIOamhrIZDL06dMHw4YNw/DhwzFixAiMGDEC/fv3h1KpRDQahV6vx+jRo6FUKrF27VrMmTMHa9euTRqTMKlOydG2zhy0P1KvKrJj0ul0STaF6b73nHSQ+c477wTQsqm290sYDAY0NjZmpJ8Zh3M8Nm/ejPHjxycpQlLJ5Es/lSDTv3RBA8CCulQ2rFarEQ6HceDAARw+fBiNjY3sYu9wOGC1WtHY2IiGhgb2Vl9fj5qaGlRVVaG2thZ+vx9isRhFRUUoKyvDjz/+iEWLFqGxsRFSqRT9+/fHqFGj0LdvX0gkElRXV2Pz5s0YMmQIzjrrLMjlcng8HjQ2NqJPnz5MTUZNvYQL7fF8oruLjjZ0o2CJy+ViXdHTBQXfaN2mwB4FhkQiEUwmE1avXs2UOKeffjprMuDxeBCNRuF0OlFXVwev18u8Lvfv34+DBw8yRXSqyigej6OxsRGbNm3CO++8g9/85jc477zzsG/fPjz88MPMamXRokWsMy+VqQJgymmRSAS5XN5K3Uy/UyZZZfQE6AJI5Z5arRZarTZJPUwqZqlUyoIg7TWapAZ/0WgUy5Ytg8FgwMUXX4yzzjoLvXv3hlQqZY11NBpN0r8KhYI1viD7jGywx+jIfpNJwaG2oHWAkoGkECYFHzUCpUAe0HK4b2xsxIEDB9Dc3Myew+l0ora2FocPH0ZtbS0aGxthtVrR1NTELFbi8TiKioowe/ZsnH/++W36nYbDYea5ST7LFGAKh8OQSqUsYEUBC9prKJCR7mTmqQop3j0eT5K9EtkxeTweOJ1OuN3upD1U2IDUYDCwuUDNP4Gjr6Ww30MgEMC3336LRCIBuVyOYDCI2tpa9nq7XC5mn0IVVD6fj503QqEQ/H5/Rpw/fo66LNPOJMDRBLiwUolsPijhQH+/+/btQ1lZGQDgp59+Yokq4OieQhVZwmAync/z8vI6NKbq6mp88803bAwAWDUW+e4CYOuH3W6Hx+OBTqdDUVERE2yQnzN9vdBbPl1ko4iGznVUbQKANdDzer0Qi8WwWCz49NNP4fF4oNFoYDAY8O2332L37t0Qi8UYNWoU9u/fj8WLFwMAhg4dijPPPBP33XcfVCoVKisr8dhjj+H//u//kJubi8WLF2Pq1KmIRCJ4+umnk8ZDgWYKUtfW1sLr9bI9zu12w+/3s+bUNpsNSqUS4XAYdXV1zBYwFAqhtrY2qcqP7j6czmfJkiXweDzo3bs3xo8fn9axUJB5w4YNaR3Hsbj88suxfPlynHnmmZg7dy7++te/Yvfu3a0ez3RbJkJ4NqAEIVUQxONxJmAhy6Py8nLE43Fs3rwZjY2NmDBhAsaOHYt+/fqx/ZXOux6PB263G06nk/UgKS4uxogRI5iH8oABA1BcXIympiZcd911+OUvf4n3338fS5YswU033YRgMIiioqKkfhP0f5sqfMjLy2Pe9CaTiVlOAWCK53RyUjfxhx9+GF988QU2bNiAadOm4Y033sAdd9zR2WPjcNJKRxUhmeQ1JIQuV8KLG2G32wG0XPD9fj/27dsH4Khvs8/ng8vlOu4hR6hWpJ914MCBpK/p06cPJkyYkKQoWbduHbZt28bGYTQaMXz4cPzwww+or6/HkCFDYLFY0NjYCKfTCYvFArfbjVgsxjJ46S4DAbKzoRtZDwitJYCj6ppEIgGbzQa/3w+5XI5f/OIXeOmll+B0OqHValFSUoLly5cjEolAKpWiX79+WL58OVMU5eXlYerUqTjjjDNQUVGBvLw8lsl1uVxobGzEoUOHsH37dnz77bdobGzEc889hx9//BF33nknFixYgHXr1mHu3LkAwDz2RCIRmy8mk4mVB5FyVlhSy4PM6YfWBZpv5PVOdhbk5S6TyVhFBAWkm5ubMWDAAPz444+w2+1YvXp10nOTNzRd+DUaDbPPoI7u5L+cLXRkv8m0skMhFDAEWvYB8ooLhULM7oLeB1peQ6/Xi5qaGgBgauK6ujpmUSFsKNqeX3NdXR2OHDmCoUOHYsKECUlBtVAohI8//hj19fVQKBRM0UxBNVKPkRCCyieFQWahz3u6OZUsVSjpRMTjcRbYTbXMSG0gKkTY36GgoACNjY0AjiqTaM6QXRfxy1/+Evv378eKFSvQ2NiI0tJSdvaRSCTMa14qlbKydlJVU9PZdPq7t3f2yLYziTCoTMF/oEVRlpubC4PBAJfLhcrKSvTr1w92ux0HDx7EyJEj2Tq5ZcsWZr1E1Vg2mw1Ai+0XQWdQ8mo+FpFIBAsWLEAsFkP//v2RSCSYTRT932m1WjanyA5h//79GD58OOtxUVNTg3A4DK/XC51Ox3qNRKNRbvV2gshkMlY+TvOEqhCAliTi+vXrEQ6HYbFY0NDQwM6PJSUlcDqd+PLLL9nzjR07FlOmTAEATJo0CcOHD8fHH3+Mr776Cj/99BN+//vf469//SvmzZuHlStXYseOHYhEIklWFiKRCPfeey9kMhleeuklWK1WNjYKKjkcDuTk5LB1Q6vVwmazobq6GqeffjoOHz6McDiM5uZm5Obmwu12M3VipvydnkqQVUZbvrjdDfkyb9iwIWMbDB/L7i8bbQDpThIOh6HRaJi1EdlRRKNRWCwW2Gw2eL1eSCQSnHHGGTh48CDsdjsOHTrEnstkMiE/P5+dF6jxONkJHjx4EHV1dXA6nejVqxd8Ph9qa2thMBiQk5ODnTt3YtWqVVi1ahV7ToVCgf79+8NmsyEnJ4edRwC0SqQrFArWeN1oNCbFejLBcueE/7pef/11PPvss/jss89w2mmn4e6778bTTz/NSzs4pxzZqgghqOxC6GsoFovZpcxoNMLhcKC2thZAy0ZitVpRW1sLp9PJLvqk1rbZbGhsbER9fT3q6+vR0NCAxsZGNDU1oampCXa7nWXxtVotBg8ejIsvvhgzZ85MCjDv3LmTlS0Ky2voMEubrFDtSIfx1CxeujfkbMzkkpcg+cZRQNbv97OSUArmUlmQ0+mETqfD9ddfj//973+IRCIYNmwY5s2bhy+//BJWqxUlJSV45pln8PXXX2PevHmYPn06+vTpA61WC6lUCqVSifz8fAwfPhwXXHABHn74YXz99dd4/PHHIZfLsXLlShw8eBADBgxAIpFg2VkKtmm1WqYIMhgMzDqBxk+HcZlMlvZ5wUmGDmBAy98zXcKETT1JHUZ2B1VVVSgvL0dpaSkMBgOzwyA/RbVazRTTarWa+TDTvM62y1lH9ptMLTsEwM6A1PgzFouxfwOBQJICNBwO48iRI2ydAYBDhw6hpqYGoVAIXq8XtbW17JBPz0OBKJlMxg7QsVgMdXV1+Prrr/Hkk0+isrKSPefy5ctZgPniiy+G0WhEdXU1duzYAaClQ7hIJGKBIpqjqetHpijKslF92BbCALNIJEIwGITL5WIKYp/PxxSAPp8PXq8XXq8XHo8HHo8HXq+XqQOj0SjkcjmKioqgVCrZa0meqz6fDyaTCbFYDLt27UJ5eTkA4D//+Q+KioowfPhwAMnlsjR3hQ1sm5uboVAoktYxocq5uzlV1GVC9XIkEoFKpYJMJmNVT+Xl5Swh1dTUhN69ewNosb4YMmQIgJYADamcd+/eDY/Hw9YHOicALapVAPjggw+SEg6peDwe3H///diyZQtLXgJgexUpxCiwHQwGUV5eztTxFOgWVkmQtYtw3Uon2WarAhxdn1ODcfRaisVi1NfXM9/2uro6qNVqTJ8+HT/++CP279/P1MwPPPAAbr755qRAv8lkwk033YSXXnoJxcXFcDgcWLVqFbubyOXydhMDd955JyZMmJBk50dNiYGjVTR2ux0DBw4EANYokNT2fr+fJciB9M+RU5G6ujosX74cQPqtMgBgxIgRUCgUsNvtzPKF07VQJSTQsnbk5eUx209q1gq0/M0ajUZmE1lcXIxp06bh9NNPR0FBQVL1DAnzKIZy6NAhVFdXIz8/H+eeey7y8/NZ5Vzfvn2ZTVdFRQUGDhyI8vJy9OrVC0OHDkW/fv1gs9mYjRzZDVJyWKfTQSQSwWg0sn3FaDQyS0sSRWRCkPmE5F5Lly7FHXfcgffff59lX37zm9/gz3/+M9555x388pe/7JJBcjjpINsUIceCFh0KOisUCsRiMdjtdkgkElgsFuYJpdVqUVxcjO3bt7MA9IlCTXUcDgfGjBmD4uJiAC1KiDVr1gBo2VyHDx+OQCCAffv2McUBHWTpYNeWkiy10Vu6yNaGbuRnTNlWUtcolUrmqyyRSBAIBJhCWafToaamBsFgEAUFBbjvvvvw+eefw+l0oqSkBB999FGbHdqPhUQiwUUXXYQ9e/bg3//+N7Zu3cou+6ROiUajkEqlrDmKQqFgAQo69JM9Aj3GyTxkMhkrExYqnNVqNTweD8vQJxIJ6PV6ViIPtF5n6WOVSgWlUsksOkjVLpwP2UJH9ptMhi7EVDkTDoeZGjkSiTBLlerqahYwlsvlrMSYkpoNDQ1svc/Pz4dWq0VtbS2qqqpgtVoRjUYhFotRUFCAIUOGYOzYsdDpdPj2229RU1ODV199FXfffTe0Wi327dsHkUiEiy++GIWFhThw4AALMJeWlqJPnz7MlgFoXeVBZEqQORvVh6lQEgJouew5nU7W6DEYDDIFH/mxk80XzRkKSpK6h/o3kHIVaDkX5OXlsSZsRUVFcDqdOHDgAAYMGMCswEjRBhxtJGq321lwiCpwQqEQxGIxrFYrUy3RWCk5292q1FNFXUZBNZq3UqkUeXl5qKurQzAYhN1uR//+/bF//34EAgH2t0+2bUVFRairq8OWLVvY+x9++CGmTZsGAPjxxx/x6aef4rzzzsPll1+OxYsXY9euXbjyyitx/fXXY+LEiSwAaLVasWLFCrz99tuwWq2QyWSoqKhALBZj1TL5+fmQSCQoKSlhAXyq6iorK8P+/ftZ0h1AK4GEULmdTjoqosmkyhkK8NM5gt6n/YLWFY1Gw2zWZs2ahTVr1iASiWDgwIG48cYbj+vHnZubi9NOO40Jbn744QcAwJAhQ9q9c4hEIpx33nnMZo4SJZQEo8o7vV7PlJAajQZisZhZvGTqvnMq8d577yEej2PcuHHo27dvuocDuVyOiRMnYvny5fj8889ZAoLTdZCohc6dkUgEhYWFaGhoQCwWg8FgYIlupVKJ3r17o7q6mlmiyuVy9OrVCwMGDGC9ZWgdojOLx+NBbW0tHA4HHA4H8vPzUVxcjK1btyIWi6GwsBDhcJgJLVLvzhqNBnq9HnK5HGazGTKZDHq9Pqk/AY2Tvh5Akoo5E+5AHQ4yb968GZdeeimefvppXHzxxexxvV6P3/zmN3jqqadw/fXXp91kmsPpLC6//HJceeWVeOutt3DjjTdmvCIkFeECQ4cVCgQID2EVFRWsVGPgwIHo3bs3Xn31VXZwHjBgAMrKyqBWq/HTTz9h//79aGpqQiAQYOXEVAJP5cfxeBw2mw02mw3r1q3DmDFjcOGFF6KqqgrxeByFhYUYO3Ys6urqsHPnTnZILC8vR79+/RAOh1nZK5WwpP5OQPqDzNmKsPyGDsN+v581s4lEIjCbzazJn1gsRl1dHQs42+12VFVVMW/Duro6/PnPf8Y555yDAQMGICcnp8Mb3LZt2/D1118DaMnGbty4kf0M8pcSlghptVpmlyKTydj8I+9uPicyE6GHInA0oCeXy5mKoKSkBNXV1UgkEuzQRRdKYWCJlPHkAa3RaFhygewyso1s328IYQVNJBJBJBJhf6OkMtbpdEllhzKZDDabjSWWBg8ejEGDBuG9995rU90Tj8dRV1fHVElDhw7Ffffdhy+//BL79u3D22+/jcsuuwxAi6KVLhAUYO7bty+GDh2KWCyGgwcPAmhZe1KbjmXaPMp2Cy/gqGcuJTEpgExe3tQ8i4LOx6uSpBJVsVgMqVQKnU7HurmXl5fDbrfD7XZj9OjR2LRpE/bu3Yv+/fsjEAhgz549iMVi0Ol0OOuss3D48GHY7XammKcqKgpmiUQiNDU1oaCgABqNhvUxCAQC0Gg0GTdfsgW5XI5IJML+L9VqNQoLC9HY2IhIJAKHw4GysjI0NTWxhFBubi5sNhvEYjG0Wi28Xi80Gg2kUin27t2LYDCIadOmYcWKFVi0aBHWrFmD6dOn45lnnsH8+fNRXV2NJ554AsDRC7qweWROTg5yc3OZKIOCzMTpp5/O1g5aq9vqNUDPmapOTfc5JVtFNNQ0OBaLMZEEKZxp/aazLABW7g60BKGPHDnCmnpWVVVh7969OHDgANxuN3JzczFjxgxMnjyZKQQ1Gg127twJoOU1PxZkO0jjoLuQWCyG1+tljYpJvNOvXz+43W4WaCLVu/D7OZ1HIpHA22+/DQC4/vrr0zyao1xwwQVYvnw5lixZgt/97nfpHk6PQCwWQ6PRsP4O4XAYhYWFaGpqYtXYCoUCzc3NCAaD6N+/P8LhMKqqqpLiE+0hk8kwZswYRKNR7NixgwlmBg0aBJfLhdraWiaUoXNOIpGARCJh665EIoHBYIBGo4FOp2PVnGRFSH2JqMIq06wygBMIMp9++ultHmgBYMGCBViwYEGnDYrDyQSyVaVKkDqVfJNJKQa0HIJpMSK/VJVKhUmTJuGll15CJBJB//79ccUVV0Cv12PPnj2YP39+klroWJSXl+OMM86AWq3Gzp078f333zNVM9Dyf9vc3Izt27cDaClTGzRoEFQqFRoaGthFTy6Xw2g0sp+b6iOc7oN6NkNqdqVSyS5SoVAIOp0Ozc3NrDwnFAqxhnzr1q1DaWkpu6DNmTMHc+fOxeLFi/HRRx/ho48+Ys9tNpthMBhgNBphNBphMpmg0+mgUCgQjUZhs9mwY8cO/PTTTwBa5szu3bsRiURgNBohFouTbBBoQ5ZIJKwckg4KpHDLtAsR5yipSi7hv2azGTabjdmwHD58mCkwhQ0qhUFm8scUBphVKlXWrgnZvt9QokAkErVqnGc0Gtla36dPH2zevBnNzc2QSCTIycnBli1bEIvFoNfrcfnll8Pr9eKRRx5BOByGSqXCjBkzMHbsWJSXl0Oj0SAQCODIkSNYs2YNvvrqK+zcuRN33HEH5s2bx2ycNm/eDKAlMBuPx1kjxd69e2Po0KEIh8OorKxEMBiETCaDxWJhzcJov5RIJBmlJstG9WEqqZ7ciUQCoVCIXZBIEUSfA1ouTNREKx6PQyaTscAyBZqAljUiGo3C7/dDIpGwYF8oFMKgQYMgFouxceNG1NTUQCqVYsKECcjPz0dZWRmkUilLgtCeQmMRKvGj0ShTNKvVanZJFfrEck4MKgcmSx2fzwe1Wo3i4mLWH8Lr9cJkMjFbN6lUynoz6PV6RCIR+Hw+5OXlwWq14siRI0gkEujfvz+qqqpQX1+Pt99+GxKJBBMmTIDP58PevXtx5MiRpAbCxcXFLFhMzf30ej1UKhXzVB4xYgRqampYxVdRUREAMIsvCkb7/X5m5aDT6VgwA0h/34hsTWrSeSAWi7E5Q4/Rmuh2u5mVyYoVKzBlyhTs3r0bhw8fxj/+8Y92n9tqteLdd9/FoUOH2GtYW1vL/q4rKyuT7L6IRCKBzz77jFVG0BmVxDdarRZisRhlZWUsoDxo0CCIRCLWk8BgMLBmx7Se8fWkc9m6dSt27doFhUKBSy+9NN3DYZx//vm48847sW7dOjQ2NiI/Pz/dQ+oRSCQSdqYia9CCggJYrVYEAgHIZDJWNdPc3AyZTIYRI0ZAIpEgGAwiFAoxMQKdF/x+PxwOB4LBIKvOHjVqFAKBALZv3w6fzwepVIqioiLmL08+0ABYbxoSz0gkEuj1ehiNRtY0XSQSIT8/nyVcab+iQDWQ/v2FyIxRcDicTocOXuS/S0ocoCW7r1KpWAdkQiQS4ciRIwCAuXPnQq/XIxqN4tFHH4XNZkN+fj6mTJmC3r17M1+gQCAAh8OB6upqVFZW4qeffsLhw4dx+PBhlJSUMB/fyspK5rdKzd8AoKioCEOHDkVDQwNTVwMtF72ioiKWAZRIJEytJPTF45wcwosdeTHTBkXNdqj5IpXuuN1uSCQSGI1GOJ1OLF68GDKZDDNmzEBTUxOqq6tZuTF5dx8PiUSCiooKljWmS51UKmVlQmazOWmDVSqVTBVCZHOAsSdASS0K3Akv2zk5Ocx/t7CwEEOGDIHP54PD4WA+72KxmF3cSMGu0WhYWRg9zkkPUqmUBeNoXaYgMwUMjUYj7HY7mpubodPp0LdvX/z3v/8FAAwbNgxXXnklmpub8bvf/Q7hcBhjxozB//3f/zF/XUKr1cJisWD06NG46qqrsHDhQvz44494/PHHceedd2L58uX4/vvvUVpaytQntI8MHDgQwWAQe/fuRTQahUwmQ+/evdnln/Y8AK32zXSTrepDIalVVaR6J29mAKz5X25uLkKhUKtmwmSnAbTsYzqdjq0PFKAWUlJSAolEgsGDBzNrMPLA3Lt3b1IAGQDKyspw5MgRNn9pnoRCIahUKoRCIbhcLhiNRmb1QGXxnJNDIpFArVazRAIFmvPz8+H1emGz2ZidRnFxMVOC0VnEbDbD5XLB7/fDZDIhGAzC7XbD4/HAYDAwtXQgEGCJbbVajQEDBjABhrASisZDCma9Xg+ZTIa+ffuiubmZ9Tg544wzoFQqUV9fz3qy5OfnIxKJsKSVwWCAVCplwWw6x6aTbE1qClXLWq0Wdrsd4XCYnVnz8/PhdrvhcDhQWFiI+vp6LF++HMOHD0csFkN9fT08Hg8UCgUKCgrQr18/9O/fH7m5udi0aRMWLVqEtWvXMruT5cuXY+rUqZBIJFi1ahWmTZuGCRMmoLS0FGKxGI2NjdiwYQO7zwgVhySO0Gq1TDgBtFTqJBIJNj+MRiMKCwsBHPXupiQap/N45513ALQoh41GY3oHI6C0tBSjR4/GDz/8gM8++ww333xzuofUY0hVNAcCAeTn58NqtbLHSkpKYLVaEQqF2BpPVb905qCKBb1ej+LiYkilUhw5cgR1dXWora2FRCLBuHHjWAVFY2PjMe8r1GBWp9MlJaskEglLdpLHs16vZ9VgANLakDgVHmTmcE5RRCIRZDIZOwzTgUUulyd1LXY4HJDL5QgEAjh48CArw7VarcjJyUFtbS2sViuUSiXefPPNpJLBtnC73VixYgXef/991NTU4Nlnn8Wdd96J//3vf9i6dSvKysrg9/vZpb6oqAhVVVVJDd5IheBwOJhKlQ6XwksA5+dBamEqUQWOKkxNJhNcLhcKCwuZTYZcLofD4YDJZIJMJoPX60UgEGCH5dLSUhQXFzNFGpU10uUdONq0hZTq5KULtLz2OTk5kMvlyM/PZx6IpGgnn0yySaB5TTYtnMyDAsoUZJbL5aybMyU66HDmdrvZZU04ZyigTAFqkUgEg8HAPqYSM076oCSg0NeY7G7o8CsSiXD48GEAwOTJk/HPf/6TvX/hhRdCJBLh5ZdfRjAYxIgRI7Bw4cLjBmPy8vLwzDPPYN68edi0aRP+/e9/4+yzz0ZlZSVCoVCSTQc1Ot21axei0ShUKhXy8vLQ1NTEGgpKpVJ2eKeAaKasLdmqPhSSWlWVqhRXqVRobm6GXC5HWVkZvvrqK4hEIowcORK9evWCVCqFx+NBQ0MDa0qb6jtNDXOUSiWMRiO0Wi1LplosFsyZMwe1tbWorKxEXV0d81SUSCQYNmwY+vfvjyNHjrDHyGec/hWJRHC5XMyegYLMqQ3JOCeGMNCcSCRYoFmn00GpVKKhoYGptSjQrFQqmaLZbDZDoVDA7XYzSyW/38+SlEDLGYPKk8nShz5HZwmpVAqVSsV6QWi1Wmg0GpjNZpbcsFgsGDRoEEKhELZt28YSJBaLBUajEXV1dYjH4+zsQsFz8gPl8+TkINEMJaZovuj1ela1Qt7cEomEWSWReEYqlaKiogImk4l5qdO8Ovvss2GxWPDqq6+ipqaGnUlWrFiB8vJy1NfXw2aztRmcF4vFrGKPVO8UXKaGvSKRCP3790ckEmHB5IKCAphMJohEIqbkp3MRp/OIRqN4//33AWRGw79ULrroIvzwww947733eJC5m0kNNPv9flgsFkgkErjdboTDYRaToCbEwooDIdTEGGjZC8rLy7Fnzx40NzezNUitVqOiooL1IaCzECW7qTEhrQMUZKZmswqFgu1pBQUFiMVibD3JtLsQDzJzOKcwUqkUsViM+e6GQiEolUp2UKYDWk5ODurr67F69WoMGTIE33//Pf773/+irKwMOTk5kEqlCAaD2LRpEyZOnHjMn6nX63HxxRdj+vTpmD9/PrZu3Yp///vfmDZtGnbu3IlgMAiNRgOPx8MCnF6vF2KxGKWlpazskaBFlwIYFFjMlIt/tiMMNFMgj8qBzGYze23IU06j0bAyUa1Wy4JIoVCI+bHG43HW5fZ45ebCjrlkiWGxWFgASKVSwWQysYsfBQ9IvSqXy/mFLUOJxWIIBoNMtSiXy5m6DAC7XPl8PqhUKng8nqTSd7VazVTtbrebBZRJ2Sq8kPE5kF7IroZsJqjRIzVIA4Dm5mb2OrlcLni9XohEIsyZM4c9Tn6VkydP7rDaTy6X45FHHsGNN96Iuro6FnxtbGxkScycnBwkEgk0NjaykmedTsd8oGldob1Rq9UmeTRnAtmqPhQiVAwDrZXN9DmtVouGhgYALRYnp512GvserVbL1OxutxtNTU2w2+0seUXd3qlZ3/79+wG0BHQGDRqEXr16oaSkBCUlJUk+0Gq1OklxCgDFxcWoqqpiZyev1wuDwYB4PA6n05nURIwHmX8+lFAMBALs8kyJ5eLiYjQ2NrLXq7i4GA0NDRCJRMjJyWFnFQoYhEIhJrSgvYgEFjTfhGcUUsPT2Ya8LqnZIz13nz59mN0OQQprpVKJuro6lrTKy8tL2gPJU5Nz8iiVSvb65uXlsV4v+fn5aGhogFKpZJ7eVFoOtOw5gUCA+fm3RUlJCWbOnInvv/8eDQ0N0Ol0LPhUWFgIv9/PXk9hgpsSTlT1ZzQaYTabodFoYLFYIJPJUFJSwtYnuu+QHziV3wN8jnQFK1asQGNjI3JzczF9+vR0D6cV1157Lf7whz/g22+/RWVlJfr165fuIfUoaG2nZoA+nw9GoxEqlQp2u52dS6hCQVhZTVWUpIR2OBxwuVywWq2w2+0oLy9Hnz59UFNTA6vVmqR8pruLsEITONo3idYBsmyi+7VMJkN+fn5SI2XaOzPpDJIZJ2cOh9Ml0OJFixJd9im4rNPpEAwGIZfL2WNisRg6nQ5WqxUvvfQSrr/+elx88cX48MMP8fjjj+OGG27ApZdeetzSUK1Wi8ceewzXX3896urqWCbQbrcnqWcp4ESdUmmMFOykg7+wlJGXpXYuFKgjdSltdnQYpuAuJQfkcjlMJhP8fj/8fj/zlkqFGijRxkgXOvIJp9eXfgZtpFqtFmazGUqlkpWaqlQqKJVKdvEjT2ZOZkGKv3A4nFQSLxKJkg5rNJeqq6uTmiEVFhZCqVSywxcFj4CWQGBOTk7Sc/MLWeZAazb5rtMBHDi655DKYseOHVCpVAgEAlizZg0mT54MoMU2Y8uWLXj55ZcRj8cxe/bsDq33Op0O1157Lf7yl79g8+bNqKioQFVVFQKBALM2AMD8/ZVKJUKhEEtmAEeTFjqdLsk7mCc0Ow+ynaAgHAX46F/aR6jpHoAkW6Tm5mZ89tlnzMu0I1ATnXA4jPr6euTk5OCss85Cfn4+EokE9u7dm+THTWMwmUwoKipCQ0MDwuEw80yleez3+5mdCu1xfC36+QgT35SoikajUCqVKCgoYJf4aDSK3Nxc+Hw+5tlM6jBq3kk+yBRgJuUYqZjJd5vs1yhZRmMoKChge1avXr2gUqmSepPodDqYzWbI5XJ4vV524VepVMjJyWFzndYZvpb8fGQyGauYCYfDTNUOtFS2UDKzpKQEXq+XeWXn5OQgFotBrVaz86RUKoXf70djYyMaGxtRU1PD1pbi4mJ4vV6WvIpEIiyRSlCgSSaTMdW7Wq1mAea8vDyo1WqW5KQqmbKyMiiVSpbkogAzJVQ4ncu7774LALjiiisy0lattLQUM2fOxNKlS/H3v/8dzz//fLqH1OOgJrJCRbNEIkFBQQFCoRCr3BVWYoVCIfh8PrZvqFQq9O7dG5FIBFVVVazqCmg5xwwcOJCdFUgNTefQ1LGQ9Q71mqB9xGg0stgNjUOods4keJCZwznFEYvFUCgUSQE/oZLDZDLB4XAgJycH0WgUPp8Pubm5iEajqK+vx7PPPouJEydiypQp+Oabb/DGG2/g008/xfnnn4+pU6eioKCg3Z+t1WoxbNgwfPfddwiFQqyRHB0OATC1CQB2SRNm8ITBZoB7lXUVlJCgcnEqdaeggEwmQzgcZp7JgUAAPp+PKY4ouEgKZgoop/5LCA/n5CGlVqthMBhYkJG8p1QqFSsbEn49J/3QhV34lvo5ChIIVe7CEncqf6XyYo1Gg1gshqamJnb5osY4dMgDwC/tGQb5pVMjUWEwh147atrW3NyMgoICHDp0CJ988gmampowc+ZMXHXVVdi1axd++OEHvPjii3jnnXcwc+ZMTJ06FX379j3m3/3AgQMBtCiYZ8yYgaqqqqTgpUQiQSgUalUeT8+pUCiSkrFCpQmnc6DkIs2RSCSSZE1C//c+n481tKEgXzAYxL///W+4XC5mmSMWi9m6IvQDJ49CaqwDtPid0n72xRdfYPDgwejfv3+bqkadTofhw4czxeGBAwfg8Xig0WgQiUSYWt7r9bKkijD4xPl5UOKbAsPRaJT9X1MC2mazsaChQqFAMBhkaxA1AyQrFAouU0UfqVGFF3XCbDbDbDazILREIsHAgQPh8XjY3MvPz4fJZEIgEEAgEGDBZWpISNV/wNF1hO9VnQOdFckeIxaLoaSkhAVzcnJyWHLRZDJBq9UiEAjA7/fD5/MxT3eXywWxWIz8/HyMHz8eZrMZ9fX12LVrF/Nkp7lF9ip01qW1RqhmpGZdJJig5ANZZgAtyfXi4mLWz4aSEEBLgDkbLZAyHa/XyyqArrnmmjSPpn1++9vfYunSpXjllVfw4IMPHvNuzekaKNBMyUrhnYYqFCg4TPsLWTgFg0EEg0E0NzdDLBYjNzcXJpOJWXrR51OhuzclqCjJRPY5BP18oT0GrYWZUm2XSmaOisPhdCpCnx460AjVQWazGc3NzczwPhgMwmKxsMVx5cqVkMlk+MUvfoEtW7bAarXijTfewBtvvIHevXtj+PDhqKioQElJCbv4NTc344cffsC6desAAOXl5di6dSv7malNdehfCjALfYnodxAGnzldAwVeKKhMQV1hgCgajSIQCDBlVywWY5c5umwLA82pQWahkpnmJgUMSVVP6jMKOFMjhExSefz444+44447EIlEcOedd+Laa6/FkiVL8Mc//hG5ubl49913YTKZcNNNN6GyshLTpk3D/Pnz0z3sn4UwA08XLoLKksmHmxJJ9HEkEkm60Ov1ephMJmg0Gvz000+s4iIWi6GxsZH5Zebm5kIulzOvTq4Ky1wooCKcCzRPKKGZm5uLxsZGpkS02WxYu3YtNmzYgCFDhuDiiy/GyJEjsWTJElitVrz//vt4//33UVhYiDFjxmDkyJEYNGgQLBYL2x/sdjvzXKRLPICkADHtJ/QvJSxpXRN+LU9mdR3UA4IuRmShQXsOBaEpuExrxurVq5kq/ZprroFer0963lgshh07dmDbtm04cuQIs9hRq9VQKpUs0UWezzt27EBDQwNLiKhUKpx++umtVEEWiwXV1dUIh8OsYTIlzX0+HwsMCS+EnJ8PqcOkUilLLoZCIWZ3U1xcDLfbDbfbDZFIxC7ptD9RgBpo2Zso4SBMPNA6RUkKEjTQ3mU0Gpl6GgBTqvn9fvYYPa7T6dgcJjU8VWHxdaRzIaWf1+tliczCwkK43W40NzdDo9Ew71K32w2ZTMaaulIllNfrhd/vT2pSTf1A+vbti0AgAI/HwxSM9LqmVrkIxQ9klyGTyZifON1dcnJy2JqRqoZWq9UZqbA9FViyZAn8fj8qKipw5plnpns47TJ9+nSMGTMG33//PZ555hk8++yz6R5Sj4QSldS/iu4twoAz/U3r9XpIJBJWMUPJLLLcAMAqcNuq5hXGOShoTXsP/RydTgeDwcASUzQGmUyW8XsLDzJzOD0EKgcEkKT4oUCNVCqFw+FAQUEBnE4nXC4XcnJyoFQqWRbO6XSivLwcPp8PHo8HjY2NOHToEGvW1R5Tp05lQSMKYKYeqGihpUs/fUyLMA8udy+kICZ1M2241DSHFH/CADNd1lKDjx35WTQvKNhDB3c6fJP/cibx+OOP47333kNJSQnGjx+Pa6+9Fs8//zzWrFmDFStW4JVXXsH48eNhsVjw5ptv4oorrkBtbS2Ki4tbPRdlzonUZlbphC7owgsWcDTgLAwsU1KBPk5VN5PSi1Q+AJhPGTVeo7VCIpGwQCId2LgqLPMhOxsASYkmACzIV1BQAKvVygI7Ho8Hfr8f27dvx/bt2wEAFRUVGDRoEBoaGnDo0CHU19djyZIlWLJkCQAwO51oNMoayYrFYlx11VVYvnx5qzHRnkP7iTBAQHuiMNHJ6RqEZxGlUsmCh2SNRYkmahhJnuybN28GAMycOTMpwJxIJLBu3Tr85z//YU1q2yM3N5d9r81mQyQSgV6vZ0r7yspKjBo1KuniJhaLYTKZmMcrAJaAFcKVzF0DeU1ScDiRSLC9koK7VFkVDAYhFotZslqYFCVrOAAs2EjBgXA4nKQo1Wg0LGAtbOSk1+vZWgO0JEppPgn3cApU8MBh10GBZmruGA6HWR8Hu93O+oiQFVw4HGaPAWAiCQAIBAJobm5GOBxm1htCqGksIRKJoNFo2JlFpVKxvUOlUiWJJijoDCApgCSVSln1TCYHirIdssq45pprMvr/WSQSYf78+Zg1axb+/ve/49Zbb0X//v3TPaweCwmuqDpPeKcRWjEJv54CwrRXCfeEtqzXqAKYoLsvVe+qVKqkPYqg9SaT5zPAg8wcTo+CAocUzBVm07xeL/Ly8uD1eln2zO12swN+MBhkmX+dTgedToe8vDx4PB5Wcki+d6Qeys/PR69evRAOh7Fq1SoALcoQOoDTgiq89AsVrrypW/qhOROLxdhrQhsobbhC+xVC6MMsDDSllhoKfbcBsIA2HdzpZ2ZSx1zipZdegsViYV6uTqcTOTk5kMvlmDBhAl555RWoVCqMHz8eADBu3Dhs3LgRF110UavnevLJJ/HYY491969wTITqL2HwWBhwFlpg0Jsw2ELfQ5c0pVIJo9HILvuBQACNjY0AWspcSeEqkUiQl5fHfh7AVWHZhFwuT6pcEL5RQrOoqAgulwtut5s13aPGSvQ+0HKgHjBgAHw+HxKJBPPZTC0/HDRoEKZOnYpVq1bBbrdDqVRCrVazpkwUJKD3SY1CislsOLSfCtC+TzZMwj0fOFptRa+tQqHA5s2bEY/HUVZWhj59+rDnisfjePXVV9n5QqfTYcyYMejfvz/zYG1qamIWLDabDTabDYWFhayUlfYxg8GAxsZG7Nu3j1mv0HiEAW9KuJLvL10ShaX0nM5FmHgW2l/QXiQWi2E2m5nNF1liCIPOKpWKBZyFSnoASUlxev2EzZ5MJhNTv9JjZrMZIpGIjUU4Tn527R6EwV5SEIbDYeTk5CA3N5dVY9LrQsmKWCyW1OBTp9Mxex4ASWIJobUbebaT8h04qjaktYGsXnQ6XdLZVpjE5HtN99DQ0MASzplslUHMnDkTM2fOxFdffYXbbrsNK1eu5PMkAxDGJICj60Nb1bsE/Z1rtVp2DxIKLug8TM9NZ1J6/ng8zhoREnQHyhYRBA8yczg9DFICUlM3YWCXDuTUZVWhUMBoNDKVCHmlhkIhFgwQNu9pC2qoQwpGarpBhzrhwi30X+aH9MxBqCgn5bJcLk/aZCm4KLTGSH0faH2ZEwabSeFGthjC9zMRi8UCAPjDH/6AK664Ah6Ph11U6G+orcfa4qGHHsK9997LPna73SgtLe3i36B9qFMyHYxSEwvC1x1oP6kgzNITgUAAgwcPht/vx+HDh1lSKhAIsI7tFouFKc0AJM0JTnZADbSAZPUwXcY9Hg+kUilr+krWAzR/qDSe1CB0ADcYDCgsLGSXfVKbhMNhrF69GgCYFyapS4CjTSKFY6CAQKZ62p2qkDeysEs7rRVCtTDQMnf27dsHADj99NOTnmfx4sVYtWoVxGIx5s6d226jyKlTp8LtduPTTz/F0qVLUV9fj0AggIKCAni9XrYXGQwGHDhwAMXFxdDpdPD5fDhw4AD7GrPZzJoVU5msMODE6VooUCeVSpOqqEgNT8hkMtYcmAQQZHNCn0uttqF1RxhUpDMpzU1qeky2GDy4nBmQMIFsLYR2JxaLJcn6QlhFIVS5U1ITaFt1KDzLUFKDlIb0nFqtFnq9PumcyxXL6eODDz5APB7H2LFj0bdv33QP57iIRCL84x//wJAhQ/DNN9/gzTffxE033ZTuYXFSoIb1wn5SqUIbYXCY7tDtkaqKToXWkGw7p2bXaDkcTqcg9LqjAzV5IVJzPqlUCp1Ox3yGyCZB+DEZ49OhTtitW3hYJ89dMtUnGw7K9JP/Ll04+WEsM6GNki54wiyuMKjcXuO/9hAq2YSl69T9O1N48cUX8eGHH7KP582bh61bt6KpqQlPPvkkmpubmTrG5/NBr9ezbsX0WFlZWZvPrVAoMkatTZ2V6XWkixspyOgQlVo61h60phASiQRWqxWNjY1IJBKsmiGRSEAmk8FgMCSVHfMgYPaSqlSl4C4pCancmRKPlNCgPYXehMEACj7TnAHA5gv56ZJXXm5uLtRqNbRaLauIoCAVrTd8bnU/tM9HIhHWOE+o6gHAKhh8Ph+zLCgsLGTPEQqF8PnnnwMAbr/9dlYx0h56vR7XXHMNxo4di+eeew4OhwMSiQT5+fnweDzMlkmr1aKqqgqFhYXYu3cvS3z17dsXDoeDVfUQFGwGwJXM3YTwLEJrBq0RAFrZNEkkEphMJgAt84bOsB3526ceAGSBIEyuAjwBmimQQIZ6iNB5hRILFosFhYWFCAaDLOBMn1OpVKzMXXimaesuQ+cVavhFamqz2Zx0FqIqQG6Zkj7eeecdANmhYiZ69+6NBQsW4P7778e9996Lc845p917AyczSA06A0iq3k0VXKW+CWlPfJWN8JM1h9ODoUMQlafTpY+UHuRbR9l6UjHTG5UqCj8WNgQTeiyTzx2VrBkMBkgkEmi1WvY1wss/J7MRNu2jg7XwcJ66eQqVzG2V0RPCsthM21jvuusu3HXXXezjxYsXY+fOnczzzWQyscaZq1evxqhRozBq1Ch88cUXmD17NtasWYNnnnkmXcPvEFQaLizXossaKbdI0ZwKlXKRJ6FKpUIoFEJjYyMLApJXL3WCp8AfBZPJmkX4fJk2DzgnhkQiYR2whT7IKpUKwWAQCoUCWq2WJSxpX6H9hEoNqfyd7DSEaw79HNo7aI+hxqEGg4GpE0lxSAlOTnog6yVhIoLsEIQcOXIEGo0GLpcLdXV1MBqNAFqqPSjZcCINnfr27YtHH30UjzzyCOx2O/Ly8tjz0dyw2WzMnsVoNMJsNsNqtbK1yWw2J9l5kJ1Gd9BWw1li+/btuPDCC1FWVobi4mK899573TaudCFUEbdn3ySsqqFzp16vb9PmKfWCLxaL2ZmWnqO9hqGc9COVSqHVallSkpoOU9JK2EyLVO6BQACBQKBDZejCQLJWq2UWgMJKDOpnwudG+ti9eze2bNkCqVSKyy67LN3DOSHuuecefPzxx1i/fj1uvvlmLFu2jM+lLCP1btsT4UFmDqeHIyw/FHZeJlUI+e2S/52wS7sw6EyBqPagYBI1cqODPgUq6aKZqdYInPahLG6qKihV2SwMQBN0oaPvF3rYZTqPPvoolEolfvGLXwAAVq5ciXvvvReTJk2CSqXC4sWLYTab8fbbb2Ps2LGYMmVKxisS6O+fgs3CSgUK9NEFS6PRwGQyQa/XM19EoEUp1tTUhAMHDrASMLp4icVihMPhJB9cqnAgZSpvmnTqIXy9qWlaNBplNhfCoHJqcEg4BymZmUgkkuZlPB5nawhVQFAwgTyZKfFBpdWU3OCkBwriAWDnDDpHKBQKpiD2+/0wGAxwuVxYtmwZTCYTCgsLme+qzWbDCy+8gNtvvz3JV/VYWCwW3HrrrfjTn/6EAwcOYMiQISwYRX7glByXSqWw2WwAwJrRUoBZWBrfXZfKthrOErt378Zjjz2W9FhPIlUNDxztCyC0xwDAbA5Sm7oJoe+l5xbaaPC1I3MR+h8L9w9hAkL4teTdL5wrqaIJAElWKnK5nD0foVAomE0LJ71Qgu3cc89Fbm5umkdzYkgkErz11lsYMWIEli9fjtdffx2/+tWv0jIWntTknCyixLHMVDkczgnhdrvZZUjY/TybEDb3Eh62hG+k6BA2AKPvTS0lFAYPAbAgAB3U6bBGj5/qh7NTYY5wup50zBNqqkZqc6fTydTMAFjDJLVajb59+zKvW6ClPNnhcMBqtcLpdLLHSfElXAOESlKlUpnk3SuTyZI+5rRPNq8llLRMTWoKLViEAefUi7+wekYYNKAAgEKhYEkNstCgADOVMFPz2VOZTJ8jwuY2brcbfr+f9YBwu90IBoNwuVxIJBLs82KxGGeeeSbOPPNMHD58GE8//TQikQh0Oh1mz56NX/ziFx0KNicSCdx2221wu92YMmUKbDYb9Ho9TCYTTCYTjEZjkgKf5gvNGUquCRXN3aGMt1qtrOHshAkTsG7dOva5hx9+GOvWrUMkEsFDDz2Ec889t9X3CzveA0f9/zN1jnQ2QrVze8lv4GjyPBsT4F1Bpq8lHUGYbDjWa3+i0N8+r8LMDOLxOPr06YMjR47gP//5T9YpmYnnnnsO9913H3Q6HXbs2IFevXp1+xguueQSPPvssyypuX79eva5Dz74AJFI5ISSmqfCOsLpGFzJzOFwkhAqO4QdVIUXf/qXmv4Jg9JisTjpwCbsmkqBJVIZ0GOkZuaBJQ4nfQhtbkiBTH+Ter0e9fX1AFpsQaLRKGw2GwKBANxuN9xud6u/ewouC21zqISUKhtIQUZBHH5J6xmQVQWpwYR+/rTXtBVgFlbYUEVNW9AeQ9YclNgkZWpPCDBnA5RoCgaDUKvVbQZ+KMCs0+lYefuGDRuwceNG9OvXD9deey2++uor1NXV4f3338dHH32E0aNHY+zYsRg2bBiz6EnF5XKxALFQySoMJAu9WOnsQv68NBYASQ2Mu5rUhrNChg8fjquuugrFxcWYNm0apk+f3mpNffLJJ/HYY491y1gzkbbUzpyeAb3uqX+rbVXdtdW4Gji6PtDdJps9U09VvvvuOxw5cgQ6nQ5z5sxJ93BOmt/+9rf4+OOPsXbtWtx999345JNPun0ML730Ektqps7zXbt2Yd26dXjttddOKKnJ6RnwIDOHw2kXoZl9asBZ+H40GmWXNDqQ0WYk3JSEAWdShpCKmR/SOJz0QjYYYrGYvU9/18FgEEajEQ6HA7W1taitrW31/cJSUgrICMuLhYFFuuBTgomXH/dMUgM+7XXppsRm6ltq40mhn2pqEpOSHtznO7OgknYAUKvVrYI6tK54PB4YjUaEQiF4vV5EIhHs3bsXAJCTk4OcnBzU1tbC4XBg/fr1WL9+PSQSCfr06YPevXujqKiI+fDW1tZi1apVCIfDKCkpSbLDoDVLeEYhSx/qQSD0jRb6yncFx2s4K2TGjBlMHdanT58kz2nioYcewr333ss+JiUzh9NT4YmHU4vXX38dAHDllVdCpVKleTQnj0QiwWuvvYZhw4ZhyZIl+N///sfs+boLntTknCw8yMzhcDqEsGyQlGfk40zd1SkwkNrITRhUFv5LwSgOh5N+6O82kUhALpezBoBSqRThcBiJRAJqtRqRSCQpqEeXM+EaIQwsUyJJ2MxRKpWyxzkcIrVLd1t+qvQ+zUOh8kwYZBY2lKV5mInNmNryPFyyZAn++Mc/Ijc3F++++y5MJhNuuukmVFZWYtq0aZg/f366h91pkAc7IUxQ0VswGIRMJkMoFEIgEIBSqUQkEkEgEEAwGGRB6qKiIphMJrhcLvh8PgQCAVRWVqKysrLNn20ymZCbm8sqs0jtTnOFkhQGgyEp+UbzqTsa1B6v4ayQG2+8EQsXLkTv3r1RVVXVphdpd9l6cDgcTnfjcDjw0UcfAUDafIw7k0GDBuHXv/41/vrXv+Luu+9mzQy7Cp7U5HQW/HbH4XBOCAoqUcdtCipRAECoQqKystRAlFDJyOFwMgOhmlSlUsHr9SIWi7GATigUalPtIywbpQAfBWyEVQpCCw2eXOJ0BGGwkZrDUS8A+pjUzMLvoTlJ72ey339bjdyef/55rFmzBitWrMArr7yC8ePHw2Kx4M0338QVV1yB2tpaFBcXp3vonQYFmuk1MhgM8Pv9LDlFntqhUIg1gKT3aW2ixyUSCdRqNYCWRqY+nw/BYJD5f1PyQa1Ww2AwIBaLQSqVwmQyQafTQaVSJQWaNRpNUk+JdHuvttVw9oEHHsC8efPw6KOP4qabbkIikcCDDz6YsXOew+FwuoL33nsPoVAIp512Gk4//fR0D6dTmD9/Pt59913s2LEDr7/+Om677bYu+1k8qcnpLHiQmcPhnBR0+ZdIJIhEIuxjYekycFSZRpf9TFSScTico036KGhjNpvhcrkQDoeZ3UCqYpSSSBQIJAWzMLDMqxY4nQUlOciTmd7agtTymZ7QTPU8dDqdyMnJgVwux4QJE/DKK69ApVJh/PjxAIBx48Zh48aNuOiii1o9Vzb7H4pEIhbADQaDzJ6CAsTUKJKSDPR+LBZLCjjT+kWNIbVaLfP7ToXsUzQaDfR6PfR6PbRaLQs0U5NIACzwnG527NjR6rFnn30WAGA2m7F27druHhKHw+GknUQiwawyfvWrX50yd82cnBw89thjuOuuu/Dwww/jiiuugNFo7JafzZOanJOFB5k5HM7Pgpp4UXCK1MxCKHiV6Zd9Dqeno1Qqk/zX1Wo1VCpVq79toS2BUK2cWuZ+qhzyOZkFNfaj5rPUpIk+RwmQbCDV89Dj8UCr1QIANBoNvF5vm4+1xangfyiVSqHRaBCJRFhiOhaLIRwOJwWWhUkG8kmmIDN9fSgUYl8jbC5JSW9qDknN/DQaDXufAs3U7I9b+3A4HE7msmrVKmzfvh0qlQpXXXVVuofTqdx222146aWXsGfPHjzxxBP485//3C0/lyc1OScLPzFxOJxOgYLNAJI6w2fTZf94RCIRTJgwARs2bACAVr6ZZrM5zSPkcH4eFFChgA49dqxyt1S7jFPl752THZCaPltUNMfzPGxubobP5wMA+Hw+pq4VPlZWVtbmc58q/ofC5DVZpJDqmALKQn9uCh4Le0MIGxMLG0WmNhWUyWSsIalSqYRCoYBarYZCoYBYLIZareYJcg6Hw8lwKPh5ww03wGQypXk0nYtMJsNzzz2Hc889Fy+++CJuu+02VFRUpHtYHE678CAzh8PpdLLlsn8iOBwOXHrppTh48CB7LNU386GHHkrjCDmczoGCynK5nAVtUj1vyQaHB5U5nBPjeJ6HJpMJVqsVwWAQq1evxqhRozBq1Ch88cUXmD17NtasWYNnnnmmzec+1fwPhZURpFanYLHQmos+J3xLDTYLv4Ysf4CjFizkt0yWHVKpNKO9vDkcDofTwk8//YTPP/8cIpEI99xzT7qH0yXMnDkT5557LpYuXYr7778fn3zySbqHxOG0Cw8yczgcTgfw+Xz4y1/+woIDbflmtkU2e2RyejbChp2czmP79u248MILUVZWhuLiYrz33nu8KqIH05bn4b333otJkyZBpVJh8eLFMJvNePvttzF27FhMmTKlXSXzqUxb65HQKkUYQBb+S18n/LxQzSxsZkxBbblczu0xOBwOJ0uYP38+AOD8889Hv3790jyaruPZZ5/F119/jSVLluB///sfOzdwOJkGP0FxOBxOBygtLU0qO+5JHpkcDqfz2L17Nx577DFce+217DFeFdFzacvz8IILLsAFF1yQ9Nibb77ZXUPKGjpildJWgFkYaKbnoAA2r8zgcDic7OH777/Hhx9+CJFIhAULFqR7OF3KoEGD8Otf/xp//etfcfvtt2Pbtm1QqVTpHhaH0wpeA8bhoEVZ1qdPH0yePBlXX301gBa/3TPPPBOzZs2Cw+FI8wg53c2LL76I8ePHs7elS5cmfT7VI1Ov17f5PA899BBcLhd7q66u7vKxcziczGXXrl345z//iYkTJ2Lp0qWtqiLI8z2VUCgEt9ud9MbhcI5NapM/hUIBpVIJlUrFmvspFAreqJTD4XCyjFgshrvvvhsAcP3112P48OHpHVA3sGDBAhQVFWHfvn34wx/+kO7hcDhtwoPMHA6OKsu+/fZbvPfeewCOKsvuvPPOY1oh8Ev/qcldd92FNWvWsLdzzz036fNt+Wa2hUKhgF6vT3rjnFrccMMN+PbbbwG0Tk4lEgn88pe/xIQJE7iinQMAGD58OP72t7/h888/x/z58+FyuTpcFWEwGNhbNjZ043A4HA6Hw+kMnnnmGWzYsAE6nQ6PP/54uofTLRiNRrz22msAgOeeew7//e9/0zwiDqc1PMjM4eDklWX80t+zId/Mp59+Gr/+9a/TPRxOGti9ezeWLFnCPk5NTq1ZswYWiwWrV6/Gnj17UFtbm77BctJCalWEXC7HoEGDoNfr0adPHyiVSl4VweFwOBwOh9NBlixZgt///vcAWs7eJSUlaR5R9zFr1iz85je/AQBcc8012Lp1a5pHxOEkw4PMHA5OXlnGL/09D1KsAi2+md9//z2+/fZb5OTkpG9QnLTxzDPP4LrrrgPQuhnkhg0bsHnzZowfPx4AMG7cOGzcuLHN5+FVEacuqVUR//rXv/DTTz8hFAqhqqoKFouFV0VwOBwOh8PhHId4PI6//vWvuOSSS5BIJPCrX/0KN954Y7qH1e08++yzmDJlCrxeL6ZMmYLvvvsu3UPicBi88R+nR/Liiy/iww8/ZB/ff//9GDRoEACckLJMoVBAoVB0/YA5HE7GsWnTJvTu3RvxeBxA280geYNITiqPPvoobrrpJiQSCTz44IMQi8WsKkKlUmHx4sXpHiKHw+FwOBxORhAIBPDTTz/hf//7H1577TXs3bsXAHD11Vfj73//e4/005fJZPjkk08wZ84crF69GlOmTMHdd9+NBx54APn5+ekeHqeHw4PMnB7JXXfdhbvuuot9PHfuXAwYMAC9e/c+IWUZh8PpOaQmpyorK1FZWYnnnnsOQNvNIFMfKysra/O5H3roIdx7773sY7fbze13TlGGDRuGtWvXJj12wQUX4IILLkjTiDgcDofD4XC6j127dqG2thbhcBihUIj9a7PZ0NjYiIaGBtTV1aGysrJVpbDBYMDjjz+OO+64A2Jxzy3MNxgM+Oqrr3Drrbfi3XffxXPPPYe//vWvmDhxIs444wz06tULZrMZSqUSSqUSQ4cORVFRUbqHzekB8CAzhwOuLONwOMdHmJzyer0488wzcf755+Pw4cNYsmQJ1qxZ0yo5NWrUKHzxxReYPXs21qxZg2eeeabN5+ZVERwOh8PhcDicU50VK1bgnHPOOaHvMRqNOOuss3Deeefh+uuvh06n66LRZRdqtRrvvPMOrrjiCixcuBDr16/HypUrsXLlylZfq9Fo0NTUBLVanYaRcnoSPMjM4YAryzgczomh1Wqxe/duAC1JqsmTJ0Or1bZKTpnNZrz99tsYO3YspkyZ0q6SmcPhcDgcDofDOdWZNm0aEolEuodxSnHeeefhvPPOS/cwOBwAgCjB/8I5nE4jkUjA4/FAp9P1SH8ozvHhc4TTEfg84RwPPkc4x4PPEc7x4HOE0xH4POFwOD8Xvo70HHiQmcPhcDgcDofD4XA4HA6Hw+FwOCdNz3VK53A4HA6Hw+FwOBwOh8PhcDgczs+GB5k5HA6Hw+FwOBwOh8PhcDgcDodz0vAgM4fD4XA4HA6Hw+FwOBwOh8PhcE4aaboHwOH0FMjsnpOZZEITAj5HMptMmCMAnyeZDJ8jnI6QCfOEz5HMhs8RzvHIhDkC8HmSyfA5wukImTBP+BzJbE50jvAgM4fTTXg8HhgMhnQPg9MOLpcLer0+rWPgcySzyYQ5AvB5ksnwOcLpCJkwT/gcyWz4HOEcj0yYIwCfJ5kMnyOcjpAJ84TPkczmROeIKJFIJLpwPBwO5//TkQyd2+1GaWkpqqur077Yd4RTabzZlMXNpv/3bBorkPlzBOBrSbrhcyQ9nErjzYR5wveb9MPnSHrIpvFm+hwB+H6TCbQ33myaI0S2/N+fSuPMhHlyKu432TRWoHP3G65k5nC6CZFI1OEFRq/XZ8ViRPDxdg4nMkeAzP092iKbxgpk9nj5WpIZZPJY+RzJHDJ1vHy/yRwydbyn8hwBsmu8mTxWvt9kDpk63hNdS4DM/V1S4ePsHE7l/Sabxgp0znh54z8Oh8PhcDgcDofD4XA4HA6Hw+GcNDzIzOFwOBwOh8PhcDgcDofD4XA4nJOGB5k5nAxCoVBg/vz5UCgU6R5Kh+DjTQ/Z9Htk01iB7Btve2Tb75FN482msR6LbPs9+HjTQzb9Htk0ViD7xtse2fZ7ZNN4s2msxyLbfg8+3vSRLb8LH2d6yKbfJ5vGCnTueHnjPw6Hw+FwOBwOh8PhcDgcDofD4Zw0XMnM4XA4HA6Hw+FwOBwOh8PhcDick4YHmTkcDofD4XA4HA6Hw+FwOBwOh3PS8CAzh8PhcDgcDofD4XA4HA6Hw+FwThoeZOZwMohIJIKzzjqLfbxkyRKceeaZmDVrFhwORxpH1ppQKIQLLrgA48aNw2uvvZbu4RyXuXPn4vDhw1i/fj3GjBmDKVOm4NChQ+ke1gnD50jXwedIeuDzJD1k0zzhcyQ98DnSdfA5kh74PEkP2TRP+BxJH9kyT7JljpxKcwPInvkBZM8cITp9riQ4HE5GYLfbE7/4xS8SFouFPTZp0qREKBRKfPHFF4k//vGPaRxda/71r38l/vGPfyRisVjinHPOSQQCgXQPqU1CoVDiwgsvTBQXFycOHTqUOO+88xJ2uz2xa9euxC233JLu4Z0QfI50DXyOpBc+T7qfbJsnfI50P3yOdA18jqQXPk+6n2ybJ3yOpIdsmieZPkdOtbmRSGTX/EgkMn+OEF01V7iSmcPJEHw+H/7yl79g8ODBAACn04mcnBzI5XJMmDABGzZsSPMIk9m8eTPGjx8PsViMYcOGYc+ePekeUpuEQiHcc889mDZtGgAgEAjAbDZj8ODBqKysTPPoTgw+R7oGPkfSC58n3U+2zRM+R7ofPke6Bj5H0gufJ91Pts0TPkfSQzbNk0yfI6fa3ACya34AmT9HiK6aKzzIzOFkCKWlpRg+fDj72OPxQKvVAgA0Gg28Xm+6htYmmT4+QqfTYeLEiezjeDzO3k8kEukY0knD50jXwOdIesmGMQJ8nqSTTB8fwedI+sj08RF8jqSXbBgjwOdJOsn08RGn0hwBsmueZPLYgFNvbgDZNT+AzB8f0VVzhQeZOZw08eKLL2L8+PHsbenSpUmf12q18Pl8AFqyd3q9Ph3DbJdMH197iEQi9r5YnNlLIJ8j6YHPke4lG8bYFnyedB+ZPr724HOk+8j08bUHnyPdSzaMsS34POk+Mn187ZFNcwTI7nmSyWNri2ybG0B2zw8g88fXHp01V6SdMRgOh3Pi3HXXXbjrrrva/bzJZILVakUwGMTq1asxatSobhzd8Rk1ahS+++47DBkyBNu2bcPChQvTPaQOoVKpYLPZ0NTUhPLy8nQP55jwOZIe+BzpXvg86XqyfZ7wOdL18DmSHvgc6V74POl6sn2e8DnSPWTzPMm2OZJtcwPI7vkBZN8cITprrvAgM4eTwdx7772YNGkSVCoVFi9enO7hJHH55ZfjyiuvxFtvvYUbb7wRSqUy3UPqEA8//DBmz54NkUiEd955J93D+dnwOdL58DnSvfB5khlk8jzhcyQz4HOk8+FzpHvh8yQzyOR5wudI5pCp8yTb5sipODeAzJ0fQPbNEaKz5oooka3GLBwOh8PhcDgcDofD4XA4HA6Hw0k72WHKwuFkCYlEAm63O2tN9TldD58jnI7A5wnnePA5curx6KOP4p///CfWr1+PMWPGYMqUKTh06BAAYN68eRg3bhxuv/32Dj8fnyOc48HnCKcj8HnCOR58jnA4HIIHmTmcTsTj8cBgMMDj8aR7KJwMhc8RTkfg84RzPPgcObWw2Wx47bXXAAALFy7E0qVL8fe//x1PPfUUqqqqcODAAaxduxY6nQ7r16/v0HPyOcI5HnyOcDoCnyc9g7lz5+Lw4cNtJjqPB58jHA6H4EFmDofD4XA4HA4njTz99NO47rrrAACBQABmsxmDBw9GZWUltmzZgnHjxgEAJkyYgA0bNrT5HKFQCG63O+mNw+FwOJxjEQ6HcdFFF+H7778H0DrRyeFwOCcCDzJzOBwOh8PhcDhporq6Gh6PBwMGDAAAxONx9rlEIgGPxwOtVgsA0Gg08Hq9bT7Pk08+CYPBwN5KS0u7fvAcDiercLvdKC4uxuTJkzF16tR0D4eTAYRCIdxzzz2YNm0agNaJzva+hyc1OZz2SSQSeO6551BWVobhw4fj66+/TveQug0eZOZwOBwOh8PhcNLEk08+if/7v/9jH4tEIva+WCyGVquFz+cDAPh8Puj1+jaf56GHHoLL5WJv1dXVXTtwDoeTdezevRu33XYbvv32W6xcuTLdw+FkADqdDhMnTmQfpyY624InNTmcY7NgwQLcd999qK6uxo4dOzB79mxs2rQp3cPqFniQmcNB66z+yXhRcTgcDofD4ZwomzZtwg033ICnnnoKTz31FFQqFWw2G3bv3o3y8nKMHDkSq1evBgCsXr0ao0aNavN5FAoF9Hp90huHw+EI2bVrF7766itMnDgRb731Vptfw1WqPZvURGdb8KQmh9M+mzZtwoIFCwAATzzxBM4//3xEIhH89re/7RHNMaXpHgCHkwlQVv/hhx8GAMyePRtLly5FQ0MDnnrqKbzyyitpHiEnk5g7dy6effZZ1NfX4+6774Zarcabb76J3r17p3toHA4nw3G73Rg0aBD69esHiUSCJ554gq8jPRxStvzzn/8EAAwcOBCzZ8+GSCTCO++8g/LyclRUVODss89G//79MX78+DSOlsPhZDPl5eV4+umnccYZZ2D69OmYPXs2LBZL0tc8+eSTeOyxx9I0Qk66oURnU1MTysvL2/wahUIBhULRvQPjcLKARCKBu+66C/F4HFdffTXmzZuH+vp6LF++HOvXr8fSpUsxa9asdA+zS+FBZg4HR7P6y5cvx4033si8qMxmc7teVEBLpj8UCrGPeab/1CYcDuPyyy9nAQFqjHGsZASfIxzOsTlWRl+opjlV4ElNTnvccMMN7P3U5n4LFy7s5tFwOJxTkbPOOgsqlQpisRhnnXUWDh061CrI/NBDD+Hee+9lH7vdbm6H0IN4+OGHkxKdHA6n43z99dfYsGEDVCoV/vznPwMACgsLcfvtt+O5557DK6+8woPMHE5PIDWrLwxsHCsAwjP9PQtqjPHmm28CQIeSEXyOcHo6iUQCiUQC8Xgc8XicvU+PHw+RSMTexGIxe6PHsg2e1ORwOBxOunjkkUcwffp0nHPOOdi8eTPuv//+Vl/DVao9E6qmKS8vb5Xo5HA4HeNPf/oTAOC2225DQUEBe/zmm2/Gc889hy+++AKNjY3Iz89P1xC7HO7JzOGgJas/duxYyOVynHXWWR3yogK4H1VP42QaY/A5wulJJBIJxGIxRCIRhEIhBAIB+P1+BAIBBINBhEIhBINBBINBBAIBBAIB+Hw+eL1eeDwe9ub1euHz+eD3+5O+X/i9fr8fwWAQkUgk6W8x06Gk5ooVK/D22293aB0BeJMdDofD4fx87r33Xjz11FOYMGECLrnkEuTk5KR7SBwOh3NKsHPnTnzzzTeQSCS45557kj43aNAgjBkzBrFYDIsWLUrTCLsHrmTmcNA6q69QKI7rRQXwTH9PpyPJCD5HTl2qq6tx3XXXIRQK4fzzz8ekSZNaeevOmzcP3377LYYPH46XXnop3UPudCioTG/CIGnq5+iNFM2pH9P30N8VKZclEgkkEglTMEskEkilUvYvqZrFYjGkUimkUmlGK5xTS5U3btzIPne8pCYvX+b0RITVEKkVEML1gtaBTP7753DSTXFxMb755pt0D4PD4XBOOf7+978DAC688MI2z+iXXHIJvv/+e3z++ee48847u3t43QYPMnM4aMnqX3PNNViwYAGuu+46nHbaadyLinNcOtIYg3Pq8sILL+DRRx/FpEmTMHXqVCxfvjzJW3fevHk4cOAA1q5diwceeADr16/H2LFj0z3sTiEejyMSiSAajbLHUoPK0Wg0KZhMX0+fo/cpOC0MHgkDRhKJBDKZjAWV6U0mkyV9LJfLEY/HEQ6HIZPJIJPJMjLYxJOaHYPmQuq/qUFFzqkJrSe0TpwIqdY62Wyvw+FwOBwOJ/NxOp3417/+BQDtBpBnz56N+++/H9988w08Hg90Ol13DrHb4EFmDgdtZ/V7qheV0Du1vc+nkqog6ikXOd4Yo2fz+9//HgaDAQAQi8UgkUiSvHW3bNmCcePGAQAmTJiADRs2tBtkzha/3UQigUgkgkgkwj6mQFAkEmkVGKLHKcAcDofZ+/F4nD1GXx+Px9kaQsFlhULB1MwymQxyuZz9K3w/HA6zx+hnyuXyjFM286RmC8KkBO079HhHvLoJoZKd5kkmvd6cE4fWhdTKCABJ3u5C6DWnoDLNLyHCuULzhc8VDofD4XA4P5e3334bfr8fQ4cOxaRJk9r8mgEDBqCiogL79+/HihUrcNFFF3XzKLsHHmTmcDgAjioTT1Qx1BZtXeK6+iL32GOP4dFHH8WOHTswdOjQLv1ZvDFGdhEMBnHFFVdg9+7dUKvVKCgowMsvv/yz1edmsxkA8Oqrr2LUqFHYunUr+1wikYDH44FWqwUAaDQaeL3edp8rGxpEJhIJBINBFgyMx+MIBoMsOCwMHofDYYTDYcRiMYTDYYRCIfY58mAOBAJtfi8AtnbI5XKIxWLIZDJoNBro9XoWdFYqlZDL5VAoFFAqlZDJZEgkEohGo1AqlZBIJCyArVAojmlFAQBfffUV/vCHPyAcDkOtVuOVV17Baaed1un/jz09qUnzI1UFn2qHkKpgJlKbQJLFCqnlATClu0Qi6dSx33XXXfj0009x5MiRbtlrehqJRKLV3BCJRIhEIm0GnVNtM1ItrMhOh4LLtL4IzznCSonOpDvPJJzsIxQK4b777sOyZcsgl8sxcuRIvPvuu+keFieD4PtNZiJMeLa1D3Vn8rKyshLXX389bDYbjEYj/vnPf2Lw4MHd8rM5ySQSCbz22msAgNtvv73dOSASiTB79mw8//zz+Oyzz3iQmcPhnLpQsIigCzy9DyR7paYiDBDQx8ISeQoSdfYljtiyZQs2bNiAsrKyLnl+zs9DODeAo8GA7lSQ3XLLLTj33HMhEonwt7/9Dbfccgu+/vrrn/287777LpYsWYIlS5Zg5syZ7HGxWAytVova2loAgM/ng16vb/d5Mt1vNzXAHIvF4Pf7mbKZAkChUAjhcBjxeJw1/qP1oLm5GW63m60LHo8HPp8vScHdFgqFAlqtFjqdDk6nE2q1Gjk5OYjFYggGg9BqtYhEIlCr1YjFYlAqlYjH49BoNBCLxYjH4wgEAlAoFJBK2z72NDc345prrsHq1asxaNAgrFq1CldffTV27tzZ6f+XPZloNMr2mlTVe1uq1fYCiW0FE4X2KGTHIpVKoVAoOm2tueSSS/DAAw9g/PjxnfJ8nKPQ+kEBYKlUikgkAp/Pxz5PSSlhQkqIMPkglUoRi8XYay+01hGJRGxu0VlFIpF02lzhZxLO8XjwwQchFouxb98+iEQi1NfXp3tInAyD7zfpp63eIh1pNE17kFwu77K7LwDceuutuOWWW3DDDTfgo48+wk033YT169d32c/jtM/333+PXbt2QaVS4eqrrz7m15533nl4/vnn8dVXXx0zvpLN8CAzh9PDoYsd0LIpknIQALvM0YVOWKZKF3+hZ6pSqWRqIWFzLwo4SaVSTJ48GX6/H/v27UNxcTE0Gg1mz56NJ5544qTGHwqFcMcdd+Df//43pkyZ0jn/KZyfDc2d1OCREJo3qQrTRCKBcePGddo8USqVmDVrFvv4rLPOwvPPP3/Cz5PK999/j7fffhuffvop5HJ5K4/ukSNH4oMPPsCdd96J1atXY86cOe0+V6b77aYGdSjATPYXFMil19zn8zE1ot/vR2NjI/ucy+WCw+EA0DJPSNUsDFZT0FChUMBgMCAUCqG5uRlGoxGJRAJ+vx8vvPACotEoamtrYbFYoFarMWXKFNx///1QqVQssE9rUigUQiKRgEwma/X7HThwAHl5eRg0aBAAYNKkSThy5Ai2bNmCUaNGdcP/8KkPJQUImjsAkgKHtGe0t26IRCIWLKTLGynnJRIJ1Go1xGIxotEoJk2ahEAggP3793fKfjNx4sST+j7O8RFWUikUCgQCAQQCAQAt5wy/35+kcAaSlWQUYKagQGqCm84y9HwqlQoKhQITJkyAz+fD/v37UVRUBK1Wm9FnktSGsw8++CCAlsTkoEGD0K9fP0gkEqxcubLTf3ZPpbPPJD6fD2+99RZqampYcKGwsLCzh83pRjp7jgB8v+luSDRBZ5Bj3V8IoSBLWIUlrOiTy+VQKpUA0KlzpKmpCVu2bGGCmblz5+LOO+/E4cOHeZ+gNEAq5ssuu4xZKbbHhAkToFarUV9fjx07dmD48OHdMcRuhQeZOZweDm2iIpGIqXii0WiHFIZC6DKoUCigVqtZIIcCUaRY++677yCVSlFQUICVK1e2Uvpccskl2L9/f5s/47PPPmul7nzkkUdwzTXXoHfv3ifya3M6gbYac1GwqL0Sd2GCQqggEwabRSIR1q1bBwCdNk+EvPjii8cM+HaUJ554Ag0NDTj33HMBAAsXLkzy1i0vL0dFRQXOPvts9O/fP2vVKHTwBlrUgE6ns9XjwWCQBXAowExKRFJzK5VKHDx4EH6/HwCg1WqxZ8+e4/pP22w29O7dGzKZDA6HAyKRCEajEb/97W9RWlqK66+/Hn/605/Qr18/SKVSdrinwzYFIoWJsdQ50q9fP1itVmzYsAFnnXUWPvnkE3i9Xhw+fJgHmTsBUsIDrQOGZKEiLEFtK9BMQUSaVzT3dDodVCoVU8F6PB4olUpoNBoWaOvbty9WrFiBXr16JY3r56wjnM5DuJZQA086UyiVStjtdiQSCYjFYuh0OgQCAbhcLoTD4VbPRfY5wuQSAKjVaigUiiTbnmAwiNWrV0MkEqGoqAiff/45+vTpA7lczp4v084kqQ1n77jjDuh0OuzevRu33XYbHn744S75uT2Zzj6THDhwADk5OXjiiSewYsUKqFQqPProo5g6dWrX/RKcLqWrz62criMWiyEUCrE9KBWywKA3ocCC7jukWlapVACO9hWgf+PxONRqdafOkerqahQVFbEKPZFIhLKyMlRVVfEgczfjdrvxwQcfAABuvvnm4369QqHA5MmT8eWXX2LZsmU8yMzhcE49hKWp5H3odDqTAjKkGBN6GxLkgUqBZGpgplQqodVqIRaLoVAokjbbxsZGRCKRNktJP/roow6Pff369di0aROeeuqpn/m/wOkI9Fp3tFxMeChLnTNCpTO9yWSypCZt9fX1nTJPhPzxj39EZWUlXn755ZP6fiGfffZZq8dSvXUXLlz4s39OuhEG+ygpJRaLWRm7TCZjTfbIe1mn08FkMrEg34gRI7Bs2TL4/X7k5+ejrKyMeZubzWZMnjwZgwcPhsVigVQqhcvlwv79+/Hdd99h//79qKysxBlnnIFoNAq73Y6CggKEQiHs3r0bsVgMFosF4XAYYrEYkUgEIpEIr7/+OoCWIBWpoSmpQaoSwmAwYPHixXjwwQfh8Xgwfvx4DB48uE3VM+fEoYsYBf6i0ShTnZJXuUQiQTAYZMHF9hCLxTCbzRCJRAiFQvB4PAiHwyguLkYwGITX60UwGIRYLIZGo8GhQ4cQiURQUFDQ6rlOdh3hdC50DiGVusfjAdDyt0tVE0qlEhaLBYcOHWJrDwCWoKT9hM4gMpkM+fn5iEQiCAaD8Pv9CIfDKCgoYBUUVFlB61ZpaSkikUiS9UqmnUlSG85SgGHXrl346quvsHz5ctx444248cYb2/z+bGky25mk+rwDR63gUsuUj1W23FlnkkgkgoMHD2Lw4MF46qmn8OOPP2LatGnYvXs3LBZLh5+Hk3l0xbmV0zVQJa9wPUy98wqrpXw+H/x+/zEFWGKxGCaTCQaDgZ2NKalO5+TOnCOp69WJNE3mdB7/+c9/4Pf7MWDAANbw/XhMnz6dBZnvv//+Lh5h98ODzBxOD0fYaCuRSMDlcrGScq1WC5lMhnA4DL/fD7/fz0qJaCOTSqVQqVTQ6XRMoRYMBhEMBhGJRGA0GplSlcpYN2/ejJEjR7Y5nhPJ4q5atQo//fQTUwzV1NRgxowZeP3115m6lNM5UAO3Yx1gSGlIgWX6PmrwlkgkmO8lHeJIdSpsPEmWLdu3b++UeUL8+c9/xscff4wVK1ZArVafxP9Cz0S4RggVzRRsJjVhbm4u8zAePnw4K+EbOXIkgsEgPB4P8vLycMstt+Cmm24CAMyZMwe33HJLknKQOP3003HZZZdh+fLl+Mtf/oJNmzbh17/+NVatWoX9+/dj9OjR2L17N/r16weg5eJOfsxAi5rg8OHDbLzC3+Xzzz9vdcCfOHEivv32WwAtgZiCggJmn8H5eQiTmcIAYkNDA4CWREN1dTX7OpVKxSpihMohj8eDUCgEm82GPn36IDc3Fw0NDQiFQnA6ncjNzWVqe7/fD7VajX379uG0005DJBJJstgAuLIsUxAmtamaCmhR+9jtdgBATk4OnE4nfD4fJBIJiouL2fmCCIfDcLlcaGpqQjgcRl1dHQYOHIhYLAabzYZoNAqr1YqioiLI5XLY7XbEYjFs2bIFI0eOZNU28XicPW+mnUlSG86Scq68vBxPP/00zjjjDEyfPh2zZ89uM2CZDU1mOwthU9kTCb6kNq+mRHlnnUl69eoFsVjMfDtPO+009O7dG7t27cLkyZM7/gtyMo7OPrdyugbqK0JnQqlUyipgKClJFm50RxFClm60TggbYdvtdvj9fhQUFDDbN+pXIpfLO22OlJaWoqamhlUOJhIJVFdX814AaYCsMm6++eYO+yvPmDEDALB69Wr4fD5oNJouG1864EFmDqcHI1R20MYaj8chFothNBoRj8fR1NTEytvbIhqNwuPxwOPxwGg0wmg0QqVSweVyIRaLwe12w2g0QiQSQS6XIxAIoLa2FkVFRW0+34lkcR988EHmRwi0XLI+//xz3oG5kxGWppPSDDjq0yucR8JmSpFIpM2LncfjgUKhgE6nY425KMtPBzWpVIrq6mqUlJS0OaYTzfY/99xzeP/997FixQoYjcYT+l5OC8KDE70fj8eTmq3R55RKJVwuFwCgT58+TNE8evRo1NXVwefzwWw249e//nUrT+7Unzl9+nT8+OOPWLFiBWw2G5RKJYLBIGsEmJubCwBsvlGg8qWXXmJKZIvFwpJgANpMMtTX1zNfzMcffxy/+MUvUFFRcZL/Wxwh9JqQNy5wNOBP/ruxWAxqtRp9+/Zt1588kUjgyJEjsNlscDqdLNDc2NjIXlulUgm5XM4uhw0NDWwdCYfD7CIJcGVZpiEMNgNH5w3QshbQa2yxWJCTk9Pq++VyOSwWC8xmMw4cOACfzwebzYbi4mIUFRWhqqoKoVCIBZFpPtbW1qKkpKSVpROQmWcSYcNZ4qyzzoJKpYJYLMZZZ52FQ4cOtRlkzvQms52BsJxdiLCR9fG+X9i8GmhRzNfU1HTKmSQ3NxdTp07FsmXLMGvWLBw5cgSHDh3CgAEDOvwcnMyE1pK24PtNZkDqYqBlTVCpVIhEIu3ed4W+/2TBJAxQA2ANqQ0GA5qbmxEIBNDQ0IDCwkJW5UdVoJ01R/Ly8jBy5Ei8++67uOGGG7B48WKUl5dzq4xuZvv27di0aRNkMhmuu+66Dn/fgAEDmL3JqlWrknoHnQq0f7PjcDg9Cio9BsCUMcINV6VSwWQyIT8/H8XFxSgtLUVJSQny8vJYwIbUYzKZjAWWKRNMP0Mmk2Hs2LFYt24drrnmmjT8ppwTQRhgJmWX2+2G3W6Hy+WCx+OB1+uFz+djpWSBQCBJ9SyTyaBWq6HRaJhildSIHo+HKeeVSiULLkSjUYwePRpr1qzBVVdddVJqJKKmpgb33XcfnE4npkyZghEjRmDMmDGd8d/T46AEg7BMm15Tt9vN1BROp5Nl5R0OB3Q6HYCWQC6tF9TsryOYTCYAyd7PkUgEffv2xc6dO/HUU08xtRnNIWHwmi4H9H5bSoOHH34YAwcOREVFBY4cOYI33njjBP5nOMciNXgofEwikbA9Iicn55gNMN1uN/MEVyqVSCQSSbYtqc8NtDTa2bBhA26++WbWG+BkueOOO1BSUoKamhpMmzat05IQ1dXVmDJlCs4++2w89dRTWL9+PcaMGYMpU6bg0KFDAIB58+Zh3LhxuP322zvlZ2YStLdQw2B6LYPBIJsPXq+XrTVer/eYe4FEImHnGPq7F55D6GxCc2H8+PFYu3Yts5jI5E7v1HB28eLFSRUgjzzyCJYvX454PI7Nmzejb9++bX6/QqGAXq9PejuVID9v4bmFPNo1Gg3z5haLxcxexefzwePxwOVywe12JzWjpXkWiUQwcuRIrF27tlPOri+//DKefvppDBs2DBdccAFeffVV3vzvFGDcuHGdNke6ar/pqSQSCQQCAXavpX3Cbrejvr6eWTORNSBV4DkcDthsNlitVthsNmaxRIksakZdXV2N/fv3Mzu2QCCApqamJHFOMBjs1Dnyyiuv4JVXXkH//v3x1FNP8XNrGvj3v/8NAJg9ezby8vI6/H0ikYipmZctW9YlY0snogQ3b+FwOg232w2DwQCXy5UVB3c6YAMtWVibzYZ4PA6TyYRoNIrGxkaIRCIUFBQc8+IPAHa7HR6PBxqNhqlnPB4PAoEAs9MAjm7yQEtwijbenkI2zRHy0AZagotkhQIgKatPUGkp2WFQOVnqhT0SiTAfVaBlo6XLHz0nqZrbQiKRQC6XZ3Qg4OeSSfMkFoshGAyy5qBWqxXA0SaAYrEYLpeLVUHYbDbk5uYiHo/j+++/h9lsxtixY/HCCy9ALBbjt7/9LebNm4fGxkbcdNNNuOyyy4758xOJBO68807s378fV1xxBXbs2AG1Wo2Kigr4/X6cfvrpcLvd0Gg0SY1HtVotgJZ5SZ7N0Wi0TU/mbCST5sjxIN9ltVrNLArUajUaGhpYw5yGhgaYTKY2g2OBQAA1NTVMHa/RaFBRUcESVQBQVlbGPHzJZ9ZisbAAprCxj1qtPqaCvrv53e9+hzlz5rBmbgCwaNEiNDQ04IUXXsC8efPwwAMP4IMPPsADDzyAiy66CGPHjj3u82bTHAkEAkxhTE0+qaGS0+mESCSCxWLB/v37kUgkYLFYUFxc3KYnpdVqZQ1H+/bty+ZXPB6HwWCAXq9nvScUCgUMBgMLGJCyLVP3lzlz5uDw4cNMyT1lyhRceumlMBgMuOaaaxAOh3Hdddfh1ltv7dDzZdMcORbUPFLYDJLW+WAwyP7+20tstuXXTO+r1eqkgD71GhFatZzqnCrzhNN1ZPIcSbXHIFu+hoYGJmARi8VwOp3sXkwVltFolFVu0r9CRCIRdDodu9NSc2qpVMqa1ZpMpiTRVlsWcZzsI5FIoHfv3jhy5Ag+/PBDXHrppSf0/YsXL8Yll1yCAQMG4KeffuqiUaaHnhXd4XA4SQjVZeRDCLQE8UgdRoGbYz1HKBRiwUfhxZ3eTz28S6XSNjdqTuZAXslAy3zweDzsciYWi+H1epMuc6nIZDLmq0pBP7q4yWQymEwmhEIheL1eRKNRpoZWqVTQaDRMpUjlZTQ/6bFoNMqbsnUTwr9julyHQiGWSIhGoyxoQypBm82G0047Ddu2bYPD4YDD4cDw4cOxfft2fPDBB7jyyivx/PPP41//+hdGjx6NPn36tPvzt2zZgv3790Mmk7EEVZ8+feD3+6FUKtk8TFUwSyQSxGIxtn6RapHPm/RCrwsFaKLRKHJyctDQ0IDm5mYEg0EWHIrFYqitrUVTUxP7/ry8PJjNZtTU1LA1iRKhXq+XBbS1Wm1SEEgul7P1JBAIsKRWJpDazE0ikcBsNsNsNqOyshJbtmxhzWQmTJiADRs2tBlkzuambkLbFGra6PV6EYlE2JrT3NyM4uJi1NTUwGq1wuv1Ijc3l+0Xfr8fDoeDnUcsFgtEIhHq6+tZQFmlUqG5uRlAS6JMp9MlBR8zPYHZVsNZ4ptvvunGkWQGdCYQ+qaSR6rdbm91TmnrLJEafKZEpFwuZ+dhsmiiRHggEIBYLG7VsJjD4WQW0WiUqZQpiRiLxVBXV8cSmz6fD263m/1tB4NBtqZQApL6xpBNHPkxS6VShMNhyGQyVrlJ+41Go4HH40EsFoPBYEAkEmEJVYVCwdeNLGfDhg04cuQItFotzjvvvBP+/qlTp0IikWDv3r04cuQIevXq1QWjTA88yMzh9GDI75AO5IRw00stdqCLHFkiCA/wYrGYXZQBtLJZEH4dAB5kzlDIzxBoea2oiSN9zuFwAABTtgrnC2X96UBGQQ4KTsrlcshkMsjlcigUCpjNZlauSgfBQCAArVYLtVrdSulOalQ+d7oPChzT5Vyj0bDEktlsZgFACjibzWbY7XZUV1fj7LPPxjfffIONGzdi1qxZOHjwIOrr69G7d2+ceeaZ2LhxIxYsWIAXXnghae0gwuEwXn75ZQDApEmTsH//fubvHgwG0adPHwSDQXbQp0M/lUIDLWo2oV90JilYewKpSUbaD+gSFgqFIBaLodfr4Xa7UVNTg4qKCoRCIVRWVrKAodFoRFFREbxeL+rq6gC0zLmCggIolcokBRLZ8wghr/BAIMAqajJFsZrazG3r1q3sc4lEAh6PhynzKfjaFtnc1E0sFjMv7UgkArlczj6WyWRsXxGJRCgtLUVtbS0CgQCqq6vbfK78/HwAYJUXKpUKKpWK/d/J5XIWYBYmoHpadVW2QsploaUFlbmTYpE+Fgaij5UcJ2KxGLMAo/4RsVgMTqcTWq0WSqWSBZsosUPnmkxYTzidD9kopPYgodebmpby1z+zoL9loOUuqlarEYlEUF9fj3g8DrlcDqfTyYQzbrcb4XAYgUAAHo+H9Sqi/Yf+7un5qK8MVTxotVr2/Xq9HpFIBFqtlq1XRqORibOoWTVPUmUvH3zwAQDgggsuOKmG8kajEWPGjMG6devw9ddf41e/+lVnDzFt8JMUh9NDSVUuCxsAUhAHaCkzpINUIBCAzWZLasYDtByu1Go1Kw8CwA70AFopoflmmtkID1EAmHpULBazADOVfjU1NSUF8KgsTKPRsOYadEgLBALsuQixWMzsVNRqNfx+P2smGQqFYDQaW3nrcrofYUMsKgmkjtYymQyRSAQGgwF2u501VnM4HOjXrx9KS0tRXV2NzZs348orr8Rrr72GdevW4aqrrkJVVRXq6+vx6KOP4sknn2xlY/HPf/4TVVVVMBqN0Ov1qK+vx4ABA+B2uyGRSKDVatHc3MwUZqROJT9W8oGnQGVb9i2crqWt0lIgOcgcDodRWlqKXbt2wel0wuFwoKamhgUYy8vLodfrWdNIADAYDKzpo8PhYOuQXq9v97BP6w0FoTKpIkLYzG3mzJnscbFYDK1Wy+wffD5fu6XI2d7UTSqVstclHA5Dq9WyJsIUXA+Hw4jFYigvL2eBgHA4zJKeZIVCyjWgZU4Ik6dULSNUv5IKjZPZUDM+obc6WWxRAonmTygUYl8nbOZHSkRhk2JKpAs9q/1+P1ufzGYzq+IKhUKsTwAFsek5FAoFn0dZBnnB05tQ7Z4aWD4elPCWyWSsTwQnPQjtGSUSCTQaDeLxOLNOUigUCAaDrKKyubkZkUgEzc3N7O+cbB9pbtDfOyXMJRIJxGIxlEoltFotq8g0mUwIh8PQ6XRMDa3T6WC1WqHX6yGXyxGPx+H3+1mCVSaTcRFEFhGLxfDhhx8CAK644oqTfp4ZM2Zg3bp1WLZsGQ8yczic7IcOUEDLoUgYKATAupSTj5VEIkFjYyOAo5s1KVPbysKSouxYyiBhx15OZkCXJaDltSMlslwuZ4qw3Nxc1NbWsmAPcDQI6Xa72fcYDAYYDAZWsiy80JGiKB6PM8WQRCJBTk4OdDodCyY0NzfDbDa36grP50z3kvr/T8rCWCzGOnNTMikYDMJisaCpqQmNjY2YPHky3n//fdTV1WHEiBGYOHEivvvuO3z55Zf4wx/+gAcffBC7d+/GggUL8Mgjj7BA8//+9z8sXrwYAHD99ddjxYoVAFqsEWpqatC3b1/m0ZtqlUHjozJ6GjdXKXY/tLfQhVtY0k6qZppHeXl5aGpqwsGDBwG0BHwGDBgAuVwOt9sNn88HkUiEwsJCpg6y2+2IRqMQi8UwGo3H9ToUKmYzJchMzdw+/fRTyOVyqFQq2Gw2NDU1oby8HCNHjsQHH3yAO++8E6tXr8acOXPafB6FQnHc/gmZDCW46UIfiUSYFQ/5KZOFht1uh1QqhcFggEgkYj0mhIlMCjoLq6r0ej1EIhFLPNHX8bUhsyHVsFDkQI/RaxkOh5n/stDKjZp4dSRQGAqF2BmmrKwMOp0OHo8HdrsdFosFYrEYkUgEVqsVRqMRarWaBZFoPJSM5WQeQpsUSjq0Ny9Sg8zCryPlcmpQkOYCJb5I4d6T/LszBXqNAbDEMwljqG9HdXU1qxaKxWJobm6Gx+NhTYZjsRjcbjer3k1FJpNBoVCwALNSqYTRaEQwGIRer0c8HkcwGITRaEQ0GoVWq2UiCZ1OB4lEwr4mGAyyHhVc3Zz5rFq1ivUSmT59+kk/z4wZMzB//nysWLGCiXdOBU6N34LD4ZwwdOmijUx48QeONmMjRamwWUJBQcFxs61Cf8NUhB6vkUiEqwszCGGWXhhwppJUlUrFgj1SqRQVFRVM0RMMBtHc3AybzQav1wuXy8WCgELkcjmUSiUraReLxXC73YhEImhqaoJOp4PFYmGqAp/Px0rFeZA5sxCWh9LBKJFIICcnB01NTXA6nejXrx+GDh2Kbdu2YceOHZg1axZ27twJh8OBw4cPY8GCBfj973+PzZs345577sGVV16Jw4cP4/333wcAzJ07lwWOhgwZApvNBgAoLS1FVVXVMYOEMpmMXTK4qqj7SU1aCT+WSqWt/p71en2S/zL5uQNHKyqMRiNbD0ipKBKJYDabO3w4b6tfQDp54okn0NDQgHPPPRcAsHDhQsyePRsikQjvvPMOysvLUVFRgbPPPhv9+/fH+PHj0zziroMUyaQeE4lE0Ov1cLlciEQiyMnJQTAYhMvlYn7+qd+vVquhUqmSmj2qVCpotdqkhsdk48TVY5lNJBJJ8hoHwHxTAbDydFK5e71eVhVFgV8KAlNgkHoKyOVyaDQaGI1G5OfnQyKRoK6uDrW1taiqqkJeXh5KS0vR1NQEq9XK/N/JIzwcDsNkMkGlUjGrF2GAkZN+hGr11MoaUqcKVe7CXiAdQRhMpnkFHLWeC4fDzFbhVAkgZQPCe6hYLIbP52PN9/Ly8rB//34AR20BA4EAWzucTie709Ad2OVysXWE7kkajQZarRZerxcqlQoGgwGhUAharZYFj3Nzc5knMzU9VqvVrHE2nXNI8CVsUM3nS+ZCVhlz5879WUnF0aNHw2w2w+FwYOPGjTj77LM7a4hphc9cDqcHIrRDENpbAMmXbzrAU0kQAKYu1ev1xzxA0/NQcDK1WzeV2NPhjmf60w+VmQIt84IOYwqFAna7HQCg0+mwd+9eAED//v1hNBoBHO3CrNVqYTQaEYlE4HK54PV62eWP5hwdukktJJPJUFZWBqlUCqvVCo/HwxoyUUCbSqA56SE1GCgMFNLlX/j3S364tIYMHjwY27ZtYyX/s2bNwrvvvotVq1bh4Ycfxh//+Ec89thjOHjwIBYuXMieZ8aMGbj66qvxxBNPAACGDx+OTZs2seYqAJhFBiWrhB7zVH6fOj5O90DzhEpLydNQuAcAR/chSiAolUp2wauqqkJpaSn7GrK6EL7Owj2qI2RasqqtZm4bNmxI+lj4d3GqQw3VKDBEDWF9Ph+8Xi9MJhOMRiMCgQA7Y5BCXdiojZ5LWJ4sXK9446XMRxhgFovFCIfD8Hg8AFrOHRRsJjUiKRKFAaMTSSb16tULkyZNQmlpKTZt2oSmpiZotVoUFRWhrq4ODQ0N6NWrFwwGA1wuF6uuMJlMrIqAxszViOmF5oFQ/U7nXLJUofWDHqM7SaplBiFs+EaevDKZLKlZNtByrtVoNGzdoeempth8XnQ99LrTXdXpdAJoSVTTOiISieDxeNj6EY/HWeWM2+1mtn27du1iDWOFkEWcyWSCyWRCIBBIssjIyclBNBqFxWJBPB6HTqdjyQedTgepVMoSpVKplAWcyUuaqpP4fMkswuEwq7T8OVYZQMtZZNq0afjwww+xbNkyHmTmcDjZSaqSjAJ3dDiizZhUQ+QHSYd7n8/HDvJUJkQNeihbDLSohii46HK5oNfrk4KEFBAKh8OsrJFUAJz0ICwblEgkSZd0KkenUlBS/kSjUezatQu1tbUdasZHnqgajQZqtZoFCQ4cOICioiIUFxejtrYWzc3NMBgMkEgkiMViCAaDLJgIZI4CsacgDMrRhQk4qgARIlQG0vcZjUZWdtzU1IQRI0Zg6dKlsNvt2LRpE8aPH4+XX34ZixYtwvbt26HX6zFjxgxMmjQJ3333HUKhEPLy8phaoKCggK1ZcrkcsViMBRlTg4/CsXK6D6EHLr1uFBwi325SJ1NDProE9u3bFx6PB1VVVSzxVFxcDJFIhFAohKqqKuTn57PLVzQahd1uh8Fg6JB6sL2mtJzMgZIS9LesVqsRjUaZnYHZbE5q7kj+mzSH6Hs0Gg3bN4RrAb+4Zz7CpIBUKmWNuOjMSOsJKdvJh9npdLLgMtllCK0R5HI51Go19Ho9zGYzK2Gvr6/HkSNH8P7772PWrFk4/fTTsXHjRhw8eBAWiwX5+flobGxEVVUVBg4ciJycHNjtdqZiVCqVkMvlSc0G+Zm2+6G9J/VsEgwGWZKSKhqo2oH6yAjFL6kN0YWBZVIlCyu5NBoNVCoVu2eRUjUnJwdSqZQlzchjnp9JuhZhhW4kEmHzwWAwMEsu6vVACQmy0SKhTWFhIerq6tDc3IySkhJceOGFKC0tRTAYxL59+7By5Uo0NDSgvr4efr8fOTk5AFr2mtzcXDQ1NTH7OIvFAuBotU1zczOUSiXrKRKNRuF2u5NsoGj9S+1Xwkkvy5cvh8PhQH5+PiZPnvyzn2/GjBksyJytzZtT4Tsfh9PDEB6c6DKe2qQvGAyyi5rZbGYXcYvFwg7jFBykyzpBWXq1Ws2CSuFwGA6HA1qtNuliJ5VKIZFIWIkjlRjyi3/3k1rWThc5iUTCDjkajYZl8ik7v2HDBjZXKHFAJaptIfRgBoDCwkIWWK6rq4Ner2elZ9TQjdTQQjUzXRazIUgQCoVw2WWXwWaz4YYbbsj6xg5Cj106tMvlchYwpDJB+hrCYrHA4/HAarWipKQEkyZNwscff4xvvvkGY8aMgdlsxq233pr0s9xuN/NinjRpElNCFxUVsZ8tlUoRi8XY3BD+TLJ9AXiQubuhPYVK02nPAMD8C0mRrFQqceDAAQBgpecqlQpyuRyHDx9GMBjEgQMHmAIskUigurqalaoGAgEWaNZoNMe8wLdVycPJPFLV5tRYls4LqX7aoVCIKcLkcjm0Wm2r11f4umfD3tHTESqYKcBMZwhhQ2GHw4FEIgG/3w+r1crOM263mwWiU6EmxkDL2WXkyJGYPXs2tm7dipqaGnz22WeYPXs2+vTpg4MHD2Lbtm2YPHkyAoEA3G43qqqq0L9//ySFPSXPqJ8JT4Z3PzQPhAklahBKyQlhMNHv97OPSYFOgeDU/gFyuTzJ8kIul8NgMECpVCIajTKLOIPBgPz8fPj9fubfnZubC41Gw4Lcfr8/KQHG6VqECe1YLMaqM+m1pCqE1H/79++P5cuXA2hpRN27d++k550/fz6++OIL/OlPf0JDQwN8Ph/69OkDoEXlnJOTA5vNhry8PNhsNuTn58PtdjOBFnkxy+Vy5OXlMRGHw+Fg6meqiuDnlcyBrDIuu+yyTolZkKfzpk2b4HA4YDabf/ZzppsuvXH95S9/wZAhQzB48GDcddddfLPlcNJMaiCRLut0MaMLGzV4ows8AOZ9GAqFoFAomC+mSqWCQqFgiywd7BsaGmC325nPFJUeOZ3OpK7g1OiHNk9SynK6l1QVMwWByYMZaFGFkcey2WzGzp074XQ6IZPJMHbsWMyYMQPTp0/HzJkzceaZZ6JXr14sQ08liRqNBiUlJSgqKoJIJEJ9fT3q6upQWFgIAKiurmYWHB6Ph2XvKaFB84xKGbOBDz/8EDNnzsTq1auxaNGiVuqabEPocUy/i1qtZnOG1oxU8vPzAQB1dXUAgDPPPBMGgwHNzc345JNPWr2eNpsNr7zyCnw+HwoLCzFo0CBUVVUBAMrLy9m8pDkhVDLTv6llrpzuQbjXkNKcgj06nQ5isZhd8gwGAzweD0tWFRUVATi6JuXn57Ou8H6/H36/nyWeXC4XGhoaWFIskUjA5/PBZrO1+3cmnL888ZCZCFXwwgvcsQJ3QmsWKkNORWjjlS37R0+FlMcAmAoxHo8nBZudTiccDgdbG5qampBIJCCTyVBXV8fOEEOHDkVZWRm0Wi0TQuTk5KCwsBB6vR6RSAQbN27E3//+d0ilUvTt2xfxeBxffPEFNBoNdDodQqEQtm3bhtLSUohEIlbVR2p6mq/Cswnfc7qXaDQKj8eTdMew2+1wu90IBoNwOBxwOp1wu92wWq2or6+HzWZDQ0MDampqUF1dzfy4SfhQX1+PxsZG1oi1uroadrud+XxbrVY0NTWhsLCQNbl2uVw4fPgwCgoKYDAYALScZ+LxOJsvlCjjdD2UXABagszU90Gn0zFbQDq3pnrr7tq1C/379wcA/O1vf2v1mkkkEpx//vn46quvMG3aNESjURw4cABisRh+v59VBbtcLsRiMbhcLsTjcVitVmi1WpSWlkImkyEcDqOmpoatT4lEAk6nM+luzMkMAoEAlixZAuDnW2UQJSUlGDJkCOLxOEtqZDtdlhKxWq3429/+hl27dkEmk2HixInYsGEDxo4d21U/ksPhHAehPzI1XfL5fGzzUqvVaGpqQiwWg0wmQ05ODitvb08NQlD5qUwmY91yKbMvkUhYqWskEoHD4UgqYyV/TrpARiIR3pm7G0lNPlAHd6E1AqlBEokEa1hRU1MDoKVpAWXrd+3ahUOHDh03kJqTk4PTTz8d+/btg91uh9lsZhc3AMwmIxQKMX9W8uKUSqXMT4+UQ5nM5s2bcdNNN0EsFmPYsGHYs2cPRo4cmfQ1VLZJUAA1U6CElDAwQ+XAAJL8dYVJo2AwyKwsevXqhfXr16O6uhoejwc6nQ6XXHIJ3nzzTWzYsAE1NTUYMmQIJBIJampqsGvXLsRiMeh0Olx77bX47rvvEI/HUVRUBJlMBq/Xm9S0VCKRMPU9kNxYjgcTuxeaC+RdSUpD8tJ2OBwIhULML3ffvn0AWtTucrkc+/fvR1VVVZKXJgC2d1HJMlk+UWk0Kc3ogqZUKltZNXGP7syGlFt0VpHL5cz2gM4hbVlrkeVKIpGA3W6HQqGAWq1OUi3LZDJmZRAIBCCTyZJswziZgzBpQCpUv9/PgrlWq5U1VHM6nbBarRCLxcjNzcXGjRsBtCQyQ6EQvvzyy3aTCiKRCH369IFer4fVasW3336LgoIC9O7dG/X19fjiiy9wzjnnoLKyEo2Njairq0Nubi6sVivsdjtKSkoAHF1XUhP2nK6H1geaG2Qz4Ha7kxIToVAILpcLoVCIVWxSFYzX64XP52u15wjRarWsF4Tb7WbnFY/Hgy1btmDmzJkoLS3Fnj17EAgEUFtbi/LyckQiEfj9frjdbuTm5kIulzMlNW8O2XXQuTX1jkNVDPn5+di9ezcAsAbm1CDa5/PBaDTCZrOhoqICBw4cwJIlS1BfX48///nPLBlO6HQ6/OMf/8ADDzyAJUuW4ODBg+jbty/cbjez+iPRjVKpRDgcxt69ezF16lQUFhaiuroa9fX1qK6uxsiRI1FTU4NwOMz2JmFTdk56+fLLL+H1elFWVoazzjqr05531qxZ2LVrFz799FNcfvnlnfa86aJLT1XRaBTBYJAp0PLy8rryx3E4nGMg9FGlQw01RQFaFKt2u51tajk5OaipqcGBAwfYxY4CBOQ7JvRgprJFt9uN5uZmlr2lQBQ1Y6FDt9/vh8PhSDoUUmD5WHYLnM4n9VJEynYKBgEtasOGhgYALQHinTt3AgAqKiqg1WqxcuVKfPTRR9izZw8L9pSWluK0007D6NGjcfbZZ2PixIkYOnQo5HI57HY7vvnmG6ZgPnDgAFMSNDU1QafTAQCam5uZ8oMuBkIVPnl6ZzIej4f9bhqNhv3/CnnyySdhMBjYW2lpaXcP85jQ363wb5gSEUDL3z89Ho1GmT9lPB5nymWz2Yzi4mLE43GsWrUK8XgcQ4YMwVVXXQW5XI6amhosW7YMX375JbZv345YLIb+/fvjl7/8JdavX4+amhpIpVKMGzeOXQzMZjNLaKQGD6kZD8CDzN1J6oXO5/MhGo1CJBLBaDTC5/MxFXNubi5qamqYJ39ubi42bdqEQ4cOsYawBoMBWq2WJRFI1ej1ellzUSpXpzdqNBoMBmG325NsnYRzlpNZUCM3em0UCgXi8ThcLldSgJnUgcKGWlKpFGazmZ1vQqEQmpub4XA4WIk6XfCFiuZAIIBAIMCUiVQqn+n7yqmMsAkxJRxobgBgZ1WNRsMCzHK5HMOGDcOmTZsAADNnzoTf78fnn3+OeDyOUaNG4aabbsI999yD66+/HpMnT0Z5eTkSiQQOHDiArVu3Ih6PQyqVoqGhAVu3boXRaEQsFsPKlStZUGn37t1JgcbUPSa1WpDTtcTjcbbmAy2vg9vthtvtZqIW8mpvamqCz+djKmaPxwO73Y66ujq43W74/X40Nzfj/7X35vFRluf+/2f2fckyWUnCEhbZRUWUCEhxwwWXIrjg0Wo9PWqt2lqlal1OxapHq+g5alGrVYp1Qa2loFW/iClGEBAkbCGQfZ3JZPZ95vdHftfNM0MQpCQzSa736zUvMpMhz5M819zPdV/L5+rs7ERTUxOampqErVEguqOjQ/ik1dXVKCkpEfJx+/fvh1arFf4bDZYzm80ADkk2SH0opu+Q7k+l6zntey0Wi/AfCwsLxYyR8ePHQy6Xo7CwEAqFAg0NDTj11FOh0+nw9ddfY/78+fjb3/522PEUCgUee+wxTJ06FV6vVxy/q6sLsVhMDBSsr68XMbH6+npRhEFFE+T7AMk2wvekzGDVqlUAgEWLFp3QvcWll14KAFizZk3SENGByg+uZI7H4xg/fjwWLFiAxx9/XLz+8ccf4+KLL8bKlSuxcOFC2Gw2/OpXv0JpaSmUSiV+9rOfYdSoUSf05BmGOTakradyuRwymQzd3d0iCKxUKuF0OoU+ptVqxcGDB0VlZU5ODmw2G7xeL9rb28VQFak2q1qthlarFRs40s0DegJrSqVSbOBMJpNohezu7hZD4Kh9OR6PIxKJCE0spm+h60i6qaRvSwP3ZDKZ+FqpVIrkgNFoRHFxMd5///2kgV0jRoxAY2MjqqurUVlZmdSeXlZWhpNPPlkMyti8eTPKysrEsB65XI729naMHz8e3d3d8Hq9sFgsQvfQ5XIhJycHarVaVFxnejUI6c8CgM/nExsOKUuXLsVdd90lnrvd7owKNNMQLqnzKw0sB4NB8Xt2dnYiKysLw4cPx549e1BTUyMG/5111ll455130NDQgLVr1+Lss8/GKaecgjFjxuDbb79FS0sL4vE4srOzYbPZ4HQ6sXbtWsTjcajVapx99tk4cOAAPB6PqECMxWIwGo1JHRFAT4CKvuYgc/+RWnFDtm82mxEOh9Ha2gqgZ4NH2usymQxFRUXYtm2bqDAdP348bDYbwuEwGhoaYLfbRcAagBiqRfc3ajOV2qlOpwPQs8mzWq1C2kkaSORAUPqh5IG0Ap6q/bxer9hc6/V6xONxtLe3C8kEKQqFImkgFw3wouQD+SlUHU2yGfRIhc6DK1L7F2lghQJz9K9MJoPf7xfaqp2dndDpdJg9ezb+9Kc/IZFIoKKiAllZWVixYgVkMhl+/vOfY9asWVizZg2eeuop1NTUAOi5viNGjEBRURG6urrQ0tICuVyO4cOHIxAI4LvvvsO4cePg8/mwdetWjBgxAj6fD01NTeLeQ+dFz6XdPUzfQvsMSiCpVCp0dnaKtcTpdCIWi8HpdArtZUo6kj9JHZahUEgkP6XQ2qFSqTB9+nQ0NTVh9+7dmDlzJhobG1FZWYnzzjsPDodD/P/UDiqyhdSBs5l8DxoMs0ToM0n2ASSvLdR5C/TY0siRI7F//36YTCZYLBa4XC6Ul5ejsbERPp8Po0aNgs/nw8GDB3HnnXdi586duPfee5P8S7Vajcceewzz58/Htm3bMGvWLFGsQwFt0lgGICQI29vbxX5crVYn2QonIzIHl8uFNWvWADhxUhnEjBkzxHDZ9evXC53mgcoP3nXJ5XIsXboUL7zwghgAtX37dixcuBDLli3DwoULAfRUn/39739HXV0dmpubsXHjRmzYsOHEnj3DMMdE6gALp9N5WJVxPB4XraMUYFapVCgvL4dGo8HXX3+NqqoqHDx4EE6nMynARwN37HY7mpqa0NDQAJ/PJxwrqjKj6lO3250UrPL5fHC73aKdOvWcmb5DurmWy+Wiylan0wltbqvVKgauZWdno7GxEQAwceJE/POf/xSJgksvvRQmkwmvv/461q5dK9rdaWhKLBbDgQMH8N5776GmpgYmkwnRaBT19fUIh8PC4Y/H46itrRXB2JaWFigUCqhUKtEGL5fLkxz3THbCpk2bhg0bNiCRSODbb7/F2LFjD3uPRqOB2WxOemQSlJwCej6blAAiB93n8yErKwsymQxerxfNzc0oLi5GdnY2YrEYtmzZArfbjezsbJx77rlQKBSor6/HG2+8gTVr1mDHjh1QqVTIz8+HTqdDQ0MDqqqqsHfvXsTjcRQXF+O0005DXV0d3G43FAoFzGazkPYhJ58qzEhKgaUR+hdpFbNSqRTVpxTcbWlpEZI7AER3RGFhIfbs2YNAIACdTofTTz8dVqsVX331FV577TV88skn2Lp1K/bu3Yva2lrU1tairq4O9fX1cLvdIoFJ1Wg+n09oN9Oa4nQ6EQwGk3TdM3ndGCqQXqbUbpRKpaheJgkchUIBu90Ou90uKpNJwoeCexQ8crvdcLlcIhlO7w2Hw3C73XA4HEl+j1qtTpLOkFa7U0cm039IP5d07ajogYIypaWl2LNnD4CeNuNPPvkEoVAIo0aNwvnnn4+XX34ZALBgwQLMnj0bzz//PO69914RYKaqwdraWnz55ZfYv38/jEaj8FNIlmvv3r3QaDRCgxnomR1B/qu0OlVaeMGJzb6HEk0ymQwGg0EEkMlPpFkwfr8foVAIHR0dQlrJ4XAgGo1Co9EI6ROlUokZM2agoqIC06ZNw+zZs7FkyRJMmjQJkUgEGzduFP7bzp07oVKpkrosyBZI7owqnskWepPvytTq1MEwS0RayUxBXSqmAnoSCFRRvHfvXpxxxhlQKpVobW3FlClTYLVaEQqFUFBQgOHDhwPo8TErKioAAK+88kpSwSUxZswYzJ49W7yfjiuFbIS6gOvr6wH0aPNS4oT2PUQmJiOGGqtXr0YwGMS4ceMOkz38d5HL5ViwYAEA4P333z+hPzsdHNcd8JprrkFubi6WL1+OpqYmXHjhhViyZAl+9atfifd8+umnKC8vR3Z2NnQ6HS688EJUVVWdsBNnGObYSK1ipgAvtR5Kh+tQO1kikYDZbMbIkSNRU1ODTZs2icpBm80GrVYLj8eDxsZGseFvampCd3e3aCtzOp04ePCgqDKlagJyqILBINxud1Jrq8fjERqewKEK20wlFAphwYIFmDlzJlasWJHu0zkupJsi0rNUKpXwer0iEeDz+RCJRKDVakVGvqioCG1tbejo6IBarcYll1yCnTt3YvXq1QiFQigsLMTll1+Oe+65B7feeisWL16MhQsX4uyzzxba39u3bxc6ep2dnWITR+3LLS0tIrDc3NwsdM2i0Sh8Pp/QZgUO6Y1nIosWLcI///lPTJ8+HVdccYUYZjiQoCohoOdvTRWi0q+dTqeovm5vb0ddXR0mTpwIk8mESCSCb775Bu3t7RgxYgQuv/xy5OfnIxaLob6+Htu3b8fWrVuxa9cutLS0iE6GkpISTJgwQdhMPB6HVqsV8iNKpVLochsMBhGcoGABgKQ1helbpEkr6b3HaDSitbVVJCh0Op1IVuXn56Ourk4EmE899VSEQiG888472LZtG6LRKLKysjBhwgSceuqpmDp1KkaOHCmqltva2lBfXy+ChiSlEQqFEAgERPUzBR4ikYiw5YEgtzOYIS1V+qyq1WrhP9C9iZKfNDCJgsDhcBgejwcej0dUG9Jzv98v7i2BQEAkHsg/oW4pn8+H7u5uoc0aj8eFlrNOpxOBiXA4nFEJiSP5HoPBJwEOBZlTB+ip1WoRyKN7fl5eHqLRKA4cOACVSoVrr70WH330Ebq6ulBQUIBFixZh+/bteOmllwAA//Vf/4XKykrs2LEDn332GR599FFMnjwZoVAIW7ZsET5HXV2dmCXS2dmJRCKB+vp6UR1JiQdp9T2db29DJ5kTC32GgZ5AHq35VOlOySdKVNHgPYVCIQa/FRQUYN++fYhEIpg8eTJOOeUU/PWvf8Wrr76Kt956CytWrMADDzwAl8uFiooKJBIJVFZWwmAwwOVyiUQDBQjpuBR0Jlmf1I4qmUyWFADNRLZs2YKKioqkWSKpkO619JFJSKuUqTAiGAwiOzsbQE+yqLy8HCqVCt3d3di7dy/OOeccyGQy1NfXC1+DrlFFRYXoBP7xj38MAHj55Zfx8ccfH3bsM888E8ChTi7q9qRgPdkIyXHE43FYLBYx3wboKfCRFkpwkDn9rFy5EkBPLLQvrsdll10GAPjwww8zdm04Vo5r16VUKnHPPfdg+fLlmD9/PqZNm4bly5cnvaekpAQbN24UzuP69et7rd5imExlsDjrUl0fChxGIhGxuabhf1QBoFKpUFpaCoPBgH/961+igpUm4H799dfYuXMn2tvbkwaVBYNB2O12NDQ0oKGhAaFQCPF4HG1tbWhvbxcZfRq6QcMBXS4X5HK52GwGAgHhoFNgIFM5lkx/JjthUt1DuVwunCGqzgCStZgLCwuFcz569Gjs2LEDQM9wHZfLhU8++QRAjxbi7bffDo/Hg1/+8pf46U9/invuuQcPPPAAnnvuObjdbmRlZSGRSKClpQWdnZ1CP9PlciEQCMDr9Qqbok1dW1ub0Gr2+XxIJBJJ0g2ZekPWarV4//33sXnzZtxyyy3pPp3jhj6XVFlIUgU6nQ4ymUxU/FGg2el0Yt++fRg3bpyoaN6xYwd27NgBrVaLyy67DFdeeSUqKiowefJkjBs3DmPHjsXYsWMxevRolJSUiAEpQE+AwWg0QqfTibZ4vV4PuVwuqkUAiHZ4aQIl0xks9xtpNSqtJ3q9Hm63Wwz6y8rKEptym82G9vZ2+Hw+aDQanHLKKfD5fFi9erXokLjwwgvx4x//GCqVCt988w3WrVuHL7/8Eg6HA1arFTabDYlEAq2trejo6BAavR6PB+FwGH6/H36/XwSlnE5n0gY/k4KHQwmqTqV1W61WC31toOdzS5XH1BED4LCgMF3vcDgsdJVJv9/v94vEJbXE0+vBYFAEnGnYoMfjgd1u73XAIGkDZwJH8j0Guk8CIGnAbG8D9FKlB2QyGWprawFAJCT/8Y9/AACWLFkCtVotAgOXXnopbr31VlitVshkMuTn52PBggVYuXIlHnnkEajValRXV4sgVG1trUiuUzKV1gvyf6UBRJ4B0H9I7+/U+QD0dOFR5yQF9igpZTAYUFdXBwCYNGkSvv76awA9drF//3688cYbCIVCmDBhAq6//nqcd955UCgU+PTTT7FmzRoUFBTA7/fD5XIhkUjgwIEDiMViqKmpEddfOmuGAptkK9KB5pk+G2AwzBKhz2EsFhOf32AwiIKCAshkMrhcLrS3t2PGjBki+dDW1oZzzz0XcrkcBw8exLhx40TAuKWlRXTs19TU4OqrrwYAPPTQQ+K+RdCel9Yw0oGWSmYAPfZLxTtlZWVCNkOr1cJisSTJGTLppaWlBZ9//jkAiGt/opk7dy7MZjNaW1vF+jRQOe674DXXXAO/349EIoFVq1YdtombMWMG5s+fj5NPPhmTJ0/GqFGjcMkll/zbJ8ww/cVgaBWiFlLazMViMVHJQ6/RgD6lUomioiIMHz4cdXV12Lx5M4LBIAwGA8aMGYNvvvkG3333HeLxOIqKisTAt2AwCJfLhXA4DK1WC5PJhHg8jsbGRiG34Pf7hc6VXC5HIBCA0+kU6wY5hPQ1gF71szKNY8n0Z7ITRs4LBQgBJDnrZrNZBJWzs7PFZjQvL0+0IcrlcowdOxaVlZUAeqQh5s6dizfeeANPPfUU2traoFKpUFxcjKysLMTjcezatQtffPGFqGz0+XxobW0Vlcwkx0LDXEiaKRQKwe/3iwFgVLUirVZg+g5pNXM0GhUbkHA4jJycHFFB5Pf7UVZWJjRVa2trUVhYiLKyMgA9Vc5VVVX48ssvUVNTA7fbLRLS0mQBHU+n04nhb2q1WgSbtVotFAqFqHCXyWTQaDSwWCxJP2cgaGMOhvuNNGkFHAoCaTQasYmy2WyiasdsNgvdTIVCgZNPPhmxWAx/+9vfEAgEkJubiyuvvBIA8OSTT+Ldd9/F/v374fV6RafDN998g6qqKmEPbrdb6HpTFVskEhF6nHTvc7lcGRk8HEqQXjLQE3yhawX0BAfIr6ChwCSBQd020oGAHo8nSSKFXqc2ebp3eDweIc1BAyTpPXRcoKftvaurC9FoVASGMkle5Ui+x0D3SYDe7+PSivKsrCwAh9aXzs5OUd1sNBpRU1MDv9+P7OxsTJ8+HQCwbds2ABCtyKnIZDJcfvnlWL58OWQyGaqqqlBaWnpYcAo4PLic+nOAzJVAGExIE5pSPXdpgJeKVqhYhq7Z1KlTRbCIOs2+/fZbWCwWPPfcc3j//fdx33334fnnn8eHH36IkSNHor29HVu2bAEANDc3IxaLibVFenySWpGeI9kO2RKQ+dIHxzpLxOVyiQd1J2UK0mSPQqEQf3+S1QF6JLvcbjcqKiqgVqvhdDpht9sxf/58yGQyVFdXY9q0aTj55JPFvueUU05BLBZDfn4+SktL0dHRcVhxAK05BQUF4vjAofWNfCV6rtfrRQGYXC5Hfn4+gGQ7Z9LLW2+9hUQigTPPPBMjR47sk2Oo1WpceOGFAIAPPvigT47RXxx3kPm2224DANjt9iNWCT366KPYvXs3qqurxY2bYQYKA71VSNqqTG1lpF1LwzKCwaCYoDtmzBg4HA588cUXaGlpAQCMGDEC2dnZWLduHTweDywWC04//XTs3bsX//jHP7B161Y0NDSI1vgdO3Zgy5YtIgvr8XhQX18PpVKJWCyG3bt3Q61Wi+E9DodDOAGU5aWvpdXMmcqxZPoz2QmTVoKQE6xSqcS1MBqNIsBbVlYmkgZFRUUiEJ2VlQWVSoX9+/cD6Ekw1tTU4K233gIAXHfddXjnnXfwyiuvYNWqVXj99ddx/fXXw2q1wm63o7q6WiRDqKLR7/eLtnZqdQ8Gg6IKMbU6JNPbDgcTFLAljTuqIA4Gg8jNzRU6lt3d3cjNzYXVagUAtLa2Ih6PY8qUKcjLyxOVRRQwpOE3NJjLaDSKYYE6nU5ILJhMJuj1eqhUKvEatc/T/5GufSqVakD4HgP9fgMgqSuC/v5arVYMbtNqtQgGg2KAqM1mE1Vl48ePh16vx7p160SAaMGCBdi3bx+ef/552O12WCwWLFiwAL/85S9x77334j/+4z8wfvx4oXXucDhgNpsRDAbFOhuPx+H1ehGJRIRsAlW+0lBTqb0w/UM8Hk/6jJJ2NgAxtwE4FJTp7OwU8k0KhQKdnZ0i4KxWq5GVlYXc3FxkZWWJpBMFgUijmTotKLDs8/lEEj4ajYoqakpeURCbgtpA5vgjR/I9BrpPAiCpGpju7TRcGoAIMtvtdtFO3lvA2Wq1JlUyAjiqVFVFRYUYtkT3DapqJ38jVcJDen/J9OpUYqB3zkgTmlKfVavViq/pWuj1ejEYtqGhQbzm9/sxfPhwJBIJbNu2DWazGatWrcL555+fdE3Hjh2Ld999F6eeeqooiIhEImhpaRHddqFQCM3NzWLGCNkqDQIk+5QmvCkRkan+yWCYJSKTyZLWbvJHXS4XrFarCDR3dHTA6/XirLPOgkqlgsPhQCKRwKmnngoA2Lx5swj81dTU4LzzzgMAbN26FXfffTcA4KWXXsJ3332HRCKB1atXY/Xq1QB6fBsAyMnJAZDcEQgcWitIggXoKepRKpVJUpcDoSNvMJNIJPDnP/8ZQE+hbV9y6aWXAujRZR7ICcvjCjI/8MADWLNmDaqqqhCNRvHKK6+c6PNimLQz0FuFaPMkbUmlKi5qE9VoNBg7dizUajU2bNiA2tpaxONx5OTkYObMmejs7MT/+3//D/F4HKNGjUJhYSHefPNNtLa2QqfTYc6cOfjpT3+K22+/Hddddx2mTZsGuVyOmpoaHDhwQGix7tu3Tzj3VIlG7YhdXV1iI0CBRNr8A4eGvmQix5Lpz1QnTPp3pQ05cMgZNhgMYqNvtVqh0+nE72qxWMT7KYFAnw+bzYbPPvsMADB79mxcffXVSRu7/Px8LF68GK+88grmz58PAKiurhZ/l87OTkSjUREEoGCQVGOPNheZsuEfSkirmcPhsKggBXqq/6Q27vP5IJfLUVxcLORYGhsbodPpMHbsWAwfPhwFBQWwWq2wWCywWq0wGo1CD1Wn08FgMMBsNsNgMECr1UKj0UCr1UKn04mBf3q9HjabTWgy0zoiPddMZ6DfbwAktXVSQIaSjUDPukGdEUVFRaivrxeaqgUFBfj222/R3t4OjUaDCy+8EDU1NXjjjTcQi8UwadIk3HPPPTjttNNw4MABrF+/Hk1NTbjgggvwn//5n0Lzub6+XgzraW5uFmsb6cqTRq/UToCedY/Xk/5DOgtCWgVI8l1Az33H4/GIlvecnBwhZwH0VIhNmTJFtMBv2rQJX3/9NbZv347m5mb4fD6hfUrDlTwejxgWRvctj8cjBgvGYjHY7XYRzKaEPAUGyK9KN0fyPQayT0KQbyENqtCcEHqd1nqq9qPf+cCBA2KQ14EDB0Q1IQV6Pvroo6Men9ZVWrekHV8AkgLf0n+lw8UyeUYEMPBlVaTBN6nUm16vF0kGul50fTQajfg9qbPmtNNOw5o1awAAd9xxB0aPHt3r8UwmE15++WWcdNJJYj4NJScTiYRIXpKEDwWXOzs7EQ6HxTlIq98z2T6AwTFLBEDSZ5J8S6AnAZCXl4fy8nIAPVIIarUakydPBtCzV6XBbm1tbTAYDKJAKi8vD3K5HA6HAzNmzMDs2bMRDofx4x//GNOnT8fdd9+NeDyORYsWYd++fQB6BvoBEH6edAAxPY9Go5DJZDCZTEnDTjUaTcYmI4YKmzdvxvbt26HRaLB48eI+PdYFF1wAjUaDmpoaVFdX9+mx+pIfHGR++eWX8dRTT+Gjjz7ClClTcMcdd+CJJ57gycvMoGOgtwqRM0P6dtINdDgchlKpRHl5Ofx+P7766isEg0Ho9XqcdtppOPXUU7FhwwZ8++23AHqqU8PhMP72t78hkUjg9NNPx89//nO0trZi2bJluPnmm/G73/0O9fX1uOKKK1BcXAyv14vvvvtOSCRUV1fDYrFAJpOhpaUFra2tsNlsAHq0W2nSt3TTn+mSGceS6c9UpNVC9PdVqVRiLdfpdMLBIadIOpCRHDXaiEmTAtSa+H2Tdw0GA26//XYsWbIEAMTfT2oDbrdbaGVKW5Vpg0Ebfm5R7V+oOpg2WWazOUk6A+iRVKEEhM/nQ1lZmahA83g86OjogNvtFq2B0spkk8kktJd1Oh20Wq3YHGg0GqhUKqFXl52dDa1WKyQRyFZkMpkYCDgQGOj3G+nnU5q0Sq3GIV1mvV4vOiPKy8sRDAZFK3JFRQV8Ph/efPNNxONxnHbaabjmmmvw7rvvYvHixXjkkUewYsUKPPPMM7j++uvxl7/8Bddeey2ys7PhcDjQ3NwMs9ksZg3QsNBgMCham8lOKBAJIEkfOBMZ6NWHhFQHW6FQCLuX6njn5ubCbrfD5/NBoVBg+PDhaGlpgd/vh1qtxrRp02AymfD3v/8dX3/9Ndrb25Mqob1eL5qbm7F3717s3bsXfr8fBoMBMpkMgUBAVChrNBokEgkhjUE6mna7XdzjUoNWmWAjR/I9BrJPAiSvIySLBfT87aXJy9LSUgBIqhgtKChAJBJBVVUV5s2bB6AnMffee++JoMBbb72FzZs3H/H44XBYJMkpuSH1N+hcgEPBK+qsisViUCqVA6I7YiDLqkj/tjR7gT6jer1eBJLJNug6+Xw+4afQWhEMBkXic+LEid97XIPBgGXLlgEA6urqoFKp4HQ6xaC/cDgMu92OcDiMtrY2kaRqbm4WAVqpbm+m+62DZZYIFRpQFy9VFNMgWJvNJiqcu7q6UFJSIhLlsVgsqXNCaj8kg1FXV4dnn30WZ599NqLRKLq6umAwGPCLX/wCo0aNws6dO4XMG3CoE0Oqzy1Fo9GIbrCBViwxmPnjH/8IAFi4cKEokusrTCaTqJb/61//2qfH6kt+UJB57dq1uPXWW/Hmm29ixowZAICf//zncLvdeOONN/rkBBkmXQzkViGpo06BuNQAXX5+PpRKpdBZttlsmDVrFmw2G/7xj3/g4MGDUCgUuOiii+BwOITjfcUVV6CgoAA33XQT3n77bbS0tCAWi8HpdOLzzz/H/fffD41Gg3HjxiEcDmPbtm0oLCxEIpHAli1bYLPZRLurw+GA0WhEIpEQwU1y/qTZ/0zY1PXGQM70Szdv0q+lG2naPNGGnG6s+/btQ3Z2NhQKBfx+P7q6uoST1tbWJv5fb9WYqVx11VWwWCzwer2YMGECgJ6KAmqDpUdv09ypUj/TnfXBBmkfAxA67waDQdhEPB6H3+9HTk4O9Hq9COJYrVZMmDABJSUlsNls4kF6yxRE1uv1IrBMQWXSYbZarbBardBqtaLlnmSACNJxHkjDlwby/Qbo/bNHiUP6mjb/BoNBVHplZWXBYDBg586diEQiyM3NRXl5OVauXIlwOIwxY8Zg/vz5+PWvf43XX38dgUAAw4YNw7x583DyySdDLpdj48aNuO+++3D++efDZDKhtbUV4XAYarUadrtdnAPJJdAQOKo2DAQCYh3MZH3mwaDbDRxav6UyTUqlUiQss7KyhMayQqFAeXk5mpqa4Pf7odFoRNv62rVrEQgEYLVaMWvWLCxevBjXX389LrnkElRUVGDatGnIy8tDIpFAU1MTtm3bBrlcLoY+0QDB/Px8yGQykfTSarUiAUE+SDQazShZplTf47nnnsOuXbsGtE8CHLqnAxD3EgBJw12DwSCKiooA9PgYVCFYXFwMAPjqq6+gUqlw2mmnIRaL4S9/+Qs++OAD/OhHP0I8Hscdd9yBPXv2HHbsSCSC++67DwcPHoROpxODsBUKBbRaLbRaLcxmM9RqNSwWizhPSkxQYQTdGzO5mnkgy6pI5y2QVjsAcc2AnvWEfj/S/08kEigsLARw6H61Y8cO8drevXuPemxpwoGqnun/03WndYKKNNrb25N0vaW683R+TN8hl8uT5i+QjwngMFmmSCQCuVwuPtN0fwF6kk40eNzlcgkfbcuWLaLSfcOGDfjwww+xdu1auN1u/O1vfwMA/OhHP0JrayuUSqUILtPanLp/UavVSVXMA6lYYrDidruxatUqAMDNN9/cL8ekxOiqVasy9j5yNI55B7ZlyxYsXLgQTzzxBC6//HLxutlsxs9//nP8/ve/z9hqQ4Y5Hgaysy5dkKQVzUCyHEIgEIDb7YZMJsPJJ58MpVKJHTt24ODBg1AqlbjssssQCAREO9miRYvgdrvxyCOPIBAIYPLkyXj88cexevVqvPTSS0Kz6v3330d9fT3GjBmDcDiMb775Rojk00AVAGhoaBA3e5/PlyTpQTd7IHOdsMGS6e+tQtnlciErKwtyuRwejwe7du1CaWkp5HI5Ojs7UV1djeHDhwPoaSMibbNt27aJipCPP/5YOEpHoqqqSjh65AhSNRCQ7IBJJ85Lg+EcZO5/FApFUqCZBuzk5uYKG/L5fEIGA+ipEunq6oLFYkFubm6Sdq9CoRDBZqVSKZxxs9kMm82GrKwsURkdjUaTgpf0XgpMq9XqAeeUD+T7TSrSv700gSXVaZYOAkwkEqKSbsqUKfjmm2/Q3NwMvV6PRYsW4be//S2qq6thMBjwm9/8Bn/6059w77334sknn8SKFSswatQodHd34/e//z0uuugiyOVy7Ny5U1Te1dTUiM0htTOHQiExbJLuOQCS5HgyjcGg251aqSoNlFMlqLTKvbS0FKFQCJ2dnZDJZJg8eTIUCgU+//xzxONxjBw5EgsXLsS4ceOwdetWPPHEE3j66afx2muv4e2330Z9fT1GjBghho7u3r0be/bswaRJk6DT6RAMBlFfXy98ErvdLgIMUpmMTAsyp/oed999N8aPHz/gfRKpbUg7IhQKhQj4Aj0+C1UkFhUVQSaTweFwYPLkyeLz39bWhilTpkCv1+PgwYNoa2tDWVkZXC4X/uM//gPvvPOOSDhVVlbi6quvxtq1a8XPVigUMJvNUCqVsFqtUCgUMJlMkMlkQqZD2n5PwU+FQiFsJVO7fAeyrIpUlkkmk4nfw2QyiWC5wWBI+hyTJAIFnmmeVH19vei4e+WVV0SiS0oikUB1dTUeeughXHvttQCAmTNn4uDBgwAOBZlpL0PnR/NDKOlOdkKa0ZleRDOYoMBuOBxGPB4X/oDP50vaW9A1ke4pqPK4q6tLfO4bGhpw1llnAQDWrVuHDRs2iEHlmzdvxl133YXNmzdDqVTinHPOEUmtM844Q3RXpcrt0DFVKpXwSbiKOTNYuXIl/H4/TjrpJFRUVPTLMS+55BLo9XrU1taKLr+BxjGPqjzllFOOWJX2yCOP4JFHHjlhJ8UwmQA56wOR3qpUCenNkxxgauVJJBLYunUrAOCss85CYWEhXnzxRQDAnDlzUFBQgAceeABATwXqLbfcIpzp/Px8TJw4EbNmzcJvf/tbVFVVwWq1orS0FA0NDdi1axcmTJiA2tpabN68GVOmTEFzczOam5thNBqTKsikgUN6Lg0sMv8+UjsgvS/SFFSr1QiHw2htbUVJSQkaGxtFNUtBQQFaW1vR3NwMk8kEuVyOhoYGjBs3DkDPIIyf/OQnsFqtaGxsxNKlS/HTn/4UY8eOFbbi8Xiwc+dO/POf/8TGjRsB9DhflMwYNmwYnE6neD85ZORspbbRpga12E76B9rk0Wc3EAgIGQuFQiH0TnNzc6FSqdDZ2Qm/35805FMmkwlNZhq2olQqRcUYAFGtTJB+qnQzP9AZyPcbIDnBI11bpMkgacBIqtPsdDrhdruhUCgwYsQIPPPMMwCAefPm4aOPPsKuXbtgNBrx9NNPHzbRu6ysDE8//TTuvvtu7Nu3D6tWrcJ5552Hjz/+GFVVVTjjjDOwf/9+tLa2Ijs7G+FwGOFwWAyZjEajQrLBarUK3WZpoitTOFbd7ocffri/T+2YkVaqSjtRKAFhMpnQ3d2NRCIBg8EAq9UqNAkLCwthMpmwZ88e0fo+d+5cyOVyrFq1SvgudK8IBoPCx8jJycE555yD7777Dh0dHaisrMT555+PLVu2IBAIwOl0wmw2w+12i6CVNPjDycz+QVq5nIpMJoNer4fH44HH40F5eTkcDgfsdjumTZuGLVu2wO12o6ysDH6/H+3t7aKDRq/Xw263Q6VSoaioCC0tLXj44Yfx3//930nBbJVKhfz8fGF7BoNBJE5tNhvUajVKSkqEPEN+fr7QBaYiCbVaLWSCMjWASJ0zEyZMwLfffotHH3003ad0zKTub6QSb5ScMhqNIigeDAYxYcIEbN26FV6vF2q1Gi6XCxMmTMCOHTsgl8uRn5+Puro6zJ8/H+effz5yc3Ph9XpRV1eHbdu2ob29XRx/xIgRaGtrg0wmQ3l5uRh6bTKZ4Pf7k+QZ1Gq1kF1QqVRiHgCdv/T3YfoOpVIpNPfD4bAYDhuNRoUsBXD4ME+aGQEAzc3NmDhxIjZu3IgtW7Zg/vz5OOOMM/DVV1/hqaeeOuyY5eXlKCoqQk1NDYCeOBrZ5+jRoxEKhYQNS/fqarU6aVBkpvkhQ41EIoGXXnoJQE8Vc39dD4PBgIsvvhh//etfsWrVKjGEciAxOHZnDMMcEWmgDjjU0uXxeETmPRQKicouqnwaP3489uzZg66uLphMJlx66aV45ZVXEIvFMHfuXNx66629bgQqKiqwbNkyyOVyrFu3DpMnT4Zer0dDQ4MYnNDd3S3Op7OzU5yHtFIVSNZizlRnfaAiraJIJBIieCENCkajUXg8HmRlZSW1qhqNRshkMng8HlFNtG/fPowePRrxeBzvvPMObrnlFuj1euzatQt33nknLrvsMixZsgRXXnklFi5ciIcffhgbN26ETCbDqFGj4PV6ReCArrvZbBYVs9LpymTD0qFO9Jwdsv6FWomlwzvj8TgMBoMIEvv9fqHpSHYkl8thNptRWlqKnJwcEahWKpXIzs4W/1cqk6JUKoVGMw39YzID6edO+rX0GknXd+pw0Ol0aGtrA9AzyM3lcgk9yylTpuDdd98F0DOUKTXATBgMBvz2t7+FVqvFd999JyRVXC4XDAYD5HI5WlpaxFpF9hQOh8V5UIUtbfYysTNvoOt2A0eeBSCtcqcklMViAXBIG5eqyJqamgAA48aNg1KpxO7du7F161bI5XIsXLgQjz76KH73u9/hwQcfxGWXXQaz2QyHw4H33nsPJ598MtRqNdra2lBdXY0xY8YAgEiaAj3rFVUwSwPiHBTqP+hvTNeB7IO6Yjo6OpCTk4Nhw4YJOaZJkyYJWQSdToeioiIxG0Cr1Qo5J6PRiLKyMlgsFpH80mg0yMrKQmlpKUwmE3JycmCxWJCXlwez2Yz8/Hzo9Xrk5+eLc8vOzobVau01wZbptjKQO2e+728rXV9UKpXwa6nTKRQKiapmmgmzfv163HDDDSgqKkJbWxtee+01/M///A9efPFFrFu3Du3t7VCpVCgsLMSwYcNEArKsrAyRSAQ+nw82m00Eosk/JdkfAEmDs8m3kfqtTN8ilbGh4C75oh6PJ8lXBQ5VpTudTpSVlUEmk6G9vR25ubnIycmB1+vFW2+9hTvuuANXXnmlqHbWarU45ZRTsGDBAiiVSjQ0NEChUGDGjBno7u5GIBBAbm6u+LxRRx9JNAE99iMNMjPpRTrw77rrruvXY1911VUAenSZB2IMhHdoDDMIkTph5BClDilxOBxQKpViI9fc3HyYs9PS0gIAGDt2LFQqlRiYcsMNN3yvYzRjxgxcffXVAIB3331XyGhs3LhR6O62tbVBrVYnDXpLXUTj8XhGtagOJqTtWuFwWATvgB5Hy2QyiUrlRCKRpEeoUqnE90grl65jdnY2XC4XPv74Y1x++eWYPn26cO47OztFEsNgMCAvLw+jR48WgSCz2Yzc3FwoFApYrVYYjUahr6vRaESVNQUnqP1QKrnA9D/kJEtbhKVOPF0fjUaDoqIilJeXY+TIkcjLyxNOtFSHs7fApFwuF8kGJvNIDTLTZ5EkEKRI5SiUSqVYE7KyskRQtLS0FPv27UMgEEBBQQFmz579vccvKCgQg1L+9a9/Yfr06QCAgwcPCs1WssNIJJJ036Fzj0QiSSADSwkAADaNSURBVOedaQx03W4guQpR+tmWtitLh0bGYrHDBtBS0JmCRF9//TWAnu6r008/XdibyWTCzJkzcffdd2PMmDGIRCJYvXo1pk6dCqBH2omSYdFoVGzsKQghPV+mf5B+/ihYDEDIWuTk5IggzP79+zFhwgQh2+X1epGdnY1Ro0ahoKBAaK8WFhaKqmSbzSY0//Pz8zFq1CiMGjUKZWVlyMvLg8lkQn5+PqxWq/h/VEGfl5cnpJjy8vJE8InWE+n5Z3oAcSDLqkglbBKJhAgQ+nw+4XPY7XbEYjGh3b1v3z6RUKL319bWYvr06UgkEli9ejWGDRuGiooKTJ48GWPGjEF5eTnKysowbNgwlJWVCZ+4pKRESGQAELYG9KxJJPVHvk1OTg6cTqeoZtbr9WKehPT3YfoWpVIp/MdwOCySih6PR+yDHQ4HPB6P0Hffv38/otGo6NT87LPPsHDhQsjlcmzbtg3PPPMMSktLcc899+D+++/HokWLEIlEsH37dgSDQRQWFmLixIlobW1FNBpFcXExSkpK4Ha7xbBrAOJctFptUqU772nST38O/Evl/PPPh9VqRXNzMz799NN+PfaJgHdrDDMIkTq2UokBAEISIRKJoLOzU2gR1tbWCs05ADhw4EBSNlda3XUs2VXKwO3du1dshltaWsQi7Xa7xQ1WWi0kJRaLsW5ZH0LXMR6PIxKJwGw2C81B0hY0mUwwGAwiyGs0GmE0GqFWq2EymYSWLg1is1gsyM/PRyQSwY4dOxAMBjF69GiMHTsW5eXlGDNmDCZMmCA2gjTMbdiwYcjNzYXBYEB+fj5MJhP0er0YCKfX60XAOZFIQKFQwGAwJMmscNY/fUi141I32NIkksPhwMGDB1FbW4uWlhahiSetMvF4PElBZ/q/maqVyyTfc+geA0BsrKXvkUqf0MR3oOdaUxu6yWSC3W4H0NOefCzBmvHjxwPoSWBSEMDpdIoqI9INBw6XbaDzpk1oJgYXB3L1IXG0gbOpckfSYD9dO7IRnU6HaDSKffv2AehpRyaam5uxZs0afPLJJ/B6vbjhhhswbNgw+P1+bN68GTk5OYhGo6iurhYV7iQ/QsEf6fnSeaa+xpxYaL1PJBJCeoLsnNaDkSNHQqlUIhAIYO/evSgqKsLMmTPFAMd4PA6dTocRI0ZgxIgR0Gg0sFqtyM3NhV6vR05ODrKzs2EymWA2m2E0GmGxWFBQUCCG0RYWFiI3N1cEmvPy8kTQesyYMRg2bJiQ2SB9eb1eL5LydK/iINGJh6SygJ7OKdqzdHV1idkNgUAAu3fvFrbicDhEIryrqwslJSVIJBJoa2vD6NGjodFo0N3djY6ODqETT4lto9GIkSNHYuLEiSgqKoJCoYBarUZhYSGKioqgVquhUCiEzIpcLhcVqjQjIhQKiaGjQE8hRyKRSApGM30LSWQBPX6mTqcThU5+v1/sTXfv3i0SUrFYDJWVlZg8eTJ0Oh3sdjt27NiBa6+9Fnq9Hq2trXj33Xfx4osv4s0338QXX3wBt9sNs9mMiRMnQq1Wo7u7G0qlEpMmTYLBYIDT6YRCoUBJSYnwj8jvMJlMSTKWmZqkGiqkY+CfFI1GgyVLlgA4FOweSHD6jGEGIbRpk1YyU1Y0FovBbDajq6sLbW1tKC8vh16vh9/vR3V1NcaPH4+vv/4alZWVuOCCCyCXy1FbW4sdO3Zg6tSp2LJlC1588UU88sgj3+tA041TqsUJHNogkmYdcLikB8Etqn0LVSKHw+GkyiGdTodAICAmYatUKpF1D4fDwjH2+XxJshlOpxN+vx96vR5FRUUIh8Pw+/1JGqdKpVL8LJI9UKvV0Ol0oqpMo9FAo9GI16ndlZwuqnSWaqmRrjSTOUgrdWKxGFpaWpIGQZI+s0ajQXZ2NgwGA3w+H3w+H8LhMCwWixgCGI1GEQqFEI/HWacuQ6H1nu47oVAI0WgUWq1WrPsAhHZ3MBiEx+MRA5q6u7tFBZHD4RDJybq6uqSE45Goq6sD0COzQNWu0jZllUol2mGlgU26V6ZK72QaA123G0gOMksh+YxYLCb8AalUDg2Ci8fjwpb0ej0OHDiASCQCk8mEwsJCxGIxvPrqq1i9erU4llwuxxVXXIFFixbh2WefRU1NDX70ox/B4XCguroa55xzDlpbW+F0OkXbcmoCItUXYe3/voECQaSdTvJJbW1tiEaj6OzshM1mw9ixY3Hw4EH4/X40NjZCo9GgvLwckyZNQnNzM+rr68Vnvby8XAyOVKvV8Pl8UCgUSYULSqUSBoMBZrMZOp1OBKRJz5mCijqdDrFYDE6nU9yTaO2gakjypejnMicerVYLn8+HSCQiOt1CoRDa29sxcuRI1NbWwu12Y8+ePRg9ejT27NmDzs5ODBs2DA0NDQB6OmecTifC4TDy8/MRCoVEVbpcLhe+B80A8Xg8kMvlGD9+PBQKBVwuFwAIzW7ybbOyskRCwmQyiaRrYWGh0P8njXfSBmb6Bwr4k5a3zWZDc3OzkJ8Kh8Pwer3Ys2cPCgoKEA6H4XK58M0332DGjBn417/+hebmZtjtdpx//vlCkopsw2AwQKVSCd14ACguLobBYBDPjUYjCgoKhF+Sn5+PcDgMhUIBvV5/mKwKkz7SMfAvlZ/+9Kd47rnn8OGHH6K9vV3Ihg0E+O7HMIMUhUKBaDSKWCwGnU4Hv98PtVotBk9QQKeurg7jx4/HN998g6amJpSUlMBiscDlcuGzzz5DRUUFNmzYgFdffRWzZs3Ct99+i/Xr1+MXv/gFbr/9dtGCJiUQCOCJJ55APB5HaWkpdu3aBaBnCnhtbS2AHgfP5/OJyg/gkEPem74nB5n7BqnmYTweRzAYFEFkcnKolZgCzBqNRlR70Obf6/UiKysLWq0WHo8HMplMSGxIoYpXGjZJweTeXiM9ZpVKJc6TguAUfCCtNZZRSD+UTKJgHW3y1Wo1mpubhf2QTIbH44HL5UIoFEJrays0Gg0MBoMY9Ge325OmxJMdUoUb2R6TGdB1l1YyUxCAgjJyuVwEBYPBIFpaWkRgubGxEaeccgpkMhmam5uRnZ0No9GI1tZWvPLKK7jpppuO+DnftGmT0G+eMWMGNmzYAKCnCpruOVQtT22z0qGE0kGAAFcg9jfSCnLpZ5ruM1TN6nQ6hX3p9Xps27YNwKEq9meffRaffPIJAGDKlCkIh8PYvXs33nnnHdTV1WHOnDn49NNPsWnTJowYMQJ+v18EIP1+P4xGY5L8Aa1ppNdNcJC571CpVIhEIkK7XavVwmazobOzE+FwGO3t7SLQbLfb0drailAohIaGBqhUKhQUFGDkyJFoamrCrl27EIlEhFxGR0cH1Gq1GPJJXVEkxWWxWMQ9x2q1QqlUComO1KG1hFqtRnZ2NpRKZZLePCdD+w6lUikCy8FgELm5uejo6EAkEoHL5cKwYcNgt9vh8/ng9XqRn58vKuHz8/PhdDohk8lEEjIUCkGlUiUlCKTYbDZMmDABJSUl2Lx5sxggOGbMGHi9XshkMmE7CoUCZrNZrFlarRYFBQWIxWKiW0Imk4n3Mv0H7ReCwSCCwaCQ7evo6BAygWq1Gl1dXbDb7WIuTFdXFw4ePIgJEyagoaEBDocDW7ZsET9XWiFNckuUqJLL5QiHw0LXO5FIiEByaWmpuMfl5OQkFWbwnia9pGvgXyqTJk3CjBkzUFVVhddeew333HNPWs7jeOAgM8MMUlKDzFT9Q44ZOdXhcBh2ux2jR49GTU0NGhsbUVZWhv3798PhcECtVmPkyJE4cOAAPv/8c8yePRsbN27Etm3bcMMNN2D06NGYPHky8vLyEIvF0NjYiI0bN8LlckGhUOC8887DRx99BAAYNWoUmpubk6pICgoKhCYnLeJ0c+UqkP6BHJpIJCLa11PlSaiqI5FIIBgMiopiGsgnk8lESyC1MdNmnd5LP0P6oOAyVUsrFAoRVJa2kWk0GiGVIQ0EpbOlbPv27bj11lsRiURw2223YcmSJfjggw+wbNky5Obm4s0330RWVhZuvPFG1NTUYN68eXjwwQfTcq59jVTOQqlUwuv1igovqhZSKBQoLi4WAR2FQgGbzYZQKAS32y0cdEo0kDMeCARgNptFJT1t5CkZwsHmzEBagUqbLpLhoUpVk8kEl8slrldbWxuKi4tRVFSElpYWbNq0Caeeeio2b96Mv/71r7j22mvx4osv4u2338aOHTtw8cUX46STToLFYoHP58P+/fvx+eefo7KyEgAwffp07Ny5U8hkOBwORKNR5OXlibZ2ak8mO6MBotLKZt789w1HksuQfi3daDscDgCHNCspYVBUVASv1yuCzKeeeireffddfPLJJ5DL5bjnnnuEjndlZSWefPJJbN68GVqtFjk5OXA4HCKAvGPHDkyaNAlOpzNJl5kGElLygQKSsVhMJLqYEw8lqAOBAKLRqPhb22w22O12RKNRMYTLZrMhOzsbdrsd7e3tiEQiaGxsRGtrK7Kzs3HGGWegrq4OjY2NUKvVKCoqQjAYFF0xlPSmripKjFMlKiU4pXMf1Gq18F/IdyEbDgaDIgHB9tG3aDQaIfUWCoWQl5cHl8sFr9crBlSTPAEA5OXlwe12i+AyJQ2kRQvUpSDVi8/Pz4fZbIbT6cSBAwcA9ASdy8rK4HA4IJPJUFBQILr1KOFAgWTycVIHGHMQMT3Qeh6NRuHz+aDT6VBYWIiOjg4xQyIvLw/d3d1i/c/Ly0NnZyecTqeYHdPd3Y2urq6k62o0GoW0oNTPsFqtYo8F9CQeioqKRLCZZAHpOSXEmfSRzoF/qdx8882oqqrCH//4R/zqV78aMP4pR3AYZpBCm2bSUjaZTHC73SIwE4lERGsoVQeWlpaiubkZfr8fBQUFcDgcIlhcUlKCpqYmOBwOUQHU2NiImpoa1NTUHHb8nJwcnHTSSdi0aRMAYPjw4Whra4NMJkNJSYnQx6QbvnSzT2g0GhG4Yoesb6EKZQowU9u79AEc2gBKtb4pKEPV8tJgNf1s0tGjYLK0FVH6Lznn9LNJJkMa+KaNYbqDi//93/+NlStXioExS5YswTPPPIPKykp8+umneOmll1BRUQGbzYZXX30VixcvRnNzs6jcHCwkEokk6ZtoNCoqvmKxmEhK5ObmorGxUUgZEDKZTGzsQ6GQaJXWarVQKpWIx+Po7u6GRqMR7aeUwKBgM1U2M+lDOrRLep8JBAIi4AtAbLbMZjPcbje2b9+OadOmoaOjA01NTSgsLBSVi9988w0uvPBCfPbZZ9izZw/27NnT67FlMhmmTp2KRCKB+vp6aLVaFBcXw263Q61WCw1e6o5Qq9WiJRroGURK9xqW3uk7pPcR6YAj2nzL5XKxdmi1WrS1tQHoCeoEg0Hs3LkTQM8w4k8//RTRaBRlZWUIBoP405/+BAD42c9+ljQosqKiAkajEffffz++/PJLXHLJJXA4HNi9ezfGjBkDv98vNvculwsmk0lUtYXDYZHwCgQC0Gg0QsaDK1X7DvIVKIBIwd28vDzY7XZEIhF0dHSIORL5+fmw2WxwOBxob29HOBxGR0cHgB77Gj58uAgqSodr0RpASWz6WurjyGQyEbA8kn4u3Yvo52q1WraNPoaCxQCEnZA9dHV1iYrSrKwshMNhBAIBMUMkEAiImR5UvRyJRMQjFoshHA4jGAyis7MTnZ2dAHoCiRMmTEAsFoPD4RA6y3Tvs9lsSfq6OTk5onsUgJCCY9tIHyRT4vf7EY1GhV0UFRXB7XYLGRSLxYJIJILu7m4oFArk5uYiEAjA6/UKTeeioqJeZwsASJL/o9f1ej2ysrKgUChEVTvJ80ilJLnAKv2kc+BfKldeeSXuuusuHDhwAGvWrMEll1yS1vM5VtiKGWaQQpUUpItJreg+ny+plVmv1ydVdthsNni9Xni9XuTm5kKj0cDhcECn06G0tBTd3d1wuVxQq9UwGo3weDxJgzJoE0/fIyeMNmT5+fmiAtZms4kWaqpIpffR0EFuX+5f5HJ5rwF9SlakZu29Xq9ofacqLwoAUkUPbeRSA8pkB9IKQko8UCafdDoJClBngpP+wgsviOEgMpkM3d3dyMnJgVqtxllnnYWXXnoJOp1OaHnNnDkTmzZtwmWXXXbYz6IqXoKq+wcC1DEBQLQaAhAyKgBgtVpRW1ubtAlXKBRifSLHXqfTwWw2i3ZGCkDHYjERgDabzdDr9WJDSDIvVEHCpAdpYjMSicBoNAqddovFAo/Hg3A4DL1eD6/XKxJboVAI+/fvFxXMra2tyM3NhUKhQFtbGxoaGjBmzBgkEgnY7XY4HA6h12q1WoV2N1Unmc1mZGVlCZsoLi4WgW+j0ZgUSKL7lbSqkW2o75AmCuleQkEehUIBt9uNRCIBrVYLh8OBSCQCjUaDnJwcbNy4EeFwGNnZ2dDr9aiqqgIAnHvuuXjqqacQj8cxe/ZsXHzxxYcdd+rUqfiv//ovPPfcc1i7di3OOeccNDQ0wOv1QqvVYt++fTjppJMQCASEJiv9S8mJQCAAnU6XZONcrdp3SCvIg8GgSDrm5eWJdcXtdsPr9cJgMIgq9dzcXLhcLnR1dcHj8SRVnh/peklnRVAgmXwcGubWG2QH0mGRtK4wfQ8FmuVyufAPFAoFCgsLhZ6uz+cTwV3S0aZuOyqGoGtIfhj5rzREkirW4/G48FVIJoUKKLKzs4WdWK1WmEwmMdgYgBhezaQf2mPS9Y7FYmJWhMFgEHajVquRm5srOupMJpNINJK90ZB0etD+hWxBrVYLXXcAwm8FeuwkOzs7KUFFiRMmfaR74F8qBoMBN998M5544gn84Q9/4CAzwzDph256dEOk6gqv1ysCdaSZqVKpRCbVYrFAo9EIbV29Xg+XywW32w2NRoOsrCx4PB4EAgFRZZoKaedaLBYhiZCTkyOqQSibS8MSqHKF/qXBUMCh4DWTPigArFAoROW7XC6HyWRCIBAQWme9VTHT9SObo6CztMKZqpKpwo2SCwRtAjMhuEzYbDYAwP3334/FixfD4/HAaDQC6HEKvF5vr6/1xmOPPYaHH364f078BCKtYqY1hILuVB1oNpvR1NSEWCwGvV6P4cOHC0eaKgQdDgfsdjsCgQACgQCKiopEFbTL5YLVahXrlcvlQjQahdFohEqlEg46Vbxlko0MJaSJzXA4nDRE1OVyCd3MaDQqXicJnHA4jK6uLowdO1YM0jEYDCguLhYt0EDPkKXc3NxeNXH1ej2MRiNMJhNkMpnYwNG6Rfai1+uTtN5pXaINItM3SLVOpUlI8jsMBgPa29sB9HRC7du3D0BPF5TL5UJ1dTUA4Mwzz8S6desQj8cxceJE1NbWoqGhARaLBbfddtsRP//z589HVVUVNm/ejM7OTsjlcjQ1NWHChAlJ7exUxRwIBGA0GkXrfTweF+3T9P5MuycNJqSyGXQv0Gq1kMvlyM7Ohk6nQ3d3N2KxWNKgLfIrjEYjjEajSD5Fo9GkLi3yTaT6pwqFAjqdTgSFehtGTQl3aXKVjqvRaNhX7WfITqibjrSPtVot8vPzxXwIv9+PYDCYlESk60iBPwoakh8SCAREZ5X0eBaLBXq9XnTbUSJCLpcjNzcXSqVSrGtyuVy8l8kcyG7UarUYck5FLSaTCUajUchhkJyFdIDxkYLB5AfRvjc1aa1SqcSQURqQTAUmLKOSGWTCwL9UbrvtNjz11FNYv349vv32W0ydOjXdp3RUOMjMMIMc2hBRO59SqURWVhb8fr8IykSjUbHJjkajCAaD0Ol00Gq18Pv9QtoiKysLXq8XPp8PWq1WOOtSZzvVaddqtTCZTDCZTKKSjDQ6aXgPVTJLK8yk7ffcXpY5kANFwyyokoSqQUjeQPp+CiLT5q83J0q6WZP+31QJjXSyfPlyvP322+L5fffdh23btqGjowOPPfYYnE6nCKzStGqj0Zj0Wmlpaa8/e+nSpbjrrrvEc7fbjZKSkj78bU4M0gGMNDmdiMfjIggcjUah1WoxZsyYpM0WJbH0ej0KCgrQ2NgIp9OJlpYWjB49GlqtFt3d3eju7kZeXh7UajV8Ph98Pp+Yxk2DXEgXmquF0gdVFFNQyGAwiHuP1+uF1WoVwSCZTIZgMCg24MFgENFoVGhg2u12sRG0Wq0IBAJJXRIARCUyVZsBPW3KVqtVbAK1Wq3YTEq/pmQm0HOf4Rb3vkUaZJbqt5N8Dukxkx9CUhWFhYVYv349EokEhg8fDo1Gg+rqashkMsyfP18k5xYvXiy0m3tDJpPhxhtvxObNm7FlyxYsXLgQ1dXV4n7V1NSEsrIyhEIhUcVIQUWp5q7FYkmSIuPK976DgnjBYBCxWAx+v18EcvV6vQj8BAIBkWzsbaYEdSmkQvJd0g4p8mnp3kb//0jDp0kaKFP8lKGKSqWC0WhMSkoEg0ER7KN9BPkJFFiWBvlIPoGKX2gIcapcHPmxRqNR3Dd0Oh2sVqtYuwCIew7bReZCSQDyU8LhsLg/5ebmikIHmUwGk8kkuuhSE1bSDk263lLddrJDhUIh1phAICBsi2S8mPSSKQP/UikpKcHChQvx1ltv4ZlnnsFrr72W7lM6KuwZMcwghypMw+FwUoUotQ6So0VVHhQopLYyg8EAvV4v9Mk0Gg3MZrOoPpO2rNNmTNp6SAFGnU4nWpVpQy8d8EabCRoQBaR/sBtzZFKHBdJ1BpKDCb1dO6pYln5PWpkoHSaYSdf+9ttvx+233y6ev/fee9i5cyfefPNNAEBWVhY6OzsRDAbx5ZdfYtq0aZg2bRrWrFmDiy66SAyg6g1q5xxo0GeVgsnU9k66qllZWWhsbATQM6zr+6p5VCoVRowYAblcLiqbR44cCZlMBqfTia6uLpSVlUEul8Pj8cDr9Yr2dWpvP1IggOkfpNWHJGNCnSp+v19UgqpUKpEoIO1MqiiS3neoTZUSn71dXwog0KAuCvbQZ4ruRbThlw4cBSCGlWbSWjMY6U2PmYK4qWsG6XcXFRVBJpOhrq4OADBlyhTs3bsXADB69GghwwMAc+bMOeo5DB8+HMOGDUNTUxMsFgsAwOl0ipkVJpNJ2COdK3BI5iMSiQgfh+59/R1k7m3gLLFjxw5ceumlKC0tRXFxMVauXNmv59YX0KA0GqqXOng4NYBIgebe5klIO6tICoWCiL115BGp6440qCSV/GLSi0KhgMFgEMFj2tNIEwYE3XMoCBwMBuF2u4W9hUIhMWdEilKphFarFVWnJNuUqi0v1fVmMh/yA8gPobVBoVAgLy8P4XA4qTgrFelcGenaIEVaEU9IK6qZ9JNJA/9SufPOO/HWW29h1apV+P3vf4+CgoJ0n9L3wkFmhhkCkDMlHZhFTjPdEMk5p6+pFZTa0Kmi2Gw2J1UBpDr0FBgk2Qvp9G1pVlcqj0FaqtIgI32PyVykwwKpzSx1Mybd2NFjsGzIHnroIWi1WsydOxcA8Nlnn+Guu+7C7NmzodPp8N577yE7Oxuvv/46zjjjDJx99tlHrGQeiEg35qRZCvRUjko1lskmeqtWP9LPlf5rsVjgdDqFPqder4fH4xGVJFQZAvSe1GD6F6rqoupD0k+2WCzw+/0iUEfD9ihQRFWsOp1OtChTyzsAUf0jleJJHRRKAWS611CHDH0tbWmn+xRXmvUv0sCftCJd2jLc2toKoKcqXap5m5ubi++++w5AjwwPAJFgogGT3wdJXgAQVezk61BnDp0XVa+m/gsg6X39TW8DZ4ldu3bh4YcfTnptMECVy9LK0lRJrVSkvigFleVyudBRJjk26TGkcyKOlATPtOQ3k4xUroAKa1Kr26UJCHpdpVIhLy8Pfr8fHo9HdFpSZ47Uluhrk8kElUqVtKbxcL+BDSUqqKuXbIgq12n4tPSaH2lfk1pQI/03VUaQyQwyaeBfKtOnT8eZZ56JjRs34v/+7//wyCOPpPuUvhcOMjPMEEHqIJFjRQ9pJapKpRKDbujmKm3vIYdLrVYfdYMl1dtVqVQiKECBbWohSg0uD6ZA5FCANm9DrWqDgh1SFixYgAULFiS99uqrr/bXKaWN1HZiqRZ8dnY2WltbUV9fj+7ublgsFqEDTwGicDgMr9cLh8Mhgk02mw3hcBgdHR0AkCTTIj0urWF0XCb9UHWOVOcSOLQBp0ozCgZQoE96f6HgACWwUivVpRu11KGiFGymZCWtT9L7DSVB+V7TP0iruuhrup7UQQVAdEyRpn1OTo6QRaitrcWwYcMAADt37sTcuXMxdepUbN26FY899hjuv/9+5Ofn93r8WCyG119/HR0dHWLOBABkZ2cjHA6LytbekCYygOQBhv1N6sBZKdXV1di4cSNWrFiBpUuX4oILLjjs/w/UIbPUnaBWqw9bE6QBH0IaRDzSdWWpi8GLVG7tSJBtUKdnLBYTXTGhUEjIsJBvS0lJaWIyVe6ANXUHB0qlUgSbpdXw0mIqKamygDwfZOCRaQP/euPOO+/Exo0b8cILL2Dp0qUZPSiSg8wMMwSRBpyBQxWJFFQmp5ucL9r8K5XKpGrE3pz71KxtansiOX1Sp56es3PGMAMH+qyTNikN/gsGgzCZTOju7kZHRweys7ORk5MDh8MBl8slgjtHQqlUIj8/Hz6fTwSY5XI5bDab0McDIDZ6FDChtYbJDKiijKQFpC3LdI+hjX1qt420Aq23ADNwqHpImsykQHPqwNHedBLZVvoXqawN/e1JboKS2QBgt9thtVrhcDhQV1cHo9GISZMmYdOmTdiwYQOmT5+OsrIy1NfX47nnnkNFRQVqampQU1ODm266CRUVFZg2bRqKi4uhUqngdrtRU1ODzz77TEj3nHnmmdiyZQsACA3o4uJiOJ1OAId3U1BggWZRUNAyHUmt1IGzUiZPnoyrr74axcXFmDdvHs4999zDznGgDpklvi94KL1evRVTENQ9wYGgoQ3ZAe1xSNeb1iWr1ZqUEEutiKb7Ft9PBiek5S6tVpdKQ6Y+mIFNJg78S+XSSy8V/s/KlStx0003pfuUjogswQKGDHPCcLvdsFgscLlcopVzoEFay1LNRBqIkFo1kqp3R/9KH0fK7FLAeag5+YPBRpi+Z6DYCQ31o82aw+EQA/8o4AwcSmxRsJECieSs99bZQOh0uqS2VQBiEGksFhPBSxrIM1QYKDZCUDKCrqPU/ZRKYUgrhig41FsyM1WCJ/V+I+2IkSY4h1IwINNshAI50q9jsZgYgBSNRoU2cywWE1W2+fn5aG5uxoEDBwAARqMRLS0tIgml1+vR2toqgshHQqvVYsSIEWKdKCgogNFohEajwbBhw0SlImlzUseFRqOBXC6H1WoV509SX33tvxxp4GxtbS1eeeWVpPe63W5xnRcvXozly5cjLy8v6T29VTKXlJRkjI30FamSbswPI9PWkr6A1iBal44EzYvpzV8ZygwFG2EGJ4lEAieffDK2b9+OP/zhD7jjjjvSfUpH5Omnn8Yvf/lLTJgwAd99913GrkEcZGaYE8hgusGSlmbqxl6qvdtbBbN0U5/qzEsrzjJ1UexrBpONMH3HQLET0kIFID7X3d3dSesD6dr9EKS67NKgoEwmg16vFxO+6efShm8oMVBs5EhIpTCk7ewUjO4tyCy9z9A9RhpsJqSJTb7fZI6N0OA2qgaktYHkU+j75HvQsCX6v9FoFE1NTUKX1+PxwOl0iueBQAA+nw/hcFgkxpVKpZBpsVgsoro9OzsbZrMZGo0GBQUFYjYEDSimgZU04MtkMon1hgZ7pcOu3nvvPbz33nt48803D0uYXHHFFXj00UcxYsQInH322aisrDxqUiXTbITJTIaanVDHgrRylZKVQylR+UMYajbCDB6++uornHnmmdBoNGhpack4PWYpLpcLJSUl8Hg8WLNmDebPn5/uU+oVlstgGKZXqKKH9KiAnk2etHLs+3JUqVIZXD3CMIMPGqRGlT8ymQxWqxVerzepwljatgzgiEmq3gZESltSlUol4vF40tCmoRhgHgxItdyl2qnRaPQH3Su+r4J5ILB9+3bceuutiEQiuO2227BkyRJ88MEHWLZsGXJzc/Hmm28iKysLN954I2pqajBv3jw8+OCD6T7t44J0dYPBIBKJhFg76HuhUEh0JJA2Mw0VJSmv0tJSuFwueDweyGQyGI1GeL1eeL1eMSDuSGg0GphMJphMJjGMMicnJ0lrlSqYlUqlOBetVpuk+57OwV69DZz99a9/jfvuuw8PPfQQbrzxRiQSCdx7770cDGOY44S6sxiGGfw8++yzAICrrroqowPMQM8w9J/97Gd48skn8eijj+KCCy7ISJ+XK5kZ5gQyWLO4VEFE2pi9IQ0O9VbFzPQwWG2EObEMNDuJxWJJgV8iEomIwOGxkqqte6R1hFpWh2ogZaDZyLEirWDuTQMzNRkx0K//j3/8Yzz11FMYNmwYKioq8NVXX2HOnDn45JNP8Omnn2L79u2oqKjA3//+dzz++ONYvHgxnnrqKRQXFx/1Z2eqjVCiiJJNNP+BqpepMjkcDovBkdRdRc+p6tnr9cLv94tK6HA4nCStQxq+JHmh0WhgNBphsVjEgEhpUJnkMUi+RzockhJdg8m3yVQbYTILthPmaLCNMAORpqYmDB8+HLFYDNu2bcPUqVPTfUpHpbW1FSNGjEAoFML69esxe/bsdJ/SYXAlM8MwR6W34QfS70n/ZRhm6EEVhBTgIVLXjVQdXuJYBqhQcFE6xZsZfKQOph3svPDCC7DZbKIToLu7Gzk5OVCr1TjrrLPw0ksvQafTiUE0M2fOxKZNm3DZZZcd9rN609vNRORyOXQ6ndBnJ2kcqb47DRvWaDRCUkWtVguJlUgkArVaDb1eLyRWKAgtTYhTkJmCx2RbFECmBz2noZQ0GA44NCyS/RyGYRiGGTz87//+L2KxGGbPnj0gAswAUFhYiJ/85Cd44YUX8Oijj3KQmWGYgQ9XKDMM0xvUCi8NBFEl6g9ZN1K1dqX6uwwz2LDZbACA+++/H4sXL4bH44HRaAQAGAwGeL3eXl/rjcceewwPP/xw/5z4vwnJ4CiVStHxQEFeWj9oDZE+7+0h7bSSDiim40gTVDQAkh6UCJO+RhJfQ71bgmEYhmEGKx6PB3/84x8BAL/4xS/SfDY/jLvvvhsrVqzAP//5T3z66aeYN29euk8pCQ4yMwzDHCORSARnnXUWqqqqAOAw3cxM13FimP6AKgeVykMuxtGqmOlfDiQzg53ly5fj7bffFs/vu+8+bNu2DR0dHXjsscfgdDrh8/kAAD6fD2azGUajMem10tLSXn/20qVLcdddd4nnbrcbJSUlffjb/PuQhAVVL1NFt1KpFOuGNIAs/Vr6SA0yE9IOCQoySzsiKKgsleeh9YuDywzDMAwzOHn++efR1dWF8vJyXHLJJek+nR/EiBEjcOutt+LZZ5/FnXfeiW3btiXtu9INe08MwzDHQFdXF84//3wcOHBAvPbMM8+gsrISt912G1566aVe/18oFILb7U56MMxQI1VHl4I6FNjhSmVmqHD77bejsrJSPPx+P3bu3IkVK1YAALKystDZ2YlgMIgvv/wS06ZNw7Rp07BhwwYAQGVlJU4++eRef7ZGo4HZbE56DBRIlkur1UKv10Or1Yrgs0ajgUajgU6ng8FggNFoFAP86Pe0Wq3f+8jKyoLVaoXZbIbJZILRaITBYBDH0Wg00Gq10Ol0XL3MMMyQIhKJYMaMGeL5Bx98gOnTp2P+/Pno6upK45kxTN/gdrvx5JNPAgAefPDBASnR9tvf/hZZWVnYuXOnGF6YKbAHxTAMcwz4fD784Q9/wPjx4wHgMN1Mqm5O5bHHHoPFYhGPTK8qYximb9mxYwdGjhyJOXPm4JprrgHAG7qhzEMPPYSamhrMnTsXc+bMQSwWw1133YXZs2fjiSeewC233IJZs2bBbrfjjDPOwKhRo45YyTxYoKpj0lHW6XTQ6/XQ6XTQarWHPXQ6nQhASwPP0oCy9P/T+6U/lzSYOdnFMMxQ4niLaBhmILNs2TI4nU6MGzcOV111VbpP57jIzs7G448/DgD4zW9+g+3bt6f5jA6ROTXVDJNGduzYgUsvvRSlpaUoLi7GypUrWQqBSaKkpCQpQHysGpkDsX2ZYZi+Y9euXXj44YexZMkS8Rpt6D799FO89NJLWLp0aRrPkOlPvvvuu8NeW7BgARYsWJD02quvvtpfp5SRSLWVjwTJZPBwYoZhmGODimhuv/12AIcX0Xxfp+ZAGDTLMKlUV1fjqaeeAgA8/vjjA7KKmbjpppvw0Ucf4aOPPsIVV1yBjRs3Ii8vL92nxZXMDAMc2vSvX78eK1euBMBZ3KHO8uXLUVFRIR5r165N+n6qRuaR2pIHcvsywzAnnurqarz22muYNWsW1q5de8xdESy9wzDfjzQQLZXh4QAzwzBM75SUlGDy5Mni+Q8ZNMudmsxAIxwO46abbkI0GsWCBQsGnBZzKjKZDC+//DKGDx+O2tpaXHTRRRnREclBZoYBb/qZw0nVzbzggguSvt+bbiYzNLn++uuxfv16AIfLHiQSCfzkJz/BWWedhYcffji9J8pkBJMnT8bzzz+Pv//973jwwQfhcrl4Q8cwDMMwTJ9zoopoli5dCpfLJR6NjY19fu4M8+/yq1/9ClVVVbBYLFi+fHm6T+eEkJeXh3Xr1iEnJwebN2/GmWeeib1796b1nDjIzDDgTT9zfKTqZjJDj127duGDDz4Qz1M7ICorK2Gz2fDll19i9+7daG5uTt/JMmkhdUOnVqtx0kknwWw2Y+TIkdBqtbyhYxiGYRimzzlRRTTcqckMJBKJBJYtW4bnnnsOAPDGG28MqvkWY8eOxfr161FSUoK9e/di6tSp+N3vfgePx5OW8+EgMzMk4U0/c7xQxSrQo5v59ddfY/369cjJyUnfSTFp48knn8R1110HoPdhkFu2bEFFRQUAYObMmdi0aVOvP4e7IgYvqRu6P//5z9izZw9CoRAaGhpgs9l4Q8cwDMMwTEbARTTMQCKRSKCpqQkNDQ1wuVxJcxkAoKmpCVdffTXuu+8+AD1FghdffHE6TrVPmThxIqqqqnDuueciGAzigQceQElJCW6++WZ88cUXiMVi/XYuPPiPGZLcfvvtYsABAFxxxRUYO3YsRowY8YM3/RqNpr9Om2GYDGLz5s0YMWIE4vE4gN517H6Ith3LaQwNHnroIdx4441IJBK49957IZfLxYZOp9PhvffeS/cpMgzDMAwzhEgtokkdPsswmUA4HMb+/fuxfft2bN26FVu2bMHWrVvhcrnEezQaDQoKCpCfn494PI6tW7ciHo9DoVDgf/7nf3DHHXek7xfoY4qKirBu3TqsWrUKDz/8MPbt24cVK1ZgxYoVsFqtmDt3LubNm4czzjgDY8eOhU6n65Pz4CAzw4A3/QzDHJ3ly5fj7bffFs9rampQU1ODp59+GkDvOnaprx2pNWvp0qW46667xHO3283yO4OUSZMm4V//+lfSa7yhYxiGYRiGYZgefvvb36KyshJ+vx9+vx8ejweNjY29VuQqlUooFAqEQiGEQiHU19ejvr5efJ8q86dPn96fv0JakMlkuPrqq7Fo0SJ88cUX+Mtf/oL33nsP3d3dWL16NVavXi3eV1RUBKvVCrPZDL1ej/z8fPzhD39AXl7ev3cOidR6coZhjhu32w2LxQKXy8WtzEyvsI0MDrxeL6ZPn468vDzU1dXBarWisrISF154IT7++GN8/vnn2LJlC2bNmoU1a9bgiSeewKJFi/Dkk08ekwYY2wlzNNhGmKPBNsIcDbYR5lhgO2GOBtsIwzAEB5kZ5gSSSCTg8XhgMpkgk8nSfTpMBsI2Mvh46KGHMGfOHMyZMwcffvghli1bJjogsrOzceONN2L37t04++yzsWzZsmP6mWwnzNFgG2GOBtsIczTYRphjge2EORpsIwzDEBxkZhiGYRiGYRiGYRiGYRiGYY4bebpPgGEYhmEYhmEYhmEYhmEYhhm4cJCZYRiGYRiGYRiGYRiGYRiGOW44yMwwDMMwDMMwDMMwDMMwDMMcN8p0nwDDDBVoIAKTmWTCoAq2kcwmE2wEYDvJZNhGmGMhE+yEbSSzYRthjkYm2AjAdpLJsI0wx0Im2AnbSGbzQ22Eg8wM0094PB5YLJZ0nwZzBFwuF8xmc1rPgW0ks8kEGwHYTjIZthHmWMgEO2EbyWzYRpijkQk2ArCdZDJsI8yxkAl2wjaS2fxQG5ElEolEH54PwzD/P32VoXO73SgpKUFjY2NabhDpPP6JPPZgz+IOluuUzmNngo0Ag3MtGSzHZhvpOwbTvS4T7GQw2ki6j882cuwMluuUzmNngo0Ag3MtGSzrGNtI3zJYbDQT7KSvK5nTda0Gy3G5kplhMhSZTNani4vZbE5rFjKdx0/3736i6GsbAYbudRosNgIM7rVkqB77RMM2MniPf6IYzDaS7uOn+3c/UbBPMjiPfaIZzGtJuq9Tuo9/ohjMNpLu46f7dz9R9Mf9Bkjf32uoHZcH/zEMwzAMwzAMwzAMwzAMwzDHDQeZGYZhGIZhGIZhGIZhGIZhmOOGg8wMM8DRaDR48MEHodFohtzx0/27DySG6nViGzl2hup1Yhs5dobydUr38QcK6f47DWUbHUgM1evENnLsDOXrlO7jDxTS/XcayjY60EjX32uoHZfgwX8MwzAMwzAMwzAMwzAMwzDMccOVzAzDMAzDMAzDMAzDMAzDMMxxw0FmhmEYhmEYhmEYhmEYhmEY5rjhIDPDMAzDMAzDMAzDMAzDMAxz3HCQmWEYhmEYhmEYhmEYhmEYhjluOMjMMAOQ7du3o6KiAqeffjreeOONpO/t2LEDI0eOxJw5c3DNNdec0OOGQiEsWLAAM2fOxIoVK476+omksbERZ599Ns4880z8/ve/F6+73W4UFxdjzpw5+NGPftQnxx6opMNO0mkjANvJD4XXEraRo8E2wjZyLAy1+w3byA+H1xK2k6PBNsI2cjTYRthGjpX+tpV02UhG2keCYZgBxxVXXJGoq6tLRKPRxIwZM5K+t2rVqsSf//znPjnun//858T//d//JWKxWOKcc85JBAKB7339RPLLX/4ysX79+kQikUjMnTs34Xa7E4lEIvHVV18lHnnkkRN+vMFAOuwknTaSSLCd/FB4LWEbORpsI2wjx8JQu9+wjfxweC1hOzkabCNsI0eDbYRt5Fjpb1tJl41kon1wJTPDDEBeeOEFlJWVAQBkMlnS96qrq/Haa69h1qxZWLt27Qk97pYtW1BRUQG5XI5JkyZh9+7d3/v6ieQ3v/kNKioqAACxWAxKpRJAz++7bt06zJo1C3/6059O+HEHMumwk3TaCMB28kPhtYRt5GiwjbCNHAtD7X7DNvLD4bWE7eRosI2wjRwNthG2kWOlv20lXTaSifah7NejMQxzQrDZbACA+++/H4sXL0763uTJk3H11VejuLgY8+bNw7nnnguFQnFCjuvxeGA0GgEABoMBXq/3e18/kWRnZwMA/vjHP2LatGnQ6XQAgOHDh+OJJ57AaaedhnPPPRcXXXSR+PsMddJhJ+m0EYDt5IfCawnbyNFgG2EbORaG2v2GbeSHw2sJ28nRYBthGzkabCNsI8dKf9tKumwkE+2Dg8wMMwBYvnw53n77bfH8vvvuw7Zt29DR0YHHHnss6b3nnXcezGYzAGDkyJFwOBzIy8s7IedhNBrh8/kAAD6fTxznSK+faN5880188MEH+OCDD8RrM2bMgE6ng1wux4wZM3Dw4MEhe4PNBDtJt40AbCffRybYCJB+O2EbOTJsIz2wjXw/mWAnbCOZTSbYCMB2ksmwjfTANnJk2EZ6YBs5Oum2lXTaSMbZR1pEOhiG+bd49913E1dddVUiFosd9r3LL788sXv37kQwGEycccYZvb7neHnttdcS//u//5uIx+OJuXPnCk2hI71+IqmqqkrMmzcv4ff7k16/6667EuvWrUvEYrHEvHnzEna7/YQfe6CSDjtJp40kEmwnPxReSw7BNtI7bCOHYBs5MkPtfsM28sPhteQQbCe9wzZyCLaR3mEbOQTbyPfT37aSLhvJRPuQJRKJRP+EsxmGOVFMmjQJWq0WBoMBAPDZZ5/h17/+Ne677z40NzfjZz/7GRKJBO69915ccsklJ+y4wWAQV111FZqamnDDDTfA5/PhwgsvxMiRI5Nev+WWW07YMYmLL74YdXV1yMnJAQCcffbZWLhwISwWC6699lqEw2Fcd911+M///M8TfuyBSjrsJJ02ArCd/FB4LWEbORpsI2wjx8JQu9+wjfxweC1hOzkabCNsI0eDbYRt5Fjpb1tJl41kon1wkJlhGIZhGIZhGIZhGIZhGIY5buTpPgGGYRiGYRiGYRiGYRiGYRhm4MJBZoZhGIZhGIZhGIZhGIZhGOa44SAzwzAMwzAMwzAMwzAMwzAMc9xwkJlhGIZhGIZhGIZhGIZhGIY5bjjIzDAMwzAMwzAMwzAMwzAMwxw3HGRmGIZhGIZhGIZhGIZhGIZhjhsOMjMMwzAMwzAMwzAMwzAMwzDHDQeZGYZhGIZhGIZhGIZhGIZhmOOGg8wMwzAMwzAMwzAMwzAMwzDMccNBZoZhGIZhGIZhGIZhGIZhGOa4+f8AD4xMuvDd7VIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABZkAAAO7CAYAAAA2h4pYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXzU1dn+f82+zySTheyEfV8VRXbUWkWUaqu1dUPtU9tqfSy19aGKVavCY+3Tauu3pe7aVutScde6IiJUBEGQxQABspJ19n3m8/sjv/twZpKQEJLMJLnfr9e8yDLLIXPP+Zxz3fe5bpWiKAoYhmEYhmEYhmEYhmEYhmEYpgeo0z0AhmEYhmEYhmEYhmEYhmEYZuDCIjPDMAzDMAzDMAzDMAzDMAzTY1hkZhiGYRiGYRiGYRiGYRiGYXoMi8wMwzAMwzAMwzAMwzAMwzBMj2GRmWEYhmEYhmEYhmEYhmEYhukxLDIzDMMwDMMwDMMwDMMwDMMwPYZFZoZhGIZhGIZhGIZhGIZhGKbHsMjMMAzDMAzDMAzDMAzDMAzD9BgWmRmGYRiGYRiGYRiGYRiGYZgewyIzwzAMwzAMwzAMwzAMwzAM02NYZGYYhmEYhmEYhmEYhmEYhmF6DIvMDMP0Ka+//jrGjRuHMWPG4NFHH033cJgM5aKLLkJ2dja+853vpHsoTAZSVVWFRYsWYeLEiZg6dSpeeOGFdA+JyTC8Xi9mzZqF6dOnY8qUKXjkkUfSPSQmQwkEAhg+fDhuueWWdA+FyVC0Wi2mT5+O6dOn4wc/+EG6h8NkIJWVlVi8eDEmTpyIKVOmwO/3p3tITAaxb98+MYdMnz4dJpMJ69atS/ewmAzj97//PSZNmoSJEyfipptugqIo6R5Sr6BSBsv/hGGYjCMWi2HixIn48MMPYbfbMXPmTPznP/+B0+lM99CYDOPDDz+Ez+fDU089hRdffDHdw2EyjLq6Ohw9ehTTp09HQ0MDZs6ciX379sFisaR7aEyGEI/HEQ6HYTabEQgEMHnyZGzZsgU5OTnpHhqTYdx2222oqKhAWVkZHnjggXQPh8lAcnNz0dTUlO5hMBnMwoULcc8992D+/PloaWmB3W6HVqtN97CYDMTn86G8vByHDx/mdSsjaGxsxOzZs/HVV19Bp9NhwYIFeOCBB3DGGWeke2gnDVcyMwzTZ3z22WeYNGkSiouLYbPZsGTJErzzzjvpHhaTgSxevBg2my3dw2AylMLCQkyfPh0AkJ+fD6fTiZaWlvQOiskoNBoNzGYzACAUCiEejw+aihCm96ioqMDevXuxZMmSdA+FYZgBColC8+fPBwA4nU4WmJlOefXVV3HWWWexwMy0IxaLIRQKIRqNIhqNIj8/P91D6hVYZGYYpkckEgmMHz8et956a9LP33nnHej1erzwwguora1FcXGx+F1JSQlqamr6e6hMGulOnDBDmxONkc8//xyJRAKlpaX9OUwmjXQ3RlwuF6ZNm4aSkhL88pe/RG5ubjqGy6SB7sbILbfcgtWrV6djiEwG0N048Xg8OOWUUzBv3jysX78+HUNl0kR3YqSiogJWqxUXXnghZs6cifvuuy9No2XSwYmuW59//nl897vf7c8hMmmmOzGSl5eHW265BWVlZSgqKsLZZ5+NUaNGpWnEvYzCMAzTQ5588knFZrMpLS0tiqIoyvbt2xWbzab89re/VRRFUZ5//nnlhhtuEPe///77lQceeCAtY2XSR1dxQnz44YfKt7/97XQMkUkz3Y2RpqYmZcKECcrGjRvTMUwmjXQ3RhRFUerr65U5c+Yo9fX1/T1MJo10FSPr1q1TbrnlFkVRFOWJJ55Qfv7zn6dtrEz66M5cUlNToyiKouzcuVMpKytT3G53WsbKpIfu7G+cTqdy5MgRJRQKKYsWLVL+/e9/p3PITD/T3TWJ2+1WcnNzlWAwmI5hMmmkqxhpaWlRzjnnHKW5uVkJBALKwoULlfXr16dzyL0GVzIzDNMhX3/9dZf3ufzyy5Gbm4uHHnoI1dXVOP/883HllVeKZjrFxcVJlcvV1dUoLCzsszEz/U9vxAkzuOmtGAmHw7jooouwcuVKzJkzpy+HzPQzvT2PDBs2DFOnTsXHH3/cF8Nl0kBvxMjmzZvx3HPPoby8HLfccgseeeQR3H333X09dKYf6a25pKioCAAwefJkTJw4sVvPywwMeiNGSkpKMGvWLJSWlsJgMGDJkiXYvn17H4+c6S96c03yyiuv4Jvf/CaMRmNfDZdJA70RI++99x5Gjx4Np9MJk8mE888/H5s3b+7rofcP6Va5GYbJPD755BPFYrEo7733Xpf3/ctf/qI4nU5lypQpygUXXKDEYjHxu2g0qowePVqprq5WPB6PMnr0aKWpqakvh870I70VJwRXMg8+eitGEomEctlllym//vWv+3C0TDrorRipr68X1YZut1uZOHGismPHjj4bN9N/9Pa1RlG4knkw0ltx0tLSooRCIUVRFKWqqkopKytTmpub+2zcTP/Rm/ub6dOnKy0tLUo8HleWLl2qvPbaa305dKaf6O3rzdKlS5VXX321L4bKpIneipFNmzYp06dPV4LBoBKLxZQlS5Yo69at68uh9xssMjMM0yF/+ctfujWBer1exWg0KpMnT1Z8Pl+737/yyivKmDFjlFGjRilr167tq+EyaaK34uScc85RcnNzFZPJpBQXFyufffZZXw2Z6Wd6I0Y2bNigqFQqZdq0aeL25Zdf9uWwmX6kN2Lk888/V6ZNm6ZMnTpVmTJlivL//t//68shM/1Mb11rCBaZBye9EScbN25UJk+erEydOlWZNm2a8vLLL/fhiJn+prfmkjfffFOZPHmyMmnSJOVnP/tZXw2XSQO9FSMul0vJz89XwuFwXw2VSRO9FSO/+tWvlPHjxysTJ05UfvrTnyqJRKKvhtyvqBSFW28zzFBk165dmDJlSpf3M5vN8Pv9nf5++fLl+Oc//4msrCxUVlbycaBBBscJ0xUcI0xXcIwwXcExwnQHjhOmKzhGmK7gGGG6gmPk5NCmewAMw6SHsWPHYs+ePZ3+/t///jdWrFiBBx98sNP7rFq1Cm+88QY2b96Ms88+G4899hhuuOGGvhgukyY4Tpiu4BhhuoJjhOkKjhGmO3CcMF3BMcJ0BccI0xUcIydJukupGYbJPD777DPFbDYrjz76aKf3eeSRRxSTyaRs2rRJURRFueeee5SysjIlEon01zCZNMNxwnQFxwjTFRwjTFdwjDDdgeOE6QqOEaYrOEaYruAY6RoWmRmGaUc4HFbeeeedTn//5ptvKnq9XnnppZfEz9xut5KVlaU89thj/TFEJgPgOGG6gmOE6QqOEaYrOEaY7sBxwnQFxwjTFRwjTFdwjHQNi8wMw5wQn3/+uWKxWJQ//OEP7X63atUqZcyYMZ12c2eGDhwnTFdwjDBdwTHCdAXHCNMdOE6YruAYYbqCY4TpCo6RNrjxH8MwDMMwDMMwDMMwDMMwDNNj1OkeAMMwDMMwDMMwDMMwDMMwDDNwYZGZYRiGYRiGYRiGYRiGYRiG6TEsMjMMwzAMwzAMwzAMwzAMwzA9hkVmhmEYhmEYhmEYhmEYhmEYpsewyMwwDMMwDMMwDMMwDMMwDMP0GBaZGYZhGIZhGIZhGIZhGIZhmB7DIjPDMAzDMAzDMAzDMAzDMAzTY1hkZhiGYRiGYRiGYRiGYRiGYXoMi8wMwzAMwzAMwzAMwzAMwzBMj2GRmWEYhmEYhmEYhmEYhmEYhukxLDIzDMMwDMMwDMMwDMMwDMMwPYZFZoZhGIZhGIZhGIZhGIZhGKbHsMjMMAzDMAzDMAzDMAzDMAzD9BgWmRmGYRiGYRiGYRiGYRiGYZgewyIzwzAMwzAMwzAMwzAMwzAM02NYZGYYhmEYhmEYhmEYhmEYhmF6DIvMDMMwDMMwDMMwDMMwDMMwTI9hkZlhGIZhGIZhGIZhGIZhGIbpMSwyMwzDMAzDMAzDMAzDMAzDMD2GRWaGYRiGYRiGYRiGYRiGYRimx7DIzDAMwzAMwzAMwzAMwzAMw/QYFpkZhmEYhmEYhmEYhmEYhmGYHsMiM8MwTD+iKAo8Hg8URUn3UJgMhuOE6QqOEaYrOEaYruAYYboDxwnTFRwjTFdwjAwdWGRmGIbpR7xeLxwOB7xeb7qHwmQwHCdMV3CMDD7uvPNOPPnkk9i0aRNOP/10LF68GJWVlQCA2267DXPnzsWPf/zjbj8fxwjTFRwjTHfgOGG6gmOE6QqOkaEDi8wMwzAMwzAMk0aamprwyCOPAADuvfdevPXWW3j44YexZs0aHDlyBAcOHMDGjRths9mwadOmNI+WYRiGGWx8+9vfxqFDhzpMdDIMw3QXFpkZZojT1NSEvXv3IpFIpHsoDMMwDDMkuf/++3HVVVcBAILBIJxOJyZOnIiKigps27YNc+fOBQDMnz8fmzdv7vA5wuEwPB5P0o1hGIZhjkckEsFFF12E//znPwDaJzoZhmFOBBaZGWYI89vf/haFhYWYMGECTj31VBw4cCDdQ2IYhmGYIUVVVRW8Xi/GjRsHAElJX0VR4PV6YbVaAQAWiwU+n6/D51m9ejUcDoe4lZaW9v3gGYYZUHg8HhQXF2PRokU466yz0j0cJgMIh8P42c9+hrPPPhtA+0RnZ4/hpCbDMB3BIjPDDFFee+01/PKXv0QsFoNarcYXX3yBOXPm4PDhw+keGsMwDMMMGVavXo1bb71VfK9SqcTXarUaVqsVfr8fAOD3+2G32zt8npUrV8LtdotbVVVV3w6cYZgBx+7du/GjH/0IH330Ed5///10D4fJAGw2GxYsWCC+T010dgQnNRmG6QwWmRlmCJJIJPCLX/wCAPCzn/0MR44cwdSpU9HQ0IBly5YhHA6neYSZDXuWMQzDML3Fli1bsHz5cqxZswZr1qyByWRCU1MTdu/ejfLycsyYMQMbNmwAAGzYsAEzZ87s8HkMBgPsdnvSjWEYRuarr77C22+/jQULFuCJJ57o8D5cpTq0SU10dgQnNRmG6QxtugfAMEz/88EHH2Dfvn2w2Wy46667YLPZ8MYbb2DmzJnYsWMH7rzzTqxevTrdw8w4IpEIvvvd72LLli0AjnmW1dfXY82aNVi7dm2aR8gwJ46iKFAUBYlEQlSs0AZDpVIl3ZiTx+PxYMKECRgzZgw0Gg3uuece3HzzzTCbzXj88ccxYsSIdA+R6WfomvLkk08CAMaPH4+lS5dCpVLhmWeeQXl5OUaPHo05c+Zg7NixmDdvXhpHyzDMQKa8vBz3338/Zs2ahXPOOQdLly5FXl5e0n1Wr16Nu+66K00jZNINJTobGhpQXl7e4X0MBgMMBkP/DoxhmAEBi8wMMwT561//CgC46qqrYLPZAAAlJSVYu3YtLr74Ytx///24+OKLMWvWrHQOM+Mgz7LHH38cwDHPMqfTeVzPMrkynKtBmExCURTEYrEkkZluQFsFCwnMarU66XsWnXsGHVVetWoVAGDp0qWcrGIAAMuXLxdfpzb3u/fee/t5NAzDDEZmz54Nk8kEtVqN2bNno7Kysp3IvHLlSqxYsUJ87/F42A5hCLFq1aqkRCfDMMyJwHYZDDPECIfDePPNNwEkb2gB4KKLLsL3v/99JBIJ3HjjjUmeXAx7ljGDC1lgjsViiMfjiEQiIjESCoUQCAQQDAbFz8LhMKLRKKLRqHhMZ7HPdEzqUeXuNNgB+PgywzAMc/LccccdePfdd5FIJLB161aMGjWq3X3Yemdo8uSTT6K8vByzZ8/G5s2bsWnTJowePTrdw2IYZoDBIjPDDDHWr18Pv9+PoqIinHLKKe1+/8ADD8Bms+Gzzz7DU089lYYRDhzYs2xoU1VVhcWLF2POnDlYs2ZNhx7dt912G+bOnYsf//jHaR5teyhJQkJxJBJBNBpFKBRCMBhEKBQSQrPP54Pf7xeicyQSEfdnwfnEoKPK7733Hp566qluJasATlgxTKajKAri8ThisVjS3MjzIpNJrFixAmvWrMH8+fPxne98Bzk5OekeEsMwDDOIYJGZYYYYr7/+OgBgyZIlHR53LywsFMe477jjDm4CeBxSmzN1BFeDDF4efPBB3Hnnnfj000/x7rvv4vbbb8dbb72Fhx9+GGvWrMGRI0dw4MABbNy4ETabDZs2bUr3kJOQrTFisRgSiQTC4bD4t7W1FQ0NDWhoaEBTUxNaWlrg8XiE4CyLzXKFM4vNx2f27Nk444wzoNfrMXv27G4lqwBOWDFMpkE2Q/F4vF3CTbYfisfj6R4qwwiKi4vx4YcfYuPGjbj++uvTPRyGYTKU1GIawuPxoLi4GIsWLcJZZ52VxhEymQp7MjPMEOPDDz8EAJx77rmd3uenP/0p/vCHP6C6uhqPPfYYfvKTn/TX8AYU7Fk2tPnVr34Fh8MBoK0aWKPRJHl0b9u2DXPnzgUAzJ8/H5s3b8YZZ5zR4XOlw7tb9l4moRlo+7+0trYCaKt2DgQCiEaj0Gq1MJlM0Ov1MBqNMJvN0Ov10Gq10Gq10Gg00Gg04m+h0WiEhzNzjDvuuAPnnHMOvvGNb2Dr1q0wGAxdNtgBuMlOf0PiIAmEOp3uuEkAZnAiJ+Pk+TL193LjVEKj0UClUnHSjWEYhhlwUDHNwoULcdZZZ+GGG26AzWZr11ukM7gv0dCFRWaGGUK0tLRg165dANpEr84wGo341a9+hRtvvBH33XcffvCDH0Cv1/fXMDOeJ598EkDbsffU5kzM0MHpdAJoa6Q5c+ZMfPHFF+J3iqLA6/XCarUCACwWC3w+X6fPle5O7rKAEggEALSNeffu3fB6vUn3NZvNyMrKQlZWFsxmMywWSzuxWavVIpFIQK1Ws9icwooVK3DFFVfg7rvvxlVXXYVp06ZxsipDkIXl1OpTRVFgNBrTNDKmr5DnvtSfdSYOy79PJBLipigKVCoVtNq27VU8Hue5j2EYJo0oiiJOmcjJQGpondrYmpKDTPtiGrq2UW+Rd999F9dccw2uueaaDh+f7r0Nkz64JINhhhAbN24EAIwdOxb5+fnHve8PfvADFBUVoaamBi+++GJ/DI9h2kGiTzQaTWpKR/YM3bVmKC8vx/jx4zF9+nRMnz4d//znP3tlfH/729+wbt06rFmzpp3tgdVqhd/vBwD4/f7jWqWkwwpBpVKJMctfk7jW3NwMr9cLnU4Hl8uFffv2Ye/evdizZw92796NvXv3oqqqCo2NjWhtbU3ycg6Hw8KzmfxJM72RaEVFBebMmYOxY8fitNNOw+7du/vkdVKPKnODnfSTSCQQiURE/AaDQVHZT6jV6n6LEaZvka8rZG8h32SrC7LDiMViYi6Tv6Z5jh739ddfY/HixZg2bRoWLFiA3bt3cwU8045zzjkHU6dOxfTp0zF//nxs37493UNiMgy+3pwciqIgFArB5XLB5/MhFAoJize60fXe7/fD6/XC4/GgtbVVPCYSiWTsSRSXyyX2NNOnT8fYsWOh1WrR0tLSa6/hdDqh0WhEMY3JZALQvrdIY2Njh49nm7f08/bbb+PUU0/F1KlTMXv2bOzYsaNfXpcrmRlmCPHJJ58AOH4VM2EwGPCjH/0Id9xxB/70pz/h+9//fl8Pj2GSPCxTjx/L1QcAhCCgUqm6dZT9xRdfxOTJk3ttrP/5z3/w1FNP4dVXX4Verxce3WR7MGPGDDz33HO48cYbsWHDBlxwwQWdPlc6rBBSRXGNRoNYLCb+jlTBHI/HcejQISiKIhbdRqMRDocDBQUFGDZsGIqLixEOh2GxWGCxWBCLxaDX66HRaKAoCjQaTdLrZGKVyPXXX48f/vCHWL58OV588UVcd911GeejzfQuiURCeOmSYChXMNvtdlHdpNPpOEYGOHRt6Ug0oDkptUK5s+eg6xPdR6fTAWg7qXD11Vdj+fLlWLduHa6//no+8cS04/nnn0dWVhYAYN26dbj22muxbdu29A6KySj4enNyBAIBYdVAvUYikYhIIFMFM53A0+l0Yn1KiedIJAKNRgOLxSKqeDOFrKyspOTUAw88gPXr14tTlr0FFdOsW7dO/Gz27NkwmUxQq9WYPXs2KisrkZeX1+6xbPOWXlpbW3HFFVdgw4YNmDBhAtavX4/LL79cnGrvSzi1zjBDiM8//xwAOvWFTeW//uu/oNPpsGnTJmzdurUvh8YMYWijHo1GRZXy/PnzMWvWLDidTkyePBmnnXYa7rjjDlFBBhxrkkZH4fq72uCee+5BfX09zjvvPCxatAi/+tWvsHTpUlx33XVYuXIlysvLMXr0aMyZMwcNDQ2YN29ev46vK6h6OdXSgioVSBiuqakBAOj1ehw+fBh1dXWorKzErl27sH37duzcuRN79uzBkSNH4Ha70dLSglgsllQtIjcFpMrBk3m/FEXBnDlzMH36dJjNZowZMwbTp0/H7bff3qPna2howLZt23DFFVcAAL797W+jsrIShw4d6vEYmfRyvBihOcPn88Hj8cDlcsHtdrdrdEsxajAY0NjYyDEyQCFhOBaLtTsqvXDhQsyaNQt2ux0TJkzAqaeeilWrViUJzCRAk/BAVczBYFDcEokEGhoasGPHDlx22WUA2mLk0KFDvRoj3Iip/+nt6w0AITADgNvt5mr3AQ6vSTIL2kvQtb61tRU+nw9erxderzepupau/y6XCy0tLfD7/VCpVNDr9VCpVIjH4/B4PO3WBydKX8wjMk888QSuu+66XnkugoppXnrppSTbzDvuuAPvvvsuEokEtm7dilGjRvXq6w5VejtGDhw4gPz8fEyYMAEAsHDhQhw+fLhfEpqZlZJhGKbPUBRFTCozZ87s1mMKCgpwySWX4B//+AceffRRnHLKKX05RGYI0VHFslxB9u677wIARo8ejVdffRWlpaVJj73ssstw8OBBqNXqJLFSpVLhtddeS7o/cfnllyORSOD000/H6tWrO8y6nwivvfZau5+lVqzde++9J/UafQkJJ2q1GolEAlqtFnq9XnjPZmVlobGxUSwsDx48CABwOBxQFAUejwf19fVoaWmBy+WC1+uF3+/H8OHDEYvF4HA4YDQaEQqFYDQaxftE1c3k2dwTz1KVSoVPP/0UQNs89f7776OsrCzpPt/5znewf//+Dh+fGiNVVVUoKioSlSoqlQplZWU4cuTIcZvxMZlLZzESj8fh8/kQCASwfPlyUaVPUHLlueeeQ3Z2NgwGA9RqNcfIAIXsLohUz81PP/0UiUQCRUVFeP3115PmhUQigcsvv1zMffLPgbZNfVFREQAgGAyiqqoKBQUFMBgMwqO+t2OEGzH1P719vSGuuuoq0Yz77bff7uVRM/0Jr0kyB0VRRG+RWCwGj8cjbDFSG7XSGhSAEJbj8ThCoRC0Wi1yc3MBANFoNEl87gl9NY8AwKZNm9Dc3IylS5f2aGydIRfTAMDixYtxySWXtOstkpOT06uvm04oPmQP79R9puzj3dN9TEf0doyMGTMGjY2N2Lx5M2bPno2XX34ZPp8Phw4d6rYW1FNYZGaYIcLhw4fhcrmg0+kwadKkbj/ummuuwT/+8Q88//zzePDBB7kBINMjOmqSJP+uo6PJ9fX1iMViGDVqFLRabZJNBjVIMxqNUKvViEajANoqDju60H/88ccoKytDNBrF7bffjquvvhpvvvlmX/13BwS0SJIb9Gm1WsTjcdjtdkSjURQWFiIcDqOhoUEceTObzfjjH/+ITz/9FE888QRaW1tx8OBBBAIBBAIBRKNRDB8+HIqiwOFwwGQyCaGZIAsNet9J9DnRRVpdXR2i0Wi7RRiAE/aST33tTPXhY04MipHS0lIEg0FRzRQKhbBmzZp2m0yKWbPZ3G4+4RgZOHR0XaETGzKxWAyHDx8WMUK2QZFIBMCxRr8ajQbxeByBQEC873q9XtxPtgQigTk1CdobcCOmrkm11uotevN6AwBPP/00AOCpp57CL37xiyG/JhkM8Jok/VAFcyKREAIzzduRSAQej0fsGYC2eZws7xRFQTgchtFohNFoRH19Pex2OywWCyKRCHw+H+x2+0lZZ/T2PAIAjz/+OK666qpet/ToqJiGoATZYEFuEHm8z5q8n5WhBHZvCM+9FSMOhwMvvfQS/ud//gderxfz5s3DxIkThb1XX8IiM8MMEb744gsAwKRJk05IKF68eDEKCwtRV1eHt99+GxdeeGFfDZEZRHTHWzk1Q5zaaGnbtm2YNGkS3G43DAYD7Ha7EEYvvfRSHDhwQAiT8vO/9tpr7S7M9L1Op8PNN9+MsWPH9vWfYEAgi8xUzUzvS3Z2NhKJBIYNGyaqQFpbW1FXV4d77rkH99xzD+bPn48//elPeP/991FfX5/UBIuqbVQqFYxGI8LhsBDt6AgiicvkrX2ifs1ffvklZsyY0eHvTiTbX1paiurqasRiMWi1WiiKgqqqqg4XeMzA4ssvv8T06dPhcrng8Xjg9/sRCoUQCoVw2223oaamRgiPsnVM6jzCMTJwSPVe7mzDR6LDrl27MG3aNJhMJgSDQSEc6/V6XHXVVThw4EBSRTRdhx577DEUFhaKBN3w4cNRW1srXrMvYoT8NjtrxDRr1iycc845WLp0aYendVauXIkVK1aI7z0eT6fVcZlG6joi9Za61gCOif69UWnWW9ebVK6++mr86Ec/QnNz86CqCByK8Jok/dBJjVAoJBKDiURCnLajeZ+uEZFIBDqdDj6fD2azWcyp1H+EhGe73S6ex263i8TiidLb84jf78c///lPfPbZZz0az1CHxGU58aAoitib0E1OXtIaIPXrjq4/Pal47s0YWbBgAT766CMAbZ+NgoICYZ/Rl7DIzDBDBLLK6GzS6gyNRoPvfe97+L//+z8888wzLDIzx4U24nRBThWR5X/lx9DRJPl3dXV14ihyOBxGLBYT2ddnn30W0WgUer0eBoNBeGUSkUhECEZUXUseiM8+++wJfw4GKyTskuALICkJRYJGPB5HJBJBOBxGZWUltm/fjttuuw133XUXbr31VowdOxZ/+ctfkrpay5XJTqcTer0esVhMvCY9r06nE3ESi8U6rDbsjJqaGpSUlHT4uxPJ9ufn52PGjBn429/+huXLl+Oll15CeXk5H0sd4CiKgsrKSuTm5uLo0aOiERDNM/feey80Gg2sViscDoeoYu6oGohjZGCQKjAfbz6hSqS6ujoh3pBAYbFYoNfr8dJLLyEYDKK5uRkAYLPZoNPp0NraKo5bGwwG6HQ6FBUVYfr06Xj22Wf7NEYGYyMmufK8s7VDT6C1gUqlEg2+eio299b1xuPxwOfzifXNyy+/jJycnF5v2MX0P7wmSS/U8yMejyMYDIoKZp/PB7/fj2g0Co/Hg2AwmPQ4nU4Ho9GIWCyGQCAAi8UCs9ks5o94PI5oNAqr1QqdTgePxwObzdajyuHeihHihRdewNSpUzF+/PgTfuxQhvYc8t4ROLbfofVB6nWJ9jayuAwc20/JPW46ayBMgjPdP/Wa1JsxUldXh8LCQgDAb37zG5x55pkYPXr0CT1HT+AuAwwzRKBK5p548Fx++eUAgDfeeEP4XDEMQZt68nqkxki02JMv0PQvNWGix1DjPmo853A48M1vfhOff/45fvKTnwBAklBAF23ZV5iadNDv6flramqwePFiTJ06FVOmTMH69evFMVUGYjEkV3HKxwdzcnJQUlKC0aNHY8KECSgvL4darcaOHTtw0003ob6+HhdffDF+8YtfQKVSoaWlBVVVVTh06BCqqqrg8/ngcrlEsyy5IpBiQV6oU8x0h7lz52Ljxo2iOc7JsHbtWqxduxZjx47FmjVr8Nhjj530czLpQW72M2bMGGzatAk333wzQqFQkmClVqtht9uRm5uL3NxcWK3W424a+ypGUpu5bdq0CaeffjoWL16MyspKAMBtt92GuXPn4sc//nGvvOZgRRYnu0pY0f3mzJnTbh6hOUhRFLhcLgBtwrOiKGhpaRGWP0ajETqdTtz6eh4ZTI2YaJMfDocRCoXE2iG1V4N8/1TbrVRBWr6WkW0JPZaaC/e08WxvXW/cbje+9a1vYcqUKZg2bRoefvhhvP76671u78H0P7wmSS+UJJQbtIZCIfh8PoRCITQ0NCAYDMJkMqGgoEAUn0QiEXi9Xhw9ehQtLS1obW1FY2MjWltbEQgE4PF44PF4RANBagaYuqboDr0ZIwDw2GOP9XrDv8EOVafLAnMikRAn3eha4ff74ff7EQgERJNfsgYMBAIieREMBsXzhcNhBINBUUmfKkbTa9G1jwqhZHozRlatWoXx48dj9OjROHz4cL/NIyqFDX4YZkhQXFyM2tpafPLJJ5g7d+4JPVZRFIwYMQKHDx/Gyy+/jG9961t9M8ghgMfjgcPhgNvtht1uT/dwTgq5OYK8KexoA0j37wwSNEkoVhRFXNiBNh9gq9Uq7h8MBhGLxQC0b8IgV8nSa+p0uh4fbUsH/R0ncvUficDyEbJQKCSsMioqKvDVV1/h0KFDiMVisFqtuP3223HKKafgX//6F/785z8DAEaMGIHhw4dj+PDhGDFiBKxWK5xOJ7RaLQwGg6gSASCOJ3a3ApEZXHNJb5JIJBAMBuF2u0XFYGqlCtA252RnZ8PpdMJms51UhePJcsstt+CCCy4QzdyAtuqk+vp6PPjgg7jtttvwy1/+Es899xx++ctf4qKLLsIZZ5zR5fMOxRiRk1Sdzfl0zaAqJrL0UalUYnMIAHa7HYqioL6+HsAxeyEAolGqLDD3VvOf43HBBRfg0KFDwlaBGjE5HA5cccUViEQiuOqqq3D99dd36/nSFSNUIZjaUIlsRuh97Exw7i5kl0GxIFednWxl81BiKM4lzImR7hhJJBJwuVziX+q90NTUhGAwiMbGRiQSCTidTtTV1YnTKUDbeoD2GGTrptfrYbFYYDKZYDQaYbVaYTAYYDKZYDKZYLFYRJLRYrEMqD1Gukh3jABt+51QKJRUrBQMBkUFPNn+0f6WGgCmkrrvpN5B9LVOpxPXFo1GI/p8yPtkec9D64nBAttlMMwQ4OjRo6itrYVKpcK0adNO+PEqlQoXXXQR/vCHP7DIzHQoLtPFsquGCQRdhMnuQhYTo9EovF6vEJFpMSdDF2rZlkNeBFAlrnx0jheAnUMLo1gsJoQSsrKQG1nQe6bX62E0GnHgwAH4fD6sXLkSV1xxBS6//HJUVFTgvffeQ3V1NYxGI8xmMzQaDUaOHAmXy4Xs7GyRwadFGTX/I+sOem970gyQGZpQUsTr9cLtdosKk4488sxmM3Jzc5GVlQWTyZT2GEtt5qbRaOB0OuF0OlFRUYFt27aJ5PD8+fOxefPmDkVmOhlCeDye/vkPZBCyEEwnJjpCFh7Jl5PmNfKVj8Vi0Ov14jkTiYQQH6hKtj8FZmBwNGJKJBJJcUrXgWg0ikAgkPS+pfotp1Yuy/cjUo8zy9cSet+pYXA0Gk36WU9IHZ88hv6KC4YZypAlBgBxKoKqkyORCFpbW8V+ZdeuXQDaik8cDgc8Hg8ikYiwe9NoNOJaEAqFhEDo9XphNpths9lgNpsRCoVgsVhgtVoRi8WEGM2f98ylI4HZ5/MlVTZT8lneU8qCsCwu016FKpFpTUDPYTAYxDqDPMFtNpuwrJKLeSKRyKAqrmGRmWGGAGSVMXbs2KRq0BOBRObXXnsN0Wh0UGXbmK6RG/mRkCx7Kcs/o6yv3ISHBEqDwSC8zlKho0rklaZSqWCz2WA0Gtvdl4QieXMnC92RSERsXJnuQRtw8k0mr+RoNAqj0Siy9TqdTiQHzGYzKioq0NraimeeeQZffvklbr75ZuzcuRNHjx5FY2MjdDodTCYTqqqqMHz4cHi9XthstqQKABKZZbEbgPg5wxwPmjtcLpfwXSQvRoLEQYfDIaqXM2WOSG3mRtdsoG3u9Xq94tptsVjEZjqV1atX46677ur7AWcwNI+leigSFBPUUEun0wlRORgMik0hCRIqlQp5eXnw+/1JSTidTieEZhYSuw8J+sAxm6tIJJKUEJLXEt1NXKfeJ/X9oCQmvaeU6Far1eJ1jueRmfpaHVWidQbFC8dJ/9DdxERqMoLfn4FJPB4X87NscUA2GS0tLQiFQkmN/yZNmgSr1Qqv14thw4ZBrVYjGAyirq5O7ENoL0InLY1GI4xGI2w2G2w2GxwOB0KhEMLhMKxWq0ieWSwW3iNnICQky+IxWZ+QRQYJ0HSdopNxqXYWQNv8YTabYTQaxT6FriW0V6LG6larVRTUuN1umM1mWCwWcW2g9QYJ0x3NQ6lzWKYX4bDIzDBDANqwnkyzs7lz5yI3NxdNTU3YsGEDzjzzzN4aHpOBpDbh6ehfyt7KmdjOvHSpmjgcDsPj8cDpdCI7O1u8Fi0G5WND1NDP5/OJ48ypgqPcRI6eixaRJIrT/ZiukRsBkueoVqsVCyz5WBgtvElorqurw44dO3DzzTdj8eLFWLduHZqbm5GdnY1Dhw5Bp9OhtrYWxcXFSV2ZySKFBL/UMTBMZ9BGQPZKDIVCYvEfjUZFbOn1etjtdmRnZ2dE9XIqcjO3c889V/ycNig1NTUA2jrJd3bMdOXKlVixYoX43uPxdNiNfiDRUXVoV6ReF1Kfj5JYtBmkKlq6lqUiJ8AACIG5O4Ikk4xcDabX65PEHLIwSW3KRe+/3Fi4IzsNGbpOyUeX6Sg0zQfxeDypnwOteWjeSBUd5TVQKrJgScgiJ1WpyUeomZNHXo/K/wLJvuqE/D519D7IXt78PmU2sVhMVC3L+wiv14twOCy8lf1+P1paWhCJRISI+P7773f6vA6HQ6wfotGoEK+pZ0wgEIDX60UgEIDD4RCFLZFIBDabDYlEAnq9HmazedBUpQ50SGCWT8lQYoJiiPy1ZZ9kWi+QrZY8b+j1epHQANpsHbOzs5OuUVSU4/V6heUKPb9KpRJCs16vFx7O4XBYrCtS7SdToQKuTJyvWGRmmCFAb4jMGo0GF154IR5//HG8/PLLLDIPQkiUTfVATPVVlquLUo8VkbhjMBiSRGGqMPZ6vQgGg/B6vcI2wePxiE2/vOGjn9Hr0tG0440/HA4nVa7RuHvSAXqoQkfD6X2n94TEZlr80MKG3muz2Yyqqiq43W6sW7cOQNvfv6mpCQaDAUeOHBHHEEmwkf0x6bg6cPxj7gwDHKtebm5uhsvlSmpKS597OrpqMpmQlZWVUdXLMtTM7dVXXxXJm6amJjQ0NKC8vBwzZszAc889hxtvvBEbNmzABRdc0OHzGAwGcQxzMCA3CQWOJblOBvnEBgBhpaDX60WVkyxqJxIJeL1ecY2TLYQyMZYyHXo/NRoNotGoEJQ1Gk27v3M8HkcgEOjQ9kZGTooDEH0d5NjRaDSi7wOtYUgAoCPxcvPg1MenkurH2VkcyGsmijWucjw56P2mEwi0vpS/Tl27plYsA+0FZbIJo2QEWeGc6Gc81cKN1qRdCdxM94jFYggEAknJwkAgIKqVQ6EQmpub0dLSArfbjZaWFgSDQdGoj/YJVI1MiefGxkY0NDTA7XbD7XYnvSb55dKJF4vFIoTJcDgMp9MpPudWq1UklthCI/1Qhbm8r6HqZGrYR8kEn88nbDN8Ph8CgUCStZOMSqVCdnY2HA4HVCqVaAZoNptRUFAghGqyUiEROTs7G8FgEH6/XzQPputPJBIRc1Bn0PWN/m/kIZ1pxRO862aYIcC2bdsAADNnzjyp57nooovw+OOP45VXXsFDDz2UUZMZ03M6at6XetwwNZNK2dbUSmG/34+GhgYoigKtVovCwkIUFxdDr9eLY99AmxhCnXkJ8r6UGyXQ4l8+wtTZMaJQKCQWnQaDIWkzy7F6YpCPpbyxV6vVMBgM4ogxvVe0OCKBq7a2VnjbAUBrayvy8vLg8XhQV1eXtMmWRWb6V36v2CqDSYWqTT0eDxoaGuD1etstyE0mk6hWpKOtJpMpY6uK7rnnHtTX1+O8884DANx7771YunQpVCoVnnnmGZSXl2P06NGYM2cOxo4di3nz5qV5xH2PXJFI9NY8LltqdNRUTk56ysInXaO4IrXnyKIfVYBptVq43W6xbtBoNDh69GhSoln27Cf/SvIgl+8nQ/0cKMns8/mgVqtht9uFyB2Px0ViJhgMQq1Ww2g0isekVsHK1z658plIFZ1lqwzy++TkRM8g4Z/+jrKXqeyjnlrdLtugAMc+/3Qigd5Xs9kshEQSCUls7sgWR14bd1VxKCO/fqZekzKVUCgkEspUWOL3+8W/oVAILS0tQmBuamoSfRqoyIXwer2ora0V38+aNQs/+9nPxDq2trYWR44cQWVlpYgFssYAICpdKd5ycnLE+x+Px2GxWISIaTQaO7VBYPoOqkIHjs0fJCKHQiHRRD4YDIom0S0tLWJvSvOLfCpGtsagWNPpdBg+fDjUajUCgQAOHjyY9H0gEIDFYkE0GoXL5RJWKx6PByqVCgaDQSSw5VPB8j6L5gqKIUrCUyU/xVmmwCIzwwxy3G43Dhw4AODkKpkB4KyzzhLVil988cVJi9ZMeiGxJvWYYWfHT+WKHNrU0SLb5XK1E3pisRiqqqpgNpvhdDrh8XgQDAbFposu4qkbdqouoguqPI6O/DVpEUH3o0aCNB6uYu45HXmaUuYdQLvOylT5Y7VaUVtbK+Jk3LhxqKysRENDg8i2pwrNhNyEiRfkjEwikRDd4hsbGzusMJE7wNtsNuGPmMmx1FEzt82bNyd9f++99/bXcNJOZwJzb76HJCzJooCcWJWTmwALzL2FfCqK/uZUqWwwGBAOh1FfXw/g2FqAEkqdicnAMeEOOBY/shVHbm5u0ibfYrHAYrGI+1GlYiKRECIWVbnKDSK72+RYp9PBbDaLMdE1jZL6XM18YpA4RKfnqIKUhD868i6vYwEkiTOUEKeKdjqZRclzn88HjUYDq9UqvNplOzgA7dafx0OuWk49GUjPSTHO80nX0MkGoO3z5Xa7EQgEEAwGhWBIFhkejwfNzc3CSqu1tVXM5ePHj8eMGTPgcDjgcrmwc+dOfPXVV9iyZQs+//xzfPe738XVV18t3pNIJIIdO3bgjTfewKFDh+B2u2EymRCJROB2u8WpFro+UDFNIpEQgjQJjdQ4m68hfY8sMNNpSTk5GQwGEY/Hxd7U5XKJBpFutxuhUEgkQjsiKytLCMlerxf79++H3W7H6NGj4Xa7cfjwYRQXFyMrK0uctqMKeJ/PB7PZLGLIbDYLe5WOTqN1tBeT91/0fyEP6EyAd94MM8jZsWMHAKC0tBQ5OTkn9Vwmkwnf/OY38fLLL+OVV15hkXkAQ9lP2eNQPmKYKjTTxoigzZbb7RY/N5lMGDZsGLKzs6HT6XDgwAE0NzfD5/PBZrOhubkZQJtvFT2GMrckOspVsoTs0RsMBkXlCY1broyiCiRaWHDFUM+Q/2bxeDxp8y6/d6mPoQ35gQMHYDab0dLSgkmTJuH666/Hv//9b3zwwQeoqqqC0WhEVVUVRowYAZfLleTPLcNCM0PQUcajR4+ipaUlyboFaIsV6vRuMplgtVrZE3EAItseyPT2iRRZUJaFKRKnZLsEEgTk0zXMyUHXEfLDpsrgpqYmAEB2djZqa2vR2toqHkPCbapfJQl25LFst9tFc8+jR4+ivr4eTU1N8Hg8GDlypGgAFo1GkZ+fLwTKaDQqnl9uPHg8ZO9mOaai0SjcbrdIegEQz9tZ7wqmPfS3pCPtJChSs0iqYvV4PKKSNbXggYRl8toNBoPCHxVoEwB1Op14n9xuN7RaLSwWi7BXkeeFVEjIlm/Hs0+hanz6F8CgsjnqK+hvRadQyPKAmra5XC74fD7hwRwIBOB2u4XAXFJSghUrVmDixIntnrumpgZ/+9vf8OGHH+K5555DVlYWvvWtbwFoi59Zs2Zh5syZWLt2LT777DPk5uaiubkZwWBQNBC0WCxwu93IyckRvWTIHkGtVidVxwPHkmicZOh9yCIDaPt8knUFCcyBQECIycFgEA0NDfD7/fB6vWhtbU1KMFGVsV6vh9FohE6nQ2NjI1wuF1wuFwwGA0499VR4vV54PB58+eWXmDVrFhoaGlBTU4MRI0bA4XCI1zKZTOLUjMlkEuMJBAKdJjXleYcKeWgPJl9/MqmPDYvMDDPI6S2rDGLZsmVCZB7qXewHIqn+gOTnJB+76apaiHyU5cVxWVkZcnJykhZK9Dx6vR5NTU1QFCVpMaXX65O8LeWGTKmbebLXoPGmjkmuBpEvtJlgtxAOh3HppZeiqakJy5cvx3/913+le0hdIgv7tCmi476yZQpwbOMvex5qtVocOHAAWq0WTU1NWL9+PZYsWYLa2lrs3bsX1dXVGDVqFKqqqjBy5Ei0trbC6XS2G4eiKFzxMcShjZnL5UJdXR0aGxvh8XiEp6LNZoNarRZfW61WIQ5w3AwsOvPB7W1hN1VYJkGxI/GPjrRTVSsnLXoHep/ldQQ1t8zOzsa+ffsQi8WgUqlgs9ng9XpRU1Nz3MqyVIxGI2bPno0FCxZg+/bt8Hg8+PrrrzF58mR4PB5EIhHU1taitLRUHIsmn0y73S6sE2SvZ9l6Qa6SJSi2gsGgqFijGErtFcEcH9kGLRQKCauEUCgkKg0bGxvhdrsRDoeFHy8JRFS5TMlHt9sNu92O3NxcAG3WC1lZWTAajSJRQf0nFEURvrwkMpEAlGqbciLI/Sxk8ZytM7pGtj+hamGaP2hPQw35otEovF4vfD4fEokEysvL8cADD4jEQirFxcW49dZbMXbsWKxduxYvvvgili1blvT+UpwBbXPLqFGjsH//fphMJlE1S3YHZAdktVrR0tIimsKRcCknx4LBIMxms+hJwpw8FBcajSbJXicSiYi9JIm+dXV1CAaDIhFJAnVjY2OS9Z/MlClTMHv2bNTV1aG6uhobN27E5MmTUVRUhNraWmzZsgXz588XdiszZsxAJBIRiRGdTge/349EIoGsrCwxz3UnsRmNRtHa2ioKugAMPZH59ddfx89//nMkEgnceuut+MEPftCXL8cwTAf0RtM/mfPPPx9qtRo7duxAZWUlRowY0SvPy/Q9sj0GbajJZoIWugQ1dKMqI8q0yh7KOp0OWVlZUKvVaG5uRiQSQUFBgcjY030NBoO4UJNgSAIzbdLkamRZ1CSRWKPRwGKxJFWUyJs9eSEobwgzQWR6/vnnce655+L666/HueeeiyuvvDKjfLM6g94XufJKFu/lY+WyEEzvi1qtxpEjR9Dc3Iy33noLe/fuxfnnn4+amhqR8Ver1aivr0dRURFaW1uTTluQwEwLskx4L5n+haqVmpubUVVVhaampqR5KpFIQKVSwWq1isZ+8hF1ZmDRkch7IgKzbMWQ6qUr3ye1gplEKeBY41N6bRaY+wb6G9OGOhAIQFEUmEwmVFRUIBaLwWw2o7m5GQcPHkx6rNVqFZ91s9ks/E61Wq2oTjt06BA8Hg8++ugjjB07FmeeeSZ27NiB+vp67Ny5E6eeeio8Hg+8Xi8OHz6MoqIiOJ1OuN1uxONxtLa2CrHZYrF0O2FNIiKJmlStyn6sJwatS8kvlTx36Vi73+9HTU0NQqEQGhoaRCM4EnFoXWI2m+Hz+USFKdDmxVtWVgaj0QiXywW1Wg2HwyGuG5FIJOl0HY1FRq5epnXoiVpf0PqG1lg8vxwf2QuXoK/9fr8omCGhjvYuAHDjjTd2KjDLLFmyBGvXrhWCo8ViwaZNm/DJJ5/g66+/FsmLb3zjG3jnnXcAAMOGDUNNTU2StztZ81DlKlWqWq1WIQ5SVW0ikYDP54PRaMy45m0DFdkuh2yvyFaH9qfhcBhHjx4VySqv14tYLIampiZh2WQ0GjFu3Djk5uYiFouhuroaBw8exM6dO7Fz506cd955+Na3voXXXnsNu3btwimnnILi4mLU1NRg+/btmDJlCmpqarB7927MmjULBw8eRDgcFgkFmtuysrKQlZXVroGtvJ+i0zterxeRSAQejwdOp/OELHz6kz5bhcdiMaxYsQIffvgh7HY7Zs6ciYsvvrjDSiWGYfqO3haZc3NzMX/+fKxfvx6vvvoq/vu//7tXnpfpW44nMJOXEwBYLBYAgMfjQWNjY5KgA0BszmOxGOrr67F///6k32dnZ2PRokVJnshyMz75gqlWq0WlEHDMOkPuGC5v7NRqdbcy/XLDhExg69atuO6666BWqzFlyhTs2bOn3eeRFpuEx+Pp72F2CAnNJMzIAozRaEyqBKT3l8R9uYqouroalZWVePjhh8UiKBwOQ61Wiypmk8kEl8sFp9OZ9LegjR8LzUMHmmMCgQDq6upw5MgR1NbWIhKJwGazieoNEptycnJgt9szurkfc+J0V2BOTYZ1575yBTNwTByUK6DoRA0LzL2PbM0lNwUmsUin0+HgwYPCIqu4uFhUBpMPq8lkQnZ2NgoKCsSN3qdEIoEvv/xSiEMajQZnnnkmvvjiC9TV1eGLL77A3LlzYTQa0djYiNraWuTl5aG4uBg+nw8ej0eIza2trTCZTDCZTEkVp6lN/mTk00CpSVqma6LRqPBfjkajojrV5XIhFAqhuroaoVBIXBdcLpc44SKj1+uRl5cHRVFQU1ODsrIy6HQ6HD58GFarFcOGDYNOpxO2LOTXbDAYxCkaAKLfBK1fZWsdGY1GA6fT2e1EJ1e3dx+67icSiSSrgHg8LgpUCPrM0b/Dhg3r1mtQ1TpVi/7xj39M2ueMGzcOl1xyCQ4dOoTa2lpotVqUlJQIkZk85idNmoT6+nqxls3Ozhbzl8/ng8lkQk5ODrKyshAIBIQAqlKpYDKZTv6PNcShWEitdKfkQyAQEF7MXq8XXq8XKpUKjY2NOHr0KOx2O6699lqcc8457YqCGhsb8fzzz+Pll1/GW2+9BavViuuuuw6PPvootm7diiuvvFJ4g0ejUWGPUVNTg/Lychw4cABerxcFBQWiulpuIJjaOFbeS+l0OtjtdrS0tCAej4tqedqbxePxjPH77zOR+bPPPsOkSZNQXFwMoC0z9M477+B73/teX70kwzAphEIh7N69G0Dv2WUAbZYZ69evxyuvvMIi8wCABBvZw5hsD8i/jryhamtrkwQ+qlSNRqPw+/3tFvFarRZOpxMGgwFHjx5Fa2srPvvsM5x66qkAjh1Voq/pMVTNLFeMyVXLsif0iQiL8nHrTBEFvF6vqKCwWCxJ1eDE6tWrM9J+JtU2Q17IUPMiORFgtVrbdXSnxVFtba04fgq0Nc2YPHkyvvzySzQ1NWH48OEizqxWK0KhEIDkqkQWmgc/NC/5/X5UVVVh//79QlAAIE5MUOVHfn4+bDYbjEYjx8YAR56zu3MUXRaX5Qrl7jxGbtxGVYgUY7K4zAJz75EqAsmV51RN3tDQAEVRcPToUQSDQXGU+KOPPury+a1WK6ZPn4758+cjPz8f06dPh8PhwOuvv449e/agtLQUM2fOxObNm9Hc3IwvvvgCCxYsED0CGhsboVarUVJSApvNJjw6qSKRmgjK6PV6DBs2rEPbDNn+i/7PQOasTTIVWqOSPRqtV2ntRB67ZNsWi8XE2mLcuHEYPnw4YrEY9u3bh5qaGtTU1GD8+PEIhUI4cuQIcnNz4XQ6kwQ/p9OZVF0IQCQWqEkgVUjb7XZkZWUBQJKXezgcRjweh8/nE78/kf8zc3xUKpVoDir3ciGbE7kIhfYZWq0WsVgMH3zwAb773e92+Rput1sIk6+++ir2798Ps9mM888/H6eddho8Hg/ee+89HDp0CABw3nnnic+1xWKBw+HAkSNHUFNTg8mTJ2Pfvn2iYragoEA0PQ8Gg6iurobD4UBeXp7wDaakWqYIhZ3Z/Q0UG0DaD8r9ZOja7/P5kmxxcnJy8MUXXyA3NxcPPfQQCgoKOnzOvLw83HDDDZg8eTLuuusuvPTSS7j00kuxcOFCfPjhh9i0aRMWLlyI9evXY+fOnfjmN7+J7du348iRIygvLxeWGkePHsWYMWOEBSWdKE4t7iKam5thsViQk5MDm80mGl9qtdok73g6/ZluTvgql0gkMH78eNx6661JP3/nnXeg1+vxwgsvAABqa2uFwAxAZHkYhuk/du7ciXg8jtzc3KTP48mybNkyAMDHH3/cqV8RkznQAlhuSEOLePnYWWVlJcLhMHQ6HRwOh8jqHj58WAiEiUQCer0eTqcT5eXlmDlzJubOnYu5c+fizDPPhEqlQk1NTVKzntQLJgkHsjiZ2jGXOJGFt1x1QseMMgGr1Sp8JP1+P+x2e7v7rFy5Em63W9yqqqr6e5idQkIzfU1/144WQ+SfaTabYbPZkJeXh/LycpSXl2PkyJEYP348CgsLMXnyZJx33nmYOHEiVCoV3G43CgsLAUAs/AAIf0X5+CNvxgYvsVgMfr8fra2t2LNnDzZv3owtW7agqqoqqaLMbDYjLy8PhYWFcDgcLDAPEmiuOV6TP1kkTp0b5Eol+SbfhyojaR4xmUwwGo1CYKbkGAvMvY88d9P7KP9cri53u93Q6XSoqanBnj17oFarMXnyZCxbtgxXXnklrrzySlx88cVYtGgRxowZA4PBAJ/Ph08++QRr1qzBunXrEIvFMGLECMyePRsAsGnTJgBtRRc6nQ4ejwdHjx5Ffn4+hg8fDgA4evQofD6f8HkvLCxMmmcoIU5xQT6bqdAxeBLCMjEBnqnQXE/JbbKUoKIIl8slqsyBNqsVAPjJT36CH/7wh3j33Xfx6quv4o477sC1114LlUqFvXv3Ij8/H2azGU1NTfj6669F88dAIICamhpUVlaiurpaNAULBoNoaWlBc3OzsJAjUaq2tlbYuNntdmRnZwthWe5d0RWyBUQmrW3C4TCWLVuGuXPn4pFHHkn3cARU5asoimiqSU2/NRoNjEajaN5pNBrF6cxnnnkGu3bt6vL5N2/eDAAoKCjAtm3boFarccstt2Dy5Ml44YUX8Oijj+LQoUPQ6XRYtmwZ5syZI0TKrKwsjBo1CkBbI0G3243JkyfD4XBAURTU1dWhqakJw4YNE/sAt9uNo0ePwmAwCLsNsg7KBMjub8OGDXjhhRfEdbKzn2cKqScE5BMlkUgE8XhcNBANh8Mwm81Cp7zmmms6FZhlFi5ciJEjRyKRSKCiogJz5swBABw8eBCjRo0S16R4PA6bzYZ4PI66ujrk5eXBbreLmLDb7SgpKcHw4cNRVFSEYcOGIT8/H/n5+cjLy0N2draIe7/fj+rqasRiMfEzSraRsNxVb6X+4oSvcmq1GitXrsSf//xnMbnv2LEDl1xyCe677z5ccsklADoWBngDwDD9CzX9mzFjRq9+/kaOHInJkycjHo/jzTff7LXnHWhk6iJMRq7YkisuaLNNC3jyn6LuyF9++SUOHTqU1JG3ubkZFRUV2LZtGz7++GO8/vrrePzxx7F69Wq88cYbsFqtKC0tBdCWaCRoY5Uag6mCZerx5Y4e0xlURZKJFa8zZ87Exx9/DEVRsH37dowbN67dfQwGA+x2e9Itk6CKEABJG2yKjVT/U5vNBpPJBIvFgtzcXBQUFGD06NHIzc3FsGHDoNVq8cEHH+DFF18Uj3U4HMjOzgaApCNfJDTLt0xZgDO9AyWIyB5j69ateP/997Fjxw7RMd7r9UKn02HYsGEoKSlBaWkpHA4He50OMlKvVXIzHFkwln9H17NwOCz+pa/lx8td2vV6PRwOB9RqtUgCkv8yebFmqhjY2doj09ckqSIzfZ/qz0wVq1TZ7HA4sGLFCixcuBB79+7FP//5Tzz99NN499130dzcjNmzZ+Ouu+7CD3/4Q0ycOBGKomD9+vV47LHHEI/HMWPGDOj1eni9XjQ1NcFoNIrCCyqUyM3NFZ69TU1NYpx06iorKwvDhg1DcXEx8vLykuwQUm284vG4ED7JYzXTGhJnKrQmBSCs3Wg+AJB04o2g98JsNiMUCmHUqFEwmUyIx+O44IIL8NOf/hQqlQqfffYZQqFQ0jqVbA/kxnGHDx/G4cOHYTAYRFPAqqoqJBIJYbcRjUZRU1OTFNPkx0xCeGcViTK0ViURPVPWNpkqItKpS+CYxR7Z2JjNZjgcDuj1epjNZtjtdpjNZhgMBsRiMdx+++1CRO4In8+Hv/3tb+J1AOCss85CdXU11q5di6qqKuh0OsyePRsrVqwQyStKihgMBmRlZWHkyJEAgC1btqC5uRnjxo3DyJEjodVqEQgEsG/fPpjNZlFY4fV64ff7xVwhV92mm61bt2LevHlJdn/H+3kq4XAYHo8n6dYfHG9NKFtr0ftstVrF57U73t3AsQQBkLx/oT4PRUVFANrsNejr5uZmqFQqcf0hH2igbR4zmUzCBs5ms8Fut8PpdKKoqAglJSUwGAxIJBKor68XNoU0lkQiIebC1D5L6aBHq6fLL79clJJXV1fj/PPPx5VXXolbbrlF3IdMr4nq6mrxYWIYpn/YsmULAGDWrFm9/txUzbxu3bpef+6BQqYuwgi5ajm1IkRu+EdHD2OxGHbv3o3GxkYAbRfKuro67Nu3DxUVFairq0MkEoFWq0Vubi5KSkrgcDgQi8WwadMmvPzyyyL763K5ACRf6MmrV84wy56bJBTIR0y7Eo/oOCVdTGlDmEniwHe/+128++67OO200/Dtb397QDT96whZaJabMlJFgFyJI1c001HUnJwclJeXY8SIEbDb7VCr1eK9njx5MkwmE2w2G4C2RXtubq7YvNPzy0Jzd/xXmcyHmvt5PB5UVlZi48aNeP/991FdXZ30HlssFpSVlWHkyJEoKyuD3W7PiCOBTO9AGzMSe2QbjFRBUq5YJi/LYDAojhuTyBwKhYTfJc0bJD7rdDpROQ8MHIEZGLjVZfL1Qf5erjBLJBJwu92IxWI4cOAAAOD73/8+Xn31Vfzwhz/E888/jy1btgi/5b/97W+45ZZbcNVVV+Hrr7/Gddddhx/84AfQ6/XYu3cvPvzwQ2i1WiEgk8jRUfKbxKvOBB65KRQ1h8vLy0uah6gxEzUIo+u9XMXMSbHOIcGO7EZkSzUAQlRRFEVUDlPi/rHHHkNRURGuu+46/O///q/QHRYvXoxf/OIXMJvNOHjwIDZs2ACfzycEyUAggMrKSuHTbLfbEQ6HsX37duj1epSXlwMAjhw5gmAwiLKyMqjVaoTD4SQLMLVaLQoEQqEQmpqa0NDQII7Cd1aAJ8dIaoPBdNEdETFdAqLRaBSfI7vdLpp+Ul8GKtQwGAzIzs5GdnY29Ho9QqEQ7rzzTjzyyCMizohIJIL77rsPjY2NsNvtovq0oKAAb731FhRFwYwZM/CLX/wCy5YtS7JDoWrphoYGAMCUKVNQUFCAeDyOzZs3o6qqCnl5eZgyZQpsNhsSiQS+/vpr6PV6IUxSA0pa86aOL110ZvfXHRtAoM0K0OFwiBslePoa2dMYSJ536aSSTFNTE8aOHQsAePbZZ7u8dlZVVeEXv/gF/H4/RowYgXHjxgndkxIeFBehUEj8rejUC/WwATq/3qRiMBhQXFws5pimpiZhIQNA2FnKDUzTKTT3aAWl1Wpx66234qGHHsKSJUswc+ZMPPTQQ0n3Oe2007Br1y7RRf7NN9/EN7/5zV4ZNMMw3ePzzz8HAOGP25uQyPz2229n3Eamv8jkRRhw7KihbJMhV0uEQiF4PB7EYjG4XC5RlaFSqXDw4EHs3r0bLS0tSCQSwpfX7Xajvr4eNTU1sNls+NGPfoQrrrgCKpUKO3bsENU7qT7MJBjL1gvkb6fX65MEZWoI2FnjFBLNyauPNiHk/5tp4oDRaMTLL7+MLVu24Cc/+Um6h3NSkNBMVej0NVWiBoNBhEIhIfKo1WrRMdtmsyE3NxfZ2dkoKyvD+PHjMWbMGEybNg1OpxOHDh0SizSz2Qy1Wo2cnByxgSe/w8EoNGd6BWJfQCKCz+dDc3Mz9uzZg3feeQdvvPEG1q9fjy1btohklcPhwMSJEzFhwgQMHz4cVqu1242VmMyG5nO5iZbs1UvXJIoXuqWKyDT/UCNbWSimBmKUxIxGo3C73R0KzHJjt0zlZKrL0rkmIVLFNprH5ZMqNL+XlZVh8+bNwo5x4cKFuOWWW3DHHXfgxhtvxDe+8Q3Y7XY0NjbiwQcfxKpVqzB27Fh85zvfAQCsX79eJDCAtj1sOBwWp63y8vIAtMUIiUSplWyJRAIulwu1tbUiZiwWC4qKimA2m8X94vG4aBhIidZUQT3TYyudyO+TPAcAx6rFNRoNsrKyoFKpMH78eABtf/fS0lK0trbisccew/jx4zFhwgR8+eWXuO+++3DTTTfhX//6FyZNmoTRo0dDo9GgqakJO3bswIEDB5CXl4eysjLE43HRLP2UU04B0NZjyuFwoKSkBABENWtubi6AtspEOZ7NZjNyc3OThGO/34+WlhYhOKeKSnIygpJs6aa7vUTSJSCSgKdWq2GxWGCxWERs2Gw2WK1WOJ1OmM1mZGdni68B4KWXXsKPfvQjbNq0SRTb3Hvvvdi2bRsMBoOoKD7vvPPwwQcfAADOOeccXHrppaIQQmbMmDEAgN27d6OpqQlqtRqnn346SktLoSgKtm7dirq6Ouj1eowfPx5msxmxWAy1tbVCMAwGg0mVqJkQA0Dndn/dsQEE0mcFKDdnpX9p70nXeKvVKj7LiUQCdrsdFosFe/fuxY033oiNGzcmJX18Ph82b96M++67D9deey3279+PrKws3H777YhEIvjXv/4FoK1oRqPRiGuryWRq588fCoXEde9EiiVUKhVyc3PhcDgAtFVJG43GJKFZfk6yBkkHPV6hX3755bj55puhKAqeffbZdkd/tFotfve732Hx4sVIJBL45S9/KbLIDMP0PcFgUPhP9UUl8ymnnCJOLHzwwQdYsmRJr79GppPJDd1oQ5569JiEulAoJI7pNDc3IxQKQaPRoLm5GdXV1QDaFvUejwd79uzp8CK1c+dOvPfee3jwwQcxcuRIHDhwIMkmAzh2oZMb32i1WiESk1/h8S6yJDRQZVuqsEgCAW/e+ge5mYqcNJCTGjIk/tN9tVotIpEI/H6/6Awue7ubzWYMGzZMxK3D4UBra6uIGYPBkJSdHwiiUFdQBeL111+Pc889F1deeeWArXjvDrSxI4H566+/xvr167F169akWEgkErDZbDjllFMwefJklJSUwGKxsMA8SJBP2QAQR4U72xSR+EinXsiWgIRlGaPRKASlcDgsxGm5oSjQXmAeCFWmJ1NdlolNZum9oPeVvgaA0tJS/PWvfwUA3HLLLR2uNSORCF5//XX89a9/xaZNm/D0009j+fLleOmll+Dz+VBfXy8qTu12O/bv3494PA673Y6cnBwkEgkcOHAAkUgEer1eCM+KoiAQCIjrDwBRHUmberofXdMoKWK325P2xpkkMmdq0y56z9Vqtaj4SxWZFUVBQUEBXC4XioqKoNFoUFdXh6uuugr33nsvNm/ejHA4jD/96U/C+qAjiouLkZubC5fLhS1btmD48OG45JJL8K9//Qtbt27FKaecgvLychw6dAgVFRWYPHkyqqur4Xa7RRV1c3MzotEoWlpakjQOnU6H7OxscWqQEmKJRAJ+vx9+vx8WiyUpCUEe8JQES7elSnd7iaxYsUJ87/F4+k1o1ul0ogmgyWRCOByGxWKBoijCA5n2QPSZpErhQCCA2tpa3HXXXSguLhanNvV6Pb7xjW/g888/x9ixY4UFweTJk7Fo0SJ4vV5s3boVR48eFa9TVFSE0tJSjBgxQpzEWrZsGdRqNU455RRoNBocOnQIO3bsEA1Cy8rKsHfvXjQ1NYmqeEqw0PyQKQUUZPc3adIkbN++Hffee+9xf56K7DXdn9DfUa5elpvPA8eukZR82Lt3L5YtW4Y333wTBw8exKpVq6BWq5GdnZ3UXJQ4/fTTcdNNN6G5uRm///3v0djYCJPJhCVLlqCxsVEI6nJfOvoc0Ynh1OtEd1CpVMjJyRF+8i0tLSgoKBAnJjweD5xOp/gM0Gekv9c2PV6l33jjjQDaSrU7++NceOGFuPDCC3v6EgzDnATbt29HPB4XHnK9jVqtxre+9S08/PDDeO6554akyJzJizDKmtIGXq7gikaj8Hg8SCQSaG1tRSgUgsFgQGVlJVpaWqDVamE2m7F+/XqxsRo1ahRmzZqFkSNHwmq1orGxEX//+99RV1eHV155RVQV0KaWRGO5+kT2JSRPOxK9O2rcRRYeHS22aMEo+wMz/Ueq0Awkv8d0H+DYYpner1gsJoRnsjuJxWJQq9WiiqS5ubnDI2QkPKtUKuEpTvE0kI8hb926Fdddd11SBeKMGTOS7kObVSIdFYi9QSKRQCAQEE23tm3bho8++gh79uxJSh5kZWWhvLwcp59+OqZMmYKioiKYTCYWmAcJssBMt1ShWP48k2BDR0B9Ph8CgUBS9WNWVhZ0Oh38fj9CoRCqq6sxevRocb2hjR0lu+RTMwNFYAZOrrosncIQkVqlKieSKQZIZKypqUEsFsO0adM6XWfq9XpcfPHFyMnJwV133YWXX34ZV199NbKzs1FfX4/a2lpEo1FotVoYjUYcOnQIADBhwgQAbY2afD4fNBoNRo0aJa5TlIAH2mImOzsbZrO5XVz6fL6kSmmr1dpub5wpXrtAZiY1ZS9m+vsDx4RnWlPKlhSxWAx5eXmor68Xp+gURcGqVavw7rvvAgCWLl2KmTNnIhgMorq6Gl999RW++uor1NTUoKamBqeeeipisRgOHz6MXbt2Ye7cudiwYQO2b9+OSZMm4dChQ3C5XMJKheYbSkbU19ejqakJJpMpqaqdxmoymWAymURi1e/3i4RELBZDdnZ20im+TKE7ImK6BETCbDaLdWB2drbYSwDHGr0lEgk4nU60tLSIQgfybKZTmUDbaanbb78d69evB9B2AnjHjh0AgNmzZ8Pn8+G5555LOrnb2NiI/fv3J41JbnquUqkwdepUVFdXIxgMwufzCSsPKrAIhULCyoOEcgDiBGq6r0nf/e538b3vfQ9PPPEErrnmGvzxj3/E+eef3+7n6Z4/UqHPEu0PyL5IFpgVRYHNZoPX68Xw4cNx+PBh7N69GwsXLkQ8HsemTZvQ3NyM5uZm8byFhYU49dRTMXXqVASDQTz22GOiMMLhcOCaa65BJBLB22+/DUVRMGrUKKjVatTV1QEAioqKEAgExHPm5eVBURR4PB54vV4x3+n1enEKlOxhZFQqFZxOJwKBgJj77HY7WltbhQ0YNRukuTW1d0Bf06OV+qpVq/DGG29g8+bNOPvss/HYY4/hhhtu6O2xMQxzEpBVxqxZs/rsInX55Zfj4Ycfxr/+9S/8+c9/FhfHoUKmLsJosy7bZNACV1EUsQkNh8MIBAIwGAxobm5GS0sLHA4HtFot3nnnHQBtmdorr7wSo0ePbvc6oVAIf/7zn1FZWYn8/HwAx454yf55JAoajUax0KKGS1RhFggEkjZvZIsgo1arxU32dmbSAwnNtJBP9UAj6P2i+1BFAfmqajSapA247EWXetQYgGjoI4tLwDHhaCDGxUCtQDxRqLFSS0sLqqqqsHHjRnzyySdJPTwAwOl0YtasWZg9ezYmTZqEwsJC4bvIDHxkG6fUamYSfmneIGsn+ebxeBAMBtHc3Ay32y3mgezsbJxzzjlQFAV79uyB1+sFcMxLN5FIiGSWRqMZkAIzcHLVZekWhjqioyaAlFA7cuQIgDabjK6YP3++qFRsaGgQz0EJuWHDhokGbtnZ2cjLy0NtbS3cbjdUKhVGjx4Ns9kMv9+fZIPgcDiEMCQTjUaF/zIAISimxpL8/8uEOMvEpCa973Kimk69AcmViXICm8b12WefiZ+9++670Gq1uOeeezq06nS5XHjxxRfxyCOP4PPPP8fFF18skp0///nPAbTZYMhCVUfvm8PhgM/ng8/nQ1VVFXJzc0VCS06cW61WYR1mNBoRCoXQ2toq/sYk0Ml/g3ST6SIi0PZ3os8rCYZUvUkCG61PHQ6HsERwu90IhUK46KKLMGrUKESjUcyaNQtWq1XYpdTX1ydZte3YsQOhUAg5OTk47bTTxMnPqqoq1NXVIR6PQ6PRtLOnJH954FiihHx0g8EgotGoiIlAICCq29MlDKZCdn8d0dnPMwH5M6TX6xGNRqHT6aDX6xGLxWA0GhEIBJCdnS3muTFjxghvdqAtuUAnFGhOcrlcqKurS7L9MBqNOOOMMzB16lTRwwgAcnJyMH36dGzbtk2cwLBYLOL3WVlZMBgMqK6ubufBTWsdl8sl4sVgMIi1EZ2KAI6dFFapVLBarXC5XAiHw7DZbNDpdKKQJ+NF5kcffRS/+93v8MEHH2DatGm4+eabcf/99+OHP/whN2BhmAyiL/2YidmzZ2P06NHYv38/Xn75ZVxxxRV99lqZSKYuwmihKnflJn9D8qZUqVQik1pUVIStW7dCq9VixowZeOCBB6BSqXDjjTdiyZIlnS546SJrsViESJRqoWAymYRgZrFYROWyy+USVUHkRUZWCLJ4KPv+ZsLCm0mG3mu1Wp20kZZFYdqg0f0o6UCicGqDL3peuTKZfkfdl1UqFXw+X1IyQt6YDrRYGSgViD2FNkxUvbxv3z6sX78en3/+eTtBPT8/H6effjpOP/10jB49Gvn5+WJzMNDe194kU4+49wT5My8LzHq9PimRoChKUkM/n88Hj8eDhoaGJBGQxKDW1lZ8/fXXolEXVUQ2NjYmJTvpaPpAFJiBgVtd1lkiUr6+p/6OKprJg/J4BAIBcT2Ix+OiqpDmmKKiIrFuGTFiBILBIOrr6wEA5eXlsFqtIgkGtAnycl8AGbL7Adri7Hg+8XKFfibEWqYnNeXrPiWkCdlKgoQ5lUqF//znP/D7/WhsbIRarcb999+PxYsXd/j8WVlZ+MEPfoCCggKsWrUKn376KaxWK0KhkDgSr1arxd9F9lQFkkWdoqIi1NTUiNfuCI1Gg6KiIlGIYzQaYbFYxIkLo9EoxFEAGZFMPZ64mElQFXA8HhfrKLPZDI/HA5vNhnA4jKysLLGv8Pl8cDqdaGhowIcffogJEyZg3rx54vlmzpyJDz74AJ9++inOOussHD16FLt27RKV7FOnThVFNyUlJRg3bpy4jlksFtFQ1ufzoaamRjQvpZNYQHICh9Y2LpcLPp8Pubm5MBgMopntQLw+ZQK0xyDxn6wZqXk90DYPtLa2YtiwYaivr0c0GsX48eMRjUbx9ddfi9MOHWG1WjF69GiUlJRAp9OhqqoKb7zxhvj9mDFjUFBQgO3btwNou36NGDECFRUVwpbJ4XCguroaiqIIWw6z2ZzU4yYQCIiK9876X+Xk5CSdKAWO7Yfk7/u7Mv6EZrG33noLN9xwA5599lnMnj0bAPDTn/4UDzzwAJ555hlce+21fTJIhmFOnC1btgDoW5FZpVLhiiuuwJ133omnnnpqyInMmboIS60QA9o3kTCbzeJoGW3Epk2bhs2bNwNoszs6//zzO32N/fv3i2pnrVYLRVGQn58PlUoljrTrdDohMssX0dbWVtFBnrwNQ6GQyLTKAjMvsAYOJAx3hHwknqo0Uo/KU9x2BFVBJxIJeL1e0UjQ5/MJGxhZ4B5ocTNQKxC7A1WitrS0oLq6Gtu3b8dHH32Effv2tZuXysrKcOqpp+KUU07BiBEjkJOTA71eD4PBMKDez74gE4+49wT5lA3NAVSpI88f5IdLArPL5UJrayuqqqpEIy2VSoUpU6bg3HPPxSeffIKDBw+KhkpA28ZusAnMwMCtLkuF3m8SAfR6vRB0DQYDAoGAEEO3bNnSqWhIvPTSS1AUBeXl5Th48CAAiN4hQNsJiaamJmi1WhQUFAjbDGoMFgwGhcBss9mSrAwISnyQ+K3X62G1WjuNIzkRmikJ0ExMaspVw/R1PB4XcUDXinA4LCryqIqZrLvoPbn22mu7jBXg2P6osbFRWF3Q+09CJH1NR9KpUbU87oKCAiEmElT57vf7EY1GUVdXl3QikIQuKgqh/9/x1lFMe2heJ/sR6uFhNpsRCASE5zqd5IzH4wgGgygqKkJtbS0effRRZGVlYezYsQCASZMmiTmD3ptdu3bhtNNOAwDx+G3bton46Ir8/HzMmDEDgUAATU1NaGhoQCKRgMViEcIzVTPX1dWhsLBQFOT4fL7jzi9M5+h0OtHjwWQyIRAICJu+eDwOnU4Hu90u5jay3VGpVDjrrLOg0+kQCoVEYRatRSkBdfToUezdu1e8nkajwfDhw4XXO61DCgoK4HQ6xTVJp9PBZrOJucZkMiE/Pz8puWQwGERlfjQaFeMgC0naH9tsNjEfUuNZ4Ni1Jp02Td0Wmbdu3YpLLrkE999/Py6++GLxc7vdjp/+9KdYs2YNrr766rQb1TMM01alQBNfX4rMAHDVVVfhrrvuwnvvvYd9+/Zh3Lhxffp6TNfIYl3qv3KTEfo5HdOxWCziokdduztiy5YtuP/++xGNRjF27Fg0NDSIRjdA23VBpVIhPz9fLJzp2kC+hi0tLaKqWr5uyGMfqALAUEP20ezMI1uuVKOjXrQAovf8eBsr2a+TxKdIJAKLxSKq11I9nAdS/GR6BWJPofeqoaEBBw4cwKeffoqNGzeK6kFCrVZj7NixmDFjBiZPnozi4mJkZ2fDYrG0Ex+HKpl4xP1EkRu3yp6THQnMwWAQfr9fNLYhb926urokj8T6+nqUlZWJI650DFa25SEhgpr7kVXGQJkfBgvye6zRaJL8+oE2AY9OqpC4SLz99tsYO3Ysli1b1mH/hnXr1uHpp58GAHz729/Ge++9BwAYPnw46urqYLfbxVqHGsu6XC4AbT6biqKI9Y/Vam0nMCcSCVFNRmsUo9HYzqNZhprV0v8xEypUgcxMasp9HqLRqBAJaX3o8/mEEEfrDYqPWCwmBDkAuPLKK7v1mhs3bgQA5ObmCu9eOspeWlqKnTt3AmhLVFBspAry4XA46eg84fF4xEktoL3HbqoNiFzFzPPSiUEWOSTculwu6PV6BINBaLVaWCwW8Vm02WyiN01+fj4aGhrw29/+Ft/73vewcOFCaDQanHHGGXjxxRfR3NyMrKwsYT8AtCVlNm3aJCreqcgmNWGu1Wphs9mQk5MDo9GIr776KskSwWKxYMyYMeK9JiufUCiEmpoa5OTkiP4DdPKA10EnhrwGIKtFKmTS6/XCqoYsG8vKyhAIBHDkyBGRgASO7Vk6wmQyoaSkBHl5eYjH40kezjabDXl5eQiFQuJnlOgm4To7O1tYudBeJtU+jPrZmM1m8T1Bthly01x6bXl/T4nc/qTbV7tTTjmlw+M0AHD33Xfj7rvv7rVBMQxzcmzZsgWKoqC0tBTDhg3r09caMWIEli5ditdeew0PP/wwHnrooT59PaZrOspckk0BZTz9fj90Op04SgYAX331FcaMGYPdu3fj6aefhtPpxOTJk6HRaOD1erFjxw68+eab2LZtG4C2RRFtsIqKimA0GmG1WmEwGJKaogAQ2XoAYoMfiUSSRGW1Wp1xFT9M18iLL1ocHa8Jn2ydIXs5Ex3FL4nMFMfk5+z1esURVFloHmiJikw9FXEyUNV5bW0tdu3ahY8++ghffPGFqKAjDAYDJk6ciEmTJmHMmDEYNmwYcnNzRYVGpggz6SbTj7h3hZyMou+BNoGA7HaAtvkhFArB5/PB7/ejqakJR44cQW1tLY4cOSKuEdSoBwB27NiBeDyO3NxcBIPBpKQnCcwUSywwpxdKLpLfruyNbTab4fP5hJ8qNUIaN24c9u3bh4ceegjvvfcezjzzTJSWliIej+PgwYN4//33UVlZCQA477zzsHfvXvh8PuTn54uTWlOmTBEVzbJoSNWEgUBA+OjKAjOdxJAFb7VaDbPZfFwRlsRSun8m2f1kalKT/FITiYTwrKXKXrIjkI+My9YolMhWFAVHjx7tsDpb5uOPP8YDDzwgXhdoK66ora0VwlMikUBeXh7sdjv27NkDAKL/CNBm11FVVSXW1sOGDUM0GoXb7UYwGBTrEZVKhYKCgiQvabkyWhYpuVjvxKGkFFV72mw2eDwe4dfscDhExX40GoXdbkdLSwvUajWGDRuGo0eP4umnn8arr76KUaNGieuKxWKB2WyGy+USYh31A9DpdDj99NNFX4DU03p0kxuzqVQqOBwO5OXltUti6fV6FBcXo7a2FpFIRCTGyH7D4/Ec15KH6RhKNiiKIhLQZMtIySmyUwmFQrBYLFi8eDFqa2tRXV0Nv9+flAzNyspCbm4uCgoKUFBQgGg0iiNHjuDo0aPiNZ1Opzj9IPsmy+tZs9kMu92ORCKBlpaWTkXs1ORFV+h0OhEnkUhEPD4dlsYcqQwzCNmwYQMAJPlM9SU//elP8dprr+HJJ5/EPffc0+XijulbUqtG4/E4tFqt8GU2GAwIh8NwOp04evSoWIw1NzejvLwc+fn5qKurw6233ioujHQMkZ6zuLgYeXl5YpGWnZ0No9GI7Oxs4T9XV1cHRVGg1+ths9nE4+WMq1qtbtfwQPZ0ZjKf1CNZlDjoKnMui83y4zp6DAnXJEqr1WqxCZSPE9JxMhkWlPof8l2vrKzE559/jo8//hh79+5tt2B2OByYOHEiRo8eLeae3NxcOBwOYbvDtJGJR9y7iyyiqFSqpCo+EvHkhJPH44HP50NTUxMOHjyIqqoqcfQ0NzcXl156KXbt2oXDhw/DarUiHA5Dp9MJb0K5Al6uYGYLpvRCcz41fKUjyPF4HGazGbFYDFarFYlEAsFgUCSqDQYDxowZg0OHDmH37t3YvXt3u+c2mUxYuHAhXC6XaCQ8bNgw4cFqNBoRjUZhsViQl5cnTvs5nU4Ax6piUysGZWsMrVYrEhadxRB569J1KBOTGpma1KRGedQQmsR/EpxJKKH1Bq0do9Eo1Gq1SL796Ec/wvXXX49FixYhLy9PrFEaGhqwbds2vPbaa9i0aROANl9WtVqN3NxcYX9w+umnixibNWsWDhw4gEgkAqPRiLy8PABtcUFNJI1GI0pLS8W6NSsrK6mKneYiqix0u91IJBLQaDSikXGqhypzYhiNRmExYTQa4fV6k5qk5ebmoqmpSVw3yboPOJZ0crlc2Lp1K4C2tcmcOXPwz3/+E8CxSnNKchQXF+Pw4cNJyQH5My4LzdR/hIpnWlpa4Pf7YbPZ4HA4xOOMRiPKysrQ2Ngo+g9QJbZWq4XH4xHXNqZ7UIKPPos6nU7sS+mkXTwex7Bhw9Dc3Ayfz4cjR47A4XBg8eLF4npAjafJi7+5uRk7d+4Uz0vFVoWFhWhpaRFNh+UkKtlJGo3GpMZ9BNlFyUVWcm8l+loWpKmymby9ac9Pwjo9bzrmFV69M8wghETmBQsW9MvrnX322ZgwYQL27NmDBx98EKtWreqX12U6Rhbj5A0ddb22WCyIRqMwGAziSGJxcTEOHDiAQ4cOYeTIkRg2bBgqKipE8wmg7Zig1WpFTk6OqFYuLCyEzWaD2WwW/qnZ2dliw2Y0GkUFh6IoCIfD4uKb6r9MZNqGjDk+HR0lkyuPu3ovUxtWdERqU0CqXCIvZqp+U6lUYoMqC99arZaPGvYT0WgUzc3N2LdvHzZt2oRNmzYlHT0kioqKMG7cOBQWFopTNwUFBcjJyYHFYuHNdgqZeMS9O8gNreiaJB8hl5OMkUgEoVAIXq9XWKxUVlaipaUFkUgE06ZNw/Lly7Fnzx58/PHHACCSnUVFRdDr9eJEDQnMVD0kN5Fl0gdVMMsbfRIPqQFaNBoVlhYFBQVobGyESqXCmDFjhHgXCASgVqths9lE5XNdXR2ANgEpKysLPp8PJpMJU6dOFX6YEyZMENWIKpUKTqdT2LMAyaeuotGo+LnZbIbRaDxu/NDYSXiShSWme1AFnqIowjIl9dodj8dht9vhdruRm5uLxsbGJGG3paUFq1evxurVq2E0GkUFozzXqFQqIfI5HA5YrVbEYjGMHDkSTU1NUBQFY8aMgUajEQmucePGQa1Ww+12o76+XlRHygKz/PwU68FgENFoFOFwOKkqMjs7W6yLAV77ngxykiEej8PhcMDlconTETqdTjRVo/dApVKJ0xIOhwM5OTmwWq2wWCywWq145plnEI1GkZ2dLax1IpGIqC6moh2j0XhC6xVKrIZCIXg8HhQVFYmEularRWFhIfx+PxoaGhCLxeB2u2EymWAymYT39PFsephk6HNIPszU/4e8moPBIEKhEHJycuB0OlFdXQ232y0sUY6HXq9HaWkpSkpK4Pf7hZc3VdfL4jIJ3PJ6iNZs3TnpktpQPbWnDc2bBCVx01WswSIzwwwyotGoyNDPnz+/X15TpVLhjjvuwPe+9z088MADuOGGG0R1CNP/yB5UtJGLRCIwGAziAkQLdKfTKTZE5eXlOHr0KPx+PwwGAyZNmiSqn8nHEmgTMpxOJ7Kzs6HT6ZCVlSWOnFJFqVqthtPpFFUDJFbLdhg0Pro/LcpZDBxYyF2cZWgh3xtioVwVQkkTACJxoiiKqAwBICpaZHgD17fQZrm+vh67d+/Gpk2b8Pnnn4sNOqHVajFq1CgMHz4cOTk5KC0tRWFhofC1I985JplMPeLeFXICiqq9ZKEROCZEB4NBeDweHD16FAcOHMD+/fvR2tqKuro6eDweHDlyBHPnzsU//vEPAG1H1+12O/Ly8pCVlSU6tms0mnYCc6qXIZMeaOMbDodF8ps2yRaLBYlEQohvhYWFaGhogE6nQ2trq2gibDQakyr5adNuNpthsViEhZLT6RQVhwAwatQo2Gw27N+/HwBEsyW5spSSNHRNAdrWPLL43BFUpUrxThVpzIlB84O8VqSTUSQeut1uFBUVCQsBt9sNm80mxB2fzwefzyeSVrLFBvl+W61W6HQ6FBQUiCRHSUmJWC/n5+dj+PDhIlZGjBgBh8OB2tpa4XVvsVhQXFwMoK2ymTx0U5Pcqf8/k8kEs9ksGtLRz8m2g+kZer0+ycvbarXC5/OJn1GMAMeKG3Q6nbC0iMfj7cRFh8Mh5gSHwyGaxVERhclkgkajgd1uT1rrdrTWpBM1ZKPR0tKCcDiM2tpalJSUiIKNyspKtLa2iqQpJcGi0ag4uZNIJLghYDchMZcShkajEcFgUPxtZaFZrVZjwoQJCIfDaG5uhtfrTTodqdFoYLFYhG2G0+kU1c9UXEXiMlUY02ed5gRKTNDnnaw7UoVjubjmRKCEeroTnHz1Y5hBxrZt2xAIBOB0OjFhwoR+e91LL70U9913H3bu3InVq1fjt7/9bb+9NpMMXWDkCyMtnOlIGdB2pM/j8ST5FpaXl8Pr9cLn84nFMomItDCnY+xU2azX65OOJ5PgrCgKXC6X2CzIYyFRmZ6bNha8KRuYUMIgtaJZtrfozddKJBJiI0pCczweRzgcFo2j5AZBBAvNfQMJMjU1Ndi5cye2bNmC/fv3txOYs7OzMWrUKBQWFsJut6OkpATDhw9HSUkJ8vPzu6wUHMpk6hH34yHPCfJxYqoyps9sNBpFIBAQFYIVFRU4ePAgjh49itraWvE5DoVCeOaZZxCJRGC321FQUACHw4Fhw4aJhKcsMFNyNJ0d1pn2yEeYqTkaVZuSXYbT6RQNj1pbW0XT4EAggHA4nPSekhhD1WAWiwUOhwN6vR4+nw9qtRpjxoyB0WjEvn37ALQJhIWFhfB4PKJKkY6uK4oCr9crTsyYzebj/n9Sq8jSdTx5sKDRaMQ13WAwIBaLiapmi8UiRMCioiLU1taiqKgIjY2NYl4JBoPtmmjRGlOlUol1K8WMRqNBWVmZELIp6Uke3sOHD4fdbsfBgwfFXEQnbuSmcKnQ+la+0VpJfgyNm699Jw/9HalYRj4B5/f7hT0KefW73W4hSFOSgOKFriE0p5BtBSV4KSGeWlQlX+tkqyhqOKhWq0XFdHV1NcLhMBobGzFs2DC0traiqakJwDGrHrLMANqspKiYwuv1ihN8zPGRfbvp8xYKhcS/ZrNZnIJsamqCSqVCbm6umBdkG0c6MeHxeFBXV5eUuDCZTCK+zGZzUvNPqkanYhnZ0qKn/ye6yQ0CMyUeeDfPMIMM2Y+5P6t21Go11qxZg/PPPx+///3vcfnll2P69On99vpMMrSYjkajwl6AFuvyxTI7Oxter1ccO/V4PCIrnwoJzXRslKoGaJFOWXoASR7OwDHhW7ZPoIsiLea4ymxgQ4ubVGFXbspzMpBgJYtWVAFJjSTD4XBS1ZksNA+0ZoADhXg8Dp/PJ/xSv/jiC7hcrqTGdAaDAWVlZSgqKhLVymVlZRg+fDhKS0uRk5PD78sgRN5ApXZEp6Y04XAYwWAQra2tqKmpEQJzVVWVSH4S+fn5IpFUVlYGi8WCkpISaLVaZGVlJXnmarXapKZaLDRnFrKFl16vF0JzMBgUaxE6LUXrE7/fD5PJ1K6PAyUWqGqMxGaNRiOOwHu9XmHVlZ2djfz8fDQ0NIjnItGHTl3RdcZmsx13bZIqMFOynek5tD4lywy/3y/WF4qiCH9dh8MBRVFQV1eHgoIChEIhtLS0IBQKwel0JonM9LwUT0CbIOl0OpNOPIwYMQIGg0EkJ8jTnvya9Xo97Ha7qHolaL6hcdJYU+ed1JMdlAjja1/vYTAYoNFo4PP5hJUFxRA1AjQYDPB6veJUBVWiy1XoWq0WOp1OFNHo9fp21xmHw5H0uiQyytA1iNao1BTZbDajoKAANTU1ojcOoVKpUF5ejrq6OoRCIbjdbvFaXq9X7NHkniTM8aEeQ5FIRPgsA23ibygUEuIvzRsej0ecWjgeVLEsn5qipACdwqDrSKqlBYAkoVgWjlP3TZ19namwyMwwg4z3338fQP/5McssWbIE3/nOd/Diiy/iuuuuw6effppx/pBDCVq4UiWxfCGj34dCITgcDuFxSJtyeXFOF1BqXkEeUlR5LC+SqVqEKjZooS03dZKrl+k5B8IFM5UdO3bghhtuQDQaxY033ogrr7wS69atw3333Yfc3Fz87W9/Q3Z2Nq677jpUVFTg7LPPxq9//et0D7tPodhKFZo7a+h3IsgCM8UWfU8+jtQgg3xfOztuxoJm7xCNRuF2u3Ho0CFUVFRg7969oiqwsLAQarUaZrMZ+fn5yMnJER21hw8fjrKyMpSUlIjqU2ZwIVcxy/MCXVvoqLjf70drayuOHDmCiooK7N+/H0eOHEE4HIZKpcLIkSNx4MABqFQqcSS5rKxMCM1arRbZ2dlJG3+yPZDnCP68Zx5U5RWPx8Xag0QAEprp9JTb7RY9H8hfE0DSWgM4Zocgb/rJLoHmH0VR0NzcDACislWn08HlconrBVUbUuK8IzqyO2CB+eShdWQsFhON3EKhkGgEqNVqhW2Gw+GAzWbDoUOHoNFoYDabhWAkzzcAktabcvWwSqXCsGHDYLPZhD2H1WqFzWZLalJNlatyLxGDwdCuIWFH6w7Zsic1Zpneh2KECl4cDocQmik+KKlFsZX6vqXOKeSDTM3brFarWLtQlWpHyCc1ZX9walBKTQiPHj2KwsJCkXzzeDyYNGkSjhw5gsbGRng8HuTm5iIejwt7uGg0KsbPdI3sz0zrhHA4DLPZLHzT5etSqnWFvI9N/SxTtbS8nqW4oCp2eRx0umGwzgMsMjPMICIYDOKjjz4CAJx77rlpGcMf//hHvP/++9i2bRtuuOEGPPLII4N2Ah0I0LHUeDyOWCyWVMERiUTExY82SJTFpWw+XUhJTKaLKi2Y6Hv5JgvL8gZfztSScD2QN2S/+c1v8Pe//x0lJSWYN28errzySvzhD3/AJ598gvfeew9r167FvHnzkJeXh8cffxyXXXYZampqhIffYEUWgOWjit2hMx8y+We0UQuFQknVyfKmNBwOC7ETOFaRIi8SWWjuOeQ/2traiqqqKnFL9b4sLy9HVlYWbDYbdDod8vLyUFZWhtLSUhQUFMBisQzoOYDpHPnzD7SdKqCfRSIRRCIR+P1+NDU1obKyEhUVFaioqEBtbS0URUF2djZ+/vOf4+GHHwbQ5q9rNBpRUlIiKuFJdNTpdEJgpmuLfB0CwHGWoeh0OrHhJ4GPRMHs7Gy43W6oVCrRP4LWMqnJAznhLSMnHqgRMj2Ofk4xCRyzLjiefQGdoElt4MTXk96D1qNU4U7WKiQKkW1bc3MzNBoNRo8ejXg8jqNHjyZd+ztDpVKJaxPZIgBt8WKxWMT39N7Kjbno1J5cSEGkCk+yAMX0L2RZoNfr4ff7YbVaYTQahZUGWSeQZy6tH+W9j7xPIbFZq9UKyxXg+AJzKlTlSmtYEprpBEV9fT1KSkpw6NAhNDc3IxAIoLCwEF6vV4wXgEieaLVaBINBPkHRTWTbDPLhJ09mOtGQmpw63nPRZz1VMJYbTcrWOLIv92CHRWaGGUSsX78eoVAIpaWlmDhxYlrGUFBQgGeffRZLlizBY489hsLCQtx9991DYkLNVCiLTkd16CJKi3iVSiUy53IjHnpsqpAsL6JTqzE6uiinisupthkDlT//+c/Iy8sTdhAulws5OTnQ6/WYP38+1q5dC5PJhHnz5gEA5s6di88++wwXXXRRu+cKh8NJC5HuHNHKZGRLlu4id13uDIo98uSUq8dogU0VCDK0WU1trDNUFnu9CXVGb21tRW1tLerr6+H3+xGPx8Ux4kQiAZPJhLy8PBiNRhgMBmRnZ6OgoEDYY7AoM3iRE4y0ySLxkCqv/H4/GhoacODAAezbtw8VFRXCHmPmzJlYuXIlnn/+edTV1UGn04lq+KysLBQXF8NkMolGTHS6Rj6lk9rFnWMtM6FrhbwmkUWArKwsRKNReL1esZbp6IQcrWPkk1Spp6Tk01OpHuGycAgg6VqUWqGaKirKAiTTO1CVMDXxJcsTeu/D4TD0ej0KCgrgdrsRDAahVqtRWFiI0tJSMddQ82p6zs6aTMuWCLRW1ev17b6n2CLk03uDuSpxIEM9ZKh62G63IxqNwmAwCIsM+fQmrS3l+YISWLSeoTiyWCwn3LCRqqEBiMaUDodDnIxwu92i6WkwGMTBgwfFY8mbnn6XnZ2NWCwmfIWZrqEqdppb6H0kT266HsinITuqYk79rMune1P3M2SnM5TmBxaZGWYQ8fbbbwNoq2JO50T2zW9+E7/73e/ws5/9DPfccw+qqqrw+9//HtnZ2eI+X3/9Nd544w28+eab2LNnD0wmE+bPn4///u//xrRp09I29sGM3GxHtreg6h76fUePk8Vm2StKrtLo6KigfN/BtgjPy8sDANx+++247LLL4PV6YbVaAbRtWHw+X4c/64jVq1fjrrvu6p+BZyiyV2FHopBcNUQislyJRgs6WiDS1w6HAy6XC4lEAqFQKEmgoA3iYInJviaRSCAYDMLtdqOhoUE04SIvwlAohKKiInHUmEQbh8OBgoICFBQUwG63H/cIOjOwkT2Q6WuqEiOB2ePxoKGhAV9//TX27t2L/fv3IxgMQqVS4eqrr8b3v/99bN26FS+++CKANusVq9WKoqIi5OfnIysrS1SlpTb4o+axqR3h+TOeuVDiG0BSQyYSAXQ6nbDJkCvkyc6rM/uB41kUyEKznKBMbV7bGbK4yLHVN5BYQz6mVqsVfr8fRqMxyQbF4XDAbrfD7/fD5/OJz/7xmknLAiG9j8Ax31ZKQMuJC1lkkk/z8fuf+cgV6STs0ilP6g8g2/CkFtjQ+y3bIlAc9nQ8ZL8RDAYRjUaFpYff70coFEJWVhYURRG/t1qtKCwsFHNUNBqF0WiEz+dDJBJhkfkEoPdQtrGgpBKdlknt5dDRiVx5j0vzgHwNkU8BDzVYZGaYQcRbb70FIH1WGTI333wzDAYDbrjhBjz11FN46aWXsGDBAuj1emzfvh2HDh1q95j9+/fjqaeewqpVq/DrX/+aF259AAnJZJEhXzSB9gIxPSb1Ipr63nR0IabHDhb/uYceegjPP/+8+P62227DF198gYaGBqxevRqtra3w+/0AAL/fD7vdLjZF9LOysrIOn3vlypVYsWKF+N7j8YiGM0MFOe462xgCSDomTRtDaqZClc0ARHVcKBRCfn4+WlpahOdaKiw0d00ikUAgEIDX64XH4xFHN2nuKCkpAQBRoUxNm5xOJ/Ly8oQn81BcbA8VKNkj2yVRRSFZZJD3JAnMBw4cQDQahcViwapVq3DqqaeisrIS99xzDxRFgdPphNPpRHl5uWjYZjKZYLFYkjb/cnOv1Aoi/mxnNlR1TCerqILVaDQKWwo6Gt4RtIbpKCFOyEnujtYjna1vUr/u7PFM30DVf3TdNpvN4mutVotwOIxIJAKVSgWbzQaLxSKSEXTrqCgidV6Qk1UUg6nVzrLPN7//AxOqIiYLlnA43O1TdzqdLqm6vTcwmUyiSSE1aNfr9fB4PEmJN2pW2NLSInymKUECHLOn4rjsPrRfoJ4usne73HxUvn9XyEnNoZ6AZJGZYQYJu3btwtdffw29Xo+zzjor3cMBAPz4xz/GpEmTcMMNN2DXrl148803xe90Oh0WLlyI888/H3PnzkVrayv++te/4qWXXsJdd92FyspKPPbYY8cVm5ieQUKzXPnZkQ9uR0eD5BvdP9V7M3XDN1i46aabcNNNN4nvX3rpJezatQt/+9vfALT5RzY2NiIUCmHDhg2YOXMmZs6ciTfeeANLly7FJ598gt/+9rcdPjcd9x7KqNVqUTlAHp0ARCPK1AW0/DUJz7L9RXZ2NpqamkSFZG5uLlpaWoQ1SWq8sxjVOVTB7Pf7xbFSaq6Yn58vklby31+n08FutyM3N1ccRea/7+CGPockLlNFUCgUQjQaRUtLC+rr67F//34hMMdiMRQUFGDNmjUoKSnBwYMHceutt8Lv98NsNqOoqAjl5eVwOp0oKSmBwWCA3W4Xx+nlzy0dcQWSG8wOJjpqOEt8+eWX+Na3voWysjIUFxfj73//expHemJQsyXyyTQajUnzCiUuOjol1VEFs1x1mHofeY3CnrmZD1UCUuUyNdujRKdsewB0z3+d4ooSVRQHqXOKLERxjAwe6L02GAxJfszyHEPzQ1+fWNDr9XA4HAgEAmLOczgc4tpJYrhcIKFWq4VdH3NykA8/JcnlOOjsRGXqnpjmHJ4jjsHqDcMMEv75z38CaKtidjgcaR7NMRYsWIAvv/wSn332Gb744gvE43FMmDABs2bNgs1mS7rvOeecg8cffxw//OEP8fTTT0Or1eLRRx/lSbsPkI8Bys2R5N93toFL5US9dwcLd955J4xGI84880wAwPvvv48VK1Zg4cKFMJlMeOmll+B0OvHUU0/hjDPOwOLFizutZGaOJTvkI8tqtTqpwZKMvAjU6XSiogmA8M3LysqCy+USi/fs7Gx4vV4Eg0FR/STDG8n2kM0IVXrQxstkMgnxRxZrEomEEAKtVqtolMMMbuTKQRKZUwXmhoYGHDp0CPv370dlZSVisRiGDx+OBx54ANnZ2di0aRNWr16NQCAAo9GI4cOHY+TIkaJhJG3GSSCgiiEg+To0GJOcREcNZ4ndu3fjrrvuSvrZQIHEPJrvSTykeOpsnSKLxbLtRSqpvSSYgYVGo4HZbBa+qfQ92fDIp/Fkkaijk3mp8wOJTPIcwuLy0KEzq8D+RKPRwGq1IhqNIhgMCpsg2RuY5jVqQKgoirDg6yu/38Ga1OwI2kuQnVtnhVdM91ApqX9BhmEGHIqiYOzYsdi/fz/+8Y9/4Hvf+166h3RSvPzyy/jOd76DRCKBW2+9FWvWrEn3kHoNj8cDh8MBt9sNu92e7uEwGcpQjZNUkRlo2wB0ZHFB0HH5SCQijhHS48gyw+/3iwWj3OBDpWprAEK+abLvXqbTHzFCTf7IF5DeB9kXWxaXqbkidXTnjufppb/mEdkmg5psUvVVLBZDc3MzXC4XDhw4gK+//hqHDh1Cc3MzcnNz8fDDD0Ov1+Oxxx7D66+/DqDtSHx5eTnGjBmDYcOGYfjw4aJ5pEajEZWMVDkvf2ZTG3MNNhobG0UF2/z58/Hpp5+K361atQqffvopotEoVq5cifPOO6/d4ztqMltaWppR1xq5svBk4GPLvUcmrUnIgkdOPlNiS15DpJ6yI6g6NdVqh5A9mZnuk0kxMpCh9RUVTnQl1Wk0Gthstj657n3nO9/B7373O5HU3LRpk/jdc889h2g0ekJJTY6RoQOXljDMIGDr1q3Yv38/TCYTLrjggnQP56S56KKL8Mgjj+C6667D//7v/yI/Pz/Jr5ZhmMGJfMSdBIZEIiGqOWR/RdpAUuWbXOlEQheJ1dTggwRnghbzqcfehmp1voyiKMJWRKVSwW63w+v1JlUuA0j6+5PwRw0ZeZM+NEi1TpJ9dL1eLyKRCKqrq4WdkMvlAgAsWbIE69atw6uvvio+lzk5OSgrK8PIkSNRUFCA4uJicSohVWCWvXcHc/WyTGrDWZmpU6fi+9//PoqLi3H22WfjnHPOaTeXDYQms1RZSJWosmDYkbUXkOyXPFRiYahCiQNKRhzPJoOuX6kn81IrnYFjnrscN0w6ocSpVqsV1fp0kxMntObqSyuyP//5zyKpmfoaX331FT799FM88sgjJ5TUZIYGLDIzzCDgkUceAQBceOGFsFqtaR5N73DttdeiqakJt956K37+85+jtLQUl1xySbqHxTBMP0ACgdzdmaqP6HckPkSjUVHFBBzrDk+Po+O0BoNBVEDJldJk+UBHtFM91oYqskhPvthGo7Hd/ehoobwx4k360EI+zks3Oi0QCATQ3NyMaDQqNph0wuDpp58Wz2EwGFBYWIiysjKUlJSgpKQE2dnZsFgsokqLBGaKs6EgKHbVcFbmm9/8pqgOGzlyJJqbm5Gfn590n4HUZPZ4czEfZWYoGUHXe7LJ6MhTtbPkhNw8lGOIyTRSLRz6m6GQ1GT6BhaZGWaA09raKhqP/fjHP07zaHqXX/ziF6iqqsKf/vQnXHnllSgqKsLcuXPTPSyGYfoBEi1lAVkWPkmAIJGYGo0BSDpmTRtRqoJWq9XieXQ6HYxGo7DZoNdKbWLHtCGLPXI1DVkU8N9r6JFaXUrVhQBEo65AIADgWPJo0qRJ2LNnD2KxGEwmE7KyspCfn4+SkhIUFBSgqKgIZrMZdrsdBoMhqYKZmjDJVcyDma4azspcc801uPfeezFixAgcOXIEubm57e4zWJrMDvb3nTkxaL0gIzeLlBPLtHYYCvMHw5wIQzmpyfQuQ7tMh2EGAU8++SQCgQAmT56MBQsWpHs4vYpKpcIf/vAHLFu2DOFwGBdeeCH27duX7mExDNOPdNbdO/UYtXy/VMGTNpRUEUIezACSfJxTn3soQ5Wjer0eRqMRJpMJRqNR3EwmE0wmE1tjnCQ7duzAvHnzcPrpp+OZZ54BAKxbtw6nnXYalixZgpaWFiiKgmuvvRbz58/PuKogEpdlawNK8kSjUQDHBMFx48aJn48ePRrjx4/HxIkTMXXqVEyZMgUTJ07EiBEjkJOTg9zcXNHA02w2C5F5qFce3nnnnaioqMCZZ56JRYsWIR6P4+c//zlaWlpw55134rrrrsPixYvxP//zP0P+NAYztKHrvlarFRXP5Lc8VOcPhjkeN910Ez755BNxCwQC2LVrlzgxLXPNNddg7969CIfDx01q2u32pBszNOBKZoYZwITDYfz+978HANx4442DcsGk0Wjwj3/8A4sXL8Znn32G8847D5s2bcKwYcPSPTSGYfoJ+di0XDkpH3+VvRfln6V+nUgkhJ+jXBlNFbl030QiMaSrc2mDzvQtv/nNb/D3v/9dNNa58sor8Yc//AGffPIJ3nvvPaxduxbz5s1DXl4eHn/8cVx22WWoqalBcXFxu+fKFP/D1GPpxcXFcLvdiMViGDt2LILBoPBQt9lsyM3NRXZ2NsxmMywWi0gCydYYXDHfxs6dO9v97He/+x0AwOl0YuPGjf09JIZhGGYQcuedd8JoNOLMM88EALz//vv45S9/idtuu00kNRVF4aQm0w4WmRlmALN27VpUVVWhuLgYV111VbqH02eYzWa89tprOOOMM3Dw4EFccMEF+PDDD2GxWNI9NIZh+plUIVkmtapSFqLpMbJQ3Vn3ednHcSgLWkzfk9pYx+VyIScnB3q9HvPnz8fatWthMpkwb948AMDcuXPx2Wef4aKLLmr3XJnmf0iNODUaDYYPH47m5mYYjUbk5eUJOwyLxQKz2Qyz2SzE5VRhmW78WWQYhmGY/oGTmkxP4ZQDwwxQvF4v7r33XgDAqlWrYDKZ0jyiviU/Px9vvfUWcnJysGXLFixfvrxDcagviUajmD17tvg+9UgzwzDpRa54pmOysmjV2U1u+EfVkgzTH6Q21vF6vaKBr8Vigc/n6/BnHbFy5Uq43W5xq6qq6vPxk/Ar/0veqAaDQaxN7HY7RowYgTFjxmDkyJEYPnw4CgsLkZeXh6ysLFgsFlgsFmHLIh9v56PtDMMwDMMwAwPeRTHMAOVXv/oVGhoaMHr0aFx77bXpHk6/MHbsWLz66qvQ6XR48cUX8ac//anfXrulpQXnnnsuDh48KH5GR5pvvPFGrF27tt/GwjDMiUECckcidKoQTQLz8SqmGaanPPTQQ5g3b564vfXWW7jvvvvQ0NCAm266CVarFX6/HwDg9/tht9s7/FlHpMP/sKPPluyhbrfbkZOTg6ysLGRlZSEnJwf5+fnIycmBw+GAzWYT4jJ5gLO4zDAM039wEQ3DML0Ji8wMMwD59NNP8fDDDwNoO2pLDayGAnPmzMEDDzwAAPj5z3+Ozz//vF9e1+/34/e//z0mTpwIAO2ONG/evLnDx4XDYXg8nqQbwzCZgSw4d1Tx3BcC15dffomRI0di0aJFuPzyywHwhm4o0VVjnezsbDQ2NiIUCmHDhg2YOXMmZs6ciY8//hgA8Mknn2DGjBnp/C+0g04CkK2FVquFwWAQzfqMRiOsVitsNpu4Wa1WWCwW0dxPbsrF1hgMwzD9AxfRMAzT27DIzDADjObmZnzve9+Doii4+uqrcfbZZ6d7SP3OT3/6U1x88cWIRqO49NJL4XK5+vw1S0tLMXXqVPF9d48vr169Gg6HQ9xKS0v7fKwMw/QMuSKzr9i9ezfuuusufPTRR/j73/8OgDd0Q5k777wTFRUVOPPMM7Fo0SLE43GsWLECCxcuxP3334+f/OQnWLBgAZqamnDGGWdg1KhRKCsrS/ewk1Cr1eJGCRqDwQCj0Sia+dHNbDaLqmUSlynBM9Sb+jEMw/Q3XETDMExvw43/GGYAEY1G8f3vfx9HjhzB6NGj8eCDD6Z7SGlBpVLhsccewxdffIHKykosX74c//rXv3rVR/Whhx7C888/L76/7bbbcN5554nvu3t8eeXKlVixYoX43uPxsNDMMEOYr776Cp9++ikeeeQRrFy5EmeccUa7Rm8dEQ6HEQ6Hxfe8oRscdNRYZ9myZVi2bFnSzx5//PH+GlKPkAVilUrVrmeCbKchW9IwDMMw6aO0tDRpX3IiRTSZ1GiWYZjMgSuZGWaAkEgk8IMf/AD//ve/YTKZ8NJLL8HhcKR7WGkjKysLzz//PPR6PV555RXcfffdvfr8qUeaZYEZ6PhIc0ekwyOTYZjMZerUqfjTn/6E119/Hb/+9a/hdrv5VAQz4JH9mHU6XdKNqpVlKwwWmBmGYfqfjvoCyJxIEU1/N5plGGZgwCIzwwwAotEorrnmGjz99NPQaDR44YUXkqwbhiqnnnoq/vKXvwAA7rrrrqTK4/4g9UgzMzRZvnw5PvroIwDtvXUVRcG1116L+fPnc8XHECV1Q6fX6zFhwgTY7XaMHDkSRqORN3TMoCG1YpkqnFlUZhiGST9cRMMwTF/DdhkMk+EcPXoUV1xxBd577z1oNBo89dRTOP/889M9rIzhmmuuwc6dO/H73/9eNNG69NJL++z1SEwEOj7SzAwtdu/ejXXr1mH58uUAjnnrvvfee1i7di3mzZuHvLw8PP7447jssstQU1OD4uLids/DVgiDl5tuugk33XST+P7b3/42xo0bhxEjRuDIkSPIy8vr9obOYDD017AZhmEYhhmCUBENnZxlGIY5EVhkZpgMJRKJ4Mknn8Ttt9+OxsZGmEwmPPfcc7jwwgvTPbSM4/7778fRo0fxj3/8A5dddhn+85//4O6774bFYkn30JhBzm9/+1tcddVVANo3S1m7di1MJhPmzZsHAJg7dy4+++wzXHTRRe2eh73thg533nknrrvuOiiKgv/5n/+BWq3mDR3DMAzDMGmDi2gYhuktWGRmmDSiKApCoRCCwSD8fj9qa2tRUVGBjRs34qWXXkJjYyMAYPLkyfjnP/8pOv8yyWi1Wjz99NPIycnBH//4R/zf//0fnnjiCVxxxRVYtGgRRo8ejaKiIlgsFhiNRj62y/QKW7ZswYgRI5BIJAB03Cyluw1UuEHk0GHKlCnYuHFj0s94Q8cwDMMwDMMwzECHRWaGSRNffvklzjzzTDQ3N3d6n8LCQtx666348Y9/DL1e34+jG3hoNBo89NBDOOecc/Df//3fOHjwIP74xz/ij3/8Y9L9TjnlFPznP/+BRqNJ00iZgcpDDz2U5PtdUVGBiooK/N///R+AjpulpP6srKysw+dmKwSGYRiGYRiGYRhmIMMiM8OkialTp6KpqSndwxh0LF26FEuXLk33MJhBiOyt6/P5cNppp+HCCy/EoUOHsG7dOnzyySftvHVnzpyJN954A0uXLsUnn3yC3/72t2n+XzAMwzAMwzAMwzBM76NSFEVJ9yAYhmGGCoqiwOv1wmazsW3HIOHOO+/EokWLsGjRIrzyyiu47777hLeu0+nEddddhz179mDx4sW47777uvWcHCdMV3CMMF3BMcJ0BccI0x04Tpiu4BhhuoJjZOjAIjPDMAzDMAzDMAzDMAzDMAzTY9TpHgDDMAzDMAzDMAzDMAzDMAwzcGGRmWEYhmEYhmEYhmEYhmEYhukxLDIzDMMwDMMwDMMwDMMwDMMwPUab7gEwzFCBzO6ZzCQTmhBwjGQ2mRAjAMdJJsMxwnSHTIgTjpHMhmOE6YpMiBGA4yST4RhhukMmxAnHSGZzojHCIjPD9BNerxcOhyPdw2A6we12w263p3UMHCOZTSbECMBxkslwjDDdIRPihGMks+EYYboiE2IE4DjJZDhGmO6QCXHCMZLZnGiMqBRFUfpwPAzD/P90laHzeDwoLS1FVVVV2if6zhjMY8zkLO5A+LsTA2WsPRlnJsQIMPDjZKCMEzjxsXKM9A4DZZzAwJ1LBnqMAANnrIMtRoDB/bdPF3y9SQ8DZZwAx0g6GShj5etN+hjM4+RKZobJUFQqVbc+yHa7PaMnJoDH2Fd0FSMD6f80UMY6UMYpM1jiZKCMExhYYwU4RtLBQBorMHhiBBg4Yx0o4yS6s24dKP+ngTJOYGCNFRg8c8lAGScwsMYKDJ4YAQbOWAfKOAm+3vQ/fTlObvzHMAzDMAzDMAzDMAzDMAzD9BgWmRmGYRiGYRiGYRiGYRiGYZgewyIzw2QIBoMBv/71r2EwGNI9lE7hMaaHgfR/GihjHSjjPBEGyv9poIwTGFhj7Q4D5f8zUMYJDKyxdoeB9P8ZKGMdKOM8EQbK/2mgjBMYWGPtDgPl/zNQxgkMrLF2h4H0/xkoYx0o4zwRBsr/icd5DG78xzAMwzAMwzAMwzAMwzAMw/QYrmRmGIZhGIZhGIZhGIZhGIZhegyLzAzDMAzDMAzDMAzDMAzDMEyPYZGZYRiGYRiGYRiGYRiGYRiG6TEsMjNMmvnyyy8xcuRILFq0CJdffjkAYN26dTjttNOwZMkStLS0pHmEbYTDYSxbtgxz587FI488ku7hJOHxeFBcXIxFixbhrLPOwqZNm3D66adj8eLFqKysTPfwToqBEh9AZscIMHjjhGOk9+AYyQw4TtLDQIoTjpH0wDHSe3CMpJ9MjxGA4yQTyPQ44RhJPxwjKSgMw6SVZ599Vnn66aeTfrZw4UIlHA4rb7zxhnLfffelaWTJPP3008r/+3//T4nH48o3vvENJRgMpntIgk2bNil33323+P78889Xmpubla+++kr54Q9/mMaRnTwDJT4UJbNjRFEGb5xwjPQeHCOZAcdJehhIccIxkh44RnoPjpH0k+kxoigcJ5lApscJx0j64RhJhiuZGSbNfPXVV3jyySexYMECvPXWW3C5XMjJyYFer8f8+fOxefPmdA8RALB161bMmzcParUaU6ZMwZ49e9I9JMFXX32Ft99+GwsWLMATTzyBYDAIp9OJiRMnoqKiIt3DOykGSnwAmR0jwOCNE46R3oNjJDPgOEkPAylOOEbSA8dI78Exkn4yPUYAjpNMINPjhGMk/XCMJKPt9WdkGOaEmDp1Kr7//e+juLgYZ599Nl544QVYrVYAgMVigc/nS/MI2/B6vRk5LgAoLy/H/fffj1mzZuGcc86BSqUSv1MUJY0jO3kGSnwAmR0jwOCNE46R3oNjJDPgOEkPAylOOEbSA8dI78Exkn4yPUYAjpNMINPjhGMk/XCMJMOVzAzTzzz00EOYN2+euOn1ekyYMAF2ux0jR46E0WiE3+8HAPj9ftjt9jSPuA2r1ZqR4wKA2bNn44wzzoBer8fs2bOTJk61emBNcwM1PoDMjhFg8MQJx0jfwTGSGXCc9A8DOU44RvoHjpG+g2Mk/WR6jAAcJ5lApscJx0j64RhJZuBEHcMMEm666SZ88skn4vb0009j7969CIfDOHLkCPLy8tDY2IhQKIQNGzZg5syZ6R4yAGDmzJn4+OOPoSgKtm/fjnHjxqV7SII77rgD7777LhKJBLZu3QqDwYCmpibs3r0b5eXl6R7eCTFQ4wPI7BgBBk+ccIz0HRwjmQHHSf8wkOOEY6R/4BjpOzhG0k+mxwjAcZIJZHqccIykH46RFHrd5ZlhmBPiyy+/VObMmaOcccYZyiuvvKIoiqKsW7dOOe2005SFCxcqTU1NaR5hG8FgUPnWt76lnHrqqcrDDz+c7uEkUV1drSxatEiZM2eO8pe//EXZtGmTcvrppyuzZ89WKioq0j28k2KgxIeiZHaMKMrgjROOkd6DYyQz4DhJDwMpTjhG0gPHSO/BMZJ+Mj1GFIXjJBPI9DjhGEk/HCPJqBRlABu1MAzDMAzDMAzDMAzDMAzDMGmF7TIYphdRFAUej2dAm+wzDJN+eC5huoJjhOkKjhGmKzhGmO7AccJ0BccI0xUcI0MHFpkZphfxer1wOBzwer3pHgrDMAMYnkuYruAYGXzceeedePLJJ7Fp0yacfvrpWLx4MSorKwEAt912G+bOnYsf//jH3X4+jhGmKzhGmO7AccJ0BccI0xUcI0MHFpkZhmEYhmEYJo00NTXhkUceAQDce++9eOutt/Dwww9jzZo1OHLkCA4cOICNGzfCZrNh06ZNHT5HOByGx+NJujEMwzBMd/j2t7+NQ4cOdZjoZBiG6S4sMjMMwzA9QlEUPProo7juuuvw9ttvp3s4DMMwA5b7778fV111FQAgGAzC6XRi4sSJqKiowLZt2zB37lwAwPz587F58+YOn2P16tVwOBziVlpa2m/jZxiGYQYmkUgEF110Ef7zn/8AaJ/o7AhOajIM0xksMjMMwzA94p577sF//dd/4fHHH8d5552H5557Lt1DYhiGGXBUVVXB6/Vi3LhxAIBEIiF+pygKvF4vrFYrAMBiscDn83X4PCtXroTb7Ra3qqqqvh88wzADCo/Hg+LiYixatAhnnXVWuofDZADhcBg/+9nPcPbZZwNon+jsCE5qMgzTGSwyMwzDMCdMVVUVfvOb3wAATjnlFADAjTfeCJfLlcZRMQzDDDxWr16NW2+9VXyvUqnE12q1GlarFX6/HwDg9/tht9s7fB6DwQC73Z50YxiGkdm9ezd+9KMf4aOPPsL777/f4X24SnVoYbPZsGDBAvF9aqKzIzipyTBMZ7DIzDBon9VnLyqGOT5/+ctfEI1GsWjRImzevBkTJ05Ec3Mz/vd//zfdQ2MYhhlQbNmyBcuXL8eaNWuwZs0amEwmNDU1Yffu3SgvL8eMGTOwYcMGAMCGDRswc+bMNI+YYZiByldffYW3334bCxYswBNPPNHhfbhKdWiTmujsCE5qMgzTGdp0D4BhMgHK6q9atQoAsHTpUrz11luor6/HmjVrsHbt2jSPkGEyB0VR8MILLwAArr/+emi1WqxevRrLli3DX/7yF9x+++2wWCxpHiXTXyiKgkQiAUVRxE1GpVK1u9HPhyIejwcTJkzAmDFjoNFocM899+Dmm2+G2WzG448/jhEjRqR7iEw/s2XLFgDAk08+CQAYP348li5dCpVKhWeeeQbl5eUYPXo05syZg7Fjx2LevHlpHC3DMAOZ8vJy3H///Zg1axbOOeccLF26FHl5eUn3WblyJVasWCG+93g8LDQPISjR2dDQgPLy8nQPh2GYAQaLzAyDY1n9d999F9dcc43wonI6nZ16UQFtx8nC4bD4no+TMUOB3bt3o6KiAnq9HkuWLAHQlpgZOXIkDh78/9g77/i2y2v/f7S3LM94xbGzCVmENiQhZJCE1UAICRcou7wuHVDaci8tKSuhjBToooVCaRkX2tKUUHYYYSaEkJAJmc5wbMdT1pa1pd8f/p0nj2Q507Zk+7xfL71sS/JXj62jZ5zxOQfw97//HTfffHOGR8n0JIlEArFYLMm5nM7RLDuUT+TWn+GgJtMVN9xwg/g+tbnfgw8+2MujYRimPzJlyhQYDAYolUpMmTIFBw8e7ORk1ul00Ol0GRohk2nuueeepEAnwzDMicByGQyDI1H91atX44UXXjguLSqAy8mYgckbb7wBAJg7d64oj1MqlfjRj34EAF2WXzJ9G3Ish8NhhMNhRKNRRCIRhEIhBINBBAIBBAIBtLe3o729HX6/Hz6fD+3t7eKxQCCAYDCIUCiEcDiMSCSSdAuHw+KxaDSKWCx21Dm4L5Jaqnw8DXYA1shkGIZhTp17770XH3zwAeLxODZt2oRhw4ZlekhMlvD888+jsrISU6ZMwfr16/HFF19g+PDhmR4WwzB9DHYyMww6ovpTp06FVqvFlClTjkuLCuCmB8zA5LPPPgMAnH/++Un3X3311VAqlVi/fj327duXiaH1KnV1dZg9ezamTZuG5cuXp9Vyv+uuu3D22Wfjhz/8YYZHe2rE43FEIhHh+O3Kuez1euH1euHz+eD3++H3++H1euHxeOD1euH3+9M6nelGzmX5Rs5oypTu63BQk2GyF7kyg279Yd5hGOL222/H8uXLcc4552Dx4sXIz8/P9JAYhslCUs85RGovK4ZJheUyGAYdUf3zzjsP8+bNw6ZNm6DT6Y5Li4rLyU4eOsjJmYpKpRIqlarfl8v3ZWKxGNatWwcAOOecc5IeKy4uxrx58/Dee+/h73//O+67775MDLHX+MMf/oClS5di5syZmDNnDj744IMk2YO77roL+/fvx+eff46f//zn+OKLLzB16tRMD/uEicViiEajSCQSwsmc6gSOx+OIRqPCUUxSGsCRz7VarYZWq4VWqxX3yTeFQgGlUilu8s8qlQrxeBwKhQJqtfqowb9sJ7VUecOGDeKxYwU1WSOze0iVeJEhuxsI0i39jXTSPTLpZHlkiZ90vyOTOj8xTF+krKwMH3/8caaHwTB9gnQycANlf5B6zrnllltgsVg6yb4xTCrsZGYYdET1r7nmGtx///247rrrMGHCBNai6iHoAEhOK5l4PI5YLAatVjsgFu++yNdffw2PxwOLxYLx48d3evzqq68WTuZ77723X7+Pv/zlL5GTkwOgwxGrUqmStNw3b96Ms88+G0CHQ379+vVdOpmzVd+dHMr0mSWJjFgshmAwiHg8jnA4DJ/PJ7KQfT4fQqEQIpEIEokEVCoVNBoNdDodjEajcDbrdDro9XqoVCoAEI5olUqV5GSmn+nxSCSS5Jjua3BQs3c5WmaqvAal2pJSqeS1qI8g7yuO9bzjuRZ9TW1SSvZD98lzFcMwDNM/oKQK2u+mQ6lUQq1Wi8SH/rgOpJ5z1OoO12FqL6sbb7wx7e9n69mG6XnYycwwSB/VT226w5w6VHIvH/QoKwiAcDyHw2FoNJoBEynuS3z++ecAgGnTpgnnoMzChQthNBpRXV2NjRs3YvLkyb09xF4jLy8PAPCXv/wFkyZNwpYtW8RjiUQCXq8XZrMZAGAymeDz+bq81sMPP4xly5b17IBPENpk01facEciEQSDQfE3tre3IxKJwG63w+v1IpFICN3lWCwGhUIBrVYLg8EAlUoFg8EAq9UKi8UCr9crnM16vV5s5mnzrtFokjKY4/E4VCqVcCrRPNGX4KBmzyJXychOwa6aU8pQMAPoWK9CoRB0Ol2fs7GBRLqgtXzgp/1FV9nK6YIQqcjBLvn3otGomKvYRhiGYfo2iURC9AdJVwlD64VCoRBJFuFwWOxz++Ke9GiknnMMBgOAI7Jv3/72t3Heeedh/vz5nZqHAtl5tmF6h75bb8owTJ8h3aKtUqmg0+mg1WpFJFir1YrnUwMwclalOqeJ2267DZWVlVAoFPjmm2969e8aiJAj9dvf/nbax81mMxYsWAAAeOmll3ptXJnipZdewmuvvYbly5d30nI3m83w+/0AAL/fL5okpiMb9d3J4UvOOtJkJgez2+1Ge3s7fD4famtr4fF44HA4cPDgQdTU1KCxsREtLS1obm5GXV0d9u7di0OHDqG5uRlNTU2oqamBw+FAIBCA2+2G3W5HIBAQrxcOh+H3+0XGNM0h5PBOF7Q6WYLBIC699FKMHDkSEydOxAUXXICamppTvm46KKj5+eef4/vf/z432OkG5KaU8pqRGhyJxWIiO5++lzObZZuiG2XH9qaNMMcH6cPLZcwUHJAbkAYCAfE+yoGE1EamZA9ygIIc0KRDHw6HxXWAzsHz8847D+PHj8fEiRNxzjnnYOvWrb38X2H6CsuWLeO9K9MlPJf0LvF4HIFAAKFQSDiSlUolIpEIfD4fnE4nnE4nXC6X2P+SPFwikUAoFILf70/roD4VjnbOra6uxrRp0zBy5EhMnjwZO3fu7LbXJeRzDpHay4r60KSSjWebgUYoFMKtt96KESNG4PTTT8c111zTK6/LTmaGYXoUchaRw4pKTOlwl5p9pNPpOumSkgMhFAp1yjJavHgx1q5diyFDhvT8H8Ng27ZtAICJEyd2+Zyrr74aALBixYpjli/3Zb788ku88MILWLlypcjUtdvt2LlzJyorK3HGGWdgzZo1AIA1a9Zg0qRJXV5Lp9PBarUm3TINfdbI6ULBHwBJAaDGxkZEIhHhUA4EAvB4PGhsbER1dTX27t2LmpoaNDU1wel04vDhw6ipqRGO5bq6OgSDQcRiMbjdbrS1tSGRSAhpiEgkgvb29iTnsyzj0V2O5ptvvhl79uzB1q1bMX/+fNx8882nfE2mZyEnMDn/5MaUcqNKeg41qJSbTVIDykQiIQKd0WhUBI3kLFm2keyB3leCKiioSah8P+0fyOlMwSuaOygbmuyIAlp0I9kfuh49j0qH6TWAjnVv+/bt2Lp1K/7nf/4H3/ve97r17+ZGTP2DzZs3Y/369aioqMj0UJgspafnEuYI8Xhc7DMBQK1WIxAIoK2tDT6fr9M+k4KZfr8fHo8Hfr9f7BVor9FdjuajnXO///3v4+abb8bevXvx85//HDfddFO3vCaRes4h7r33XnzwwQeIx+PYtGkThg0blvb3s/FsM9C48847oVQqsXfvXuzYsQOPPvpor7wuO5kZhukR0mUvKxQKzJgxA5MmTUJeXh7GjBmDCRMm4K677hK/RyVHpD+aWn6U6pieMWMGysvLe/ePG6BEo1F8/fXXAIAJEyZ0+bx58+YhLy8Pzc3N+OSTT3ppdL3PAw88gKamJlx44YWYNWsWfvnLX2L+/Pm46aabsGTJElRWVmL48OGYNm0aWlpaMH369EwP+YSQszkpo4+czR6PB4lEAi6XS2yqHQ4HlEolnE4nampq0NraikAggGAwCI/Hg5aWFuzduxctLS1ob29HbW0t3G43gsEgamtrEYlEYDKZEI/H0dzcDIfDgcLCQiGZEQgExDjC4TDmzJmDyZMnw2aziezSu++++6T+Vr1ej4suukjMM1OmTMGBAwe689/JdCOyc5kylGX9RLLZefPmYfr06SgrK8NZZ52FOXPm4Ne//rWQOJAdh5SVT8GNVAcm20j2IOsvK5XKpACYWq2GwWCA2WyG2WyGyWSCXq9PahhKwW6VSoW5c+di+vTpKC8vx5QpU3Duuefi17/+dZIDmZwJKpVKHLQpUE7PI8e2zWYT43S73d3epJQaMa1btw4ffPABvF4vAIhGTJ988gk+/PDDbn3NgUwikcC0adMwceJEGI1GjBgx4pTWGqAjSHvLLbfgySef7Fel9QOZnrCTnp5LmA7IwSxnL7e1tSEQCACAkHijHiK0f5D7ZITDYXi9XgQCAcydOxdTpkyByWTqFjvo6pzb0tKCzZs3i8zURYsWiUrC7iL1nLNs2TLs3LkTt99+O5YvX45zzjkHixcvRn5+fre9Zl/geJsFn8x1u3Me8fv9eO655/DQQw+JtaakpKTbxns0WJOZYZhuJzW7UKFQiOyy999/HwAwcuRIvPHGGygvL4dOpxNOgcsvvxz79u1Luh5pM7/yyisoLy9HNBqFRqPp9b9roLNnzx6EQiGYzWYMHTq0y+dptVpcfvnlePrpp/GPf/wDc+fO7cVR9h5vvvlmp/tStdwffPDB3hpOj0Kfz9Tv3W43EokE6uvrAXRkLRw+fBhmsxlXXXUVxo8fD4VCgYMHD+Ljjz/G5s2b0dTUhFgshqKiIjQ0NIimIgcPHsSoUaMwcuRI7N+/H16vF3V1dRg9ejSampoQDAYRDofFpv7dd9+FSqXCyJEj8c4772D48OFJB/bFixd3mkuIN998E4MHD+7y73388cdx8cUXn/o/jul2ZIkEWXuZoIaQfr8fr732GoCOyos33ngDw4cPT6qWIRuRZTFI8/vll1/GsGHDujxEsI1kBvm9IocAOQP0en1SthUhO4eJaDQKl8uFt956CwAwbtw4vP/++xg2bJiYRxKJBBYtWoTq6mphA6T3TDYyevRo8VxyUlx33XWiz8e7777brX8/N2LqXRQKBdatWwcAKC4uxocfftgp+/hE15p7770X11xzDaqqqnpm0Eyv0xN2AqBH5xLmiEQGzd2JRAIOhwMAoNFooNVqYbfbhfRdKiqVCvn5+dDr9aJK6vXXX4fJZMLw4cPx5ptvYtSoUd22N5Wpq6tDaWmpWAMUCgUqKipQW1t71CbSJ0K6cw6R2suqP0N7Taqg7KqnB+1J6CvQuak0kdpYmL7vznlk//79yM/PxwMPPIDVq1fDYDBg6dKlvVLtxE5mhmG6FXIAEEqlMknmQqPRwOl0IhqNYsSIEUL/ig49zz33XNrr6nQ6aDSaTqWwTO9BenATJkw4ZkbFd7/7XTz99NN49dVX8eSTT0Kv1/fCCJnuhDbc9D1thOjzJ0vgRKNRmM1modl9zz33JGW7Dx8+HPPmzcNXX32FX//612htbUVBQQFUKhV27dqFBQsWoLq6Gnv27EFlZSXGjRuH7du3w+VywePxoLi4WGQ7m81mIYPQ2tqKSCSCioqKJIcLALzyyisn9Xc/9NBDqK6uxlNPPXVSv8/0DJStmk7GBehYW3Q6HWKxGOx2O4AO2/T5fIjFYhg3bhyADuei3++HQqHAihUrxFzmdrvh9/thNBqTnIzpYBvJHPIBT6PRJGU0H2/wmTTlqZEolTqnaqIrFAq8+uqrSCQSCAQC8Pl8UCgUKCgogM/nS5LJkPm///s/AMALL7yAO+64A++8886p/MlJcCOmDijYkKqrTmsVZarLTSBPBZKFSidvcSJrzRdffIGNGzcmSZ0w/YfushOiJ+eSgU4sFkuStYhEIqIyRKvVwufzobGxUTyfqmJkneZoNIqWlhbodDqUl5fD6/UiHA6jpaUFkUgEZWVlCAaD0Ov1Yh462b1pOlLntu7MqmWOVGXLfo2uSD0bHS/kkJYbDDc1NXXLPBKJRHDgwAGMGTMGy5cvx7Zt2zB37lzs3Lkz7f6gO2EnM8Mw3YK84QeObPQpw0ihUMBoNEKtVmPNmjU444wzoNVqha4Vcf3114sGAuTkoon7rbfewqBBg5Iyhpjeg/SYjyaVQVD5cX19PVatWoWFCxf29PCYboY+w7T5IWdcaoCBytRJ3xZAlxrp3/rWt/DAAw/g9ttvx65du3DJJZegpqYGu3btwtixY7Fr1y7s2bMHs2fPRmFhIZqbm+F2u5GbmwuDwZCUTRKPx/HNN99g/Pjx4meZk8kWeeyxx/Dqq69i9erVMBqNx/NvYnoBkiYgKLABdNijwWAQAQa32w2g45CYl5eH7du344wzzgDQkbXZ3NwsDmI/+clP0NDQIKpt4vG4sO+XX34ZVVVVSRkpANtIpqHPOWWsyw34fD6f+Fl2OqrVamg0GvFYKBRCLBaDUqlEbm4uvvrqK2EjqcjzCNmcWq1GPB7Hyy+/jBEjRnQ51uuvvx4/+MEP0NbW1q3lxNSIiTL1gQ75FoPBAKVSKRoxpTtELlmyBLfffrv42ePxHHfmXDZAwaau+j3IEk/kGKDm0qficJbnkVROZK359NNPsXv3bpHFXF9fj/PPPx9//etfceGFF57U2JjsobvsJJWemksGIuQ4pLNnPB4XPUZo/mhqakI8HodCoYDNZoPBYBA/G41GWCwWKBQKuFwu1NfXIxQK4dChQ6iqqoLL5cK2bduSAtuRSERU03RXJvPgwYNRX1+PaDQKtVqNRCKBuro61nnvBuRm0rLjnvaeqYFNcg7LEmz0+LEc//RalKSnUCiwadOmbplHhgwZAqVSKXolTZgwAVVVVdixYwdmzZp1fP+Mk4SdzAzDnDK0YMuHPwBob28H0LHBl7PDDh8+LPSl9Hq9KH8HgFdffVVkF9HzSf/VaDQmObGZ3oUymY/W9I9QKpW48sor8dhjj+Ef//gHO5n7IEqlUjjdVCqVkKmJRCIwGAwIBAIwmUyiSV8oFEJRURFaWlqwfv16XHDBBWmvO2rUKMycORMfffSRcBTs27cP559/Pnbt2iWyUOUmbMCRjZrs8GtoaEBpaal4XA4+nWi2yG9/+1v885//xOrVq5O0EJnMQgc04Mhmvqu1BUi2D4VCIdabUCiEpqYmAB22FYvF8Ic//AH5+fnIzc1FS0sL4vG4cNSRQ0pei3rKRurq6nDdddchFArhkksuwcyZM/HTn/4URqMRzz77LKqqqnDXXXfhk08+wfjx4/HnP/+52147W0g9yB0vKpUKer0ewWCwy8xiavxHgW56jlarhVKpTNqTpELzSCAQgNfrhUKhQF5engh4ySWvXq8XPp9PzEn/+c9/kJ+fL7KPuwNqxPTGG290asR03nnnYd68edi0aRPuuOOOtL8v64j2NUiHnZAP9bJsDgVI6edoNJokh0MOgRNxOh+PjRwPd955J+68807xc2VlJd566y2MHTv2uK/BZC/dZScej6fH55KBCDWIpSZ91FiamkpTQ1iaLyKRCNra2jpdR61Wo7i4GEOGDMHo0aOxb98+BAIBHDp0CIMHD0ZTUxOKiorE80OhkNBy7q5M5qKiIpxxxhl46aWXcMMNN2DlypWorKzsNqmMgYrcYFy+jxqUE7KTWYaqqrRabacAt0xq3xtyNFOwoLi4GOFwOKkvFXBi80hBQQHmzJmD9957DxdddBEOHTokpAl7GlaQZxjmlEgtYdZoNNBoNEkHAbVajVAoJDRVp02bhs8//1w0KwAgGoc1NzejtbUVdrtdRAppIqfXkCfrW265RWTMzp07t1O5K9M9JBKJE3IyAx2SGUBHBjrrPvY95MxlOsyTU4MyOCmbgzRCqXP0iy++KMoO0zFmzBgAgNPphF6vFxs4AMKhSHMIabbT4/K4pk6divXr1+OGG24AcPKlgvX19fif//kfuFwuzJ49GxMnTsRZZ511Utdiug9Zfonsj+xCpVJ1cjADgNlshkKhQDgcRiAQwNlnn43PP/8cV111FYCOktchQ4YkSfh4PB4RUKHrkfOKJBh60kZSm7ndfffdWLVqFZ544gksX74ctbW12L9/Pz7//HNYLBZ88cUX3fK62YCcMUQ3uadDKvT+yAcyrVYLi8UCo9EIg8GQdKPyZqAj8B2LxcR7S3sXshF5TyKPjxzMQMfcJ9ukHPxyu9249NJLMW7cOEyYMAFPPPEE3nrrrW4Nig/ERky0z6TPvkKhgE6nQzweh8vlQmtrKxwOB1wuF1wuF5xOJxwOB/x+v0iAoPeJbC0YDKK9vR1+vx/t7e1ob29HIBBAIBAQP9Pjfr8fZ5xxBtauXYsrr7xS7GVluR6GAXDUueRE6I25ZKARj8eFNFIsFoPP54PP50MwGITb7Ybb7YbH44HL5UJbWxtaWlpgt9vh8/nQ3t4uslqpSqK+vh7r1q3D/v37UVFRAZ1Oh3A4jMOHD2P69On46quvcP3114vXDwQCXVZgHI2jnXOffvppPP300xg5ciSWL1+Ov/3tb93yvxqIUNAhEAgIZzI1haa1hJoAk73QzefzIRAIiCqbUCgEr9cLp9OJlpYWtLS0wOFwwOPxCFuizHiVSgWNRgO9Xg+j0QidTodp06Zh/fr1uO6660TT85PlqaeewiOPPIJx48ZhwYIF+Mtf/tIrzf8UCV4dGabb8Hg8yMnJgdvtFs6W/gxt/GkaoawgAPB6vV1OihqNRjipotEo3G53Uik0kZOTIzSdKQKsUCiSXofpHRoaGlBWVgalUgmfzyd0II9GIpHAaaedhj179uCFF17Adddd1wsj7R9ky1xCjS7I2RcKhcRh3+PxwO/3o76+Hj6fDzU1NQgGg6ivr4fL5cKZZ56JZcuWJekkE2+88QaefPJJTJs2DSqVCm63G9dddx02btwIo9GIK664Alu3boXf78fo0aNhNBrR0NAApVKJvLw8hEIhaDQaqFQqqNVq4TTSarUD5hCWLTbSU8hSSrQJJ0kEoKPjOx34EomEyB5RqVTwer3wer3QarUoKCiAy+VCS0sLFAoFhgwZglgshrq6OgDAoEGDRFaqTqcT9kRObbKtnsThcCAnJwcqlQqzZs2CSqXChx9+CAA499xzcdttt6Gurg4//vGP8eabb2Lfvn342c9+1uk66Zq6DR48OKttRJbZkpE/1zJ0EEw9vqQ2z5HlfoAjB3wqd3Y6nSKwoNfrk7KF4vE44vE4otFoUhBdp9PBbDYLe6ESagBdZitlO9k+j6TKY5BdOJ3OpH2jSqUSgYdYLJZUwkxotVoxR3Tne9UdchzZTrbbCZN5stlGZP3lcDiM9vZ2RKNR4WQOBALw+/1JQU66pftcq1QqcQ6ifWh5eblYZ7RaLXJzc4Usk9VqFdeg9WYgkq02QvtNuRqGgpH0GMmpUGWM/Nx0ZxHKZD4W9HuUpEfJPKlyHbQ/7Sv0nZEyDJNVHM3BDHQcvmhCpoMebf6pTKm9vT0pw9VkMsFoNMLhcIgMETowy91a++JBrq9DesyjRo06Lgcz0LHwfve738V9992HF198kZ3MfRD58yZvuqnRH0lkBINBFBUVob6+HoWFhfD7/di0aRMeffRR3HHHHZ02Rvv37wcAlJWV4fDhw+L6QIezhrIHgY7MQcpiNhgMwrFA4+oNJyDTu9D6AhwpPUw95JF9yIRCIZhMJnGAo87xra2tADpKB9VqtbA5k8kkHIYajUY4imSHdW+Q2syNGmgCHf8Lr9cLs9ksxkyO9lT6WlM3KhEFjsgY0D6BZLNSUSgU0Gg04nmE7HROdUCr1Wro9XpRFt3e3g6LxSKaQpL8SlcoFArR9InsTh6b3BiV6T6ogoUO8xREtNvtwpGs0Wjg8Xjg9XrTZhWTA1itViMajSbJ35DTmUqa5ceIdI215CAEcESOg8ZDCRFMdkLvn1wpKQel+PPcv4hGo2LeDoVCIpOUsko9Ho/QZKZs1NRApk6nQ05ODsxms0i6oHWY5peDBw+KCppQKAS73S6q/Dwej3A0k+yCTqdjO8sCYrGYOGMAHe+n1+sVUm2U2Uw2QnOHXF1N76O81tAeloLTFJSmwDrtX2j9kCt1DAaDqMySHd3xeDztfjgbYSczwzAnTGomUbrMYppo5d+hw7xKpYLL5RKTularRU5ODtRqtTj0pTZ2okl8oEZ/M82JSmUQ1157LZYuXYrVq1ejurr6qE2SmOyDmmaFw2GoVCqxwaENVk5ODmKxGAoKCpBIJJCXlweHw4Fhw4ahuroan376KTweD+68806x2fb5fPj8888BAGeccYZwONN8kdrwU6PRiFJ1ariVqsGbKnXA9F3kACZVrsgSFnq9PskBTe87bdzlbF6VSoWGhgYkEgmYTCbYbDbRtVt2KMm6eZRR0tsZI3IzN1nPXKlUwmw2C8e43+/vMgOorzV1kx3M9P/uSudQhuYlanaUrsGOrM8cjUZFg0gqPQ2FQkKbOLWRjywRRJlFCoVCNAwEOrLRZJ1fnnu6F/osy1lcCoUCra2tIjswGo2iubkZAMShnuYBykCUM8Qog5myzEh7k5DtiuaAdNUMcraaXO1Dc1ckEoFOp+MAaJYgZx9SksuxSOdslucaeg7ZGAcWshPZwUwZzFSJ5/V64Xa7EQgEhKM5EokkaTZTwJmcgC0tLQCA4uJiWCwWkRFNj5Oj2mg0Qq/XiyoljUYjsneVSqXQfTYYDDxPZJDUZDaNRgOn0ykCCSSvQl+pkjO1ISDNAbS2BINBse7QaygUClgsFlitViH1JiffRSIRUTlFck1GoxFms1nYC8k/9YUABTuZGYY5YeQykeMtEaXDGWUokqahxWKByWQSpSnkTKLDH236ycGc7ZNqf+VkncxVVVW44IILsGrVKvzlL3/Bo48+2v2DY3oU+uxFIhEhWUCZgeS8oyBSYWEhwuEwfD4fJk2ahO3bt2PLli24+eabsXjxYgwbNgyvvPIKfD4fKioqMHbsWLz88ssAOjI0AYjuyuQ8pp8BpM06ksfJ9G1SNf7TyZ901biMsk2i0ahoAufxeBCLxaDValFSUgKXy9VpjSFZjFSHVG+S2szNYDDAbrejpaUFlZWVOOOMM/Dyyy/j1ltvxZo1a3DxxRenvU5fa+qW2swzNTvoeDha1mFqZnQikRDVEHKzYpLjokNiuteWM41o7iO4uqp7kTPLFAoF9Hp9JwdzMBiEy+USz6WquEgkIpIgZL1Leo91Ol2SPAo1n6aSZfp9uVKCgltGozFpH5oa7CAnAGVg6/V6diBlEAoiUCCBAk+ppe5yg1f6ejwaqPJzKCA6kCS7sh1yGNP3JIdBDman0wm/3w+n0ynmEzmjNZXCwkLk5OQgHA6jqakJTU1NYm9B0o7kgCSHoclkgtvthsVigVarhdvths1mg1KpFBW9bDeZQ05o0Ol0cLvdYs9AjmWv1ys0vCnwGQqFkpLtaO9AzmStVivWmWAwCIPBALVaDY/HA4/HI9YektQgJ3VOTo6wCzkokpubC6VSKXoBBAKBrA9kspOZYZjjhjbRlMnTlWZiKhT5ow0fZSLm5uaKA3EsFoPT6RTXpcWWNvR9Ve+wv3CyTmYA+OEPf4hVq1bhueeew69+9aukhltM34AccOSwAyCyms1mM8LhMAYNGoRgMIhBgwaJz/yCBQvw5Zdf4tChQ0kNSbRaLX72s58llbvbbDYAR5pzGY1G+Hw+eDweIdESDAZFwydZvgNgJ3NfhwIKsoP5eOd8WTuXHMyhUAjRaBRqtRplZWUIhUJCNoOawSmVSuh0OuGAykQGM5DczA0AHnzwQcyfPx8KhQIvvvgiKisrMXz4cEybNg0jR47E9OnTe32MPYnclA3oPvkJcgJS5hjtYSg7mbKDqHyeHFJ0+JPHR05HshEKlHMGY/ciN3lVqVQiY8vtdouAYyQSgcvlQiQSET09fD4f/H6/+N3UdUGn08FgMAg5HbVaLcqX6XdMJpMoa6aKPdrzUgNAWvMMBkMnHXC6LiVVBIPBtM1JmZ5F/izT+0jNGmW5EwBJEhkE7XdSs5nl4DYFLCijXnY8cXZq5pEbhVIvB3IU+v1+uFwu+P1+OBwOeL1eOBwO8Vw5AG00GqFSqWC329Ha2orW1lYUFRVhzJgxsNvt8Hq9OHToEICO7GaSdyNt5ng8DrPZDK/XKzKaXS4X8vLykmQVYrFYpzmF6VloPwB0rA/Ud4bWe2oUGYvF4PF4xDzi9XqTel/IaDQasdYEg0GRkCNXU1FVDTWaTUWtVsNmsyEnJ0c4uNva2pCbmwu9Xi/2uHT9bA1QsJOZYZjjgjZqtDFLlcPoinA4nFSemkgkoFKpxAJL13a5XKLkXXYs01fesGUOv9+P6upqAMCECRNO+PcvuugiDB48GHV1dVixYgVrM/dRSC6DDljk6I1Go7BYLIhEIsjPz0draytKS0tRU1OD3bt347rrroPH48Fnn30Gu92OiooKXHXVVRg+fDhcLheAI5IAtIFyOBzIy8uDz+dDc3MzxowZA6BjPqENFcnqpCuVZ/oOcikzcSIN96iUkZxF9DUWi0GlUomGpY2NjUnXpkwSOYs1Uw7DN998s9N969evT/r5wQcf7K3h9BrUq4GcNLJ8Rne+DySRQId+eh3KNqL76LBPpa40Brm/hF6vTwqOcfC7eyHnPQWAqMpN1j9tbm5GNBqFy+VCKBSCw+EQWWaUAZYqxaLX62EwGOByuWA0GpGTkyPmDqvVCp1OJxzJAGA2m5GXl4f8/HyR2UxVeE6nE263GyaTCSaTqZM+t06nE03GIpFIUsCC6TmoEkbONmxvbxfOI3ICU1UlkJzJTI5l+pp6Sxf80ul0yM/Ph0qlEsk0fr9fOJOY3keuOlEqlXC5XKLaTnYSOp1O+Hw+OBwOJBIJqNVq7N27t1MjeqVSienTp+O0007D5s2b0dLSgpaWFsybNw/nnnsuduzYgf3796OpqQlKpRKnn346HA6HyJ4GAKvVCrfbjcLCQiQSCTgcDhQVFYk9L/UG4KBU7yFXIiiVyqTeDLLzn+aQ9vZ2EYygvQPpNFP2ukajEeuVWq2G0WiEyWRCe3u72DvQ/ob6PFBwkiSiotEo7HY7XC4XiouLxbzldDphs9lgNBpFIJP2zlSBl022w05mhmGOCkX9aeMPHJ+DmTZ4NBFSBoFarUZeXl7SppxKmGT9Tco+oo0fkzm+/vprJBIJFBcXY9CgQSf8+yqVCt///vdx991345FHHsE111zDB/M+CB3EqHmS3CAtkUhAr9fDZrOJjdqIESNQXV2NN954A//1X/+Fhx9+uNM13W43gI4MMqVSicLCQtTV1aGlpQUjR45EXV0dvF4vfD4frFar0M2jzAAaD23QWBu175DOuUz2dDzzAwUuSYeVDvjkaFYqlSgvL4dOp0NTU5OwF7lMntYa+X6m91CpVGKPITtuU0vZ6ftTgQLW8n6GHICyI4mcAoTchJKqcORqLraZ7oWcf/JcTlIYOp0OjY2NQgonHA6jtbUV7e3tcLlcIiuM9DTp802Hd4/HA5PJJDQvc3NzYbFY4HK5oFKpUFRUBJ1Oh1AoBJ/PB5/PB5VKhYKCAlEqT47oeDwOr9cLr9cLo9EIq9Uq9qpka7Kzm+lZSCaJzht0rvD7/QgEAmhvbxfZzHKZO+1r5ECjvCbIa5FSqYRerxeZ7ORgamhoQElJCUwmk5BtokxW+RqplVfcR6L7kSshqJ8HBXvocx0IBERlBFXQKpVK0eC8qqoK48aNAwDs2bMHe/bswWeffYYdO3Zg6dKl2LJlCzZs2IAPPvgAGo0GF110EVwuFz777DPU1NTgm2++wezZs7Fnzx4hmxEKhaBSqeB0OlFcXIxgMIi2tjaUlJTAaDSKZCx2NPceqdJctM5TkIrmC5o/KBhhs9mwd+/eLqVVZHmlSCQCr9cLk8kEi8WCQCAAg8EAnU6HRCKR1MTZYrGgsLBQyKVFIhEcPnwY5eXlItjqdDpFRjPNdbSniUajInEiG2AnM8MwXUJdUOUD3/E4AOLxuNhgyR1WafPW1tYGm80mmqbIGpmyY5kOCExmORWpDOKWW27Bo48+ih07dmDlypW4/PLLu2dwTK9Cn30580er1QrtuWAwiLy8PPj9fqhUKpx22mnYtWsX/vWvf2HPnj2YNWsWSkpKRIftzz77DABQUVEBAMLJ7HA4oNVqUVxcjMbGRtTW1mLMmDHw+XxJkXtyJNB4YrEYzxlZTjrnsuzsPdrhStY9pcoacjLL2UskkaHT6UT3eOCIxjM5FimYma3lhv0d2QmY6mRO1UQlp8ypBpLo/ZZ1WqkyggJksvNYzqylscrjYXoWueyd9pXkMHQ4HKLknZyHlAUmU1xcjNzcXOE4jsfjsFgscDqdCIfDKC0tRSQSQWNjI9RqNcrLy0XmYTgcRnNzM1paWpCXl4eioiLhLPD5fCLDLRAIIC8vTwQiqGEuVfzw/NIzUEILOfR9Ph+CwaB4r30+H7xer8hipUxBek9kJzNlA2q1WhF0JMkWyoSnhlwmkwmjRo2C0+lEe3s7WlpaUFFRIbIMyR7lBJ1UlEoljEYjzyPdiPzekiQByR+Ew2HR1I903OPxOAwGAzZu3AiFQoGf/OQnuOCCC5I+r3v27MFjjz2G2tpaLF++HE899RTKysrwn//8B++//z6mT58Om82Giy++GO+++y6qq6vR2NiIMWPGYMeOHQiFQtBoNDAajWL/QlIZbrcbubm5wrYoUE5BcKbnkHtCyNUN1ACSEhni8Tg8Ho+wq+3btwMAcnNzUVBQkDS/UJIDSSzpdDpYLBYRQLBYLMIerVYrcnNzhZ+EgpZmsxmjRo1CS0sL/H4/GhoaUFlZKap1nE6naB4oO5vpugaDISvmFD6JMQzTiVTnMk28qZqZcpkxHdLkxie04afn+v1+seGKRqMoLS0VWUNyFhllg3CWUHbQHU5mm82Gn/70p1i2bBmWLVuGhQsXDhhnYCgUwn/913/BbrfjhhtuwH//939nekgnTWo3ZcrEofeSmveVlpaioaEBKpUKU6ZMwZdffomtW7di69at4rBGTdkUCgVmzpwJ4EimIDmAysvL0dzcLLKZCwoK0NLSgmAwKDZRdA3aKHI2c/ZCGYZyNtexnMvyWkK/K5cJytkcAGAwGFBSUiKacZEOM8lkkEOB7JcdzJlHdihTdrOc9QccadpFjd9OZX8gO7RJ45eyYClbkaA9DJW+95SkB9NBapNXeY/Y0NCASCQCj8cjnIdOpxOhUAjBYFA4lxUKhShLb21tFU26zj//fFEdQ5nLfr8fBw8exPjx4xEKheD3+1FTUwOVSoWKigqUl5eLBmFtbW1oa2tDTk4OiouLUVRUhFAoJLIi29raUFBQIGQ+SM4pHo9zRV4PQI4bcszJWaperxcul0s02iLnMAUlCVqDZC1VCj7q9XpYrVYRgMrLy8OoUaPQ2NgonD9VVVWoq6sT+uCUZUhBBtl5BRwJ1Ms68NynpPuQJR1pH0ma/HSTNW2BIxV1CxcuFH0RZEaNGoXHHnsMP/zhD3H48GGsXr0aF154Id59910EAgE4HA6UlJQgkUgk7UuHDx+OnTt3ChugecBut2P48OFoa2uD1+uFxWIRGvEUSAuFQmwXvQit63J/CJpXvF6vcASTJMrYsWOxbt06fPLJJ52updPpMHz4cFEVEwqFYLPZYLFYRGNBqsz0eDwYPnw4xo4dC7vdjsOHD8Pn82H//v0YPXo0Dh06hFAohObmZpSVlcHtdosACUkV0n6WHNzZMqf0qJt74cKFyM3NxeLFi3vyZRiG6SbkZhmyw5juk7XM6MBHm3La3NHzKFpMjmkSzSdok0eLPB306eDGWULZw5YtWwCcnB6zzE9/+lPk5uZix44d+NOf/tQdQ+sTrFixAhdccAHWrFmDf//730ftXp3tpJaxyw06gSNOZpPJhIKCApFZdNFFF2Hs2LFQq9UIBoNwOp2IxWIoKCjAjTfeiMrKSkSjURw8eBBAR9kY0DEvFBUVAQBaWlpgNpthNBoBICmYRYEx+X4me6D3ibItAIjAJDXJkR1/JFHg9/vh8Xjg9/tFtiCVq9N9tLFWKBSw2WwoKysTQQ/SXpQ1/qliRs5kZjIHZXoCEJ3W5WxCWSeV5hvaq5yoFEFq82KlUinsDzjS6Ekub6d5hTLPAM5i7i3k7HLKQPb7/UKPmT7fPp9POJjPPfdc/O53v8Ojjz6K3/zmN/j973+PGTNmAADef/99fOc730F+fr4ooy8vL0c0GsXmzZsRDAYxZswY4Vg8ePAgNm/ejEQigaqqKlitVgAdTqk9e/agtrYWGo0GhYWF4lDvdDo7NR1MzcpnTh25KRetE263Gw6HAy0tLWhqasLhw4fR0NCAw4cPo7m5GY2Njaivr0ddXR0OHTqEuro6NDQ0oLm5GU6nE06nEw0NDbDb7ULPuaWlBUVFRVCr1XA4HHC73Rg5ciQACJvLzc0F0PHe0/6O9FgtFou4Wa1WmM1mmM1modPNe5XuRf7MpfbrIEevfDYFgJqaGgBI62AmcnJyMH/+fAAdZyKv1yvWjZycHDQ3N4uKPQA4/fTTodFoxLxA8jpUwev3+5PmDABCOx6A2C8xPUfqXhQ4MleTvArNM+ToBTqSaF588UXs378fGo0G48aNw8yZM/Gtb30Lubm5CIVC2LFjB/bs2YPhw4dDpVIJOSe1Wi0CpCQ/uW/fPhw8eBDl5eUYO3YsFAoFXC4X2tvbUVpaCqBj/Wtvb0dOTg7MZjOAjibpVAlOe1vgiIM80/RoGtltt92G733ve3jhhRd68mUYhjlFaNElB3K6CYoO5LJGMkX26HepRETOOJIdyzk5OTCZTGhoaEh6noyczcxZQpknEokInbIzzzzzlK5ls9nw61//GjfffDPuueceLFq0CIMHD+6OYWY1mzZtwk033QSlUolx48Zh165dOOOMM5KeQ9Fugsr7s4nUxlzk2JMdQKSr3NraioKCAmg0GjQ2NuLAgQPQ6XSYO3euaHJBm6VwOIwNGzagpqZGyGyMGjVKvG5ubi6amprg9/tFhlptba0oOVSr1UI2gzKZOXMseyAHszzXy5UywJEMZ8o+ltcHymKmdYYek38mp6PdbsehQ4dw+umnQ6/XCydAajNZWssGSjVFtiI7cWkOoQCDXDVFpGYwkx0dK6tZdi7QzwBERhv1iyDJHQqgydIYQHKWHO9Pegb54E9ZzIlEQmRwBQIBOJ1OBAIBUeFCDWTnzJmDzZs34y9/+QtisRimTJmC//3f/8VNN92EcDiM9evXY/Xq1bjmmmvw5JNP4sCBA5gwYQJKS0uxceNG7N+/H3V1dZg8eTKGDRuG/fv3w+PxiPtPP/10lJaWCqdkW1sbgsEghg8fjtzcXDQ3N4vAmcFgYBvpIRKJBNrb20U2KjlbfD4fWlpahLO5ra0Nfr8fLpdLOP9JLzkejwsnYHt7O5xOJwoKCmCxWERgY+zYsWhqasKBAwcwe/ZsbNy4ES0tLaIRMWWcms1m0S/i8OHDMBgMopSdstpTSdWDZboHtVotegHRHjCdw02WSiBnrs1mO+q1y8rKAHQ4helcNGTIEOzbtw+ffvopEokEdDodzj33XAwePBgOh0MEHXQ6HWKxGEwmk5DgGT58uJjTSIuZ+gaQTBCteUzPQnsD2lfSZ5vmCp/Ph0Qigfz8fLz99tsAOpra33jjjSL4CHTY1fbt2/G3v/0Ne/bswdtvv42lS5fi9ddfh91uR1VVlchEdjqdmDhxIrZu3Yp9+/Zh+PDhMJlMyMnJgcvlgt/vx6BBg5Cbmwun04nW1lYMGTIEZrMZKpUKbrdbNBSUe0tQlUSm55YeffXZs2eLbCSGYbIPObtM1rmkQ7usJUe6Z7RhczgcojMvdd2mG2WXkYPZaDSioqJCdNIFIF6PSN1wsYMoO9i9ezdCoRAsFguGDRt2yte76aabMHXqVPh8Plx99dVJZYv9FdLYAjoyfOVGD8TDDz+MnJwccctG53tqFp/8maVGagBE9+N4PI7c3FyMHz9e6BQeOnQI+/btw+7du/Hll1/iww8/xJo1a7Bjxw74/X4YjUbMnTsXNpsN8XgcLpcLhw8fBnAkW1qtVovMIcqMpflKdkByhlDmSedgJmkLyrwwGo3iECVXz7S3tyfpalKmmtPphMPhEBnO1JyFiEajaGxshNPpRDQaTWomKEtzcKO/zCPPKdTEk3QHaf8h3+Rqq9T7KBhBgYfUSiyaEyhwQXZIP1M2pNPpFPqLsgNcnu8yfXjrr8iBTIVCIdZKv9+PRCIhmriRYzkcDotS97KyMvzpT3/C2rVrhe7u2rVrceONN6KhoQELFiwAAGzfvh0WiwVz5swBALz33nsYM2YMFi9ejMLCQoTDYaxduxZr167FaaedhkmTJgnH0JYtW1BfX4/KykqRoeb3+2G325NkVjgDsWeRP7s0X5BsATmMSa+7tbUVDodDNHnbtWsXDhw4gJqaGlRXV6O+vh4FBQVQKpUiKFlcXCx0l4EOpyKtUZFIBEqlUjiWDhw4gHA4jJKSErHPCwQCaGtrw+HDh1FTU4Pm5uakJAIg+53MoVAICxYswNlnn41nnnkm08M5bijpIR1yUgTtA2ifCgDV1dVHvTZ9rjUajdDlLSsrwyeffIJEIoGhQ4fi7LPPRktLC9566y189NFHSCQSKCwsFBV5Xq8XOp0OkUgETU1Nwk/W1tYm1huq6AGOBEIzRVd20FftQ0YOaFIFJO0VKNO9vb0dkUhErEW7du0CAFx88cX4yU9+kuRgpmtNmDABv/nNb3D66acjGAxi27Zt+O53vwugIwt+zpw5UCgUOHDgAKxWq2hG63A40o4zPz9f9LGhAJjBYIDBYAAAkVGfbZzwzBaPxzF69Gj84he/SLr/vffeg1arxb///e9uGxzDMD2H3DBJdi5TYwS6yeXJqY5k+TE66JOThzZhgwcPFg2YACRlQtNkKUtkUJYZH/6zg82bNwMAzjjjjG7ZDCuVSrzwwguwWCxYs2YNfvnLX57yNbMds9ksMrL8fn+nTQkALFmyBG63W9zq6up6e5hHhZw5wJEsvtQsP9rwtLe347TTToPBYBANViorKzFmzBhUVlaKyLzVakVOTg4KCgowZMgQTJw4EVOmTEEgEMDXX3+NL7/8Ejt27IDH44FSqRTNAYGOqgjSYCa7JCcSjXMgBDCyHVmagLpjAx2HNIvFAr1eLxriaLVa4eyjckJyKpMmKjkf6Ro5OTkoLS3FyJEjMWnSJJSUlADosFfasKeTyTieBrZMzyI396OGepSdCByRTKEqj1AolBQElw+D9LlP1eqWb1R5Rc5ouracMU0He7mRGJDsZOYAeM8h63CHQiHh6Jf1dKmMmBzM8Xgcer0e77//PuLxOC688EL861//wooVK0RjtmXLlqG0tBRFRUWIxWLYuXMnpk2bhkGDBqG9vR3vvPMOCgsLsWjRIsyYMQM6nQ6tra1YuXIlYrEYpk+fjqFDhwLocES1tbXBYrGI+YYc3WQbqWX6vJ/tPijhBUDSVypvJ/1UOrN4vV4olUoEAgHU1dUhHo9j8ODBOP3002EymeB0OvHRRx/hsssug8lkwsGDB8Veo6mpSbwuBblJFrCiokKUtW/atAk7d+5EOByGzWZDbm6ukN2hLMj6+nq0tbV1solsDYb3ZZk3kiKJxWJi3dfpdCLITPKMtGel9/vll18+qsxAQ0MDgA6nH0m7kYTCiBEjEI1GsXv3bjQ2NiIYDEKhUKC8vBxTpkwRiSMtLS3iPExNI7VaLRKJBOx2u0jsosZ/6Sp+e5Ou7KAv2wchy//RPoCCzrLTmf62/Px8NDY2wmAw4Hvf+95Rr63RaITEZFtbG0aMGAGbzSb2HuXl5QCAQ4cOIScnB8CRClaa18hOqPJTfg5wxM7lCq1sCl6d8AiUSiWWLFmCP//5z0JDZtu2bbj88svx0EMP4fLLL+/2QTIM073QJEdOZdm5LHfmpU7L5MyhTGba8Hu9XpH543A4YLfb0draipaWFjQ2NmLfvn345ptvsH///qRJUC5VBY5MhuS84kNc9kBO5kmTJnXbNUeMGCEi348++ij+/Oc/d9u1s5FJkybhs88+QyKRwNatW5OkIAidTger1Zp0yybkzZhSqUz6HNNhicq1yKkzYcIElJWViQzFaDQKrVaLnJwcFBYWori4GIMGDUJeXh50Oh3a29tRX1+PpqYm0fVbrVZj0KBBmDhxYtL/RKlUiqwhuTEplcTL2c1MZiDHHtDhfJE3zkajUdhNOBwWDbU8Ho9o2OR0OuFyuWC329HY2Ii6ujocPHgQhw4dgsPhgNlsxujRozFkyBDk5+dDo9GITDSyT5LEINtMlXxiMgNluAPoFHSm8mVyMgJH5hg5C1l2FtPz6ft0P9PvpDqWNRoNrFYrCgsLxVwEICkDn14/W7SY+2t2mTxfUGCW7IASG6gRE30fj8dFc+If/vCHeOCBBzB8+HAMGzYMjz32GHQ6HTZt2oSPPvpINC/euHEjVCoVLr30UigUCmzZsgV79uwRDZ2uuuoqlJWVIRqN4t1330UkEsHo0aOFY4CcTalOZQqiUfPKbDrw9xdo3lAqlZ2czMCRBBrgSNBo1KhROHjwIKxWK15//XV8/vnnWLVqFbZs2YLrr78eAPDPf/4T3/rWtwAc0VqWGwyTXns4HMZ7772H2tpalJeXi0xUj8eDuro67NmzB3v27IHT6YTJZErKcKYqULoegIw6EI/Gpk2bMH369CSZt1RCoZBoXka3bIB0/IEjjjpZ55/2A+RkBjr2r9u3b8czzzzTpeN/9+7dADqcjYlEAiaTCdFoFCaTCe3t7YhGozCbzSguLsbQoUMxa9YsTJkyRezvq6qqAHRoQJM0GDmpad2j/6F8Fs6kjXRlB8djH0D22oh8hpHnDgBJwWnZyU/2MnjwYNEbpisOHjyIN954A0CHPresAa5UKsVa0tTUJBzIXWUyA0jSYSZSA1XyeScbApsntepdffXVKCgowOOPP476+np85zvfwbXXXov//d//7e7xMQzTjdDBjg5ndNAi5zIAkVWmVCrh8/lE6ahcrmy324VDgDJK5AwjOYsjGAyisbFRLM7UvIXKlACI5kuUYZYNkyPTQU84mQHgiiuuwNKlSwEAt956K15//fVuvX42ccUVV+CDDz7A5MmTsWjRoqzo+nuiyJuZ1A24fIAmR7Ddbkc8HkdlZSUmT56M0047DWVlZcjPzxfa7EajEQaDAXq9XmgYWq1W5OXloaSkBFVVVRg5ciSKi4uFY1uGDg/RaFR8T3OK3CG6L9DXnUOpUAYIAKFzS9/L7xXpzJGeJmUu2+121NfX49ChQ7Db7SKLmZyMDocDGzduxFdffSVes6mpCZFIRGgaAh0HR3I0U8UMZTExmUP+XKpUKlHuSY34SE+QAlJ5eXmwWq1C55YOfuRMDgaD4mvqjZzNqY2LKaONbrIjGUguZ6f5JFuCE/01u4zsgjKY5aZLlNEcDAaTGgLS+zp79mzcdNNNSdcrLS3FtddeCwB44oknMHnyZAAdTma3242KigpMmzYNAPD222+L99xoNGL+/PmiiRNlLdJBn/bL5BQwmUwigAEAer0+yaHATubuIXVdkZNX6HMr/7/pPSBbqaqqSuqHodfrcfvttwPoKIPPy8sDcCQzvaGhQWSrv/XWW6ioqIDBYEAgEMDOnTvxxRdfYO/evQgEAsJpSc5Dl8uFffv2Yc+ePbBYLCgsLATQ4WgOBoNJElHZmM3cl2XeaJ0HkpOYSNJGqVTCaDTCZDJBr9cjFosJu3j11Vdx3333JWWxAx1BhK+//hpAh5wKAOFotFqtSCQSsNlsUKlUCAaDcDgc2LJli5B7A4ChQ4cKR3NLS4tYixoaGsS5wOPxJM2D9Pdkiq7s4HjsA8heG5EdsjSPkP8i1ZdB6z69R/X19V3+vfF4HO+88w5+9rOfwefzYfTo0ZgxYwb+85//wO/3w2QyobS0VDT9a25uFvbU3NyMQCAg7IqSeQEkBb9Tncpynywge3pGnJSSuFqtxi9+8Qv88pe/xMqVKzFp0iQ8/vjj3T02hskooVAI//Vf/wW73Y4bbrgB//3f/53pIZ0StGlPLSOlTTEd/t1ut7gvHo+L0jDKeJazSchZTWVHRUVFGDVqlNhMJRIJeL1e7NmzBy6XC9FoVGQI0CRIhzvqKM+b8ewhHo9jy5YtAE696V867r33Xhw+fBjPPPMMrrzySnz88ceYMmVKt79OptHr9fjPf/6T6WGcEvKGRT7QAUc28VQq6vP5EI1GUVtbC41Gk9RIlKojjkUikRDSPDI6nQ46nQ4ajSZJbkev1yc1e4lGo8LZmA0NMI4FOYe+//3v44ILLsC1117bJ4MRBDkCqCKGfqb5nhzF4XBYrCd+vx9er1fc397eLhpB5ubmYuLEiaiqqkI8Hsfhw4exefNm7Nu3D9/+9rcRjUZRX18PAKLMlBzMqTIZ2bD5HsjImUFqtVqUqAJHqhHoPQ8EAmhpaUnSM6UML3L+nsj72VVjY5VKhbKyMmi12qQDfmplVbbMI101k+3LTWbTSR3JwUJaE8jJHAgEEI1GsX//fgAdzebT2cK1116LV155BYcOHcI333wjGvq99dZbuPrqqzFnzhxs2rQJbW1tOHTokHACqVQq5OXlwel0iv9Xa2srgA6nElVdAB2ZjeSY1Ov1UKvVYn3ipl3dh/zZlZ3K8r5Crlyh5zQ2NgLo0OOuqalBZWWluGZubi6GDBmCQ4cOiWt//fXXOP300+F0OnHo0CHo9Xo4HA588MEH0Ov1KCgoEHNFLBYTlThAR0+K0aNHQ6FQoLGxUTikJ06cCLPZLBJ25HNSLBbLOjs5Xpk3ctIDHXNJtjgR6f9JUlmJRAIajUbsIc1mM9rb22Gz2dDS0gK/34/Zs2dj7dq1+PLLL/HVV1/hrLPOwplnnom8vDysWrUKkUgEw4cPR35+PoDkbHRyYpPGs1arRXNzM/bv3y8aBnq9XiHXUl9fD5fLJQIbLS0tQk6hvb0dZrM5KTifKbqyg+OxDyB7bURu/Cj3hyLktZ/W/ZaWFgwePBh1dXV44IEHsGTJEpGFHI/H8dVXX+HFF1/E3r17AQATJkzAJZdcgscff1wEJBcsWAC1Wi0+/z6fDxqNBvn5+Whra8Pu3btRWVmJtrY2NDc3o7S0VOxhU5ErNlJ7SGQDJ71buvrqq4V22j//+c+0f9D555+Pyy+/HO+88w7Ky8uxcePGUxosw/Qmx5MRkq1lIKnQ5CM7l+WSMjp402GOnMl2ux1utxstLS2oq6vDvn370NDQILKY6feplLGmpgbvvfceampqoNPpoNfrxaaNNO7IKU0OAJVKBY1GIzLNmOxh165dohlbOomHU0WhUODJJ5/E/PnzEQwGcfHFF2Pfvn3d/jrMqSOXicdiMREYApCUNRSPx1FaWiocpKl6p3LmoFarhU6n63QflTTSTY7K05zb1tYmHNBWq1VkrchNwoi+kM3cl0tTU5EdAeRUljNyQqEQWltbRQMvt9sNh8OB+vp6NDQ04PDhw9i7dy8OHjwopJd27tyJf/3rX3C5XLDZbKLUkKitrUUsFhO2Q44HWSbjaA2BmN5DlqCQD3iypIrFYoHP50NjY6O4T66mkPWVUyUxjnZLlcmgzENyFMkHtdQsMsqEzwZOJbssWzPLZLuQM8voMdrDyk2j9Xq9aLgla/bLmM1mkeH817/+FZdccgkA4KOPPoLD4YBOpxNNjUkGA+g4/B86dAgAUFRUBKfTiba2NigUChQXF4u+CYWFhYjH48JOc3JyxPjkdTKb6IuVM7IWM+n3Ax2fY3Lsm81mUYlJlVIkcTF27FgkEgk8/fTTna49d+5cAMDrr7+OYcOGCf1mlUqFhoYG1NTUiMzGQCCA+vp6HDhwAIcOHUI4HEZZWZmQBnO5XFi/fj2USiXOOOMM6HQ6IQlF0hqk10u2kY2yXn1d5k12EtI+RK/XCyezUqmExWKBTqcTTuPW1lacf/75mDhxImKxGNatW4c//vGPWLZsGTZs2ACNRoMf/OAHoiEkzVk+n0/YBgXLhgwZAuBIc2q/348PP/wQ27Ztw9dffy1e0+l0iqZutL5QNQ+RyeBmV3ZwPPYBZK+NyPsJuYopVSpUr9fDaDRCr9fD4/Fg8uTJ0Ol0Qmrnvvvuw69+9Stce+21uOeee7B3714YDAYsWLAARUVFeOONN+BwOGCxWHDDDTcIySYKeAAdTvoxY8YA6NjLqlQqWK1WxONx1NbWinHKUBU6AJGNT39DtuxzT9pqb731VgAdJbFd/THvvfceWltbhc7it7/97ZN9OYbpdY7n0J+tm/VUUhvgkGxGIpEQmUQul0scsNra2uBwONDU1IQDBw6Ig39tbS327t2LHTt2YPfu3di5cydCoRDOO+88XHDBBSIDZMOGDeI1ampqAHRsvOnAQ+VK5BBQq9VZuREf6Kxbtw4AcNZZZ/XYoqVWq/Hyyy/jzDPPhN1ux0UXXSQyQpjsgmyAsg0pc0iWq6BsrrKyMlRUVKC0tBSlpaUoLCyEwWAQG3wKQul0OtElmaQzUm8GgwEmk0nczGYzzGYzrFYrysrKRAk9jU8epzzebKYvO4dkZK1dcuymat+1tbWJzGWXy4XW1lbU1taivr4ee/fuRUtLCyKRCIxGIyZOnIh58+ahsrISsVgMGzZsAACx8S4sLITf70dLSwuAI1nMOp1OyGRQRlu2lBAOZOQsZnLaykEgahoMQLynpGVZWVkJm80mDuSk3e1wOEQmIe1d3G43/H4/IpGIOLAVFBSguLgYgwcPxtChQzFkyBCUlZWhqKgIAIQjmg6d5ASXnczZwqlkl2Vrk1k5syy1XDx1Dqf7aQ0ip09XLFq0CHl5eWhubobL5cKIESMQiUTw8ccfA0BSUBTo2DOvXr0a0WgUgwYNwqBBg7Bjxw4AHWub1+tFOBwWPQNo3bNarVCpVOI62SrN0xdlVej8AnT8XylTnAJFAJCXlwetVguz2QyTyQSFQiFsgzIHX3nllU4B2u9///uwWq3Yvn072trakJ+fj+bmZtTW1iInJwfxeBz19fWoq6tDJBJBZWUlSktLoVAo0NzcjPXr1yMWi2H+/PnCufjNN98IvXegw7ZSNVRprsvG/Ul/kHmjOZvsg9Yc2nuSZIbRaMSQIUOgVCpRU1MDm82GX/7yl7jmmmvwrW99C6NHj8bs2bPx29/+FuPGjUNBQQGADukTlUqF9vZ2UV0Rj8fhdrvFXsVqtYokLnmts9vtMJvN4hwOHJl/SCpIHnOmSLWDP/7xj9i5c2eftw/5s5h6dpATXMxmMxQKhQgQ7du3D4sWLcLQoUMRCASwfv16rF27Fna7HSaTCRdddBHOP/981NTUoKWlBQaDAdOmTcO8efPQ0NCAN998EytXrsTzzz+PUCgElUoFi8UiZAKBDs1umkfsdruoGqcxKhSKpEoZtVrd6fFs4KS8Ovfccw/efvttrF+/HnPnzsXf/vY33HLLLd09NobJKMdz6M/WMhAZyvyQM3TofjpIuVwuxGIx+P1++P1+OBwOOBwOBAIB2O124YBOJZFIYO/evfjHP/6BO+64AxaLBQcPHhQaeXv27EEkEklafOQSZpocuYQ5OyEnM2kW9hQmkwlvvfUWpkyZgurqalx//fV488032SayDMoEpTmFqg9isVjSY06nE1qtVmQIkuNGvobsvEl9n2VNd8oKoeCYPBaj0SgymOk+Gos8RnJsZUupezr6emkqIevYpWpOUjAzEAigvb0dHo8Hzc3NcDqdqKurQyAQgNfrFVVypaWlOPPMMzFy5EjodDrU1NSIJmBUIl9VVSWyDQ0GQ1JVDK0rqQeIvkp/k/Ciz6P8eQc67MblcgHoeE8LCgrQ0NCAurq6tFUJNE/QfqYrKChFzieCrqlUKpO0oeXqDXm+ygYoi+z000/H1q1b8eCDDx71fhkK8mUbcuZ46n5Tfm/l94Wq6aqrq+HxeLrMktPpdJg7dy5WrFiBLVu24Nxzz0V1dTW+/vprLFq0SDiJTSYTEokEPv30UzQ0NECj0eDcc8/Fvn374PF4oNFoMHToUDH/lJWVIRQKCYkXucQ9mzLKUumLsipy5rJCoRDrpclkEvq55AgymUzwer0wGAzi3GO32zF06FAcOHAAn376KS6++GJx7eLiYjz11FO48cYb8dlnn+G8887DmDFjsHPnTmzevBkXXXQRcnJysHnzZjQ1NaGpqQnnn38+LrnkEnz11Vf46quvsHHjRowcORKjR4/GoUOH0N7eLtY8oEO/l+YXed+SrfQHmbdUqSMKPNMcGAqFYDabEY1GEQqF8O1vfxu7d++G3W7HG2+8gdNPPx0//OEPO1VOFRYWQq1WIxKJoKKiQmi2A0AgEEBhYSECgQB0Oh1Gjx4N4IieO2EwGJL2JlRlQ4H5bGkaejQ76Mv2QRJq1GCc7qNeDcFgUDR2pPeOJC127NiB8ePH4/LLLxeSSTk5OXC5XNiwYQOi0ShUKhVGjx6NRCKBw4cPJ2lzE1qtFjNmzBDrcUlJCRobG+F2u2GxWKDX6xEMBsVcAnSsZdSrADiyZtG6czxyhL3FCVvuX//6V/zmN7/Bm2++iQkTJuCnP/0pHnnkkbR6JgzTlzmeQ3+2loEQclYZbbSogy3QcZhzOp2IRCJwuVxwu92ora1Fc3Mz6urqUF1dDbvdDrvdLrKZnU4nJk6ciN/85jdYsmQJVCoVGhsb4XQ6k5oi1NXVweVyQalUikggOZQpy0x2BDDZR285mYEOm3njjTeg0+nw9ttv4w9/+EOPvyZz4tCmmDbBciMukroAIDR1ySkoVy7Q557kDI52o+fQoYCi9PF4HD6fT0j6UGdvIH3Ti2zPZu7rpalEavYNNX8lff9AIAC/3w+3243Dhw8LzUKn04m9e/di165dOHToEGpra7F+/XrccccdCAaDorohNzcXzc3N8Hq90Gg0yM3NhcfjEdnLwJFAJt36SxZzX8w+PB5SG+0pFApxcLPZbNi9ezdqamoQi8VECStJaRw4cADV1dXYt28fqqurUVtbC7fbDZ1Oh/LycgwaNEg00fF4PMK+ZGifR2XtwBH7lZtGZRP9NbuMoP+7nIlIn2GSXaLsrfLycgSDQdx3331H/UzQ+hCLxUQmosfjQTAYFDZRVlaGTZs2Yffu3VAoFJg3bx4CgYBwKo8dOxZOpxPxeBxGoxG5ubkio4z2uXJANVvnnL5YOSPLblHgWqlUQqfTdXLe0rnCaDRCrVaLCggqSd++fXun60+fPh1/+9vfoNFo8P777+Pcc8/FFVdcAQB45513MGHCBCxbtgyzZs0C0FGt7fP5MHPmzCS5Feo7Y7FY0NzcjEgkAq1WK3S8gSMOx1R9aaZ7kR20VFVgNBpFHw/aKwwZMgQKhQJNTU24+OKLcfbZZ0OpVGLHjh343e9+hz/+8Y/47LPPUF9fD7/fj6amJvGe0V7NbrfDarWKeWbGjBmYPn262KcVFBRg7NixsFqtKC0tRVFREdxud1IATdaRzsZmkP0N+n/HYjFxlpHldrRaLYxGI3JycqDX62E2m0WA4eDBg3j33Xfx1VdfYevWrXjnnXewbt06RKNRDBkyBGPGjIHP54Pf74dWq8XQoUNxxhlnYMqUKZg5cyYuuugifPe738WQIUPgdrtRU1OD3bt3A+iYO2RZKKVSKYJVFECjDPhsbjJ7QrumVatW4ZZbbsE///lP0Zzpxz/+MR577DG8+OKL+N73vtcjg2SYTHA8GSHZDk08qVFR0sx0uVzCwez1ekUEra6uDuFwGE1NTWhtbU3KZgA6skaMRiPOO+88ET1zOp1igqysrBRRu7y8PJG5SA27ZCdTNk2IzBHsdrtoXjB16tReec3x48fjd7/7HX70ox9hyZIluPjii8XmnckO6JBP+pgqlQpGo1Fkn1KHdZpz5MMTOW1SI+2p5V30u3LpPDmJafNN2c2khUlzFDmzqQu93AAwm7OZr7jiClx11VV47rnncOONN/ZZ51AqpPEfDAZFRobH48Hhw4fR2tqK+vp6tLW14eDBg6J5zty5czF58mT88Y9/hNPpRHV1tWjqV1JSIhw+Q4YMQXNzM4COjTetK5SNIh/esjWj8EToi9mHR0NuliTreJMDSa1Wo7GxEQ6HQ2gj7tmzp1MzUBmys+bmZphMJsybNw8jRoxAKBRCY2Mj6uvrUV9fj9LSUqHrSg42ymqigxrZUDaVnxL9MbvsaOXLZCdms1lI7ZhMJrjdbiFt8Nlnn+GKK67A1VdfjalTp6K0tBTxeBz79+/HG2+8gVdffRVAhzNx7dq1AIDy8nKsXr0akUgEhYWFsNvtosz9nHPOgV6vF82Pq6qqRNADAEpLSxGLxcQ+22AwiPHLf0820pcrZ1LPM9RIlh4DjjiP6KvZbIbL5RLBBXoPU5kxYwbmzZuHd955B19//TXuuOMO7N27F1u2bMHu3bsxduxYXHLJJdi2bRucTiccDgcGDRqU5OQm+ZnS0lKxbpWXl8Pj8YhAGckkZENjt/6M/BnU6XQIBoMiAEEJT+FwGH6/H2eeeSa++uorrFu3DosXL8bZZ5+N1atXY+vWraipqRHSjzKDBg3C8OHDYTKZ4Pf7MXToUGzbtk00fJQz1hUKBUaOHImCggLU1NSIwFZJSYmwH4PBAL/fn3VBzf4KnWXi8XiSzjtJ7NBZJhaLiSxm4EjAorm5Wey5FAoFqqqqUFpaisOHD8Pj8UCr1WLUqFFQKBRwOp2icezRMBqNKC8vx86dOxGLxURT81AoJPZBFIS3Wq1JVerZViFx3Fa8adMmXH755XjkkUdw2WWXifutVit+/OMfY/ny5bj++ut5omT6DX390C9n7skbL3IGhUIhhMNhOJ1OeDweNDY2ioxlv9+PmpoasQktLS3FnDlzMGbMGKxbtw5vvvkmtmzZIhbCyspKsTEfOnQonE4ngI6SItoEkg4zOZm5CVN288UXXwAAxowZg9zc3F573R/84AdYuXIlPvzwQ/zgBz/A+++/n9WHtYEIfaZpc6PRaGAymRAKhYTWOz1PJlWfUtbLTYfsTCbHD5UoksNa7u5N2Qd0gCAnM228aE7MRkdzfyhNBZI1JmOxmFhnQqGQkMNobGxEW1sb6uvr0dTUJA5b48ePx89//nPRif25556D0+lEKBQSDbmKi4uFjmpZWZkIZspOBTlzWdbW7escb/bhsmXLentox026IFWqbAZlEyuVSjQ1NYmKLHIMmUwmUY5Mmob5+fkYMWKEOPjt2rULPp8Pq1evxmWXXQadTofKykq0tLQIe9RqtaLjO5WgAkdsKDWblulZ5MayFIhMfQ+oUaxOp4PZbEY4HEYgEMCoUaNEAOHXv/51l69x5ZVXYseOHfjss88AdMwntNcZNmyYcD5PmjQJRqMRmzdvBtDhCBo5ciSqq6sBdGTYWywWIbNBVTZA33Ay90VZFVmqi9Z0yvajQFVqVTXZD1UzkP76+vXrsX///qQkhgMHDuCZZ57BO++8AwCYOHEi/vGPf4ggw+jRo9HW1oaXX34ZTqcTBoNBBDppfSoqKsLOnTsBdGQjulwuaLVa5OfnC+dzXl6eaG5JtsJzTM9A8zg5EeX7SFaL7Co3NxeVlZWoqanBa6+9hrPOOgtz5szBjBkzsHv3btH4vr29HRqNBsOHD8cFF1yAb775RlQzFBYWIi8vD21tbXC73cjJyUEikYDdbkdzczPsdntSVXF5ebk4ZxcWFiY1NE3V72a6H4VCIaQx4vE4LBYLnE4n1Gq1cDDL///8/Hy43W6x9yotLYXFYhFZ0Ha7XXzOy8rKkJeXJ/whAITNxePxTp9/vV4Pk8kErVYrErxUKhUKCgpEdUReXp54baPRCI1GI6p3yJazieN2Mp955plpN7QAcP/99+P+++/vtkExTDbQ1w/9sgi83MwkEokgGAwiHA7D5XKJstPW1lYhe3HgwAFRUnjLLbdg7ty5YvL66KOPAHRkBtCGPCcnB4FAADabTXQ5pQxmKqMnBzNlBvWH8uX+zKeffgqgd6QyZBQKBZ566imMGzcOq1evxquvvopFixb16hiYo0OOItKQkzOYdTpd0v20oaeNPnE8VQw0V9ABkrJ+DAYDIpEIwuGwODyk6t3R75GzUz6gskRPzyFLH5CESSgUEo3aWltb4XK5UFdXB7vdLhzMCxcuxC233CLWGaqkATo0DmOxGHJyctDc3CwOhJTNYTabxZoiry1yw7/+QF/OPpSRg1TUGwI4oudNEjt0sJIbCFdWVmLPnj3YuHFjp+uqVCosXLgQU6ZMwciRI/Gf//xH7G8GDx4s9j0AhNYh2RA5IGjeSA1WMD2PvB6Qkzkej8NsNsPn88FisSCRSIj5IBqNwmazAeiYI6ipI1VK0B7YYDBg+PDhqKysRHV1NYLBIBQKBYYNGyaa+ZWXlwvnwPjx46FQKERQY/DgwTjttNNw6NAhBAIBqFQqlJeXIxqNJuliAsmNLbPZbvpiEo0cOKbGwcFgEC6XC2azGW63W3y+ZZ114Ig8hcPhwFlnnYUvv/wSF1xwASZOnAitVouampqkBpgXXnghVqxYgcbGRgDAeeedh23btuHZZ58VQZDrrrsODodDOKVHjRolgg55eXkiO7WwsFAk92i1WmErVHHC+5Gehf63ct8QChAZDAYh7bZ//37MnTsXb7/9NhobG0UgSoakEpRKJUKhkKiOADref2o8C3TYnMPhwJ49e8Q8AXS83yUlJcjJyUFDQwMSiQTMZjMKCgpEpqvRaExqXM30HLRnJKevxWKB1+sVZxkguVEnJc0Fg0H4fD54vV6xjwA6ApC0DjmdTiiVSgwZMgR6vR4ej0fMUfJ15YACZUWTXAcFMHJycpIyls1ms+gHQPdlG/1j580wTCdkrS86vAUCAdGllBowNTQ0wOVyobGxER6PB/v370c8HsfUqVNx3333JR1k9+7diw8//BAA4Ha7EY/HRUmiVqsV5YMmkwl5eXnwer1JWnoUacs23SCmM6tXrwYAzJkzp9dfe/jw4bjjjjvwq1/9CkuWLMEll1ySVc0MmGRHETU9AiCyiOWmfXJ5Kz1+IocqmjvoWolEQlRGkOOIpBJkKEMhHA7DZDKJ5oHyeJnuhQ73lOUeDAYRCATEZpwczFQtAwCLFy/Gj370oySb2LhxIyKRCAoKCrBnzx4AHZlklCU2ZMgQocVMTmR6/1OdzP3lve6L2YfpoPeEylRTG3zG43FEIhGh6V5bWwug44D/3nvviaqFoUOHJnVjr6urw8qVK1FeXo7y8nIUFBSgtrZWHPDJYZSTkwO1Wi2CGJSFRLYkNyblfUrvQXZB87TcmMvn88FgMMDn88FmsyEUCokssby8PLS3t4s9qdlsxsiRI5OkCOLxOA4cOACgw/ljNBpF+bHNZhMSHSNGjIDP5xMVL6NHj0ZxcTEOHDgAv98vSqLVajXsdrtwHOr1+qQACZB9Ot4yfTGJRnYGBYNB5ObminNLTk4O3G63cOySI0eu5lQoFNiwYQMWLFiARCKBDRs24MsvvxTXp8xSo9EoKmQMBgMqKiqwf/9+IdNUUVGBUaNGYcOGDUm9AmbOnIk1a9aI55DD2WazCSeUxWIR8h5kn9k+X/d1aE6Jx+MwmUxCxoAeo4SHYDCInTt3YuHChdixYwf27dsHt9stKvQIcvQRBoMBOTk58Pv9ovKhsLAQNTU1wuGsVquFDnNOTo6QCgM6FAEqKyuFLZH0lxx8pUQJpmfQaDSiuookS+LxOHJzc9Ha2iqymoEj+0vSaKYG43SLRCIie5kczq2trSJRt6vgtVydSYEMGhtVaAId5xpaA2l+o/NQtpG9KyDDMCeNXN5BkxA5l8PhsIimNTY2ilLkWCyG+vp6xONxzJo1C/fff3/SJtnv92PZsmWIx+OoqqpCOBwWi6tCoUBlZSVisRi0Wi0qKytFFhJNppzF3Hdobm7Gtm3bAGTGyQwAd9xxB5566ilUV1fjmWeewY9+9KOMjINJT2oZGQCRXZYOOSv5ZD778uvJm614PI5wOIxIJNLJyazRaMShPxKJiANqNBrN6qZMfRXK4qP/dzgcRjgcFjq5ra2tsNvtCAaDqK2tRSwWw7e+9S384Ac/SHovYrEYXnzxRQDAhAkTUF1dnVRKX1BQILI7qIkPOQepaoYOaf0pS6wvZh92hZy5IzuaSW4nEAggkUigra1NBJWoMeZpp52GhQsXIi8vT1wvkUjgxRdfxPbt27Fp0yaUl5cLG9Hr9YhGo8KpXFpaCq/XKzKGaJ8jazDLPzO9h1qtFlUr5AimJnvt7e3Iz8+H3W5HUVERmpuboVQq4fF4RCUNOQq8Xm9SE0e9Xg+VSiWCMAqFAgaDAVarVTSGs1gsovQ4Pz8fI0eOhN/vx+7du0W1TlVVlchQDIfDUCgUQk6MSq4BiNdguhe9Xg+fz4dYLAadTieyDim7OBwOw2g0IpFIiF4MGo0GHo9HaO6+/vrrUCgUOOuss+D1euHz+UR5PH32qXSdGrlRMIKckxT4VKlUGDlyJEaMGIH169fD5/NBr9cLOyUNVToPkRYz2RmtV0zPQY0io9EozGazaJpG39P6QIFvr9eLiooKTJo0CU6nE42NjSITPXXfKydMUWBKq9UiHA7D4XBAoVCgrKwMw4YNE8kXhw8fRktLC4COZoCDBw9O6qWQk5Mjrk171lAoJCRfmO5HrraktYecwjTHUICI9gyxWKyTfnY0GoVCoUBOTg6KiooQiUTEvsNoNMJkMonndAVdn27yWcVsNossarJDWtuyEXYyM0w/h0rXI5GIWMiCwSAcDgdCoRDa2tqErpnP50N5eTnuvffepIkzGAxiyZIlOHjwIEwmE2w2G5RKJUpKSqBWqzF48GAxMQ4dOjRJHJ8mSYoYkzOAyV4oW33ixIkoLCzMyBgsFgvuu+8+3HrrrVi6dCmuu+66TpIITGaQG00ARxpmyffJWrin6tCl+YuuKzscKRsoHQqFQjR7CYVCIrhFztBszjTri5CzkN4X0r5tb28X643dbofH44Hb7YZOp8Mdd9yRtB4kEgk88cQT2LNnT9JGf8iQIfD7/dBoNMjJyRHVM+TMIU1UWm/kW3+hL2YfdoV8UCfHIH3OSWeXtA+j0Si2b9+ORCKBqVOnYt68efjmm28QCAQwduxYDBo0CAqFAqNHj8b27dvR0tKCaDQqssjy8vKEzIrRaERubq7IjrZYLACQlEEkl1czvYusa0z7x2g0KrKV1Wq1yFotLS1FU1MTVCoVTCaTCBwAEI5Ggt5TtVoNvV4v9CxNJpM4uCsUClitVpSUlCAWiyU1+jKbzaioqIBGo4HD4UhyRiuVShEUAToczLy29AzktKU13WazCVkm+pwbDAa0t7fDbDYjEokgPz8fTU1NcDgcmDhxIurq6tDW1oZAICACDBSgJNuQ1xWj0SiCmQDEffQ++3w+odus0WjwrW99K6n6grKYDQYD1Gq1sBW6PtOzyA7EaDQKq9UKt9st5hcKTiUSCbS3t6OtrU2cYQk636buKeS+D3IShdFoREFBgciMTyQS8Pv9OHz4cJKeL61dVG1jNpuT5g6tVivWR8qYZXoGqnihbGafz4dIJAKbzYZgMIhIJCLWCrfbDbVaDa1Wm9S0WNZFdrlcADrsr7CwULyP9Lmn91JuUJ3urEQBUYPBIBqd0/1yL4BshK2VYfox5AyiLOZYLCZKAam0kA5i5Ky58sorkzKkGhsbcffdd2PXrl3QaDQYMmQINBoNSktLYTKZUFxcDIPBAI1Gg7KyMlEmolarRRYZTah0iGOymw8++AAAMG/evIyO4+abb8bvf/977Nu3D3/4wx9w1113ZXQ8TAdyU1H6jJ+KHMbRkLOj5aZh4XA4ycHc1WGNsptoc6bT6ZKajnG2WfdBWczkYCZnYSQSgcfjgcPhEJnnQIfOJTViAoD29nb8/ve/F/NPZWUlEokEbDYbDAYDlEoliouLhR2YTCaRwUhZivImP7XRJJM9yHqTdLALh8PiMB6NRkUAvKGhAdFoFKNGjYLL5cJ3v/tdcdBSKpW4+eabsWjRIjEHUBZZPB6HXq+HxWIRpe4lJSUIBAIiO5FKqVOzmOWDH9N70PpBcgLUiCkSiaCwsBCtra0wGo0i85D2nOQ0oqawVLEiN3MkpxLNHbIz0Wq1wmq1IhaLwePxiPFYLBYUFRXBYrEgGo3CbreLgGd+fj40Go2QaKASag5O9CxU2k77gMLCQtEglBx6VN5OwYDi4mK0tLTA6/UiJydHlLnLMn70vU6ng8FgEBmCarVaZMCnCyAoFAqRfGO1WlFbWyuCoEVFRSJrNScnB5FIRNgPyfQwPQudQWkvotfrRbIVaTObzWaxr6CsZ+CIRAvNH6lyj/L7JydWKBQKBINBEaiS5VGUSiUqKiqSKnFoPTMYDEljp+QsShLj83PPQVIXVJFtMpng9/vh8/nE/EGNhinRgT7P6ZJdqDktXZfuS32PASQl48hNzimwIe+baax9YX/L1sow/Rg6wJGjmZzNwWBQHLJIQ5kWVYfDgUgkgsbGRrzzzjtYsWIFgsEgtFothg0bBrPZjLKyMuTm5qKgoAA5OTnQ6XSi+R/QsQmkMjDalPWVSXGgE4/H8f777wPIvJNZo9Fg2bJluPrqq/Hoo4/iRz/6kShNzQa2bduGW265BZFIBLfeeiuuvfZavPbaa3jooYdQUFCAl156Cbm5ubjppptQXV2NuXPn4r777sv0sE8ZWesydbPdXZ2w5YxY4EiEv729PakRCmWmdXWwpywAclyRA5yzmbsX+f2iwAA1mfV4PMJ5CBwJCAwbNgxAh77/hx9+iH/+85+ixLiyshJmsxkmkwklJSXQaDQYNGiQWE8sFgtUKpXIDiOHADkLeK3JXijzh+Qx6JBGQYlQKITW1lZEo1GhZWgymbBx40YcPHgQQEejNrPZjN27d+Opp57C8OHDk+YgCnbn5+cnNWgrKCgQWqlms7lTk7bUBqVM7yMf9nU6nSg/p8xjv98vSsr9fj9sNhvy8vKSdC9l6SRaAzQajTjkk0PJYrFAo9GIYAPQUTGQm5uLvLw8EaR0uVxCfkWpVIrHaM9LGbY85/Q85Mwn3VSNRgOr1QqPxwOTyYRAIACr1SoynWlPMmjQICiVSrS3t4vmjwBEFrNcDUMOZb1enyT5R9WYlDSTKgFGAQqz2YzS0lLRyM1kMkGn0wkbooAH0zvQ+ZOC32azWczzVqsVfr8fSqVSSK/Je1yyD9pbyNmj8n6X9kAU3KJACEHSOiUlJUlJEXJlYLrmbRQ8k5tpM92PHHQOhUIwmUzCHrxeL2w2G6LRqJBikvvAyH1n6Fp0zqDAZ2qjZjnImU6KJbVilK5LttgX4BmOYfohcpaQ3OyKJixa4KgzdygUwvTp07F582Y8++yzePbZZ5OuZ7PZMGTIEBgMBpSXl8Nms2HQoEHIycmBwWAQUWCaACn6JjuYWaOub7Bx40Y0NDTAYrFgxowZ1RswSQABAABJREFUmR4OrrzySixfvhxff/01Hn30UTz00EOZHpLgV7/6Ff7+97+jvLwc06dPx7XXXovf//73WLt2LVavXo2nn34a06dPR2FhIZ599llceeWVOHz4MMrKyjI99FNC7rRMyJ/tU9kI00aLyheBjo0+lTISarVaZCenOp7pd6gUUqvVigNGMBiEwWAQzlDOZu4e5HWGHIeUeUGOGHr/xowZg927d+Pxxx/HCy+8IByCQMdhfPDgwSKzsKysDAaDQTiYdTodTCaTcCxTQDPVwdxXNuEDDfmzTYfwWCwmsoupU7vX60VbWxucTiei0Sh27twJl8sFm82Gn/zkJzj77LOhUCjw29/+FqtWrcK//vUvXHXVVeI15PJjsj+dTieyIAGIDDHgyFzWXUEy5uSRtUipXJmCDjabDfF4HIFAAGazGVqtFk6nE4lEAvn5+WJPS3tfpVIpGnsBEFnM5DiiuV+j0SA3NxcWiwVKpRLRaBRut1tohBN6vR42m01kKtJ42cHcu1AFS3t7OyKRCCwWi8hUtdlscDqdyM3NhcPhEFIrVL5usViETA5dixzKcvYy7Rto3pCd0rJzWZZLoOdTtSgAodFM8xBlSzO9CzlwqQqO5gEAIkmKtHZTob2GPJd0BTURlftEaDSaLpMhaJ/UVaPZ7tpbM8dGq9UiEAiIzOHc3Fx4vV4R/AY6nMMkXSE3K5ZvAMTaQ0EJWke0Wq0IcnTVw0ZG7mXV13rJsJOZYfohcrd2mgSBIwcpk8kEoCMLpKSkBI2NjTh8+DAuu+wyvP/++/D5fFCpVMjNzYXNZkNubi70ej0GDx4Mi8WCkpISmEwmWCwWsXCSc5ki/iSXwRnMfQvS/LzooouyYiOsVCrxq1/9Cpdeein+8Ic/4LbbbkNxcXGmhwUA+POf/4zCwkKhs+VyuZCfnw+tVotzzjkHTz/9NAwGA6ZPnw4AOPvss7FhwwYsXLiw07Xkxh8Akkp2sw058i7fR1mA1AClK1Kbfcn3pzp5KNuHHJR0KKCMta4gJzJJZFgsFuEwkBtvxONxdkh2A/JGm7J56PBEX8kpMHLkSEyaNAmbN28WDuacnBzYbDYUFhZCrVZj0KBByMvLg9lsRlFRkXAOUWYjbd5Tm6Owgzl7oawe4IgMDlVWxWIxuN1uhMNhtLa2wu/3o7W1FeFwGIcPH4bH48GQIUPw0EMPJUmsXH755Vi1ahW2bNmCyy+/HACSDm9arbZTw1A54zk1c5mey87mzELBAFon8vPz0dbWhkgkAqvVKpq56fV6FBYWIhwOw+fzddpnkjOSKutkZ6FWqxV7WIVCITLWUiEnsslkEs1mqfESZdXy/rb3oeSVUCiEcDiM/Px8NDc3Q6PRCCdyfn4+nE6naP5IWYW0B5ETYPR6vQhkkp1oNBoh1STr8h4NmnuoWSBlV9N9RqOR7SUDUBayUqkUDaEpUz0QCIiKB7mCLvU9p7mAqh+AI70oKChG8mxykD1VroeuR72QgK7lU+T1ie2mZ5E13yn4TdI5wWBQBChkmZ3UhuPpoLXCbDZDpVKJfRC9JiVIpJNf6cvSXexkZph+CC169D0hR3JtNhtcLhcGDx4Mp9OJuro6AMBpp52GaDQqIvUqlQqFhYXIz8+H1WrFoEGDRFduiuzShowcy7SZpwW1r06QA41EIiGczOkcoZnikksuweTJk7FhwwY8/PDD+MMf/pDpIQGAaIp4991348orr4TX6xXNCU0mE3w+X9r70vHwww9j2bJlvTPwU4RkdihTLLXUvCsHTaoExrFeQ61WJ2Ul0pxEjgDKDkl38CMHs5yBQFp8pMtHDlF2Sp4aqQFNuZIGgMgOOv3007Fx40Z89NFHUKvVmDhxopAwoTXEZrOhqKgIBoMB+fn5MJvNSdnL5ACQ9ZdJw+54soyYzCFrdssSXpFIBH6/H+FwGM3NzQiHw2hqakIsFkNLSws8Hg8qKirw2GOPiUxVory8XHR/t9vtADo7iOkQSEEm2geFQiEYjUaEQiERGDtWgIzpHSi7lOZrjUYjHIYko1FQUCDWAqpaSW3ClJr5RU3cNBqNWIfkAz8FquS9rdwwVq7QYAdz5iGnP0kcFBQUoLW1NUn3tKioCD6fTzSOldFoNEI3lZJhDAYDcnJyoFAohENJfj6tPXL1A93kjGYKlFDGO8k7sb1kFvpMk3SGWq0W0kkkKSlLU1AWKe0vUqXhyAlIme/ytUjfOVU6IxVqQJlKIpEQ+1c+S/cOFJCiQAStD/TZl5P4UhNm5PuAIw5kuYmtLMVCwc/+CjuZGaYfImcEpjazMRgMCAQCKCoqgt/vRyAQwNChQ+Hz+YSwPWkF5eTkCEmMwsJCWCwWmM1mGAwGcdiXy4JoQu1rukFMB7t27cLevXuh1Wpx4YUXZno4AoVCgQcffBDz5s3DU089hf/5n/9BRUVFr4/j8ccfx4oVK8TPd911F7Zs2YKWlhY8/PDDcDqdwiHq9/thtVphNpuT7utq3EuWLMHtt98ufvZ4PBg8eHAP/jUnD+mW0QaMNr/H0jKVGzGlRujlr3Sjsmja7BsMBtGo1Gg0wmQydbnplktXXS6XyGhOzcKWD4fMyUG2IDubgSPBiEGDBqG2thbBYBCjRo1CfX09/H4/tFqtyBKxWCxJ+v65ubnQaDQwGo3i8EbSGLTuUPYH/czvYfZCzmU544syhSiby+PxoL29HW1tbQiFQkIyw2q14qGHHkp7CKfsIK/XK+ZZuXKKmv+RwygcDgsHlKzdSs7l1KxnJnNQkJF0MZVKJQoKCoTDkHQu5coJyiIEjuhXUvWDXAovZypS9irtWWWnIb2+PK/RtSkrkskc5OiX9UsLCgrgcDhgNBqhUqng9/uhUqlgtVqTMhFTk2Byc3PFc2QnI+01KAOZHIdHq3ZIDaaTHfK8kh3Q5570jqm67Xh1suUAFs0T8j5IlmChvaxc5SVLwVEQPXUuIQcz2VE6vWamZ6CAkNxAlt5jgs4px7sGyA3MB4ome///CxlmACI7TVQqleh0HA6HRZO/SCSCwYMHw263w+PxCIeyjMFggM1mg8VigdFoFBp4cqYHLbS06HL2ct/ltddeAwDMmTOnU5OCTDNnzhzMnj0bH3/8Me6//3789a9/7fUx3HbbbbjtttvEzytXrsQ333yDl156CUDHIaW1tRXBYBBr1qzBpEmTMGnSJLz99tuYP38+1q5di0cffTTttemg2xcgxx5lBsqZYADSBpfk6D4FpQCIjI/UDOjURhpGoxHAkezYozmYZciRGQgEEA6HxTxIGcz0OhwQO3lS3ze5HD0SiYisQ7vdDo1Gg6qqKvF+0/pBkibUiEsOZNKGnJxAlLlOpYq81mQ/dMCiTB6SHAA6pG/i8TgcDgei0SgcDgdisRgaGxsBALfeeisGDRqU9rqhUEhkMFOGqc1m69ScVKvVCkkiqiyR55xUhxHbVHZAmafk+AuFQjAYDDAajWhvbxdl7qTRDqDLQAHZBD2XqmDI+UNZ9UdDrthjG8kOKAAdDAaFHEZeXp6oGqPPfiQSEWsScCRjkQKZqVnH1BdA7v+Qah+pWa2pj8nrFpN9yBnIcqVdqnQbVUvRLd1nX+4nQuucfB25wjddlYV8HQqa0X6XtMKZ3oPOORqNJimBIjVJJfVrV8EnOSFvoKwd7GRmmH4KTWKUvaHRaMSCZbPZRJlhcXGxaHpA5e/kmNFqtUladHJGiJy1TLfj0Stjspd///vfALJLKoOgbOZp06bh+eefx89//nOMHDkyo2NaunQp9Ho9zj33XADAhx9+iNtvvx0zZ86EwWDAypUrkZeXhxdeeAFTp07F7NmzM5KB3RPQPCFnJwPocg6QM5hps0yN+I4GHQTlxhkAhMzC8UAZA7IzmfQYj7YpZI6PVG1uuQs7lYzabDahyUwOR3ISGwwGEZzU6/VJWcv0HNqcy05DXmv6BqllpHQAp2A3Ne+MRCIIBoOIx+MwGAwIhUIoLS3FrFmzurz2+++/j0gkgqKiItTU1AAAKisr0dLSAgCwWq2dKrtkuqq+yGbb2rZtG2655RZEIhHceuutuPbaa8Vj27dvx6WXXoqKigqUlZXh73//ewZH2j1QpQJlnMsNrKkBE2Uxp65HNB9RqTNlH5P9pVt/5IZudA3KWOtrjZcGCuRoVqlUCAaDosKB1hzKeAbSByFkm6IKNKpsSO2XITuOU53MqWsh20rfQc5uP9nfT+e0lgOrqXrP8pxC62NqtiwFw5jMIWswH4vUuSC1WnMgwVbLMP0Q0hYkDSDK3iMtsVAoBKvVCr1ej0AgAJVKJTIFUzfkFMmjJkupnZXln5m+yzfffIOtW7dCo9Hgsssuy/Rw0jJ16lTMnz8fb731FpYsWYKVK1dmdDxff/11p/sWLFiABQsWJN337LPP9taQehWK9KcerLp6LpAsTyFrzaWrfkidV8hxGQqF4Ha7YbPZjrn5jsViomkgZSQdbZzMiSO//7Tm6HQ6BINBmM1m4QCiElLgyAGL3vt0DmVZD5WCF1wp0/eQNbrlbK/Ux4Ajmau5ubkAgJKSki7f6+3bt+Mvf/kLAGDcuHFoaWmBXq+H1WrF7t27oVQqRc8Jsj+j0SgyHNVqtZiD5MZO8tds5Fe/+hX+/ve/o7y8HNOnT09yMu/cuRPLli1Lui+VvtRklqAGfpRxLDcaBY44/uh9kw/2qdIXqUFFSpg4WnYh0zegJBjKOlar1bBarSI4ITv8gCPZpTqdDkajUQSeqadDaoMucmSnMpAdSUx6Up3WqTZ4tB4ltLeWpZ8yxUALap4qPBccgZ3MDNMPIYkMOpTToZ90p6i7qXzoJ+TDv9z4pCvnMk+k/QPaHFx00UXIz8/P8Gi65qGHHsKqVavw6quv4u2338Z3vvOdTA9pwHM8cwBleZCDSXZOn4g+mdlsFvIapLuY7uBHes7t7e1CloGCagCSMqN5Djs16L2l94C0A41GIyKRiNAdTPd75OAhx3Gq3rJcLcPZy30TObOHnDup2T70vpLtkG7ytm3bsG7dOkydOlV8Tu12O1599VW8+uqriMViGDJkCFpbW6FQKPCtb30LGzduBABMmDABwWAQe/bsAdBRtRWLxYS8Bmm5ynYoZ+JnK3/+859RWFjYqSkZAOzYsQPr1q3DM888gyVLlqTtrdCXmsymQnMDrSOykyZVN/lo0B6XEyT6H+QMpkoachRThimR2heCGgWnQsFtlkhhTgXaw8hZznLgVc5szqZg10AMajLdgyLBdaIM022QtrHb7c6opq28AQcgSnBoQZMzQdI1CUx346zl/ks8HkdlZSXq6urw73//G4sXL870kI7KHXfcgcceewxDhgzBjh07YDKZMj2kbidb5pLuhLrAAxDdvUlDkUoC5Y21nOmR2jCQyusJOcOVyvDlx0wmk8hio2Y+lE1J2vJ9jWyxEWqoJh+c6L2WdexSocOU7EhOV5rOjf1OnmywEVkegz7zwWBQyBvY7XaEw2HU1NRAqVTim2++Ec2Stm/fDqDDQTxo0CC4XC7U1tYKeyopKUFBQQGUSiWqqqqEc7qqqgolJSXCoWy1WlFVVQW73S7kw6gpE9kXBTH6ijNpyZIlKCkpSeoT8O9//xtjx45FWVkZ5s6diy+++KJTAC7doX/w4MEZn0dOlnR6melKlVny4tTIhrnkZEiV6aEs0qMha/7z2nP89FUbYbqmtbVVBDXPOeccrFu3Tjx2zz33YN26dYhEIl0GNZcuXZo2qMk20v/hTGaG6YfQwUmpVCIajYqNNTmbU0vX5d+jDZUcUeUywv7NmjVrUFdXB6vVivnz52d6OMdk6dKlWLFiBQ4dOoRly5bhkUceyfSQmOOA5hJyOGk0GuGUDAQC4nHgSGDsaNei6gy6HjmNCXIcka4i/Z5erxfPpTmOOXnk9YXWj9Su2101RurqBnQto8L0Xei9JNugzzs5dCKRCEpLS9HQ0IBEIoFRo0Zh//79aGpqQlNTk7iOzWZDbm4urFYrNBoNioqKYDAYhESGWq0WDubCwkKYTCY0NzcD6LArnU4nypnlBpLZaG+PP/44VqxYIX6+6667sGXLFrS0tODhhx9Oeu75558vDu5Dhw5FW1sbioqKkp7Tl5rMHg8nopfJDDzS2YesEy8HJGjdyrY5gGEyRWFhIQDg7rvvxpVXXpn02Pjx4/Hd735XBDXPO++8TvPwkiVLcPvtt4ufKajJ9H/Yycww/RhyDlOGGQDxM5C+SUW2luwwPcfzzz8PAFi8eLFojpLNmEwmPPHEE7j44ovx29/+FldccQXOPPPMTA+LOQ6o1JmcyFqtVuhsdlXuTI4gILkqA4CQ80lt9kRf5QMkZSXJzmtuqHLqULMbqpCRS9qJdLrdqWuLLFswkNaedJqHr732Gh566CEUFBTgpZdeQm5uLm666SZUV1dj7ty5uO+++zI97OMmNZuUPosU+LFYLPB6vRg0aBAaGhqQk5ODaDSK1tZW6PV6jB49WjSMVKlUMBgMIohus9lQUFAgtFfz8vJESbzZbIbJZIJCoRAN3qiBsayXKet9Z2PA6bbbbkvKVl65ciW++eYbvPTSS52ee+ONN+LBBx9EVVUVamtrUVBQ0JtDZZg+gSzvxDDMETioyXQXLJfBMN1ItpcKpZYSUum4nD02UA72TAcOhwNlZWUIBoNC+7KvcMUVV2DFihUYN24cvvrqqyS9vb5Ots8lp0K6hicU/IrH40kav7KWc6qeK13jaBnPXWnHk6OrL8932WgjcoYY/ZxK6noz0NeexYsX4ze/+Y3QPPziiy8wa9YsvP/++1i9ejW2bduG6dOn46233sKvf/1rXHnllfjNb36DsrKyY147G2xEbrgWiUSEnE00GhWa6R6PB4FAAMFgEM3NzQiFQgiHw3C5XMLBnEgkhL632WyG2WyGWq2G2WxGbm4u9Hq90GM1GAxJASRqokRzATmp6ascyMp2xo0bB71eL2SiPvzwQ/z85z/HXXfdhcOHD+MHP/gBEokE7rzzTlxyySXHvF422AiT/bCdMMeCbaT/sXLlSqxcuRIvvfRSpyDsokWLRFBz9uzZWLt27TEDtWwjAwdO4WGYAYR8oGcYAHjhhRcQDAYxYcIETJkyJdPDOSH+9Kc/4aOPPsLXX3+NBx98sM82MxpoUBYhyfnIDmR5fkqVv+jqOuQcOt5s2YGWKdubcIbYiZPayM3lciE/Px9arRbnnHMOnn76aRgMBkyfPh0AcPbZZ2PDhg1YuHBhp2tlY5Md+pxGo1Go1eqkz6nRaEQgEBCyF0qlEhUVFfB6vfB4PNDpdJ0CFSqVCnq9XjiayfFMzb5S5VYomCTPO6nNJrMxg7krvv766073/eY3vwEA5OXl4fPPP+/tITEMwzD9kKVLl0Kv1+Pcc88FkBzUXLp0KW666SYR1OxL6yjT87CTmWEYZoASi8Xw5z//GQDwwx/+sM853QoLC/HEE0/giiuuwEMPPYSFCxdi4sSJmR4Wc5xQJqHcMI5IdSylVlzQc9I5llNhxzKTzaRqHnq9XpjNZgAd0kA+ny/tfel4+OGHszLYJmufy05f+myGQiHRADQYDEKr1cJqtYrsZ6pwkJsRa7Va6PV60bCPMpIp8CTLf8nNJeXvs1GDmWEYhmGyAQ5qMicLO5kZhmEGKP/+979RXV2N3NxcXH311Zkezklx+eWXY8WKFVi5ciVuuOEGbNy4ERqNJtPDYo4T2RHUlVa8/DUd8u91pTPPMNnCsTQPnU4n/H4/AMDv98NqtcJsNifdV1FRkfba2dpkh7KISdqGsocVCgVisRiUSqXQ9Var1TAajYjH46KxJ0l7yU5mOSOZnMVyL4muvpczmhmGYRiGYZjuhXdYDMMwA5BYLIb7778fAHD77beLLLm+hkKhwBNPPIH8/Hxs27atU2MKpu/QVePRYzmJUzMWZScUO5iZbOO2227D2rVrxa29vR3ffPMNnnnmGQBAbm4uWltbEQwGsWbNGkyaNAmTJk3CZ599BgBYu3YtzjjjjLTX1ul0sFqtSbdsgZy71IBTrVaLpkA6nQ56vR5Go1HIYJhMJlgsFuTk5MBms8Fms8FqtcJisYib2WyG0WgUv6/X68X3Op0OWq1WNAdVq9XQarUi85lhGIbpIBKJJEnmvfbaa5g8eTIuuugiOByODI6MYZi+CO+yGIZhBiD/93//h127diE3Nxc//vGPMz2cU2LQoEH44x//CAB44IEHsH379gyPiGG6Zvv27Rg6dChmzZolKgj4QDdwWbp0Kaqrq3Huuedi1qxZiMViuP322zFz5kw88sgj+NGPfoQZM2bAbrdj6tSpGDZsWJeZzH0BksnRarVJzl/ZUWwwGGA0GmEymZKcziaTCUajUTT3MxgMSc5ljUaT5FSm16HX4qATwzBMMg6HAxdccAEOHDgg7vv973+PtWvX4tZbb8XTTz+dwdExDNMXYbkMhkHHof/SSy9FRUUFysrK8Pe//x2vvfYaHnroIRQUFOCll15CXl5epofJMN1CY2Mj/vd//xdAR3l1Tk5Ohkd06lx55ZVYsWIFXnvtNdx4441Yv349y2YwWcnOnTuxbNkyXHvtteI+OtCtXr0aTz/9NJYsWZLBETK9STrNwwULFmDBggVJ9z377LO9NaReQW7cSc0/4/F4UnPAdNrs9JWqF2RZHHYiMwzDnBh+vx+/+93vcNtttwFA2uaz6cjGRrMMw2QHnMnMMDhy6P/kk0/w97//HQBHcZn+icfjwaWXXgqHw4GJEyfiZz/7WaaH1C0oFAr8+c9/Rm5uLjZv3oxHH30000NimLTs2LEDzz//PGbMmIFVq1Z1OtCtX78+7e+FQiF4PJ6kG8P0dchZLMtZpLuR/AXJa1B2MkvjMAzDnDyDBw/G+PHjxc8n0mg2JydH3LJB/59hmOyAncwMAz70M/2baDQKu92O1157DWeddRY2bNiAvLw8/Pvf/4Za3X8KWoqLi/H4448DAO677z689957vfK6N9xwAz755BMAnWUPEokEvve97+Gcc87BsmXLemU8THYzfvx4/OlPf8Jbb72F++67D263mw90DPP/kXXZUzXW2ZnMMAxzajz++OOYPn26uK1atSrp8dRGs11p+y9ZsgRut1vc6urqenzsDMP0DdjJzDDgQz/Tfzh48CAeeughnH/++Rg+fDgsFgs0Gg0KCwuxcOFC7N69GyUlJXj//fcxfPjwTA+327n66qvx3e9+F9FoFJdddhlWr17do6+3c+dOvPbaa+Ln1AqItWvXorCwEGvWrMGuXbtw+PDhHh0Pk32kHui0Wi1OO+00WK1WDB06FHq9ng90DMMwDMP0OKnNZy+88MKkx9M1n01HNjeaZRgms/SfFDaGOQEef/xxrFixQvx8xx134LTTTgOAEz7033777eJnj8fDjmam10kkEvj444/x+OOP44033uikY0lUVFTgiiuuwC9+8Qvk5+f38ih7B4VCgeeeew5tbW147733cP755+Oee+7Bz3/+cxiNxm5/vUcffRTXXXcdgPQ6dgaDAdOnTwcAnH322diwYQMWLlzY6Tqsbdd/ue2224TWIQAsWrQIo0aNQlVVFWpra1FYWHjcBzqdTtdbw2YYhmEYZgBCzWcNBgNWrlyZ6eEwDNPHYCczMyDhQz/TH6itrcUrr7yCZ555Brt37xb3z507FwsWLMCECRNQXFyM3Nxc2Gy2fiWNcTS0Wi1ee+01/OhHP8Jzzz2HZcuW4amnnsL111+Piy++GN/+9re75XO7ceNGVFVVIR6PA0ivY3ci2nYspzEwWLp0KW666SYkEgnceeedUCqVfKBjGIZhGCZjkOwbkL75LMMwzPEyMDwODHMM+NDPZCvvv/8+vvrqKwSDQQQCAfj9ftTW1mLXrl04cOCAeJ7JZMINN9yAW2+9FaNHj87giLMDvV6Pv/3tbzj//PNx5513oqamBo888ggeeeQR6HQ6DBs2DMOGDcOgQYNgtVphsVig1WqhUqlQXFyMq666ClqtNumaqRUQ1dXVqK6uxm9/+1sA6XXsUu+rqKhIO16uihg4jBs3Dp9//nnSfXygYxiGYRiGYRimr6NIdFVXzTDMCePxeJCTkwO3283aVMwp4/f7kZOTg1gslvZxlUqFs846C9dddx2uuuoqtrkuCIfDeOutt/Dyyy/jk08+QWtr6zF/580338T8+fO7fNzn82Hy5MkoKipCTU0NbDYb1q5di+985zt477338NFHH2HTpk2YMWMG3n77bTzyyCO44oor8Oijj3bpaJbhuYQ5FmwjzLFgG2GOBdsIczywnTDHgm2EORZsIwMHzmRmGIbJUkwmE6LRaKaH0efRarW47LLLcNlll3XbNc1mM3bu3AmgoxJi1qxZMJvNnSog8vLy8MILL2Dq1KmYPXv2cTmYGYZhGIZhGIZhGKavwZnMDNONJBIJeL1eWCwWKBSKTA+HYZg+Cs8lzLFgG2GOBdsIcyzYRpjjge2EORZsI8yxYBsZOLCTmWEYhmEYhmEYhmEYhmEYhjlplJkeAMMwDMMwDMMwDMMwDMMwDNN3YSczwzAMwzAMwzAMwzAMwzAMc9Kwk5lhGIZhGIZhGIZhGIZhGIY5adSZHgDDDBRI7J7JTrKhCQHbSHaTDTYCsJ1kM2wjzPGQDXbCNpLdsI0wxyIbbARgO8lm2EaY4yEb7IRtJLs5URthJzPD9BJerxc5OTmZHgbTBW63G1arNaNjYBvJbrLBRgC2k2yGbYQ5HrLBTthGshu2EeZYZIONAGwn2QzbCHM8ZIOdsI1kNydqI4pEIpHowfEwDPP/OZEIncfjweDBg1FXV5fxST8d/XF8fTWKm63vRbaOCzj5sWWDjQA8l/QWfXUeAdhGepO+aidsI70H20jm6Y/jywYbAdhOepMTHR/bSPfTH8eXDXbCNtJ79IaNcCYzw/QSCoXihCcaq9WalZMTwePrXk7GRohs/VuzdVxAdo/taPBc0rtk89i6gm2k98n28aXCNtL7ZPv4UmEb6X2yfXzpYDvpfbJ9fKmwjfQ+2T6+VNhGep+eHB83/mMYhmEYhmEYhmEYhmEYhmFOGnYyMwzDMAzDMAzDMAzDMAzDMCcNO5kZJgvR6XS47777oNPpMj2UtPD4sods/VuzdVxAdo+tu8n2vzWbx5fNY+tOsv3v5PFlnmz/G3l8mSfb/0YeX3aQ7X8njy/zZPvfyOPLPNn+N/L4uPEfwzAMwzAMwzAMwzAMwzAMcwpwJjPDMAzDMAzDMAzDMAzDMAxz0rCTmWEYhmEYhmEYhmEYhmEYhjlp2MnMMAzDMAzDMAzDMAzDMAzDnDTsZGaYLCMSiWDKlCni59deew2TJ0/GRRddBIfDkcGRdRAKhbBgwQKcffbZeOaZZzI9nE4sWrQINTU1+OKLL3DWWWdh9uzZOHjwYKaH1SNkq61ks42wfWTePohsthNgYNgK28ipMRBsBMhuO2EbyQ7YRk6NgWAn2WwjQPbbCdsI28ixGAg2AmS3nbCN/H8SDMNkDW1tbYlzzz03UVhYKO6bOXNmIhQKJd5+++3EQw89lMHRdfB///d/iSeffDIRi8US8+bNSwQCgUwPKZFIJBKhUChx6aWXJsrKyhIHDx5MfOc730m0tbUlduzYkbj55pszPbxuJ5ttJRtthO0je+yDyEY7SSQGjq2wjZw8A8VGEonstxO2kczDNnLyDBQ7yXYbSSSy107YRthGjsVAsZFEIvvthG2kA85kZpgswu/343e/+x3GjBkDAHC5XMjPz4dWq8U555yD9evXZ3iEwKZNmzB9+nQolUqMGzcOu3btyvSQAHREDn/2s59h7ty5AIBAIIC8vDyMGTMG1dXVGR5d95PNtpKNNsL2kT32QWSjnQADx1bYRk6egWIjQPbbCdtI5mEbOXkGip1ku40A2WsnbCNsI8dioNgIkP12wjbSATuZGSaLGDx4MMaPHy9+9nq9MJvNAACTyQSfz5epoQmycUwAYLFYMGPGDPFzPB4X3ycSiUwMqUfJZlvJprEQbB/Z955k45iAgWMrbCMnz0CxESD77STbxkOwjWTPe5Jt45EZKHaS7TYCZOeYALYRIHvej2wcEzBwbATIfjvJtvEQvW0j7GRmmAzy+OOPY/r06eK2atWqpMfNZjP8fj+Ajsid1WrNxDCTyMYxpUOhUIjvlcq+P9X1JVvJprF0BdtH5t+TbBxTOvqLrbCN9Bz9xUaAvmcn2TaermAbyRzZNp6j0V/spK/ZCJCdY0oH20jmyMYxpaO/2AjQ9+wk28bTFT1tI+puvyLDMMfNbbfdhttuu63Lx3Nzc9Ha2opgMIg1a9Zg0qRJvTi69EyaNAmfffYZTj/9dGzduhUPPvhgpoeUFoPBALvdjpaWFlRWVmZ6OKdMX7KVvmAjbB88lxwv/cVW2EZ6jv5iI0DfsxO2kd6HbaTn6C920tdsBOg7dsI2kjnYRnqfvmYnbCMdsJOZYbKc22+/HTNnzoTBYMDKlSszPRxcccUVuOqqq/Dcc8/hxhtvhF6vz/SQ0nLPPfdg/vz5UCgUePHFFzM9nF4hW2ylL9gI2wfPJcfLQLIVtpGTYyDZCJBddsI2kp2wjZwcA8lOsslGgL5jJ2wjmYNtJDvJJjthG+lAkehvQi0Mk0ESiQS8Xi8sFktSGQLDEGwjDMN0BzyXMMeCbYQ5FmwjzPHAdsIcC7YR5liwjQwc+rZIC8NkGV6vFzk5OfB6vZkeCpOlsI0wDNMd8FzS/1i6dCmef/55fPHFFzjrrLMwe/ZsHDx4EABw11134eyzz8YPf/jD474e2whzLNhGmOOB7YQ5FmwjzLFgGxk4sJOZYRiGYRiGYTKI3W7HM888AwB48MEHsWrVKjzxxBNYvnw5amtrsX//fnz++eewWCz44osvMjxahmEYpr+xaNEi1NTUpA10MgzDHC/sZGYYhmEYpl8SCoXgdrszPQyGOSaPPPIIrrvuOgBAIBBAXl4exowZg+rqamzevBlnn302AOCcc87B+vXr014jFArB4/Ek3RiGYRjmaITDYSxcuBBffvklgM6BToZhmBOBncwMwzAMw/Q7PvroI5SWliI3Nxe/+MUvwC0omGylrq4OXq8Xo0aNAgDE43HxGGkYms1mAIDJZILP50t7nYcffhg5OTniNnjw4J4fPMMwfQqPx4OysjLMmjULc+bMyfRwmCwgFArhZz/7GebOnQugc6Czq9/hoCbDMOlgJzPDMAzDMP0Ku92Oyy+/HA6HA4lEAo888gjefPPNTA+LYdLy8MMP4xe/+IX4WW6Io1QqYTab4ff7AQB+vx9WqzXtdZYsWQK32y1udXV1PTtwhmH6HDt37sQPfvADfPLJJ/jwww8zPRwmC7BYLJgxY4b4OTXQmQ4OajIM0xXsZGYYdI7qsxYVczRYs4xhspvHHnsMDocD48aNw09+8hMAwAMPPJDhUTFMejZu3IgbbrgBy5cvx/Lly2EwGGC327Fz505UVlbijDPOwJo1awAAa9aswaRJk9JeR6fTwWq1Jt0YhmFkduzYgXfffRczZszAc889l/Y5nKU6sEkNdKaDg5oMw3SFOtMDYJhsgKL699xzDwBg/vz5WLVqFZqamrB8+XI8/fTTGR4hkw2Ew2FcccUV2LhxI4AjmmVsJwyTPYTDYfztb38DANx///2YNm0annzySWzcuBE7d+7EmDFjMjo+j8eD0047DSNGjIBKpcIDDzyAn/70pzAajXj22WdRVVWV0fExvQ+tKc8//zwAYPTo0Zg/fz4UCgVefPFFVFZWYvjw4Zg2bRpGjhyJ6dOnZ3C0DMP0ZSorK/HII4/g29/+Ns477zzMnz8fhYWFSc95+OGHsWzZsgyNkMk0FOhsaWlBZWVl2ufodDrodLreHRjDMH0CdjIzDI5E9T/44APceOONQosqLy+vSy0qoCPSHwqFxM8c6e/fkGbZs88+CwDHZSdsIwzTu7z++uuw2+0oKSnB/PnzoVarce655+K9997DO++8k3EnMwc1ma644YYbxPepzf0efPDBXh4NwzD9kSlTpsBgMECpVGLKlCk4ePBgJyfzkiVLcPvtt4ufPR4PyyEMIO65556kQCfDMMyJwHIZDIMjUf3Vq1fjhRdeOC4tKqB39KhisRgikYi4RaNRxGIxbmKVAVizjGGyn3/9618AgOuvvx5qdUcs/cILLwQAvPvuuxkbF5Faqnw8DXYALl9mGIZhTp17770XH3zwAeLxODZt2oRhw4Z1eg5L7wxMnn/+eVRWVmLKlClYv349vvjiCwwfPjzTw2IYpo/BTmaGQUdUf+rUqdBqtZgyZcpxaVEBPa9HFY/HhSMzkUgkOZzD4TAikQji8Tg7nDMEa5YxTHYRCoXw3nvvAQAuu+wycT85mT/77DPRQC1TZHNQk2EYhunf3H777Vi+fDnOOeccLF68GPn5+ZkeEsMwDNOPYLkMhkFHVP+8887DvHnzsGnTJuh0umNqUQG9p0eVSCQQjUbFz7JTQqVSQalUiq+y45PpWVizjGGyi08//RQ+nw/FxcU488wzxf0jRoxAeXk56uvr8dVXX2HmzJkZG2NqqfKGDRvEY8cKavZ0+XIikUAikRABznROb1pn6CuvOQOLRCKBYDCIeDwOjUYDjUbDNsAwfYiysjJ8/PHHmR4GwzBZTl1dHa677jqEQiFccskluPPOOwF07i3y4YcfZnikTLbBTmaGQUdU/5prrsH999+P6667DhMmTMgKLSo6uKUe9MPhsPheqVQKJ7N840Nfz8OaZQyTXbz55psAOnSOZYetQqHAWWedhfr6emzYsCGjTuZsDWomEglEIhGx3pDDmW4EOZbpRmsQBzkHDhTojkQiCIVCMBqNUKlUGR4VwzAMwzDdxR/+8AcsXboUM2fOxJw5c3DLLbfAYrF06i3CMKmwk5lhkD6qn9p0JxPIB3kiEokkPYcyzqLRqHAwq9Vqdjb3IM8//zyAjrL3bLAThmE6nKJvvPEGAODiiy/u9PjkyZOxcuXKpMzhTJCtQc1oNJqUyRyLxQCgk6M51cksZzVzVU3/R6FQQK/XIxgMCidze3s7zGYzjEYjv+8MwzAMcxSoQpn6LHVVPSbvq9RqNTQazVEr3rqbX/7yl8jJyQHQ0SOK+pxQb5EPPvgAN954I2688ca0vx8KhRAKhcTP3Etk4MCazAyT5ZCjOHVRUavVMBgMCAaDaG9vRzAYFJM53cLhsHAc9Feqq6sxbdo0jBw5EpMnT8bOnTszPaSsg4IQ4XC4k43IdkIbnf5mL2wjA4Ovv/4atbW10Ov1mDt3bqfHJ0+eDAAZdzJTUPPzzz/H97///axpsEPZqQqFQjSXjUQiCAaDSetLMBhEIBAQ6w71B5Bv4XBYzCuyvFN/YdmyZVAoFPjmm28yPZSMoFKpYDQak/YlPp8PDoejX77fJwKvNwwA3HbbbaisrEw7T7CNMMcD20n/gvZUPp8PTqcTXq8XgUAgaa8ky5XJSWShUAh+vx8ulws+n08kAVRWVmL06NGYOHEiJk6cKBpfdxd5eXlQqVT4y1/+gkmTJsFgMIjXlXuLtLa2pv197iWSeYLBIC699FKMHDkSEydOxAUXXICampoef112MjNMlqNQKJIyw6gkNRqNIhAIiANdPB5HOBxGIBBIcgjQYZ+cBv2N73//+7j55puxd+9e/PznP8dNN92U6SFlDbShiUQind5/OTORmkpGo9GkppLypqcvwzYyMCCpjDlz5sBoNHZ6nDSaa2tru9wQD2QoA1XW/5flM+hnWltkhzKtO6nzhzyn9JeA5+bNm7F+/XpUVFRkeigZRaFQwGKxiM9aNBqF3W7H/v37B3S2Eq83DAAsXrwYa9euxZAhQzo9xjbCHA9sJ/2HSCQCj8cDr9ebJHlJ57T29nZ4PB44HI6km8vlgt/vT6piDofD8Hg84jqvvPIKtm7diq1bt+KKK67o9rG/9NJLeO2117B8+XJx35QpUzB16lRotVpMmTIFBw8eTPu7S5YsEY3v3W436urqun18zLG5+eabsWfPHmzduhXz58/HzTff3OOvyU5mhukDUEkyOZupXEXOGJId0JR9RllnlMGaztnYmyQSCUybNg0TJ06E0WjEiBEjMHHiRNx9990ndb2WlhZs3rwZ11xzDQBg0aJFOHjwYK9E6LIdCjrI2YlUniVnHnaVxUzl8umyEnvSfthGmJOFnMyXXHJJ2sctFguqqqoAdJT6McmkaurSocZgMMBoNMLj8SAQCAgncyAQgM/ng9/vRygUQiwWS1pzyMEsO5xp7umNbNfunkuAjtLPW265BU8++STLQuCIozk3Nzcp4N3Y2IjGxkaRbZWt9MX1pq6uDrNnz8a0adOSDv0ejwdlZWWYNWsW5syZ022vNxDoiblixowZKC8v73Q/70n6J31xLmF6nng8Dp/PB6/Xi2g0igsuuAAzZ85EeXk5Jk2ahOnTp2Pp0qXw+XxiP+X3+8X39LtutxttbW2IRCJQKpVIJBLw+Xw9Pv4vv/wSL7zwAlauXAmtVivuv/fee/HBBx8gHo9j06ZNGDZsWNrf1+l0sFqtSTfm6HQ1l9x1113ibH4i1cd6vR4XXXSR2LNOmTIFBw4c6PG/gzWZGaYPQHIZ8XhcOJhpUtFoNCLbTK/XQ6PRwOv1IhaLIRwOi8VIpVIhHo8nNQfsbd1MhUKBdevWAQCKi4vx4YcfdsoGW7x4Mfbt25f29998882kUpu6ujqUlpaK/4lCoUBFRQVqa2uP2kCrvxOPx4WDiN5fWRMr3fNlyDbIdoAj2c7kNJAbfqXqhp8KbCPMydDY2Igvv/wSQEfTv644/fTTcfDgQezYsQOzZs3qpdH1DUj6gNYa+kyHw2EEg0EAHeuN0WgUQSxyLtN6o9PpxJoUjUahVquhVqvF/EHzRiwWEwHT7pw/ZLp7LgE6DlbXXHONCFYwHWi1WpSWluLQoUNi7fF4PPD7/Rg8eHCPNqw8FfrienOqjZhYI7MzPTFXdAXvSfonfXEuYXqWSCQCv98vzlgajQZvvvkmPB4Ppk2bhueeew4FBQUiMxkA7rzzzqRsX9obKRQKPPHEE6ioqIBer0dOTo5wMl599dWIx+M466yz8PDDD6OwsLDb/oYHHngATU1NuPDCCwEAs2fPxuWXX96pt0h+fn63veZAh+aSRCKBkpISrFq1CmVlZYjFYmhvbwcAXHPNNUmOYtlOjrUePf7442n71nQ37GRmmD4GOQJSm/rRYqbVapGfn49gMAiv14t4PI5gMAiNRtPJyZwpZ3NjYyMikUjacuNXXnnlhK6VOu7+UI59KlC2MtDZwUzNIygCmkgkRAa8SqUS98nOZGoiSQ5n2iylPo8czt1lS2wjzInw+uuvAwDOOusslJaWdvm8sWPH4q233hqwWrpHQ6FQQK1WIxqNCgcwzRUyeXl54uAbi8VElg05oyngSWWg0WgUWq1WrF00b5Azm16rp5rZdNdc8sUXX2Djxo1J2aPMEVQqFaqqqtDW1oa2tjZxINq7dy9KSkqQn5+ftdnffWm9OdVGTA8//DCWLVvWrWPqL3SnHRwN3pP0X/rSXML0DIlEQkiIAR3vYzweR2trK+LxOJqamhCJRGA2m4XsJcla3nnnnZ2up9FooNVqodFohJORqojeeustDB06FDqdDnfffTeuv/56vPPOO932t1CFYDo+/vjjbnud/ojcNFtO2CLkzzdVGwMQWtyHDx9GOBxGcXFx0j5coVDgH//4R9J1CaVSCa1WK873qTz00EOorq7GU0891a1/azrYycwwfYTUyQjoKGP2+/1iAWpvb0c4HEZLSwvMZjPy8/Ph9XqFVEY8HodWqxXlFmq1GrFYrNedzdu3b8cZZ5yR9rETifQPHjwY9fX1ImMukUigrq5uQGtlynIoCoVCbHLove4qa0mhUMBkMkGr1QqZDLn7MZDsSE6FFkW6FtnSydoU2whzIvznP/8BACxcuPCozzv99NMBsFxGV8ja/4lEAlqtFqFQSKwPkUgEdXV1KC4uhsFggEqlgs1mQ05ODjweD1pbW8XzbTYb2tvbEY/HEQqFoFQqodFoxGtR0IoaDcoBre6ku+aSTz/9FLt37xZZzPX19Tj//PPx17/+VWT5DHQUCgUKCgpgNBpx4MABIZdSV1cHr9eLioqKTrIs/4+98w6Pskrf/z29z2TSSYHQi4KCICCggF1Rv8q6uosNXde2srZ1Rd0V1wKWdde27trr2rCsimURFwUkKlVqSEI6KTOZZHqf9/dHfs/hzGQCIaRMkvO5rlyQycz7vjNz3lPucz/Pkwr0p/EmPT0dADosxDRt2jScccYZWLBgQVJH29KlS3Hbbbex310ulyjGhLb+aNu2bTj++OPj8tITl1xySYft4KOPPkJhYSGLyjjUvEfMSQY2/akvEXQvfH5lvogf5VSmNAdbt27FmDFjWApCr9fLjvHAAw+gvr6eiY68iLh8+fK4HO8ajQYFBQUIhULQarW45ZZbMGbMmF59z4KDkLZCDvOjTQu3Y8cOHHfccUyj4Y9/+eWXMydz4ljz3nvvYdiwYdBoNHHz6ccffxwffvghvv7666R1a7obITILBP0E6kRod4oGH71eD4/HA0mSkJWVhdbWVoRCIZbfiVwuAOLcq7RzSh0X7yjrqfBloq6uLmmuOuDIdvqzs7MxefJkvPnmm7jqqqvwwQcfoKioaNCGktEABLS5yvx+P4A2gZmKQNLvNPhQHtVoNAqPxwO9Xg+j0cg2I8iJyFc85qG2wrcZfkeWfj/S1BqijQg6S2trK7755hsAwP/93/8d8rnHHnssAGDnzp0d7vQPZsjNHA6H41IzhUIh6PV6+Hw+RCIR1NbWwmg0wmq1QqPRQCaTwWKxQKPRoLa2Fj6fD5mZmcjMzITP54PH42FiMw+NOdR3KRQKlmKju76b7upL7rrrrjiXUVFRET777DPWpgQH0ev1GD9+PEpKSliBIo/Hg3379mHYsGG9ssA5EvrbeEOFmD7++GP22IwZM6DT6SCXy1khpmQis0ajSdn0Jb0FzZ95QUCSJFRWVmLIkCFJ04u9/vrrhzwmX8wLiK+Tws+HxJxkYNPf+hLB0UPist/vZ/0JXwuJL4gsSRLq6+uZCYxIS0tDVlYW/vGPf6C5uRk+nw9KpRIWiwVqtZoVqyZBWqFQoL6+HmlpaTCZTAgEAnj77bc73OAQ9Bz0fSfbnATai8DJ5rb8eoTWyk1NTcjPz2d1Tng39HPPPRd3LBpvKGowGo3C7/dDq9VCoVDgiSeewNtvv42vv/4aaWlp3fXWD4lMErEXAkG34XK5YLFY4HQ6eyS5PYl95DCVyWTQaDQsLYZer2fOM4/Hk3SibLFYoNVq4ff74zrEjtJo9AQlJSVYsGABpk+fjjfffPOoj3XVVVehubkZZrMZr732GnMrpiI92UYotF0ulzMHMg025Gg2mUzQarVxgxyFdlERCavVGuc4BA4K2Py/hxo+EsVnXlzuTGqNwdxGBEfGyy+/jGuuuQbjx4/H7t27D/ncQCAAg8GAWCyGAwcOYMiQIb10ld1PT/UlfE532qyinMuUfomvdK5UKqHT6ZhY7HQ6AQAFBQXQ6XTw+/2dyvtK4jKNPyqVql1aqK7QnX0JT3eKzDU1NbjiiisQDAZx/vnn45RTTsEtt9wCvV6Pl19+GcOHD8c999yDtWvXYtKkSWyBcTh6ek5yOCRJQmNjI2pra6FQKKDT6SCTyZCRkZFS6TP603jzww8/4N5778Unn3zCXMwAcPvtt+OMM87A6aefjjPPPBPvvPNOp/Jk9nUb6S14UbmjAtj79u3DxRdfjGnTpuHll18+7PGShULTXOe2227DqlWr0NjYiIyMDJhMJpSWlkImk/XLOclgaSdHS3/qS7qbwdZGaOOcjDrhcJgVP+aFZVqb0b/V1dX485//jHHjxuGRRx6B2WxGdXU1Kisrk/ZLMpkMw4cPZyYitVoNvV4Pp9OJW2+9lfVBo0ePxpNPPpnSGxEDrY1EIhG2vgYOpqWkdTjfBhLpyIAVi8UQiURQWlqKK664ApMnT8aTTz7JjF4dmb34+bNGo2GbnHa7HcOHD8eIESNgMpkAtG02Ux2bnkKIzAJBN9LTnScJfHzeXZVKxXasZDIZjEYjc6BFIhHmYJUkCUqlEnq9nnU8kUiECQgE5cbk/02VheBAoCfbCH3PvItZpVIxgYechh3hdDoRDAah0+nYQHQoeHczDaL84JfM4ZwoLtOA3NPuecHAZfbs2diwYQOWL1+eNJ9dImPHjsW+ffvw3//+F6effnovXGHP0Bsis0ajYRuS1K/QQokcOsmmkTqdDkOGDIHP52M5BNVqNWQyWdzmJ18UkKC0GiQ608R5IPcPd9xxB8477zxWzA0A3n//fTQ0NODJJ5/EPffcgzvvvBPvvPMO7rzzTlx44YWYOXPmYY+bKgu6QCCA6urquLZiNBoxZMiQHtvMHqicd955qKysZAIyFWKyWCy47LLLEAqFcMUVV+C6667r1PH6so3wm9aJcweaKxztvc/PTxLh5yMk1NAGerIfus7EPPXJoKgMeg/0vvjFf38iVfoSQeoyWNoICYvkXg0Gg/D5fExwDgaDzOjD17Gh/kMmk0Gv10OSJDQ0NDCDDwBkZWWhsLAQJpMJoVAI1dXVqKurA9DmdjYajVAoFDAYDOwnPT2drf/VanWffCadZSC1kVgsxua35CKmuketra1Jx5zE3MzJ8q4njjc0JiVLxUFrZ368ofmzWq1m824qyt2biHQZAkE/ghfrVCoVW+RrNBpWNMDtdrOOhh/gKO8lheeQU0yv1zORmndIk1gZi8XY8QbyIn8gkCj2yGQyNshptdrDhsiSC76jkJ9EaCHYkWs+8Xn8go7+zxcTPJTDuSPHEB1fiNSDk59//hkbNmyAQqHAlVde2anXHHPMMdi3bx927drVr0XmnoK/j2hBBLSNGenp6fD5fPB6vcwtwRcApbFJqVTCbrez4+h0Omg0GrbZGQgEmLNHq9XCZDLB7/cjGAwydxCl7KDjqVSqATsOJRZzo886PT0dpaWl2LJlC2bNmgUAmDNnDoqLi5OKzLTAJTrjIO8NtFotRo0ahbq6OrYo8/v9qK+vR3Z2dq8vfvoz/b0QE1/r4VA5K3khl49s6Cx8MS2C5h50DXwIO399ya6Z/j3UD52DX/STw4yuPxAIsCJeAoGgf0B9ht/vZy5l2kSnIn+UIoPMXZFIhNVDOlRfp1KpMHLkSIwaNQqtra2oqalBRUUFFAoFcnJyMHLkSPz4449obW1FNBpFWloa/H4/lEoltFotwuEw1Go1+1fQO5AZQy6XswjhSCSC5uZmtkal6C1qI51dX9PamHfBA/Ebs3QO3j1N6TDJwBGLxaDVahEMBtlY1FsIkVkg6EfQ5JU6FoVCwcKYqUptsrxAfF44GuhIGAgEAiyMlUKhKb8ULXZjsVjcLpkgNUksFNFRFduOoHbCT4b4nM3U5vgwdl7U4B1H/KSK34Gla+EHxWSCM3/NnQ244Y87EIUoQXuWLVsGAFi4cGGnU1+MGzcOQFsoqqA9dB/RBDfRMWEwGKDT6RAIBOLEYB6616nStUwmi8tZSgsicgRFIhFYLBaYTCZ4vV54PB7WZ4TDYahUKlYAaSCKzYnF3LZu3cr+JkkS3G43jEYjAMBgMMQ5n3iWL1+O+++/v+cvuAvI5XIUFBTA6XTCbrezftrhcMBkMrHFmGDgQhtIyQSXxMLB1Afx8wc+52RH0PyVT+lDc41AIMDmuMlyMicW2jocvOOMoOsnhyP1WZFIhC3+KepMCEICQeoTiUTg8/lYOgyPx8NqTQQCAfj9fni9XrYGp/6Hnz9Rn6bRaGAwGGA2m5GWlgaDwYBQKISysjJ89dVXSaMk5HI5Jk+ezIxiMpkMVquVidqBQIAZz0StkeQk9vcEX6z1SNOE0nFUKhX7zN1uNzNTpKWlwe12o6Wlpd1rab1O0en8GMRHrfPj2eE2ZklgJvMhvw7XarUIBALQ6/W9puMIkVkg6GfwIrNarWYTZirMRLua5ESmzo93dSQL/fP5fJDL5TAYDGxyzP+d8m3y7gxBakH5l/nikDSY0OByJE4gahcE70BSKBTQarVsQUbOO75d0GQsMWRMoVDEhchTODzvck50JnfkGgLincz0GXRlwiBITcLhMMrLy2EymZCfn88e//jjj/HRRx9BJpPhvvvu6/TxSGTeu3dvt1/rQIEXQug+DIVCbKNRLpdDr9dDr9fHpV1KdPPx9x+9DjjokFYoFCx6wuFwwGKxQCaTseI25IxOFJvJ3TyQxGa+mNtZZ53FHpfL5TAajSxk1uv1dhhmunTpUtx2223sd5fLhcLCwp698CNAJpOxhXVLSwtrL263G5FIBCaTacB8n4J4+NoQANgmdWLBPB61Ws02H8jRRQ4+2rxKPEcwGIyblyiVSuY2pHkHzWOA9ik7kkVL0fUS/Py5Iyg3plqtZn0WCcu0yUb9myC14DcOjiRqjtoO35Y6crsDBwt88fNfQeogSRJLgxEKheB2u+H1euF2u+H3++F2u9n/SXj2+/1xfQp9v501v1itVuTm5rI1d0tLCw4cOIDNmzcjOzsbOp0OLpeLOWf5SGZa6/fHdDw9BR+10pkNRHL70rr0UMflzRTAwRSlQFtqE4/HwwRmvV4Pk8nEUml4PJ64jVD+uHyKJ/45NP4la19UG4XW58nSOpGjObEuU08hRGaBoJ9CEx+NRoNAIMA6JZVKxcKS+Z27RBdpothHHZbX64VarWbVainUJxQKsYFSpNBITXiRWaVSsUJdSqWSDWxpaWkdDpy0AKQwG/qdwuIBsB3VaDTK2gqlYvH7/dDr9QDA3GodwRcoAMDStPCTsY5SZvCTdyBe0OIn7bFYTOQV78fEYjH8/e9/x4MPPsgmaiNHjsRpp50Go9HIip/dcsstmDBhQqePK5zMh4dPycRH0Ph8Puh0urg+hEQiflOH3wwF0G6sIJciHZv6qtbW1rjroA1UErgpzJz/GQhj0Q8//IDXXnsNn3zyCRPW7HY7mpqaUFRUhMmTJ+Odd97B7373O6xbtw7nnXde0uNoNJrDpkVKBVQqFbKysuByuRAIBCCXyxEMBqFSqXptASToPXiBWSaTIRwOs98TxV1+PKd7X6vVMgMEX0CLoqr4DXA6hlqthiRJaGlpYQtuWrhTv0LHORqor6S+j85D8+pQKMSuhRel1Wo1QqFQXM5mQd+QWFfkcGLUoean/O+8Sz6ZaJ0oMpO4xbcnQd8QiURYRBVFV7lcLvZ/h8MBn8+HlpYWeDwe+P1++Hw+th5PRK1WIz09HRaLhaXNociw7OxsmEwmNDU1Yffu3di+fXvca4cPH45YLIampiZYrVakpaWhtbUVWq2W9ZEU6RUOh0V/8v+RJCkuBSTda4lRv/RculdpncvnN0683/lj8mYuAKy/dzgcANoi1YxGI6qrq9ulMKM+gIRwihzmzxMIBODz+dhr+U1O/j0plUrmkHe5XDAYDHHjKj2PNj17GiEyCwT9DD6FADlVabLKT7KTQR0mdTJAvKOMJlh0LKPRyAo/8WI1726mzlcsCvse/jvgQ6f0ej2bLDkcDuj1elZ8hs8zRjuwOp2OOdllMhm0Wi0bRMmZQzlVQ6EQ2+jweDys8AENrnq9ng24tMtL7ZTaIO3CkrjND978ezqUa4j/DMgBQJN2EtrFxKv/IEkSbrrpJvzzn/8E0NYmQ6EQysvLUV5ezp531lln4ZFHHjmiY48dOxYAUF9fD5fL1e+Lj/QUdP/Q4oXEGZ/PF1dQhCaxOp2OPa8j4SZRaOadYeTGoXuX7nedTscKDpJLQ6PRxDkEqf/or2Lzgw8+iIaGBpx99tkAgIceeggLFiyATCbDG2+8gaKiIowaNQonnXQSxowZg9mzZ/fxFR89MpkMZrOZzTHoO/f5fCytgKD/Qwt9AOw+J7dxoruZh6IlaMM7EonAarWyOSoJxYlQ/xAKhdimVWLdkcSUHVqtlm2eUf9FYiD/w5s3SBQIBAJwOp2sf1SpVCylEO/Wjkaj0Ol0rL+k+TgVW+6P/VZvkCjW8t/L0aZHI+d7R+umRPc6/3/e8c6HuCf7ScyjSu+Bj+KjdstvoPbXIpH9nWAwCK/Xi1gsxoRlp9MJr9eLlpYWuFwutLS0oKWlhf2NIjcpZzM5inU6XVyRv4aGBhQUFGDBggXIz89HSUkJvvvuO1RXV7PzS5IErVbL+q2KigrI5XJkZWWhpaUFcrkcFosFXq+XRZ2RQzUcDkOr1fbhp5c68AVfaW3Ku815+EJ5fJ9DKSH5+SVfHJs0Fd6YpdVqmTFGp9PBYDCgrKyMbSxYrVbo9Xq0tLTAZrMlrWkUi8XgdDrhcDiY8O31ehEOh+Hz+eL6LIVCwSILw+EwPB4PsrOz2d/5KGFqL71hvhIzOIGgn5EouvFu0GTPTXR40mSIjkMTHHqMOk8aXE0mE0wmExs8yQXNhxeKFBqpQeLnzxfyo9xQNFBROHoiBoMhbgDVaDTMqcw7PMhpQc+j/OBOp5MtBAEgMzOz3Y4p5Tfzer3w+XxsIk4DObXpRMEoMeyQL3xAPwqFgk0sKDyVF8iEcNE/+Mc//oF//vOfkMlkePrpp3H99dfD5/Nh7dq1WL9+PTweD0466SRceumlR7wIs1gsyM3NRUNDA0pKSjBt2rQeehf9H1rAU95l3gVIE1V+sp4YQpgoJPNQzmf+b3Tv6nQ6+Hw+FnEzdOhQtLS0wO12szQ+tMGlUqmYw5mvHdCfxqNkxdyKi4vjfn/ooYd663J6DdrEVCqVcQstEiFFKoH+D58nlARnWjSTSEwiL+UypvynHo+HpVChaCyr1crCgvlUXHy9CBJ+gfYCs9/vB9A2t8nOzoZGo0FtbS3279/f4bzocCRGVpHjTC6XIzs7G0qlkvVber2etXUSF3vLWdZf4EPcO+M0J/Gks8Uh+eKyBI0dNJclcSmxyFayY/FzUhrDyITBu9o7unZquxSJotFo4gq6aTQa4WzuBUgoJBHS7XbHOZhtNhu8Xi8aGxvh9XrR3NwMn8+H1tZWOJ3Odg74SCTCUmosXLgQWVlZ+Pbbb1FbW8sMFIRKpUJeXh72798fJzgDbesojUaDxsZGZGZmQiZrKyhHtRr4jazEKLLBCr8JSevY5ubmuPkq6Rl8JAxtchsMBgAHx69kG1F03wKIq4elUChY3Qyr1YqqqioEAgEolUoMHToUDQ0N2L9/f9yGI6WKs9lsqKurYxuplOubdzHT2EnfsVqtZvm6dTodMjMzEYlEWJ0a3shFkUG9MeaI1bZA0M8gIY3Px5M4sPHpDYB4JwCRLD8mpVsgUUGS2goOmUwmlsyeroHEBT5fs0hN0Lck5ikmlwxNONLS0hAMBpkrMNFRo1Kp2gnMJNomtjE6Jjmm6bW0kNJoNOxciQMZtTez2YyMjAyWz4zcSvxgzu8cdyafFjn7aTClc5O4TPePIHWpqKjAnXfeCQB4/PHHcdNNNwEATCYTzjvvvA5TBRwJY8eORUNDA/bu3StE5sNA9xQJzXx4e2IYIs/hxgLqdyi8M/G5er2ehabqdDrk5uYiIyMDzc3NLIcvTZTpX/qhsUgUAe0fUFshJxAtoijqRtA/4fsIpVLJnMXkaJbL5cjJyWFptvjXOZ1Odq/n5OQw4dnn88FgMLB7PfF1Pp8Pbreb/Z5MYB4yZAiys7Oxf/9+lJSUtHM1U3HBREMFzZvJgU0Fv2iznN6bTqeDTqeDSqVCQ0MD1Go1MjMzAQA+n4/1l7Tgp75V9FXxeUcJPiSd/qXvhsRd2vikaLtknycJNLx7noplyeVylv6gI2dzonuZdzDTnJrC20ngIqGRcvvS86gNqNVq6PV6FjlK6ZJ0Oh20Wi2re3CkNVUERwYJeiTueTweNv/w+XwsPYbdbme/+/1+OBwOJgAee+yxOOusszBhwgSkpaXB6XTi3//+N1avXo3i4mK8//77WLhwIf773/+iuLgYHo8H+fn5mDJlCnbs2IGPPvoIQNsafvTo0VAoFCgpKYHdbodSqURWVhacTie0Wi1cLle7KGY+H+9gbyt0D1Of7XA42OdCG32U2oQ3J1BxR4owoYLLiUWw+fklaSVA27yVNjh1Oh2am5vh8XjYWLdr1y7W/1itVmRnZ8Nut6OkpISNj7QJ1trayuoi0SaC3W5n5+IZMmQIE8br6+uZkaawsBBer5cJ4rRxRev2nkSIzAJBP4QmvzS54V3KQPu0AnxBJt5dRpBrlAYo+ht1qonuDj5nERVlIrGZnGf9zUk2EOAHQPqXXOo0kGq1Wlawjx6nyQm/SKKd30SnB++GTyY0h0IhlreVRGZKRxAMBlFeXt4u76pOp4PFYoHJZGKFwPjCkzw0KSfnIr2/UCgEr9fLFn/kCuGvn8QofsEiSD3uvvtu+Hw+zJ07F7fcckuPnGPcuHH49ttvRV7mTkL3OX//JG5S0WYQ/5rOHJfyCPJCdTQahUKhgNVqZWGpFosFKpUKubm5SE9Ph91uZ+GDVE2bT6HBb3zym6qC1IRCiyncWJIktLa2QqPRMJePoH/Bbw7TPFQul7M5ZWZmZjuBGThYIJKKbfn9fphMJuYoJNdz4rncbjdbwJNoRGKk3++HTCbD8OHDYTAYsGnTJjQ2NgJoy5k5fPhwZGVlxS28SbS22WxobGxEfX09Ghoa2hVsIpGR+hy+aLLRaERaWhoaGhrY8SkPOTmcKVpssEdaUfoRgkwOia5juVzO3Ia8OYIvDklmGz4tHOX+p2NQFEUgEEBra2ucuEzjHV+HpKOUbby4TNcZDofR0tKC1tZWxGIxllKOz7lKArfRaGSCclZWFhPMKaqUcqsaDIZBLx52N+R4pY0NuudpA4mcpCQ2kyHG5/OxiF+FQoF7770XZ5xxBhunHA4HfvjhB2zcuBEAMGbMGNTV1aGkpAQKhQLXX389hg8fDgB45ZVXmMD8q1/9CpdffjnS0tIAADabDffffz+2bNkCh8MBtVoNt9sNlUqFjIwMBAIBGAyGOLe8EJnB7kOlUsnWhtRvNDU1dWhaMhqNrN/x+/0IBAIwGo3Q6/UdRjJQuiSaG5OLWaFQsDHGbDZj9+7diMVi0Gq1GDlyJOrq6rB69Wq2IUW6SV1dXVyNJJ/Ph7KyMnZOpVKJvLw8GI1GuN1u1NbWor6+HgAwatQoAEBTUxPy8vLQ3NyMnJwc1p/Qep/Wzj05L+6x0aympgaXX345mpqaoFQq8ac//QkXX3xxT51OIBh08GEesViMTYgo/ywPdaZ8YaZEeIc0dT7kBqVOkQq7qVQqluOXT01AkzBKd9CR2JzouBV0D3yYOoWX8qGkPBQWluhuTyYWJXOo06SaPz4tIPl0LDR4hsNh7Ny5k4WJqtVqJnD7/X7mMAIO5rCiHFp0PgphdLlccXn0VCoVjEYjMjMzoVQq4XA4mEhBLiHaRKGQf7Va3Q2fuKC72bJlC9555x0AwN/+9rcemwBRXua9e/f2yPEHIiQ0033L9+O82w/AEX1v/BjBjz3kuAAQ5/6iXKvRaJRtJJHzg0+hwUdnkMgsNkBTG8rDS7mZKQTU6XQiLy9PpBToZ/DzAz6HJc1VyHnVEfR90xyU30gmcZpScLjd7rjNbxKYqS2RwKzX61FcXMxym06cOBGFhYUsf3JZWRkOHDgAu92O5ubmpDmjyX3q8XjQ2NjYzllGIjml7AoEAsjKyoLdbmeOZnLrUxgzzU8GK7zDmFKIUF7TRGKxGJs3arVapKens76eBFpe6OchEwU9v7m5mc0/SSTii2zx8Gsu+p3GHpqP0mPV1dVsfutwOODxeNh10/xUqVRCq9VCpVJBp9MhJycHfr8fOTk57FiUTspoNMLv98NgMIjxq5PwubCB+LVnogMdaPv+qV2RuEwiIr0GaBMMbTYbJk+ejKqqKkiShI0bN2LXrl1wuVyoqKhAWVkZO252djZcLheL0AOA9957D7feeiuGDh2KV199FQDwxz/+ERdccEHce8jKysIjjzyCRYsWoampCV6vF3q9nqVjoTU6v6HXmajPgUyiQYn6AYVCwQrSazQaZmyiIo+UV5vSV1D7cLvdbHOT6kXQfU+5u4E2gdpmswFoGyNI+NVoNKioqAAAZGRkwGq1Ys2aNUyMptoUO3bsYBuwVqsVJpMJ33zzDVtHn3jiiTjttNMwefLkuAgvh8OB9957D59//jnKysowfvx4Nk9WKBRIT09Pmrqn34rMSqUSf//733H88cejqakJU6ZMwTnnnHPYCYVAIOgcJArzg8vhwoMPNzHhHbCJi37+OUajEQaDgU3EaGLHC858ISa6JnLBJuYmo4ldsrydgs7B5wSkdkET9sRK1bRTz+dXJnGZT41BLsNkgxD9jYTmxA0KajP0b0VFBStMMX78eOh0OgBgTiWn0wmn08kmeLzofDhCoRAcDgccDgcMBgOKiorgcDiYC4VCgxI3ZoSzMfX485//DAD49a9/jeOPP77HzjNu3DgAEE7mLkCbUSQ2A+2jZ47URcOnauKhyTWJzpWVlUmFBwpxJ1can3eOz9VJG2C0CSrGm9RDJpPBZDJBrVajqamJLaL379+PrKwsWK1W8b31E/i5BMGPuzRn6Oi1tAinIqM6nY45CfkiR9RP0GY3CYQkNgNAUVERDAYDNm7ciNbWVqhUKpx44oksKmLz5s0oLy9POj9NS0tDdnY2srKy0NzcjM2bN2Pfvn1xz7NYLNBqtSxdB/VTFosFFosFNpsNubm5cLvdsFqtrAYFH0U2WHOp8kWzyOlN35tarYbRaGQCPIlCVNcjEAigqakJWVlZLFqP6pEkup8pfz8AlkuX5oQymYyZZwj6fqiwWqKDnYfEnNraWlRWVgJoGxdrampYRGhra2vSYxgMBmRkZCAYDCI/Px8NDQ1sDOXXU7RZI0wSHUNtKbG456Gg9QxFSlBqHlrXBoNBlusdAAoKClBeXo7KykoMHToU1dXV+O9//9vuuCRk6vV6OBwOqFQqjBkzBrFYDHv27MGHH36IY445BuFwGMceeyzOP//8pNdnMBiwYMECvPzyy+1SsfA5wYXI3AbdY3K5PG4DkDYLLBYLS8dGmkVmZibbdAqFQmhpaYHRaITJZGJCckf1jBQKBQwGA+x2O1sPt7S0MONVQ0MDgLaUFoFAAF9++SWAtu91/PjxKC4uRlVVFYA2EfrUU0/Fzz//jA8//BAAMHHiRPzmN79hzvdE0tPTcf3110Ov12PlypWw2+3Iyspi62gq1k1jDW2sdPb+6Co9JjIPGTKEJZzOzs5Geno6EwAEAkH3wIf98zkyEwv9dZZkz6WBi6+aSvnyaEJGz6F0CdRpkxOV343v6LwkMIiw5q7Bp8ogtx8NcIk5LfnK6Xq9ngk8/OS3M8Wz+I0OOh7fHgmv18t2j8eMGQOdTodwOIwDBw6wSTcf/kiv5x0I9L74AgYajYaFMLW2tqK+vh5erxclJSUYOXIkWltb2eSQjknishCZU489e/Zg1apVkMlkWLZsWY+ei5zMpaWlLDWDoPPQvcinbuLzTB6pUEJ9UCK8+3HXrl1scUXhi6FQCE6nE4FAgBVWIZHB5/Mx0YHf/KQxib53ITanJhqNBnl5eaipqUEkEkEwGERlZSXq6+sxbtw4cc/2M/i5gVarRSAQgNvtRnp6etLn02JfLpezlFtarRYejwfhcBjNzc1x6Q3IAU9zDa1Wi6amJgDA0KFDYbFYsGnTJiYwz5w5E0ajERs2bMDWrVvZ/DctLQ2FhYXIyclBRkYG0tPTEY1G8cMPP+DTTz9lQoVGo8Fxxx2H4cOHs0JOTqcTJpMJEydOhFKpxPfffw+n04loNMryyVNaGJ1Ox+Y51BcN1pQZ/HyV3xhIS0uDUqlEQ0MDcyPK5XJYrVZkZWUxYScSiaC5uRlZWVlsHko5jRPXH9FoFC0tLWxNQ7ng+Y0KSoPQkahMxgyas+p0OtjtdmzZsoW55i0WC3744Qc21thsNrZOopRwWq2WiVeSJCErKwtNTU0YOnQompubYTAYWF0TjUbD5ulCZE4OFTZPVn+IH+OpPVCf5Pf7YbPZ4tzBFHVJ66ecnJy4/NqUyksulyM3N5eJ2rSZQY5XrVYLq9WKIUOG4Pjjj8esWbMQCoVwww03oLKykp1n3rx5h5yHZGdnA0DcuoiHb+PdOZ8JBoP45S9/CbvdjquuugrXXnvtIR/va/i6QmQ0oihYoG2caGlpQU1NTbvXms1m5Ofnsw0hj8eDSCSCnJwclj6DIueAtn6A5pv19fUs5ShpIzJZW7FBAMjPz0dzczN27twJoG0NUlhYiDfeeIOJwGeccQZmzpwZJzBfeeWVuOiiizr1nS5cuBAffPABbDYbrFYr+zyofwXau/l7kiMeyWKxGCZMmIALLrgAjzzyCHv8q6++wnnnnYe33nqrXVqMTZs2IRaLobCw8OivWCAQxMEv9vkiGHzKgq4eN7HIBe32lpSUJN3NI6GQJvt8MSYSB2lg59Mg8DuxfMoNsfDvOrT4IgcQDx/STiIRXyThSArQ8JO3xIk8/Z0WehkZGTAajdi3bx82bdp0SFfIkWA0GjFs2DCMHTsW1dXV8Hg8qKioQF5eHpsUkPuFF8UEqcXf/vY3AMAFF1yA0aNH9+i5hg0bxopTVlVVYcSIET16voFK4mKtqySmzCDHFvUjVJBHrVazSAh+sdXU1MRypXo8HpaPkxbmtClFxU94sZnSc4hNp9RDoVBg2LBhsNlsqK2tZekzfvzxR4wbN44tpASpCd3TFGkHtAlBZrOZ5cE1mUzt0qBQZBMA5lAFwIo2+Xw+NmfRarVsc7q6uhpAmzh54MABAGBicUNDAxoaGiCXyzF9+nSYzWZ8+eWXLNflyJEjMXXqVCbmAEBLSwu+/PJLFBcXM1eY2WzG3LlzMWbMGLz99tt49dVXk85l0tLSsHjxYmzcuBEejyeuuGUgEGCb7Xw/NljnJdTPq1Qq5jyklGn79++P+1zIbej1ejFs2DAmzIZCIbhcLlgsFvbcRHNLOByG3W6Py4lMjkMaGxobG+P+np6eDrPZzK6HwtCdTidaW1tRXl4Ou93O1ktU0Pqrr74C0NYOtm3bBplMhoyMDPzwww9x791isWD48OFs84TSdcjlcgQCgbgIUPrpDcd7qoqIHREKhVjkA20yUMpHypVN91piwUaC0mXwa6Lc3FxUVlaitbUVJ510Eg4cOIDGxkaWtoQKxPFGG4qeojmHTCaD3W7H119/ja1bt+LGG2+E0WiEx+NBbW0tAHToUiXq6uoAgK2lAcRFDCdGIHcX7733Hs466yxcd911OOuss3D55ZdDq9V2+HhfQ2IyAJY3m8953NjYyO5Vo9HI7mmPxwOXywWfz4fRo0dDq9WisbERgUAALS0tyMzMZO+Pj9CJxWKoq6tjAjO538n8BLQZbz0eDxOYZ86ciby8PDzzzDPw+XzIz8/HokWL2IbrunXrAABnnXUWFi5c2On3Tuv9jlztve1wP2KRWS6XY+nSpbj55ptx1113wWq1Yvv27bj44ovx8MMPtxOYm5ubccUVV+DFF1/stosWCATtIbGZT0fBdyidEW2T/T0xDy9N7uRyOTIyMlh4ssvlYgU3/H4/1Go1m5TxhZhoIkfHpkGZF8dpgD9UDulUIJUmYfxi7nADSUeiM4AuVTinQS2xrQBtYwYtFjMzM1FaWsoKYZhMJuTk5LD8zLT4oirc5Irnr4+chzSxohxau3btwt69e3Hccccxl1RraytLlZE4+PIbJ4K+x2az4fXXXwcA3HbbbT1+PoVCgTFjxmDHjh3Yu3evEJlTANooJScZvxlJIg4Jx+vWrUN1dTUkSYJer0dubi6Kioogk8lQX1/PCpAGAgFoNJo4NzO/AUp9CY1NXen/BD2LTCZDdnY2NBoN9u3bxwpnff/998wdlsrzhJ6gv7jLePcypcii/9M43dLSEifshkIh5kZOT0+H0WiMOyYJA7FYLK5uA4mFJOzQPZ6bmwsAzLk2fPhwWK1WlJaWoqysDHK5HGeeeSYrmAS0bWp9/vnn+PHHH9n8IzMzE/PmzcPUqVPx008/4cYbb2SC6OjRozF16lRkZmbC4XBg7dq1qKurw5NPPolrr70WxcXFcLlcMJlM8Hg8rNgxLxzSZzMY4U0JJBIZDAY0Njay9pKfn8/qwRw4cACBQAB1dXUoLCyE1WqFw+GA2+2GTqdL6vSNRCKw2WxsU1Gj0bCcqSaTiaW2oHMXFhYiPT2dhbtv3boVtbW1HaZyS0tLw7Bhw7B//34WDp+fn48NGzYAAAoLC/HNN99ALpdj0aJFGDNmDF577TWUlZWxNDCRSCQu8pCEzsSaB70xd01VETEZlFMXaNuoMBgMcDqdaGlpSRohlQgVXaypqYEkSTCZTHA6nZDJZBg3bhx27doFt9uNjRs3YtiwYfB4PHC73dBoNOw7SiYwm0wmZGVloaCgAIFAABs2bEBzczO+/fZbmM1mlgcYQLuIU55YLIb//e9/AMDaN9XIoD6QfoAjT1d2KDZv3oxrrrmG5a/fs2cPJk+e3OHjiZBrn0iW67y74DdhyL1L/0qSxERfcizzn3kgEEBlZSUCgQBqa2sxcuRI5OTkoKGhAW63GxkZGUmd4hSNS8aGlpYWtpkYi8VgtVphNpuZcHzSSSfhmGOOwcsvvwyfz4eCggJce+21cddCm6ZlZWVwOp1xG2eH4vvvv0csFoPZbGbtkNokXXeio78n6VJMzqJFi3D//ffjqaeewjXXXINzzz0Xl19+Oe6444645wWDQVx44YVYunQpTjrppG65YIFA0DHUgfBiGv9YZ1/PT2ASj0kTrIyMDBQWFmLr1q0oKSlhOTANBgM0Gg3MZjMramI0GlmhDbVazfLwkYjM78Ly6Rf4auSpuPBPpUkY//mQc49CvnixJhm8INyVz/lwojafamXLli0AgGOPPRZTpkyBTCZDZWUlduzYgfr6erhcLvj9/sPmvwPa3nNWVhaGDBkClUoFn8+HLVu2YOjQodBoNGhtbWWLVz4nMwlYQmROHZ577jkEg0FMmzYNs2fP7pVzjh07Fjt27EBJSQnOOeecXjmnoGP4lBl83melUske93g8KC8vZ/nrgDa3yv79+7F//36YTCaMGzcOeXl5aGhoQCAQYBXCSWwOh8PQaDRMWCYXGwAWziz6hdTDYrFg8uTJ2L59O+rr6xGNRlFRUYHa2lrMnz+/nRg5kOkv7jJ+85vmdyQEpKen48CBA+2Ks5Fwq9frkZaWlvSYyQQZcqsZDAY2d6B0YMDB4k9UeI8KMU2ePDlOYPb5fHjqqaeY0D1y5EicfPLJmDBhAuRyOdasWYMVK1ZAkiSMGjUKN910EyZOnBh3LYsWLcJjjz2G//3vf1i5ciWmTp2KhoYGeDweVgyQUnnx5orBmks1MWoSiM+nOmTIECYcm0wmDBs2DBUVFcx9aLFYmMGFNi0S+/CWlhbEYjGWf5W+/7S0NJjNZmzbtg1Amxg8dOhQ5lL97rvvmEMeAEuFQa9TKBSs2NvKlSvZd5mXl4eNGzciFoshMzMT33zzDQDgvvvuY7l309PTcdNNN2Hfvn2wWq3wer0wGAydEkZ7ms6IiL0pIHaEJEksspbSF9TW1rLrIlczbSqT4YrWRWq1GnK5HHv37mXr2JEjR+LAgQOIxWIoLy/HrFmzsHPnTuZY1Wq1ne5XKU/vggULYLVa8dZbb2HPnj0s2oIKmFLe3mSsXr0atbW1LJKD0u1Q9DBtkPP1j7oLt9vNxlaDwcDE/I4eT2T58uW4//77u+16DgWNAQBYjSi6H+n6MjMzkZ+f3+4z0mq1KCoqwt69e1kRWRpnOjIl8fn/MzIy2LyUz8E9YcIEfPHFFwDa0kUec8wxcDqd2LdvH2QyGS699NJ249mCBQuwZs0alJWV4cYbb8TChQtxxhlnHHKOU1FRgeeffx5AWx8mSRJ0Oh1kMhlz9ZPmwt8DPUmXRGalUok//vGPuPvuu/HBBx9gypQpeOqpp+KeI0kSrrrqKsyfPx+XX355t1ysQNCbpJoj5Eg4mkGGHCD0eloU0OM0AXQ4HFAoFNixYwd7LTlRAaC+vh5msxlWqxXhcBgqlSpObOZDlhOvlXcw86kdUm3hn0qTMEplQon9Sbynyur8Z83nnks8xpFCGwFAxzm96Tukgj1qtZp9Th999BGKi4sP+94AsPfG51NtbGxk6TiKioqgVqtRXV2NnJwcmEwmtLS0IC0tjbmZ+fy7g3VBl2oEAgE8++yzANpczL11n1Pxv7179/bK+Q5Ffx5vuhuZTBa3GUluIerfGhsbAbTlKJw7dy6am5tRXV2NyspKuN1u/PTTT9DpdJgwYQITm8nVTGIz5V7UarWIRqNMdCYBKLFYqiA1UCqVmDJlCkpKSrB3717m/vv3v/+NGTNm4Nhjjx0U39vRuMv6UhjqTN/OFzBOtqj3+XwIhUJQqVRxIjKN63RfA2Ch7zKZDFqtFi6XC263G9nZ2ew8iTmQf/jhB9jtdlitVvz617+Oi3I5cOAAHn/8cUiShLPPPhtLlixpl+oDaAtbvuOOO7Bnzx40NDSw90HuNgqp5tPFiToR8YYH2hSgzUEerVaLzMxM2Gw2NDU1wWw2Iy0tjaVFoHzHBOV0B9rEIOr/ZTIZcnNzmYickZGBYcOGAWgTqT7//HM4HA7I5XKMGjUKI0eOREZGBsrKyrBz5058//33cYXFJEmC1WpFa2srcxXKZDKWIuPGG2+MK+5GURjNzc0wmUwIBAJxc+a+nKN2RkTsTQGxIwKBAMt/q9VqUVdXx0wlZrMZbrcbDQ0NzHGsUqlgsViQm5vLoivIrSqXyzF69GhoNBqMGDECZWVlrG0oFAoUFBSwtBsdGblkMhnMZjOGDBkCr9eLXbt2weFwYOvWrWwzymazsfQYVqsVFRUV2LBhA84+++x278/lcuGZZ54B0ObAVavV0Ov10Ov1LF0GRXbybubuwmg0MhHf6/Wy/PgdPZ7I0qVL46ITXS5Xj6TPpfQnAFjfykeIkEM9mcBMJD5OUbi0EZHsnLxGQe2OzHgFBQUIhUJoamqCTCbDtGnTAID9XaVSJTVT5eTkYMWKFXjsscdQVVWFV199Ff/+979x4oknYurUqRg7dizbSDtw4AC+/fZb/Oc//0EoFEJBQQFb55rNZmi1Wqa78EIzXXNP0uXqAosWLcItt9wCSZLw9ttvt2vUGzZswLvvvotJkybh448/BgC88cYb7XZ7BYJUJdUcIb0F7zbh/1WpVIhGo0wgpsJtQFtHdd5558HlcmHNmjUs0X0gEIDT6WQTQhKbDQYDtFptXNVk3s1MThdeKKXzpJLQnGqTMD5dCgkmfDXZxNxjtDjqykSWzxFH8ANusrAi2oAwGAyQy+UoKSlBcXExZDIZpkyZgpEjRyItLY2Fg+3atQvffvsttm/f3uEuuclkQl5eHhQKBSorK6HT6ZCbm8vCLNPS0uD3+2EwGOJyMtNEXhSP6nveeustNDU1obCw8Ijyjx0tVPyvpKSk187ZEYN1vOHhXcw0GaaweBKUXC5XXB5ml8uFtLQ0rFu3Dg0NDaxvkSQJmzdvhlarxdixYzFixAjYbDa43e64oks0ppGwDBwUnYTQnJpQCHNOTg7++9//orm5GcFgEP/973+xdetWXHzxxcwdNlA5GndZXwlD/KJfoVCgpaUFANp9VxTq7na7kZaWFpf6wOfzsfdEKXFMJhO0Wi0Lcfd4PDAajSw/psPhQEZGBnJyctDU1ISKigoUFRWhoKAA+/btw86dO3HccccxNxnNkzIyMtrlSf3qq68QDodx/PHH49Zbbz1k/6DRaHDxxRfj6aefxt69e2GxWJjIHAwG2XkSncyDOd8uP9cnkbmjezkjIwMOhwPhcBhOpxNpaWmszXs8nrjxkz+uUqlkgjO5+Uj04cPSf/jhBzgcDuh0Opx55plIT0/Hpk2b8MorrzDxCWhry0OGDIEkSaiursbWrVsBtAldLpeLFYe77bbbsGjRorj3oNfrMXLkSJSWlsLv90OpVHZYMyRRyOxpOiMi9paA2BGSdLAovV6vh81mQzgchlKphMFgQGVlZbv1DeXlttvtGDFiBDIzM+PS81A/MHz4cOj1etTV1bHNzMSaNfy/9N1REcmGhgbMmjUL6enpWL16NaqqqjBjxgzodDr4/X5kZWUBAGuna9euxe7duzFhwgR2rdFoFA888ACam5uh0+lYbnC5XM7W0TRPohQa3b2mmTJlCr777jscc8wx2LZtGx566KFDPp4IpTjrafi0JaFQKK42FfUlQ4YM6fDekSSJucmNRiNLuQigw9oP/LHIvKXRaFj/QLUH6HHa1MjOzkZOTg4aGxvx5JNPwmKxsJpFRqMRZrMZ6enpuPvuu7Fz50588sknqKqqwvr167F+/foOP4Nx48ax9G9Wq5VFlZNxg9+MAFJYZP7d734HoC0MIFmDnj179qDNLSUYGKS6I6Qn4TseCiWmXHeBQABmsxkOh4OFYfj9fvzwww9wOp34+eef2Wvr6uqg1+uRkZEBr9cLrVaLjIwMWK1WlrNZp9PFhfqQsMynNuD7mFQSmlNxEkafFe208zlHqU+mTYPEInidGXDo+TSg06KIXO78IhI4WJiCJmjAQXcRhRZNmTIFv/zlL9k5IpEIHnjggTiHs1KpRG5uLsxmMwujPHDgANxuN0pKSqBQKDBy5EhIkoSamhoUFhbCZrNBo9EwhwO5nwZ7aGoqIUkSK/jXkSusp0glJ/NgHm8AtOufaFLMu4uj0ShbkJnNZrhcLmzYsAEWi4WFOhNGoxHp6emIxWLYvn075HI5CgsLkZWVxSrQ8wW4IpEIKyZIrg9Jkjp0sAj6HqvVioULF+Krr77Cjh07EIlEUFlZiWeeeQYXXnghRo4cOWC/u6Nxl/XmnISfW/BRT9FolF1nYkoMnU7HivvZ7Xbk5eWxv5FYQDnWI5EIXC4XgsEgzGYzTCYT3G43bDYbsrKy0NDQgAMHDsBsNqOwsJCJefv27cPYsWOxefNmOJ1OfPXVVzj33HOhUCgwefJkrF69GmVlZfjkk09w/vnnszknRVGccMIJnWpbc+fOxTPPPIPKykpMmzaNOZgplJs+o94uRpyqm5p8Qa3D5aqlujBNTU2w2WywWCxMZCZHc+LGIbkd6fHE4m/0vMbGRrb5PG/ePOj1erzyyitsrmA0GnH88cdDqVRi165d2LhxY9wxtFottm/fDkmSkJubiwcffBAnnHBC0vdxwgknoLS0lM2dyRiS+Hn0Np0REXtLQOyIYDDIUipGIhHWp5hMJuzfvx9A21whLy+P5bn1er2or6+H0+lEbW0tMjMzodPpWH9jt9vjzE0AmDh4OBQKBSZNmoQdO3bA7/ejqamJFXOja0tPT0ddXR1L5dfQ0ICTTz4Z3333He666y489thjGDt2LILBIB577DFs2LABSqWSrZtJhFQoFExk5h3M3T3mXXLJJfjVr36FV155BYsXL8bTTz+Nc889t93jfd1/dNR/qtVqdh919D2SwEwbnxkZGayvNxqNLGc6tTfSL2gtzffntM4E2sarnJwcVrtq27ZtLHrh6quvxqeffordu3fHFbpNRKPR4Pjjj8esWbNgt9tRWVmJysrKOFF7/PjxGDFiBOtH0tPT2aYbFdbl2wlpLSmZk/lPf/oTVq1aheLiYpx22ml46aWXcNNNN3X3tQkEfUoqO0J6A97xKUkS26WlCUVaWhpaW1uRl5eHiooKNDQ0wGazsdcXFBSwfHs+nw8HDhxAeno6vF4vbDYb0tPT2a4xhf7w4T587iCaRPD5M1NBaE7FSRjtqNOki3fG8I5xEoZpMtuZFCuSJLEwJPqdr9YcDofZzjFfLZzC3WlCFAgEYLfbYTKZALSFoPJpLNasWYPi4mKo1WosWLAAp5xyCkaNGtUurDUUCmH79u346KOPsHnzZuzbtw8jR46EyWRCQ0MDhg4dCrvdjoKCAuZ4Ive1yMucGqxZswa7du2CwWDAb37zm14995gxYwC0LShbW1uT5v/sLQb7eMOLUbRI4iuo03NIEMjIyIDP54Pb7Y6bnE+YMAGVlZXMzabRaJCdnQ2tVouqqipUVVVBLpcjMzMTGo0GSqUyLge8TqdjgrdGo0EoFBJCcwqjVCpxzjnnID8/H6tWrUIsFoPX68W///1vTJgwAeedd16fL357gqNxl/XmnIQXyfhwderfqDh0IpmZmaiurmZ5dvn7EmgTkWQyGbxeL7xeL4LBIBwOR1zKBNqUCgQCqKmpwfDhw3Hsscdi06ZNKCsrQ05ODs4880x8+OGHqKqqwueff46zzjoLmZmZuPjii/HOO+/gu+++gyRJOP/88yGXyzFkyBAAwO7duzv1/i0WC/Ly8lBXV8c2ukmQSNyo5+dVPT0nSbVNTZqTEom5mTsiPT2duZlbWlqQnp7OvnOn08mKdZEDlT53jUbDhMRIJMLchiRIkcFh9OjRSEtLw/PPP4+6ujoolUqcccYZMJlM+Pe//x2Xq3no0KGYPn06Vq1axTY9L7jgAtx+++1srpsMygfOh/YfLl1Gb8xZU01ETIR3MWs0GuZGNpvNqK2tBdAmFo4YMSLu8zKbzYjFYnA6nezzLSoqglKpRHNzc7ti47SGIaGO3MIajYalgPT7/aiqqoLP54PL5WJCciAQYO54OmZOTg7q6urg8/kwYcIE7N69G8OGDcOIESOwf/9+XHPNNZgwYQIaGhqY4D127Fj4fD5kZGQw5zLQttlGBi3e2NOdaLVafPTRR0n/1tHjfUGiyEzfOR8RTfnbeYLBIOrq6lj/lpWVhdbWVkiSxApC2my2uHuR+oz09HTo9Xo4nU6EQiG2mWowGNDa2oqqqipkZmZi6tSpKC4uxqZNm1BVVYVx48ahoKAAixYtQigUQn19PVpbW9m81el0wm63o6GhAcFgEKWlpezcer0ep59+OiwWC9RqNSKRCMrLy9kGWGFhIVvrp6enM5MVLzTz8+ye5IjP8OKLL+Kvf/0rPv30Uxx33HG45ZZb8Oijjx62QJNA0N/orCOEdqCcTierTDxQoI6IOiZKlUFFD6xWKwwGA4YNGwa5XA6LxcIGuHA4jBtuuAHnn38+MjMzEY1GYbPZsHv3bpSVlWH//v0oKSlBdXU1y6vmdDpZqBEt/BMn5SQ0pIIL9ZJLLsHq1atx4oknYuHChSk1CaPCWXxoF4nC9FnyAvPhil1RHkH+cydRmcI/6Xgmkyku1JHCHX0+H8t399NPP+GYY45hFb5XrlzJFl0UojR69Gj85je/YSFAiajVakybNg0PPfQQfv/730Mmk6G8vJwVqGxtbUUgEIDX62XuaVp80oRERNz0LX//+98BAIsXL+51kZccLkDfp8wQ4008sViMhTBTjkONRsOcGWq1GkOGDGGbZiTQNzU14frrr8f555+P9PR0BINB1NTUoKysDC0tLQiFQohEImhqakJNTQ2qqqpgt9sRCASYYO12u1mxwHA4zEIv+5pgMIgLLrgAs2bNwgsvvNDXl5MyyGQyHH/88bjppptgNpvZBurOnTvx1FNPoaqqKiW+v+4kce7x9NNPY/fu3Sk9J+E3kki87CgVgkqlYsIc5bzlU3Hx9316ejpb3DudTmRlZTEnLI0pTqcTLS0tGDJkCPLz8wEAW7ZsgdVqxTnnnMPSba1cuRJOpxPTpk3DL37xCwDAunXr8OGHHyIWi2Hu3LkAgI0bN8bVIzkUiQ5DPl0X/zvRG3Pbzm5qWiwW9tOTEXiJOUIjkQj73A6lL9CGIdCW5zYWizERiYRm+qz5+S4v5FKBbGpP5eXlsNvtUKlUOOGEE/Dmm2+irq4OBoMB119/PSorK7FixQpUV1dDp9Ph7LPPxmOPPYbHH38ca9aswc8//wyj0Yi//vWvWLZs2SEFZgDt5qLJDB983t/eMkWQuPjTTz/hxhtv7JVzHgm8GEyCs0wmY2tItVqNoqKipJ8XpXSkNAgKhQLDhg3D5MmTMXnyZEycOBFjx45FUVER0tPTmTOV1k/BYBAulwsHDhxAa2srTCYTcnJyALStczr6LiVJQlFREQBgz549uPDCCwG0pZi97rrrMH/+fMRiMezcuRN2ux2ZmZlYtGgRfD4fS3egUCjY5hxFqtJaj97LYCYxlUkgEGDfc0VFBaqqqtDU1ISGhgaUl5djz549cLlckMlksFqtzK2s0WigVqvh8XiY0Y5yv1PB1paWFtaPBgIBNt4Eg0HodDqEQiFs3rwZubm5mDlzJpRKJWw2G9atW4e3334br7/+Oj755BNs374d1dXVaG5uht/vh0ajwbBhw3DyySfj1FNPxcyZMzF27Fi2UVlRUYFt27bhxx9/xJYtW+B0OmEwGDBnzhy2gTZ8+HBmpKA2wm9G9EY7OaLtji+++AI33XQT3n77bcyYMQMAcPPNN+Pxxx/HG2+8gauvvrpHLlIg6AtSzRHSHfAT285MWGjHlpzE/M4gX52XfqqrqzFy5Ejs378fjY2NeP7553HuuefirrvuwsqVK/HZZ5+xMMnW1laWPiM9PR0WiwWZmZlsZ1iv18cVfOLTHPCDaV+6UA+1w5sK0PdH3yGf+4/+ThsJh/ocadHOv4YEIABMfKZCA263m4UUaTQaWK1W2Gw2NDY2YsKECaipqYHNZsOGDRuwYMECfPjhh9iyZQsOHDiA8847D7Nnz8Ybb7yBXbt2Yfny5bj11ltZqFtH7/Occ85BXV0dVq5cyfKtejwe5ng0Go0IhULss0h0Dwl6n5KSEqxatQoymQxLlizpk2sYO3YsDhw4gL1792L69Ol9cg3AwBxvjgR+IwxA3KYVTZQpeoaeL5PJkJeXh/r6egwZMoQJxi+99BKuvPJKnHjiidi1axe+//57VFVVob6+HkCb0ycnJ4cdt7W1lS0UMzIy2KZmYs75vnY0p2qIe6qQlpaGW265BR988AF27tyJWCwGj8eDV155BSeeeCJOPfXUAXP/9Bd3GQ9/j9P/DyX+GwwGlkOdXscfh1CpVEhPT0draysikQg8Hg8rCufz+VjO1draWphMJkycOBGtra3wer3YsmULpk+fjgsvvBCrVq2C3W7Hu+++i/nz52PmzJlQKBR47733sHHjRkiShIULF+Kss87Cl19+iQceeABPPPEECgoKOnwPZKQg8QtAu7yYvSkcEqmWVoVPp0KuQxL2vF4vy1+bDKvViubmZpab2Wq1wmq1oqWlBR6PJy7ajtYSZIJQKpUsEoZMMrR5MGnSJOzZswelpaVQqVS49tprsX79eqxatQoAcPbZZ+OXv/wlE5l27dqFH3/8EQqFAi+++CKr+XAoYrEYvvjiC/YZkOGDrwsAHGwjqZQusK/h06lQmgOtVsvG+aFDhyYV0kgcBNqczgSZU1wuF7xeb7u+iQxWNA8goZmERjpXLBZjGyMqlYq5jiVJQjAYxIQJE/Dpp5+ivr4e4XAYp512Gr7++mu8+OKLuPzyy3Hddddh3759bPPn9ddfB9AWHRyJRJCWlsZyMvNmIhKcB2vUFfUbfLQun6rRYrGwzUb6/gm9Xs/qTgFt7Yiib2QyGUwmE3Q6Hbv3VCoVHA4H0zMoTRNFwJHITJsfO3fuhMlkwrx58+BwOFBdXQ273Y5QKMTSXnSGCRMmsCge6i+1Wi3S0tIQCoWwe/duSJKEYcOGxaU55bWa3ir6BxyByLx582ZcfPHFePTRR3HRRRexx81mM26++WasWLECV1555aDfQREMHFI9VKgr8Lv3BAm1h6q2Sn/j8/0mprWgcKKGhgYolUpUV1fD7Xbj448/xubNm/Htt9+yiZ3NZoNSqYTRaITNZoPJZEJ6ejqysrJgtVqRlZXFQkGMRiMTOSlHJ+8EOZwDV9AGLzgfKbxzXKVSscWSQqFgu75UsZnyJQNti36ZTIaMjAwYDAZ4vV6Ul5dj8uTJ2Lp1K5qammC32zFjxgxs27YNDQ0NeOGFFzBy5EhcfvnleP3117Fu3Trs2bMHV199NebOnXvI6580aRJWrlwJn88HrVYLr9fL3MvAQecDtR0hMvctTz31FABgwYIFGD16dJ9cw7hx4/C///2vz53MA3G8ORJ4AYrP7a7T6eI2Fa1WK5xOZ7som/r6egwdOhTV1dVwOp345z//iYsvvhgTJ05EWloaXn/9dTQ3NyMUCrHCMLQYsVqtbEHg9XqRkZHBHEs0/tD3QW6QviDVQtxTEYVCgV/+8pc47rjj8M4777DNguLiYpSVleEXv/jFIYv/CLoXWshGo1EmtoRCIWi1Wvh8PrS2tsJoNCaNVEocmxOLCvNQ30AL/3A4zBb+fNqM6upqjBgxAieccALWr18Pm82GHTt2YOLEibjkkkvw5ZdfoqGhAV988QUmTJiAOXPmQC6X45133kFxcTGCwSCuvfZalJSUoKKiAjfddBN+85vf4Mwzz4xL+xGNRrFu3To8/fTTAIBjjjkGgUCAhdmTWEWfER++3BuL/1Tb1FQoFCwyjtIP8HlNyZmaDJlMhrS0NNhsNni9XhZhKUkSWltb4wwRVqs1TvDX6XRx81Wv18vqzYwfPx6vvvoqAODUU09FZmYm/vOf/wAAbrjhBsyfPz/uOijfazQaxeuvv46rr74aI0eO7PA9RyIR/PWvf8XWrVuZQcNoNLL1lFwuZ+MfbwgZrCIiTzQaZeKcJEnw+Xzs+5YkCRaLpcNibU6nk60daXz3eDxwOBxxgp9CoYBer2e1gzrqo9xuN1wuV9ymEc1fyEVKNSQqKysxbtw4zJkzB9988w0++OADXHLJJXA6nfjpp5/wyiuvwGKxIDc3F01NTUwMHTp0KCtoSKklyc2s1WpZ7ZmBsonaFfh0OHq9Hl6vF0qlEtFoFMFgEHK5nNXk4ItM82mK5HJ5nJmACuclzvkUCgXS0tJYm6Eo73A4zL4DMjup1Wq43W72I5PJUFRUhIkTJ8aNZfwmEq1bfT4fnE4nmpqa4HA42uVuTjRnAG3pd8iQQddFOklvFv0DjkBkPuGEE5KG0wDAX/7yF/zlL3/ptosSCFKBVHepdoVkk3O+UFtnHBXUaVMIczAYZAMpTZ7NZjN0Oh0rulJTU8MWFUQkEmEOMrlcDrPZzATm3NxcZGZmIicnB6FQCDqdDiaTiYUtU4dKnaUQmnsOXvChyS79TqFEQFuKDD4cFDgYMqRUKjF+/Hjs2bMHXq8XLS0tKCoqgt1uR0tLC5xOJwoLC1lBjvLycgDA1KlTsW/fPtjtdjz66KN46623WI5m3oEAtIXJv/nmmwDaKggHg0E22B9qMBUic9/Q0tLCFnC33HJLn10HuY36uvjfQBxvjgQae6i/of8nborK5XKkpaXB5/OxjTNy8dhsNigUCtTU1MDn8+Gtt97CvHnzsHr16nY5VOVyOau+TYs3Ck+NRqPw+XzIzs5OmpqJJuu9zWDP230kjB07FnfeeSf++c9/wuFwQJIk2Gw2vPrqq5g9ezZmzJjRoWgl6D4S7xNaiPP/r6mpYcIgFSkmsQ84KN6RMNhRcVi6pymvKkUqRCIRmEwm5jy02+3IysrC5MmTsXnzZlRVVUGSJBx77LG46KKLUFxcjC1btmD37t2orq7GKaecgl//+td4++23sXXrVtjtdvzhD3/As88+i127duHJJ5/ECy+8gAkTJsBqtcLj8WDv3r1MIOILF5JblopJAYjLqdpbruZU29TkDSwkMofDYWZOsNlsLM1JMviIE8JgMCAYDDKRWa/Xs3ueX/fw81vaoCMHKvWxubm5LHUSgHbzTwAYMWIEbrjhBjz33HP4/PPP8fnnn2Py5Mk47bTTMH36dAwbNgxKpRJutxvFxcV45ZVXsGfPHnY8ErRI2CTHqlqtZm5Vyi092OGNLtS/RyIR+Hw+KBQK5Ofno66uDn6/n6WySCzeSZvJDQ0NrI3I5XKYTCaWkouMWTQP4NMPAgejLQKBABubKaoTOJjqZdy4cfjxxx+xceNGqFQqzJs3D3V1dSgpKcGbb76JKVOmIC8vD2vWrIkTEjUaDfLz8xEOh5lhR6VSIS0tDSqVCjqdjq27qa0MVsjwFovF4grOa7VaFp1G93eiOEv3FfXB1A4o5zFF6/JzTvoeWlpa4sTlcDjMUpt4vV62gURO9mAwmNRNzV8XvR8aK6iuiN/vh91uR2NjI1paWuKuPzc3F+PHj4fX64XdbodMJoNOp2Ptgq/J1FsREaKnEggGEbRrlyxE8VBiMy34eecnPYd26gKBAJRKJdRqNfR6PUwmE6xWK9LS0lBXV8fSJzQ2NrJjjB49Gq2trbDZbExwPnDgAOrq6pCXlweHw4GcnBzk5eUhFAqxkBV6PT+gCqG58/A56ngBJTHvGy8o88IKhTaSo51EGQrjsVgscbuuNGHPz89nizwq3qXX6+FyueB2u2GxWKDX6+FwOFg+5YKCAhiNRjQ2NqKurg7/+te/8K9//QtDhw5FQUEB1Go1bDYb9uzZg1gsxir+AmBFX6id0ASxL8JTBfG8+OKL8Pl8mDRpEubNm9dn1zFu3DgAfZ+TebBDk3dynqpUKjYhT4zAkMlkMBgM0Gg0cf0LLboUCgUaGhrgcDjwv//9L875MXv2bJSUlMBms7G8jA0NDbBarSyHMxW0DYVCyMvLi9vYJPoidUaqhbinOjqdDr///e/xzTff4NtvvwUA+P1+bNiwAdXV1TjjjDOQnZ3dx1c5sKHw/3A4jHA4DKPRyHKjU3sOhUJobm5m9yOPWq2G1WqF1+uNc592BDnMWlpaEAwGYbFY0NzcjGAwiPT0dDQ3N6O2thZqtRp5eXmIRCIsH2ZLSwvGjx+Pk046CUVFRfj666/hcrmwatUqFBQU4KKLLsLnn3+OmpoavPDCCzjppJNwwgkn4IsvvoDNZsOmTZvirsVgMKCwsBAqlQpyuRxGoxEmkwmZmZnQ6XRMIOoLATHVNjX5vpTma+FwmLmLnU4nFAoFsrKy4saCUCgEu93O0igl5mPm8zn7fD5Eo1FWHBAAPB4PdDodWltb0dzcjDFjxkCpVCIUCmH//v0YPnw4Ghsb8fnnn+Oaa67BzJkzsXHjRjz44IMYOXIkjj32WBQWFiIjIwNpaWlYtGgRZs2ahZdeegnffvsttm7diq1bt7L3SAI6QaleKJpTrVazHOMWi4XNX/kUGoNdZObFQsqnHQqFmJtZq9WiuLg4bp1bWFiI8ePHw+Vysegei8WC6upqtqlttVphNpvZZgL/PRGUt5s2ukhYpMgooG0tbTabmRhYUFCAiRMn4sCBA6itrcU333yDrKwszJgxAxaLheXVBdoKENLcx+fzMWeuQqFARkYGjEYjDAYDjEYj24ygtBl8OofBCDm5/X4/K77n8/kQDoeZm5dMDCQY82taWhcaDAaoVCpEIpGkbYBc9KR3UKomXtz2+/1QKBQwGo2svogkSazfp81U2gRLVuiTvvtAIMD6N6CtzxgzZgxb65I72ePxoK6ujqX40Ov1LHJGJpMxYZzm2r2BTBI2LoGg26DKpU6nM+kCMFXgi2AkgzohPm8eLzbSbn7ioEadqc/nQzAYhMfjQUtLCxMI6+rq2CSfwpYvvfRSnHDCCVizZg2++eYbNnlQq9XIzc3F0KFDUVhYiLy8PGRmZrLCT9TB0w4dvwuZyvR1G6EwnCPt+unzBdom/7yTgNweFF6mVqtZ4T0+dJu/BhKQKN1GOBxm4UShUAjRaBQtLS1obW2N+93j8cQNuDyFhYWwWq2Qy+XQ6/UoKCiASqXC0KFDodVqkZmZyYQo2hyhgpaCg0iShHfffRcvvPACFAoFFi5ciGuvvbbbRLVgMIiRI0eirq4OL730Up/Wc6iqqmITe5/P168WcH3dl3Q3iX0TpbchR0bixJicSzTp9/l8cLvdaG1tRWNjIxobG1FfX49AIICysjJEo1HMmTMHd9xxBxoaGvDjjz/iu+++i6vcTRE0Go0GBQUFMJlMyM/PZ84yo9HIwlN7W2h+7bXX4PV6ccMNN+C0007DqlWrDutAHGhtpKs0NTXhxRdfZEV1KAfjjBkzMHny5H5133c3Pd1GKNcpOQFjsRgTemjORoWeCQpl12g0CAQCrCYECSyHw+v1xs1LqAAccLCQYEFBATIzM9HU1IRt27axea3BYEB+fj4yMzNRUlKCrVu3MhGAcj1XVVWxc1E6ML5YKEXtkXiRlpYGs9mMzMxMFrGnUqmYSESCgV6vT9k5bE+3ExLV1Go1fD4ffD4fE+htNhuAg0KSXC5nGxdEZmYmLBYLc5bS8+laXS4XC4kn80s4HGZ5fKkoW1NTE0thMW3aNHz88cdwOp1Qq9WYOXMmKisrsW7dug7XUDqdDrm5ubBarWhtbUVVVRUqKyvj2rfFYmH9EAlVJpMJ2dnZsFqt7F+dTseERZPJBJVK1WGxzFSgN/oSl8vFhEJKV0A5lMPhMBMGyZF84MAByGQyzJs3D7t372aF4Mg8pVarkZ2djUgk0q7IJJ9eIBKJsD7EYrGw4m8UeZmXl4ddu3ZBJpNh3LhxKC4uhiRJSEtLQ15eHsxmM/bt24eff/45zj1PJpr6+vqkkVs091CpVKzwnMFgYAU5acPdYDCkbN/B09NtJBwOs3uNTFCUOrEjaM1Ikdr8c3ltIRaLxRWcBA6mUEusH8CndKFc0RShwZ9Xq9XGrUFJbyEXPZ2TBOnDrd2pFhKJyrTWJQMgCdC9MXcVIrNA0I30pwUdv6OXDNr5oufSJF8ul7PQEdqZTxzYotEoPB4PQqEQAoEA3G43mpub2U5uTU0N6urqmFg4evRo3HXXXUhPT8dnn32G999/ny1CTCYThg4dipEjRyIvLw+FhYVsgFWpVHFOEF4ITVX6uo2QUxA4GF5EdFQQL9FJSMUMqE2QaJxsYAbAcmDRufnJGi84k5hMYa2UT5E2K2jRSOISpU9RKpVsogW01QrIzs5mk0eLxQKTyQS9Xs8m9Xy7SfU205tIkoQlS5bgmWeeiXv83HPPxQcffNAtOd9eeOEF/Pa3v0VeXh7279/fp3nkYrEYjEYj/H4/SktLMWrUqD67liOlr/uSnoAvmgPEV5Cne5bGG+ozgIMCdSAQgMfjYXns6uvrUVNTg5aWFlRWVkKSJMyZMwe33XYbm9jv378f77//PtatWwegTSQoLCyEXq9HYWEhLBYLCgoK2GKP+hEaf3prYRcIBPCrX/0KtbW1WLx4MW688cbDvmYgtpGuEolE8Omnn2L//v1x4152djbOOuuspCHwg4HeaCO8+1Cj0SAajcYJvzTf5I0NNL+gv1OKCT6tDkUZ8Pkm6e8ulwuBQIDNZ8jpSOk4gLYUCrm5udBqtSgrK0NVVVWceKjVamEymWCz2VBdXR3nOAsEArDZbB0WLyTRmATFzMxM5mQmgVmv18c5mlM53L03xCESCLVaLex2O2KxGAsbdzqdSYtk6fV65hjk/24wGOLyqYbDYTgcDja+aDQaJl5LkhSX3qS8vBzV1dUA2tKvlZWVoba2lh07IyODiUYejwderxdutzup85GOzxc2pGsiIVmj0SAnJwcWiwVmsxm5ublQKpVMRNTr9dBqtUwIS1V6YyOC7mmn04lgMMjWCbThTOn5cnNzEQgE2Lg+evRollKLcl/r9XrmXib4yKjE9ZHb7WYbIbTZVVFRgUgkgry8PJSVlSEYDCIrKwtarRa7du2K6x8osoPSAdFmCADmbOUFaNrIpogOnU7H2rXJZGL57M1mc78QmIHeGW/4gnpUHJE2pXgtgz5jIH4TgSIIEtOjECQg82OFSqVixYbp8USxmTY1aCOSH+M6A5++MrFPobZK18yLzSQw01r+UNFA3YkQmQWCbqQ/Luho0p1soszvrtGEHoh3MycmyqfnkuhIiwufzweXy4WmpibU1taiqqoKVVVVOHDgAAuPXrx4MS666CIEg0G8++67ePfdd9mkobCwEKNGjUJhYSGKiopgMpmQlpbGHGW80JzKhTH6uo1QcRWauHeWxFQpQPxATgMe304OBZ/rjH54oSgYDCISicDr9cLlcrEB2e12w+v1titwRc4ncnxQaCXlB6f8WokuRLVa3W8mZ73BM888g5tvvhkymQx33XUXTCYTHnjgAfj9fixatAhvvPHGUX1ekUgE48aNQ3l5OZ544gnceuut3Xj1XeP444/H9u3b8emnn2LBggV9fTmdpq/7kp6CF5p5MQk4ON5Qvj0qpqXValnoLI03TqcTdrudjTeNjY2orq6GJEk4/vjjsXTpUhgMBnbeXbt24YknnkBjYyPUajWKiopgMBgwfPhwmM1m5Ofnw2QysbyZOp0urqhKKjJQ28jRUF5ejs8//zxugSdJEqZPn44ZM2YMuk3H3mojNKYDB1NeeL3eQ7qz6N4mBxa/WZ0MEnFobkORUDTPpXPFYjEmOgNtC3NKx+bxeGC325nISVBBQb5AWCwWixOKqL+iDSiFQgGDwQCr1Qqj0Yi0tDT2mFarZeHT/SHcvbcc7xTurVKp0NraGmdmUCgU7dpK4u+Uro/C4wnafGhtbWWbDDKZjG120PwSaDO3+Hw+7Nmzhx1Dq9XCZrMx13NH74HGBBINPR4PPB4PAoEAS5tisVjY+5HJZCzajiJoaD5LoiKJianuVu3JNhKJRJgbnfoNl8vF1gmULm/y5MnM7V1SUoKqqqq44qKU7oIK+vHpF5NFTCW7BuBgEcn6+np4PB6Wb72srAzAwbkKRThQP0RIksSMWNQ38qIh1TkiYwz1FyQu04YDXw+nP9Bb4w1pD/y6lYxV5EpOjOo+nLic7BxkdqLX09yU2iTQXmzmnwsgaUo23vBF18kXLewIEpXJQMWbqnrTxQwIkVkg6Fb684Iu0cGamBg+0fnMu5sBsIk9TeRot5meS+Kh1+tFa2sr6uvrUVFRgfLyclRVVTGX6qhRo3DLLbdg7NixqKiowMMPP4zKykrIZDIMGzYMRUVFKCoqwogRI2A2m2GxWNjkjMJWOjtA9AV93Ub4BVriTn0iHeVuBuIr4YZCobiFQGJbOtSEPHEQpYGUXCkURksLAJqs0+spnxqfU4uKSFJoIU0wdTpd3IYEtRdBG5WVlTjmmGPg8/niBODVq1fj7LPPRjQaxZtvvolFixZ1+Rxvv/02fv3rXyMzMxOVlZVxIl9fcckll+C9997D448/jttvv72vL6fT9HVf0pOQk5HvIxJdHzTWUEgpvY4WbSQ0OxwO1NXVoaKiAnV1daiqqkIsFkNeXh7uvvtuFBUVsWO6XC4sW7YM+/btg06nw4gRI2AymTBs2DBkZ2cjLS2Nhb4n5lRNRQZyGzka/H4/Pv/8c+ZWpNzA6enpWLx4McvtOhjorTZC80JaeGu1WiYa0uKZ0uOQ+4yv/5Ds/icHV2L/wJsfeEcz9Q/0f3K3JdsYp8JfJGaRS5XeB81PeJGZIGGcNqIyMjKg1WrZIp+KdZG7jD6LVKY32gk5znk3J7n+DiWu8AYC4GAETGJEHgkwPp+POZdpw4HaA4lD5J6vq6tDfX09O040GmXtkkLY6edIJRWLxcLyTCsUChQVFbFrJNMEpXejsPdUpqfaCJ8mIxwOw+l0wuPxIBwOM+eo2WzGCSecwMxRra2t+OmnnyBJElsDkFBLznDqQygPb2euw+l0MkFbo9HA5/Ohrq4OwMFignV1de1c9zSPoX6O/zdZuyHHO21Y0YYUieRqtTrlNx2S0ZtzEhLyE9OgJELjTVe0Axp7+E0EEpCpP6HHqU9K3HA4EnhhPHHTgi/uR++HUmVQqqHeTA+ZmrNigUDQ6xyuGBrtAtLuH3WivAM1HA4zNzHl0gMQJ+zRbjG5OjIyMpCZmYnS0lI0NDSgrKwMN998M+bPn4/LL78cTz31FB5++GEUFxejuro6LoxpxIgRbGeS/6HwSUF76Duk74zPv02iDXD4vN182A5N3mmwPdxOK9/WeBGJJl20QKAdWFoY6nQ6WK1WRKNRtsij9kc7tuREINcHLd6o2AL9jQ8vErTxwAMPwOfz4eSTT8bvf/979vjpp5+OP//5z7jvvvtw0003Ye7cuYes9N4RsVgMy5cvBwDccsstKSEwAweL/+3du7ePr0RA0KSfBCaaNPObnbwDiYdEGxpvNBoNE3WoP6AomltvvRWLFy/Gueeey6qAL1u2DLfeeisaGxtht9uhUCjgcrmgUqlgMpkQCASYS5Em9P2hHoDgIDqdDhdeeCFKSkrw3XffsYVgc3MzHn/8cZxzzjmYPn26GCO6ESoUTUIzRSHwP8DBzW3eIcYfgx/D+XuOwpBJNKbjGwwGqNVquN1uJvJS2DSJ0bxDmhcCADCRmPoicqTqdDpYLBb2WrpWmgPT+6UiogCY6Mz3RYnpyAYz9P1QbmtyNVN6A/pu+BQpNOcn0bcj6PsLBoNQq9XIyspCS0sLIpEI9Ho9ey318ZSKwWKxICcnB263G01NTcztTN8zzWPoGvi2QPNZfiODBHESEKnmQH5+PmsL5F6ltRSNf4MVSiNBKSvI2EKPa7VaTJ48mX1GXq8X27ZtY+kJ+Py0JNrTZ0qF8zoDX1wuEAiwNAQkmlLxUhKxEwVk3njDt+XE5/H9At9fkDGG0nWJOcehoe+L+nh+7sinWEocS470HKRv8GIzCdtms5lF3RFarTZuEywx4oL/l+DbSkftlfpDGh+pn0mM8OkthMgsEAg6DR9uwguMvOBIFVH5DpImATQp4wd8k8mEjIwMZGRkoLy8HJWVlXA6nawQ4IwZMzBr1izs3LkTHo8HDocDGo0GFosFdXV1TFzkRWYSMcUA3B4abHinx+HyQtFkh0RoPsVKomuZr2Cb7Nz8a4jEXV5a6JHIFIlEmCuZFgm0AOErBdOEjIQlCn3iJ5m0oysmaPGUlZXhtddeAwCsWLGi3STm7rvvxmeffYaffvoJv//977Fy5cojPse7776LHTt2wGw246abbuqW6+4Oxo4dC6AttFKQOtBGplwuZ30U9eskyiTLKw8cFKlpTKB7n9xAWq0WlZWV8Hg8eP7557FmzRpcc801mDhxIsxmM2644QYsW7YMDoeDiREWiwVerxdKpRKhUIgtFEhIGMwiQH9ELpdj/PjxyMvLw+rVq7F9+3YAbQLFSy+9hHXr1uHmm2/utfyFgwESXkkkooX/4V7TkbCc+Dwa6/n5AS3KLRYLi6ijOQAfQUWbWMkch9FolM2DyGVKRUoDgQD8fj97H1RYLjMzEwBYEUASiWiDihb8ot+Ih0RXtVrNotj4NQY9BziYdo1/nD5bfmyg75E2Lkj0N5vNzIVMgkwgEGAiHqWE8/v9UCqVyM/PZ/NSSs9Ez6HfjyTPqkajYfl7qX2RU5U2RkkoG6zzVbrHgIMOdUqDQN/juHHjmIvd4XBg+/btCIfDzGBCm000/lM/1JUUNWSgooJyBoOBfYdU7JzaIa2beCEzmcGGfgcORmjwIjMdgzbMB2tb6Co0l+xJkTVRbKaNJTJJ0DyCNJIjzcdMJI5TtP7lf/h83vSavkgNKURmgUBwxFAnxu/AkgCZTEQkQYAKBfKOUlr4WywWZGZmIicnBxUVFSzP1caNG7Fx40Z2rLS0NEhSW1VhrVYLr9fLBmJ+ISLczB2T6ApMDCukgYoX7ZP9DWifUiPxu6fXdBQaxE+66F/auCCnPC0AScyhXelDQYMqHwZF7iIhMLfnkUceQTQaxdlnn42ZM2e2+7tSqcSLL76IKVOm4IMPPsCqVatw7rnndvr4oVAI99xzDwDgzjvvRFpaWndd+lEjnMypDd3DdP/TZlWye5gXnPkoF36TiSJpTCYTqqurUV9fj/Lyctx9990YNWoU5s6di+HDhzOxKhQKwefzsdBHk8nENr8ikQiUSmVcATJB/8JiseDCCy/EsGHD8Pnnn8Pv98Pn82Hjxo3YuXMnbrvtNhx33HHiu+0m+LBdfqOY/zvdt3yUVWeheSYVeyJhivoMrVYL4GCdEd55mriBzoe104Y8/ZCopdVqYbFYWD+jUChYigd6PyQwkwjOh+oLt3xyyLFJ31GyuSpvLjmUI5EX7MgBy28OKpVK+P1+trYhoVCtVjN3IqV0IWGTro/y/xJ0XN7IwV83L4TzgiG5YslQwacAHMwbEfQ5ymQy+P3+uChLum91Oh2am5tRV1eHhoYGAGDCslKpZPmtKbc7Xyj8SKH0GlTcPhwOszzcWVlZce31aOYE1KZpnSyiHfoHvNhMKXh4QZnWosnMVonr4Y4ifqkv5GuV8OMPvR5Ar6fI4BEis0Ag6DLJxGYSeOn/vOuMfw11gIkFDjIyMpCTk4O6ujrU1tbC4XDA6/UiHA6zggeRSIRV9nW5XDAajfD7/XH5mIWYeHjouzjaY9AEnl+g8e6SjhYFhwoHisVirG1Q8UfeVZS4GKRr4Y9Nk3M6DrUJsaiLx+l04t///jeANsdyR0yaNAm33norHn/8cZY2o7MpL/75z3+ioqICubm5uOWWW7rjsruNMWPGAABsNhvsdjtzoAlSh8QoGj5NE39/U59GC1NaqGk0mrixRqfTsZz+VqsV9fX1cDgcKCsrY4V7gLbFa2ZmJsv/SAIDL17x0R1iIdg/USgUmDZtGoqKivDOO+/ghx9+gEzWVhTs/vvvx2mnnYbrrrsuZXNv90coVUVPHp9CpXlXM8076LtUq9Vx9zC/oOc30Pnc0PR4ophI6TqAg/Mr6ntIiKLf6dxijnpourOdJAtt552GFClHbScUCrFxg9pDYr+fzFXY2WumdkHmGz69EwnQqV4QsqchgY42fWm+T2mxAoFAnBEJOFjEj/IWk8BMhRePVnRTq9UwmUwsf3di/mWCN87QT6KjOfG5Hf1d0L9IXBvzRe5p0+Rw33FH5q/OtN9EN3NfIGZLAoHgqOHFZt4xAhx0hlBHxw+6Wq2WTeio46T8VtnZ2RgyZAhsNhtaWlpY0ZVIJAKtVovCwkI4nU7W2QaDQRgMhnaOWjFQ9x6JgyqQfJA81OtpEOUXeHTcZK5p3oHEhwslOqH4PFWCeN588034fD4cc8wxmDVr1iGfu2zZMrz33nuoqqrC/fffj0cfffSwx7fb7fjLX/7CXp8quZgJo9GI0aNHo7S0FFu2bMEZZ5zR15ck6AAaaxQKRdyEPRQKxeVap7/zVb/5aBeVSsUiaLKyspCVlQWbzQaHw8FyPup0OowaNYoVpaUwaQBxG1xCZB44ZGVl4brrrsPo0aPx5ptvwu12IxqN4quvvsK2bdtw3333oaCgoK8vU3AE0L1P0VuJTmX+Hk42P0h0NPNh0Idyq5JYRIIjLfpJ3OZdZ4LehW8TJCxTVAqNHbSBmZhrmdY6hyJxXEh0LSbWkeHbBjkPZTIZE0YHMzSG8ymy6Dsym82Qy+UsnQb/OVJhXqPRCK1WC7lcDpPJ1G33nEqlgsViabfRlJju4mjy/QoGBonpOpJtTtHjPPzjyfqRxHNQm+tKAcOeQIjMAoGg2+DdZrybNVneNOCgQ4HyWya6mtPT09Ha2srczDSR0Ov1cDqdAIDCwsK4hPp8/jxe3Bb0LokpMLry+sRdYN7d3FFqDnot/yMmeh0jSRL+9a9/AQCuu+66w35GBoMBzz77LM477zw88cQTuOyyyzBp0qRDvuaOO+5Ac3Mzjj32WFx99dXddu3dydSpU1FaWopNmzYJkbkfQJN2ytdMoey8U43/G72GnI18oVCj0YiMjAw0NTXBZrPB6XSyMYUcSsOGDWOboAAOuTAQ9G/UajXOPPNMjBkzBk8++SQqKioAAI2NjViyZAmuuOIKnH/++X02t9i+fTtuuukmhMNh/O53v8Pll1/O/vbzzz/j//7v/zB06FDk5+fjrbfe6pNrTFX4eUUi/P3ML+pJUKbXaDQa5ozm8wUnFqXj5x5UhClReBb0PXxaDopW4V3oJDiTozaxffAkhr/zz6f/JzNCUHvg6whQLuHBDm9Y0uv18Pl8MBqNcLlcCIVCrO4KQYUVNRoNS5dBjubuXgPwmxUCQWc5Gqd6VwxcfYUQmQUCQbfDT66TTcbo/+QKo9x5tPinnTiDwcAKAwYCAXg8HpaTS61WIz09nYkBfHGeZOFrgv4Ln9ajox3gxOfzTiJBxxQXF2PHjh3Q6XRxYsWhWLBgAS666CJ8+OGHuO6667Bhw4YOBZfPP/8cr732GmQyGV544YWUnYxPnToVb7/9NjZt2tTXlyI4AhLzNUuSFOdq5kPh6flAm3ud0umQ28lqtSInJwculwsulwuBQACxWCyuqjvlEk+WikmIzQMHmUyGESNGYPny5XjjjTfw5ZdfMlHx5Zdfxo8//oh77723XT7W3uCBBx7AW2+9hYKCAsyePTuu3969ezfuv//+TvflgoMkqw1B8GIz5fFNrGuR6DTjBW1+LkKil5ibpBaJ6VVog5EfY5LlRD2c2JM4T+U3IKhtUMQdAFYUXbSPNmjuHwwGkZ6ejmAwCKCtaCMVcuTT49HnR6kCKL+1oGuITc3U4mgNXL2JEJkFAkGPkZj+AGgf/kFQzl1+h58mDEajEYFAAGazOS4nF8FPIhKFRSEyDyxSdce2v0Iu5ksuueSIivE9+eST+O9//4vi4mIsX76cFfXjKS8vx6JFiwAAS5YswYwZM7rlmnuCqVOnAgB++umnPr4SwZFCC0yZTNbO1cw7CXlo8UnuMXI9mc1m+Hw+VvyNcnbSpieFPNLr6PyCgYler8e1116LqVOn4oknnoDb7QYA7Ny5E9dddx3uuusuHHPMMb16Tc899xyysrLi8gsTu3btwvfff48XXngBS5cuxdlnn93u9cFgkAk1QFtdC8Gh4UVBEhxJcO7s/U+bXsKdmtokptKgPNs0hvDfH603EtcZhwt/TwYVhhTtIx4+h7bf72emo0AgwNIC8MV96TGtVsuiBwRdR2xqCrqKTBLWC4Gg23C5XLBYLHA6nTCbzX19OSlPsrAzvnAcX+iNry7NF3DhQx9pkkETDcqvlkqTDNFGBKlCS0sL8vLyEAgE8P3332PmzJlH9PoXXngBv/3tbwEAr7zyCq666ir2t5qaGpx66qkoLS3FjBkz8O2336Z0eLDH44HZbIYkSaivr0dubm5fX9JhEX1Je3inGc/hCo6GQiEEg0GEw2EEg0H2eygUYsI1iQ8UnksOZxKcSYBKJUQb6T5aW1vxxBNPYNu2bewxrVaLhQsX4he/+EWvi0NLly7FkCFDsGTJEvbY+++/j2OPPRb5+fk47bTTsHHjxnbXtWzZMtx///3tjifaSNfg8zV3lHs31eahXWEw9yV8XuZk40tXoHZBa5WBsFnZU21EkiR4vd4OC+wR5Ebni2sKjg6bzcY2NefMmYPvv/+e/e1Pf/oTvv/+e4TD4SPa1KSaSoOtHxlsCCezQCDoMxKdztFoNC5nHRVSisVizFXAC9B8CDRN4hOF5YEwcRMIeoI33ngDgUAAEydO7JLL+Nprr8W+ffvw+OOPY/HixVi3bh0uvPBC7Nu3Dw899BAcDgeGDRuG999/P6UFZqAtfcL48eOxe/dubN68Geeee25fX5KgCyQrDAjE1wVITKdD4jFFz6jVaiYo8EV96LV8pXh6HR1PMHBJS0vDn//8Z3z99dd45ZVXEAwGEY1G8dFHH6G8vBxLliyB0Wjs9vM+9dRTeO+999jv99xzD7Zu3YqmpiYsX7487rlnnnkmW7iPGDECzc3NyM7OjnvO0qVLcdttt7HfadEv6BrJIiUEA4uOCnfx6xDezcyvOxL/35/C3VMFmUwGo9GISCSCcDjM1oJ8kT3a6BV0L1lZWQCAe++9F5deemnc3yZNmoRf//rXbFPzjDPOaPcdLF++POmmpmDgI0RmgUCQEtAkjq/+TeIzPZZY8C0xzxkt9pPlORMIBAc50oJ/HfHII48AAB5//HG8/PLLePnll9nfpkyZgo8++ggFBQVHf8G9wNSpU7F7925s3LhRiMz9HF5s5scUfuzg0zURfB5nPpomMcd/okNRiMyDA6VSiTPPPBNTpkzBY489hsrKSphMJtTW1uJvf/sbFi1ahOHDh3frvGPJkiVxbuUPPvgAO3fuxJtvvtnuuYsXL8ZDDz2E4cOHo7q6GpmZme2eQ04/gUDQNfiNSkHvwQv9gp5BbGoKugvROwoEgpSCRGI+3QX/O6XD4MOWKVyZnjNQwhMFgp7iu+++w+7du6HX63HZZZd1+ThyuRyPPfYY1q9fj0svvRQTJ07Eqaeein/+85/YuHEjhg4d2o1X3bOcfPLJAIBvv/22j69E0F3w+RpprKBxJVEIpOfROKNWq6HRaKDT6Vh+R/q/RqNhzil6fleFxe3bt2P27NmYPn063njjDQDAxx9/jBNPPBHnnHMOHA4HJEnC1VdfjTlz5ghXUB8jk8mQnZ2N5cuX47LLLoPZbEZ6ejoikQjeeecdFBcXJ93A6C6WLVuG0tJSzJ8/H3PnzkU0GsXtt98Oh8OBZcuW4ZprrsG8efNw1113iTmQQCAQCDrNkiVLsH79evbj8/mwc+dOvPDCC+2eu3jxYuzduxfBYPCQm5pmsznuRzA4ENtBAoEgJUms8M2HpCUrqsGHoInicALBofnHP/4BALjssstgsViO+nizZs3CrFmzjvo4fcm8efMAAD/88AN8Ph/0en0fX5Ggu6FNzCOlo0JO3THWJCus8/e//x3r16/H119/jX/961+YPXs2srKy8PLLL+PSSy9FXV0d8vPz2x1LFHXrPZRKJc4//3yceOKJeP311xEMBqFWq7Fv3z4AbZERPZGje8eOHe0e++tf/woASE9Px4YNG7r9nAKBQCAYfCxbtgxarRbz588HAKxZswZ33nkn7rnnHrapKUmS2NQUtEOIzAKBoF8g8pgJBN1DfX09PvzwQwDAjTfe2MdXkzoMHz4chYWFqKmpwYYNG3D66af39SUJUoSeHH+ee+45VlhHJpOhtbUVGRkZUKvVmDNnDv71r39Bp9Nh9uzZANo2dH788UdceOGF7Y4l8h/2LjKZDEOGDMFtt92G1atXo6mpCVarFV6vFzt27MDYsWNhMBj6+jIFAoFAIDhixKamoKuILQeBQCDoJOFwOK5AWmJIs0DQH3jhhRcQiUQwa9YsHHfccX19OSmDTCbDaaedBgBYtWpVH1+NYLCQWFjH7XazAnIGgwEejyfpY8lYunQpnE4n+6mpqemdNzHIUalUOPvss3H22WfDbDbDZDIBAA4cOACn09nOAS8QCAQCgUAwUBEis0AgEHQCh8OBs846C/v372ePUUjz7373O1ZETSBIZXw+H5555hkAwsWcjAsuuABA2waSEIYEPcFTTz2F2bNns58vvvgCDz/8MJqamrBkyRIYjUZ4vV4AgNfrhdlsTvpYMkT+w75DJpMhJycHc+bMQXp6OnQ6HVQqFQKBAHw+X4/maRYIBIKjQZhoBAJBdyJEZoFAIOgEXq8Xf/vb3zBhwgQAaBfSXFxcnPR1wWAQLpcr7kcg6Cv+9a9/wWazYfjw4bj44ov7+nJSjtNPPx06nQ5VVVXYunVrX1+OYAByuMI6VqsVNpsNgUAA69atw5QpUzBlyhR89913AID169dj8uTJffkWBIdAoVBg9OjRKCgogFarhVKphCRJCAaDYuNKIBCkHMJEIxAIuhshMgsEAkEnKCwsxKRJk9jvnQ1fXr58OSwWC/spLCzslesVCBLx+Xx47LHHALSF1fdEUar+jl6vxznnnAMAeO2113rkHD///DNGjBiBuXPnYtGiRQCEa2gws2zZMpSWlmL+/PmYO3cuotEobrvtNpxyyil49NFHceONN+Lkk0+G3W7HzJkzMXLkSAwdOrSvL1twGEwmE3JycqDX6yGXy0VRJIFAkJIIE41AIOhuxIxHIIBY9Avakyykmaez4csiR6YgVXj44YdRX1+PoUOH4sorr+zry0lZrr32WgDA66+/Dr/f3+3H3717N+6//36sXbsWb731FoDOuYbEgm5gsmPHDvz0009Yu3Yt1q5dC4VCgQsuuAA//PAD1q5di4yMDMhkMrz88svYuHEjHn744b6+ZEEnkclk0Ol0zNEsChcLBIJUQ5hoBAJBdyNEZoEAXV/0CwYuiSHNZ599dtzfk4U0J0PkyBSkAnv37sWjjz4KAPjb3/4GtVrdx1eUupx++ukYPnw4Wltb8fzzz3f78Xft2oVXX30VJ598Mr744otOu4bEgk4g6J/I5XIoFIq+vgyBQCAQJhqBQNDjCJFZIEDXF/3CWTa4SQxpFghSEb/fj1/96lcIh8M455xzcOGFF/b1JaU0crkcS5cuBQA8+OCDaGlp6dbjT5o0Cc888ww+++wz3HfffXA6nZ1yDYkFnUAgEAgEgqNBmGgEAkFPo+zrCxAIUoFJkybh17/+NfLz83Haaafh/fff73So0P3339+blyroY9auXcv+f8EFF+CCCy7ou4sRCA5DMBjEJZdcgm3btiErKwv//Oc/Rch2J1i8eDGeeOIJ7N27F7/97W/x3nvvdflze+qpp/Dee++x3//whz9g/PjxAIARI0ZAq9V2yjWk0Wig0Wi6dA0CgUAgEAgEnYFMNDqdDh988EFfX45AIOhnCCezYFCSGCqkVqsxfvx4mM3mI1r0C2eZQCBIVUpKSjB37lx8+umn0Gq1eP/990WKhU6iVCrx+uuvQ6lUYuXKlbj22msRCAS6dKxE19Drr7+OvXv3IhgMorq6GllZWZ1yDQkEAoFAIBD0BIkmGr4ugEAgEBwJwsksGJQsWbIES5YsYb8vXLgQY8eOxfDhw49o0S+cZQKBIBUIh8Ow2+2oq6vD5s2bsWrVKqxatQqxWAxpaWlYuXIlTjnllL6+zH7FtGnT8NJLL+Gqq67CSy+9hG+++QbXXHMN5s6di7FjxyIzM7NLx122bBmuueYaSJKEu+66C3K5XLiGBAKBQCAQCAQCQb9HiMwCAcSiXyAQ9F/uvvtuLF++POnfFixYgKeeegrDhw/v5asaGFxxxRXIzMzENddcg4qKCtx7773sb08++WTcZmVnmThxIjZs2BD3mEi9IxAIBAKBQCAQCPo7MkmSpL6+CIFgoOByuWCxWOB0OkUBBEFSRBsRCATdgehLBIdDtBHB4RBtRNAZRDsRHA7RRgSHQ7SRwYMQmQWCbkSSJLjdbphMJlFcS5AU0UYEAkF3IPoSweEQbURwOEQbEXQG0U4Eh0O0EcHhEG1k8CBEZoFAIBAIBAKBQCAQCAQCgUAgEHQZeV9fgEAgEAgEAoFAIBAIBAKBQCAQCPovQmQWCAQCgUAgEAgEAoFAIBAIBAJBlxEis0AgEAgEAoFAIBAIBAKBQCAQCLqMsq8vQCAYLFCye0FqkgpFCEQbSW1SoY0Aop2kMqKNCDpDKrQT0UZSG9FGBIcjFdoIINpJKiPaiKAzpEI7EW0ktTnSNiJEZoGgl3C73bBYLH19GYIOcDqdMJvNfXoNoo2kNqnQRgDRTlIZ0UYEnSEV2oloI6mNaCOCw5EKbQQQ7SSVEW1E0BlSoZ2INpLaHGkbkUmSJPXg9QgEgv9P4g6dy+VCYWEhampqerxjF+c6PKm4i9tfP8tUOld3ni8V2ggwONpJf31Poo2Ic3WGVGgnoo2k9rlEGxmY5+rO86VCGwHi20l//SwH6rlSsY0A/fOzHMjnSoV2ItpIap9POJkFghRFJpMlvbnNZnOv7R6Kc6U2oo0MrPP1FIOpnQzE99QbDKY2MpDP1ZOINjIwztWTiDYysM7XUyRrJwP5sxyo5+pJRF8yMM7Vk4g2MrDOJwr/CQQCgUAgEAgEAoFAIBAIBAKBoMsIkVkgEAgEAoFAIBAIBAKBQCAQCARdRojMAkEfodFocN9990Gj0Yhz9YNz9QUD9bPs7e9NtJP+d66B+J76koH6eQ7Uc/UFA/WzHKjn6gsG6mcp5iTdx0D+LAfqufqCgfpZDtRz9QUD9bMcyH0kjyj8JxAIBAKBQCAQCAQCgUAgEAgEgi4jnMwCgUAgEAgEAoFAIBAIBAKBQCDoMkJkFggEAoFAIBAIBAKBQCAQCAQCQZcRIrNAIBAIBAKBQCAQCAQCgUAgEAi6jBCZBYJe5qqrrsLatWsBAB9//DFOPPFEnHPOOXA4HJAkCVdffTXmzJmD+++/v8vn2L59O2bPno3p06fjjTfe6NFz8QSDQVxwwQWYNWsWXnjhhW45JgDU1NRg3rx5OOmkk7BixQps3LgR06dPx7x581BRUQEAuOeeezBr1izccMMN3XbevkK0ka4h2oloJ4disLUPQLSRrjDY2oloI11jMLWTgdxGANGXdAe90UaAgdeXDKY2AgzsvkS0ke5BtJGukXLtRBIIBL3Grl27JIvFIv3vf/+TJEmSTjnlFCkYDEqrVq2SHn74Yem7776T7rzzTkmSJOmSSy6Ramtru3SehQsXSpWVlVIkEpFmzJjRo+fief3116V//OMfUjQalU4//XTJ7/cf9TElSZJuv/12ae3atZIkSdL8+fOl+fPnS83NzdKuXbuk3/72t1JVVZV0ySWXSJIkSX/4wx+k77//vlvO2xeINtJ1RDsR7eRQDKb2IUmijXSVwdRORBvpOoOlnQz0NiJJoi85WnqrjUjSwOtLBksbkaSB35eINnL0iDbSdVKtnQgns0DQizz22GO44oorAACtra3IyMiAWq3GnDlzUFxcjM2bN2P27NkAgFmzZuHHH3/s0nmee+45DBs2DAAgk8l69Fw8dEy5XI6JEydiz549R31MALj77rvZtUajUQBAeno6JkyYgNLSUmzZsgWzZs0CAPb++iuijXQd0U5EOzkUg6l9AKKNdJXB1E5EG+k6g6WdDPQ2Aoi+5GjprTYCDLy+ZLC0EWDg9yWijRw9oo10nVRrJ0JkFgh6iZ9++gnDhw9Heno6AMDtdsNoNAIADAYDPB5P0se6QlZWFgDg3nvvxaWXXtqj5+LpiWMCbZ2kQqHA888/jylTpiAWi7G/SZLUY+ftbUQbOTpEOxHt5FAMlvYBiDZyNAyWdiLayNExGNrJYGgjgOhLjobebCPAwOtLBkMbAQZHXyLayNEh2sjRkWrtRNmjRxcIBjFPPfUU3nvvPfZ7aWkpSktL8cQTTwAAjEYjvF4vAMDr9cJsNrd7bOjQoV061z333IOtW7eiqakJy5cvR0tLS7ed61Ake0/dxZtvvomPP/4YH3/8Mc466yz2uFwuh9FoRF1dXY+ctycRbaT7vyvRTkQ7ORQDsX0Aoo2I8ebwiDYixpvDMRjbSEfvq7sQbeTovrdUaSeijRwZg7EvEW3kyBBtZGDPSYSTWSDoIZYsWYL169dj/fr1+PLLL5GRkYHzzz8fr776Km655RaoVCrYbDYEAgGsW7cOU6ZMwZQpU/Ddd98BANavX4/Jkycf8bnWr18Pn8+HnTt3sqTyVqu12851KOiYkiRh27ZtGDt27FEfEwB++OEHvPbaa/jggw+gVquh0+lgt9uxe/duFBUVYfLkyVi3bh0AsPfXHxBtpPvaCCDaiWgnh2agtg9AtBEx3hwe0UbEeHM4BmMbAURfciT0ZhtJPN9A7EsGYhsBBmdfItrIkSHayACfk/RoxmeBQNCO++67jyW0//jjj6UTTzxROuWUUyS73S7FYjFp8eLF0owZM6SlS5d2+RzHHnusNHXqVOmUU06RTjnlFCkSifTYuXj8fr/0f//3f9LUqVOlZ599tluOKUmStGDBAunYY49l72f9+vXS9OnTpRkzZkilpaWSJEnS3XffLc2cOVO68sorpVgs1m3n7gtEG+kaop2IdnIoBlv7kCTRRrrCYGsnoo10jcHUTgZyG5Ek0Zd0B73RRiRp4PUlg6mNSNLA7ktEG+keRBvpGqnWTmSSJEk9K2MLBAKBQCAQCAQCgUAgEAgEAoFgoCLSZQgE3YgkSXC5XBB7N4KOEG1E0BlEOxEIBEeL6EcEh0O0EUFnEO1EcDhEGxEcDtFGBg9CZBYIuhG32w2LxQK3293XlyJIUUQbEXQG0U4EgsHHsmXL8Oqrr2Ljxo2YPn065s2bh4qKCgBthWpmzZqFG264odPHE/2I4HCINiLoDKKdCA6HaCOCwyHayOBBiMwCgUAgEAgEAkEfYrfbWRGahx56CF988QWeffZZrFixAtXV1SgvL8eGDRtgMpmwcePGPr5agUAgEAw0Fi5ciMrKyqQbnQKBQNBZlH19AQKBQCAQCASCgU1rayueffZZ2Gw2LFq0CNOmTevrS0opHn30UVxxxRUAAL/fj/T0dKSnp6O0tBRbtmzBrFmzAABz5sxBcXExZs6c2e4YwWAQwWCQ/e5yuXrn4gUCgUDQbwmFQrjkkkvw008/ATi40dnQ0IAVK1bgX//6V7vXiPFGIBB0hHAyCwQCgUAgEAh6jObmZsyYMQP33nsvnnzyScyYMQPvvvtuX19WylBTUwO3242xY8cCAGKxGPubJElwu90wGo0AAIPBAI/Hk/Q4y5cvh8ViYT+FhYU9f/ECgaBf4XK5kJ+fj7lz5+LUU0/t68sRpADBYBC33norTjvtNAAHNzonTJiA0tLSpK8R441AIOgIITILBAKBQCAQCHqMO++8EyUlJSgoKMC5556LWCyGK664Alu3bu3rS0sJli9fjj/+8Y/sd5lMxv4vl8thNBrh9XoBAF6vF2azOelxli5dCqfTyX5qamp69sIFAkG/Y/fu3bj++uuxdu1arFmzJulzgsEgXC5X3I9g4GIymXDyySez3xM3OpMhxhuBQNARQmQWCNB+V1/kohIcCpGzTDDQkCSJ/QgE3cnOnTvxyiuvAADee+89/Oc//8GCBQsQCoXw29/+FtFotI+vsO/56aefcNVVV2HFihVYsWIFdDod7HY7du/ejaKiIkyePBnr1q0DAKxbtw5TpkxJehyNRgOz2Rz3IxAIBDy7du3Cl19+iZNPPpn1zYkIl+rgJnGjMxlivBEIBB0hcjILBDi4q/+nP/0JALBgwYLD5qISDD66krNMIEhlJElCJBJBLBaLE5hlMhnkcnncv/yiQyDoLE899RQkScJFF13E8gg///zzGDduHDZt2oS3334bl112WR9fZd9CY8qrr74KABg3bhwWLFgAmUyGN954A0VFRRg1ahROOukkjBkzBrNnz+7DqxUIBP2ZoqIiPProo5g2bRrOOOMMLFiwAFlZWXHPWbp0KW677Tb2u8vlEkLzIII2OpuamlBUVNTXlyMQCPoZQmQWCHBwV3/16tVYvHhxu6I7HSGKHgwuKGfZyy+/DKB9caaOXiPaiCBViUQiiEaj7Id3M5PArFAo2P+VSiUTnQWCw+H1evHOO+8AAG6++Wb2+JAhQ3DXXXfh7rvvxl/+8hdceumlUCrFlPSqq65i/y8uLo7720MPPdTLVyMQCAYiM2bMgE6ng1wux4wZM1BRUdFOZNZoNNBoNH10hYK+5k9/+lPcRqdAIBAcCSJdhkCAg7v6X3/9NV577bVO5aICRDjZYKMrOctEGxGkKpIkIRaLMYE5GAwiEAjA7/fD6/XC4/GwH5/PB7/fz/4NhUJMlBYIOuKTTz6B2+3GyJEjccopp8T97Xe/+x0yMjJQWlqKt956q4+uUCDoOtSHRiIRhEIhhEIhhMPhuLmBQJBq/PnPf8bq1asRi8WwefNmjBw5sq8vSZAivPrqqygqKsKMGTNQXFyMjRs3YtSoUX19WQKBoJ8hRGaBAG27+jNnzoRarcaMGTM6lYsKEEUPBjudaSeijQxcampqMG/ePJx00klYsWJF0hzd99xzD2bNmoUbbrihj6+2PSQQx2IxJoz4fD643W60traiubkZdrsdNpsNLS0tcDqdcLvd8Hq98Hq98Pv9CAQCQmwWdMhnn30GAPjFL37Rzv1uMpnwhz/8AUDbZpwQ5gT9BUozRBtzwWAQ4XCYbdiFQiHRngUpy2233YYVK1Zgzpw5+MUvfoGMjIy+viSBQJCCJK5ziMRaVgJBIkJkFgjQfldfo9HEFd3pCFH0YHCTWJwpGaKNDFyefPJJLFu2DN9//z1Wr16Ne++9F1988QWeffZZrFixAtXV1SgvL8eGDRtgMpmwcePGvr7kOHjRj4TmcDgMl8vFHMyUk6+hoQGNjY1oampCU1MTWltb4XQ6meAcCAQQiUSE2CxgRKNRfPnllwCAc889N+lzbrjhBlgsFpSUlOCTTz7pzcsTCI4Y6idJWCZxmdIO8S7mSCTSx1crECQnPz8f//vf/7BhwwZcd911fX05AoEgRUlc57jdbgAHa1mtXbsWa9as6eOrFKQiIgGeQIC2Xf3LLrsMf/nLX3DFFVfguOOOE7moUhzKHduXBclEzrLBzd133w2LxQKgTVBTKBRxObq3bNmCWbNmAQDmzJmD4uJiVvgskb7M3U33EAkolDrjwIEDiEajANruN6VSCZ1OB4PBAIPBAJ1OB61WC4PBAK1WC41GA7VaDZVKJfI2C/Djjz/C4XAgLS2tw3ZvNptx4403Yvny5XjkkUdwwQUXiHYjSAlojkE/fGohPpc9oVAooFQqEYlEoFKpWDFV0Z4FAoGg/8BH+QEH58iDsS9PXOdQ7YzEWlaLFy9O+npRl2jwIkRmgQAHd/V5EovuCFIDyn9ILiGZTAatVturg/+rr74KoC2Xt2gnPQs/2eMX/MDBiZ9cLj9kWpueIj09HQDw/PPPY8qUKdi6dWvcdbvdbhiNRgCAwWCAx+Pp8FjLly/H/fff37MXnAD/2SkUCigUCva31tZWRKNR+Hw+1NXVIRwOM5HZaDTCbDbDYrHAbDbDZDJBr9fDaDRCr9dDrVZDo9EwsVkwOPn8888BAGeeeeYhi/otWbIETzzxBIqLi7Fu3bq4vPcCQW/Ci8mJNRdIXI5EIklTYUSjUdaXCnFZIBAI+gfU5yfbPORRKBRQqVRQq9WDpn9PXOfodDoAB2tZTZs2DWeccQYWLFjQrngo0DdrG0FqIFZ/AoGgXyBJEst/yIehlpaWYtasWRgzZgxOPPFE7N69uw+vUtAd0EI/HA63C0mmBT4/KQyFQggGgx3mwPzyyy8xdepUTJo0CTNmzMD27du77VrffPNNfPzxx1ixYkW7HN1GoxFerxcA4PV6D5kqpa9yd5PQTC48lUoF4KCoX1NTg3A4jFAohAMHDqCsrAwlJSXYs2cP9uzZg9LSUlRUVKC+vh6NjY2w2Wws3Ybf70c4HO43KTRKS0tx0kknib6km1i9ejUA4Oyzzz7k83Jzc3HllVcCAB599NEevy6BIBESkRML9/GPB4NBVtzP6/Wyfk6j0cBgMABoE5rLy8sxf/58TJw4EdOnTxf9iCApS5YsQVFREWQyGXbu3NnXlyNIQcScpGegfj0QCMDtdsPtdsPn87GC1jz8vJ5/TSgU6u3LTkowGMTvfvc7jB49Gscccwwuu+yybj8Hv84hEmtZUR2aRERdotTgjDPOwKRJk3D88cdjzpw52LZtW4+fU4jMAoEgpZEkCeFwGD6fj/3wIvOSJUvw29/+Fvv27cOdd96Ja665pg+vVnA0UDElWtBT6gYSOUkAoH/5yaAkSUkniC0tLbjsssvwxhtv4Oeff8YjjzyCRYsWdcv1/vDDD3jttdfwwQcfQK1Wt8vRPXnyZKxbtw4AsG7dOkyZMqXDY/VF7m5ybMhkMqjVaqjVauj1emi1WubAJrHZbrejvr4eDQ0NqKiowK5du7Bnzx7s27cPJSUlKC8vR1VVFZqammCz2dDa2sqKBPaX4oDXXXed6Eu6iUAggC1btgBoSxVzOO644w7IZDKsWrVKCC6CXiUWi7HxhTYy6Yfy1NOYQ7nqSYiORCJobGyM2+D8/e9/j6uvvhq7d+/ukX5EFGIaGPziF7/A+vXrMWzYsL6+FEGKIuYk3UssFkMwGGT9OJlTeGOL3++Hx+OB0+lES0sLWlpaWJ+vUCggl8shSRL8fj/8fn+fz2vvuusuyOVy7Nu3D7t27cJjjz3WrcdPXOcQibWsRo4cmfT1oi5RavDee+/h559/xrZt23D77bfj6quv7vFzyqS+vjsEggGEy+WCxWKB0+kUHWkSJEnCrFmz4PP5sG/fPuTn58NgMGDBggV48MEH2z2fJgSBQACBQCAuTYLFYkFTUxOOP/542O12KJVKSJKEIUOGoLi4+JAFG/sS0Ubaw4cix2IxzJ8/Hz6fD2VlZRgyZAj0ej3OOOMM3HPPPcx5y7sLNBoNyykMAGq1mqVp2LRpE6644oo4B4jJZMK33357SNG3M5x33nmorKxkldkfeugh3H777SxH96hRo3DPPffgf//7H8aMGYNXXnml0yF2Pd1OSJQH2u4npVLJJs1utxt2ux3V1dXYv38/WlpasGPHDkiShKFDh8Ln88Fut7NjpaenIzc3FxkZGezfzMxMllaDhGvK19wdYYZH2pccjqamJowZM6Zf9SWpzMaNG3HSSSchOzsbDQ0NnfrOL774YqxcuRKXX345Xn/99V64yoGPGG86hjY158yZEzfeGAwGnHnmmbj33nvZuEQb3TQHsVgsMJlMqKurgyRJSEtLA9C2qTl9+nTU1tYyd3N39yN33HEHzjvvPJxyyik49dRT8fHHH8NkMqG4uBirV6/Gn/70pyM6nmgjh6e7xxueoqIifPbZZzj22GO76Wp7BtFODo2Yk6RuG6G1ZKL7WC6XIxQKtTMvHQqDwQCj0YhwOAwArB5JZ+juNuL1epGfn4/a2lpmDOluEtc58+bNw8UXXwyLxYLLLrsMoVAIV1xxRacLiKZqG0lGokTaWylSenK8AYDXXnsNTz/9NDZt2tQNV9sxIiezQCDoNWQyGb7//nsAbSHSa9aswdChQ+Oe84tf/AJlZWUs9y45IGUyGV599VXk5+czAbGxsRF5eXks36dMJsPQoUNRXV2dspMwwUF4cZnPhfnVV18hGo1i3LhxeP/991FQUAAAbBJ4zTXXoKqqKu5YNPivXLkSQ4cOZTnTRo8eDZvNhuLiYsyYMQMfffQRPB4PKisrj1pk/vTTT9s9lpij+6GHHjqqc/QU/OSJhF+dTsdSkZCj3OfzwePxwGKxoLW1FZIk4ZlnnsH+/fvx0Ucf4aeffoLD4YDT6URBQQG8Xi/8fj98Ph9ycnKYC9BkMjHntEqlgkKhOKoJ25H0Jcn49NNPUVhYyH6vqakRfUk3snHjRgBtIZWd/Z7/+Mc/YuXKlXj77bfx4IMPtvs+BYLugiKkotEoVq9eDUmSMHr0aHz66acYMWIE5HI5/H4/IpEIFi9ejP379wNo6xeov4zFYnj66aeRl5fH5igNDQ0YMmRIXJ2I7u5HRCGm3qe7xxvBwEPMSVIPSZIQCATixGW5XA6VSgWfz4eWlhY2F+bdzHykpEqlYkJyJBKB1+tFKBRCeno6wuEwAoEASzd3OLq7jZSXlyMjIwMPPvggvv76a+h0OixbtqxbI1mSrXOIxFpW/R3aeKa1SjKRObGWTU8UOe+p8eaKK65g39mXX37ZrdecDCEyCwSCXqe+vh7hcDipiPD+++8jFAqxcCXewUy7njqdDjKZLKlQJYIzUp+OxGV+gG9sbEQkEkFBQUFcUbpIJIKXXnoJAGA0GpkTQSaTwWAwIBQKMQFBpVLBYrHggw8+wF133QW3243Zs2djwoQJLPfwYIW/b0ggkcvl0Ov1bIOHvheKJvB4PKipqcG9996Lv/zlL7jvvvuwZ88ePPfcc9i/fz+qqqqYI4Qm9jk5OSz03GQyQafTMaG5OwoDHqovWblyZZc/E/pcBF2DNltmzpzZ6ddMnToV8+fPxzfffIMnnngCf//733vo6gSDGRISaAwCgIaGBkQiEYwfPx4ymQxerxfBYBCRSAR/+9vfALRFwOTk5LAxp7q6GrFYjG1oKpVKtuDki6h2dz8yGAsxJRb95T9T6rdJAOAf6266c7wRDEzEnKTvoUi9YDDIPjOFQgGNRgO/34+mpiYmIiuVSoTDYWaioNdTZCTNgYG2MUClUiEcDsPhcCAtLY0VyKb1SGforjYSDoexf/9+TJgwAStWrMD27dtx2mmnYffu3Un7fkFy+FSNye4xvl3wUbMEXzz9aA00PN093lCE4GuvvYY//OEPrDh3TyFEZoFA0Ov8/PPPmDx5crvHJUnCRRddhH379iWt7vv6669j5MiRUCqV0Gg0GDp0KGpraxGJRFg4WU1NjXDApRiJoiW/YIxGo3FF/Ig9e/Zg4sSJUCgU0Gq1LPRYkiRceOGFbAdXqVSyAV8mk+E///kPcnNzmZCgUqlw8sknY+3atQDaXFy5ubkYP358734IKQYJIfS5kztPoVCwz5omSvRdRSIRlJWVoaysDLfddhvuu+8+jB8/Hk888QTefPNNrFy5Ejabjd279L3wgk40Go1zTB+tq7mjvgQ4sp3+wsJC0Zd0I7yT+Uj44x//iG+++QYvvPAC/vSnP7EQTYGgO6D8y9SfAW0LxLKyMkyePBkymYy51cgFt2TJEtTU1LCNSdrElCQJzz//PMaMGcMWmUOHDkVdXR1zGPdUP0KFmD7++GP22IwZM6DT6SCXy1khpmRCw9KlS3Hbbbex310uV8q5bPn5As0RjgTeadadi/7uGm8EAxcxJ+lbSPSlPoOcy4FAAC0tLazfp3VkY2MjczrL5XJmquAhQ4TL5YJSqWRzZKfTCaPRCEmS4PP5YDAYOtXXdFcbGTZsGORyOaszc9xxx2H48OHYtWsX5s6de9jrEBx0u9O6hQw3icXmCd7JTD+8C56eQy5nGoe6Mgb11Hhz5ZVX4vrrr0dzc3OPzrGFyCwQCHqduro6lgKBiEaj8Hg8+Otf/4rW1lY2yBuNRigUCuh0OhgMBha2JJfLkZ2djcmTJ+PNN9/EVVddhQ8++ABFRUUilCwF4AVkGqB5sZkvtkGOZqBtcI5Go6isrERWVhar/AyATeA+/PBDlhM4MzMT0WgUfr8fQNtkUKlUsolBOByG3W5HXl4eAOCBBx7A/PnzMWrUqN7+SFIOEpnpeyD3nUKhYK4MfpJETr2ysjI0NDTglltuwZIlS3DKKafgqquuQmFhIZ588kk4HI44d59MJmPfL33ffBtQKBRddjUn60uII9npF31J91FbW4va2lrI5XJMmzbtiF57+umnY/Lkydi6dSueffZZ/PnPf+6hq0wtampqcMUVVyAYDOL888/HKaecgltuuQV6vR4vv/wyhg8fjnvuuQdr167FpEmT8Nxzz/X1Jfc7SGAGELeJLZfLUVVVhSFDhiAWi8Hn87G/RSIRPPPMMxg+fDjkcjncbjeampoQi8Ugl8tZP6lSqaBWq5Gfn9/j/QgVYvrkk0/aFWI644wzcPrpp2Pz5s34wx/+kPT1Go2m0zlEexsS/0nETySZUzmZu5lP+wS0CUq807yrdNd4Ixi4iDlJ35FMIKYUbgQVuiZHMwC2gehwONjzqG+loq/0f5VKhUgkAp1Ox+bOJDp7vV7o9frDzmW7q41kZmbi1FNPxVdffYVzzjkHVVVVqKiowNixYzt9jMFMNBqNi5ZWKBRxbYhfx/LjC782oggapVIZJywn5vjmhefOptnornbicrng8XjYOvijjz5CRkYGi4rqKUThP4GgG+lPCe37kpKSEixYsADTp0/HG2+8gXA4DKfTCbvdDpfLFbcANBqN0Gg0MJlMMJvN0Ol0caGoJSUluOqqq9Dc3Ayz2YzXXnsNxxxzTF+8rU4xkNsIDciJbmUaoBMf43Ne0SDtdrsRi8VQXl6O3/zmNzjuuOPw97//Henp6XGfl91uRywWQ1paGtRqdVyeSblcDo1Gw9rRjTfeiO+//x6RSAQzZ87E008/zQo1pSq91U7IXQyACcME7fD7fD643W40NjZi//792LNnD0pKSuD1egEAc+fOxfXXXw+j0Ygvv/wSzzzzDABg1KhRMBqNGDZsGPR6PTIyMmC1WqHRaGA0Gtm9rVQq49JnHIkIwPclb7755lF9Fv2tL0lVVq5ciYsvvhjHH388tm7desSvf+edd/CrX/0KmZmZqKqqgl6v74GrTC0Si7kBbamjGhoa8OSTT+Kee+7BnXfeiXfeeQd33nknLrzwwk6lIhnI482RIElS3PhADiWitLQUv/zlLzFt2jQ888wzTER2OBzQaDQwm81wuVzsGEqlEnq9HgqFghU0pX5s3759PdqPDNRCTFSci3eNyeVyJhYnOpoTc2PyC3w6XmJeTZpnkOB8pHQ03iTWEKFzkYMt2Zh200034T//+Q8aGhpYodyOnGmpQKq0k1RnMM9J+qqNJOZeJjdzOBxmZhPqD/j8zJIkwWg0wuv1MjNLYWEh8vLy0NjYiLq6OuaKplQJFH2nVquh0WhgMBig0Wig0+mYAUqn0zGDRTK6s43s378fV199NZqbm6FQKHDffffhwgsvPKpj9iSp0I/QZiZfm4A2mPl0jhT1xK9hk+Vl5k041O93JkozcexKHCu6q53U1NRg4cKF8Pv9kMvlyMrKwuOPP47jjz++y8fsDEJkFgi6kVToPPsTNDFoaWmB3W6Hx+OJ+7tarYbBYIDZbIbZbGaLuv7MQGsjvGDMD8S80EyuosTdYIJynPEOssS/DxkyJG5R6HQ6EQwG2YROq9UiFouxXWkqZEdCglqtPur8v71Jb7UTPvSbL2rFQ+HjbrcbNpsN1dXVKCkpQUlJCRobGwEAVqsVN954I2bOnIknnngC33zzDSwWC4YNGwaLxYK8vDzI5XIMGTIEBoMBarWaCc0k0pBQc6jJuSD1ueOOO/DXv/4VN9xwA/7xj38c8esjkQjGjBmDiooKPPPMM7jpppt64CpTC4fDAYvFAoVCgblz50KhUGDNmjUAgPnz57OUDTfffDM+/fRTlJWV4dZbb213nGRF3QoLCwfMeNNVKGUPudj4tBm0KKSxgz4/g8GAurq6uOPIZDLmBJbL5VCr1czBpNFo+mW/lQpzksQFP4Wt+/3+OKcyn5c5WS5mgsYyGlNIrOaRy+VHPd4cznlN16JWq7s1bUdfkArtRJDa9EUbkSQJfr+f3YOBQID9HggEWG79ZGsQvk9QKpWYMGECTCYTNm7cyKIlk0GpNuhHr9czsVmv17MxIdEUJej7fiQxPQb/OwnLVPyR5g2JOZmBg5uIJDDz/6ffaWzSarVsDXqotTAdlx8neFGbF7f7w1gi0mUIBII+IRaLwev1wuFwwOFwxIUzAW3Col6vh9lshsVi6VQIkqB34IVkfqDm02Pw/0/mZqbXHCrXokwmY99/4ndvMBiYO8Hr9bIwNb1eD7/fz9xP/KAu2k97yNlFE3TK/8dPYJRKJUwmE3Pq8U7k0tJSVFVVoaWlBQ899BCmTp2KX/3qV9i0aROcTid8Ph9kMhmGDBkCAGhuboZWq2XFPclJkjjhEkJz/4WK/h1pPmZCqVTi9ttvx+9+9zs8/vjjuO666zpVub0/k1jMjXeAS5IEt9sNo9EIoK3vS9yQJfpjUbfegB9zeHGZ+hhauPFRVEqlErm5uSy6hnfKUooMekz0V10nHA7H5USNRqOsCBfNMfi5RkfwC28qzsgvyGn8ou+KNhpCoVCcQNCZ77EjcTnRSU3znmAw2K83IgSCVIQXmGktEAwG4fF4EAgEEAgE4sRCvn4L3asajQZZWVkYNWoUZDIZE5iVSiXGjh0LnU6H8vJyNDU1IRAIsFoiZI7QarVM2Kbi41qtFnq9nhW51mg0QmxOAWKxGNu4pPGFvtNgMMjGg1AoxPr3jsYePo0gPw+gMYb+plKp4Pf74ff7oVKpYDQaodVq48a3ZGklDwe14UQndCoxsGftAoEgJYlGo3C5XHA4HHC73UkFZoPBAKvVirS0NGi12pTrPAcDyRxE/GBIf+MHysRF4eEWhomQA5kcYpFIBA6Hg52TBmmVSoX09HSWP4uc0BTGRjvTQlg+PDQ5IrdHMqFZLpezjR6lUgmtVgudTgeLxQKr1YrKykrYbDZs2rQJW7duZd+7x+OBwWBAWVkZjjnmGFbxmybjhMFgEELzACAUCmHTpk0A0Kl0Dh2xePFiLFu2DJWVlXj//ffxq1/9qrsuMWXhi7mdddZZ7HHK/UuuWq/X26EDqD8UdesLFApF3CIuEX5DkvpCp9MJ4GC+ToLSCvG5FYWA0DXIOQaAuckpPJ3EocR0GYmL8ERHc7LCTIkhzST4UuQOzVV4wTkx1QUftZVYR4IXr3koUojEimAwKITmXqKjdG1EokOwo7QmgtSF5v6xWIwJy263Gz6fj/1QGg2a39J3zqdpa21tRWlpKTuuUqnEnDlzEI1G8dlnn7XL88ynTdLpdP+PvfeOj7pK2/+v6b2mVwKBQOigNAEFC5bFZ+29oa592f3is66uDSxr3V0fdVdd93EV8YFVUVx7XwUFCwJKABMghPRkkum9/f7I7z6cmUwgQJKZJOf9es0LMpnMnGTu+ZxzrnPf1w2NRsOypgOBAPR6PYLBILRaLbsGkCAt9iTpge+3QAd/dG2mGKF4CoVCCXtX3t+fDixpL0x+3XTwzAvMVMFCcw0A2O12qNVqGI1GFn80plTXqVS9jFIlevHVO5lyHRMis0AgGDAoi8jlcsFutyMUCnUTmKmM3mq1wmw2Z9QFc6iRPKmlyjQ+2M/yGcu0CSSvy+SfTbZDoE2c2+1m3r5GoxFyuTzhRDkZ8u/OyspiVhkajQYejwc+nw+hUAgajYY9ns9cEPQMiSR8w8Tkzx6Vh+l0OuY5Roslo9GI+vp6NDU1MW87AGhpacH8+fNRXV2N+vp65OXloampCdOmTYPH40EoFErYxCcjhObBxbZt2xAMBmG1Wo+quaZWq8XSpUtxzz334JFHHsFFF100pOMguZmbRqOBzWZDW1sbysrKMG3aNKxZswa33HIL1q9fjzPPPDPl82RyU7d0QmIwPx9QPJFIQV/z10KCrDEoa40exzc3FRweJLoCXdd5v98Pn8/H7qcsM9rEpyJ5zujpfeCzyuj/dLBA3qok/iQfjvc0P/HiMnCgQRhvy6JSqZjQQAff4XA4oWGj4Ojh16NHmuAAIOGAIVOzAwVd0B4hHo+zDGan08ms3TweD9xud0IiCl3naf1K4h9d2yl5Zdq0aTAajXjttdcQCASQlZWF8ePHQyaTYffu3WhtbYXb7WZNAL1eL/R6PRMrQ6EQy2QmsRkA++zz1xtB/0MZ70QgEEAkEmEHA36/n4nMZI9Bnt7JjSOBrmu/TqdjCU8kMJNdGc0r4XCYNVjn+zhQPFosFjZ/HM4hF185zPdBotijXjfpvnYJkVkgEAwIdJF3Op1wuVwpSw01Gg2MRiMsFgsTHAV9R2/8kelxyaTK5qGSURKYk0VhKkklDAZDggDs8XiYwKzX6xOaMSV7KsrlcsTjcTgcDua9TM9F4wAONHWi/xNiQXdoSDShzyV10ub/drTx0uv1bNNOpYEkNnd2dqK9vR2xWAwLFy7Eeeedh6effhp2ux0qlQoWiwU//fQTZs2ahdbW1gQvzmRIxBEMDjZu3AigyyrjaBe4N998Mx555BFs27YNH330EU499dS+GGJG8sADD6ClpQWnn346AODBBx/E4sWLIZFI8PLLL6OsrAyjR4/Gcccdh4qKCsybNy/NIx58kLiQjFwuZ4dd1B+A99SkzZpEImGbzeRSVcHhwXtfy2QyRCIRJjCTAEC2VwBYeTEJ0SToJttt0XvMN/ejdQQJPpRhRvMb2WbQASrd11PmO58RTbZP5OedjFQqhclkYk3BKHvuSBsPCg5Ah+F8ljv9nxIekte6qRpF8v6pqQ4Ykm1WDkVyAkZyBiI9L41F9KE4fMj2ADggNlPCisvlgsvlgtPpZFnNANieE0DC35x6/6hUKphMJpjNZshkMtTW1rKs0zPPPBNKpRIvvvgi6urqEsai1+uh1WrhcrkSDpLo9QwGA6LRKOsdQ+MVYvPAwWsN5NFNdip0QEFNZyl+aD9Ln2f6vNLn2OPxJNiW6fV6GAwGdmhBArZSqUQ0GoVSqUQ8HodKpYJarUY0GkVnZyesVuth73HouhSPx1kmNMUbWX9Eo9G0V82InZtAIOh3otEoO112u91sIajT6RAIBCCRSKDVamEymWC1WqHT6cTE24eQCMsvnvkyQvqa//dQz8cv4kOhENuQ0cI/lWdoa2srxo4dy6wSOjo6AIA1YgIOiJiUQUJjpgwkjUbDPJipkQJlxNJz0eaVFgQiG6X38CfwVObHlw7zggplNFNWiEajgU6nw/79+5l/LB0IXHrppXj++efR0tICiUQCs9mMLVu24JhjjkFzczOCwSATclJljAkhZ3BAfsxHY5VBWK1W/OpXv8ITTzyBRx55ZEiLzG+//Xa3++hvSTz44IMDNZxhBc03tJHUaDTw+/3sWkRrEV6k4LOYBYcPVTvR39ButzPhmQTneDzOrEnq6+sTMst7gj/45uFttuj1ZTIZ1Go1IpEIEwZcLhez7OKzwWj9QOsbt9vdTVimuVMmk7FmUrFYjP1uGo2GxVkkEhHZzEcArTd5r1Qqb+dL3fmKOt5/nReN6UafZbVaDbVaDZVKlZBIQSX1JEjSwTufeMEL272NU1rz0gEXZb2LteqhofW+RCKBz+dj2cokGpIdI9no0f6Th9asRqORHTiFw2F88803+Oabb9jjxo8fD7VajcbGRtTV1UEqlWL8+PHo7OxEU1MTPB4PgsEgzGYzAMDhcABI9GTnM5kNBgM7oCKxma4bgr6HEmbo//R5DgaD8Hq9CVYZNpuNXbfpeuJwOLrZpVC1tV6vh0wmYz7gtO81mUwwmUwsu5muRfxhk1arZfOD1Wrt1ftP4/f7/UwUB8DmMsqep2sgzUnpQqyOBAJBv0EXdxIFaTKmk+VgMMgWdeTtqtFoxCKrD6FFOJCYyZzK8ylVw4Hk9yJ58U0Lajo9pfcW6Cp5p42dw+GA1+uFzWaDVquFzWZDPB5PyATjF+90o9ejcjQSAGKxGBOpCb1ezyZdOuUFIBZvhwll9NEhAr3ftOGmTR5l4ej1evZ/pVIJrVaLhoYGNDU1oaGhAU899RTOOOMMXHDBBVi9ejWam5vZ+7x161ZMmTIFLS0t7MAp1Xgo80eQ2fCZzH3BsmXL8PTTT+Pzzz/Hd999hxkzZvTJ8woEPLQZ5MUf2miSBRNlzvGN/8Ra5fChtQPQ9Xd3u93svmg0yhozqVQq2O125o2t0+mQn58PmUwGr9fL/Fb5jGapVMr6BWg0GoTDYbS3tyMcDsNut0MqlSI7O5uVMNNhNYnT1AuC/FyJVIefdD8dklPZPAmWVquVPY/D4WCiJokOQmTuPZSFzmfqkahITdf4LGbegxcA69XBHxrwYjMJy7QG0el0rOE0iVJ0CJKcxNBTYkay5Qa/fknl702xrNPpxHXlENC+g/7+vLcuiX30dUtLC4Cu9ys3NxcAYLPZ2M+4XC5WQRsOh5Gbm8ves6ysLEyZMgVA1/6C9iR5eXk455xz0N7ejn//+99obGxEMBiEwWCA3+9nh1XJnu56vR4OhwNGo5FdN0hspvWzyGrvW/hDH9o7UiM++tt7vV60trYiGo3C5/Ohvb29W4Ul9XVIlcWsUChQXFwMk8mEQCAAp9PJbB3NZjN7XjpsoMSZ5IzmnvaqdH3wer0pD7FoLvP7/bBaraxqhuIqXXsnITILBIJ+gcoeyRKBSgr5CyR5FJnNZpjNZnGK38fwWRW0iUpuhkICYm+hzRQvLkciEXg8HvY8WVlZyMvL6+aNTNYYbrebZW9QNjLva0X30YLO6/WyUlmNRgOz2cwsV4ADjbGUSiWb+Kk8lr4vODxIaOYz1imrmRZffDMMpVLJygxp06bRaNDY2Aifz4e33noLo0aNwqxZs7Bp0yY0NjYy79iffvoJkyZNQktLC8sgTEW6S78EB6elpQX79u2DRCLBzJkz++Q5S0pKcMkll2DlypV45JFH8Prrr/fJ8woEPDQP8hmJfOUPZb7S5pDmKMHhk1xBRQIhZZNR88X29nZ4vV4oFAqMHTsW7e3t+Oabb+ByuXr9WtnZ2Zg0aRKsViv27dsHu92OtrY2aLVa5OfnM6EhEolApVKxxAi+QRcvMNP7T1VWfr+/W4YkAPh8PtjtduTn57MNv8fjYdmOfIatoGd4YZe3S/H7/azMnaxVaK9BlXX8+pDeM2oqbjKZoFar2WE5xZ5Wq2XrSI/HA4PBwB5LMcqvfYlUNi3Jmc4kVNP1g/8+ZSfSvolfOwt6ht4DPqudt9qx2WwAgAULFuCCCy6AwWAA0JVRvHPnTnz++ef4/vvvmT1CVlYW2traMG7cOJx66qmwWCys+bjBYMD8+fPx5Zdf4tNPP8XmzZsxfvx4VFZWorGxES6XC2eddRY+++wzJl5SzAFgMUHWGmQdx++pKPuUb0oqOHL4A03gQCUEVSXRIXJbWxui0SgcDgfa2toAdB0qRKNRNDU1sSQYqVQKi8WCvLw85OTkQK/Xswrt2tpaAIDFYkFlZSXsdjs6Ojrg9XpRUlLCGg/yFdxklxKNRtHR0QGj0cj2OTR2OkjjrzdkvUKxRXYx0WgUdrud9SxKd9WMEJkFAkGfQot0WnyTJ1ayXy+VL1qtVnaqK+g7aKNM8NnM/AY6VddaIlUWM+9TSKVo9FxGoxFFRUUsQ4SHBGa1Ws3KyWgRRQIzX05Ki3GpVAqtVstOcCn73Wq1MmGANhC8xyNN3JnQMTwYDOKCCy6AzWbDVVddhV/96ldpHc/hkOzTTJsyvoEWxYxcLofBYGAZPOQ91tbWhra2Nuzdu5ctxACgsbERlZWVcDqd2LVrFyorK9Hc3JyQQcZv7ulQIt3vpyA1VGI6YcIEGI3GPnve2267DStXrsSbb76Juro6jBgxos+eWzC84e0V6HawRnOUbSYE5iOH1iVyuZwdIPN/e8oU83q9UKvVKC0txaeffsrWEDKZDLm5ubBYLMxLlSwqyKrLZrOhtbUVNpsNn3/+OUwmExYsWIBRo0Zh+/bt8Pl8qK2tRVlZGROnSOxWKpUJjZ540TB5XQWA2WtoNBrm50z+rC0tLSgqKmKZt/R4WneJKqueoeZbFBsej4ftK+i9IlsEvlydvscjl8sTrBEcDgeys7OZ6O/3+1mWtFwuZ1ZgtIehqjw6fEj2eU5eZ5LQ6ff7mU8vj1QqhdVqhcFgSFjX0F5JrVaLdc5BoPU9QZ8pek8o8z0UCiE7OxtLlixJuGYrFApMnjwZkydPxp49e/D3v/8dTU1NsNlsyM/Px65du1BYWIhp06Zh3bp18Pl8kEqlyM/Px7HHHouqqio4HA58/fXX7DlNJhNGjBiByspKbN++nSVRBAIBKBQKlkBBQnMwGERraytMJhOMRiOzeqFMW2oeKOaaI4d80QGwgyo6AKD9ot1uZ5nGbW1tkMlkyMvLw0cffdRtLUAVtHwVbVZWFk444QTk5+fjxx9/hN1ux9dff41p06axapyGhgaUlpayQySqpHA6ncjPz2ceyg6Hg1U9pLpmaLVadmhJ8yEdnGVlZcFms7HDT4VCkWBlmQ76TWR2u9048cQTWfnT0qVLB9XGWiAQHD5kpu92u5k9QrK4DBzIeszKyoLRaBQL7T6GP73lxVepVMpKUfkmCIczCdEmi7IueL+7+vp6bN++nZW6VlZWYtSoUQDAhENaoPOZHyQwU/kgQRs+KiuiU2c6AU6OG/pZ3iojExZor776Kk477TRcf/31OO2003D55ZdDrVane1i9hvdppq+Ty1BprqdSZcpKp4xmg8GAtra2hCy0YDCISZMm4aeffoLNZkNjYyMKCwvR0tICn8+XsMniDz+E0JyZkFVGX/gx80yYMAEnnXQSPv30UzzzzDN4+OGH+/T5BcMPPmuZRMZk2wX+II23AxLrlSOH/u4AWCNF+vvz6xS73Q6ZTAar1YoPP/wQ8XgcZrMZM2fOhMFgQEtLC1wuFzt8tlqtKCgogNVqZXNDIBDAzp078f3338PpdOKtt97ChAkTMHfuXOzcuRPNzc2ora1FTk4O8vLymIdrOByGWq1mZeupypNlMhm0Wi10Oh0TJHlMJhPq6+sRCATYXMb/7oKDkywwU7KKy+ViIjIdSLvdbmZ/QKXvJK7Q51an0zEv7ezsbJhMJthsNrjdbowfP549p8fjgVKpRCQSgVwuh1qtTrBnAZDg5UwCMx0aULZzqveZ1rpUGWaz2Zj4Td/nf3+xxukZmUzGEh7oa956j6xMACRUJaSivLwcy5cvx2OPPYaamhr4/X7odDqsX78ewIG9SywWQ1NTEwDAbDYjPz+fzQ3Z2dmYM2cO5HI5rFYrALDDSDpkkEgk7KApFovBZDIhFovB4XDA4/EgOzsbBoOBZe6TBYLoUXRk8F7MANj1gfawlCXsdrsRDofR0NAAABg7dixeeeUVAMDUqVNxxhlnoKKiAiaTCaFQCO3t7di7dy9+/PFHfPvtt+jo6MAbb7yBnJwc3HXXXWhsbMQnn3yCLVu2YO7cubBYLLDb7fD5fFCpVAiHw0wApoqdkpISZvuTPEeSV3soFILdbk84ACXICkav17N50WKxAMDQFJm1Wi2++OILaLVa+Hw+TJw4Eeeccw6ysrL66yUFAkGaII80j8eDjo4OdpHjO+gSKpUK2dnZyMrKEqe0/QS/OeY3zdSoRiaTJWR7kMjLb6Ap25kmZspOp0mbDhSofDGZYDCIrVu3QqFQoLCwkL0WLwTzQjOfGcJ7X/GNMfjSSeoIzsMLy4djAdLfbN68Gddccw2kUikmTZqEnTt3Ytq0aQmP4b3+ABxWSfBAwPs0A13vH2+bkpx5k52dzTZ4dNKuVqtZGXE0GsXIkSNRUVEBs9mMzz77DHv37kVZWRlyc3PR1tbG/C2B7g0phdCceVCjur7yY+b59a9/jU8//RTPP/887r33XlFOLDhsqBKHv/HzHKHRaJgHIoAE31YhMB8d/DzPryVI7I/H42hvbwfQNYd89dVXiMfjGDduHPR6PdatW8e+nwqz2Yxx48Zh2rRpKC8vx7Rp0zBhwgRs3LgRW7duRVVVFZqamvCLX/wC2dnZqKqqYrYcU6ZMgdPphN1uZ+89VefodDpotdpuzeKArixYykDLyclh3zMYDOxgnPfvzaS1SaZCJe3xeJzZYlCWciwWYwKz3W5He3s7YrEYnE4nq5JLxuVyobi4GEqlkgnS5eXl8Hg82Lp1K6ZOnQqlUgmHw5HgkRsIBNhak973cDjcK99cpVLJMtypLB7oWsvYbDaWrU9zmVjP9B6FQsE+o9SMkaz2+P8DXRVz7e3tyMnJ6fH5NBoNfvOb3+B3v/sd2traUFlZiWAwiLq6OgDA/PnzYbVaUVVVhdbWVtb4k4hGo/jiiy8gl8vR2toKAMjJyUF2dja2bduGQCAAg8HA9k0A0NHRgezsbFbJ0dLSAoPBgKysLCgUCni93gSLBREfhwcd5tA+kv7OdJAIIKG6BAAqKyvx/vvvAwAuvfRSXH311d3+7jk5ORg/fjwWL16McDiML7/8Ev/85z/R1NSEu+++G//85z9RUFCAlStX4uuvv8Y111yD9evXo76+HtOnT4fL5WLXEDp8aG5uRnFxMYsRajgcj8fhcDhgs9kSqogVCgW7LlGPnJaWFuTm5rJ9fypbn4Gm30RmOuUFwE5xxMQqEAwt6OJNRvk2mw1Op5MtBAGwEiOgq3ELlTkKf9X+g/cipo0cb3VBFhcymQwWiwUKhYKVAPHvXTJUUkriMiGVSpGXl4fCwkLk5ORApVJhx44dqKmpwc6dO9nhIk2I9DOUBUIiM4BuflTkoUWnuXQKTc2YeJKbGQKZsXB3u93Q6/UAuj4DfMMI4qGHHsKKFSsGemiHBb1X/EEBCc0+n49lMANdmwBqsEQCjU6ng81mY1nc4XAYH3zwAUaMGAGTyQSHw4Hdu3dj3rx5zKPM5/OxuOF9PEn0zoT3V9C1oP/uu+8A9H0mMwAsXrwYZWVl2LdvH1avXo2rr766z19DMLTgraD4+Y/+z/vNA13zE5Ut897+QmDuO2jukMlkrI8DzefAAZ9/rVaLrVu3Ih6Po7y8HDU1Ndi7dy+ArnmntLSUNUoKBAKw2WxoaWmBw+HApk2bsGnTJlgsFsydOxfHHXccTjjhBJSXl+PDDz+E3W7Ha6+9hrPOOgvz5s3D999/D5/Ph++//x5z5sxBUVER2tra0NnZiUgkArvdzpoGGgwGWCwWWK1WxONx1NXVJZRO+3w+Vr1F8M0keUSCRWoomQA40FfE7/ez+6jBNH8gQWKMRCLBMcccA71eD6fTiZKSEng8Hnz55ZdoaGjAmDFjYDQa0dnZiYaGBkyfPh179+7Fli1bkJOTg7FjxyIYDLKeH8m+zuS5TBYXKpWKVWuR8MP3FUkFNYak5nSZSibbvFECQyQSgVqtRjAYZO+HRqNhdhQ6nQ5erxdr167FDTfccNDnNJlMmD17Nj7//HO2rnS5XJDL5fD7/fjmm28Qi8VYQg5VgdKeqLm5mT1XdnY2pkyZAoVCgd27dzNveYqpQCAApVKJ9vZ2GI1GGI1GlpUfDoeRl5fH9gp0CJouS8me4iCT44PPYqbmnbwlE32u6TG0n83Pz0dnZye0Wi2uvPLKQ+4vFAoFTjrpJMyZMwdLly7F3r178fnnn+Occ87BhAkTUFVVhfr6eowYMQJ1dXXs807vp9/vZ9nr9fX1yM7OZtnOZNWTnDyV3AeArHwCgQDa2tpgtVrZnEprlnRVRhz2DBeLxTBu3Dj8/ve/T7j/ww8/hFKpxGuvvcbuczgcmDJlCoqLi3HbbbchOzv76EcsEAjSDl3AXS4XmpqaUFVVhaqqKlRXV6O9vT2hVIwWWxaLBcXFxcjOzhZ+YwME71NGflSUNSSXy5GXlweHw4Ht27ejubmZnZzz0Ia7tbUVTU1NsNvtrJEj3RwOB6qrq1FVVQWXywWZTIZx48ZBIpEkdOHlxWReZOY9fSkukkVEOvGlhVZyOSK/keMzuDMhzvR6PfPP8nq9Kf1q77jjDtaR2Ol0or6+fqCH2StIaKbSTyrxpAaN5KkJdAkJ1F05KysL2dnZKC4uRmlpKWvAYrfbsXXrVpaBRNYro0aNgsFgSDiRJw9waoTBv5Ygvfz000/w+XwwmUwYO3Zsnz+/TCbDTTfdBAB46qmnxPs+zKHrPWXAJgvH1MiLfDmTb3Q/HZC5XC54PB5WMg8c8F8WAnPfwc//fLYq/UvzAFVOmc1m7Ny5E3v37oVKpcIvf/lL3HfffbjllltwySWX4MILL8SVV16JW2+9FQ8++CCuu+46zJ49GxqNBna7He+88w4eeOABbNq0CUVFRbj44otRUFCAYDCIf//731AoFJg/fz4sFgvC4TC+//57KJVKlJaWYvLkyRgzZgxycnKY17LT6cS+fftQVVXFGjvx8OsSEkV5GwR+PZIJa5NMhOZ1qVTKbAN4wZfWUrQWHDNmDPbv3w+5XI4HHngAOTk5ePbZZ7F69Wo8+uij0Ov1eOihh6DRaFBTU4PRo0fDbDajra0NO3bswKxZs6BQKNDe3o4NGzZg+/btrKSdqjCp8TEJPD6fL8Gqo76+nsXCoewZ+LHT70dQTKQz+5Agm7f169fjtddeS8jczQSo7wutRdVqNdRqNbRaLTQaDeRyOUwmEwDgq6++wrfffnvI5ySdiv7+JEI2NjYiFoshKysLpaWlsFgsTNyjytxRo0ZhxowZOPPMM3HOOecwq5Xp06cD6GqMTAI1HZyEw2G4XC60t7fDYrEwSw2bzcZsAoEDfsLpoKc4yOT44K0c+QNMvsEvcEBcpmsLJcfS/rS3qNVqtqeh16PkOrfbzfqIdHZ2Jmih/F4pFAqhqakJtbW1rJEkWU8qFAq2NyShmtYk5CVN1w6qLOYrY9N1PTlskVkqleKOO+7AM888A7vdDgDYtm0bzj//fPzxj3/E+eefzx5rNpuxbds21NbW4v/+7/9YCYFAIBicUFap1+tlC7Rvv/0WW7Zswa5du9Dc3IzGxkZ24VapVMjJyUF+fj5KSkpY1uxQIRgM4pe//CXmzp2L559/Pt3D6QZfXkObcvI0zsrKwp49e9h12WAwoLS0FIWFhVAqlXA6nairq2PNMKjr7v79+7F9+3bs3r2b3fbu3Ys9e/Zg06ZNePbZZ1FVVcUaOwIHrB94vzTyMqOGPXQ/Dz2Gfge6j/+aoIk9eeOWCdlC06dPx5dffol4PI6tW7emFOFUKhXLaKBbJkMZyuS9zPtgks8m0PV+GI1GZGVlwWKxIDs7G9nZ2SgqKsLIkSORk5PDrDSysrIwduxYlrlB8RIOh9mCTQjNmQn5Mc+aNavfPnNXX3011Go1tm7dmtBwRzD0oY0h+SiSSEylr6mEZBKT6fF0o0wmEpfJvzUYDLJ9DV+BwYuEmUJPa4/Bsibh1yZ8E2KylqAGseFwGM3NzTAYDPjtb3+LwsJCPPvss7j66qtx5plnYvHixbjsssvwhz/8Aa+//jrUajUuuOAC3HvvvbjooouQm5sLn8+HV199Fa+//jo0Gg3OOussZGVlwe/3Y+vWrVAqlZg1axZUKhV8Ph9sNhuArrUDNfOaPHlyQsNRasrFW8FptVoUFxez34/Phqd/M6lXRKbCW3LRZ5Nf/5F4QmILCUOlpaUYP348Xn/9dQBdXv4A8Je//AVmsxlLliwBALz11ls4++yzodVqsX//fqxbtw5lZWUYN24cVCoV/H4/9u7di+3bt+PHH3+EzWaDRqNBQUEBey26fpAIBABOpxPV1dXYu3fvIb23eQu49vb2BLGJ/xukk82bN2PevHkJNm/JUNY3fxso+OuyVquFWq2GSqWCVquFwWCA0WiEWq1mQvNzzz2H6urqgz5nY2MjALAqSXpfaE87e/ZslJSUICcnB2VlZSgpKWF9hTweD+rq6rBnz56E9zQnJ4fZ49XX1yMcDsNoNDJLJsps3r9/P6v6JA9wOozgK3EGmp7ioDfxAaQnRpKreWluIZGZ3hv6nOl0OgBd+zC9Xg+Px4MPP/ywV6/V3t6Oe+65B9u2bWOHluFwGNu3bwcA5ObmsucPBAIoKCgAcOAwzeVywWQywWKxsJiWy+UwGo3Iz8+H1+tFR0cH4vE4DAYDRo8ejcmTJ2PixImYMmUKixmXy4VYLIZAINAtXgaNyAx0+ZRkZ2fjySefRENDA37xi1/g8ssvx3//93+nfHxeXh4mT56ML7/88qgGKxAIBh7KMqEGJp2dnaiursbXX3+Nzz77DJs2bcKuXbsSJg5qtFFSUoKysjIUFBQMyeYFmXySCyRu6PhmgAaDAfv27WNWBOXl5VAqldi6dSs2btyImpoa1qjAZrNh9+7d2LVrF5qamtDR0YFgMAiJRIKCggLMnz8f55xzDs4++2yMHTsWsVgMb7/9dsIimQRgmkD5bOXDjQledObFAtp4UJYAgATfxHRy4YUX4uOPP8bMmTNx7rnnDqqmfweDGgJSRjO9N9SpmTqlUxa6Wq2GTqeD1WpFTk4OLBYLcnJyUFBQgOLiYlgsFuzduxfff/99QnZzYWEhDAZDwuJMCM2ZxVdffQUAOO644/rtNbKysnDppZcC6MpmFgxt+INREoeTs/74zD/KYOaFZV5wpuZyvLjMQ4eedF2j5m+ZyGDMLuM39/y/yfdRebNCocCOHTsAAJdffjneeust/PrXv8YHH3yApqYmNv/bbDb88MMPWLlyJW644QbceuutqKmpwcyZM/G73/0OixcvhkQiwcaNG1mmMmUXUiMvhULB5uVkgc/v92PPnj3Mn1UqlWLkyJHQaDSYOHEiJk2ahMmTJ6OyspKJUx0dHYjFYgnCskqlSsjkFqSGt1RJhvxIAXSzDyBRn+7/f//v/2Hy5MkIh8N4+umnceKJJ2LcuHEIBAJ4+umncfrppyMvLw9utxvvvvsu3n33XQQCARQWFrIMdqDrvdy6dSt++OEHjB07FjNnzkRRUREkEgncbjc0Gg0mTJjAHm+321FdXX1QoVgikSA7O5s1v7TZbIjH42zsvD1YuuitzZvJZGK3kpKSARsfXa+BLlFYJpNBo9GwdaZer4dWq4XVaoVer0coFMJjjz3GxL9kOjs7meUXJXnQ/CKVSqFSqeD1erFz507Y7XbWe0itVqOyshLFxcWQSCSw2Wz46quvsH79enZoOXLkSMyaNQtyuRwdHR1oa2tjiRNkUcgfqAFdhxbUtwboXr05UPQUB72JDyA9McIfSiXPNfzniq7XtLfYsmULLrroIgDAn/70J6xcuTLl7xUKhbB582Y8+uijuOyyy/D1119DLpfj9ttvh0ajwd///ne0trZCp9PhmGOOgdPpZK9ntVqZ+E0C8f79+6HT6TBq1ChUVFRg1KhRMBqNqK2thc/ng1wuR3l5OcaMGYPm5mYWX1VVVSguLoZer0+o5u3p34HmiFZPcrkcv//97/GHP/wBa9euxfTp0/Hkk08mPKa1tRUajQZGoxEulwtffvklbrzxxj4ZtEAwEGSy39BAQCIebey8Xi9sNhtqa2uZvQJfjuHxeGAymZCfn4/CwkIUFxcjJycHer1+yJaaZnpDN5pQ+ZJiqVTKyv1kMhlKSkqwZcsWthiSSCSIRqNoaGhAZ2cngC5Rz+FwIBwOw263J0y6CoUCp512Gq6//npMnjwZjz76KCvfodP/5E0DZTLzCzhaZPFiJZU30WNofOTFltxll9/Q0eMyAbVajTfffDPdw+gXyNaEhGSKN76UnSfZt5AvayfRgO8KTteQcDgMvV6PgoICNDc3M6E5+bkz4VBhOEIi89y5c/v1dW655Rb87//+L9auXYumpiYUFhb26+sJBh7aLNG1gPdWJmQyGauCoVJ6vqyeriUH21zRBpPmEWpETBYZmVx11dPaI5PXJPzmnn9f6H66LzlTdfLkyfjkk0+wbt06AMCCBQtw8skno6SkBFKpFB0dHaipqcH333+P77//HlVVVfjv//5vXHvttTj33HNx4oknIhqN4v3338fGjRsxY8YM9to0X3R0dDBRx2q1AugSm6lpGJGdnc2qvejn+WzmeDzOPJzp8eSfqdFoEg7ABalJzvbm14oAmBUKvQf0eBJyiFAohFtuuQXXXXcd/vWvf6Gurg5XX301nE4nmpub8fjjj2PixIkYP348bDYb2traUFNTg5qaGkgkEkyYMAFnnnkm7HY7tmzZApfLhY8++gjnn38+KioqYDKZsGPHDrS1taG8vJz5hO/evRs+nw/bt29n1xT6HeRyOVQqFQwGAzQaDXJzc9Ha2gqPxwOFQgGTycTWUZFIJK3XoN7avC1btox97XK5BlRolslkrL8MHRSRyMwfMmZnZ0Mul8PhcODxxx/HpZdeipNPPjkhrl5++WWEw2FUVFSwtSXFICVS0J7IarXCYrGwBpStra3Q6/WYO3cumpubUVtbC5vNhs8//xwlJSWorKxEUVERjEYjvv76a3i9XjQ0NKCiogJ79+5lzf3cbjcTHqmfmVQqZWvqdNBTHPQmPoD0xEhP+wD6HNJnLDs7G/v374fRaIRcLkdtbS3GjRuHU089FR9++CFefPFFrFq1CqNHj0Z2djZisRja29uxb9++BD/1SZMm4fLLL0dDQwMeeeQRRCIRqFQqXHnllQiHw9iyZQsAoKSkBDKZDHq9Hi6Xi+1t3G43qqurUVFRAa1WC4/Hg5qaGkSjUajVaowZMwYqlQr79u1L8P7u7OzE/v37kZOTw+y+eFtK2vOn68DqiI9SL730UlYqsnr16m4TZkNDA44//nhMmTIF8+bNwy233ILJkycf9YAFgoGiNxkh6SwV6i/4Zn5erxd2ux319fXYvn07Pv30U7z33nvYuHEj6urqEi5cWVlZKCsrw8SJEzF27Fg2oQ7lxXSmnvTz2V280AyAddcGuqpMNm3aBLvdDoVCgaysLOzbtw8//vgjOjs74fV60dzcjK1bt2Lv3r2or69nv6PJZGIT5Ntvv401a9ZAJpOxhT81TpHJZN02VvwCgB4DHDjY4Muage7+WGq1mgmKtPjjG0mSd7MQHAcG2jxR93X+/8ke2zqdjnVcp7JGs9nMFu1msxkWi4V53nm9XjQ1NWHfvn2oq6tDNBpNsM6ghkAUL+nO/hmONDY2oq6uDlKpFLNmzerX15o6dSrmzZuHSCSCZ599tl9fSzDw0GEjHW7z/+czkai6yu/3sxv1B+js7ITdbofD4YDL5YLf72dzk1arhcViQWlpKYxGIxOYqXGXSqVi80smczTZZenMPiR42yu6Zif7ZJLHbXZ2NhOYf//73+P222/Hsccei7y8POTk5GDcuHE488wzsWLFCqxcuRKLFi1CPB7H888/j23btgEAxo8fDwBs7UNNBPPy8hCJRNjjSkpKoFar4XK5UFVVxQRms9mMCRMmoKysjDXw4rPk/X4/HA4H6uvr2WuQWA10JWfJZLKMyWTOZFuVZGu0ZJE52beY1pdKpRJff/019uzZA4VCgalTp2L+/Pl44IEHoFQqsWnTJlx33XWw2WwoLCxEPB7H9u3b8e6772Lbtm0oKCjAcccdh1GjRrHvPfvss8jLy8O5554LhUKBzs5OFpe8AEno9XqMHTsWarUa0WgUbrcbTqcTDocDdrsd7e3taGhowM6dO7Fr1y4AYKKi3W5PEJbTbZkxGGze+J4ger0ecrmcWWfodDrWqFMul8NisaCoqAjRaBQrV67E008/zQ6Avv32W3z//feQyWS45JJLmJhM74VEIkl4P6hSd8aMGaioqIBcLofH48GOHTsgk8lw3HHHsetqfX09PvroI2zcuBEOhwPTp0+HRCKBy+WCSqVCbm5uwu/U0dHB9lF+vz8h6SYd9BQHvYkPID0xwmd/8w3maU9C36fPXl1dHU488UQAwPvvv4/Ro0fj97//PUaOHIlIJIJdu3Zhw4YN+Prrr1FTU4NwOAyLxYJTTjkF1113HSoqKrB69WqsX78ekUgE5eXluPnmm+FyufDGG2/A7/fDarWisrKSrV+ArrgqLy+HVqtFJBLBzz//DKfTyQRmvV7PbHyAA370vAd0IBBgVTi89RT/76DKZAa6skkAMHPyZI455hhs3br1iAcmEKSb3mSEPPTQQ1ixYkWaRti3kBBJGze32w2XywW73Y7du3dj+/bt2LVrF1paWtjPWCwWaDQalJaWYurUqSgvL2ddcfkmbkOVTD3p5ycWEppp8qETesrCCAaDMBqNUCgU+PTTTwGAdT2mRTAAVFRUYM6cOZgyZQrKy8uhVqsRj8fx7rvv4qmnnsKmTZtwzjnnsIMWEojNZjNisRib2CORSEJDQvLCpFLS5MxXEi35WJJKpdBoNAnZsnz2i8hoTQ90GEDvC7+YI+j9p7J0akJJ2YP0fvLvK8VvKBRCW1sb5HI5NBoN/H5/QgdlQrz/Awv5I0+ePJktfPuTX//619iwYQOee+453HnnnQmZhGniLJ4AAQAASURBVILBC4nKfDUEwXvAk5clL/CRZVKyBQYA1mBu4sSJLFbcbjfrR6BSqaBSqRIymDP9+nE02WXpzj7sCZrDyWKJBPIff/wRALBo0SIsXLjwoM+RlZWFZcuWQSKR4MMPP8RHH32EKVOmMOHXYDCgs7OTiczjxo3Dzp074fV6oVKpUFlZCZvNhn379gHoio0RI0ZAJpPB6XSipaUlIYMtFWSFYDQa0dbWBqDrfeGbEac7viiJ5vrrr8dpp52Gyy+/PGNsvPgS91Q9OCjTndayFO+lpaV46KGHAAAXXXQRLBYLAODcc8/FzJkz8de//hXvvfcefvrpJwBdB0vjx4+HXC6H0+nE119/jU2bNuH888/Heeedh1deeQWNjY147733cOWVV8JoNKKjo4MdglBGIQlVBD2v1+tFMBhMyCokezeqJty1axcqKiqgVqsRCATg8XiYf2u67BGICy+8EBdffDH++c9/YsmSJRkTHzy8RZter4fD4WDXc61Wy+yTzGYzOjs7oVQqMXv2bHz33Xf49ttv8fPPP+P000/H+++/DwBYvHgx8vLyumXTU/N0Ep0p5iQSCQoLC5Gdnc163NhsNthsNuj1ekyYMAFtbW1ob29Hc3NzQhYq0DWvlZaWoq2tLSGb2WKxsGQvs9kMIH1CYXIcPPXUU/jFL36R0fHBJy6Rz7pCoUA4HGZ7RGryW1xcjIaGBnR0dGDhwoX4/PPP8fXXX0Oj0eCMM86AxWKBy+WC2+1m+5dYLIaOjg60tLSwuUUikaCiogKVlZUIhUL44IMP2Gc4Pz+fZc7X1NTA5/NBKpXCbDZDLpejoqICW7duRTQaRXNzM/u5nJychP1NUVER2tramFUgPTeJ1sk9jAalXcbdd9+Nd999F5s2bcLJJ5+M//3f/8XNN9/c12MTCNJKbzJCMnWxfriQWTxlArlcLrag3rVrF3766Sfs378/YdFDp8Tjx4/HtGnTMGLECJjN5mHViZ1OcidMmICtW7fiwQcf7PYYWvCkg2QPKolEwuI4Ho/D6XRCoVAgPz8fr776KgCgsrISH3zwAVpaWiCVSrFo0SKcc845CU1vCN5TWaVSYevWrYjH4ygoKGCbK7PZjEgkkuDJnZzFQyXOcrmc3fgsluTfKVlYpseR1Ua6N3DDHRKb+TL35CaUBInNlP3MW7vw1xvKcAwGgwmd5oGubA+5XJ5QbTIYhKKhwkBZZRBnn302ioqK0NjYiNdff535NA91hqqFF2X20Oee/2xTdjHNGVRaSt7KHo8Hfr+fVTWEQiEolUqUlJSwhk9k7bVnzx4m/tBmn7yXKYN5sFTA9LT2yOQ1SbJwmPx/PqOZrv1arZYddp988sm9fq0xY8bgww8/hMfjQTwex4YNGwAAY8eOxWeffYZ4PI7y8nJEo1EmKE+dOhUej4d9nZWVhdzcXLS3t6c8vODXMSRcaLVamEwmJlzG43F2KErPkQm9IjLZVoVEZn7NwEPiMo2Hsk7lcjl2794Nk8nUTZMoKSnBww8/jFtvvRXr1q3Dm2++idraWmzevBkqlQrXX3893G43Nm7ciH/9618oLCzE+eefjyeeeII1i6PXVavVCAaDLKM5lWWTRCKBXq9ne8hkwuEwamtr4Xa70dDQgKKiIiYc9fQzA81gsHlL/gzSXl2v1yMSibB/o9Eos29tb2/HVVddhffffx9NTU1Ys2YNgK6qhv/6r/9iB5rhcBgajQaBQIBZM9EBA4nMAJjHv16vh0qlgtPphMvlgsfjYfstyqD2er2ssmbkyJHsgIKSM1QqFTtko+emigje8nAgOVgcZGp88LaKpEfw/RYouSUSicBqtbJK9Hg8jgsvvBCfffYZ2tvbe9VguqSkBMXFxdBoNGhra0togGixWDBlyhQUFhaipaUFTU1NbB4YM2YMs3Ch3gBA156ZGkLW1taivr4eJpMJRqMRer0es2bNQltbG2KxGHJycqDVarF7924AYEJ/qhiJx+MDPu8ctsj8j3/8A3/605/w2WefYcqUKfjtb3+LRx99FNddd13Gl5cJBIdDbzJC0ikg9gVkT+B2u2Gz2ViJqd1ux/79+7Fz505UV1cnTKhA14XzmGOOwZw5czB+/HjWdXmwbND6ikw9yU1elPObO8rCIf+6srIyNpHOnDkTW7duRUtLC/Lz83HPPfegvLy8x9dxuVxYvXo1AGDKlCn44osvAACjR4+G0+lkWciRSARGo5HFBi2kgsEgNBoNOxkm8ZCaxCXPKZTpxsM3axpOsTcYoIxlWqAnC8zJJdOxWIw9lkRmXqimBSLFDv9coVCIbf4IITQPDAMtMisUCtxwww24++678dRTTw0bkTmTsw+PFFqD8IdLwIFqFT4jyePxwOfzsUor2sS7XK5u/uxutxtnnXUWZDIZdDodqqqqWKMmvtkbNYoaTAIzMDizy/jrfSq/Xb5HA/0/Eomwa7pWq+3V60SjUXzyyScAutYimzZtwp49e1hD6traWsjlcsyYMYNV3I4cORIGg4EJBLm5ubBarWhqamLjNRqN0Ol0LJHiYLESiUTYupn2DgdraDfQ9NZWJR2VmiS4UQUckLimpTUgfeZpLUtVlmeffTY7YEomJycHv/rVr3Dttdfiu+++w1//+ld8++23+Otf/4q3334bhYWFWLt2Lb744gtMmDCBvR6Jg0CXCEQ2KkajsddxyaNQKDBy5Ej8+OOPCfsrqjwU9A7eXzcWi8FsNsPj8bDDQ0pw4Q8wfT4fNm7ciFtvvRWbN2/G+vXrodFocNVVVzGbitGjR2Pnzp3sMxsMBqFUKtmBRigUQiwWQ11dHbuPR6fTsXmN7x9DB1FGoxFqtRqNjY0J2e5msxltbW2ssiIcDsPlcjFhlPZMgkPDN4FXqVQJFbPhcBhqtRperxc+nw8VFRWoqamB0+nEtm3bMH/+fGg0GuzZswf19fVwuVyIRqPQaDSsYblWq0UsFkNra2tCDGi1WowYMYI1ArXZbGhoaGDfp+oYiUSC7du3s/lNJpOxXlZZWVksKz4SiaCjo4MdaslkMqhUKsjlcjQ2NsLn87FrpVKpRDgcTugZQGS8yPz+++/j5ptvxurVqzF79mwAXWWLjz/+OF5++WVcffXV/TJIgSAd9CYjZDATi8VYMz+6SHZ2dqK9vR11dXXYuXNngjUGUVZWhjlz5mDOnDkYOXIkLBYL68I+WDZofUWmnvTTootvcgAgoTkbnaZqNBo0NjYCAObMmYNnnnkGAHDXXXcdVGBubW3F8uXL0dbWhry8PHR0dCAQCCAvL48tmktKShAIBCCRSJCVlZWQcSKXy5lgIJPJoNVqmQjOZwyQ0EwLA/r9SLwcbjE3WOltiTBfKs+L07TpJI81hULByuXj8Tj0ej37OVq0Ubd2ESP9h9frZU1NBkpkBoBf/epXuP/++/HNN9/gu+++S2jmNVTJ5OzDI4Gu6XyTPwDMtoKft5xOJwKBALPxIu9lPsPUbDbDZDKhrq4OPp8PgUAAWq2WbfB0Oh0TDcm7k7fKGEzXicGYXcaTbH/F30fNYWUyGUKhEPLz8+F0OrFhwwaMHj36oM8bjUbxzDPPYNeuXdBoNBg9ejTeeOMNAF0H4du3bwcAnHDCCaiurkYoFILRaMS4ceNQU1ODWCwGo9GIwsJC7Nu3D/F4HDqdDvn5+b0Wh+PxOBwOB4ADiSh85VUmiMyZbKvCe9DSGo+PF7lczppEAwcEaPp98vLyDvkaEokEM2fOxLHHHovzzjsPO3fuxNatW5k4HYvFsGfPHvZ89fX1ALr8wRUKBfPyJSuDI4FvTM2Xu2eKb/dggW+Mp1QqWcaywWBIaARLewvy83/11Vdx7bXX4vTTT+/2nDNnzsTOnTvR1NSErKwsOBwOZGVlwWazMUuw+vp6tqehKl4SgoPBYIJ3ON+cNhwOJ4iGRFFREaxWK9ra2uByuVBeXs4akpJvcygUYlV/goPDJ6XQfoFsMtRqNWKxGDQaDXw+HxwOByoqKmCz2VBbW4uqqioAXYdSM2bMYB7rXq8XHR0dTC8hDAYDSkpKYDQa2cEAn50skUhYP5pYLJagrchkMuTk5CAvLw8SiQRer5dl0RcWFrLG6PRvNBrtdqiuVCpZjyTqfxMOhxPmmnSsb3otMm/evBnnn38+Hn30UZxzzjnsfqPRiF//+td4+OGHceWVV2bE5CkQ9AWZnBFyNFDmkN1uR1NTE1paWpjITBfYPXv2JGxUga7F8qRJk3DCCSdg6tSpyM/PZ+VB4nOfWfCZQWRdQPep1Wr4/X72tc1mYxOw1+tl96dqdEn3v/POO3jllVfg8/mg1+tRVlYGh8MBnU6HnJwcxGIxmEwmdrqan5/PFl/AgRJoapZBDVJ0Oh30ej0CgQCzRqDFFGUUiKZ+QxsqcwPQzW6Dz3aORCKQSqWskkSn00EikcDhcCAWiyEUCrEYEfHSf3z77beIRqMoKioaUKuovLw8XHDBBVi1ahWeeuoprFy5csBeO11kcvbh4cL7L/MCMzXgIyKRCOx2O2us5nA40N7ezjKQgsEgRowYgRNPPBFGoxHffPMNgK69iUajQW1tLZxOJ7PkIYGZMlLJKkNcH/qfZKGQ7qP1I91HwqJWq02I+VdffRU5OTk444wzUr5ftbW1+Nvf/sY8dxctWoS1a9ciFouhpKQE7e3tkEgkmD59OhMWFAoFjj32WDgcDni9XkilUpSVlcHtdjPRqrCwsNfxEYvF4HA42PxDoiUdkGdKdU0m26rwTbsUCgUT7ChBwmAwwO/3w2g0orOzk3kY0zXkzTffxIUXXnjIjM94PI7Vq1czO5acnBzWBHHKlCn46KOP2P/pcGLkyJEADhzeHU0PArp+S6XShOaFmZTxPhiQy+VsPlEoFLBYLEyEMxgMCQkK4XAYZrMZHR0daG9vx+rVq3HppZeyzE9i5MiRyM3NRVtbGzQaDWssTc07FQoF8+ItLy+HTCaDy+Vi31MoFExcpmxmmu/4Kj25XA61Wo28vDwmJJM/t8PhYL1HOjo6YLFYEIvF2L5LxMehIbE1Ho8zQVmlUjGhme73+/2w2+0wGo04/vjjUVNTg+bmZrS3t7OqhWSys7OZsOz1euFwOFhMAGD9HagSRiKRsD2wRCKBwWCAwWCAUqlEMBjsZkmaDB2G8/shfo9PVcBWq5XNN/z1JB30WmQ+5phjUi5oAeC+++7Dfffd12eDEggygUzNUj0aKHu5tbUVDQ0NaGxsRGtrK1wuF9ra2lBTU8O8dHlycnIwe/ZszJ8/H+Xl5cjKyoJGoxGbswxFJpMldNXlMz+TFyZNTU0oKytDdXU1Pv/8cyxYsAAff/wx7r33Xpx//vmYPHkyFAoFmpubsXXrVnz55ZdsLsjJyUFRURGArsyY0tJStoEnewyz2QypVMqaLFFZMv9/KkX0er3MdoUWBgRldwzHjPnhSrLdBp/JTPdTJrPT6YRGo2FZLMnWKkJo7h8+++wzAMCCBQsG/O/761//GqtWrcLq1atx2223YeLEiYf18z6fD8899xx++uknTJo0Cddff/0RlT4PFJmcfdhbqFKBhGU+w1Or1SZk99FhuNvtht1uh81mQ3t7OxOaacPW1NSEyspKtLa2Mv/UGTNmsEN0AGxTLgTm9EFrEdog0wacP1jU6XSIx+PQarXMpsDn86G8vBx79uzBU089hXfeeQfz5s1DSUkJYrEYmpqa8MMPPzAhUKlUYuLEiaipqQHQtU4hkXLq1KmQSCRobW2FVCrFjBkzoFKp2GMLCwtZ42Ogq0Fyb+IjFovB7/ezQ3Ogy1aOsm759UsmkMlJNMkiMx0Q0eGyyWRCW1sbW0dS0oTT6YROp0N1dTUuvfRS3HrrrZg9e3a3Na/dbscXX3yB//u//2MHEqeddhpeeOEFuFwujBgxAg0NDejs7ITFYoFer8fu3buhUCgwfvz4BK/dZFsOEhVp3D0RDoexf/9+AEgQRTUaDVu3ZEqsZDp0EEHWOiqVCrm5uWhuboZSqUywy6A1pMViQWdnJ/bt24eXX34ZF154YYIXtkQiQXl5Odra2lI2U6P7LBYL6w9A0CFZsn8yLzrzvsvhcBg2mw1arRYGgwHFxcXYvXs32tvbWeY8zYUUb16vF3q9XmS7HwKJRAKVSoVAIMCSUoLBILRaLbOZoMcFAgF4vV54vV4UFRWhsrISgUCA9Xqgn6cKKI/Hg46ODlbVAHR9fukwO9kvnH6O4iMYDCb8LKFQKKBUKhOswihu+X+Te9uQCE3XD41Gwx6Trn2zuIIJBMMAyl52OBxoaGhAQ0MD6uvr4XQ62X27d+/ulr0sk8lQUVGB448/HscccwwKCwthMpm6bQYFmQWJcACYQEfinFKpZJliBoOBZRDL5XLs2bMHo0ePRmVlJXbu3IkXX3wx5fPr9Xrk5uYiOzsbUqkUOTk5rJzUbDbDYDAwL0ypVMqyovV6PSwWS7fGP/wmgGKVfo9khF/d8ITihEQKEiwkEgkrRaQGYJQJQp2kCSE09z2ffvopAODEE08c8NeeOXMmzjrrLKxbtw433ngjvvjii15vunbu3IkLLriACVMAsGrVKnzxxRcZ03gpmUzOPuwNdG3nG3rx4lsoFILf72cCJNli8F3cm5qamJUST3NzM7PFmDx5MmQyGWvgptPpoFQqEwRmuonrwcBC7zOVA1P2IWWXUbaZxWJBIBBgJepKpRIjR45EY2MjamtrUVtb2+25JRIJ6w9CooLZbIZGo4FSqcSECRPYHEGezGazGbt372aZbbm5uUwwBnDQbFhqmO33+xPWzlKpFBaLhZXPk6WLUqnMGFEok5NokudsACw7lBp5UdJETk4O2tvbUVRUhIaGBmRnZyMajWLnzp249tprYTQaMWrUKBiNRgSDQTQ3NzNxF+i6Xk6YMAG1tbWQSCQoLCxETk4O9u7dC6VSiVmzZjHf7uOOO475qAJdhxcUtzabDZ2dnQnXJpVKBY1Gw+KPbB18Ph86OztZ1itVF1LjavobZEqsZDoymYyt+Uhsps9ya2srNBoNIpFIQgao3W6HxWJh/YeeeeYZnHTSSZg8eTLLjKaDJtrr8oIkoVQq4fP5WEKNRqNJaExOr0eZzHSdoCxaiUQCl8uFQCCA6upqjB49GiaTCSUlJaivr4fNZoNGo2FCucvlgtFoRDweh8/nYxV8gp4he8ZIJMIEe2rGChwQmOlgMxgMsqopgj6LVFHFQ/7fvOcxNf5Uq9Usy5i3beGfV61Ws+uEVCpFOBxmcyQ9FyXVEMn7YN6aBThwYE9fJ2fqDxSSuNixCwR9hsvlgslkgtPpTJlllA5owWyz2VBfX4/9+/ejsbERgUAAra2t2LdvH/Mb4zEYDDjmmGNwwgknYOzYscjNzYXBYBAbs6NkoGIkuaESnfJT11qXy4VwOIzW1lY2qe3atYt1OFapVNi/fz/a29sRiUTYfTqdjmX3mEwmFBQUQK1WQ6vVwmKxsA0jTZg0QfILaBILAXQrlaZTZ/qaBHH6Xejnh3pGcyZeSzIJ8nOlBTxfjkhltcABXzbamGZKufJQwO12w2KxIBqNYt++fRgxYsSAj2H//v2orKyEz+fDI488gttuu+2QP/PSSy/hpptugs/nQ25uLpYsWYIXXngB7e3tuPTSS7Fq1aoBGPnhEwgEcPHFF6OhoQFLlizBTTfddMifyZTrCP95Bbo2foFAgG2CeKLRKPx+P+sR0dTUxEpXgS7xZu7cudi+fTva2trYIWc8HseoUaMwZswY1m2dNujUcIn8nmnzJxjYGCFxBABrpBUOh+H3+1nGGG3kfT4f2tra4PP50NHRwbIAPR5PQl8JygwzGAxsvUDrEblcjpycHCbMAF3Zp9OmTUMsFkN9fT0TpMeNGwe1Wo3W1la43W7I5XKMHDmy23wRi8Xgdrvh8/kSNvvk863VapmgSGsZyjQbzHPPQMYJ2ZVoNBo0NTUhHA7D6XSy9z4ej6O6uhqRSATNzc2sv0draysikQg6Ozvh8XgSPNt5LBYLtFotyzyUSqUYM2YMe7xOp8P48eNZU8Fp06ahtLSUHUioVCqMGzcOLpcLnZ2d3Roa90Za0Wg0MJlM7DVzc3OZbQYJ04ONdM43dO0gSGSz2WxMoPV6vfB4PHC73XA4HAgGg3A6nQn2AtnZ2XC5XPB4PJBKpRg5ciSzqKDrikqlgsFgYCJvbm5uQmP1nqCEH6/Xy/YzRqMRTqcTdrsdCoUCEydOhFQqhdPpRG1tLaLRKGQyGasOVSgU0Ov1LEs3k6oQekM6YoTmHfpc0nWEklNof8w3iKQ5JvmzTJXBdPjA21HSeoNPruKhQyXa65LoTT7eqcRjfu9Mvwt/gEGPo30xLy4DYD2z0oFIRRQIhjCRSARutxvNzc1obGxEY2MjWlpaEAgE0NzcjOrq6m6dcSUSCUpKSjBv3jzMnj0bpaWlsFqtLNtVMDigxUhyd1m66fV6uN1u5OTkMIuUsWPHorm5mS2+zGZzt8YmcrkcZrMZ2dnZTFw2mUxssUObd15YTt5YkfDNj5V+jiZmEgT5100uGxKZqcMXyvShQxEqTyPBmeC71NP9QmjuG9avX49oNIry8vK0CMwAUFpaiscffxw33XQTbr/9duh0Otx0000p39/29nYsW7aMicgnnXQSVq1ahfz8fCxevBgLFizAK6+8guuvvx7z588f6F/lkGRy9mFP8PYYBGX1UVYrAFYKTyKizWZDS0sLGhsb0dDQwOaFSZMm4cwzz8S///1vtLW1Qa1WIzs7G/F4HCUlJQkCM81PQmDOHPimROFwGEajEXa7nXlNRqPRhDLf/Px8dHR0QKlUwu12w+v19uhFSiKvXq+HQqGA0Whk2WTxeBxqtRojRoyAXq/H/v37mSAll8sxYsQI+Hw+NDc3s7UJCUcENSQm71X6WY1G0635NYkWAFiZtZhzeg9530ajUeY/Txmp9L4VFRWhsbERBQUFaGtrY/0/AoEAO1wIBoMIhUJsDSCXy1k/EADMD5f6OABAcXExNBoN83KfOnUqpFIp826m6wqfTa/RaJCTk8MONshCwe/3s8QOfgwkBNFrZmVlsZiiA3HB4UHVKlTFRnOO1WplfrsE2ec4nU7I5XJm2RcKhVjDNqVSiby8PPh8PpYtTWtHSqahwy0g0Xedt0sh0ZK3QTGbzQiFQqyRbXZ2NjweDztMsVgsMJlMqKysxN69e+Hz+ZgoS0lBZP2gUCiEP/Mh4G0zgK5DJK/Xy6qbaF6huKH3TqlUdjtASr6OUyYz7Uf4gy2lUskOHmmOo1igg7RU41QqleyQqSeLjJ7gG4emu2eWUIwEgiFIPB5HMBhkHU6bmppgt9vR3NzMBOYdO3Z08wPSaDSYNGkS5s+fj8mTJ6OgoABGoxFqtVoskAchtKDt6b0ju4y8vDzW6XjEiBHIyclhZaDUTIBOz8nbknyXKWuZFu4kLlO2cvKkTFlH/GRJwjdt7uiElyZV/rSW/xnB8IZigI8Ps9kMh8ORIGoR0WiUxaPYxB096bTK4Lnhhhuwc+dOPPXUU7jllluwZs0aXHTRRRg3bhxUKhVaWlrwxRdfYNWqVXA4HJBKpVi+fDn+8Ic/sAX4vHnzcO211+K5557DXXfdhS+++CKtv9NQINkegzKA+Ca0ZO1BG3yXy4X29nY0Njairq4ObW1trLz14osvxtSpU/HBBx9g+/btkMlkGDFiBGQyGfLz8zF+/Hjs2bMHAFjVDW3ySGBWqVRCYE4zfDMmyuwCDlzHqTeDVCqFw+FAQUEBXC4XVCoVjEYjIpEIEw6BLtGGMstoPcJnNZPYTKXp1LSNSpoVCkVCcyeFQoG8vDxotVqWgR8MBuH3+9kaRS6Xs/VP8vqKRCBgaGQwp4PkgwiPx8NENRJp9Ho9CgsL0dTUhLy8PFgsFjQ0NLBswmAwyDLKaR1LsUKeubS3kUqlyM7OZnY6QJc4WVBQwHzwqek02XaQHYvRaGQCFWVS8+JRqvUGfV+lUsFkMjERiRpeing5Msj7lqoIaB1IMURCM73nMpmMNfzU6XTsoJPmKnqfyQKQDi3pekPiM71OqmQsOjRQq9UIh8MIBAKIx+NQKpUso9dut8NsNqO9vR1OpxMGgwE//fQTE5bJDoS8mL1eL4vTQCDAml8KekYul0OpVLKmrLy4bDAYEAgE2GeVhF0AKfegtI/gq3LpM61Wq6HT6dhhaTgchs/n67GvHXkw0x6ahOhUmc2HgsZEhxzpvo4IkVkgGGLQ5Gq329Ha2sqEZfJ9IosMXmCWSCQoKirCzJkzMWfOHJSXlyM7O1t0sB0C8E11gMRsZqBLaPZ4PMjNzYXb7WYezakWLbRxp8072VnwN1q40SRMkxzvUdYTlOEBoMcyR4JeI51s27YNN998M8LhMG655RZcfvnlWLduHf74xz8iOzsbq1atgsViwTXXXIOamhqcfPLJuPfee9M65qECH8N8hojH4+kmMIdCIea/RptN3rdccGS89957AIBTTjklreOQSCT4n//5H5SUlOCee+7Bhg0bsGHDhpSPnTJlCp555hnMmTOn2/fuvvtuvPDCC/jyyy+xZcsWTJs2rb+HPmRJLjWlDXnyNTsej7NmO3QQXldXh7q6OnR0dDDrgng8jsrKSqhUKnz++ecAgDFjxkAul8NisWDSpEksg1mlUkGv1zPBkReYxWc+/ZBYR76TRqMRoVCINQKk0ma1Wo2srCz4fD5IpVKYTCaWGcqLciQc8pmG9H+1Ws36UvBNBmkjzle4UCWWXC6Hz+dLyFjmx86XyfOQoMDPR6La6sig5Ah636ihr06nS/C5NRgMqKioQE1NDWQyGUaOHAkAaGtr61HU4bFYLOwaQZmDBoMBFoslQTyk70ulUuafSg226dAiFfw6mNYdfLzS7wEcEEjFIdjRQ4kwZMVDQqLX603wuKXPqEajYVnvZJUgk8nY9+RyOTuQouZvZBlIYuShehXRdY8yp8mTm66FdBDhcDigUCiYVYvL5WKHpXRoK5PJEAgEWIySpYbg4NAcEw6H2SEjHSKRjQUdBPTm70kxwh860MFkKusU2uPS46lCl6p7U+17k5O2eHjxO1WWdboRIrNAMESgxQoJzG1tbXA4HKx0qLOzE62trQlNTYCuRda4ceMwY8YMTJkyBaWlpTCbzaKkfIhxsMWP0WhkzSsMBgOCwSBbzPClYVR+Qxs4WqBRuRYvLqd6fcoe4S0MgMRGL6k2dfxz0kI9Exbi999/P1555RUUFxdj3rx5uPzyy/HEE09gw4YN+OSTT/Dcc89h3rx5yMnJwQsvvICLLroIjY2NKCoqSvfQBw20AEvOJOBP+GnTSZn3QNdikjYVlIVGMcxnNGdCHA1Gdu/ejV27dkEul2PRokXpHg4kEgl+97vf4aKLLsLKlSuxceNG7N27F+FwGNnZ2ZgwYQLOOeccLFq0qMdrYVFREc4991ysWbMGf/vb3/D8888P8G8xNEhVMprqcxaJRJg/Znt7OxoaGrB3717U1dWhqamJbbKJn376iTXtqqioYPPPhAkTsHfvXgAHBGYSDKn0VAjMmYVcLmfZzPF4HCaTidlmkBhM61TK5KMmgVqtNuG5eOGOFwOBA4fstD7hN+r0c3zFV7LdEj2OSqJ7slqhQxV+/hFr6COHDgqoqaJer2fXFGrMSnsbiUSCyZMno6WlBa2trQCAgoICAAd8eflyc1pTUK8G4ECzRo1GwwREPnOZ4oq3JuB7hFAWYk8WcfQ7AQfWNLwIpVAooNFoRLz0MbRPCQQCCIVC0Ov17LPOv7ckMFPvF7oGkYhI84harWZiM9lkAGB7ot5AWdMejwexWAx6vR6dnZ0IhUKsQR351tN1KxQKISsrCx6Ph2UuU+M/ytQX89uhofddIpEk+K/zTRn5hCk+meVQJM8dtHdOZZ9yMCGa91fOhGSqo0GIzALBEIAWuKFQCA6Hg01YdCJrs9nQ0dHBBLzRo0ezLrWjR4/GscceizFjxiAvL481bBMMPeiUFUBCZg8t4qlEh28ckLyBozKy5MkzOYMZOOAllZzBfLAyHj7LNBNPZnmeeeYZ5OTkMNHS4XAgKysLSqUS8+fPx3PPPQeNRoN58+YBAObOnYtvv/0WZ599drfnosYPxMGyY4YTyaWnyfAbN8pSNplMzPOMMtZoEcn7nFG36UyOsUzl3XffBQAcf/zxMJlMaR7NAUpKSnDnnXce8c/feOONWLNmDdasWYMnn3ySZcALegffkI02WcnriXg8zkp/HQ4HWlpasG/fPuzevRv79u1Da2srm5tOOukkfPXVVywbzev1Ijs7m23ox4wZg+bmZgAHBGatVpvgaygE5syDYoPWrVqtlpUv85YmtCahTHS9Xs826cCBtUSycJwsKtMaJXl9wY+HREL6Wb7smB7Dw/eI4BsYk3glODqUSiXL7gsEArBYLMzWjX+/qaG1xWJBUVEROjs70dTUhFAoxITgVIkJarWa2apotVp2jeCzE+k6QsIk75lKsZK8vj3YeiUZWleLfjf9h0QiYVWXfr+f/d/n80GpVDJrQBKYee9bulbwGcyUFU2fcT4LvrdQRjyJyWSHodVqWYNCEpwphuk1gsEgDAZDwjipGaXg0JDQnKoHEG9T0dvPMZ8Zz9+AA3NEKvs+gt8/8/PUUEBc1QSCQQ4vMLvd7oRycYlEAo/H061sTKVSYezYsaisrMTEiRNRUlICk8l0UP9eweCHNnbkhUj3UQYPCcipoJNVygzgrTGSu98StOGjSZYXuPkx8d5Wgyn+cnJyAAB33XUXLrroIrjdbpZlQ5kKqe5LxUMPPYQVK1YMzMAHEXwzHAAJiz+5XJ7QQBLoWiy63e6Ehqa0yaBGY7RYp8x6IUAdPu+88w4AYPHixWkeSd8yb948jBgxAnV1dXjnnXdw/vnnp3tIg4ZkgTmVVUA0GoXX64XP50NHRwcaGxtRXV2Nmpoa1NXVsU3flClTcMMNN2Dv3r345JNPmOCkUChYQzbqHQCAZSDq9Xq26aeb+HxnJnw2MwknZJVB6wvKXqZyYj4bla9GSd6k8/9PXpvwpfIH29QnNyg+FCRAinjrO8hSgg6JLRYLq3CgCjzKVKVri0qlwujRoxMy0/lqKFr/8sIun3XIVz/Q4QP5ulMlFD1XcgPr5IONVCQfeggGBrK8oGQOg8GAcDjMLDFSxQovMtPhA1nqAF3xeaSWOBRv4XCYicx8UoROp0MgEEAwGGQN1js7OxOaXhOiR83hQ59rvgKFzx5OFpr5+Sa5wpafl3gLHB5+PuI//0P5GiBEZoFgkEMTo8/nYxdFqVSKSCQCt9vNyjEow1KhUKC4uBhjx47FqFGjkJOTIxr7DSN4P0TK4pTJZCyOUmUd89lBtDE7mLicDJWbJpceDbYJ9sknn8Srr77Kvr7zzjuxZcsWtLW14aGHHoLdbmf+Xl6vlzUc4u8rLS1N+dx33HEHli1bxr52uVwoKSnpx99mcMD7MspkMnadAxJ9uykO4/E4HA4HgANlcKFQiHUI12g0TGjms6EGUxymG4fDwRrjDTWRWSqV4uKLL8bDDz+M1atXC5H5MEjO5uQ/UyRAUwOctrY27N+/H7t27UJ1dTXLRjYajbjxxhuxYMECdHR04LnnngMA5ObmQi6Xo6ioiGWB8Yd3dONL23uy6RBkBiTKkkAYCoVYMz23283WJmQvwGcw88+RvHGn+0kY4tcpNJ/05e/Ar4/EPNK30AExlbeThzcdJlPDLhJ/STDixV++1wcPn61OTSMpq5gsDbRaLRONkuOPL2nnG4AJMheyYSGLDNoPUezwh1nAAZGZBGY+250Xm48UErelUin0ej08Hg+0Wi08Hg87VKX+AnV1dQAAs9nMREy+OlVw+EilUqjV6gT7Ct6aMdWBYW8sNIZydvLhIERmgWAQQ75etAinCdTn87FJyGQysckzLy8PRUVFKCkpQVFREeuKLBhe0MKKDiDi8TjbKCV30k21iTuY79yhXncwT7RLly7F0qVL2ddr167F9u3bsWrVKgBd/ubt7e0IBAJYv349pk+fjunTp+Pdd9/F4sWLsWHDBjz22GMpn5vKgQWJULYbbfBSLe4oA59KHgmz2QyNRgOv14u2tjaW6aTT6ViHaT5bbjDH5kCybt06hMNhjB8/HmPGjEn3cPocEpnfffddOBwOmM3mdA8p4+G7sSd/lmKxGHw+HwKBANxuN1paWrBnzx4mMJM10Ny5c7F06VKYTCb4fD6sWLECLpcLer0eFosFer0eJpOJZTNLpVLWhI0yDXmRWXyeMx/ysw0Gg4hGo/D7/azJH3l7Uxl7qqxi3r+St7sADlS98HMG/39eBOAzT5MPR5J/jn9tEWP9DwnNVN5O1gAqlQp2u531CqFeIrwg3FMmIh8zJB7S69BhVbJnKq0zxIHC4IcOKlUqFXufe7MXpnjpq6pfiUTCKhypuZ/P52OHJ+QlzfsHU5IQb9Eh9vFHB11DlEplSg/35J4wfCYzn908XMXknhAis0AwiOG7WFP5DC2w+FPXwsJCaLVaZGVloaioCFarlZWCCYYnfKYPnaSnyjSmf6lsUEyiB1i+fDnUajVOPPFEAMCnn36KZcuW4YQTToBGo8HatWthtVrx0ksvYc6cOVi4cGGPmcyC1NChBp8lCRzIJKEDEgDsceSz19HRgeLiYtYIrKmpCcFgEF6vlzUS4heJwhexd6xZswZAlxg7FJk0aRImTJiAqqoqrFu3DldddVW6h5Tx0KE2CTj8/T6fD8FgEHa7nQnMO3fuRHV1NQKBABQKBW666SacdtppzNt++fLlqKmpYZVXarUaRUVFUCgUKCgogFKpZJUilJnG22MM5Tlq27ZtuPnmmxEOh3HLLbfg8ssvZ9/78ccfcdZZZ6G0tBRFRUV45ZVX0jjS3kHrCkqG4MVBEgL5tUjyITgvBPSmVPlw+j3wrytIL2RF4vP5WHxYrVaEw2F4PJ4Ef+Rkb91UCRN0n1qthkajYQIT+bISfFWEiIOhBYmLKpUqIW56qubsj/dfJpMxP3pqLOr1eqHVaqFWq9n+jOZVWrdaLBamAQgP+L6B91cWHD2SuDByEQj6DJfLBZPJBKfTCaPR2K+vFY/HWfdttVrNmv3Z7Xb4/X6EQiGW4azVamG1WpGVlQW9Xi8uoGlkIGPkcKDFOe+bnLwwFwwcmRon6YKaK/FNNCgbhWKTGp/GYjF4PB7E43GYTCbk5ORAIpEgGo2ioaGBWcVQExc+A1LE+cGx2WzIz89HNBpFdXX1kMxkBoD7778f99xzD0477TS8//776R7OETMQ1xHy1AWQ8BkKh8PdBObdu3fj559/xs8//4xgMAiz2Yz77rsPFRUVAIAffvgBf/7zn2Gz2SCTyTBq1CiYTCaMHDkSer0eBQUF0Gq1MBgMMBgMUKlUCdnLw+Hze9555+FPf/oTiouLMW/ePGzcuJF9b82aNQiHwwnC86HIpLmGhJ5kkfBw4LNVh3Opcl+TKXFCjUN5uywA3TyYk0Vm/pCBspEpOSfZcoAs3kRFxOGRKTEyGIlGo+wAJRaLsWbgybGpVqtZA1QAbC3bX/T1oaaIkeGDSNsRCAYxfBYHlRKqVCrE43F26qrX62E2m1lDHLFgEqRCnOAKMhnKPguHwyxjORaLwev1JmQxUkYIde52Op3MKkgmk6GgoAB1dXWsrBY4IGxEIhFhm3EIXnvtNUSjUUyfPn3ICswAcMEFF+Cee+7BJ598go6ODmRlZaV7SBkLrT14ywHaMPMCc21tLfbu3Yu6ujoEg0FYrVY8/vjjKCwsxL59+7Bq1Sps2LABQNc6pqysDBaLBaWlpbBYLMjJyWHiMpUN0wHRcPrcPvPMM8jJyWEWaTxVVVX4+uuv8fzzz+OOO+7A6aef3u3nSbwgyK4kEyAhkDLzkrOUD2ZbkdyMSTA0IVsLsg0gsZn6NvR2DZsqY5W3zxAIBhKZTMYaEwaDQWg0GuYXTEk/dGDGV3poNJp+Hdf999+PV155hR1q8iLzjh07sGLFisM61BQMH4TILBAMUpJ942ijp9Fo2Am9VqtlJTdi0SQQCAYzlF0UiURY1hI1FAuFQkyIJm9rjUYDv98Pj8eDQCCAnJwc6HQ61mCFBAsqR6RNp7hW9sw//vEPAMBll12W5pH0L2PHjsWUKVOwbds2vPnmm7j22mvTPaSMh7cy8Hq9CAaDcLlc6OzsRHNzMxoaGuDxeOB0OgEAl1xyCb799lts2LAB27dvZ8+TlZWFgoIC5ObmIj8/H7m5uTCbzTCZTDAajcweY7hWH+Tk5AAA7rrrLlx00UUJ35s8eTIuueQSFBUV4eSTT8aiRYu6Xc8eeughrFixYsDGezQI0VjQE9TIlywFkjPgkw8kevJRFY37BJkC35iQ/OhTXf/4Crz+vj4O5UNNQf8iRGaBYJCSXApGjS+kUinr0K1SqfrNR0ogEAgGGt4bHDhwwMYftJEYTf+nRqjNzc0J3nXkwUxZIWTFIcqrU/PDDz/ghx9+gFKpHBaZKxdeeCG2bduGf/3rX0JkPgj0WaTPTyQSQTgcRiAQgNPphM1mg8vlgtvtThB+nn766YTnMZlMyMvLg8ViQWFhIbKzs5GdnQ2TyQSTyQStVsua8wwH72XiySefxKuvvsq+vvPOO7Flyxa0tbXhoYceSnjsqaeeykqQR40ahY6ODuTm5iY85o477sCyZcvY1y6XCyUlJf34GwgE/Qf1FxG+tIKhglQqhVqtZn1H+P3+QM97w+lQU9C3iGM7gWCQwjc3CYVC0Gg0LNOHykmHUwmpQCAYHlD2ER2i0Y3vGC+Xy1lGCHm3AmCdxCUSCQwGAwCwxTvvRy7ozvPPPw8AOOecc5CdnZ3m0fQ/F154IQDgs88+Q1tbW7+9zrZt2zBv3jzMmjULL7/8MgBg3bp1mDlzJs444wx0dnYiHo/j6quvxvz58zNuw8Y3zQyHwwgGgwiFQnC73QgEAnC5XCyTyWAwYPLkyVCr1VAoFDAYDCgoKEBlZSXGjh2LMWPGYNy4cRg1ahRKS0tZRrPJZIJOp4NWq4VGoxlWh+dLly7Fhg0b2M3n82H79u3s88izZMkS7Nq1C8FgEPv370/5OVWpVDAajQk3gUAgEGQetN5NboLaXzz55JOYN28eu73//vv44x//iLa2NixdujThsaeeeioqKythNBrZoWYyd9xxB5xOJ7vV19f36/gFmYMQmQWCQQrvJUaiCDUAEN7LAoFgqEMZTJTVyDd6ksvlUCgUrKJDo9HAaDQykcpisTDhizIx6ZqZ3GhFANjtdiaADpes3lGjRuHYY49FLBbD2rVr++11yPPw66+/xt/+9jcAwBNPPIENGzbglltuwXPPPYcNGzYgJycH69evx86dO9HY2Nhv4zkSKHuJspmpRJa80/V6PbRaLbO6GTt2LMaPH48xY8agoqICFRUVqKysxJgxYzBq1CgUFhaioKAAVquVHZqLtU0Xy5cvR01NDU488UQsWLAA0WgUt956Kzo7O7F8+XJcc801WLhwIW6//XZhASAQCASCXiMONQV9hbDLEAgGKQqFgmXkkcAy3DdfAoFg+EH2GOSpzDeJUigUzF4jGo1CKpUyaw2y1yBrDXH97JnnnnsOXq8XkyZNwoknnpju4QwYF154Ib7//nv861//wo033tgvr5HseehwOJCVlQWlUon58+fjueeeg0ajwbx58wAAc+fOxbfffouzzz6723Oly/+QPnfkiUoeqdSYyO/3o7S0FG63m92vVquh0Wig1+uh1+thNBqh0+lgMBhYYy+6CQubA/z000/d7vvTn/4EALBarfjqq68GekgCgUAgGIIsX74carWarfs+/fRT3HbbbbjzzjvZoWY8HheHmoJuCJFZIBikHE4XZYFAIBjqUBYzDwlfJDLL5fIEMZo/nKOfFQvlREKhEJ588kkAwH//938PK7Hv/PPPx+9+9zt8+eWX2LdvH8rKyvr8NZI9D91uN/R6PQBAp9PB4/GkvC8V6fI/pM8TXwWgVCoRDoeRm5sLh8OBUCgEg8EAuVwOpVLJRGa1Wp3QpJhv6icOzwUCgUAgSA/iUFNwpIidlEAgEPSScDiM2bNns6+TfTMFAkFmQY0ClUplQtOw5AxJ8rqjm+AA//jHP9Dc3IzCwsJujV+GOiNGjMBJJ52EeDyOv//9733ynIfyPNTr9fB6vQAAr9cLo9GY8r5UpMv/kCoH6LOjUqmgVquh0+mgVquRm5uL4uJilJaWorS0FMXFxcwSIz8/H9nZ2SyTWafTDTvfZYFAIBAIBIKhghCZBQKBoBd0dnbitNNOw969e9l9yb6ZAoEgM+GbBdKNsiUVCgUTm0Wz1ES8Xi/uv/9+AMCdd97JrEWGE2ST8b//+78IhUJH/XyH8jy0WCxob29HIBDA+vXrMX36dEyfPh1ffvklAGDDhg2YNm1ayudOp/8hf0ijVCqh0+lgNBqRlZWF3Nxc5OXlIS8vD7m5ucjNzUV2djZMJhP0ej10Oh30er0QlwUCgSANiCQagUDQlwiRWSAQCHqB1+vFX/7yF4wfPx4Auvlmbtq0KeXPBYNBuFyuhJtAIEgf1BiQspkVCgW7CXErkSeeeAItLS0YOXLksGn4l8x//dd/oaCgAG1tbXjttdf6/PlTNXJbtmwZTjjhBDz66KO46aabcPzxx8Nms2HOnDkoLy9HaWlpn4/jaKCmmzKZjH2m1Go181qmm8FgSGjkR5nLarVaWGMIBAJBGhBJNAKBoK8RnswCAYAff/wRZ511FkpLS1FUVIRXXnkF69atwx//+EdkZ2dj1apVsFqt6R6mII2UlJSgpKSEfZ3pHpkCgeDgkKAlhK3U7N69Gw888AAA4IEHHhiWWcxAV5Pdm266CXfffTdWrFiBCy+8EHJ53y2fU3ke/vKXv8Qvf/nLhPteeOGFPnvNvoYEZvq/XC5HPB4HkPg5o8eRf7r47AkEAkF6oSSapUuXAuieRNOTyJyuRrMCgSDzEZnMAgGAHTt2YMWKFfjPf/6DV155BYA4xR3upPLN5Ml0j0yBQCA4UmKxGK6//noEAgGcfPLJuPjii9M9pLTym9/8BtnZ2aipqcFLL72U7uFkHGQ1Q9UB5MlMN41Gw5r8KRQKkbUsEAgEGUJJSQkmT57Mvj6cJBqTycRufCKOQCAY3giRWSAAUFVVhRdffBHHH3883n//fWGFIOjmm3n66acnfD+Vb2Yq0umRKRgYrrrqKvznP/8B0N3HLh6P4+qrr8b8+fNFRrtg0LBixQp89tlnUKvVePbZZ4e9IGgwGPCHP/wBQJc3dUdHR5pHlJlQFjN/o8zl4R5DAoFAkAmIJBqBQNDfCLsMgQDA5MmTcckll6CoqAgnn3wyXnvtNWGFIDgk5Jup0Wiwdu3adA9HkAZ27NiBdevW4aqrrgJwoALik08+wXPPPYd58+YhJycHL7zwAi666CI0NjaiqKgovYMWCA7CypUrcd999wEA/v73v6O8vDzNI8oMbrzxRjz//PPYuXMnlixZgjfffJNZRAgEAoFAMBhYunQps8ZIxeEk0ahUqv4apkAgGMSITGbBsCT5FFepVKKyshJGoxGjRo2CWq0Wp7iClFDGKtDlm/nNN9/gP//5D7KystI3KEHaeOyxx3DFFVcASN0McvPmzZg3bx4AYO7cufj2229TPo+oihCkm1gshsceewxXXnklgC6LiMsvvzzNo8oc1Go1Xn75ZSiVSrz99tu47rrrEIlE0j0sgUAgEAj6lOTmswKBQHA4CJFZMCxJtkJYuXIldu3ahWAwiP379yMnJ0dYIQgEgoPy3XffYeTIkawpaCofO+FtJ8h0IpEI3nvvPcyfPx+33XYbgK458s9//nOaR5Z5HHPMMVi5ciWkUileeOEFHHfccfjwww8Ri8XSPTSBQCAQCI4YkUQjEAj6CmGXIRAAWL58Oa655hrE43HcfvvtkEqlwgpBIBAk8OSTT+LVV19lX9fU1KCmpoaJcal87JLvKy0tTfncd9xxB5YtW8a+drlcQmgW9Bl+vx9vvvkm2tvb4fP54PP5YLPZsGfPHnz77bdwOp0Aug5CHn/8cVx//fXCQ7cHLrzwQmg0GlxxxRX47rvvcNpppyE3NxezZ89GWVkZcnNzWZO7hQsXorKyMt1DFggEAoFAIBAIBgRJPB6Pp3sQAsFQweVywWQywel0iqxmQUpEjAwNPB4PZs6cidzcXOzbtw9msxkbNmzAL37xC3z44Yf47LPPsHnzZhx//PF499138eijj+LCCy/EY4891qPQzCPiRNCX/PnPf8att97a4/ctFguWLFmC3/72t+Jwo5c0NzfjkUcewYsvvshE+mRGjhyJvXv3DvDIDiCuI4JDIWJE0BtEnAgOhYgRwaEQMTJ8EJnMAoFAIBAcJnq9Hjt27ADQVQmxYMEC6PX6bhUQVqsVL730EubMmYOFCxf2SmAWCPqaZcuWJWTKC46egoICPPHEE3jiiSfSPRSBQCAQCAQCgSAjEJnMAkEfEo/H4Xa7YTAYRKmxICUiRgS9QcSJQCA4WsR1RHAoRIwIeoOIE8GhEDEiOBQiRoYPQmQWCAQCgUAgEAgEAoFAIBAIBALBESNN9wAEAoFAIBAIBAKBQCAQCAQCgUAweBEis0AgEAgEAoFAIBAIBAKBQCAQCI4YITILBAKBQCAQCAQCgUAgEAgEAoHgiJGnewACwXCBzO4FmUkmNCEQMZLZZEKMACJOMhkRI4LekAlxImIksxExIjgUmRAjgIiTTEbEiKA3ZEKciBjJbA43RoTILBAMEG63GyaTKd3DEPSA0+mE0WhM6xhEjGQ2mRAjgIiTTEbEiKA3ZEKciBjJbESMCA5FJsQIIOIkkxExIugNmRAnIkYym8ONEUk8Ho/343gEAsH/z6FO6FwuF0pKSlBfX5/2C31PDOUxDoZT3KH89x9IBnOMAIM/TjJ9fMDQjxEg89+HTB7f0Y4tE+JksF9HgKE9RhEjfcNQHmMmxAgg4mQgEDGSfobyGDMhTkSMDAwDFSMik1kgGCAkEkmvPsxGozFjL0yEGGP/IGJkYBkMY0zFUImTTB8fMDjGmIrexgiQ+b9jJo8vk8d2KIbKdQQQY+wvRIwMLINhjKkQcTJwZPr4ekLEyMAyGMaYjIiRgaW/xyga/wkEAoFAIBAIBAKBQCAQCAQCgeCIESKzQCAQCAQCgUAgEAgEAoFAIBAIjhghMgsEGYJKpcK9994LlUqV7qH0iBhjehkMv5sYY/rJ9N8v08cHDI4xHi2Z/jtm8vgyeWx9xWD4HcUY08tg+N3EGNPPYPj9Mn2MmT6+o2Uw/H5ijOllMPxuYowHEI3/BAKBQCAQCAQCgUAgEAgEAoFAcMSITGaBQCAQCAQCgUAgEAgEAoFAIBAcMUJkFggEAoFAIBAIBAKBQCAQCAQCwREjRGaBQCAQCAQCgUAgEAgEAoFAIBAcMUJkFgjSzI8//ohRo0ZhwYIFuPTSSwEA69atw8yZM3HGGWegs7MzzSPsIhgM4pe//CXmzp2L559/Pt3DYbhcLhQVFWHBggU46aSTsHHjRsyaNQsLFy5EbW1tuofXZwyGOMnUGAGGR5yIGDk6hkOMACJOjhQRH5kTH0BmxggxHGJlMMSJiJH0MhhiBMjcOBExImLkUAyHGAEGR5xkaowAaYqTuEAgSCurV6+Or1y5MuG+E044IR4MBuPvvvtu/I9//GOaRpbIypUr43/729/i0Wg0fsopp8T9fn+6hxSPx+PxjRs3xu+77z729S9+8Yt4R0dHvKqqKn7dddelcWR9y2CIk0yNkXh8eMSJiJGjYzjESDwu4uRIEfGROfERj2dmjBDDIVYGQ5yIGEkvgyFG4vHMjRMRIyJGDsVwiJF4fHDESabGSDyenjgRmcwCQZqpqqrCiy++iOOPPx7vv/8+HA4HsrKyoFQqMX/+fGzatCndQwQAbN68GfPmzYNUKsWkSZOwc+fOdA8JQNff74MPPsDxxx+Pf/7zn/D7/bBarRg/fjxqamrSPbw+YzDESabGCDA84kTEyNExHGIEEHFypIj4yJz4ADIzRojhECuDIU5EjKSXwRAjQObGiYgRESOHYjjECDA44iRTYwRIT5zI++VZBQJBr5k8eTIuueQSFBUV4eSTT8Zrr70GvV4PANDpdPB4PGkeYRdutzsjx1VWVoZHH30UM2bMwKJFiyCRSNj34vF4GkfWtwyGOMnUGAGGR5yIGDk6hkOMACJOjhQRH5nzXgCZGSPEcIiVwRAnIkbSy2CIESBz40TESOa8FyJG0stgiJNMjREgPXEiMpkFggHmySefxLx589hNqVSisrISRqMRo0aNglqthtfrBQB4vV4YjcY0j7gLvV6fkeOaPXs25syZA6VSidmzZydcOKXSwXuJG4xxkqkxAgzNOBEx0rcMxRgBRJz0FSI+Mue9ADIzRoihGCuDMU5EjAwsgzFGgMyNExEjmfNeiBgZWAZjnGRqjADpiZPBG30CwSBl6dKl2LBhA7utXLkSu3btQjAYxP79+5GTk4P29nYEAgGsX78e06dPT/eQAQDTp0/Hl19+iXg8jq1bt2Ls2LHpHhIA4J577sHHH3+MWCyGzZs3Q6VSwWazYceOHSgrK0v38I6YwRgnmRojwNCMExEjfctQjBFAxElfIeIjc+IDyMwYIYZirAzGOBExMrAMxhgBMjdORIyIGDkUQzFGgMEZJ5kaI0Ca4qRfnJ4FAkGv+fHHH+PHHXdcfM6cOfG33norHo/H4+vWrYvPnDkzfsIJJ8RtNluaR9iF3++Pn3XWWfFjjz02/te//jXdw2E0NDTEFyxYED/uuOPizz77bHzjxo3xWbNmxWfPnh2vqalJ9/D6jMEQJ5kaI/H48IgTESNHx3CIkXhcxMmRIuIjc+IjHs/MGCGGQ6wMhjgRMZJeBkOMxOOZGyciRkSMHIrhECPx+OCIk0yNkXg8PXEiiceHkGGLQJBm4vE43G43DAZDQimCQECIGBH0BhEngkMhYkQgEBwt4joi6A0iTgSHQsSI4FCIGBk+CLsMgaAPcbvdMJlMcLvd6R6KIEMRMSLoDSJOBIdCxIhAIDhaxHVE0BtEnAgOhYgRwaEQMTJ8ECKzQCAQCAQCgUAgEAgEAsEw5dxzz8W+ffuwceNGzJo1CwsXLkRtbW26hyUQCAYZQmQWCAQCgUAgEAgEfU48HkckEkn3MAQCgUDQA6FQCGeffTa++eYbAMCDDz6I999/H3/961/x8MMPp3l0AoFgsCFEZoFAIBAIBAKBQNCnVFVVoaKiAhqNBn/4wx8g2sAIBOnH5XKhqKgICxYswEknnZTu4QgygGAwiP/3//4fTj75ZACA3++H1WrF+PHjUVNT0+PPuFyuhJtAIBAAQmQWCAQCgUAgEAgEfUgkEsF5552H3bt3IxKJ4KGHHsKqVavSPSyBYNizY8cO3HDDDfjPf/6DTz/9NN3DEWQABoMBxx9/PPs6Foux//d0OPjQQw/BZDKxW0lJSb+PUyAQDA6EyCwQoPupvvCiEhwM4VkmEAgEAkHPrFu3Drt27UJ2djZuvvlmAMDy5cuFdYZAkGaqqqrwwQcf4Pjjj8c///nPlI8RWarDG4lEwv4vlaaWi+644w44nU52q6+vH6jhCQSCDEeIzAIBup/qCy8qQSqEZ5lAIDhaxKGmYDjwf//3fwCAa6+9Fo888giysrKwd+9erF27Ns0jEwiGN2VlZXj00UfxySef4KWXXkJ7e3u3x4gs1eGNRqOBzWbDjh07UFZWlvIxKpUKRqMx4SYQCASAEJkFAgDdT/V740UFiJP+4YbwLBMMJiKRCMLhMMLhcLqHIuAQh5qCoY7T6cR7770HALj44ouh0+lYNnNPmZMCgWBgmD17NubMmQOlUonZs2enPNwUWarDm7vvvhuLFy/GNddcgzvuuCPdwxEIBIMMITILBOh+qt8bLypAnPSni3g8jlgshmg0yoS0SCSS8L71B8KzTDCYiEajCIVCCAaDcDqdokw9QxCHmoKhzmeffYZgMIixY8di0qRJAIDLLrsMAPDJJ5+kzJwUCAQDwz333IOPP/4YsVgMmzdvRnl5ebfHiCzV4cmLL76IsrIyzJ49G5s2bcLGjRsxevTodA9LIBAMMoTILBCg+6l+b7yoAHHSP5CQsMxnZ4bDYUSjUcTjccTjcfb/gUJ4lgkyGYVCAQAIBALw+XxoaWmB3W4f0M+IoDviUHNwQPOK+LwcPl9++SUAYOHChWyeHDNmDI499lhEo1G89tpr6RyeQDCsWbZsGR5++GHMnz8f5513HrKystI9JIFAIBAMIYTILBCg+6m+SqU6pBcVIE76BwISl8PhMEKhEEKhECKRCKLRKMtm5sXlgRQEhGfZ8Ka+vh4LFy7Ecccdh4cffjilt+6dd96JuXPn4sYbbxzw8UmlUmi1WsjlcgSDQbjdbuzfvx9VVVUIhUIDPh5BF+JQM/PgDzEp+5/mG/5rqpgRwvPBWb9+PQBg/vz5CfdfcMEFAIA33nhjwMckEAi6KCoqwueff46vvvoK119/fbqHIxAIMpTkfQ6R3FtEIEhGnu4BCASZwLJly3DZZZfhvvvuwxVXXIEpU6Zg8eLFkEgkePnll9M9vGFJsiVGLBZjt3g8DolEAqVSyR5L8IJNf0OeZSJOhif/8z//g+XLl+OEE07ASSedhI8//hjvv/8+Wlpa8PDDD+POO+/Enj178NVXX+G2227Dxo0bMWfOnJTPFQwGEQwG2dd9ZYUgkUhgMpkQi8XgdDoRCATg8XjQ2NiICRMmoKioaEA/M4KuQ81FixbhlFNOSTjUbGtrO+ShpkqlGriBDnFojuHnlVTZyxKJhN2oYkYikUAulx/0UGC44na7sWXLFgDdReZzzjkHt912G/7zn/+go6NDZFAKBAKBQJChJO9zbr75ZhgMBtZb5O677073EAUZihCZBQIcONXn2bRpU5pGM7xJFpeTM5X5x0UiEcjlBy5jUql0QASzF198EUBX2buIk+HLH/7wB5hMJgBd/scymQxWqxVWqxU1NTX44YcfMHfuXABdYsumTZt6FJkfeughrFixol/GKZFIYLVaoVAoUFVVBbfbjba2NlRXVyMvLw9nnXUWO7AR9D/iUDN9pBKWqSomlcjMC8wAEoTlcDgMpVIpDmmS+OGHHxCLxVBSUtLN0qW8vBxTpkzBtm3b8O9//xtLlixJ0ygFAoFAMFihuZtsE3nrREpEoptUKoVMJoNcLheHw4dJ8j6H9tzUW+Tjjz/GkiVLepzL+yuBRpD5iE+ZQCDICHhbDJqU6BYIBOD3+xGJRKDVatkCIR6PY/fu3TjxxBMxYcIEzJkzBzt27EjzbyLoD5I9ufkydipl5z26eWpqanDcccehoqICM2fO7LMYsVqtkMlk+Pvf/47p06d389Z1u93Q6/UAAJ1OB4/H0+NzDYQVgsFgwDHHHAO9Xs9ep6qqCo8++mjK7vLDjf6Kk2SSS5VFg53+gzaiZINB1wm6hvDzjN/vRyAQSLDKoO+Fw2HE43F4vV789re/xYQJEzBt2jTWzE5wgK1btwIApk+fnvL755xzDgBhmSEY2ixduhRlZWWQSCTYvn17wvcGaq4RDG5EnKQmHA6z5sd+vx+hUIgJzfwhMt0XDodZFZ/D4YDL5UIwGBxStlcrVqxIea05WpL3ORqNBkD33iI9NfMVvUTSTyAQwFlnnYWKigpMnToVp512Gvbt29fvrytEZoFAkFZ4cZnf4PObfrLLoA0/iXkymQxLly7Ftddei59//hm33XYbrrnmmjT/RoK+INkjlReR+azDnh4fiUTY96+//npcd911qK6u7vMYWbVqFdatW4eHH364m7euXq+H1+sFAHi93oP6cQ+Ud7dCocCJJ56IGTNmsL9le3s7HnnkEaxZswaRSKRfXncw0J9xIhgYUl03+IqY5AOqQCCAcDjMHsNfZ+jzTFUz0WgUy5cvBwBs374dW7ZswSOPPJLG3zYzIauMqVOnpvw+icwfffQR3G73QA1LIBhQzjvvPGzYsAEjRozo9j0x1wh6g4iTROig1+12J2QuBwIBuFwu2O12dHZ2JvzrdDrh8/nYQTEARCIReL1eOJ1OhEKhQS82//DDD9i0aRNKS0v75fn5fQ6R3Fukp0QV0UskM7juuuvw888/Y+vWrVi8eDGuu+66fn9NITILBIIBIx6P47jjjsPUqVOh1WoxZswYTJ06FX/4wx8SmiyRuMxnhhLhcBhAl8Bss9mwdetWXHrppZBIJDj33HNRW1s7ICd0gr6Dt0gJhUKYM2cOpk6dCr1ej3HjxmHGjBm49957Ex7Hi0WpMpjpMa2trfjhhx9YxmFfxsg333yDl156CWvXroVSqezWCHLatGmsAdb69et7zOwbaKRSKU444QRcdtllkMlk6OjogMvlwmuvvYZbb721x4yETKKna8ldd911RM/X1tbWb3Ei6H9ICOavB9FoFCeccAJmzJgBi8WCiRMnYs6cOVi+fDmCwSCrivD5fHC73fB4PPD7/fD5fPB4PHA6ndBqtaxU1OFwYNWqVbjnnnvY6xYVFaXrV85YKJN52rRpKb8/YcIEVFRUIBQK4d133x3AkQ0NRCOmvqev5xMAOP7441FcXNztfjHXDE3EmqR/icfj8Pl8zHpBKpXC5/Ohs7OTzd9erxcej4fdvF4vu8/pdLLHRqNRAEAsFmOPTbXf7I/foa+vM8FgEDfffDP+9re/9Yt1V/I+h7jnnnvw8ccfIxaLYfPmzSgvL0/58wOVQNNb+EQEuqWqgE0nfR0narUaZ5xxBouP2bNnY+/evX055JQIT2aBQDBgSCQSfPXVV4jFYigqKsK7776LoqKihOzTJUuWsEUU2WLQ5L9q1SqUlZUxf63m5mYUFBQk+GKWlpZi//79B22gJUgvNMnz//L85z//AQCMGDECH3zwAYqLi5loDACXX355jxPkq6++ivLycva8tbW1KCwsZD5iEomkz2LkgQceQEtLC04//XQAwIMPPpjgrVtWVobRo0ezcsd58+Yd1ev1JRKJBOXl5Vi2bBkee+wx7Ny5E/F4HPv27cPNN9+M66+/HgsXLsxY7zqJRIKvv/4aAJCfn49PP/20WxbHeeedh927d6f8+bfffjuhbK++vr7f4kTQf9ChU/L1hP7/0UcfAQDGjBmDN954A/n5+QC6DqECgQBuuukm1NXVsefjrZieeeYZyGQyJiTX1dXBarXi8ccfxxdffAGNRoMVK1YIQY8jFAqhqqoKQM+ZzBKJBOeccw4efvhhvPHGG7jooosGcISDH9GIqe/p6/nkYIi5Zmgi1iT9C1UfAV3ztM1mQzQaTfD8TfZk5tevMpkMCoUCsVgMoVAICoWCCZ7hcBhOpxM6na5f+5P0x3XmnnvuwWWXXYaRI0f2y5iT9zkLFy7E+eef3623SCY38U0WlnuC9++WyWQJ/TgGkv6ej5588kmceeaZfTfgHhAis0AgGBD4LNTGxkaEw2Hk5+ezUiUSmZ977jkolUoYDAZ4PB62eFAqlZDL5eziL5VKWaM/fhLIpNNIQReHEpUJmuAlEgmam5sRDoeRl5fHxGWga6G4evXqhIWkTCYDAFYOFwgEoFar2WslLxL6KkbefvvtbvclN4J88MEH++S1+guj0Yh7770Xa9aswbp16xCJRBAIBPDkk09i06ZNuPXWW6FWq9M9zB6hOElVJvj6668f1nP1V5wI+h7aMPD+iz1lIrW1tbH5Buh6X8kf/amnnoLJZILRaIRKpWIx0NHRgY6ODkgkEtaoJhaLYd++fRg/fjweeugh7NixA4sWLcKOHTuQk5MzAL915lNTU4NIJAKDwXDQ0t1zzz0XDz/8MN577z34/X7m8yg4NKIRU//Rl/PJwRBzzdBFrEn6nlgsxqznSGAmywvquUDJSvw6QCaTQaVSQSaTsf4MwWAQarUa8XgcHR0d0Ol00Gg0bF2gVquh0Wj6VVzsqxjZuHEjvvvuu4SKlr4m1T6H+Pzzz/vtdfsKqpBNXh/y2gF/OEFVcARpDfQzPcE3mkxuGH2k9Md89Mc//hE1NTV49tlnj2psvUGIzAKBoF+hizafcbZ161ZMmjSJXcj508Ubb7wR+/btS5gQ6AK/evVqVFRUIBKJQCqVori4GI2NjYhGo5BKpYjH46ivr+83XyrBoaFFMIk+yd7JBN/1mZ+QKcvgu+++w+TJkwF0vf8KhQIymQw+nw+XXHJJN/8veq7XXnsNBQUFCAaDUKlUKC4uRkNDA0KhEJRKpYiRFMjlclxyySWYOHEiHnvsMbjdbsTjcXzzzTe44YYbcO+99/ZblsTR8uOPP/ZYln84J/0lJSVoaGhAJBKBXC4XcZKh8M18kjcDQNd1gD+MlEgk+OCDDzBx4kRIpVKo1Wo0NzcD6GrGuXTpUuzZsyfhOah88tlnn8WYMWMQi8UgkUgwcuRISKVSXHLJJZBKpZg2bRpGjhyJqqoqLFiwYKD+BBnNzz//DAAYO3bsQTdYxxxzDEpKSlBfX4+PPvoIv/zlLwdqiIMeq9UKAD02YpoxYwYWLVqExYsXpzz8eOihh7BixYoBHfPB4CsP+M0+T0+JBPR/+j4JArSuOFz6aj45GGKuGdqINUnf4/f7AXR9zu12OyKRCDweD6tI4g/NgK7rAK0VfD4fgC7bBhKTqVkg7Qn8fj/0ej3kcjkCgQBCoRC0Wi0UCkW/iM19FSNffPEFdu3axdbnDQ0NOPXUU/GPf/yDZR4PV+LxOGvyTNAek7QIuk8qlbJ1I4CEpIWDJTAcCj4r+kjmpL6ejx5//HG88cYb+OSTT6DVag9rLEeCEJkFAkG/wJ8IJnf7bWhoQGFhISQSCTQaDTo7O9nPPfPMM+z/KpUKJpOJnWDr9XomKkgkEuTm5mLq1KlYtWoVlixZgrVr16KsrGxYlpKlC35TmGoy7klkTrWJ5H++ubkZRUVF0Gg0kMlkiMVicDgciMVieOGFFyCTySCXy1nTSHoOo9GIcDjM7s/Ly8OUKVPw8ssv45prrhEx0gNSqRRTp07Fk08+iYcffhjV1dWIx+Po7OzErbfeiiuuuAL/9V//lXH2GY2NjSl9L4HDO+nPzc3FtGnTsGrVKlx11VUiTjKMVOIyXXMkEglUKhWUSmW3hbzf70djYyMKCwthtVphs9kAdAnMhYWFWLt2LYCubBePx4POzk52PaFrD9BVSZObm4uFCxfi448/xplnnom6ujrU1tZi7NixA/zXyFyqq6sB4JB/E7LM+J//+R+88cYbQmQ+TKgR07p169h9s2fPhkajgVQqZY2YUonMd9xxB5YtW8a+drlcvRZI+wryUKdqhP6ANvhyubzX81ZfzScHQ8w1QxuxJulbqOk70FWFQX0UotEovF4vIpEIJBIJ8vLyIJPJEAqFIJFIoNPpoNfr4XK50NTUxCo4lEollEolW1PQfZFIBAqFAmq1GkqlEh6PB3K5HBqNBnK5vE/F5r6Kkdtvvx233347+7qsrAzvvPMOJk6ceNRjHMxQRSt/cEkNnun7/B6UzzqWSCRQKBRMdKYENv7n+J/nq2WTY4T2tOFwGBKJhFVk95a+nI/+/Oc/Y/Xq1fjkk09gNpsP62ePFEl8uNZeCAT9gMvlgslkgtPpTLu5fbrgvY+SxWW63OzevRsXX3wxZs+ejVWrVsHr9cLhcCAej7NsM51OB5VKhUAgAL/fD6lUCr1ezxYbCoUCQFd57jXXXIOOjg4YjUa89NJLmDBhQtp+/0MxFGKEF5VJ9OcnXNo09iQwHwqZTIba2lqcddZZmDVrFl5++WU4nU6Ew2FIpVIYjUb2/gNdApHL5WKLTZPJhEAgAKCr4cGuXbvwq1/9Cp2dnYMiRoD0xkkoFMLq1avx1ltvsUWZRCLBtGnT8Pvf/z6jStt//vlnLF68GLNmzcKqVauO+rmuuuoqcS3JIEiMopJYXmTmxSmtVguDwdDt571eL7Zu3YorrrgCc+bMwZ///Gc4HA5IpVJWEhsOhxMyoeh7tLEk8Vqn06G6uhrXX3897HY7ZDIZ7r33Xpx99tkD8rcYDCxZsgQvvvgi7rvvvkN6A69fvx7HH388zGYzWltb+9ULcyjxzTff4K677sK///3vhGvxrbfeikWLFuGUU07BqaeeijVr1vTKJ3MgryO04eZ9MfnDZT4zuacbX7qcqtw5lSUXZaodSizqy/nk5ptvxltvvYWWlhZkZ2dDr9ezzLPBNtcAw2O+6QvEmqRvY8Tv97NM5o6ODtb8z+PxMGE4Ho9j7969KQ+sCgoKMHr0aCgUClbVSJCYSIKiQqGAQqGAUqmEWq2GSqVi31epVAmWWkdDX8YIz2AQmfv7OhKLxRAIBNhcQFacyQkKyfA2nFQFdySQSE02Lfw+GeiqHOX7SB2MvoqThoYGlJSUYNSoUWydrFKp8M033xzxc/YGITILBH3IcF6E8aIjb4+RXM5MEzn9DH8CSFkndF8kEoHb7QYAtpmKxWJsEgDQ5yfM/c1gjRE+U5nfEPJey8mPJ2hjSFmGydmGfFM/iUQCtVqdcNobCoXgdDoBdJUK03uf/HoOhwORSIRlNYbDYbZ4jMfjCeVQmU664yQWi+Gnn37CX/7yF9jtdkgkEsTjcWRnZ+Ouu+7KWPuM4US6Y6Q/4TMdec/F5PmEIB9FqmIgcZiuCwBgMBigUCjQ2NiYsNEkaCNJGwyZTAaNRoNoNAqFQgGNRsN6CCgUiozL6s8EjjvuOGzcuBH/+te/cMEFFxz0sdFoFCUlJWhubsbKlStx+eWXD9AoBzdnnnkm9u3bxwRkasRkMplw2WWXIRQK4YorrsD111/fq+cbiOtIcukyrQ+PNpM52XaLSpPpM0wVdTxyubxPPr/Ja6JkgfxoxYpMYyjPN4K+oT9ixOl0soxjp9MJt9sNr9fLfHbb29uZCG2xWJCdnQ0A6OzsREdHB3seuVzOqiODwSBCoVC3/SMJyiQSKpVKZrNBgjOJzYNlL5Fp9Od1hARmPks9EokgHA4f1GYt2daC7uP3qgf7l+ae5LlMqVTCaDSyZAaa/yiWhjpCZBYI+pDhuAij7BESAHoSl3uLTCZjpUt0QaaTP3pOEg/If3Mwke4YSVXuQ6TaDCX7JKbyTkzV1I9/bqlUCqVSCZ1Ol7Cxi8fjrPwtGcokBAC3282a+aXKViTC4TAcDkdCNjPfUVqIzIdPR0cHnnnmGWzZsoW93waDAZdeeilOOeUUIbSlkUyJkb6EF5f5W3IzH7VajUAgwOYEtVqd8volkUhYQyBCKpUetLkL0HX9ocqZcDjMNpv0PEJkTk1WVhY6OzuxZcsWTJ069ZCPf+SRR3D77bdj3Lhx+OmnnwbdfD4U6O/rCM3zlEFGm22+6o1fSwCJTYBTNVBK9XWqx9J6kuKKv45Q1uLhisCUjd1TRlwytAYZLGuPnhiK842gb+nrGCGbPDosdrvd8Pl8rCl8e3s7IpEITCYTJk2aBI/HA5fLBYVCAavViqysLLS0tKC6urrHBqf8wRTtNWm+p6xmEpm1Wi00Gg0ToZMTYgSHpr+uI+StTdfnUCjEROZQKMQSBPiDQV4g5n39+Zg4HC9l2qPSWICuecZsNkMikSAUCrGK3EyqCO0vxCdDIBAcMal8Mg8lLidnstJGnTYf0WiUXZyBLkFZoVCw8kq+pHaoZIj0J6kykOl+4mB/x2S/Zb4Db6qy1FTwp8smkwkA2PtMP0/ZA1RKGwgEoNPp2Akw0HX6ezCSS2dT/a6CwyMrKwu33XYbPvjgA6xbt44t4D788EPs2bMH11xzzSHfF4HgUCSLy3Qd4D+7tMmTyWRwOBwJh460WaDyV8piIQsmmkN4H+fkzSF1oucPuPj5ib9+irmnOx0dHay/wpgxY3r1MzfeeCMeffRR7Nq1C/fff39GNaQTHD28NyZ9JklYpqoDelxyFhhvi3E48M3/6FoAgPmrJnt09jYrMR6Ps9JrHuonwa87+DUurYsPp0xaIBCArf1pXRAKheD3+xGNRtHZ2ckEZo/Hg5UrV6Z8jpycHIwaNQpjx45FKBSC2+2Gy+VidhvJB9h0KERCoEajYeKyWq2GVquFVquFTqdjfs60LhGkBzrIJHuMUCiEQCCAcDjM4oUSBpKv3wQlIaWqdCFffxKd+ccBSNi3BgIBZGVlwWKxwOFwMDs2OpCgeY+v5D6c3zPVfj5TK2eEyCwQCA4bPnM5lbhMZYo8fAljMrx3EWW8kDAAHFhokIDA+8QKUsM3XkyVgZxMqsYFyRnMqQ4RaKLkswCSG+2Qfxq9j+FwmHkmJ9tjyGQyeL1eFmMKhYK95sEWcfF4nDWIJKsM+hl+4yc4fJRKJRYvXowxY8ZgzZo18Pv9UCqVaG5uxuOPP44lS5agsLAw3cMUDEJ6EpeTvVv1ej3MZjOi0Sjsdju7JqhUKiYmkbDDZzfT8/K2OckHbOS/mHx9ICGKHkdjGWwWTQPFzz//DAAoKSmBTqfr1c8YjUY8/fTTuOSSS3Dfffehuroao0ePRnV1NaqqqhAOh3HSSSfh7rvvRkFBQX8OX9DH8AJzJBJhIgCt8UgQ4O2ykkm22qLn5f+lx/FZaXQ9oJJ4+uxHIhEmCtGhUyAQYMkMPUHj51+PhI2eRAsALBOSniMajaa81gi6k8qOJFX1XSrP7uT1bPJaNtUamLdzE2QG9Nki4ZASkex2O4LBICQSCaqqqliFUWFhITtI8ng8aG9vZ7fDhQ6ctVotVCoV9Ho9TCYTE5z9fj9rLhgOh5kILdYGAw9dWymD2e/3IxgMIhAIIBgMsoSmSCTCRGcg0epCrVZDJpOx6zztZWnu6Ol91el0yMnJgUajgdPphMfjQUdHB/Lz86HRaODz+VglbvL+ujexwq+Re2Mt1Vd2UH2BEJkFAkGv4YVGXmQmSEjmNwy8uJxcAkkbjWAwyE4IqYSRz5YFDnhl0TgEqUkWl/mM42TvQKDnMtPkDObk5+cnvmRrDLPZzMqDACRkElEJEwDmecq/LmUYksBEkyWJTj35MXs8HrbQVKlUCSJzNBpNWXIr6D1SqRSVlZX4zW9+g9deew0NDQ0Aug4QXn75ZSxatAhTpkzJiIWNIPPpSVymjJNkz2S73Q6j0QiXy5XgucwLSqleg+8Ozl+n+OsaLd6TrXx8Ph97LSLZVkNwABKZx44de1g/d/HFF2PHjh144IEHsGbNmm7fr66uxtq1a/HZZ59ldNMrQSLkmUqf6Wg0ykRn2vzz0GYfQMJa5Ujt1/i1JF1blEolE6tMJhMbH401OdM4OXuZ1ieUBUmPIdGZ/k9fkzUICRgkaievewRd0IEEL6rQejOVwMIfQvB7i6OB3mMSmMT7lD7IVicQCLC9QyAQYHYZLS0tiEQiUKvVsNvt2LhxI/tZiUSC0tJSlJSUwGAwwOfzwel0sutOJBKBz+eD1+uF3+9ndgqUEUo2GWSVYTab4fF4oNfrYbVa2XhCoRCzSAiFQtDr9SKreQDhDyspg5luXq+XJTU5nc4eLVMIo9EInU7HqjNpHUqNn7VaLROLKSa9Xi+8Xi8sFguKi4sBAB6PB52dncjNzYXP52PzC12n6Lp2sLUkiebJcx9/EMbPNTRn0rWT5px0IkRmgUBwSHjvPF5gJqisiDYRwIGFWvICkCCRINmQPxW0WaCx8M8hOAC9R6kaMB5Ncx1+o0cLsWRIyInFYujs7IRCoYBer2cnx0DX+0gLPD4rnc+GpoMGXnRSq9Xw+Xxwu90sE4lej8qh6PfT6/UsjvjMJCEM9Q1WqxVLlizBl19+iW+//RbxeFdDxS+++ALt7e1YuHDhQTPCBMMbvuEXLy5TpiB/QMlXrcjlcjidTnatoOoXyipObvaV7BWfPFeQH57f70/IdiZBirqT02vTYl5kMffMkYrMAHD//fdj0aJFePPNNxEIBDBy5EhMmDABkUgEd911F3766Secdtpp+PHHH2GxWPp66II+hm/qRwIzZZD5fL6EagMATDziP++UXUx+xvznLrnRHolCsVgMfr8ffr+fCbwKhYK9TjQahVarBdDVUMxkMkEqlSZUUNDrJa93aD1LHrH0uiRkJEPNQklUp2ZPlAFNYxKA/a3pPaMbvSfJJeLJ4jLvn8qXtfeUmcxnOicfLvKHA1KptE+adKVqEAmgx/2R4MDfjOKA/nU4HGyfQev//fv3s/dNpVKxdUZdXR3q6uoAdDUFLCsrg0qlwu7du+HxeNhrkeBMojb1kSHrLIPBwBoP5ubmwu/3Iycnp1svIp1OB5fLBb1eL9bBAwS9Z8FgMOFG+8WOjg5W/eZ2uxOsNOjzzdtykhBttVphsVggl8sRi8XgdrvhdrsBdGUvFxUVsR4U7e3tsNvtALqy6akxJb0GCeEk/PJJU8nXHxKX+T07XSMoU5tP7iItRavVsuodmnfTfZgpRGaBQNAjtEHnhWW+SYtMJoNWq4VCoUhYaKcyzad/+c0/+dTRRZfPNqOf4Tf19DP0fbEoOwBNWrzQTJNvqozmVBkgBL0HfJYPvzCm951O+Kl5Tjweh81mg8vlYqVkNCnTRA2APZ4/VKBx8Q04SKCmsncqg+I9uwmJRAKDwQCZTMa+zzeLFPQdSqUSJ554IoqKivD5558z79uqqio4nU6cfPLJQggSJHAwcZkXlwBAq9XCYrEgFAqxMledTpcgMPNZZsmlgXzVDMEflAJImHuSx8ELGfxBqRCYDw6JzBUVFUf08/Pnz8f8+fO73T9v3jzMmjULu3fvxm9+85sevTcFmQFl9NG/lHwQiUSYFRb1Wti9e/dRHYAno9VqUVxcjDFjxsDj8aCtrY1da0wmE7PV0uv1iMfjcDqdMJvNUKlUCXYeyZAtT2dnJztYpa+BA7ZfJE6TiEEZ05TNTWIlHdqnO9Ms3ZA4xPuo0v95D9VUTRZ5b1S+tP1IspBpXlGr1cyijdbTfr8fcrn8sK0Q6DmSq/16en06UBEJEV3QXE3rBT5GnE4nfD4fXC4XHA5HQkYyIZFIMGbMGBQXF2P//v2w2+1MCAS61hRTpkyBTCbDq6++2q16ip6DEld8Ph+ys7MRiUSQm5vbo4UL7Xv0en1CDyFB38Nn7tL11u/3M3vG1tZWuN1uOJ1OJjTzVXQSSVczProOt7e3w2w2Q61WIx6Po7OzE3K5HCUlJcjLy2ONKL1eL6qrq6FWq1FRUYGRI0eitrYWdrudWaiQKK3VauH3+5llBt8fxO/3JyRHJO9Xac1J9h+p4AV2yrYmexBqWp0uhMgsEAi6wYvL/EWcFwloo6DX69kJMHDAPJ/PKkiVxUwX02Th8WDwWQDDfXHOkyww8x6HlCF4tGKrXC6HTqeDTqfrcbHNC/8SiSTBr5Der+T3mSZYylqgRQAJxDQRU8dn/hSXMoloc0AlTPQ6dIIMCIuVvobsM/Ly8vDvf/+bLd4bGhqwZs0anHLKKSgvLxei3DCGn0do7uBFAxJiCCpDVavVCIfDaGpqAtCVgUSfY6pioOtGT1YZyfCl+LyQTNUVlGlC8JnRB+snIDhAdXU1gCPLZD4YVqsVq1atwpw5c/Dyyy/j17/+NWbMmNGnryHoO/jMPv7whgTmaDSK1tZWtjbhKxmopJj8UNVqNdRqNVQqFduIJ/s0k4Dr8Xjg8/lQXV2N2tpaTJkyBePHj0ddXR0To6xWK2KxWILQ7HA4YDabodVqmSjOZy+ThYbH42Hj0+v1aGxsBAAYDAZkZWUlXIeoMRkJHFlZWQgGg/D5fDAYDOzwnioqhiOxWAw+n49lkZJ3Kgky0WiUlaJTnFCWKYm+vKhCccOXifOHhKl8m/nKFyqxl8lkMBqN0Ov1CUK31+uFRqM55N6Dt4fh4a2W+IMV2teQiEpr3eE+3/AiM60dvF4vyyol+wu6AUB2djbKysrQ2dmJvXv3orq6Grt378Ytt9yCyZMno7m5GUBX34BRo0ZBLpfj4osvRigUwsiRI3HiiSdCo9Ggvb0dmzdvxu7du+F2uxGLxWC1WmGz2ZCbm4u2tjYUFhaivb09odKJ3mONRgOPxyN8mvsZuiZQ1jAdUoXDYdhsNrjdbrS3t8PlcrFrbkdHRzfbDIvFArPZzCpVgK4Dy6ysLMRiMdTW1qK2thY5OTkYP348tFot9u/fj0AggB9//BElJSXIz89HS0sLGhsbMXLkSBajRqMRANi4qLKG5rtUdhiko5DlB0EVwPz8RI8LBoPwer0sC5+uXb3RVvoLITILBAJGKnE5WRxIfjzvn8lnEhystJgWeHz5G2WWHWxc9FhRWnYAOq3kfQfpa97/WCKRQKfTMR9T4MApMJ0A0/vOe5JR1iBt4lpbW1nmqlqtRlZWFvLy8tj7wZe7+nw+AAeEZX5xnpwZSBlAfHmkWq1mmz7+eTUaTY8TJ58JT6/DZ3GnI26CwSAuuOAC2Gw2XHXVVfjVr3414GPoL6xWKy677DK8/fbb2LdvH1vovPbaa5g7dy7mzp0rDoSGGXzWMF/u2pPnsl6vR1ZWFvPBAwC3282uMSqVCn6/nx0c8deNw8364qtiSLDQ6XTsmkmPocfRnCY4ONFoFLt37wbQ9yIzAMyaNQtXXHEFXnrpJdxxxx345JNP+vw1BH0Dv/6gzzwJzIFAgGUXu1wuVrLOV7hRNRJt9gmLxYL8/Hzk5uYiOzsbWVlZCSJtJBJBa2srqqur4XQ68f3332PcuHGoqKhAXV0dy2S0Wq1sTFQh4XA4YDKZ2DUoea1Ah91Al6hMdjoqlQrZ2dnd1hUymQzZ2dksAzIUCrFDb75SLF1rknRDAnM4HIbP52PNsajE3WazwW63MwGar3ahxAKtVssOAUgkosxjlUoFlUrVq78v2SJQhiE1llOr1TCZTJDL5ez99vl8PYrAvFBMUFa1RCKB1+tl4nny61OmPO8vm+5S93RD+z3+YJq3wqFDJRKYf/Ob3+C8885j83VDQwOee+45fPrpp3jyySfx2GOP4aSTTur2OiQChsNhlJSU4IQTTmCx89133+Gee+6By+VCSUkJe22FQgGPxwOlUonOzk7k5eWxAwq+txA9nmJV0Lfw9pC0l/X7/SwuOjs74XK5EA6H0dbWxmJFKpXCYrEgEomwLGdKlBk5ciR0Oh27Lmm1WowYMQKRSATt7e344osvYDKZMHPmTITDYTQ2NqK+vh5ZWVnQarXw+XxobGyEyWRCIBCAw+GARqNBKBSC0+mExWJhjQZ5kZk/pCBbGN76US6Xw+12d8tolkqlsFqtrBmlx+OBxWJJyI5OV+z1+6v6fD5UVlbi/PPPx+OPP97fLycQCA4CLW6TfY15EZcvJUklLtOCyO12M6EYSMxg5jMFeoL34D1YOVkqgVls+g9Af7tkiwxeyKFyzY6ODrjd7oRJjRbjZHtBp6S0iOvJbxAA8yiz2WwYN24c5HJ5wnPT/0kIopjoKTOQ7qPXo8mRFv+8xyN5Gib7npHNRigUYkI0H+PpiJ1XX30Vp512Gq6//nqcdtppuPzyy4eUH6NcLsdZZ52Fn376CW+//TZCoRAkEgk+++wz1NXV4ayzzoLBYEj3MAX9DC1o6XOa3MCJPrcEZYqk2rDz8wpfHZH87+FuwvnH841XyLKJEPYYh8e+ffsQCoWgUqlQWlraL6+xYsUKrFq1Cp9++il++OEHTJ8+vV9eR3Dk8BVJJJjxzf7a2trg8/nQ0dGR4NPsdDoT1pkmkwlZWVkwGo3MS5OEgJ07d7LH6XQ65OXloaSkBKNHj0ZRUREKCgqwc+dO1NTUYNeuXYhGo6isrEQ0GmUZzdT0z+fzsXJ4h8MBvV4PrVbb7XNP2c3kf0kVUwercCALLxKZjUYj84CnJoDpFADSBR02kIDs8/ng9/vhcrkQCoXQ0NAAv98Pu93O/HdpL0K2EvR3N5lMMJvNCIVCcLvdGDFiBACwuYaaS9MBJW/fR7HKC8NqtRparTYhK9JkMkGn07ExU0YiJWDQPogXkOVyOROOvV4vE7cIWpMCYK9P3r+8oDqchWY6CKa1OwD2vlCFBNnxXXzxxbjwwgsTfr64uBj33XcfLBYLXn/9dfz973/H3Llz4fP58M4776C2thYqlQpTp07F/v370dDQgOXLl0OpVGLs2LHIzc1l7zcATJkyBZs2bWJWgA6HAxaLhcUJZdIHAgFIJBJkZWUBAPP5pQSs5D1y8k3QO3i9gpKrqKLX4XAgHA4zoba9vR1OpxN5eXm48sorMXPmTLYH83g82LZtGz7//HN88803qK2thVwux/HHH89E4p07d8JqteL/Y++946Ousv//1/ReMumNJCSANBVEQYoIYldU7GVtrLrW3bWtZV1BRfja1u5H18ZallVZWVdFURClqoAgTUoI6XWS6b38/sjvXO5MJhAgyUyS+3w88oAkk3m/k7lzy+uc8zqjRo2C1WqF3W7HN998g5KSEgwfPhzl5eWwWq0wGo0si9jj8UAqlTI/fppzqIk1JXzxZ1Jao/jkMK1WC5fLFRN0pZ+lgFRLSwtrOEkBVLKZpH4jyaDHrzpv3jyMHz++py8jEAgOQrxQm+j7/GTNZ7cSKpUKRqMRKpWKbeiAA2JAvADQXffNly4KgTkWPjBArx8AtjGSSCRIS0tDVVVVTMkNwZcIHgqdTgeDwRBjl+F0OlFTUwOHw4Hdu3dj+PDh7PG02eZLzmkTdbCDGZX6UIk9/W6UscJ75fl8vg5jgjZxVI6v0WhYNnOyPBA3btyI2bNnQyqVYvTo0di5cyfGjBkT85h4Ae5QXZBTDYlEgmOPPRb5+fl44403WBb73r178frrr+OKK65Afn6+2ET3Qw5XXKYDv8PhQG1tLVtDZDIZ9Ho9MjIyYDAY0NraCpfLBZ1OBwAdgkRH4l1JFTa01nVWqih8MQ8P8mMeMmRIj/3tioqKcPnll+PDDz/EM888gw8//LBHriM4cuJL3KlygRoweb1etLS0sKwuvvkWcEB840vg9Xo9xo0bh9LSUlb+TCXPbrcb+/btw759+/DDDz+gtLQUJ598MkaOHAm1Wo2tW7diz549UCgUKC0txZ49e+DxeOByuZhtBQnNFFgPh8PQ6/Uxa1V8FR0JFGTzwFdh8MQ3qgPAKigS+QwPBPhxQecMSn4ggbmhoQFut5tlJMb34SB7E8ouLigogMfjwc6dOzF06FDk5OSwTOj4MUZQbxHKMqWACO0bqZFkW1sbNBoNjEYjq+qjvTMQKxgDiEl+4JuFKZVK6HQ6JjjRuun1euF2u1lWpcViYXYboVBowDeQ45Oj+MZolEwDALNmzUr4sxKJBL///e/x6aefYs+ePairq8Orr76K8vLymMcZjcYY79utW7fGfD8zMxP79u0DAGRnZ0OlUsHtdiMzMxMtLS3svez3+9kZxmq1IjMzk42tRPuNeGQyGRQKBfMYF3ROfO8g/mzodrtZNZxMJoPNZkN2djaee+45mEymmOfR6/Ws6rKmpgZvvfUWfv75Z6xYsQJnnHEGpk2bhm+//Ratra344YcfMHbsWJSVlWHHjh2oqKhAc3MzJk2axGyZDAYDy3SnPgBkmUQVwzabLcbah86r/D5ZrVZDLpejubmZrSNGo5FVV9DfgDKxyZ6FrCrJi5mvUO5tenQEUxT5/PPPx7Zt23ryUgKBIAHxIi1Bm2c+EsiXNcd7U1LEnh5PGa8kRlNWxpHeY6KvxYvi8V1YBQcOMHznaioXBNoXpL1797LXKC8vDxaLhVlZUCkXLwjxgj6fjc775un1emRlZbEFb9u2bbDZbMyfjB4f78MNHDzzh38s35SLF9OpDI2yGeh3439WrVbD7XazjUeyD3TUBARoF+sTHXrmz5+PuXPn9vatdTvp6em477778K9//Qu7d+9GJBKBw+HAO++8gxkzZuCkk04SgaJ+QiJbDH6jT3Y9dDiUSCQIhUKseVY8lNFot9thMpmg1+sPGgQ70oAFjT8+OzE+ECY4PHrKjzme++67Dx9++CE++ugj/L//9/9QWFjYo9cTHB70nqJ5gPaSbreb+WEGAgG0tLTA7/dDo9Fg3LhxLGNMIpHAYrEgOzsbbW1t2Lx5MxwOB1auXInVq1fjxBNPxLRp05CZmcmep76+Hvv27UNdXR327t2Lffv2YeLEiRg7diyi0Si2bduGHTt2wGQyobS0FLt27WKij0wmY9mRlHVM2dUmk6mDLQ/tQ8iuwePxoLGxEXl5eR1EoWg0yoLFVBrNP9dAhQ9GkrBLYglVx5G1RENDA4ADDdii0SicTidsNhscDgfKysoQCASwf/9+jB07Fna7Hbt370ZtbS1Gjx6N7OxsVkJPojZlDlOGPInABoMBRqORNZimMUFWKYFAABaLBTqdjmUz843f6KxE64vX6415brr/trY2Zh+j1WphsVig1WrR2trKAh10DarIG4jQ+6Sz9Zj/22dmZnb6PEajEcXFxSgvL8eyZctQXl4OnU6HK664AoFAgFU9SKVSGI1GNi7D4TA7i6jVajQ1NUGtVsNisaCpqQkqlQo5OTloaWlhtj30Hqe5rbm5GXq9HiaTiYmJfPIMn6UNHGgI6vP5oFAooNPpBvx80Rl8vx1eM6A1hwKedB6+6KKLOgjM8RQUFOBvf/sbvvrqK7z22mtYtmwZRo4cifvuuw/ffvstVq1ahU2bNqG5uRkXXngh1qxZA4fDge+++w6nnnoqqqqq4HQ6YTKZIJVKmT0GVRJnZ2ezLPz45AuCglF+vx+NjY3sazTGW1pa2PlWqVTCYDAgIyMDLS0t8Hq9UKvVrIKCAnFUedHbHLbIHIlEMGLECFxwwQX4f//v/7Gvf/311zj//PPxwQcf4NJLLwUA3HvvvXj66aexdu3a7rtjgUBwSBKJtPEWFrSY8R2QqSM4/T/RJKhSqVBUVASDwYC2trZOReYjEfRoAx9/36LpUmL4vxdFyGlhValUqKmpYX5gZWVlqKysxObNm1lH9KNBKpWirKwM48aNQ2FhISorK1FTU8NKpTsrAz2c15FKI3kbEMpm5AXoRPfGZysmW9TU6/Usk9ztdjMPOJ4HH3wQd999N/ucPOD6InK5HNdccw22bNmCTz/9lL1+X3/9Nfbu3YvLLrssKRseQfdBG9f47t60npBwQIKT3++PEYt1Oh0yMjJgNpuZ/6Hf74fNZkNNTQ3sdjvLxIgv9+uOqpn4MkXB0UGZzD0tMh9//PE49dRTsXLlSrz11luYM2dOj15P0HX4vQj9n+YIh8MBh8PBvCb9fj9ycnJgsVjw+uuvJ7TkGjVqFK699looFAp89913qKysxLp167B+/XqMHDkSU6dORWlpKfLy8nDCCSegpaUFa9aswf79+7F69WoEAgGcfPLJcLvdqKiowObNm3H66aejpKQEu3btgs1mQ0lJCWw2G7xeLwwGA0wmE+x2OwKBAMt2Bg4Ex2l/rFAokJmZidraWoRCITQ0NCAvLy9GEHK5XPD7/ZBIJDAajUxw5hs3DcR9LS+08aKQ3W5nDROpBBwAxowZg1WrVmHPnj0AgKFDh+KYY47Bjh07sGfPHpx00klobm7Gpk2bMH36dFitVrhcLqxfvx5Ae9Zzeno6zGYzzGYzLBYL89V2Op1obW1FW1sbE5wzMzNZAMHhcMSUobe0tMBisUClUrFMZ8pMj2/8SOXter0eBoMBwWAQ1dXVMUk8JEQXFRXBbDajubmZidtAcn27k91LhM6rvMUEeVzzlhORSARVVVUoKyvr9LmysrJQXl7O1qlJkybhxBNPxPvvv4/m5maYzWbo9Xom7NPZgf72vA94U1MTZDIZJk+ezPoQ5OTkoLGxEYFAgD2PyWRiQQOXyxVTJcU3CqTsZQpQUHZ/MBiE3W6HwWBIalZzZ+Mg2eMjEXzggaAzcaJzVyIkEgnOPvts2Gw2fPDBB1i+fDlOO+00nHfeeRg+fDjee+89VFdX43//+x+uu+46fPvtt2hsbMSqVaswffp07NmzB3a7HZmZmWweSE9PZ0HR/Px8Nr/Q+kjZ71QFEQgE0NzcDODAXrmtrQ21tbUxv5/X64XdbodCoUBGRgYLzlGj3GAwyM7CVEHYmxz21aRSKR588EG89tprzCR7y5YtuPTSS/Hkk08ygfm///0vhg4diqFDh3bvHQsEgoPCZ5YBsd7HtKGjKH18N2efz4e2tja0tLTE+ALR5CeVSuH3+7F3796YBkp0HZ6uboriPTLjs5dTWWD2+/244IILMGnSJPzjH//o1WvzkXC+aQ69ZuQJpVAokJaWhi+//BIbNmxgAjPZT/BZfRRsoBIjjUaDtLQ05ObmoqioCIMHD0ZRURHzM9y9eze++eYbZGZmMu8pErsPVRZ2OPCWGInK2w9FvKVLbzN27Fj88MMPiEaj2Lx5c0Ihhuxo+I++jEQiwfHHH4977rmHZQNFIhHs3bsXr7zyCjtACvoefAk8icfkAe9yuVgmoN/vh8PhgN1uZz6FmZmZGD16NAYPHoy2tjasXbsWS5YswWeffYatW7ciKysL2dnZAMBEab66IlXXgoFOb4nMAHDLLbcAAN56660OzYgHCp3tPZK9JwEOlC/Tv16vl5UwezweuN1uVh33r3/9C8FgEEOHDsUll1yCSy+9FGPHjoVMJsO2bdtw//3346uvvsLNN9+MO+64AyNGjGDZya+88gpeeukl1NXVAQAyMjIwc+ZMnHLKKQCAn376CS0tLRg5ciRrHtrS0gKdTgeLxQIArKQZaK84UqlU7HPyTwYOBLwBMEFcJpMhNzeXeWPya1okEoHVagXQ3rCQeo8AYFWBwMDLao7POgRiszf9fj8TXQKBAPLy8rB27Vo0NDRAr9dDqVRi9+7d+O6773DsscciGo3il19+QVFRESKRCL799luEw2Ece+yxLPPPZrOhvLwcGzduxPLly/Hxxx9j0aJF2LJlC3Q6HUaMGIFx48YhJycHANDc3MzEZqB9jJAIFI1GWcYxna0S2SvZ7XZWeWcwGBCJRJjALJfLkZ2djZycHGal0NLSwipEgdhKwM5sDnsa6iWyatUqfPzxx12y1etOaM/PC8vUE4jOLpSssHz58oM+Fz2OLHgKCgqwaNEiVFdXQy6Xo7CwEEOGDEFpaSkKCwuRm5vLXqPs7GxkZGQgLS0NJpMJWVlZyM/PR0VFBXw+HzIyMthYkcvlyM3NBdA+nxQWFsJgMDB7lGAwyPZMZJPicDhgtVpRV1eH+vp6hEIhGAwGlrzF99FJBp2Ng66OD9oH8h/dQXxvDhLt6T1E36cq0nXr1nX5ucnHGUBMMkJpaSn+8Ic/QK1WY//+/di4cSPOPvtsWCwWeL1ebN68GUOGDAHQnnGsVquZtY5CoWCis1wuh9FoRHp6OjIzM5Gens5sNgCwAJVGo0FmZiZcLhdqampY9UNBQQFKSkqQk5MDhUKBYDCI+vp6lphBdjt8kiAf3Ootjmh1u/rqq5GRkYEXX3wRNTU1OPfcc/G73/0O9957L3vM+vXrsWjRIhQXF+Pee+/FP/7xDzz22GPdduMCgaAjfEYr79NLAjLvgebz+VjXZo/Hw6L5Pp8PLpcLra2taGhoQE1NDRobG5GRkYHjjjuORe9poThY05OukCi6y2/cUllUSOYmjD/Q8a81fb2pqQlA+wK5cuVKeL1eVpoXDodZZs/WrVuxY8cO7Nq1C3v27MHu3buxc+dObN26FZs3b2aPqaysRDQaxbhx43DhhRfizDPPhFKpRHNzM8rLy9nBjP4GfCkTgA5BicOF9zM8FHyzSsp45p+jt7n88svxzTff4KSTTsLFF1/cr5r+HQqj0Yh77rkHxx9/PBsDDocDb7zxBjZs2JC0A5Tg8KFDEr2/qNIlGAwy8YhsdchvlTIoCgsLccIJJ8BoNGLDhg3473//i82bN6OxsZEduMrLy7FlyxY2JniBB0DMAUKQWvSmyHzRRRchPT0dNTU1+Oqrr3r8eqnI0R78ewJ+T8LvRUlYIf9joN1f+4svvgAA3HPPPXjttddw22234dZbb8UzzzyDf/3rX7jwwgshlUrx9ddf45577kFOTg5uuukmPPDAA5g4cSIUCgUqKirwwgsvoKqqCkD7XDFmzBgMHjwYALBv3z7I5XImKpN9AQkPgUCAeb7TIZxELP5rAGIEQEKhULCgmMvlYnMXCetyuZw1Xqb7i7f3GqjwXrud7Re1Wi1qa2thsViwdOlSfPnllzj++OPhdDrx1VdfITs7G4FAAGvWrGFVdL/++isWL16M+vp6lJSU4IQTTsC4ceMwdOhQZGZmQiaTwePxYPv27fj444+xc+dOqFQqlJWVYdSoUZBKpaxKkwTDtrY2mEwmJjTHN/LjIQsQoD2LWiKRMB9yuVyOoqIipKWlwWw2M2GbRGkaY2TVwP9NepuNGzdi8uTJMb1E4ukpARE4IO7ReVAul0Oj0bA+KxqNhr13Fy9ezBIfE0H3xZ8FKioqIJVK8ec//xm33norRo4cCa1Wi8zMTBQWFqKkpATFxcUoLi5GSUkJBg0ahKysLOj1emahMWjQIOTm5jJL2Ly8POTk5LCkG6A9y5kSdAoKCpCXl4fc3FxkZGRAq9WyputkJ9bS0oK6ujqW2UxCc6qNg66MD6DdCtBkMrGP7qrQjBeZaX9ICVRarTbm8atWrcLXX3990OeMRCLYsGED7r33XixbtgwAMHPmzJjH5OTk4NxzzwXQrnUqlUqcfvrpkMlkqK2tBQBYLJaYPkkul4utOYn6I8VDgUzyCifbjPT0dJSVlbGmuNnZ2TjmmGPY+kbBKgBMD6A1LD6Jrzc4ohO3XC7HX/7yF7z44os455xzMHbsWLz44osxj5k/fz6qq6uxf/9+PPPMM7jpppvwt7/9rVtuWiDoDZKZEXK4UEkyX4IW77NLFhgUPaV/rVYrbDYbXC4XGhoasHv3blRUVKC2thbNzc1oa2tDTU0Nli1bBrfbzSY/PpsDQIxIfLi+lryw3BfEZSKZm7BEG3Ra0DweDxOEtm7dyjKTt2/fjtWrV2PXrl2smQqV11DZTnxmudvtRlNTE3bs2IEvvvgCTz/9NPbu3YucnBzWvK6iooIJpzQuOrNPOVJvZP6+qDyRfme+TJ8CJwCY1QaRrPJ4tVqNTz/9FD///DNuu+22pNxDMpHJZLj44otx/fXXQ6FQsPlq2bJl+O9//5uwVHqgkerrDc0n4XCYWSnRvy6XC4FAAB6Ph5WeRyIRaDQalJaWYsyYMZDL5Vi5ciW++eYbthHPzs7GiSeeiLPOOgvjxo0D0B4coywOqsDhK1r4ypaB2DQrFXE6nSybtDeqF1UqFa6//noAwBtvvNHj10tFjubg31t7Elp7SXSLRCJMZKbGWhdeeCHOPffcDvu9jIwM3HXXXXjuuedgNBqxa9cuvPTSSwDa541LL70UDz30EPPkjc9kpMxFEnfJl5PP9ALASomB2ED2waqfurI37Sy4ThmNh/Nc/RVeJOIDFMCBfSTNK2eeeSbzHn311Vcxfvx4eDwerF27FjKZDD6fDytXroREIkFWVhai0SgqKiqwbNkyLFq0CJ999hkaGxsxevRo/O53v8OZZ56J3NxchMNhrF69mtkemM1mJlY3NzezZufky5yWlgYAzLM3EdRzQ6vVstJ3qiCkzENCp9OxzHa3252wYi/Ve4n0hIAIHHg/UhYzicxSqRRarRYGgwFarRZKpRIulwvPP/98wr9VKBRiVivxZ6Xs7Gykp6ezZJtoNMqEvKFDh6KgoACZmZmwWCywWCzIyMhAdnY2CgoKkJ2dDalUygJXlF3a0tLSQcyTSCRQKpXQaDTQarWwWq3Yu3cv6urq0NjYyLLn6fwbCASY0CyRSGJ67fQ2nY2DrowPoN0KkHpt2O12VFdXd8t90figPaJcLmdivU6nY009JRIJRo4cCQB46aWX8PTTT2Pnzp3MgtHhcGDz5s149913cdNNN2HOnDnYs2cPNBoN7rvvPpx44okdrk2BRVo7TSYTy2CurKxkc0hbWxv7G9Gcxou9fHZ7orMqrVMkFFsslg5rhlQqRUFBQUyiFwUsyLKK6O2z1hGnhFx99dX405/+hGg0in/961/C207Q76CMkFtuuQVnnXUWfve736VkBiK/oSfxJt5GgffMpMWKss5IaHY4HExUDIVCyMzMxLhx46DRaLBy5UqEw2GUl5cjGo1CrVYzIZn3x+IjzwNh85zMhm7xrzEtJoFAAE6nE16vF7W1tayZVkNDA3uMy+VCbW1twqimSqXC8OHDMWXKFEyYMIF1/m5oaMCmTZtQX1+PDz/8EA8++GDMQksZGOSZzAc8eB9DAMwn6kgzi0k0JwuYRNladC3adNLmQ5A8SkpKcN999+G9995DQ0MDFAoFampq8NFHH+Hcc8+F2WxO9i0mjVReb+IFZspkpmZIJDDTfKLT6dimt76+HsuXL2elhxKJhGXwZGdno6ysDBKJJKbygnxMlUole9/yB06+m3hfCUj2Z+gAn5mZyUSYnuamm27Cs88+iy+++AI1NTUoKCjoleumCkdz8O+pPUl8IybaA1BAinzatVottmzZAqlUiquuuuqgz3nsscdi3rx5uPPOO/HNN9/gD3/4A1snzGYzysrKWHNjwul0MtEwPz8fbW1trKlgZmZmjJWFwWBgWamU+ebxeJgIRaI0//vx+5ZoNMpsMvR6PfueRqNhnpher5c9D99cmX5+IPntHspPn/421DCWXsfp06ezx2i1Wrz88st46qmn8PHHH2PXrl2s3Ly8vBzl5eUYNGgQSktLIZPJUF1dDbfbjQ0bNmDDhg0oKirCrFmzcO655+Knn37Cr7/+ijVr1qCgoABqtZpZlZFYQ+caSm4gUTyRoMnvR2k88d6q9N7k/x46nY41O6SfiU/4SAbJ7iVC50vK8CY7EWp2Rn8vi8WCxsZGfPPNNzj22GNx8cUXxzzP8uXL4XQ6kZaWxoRa2lvR37uiogIAMHHiRIwaNQqNjY3YsmULlEole+/SmSPeT5nuye/349dff2XXTUtLS7iHa2trY/sdEs2pkXlLSwu0Wi10Oh2zQMjNzWXJM3xjyd6is3HQlfEBtJ8pe6IHC/8a0OtA/5rNZtZ0j5Iexo0bh40bN+L777/H999/DwDsDMmj1Wpx+umn4+KLL2YZ706nEy6XC3a7HfX19WzPQ8IyAOaj7vf7Y4TleJslunc6m/OVMZSdr9fr4fV64XA4YDAYoFKpEAqFYLfbO2Ro0/Pl5eWxeSQnJ4clmwFgFkS9bbtyxCLzHXfcAaA9NftQA54yDgSCvsTGjRsxe/bsmIwQytwk4hvjdWepUFfgG62Q0MgfwOMzmj0eD9tA2+12WK1WVuZMQjNNuNXV1TAYDOzQqNFoEAqFIJVK2QRKC15nmWb9nWRuwuJFZlrASOxpbm5GOBxGU1MT2tra4Pf70dTUxA5XdP8ZGRmQy+Xwer1obm6G3+9nNhlff/01FixYgNzcXAwdOhQTJ07EggUL4HQ6UVtby8YGvyHmM3coa4eaAPINvKhhZFfHC23s6PeVy+XQarXMG5YeE/98vB2LIPmoVCrMnj0bGzZswI8//sjG3rJly3D88cdjyJAhA2b+4EnV9SZeYKamOFTVwle3qFQqFBYWQiqVoqqqChUVFSxzkTa59fX12LFjB3v+GTNmYPLkycxugeYHlUrFfDD59zX9nw9iiSSH5NKbVhnEsGHDMHXqVHz//fd466238Oijj/batVOBozn499aehPafNIdQNhbN78ceeywyMjIO+bwjR45ERkYGWlpa0NDQwETm8vJyfPPNNwDa+x4A7fuKpUuXIhgMIicnBwUFBVi9ejUAMBGxrq4OoVCI+bqSmGgymdh+GABr+EbQAZ3/WltbGwKBAKRSKStZpscYjUbY7Xa0tbUhLy8v5m+UbFItqBmfycxb+RmNxg5roUKhwMMPP4yTTz4Z8+bNg9VqhdVqxciRIxEOh1FVVYWqqioolUqMHz8exx9/PFpaWrBp0yZUVlbipZdewmWXXYYTTzwRNTU1aG1txZYtWzB+/Hj2+sZnVdMelm8GFw+JmCSKUmM/AMy3Nx6tVgu73R4jTqXCGKFeIiNHjsTmzZsxb968Do/pKQGRILs7pVLJRETa91MfE8owb21txXPPPQcAmDVrFiQSCbZu3cq+Nm3aNGzcuJFluQIH9ht8pihwIHCanZ2NwsJCVvHbGbyASD66WVlZB32sXq/H8OHDAbSPtdbWVlRVVTFxUKvVxgiLVKlJYmZv0dk46Mr46Gmo4SYv+JMgm56ejkgkgtzcXNTV1cHj8eCMM86Ay+XCli1bYuyNsrOzMWTIEBQWFkKr1aK+vh5///vfY/bb8ZSVlbGAhsfjwW+//Qag3dKC9r28XSNB8wYJzCSWU/+CQCAAg8EApVKJQCCApqYmpKens6pijUaTMCGHGvtFIpEOSVa0/6b1p7fOWEckMj/yyCP44osvsH79esyYMQNvvfUWbr/99u6+N4EgqSQzI6QrkHjHi8zUEZeylmlzTxu2YDCI1tZWtLa2wu/3syZ/fCZoWloa87bavXs3srKyIJFIkJubyzbiNJHzDRlokh9IYl4yN2GUEUP/klcqva5+v5/5bAeDQZSXlyMQCCAtLQ2zZs3ClClTkJOTE7PYUHOSdevW4eOPP8bu3buxZMkSXH311QAQ4zEll8tjumfz5aAqlQp+v58tnPzP8FnMNG67mmVMCzYJTCRC8RYM8Y8fSEGPvoJEIsGJJ56IoUOHYtmyZcyrcOfOnbDZbBg7duyA895NxfUmkUUGv5643W72vtfr9fB4PFi9ejXbYNN7MhgMoqamJiY7kAKfe/fuhVqthtvthkKhYA1mNRoNE5o1Gk1MFhkAJjSHw2EhMieZZIjMQHsDwO+//x5vvvkmHn744QE1ZxzNwb+n9iS8yMwnQNC+gcQVOriPGDGiS8/b3NzMguMk3FRVVeHNN99kTd5OOOEEBAIBfP7556wB0hlnnIHy8nK0trZCLpdjxIgR8Hq9zN8yOzub2RhYLBbWuBQAK7XmiReZg8Eg2wNlZmZ2GH8mk4mJhxRgp/0L/zdLxv4kmUHNRNnMvNUK0J5FTMLfcccd1+l7e/r06Rg3bhz+/ve/49NPP8X27dtRUFCACy64ADt37kRVVRVWrVqFVatWYcKECbjpppuwYsUK/Pbbb6wK+8QTT8TXX3+N7du3Y/To0TGZh3SuAsAabNH/41+3aDQaM36AA1nMRqOxUxGf92HmbVbiLVd6m8svvxxXXnkl3nnnHdxwww1JCULI5XL4/X521lQoFNBqtbDZbExsTk9PRzQahclkQkVFBZ599ll88skn0Ov1zAJj9OjR7H07duxYdualeZB+NxJ4aQ9zzDHHxFRCmM1m6HS6GA9l4EAyi1qtZmJfZ5CtgcvlYl69UqkUGRkZ0Ol0+O233+D1etk9ORwO5j1NVWS9udbFj4OXXnoJ5557bkqMD9oTkg6hUCigVCrh9XpZAAJot/Hau3cvqqurIZPJMGPGDBiNRtazitYYWg/45zebzTAajdDr9TAajcjIyEBpaSnLMN+yZQu2bNkCn88HvV6PoUOHMpsqi8XSYS+v0WhYxbhEIoHFYmHNY6mi3GazwWQywWq1sjmYtJnKyko4nU5kZ2fHVNq0tbUxMTl+T0yJYL2dmHHYo/TNN9/Es88+ixUrVuC4447Dn/70Jzz11FO4+eabY3yGBIK+TrJLhQ4G78EcLyyTuOz3++HxeFiZYktLC/PhpcmUNrtKpRLjxo3DmDFjsGbNGrS1tbEyLqA9A0Sv18NkMkGtVrOFlCZ2EpcHksAMJG8TFt9ghz6oLIgONk1NTQiHw6ipqUEgEMC4cePw4IMPdijZI6RSKYqKilBUVITKykqsWLGCBRzC4TD+85//sKyBnJwcfPvttwCA3NzcmGwPvV4Pv98Pt9vNypX4iC1tkmjzHAgEWMbiwaAmGHzmfme/B//8gtTEZDJh1qxZ2LRpE2pqaqBUKtHW1obNmzdj6NChnZbf9UdSbb0hYSjeg9ntdsPtdjMPOfJ33bdvH/tZyvayWq0xzXhyc3MxYcIEDB48GG+++SbL0CkvLwfQngFClTLUfIuEZ6/XGyMq89nMyRJqBO2QyNwbfsw8s2bNYg0Aly5divPPP79Xr59MUvHgH5+lywfB6XMe/oB8MN5++21Eo1Ecf/zxsFgsqK2txeuvvw6fz4fS0lJcffXV8Hg8+Oyzz9DU1ASFQoGZM2ciGo2yqolRo0ZBrVZj9+7diEajMBqNzL5Do9FAoVDECIS0943/XYADIjOJrnwDMh5KxqC5k+Yo/sCf6n67PRXUjK82i2/szP9tDjWGjUYjHn30UZx11ll49NFHUVNTg4ULF+KNN96AXC7Hl19+ibVr12L9+vXYsWMHHnzwQRiNRvz0009YtGgR/vjHPyIzMxPNzc3Ytm0bTjzxRBYQcLlcMa8Vn0wRj8vlYhZOWq2WVY6STUtn0DmM9sb0/0T2LL0J9RJJJiSm8p679GEwGGCz2VjCUygUwllnnYWVK1eisrKSPQf1fHjvvfcgkUhwzjnnYM2aNQDAKino/UviMi/IkfBYWFjIGk02Nzezx3YGiZ8qlQparZZVRqjValaZUVNTg2OOOYb9DPWx2LVrF9ra2pCZmYlgMIi2tjaYzWYEg0EmZvYWBxsHyR4fiXyZpVIp1Go1PB4PcnJyUFFRgXA4jIkTJ7IKh927dyd8PvLbtlgs0Ol0UCqVMWdNCjpt2bIF33//fUzgzWKxYOrUqfjtt99gs9lYwpXH44FGo2FisUajYWPHYDCw9USpVMJiscDhcDALOoPBAIfDwQItJDRTsqBarWYZzxQ4ycjIiKmooL9PMtaawxKZly5dittvvx3/+te/MGHCBADAnXfeiWeeeQbvvfcebrzxxh65SYEgGaRCqVAiKLuMJjuKbAYCAeYHRiXMTqcTLS0tcDqdsNvtaG1thcvlYt+jsoybb74Zer0e77//PpqamiCRSFBYWAiDwYBBgwbBbDbDbDaz31ehULCoIW0Wu7oR4kWBvi4MJGsTxnsf8pkWtDBR2Q0A5veWnZ2NRx555JAb9nA4jIULF2LFihUAgKlTp6K+vh6ffvopKisrIZFIcP7552PdunVobGyETCZjUWK6nsFgQGtrKwKBAGQyGXQ6HRuT9H4JhULs/zSmu5LRzGdBxzfQoUBHXx9XAwnKJBo0aBB+++03yOVyhMNh7N69G/n5+R2y7fsrqbTekMBM6wpltLndbjidTmaTYbPZEAgE2Ps3Go2itbU1pqyUMghPOukkFBUVwefz4d1332UCMx3K09PT2UGMOsjLZDKYTCZ2gKB5TafTDYgx0VdIViYzNQB89tln8cYbbwwokTlVD/6JxEPe5gY4IBquWbMGV1111UGz8hYvXoyvv/4aEokEs2fPRn19Pf7v//4PHo8HxcXF+P3vf4+2tjZ8/vnncLlc0Gg0mDlzJsxmM1auXIloNIr8/HwUFRWhqakJbrcbUqkURqMRLpeLZaqRpQHNQfHw2ce016VDfWfl63x1VXxm6sEaC/YGyQxq0pjgBSJeTATahRgKQvz8888s4/NgjB8/HosWLcLdd9+NTZs24dFHH8XHH3+MoUOH4qKLLsJLL72E/fv3Y8GCBXjuuefQ2tqKvXv3YunSpZg6dSq++eYb/Pbbbxg3bhyMRiNaW1vhcDigUChYFQ+f5cwHN0OhEBtDRqMRUqmUrYMmk+mgSXgkOKlUqphkjWSPkVSAAsoUcKbEJvIsJpuMoqIi7Nu3D7t27cKtt97KrBIKCgqwdu1avPfeewDaA5PRaBTbtm0DANYQjrf5k0gkrGEjeaoD7a+r3+9HTU1NTMCJ9+zm+yPxFaYulwstLS1IT0+HyWRCfn4+rFYr8/rlx7bRaER2djYaGxvR1tYGnU4Hn8/H5hKyLBtIlTudwc8hfFYzBffC4TBGjx6NzZs3o6GhAUVFRTjllFNYw1vy+6YqWavVyhoUdpWsrCyUlpZCrVZj586dbE+bmZnJgkxqtRrhcJjdF9AuKsfv56VSKUwmE9xuN7M21Wq1LFELaBeRKYDl8/nYOkT9TpRKJRO/aVxTtS//N+sNujxCN27ciEsvvRRPPfUUZs2axb5uNBpx5513YsGCBbjuuutE2aKg35AKpSDx8OXLJDDTREoN3wKBAOx2O5qbm+FwONDS0oLW1lZ4PB7Y7XbWFI5oaWnBwoULmXAtl8tRVFSEzMxMDBo0CEajkXVYpoWeNoUymYyVZxxsI8SXT/IbbbFIHjl8xgfvxR3fPZbGLWXyHIzt27fjtddeY35kl156KbZv347NmzcjGo1CpVJh0qRJ2LFjB1s8TzrpJFRXV8Pv90OhUCAtLQ0ymQx6vR5OpxNutxsZGRmQSCRwuVzw+/0wGAzMo5G8xg6njGcgZs33d6jL9/bt25l9htVqRSAQQEFBQb/fW6TSekMZwyQwU+DS4XAgGAyipaWFlfu5XC44HA4mWFBDQMruKysrwznnnMPmg4ULF6KhoQFyuRw5OTmsTNRoNLJu8VqtFjKZjM0lQLvoQB56h2ORQfOKCD71DJFIhHkRkr9kb3LzzTfj2WefxZdffonq6upeqSQTJIYXlElEpMCxUqmERqOB0+lkmV179uzBI488gj/+8Y/IycmJea6Wlha88847WLp0KQDghhtugNFoxKuvvgqXy4WCggLcfPPN2LdvH1asWIFwOAyLxYLzzz8fOp0Oa9asgc/ng8FgwPHHHw+fz4e6ujoA7WsNZe6mp6ez/6vV6oQZyTyJLB4SEY1GYbPZWAUXZVoCB6x+4p+vN0lmUJMXhPi/De0LAbDxotFoYLPZ8MADD+Dpp5+GRqM56HPL5XKMHj0amzZtwr59+9haUVRUhMcffxwPPvggampqsGrVKlxwwQV49tlnsXPnTlx++eVMAGptbWUis9vtZpV5tF8FwM5gJB7TGFKpVOweeXGyMyKRCBOndTod+39Xz1YDAaVSiXA4DLVazcYkZXhSEk0oFMLgwYOxb98+/Oc//4FCoYBer4fNZmPv05kzZ2Lo0KF45513WGVEfn4+QqEQ6uvrARywsuCDByQoK5VKJjCr1eoOdgU8/HmMfLmDwSCam5vh9XqRnZ3NBHKr1dohgFJQUACHwwGv18v8p1tbW5GRkcH2WL3tzZyK8GsNBTKVSiWCwSCzYfP5fJg8eTLWrVuH+vp61NfXs3kn/rxMz2k0GmEymViVS3xAjLLpZTIZ01kIrVYLjUbDnttoNCIcDjOxmdYEg8HAgo9UnUvX12q1UCgUcDqdbLxR0gedj6jyDziQ6U/NAuk+6J5JRO/t+aTLCs8JJ5yQsJwGAB577DE89thj3XZTAkEqkAqlQjwkMMdnmIXDYSYcu1wuNDQ0oLW1FU1NTWhubobNZoPNZjuogb3D4YBKpYLZbEZBQQHy8vKQnZ0Nk8kErVbLNnxqtZo9j0KhOGSnUr7LuKD76ErZCwn4JFatW7cOv/76K4499tiYx/n9fvz000/4/PPPsXnzZgDtgs7xxx/PxGYAyMvLg8lkQkNDA3tMUVERW1ylUimGDh3KDlDxzQ6ofIk2zvzvIfxVBUD7mD322GPZHCaTyRAMBlFbW4usrKyUCPT1FKmy3tB7lzazfr+fCclerxdNTU0IBALMCiMcDsPn8zHxiLfHAIAff/wRFRUVuPnmm7Fw4UK0tbVBLpejsLAQGo0GWVlZ0Ov1MBgM0Ol0LJhpMpli5gI6SPBVHPz34qFsbN5SpyuWPILDo6qqCl6vF0qlEoMHD+716w8dOhTTpk3Dd999hzfffDNpPTIEsRmqVOlGmVhkT0FC3pAhQ7Bz5078+OOPuOaaazB8+HAUFRWxpqHbtm1jthLXXXcdSktL8fLLL7Og4w033IAffviBBThKSkpw5plnAmjf69hsNiiVSkyYMAFSqRQVFRWIRqMwGAzM61ev17MAt1wuZ4f+zn434MC8IpfLodFoEAgE0NLSglAoBLVaDYlEwhI+KMPMYrGwIByVXwNIar+IZAY1eXs9uVwOpVLJLACcTidMJhMikQjcbjfS09NRX1+P1atX44orrsBtt92GU089NUb8bmpqws8//4yVK1di1apV7O8+a9asmDVELpfDYrGgpqaGWblRVnkgEIixNqHXm29qTX0BaL/Kry2039VoNB08p3lxOh6yLaSkHbpP/m810FGpVGzuoA+fzwez2YzW1lakp6ejqakJoVAIw4YNQ2NjI2w2G9uLDBkyBFOmTEFtbS0+/PBDAO1N22bNmgWn04nvv/8ebrcbWq0WBQUFCIVC7JxLr7FKpYLb7WbVmXl5eTGvDVWU8kIh9ZPQarWwWCyw2+1oaWlhwfL09HRme0ANk4EDQf7Bgwdj586dMT2TXC4Xy3gnm8GBDtkokm83nSOp94ff74fNZsNZZ52FvXv3Yv/+/awyAWifkzMzM5GdnQ2LxQK1Ws3sJyipj29kSwkW8RgMBpYxTPdD/UQkEgn0ej37Oap24BvixkMVN5StTGI3BS8SCeT0c3wwjr9ub9saizRCgaAPkEhg9vl8CIVCsNls8Pl8qK+vR1NTE4vUkQczQRH+vXv3smi5SqXCoEGDoNfrkZ+fj/z8fOTl5SEtLQ16vZ5FjimqFu+3d7DGFHzZUCLE5qn74KO5dFigv29jYyNKS0tRXl6O++67D6WlpSguLgYANDQ0YM+ePWyRk0qlyM3NhdlsZlkYaWlpMJvNbNFSqVQwmUwwGAwseGAymZCXl4doNIqGhgbWPIOitQCYhyvdL3/vvL9qvAid6IPuVWQ09z+oyWh6ejpqa2vZWLHb7czeRwiFPUMkEmGb13iB2eVyoampCR6PB/X19fD7/XA6ncwfjqegoAClpaX4+eef4fF40NjYiDfeeAMejwcKhYKtOdnZ2dDr9dDpdNDr9VAoFKzze/xrzB/g+EzARO//REEuQc9ADW6GDBmStMqkm2++mYnMjzzyiKiQShK8SEYNmHw+H4xGIzweD3Q6HTIzM9HY2IhgMIjS0lJ4PB5UVVVh+/bt2L59e8zzjRo1CjNmzEBFRQU++ugjAO2WLCeddBI++eQTeL1eSCQSTJgwAePGjUNTUxO2bNkCr9cLhUKBiRMnQqvVYt++ffD5fJDL5az0nC+ppobWB1tXqMkwNWcymUxIS0uDz+dj2a/xSCQSpKWlsf07ZajxzeOSRTKDmvT+JIGZhDvKHjabzXC5XLBYLAgGg8jJyYHVakVlZSX+8pe/QKlUoqCgAHK5HM3NzR0CmyUlJbjuuuswc+ZMBINBVFZWYuvWrVixYgXq6+shk8kwfvx4fPbZZ4hGo6w5l8PhYK8Z2b/x/qnkr0prDz/PkL2Cw+Fgv5fJZEJLSwsaGhoQCARgNptZZn84HGaN14H2xpG051ar1Un3Y04l6FwTjUaZTQbtB0gMJqsumm8yMjJgMBigVCpht9uxfPly9lxTpkzBiBEjsGrVKuzbt48JgtOnT4dcLkdNTQ0AxGSjarValiHKB8BDoRCzNegMfjwolUrU1dXB4/Gw7NNQKAS73Y60tDTU19djx44dCIfD0Ol0yMrKQltbG/OPpwxcuVwOt9vN7AMHMpSlS4EaGi9ut5udW/1+P3bv3o2MjAyUlZWx9yAAZmficDhivLwPhUqlgl6vZ2I2vyclSzc63/LvaYPBwLKOeQ2FxlR8ryW5XM7WUPp95XJ5TIU4H9zlNRe9Xp/Q2qW3EDsxgSDFibfIIIE5EAjAZrPB4XCguroa9fX1qKqqQn19fYy4PHLkSJx55pkoKSnBiy++yATmtLQ05ObmMqP7goICZGZmsi7IarWaict8JD8R8SWEB2vKRpOpEIqOnPiSVLlcjkAgwHyftFototEosrKy0NTUBK1Wy3yTy8vLWaMtgjKNLBYLlEol84WyWCxQqVRs0TQajSxTg6K0KpUKMpmswyGLosNUTkSbQT4bnm/OR1mKVEp0qKY4fOazEBX6H0qlEsXFxbBarWwDH9+oScwh3Qff6I9EZt4Ko7GxEXa7HfX19QgEAmhoaIDVagXQ/t494YQTMHnyZIwdOxZpaWnYs2cP1q5dC6B90+zxeKBWq1FYWIi0tDR2CDQYDCyYaTQaE26CqTwUONAsrDORmX6PeMR46RlIZE6GVQZx0UUXISMjA3V1dfjiiy9wwQUXJO1eBjK0FyHRRqFQsL2IxWJh+0KJRMLENZVKBZ1OxxoYKZVKVm7c3NyM7777DkD7+/e4445DIBDAqlWrALTvYadNmwYAWL16NduD6HQ6jB8/njUVJfEwPT2dZQWaTCa2D+HnnXgfZb68mHpNhEIhtLa2QqvVIjs7Gx6Ph2U5AojZG1EzZroOb5kxUBMtaP9IGcT09wqHw8jMzITf70dmZibC4TCysrJgtVqhVCrhdruZ9QDfaFYqlaKkpARDhw5FQUEBpFIpNm/ejGXLlqGlpSXmLGIwGDBr1ix8/vnnqKqqgkQiwdSpU5kIOWzYMLS1tcFut7OzCgUleJ9lauLGPy95+La0tECn0yEtLY0Jz5SxSuOJr+40m81MNAQ67pEFYNmlVD3AZ5LTHkCtVsNut7P+L/yZRKlUssZ9TU1NqK6uZt/Lz8/HxIkTodfrUV1dzZrCFRYWstdbq9Wy14fsT2iPRJDACRyYR/j+Fl6vF1qtFjk5Oaivr4fT6YTBYEBbWxvq6+thMpmYpy/Q7pVeUVHBxhoFxID2+YvGjF6vH9B7G9ITSGSlahEKIvKNXVtaWmKsLeKRSCTQ6XTME54XrnmLn0gkAq/Xy5pgA2BNq3mvdrVazcYE2XBIJJKY7HS6Dv8a8j23aCxRpQxlWB/sd5DL5SyDme5HpVL1+jgRs5dAkMLwXj004VDmBEXBq6qqsH//flRXV6OhoYFNKKeeeiouu+wylJWV4fPPP8c999wTU+qTl5eHwsJCDBo0CDk5OTCZTKxcmSwy4sVjmkzjN8fxk2NnAjMtBgN5QewO+EWLDivU0drn8yEzMxOBQADp6emIRqNobm6GVqvF8OHD4XK52MIjl8uh1WrZ4qNWq2E2m1mknsRnnU7H/BWpWUH8okjlsXRQlEgkMVkfQPtiykdu+ZJH8qBLJC7HH/aAA+OMmiwM9Gh+f4QaWfj9ftjtdjbmKNuWxqHg6KGgDQnMbrcbLpcLPp8PjY2NcDgcqKurg9frZRYJcrkc55xzDmbNmsW6tANAXV0d5s6di2AwCJPJxOaQgoICZGVlIT09HQaDgWWBUBmgz+eLyWKORqMsoxo4MMeQmMM3jyJ4Ww3+4CHWnJ4hmX7MhEqlwg033ICnn34ar776areLzDabDc8//zw2bNiA4uJi3Hnnnb3e5LCvQBYZdNCneQU4YD3Q1tYGqVTKBEP6HpUFU8Yg0P7aUvNXEgfUajWGDBkCrVaLzZs3xwScBg8ejGHDhsHhcGDnzp0sg5jWEaBd1KP/056X5pr4ABWfOUg+8Q6Hg5VNUzYhNTwGwOZREqWo7Jlvet3bDcNTDRonCoUCKpUKoVCIWWbwawn593u9XlitVhgMBhawoIAj/U337NkTY/FG6HQ65ObmIiMjIyZIoVKpMG7cOOzYsQORSAQZGRmsgRzQ3mCLXkOz2cwER41G08EPl5rX2u12Jj55PB7WY8DhcDC7OIIsCgGwxCCdTsfGMy9aDnSoKtJut7P3En2d7AHa2tqgUChgsViYEA0cyCSmSkvgQBIMJcJs376dZYoC7V7taWlpaG5uZo93u92s8X0kEmECM1VgdVZVRXsYsoBRKBRIT0+H1WplXr1utxvNzc1s/pk6dSrq6uqwb98+uFwuFojx+XyQSqVwOp1M7Pb7/f3aSu5QSCQHGjXSusNXifj9fpZJLpFImOgPHNhT0tmCzqDUZLorkCUKaTV0P3xiAwVP6exN1+5M+KXKGYVCwc47tH5QvxNKOqR75u2HADAhms72ydgDi9OZQJDC8Jt0XmBubW1FQ0MDqqurUV5ejoqKCrYxHz16NO644w6UlpaisbER999/P3755RcA7RuYoqIiDBo0CMXFxcjPz0d6ejrLJCGBOX6xpLIkvlyns0yy+ImMFwjFQb974MUTElk1Gg0ikQiMRiMikQjy8vLQ0NCAzMxM6PV6VvLOL75UxqPVallGoUKhYM0eacGisRHvuRgf4SXiPabogMZnLVNGNB+UiPdg5T/ikclkCAQCh8x4FvR9VCoVMjMz4fP5Yg5pfr8foVAoKRH6/gQfxKQDkdfrRSAQQFNTE7Nj8vv9qKyshM/nw6BBg/CXv/wFRUVFMc9VU1ODv/71r7DZbFCr1Rg0aBBMJhMKCwuRk5MDi8UCo9HIApl8ySitc+Q7R+9v4MBBkReBOstOpsCDGBM9TypkMgPAH/7wBzz77LNYtmwZtm3bhlGjRnXL8/722284/fTTWQk1ACxcuBCffPIJ8wAWHIAOx0D7+5PKhGlvQnsBrVYLm83GDt5kfRG/V+Tndp1OB4vFAqC9jwjf4KigoAAZGRnw+XzYuXNnjAclldgD7Rmn9D3a+/AerMCBvQcd3umQT3MVidRer5cJFomqJyQSCRMg+MeI9eqAgEp2GSTU2+12WCwWVkpeUFCAmpoa1sgtHA4zuxWCRBRKlKEkBxJhKOjY1NQEoH1MFBcXQ6FQsK8NGjQIhYWFqKqqAgDmC03Zh7Sn1Wq1MJlMMRWmdA8ymYw1C6NABAmXJCzy90zZkARVjvLjRHAACtaQXQ29H0nQIxHW4/GwvSG9hnwSDFUZSCQSFjggqE+ERqNhlimZmZnsdaQGffS6UZPzzt7PMpmM9TPy+Xzwer0s8GUwGOB0OqFWq+H1elFbW8veDzabDSUlJcjKysKWLVvgcrngdruh0+ng8XgglUrhdrthMBjg8XhYIGygQk38SLjlz4V0ViQoEYonPjEuPjkh3taCxpxUKmUVDHQtet/SekbNZHnRl7KXDwX/WLKJIU2I1hdeg4m3ijuYkN0bDNwRKRCkOBRN45v8BQIBVlpTXV2NPXv2oKKiAm63GzKZDLfccgsuvPBCRCIRfPLJJ3jnnXdYiU12djYGDx6MkpISFBUVITs7m1ljkOVBvKBHpT78ho4yToHEmWTxguNA30z3FFRuyHszUTTbbDbD4XCgsLCQlf5pNBpkZ2ezaCsvDvOZOFS2SpYpFB3ly4boNe3sdeYfE/94suOIb5wS/7sdrAsuWbIczBNc0L+gDRXfKIPEAcrqEIeyw4e3yaB/6aBGNjeNjY0Ih8NMcC4rK8MTTzzRoSP6tm3bMG/ePDidTqhUKpSWliIzMxOFhYXIzc1lAjOVL1JQi0oAyQqKh+YMADEH+oPZX4j5oPdIFZF58ODBuOiii7B48WI899xzePvtt4/6ORsaGnDaaaehrq4OZWVluPXWW7FkyRKsWrUKl156KTZs2IChQ4d2w933LyhoRFll5IsZjUaZkGaz2ZjHbTAYhMPhSBgs1mq1MVYa9N7W6/Uwm83MjsPn88UEAiiATgd5CmzTNdRqNfR6fUz2Mome8dYZwWAwJuGDFxT5+ZMPlpP4BSDmGvzzD2RoXqeMZPr7ajQaeL1e5OXlobq6GhKJBCUlJWhpaYHT6YRMJkNBQUFM1mB8xi8vKJEgZDQaWWMuep2CwSB0Oh2GDx8eY69gNpvZeYhf4wwGA7u/RM3M6ZxEYihl51OCTmcl7rTfBg6scWq1WoyTBND7zuVyMc9l2kvQ35oPJCWCHzP8B32ND2DRfoUsd0wmE8LhMAtKJeof0dk1edsGGvd8FQWN/0AggPLycmRmZkKn0+HEE0/EL7/8ApvNBo/HA71eD7fbzapLNRoN3G43s2IYiFB1iM/nixF6aV7gm3XGnx3jE6UOdvbkiddFaH2inyXLDX4sUrLE4b5OUqmUZdGT2NyZNRz9XrTWJHNMSKIiBUwg6DYowkolPUcD3+TP6/XC5/PBarWisbGR+UZVV1fDarVCo9HgiSeewKhRo/DDDz/gnXfeQV1dHYD2RXDQoEEoLS1FaWkp8vPzkZaWxrKXedsDmpxpwxefLRCfjdrVyVhwgJ4YI/RBApzP50M4HIbT6WRlWlSKGl8mREIPHco0Gg0TlfkyIt73KpHIfDB43+RESw7fyZvgr8lHk+M3Ccn0ZN6yZQtuv/12BINB3HHHHfjd736HJUuW4Mknn0RGRgbef/99pKWlYfbs2dizZw9mzJiBRx99tEvP3Z3jpL9BBzbKWCHUajUMBsOAKTHtjjFC87zf74ff72fissvlQk1NDex2OyorK+F2u7Fnzx6o1Wq8+uqryMrKinmO//znP3jvvfcQiUSg1WoxePBg5OfnMzumtLQ0FgjgM4kIEor4+SnRnHGoAJSg92hubkZWVhYr9+U7mieD9evX4+STT4ZCoUBlZSVyc3OP+Lmi0ShmzJiBFStWYPjw4fjhhx+QkZGBYDCIGTNm4IcffsDJJ5+MNWvW9Pmx2BNrDQWr6F9KknC73QiFQpBKpQgGg6itrQUA5s9L/6f9Cc3lUqmUiXyd+RnT1/l9C58JxgvUlBlGxJc3x0NNURMd6hNVdJFATb6sdI34DLq+RHePk2g0CrfbjXA4DLfbzcaJw+FgWcINDQ0sAEEZgy6Xi2WRU2BApVJ1eJ1pDUkktGRnZyM3N5fZtgAHst7pObRaLRtnlDkbLyzRc9OZKT5xgt+/8nZw/F46ft/LB0f6Gr21b6X9Anme+/1+Nn74jE/6m8dXRh6sspYEw3jhPysriwnclH1/JL9jJBKB0+lk90fnNKfTyWw4wuEwCgsLccwxx7Cs/B9//BFut5ud08iCgYIiGo0m6WtwV+jJMUKJJzT/0vm3s7m7M+L3pvHEByj4uZ/mIv59TSJxd51NEq0vdJ34ZLBk0jdnMYGgn0NCGonMgUCANTRoaGhAXV1dTEfr8847D5s3b8ZTTz2FxsZGAO0LZXZ2NkpLSzF48GAUFRWxxn60QJG4yEf+40vS6bn4hTnZ0TFBO5RVHr8hJX9Ts9nMbFaowQ4vztKBjLxteR8o3hIjkeDLj4dEi3C8OBz/GH4h7OxgdqhNQbKb5zz++OP44IMPUFBQgMmTJ+N3v/sdnn/+eaxevRrffvstXn/9dUyePBmZmZl4++23ccUVV6C2thb5+flJu+f+AC8c2O12Nn+Rj3BGRobIau4ifNCGNuO05sT7igLAjBkzYgTmbdu24c0332SlpWlpaSgqKmJ+/1lZWbBYLCyoSUIOCUkEZfoAsfMAQRUVYt1JHbZt2wYAKCkpSYnD7YQJEzBp0iSsWbMGL730Ep588skjfq53330XK1asgFarxZIlS5hPrEKhwIcffohhw4Zh3bp1+PDDD3H11Vd316/Qb+D7JCgUCvae1mq18Hg8zI/3uOOOQ2trKxobG2MO4GSpQVV2vOAMHAhCk4jIZ7OSgEfBcv7wr1KpYhIoKAPuUPsIEgmUSiWbm2h/Ej9XxXM45dEDCfq7kGcqjRGDwcAySXNzc5GWloaGhgb2WsVX0BwMEuL4D7lczgRJAKyknTIM5XI5GxMU3OAzken7iQQjEpsp8SN+79vZvpj+FqJBbdeg/QKfvUqNzylAQR+80Ay0v95dya/kLSEzMzNhMBiYjRjQnsB1JFCmu9PpRCgUgk6nY8F5apDsdrtZJv/QoUMhl8sxevRorF+/np3nqNm73+9n/XiS5b2bKtAc6/f72ZmWLHP4igki0Xk2UQAiUZ8gHlqjaB3hq717IqOY5qlUX1NS++4EggEIHfbjM1MDgQAaGhoQDoeZjxTZDnz88cfs52UyGdLT09khv6SkBLm5uay0kEouaNPLT57xky8vAvJlJYLUgMrGg8FgjA8pHcDI35T3YeY3WwBiDmN0WKPNdSIhOB5+k8w/hs825q91sOaPtHDypU2JFvdUidS+9tprrAu6RNLu75aeng6lUokpU6bg9ddfh0ajweTJkwEAkyZNwk8//YSLLrqow3NRJinBNz8SJEYqlcJsNrMGUuTjWFVVBbPZjPT0dDFfHQTedoYCOxTcobFIawLNIdFoFDt37kR5eTlWrlzJGr9JpVLk5+ez7OX8/HxkZmYiLS2N+S/zB+hwONxB2OHXPoLmBPE6ph7U6+H4449P7o1w3HPPPVizZg1ee+01PPDAA0eUKdXS0oL77rsPADB37twOlhj5+fl46KGH8PDDD2Pu3Lm44oorRGl7HPS+DQQCbI9CVXIkiJD9m1QqRXFxMQAwgSh+n8Ifqvlqhs4yyuiD39cAHS13Djdwxd8HiRb8R3wZNh+oF3SExgZvrRKNRmEymVh2s1arRUlJCat04ccI/zeOt0BI1DiP/LWBA96sZOFGIjatU/EZiRRoOJiwQ9emwAqf4Ry/n6XHiuqcI0cqbW94TlZqfBbzoaDXgu8Lw2ea8xnN0WiUicIAWMXnkSKRtHsyU/NAvV7PxgvdEzVZbm1tRUlJCYxGI/NsJhuGYDAIr9fLbIMCgcCAT7CgOd3v97P3LL3G5NvcGV2t0E6kj8Q/D4nOA/l9LURmgSDF4LO4aLGk8hmXyxWzAA4ZMgSVlZUIh8OsVDwrKwt5eXkoLCxEXl4eLBYL9Hp9jPcyn1VBmym+7CI+Y1WIy6lLvNBMrx0Jn3z0NtEGlxZKfoMeL+LGL6a0EeM3RZ014EtUTtSV34nfwKWq93JmZiYA4K9//SuuuOIKOJ1OlmWj0+ngcrkSfi0R8+fPx9y5c3vnxvsRVNaqUChYMyYAaG1thd1ux6BBg/p0iXJPwh+yeMGZf1/TvF9SUoJt27bhiy++wBdffMGeQyKRwGKxIDc3F7m5uSgoKOjgv8x7/lNgNH6uIHE5vsGKOHynLps3bwaQWiLzzJkzccwxx+C3337Ds88+e0Rz6v333w+r1Ypjjz0Wf/zjHxM+5s4778QzzzyDPXv24D//+Q8uvfTSo731fgdvSUGeqfQv2V6QF2kiL3be25jmDxLk4gPgvOgcLwDwHMxC4XChexQBhiOHMlLJBiAajUKn08Hr9bJzC2WPHmm1BC9E0x6ZxgDdAyXe0GP57PYjzTIW46P3oNeI9nq8tR4v7sefXRKJ/zxk5cJDPvHdcc96vZ6dCShjnpBKpfB4PHC5XNi6dWvM1w0GA9ra2mLO6ZRtP9BFZuBAw0W+aSu9/w+WlXw0awLNHSIp4gBCZBYIUggSmHlP5PhSPLlcjlGjRmHr1q2Qy+UoLS1l5TcWiwVZWVksc9lkMrESQdpAUfYGf03alMeXdQlxuW9Am+RQKBTzuslksg7iET0+0eEsXkzuisjDb9oSPX93CESpIjK9+OKL+Oijj9jnDz/8MH755Rc0NTVh/vz5aGtrYxtSasRBTTroa4MGDUr43A8++CDuvvtu9jk1bhR0DYVCgYKCAjQ0NMDpdAIAa6CSnZ2NtLS0lBlHqcLBSkZp3tfr9bBaraivr8eoUaNQWVnJypuNRiPS0tKQnp7OPC4zMjKY5z+tPTQPUDCMf37KnOYtmkRmV9+AMpnHjBmT5Ds5gEwmw+OPP45LL70Uzz77LG6//fYYe5dDQT0tAOD//u//YqqAeAwGA+6880489thjmD9/Pi655BIxXuMg4YcyyuhvSc2t+CA4X9LO70XiD+68wHyo4HX8XkjMKamJVCplDfU0Gg1rVk4VNSQMxdsf8D+faE8LdKywI+Iz42m/m8jPW1hY9D0OR+DnM875j3j/bLIW7M4zMQnNHo8HQLv3Nz+vyeVy+P1+tkdSKpXIysqC3W4HENvYLn4fNdDh37+UsEfJV139+c4E6M6Cm4JYhMgsEKQQiSKshEKhwKBBg1BVVQWpVIoRI0YgEAgwLyqTyYT09HQmbFHmMkXo+eg9Lzp2ZkcgJsy+Bb2+tFmioAGflRj/+PiMdf5Qd6QLcX/mrrvuwl133cU+X7x4MbZt24b3338fQLsfbXNzM3w+H1atWoWxY8di7Nix+OKLL3Deeedh9erVePrppxM+NwlygiNHKpUiNzcXer0e9fX1MfYZlNUssoo6h58DNBoNJJL2JkRpaWloa2tjQU3gQJf3tLQ05rtsMplispe1Wi0TlamUk6B1qLNGSoLUxufzYefOnQBSK5MZAC6++GKccMIJ2LhxI5588kk8//zzXfo5v9+PW265BQBw88034+STTz7o4++66y48/fTT+OWXX7B27VpMmjTpaG+9SyRqOEv8+uuvuPDCC5llzQcffNAr99QZcrmcVeWRr7Lf72f+qfGiYSJhmBeaO6uyiw9sD6R9SX9ALpczoZka31FzNapy4RvrxVe3HUxUjn9MfMCBPFP5apv4JoKC/kuyM84lEgl0Oh1kMhk8Hg9MJhMLfvh8vg6iNiVRqNVqNpblcjlLMhLEQgkOZGGTSPtIdB4WHD1CZBYIUohEkx+JyD6fD0ajEYWFhXC73YhGo1AoFNBoNNDr9azBBXlF0SaJLw+TSCSdelUdrqWBIPXgN0vxJfBA4o35wUpLBQdnzpw5UKvVmD59OgBg+fLluPvuuzF16lRoNBosXrwYFosFCxcuxMknn4xp06Z1msks6B4kEgkTOisqKtDW1sYOqB6PB8XFxdDpdMm+zZQifh6g7ML09HS0tLQgOzsbJpOJZSQqlUro9XoYjUaYzWbo9XoYDAYmLlNjWZqP4r3+aX7i/VFFiWHfYtu2bQiHw8jIyEi5RqYSiQTz58/HGWecgVdeeQWzZ8/G6NGjD/lz8+fPx2+//Ybs7GwsWLDgkI9PT0/HlVdeibfffhuvvfZar4nMiRrOEjt27MDcuXNjvpZsaC4gSy+yzOks846voopv6EeJEmKv2v+Qy+XMr5tPiKGqzu7K0iRRLj6oSVaCItApSAYUXHG73TAYDKwCmZowU5CF5kGaV9PT01kAvycawfWloOahEOfc3kUS7UqLTYFA0CUcDgdMJhPsdvsRNZwhMSQUCrGGf5Tt4Xa7WWYeQVnKtDjx/nW871yiTZPI+kgORztGBAMDMU6Onmg0ioaGBtalm7LFLRZLv2gKeLRjhDKJqYGM3++Hz+eDz+eDw+Fg65DH40EoFGIlo2q1GjqdLuZf8kMkr1WCr8yRSCQdKivowC/Wn77Fm2++iZtuugkzZszAN998k+zbSchFF12EJUuWYPz48VizZs1BM9V27NiB448/HsFgEP/+979x2WWXdekaGzZswIknngilUomamhrm09+TNDc3s4azU6ZMwdq1a9n3HnnkEaxduxbBYBAPPvggzj777A4/n6jJbGFhYY+vNeFwGIFAIOb9zydWJNqLCp/L1KG39iTkLRsIBGLOO531/Ui0dsT/XKJSd4KyHEWV09Ej9q1HTzQaZf1FKIs/EAggFAqxxoO0n6V+LzTGyW6jO7nkkkvw7LPPsqDmunXr2PcWLVqEYDB4WEFNMUYGDiKTWSBIIeJ9xVQqFTsMGI1GGAwGdljnP/iO27yfJYnLtKES2coCgWCgIJFImD99eXk523y3trbC6XSisLCwU8/VgQCfwRUOh1nDo2g0CqPRyJqm6PV6tiZRWTOJynRAV6lULIuG/AwP1lAHQEzzJUHfYtOmTQBSzyqD56WXXsLy5cvx448/4rHHHuu0CaDb7cbll1+OYDCI884777Ca+I0bNw7jxo3Dhg0b8M477+D+++/vrtvvlPiGszzHHnssrrrqKuTn52PGjBk444wzOrzHktVklqryeP/TRL0c4u0yBAML3kuVkm54ca2rz3Ew4v2YBYJUgWzK6Pzv9/vZPjW+GpU+l0ql0Ov1PTJfvvbaayyoGf9e2b59O9auXYt//OMfhxXUFAwMhMgsEKQQ/Cab95+jTXn8Zpz3EOP/31kjDLGZEggEAw2NRoMRI0agsbGRbXCDwSAqKytRUFDQLZ3C+yK8nQU1PQLAbC+onJ1fb/gqGb5ahrLPDnYtEezsP6xZswYAMGHChCTfSecUFBTg5ZdfxnXXXYfHHnsMo0ePxiWXXBLzmHA4jBtvvBHbtm1DTk4O3njjjcMel7feeitmz56N119/Hffee2+3H/QP1XCW58wzz2TZYYMHD4bVau3Q+DCZTWaT7X8q6DvwCTRAbFVMvAVcZ/9P5N8t1h5BX4DEZvKvp6qz+CapfN+lnqCvBjUFyUfYZQgE3cjRloHwXW6pm3Iio/rOmpzwmyexmUpNRKmQoCuIcdIzuFwu1NbWss9NJhO0Wm2PZYH0JN0xRkgcpvWGfP/is5DjswsPFrRMFNwU61D/wW63Iy0tDdFoFPX19cjJyUn2LR2Uu+66Cy+99BLkcjlefPFF/OEPf4BEIoHNZsPvf/97LF68GHK5HCtWrMCUKVMO+/k9Hg/y8/Nhs9mwdOlSnHXWWT3wWxxg8eLFWLx4Md5///0Oc9bFF1+MefPmoaSkBNOmTcPq1asPOa+JtUbQFcQ4ERwKMUb6Pp0FNcvLy/HWW2/FPNbhcLDX+YorrsCLL77YIaiZLHsmQfLpWycqgaCfw2cxU4SS/4gvUeZLvig7JD7DTCAQCATt6PV6DBkyBAaDgdlAeL1etLW1dVtjob4Edd6mtUOpVEKlUkGtVkOj0UCj0UCr1bKMGn794dck8rumZjX0nCLQ2f9Yv349otEoSktLU15gBoDnnnsOV199NUKhEG677TYMGTIEZ555JoqKipjAvGjRoiMSmAFAq9XiuuuuAwC8+uqr3XnrCZkzZw727NmD6dOn49RTT0U4HMY999yD1tZWzJkzB7Nnz8a0adPwwAMP9LnAmUAgEAiSx1133YXVq1ezD4/Hg23btuEf//hHh8fecMMN+O233+D3+1FVVYWMjIwOj1GpVDAajTEfgoGBsMsQCFIMPgssURZzoseKTDGBQCDoGlKpFLm5ufB6vXA6nQDam656PJ4OjesGAlSWTL93oqoZ+r9A8MMPPwAAJk2alOQ76RpyuRz//Oc/ccIJJ+DRRx9FeXk5ysvLAQDDhw/H22+/fdS2H7feeiteeOEFfP755ygvL0dpaWl33HpCtm7d2uFrzz77LADAYrEwKxOBQCAQCI6GOXPmQK1WY/r06QCA5cuX4/7778fDDz/MgprRaFQENQUdECKzQJDCCPFYIBAIuh+JRAKtVgulUsmEZolEAp/PF9PEbiAhxGRBV/jqq68AADNmzEjynXQdqVSKP//5z7jpppuwYsUKNDc3Y9iwYZg4cWK3HIyHDRuGs88+G0uXLsVLL72E559//uhvWiAQCASCJCKCmoIjRYQcBAKBoIsEg8GYjKclS5bgpJNOwjnnnIPW1tYk3plAIDgS5HI5zGYzdDod+1o4HE7iHQkEqUtjYyM2bdoEADjjjDOSfDeHj16vx8yZMzF79mxMnjy5WzOv/vSnPwEA3n77bdZgVCAQCAQCgWCgIURmgUAg6AKtra0466yzsG/fPva1559/HqtXr8Ydd9yB119/PYl3JxAIjhSJRAKlUgmNRsP8hAUCQUcoi3ns2LHIzs5O8t2kFqeffjqGDx8Op9PZoUGSQCAQCAQCwUBBiMwCgUDQBdxuN/7+979jxIgRAACbzYb09HQolUpMmTIF69evT/hzfr8fDocj5kMgEKQe1GxV+MoJBIlZtGgRAGDmzJlJvpPUQyKR4M9//jMA4KmnnoLH40nyHQkEAkHXEJWaAoGgOxEnKYFAIOgChYWFOPbYY9nnTqcTer0eAKDT6eByuRL+3Pz582EymdhHYWFhr9yvQCBITX799VcMHjwYp556Kq6++moA4kAnSH0aGxuxbNkyAGDjVhDLddddh+LiYjQ0NODll19O9u0IBALBITnSSk2RRCMQCDpDiMwCAcShX9CRF198EZMnT2YfS5cujfm+Xq+H2+0G0J7lbDQaEz7Pgw8+CLvdzj6qq6t7/N4FAkHqsmPHDsydOxcrV67EBx98AEAc6ASpz9tvv41IJIKTTjoJZWVlyb6dlESpVGLu3LkAgAULFqCpqSnJdyQQCAQH50grNUUSjUAg6AwhMgsEOPJDv6D/ctddd2H16tXs4+yzz475flpaGpqbm+Hz+bBq1SqMHTs24fOoVCoYjcaYD4FAMHDZvn073n33XZxyyilYunSpONAJUh6fz4cXXngBAHDHHXck+W5Sm6uvvhrHHXcc2traxN9KIBCkPEdaqSmSaAQCQWcIkVkgwJEf+kVm2cDm7rvvxtSpU/HUU0/htttuS/btCJLE9ddfj5UrVwLoWAERjUZx4403YsqUKSzDTTCwOfbYY/Hyyy/j888/x6OPPgq73S4OdIKU5rnnnkNjYyMKCwtxxRVXJPt2UhqZTIa3334bMpkMH3/8Md59991k35JAIBAwuqtSUyTRCASCzhAis0CAIz/0i8yygQeJiQBwwQUX4Mcff8TKlSuRnp6evJsSJI0dO3ZgyZIl7PP4CojVq1cjMzMTq1atws6dO1FbW5u8mxUkhfgDnVKpxPDhw2E0GjF48GCo1WpxoBOkLFu2bMHjjz8OAJg3bx4UCkWS7yj1GTt2LB555BEAwE033YSvvvoqyXckEAgE7XRXpaZAIBB0hhCZBQOS7jr0i8wygWBg8/TTT+Paa68FkNjHbuPGjZg8eTIAYNKkSfjpp58SPo+oiui/xB/o/vnPf+K3336D3+9HVVUVMjMzxYFOkJJs2bIF55xzDnw+H84880xcc801yb6lPsMjjzyCq666CqFQCOeffz6eeeYZBIPBZN+WQCAQHBJRqSkQCI4GebJvQCBIBnfddRfuuusu9vnFF1+MYcOGoaSk5LAO/SqVCiqVqrduWyAQpBA///wzSkpKEIlEACT2seuqt938+fOFncYAYc6cOZg9ezai0SgeeOABSKVSdqDTaDRYvHhxsm9RMECJRqOor6/H1q1b8cknn2DhwoUIBoMYMWIEFi1aBIlEkuxb7DNIpVK88847CIVC+Oijj3Dffffhtddew7XXXotTTjkFo0aNQnp6OqRSke8jEAiST3yl5gUXXJC8mxEIBH0aITILBBCHfoFAcGhefPFFfPTRR+zzPXv2YM+ePXjuuecAJPaxi//aoEGDEj73gw8+iLvvvpt97nA4hP1OP2X06NFYs2ZNzNfEgU6QbFpaWjB+/Hjs27cv5uszZ87Eu+++C7PZnJwb68MolUosWrQIp59+Oh566CHs27cPc+bMYd+XyWQ49thjsWLFCvH3FQgEAoFA0C+QRKPRaLJvQiDoLzgcDphMJtjtduGXKUiIGCP9A5fLhZNOOglZWVnYv38/zGYzVq9ejXPPPRdff/01VqxYgY0bN+KUU07BF198gaeeegqXX345nn766U6FZh4xTgSHQowRgUBwtIh5RNAVxDgRHAoxRgSHQoyRgYMQmQWCbiQajcLpdMJgMIiyUkFCxBjpf8yZMwennnoqTj31VPz3v//Fk08+ySogLBYLZs+ejZ07d2LatGl48sknu/ScYpwIDoUYIwKB4GgR84igK4hxIjgUYowIDoUYIwMHITILBAKBQCAQCAQCgUAgEAgEAoHgiBHdJgQCgUAgEAgEAoFAIBAIBAKBQHDECJFZIBAIBAKBQCAQCAQCgUAgEAgER4wQmQUCgUAgEAgEAoFAIBAIBAKBQHDEyJN9AwLBQIHM7gWpSSo0IRBjJLVJhTECiHGSyogxIugKqTBOxBhJbcQYERyKVBgjgBgnqYwYI4KukArjRIyR1OZwx4gQmQWCXsLpdMJkMiX7NgSdYLfbYTQak3oPYoykNqkwRgAxTlIZMUYEXSEVxokYI6mNGCOCQ5EKYwQQ4ySVEWNE0BVSYZyIMZLaHO4YkUSj0WgP3o9AIPj/OdoIncPhQGFhIaqrq3t8IejNa/X29Tq7Vn+I4g7E1603r5UKYwToW+Okv16rs+uJMZLa1+rt66XyXNIdWUOp8Lfsy9c62HXEGBHXOtS1UmGMAGK9SZXriT1J95Hs1623r5UK40SMkdS+lshkFghSFIlE0i0Tg9Fo7LVoY29eq7ev19u/W1foi2Okt6/XX691OPTFcdJfr5WM63UFMUZS63r9eYwA/fdv2VvXSsXxAYgxMpCvdTiI9Sa1rpeK46QvjpHevl5/vVZXEWOkf11LNP4TCAQCgUAgEAgEAoFAIBAIBALBESNEZoFAIBAIBAKBQCAQCAQCgUAgEBwxQmQWCPoIKpUKjz76KFQqVb+6Vm9fr7d/t95EvG5971rJoL/+Lfvz+O9txOvW966VDPrr37K3rtXfxwfQP1+3/nytZNCf/5b9+XfrTcTr1veu1duIMZJa1xKN/wQCgUAgEAgEAoFAIBAIBAKBQHDEiExmgUAgEAgEAoFAIBAIBAKBQCAQHDFCZBYIBAKBQCAQCAQCgUAgEAgEAsERI0RmgUAgEAgEAoFAIBAIBAKBQCAQHDFCZBYIBAKBQCAQCAQCgUAgEAgEAsERI0RmgSBF2bJlCyZPnozx48fjvffeAwAsWbIEJ510Es455xy0trYiGo3ixhtvxJQpUzB37txuu7bf78cFF1yASZMm4R//+Ee3PW91dTWmTZuGiRMnYsGCBVi3bh3Gjx+PadOmoaKiAgDw8MMPY9KkSbj11lu75Zpz5szBu+++2yvXSgbJGif9aYwA/Xuc9LcxAoi5pLsRY0SMka7Q38aJGCPdjxgjR48YI31rjABinHQ34gwsxkhX6G9zSb86A0cFAkFKcvHFF0f3798fDYVC0QkTJkSj0Wh06tSpUb/fH/3iiy+iTz75ZPSHH36I3n///dFoNBq9/PLLozU1Nd1y7X/+85/RV199NRoOh6Onn3561Ov1dsvz3nPPPdGVK1dGo9FodPr06dHp06dHrVZrdPv27dGbb745WllZGb388suj0Wg0et9990XXrl17VNdrbm6O5uXlRd95553oueee26PXShbJGif9ZYxEo/1/nPS3MRKNirmkuxFjRIyRrtDfxokYI92PGCNijByK/jZGolExTrobcQYWY6Qr9Le5pD+dgUUms0CQorz22msoKioCAEgkEthsNqSnp0OpVGLKlClYv349Nm7ciMmTJwMAJk2ahJ9++qlbrk3PK5VKMXr0aOzcubNbnvehhx5i9xsOhwEAFosFI0aMwJ49e7Bp0yZMmjQJANjveDQ89dRTuPbaawEAXq+3R6+VLJI1TvrLGAH6/zjpb2MEEHNJdyPGiBgjXaG/jRMxRrofMUbEGDkU/W2MAGKcdDfiDCzGSFfob3NJfzoDC5FZIEhRMjMzAQB//etfccUVV8DpdEKv1wMAdDodXC5Xwq91Bz31vBaLBTKZDG+88QbGjh2LSCTCvheNRrv1utXV1XA6nRg2bBgA9Oi1kkmyxkl/GCPAwBgn/W2MAGIu6W7EGBFjpCv0t3Eixkj3I8aIGCOHor+NEUCMk+5GnIHFGOkK/W0u6U9nYCEyCwQpwosvvojJkyezj6VLl+LJJ59EU1MT7rrrLuj1erjdbgCA2+2G0WhM+LXuoKeeFwDef/99LFmyBAsWLIBEImFfl0ql3Xrd+fPn4y9/+Qv7vCev1ZukyjjpD2ME6J/jZCCMEUDMJUeDGCNijHSFgTBOxBg5OsQYEWPkUAyEMQKIcXI0pMoYAcRcksqkyjjpD2ME6NlxIkRmgSBFuOuuu7B69Wr24fF4sG3bNmYon5aWhubmZvh8PqxatQpjx47F2LFj8cMPPwAAVq9ejTFjxnTLvdDzRqNRbN68mUW4jpYff/wRCxcuxOLFi6FUKqHRaNDS0oIdO3aguLgYY8aMwapVqwCA/Y5Hys8//4zrr78eCxYswIIFC3r0Wr1JqoyT/jBGgP45Tvr7GAHEXHK0iDEixkhX6O/jRIyRo0eMETFGDkV/HyOAGCdHS6qMEUDMJalMqoyT/jBGgJ4dJ/KjujOBQNBjzJkzB2q1GtOnTwcALF++HHfffTemTp0KjUaDxYsXw2KxYOHChTj55JMxbdo0DBo0qFuuffnll+PKK6/EO++8gxtuuAFqtbpbnveJJ55AQ0MDzj77bADAvHnzcN5550EikeC9995DcXExysrKMHHiRAwdOpT5Eh0JP//8MwDg3XffBQAcc8wxPXatZJKscdIfxggwMMZJfxsjgJhLuhsxRsQY6Qr9bZyIMdL9iDEixsih6G9jBBDjpLsRZ2AxRrpCf5tL+tMZWBKNRqNHdXcCgYBB/jUGgyGm5EAgIMQYEXQFMU4Eh0KMEcGhEGNEIBB0B2IuERwKMUYEh0KMkYGDsMsQCLoRp9MJk8kEp9OZ7FsRpChijAi6ghgngkMhxkj/Y86cOXj33Xexbt06jB8/HtOmTUNFRQUA4OGHH8akSZNw6623dvn5xBgRCATdgZhLBIdCjBHBoRBjZOAgRGaBQCAQCAQCgSCJtLS0MF/BefPmYenSpXjllVewYMECVFVVoby8HGvWrIHBYMC6deuSfLcCgUAg6G9cfPHF2L9/f8JAp0AgEHQV4cksEAgEAoFAIBAkkaeeegrXXnstAMDr9cJiscBisWDPnj3YtGkTJk2aBACYMmUK1q9fj5NPPrnDc/j9fvj9fva5w+HonZsXCFIMq9WKzz77DJWVldBqtRg5ciSmT58OjUaT7FsTCFKOQCCAyy+/nHm0UqCzoaEBCxYswOuvv57kOxQIBH0JITILBAKBQCAQCARJorq6Gk6nE+PHjwcARCIR9j3yMNTr9QAAnU4Hl8uV8Hnmz5+PuXPn9vwNCwQpzEcffYSbbrqpQ5DFYrFg7ty5uO222yCVDtxiXofDgeHDh2PIkCGQyWRYvnx5sm9JkGT8fj/+/Oc/4+233wbQMdDZ2c+IoKZAIEjEwF1hBQKBQCAQCASCJDN//nz85S9/YZ/zDXGkUin0ej3cbjcAwO12w2g0JnyeBx98EHa7nX1UV1f37I0LBCnG0qVLcdVVV8HhcGDkyJG4+eabcdVVV6GwsBCtra248847cdNNN8UEcgYaO3bswB/+8AesXLlSCMwCAIDBYMApp5zCPo8PdCZi/vz5MJlM7KOwsLDH71MgEPQNhMgsEKA9+pqfn49TTz0Vp512mvCiEhwU4VkmEAgEgu7i559/xvXXX48FCxZgwYIF0Gg0aGlpwY4dO1BcXIwxY8Zg1apVAIBVq1Zh7NixCZ9HpVLBaDTGfAgEAwW3241bbrkF4XAY1113HX799Ve8/vrr+OCDD1BRUYEXXngBUqkUb7/9NubMmZPs200a27dvx1dffYVTTjkF77zzTsLH+P1+OByOmA/BwCE+0JkIEdQUCASdIewyBAIciOo/8sgjAIDzzjtPeFEJOiA8ywQCwdESX6r8xBNP4E9/+hO0Wi3efvttlJSUJPsWBb0MrSnvvvsuAOCYY47BeeedB4lEgvfeew/FxcUoKyvDxIkTMXToUEyePDmJdysQpCYvvvgiqqurUVRUhFdffTVGHJPJZLjrrrtgMplw/fXX44knnsDpp5+OKVOmJPGOk0NxcTGeeuopnHjiiTjjjDNw3nnnITMzM+YxwnpnYEOBzqamJhQXFyd8jEqlgkql6t0bEwgEfQIhMgsEOBDV/+abb3DDDTd0yYsKEH5UAw3hWSYQHJpoNIpoNIpIJML+z5dbJiq9lEgkLHNGKpVCIpEwgYDPqOkPiKCmoDOuv/569v/169fHfG/evHm9fDcCQd8hFArhlVdeAQA89thj0Gq1CR933XXX4YcffsDbb7+N22+/HZs2bYJcPrCOwxMmTIBGo4FUKsWECRNQUVHRQWR+8MEHcffdd7PPHQ6HsEMYQDzyyCMxgU6BQCA4HIRdhkCAA1H9b7/9FgsXLuySFxUg/KgGGsKzTCCIhcTkYDAIv98Pj8cDt9sNj8cDr9cLr9cLj8fDPuh7/Af/GPoZr9cLt9vNHu/z+RAIBBAKhfq8l2Z8qTIFq0aMGHHIoKYoXxYIBIKO/O9//0NtbS0yMzNx+eWXH/SxTz31FCwWC7Zu3cqE6YHE3/72N3zzzTeIRCLYuHEjSktLOzxGWO8MTN59910UFxdjwoQJWL9+PdatW4eysrJk35ZAIOhjCJFZIEB7VP/kk0+GUqnEhAkTuuRFBQg/qoGO8Cwb2FRXV2PatGmYOHEiFixYkNCj++GHH8akSZNw6623Jvluu4doNIpwOIxAIBAjDvt8Pvh8PvY1p9MJu90Om83Gxj7/f/4j0dcdDgfcbje8Xi97br/fD5/Px8Rqn8+HYDDY50RnEdQUCASC7uVf//oXgPZqgEOV8Kenp+PJJ58EADz++OMDLmB39913Y8GCBZgyZQouueQSpKenJ/uWBAJBChJ/ziHie1kJBPEMrPoggaAT/va3v+GMM87A6aefjo0bN0KlUh3SiwoQflQHI14s6W8l74DwLBvovPDCC5gzZw6mTp2K0047Dd98802M7cHDDz+M8vJyrFmzBvfffz/WrVuHk08+Odm3fURQtnIoFGLv7Wg0ilAoxL4eDodj/qX/d2abQXMCWWVIpVL2IZPJIJfLYz6nf+l7crkcoVAIQHuQRy6XQ6FQpPxcE1+q/NNPP7HvHSqoKcqXBYLE0NwSiUTYB2/bQ8TPNzS3CPoubrcbn3/+OQAcMouZmD17Np577jns3r0bL7zwArMvGgjk5+fju+++S/ZtCASCFCf+nHP77bfDYDB0sH0TCOIRIrNAgPao/jXXXIPHHnsM1157LY477jjhRXWYUIYjf7iLp78d6oRn2cDmoYcegslkAgCEw2HIZLIYj+5NmzZh0qRJAIApU6Zg/fr1nYrMqerdHYlEmE0FECssUxYxLzQHAgEEg0EmNPv9/g5iMxEv9MhkMigUCiYUSyQSJibL5XImLvMCNAnLcrmc3atSqUxpsVkENQ+fzny+EwUuEgUtBH0Tes3D4TDC4XCH1/twnifR8xJSqRQKhQIymSxl5w1B53z99dfwer0oKSnB2LFju/Qzcrkcc+fOxZVXXolnnnkGt99+OywWSw/fqUAgEPQd4s855F8f38vqhhtuSPjzqXq2EfQ8QmQWCJA4qh/fdEcQCx3S6ADYlYMfPT4UCjGBSCaT9cLddi/vvvsugPaydzFOBi50IH3jjTcwduxY/PLLL+x70WgUTqcTer0eAKDT6eByuTp9rlTs5B4KheDz+QAcCCL5fD4mIJOYTJvISCQCv98Pl8sFj8eDQCAAv98f46UcjUY7CIEkGpPATIKPWq2GRqOBWq1mj1coFFAqlWzuUCgUCAaDkMlkUKlUkMvl7HpqtTolBUYR1EwMLyTHZ6MeibBIULCCxpYg9eGDWUcqKvPiNC8oSyQSFtQiUZnmLolEApVK1Sf3JQOZr7/+GgBw/vnnH1aQ4LLLLsOTTz6JrVu34tlnnxXNNQWCAUqiwDW/Vx2owcf4c45GowFwwPbtxBNPxBlnnIHzzjuvQ/NQIDXPNoLeQYjMAoGgy5DQFH9oI3jRKH5R5g99JB4EAgEmFB3pAv7VV1/hr3/9KwKBALRaLV5//XUcd9xxR/w7Cvoffr8f99xzD77++msolUqMGTMG77//frc89/vvv48lS5ZgyZIlOOuss9jXpVIp9Ho9amtrAbSX8x6scU6qWSHwArNEImFCMonK9K/P50M0GoXP54PNZmOezA6HA16vlzUE5EVmAB2sL/gsQpVKBY1GA51Ox76u1Wqh1+sRjUYRCAQglUqh0WgQDochlUqhUqkQiUSgUChYtq/H44FGo4kRjO666y589tlnqKysxNatWzFq1Cj2vT179uC6665DS0sLzGYz3n33XYwYMaLb/7YiqNkOCYn8mnCox9O/B7M/oLWEF6kp814mk0GpVB6xiHiw8SM4evjXioevfkokBvB7E97Sh74XP/dQsBsAC2jRY3w+H6uGOFLEOOk9otEoE5nPPPPMw/pZqVSKxx9/HBdeeCFeeOEF/PGPf0RWVlZP3KZAcNiIeaTnoDUj3gauM+Kro2ivQV9PlgjdG2OEP+cQ8bZvFRUVCUXmVDvbDER68gx8MITILBAIDkp8RlA8vFfqwRZZWoiprJ3EBcqCViqVh71It7W14ZprrsGqVaswfPhwfP/997j66quxbdu2w/49BT0D/1rHlyfTeOjpDdoDDzwAqVSK3bt3QyKRoL6+vlue98cff8TChQvx2WefQalUdvDoHjNmDBYtWoQ77rgDq1atwvnnn9/pc6WSFUIkEmECs0wmg8fjgd/vZ4JxJBKB2+1mwrHD4YDNZoPf70dLSwv8fj+cTiccDgd77Sm7OBqNxthc8GIfiT06nQ5erxdtbW3QarUwGo0Ih8NwOp0wm80wGAwA2oV7hUIBrVbLhCESnrRaLQDA5/NBq9Wy8XXJJZfg/vvvx+TJkzv83rfccgtuvvlmXH/99fjkk08we/ZsrFu3rqf/3AMO/mCXCJoP4q1YutrgUSqVsnFEvt38euP1eqFSqY5IRDzY+BEcOYnEZapckEgkrPlnV8cA7Vs6G2cUmJJKpey6BoMBEomEzVeUAX8kiHHSe+zduxeVlZVQKBSYOnXqYf/8zJkzMW7cOGzYsAFPPfUUnnnmmR64S4Hg8BHzSM8QjUbh9XoTrg3xZ5FEgcxEUIVMb/cG6ekxEn/OIeJt3+67776EP59KZ5uBSk+dgQ+FEJkFAkFC+ENaIh9VykILBAIxfqu00KrValbmzj/npEmT4PF4sHv3buTn50Oj0eDss8/GvHnzDvtAV15ejqysLAwfPhwAMHXqVFRWVmLTpk1d9uUT9AwHO+DT90lEkkgkMdmF8WNEp9PhvPPOwxNPPHHY9+F2u/HOO++gpqaGjcXc3Nwj/8U4nnjiCTQ0NODss88GAMybNy/G9qC4uBhlZWWYOHEihg4d2mcOCoFAAEC7wExl5Py/JDBLJBLYbDY4HA64XC60tLQgEAigubkZgUAAbrcbra2t8Hg8nWaJUMayUqmEwWBAMBhkNiM6nQ6vvfYagsEgrFYr0tLSoFarccIJJ+DRRx9lwrfb7YZOp2MZzhKJBIFAACqVCtFoFH6/H2q1GgBwyimnJLyPpqYmbNq0CcuWLQMAXHzxxbjjjjuwf//+g/okC7pOvL83cMDKgoKUwWAQPp8PXq+3Ux/dRA0jZTIZW5MikQg8Hg/cbjcuuugiBAKBmPXmrLPOwt/+9jcAOGyhubPxIzgy+H0EQeuBVCqFz+frYDMUXynFlzNTEIGCZASNMRKzI5EIvF4vC1KdddZZ8Hq92LdvH/Ly8qDVanH22WdjwYIFRyQWiHHSe9CcPXnyZOh0usP+eYlEgsceewznnHMOXnvtNfzlL39JmJEnEByMROebo9m7AmIe6QniBWbepk0ikSAUCsHtdiMQCLCgJm+vRIlVvL0XPS8FtP1+PwtkH+oMnOpjJP6cM23aNFx66aUdbN/S09N79D5Snfj96pEGGbp7jPTkGfhQCJFZIBDEQNHa+PIhWlz9fj/cbnenGUW00LpcLvh8PphMJlbmKpFIsHbtWgBATk4Oli9fjtzcXJZlJpfLcckll2Dv3r0Jn/t///tfTJnNkCFD0NzcjPXr12PChAn49NNP4XK5sH//fiEyJ4lEGWmJMpYpO57GGflhKpVKrFmzBhKJhI2RQYMGxVzjcMZIeXk50tPT8cQTT+Dbb7+FRqPBnDlzcNpppx317/q///2vw9fibQ/6mscjvX8BQKlUwmq1AgDL3qBNtFKphNvtZtnKLS0tCAaDaG5uht/vh81mQ2NjI3vejIwMZGVlQaFQwOv1oqWlBa2trfB6vfB6vQCAtLQ0jB07Fs3NzXC5XHC73XjggQfgdDrx+OOP4+6778aYMWPQ2tqKXbt2YcqUKbjmmmtQVVUVM7ZovlmyZAmbXygA1hnV1dXIy8tjgS6JRIJBgwahqqpKiMxHCc0JvJBIthX0Wnm9XrhcrhgBmuaNUCgEr9cb8/OJ0Ov1yMjIQDQahcfjgc/nw5IlS6BWqzFixAgsX74chYWFrDml3+/HlVde2eW5RNC98IEr4EDmslwuh0QiYd7uQLtITMGo+EM7jR2PxxOzL1Gr1SxYxVdMRKNRuN1uWK1WtlZ9++238Pv9GD16NJYvX47MzEy2FzrcfYmgdyGR+Ywzzjji5zjrrLNYNvNzzz2H+fPnd9ftCQYIic43R7N3FfQMtIcFAK1Wy/Z8kUgEzc3NcDqdh3wOOqvQB/UDoSotsl0KBoPMUoJ+rq+NkUTnHCLe9q2/E9/n4WA9QyjwzdsCdqUnSHePkZ48Ax8KITILBAMcPhqbyGtZLpdDLpcjGAzCZrN1OBDSoZBEHhIUKNvR7Xaz8naivr4ewWAQgwYNYuIVTdKffPJJl+/dZDJh8eLFTIiaPHkyRowYcVReioLDhx8/8eJyZ/6nJCAplUp20OfFZhIt4xdX4PDGSDAYxL59+zBixAgsWLAAW7ZswYwZM7Bjxw6RrZSA+M0SHwQg8Q4AsrOzsWrVKkgkEpZ1SkJiNBpFY2MjJBIJZs2ahYsvvhh5eXkdruVyubBr1y789NNPWLZsGdra2rBixQo89NBDqK+vx9q1a7FlyxbMnDmTbejUajXy8vJQV1eHPXv24LPPPsPWrVsBtAvZ4XCYNVuk8ndeLDoYnZVJCo4MPuDE++HyjdXC4TDa2tqYgCyRSKDRaKDRaBAIBNDQ0BCzJsXbrFDFRDAYZELjoEGDYLFY4Pf7YbVaUVlZGTOXKJVKNq7//e9/iyZvSYAseWhcUDNPeg8GAgE21+h0uhjLG8LlcsFqtcaUL8tkMuj1ehgMhpjSXh6JRAK9Xg+FQoHa2lp4PB5YLBZUVVUhGAyiqKiI+cjTvHE4a46g9wgGg1ixYgWAoxOZJRIJ/va3v2HmzJl4+eWXce+99w74zDzBkcGfb+IR80hyIfEXOLDm0NcbGhpYwgPfcJpvXM1bPFKfEoLWHpPJxK4TDofhcrmgVqtjsprFGOk7xFdtH87P8RXhwIFzL1+91xndNUaSeQYWIrNAMACJF5UTlXnwkyCVHgPtk6RWq4VCoYDb7WZfp6wh+lm5XA6bzQafzwedThcTwfv1118xZswYdi90TeDwo7innHIKVq5cCaDd3D4nJ4fZZwiODH588A2WEi2IfLkYwdtf0M/wpezRaDSm7IyaLPGC1C+//IJjjz0WwWAwRnwADm+MFBUVQSqV4uqrrwYAHHfccSgpKcH27dtx6qmnHu2fqt8R3zAr/t9oNAq5XM6yPdLS0rBv3z5Eo1E0NzcDAFpbWwEAt912Gy699NJOr6XX63HCCSfghBNOwI033ojnn38eS5cuxfvvv493330XkUgE69evx3fffYfRo0cDaG/Od+GFF6Kurg4tLS249tprsXXrVnZf5PkMAB999BEGDx7MxvHBKCwsRE1NDUKhEHue6urqhBs8wcHpzBYjXkikDHiywKCsU6lUCpfLhbq6OgDth8G0tDTo9fpOAwV+vx8NDQ3w+XxobW1Fbm4uyy7auXNnp81gL7vsMpSXlyf8nsgs6zlonpdIJFCr1R0yfPjDfiILBJ/Ph6amJgAHmqzqdLoOFl0HI34s7dixgzVNin+OVMsuE7Tz448/wuVyISMjA8cff/xRPdd5552H448/Hps3b8YLL7yAxx57rHtuUjCg4M838Yh5JHmQRRKtO7xPsN1uh9frhUQiQW5uLqLRKCorK9HW1tZh76hUKpkdJCVZBYNBhMNh2O122O12GI1GmEwm9nXKalar1ZDJZGKM9AEoSYISbAi+aTnZtdHjEz0HBSZIbwkEAjFJFXyWO/8cP/30E4477jj4/f4OlcB95QwsRGaBYADBe0bFQ43Y+C7uAGIEZhKSXS4X6uvrYyZEav6Vm5vLss2o1DkQCDBPVACora1FQUEBm8QBsGyyw43i1tfXM3+hxx9/HNOnT0dZWdlhPYegnURWF4cDlQTRaxkKheDz+Zh3bqJFWC6Xs8YQ5GEWCoVQV1eH/Px8JlZRkybg8MZIRkYGTjvtNHz99dc455xzUFlZiYqKCgwbNuyIfsf+zsHKufjXjyL6tOlRKpWIRCJQKBRoaWkB0F6C3FVUKhUuvfRSLF26lGVBFxcXY/369aivr0dBQQEAdBAuP/74Y2zcuBHhcBhZWVkIBoMxmczxQazOyMrKYh2Xr7/+eixevBjFxcXCKuMwofc8IZVKYywQiGg0ira2NkQiEcjlclgslpisIhIQjUYjcnJy2M+2tLSwYEZeXh5MJhOA9vGTlpbGsj8AsGzUhoYGtumORqMs214ikeCTTz5JWlf4gQwFJnnLlETf7yyowGej5efnH/ZrGI1G2TylVCrh9/tj5hma345kzRH0Ht9++y0A4LTTTutSKfLBkEgkeOSRR3DxxRfjpZdewgMPPMAayAoEXYXON4kQ80hyIMst2g/ylTF+v58lRmRkZMDpdGLv3r3ssSQoUpIMiYQOh4M9P1XP0OMcDgecTicMBgO0Wi0TGalZdXV1tRgjKQz1doiv3Kb9Co0nn88X09Q8Hho7VH1HZ2M++aqz7Oiamhrk5uayjHmqAlQoFH3mDHx0K7JAIOgz0OGaRBrKOKaoLE1e/Ead/JeB9kVZr9fD6/WiqakJ0WgUSqUSZrMZZrMZMpkMgUCAHdyAA02V4kXLSZMmYc2aNbjqqqvYvRxpyfIjjzyCY445BmVlZaisrMRbb711RM8z0AkGg/B4PDGvFS2O5DnGe5DxXmR8aZnX60VbWxsaGxuZvxkv6lCWO40zslRpbW1FY2MjHA4HpFIppk2bhh9//BGzZ89mGQiHU6rE83//93946qmnMHr0aFxwwQV44403eq3xQV+Db6jFf85H3En0B8BK2kn04QNKlInaFaLRKBYuXAgAGDVqFKLRKDZu3Aigfb5Yv349/v3vfyMrKwu1tbUAgPT0dNjtdoTDYchkMjZ2abMnl8vZJpHu/fbbb0dBQQFqamowY8aMmIDU66+/jtdffx1Dhw7FggULxFxymFDGDtD+9ybbi0Sd1p1OJ4LBICQSSYzADIB5JkskEmRnZ7OftVqtqKiogMvlgsvlwt69e2OCDjQWKeBhs9kAAFOmTMHatWtxzTXXsIAX0C5MH644ebDxczRUV1dj2rRpmDhxIhYsWIB169Zh/PjxmDZtGioqKgAADz/8MCZNmoRbb721W66ZTPi5JNHhjPYObrc74byv0WgAoMNh/1CQH3NtbS3b2xgMBni9Xpx00kn46aefcPXVV8c0fDoSemqcCGJZvnw5AHSbv+QFF1yAwYMHw2az4cMPP+yW5xQMLOh8c8011xz1c4l55Oihsw1VufEe/V6vlyVMaTQaOBwO7NmzB9FoFEajEWazGT6fD7W1taiurkZNTQ0aGhpgtVrhcDjgdrvh8Xhgt9tRX1+PmpoaeDweJkg7HA40NDTA5XKxirpgMIgxY8Zg9erVYoykGGRzwvedUqlU0Ov1UKlU8Pl8aGxsRE1NDaxWK9xud6cJVED7npiaoDscDrS1taGtrQ2tra2w2+1wu93w+XwxTShp33zKKafgxx9/xM033wzgQCb+oXqTJCJZZ2BJVJgOCgTdhsPhgMlkYuUyqUQoFGKHa4qqHeyATV6ZtPhSdmBtbS18Ph8MBgMyMzNjosE1NTUAgJKSEkilUtaQR6FQwGw2d3o/fJZqfyfVxkh88IEyD+PHR3zZDzXto38TNYKkEnnKUo7PZqQF2O/3w+fzxUSNTSYTtFptTHMo8msdCJmHyRwnJOgrlUo4nU4mzNHr5PV6kZWVhQ0bNrCNtNVqhcvlYkGm3377DVOmTMFjjz12yNcrGo3i5ZdfxuLFiyGTyfDKK6/AarXivffeg0KhwIMPPohFixYhEAhg1qxZ2LlzJ3w+H04++WS2wacGowqFgomHGRkZzOM7kadrXyfV5hLaLMtksk5tC8jX2263AwDMZnOHbEGXy4Xa2lqoVKqYTPLdu3fDbrcjIyODjbNRo0ZBo9EgFAox2xZq7ufxeCCTydg6xWemUFA1Vbj33ntx/vnnY+rUqUww+/jjj9HQ0IAXXngBDz/8MO6//34sWrQI999/Py666CKcfPLJHZ4n3ifS4XCgsLAwZcYIQQcmACzYzY+XSCSC1tZWNu8bDIYOQYHW1lYWSNBqtTCZTOwxfGNZ+ggEAjHrDNls0OdkzUFe0VRlI0hNXC4X0tLSEAqFUF5ejsGDB3fL8z777LO49957cdxxx+GXX37pd+vGkZJq640g9Ui1MRIKhWKax9L5IRQKobW1ldm+yeVy+P1+NDc3MzG6oaGBCXrkq8tbr/H+unQ2USqVrJmgTCZj/6f1TaFQQKfTsb0Hf08DhVQbIwQ1EaazsFwuZwkzLpeLNTkn6DWkMyzv3Q3ENv6jSnGyvKCzSqLXXaFQwGAwsJ4ydG9kuQKgQzPjVEXYZQgEAwTKBqLS5YMRiURgt9vZQYv3RKRJzmg0xkyQJBTTYsw3d4oXIHmbjPjsaUHvQc0r+LFBCx8tanw50KHgF1HgQHMnp9MZ40lFWc0ymQxKpRIajQYmkwkSiYRlONpsNoTDYRgMBqjValbqFgqFUkoc6o/IZDL2eqnVavj9fvZeVigU8Hq9aG1txaBBg7B//36YTCZYrdYYQUYqlWLVqlX49NNPMWvWrE6vFQqF8Nxzz+HLL78E0C62abVavPLKKwDafTJ3796NQCCArKwslk2g0WiQnp6O+vp6dj0A7B6oRBFAh+CGoGfg55FEf+9gMAiHw8FEUGroFk9nWaS0ZlBDN5lMxl5vm82GaDTKPA/pYGk2mzsIzGq1+pBrYG/z0EMPMesPysy3WCywWCzYs2cPNm3ahEmTJgFoz8xev359QpF5/vz5mDt3bq/e+5FApZ9kaRKNRmNEZKlUirS0NNjtdlZ+LJfLodfr2euflpYGqVSK1tZWeDwe9pp35dp0sOcFZo1GwwRmCpAKUpdVq1YhFAqhuLi42wRmALjxxhvxyCOPYMuWLZ2+zwR9B+olQftPvg8NX6VFdoFir9A/4Jv8kZgLgGWT8mOgubmZJVG4XC4mNlJyBQXF+WZuvIioUCigVquh1WpZdTA1L+a/r9FoEAwGodFooNVqWSWnVqsV5+AkEi8wazQayOVyOBwO2O32mMC0Wq2Gx+NBY2Mj25PyQYhE8wtZZcSfRbRaLXQ6HTQaTUwT69bWVrjdbmRnZ7MztVqtZsHzYDAoRGaBQJA68NHXgxEMBpkoKJFIOojJcrmclUXzPstAR99TPgrHw1t29IWJsr9CiyIAlmkMtEdmbTZbQmGZIvRSqZQtdsFgkPmUHU5xDGUyu1wuNDc3Q6/XIzc3l230nE4n25zxzTWEyNyz8MEhEvHoIEY2OYFAABkZGaisrEQkEoHBYIDD4UBaWhra2towatQo/Prrr3jxxRchkUhw0UUXdbhOIBDAE088gR9++AFSqRT33XcfTjnlFMybNw/BYBCjRo3ClClT8NprrwFoF9eqq6sBtFdLtLW1AQCrspDJZEwg0mq1TMxMNUGxvxO/DkSjUVZaShgMBva6xUPzDr82UMUFcKApnNFoZGOSDoFpaWnsOhqNBiqVignMlG2Uioc5i8UCAHjjjTcwduxY/PLLL+x70WgUTqeT/b10Oh1cLlfC53nwwQdx9913s88pkzkVofclBTp9Pl9MVZNMJkNaWhoTkEOhEGw2G1QqFQwGA6RSKcuEt9ls8Hg8MQFtEo34bDMAbG9Dj9Hr9ZDJZGy+oAOdEJtSG96PuTtJS0vDpZdein/+85/44IMPhMjcB4lEIjGVdoezL+UzVIXo3HchwQ84YK/U0NDAgpEymQwulysmkOl2u+H3+5klF3kwUzA0GAx2SJriK+ioIaBOp2ONislqkmw7DAYDgPbzF2XyktAszsPJgU+kograuro6JiJTkMJut2P//v0saEW+zGTHcihob0EfAFjFXX5+PgoKCuDxeNDW1sa8wjMyMtjPKpXKGDE81REnL4FggHCoCZAWQDrIS6VSmEymDouewWCA3++HzWZjh3x6fhIs6Wfoe/GLssgwTD4UNQXaMwPpwO/z+VgTDBLrqLRcIpGwBZA2YIlI9JrGe4DrdDpIJBK2oXM6nXC5XNi3bx9KSkoQiURYWT1lxSfa4Am6H/49LZVKmais1Wrhcrmg1WpZIKK0tBR79+5FVlYWnE4ndDody1Y9+eSTsW7dOrzwwgvYs2cPbrvtNiaUORwOPProo/jll1+gUCjwt7/9DVOmTMGbb76J1tZWZGZm4sYbb8SuXbsQDAaRmZmJsrIybN++HUB70zdqDqdSqRCJRJgwFN9MLBVFxf4IVUBEIhG2BlCDP8ooUqvVMBqNBxX+6RDIZ8Y7nU6EQiGWAQscECmDwSBCoRCbr2hc6PV6lpFP107lsfD+++9jyZIlWLJkSUzTTBJCyYvc7XZ3WmZK1kR9BdoDkCUSVSnQGiKRSFimj8vlimkkazQaWW+ArKwslmVG8xaVRXs8HpahTM9Jh0aa22jfQ9nxYl+S+pAf84wZM7r9ua+88kr885//xEcffYTnn39eBCpTHDp/kDVOZ/tEPqOZ5gogNqNZJpMxcZEsDshCTtB3iD9nWq1WeDweSCQSqFQqVFdXIxQKwel0wuFwIBAIoK2tjZ2DPR4PW5fIto/WHt42gyoyqbcRefjabDbo9XqYTCZ4PB7odDqYTCbYbDbWENBms7GeRm63m/WwEPQe4XCYBZjVajVCoRAaGxvZPoKsPcrLy1k1rdfrhc1mY+dot9vNhGp+fPABK7Lfop8H2gOaJpMJ4XAYVVVVsNlsKCsrg1KpZF7eWq2WVfzxCUCRSCSl97OAEJkFggEBLzDHH57C4TBcLleMmTwtkokmMKPRCLvdjmAwCLvdjrS0NADokEHE/0vfp6wzfnEWJAf+UE2bGvLhBtoXW7PZHNOgqaamJiaDTiaTMT9Ur9fLmmB0lbS0NBQVFWHQoEHM09vn86G6uhrFxcXw+XwdsuZJxEr1xbUvQ4ct2sjwZX8EiTMFBQWoqKhAKBRCXl4e6urqUFZWhl27dsHlcuGKK67Av//9b3z55ZdYs2YNTj/9dGi1Wnz55ZdoaWmBRqPBvHnzMHbsWJSXl2PDhg2QSCT4/e9/D61Wi/379wMARowYAQBsM0hCNxBbpUFl93zASwhGvQM/ZggS+ID29ztlFHWGx+NhmcgUkIhEIqisrATQ3imbnsPlcnWwXuLLGhUKRUw2eyqvNz/++CMWLlyIzz77jFkItbS0oKmpCcXFxRgzZgwWLVqEO+64A6tWrcL555+f7FvuNsjDm4TgQCDQQSiXSqUwGo2sOVM4HGaBblob4puWejyeDusVZZtR0JLGJnAg2Crmi9SnubkZW7ZsAQBMnz6925//tNNOQ2ZmJpqbm7F8+XKceeaZ3X4NwdHDV9PFJ9JIJBJWZcf7mR4KClRTdirNSSQmijmib8DvBagKBmjPaqY9q81mg9vtht1uh8PhgNfrZZZ91DeALC0oMEG2GnyWK2WmyuVyloilVCpZkNNsNrNxlJ6eDqfTyYLiNpuNWT9RPxQR6OwdyCYDOBCMaGpqYtZrNFYo2EBWgeFwGG63G263m/l6U2CKKiiAAwFtsimlPQrtY8m6paCgADKZDA6HA9u2bcPQoUNhNBrhcDjQ0tKC3NxcZi1KdoZ8k/VURYjMAsEAIFFUn/yq+EMYeUod7DBOTdlaWlrg9XqZyMyLfuFwOMbgnkrXlErlQQVvQe/AZ53zUXO32818uNPS0mK8lSsrK+Hz+SCRSGA2m5kPb3V1dYdutyRck88dWV4AYBkCXq+XLbBFRUUoKSlBUVERysvLmQcaZc5ShJ/PlBQic89C71vyZbbb7QiHw9BoNPB6vTAYDKzZX3FxMcrLy5Gbm4u6ujr4fD6UlpaivLwcDocDzz77LP7+97+juroan3zyCbtGQUEB5s6di9LSUgDAd999BwCYOHEiioqKAIDZIFDzNtpg8eViNKfQv3K5POaAIegdZDJZzAYbABOMSSCMh97PwWAQLpeLVVEYjUZ2wK+oqIDP54NcLkdeXh4AMJ9lp9PJsgwTrS1dtYlKNk888QQaGhpw9tlnAwDmzZuH8847DxKJBO+99x6Ki4tRVlaGiRMnYujQoZg8eXKS77h7oQx1ah4Z3wiQUCgUSEtLYw1JHQ4Hq7bgoabDQLt4rNPp2CGP9j6893d89YMgtaG1YvTo0cjKyur251coFLj00kvx6quvYtGiRUJkTiEosBgIBDqcbeRyORMFaT8LHMhWpPUpPhgKgJ1ZSBQi6x6FQgGNRgO1Ws2sdkR2c+rDr/0OhwNA+/u6qqqKJdS43W40NzezqkkSed1uN7xeLxOSKZjR1tbGRMV4VCoVLBYLs1GwWCywWq1MYKZqUJvNhvT0dDgcDha0sNlsyMjIYEIl7bXFmtSz8HOISqVCU1MTIpEICzLt2rWLZS9brVZmjUH2XKFQCC6Xi2XEH6xiXKPRsCq+5uZmAEBWVhY0Gg1qamqg0WiYnrJ9+3YMGjQICoUCwWAQjY2NyMnJYdnQlG2f6vsWITILBP0cmiCBA1l90WiUlZ4C7Qsv+RLS5o02W/GZgHxXeH5yI79LivRlZWWxzRiVGYlGOqkBjQeKihL0uvJdbQGwcneZTIbi4mJIpVJs27aNCYBKpRJGoxFutxttbW2wWq0Js0bS09NRVlaGcePGIRgMoqqqCnV1daisrIRCoUBhYSEyMzNRX18Pq9WKkpISlmVPzbDokCDKV3sW/m9Nft0k/ni9Xvb3dzqdLDjgdDpRVlaGvXv3YtiwYaitrcW+ffvgcDjwzjvvYO3atdi0aRMCgQBGjhyJGTNmsIxFn8/HMtNOOeUUdh/xFjxkx+FyuaBQKJhYRFnMfGALSH1xsT/Bl/KReMz73AGIyR7iPeF5dDodsrOzEQ6HsX//frS2tkIikaC0tJQFxTIzM9HU1ITKykoMGzYMAGLsdMgmgw+UpTL/+9//Onxt/fr1MZ/Pmzevt24nKXQ16ExZzWTL43a7O+wtqKKGGuvwz80fLEVmYt9k6dKlALrfj5nn4osvxquvvoovv/xSBLaTDJ1jyBqJh84pXq8XTU1NbO9JYjQJzvQ1yjbkm1ADBxpXU5IEZTRTfwfy19VoNDHZzZSlKMZH6sAn0lBDcaA96E2CoMfjQUtLC9xuN1pbW5llpMPhYGOMeiX88ssvrCpKo9HghBNOQHFxMWQyGaqrq/Hjjz/C7Xajvr4ekUiEWSyYzWbWtLapqQklJSUx1TN2ux1ZWVmsMicrK4tVcJLFhlibeoZ4mwyv1wu/388yzHfv3s3GUW1tLSKRCEuMCoVCsNvtcDqdLBnH6/WyOQRoH4Okn9Bel87YFosFCoUCjY2NrMmx0WiE1+uF0WiEwWBAZWUl0tPTmcUGCc3URJDu/1DVgclEnNIFgn4O3/xALpezJkm0ESOT+6amJjYB8lAkn36WzwAymUwxj7VYLKitrYXL5YJMJkN6ejrUajUrL4rvoMtv8AS9B5/BRfDepfGlynw2qVwuxy+//MJe4/z8fNTU1GDjxo0dMgm24760AAEAAElEQVR5L+VAIACr1Qqr1YodO3Zg2rRpGDZsGDQaDcrLy7Fv3z5kZGTAbDazrr0UmAgEAvB6vcwvi/yuxNjpOeK9v6j0Lz5DNBwOw2g0std5xIgR2Lt3L/bv348LLrgA//73v/Hpp59i1KhROOWUU2IEZJ6ff/6ZeS8PGjSIfT3+eiQuJcpgJS9gCqTxPy/oeeLtkajCgQ7gHo8HdXV1CYVlskwwGo3Q6/VwOByorq5mB7KSkpIYH+L8/HwW/KIsEApw0pzhdDphMBiYMCGEotSFypCBrlnc0PpC2YmJng84kJ3IQ+OPspUEfYtQKMSCMjNnzuyx60yePBkGgwFNTU3YuHEjTjzxxB67lqBzSJyJt+QjIdjpdDJ/VODA3NDU1MQyWPneH10JOJLArNFooNPpoFKpoNPpEAgEWJM2Enf4QLgIWqUGvGcyrf98fwiHwwG73c56zNB5gyqpysrKUFhYiEWLFrHzz/Dhw3HttddixowZHWwKPB4P3njjDbz11ltobGyE2WyGx+NBZmYmQqEQFAoF8+iNRCKw2WzIzc2F3+9nFTx+vx9erxd6vZ41saUeBYLuhbfJoObAjY2NAMAEXrL2rKmpQSgUQnNzM1wuFxwOB2w2G8tiJi/vQ80rUqmUJd9R0hTNIxRkMJlMiEQicLvdLMBhNBqh0+kQDAbR3NyM7OxsqNVqlqjBN0tONYTILBD0Y/jmbiTI8AKzSqXqkHVKkTi+QQZlIhNyuTzGG5NQq9XMx46uk5mZyUo+nE4nTCYTE4FERmpyoE1xvMUJ0L7g8l8PBoMxGc6//fYbXC4X5HI5TCYT1q5dyw752dnZrAETicFqtRo5OTkwm82orq7Gr7/+CqfTiS+//BJnnHEGCgsLYbVaYbPZsG/fPowcORJGoxE2mw0OhwNGo5F1d9bpdADAFv++spH3+/247LLL0NLSguuvvx433XRTsm/pkNA8wFvd8B2UQ6EQi6ZHIhEYDAbmLadWq+HxeFiJ/969e/Hqq6/irrvugtls7nCt2tpaLFmyBAAwdepU9rpStgAA9tpTAIT3I0vkxSgymZMDze28V7JSqWRicDQahVKphMViYRnytN643W44HA7s37+frTcKhQKDBw/u0OhOLpdj8ODB2LVrF6xWK9LT0xGNRuF0OpGeng6g/eBHzf5I9E51D7uBSHzwOlHFE78fIT9CGiOJGh2S1RI1qOUzwqRSKbPciV/vBKnPmjVrYLVaYbFYMGXKlB67jlKpxBlnnIHFixfjiy++ECJzEqAG0LTG84Gh1tZW2O129j2FQsF6xlCTLlpb6urqWHUNCXpUIRff/A8As+AhD3eVSgWTyQSn0wm9Xs/EZp1Ox+YWPpuR/HkFyYEC3AqFggUayLfb4/EgHA7D6XSyhm2RSIRZGFx55ZVoaWnBK6+8AqBdcP7zn/+MKVOmdHrm0Gq1+NOf/gSfz4cPPviAZcb6fD4oFAp4PB5oNBq43W6oVComItbX18Pj8SA9PZ3Zz5lMJmg0Gng8HgSDQdbQWtA90BiIRCKsAtvpdDLhl5LiALAMZnpt7HY7Wltb4fP52BkVOHAe4ZsWk3gNtGfQu1wuNDQ0AADz7tbr9VCr1eysSxnslN2ekZEBAMyehyxODQZDh/NZKtKjM6BcLseoUaMAAOPGjcObb77Zk5cTCAQcJA4DB2wRHA4HO/hLpVK2qFL5qUKhYJsu8v7hBUOyv6BFj4QE8mCmTZ5EImE+VzU1NSyaS6VrVP5BhzyxgPYenTVejLclIKgRoEajQWNjIxszwWAQGzduBACYzWbI5XLs3bsXP/30U8LrGo1GTJkyBTNnzsTKlSvR0NCAb7/9Fueccw6GDBmCn3/+GU1NTSgsLGQis8vlYoss36iQBIJUXVjj+eijj3DWWWfhlltuwVlnnYXf/e53fULsIqubYDAY0xwSADvAkfBDDUx8Ph+GDRuGLVu2YOvWrbjxxhuxYMEC1NXVYe7cuZg0aRJKS0vZxm7nzp346aefEAqFUFRUhKlTp7LnX758Ofx+PwwGAzIzMwEgxuKHRKlE3oqEmFuSg0QiiRGK6+vrEY1GodVqkZ+fz2wzqGyVLyEFDmR9ZGdnw+12Y//+/fB6vYhGo9BoNMjIyIDRaERxcTH2798Pq9UKg8GAaDQKq9XKMkJsNhssFktMQxbho5k6xAvMFBSgUlC+tD0RKpUKBoOhw9cpO8jr9TL/QvJDJMsfsv6iYIegb0AByfPPP7/HX7dzzz2Xicxz5szp0WsJOuL3+9legyohfT5fTEWMSqWC2WyG1+vFrl272FpisVgQiUSwadMmAO1NYylJAjiQhENnnvhKPDrTyGQyZtOl0+lYTxK9Xs9EIbPZzLINSRhXq9V9Zo/an+BtuuRyOfPmJu9csk/hz8j02p933nk44YQTcMEFFwAA/vCHP+CWW27p8jwzfvx4fPDBB3C73ax6y2QyIRgMxiRl0Vma7pe+F58URt8Xe5bug+xIgPbgAFV3A+3V2fv27QMAFoTy+/1wOp2sUs7r9aKhoSGmOWRdXV2Xrp2enh7zWre1tUGv1yMtLY1l06enp6O+vh55eXmwWq2Qy+WwWq0oLCxEIBCA3W6HXq+HXC5n95iq9OjqbDabsXnz5p68hEAgSAD5hQEHFjNeYI5EIiwCRxmCtbW1MdnKBJUxk8E8LeB0AIyHzO3T0tKYt1VDQwOMRiMrUaEFU2Qz9z58SSEvwCXa3Pj9flitVgDtGSR79+5lpTxWq5UJNr/++mtMNkh2djYsFguUSiXcbjeqqqrgcDjwxRdfYNu2bbjwwguxdu1aNDU1YdmyZTj33HORk5ODhoYG7NmzB8cff3yMjxUf0JDL5UxkpnLJVGfjxo2YPXs2pFIpRo8ejZ07d2LMmDExj4mvFqD3ZzKRy+XskEfjhS/5IzE3HA4zz123240xY8Zgy5Yt2LlzJ4477jjce++9ePPNN1FVVYVvv/0W3377bYdrjRo1Ctdffz0UCgVaWlqwbNkyVFVVAQBmzJjBNuyUCZCeno7q6moAiMk+ovEBdK3sXtB9kMclcMAPE2jf1JN/ZWZmJiorK9HS0tLh56k3gEKhQCAQQF1dHbZt29bpJtpisWDYsGFMaHY6nVCr1Wy90+l0bK3T6XQIh8PMtkmMi+QTLzBrNBqEQqGYvQoPCT8k/qhUKhYY9/l8bJyRF6JSqYRarWbNBFtbW6HRaFiJKnWM9/v9CIfDnTYbFKQO0WiUicwXXnhhj1+PGnFu2LABTU1NPdJkUNA5JBbyFSkkMCsUClYpuXPnTmZ1oFQqUVZWBrfbzRpEjho1Cj/88APLFJXL5fjtt98SzjO84EzNhtVqNctapoqbzMxM+Hw+1tjN4/EgNzeXJdT4fD62JxH0HnxCCq0HEokEgUCAfY9s4Gh/29TUBKD9/f7zzz8jGo1i5MiRuP322w/r2tRXxGg0wuVyMUGRqm00Gg2r/KMKUZVK1aG6NN4aRtA9BINB9p7XaDSQyWTM6oIsTfx+P0vCowz3cDgMq9XKfJmDwSDMZjN+/vlnAO1713HjxmHEiBHIzs5mQW673Y7q6mrs3LkTO3fuZOdpoD3opdfr4XK54PF4WFNruVyOtLQ0tLa2siQLlUoFm80GnU7H9Bfe0jBVETOfQNAPobIgoH3yI+8egiL5ZrMZTU1N7HMqHZFKpSyqRp12qXFGImQyGRMYvF4vvF4vGhsbmZ9ZOByGw+GASqWCUqmEy+WCXq9n9yrEoN6jMxsBPusQaBcOq6ur2eJbUVHBOjJT9qHNZmNjLS8vD1lZWTAYDFAoFDAYDMjNzUVOTg5CoRA2bdqE5cuXo7KyEm+99RYuvvhi+P1+2O12LFu2DKeddhrz0GtqaoJOp2MeeuRZ5vP5WNYaZdj3BU9NKrEEwH6veObPn4+5c+f29q0dFApQkacdiX/0fqcxFAqFmJ1BW1sbjjvuOIwaNQrbtm3Dxx9/jAkTJuC2227D/v378euvv6Ku7v9j783DoyzP/v1z9i0zkz1ACIQdURBQEQQUFahr3drXurUub6vWlm9rW6u1ttZqtWpbpa0WbW2t2lqXSq19XXDBIuICyCIgBAjZyZ7MviXz+yO/6+aZEBQ1ZOM+j2MOksnkeW4y19zLtXyuWuLxOG63m5KSEo455hjGjBlDZWUlK1asUA03bDYbp512GpMmTSIQCLB69Wo6OjrIy8tTUXxpUCo6iHa7vceAiebQY2woKgcoq9WqDv8+n4/t27erg57H48Hv96s1obm5mV27du138LfZbCpTzGw2EwwGaWpqoqWlhTVr1jBy5EhKS0upqKhQWSpSkup2u1UXbovFopzfOsOs/+ne2T0YDGYE2kTKorscjhwEJUO5p2A3oPYsUmpqMpnU/sTlcqkDv8xvIu+kD/UDl02bNrFnzx5cLheLFy8+5PcbNmwY06dPZ8OGDbz66qtcfPHFh/yemgMjUgdWq5VRo0ZhMpn44IMPaG9vx2w2M2rUKEaOHMnWrVtVpd3EiRMpLy8nEAiQm5uL1WpVCXDZ2dm4XC4CgYBqKByLxTI03a1Wq9JAdbvdRKNR/H4/iUSC3NxcUqmUcjRXV1czcuRIYJ/UXFZW1qA83wxGmTfYtw+RfQXsO+/Iv8b3Q869oVCIhoYGJk+eDMCWLVt49NFH+epXv3pQ719VVRV///vfga6MWAloRKNRtd8QyYy8vDzVjNDr9ap1T15ndDr3t+0cyA4Gm31I1jHsk90xJtxlZ2crJ7DNZlMVVLJPSSaTmM1mQqEQhYWFan756le/yg9/+EOloXwggsEgq1ev5qWXXuKFF16gqamJ1tZWTjvtNHbs2EF9fT1jxoyhra1NOZ9FXtTr9RIMBsnJyVHa3XLmGsg9ij71Tqqzs5PJkyfzwx/+MOP5l19+GbvdztNPP62eCwQCHHPMMcybN48333zz849Wo9F8IsYGbtIAScrHrFarmlBFD0oauI0aNYoZM2Zw5JFHqqYHxcXF5OXlqcYXxqZakk0qUXuLxUJWVhZ5eXlkZ2erA11TUxPRaFRF36TkWUqYABVt1hx6ZANmLL8yRnedTiednZ1UVVWpjU9TU5Nq3CdNDxobG1UmWDAY5J133uH555/niSee4C9/+Qu//e1v+dGPfsT111/Ps88+y9ixY7n66qspKCggFArxxBNPUFpaisfjob29nZUrV6rN+c6dO1WGfUtLi8oCEJuRjZjRSTGQycrKUg6PcDi8n74swE033UR7e7t6SJZuf2MMOsjfXTbqYkPRaJRhw4YB0NDQQDAY5Atf+ALjxo0jlUrx1ltv8Yc//IG3334bu93OkUceyfHHH8/UqVNxuVysWbOG+++/n6eeeort27eTTqeZOHEiV111FSNHjmTt2rW8/PLLBAIBXC4Xs2bNoqKiAkBJ98iY7Ha7mku0k7nvMGYuS4kq7Gs8a7VaqaurI5FI4HA4OOKIIyguLmbv3r289957bNmyRZUgWiwWsrOzyc/PV1URksXm8/k45phjOPXUUxk9ejQA1dXVbNy4kWHDhmG1WlUWmWS4dnZ2EgqFlI0MlnljKCN7B+iaY9rb2zOqJpLJJO3t7bS2ttLW1rbfo729XTXdkWv4fD7y8vLUHkQy1pPJJJFIRO1D5LAp2origO6eWa0ZeEgW8+LFi1X1zKFm0aJFAKxYsaJP7qfZh6zhxoxU2FeJJw3cLBYLxxxzDCUlJbzxxhusXbuWdDrN2LFjqaurY8uWLSpovmHDBqxWK+edd55qZL1r1y4aGxvV+UQQJ1MgEKCpqUn929bWRkNDAy0tLaqnSCQSIZVKUVdXp6oijFWlgw2ReVu1ahVPP/30fpJWAxHR3YZ9yU/ytfFf6QUhc0hpaSkAy5YtIz8/nyuvvBKAe++9l69//evs2rXrY+9bVVXF1VdfTSQSYerUqUo+QdY4GYfYc05Ojvp7ut3ujP4VcGD5wv7gQHYw2OxDPodms1mdKeXzbrVacbvdyvHf/Qwh5yD5vXHjxhGLxSgqKuKuu+76RAczdAUTTjvtNO677z7Wrl3L6aefruQ4pkyZQjKZpKioKOM+3Rufix1JtrUwUP0nn/oEZjabuemmm/j2t7/NjTfeSE5ODhs3buTLX/4yv/jFL/jyl7+sXrtnzx5GjBjBhx9+yJlnnsnmzZt7PFxrNJrewXjQl6wtieQ6nU5Vopydna20hWw2G5MnT8bpdFJbW8v27dt7LGX+NFitVoYPH052djbhcFg12hD9I9HmjEajSpt2sGSlGhmMkdzumy7Yl/ElWVxVVVXKoRsIBIhGo6rxQXNzs8psN2aeWa1WRo4cqRq7tbW1UVNTQ1tbGy+//DKvvvoqJ598MhdffDH/+c9/2LlzJ88//zwLFiygrq6OlpYWtm/fTl5eHpFIhJqaGpxOJ6lUimAwiNVqVY3g/H6/cjpJ9+WBGMUVZs6cyX//+1+OPPJINmzYwB133LHfaxwOR48NrPob0XMX3fXuP4OuCH1xcbGSPHnrrbeYPXs2X/rSl9i2bRvr16+npqZGZQsdCI/Hw6RJkzjiiCOIRqO8//77KgsWYPjw4Rx99NFUVVURi8VUSbwcHo06zbr0vW+R7u0mk0k58kwmk1p/JOPU4XAwceJEysrKVKAA9sk2tbe3U1dXpzJOesJutzNlyhSOPfZYRo4cyYYNGwiHw2zcuJEJEyYQDodJpVLEYjHlZBTpHpfLpQ7+g0EXfShidLxYLBbVdEeeN2ayy+faGOA2PqQRYCwWo7W1NcOhIwdH6S0h64Vc12q1qgoZY1PZWCymM5oHKH0plSEsWrSIe+65hxUrVgzYjLGhilQmSTKLBJWTySShUEjtP7OyssjKyuKNN96gqqoKi8VCaWkpa9euVRV3os+cSqXIz8/nD3/4g6qYmjt3LtOmTaOkpISioiK8Xq9yGK9bt47nn39eBbxyc3NpaWnBbDbT3Nys5Hukqgq6EjPEkRiPx7HZbINuPhmsMm+CSJ3AvvNO9wQJh8OhqjJzc3PZu3cvN910EzfeeCOFhYX85je/4d133+WCCy7g7LPP5rLLLmPixInqHu3t7TzzzDM8/PDDhMNhRowYwfjx49myZQuTJ08mFAopqUmjfRj3Hj31EDFm0vc3B7KDg7EPGBg2YtxzGBspyrhE1iQSiQD7V/yKb8JYAWexWKivr+fuu+/mW9/6ltpDHAzBYFBJtHg8HrXflftIskT391+CD8lkUiXXyB5oINhKdz5Tms8ll1zCz372M5YuXcpVV13FmWeeyWWXXcb3v//9jNeJvshRRx3FlClT2LFjB8cee+znH7VGo+kRY6dkyQ4CMhrd2O127Ha7ct6MHz8eh8PB2rVrKS8vV9cSvUNZIERg3ngP6cAsOodS8ppIJKiqqqKqqor8/HzVeCkcDtPR0aE657rdbuLxuHImGhfhwcBga+hmLGc36unKwup2u6mrqyMYDKoMZXEwS4m6bMiMGfGFhYXKiZRMJpk4cSKzZs0iLy+PLVu2sGLFCrZu3cqrr77K+vXr+cY3vkFOTg7vv/8+K1euZM6cOTQ2NlJfX68y5ltaWlRmc3NzMyNGjCCVSqnSMwlSyOZhIDpohQsvvJCLLrqIP//5z1xxxRUD2kZ6wqhzbMwalo1ae3s7sViMY489ltdee41AIMArr7yCz+cjOzubI488kiOPPJJwOKzmEjms22w2pZEqXZzffvttdW+TyaQ27ul0mrKyMrWhkkZA4lCWjaKxqYrm0GPcwBu7ucO+zXooFMJkMlFaWsq6detUQ9H8/HyCweB++pgmkwm/34/P51MyGZFIhIaGBsLhMBs2bGDbtm0sWLCA+fPns3nzZmpqatixYwejRo1SvQPE0SyHPAl0SibtYFpvhgrGgIRknEt2sWi+S0JKMBhUzmP5vU9zH6Mtit437KvesVqtSlJMSmjF0TzQg5eHG3v27GHDhg2YzWbOOuusPrvvvHnzcDqd1NTUsG3bNqZMmdJn9z7csVgsOBwO4vG4+kyKXmljYyM5OTlAl3OoubmZ3bt3YzKZGDVqFK+//rpqNi57WXH6iq5zaWkp8+bNY/LkyUybNi2jiajdbmfcuHGMGzeO008/nZtuuony8nIVSI1EIpjNZrKysmhtbcXtdtPa2kp+fj6BQACn06n2TpFIBI/HM6jmk8Eq8ybIeRe61gKRIMjLy6O5uZnc3FzVMDgYDKr3p7GxkR/96Ed861vf4rnnnuPee+/l9ddfZ/ny5SxfvpwRI0YwYsQIgsEgO3fuVHvjGTNmcPbZZ/Pkk09isVg4+uijWb16NaWlpYRCISUXCV3OTbHrUCik1iVxenZ3NvcnB7KDg7EPGBg2ImdfY+ABMp35sg8BMqrBYV9QQH73vffe4+KLL+axxx7jvvvu46GHHmL+/PnMmTOHY489liOPPHK/c14wGOTtt9/mX//6Fy+88ALJZBKv14vZbKa8vByPx6P8MiJTKPfvntFudIIbk8cGGp9pd221WvnhD3/Ij370I5599llmzpzJ0qVLM14jE67D4aC6upqtW7cyduzYXhm0RtMXDLYsVTk4wz49IaMEgmQn5+fnU11drb7Oyspi48aNysE8ceJEbDab0r77tJPXiBEjmDhxIhaLhaqqKpqammhubqa0tFRlEhkzmV0ul9LMlOjcQCgROhgGU6TfmOVudMCJg9lmsxGNRlUTBNGmkwxmcTBLJrNs4N5+++0DNuaaOXMml1xyCd///vfZunUrf/3rX2loaODee+/lm9/8JieffDJvvPEGa9as4eSTT6a8vJzKykomT55MLBajpqaGkpISYrEYDQ0NFBUVEYlEaG9vV8GSeDyusuAHYiQXuj5/zz33XH8P4zMjDQChK/hk7HbtdruJRCLs2bOHSZMmsWjRIjZs2EBVVdUnZi4LxmYYQl5eHiUlJerAVl1dnbHxczqdWCwWlelo7NztcDgG1WEOBt96Y8ToNDSbzcrh3P3f/Px8tmzZQmtrKzabjdzcXNatW6eCDuLwFceirEmi3T1jxgxOO+00amtrefvtt2lsbOTll19m2rRpzJ8/H5/Px7Zt26isrGTkyJFKR09KY61WK6FQCJ/Pl9E8ZbDZymDGuA7BPukS2Rc4nU5cLhfV1dU9NiIWJCDtcDhwOp0q81gqL+x2u1rHWltbiUQi6hBstVqVQ0GCDSKzI3JMxoxmbR8Dg3/9618AzJ8/n/z8/D67r8vlYv78+axYsYIVK1ZoJ3MfI59l0Tj2+XwEg0GSySSJREL1kJH1Ijc3lzfffJNEIkFbWxvBYJD29nbC4bDScRc2bNig9JntdjvnnnsuS5Ys2S8r0Si3NG7cOMrLy1Vigzi/W1tblSRhTk4OjY2NjBgxApPJRGdnp0qsGSzzycHKvF1//fXq+0AgQElJSZ+NsTvG7M7Ozs6MStm8vDxCoRBer1f5qIxOXWkQnJOTw86dO/nVr37FhRdeyH333cemTZt49NFHeeONN6itrVVyGACTJ0/m0ksvxe/38/vf/x6Aiy66SJ25x40bx8aNG4nH4+Tk5FBXV8fevXsZPnw49fX1NDU1qb+ZMdAKHPBs1ZccyA4Oxj5gYNiIsYLX+PmTc4yxjxXsy2AWORXxS7S1tXHcccfx/vvvs3btWi666CLWrFnDnj17ePnll3n55ZfVdUtLSykoKCCdTlNfX09FRUXGPSZMmIDD4eDDDz/EarUyYcIEIpEIeXl5hMPhHscpvWjk+4E+l3zmFI5LLrmE73znO6TTaf7+97/v5xTatm0bV199tcoeuf/++w9Ks0SjGSgcTJbqQHEgQmYWs5SgQpeDSxyJEllva2sDupqaNDQ0sGPHDgCOOeYYNmzYwEcffaSuKQ/JQJSMY4fDgc/nIzc3l9zcXGKxGHv37lULcG5uLieeeCKtra3U1tZSXl7OiBEjVHa0zA3xeFxtDKSxmDRpGugMpki/MVggf1vRxoYux1xNTU1G88aWlhYlkWF0MKdSKRU8ADj66KM59thjycrKorm5mU2bNrF582bWr1/P+vXrmTt3Lrfeeis/+9nPePjhh1m/fj3Lli3j9ttvJ5lM8tZbb7F69Wq+8IUvsGnTJsrKyjjyyCMJBAI0NzeTk5NDIpEgGAyqjWEgECAvL0+VQQ7UcqGhgDh0xJkfi8VUho5USbS3t7Njxw5Gjx7NnDlzmDlzJk1NTUpSRUpepcGW/CsbaofDgdfrJTc3l5ycHEKhEI2NjezcuVONw2az4XA4Mpr8iZPZqJ02GLNTB9t6Y0SCm7IBhkwZBJEokDlEHL5r1qxRzunW1tYD/n8ikQjbt29n+/btvP7661x66aVceOGFvPfee7z33nts2rSJ9vZ2zjjjDKxWK5s3b6a6upqSkhISiQTxeFyVH5pMJjo6OpT0glTSaPoGaRAM+7K2RF5FyopF/9JisZCbm4vX61Wfe6mwaW9vJxgMsnfvXhUQ7Y7dbic/P5/hw4dTXFysqnFEdkka6lgsloy+EOKoFj1WLb0zMJBA7Xnnndfn9168eLFyMv+///f/+vz+vc1gCmqaTCacTqdKpInFYhQUFFBbW0sgEMDv99Pa2qqqY1paWlTDcgkytbS0ZKydxcXFjB49Gq/XSywWY/fu3VRVVfHUU0+xadMmli1bhs/nIxQK8cc//pHXXnuNzs5OPB4Ps2fPpry8XPUvaW9vV6+V6gebzUZWVhZ1dXUMHz5c7XcksWYwzCeDVebN6GS22WyqN5HP51MZq2PHjmXnzp0UFBRkNApsamqis7OTBQsWsHLlSv7xj3/Q2NjI1Vdfza9//WvC4TBbt26lqakJt9vNxIkTycvL429/+xt//etfATjllFM499xz+elPfwp0VQvv2LEjowFgbW0tkyZNor6+nubmZsaOHavGLfIqwIDIUD2QHRyMfcDAsBH5vMn+Q76XvV8sFss4P8p4JXgdCAQ47rjjeOedd4jH4xxzzDGsW7eOtWvXkpeXx2mnnYbNZuOjjz5i/fr1qol1dy3v4cOHU1hYqHwF8XicwsJC/H6/CkLl5ubS0dGhHPEy9xkT8CQQbqxOHoh85pPYt771LaBLd6gnZ9AJJ5zA5s2bP/vINJp+5mCyVAeKA9E42YiDRTZUTqeTvXv3Al3C8+IYlGZ+0pRz9OjRrFq1SjkaLRYLFRUVB4ykRqNR2traqKysBGDs2LGcc845tLe3895779HS0sLy5cuZNWsWRx99NBs3bqS2tlZ1hI5Go2qs8q90kxf5g4E6cQqDKdJvPEDLAitZZKKdKiXmUl4YDAZpa2sjHA6rfzs6OqitrVU6vD/5yU961OGqr6/nH//4B0899RSrV6/mO9/5Dg8//DDf/OY3ufvuu9mxYwevvvoq//M//8Pu3bupra0lHA5TVFREfX09iURCNRAbMWKEar6Sl5ennG0dHR3KGTAQNmNDGamOgK7Pq8w5HR0dSqNQmnK53W61OZNyVylDl42S1WpVTmLRj5fggcxX0GWvknUotisZzFLqLlnMIp0xGBlM640RCfBAl41IQNP4c+jKCJFMM7PZzJYtW1Q2cWNjo3rNUUcdpRq3jRo1SpUif/TRR6xatYqGhgZ+97vf8Y1vfIPZs2dTUFDAyy+/TEVFBf/6178455xziMVilJWVUVdXR0FBgXIWit1IyWwsFlMVP1pepW8wlq1KgFACEy6XS9lIQUEBI0eOxGKxEI/HqaiooLq6mtbW1gOWEEugWuRbEomECnqbTCaGDRvGqFGjcLlcNDY2Eg6HVVm70+lUQQiRVZHxSkBL0380NTWxatUqAM4555w+v780/1u5cqUKPAxmBpvUm8hhSRWdxWLB6XSqagNAVUi0t7crOQtj7xCn08kVV1zB2WefzfDhw/e7x3vvvcdNN93ERx99xPe+9z0eeOABfv3rX/Puu+8CXU61q6++mldffRXoahZntVrZvn07drudjo4Ompub1VpisVhwu93U19czfPhwlaQzWCokBqvMW3epCXEyd3Z2kpubq/SyRSbjqKOOYv369dhsNkaMGEFtbS3Nzc1cccUVPProo7z++us0NTXxne98B7/fz3HHHaeuv27dOn7xi1+ozOYvfvGLXHbZZSoQajKZGDlyJKWlpWzbto29e/dm7JdFFiEcDuNwOIhGoySTSeXklOqa/rSV7nbw29/+ljPPPHNQ2Yf4GKSiwOVyqeQWce7LvJ5IJNSZorW1lSOOOIItW7aQTqcZM2YM5eXlJBIJzjzzTNavX09dXR2vvfYaJpOJGTNmcMstt5CdnU1TUxMNDQ00NTXR2NhIZWUlkUhEyewMGzYMv9+vzuBFRUVkZWXR0dFBTk6Omkfy8/MxmUxkZ2erYLrX683Ivh6oiTWfaVS33HIL//nPf3jnnXdYuHAhf/rTn7juuut6e2waTb9yMFmqA8WBaMwOkowt6Dp0GfUy3W43e/bsAbomrl27dhEMBrHZbFRVVVFTUwOgGlyk02k8Ho9yPCaTSdxuNyNHjmTq1Knk5eWxfft2PvjgA3bv3s3999/PV77yFa699lrefPNN1q5dy3vvvUc8HufYY49l7dq1VFZWMmnSJOLxuHI0S9myNOAx6uwO5I3YYIz0Gw/oEoiw2+3U19fT2dlJIBAglUrR1tZGLBYjEAgQiUQIBALq58FgkMmTJ7N06VLV6K87RUVFLFmyhNNPP51rr72WLVu2sGrVKk4++WSOO+44duzYQUNDA2azmSOPPJLa2lrq6+uZNWsW9fX17N27l2nTplFZWanK2KSJpGTVplIpFYgYCNplQxkJAHV2duJyuVSJeSwWo7Ozk/z8fGKxGMFgUG2kPg9ZWVkZXbdlDMYmKk6nUzX1ku8H8nzxcQym9caIOJhFqkDWGtkAy/eynphMJnbs2EEymVSBK5vNRmlpKeXl5Tz22GPKEQldwcsvfelLnHrqqZxwwgn89a9/ZceOHfzpT3/i+uuvZ9y4cZx33nn861//ora2lpdeeokzzzyTxsZG1fBJMlXtdrtyGkq2UDKZVOvPQA9qDqbswwMh9iLztXzvcrnUQb2goIBRo0YBUFZWpgISgsvlwuPxkEgkiMVi6mAuchs5OTmMHz+evLw8WlpaqK6uVg0l6+rqcLlcTJo0idLSUtVEVCS8JBghZfkShJDse03/8MILL9DZ2cn06dMpLS3t8/tPnTqVwsJCGhoaWLNmDSeddFKfj6E3GUxSb4JUUMrn3efzZWQgylxiTDpIpVJqDfr+97/PBRdccMDrz5o1iwcffJArr7yStWvX8otf/IJt27YB8N3vfpeFCxeSSqWU0/mEE07Abrezfft2ysvLmTFjBs3NzbS0tFBUVERLS4sKRjQ2NjJs2DA1dgmQD2QGu8ybIImQHR0d5OXl0dTURCAQYObMmbz55pu0tLRw3HHH8d5776nql6amJurq6rjhhhv4zW9+w6ZNm1iyZAkLFixgxIgRNDc38/7776skq+zsbK655hrlgN64cSPQlTHvdDoZP34827Zto6KigmOPPZaWlhaam5vJyspSsi/CQDvLfJwdDBb7MJvNuFwuotGoqnJwu91YLBY8Hg/BYJBwOExWVhYtLS2qQjIajXL00Ueze/duJX/j8/nYuHEjZWVljBkzhsWLF2dU7q5fv/6A4/B6vYwZM0btK8THMnbsWMLhMOl0moKCAnw+HyaTiYKCArW3drvddHR0qKouaRY4kM89n3pH/cc//pFf/epX/Pvf/+boo4/mO9/5DnfffXfGQVCjGQocTJaqSEYYH/2BbK5Eb8jYhEn+Dy6Xi7a2NnWgdrvdfPjhh0CX83n79u2kUin27t1LW1sbdrud9vZ23n33XdatW8dHH33Erl272Lx5My+++CJ33303jz/+OGeffTa//OUvmTVrFp2dnfztb3/j7bffZvHixZxzzjmYTCY2btxIIBBgzJgxQFdWitFRKOXzorsG+2s3DkQuvPBCVqxYwaxZs7jgggsGdCTXKJHRvbmBBCkkK1EchxI1FXsqKSmhtraWnJwcfvOb3xzQwWxkwoQJHH300QDs3buXZDKpMpJKSkro7OxUJUU+ny9DQ02yySSrWcZs3IR17wKsOXQYs7dEE1lKP6WJWkFBAQUFBeTn56tHQUEBhYWFFBUVMXz4cNU4pbCwkJycHNUgsLCwkNLSUiZMmIDL5crQEPf7/eqeZrMZv9+f4WCWzITBymBab4wY1x5jY9hoNKrm9o6ODlpbW0mlUlRUVJBKpWhpaSEcDuP1egmHwyxfvpyNGzeqz700dNq9ezd33303d911F3a7nSuvvJJRo0YRjUZ5/PHH6ezsZPjw4ZxzzjlYLBbKy8vZvHkzRx55JNCl9y3SGMaNvTTbEZsxHvIGKpJ9uGrVKp5++ukeJSIGMsZguDiNjZVSImsiDV/Xr1+vbMLv9zNjxgyOPvpoYrEY77//vpL2qqiooLa2lrq6OsrLy1m/fj0vvPACf/vb36ipqWH27NksWrSIiRMnKifVhg0b+PDDDxk3bpwKdMt8IzYi45GxDbTD/+HE8uXLATj33HP75f5ms1llM69YsaJfxtCbHKzUm9/vV4/+DmjCvoy9dDqd0YdBAtCwT94L9knfALz55psZwaqemDhxInfeeSdms5nly5era7788ssqG1bmic7OTkpLS5kyZQqdnZ3U19cr+Q1ZT1pbW1WD00gkohJO9Hxy6JC/qzjejEEIv98PdElw5eTkqEonn89Hfn4+iUSCKVOmYLFY+PDDDwmFQtx5552MHj2aUCjECy+8wEMPPcSzzz5LZWUlDoeDc845h6VLl3LcccfR2dnJhg0beOGFF4CuwAV0Jd1Al5SL6H1L01sZqzHpR1dm9j42m001kU6n00QiETo7O9U5UwLL0KXBPn78eKAr0H3uueficDioq6sjmUxy+umn4/f7aWpqYs2aNfh8PpYsWcJll13GnDlzGDVqFIWFhYwaNYqpU6cyZ84cjjvuOIYNG6Yq6CQrvqSkhEgkgslkYuLEifj9fkwmE3l5eep8VVhYqGTeRJ4UGPDBqk91InvxxRe57rrrePzxx5k9ezYA3/72twkEAjz22GOHZIAaTX8hWarpdJoNGzYwadKk/h7SATGK2sO+A5yUBkOXI1kylYcNG6YOby6Xi40bN6os1UgkgtVqZePGjVRVVeHxeDjnnHP48Y9/zD333MNPfvITzj33XFwuF5s3b+aaa66ho6ODr3/966rj95NPPklFRQVHHnmkyvh48803OeKIIzCZTDQ3N6vJXBZZOdhJpqr8bCAvthLhff/99/nmN7/Z38P5WIx6TkZHPuyzl+7fizxGe3s7sM++zjvvPPLy8j7xnul0mhdeeIG33noLgEmTJnH//fdTWVmJx+Ph+OOP58knn2T37t1YLBZmzpyp9MDz8vKUdriUSQJKC1i+HuiaVEMJcfCKU1caqnk8HnXgMwaO5CHOPWPmYTQaxWazUVhYyIQJE5g4cSLDhg0jmUwq3VSr1UpRURE+n09tsBwOBwUFBcpxOBQczDC41hsjRiez0ekph3FxOEPXxj2ZTBIIBIhGo3g8HrZt20ZZWRkul4uLL76YRx55hH/+8588+eSTPP3001x++eVYrVZWrlzJH/7wB+x2O1/72tdwOp1UVFSouWX48OHMmzcPgHfffZesrCxyc3MzSk2TyaRygkswTQ79EuQcyKxbt4558+ZlZB92RyRnjI+BgjEgKM0iZf6Wyoe8vDwsFgu7du2ivLwck8nE9OnTOemkk9i+fTvPPfccu3btUhk/06dP58QTT+SMM87gvPPO47TTTuOYY44hOzubZDLJ+vXreeihh9i4cSNHHHEEZ5xxBtOnT8dqtdLU1MQHH3zA6NGjAVQpvtiC7EWM9qPpeyKRCK+88grQf05m2CeZIWMZzBys1Ft7e7t6VFVV9fUw90PkbGBf9YzJZMLv9ysnktvtxmq1qooHcaavWrWKa6+9loqKio+9x/z581XF0JYtWzCZTGzdupVf/vKXWCwW5syZA8DSpUvZuXMnZ555JjabjerqajWX1NfXq+CV7E0keQcys601vUt3J7OcJ6WniNfrBboC0NLEs7y8nPnz5wNdge2FCxcCXc1Ga2pquPvuu7nhhhtYvHgxs2bN4tRTT+Xaa6/loYce4sILL6SqqornnnuO22+/nT//+c/EYjHGjx/P3Llzgcy1T5zJVqtVrXvSHFIkHGStMa4/ms+PZC6Lozkej6s9YEdHh7KNUCjEhAkT8Hg8RCIRdu3axUUXXURhYSGxWIzt27czdepUTj75ZFWF9dJLL/Huu+/S3t5OXl4e+fn5OJ1O4vE4zc3NtLe3YzabKS0t5fjjj6e4uJjm5maSyST5+fkcc8wxyk6GDx+uZAILCwuVTefm5qp9tWRnD2T7OOhT2bp16/jyl7/M3Xffzfnnn6+e9/l8fPvb3+auu+4aEF0wNZreYrBkqYpmE+xztBmdhhJRl67K0nhPSlObmpqUA0hKmjdt2kQqlWLBggU899xz/OhHP+Lss8/mxBNP5Mwzz+Smm27iH//4B6NGjaK+vp7f//73mEwmzjnnHI455hg6Ojp45plnADj++ONxuVyqgZw4J2W+kG66RukDKU81vk7z+ZGIpxyijdnNPf0Lmd1rjZv1+vr6A94nmUyyevVqlixZwm233UY6nebEE0/kiSeeYMuWLdjtdk466SQeffRRduzYgcVi4bzzzmPXrl3s3r0bk8lEaWmp0uZ1OBzK6WiUfjHqew6GRpGDHaM2aUdHB9nZ2Rn6gz6fT2U9Saat3+8nJyeHnJwcsrOzycrKUr8TiURoaGhg9+7dlJWVUVVVpSL6ubm5lJaWqo0ggN/vV00xZDMm2s+DncGy3hgxZqaKdi6QUZ0ieoOxWExlLwcCAaxWK3v27KG9vZ1x48axbNkyvva1r1FcXKzmHJ/Px0UXXcSPf/xjAP7973+zdetWcnJyVEDz5ZdfVk7sqVOnqhLq3bt3U1xcDOxzYIpjU2wnEolgsVj2C84OVAZr9qFgzNoyfoYtFotyePn9fhKJhKqymjZtGiUlJTz99NPquaOPPprTTz8di8XC66+/zl//+lceeOABHn30UXbu3Mnxxx/P17/+df7nf/6HkSNH0tHRwTvvvMOjjz5Ke3s748ePZ8GCBVgsFqXN7Ha7e6yQSSaTas4b6PYxVHnllVeIRqOUlpYybdq0fhuHOJ7Wrl1LS0tLv42jNziYoOZArJwxIg32AFVeLnuS7OxsfD4fXq9X7RtMJhNr167l/PPP58Ybb+Sdd945YODo4osv5qyzzlJ6qVarlXfeeYc//elPXHrppUyePJl4PM7vfvc7zGazkhqpr6/H4/EoWTHYF5ySTGhZb7ST+dAi+wiZvyV7vLCwEOiqrCwqKiI7O5tUKkU0GmXChAl0dnbS2NjICSecQDqd5h//+Ae/+93vCIfDzJo1i4ULFzJ58mSampp48MEHufHGG3nwwQdZuXIlzc3NOBwOFi9ezDXXXKMc3CJTWVBQoPoiSSWe0+lUexhxchqrkTW9iySmAKoPg7HyQfbe4XCYefPmYbfbaWlpYe3atSxatIgTTzwRq9VKbW0tFRUVHH/88Zx00kmMGTMGi8Wi5EVFmi07O1tVPEyYMAGz2UxjYyPxeBy/38/xxx/PsGHDlIb32LFjsdlsmEwmpccMqMaVMie53e4B7WCGT6HJfMwxx/S4oQW47bbbuO2223ptUBrNQGCw6lEZnc7G5n/iFCwsLOS9994Dug6qZWVlpFIpamtr6ejoYO/evXR0dLBo0SJuu+22AzpwioqK+MlPfsL//u//8sorr/CDH/wAp9PJ//zP/7Bu3Tq2bdtGMBjE6/VSXFzMzp07aW5uxuv1qkxFyUaUpmLyvRzsRL5BL7S9gzhUOjo6VARXdKC6vw72OXKzs7Npa2ujuroar9dLWVkZ5513HscffzyTJk1S2pVNTU2Ul5fz4YcfKqeB2Wxm7NixNDU1YTKZyMrKIj8/ny1btgBdEdvp06ezfft2lXU3ffp0FQTJzc1V1/J6vXR0dKgIrhz6B7p291DCarUqG0qlUuTl5REKhVQWoBFp1icN+UQDDbo20aFQSDXlkdd7vV7y8vLUnCAOwtzcXNXNXQ5tIp8xFBiM6013qRo5xBmlB+QzKrq38n56vV42btxIUVERd91118c6MObMmcPixYt55ZVXeOaZZ/jJT37C7NmzVbDr3XffZcGCBZjNZsaPH8/69eupra1V+ojBYBCfz6caL4lklHwv1RGiMz5QGUyNZnuie8DY6GSWQ7XH42HHjh2qnHTcuHE899xz1NTU4HQ6Oeuss3j//ff517/+td/1W1paePXVV1m7di3f/va3KS0tZfTo0ezcuZMVK1bQ0tLCU089xRVXXEF2djbjx49n+/bt1NTUUFxcrMpnJcsJuux3IDVhOhwxSmX059++uLiYI488ki1btvD666/zpS99qd/G8nkZTE27DkQ6ncZutxOPx9Xewm63qwoWCSqm02lVVi6SgS+//DIvv/wybrebY489lmnTpjFhwgSKi4tVM6758+fzwgsvUF1dzb333suvf/1rnn/+eS644AKWLFnC7bffTm1tLe+8844KaLa1tSkJKGMDOuOeqXtjOk3vIn9fWV8cDof6+4fDYQoKCqisrCQWi1FfX8/UqVNZtWoVO3bsYO7cuVRWVrJ3717Gjx/P6aefzooVKygvL1dNaXsiJyeHiRMnMmXKFKZMmZKxjwgGg0rHe+LEicrhbLFYSCaT+P1+VQVm/Fr3ATh0SAWEVLWJc1ia7tXV1dHQ0MDkyZM55ZRTePvttwkEArz77rsMGzaMSy65hHXr1rFlyxaly20ymZQkqDQ1Nvb6kPfV4XBQXFxMTk4OsVhMBR08Hg8lJSVEo1GlxyxN0V0uF06nU+2n3W73oEiu0dar0Qwhum9axHljPEA3NDSQTCbJyspS0gTiEPB6vWzdupXi4mJuvvnmT5zEjjrqKNxuN5FIhPr6ekaPHk1eXp7q2tva2qois4LRMSGTfPf7yEFP/k/6YNd72O12otGoWgCl+ZXT6SSdTuNwOMjKylJZc+FwWJUMBQIBioqKcDqdNDY2snr1alavXt3jfeQ6ubm5qlmb1+vF5/ORTqfxer2MHDmSRCLB1q1bgS5H25QpU2hvb6ejoyPDKSk6ZtBlp0ZJmKHiaBwsiK6pOHx9Ph9ZWVlEo1FisZjaYMlBTxx7oVCI7OxsXC6XOgzm5uaqYFL30kBxPNntdnUINjaa0xvw/sX4XiQSCZUlLJID6XRaBR9aW1tJJBJKl1J02K+44oqDypA799xzeeWVV3j//feVY3j+/Pk888wzbNy4kQULFgAonfhgMKjKDTs7O3E6nSqTTOa+zs5OJdsB+zKzB+paMxgbzQrGrPcDOZslu0hsY9KkSbz33nvs2rULq9XK2WefzXPPPcfOnTsBOPbYY5k3bx4lJSWk02nKyspYvnw59fX1PPDAA9x88804nU4mTJjAiBEjePzxx2lvb2fr1q3MmDFD6X5HIhEVyJaxyFh1tmH/kkql+Pe//w30r1SGsGjRIrZs2cIrr7wyqJ3MgzGoKZjNZiXF5Xa7VbPhkpIS9uzZg9/vV2cf0WR2uVw4HA68Xi/t7e2quiYSifDf//6X//73vwe835gxY2hoaABQ8k85OTnk5uZSW1urmtdC114lGAwCmZm0RgkH7WQ+tBgdhtD1N/f5fLS2ttLS0sLIkSMpKSlh9+7dVFRUMH36dIqKiqivr2fLli188Ytf5J///Cc7d+7E5/Nx1lln0dLSQkNDA8FgUO0fJOFCHuFwmC1btlBdXa16iITDYZV0I2fjVCqFx+NRTkeRVBAZB2MSxUDdiwx2JAFGKqqMfRkKCwvZu3cvgUCAPXv2MGrUKBYtWsTWrVvZvn07e/fupb6+ntLSUtUUcOfOnTQ2NmYEziXolZWVpeYf2XeaTCYlQylOZ7PZrDLahw8fDnTtP+x2Oz6fT9mF8Vw80NEnNI1mkCOTpThqjJOPOOJkw5WTk6M6n7rdbqLRKC6XS2niykbqyiuvzGiqcSDKy8tVebsc2Hbt2kUwGFTC9clkkurqagDy8/PZvn070LWAdt+MGRdUvbgeGkTzKx6Pq016IBBQOmBZWVmkUikKCgqor69XHdULCwtpbW0FurLhfT4f4XCYeDyuFlar1YrdbldRVylnFF08i8VCVlYWTqdTBSegy4E8atQorFarKkOVhdlkMuF0OtUm3hi0GOhND4YqYkPiUJYNt8fjyXDYGTWZpat6W1sbDocjI7Ak2c493Qf2yRzoOWFgYZRpkjVGgoJGbVt5Xt7P4uJiPvjgA4CDLn8fO3askstpaWmhsLCQcePGAWRI98iaJ01wrVZrhuRB9wN+IpFQEhTy/EC1s8GcfWh8X0QiSw5NYjter1dlmMn/TZrEzp07lyeffJKqqipcLhdXXnmlau4oHH300YwbN45f/vKXNDc3s2LFCs4++2yga42ZMmUKa9asobGxcb8xiZ1234tIkEIYqLYxVHnzzTdpaWkhLy9P6Zv2J4sXL+a+++5jxYoVA3quGMrYbDY6OjpIJBJKf1kaxvr9ftrb28nPz1cl506nU+05pdms9IUIh8MkEgmSyWSGZj90zQsOh4NIJMLjjz8OwOzZs9m+fTsPPfQQNTU1mM1mjjjiCJ5//nmgq+KqqqoKu92eUZ0hVXrGniKaQ4M4DMXRbLFY8Pv9BAIB1fOjqKiIhoYGQqEQH330ETNnzuTVV1+lubkZq9XK+eefz0svvUQgEFCVv4KsCT01C25paVHnXSN5eXmcffbZrFmzBujqi5RIJHC5XOo6Xq9XfW21WnUSxSHG2KxaAgKhUAifz8fo0aPZs2cPDQ0NtLS0UFRUxKRJkygtLWXjxo3U1taq7Han08m4ceMYN26c6jkjWuzdzzWyZshcJTJdMg673U5xcTGxWIzOzk5sNht5eXkZVemDyS4Gz0g1Gs0BkUNSKpXKcDL31NhNnEISRcvNzQW6DvEvvfQS0JWh/EmUl5fzgx/8AIATTzwRn8/HRx99xB/+8AegazPmdrt58cUXicViSqdVHJXS0bV78zZp8KU5dFit1gy9btH39Hg8pNNpsrOzMZlMDB8+nKamJqxWK+3t7VitVvx+P+FwGIfDgdvtzjiAS3ap3W5X2ac2mw2bzYbb7cbj8WQ4i3Nzc/F4PCSTSRXBleCEZHzIAcFkMqlIv/wf7Ha7tpV+Qhz8yWRSyQ8Y3wvZYMn77fF4qK+vV9nPxmzLRCJBMBhUmyyv16sOeBJAa29vx+/3Z+gZGiseNH2PMTtLDs5GzWN5r8QGZHMcjUbJzc2lubmZbdu2qYZ9H0d9fb1aJySQIfOXcc2T5rZ5eXlqTQT2y+6VsYsmn1TVDOTsssGafWh0KJtMJlXpIHYiwWafz8fbb78NQElJCf/+979Jp9OMHTuWV155hbq6OrKysliyZAnDhw+nvLycYDBIcXGx6vWQlZXF+eefz8MPP8zKlStZtGiRclh3710hjWW9Xq86xIktGZuLdbdnTd/x7LPPAl1ZzAPhcH3iiSdit9vZs2cPu3btYvz48f09pMMOm82mqlLi8ThFRUXU1tYSiURU49CWlhZycnJwOBy0trbidDqJRCJKwi8WiymHUCKRUNJJ8oDMOcDj8eB0OikvL1dyBy6XiwULFvD888/T3t5OTk6OkjMaNWqUKnt3uVyqD4FxvzKQ15rBjCQ9iNyax+PBYrFQWFhIXV2dSoKaOHEimzZtIhwOU1FRwezZs3n77bepr68nGAyyePFiAoEAu3fvpqWlhWQyic1mw263q7nIuKY4HA5sNptaM0TmoLi4mNzcXNatW0csFsuo3JIeIxaLRTk6Yf/9iqb3MfbicLvdtLW1kUqlqKurU/InFRUVxONxampqqK2tJTc3l6OPPppJkyZRVlZGbW2tmkuMSFWmNEW32+3KNox7ZGNFbkFBAXa7XSVf2e12CgoK1LXlLD2Y6P8VW6PRfG5E2wlQpR/GRnqCcfNknNygSy+opKSE7du388QTT/C9731vv0ypdDrNrl27WL58OcuXLyeZTDJ8+HC+8Y1v8Oc//1lJJ5SWlrJo0SL+/ve/qw3ZwoULVRb18OHDlca76OzKuKBrgjZmFmlHYu8j73sikcBisSgdOa/XSyQSwWw2Ew6HsVgsRCIRnE4nPp+PSCSiIrWykZLorDTgEwewlG6LQ9LtdmOz2TKisbKgWiwWsrOzMw7ybrdbOZIlE1rGLlkqmv7DbrerTseflNVldCoZG062trbS1NSU8drGxkbVrCc7O5uWlhZlk+KA7ujoIBaLDfjuyocLH9c0VGxD9NTr6uqYPn06r732Gvfffz9ZWVlMnz79gNfeu3cvt99+OwAzZsxQwTDJchUdvL179yqphfHjx9PY2Kh0O7s7DwUth3DokWCA2WxWBybZf8i84HA4qKmpUXIqcvgX7e7m5mb8fj+XXXYZ//nPf3jppZdUwBpg/vz5LFmyhIKCAo4++mhV/rxq1SoWLVoEoA7wEuAWLcS8vDz1M9FAFCTwLV9r+o7Ozk4VVLngggv6eTRdeDweTjjhBFauXMkrr7yincz9gDhuw+GwWlMkM1WyQ4uLi2lsbFSvDYVCKpFCmtFGIhFVIi+O5mQymaHlLPtao8M5Ly+P7Oxs4vE4GzduBLqqREtLS2lpaVEl8oFAgPz8/Az5g+7/D82hQRy2Itnldrtxu90UFBTQ2NiosponTZrERx99pHqDHHfccWzevJlwOMzatWtVE8nc3FxCoZA6r/SEMUBhfG7r1q0ZjarHjRunkndEvjArKytjndEBzUOPOIIl4aqgoEDJiTY0NGCxWCgpKVHVc6FQiObmZpqbm7Hb7QwfPpzS0lLi8TixWExJb/RUyQeojGXB7Xaryl7oqugyNoAUfW6pAhyM8inayazRDAGkLFgWObvdnuFkln+j0ah6nd/vB7rKe6xWK1VVVUydOpXt27fz/PPP88YbbzB9+nQKCgro7OykqamJ7du3q1JT6CpPnTp1Kvfcc4+aPKdOnUpeXp4qLxPtzIqKCpUNO3bsWJVxJnpULpdLbcak6Z/83zSHBomsxmIxla0Rj8cxmUzKMeNyuYhEIrjdbhKJhNKyk0wSY4DAWKJuzGgWR7Nxo+5wOHA6nSorQDb20GUzLpcrIxosmy6JCA8ENm7cyHXXXUcymeRb3/oWl112GcuXL+cXv/gF+fn5PP744+Tk5HDVVVdRVlbGwoUL+elPf9rfw+41jBumj/ucijMZUO93Op2mqakpo7JBSlPj8ThtbW0EAoEMjfdQKEQ6nVb6z52dnaq0Xs8T/Yvxs208IEnZ8PDhw6mtrSUvL4/GxkYaGhoYOXIk1dXV/PCHP2T69OmccMIJlJSUqDmnurqaDRs28O6779LR0YHP5+O6664jlUrxn//8h7Vr12IymTjllFNobm7mhRdeALq0fP1+vwp6FhcXq6xVYxdxY5M3Y1a2pvcQuRzo+ttKGbNkM0sWs9/vZ+3atUCXU7qurg6TycSePXsIBoPk5eUxcuRIrr/+euWodrlc5OTkUFtby6pVq9iyZQv33HMP48aNY/HixTz22GO88sorzJ07N6PqRhzJxmoumYdEz7OnTGbtZO5b3n77bfbu3Yvf7+fUU0/t7+EoFi9ezMqVK1mxYgXf/OY3+3s4hyUWi0X1CpHPZ1FREe3t7coRWFBQQEdHB4FAQAWo4/G4cjqKQzkWixGPx5XD2Sj1ZXQ2SwKFyWTKaEZdUlJCPB6ntbUVi8XC5MmTCQQCmEwmRo8erYLoUoGj15pDj5xnjI5mcf6bzWYaGhpUsszYsWOprq4mGo1SU1PD+PHjSSQSlJeXE4vFMpIgTCYTfr+frKwsJZth7OUgMhqyjzUmc0lTSbmeNHmDLjuS8+9AOd8MdaRSVqT8zGYzBQUFRCIRQqEQHR0dGVVW2dnZRCIR2traSCQSSl70k5Czrpx35ZxsbEQtuFwusrOzsVqt6owj8hqDcb7QTmaNZohgdNTJIiXN9eTfaDTKsGHDqK6uVhutQCDAqFGj2L17N9u3b2fatGnKISyZYt3vU1JSojKQJZJfUFCgFnXZgEkZq2hU2e12Jk2aRG1tLYDKBoAuZ7NkJYimltxPc+gQR7LxfbDZbESjUWw2G/F4XOkqx+NxtRnqHqkVO5MFVDblPT3EHiGzlFqcy0ZntcvlUod7cVYPFH7+85/zxBNPMHLkSObNm8dll13Gfffdx1tvvcWrr77KsmXLmDdvHgUFBTzyyCN85StfoaamRnUiH6zIe2bUjzvQBsjY9E026NBVqi6OnYKCAiXRkk6niUQiNDU1EY/HaWxsxOl0KpkWaSQnJa+S0awdzX2PsYu7fC7lsytSKn6/n8bGRvVZliBBKBTC6/VSWlpKRUUFGzZsYMOGDQe814wZM7jyyiupqKjgscceUwe1s88+m0AgwIsvvkgymSQ/P5/Zs2fzzjvvEAqFcDgcZGdnqzVHDoPiPLTb7QcdLNF8OtLpdIYMhRz4Zb4XzUyn08nu3btVQ6WysjJSqRTt7e0Eg0HV7V32I0cccQSXXnopxx9/PFarlfLycm677TbKy8v57ne/y9KlS5k1axavvvoqdXV1LF++nIsvvlg5eSSLTdYut9u9X7aybs7V/4hUxhe/+EWlqT4QWLRoET/60Y94/fXXVRNSTd8jjuZYLKb2otKEOBgMqqSa3NxcfD6fcv45nU5yc3NJJBLK0Sh7CZmf5CEBJ1kzbDYbLpcLt9uN2WwmEokop3Zubi5FRUWqSnP8+PFqbNKPxJjNqNeaQ4vZbFYJCalUSmWr2+12RowYofaYEsSU/ab0hZk0aRIOhyPjnCPSbsZ7dA8+ijPb2KtGKrnk2iNHjlR2IBWeslZqJ3PfYazkloCBzWYjJydH6b7L3NDR0YHNZqOwsFDJ/hkbTEoQyiipIvtMCaz3pOMt0pPS0E8qLQDlYB6sAW69Mmo0QwTjwV4ObrFYTDXokuwwWXhDoRCFhYXU1NSojqqtra0kk0lKSkrIy8tTGyToWihlMpTsL5vNRlZWFm63W5V8yKHe5XIpZ6XJZKKgoEB1goauqL5ssjwej5qopZxN/k+DdXIdTEgpjmysrVaragAo2rjJZFK9Rhbj7pke8n6JE/njNtHGjGeRvjD+jjR0keekM+9A4sEHH1TZMiaTiba2NvLy8rDb7cyfP59ly5bhcrmU5uzcuXN57733OO+88/a7lmTSCNIoZqAh2cPGrMAD6cclk0laWlrU3ycnJ0fNCVIRkZ+fr5qGAipz3e12097eTlNTk8o0ys3NVSVl6XRaZSZ1dHQQjUZxOp16vuhD5G8tcgeC2IQc0H0+nyodFuew6Lx7PB7Gjx+vSp9Fhsdms+H1esnLy1Pvu+j9Q5f27qxZs6iqqmLTpk1A18HtqKOO4p133lH6iaNHj1YOZglYuVwuta5JhQagJXh6GZHSkQN2R0dHRnMtccbY7XZlF1VVVco5Lfqp27Zto6WlBa/Xy7e//W0WLVqU8T6NGTOGpUuX8oMf/ICPPvqIH/zgBzz44INceOGFKuh33HHHMWzYMAAqKioy5glZ57qXthp/ZnxOc+hJp9P885//BAaOVIYwY8YMNZetXLmShQsX9veQDluM87mUlkswW8rNxWFjtVpVBrM4fCTwlU6nVVahZBiKU7InjBqsBQUFFBQUqD2c2Wxm/PjxmM1mVUFTUFCA2Wzer2JPc2gRJ53Yh7FhnwQaWltb1TxfXFxMKBSivb1dOYR7wuv14vP5VFWenInErkTrG8hIxJFeNPI6i8VCfn6+sidJwtH0HTabTTWIlv0J7EvAkgQ46T8j2cVSqdsTcq3uyFnW+JDAUyKRyEh4kPsPZnvQM5xGM4QQrVLJLLNYLNhsNlKpFA6HQx3ic3JyVAlRcXGx0iZ0u91Kd0r0VgVxYlssFux2u5p8JXs1KytLOYfEMSjNMiQ7VcYoDmgpV5FJVCZUmWh1Y7e+wyiRIVIYsvjKAihOA3EwS5mY8Rryfhmdxt2fk697QpokCOKwGoh2UFBQAMCPf/xjvvKVrxAMBsnKygL2NVPs6bmeuPPOO/nZz37WNwP/jIgzV+gug2IkHo/T0tJCOp3GYrGQk5OD3W4nnU5TX18PdG3UjQ5mQQ6K2dnZeDwe9u7dSzQapbm5WR0MYrGY2rTLxi8ajQ76TdlgQuZ0CWqKNIYEE10ul3L+i1OxqKiItrY2FewMBAKqlLUnYrGYchJDV/WLrF+7d+8Guuxw3LhxAOzYsQPockL7/X4liSC2Kusi7NPmlUOgziDqPbpXqLS3t2c8JwfwnJwcdu7cCezTbDaZTDQ2NmK329m7dy8tLS2UlpZy1113KUdxd7xeL7/85S/51re+RVVVFbfeeiv33Xcfc+fOZfXq1Tz55JN873vfU03BWltblX22t7cruS7Ze4jTQYIVRk15zaFn7dq1VFZW4vF4WLx4cX8PJwOLxcIFF1zAsmXL+Pvf/66dzP2MnE3EURSPx9W+1OFwqAoayWQGVI8Qv9+vHL/yc6NjWZxLIj8oiRRyBrLb7YRCIeUkzM7OZsSIEYRCITVfFBYW4vV6SaVSav+kzzZ9i9VqxePxqECCZJeazWYKCwuJRCIEAgE6OjpwuVz4/X7i8TihUEjZg8vlIisrC4fDoZIbjE5B2He+dblcGecjY4KMsZFbUVFRhpZzd91uTd9gdBpLwEmkvsSfYrValcO5J0kduY4kWknAwFjFK9Wa8vsSADMicpIfVyE6WNBOZo1mCCETpVGzMBwO43K5AFQWcjQaJT8/H4fDQXt7O8OGDSM7O5tAIIDT6VSLaveGXt01dR0Oh+qeapQ3EMeysfRUSkjEuSzOQ4nmy9hk0Ra9YE3fIl2OZXNtXGCNzmXjoftAGnNiP8ZFuKf7yQGhe6aylBwNlIV26dKlPPXUU+r7m2++mQ8++ICGhgbuvPNOWltb1aYhHA6r0k3jc6NGjerx2jfddBPXX3+9+j4QCFBSUnII/zefjnQ6reYVyXw/0OczlUopB7Pdbic3N1e9NhwOk0gk1Obe+N4mEgnKysqUzMGwYcMoKipi5MiR1NfXEwgEaGlpUYeCaDSqAlyS3awdzX2HHLrFeSh6gyKJEQ6HMxyHDoeDUCiE2WzG5/PR3t6eUUHR/eAmQSmjxruxMZvH4yEnJwer1ZpxcPP5fBnauiIBZLPZVMBKnOLGw522md5DnMlms1kFJ+VAJk1lARWQsFgs7N27F0BVdIwcOZINGzbg9/u59957yc/P/9h7+v1+7rrrLr7xjW/w4Ycfsnz5cs477zw2bNhAXV0dW7ZsYcyYMezcuZOPPvpISXk1NDSQm5tLIBAgFoupijD5V+ao7g4FzaHjySefBODMM89U+9eBxEUXXcSyZct49tlneeCBBw5YzaPpO+T8I4k1khloDCLKXsTY/E8+3yJzINmpkpEaDAZ7/OzHYjG17mRlZTFixAhSqZSqQrPb7RQVFanmbsY5UdtL32MMRkjClew3HA4HRUVFBINBFWgwVt+JPUgyA3SdXaSKV/SYjXuZA+FwOFTDt0QiofYzTqdzwFVrHo6InUjSgQQk5PFZKhA+LkhtlJbs6Rw8mNFOZo1miCGHeVnk3G53huNFJtBIJKKcYJK9LFFUY1mrsemNcRI0yhiIU1mi8/Jao/PQ6DCQjGgZS/cNlzgTNP2D0bEjC2x3zcpPez3j7xodzj05oMVGBprTZ8mSJSxZskR9/+yzz/Lhhx+qJpc5OTk0NjYSi8VYtWoVM2fOZObMmfznP//hrLPO4q233uKee+7p8doStBmoGN8nCSodCGnQZ7fbycvLy3itZBKJI9BIU1OTyvSOx+NUVFRgMpkoKiqiqKiIdDpNMBiktbWVwsJC2tvblUNashKl1H4gOiaGGnKolxJjl8tFbm6uKjOVMlUpE47H4/j9ftWwSQ79kpkuZcoHkuExat6Jk1hwOp3qM2R0GshaYswMkUaixo7vunS5d5H1wmq1Koms7g30ZO8BXaXLZWVlpNNp1VBHfu+LX/ziJzqYheLiYq6++mp+/etf889//pMvfelLLFiwgP/85z+8//77zJ8/n507d1JZWcmcOXOorq6mqalJNSMOhUIMGzYsIxtSAhGSgTTQ1qWhRiqV4oknngDg0ksv7efR9Mz8+fMpLi6mpqaG//u//+tRAkvTPxidRN21U+VhMpmUhnI0GlX9HoxZpRLA9vv9mEwmpasq2Y2yrkhTUdnbmM1mcnNz8Xq9JBKJjOo1WbsGSuLE4YjxfCP7EjnrZmVl4fV6CYVC+9mD/K7b7VbBCKNsoOyHHA4HXq8XQGUzS3BV9h3itJZrSiBcM/CQygXJcjZmMRvf34+T0+ouJWnMdh7Kc4HeVWs0QxCJlMfjcUwmEy6XS0VmbTYbsVgso7RMMstEFsGYAWCcOLsf9I0lX+JQNjqQu5eLGCdYWeSNBzZxTA/lSXewIQss7DtkGxfW7shz8lrjcx+XCWa0rcFyiL/11ltxOp2ccsopALz22mtcf/31nHTSSbhcLp599llyc3N59NFHmTNnDieffPIBM5kHEx0dHR/rlDPq3Xb/LItjORqN0tHRkeFoFvkCIyKxIM7mSCSiMiPdbjeRSIRgMEh+fr7qFC0bQB2oOvTIQU2kVOx2OwUFBarxklQjSGaoHNRFc1lkeIyH94O9r0g3GfXapTmTrEPytbFpkyCHO20nvYtx7peMciDjsA5kVE0Z3wOpaPqsDbJmz54NQG1tLR0dHYwfPx6AxsZG5awOBAJkZ2cDXXOMBBqMGsziSEqlUhmSGYNlfRqsrFixgvr6evLz8znttNP6ezg9Yjabueiii7j33nv585//rJ3MAxRj1aVRM1eC0dJrxOPxqIocqZKSnxv3rcYMR8EoIebz+VTTMHE6A6oSRwczBxayjzBqekslVnZ2dsaeRM6x8tyB9Lq7n42MMoHdNXfFnvSZd3BgzDruzoGczIfze6tnO41miCIl7VLiI5lcUqouDmUpBZJDvmzGDnTYlwic0SkoGWLdSz6MGaziPOypKdxgcy4ernzcAtsTsuj25Jg26jUP1mju5s2b93vunHPO4Zxzzsl47pFHHumrIR0y5DMsm3E5NPX0mbXZbKoLd/dDmc/no7W1lXg8zp49e1Tnd4vFQnZ2tsoojMfjSrPOOAYpr08kEvj9flXaKA4ho9NTOw8PPeKolQ7cRv1Ct9utGjVKsEoyg+TwLr0C5PAlc0RPgazu2SDynHHdMQYwjdJM3QMY3YOkmkOD8e8rX4ujJRKJKKdvU1OTaqaWl5fH3r171R7k2WefZe7cuUyaNOkT79fQ0MBvfvMbAEpLS7FYLJSVlQEoORdAaTDDPtkXmTtknMb1q/tzmkPHX//6V6BLkmIgZ/f97//+L/feey//+c9/qKysHBIB5KGMOJyl34xo80YiEbWfsdlsZGdnqwCUyCpI8o0xK1quabfbcTqduN3uDFkx2NcwXe9FBi5GGQ15r3tyInfXYDaedY3SYd33L93PPIMtg3Xjxo1cd911JJNJvvWtb3HZZZepn23atIlzzz2XUaNGUVxcrCpQDkcGy/vZl2gns0YzhJHyHZG/MOrtiraQiNzLxqmnDuvG6xm/NmYpG7VzjXIHZrO5x4OZ8Xf15Dw0kff10zimNQMXkSKQg5Zk/RmrF6CrCZc4HRsbG5WcjsPhwGazMXLkSOrq6kgmkzQ2NtLY2IjH48Hj8ZCdnU1BQYFy7BjnBilrBQ7YKE47g/oecTSLDqasKYBq8GcymUgkEqo0VV5vbKLS/WB2oGoJY0WM0clsrJgBVJaz0YbE0aDno75BNP0lG9iYnRyJREilUkpiJSsri6amJvW5b21tpaioiPr6eq677jrOOOMMTjrpJMaMGYPb7SaRSNDS0kJNTQ1lZWVs2LCBTZs2qaa11157Lf/+97956aWXADjqqKNYuXIlABMnTmTbtm1AVwPXeDyunEPd5Z3EeaA59NTV1fHss88C8LWvfa2fR/PxTJo0iZNPPpk33niDhx56iNtvv72/h6Q5CIzazbFYLGM/A2QEMaFrLyFnGvl948/EqWh0SspZS68zgwdjr4buwQT5uTGxqqcEC+OZZ6jw85//nCeeeIKRI0cyb968DCfz1q1b+dnPfpbxnEYjaCezRjPEkQwdKfMR57JRT8q4mH5cFpn8230TZpTJkMZM3aUSgAwngHYsazSDC9Fgl4qI7hqHUg5qNpvJz8+nvb1dNccRB47MFfn5+Rndu0UTUV4jGnVSdWG8hnTvbmtrA/Y1CZXmYjJWTd/RvalOd21lOahLMFIc0pJNaswale+N0jvG+wAZFTHGg53co/shz2if2jYOLcas4EQigdPpVA0foathVk5ODi0tLdTW1jJ8+HAikQixWEw5nHNzc2lubiY7O5tkMklLSwvPP/88zz///Cfef9y4cUybNo2nn35alaxPnDiRDRs20NnZSUFBAZFIhLa2NqxWK+PHj2fXrl0Aqoko7HMyy17J+Jzm0PDAAw+QTCaZO3cuxxxzTH8P5xO59tpreeONN3j44Ye5+eabdS+AQYRICUpfAXEyH6xkU0/Xk/2NlsUYvBglVnraexxuPPjggxQUFKh9vpEtW7bw9ttv8/DDD3PTTTdx+umn7/f78Xg8oxGiNMbUDH30LKjRHCb05ASQTGORzOhJ1qAneQNj2U/3RaenyK+x8Z9GoxncWCwWXC5XRjdt0TgUmQur1UpOTg6pVEo5kGTeMWqzSkaRNJiUDBJjsxwjXq8Xj8dDY2OjOgz6/X4Aksmkek4f8voHY1Md4ICBTLEhKTHuqby0+9fdK2k+aS2CfRrN2rnct4j+dncZG+kVkU6n8Xq9BINBwuEwhYWFNDc3ZzR7tFqtNDU1UVRUhNfrpa2tjVgslnFglUZaEvzKysrCbrezfft2oCsg5fP5VH+KvLw83G43bW1t2Gw2pkyZwp49e1RVhsi3GPcsFotFHbC1k/nQEY1G+cMf/gDAd7/73X4ezcEhpeKVlZX8+c9/5pvf/GZ/D0nzKRE5pQMl2HSnpwrP7jJOmqGBfj+7Kn0AfvzjH/OVr3wl42fTpk3j4osvpri4mIULF7J48eL9Avx33nknP/vZz/psvJqBgz6FaTSHGcbMZsn8k8P/55U16ElzSi/SGs3QpLvGoTib5Wtx0LhcLjwej3Ikd9flNQajRN6nJx07yVYWB7ToOFutVmKxmHJeOxwO7QwaIHQPZPaU5Syv6837dZfOGMj0pHm4fPlyfvGLX5Cfn8/jjz9OTk4OV111FWVlZSxcuJCf/vSn/T3sj8XYfFi0t41IPwifz6dkM/Lz87Hb7WrOaG5uxuFwEAqFcDgceDweYF+1VU9OHQmmOxwO3G43TqdTZSz6fD7VjDQnJwe/3097ezvQ5awWR5OM3WQy4Xa71f5Ia3gfWu677z6ampooLS3l3HPP7e/hHBQ2m40f/OAHfPvb3+buu+/m61//+oDWkdYcGNmHaDSHM0uXLuWpp55S399888188MEHNDQ0cOedd2a89gtf+AI+nw+AsWPH0tzcTGFhYcZrbrrpJq6//nr1fSAQoKSk5BD+DzQDBe1k1mgOU4zOG2Mm88dpYcrvGX/f+LU+gGk0hx9GjUNjtrJRm9eINMsRx5Nku8rvHmgekTnJZrOpMldp3CPIODQDD2OWs6wx4mw+UImycY3p/u9QWX960jy87777eOutt3j11VdZtmwZ8+bNo6CggEceeYSvfOUr1NTUUFxc3N9D/1gkm10yj42NQkVyB7qqE1KpFNFoFL/fT1ZWFu3t7TgcDqLRqMp2TiaTSqbHGIQyNiE26nXb7XYV4JJ7Z2Vl4fF41NwjDZLFqSzZzPK8oEvgDy1GB8bPf/7zQeXsu+qqq7j99tupqKjgT3/6E9dcc01/D0mj0Wg+E0uWLGHJkiXq+2effZYPP/yQxx9/fL/XXnHFFdxxxx2MGTOGyspK1cjXiEiPaA4/9I5Jo9EAOoqv0Wg+H92diMambj05Eo2OIvk90cHrruluzGaW542NdnRDt8GFMch5uNNd87CtrY28vDzsdjvz589n2bJluFwu5s2bB8DcuXN57733OO+88/a71kDTPxTHbzweVw35pD+EOIIlKCUSG/F4XFUpiFZ7LBZTGt7GBsXdKx2MzmYJoDscDlwuF06nU9mbPG+z2dTeR7KojY2L5bU6cHVo+f73v08wGOTYY4/l4osv7u/hfCpcLhc333wzS5Ys4ZZbbuErX/kK2dnZ/T0sjUaj+dzceuutOJ1OTjnlFABee+01brjhBm6++WZuvfVWrrrqKtLpNDfeeKPez2ky0E5mjUaj0Wg0vYo4jrvTXW/XWEEhzqOPC3gZKyyMTiXtXNYMVrprHgaDQbKysgDweDyEQqEen+uJgah/KFnBUqkAmVrsxgaiotssTQMdDgder1cFlYxSK0J3bW7jvNC9KaQ4jGWOkbnDbDbv1zRSnOB6bjm0PPnkkzz22GOYzWbuv//+QemouOaaa3jwwQfZtm0bt956K/fdd19/D0mj0Wg+N5s3b97vuV/96lcA5Obmsnr16r4ekmaQoJ3MGo1Gc5Akk0nmz5/PO++8A7CfbmZubm4/j1CjGdh0lz3oTnfHs1G6p7sjabDKI2gObz5J87C1tZVwOAxAOBzG5/ORlZWV8dyoUaN6vPZA1T80VisYHcvSGBAyZXOSySROp1NlORtf373KQa5v/FrmCHE496TVLV/L90aHtGQy6znm0LJp0yauvvpqoOtzcMIJJ/TziD4bNpuN++67jy984QssXbqUc889lwULFvT3sDQajUaj6RcGX7hYo9Fo+oGWlhZOO+00du/erZ4T3cxvfetbLFu2rB9Hp9EMDcRBJFmHot0sDQal3F47fzSDlSVLlvDWW2+pRyQS4cMPP+Thhx8GICcnh8bGRmKxGKtWrWLmzJnMnDmT//73vwC89dZbzJgxo8drOxwOfD5fxmOgITIWTqcTt9uN2+1Wn3GHw4HT6SQrKwuv15vx//D7/WRnZ5OTk6P+lUd2dnbGw+fz4fV68Xq96lrytcfjwePxKF13yW42NgvUc8yhZ8+ePZxxxhkEAgFOOukkfvKTn/T3kD4Xixcv5n//939Jp9N87Wtfo6mpqb+HpNEcNMlkktmzZ6vvly9fzqxZszjjjDNoaWnpx5FpNJrBiHYyazQazUEQDof5zW9+w5QpUwD2082U7ObuxONxAoFAxkOj0Ry+bNq0ibFjx7JgwQIuueQSQB/oDmduvfVWysrKOOWUU1iwYAEdHR1cf/31nHTSSdx9991885vf5MQTT6SpqYk5c+Ywbty4A2YyD0Yky1ka9bndbqWhLI5oo6O4u/O5+/PGf71er3IoGx3Z4syWezkcjgx5Dc2hZevWrcydO5eamhqmTJnCc889NyQaK/76179m3LhxVFZWcv7552f0DdBoBio6iUaj0fQ2g39F12g0mj6gpKQko+x4MGtkajSa/mPr1q387Gc/47LLLlPPyYHu1VdfZdmyZdx00039OEJNX9KT5uE555zDOeeck/HcI4880ldD6ldEL1lkNIyyOd0ldD7pOkaJHe1AHhi8/PLLXHzxxbS0tDBlyhReeeUVcnJy+ntYvYLX6+X5559nzpw5rFq1iosuuognn3xSN47UDGgkiWbJkiXA/kk0B3IyD7RGsxqNZuCgM5k1GnRmmWZ/li5dyrx589TjxRdfzPh5d43MA5Ul33TTTbS3t6tHVVXVIR+7RqMZuGzZsoW//OUvnHjiibz44ou6KkKj+RjESWxs3me32z/xYbPZVCM/7WDuf6LRKDfddBOnnXYaLS0tzJo1i//+978UFxf399B6lSlTpvDMM89gt9v55z//yUUXXUQymezvYWk0B6SkpIRp06ap7z9NEo3f71ePgaD/r9FoBgbayazRsC+zbOXKlTzxxBPAwZUK6UP/0KW7bubpp5+e8fOedDN7YjBoZGo+H5dffjkrV64E9g9OpdNprrzySubPn68z2jUATJs2jd/97ne88MIL/PSnP6W9vV0f6DQazZDlhRde4Mgjj+Suu+4C4Nprr+XNN98kLy+vn0d2aFi0aBHPPfccdrudZ599ltNOO43W1tb+HpZGA+gkGo1Gc+jRTmaNhs+eWaYP/Yc33XUzNYcfW7duZfny5er77sGpt956i4KCAlatWsW2bduoqanpv8Fq+oXuBzq73c4RRxyBz+dj7NixOJ1OfaDTaDRDjt27d3P22Wdz9tlnU15eTnFxMc8++ywPPPAATqezv4d3SDnjjDN4/vnnycrK4vXXX2fOnDmsX7++v4el0egkGo1Gc8jRmswaDV2ZZRdffDHFxcUsXLiQp59++qAyy2666Sauv/569X0gENCO5iGOZKxCz7qZmsOLe+65h69+9atAzzp2LpeLefPmATB37lzee+89zjvvvP2uo7Xthi5LlixRWocAF1xwAZMmTWLMmDFUVlZSUFBw0Ac6h8PRV8PWaDSaz0Rrayt33nknS5cuJR6PY7Vauf7667nlllvU3vpw4Atf+AKrV6/mrLPOYvv27Rx//PH88Ic/5Ac/+AF+v7+/h6fRHBBJonG5XDz77LP9PRyNRjPI0E5mzWHJ0qVLeeqpp9T3P/jBDzjiiCMAPlVmmT70azSHL++//z5jxoyhs7MT6FnHTjeI1HTn1ltv5aqrriKdTnPjjTdiNpv1gU6j0Qx6Kisreeihh3jggQeUPMSpp57Kb3/7W7XHPtyYNm0a69at45vf/CbPPPMMd9xxB7/73e/48pe/zAUXXMCcOXO0w1kzINBJNBqNprfQTmbNYUlvZZZpNJrDh+7BqbKyMsrKyvj1r38N9Kxj1/25UaNG9XhtXRVx+DB16lRWr16d8Zw+0Gk0msFATU0Nb731FtFolGg0SltbG7t372bt2rVs3LiRdDoNwFFHHcUvf/lLTj/99MO+8WJBQQFPPfUUzz33HLfccgtbt27lj3/8I3/84x8BmDhxIhMmTKCkpITi4mK8Xi8ejwePx4PVasXv93PKKadgtepju0aj0WgGPnq10mjQmWUajeaTMQanQqEQs2bN4otf/CJ79uxh+fLlvPXWW/sFp2bOnMl//vMfzjrrLN566y3uueeeHq+tqyI0Go1GM9A56aST2LVr1wF/fuqpp3LNNddw3nnnYbFY+nBkAxuTycT555/Pueeey8qVK/nHP/7BihUrKC8vZ8eOHezYseNjf/++++7j//2//9dHo9VoNBqN5rOjncwaDTqzTKPRfDqysrLYunUr0BWkWrBgAVlZWfsFp3Jzc3n00UeZM2cOJ5988gEzmTUajUajGejs3Lmzv4cwqDGbzZxyyimccsop/T0UjUaj0WgOCaa01DVpNJrPTTqdJhgM4vV6D/vyQE3PaBvRHAzaTjSfhLYRzSehbUSj0fQGei7RfBLaRjSfhLaRwwftZNZoNBqNRqPRaDQajUaj0Wg0Gs1nxtzfA9BoNBqNRqPRaDQajUaj0Wg0Gs3gRTuZNRqNRqPRaDQajUaj0Wg0Go1G85nRTmaNRqPRaDQajUaj0Wg0Go1Go9F8Zqz9PQCN5nBBxO41A5OB0IRA28jAZiDYCGg7GchoG9EcDAPBTrSNDGy0jWg+iYFgI6DtZCCjbURzMAwEO9E2MrD5tDaincwaTR8RDAbx+/39PQzNAWhvb8fn8/XrGLSNDGwGgo2AtpOBjLYRzcEwEOxE28jARtuI5pMYCDYC2k4GMtpGNAfDQLATbSMDm09rI6Z0Op0+hOPRaDT/P4c6QhcIBCgpKaGqquqQLxRD8V6HQxR3KL5vfXmvgWAjcGjtZCi+b315P20jg/t+h9NcotebgX2vw8FGoO/+nkPtPjAwbAT0ejOQ73U42AgMvfetr+81EOxE28jAvpfOZNZoBigmk6lPNkg+n6/PopFD9V79hbaRwXOv/qQv7GQov2+Hg50MNRvp6/tpG+k9hur7pm2kd+mrv+dQu89AQK83g+de/YVebwbPvfoLbSOD514Hg278p9FoNBqNRqPRaDQajUaj0Wg0ms+MdjJrNBqNRqPRaDQajUaj0Wg0Go3mM6OdzBrNEMHhcPDTn/4Uh8Oh76XpkaH6vmkb6T2G8vum7aR3GMrvm7aR3mOovm/aRnqXvvp7DrX7HC7o9UZzMAzV903bSO8xVN+3gWojuvGfRqPRaDQajUaj0Wg0Go1Go9FoPjM6k1mj0Wg0Go1Go9FoNBqNRqPRaDSfGe1k1mg0Go1Go9FoNBqNRqPRaDQazWdGO5k1Go1Go9FoNBqNRqPRaDQajUbzmdFOZo1mELNx40bmzZvH8ccfz2OPPZbxs02bNjF27FgWLFjAJZdc8pnvEY/HOeecc5g7dy4PP/zwJz7/eamqquLkk0/mhBNO4K677lLPBwIBiouLWbBgAaeeemqv3W+o0xc2An1rJ9pGehdtI5qDYaitN9pGeh89l2gOhqE0l2j7ODQMJRsBbSeHgqFmI6DtpLfRe5J+JK3RaAYtF1xwQXrPnj3pVCqVnj17dsbP/v73v6f/+te/fu57/PWvf00/8MAD6Y6OjvSiRYvS0Wj0Y5//vHzve99Lr1y5Mp1Op9OnnHJKOhAIpNPpdHrNmjXp2267rVfucTjRFzaSTvetnWgb6V20jWgOhqG23mgb6X30XKI5GIbSXKLt49AwlGwkndZ2cigYajaSTms76W30nqT/0JnMGs0g5sEHH2T06NEAmEymjJ9t2bKFv/zlL5x44om8+OKLn/ke69atY968eZjNZqZOncq2bds+9vnPy49+9CPmzZsHQEdHB1arFej6/7z00kuceOKJ/PnPf+6Vex0O9IWNQN/aibaR3kXbiOZgGGrrjbaR3kfPJZqDYSjNJdo+Dg1DyUZA28mhYKjZCGg76W30nqT/sPb3ADQazWenoKAAgB//+Md85StfyfjZtGnTuPjiiykuLmbhwoUsXrwYi8Xyqe8RDAbJysoCwOPxEAqFPvb5z0tubi4ADz30EDNnzsTlcgFQWlrK3XffzXHHHcfixYs566yz1P9fc2D6wkagb+1E20jvom1E28jBMNTWG20jvY+eS7SdHAxDaS7R9nFoGEo2AtpODgVDzUZA20lvo/ck/Wcj2sms0Qwili5dylNPPaW+v/nmm/nggw9oaGjgzjvvzHjtF77wBXw+HwBjx46lubmZwsLCT33PrKwswuEwAOFwWF3zQM/3Bo8//jjLly9n+fLl6rnZs2fjcrkwm83Mnj2b8vJyvcD2QH/YCPS9nWgb+exoG9E2cjAcDuuNtpHPh55LtJ0cDEN9LtH28fkZ6jYC2k4+L4eDjYC2k8+D3pMMIBvpb70OjUbz2XnmmWfSF110Ubqjo2O/n51//vnpbdu2pWOxWHrOnDk9vuZg+Mtf/pL+/e9/n+7s7EyfcsopSk/oQM9/Xt555530woUL05FIJOP566+/Pv3SSy+lOzo60gsXLkw3NTX1yv2GOn1hI+l039qJtpHeRduI5mAYauuNtpHeR88lmoNhKM0l2j4ODUPJRtJpbSeHgqFmI+m0tpPeRu9J+g9TOp1O95+LW6PRfB6mTp2K0+nE4/EA8Nprr3HDDTdw8803U1NTwzXXXEM6nebGG2/ki1/84me6RywW46KLLqK6uporrriCcDjMmWeeydixYzOe/+Y3v9kr/6ezzz6bPXv2kJeXB8DJJ5/Ml7/8Zfx+P5deeimJRIKvfvWrXH311b1yv6FOX9gI9K2daBvpXbSNaA6GobbeaBvpffRcojkYhtJcou3j0DCUbAS0nRwKhpqNgLaT3kbvSfoP7WTWaDQajUaj0Wg0Go1Go9FoNBrNZ8bc3wPQaIYS6XSaQCCAjt1oDoS2Ec3BoO1E80loGxl63HrrrfzlL39hzZo1HH/88Zx88smUl5cDXdqCc+fO5dprrz3o62kb0XwS2kY0Gk1voOcSzSehbeTwQTuZNZpeJBgM4vf7CQaD/T0UzQBF24jmYNB2ovkktI0MLZqamnj44YcBuOOOO3jxxRf5/e9/z1133UVlZSW7du1i9erVeL1e1qxZc1DX1Dai+SS0jWg0GuGCCy5gz549PQY6Pwk9l2g+CW0jhw/ayazRaDQajUaj0fQjd999N1/96lcBiEaj5ObmMmXKFMrKyli/fj1z584FYP78+bzzzjs9XiMejxMIBDIeGo1Go9F8HIlEgvPOO493330X2D/QqdFoNJ8G7WTWaDQajUaj0Wj6iaqqKoLBIJMmTQKgs7NT/SydThMMBsnKygLA4/EQCoV6vM6dd96J3+9Xj5KSkkM/eI1GoxkkBAIBrrzySrxeL2PGjOGJJ57o7yENCOLxON/97ndZuHAhsH+g80C/o4OaGo2mJ7STWaPRaDQajUaj6SfuvPNOfvjDH6rvTSaT+tpsNpOVlUU4HAYgHA7j8/l6vM5NN91Ee3u7elRVVR3agWs0Gs0goaOjg/POO48///nPhEIh9uzZw6WXXsr999/f30Prd7xeLyeeeKL6vnugsyd0UFOj0RwI7WTWaOiKbBcXF7NgwQJOPfXUz6RFpdFoNBqNRvNpef/997n88su56667uOuuu3C5XDQ1NbF161ZKS0uZMWMGq1atAmDVqlXMnDmzx+s4HA58Pl/GQ6PRaDRw77338vrrr+PxeHjllVe44YYbAPje977H6tWr+3l0A4vugc6e0EFNjUZzIKz9PQCNZiCwdetWrrnmGm655RYAzjrrLF588UX27t3LXXfdxbJly/p5hJqBxAUXXMCvfvUr6urq+M53voPb7eaRRx5hzJgx/T00jUYzwAkEAhxxxBFMmDABi8XC7bffrueRw5z3338fgL/85S8ATJ48mbPOOguTycRjjz1GaWkp48eP54QTTmDixInMmzevH0er0Wg0g4vW1lbuvPNOAJYuXcqiRYtYuHAh1dXV/O1vf+OKK65g48aNuFyufh7pwEACnQ0NDZSWlvb4GofDgcPh6NuBaTSaQYF2Mms0wJYtW3jppZdYsWIFV1xxhdKiys3NPaAWFXTpUcXjcfW91qMa2iQSCS688ELlEJDGGB8XjNA2ojnckVLLdDq9X9llT2WYJpMp4zHU0EFNzYG4/PLL1dfdm/vdcccdfTwajUajGRr89re/pb29nalTp6p51mQy8cADD/DGG29QVlbGz3/+c37xi1/070AHCLfccktGoFOj0Wg+DdrJrNEApaWl3H333Rx33HEsXrw4w7FxIC0q6NKj+tnPftYXQ9QMAKQxxiOPPAJwUMEIbSOaw4l0Ok0qlaKzs5OOjg46OzuVtt/BOJgh08lssViwWq3YbLYh43DWQU2NRqPRaPqGjo4OHn74YQBuvPHGDPkHv9/PAw88wHnnncc999zDhRdeyNFHH91fQ+13pJqmtLR0v0CnRqPRHCxak1mjAWbPns2cOXOw2+3Mnj37oLSoQOtRHW58lsYY2kY0Q5V0Ok1nZyeJRIJoNEooFCIYDBIOhwmFQuoRDAZpa2ujra2N1tZW9fi459rb2wmFQoTDYSKRCKFQiHg8/rFBv8GCBDVfffVVHn300YOaR0A32dFoNBqN5tPy8ssvU11dTW5uLueff/5+Pz/33HM5//zzSaVSfP3rX6ejo6MfRqnRaDRDB53JrNEAP/nJT1i8eDGLFi1i3bp1OByOT9SiAq1HdbhzMMEIbSNDl6qqKr761a8Sj8f54he/yEknnbSftu7NN9/MypUrmTZtGg8++GB/D/lzk06n6ejoIJlMkkqllARGKpXa79HR0UFHR4fKbD5QRrPxOZPJhNlsxmw2qwxmu92Ow+FQ93W5XFgslj79f/cms2fPxuVyYTabmT17Nu+995762ScFNa+//nr1fSAQ0I5mjUaj0Wg+hieffBKASy65BKfT2eNrfvvb3/Laa6/x/vvv89vf/pbvfOc7fThCjWZg0v2cc+ONNwL79xZ57bXX+nmkmoGGdjJrNMD111/PpZdeym233cZXv/pVjj76aK1FpflEDqYxhmbocv/993Prrbdy0kknceqpp7JixYoMbd2bb76ZXbt2sXr1am644QbWrFnDnDlzerzWQJdCSKfTJBIJEomEymAWR7P8K49kMqkekhEkzunOzs4Mh7Lx+iKRYbVa1dc2mw2n04nT6SSRSODxeOjs7MTj8QxaR7MOamo0B4fMNRLMMn7dk8Y77JtXZA4xm81YLBbMZvOQkdzRaDQHRzKZ5N///jcAX/7ylw/4uhEjRnDPPffwjW98g5tvvpkzzzyTCRMm9NUwNZoBSfdzznXXXYfX692vt4hG0x3tZNZogOLiYt54442M5w43LSrjAa4nhnozrs+CboxxePOjH/0Iv98PdGn+WSyWDG3d9evXM3fuXADmz5/PO++8c0An80DV7hbnsjjAU6kUiUQiw5EsjmVxQkOX0zwcDhONRonH4ySTyU91X4fDgdvtxu/3q/tLRnRWVhYmkwmPx/Oxmb8DFR3U7MIYeOjuPIT9nYQWi0WvPUMcY1VER0dHr8rjSNDKbrdrO9JoDhNWrlxJW1sbhYWFnHDCCR/72quuuoq//e1vrFy5knPOOYc1a9aoPZ5GczjS/ZxjtXa5Drv3Frniiit6/P2BnkCjOXRoJ7NGc5jT0dFBIpEglUod9O9YLBZsNpvKODzULFmyhOeff56Kigo2b97MUUcdpX5WVlbG1772NZqamsjOzuYvf/kLU6ZMOaTj0Y0xBhcvv/wyP/rRj1T27Q9+8AO+9rWvfe7r5ubmAvDQQw8xc+ZMPvjgA/WzdDpNMBgkKysLAI/HQygUOuC1BqIUQmdnJ9FoVDkC4/G4ciSL09e4gUwmkwQCAYLBoHqtOJpljhHJjJ6CVuJQtFqtuFwuvF4vra2t+P1+CgsL1e8bf8/j8fTaHNRXc8nhGtTsLrVi1KI+WIxZqT39TH5+qNal/lhvDgfEudxdd90YdDAGI4xBCWC/uUSylsVW5HUSIHM6neqw3NtoG9EcDNpO+oZ//vOfQJfu8idVP5nNZv72t79x3HHHsW3bNi6++GKef/75QVs1pekZY0B7sCdPvfTSS/z4xz8mkUjgdrtZtmxZrzau7H7OcblcwL7eIscddxyLFy/mrLPOoqCgYL/fH6gJNIcT8Xic733ve7z88svY7XZmzJjB448/fsjvq53MGs1hSjqd7jHDsPvhvfuBD1Baq2azGYfDccgOa8KXvvQlbrjhBubNm7ffz66++mq+8Y1vcPnll/PMM89w1VVXsWbNmkM6Hs3gIZ1Oc/HFF/PGG28wbdo09uzZw+TJkzn//PPxer2f+/qPP/44y5cvZ/ny5Zx22mnqebPZTFZWFjU1NQCEw2F8Pt8BrzPQpBA6OzsJh8PKMRiNRkkmk0SjUVKpFJFIRGUtR6NR1dgynU4TCARob29Xr5FsZtFwhkzt5e4Zq3a7HafTqQ7f0lxw5MiRhMNhldVqtVpJJpPY7fZe+T/rueTQkUwmicfjGQ2VepJAgMxggxzuJavVqO19IMxmM06nE5vN1uv/D20jvU86nSYWi+0X6BaH8GcJRnTHarXidrvV/aLRqLYRTb+i7eTQk06neeGFF4AuJ/PBMHz4cJYvX878+fP5v//7P2666SbuvvvuQzhKTV9hDGYa1xWRabPZbIOqYqq1tZVLL72UVatWccQRR/Dmm29yySWX8OGHH/bqfYznHKF7b5Hy8vIencwDMYHmcOPGG2/EbDazY8cOTCYTdXV1fXLfwVdnqtFoPjdyyBIHsxzAsrKy8Hg8GY+srKyMh9vtVk4dyXSMRqMZTb1OOOEEpk+fjtvtZsKECUyfPp0f//jHn3m8J554IiNHjtzv+YaGBtavX8+ll14KwAUXXEB5eTl79uz5zPfSfDxGR09Pj89b3nwo7Aegra0N6Nrg5OXl9YpD99133+XRRx/l2WefxW63K43urVu3UlpayowZM1i1ahUAq1atYubMmZ/7nn1BOp0mEokox18kEiGZTCqncSAQUJnJTU1NVFZW0tbWRnt7OxUVFdTV1dHQ0EBNTQ01NTVUV1dTWVlJRUUFe/bsoaKigsrKSqqrq9Vrm5ubaWtro7W1lfr6empqamhra6OlpYW6ujoikQj19fUkk0lisRixWIyFCxdy7LHH9oqd6Lnk0CDBikgkkuFgjsfjBAIB2traVPZ7KBQiFAoRDAZpb2+nubmZhoYGQqEQVqtVrT9OpxO73Y7NZlPyB1JZI/eMRCJEo9FenUu0jfQ+shcRB7PVaiUej6tqCGPlA6CqUeLxuJoHEokEHR0dmEwm7HY7brcbr9eLx+NRe5VUKkUgECCVSqnARSwWI5lMDjobqaqq4uSTT+aEE07grrvuUs8HAgGKi4tZsGABp556aq/dT9P7+xI9l/QNu3btorq6GpvNxkknnXTQv3fssceqisV77rmH1atXH6IRavoKCWYaz6uyrqTTabXHlf3ugRpUGx9y7pEG11KhdaBzUG/PI7t27aKwsJAjjjgCgJNOOomKigrWr1//ma7XE93POcJPfvITVqxYQWdnJ+vWrWPcuHE9/r7D4cDn82U8hgqShCPVnZK493kC471tI+FwmD//+c/84he/UPY+fPjwzzy+T4POZNZoDjPEaSST4MFk80j0V8pPHQ4HdrtdTaiyuErm2RtvvEFnZyelpaU8//zzjBo1CqvVqkqTvvSlL7Fz584e7/Xvf//7oKOcVVVVjBgxQjkXTCYTo0aNorKyUjfi62VEi9foKPo4jKXrVqv1oLVzTSYTb7/9NgDDhg3jtddeY9SoURmv+TT2YzKZeOqppzj//PPxeDy0trbyz3/+s1eyX2+//Xb27t3L6aefDsAdd9yRoa1bWlrK+PHjOeGEE5g4cWKPmfgDkVgspuYH+VpkM0KhkJKsEOdvKpWipaWF1tZWEokELS0tRCIRAoEALS0tB20zADk5Ofh8PtLpNC0tLSrLubW1FZPJRE5OjpqDnnvuObxeL5MmTfrcdqLnkt5HHMxiS1arlVAoRCQSAdgvMzmdTqsMZrvdTmdnp8qaj0Qi2O12srOzcbvdB8w0koOkyLq8+eab2Gy2XplLtI30PsbmoA6Hg9bWVvW9y+UilUoRCoUyNB0PBqkkycvLw2azEQwGVbBD1iRZ01avXo3JZBo0NqIbMfU9vb0v0XNJ3yCyVLNnz1aVDAfLhRdeyKuvvsof//hHvvOd7/Dee+8NmgxXzf5IZQygzrAmkylDxkvWo2g0CqCymj+pZ1FP2Gw2HA5Hxtmnt+eRCRMm0NjYyDvvvMPs2bN57rnnCIVC7Nmzp9eSWrqfc04++WS+/OUv79dbJC8vr1fuNxiQoET3jHgjUpVps9k+1bzR2zaya9cu8vLyuP3223n11VdxuVzceuutfRKI1k5mjeYwQ5xGJpMJl8t1QK0xOayHw+GMA57FYsHr9aqMMpvNpq4pzmaAvXv3kkwmGTlypCp3TyaTuN1unnnmmV77/3SfvHuzUZCmC2Pjt4NFnEdSmibOI6PD2dj4SwIQIoUg9tN9cQU+lf2kUinuvPNO/vWvfzF37lzef/99zj33XDZv3qy0xj4r0rHcSHdt3TvuuONz3aOvkUxB6PpsSUO/zs5O9Tl3Op3s3r2bSCSCw+GgurqacDhMKpWioaGBeDxOY2MjwWAQgPz8fBYsWMDEiRPxer0kEglaW1upq6ujpqaG+vp69u7dSzAYpLW1ldbWVubOnUt9fT0tLS243W4CgQA5OTkEAgGcTqeS7Kmtre0VO5H/rxE9l3x20um0cjCbTCacTicNDQ3Ktsxms8pWPRA5OTkMGzaMaDRKMBgkkUjQ0NCQIdNk1PCWzbxoBiYSCWKxGI2NjdpGBiAi2QVdwe5gMKgaqPr9furq6jLsw+FwZGSxWywWdfg3Nh6Vg59kyI8ePRq/34/VaqW9vZ1QKERRUZHKOuvo6BhUNqIbMfUfdXV1g8ZONPuczCeffPJn+v077riDJ598krVr17JixQoWL17cm8PT9BEdHR1qzusuTSdSGVarFYfDoc6qcj45GIyfZfkcSwKWy+XaT1Kyt+YRv9/Ps88+y4033kgwGGTevHlMmTKlV2WgejrnCN17ixwOpFKpjGx4IKNPiOwpJFgRi8Ww2+3Y7fZP1ai8t2wkmUyye/dupkyZwl133cXGjRtZuHAhW7du7VHepDfRTmaN5jDC6AQ2OpjT6bRyJEmETjIXBWPEt62tjUQiQXZ2NhaLBbfbrSZVcSps376dGTNm4Ha7VdMwyaK+/PLLeyWTuaSkhOrqapVFnU6nqaqq6nFS1nw2jJszKU03NskwNoQTzV1xFovTR+xCnACfhNlsZsOGDcyYMaPHn3+aKO6GDRuora1l7ty5ABx33HGMGDGCjRs3fuaDx1BG3h+LxaKyOeT9i8Vi6nXBYBC3201jYyPhcBi/38+2bdtUNkgwGMThcPCd73yHCy644KA2vc3NzTz99NMsW7aMDz/8kBNOOIGysjISiYTKPBQnZSqVoqOjg82bNzNt2rQer/dp7ETPJb2LrCcmk4msrCzlxJPNeH19PYD6udPpxGKxKKmLUChEa2srsViMyZMnk52dTSAQIBAIqMz67uTk5JCdnQ10OS1lDL01l2gb6V1kLyK67DK/5ObmsnfvXuLxOBaLhby8PHw+30H3fpAAeUNDA9FolNbWVoYPH47b7SYYDCqntMwpHR0dbNq0adDYiG7E9PFI4EF03HtqMttdDx7ICHIfKPNsMNnJ4U46nWblypUALFiw4DNdo7CwkCuvvJKlS5fym9/8RjuZByEdHR2qekqqpKDLPqR3CHQ5nyV5yuFwZEgASp+I7nOInHvkrCxVdmazWSVlRCIR3G53xvrVW/MIdMlJip3H43GGDRum5DM0vYecgYxJODabTSVBpFIpzGazalpuMpmU30MCu8ZeNGJP3b8XestGRo8ejdls5pJLLgHg6KOPZsyYMWzZsuUzz4sHi3YyazSHETI5ShaQPNfc3NxjxNZsNuN2uzMWyFAoRCAQIBKJYLPZyMrKyogECw0NDZSUlKhNu8ViUTqvjz32mDoYfR4KCwtVl9TLL7+cZ599ltLSUl1u2EvIYR1QUX4JNkQiEYLBYI/OHiN2u11lkUkgwohxgZXM587OTsrLyykuLu7xmp8miiuHue3btzNp0iR27tzJrl27mDhx4kFf43BC3h+bzaYa+XUPTknTiGHDhvHBBx+oKH08HqekpIQ33ngDs9nM7373O4499tiDum86nWbr1q28/vrr6tqtra1AZjNScQiIk6Curo4RI0b0eM1PYyd6LuldZK1xOp1K8gK6Mm9kc1xYWMjw4cN7dB6Gw2F27txJNBqloaGBYcOGKSeyBLUk+CEb+NbWVlwul5qnLBYLHR0dVFdX96jpD9pG+hPjwdzYHwK63n+AUaNGfWr9fHEEyPVl/jA6CIzPp9NpampqBpWN6EZM+xBnsaxT3RtIfhak+Wx3Z/Ngs5PDmR07dlBXV4fD4WDOnDmf+TpLlixh6dKlvPzyyx+7lmgGFuLck8QJqagymUx0dnZSX1+fUdGRSCQIBoPq3Ct7CavVmpFUI/Jdcp7tCZH2MpvNav+TlZWl1pzemkegK+NVNHZ//vOfc8oppzB+/PhPdQ1Nz8j5R5JnBJvNRiKRoLq6ej+5jGg0SktLCz6fj/z8fBWMkKBnT+dg2JdR73A4sFgsvWYj+fn5nHrqqbz88succcYZVFRUUF5ezqRJkw76Gp8V3fhPozmMkInNeKgPBAJ0dHRgNpuVhpTb7SY3N5dhw4bh9/tVRqrJZMLr9Srhfmmk0xNz585l9erVqrGJRPiAjMjvwXDdddcxcuRIqqurWbhwYcYCumzZMpYtW8bEiRO56667+NOf/vTp/iiaAyKZgIBy3ESjUdWszahb5nK5cLlcOJ1OlQ0g12hsbKS1tRWLxbJfI0mPx6M2cy6XC4/How7JRvv5rBQVFbFs2TK+9KUvcfTRR3P++efzwAMPHNCBfbgj77c4/btvoJxOpyqvlvd/0qRJbNu2DUB9NmfNmnVQDuZ0Os0rr7zCl7/8ZZYsWUJZWRl+v5+ioiKamppU8y6n06m6f8O+8sRZs2bx7rvvfm47AT2X9CZGB6IEqpxOJ6FQCOhyNpeUlBwwO9Xj8ajggQQbYN9B0efzkZOTQ15eHiNGjFB6m8Zse7GROXPm9MpcAofORro3c1uzZg3HH388J598MuXl5QDcfPPNzJ07l2uvvbZX7jlQ6O74NTqHP412fiqVoq2tjcrKSvbs2aMqICTzNx6PZ+yBjM2fuu9XPg+Heh7RjZj2VViFw2ECgQChUIhYLKb2oxJkkuQHqaAwZjQbv5fXiC2Kw8noWID997WfB73eHFqklH/OnDlqP/pZGDduHPPnzyedTvP3v/+9t4anOYQkk0lCoVBGZZ6cLVKplKqUMZlM5OXlUVBQoJzAnZ2dhEIhGhsbqa6upqqqSv1bWVmpqvekh4TT6cTj8eDxeFRAVKS95B7QtV8Wp3RvziO33HILkydPZvz48VRUVOh55HMiTmFZW6QRJOzLVG9paaG+vp7Ozk7sdjsFBQWMHDmSYcOG4fF4gC7/SHl5OS0tLUBXgo4xeGG32/eTjxS7jcVinHDCCb1mI3/4wx+4++67mTp1Kueccw4PPfRQnzT/M6W1CJRG02sEAgH8fj/t7e0DcuMuGqlut1tlMjc1NRGPxzOcx59EOp2mqamJRCKhNJrFWSCROlmAJSonSCd5m832uTZ+g5WBbiOC6E4BKprf2tqqbMhkMuHxeEilUup543LicrkoLCzEbrdn/MzpdCqHoRzwpEGCbMaM5W2yMTzc6A87SafT6v31eDzU1dWpDXcikSAUCpGdnc2mTZuIRqMUFBTw1ltvMWvWLP75z3+STCY599xzuffee5kxYwaPPPLIx96vpqaGW2+9lbVr1wJdtlFaWqrK5O12O4WFhdhsNoqLi8nKylKBL5/Ph9frxev14nQ6ycrKOuR/n4HGQJ5L2tvbAfB6vbS2thIIBPD5fASDQZqbmxkxYsQnbnJjsRhbtmzBbDYfsGxQ2Lt3L9FoVEkrQFfVTUdHBy6Xq1cafR5Kvv/973P22WerZm4ATz/9NHv37uX+++/n5ptv5oYbbuDJJ5/khhtu4Lzzzjuo7LyBbCOSZSYOvqamJkwmE4WFhezatYvOzk6GDx+u9Ie7k06niUajhMNhwuFwRoABumyvsLAQq9VKLBajra2NdDqN2+3G7/crR0FPmpkDmbPPPps9e/aoRkvSiMnv93PppZeSSCT46le/ytVXX31Q1xvINmJEssqMwQIjYkdARhMv2Y9K6btR2s2IBMs9Ho+qlIF9Gq666dvg4itf+Qr/+Mc/uPXWW/npT3/6ua61bNkyrrnmGqZPn84HH3zQSyMcevT3XCLVl8beD3J+SaVSBINBdR4xm80UFhaSSqVob2/vUSISyAhQAaoHhNVqJZlMEolEMnoL+P1+JRkHqIxm+flA34scavrbRg6EOJe77yNEFkP6iLS2tiopuNzcXBXcTqVSOJ1OcnNzcTqdNDY27nctuZ7ZbFaSkhKksNlsxONxFSgV2ZbBzODZVWk0ms+NMTtRNuNut5t4PK40Vg/msGUymcjJyaGpqUlpNH8cubm5KovZZrP1Wkmj5tBgdDCLPUgTAoCsrCySySSVlZUZmT6ycIqmd0VFBR6Ph9GjR6smkrFYrMeF12KxkJubi8fjUfIqHR0dpFKpw35T1h/Ihrr7v4lEArfbTTQaVVnFra2tFBQUUFtbS35+PtClhV1WVsaECRN6vP7rr7/OT3/6U0KhEHa7XWWWp1IpLBYLRUVF2Gw2bDYbBQUFKktEtM6MMjyHYxBiMCHOGqmWAQ5amx3YzxnUHZlvABW4FKeS8ToDme7N3GQ+zM3NpaysjPXr1ytd+fnz5/POO+/06GQeTE3dZA+SSqWUjqXoHubm5tLU1KSa//l8PrUmRKNRIpGIaixpROYIn8+nmhK3t7cre7Pb7fh8PtXYSeaSwcTh2IhJdNiN+0ZxKotkTiAQIBaLfWKVnDiQjfOSyKuEQiFCoRAulwufz6euDRyWSRGDFaMec2/03rjgggu49tpr2bBhg5bMGKBI0FHmCGkQK9J+xj2HZJHu2rVL7R1Ex10ciN2rH2S+SafTNDQ09LgvaW9vp76+npycHHJzc2lvb6etrY38/Hw1l0hlsGbgII2qjVVUopUfjUYztLuhy37S6TTbt2/fby9bVVWlsps9Ho/qASF2aQx0SsZ0c3MzHo+HYcOGqaB4LBZTzu3BinYyazSHEbIhTyaT6rDvcrlUJDYQCKjS0k/CarVSWFhIKBTKyCwxCth3dHSQTCZpa2tTWljGZoNyyNMMHIwOZtlQ7d27l87OTqVVVltbq15js9koKioiOztbNdXo6OigsbGRmpoawuEwH330ESUlJRQXFxOJRDL0qaRESH7HZDKpTPueso00hw5jJrpsrI1NT6AruzQ7O5vm5mbl/K+urubII4+ktraWPXv2sGjRIlasWMFtt93GI488ktH0L5lM8vvf/55HH30UgOHDh2O321UZ2siRIzM24iUlJTidTsxmM8OHD1fliVJmJg/NwMXo7JWMc9H7/rj53/i+iuO1JyTIacwSMjb0GgxOxO7N3IzZclJhIH87j8ejZEe6M5iauok8gWSoZmVlqeaO+fn5JBIJAoEALS0tquS0O2azWZUqZ2VlYbFYiMfjRCIR1XhJyMrKwuv1Kq1OIKOCRjPwMDaiFmS9kKzE7gkLxoxlOdzLQ/Yd3XE6nXi9XtXEOhqNEo/HVbZ4PB7/1PItmv5j27Zt1NfX43Q6Of744z/39fLz85k9ezZr1qzh//7v//jGN77RC6PU9BbdHcwul4tkMkltbW1G0EnOJ1KJK0HNeDxOLBbLCEDJOVacy0bZHfmZUSrDbrcTDodpaWmhtbWVRCJBbm4u0WiUQCCg1p5EIjHoM1SHEt0dzE6nk0gkoppVG19nNptJJpM0NDQoW3M4HBQWFio5uMbGRhKJBDU1NRn3MSbHiPaySGdIElZlZaXqZSVO6MEc3NROZo3mMMJmsymHnjgNTSYTfr9faex+Gsev2Wz+2HKXzs5OVXIv19UKPQOXRCKhDt+yyDU3NwNdm7NEIsGuXbuAfUGGSCRCWVmZKkW2WCwMHz6cSZMmMXXqVHbv3k0gEKCiooL6+nqKiorIy8vLcDym02mam5sJhUK0t7crfVVN/2HUrhT9UmmYYsy4tNvtRKNRxo8fz4oVK3jvvff4+c9/zpo1a/jwww+54447+MlPfoLZbGb79u38/Oc/Z8uWLQAceeSRxGIxTCYTM2fOVPrwNpuNcePGYbfb1Tw1duxYtcEXZ6I4ogeDE/FwonuwwuhklkoF0Z7zer0HvI5IpiQSCXbs2EFJScl+sihyHYCcnJyM54GMpj0DHWMzt9NOO009L855ObSEw+EDrruDqambyWRSDUOlQiIWi5FIJGhpaaGgoEDJrYjDWIJRxobEIo3Q2tq6n4auBEbF7qRxk/zMuA5pBhapVCojM1ne+7a2NiXHI4jzRhpyGZGKKGkqbAycSmDcWGGVk5ODz+cjlUrR1NSkqnOi0WiGhqZm4CJZzCeccEKvOfTOOOMM7WQeoCQSCeX0k3WkqakJ2KfHHAwGVcKMVEaEw2GSySThcFglwHQPUEtFnfFh1G8XpCJvzJgxVFRUEA6HVYKEXNdkMpFIJHRwcwAhMimyH5HqKdi3lxW5QOPzct5tb2+npqaGjo4OJaVis9kyGtLKeiNrjtlsVs2NzWYzJSUlKqDa2NhIfn7+fpU7gxHtZNZoDiMOJENgdNIYpTQ+L8YmLEa9XdhXoqjpfySzy+iYSSQSquGWw+GgublZLYo5OTkkEgk++OCD/UpTOzo6qK6upqamhvHjxzNp0iRaWlqorq4mFotRUVFBZWUlOTk5FBcX43a7MZlMZGdnq0XcWOqubaTvkA1V97+5fFalo7I4+lpbWxk9ejRlZWXY7XY8Hg+BQIBwOMwdd9zBd7/7Xf71r3+xfft2XC6Xys70er2cfPLJbN26FavVyhlnnMGHH34IwJgxYzjqqKMoKyujs7OTrKwsJkyYQCQSwWQyqWxFaegEgyNT9XBC5gSjxAqgSv/8fj8tLS0qu+dAmEwmRo8eza5du4hEImzfvp2CggJKSkrUtcXBLFrvsM/hJPccDEgzt+effx673Y7L5aKpqYmGhgZKS0uZMWMGTz75JN/61rdYtWoVZ599do/XEf3YwYLMKXLAMspwNTU1kZ2dzahRo9TrRXNTZDB6ClpLIEo0DcVWksmkciSaTCZcLpdeXwYgkl1oDBg4nU5SqRTV1dUZ80s0GqWtrS1jH5JMJlXAPBwOZ8jH9ITIM+Xl5RGLxWhtbSUSiTB8+HAVvMjNzVW2p4PgAx+RjekNqQzhzDPP5JZbbuHVV18lHo8Pqnl2KGOsTHE6napnEHRVrzidTnbt2qXmE5F4lPlB5JRkrkgmkxnnD2k4bbPZVHKDBKdkvZV1rLy8nOrqaiZPnkxTUxPNzc0MGzaMVCpFOBwmKytLVe4Mlr3JUEYC1NC1F5H1xWQykUwmaW5uVmuLrEsdHR0EAoH9AtqCaHF/HHa7nZycHCWnUVFRoRpdB4NBlTAhlTeDdZ+incwazWGGdG83Hs7koP5x+qZGDTuj0/jjEKekSGUYNwODqdHOUEYOTkYds3g8rhzMTqeTuro61eQxOzubnTt3qvJVv9/PmDFjKCoqwul00t7ezvbt26mrq6OsrIzKykomTZrEUUcdRWtrK42NjUQiEVVSNmbMGAoKCjLsSUpdQTsQ+5LuTmajZiXscwjJITsUClFcXExZWRl1dXVMnjyZdevWsWPHDs4880zuuOMObrvtNj766CN13UWLFvGFL3yBBx98EIBLL72Ut99+G4B58+YxceJEVq9eDXR1dR8zZgxVVVVAl0yA1WpVchnG5pGagYPMJZKxbMwSEWciHFwAyefzKSmW5uZmGhsbSaVSjBkzBpPJpLIWjc5qo97uYDnI3X777ezdu5fTTz8dgDvuuIOzzjoLk8nEY489RmlpKePHj+eEE05g4sSJzJs3r59H3DuYTCZVLppIJLDZbOTn59PS0qIcfKFQCJvNpspHu2fKGzPMREqh+3piXOPMZjMul0tnpA5ApJGWYLPZcDgctLe3K8kUyQIzSqiIDFxbW1vGIV8CC8bmf+I4EltJp9PU1tZSW1vL+PHjcTqdxGIxGhoayMvLU80G7Xa7kt/Q+9eBS2dnp8pkXrBgQa9dd/r06QwfPpy6ujpWrVrFwoULe+3ams+OMZnJZrNlnF2ys7PZsmULyWQSp9OpHHqdnZ1qrgiHw4RCIWKxmMpm7r7GyHxhfDgcDpxOp9pjFBYW4vV6SSaTfPjhh5SWlhKLxWhpacHn82Vo9xolKzX9g0isQJc/Yu/everc2dzcrORTRK6pvb1dBR9kHTCZTMTjcaLRaMa+0yipIn4VkVuRiqr6+noARowYgc1mo7a2lpEjR9LZ2UkwGFRBrN5M/Otr9Cqp0RxGSAQVujbqovUom3Kfz6fKm8PhMNFoVB3+updtSOmix+MhOzt7v0mwo6NDHRY8Hg+AWrzF4aDpX6RkTBZOyRaSw5vL5aK6ulo1ZjKZTGzevBnoKkmbOnUqw4cPzzjQ5+TkMHv2bOrq6ti8eTPhcJhNmzbx0UcfMXHiRKZMmUIsFqOmpobW1lbKy8vxer3qwC/BiMGkpzoUMb4HgrwXokUXi8VU2f7evXsZN24c69atY8+ePQCcdtppHHvssbz99tuk02mOO+44vF4v3/ve9wA4/fTTaW1tJZVKMWHCBE499VSeffZZAKZNm8aRRx6psp+lQ7d0CpfAla6IGFgYncg2my0j0Gg2m6mvrycYDKrO3AeD3W6ntLSU7Oxsdu/eTWtrK16vV+n2yvXl/hLINGaxDnR6aub2zjvvZHx/xx139NVw+hQ5fImGrsPhID8/n2AwSCgUysg2gq55yOl0qrLUT3qPjR3bxUEwWOzicCKRSGT0g5BAQENDg9qjymFc9pIWi4XGxkblWALUHrOtre0Tm1JDV4BqzJgxBAIBdu7cSWlpqdLlzM7OxmQyEQgEKCwsVNlsHo9H29AAZevWrTQ1NeF2u5k1a1avXddkMrFw4UIee+wxVq5cqZ3MAwzZC8paIZV1yWQSu91Ofn4+77//Pul0WjUDlDUmEAgouchoNEooFCKVSpFOp7HZbEp72SjZJr0R3G43drud+vp6GhsbGTlyJOl0moqKCgoLC9X52Wq1Eo1Gcblc6tp6Duk/jPKg0hiys7OT5uZm5URuaWlRfoxEIqGCoLKvhX0NI419howJO2azWVVfyvtts9kYPnw4ALW1teTm5uL1emlublZVvS6XS0m7DNZzsHYyazSHCbJ4yqRqMplobm5WB3KPx0MymaSqqopIJPKJ2sniRI5EIrS1tTFq1KiMyKxkR0vEV7KQYHAd/ocq0txG7EGcNI2NjcC+DOZUKoXT6SQcDqvI69ixYznyyCNJJpNUVlaqDZnNZsPj8ZCbm8uwYcMoKiqioqKCHTt2EIlE+PDDD6msrGT27NlMmDCBjz76iEAgoDKGoGvxFYfAYNJTHcrIeyDZW8lkEr/fTywWU3azd+9ejjvuOACl2w1dDXO++MUvAl2bsbvvvpvW1laKi4tZvHgxv/3tbwE4++yz2bFjB8lkkvz8fI499lh27dpFOp1WwS/YJ38gDVy0fQwsjM06rVarWgeysrIIBoNUV1cDMHLkyB4bmkjWqTSAEyejzWZT80pdXR21tbVKGxz2BUCM99eBzMGBZKDJQU2e8/l8eDwelYkqjdcOxrFsRJwOxqwzzcBC9iPQ9bmVIGJjY6NyMHs8Hnbt2qV6ATQ3N6s9idlspqCggGAwyK5duzK0Mx0Oh2psHYvFsFgseL1esrOzSaVSBINBNm3axNFHH00gEGDPnj1MmzaNVCpFfX09I0eOVPrQsu7o5l0DF5HKmDt3bq+vAQsWLFBOZs3AQBJUZO2XvYAxOcrj8aiKOK/XS1VVlZLICIVCKtkmEons17DNeJ+cnByys7NVgo7b7VZ9Q3JycrDZbFRVVVFUVKT047OzswkEAmRnZ6s9syRzDVbn4WDHKA+ZTqdVlnJbW5vKXK6vr1dVtVJ9C13nGGkEG41GD0oeA/btaex2O6lUisrKSlwuF7m5ubS0tCi/jEhIyj7W2Lx4sKGdzBrNYYA4mI16yI2NjSoCZzKZaGhoyJjMbDYbbrdbdT81NjyRbDUpBRKxetEUkm6tgNJvNcpk6INe/2LMMjcuamIDVquV9vZ24vE4NpuN9vZ2mpubMZvNzJgxg2g0yvPPP09tbe0B7+H1epkwYQLTpk1j9OjRVFZWsnXrVgKBAG+99RYLFiwgPz+fQCBAMBhUDiOr1TrkpDLi8Tj/8z//Q1NTE5dffjlf//rX+3tIPSKfb2PjE+Pz8n7E43FycnKor68nlUrhcrmIRqN4vV5MJhNVVVVUVVVlNBzr6Ojg4YcfZt26ddhsNv7f//t//Pe//yWdTnPkkUcybNgw1qxZA8CUKVMAVNPJ3NxcAoGAyoaFTDvRDByMWsgiUSAN1rZv3w50vZ95eXlKlzkSiajmb9LgrSfa2tpU0zdjxQXsy14Um9ABqsHFgYLa0rTp89C9OkYz8DDuD8UJI42AoStY+dFHH9HR0YHb7WbPnj0EAgEsFgsTJ06kvr6etWvXqs+/7CfKysr2084U+YumpiasVivTpk1j7969bNy4kZkzZ9LS0sKOHTsYP3680oaWbGbRaY7FYioDXzOwECdzb0plCHLN9957j3A4/LnnJs3nR6QJxPknGcahUEidP40NQSXwLedfed5isVBTU4PdbmfRokVMmDABgOrqatauXcuePXtobm4mGo0yffp01adGmr1JhZXL5VJNzqFrbpMqUZGrlP2rnj/6HmNvBovFQl1dHYCq3A6HwzQ2NqpgogQyZR2Rn8G+/h+SsSySTPKAfc2v5b0Xe83Pz1e+lMLCQlpbW1XTSofDoZIrBvM555A6mcvLy7nyyiupr6/HYrHwzjvv6AlZo+ljjJIIEpULBAJ0dnaq8g/BZrPh8/nIyspSHXelqYoc9nJycpQeqsvlwul0UlFRQTAYVBOpaBNJWZEs5oDO/uhnjJsqs9msHMzBYFBlEkmpKXRtyJqbm7FYLIwcOZI333wzo7N7Tk4Ofr8fq9VKMpkkGAzS2tpKMBhk/fr1bNy4kdmzZzN9+nSKiopYtWoV4XCYDz/8kCOOOALo2gAaHcuyOA+VDdhTTz3FaaedxtVXX81pp53GZZdd1mMWZ38jkXTZKNlsNpLJpHLsyr/BYJBhw4bx0UcfUV1dzcSJE9m4cSPbt29n1qxZvPvuu9x///1897vfZdiwYWzdupW///3vlJWVYTKZuO666wiFQmzYsAGTycSpp56aobE5cuRINTeJHh50zR1GzTM4sHNK0/eILiqgMg2hS1qnqqpKSSHIftCoUWjEbDbj8Xjw+Xx4vV6l2VtZWanWMqfTSVNTk9pTyrU1g4+Ojo4eezVIs6R4PJ6hpSu6hvK7ksEm8gnSOFGuJX0G5B46w31gYZRxkyq3dDqt1oPs7GyampqUs6axsZFAIKCawr700ktq71JcXIzZbGb9+vVKUsPj8ajriWOwpKQEp9NJdXU169evZ+bMmdTX17N582bGjx9PNBpVY5ISeMl8lCCXyGZoBg6dnZ28+eabQO82/RPGjBlDSUkJVVVVrFmzRktmDACkEjMSiSjtZaleMOrmypohFZyBQEDNEfn5+axevRqbzcaDDz7IxIkT97vP5s2bWbp0KR999BEffPABN9xwAy+++CLt7e04HA6VsexyuYCuxtiFhYVKXzeRSKhKCKvVOqgzVAcrxvOv1WpVyXapVEolVslzgUBANRdOp9Ps3bsX2KeRnEqlVL+ig8Vms1FUVKRkoPx+P1lZWbS0tFBUVEQgEFB+GOlRMZjt5JA6mS+//HJuv/125s+fT0tLiz4AaDR9jGyEZZIUfWV5CB6PB7vdTigUYs+ePRkC992xWq2MGTOG0tJStbhbrVZSqRShUAifz5fhMDSZTBmNoHSznf7D2OjA6GBOJBLqQOd2u6moqFAR2ubmZvW1NGhzuVxMmzaNyZMn4/V6CYVCtLS00NHRoYIU1dXVbNiwgbq6OlavXk1TUxOnnHIKxx57LG+++SaVlZWMGTNGZSAYS5eGGuvWreOqq67CbDYzdepUtm3bxowZMzJeY3SCAAQCgb4epnLiJJNJVQ5sdDLL5zoajTJu3DgsFgvt7e1MnTqVjRs38v7773PJJZewbds2Kioq+M7/x95/x9ldVfv/+PP03qamTTqJJCGQ0BJS6BERpIgilyJFxasIXK6CyEcRlCL3p15BRVSQKgKCgHApAYEkmISQ3tukTZLpM6fN6XN+f8x37bzPyaQAycycyX4+HvPI1HN25uzZ5bXWeq2bby54fJfLxXe/+13MZjN//etfga5mf0OGDGHVqlUAVFZWqqwQ2NMtHFBjM3rZlXKUv78h81cuc3KYz+Vy6rCeSCSUJY9YYMj+I/NOMg1FYAyFQgwcOJDKykoWL15MIpFQARHp1p5IJJSADV17nwQ9NX0Xo02CZLyLhYF8vvj794fMnWg0isvlwufzqYtaJpNRgrW27Oo7dNeDQSobTCYTPp+PtWvXAl3nk1WrVmGxWBg2bBgvv/wy+Xye6upqqqqqmDdvHrFYTL3GTU1Nqkxe6OjooKmpCavVyqxZs1i1ahVLly5lwoQJqjIPYNu2bQwfPlztOYAqe89ms2SzWZ2N2MdYuXIlra2teDweTjjhhEP++CaTqcAyQ4vMfQNpzCfVUMFgkIaGBhKJBH6/n3A4rIKO8rdsTH6Szx133HHdCswAxxxzDL/73e/4/ve/z9KlS1m4cCE/+tGPuPfee2lsbOTkk09myZIlNDY2MmzYMHXPlsQrCZ5Lj5tSFg9LEfHihq59RirooCsgILYZ0FWRFw6HsdlsNDc3E4lElN3F+vXrC862JpMJl8u11z4mjSHdbjdWq5W2tjaam5upq6vD6XQyYMAAwuGwSpqJx+PY7XZCoZA6C3s8HuX1XIrnlcMmMq9evRqbzcaMGTMADrrBi0aj+exICYZRtOro6CCbzRbYZkgDgu3btxcY2UPXpu12u5WPYS6Xo729nWQyycaNG2lvb+fYY4/FbDYTCARoaWmhqalJNeOBPR1YjSb4mt7D2HjR5XKp8vLGxkblXdjQ0KDKzlpbW5U/aiaTwWKxMHnyZI4++mi2bdvGW2+9xebNmwua7kDXej9z5kwuvPBC1qxZw5w5c1i/fj3t7e2cddZZKhNk2bJlVFdXE4vF6OjoUIK3bNj9xbMsGo2qsj0p5Svmvvvu46677urpoe2FiH1yEI7FYuoiLUGESCRCQ0MDY8eOZc2aNdTV1TFu3DjWrFnDK6+8ws0338zrr7/OkiVLVCbZKaecwimnnML8+fPZuHEj0NXc79xzzyWZTLJixQoAVaIo65FkjcEekRkoEA+1mNj7GD33nU6nqoSwWq3s3r1bZatms1ksFgujRo3C5XKxefNm1q1bR3Nz834vXR6Ph5kzZ3L00UerLEWx5HA4HEQiEfx+v8pylYwV3aCr7yLnEUBVPcVisQKPQ6M/r1zijHY+xi7u8jkJ2En5q9/vV/udVEjkcjnVWE7TuxjPh/K3Kpd4t9tNa2srnZ2dar0AqKmp4c033ySfzzNmzBhqa2vVfmM2m2lvb1f7rN/vZ/To0QwaNIhjjjmGYDDISy+9xMKFC3n77bc5++yzWb16tQrs1tbWqmxmmR/Nzc1UVlaq5oSSWCHrmaZvIFYZ06dPP2y2fKeeeipPPfUUc+fOPSyPr/l0OBwOFVzO5/O43W46Ojq6rVwxmUw4HA61zoh9woHOCna7nauuuoqlS5eyYsUKysvLOfPMM3nppZeor69XvWZcLpcKkkHXXme329X+Bf0zoaYvk8lkVEWUzWZT3tvSLFI8uQGVtZxOp1XT13A4rBqRS6bxhg0bDjrRxefzccUVV7Bt2zbWrl1LQ0ODely32008Hsfr9aoGyMZEQOl5VGp8YpG5s7OTcePGccEFF/CLX/xCff6tt97i/PPP55lnnuErX/kKGzduxOv18qUvfYm6ujouueQSfvSjHx3SwWs0mr2RjGURZsTbTszsRZCx2+1s3bpVCdHGTTccDtPe3q4WXLvdzoABAxg/fjxer5d169bR1NTEihUrmDhxovJMzWQybN26lcrKShVVbm1tJRgMAqVtYF/qSDYydB3GxD+qsbFReYXF43E6OjpIJBK0tbUVeCKWl5dTVVXF8uXLeeWVVwpeS5PJpCwz2traaG1t5eWXX2b58uVceumlnHfeebz11ls0NDTw7LPPMn78eOX7LBd9aZBh3FjFk6rU8Xq9SjSNx+P4/f69vuf222/nlltuUR9HIpECT+OewmKxKJsMafooQl5HR4e6UDc1NTF69Ghqa2tVI7/m5mYaGxv561//ygknnMCsWbPI5XLE43HWrFnDk08+qZ7j7LPP5rTTTqOtrY0PPviARCJBIBBQWSSSWe/3+5UQZbPZCixdtNdq38BYIWG1Wsnn80SjUVWSKmKiCEU1NTUsX76c7du3FzyOxWLB7Xbjdrvxer1YrVbS6TT19fXE43HefPNNzjnnHCoqKmhublbl61KC2t7eTllZGW63m2g0qoTtvmhNc6RT7ItoMplobm5WWTtS4dLe3q7OMkaMwnLxucJut6vggrEMNhgMYjable93PB7XzQD7AMZeIYIIxB6Ph9raWmCPBY/JZGLFihXkcjmqqqqYP3++mksdHR2q+kqqYFasWMHy5cvVY1922WX87Gc/4//9v//HRx99pJoBbtu2jeOOO46mpiY1lsbGRoLBILFYjEGDBqlMSZ/PB2ihqK8hDfkOh1WGcMoppwCwaNGifnNG7Y5S6SUiSPJMPB4nm83i9XoLes/InmHs6yHZzbLerFmzRtlaHAh5HAlOOZ3OgqCpPG8xsmaUytqxr3lQavPDaOUm9zGXy6Uq6+Q1E7uTAQMGsGjRIqV/iOXvxIkT+dvf/qbOHaNGjWLSpEkMHz6csrIylaUu9+ht27bx0UcfUVdXx8MPP8zf//53Hn74YWpra1VgJJVKqec12n/JOeiIEZnNZjO333473/ve9/jhD39IKBRi+fLlfOUrX+Hee+/lK1/5CtD1Ys6dO5dly5ZRVVXFOeecw4knnsjZZ599yP8TGo2mCykHkcVPhDyxzZCmbp2dnWzYsAFAlRhv3ry5oJGSkXQ6zfbt29m+fTsDBw5kypQpbNq0icbGRhYvXswxxxxDTU0NO3fuJJVKUV9fr7rAZzIZYrGYet7+VF5YSpusXOSMHretra2kUilMJhMWi4WWlhaSySRtbW2qIZ+Una5Zs6bgolZeXk5ZWVmBDUswGOSUU04hl8sxe/ZstmzZwq9//WtmzJjBrFmzWLFiBdu3b2flypW4XC48Hg/19fWUl5cDe6K10nBQ/DZLfb5MnjyZOXPmMH78eJYtW8Y999yz1/c4HI4+YyklTUoku1387CRD1OfzEY1G2bp1K1OnTuX9999n586dfO5znyMYDLJhwwYWLlzIwoULCx7XbDZz7LHHMnPmTOLxOG+99ZZqHulyuTjrrLOwWCxEIhF1cPd6vSrQIYcsEZi1yNw3SCaTan1xOp00NjYCXedAabgjArPJZOK1115Tr5kEEZqbm5XICF3CY01NDSeffDKnn3468+bNY8OGDbz33nucf/75NDc3k8lklN+uw+FQ5Y3SfCeRSKi1pNTXkP6EUWA2m80q6xi69im5dAnGBjrGi9e+kDJlsVqQPaqpqYlQKITH41FBD7ET0z7NvYfRTg1Q5wnoes1l/ZcGTSaTidbWViwWCytXrlRVVlu3bgVQgQT5GGDMmDGUl5ezcOFCnn32Wa655houueQSPvroI9asWcPUqVNZsmSJCkg1NDQQCARoamqiurqaZDKp5qQEQjR9i1wup/yYD0fTP2Hs2LEEg0Ha29tZvnz5YbHl6AuUSi8RI8ZzqjEQKZmibrdbWRxIQoVUyIVCIdra2nj99de56KKL9vkc//rXvwAYP3487e3tKqN94MCBzJkzB5PJVCBuy7jkY/lcqawh+5oHBzs/+oIVIFCgi8j+4na7C8bWHUOHDuXDDz8E4D/+4z+44447yOfznHfeedx00037tFcxPq9UeEJX4HLo0KHU1tbu8xxjnDciMpcin6pO7PLLL6eiooIHH3yQuro6vvjFL3LllVfy/e9/X33PkCFDOPHEE6mpqcHhcHDuueeybNmyQzVujUZThGSTSTmIlBDLhU3EOrPZrA7f1dXV1NfXs2jRIlpbWzGbzUpU2r17N5s3b2b79u2kUimVqbp7927+7//+j7KyMiwWC21tbcybN4+NGzcSCASorKzEbDarLDMpLxTx4JOY5Pd1ZJOdO3cuL7zwgro490WKfbKTyaQqS/Z4POzcuZNMJqPKTKPRKJlMhnA4zJYtW8hkMlRWVnLUUUcRDAZZs2YNs2fP5p133mHevHl89NFHvP322zz44IP8/e9/Z8aMGQwZMoRUKsU777zDH/7wB9asWYPX61V+WC0tLXR0dNDW1kY2myUSiZDP54nFYupQVtwZvhS59NJLmT17NieddBJf/vKX+/xBXTJCAGV3IWsKdB3SRIhuamrilFNOwWKx0NDQgMvlYtasWUyePJmhQ4cyaNAgxo0bxxlnnMGFF16Iz+fjrbfeYu7cuUpgHjFiBBdccIHyuhQ7Dem4DBAIBAoy8WVsmt7FWNYnF7lkMqmagMqeJN52S5cuJZ/P4/P5iEQifPzxx6xevZqGhoaCssNcLsfWrVt57rnneOqpp5g+fTqhUIhkMkltba0KTIl3s9Dc3Ew0GlWXR/keTd9AAt6wp8pK5ojRh1vsVyKRCK2trbS2ttLS0kJrayttbW3K/gtQzf6cTid+v5/y8nKVxSoVVmIN1dzcTCKRwO12q6BVKpUquX0mlUpxwQUXMG3aNP70pz8d8PN9FWM/BpvNRj6fVw1DfT4fdXV1QFfwateuXWSzWbZu3apeSylz3rp1q2oIunnzZnbu3InH4+H666/ngw8+4I033uDRRx9VtlUdHR1UV1cDXaLH+PHj1fsmk4m2tjbcbjew5+xkvOiLOKDtVvoOy5cvp729HZ/Px/HHH3/YnsdsNjN16lQA5s+ff9iep7dZvHgx06dPL+glUkwqlVJJAcbkgN7E6L0sa7z8K5WTfr9f+fLb7XZMJhOjRo0C4JFHHikIUBlZv349//d//wfA+eefz4svvkgqlWLYsGEqCWfYsGGqgkpEb0m6KhaZS+EMu695cDDzA7qsAAOBgHrrjQpNKLRlMvaZkfuYBJplP5LgZlNTkwoabN68mXw+z5lnnslvf/vbAwrMW7Zs4cILL1QC8/jx43E4HMyZMwdABdeN88Nms6nxybzt7OwsyUrwT7U7Wq1WbrvtNh588EHOPfdcJk+ezIMPPljwPSeeeCINDQ20tbXR2dnJnDlzOProow/JoDWanqDUDuvpdFodhh0OhyozzWaz6pIVCAQKPO2WLFnCrl27sNlsDBw4kLq6OlauXMm2bdtUuXEymWTbtm0sWrSIHTt2YLVaSSaTfPDBB+oy39nZyc6dO/n4449VAy8RqSSK2dHRobKUSnGx7I5SPITJAUc2ULfbzc6dO1U3XbFLEasT8YkaNGgQq1atYvbs2SxbtoyOjg6sVitVVVWMGjWK448/nmnTpuHz+WhoaODRRx9l+/btjBw5koqKCgDa29tZt24d27ZtUxYubW1tJBIJotEo2WyWdDpdELk1enqXKk6nk3/84x8sWrSI73znO709nIPCarUqMdfY4FOyUaWDdyaTobW1lalTpxIIBNR6EY/HqaioYNCgQQDs3LlTiYn5fJ6ysjImT57MV77yFc444ww8Hg/pdJrVq1eTSCSw2+34fD7l1R0MBguCIsYDen+46JfafgOFnbrtdjudnZ3KP7Wjo0NlOJtMJhobG6mrq1OXrMWLF1NfX6/WkGAwiNPpJBAIcOyxx3Lddddx3nnnYbVaWb16NW+99ZbKGFu5ciWDBw9WdgiyjggiJMrlQYQoTe9ibPInlipyJhBxOZvNqsBjJBJRAQzxXpbH6ejooL29nebmZhoaGti1axd1dXXU1tayfv16wuEwfr9fZbV2dHSoC1s4HCYSiaiLHaAqvUqFfQW4Dybw3ZfOJPL6WiwWrFarCjpIUFOqIkR4lr9lmQNy9oSui/jatWsxmUxcfvnlvPfee9x6660MGTIEgEcffZRIJMKgQYM4+uijaWhoACAYDKq+QfF4XJ1dBTmLGDPhjEF7Td/A6McsQuPh4kgQmQ+2l0hfEBCNyD5h7Oki/8q8kGZsXq9X/b1Ho1HGjh1LPB7nhhtuYM6cOQV7wpo1a7jtttvI5XKceuqp+Hw+5s+fj8lkoqamRu05EtSWhKtQKFSQuGE8r5bC3WZf8+Bg5gd0WQGGw2H1VtyItacwivvG17yyshLoWudNJhOpVAqr1UpHR4eqkJOApOw1Igjvjw0bNnDRRRexfPlyfD4fN998M5///Oe555576OzspKqqCofDsddclL3PbDZjtVr3arxeSnzqVfjyyy/n5ptvJp/P8+yzz+610VqtVu69915mzpxJPp9n1qxZnHfeeZ95wBpNT1FKpUKdnZ0FTZckC1XKQaErK3Dt2rXk83mqqqpYt24d7e3t+P1+gsEg77zzDtDVtM3r9VJXV0dbWxt2u52KigqVmbZmzRoGDx6M3W5ny5Yt6mdCoZBaB7Zu3YrVamXIkCFqbFIWKw0R+urv8pNQSg3djBus+EXBntLlRCJBIpGgvb2dzs5OwuGwyl7esmWLCh4EAgEANm7c2K29ynHHHccxxxzD+vXrlcWKIBYbkiGdSCQoKyujvb0du92O1+slnU7jcDjUvyIm6uZdPY8Ih2JLYDzkJBIJdSCSUvSjjjqKfD7Pli1bVIBCsNlsVFdXU1NTw9ChQ5VQnMvliMVitLW1sXPnTtVIadCgQUo4lOYY0LW+OZ3OggaA/UFkLqX9Bgp9mCVTZ/fu3WptkWxmERMbGxuV97o0VSkvL2ft2rUqc11YtmwZr776Ktdccw1XXHEFjz/+OB988AEnnXQSZWVltLa2smrVKkaMGEFtba3a41pbW9WFrqmpicGDB6vS2f6y55Qqxj1H/JClQbFYVsgZQy7ewWBQrQ/JZBKTyaT8uv1+v2q+Jv6F4v0tVk/RaJQhQ4aoRjrhcJjy8nISiYRam/x+v/JAzGQyfcay6EAsXryY6667riDAPWnSpH1+3khfOZMY+0TIXtPc3AxAKBRSYoTb7WbTpk1ks1kaGhpIp9M0NTWRTqdVo+JcLkddXR3l5eX85je/USKgsHv3bn73u98B8N///d9YrVb+/e9/A13ZZcb9ReaGBNBkT5IziAhVxow4Te/z7rvvAnDWWWcd9ueS+SVzqD9SSr1EusMo4Bp9mGFPNZzX6yUWi6lzRU1NDZ2dnWzcuJE77riDyspKhg8fTnt7uzqnjBw5kttuu00lA0yaNEklbw0cOJBIJMKAAQOArrORePRKE2upKJZ1q6+vIfuaBwczP6DvWAEaf+der1fZeUryTCKRoKKiQtlqNTU1EQwGaWhoKNA2AGbPns2SJUuYPHlyt89VW1vLFVdcQVtbG8cccwy33norjzzyiBKpBwwYgMvlwmazEQwGcblcKslCqn3dbndB5nsp8qlF5htuuAHoyhjZVyT3C1/4Al/4whc+7VNoNL3KwRzW+4rXkGRamM1mddHK5/NqbH6/n2g0qryRXS4XW7duxWKxMHbsWJ555hmg6+D0r3/9a6+GTPLxyJEjMZvN7Ny5E5PJRFVVFWazmVwupwTHsrIylbm6detWBg4cqHx2xQNLSpT6+uZ6IErpEGaM7hsFOmmSE4vFiMfjqlmWNEqqra2lpaWFiooKhgwZwksvvVQQ0BgzZgxlZWU0NzezZs0ali1bxrJlyxg5ciTHHHMMJpOJ3bt3Ew6HaWlpoaWlBavVyogRI0in00SjUaxWK6lUSjWY83q9ZLNZbYvQy0jGsogwLperILNDhGaxP5FM41GjRnHssccWZHuZzWYVyFi5cuU+o/Jut5vKykq1lopFgpQ+SsaZrG2l2AyjO0ppv4Gu4JS8hm63m9bWVmWdIa8zdK03u3btwmQyKYFZgkgff/wxABUVFQwbNoxQKER1dTVr165lyZIlPProo9x8882MHz+e1atX88orr3Duuefy2muvsXbtWtxuN4MGDWLXrl0qE9XYaLalpYVQKEQikShZT7v+gAQkJMDZ0dGhBMZUKqWC4SLqyXll0aJF+33d/H4/gwYNYsiQISrwDV3ZsVu2bKGpqYm6ujqGDh2KyWQinU7T3t6uglbxeByHw4HdblfNkvvCZfhg+CzZZX3lTCLBAehax9va2sjlcsrqRs6UxmAWFIq80jdgw4YNVFRU8Le//Y0RI0bs9VwPP/wwyWSSE044gQsuuIC2tjbeeustAM4880xVviy/MwmmO51OlVEmSH+Rg8lm0/QM6XRa+TH3hMh80kknYTKZ2LZtG7t372bgwIGH/Tl7mlLrJSLs72+yeA2R7xcxeMeOHZx44omcdNJJ/OMf/6CpqUk1hjOZTMyaNYubbrqJlpYW1qxZg9lsZuDAgezatYsRI0YQiUSUHUcymaSmpkbdfZ1Op7ICFMGzFKpn9jUPDmZ+9CUsFouq7nY4HFRXV1NXV0ckEmHIkCFs2rQJp9OpEmqM/6ZSKRWIGDp0KNu3b+eKK67gxhtv5Nxzz2XQoEHKyumtt97ij3/8I7FYjDFjxnDppZdy1113kcvlKCsro6ysjM7OTux2O2VlZTidTioqKpSFi2RZBwKBgsbGpbjXfCqR+cc//jGvv/46CxYs4KyzzuLRRx/lu9/97qEem0bTq5RSlqpcxGw2G+3t7QAqs8dqtVJeXq7KukaNGsW8efOArqxTOWjPmDGDN998k7q6OsrKyrjgggtIJpOEw2FaW1v56KOPqK2txWq1MmzYMHK5HPX19WrhCwaDKmLb2trK4MGD8fv97N69m0GDBimzfblA9IfMslI6hBlFZmMTQGmOJV6Z4mMJXQEDad46adIkfvOb3wBw/PHHc/nllzNt2rSC/1tDQwN/+9vfeO6556itrVVd4ceMGcPMmTOZNGkS7733HqtWrWLbtm1UV1cTj8eV364xK80oLJfi5tpfkOxByTz0+XxqLZTqBGkmKY3ePmkJtpSKBYNBlc0IXYcsKWGTigqZs5Ld3l8adpXSfiON1KBLhJFgUS6XIx6PK1HIarWqBrNms5n6+np10dqxY4c6ZC9YsEDtSSaTiQsvvJAvfvGLvP766zzyyCP8+Mc/Zt26daxbt45hw4Zx0kkn8dFHH7F48WKGDBnCyJEjVYZjPp9XFTodHR34fD5gT8fuUg9slhoyV+RCLf7LmUyGVCqlmhUnk0nMZjNlZWUsXbpUzX+fz4fH4ylo1iRWTrLOrFu3TpUsT5w4kYEDBzJ27Fg8Hg9bt25l+/btjBs3jpaWFmXd5fF4iMfjKosN9oiepbDffJbssr5yJpHLs2QJy7ofCoVUtUNlZaXq5yN7kDSzrq+vJ5VKqYq6Bx98sFuBubm5mb///e8A/Nd//ReZTIb777+fRCLB2LFjMZlMrF69WgXdAXU2DQaDqoGk7IUy7v6y9/QHFixYQEdHB1VVVUyYMOGwP5/f72fChAmsXLmS+fPnc/HFFx/25+xpLr30Ui677DL+8pe/cM0115TkfU3WcvlX9v9sNquymEeOHMnmzZsZMmQIW7ZsUecKuc81NzfjdrsZN26cSqB68sknga5gg9y5KyoqqKurY+DAgep85Pf7aWpqUoKhjEEEz1KwQCieBw899BBf/OIXS25+SLKb/N49Hg8VFRU0NzcTj8cZPHgwdXV1BINB0uk0fr9f/StzIBqN0tnZqX7uvvvu47777uv2+T73uc8xZswYHn30UQCmTJlCPB5XDSgDgQAOh4PKykrcbjehUIiysjJsNhsOhwOPx1NgF1mK1kyfWGT+85//zC9/+Uv+9a9/ceyxx3LzzTfzwAMP8K1vfavfZBRpNFBaWapy6JXLm2QLASpal06nVXl7Y2MjVqsVq9VKc3MzXq+XcDhMXV0dVVVVqoOq0edy+vTpBINBNmzYoEqDvF4vHo8HQAna0WiU8vJy5fMbCoVobm6mqqqKTCajFngpTS2FC92+KKVN1vh7lvkiBxy5XIvQK/YIctE7//zz+dnPfgbAd7/7Xb7xjW90+7pVV1dz0003cc011/Dqq6/yxhtvsHr1ajZs2MCGDRs45ZRT+O1vf8ttt91W4MtlFJdlrMbHL+U50h8wm824XC7lgSkCXjKZxOVyKX9MsU2Q6HsulyOfz6tMMKvVqhqhyMdWq1VlOoowLf7x0sTU5XIpIciYlSrrWX+glPYbeV2BgnVCGqjJutLc3Ew+nycUCrFw4UKg6zWTLOSWlhZWrFgBdJWZer1eNm7cyD/+8Q9OOOEEjjrqKDZu3MjTTz/NF7/4RV599VXeeustxo0bxzHHHMOaNWuoq6ujoaGBCRMm0NHRQSaTUVnzsh+JMFQKpan7I5VK8dWvfpXm5mauvvpqvvnNb/b2kA6I7Pmyv8jrIAHNZDJJMplUVQpz584ll8vhdruxWCysXr16r8aNLpeLCRMmMGrUKJLJJHV1dYTDYWXPNH78eKZMmcKQIUPo6OigsbGR7du3M2LECHbv3k1bWxvDhw9XjYmNlIrI3B+yy4z7vZwJoSvIJsKNx+NRHs3Nzc3Ks1sCSsKXvvQlTj755G6f58EHHySVSjFx4kSGDx/OrbfeyqpVq3A4HFx00UVKBKisrCSbzeJ2u3E6nbhcLuWXKWc7aQYoe5mmbyB2f2eeeWaPrfGnnHJKvxaZpZdIqSHrtzGoLP/m83lls1RTU8PatWtV9mg8Hufoo49m69at1NXV8Yc//IFQKMT48eMZMWIETU1NtLW1sXr1apYuXYrJZOLcc8/l5ZdfBvZkR0sGrMPhKKj2MorMxqSfvs7+5kEpzQ+5d0i1t8fjKbBvFL0CuoIDUg0uPWRaW1uprq6mqalJzbFEIqEqs2BPwozD4SCZTLJy5UpsNhsXX3wx69atIx6PEwwGVePhyspKXC4XFRUVuN1uFbgUn2g5+0hzylLjE63Eb7zxBt/97nd5+umnmTJlCgDf+973iEQiPPXUU4dlgBpNbyGH9Xw+z7Jlyxg7duxe3+NwOPD7/QVvvYEscMYO6fl8XjXnEh+ho446isWLFwMwbtw4PvzwQ6ArGvvPf/4TgIsvvphbbrmFtrY2hg4dyuTJkzGbzcybN48333yTYcOGKd+qcDhMfX09DQ0N1NbW0traSjQaZefOnXR0dLB79251IZDLnFw6gZIvYS6lhm7dbVDGS1qxJYWxTCeZTCoB8Otf//oBNzu/388VV1zB008/zcMPP6wyNBcvXlzwuMVNnaSMTDLWZNyluLn2N4wXbckCCQQCKovZ5/PhdrvV62iz2dRF3eFwYLFYVHVFKpUiHo8rC5XW1laV/SoZzTJHfD4fZWVlKuPRKDAf7uY+PUkp7TfGyhnx1JWDuxyKpQGoxWJRZe8jR45kyZIlKmtx27ZtVFZW8sc//pF3332XV199lSeffBKv18vHH3+s7FrWrFnDxx9/zBe/+EUsFgtr1qzhxRdfJJvN4nK5yGQyLF26VHlAi62IZK0KpXCh2x8H09StL9HZ2VkgEMvrI3/r0BVQsVgsDBkyhHnz5pHL5aisrGT37t0sWbKEVCqF3+/nqKOOYsSIEco7cdGiRfztb39jy5YtfP7zn+eSSy7hc5/7HACrV69W55wRI0ZgNpuJxWJqrTL2iYDSbKhz6aWXMnv2bE466SS+/OUv89BDD7FmzZq9Pl8Kge/iyiWpkIE9ZwRJYjKKRZ2dnaox4LXXXtvtc7zyyisFdnDf/OY3WbVqFW63m3POOYe//e1vpFIp5YNps9kIhUJKADCbzQSDQcxms8pmBvr07/VIRETmnrDKEI6E5n+liDHIIOuG/N2mUimVjexwOJRNz4QJE7DZbLS0tDBw4ECOP/54XC4XbW1tzJs3j6eeeopf/vKX/OIXv+C1114D4LzzzmPQoEFKGJTnNfa7MVoddJdEo60AexZJTJFeD/l8nurqanVHFZ/kQCCA3W5XDandbjfl5eXY7XaqqqoYNGgQoVCIqqoqhg0bxtChQxk6dChDhgwhFAqp3hHHHXccp556KosWLVIJeBJAF6sMyV6W/cbtdqssZjmb9IXKo0/DQd/QFi9ezFe+8hUeeOCBgoid3+/ne9/7Hvfffz9f//rXdWRX028opSxVQS7/IjYHAgHq6uqU0T10+SSLn3JtbS0Wi4V4PE4ymWTUqFG8/vrrJJNJZsyYwRNPPIHdbmfz5s3cfffdvPvuu8yePbvgOcWsXkSkZDJJVVUVTU1NDBkyhKamJlVu73Q6lSeSCE66AqLnkINOd5kekm0qnXelKR90NVSRSO4f/vAHvve97+1T+M3n8yxfvpw333yTf/3rX+oSCPCVr3yF3/3ud+zcuROr1Yrdbsdmsym/MrvdrjZTERBLOfOwvyFZyqlUStndVFdXKz9eq9WqLC2Mjd/k8i6vtclkUhmNkm0i/pYdHR2qNF4Oa8ZGYbCnM3h/opT2Gzn4Wq1WZWuQy+XU62mxWFQVzNChQ3n77bcBVDl8ZWUlc+bMwe/389RTTzFs2DD12CeeeCK/+tWv+Na3vsWrr77KjTfeyLvvvsuHH37IunXrmDZtGrFYjK1btxY04jGbzdTW1jJ8+HCVRWK325WnuPGSV6qUmm+3iOBms1m99lKxYrPZVAb8qFGjmDt3LtlslurqatavX09TUxM+n49TTz2VTZs2sWXLFkwmEyNHjmT06NGqGe3y5cvZsGEDV155JTNmzGDAgAG8//77LF++nDFjxhAIBAiFQrS0tNDe3o7b7SYSiSibHxmTUCoBzf6QXWYU+Y37vLFEWKo7igPi8hpms1kGDBiwl0VCPp/n8ccf59577wVg+PDhah2SqomlS5cCXdnSfr9fXfSdTicDBgxQdj4Oh0MlbEDX717fdfsOkUiEjz76COjKZO4pJNlu8eLFpNNpbZ/SR5CGnOKbDl13Yr/fTyQSUQ3VWltbmTBhAkuXLqWuro7jjz+edevW0d7eTiwWY+zYscpTedeuXeqcW15ezrRp09TrL3drWRPa29sZMGBAQXVmJpPp9q5bKvtNf8FsNiurLLlXeDweBg4cyLZt20in01RVVbFz505CoRCNjY2UlZXR0NCAy+VixIgRbN++nVwux5AhQ1T1rzGAIPcdi8VSYB04ZMgQdf8uLy9XiToej4fKykp1rq6srCywpCvl/lUHfUs7/vjju/UIBLj77ru5++67D9mgNJq+QCmVCskFWjY1EZldLhcrV64Eug7ZixYtArq8ghYsWAB0ZdC9+eabQFdk/ic/+Qlms5l77rlHHZpGjRrFE088waJFi3juuedYunQpu3btIhqNqnJX6OqYms/nsdvtWK1WIpGIagomohHsKbeWxVlvtD2DzBPjBclsNqvXWYIAfr+fRCJBfX09Xq+X+vp6qqqqaG1t5bHHHmPJkiVceumlHHfccYRCIaLRKJs2bWLBggW88847qoMudG2Qo0aNorq6mmXLlimP3VAohMViwe/343Q61VuxyKwvc30LEZrT6TTJZBK3201VVRWRSIRoNEo6ncZisVBVVaVeSylxFjsF2BPUkMah4rMszyHZZEaBWTwx++OcKKX9Rg7DZrO5wPZAgpwVFRXq0u9wOMjn8wwaNIjly5cDexrJfve73y0QmIUZM2Zw3XXX8eijj/LYY49x9913qyY8r776KtAlFFVXV9Pe3k5tbS0VFRUEg0G2bdvGsGHDcDgcyrpDgpmlLjKXkm+3BB0ECSYVi82BQID29nZaW1txOBykUinlYTlt2jT+8Ic/FFharFmzBoDTTz+d66+/ntdee426ujoee+wxrr/+eo466ig2bdpEXV0d69at4+STT8bv99PS0kIsFlNZbMaLoaCrZnoWqVrK5/OqvFyqD2w2G+l0WonMEjiRRpESwARURY2wYcMG7r33XubOnQugKj5sNht+v181GrbZbPh8PlVxIyXLAwYMwOFwEAqFcLlc2O12vF4vJpMJm82mxcQ+xr/+9S9yuRyjR4/udj85XIwZM4ZQKERbWxvLly/nxBNP7LHn1uwf8d+Vil6xdotEIiQSCeW/29raysSJE1mxYgXbtm1j5MiROJ1OFi1aRH19veojMX78eM4991xGjhy5V4KDrFHS/0GeSxqpA6ofEaCSLOR9Tc9isVjweDzK/q9YaM7n86p5tPx9S7O/bDbL0KFDcblcxGIxZdFmDCjAnkCH2CrJXmcymSgrK8Pr9eJyuZQvs/SzCgQCOJ1O1bvCZDKVbBYzfMrGfxqNpm8iZYey2IkQZDab8Xq9ykv5qKOOUpf1yspKGhsbCQQCqovuGWecwciRI/d6/BNPPLHgIJVIJNi8eTMvvfQSf/7zn1UjQJPJhNfrpaOjg1AoRDqdxuPxqOxHEcTNZrMWmXsQYxMMi8VCLpfD5/MRDofx+/2qvFkavEWjUfx+v2rSVF1dTXNzM8uWLVPNeLrDarUWlBnl83mVtSaXN6fTSTAYxOPxEAwG1efsdrvy+QZ0pnsfQw49EsxKJpN4PB51OGprayObzdLU1ERZWRm5XI5wOHxQjy1BB8k0AdR8NJlMeDyeko3o9xeM+4vJZFLeqEZR0e12k0wmVVkidDXQkvJEsW8677zz9vk8N910E8uWLWPx4sXcc8893H///WQyGebOncvKlSvZvXs3u3fvprq6mkAgQHNzs1pvEokEDodDlRv2lwtdKfl2S8DBarWq8mHZ761Wq1oTBgwYoMrNR48erc4lZ511Fr/5zW9Ip9OMGzeOs88+m87OThYtWsTChQt57733qK2t5Y477uCVV15h7dq1PPvss/z3f/83Y8aMoa6ujm3btnHyySer/UR846HQIsM4nzU9h4i2Yqfm9XpJpVJEo1EcDgfpdHov2wypSoCuYKTFYmH9+vVcd911DBkyhDVr1rBkyRL1+KFQCL/fj8fjUYFth8OB2+1WlkvBYBCv14vf76eyslIFOaWySv7OLBZLv+oD0F+QNeOLX/xijz6vyWRiypQpvPHGGyxYsECLzH0IEZlzuRx+v59kMkkul1MN27LZLFVVVTQ2NhIOhznhhBNYtmwZu3fvxuVycckll9DY2MjHH39MOBxm8eLFLF68GJvNRk1NDVVVVdhsNnbu3KmqbGpqatTaY7fbC6rvioOacibR59neQYTmWCymGhK73W6CwSDt7e2qT5XoGKlUismTJ7NlyxZaWlpUsNzlcuFyuQ74fHJ/8fl8ygO8oqJC9aKQrPuKigqSyaTa71wuV0nPES0yazT9AMkGKfa1k0wnsc0Q/6Ht27eTz+cZNWoUa9euBbrKzCTz4/Of//xBPa804JkwYQLBYJAHHnhAbZ6JREKVpBR7HhaPVdMzGC9HEokVkdnlcpFKpZQtht/vx2w2E4lEVBYzdAkdUk5mLMuW0nSv14vX61Ubo2S1S8mp3W5XXlcej4fy8nLVXdfn8ykbDeg6KJbyBttfEa9cieCLRYLD4VBWOZlMRs0Z2NMQQ7JAiu0yZF4Y52hxVYaeC30LWcdlfTc2P5F/RdSTrxkvV5It0h02m42HHnqI6667jrVr1/LNb36TMWPGMHnyZK677jo6Ozv5+9//rnyf7XY7u3btYsSIEUSjUeXrbfSAL/X5czBN3SQrprcxiszyvswBh8OhhGen00lDQwOA6tw+YsQIFi1aRDqdZsKECfz4xz9W8+jUU09l7dq1/PKXv2Tbtm088MAD/OhHP+Khhx6itbWV+fPnM2XKFEwmE+FwmPb2diUyGz2sjeXtxoZMmp7FbrerkmNpBppMJnE6nWo+wJ7XRuxOBgwYQH19PcOGDWPLli28//77BY/rdrspKyvD5XKpjGSXy4XX61U2XT6fT2WUiVemz+fD4/FgsVjUx5JRZgx+avoGuVxOeeR+6Utf6vHnnzp1Km+88Qbz58/ne9/7Xo8/v6Z75EyZTqfJ5XIqI1WyVNvb2zGbzUpobmxs5JRTTmH16tW0tLTw/vvvM2jQIC6++GLy+Txr1qxh7dq1RKNRamtrqa2tLXiuc845h/Xr1wNQXl6u7kayb0nFnnxO1rX+WJVXKoh1RiwWUw3vy8vLVRNAScAbMGAA27dvp7m5mUmTJlFVVUV9fb2qqkkkEsRiMaV3GJP9JKFLLC+sVit+v1+JzcFgUAVbBw8erCygYI9neCmjRWaNph9gzFAVjAKN3W5X3bqrqqrYtWsXAGPHjuWtt94C4JhjjmHOnDkAbNmyhXA4TDqdZuvWrezYsYNMJsPgwYNVQ4Rixo8fD+zxgzb6HMolrrvGB/rQ3nMYOxp7vV5isRiZTEZd2ILBIBaLBYvFQjQaxWw243K5iEajWCwWAoEA0WhU+ZwaM9LlNRUxWQRleU6bzaYiuE6nE5/PpzKYJRPWbrfj8/lU87i+IJZousfoeyciM1DQrMJmsykhWf4Vr7JPig5K9Q26y8YpXsPl7zaTyagS0ubmZux2O6lUSpXFr169mmOOOWafzxUKhVTDnRdeeIENGzawYcMG/va3v3HmmWfyi1/8gv/6r/9i165djBkzRlVcGNcN415T6iJiKfl2G4VbmSfF5wCr1aoCUcFgkC1btgBdTYn/+Mc/AnDZZZep9ULsT44++mjuvvtufvSjH7Fp0yaee+45zjrrLF588UXef/99pkyZwpAhQ9ixYwerV69m2rRpqjJHMqjFsxv2ZDXrs0jPI/6V0hDa7XYru4zuMJ4bpQx+0KBBqvTZZrMpiwu5zLvdbuW5LA2ZxCJDvsdmsykfVZPJhN/vJxAIqMCErqLpmyxcuJCmpiaCwSAzZszo8ecXX16xH9T0HaSaSc6nsgfIXSYcDmOxWBg4cCC7d+9m69atTJgwgVgsxrJly9i1axe7du3CarVSXV3NKaecAqBsEsTix+v1smnTJpXdOnz4cJqamlSfIkAlZUDXmicitF5Tehe5Z6ZSKZLJpGo03tLSooKRmUyGUaNGsWnTJjZt2sS2bdsoKyujo6NDveaw59xrtVrVudPY1F4CnVJZLnuKNBWUqk2gwDqylNEis0bTDzBeoo1da+Vylkwm1aHd+H4sFlOlgBs3buRLX/oS//73v/n973/P73//+26fy+VyMWvWLL7whS9w3HHH4fF4WLlyJT//+c+BPVlsxsxEGZN8zbj46otdzyEHGrnMySXNbDarg5Z4RElWckdHB06nE7/fT0dHhyppFa9TEZktFovKXJTNWbKY5fPyuNJoRy58Ho9H+R5KtNfpdOq50YfpLkM0lUrR3NysGntVVFTQ2dlJW1sb6XRaNcEwBiGk4V93mEwmlY2SSCQwmUz9ruFfKVP8uomgKBkhLS0tQNe639TUxFFHHcXq1aupqalh06ZN3Hnnnfz5z39WDUaLSaVSrFixgoEDB3L++eezdOlSZbXx7rvvctttt3HUUUcpr3egoLGp8YAPpZ81VEq+3d1ZUMjnRNS12+1qjpSVlalGbGazWVXVjBkzhmQyyS9/+UtefvllMpkMxxxzDFdffTU33XQT99xzD2+99Rbjx49XVTizZ89m0qRJ7NixgzVr1jBkyBAGDx7MunXr2L17N5WVlXR2dpLNZlWmdanPjVJGBJhsNqu8MmGPrZfYM0nDJslErKioUH1BJMtYKqrcbrfKRJazjN/vx2KxEAwGlV2GyWSiurqayspK2tralMVGKBRSlYC60V/f5ZVXXgHg3HPP7ZWsv5NOOgmTycSWLVtoaGigurq6x8eg6R6TyaS8kTs7O3G5XMqDV/zZpSnbsGHD2LZtG1u2bMHv9/P5z3+eXbt2sWHDBjo6Oti5c2dBr5nucDqdDB06VNlODh06tMBWQQRusY2C0j+T9Aekf0dnZ6ey+IxEImQyGSorK9m1axfZbJZx48ZRV1dHJBJR1Vcmk4nBgwczePBgoKsaS/avYuTO43K51H05GAxitVoLetX0p74z+ram0fQDjJdqo9+uHLrC4TBHHXUUALW1tZx00kkAzJ8/n+nTp7NgwQL++te/cvHFF/Nf//VfPPfccyrbedCgQQwfPhyHw6Euaa+88oo63BkRAdHhcODxeNTB3+v1YrPZlOAoDb+0YNSzyO9bStwrKiqor69XAo1kBEUiEVwuF9lslkQiQUdHB4lEgkQiofyi5FJoLAkSewsRD+U1l/eNzf2kdNVqteJ2u3E4HCoTen/Co6ZvIJ5hIuQZBWaHw0F5ebkS+CorK0kkEkSjUeXjLBliUiommWWSBSBIQwxpHuh2u/W60YsYXxvjfiP/ZrNZdu/ezdFHH828efNYsWIFxx9/PAsXLlRZgiIYrV27lvPOO4+vfe1rnHzyyUrYWb9+PQsWLGDevHn7PLAPHDgQl8vFpk2bgC57JqMdD+yx65A1SK8pvYMx8A2FIrN49ZtMJhX8rKurA/ZUR91xxx28++676vFWrlzJf//3fzNjxgzOPvtsZs+ezcMPP8w111zDm2++yQcffEBZWRmf+9znWLduHbNnz2bq1KmqZLqtrQ2fz0cikVC9IkSA0PQ8xtJ2s9msssdCoRCtra1UVFSwa9cuysrKCprDxmIx7Ha7Or8Aai+RM4WIy5KNaCxB9vv9jBo1CqvVqs67wWCQ8vJy1VhQhGtN30T8mHvDKgO6rAjHjRvH6tWrWbBgARdccEGvjEPTPWJ709HRQTabVfY30rdBhOZ0Os2oUaPYvn07kUiEVatW4XA4mDhxIiaTiY6ODuLxOB0dHQWeuWLvJ+cLOdcOHjxYvV9RUaHOMT6fT61Xcm7S9C7GYEQ2myWdTjNgwABlMSqWKh0dHQwaNIixY8cCeywiw+EwjY2NBVV+Ho8Hp9OpEi+M1o+ijxjPpFKZ09/OqfqmptH0A4oztURkjsfjKrunublZdUhdtWoVY8aMYcOGDcyZM4cTTzyRRYsW8dJLLwFdUd1jjjkGk8mkxKFwOExlZSVVVVVEo1Ha2tqUd5FE58rLy3E4HFRXV2O32ykrK1MNwaQ7t1EE0If3nsWYGSq+hwMGDKC1tbWg/KuiooJMJkMmk1HZQJlMhkQiocqKpHTZKDIbBWV535jJLN7MEskVYVGEylLLGFq+fDnf/e53yWQy3HDDDVx55ZW8/PLL3HvvvVRUVPD0008TCoW47rrr2LhxI2eddRZ33nlnbw/7M5PP59Uh2263k8vlaGlpKRCY4/G4OrRJNlogEMBsNpNMJkmlUqppnDR+ikQiWK1WFaCSQ7jL5SKRSKighy5d7j2MNim5XE51wna73eRyOfU6Dh8+nMrKSpqamrDZbCr7sKamhu3bt1NVVUVLSwttbW08/PDDPPzww90+X0VFBcceeyxVVVXKN2/AgAFMmjSJ++67j1gspqov5OAue434E0sgQ9NzGPtEiB+lsQkSdAmCYpchl/ChQ4eycuVKACZMmMBLL73Eu+++i81m49e//jVjxozh+eef54knnmDu3LmsX7+esWPHsnv3bv76179y6qmnsnLlSv7xj38wceJEBg8ezM6dO/n3v//NyJEj8Xq9ZDIZ4vE4Xq9XCZsSANH0DtLor7Ozk2AwSFNTkxKLoSuo1NLSgtlsVh6YEoA0+l/KZV2qpKxWKwMGDMDhcKizhdfrZfjw4Spjbffu3erz5eXlwJ4gan+79Pcn1q1bx7p167BarZxzzjm9No6pU6eyevVq5s+fr0XmPohURoo4HAqF1FlF7hxtbW10dHQwcOBA0uk0zc3NpFIpFXwyPpbX6+32eUwmk2p4LgHLUCikgmbys7LX6ftv38Fqtap7RjqdVvvG7t27VYCytbW1IEGmGGkca7PZiMfjBb2o5F5TXKG7r340/QUtMms0/QARY/L5PE6nU/kxp9NpKioqCIfDtLW1MWjQIMLhMOFwWJV57Ny5k0gkwsiRI+no6KChoYGWlhZVxmpESjqsViuVlZVUVFQAe3wvPR6PauI2aNAg3G63OuDLgd/YCK4/Lqp9HREFc7kcyWRSlY9KB2YR/0SQ9ng8ZLNZUqmUyvqSzFKjl6Vkpov4ZxSZxedZ5qnYZkhGaqlmL//sZz/jmWeeYciQIUyfPp0rr7yS//3f/2XevHm88847PPLII0yfPp3Kykoee+wxvva1r7Fz505VWlWqGLO8rFYrLS0tKlrv9XrZsmVLQVNII3LQ9ng8qvGbBC6SySTZbFatUeKlKQdAKXtMpVIH1dFZc3iQzu3pdBqv10sikVBe2w6Hg2QyydatWxk3bhwff/wxsVhMXd46Ojqorq5WHs3y81IZYbPZVJBBMuGLS1XXrVunGn0ZA5ihUAir1YrP51NZJrLP6Oz33sGY3VMsMlutVuWRLOeN6upq3nzzTQBGjRrF17/+dQBuvPFGpk+fDsANN9zAOeecww9+8AO2bNlCe3s7o0ePpr29nTfffJOTTjqJnTt3smLFCqxWK0cddRTpdJra2lrVaDaVSqn9SLJhRWzWAayeR4LMcoGXoJSUE8OekvNYLIbb7Safz5PNZlVFlbGayul0EgqFcDgc6ud9Ph9Dhw5V3qzbtm1TZxiPx0N1dTUmk0lZgYEWgvoyzzzzDADnnHMOgUCg18YxZcoU/vznP2tf5j6M9AeRSrrKykoaGhqUZZKcSTKZDCaTSVm9STBdrAGNAS2jHVd395/Kykr1nGazWe07gEq60fQdZK2XhBaxkRRrjPLycjo7O9U9Gbrurm63G4/HQy6XUxW/gPIBl7uK8Sxk1EJK7d77SdAzXKPpB8hFKZVKKVFPMsySySRDhw5l27ZtRKNRampqcLlc1NfXKzE4HA4Tj8cJBAL4fD7luWvcSMVHSjZcaeQlWWJS6u7z+aioqMDr9VJTU4PT6aS8vLzA+F6yXTU9j2SGSvaoCM6wp7TM6/Wq11qyniUSK4cmY2YaoA5bRjG5GNmMjQ3DJKu5FHn44YfVQdJkMtHe3k55eTl2u50ZM2bwyCOP4HK5lDgybdo0PvroIy666KK9HiuVShUIs+IV1xcxNhRNp9Nq3D6fj+3bt5PL5VRzFZvNRjabJZlMqpLF9vZ21YhULHa8Xi+hUIhEIkE8HieTydDR0UFHRwfBYBCv16uE5kwmg8Ph0GJQLyF7jWQyizjk9XrVxSydTlNfX8+YMWOora0lHA5TXV2tRMWBAweqcneZT/tCurEb1xuHw0FZWZmqlCgrK8PtdlNZWanWMQlk6YBmzyNBbyOyz4iAJ6+7y+VSFhnijThkyBDee+89wuEwI0eO5LLLLit4rNGjR/PUU09xxx138MEHH7BmzRpGjRpFMplk7ty5VFZWUlZWRiqVYu3atXg8HpU9LyWwYrGSyWRUDwEtMvceEgCX1yMUChEOh5WvckdHB1arFb/fX3DZN5afS6DL+DcfCoUYPHiwamgse4/8TFlZGX6/X81ZEQnkLK3pe+TzeSUyX3755b06lqlTpwKwaNEiJVpq+hZS4SCicTKZVMKynGUkw1nuzbKeHOxdVRKtpApP9jebzUZlZWVBYo7uOdM3kWb10kgWYMCAAUojkaZ9xdnssmdAV8BSEh0kIcf4+EfS3UWvhBpNP0HEHED5C0rX1Fwux5AhQ2hqaiKRSFBWVobL5aKlpUVtjCLuyAYs5YKCbLjFi6N46Bn9mMvKyqioqMDlclFRUaEyEcVPVW+wvYvR+1gEY2Npj7Ghm4hIIhxJBlh3GIVmYzNAm82mOj3LvJJASClvtpWVlQD8v//3//ja175GNBpVhw+Px0MsFuv2c91x3333cdddd/XMwD8DEnyArjWnra0N6Co1bm1tVcLj0KFD97psSWONWCxGPB4vyGBuaWlRWfXl5eXkcjkikQipVIr29nby+Tw+n09ZAUmpo6bnMWYdJpNJQqGQanbj8/lUcFICCwMGDMDr9bJz504VhIlEIspGQwJexnXH6N9vtF6QA7v4QZvNZsrLywkGg6oiQ/YiyYbW2Yi9h/GCJa+vnFNkL/D5fGodkUZJY8aM4e233wbgyiuv7Fa48Xq9/OpXv+J3v/sdjz32GJs3b2bgwIH4fD6amppoampS1VWxWIxEIsGQIUNobW1VNlCpVEpluRmbmWp6Hgk6i8e/1WolFAqRSqXo6OhQzbrkHOLxeEilUnu9ZmazGZ/PRygUUlZfsocIIgR4PJ4Cz3CxDZOxaPom8+fPZ8uWLXi93l7zYxY+97nPEQgECIfDrFy5kkmTJvXqeDTdY/TezefzJJNJysvLSSQSyvrRYrHg9Xpxu917ZS8XP5a8GROxTCaTCrSbTCb8fn9B4hbQrxq79Uek2lJsITs7O/H7/fj9fuXJbWx6LwFq6QliTNCCPfft/mqJsT+0yKzR9BNkAxW/J2m6J5f9fD5PRUUF6XRaddEWDyIRw8T/Dii4cMnmuS/E/sDr9eLz+dRlwOfzKYFZmv9JR29N72M2m3E4HMAeMUAOVcYyMfleEZyN3weFBy7jY8v8k+wg+f5SDTQ8+OCDPP/88+rjO+64g6VLl9LY2Mh9991HW1sb8XgcgHg8jt/vx+v1Fnxu6NCh3T727bffzi233KI+jkQi1NTUHMb/zaej2CJFDlJOp1N5Ww4aNKhbUag4CyCbzRKPx4nFYsRiMeXt3NbWxuDBg6moqCAajRKJRJR9hghCxqCIpucxZh2mUinKy8uVUCiHcYvFQjKZJJfLKR/U9vZ2TCYTPp+PZDKpMtOlmSjsCVxKJqGsIXJ5gz1ZhmKnEgwGqaqqUnuPzBWdxdw7FDf7M74vf7vGYFXx1zweDzt27ADguOOO2+fzWCwWbrzxRo455hjuuusudu/eze7du5kwYYIKZsTjcYYNGwZAY2MjgwYNoqmpSXkyi8DcnZig6VmMDZDkMu9yuVTGeSaTUdnKQMG6YOz90NnZSSaTUZ7f0LVmybnUKPKI/ZeckwEVoNL0TZ5++mkALr744oJ7S29gNps5+eSTefvtt5k/f74WmfswZrMZj8ejMlUlY7mysrLgHCJ2CZ/m8aXvjNvtVk0GjeuKznTv+5jNZtxut7JXkXOnVGN3d76BPQF0OHIsMfaHnukaTT/CZDKpTrpWqxW3200ymVSZIdlsVjXmkyxCKS2WTVb8iOTgbmyoIm/Gxm7ipSvROpfLpRpzifgsF34tMPdd5HUpjrBLVLbYIuNABzDZlI1ioMyRUt10b7zxRm688Ub18YsvvsiqVavUhUcyOqVke/LkyUyePJnXX3+d8847j3nz5vE///M/3T62lPiWCvL6yetsFGgONnPUarUSCAQIBALk83lisZj6/dXV1TFq1CglRqbTaRKJhMou0xmHvYsx00/En0AgQCqVIhKJqGCjxWJRmYey9wQCAdUY8rNmC3o8HkKhkGr6JwKzzmLuXYzN/owd1I3/yl4jXtzSaBZg9erVBINBYrEYtbW1jBgxYr/Pd/rpp3Psscfym9/8hldffZVVq1bh8Xi47LLLmDNnDtu2bWP06NEkk0kSiQQWi4VUKqX2sVISmbtrOCusWLGCCy+8kKFDhzJ48GBlKVBqWCwWZc8llQ7SIEmajBqDXLIfSMWVIDZfPp8Ph8OhfJwluFBswyNnaC0E9V2SyaQK9l9xxRW9PJoupkyZwttvv82CBQv4zne+09vD0ewHEZqlr4QxeG1sTF8c2DbuZbDvbGbYU7VnfM5StgY8UhGtQ864IiJ3d04wVu8a/bmPZPQuqtH0M+SQLA1UJBpnLDPPZrMqK9Xv95NKpVTE7mAu5SIwi1+V3W5XDVdEhLbb7cp/WXyISlFYPNKRpllWq1VdwveVxWz04TQGKWCP3Up/mgM//elPcTqdnHHGGQC8++673HLLLZx66qm4XC5efPFFysrKeOKJJ5g6dSqnn376PjOZSwWjuCzNliQoZbVayWazNDc3U1lZ+Ylea8lulcaByWSSWCxGWVkZNputIONQ0zcweqpLxrI0vIlEIiqoJLYaclCXvae8vFw1FRW/wuKmOkYR0FiGKnY74pcolTRSTSOZKP1pvSkl5HUTf3bj5+TvWYJqTU1NjB49mrVr19La2ordbqe2tpYhQ4ZQV1fHAw88wJgxYw5Y2VFWVsZdd93F5Zdfzt13382qVav46KOPOP/883nllVf2ypY2Zh0JpTBfums4K6xZs4a77rqr4HOljPTyMGYyi++t+K0Hg0FsNpuqvoLCaggRlqUnQHdIQOpILGkuNV544QVaWlqoqalRZ6/e5pRTTgHggw8+2EuM1PQ9pGJCbPwk4FQcdJJ7y8FgFKQFWVdKsbG5cCQENfeH9LwSKwzjW/H9V1OIFpk1mn6IbKCS5SGbnDRUEVFIOnNLlFUaqogPUXFmjxzsjZuuCALGCJ4syJLNrJv89Q+MUfv9fQ8cONO5P7By5cq9PnfBBRdwwQUXFHzuscce66khHXYkkJTP58lkMrhcLqLRKNFolIqKCurr62lubiYejxMKhfB6vQeVFSaPJz7MgBIIjB8bRQRN72OsTkgkEirDUATfaDSqrHakFFUCnSJKS8O1T/q84t3scDjwer1KaBaLJp011HvI7z6Xy2Gz2UgkEntlMEejUSorK2lqasLv92OxWKitreVzn/scK1asoLGxkUAgQENDA5dddhnXX389F1100V5Nd6Arm37r1q1s3ryZDRs2qAaTxrLnXC6H2WxWc80Y9JT5VAoXxeKGs0ZWr17Nv//9b/70pz9x++2384UvfGGvny+lJrOC8aIvZ1SprpJzrNhoyH7T2dlZkK0oGBsUFwezNH2f3/3udwBcf/31fWaNnz59Ona7ne3bt7NhwwbGjh3b20PSHASSFNXdHVXuvsZ7cHGSw74+L4Hw/rCuHElBzQOhxeRPhhaZNZp+ihzKrVaryhQzHtLlki+CsnwsF7F9UdzYTS76IjIbs5l19rJG07+QdUWECo/HQzweJ5vNYjKZqKiooKWlhUQioTouy1og65F47Mr6I8Ewo7WKiJThcFg9ttPpVCWIOnDVt5DydqmIkUuXz+cDuoQtEaHltZdgp7HpWnGFhFCcPWLs/C5WTNJIVBqwaHoPORtIcxx5zaQyRrLfa2pqaG1tpb29nVGjRrFp0yZisRgDBw6kvr6eUChEJpMhFovxy1/+kgcffJBx48YxcOBAzGYz4XCYHTt2sHPnzr182r1eL8cddxyvvPIKgDoDSdWVCJLGpk19RbTaH8UNZ41MnDiR//iP/2Dw4MGcddZZzJo1a6//U6k0md0X8toZmwmL4GwsUS9Gzr+l8Bprumfx4sUsXLgQm83GN77xjd4ejsLj8TBjxgzeffdd3n77bS0y9wOK7Z2OVI7EoKbm0KBFZo2mnyNZysbMZdjjm+p0OpXAXOzF3J0lglwQjWKzoP2INJr+j91uV8GpRCJBKBSira1NNW4LBALkcjmVRSZC8sHgcrkIBAI4HA6amprUzwWDQVKplBIZtcjc95AAhM1mUxcLo0+3vGYSzJQS1e68UQ/muaQcXqpmtJ9q38LhcKjAgtvtJh6PK/sUj8dDJBIhkUgwevRoamtryWQyDB48WDVrGzhwIK2trVgsFiKRCO3t7WQyGZYvX87y5cv3ej7pQ+F0OlWG+0cffQRAeXk5NpsNt9uNx+MhEAgUVFpJn4C+eG45UMNZI5///Ofx+/0AjBw5kpaWFqqqqgq+p1SazB4Mct6UrOVMJrNXuXupl6tr9vD73/8egEsuuYTq6upeHk0hs2bNUiLz9773vd4ejkZzSDjSg5qaT48prw0ONZpDRiQSIRAIEA6H1UG/L2LMJMtms3uVBRV7Sxk9Mo12CMUZzfoQf2BKZY5oepe+Pk86OzuJx+MFntvSVMuIrDXFZYXFDVOMmY/FzSIDgQAmk0l93uPx6Gw0+v4cEQsUY8OUA32/cX7s6+vFHnhi2aH9VPemt+eIBJry+bxqACmfS6fTRKNRNU/a2tpoaWkhn88TDocJh8OkUini8bgSpI1VD+IJL4GGYs9/k8mEx+NRwrLT6WTgwIG43W6GDx+u/HzFC168wvs6L774Ii+++CJPP/30XqL4l7/8Ze655x5GjBjB6aefzrx58w4onPf2HDnUFK8Tmv7Brl27GDFiBOl0mnnz5jFt2rTeHlIBy5YtY9KkSXg8HuUtf6TR39aSI5F9BTU3b97Mo48+WvC9kUhEvc5f+9rXePDBB/cKanaXyVxTU6PnyBGATvfQaI5Aipu5ieAsGWXFlxKjv1R/bOCm0Wg+GdKhO5lMqrVDmnwaA1jdldh1h2S2CpKJKI8nuN1uLTCXCMUNUyR4KVnLxooZCWrub64Yv2a0yyj1/ai7xjovv/wy9957LxUVFTz99NOEQiGuu+46Nm7cyFlnncWdd97Z28M+KOS1z2Qy6n1jxnAwGCQejwNQVVWF3++nvb0di8VCIBAgFosRiUTw+Xxks1nVQNLYJLLYW9fYI0K+7vP5KCsrw+l0MmTIEKxWKz6fTzV/kozXUqC7hrO33nord9xxBz/96U+57rrryOfz/PCHP+yTmdmHGy0u90/+f/+//x/pdJrp06erRnt9iYkTJ1JdXU1DQwPvvfcen//853t7SBrNJ+bGG2/kxhtvVB+/+OKLrFq1iqeffnqv773mmmtUUHP79u1UVFTs9T1ibaQ58tAis0ZzhGMUnKGwkYH2pNJoNPtCrHjEF1OEH+mobezGLCJid8VTxR2ajeuNCMwWiwWXy3VEiib9AaOP8r4w+i7Lx8WP0R87eXfXWOd///d/mTdvHu+88w6PPPII06dPp7Kykscee4yvfe1r7Ny5k8GDB/f20A+IZJmbzWZSqZQSdOXckUqlsFgsSkAW7/XKykoikQjRaBS/308ulyORSChLBKPIvK83yXAWr+5AIEBVVRU2mw2/368EZnkrlbWlu4azv/zlLwEoKyvjww8/7OkhaTSHlaamJv7whz8AXWX7fXH9N5vNXHzxxTz88MM899xzWmTW9At0UFPzadEis0ajKUALyxqN5mAxduc2NhA1Zqt+Wq9TEYrEM1XTv+lv4vHBUtxYp729nfLycux2OzNmzOCRRx7B5XIxffp0AKZNm8ZHH33ERRddtNdj9cUmO8VNiOXvOpPJYLFYVANQaeSWyWRIp9PYbDZCoZBq6JZIJJTHe3GTSPnXKDybzWbVFNLr9ap1SqwxXC4XHo9HfV6j0fRNfvWrX5FIJDjhhBOYNWtWbw9nn1x66aU8/PDDvPTSS/z+978vCfsdjWZ/6KCm5tOib20ajUZzkGQyGWbMmMGCBQsA9ippLisr6+URajS9h2QwF1NsjWDMVjVi9HsXj/cjUXTUHFkUN9aJRqN4vV6gy388Fot1+7nu6MtNdqTyQURlCVAV2+vI+/KWyWRwu93q658UsVUxZi2L/7JkOut1RqPpm2zfvp3//d//BeDHP/5xn/5bnT59OjU1NezYsYPnn3+eq666qreHpNFoNL2CFpk1Go3mIGhtbeUrX/kKtbW16nPFJc233357L45Qo+mbiFWCRqPZd2OdxsZG7rvvPtra2pRPcTwex+/34/V6Cz43dOjQbh/79ttv55ZbblEfS5OdvoTYpkjmsojHEowqFp3lTb5mDFjtD8lmNvp3W61WnE5nged7XxatNJojndtvv51kMsmpp57K+eef39vD2S8Wi4Vvf/vb3HHHHTz44INceeWVen3RaDRHJNo8RaPRaA6CeDzOr3/9a8aNGwewV0mzZDcXk0qliEQiBW8ajUajOTK58cYbmTdvnnrr6Ohg1apV/OlPfwIgFArR1NREMplk7ty5TJ48mcmTJzNnzhwA5s2bx6RJk7p9bIfDgd/vL3jrq0gms9hWeDwe3G43brcbj8eDz+dT/4dAIEAgECAYDBIMBgmFQoRCIfVxd2/yM4FAAL/fj8/nw+v1qudzOBxaANJo+jALFy7kr3/9KyaTiV//+tcl8ff6zW9+E6fTyeLFi3n99dd7ezgHTSaTYcqUKerjl19+mZNOOolzzz2X1tbWXhyZRqMpRbTIrNFoNAdBTU0NEydOVB9/kvJl42W3r2WVaTSanmXFihWMHDmS0047jcsvvxzQF7ojmZ/+9Kds3LiRM844g9NOO41cLsctt9zCqaeeygMPPMB3vvMdZs6cSXNzM1OnTmXUqFH7zGQuVYweyk6nE4/Hg9fr3etfr9eLz+dTArRxbxUx2ShM+3y+vR7D5XLpygqNpo+TTqf55je/CcDVV1+9z8BaX6OyspKbbroJgO9///skEoleHtGBaW1t5Zxzzum2UvOGG27gkUce6fbndBKNRqPZF9ouQ6Oh69J/4YUXMnToUAYPHswzzzyj/XaPcLoraf7CF76gPi4uX95XxlgplC9rNJqeY82aNdx1111ceeWV6nPaeufIpbvGOhdccAEXXHBBwecee+yxnhpSn0AaBHZHd1YZ+/J5L4XsR41GU8jPfvYzVq5cSWVlJb/4xS96ezifiB/+8Ic8/vjjrF+/nptuuolHHnmkT69DUql54403AntXau5LZO7LPQA0Gk3vojOZNRr2XPrff/99nnnmGeDgoria/ktxSbNRYIbuS5q7o5TKlzUazeFn9erVPP7448ycOZM33nhDW+9oNJ8QEY+Nb9Iw1PjWl4UdjUbTPa+99hr33HMPAL///e9Vc9RSIRgM8uSTTwLwpz/9if/+7/8mm8328qj2zaet1Lz99tsJh8PqbceOHT0yXo1G0/fRIrNGg770az4dxSXNmiOTq6++mvfffx/Y2/Ygn89z7bXXMmPGDJ3xoQFg4sSJ/Pa3v+W1117jzjvvJBwOa+sdjUaj0RzxfPzxx1x22WXk83m++c1vcskll/T2kD4Vs2bN4qGHHgLg17/+NTNnztznXbKnefDBB5k+fbp6e+ONNwq+frCVmjqJRqPR7AstMms06Eu/5uARMRG6SpoXLlzI+++/T3l5ee8NStNrrFmzhpdffll9XFwBMW/ePCorK5k7dy5r165l586dvTdYTa9QfKGz2+0cffTR+P1+Ro4cidPpPGjrHZ01pNFoNJr+RmdnJ08++SSnn346sViMU089ld/+9re9PazPxA033MBzzz2H3+9n/vz5TJ06lVNOOYU//elPhMPhXhvXoarU1Gg0mn2hRWbNEYm+9Gs0mkPB//zP/3DVVVcBe/vYLViwgMWLFzN9+nQApk2bxkcffdTt4+iqiP5L8YXuySefZN26daRSKbZv305lZaW23tFoNBrNEUUikeC9997jzjvvZPz48Xz9618nFotxxhln8M9//hO73d7bQ/zMfPWrX2XlypVce+21WCwW5s+fz7e+9S2qqqr40pe+xFNPPdWrgvO+0JWaGo3ms6Ab/2mOSG688UbV4ADgy1/+MmPHjmXEiBGf+NLvcDh6atgajaYPsWjRIkaMGEFnZyfQvY/dwXrb6QYqRw4//elPue6668jn8/zwhz/EbDarC53L5eLFF1/s7SFqNBqNRnPISKVSbNu2jcWLFzN//nwWLFjA0qVLC7yKA4EAP/jBD7jtttv22fSzFBk6dCiPPvooP//5z3nqqad4/PHHWbt2Lf/85z+VmD5r1iymTZvG+PHj8fv92O12crkcuVxO/Y58Ph9+v19Vz7pcrkPqO19cqVncfFaj0WgOlv6zgms0nwF96ddoNAfiwQcf5Pnnn1cfb9y4kY0bN/KrX/0K6N7HrvhzQ4cO7faxb7/9dm655Rb1cSQS0fY7/ZRjjjmGDz/8sOBz+kKn0Wg0mv7AO++8w09+8hMikQjJZJJ4PE5DQwP5fH6v7x04cCCnnXYaZ5xxBl/96lf7dYXOwIEDufXWW/nBD37A6tWreeGFF3jhhRdYu3Ytr732Gq+99tonejyr1aoE52AwyE033aQq6zQajaY3MeW7W/E1Gs2nIhKJEAgECIfD/fqgpPn06DnSP4jFYpx00klUVVWxdetWgsEg8+bN44tf/CJvvfUW//rXv1i8eDEzZ87k9ddf54EHHuDSSy/lf/7nf/YpNBvR80RzIPQc0RwIPUc0B0LPEY1GcyjQa4nmQOg5cuSgRWaN5hCSz+eJRqP4fL5DWsKk6T/oOdL/+OlPf8ppp53GaaedxiuvvMK9996rKiDKysq47rrrWLt2Laeffjr33nvvQT2mnieaA6HniOZA6DmiORB6jmg0mkOBXks0B0LPkSMHLTJrNBqNRqPRaDQajUaj0Wg0Go3mU2Pu7QFoNBqNRqPRaDQajUaj0Wg0Go2mdNEis0aj0Wg0Go1Go9FoNBqNRqPRaD41WmTWaDQajUaj0Wg0Go1Go9FoNBrNp8ba2wPQaI4UxOxe0zfpC00I9Bzp2/SFOQJ6nvRl9BzRHAx9YZ7oOdK30XNEcyD6whwBPU/6MnqOaA6GvjBP9Bzp23zSOaJFZo2mh4hGowQCgd4ehmYfhMNh/H5/r45Bz5G+TV+YI6DnSV9GzxHNwdAX5omeI30bPUc0B6IvzBHQ86Qvo+eI5mDoC/NEz5G+zSedI6Z8Pp8/jOPRaDT/H6UcoYtEItTU1LBjx45e34Q+KQc7dh3F/WzoOdJzlOo8KeU5Agc3fj1HPjulPE9KaS3Rc6R30HOkZ9BzpOeQeVKKv/P+Pua+NkdKkVKcI0IprSV6jvQOh2uO6ExmjaaHMJlMJbfwFOP3+0v2/1AKY9dzpHcplbGX+jwpld/zviiF8Zf6HIHS+D3vi1IYu54jvUspjF3Pkd6lVMZePE9KZdxG9JgPL3ot6V1KYex6jvQuh3rsuvGfRqPRaDQajUaj0Wg0Go1Go9FoPjVaZNZoNBqNRqPRaDQajUaj0Wg0Gs2nRovMGo3mgDgcDu68804cDkdvD+UTU8pjLyVK+fdcymMvJUr991zq4y8VSvn3XMpjLyVK+fdcymMvJUr591yqYy/Fcesxaw5EKf++S3nspUQp/54P19h14z+NRqPRaDQajUaj0Wg0Go1Go9F8anQms0aj0Wg0Go1Go9FoNBqNRqPRaD41WmTWaDQajUaj0Wg0Go1Go9FoNBrNp0aLzBqNRqPRaDQajUaj0Wg0Go1Go/nUaJFZo9FoNBqNRqPRaDQajUaj0Wg0nxotMms0mv2SSqW44IILmDZtGn/60596ezifiEgkwuDBgznttNM488wze3s4/RY9RzQHopTnCOh50lOU8jzRc6Rn0HNEcyD0HOk9VqxYwciRIznttNO4/PLLe3s4+6UU50mpz49SoxTniKDnSs+g50j3aJFZo9Hsl+eff55zzjmHuXPn8sILL5BMJnt7SAfNmjVr+Pa3v83777/Pu+++29vD6bfoOaI5EKU8R0DPk56ilOeJniM9g54jmgOh50jvsWbNGu666y7ef/99nnnmmd4ezn4pxXlS6vOj1CjFOSLoudIz6DnSPVpk1mg0+2Xx4sVMnz4ds9nMMcccw9q1a3t7SAfN6tWrefPNN5k5cyZ/+ctfens4/RY9RzQHopTnCOh50lOU8jzRc6Rn0HNEcyD0HOk9Vq9ezeOPP87MmTN54403ens4+6UU50mpz49SoxTniKDnSs+g50j3aJFZo9Hsl2g0itfrBcDj8RCLxXp5RAfP8OHDeeCBB3jnnXd44oknaGpq6u0h9Uv0HNEciFKeI6DnSU9RyvNEz5GeQc8RzYHQc6T3mDhxIr/97W957bXXuPPOO8nlcr09pH1SivOk1OdHqVGKc0TQc6Vn0HOke6yH7JE0Gk2/xOv1Eo/HAYjH4/j9/l4e0cEzZcoUXC4XZrOZKVOmsGXLFiorK3t7WP0OPUc0B6KU5wjoedJTlPI80XOkZ9BzRHMg9BzpOR588EGef/559fEPfvADjj76aABGjhxJS0sLVVVVvTW8/VKK86TU5kepU4pzRNBzpWfQc6R7dCazRqPZL5MnT2bOnDnk83mWLVvG2LFje3tIB81PfvITZs+eTWdnJ4sXL2bUqFG9PaR+iZ4jmgNRynME9DzpKUp5nug50jPoOaI5EHqO9Bw33ngj8+bNU29PPvkk69atI5VKsX37dioqKnp7iPukFOdJoVHfsAABAABJREFUqc2PUqcU54ig50rPoOdI95jy+Xz+kD2aRqPpdySTSS677DLq6uq45ppr+M53vtPbQzpodu7cyRVXXEE6neaqq67i+uuv7+0h9Uv0HNEciFKeI6DnSU9RyvNEz5GeQc8RzYHQc6T3WLlyJd/+9rfJ5/P88Ic/5Etf+lJvD2mflOI8KfX5UWqU4hwR9FzpGfQc6R4tMms0h5B8Pk80GsXn82EymXp7OJo+iJ4jmoNBzxPNgdBzRHMg9BzRHAg9RzQHg54nGo3ms6LXkSMHbZeh0RxCotEogUCAaDTa20PR9FH0HNEcDHqeaA6EniP9j5/+9Kc8/vjjzJ8/n5NPPpnTTz+dLVu2AHDHHXcwbdo0/vM///OgH0/PEc2B0HNEczDoeaLRaD4reh05ctAis0aj0Wg0Go1G04s0Nzfzpz/9CYB77rmHN954g9/97nfcf//9bN++nc2bN/Phhx/i8/mYP39+L49Wo9FoNBqNRqPZG2tvD0Cj0Wg0Go1GozmSeeCBB7jqqqsASCQSlJWVUVZWxsaNG1myZAnTpk0DYMaMGSxYsICpU6fu9RipVIpUKqU+jkQiPTN4jUaj0WiOcJqamvjHP/6BzWbj4osvJhAI9PaQNJpeQWcyazQajUaj0Wg0vcSOHTuIRqOqK3lnZ6f6mngYer1eADweD7FYrNvHue+++wgEAuqtpqbm8A9eo9GUFJFIhMGDB3Paaadx5pln9vZwNJp+wVNPPcXw4cO5/vrrufbaaxk/fjxr167t7WFpNL2CFpk1Go1Go9FoNJpe4r777uO2225THxsb4pjNZrxeL/F4HIB4PI7f7+/2cW6//XbC4bB627Fjx+EduEajKTnWrFnDt7/9bd5//33efffd3h6ORlPyPPfcc1x11VV0dHRw3HHHMWrUKHbu3MlFF11EOp3u7eFpND2OFpk1GvaO6nfXdEejEb785S+zdetWPU80Go1G85lZtGgRV199Nffffz/3338/LpeL5uZm1qxZw/Dhw5k0aRJz584FYO7cuUyePLnbx3E4HPj9/oI3jUajMbJ69WrefPNNZs6cyV/+8pduvyeVShGJRAreNBrN3mzdupVvfetbANxwww0sXryYBQsWUF1dzfr16/ntb3/byyPUaHoe7cms0bAnqv/jH/8YgPPOO4833niD+vp67r//fh555JFeHqGmL5BOp7n00ktZtGgRsKc5k54nGo3mYIlEIhx99NEcddRRWCwWfv7zn3PzzTfjdrt57LHHGDFiRG8PUdPDyJ7y+OOPA/C5z32O8847D5PJpEpwR48ezSmnnMKYMWOYPn16L45Wo9GUMsOHD+eBBx7gxBNPZNasWZx33nlUVlYWfM99993HXXfd1Usj1GhKg2w2yxVXXEEkEmHq1Kn8+te/xmw2U1FRwT333MM3vvENHnjgAb73ve9hs9l6e7gaTY+hRWaNhj1R/dmzZ3PNNdfs1XRnX+gmO0cWqVSK//qv/+Kxxx4D9m7OtK+f0XNEozl48vm8euvs7Cz4OJ/Pq+8zmUyYzWYsFgtms7nAYqAvo4Oamn1x9dVXq/cXLFhQ8LV77rmnh0ej0Wj6I1OmTMHlcmE2m5kyZQpbtmzZS2S+/fbbueWWW9THkUhEe7xrNEXcc889fPjhh/h8Pp555hms1j3S2lVXXcUdd9xBQ0MDr7/+OhdeeGHvDVSj6WG0XYZGw56o/jvvvMMTTzyxV9OdfaGb7BxZ+Hw+Zs6cqT4+mHmi54hGs4d8Pk8ulyOTyZBKpUgmk3R0dBCPx4nFYkSjUaLRKLFYTL3J54xfi8fjdHR0kEgk1M8mk8mCv8m+SnGpsgSrxo0bd8Cgpi5f1mg0Gs1n4Sc/+QmzZ8+ms7OTxYsXM2rUqL2+R1vvaDT758MPP+Tuu+8G4OGHH96rCs1ms6nAsSQnaTRHClpk1mjoiupPnToVu93OlClT9mq6sy9KpcmOZARms1kymQyZTIZsNksul9uviK7ZPwczT0pljmg+OTt27OD000/nlFNO4f777+/Wo/uOO+5g2rRp/Od//mcvj7Z36OzsJJ1Ok0gklGAsArGIyyISy9fD4TAtLS00NTXR3NxMU1MTjY2NNDY2qvebm5tpaWmhpaWFaDRKMpkklUoRi8VIpVJ9el3TQU3NkUQ+nyeTyRQEhIyBomQySTqd1ucRjaaHuOWWW7j//vuZMWMGl1xyCeXl5b09JI2mpAiHw1x++eV0dnZyxRVXcPnll3f7fVdccQUAs2fPVs17S4nie45Q3MtKoylG22VoNHRF9WfNmsXZZ5/N4sWLcTgcNDc309jYyPDhw/f5cw6HA4fD0XMD/RTkcjnS6fR+L28Wi0W9lUrJeV9AmjPtb56UwhzRfDp+85vf8NOf/pRTTz2VM888k9mzZxfYHtxxxx1s3ryZDz/8kFtvvZX58+czderU3h72YUdEpUwmo4SjXC5HNptVb7lcTn1NAmDZbLbgffkZo2UGdAV3LBYLdrsdh8OB3W7H5XLhdDrxeDykUilyuRwul6tPrmfFpcofffSR+tqBgpqlWL5s3Hvy+bx6Tfria6M5dMg60F3Qx/i3bET+tq1WK1ardb9/DxqN5tMxePBg3nvvvd4ehkZTkuTzea699lq2bdvGiBEj+N3vfrfP7x0/fjzDhw9n69atvPPOO1xwwQU9ONLPTvE957vf/S4+n28v2zeNphgtMms0dEX1r7jiCu6++26uuuoqjj322IKmO6VKNpslnU4Dey51uVxOZc6ZTCZMJpMSgQCsVis2m00LAAfBj3/8434xTzSfjh/96EcEAgGg6+/KYrEUeHQvWbKEadOmATBjxgwWLFiwT5G5P3h35/N50uk06XRaicXysQjORvFZPjaKy8ZKC3mTx8vn85jNZux2OzabDYfDgdvtxuVyFVRneL1eADo6OnC73X1uLevPQc18Pq9eh87OTvW67Qvx0hZ/bfHYls9pSpdUKqXOH9BV1SCfM55BjL7qIi5ns1mAAsHZYrH0yv9Do9FoNBrhF7/4BS+99BI2m41nn312v1YyJpOJ888/n4ceeojXXnut5ETm4nuOeE4X97K65ppruv35/nC30Xw6tMis0dB9VL+46U6pIYIPdF3UstlswUJvJJvNqoueiAQ6k2jfPP7440BX2XupzxPNp6esrAyAP/7xj0yePJmlS5eqr+XzeaLRqBI8PR4PsVhsn49V6p3cc7kciURCCccdHR0qi1FEZhGcJUNZPi/isvF7jeJzd9jtdrxeLx6Ph0AgUBA8A9Shvy8Kzf0xqCkCooiDsMd/uzgTXRAh2SgyG8VlndFaukgFFXT5UobDYZXRbKxikMz24gCDzWbDarVit9vJ5XKkUinMZjM2mw2bzabng0aj0Wh6nN/85jfcfvvtADz00EOcfPLJB/yZc845h4ceeoj333//MI/u0FN8z3G5XMAe27cTTzyRWbNmcd555+3VPBRK/26j+fToU5pG008pzhQSgdnhcODxeHC73SpjWUrWRQgS0SeZTJJMJslms73qlXjjjTcyfPhwTCYTq1atKvjaxo0bOeWUUxgzZgwnnXQSa9as6aVRavoqqVSKG264gaOOOorx48crj7RDwdNPP83LL7/M/fffv5dHt9frVR5s8Xh8v9kOpezdnU6nicfjZDIZYrEYkUiEaDRKe3s77e3ttLa20tLSov5tbGykvr6ehoYG6uvr2bVrFzt37qSxsVH9TFNTE7t27WLbtm3U1tZSW1vLtm3bqK+vJx6Pk06naW1tVW/i8ZpIJJTILYJWLBZT4mdfWEskqPnhhx9y/fXXM2XKFBYsWMD8+fMZPXr0YXnOw4m8/rJPGP13xW9XslmSySSJRKLbN/Ho7ujoKPh+8e0+kO1TT/Dmm29ywgknMHHiRKZMmcLy5ct7dTx9FaPALK8noOZGdwEm8W3v6OhQf8/hcFh5rkugXL6WyWR6bT70hXVEU9q89dZbHH/88UyaNIkJEybwxBNP9PaQNH2M/a0zmp4lHA5z7bXXcvPNNwNw22238a1vfeugfnbatGmYTCY2bdrErl27DuMoDw/Ge45Q3MtK+tAUU8p3m/5Cb51JtMis0fRTjJ6HIjhbrVY8Hg92u52Ojg4ikYi6AErWoJStp1IpdQmUxl3JZJJMJrPP7MLDxSWXXMK8efMYNmzYXl+7/vrr+da3vsWGDRu49dZbue6663p0bP0dyVAUAcgo5hnLnvsyP/zhDzGbzWzYsIHVq1fzP//zP4fkcRcuXMgTTzzBiy++qHyBm5ubWbNmDcOHD2fSpEnMnTsXgLlz5zJ58uR9PlapdnIXITCTyRCJRJTIHIlElGDc3t6umvS1trbS1NREQ0MDzc3NRCIRJTw2NjaydetW1q9fz44dO2hubiYajaomgdFolObmZrZs2aKyIkWUjMViao0SoVmErXw+r+bvBRdcwNy5c/VacogQAVmQBoySwZxOp9XrJ69PseBsbABZLDwb1xoRnHtLbG5ra+OKK67gqaeeYsWKFfziF7/YZ7OfIx3ZFywWS0EFRyqVwmQy4fF46OzsJB6Pq3VDmgDK/JA5IW/hcFg19sxms0qUTqVSR9SZRDdiKn3y+Tz/8R//wV/+8heWLl3Ka6+9xvXXX080Gu3toWn6EPtbZzQ9x7/+9S8mTpzIX/7yF0wmEz/72c+47777DrpCLhAIcNxxxwGoO0GpUHzPEX7yk58we/ZsOjs7Wbx4MaNGjer250v1btOf6K27jbbL0Gj6KVJO2tnZic1mA1BemQCJREJ9r2SfwZ4mgGazWZW1Gn0Tiz+2Wq0FG20+n2fatGl0dHSwYcMGBg8ejMfj4bzzzuPnP//5p/q/zJw5s9vPNzY2smTJEt5++20AvvzlL3PDDTewdevW/Xqbag6MlCjLfDFibNaWSqWwWq04HI5DUsJ8qOdPPB7nL3/5C3V1dWqeDhw48DOPE+DnP/859fX1fOELXwDgnnvuKbA9GD58OKNHj1YR5OnTpx+S5+0riMCYyWSIRqMFwqAEryKRCNlslmQySTQaLbBTsNlsOJ1OduzYQV1dnfq8yWRi2LBhjBo1il/+8pdks1m2b99ORUUFgPKHmzlzJq2trcTjcdxut7LqkFJ9Wac8Ho/6/IknnqiqN4xCpV5LPjmyRkDXfhONRpX9gQj7RsRXV7y2ZR2RnxG7Jnkd5WdsNhu5XA6z2YzD4VBWUE6nU/kDdsehXks2b95MVVUVRx99NACnnnoq27ZtY8mSJfsNIB3JGPcPOXPU1NSwefPmgjOIBLgB9bdrfO3T6TQWi0XZaCQSCeVRLqK03W7HbrfvtQ/1tzOJbsTU8xyOOQTQ3t4OdAUIysvL+7znvmbf9OQ6o+kZcrkcP/vZz7j77rvJ5/OMHDmSJ5544lOd5WfOnMnSpUuZM2cOl1566WEY7eGh+J5z+umn85WvfGUv27fy8vJeHmnfQ+4Zcr6RM46ceeWOYtRRDvU60pt3Gy0yazT9FGNTv3w+r5rpiE+sCMZOpxOv16syyozCsix8ZrO5oDmgUYTOZDJKbBY/xX//+98ADBgwgHfffZehQ4cWjO2SSy5h06ZN3Y77n//8JzU1NQf1f9yxYweDBg1SQoPJZGLo0KFs375dC0OfEmPzNkECD7CnUZeIzOKvm81mcblc+xV9DoZDPX82b95MeXk5P//5z3nnnXdwuVz89Kc/PSSZXv/85z/3+lyxR/c999zzmZ+nL5LL5UgmkyobUcrdJds9lUoRDofJ5/NEIhFlG2K32xk3bhzDhg3j//7v/5g/fz7Q9bofe+yxTJkyheOOOw6fzwfAtddeC3TNhQ8//JChQ4fy2muv8eyzz9LQ0MDzzz9Pa2urWn9kbTKbzTz22GMMHjyYVCpFIBDAarUWlNgnEgl12NNrySdHBGaLxaLsSex2OxaLhaamJgDlme1yuUin02zcuHGfvQGgK+vF6XRiNpvVGpPNZrHZbNjtdhKJRMH7VqsVp9PZbUbRoV5LjjrqKJqamliwYAFTpkzhH//4B7FYjK1bt2qRuQg5X3R2dqpziLxGUhkFMGLECMrKypTFTSQSoa2tTfmyZzIZ5cstgrN4Nssa5HQ6cTgcat9yOBzY7Xb1fP3tTKIbMfU8h3oOmUwmnn/+eS6++GI8Hg9tbW289NJLBZmCmtKiJ9cZzeGns7OTa6+9lieffBKAb37zm/zqV79SfVY+KTNnzuQ3v/kNc+bMOZTDPOx0d88RintZHelITyu5G3eXpLUvJFnLarUe0nWkN+82WmTWaPopchETj2WXy0U8Hqezs5NoNIrf76etrU0JReXl5fj9flWaaswmAwrEG0Bd9ozZZ9KYx2KxsHv3bjKZzF6LI8Df//73Q/r/NNLbnp2lTD6fV96XgNqUREQU7HY7wWBQZY/KHEokEodEaAYO2fzJZDLU1tYybtw47r//fpYvX85ZZ53FmjVrum1SoTkw+XxeCbRiTWG0Pshms0q4kLJ3s9nMlClTVJOUO++8k7q6OiwWC2effTbnnnvuPjMhiudCKBQCusSqyy+/HJPJxMCBAwkGg/h8Pnw+H06nE4/Hg8lkIpvN0tLSgs1mIxQKqYCJWME4nU5AryWfhM7OTnWAFvEeIBgMKs/B8vJy1TQGoKGhQa0jbrdbZSVLprtURqRSKWw2G8OGDVOWCGLT5HQ61fsOh4NsNks8HleH8+7E5kO1lgQCAV588UV++MMfEo1GmT59OuPGjVOVQpo9yNkjl8vhdruJx+NqnjQ0NODz+YhGo2zbto1kMklVVRWVlZVUVVWpwFRjYyMtLS3q0pbJZHA4HFgsFuXpbLPZyOfzpFIpXC4XdrtdVVcUZ7r3lzOJbsTUexyqOZTNZrnvvvt45ZVXmDZtGosWLeLCCy9k5cqVBWumpvToqXVGc3i56aabePLJJ7FYLDz66KN8/etf/0yPN2PGDABWrVpFa2ur/jvvB8g5WJKt9iUqi24iZxnJaJaKcLPZrL5mtVpxuVw0NDQcsnWkt+42WmTWaPoxktkngrE0IhNh0OfzEYvFSKfTNDY2Ul5ejs/nw+v1FvgwyyJqFBXk8iYLq3wsXeCXLVvGpEmTuh3XoYrm19TUUFdXpxbmfD7Pjh07ul2UNftHyttl83M4HMortZh0Ok1TUxNVVVVYrVbcbrcSiQ5GaC4uHzJueJKBv3Tp0kMyf4YNG4bZbFbeqcceeywjRoxg9erVnHbaaQf8vWj2Rg5JIgqKj6p4dEtWq8/nY9euXZjNZr761a8yYsQIoKt5Wl1dHcFgkNtuu+2Af68rVqxQc6Gzs5N//etfAHi9Xp5++mna2tpUNYUEwsxmMw899BDDhw/H7/crUaqxsZHKysqCrEqHw6HXkk+IBKJkfwFUFrOQy+UKMli9Xq/KcJY54vF48Hg8VFRUkMvlaGtrU6JyOBxWQvPu3bvVHlScxWo2m0kmk1gsFjUG46HaOH+K+aR70cyZM1WH+FQqxYABA5R9hmYPYm0hQrAEo6WiClBWF7t372b37t3YbDZ8Ph9utxu3282gQYMYNmwYzc3N7N69W/UGsNvteDweZaORzWZxOp0qwCWiq3yvw+HAZDId0nmwL3pqHZFGTC+//LL63JQpU3C5XCqgt2XLlm5F5ttvv51bbrlFfRyJREoug1ISG4xnCHkz/u3LeaKY4s9Jtr08thERAiwWyyGbQ8uWLWPXrl1MmzYNgBNPPJFBgwaxfPlyTj/99IP4DWj6Kj2xzmgOL8899xy//e1vlfXdZZdd9pkfs7KykjFjxrBhwwYWLlyo7Cc0fR+5s8oZVN7vTqyVKnC5j4hVYLF9nBGr1YrP51NiczweP2QaSm/ebbTIrNH0Y0wmE3a7nWQyqWwQRBCUpn4ej4dEIkEul6OxsRG/34/X61V+h5JpJuXwcqmTn5WDvZShWywWOjs72bp1KwMHDiSXyxUID3DoovlVVVVMmjSJp59+mquvvpoXX3yR4cOH6/L2T4hkIYvA7HQ6lccudJW8i8VKZ2cnLS0tZDIZ4vE4gUAAk8mE0+lU80hK2o2ZhcUb9IHYunUr1dXV6rGMwtEnmT8VFRWceeaZvPXWW5x77rls27aNLVu2MHbs2E/6a9KAyhoEVKaiRPFFZE4mkwDK8uLoo49WAjOgMl2nT59+UAednTt3MmTIEABeeukl1q1bp8Sqyy+/nLKyMgKBAIFAAI/Hg81mY9y4cdTV1ZFMJkkmk8rvMpFI0NLSAuwRGnK5nF5LPiHGxm4iMsvvMxAIkEwmaW9vJxqNqqxlh8PB0KFDaW5uVo0Ajb68xbjdbgBcLheDBw9m+/bt6rWMxWLkcjk6Ojpwu92YTCa19pjNZux2u1p/jPOnmE+6F+3evVt5uv/sZz/jjDPOYPTo0Z/oMY4UnE6nWu+9Xi+xWAyn06kyjcU/2Zip3NraSmtrq3oMk8mEy+XC5/MpWxYJGI0YMYL29nay2SwdHR2qIiGbzeL3+zGZTAWVXIdyHuyLnlhHpBHTq6++ulcjplmzZnH22WezePFifvCDH3T78/K3WGp0dnaqc+snKUM+VJjNZrZv335I5pBc/NevX8/YsWPZtGkTmzdvZsyYMYdquJpeoifWGc3hY8eOHXzrW98C4I477jgkArMwZcoUNmzYwIIFC7TI3IeRIKbREnJfGPtTibVoOp1WDY2Ne5XR9ksCorKntbW14fF4cLlcdHZ2smXLlkOyjvTm3caU1/WgGs0hIxKJEAgECIfDfaqDqghDxhINKXUHVEm5+PBKVM3lcu2V8ZHNZgmHw0pIGjBggMpmBFQ22fr167nkkks44YQTePzxxws8mz8p3/3ud3nllVeor6+noqICr9eronjr16/n6quvpqWlBb/fzxNPPMH48eM/3S+qB+hrc8SYwSwX+ng8rrqcl5WVqcwwoaOjg7a2Nmw2G1VVVQWPZbTb2B9GgU+ECNmOTCYTmzdv5j/+4z844YQT+POf/6yafn2aOVRbW8u1115LS0sLFouFO++8k4suuugTPUZP09fmiSCCTmdnJ+FwWFlkdHR0qMZ+ra2tuN1uKioqWLBgAZMnT+bzn/+8eoz33nuPP//5zwQCAX72s58dsGHI+vXrVem3iNUjRozA4/HgdDopKysjFAoRCASw2+3k83mOOeYYnE4n9fX1qrnSwIED+f73v89bb71FU1MT5eXleDwe1q9fj81m02vJJ0D8+yUQ2draisViUVni4XCYlpaWfYpB4utubP6Xz+eVQBwMBgkEAgV2Gi0tLeTzeWpqarDb7bS3txf4QosPr5QmSpC1traW888/n5NPPpmnn376M/2/v/GNbzBv3jyy2SxTp07loYceIhgMfqbHhK6L7VVXXUUqleJLX/oSp556KjfffDNut5vHHnuMESNGcMcdd/D+++8zceJEHn744YN63N5eR6SyQTJOpepBqqvEZkUudca9YF+ZQsKgQYOoqalh586dyp7H4/Go1z8UChVkqG7fvp2LLrrokMyD3jyTnH/++WzdulWtm9KIKRAIcMUVV5BOp7nqqqu4/vrrD+rxenuOHAhpMFp8rhC7NllLjE1EZR0wNoHc11wqrqQy/mvMYAPYuHEjl156KVOmTPnMc+jZZ5/l3nvvVefxH/3oR3zta1/7TI95OOnr86SvIOeVw73OaA4Pl156Kc8//zxTpkxh7ty5h8T+T/jDH/7Af/7nf3L22WerRmxHGn11HZEzhwSm97VfyF5jzGg2JlEVI83Hc7kc7e3tqleNEAqFCIVCxGIxAGX3t2HDBr72ta8dkr2mt+42WmTWaA4hfXXxBFS2sfGgbrFYVAarHM4l6xn2XNIlQgfsdTkcMGAAFouFTCZDLBZTjyNZaMWLbnGG65FGX5sjIhbJa9bZ2UlDQwPQtfnJ62hEbAfEC9f4WspGnclkCqK1cuGT7DLx8jX+nGB8PJvNVpDJXJyl2F/pa/NEkNctk8kQjUaJxWIFQrP4sft8PsaNG8c//vEPfD4f//mf/6kqGtLpND/+8Y+pq6sjFArx7W9/mwkTJnT7fPl8nlWrVvHMM8+wY8cOAIYMGUIwGMRqtVJRUYHf78ftdnP88cfT3t5Oc3MzVquVkSNHUlFRQVNTE/X19djtdsrKyujo6CAUCqnmcm63+5BeJHqK3pwjiUSCbDarvJBlzQgGgyooJQJjIpFQItH+Du8Hg9PpZMiQIUo87OjoIBaLFVRHyB4j641UWvTl1/j73/8+559/PqeeeqpqSvrCCy9QX1/Pb37zG+644w5uvfVW/va3v3Hrrbdy0UUXMXXq1L0ep7umbjU1Nb26jkjwUdZ7CWinUqkCcbk42CiBB9mfALX22Gw2xo4di9/vJ5/PU19fT0tLCyaTibKyMhUwLy8vV1nuQIF9hqaLvrrXFM8b2JM1lslk1Fw3NinuDskeM2abGRtjy3MZ35evW61WZcGTyWTUc5nNZtxud4GI3d/pq/NEozlUfPDBB5x22mmYzWaWLFnCsccee0gfXywQpCfSkbR+CH1tHRFtxJiIJ1gslgJbQKN+IntGsV2TVHTLa5tOp5U2IthsNsxmszqryX1FEmIqKirU90qviVKk7564NRrNZ6I7n1s5LKfTaXV5czgcKnoHqDJKKX0vvrQa8fv9Sjiy2Wz4/X6i0SidnZ2q0Y+UxIrgKEJ3sX+npucxRl7Fy1E8mB0OR7cCM6AEXikLMpbeGv2oip8rFosRj8cLxIPuIsBms7mg9EhEBdlok8mkamxpvDRqDi/yWgDqQFaccShzJplMMnr0aLxeL9FolI8//lg1/bPb7dx6663cf//97Nq1i/vuu4+jjjqKE088kZqaGlwuF9FolC1btvDRRx9RV1cHdAmM1dXV+Hw+bDYbZWVleL1e3G43o0ePpqqqimAwSCKRIB6Ps2HDBiwWC8FgkPr6erXuwZ5MWuCIPOh/VoxBR7vdruwQ2tvbSSQS6nButFGyWCwq87k4i1lei2KPdkDtIx6PR9kgQNdr6PF4cLvdKtAhImQmkynwaE4kEtjtdpXt3Nf40Y9+RCAQAFAWU2VlZZSVlbFx40aWLFmi/FtnzJjBggULuhWZ+2JTN6mQsdlsBZcql8tVYH8gAYhi4dn492m1WvH7/YRCoYKGnQMGDCCdThONRslkMng8HuLxOC0tLVRVValzj7EZYV+cB5oujBnwgPL0jsVi3XpbSgC6eB2RKr2Dqa7aHzLvPB6PanTc0dGhmstqNJrSJp/Pc+uttwJw/fXXH3KBGWDChAl4PB4ikQhr167t05VyRwL5fF71qRJEs4hGo7S2thbsKUa7UDnbHuzz2O12ysvLqaysVAHKRCLBhg0b6OjoYNu2bQwePJhYLEZbWxuVlZWqz5Gcn0sNLTJrNP2M7jKWpaxQLCucTmfBImk2m3E6nSr7FFCCnoiJspgW+w8lEgl1wLdarQQCATo6Ogoy10TgNnoRpVIpZX+g6R1kjsi8gD3iUSaTIZFI4HQ6u22S43K56OjooKWlRWUvdtfBVjLcxZrFWJK0L29m2cxlPDabTT2Ww+FQUWARDWBPk0t50xe/Q4+xtF3WGGMTR+hq7mb83pkzZ/J///d/zJ07lzFjxhAKhYCuDMO7776bF154gXfeeYeNGzeycePGbp/XarVSVVWF3+9X4lQgEFAZzKNGjVK+uHa7nWOOOYbNmzfT1NTE7t27lcWGxWIpsFeQ+a/nyifHarWqA3cul8Pr9SpP5O6Ckka7JGMGyL4sEYqzPhwOhwqEGRHbFhGkJINE1plEIqGyrSXI0BczWaXT/B//+EcmT57M0qVL1dfy+TzRaFT9bXk8HlVaWUxfbuomwUdjNZQI/1Dogyj+uyIWyllCzi2NjY00Njbi8XgIBAJ4vV4qKiqIRqPE43FqampUr4Hm5mYGDBiAy+VSfQPi8fgRl4laKkiSgojEVquVtrY2ZckGqCC2nFOKM54FCUYX93WQ5yluQmz8OeOZWSyBIpGIalIqQrMOWPQ/ijPcu2sKaWwqqRMdSp/Zs2fz0Ucf4XK5uPPOOw/Lc1itVk488UTef/995s+fr0XmXqRYYHY6ndhsNqLRqLJmA5TNlzFBSqqx5IxSnM1sfA7jv9u3bwe67h9+v5/q6mqGDRvGli1bSCaT1NfXEwgEyOVyKtNbzisej6fk9BItMms0/QgpLyy+tBsvaZL9KYduo7BsNKU3HtiLO3Tvy3sI9mTASoMfY0a0NB6Ug70WmvsGxtfW7XYTj8dVEyabzUYgENirUVAgEFBCQVtbG5FIRGWrQdflz1heJHMymUyquWOxWPB6vQXlzHIhlMYJ4sfY2dmpMuFSqZQqIZLHLZ6TxjJXzWdHstZhj4Dc3TogQph838SJE1m1ahXbt2/nhRde4Atf+ALV1dXYbDZcLhdXXXUV559/PgsWLGDdunXU19eTTCax2+0qK1rWKrPZTCAQwOfz4fV6sdvtHH300Xs1sDCbzYRCIZqamsjlcsqv1el0Ku9xEZl1QOLTIQKMZFq4XC6CwSAej0fZIFgslgJ7JPlbLp4zxZd4434FqPfj8Ther1etGfl8nt27d+8zs1Hmj4zHZrORyWQwmUx9svHZ008/zcsvv8zLL7/MOeecoz5vNpvxer3s3LkTgHg8vs8y01Jo6iaBQPl7NGYti6goiOgse02x4ByPx1X1jfHxTSYTFRUVNDQ0kE6naWhoYMCAAXg8HhWQEKFZ7xF9h/z/1ytEkh/MZjP19fVKcLbZbMTjcZqamvbbQFhEYMlkTqVS3a7zxZ6axckUNptNPa80MK2vry+wYdFCc9/FGMzsrgeAfI/8252YfLBIso3sjZIMoSkNfv7znwPwrW99i+rq6sP2PFOnTuX9999nwYIFfOMb3zhsz6PZP8YGstLYvqWlRVlW2O12UqkUzc3NwJ47UCwWU3cho+AsZ5hiobm4R4CsDW1tbbS1tbFu3TrVTFrsK71er0rg83g8qopH7tilstdokVmj6UfIJUwyh40lzcbsIClxlmZqkjlqLE2Ui57xUCZ01xxFFli50EsZu5TEFmcQWSwWldHaXbas5vAj80MyUmUzlIywWCxGJpOhublZCUjGn62srFTfJ3YY3WGz2VR2O3QJwFIytnnz5m4DFsFgUGWjtbS0qMxZGUMikVCZ1uK3Khu+UYhwOBwl62fVlzBe0iRQYBQCZe3w+XzqZyS75/zzz+fJJ5+kpaVFNbAwXsZEdLLb7QwYMKAgY02+1+124/V6VcDDarVy7LHHMmDAgG7HK8KT0+mktbUV6BLgstksLperQEzQfDqcTqcS7Do6OlRWqgSajIgYLXRXHWHE7XZjs9nUniUZ0rFYTGWzx+NxOjo61JollghyCYjH42o86XRaCZjyfl9aFxYuXMgTTzzBq6++it1ux+Vy0dzcTGNjI8OHD2fSpEn87W9/44YbbmDu3Lmcf/75vT3kQ4JcvGTOGEUhWVvEZkWC38lkUs0NEfokuG61Whk0aJB67KqqKurr68lms9TX11NVVbWX0FyKGUL9FWPSg81mY9euXarUWDK9BAlESjPaWCymziLdIYFKCVDJnrY/JCDldrtVJZXP51MVXJKZr4Xm3sdYCSEC0oFe3+4CnLB3lnux+NydcGSsoBERymaz9fl+ABqYM2cOc+fOxW6384Mf/OCwPteUKVMAmD9//mF9Hs3+Me4zFouFjo4OJTCHQiEaGxtpa2sDUE3E5Qwr59LW1taCyj2jFmLUTGSdMCa1uFwuvF4vZrOZXbt2YTab8fl86rHlLpXL5dT7iURCWVSWQl8iveppNP0IOVDJoimIkGO0KZCLmhyOnE6nOqB1t0AWZzNLNqBx0ZRmYBLVk6/JRV+Exo6ODrWYGq0z+vqC2d8weitLljugMka9Xi/hcJhEIkF7e/teApLJZMLv9+P1ekkmk8oiReaGZB3JRm0ymVTDhw0bNhSMw+PxqEYIstm3t7czcOBAhg4dSkNDA8lkklgsRiAQUIJSMpkkmUxisVjw+XwqU14yJlOplLoEaD49xuZKxgxmuZhJdrP4pAJqrvj9fr7+9a/zwQcfsHHjRuVpKYep7pDSegkiBAIBhg4dqhpOOp1Otm/fzvr168lms5jNZoLBIGPGjMHj8Shh2Wq1kkwmlRgAXXYDxoCa5tMh2cISQJTyQalGEAFfbAug6/VwOBwF4n6xOCAZI5lMRgUqXS4XkUhECcvi2w1dVRXBYFA9XllZGdFolKamJmWRIVkpsifJxaCvCM0///nPqa+v5wtf+AIA99xzD+eddx4mk4mnnnqK4cOHM3r0aE455RTGjBnD9OnTe3nEhwfjuUIqVSQTFVAZ0BJEgK7g0eDBgwssWQSLxUJ1dTUNDQ1KaA6FQng8HjVvRSDUa0HvIvs2dP1dSsmyw+EgEokoAaCsrExdzLdt29btY0kfEDnPyrwy2hrIvtXZ2VmQLS/BC8k4c7vdJJNJnE4nfr+fbDaL3++nvb2dQCCgqv+0BUvvIOvDvjxS5e4ijRtlbzmQCF3cO6Q40ab4/mOxWNReZbfb1flGbIG6s3vS9A1++ctfAnDNNdcwePDgw/pcIjKvWbOG9vb2grOLpuco9vuXO4PcUdva2jCZTIRCIdauXUtnZ6fSKTZs2LCXlZecTfdXBSF6iJyDo9GoqroVyzmjPiL32UwmQzAYVPuaVO8ZLSJFy+lL6Fu3RtOPkMNOdwcnOTSLl60cgERcNC5Wxkyi7qL8Qi6XUwsk7BG3RYQyXtpEkJDn7ejowOv1KisEESe00NxzSBmoeKsWZyBaLBZCoZDKXu3o6FDNqYxIpqmUp4tPan19fYGwB7B582aVoVZWVkZVVRWpVEo1N6ipqcFut1NXV0d9fb0qhx8/fjytra20tbURDocJBAJUVlaqhl+5XI729nZyuRx+vx+Xy6XsOjKZjBaZPwNykII9Pt7FFzDomi/GZpFSpQBdGc7nnXeeKofevn07O3fupLm5mWg0WpAhZOzMXFlZydixYxkxYgSbNm2iqakJ6CorK7ZJqK+vp62tjRNOOEGVmsn3iDggF0ERqPR689kQf3a56ItAnE6n1cFX1gAJZnaXxSxBBZlTkpmaTCbVnHI6ncTjcSUcyWvo8/lIpVLs2rWLSCRCPp/H4/EQDAaJRCIqkGG329W+A3uaV/aFAOc///nPvT63YMGCgo/vueeenhpOn8HY4DWbzap54XA48Hq9tLS0kM1maWxsZODAgd2+jlarlQEDBtDS0kIikaC1tZVEIkFZWdleTdz62iXtSMJYiSeJEBIEb29vx2QyMXLkSNavX6/2AegSBcrKyshkMjQ1NVFfX68CUJ8UWX9kHBaLhXA4rOyA0uk0wWCQzs5OJUYEg0GVWS8BCz2PDj/y+y629pO9RJIWwuEwsVhsrwZeRqG52FPV6NFttNuQ5zBmJUryheyDUm1TUVGB3W5X4nY2m1Vl+Zq+w7Zt23jttdcAuPnmmw/781VVVTFq1Cg2b97MRx99xKxZsw77c2r2TzqdVpZKJpNJVcyUlZWxevVq8vk8FRUV7Nq1i127dgF7sp3lY9mzJMlOqseNVcISuBRbM0mYEZu5aDRKMBhUCRbGrObW1lY8Hg8+n0/tUcWWhVL11V01YW+gb90aTT9CLvTZbHavqJZ8XjKEpPRURAGjuCOZn0bLjOJyMclsNC5wRo+j7g7Z4i8UDodVNE4aDoqgrX3Meg7J4IF9i21SLmr0V94X0qygra1Nfa/dbsfj8SgBCLpK4X0+Hzt27GDJkiV7BS/Kyso4/vjjmTBhAmvXriUcDrNmzRomTJiA3W6noaGBcDisyqH9fj+xWIxIJEI0GsXn8xX47n4afz3NHuRvWvwtjcgBSr4vm81SVlZGa2sr8+bNY9KkSfh8PtLpNC0tLezYsYPt27cXXAwlOOV0OrHb7TidTrxeL0OGDKGmpkY9/siRI7FYLESjUZXx5nK5GDRoEGazmRUrVpBIJFR2m8vlUl7eckH0+/1KuABtl3EoKBYC5fJefACWjAxjZUx3FTKSwS6Zpsafl++RwITNZiOZTFJbW1sQXA2Hw4TDYWWFYBSaY7EYPp9Pjac4+7q3BWfN3sgck7JWEYEGDhxIY2MjqVSK1tbWAi/NbDZLNBpVc04yDKU6R7x1YU+2vbY86D3kTCmvEXQFp6VZ0rBhw1i7di0tLS1YLBaOOuooBg0axNq1a1m4cOFeNktGy519+cGLDVMmk6GlpYXGxsaCdUTWBQlwhEIhOjs7VfZhKBSivb2diooKJY6LBYveWw4f6XS6IGtQhBur1UpnZ6fyOy1uVtzR0aGCk8aKGeN+ZUyyEaGoWGSWhByxUvF6vcTjcRwOh/LLr6+vV829ZM2KxWLqDKLpG/zxj3+ks7OTM844g8997nM98pxTpkxh8+bNzJ8/X4vMvYTxPCl3U5fLxdatW4Guu8KaNWuUwLxx40bC4TA2m43y8nIWLVpEZ2enSp7YsmVLgSWc0Z7UWN1rrHyQu04ikSASiRAIBFTvqoqKCpXBLAGqfD5PR0cHfr9frTPGtUt0FYfDUVBV2ltokVmj6UdIdF0ywZxOp/IJkwwv2CMcSkmX0ce2mGL/ZSjMlBYh2li+KuKeiEGyyIo/mcvlUhkIUspsbABkzKrWh7HDg0RuYU8JTzHGgzns21ogm83S1tZGe3u7mhtWq5VAIKAaG8jziLi8evVq9fPSzE0ykVpbW5k9ezYTJ05kwoQJrFy5kvb2dmpraxk9ejRms5ndu3fT1taGx+PB4/Gocvrise9v3D1FKpXiq1/9Ks3NzVx99dV885vf7NXxfFK6E2Tlb9PhcJBKpXC73XR0dLB06VImTpzInDlz2Llzp2pWVowcroyPbRSrRSS02WwMHDiQzs5OtmzZwvr162lpaSl4rJUrVzJjxgyCwaCydpESOOg6LGYyGdVo0hg000LAoUPWeBF2jN6YUFgO393PdrfHGF8fo6e7WPDY7XY2b96s+gAMHjwYs9lMa2srTU1NxONxlS0iGWpSpihCkFFslv+D3W7Xe08fRMRiyWgHKC8vZ9euXSor2WQy0draqhrGGZFAt3g5NzY2UlZWBqCEyL5wOTvSMIp4VqtVnTnE5kACWC0tLVitVk499VSy2Swvvviiylr2er2MGTMGn89HbW0tmzZtKtgrrFarsvcSj+/m5mY2bdqkvseYdSYWDFarlUQioWyWjI2LI5EIoVCIlpYWBg0apOw2tNB8+Egmk0rMkeopmR8NDQ20tbXt1cCxsbFRidLSLDQejxfYfRntVYwiswjNxj1JBCOHw4HH41GVFeXl5aRSKSorK7HZbEQiEWXZE41GVbajy+Xqtd+fZg+pVIo///nPAHznO9/pseedOnUqzzzzzF7VSpqew6hjyB7S0dGhqvC2bt1KZ2enEpul2imXy7Fw4UIAhg4dyrp166itrQW6ziI+n48NGzZQW1u7l6Yi1cF2u131iInH48qKKZPJ4HQ6KS8vJ5PJUFFRQS6XIxAIqMxlt9tNOBwmEong8/kIhUIqoSaVSqm7vdls7nU7uMMmMq9fv55LL7204ONnn32WCy+88HA9pUZzxCNioZSUitdxsdWFlCGLl60xg0su4sbvNf5rfC4RmCVbyHhgK24CZyyjhi4fRUBlMRc3KjRmT/ZVv6FSRTYi2BNNNZlM6vWRg7VcmKDrdZAycyGdTiv7CpkfdrtdZRavX79elfU4HA5aWlrUZmy1WhkzZgxjxoxRr6vYpyxbtoz169ezYsUKAI4++mhWr17Nrl27CAaDVFRUKDGxublZ+WvK8wMFgkNvb7TPP/8855xzDtdffz3nnHMOV155ZUkKGcbMUfnbFwFfKiDC4TDRaJSjjjpK2ZuIT7f4K8MeP3DYY6XjdrvVOrBjxw6g63VsbGzk3//+t8pug64MMq/XSzQapb29nfnz5zN06FBgj42P0b9VvNXMZrMKPuis1cOHHHAl8xS6ss2MjWSL96TiPUYERUA19wIKKl9ESAyFQtTU1NDc3KyE5erqauXjnEgkyGazOJ1OJTRLY0Dp3l3sB60bNvVNpOJKhJ/iIGJTUxONjY0Aas0xNh+Ws4mUube2thIIBJSVmJyJND2HrMlWq1WdO8xms8pODgQCKmA5atQo3G43Tz31FNFoFL/fz4wZMxg+fDhvvPEGr7/+erfVS9lsltbWVuW9KeTzeeWBuWvXroJsNOjKbpNztLFZlJQ+iwDd2tpKVVWVEjNFlNB7zKFDrNWg6w4h+0Nra2tBFrrD4SAYDNLQ0KDOErlcjpaWFiX2yr4gvv3FwnLxOdgoMounqsvlIhaLKauMZDJJdXU1TU1Nyr6nra1NWbjF43EVyNLzovd58cUXaWxsZNCgQVxwwQU99rziy7xgwQK11ml6DuPfs9wVoevsIIGoVCqFy+Vi8+bNdHR0EAqFaG5upq6uDqvVyvHHH88//vEP0uk0FRUVXHnllfz1r39V1ivQVSkTCoXI5XK0traSTqdpbm5WXw8Gg2rvSSaTeL1eQqEQ2WyW8vJycrkc5eXlBedTyW4GVPVuWVkZgUAAl8ulAqTSd6s315nDdnoeO3Ysy5YtAyAWizF8+HDOPvvsw/V0Go3m/0PEnGKhWTKcxa9HsjSKS5qLbTPEf6x4oZKyjGJvIKMo6XQ6Vcaj8RCXyWRUVppkBRg98IwClNFYX4QLvSF/erLZbEFZqmTj7K9hgWSdysE8lUqpJgfG7/H5fITDYdWMTQSlWCymLnYWi4VRo0ZhsVjYsGEDb7/9thqPx+Ph+OOPV1mpCxcuZMWKFVRWVjJkyBDq6urYtGkTwWCQ8vJy2tvblQeWXEZdLpcSoWRcvX2YX7x4Mddddx1ms5ljjjmGtWvXMmnSpILvSaVSBVmexqzs3kZEnM7OTjwej7IqkCxmu92uSrxEyDE2zRCKG3KJJY+sEeXl5QwfPpy6ujp27NiBxWIhmUwyd+5cVfEg5WQWi4UxY8YwaNAgnn32WZLJJK2trWo9kTVE/pWMd2M2rRaSDj/GrD9jYMW4rhv3jOKGSiLWGH27I5GIsjfo7OxU2emzZ8/eq5GkzWajqqpKHc6z2Swul0sFTERU9nq9KktFehaIeKT3m76FMSBhMpnU2i9WOiIwV1RUkEwmqa+vL2hcKgFrKWd1OByEw2F8Pp9qFGr0hdccfmS/lgbR0CUUSkDA4/GoAHVVVRXr169XmVyXXXYZLpeLF154gUWLFgEwYcIETjjhBGpqagBYt24dO3bsoLW1lWg0qmwTJCNMPDih68wwYMAAzGYzdXV1JBKJAuseu91OW1ubqsiTcmkRLKWqR9YQufhrPhvGhlcSPMrn8wVWbE6nk8rKSux2O8uXL1eBab/fz6pVq9Qe0NraqhpVS0NyucNIVYvsT/vCZrPh8XhUY2IRhhoaGhg4cCC7d+9m+PDhqkJv6NChak9Lp9Mq0UbTezz88MMAXH/99T0aUJ44cSIul4v29nY2bNjQYzYdmi7k79psNqu1Q4JNAG1tbZjNZtrb24nH45SVlRGLxairq8PtdvOlL32JX//616TTaSZNmsT3v/99/v73v/Puu+/icDj49re/zQUXXKD+5gEVxFyyZAlz5sxh9uzZqsG93+9XFVXpdFoJzBUVFXslYHi9Xpqamhg8eLC6I0lvioqKChwOh/q/dNdrqSfpkb+oV199lTPPPFM1ftJoNIcXYxm7HGgk4i7RueLuxxKtF2HwYA7FRuHYeOmT5l7FZe3GsUn2tDyflLNL2ZvR51O87iTaJ6K55pNTLLA1NjYWNDuRf40dtWOxWEH01YgEEsLhsPLCzWQyJJNJYrGYEgDy+TyBQIBEIsE777xTcHiXuRaPx5kzZw6bNm3i61//OpFIRPktXnDBBTQ3N5NMJtm5cyfDhg1Tl7l4PF4gnMv/UTz6eptoNKqywD0ez15Z/gD33Xcfd911V08P7aAw2vBIFL29vR273a7+7q1WqyrRku8zZgsYm+WIsAwoW4JUKsXu3bsJBAKsX78e6LoYfvTRR0BXGdr27duVXxrA6tWrufbaawvsGCQ4Jt7O8n7Z/5+98w6Pusr+/3t6r8mkJwQIvQiIItIXBESwYe+urmV1XcvqV5dVFGV1dXXVLXZdV11dEWVtiMAqUgUpUoVQ05Mpmd7L74/8zuUzkwQCJpkZcl/Pk4dkkkxumJtbznmf9zGbkwKTmaBw7wkIg8wAWNDY5/O18kc9FrQukeqEPOIp4NPY2AigRTlCr7XdbkcoFEJtbS2kUinMZjMLYlGjpng8znyayXNVmCwRNq/kZAaU2AZa1iay6VIoFEztqtVqUV1dzSqshCXvpEQMh8PsHER7nU6nY+pU7s/cPQj3CXpdgJbXk5LTVKEHtPyNkzp1yJAhUKlUqK6uxqZNmyASiXDNNddg2LBhiMfj+OSTT/DFF1+0Sj4JocSTWCxmgYQtW7ZAr9fjjDPOQEVFBVavXg2PxwOZTAav18vOHtS0ieaJy+VCQUEBC0BTQ9RMaC6a7ZCCmTz7ASQFmPPz82E2mxGNRvHDDz/A6/VCJpNh4MCBLAFpNBrx008/MRuUpqYmZpNDohkhtO/QOYX2sWAwiEgkAqfTCbVa3ary0ul0wmKxoKmpCSaTie151N8kEAjw/jNpprKyEmvWrIFYLMbNN9/crT9bJpNh9OjRWL16NdavX5/RQeb27P6y2QaQ9hhKUsfjcWYpSuuJ0WjEwYMHIZVK0bdvX3z00UeQyWS444478K9//QuhUAinnXYa5s2bB5lMhgMHDgAAKioqMGvWLPTq1SvpZ4rFYpSUlKCkpATnn38+/H4/PvnkE/zjH/9AQ0MD3G43ysrKoNPpYLVaYbFYYLPZkJeXx2yigBYhlVQqRW1tLfr06YPc3FzYbDbWg4Q+TyLCrAoyx+NxDB48GBdccAH+9Kc/sceXLVuGOXPm4L333sOll16a9D0ffvghrrvuup8/Wg6H02HEYjE70FBJqTBQpFAoWNCFMvqpUGCI3qd/6YKXGiikLuCp3U4lEkmS9zNZdQBgZWe0EMZisSR1MwWfKSBAvkMUQOJ0HKEVikQiYaVBVJYqVHu19b1C31RShFqtVvba+nw+BINBpoomW454PJ7k1wwAFosFw4YNQ//+/ZnScN++ffjss89QV1eHpUuXYvbs2Th06BC7+PXq1Qt79+5FfX09ysrKoFQq4ff7kxr+CEsaM0WpSk1hgJZAOjVsEPLQQw/h3nvvZR+73W6mwsoEqNSTgjRGoxFut5tZCpC6WNhVmQI3BAWA6e9bIpEgNzcXBQUF2LVrF9xuN2sKqFAomFdmSUkJtm7dyrosDx8+HDt27IDb7caOHTuQSCSYOlEul0Mul7NSZvoZ5FNP4+EBpK5HWF5O6zmVDBKUlKDAYWo1BX1MSS8qSSbvfqfTyRTsQ4YMQSQSwaFDh+D3+6HT6VBcXMxKCpuammAwGKDRaFgSRKVSIRaLsaCF3W5HTk4O5HI5s9jgZA6plQhCdSOddaRSKRoaGthe4PP52gwySqVSVuYuXKtofeb+zN2DsFk02XYBYBUyAFhDNwAs0AuAqb/27NkDABg2bBiGDRsGAPjyyy+xZMkSAEBBQQG7wCuVSthsNlRWVmLfvn1M+Z6K2+3GypUrsXnzZlx44YXYuHEjCxhTNR4JOWjPol4j1H9EeK7ic+nkEfbYIGW42+1mAaGysjJWbbd9+3Z4vV7I5XKMHj0a+/btY+cusssqLi7Gjz/+yPYAElFQhdSAAQNQX1+PZcuWtSmwKCwsxOjRo7Fnz56kniVUGUhe0SKRCHq9HhKJBPX19ejVqxeronC73dBoNBlzTu1pvPPOOwCA6dOno6ioqNt//tixY7F69Wps2LABN954Y7f//I7Snt1fttoACn31aW2muzHZu0mlUlYFMXLkSHYXmTJlCkpKSlhVzYUXXsj+fi+66CIsWrQIu3btwowZM9CvXz9MmTIFU6dOxahRo1rFK9RqNa6++mpcfPHF+Mtf/oI33ngDVVVV6NWrF7RaLbNfcjqdyMvLg8vlgkKhgNVqxaBBg+B0OnHkyBGMGjUKoVAIHo8HHo8nqXKmverk7uKEg8xisRgPPfQQfvOb3+DBBx+EyWTCjz/+iEsvvRR//OMfWwWY3W431q5diw8++KDTBs3hcDoGBdroQk1BIFKCORyOYy5CwiBBe1BZs9PpTLockDm91WpNslWQyWRQq9VJamS6yFM3cOCouoWyd16vFxqNhv0OmeBrlm2ZXKGqNBAIIJFIsBJjCh7qdDokEglWUirsvi2EFPJUSkrKQr/fzz4WKkzj8TgMBgN69eqFXr16wWw2Mz9UmgeDBw+GTqfD66+/jm3btmH8+PGoqKjAzp07UV1djXHjxmH//v2sySQpUSkRQQErAGn3ohIyatQofPfddxgyZAi2bduGhQsXtvoahUKR0eWTYrGYKTxJCazX6xGNRhEIBFgQgBrntBVkFlrv0OdtNhtkMhkr77JarQBaDn+xWAyFhYWoq6tDJBJBr169MHfuXAQCAdZ4g8qcFQpFUpCZPqYOzcLyOJVKxSshuoFUxSntESKRiFXWtOXdL+wDQG/CpkwAWHM3j8cDqVSKIUOGYO3atW0GjPLz8zFkyBBUVVXB5XIhGo3CbDYjFovB5/NBrVYnNWNqbm5GTk5O0hgyZS3pyVCCmuaAQqFgQSaZTMYafgnXKFLCisVitlYJfVvJe1u4v/l8Pmi1WoTD4YxontMWp5K6jNZmqVTKzhUA2L4AJDcAJZUWfQ0A1gi0uLgYQMtcWbZsGQDgmmuuwfTp0yESiXDo0CHMnz8/qfGwWCzGwIEDcdppp2Ho0KGoqKiAyWRCXV0dnnzySezdu5ftM/RzhdZwlOigxrMUHBD2h6B1L5P3+ExGKFCgvZv+tnNycphl0p49e+BwOCCRSDBq1Cio1WpWGTVq1Ch89tlnAFr2hGg0irKyMmzduhUAcPXVV+O8886DVqvFf/7zH7z33nsAAJ1Oh1GjRqGgoAAejwfr169HfX09vvjiC1x66aXYvHkzq45xu93MPsVms0GhUKCxsRH5+fkAgCNHjjArFrKSo2RXJlTd9RTi8TgLMqdLBEm+zOvXr0/Lz+8o7dn9dcQGEMg8K0Dab4T9QlIbTefk5LDAcmlpKdsvdDodAKBfv36wWq149tlncc4552Do0KHMuu/ll1/Gt99+i8rKSlRWVuLVV19FQUEBLr/8clx77bVJFoJAS9Ls97//PUaMGIF77rkHR44cwZAhQ5ivskQiYWcRSqwHAgGWxHS73VCpVKw3lpB0n1tPakW7+uqr8dhjj+HFF1/ETTfdhPPOOw/XXnstfve737X62v/+97+YMWNGVmQ3OJxTEaEfEC2ukUiEdVOVy+WslJ8aYVBQkS7XQgUiBYlIuexyuZLUJrm5uWhqasLOnTvbHE8kEklq4KXX65lyiBZ8g8HAgsmkMhOJRPD5fNDpdGxsbTX96U6yNZMrvMiRikuhUKCoqAgHDx5sFaihcmMKOAubKEUiEdapOxQKsQQGBZ2Fl34ArJmfkLy8PEyaNAkzZsxAaWkp+vfvj3379mHbtm0YPHgwdu7cCbvdDrFYDI1GA7fbjUAgwC5sQqW+sOw2U7j88stx5ZVX4q233sKNN96YFXOkLSQSCTQaTVIDT7K0Se3ILrwUAkgK1CkUCpjNZrhcLjQ0NKC5uZnNF/IQq6urA9DiXffWW28BAObMmQO3242PP/4Y0WgURqMRoVCIVTooFAoolUpWGWE0GpNUsxR8TvfBqydAAUGgZY5QlQMApsYQBpFpXTlWUpNsleLxOJqbm9m6VVFRgWXLlsHv90OhUGDEiBEwGAyw2WzYuXMnGhsb4fV6MWfOHGzfvp01BiwoKGCly9Q8lALNqdURPCmRHmifp/2HEhD0OlGSgs4jlDSlqiqg5Yxx8ODBVmsSlazTmYKgc45Wq0UwGGTWXZnEqaQuE1Y7kL2J8NxKnwOOvjZCezYg2dMZaJkX9PpPmTKFJRxuueUWOBwOqFQqTJ8+HZMnT8aoUaNaNTUGWgIN1157Lf7whz+gqqoKAFolTemxcDgMvV6PQCAAn88Hh8PBEumkvic7qUybS9kGJanpvkBBm8OHD7Nzw7Bhw6DT6bBz5044nU7IZDKUlZWxuwe9BgaDgYlZLrzwQnampHOqVqvFF198gdzcXPbz/X4/Hn/8cfz3v//Fhx9+iGnTpuHQoUPweDyQSCRQKBTsZ1qtVuTn56OxsZE9R01NDbv30JnJ4/FALpcz2xZO17J69WocPnwYer0eF154YVrGQEHmnTt3wu12t1nhmAm0Z/fXERtAIPOsAIVJTQrK0rou3GeETUX79++PPXv2YOnSpbBYLPjVr36FhoYGHDx4EJ988gk++eQT9vxKpRKTJk1CLBaD0+lEZWUlGhoa8MILL+CNN97Avffei2uvvbbV3/msWbPQ0NCAhQsXor6+HoWFhcz7n2zbQqEQpFIpvF4vcnJyWNKdnkvYP4d+j3RyUrdwqVSK//u//8Pvf/97LF68GKNGjcKLL77Y5td++OGHuOWWW37WIDmcdJCNipBUKDgIHFVeUBYMaFkMKaAjVBufKGKxGGazGSKRCLt27WLPn5eXh+LiYgSDQTQ2NrJLnUajQSgUgsPhYCVvFouFKUFcLhfUajUMBgPL5tGCT4EE+l3SefnPtoZuwg2HNiEKwuXm5qK6upoFmC0WC5RKJWpqalBfX58UdCElMXkhx2IxeL1eFmgWXsRIsUqNIIVq9UgkArfbjaamJixatAjr1q3D7373O5x22mnYt28fdu/ejTPPPBMAmN1EakNI4WNCa5d0b65ClEpl0iEkmyE1llwuT+rATk326JKW2pwrHo+zBo1ks0KXQ/r7EFpZJBIJqNVq5ObmsmqMt99+myXHyFdeJBJBq9Wy8mTyYhYGDbJBvXwq7DcE2TDR60nrBVnz2Gw2Fkgi31Lh95LynNYOuoin2vkYDAaIxWJ8+eWXiMVisFgsuPDCC5naBABGjx6NxYsXw263Y8+ePZgwYQK+++47diEib1VqxBSJRJjPr1qtZmPI5LlzKiFsIiy0USGEDYXtdjs7Awg9FoGjqliDwYBDhw4hHo+juLgYFRUVCIVCqKmpYRUSzc3NMBgM7PuF/vEqlYqdZzIpOPhz1GWZdCZJtfAS+mtTAIDWeSGkEhb+HkLoeWhPAFruow6HA3379sU//vGPpMBhe9DzU6UXrQOU1KaxUCA5JycHdrsdLpcLkUgEFosFCoUiqfKLN5U8cVLPrjQ3KGjvcDiY8nDgwIEwGAz47rvvsHv3bgDA6aefjs2bNzPfdbJZicfjKCgoQENDA9544w3ceuutkEgkuOSSS/D555/D6/XikksuwTPPPIMzzjgDQMuesXDhQsjlcixatAgrVqzAwIED2XmW+k6QjVNTUxMsFgusViv0ej3UajWzcDKbzcy+iUQc3EKj6/nXv/4FALj00kvZ3bK7KSwsRK9evXDkyBFs2rQJU6dOTcs4jkd7dn8dsQEEMs8KUBiAFfaUEf5rtVrRp08f1NTUYN26dbjgggtQXl6Ow4cP4+WXX0Z5eTlmz54Nj8eDyspKVFVVoampiQmshPflXr16QS6Xw263o7q6GgsWLMDKlSvx3HPPtdqDrrnmGjz33HNwOBzo3bs3QqEQEwXq9XoWZBaJROwMq1KpWCUPNUMVWlClk5P+6VdffTXz3Xz//ffbPIC7XC5s3LgRM2bM+FmD5HDSASlCVq9ejUWLFiUtGtkCXdSpgZHwoi6TyVizNmHHZsrueb1eNDc3w263w+FwwOVywePxMEUaKU7IomDfvn3YunUrU4OdccYZ6NWrF9auXYsvv/wSmzdvxu7du/Hjjz9i3bp1aGpqwtixY1n3VavVioaGBhQWFkIsFsPv98PtdkOtVgMA81ONxWKtVC7poqMN3QwGA3tL5+Yq9FRO/T8UiUSor68H0GJbYTKZsH79ehw8eJCpuWKxGKxWK2pqatDc3MwCxFVVVbDb7fD7/XA6nbDZbKitrWWv944dO7B9+3b88MMP2LNnD5xOJwoKCjB37ly8+OKLuPXWW2E0GlFbW4snn3wShYWFkEgkcDgc7P+USuXpwk/+h8LfRXgB5HQtpO5TqVTQarWsyzo1sxFWQJA9AiWdJBJJ0lqUmiygQDUpF6dOnQqxWMwCzHl5edDr9ZBKpVCr1VCpVFCr1VCr1WwcdFikpFamz4mO7DehUIgl5YR+lJkEWeaQVUooFGJe3nRYpvfJukImk0GhUMDn86G+vh5WqxXNzc1wuVxwuVxobm5mHzudTrhcLjQ1NWHr1q3YvHkzYrEY+vbti8suuywpwAy0XITGjBkDAGhsbIRGo8GIESMAAFVVVejTpw9rPEmKWWH/ACD9vnanOhSA8/v9zKaJ+kTQ+YXeKChcU1PD1n+z2cwuu4TwIklVD+eccw4aGhqwZMkSbNq0iVXHUM8AUqGSBVQgEGBrFPWuyJS58HPUZZl0JhGe4UQiUZLKTHg2EVYt+f1+lhQge6VU6PcWNpzftm0bAOCqq67qUIAZOFrKTudQurST57/wZ9hsNhgMBlgsFpZAq6urQzQaTbKHy4S7RCgUwgUXXIBx48bhtddeS/dwjouw6Z6wUopeD7LEKCoqgkqlwqJFi1iAuaKiArt27cJXX30FAJg4cSKbH8Kmb1999RUeeOABbN68GSNGjMA777yD8vJyNDU14eabb8bmzZvZeMRiMebPn4/LLruM2XSQhz/tWaRo9/l8aGxsRDQahdvthsPhYJUXdrsdjY2NLHFGjbaP1aiS8/Pw+/1YtGgRgPRZZRBjx44FkNmWGWT3l0gksG3bNgwYMOCYj6eiUCiYcl9YuZxuhBVKlGgIBALMBtDr9aKoqAjhcJgJaseNGweJRILDhw/j008/xTfffIOamhrIZDL06dMHw4YNw/DhwzFixAiMGDEC/fv3h1KpRDQahV6vx+jRo6FUKrF27VrMmTMHa9euTRqTMKlOydG2zhy0P1KvKrJj0ul0STaF6b73nHSQ+c477wTQsqm290sYDAY0NjZmpJ8Zh3M8Nm/ejPHjxycpQlLJ5Es/lSDTv3RBA8CCulQ2rFarEQ6HceDAARw+fBiNjY3sYu9wOGC1WtHY2IiGhgb2Vl9fj5qaGlRVVaG2thZ+vx9isRhFRUUoKyvDjz/+iEWLFqGxsRFSqRT9+/fHqFGj0LdvX0gkElRXV2Pz5s0YMmQIzjrrLMjlcng8HjQ2NqJPnz5MTUZNvYQL7fF8oruLjjZ0o2CJy+ViXdHTBQXfaN2mwB4FhkQiEUwmE1avXs2UOKeffjprMuDxeBCNRuF0OlFXVwev18u8Lvfv34+DBw8yRXSqyigej6OxsRGbNm3CO++8g9/85jc477zzsG/fPjz88MPMamXRokWsMy+VqQJgymmRSAS5XN5K3Uy/UyZZZfQE6AJI5Z5arRZarTZJPUwqZqlUyoIg7TWapAZ/0WgUy5Ytg8FgwMUXX4yzzjoLvXv3hlQqZY11NBpN0r8KhYI1viD7jGywx+jIfpNJwaG2oHWAkoGkECYFHzUCpUAe0HK4b2xsxIEDB9Dc3Myew+l0ora2FocPH0ZtbS0aGxthtVrR1NTELFbi8TiKioowe/ZsnH/++W36nYbDYea5ST7LFGAKh8OQSqUsYEUBC9prKJCR7mTmqQop3j0eT5K9EtkxeTweOJ1OuN3upD1U2IDUYDCwuUDNP4Gjr6Ww30MgEMC3336LRCIBuVyOYDCI2tpa9nq7XC5mn0IVVD6fj503QqEQ/H5/Rpw/fo66LNPOJMDRBLiwUolsPijhQH+/+/btQ1lZGQDgp59+Yokq4OieQhVZwmAync/z8vI6NKbq6mp88803bAwAWDUW+e4CYOuH3W6Hx+OBTqdDUVERE2yQnzN9vdBbPl1ko4iGznVUbQKANdDzer0Qi8WwWCz49NNP4fF4oNFoYDAY8O2332L37t0Qi8UYNWoU9u/fj8WLFwMAhg4dijPPPBP33XcfVCoVKisr8dhjj+H//u//kJubi8WLF2Pq1KmIRCJ4+umnk8ZDgWYKUtfW1sLr9bI9zu12w+/3s+bUNpsNSqUS4XAYdXV1zBYwFAqhtrY2qcqP7j6czmfJkiXweDzo3bs3xo8fn9axUJB5w4YNaR3Hsbj88suxfPlynHnmmZg7dy7++te/Yvfu3a0ez3RbJkJ4NqAEIVUQxONxJmAhy6Py8nLE43Fs3rwZjY2NmDBhAsaOHYt+/fqx/ZXOux6PB263G06nk/UgKS4uxogRI5iH8oABA1BcXIympiZcd911+OUvf4n3338fS5YswU033YRgMIiioqKkfhP0f5sqfMjLy2Pe9CaTiVlOAWCK53RyUjfxhx9+GF988QU2bNiAadOm4Y033sAdd9zR2WPjcNJKRxUhmeQ1JIQuV8KLG2G32wG0XPD9fj/27dsH4Khvs8/ng8vlOu4hR6hWpJ914MCBpK/p06cPJkyYkKQoWbduHbZt28bGYTQaMXz4cPzwww+or6/HkCFDYLFY0NjYCKfTCYvFArfbjVgsxjJ46S4DAbKzoRtZDwitJYCj6ppEIgGbzQa/3w+5XI5f/OIXeOmll+B0OqHValFSUoLly5cjEolAKpWiX79+WL58OVMU5eXlYerUqTjjjDNQUVGBvLw8lsl1uVxobGzEoUOHsH37dnz77bdobGzEc889hx9//BF33nknFixYgHXr1mHu3LkAwDz2RCIRmy8mk4mVB5FyVlhSy4PM6YfWBZpv5PVOdhbk5S6TyVhFBAWkm5ubMWDAAPz444+w2+1YvXp10nOTNzRd+DUaDbPPoI7u5L+cLXRkv8m0skMhFDAEWvYB8ooLhULM7oLeB1peQ6/Xi5qaGgBgauK6ujpmUSFsKNqeX3NdXR2OHDmCoUOHYsKECUlBtVAohI8//hj19fVQKBRM0UxBNVKPkRCCyieFQWahz3u6OZUsVSjpRMTjcRbYTbXMSG0gKkTY36GgoACNjY0AjiqTaM6QXRfxy1/+Evv378eKFSvQ2NiI0tJSdvaRSCTMa14qlbKydlJVU9PZdPq7t3f2yLYziTCoTMF/oEVRlpubC4PBAJfLhcrKSvTr1w92ux0HDx7EyJEj2Tq5ZcsWZr1E1Vg2mw1Ai+0XQWdQ8mo+FpFIBAsWLEAsFkP//v2RSCSYTRT932m1WjanyA5h//79GD58OOtxUVNTg3A4DK/XC51Ox3qNRKNRbvV2gshkMlY+TvOEqhCAliTi+vXrEQ6HYbFY0NDQwM6PJSUlcDqd+PLLL9nzjR07FlOmTAEATJo0CcOHD8fHH3+Mr776Cj/99BN+//vf469//SvmzZuHlStXYseOHYhEIklWFiKRCPfeey9kMhleeuklWK1WNjYKKjkcDuTk5LB1Q6vVwmazobq6GqeffjoOHz6McDiM5uZm5Obmwu12M3VipvydnkqQVUZbvrjdDfkyb9iwIWMbDB/L7i8bbQDpThIOh6HRaJi1EdlRRKNRWCwW2Gw2eL1eSCQSnHHGGTh48CDsdjsOHTrEnstkMiE/P5+dF6jxONkJHjx4EHV1dXA6nejVqxd8Ph9qa2thMBiQk5ODnTt3YtWqVVi1ahV7ToVCgf79+8NmsyEnJ4edRwC0SqQrFArWeN1oNCbFejLBcueE/7pef/11PPvss/jss89w2mmn4e6778bTTz/NSzs4pxzZqgghqOxC6GsoFovZpcxoNMLhcKC2thZAy0ZitVpRW1sLp9PJLvqk1rbZbGhsbER9fT3q6+vR0NCAxsZGNDU1oampCXa7nWXxtVotBg8ejIsvvhgzZ85MCjDv3LmTlS0Ky2voMEubrFDtSIfx1CxeujfkbMzkkpcg+cZRQNbv97OSUArmUlmQ0+mETqfD9ddfj//973+IRCIYNmwY5s2bhy+//BJWqxUlJSV45pln8PXXX2PevHmYPn06+vTpA61WC6lUCqVSifz8fAwfPhwXXHABHn74YXz99dd4/PHHIZfLsXLlShw8eBADBgxAIpFg2VkKtmm1WqYIMhgMzDqBxk+HcZlMlvZ5wUmGDmBAy98zXcKETT1JHUZ2B1VVVSgvL0dpaSkMBgOzwyA/RbVazRTTarWa+TDTvM62y1lH9ptMLTsEwM6A1PgzFouxfwOBQJICNBwO48iRI2ydAYBDhw6hpqYGoVAIXq8XtbW17JBPz0OBKJlMxg7QsVgMdXV1+Prrr/Hkk0+isrKSPefy5ctZgPniiy+G0WhEdXU1duzYAaClQ7hIJGKBIpqjqetHpijKslF92BbCALNIJEIwGITL5WIKYp/PxxSAPp8PXq8XXq8XHo8HHo8HXq+XqQOj0SjkcjmKioqgVCrZa0meqz6fDyaTCbFYDLt27UJ5eTkA4D//+Q+KioowfPhwAMnlsjR3hQ1sm5uboVAoktYxocq5uzlV1GVC9XIkEoFKpYJMJmNVT+Xl5Swh1dTUhN69ewNosb4YMmQIgJYADamcd+/eDY/Hw9YHOicALapVAPjggw+SEg6peDwe3H///diyZQtLXgJgexUpxCiwHQwGUV5eztTxFOgWVkmQtYtw3Uon2WarAhxdn1ODcfRaisVi1NfXM9/2uro6qNVqTJ8+HT/++CP279/P1MwPPPAAbr755qRAv8lkwk033YSXXnoJxcXFcDgcWLVqFbubyOXydhMDd955JyZMmJBk50dNiYGjVTR2ux0DBw4EANYokNT2fr+fJciB9M+RU5G6ujosX74cQPqtMgBgxIgRUCgUsNvtzPKF07VQJSTQsnbk5eUx209q1gq0/M0ajUZmE1lcXIxp06bh9NNPR0FBQVL1DAnzKIZy6NAhVFdXIz8/H+eeey7y8/NZ5Vzfvn2ZTVdFRQUGDhyI8vJy9OrVC0OHDkW/fv1gs9mYjRzZDVJyWKfTQSQSwWg0sn3FaDQyS0sSRWRCkPmE5F5Lly7FHXfcgffff59lX37zm9/gz3/+M9555x388pe/7JJBcjjpINsUIceCFh0KOisUCsRiMdjtdkgkElgsFuYJpdVqUVxcjO3bt7MA9IlCTXUcDgfGjBmD4uJiAC1KiDVr1gBo2VyHDx+OQCCAffv2McUBHWTpYNeWkiy10Vu6yNaGbuRnTNlWUtcolUrmqyyRSBAIBJhCWafToaamBsFgEAUFBbjvvvvw+eefw+l0oqSkBB999FGbHdqPhUQiwUUXXYQ9e/bg3//+N7Zu3cou+6ROiUajkEqlrDmKQqFgAQo69JM9Aj3GyTxkMhkrExYqnNVqNTweD8vQJxIJ6PV6ViIPtF5n6WOVSgWlUsksOkjVLpwP2UJH9ptMhi7EVDkTDoeZGjkSiTBLlerqahYwlsvlrMSYkpoNDQ1svc/Pz4dWq0VtbS2qqqpgtVoRjUYhFotRUFCAIUOGYOzYsdDpdPj2229RU1ODV199FXfffTe0Wi327dsHkUiEiy++GIWFhThw4AALMJeWlqJPnz7MlgFoXeVBZEqQORvVh6lQEgJouew5nU7W6DEYDDIFH/mxk80XzRkKSpK6h/o3kHIVaDkX5OXlsSZsRUVFcDqdOHDgAAYMGMCswEjRBhxtJGq321lwiCpwQqEQxGIxrFYrUy3RWCk5292q1FNFXUZBNZq3UqkUeXl5qKurQzAYhN1uR//+/bF//34EAgH2t0+2bUVFRairq8OWLVvY+x9++CGmTZsGAPjxxx/x6aef4rzzzsPll1+OxYsXY9euXbjyyitx/fXXY+LEiSwAaLVasWLFCrz99tuwWq2QyWSoqKhALBZj1TL5+fmQSCQoKSlhAXyq6iorK8P+/ftZ0h1AK4GEULmdTjoqosmkyhkK8NM5gt6n/YLWFY1Gw2zWZs2ahTVr1iASiWDgwIG48cYbj+vHnZubi9NOO40Jbn744QcAwJAhQ9q9c4hEIpx33nnMZo4SJZQEo8o7vV7PlJAajQZisZhZvGTqvnMq8d577yEej2PcuHHo27dvuocDuVyOiRMnYvny5fj8889ZAoLTdZCohc6dkUgEhYWFaGhoQCwWg8FgYIlupVKJ3r17o7q6mlmiyuVy9OrVCwMGDGC9ZWgdojOLx+NBbW0tHA4HHA4H8vPzUVxcjK1btyIWi6GwsBDhcJgJLVLvzhqNBnq9HnK5HGazGTKZDHq9Pqk/AY2Tvh5Akoo5E+5AHQ4yb968GZdeeimefvppXHzxxexxvV6P3/zmN3jqqadw/fXXp91kmsPpLC6//HJceeWVeOutt3DjjTdmvCIkFeECQ4cVCgQID2EVFRWsVGPgwIHo3bs3Xn31VXZwHjBgAMrKyqBWq/HTTz9h//79aGpqQiAQYOXEVAJP5cfxeBw2mw02mw3r1q3DmDFjcOGFF6KqqgrxeByFhYUYO3Ys6urqsHPnTnZILC8vR79+/RAOh1nZK5WwpP5OQPqDzNmKsPyGDsN+v581s4lEIjCbzazJn1gsRl1dHQs42+12VFVVMW/Duro6/PnPf8Y555yDAQMGICcnp8Mb3LZt2/D1118DaMnGbty4kf0M8pcSlghptVpmlyKTydj8I+9uPicyE6GHInA0oCeXy5mKoKSkBNXV1UgkEuzQRRdKYWCJlPHkAa3RaFhygewyso1s328IYQVNJBJBJBJhf6OkMtbpdEllhzKZDDabjSWWBg8ejEGDBuG9995rU90Tj8dRV1fHVElDhw7Ffffdhy+//BL79u3D22+/jcsuuwxAi6KVLhAUYO7bty+GDh2KWCyGgwcPAmhZe1KbjmXaPMp2Cy/gqGcuJTEpgExe3tQ8i4LOx6uSpBJVsVgMqVQKnU7HurmXl5fDbrfD7XZj9OjR2LRpE/bu3Yv+/fsjEAhgz549iMVi0Ol0OOuss3D48GHY7XammKcqKgpmiUQiNDU1oaCgABqNhvUxCAQC0Gg0GTdfsgW5XI5IJML+L9VqNQoLC9HY2IhIJAKHw4GysjI0NTWxhFBubi5sNhvEYjG0Wi28Xi80Gg2kUin27t2LYDCIadOmYcWKFVi0aBHWrFmD6dOn45lnnsH8+fNRXV2NJ554AsDRC7qweWROTg5yc3OZKIOCzMTpp5/O1g5aq9vqNUDPmapOTfc5JVtFNNQ0OBaLMZEEKZxp/aazLABW7g60BKGPHDnCmnpWVVVh7969OHDgANxuN3JzczFjxgxMnjyZKQQ1Gg127twJoOU1PxZkO0jjoLuQWCyG1+tljYpJvNOvXz+43W4WaCLVu/D7OZ1HIpHA22+/DQC4/vrr0zyao1xwwQVYvnw5lixZgt/97nfpHk6PQCwWQ6PRsP4O4XAYhYWFaGpqYtXYCoUCzc3NCAaD6N+/P8LhMKqqqpLiE+0hk8kwZswYRKNR7NixgwlmBg0aBJfLhdraWiaUoXNOIpGARCJh665EIoHBYIBGo4FOp2PVnGRFSH2JqMIq06wygBMIMp9++ultHmgBYMGCBViwYEGnDYrDyQSyVaVKkDqVfJNJKQa0HIJpMSK/VJVKhUmTJuGll15CJBJB//79ccUVV0Cv12PPnj2YP39+klroWJSXl+OMM86AWq3Gzp078f333zNVM9Dyf9vc3Izt27cDaClTGzRoEFQqFRoaGthFTy6Xw2g0sp+b6iOc7oN6NkNqdqVSyS5SoVAIOp0Ozc3NrDwnFAqxhnzr1q1DaWkpu6DNmTMHc+fOxeLFi/HRRx/ho48+Ys9tNpthMBhgNBphNBphMpmg0+mgUCgQjUZhs9mwY8cO/PTTTwBa5szu3bsRiURgNBohFouTbBBoQ5ZIJKwckg4KpHDLtAsR5yipSi7hv2azGTabjdmwHD58mCkwhQ0qhUFm8scUBphVKlXWrgnZvt9QokAkErVqnGc0Gtla36dPH2zevBnNzc2QSCTIycnBli1bEIvFoNfrcfnll8Pr9eKRRx5BOByGSqXCjBkzMHbsWJSXl0Oj0SAQCODIkSNYs2YNvvrqK+zcuRN33HEH5s2bx2ycNm/eDKAlMBuPx1kjxd69e2Po0KEIh8OorKxEMBiETCaDxWJhzcJov5RIJBmlJstG9WEqqZ7ciUQCoVCIXZBIEUSfA1ouTNREKx6PQyaTscAyBZqAljUiGo3C7/dDIpGwYF8oFMKgQYMgFouxceNG1NTUQCqVYsKECcjPz0dZWRmkUilLgtCeQmMRKvGj0ShTNKvVanZJFfrEck4MKgcmSx2fzwe1Wo3i4mLWH8Lr9cJkMjFbN6lUynoz6PV6RCIR+Hw+5OXlwWq14siRI0gkEujfvz+qqqpQX1+Pt99+GxKJBBMmTIDP58PevXtx5MiRpAbCxcXFLFhMzf30ej1UKhXzVB4xYgRqampYxVdRUREAMIsvCkb7/X5m5aDT6VgwA0h/34hsTWrSeSAWi7E5Q4/Rmuh2u5mVyYoVKzBlyhTs3r0bhw8fxj/+8Y92n9tqteLdd9/FoUOH2GtYW1vL/q4rKyuT7L6IRCKBzz77jFVG0BmVxDdarRZisRhlZWUsoDxo0CCIRCLWk8BgMLBmx7Se8fWkc9m6dSt27doFhUKBSy+9NN3DYZx//vm48847sW7dOjQ2NiI/Pz/dQ+oRSCQSdqYia9CCggJYrVYEAgHIZDJWNdPc3AyZTIYRI0ZAIpEgGAwiFAoxMQKdF/x+PxwOB4LBIKvOHjVqFAKBALZv3w6fzwepVIqioiLmL08+0ABYbxoSz0gkEuj1ehiNRtY0XSQSIT8/nyVcab+iQDWQ/v2FyIxRcDicTocOXuS/S0ocoCW7r1KpWAdkQiQS4ciRIwCAuXPnQq/XIxqN4tFHH4XNZkN+fj6mTJmC3r17M1+gQCAAh8OB6upqVFZW4qeffsLhw4dx+PBhlJSUMB/fyspK5rdKzd8AoKioCEOHDkVDQwNTVwMtF72ioiKWAZRIJEytJPTF45wcwosdeTHTBkXNdqj5IpXuuN1uSCQSGI1GOJ1OLF68GDKZDDNmzEBTUxOqq6tZuTF5dx8PiUSCiooKljWmS51UKmVlQmazOWmDVSqVTBVCZHOAsSdASS0K3Akv2zk5Ocx/t7CwEEOGDIHP54PD4WA+72KxmF3cSMGu0WhYWRg9zkkPUqmUBeNoXaYgMwUMjUYj7HY7mpubodPp0LdvX/z3v/8FAAwbNgxXXnklmpub8bvf/Q7hcBhjxozB//3f/zF/XUKr1cJisWD06NG46qqrsHDhQvz44494/PHHceedd2L58uX4/vvvUVpaytQntI8MHDgQwWAQe/fuRTQahUwmQ+/evdnln/Y8AK32zXSTrepDIalVVaR6J29mAKz5X25uLkKhUKtmwmSnAbTsYzqdjq0PFKAWUlJSAolEgsGDBzNrMPLA3Lt3b1IAGQDKyspw5MgRNn9pnoRCIahUKoRCIbhcLhiNRmb1QGXxnJNDIpFArVazRAIFmvPz8+H1emGz2ZidRnFxMVOC0VnEbDbD5XLB7/fDZDIhGAzC7XbD4/HAYDAwtXQgEGCJbbVajQEDBjABhrASisZDCma9Xg+ZTIa+ffuiubmZ9Tg544wzoFQqUV9fz3qy5OfnIxKJsKSVwWCAVCplwWw6x6aTbE1qClXLWq0Wdrsd4XCYnVnz8/PhdrvhcDhQWFiI+vp6LF++HMOHD0csFkN9fT08Hg8UCgUKCgrQr18/9O/fH7m5udi0aRMWLVqEtWvXMruT5cuXY+rUqZBIJFi1ahWmTZuGCRMmoLS0FGKxGI2NjdiwYQO7zwgVhySO0Gq1TDgBtFTqJBIJNj+MRiMKCwsBHPXupiQap/N45513ALQoh41GY3oHI6C0tBSjR4/GDz/8gM8++ww333xzuofUY0hVNAcCAeTn58NqtbLHSkpKYLVaEQqF2BpPVb905qCKBb1ej+LiYkilUhw5cgR1dXWora2FRCLBuHHjWAVFY2PjMe8r1GBWp9MlJaskEglLdpLHs16vZ9VgANLakDgVHmTmcE5RRCIRZDIZOwzTgUUulyd1LXY4HJDL5QgEAjh48CArw7VarcjJyUFtbS2sViuUSiXefPPNpJLBtnC73VixYgXef/991NTU4Nlnn8Wdd96J//3vf9i6dSvKysrg9/vZpb6oqAhVVVVJDd5IheBwOJhKlQ6XwksA5+dBamEqUQWOKkxNJhNcLhcKCwuZTYZcLofD4YDJZIJMJoPX60UgEGCH5dLSUhQXFzNFGpU10uUdONq0hZTq5KULtLz2OTk5kMvlyM/PZx6IpGgnn0yySaB5TTYtnMyDAsoUZJbL5aybMyU66HDmdrvZZU04ZyigTAFqkUgEg8HAPqYSM076oCSg0NeY7G7o8CsSiXD48GEAwOTJk/HPf/6TvX/hhRdCJBLh5ZdfRjAYxIgRI7Bw4cLjBmPy8vLwzDPPYN68edi0aRP+/e9/4+yzz0ZlZSVCoVCSTQc1Ot21axei0ShUKhXy8vLQ1NTEGgpKpVJ2eKeAaKasLdmqPhSSWlWVqhRXqVRobm6GXC5HWVkZvvrqK4hEIowcORK9evWCVCqFx+NBQ0MDa0qb6jtNDXOUSiWMRiO0Wi1LplosFsyZMwe1tbWorKxEXV0d81SUSCQYNmwY+vfvjyNHjrDHyGec/hWJRHC5XMyegYLMqQ3JOCeGMNCcSCRYoFmn00GpVKKhoYGptSjQrFQqmaLZbDZDoVDA7XYzSyW/38+SlEDLGYPKk8nShz5HZwmpVAqVSsV6QWi1Wmg0GpjNZpbcsFgsGDRoEEKhELZt28YSJBaLBUajEXV1dYjH4+zsQsFz8gPl8+TkINEMJaZovuj1ela1Qt7cEomEWSWReEYqlaKiogImk4l5qdO8Ovvss2GxWPDqq6+ipqaGnUlWrFiB8vJy1NfXw2aztRmcF4vFrGKPVO8UXKaGvSKRCP3790ckEmHB5IKCAphMJohEIqbkp3MRp/OIRqN4//33AWRGw79ULrroIvzwww947733eJC5m0kNNPv9flgsFkgkErjdboTDYRaToCbEwooDIdTEGGjZC8rLy7Fnzx40NzezNUitVqOiooL1IaCzECW7qTEhrQMUZKZmswqFgu1pBQUFiMVibD3JtLsQDzJzOKcwUqkUsViM+e6GQiEolUp2UKYDWk5ODurr67F69WoMGTIE33//Pf773/+irKwMOTk5kEqlCAaD2LRpEyZOnHjMn6nX63HxxRdj+vTpmD9/PrZu3Yp///vfmDZtGnbu3IlgMAiNRgOPx8MCnF6vF2KxGKWlpazskaBFlwIYFFjMlIt/tiMMNFMgj8qBzGYze23IU06j0bAyUa1Wy4JIoVCI+bHG43HW5fZ45ebCjrlkiWGxWFgASKVSwWQysYsfBQ9IvSqXy/mFLUOJxWIIBoNMtSiXy5m6DAC7XPl8PqhUKng8nqTSd7VazVTtbrebBZRJ2Sq8kPE5kF7IroZsJqjRIzVIA4Dm5mb2OrlcLni9XohEIsyZM4c9Tn6VkydP7rDaTy6X45FHHsGNN96Iuro6FnxtbGxkScycnBwkEgk0NjaykmedTsd8oGldob1Rq9UmeTRnAtmqPhQiVAwDrZXN9DmtVouGhgYALRYnp512GvserVbL1OxutxtNTU2w2+0seUXd3qlZ3/79+wG0BHQGDRqEXr16oaSkBCUlJUk+0Gq1OklxCgDFxcWoqqpiZyev1wuDwYB4PA6n05nURIwHmX8+lFAMBALs8kyJ5eLiYjQ2NrLXq7i4GA0NDRCJRMjJyWFnFQoYhEIhJrSgvYgEFjTfhGcUUsPT2Ya8LqnZIz13nz59mN0OQQprpVKJuro6lrTKy8tL2gPJU5Nz8iiVSvb65uXlsV4v+fn5aGhogFKpZJ7eVFoOtOw5gUCA+fm3RUlJCWbOnInvv/8eDQ0N0Ol0LPhUWFgIv9/PXk9hgpsSTlT1ZzQaYTabodFoYLFYIJPJUFJSwtYnuu+QHziV3wN8jnQFK1asQGNjI3JzczF9+vR0D6cV1157Lf7whz/g22+/RWVlJfr165fuIfUoaG2nZoA+nw9GoxEqlQp2u52dS6hCQVhZTVWUpIR2OBxwuVywWq2w2+0oLy9Hnz59UFNTA6vVmqR8pruLsEITONo3idYBsmyi+7VMJkN+fn5SI2XaOzPpDJIZJ2cOh9Ml0OJFixJd9im4rNPpEAwGIZfL2WNisRg6nQ5WqxUvvfQSrr/+elx88cX48MMP8fjjj+OGG27ApZdeetzSUK1Wi8ceewzXX3896urqWCbQbrcnqWcp4ESdUmmMFOykg7+wlJGXpXYuFKgjdSltdnQYpuAuJQfkcjlMJhP8fj/8fj/zlkqFGijRxkgXOvIJp9eXfgZtpFqtFmazGUqlkpWaqlQqKJVKdvEjT2ZOZkGKv3A4nFQSLxKJkg5rNJeqq6uTmiEVFhZCqVSywxcFj4CWQGBOTk7Sc/MLWeZAazb5rtMBHDi655DKYseOHVCpVAgEAlizZg0mT54MoMU2Y8uWLXj55ZcRj8cxe/bsDq33Op0O1157Lf7yl79g8+bNqKioQFVVFQKBALM2AMD8/ZVKJUKhEEtmAEeTFjqdLsk7mCc0Ow+ynaAgHAX46F/aR6jpHoAkW6Tm5mZ89tlnzMu0I1ATnXA4jPr6euTk5OCss85Cfn4+EokE9u7dm+THTWMwmUwoKipCQ0MDwuEw80yleez3+5mdCu1xfC36+QgT35SoikajUCqVKCgoYJf4aDSK3Nxc+Hw+5tlM6jBq3kk+yBRgJuUYqZjJd5vs1yhZRmMoKChge1avXr2gUqmSepPodDqYzWbI5XJ4vV524VepVMjJyWFzndYZvpb8fGQyGauYCYfDTNUOtFS2UDKzpKQEXq+XeWXn5OQgFotBrVaz86RUKoXf70djYyMaGxtRU1PD1pbi4mJ4vV6WvIpEIiyRSlCgSSaTMdW7Wq1mAea8vDyo1WqW5KQqmbKyMiiVSpbkogAzJVQ4ncu7774LALjiiisy0lattLQUM2fOxNKlS/H3v/8dzz//fLqH1OOgJrJCRbNEIkFBQQFCoRCr3BVWYoVCIfh8PrZvqFQq9O7dG5FIBFVVVazqCmg5xwwcOJCdFUgNTefQ1LGQ9Q71mqB9xGg0stgNjUOods4keJCZwznFEYvFUCgUSQE/oZLDZDLB4XAgJycH0WgUPp8Pubm5iEajqK+vx7PPPouJEydiypQp+Oabb/DGG2/g008/xfnnn4+pU6eioKCg3Z+t1WoxbNgwfPfddwiFQqyRHB0OATC1CQB2SRNm8ITBZoB7lXUVlJCgcnEqdaeggEwmQzgcZp7JgUAAPp+PKY4ouEgKZgoop/5LCA/n5CGlVqthMBhYkJG8p1QqFSsbEn49J/3QhV34lvo5ChIIVe7CEncqf6XyYo1Gg1gshqamJnb5osY4dMgDwC/tGQb5pVMjUWEwh147atrW3NyMgoICHDp0CJ988gmampowc+ZMXHXVVdi1axd++OEHvPjii3jnnXcwc+ZMTJ06FX379j3m3/3AgQMBtCiYZ8yYgaqqqqTgpUQiQSgUalUeT8+pUCiSkrFCpQmnc6DkIs2RSCSSZE1C//c+n481tKEgXzAYxL///W+4XC5mmSMWi9m6IvQDJ49CaqwDtPid0n72xRdfYPDgwejfv3+bqkadTofhw4czxeGBAwfg8Xig0WgQiUSYWt7r9bKkijD4xPl5UOKbAsPRaJT9X1MC2mazsaChQqFAMBhkaxA1AyQrFAouU0UfqVGFF3XCbDbDbDazILREIsHAgQPh8XjY3MvPz4fJZEIgEEAgEGDBZWpISNV/wNF1hO9VnQOdFckeIxaLoaSkhAVzcnJyWHLRZDJBq9UiEAjA7/fD5/MxT3eXywWxWIz8/HyMHz8eZrMZ9fX12LVrF/Nkp7lF9ip01qW1RqhmpGZdJJig5ANZZgAtyfXi4mLWz4aSEEBLgDkbLZAyHa/XyyqArrnmmjSPpn1++9vfYunSpXjllVfw4IMPHvNuzekaKNBMyUrhnYYqFCg4TPsLWTgFg0EEg0E0NzdDLBYjNzcXJpOJWXrR51OhuzclqCjJRPY5BP18oT0GrYWZUm2XSmaOisPhdCpCnx460AjVQWazGc3NzczwPhgMwmKxsMVx5cqVkMlk+MUvfoEtW7bAarXijTfewBtvvIHevXtj+PDhqKioQElJCbv4NTc344cffsC6desAAOXl5di6dSv7malNdehfCjALfYnodxAGnzldAwVeKKhMQV1hgCgajSIQCDBlVywWY5c5umwLA82pQWahkpnmJgUMSVVP6jMKOFMjhExSefz444+44447EIlEcOedd+Laa6/FkiVL8Mc//hG5ubl49913YTKZcNNNN6GyshLTpk3D/Pnz0z3sn4UwA08XLoLKksmHmxJJ9HEkEkm60Ov1ephMJmg0Gvz000+s4iIWi6GxsZH5Zebm5kIulzOvTq4Ky1wooCKcCzRPKKGZm5uLxsZGpkS02WxYu3YtNmzYgCFDhuDiiy/GyJEjsWTJElitVrz//vt4//33UVhYiDFjxmDkyJEYNGgQLBYL2x/sdjvzXKRLPICkADHtJ/QvJSxpXRN+LU9mdR3UA4IuRmShQXsOBaEpuExrxurVq5kq/ZprroFer0963lgshh07dmDbtm04cuQIs9hRq9VQKpUs0UWezzt27EBDQwNLiKhUKpx++umtVEEWiwXV1dUIh8OsYTIlzX0+HwsMCS+EnJ8PqcOkUilLLoZCIWZ3U1xcDLfbDbfbDZFIxC7ptD9RgBpo2Zso4SBMPNA6RUkKEjTQ3mU0Gpl6GgBTqvn9fvYYPa7T6dgcJjU8VWHxdaRzIaWf1+tliczCwkK43W40NzdDo9Ew71K32w2ZTMaaulIllNfrhd/vT2pSTf1A+vbti0AgAI/HwxSM9LqmVrkIxQ9klyGTyZifON1dcnJy2JqRqoZWq9UZqbA9FViyZAn8fj8qKipw5plnpns47TJ9+nSMGTMG33//PZ555hk8++yz6R5Sj4QSldS/iu4twoAz/U3r9XpIJBJWMUPJLLLcAMAqcNuq5hXGOShoTXsP/RydTgeDwcASUzQGmUyW8XsLDzJzOD0EKgcEkKT4oUCNVCqFw+FAQUEBnE4nXC4XcnJyoFQqWRbO6XSivLwcPp8PHo8HjY2NOHToEGvW1R5Tp05lQSMKYKYeqGihpUs/fUyLMA8udy+kICZ1M2241DSHFH/CADNd1lKDjx35WTQvKNhDB3c6fJP/cibx+OOP47333kNJSQnGjx+Pa6+9Fs8//zzWrFmDFStW4JVXXsH48eNhsVjw5ptv4oorrkBtbS2Ki4tbPRdlzonUZlbphC7owgsWcDTgLAwsU1KBPk5VN5PSi1Q+AJhPGTVeo7VCIpGwQCId2LgqLPMhOxsASYkmACzIV1BQAKvVygI7Ho8Hfr8f27dvx/bt2wEAFRUVGDRoEBoaGnDo0CHU19djyZIlWLJkCQAwO51oNMoayYrFYlx11VVYvnx5qzHRnkP7iTBAQHuiMNHJ6RqEZxGlUsmCh2SNRYkmahhJnuybN28GAMycOTMpwJxIJLBu3Tr85z//YU1q2yM3N5d9r81mQyQSgV6vZ0r7yspKjBo1KuniJhaLYTKZmMcrAJaAFcKVzF0DeU1ScDiRSLC9koK7VFkVDAYhFotZslqYFCVrOAAs2EjBgXA4nKQo1Wg0LGAtbOSk1+vZWgO0JEppPgn3cApU8MBh10GBZmruGA6HWR8Hu93O+oiQFVw4HGaPAWAiCQAIBAJobm5GOBxm1htCqGksIRKJoNFo2JlFpVKxvUOlUiWJJijoDCApgCSVSln1TCYHirIdssq45pprMvr/WSQSYf78+Zg1axb+/ve/49Zbb0X//v3TPaweCwmuqDpPeKcRWjEJv54CwrRXCfeEtqzXqAKYoLsvVe+qVKqkPYqg9SaT5zPAg8wcTo+CAocUzBVm07xeL/Ly8uD1eln2zO12swN+MBhkmX+dTgedToe8vDx4PB5Wcki+d6Qeys/PR69evRAOh7Fq1SoALcoQOoDTgiq89AsVrrypW/qhOROLxdhrQhsobbhC+xVC6MMsDDSllhoKfbcBsIA2HdzpZ2ZSx1zipZdegsViYV6uTqcTOTk5kMvlmDBhAl555RWoVCqMHz8eADBu3Dhs3LgRF110UavnevLJJ/HYY491969wTITqL2HwWBhwFlpg0Jsw2ELfQ5c0pVIJo9HILvuBQACNjY0AWspcSeEqkUiQl5fHfh7AVWHZhFwuT6pcEL5RQrOoqAgulwtut5s13aPGSvQ+0HKgHjBgAHw+HxKJBPPZTC0/HDRoEKZOnYpVq1bBbrdDqVRCrVazpkwUJKD3SY1CislsOLSfCtC+TzZMwj0fOFptRa+tQqHA5s2bEY/HUVZWhj59+rDnisfjePXVV9n5QqfTYcyYMejfvz/zYG1qamIWLDabDTabDYWFhayUlfYxg8GAxsZG7Nu3j1mv0HiEAW9KuJLvL10ShaX0nM5FmHgW2l/QXiQWi2E2m5nNF1liCIPOKpWKBZyFSnoASUlxev2EzZ5MJhNTv9JjZrMZIpGIjUU4Tn527R6EwV5SEIbDYeTk5CA3N5dVY9LrQsmKWCyW1OBTp9Mxex4ASWIJobUbebaT8h04qjaktYGsXnQ6XdLZVpjE5HtN99DQ0MASzplslUHMnDkTM2fOxFdffYXbbrsNK1eu5PMkAxDGJICj60Nb1bsE/Z1rtVp2DxIKLug8TM9NZ1J6/ng8zhoREnQHyhYRBA8yczg9DFICUlM3YWCXDuTUZVWhUMBoNDKVCHmlhkIhFgwQNu9pC2qoQwpGarpBhzrhwi30X+aH9MxBqCgn5bJcLk/aZCm4KLTGSH0faH2ZEwabSeFGthjC9zMRi8UCAPjDH/6AK664Ah6Ph11U6G+orcfa4qGHHsK9997LPna73SgtLe3i36B9qFMyHYxSEwvC1x1oP6kgzNITgUAAgwcPht/vx+HDh1lSKhAIsI7tFouFKc0AJM0JTnZADbSAZPUwXcY9Hg+kUilr+krWAzR/qDSe1CB0ADcYDCgsLGSXfVKbhMNhrF69GgCYFyapS4CjTSKFY6CAQKZ62p2qkDeysEs7rRVCtTDQMnf27dsHADj99NOTnmfx4sVYtWoVxGIx5s6d226jyKlTp8LtduPTTz/F0qVLUV9fj0AggIKCAni9XrYXGQwGHDhwAMXFxdDpdPD5fDhw4AD7GrPZzJoVU5msMODE6VooUCeVSpOqqEgNT8hkMtYcmAQQZHNCn0uttqF1RxhUpDMpzU1qeky2GDy4nBmQMIFsLYR2JxaLJcn6QlhFIVS5U1ITaFt1KDzLUFKDlIb0nFqtFnq9PumcyxXL6eODDz5APB7H2LFj0bdv33QP57iIRCL84x//wJAhQ/DNN9/gzTffxE033ZTuYXFSoIb1wn5SqUIbYXCY7tDtkaqKToXWkGw7p2bXaDkcTqcg9LqjAzV5IVJzPqlUCp1Ox3yGyCZB+DEZ49OhTtitW3hYJ89dMtUnGw7K9JP/Ll04+WEsM6GNki54wiyuMKjcXuO/9hAq2YSl69T9O1N48cUX8eGHH7KP582bh61bt6KpqQlPPvkkmpubmTrG5/NBr9ezbsX0WFlZWZvPrVAoMkatTZ2V6XWkixspyOgQlVo61h60phASiQRWqxWNjY1IJBKsmiGRSEAmk8FgMCSVHfMgYPaSqlSl4C4pCancmRKPlNCgPYXehMEACj7TnAHA5gv56ZJXXm5uLtRqNbRaLauIoCAVrTd8bnU/tM9HIhHWOE+o6gHAKhh8Ph+zLCgsLGTPEQqF8PnnnwMAbr/9dlYx0h56vR7XXHMNxo4di+eeew4OhwMSiQT5+fnweDzMlkmr1aKqqgqFhYXYu3cvS3z17dsXDoeDVfUQFGwGwJXM3YTwLEJrBq0RAFrZNEkkEphMJgAt84bOsB3526ceAGSBIEyuAjwBmimQQIZ6iNB5hRILFosFhYWFCAaDLOBMn1OpVKzMXXimaesuQ+cVavhFamqz2Zx0FqIqQG6Zkj7eeecdANmhYiZ69+6NBQsW4P7778e9996Lc845p917AyczSA06A0iq3k0VXKW+CWlPfJWN8JM1h9ODoUMQlafTpY+UHuRbR9l6UjHTG5UqCj8WNgQTeiyTzx2VrBkMBkgkEmi1WvY1wss/J7MRNu2jg7XwcJ66eQqVzG2V0RPCsthM21jvuusu3HXXXezjxYsXY+fOnczzzWQyscaZq1evxqhRozBq1Ch88cUXmD17NtasWYNnnnkmXcPvEFQaLizXossaKbdI0ZwKlXKRJ6FKpUIoFEJjYyMLApJXL3WCp8AfBZPJmkX4fJk2DzgnhkQiYR2whT7IKpUKwWAQCoUCWq2WJSxpX6H9hEoNqfyd7DSEaw79HNo7aI+hxqEGg4GpE0lxSAlOTnog6yVhIoLsEIQcOXIEGo0GLpcLdXV1MBqNAFqqPSjZcCINnfr27YtHH30UjzzyCOx2O/Ly8tjz0dyw2WzMnsVoNMJsNsNqtbK1yWw2J9l5kJ1Gd9BWw1li+/btuPDCC1FWVobi4mK899573TaudCFUEbdn3ySsqqFzp16vb9PmKfWCLxaL2ZmWnqO9hqGc9COVSqHVallSkpoOU9JK2EyLVO6BQACBQKBDZejCQLJWq2UWgMJKDOpnwudG+ti9eze2bNkCqVSKyy67LN3DOSHuuecefPzxx1i/fj1uvvlmLFu2jM+lLCP1btsT4UFmDqeHIyw/FHZeJlUI+e2S/52wS7sw6EyBqPagYBI1cqODPgUq6aKZqdYInPahLG6qKihV2SwMQBN0oaPvF3rYZTqPPvoolEolfvGLXwAAVq5ciXvvvReTJk2CSqXC4sWLYTab8fbbb2Ps2LGYMmVKxisS6O+fgs3CSgUK9NEFS6PRwGQyQa/XM19EoEUp1tTUhAMHDrASMLp4icVihMPhJB9cqnAgZSpvmnTqIXy9qWlaNBplNhfCoHJqcEg4BymZmUgkkuZlPB5nawhVQFAwgTyZKfFBpdWU3OCkBwriAWDnDDpHKBQKpiD2+/0wGAxwuVxYtmwZTCYTCgsLme+qzWbDCy+8gNtvvz3JV/VYWCwW3HrrrfjTn/6EAwcOYMiQISwYRX7glByXSqWw2WwAwJrRUoBZWBrfXZfKthrOErt378Zjjz2W9FhPIlUNDxztCyC0xwDAbA5Sm7oJoe+l5xbaaPC1I3MR+h8L9w9hAkL4teTdL5wrqaIJAElWKnK5nD0foVAomE0LJ71Qgu3cc89Fbm5umkdzYkgkErz11lsYMWIEli9fjtdffx2/+tWv0jIWntTknCyixLHMVDkczgnhdrvZZUjY/TybEDb3Eh62hG+k6BA2AKPvTS0lFAYPAbAgAB3U6bBGj5/qh7NTYY5wup50zBNqqkZqc6fTydTMAFjDJLVajb59+zKvW6ClPNnhcMBqtcLpdLLHSfElXAOESlKlUpnk3SuTyZI+5rRPNq8llLRMTWoKLViEAefUi7+wekYYNKAAgEKhYEkNstCgADOVMFPz2VOZTJ8jwuY2brcbfr+f9YBwu90IBoNwuVxIJBLs82KxGGeeeSbOPPNMHD58GE8//TQikQh0Oh1mz56NX/ziFx0KNicSCdx2221wu92YMmUKbDYb9Ho9TCYTTCYTjEZjkgKf5gvNGUquCRXN3aGMt1qtrOHshAkTsG7dOva5hx9+GOvWrUMkEsFDDz2Ec889t9X3CzveA0f9/zN1jnQ2QrVze8lv4GjyPBsT4F1Bpq8lHUGYbDjWa3+i0N8+r8LMDOLxOPr06YMjR47gP//5T9YpmYnnnnsO9913H3Q6HXbs2IFevXp1+xguueQSPPvssyypuX79eva5Dz74AJFI5ISSmqfCOsLpGFzJzOFwkhAqO4QdVIUXf/qXmv4Jg9JisTjpwCbsmkqBJVIZ0GOkZuaBJQ4nfQhtbkiBTH+Ter0e9fX1AFpsQaLRKGw2GwKBANxuN9xud6u/ewouC21zqISUKhtIQUZBHH5J6xmQVQWpwYR+/rTXtBVgFlbYUEVNW9AeQ9YclNgkZWpPCDBnA5RoCgaDUKvVbQZ+KMCs0+lYefuGDRuwceNG9OvXD9deey2++uor1NXV4f3338dHH32E0aNHY+zYsRg2bBiz6EnF5XKxALFQySoMJAu9WOnsQv68NBYASQ2Mu5rUhrNChg8fjquuugrFxcWYNm0apk+f3mpNffLJJ/HYY491y1gzkbbUzpyeAb3uqX+rbVXdtdW4Gji6PtDdJps9U09VvvvuOxw5cgQ6nQ5z5sxJ93BOmt/+9rf4+OOPsXbtWtx999345JNPun0ML730Ektqps7zXbt2Yd26dXjttddOKKnJ6RnwIDOHw2kXoZl9asBZ+H40GmWXNDqQ0WYk3JSEAWdShpCKmR/SOJz0QjYYYrGYvU9/18FgEEajEQ6HA7W1taitrW31/cJSUgrICMuLhYFFuuBTgomXH/dMUgM+7XXppsRm6ltq40mhn2pqEpOSHtznO7OgknYAUKvVrYI6tK54PB4YjUaEQiF4vV5EIhHs3bsXAJCTk4OcnBzU1tbC4XBg/fr1WL9+PSQSCfr06YPevXujqKiI+fDW1tZi1apVCIfDKCkpSbLDoDVLeEYhSx/qQSD0jRb6yncFx2s4K2TGjBlMHdanT58kz2nioYcewr333ss+JiUzh9NT4YmHU4vXX38dAHDllVdCpVKleTQnj0QiwWuvvYZhw4ZhyZIl+N///sfs+boLntTknCw8yMzhcDqEsGyQlGfk40zd1SkwkNrITRhUFv5LwSgOh5N+6O82kUhALpezBoBSqRThcBiJRAJqtRqRSCQpqEeXM+EaIQwsUyJJ2MxRKpWyxzkcIrVLd1t+qvQ+zUOh8kwYZBY2lKV5mInNmNryPFyyZAn++Mc/Ijc3F++++y5MJhNuuukmVFZWYtq0aZg/f366h91pkAc7IUxQ0VswGIRMJkMoFEIgEIBSqUQkEkEgEEAwGGRB6qKiIphMJrhcLvh8PgQCAVRWVqKysrLNn20ymZCbm8sqs0jtTnOFkhQGgyEp+UbzqTsa1B6v4ayQG2+8EQsXLkTv3r1RVVXVphdpd9l6cDgcTnfjcDjw0UcfAUDafIw7k0GDBuHXv/41/vrXv+Luu+9mzQy7Cp7U5HQW/HbH4XBOCAoqUcdtCipRAECoQqKystRAlFDJyOFwMgOhmlSlUsHr9SIWi7GATigUalPtIywbpQAfBWyEVQpCCw2eXOJ0BGGwkZrDUS8A+pjUzMLvoTlJ72ey339bjdyef/55rFmzBitWrMArr7yC8ePHw2Kx4M0338QVV1yB2tpaFBcXp3vonQYFmuk1MhgM8Pv9LDlFntqhUIg1gKT3aW2ixyUSCdRqNYCWRqY+nw/BYJD5f1PyQa1Ww2AwIBaLQSqVwmQyQafTQaVSJQWaNRpNUk+JdHuvttVw9oEHHsC8efPw6KOP4qabbkIikcCDDz6YsXOew+FwuoL33nsPoVAIp512Gk4//fR0D6dTmD9/Pt59913s2LEDr7/+Om677bYu+1k8qcnpLHiQmcPhnBR0+ZdIJIhEIuxjYekycFSZRpf9TFSScTico036KGhjNpvhcrkQDoeZ3UCqYpSSSBQIJAWzMLDMqxY4nQUlOciTmd7agtTymZ7QTPU8dDqdyMnJgVwux4QJE/DKK69ApVJh/PjxAIBx48Zh48aNuOiii1o9Vzb7H4pEIhbADQaDzJ6CAsTUKJKSDPR+LBZLCjjT+kWNIbVaLfP7ToXsUzQaDfR6PfR6PbRaLQs0U5NIACzwnG527NjR6rFnn30WAGA2m7F27druHhKHw+GknUQiwawyfvWrX50yd82cnBw89thjuOuuu/Dwww/jiiuugNFo7JafzZOanJOFB5k5HM7Pgpp4UXCK1MxCKHiV6Zd9Dqeno1Qqk/zX1Wo1VCpVq79toS2BUK2cWuZ+qhzyOZkFNfaj5rPUpIk+RwmQbCDV89Dj8UCr1QIANBoNvF5vm4+1xangfyiVSqHRaBCJRFhiOhaLIRwOJwWWhUkG8kmmIDN9fSgUYl8jbC5JSW9qDknN/DQaDXufAs3U7I9b+3A4HE7msmrVKmzfvh0qlQpXXXVVuofTqdx222146aWXsGfPHjzxxBP485//3C0/lyc1OScLPzFxOJxOgYLNAJI6w2fTZf94RCIRTJgwARs2bACAVr6ZZrM5zSPkcH4eFFChgA49dqxyt1S7jFPl752THZCaPltUNMfzPGxubobP5wMA+Hw+pq4VPlZWVtbmc58q/ofC5DVZpJDqmALKQn9uCh4Le0MIGxMLG0WmNhWUyWSsIalSqYRCoYBarYZCoYBYLIZareYJcg6Hw8lwKPh5ww03wGQypXk0nYtMJsNzzz2Hc889Fy+++CJuu+02VFRUpHtYHE678CAzh8PpdLLlsn8iOBwOXHrppTh48CB7LNU386GHHkrjCDmczoGCynK5nAVtUj1vyQaHB5U5nBPjeJ6HJpMJVqsVwWAQq1evxqhRozBq1Ch88cUXmD17NtasWYNnnnmmzec+1fwPhZURpFanYLHQmos+J3xLDTYLv4Ysf4CjFizkt0yWHVKpNKO9vDkcDofTwk8//YTPP/8cIpEI99xzT7qH0yXMnDkT5557LpYuXYr7778fn3zySbqHxOG0Cw8yczgcTgfw+Xz4y1/+woIDbflmtkU2e2RyejbChp2czmP79u248MILUVZWhuLiYrz33nu8KqIH05bn4b333otJkyZBpVJh8eLFMJvNePvttzF27FhMmTKlXSXzqUxb65HQKkUYQBb+S18n/LxQzSxsZkxBbblczu0xOBwOJ0uYP38+AOD8889Hv3790jyaruPZZ5/F119/jSVLluB///sfOzdwOJkGP0FxOBxOBygtLU0qO+5JHpkcDqfz2L17Nx577DFce+217DFeFdFzacvz8IILLsAFF1yQ9Nibb77ZXUPKGjpildJWgFkYaKbnoAA2r8zgcDic7OH777/Hhx9+CJFIhAULFqR7OF3KoEGD8Otf/xp//etfcfvtt2Pbtm1QqVTpHhaH0wpeA8bhoEVZ1qdPH0yePBlXX301gBa/3TPPPBOzZs2Cw+FI8wg53c2LL76I8ePHs7elS5cmfT7VI1Ov17f5PA899BBcLhd7q66u7vKxcziczGXXrl345z//iYkTJ2Lp0qWtqiLI8z2VUCgEt9ud9MbhcI5NapM/hUIBpVIJlUrFmvspFAreqJTD4XCyjFgshrvvvhsAcP3112P48OHpHVA3sGDBAhQVFWHfvn34wx/+kO7hcDhtwoPMHA6OKsu+/fZbvPfeewCOKsvuvPPOY1oh8Ev/qcldd92FNWvWsLdzzz036fNt+Wa2hUKhgF6vT3rjnFrccMMN+PbbbwG0Tk4lEgn88pe/xIQJE7iinQMAGD58OP72t7/h888/x/z58+FyuTpcFWEwGNhbNjZ043A4HA6Hw+kMnnnmGWzYsAE6nQ6PP/54uofTLRiNRrz22msAgOeeew7//e9/0zwiDqc1PMjM4eDklWX80t+zId/Mp59+Gr/+9a/TPRxOGti9ezeWLFnCPk5NTq1ZswYWiwWrV6/Gnj17UFtbm77BctJCalWEXC7HoEGDoNfr0adPHyiVSl4VweFwOBwOh9NBlixZgt///vcAWs7eJSUlaR5R9zFr1iz85je/AQBcc8012Lp1a5pHxOEkw4PMHA5OXlnGL/09D1KsAi2+md9//z2+/fZb5OTkpG9QnLTxzDPP4LrrrgPQuhnkhg0bsHnzZowfPx4AMG7cOGzcuLHN5+FVEacuqVUR//rXv/DTTz8hFAqhqqoKFouFV0VwOBwOh8PhHId4PI6//vWvuOSSS5BIJPCrX/0KN954Y7qH1e08++yzmDJlCrxeL6ZMmYLvvvsu3UPicBi88R+nR/Liiy/iww8/ZB/ff//9GDRoEACckLJMoVBAoVB0/YA5HE7GsWnTJvTu3RvxeBxA280geYNITiqPPvoobrrpJiQSCTz44IMQi8WsKkKlUmHx4sXpHiKHw+FwOBxORhAIBPDTTz/hf//7H1577TXs3bsXAHD11Vfj73//e4/005fJZPjkk08wZ84crF69GlOmTMHdd9+NBx54APn5+ekeHqeHw4PMnB7JXXfdhbvuuot9PHfuXAwYMAC9e/c+IWUZh8PpOaQmpyorK1FZWYnnnnsOQNvNIFMfKysra/O5H3roIdx7773sY7fbze13TlGGDRuGtWvXJj12wQUX4IILLkjTiDgcDofD4XC6j127dqG2thbhcBihUIj9a7PZ0NjYiIaGBtTV1aGysrJVpbDBYMDjjz+OO+64A2Jxzy3MNxgM+Oqrr3Drrbfi3XffxXPPPYe//vWvmDhxIs444wz06tULZrMZSqUSSqUSQ4cORVFRUbqHzekB8CAzhwOuLONwOMdHmJzyer0488wzcf755+Pw4cNYsmQJ1qxZ0yo5NWrUKHzxxReYPXs21qxZg2eeeabN5+ZVERwOh8PhcDicU50VK1bgnHPOOaHvMRqNOOuss3Deeefh+uuvh06n66LRZRdqtRrvvPMOrrjiCixcuBDr16/HypUrsXLlylZfq9Fo0NTUBLVanYaRcnoSPMjM4YAryzgczomh1Wqxe/duAC1JqsmTJ0Or1bZKTpnNZrz99tsYO3YspkyZ0q6SmcPhcDgcDofDOdWZNm0aEolEuodxSnHeeefhvPPOS/cwOBwAgCjB/8I5nE4jkUjA4/FAp9P1SH8ozvHhc4TTEfg84RwPPkc4x4PPEc7x4HOE0xH4POFwOD8Xvo70HHiQmcPhcDgcDofD4XA4HA6Hw+FwOCdNz3VK53A4HA6Hw+FwOBwOh8PhcDgczs+GB5k5HA6Hw+FwOBwOh8PhcDgcDodz0vAgM4fD4XA4HA6Hw+FwOBwOh8PhcE4aaboHwOH0FMjsnpOZZEITAj5HMptMmCMAnyeZDJ8jnI6QCfOEz5HMhs8RzvHIhDkC8HmSyfA5wukImTBP+BzJbE50jvAgM4fTTXg8HhgMhnQPg9MOLpcLer0+rWPgcySzyYQ5AvB5ksnwOcLpCJkwT/gcyWz4HOEcj0yYIwCfJ5kMnyOcjpAJ84TPkczmROeIKJFIJLpwPBwO5//TkQyd2+1GaWkpqqur077Yd4RTabzZlMXNpv/3bBorkPlzBOBrSbrhcyQ9nErjzYR5wveb9MPnSHrIpvFm+hwB+H6TCbQ33myaI0S2/N+fSuPMhHlyKu432TRWoHP3G65k5nC6CZFI1OEFRq/XZ8ViRPDxdg4nMkeAzP092iKbxgpk9nj5WpIZZPJY+RzJHDJ1vHy/yRwydbyn8hwBsmu8mTxWvt9kDpk63hNdS4DM/V1S4ePsHE7l/Sabxgp0znh54z8Oh8PhcDgcDofD4XA4HA6Hw+GcNDzIzOFwOBwOh8PhcDgcDofD4XA4nJOGB5k5nAxCoVBg/vz5UCgU6R5Kh+DjTQ/Z9Htk01iB7Btve2Tb75FN482msR6LbPs9+HjTQzb9Htk0ViD7xtse2fZ7ZNN4s2msxyLbfg8+3vSRLb8LH2d6yKbfJ5vGCnTueHnjPw6Hw+FwOBwOh8PhcDgcDofD4Zw0XMnM4XA4HA6Hw+FwOBwOh8PhcDick4YHmTkcDofD4XA4HA6Hw+FwOBwOh3PS8CAzh8PhcDgcDofD4XA4HA6Hw+FwThoeZOZwMohIJIKzzjqLfbxkyRKceeaZmDVrFhwORxpH1ppQKIQLLrgA48aNw2uvvZbu4RyXuXPn4vDhw1i/fj3GjBmDKVOm4NChQ+ke1gnD50jXwedIeuDzJD1k0zzhcyQ98DnSdfA5kh74PEkP2TRP+BxJH9kyT7JljpxKcwPInvkBZM8cITp9riQ4HE5GYLfbE7/4xS8SFouFPTZp0qREKBRKfPHFF4k//vGPaRxda/71r38l/vGPfyRisVjinHPOSQQCgXQPqU1CoVDiwgsvTBQXFycOHTqUOO+88xJ2uz2xa9euxC233JLu4Z0QfI50DXyOpBc+T7qfbJsnfI50P3yOdA18jqQXPk+6n2ybJ3yOpIdsmieZPkdOtbmRSGTX/EgkMn+OEF01V7iSmcPJEHw+H/7yl79g8ODBAACn04mcnBzI5XJMmDABGzZsSPMIk9m8eTPGjx8PsViMYcOGYc+ePekeUpuEQiHcc889mDZtGgAgEAjAbDZj8ODBqKysTPPoTgw+R7oGPkfSC58n3U+2zRM+R7ofPke6Bj5H0gufJ91Pts0TPkfSQzbNk0yfI6fa3ACya34AmT9HiK6aKzzIzOFkCKWlpRg+fDj72OPxQKvVAgA0Gg28Xm+6htYmmT4+QqfTYeLEiezjeDzO3k8kEukY0knD50jXwOdIesmGMQJ8nqSTTB8fwedI+sj08RF8jqSXbBgjwOdJOsn08RGn0hwBsmueZPLYgFNvbgDZNT+AzB8f0VVzhQeZOZw08eKLL2L8+PHsbenSpUmf12q18Pl8AFqyd3q9Ph3DbJdMH197iEQi9r5YnNlLIJ8j6YHPke4lG8bYFnyedB+ZPr724HOk+8j08bUHnyPdSzaMsS34POk+Mn187ZFNcwTI7nmSyWNri2ybG0B2zw8g88fXHp01V6SdMRgOh3Pi3HXXXbjrrrva/bzJZILVakUwGMTq1asxatSobhzd8Rk1ahS+++47DBkyBNu2bcPChQvTPaQOoVKpYLPZ0NTUhPLy8nQP55jwOZIe+BzpXvg86XqyfZ7wOdL18DmSHvgc6V74POl6sn2e8DnSPWTzPMm2OZJtcwPI7vkBZN8cITprrvAgM4eTwdx7772YNGkSVCoVFi9enO7hJHH55ZfjyiuvxFtvvYUbb7wRSqUy3UPqEA8//DBmz54NkUiEd955J93D+dnwOdL58DnSvfB5khlk8jzhcyQz4HOk8+FzpHvh8yQzyOR5wudI5pCp8yTb5sipODeAzJ0fQPbNEaKz5oooka3GLBwOh8PhcDgcDofD4XA4HA6Hw0k72WHKwuFkCYlEAm63O2tN9TldD58jnI7A5wnnePA5curx6KOP4p///CfWr1+PMWPGYMqUKTh06BAAYN68eRg3bhxuv/32Dj8fnyOc48HnCKcj8HnCOR58jnA4HIIHmTmcTsTj8cBgMMDj8aR7KJwMhc8RTkfg84RzPPgcObWw2Wx47bXXAAALFy7E0qVL8fe//x1PPfUUqqqqcODAAaxduxY6nQ7r16/v0HPyOcI5HnyOcDoCnyc9g7lz5+Lw4cNtJjqPB58jHA6H4EFmDofD4XA4HA4njTz99NO47rrrAACBQABmsxmDBw9GZWUltmzZgnHjxgEAJkyYgA0bNrT5HKFQCG63O+mNw+FwOJxjEQ6HcdFFF+H7778H0DrRyeFwOCcCDzJzOBwOh8PhcDhporq6Gh6PBwMGDAAAxONx9rlEIgGPxwOtVgsA0Gg08Hq9bT7Pk08+CYPBwN5KS0u7fvAcDiercLvdKC4uxuTJkzF16tR0D4eTAYRCIdxzzz2YNm0agNaJzva+hyc1OZz2SSQSeO6551BWVobhw4fj66+/TveQug0eZOZwOBwOh8PhcNLEk08+if/7v/9jH4tEIva+WCyGVquFz+cDAPh8Puj1+jaf56GHHoLL5WJv1dXVXTtwDoeTdezevRu33XYbvv32W6xcuTLdw+FkADqdDhMnTmQfpyY624InNTmcY7NgwQLcd999qK6uxo4dOzB79mxs2rQp3cPqFniQmcNB66z+yXhRcTgcDofD4ZwomzZtwg033ICnnnoKTz31FFQqFWw2G3bv3o3y8nKMHDkSq1evBgCsXr0ao0aNavN5FAoF9Hp90huHw+EI2bVrF7766itMnDgRb731Vptfw1WqPZvURGdb8KQmh9M+mzZtwoIFCwAATzzxBM4//3xEIhH89re/7RHNMaXpHgCHkwlQVv/hhx8GAMyePRtLly5FQ0MDnnrqKbzyyitpHiEnk5g7dy6effZZ1NfX4+6774Zarcabb76J3r17p3toHA4nw3G73Rg0aBD69esHiUSCJ554gq8jPRxStvzzn/8EAAwcOBCzZ8+GSCTCO++8g/LyclRUVODss89G//79MX78+DSOlsPhZDPl5eV4+umnccYZZ2D69OmYPXs2LBZL0tc8+eSTeOyxx9I0Qk66oURnU1MTysvL2/wahUIBhULRvQPjcLKARCKBu+66C/F4HFdffTXmzZuH+vp6LF++HOvXr8fSpUsxa9asdA+zS+FBZg4HR7P6y5cvx4033si8qMxmc7teVEBLpj8UCrGPeab/1CYcDuPyyy9nAQFqjHGsZASfIxzOsTlWRl+opjlV4ElNTnvccMMN7P3U5n4LFy7s5tFwOJxTkbPOOgsqlQpisRhnnXUWDh061CrI/NBDD+Hee+9lH7vdbm6H0IN4+OGHkxKdHA6n43z99dfYsGEDVCoV/vznPwMACgsLcfvtt+O5557DK6+8woPMHE5PIDWrLwxsHCsAwjP9PQtqjPHmm28CQIeSEXyOcHo6iUQCiUQC8Xgc8XicvU+PHw+RSMTexGIxe6PHsg2e1ORwOBxOunjkkUcwffp0nHPOOdi8eTPuv//+Vl/DVao9E6qmKS8vb5Xo5HA4HeNPf/oTAOC2225DQUEBe/zmm2/Gc889hy+++AKNjY3Iz89P1xC7HO7JzOGgJas/duxYyOVynHXWWR3yogK4H1VP42QaY/A5wulJJBIJxGIxRCIRhEIhBAIB+P1+BAIBBINBhEIhBINBBINBBAIBBAIB+Hw+eL1eeDwe9ub1euHz+eD3+5O+X/i9fr8fwWAQkUgk6W8x06Gk5ooVK/D22293aB0BeJMdDofD4fx87r33Xjz11FOYMGECLrnkEuTk5KR7SBwOh3NKsHPnTnzzzTeQSCS45557kj43aNAgjBkzBrFYDIsWLUrTCLsHrmTmcNA6q69QKI7rRQXwTH9PpyPJCD5HTl2qq6tx3XXXIRQK4fzzz8ekSZNaeevOmzcP3377LYYPH46XXnop3UPudCioTG/CIGnq5+iNFM2pH9P30N8VKZclEgkkEglTMEskEkilUvYvqZrFYjGkUimkUmlGK5xTS5U3btzIPne8pCYvX+b0RITVEKkVEML1gtaBTP7753DSTXFxMb755pt0D4PD4XBOOf7+978DAC688MI2z+iXXHIJvv/+e3z++ee48847u3t43QYPMnM4aMnqX3PNNViwYAGuu+46nHbaadyLinNcOtIYg3Pq8sILL+DRRx/FpEmTMHXqVCxfvjzJW3fevHk4cOAA1q5diwceeADr16/H2LFj0z3sTiEejyMSiSAajbLHUoPK0Wg0KZhMX0+fo/cpOC0MHgkDRhKJBDKZjAWV6U0mkyV9LJfLEY/HEQ6HIZPJIJPJMjLYxJOaHYPmQuq/qUFFzqkJrSe0TpwIqdY62Wyvw+FwOBwOJ/NxOp3417/+BQDtBpBnz56N+++/H9988w08Hg90Ol13DrHb4EFmDgdtZ/V7qheV0Du1vc+nkqog6ikXOd4Yo2fz+9//HgaDAQAQi8UgkUiSvHW3bNmCcePGAQAmTJiADRs2tBtkzha/3UQigUgkgkgkwj6mQFAkEmkVGKLHKcAcDofZ+/F4nD1GXx+Px9kaQsFlhULB1MwymQxyuZz9K3w/HA6zx+hnyuXyjFM286RmC8KkBO079HhHvLoJoZKd5kkmvd6cE4fWhdTKCABJ3u5C6DWnoDLNLyHCuULzhc8VDofD4XA4P5e3334bfr8fQ4cOxaRJk9r8mgEDBqCiogL79+/HihUrcNFFF3XzKLsHHmTmcDgAjioTT1Qx1BZtXeK6+iL32GOP4dFHH8WOHTswdOjQLv1ZvDFGdhEMBnHFFVdg9+7dUKvVKCgowMsvv/yz1edmsxkA8Oqrr2LUqFHYunUr+1wikYDH44FWqwUAaDQaeL3edp8rGxpEJhIJBINBFgyMx+MIBoMsOCwMHofDYYTDYcRiMYTDYYRCIfY58mAOBAJtfi8AtnbI5XKIxWLIZDJoNBro9XoWdFYqlZDL5VAoFFAqlZDJZEgkEohGo1AqlZBIJCyArVAojmlFAQBfffUV/vCHPyAcDkOtVuOVV17Baaed1un/jz09qUnzI1UFn2qHkKpgJlKbQJLFCqnlATClu0Qi6dSx33XXXfj0009x5MiRbtlrehqJRKLV3BCJRIhEIm0GnVNtM1ItrMhOh4LLtL4IzznCSonOpDvPJJzsIxQK4b777sOyZcsgl8sxcuRIvPvuu+keFieD4PtNZiJMeLa1D3Vn8rKyshLXX389bDYbjEYj/vnPf2Lw4MHd8rM5ySQSCbz22msAgNtvv73dOSASiTB79mw8//zz+Oyzz3iQmcPhnLpQsIigCzy9DyR7paYiDBDQx8ISeQoSdfYljtiyZQs2bNiAsrKyLnl+zs9DODeAo8GA7lSQ3XLLLTj33HMhEonwt7/9Dbfccgu+/vrrn/287777LpYsWYIlS5Zg5syZ7HGxWAytVova2loAgM/ng16vb/d5Mt1vNzXAHIvF4Pf7mbKZAkChUAjhcBjxeJw1/qP1oLm5GW63m60LHo8HPp8vScHdFgqFAlqtFjqdDk6nE2q1Gjk5OYjFYggGg9BqtYhEIlCr1YjFYlAqlYjH49BoNBCLxYjH4wgEAlAoFJBK2z72NDc345prrsHq1asxaNAgrFq1CldffTV27tzZ6f+XPZloNMr2mlTVe1uq1fYCiW0FE4X2KGTHIpVKoVAoOm2tueSSS/DAAw9g/PjxnfJ8nKPQ+kEBYKlUikgkAp/Pxz5PSSlhQkqIMPkglUoRi8XYay+01hGJRGxu0VlFIpF02lzhZxLO8XjwwQchFouxb98+iEQi1NfXp3tInAyD7zfpp63eIh1pNE17kFwu77K7LwDceuutuOWWW3DDDTfgo48+wk033YT169d32c/jtM/333+PXbt2QaVS4eqrrz7m15533nl4/vnn8dVXXx0zvpLN8CAzh9PDoYsd0LIpknIQALvM0YVOWKZKF3+hZ6pSqWRqIWFzLwo4SaVSTJ48GX6/H/v27UNxcTE0Gg1mz56NJ5544qTGHwqFcMcdd+Df//43pkyZ0jn/KZyfDc2d1OCREJo3qQrTRCKBcePGddo8USqVmDVrFvv4rLPOwvPPP3/Cz5PK999/j7fffhuffvop5HJ5K4/ukSNH4oMPPsCdd96J1atXY86cOe0+V6b77aYGdSjATPYXFMil19zn8zE1ot/vR2NjI/ucy+WCw+EA0DJPSNUsDFZT0FChUMBgMCAUCqG5uRlGoxGJRAJ+vx8vvPACotEoamtrYbFYoFarMWXKFNx///1QqVQssE9rUigUQiKRgEwma/X7HThwAHl5eRg0aBAAYNKkSThy5Ai2bNmCUaNGdcP/8KkPJQUImjsAkgKHtGe0t26IRCIWLKTLGynnJRIJ1Go1xGIxotEoJk2ahEAggP3793fKfjNx4sST+j7O8RFWUikUCgQCAQQCAQAt5wy/35+kcAaSlWQUYKagQGqCm84y9HwqlQoKhQITJkyAz+fD/v37UVRUBK1Wm9FnktSGsw8++CCAlsTkoEGD0K9fP0gkEqxcubLTf3ZPpbPPJD6fD2+99RZqampYcKGwsLCzh83pRjp7jgB8v+luSDRBZ5Bj3V8IoSBLWIUlrOiTy+VQKpUA0KlzpKmpCVu2bGGCmblz5+LOO+/E4cOHeZ+gNEAq5ssuu4xZKbbHhAkToFarUV9fjx07dmD48OHdMcRuhQeZOZweDm2iIpGIqXii0WiHFIZC6DKoUCigVqtZIIcCUaRY++677yCVSlFQUICVK1e2Uvpccskl2L9/f5s/47PPPmul7nzkkUdwzTXXoHfv3ifya3M6gbYac1GwqL0Sd2GCQqggEwabRSIR1q1bBwCdNk+EvPjii8cM+HaUJ554Ag0NDTj33HMBAAsXLkzy1i0vL0dFRQXOPvts9O/fP2vVKHTwBlrUgE6ns9XjwWCQBXAowExKRFJzK5VKHDx4EH6/HwCg1WqxZ8+e4/pP22w29O7dGzKZDA6HAyKRCEajEb/97W9RWlqK66+/Hn/605/Qr18/SKVSdrinwzYFIoWJsdQ50q9fP1itVmzYsAFnnXUWPvnkE3i9Xhw+fJgHmTsBUsIDrQOGZKEiLEFtK9BMQUSaVzT3dDodVCoVU8F6PB4olUpoNBoWaOvbty9WrFiBXr16JY3r56wjnM5DuJZQA086UyiVStjtdiQSCYjFYuh0OgQCAbhcLoTD4VbPRfY5wuQSAKjVaigUiiTbnmAwiNWrV0MkEqGoqAiff/45+vTpA7lczp4v084kqQ1n77jjDuh0OuzevRu33XYbHn744S75uT2Zzj6THDhwADk5OXjiiSewYsUKqFQqPProo5g6dWrX/RKcLqWrz62criMWiyEUCrE9KBWywKA3ocCC7jukWlapVACO9hWgf+PxONRqdafOkerqahQVFbEKPZFIhLKyMlRVVfEgczfjdrvxwQcfAABuvvnm4369QqHA5MmT8eWXX2LZsmU8yMzhcE49hKWp5H3odDqTAjKkGBN6GxLkgUqBZGpgplQqodVqIRaLoVAokjbbxsZGRCKRNktJP/roow6Pff369di0aROeeuqpn/m/wOkI9Fp3tFxMeChLnTNCpTO9yWSypCZt9fX1nTJPhPzxj39EZWUlXn755ZP6fiGfffZZq8dSvXUXLlz4s39OuhEG+ygpJRaLWRm7TCZjTfbIe1mn08FkMrEg34gRI7Bs2TL4/X7k5+ejrKyMeZubzWZMnjwZgwcPhsVigVQqhcvlwv79+/Hdd99h//79qKysxBlnnIFoNAq73Y6CggKEQiHs3r0bsVgMFosF4XAYYrEYkUgEIpEIr7/+OoCWIBWpoSmpQaoSwmAwYPHixXjwwQfh8Xgwfvx4DB48uE3VM+fEoYsYBf6i0ShTnZJXuUQiQTAYZMHF9hCLxTCbzRCJRAiFQvB4PAiHwyguLkYwGITX60UwGIRYLIZGo8GhQ4cQiURQUFDQ6rlOdh3hdC50DiGVusfjAdDyt0tVE0qlEhaLBYcOHWJrDwCWoKT9hM4gMpkM+fn5iEQiCAaD8Pv9CIfDKCgoYBUUVFlB61ZpaSkikUiS9UqmnUlSG85SgGHXrl346quvsHz5ctx444248cYb2/z+bGky25mk+rwDR63gUsuUj1W23FlnkkgkgoMHD2Lw4MF46qmn8OOPP2LatGnYvXs3LBZLh5+Hk3l0xbmV0zVQJa9wPUy98wqrpXw+H/x+/zEFWGKxGCaTCQaDgZ2NKalO5+TOnCOp69WJNE3mdB7/+c9/4Pf7MWDAANbw/XhMnz6dBZnvv//+Lh5h98ODzBxOD0fYaCuRSMDlcrGScq1WC5lMhnA4DL/fD7/fz0qJaCOTSqVQqVTQ6XRMoRYMBhEMBhGJRGA0GplSlcpYN2/ejJEjR7Y5nhPJ4q5atQo//fQTUwzV1NRgxowZeP3115m6lNM5UAO3Yx1gSGlIgWX6PmrwlkgkmO8lHeJIdSpsPEmWLdu3b++UeUL8+c9/xscff4wVK1ZArVafxP9Cz0S4RggVzRRsJjVhbm4u8zAePnw4K+EbOXIkgsEgPB4P8vLycMstt+Cmm24CAMyZMwe33HJLknKQOP3003HZZZdh+fLl+Mtf/oJNmzbh17/+NVatWoX9+/dj9OjR2L17N/r16weg5eJOfsxAi5rg8OHDbLzC3+Xzzz9vdcCfOHEivv32WwAtgZiCggJmn8H5eQiTmcIAYkNDA4CWREN1dTX7OpVKxSpihMohj8eDUCgEm82GPn36IDc3Fw0NDQiFQnA6ncjNzWVqe7/fD7VajX379uG0005DJBJJstgAuLIsUxAmtamaCmhR+9jtdgBATk4OnE4nfD4fJBIJiouL2fmCCIfDcLlcaGpqQjgcRl1dHQYOHIhYLAabzYZoNAqr1YqioiLI5XLY7XbEYjFs2bIFI0eOZNU28XicPW+mnUlSG86Scq68vBxPP/00zjjjDEyfPh2zZ89uM2CZDU1mOwthU9kTCb6kNq+mRHlnnUl69eoFsVjMfDtPO+009O7dG7t27cLkyZM7/gtyMo7OPrdyugbqK0JnQqlUyipgKClJFm50RxFClm60TggbYdvtdvj9fhQUFDDbN+pXIpfLO22OlJaWoqamhlUOJhIJVFdX814AaYCsMm6++eYO+yvPmDEDALB69Wr4fD5oNJouG1864EFmDqcHI1R20MYaj8chFothNBoRj8fR1NTEytvbIhqNwuPxwOPxwGg0wmg0QqVSweVyIRaLwe12w2g0QiQSQS6XIxAIoLa2FkVFRW0+34lkcR988EHmRwi0XLI+//xz3oG5kxGWppPSDDjq0yucR8JmSpFIpM2LncfjgUKhgE6nY425KMtPBzWpVIrq6mqUlJS0OaYTzfY/99xzeP/997FixQoYjcYT+l5OC8KDE70fj8eTmq3R55RKJVwuFwCgT58+TNE8evRo1NXVwefzwWw249e//nUrT+7Unzl9+nT8+OOPWLFiBWw2G5RKJYLBIGsEmJubCwBsvlGg8qWXXmJKZIvFwpJgANpMMtTX1zNfzMcffxy/+MUvUFFRcZL/Wxwh9JqQNy5wNOBP/ruxWAxqtRp9+/Zt1588kUjgyJEjsNlscDqdLNDc2NjIXlulUgm5XM4uhw0NDWwdCYfD7CIJcGVZpiEMNgNH5w3QshbQa2yxWJCTk9Pq++VyOSwWC8xmMw4cOACfzwebzYbi4mIUFRWhqqoKoVCIBZFpPtbW1qKkpKSVpROQmWcSYcNZ4qyzzoJKpYJYLMZZZ52FQ4cOtRlkzvQms52BsJxdiLCR9fG+X9i8GmhRzNfU1HTKmSQ3NxdTp07FsmXLMGvWLBw5cgSHDh3CgAEDOvwcnMyE1pK24PtNZkDqYqBlTVCpVIhEIu3ed4W+/2TBJAxQA2ANqQ0GA5qbmxEIBNDQ0IDCwkJW5UdVoJ01R/Ly8jBy5Ei8++67uOGGG7B48WKUl5dzq4xuZvv27di0aRNkMhmuu+66Dn/fgAEDmL3JqlWrknoHnQq0f7PjcDg9Cio9BsCUMcINV6VSwWQyIT8/H8XFxSgtLUVJSQny8vJYwIbUYzKZjAWWKRNMP0Mmk2Hs2LFYt24drrnmmjT8ppwTQRhgJmWX2+2G3W6Hy+WCx+OB1+uFz+djpWSBQCBJ9SyTyaBWq6HRaJhildSIHo+HKeeVSiULLkSjUYwePRpr1qzBVVdddVJqJKKmpgb33XcfnE4npkyZghEjRmDMmDGd8d/T46AEg7BMm15Tt9vN1BROp5Nl5R0OB3Q6HYCWQC6tF9TsryOYTCYAyd7PkUgEffv2xc6dO/HUU08xtRnNIWHwmi4H9H5bSoOHH34YAwcOREVFBY4cOYI33njjBP5nOMciNXgofEwikbA9Iicn55gNMN1uN/MEVyqVSCQSSbYtqc8NtDTa2bBhA26++WbWG+BkueOOO1BSUoKamhpMmzat05IQ1dXVmDJlCs4++2w89dRTWL9+PcaMGYMpU6bg0KFDAIB58+Zh3LhxuP322zvlZ2YStLdQw2B6LYPBIJsPXq+XrTVer/eYe4FEImHnGPq7F55D6GxCc2H8+PFYu3Yts5jI5E7v1HB28eLFSRUgjzzyCJYvX454PI7Nmzejb9++bX6/QqGAXq9PejuVID9v4bmFPNo1Gg3z5haLxcxexefzwePxwOVywe12JzWjpXkWiUQwcuRIrF27tlPOri+//DKefvppDBs2DBdccAFeffVV3vzvFGDcuHGdNke6ar/pqSQSCQQCAXavpX3Cbrejvr6eWTORNSBV4DkcDthsNlitVthsNmaxRIksakZdXV2N/fv3Mzu2QCCApqamJHFOMBjs1Dnyyiuv4JVXXkH//v3x1FNP8XNrGvj3v/8NAJg9ezby8vI6/H0ikYipmZctW9YlY0snogQ3b+FwOg232w2DwQCXy5UVB3c6YAMtWVibzYZ4PA6TyYRoNIrGxkaIRCIUFBQc8+IPAHa7HR6PBxqNhqlnPB4PAoEAs9MAjm7yQEtwijbenkI2zRHy0AZagotkhQIgKatPUGkp2WFQOVnqhT0SiTAfVaBlo6XLHz0nqZrbQiKRQC6XZ3Qg4OeSSfMkFoshGAyy5qBWqxXA0SaAYrEYLpeLVUHYbDbk5uYiHo/j+++/h9lsxtixY/HCCy9ALBbjt7/9LebNm4fGxkbcdNNNuOyyy4758xOJBO68807s378fV1xxBXbs2AG1Wo2Kigr4/X6cfvrpcLvd0Gg0SY1HtVotgJZ5SZ7N0Wi0TU/mbCST5sjxIN9ltVrNLArUajUaGhpYw5yGhgaYTKY2g2OBQAA1NTVMHa/RaFBRUcESVQBQVlbGPHzJZ9ZisbAAprCxj1qtPqaCvrv53e9+hzlz5rBmbgCwaNEiNDQ04IUXXsC8efPwwAMP4IMPPsADDzyAiy66CGPHjj3u82bTHAkEAkxhTE0+qaGS0+mESCSCxWLB/v37kUgkYLFYUFxc3KYnpdVqZQ1H+/bty+ZXPB6HwWCAXq9nvScUCgUMBgMLGJCyLVP3lzlz5uDw4cNMyT1lyhRceumlMBgMuOaaaxAOh3Hdddfh1ltv7dDzZdMcORbUPFLYDJLW+WAwyP7+20tstuXXTO+r1eqkgD71GhFatZzqnCrzhNN1ZPIcSbXHIFu+hoYGJmARi8VwOp3sXkwVltFolFVu0r9CRCIRdDodu9NSc2qpVMqa1ZpMpiTRVlsWcZzsI5FIoHfv3jhy5Ag+/PBDXHrppSf0/YsXL8Yll1yCAQMG4KeffuqiUaaHnhXd4XA4SQjVZeRDCLQE8UgdRoGbYz1HKBRiwUfhxZ3eTz28S6XSNjdqTuZAXslAy3zweDzsciYWi+H1epMuc6nIZDLmq0pBP7q4yWQymEwmhEIheL1eRKNRpoZWqVTQaDRMpUjlZTQ/6bFoNMqbsnUTwr9julyHQiGWSIhGoyxoQypBm82G0047Ddu2bYPD4YDD4cDw4cOxfft2fPDBB7jyyivx/PPP41//+hdGjx6NPn36tPvzt2zZgv3790Mmk7EEVZ8+feD3+6FUKtk8TFUwSyQSxGIxtn6RapHPm/RCrwsFaKLRKHJyctDQ0IDm5mYEg0EWHIrFYqitrUVTUxP7/ry8PJjNZtTU1LA1iRKhXq+XBbS1Wm1SEEgul7P1JBAIsKRWJpDazE0ikcBsNsNsNqOyshJbtmxhzWQmTJiADRs2tBlkzuambkLbFGra6PV6EYlE2JrT3NyM4uJi1NTUwGq1wuv1Ijc3l+0Xfr8fDoeDnUcsFgtEIhHq6+tZQFmlUqG5uRlAS6JMp9MlBR8zPYHZVsNZ4ptvvunGkWQGdCYQ+qaSR6rdbm91TmnrLJEafKZEpFwuZ+dhsmiiRHggEIBYLG7VsJjD4WQW0WiUqZQpiRiLxVBXV8cSmz6fD263m/1tB4NBtqZQApL6xpBNHPkxS6VShMNhyGQyVrlJ+41Go4HH40EsFoPBYEAkEmEJVYVCwdeNLGfDhg04cuQItFotzjvvvBP+/qlTp0IikWDv3r04cuQIevXq1QWjTA88yMzh9GDI75AO5IRw00stdqCLHFkiCA/wYrGYXZQBtLJZEH4dAB5kzlDIzxBoea2oiSN9zuFwAABTtgrnC2X96UBGQQ4KTsrlcshkMsjlcigUCpjNZlauSgfBQCAArVYLtVrdSulOalQ+d7oPChzT5Vyj0bDEktlsZgFACjibzWbY7XZUV1fj7LPPxjfffIONGzdi1qxZOHjwIOrr69G7d2+ceeaZ2LhxIxYsWIAXXnghae0gwuEwXn75ZQDApEmTsH//fubvHgwG0adPHwSDQXbQp0M/lUIDLWo2oV90JilYewKpSUbaD+gSFgqFIBaLodfr4Xa7UVNTg4qKCoRCIVRWVrKAodFoRFFREbxeL+rq6gC0zLmCggIolcokBRLZ8wghr/BAIMAqajJFsZrazG3r1q3sc4lEAh6PhynzKfjaFtnc1E0sFjMv7UgkArlczj6WyWRsXxGJRCgtLUVtbS0CgQCqq6vbfK78/HwAYJUXKpUKKpWK/d/J5XIWYBYmoHpadVW2QsploaUFlbmTYpE+Fgaij5UcJ2KxGLMAo/4RsVgMTqcTWq0WSqWSBZsosUPnmkxYTzidD9kopPYgodebmpby1z+zoL9loOUuqlarEYlEUF9fj3g8DrlcDqfTyYQzbrcb4XAYgUAAHo+H9Sqi/Yf+7un5qK8MVTxotVr2/Xq9HpFIBFqtlq1XRqORibOoWTVPUmUvH3zwAQDgggsuOKmG8kajEWPGjMG6devw9ddf41e/+lVnDzFt8JMUh9NDSVUuCxsAUhAHaCkzpINUIBCAzWZLasYDtByu1Go1Kw8CwA70AFopoflmmtkID1EAmHpULBazADOVfjU1NSUF8KgsTKPRsOYadEgLBALsuQixWMzsVNRqNfx+P2smGQqFYDQaW3nrcrofYUMsKgmkjtYymQyRSAQGgwF2u501VnM4HOjXrx9KS0tRXV2NzZs348orr8Rrr72GdevW4aqrrkJVVRXq6+vx6KOP4sknn2xlY/HPf/4TVVVVMBqN0Ov1qK+vx4ABA+B2uyGRSKDVatHc3MwUZqROJT9W8oGnQGVb9i2crqWt0lIgOcgcDodRWlqKXbt2wel0wuFwoKamhgUYy8vLodfrWdNIADAYDKzpo8PhYOuQXq9v97BP6w0FoTKpIkLYzG3mzJnscbFYDK1Wy+wffD5fu6XI2d7UTSqVstclHA5Dq9WyJsIUXA+Hw4jFYigvL2eBgHA4zJKeZIVCyjWgZU4Ik6dULSNUv5IKjZPZUDM+obc6WWxRAonmTygUYl8nbOZHSkRhk2JKpAs9q/1+P1ufzGYzq+IKhUKsTwAFsek5FAoFn0dZBnnB05tQ7Z4aWD4elPCWyWSsTwQnPQjtGSUSCTQaDeLxOLNOUigUCAaDrKKyubkZkUgEzc3N7O+cbB9pbtDfOyXMJRIJxGIxlEoltFotq8g0mUwIh8PQ6XRMDa3T6WC1WqHX6yGXyxGPx+H3+1mCVSaTcRFEFhGLxfDhhx8CAK644oqTfp4ZM2Zg3bp1WLZsGQ8yczic7IcOUEDLoUgYKATAupSTj5VEIkFjYyOAo5s1KVPbysKSouxYyiBhx15OZkCXJaDltSMlslwuZ4qw3Nxc1NbWsmAPcDQI6Xa72fcYDAYYDAZWsiy80JGiKB6PM8WQRCJBTk4OdDodCyY0NzfDbDa36grP50z3kvr/T8rCWCzGOnNTMikYDMJisaCpqQmNjY2YPHky3n//fdTV1WHEiBGYOHEivvvuO3z55Zf4wx/+gAcffBC7d+/GggUL8Mgjj7BA8//+9z8sXrwYAHD99ddjxYoVAFqsEWpqatC3b1/m0ZtqlUHjozJ6GjdXKXY/tLfQhVtY0k6qZppHeXl5aGpqwsGDBwG0BHwGDBgAuVwOt9sNn88HkUiEwsJCpg6y2+2IRqMQi8UwGo3H9ToUKmYzJchMzdw+/fRTyOVyqFQq2Gw2NDU1oby8HCNHjsQHH3yAO++8E6tXr8acOXPafB6FQnHc/gmZDCW46UIfiUSYFQ/5KZOFht1uh1QqhcFggEgkYj0mhIlMCjoLq6r0ej1EIhFLPNHX8bUhsyHVsFDkQI/RaxkOh5n/stDKjZp4dSRQGAqF2BmmrKwMOp0OHo8HdrsdFosFYrEYkUgEVqsVRqMRarWaBZFoPJSM5WQeQpsUSjq0Ny9Sg8zCryPlcmpQkOYCJb5I4d6T/LszBXqNAbDEMwljqG9HdXU1qxaKxWJobm6Gx+NhTYZjsRjcbjer3k1FJpNBoVCwALNSqYTRaEQwGIRer0c8HkcwGITRaEQ0GoVWq2UiCZ1OB4lEwr4mGAyyHhVc3Zz5rFq1ivUSmT59+kk/z4wZMzB//nysWLGCiXdOBU6N34LD4ZwwdOmijUx48QeONmMjRamwWUJBQcFxs61Cf8NUhB6vkUiEqwszCGGWXhhwppJUlUrFgj1SqRQVFRVM0RMMBtHc3AybzQav1wuXy8WCgELkcjmUSiUraReLxXC73YhEImhqaoJOp4PFYmGqAp/Px0rFeZA5sxCWh9LBKJFIICcnB01NTXA6nejXrx+GDh2Kbdu2YceOHZg1axZ27twJh8OBw4cPY8GCBfj973+PzZs345577sGVV16Jw4cP4/333wcAzJ07lwWOhgwZApvNBgAoLS1FVVXVMYOEMpmMXTK4qqj7SU1aCT+WSqWt/p71en2S/zL5uQNHKyqMRiNbD0ipKBKJYDabO3w4b6tfQDp54okn0NDQgHPPPRcAsHDhQsyePRsikQjvvPMOysvLUVFRgbPPPhv9+/fH+PHj0zziroMUyaQeE4lE0Ov1cLlciEQiyMnJQTAYhMvlYn7+qd+vVquhUqmSmj2qVCpotdqkhsdk48TVY5lNJBJJ8hoHwHxTAbDydFK5e71eVhVFgV8KAlNgkHoKyOVyaDQaGI1G5OfnQyKRoK6uDrW1taiqqkJeXh5KS0vR1NQEq9XK/N/JIzwcDsNkMkGlUjGrF2GAkZN+hGr11MoaUqcKVe7CXiAdQRhMpnkFHLWeC4fDzFbhVAkgZQPCe6hYLIbP52PN9/Ly8rB//34AR20BA4EAWzucTie709Ad2OVysXWE7kkajQZarRZerxcqlQoGgwGhUAharZYFj3Nzc5knMzU9VqvVrHE2nXNI8CVsUM3nS+ZCVhlz5879WUnF0aNHw2w2w+FwYOPGjTj77LM7a4hphc9cDqcHIrRDENpbAMmXbzrAU0kQAKYu1ev1xzxA0/NQcDK1WzeV2NPhjmf60w+VmQIt84IOYwqFAna7HQCg0+mwd+9eAED//v1hNBoBHO3CrNVqYTQaEYlE4HK54PV62eWP5hwdukktJJPJUFZWBqlUCqvVCo/HwxoyUUCbSqA56SE1GCgMFNLlX/j3S364tIYMHjwY27ZtYyX/s2bNwrvvvotVq1bh4Ycfxh//+Ec89thjOHjwIBYuXMieZ8aMGbj66qvxxBNPAACGDx+OTZs2seYqAJhFBiWrhB7zVH6fOj5O90DzhEpLydNQuAcAR/chSiAolUp2wauqqkJpaSn7GrK6EL7Owj2qI2RasqqtZm4bNmxI+lj4d3GqQw3VKDBEDWF9Ph+8Xi9MJhOMRiMCgQA7Y5BCXdiojZ5LWJ4sXK9446XMRxhgFovFCIfD8Hg8AFrOHRRsJjUiKRKFAaMTSSb16tULkyZNQmlpKTZt2oSmpiZotVoUFRWhrq4ODQ0N6NWrFwwGA1wuF6uuMJlMrIqAxszViOmF5oFQ/U7nXLJUofWDHqM7SaplBiFs+EaevDKZLKlZNtByrtVoNGzdoeempth8XnQ99LrTXdXpdAJoSVTTOiISieDxeNj6EY/HWeWM2+1mtn27du1iDWOFkEWcyWSCyWRCIBBIssjIyclBNBqFxWJBPB6HTqdjyQedTgepVMoSpVKplAWcyUuaqpP4fMkswuEwq7T8OVYZQMtZZNq0afjwww+xbNkyHmTmcDjZSaqSjAJ3dDiizZhUQ+QHSYd7n8/HDvJUJkQNeihbDLSohii46HK5oNfrk4KEFBAKh8OsrJFUAJz0ICwblEgkSZd0KkenUlBS/kSjUezatQu1tbUdasZHnqgajQZqtZoFCQ4cOICioiIUFxejtrYWzc3NMBgMkEgkiMViCAaDLJgIZI4CsacgDMrRhQk4qgARIlQG0vcZjUZWdtzU1IQRI0Zg6dKlsNvt2LRpE8aPH4+XX34ZixYtwvbt26HX6zFjxgxMmjQJ3333HUKhEPLy8phaoKCggK1ZcrkcsViMBRlTg4/CsXK6D6EHLr1uFBwi325SJ1NDProE9u3bFx6PB1VVVSzxVFxcDJFIhFAohKqqKuTn57PLVzQahd1uh8Fg6JB6sL2mtJzMgZIS9LesVqsRjUaZnYHZbE5q7kj+mzSH6Hs0Gg3bN4RrAb+4Zz7CpIBUKmWNuOjMSOsJKdvJh9npdLLgMtllCK0R5HI51Go19Ho9zGYzK2Gvr6/HkSNH8P7772PWrFk4/fTTsXHjRhw8eBAWiwX5+flobGxEVVUVBg4ciJycHNjtdqZiVCqVkMvlSc0G+Zm2+6G9J/VsEgwGWZKSKhqo2oH6yAjFL6kN0YWBZVIlCyu5NBoNVCoVu2eRUjUnJwdSqZQlzchjnp9JuhZhhW4kEmHzwWAwMEsu6vVACQmy0SKhTWFhIerq6tDc3IySkhJceOGFKC0tRTAYxL59+7By5Uo0NDSgvr4efr8fOTk5AFr2mtzcXDQ1NTH7OIvFAuBotU1zczOUSiXrKRKNRuF2u5NsoGj9S+1Xwkkvy5cvh8PhQH5+PiZPnvyzn2/GjBksyJytzZtT4Tsfh9PDEB6c6DKe2qQvGAyyi5rZbGYXcYvFwg7jFBykyzpBWXq1Ws2CSuFwGA6HA1qtNuliJ5VKIZFIWIkjlRjyi3/3k1rWThc5iUTCDjkajYZl8ik7v2HDBjZXKHFAJaptIfRgBoDCwkIWWK6rq4Ner2elZ9TQjdTQQjUzXRazIUgQCoVw2WWXwWaz4YYbbsj6xg5Cj106tMvlchYwpDJB+hrCYrHA4/HAarWipKQEkyZNwscff4xvvvkGY8aMgdlsxq233pr0s9xuN/NinjRpElNCFxUVsZ8tlUoRi8XY3BD+TLJ9AXiQubuhPYVK02nPAMD8C0mRrFQqceDAAQBgpecqlQpyuRyHDx9GMBjEgQMHmAIskUigurqalaoGAgEWaNZoNMe8wLdVycPJPFLV5tRYls4LqX7aoVCIKcLkcjm0Wm2r11f4umfD3tHTESqYKcBMZwhhQ2GHw4FEIgG/3w+r1crOM263mwWiU6EmxkDL2WXkyJGYPXs2tm7dipqaGnz22WeYPXs2+vTpg4MHD2Lbtm2YPHkyAoEA3G43qqqq0L9//ySFPSXPqJ8JT4Z3PzQPhAklahBKyQlhMNHv97OPSYFOgeDU/gFyuTzJ8kIul8NgMECpVCIajTKLOIPBgPz8fPj9fubfnZubC41Gw4Lcfr8/KQHG6VqECe1YLMaqM+m1pCqE1H/79++P5cuXA2hpRN27d++k550/fz6++OIL/OlPf0JDQwN8Ph/69OkDoEXlnJOTA5vNhry8PNhsNuTn58PtdjOBFnkxy+Vy5OXlMRGHw+Fg6meqiuDnlcyBrDIuu+yyTolZkKfzpk2b4HA4YDabf/ZzppsuvXH95S9/wZAhQzB48GDcddddfLPlcNJMaiCRLut0MaMLGzV4ows8AOZ9GAqFoFAomC+mSqWCQqFgiywd7BsaGmC325nPFJUeOZ3OpK7g1OiHNk9SynK6l1QVMwWByYMZaFGFkcey2WzGzp074XQ6IZPJMHbsWMyYMQPTp0/HzJkzceaZZ6JXr14sQ08liRqNBiUlJSgqKoJIJEJ9fT3q6upQWFgIAKiurmYWHB6Ph2XvKaFB84xKGbOBDz/8EDNnzsTq1auxaNGiVuqabEPocUy/i1qtZnOG1oxU8vPzAQB1dXUAgDPPPBMGgwHNzc345JNPWr2eNpsNr7zyCnw+HwoLCzFo0CBUVVUBAMrLy9m8pDkhVDLTv6llrpzuQbjXkNKcgj06nQ5isZhd8gwGAzweD0tWFRUVATi6JuXn57Ou8H6/H36/nyWeXC4XGhoaWFIskUjA5/PBZrO1+3cmnL888ZCZCFXwwgvcsQJ3QmsWKkNORWjjlS37R0+FlMcAmAoxHo8nBZudTiccDgdbG5qampBIJCCTyVBXV8fOEEOHDkVZWRm0Wi0TQuTk5KCwsBB6vR6RSAQbN27E3//+d0ilUvTt2xfxeBxffPEFNBoNdDodQqEQtm3bhtLSUohEIlbVR2p6mq/Cswnfc7qXaDQKj8eTdMew2+1wu90IBoNwOBxwOp1wu92wWq2or6+HzWZDQ0MDampqUF1dzfy4SfhQX1+PxsZG1oi1uroadrud+XxbrVY0NTWhsLCQNbl2uVw4fPgwCgoKYDAYALScZ+LxOJsvlCjjdD2UXABagszU90Gn0zFbQDq3pnrr7tq1C/379wcA/O1vf2v1mkkkEpx//vn46quvMG3aNESjURw4cABisRh+v59VBbtcLsRiMbhcLsTjcVitVmi1WpSWlkImkyEcDqOmpoatT4lEAk6nM+luzMkMAoEAlixZAuDnW2UQJSUlGDJkCOLxOEtqZDtdlhKxWq3429/+hl27dkEmk2HixInYsGEDxo4d21U/ksPhHAehPzI1XfL5fGzzUqvVaGpqQiwWg0wmQ05ODitvb08NQlD5qUwmY91yKbMvkUhYqWskEoHD4UgqYyV/TrpARiIR3pm7G0lNPlAHd6E1AqlBEokEa1hRU1MDoKVpAWXrd+3ahUOHDh03kJqTk4PTTz8d+/btg91uh9lsZhc3AMwmIxQKMX9W8uKUSqXMT4+UQ5nM5s2bcdNNN0EsFmPYsGHYs2cPRo4cmfQ1VLZJUAA1U6CElDAwQ+XAAJL8dYVJo2AwyKwsevXqhfXr16O6uhoejwc6nQ6XXHIJ3nzzTWzYsAE1NTUYMmQIJBIJampqsGvXLsRiMeh0Olx77bX47rvvEI/HUVRUBJlMBq/Xm9S0VCKRMPU9kNxYjgcTuxeaC+RdSUpD8tJ2OBwIhULML3ffvn0AWtTucrkc+/fvR1VVVZKXJgC2d1HJMlk+UWk0Kc3ogqZUKltZNXGP7syGlFt0VpHL5cz2gM4hbVlrkeVKIpGA3W6HQqGAWq1OUi3LZDJmZRAIBCCTyZJswziZgzBpQCpUv9/PgrlWq5U1VHM6nbBarRCLxcjNzcXGjRsBtCQyQ6EQvvzyy3aTCiKRCH369IFer4fVasW3336LgoIC9O7dG/X19fjiiy9wzjnnoLKyEo2Njairq0Nubi6sVivsdjtKSkoAHF1XUhP2nK6H1geaG2Qz4Ha7kxIToVAILpcLoVCIVWxSFYzX64XP52u15wjRarWsF4Tb7WbnFY/Hgy1btmDmzJkoLS3Fnj17EAgEUFtbi/LyckQiEfj9frjdbuTm5kIulzMlNW8O2XXQuTX1jkNVDPn5+di9ezcAsAbm1CDa5/PBaDTCZrOhoqICBw4cwJIlS1BfX48///nPLBlO6HQ6/OMf/8ADDzyAJUuW4ODBg+jbty/cbjez+iPRjVKpRDgcxt69ezF16lQUFhaiuroa9fX1qK6uxsiRI1FTU4NwOMz2JmFTdk56+fLLL+H1elFWVoazzjqr05531qxZ2LVrFz799FNcfvnlnfa86aJLT1XRaBTBYJAp0PLy8rryx3E4nGMg9FGlQw01RQFaFKt2u51tajk5OaipqcGBAwfYxY4CBOQ7JvRgprJFt9uN5uZmlr2lQBQ1Y6FDt9/vh8PhSDoUUmD5WHYLnM4n9VJEynYKBgEtasOGhgYALQHinTt3AgAqKiqg1WqxcuVKfPTRR9izZw8L9pSWluK0007D6NGjcfbZZ2PixIkYOnQo5HI57HY7vvnmG6ZgPnDgAFMSNDU1QafTAQCam5uZ8oMuBkIVPnl6ZzIej4f9bhqNhv3/CnnyySdhMBjYW2lpaXcP85jQ363wb5gSEUDL3z89Ho1GmT9lPB5nymWz2Yzi4mLE43GsWrUK8XgcQ4YMwVVXXQW5XI6amhosW7YMX375JbZv345YLIb+/fvjl7/8JdavX4+amhpIpVKMGzeOXQzMZjNLaKQGD6kZD8CDzN1J6oXO5/MhGo1CJBLBaDTC5/MxFXNubi5qamqYJ39ubi42bdqEQ4cOsYawBoMBWq2WJRFI1ej1ellzUSpXpzdqNBoMBmG325NsnYRzlpNZUCM3em0UCgXi8ThcLldSgJnUgcKGWlKpFGazmZ1vQqEQmpub4XA4WIk6XfCFiuZAIIBAIMCUiVQqn+n7yqmMsAkxJRxobgBgZ1WNRsMCzHK5HMOGDcOmTZsAADNnzoTf78fnn3+OeDyOUaNG4aabbsI999yD66+/HpMnT0Z5eTkSiQQOHDiArVu3Ih6PQyqVoqGhAVu3boXRaEQsFsPKlStZUGn37t1JgcbUPSa1WpDTtcTjcbbmAy2vg9vthtvtZqIW8mpvamqCz+djKmaPxwO73Y66ujq43W74/X40Nzfj/7X35vFRluf+/2f2fckyWUnCEhbZRUWUCEhxwwWXIrjg0Wo9PWqt2lqlal1OxapHq+g5alGrVYp1Qa2loFW/iClGEBAkbCGQfZ3JZPZ95vdHftfNM0MQpCQzSa736zUvMpMhz5M819zPdV/L5+rs7ERTUxOampqErVEguqOjQ/ik1dXVKCkpEfJx+/fvh1arFf4bDZYzm80ADkk2SH0opu+Q7k+l6zntey0Wi/AfCwsLxYyR8ePHQy6Xo7CwEAqFAg0NDTj11FOh0+nw9ddfY/78+fjb3/522PEUCgUee+wxTJ06FV6vVxy/q6sLsVhMDBSsr68XMbH6+npRhEFFE+T7AMk2wvekzGDVqlUAgEWLFp3QvcWll14KAFizZk3SENGByg+uZI7H4xg/fjwWLFiAxx9/XLz+8ccf4+KLL8bKlSuxcOFC2Gw2/OpXv0JpaSmUSiV+9rOfYdSoUSf05BmGOTakradyuRwymQzd3d0iCKxUKuF0OoU+ptVqxcGDB0VlZU5ODmw2G7xeL9rb28VQFak2q1qthlarFRs40s0DegJrSqVSbOBMJpNohezu7hZD4Kh9OR6PIxKJCE0spm+h60i6qaRvSwP3ZDKZ+FqpVIrkgNFoRHFxMd5///2kgV0jRoxAY2MjqqurUVlZmdSeXlZWhpNPPlkMyti8eTPKysrEsB65XI729naMHz8e3d3d8Hq9sFgsQvfQ5XIhJycHarVaVFxnejUI6c8CgM/nExsOKUuXLsVdd90lnrvd7owKNNMQLqnzKw0sB4NB8Xt2dnYiKysLw4cPx549e1BTUyMG/5111ll455130NDQgLVr1+Lss8/GKaecgjFjxuDbb79FS0sL4vE4srOzYbPZ4HQ6sXbtWsTjcajVapx99tk4cOAAPB6PqECMxWIwGo1JHRFAT4CKvuYgc/+RWnFDtm82mxEOh9Ha2gqgZ4NH2usymQxFRUXYtm2bqDAdP348bDYbwuEwGhoaYLfbRcAagBiqRfc3ajOV2qlOpwPQs8mzWq1C2kkaSORAUPqh5IG0Ap6q/bxer9hc6/V6xONxtLe3C8kEKQqFImkgFw3wouQD+SlUHU2yGfRIhc6DK1L7F2lghQJz9K9MJoPf7xfaqp2dndDpdJg9ezb+9Kc/IZFIoKKiAllZWVixYgVkMhl+/vOfY9asWVizZg2eeuop1NTUAOi5viNGjEBRURG6urrQ0tICuVyO4cOHIxAI4LvvvsO4cePg8/mwdetWjBgxAj6fD01NTeLeQ+dFz6XdPUzfQvsMSiCpVCp0dnaKtcTpdCIWi8HpdArtZUo6kj9JHZahUEgkP6XQ2qFSqTB9+nQ0NTVh9+7dmDlzJhobG1FZWYnzzjsPDodD/P/UDiqyhdSBs5l8DxoMs0ToM0n2ASSvLdR5C/TY0siRI7F//36YTCZYLBa4XC6Ul5ejsbERPp8Po0aNgs/nw8GDB3HnnXdi586duPfee5P8S7Vajcceewzz58/Htm3bMGvWLFGsQwFt0lgGICQI29vbxX5crVYn2QonIzIHl8uFNWvWADhxUhnEjBkzxHDZ9evXC53mgcoP3nXJ5XIsXboUL7zwghgAtX37dixcuBDLli3DwoULAfRUn/39739HXV0dmpubsXHjRmzYsOHEnj3DMMdE6gALp9N5WJVxPB4XraMUYFapVCgvL4dGo8HXX3+NqqoqHDx4EE6nMynARwN37HY7mpqa0NDQAJ/PJxwrqjKj6lO3250UrPL5fHC73aKdOvWcmb5DurmWy+Wiylan0wltbqvVKgauZWdno7GxEQAwceJE/POf/xSJgksvvRQmkwmvv/461q5dK9rdaWhKLBbDgQMH8N5776GmpgYmkwnRaBT19fUIh8PC4Y/H46itrRXB2JaWFigUCqhUKtEGL5fLkxz3THbCpk2bhg0bNiCRSODbb7/F2LFjD3uPRqOB2WxOemQSlJwCej6blAAiB93n8yErKwsymQxerxfNzc0oLi5GdnY2YrEYtmzZArfbjezsbJx77rlQKBSor6/HG2+8gTVr1mDHjh1QqVTIz8+HTqdDQ0MDqqqqsHfvXsTjcRQXF+O0005DXV0d3G43FAoFzGazkPYhJ58qzEhKgaUR+hdpFbNSqRTVpxTcbWlpEZI7AER3RGFhIfbs2YNAIACdTofTTz8dVqsVX331FV577TV88skn2Lp1K/bu3Yva2lrU1tairq4O9fX1cLvdIoFJ1Wg+n09oN9Oa4nQ6EQwGk3TdM3ndGCqQXqbUbpRKpaheJgkchUIBu90Ou90uKpNJwoeCexQ8crvdcLlcIhlO7w2Hw3C73XA4HEl+j1qtTpLOkFa7U0cm039IP5d07ajogYIypaWl2LNnD4CeNuNPPvkEoVAIo0aNwvnnn4+XX34ZALBgwQLMnj0bzz//PO69914RYKaqwdraWnz55ZfYv38/jEaj8FNIlmvv3r3QaDRCgxnomR1B/qu0OlVaeMGJzb6HEk0ymQwGg0EEkMlPpFkwfr8foVAIHR0dQlrJ4XAgGo1Co9EI6ROlUokZM2agoqIC06ZNw+zZs7FkyRJMmjQJkUgEGzduFP7bzp07oVKpkrosyBZI7owqnskWepPvytTq1MEwS0RayUxBXSqmAnoSCFRRvHfvXpxxxhlQKpVobW3FlClTYLVaEQqFUFBQgOHDhwPo8TErKioAAK+88kpSwSUxZswYzJ49W7yfjiuFbIS6gOvr6wH0aPNS4oT2PUQmJiOGGqtXr0YwGMS4ceMOkz38d5HL5ViwYAEA4P333z+hPzsdHNcd8JprrkFubi6WL1+OpqYmXHjhhViyZAl+9atfifd8+umnKC8vR3Z2NnQ6HS688EJUVVWdsBNnGObYSK1ipgAvtR5Kh+tQO1kikYDZbMbIkSNRU1ODTZs2icpBm80GrVYLj8eDxsZGseFvampCd3e3aCtzOp04ePCgqDKlagJyqILBINxud1Jrq8fjERqewKEK20wlFAphwYIFmDlzJlasWJHu0zkupJsi0rNUKpXwer0iEeDz+RCJRKDVakVGvqioCG1tbejo6IBarcYll1yCnTt3YvXq1QiFQigsLMTll1+Oe+65B7feeisWL16MhQsX4uyzzxba39u3bxc6ep2dnWITR+3LLS0tIrDc3NwsdM2i0Sh8Pp/QZgUO6Y1nIosWLcI///lPTJ8+HVdccYUYZjiQoCohoOdvTRWi0q+dTqeovm5vb0ddXR0mTpwIk8mESCSCb775Bu3t7RgxYgQuv/xy5OfnIxaLob6+Htu3b8fWrVuxa9cutLS0iE6GkpISTJgwQdhMPB6HVqsV8iNKpVLochsMBhGcoGABgKQ1helbpEkr6b3HaDSitbVVJCh0Op1IVuXn56Ourk4EmE899VSEQiG888472LZtG6LRKLKysjBhwgSceuqpmDp1KkaOHCmqltva2lBfXy+ChiSlEQqFEAgERPUzBR4ikYiw5YEgtzOYIS1V+qyq1WrhP9C9iZKfNDCJgsDhcBgejwcej0dUG9Jzv98v7i2BQEAkHsg/oW4pn8+H7u5uoc0aj8eFlrNOpxOBiXA4nFEJiSP5HoPBJwEOBZlTB+ip1WoRyKN7fl5eHqLRKA4cOACVSoVrr70WH330Ebq6ulBQUIBFixZh+/bteOmllwAA//Vf/4XKykrs2LEDn332GR599FFMnjwZoVAIW7ZsET5HXV2dmCXS2dmJRCKB+vp6UR1JiQdp9T2db29DJ5kTC32GgZ5AHq35VOlOySdKVNHgPYVCIQa/FRQUYN++fYhEIpg8eTJOOeUU/PWvf8Wrr76Kt956CytWrMADDzwAl8uFiooKJBIJVFZWwmAwwOVyiUQDBQjpuBR0Jlmf1I4qmUyWFADNRLZs2YKKioqkWSKpkO619JFJSKuUqTAiGAwiOzsbQE+yqLy8HCqVCt3d3di7dy/OOeccyGQy1NfXC1+DrlFFRYXoBP7xj38MAHj55Zfx8ccfH3bsM888E8ChTi7q9qRgPdkIyXHE43FYLBYx3wboKfCRFkpwkDn9rFy5EkBPLLQvrsdll10GAPjwww8zdm04Vo5r16VUKnHPPfdg+fLlmD9/PqZNm4bly5cnvaekpAQbN24UzuP69et7rd5imExlsDjrUl0fChxGIhGxuabhf1QBoFKpUFpaCoPBgH/961+igpUm4H799dfYuXMn2tvbkwaVBYNB2O12NDQ0oKGhAaFQCPF4HG1tbWhvbxcZfRq6QcMBXS4X5HK52GwGAgHhoFNgIFM5lkx/JjthUt1DuVwunCGqzgCStZgLCwuFcz569Gjs2LEDQM9wHZfLhU8++QRAjxbi7bffDo/Hg1/+8pf46U9/invuuQcPPPAAnnvuObjdbmRlZSGRSKClpQWdnZ1CP9PlciEQCMDr9Qqbok1dW1ub0Gr2+XxIJBJJ0g2ZekPWarV4//33sXnzZtxyyy3pPp3jhj6XVFlIUgU6nQ4ymUxU/FGg2el0Yt++fRg3bpyoaN6xYwd27NgBrVaLyy67DFdeeSUqKiowefJkjBs3DmPHjsXYsWMxevRolJSUiAEpQE+AwWg0QqfTibZ4vV4PuVwuqkUAiHZ4aQIl0xks9xtpNSqtJ3q9Hm63Wwz6y8rKEptym82G9vZ2+Hw+aDQanHLKKfD5fFi9erXokLjwwgvx4x//GCqVCt988w3WrVuHL7/8Eg6HA1arFTabDYlEAq2trejo6BAavR6PB+FwGH6/H36/XwSlnE5n0gY/k4KHQwmqTqV1W61WC31toOdzS5XH1BED4LCgMF3vcDgsdJVJv9/v94vEJbXE0+vBYFAEnGnYoMfjgd1u73XAIGkDZwJH8j0Guk8CIGnAbG8D9FKlB2QyGWprawFAJCT/8Y9/AACWLFkCtVotAgOXXnopbr31VlitVshkMuTn52PBggVYuXIlHnnkEajValRXV4sgVG1trUiuUzKV1gvyf6UBRJ4B0H9I7+/U+QD0dOFR5yQF9igpZTAYUFdXBwCYNGkSvv76awA9drF//3688cYbCIVCmDBhAq6//nqcd955UCgU+PTTT7FmzRoUFBTA7/fD5XIhkUjgwIEDiMViqKmpEddfOmuGAptkK9KB5pk+G2AwzBKhz2EsFhOf32AwiIKCAshkMrhcLrS3t2PGjBki+dDW1oZzzz0XcrkcBw8exLhx40TAuKWlRXTs19TU4OqrrwYAPPTQQ+K+RdCel9Yw0oGWSmYAPfZLxTtlZWVCNkOr1cJisSTJGTLppaWlBZ9//jkAiGt/opk7dy7MZjNaW1vF+jRQOe674DXXXAO/349EIoFVq1YdtombMWMG5s+fj5NPPhmTJ0/GqFGjcMkll/zbJ8ww/cVgaBWiFlLazMViMVHJQ6/RgD6lUomioiIMHz4cdXV12Lx5M4LBIAwGA8aMGYNvvvkG3333HeLxOIqKisTAt2AwCJfLhXA4DK1WC5PJhHg8jsbGRiG34Pf7hc6VXC5HIBCA0+kU6wY5hPQ1gF71szKNY8n0Z7ITRs4LBQgBJDnrZrNZBJWzs7PFZjQvL0+0IcrlcowdOxaVlZUAeqQh5s6dizfeeANPPfUU2traoFKpUFxcjKysLMTjcezatQtffPGFqGz0+XxobW0Vlcwkx0LDXEiaKRQKwe/3iwFgVLUirVZg+g5pNXM0GhUbkHA4jJycHFFB5Pf7UVZWJjRVa2trUVhYiLKyMgA9Vc5VVVX48ssvUVNTA7fbLRLS0mQBHU+n04nhb2q1WgSbtVotFAqFqHCXyWTQaDSwWCxJP2cgaGMOhvuNNGkFHAoCaTQasYmy2WyiasdsNgvdTIVCgZNPPhmxWAx/+9vfEAgEkJubiyuvvBIA8OSTT+Ldd9/F/v374fV6RafDN998g6qqKmEPbrdb6HpTFVskEhF6nHTvc7lcGRk8HEqQXjLQE3yhawX0BAfIr6ChwCSBQd020oGAHo8nSSKFXqc2ebp3eDweIc1BAyTpPXRcoKftvaurC9FoVASGMkle5Ui+x0D3SYDe7+PSivKsrCwAh9aXzs5OUd1sNBpRU1MDv9+P7OxsTJ8+HQCwbds2ABCtyKnIZDJcfvnlWL58OWQyGaqqqlBaWnpYcAo4PLic+nOAzJVAGExIE5pSPXdpgJeKVqhYhq7Z1KlTRbCIOs2+/fZbWCwWPPfcc3j//fdx33334fnnn8eHH36IkSNHor29HVu2bAEANDc3IxaLibVFenySWpGeI9kO2RKQ+dIHxzpLxOVyiQd1J2UK0mSPQqEQf3+S1QF6JLvcbjcqKiqgVqvhdDpht9sxf/58yGQyVFdXY9q0aTj55JPFvueUU05BLBZDfn4+SktL0dHRcVhxAK05BQUF4vjAofWNfCV6rtfrRQGYXC5Hfn4+gGQ7Z9LLW2+9hUQigTPPPBMjR47sk2Oo1WpceOGFAIAPPvigT47RXxx3kPm2224DANjt9iNWCT366KPYvXs3qqurxY2bYQYKA71VSNqqTG1lpF1LwzKCwaCYoDtmzBg4HA588cUXaGlpAQCMGDEC2dnZWLduHTweDywWC04//XTs3bsX//jHP7B161Y0NDSI1vgdO3Zgy5YtIgvr8XhQX18PpVKJWCyG3bt3Q61Wi+E9DodDOAGU5aWvpdXMmcqxZPoz2QmTVoKQE6xSqcS1MBqNIsBbVlYmkgZFRUUiEJ2VlQWVSoX9+/cD6Ekw1tTU4K233gIAXHfddXjnnXfwyiuvYNWqVXj99ddx/fXXw2q1wm63o7q6WiRDqKLR7/eLtnZqdQ8Gg6IKMbU6JNPbDgcTFLAljTuqIA4Gg8jNzRU6lt3d3cjNzYXVagUAtLa2Ih6PY8qUKcjLyxOVRRQwpOE3NJjLaDSKYYE6nU5ILJhMJuj1eqhUKvEatc/T/5GufSqVakD4HgP9fgMgqSuC/v5arVYMbtNqtQgGg2KAqM1mE1Vl48ePh16vx7p160SAaMGCBdi3bx+ef/552O12WCwWLFiwAL/85S9x77334j/+4z8wfvx4oXXucDhgNpsRDAbFOhuPx+H1ehGJRIRsAlW+0lBTqb0w/UM8Hk/6jJJ2NgAxtwE4FJTp7OwU8k0KhQKdnZ0i4KxWq5GVlYXc3FxkZWWJpBMFgUijmTotKLDs8/lEEj4ajYoqakpeURCbgtpA5vgjR/I9BrpPAiCpGpju7TRcGoAIMtvtdtFO3lvA2Wq1JlUyAjiqVFVFRYUYtkT3DapqJ38jVcJDen/J9OpUYqB3zkgTmlKfVavViq/pWuj1ejEYtqGhQbzm9/sxfPhwJBIJbNu2DWazGatWrcL555+fdE3Hjh2Ld999F6eeeqooiIhEImhpaRHddqFQCM3NzWLGCNkqDQIk+5QmvCkRkan+yWCYJSKTyZLWbvJHXS4XrFarCDR3dHTA6/XirLPOgkqlgsPhQCKRwKmnngoA2Lx5swj81dTU4LzzzgMAbN26FXfffTcA4KWXXsJ3332HRCKB1atXY/Xq1QB6fBsAyMnJAZDcEQgcWitIggXoKepRKpVJUpcDoSNvMJNIJPDnP/8ZQE+hbV9y6aWXAujRZR7ICcvjCjI/8MADWLNmDaqqqhCNRvHKK6+c6PNimLQz0FuFaPMkbUmlKi5qE9VoNBg7dizUajU2bNiA2tpaxONx5OTkYObMmejs7MT/+3//D/F4HKNGjUJhYSHefPNNtLa2QqfTYc6cOfjpT3+K22+/Hddddx2mTZsGuVyOmpoaHDhwQGix7tu3Tzj3VIlG7YhdXV1iI0CBRNr8A4eGvmQix5Lpz1QnTPp3pQ05cMgZNhgMYqNvtVqh0+nE72qxWMT7KYFAnw+bzYbPPvsMADB79mxcffXVSRu7/Px8LF68GK+88grmz58PAKiurhZ/l87OTkSjUREEoGCQVGOPNheZsuEfSkirmcPhsKggBXqq/6Q27vP5IJfLUVxcLORYGhsbodPpMHbsWAwfPhwFBQWwWq2wWCywWq0wGo1CD1Wn08FgMMBsNsNgMECr1UKj0UCr1UKn04mBf3q9HjabTWgy0zoiPddMZ6DfbwAktXVSQIaSjUDPukGdEUVFRaivrxeaqgUFBfj222/R3t4OjUaDCy+8EDU1NXjjjTcQi8UwadIk3HPPPTjttNNw4MABrF+/Hk1NTbjgggvwn//5n0Lzub6+XgzraW5uFmsb6cqTRq/UToCedY/Xk/5DOgtCWgVI8l1Az33H4/GIlvecnBwhZwH0VIhNmTJFtMBv2rQJX3/9NbZv347m5mb4fD6hfUrDlTwejxgWRvctj8cjBgvGYjHY7XYRzKaEPAUGyK9KN0fyPQayT0KQbyENqtCcEHqd1nqq9qPf+cCBA2KQ14EDB0Q1IQV6Pvroo6Men9ZVWrekHV8AkgLf0n+lw8UyeUYEMPBlVaTBN6nUm16vF0kGul50fTQajfg9qbPmtNNOw5o1awAAd9xxB0aPHt3r8UwmE15++WWcdNJJYj4NJScTiYRIXpKEDwWXOzs7EQ6HxTlIq98z2T6AwTFLBEDSZ5J8S6AnAZCXl4fy8nIAPVIIarUakydPBtCzV6XBbm1tbTAYDKJAKi8vD3K5HA6HAzNmzMDs2bMRDofx4x//GNOnT8fdd9+NeDyORYsWYd++fQB6BvoBEH6edAAxPY9Go5DJZDCZTEnDTjUaTcYmI4YKmzdvxvbt26HRaLB48eI+PdYFF1wAjUaDmpoaVFdX9+mx+pIfHGR++eWX8dRTT+Gjjz7ClClTcMcdd+CJJ57gycvMoGOgtwqRM0P6dtINdDgchlKpRHl5Ofx+P7766isEg0Ho9XqcdtppOPXUU7FhwwZ8++23AHqqU8PhMP72t78hkUjg9NNPx89//nO0trZi2bJluPnmm/G73/0O9fX1uOKKK1BcXAyv14vvvvtOSCRUV1fDYrFAJpOhpaUFra2tsNlsAHq0W2nSt3TTn+mSGceS6c9UpNVC9PdVqVRiLdfpdMLBIadIOpCRHDXaiEmTAtSa+H2Tdw0GA26//XYsWbIEAMTfT2oDbrdbaGVKW5Vpg0Ebfm5R7V+oOpg2WWazOUk6A+iRVKEEhM/nQ1lZmahA83g86OjogNvtFq2B0spkk8kktJd1Oh20Wq3YHGg0GqhUKqFXl52dDa1WKyQRyFZkMpkYCDgQGOj3G+nnU5q0Sq3GIV1mvV4vOiPKy8sRDAZFK3JFRQV8Ph/efPNNxONxnHbaabjmmmvw7rvvYvHixXjkkUewYsUKPPPMM7j++uvxl7/8Bddeey2ys7PhcDjQ3NwMs9ksZg3QsNBgMCham8lOKBAJIEkfOBMZ6NWHhFQHW6FQCLuX6njn5ubCbrfD5/NBoVBg+PDhaGlpgd/vh1qtxrRp02AymfD3v/8dX3/9Ndrb25Mqob1eL5qbm7F3717s3bsXfr8fBoMBMpkMgUBAVChrNBokEgkhjUE6mna7XdzjUoNWmWAjR/I9BrJPAiSvIySLBfT87aXJy9LSUgBIqhgtKChAJBJBVVUV5s2bB6AnMffee++JoMBbb72FzZs3H/H44XBYJMkpuSH1N+hcgEPBK+qsisViUCqVA6I7YiDLqkj/tjR7gT6jer1eBJLJNug6+Xw+4afQWhEMBkXic+LEid97XIPBgGXLlgEA6urqoFKp4HQ6xaC/cDgMu92OcDiMtrY2kaRqbm4WAVqpbm+m+62DZZYIFRpQFy9VFNMgWJvNJiqcu7q6UFJSIhLlsVgsqXNCaj8kg1FXV4dnn30WZ599NqLRKLq6umAwGPCLX/wCo0aNws6dO4XMG3CoE0Oqzy1Fo9GIbrCBViwxmPnjH/8IAFi4cKEokusrTCaTqJb/61//2qfH6kt+UJB57dq1uPXWW/Hmm29ixowZAICf//zncLvdeOONN/rkBBkmXQzkViGpo06BuNQAXX5+PpRKpdBZttlsmDVrFmw2G/7xj3/g4MGDUCgUuOiii+BwOITjfcUVV6CgoAA33XQT3n77bbS0tCAWi8HpdOLzzz/H/fffD41Gg3HjxiEcDmPbtm0oLCxEIpHAli1bYLPZRLurw+GA0WhEIpEQwU1y/qTZ/0zY1PXGQM70Szdv0q+lG2naPNGGnG6s+/btQ3Z2NhQKBfx+P7q6uoST1tbWJv5fb9WYqVx11VWwWCzwer2YMGECgJ6KAmqDpUdv09ypUj/TnfXBBmkfAxA67waDQdhEPB6H3+9HTk4O9Hq9COJYrVZMmDABJSUlsNls4kF6yxRE1uv1IrBMQWXSYbZarbBardBqtaLlnmSACNJxHkjDlwby/Qbo/bNHiUP6mjb/BoNBVHplZWXBYDBg586diEQiyM3NRXl5OVauXIlwOIwxY8Zg/vz5+PWvf43XX38dgUAAw4YNw7x583DyySdDLpdj48aNuO+++3D++efDZDKhtbUV4XAYarUadrtdnAPJJdAQOKo2DAQCYh3MZH3mwaDbDRxav6UyTUqlUiQss7KyhMayQqFAeXk5mpqa4Pf7odFoRNv62rVrEQgEYLVaMWvWLCxevBjXX389LrnkElRUVGDatGnIy8tDIpFAU1MTtm3bBrlcLoY+0QDB/Px8yGQykfTSarUiAUE+SDQazShZplTf47nnnsOuXbsGtE8CHLqnAxD3EgBJw12DwSCKiooA9PgYVCFYXFwMAPjqq6+gUqlw2mmnIRaL4S9/+Qs++OAD/OhHP0I8Hscdd9yBPXv2HHbsSCSC++67DwcPHoROpxODsBUKBbRaLbRaLcxmM9RqNSwWizhPSkxQYQTdGzO5mnkgy6pI5y2QVjsAcc2AnvWEfj/S/08kEigsLARw6H61Y8cO8drevXuPemxpwoGqnun/03WndYKKNNrb25N0vaW683R+TN8hl8uT5i+QjwngMFmmSCQCuVwuPtN0fwF6kk40eNzlcgkfbcuWLaLSfcOGDfjwww+xdu1auN1u/O1vfwMA/OhHP0JrayuUSqUILtPanLp/UavVSVXMA6lYYrDidruxatUqAMDNN9/cL8ekxOiqVasy9j5yNI55B7ZlyxYsXLgQTzzxBC6//HLxutlsxs9//nP8/ve/z9hqQ4Y5Hgaysy5dkKQVzUCyHEIgEIDb7YZMJsPJJ58MpVKJHTt24ODBg1AqlbjssssQCAREO9miRYvgdrvxyCOPIBAIYPLkyXj88cexevVqvPTSS0Kz6v3330d9fT3GjBmDcDiMb775Rojk00AVAGhoaBA3e5/PlyTpQTd7IHOdsMGS6e+tQtnlciErKwtyuRwejwe7du1CaWkp5HI5Ojs7UV1djeHDhwPoaSMibbNt27aJipCPP/5YOEpHoqqqSjh65AhSNRCQ7IBJJ85Lg+EcZO5/FApFUqCZBuzk5uYKG/L5fEIGA+ipEunq6oLFYkFubm6Sdq9CoRDBZqVSKZxxs9kMm82GrKwsURkdjUaTgpf0XgpMq9XqAeeUD+T7TSrSv700gSXVaZYOAkwkEqKSbsqUKfjmm2/Q3NwMvV6PRYsW4be//S2qq6thMBjwm9/8Bn/6059w77334sknn8SKFSswatQodHd34/e//z0uuugiyOVy7Ny5U1Te1dTUiM0htTOHQiExbJLuOQCS5HgyjcGg251aqSoNlFMlqLTKvbS0FKFQCJ2dnZDJZJg8eTIUCgU+//xzxONxjBw5EgsXLsS4ceOwdetWPPHEE3j66afx2muv4e2330Z9fT1GjBghho7u3r0be/bswaRJk6DT6RAMBlFfXy98ErvdLgIMUpmMTAsyp/oed999N8aPHz/gfRKpbUg7IhQKhQj4Aj0+C1UkFhUVQSaTweFwYPLkyeLz39bWhilTpkCv1+PgwYNoa2tDWVkZXC4X/uM//gPvvPOOSDhVVlbi6quvxtq1a8XPVigUMJvNUCqVsFqtUCgUMJlMkMlkQqZD2n5PwU+FQiFsJVO7fAeyrIpUlkkmk4nfw2QyiWC5wWBI+hyTJAIFnmmeVH19vei4e+WVV0SiS0oikUB1dTUeeughXHvttQCAmTNn4uDBgwAOBZlpL0PnR/NDKOlOdkKa0ZleRDOYoMBuOBxGPB4X/oDP50vaW9A1ke4pqPK4q6tLfO4bGhpw1llnAQDWrVuHDRs2iEHlmzdvxl133YXNmzdDqVTinHPOEUmtM844Q3RXpcrt0DFVKpXwSbiKOTNYuXIl/H4/TjrpJFRUVPTLMS+55BLo9XrU1taKLr+BxjGPqjzllFOOWJX2yCOP4JFHHjlhJ8UwmQA56wOR3qpUCenNkxxgauVJJBLYunUrAOCss85CYWEhXnzxRQDAnDlzUFBQgAceeABATwXqLbfcIpzp/Px8TJw4EbNmzcJvf/tbVFVVwWq1orS0FA0NDdi1axcmTJiA2tpabN68GVOmTEFzczOam5thNBqTKsikgUN6Lg0sMv8+UjsgvS/SFFSr1QiHw2htbUVJSQkaGxtFNUtBQQFaW1vR3NwMk8kEuVyOhoYGjBs3DkDPIIyf/OQnsFqtaGxsxNKlS/HTn/4UY8eOFbbi8Xiwc+dO/POf/8TGjRsB9DhflMwYNmwYnE6neD85ZORspbbRpga12E76B9rk0Wc3EAgIGQuFQiH0TnNzc6FSqdDZ2Qm/35805FMmkwlNZhq2olQqRcUYAFGtTJB+qnQzP9AZyPcbIDnBI11bpMkgacBIqtPsdDrhdruhUCgwYsQIPPPMMwCAefPm4aOPPsKuXbtgNBrx9NNPHzbRu6ysDE8//TTuvvtu7Nu3D6tWrcJ5552Hjz/+GFVVVTjjjDOwf/9+tLa2Ijs7G+FwGOFwWAyZjEajQrLBarUK3WZpoitTOFbd7ocffri/T+2YkVaqSjtRKAFhMpnQ3d2NRCIBg8EAq9UqNAkLCwthMpmwZ88e0fo+d+5cyOVyrFq1SvgudK8IBoPCx8jJycE555yD7777Dh0dHaisrMT555+PLVu2IBAIwOl0wmw2w+12i6CVNPjDycz+QVq5nIpMJoNer4fH44HH40F5eTkcDgfsdjumTZuGLVu2wO12o6ysDH6/H+3t7aKDRq/Xw263Q6VSoaioCC0tLXj44Yfx3//930nBbJVKhfz8fGF7BoNBJE5tNhvUajVKSkqEPEN+fr7QBaYiCbVaLWSCMjWASJ0zEyZMwLfffotHH3003ad0zKTub6QSb5ScMhqNIigeDAYxYcIEbN26FV6vF2q1Gi6XCxMmTMCOHTsgl8uRn5+Puro6zJ8/H+effz5yc3Ph9XpRV1eHbdu2ob29XRx/xIgRaGtrg0wmQ3l5uRh6bTKZ4Pf7k+QZ1Gq1kF1QqVRiHgCdv/T3YfoOpVIpNPfD4bAYDhuNRoUsBXD4ME+aGQEAzc3NmDhxIjZu3IgtW7Zg/vz5OOOMM/DVV1/hqaeeOuyY5eXlKCoqQk1NDYCeOBrZ5+jRoxEKhYQNS/fqarU6aVBkpvkhQ41EIoGXXnoJQE8Vc39dD4PBgIsvvhh//etfsWrVKjGEciAxOHZnDMMcEWmgDjjU0uXxeETmPRQKicouqnwaP3489uzZg66uLphMJlx66aV45ZVXEIvFMHfuXNx66629bgQqKiqwbNkyyOVyrFu3DpMnT4Zer0dDQ4MYnNDd3S3Op7OzU5yHtFIVSNZizlRnfaAiraJIJBIieCENCkajUXg8HmRlZSW1qhqNRshkMng8HlFNtG/fPowePRrxeBzvvPMObrnlFuj1euzatQt33nknLrvsMixZsgRXXnklFi5ciIcffhgbN26ETCbDqFGj4PV6ReCArrvZbBYVs9LpymTD0qFO9Jwdsv6FWomlwzvj8TgMBoMIEvv9fqHpSHYkl8thNptRWlqKnJwcEahWKpXIzs4W/1cqk6JUKoVGMw39YzID6edO+rX0GknXd+pw0Ol0aGtrA9AzyM3lcgk9yylTpuDdd98F0DOUKTXATBgMBvz2t7+FVqvFd999JyRVXC4XDAYD5HI5WlpaxFpF9hQOh8V5UIUtbfYysTNvoOt2A0eeBSCtcqcklMViAXBIG5eqyJqamgAA48aNg1KpxO7du7F161bI5XIsXLgQjz76KH73u9/hwQcfxGWXXQaz2QyHw4H33nsPJ598MtRqNdra2lBdXY0xY8YAgEiaAj3rFVUwSwPiHBTqP+hvTNeB7IO6Yjo6OpCTk4Nhw4YJOaZJkyYJWQSdToeioiIxG0Cr1Qo5J6PRiLKyMlgsFpH80mg0yMrKQmlpKUwmE3JycmCxWJCXlwez2Yz8/Hzo9Xrk5+eLc8vOzobVau01wZbptjKQO2e+728rXV9UKpXwa6nTKRQKiapmmgmzfv163HDDDSgqKkJbWxtee+01/M///A9efPFFrFu3Du3t7VCpVCgsLMSwYcNEArKsrAyRSAQ+nw82m00Eosk/JdkfAEmDs8m3kfqtTN8ilbGh4C75oh6PJ8lXBQ5VpTudTpSVlUEmk6G9vR25ubnIycmB1+vFW2+9hTvuuANXXnmlqHbWarU45ZRTsGDBAiiVSjQ0NEChUGDGjBno7u5GIBBAbm6u+LxRRx9JNAE99iMNMjPpRTrw77rrruvXY1911VUAenSZB2IMhHdoDDMIkTph5BClDilxOBxQKpViI9fc3HyYs9PS0gIAGDt2LFQqlRiYcsMNN3yvYzRjxgxcffXVAIB3331XyGhs3LhR6O62tbVBrVYnDXpLXUTj8XhGtagOJqTtWuFwWATvgB5Hy2QyiUrlRCKRpEeoUqnE90grl65jdnY2XC4XPv74Y1x++eWYPn26cO47OztFEsNgMCAvLw+jR48WgSCz2Yzc3FwoFApYrVYYjUahr6vRaESVNQUnqP1QKrnA9D/kJEtbhKVOPF0fjUaDoqIilJeXY+TIkcjLyxNOtFSHs7fApFwuF8kGJvNIDTLTZ5EkEKRI5SiUSqVYE7KyskRQtLS0FPv27UMgEEBBQQFmz579vccvKCgQg1L+9a9/Yfr06QCAgwcPCs1WssNIJJJ036Fzj0QiSSADSwkAADaNSURBVOedaQx03W4guQpR+tmWtitLh0bGYrHDBtBS0JmCRF9//TWAnu6r008/XdibyWTCzJkzcffdd2PMmDGIRCJYvXo1pk6dCqBH2omSYdFoVGzsKQghPV+mf5B+/ihYDEDIWuTk5IggzP79+zFhwgQh2+X1epGdnY1Ro0ahoKBAaK8WFhaKqmSbzSY0//Pz8zFq1CiMGjUKZWVlyMvLg8lkQn5+PqxWq/h/VEGfl5cnpJjy8vJE8InWE+n5Z3oAcSDLqkglbBKJhAgQ+nw+4XPY7XbEYjGh3b1v3z6RUKL319bWYvr06UgkEli9ejWGDRuGiooKTJ48GWPGjEF5eTnKysowbNgwlJWVCZ+4pKRESGQAELYG9KxJJPVHvk1OTg6cTqeoZtbr9WKehPT3YfoWpVIp/MdwOCySih6PR+yDHQ4HPB6P0Hffv38/otGo6NT87LPPsHDhQsjlcmzbtg3PPPMMSktLcc899+D+++/HokWLEIlEsH37dgSDQRQWFmLixIlobW1FNBpFcXExSkpK4Ha7xbBrAOJctFptUqU772nST38O/Evl/PPPh9VqRXNzMz799NN+PfaJgHdrDDMIkTq2UokBAEISIRKJoLOzU2gR1tbWCs05ADhw4EBSNlda3XUs2VXKwO3du1dshltaWsQi7Xa7xQ1WWi0kJRaLsW5ZH0LXMR6PIxKJwGw2C81B0hY0mUwwGAwiyGs0GmE0GqFWq2EymYSWLg1is1gsyM/PRyQSwY4dOxAMBjF69GiMHTsW5eXlGDNmDCZMmCA2gjTMbdiwYcjNzYXBYEB+fj5MJhP0er0YCKfX60XAOZFIQKFQwGAwJMmscNY/fUi141I32NIkksPhwMGDB1FbW4uWlhahiSetMvF4PElBZ/q/maqVyyTfc+geA0BsrKXvkUqf0MR3oOdaUxu6yWSC3W4H0NOefCzBmvHjxwPoSWBSEMDpdIoqI9INBw6XbaDzpk1oJgYXB3L1IXG0gbOpckfSYD9dO7IRnU6HaDSKffv2AehpRyaam5uxZs0afPLJJ/B6vbjhhhswbNgw+P1+bN68GTk5OYhGo6iurhYV7iQ/QsEf6fnSeaa+xpxYaL1PJBJCeoLsnNaDkSNHQqlUIhAIYO/evSgqKsLMmTPFAMd4PA6dTocRI0ZgxIgR0Gg0sFqtyM3NhV6vR05ODrKzs2EymWA2m2E0GmGxWFBQUCCG0RYWFiI3N1cEmvPy8kTQesyYMRg2bJiQ2SB9eb1eL5LydK/iINGJh6SygJ7OKdqzdHV1idkNgUAAu3fvFrbicDhEIryrqwslJSVIJBJoa2vD6NGjodFo0N3djY6ODqETT4lto9GIkSNHYuLEiSgqKoJCoYBarUZhYSGKioqgVquhUCiEzIpcLhcVqjQjIhQKiaGjQE8hRyKRSApGM30LSWQBPX6mTqcThU5+v1/sTXfv3i0SUrFYDJWVlZg8eTJ0Oh3sdjt27NiBa6+9Fnq9Hq2trXj33Xfx4osv4s0338QXX3wBt9sNs9mMiRMnQq1Wo7u7G0qlEpMmTYLBYIDT6YRCoUBJSYnwj8jvMJlMSTKWmZqkGiqkY+CfFI1GgyVLlgA4FOweSHD6jGEGIbRpk1YyU1Y0FovBbDajq6sLbW1tKC8vh16vh9/vR3V1NcaPH4+vv/4alZWVuOCCCyCXy1FbW4sdO3Zg6tSp2LJlC1588UU88sgj3+tA041TqsUJHNogkmYdcLikB8Etqn0LVSKHw+GkyiGdTodAICAmYatUKpF1D4fDwjH2+XxJshlOpxN+vx96vR5FRUUIh8Pw+/1JGqdKpVL8LJI9UKvV0Ol0oqpMo9FAo9GI16ndlZwuqnSWaqmRrjSTOUgrdWKxGFpaWpIGQZI+s0ajQXZ2NgwGA3w+H3w+H8LhMCwWixgCGI1GEQqFEI/HWacuQ6H1nu47oVAI0WgUWq1WrPsAhHZ3MBiEx+MRA5q6u7tFBZHD4RDJybq6uqSE45Goq6sD0COzQNWu0jZllUol2mGlgU26V6ZK72QaA123G0gOMksh+YxYLCb8AalUDg2Ci8fjwpb0ej0OHDiASCQCk8mEwsJCxGIxvPrqq1i9erU4llwuxxVXXIFFixbh2WefRU1NDX70ox/B4XCguroa55xzDlpbW+F0OkXbcmoCItUXYe3/voECQaSdTvJJbW1tiEaj6OzshM1mw9ixY3Hw4EH4/X40NjZCo9GgvLwckyZNQnNzM+rr68Vnvby8XAyOVKvV8Pl8UCgUSYULSqUSBoMBZrMZOp1OBKRJz5mCijqdDrFYDE6nU9yTaO2gakjypejnMicerVYLn8+HSCQiOt1CoRDa29sxcuRI1NbWwu12Y8+ePRg9ejT27NmDzs5ODBs2DA0NDQB6OmecTifC4TDy8/MRCoVEVbpcLhe+B80A8Xg8kMvlGD9+PBQKBVwuFwAIzW7ybbOyskRCwmQyiaRrYWGh0P8njXfSBmb6Bwr4k5a3zWZDc3OzkJ8Kh8Pwer3Ys2cPCgoKEA6H4XK58M0332DGjBn417/+hebmZtjtdpx//vlCkopsw2AwQKVSCd14ACguLobBYBDPjUYjCgoKhF+Sn5+PcDgMhUIBvV5/mKwKkz7SMfAvlZ/+9Kd47rnn8OGHH6K9vV3Ihg0E+O7HMIMUhUKBaDSKWCwGnU4Hv98PtVotBk9QQKeurg7jx4/HN998g6amJpSUlMBiscDlcuGzzz5DRUUFNmzYgFdffRWzZs3Ct99+i/Xr1+MXv/gFbr/9dtGCJiUQCOCJJ55APB5HaWkpdu3aBaBnCnhtbS2AHgfP5/OJyg/gkEPem74nB5n7BqnmYTweRzAYFEFkcnKolZgCzBqNRlR70Obf6/UiKysLWq0WHo8HMplMSGxIoYpXGjZJweTeXiM9ZpVKJc6TguAUfCCtNZZRSD+UTKJgHW3y1Wo1mpubhf2QTIbH44HL5UIoFEJrays0Gg0MBoMY9Ge325OmxJMdUoUb2R6TGdB1l1YyUxCAgjJyuVwEBYPBIFpaWkRgubGxEaeccgpkMhmam5uRnZ0No9GI1tZWvPLKK7jpppuO+DnftGmT0G+eMWMGNmzYAKCnCpruOVQtT22z0qGE0kGAAFcg9jfSCnLpZ5ruM1TN6nQ6hX3p9Xps27YNwKEq9meffRaffPIJAGDKlCkIh8PYvXs33nnnHdTV1WHOnDn49NNPsWnTJowYMQJ+v18EIP1+P4xGY5L8Aa1ppNdNcJC571CpVIhEIkK7XavVwmazobOzE+FwGO3t7SLQbLfb0drailAohIaGBqhUKhQUFGDkyJFoamrCrl27EIlEhFxGR0cH1Gq1GPJJXVEkxWWxWMQ9x2q1QqlUComO1KG1hFqtRnZ2NpRKZZLePCdD+w6lUikCy8FgELm5uejo6EAkEoHL5cKwYcNgt9vh8/ng9XqRn58vKuHz8/PhdDohk8lEEjIUCkGlUiUlCKTYbDZMmDABJSUl2Lx5sxggOGbMGHi9XshkMmE7CoUCZrNZrFlarRYFBQWIxWKiW0Imk4n3Mv0H7ReCwSCCwaCQ7evo6BAygWq1Gl1dXbDb7WIuTFdXFw4ePIgJEyagoaEBDocDW7ZsET9XWiFNckuUqJLL5QiHw0LXO5FIiEByaWmpuMfl5OQkFWbwnia9pGvgXyqTJk3CjBkzUFVVhddeew333HNPWs7jeOAgM8MMUlKDzFT9Q44ZOdXhcBh2ux2jR49GTU0NGhsbUVZWhv3798PhcECtVmPkyJE4cOAAPv/8c8yePRsbN27Etm3bcMMNN2D06NGYPHky8vLyEIvF0NjYiI0bN8LlckGhUOC8887DRx99BAAYNWoUmpubk6pICgoKhCYnLeJ0c+UqkP6BHJpIJCLa11PlSaiqI5FIIBgMiopiGsgnk8lESyC1MdNmnd5LP0P6oOAyVUsrFAoRVJa2kWk0GiGVIQ0EpbOlbPv27bj11lsRiURw2223YcmSJfjggw+wbNky5Obm4s0330RWVhZuvPFG1NTUYN68eXjwwQfTcq59jVTOQqlUwuv1igovqhZSKBQoLi4WAR2FQgGbzYZQKAS32y0cdEo0kDMeCARgNptFJT1t5CkZwsHmzEBagUqbLpLhoUpVk8kEl8slrldbWxuKi4tRVFSElpYWbNq0Caeeeio2b96Mv/71r7j22mvx4osv4u2338aOHTtw8cUX46STToLFYoHP58P+/fvx+eefo7KyEgAwffp07Ny5U8hkOBwORKNR5OXlibZ2ak8mO6MBotLKZt789w1HksuQfi3daDscDgCHNCspYVBUVASv1yuCzKeeeireffddfPLJJ5DL5bjnnnuEjndlZSWefPJJbN68GVqtFjk5OXA4HCKAvGPHDkyaNAlOpzNJl5kGElLygQKSsVhMJLqYEw8lqAOBAKLRqPhb22w22O12RKNRMYTLZrMhOzsbdrsd7e3tiEQiaGxsRGtrK7Kzs3HGGWegrq4OjY2NUKvVKCoqQjAYFF0xlPSmripKjFMlKiU4pXMf1Gq18F/IdyEbDgaDIgHB9tG3aDQaIfUWCoWQl5cHl8sFr9crBlSTPAEA5OXlwe12i+AyJQ2kRQvUpSDVi8/Pz4fZbIbT6cSBAwcA9ASdy8rK4HA4IJPJUFBQILr1KOFAgWTycVIHGHMQMT3Qeh6NRuHz+aDT6VBYWIiOjg4xQyIvLw/d3d1i/c/Ly0NnZyecTqeYHdPd3Y2urq6k62o0GoW0oNTPsFqtYo8F9CQeioqKRLCZZAHpOSXEmfSRzoF/qdx8882oqqrCH//4R/zqV78aMP4pR3AYZpBCm2bSUjaZTHC73SIwE4lERGsoVQeWlpaiubkZfr8fBQUFcDgcIlhcUlKCpqYmOBwOUQHU2NiImpoa1NTUHHb8nJwcnHTSSdi0aRMAYPjw4Whra4NMJkNJSYnQx6QbvnSzT2g0GhG4Yoesb6EKZQowU9u79AEc2gBKtb4pKEPV8tJgNf1s0tGjYLK0FVH6Lznn9LNJJkMa+KaNYbqDi//93/+NlStXioExS5YswTPPPIPKykp8+umneOmll1BRUQGbzYZXX30VixcvRnNzs6jcHCwkEokk6ZtoNCoqvmKxmEhK5ObmorGxUUgZEDKZTGzsQ6GQaJXWarVQKpWIx+Po7u6GRqMR7aeUwKBgM1U2M+lDOrRLep8JBAIi4AtAbLbMZjPcbje2b9+OadOmoaOjA01NTSgsLBSVi9988w0uvPBCfPbZZ9izZw/27NnT67FlMhmmTp2KRCKB+vp6aLVaFBcXw263Q61WCw1e6o5Qq9WiJRroGURK9xqW3uk7pPcR6YAj2nzL5XKxdmi1WrS1tQHoCeoEg0Hs3LkTQM8w4k8//RTRaBRlZWUIBoP405/+BAD42c9+ljQosqKiAkajEffffz++/PJLXHLJJXA4HNi9ezfGjBkDv98vNvculwsmk0lUtYXDYZHwCgQC0Gg0QsaDK1X7DvIVKIBIwd28vDzY7XZEIhF0dHSIORL5+fmw2WxwOBxob29HOBxGR0cHgB77Gj58uAgqSodr0RpASWz6WurjyGQyEbA8kn4u3Yvo52q1WraNPoaCxQCEnZA9dHV1iYrSrKwshMNhBAIBMUMkEAiImR5UvRyJRMQjFoshHA4jGAyis7MTnZ2dAHoCiRMmTEAsFoPD4RA6y3Tvs9lsSfq6OTk5onsUgJCCY9tIHyRT4vf7EY1GhV0UFRXB7XYLGRSLxYJIJILu7m4oFArk5uYiEAjA6/UKTeeioqJeZwsASJL/o9f1ej2ysrKgUChEVTvJ80ilJLnAKv2kc+BfKldeeSXuuusuHDhwAGvWrMEll1yS1vM5VtiKGWaQQpUUpItJreg+ny+plVmv1ydVdthsNni9Xni9XuTm5kKj0cDhcECn06G0tBTd3d1wuVxQq9UwGo3weDxJgzJoE0/fIyeMNmT5+fmiAtZms4kWaqpIpffR0EFuX+5f5HJ5rwF9SlakZu29Xq9ofacqLwoAUkUPbeRSA8pkB9IKQko8UCafdDoJClBngpP+wgsviOEgMpkM3d3dyMnJgVqtxllnnYWXXnoJOp1OaHnNnDkTmzZtwmWXXXbYz6IqXoKq+wcC1DEBQLQaAhAyKgBgtVpRW1ubtAlXKBRifSLHXqfTwWw2i3ZGCkDHYjERgDabzdDr9WJDSDIvVEHCpAdpYjMSicBoNAqddovFAo/Hg3A4DL1eD6/XKxJboVAI+/fvFxXMra2tyM3NhUKhQFtbGxoaGjBmzBgkEgnY7XY4HA6h12q1WoV2N1Unmc1mZGVlCZsoLi4WgW+j0ZgUSKL7lbSqkW2o75AmCuleQkEehUIBt9uNRCIBrVYLh8OBSCQCjUaDnJwcbNy4EeFwGNnZ2dDr9aiqqgIAnHvuuXjqqacQj8cxe/ZsXHzxxYcdd+rUqfiv//ovPPfcc1i7di3OOeccNDQ0wOv1QqvVYt++fTjppJMQCASEJiv9S8mJQCAAnU6XZONcrdp3SCvIg8GgSDrm5eWJdcXtdsPr9cJgMIgq9dzcXLhcLnR1dcHj8SRVnh/peklnRVAgmXwcGubWG2QH0mGRtK4wfQ8FmuVyufAPFAoFCgsLhZ6uz+cTwV3S0aZuOyqGoGtIfhj5rzREkirW4/G48FVIJoUKKLKzs4WdWK1WmEwmMdgYgBhezaQf2mPS9Y7FYmJWhMFgEHajVquRm5srOupMJpNINJK90ZB0etD+hWxBrVYLXXcAwm8FeuwkOzs7KUFFiRMmfaR74F8qBoMBN998M5544gn84Q9/4CAzwzDph256dEOk6gqv1ysCdaSZqVKpRCbVYrFAo9EIbV29Xg+XywW32w2NRoOsrCx4PB4EAgFRZZoKaedaLBYhiZCTkyOqQSibS8MSqHKF/qXBUMCh4DWTPigArFAoROW7XC6HyWRCIBAQWme9VTHT9SObo6CztMKZqpKpwo2SCwRtAjMhuEzYbDYAwP3334/FixfD4/HAaDQC6HEKvF5vr6/1xmOPPYaHH364f078BCKtYqY1hILuVB1oNpvR1NSEWCwGvV6P4cOHC0eaKgQdDgfsdjsCgQACgQCKiopEFbTL5YLVahXrlcvlQjQahdFohEqlEg46Vbxlko0MJaSJzXA4nDRE1OVyCd3MaDQqXicJnHA4jK6uLowdO1YM0jEYDCguLhYt0EDPkKXc3NxeNXH1ej2MRiNMJhNkMpnYwNG6Rfai1+uTtN5pXaINItM3SLVOpUlI8jsMBgPa29sB9HRC7du3D0BPF5TL5UJ1dTUA4Mwzz8S6desQj8cxceJE1NbWoqGhARaLBbfddtsRP//z589HVVUVNm/ejM7OTsjlcjQ1NWHChAlJ7exUxRwIBGA0GkXrfTweF+3T9P5MuycNJqSyGXQv0Gq1kMvlyM7Ohk6nQ3d3N2KxWNKgLfIrjEYjjEajSD5Fo9GkLi3yTaT6pwqFAjqdTgSFehtGTQl3aXKVjqvRaNhX7WfITqibjrSPtVot8vPzxXwIv9+PYDCYlESk60iBPwoakh8SCAREZ5X0eBaLBXq9XnTbUSJCLpcjNzcXSqVSrGtyuVy8l8kcyG7UarUYck5FLSaTCUajUchhkJyFdIDxkYLB5AfRvjc1aa1SqcSQURqQTAUmLKOSGWTCwL9UbrvtNjz11FNYv349vv32W0ydOjXdp3RUOMjMMIMc2hBRO59SqURWVhb8fr8IykSjUbHJjkajCAaD0Ol00Gq18Pv9QtoiKysLXq8XPp8PWq1WOOtSZzvVaddqtTCZTDCZTKKSjDQ6aXgPVTJLK8yk7ffcXpY5kANFwyyokoSqQUjeQPp+CiLT5q83J0q6WZP+31QJjXSyfPlyvP322+L5fffdh23btqGjowOPPfYYnE6nCKzStGqj0Zj0Wmlpaa8/e+nSpbjrrrvEc7fbjZKSkj78bU4M0gGMNDmdiMfjIggcjUah1WoxZsyYpM0WJbH0ej0KCgrQ2NgIp9OJlpYWjB49GlqtFt3d3eju7kZeXh7UajV8Ph98Pp+Yxk2DXEgXmquF0gdVFFNQyGAwiHuP1+uF1WoVwSCZTIZgMCg24MFgENFoVGhg2u12sRG0Wq0IBAJJXRIARCUyVZsBPW3KVqtVbAK1Wq3YTEq/pmQm0HOf4Rb3vkUaZJbqt5N8Dukxkx9CUhWFhYVYv349EokEhg8fDo1Gg+rqashkMsyfP18k5xYvXiy0m3tDJpPhxhtvxObNm7FlyxYsXLgQ1dXV4n7V1NSEsrIyhEIhUcVIQUWp5q7FYkmSIuPK976DgnjBYBCxWAx+v18EcvV6vQj8BAIBkWzsbaYEdSmkQvJd0g4p8mnp3kb//0jDp0kaKFP8lKGKSqWC0WhMSkoEg0ER7KN9BPkJFFiWBvlIPoGKX2gIcapcHPmxRqNR3Dd0Oh2sVqtYuwCIew7bReZCSQDyU8LhsLg/5ebmikIHmUwGk8kkuuhSE1bSDk263lLddrJDhUIh1phAICBsi2S8mPSSKQP/UikpKcHChQvx1ltv4ZlnnsFrr72W7lM6KuwZMcwghypMw+FwUoUotQ6So0VVHhQopLYyg8EAvV4v9Mk0Gg3MZrOoPpO2rNNmTNp6SAFGnU4nWpVpQy8d8EabCRoQBaR/sBtzZFKHBdJ1BpKDCb1dO6pYln5PWpkoHSaYSdf+9ttvx+233y6ev/fee9i5cyfefPNNAEBWVhY6OzsRDAbx5ZdfYtq0aZg2bRrWrFmDiy66SAyg6g1q5xxo0GeVgsnU9k66qllZWWhsbATQM6zr+6p5VCoVRowYAblcLiqbR44cCZlMBqfTia6uLpSVlUEul8Pj8cDr9Yr2dWpvP1IggOkfpNWHJGNCnSp+v19UgqpUKpEoIO1MqiiS3neoTZUSn71dXwog0KAuCvbQZ4ruRbThlw4cBSCGlWbSWjMY6U2PmYK4qWsG6XcXFRVBJpOhrq4OADBlyhTs3bsXADB69GghwwMAc+bMOeo5DB8+HMOGDUNTUxMsFgsAwOl0ipkVJpNJ2COdK3BI5iMSiQgfh+59/R1k7m3gLLFjxw5ceumlKC0tRXFxMVauXNmv59YX0KA0GqqXOng4NYBIgebe5klIO6tICoWCiL115BGp6440qCSV/GLSi0KhgMFgEMFj2tNIEwYE3XMoCBwMBuF2u4W9hUIhMWdEilKphFarFVWnJNuUqi0v1fVmMh/yA8gPobVBoVAgLy8P4XA4qTgrFelcGenaIEVaEU9IK6qZ9JNJA/9SufPOO/HWW29h1apV+P3vf4+CgoJ0n9L3wkFmhhkCkDMlHZhFTjPdEMk5p6+pFZTa0Kmi2Gw2J1UBpDr0FBgk2Qvp9G1pVlcqj0FaqtIgI32PyVykwwKpzSx1Mybd2NFjsGzIHnroIWi1WsydOxcA8Nlnn+Guu+7C7NmzodPp8N577yE7Oxuvv/46zjjjDJx99tlHrGQeiEg35qRZCvRUjko1lskmeqtWP9LPlf5rsVjgdDqFPqder4fH4xGVJFQZAvSe1GD6F6rqoupD0k+2WCzw+/0iUEfD9ihQRFWsOp1OtChTyzsAUf0jleJJHRRKAWS611CHDH0tbWmn+xRXmvUv0sCftCJd2jLc2toKoKcqXap5m5ubi++++w5AjwwPAJFgogGT3wdJXgAQVezk61BnDp0XVa+m/gsg6X39TW8DZ4ldu3bh4YcfTnptMECVy9LK0lRJrVSkvigFleVyudBRJjk26TGkcyKOlATPtOQ3k4xUroAKa1Kr26UJCHpdpVIhLy8Pfr8fHo9HdFpSZ47Uluhrk8kElUqVtKbxcL+BDSUqqKuXbIgq12n4tPSaH2lfk1pQI/03VUaQyQwyaeBfKtOnT8eZZ56JjRs34v/+7//wyCOPpPuUvhcOMjPMEEHqIJFjRQ9pJapKpRKDbujmKm3vIYdLrVYfdYMl1dtVqVQiKECBbWohSg0uD6ZA5FCANm9DrWqDgh1SFixYgAULFiS99uqrr/bXKaWN1HZiqRZ8dnY2WltbUV9fj+7ublgsFqEDTwGicDgMr9cLh8Mhgk02mw3hcBgdHR0AkCTTIj0urWF0XCb9UHWOVOcSOLQBp0ozCgZQoE96f6HgACWwUivVpRu11KGiFGymZCWtT9L7DSVB+V7TP0iruuhrup7UQQVAdEyRpn1OTo6QRaitrcWwYcMAADt37sTcuXMxdepUbN26FY899hjuv/9+5Ofn93r8WCyG119/HR0dHWLOBABkZ2cjHA6LytbekCYygOQBhv1N6sBZKdXV1di4cSNWrFiBpUuX4oILLjjs/w/UIbPUnaBWqw9bE6QBH0IaRDzSdWWpi8GLVG7tSJBtUKdnLBYTXTGhUEjIsJBvS0lJaWIyVe6ANXUHB0qlUgSbpdXw0mIqKamygDwfZOCRaQP/euPOO+/Exo0b8cILL2Dp0qUZPSiSg8wMMwSRBpyBQxWJFFQmp5ucL9r8K5XKpGrE3pz71KxtansiOX1Sp56es3PGMAMH+qyTNikN/gsGgzCZTOju7kZHRweys7ORk5MDh8MBl8slgjtHQqlUIj8/Hz6fTwSY5XI5bDab0McDIDZ6FDChtYbJDKiijKQFpC3LdI+hjX1qt420Aq23ADNwqHpImsykQHPqwNHedBLZVvoXqawN/e1JboKS2QBgt9thtVrhcDhQV1cHo9GISZMmYdOmTdiwYQOmT5+OsrIy1NfX47nnnkNFRQVqampQU1ODm266CRUVFZg2bRqKi4uhUqngdrtRU1ODzz77TEj3nHnmmdiyZQsACA3o4uJiOJ1OAId3U1BggWZRUNAyHUmt1IGzUiZPnoyrr74axcXFmDdvHs4999zDznGgDpklvi94KL1evRVTENQ9wYGgoQ3ZAe1xSNeb1iWr1ZqUEEutiKb7Ft9PBiek5S6tVpdKQ6Y+mIFNJg78S+XSSy8V/s/KlStx0003pfuUjogswQKGDHPCcLvdsFgscLlcopVzoEFay1LNRBqIkFo1kqp3R/9KH0fK7FLAeag5+YPBRpi+Z6DYCQ31o82aw+EQA/8o4AwcSmxRsJECieSs99bZQOh0uqS2VQBiEGksFhPBSxrIM1QYKDZCUDKCrqPU/ZRKYUgrhig41FsyM1WCJ/V+I+2IkSY4h1IwINNshAI50q9jsZgYgBSNRoU2cywWE1W2+fn5aG5uxoEDBwAARqMRLS0tIgml1+vR2toqgshHQqvVYsSIEWKdKCgogNFohEajwbBhw0SlImlzUseFRqOBXC6H1WoV509SX33tvxxp4GxtbS1eeeWVpPe63W5xnRcvXozly5cjLy8v6T29VTKXlJRkjI30FamSbswPI9PWkr6A1iBal44EzYvpzV8ZygwFG2EGJ4lEAieffDK2b9+OP/zhD7jjjjvSfUpH5Omnn8Yvf/lLTJgwAd99913GrkEcZGaYE8hgusGSlmbqxl6qvdtbBbN0U5/qzEsrzjJ1UexrBpONMH3HQLET0kIFID7X3d3dSesD6dr9EKS67NKgoEwmg16vFxO+6efShm8oMVBs5EhIpTCk7ewUjO4tyCy9z9A9RhpsJqSJTb7fZI6N0OA2qgaktYHkU+j75HvQsCX6v9FoFE1NTUKX1+PxwOl0iueBQAA+nw/hcFgkxpVKpZBpsVgsoro9OzsbZrMZGo0GBQUFYjYEDSimgZU04MtkMon1hgZ7pcOu3nvvPbz33nt48803D0uYXHHFFXj00UcxYsQInH322aisrDxqUiXTbITJTIaanVDHgrRylZKVQylR+UMYajbCDB6++uornHnmmdBoNGhpack4PWYpLpcLJSUl8Hg8WLNmDebPn5/uU+oVlstgGKZXqKKH9KiAnk2etHLs+3JUqVIZXD3CMIMPGqRGlT8ymQxWqxVerzepwljatgzgiEmq3gZESltSlUol4vF40tCmoRhgHgxItdyl2qnRaPQH3Su+r4J5ILB9+3bceuutiEQiuO2227BkyRJ88MEHWLZsGXJzc/Hmm28iKysLN954I2pqajBv3jw8+OCD6T7t44J0dYPBIBKJhFg76HuhUEh0JJA2Mw0VJSmv0tJSuFwueDweyGQyGI1GeL1eeL1eMSDuSGg0GphMJphMJjGMMicnJ0lrlSqYlUqlOBetVpuk+57OwV69DZz99a9/jfvuuw8PPfQQbrzxRiQSCdx7770cDGOY44S6sxiGGfw8++yzAICrrroqowPMQM8w9J/97Gd48skn8eijj+KCCy7ISJ+XK5kZ5gQyWLO4VEFE2pi9IQ0O9VbFzPQwWG2EObEMNDuJxWJJgV8iEomIwOGxkqqte6R1hFpWh2ogZaDZyLEirWDuTQMzNRkx0K//j3/8Yzz11FMYNmwYKioq8NVXX2HOnDn45JNP8Omnn2L79u2oqKjA3//+dzz++ONYvHgxnnrqKRQXFx/1Z2eqjVCiiJJNNP+BqpepMjkcDovBkdRdRc+p6tnr9cLv94tK6HA4nCStQxq+JHmh0WhgNBphsVjEgEhpUJnkMUi+RzockhJdg8m3yVQbYTILthPmaLCNMAORpqYmDB8+HLFYDNu2bcPUqVPTfUpHpbW1FSNGjEAoFML69esxe/bsdJ/SYXAlM8MwR6W34QfS70n/ZRhm6EEVhBTgIVLXjVQdXuJYBqhQcFE6xZsZfKQOph3svPDCC7DZbKIToLu7Gzk5OVCr1TjrrLPw0ksvQafTiUE0M2fOxKZNm3DZZZcd9rN609vNRORyOXQ6ndBnJ2kcqb47DRvWaDRCUkWtVguJlUgkArVaDb1eLyRWKAgtTYhTkJmCx2RbFECmBz2noZQ0GA44NCyS/RyGYRiGGTz87//+L2KxGGbPnj0gAswAUFhYiJ/85Cd44YUX8Oijj3KQmWGYgQ9XKDMM0xvUCi8NBFEl6g9ZN1K1dqX6uwwz2LDZbACA+++/H4sXL4bH44HRaAQAGAwGeL3eXl/rjcceewwPP/xw/5z4vwnJ4CiVStHxQEFeWj9oDZE+7+0h7bSSDiim40gTVDQAkh6UCJO+RhJfQ71bgmEYhmEGKx6PB3/84x8BAL/4xS/SfDY/jLvvvhsrVqzAP//5T3z66aeYN29euk8pCQ4yMwzDHCORSARnnXUWqqqqAOAw3cxM13FimP6AKgeVykMuxtGqmOlfDiQzg53ly5fj7bffFs/vu+8+bNu2DR0dHXjsscfgdDrh8/kAAD6fD2azGUajMem10tLSXn/20qVLcdddd4nnbrcbJSUlffjb/PuQhAVVL1NFt1KpFOuGNIAs/Vr6SA0yE9IOCQoySzsiKKgsleeh9YuDywzDMAwzOHn++efR1dWF8vJyXHLJJek+nR/EiBEjcOutt+LZZ5/FnXfeiW3btiXtu9INe08MwzDHQFdXF84//3wcOHBAvPbMM8+gsrISt912G1566aVe/18oFILb7U56MMxQI1VHl4I6FNjhSmVmqHD77bejsrJSPPx+P3bu3IkVK1YAALKystDZ2YlgMIgvv/wS06ZNw7Rp07BhwwYAQGVlJU4++eRef7ZGo4HZbE56DBRIlkur1UKv10Or1Yrgs0ajgUajgU6ng8FggNFoFAP86Pe0Wq3f+8jKyoLVaoXZbIbJZILRaITBYBDH0Wg00Gq10Ol0XL3MMMyQIhKJYMaMGeL5Bx98gOnTp2P+/Pno6upK45kxTN/gdrvx5JNPAgAefPDBASnR9tvf/hZZWVnYuXOnGF6YKbAHxTAMcwz4fD784Q9/wPjx4wHgMN1Mqm5O5bHHHoPFYhGPTK8qYximb9mxYwdGjhyJOXPm4JprrgHAG7qhzEMPPYSamhrMnTsXc+bMQSwWw1133YXZs2fjiSeewC233IJZs2bBbrfjjDPOwKhRo45YyTxYoKpj0lHW6XTQ6/XQ6XTQarWHPXQ6nQhASwPP0oCy9P/T+6U/lzSYOdnFMMxQ4niLaBhmILNs2TI4nU6MGzcOV111VbpP57jIzs7G448/DgD4zW9+g+3bt6f5jA6ROTXVDJNGduzYgUsvvRSlpaUoLi7GypUrWQqBSaKkpCQpQHysGpkDsX2ZYZi+Y9euXXj44YexZMkS8Rpt6D799FO89NJLWLp0aRrPkOlPvvvuu8NeW7BgARYsWJD02quvvtpfp5SRSLWVjwTJZPBwYoZhmGODimhuv/12AIcX0Xxfp+ZAGDTLMKlUV1fjqaeeAgA8/vjjA7KKmbjpppvw0Ucf4aOPPsIVV1yBjRs3Ii8vL92nxZXMDAMc2vSvX78eK1euBMBZ3KHO8uXLUVFRIR5r165N+n6qRuaR2pIHcvsywzAnnurqarz22muYNWsW1q5de8xdESy9wzDfjzQQLZXh4QAzwzBM75SUlGDy5Mni+Q8ZNMudmsxAIxwO46abbkI0GsWCBQsGnBZzKjKZDC+//DKGDx+O2tpaXHTRRRnREclBZoYBb/qZw0nVzbzggguSvt+bbiYzNLn++uuxfv16AIfLHiQSCfzkJz/BWWedhYcffji9J8pkBJMnT8bzzz+Pv//973jwwQfhcrl4Q8cwDMMwTJ9zoopoli5dCpfLJR6NjY19fu4M8+/yq1/9ClVVVbBYLFi+fHm6T+eEkJeXh3Xr1iEnJwebN2/GmWeeib1796b1nDjIzDDgTT9zfKTqZjJDj127duGDDz4Qz1M7ICorK2Gz2fDll19i9+7daG5uTt/JMmkhdUOnVqtx0kknwWw2Y+TIkdBqtbyhYxiGYRimzzlRRTTcqckMJBKJBJYtW4bnnnsOAPDGG28MqvkWY8eOxfr161FSUoK9e/di6tSp+N3vfgePx5OW8+EgMzMk4U0/c7xQxSrQo5v59ddfY/369cjJyUnfSTFp48knn8R1110HoPdhkFu2bEFFRQUAYObMmdi0aVOvP4e7IgYvqRu6P//5z9izZw9CoRAaGhpgs9l4Q8cwDMMwTEbARTTMQCKRSKCpqQkNDQ1wuVxJcxkAoKmpCVdffTXuu+8+AD1FghdffHE6TrVPmThxIqqqqnDuueciGAzigQceQElJCW6++WZ88cUXiMVi/XYuPPiPGZLcfvvtYsABAFxxxRUYO3YsRowY8YM3/RqNpr9Om2GYDGLz5s0YMWIE4vE4gN517H6Ith3LaQwNHnroIdx4441IJBK49957IZfLxYZOp9PhvffeS/cpMgzDMAwzhEgtokkdPsswmUA4HMb+/fuxfft2bN26FVu2bMHWrVvhcrnEezQaDQoKCpCfn494PI6tW7ciHo9DoVDgf/7nf3DHHXek7xfoY4qKirBu3TqsWrUKDz/8MPbt24cVK1ZgxYoVsFqtmDt3LubNm4czzjgDY8eOhU6n65Pz4CAzw4A3/QzDHJ3ly5fj7bffFs9rampQU1ODp59+GkDvOnaprx2pNWvp0qW46667xHO3283yO4OUSZMm4V//+lfSa7yhYxiGYRiGYZgefvvb36KyshJ+vx9+vx8ejweNjY29VuQqlUooFAqEQiGEQiHU19ejvr5efJ8q86dPn96fv0JakMlkuPrqq7Fo0SJ88cUX+Mtf/oL33nsP3d3dWL16NVavXi3eV1RUBKvVCrPZDL1ej/z8fPzhD39AXl7ev3cOidR6coZhjhu32w2LxQKXy8WtzEyvsI0MDrxeL6ZPn468vDzU1dXBarWisrISF154IT7++GN8/vnn2LJlC2bNmoU1a9bgiSeewKJFi/Dkk08ekwYY2wlzNNhGmKPBNsIcDbYR5lhgO2GOBtsIwzAEB5kZ5gSSSCTg8XhgMpkgk8nSfTpMBsI2Mvh46KGHMGfOHMyZMwcffvghli1bJjogsrOzceONN2L37t04++yzsWzZsmP6mWwnzNFgG2GOBtsIczTYRphjge2EORpsIwzDEBxkZhiGYRiGYRiGYRiGYRiGYY4bebpPgGEYhmEYhmEYhmEYhmEYhhm4cJCZYRiGYRiGYRiGYRiGYRiGOW44yMwwDMMwDMMwDMMwDMMwDMMcN8p0nwDDDBVoIAKTmWTCoAq2kcwmE2wEYDvJZNhGmGMhE+yEbSSzYRthjkYm2AjAdpLJsI0wx0Im2AnbSGbzQ22Eg8wM0094PB5YLJZ0nwZzBFwuF8xmc1rPgW0ks8kEGwHYTjIZthHmWMgEO2EbyWzYRpijkQk2ArCdZDJsI8yxkAl2wjaS2fxQG5ElEolEH54PwzD/P32VoXO73SgpKUFjY2NabhDpPP6JPPZgz+IOluuUzmNngo0Ag3MtGSzHZhvpOwbTvS4T7GQw2ki6j882cuwMluuUzmNngo0Ag3MtGSzrGNtI3zJYbDQT7KSvK5nTda0Gy3G5kplhMhSZTNani4vZbE5rFjKdx0/3736i6GsbAYbudRosNgIM7rVkqB77RMM2MniPf6IYzDaS7uOn+3c/UbBPMjiPfaIZzGtJuq9Tuo9/ohjMNpLu46f7dz9R9Mf9Bkjf32uoHZcH/zEMwzAMwzAMwzAMwzAMwzDHDQeZGYZhGIZhGIZhGIZhGIZhmOOGg8wMM8DRaDR48MEHodFohtzx0/27DySG6nViGzl2hup1Yhs5dobydUr38QcK6f47DWUbHUgM1evENnLsDOXrlO7jDxTS/XcayjY60EjX32uoHZfgwX8MwzAMwzAMwzAMwzAMwzDMccOVzAzDMAzDMAzDMAzDMAzDMMxxw0FmhmEYhmEYhmEYhmEYhmEY5rjhIDPDMAzDMAzDMAzDMAzDMAxz3HCQmWEYhmEYhmEYhmEYhmEYhjluOMjMMAOQ7du3o6KiAqeffjreeOONpO/t2LEDI0eOxJw5c3DNNdec0OOGQiEsWLAAM2fOxIoVK476+omksbERZ599Ns4880z8/ve/F6+73W4UFxdjzpw5+NGPftQnxx6opMNO0mkjANvJD4XXEraRo8E2wjZyLAy1+w3byA+H1xK2k6PBNsI2cjTYRthGjpX+tpV02UhG2keCYZgBxxVXXJGoq6tLRKPRxIwZM5K+t2rVqsSf//znPjnun//858T//d//JWKxWOKcc85JBAKB7339RPLLX/4ysX79+kQikUjMnTs34Xa7E4lEIvHVV18lHnnkkRN+vMFAOuwknTaSSLCd/FB4LWEbORpsI2wjx8JQu9+wjfxweC1hOzkabCNsI0eDbYRt5Fjpb1tJl41kon1wJTPDDEBeeOEFlJWVAQBkMlnS96qrq/Haa69h1qxZWLt27Qk97pYtW1BRUQG5XI5JkyZh9+7d3/v6ieQ3v/kNKioqAACxWAxKpRJAz++7bt06zJo1C3/6059O+HEHMumwk3TaCMB28kPhtYRt5GiwjbCNHAtD7X7DNvLD4bWE7eRosI2wjRwNthG2kWOlv20lXTaSifah7NejMQxzQrDZbACA+++/H4sXL0763uTJk3H11VejuLgY8+bNw7nnnguFQnFCjuvxeGA0GgEABoMBXq/3e18/kWRnZwMA/vjHP2LatGnQ6XQAgOHDh+OJJ57AaaedhnPPPRcXXXSR+PsMddJhJ+m0EYDt5IfCawnbyNFgG2EbORaG2v2GbeSHw2sJ28nRYBthGzkabCNsI8dKf9tKumwkE+2Dg8wMMwBYvnw53n77bfH8vvvuw7Zt29DR0YHHHnss6b3nnXcezGYzAGDkyJFwOBzIy8s7IedhNBrh8/kAAD6fTxznSK+faN5880188MEH+OCDD8RrM2bMgE6ng1wux4wZM3Dw4MEhe4PNBDtJt40AbCffRybYCJB+O2EbOTJsIz2wjXw/mWAnbCOZTSbYCMB2ksmwjfTANnJk2EZ6YBs5Oum2lXTaSMbZR1pEOhiG+bd49913E1dddVUiFosd9r3LL788sXv37kQwGEycccYZvb7neHnttdcS//u//5uIx+OJuXPnCk2hI71+IqmqqkrMmzcv4ff7k16/6667EuvWrUvEYrHEvHnzEna7/YQfe6CSDjtJp40kEmwnPxReSw7BNtI7bCOHYBs5MkPtfsM28sPhteQQbCe9wzZyCLaR3mEbOQTbyPfT37aSLhvJRPuQJRKJRP+EsxmGOVFMmjQJWq0WBoMBAPDZZ5/h17/+Ne677z40NzfjZz/7GRKJBO69915ccsklJ+y4wWAQV111FZqamnDDDTfA5/PhwgsvxMiRI5Nev+WWW07YMYmLL74YdXV1yMnJAQCcffbZWLhwISwWC6699lqEw2Fcd911+M///M8TfuyBSjrsJJ02ArCd/FB4LWEbORpsI2wjx8JQu9+wjfxweC1hOzkabCNsI0eDbYRt5Fjpb1tJl41kon1wkJlhGIZhGIZhGIZhGIZhGIY5buTpPgGGYRiGYRiGYRiGYRiGYRhm4MJBZoZhGIZhGIZhGIZhGIZhGOa44SAzwzAMwzAMwzAMwzAMwzAMc9xwkJlhGIZhGIZhGIZhGIZhGIY5bjjIzDAMwzAMwzAMwzAMwzAMwxw3HGRmGIZhGIZhGIZhGIZhGIZhjhsOMjMMwzAMwzAMwzAMwzAMwzDHDQeZGYZhGIZhGIZhGIZhGIZhmOOGg8wMwzAMwzAMwzAMwzAMwzDMccNBZoZhGIZhGIZhGIZhGIZhGOa4+f8AD4xMuvDd7VIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -849,7 +849,13 @@ " Subset 0: ($X^{1}$ -1) gives pval = 0.97777 / val = 0.001\n", " Non-significance detected.\n", "\n", - " Link ($X^{2}$ -2) -?> $X^{1}$ (13/18):\n", + " Link ($X^{2}$ -2) -?> $X^{1}$ (13/18):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: ($X^{1}$ -1) gives pval = 0.96279 / val = -0.002\n", " Non-significance detected.\n", "\n", @@ -861,13 +867,7 @@ " Subset 0: ($X^{1}$ -1) gives pval = 0.93372 / val = -0.004\n", " Non-significance detected.\n", "\n", - " Link ($X^{7}$ -1) -?> $X^{1}$ (16/18):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{7}$ -1) -?> $X^{1}$ (16/18):\n", " Subset 0: ($X^{1}$ -1) gives pval = 0.99454 / val = -0.000\n", " Non-significance detected.\n", "\n", @@ -1287,13 +1287,7 @@ "\n", "Testing condition sets of dimension 4:\n", "\n", - " Link ($X^{2}$ -1) -?> $X^{2}$ (1/6):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{2}$ -1) -?> $X^{2}$ (1/6):\n", " Subset 0: ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) ($X^{3}$ -2) gives pval = 0.00000 / val = 1.000\n", " Still subsets of dimension 4 left, but q_max = 1 reached.\n", "\n", @@ -1309,7 +1303,13 @@ " Subset 0: ($X^{2}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{3}$ -2) gives pval = 0.22099 / val = -0.055\n", " Non-significance detected.\n", "\n", - " Link ($X^{3}$ -2) -?> $X^{2}$ (5/6):\n", + " Link ($X^{3}$ -2) -?> $X^{2}$ (5/6):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: ($X^{2}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) gives pval = 0.10135 / val = 0.074\n", " Non-significance detected.\n", "\n", @@ -1712,7 +1712,13 @@ " Subset 0: () gives pval = 0.20119 / val = 0.058\n", " Non-significance detected.\n", "\n", - " Link ($X^{6}$ -2) -?> $X^{4}$ (20/27):\n", + " Link ($X^{6}$ -2) -?> $X^{4}$ (20/27):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: () gives pval = 0.18668 / val = 0.060\n", " Non-significance detected.\n", "\n", @@ -1827,13 +1833,7 @@ " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.733\n", " No conditions of dimension 1 left.\n", "\n", - " Link ($X^{7}$ -1) -?> $X^{4}$ (15/18):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{7}$ -1) -?> $X^{4}$ (15/18):\n", " Subset 0: ($X^{4}$ -1) gives pval = 0.00050 / val = 0.156\n", " No conditions of dimension 1 left.\n", "\n", @@ -2163,7 +2163,13 @@ " Subset 0: () gives pval = 0.11534 / val = -0.071\n", " Non-significance detected.\n", "\n", - " Link ($X^{7}$ -2) -?> $X^{5}$ (23/27):\n", + " Link ($X^{7}$ -2) -?> $X^{5}$ (23/27):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: () gives pval = 0.21199 / val = -0.056\n", " Non-significance detected.\n", "\n", @@ -2552,13 +2558,7 @@ "\n", "Testing condition sets of dimension 1:\n", "\n", - " Link ($X^{7}$ -1) -?> $X^{7}$ (1/19):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{7}$ -1) -?> $X^{7}$ (1/19):\n", " Subset 0: ($X^{7}$ -2) gives pval = 0.00000 / val = 0.668\n", " No conditions of dimension 1 left.\n", "\n", @@ -2680,7 +2680,13 @@ " Subset 0: () gives pval = 0.17912 / val = 0.061\n", " Non-significance detected.\n", "\n", - " Link ($X^{2}$ -2) -?> $X^{8}$ (8/27):\n", + " Link ($X^{2}$ -2) -?> $X^{8}$ (8/27):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: () gives pval = 0.18026 / val = 0.060\n", " Non-significance detected.\n", "\n", @@ -3182,13 +3188,7 @@ " Link ($X^{5}$ 0) o?o $X^{7}$ (58/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", - " with conds_x = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " with conds_x = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", " Subset 0: () gives pval = 0.93945 / val = 0.003\n", " Non-significance detected.\n", "\n", @@ -3399,7 +3399,13 @@ " Link ($X^{3}$ 0) o?o $X^{4}$ (8/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", - " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", + " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.374\n", " No conditions of dimension 1 left.\n", "\n", @@ -3728,10 +3734,6 @@ " Variable $X^{8}$ has 1 link(s):\n", " ($X^{7}$ 0)\n", "\n", - "-----------------------------\n", - "PCMCIplus algorithm finished.\n", - "-----------------------------\n", - "\n", "## Significant links at alpha = 0.01:\n", "\n", " Variable $X^{0}$ has 2 link(s):\n", @@ -4136,7 +4138,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0j0lEQVR4nO3dd3hUVf4/8Pe5d/pMJr3SSSB0iDTpTVFBEBAVFXtZC7rftW9xXXfdXV3Xhu7q2n4qFlQUUYq90Gyg9BYCBNJ7mT5z7/n9MWFIIJBk2p3yeT1PHpM7c8/9BDNz33PuuecwzjkHIYQQQuKWoHQBhBBCCFEWhQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzlEYIIQQQuIchQFCCCEkzqmULoAQEtskmxW2w4dgKzro+5JtVshuNwBA0GigMifCkNcPhtw8GPrmQd+7DwSNRuHKCYkfjHPOlS6CEBJbJIcD9Ru+RfW61bDu2+vdyBggCIAktbsPE1Xgksf7gyAgceRopM+6EImjxoKJYngKJyROURgghASN/egRVH2yCrVffQ7Z4QCYAHDZv8YEAZBlqJKSkH7+hUifPQea1LTgFkwIAUBhgBASBLLTibK3l6FixfIzfvr3myBA0GjQ/YbfIP2CC8EEGu5ESDBRGCCEBKRp2y848vS/4aquAsLwdmLMH4Dev7sX+p69Q34sQuIFhQFCiF+4JOHYyy+gatWHvi79sBAEAAy9brsD6bPmhOeYhMQ4CgOEkC6T3S4ceuwfaNi8QdE6shctRs5V14IxpmgdhEQ7CgOEkC6R3S4c/NtDaNr6c1guC3Qk8+JL0f36mykQEBIAGoVDCOk0zjkO/esfERMEAKDyg/dQvvwtpcsgJKpRGCCEdFrNp2vQsGlDxASB48refA2WPbuVLoOQqEVhgBDSKY7SEhx94Tmly2gfYzj02COQbDalKyEkKlEYIIR0iEsSDv3r7+DhumOgq2QZrtoaHP3ff5SuhJCoRGGAENKh6k/XwFZ4IPiTCQWTLKP2i0/RvHuX0pUQEnUoDBBCzojLMio+eE/pMjpHEFH50QqlqyAk6lAYIIScUdPWn+GqKFe6jM6RJTRs3ghnZaXSlRASVSgMEELOqGLlipZZ/6IEY6ha/ZHSVRASVWjSIULIablqqrHj6kVhOVatx4PnK+vQKMkQGcP85ASMNRn8aks0GjHivVU0EREhnaRSugASvTjncFZVw1FWBtnpAve4wVRqCFoNdDk50Gak05txiEkyh8MjwagJzUvZsm9PSNptjwCGxWlJ6K3VoNEj4Y8lVRhu0EHnR6+EZLXCWVYKXbfuIaiUkNhDYYB0muR0om7T92jauQvNe/fBsn8/PM2W0z5flWCCacAAJAwcAPPQwUidMB6CRhPGimMfY8Db20qRnaBDXpoRfZIN0KqC16Vv3b8PEMWw3EWQrBKRrBIBAIkqESZRgFWW/QoDAGA9sI/CACGdRGGAdMh66DDKV65C+cerIVmtYCoR3NPxycHTbEHDz1vQ+Os2cI8HosmE7IvmIHv+XBh79w594XFAYAxGjYjSJgdKmxzYyGrRM8mAvDQDeiYZoBIC65mx7tsTcBCQOcd9xyox0qjD5alJvu07bA78u7wGt2emnHI54JDDBc45UlX+vUUxUYR1/z6kTjsnkNIJiRsUBshpNe3ajYNPPI2mnbvafDrsTBBojXs8AADJYkHJ8vdQ8tY7MA8fhry7fgvz4EFBrzveJGhUaHZ6/59IHDhcb8Phehs0IkOfFAPyUo3IMesgdPGSDecc1sLCgOsTGMPcpAS8XtOAuUlmGEUBxU4XnqmoxWWpiacEgWZJwvNVdbgpI9nvY3JJgnXf3kBLJyRuUBggp/BYrTj83/+h9N33T4wiD1Y3cUs7TTt34Zdrb0S3RZegz62/gcrg30AxApi0KqDZecp2l8Sxv9qK/dVWGNQi+qYa0C/ViHSjplNjObjLBe46tV1/TEgw4MP6JnzaaMFUswGPl9diYoIBs5MS2jzPzTmeqqjF3OQE9NdpAzqmu6E+oP0JiScUBkgbtRs3Yf/f/glXfcsbaaimn21pt/TdFaj+8mvk/+kPSJ0wLjTHinEJ2o5fxja3hF0VzdhV0QyzVoW8NCP6pRqRpFefdh/Z5QpajSJjmJOUgPfqmvCz1Y4+WjWuSUtq8xzOOf5XVYfBei0mJRgDPqbsDl79hMQ6CgMEgPeN+Ngbb+HQs/8BBAbIYbrjVJbhqqnFzt/ehdz/uwM9Fl8RnuNGIUnmsLg8aHa2/aq2du2k1+T04JfSRvxS2og0owb9Uo3ITTW0c0dCcP8GJiQYsKy2ARwCbs9MOeWyxQGHCz9Y7OihUWOL1QEAuDUjBT21pw8sZ0Q3TRPSaRQGCDjnKHr6WZS89Y53Q7iCwIkCAABFTz8LV20d+t55e1zekni6k32zU0Kz0wObO/gj+musLtRYXfj+aD1yzDr0SzWgT4oRWpUAQRNYN/3JXqtpAABYJBkCTv3/m6/X4s3c4I3+pztXCOk8CgNxjnOOomdaBQGFHVv2FiAI6Lvk1pgLBO2f7CXf96E42XdFWZMDZU0ObDhSh55JeuSlGMA0GvAgXC54v64R26wOPNwtA/8sq8G3zVbMTDQFoerTUyUmhrR9QmIJhYE4V/7hRyh5MzKCwHHHXl8GfY/uyJk3V+lSuuR0J3tLy/dWhU/2nSVzoLjejiSdGubcfrDu3R1Qe980WbG2wYI/5KShl1aD85NMWN3QjOlmI1QhCnxMFGEaODgkbRMSiygMxDFb8VEcfOJppcto18HHn0DSyAIYevRQuhSf1id7S+tP9S3brK7oONl3JFmvxtS+qcgwaXFs4CBYD+zz+26SbVY7Xquux5LMVPRruTtgZqIJaxqasbHZhqnmwAcKtodLEoz98kPSNiGxiMJAnJI9Huz5w4PgEbo+veyRsPePD6Hg1Rch+DnxTFfFy8n+dBiA4dlmjOye5JusyNh/gN9B4LDThaWVdbg8NRGjTXrfdoMg4LxEEz5paMbkBEOX5z/oLGP+gJC0S0gsooWK4tSRF1/BkZde8Q3ei1S9b7kZvW+8LihtSTKH1dXqWr3Lg2ZH/Jzsz6R1b0BrzqpK7Lw2+u7wEAwGFLy3CiyaVlskREHUMxCH3M3NOPr6GxEfBADg6GtvoPuiS6Eyddyd3O7J3nnik77VJdHdZidprzegNW1GJkxDh8Gye1fo5pwINkFA+swLKAgQ0gUUBuJQxapPILvcSpfRKbLTiYpPVqP75ZfRyT7IknRqTMs9tTfgZFkLLsHBnTvCVFUQcI6MufOVroKQqEJhIM5wSULJ2+9GRa/AccfeXo6ScTOwo9JKJ/sg6Kg34GSJo8+GJiMTrqrK0BcXKFFE4uix0GZlK10JIVGF+tHiTM36DXBWVSldRudxDmd5BcRtWykIBEGSTo15g7Mwtmdyp1c0ZIKAzPkLveslRzpJQtb8hUpXQUjUoZ6BOFO7fmNY1qd3cI4nbU2QAMgApqu1mKTR+dUWE0Vgy4/AHBodDgBalYAEjQoJWhUStCIStCqYtCp8UVh92skju9obcLL0WXNQ8/k62IuPRO7YAUFAyuRpSBg6XOlKCIk6FAbiTOP2HSEPAgCgAXCPwQwNY3BxjoetjShQa2BiXe+M4pIE9949wJzg1xmJtKLQcqJve7JP0KqQoFFBo2r/39CoUaHZ6Tlle2fHBpyJoFaj7/1/wp4lN4NHYhgQBKiTktHz9juVroSQqERhII54rFbYj5WE5VgCYzg+M7wbHDLgXTjGz55m17FjYE4HuNa/3oVIcvxkb2o50bf+MmlU0J7mZN+RBK3YJgwE2htwMn3PXuhx0604+vyzAbcVdLKMvvf/ESpjaKc4JiRWURiII8179wc8cFDmHH+xNWK4SoOLtQbf9t0eF/5jt+AGnQkj1d4YYOMynrA1o1KWcLHWAFMgt3rJMoylxbD0jfxZ5TSi4PtEH8yTfUe8Sxk7AXh7A6bmpiIzgN6A9qRfeBEat/6Mxp9/jKhBqNmLFtPlAUICQGEgjtgOHfIOAgvgTVxgDBdo9FjusOJ8jQ5GJuCY5MGLdgvmafW+IAAABibgQWMimmQZL9gtGKnSwBxAIEioKo2IMNDuyb7lGr5JG7qTfUcSNKqg9wacjDGG3D88hMKH/oDmndsjYvxA+px5yLnqWqXLICSqURiII5LNDghCwGMGxqg0WM3s+NrlxES1Fs/ZmzFWrcVMjb7d55sFAd1EEYWSByMFP5eVFQTopfDMjaAR2YlP8q1O9Me/lDrZdyQrQYeLBuuD3htwMkGjQb+//B1F/3jY20OgoMwFl6D7Db+JuRUuCQk3CgNxRHa7vB0DAbYjMobzNDp85LTjV48LPQUVFrW6ZAAATbIMNWPQMwY75yiUPJii9v8kxRiDlp86OM4f0Xqy70i3xPCNpxC0WuT9+W8ofn4patauDrjHqWsHFwDO0eOmW5E57+LwHJOQGEdhII4wlSrwJNBijFqL95w2cAA36k2nLDZTz2W8YbcC8B5ymlqL7qL/f24cHDpd53oV1AJDgu7Uk/zx0fkaUaBPkkHARBG9l/wOSWPHo/iZJ+CurwtLIND37oM+v7sXhtx+IT8WIfGCwkAcEXW6oN0WttzhPdFbuNzuzFW9RBUeNCYG5VgAAJlDp/dehlALrN3BeXSyV0bS6LFIeOl1lC77f6ha9WFQLkWdQhDARBHdrrkBmRct8M49QQgJGgoDcUTfo3tQPrmtctqwU3LjfoMZT9ubsdHtxDQ/JxTqNM6Rnd8X14zsDi2d7COOqNej5823IW3GTFR+vBJ1334F7nYHdvlAEABZhmgyIe28Wci4cB60mZnBLZwQAoCWMI4rrro6bJ45O6A2NrocWO604S6DGX1FFdY67djgduIRYyLEEJ+gJ3z1KdSJQextICEj2ayo/eZrVK/9GPbDh7wbj99JcrreKVH0PtbylpQwvADps+Yg6ezxENTqMFRNSPyinoE4oklJgSY9Ha7qar/23+Vx4R2nDTfoTOjbcv1/mkaHL1wO/OBxYUIAAwQ7os3KoiAQRUSDERmz5yBj9hy4GxthP3QQtqLjX4WQ7DbILhcYE8DUaqjMZhj79Ychtx/0fXNh6JML0WDo+ECEkKCgMBBnEocNRfU333b5/vDilrkEFmgNOKvVXAJ6xjBNo8WnTjvGqTSnDCQMClFA4vChwW+XhIU6MRHqgpEwF4xUuhRCyGlE5z1UxG/JZ4/xa6KYXqIKSxNSMKOdsQFztQb8zZQUmiAAAJKM5DGjQ9M2IYQQCgPxJvP8mVHX/SqaTMg471ylyyCEkJhFYSDOiHo9ci6ef2IwV6QTBHS7ZAFEXfQvUEQIIZGK7iaIQ46KCvww9+KImFe+Q4KAsz9ZCV1mRqeezjkHJDe4ywm47S3/dYC7vF++790OwOUA0xmhGTUrxL8EIfHJXV8PZ3U1ZJcL3O2GoNZA0Gqh7ZYDVZT1UMY6GkAYhzQmLTJnTEHlV99FdiAQBGTOnA6hbDtcxzzgsgeQPIAkgcuS93vZAy55AFnyTnQjedCVaRbVQ6eErn5C4ojscqH+p59g2bsPlv37Yd23D+6GhvafzBi0mZkwDRoIU7/+SBg2FOZhw2j+EAVRz0CckaqPwfnDKngcHux6+Qu46hsiMxAIAjSpqRj93lvg+zdCKisM/jFENXQzrwcL4S2RhMQ6W3ExKj/+BJVr1kCyWMBE0TvTaWdOLa3mntBmZSFr3jxkzLoAmpSU0BZNTkFhII54infBtfVzgHtP/k01Lux76ROFqzq9ES89j6SCEeAeN5wb3wdvqglq+2KvIdAMnx7UNgmJF03bd+DI88+jedcu32yRAWMMYAypkyeh9223QZeTE3ibpFMoDMQBzjncuzfCs//U5WaP/VCM8m+3hm/Fuc5gDD2uXozcO27zbZJtTXCuXw64HEE7jHbKIgiJnRuLQAjx8lgsOPL8C6hctSp4IeBkoggmiuh1003IuWShd5E1ElIUBmIc97jh2rIWUmn73eyyR0Lh2l1o3HsoMi4XMIaUs8diyJP/OmUKWqnmGFzffxSc4MIEqPqPgarnQDB9QuDtERIHatevR9Hj/4a7sTFs7xeGvFz0+8MfYOrfPyzHi1cUBmIYt1vg/H4l5PrKMz5PdksoXLcXjXsOKNtDwBiSR4/CkKceh6ht/zq+59A2uHetD+ZBIWT0hKrnYAhZfcAEWg2PkJNxznH0lVdQ8trrgS0+5Q9RBGMM+Q//BalTaMBvqFAYiFFyQxWcm1eC25s793xJxpHNZajZeOqlhHDJmHkOBjz85zMuSsM5h3vbl5CO7Q1+ARo9VD0GQOw5GEICDWAiBAC4LKPo8cdR+clq5YpoCSC5992LrLlzlasjhlEYiEGesoNw/bQGkNxd2o+rNKg6JuDosuXem/OCvSZ9O46vS9/75hvR87qrwToxGRKXPHBu+gC84cw9HoEQkrMh9hoEMacfmErT8Q6ExCBvEPg3Kj+JnIHGeQ/cj8wLL1S6jJhDYSCGcM7hKdwC987v/G6DGRMh9ZmIA/98Ak27dgexuvaZhw1F/p//AGPv3l3ajzsscHy3HHDaQlPYcaIaYrf+UPUcBJacRfdBk7hSsmwZiv/3otJlnGLw008hadQopcuIKRQGYgSXJbi3fQXP4R0BtaPKLYB62DQAQPnKVSha+h9IVmvwRg23tCOajMj97R3IvmhOp3oD2iPVlcO1+YOwDWRi+gSI2XkQcvIgUDAgMc6ybz+233xzZAwsbk0QoE5KwllvvgmVmQb/BguFgRjAXQ44f/gYcvVR/xthDOrh06HOLWizWXI4UP31tyhb8SGaduwERNG/ywct+5lHDEO3ixcgbfrU0w4S7ArP0b1wb/si4Ha6TGeEmJ0HMScPQko2GIuStR4I6QTJ4cC2a6+Fo6w88sIAAAgC0qZORf5fH1a6kphBYSDKyZYGODd9CG6p878RlQbasXMgZvU549OsR46gcs06NG7fCcv+/ZCsLV30guD9lNwyyIdz7nsDEY1GJAzIh3nYUGRdOAuGXj39r/M03Pt+gOfAT0Fvt9O0BojZud5eg9Rufvd0EBIpDj39NMo/+DCy5h9pR/+HHkL6uecoXUZMoDAQxbxTC38MuOx+t8EMZmgnLIBgTuvSfpxzOCsrYdl3APayMu9CJC43mEYNQaOBPicHpgH9oc3MDHl3Oucc7l8+h1S6P6TH6RSNDmJWrrfHIK073apIoo6zshJbLrk0MnsETqLJyMCo99/zDUQm/qNpnaKUp3g3XFs/800t7A8hJQfacReB6Yxd3pcxBl1WFnRZWX4fP1gYY1CPmAHuaIZcW6ZsMS4HpKO7IR3dDai1ELP6ensM0nuAifRyI5Gv/MOVSpfQaa6qKtRt3ozUSZOULiXqUc9AlDnT1MJdIfYYAM3I82PqBMVdDjg3vAdubTjlMWZKBiRPp+ddCDqVBmJmH2+PQUavmPp3J7FDcjjw89yLINlCfJdOsAgCzMOGYuhzzyldSdSjd6Qo4p1aeB2k0gMBtaMeNB6qAeNibjQ80+igOXsunBveO2UNA/XgSRAyekKuPgbp6B5IFUXh7Qb1uCCV7vdeyhDVEDN7twSD3mCq00+yREg4VX/6WfQEAQCQZTRt2w5r4UEY++UpXU1UozAQJbxTC38Eub7C/0YEEZpRF0DVY0DwCoswgjEJmjFz4Nr8ISB773pgBjOEjJ5gTICY0QtiRi9wpx1SyT54ju4Bb64Nb5GSG1JZoXdZZlEFIb2XdwBiencwnSm8tRDSSu3678I23fCzjQ3Y73ZjoFqD2xMT/W9IFFG7cQOFgQBRGIgCXZ1auF1aA7Tj5kFMjf0lQcWUbKgLzoV766fen3sNPuXWP6bVQ5VbALHvCPCGSniO7vF+avd0bdbGgEkeyBVFkCuK4AbAjEkQ0rpBSO0GMbUbLaJEwoZzjubde8J2B8E5egMm6Tg2OQJciVSWvXWTgFAYiHCesiK4flrd5amFW2PmVGjHL4BgDCB9RxlVt/7gtiZ49v0AVY/Bp30eYwwsOQua5CzwwZO8n9iP7oFcp8xARG5tgGRtgFS82xsODIm+cCCkdodgoHBAQsNZVu6dYCxMBmo02OdyBd4Q57Ds3g3Oecxd+gwnCgMRyju18Fa4d34bUDtCZm9ox84BUwc+wU+0UeWNhGBKBtMZOvV8plJD1XMQVD0HQW6ug1R6AFL5QfDmAOZwCBC3NUI62gjpqPeTDzOYW4JBNwhp3SEYzIrVRmJL897AP13LnONP9XUo0GhxienEJa9dLieeaWzEzWYzRmt1AR/nZJ7mZjgrKyPi7qZoRWEgAgV7auF4nQSHMQYxO9evfYWEFAgDzoZ6wNneYFB+EFLZQfCmmiBX2TXc1gTJ1uRbtZHpE1qCgTcgMEMifToifrEVHQJTqcA9Hr/bEBjDbIMBb1ksmGUwwCgIOOpx479NTbjYaApJEDjOVlREYSAAFAYiTFCmFgaDevg0qPPOClpd8UxISIGQMAbq/mMgWxq8waD8IHhDldKlgdubIZXsg1SyDwDAdKZW4aA7mJHCAekcye7/5GWtna3VYZXVii/tdkzS6fBMYyPGaXU439C5Hjp/Bav+eEVhIILIlgY4N38YWLd0J6cWJv4RTEkQ+o2Cut8oyLYmSGUHIZcfDOwujyDiDsuJWxgBQGuEeLzXwJwGISElLi8ZkfZxWQa3NkBuqoFstwZl8KDIGGYZjPjAasFWpwO9VCpcaQr9XTJyMMYfxDEKAxFCqimB8/tVgU8tPH4+hMT0IFZGTkcwmCHknQXkneX9hF5e5A0HCg0+bJfT6h370GpuCqY3gSWkQkhIBUtIgWBOBTOl0HwHMY67HJCbasCbaiA31ni/b6713YILl9V7W2EQnK3T4h1LMziA35gTIbTT7hMNDSj2uOHiHHfX1mCJORF91P7/DQr09xsQCgMRIDhTC2dDO26eX1MLk8AxfQJUfUdA1XcEuMPqDQblByHXlAKIrEk+ud0CbrdAripus50ZzC0hIQXM3BIWTMk0W2KU4ZIH3NoIubnWd+LnTTXgDssZ92Ny8G6rfavZeywL5zjdiKW7k5KCdjwAELSaoLYXb+hVrqCgTS3cfQA0o84DEykZRwKmM0LVZxhUfYaBO22QKg55ewxqSgIKfKHGbU3gtibIlYdbbWXecQcJqd4ehISUlpCQRIswKYTLEri9GdzWDG5rPPH/reW/cPo3g6DGoAL3Z3nyk3xotWC7y4k/Jifj3w0NWO+wY4Y+tOMFAECX0y3kx4hlFAYUEqyphVUDx0E9cDwNEotQTGuAqtcQqHoNAXc5vMGg/CDkqqMRHQxO4ODWBu915YqiE5uZAGZKOnGpISHV27OgMwAaQ9zewRIMnHPAYfGd3E/5slsQit4mQ4o24DED6+12fG6z4d6kZPRUqXGu3oBPbTZM0emhCuF7FFOrYejTO2TtxwMKAwoI2tTCI8+HqufA4BVGQoppdL55DLjbCanyCOSaEsi1JeDWRqXL6xougzfXQTrdYFeNHkxr8H7pDGBaI3DSz0xrADS6uAuynHPAZW/zab7tyb5JkeWDdWmJYKLod+/ADqcTb1qa8RuzGbkt1/7P0evxmd2G7x0OTNLrg1luG8Z+/cBUdDoLBP3rhVlwphbWt0wtTN1i0YqptVB1zwe65wPwBkSpthRyyxe31CtcYYBcdnCXveN1H5gAaI8HB2NLUPB+QWsA0xlP/KzSKB4cOOeA5AE8LnCPC3C7wD3Olv+6vNvdLf9tvb314y5HQDOKhoogCjD07Abr4a7f1nzE7cbzTU24xGjCyFZzCegFATP0eqy12zBBp2t3IGGgmCjCPHRI0NuNN7SEcRB5SvZB7JZ/2jesoEwtnJAK7YT5EIxJfrdBIh93WL3hoKbU23MQpeHgl4PH8Mg7a/Hz/mI02uzIzU7H5VNH4bfzpkOr7uJnEUEABNEbIJgACIJ3zQlBaLMN7KTtrR5nbbYxgIm+75kgApyDe9yAx3nqSbzlJB8dl3f8U76tHOVfblakZyIQAx97FCkTJihdRlSjMBAksrURjk9fhnrIJKjzx7R5jHMOz8GtcO/4NqBjxPPUwvGOO2yQ60oh1bT0HIR7pUU/fLVtH+Y89DyGDBmCyy67DMnJydi2bRtef/11TBzYBx//5VaIIo0tiCRuWYudT74FyFFyWmAMmvR0jHr/PTCRBrQGgl6JQeI5tB0Ah3vXenhKC33buSzB/esXAQcBVd8R0I5fQEEgTjGdAWJOP2iGTYVu2pXQnXcjNKNmQewzHMycpnR5p/BIEm5Z+g7OO+88/PTTTzAajSgsLMSSJUvw+eef47tdB/HGV4HdRUOCTy26kDppEhBFJ9acyy6lIBAE1DMQBNzjhn3d/wBXy1Kcogq6KZeDGRPh/PGTU+7n7hqaWph0jLvskGvLWi4tlCi+hsLWwqOYdM8T2LRpE77++ms8+OCDSNBrodYbUV5ejpkzZyLV04g377tO0TrJqVypw7Dr/geVLqNTBK0Wo1d9BFUYZjiMdTSAMAikY3tPBAEAkDxwbl4JqDVBmFr4QohZfQMvksQ0ptFDzM71LczEXQ7IdWWQ68pbZpqrC2zQahdZHU4AwF//+lfs3bsX88ePwMCeWXjs/S/gcrmQlpaGhqLImMKZAFCpIZjTwMxpMPUagoShQ9G8Zw8QhHkHQoYxZF98MQWBIKEwECDOOdxFv5663WEBHO3s0Ek0tTAJBNPoIGb1bRMkudsJ3lwHubkWcnMdeJP3v3AGfw37SUPy8M/rLsKmPYcwpmcqzsrriT+98TF++9v/gyRJ+Prrr3HjjFFBPy7pGDMkgiWmQTCn+QIAM5jbDHzu96c/YtvV10CO1DAgCNB164YeN1yvdCUxgy4TBEiqPgbn+neD2iZNLUzCibscLVPXtoSE5lrIzbVte7sC8MKaDbjrxRW47LLL8MYbb+Dyyy/HF+vW4Nf//BE5qYlBOQZph0YPwZjkO/Ezc5p3FklV56btrVy9GgcffSzERfpJFDHs2SdhGjAITBO6ZZHjCfUMBMhz8JegtkdTC5NwYxqdd86Kk+at4E4b5KZaX28Cb66F3FTrvb2uEzjneGjZavz7gy9x11134ZFHHsHixYuxcuVKvPv7GygIBEql8X6iNyRCMJjBjOaWn81genPAC09lzJ6N2o0bUb/5+4i71bDHlZdCdexHuJoPQzNuPs14GQQUBgJwfAnbYKGphUkkYVoDxHQDkN7Dt807Va615VLD8aBQBzis4E7biRXwACxd9Q3+/cGXePLJJ3H11VfjvPPOw4YNG3DfJTMxuFe2Er9SdBFVYPoEb7d+y0n+xEk/MeR3FjHG0O/3v8fO22+H/VhJZIwfYAwpowuQlu4C3Bxy9VG4d62HZthUpSuLenSZIACunevhOfBT4A3R1MIkBnDOvZPzOKw4cvAA8sdMwl133YV77rkHkydPxr59+9o8/+/XzMXvFsxQqNoIwISWk725zZfQ8mkfWn1EfDBw1ddj1+1LYC8pUbaHgDEkDR+EPtP6gZ00P4W6YCZUvQYrVFhsoDDgJy65YV/7v8Cvq9LUwiQGPfroo/jnP/+J8vJy2Gw2lJaWtnn8L3/5CyoryrHx09XgThu4s6VnwWFr+bnVtiCNXQg6JgBqjfcavErj/aSuavlZfdJ/VVow9fHnaQC1Hkxv9M6UGAXcjY3Yc+99sOzbp1ggSBs7DD0m9G3/koAgQjNhIcTUnPAXFiPoMoGfpKP7An6ToqmFSayyWCxgjOGmm25q9/GdO3di8ODBEBI7njCJyxLgtIFLHu+JiMuALIPzE9/jpO95O9tO3Yd7L2tw7t3econjxMldc9LJXdtmOwQxIj65h4M6MRFDnl2KQ088iaq1a71TOIcjFIjef+Occ0YjY3DW6f+9ZQnuLWshTFtMAwr9RD0DfuCcw/HVG+CN1X63IWT0hvZsmlqYxKaKigr87ne/Q0VF+3MJpKWl4cEHH8SwYcPCXBkJVMPWrTj4z0fhrKwMeMnj02IM4BwJQwah5+R8aA2dC11Cdh40Yy6Mm5AWTBQG/BCM2wnFXkOgGXke/dESQqKO5HSi5LXXUPL2Oyd6CIJxKmnpcRCNRvS+/iqYDfVgXVzYTT18OlR9hgdeS5yhMOAH5w+rILVaf8Bf3kWNxgahIkIICT9XfT2q132K8o8+grOszLumgT93HbTslzB4MLLmzUPqtKkQRAbn+uVdn8VVEKGdegWECFyzI5LFTBhwN9TDfrgI9sNFcBwrhuywQ3Y5AUGEoNFAZTZD36sv9H3zoO/VB4LWv+tKsq0JjnUvAQjOP5vm7LlQdesflLYIIUQJnHM0bd+O6s8+R/OuXbAdPeoLBUwUvd3+rZ57/DFBq4UhNxeJI4YjY9YsGHr3btOubGmA87u3AbezS/WwhFRop1we8FwL8SRqwwDnHNa9u1D75To0/boFUlOj94HjI01PHtwiioAkA+DeZS+zspE8YSpSZpwHbUZWp48btNsJfXWpoJuyCEJy52sghJBIJrvdsB0+DGthIZxVVeAuN2SPG4JaA0Gjga5Hd5j69YOue/cOJwySqorh+n5lly9DiL2HQTMijm9d7aKoCwOepkbUffsFaj5bA1dFGSCIbSY66ZKW61OmYQVImzkbiaPHgalOf4NF0G4nBAAwCMkZENJ6QMzJg5jWPQhtEkJI7PEc/AXuXd91eT/N6AshdusXgopiT9SEAS7LqP18DcreeNnb/R/MsltCgbZbD/RccjeM/duf/MdzeCdcv3zm3zGYACElG0Jad4hp3SGkdvPeokQIIeSMOOdw/fgJ5Iqiru2o1kI7bTEEgzk0hcWQqAgDjmPFOPqfJ2Ar3B/aA7WEgrQL5iL7yusg6g2+h7p8O6GogpCS4z3xp3eHkJJN6w0QQoifuMsOx9dvAg5Ll/YTUnOgmXgp3bnVgYgOA5xzVH+8AmVvvgqA+X85oKsYgyoxCX3ufRDGAd4pLju8nVClgZDaDWJ6dwhp3SEkZ4EJYnjqJYSQOCDVlMC1cQW6OoBbPXwGVH1oToszidgwwCUJJa8+j9pPP1GmACaAiQJ63/1HJI4Zf+rthBodxFTvp34xrTtYYgatnEUIISHm3rsZnv0/dm0ntRa6GdfQsvBnEJFhgMsyjj73BOq/+1LZQlq6lXre/jvo7UcgpOb4rvkzcxp1OxFCSJhxWYZr0/uQa8u6tJ93efgLQlRV9Iu4MMA5x7EXnkHdl+uULuUExtD7/oeQNHqc0pUQQkjck21NcH7zZpfnH9BMuBhies8QVRXdIq5fu37DN5EVBACAcxx95jG4av1fi4AQQkhwCAYzNAXndnk/97avvAtekVNEVBhwVVeh5H/PKF1Gu2SnE0ef+Zd3NTRCCCGKEnP6Qew9tEv7cGsDPIVbQlRRdIuYMMBlGcVL/wXZ5VK6lPbJMiy7d6Bm7SqlKyGEEAJAPXgyoDN1aR/PgZ8gW+pDVFH0ipgwUPfVp7Du2RmeNbIDUPbGy3DVVCldBiGExD2m1kAzdGqX9nE5ndjx0etoamoKTVFRKiLCAJdlVK58T+kyOoVzGTXrFLrdkRBCSBtCTh6EzD6deq7F7sT4u59EwVW/Q/duOdi7d2+Iq4seEREGmrdthauyXOkyOkeWUfPZakiOYKxPQAghJBCMMaiHTfOuU3MGjVY7rnz8dRTXNePzzz8HmIC1a9eEqcrIFxFhoOqTD06sNhgFZLsN9eu/UroMQgghAARjIlQDzj7t459u3YOz7nwMPx0qx6pVq3DuuedCFEVItVHyITQMFD8DOysrYNnxa1jHCjhlGbfvP4Zl5XX+NcAYatZ+HNyiCCGE+E2VNxIsIaXdx254+i0MGTkW27dvh9l8YtEiqeoo3WrYQvEwYN27K+zHXFndiDy91v8GOIfj2BFINmvwiiKEEOI3JohQD5/R7mNNNieGDx+OP/7xj7j66qtPPOBxQjq8I0wVRjbFw4Ct6AAghm9Bn3KnG6VONwoS9AG3ZSsq7PhJhBBCwkJM6w6x5+BTtk8c1Bf//ve/8dZbb+HkSXfdhT+DeyL0lvYwUjwMWPftAaTAViOUOcfvDpTgrYq23f7bmu24YvcRfN944hP8mxV1uDwzOaDjAQAEAbaDIV5SmRBCSJeoB08ETloufuWDN2HD47/DrbMnnrqD0wbPoW3hKS6CKRoGZLcb9uJDAbcjMIZ56Un4oq4ZlpZgccTuwtPHqnB5ZjLGJXpXqvq5yYZsrRo5WvWZmus024F9QWmHEEJIcDCtAarcgjbbdBo1Rub1gFalancfT+EW8C6ucxBrFA0DkqU54F6B4yYmGZEgilhX24xatwePFVdiUpIJc9ISfc8ptDmxucGKJfuP4c2KenxV34wVVQ3+HVCWaa0CQgiJQKq8kYCqC+PC3E54Dv4SuoKiQPsxKUyCOfWwyBjmpidieWU9fmq0oo9eg+uy244svSIrGVdkeS8RfFvfjGMONxZmJPl9TNkZ30mSEEIiEdPooOo3Ep69mzu9j6foF6hyR4BpAh9PFo2UHTMgB6dX4LhJiUY4ZQ4O4M4e6RAYC2r7p4jwqZMJISReqfoWAF05sXtccd07oGgYYJoAbu9rx6vltQCAZknu8BebmpyAq7Lbvye1s4Qg108IISQ4mFoDVb/Rbbb1ykzFkSNHMHLkSDQ3N6N3Zmqbxz2Hd4B73OEsM2IoGgZEgyFobb1bWY9fmu14pG82JM7xTb0laG2fjmjs2mpZhBBCwkfVdzigM/p+vmr6aPz1ivNxVroOT9w4DxeOOek2RLcD0rE9Ya4yMig6ZkDUG6BOz4C7OrBVAL+qa8bqmiY82CcTvfUazEo14+OaRsxISYAqVJcKRBGGvP6haZsQQkjAmKiCuv9YuHd8DQAwaDW4Y+6UM+7jKfoVYu9hYC3nDu6wwlO8C9xhg2b4tJDXrBTF5xkwDRgc0LoEvzbb8Gp5LZZ0T0N/gw4AcH6qGXaJY0NDCHsHJAmGfvmha58QQkjAxF6DwfTmjp/YglvqIVcehlxXDteWdXB89rJ3IKIU2xMTKR4G9Hn9gZNmhOqsQ3YnnjpWjSszUzA28URXkEEUcH5qAlZVN0L2s+3OMORSzwAhhEQyJqqg6jeyS/u4fl4D5/rlkEr2AbxloLg6tseIKXqZAACMefl+h4G+ei3eGNSr3ccuzUzGpcGYafA0RFMC1OkZIWufEEJIcIg9B8O9dzPQ2YmF2lm8iMV4GFC8Z8DQbwDUqelKl9E1goCUqef4rikRQgiJXEylhqr30ADboDAQUkwUkT53ARBNJ1ZZRtoFFyldBSGEkE5S9R0BsABOedQzEHqp084DU2uULqNzBBHmUWdDm5WtdCWEEEI6iXvcYIbODyQ8GdPoglhN5FF8zAAAiEYjUs85HzWffhL5s/rJEtIvnK90FYQQQjrAuQy54jA8h7ZBrj4aUFtMnxCkqiJTRIQBAMi8+HLUr/8aktXi94DCkBMEmEeOgWnIcKUrIYQQcgZS2UG4d30HbmsKSnvMmNjxk6JYRFwmAAB1UjJ6LrkncoMAYxCNJvS89Xc0cJAQQiKckN4TzJwWnMbUWrqbIJwSR5+NlHMuCGyQR6hwjl533AtVYpLSlRBCCOkAU2ugGTsHqn6jAm/LENu9AkCEhQEA6Hbtb6DJzAxoVsJQSL1gLswjxyhdBiGEkE5iTIB68CSozzoPEET/2zH6P/AwWkTWGReAqNcj7+F/QZ2cGtD/vKBhDEnjp6D7dbcoXQkhhBA/qHoOgmbCxYDKv7vWBOoZUIYmLQP9HnkCmrR0xXsIkiZMRa//ux9MjIBgQgghxC9iajdoJ1zs13wBdJlAQZqMTPR/bCn0fXLDPyFRy/EyLroEvX57HwUBQgiJAUJyFrQTFgJdnDMgHi4TMM4jdfi+l+x2oWrle6hY8TbAAchSaA/IGFRJKehx62+ROHJsaI9FCCEk7OSmGjg3fQA4bZ16vnbGNRASUkJclbIiPgwc5yg5iqP/fQq2/Xu8n9yDXbYgAJwjffY8ZC26BqJeH9z2CSGERAy5uQ7OTSsAh7XD5+rm3AEmRsy0PCERNWEAALgso/67r1D1yQdwFB/2DjAMtKeAMYAxJI46G5kXL4IhLz84xRJCCIlosqUerk0rwO2W0z9JZ4T+/JvDV5RCoioMtGY7VIjaL9ah7rsvwZ3OlpO60HE4EEVA8j5HnZ6BtJkXImXauVAnx3YXECGEkFPJ1ka4Nq4At7c/U6GQkg3t5EVhrir8ojYMHCc5HLAd3A/74SLYDx+E7eABOMtKAd52jQOm0ULfuy8Mef2h75MLfZ886Hv1AYuw+QwIIYSEl2xr8gYCW+Mpj4k9BkEz8jwFqgqvqA8D7eGyDO52Q3a7wAQBTK0BU6loGmFCCCHt4nYLnBvfB7c2tNmuHjoVqtwCZYoKo5j8WMwEAYJWC5UpAaLBCEGtpiBACCHktJjeBM34BYDW0HZ7UqZCFYVXTIYBQgghpKsEYyK0Z18EiOqWLQxCYrqiNYULhQFCCCGkhZCcBc3o2QBjYAkpYCp1xzvFgNi+cZIQQgjpIjGrD9TDZ0CuLQWXZcguF2SXC5BlCBoNBK0m5uYdiMkBhIQQQkhXcVmGtfAArIWFsB4shGXvHtiKi8FdrrZPZAy6nByYBgyEITcPxn79kDBoEES9of2GowCFAUIIIXHNWV2N6k/XoXL1x3BVVwMAmKgClzxn3vH4remyDKbRIP2cc5Exew5MAwZE3aB1CgOEEELiUvOe3Sh5cxkafvzBO3GdLHe805m0TGqn79Ub2ZdciozzL4iauWwoDBBCCIkrHqsVR19+CZWrVno/3QcaAk7Wsn6OaeBA5N77AAy9ewe3/RCgMEAIISRu1G3aiENP/hvuxsbgh4CTiSIAoPuVi9HtisUQNJrQHi8AFAYIIYTEPC7LKH7hvyhf8X5oVr49E8ZgzMvDwEcfhzo5OXzH7QIKA4QQQmKa7PHg4D8eQe233yhXhCBAm5GBQU8+DV1WtnJ1nAaFAUIIITGLSx4c+OvDqNu4Iby9Ae0RRWhSUjDkmeegzcpStpaTRMcwR0IIIcQPh59dGhlBAAAkCa66Ouy++/8g2W1KV9MGhQFCCCExqW7zJlR+vCoygsBxkgRnZSWOPPec0pW0QWGAEEJIzHHX16PosUe9gwUjjSyjat0a1G3apHQlPhQGCCGExBTOOQ7+61F4rJbI6hVojTEcfOwfcNXVKl0JAAoDhBBCYkzTr794ZxUM9TwCgeAcks2G0rfeVLoSABQGCCGExJiy998DBFHpMjomy6hauwYei0XpSigMEEIIiR320pKWXgFJ6VI6RXa5ULVurdJlUBgghBASOypWfnhiNcFowDnKV7wPLikbXlSKHp0QQggJEs45qr/4PGxjBbbZHVje1AzOgVkJRkwxGvxqx1VdBcvevUgYMiTIFXZeFMUnQggh5PSclRWQmpvDciyJc7zT2Iz701Lwl4xUrG22wuJvCGEMlv37gltgF1EYIIQQEhMs+/aG7ViHXG50U6uQLIrQCwKG6bTY5XD61xhjYa29PRQGCCGExATL3n1gYmB3Ecic44HKarzX2LaHYafDiRtKK/CT3QEAaJBlJLc6VrIool7ys2dAltG0a6ffNQcDhQFCCCExwVq4P+CBeAJjuNBkwtdWG6wt3f5H3W78p64BC80JGKPXAQCCPZWRq7ISkk259QooDBBCCIkJniCNFxhn0CFBEPCFxYY6ScJTNfUYb9DjggSj7znJgoD6VsGjXpKQJAZ2SlUyDNDdBIQQQmKC7PTzmv1JRMYwK8GIFY3N2GJ3oJdGjcWJCW2e01ejRqnbg3pJgo4x7HA4cVGCKaDjBqt+f1AYIIQQEhNYEGcdHKfX4e2GJgDArcmJEE5a8EhkDIsSE/BodR04vLcWmgLsGUCg+weAwgAhhJCYIGi1QWtrWaM3CDTLMthpVj4s0OtQ0DKGIBgETfDq7/KxFTsyIYQQEkTazMygzD74QVMzdjiceDAjFTI41ltDfy2fqVRQmc0hP87pUBgghBASE0wDBwXcxndWGz6zWPHb1GT0VKtxrsmIdRYrPCFeCtmQmwdBpVxnPYUBQgghMcGUPyCgqYh3OJxY1tCEm5OTkKfRAADONRpglzk22+zBKvMUTBSRMHhwyNrvDAoDhBBCYoKxf3+/9z3i8s4lcGliAka1GgegFwScYzJgTbMVcoh6B7gkwTRgYEja7izGeYj7PgghhJAw2Xb9tbAXHwGi7NRW8PZy6LKyFTs+9QwQQgiJGdnzF0RXEBAEJI4erWgQACgMEEIIiSFp586EaPBvKWFFyDJyFl6mdBUUBgghhMQOUadD5tx5QbnFMOQYg65bdySOGqV0JRQGCCGExJasefPBoiEMcI6cy6847aRG4RQF/1qEEEJI52kzMtDrlluVLuPMBBHmESOQcf4FSlcCgMIAIYSQGJQ1bwHMBWcBQVyvIGgYg6DVIu/3f4yYHozIqIIQQggJIiYIyHvgDxB1WiACuuHb4By599wLbXqG0pX4UBgghBASk7Tp6ej3pz97w0AEBYLMufOQNm260mW0QWGAEEJIzEo+exz6//kv3h8iIBCkXzALfe78rdJlnIJmICSEEBLz6r/fjP1/+TO4JAW0fkEgsi++BL1uvS1ixgm0RmGAEEJIXGjesxv7H/oz3HW14ZulUBTBAPS65TZkX7wwPMf0A4UBQgghcUOy23Ds1VdR/uEK72WDEPcSJAwZgtx77oe+Z8+QHidQFAYIIYTEHcu+vTj42KPeRY0EIbihgDEIOh1633o7MmbNjsjLAiejMEAIISQuccmD+u+/R+UnH6Nhy8+B9RSIIiBJ0PXogay585B27kyozebgFhxCFAYIIYTEPWdVFarWrUXtN1/BXlLiCwVMVIHL0okxBox5exI49z1HnZKCpDFjkTn7QpgGDY6I6YW7isIAIYQQ0orscsJ2+DCshYWwFh2Ep6kJsssFLkkQNBqIej0MvfvA2K8fDLl5UCcmKl1ywCgMEEIIIXEu8kc1EEIIISSkKAwQQgghcY7CACGEEBLnVEoXEExc8oA314Fb6sA9HkD2tIz8VIFpdGDmVDBDYlSO9CSEEEJCJarDAJc8kCuKINWUgDdUgVsbAbQeD3n8pN9qm6gCS0iFkJQBMasvWHI2hQNCCCFxLSrvJpCbaiAd2wupZD8gub2f/rv6a7TswwxmiD0HQ+yWD6bVh6ZgQgghJIJFVRiQm+vg3vUdeH2FfwHgTBiD2HMwVP3Hgqk1wWuXEEIIiXBREQa45IGn6BdIRb+0bAhVyQzQ6KAeOgViZp8QHYMQQgiJLBEfBuT6Cri3fwVuawrrcYXMPlAPnQqm0YX1uIQQQki4RXQYkCoOwf3rFy09AWEukzEwfQLUY+ZAMETPYhOEEEJIV0VsGPCU7INnxzfKFsEYoNZCc/Y8CKZkZWshhBBCQiQiJx2SSg8oHwQAb4+E2wnXD6sgWxuVroYQQggJiYgLA3JjNdw7vla6jBM4B9wOuLeuA5c8SldDCCGEBF1EhQEueeDe9oXSZZyKc3BLPTwHflK6EkIIISToIioMePb/4J1FMDKHMUA6vB1STYnSZRBCCCFBFTFhQKothXRkp9JldIB5b3P0uJUuhBBCCAmaiAkDnsIt3tH7EY0DTpt3GmRCCCEkRkREGJCba8HryiL28sDJpMPbEaF3ZBJCCCFdFhFhwHNkZxT0CpzA7U2Qq48qXQYhhBASFIqHAe5yQC7ZHzW9AgAAxuA5vEPpKgghhJCgUCldgFxfDnA5bMc76+5nkJeVCgAY1CMTf1l0btcb4Ry8rgxclsAEMcgVEkIIIeGlfBhoqAr+csRnkKDX4r17FwfeEJfBm+vAEtMDb4sQQghRkOKXCeSGyui6RNCK3FCpdAmEEEJIwBQNA5xz8IaqgNuRZY6L/vk6nvpkQ5vtm/Ydwch7luLzbQd82ywOFxY98TauWfoethwMYAIhxsAbq/3fnxBCCIkQyvYMuByAFPgEPoLAcMOM0Xh/00402RwAgP2l1bj3tbW4c/YEzBzR3/fcdQ9ej+V3X4E/XTIdf3r7M1gcTv8Oyjnk5rqAayeEEEKUpmwYkIO38M+skQOQZNTh7fXbUNnQjCUvrcKFowbgmmkj2zwvI9EEAOiXnYa+mSkormrw/6C0cBEhhJAYoOgAQi5LQWtLJQq4bsYoPLtmM77ccRADu2fg/gVT2zynyeaATqOCRqVCZUMzDlXWoXtqov8HDWL9hBBCiFIUDQPBvi1v9sgBePyj78DB8ehVF0AU2nZ8HKqsw9/e/woCY2AA7ps/BYlGnf8HFOm2QkIIIdFP2VsLRXVQm/vnB98AABosdojCqTMajuiTgw/uuyp4Bwxy/YQQQogSlB0zoNZ6v4LgubWbsWHPESz77SJIMsfKH3cHpd3TYgKEhNTQHoMQQggJA0XDAGMMQlJmwO18+MMuLPv2Fyy9cS7yu6XjyikFeO3rLXBLIbymz2XI5nTsqmiCJEfnPAmEEEIIoHTPAOANAwEsUrRx72H8Y8U3+Pvi8zGsdzYA4PJJw2FxuLB6y75gldmuQx4jNhypw9vbSrCnqplCASGEkKikeBhgSRl+z0C451gl7nltLX43ZyLOGZbn227SaXH5pBF49aufIckhWvdAEPFTvfdbi0vCd4dq8e6OUhyosUCO0hkVCSGExCfGubJnLu5xw/nVa9F1zz5jaDZ3xwpxSLsPJ+vVGNsjGb2T9WBRtDQzIYSQ+KR8z4BKDbHHoIAuFYQd5/hZ6H7ah+vtbnx6oApr91eh0RH4DIuEEEJIKCkeBgBA7D00qhYrcuqSUIyOJys62mDH8u2l+OlYPTyhulxBCCGEBCgiwoBgMEPI6B01vQPbtL07XavMga2ljVi+vQxH6m2hLYwQQgjxQ0SEAQBQ9RsFRHznAINLm4B9QkaX92x2erBufxXW7q9EE106IIQQEkEUH0DYmqdwCzyFPytdxhkwfJk2EcdkU0CtiIzhrG6JGJFjhkqImDxGCCEkTkXUmUjMPQssMT1iLxfUdxsecBAAAIlz/FzSgHe3l6G4E5cOJEnCjh07UFJSEvCxCSGEkJNFVBhgggD1iHMBFlFlAYyBJWWiNmMg1GLwgkqT04O1+6vw6f4qNDvbv7WSc46FCxdi+PDh6NmzJ956662gHZ8QQggBIiwMAIBgTIR65AWREwgYA3QmqPqOwOB0IxaP6I6CHDNU7SyE5K/D9Ta8u70UB6otbba73W4sWbIEq1atwhtvvIFx48Zh1apVQTsuIYQQAkRgGAAAMb0H1CPPbwkECl4yYAxMb4Zm7EWQjmyH+/sPIe76EqM8xVjcEyhI1yJYmcAtc3xVVIOvD1bDLcnYsWMHhg8fjpdeegkvvPACrrrqKphMJkTQEA9CCCExQtkljM9AzOgFNnYuXFvWeGcnDPtJkIGZ06EZPRtMo4OQlQf52G5wSz24pR4igLMAjNCbUcESsM+pRwUzw840AR11f40VFRYnXr3/PjDG8NNPP0GSJDgcjqD8VoQQQsjJIjYMAICQkg3NhIVw7/gGvL4iTEdlADjE3kOhyh8DJqoBAGJ2HuSSPaeEEsHehBw0Iafl50boUMESUCGYUcHMsLCuL9Hc6PDgcHkNBvbpg9dffx3/+c9/UF1dHeDvRQghhLQvosMAAAjGJGjOngepZC88ezYDcmh7CZgpCeph0yEktZ1LgGn1ENJ6QK4+esb9E+FAIncgX/KevC3QoJyZW8JBApqg69TdEgNGT8CaV5f6/4sQQgghnRRR8wx0hDttcO/dDLnsIII3Q5G3JwAqDVS5Z0HsMwxMENt9ptxUA8/2LwM6mg1qb89BS0Coh77dcMA5R2XxIRzZvQ1vPHIPGhoacOmll8JsNuP9998PqAZCCCGktYjvGWiNaQ3QjDgHfOB4SCX7IR3dDW5v9p5Mu5Rpjp98OVhqNlQ9B0PI6AMmth8CfHslpIKZksEt9X7/Dga40ZfXoS+vA2TAARW2iD2wX8hseyzGkNU7F2WH9rfZHjXJjRBCSNSIqjBwHNMaoMotgNh3BOS6Msg1JeBN1ZAbqwFXBwPtDGYISZkQzGkQMvtAMHa84JDvuIxByOkP6cCPAf4GJzQzLQ6ytE4/v6zJAYvTA5M2Kv/XEUJiGOccnHPIsgwuy97/tvNBjQkCBEGAwBiYIIAxRsu9KyyqzyiMMYip3SCmdvNt404bZEs94HEDsuTtNRBEMI0OLCHFNyDQX0J6T0iHtwFuZ4DVA1Zo8KWYD4mduUeiNYdbwns7y3B+/wzkmHUB10AIIYHgnIPLMjweD+ROrs7KZRmSLENqtU1UqSCKIgSaol0RUR0G2sO0BohaQ+jaF0QIWbmQj+0JqB03BHyhyofNj1sRnR4Zn+ytwPTcNPRLC3x6ZEII6SrOOSRJguTxBGX+E8njgeTxgDEGlUoFQRSptyCMKIL5QczOC3j9hIOGPqhlxg6fl969NwBg7Nix2LRpEzJ69AHgXRr5y4M1+LWskSYiIoSElSRJcDoc8LjdQX//4ZzD7XbD5XR2uqeBBC6q7iaIJJ59mzu8zfCMRBUOpw/HN7XqDgcFbvvucxRt/wlJ6VkYP+dS6E3mNo8PyUzAhN4pEChFE0JCiHMOt8sV1pO0SqWCqFJRL0GIURjwUzBuMwQYrN2GYnVDAiwuqeOnn0HvZD3OyUuHWqTOHkJI8MmSBJfLpcixGWPQaLUUCEKIzhx+On6bYWA4jKU7cKmpArnJgQ0GPFJvx8d7K2B3BxYqCCHkZJKCQQDw9kg4HQ66bBBCFAb8dPw2w6C0VVmEae59mNozAWIAybfK4sLK3eVodLiDUhchhEiSBLeCQaA1GkcQOhQGAiCk9wTUXV97oD28vgJ55T9hYX8zkvX+3/7Y6PDgw13lqGimhY0IIYGJpCBwnMvppEHTIUBhIADHbzMMFm5rhGn/t1jQS42BGf7fMujwyPhkbyUO19mCVhshJL4cHywYiVwuFwWCIKMwEKBg3GbYhtsJ7PoWk0xWTOqdAn9b9sgcnx6owu7K5uDVRgiJG5EaBICWSYskGh8VTBQGAsS0BgipPYLbKJch7f8eA51HcV6/dKgE/8PG+sO12F3ZdMbn0KBDQkhrUhdmE1SKx+2O+BqjCYWBIBC6nTqQkKV2h9BjUEDtSkd3oUf1dszNT4dO5f//qvWH67CnnR4Czjl+LmnAxiN1gZRJCIkhxyf9iQbRUmc0oDAQBCffZshMKVDlnw1V72EQ+48FmP//zHL1UaQc3oQF+clI1Pk/e/R3h2vbBALOOb4/Wo8tJQ042mCDJNP1N0IIoqr7/fhiSCRwFAaCoM1thho9VIMngYneE7eY2QeqoVMBVdfXIDiON9dCv/cbzO9jQKbJ/7sXvjtci71VzeCcY/3hWmwv914+cEkc5XT3ASFxj3MOyeNRuowu8URZvZGKZiAMEi5LcG9dC9XAiRDamYyI25vh3r0esAcwoE9UAf3H4ataFY7U2/1uJitBi4rmtqsuDs1KwMTeqf7XRgiJepF4K2FnaHU6mp0wQBQGgoi7nWBnmHeAu13w7NsE3lAZwFEYhL4F+N6Vil1BvFPApBGxuKA7vaAIiWPhnNRn2bJl+HDlSgDehdjuv+8+v99/VGo1VKqYW4Q3rOgyQRCdKQh4H9dANXhKgHMTcMiHfsE46TDG9UgMoJ22LC4Jtbbo+0RACAmecAWBuro6LH/3XSx/5x2seP997N2zBzt27PC7PRo3EDgKA2HGBAFi3iiIfUYE1I5cfhCD63fg3D6Jfs9FcLKSRho3QEi8CncnsSRJcDqd8Hg8cHs8SElJ8bstCgOBozCgAMYYxO4DoBo0CRD879ri9eXoVfIDzu9lDEogKKNBhITErWCcUGVZxkXz5uGpp59us33T5s0YOWoUPv/8cwBASkoKrr76apx/wQU459xzcfbYsejRI4D5WjinGQkDRGFAQUJqN6iGzwA0er/b4LZG5BRvxKxuYsCBoLzJCZleUITEJR6EMCAIAm64/nq8//77aGry3q20f/9+3Hvvvbjzjjswc+ZMAEBTUxPWr1+PdWvX4ovPP8f27duxdevWgI5NvQOBoTCgMMGUDHXBTDCT/11kcDuRVfw95qa7AgoELklGnY0m8SAkHgXrk/WsWbOQlJSEt99+G5WVlVhyxx24cPZsXHPNNb7n/PDDD+jZowcSExOh0+kwadKkgMYMkMBRGIgATKOHath0sNTu/jfCZaSV/YIFiXVgAbyoy5roUgEhxH8qlQrXXXcd3n7nHdy+ZAkGDhyI+++/v81zsrKysG37djidTkiShC1btqB3796BHZh6NQNCYSBCMFEF1cAJEHoMDKidpJoDmMaLIHL/usxo3AAhJFCzZ82Cw+EA5xyPPvooRFFs8/iwYcMwaeJEXLZoERZecgm69+iBqVOnKlMsAUDzDEQkqfIwpMKfAT9P6ABQyUz4UsyHg6m7tJ9OJeDakT1ovgFC4ozb7Q7a7IMPPvggPvv8cyQkJGDtmjXQav2fObWz1BrNKaGDdB71DESgYExhnMktmOvZhSRu69J+Do+MejuNGyAk3gQr/j/3n/9gw8aNWPbGG5AkCStbJhYKNfr4EhgKAxFKSMyAesS5gD7B7zYS4MQcz250kxu6tB+tU0BIfOGcwxOEPuIPP/wQy5Ytw9JnnkF+fj6uvOIKvPb662FZXZAJdDoLBP3rRTCmT4B6+LlgiRl+t6GBhJnSPgyUKjq9T1mTs+MnEUKinkuSsb/agrX7KgNeynzjxo34xz//ib///e8YNmwYAODyyy+HxWLB6jVrglHuaTHG6NJmgCgMRDim1kA1ZCqErL5+tyEAGC8fwdnSkU7daVDe5KAJPAiJYXU2F348Wo+PdpVja0kDGh0eVFnd8Hcl8z179uCee+/F7/7v/3DOjBm+7SaTCZdffjleffXVkC6NTL0CgaMBhFGCcw65dD+kw9sCaucYS8I3Yh7c7MwzH14xohsSdV0bfEgIiVwemeNovQ2FNdbTrkMytXcSUnTRNwiPFioKHIWBKCPXlsKz73tA9n/Ubx30+EI1ABZ2+hG+03LTMCDd5PcxCCGRocnhxsEaKw7VWeGSzvx2n25QY1JPc5gqCx5awjhwFAaikGyph2f3esBl97sNO9T4QuyPaqH9AYrDs80Y3yuAWREJIYqROUdpowOFNRZUNHdtDNCF/VKgEaPnxCqKItQa/++8Il4UBqIUd9rh2bMB3OL/oB8ZAjaIfXFQSDvlsW5mHeYOygqkREJImNlcEg7WWlBUa4Xd7d88JfmpegxONwS5stDRaLUQaMxAwCgMRDEueeDZ/wN4bUlA7VQm5+ErRzrsre4tOt3kQ5xzcEsDpNpySHXlkGrKIDfVgkseQJYAQQQTVRDMaRDTsiGm5kBMzQYzJlI3HiEhwDlHRbMThTUWlDY6EOgbusCAuf1TIUTBy1UQBGjCMKFRPKAwEOU455CKd0A+tjewhtJ6Yk/CAPxaYYHD4/1EcfVZ3WHUeAflSI01cO3fCveBreDOlomMmNAyH3h7f0IMYMw3iyLTGaHpPxLq/JEQzamB1UoIgdMj4VCtDYW1VlicwZk58LhhmSbkJUf+SZZ6BYKHwkCMkCoPQSrcEtAUxsycBp4/HjtrXdhW1oRz81KRVVcE176fIFUcaTm5B/Dn0rK/mNUbmoFjoe4zGIzRC5mQzuKco8bmQmG1FUcbbH7fCtgRgQEXDUgLaNGzUKM7CIKLwkAMkRur4NmzEfC0f9tQp+iMUA8/F47Gejg3rgSrKws8BJzseChI7w79pPkQkzOD1zYhMcgtyTjScltgQ5imCx+RbUbfxMi8vVgQBKg1Grr0GEQUBmIMtzfDvXs9YG/2a3+W3hMeixWuHesBsIB6Gjo+mLdXQDt8MrTDp4CpIvONhxClNNjdKKyx4HCdDZ5QdQOcRCsK6JtqQF6aCUa1AJcz8mYkpVsJg4/CQAzibhc8ezeCN1Z1bT+NCc7iA+DN9Wh/HEDoCOZUGM+/BkIC3c5I4pskcxxrsKOwxoJqawC9fF2UZtSgX5oRPZMMEFuNHpQkCW5X+OroCI0TCA0KAzGKyzKkoi2QKw516vmyDDiPHgTcrtD2BpwOE8A0OhjPvxZiWk74j0+IwixODw7WWFFUZ4XTE57XoEpg6J1iQL9UI5INp79XPxICAWMMao2GgkCIUBiIYZ2dwlh2u+E8dgiQPMEdG9BVjAEqNUyzbqRAQOKCzDnKmhworLGivCl8q4Um6dTol2ZE7xQD1GLnTq6yLCt2yYAxBo1WS5cGQojCQBw40xTGstsF57EjgORWNggcxxig0sA07za6BZHELLtbQlGtFQdrrLC5Q7eAT2sCA3omGdAvzYg0o3+D7zjn8LjdIV106GQqtRqiKFIQCDEKA3GivSmMOedwVZZDbm5Q5tLA6TABYmoWjHN+AyZE36IphLSHc44qixOFNVYca7CHbVSOUSOiX5oJfVMM0KmD83qSZRlulyukq5sKggC1Wk0rEoYJhYE44p3CeD24pR4A4HF64C7ep3BVp6ctmA7dWdOVLoOQgLg8Mg7XWVFYa0WTI7iTA50OA5CTqEO/NBOyE0LTvc45hyRJkDyeoIYCQRAgqlQQBIF6A8KIwkCcOT6FsdRcB+eun5QupwMMxjk3Q5XRQ+lCCOmyOpsLhTUWHKm3QwrTbYE6lYDcVCPy0oy+2UPDQZZlSB5PQJcPVCoVRJWKAoBCKAzEIVmWYf1wKeSm2sgYJ3A6jEFITIdpwR30BkHCinPu19+cR5ZRXO+9LbDOFp7JgQAg06RFvzQjuifpISj4WuGc+75kWQaXZe/P3gcBxsDgHRAoCAKYIFAPQISguRzjkFR+CHJjjdJldIxzyA1VkMoPQ5XTV+lqSJzYX9WMBJ0aOWZdp/dpcrhRWGPFoTor3FJ4ArZaZOib4u0FSNRFxoRdjDHfiV0UabxPNKEwEIdcuza1LDIUQYMGT4cJcO7aRGGAhMWxBju2ljaie6KuwzAgc46SBjsKa6yotITvlrsUgxr90kzolayHigbXkSChMBBnpMYaeEoKlS6j87gMz7H9kJvqIJhpdkISOjVWJzYfqQMAlDY6YHV52r3ubnV5UFRrRVGNFfYwTQ4kMobeKXrkpZmQeobJgQjxF4WBOOMu/DVsvQKlDVY8su5n1NkcEBjDq4tnQO/PoCYmwFX4C3Qjzwl+kYQAaHZ68N2hWkgtY2g4gIM1VgzPSfT+zDnKm50orLGgrNERttsCzVoV+qUZ0SfFCI2KegFI6FAYiDOeyuKwXR7469qfcMukISjokY5Guwtqf9/MuAxP5dHgFkcUITnssB89Ctlug+xyeQeJqjVQJSRA16MnBHX4r307PRK+Lao5ZQrgolor+qebcLjOhoM1Flhc4ZlohwHokaRHvzQjMkw06x4JDwoDcYRzGVJNaViOVVTTCJUooKBHOgAgUR9Y16ZUU+L3CG+iHNuhIjRu/RnWg4WwHtgPZ3nZ6Z8sitD36Alj/3wY8/ohaew4aDOzQlqfJHOsP1SLZuep9/87PDI+2lUetl4Ag1pEXpoRualG6IM0ORAhnUW3FsYRqaEKlg+WBtSGzDkue+UzTM7LwR1Th/m2f3+4And/sBF/vXAszhnQA98WlmL1ziPeWdea7Zie3x3XjRsY0LFNC/8PYmJaQG2Q0JPsdtR++zWqVn8MW1EhcHyQm9zJHilR9D6Xc5jPGoWMWRci6ezxEFTB/ezCOcemI3U42mDv+MkhlG3WoV+aETlmnaK3BZL4Rj0DcUSqDrxXQGAM15w9AE98+SuuOXsAzDoNDlQ14A+rvsdtk4finAHeCYI8koxtJTV469pzkWzQ4rfvb8Cg7BSM7Z3pf/01pRQGIphktaLkzddQvWY1ZJfTu84E0PkQ4GvoRHd807Zf0PTLFqjMZmRfsgiZ8xcGLRRsK2tULAhoVQJyW24LNGnpbZgoj0akxBHusJ54gw7A+YN6IlGvxbtbC1HZbMNdKzbigsG9sHhMvu85GQkGDMpORqbZAI1KxPi+2ThQ2eD/QRkDt1sDrp2ERv33m7DjxqtRuWqlNwgAwZnQqiVIeJqacOyVF7H79pthObA/4GYPVFuwt8oScDtdlW7UYHyvFMwbnI0R3RIpCJCIQX+JcYR73PAOTwrsTVolCLh6bD7+u34XvjlQivzMJNw9o6DNcwZlJ6PO6kSTwwWTVo1fS6oxf3ggcwUwcCl8M7qRznHV1aH4uadRv3mjN2iG+Kqj/dhR7PntbcicdzG6X3M9RF3nJwY6rqTRjq0lDcEv7jRUAkOfFAP6pZmQpI+MyYEIORmFAeKX8wf1wlNfbwPnHI/MORui0LbHQSUIuG3yEPzm7W/AAYztnYlJeTnKFEtCwn60GPt+fw/c9d6Fr8IytXVLT0HlRx+gedcO5D/yGNSJiZ3evdbqwqYjdWEZFJikV6NfmhG9kw1Qi9QJSyIbhYE4wlRqBNorcNzjX/4CAGiwuyAI7V96GN83G+P7ZgfleAAHE+lTVaSw7N+H/b+/B5LD0fUxAcHAOWxFB7Hnt7dh4L+fhiYtvcNdLE4PvjtUE9JFgwQG9EwyoF+6EWkGDd39QqIGxdU4wnSGoHx6e2HDLmwqKscri2dAkmV8vONwEKrrAOfe+onirIUHsO+Bu5ULAsfJMpzVVdh7z//BVVt7xqc6PTK+LaqBI0QzBpo0IgpyEjFvSDbG905BupHmByDRhcJAHBHTugXcxkfbD+Gtnw/giYsnon9GEhaN6o9lP+2HRwr9SSEY9ZPAuBsasP+P90F2OpUNAsdJEpxVVTjw5z9A9pw6VwDgnUtgw+EaNLUzl0AgGIDuiTpMy03DnEFZGJiZAJ2K5gcg0YnCQBwREtMB0f8rQ5sPlePxL3/FXy8cg6E5qQCAS8/Kg9XpxtrdxcEqs30qNYTE1NAeg5wR5xyHn3ocHoslMoLAcbIEW9FBlL3z5ikPcc7xQ3EdqiyuoB1OrxIwJCsBFw3OwuS+acg266gXgEQ9CgNxhAmC35+u91bU4/ervscdU4ZhWv/uvu0mrRqXnpWH13/cF9JrsWJ6dzBGf65KqvlsHRp+/D6ygoAPR9nby2DZu6fN1u3lTSgO4lwCfVMMuGhINoZlJ8LgzzobhEQomoEwzjh+/gzOnZuiY/ni45gA7bBJ0I06V+lK4pazohw7br4O3BW8T9hBJwjQpKVj6IuvQtTpUVhjwc/HGoJ6CLNOhdkDMqkngMQc+qgVZ9T9zoquIAAAXIa6X0HHzyMhU/buO+BSeBbq8Zssw1VViZovPkdpox1bghwEAKDJ4UGVxRn0dglRGoWBOCMmpUPMyfUuYxwNmABV9340DbGC3E2NqPnyszbTBEey8g/fx6FqC5L1ahg1IlSnufXVX4U1NBMmiT100SsOaYdMgK2sSOkyOofL0AyZoHQVca163Rrw04zUj0Su8jIMrT+EpNFjfdskmcMlyXB6vF/e7yXvz5IMV8t23/ct/23vGuqxBjvsbolWFiQxhcJAHFJ1z4NgToHcXB+eWeP8xRgEcypUOblKVxK3uCSh8qMPI/vv5GSCgIoPV7QJA6LAoBfELp3AOedwSxwOj3RKkHBQGCAxhsJAHGJMgH7ifFjXvqJ0KWfGOfQT59FgLQVZDxbCXV8XlmOVu9x4rrr+xM9uN25LT8Eoo75rDckymrb9Csnh8GvtguMYY9CoGDSqKLmkRkgA6K88Tqmy+0AzdKLSZZyRdvhkqLJ6K11GXLMe2B+UlS47I1ujxt+7ZeDv3TLwYHYatEzAEL3Wv8a4DFvRweAWSEgMozAQx3Qjz4GQlBF5gwmZACElC9qC6UpXEves+/cBQvj/Pn6xOTBYr4XO32MzBuv+vcEtipAYFmFnARJOTFTBMP0yQBTD9umvQ4wBogqGaZeCBTBbIgmO5j27Ar6LQOYc95VUYnldY5vtO2wOXHu4FD9aT50U6EerHWO7enmgNcZg2b/P//0JiTMUBuKcmJwJ4/nXAYJK+UDQEgSMF1wHMSlD2VoIuCTBWVYWcDsCY5iTaMJXTVZYW9awKHa68WxVHS5JMZ9y0rfLMgodLgzX+3+9HzJdJiCkKygMEKgye8J4wXWASqPcJQPGALUWxguuhyqjhzI1kDZklwvBWvJ6vMmABFHAZ00W1HkkPFFZgwkmA2YnJpzy3K1WB4bqtdAEOD+A5HAEtD8h8YTCAAHgDQSmub8BMyQo0EPAwIyJMM35DQWBCCK7gzf1sMgYLkxMwBdNFvy7oga9tRpcnZrY7nN/tNox1hTAJYIWPIj1ExLrKAwQHzEpAwkX3wnN4PHeDaEOBS29EJqhE5Cw4E6ISemhPR7pEiHIYzbGm/Rwcg4O4Lb0ZAjt/H3ZZBmHnC4MC+QSQQumUgfcBiHxgkZokTaYWgv92Aug7jsM9g0fQq6vhHfl9mBOOuNtT0jOgGHSAohpOUFsmwQL0/p5W99pvF7rHUDYLMsQ0H7QNAgC/tMrOyjHEzSaoLRDSDygngHSLlV6N5jm3Qb9pPknTtaBjido2V9My4F+0gKYLrqVgkAEE1QqqFNSgtLWivombLc58FB2BmQOfGcJ8fz+jEHfo2doj0FIDKGeAXJaTBCh6T8Smv4jIdVVwLV/C1yFvwJu5/EnnHkFxNaPq7XQ9D8Lmv6jIKZkhr54EhSmQUNQv3kjIPu/0uW3zVasa7Tg91lp6KVV47xEE9Y0WDAtwQhVqC5FMQbjgIGhaZuQGERhgHSKmJIF/bgLoRs7C3JTLaTaMki1FZBqSiE31QKSB1yWwAQREFUQzKkQ07pBTM2GmJoNwZwKpsDkNSQwpvwB3jDgp+02B16vacBtGSnI03m77WeajVjb2IxNFhumJBiDVWpbsgxj/wGhaZuQGERhgHQJEwTvMshJ6UDucKXLISFm7D/A716Bw04Xnq2qw6KURIxuNZeAXhAw02zC6oZmTDIZ2h1IGAym/PyQtEtILGKcR9NyZISQcJIcdvy66GLI0XTPPmPQ9+6Doc+/rHQlhEQN6rclhJyWqNMj/YLZiqxP4DfOkTV/odJVEBJVougVTghRQubc+QENIAw3MSEBqVNpkStCuoLCACHkjHTZOUgaOw4QRKVL6ZggIHPufJpjgJAuojBACOlQzqIrATmw1QtDjjEIGi0yL5yrdCWERB0KA4SQDpkGDkL2pYuUX9nyTDhHn9/eBXVycCZKIiSeUBgghHRKt6uug75X78gcTCgISJkyDanTZihdCSFRKQJf1YSQSCSo1ch94E+RN3mUIECdmITeS/5P6UoIiVoR9qomhEQyQ+8+6HvPA5FzuUAQIGg06PeXR6BKSFC6GkKiFoUBQkiXpE6dfiIQKBkKBAGCWo38fzwOUz5NPUxIIGgGQkKIX+q/34SDf38YXJbDPw+BIEJlMiH/n4/DmJsX3mMTEoMoDBBC/GbZtxdFjz4CZ2UFEMa3EtOgwci974/QZmWF7ZiExDIKA4SQgMguF8reeRNl774NgIVuPgJBgKDRoudvbkX6ebMibyAjIVGMwgAhJChsRw7j8DNPwLp3DyCKgBSkUCAIgCwjeeJk9Lr1DmhSU4PTLiHEh8IAISRoOOewFh5A9bo1qP36C8hOp+9k3iWCCMgSVOZEpF8wG+nnXQBdTrfQFE0IoTBACAkNyW5H3XffoGHrz7Du3wdXVaX3AcYAJvhuROCcnwgLggBdt+4w5g9AyviJSBxzNgSVSplfgJA4QmGAEBIWks0G26Ei2IsPQ7LZILtcLesJaKBKMMPQNxf6Xr1pkSFCFEBhgBBCCIlzNByXEEIIiXMUBgghhJA4R2GAEEIIiXMUBgghhJA4R2GAEEIIiXMUBgghhJA4R2GAEEIIiXMUBgghhJA4R2GAEEIIiXMUBgghhJA4R2GAEEIIiXMUBgghhJA4R2GAEEIIiXMUBgghhJA4R2GAEEIIiXMqpQtoTVNwPQSVBkwQwQQRovrE90wQTjwmihBUGgi+x8RTHmOCCEFgYAKDKApgJ30vCAyCyHzPOeNjjEFUCRAFBlFg0LR8r/L9LJ54TDzxPFWr54rtfc8YBMYgMkAtCr7vVaIAkcH7s8CgFlg733sfVwuC73uRMTAGCAxgDC3tAwyAKDAIgPd3EeD7XmCAyFp/722DcQ5wGUz2AG2+l71f8ukfY1wGJOnE97IHkCVwWQY8LnBJAmTZu83jBpcl7/duN3D8++PPPf48t+vEPrIE2e0Bl2RwWYbs8kCWvPtwSYbs9kCWTnzPW76X3B7wVs+TXJ5W30vgMocs8ZafW/aXufcxiYNLHLIkQ3LLLW1ySG6pZZ8T+8mcQ+IcLplD4jjp+5N/9n4vw/u9xNHy2InvX+BHFH1dBgu9vun1Ta/vyH19U88AIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCFxjsIAIYQQEucoDBBCCCHxjscop9PJly5dyp1Op9KlnCKSa+Oc6gtEJNcWSyL53zmSa+Oc6gtEJNcWqJjtGXC5XHjuuefgcrmULuUUkVwbQPUFIpJriyWR/O8cybUBVF8gIrm2QMVsGCCEEEJI51AYIIQQQuIchQFCCCEkzsVsGNBoNFiyZAk0Go3SpZwikmsDqL5ARHJtsSSS/50juTaA6gtEJNcWKMY550oXQQghhBDlxGzPACGEEEI6h8IAIYQQEucoDBBCCCFxjsIAIYQQEudiKgzU19fj6quvxqJFi/Dtt9+2eay6uhqLFy/GJZdcgu+++y7i6jvugQcewI8//hjWulwuF2699VYsWrQI7733XofbI6G245599ll8+OGHClTmdbr6HA4HbrjhBlx66aVYsWKFYvXFEnp9+4de3/6Lp9d3TIWBt99+GzfccANef/11vP76620eW7NmDS699FK88cYbePXVVyOuPgA4ePAgvvzyy7DXtXbtWkyaNAlvv/02Pv30UzidzjNuj4TaAKCurk6xN7HjTlffhg0bMGrUKCxfvjxm3iyURq9v/9Dr23/x9PqOqTCwe/dujBw5ElqtFiaTCY2Njb7H8vPzYbPZ4HA4oNPpIq4+AHjllVcwb948xeoSBAH9+/dHUVHRGbdHQm0A8PLLLyvy79Xa6err27cv3G43PB4P1Gq1ojXGCnp9B1YXvb67Lp5e3zEVBqxWK4xGIwBAr9fDZrP5HjMYDHjhhRcwb948XHjhhRFX344dO9CtWzckJiYqUpfBYDilrtNtj4TaysvLYbVa0adPn7DX1Nrp6lOr1VizZg3OP/98TJgwQckSYwa9vv2vi17f/omn17dK6QIC8cYbb2DdunW+n3fu3AmbzQaj0Qi73e57YQLAiy++iOeeew79+/fH9ddfj3PPPTfknyC6Ut+rr76KRx55BP/v//2/kNbUHoPBALvdDgCw2+0wmUxn3B4Jtf3vf//DTTfdhJ9++insNbV2uvrefPNN3HXXXTj33HOxZMkSlJaWolu3bkqWGnXo9R0c9Pr2Xzy9vqO6Z+Dqq6/GO++84/u65ZZbsGXLFjidTjQ0NMBsNvueq9frYTQaodFowBiDx+OJmPqsVisOHDiAW2+9FStXrsQ//vEPWK3WkNd33ODBg/Hzzz+Dc469e/f60vjptofT6WrYuXMnfv/73+PFF1/Eiy++iOLi4rDXdqb6jv+9CYIAk8mkyKeuaEev7+Cg13fw64vF13dMTUdcV1eHu+++G42Njbjttttwzjnn4NFHH8Utt9yCuro6PPjgg/B4PJg5cyZuuOGGiKovKSkJgHf07JgxYzB27Niw1eV0OnHXXXehoqICCxYsgN1ux9SpU9GjR48226+88sqw1dRRbXl5eQDgG2m8YMGCsNd2pvqSkpJw7733wul0YsiQIfjDH/6gSH2xhF7f/qHXd/Dri8XXd0yFAUIIIYR0XVRfJiCEEEJI4CgMEEIIIXGOwkAEOHLkiNIlEEIIiWMUBhT29ddfBzTY6ccff0R+fj4mT54MWZZPefyWW25Bfn5+mylQm5ub8cQTT+C8885DQUEBJk6ciHvuuQdHjx71PefDDz/E9OnTz3jsY8eOYdGiRXC73X7XfzqdOX5nfPLJJ3jkkUeCUBEhyvrwww+Rn5+Pyy67rN3H586di/z8fJSUlPi2VVVV4eGHH8b06dNRUFCAqVOn4qGHHkJNTY3vOc8++yyuuuqqMx57+/btuPnmm/2q+/h7VKi98MILity6GSsoDCisoaEBwRjD6XK5sGnTpjbbampq8Ouvv7bZVldXhwULFqC4uBgvvPACfvnlF3zyySdITEzEZZddhtLS0k4f84EHHsCSJUsiegauOXPmYM+ePfj++++VLoWQgCUkJGD37t04dOhQm+07d+485bVbXFyMOXPmQJZlvPXWW/j111+xfPlyNDQ04PLLL4fFYunUMV0uF+6//37cf//9Qfs9QuH666/He++9p8hMirGAwkAQfP3111i0aBHGjRuH4cOHY/Hixb6u//Y+4V511VV49tln8eOPP+Khhx5CWVkZCgoKUFlZCYfDgX/961+YMmUKRo8ejauuugo7duzosIY5c+bgo48+arNt5cqVOO+889pse/bZZ6HT6fDUU0+hT58+YIwhOTkZDz74IKZOnYr9+/d36nf+9ttvUVdXh4kTJ/ravfPOO3HPPfdg1KhRmDx5Mp544gnf8zv6vYqKinDVVVehoKDAdwJvbffu3bjqqqswevRozJw5E6+99povRFVWVuLGG2/EmDFjMHnyZCxZsgRVVVW+fRcvXtymFkI6cvzv7XjP2TPPPAPOOX788UdMmTIFd999N0aNGoUXX3wRsizjxRdfxDnnnIORI0di4cKF2LBhg6+tzz77DLNnz8bIkSNxwQUX4L///a/vsbfffhvnnHMORo0ahTlz5uD9998/Y11msxmTJ08+5bX+wQcfYPbs2W22/f3vf8ewYcPw8MMPIzs7GwCQlZWFf/3rXxg4cCAKCws79W/x/vvvo3v37sjNzQUAcM7xxhtv4LzzzsOoUaNwxRVXYNeuXb7nV1VV4ZZbbsFZZ52FGTNmnPIhZc+ePbj88stRUFCAiy66CM8//3yb98jNmzdj4cKFGDVqFGbPno2PP/7Y91hhYSGuvPJKjB49GtOmTcP999/vCzUajQbz58/H0qVLO/V7kZNwEpDy8nI+ZMgQ/tVXX3HOOa+rq+NXXHEFv+eeezjnnH/wwQd82rRpbfZZvHgxX7p0abuP33///XzOnDn8yJEj3Ol08tdee40XFBTw0tLSdo//ww8/8P79+/O9e/fyYcOG8aamJt9j559/Pt++fTvv378//+GHHzjnnE+ePJk/99xzHf5e7dXd2k033dSmnaVLl/L8/Hy+cuVK7vF4+Lfffsvz8/P5r7/+2uHv5XK5+IwZM/jDDz/MHQ4HP3DgAJ8yZYrv+BUVFXzkyJH8zTff5C6XixcWFvJzzz2Xv/POO5xzzu+77z7+xz/+kbtcLt7c3Myvu+46/re//c1Xm91u5yNGjOA7duzo8PcmpL6+no8ZM4Y/++yz3Ol08uLiYj558mT+zjvv+F5vzz33nO/vbenSpXzy5Ml8165d3O128zVr1vAhQ4bw7du3c7vdzocOHep7/e3evZuPGDGCb9++nR89epQPGTKEFxUVcc45X79+PR86dCivrKxst67jr8kvvviCT548mUuSxDnn3OFw8LFjx/KtW7fy/v3782PHjnGn08kHDBjAV65c2eHvu3TpUr548eLTPj5r1qw27bz55pt86tSpfO/evdzlcvH333+fjxo1ildXV3POOb/iiiv47bffzpubm3lZWRm/6KKLeP/+/TnnnDc3N/Nx48bxp59+mjudTr5v3z4+depU32v9+PvYZ599xj0eD9+6dSsfO3YsX79+Peec8yuvvJI/++yzXJZlXltbyy+88EL+6quv+morLS3lAwYM4DU1NR3+3qQt6hkIUEpKCtasWYPp06fDYrGgoqICycnJqKys7HJbTqcTq1evxt13341evXpBo9HgmmuuQd++fbF69eoz7jtgwAD06dMHa9euBQBs3boVoihi2LBhbZ5XV1eH9PT0LtfWmizL+Omnn3DWWWe12d67d2/MmzcPoihiypQpSE9Px5EjRzr8vX799VeUl5fjvvvug1arRb9+/XDdddf52v3444+Rm5uLK6+8Emq1Gnl5ebjhhhvw1ltvAQC0Wi22bt2KNWvWwGq14uWXX8af/vQn3/46nQ4DBgygSwWkU7755htotVrcfvvt0Gg06NmzJ/7f//t/mDp1qu85CxcuhFqthslkwgcffICbb74ZgwcPhkqlwqxZszB9+nTfanY6nQ4rVqzA999/j9zcXGzduhXDhg2DKIrgnGP58uXYunUrxo0bh23btiEjI+OM9U2ZMgUulwubN28G4O15GD58eJv9GhsbIctywK/1mpoaHDx4sM1r/a233sJvfvMbDBgwAGq1GgsXLkRubi4+/vhjlJaWYsuWLbjnnntgMpmQnZ2NJUuW+Pb9+uuvIYoi7rjjDmg0GuTn5+PGG2/0Pb58+XLMmDEDM2fOhCiKOOuss3DppZe2ea1v2LABn376KQRBwKpVq9q8V+Tk5CA9PT3sy0THAgoDAVKr1Vi9ejUmT56M2bNn48knn0Rtba1f4wAaGxvhdrvRvXv3Ntu7d++OkpISfPzxxygoKPB9te4+A7yzdK1cuRKAt9tw4cKFpxwjPT29TRd6a3V1dZAkqcM6GxoaYLfbT3nTOvmNR61WQ5blDn+vyspKJCcnt5lLvmfPnr7vS0tLsXv3bowaNcr39dhjj6GiogIA8Kc//QmzZs3CK6+8gilTpmDBggXYsmVLm2NlZWX5nk/ImVRXVyM7OxuMMd+2vn37Iisry/dz67/9mpoa9OjRo00b3bt3R2lpKXQ6Hd555x3Isoy7774bo0ePxv3334/Gxkbk5ORg2bJlKC0txS233IIxY8bgH//4B5xOJ1544YU2r/XWf89qtRpz584942s9KSkJarUa1dXV7f6OnX2PKisrAwBkZmb6tpWWluKxxx5r83rct28fysrKfB+CcnJyfM9v/VquqKhATk4OBOHEqaf1v11paSm++OKLNm0vW7YM5eXlAICnn34aw4cPx1NPPYVx48bhqquuOuVyR1ZWlu/5pPMoDARo3bp1ePPNN7Fs2TJ89913eOmllzBo0CDf44IgwOVytdmnvr6+3bbS0tKg1Wpx7NixNtuPHj2KjIwMzJ07F7/++qvva+7cuW2eN2fOHOzatQt79+7FV199dcrjADB9+nR8/vnnp5z0Oee48cYb8fDDD3f4Ox9/k+xs4Ono98rOzkZdXV2b+dpbn7izsrIwduxYbNmyxff11Vdf+d4M9+zZg8suuwyffPIJNm/ejJEjR7b5NAIAkiS1eQMi5HSOn0xa/31/+eWXba7Ttw4K3bp1O+Vv+9ixY8jIyIDFYkFVVRWeeOIJbN68Ge+++y527dqFF154AbW1tZAkCf/5z3/w448/4sUXX8TatWuxYsUK3HLLLW1e66NGjWrT/oIFC/Dll19i3759KCoqatNrAXgDw8SJE309ha25XC5cdNFFePHFFzv8tzj+mml9p1JWVhYeeeSRNq/Hjz/+GHfeeacvMLX+92j9Ws7JyUFZWVmbf9vjgeN42/Pnz2/T9meffeYbm7Fnzx7ccccd+Pzzz/H1118jNTUVDzzwQJuaPR4PRFHs8HcjbdG7Y4Cam5shCAJ0Oh0451i/fj0++ugj3+12ubm5qKmpwQ8//ADOOVatWtVmtKtWq4XdbofH44EgCLj44ovx5JNPori4GC6XC6+//joOHjx4yuCg9iQnJ2PatGm47777MHbsWKSkpJzynNtuuw2NjY246667fIt/VFZW4g9/+AMqKiradNmd6TgGg6HTl0I6+r0KCgrQp08fPPLII7Db7SguLsarr77q23/OnDnYtm0bPv74Y3g8Ht8ApUcffRSA95aiv/3tb7BYLDCbzdDr9UhOTm5TQ1VVVZtPK4ScztSpU+HxePDCCy/A5XLh6NGjvk/s7bnkkkvw4osvYvfu3ZAkCevWrcPXX3+N+fPnw2q14qabbsInn3wCzjkyMjIgCAKSk5NRVlaG66+/Ht9//z0EQfB9+j75b7c9+fn5yM3Nxb333os5c+a0e0fPfffdh61bt+Jvf/ub77V65MgRLFmyBEaj8bS3KLZ2/DXT+rV+6aWX4vnnn/e9j23YsAGzZ8/Gzz//jJycHEycOBH//Oc/0djYiOrqajz33HO+fadPnw7Oue/f9tChQ3jllVd8jy9cuBCrV6/Gxo0bIcsyjhw5gsWLF+PVV1+FIAh45JFH8PTTT8PpdCIlJQVarbbd1/rxAZOk8ygMBGj+/PkYP348Zs+ejbPPPhvPP/88rrnmGhw+fBgulwtDhw7FrbfeigceeABjxozBDz/80GaE/+jRo5GamorRo0dj//79uO+++zBx4kRce+21GDt2LNatW4dXXnml0yuKLViwAAcOHMDFF1/c7uMpKSlYsWIFEhMTce2116KgoAALFy6Ex+PBO++806ZL70wmTJiArVu3duq5AM74e4miiBdffBFVVVUYP348brzxRsyYMcO3b7du3fDyyy/j3Xffxfjx43HRRRehb9++vjDw17/+FbIsY8aMGRg9ejS2b9+OZ555xre/0+nE7t27MWnSpE7XS+KX2WzGK6+8gu+//x4TJ07EVVddhUWLFp325HndddfhyiuvxO9+9zuMGjUK//vf//Dkk09izJgxyMzMxNKlS/HSSy/hrLPOwoUXXoizzz4b1157LYYOHYo///nP+Mtf/oKCggJceeWVuOKKK3DBBRd0qs7jr/X2LgcC3ksbK1asQGNjIxYuXIiCggJcd911yMnJwVtvveVbPOlMUlJSMGjQoDav9WuvvRbz5s3DbbfdhoKCAvz973/Hn//8Z99r9oknnkBCQgKmTZuGiy++GOPHj/ftazAY8N///hdfffUVxowZg7vuugsTJkzwhZnhw4fjySefxJNPPonRo0dj8eLFmD59Ou6++24A3ssERUVFmDhxIsaPH4/m5mb87W9/87V/7NgxNDQ0YNy4cZ36NyQn0EJFxC/ffPMNHn/88Xa7ISPN6tWr8cYbb+C9995TuhRCos6bb76Jb7/9Fi+//HLAbdXX1+PQoUMYOXKkb9uyZcuwZs0aLF++POD2//e//2Hfvn146qmnAm4r3lDPAPHLtGnTkJiYiO+++07pUjr0xhtv4K677lK6DEKi0qWXXori4mIcPHgw4LYkScI111zje98oKSnB22+/jWnTpgXctsvlwooVK3DnnXcG3FY8op4B4rfi4mLce++9eOuttyJ2FsJVq1Zh27ZteOihh5QuhZCo9csvv+D555/HSy+9FHBbX375JZ555hmUlJTAbDZj/vz5WLJkCVQqVUDt/ve//4VGo+nUuCdyKgoDhBBCSJyjywSEEEJInKMwQAghhMQ5CgOEEEJInKMwQAghhMQ5CgOEEEJInKMwQAghhMQ5CgOEEEJInKMwQAghhMS5/w8QY8qKWUwpaQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0nUlEQVR4nO3dd3hUVfoH8O+5d/pMeg+dBELHSJPeFBUEAVFRsZe14Bb7Ftd1193VdW3orq7tZxcVRZBiRaVaQHpNQk3vZfrMvef3x4QhgYQk0+6U9/M8eUxm7j33DWbmfufcc89hnHMOQgghhMQsQekCCCGEEKIsCgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjKMwQAghhMQ4CgOEEEJIjFMpXQAhJLpJVgusRw7DWlTo/ZKtFsguFwBA0Gigik+AIbcfDDm5MPTNhb53HwgajcKVExI7GOecK10EISS6SHY76jZ8h6q1q2A5sN/zIGOAIACS1OY+TFSBS27PD4KAhBGjkDbzEiSMHAMmiqEpnJAYRWGAEBIwtuNHUfnZCtR88yVkux1gAsBl3xoTBECWoUpMRNpFlyBt1mxoUlIDWzAhBACFAUJIAMgOB0rfexvly5ae9dO/zwQBgkaD7jf/CmkXXwIm0HAnQgKJwgAhxC+NO37B0Wf/DWdVJRCCtxNj3gD0/t390PfsHfRjERIrKAwQQnzCJQknXn0JlSs+8Xbph4QgAGDodefdSJs5OzTHJCTKURgghHSZ7HLi8BP/QP3mDYrWkbVwEbKvvQGMMUXrICTSURgghHSJ7HKi8G+PoHHbzyG5LNCRjMuuQPebbqNAQIgfaBQOIaTTOOc4/K9/hE0QAICKjz9E2dJ3lS6DkIhGYYAQ0mnVn69G/aYNYRMETip95w2Y9+1VugxCIhaFAUJIp9hLinH8pReULqNtjOHwE49BslqVroSQiERhgBDSIS5JOPyvv4OH6o6BrpJlOGuqcfx//1G6EkIiEoUBQkiHqj5fDWvBocBPJhRIsoyarz5H0949SldCSMShMEAIOSsuyyj/+EOly+gcQUTFp8uUroKQiENhgBByVo3bfoazvEzpMjpHllC/eSMcFRVKV0JIRKEwQAg5q/Lly5pn/YsQjKFy1adKV0FIRKFJhwgh7XJWV2HXdQtDcqwatxsvVtSiQZIhMoZ5SXEYYzL41JZoNOKcD1fQRESEdJJK6QJI5OKcw1FZBXtpKWSHE9ztAlOpIWg10GVnQ5ueRm/GQSbJHHa3BKMmOC9l84F9QWm3LQIYFqUmordWgwa3hD8WV2K4QQedD70SksUCR2kJdN26B6FSQqIPhQHSaZLDgdpNW9C4ew+a9h+A+eBBuJvM7W6vijPBNGAA4gYOQPzQwUgZPw6CRhPCiqMfY8B7O0qQFadDbqoRfZIM0KoC16VvOXgAEMWQ3EWQpBKRpBIBAAkqESZRgEWWfQoDAGA5dIDCACGdRGGAdMhy+AjKlq9A2cpVkCwWMJUI7u745OBuMqP+561o2L4D3O2GaDIh69LZyJo3B8bevYNfeAwQGINRI6Kk0Y6SRjs2shr0TDQgN9WAnokGqAT/emYsB/b5HQRkzvHAiQqMMOpwVUqi9/FdVjv+XVaNuzKSz7gccNjuBOccKSrf3qKYKMJy8ABSpp7vT+mExAwKA6RdjXv2ovCpZ9G4e0+rT4edCQItcbcbACCZzShe+iGK330f8cOHIfee3yB+8KCA1x1r4jQqNDk8/08kDhyps+JInRUakaFPsgG5KUZkx+sgdPGSDeccloICv+sTGMOcxDi8WV2POYnxMIoCjjmceK68BlemJJwRBJokCS9W1uLW9CSfj8klCZYD+/0tnZCYQWGAnMFtseDIf/+Hkg8+OjWKPFDdxM3tNO7eg19uuAXdFl6OPnf8CiqDbwPFCGDSqoAmxxmPOyWOg1UWHKyywKAW0TfFgH4pRqQZNZ0ay8GdTnDnme36YnycAZ/UNeLzBjOmxBvwZFkNJsQZMCsxrtV2Ls7xTHkN5iTFob9O69cxXfV1fu1PSCyhMEBaqdm4CQf/9k8465rfSIM1/WxzuyUfLEPV1+uQ96c/IGX82OAcK8rFaTt+GVtdEvaUN2FPeRPitSrkphrRL8WIRL263X1kpzNgNYqMYXZiHD6sbcTPFhv6aNW4PjWx1Tacc/yvshaD9VpMjDP6fUzZFbj6CYl2FAYIAM8b8Ym33sXh5/8DCAyQQ3THqSzDWV2D3b+5Bzm/vRs9Fl0dmuNGIEnmMDvdaHK0/qqydO2k1+hw45eSBvxS0oBUowb9UozISTG0cUdCYP8GxscZ8HZNPTgE3JWRfMZli0N2J34w29BDo8ZWix0AcEd6Mnpq2w8sZ0U3TRPSaRQGCDjnKHr2eRS/+77ngVAFgVMFAACKnn0ezppa9P31XTF5S2J7J/smh4QmhxtWV+BH9FdbnKi2OLHleB2y43Xol2JAn2QjtCoBgsa/bvrTvVFdDwAwSzIEnPn/N0+vxTs5gRv9T3euENJ5FAZiHOccRc+1CAIKO/H2u4AgoO/iO6IuELR9spe83wfjZN8VpY12lDbaseFoLXom6pGbYgTXG8Bs/i8L/FFtA3ZY7Hi0Wzr+WVqN75osmJFgCkDV7VMlJAS1fUKiCYWBGFf2yacofic8gsBJJ958G/oe3ZE9d47SpXRJeyd7c/P3FoVP9p0lc+BYnQ2JOjXicnJh3bPLr/a+bbRgTb0Zf8hORS+tBhclmrCqvgnT4o1QBSnwMVGEaeDgoLRNSDSiMBDDrMeOo/CpZ5Uuo02FTz6FxBH5MPTooXQpXi1P9uaWn+qbH7M4I+Nk35EkvRpT+qYg3aTFif55sO7f6/PdJDssNrxRVYfFGSno13x3wIwEE1bXN2FjkxVT4v0fKNgWLkkw9ssLStuERCMKAzFKdrux7w8Pg4fp+vSyW8L+Pz6C/NdfhuDjxDNdFSsn+/YwAMOz4jGie6J3siJj/wE+B4EjDieWVNTiqpQEjDLpvY8bBAEXJpjwWX0TJsUZujz/QWcZ8wYEpV1CohEtVBSjjr78Go6+8pp38F646n37beh9y40BaUuSOSzOFtfqnW402WPnZH82LXsDWnJUVmD3DZF3h4dgMCD/wxVgkbTaIiEKop6BGORqasLxN98K+yAAAMffeAvdF14Blanj7uQ2T/aOU5/0LU6J7jY7TVu9AS1p0zNgGjoM5r17gjfnRKAJAtJmXExBgJAuoDAQg8pXfAbZ6VK6jE6RHQ6Uf7YK3a+6kk72AZaoU2Nqzpm9AafLnH85Cnf7N4gwpDhH+px5SldBSEShMBBjuCSh+L0PIqJX4KQT7y1FybgLsLO8iU72AdBRb8DpEkadB016BpyVFcEvzl+iiIRRY6DNzFK6EkIiCvWjxZjq9RvgqKxUuozO4xyOsnK4i49TEAiARJ0acwdnYkzPpE6vaMgEARnzFnjWSw53koTMeQuUroKQiEM9AzGmZv3GkKxPb+ccT1sbIQGQAUxTazFRo/OpLSaKkPfuAYZPDGiNkUqrEhCnUSFOq0KcVkScVgWTVoWvCqranTyyq70Bp0ubORvVX66F7djR8B07IAhInjQVcUOHK10JIRGHwkCMadi5K+hBAAA0AO4zxEPDGJyc41FLA/LVGphY1zujuCTBvXtXzIQBrSg0n+hbn+zjtCrEaVTQqNr+NzRqVGhyuM94vLNjA85GUKvR98E/Yd/i28DDMQwIAtSJSeh516+VroSQiERhIIa4LRbYThSH5FgCYzg5M7wLHDLgWTjGx55myc9Z8MLJyZO9qflE3/LLpFFB287JviNxWrFVGPC3N+B0+p690OPWO3D8xef9bivgZBl9H/wjVMbgTnFMSLSiMBBDmvYf9HvgoMw5/mJtwHCVBpdpDd7H97qd+I/NjJt1JoxQe2KAlct4ytqEClnCZVoDTH7c6iU2NUAFDrevaSKENKLg/UQfyJN9RzxLGTsAeHoDpuSkIMOP3oC2pF1yKRq2/YyGn38Mq0GoWQsX0eUBQvxAYSCGWA8f9gwC8+NNXGAMF2v0WGq34CKNDkYm4ITkxss2M+Zq9d4gAAAGJuBhYwIaZRkv2cwYodIg3sdAwADoXXY0qfUdbhtsbZ7sm6/hm7TBO9l3JE6jCnhvwOkYY8j5wyMoeOQPaNq9MyzGD6TNnovsa29QugxCIhqFgRgiWW2AIPg9ZmC0SoNVzIZ1TgcmqLV4wdaEMWotZmjaPlHHCwK6iSIKJDdGCD4uKysI0DltIQkDGpGd+iTf4kR/8kupk31HMuN0uHSwPuC9AacTNBr0+8vfUfSPRz09BArKmH85ut/8q6hb4ZKQUKMwEENkl9PTMeBnOyJjuFCjw6cOG7a7negpqLCwxSUDAGiUZagZg54x2DhHgeTGZLXvJynGGPR2K2BM9rP6yD3Zd6Rbgm93a/hC0GqR++e/4diLS1C9ZpXfPU5dO7gAcI4et96BjLmXheaYhEQ5CgMxhKlU/ieBZqPVWnzosIIDuEVvOmOxmTou4y2bBYDnkFPVWnQXff9z4+DQS85ObasWGOJ0Z57kT47O14gCfZIMACaK6L34d0gcMw7HnnsKrrrakAQCfe8+6PO7+2HI6Rf0YxESKygMxBBRpwvYbWFL7Z4TvZnLbc5c1UtU4WFjQkCOBQCQOYzwXN5QC6zNwXl0sldG4qgxiHvlTZS8/X+oXPFJQC5FnUEQwEQR3a6/GRmXzgcTxcC2T0iMozAQQ/Q9ugfkk9sKhxW7JRceNMTjWVsTNrocmOrjhEKdxjl6pZowdER3aOlkH3ZEvR49b7sTqdNnoGLlctR+9w24y+Xf5QNBAGQZosmE1AtnIv2SudBmZAS2cEIIAFrCOKY4a2uxecYsv9rY6LRjqcOKewzx6CuqsMZhwwaXA48ZEyAG+QQ9/pvPoU4IYG8DCRrJakHNt+tQtWYlbEcOex48eSdJe71Touh5rvktKW54PtJmzkbieeMgqNUhqJqQ2EU9AzFEk5wMTVoanFVVPu2/x+3E+w4rbtaZ0Lf5+v9UjQ5fOe34we3EeD8GCHZEm5lJQSCCiAYj0mfNRvqs2XA1NMB2uBDWopNfBZBsVshOJxgTwNRqqOLjYezXH4acftD3zYGhTw5Eg6HjAxFCAoLCQIxJGDYUVd9+1+X7w481zyUwX2vAuS3mEtAzhqkaLT532DBWpTljIGFAiAIShg8NfLskJNQJCVDnj0B8/gilSyGEtCMy76EiPks6b7RPE8X0ElVYEpeM6W2MDZijNeBvpsTgBAEAkGQkjR4VnLYJIYRQGIg1GRfNiLjuV9FkQvqFFyhdBiGERC0KAzFG1OuRfdm8U4O5wp0goNvl8yHqQjehDiGExBq6myAG2cvL8cOcy8JiXvkOCQLO+2w5dBnpndqccw5ILnCnA3DZmv9rB3d6vrzfu+yA0w6mM0IzcmaQfwlCYpOrrg6OqirITie4ywVBrYGg1ULbLRuqCOuhjHY0gDAGaUxa9Jh/MU58sja8A4EgoMeCSyCU7oTzhBtcdgOSG5AkcFnyfC+7wSU3IEueiW4kN7oyzaJ66OTg1U9IDJGdTtT99BPM+w/AfPAgLAcOwFVf3/bGjEGbkQHToIEw9euPuGFDET9sGM0foiDqGYgxUtUJOH5YAYBh7xvrYDlRHp6BQBCgSUnBqA/fBT+4EVJpQeCPIaqhm3ETWBBviSQk2lmPHUPFys9QsXo1JLMZTBQ9M5125tTSYu4JbWYmMufORfrMi6FJ9n8NEtI1FAZiiPvYHji3fQlwz8lfVhvxy+PvQXa6Fa6sbee88iIS888Bd7vg2PgReGN1QNsXew2BZvi0gLZJSKxo3LkLR198EU179nhni/QbYwBjSJk0Eb3vvBO67Gz/2ySdQmEgBnDO4dq7Ee6DZy43a7cx7FryMSCH0Z8BY+hx3SLk3H2n9yHZ2gjH+qWA0x6ww2gnL4SQ0LmxCIQQD7fZjKMvvoSKFSsCFwJOJ4pgoohet96K7MsXeBZZI0FFYSDKcbcLzq1rIJW0381ed6IJBe99HR6XCxhD8nljMOTpf50xBa1UfQLOLZ8GZmU8JkDVfzRUPQeC6eP8b4+QGFCzfj2Knvw3XA0NIXu/MOTmoN8f/gBT//4hOV6sojAQxbjNDMeW5ZDrKjrctmJfNY6tXB+6NenbwhiSRo3EkGeehKht+zq++/AOuPasD+RBIaT3hKrnYAiZfcAEWg2PkNNxznH8tddQ/Mab/i0+5QtRBGMMeY/+BSmTacBvsFAYiFJyfSUcm5eD25o6twNjKNvfiBPLvwxuYWeRPuN8DHj0z2ddlIZzDteOryGd2B/4AjR6qHoMgNhzMIQ4GsBECABwWUbRk0+i4rNVyhXRHEByHrgfmXPmKFdHFKMwEIXcpYVw/rQakFxd21GtRU2VFodffstzc16g16Rvw8l16Xvfdgt63ngdWCcmQ+KSG45NH4PXd9zj4SshKQtir0EQs/uBqTQd70BIFPIEgX+j4rPPlC7FK/ehB5FxySVKlxF1KAxEEc453AVb4dr9vc9tMGMC5L6TcPAfT6Jxz94AVte2+GFDkffnP8DYu3eX9uN2M+zfLwUc1uAUdpKohtitP1Q9B4ElZdJ90CSmFL/9No7972WlyzjD4GefQeLIkUqXEVUoDEQJLktw7fgG7iO7/GpHlZMP9bCpAICy5StQtOQ/kCyWwI0abm5HNBmR85u7kXXp7E71BrRFqi2Dc/PHIRvIxPRxELNyIWTnQqBgQKKc+cBB7LzttvAYWNySIECdmIhz33kHqnga/BsoFAaiAHfa4fhhJeSq4743whjUw6dBnZPf6mHJbkfVuu9QuuwTNO7aDYiib5cPmveLP2cYul02H6nTprQ7SLAr3Mf3w7XjK7/b6TKdEWJWLsTsXAjJWWAsQtZ6IKQTJLsdO264AfbSsvALAwAgCEidMgV5f31U6UqiBoWBCCeb6+HY9Am4udb3RlQaaMfMhpjZ56ybWY4eRcXqtWjYuRvmgwchWZq76AXB8ym5eZAP59z7BiIajYgbkIf4YUOReclMGHr19L3OdrgO/AD3oZ8C3m6naQ0Qs3I8vQYp3Xzu6SAkXBx+9lmUffyJsncXdUL/Rx5B2gXnK11GVKAwEME8UwuvBJw2n9tghnhox8+HEJ/apf0453BUVMB84BBspaWehUicLjCNGoJGA312NkwD+kObkRH07nTOOVy/fAmp5GBQj9MpGh3EzBxPj0Fqd7pVkUQcR0UFtl5+RXj2CJxGk56OkR996B2ITHxH0zpFKPexvXBu+8I7tbAvhORsaMdeCqYzdnlfxhh0mZnQZWb6fPxAYYxBfc50cHsT5JpSZYtx2iEd3wvp+F5ArYWY2dfTY5DWA0yklxsJf2WfLFe6hE5zVlaidvNmpEycqHQpEY96BiLM2aYW7gqxxwBoRlwUVSco7rTDseFDcEv9Gc8xUxIguTs/70KgqTQQM/p4egzSe0XVvzuJHpLdjp/nXArJGuS7dAJFEBA/bCiGvvCC0pVEPHpHiiCeqYXXQio55Fc76kHjoBowNupGwzONDprz5sCx4cMz1jBQD54IIb0n5KoTkI7vg1ReFNpuULcTUslBz6UMUQ0xo3dzMOgNpmp/kiVCQqnq8y8iJwgAgCyjccdOWAoKYeyXq3Q1EY3CQITwTC38KeS6ct8bEURoRl4MVY8BgSsszAjGRGhGz4Zz8yeA7LnrgRniIaT3BGMCxPReENN7gTtskIoPwH18H3hTTWiLlFyQSgs8yzKLKghpvTwDENO6g+lMoa2FkBZq1n8fsumGn2+ox0GXCwPVGtyVkOB7Q6KImo0bKAz4icJABOjy1MJt0RqgHTsXYkr0LwkqJmdBnX8BXNs+9/zca/AZt/4xrR6qnHyIfc8Br6+A+/g+z6d2dxdnbfSX5IZcXgS5vAguAMyYCCG1G4SUbhBTutEiSiRkOOdo2rsvZHcQnK83YKKOY5Pdz5VIZdlTN/ELhYEw5y4tgvOnVV2fWrgFFp8C7bj5EIx+pO8Io+rWH9zaCPeBH6DqMbjd7RhjYEmZ0CRlgg+e6PnEfnwf5FplBiJySz0kSz2kY3s94cCQ4A0HQkp3CAYKByQ4HKVlngnGQmSgRoMDTqf/DXEO89694JxH3aXPUKIwEKY8Uwtvg2v3d361I2T0hnbMbDC1/xP8RBpV7ggIpiQwnaFT2zOVGqqeg6DqOQhyUy2kkkOQygrBm/yYw8FP3NoA6XgDpOOeTz7MEN8cDLpBSO0OwRCvWG0kujTt9//Ttcw5/lRXi3yNFpebTl3y2uN04LmGBtwWH49RWp3fxzmdu6kJjoqKsLi7KVJRGAhDgZ5aOFYnwWGMQczK8WlfIS4ZwoDzoB5wnicYlBVCKi0Eb6wOcJVdw62NkKyN3lUbmT6uORh4AgIzJNCnI+ITa9FhMJUK3O32uQ2BMcwyGPCu2YyZBgOMgoDjbhf+29iIy4ymoASBk6xFRRQG/EBhIMwEZGphMKiHT4U699yA1RXLhLhkCHGjoe4/GrK53hMMygrB6yuVLg3c1gSp+ACk4gMAAKYztQgH3cGMFA5I50g23ycva+k8rQ4rLBZ8bbNhok6H5xoaMFarw0WGzvXQ+SpQ9ccqCgNhRDbXw7H5E/+6pTs5tTDxjWBKhNBvJNT9RkK2NkIqLYRcVujfXR4BxO3mU7cwAoDWCPFkr0F8KoS45Ji8ZETaxmUZ3FIPubEajLsCMnhQZAwzDUZ8bDFjm8OOXioVrjEF/y4ZORDjD2IYhYEwIVUXw7Flhf9TC4+bByEhLYCVkfYIhngIuecCued6PqGXFXnCgUKDD9vksHjGPrSYm4LpTWBxKRDiUsDikiHEp4CZkmm+gyjHnXbIjdXgjdWQG6o93zfVeG/B1cerPLcVBsB5Oi3eNzeBA/hVfAKENtp9qr4ex9wuODnHvTXVWByfgD5q3/8GBfr79QuFgTAQmKmFs6AdO9enqYWJ/5g+Dqq+50DV9xxwu8UTDMoKIVeXAAivST65zQxuM0OuPNbqcWaIbw4JyWDxzWHBlESzJUYYLrnBLQ2Qm2q8J37eWA1uN591P7UhcPP7v9vkOZaZc7Q3YunexMSAHQ8ABK0moO3FGnqVKyhgUwt3HwDNyAvBRErG4YDpjFD1GQZVn2HgDiuk8sOeHoPqYr8CX7BxayO4tRFyxZEWjzLPuIO4FE8PQlxyc0hIpEWYFMJlCdzWBG5tArc2nPr/1vxfOHybQVBrUIH7sjz5aT6xmLHT6cAfk5Lw7/p6rLfbMF0f3PECAKDL7hb0Y0QzCgMKCdTUwqqBY6EeOI4GiYUppjVA1WsIVL2GgDvtnmBQVgi58nhYB4NTOLil3nNdubzo1MNMADMlnrrUEJfi6VnQGQCNIWbvYAkEzjlgN3tP7md82cwIRm+TwNxgIgN3+972epsNX1qtuD8xCT1ValygN+BzqxWTdXqogvgexdRqGPr0Dlr7sYDCgAICNrXwiIug6jkwcIWRoGIanXceA+5yQKo4Crm6GHJNMbilQenyuobL4E21kNob7KrRg2kNni+dAUxrBE77mWkNgEYXc0GWcw44ba0+zbc+2TcqsnwwA4chKwWWE1U+7b/L4cA75ib8Kj4eOc3X/s/X6/GFzYotdjsm6vWBLLcVY79+YCo6nfmD/vVCLDBTC+ubpxambrFIxdRaqLrnAd3zAHgColRTArn5i5vrFK7QT04buNPW8boPTAC0J4ODsTkoeL6gNYDpjKd+VmkUDw6cc0ByA24nuNsJuJzgbkfzf52ex13N/235eMvnnXa/ZhQNpsTB/XwKA0ddLrzY2IjLjSaMaDGXgF4QMF2vxxqbFeN1ujYHEvqLiSLihw4JeLuxhpYwDiB38QGI3fLafcMKyNTCcSnQjp8HwZjocxsk/HG7xRMOqks8PQcRGg5+KTyBx95fg58PHkOD1YacrDRcNWUkfjN3GrTqLn4WEQRAED0BggmAIHjWnBCEVo+BnfZ4i+dZq8cYwETv90wQAc7B3S7A7TjzJN58ko+Myzu+sVlF7P/vh4r0TPhj4BOPI3n8eKXLiGjUMxAgsqUBzh9XQz2kEeq80a2e45zDXbgNrl3f+XWMWJ5aONYwnRGqbv2Bbv0BANxuhVxbAqm6uecg1Cst+uCbHQcw+5EXMWTIEPz2gYeQlJSEHTt24O9vvonvdxVg5V/ugCh2YWyBLJ9xkmrvkwx9wvGNPsWEiPrXYwyatDQknXee0pVEPBrlEyDuwzsBcLj2rIe7pMD7OJcluLZ/5XcQUPU9B9px8ykIxCimM0DM7gfNsCnQTb0GugtvgWbkTIh9hoPFpypd3hnckoTbl7yPCy+8ED/99BOMRiMKCgqwePFifPnll/h+TyHe+sa/u2hIENgbkTp5EiBGzp0i2VdeARZB9YYrukwQANztgm3t/wBn81Kcogq6yVeBGRPg+PGzM+7n7hqaWph0jDttkGtKmy8tFCu+hsK2guOYeN9T2LRpE9atW4eHH34YcXot1HojysrKMGPGDKS4G/DOAzcqWic5kzvrXOz63e+VLqNTBK0Wo1Z8ClUIZjiMdnSZIACkE/tPBQEAkNxwbF4OqDUBmFr4EoiZff0vkkQ1ptFDzMrxLszEnXbItaWQa8uaZ5qr9W/QahdZ7A4AwF//+lfs378f88adg4E9M/HER1/B6XQiNTUV9UXhMYUzAaBSQ4hPBYtPhab3AMQNHYqmffuAAMw7EDSMIeuyyygIBAiFAT9xzuEq2n7m43YzYG9jh06iqYWJP5hGBzGzb6sgyV0O8KZayE01kJtqwRs9/4Uj8GvYTxySi3/eeCk27TuM0T1TcG5uT/zprZX4zW9+C0mSsG7dOtwyfWTAj0s6xgwJYAmpEOJTvQGAGeJbDXzu96c/Ysd110MO1zAgCNB164YeN9+kdCVRgy4T+EmqOgHH+g8C2iZNLUxCiTvtzVPXNoeEphrITTWte7v88NLqDbjn5WW48sor8dZbb+Gqq67CV2tXY/t//ojslISAHIO0QaOHYEz0nvhZfKpnFklV56btrVi1CoWPPxHkIn0kihj+32dh7DcATBO8ZZFjCfUM+Mld+EtA26OphUmoMY3OM2fFafNWcIcVcmONtzeBN9VAbqzx3F7XCZxzPPL2Kvz7469xzz334LHHHsOiRYuwfPlyfPD7mykI+Eul8XyiNyRAMMSDGeObf44H08f7vfBU+qxZqNm4EXWbt4TdrYY5v7oe4tEtcNYXQTN2Hs14GQDUM+AH2doI+9pXEKhbcWhqYRLuPFPlWpovNZwMCrWA3QLusHpXwAOA5z5dh9//3wo8/fTTuO666zBv3jxs2LABD1w+A9efPwZ9MsPvLoiwIqrA9HGebv3mk/ypk35CSO4scjU0YPddd8F2ojg8xg8whp7zz0dq3wTvfA9i33xohk1Rtq4oQGHAD87d6+E+9JP/DdHUwiQKcM49k/PYLThaeAh5oyfinnvuwX333YdJkybhwIEDrbb/+/Vz8Lv50xWqNgwwoflkH9/qS2j+tA+tPiw+GDjr6rDnrsWwFRcr20PAGPounIHEbmdePlXnz4Cq12AFiooeFAZ8xCUXbGv+5/91VZpamEShxx9/HP/85z9RVlYGq9WKkpKSVs//5S9/QUV5GTZ+vgrcYQV3NPcs2K3NP7d4LEBjFwKOCYBa47kGr9J4Pqmrmn9Wn/ZflRZMfXI7DaDWg+mNnpkSI4CroQH77n8A5gMHlFk3QSUg76bZMMS3M5+AIEIzfgHElOzQFhZFaMyAj6TjB/x+k6KphUm0MpvNYIzh1ltvbfP53bt3Y/DgwRASOr5UwGUJcFjBJbfnRMQ9MxFyfup7nPY9b+OxM/fhnssanHseb77Ecerkrjnt5K5t9TgEMSw+uYeCOiEBQ55fgsNPPY3KNWs8UziHIhSIItRGHQbcPAtq0d3+drIE19Y1EKYuogGFPqKeAR9wzmH/5i3wBt9W9wIAIb03tOfR1MIkOpWXl+N3v/sdysvbnksgNTUVDz/8MIYNGxbiyoi/6rdtQ+E/H4ejosITqIKBMYBzpI4fhZ6T8wCntVO7CVm50Iy+JGZCWiBRGPBBIG4nFHsNgWbEhfRHSwiJOJLDgeI33kDxe++f6iEIxKmkucdBNBqRu/gWGFlFp+9eOUk9fBpUfYb7X0uMoTDgA8cPKyC1WH/AV+ohE6HOGxOAigghJPScdXWoWvs5yj79FI7SUs+aBr7cddC8X9zgwcicOxcpU6dAEBkc65d2fRZXQYR2ytUQwnDNjnAWNWHAVV8H25Ei2I4UwX7iGGS7DbLTAQgiBI0Gqvh46Hv1hb5vLvS9+kDQ+nZdKdC3E2rOm+NZnY4QQiIU5xyNO3ei6osv0bRnD6zHj3tDARNFT7d/i21PPidotTDk5CDhnOFInzkTht69W7Urm+vh+P49wOXoUj0sLgXayVf5PddCLInYMMA5h2X/HtR8vRaN27dCamzwPHFy8onTB7eIIiDJALhn2cvMLCSNn4Lk6RdCm57Z6eMG7HZCb10q6CYvhJDU+RoIISScyS4XrEeOwFJQAEdlJbjTBdntgqDWQNBooOvRHaZ+/aDr3r3DCYOkymNwblne5csQYu9h0JwTw7eudlHEhQF3YwNqv/sK1V+shrO8FBDEVhOddEnz9SnTsHykzpiFhFFjwVTt32ARsNsJAQAMQlI6hNQeELNzIaZ2D0CbhBASfdyFv8C15/su76cZdQnEbv2CUFH0iZgwwGUZNV+uRulbr3q6/wNZdnMo0HbrgZ6L74Wxf9uT/7iP7Ibzly98OwYTICRnQUjtDjG1O4SUbp5blAghhJwV5xzOHz+DXF7UtR3VWminLoJgiA9OYVEkIsKA/cQxHP/PU7AWHAzugZpDQerFc5B1zY0Q9QbvU12+nVBUQUjO9pz407pDSM6i9QYIIcRH3GmDfd07gN3cpf2ElGxoJlxBd251IKzDAOccVSuXofSd1wEw3y8HdBVjUCUkos/9D8M4wDPFZYe3E6o0EFK6QUzrDiG1O4SkTDChndmyCCGEdJlUXQznxmXo6gBu9fDpUPWhOS3OJmzDAJckFL/+Imo+/0yZApgAJgrofe8fkTB63Jm3E2p0EFM8n/rF1O5gCem0chYhhASZa/9muA/+2LWd1Fropl9Py8KfRViGAS7LOP7CU6j7/mtlC2nuVur9m3uhbToMISXbe82fxadStxMhhIQYl2U4N30Euaa0S/t5loe/OEhVRb6wCwOcc5x46TnUfr1W6VJOEQX0ue/PSBg9VulKCCEk5snWRji+fafL8w9oxl8GMa1nkKqKbGHXr1234dvwCgIAIMk4tuQJOGt8X4uAEEJIYAiGeGjyL+jyfq4d33gWvCJnCKsw4KyqRPH/nlO6jDbJDgeOP/cvz2pohBBCFCVm94PYe2iX9uGWergLtgaposgWNmGAyzKOLfkXZGfXFqUIGVmGee8uVK9ZoXQlhBBCAKgHTwJ0pi7t4z70E2RzXZAqilxhEwZqv/kcln27Q7NGth9K33oVzupKpcsghJCYx9QaaIZO6dI+TocDuz59E42NjcEpKkKFRRjgsoyK5R8qXUancC6jeq1CtzsSQghpRcjOhZDRp1Pbmm0OjLv3aeRf+zt075aN/fv3B7m6yBEWYaBpxzY4K8qULqNzZBnVX6yCZA/E+gSEEEL8wRiDethUzzo1Z9FgseGaJ9/EsdomfPnllwATsGbN6hBVGf7CIgxUfvbxqdUGI4Bss6Ju/TdKl0EIIQSAYEyAasB57T7/+bZ9OPfXT+Cnw2VYsWIFLrjgAoiiCKkmQj6EhoDiZ2BHRTnMu7aHdKyAQ5Zx18ETeLus1rcGGEP1mpWBLYoQQojPVLkjwOKS23zu5mffxZARY7Bz507Ex59atEiqPE63GjZTPAxY9u8J+TGXVzUgV6/1vQHOYT9xFJLVEriiCCGE+IwJItTDp7f5XKPVgeHDh+OPf/wjrrvuulNPuB2QjuwKUYXhTfEwYC06BIihW9CnzOFCicOF/Di9321Ziwo63ogQQkhIiKndIfYcfMbjEwb1xb///W+8++67OH3SXVfBz+DuML2lPYQUDwOWA/sAyb/VCGXO8btDxXi3vHW3/44mG67eexRbGk59gn+nvBZXZST5dTwAgCDAWhjkJZUJIYR0iXrwBOC05eKXP3wrNjz5O9wxa8KZOziscB/eEZriwpiiYUB2uWA7dtjvdgTGMDctEV/VNsHcHCyO2px49kQlrspIwtgEz0pVPzdakaVVI1urPltznWY9dCAg7RBCCAkMpjVAlZPf6jGdRo0RuT2gVana3MddsBW8i+scRBtFw4BkbvK7V+CkCYlGxIki1tY0ocblxhPHKjAx0YTZqQnebQqsDmyut2DxwRN4p7wO39Q1YVllvW8HlGVaq4AQQsKQKncEoOrCuDCXA+7CX4JXUARoOyaFSCCnHhYZw5y0BCytqMNPDRb00WtwY1brkaVXZybh6kzPJYLv6ppwwu7CgvREn48pO2I7SRJCSDhiGh1U/UbAvX9zp/dxF/0CVc45YBr/x5NFImXHDMiB6RU4aWKCEQ6ZgwP4dY80CIwFtP0zhPnUyYQQEqtUffOBrpzY3c6Y7h1QNAwwjR+397Xh9bIaAECTJHf4i01JisO1WW3fk9pZQoDrJ4QQEhhMrYGq36hWj/XKSMHRo0cxYsQINDU1oXdGSqvn3Ud2gbtdoSwzbCgaBkSDIWBtfVBRh1+abHisbxYkzvFtnTlgbbdHNHZttSxCCCGho+o7HNAZvT9fO20U/nr1RTg3TYenbpmLS0afdhuiyw7pxL4QVxkeFB0zIOoNUKelw1Xl3yqA39Q2YVV1Ix7uk4Heeg1mpsRjZXUDpifHQRWsSwWiCENu/+C0TQghxG9MVEHdfwxcu9YBAAxaDe6eM/ms+7iLtkPsPQys+dzB7Ra4j+0Bt1uhGT416DUrRfF5BkwDBvu1LsH2JiteL6vB4u6p6G/QAQAuSomHTeLYUB/E3gFJgqFfXvDaJ4QQ4jex12AwfXzHGzbj5jrIFUcg15bBuXUt7F+86hmIKEX3xESKhwF9bn/gtBmhOuuwzYFnTlThmoxkjEk41RVkEAVclBKHFVUNkH1suzMMOdQzQAgh4YyJKqj6jejSPs6fV8Oxfimk4gMAbx4oro7uMWKKXiYAAGNuns9hoK9ei7cG9WrzuSsyknBFIGYabIdoioM6LT1o7RNCCAkMsedguPZvBjo7sVAbixexKA8DivcMGPoNgDolTekyukYQkDzlfO81JUIIIeGLqdRQ9R7qZxsUBoKKiSLS5swHIunEKstIvfhSpasghBDSSaq+5wDMj1Me9QwEX8rUC8HUGqXL6BxBRPzI86DNzFK6EkIIIZ3E3S4wQ+cHEp6OaXQBrCb8KD5mAABEoxEp51+E6s8/C/9Z/WQJaZfMU7oKQgghHeBchlx+BO7DOyBXHferLaaPC1BV4SkswgAAZFx2FerWr4NkMfs8oDDoBAHxI0bDNGS40pUQQgg5C6m0EK4934NbGwPSHjMmdLxRBAuLywQAoE5MQs/F94VvEGAMotGEnnf8jgYOEkJImBPSeoLFpwamMbWW7iYIpYRR5yH5/Iv9G+QRLJyj1933Q5WQqHQlhBBCOsDUGmjGzIaq30j/2zJEd68AEGZhAAC63fAraDIy/JqVMBhSLp6D+BGjlS6DEEJIJzEmQD14ItTnXggIou/tGH0feBgpwuuMC0DU65H76L+gTkrx639ewDCGxHGT0f3G25WuhBBCiA9UPQdBM/4yQOXbXWsC9QwoQ5Oajn6PPQVNapriPQSJ46eg128fBBPDIJgQQgjxiZjSDdrxl/k0XwBdJlCQJj0D/Z9YAn2fnNBPSNR8vPRLL0ev3zxAQYAQQqKAkJQJ7fgFQBfnDIiFywSM83Advu8hu5yoXP4hype9B3AAshTcAzIGVWIyetzxGySMGBPcYxFCCAk5ubEajk0fAw5rp7bXTr8eQlxykKtSVtiHgZPsxcdx/L/PwHpwn+eTe6DLFgSAc6TNmovMhddD1OsD2z4hhJCwITfVwrFpGWC3dLitbvbdYGLYTMsTFBETBgCAyzLqvv8GlZ99DPuxI54Bhv72FDAGMIaEkech47KFMOTmBaZYQgghYU0218G5aRm4zdz+Rjoj9BfdFrqiFBJRYaAl6+EC1Hy1FrXffw3ucDSf1IWOw4EoApJnG3VaOlJnXILkqRdAnRTdXUCEEELOJFsa4Ny4DNzW9kyFQnIWtJMWhriq0IvYMHCSZLfDWngQtiNFsB0phLXwEBylJQBvvcYB02ih790Xhtz+0PfJgb5PLvS9+oCF2XwGhBBCQku2NnoCgbXhjOfEHoOgGXGhAlWFVsSHgbZwWQZ3uSC7nGCCAKbWgKlUNI0wIYSQNnGbGY6NH4Fb6ls9rh46BaqcfGWKCqGo/FjMBAGCVguVKQ6iwQhBraYgQAghpF1Mb4Jm3HxAa2j9eGKGQhWFVlSGAUIIIaSrBGMCtOddCojq5kcYhIQ0RWsKFQoDhBBCSDMhKROaUbMAxsDiksFU6o53igLRfeMkIYQQ0kViZh+oh0+HXFMCLsuQnU7ITicgyxA0GghaTdTNOxCVAwgJIYSQruKyDEvBIVgKCmApLIDtaCGaDhSAO52tN2QMuuxsmAYMhCEnF8Z+/RA3aBBEvaHthiMAhQFCCCExzVFVharP16Ji1Uo4q6oAAExUgUvus+948tZ0WQbTaJB2/gVInzUbpgEDIm7QOoUBQgghMalp314Uv/M26n/8wTNxnSx3vNPZNE9qp+/VG1mXX4H0iy6OmLlsKAwQQgiJKW6LBcdffQUVK5Z7Pt37GwJO17x+jmngQOTc/xAMvXsHtv0goDBACCEkZtRu2ojDT/8broaGwIeA04kiAKD7NYvQ7epFEDSa4B7PDxQGCCGERD0uyzj20n9Rtuyj4Kx8ezaMwZibi4GPPwl1UlLojtsFFAYIIYRENdntRuE/HkPNd98qV4QgQJuejkFPPwtdZpZydbSDwgAhhJCoxSU3Dv31UdRu3BDa3oC2iCI0yckY8twL0GZmKlvLaSJjmCMhhBDigyPPLwmPIAAAkgRnbS323vtbSDar0tW0QmGAEEJIVKrdvAkVK1eERxA4SZLgqKjA0RdeULqSVigMEEIIiTquujoUPfG4Z7BguJFlVK5djdpNm5SuxIvCACGEkKjCOUfhvx6H22IOr16BlhhD4RP/gLO2RulKAFAYIIQQEmUat//imVUw2PMI+INzSFYrSt59R+lKAFAYIIQQEmVKP/oQEESly+iYLKNyzWq4zWalK6EwQAghJHrYSoqbewUkpUvpFNnpROXaNUqXQWGAEEJI9Chf/smp1QQjAecoW/YRuKRseFEpenRCCCEkQDjnqPrqy5CNFdhhs2NpYxM4B2bGGTHZaPCpHWdVJcz79yNuyJAAV9h5ERSfCCGEkPY5KsohNTWF5FgS53i/oQkPpibjL+kpWNNkgdnXEMIYzAcPBLbALqIwQAghJCqYD+wP2bEOO13oplYhSRShFwQM02mxx+7wrTHGQlp7WygMEEIIiQrm/QfARP/uIpA5x0MVVfiwoXUPw267AzeXlOMnmx0AUC/LSGpxrCRRRJ3kY8+ALKNxz26faw4ECgOEEEKigqXgoN8D8QTGcInJhHUWKyzN3f7HXS78p7YeC+LjMFqvAwAEeiojZ0UFJKty6xVQGCCEEBIV3AEaLzDWoEOcIOArsxW1koRnquswzqDHxXFG7zZJgoC6FsGjTpKQKPp3SlUyDNDdBIQQQqKC7PDxmv1pRMYwM86IZQ1N2Gqzo5dGjUUJca226atRo8TlRp0kQccYdtkduDTO5NdxA1W/LygMEEIIiQosgLMOjtXr8F59IwDgjqQECKcteCQyhoUJcXi8qhYcnlsLTX72DMDf/f1AYYAQQkhUELTagLX1doMnCDTJMlg7Kx/m63XIbx5DEAiCJnD1d/nYih2ZEEIICSBtRkZAZh/8uLEJu+wOPJyeAhkc6y3Bv5bPVCqo4uODfpz2UBgghBASFUwDB/ndxvcWK74wW/CblCT0VKtxgcmItWYL3EFeCtmQkwtBpVxnPYUBQgghUcGUN8CvqYh32R14u74RtyUlIlejAQBcYDTAJnNsttoCVeYZmCgibvDgoLXfGRQGCCGERAVj//4+73vU6ZlL4IqEOIxsMQ5ALwg432TA6iYL5CD1DnBJgmnAwKC03VmM8yD3fRBCCCEhsuOmG2A7dhSIsFNb/ntLocvMUuz41DNACCEkamTNmx9ZQUAQkDBqlKJBAKAwQAghJIqkXjADosG3pYQVIcvIXnCl0lVQGCCEEBI9RJ0OGXPmBuQWw6BjDLpu3ZEwcqTSlVAYIIQQEl0y584Di4QwwDmyr7q63UmNQikC/rUIIYSQztOmp6PX7XcoXcbZCSLizzkH6RddrHQlACgMEEIIiUKZc+cjPv9cIIDrFQQMYxC0WuT+/o9h04MRHlUQQgghAcQEAbkP/QGiTguEQTd8K5wj5777oU1LV7oSLwoDhBBCopI2LQ39/vRnTxgIo0CQMWcuUqdOU7qMVigMEEIIiVpJ541F/z//xfNDGASCtItnos+vf6N0GWegGQgJIYREvbotm3HwL38GlyS/1i/wR9Zll6PXHXeGzTiBligMEEIIiQlN+/bi4CN/hqu2JnSzFIoiGIBet9+JrMsWhOaYPqAwQAghJGZINitOvP46yj5Z5rlsEORegrghQ5Bz34PQ9+wZ1OP4i8IAIYSQmGM+sB+FTzzuWdRIEAIbChiDoNOh9x13IX3mrLC8LHA6CgOEEEJiEpfcqNuyBRWfrUT91p/96ykQRUCSoOvRA5lz5iL1ghlQx8cHtuAgojBACCEk5jkqK1G5dg1qvv0GtuJibyhgogpclk6NMWDM05PAuXcbdXIyEkePQcasS2AaNDgsphfuKgoDhBBCSAuy0wHrkSOwFBTAUlQId2MjZKcTXJIgaDQQ9XoYeveBsV8/GHJyoU5IULpkv1EYIIQQQmJc+I9qIIQQQkhQURgghBBCYhyFAUIIISTGqZQuIJC45AZvqgU314K73YDsbh75qQLT6MDiU8AMCRE50pMQQggJlogOA1xyQy4vglRdDF5fCW5pANByPOTJk36Lx0QVWFwKhMR0iJl9wZKyKBwQQgiJaRF5N4HcWA3pxH5IxQcByeX59N/VX6N5H2aIh9hzMMRueWBafXAKJoQQQsJYRIUBuakWrj3fg9eV+xYAzoYxiD0HQ9V/DJhaE7h2CSGEkDAXEWGAS264i36BVPRL8wPBKpkBGh3UQydDzOgTpGMQQggh4SXsw4BcVw7Xzm/ArY0hPa6Q0QfqoVPANLqQHpcQQggJtbAOA1L5Ybi2f9XcExDiMhkD08dBPXo2BEPkLDZBCCGEdFXYhgF38QG4d32rbBGMAWotNOfNhWBKUrYWQgghJEjCctIhqeSQ8kEA8PRIuBxw/rACsqVB6WoIIYSQoAi7MCA3VMG1a53SZZzCOeCyw7VtLbjkVroaQgghJODCKgxwyQ3Xjq+ULuNMnIOb6+A+9JPSlRBCCCEBF1ZhwH3wB88sguE5jAHSkZ2QqouVLoMQQggJqLAJA1JNCaSju5UuowPMc5uj26V0IYQQQkjAhE0YcBds9YzeD2sccFg90yATQgghUSIswoDcVANeWxq2lwdOJx3ZiTC9I5MQQgjpsrAIA+6juyOgV+AUbmuEXHVc6TIIIYSQgFA8DHCnHXLxwYjpFQAAMAb3kV1KV0EIIYQEhErpAuS6MoDLITveufc+h9zMFADAoB4Z+MvCC7reCOfgtaXgsgQmiAGukBBCCAkt5cNAfWXglyM+izi9Fh/ev8j/hrgM3lQLlpDmf1uEEEKIghS/TCDXV0TWJYIW5PoKpUsghBBC/KZoGOCcg9dX+t2OLHNc+s838cxnG1o9vunAUYy4bwm+3HHI+5jZ7sTCp97D9Us+xNZCPyYQYgy8ocr3/QkhhJAwoWzPgNMOSP5P4CMIDDdPH4WPNu1Go9UOADhYUoX731iDX88ajxnn9Pduu/bhm7D03qvxp8un4U/vfQGz3eHbQTmH3FTrd+2EEEKI0pQNA3LgFv6ZOWIAEo06vLd+Byrqm7D4lRW4ZOQAXD91RKvt0hNMAIB+Wanom5GMY5X1vh+UFi4ihBASBRQdQMhlKWBtqUQBN04fiedXb8bXuwoxsHs6Hpw/pdU2jVY7dBoVNCoVKuqbcLiiFt1TEnw/aADrJ4QQQpSiaBgI9G15s0YMwJOffg8OjsevvRii0Lrj43BFLf720TcQGAMD8MC8yUgw6nw/oEi3FRJCCIl8yt5aKKoD2tw/P/4WAFBvtkEUzpzR8Jw+2fj4gWsDd8AA108IIYQoQdkxA2qt5ysAXlizGRv2HcXbv1kISeZY/uPegLTbLiZAiEsJ7jEIIYSQEFA0DDDGICRm+N3OJz/swdvf/YIlt8xBXrc0XDM5H2+s2wqXFMRr+lyGOz4de8obIcmROU8CIYQQAijdMwB4woAfixRt3H8E/1j2Lf6+6CIM650FALhq4nCY7U6s2nogUGW26YCciA1Ha/HejmLsq2yiUEAIISQiKR4GWGK6zzMQ7jtRgfveWIPfzZ6A84fleh836bS4auI5eP2bnyHJwVn3wC2osbPWM0eC2Snh+8M1+GBXCQ5VmyFH6IyKhBBCYhPjXNkzF3e74Pjmjci6Z58x7E/Jxw9y25c4kvRqjOmRhN5JerAIWpqZEEJIbFK+Z0ClhthjkF+XCkLNzRl2sfbHOtTZXPj8UCXWHKxEg93/GRYJIYSQYFI8DACA2HtoRC1WVJjQH9ZOjE08Xm/D0p0l+OlEHdxBulxBCCGE+CsswoBgiIeQ3jsiegckCNil6d3p7WUObCtpwNKdpThaZw1eYYQQQoiPwiIMAICq30gg7DsHGArjcmGRuh5amhxurD1YiTUHK9BIlw4IIYSEkbAJA0JCmicQhDEZDLsNuR1veBbH6mxYurMUW4vr6dIBIYSQsBA2YQAAxJxzwRLSwvZywZGe49Hk8r/7QuIcPxfX44OdpTjWiUsHkiRh165dKC4u9vvYhBBCyOnCKgwwQYD6nAsAFlZlAYyBJWaAp/aAWgxcUGl0uLHmYCU+P1iJJkfbt1ZyzrFgwQIMHz4cPXv2xLvvvhuw4xNCCCFAmIUBABCMCVCPuDh8AgFjYPp4qHLyMTjVgEXndEd+djxUbSyE5KsjdVZ8sLMEh6rMrR53uVxYvHgxVqxYgbfeegtjx47FihUrAnZcQgghBAjDMAAAYloPqEdc1BwIFLxk0BwE1KMvgXRkB1xbPoG452uMdB/Dop5AfpoWgcoELpnjm6JqrCusgkuSsWvXLgwfPhyvvPIKXnrpJVx77bUwmUxQeI4oQgghUUjZJYzPQkzvBTZmDpxbV3tmJwz5SZCBxadBM2oWmEYHITMX8om94OY6cHMdRADnAjhHH49yFocDDj3KWTxsTOPXUQ9WW1BuduD1Bx8AYww//fQTJEmC3W4PyG9FCCGEnC5swwAACMlZ0IxfANeub8HrykN0VAaAQ+w9FKq80WCiGgAgZuVCLt53RigRbI3IRiOym39ugA7lLA7lQjzKWTzMrOtLNDfY3ThSVo2BffrgzTffxH/+8x9UVVX5+XsRQgghbQvrMAAAgjERmvPmQireD/e+zYAc3F4CZkqEetg0CInprR/X6iGk9oBcdfys+yfAjgRuR57kOXmboUEZi28OB3FohK5Td0sMGDUeq19f4vsvQgghhHSS4gsVdQV3WOHavxlyaSECN0ORpycAKg1UOedC7DMMTBDb3FJurIZ759d+Hc0KtafnoDkg1EHfZjjgnKPi2GEc3bsDbz12H+rr63HFFVcgPj4eH330kV81EEIIIS2Ffc9AS0xrgOac88EHjoNUfBDS8b3gtibPybRLmebkyZeDpWRB1XMwhPQ+YGLbIcC7V1wKmCkJ3Fzn8+9ggAt9eS368lpABuxQYavYAweF1gsfMcaQ2TsHpYcPtno8YpIbIYSQiBFRYeAkpjVAlZMPse85kGtLIVcXgzdWQW6oApwdDLQzxENIzIAQnwohow8EY0Lnj8sYhOz+kA796OdvcEoT06KQpXZ6+9JGO8wON0zaiPxfRwiJYpxzcM4hyzK4LHv+28YHNSYIEAQBAmNgggDGGC33rrCIPqMwxiCmdIOY0s37GHdYIZvrALcLkCVPr4Eggml0YHHJ3gGBvhLSekI6sgNwOfysHrBAg6/FPEjs7D0SLdldEj7cXYqL+qcjO17ndw2EEOIPzjm4LMPtdkPu5BTrXJYhyTJaLv4qqlQQRRGCEJZ3vEe9iA4DbWFaA0StIXjtCyKEzBzIJ/b51Y4LAr5S5cHqw62IDreMz/aXY1pOKvqlmvyqgxBCfME5hyRJkNzugMx/IrndkNxuMMagUqkgiCL1FoQQRTAfiFm5fq+fUGjogxpm7HC7tO69AQBjxozBpk2bkN6jDwDP0shfF1Zje2kDTURECAkpSZLgsNvhdrkC/v7DOYfL5YLT4eh0TwPxX0TdTRBO3Ac2d3ib4VmJKhxJG45va9QdDgrc8f2XKNr5ExLTMjFu9hXQm+JbPT8kIw7jeydDoBRNCAkizjlcTmdIT9IqlQqiSkW9BEFGYcBHgbjNEGCwdBuKVfVxMDuljjc/i95Jepyfmwa1SJ09hJDAkyUJTqdTkWMzxqDRaikQBBGdOXx08jZD/3AYS3bhClM5cpL8Gwx4tM6GlfvLYXP5FyoIIeR0koJBAPD0SDjsdrpsEEQUBnx08jbDgLRVUYSprgOY0jMOoh/Jt9LsxPK9ZWiwuwJSFyGESJIEl4JBoCUaRxA8FAb8IKT1BNRdX3ugLbyuHLllP2FB/3gk6X2//bHB7sYne8pQ3kQLGxFC/BNOQeAkp8NBg6aDgMKAH07eZhgo3NoA08HvML+XGgPTfb9l0O6W8dn+ChyptQasNkJIbDk5WDAcOZ1OCgQBRmHAT4G4zbAVlwPY8x0mmiyY2DsZvrbsljk+P1SJvRVNgauNEBIzwjUIAM2TFkk0PiqQKAz4iWkNEFJ6BLZRLkM6uAUDHcdxYb80qATfw8b6IzXYW9F41m1o0CEhpCWpC7MJKsXtcoV9jZGEwkAACN3OHEjIUrpD6DHIr3al43vQo2on5uSlQafy/X/V+iO12NdGDwHnHD8X12Pj0Vp/yiSERJGTk/5EgkipMxJQGAiA028zZKZkqPLOg6r3MIj9xwDM939mueo4ko9swvy8JCTofJ89+vsjNa0CAeccW47XYWtxPY7XWyHJdP2NEIKI6n4/uRgS8R+FgQBodZuhRg/V4IlgoufELWb0gWroFEDV9TUITuJNNdDv/xbz+hiQYfL97oXvj9Rgf2UTOOdYf6QGO8s8lw+cEkcZ3X1ASMzjnENyu5Uuo0vcEVZvuKIZCAOEyxJc29ZANXAChDYmI+K2Jrj2rgdsfgzoE1VA/7H4pkaFo3U2n5vJjNOivKn1qotDM+MwoXeK77URQiJeON5K2BlanY5mJ/QThYEA4i4H2FnmHeAuJ9wHNoHXV/hxFAahbz62OFOwJ4B3Cpg0Ihbld6cXFCExLJST+rz99tv4ZPlyAJ6F2B584AGf339UajVUqqhbhDek6DJBAJ0tCHie10A1eLKfcxNwyId/wVjpCMb2SPCjndbMTgk11sj7REAICZxQBYHa2los/eADLH3/fSz76CPs37cPu3bt8rk9GjfgPwoDIcYEAWLuSIh9zvGrHbmsEIPrduGCPgk+z0VwuuIGGjdASKwKdSexJElwOBxwu91wud1ITk72uS0KA/6jMKAAxhjE7gOgGjQREHzv2uJ1ZehV/AMu6mUMSCAopUGEhMSsQJxQZVnGpXPn4plnn231+KbNmzFi5Eh8+eWXAIDk5GRcd911uOjii3H+BRfgvDFj0KOHH/O1cE4zEvqJwoCChJRuUA2fDmj0PrfBrQ3IPrYRM7uJfgeCskYHZHpBERKTeADCgCAIuPmmm/DRRx+hsdFzt9LBgwdx//3349d3340ZM2YAABobG7F+/XqsXbMGX335JXbu3Ilt27b5dWzqHfAPhQGFCaYkqPNngJl87yKDy4HMY1swJ83pVyBwSjJqrTSJByGxKFCfrGfOnInExES89957qKiowOK778Yls2bh+uuv927zww8/oGePHkhISIBOp8PEiRP9GjNA/EdhIAwwjR6qYdPAUrr73giXkVr6C+Yn1IL58aIubaRLBYQQ36lUKtx444147/33cdfixRg4cCAefPDBVttkZmZix86dcDgckCQJW7duRe/evf07MPVq+oXCQJhgogqqgeMh9BjoVzuJ1YcwlRdB5L51mdG4AUKIv2bNnAm73Q7OOR5//HGIotjq+WHDhmHihAm4cuFCLLj8cnTv0QNTpkxRplgCgOYZCEtSxRFIBT8DPp7QAaCCmfC1mAc7U3dpP51KwA0jetB8A4TEGJfLFbDZBx9++GF88eWXiIuLw5rVq6HV+j5zamepNZozQgfpPOoZCEOBmMI4g5sxx70Hidzapf3sbhl1Nho3QEisCVT8f+E//8GGjRvx9ltvQZIkLG+eWCjY6OOLfygMhCkhIR3qcy4A9HE+txEHB2a796KbXN+l/WidAkJiC+cczgAMxv/kk0/w9ttvY8lzzyEvLw/XXH013njzzZCsLsgEOp35g/71whjTx0E9/AKwhHSf29BAwgzpAAZK5Z3ep7TR0fFGhJCI55RkHKwyY82BCmzwcynzjRs34h///Cf+/ve/Y9iwYQCAq666CmazGatWrw5Eue1ijNGlTT9RGAhzTK2BasgUCJl9fW5DADBOPorzpKOdutOgrNFOE3gQEsVqrU78eLwOn+4pw7biejTY3aixulBn92354n379uG+++/H7377W5w/fbr3cZPJhKuuugqvv/56UJdGpl4B/9EAwgjBOYdcchDSkR1+tXOCJeJbMRcudvaZD68+pxsSdF0bfEgICV9umeN4nRUF1ZZ21yHpk6hDfqYxxJX5jxYq8h+FgQgj15TAfWALIPs+6rcWenylGgAza3+E79ScVAxIM/l8DEJIeGi0u1BYbcHhWguc0tnf7kXGMDM3EWoxsj5p0xLG/qMwEIFkcx3ce9cDTpvPbdigxldif1QJbQ9QHJ4Vj3G9/JgVkRCiGJlzlDTYUVBtRnlT18YADc8wIidJF6TKAk8URag1vt95RTwoDEQo7rDBvW8DuNn3QT8yBGwQ+6JQSD3juW7xOswZlOlPiYSQELM6JRTWmFFUY4HN5dvtAfFaFab3jo+YT9oarRYCjRnwG11kiVBM65nC2H3wB/CaYp/aECBjslSIAfHAN/Y02NyncmGN1QnO+RlvCJxzcHM9pJoySLVlkKpLITfWgEtuQJYAQQQTVRDiUyGmZkFMyYaYkgVmTIiYNxdCIgnnHOVNDhRUm1HSYIe/n+4aHW7U2NxINYT/mCFBECgIBAj1DEQ4zjmkY7sgn9jvX0OpPbEvbgC2l5thd3s+UVx3bncYNZ68KDVUw3lwG1yHtoE7micyYkLzfOBt/QkxgDHvLIpMZ4Sm/wio80ZAjE/xr1ZCCBxuCYdrrCioscDsCMzMgSf1TNBhZFb4DySkXoHAoTAQJaSKw5AKtvo1hTGLTwXPG4fdNU7sKG3EBTkpyKwrgvPAT5DKjzaf3P34c2neX8zsDc3AMVD3GQzG6IVMSGdxzlFtdaKgyoLj9VbIQXr3Fhgws38qNCx8Tw90B0FgURiIInJDJdz7NgLutm8b6hSdEerhF8DeUIe6H7+EsaLA/xBwupOhIK079BPnQUzKCFzbhEQhlyTjaPNtgfUhmi58WFY8chPC81KBIAhQazR06TGAKAxEGW5rgmvvesDW5NP+LK0XpKYmOHZvAMD86mno+GCeXgHt8EnQDp8MpgrPNx5ClFJvc6Gg2owjtVa4g9UNcBqtKKBvigG5qSYY1QKcjvCbkZRuJQw8CgNRiLuccO/fCN5Q2bUdjYlwFO2D3FiHtscBBI8QnwLjRddDiKPbGUlsk2SOE/U2FFSbUWXxo5evi1KNGvRLNaJnogGicOpEK0kSXM7Q1dERGicQHBQGohSXZUhFWyGXH+7cDmod7EX7wR224PYGtIcJYBodjBfdADE1O/THJ0RhZocbhdUWFNVa4HCH5jWoEhh6JxvQL8WIJEP79+qHQyBgjEGt0VAQCBIKA1Gs01MYCyrYjxWA262BHRvQVYwBKjVMM2+hQEBigsw5ShvtKKi2oKwxdKuFJurU6JdqRO9kQ6dnG5RlWbFLBowxaLRaujQQRBQGYsDZpzBmcJSdgGxuUDYIeMthgEoD09w76RZEErVsLglFNRYUVltgdQVvAZ+WBAb0TDSgX6oRqUbfBt9xzuF2uYK66NDpVGo1RFGkIBBkFAZiRHtTGLuazHCXH1fm0kB7mAAxJRPG2b8CE0SlqyEkIDjnqDQ7UFBtwYl6W8hG5Rg1IvqlmtA32QCdOjCvJ1mW4XI6g7q6qSAIUKvVtCJhiFAYiCGeKYzXg5vrPD+r9LDv+1nhqtqnzZ8G3bnTlC6DEL843TKO1FpQUGNBoz2wkwO1hwHITtChX6oJWXHB6V7nnEOSJEhud0BDgSAIEFUqCIJAvQEhRGEgxnDJ7ZnC2G6Fbft6pcvpAINx9m1QpfdQuhBCuqzW6kRBtRlH62yQQnRboE4lICfFiNxUo3f20FCQZRmS2+3X5QOVSgVRpaIAoBAKAzFIlmVYPlkCubEmPMYJtIcxCAlpMM2/m94gSEi1tS5HZ7hlGcfqPLcF1lpDMzkQAGSYtOiXakT3RD0EBV8rnHPvlyzL4LLs+dnzJMAYGDwDAgVBAGteW4Be38qjuRxjkFR2GHJDtdJldIxzyPWVkMqOQJXdV+lqSIw4WNmEOJ0a2fGdX8a30e5CQbUFh2stcEmhCdhqkaFvsqcXIEEXHhN2Mca8J3ZRpPE+kYTCQAxy7tnUvMhQGA0abA8T4NizicIACYkT9TZsK2lA9wRdh2FA5hzF9TYUVFtQYQ7dLXfJBjX6pZrQK0kPFQ2uIwFCYSDGSA3VcBcXKF1G53EZ7hMHITfWQoin2QlJ8FRbHNh8tBYAUNJgh8XpbvO6u8XpRlGNBUXVFthCNDmQyBh6J+uRm2pCylkmByLEVxQGYoyrYHvIegVK6i14bO3PqLXaITCG1xdNh96XQU1MgLPgF+hGnB/4IgkB0ORw4/vDNZCax9BwAIXVFgzPTvD8zDnKmhwoqDajtMEestsC47Uq9Es1ok+yERoV9QKQ4KEwEGPcFcdCdnngr2t+wu0ThyC/RxoabE6ofX0z4zLcFccDWxxRhGS3wXb8OGSbFbLT6RkkqtZAFRcHXY+eENShv/btcEv4rqj6jCmAi2os6J9mwpFaKwqrzTA7QzPRDgPQI1GPfqlGpJto1j0SGhQGYgjnMqTqkpAcq6i6ASpRQH6PNABAgt6/rk2putjnEd5EOdbDRWjY9jMshQWwHDoIR1lp+xuLIvQ9esLYPw/G3H5IHDMW2ozMoNYnyRzrD9egyXHm/f92t4xP95SFrBfAoBaRm2pETooR+gBNDkRIZ9GthTFEqq+E+eMlfrUhc44rX/sCk3KzcfeUYd7Htxwpx70fb8RfLxmD8wf0wHcFJVi1+6hn1rUmG6bldceNYwf6dWzTgt9CTEj1qw0SfJLNhprv1qFy1UpYiwqAk4Pc5E72SImiZ1vOEX/uSKTPvASJ542DoArsZxfOOTYdrcXxelvHGwdRVrwO/VKNyI7XKXpbIIlt1DMQQ6Qq/3sFBMZw/XkD8NTX23H9eQMQr9PgUGU9/rBiC+6cNBTnD/BMEOSWZOworsa7N1yAJIMWv/loAwZlJWNM7wzf668uoTAQxiSLBcXvvIGq1asgOx2edSaAzocAb0OnuuMbd/yCxl+2QhUfj6zLFyJj3oKAhYIdpQ2KBQGtSkBO822BJi29DRPl0YiUGMLtllNv0H64aFBPJOi1+GBbASqarLhn2UZcPLgXFo3O826THmfAoKwkZMQboFGJGNc3C4cq6n0/KGPgNovftZPgqNuyCbtuuQ4VK5Z7ggAQmAmtmoOEu7ERJ157GXvvug3mQwf9bvZQlRn7K81+t9NVaUYNxvVKxtzBWTinWwIFARI26C8xhnC3C57hSf69SasEAdeNycN/1+/Bt4dKkJeRiHun57faZlBWEmotDjTanTBp1dheXIV5w/2ZK4CBS6Gb0Y10jrO2FsdeeBZ1mzd6gmaQrzraThzHvt/ciYy5l6H79TdB1HV+YqCTihts2FZcH/ji2qESGPokG9Av1YREfXhMDkTI6SgMEJ9cNKgXnlm3A5xzPDb7PIhC6x4HlSDgzklD8Kv3vgUHMKZ3BibmZitTLAkK2/FjOPD7++Cq8yx8FZKprZt7Cio+/RhNe3Yh77EnoE5I6PTuNRYnNh2tDcmgwES9Gv1SjeidZIBapE5YEt4oDMQQplLD316Bk578+hcAQL3NCUFo+9LDuL5ZGNc3KyDHAziYSJ+qwoX54AEc/P19kOz2ro8JCATOYS0qxL7f3ImB/34WmtS0DncxO9z4/nB1UBcNEhjQM9GAfmlGpBo0dPcLiRgUV2MI0xkC8untpQ17sKmoDK8tmg5JlrFy15EAVNcBzj31E8VZCg7hwEP3KhcETpJlOKoqsf++38JZU3PWTR1uGd8VVcMepBkDTRoR+dkJmDskC+N6JyPNSPMDkMhCYSCGiKnd/G7j052H8e7Ph/DUZRPQPz0RC0f2x9s/HYRbCv5JIRD1E/+46utx8I8PQHY4lA0CJ0kSHJWVOPTnP0B2nzlXAOCZS2DDkWo0tjGXgD8YgO4JOkzNScXsQZkYmBEHnYrmByCRicJADBES0gDR9ytDmw+X4cmvt+Ovl4zG0OwUAMAV5+bC4nBhzd5jgSqzbSo1hISU4B6DnBXnHEeeeRJuszk8gsBJsgRrUSFK33/njKc45/jhWC0qzc6AHU6vEjAkMw6XDs7EpL6pyIrXUS8AiXgUBmIIEwSfP13vL6/D71dswd2Th2Fq/+7ex01aNa44Nxdv/nggqNdixbTuYIz+XJVU/cVa1P+4JbyCgBdH6Xtvw7x/X6tHd5Y14lgA5xLom2zApUOyMCwrAQZf1tkgJEzRDIQxxv7zF3Ds3hQZyxefxARoh02EbuQFSlcSsxzlZdh1243gzsB9wg44QYAmNQ1DX34dok6Pgmozfj5RH9BDxOtUmDUgg3oCSNShj1oxRt3v3MgKAgDAZaj75Xe8HQma0g/eB5dCs1CPz2QZzsoKVH/1JUoabNga4CAAAI12NyrNjoC3S4jSKAzEGDExDWJ2jmcZ40jABKi696NpiBXkamxA9ddftJomOJyVrFqJohoLkvRqGDUiVO3c+uqrgmqaCZNEH7roFYO0Q8bDWlqkdBmdw2VohoxXuoqYVrV2NXg7I/XDkfvYEQyrKULiqDHexySZwynJcLg9X57vJc/Pkgxn8+Pe75v/29Y11BP1NthcEq0sSKIKhYEYpOqeCyE+GXJTXWhmjfMVYxDiU6DKzlG6kpjFJQkVn34S3n8npxMElH+yrFUYEAUGvSB26QTOOYdL4rC7pTOChJ3CAIkyFAZiEGMC9BPmwbLmNaVLOTvOoZ8wlwZrKchSWABXXW1IjlXmdOGFqrpTP7tcuDMtGSON+q41JMto3LEdkt3u09oFJzHGoFExaFQRckmNED/QX3mMUmX1gWboBKXLOCvt8ElQZfZWuoyYZjl0MCArXXZGlkaNv3dLx9+7pePhrFRomYAheq1vjXEZ1qLCwBZISBSjMBDDdCPOh5CYHn6DCZkAITkT2vxpSlcS8ywHDwBC6P8+frHaMVivhc7XYzMGy8H9gS2KkCgWZmcBEkpMVMEw7UpAFEP26a9DjAGiCoapV4D5MVsiCYymfXv8votA5hwPFFdgaW1Dq8d3We244UgJfrScOSnQjxYbxnT18kBLjMF88IDv+xMSYygMxDgxKQPGi24EBJXygaA5CBgvvhFiYrqytRBwSYKjtNTvdgTGMDvBhG8aLbA0r2FxzOHC85W1uDw5/oyTvk2WUWB3Yrje9+v9kOkyASFdQWGAQJXRE8aLbwRUGuUuGTAGqLUwXnwTVOk9lKmBtCI7nQjUktfjTAbEiQK+aDSj1i3hqYpqjDcZMCsh7oxtt1nsGKrXQuPn/ACS3e7X/oTEEgoDBIAnEJjm/ArMEKdADwEDMybANPtXFATCiOwK3NTDImO4JCEOXzWa8e/yavTWanBdSkKb2/5osWGMyY9LBM14AOsnJNpRGCBeYmI64i77NTSDx3keCHYoaO6F0Awdj7j5v4aYmBbc45EuEQI8ZmOcSQ8H5+AA7kxLgtDG35dVlnHY4cQwfy4RNGMqtd9tEBIraIQWaYWptdCPuRjqvsNg2/AJ5LoKeFZuD+SkM572hKR0GCbOh5iaHcC2SaAwrY+39bXjzRrPAMImWYaAtoOmQRDwn15ZATmeoNEEpB1CYgH1DJA2qdK6wTT3Tugnzjt1svZ3PEHz/mJqNvQT58N06R0UBMKYoFJBnZwckLaW1TVip9WOR7LSIXPge3OQ5/dnDPoePYN7DEKiCPUMkHYxQYSm/who+o+AVFsO58GtcBZsB1yOkxucfQXEls+rtdD0Pxea/iMhJmcEv3gSEKZBQ1C3eSMg+77S5XdNFqxtMOP3manopVXjwgQTVtebMTXOCFWwLkUxBuOAgcFpm5AoRGGAdIqYnAn92EugGzMTcmMNpJpSSDXlkKpLIDfWAJIbXJbABBEQVRDiUyCmdoOYkgUxJQtCfAqYApPXEP+Y8gZ4woCPdlrteLO6HnemJyNX5+m2nxFvxJqGJmwyWzE5zhioUluTZRj7DwhO24REIQoDpEuYIHiWQU5MA3KGK10OCTJj/wE+9woccTjxfGUtFiYnYFSLuQT0goAZ8Sasqm/CRJOhzYGEgWDKywtKu4REI8Z5JC1HRggJJcluw/aFl0GOpHv2GYO+dx8MffFVpSshJGJQvy0hpF2iTo+0i2cpsj6BzzhH5rwFSldBSESJoFc4IUQJGXPm+TWAMNTEuDikTKFFrgjpCgoDhJCz0mVlI3HMWEAQlS6lY4KAjDnzaI4BQrqIwgAhpEPZC68BZP9WLww6xiBotMi4ZI7SlRAScSgMEEI6ZBo4CFlXLFR+Zcuz4Rx9fnMP1EmBmSiJkFhCYYAQ0indrr0R+l69w3MwoSAgefJUpEydrnQlhESkMHxVE0LCkaBWI+ehP4Xf5FGCAHVCInov/q3SlRASscLsVU0ICWeG3n3Q976HwudygSBA0GjQ7y+PQRUXp3Q1hEQsCgOEkC5JmTLtVCBQMhQIAgS1Gnn/eBKmPJp6mBB/0AyEhBCf1G3ZhMK/Pwouy6Gfh0AQoTKZkPfPJ2HMyQ3tsQmJQhQGCCE+Mx/Yj6LHH4OjohwI4VuJadBg5DzwR2gzM0N2TEKiGYUBQohfZKcTpe+/g9IP3gPAgjcfgSBA0GjR81d3IO3CmeE3kJGQCEZhgBASENajR3Dkuadg2b8PEEVAClAoEARAlpE0YRJ63XE3NCkpgWmXEOJFYYAQEjCcc1gKDqFq7WrUrPsKssPhPZl3iSACsgRVfALSLp6FtAsvhi67W3CKJoRQGCCEBIdks6H2+29Rv+1nWA4egLOywvMEYwATvDcicM5PhQVBgK5bdxjzBiB53AQkjD4PgkqlzC9ASAyhMEAICQnJaoX1cBFsx45AslohO53N6wlooIqLh6FvDvS9etMiQ4QogMIAIYQQEuNoOC4hhBAS4ygMEEIIITGOwgAhhBAS4ygMEEIIITGOwgAhhBAS4ygMEEIIITGOwgAhhBAS4ygMEEIIITGOwgAhhBAS4ygMEEIIITGOwgAhhBAS4ygMEEIIITGOwgAhhBAS4ygMEEIIITGOwgAhhBAS41RKF9CSJv8mCCoNmCCCCSJE9anvmSCcek4UIag0ELzPiWc8xwQRgsDABAZRFMBO+14QGASRebc563OMQVQJEAUGUWDQNH+v8v4snnpOPLWdqsW2YlvfMwaBMYgMUIuC93uVKEBk8PwsMKgF1sb3nufVguD9XmQMjAECAxhDc/sAAyAKDALg+V0EeL8XGCCylt972mCcA1wGk91Aq+9lz5fc/nOMy4AknfpedgOyBC7LgNsJLkmALHsec7vAZcnzvcsFnPz+5LYnt3M5T+0jS5BdbnBJBpdlyE43ZMmzD5dkyC43ZOnU97z5e8nlBm+xneR0t/heApc5ZIk3/9y8v8w9z0kcXOKQJRmSS25uk0NySc37nNpP5hwS53DKHBLHad+f/rPnexme7yWO5udOff8SP6ro6zJQ6PVNr296fYfv65t6BgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXEUBgghhJAYR2GAEEIIiXU8SjkcDr5kyRLucDiULuUM4Vwb51SfP8K5tmgSzv/O4Vwb51SfP8K5Nn9Fbc+A0+nECy+8AKfTqXQpZwjn2gCqzx/hXFs0Ced/53CuDaD6/BHOtfkrasMAIYQQQjqHwgAhhBAS4ygMEEIIITEuasOARqPB4sWLodFolC7lDOFcG0D1+SOca4sm4fzvHM61AVSfP8K5Nn8xzjlXughCCCGEKCdqewYIIYQQ0jkUBgghhJAYR2GAEEIIiXEUBgghhJAYF1VhoK6uDtdddx0WLlyI7777rtVzVVVVWLRoES6//HJ8//33YVffSQ899BB+/PHHkNbldDpxxx13YOHChfjwww87fDwcajvp+eefxyeffKJAZR7t1We323HzzTfjiiuuwLJlyxSrL5rQ69s39Pr2XSy9vqMqDLz33nu4+eab8eabb+LNN99s9dzq1atxxRVX4K233sLrr78edvUBQGFhIb7++uuQ17VmzRpMnDgR7733Hj7//HM4HI6zPh4OtQFAbW2tYm9iJ7VX34YNGzBy5EgsXbo0at4slEavb9/Q69t3sfT6jqowsHfvXowYMQJarRYmkwkNDQ3e5/Ly8mC1WmG326HT6cKuPgB47bXXMHfuXMXqEgQB/fv3R1FR0VkfD4faAODVV19V5N+rpfbq69u3L1wuF9xuN9RqtaI1Rgt6fftXF72+uy6WXt9RFQYsFguMRiMAQK/Xw2q1ep8zGAx46aWXMHfuXFxyySVhV9+uXbvQrVs3JCQkKFKXwWA4o672Hg+H2srKymCxWNCnT5+Q19RSe/Wp1WqsXr0aF110EcaPH69kiVGDXt++10Wvb9/E0utbpXQB/njrrbewdu1a78+7d++G1WqF0WiEzWbzvjAB4OWXX8YLL7yA/v3746abbsIFF1wQ9E8QXanv9ddfx2OPPYb/+7//C2pNbTEYDLDZbAAAm80Gk8l01sfDobb//e9/uPXWW/HTTz+FvKaW2qvvnXfewT333IMLLrgAixcvRklJCbp166ZkqRGHXt+BQa9v38XS6zuiewauu+46vP/++96v22+/HVu3boXD4UB9fT3i4+O92+r1ehiNRmg0GjDG4Ha7w6Y+i8WCQ4cO4Y477sDy5cvxj3/8AxaLJej1nTR48GD8/PPP4Jxj//793jTe3uOh1F4Nu3fvxu9//3u8/PLLePnll3Hs2LGQ13a2+k7+vQmCAJPJpMinrkhHr+/AoNd34OuLxtd3VE1HXFtbi3vvvRcNDQ248847cf755+Pxxx/H7bffjtraWjz88MNwu92YMWMGbr755rCqLzExEYBn9Ozo0aMxZsyYkNXlcDhwzz33oLy8HPPnz4fNZsOUKVPQo0ePVo9fc801Iaupo9pyc3MBwDvSeP78+SGv7Wz1JSYm4v7774fD4cCQIUPwhz/8QZH6ogm9vn1Dr+/A1xeNr++oCgOEEEII6bqIvkxACCGEEP9RGCCEEEJiHIWBMHD06FGlSyCEEBLDKAwobN26dX4Ndvrxxx+Rl5eHSZMmQZblM56//fbbkZeX12oK1KamJjz11FO48MILkZ+fjwkTJuC+++7D8ePHvdt88sknmDZt2lmPfeLECSxcuBAul8vn+tvTmeN3xmeffYbHHnssABURoqxPPvkEeXl5uPLKK9t8fs6cOcjLy0NxcbH3scrKSjz66KOYNm0a8vPzMWXKFDzyyCOorq72bvP888/j2muvPeuxd+7cidtuu82nuk++RwXbSy+9pMitm9GCwoDC6uvrEYgxnE6nE5s2bWr1WHV1NbZv397qsdraWsyfPx/Hjh3DSy+9hF9++QWfffYZEhIScOWVV6KkpKTTx3zooYewePHisJ6Ba/bs2di3bx+2bNmidCmE+C0uLg579+7F4cOHWz2+e/fuM167x44dw+zZsyHLMt59911s374dS5cuRX19Pa666iqYzeZOHdPpdOLBBx/Egw8+GLDfIxhuuukmfPjhh4rMpBgNKAwEwLp167Bw4UKMHTsWw4cPx6JFi7xd/219wr322mvx/PPP48cff8QjjzyC0tJS5Ofno6KiAna7Hf/6178wefJkjBo1Ctdeey127drVYQ2zZ8/Gp59+2uqx5cuX48ILL2z12PPPPw+dTodnnnkGffr0AWMMSUlJePjhhzFlyhQcPHiwU7/zd999h9raWkyYMMHb7q9//Wvcd999GDlyJCZNmoSnnnrKu31Hv1dRURGuvfZa5Ofne0/gLe3duxfXXnstRo0ahRkzZuCNN97whqiKigrccsstGD16NCZNmoTFixejsrLSu++iRYta1UJIR07+vZ3sOXvuuefAOcePP/6IyZMn495778XIkSPx8ssvQ5ZlvPzyyzj//PMxYsQILFiwABs2bPC29cUXX2DWrFkYMWIELr74Yvz3v//1Pvfee+/h/PPPx8iRIzF79mx89NFHZ60rPj4ekyZNOuO1/vHHH2PWrFmtHvv73/+OYcOG4dFHH0VWVhYAIDMzE//6178wcOBAFBQUdOrf4qOPPkL37t2Rk5MDAOCc46233sKFF16IkSNH4uqrr8aePXu821dWVuL222/Hueeei+nTp5/xIWXfvn246qqrkJ+fj0svvRQvvvhiq/fIzZs3Y8GCBRg5ciRmzZqFlStXep8rKCjANddcg1GjRmHq1Kl48MEHvaFGo9Fg3rx5WLJkSad+L3IaTvxSVlbGhwwZwr/55hvOOee1tbX86quv5vfddx/nnPOPP/6YT506tdU+ixYt4kuWLGnz+QcffJDPnj2bHz16lDscDv7GG2/w/Px8XlJS0ubxf/jhB96/f3++f/9+PmzYMN7Y2Oh97qKLLuI7d+7k/fv35z/88APnnPNJkybxF154ocPfq626W7r11ltbtbNkyRKel5fHly9fzt1uN//uu+94Xl4e3759e4e/l9Pp5NOnT+ePPvoot9vt/NChQ3zy5Mne45eXl/MRI0bwd955hzudTl5QUMAvuOAC/v7773POOX/ggQf4H//4R+50OnlTUxO/8cYb+d/+9jdvbTabjZ9zzjl8165dHf7ehNTV1fHRo0fz559/njscDn7s2DE+adIk/v7773tfby+88IL3723JkiV80qRJfM+ePdzlcvHVq1fzIUOG8J07d3KbzcaHDh3qff3t3buXn3POOXznzp38+PHjfMiQIbyoqIhzzvn69ev50KFDeUVFRZt1nXxNfvXVV3zSpElckiTOOed2u52PGTOGb9u2jffv35+fOHGCOxwOPmDAAL58+fIOf98lS5bwRYsWtfv8zJkzW7Xzzjvv8ClTpvD9+/dzp9PJP/roIz5y5EheVVXFOef86quv5nfddRdvamripaWl/NJLL+X9+/fnnHPe1NTEx44dy5999lnucDj4gQMH+JQpU7yv9ZPvY1988QV3u91827ZtfMyYMXz9+vWcc86vueYa/vzzz3NZlnlNTQ2/5JJL+Ouvv+6traSkhA8YMIBXV1d3+HuT1qhnwE/JyclYvXo1pk2bBrPZjPLyciQlJaGioqLLbTkcDqxatQr33nsvevXqBY1Gg+uvvx59+/bFqlWrzrrvgAED0KdPH6xZswYAsG3bNoiiiGHDhrXarra2FmlpaV2urSVZlvHTTz/h3HPPbfV47969MXfuXIiiiMmTJyMtLQ1Hjx7t8Pfavn07ysrK8MADD0Cr1aJfv3648cYbve2uXLkSOTk5uOaaa6BWq5Gbm4ubb74Z7777LgBAq9Vi27ZtWL16NSwWC1599VX86U9/8u6v0+kwYMAAulRAOuXbb7+FVqvFXXfdBY1Gg549e+L//u//MGXKFO82CxYsgFqthslkwscff4zbbrsNgwcPhkqlwsyZMzFt2jTvanY6nQ7Lli3Dli1bkJOTg23btmHYsGEQRRGccyxduhTbtm3D2LFjsWPHDqSnp5+1vsmTJ8PpdGLz5s0APD0Pw4cPb7VfQ0MDZFn2+7VeXV2NwsLCVq/1d999F7/61a8wYMAAqNVqLFiwADk5OVi5ciVKSkqwdetW3HfffTCZTMjKysLixYu9+65btw6iKOLuu++GRqNBXl4ebrnlFu/zS5cuxfTp0zFjxgyIoohzzz0XV1xxRavX+oYNG/D5559DEASsWLGi1XtFdnY20tLSQr5MdDSgMOAntVqNVatWYdKkSZg1axaefvpp1NTU+DQOoKGhAS6XC927d2/1ePfu3VFcXIyVK1ciPz/f+9Wy+wzwzNK1fPlyAJ5uwwULFpxxjLS0tFZd6C3V1tZCkqQO66yvr4fNZjvjTev0Nx61Wg1Zljv8vSoqKpCUlNRqLvmePXt6vy8pKcHevXsxcuRI79cTTzyB8vJyAMCf/vQnzJw5E6+99homT56M+fPnY+vWra2OlZmZ6d2ekLOpqqpCVlYWGGPex/r27YvMzEzvzy3/9qurq9GjR49WbXTv3h0lJSXQ6XR4//33Icsy7r33XowaNQoPPvggGhoakJ2djbfffhslJSW4/fbbMXr0aPzjH/+Aw+HASy+91Oq13vLvWa1WY86cOWd9rScmJkKtVqOqqqrN37Gz71GlpaUAgIyMDO9jJSUleOKJJ1q9Hg8cOIDS0lLvh6Ds7Gzv9i1fy+Xl5cjOzoYgnDr1tPy3KykpwVdffdWq7bfffhtlZWUAgGeffRbDhw/HM888g7Fjx+Laa68943JHZmamd3vSeRQG/LR27Vq88847ePvtt/H999/jlVdewaBBg7zPC4IAp9PZap+6uro220pNTYVWq8WJEydaPX78+HGkp6djzpw52L59u/drzpw5rbabPXs29uzZg/379+Obb74543kAmDZtGr788sszTvqcc9xyyy149NFHO/ydT75JdjbwdPR7ZWVloba2ttV87S1P3JmZmRgzZgy2bt3q/frmm2+8b4b79u3DlVdeic8++wybN2/GiBEjWn0aAQBJklq9ARHSnpMnk5Z/319//XWr6/Qtg0K3bt3O+Ns+ceIE0tPTYTabUVlZiaeeegqbN2/GBx98gD179uCll15CTU0NJEnCf/7zH/z44494+eWXsWbNGixbtgy33357q9f6yJEjW7U/f/58fP311zhw4ACKiopa9VoAnsAwYcIEb09hS06nE5deeilefvnlDv8tTr5mWt6plJmZiccee6zV63HlypX49a9/7Q1MLf89Wr6Ws7OzUVpa2urf9mTgONn2vHnzWrX9xRdfeMdm7Nu3D3fffTe+/PJLrFu3DikpKXjooYda1ex2uyGKYoe/G2mN3h391NTUBEEQoNPpwDnH+vXr8emnn3pvt8vJyUF1dTV++OEHcM6xYsWKVqNdtVotbDYb3G43BEHAZZddhqeffhrHjh2D0+nEm2++icLCwjMGB7UlKSkJU6dOxQMPPIAxY8YgOTn5jG3uvPNONDQ04J577vEu/lFRUYE//OEPKC8vb9Vld7bjGAyGTl8K6ej3ys/PR58+ffDYY4/BZrPh2LFjeP311737z549Gzt27MDKlSvhdru9A5Qef/xxAJ5biv72t7/BbDYjPj4eer0eSUlJrWqorKxs9WmFkPZMmTIFbrcbL730EpxOJ44fP+79xN6Wyy+/HC+//DL27t0LSZKwdu1arFu3DvPmzYPFYsGtt96Kzz77DJxzpKenQxAEJCUlobS0FDfddBO2bNkCQRC8n75P/9ttS15eHnJycnD//fdj9uzZbd7R88ADD2Dbtm3429/+5n2tHj16FIsXL4bRaGz3FsWWTr5mWr7Wr7jiCrz44ove97ENGzZg1qxZ+Pnnn5GdnY0JEybgn//8JxoaGlBVVYUXXnjBu++0adPAOff+2x4+fBivvfaa9/kFCxZg1apV2LhxI2RZxtGjR7Fo0SK8/vrrEAQBjz32GJ599lk4HA4kJydDq9W2+Vo/OWCSdB6FAT/NmzcP48aNw6xZs3DeeefhxRdfxPXXX48jR47A6XRi6NChuOOOO/DQQw9h9OjR+OGHH1qN8B81ahRSUlIwatQoHDx4EA888AAmTJiAG264AWPGjMHatWvx2muvdXpFsfnz5+PQoUO47LLL2nw+OTkZy5YtQ0JCAm644Qbk5+djwYIFcLvdeP/991t16Z3N+PHjsW3btk5tC+Csv5coinj55ZdRWVmJcePG4ZZbbsH06dO9+3br1g2vvvoqPvjgA4wbNw6XXnop+vbt6w0Df/3rXyHLMqZPn45Ro0Zh586deO6557z7OxwO7N27FxMnTux0vSR2xcfH47XXXsOWLVswYcIEXHvttVi4cGG7J88bb7wR11xzDX73u99h5MiR+N///oenn34ao0ePRkZGBpYsWYJXXnkF5557Li655BKcd955uOGGGzB06FD8+c9/xl/+8hfk5+fjmmuuwdVXX42LL764U3WefK23dTkQ8FzaWLZsGRoaGrBgwQLk5+fjxhtvRHZ2Nt59913v4klnk5ycjEGDBrV6rd9www2YO3cu7rzzTuTn5+Pvf/87/vznP3tfs0899RTi4uIwdepUXHbZZRg3bpx3X4PBgP/+97/45ptvMHr0aNxzzz0YP368N8wMHz4cTz/9NJ5++mmMGjUKixYtwrRp03DvvfcC8FwmKCoqwoQJEzBu3Dg0NTXhb3/7m7f9EydOoL6+HmPHju3UvyE5hRYqIj759ttv8eSTT7bZDRluVq1ahbfeegsffvih0qUQEnHeeecdfPfdd3j11Vf9bquurg6HDx/GiBEjvI+9/fbbWL16NZYuXep3+//73/9w4MABPPPMM363FWuoZ4D4ZOrUqUhISMD333+vdCkdeuutt3DPPfcoXQYhEemKK67AsWPHUFhY6HdbkiTh+uuv975vFBcX47333sPUqVP9btvpdGLZsmX49a9/7XdbsYh6BojPjh07hvvvvx/vvvtu2M5CuGLFCuzYsQOPPPKI0qUQErF++eUXvPjii3jllVf8buvrr7/Gc889h+LiYsTHx2PevHlYvHgxVCqVX+3+97//hUaj6dS4J3ImCgOEEEJIjKPLBIQQQkiMozBACCGExDgKA4QQQkiMozBACCGExDgKA4QQQkiMozBACCGExDgKA4QQQkiMozBACCGExLj/B4eswx81r4daAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -4171,7 +4173,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAALTCAYAAACljOKvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACrnUlEQVR4nOz9eZgk1X0m+r8RkXtmZda+V3VXb9XdNIt2EJIQILHIRgipBRKLwcKAbdk/If8Ga8ajMcNt29c214jxI4/liywGy/ZYwFjCsoxWA0bWgoRkQdNd1Wt17UtmVeW+RcS5f0RmdXV3LZlRmZHb+3kePUARGXFEvR35jXNOnCMJIQSIiIiIiIokV7oBRERERFSbWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIlIYqJDVNw1/+5V9u6Ryf+MQncNNNN+Hmm2/G7bffjqNHj5aodUSF22qW0+k0fvM3fxPXX389br75Ztx7772YnJwsYQuJClOK+/If/MEf4JprrsHw8DCOHTtWopYRlUcpMl9NGqqQPHbsGL71rW9t6RyPP/44vv71r+O5557DJz7xCfze7/1eiVpHVLhSZPm2227DN7/5TTz33HO4+uqr8fu///slah1R4UqR5euvvx5///d/j76+vhK1iqh8SpH5atIwheSJEydw//33Y25uDjfffDP+/M//3NR5/H7/yt9Ho1FIklSqJhIVpBRZdjqduOqqq1bye+mll2JiYqLUTSXaUKnuy29729vQ3d1d4tYRlV6pMl9NbJVugFV27dqF97///dixYwfuvPPOLZ3rd3/3d/HjH/8YAPDFL36xFM0jKlgps5z35S9/GVdffXVJzkVUqHJkmaia1WPmG6aQBIDDhw/jgx/84AU/v/3223Hy5Mk1P/O1r30NPT095/zsT//0TwEAX/3qV/Gnf/qneOKJJ0rfWKINlCrLAPCFL3wBZ86cwSOPPFLydhJtppRZJqoF62W+VklCCFHpRlhBVVW87W1vw49+9CM4nc6SnfeSSy7BSy+9hJaWlpKdk2gjpczyX//1X+Mb3/gG/tf/+l/nTNsgskKp78vXXHMNvvCFL2DPnj0laB1R6ZWrFqmkhpkjOTs7C6/Xu6VfXCwWw9zc3Mo/f+c730FzczOam5tL0EKiwpQiywDw5JNP4hvf+AaefPJJFpFUEaXKMlGtqMfMN1SP5AMPPIDJyUlcf/31+J3f+Z2izzEzM4Pf/u3fRjqdhiRJaG1txWc+8xns27evDC0mWlspsjw7O4urrroKAwMD8Hq9AACHw4Fnnnmm1M0lWlcpsgwAjzzyCL73ve8hGAyipaUFHo8H3/nOd0rcWqKtK1Xmq0nDFJJEREREVFoNM7RNRERERKXFQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNslW5ANchkMohEIkgmk0gmk9A0DUIIyLIMt9sNt9sNn88Ht9sNSZIq3VyidaXTaUSj0QuyrCgKXC4Xs0w1g1mmelFolj0eT6WbaookhBCVbkSlxGIxBINBxGKxgo53Op1oa2tDS0sLb1xUVWKxGBYWFhCPxws63ul0or29Hc3NzcwyVZVoNIpgMMgsU80rNssulwttbW01l+WGLCQ1TcP09DTC4bCpz7vdbvT398PpdJa4ZUTFUVUVMzMzzDLVPGaZ6oWqqpienkYkEjH1+VrLcsMVkqlUCmNjY1BVdcvnGhgYQCAQKEGriIqXSqVw+vRpaJq2pfNIkoT+/n5mmSommUxibGyMWaaaV8osDwwMwO/3l6hl5dNQhWQqlcKpU6eg63rJztnf34/m5uaSnY+oEOXIMh+MqBKSySROnz7NLFPNSyaTOHXqFEpZVtVClhvmrW1N0zA2NlbSmxUATE5OIpFIlPScRBtRVbXkX7wAMDExgWQyWdJzEm1EVdWy3JeZZbJaPsul7purhSw3TCE5MzNTkuHstUxOTpb8Rki0npmZmS0Pm6xnYmKCWSbLlDPLvC+Tlaanp8ua5WoePC5rIfnCCy/g+uuvx3XXXYdnnnmmnJfaUCwWw/LyctnOn8lksLCwULbzE+XFYjHTLyMUIpPJIBgMlu38RHnRaLSsWU6n08wyWSISiZh+saYQ1Z7lshWSqqrij//4j/E3f/M3+Md//Ec88cQTZS3mNmLFLyAUCvHpl4oWGzla1JOmFQ8szDKZUWyWrbovV3NPDlUnZrk4ZSskX3vtNezatQtdXV3w+Xx4z3veg+9///vluty6MplMwetEboWu62V9IqH6dOKP/wiHP/kbWPrxjza9SaTT6YLXI9sKTdOYZSra8T88hMO//ZtY/skrzDLVtGOHHsEb/7/fwvJPf7JpllOplCXvSaiqWrVZLrqQ1HUdN9xwAx599NFzfv7yyy/jwIEDeP755wEA8/Pz6OrqWvn33d3dmJub22JzixeNRi27VrX+kqm6xUaOYuS/fGbTgpJZpmoXO3IERz/z0KYFJbNM1S76xmEc/d3/tGlBaWWWrbxWMYreIlGWZTzwwAM4dOgQ7r//fgQCAYyMjOBTn/oUPv3pT+PGG28EgDX/o1dipXYr33ZKJBIYffi/WXY9qn3pVUPV+YLSt3cf+u++B81vf8c5f2aszHKSWaYiZUKhlb/PF5S+/fsxcPevIvDWt52TZStXukjE48wyFSW7tLTy9/mC0rf/olyW31qx+3K1rhBjaq/tm266CZ///Ofx5S9/GQcPHsT999+Pm2++Gffee+/KMV1dXef0QM7OzuLSSy/deouLZOV/eFVVEf3pT4Aqf1Wfqtt6BaWVN6ysqiL6k1eAVMqya1L9Wa+gtDzLP/4RkMlYdk2qP7Ejb+DoZy4sKK3MciaTga7rkOXqWnDH9ILk//AP/4DPfe5z6OzsRF9fH/7iL/4CiqKs/HtVVfGBD3wAX/7yl+H1evHhD38YX/nKV9DS0lKyxhfi6NGjZXslfy2x/+thiCp+u4pqT76gnPUHrM3yf/9vEIuLll2P6l++oJz2+ix9oSv2+/8VokIve1J9yheU016vpVkeHh6G3W637HqFMF3W3nTTTSuV+GOPPXZOEQkANpsNn/nMZ/Arv/IruOWWW3DvvfdaXkRWRA1ttE61ITk5gfixY9a/sccsU4klJyYQGx21/sLMMpVYanIC8eOjVfsmtZVMDW0DwKFDhwAAS0tLFxSReddeey2uvfZas5coCVmWLe3F4VAglYri86H3o7eh+5YPw+bzYXR01NpleZhlKhGlqelslr1ejIyMWJplwSxTidj8fvTeehu6P/RhKB4PoiMjZdvsZC3VNqwNmCwkH3/8cbz44ot4+umncc899+DZZ5/FHXfcUeq2lYTb7UY2m7XkWrIsw+72AG6PJdej2pcJBgH93Aed8wvIPJfLZVmWFVmG3esDvL7NDybCOlk+r4DMc7vdlr2BqigKHE1+oMlvyfWo9q2V5fMLyDyXy2XJEoOAMdK7XsddJRVdSD7zzDN48skn8dRTT2Hv3r24++678cUvfhG33npr1Y3bA8YNy6rlHzweD/b/w9OWXItqn1CzOPX7v4PY2CSy8SSEZEPPR269oIDMs/LL1+P1Yh+zTAUSagYnP/tpxMenjSzLDvQc/Ci6P3RuAZlnaZY9HmaZCiayGZz47INITMwgG0tCKA70fvTWCwrIPLfbbVkh6Vnj+tWgqELypZdewiOPPILHHnsMl112GQDgrrvuwpe+9CU899xzOHjwYDnauCU+n8+y9St9a3z5E61LsaFtXy96377j7M+cSag/fQ6aywfJ3QTJ5YPkNv7nlR2WNY1ZpqIodnQc6Eff5bvO/syZgPqTr62ZZQ+zTNXKZkfnxQNwXLH77M+ccWRf+SpUV9NKhvN59sp2WLVBcrVmueBC8vDhw3jwwQfx0EMP4brrrlv5uc/nw5133oknnngCt9xyS9V1u7rdbrhcLqTKPEdGkqTGeJmISkaSJKBlAFBX3YbSCYh0AgLzFxxvG9gHp38n0ul02dvV3Nxc1mtQfZEkCSLQD2irVqzYIMv2wf1wNu1glqnqGFnuA7Sz66JumOVtB+DwbkOmzMtLSZKEQCBQ1muYZXr5n1qyvLyMycnJsl6jubkZ/f39Zb0G1Q+hqdBnT0E9/Rr04MSmx8vdO+F4+y9jORzG1NRUWdvW0tKCvr6+sl6D6sfZLP8CenDz+6zcswuOt/0SlpaXMT09Xda2tba2ore3t6zXoPohNBXa7Elop34BPbT5fVbp3Q372z6ApaXyZ7mtrQ09PT1lvYZZpt/ariWBQACLi4tlW5xclmV0d3eX5dxUP4QQEMtzUMePQJscAbKF9cbI7QNwvO0DkGQZzc3NWFxcLNsiuIqinLO1KdFahBAQS7NGlqdGC89yxyAcb70RkiyjpaUFS0tLZc1yZ2dnWc5N9eNslt+ANnWs8Cx3boP9rTdCkowsLy4ulm3ks9qz3BA9kgCQTqdx4sSJsqz5NDAwULVdzlR5IhmDOnEU2vgRiFhxC3xLLd1wvvMjkOxn55Qxy1QpIhldleWlzT+witTSA+eVH4ZksybLg4OD8Pv5pjatTU9EoU0chTZRfJbl1l443vlhSLazLxinUimcOHGi1M0EUP1ZbphCEgAikQjGx8dLes729nb2RtIFhKZCmzkBbfwI9PlxAMX/MZOaWuF8962QHO4L/l04HMbExOZD4sXo6OhgbyRdQKhZaDMnoY2/AX3B3P1T8rfB+a5bITlcF/w7ZpmsYmQ5d182neUOON910LIsd3Z2VnVvJNBghSRQ2mKyvb0dXV1d52zgTo1LCAF9cRra+BFjiEQ1P/la8vjhfPdtkNzrv6VXyptWR0cHOjs7mWUCUOIsewPGA5GLWSbrCSGgh6aMLE8f32KWm3NZvnBJq7xSvpPR2dmJjo6Oqs9ywxWSAJBMJjE5OWn6jUFFUdDb28shQAIA6ImIMUQyfgQivlz05yVvAHLHILSx140fOD1wvuc2yN7mTT/LLFMp6fHw2eG+eLjoz0veZsjt/dDOHDZ+4PLC+e7bIHs3z1cpstzX11fVQ4BkHSPLR6CNH4VIlCLLPuO+7Nk8X4lEApOTk6bf5K61LDdkIQkAuq4jFAohGAwWvIVifimJrq4u2GwN8Z4SrUOoGWjTuSGSAt66voDNAaVvD5TB/ZBbjbdK0995EiKbgvPdt0L2txd8KrNZbmlpQWdnJ7Pc4IwsH89l2URPykqWL4LcarxVmv7OlyCyGTjf/dGisxwMBhEKhZhlKprIrspyyEyWnVD6c/flllyWv/3XEJpqZLmpreBTNVKWG7aQzBNCIBKJIBKJIJlMXvAEYbPZ4Ha74fP50NzcXHXrZJJ1hBDQg5Nnh0i04rcrlDu3QRncD6VnFyTl3BtF9sSrUFp7V76MzbSPWaZCGFmeyGX5hIksS5A7B6EMXgSlZ+eFWT7+Uyjt/ZBbzM0f13Ud0WgUkUgEiUTigq1BmWXKOzfLxwGt2H2vJchd26AM7F8nyz+B0jEIudncnFtd1xGJRBCNRus2yw1fSJ5P13VomgYhBBRFqclfKpWWHl82blITRyESxW+3KflaoQzuh21g34ZzHoUQJZ0LwyzT+fRYPstHIJLFb1EoNeWy3G9tljVNg67rzDKt0GNLZ+/LprLclsvyXmZ5i1hIEq1BZNPQpo5Dm3gDesjEQrN2J5T+vbAN7ofUzBeyqHKMLB8zhvsWmWWqXSKTgjadz/JM8Sewu3JZ3scsl1DtDMITlZkQOvSF3BDJzInih0gkCXLndtgG90Pu3nHBEAmRVc5m+Q1j6FovbI7WCkmC3DUE28B+yN1DzDJVjBA69Pnxs/florMsQ+7aDtvgRUaW5drvAaw2vDtQw9Oji9DGj0CdOAqkYkV/XvK3nx0i2WBZCKJy06OhXJZHTGfZNngRlP5hZpkqSo+EoE3k78vxoj8vBTpgG9gPZWAvJKenDC2kPBaS1JBEJgVtahTq+BGIpdniT+Bwnx3uC1T/Ol9Uv0QmBW1yFOrEFrI8sNfofWyu7oWPqb6JTNLI8vgRiOW54k/g9Kzcl+VAR+kbSGtiIUkNQ+g69PkzxnDf7ClzQyTdO4ybVNd2DpFQxRhZHoM6fgQ6s0w1TOga9LkxqBNHoM+cAoRe3AlkBXL3kDF03bmNWa4AFpJU9/Rw8OwQSTpR9Oel5k5jiKR/LyTnhdsVEllFDy8YQ9eTIyaz3AXb4H5j6HqNrTeJrKKHF6COH4G2pSznpmGssV0hWYeFJNUlkU5CmxwxhkjC88WfwOmBbWCfsTBtEQsqE5WaSCdyWT5qLssuL2z9e5llqjiRTkCbGDGmYYQXij+By2vclwf2Q/YXvjg4lRcLSaobK0Mk429Anz1taohE6dlp3KQ6t0GS5fI0lGgTQtegz542hq7ntpDlwf2QO5hlqhwjy6dyWR4zmeVdRpY7ByFJzHK1YSFJNU0IARFegDr+BrTJUSCTLPocUksPbIP7oPRxiIQqx8jy/Nnhvkyq6HPIrT3GDh19e5hlqhghBMTyHNTxo0aWsyazPHiRkWW7swytpFJhIUk1SaTiUCdHoI0fgYgEi/685PZByQ+RNLWWoYVEhRGpGNSJEWO3mUio6M8bWd4PZWAfs0wVtZLl8SMQUTNZbjKyPLgPsq+lDC2kcmAhSTVDaOrZIZL5MaDYTZkU29khko4BDpFQxQhNhTZ70tihY+4MAGaZapPQVGgzJ6FNbCHLvbuNLLcPcCm1GsRCkqra2SGS3NB1Nl30OeS2PiiD+6H07uYQCVWMEAJiadYYup7aSpYvymXZUYZWEm1OCAF9acbYbWbyGKCayHJ7v9H7yCzXPBaSVJVEMgZ14gi08aMQscWiPy95/GeHSLzNpW8gUYFEMgp14qgx3BdbKvrzzDJVCz0RhTZx1JiGYSrLAeOhfmAfZG+gDC2kSmAhSVXDGCI5YQz3zY+j+CESO5S+3VAGL4Lc1schEqoYoWbPZnlhvPgT2OxQevcYw33MMlXQ1rPsgNK3xygemeW6xEKSKkoIAX1x2hgimToGqJmizyG3D5wdurbZy9BKos0JIaCHpowsTx83l+WOgbPDfcwyVci5WT4GqNmizyF3DBr35Z5dzHKdYyFJFaEnIsZNauIoRHy56M9L3uazQyQef+kbSFQgPR42hvvGj0AkwkV/3sjyRVAG9jLLVFFGlo/kshwp+vOSr8W4L/fvg+xpKkMLqRqxkCTLCDUDbfo4tPGj0IMTxZ/A5oDSP2ws2dPawyESqhiRzWf5CPTQZPEnsDmh9OeGrluYZaqcs1l+A3poqvgT2J1Q+oZhG9wPqaWbWW5ALCSprIQQ0IOTZ4f7tGKHSCTIndtyQyQ7ISmMLFWGkeWJVVlWizwDs0zVoSRZ7toOZXAflG5mudHxt09loceWc0MkRyGSJoZImlqhDO6HrX8fJLevDC0kKoweWzo7DSMZLfrzRpYvgq1/L7NMFbXlLPvboAzsh21gLyQXs0wGFpJUMiKbhjZ1zFiYNjRd/AnsLij9uSGS5i4OkVDFiEwK2vQxY+h6cab4E9hdUPr3wja4j1mmihKZ1Nn7spksO/JZ3g8p0Mks0wVYSNKWCKFDX1g1RKJrxZ1AkiB3DcE2sB9y9xCHSKhihNChz48bWZ45YSLLMuSu7bAN7ofcxSxT5ZzN8hvQZk6azPKQkeXuIUiyUp6GUl3gnY5M0aOL0MaPQJ04CqRiRX9e8nfANrgfSv8wJJe3DC0kKoweCUGbyGc5XvTnpUAHbAP7oQzsheT0lKGFRIXRI0Hjvjw5YjLLnWfvy8wyFYiFJBXMGCIZhTp+BGJptvgTONxQBvYavY/NnaVvIFGBRCYFbXLEyPLyXPEncLihDOwzemwCHaVvIFGBRCYJbXLUfJadHtj69xorCDDLZAILSdqQ0HXo82PGcN/sKXNDJN07csN92zlEQhUjdA363BjUiSPQZ08Xn2VZgdydm4bBLFMFrWR5/Aj02VOA0Is7gaxA6d5hFI+d2yHJcnkaSg2BhSStSQ8Hzw73pRNFf15q7jo7ROJwl6GFRIXRwwtQx49AmxxhlqmmGVl+A9rECJBJFv15qaXbyHLfMCSHqwwtpEbEQpJWiHTi7BBJeL74E7i8Z4dI/O2lbyBRgUQ6AW1iBOrEEYjwQvEncHlhG9hnLH7vbyt9A4kKtJLl8SMQEbNZ3g9lcB/kJmaZSo+FZIMTugZ99rQxRDJ32twQSc9OKIMXQe4Y5BAJVYyR5VO5LI+ZzPIu40GIWaYKEppq3Jcn8vdlUdwJZAVK7+5clgcgScwylQ8LyQYkhIAIz+eG+0ZNDZHIrT1QBvZD6dvDIRKqGCEExPIc1PGjxtB1NlX0OeTWHmO3mV5mmSrnbJZz92UzWW7rPXtftjvL0EqiC7GQbCAiFYc6cRTaxBGISKjoz0vuJigD+4ynXF9LGVpIVBiRikGdGIE2fgQiyixT7RLJGNTJo7ksLxb9ecndZDwIDeyH7GsufQOJNsFCss4JTYU2exLa+FHo82PFD5EoNmO4b9tFkNsHuKsBVYzQVGgzJ40dOubOADCR5fxwH7NMFbSS5fEj0OfNZNm+Ksv9zDJVFAvJOiSEgFiaNYZIpkaBbLroc8htfVAGL4LSuxuS3VGGVhJtTggBfWnGWH5q8higmslyf27omlmmyhFCQF+cgTaxhSy3D0AZ3Gdk2cYsU3VgIVlHRDJqDF2PH4GILRX9ecnjN+bXDO6D7G0ufQOJCqQnotDy0zBMZTmQG+7bB9kbKEMLiQqjJyJGlsePQMSXi/685A0Y92VmmaoUC8kaJ9QstJkTxhDJwnjxJ7DZofTuMYZI2vo4REIVs/UsO84O9zHLVEFCzUKbPm5kOThR/AlsDih9uftyay+zTFWNhWQNEkJAD00ZT7lTxwA1U/Q55I4BY+i6Zxckm70MrSTa3EqWx49Amz4GqNmizyF3DBq9j8wyVVBJsty5zeh97NnJLFPNYCFZQ/R4+OxwXzxc9Oclb7NRPA7shezxl6GFRIUxsnzEGO5LRIr+vORrMYrH/n2QPU1laCFRYfT4MrTx3H3ZVJZboQzug21gHyQ3s0y1h4VklRNqBtrUceNN1eBk8SewOaH054ZIWno4REIVI7KZ3HDfG9BDU8WfwOaE0j8M2+B+SC3dzDJVjMimzw5dm8myPZflAWaZah8LySokhIAenMgNkRwHNLXIM0jGEMlgbohE4a+ZKmMly2fegDZzwlyWu7Ybb6p2M8tUOULo0Bdy92UzWZYkyJ3bYRvcD7l7B7NMdYNJXkUIgXQ6DU3TAACyLMPpdEK2aKs0PbZs3KQmjkAko0V/XmpqhTJ4EWz9eyG5fWVoIdWKymd5KZfloyaz3AZlcD9sA3shuZjlRlbxLEcXjWkYE0chkrGiPy/526AMXJTLsrcMLaRaUeksl0vDF5KqqmJpaQmRSASpVApijQW7HQ4Hmpqa0NraCqeztNtOiWwa2tQxY7hvcab4E9hdUPr3wja4D1JzF4dIGljFs5xJGVmeOGIuy458lvdDCnQyyw2skCw7nU40NTWhpaWlTFkehTp+FGLJTJbdZ6dhMMsNLZ/lcDiMdDpteZatIIm1/l81AE3TMDs7i6Wl4tao83q96O3t3dIvWwgd+vz42SESXSvuBJIEuWvIGCLpGuIQSYNTVRWzs7NYXl4u6nOlzfIb0GZOmsiyfDbL3UOQZMV0W6j2mc2yz+dDT0/P1rKs69AXzuTuyyaz3D0E2wCzTJXNstUaspCMRqOYnJxc6V42o6urC+3t7UU9aerRELTxI1AnjgKpeNHXlPwdsA3uhzKwF5LTU/Tnqf5EIhFMTU2ZzrIkSejq6kJbW1txWY4EjSxPjpjLcqATtsF9UPqZZTJUPMsTR4F0ovjrBjqN+3L/MLNMAIBwOIzp6WnLs1wpDVdIBoNBzM7OluRcfr8fAwMb79krMilokyNQx49ALM8VfxGHG8rAPqPHJtCxhdZSvSlllgOBAPr7N96zV2SS0CZHzWfZ6YGtf6+xggCzTKssLCxgbs5EptZQUJbTSeO+PHEEYnm++Is4PbAN7IMysB9yoH0LraV6U8osNzc3o6+v+jdXaKhCMhQKYWbGxHyXDax10xK6Bn3+DNTxN6DPnjY3RNKzwxgi6drOIRK6gKVZnhuDOn4E+uwpQOjFnVRWIHfvMB6EOrcxy3SBUj4Q5a31BVyKLCvdO4wHoc7tkGr8BQkqPauyXG0aZnJdMpks+RcvYHRhezwetLW1QQ8vQB0/Am1yxNwQSXPX2SESh7vkbaX6kEgkyp/l5XmoE0egTYwAmWTR55JaumEbyGfZVfK2Un1IJBIl/+IFgOXlZXg8HrS0tECsvi+bzfLgfih9zDKtLx6Ply3LXq8XLS0tJT93qZS1R/KTn/wkXnnlFVxxxRX48z//83JdZlO6ruPkyZNIp9NlOb8kSdiWGIcyNVL8h13es0Mk/rbSN47qiq7rOHHiBDKZ4rfFLIQkSdgWPwNlerT4D+ezPLgfchOzTBuzJMuxMSgzx4r/sMu3KsutpW8c1RVd13H8+HFks8Vvi1kISZKwZ88e2O3VuW1mWXsk77rrLnzkIx/B1772tXJeZlNLS0tlKyIBY22ooKcHXSiwkJQVKD27jJtUxyCHSKhgi4uLZfviBYwsh7w96ESBhaSsQOndZTwIdQ5CkphlKox1WS6wkFRsq+7LA8wyFSwUCpWtiASMLM/OzmJgYKBs19iKshaSl19+OX784x+X8xKbEkIgFAqV/ToxYUOb4oRNW79glVt7jN1mevdwiIQAABP/6ym0v/99cPf1bXqsVVmOCjtaFQds2vpf8nJrr5Hlvj2Q7LWzTAWVz/iTT6Lz+uvh6u3d9FjLsgwHWhU7bNr6X/JyWy+UgYug9O1mlgkAMP6lJ9F54w1w9fRseqwQAouLi2VvUzgcRk9PD2y26puRWPQjl67ruOGGG/Doo4+e8/OXX34ZBw4cwPPPP1+yxpVCIpEo61PvarHufRf8THI3wbbn7XC+7x443/Mx2LZfwiKSVix85zv42e134Pgf/d9ITm28Z288Hi/rU+9qse69F/zMyPI7clm+DbbtF/OLl1YsfOvb+NnHb8fxP/5jpKanNzzW0ix3rZVlP2zD74Dz/b8K57tvg237AWaZVsw//zx+9rGP48Sf/ClSm8xHj8VilmW52DUprVJ0aSvLMh544AEcOnQI999/PwKBAEZGRvCpT30Kn/70p3HjjTeWo52mxePFr3FnVsLbgYAQgGKD3L4NSu9OyK09QO5NVT0eASQAkABJBiQJUGyArFT1G1lURkIAmob5f/kXzH/rW+i8/nr03/0ra/ZQWpvlzvOyvAtyazezTOsTAkLTMP/P38DC899Ex403YOCuX4Gr78IeSiuznPR1ISBeAxQ7lJ7dUAb3QW4/uzqB0It8e5sagtA0zH3965j/l39B5wduRP9dd63Z225llmOxGNrbq2+5KVMv26iqiuuvvx633HILDh48iFtvvRXXXnstHn744QuO/fGPf4y/+7u/q9jLNmfOnEE0Wvxev2ZIkoShk99DsV+jQgjoWQ16VjX+qub/qkHPqMZfs6v+mtXOPS676vjs2Z+piTS0tDVPSlRCirJmQTk2NoZYrPi9fs2QJQnbmWXaIklR1iwoT58+bdkXsCxJWHrg1y25FtUvSVHWLCitzLKiKNi378KRz0ozNdhus9lw33334XOf+xy+9a1vYf/+/fjsZz9b6raVRCqVsuxaQghom8wtW4skSVAcNiiO0s99EJoONZmGmkhDTWagJtPIJnL/nEgb/y65+p8zRi8ZVc46PZRWZlmv8ixnV2d6dZbPyTWzXGnr9VCW8+XH8+lCQPJ6ISzsOaL6Y/RQ/jPm/+X5cwpKK+/LmqZB0zQoSnWtx2t6+Z94PI4rrrgC27Ztw1e+8hV4PBduDXXvvffijTfeQDKZRCAQwOc//3lccsklW250MY4ePbqlrRCLNTDxQziyxa9VVi2EENBSmXMKy5Uv79wXdDaaQCacQCaa5Be1FRQFnTfegOwHPwjdwmG4wfEfwq7WU5aNDGvJDLNcKYqCrg/ciMxNN1ma5cjv/VcIC16IoMYhKQo6f/mXkf7AjbByX5fh4eGqWwbIdLfBoUOHABhL66xXHf/1X/+12dPXLKnGv4wkSYLN7YTN7QQ2WQpQ6DoykSQykbjxZRyJIx0++/eZaBLQa/u/R8VJEtrf+1703XYbzlj45Guo7d+d+SzHkYkkzmY5HGehWQqShParr0bvbbdhLFH8hg1bUuzuYkQbkWW0X3sNem/9KMbicUsLyWpkqpB8/PHH8eKLL+Lpp5/GPffcg2effRZ33HFHqdtWEna73dIeSWWDZSbqjSTLcDZ74Wz2rvnvhS6QiSaQieS+jM//go4mWGiuR5LQfs01GLjnbniGhgAAtuPHLc6yNasdVIPNs6wjE02ek+V0/oGJWd6YJKH92muNLG/fDgCwHTtm2WoaACBiHNamEpBldLzvWvTffTc827YBsD7L1TasDZgoJJ955hk8+eSTeOqpp7B3717cfffd+OIXv4hbb7216rpbAcDtdls2h8FutyEa1GG8yWr8bOVlhVVvLUir/lla9dKr8T9x9u/P+fnZf64VkizBGfDCGfACAx0X/HshjI4CTQU0TYKaBdSs8VdNBVD0qx61Z/4b34C6+mUwSUL7NVdj4J57VgrIPLfbbdncMofdjmhQoCRZPj/HNZllmVnexNw//zO01S+DrVFA5nk8Hsu+fB0OB3oPHrTkWlQf5r7+dWir59TK8tks5wrIPLfbbVmWnU4n5CrcwKSoQvKll17CI488gsceewyXXXYZAGP3mi996Ut47rnncLAK/7C63W4sLS1Zci2Px4vuX/3tsl5DCD33baVCaCry31RCy676eRbIpiEySYh0CiKTADJJiHQSIpMEMlYPka4tv2KMYgPODqPm/irLkHwtkJtaITW1rfxV8vrraseJpR/+0Cgk1+iBPJ/b7bZsHTGP1+Isq+flV1MBLQuhqoCaz3I+v7WWZaUhsrz4/e8bhaQkof1978PA3b9yQQGZZ2mWPR70/9YnLbkW1YfQSy8ZheQaPZDnc7vdCIfDlrRrrXdRqkHBheThw4fx4IMP4qGHHsJ111238nOfz4c777wTTzzxBG655Zaq63b1+/2Y3mRx3FIJBAJlv4YkyYDNAdgcpvs4hNCBTAoikzK+jHNfymt9Uef/PYTFa63pOkQkCC0SPPfnsgKpqfXCL2WPvzbXL1zda7NOAZnn9/sxs8niuKVieZZNrgV9NstGZlf/ffVkWWucLL///RsWkHn1lmWqL5KioOO6929YQOb5/X7Mzs5a0q5qzbLpt7ZrycTERNmfGGw2G4aHh2vzC2ATQghAzRhfyOkERDICkYjm/nr271HJhX0VGyRf7kvZ3wa5qQ1SUyskd1NV/07SCwtwdlw4VLqe8fFxRCKRMrbImFe8Z8+eqv7vZta6WU7kspyskiw3ta5kmFk2r56zTOVTbJatWK+6mrPcEIVkMpnEyZMny3qNnp4etLVt8mpoHRNCAOk49PyX8uov6KTx14q8OanYITd3QG7uhtzSBamlG5LLV5V/GAuRSCRw6tSpsl6DWd4gy7k8VyTLNjvkQCfk5i7ILbk8u5usb0eJWJHl3t5etLa2lvUaRPF4HKdPny7rNao5yw1RSALA7OwsgsHg5gea4Ha7sWPHjpotTqxgfDknIBIR6MnoOT2Z+S9oy76cnV7ILbkv4+Yu4wvZ5rDm2iUwMzODUChUlnMzy5tbO8tnH5hEImxdj6bLe05hKTczy3kejwdDQ0PMMllienoai2Vaq7Tas9wwhaSu6zh58mTJ33qVJAm7du2C02lykhcBMJZXEYkwRHQRejRk/DUSgogtWTKnTWpqXVVYdhtz1arw7TjAyPKJEydK/qYgs1waK1mOhKBHFyGiub9anuVcr2WDZnn37t1wOGqnqKbapmkaTpw4gWy2tEsAyrKMXbt2VXWWG6aQBIBsNotTp06V7BctSRK2bdsGn89XkvPRhYSuQcTDZ7+MV76Ul8v7pazYjGHE/BBiczckd/UMiWcyGZw6dQqqqpbkfJIkYfv27fB6115HkbbunCyvKjJFfLm8i52fn+Uqm97BLFO9KEeWh4aGqvZt7byGKiQBo5gcGxvbcs+koigYHBzkzapChK5BxJbP9l7m/ipiyyjbjixOz9ley9Yeo+dSKf2e0oViluvDuVkOQY/kC8wwyp7lli7ILZXPciaTwZkzZ0qS5W3btlX9Fy/Vr0wmg7GxsS33stdSlhuukASM4ZRgMIj5+XlTn/f7/ejt7YXNVrkbL61NaCpEbOls7+XyPPTlOSBbhoW8ZQVyay/kjgEo7QOQmjssXxdQ13UsLCxgYWHB1OeZ5ep1YZbnoC/NAWoZFj9WbMbDUfsAlI4BSIHay3IgEEBPTw+zTBWn6zrm5+dNv5dRa1luyEIyL51OIxQKYWlpqaC9MpuamtDW1sah7BojhICIL0NfmoW+NAd9eRYiHCz90LjdCbmtD0rHAOT2AUi+FsuGD1OpFBYXFwvOst/vR2trK7NcY87NspFnESlXlvuhdPTXRJbb2trYo05VJ5VKIRQKYXl5ua6z3NCFZJ6maYjH40gmk0gmk9A0DUIIKIoCl8sFt9sNr9dblVtAkjlCU6GHFyCW51a+lEWixGvaOb1Q2vsh5wpL2VP+pVrOz3J+rg6zXL9Wsrw0m+u1LEOWXbkstw8YebZg2SFmmepFvWeZhSRRjkgnVoYP9dyXcimHxCVvYGXoUG7rh+R0l+zcRKuVP8vNuSz3M8tEDY6FJNE6zhlGzH0pi/BCyYYRJX87lHwPT1tvTa3/R7Wl3NM7JH/7ypQOZpmosbCQJCqC0FSjqFyYgB6cMF5+KMWXsSQbb9F274DSvQOyr3nr5yTagNBUo7AMThp5Xi5hllu7IXcxy0SNgIUk0RYINQM9NA09OAFtYcJ48aEEpKZWKLmiUmruqpo1/6h+rWR5YQJakFkmosKwkCQqIZFOQg9NQsv1WBprAW6R0wule8jo3Wnvr+h6f9Q4RDoBLThp9FiWKssuL5SuHVB6hoy5lcwyUc1jIUlURnoiagyBByegLUwC6fjWTqjYIXdug9KzA0rndkgOV2kaSrQJPRFZGQbXghNAOrG1E9rsUDq3G9M5urZDsnNrTqJaxEKSyCJCCGOB6VxRqYcmt/YmrSRDbuuF0r0TcvcOS5YXIgLOz/IE9ODk1hZKl2RjDdaeHZC7mGWiWsJCkqhChNAhwgvGF/H8GPTQDLayJZ7kb4fSs9OYi+Zv51w0sowQOsTyArTgBPS5MeiLW8xyoOPsvEpmmaiqsZAkqhIinYA2NwZt9hT0hXFAU02fS3I3GUOGvbsgt/byi5gsVdIse/yQu4aYZaIqxUKSqAoJNWsMG86cgjZ3CsikTJ9LcjdB6R+G0j8MuamthK0k2pxQs9AXxqHNnoI2d7pEWd4Luam1hK0kIrNYSBJVOSF06Iuz0GdPQZs9uaW3Z6VAB2z9e6H07YHkqq39XKn2GVmeMbI8cwoisZUsd8LWP8wsE1UYC0miGmK85LBo9O7MnIJYnjN5Jglyx4DRu9OzkzuRkOWEEBDRXJZnt5jlzkEjy907Idlqc79iolrFQpKoholUDNrsaWMuWnAC0E3sTKLYoHTvhDIwDLl9EJIsl76hRJsQyRi0udPQZk4ab4Gb2WVHsRtLY/Xvhdw+wCwTWYCFJFGdENm0MRdtJjcXzcxyLA43lP5h2Pr3Qgp08MUGqgiRTUObP2MMgc+Nmcuy0wOlbw+zTFRmLCSJ6pDQVOjzZ6BOjkCfO22qp1LytUDp32u8pOPxl6GVRJsTmgp9bgzq5KiRZRM9lcwyUfmwkCSqcyKTgjZzAtrkCPTQtKlzyK29xhdx7y7upkMVIzIpaNO5LC9uIcsDe6H0MMtEpcBCkqiB6IkItKlRaBMjELGl4k8gy1B6d0PZfgnklm4OF1LF6PEwtKlj0CbNZlmB0rsbtu0XQ2KWiUxjIUnUgIQQEOEFqJMj0KaOmdo3WfK3w7b9Yij9w3zrmyqmZFkeugRK3zDf+iYqEgtJogYndN1Y/HxyFNrMSUDLFncCmx1K/z7Ytl8M2c8Fz6lyzmZ5JJflInfUsTmgDOw1sszF+4kKwkKSiFYINWus6zc5YmxtV+TtQW7rhbL9EmNtSlkpUyuJNifUjLGCweQI9IUJFLv3t9zWB2X7xcwy0SZYSBLRmkQqAW36GNTJEYjl+eI+7PTANngRlG0HIHuaytNAogKJVBza1DGok6MQYRNZ3pbLsptZJjofC0ki2pQeXYR65jC0iaNANl3EJyXI3duNocKObXyhgSpOj4agnnkD2viRItenlCB3D+WyPMgsE+WwkCSiggk1C236ONSx14rupZQ8fijbL4ZtYD8kp7tMLSQqjFCzRi/l2GsQ4YWiPit5AkaWB/dBcjDL1NhYSBKRKfrSHNSx16FNjQK6VvgHc8uuKNsv5hJCVHFCCIjlfJaPmcoylxCiRsZCkoi2RGRS0CaOQh17HSK+XNRnJX87bDvfDKVvN19ooIoTmRTUiSPQxl6HiIeL+qwU6DCy3Lube3xTQ2EhSUQlIYSAHpyAevp16HOninrjW3I3GV/Cg/u5jh9VnBAC+sIE1LHXoM+eRjFvfEseP2w73wRlgFmmxsBCkohKTiRjUM8chnrmDSAdL/yDDhdsQ5fCNnQJ555RVdCTUWhn3oB65nBxi507XLANXZbLMrdipPrFQpKIykboGvTZ00bPTnCy8A8qNijbDsC2401cPoiqgpHlU1DHXi8yy3Yo2y6CbeebuHwQ1SUWkkRkiZUlhIpZdkWSofTtgW3XW7hrDlUNPbpovJwzcbS4LPcPw7brzdw1h+oKC0kispSx7Moo1JM/h4gtFfw5uWs7bLveCqWtt4ytIyqcULPQJkehnvxZUS+ayV1DsO16C7NMdYGFJBFVhBAC+uwpZI//FGJ5ruDPyS09sO1+C+SuIS63QlVBCB36zClkT7xaXJZbe43e9q7tzDLVLBaSRFRRQgjooSmoJ16FPn+m4M9JTa2w7XwLlP49XDqIqoKR5Umox1819qovkNTUavRQ9jHLVHtYSBJR1dDDC1BP/MxYGLrAJVckl89YbmXbRZBsjvI2kKhAeng+l+XjKDjL7iYjy4MXcekgqhksJImo6ujxMNSTP4c2/kbhO43YncbSQTvfBMnuLG8DiQpkZPlnxktmBWfZBduOS2HbcRmzTFWPhSQRVS2RTkA9/RrU078AsunCPmR3wrbrLbANXcpeHaoaIp2AeuoXUMdeKyLLrlyWL2GWqWqxkCSiqifUjLEo9MmfQ6RihX3I6YF9z9uMYULFVt4GEhVIqBljsf6TPwdSBS7Wn8/ytgOcQ0lVh4UkEdUMoWvQJo9BPfHTgpcOktxNsA2/A0r/Xu6BTFXDyPIo1BOvFp5ljx+2PW9nlqmqsJAkopojhIA+dxrq8Z9CX5ot6DOSr8UoKHt3c6kVqhory2CdeBWiiCzb914OuWcXs0wVx0IyJ5vNIplMIplMQtOMCdGyLMPlcsHtdsPhcPAPLNWERsqyEAL64jTUY69AX5go6DOSvx32fVdA7uTafdVMCAFVVRsvy6OvQA8WmOVAB+x7r4Dcua1u/jvUIyEEstksUqlUXWa5oQtJXdcRDocRCoWQSqU2PNZms6G1tRWtra2w2TjfiqpLsVlua2tDS0tLXWVZC05CPfpD6EszBR0vt/TAtu8KKO39ZW4ZFUPXdSwvLyMUCiGd3villPrN8kQuy4X1UMqtPbDteyeUtr4yt4yKUUyW7XY7WltbazLLDVtIRqNRTE5OrjwZFKOrqwvt7e01+/RA9SUSiWBqaqroLEuShK6uLrS1tdVNloUQ0OfPIHv0BxCRYEGfkTsGYN/7TsgtXWVuHW2GWT7LmL4xhuzID4vI8qDR297MLFdaOBzG9PR0Q2S54QpJXdcxPT2N5eXlLZ3H7XZjYGAADgcXQKbK0HUdU1NTCIfDWzqP2+3G4OAg7Pb6WV5ECAF95gSyIz8q+EUGuXuHMUzobytz6+h8zPL6hBDQpo9DHflRwft5y907jTmUzLLlGjHLDVVI6rqOM2fOIB4vcMmFTdhsNuzYsYPFJFlO13WMjY0hkUiU5Hz1mmWh69AmR6CO/hgiGS3oM0rfMGzD74Dsay5v4wgAs1woI8tHc1kubAkspT+XZW9zeRtHAABN0zA2NoZkMlmS89ntdgwNDVV9lhumkBRC4MyZM4jFClyDrkB2ux07d+6suTkNVLuY5eIJTYU2/gayx34CpAsoWCQJyuB+2Icvh+Tylr+BDaqcWd61axcUpf7WXBSaCu3MG8geewXIFFCwSHIuy+9glstICIGxsbGSdVTlORwO7Ny5s6qz3DCF5OLiIqanp8ty7kAggIGBgbKcm+h8oVAIMzOFvVBSrHrPslCzUE//AuqJVwvbXUSxw7bnbcZWdVzUvOTKmeXm5mb099fvi1RFZ9lmh23P240dn5jlkgsGg5idLezlqGJVe5bLVkjOzMzgd3/3dxEKhaAoCn7zN38TN954YzkutalMJoPjx4+jnDXz4OAg/H5/2c5PBDDLpSKyaagnf27sLqJlNz1e8gRgP/BuyF1DNTMBvtpZkeVt27ahqampbOevBkaWfwb15H8UlmVvAPaLmOVSSqfTOHHiRMNmuWyF5Pz8PEKhEPbt24dQKIRbbrkF3/zmN+HxeMpxuQ3NzMwgFAqV9RpOpxO7dnFxWCqO0DRIRQxZTE9PY3FxsYwtAlwuF3bt2lXWa1QLkU5APf6qsf+xvvnblXLHAOwH3gO5iS8xnI9ZriyRTiB7/KfQxl4vMMuDuSy3WtC62lJslqemprC0VNhLfWa53W7s3LmzrNcwq2x7LHV2dmLfvn0AgLa2NgQCgS2/xWSGrutl/wUDxhNJqSbYUuMY/S//CbP/52loqc2zo2maJVlOpVIle/Gh2klOD+wH3g3XtXdD2XYxIG18S9QXJpB+8e+Ref0liMzG63U2mtHP/A5m//EZaJusYwpYm+VGuS9LTg8cB94D17W/AmXbAWCTTg19YRzpF/8OmcP/xiyfZ+R3P425r/0f6Jus/QgYWd7qKjCFyC/MX42KLiR1XccNN9yARx999Jyfv/zyyzhw4ACef/75Cz7z+uuvQwiBnp4e8y01KRKJQNd1S65lRZiovqjhZUz+9V/h9V+9c9OCMhqNlnXoZLVGy7Lk9sFx6dVwXnMnlL49Gx8sBLTTv0DqX/8G6unXICy6v1S77PISJr/4Bbz+iTs2LSgjkQizXCaSuwmOS6+B8+q7oPTu3vhgIaCd+g8jy2OvQwhmGQCyS4uY+H//J17/xJ2bFpTMssmh7a9+9as4dOgQXnjhBQQCAYyMjOD222/HJz/5Sdx7773nHLu0tIQ77rgDf/AHf4A3v/nNJWt4oawY1s5zOp1omy5saysiAJh44gvILp7Npy3QjO6Dt6Hjl26C4nKfc6wVQ4F5jZ5lPboEdeIokIxsfrC7CbaBvQ0/3D3+//5PqKt6GW3Nzeg++DF0fOAmKC7XOcdamWWX04lWZrmILO9r+OHu8S/8BdTw8so/21pajCzf+MsXZNmKYe28ah3eNlVIqqqK66+/HrfccgsOHjyIW2+9Fddeey0efvjhc47LZDL41V/9VXz0ox/Fhz70oVK1uSgnT560tDs49V9+BzCxWw7RasaX8G25L2GjoGSWqRatVVCeOHFi0608S0UCkPzPnwbYc0xbZG9pRfdHjYJSdjoBWJxlScL+/fur7l0MU3MkbTYb7rvvPnz5y1/Gfffdh/379+Ozn/3sOccIIfCf//N/xuWXX16xIhIAstnN32IrJckfsPR6VJ/U5WVMfvGv8Pon7sTsPxpD3plMxtpG+KrzDUGqLUaWzx3ytvK+LADA67PselS/1hrytvK+LIQwta1zuZl+2eamm25a6R157LHHLlgs89VXX8W//Mu/4Lvf/S5uvvlm3HzzzRgdHd1aa02wfJnMKl40lGpPvqA8eehhy7NczFuLRJvJF5Qn//C/Wz+vlFmmEsoXlCf+8L9bfl+uxqW/Ta9KeujQIQDGHMi1Vlx/61vfipGREfMtKxGru4CFqlp6Papv7qEd6L39V9B8xZUYsfhBTGjMMpWOe8dOI8uXv9PIspU9K7wvUwm5d+xC7x1Glo8ePWppcVdtw9qAyULy8ccfx4svvoinn34a99xzD5599lnccccdpW5bSTidTqgW3UQkSQIi1i9xRPVndQEpycbAgdPptGxZHiPLBUzOJ9rE6gIyn2WHw2HZfF9JkoB4abdgpMa0uoDMF3ROp9OyLMuyXJVbJRb9ss0zzzyDP/iDP8BTTz2Fyy67DH/5l3+Jp59+Gt/+9rdht9vL1U7TZmdnEQwGLbmWy+VCt2rtnEyqbaf++BAy83Mr/+we2oHej9+F5ne+a+VLN8/KFQjcbje6shbPyaxF2RTUscPQZk9ufqzNCduOy6B0btt0jb9adPKPHkE2uLDyz2sVkHnMchXKpKCeeR3a7KnNj7XnstxRp1n+g4fPWU3DvWMXem+/y3iwP+//r5UrEHg8HuzYscOSaxWjqB7Jl156CY888ggee+wxXHbZZQCAu+66C1/60pfw3HPP4eDBg+Vo45ZYuZOO1+uFrwJrZVLtyr/5t1YP5Pk8Ho9lX75erxe+7upbZqIqXfwm6OF5ZF//N+iL0xsfGz4O2Z6C/dJrIHvr68U82eEAsHEBmccsV6lL3gR9eR7ZwwVkefk4ZHsa9kuurrssSytZvrAH8nwej8eyQtLr9VpynWIVXEgePnwYDz74IB566CFcd911Kz/3+Xy488478cQTT+CWW26pum5Xn88HRVEsedOppaWl7Neg+uIe2oG+X/nEhgVkXlNTE2RZtmSBfWa5OHKgE44rPwJt+jjUI9+HSK4/lKoHJ5B+8e9gG74cth2Xbfp7rxWeHTvR/4n7Nywg85jl6iU3r8ryG9+HSG2Q5dzuOLa9l8M2VE9Z3oWB+35jwwIyz+/3W5bl5ubmsl/DjLLttV1N5ubmsLCwsPmBW1CtXc5UX5jl6ifULNSTP4N64lVgkxeWpEAHHJddCznQaVHrqocV0468Xi+GhobKeo16JtQs1BOvGlneZP9uqbkTjkuvhRzosKh11cOKqRo+nw/bt28v6zXMqo/Hh020tbWVvae0q6urrOcnAqzJcnd3d1nPX+8kmx324XfAefVdkHs2HlIV4QWk/+0ryB75d4gGm1/d3t4Oucw9WLwvb41ks8O+93I4r7kLcvfGD5dieR7pf/sHI8sNtuJDo2e5IXokAWM/zPHx8bKcu62trSL7iFNjCofDmJgoz5ZvzHLpaTMnkXntRSAd3/A4yROA/dJroHQMWNOwKlDOLLe3t/OhqMS06RPIvP4ikN549QjJm8tye+NkeXl5GZOTk2U5d0dHBwvJalGOPTFdLhd27NhR9qcRotWY5doismlkj/wA2pnXNz1WGdgP+0XvguRwbXpsrRNCYGpqCsvLyyU9r9vtxtDQELNcBkaW/x3amcObHqsM7od9P7O8FbWQ5YYqJIUQmJycRDhcmrUenU4nhoaGYLOZXtedyJRSZ9nlcmH79u3McplpoSlkf/GvELFNHgIcbtgvvgpK7+6qXIC4lIQQmJiYQKRE65a6XC4MDQ1V3Yuf9UYLThpZji9vfKDTA8fFV0Hu2cUsF6lWstxQhSRg/KIXFhYwPz+/pfP4/X709fVV/S+Y6pcQAvPz81t++YZZtpbQVKjHfwr1+E8BsfGbnnLXdmN5FXd973teqiwHAgH09vYyyxYRmgr12E+Ml3E2y3L3EBwXvxcSs1yQWspywxWSeclkEpOTk0in00V9TlEU9Pb2IhCor3WzqHYxy7VJj4SQ+cV3IZbmNj5QscO+/51Qtl8MSare4a1S2EqW+/r64Pf7y9Qy2ogeCSLzH9+DWN4kyzY77PuuzGW5vnsnE4kEpqamis6yzWZDb29vTWW5YQtJwHhySCQSCIVCiEajG+6X6fF40NraurJmFFE1EUIgHo9jcXGxoCy3tbWtrOVHlSOEDu3068ge/QGgbfzWttzSDful10L2t1nUusowk2W/31/3hUm1M7L8GrJHf1hAlntgv+wayE2NkeVQKIRYLFa3WW7oQnI1IQTS6TSSySTSWRXJrIaA2wGXywWXy8UvXKoZq7OcymaRzurwM8tVTU9EkX39BehzYxsfKMmw7X4rbHveBkmu/iGvrTony5ks0poOv4tZrmZ6IoLsay9Anz+z8YGSDNuet8G2+60NmeWMpqOpTrLMQnINP51cxkw0hZv2cekIqm0/mVzGfDSNX9pXvUtHkEEIAW36OLKvvwRkkhseKwU64XjzdZCbWi1qXeW9MrGEYDyDD+xllqudEALa1DFkD78EZFIbHis1dxlZ9jXODkQ/Hl/CYjKLG4frYyOC2i2ByySt6nh9NoLpSBrTkY3/ABBVs5Sq4fBsBJORFGajzHK1kyQJtr49cF1zJ5SBfRseK8LG4s/q6V9sOFxWL1JZDYdno5gIpzAXLW7OGVlPkiTY+ofhuvouKP17NzxWLM8h/dL/hjr2ekNkOZnVcHguivHlJOZj9ZFlFpLneX02goxmhPnVqeXKNoZoC16fjZ7N8mRplgmi8pMcbjje9H44rvgQJM8GE+41FdnXX0Lmx/8Ekdp4sfNa99psBFmd9+VaIzndcLz5OjguLyDLr72AzCtfh0htvNh5rXttJgJ1Jcv1cV9mIblKvjcyj72SVKvyvZF57JWsPUrHIJzvvQO2XW8BNph8r8+fQerFv4M2c9LC1lkn3xuZx17J2qN05rK8880ANsjy3JiR5dlT1jXOQvneyLx66ZVkIbnK6t7IPD79Ui1a3RuZx17J2iPZ7LDvvxLOd98GaaM5ZJkUMj/5BjL/8V0INWNdAy2wujcyj/fl2iPZ7LBf9C4433PrJllOIvPKPyPzi+/VX5ZX9Ubm1UOvJAvJnPN7I/PYK0m15vzeyDz2StYuubkTzqs+DmXo0g2P08aPIP3i30NbnLGoZeV1fm9kHnsla5fc3AXnez4GZfslGx6nnXkD6Zf+N/Q6yfL5vZF59dAryUIyZ63eyDw+/VItWas3Mo+9krVLUmxwXHwVHJffDDi96x4nEhFkvv8ssiM/gtA1C1tYemv1Rubxvly7JJsdjkveC8flHwScnnWPE/Ew0v+ez/LGO+dUu7V6I/NqvVeShSTW743MY68k1Yr1eiPz2CtZ+5TObXBdfTvknp0bHCWgHnsF6e8/C32zfb2r1Hq9kXnslax9Sud2uN57B+TuDbIscln+92egx5Yta1sprdcbmVfrvZIsJLFxb2Qen36pFmzUG5nHXsnaJznccLz1A7Bf9n7AZl/3uFpeWmWj3sg83pdrn+R0w/G2D8B+2fsAZYMsL80h/dLfQx07XHtZ3qA3Mq+WeyUbvpDcrDcyj72SVO02643MY69kfZAkCbbBfXBedTvk1p71D6zBpVU2643MY69kfTCyvB/O994OuWWzLP8rMq/8M0S6NrK8WW9kXi33Sjb8zjaRVBYzuRvRkbko5uPnviXmUCS8c5uxe0TAZUd3k9PyNhIVYnWW35iLYuG8LDsVGVdsM96WbHbb0eVjluuFEDrU469CHf0xIDaYS+Zww3HZtVC6d1jXOBPCqSxmc1k+PBtFMHFull02GZcPGllucdvRySzXDaHrUE/8FOroKwVk+X1Quoesa5wJq7P8+mwEocS5+5DXQ5ZtlW5ApflddvhdRnf6xHLygkLSJssY7vBVomlERVmd5fHl5AWFpE2RmOU6JUky7HveBqVzGzI/+xbEevMic0urKNsugv2id0OyOaxtaIECLjsCuSyPLSUQPK/zySYzy/VKkmXY97wdSkcuy/HltQ/MJJF55etQth3IZXn9YfFKWp3l04uJCwpJh1L7NUbDD20TEdULubmzuKVVlucsahlRceSWLmPJq20Xb3icduZwLsvzFrWMzsdCkoiojqwsrfKOApZW+f4zNfkiDjUGyWaH49Kr4XjHTYDDve5xIr6cy3LtvYhTD1hIEhHVIaVrO1zvvR3yRvMhdR3Z115A9mffrrtdRKh+KF1DcF19B+SN5kPqGrKv/SuyP/8OhJpd/zgqORaSRER1SnJ64HjbL8F+6bUbLq2iTY0i/fLT0KOLFraOqHBGln8Z9kuv2TjLkyNIv/yVml0/tRaxkCQiqmOSJMG27SI43/txyC3d6x4nootI/9tXoE6OWtg6osIZWT4A51Ufh9TSte5xIrqI9Ev/AHXqmIWta1wsJImIGoDsbYbjyoOw7XrL+gdpWWR/9i1kXnsBQlOtaxxREWRfM5xXfhS2nW9e/yAti+yr30Tm9ZdqfqvQasdCkoioQUiyDPv+K+F4+y8D9vXXq9PGXkf635+Fnth8gXuiSpBkGfaL3gXH234J2GAZK+30L3JZ3nxRcDKHhSQRUYNRunfA+Z6PQQp0rHuMWJ5H+qX/DW3utIUtIyqO0rPTGOreKMtLxlah2vyYdQ1rICwkiYgakOwNwPmuj268Tl82jcyPv47s0R9A6BvsMkJUQWezfNH6B2VTyPzon5Ad+RHERjvmUNFYSBIRNShJscFx6dWwv+k6QFl/ozP1+E+R+dHXIFJxC1tHVDgjy9fC/qb3b5zlY68g88Pnamav7lrAQpKIqMHZBvbC+e7bIPla1j1GD04i9dI/QAtNWdgyouLYBvbB+e5bIXmb1z1GD04g9dL/hhaatq5hdYyFJBERQfa3wfme26D07Vn/oHQcmR/8I7LHX+UOIlS1ZH+7keXe3esflIoj84P/g+yJnzHLW8RCkoiIAACSzQH7m6+H/eKrAGmdrwchoB79d2R+8s8Q2bS1DSQqkGR3wv6WG2A/sEmWj3wfmZ/8C7O8BSwkiYhohSRJsA1dCue7DkJyN617nD57GumX/jf05XkLW0dUOEmSYNtxKZxXfgSS27fucfrsSaRf+gfo4QULW1c/WEgSEdEF5JZuOK/6GOTObeseIxIRpL//DNTxIxa2jKg4cmsPnO/5OOSOwXWPEYkw0i8/DXXiqIUtqw8sJImIaE2Sww3HOz4I294rAEhrH6RryP7Hd5E5/G9cIoiqluR0w3H5zbANX77+QbqG7M+/g+zhl5nlIrCQJCKidUmSBPuet8FxxYcAh3vd47RT/4HMj56DyCStaxxRESRJgn347XBc/iHA4Vr3OPXUz5H58T9BZFLWNa6GsZAkIqJNKR0DcF31ccitveseowcnkP63r0CPhCxsGVFxlM5BI8stPeseoy+MI/3yV6BHFy1sWW1iIUlERAWR3D443nkLbDvftO4xIhFB+uWnoc2ctLBlRMWR3E1wXPlhKDsuW/cYEQ8j/fJXoM1ym9CNsJAkIqKCSbIC+0Xvhv3N1wGysvZBWhaZn3wD2WOvnLNGnx5e4Jp9VDUkWYHjwHuM3XDWy7KaReaVryN77CfM8jpYSBIRUdFs/XvhfNdBwOVd9xh15EfIvvo8hJqFnogg/cOvQl84Y2EriTZnG9gH55Uf2STLP0T21W8aWY6Hc1mesLCV1Wv9DSmJiIg2IDd3wfWejyHzk29AX5pd8xht+gT02DIgBJBJQT31Cyid2y1tJ9Fm5JZuuN7zMaR/8g2IdbN8HHp8GdA1I8un/wNK5/pLCjUK9kgSEZFpkssLxzs/DGVw/7rHiEgQImq8gKPPn+ELDFSVJJcXznd+GMrAvnWPEeEFiFx+9bkx4yGpwbGQJCKiLZEUG+yXXpvbjm6d9SZXUU//woJWERVPUmywX/Y+2C96N9ZdO3UVZpmFJBERlUB+OzrH5R8C7Ouv0QcA2sRRrtFHVUuSJNh2vgmOK24G7M4Nj9XGjzT8Pt0sJImIqGSUjgE433MbJF/L+gdpKrdVpKqndAzC+e7bIHmb1z9Iy0Jr8CzzZRsAmUwGkUgE2+0J9AZSELoGIQBJlmBzODE/Pw+fzwe32w2pgGEbokpJp9OIRqMYsiXQF0hB1zQAzDJZTJI27XHUxl6DbedlkKS1+zPyWd5pT2LAn4Se27JOkmVmmawjSRDZjbOsjr0GZcdl6+Ywn+VdjiQGN8iyx+MpefOtIIkGXggpFoshGAwiFosVdLzT6URbWxtaWlp446KqEovFsLCwgHg8XtDxTqcT7e3taG5uZpappISaQfrlZ1ZertmI4+03QekeOudn0WgUwWCQWaaKE9k00t9/ZuXlmo04Lv/gBasRFJtll8uFtra2mstyQxaSmqZhenoa4XDY1Ofdbjf6+/vhdG48d4Ko3FRVxczMDLNMVUMIHSISgr44DT00DW1xGkit/UUqdwzCecWHADDLVH0uyHJoGkivk+XO7XBe/kEARpanp6cRiURMXbfWstxwhWQqlcLY2BhUVd3yuQYGBhAIBErQKqLipVIpnD59Glpu+NosSZLQ39/PLFNZCCEgEpHcl/EU9OAUROJssei85i6kFRfGxsaYZapqK1kOTUNfnIIenIRInC0Wndf8CtKKs2RZHhgYgN/v32qzy66hCslUKoVTp06tzE8ohf7+fjQ3N5fsfESFKEeW+WBEVtGTUejBKeihSWS8bRjPOpllqkl6Igo9NAk9NIWMrx1n0vaSbp1YC1lumEJS0zQcP368JD2R59uxY0fNTpKl2qOqKo4fP77lJ9617Ny5E263u+TnJVoLs0z1opGz3DDL/8zMzJSliASAycnJkj5NE21kZmamLDcrAJiYmGCWyTLlzDLvy2Sl6enpsma5mvv8ylZIxmIxfOQjH8HNN9+Mm266CU8//XS5LlVQW5aXl8t2/kwmg4WFhbKdnygvFouZfhmhEJlMBsFgsGznJ8qLRqNlzXI6nWaWyRKRSMT0izWFqPYsl62QdLvd+Nu//Vs899xzePrpp/FXf/VXWFpaKtflNmTFLyAUCvHpl4oWeeNIUU+aVjywMMtkRrFZtuq+XM09OVSdmOXilK2QVBRlZUw/nU5D1/WK/EfIZDIFrxO5Fbqul/WJhOrTyMP/F352z68h9O8/3PTPRzqdLng9sq3QNI1ZpqId/ezD+Pkn7sfiD3/ELFNNO/J7/w0/v/cBLP7olU2znEqlkEgkyt4mVVWrNstFF5K6ruOGG27Ao48+es7PX375ZRw4cADPP//8ys8ikQg++MEP4qqrrsKv/dqvobW1destLlI0GrXsWtX6S6bqFn3jCF7/1O9sWlAyy1TtIq8fxmu//elNC0pmmapd5LXX8dpvfWrTgtLKLFt5rWKYemv7q1/9Kg4dOoQXXngBgUAAIyMjuP322/HJT34S99577wXHB4NB/NZv/RY+//nPo729vSQNL9Tk5GRZ50euZrPZoP71U5Zci+rD0o9fgXbe02zTRfux/f5fQ+s7Lz9nd4OJiYmyzilbzW6zIcssUxEWf/gj6Klzt5LzX3wA2++/Fy2Xv+OcLI+Pj1tW4DHLVKw1s3zJAWy//9fQ8o63VyzLDocDe/bsseRaxTBVSKqqiuuvvx633HILDh48iFtvvRXXXnstHn744XU/8/DDD+Pyyy/HjTfeuKUGF+vYsWPIZDKWXS/0m5+CsKCbm+rf+QWl5Vn+9d+GSG28xyxRIc4vKEdHR5HNZi27fvD+TwIW/tmh+nV+QWl1lvfv3w9Zrq4Fd0y1xmaz4b777sOXv/xl3Hfffdi/fz8++9nPnnPM6j2sY7EYfvrTn2JoaGit05VVuV7HX4/k9Vp6Papf5w95W55lH7NMpXH+kLfVWZZ5X6YSibx2GK/91oP4+b33Y/FHP7Y8y1ZfrxCmy9qbbroJyWQSAPDYY49BUZRz/v3s7CzuuOMOfPCDH8THP/5x3HHHHdi7d+/WWlsL5NrZaJ1qQ3J8AtGjI9a/rCYxy1RaiTNnED0yYv2FmWUqscSZ8crcl6uQzewHDx06BABYWlq6oIgEgAMHDuC5554z37ISkWXZ0gpe5Iproq2yNTWh/46Po/9jH4XN58Po6Kily/KIJIe1qTRs/iYM3HE7+m77KGw+L0ZGRqzNcor3ZSoNW8CPgTtvR9+tB2HzGlku12Yna6m2YW3AZCH5+OOP48UXX8TTTz+Ne+65B88++yzuuOOOUretJNxut2XzF2RZhsPjBTwcRqHCpBcWgPMedM4vIPNcLpdlWVZkGQ6fD1h1faKNrJnlgB8Dd3wcfbcaBWSe2+227A1URVHg8AcAf3XvV0zVY90sryog81wulyVLDALGtMK1Ou4qrehC8plnnsGTTz6Jp556Cnv37sXdd9+NL37xi7j11ltht9vL0cYtcbvdlr1R5fF4sP+fv2rJtag+vHLwY0iMnQGwfgGZZ+WXr8frxT5mmYrw41s+iuTEJID1C8g8S7Ps8TDLVJQf3fwRpKamAaxfQOa53W7LCkmPx2PJdYpVVCH50ksv4ZFHHsFjjz2Gyy67DABw11134Utf+hKee+45HDx4sBxt3BKfz4e5uTnLrkVUrM0KyDyfz4f5+XlL2sQskxmbFZB5zDJVu80KyDyfz2fZFsnVmuWCC8nDhw/jwQcfxEMPPYTrrrtu5ec+nw933nknnnjiCdxyyy1V1+3qdrvhcrmQKvMyJpIkoaWlpazXoPozcPdd6Lj6qg0LyDwrs9zc3FzWa1D9GfzVu9FxzdUbFpB5brcbTqcT6XS6rG1ilsmMbZ+4Bx3vu2bDAjLP4/FYluVAoDqnZ5haR7LWLC8vY3JysqzXaG5uRn9/f1mvQbS0tISpqamyXqOlpQV9fX1lvQbR4uIipqeny3qN1tZW9Pb2lvUaRFZkua2tDT09PWW9hlnV9/pPGQQCgbLOLZBlGd3d3WU7P1Fec3Pzyh725aAoCrq6usp2fqK8lpaWsme5s7OzbOcnymtpaYHL5Srb+as9yw1RSEqShL6+vnO2NSqlvr4+2GymV1IiKpgkSejv7y9blnt7e5llskS5s8z7Mlkln+Vy6evrq7ppg6s1RCEJAE6nEwMDAyU/b3t7e9XOW6D65HQ6y3LT6ujoYJbJUuXMst/vL/l5idbjcrnKUmN0dnZWfZYbppAEAL/fj8HBwZKdr729ncOAVBGBQKCkN62Ojo6qHjqh+sUsU70IBAIlfTDq7OxER0dHyc5XLg3xss35kskkJicnTb9lpSgKent72XtDFccsU70oRZb7+vqqvveG6l8ikcDk5CQymYypz9dalhuykAQAXdcRCoUQDAYL3kIxv5REV1cX595Q1TCb5ZaWFnR2djLLVDV0XUcwGEQoFGKWqaY1UpYbtpDME0IgEokgEokgkUhcsAWdoijweDzw+Xxobm6u6gmv1NiYZaoXuq4jGo3mshxHNnvuXsY2RYGbWaYaoOs6IpEIotFo3Wa54QvJ1dI//jqyUyegKzYAEiRdheJwwvNLv1HpphEVJf2jf0J2+uQ5WbY53XB/4IFKN42oKOkfPofszKlzs+zywH3j/ZVuGlFR0j/4KrKzY+dm2e2F+4b7Kt20LamdvlOLyEKDrK7uhnZWrC1EW3FhlolqE7NM9aIes9xQb20TERERUemwkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKbYKt2AShOZJEQyZvx9Nn3hAboOPbxg/L3dCdnjt7B1RIXbLMtC11Zl2QXZ02Rl84gKJtJJiNRG9+VVWXa4ILuZZapO52RZzVx4QB1kWRJCiEo3opL0eBipb/01IPRNj3W8/ZdhG9hrQauIiqfHlpH69pcKy/I7boKtf9iCVhEVT48t5bK8+deT4/KbYevbbUGriIqnRxeR+vaTAArI8hUfgq13V/kbVWINP7QtewOwbT+w6XFSUyuU/j0WtIjIHNnXDGXbRZseJ/nbofQxy1S9ZF8LlMH9mx4nBTqg1OAXLzUOuakVyuC+TY+Tmjuh9Oy0oEWl1/CFJADYht8BSBv/p7DveyekTY4hqjR7QVm+ApIkWdQiInPsey8HNsmpcV9mlqm62fdeDqB+s8zKCJv3SrI3kmrFZr2S7I2kWrFZryR7I6lWbNYrWcu9kQALyRUb9UqyN5JqyUa9kuyNpFqyUa9kLffgUOPZqFey1rPM6ihnvV5J9kZSrVmvV5K9kVRr1uuVZG8k1Zr1eiVrvTcSYCF5jrV6JdkbSbVorV5J9kZSLVqrV7LWe3CoMa3VK1kPWWaFtMr5vZLsjaRadX6vJHsjqVad3yvJ3kiqVef3StZDbyTAQvICq3sl2RtJtcx+TpbZG0m1a3WvZD304FDjWt0rWS9ZZpV0nnyvJHsjqdbleyXZG0m1Lt8ryd5IqnX5Xsl66Y0EuLPNOYQQSKfTyMYjENFF2Lu2wel0QpZZb1NtWclyLAwRW4a9a5BZppp0NsvLEPEI7J0DzDLVpJUsR5cgklHYO+ojyw1fSKqqiqWlJUQiEaRSKaz1n8PhcKCpqQmtra1wOp0VaCXR5phlqheFZNnpdKKpqQktLS3MMlWtfJbD4TDS6XRdZrlhC0lN0zA7O4ulpaWiPuf1etHb21uTv2yqT6qqYnZ2FsvLy0V9jlmmamM2yz6fDz09PcwyVY1GynJDFpLRaBSTk5PQNM30Obq6utDe3l4XE2WpdkUiEUxNTZnOsiRJ6OrqQltbG7NMFcUsU70Ih8OYnp5umCw3XCEZDAYxOztbknP5/X4MDAzUxC+a6k8psxwIBNDf388sU0UsLCxgbm6uJOdilqmSSpnl5uZm9PX1VX2Wa3uGZ5FCoVDJvngB4wl6cnJyzTkPROVU6iyHw2FmmSoiGAyW7IsXMLI8NTXFLJPlSp3l5eXlmshywxSSyWQSMzMzJT9vOBzG4uJiyc9LtJ5EIsEsU11IJBIlfSDKW15eLnr+O9FWxOPxsmW52HmWVit7IZlMJnH11VfjT/7kT8p9qXXpuo7JycmynX92dhaZTKZs5yfKY5apXpQ7yzMzM8wyWaLcWZ6enkY2my3b+beq7IXkF77wBVxyySXlvsyGlpaWkE6ny3Z+IURZnkSIzre4uFjWL0dmmaxiRZZLOcxItJ5QKFTWQq/a78tlLSTHxsZw6tQpXHXVVeW8zIaEEAiFQmW/TiQSqeonBqpOs8/+PdKz0wUdyyxTNZt9+m+Rnivsy86qLIfDYaiqWvbrUH2ZffpvkZ4vPMtWTAmq5iwXXUjquo4bbrgBjz766Dk/f/nll3HgwAE8//zzKz/7kz/5E/zO7/zO1lu5BYlEwrLhDc7JoWIt/du/4uhv34vxv/izTQvKeDxuWYFX7XNyqPosvvQ9HP3tT2D8f35u04LSyizzvkzFWnzhOzj6W5/AxF8+vmlBGYvFGv6+bCv2A7Is44EHHsChQ4dw//33IxAIYGRkBJ/61Kfw6U9/GjfeeCMA4Lvf/S62b9+OoaEh/PznPy95wwsVj8ctu1YsFkNHe7tl16M6IASg61j8129j8cXvovW970PXRz4OZ3fvBYdaneX2tjbLrkf1QACahsXvfROLL34Hre99P7o+/DE4u3suOJJZpupmZDn03ecReuHbaL36/ej68Mfh7Oq+4EjLs1yFNYapdSRVVcX111+PW265BQcPHsStt96Ka6+9Fg8//PDKMX/2Z3+Gf/qnf4KiKIjH41BVFb/6q7+K3/qt3yrp/4HNnDlzBtFo1JJryZKEzO9XtgeW6oAsr1lQjo2NIRaLWdQEGZn/9mlLrkV1TFHWLChPnz5t2Rcws0wloShrFpRWZllRFOzbt8+SaxXD9ILk//AP/4DPfe5z6OzsRF9fH/7iL/4CiqKseew//uM/4vjx4/jMZz6zpcaaMTo6aul8L/X/eQSIRiy7HtWx8wrKkZERS+fIqI/+dyBmzUMY1bnzCkrLs/wnvw8krOs5ojp2XkF59OjRLe2SV6x9+/atW2tViumXbW666SYkk0kAwGOPPVZ1/8fydF239oIOh7XXo/qVG/I++tv3Yvx/fs76LNuZZSqR3JD30d/+BMb/klmmGqZpWPyukeWJv/oflmfZ8j87BSh6jmTeoUOHABgTmTcrIj/84Q+bvUztqcJfMtUwSULzFe9B500fRjyWsPbazDKVkiSh+Z3vQedNH0EsYs0UjRW6dT1G1ABkGS1XXoWOX7oF0Uis6neeKTdTheTjjz+OF198EU8//TTuuecePPvss7jjjjtK3baSsNvtlnY7w8KJt1THJAnN77wK3R+9Ha6BbQAA2/Hj1maZQ4FUCpKE5iuvQvdH74CrfxAAYDt2zNrFwpMWP4RRfZJltLzrvej6yMcrluVqHP0tupB85pln8OSTT+Kpp57C3r17cffdd+OLX/wibr31Vtjt9nK0cUvcbjdSqZQl17Lb7Wi54ZctuRbVh8V//Ra01S/QrFFA5rnd7rIurL+aw25Hy403WXItqg+h734T+uqHD0kyvnQP3r7ypZvn8Xgs+/J1OBxo+cDNllyL6kPou89DT6x6+Mj1QK6VZbfbbVmWnU4nZLn6drYuqpB86aWX8Mgjj+Cxxx7DZZddBgC466678KUvfQnPPfccDh48WI42bonb7bZsHTGPx4O+u++35FpUHyKvvmIUkhsUkHlut9uydcQ8Xi+zTEUJv/JDZBLxDQvIPEuzzPsyFSn8o39HJpFYswfyfG63G+Fw2JJ2eTweS65TrIILycOHD+PBBx/EQw89hOuuu27l5z6fD3feeSeeeOIJ3HLLLVXX7er3+zE9XdjOIVsVCAQsuQ7VD0mS0HzlezcsIPP8fj9mZmYsaRezTMWSZBkt7756wwIyj1mmqibLaHnPNRsWkHl+v9+y7QurNcuml/+pJRMTE2V/YrDZbBgeHoYkSWW9DtWXTCgIR1vhC8yOj48jEinv8lJ2ux179uxhlqkozDLVi2KzbMV61dWc5eobbC8DK1aC7+joqMpfMFW3Ym5WgDVZbm9vZ5apaNWYZd6XyQxmuTgNUUi63e6y/qLdbjdaW1vLdn6iPI/Hg7YybvfGLJNVyp1lj8eDlpaWsp2fKM/r9Zb1vlntWW6IQhIAOjs74XQ6S35eSZLQ399ftU8KVH+6urrgKMPC98wyWY1ZpnrR1dVVlpVrZFmu+iw3TCEpyzK2b99e0l+0JEnYtm1bWQpUovXks2yzmd5P4AKSJGH79u3MMlmqnFkuR4FKtB5FUTA0NNSQWW6Il21Wy2azGBsb2/J6fIqiYHBwEF6vt0QtIyoOs0z1IpPJ4MyZMyXJ8rZt26p2mRSqf5lMBmNjY1teW7KWstxwhSRg7FUZDAYxPz9v6vN+vx+9vb0lffIgMkPXdSwsLGBhYcHU55llqhZbzXIgEEBPTw+zTBWn6zrm5+cRDAZNfb7WstyQhWReOp1GKBTC0tJSQXtlNjU1oa2tDT6fz4LWERUulUphcXGx4Cz7/X60trYyy1R1zGS5ra2NPepUdVKpFEKhEJaXl+s6yw1dSOZpmoZ4PI5kMolkMglN0yCEgKIocLlccLvd8Hq9VbkFJNFq52dZVVUAYJap5jDLVC/qPcssJImIiIjIlIZ5a5uIiIiISouFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTbJVuQLXIZrNIJpNIJpPQNA0AIMsyXC4X3G43HA4HJEmqcCuJNscsUz0QQkBVVWaZap4QAtlsFqlUqi6z3NCFpK7rCIfDCIVCSKVSGx5rs9nQ2tqK1tZW2GwN/Z+NqlCxWW5ra0NLSwuzTFVH13UsLy8jFAohnU5veCyzTNWsmCzb7Xa0trbWZJYlIYSodCMqIRqNYnJycuXJoBhdXV1ob2+v2acHqi+RSARTU1NFZ1mSJHR1daGtrY1ZpqrALFO9CIfDmJ6ebogsN1whqes6pqensby8vKXzuN1uDAwMwOFwlKZhREXSdR1TU1MIh8NbOo/b7cbg4CDsdnuJWkZUHGaZ6kUjZrmhCkld13HmzBnE4/GSnM9ms2HHjh0sJslyuq5jbGwMiUSiJOdjlqlSmGWqF5qmYWxsDMlksiTns9vtGBoaqvosN8xb20IIjI+Pl6yIBABVVXH69GmoqlqycxJtJp/lUn3xAswyVUY5s2xm2hKRWfksl6qIBIwXJ8fGxqo+yw1TSC4tLSEWi5X8vNlsFjMzMyU/L9F6FhcXmWWqC8wy1YtQKFTSjqq8TCZT9Vku66tB+/fvx+7duwEABw4cwB/+4R+W83LrKvcvIhwOIxAIwO/3l+0aRICR5dnZ2bKdn1kmq5Q7y8vLywgEAmhqairbNYgAIJ1OY25urmznr/Ysl7WQbGpqwnPPPVfOSxQkFAqh3FNB5+bm0NTUVDNvWVF1ELoOSS58YCAYDJY9y/Pz8ywkqWjVmOX8fZmoGNWY5fn5+arNct0Pbeu6jqWlpbJfJ51Ol3RuBDWGzCtfh3rqPyDU7KbHappmSZZTqVRJ56xRY8j8+Dmop34BoVVXlnlfpmJlfvwc1NO/gNA2nzOuadqWV4EpRH5h/mpUdCGp6zpuuOEGPProo+f8/OWXX8aBAwfw/PPPr/wsHo/jwx/+MD7+8Y/jlVde2XprTYhEItB13ZJrWREmqjPpBNSRHyL94t9tWlBGo9GyP/XmMctUtHQS6sgPkH7h7zYtKCORCLNM1SsVh3r0B8Z9eZOCklk2ufzPV7/6VRw6dAgvvPACAoEARkZGcPvtt+OTn/wk7r333pXj5ubm0NXVhWPHjuGBBx7A17/+dfh8vpL+H9jMzMwMQqGQJddyOp3Y4bXkUlQnskd/AKRX9f453LDtuAzK4EWQbOeuHzY9PY3FxUVL2uVyOjHELFMRskf+Hcis6jFxuGHb8SYo2/ZDUiqYZZcLQ56GWeWOSiB75PtAZtUOYQ43bDvfBGXwwixPTU1Z0rsOGGtL7ty505JrFcNUIamqKq6//nrccsstOHjwIG699VZce+21ePjhh9f9zK/92q/hU5/6FC6++OItNbhYJ0+etLQ7eOf49yGBNy3aojUKSmaZatIaBeWJEyc23cqzVCRJwo4z/wbOXqctc3rO3pcV4xUTq7O8f//+qnsXw9QcSZvNhvvuuw9f/vKXcd9992H//v347Gc/e84x4XAYmUwGADA7O4uTJ09iYGBg6y0uUja7+XydUlKV6l44lGpEJnnBkHf+z5NVVKX6d1SgGpC5cMjbyvuyEAKazCxTCaQTFwx5W3lfFkJU5ZqSpt/avummm/BHf/RHAIDHHnsMiqKc8+9PnjyJhx9+GJIkQZIk/Nf/+l/R3Ny8pcaaYfXGPUKq+/eXyEq5glIPTkD4LB7SYJaplHIFpZHlHZZemvdlKqlcQakHJyE82y29dDVuRmi6kDx06BAAY6Hv84tIAHjzm9+Mr3/96+ZbViJWdwFLwpoXe6gxSE1tsO1+K+SuIUgjI9Zem1mmEmKWqV5I/nYjy53bIR09amlxV23D2oDJoe3HH38cL774Ip5++mmoqopnn3221O0qGafTadm1JElCFBxCoa2Tmtpgf/P1cLzro1C6d0CSJMuzHAGnadDWrZVlK/cONu7L1v3Zofol+dthf8sNcFx5EErXkOX3ZVmW1+y4q7SieySfeeYZPPnkk3jqqaewd+9e3H333fjiF7+IW2+9FXZ79RVRbre7LNsWrUWy2fFc4N1od0rYE7Bhl1+B21Z9Tw9UPTI//w6QjK788zm9Nuc9ebrdbsvWd5RsDiPLLgnDfht2Msu0iczPvgWkzt5rjSy/DXLX9guy7PF4LHtxTLI58LXmd6PDdfa+7FKYZVpf5tVvnrOahuRvh23XW9fMstvttizLLperKnskiyokX3rpJTzyyCN47LHHcNlllwEA7rrrLnzpS1/Cc889h4MHD5ajjVvi8Xgsu1ZEM54UgmmB4HwWP1rIYrDZjb0dPgw2e6DI1RcAqixJViCwcQGZ5/F4LFvKKpzPckogmMrihwtZbGv2YLjDh8FmN7NMF5Bk26osr11A5lmZ5WXNGHhbSAkspLL44XwW21o8GG5nlmltK/fl1UPYG2TZqqWsvN7qXJOt4ELy8OHDePDBB/HQQw/huuuuW/m5z+fDnXfeiSeeeAK33HJL1XW7+nw+KIpiyZtOx2Ln/rMugLGlJMaWknDZZOxu92K4w4d2j6MqnyrIepK/Hbbhd2xYQOY1NTVBlmVLFtg/vkaWTy8lcHopwSzTmiR/G2x7r9iwgMyzNsvntkUXwOnFBE4vGlne0+7DcIcX7V4Of5NB8rfDtv/KDQvIPL/fb1mWK/HCciFMrSNZa+bm5rCwsFDei9gceHm5sHk/rW47hjt82NPuhcdR1u3Oqc5YkWVhc+L7y4VNU2nzGFne3eaDx1FdD5FU3WZnZxEMBst6DVNZbvfBY2eWqXBWbHzi8/mwffv2sl7DrIYoJFVVxfHjx8vaKzkFP07FinsikQAM5Ia+t7W4YStik3hqTFZkeQJ+jJnI8mCzG8MdPmxv4TQO2pyqqjh27FhZe3LG4ccZM1lucWO4nVmmwmSzWRw/frysWd65cyfcbnfZzr8VDVFIAsZ+mOPj42U5d1tbG9o6u3AqFMfIQgwz0XTR53AoMna1ebG3w4dOH4cLaX3hcBgTExNlOXdbWxvaOrpwcjGOUZNZdioyduWGvju9zDKtr5xZbm9vR0t750qWZ81k2SZjd5uR5Q5mmTawvLyMycnJspy7o6MDXV1dZTl3KTRMIQmUZ09Ml8uFHTt2QF7VmxhJZTG6EMNoMI5oev3N3tfT7LLlhr598Dk59E0XsirL4VyWj5nOsh17O3zY3eGFj9M46DxCCExNTWF5ebmk53W73RgaGlo7ywsxRDPF9+i3rJqS5GWW6TxWZrnaNFQhKYTA5OQkwuFwSc7ndDoxNDQEm23tm4oQAjPRNEYXYjgZiiOrF/+fuj/gwnCHD0MtHtiV6g0SWavUWXa5XNi+ffuGWZ6OpDAajONkKA61yCxLWJXlVg+ncdAKIQQmJiYQiURKcj6Xy4WhoaF1X/xcyfJCDCcXEyaz7MZwh5dZpnNYneVq0VCFJGD8ohcWFjA/P7+l8/j9fvT19RX8C85qOk4vJjCyEMNUpPgN3u2KhJ2txhBLT5OTQywEIQTm5+e3/PKNmSyfWkxg1GSWHYqEnbnhwm4fs0yly3IgEEBvb29RWT6Zy/K0ySzvymW5i1kmVC7LldRwhWReMpnE5OQk0uni5s0oioLe3l4EAgHT146mVRwLxjC6EEM4Vfxwod9pWxli8buqbxF4slbFs7wQw2jQXJYDLltu+RUfmjiNo+FtJct9fX3w+/2mrx1JZXEsaMynjJiYxhFYNSWJWaZEIoGpqamis2yz2dDb27ulLFutYQtJwHhySCQSCIVCiEajG+6X6fF40NraurJmVKmuPxczhr5PhOLIaMX/Knr9Lgy3e7Gzzcuh7wYmhEA8Hsfi4mJBWW5ra1tZy69U15+LpTGSm8ZhNst7O3zY0cppHI3MTJb9fn/JegOFEJiNnZ2SZCbLfX5jGgez3NjyWQ6FQojFYpZn2SoNXUiuJoRAOp1GMpmEms1AZFKweZrgcrngcrnKPtFV1XWMLSYxshDDZDiJYn8pNlnCjlZj55E+f3Vuo0TWOCfLmTRENm15lk/nhgsnwylTWd6Zy3Ivs9zQLsxyBjaPz7IsZzUdp5cSOLYQw0TYxJQkWcKO3GocnJLU2M7NcgpCzcLmti7L5cRCcg3amcPQw/OwX3JNRa4fz6grQyxLyWzRn/c5FAx3GMOFAQ59NzR17HWIaBD2i6+uyPW3muUmh4I9zDIBUMdeg4gtwX7gqopcP7YyJSmO5ZSJLDtt2JNbFotZbmzq6V9AJMKwX/SeSjelJFhInkeoGWRf+TqgZWG7+BrIzZ2Va4sQWIhnMLoQw/FQHGm1+MVOu5ucGG73YWebF05b7T7xUPFENo3sT/7ZyPIl10IOdFSuLauzHIwjrZnMcocPu1q9cDDLDcXI8tcBTYXt0vdB9rdXri1CYD6X5RMms9yTy/JOZrnhiEzKuC/rKmyXvR9yU1ulm7RlLCTPo505DG38MABACnRWrFfyfJoucGbZeOt7fKn4oW9FkjCUGy7sD7ggc4il7qljr0OfeAMAIDV3VaxX8nyaLjC2lMBo0FyWbbKEoZbcNA5muSGoY69BnzgCAJBaeirWK3m+lSwvxDC+bDLLrR4MtzPLjUI9/Qvok0cBAFJrb130SrKQXGV1b2RepXsl15LIajiee+s7lCh+iMVrV7CnwxhiaXEXtj841ZbVvZF5le6VXEsio+F4aAtZdii5t769zHKdWt0bmVfpXsm1JPLTOIIxLG4pyz60uDn0XY9W90bm1UOvJAvJVVb3RuZVU6/kWoK5IZZjwRhSJoa+O70OY7iw3QuXrfrXq6LCrO6NzKumXsm1BONpjC7EzWfZ58Bwuw+7271wMst1Y3VvZF419UqeTwiBYOLsNA4zWe7yOTHc4cWuNma5nqzujcyrh15JFpI5a/VG5lVjr+T5NF1gIpzE6EIMY0sJFLuJjiwB23PDhQMBNxSZQyy1aq3eyLxq7JU8n6YLjC8nMRqM4YzJLOeHvgea3RwurGFr9UbmVWOv5PmMLCcwuhDHmeXis6ysvi8zyzVtrd7IvFrvlWQhmbNWb2RetfdKni+V1XAiFMfIQgwL8UzRn3fbZexu82Fvhw9tXg4X1pq1eiPzqr1X8nyprIbjIeOtb7NZzg8XtnmY5VqzVm9kXjX3Sq4lueq+HDSRZY9dwe7cW9/Mcu1Zqzcyr9Z7JVlIYuPeyLxa6JVcy2IiP/QdRyKrFf35do8x9L273Qu3nUMs1W6j3si8WuiVXAuz3Fg26o3Mq4VeybWEEmenJCWzxQ99d+SnJLUxy7Vgo97IvFrulWQhiY17I/NqrVfyfLoQmAwnMboQx+nFOIrdrEGWgMFmN4Y7fNjW7OHQd5XaqDcyr9Z6Jc+nC4GJ5SSOBWM4vZgwneW9HT4MMstVa6PeyLxa65U8Xz7LowsxnDY5jWNbszH0PdjMKUnVaqPeyLxa7pVs+EKykN7IvFrtlTxfWtVwMmQsWTEbK24fUABw2WTsyu3W0O51cLeGKlFIb2RerfZKni+tajiRy/KcySznhwvbPcxytSikNzKvVnslz2dk2Rj6no8VP/TNLFenQnoj82q1V5KFZCoGPTwPANBnTkBEF889QLFD2fkmAIDk9tfFDWu15WQWo8EYji3EEMsUP1zY4rZjuMOHPe1eeB22MrSQCiWSMeiRXJanT0DEzsuyzQFlx2UAAMkdgOyvvRvWRpaSWRxbiGE0GEPcRJZbV2XZwyxXlEhGoUcWAAD69HGI2NK5B6zOsidQk1++G1lKZlZWMDCVZY8dezt82N3mg8fBoe9KOifLU8cg4svnHmBzQtlxKYDazXLDF5KrqUd/AD04fu4P7S44Lv9QRdpjJSEEpiIpjC7EcGoxAbXIMRYJwECzG8PtPmxvdcNWw/uG1oPs0X+HCE6c+0OHG4533FyZBllIFwLTJcjy3g4ftrUwy5WWPfJ9iNDkuT90euB4+wcr0yAL6UJgKpxaGfo2k+X8lKTtLZzGUWnZN16GWJw694cuLxxvu6kyDSoRPnYTAECSJPQH3OgPuPFuTcep3Juy09HChgsFgPHlJMaXk3AoMna1GfN2unxODrGQpeTVWVZ1nFw0sjxjOsvGNI5OH4cLyVqyJGGg2Y2BZjcyuSyPLMQwW0SWzywncWY5CaciY1du6LuTU5KohFhI0gUcioy9nU3Y29mESCqL0aDxRRxNbz7HAwAymo4j8zEcmY8h4LJhuMOH4XYffE7GjazlsMnY19mEffksL8QwGowXmeUojsxH0ZzL8h5mmSpgdZbDuSwfW4ghWuDQd1rT8cZcFG/MRdHssmO4w4s9HT74OI2DtohD26s08tD2ZoQQmImmMboQw8lQHNliXy8E0B9wYbjdh6FWD+wKhwvLqZGHtjdTsix3+DDUwiyXWyMPbW9GrJrGcdLkNI7+gAt7mGVLcGibGpokSej1u9Drd+Fd21txejGB0WAMk+FUweeYDKcwGU7BflrCzjZjiKWniUPfZK3zs3xq0XjreypiIsuKhJ2txtB3N7NMFpMkCX0BN/ryU5KKzLIAMBFOYSKcgkM5e1/u5pQkKgILSSqaXZGxp8OHPR0+xNIqRoMxjC7EEE4VNlyY1QVGFmIYWYihyZkf+vbC77KXueVE57IrspG/Dh+iaRXHis2ydjbLfqdt5a1vZpmsdkGWc7mMFDyNQ+DofAxHc1OS8jtCNXEaB22CQ9urcGjbPCEE5mLGcOGJUByZYleJBtDb5MRwhw872rxwcIhlSzi0bV5Jsux3Ybjdi51tXg4XbhGHts0TQmA2dnYah+ksd/iwk1OStoxD20QbkCQJ3U0udDe5cOX2VowtJjEajGFiOYlCb13T0TSmo2m8PLaIHa3GW999fheHWMhSa2V5ZCGGyXARWY6kMB1JMctUUZIkoafJhZ6mVVOSFowpSUVn+bSEnbks9zLLtAoLSSo5m2wsM7Gr3Yt4RsWx3FvfS8nNd1wBAFUXOBaM41gwDp9DwZ7cW9/Nbg4XkrVKneX80GOAQ99kMZssY3e7D7vbfYhlVBxfiGM0WFyWR4NxjAbjaMrfl5llAgtJKjOvw4Y39QZwWY8fwXgGIwsxHA/FkVb1gj4fy2j42VQYP5sKo8vnxN4OH3a2eeC0cbcGstbqLC/EMxg1keVXp8J4dSqM7iYnhtt92NnmhdPG4UKyls9hw5v6Aris14/5XJZPBONIa4VlOXp+ljt82NnKLDcqFpJkCUmS0OFzosPnxDu3teLMsjHEMr6cRKErVszF0piLpfH9sRCGckMs/QE3ZA6xkIUkSUKnz4nOVVkeWYhhfKnwoe/ZaBqz0TS+P7a4KssuZpksJUkSunxOdPmcuHJbK8aWzt6Xi87y6VXTOJjlhsJCkiynyBJ2tHqxo9WLRFbD8WAMxxbiCCYyBX1eE8CJUAInQgl47Ar25HZraPU4ytxyonOtleXRhRhCicKGCzUhcCIUx4lQHF67gj0dRpZb3MwyWUuRjeV/drZ5kchoOB4y3vpeLCLLx0NxHA/F4XUoube+vcxyA2AhSRXlsSu4tCeAS3sCCMUzGA3GcCwYQzJb2BBLIqvhP2Yi+I+ZCDq8Dgx3+LC7zQuXnUPfZK3VWQ7mhguPBWNIFTj0Hc9q+Pl0BD+fjqAzl+Vd7V64OI2DLOZxGFm+pNuPYCI3jSMYLzzLGQ0/nw7j59PhlSzvbvdySlKdYiFJVaPN68A7va14x0ALJsJJjC7EMLaUKHjoeyGewUJ8ET84s4htLR4Mt/sw2OyGInOIhazV7nWg3duKywfNZXk+nsF8fBH/fmYR21uM4cKBALNM1pIkCR1eJzq8Tlwx2IrxZSPLZ5bNZXkon+VmTkmqJywkqeoosoTtLR5sb/EgpWo4kXtTdj5e2NC3LoDTiwmcXkzAZZNXFtZt93KIhax1TpazGk6E4hhZiGGhiCyfWkzg1GICbruM3W0+7O3woY1ZJospsoShVg+GWj1I5rI8WmSWTy4mcDKX5fx9uY1TkmoeC0mqai6bggPdfhzo9mMpmRsuXIgjntUK+nxK1fHabASvzUbQ5rHnhlh88HDomyzmsp/N8mIiP/QdR6LALCezZ7Pc7jk7XOhmlslibruCi7v9uLjbj9Cqoe9isvyLmQh+McMs1wPubLMKd7apDboQmAynMLoQw+nFBLQiIywBGGxxY7jdh+0tnrocLuTONrXByHISowtxnF6Mo9iNR2QJGGx2Y7jDh23NdZpl7mxTE3QhMLF8dhqH2Szv7fBhsF6zzJ1tiKqDLEkYbHZjsNmNtKrjZMhYWHc2mi7o8wLAmaUkziwl4bTJ2N1mvCnb4XVwtwaylJFlDwabPUirrTgZMpZfmY0VlmVdAGNLSYwtJeGyydjV5sXe3DQOZpmsJEsStrV4sK3Fg7Sq4UQuy3Mms7w7txpHu4dZrnYsJKmmOW0y9nc1YX9XE5aTWRzLLb8SyxQ2xJJWdRyei+LwXBQtbmPoe0+7F14H/2iQtZw25ZwsjwZjOFZEllPMMlUJp03BRV1NuKirCUvJ7MoKBvEisvz6bBSvz0bRuirLHma5KnFoexUObdcHIQSmIsbQ96nFBNRCXy/MkQD0B9wY7vBiqNUDm1x7uzVwaLs+lCLLA825aRyt7trMMoe264IuBKYjKYzkpiSZzfLeDh+2tdRoljm0TVQbJElCf8CN/oAb79Z0nAoZ+8NOR1IFfV4AmAgnMRFOwqFI2JUb+u7yOTnEQpZaM8sLMUwXMY1jfDmJ8eUkHIqMXW0eZpkqQl6V5Yyq4+SikeUZ01n2YrjDyyxXARaSVNccioy9nU3Y29mESCqLY7mlhCJptaDPZzSBI/MxHJmPIeCy5YZYfGhy8o8OWev8LI/mshwtOMv6BVkebvfBxyyTxRw2Gfs6m7Avn+WFGEaD8SKzHMWR+SiaV92XmeXK4ND2KhzabgxCCMxE0xhdiOHkYhzZYl8vBNDnd2G4w4cdrR7YleobYuHQdmMoRZb7Ay4Mt/swVK1Z5tB2Qzgny6E4skUOfQO5LHf4MNRSpVnm0DZRfZAkCb1+F3r9LrxreytOLxlvF06GCxv6BoCpSApTkRRePm3sTzvc4UNPE4dYyFqlyPJkOIXJcAp2Zpkq6Pwsn1o0sjxV4JQkYFWWFQk7W5llq7CQpIZmV4wdFva0+xBLqytvfS+nChtiyeoCIwsxjCzE0OS0YTi3ZIXfZS9zy4nOdX6WR3NZDpvNcocPw+1eZpksZ1dkI38dPkRX3ZcLzrJ2Nst+p23lrW9muTw4tL0Kh7YJMIZY5mMZjCzEcCIUR0bTiz5HT5MTwx0+7Gz1wmGzfoiFQ9sEGFmeixnDhUaWi7/d9zQ5sbfDhx1tXjgqMFzIoW0CSpPlXr8Lw+1e7GzzVmTom0PbRA1CkiR0NTnR1eTEldtbcGYpiZGFGCaWkyj01jUTTWMmmsb3xxYx1OrB3g4fev0uyBxiIQtJkoTuJhe6m1y4cnsrxpaMnUfMZPnlsUXsaDXe+u7zuzhcSJY6P8unFxMYXYhjMlx4lqcjKUxHUsxyibFHEkAmk0EkEkEyGkEylYKmCwgYyxW4HDZ4/M3w+Xxwu90MXANLZNSVt74Xk9miP+91KNjTbgzXtLgvHGI5tRhHp9e5pTcP0+k0otEoktEwkqn0ylptzDKtFs+oOB6MY2QhhiUTWfatynLzeln2OeHbwgLS+SwnclnW8lmWJbjszDIZ4qvuy2aznB9GD6wx9H0yFEd3k3NLC/tvlGW33QZ3Lssej8f0NSqpoQvJWCyGYDCIWCxW0PFOpxNtbW1oaWnhjauBCSEQTGQwuhDD8WAcKbX4oe8unxPDHV7savPCaVMAAP/n9WlkdYGb93fDbVeKOl8sFsPCwgLi8XhBxzudTrS3t6O5uZlZbmBCCATjxjSO46E40qaz7MOuNs9Klp95fRqaLvCh/d1wFZnlaDSKYDDILFNRhBBYiOfuyyaz3N3kxHC7DzvbvHDmpiQ9/doUhABuvqgbLlt5s+xyudDW1lZzWW7IQlLTNExPTyMcDpv6vNvtRn9/P5xOZ4lbRrVG0wXGlxMYWYhhfDmJYlesUCRge4sH/QE3XjodAgB0eB344L7uguZWqqqKmZkZZpm2TNMFziwbb8qazfJQqwe9fhf+7fQiAKDT68BN+7sLmlvJLFOpaLrA2FICo8EYxpcKH/rOUyQJQ60e9DQ58fKYkeUunxM37esqaG6lqqqYnp5GJBIx0fray3LDFZKpVApjY2NQ1cLe/trIwMAAAoFACVpF9SCZ1XA8GMdoMIZgPLOlc/X6XfilvZ0bbgOWSqVw+vRpaFph+9euR5Ik9Pf3M8u0IpHVcCI3XBhMbC3LfX4XPrBJlpPJJMbGxphlKrlERsPxkPHWdyhR/ND3av0BFz4w3AVFXr+3sJRZHhgYgN/v39J5rNBQhWQqlcKpU6eg68V3ea+nv78fzc3NJTsf1YdQbuj7WDCGZNZc3ra1uHH97s41b1rlyDIfjGgtoXgGo8GtZXl7ixvX7+lc82WzZDKJ06dPM8tUdsF4GqMLcRwLxkxNSQKAHa0evH93x7pZPnXqFEpZVtVClhumkNQ0DcePHy9JT+T5duzYUbOTZKm8dCEwsWy8KXt6KVH0cOGedi+u2dl+znwZVVVx/PjxLT/xrmXnzp1wu90lPy/VPk0XmAgbWR5jlqmG5bM8shDDGRNZ3tvhw3t3tDHLOQ1TSE5OTmJ5ebks53Y4HNi1axfkDYZuiFJqbrgwGMN8rPDhwgNdTXjX9taVm9bExITpeWSbYZapECtZXohhvohpHBd3N+HKbdZk2el0YufOncwybSiV1XAiZKxgsFBEli/t8eOKwbMv3o6Pj5ueE7kZp9OJXbt2Ve0LOGUtJCcmJvB7v/d7CIVCUBQFX/nKVyrScxeLxTA2NlbWa3R0dKCrq6us16D6sZTMrAyxxDObP8G+pS+Atw+0WJLlzs5OdHZ2lvUaVD+MLMdwbCGOeHbzLL+1L4C3DbQgGo3izJkzZW0bs0zFWFyZkhRHooAsv72/GW/pb0YkEsH4+Pimx29FV1cXOjo6ynoNs8paSN5555148MEH8da3vhXLy8vw+Xyw2axfA31sbKzgJX7MkmUZe/fu5dMvFeX46DF8d9EOFPCk+c5tLfCnFgteSsIsRVEwPDzMLFNRjo2M4ntLjoKyfOW2VjSlQpZkee/evVXbk0PVaXRkFP9aYJbfvb0VnkQQiUSirG2y2WwYHh6uyiyXrao7fvw4bDYb3vrWtwJAxV5IyWQyZS8iAUDXdUQiEb54Q0Xx/vTruE6y4fWON2PG1w9IEiQAHrsCr0OB12GDz6nAa7fBJell/+IFjPnEzDIVq+mn/4TrZCde73wzZrx9Z7PsUOC1K/A6bfDlMu2UNEuzXO0vK1B18f/0ObxfduH1zjdjdpMs26GWvYgEjDmY1ZrlogtJXdfxgQ98ANdeey0eeuihlZ+//PLL+I3f+A08+uijuPHGG3HmzBl4PB78+q//Oubm5nD99dfj13/910va+EJEo1HLrsUvXypGVtNhkyW0JxZw9fi3oLf2wnbp1fBsH4ayRm9gMBjErEVtY5apGBlNhyJLaE/O4+oz34Te1gfbZVfDM7inKrJcjV++VJ0yqnFf7kjO45oz34Te1p/L8u41s7ywsIA5i9oWjUarMstFF5KyLOOBBx7AoUOHcP/99yMQCGBkZASf+tSn8OlPfxo33ngjACCbzeLVV1/F1772NbS1teHee+/FxRdfjCuvvLLk/yc2kkwmLbtWIpFA/Ht/b9n1qPY5s2d7y+XFaegv/B2SHf1wvuka2Pp3nzOMYWWWk8wyFcmZPdvDKIemoH/vb5HsGIDzzdfA1nfuiwJW9OCcvVacWaaiOLJn8ymHJqF/78tIdg4Y9+Xzsmx1jVGNTA1t33TTTfj85z+PL3/5yzh48CDuv/9+3Hzzzbj33ntXjunu7saBAwfQ09MDALjqqqtw9OhRywtJK//Dq6qKzMRxyNrWFj2lxqYtTCLx7b+Bcl5BaeUNK6uqyEwcg6yVfrksahzawgQS33oKynkFpaVZzqrIjI9C1ku/LAs1Dm0+l+XzCkors5zJZKDretXNXzdVSNpsNtx333343Oc+h29961vYv38/PvvZz55zzMUXX4xQKIRwOIympib89Kc/xW233VaSRhejHGs6bUS3OVlIUkmcX1BanmXFyUKSSuL8gtL6+7IDcsa6L3yqX+cXlFZnWdO0qiskTbfmpptuWqnEH3vsMSjKuZuZ22w2fPrTn8add96JD37wg9i2bRuuvvrqrbW2BjTEopxkKS0chBacKuluCQWpvpcDqcbpuSxbj2Gm0tLDQWihaevvy1XI9Fvbhw4dAgAsLS1dUETmXXXVVbjqqqvMXqIkZFm29ImBvZFUMg4XnAeuhPOiKyA5XFBGR0u6jdxmJGaZSkRyuOG4+Eo4918OyeGCPDJiaZZ5X6ZSkZxuOC5+F5z7LofkcEIZGSnLjnnrqbbeSMBkIfn444/jxRdfxNNPP4177rkHzz77LO64445St60k3G43sllrbiKKLENxuiA5XZZcj2qfSEQBcd4X6nkFZJ7L5bIuy4oCm9MNOKt3Wy6qLmtlWXK64ThwtoDMc7vdlq2oYVMUKC5uYUuFWzfLqwrIPJfLZckSg4Ax0rtex10lFV1IPvPMM3jyySfx1FNPYe/evbj77rvxxS9+Ebfeeivsdns52rglbre7bNsWXXAtjweBjz20+YFEOdFn/wf08ILxD+sUkHlWfvl6PB74mWUqQvSZz0GPhACsX0DmWZllN7NMRYo8/WcQ0SUA6xeQeW6327JCshI7AxaiqD7Sl156CY888ggeffRRXHbZZQCAu+66C7FYDM8991w52rdlPp+vLq9FdcThgvPN18J/23+C601Xr/nFCzDLVP0kpxvOt7wPTbf+/+G67L3MMtUsyemG863vR9Ot/wmuS69as4gEmGWgiB7Jw4cP48EHH8RDDz2E6667buXnPp8Pd955J5544gnccsstVdft6na74XK5kEqlynodSZLQ0tJS1mtQ/XFe8m7Yt+9f9wt3NSuzzMXIqVjOS98D+/aLCs6y0+lEOp0ua5uYZTLDddl7Yd9+YN3icTWPx2NZlqtxMXKgzHttV4vl5WVMTk6W9RrNzc3o7+8v6zWIlpaWMDVV3rdeW1pa0NfXV9ZrEC0uLmJ6erqs12htbUVvb29Zr0FkRZbb2tpW1uWuNtX3+k8ZBAKBss4tkGUZ3d3dZTs/UV5zczPc7vK9AKMoCrq6usp2fqK8lpaWsme5s7OzbOcnymtpaYHLVb6XbKs9yw1RSEqShL6+vnO2NSqlvr4+2GymV1IiKpgkSejv7y9blnt7e5llskS5s8z7Mlkln+Vy6evrq7ppg6s1RCEJAE6nEwMDAyU/b3t7e9XOW6D65HQ6y3LT6ujoYJbJUuXMst/vL/l5idbjcrnKUmN0dnZWfZYbppAEAL/fj8HBwZKdr729ncOAVBGBQKCkN62Ojo6qHjqh+sUsU70IBAIlfTDq7OxER0dHyc5XLg3xss35kskkJicnTb9lpSgKent72XtDFccsU70oRZb7+vqqvveG6l8ikcDk5CQymYypz9dalhuykAQAXdcRCoUQDAYL3kIxv5REV1cX595Q1TCb5ZaWFnR2djLLVDV0XUcwGEQoFGKWqaY1UpYbtpDME0IgEokgEokgmUxe8ARhs9ngdrvh8/nQ3Nxc1RNeqbExy1QvdF1HNBpFJBJBIpG4YGtQZplqha7riEQiiEajdZvlhi8kz6frOjRNgxACiqLU5C+VCGCWqX5omgZd15llqnn1mGUWkkRERERkSkO9tU1EREREpcNCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU2yVbkA1EUIgnU5D0zQAgCzLcDqdkGXW21RbmGWqF8wy1Yt6zXLDF5KqqmJpaQmRSASpVApCiAuOcTgcaGpqQmtrK5xOZwVaSbQ5ZpnqRSFZdjqdaGpqQktLC7NMVSuf5XA4jHQ6XZdZlsRa/68agKZpmJ2dxdLSUlGf83q96O3trclfNtUnVVUxOzuL5eXloj7HLFO1MZtln8+Hnp4eZpmqRiNluSELyWg0isnJyZXuZTO6urrQ3t4OSZJK2DKi4kQiEUxNTZnOsiRJ6OrqQltbG7NMFcUsU70Ih8OYnp5umCw3XCEZDAYxOztbknP5/X4MDAzUxC+a6k8psxwIBNDf388sU0UsLCxgbm6uJOdilqmSSpnl5uZm9PX1VX2Wa3uGZ5FCoVDJvngB4wl6cnJyzTkPROVU6iyHw2FmmSoiGAyW7IsXMLI8NTXFLJPlSp3l5eXlmshywxSSyWQSMzMzJT9vOBzG4uJiyc9LtJ5EIsEsU11IJBIlfSDKW15eLnr+O9FWxOPxsmW52HmWVitbIXnq1CncfPPNK/+75JJL8N3vfrdcl9uQruuYnJws2/lnZ2eRyWTKdn6iPGaZ6kW5szwzM8MskyXKneXp6Wlks9mynX+rLJkjGY/Hcc011+CFF16Ax+Mp9+UuEAqFytKDs5rf78fg4GBZr0FUynmR62GWyQpWZDkQCGBgYKCs1yAq5bzI9VRzli0Z2v7Xf/1XXHHFFRUpIoUQCIVCZb9OJBKp6icGqk5Tf/9lpKanCjqWWaZqNvV3f4P0bGEP7FZlORwOQ1XVsl+H6svU3z6FdIEPOUIIS6YEVXOWiy4kdV3HDTfcgEcfffScn7/88ss4cOAAnn/++Qs+8/zzz+MDH/iA+VZuQSKRsGx4g3NyqFihF76H137tbpx67E83LSjj8bhlBV61z8mh6hP83nfw2r2/gtOf+382LSitzDLvy1Ss4He/jdfuvQun/8efbVpQxmKxhr8vF72zjSzLeOCBB3Do0CHcf//9CAQCGBkZwac+9Sl8+tOfxo033njO8bFYDD/72c/wuc99rmSNLkY8HrfsWrFYDB3t7ZZd7/9r795jo7gPtY8/sxfba5s12OZmBwKowpTmSJyUFqltDuRwCW0hAV6CeBsSqlAIqRI1pEVKq7RVlKiqlIhGL1EVLuUSUqgIIkVVAqnSCEIObZOqVEBPqzQNhnAxvt/Xa+/OvH+YNQZfsH/enb19PxKKvTs78xt4Mn7259kZZADHkWxbtb8/ptp3f6/SBYtUtvoh5ZWV91nU7SyXlpS4tj1kAMeRE42q5p23VfvuOypdcJ8mrv6W8iaW9VmULCOVObEsH31Ltb8/ptKF96ls9UPKnTCxz7KuZzkFO4bROZKRSET33Xefli9frpUrV2rVqlWaP3++fvrTn/ZZ9re//a0++OADvfTSS3EZ8HBduHBBLS0trmzLY1lq/f6TrmwLGczj6bdQVlZWqrW11aUheNT69BOubAuZy/J6+y2U58+fd+0HMFlGPFheb7+F0s0se71eff7zn3dlW8NhdI6kz+fT+vXrtW/fPq1fv14zZ87Us88+2++yx44dS9qvtSWpo6PDtW3ZjiMrWOTa9pChrs9Q3vorb1ezbNvSqFGubQ+ZKTZDefY7a3X+Fy+p4+oVSVI4HHZtDLZtS/kFrm0PmcmJRlVz7O3u0zdevnH6hpvH5Wg0OqI78iWK8Ydtli5dqlAoJEnasmWLvF5vn2VaWlp05swZfe1rXzMf4QjZtu3uBnNy3N0eMlevQnn+Fy+5nmUrJ33u9YrUFiuUsR/Crmc5l+My4uOmQvn/fuF6ll3vNENgXCSff/55Sd0nMvdXIiVp1KhROnXqlHKyqVyl4D8y0phlqfieuZqwYqX7t8myU++dL9KYZan4v+ZpwooH3d92lOMy4sjjUfF/3asJy/9Pyt++0A3D/rCNJL388ss6fvy4Dh48qG9/+9s6dOiQHnrooXiPLS78fr+rU8FOmzvnsCHDXf+hW/6thxW4c4okyfevf7mcZfdOIkcGsywVz723O8uT75Qk+T7+2NWLhTvtZBlx4PGoZO5/q+xbaxSY1H2tXbezPNDEXTINu0i+8cYb2r17t/bu3asZM2Zo7dq12rlzp1atWiW/35+IMY5IIBBw7RwGv9+vCUvud2VbyAw17xxTtLXXh8H6KZAxgUDAtXPLcvx+BZc+4Mq2kBlqjr2taO83H/0UyJj8/HzXfvjm5OQo+MByV7aFzFBz9G1Fe7/58HhUMvdelX3r4Z4CGRMIBFzLcm5urjye1Luz9bCK5IkTJ/Tcc89py5YtmjVrliTp4Ycf1q5du3TkyBGtXLkyEWMckUAg4Np1xPLz8zVp/eOubAuZofHDP3cXyUEKZEwgEHDtOmL5BQW6gyxjGBr+eKq7SFqWSub9t8r+75o+BTLG1Szn55NlDEvD/3zQXST7mYG8VSAQUFNTkyvjSsZNXYZiyEXy3Llzeuqpp7R582YtWrSo5/HCwkKtWbNGO3bs0PLly1Nu2jUYDOrKlSuubKuoiE9sY3is3rM2AxTImGAwmPBbfcaQZQyXZVkquXf+oAUyhiwjpXk8Krl3waAFMiYYDCb8Vp8xqZplV+61nWyfffZZwt8x+Hw+VVRUcOIthqWztkY5pWOHvPzFixfV3NycwBF1n6Ixffp0soxhIcvIFMPNshvXq07lLKfeL9sTwI0rwY8dOzYl/4GR2oZzsJLcyXJpaSlZxrClYpY5LsMEWR6erCiSgUAgof/QgUBAxcXFCVs/EJOfn6+SBN7ujSzDLYnOcn5+vsaMGZOw9QMxBQUFCT1upnqWs6JIStK4ceOUmxv/CyxblqU77rgjZd8pIPOMHz8+IddmJctwG1lGphg/fnxCrlzj8XhSPstZUyQ9Ho+mTJkS139oy7J05513JqSgAgOJZdnnM7oMbL8sy9KUKVPIMlyVyCxn1Y0wkHRer1dTp07NyixnxYdteuvq6lJlZeWIr8fn9Xo1efJkFRRwD1ckB1lGpujs7NSFCxfikuU777wzZS+TgszX2dmpysrKEV9bMp2ynHVFUuq+V2Vtba2qq6uNXh8MBlVWVhbXdx6ACdu2VVNTo5qaGqPXk2WkipFmuaioSBMnTiTLSDrbtlVdXa3a2lqj16dblrOySMaEw2HV1dWpoaFBQ/lrGDVqlEpKSlRYWOjC6ICh6+joUH19/ZCzHAwGVVxcTJaRckyyXFJSwow6Uk5HR4fq6urU2NiY0VnO6iIZE41G1dbWplAopFAopEgkIttx5Pf5lJeXp0AgoIKCgpS8BSTQW39ZdhxHPrKMNNN/liWfz0uWkVYyPcsUyX5cbGhXdWtYsyel7sftgaGobGhXXVunvnjH6GQPBRiR8/Xtagh16u7y0ckeCjAi5+vb1Bjq0n9mSJaz5lPbQ+U4js5WNeuTuja1d0aTPRzAmO04OlfVrE9qWxXqIstIX7Es/6umjSwjrXVnuUUf17apI0OyTJG8xWeNITV1RGQ70v9eS+ztu4BEutgYUnNHRFFH+t9rib19F5BIFxpCaglHFHUc/aOaLCN9XWho786ynTlZpkj2EpuNjGFWEukqNoMTw6wk0tWtWWZWEukqNhsZkymzkhTJXmKzkTHMSiJdxWYjY5iVRLqKzUbGMCuJdBWbjYzJlFlJiuR1t85GxjAriXRz6wxODLOSSDcDZZlZSaQb23F0tqpvacyEWUmK5HW3zkbGMCuJdHPrbGQMs5JIN7fORsYwK4l0U1nfrtb+spwBs5IUSQ08GxnDrCTSxUAzODHMSiJd3C7LzEoiXdiOo3ODvIlP91lJiqQGno2MYVYS6WKg2cgYZiWRLgaajYxhVhLpYqDZyJh0n5XM+iJ5u9nIGGYlkepuN4MTw6wkUt1Qs8ysJFLd7WYjY9J5VjLri2RjqEsFOT6VBfOU5+v71+GxpLJgniaMytO11nASRggMTWOoS4VDyPL4UXm61kKWkboaQ10alTtwlr09Wc5VNcdlpLD69i4FB82y1Z3lwvTNMrdI7OWD83W62Bi66bE8n0cr/qMsSSMCzJw8X6fPbslyvt+rZXdNTNKIADPvf1qrS00dNz1WkOPVA18gy0gvJz6t1eVbslyY49X9aZ7lrJ+RBAAAgBmKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIz4kj2AVNHV1aWx/qjyC6KyHFuS5FiWPL4chcNh5eTkyLKsJI8SuL1YlgtuzbLfQ5aRNhzHUSQS0Ti/rcJbsuwly0gjjuOoq6tL4/xRjcrALFuO4zjJHkSy2LatpqYm1dXVqaOjY9BlfT6fiouLVVxcLJ+P/o3UMtwsl5SUaMyYMWQZKce2bTU2Nqqurk7hcHjQZckyUtlwsuz3+1VcXJyWWc7aItnS0qJLly4pGo0O+7Xjx49XaWlp2r57QGZpbm7W5cuXh51ly7I0fvx4lZSUkGWkBLKMTNHU1KQrV65kRZazrkjatq0rV66osbFxROsJBAKaNGmScnJy4jMwYJhs29bly5fV1NQ0ovUEAgFNnjxZfr8/TiMDhocsI1NkY5azqkjatq0LFy6ora0tLuvz+XyaNm0aZRKus21blZWVam9vj8v6yDKShSwjU0SjUVVWVioUCsVlfX6/X1OnTk35LGfNp7Ydx9HFixfjViIlKRKJ6Pz584pEInFbJ3A7sSzH6wevRJaRHInMsslpS4CpWJbjVSKl7g9OVlZWpnyWs6ZINjQ0qLW1Ne7r7erq0tWrV+O+XmAg9fX1ZBkZgSwjU9TV1cV1oiqms7Mz5bOc0CK5Z88effOb39Q3vvENvfDCC0rWb9ET/Q/R1NSk5ubmhK0fiOns7FRVVVXC1k+W4ZZEZ7mxsVEtLS0JWz8QEw6Hde3atYStP9WznLAiWV9fr9dff12HDx/W7373O507d05/+9vfErW5QdXV1SW8xF67di1pRRnZo7a2NuE5q66uTuj6AcmdLCfyhzsQk+3H5YTOSEajUYXDYUUiEUUiEZWUlCRyc/2ybVsNDQ0J3044HI7ruRHAraLRqCtZ7ujoiOs5a8Ct3Mwyx2UkUjQaHfFVYIYiFAqlbJaHXSRt29bixYv14osv3vT4yZMnddddd+no0aOSpOLiYj366KOaN2+e7rnnHn3lK1/R5MmT4zPqYWhubpZt265sy40wIXu1tLS4NutNlpFIzc3NZBkZgSwbFEmPx6PHHntMBw4c6LlO0j//+U9973vf06ZNm/T1r39dUve5VsePH9d7772n999/X6dPn9ZHH30U39EPgZsNPhEn2gIxbs4SMiOJRHLzuEyWkUgclw1/tb106VKNGTNG+/btU1VVlTZs2KAHHnhA69at61nm1KlTmjx5skaPHq28vDzNnTs3KedIuvkXHw6HXZv9RPZx84dvR0cHWUbCuHlc7ujo4Px1JIzbx+VUzLJRkfT5fFq/fr327dun9evXa+bMmXr22WdvWmbixIk6ffq0wuGwotGoPvzwQ02dOjUugx6Orq4uV7fHdfiQKJ2dna5ujywjUdw8LjuOQ5aRMG4elx3HSclrShp/2Gbp0qU9TXzLli3yer03PT9r1izNnTtXy5Yt0/3336/Jkydr/vz5IxutAbfbeyq+W0BmIMvIFGQZmYIsSz7TFz7//POSui/0fWuJjNm0aZM2bdpkuom4cPum5+lyk3WkH7ez5fFkzf0K4DKOy8gUlmW5Wu5SMctGPylefvllHT9+XAcPHlQkEtGhQ4fiPa64yc3NdW1blmWlxQ3WkZ7czrLPZ/w+ExiUm/cOJstIJDePyx6PZ8CJu2QadpF84403tHv3br366quaMWOG1q5dq507d7p+LuJQBQIB17aVl5eXku8WkBnIMjJFfn6+a9sKBAJkGQnDcXmYRfLEiRN67rnn9OKLL2rWrFmSpIcfflitra06cuRIIsY3Ym4esNzcFrKPm/kqKChwbVvIPhyXkSk4Lg+jSJ47d05PPfWUNm/erEWLFvU8XlhYqDVr1mjHjh0p+WmiwsJC16aCx4wZ48p2kJ1GjRrl2nmLZBmJRJaRKYLBoGtZHj16tCvbGS7LScWPAMXZtWvXVFNTk9Bt5Ofna9q0aQndBkCWkSmqqqpUW1ub0G0UFBQk5bJzyC5Xr15VXV1dQrdRWFioKVOmJHQbprLiY5klJSUJn5UcP358QtcPSO5kecKECQldPyBJpaWlCZ/J4bgMN2R7lrOiSPp8PpWXlyds/SUlJSl77gIyi8/nU1lZWcLWX1JSwjllcEWij8ulpaVkGa7w+/0JPS6PHTvW1Q/1DFdWFEmp+zyGRJwrk5eXl9LvFJB5ioqKyDIyQjAYTMh5X4FAQOPGjYv7eoGBFBUVJSzLY8eOjft64ylriqQklZWVqaioKG7ry83N1ZQpU7hwM1wX7yzn5eWRZbjOsiyVl5crGAzGbZ1kGcmQzVnOig/b9OY4jmpqalRdXT2i9QSDQZWXl6fkxUGRHRzHUXV19Yg/fEOWkWzxynJRUZHKysrIMpImG7OcdUUyJhQK6dKlSwqHw8N6ndfrjftsEDASZBmZYiRZjvdsEDAS7e3tunz58rCzHDsPPp2ynLVFUup+59De3q66ujq1tLQMer/M/Px8FRcXu3rNKGCoHMdRW1ub6uvrh5TlkpISV6/lBwyVSZaDwWBK3vED2S2W5bq6OrW2tmZslrO6SPbmOI7C4bBCoVDPhdU9Ho/y8vKUl5fHD1ykDbKMTEGWkSkyOcsUSQAAABhJ3woMAACApKJIAgAAwAhFEgAAAEYokgAAADBCkQQAAIARiiQAAACMUCQBAABghCIJAAAAIxRJAAAAGKFIAgAAwAhFEgAAAEYokgAAADBCkQQAAIARiiQAAACMUCQBAABghCIJAAAAIxRJAAAAGKFIAgAAwAhFEgAAAEYokgAAADBCkQQAAIARiiQAAACMUCQBAABghCIJAAAAIxRJAAAAGKFIAgAAwIgv2QMAAIxMzn8+KsvjleXxyuPLkeX1ynP9++4/nl5fe2V5b3x983L9L9O9nCXLY8myrBtfeyx5rBtfe32DP++5/nrLo37X5+3nj++m7z03P2/d+DrX5+n39X3+WN1j8lrdY7j1+56vr6+77/e68RpP9+N+j6fna8uSPLr+X0t9v1fv5dS9/z3L9fpesddbfV5nOY7k2LIcW7KjN77u/cfu/ZjT7zLW9eX6fd6OyrGvr9+OyolGu5e1o3Ls7q+dSGf3f6PRG8v1fs0gr3dsW070+p9eX9vRvs/Z0b7LRrsi1x+L3vL63utzrn/vyI46vR7r/tq2nRvLRJ3Bl7ft6485inZGux93HEUdR1FHg/x3sOcc2Rr8+agjvepUJvHocnvMSAIAAMAIRRIAAABGKJIAAAAwQpEEAACAEYokAAAAjFAkAQAAYIQiCQAAACMUSQAAABihSAIAAMAIRRIAAABGKJIAAAAwQpEEAACAEYokAAAAjFAkAQAAYIQiCQAAACMUSQAAABihSAIAAMAIRRIAAABGKJIAAAAwQpEEAACAEYokAAAAjFAkAQAAYIQiCQAAACMUSQAAABihSAIAAMAIRRIAAABGKJIAAAAwQpEEAACAEYokAAAAjFAkAQAAYIQiCQAAACMUSQAAABihSAIAAMAIRRIAAABGKJIAAAAwQpEEAACAEYokAAAAjFAkAQAAYIQiCQAAACMUSQAAABihSAIAAMAIRRIAAABGLMdxnGQPAgCQmjo7O7Vt2zY99thjysnJSfZwjLEfqSMT9kHKnP0YKWYkAQAD6uzs1CuvvKLOzs5kD2VE2I/UkQn7IGXOfowURRIAAABGKJIAAAAwQpEEAACAEYokAGBAOTk5euKJJ9L+wwTsR+rIhH2QMmc/RopPbQMAAMAIM5IAAAAwQpEEAACAEYokAAAAjFAkAQB9NDQ06JFHHtHq1at1/Pjxm56rqanRmjVr9OCDD+rEiRPJGeAQDLYPMc8884z+/Oc/uzuwIers7NTjjz+u1atX6+DBg7d9PFXdbrxbt27V4cOHkzCyoRtoHzo6OrRu3TqtWrVKhw4dSuIIk4ciCQDoY//+/Vq3bp327t2rvXv33vTcW2+9pVWrVum1117Trl27kjTC2xtsHyTpk08+0bvvvpuEkQ3N22+/rXvuuUf79+/XsWPHFA6HB308VQ023vr6+rQowwPtw8mTJzV79mz95je/oUgCABDz97//XV/84heVm5urwsJCNTU19TxXUVGh9vZ2dXR0KC8vL4mjHNxg+yBJv/rVr7Rs2bLkDG4IYuP3eDyaPn26/v3vfw/6eKoabLw7d+5M6X+DmIH2Ydq0aerq6lIkEpHf70/yKJODIgkA6KOtrU0FBQWSpEAgoPb29p7n8vPz9eqrr2rZsmVasmRJsoZ4W4Ptw5kzZ1ReXq6ioqJkDe+22tralJ+fL+nm8Q/0eKoaaLxXr15VW1ubpk6dmszhDclA++D3+/XWW29p8eLF+upXv5rMISaNL9kDAAAk32uvvaajR4/2fH/27Fm1t7eroKBAoVCop5BJ0vbt2/XKK69o+vTpevTRR7Vw4cKUmJkczj7s2rVLL7zwgnbv3p2MoQ5Jfn6+QqGQJCkUCqmwsHDQx1PVQOPdtm2b1q9frw8//DCZwxuSgfbh9ddf19NPP62FCxfqiSee0OXLl1VeXp7MobqOGUkAgB555BEdOHCg58/GjRv1l7/8ReFwWI2NjQoGgz3LBgIBFRQUKCcnR5ZlKRKJJHHkNwx1H9ra2vTxxx/r8ccf15tvvqmf/exnamtrS/Lo+/rCF76gjz76SI7j6B//+EfPzN1Aj6eqgcZ79uxZ/fCHP9T27du1fft2XbhwIckjHdhA+xD7f8Hj8aiwsDDlZ4cTgTvbAAD6qK+v1/e//301NTXpu9/9rhYsWKCf//zn2rhxo+rr6/XjH/9YkUhEixYt0rp165I93H4Ntg+jR4+W1P2J4S9/+cuaM2dOcgfbj3A4rKefflpVVVVasWKFQqGQ5s2bp0mTJt30+EMPPZTsoQ5qoP343Oc+J0k9n9hesWJFMoc5qIH2YfTo0dq8ebPC4bDuuusu/ehHP0r2UF1HkQQAAIARfrUNAAAAIxRJAAAAGKFIAgCQRBUVFaqoqNCnn37a57ndu3eroqJCW7du7XnMtm3t379fK1eu1OzZszVnzhytXbtWf/zjH3uWuXTpkioqKnTp0iVX9gHZiyIJAECSjRkzRm+++Wafxw8fPnzT5X0cx9GTTz6pAwcO6JlnntGf/vQnnTx5UkuWLNHGjRv1hz/8wc1hAxRJAACSbenSpTpy5Ihs2+557MyZM+rs7NTMmTN7Hjt27Jjef/99bdu2TbNnz5bP51NOTo4efPBBPfnkkyl/lxtkHookAABJNm/ePHV1denUqVM9jx06dEgrV668abn33ntPd999t8rKyvqs4zvf+Y42bNiQ8LECvVEkAQBIMp/Pp6VLl/b8erujo0PvvPNOn/tQ19fXq7S0NAkjBPpHkQQAIAWsWLFC7777rlpbW3Xs2DHdfffdGjt27E3LjBs3TjU1Nf2+vrW1tec2foBbKJIAAKSAGTNmaNq0aTp69KgOHz7c59faknTvvffq9OnTqqqq6vPc1q1btXz5cnGfEbiJIgkAQIpYsWKF9uzZo/Pnz2vu3Ll9nl+4cKHmzJmjDRs26K9//ats21Zra6v27NmjX//61/rBD34gy7KSMHJkK4okAAApYsmSJbpw4YLuv/9++Xy+Ps9blqVf/vKXWrx4sX7yk5/oS1/6kubPn68TJ05ox44dWrBgQRJGjWzGvbYBAABghBlJAAAAGKFIAgAAwAhFEgAAAEYokgAAADBCkQQAAIARiiQAAACMUCQBAABghCIJAAAAIxRJAAAAGKFIAgAAwAhFEgAAAEYokgAAADDy/wHALEVPQ4+skgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAALTCAYAAACljOKvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACqwUlEQVR4nOz9eXgk5X0vfH+rqvdudWvfpRnNpplhWLyDMcaAzeIE47HHg80SiAmQxM5rnHOIz5PjJzy8k+RNwhvg5HJOnAMxhzibgRObOA5eAxjHCzZ2DMOMNKtG+9ItqfetlueP6pY0Gi3dpa7q7fu5Ll+AXF11M/pS/av7vuu+BU3TNBARERERFUksdwOIiIiIqDqxkCQiIiIiQ1hIEhEREZEhLCSJiIiIyBAWkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMYSFJRERERIawkCQiIiIiQ1hIEhEREZEhdVVIKoqCv/qrv9rSOT75yU/i5ptvxi233ILbbrsNx48fL1HriAq31Syn02n89m//Nm644QbccsstuOeeezA+Pl7CFhIVphT35T/8wz/Etddei8HBQZw4caJELSMyRykyX0nqqpA8ceIEvvWtb23pHI8//ji+/vWv4/nnn8cnP/lJ/P7v/36JWkdUuFJk+dZbb8U3v/lNPP/887jmmmvwB3/wByVqHVHhSpHlG264Af/wD/+Anp6eErWKyDylyHwlqZtC8tSpU7jvvvswMzODW265BX/xF39h6Dx+v3/p76PRKARBKFUTiQpSiiw7nU5cffXVS/m99NJLMTY2VuqmEm2oVPfld7zjHejs7Cxx64hKr1SZryS2cjfAKrt27cIHPvAB7NixA3fccceWzvV7v/d7+MlPfgIAePLJJ0vRPKKClTLLeV/+8pdxzTXXlORcRIUyI8tElawWM183hSQAHD16FB/60Icu+Pltt92G06dPr/mZr33ta+jq6jrvZ3/2Z38GAPjqV7+KP/uzP8MTTzxR+sYSbaBUWQaAL37xizh37hwefvjhkreTaDOlzDJRNVgv89VK0DRNK3cjrCDLMt7xjnfgxz/+MZxOZ8nOe8kll+Dll19GU1NTyc5JtJFSZvlv/uZv8I1vfAP/+3//7/OmbRBZodT35WuvvRZf/OIXsWfPnhK0jqj0zKpFyqlu5khOT0/D6/Vu6RcXi8UwMzOz9M/f+c530NjYiMbGxhK0kKgwpcgyADz11FP4xje+gaeeeopFJJVFqbJMVC1qMfN11SN5//33Y3x8HDfccAN+93d/t+hzTE1N4Xd+53eQTqchCAKam5vxuc99Dvv27TOhxURrK0WWp6encfXVV6Ovrw9erxcA4HA48Oyzz5a6uUTrKkWWAeDhhx/G9773PQSDQTQ1NcHj8eA73/lOiVtLtHWlynwlqZtCkoiIiIhKq26GtomIiIiotFhIEhEREZEhLCSJiIiIyBAWkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMYSFJRERERIawkCQiIiIiQ1hIEhEREZEhLCSJiIiIyBAWkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMYSFJRERERIawkCQiIiIiQ1hIEhEREZEhLCSJiIiIyBAWkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMYSFJRERERIawkCQiIiIiQ1hIEhEREZEhLCSJiIiIyBAWkkRERERkiK3cDagEmUwGkUgEyWQSyWQSiqJA0zSIogi32w232w2fzwe32w1BEMrdXKJ1pdNpRKPRC7IsSRJcLhezTFWDWaZaUWiWPR5PuZtqiKBpmlbuRpRLLBZDMBhELBYr6Hin04mWlhY0NTXxxkUVJRaLYW5uDvF4vKDjnU4nWltb0djYyCxTRYlGowgGg8wyVb1is+xyudDS0lJ1Wa7LQlJRFExOTiIcDhv6vNvtRm9vL5xOZ4lbRlQcWZYxNTXFLFPVY5apVsiyjMnJSUQiEUOfr7Ys110hmUqlMDIyAlmWt3yuvr4+BAKBErSKqHipVApnz56FoihbOo8gCOjt7WWWqWySySRGRkaYZap6pcxyX18f/H5/iVpmnroqJFOpFM6cOQNVVUt2zt7eXjQ2NpbsfESFMCPLfDCickgmkzh79iyzTFUvmUzizJkzKGVZVQ1Zrpu3thVFwcjISElvVgAwPj6ORCJR0nMSbUSW5ZJ/8QLA2NgYkslkSc9JtBFZlk25LzPLZLV8lkvdN1cNWa6bQnJqaqokw9lrGR8fL/mNkGg9U1NTWx42Wc/Y2BizTJYxM8u8L5OVJicnTc1yJQ8em1pIvvjii7jhhhtw/fXX49lnnzXzUhuKxWJYXFw07fyZTAZzc3OmnZ8oLxaLGX4ZoRCZTAbBYNC08xPlRaNRU7OcTqeZZbJEJBIx/GJNISo9y6YVkrIs40/+5E/wt3/7t/jnf/5nPPHEE6YWcxux4hcQCoX49EtFiw0dL+pJ04oHFmaZjCg2y1bdlyu5J4cqE7NcHNMKyddffx27du1CR0cHfD4f3vve9+IHP/iBWZdbVyaTKXidyK1QVdXUJxKqTaf+5I9x9FO/hYWf/HjTm0Q6nS54PbKtUBSFWaainfyjIzj6O7+NxZ++yixTVTtx5GG8+f/5NBZ/9tNNs5xKpSx5T0KW5YrNctGFpKqquPHGG/HII4+c9/NXXnkFBw4cwAsvvAAAmJ2dRUdHx9L/39nZiZmZmS02t3jRaNSya1XqL5kqW2zoOIb+r89tWlAyy1TpYseO4fjnHty0oGSWqdJF3zyK47/3XzctKK3MspXXKkbRWySKooj7778fR44cwX333YdAIIChoSF85jOfwWc/+1ncdNNNALDmH3o5Vmq38m2neDiM4Yf+b8uuR9UvvWKoOl9Q+vbuQ+9dd6Pxne86778ZK7OcYJapSJlQaOnv8wWlb/9+9N316wi8/R3nZdnKlS7iCwsYfvJ/WXY9qn7ZhYWlv88XlL79F+Wy/Pby3ZcrdIUYQ3tt33zzzfjCF76AL3/5yzh06BDuu+8+3HLLLbjnnnuWjuno6DivB3J6ehqXXnrp1ltcJCv/4OVsFrFXvm/Z9ag2rVdQWnnDyqbTzDJt2XoFpaVZTqWYZdqy2LE3cfxzFxaUVmY5k8lAVVWIYmUtuGN4QfJ/+qd/wmOPPYb29nb09PTgL//yLyFJ0tL/L8syPvjBD+LLX/4yvF4vPvKRj+ArX/kKmpqaStb4Qhw/fty0V/JX0zIZxP7rZy25FtWPfEE51eC37CUYLZVC7Pf+iyXXovqRLygnPF7LXhzQEgnE/tuDllyL6ke+oJzweCx9CWZwcBB2u92y6xXCcFl78803L1Xijz766HlFJADYbDZ87nOfw6/92q/h4MGDuOeeeywvIolqQXJ8DPETJ4BsttxNIdqS5NgYYsPDzDJVvdT4GOInhwGT1qeuJoaGtgHgyJEjAICFhYULisi86667Dtddd53RS5SEKIqW9UgSlZLk86H7Y7ei8+BHYPP5MDw8DJVfwFSFpIaG5Sx7vYgNDZm2QQSRmWx+P7oP34rOD38EkseDqMVZrrRhbcBgIfn444/jpZdewjPPPIO7774bzz33HG6//fZSt60k3G43shZ9+UqSBEd7x+YHEuVkgkFAPf9BZ3UBmedyuZhlqlhrZnlVAZnndrstewPVZrczy1SUtbK8uoDMc7lcliwxCOgjvet13JVT0YXks88+i6eeegpPP/009u7di7vuugtPPvkkDh8+XHHj9oB+w7Jq+QdPIID9//SMJdei6qfJWZz5g99FbGQc2XgSmmBD10cPX1BA5ln55ettbmaWqWCanMHpz38W8dFJPcuiA12HPobOD59fQOZZmWVPczP2MctUIC2bwanPP4DE2BSysSQ0yYHujx2+oIDMc7vdlhWSnjWuXwmKKiRffvllPPzww3j00Udx2WWXAQDuvPNOfOlLX8Lzzz+PQ4cOmdHGLfH5fJatX+lb48ufaF2SDS37utH9zh3LP3MmIf/seSguHwR3AwSXD4Jb/59PsGFWUwHB/KENZpmKItnRdqAXPZfvWv6ZMwH5p1/bIMsaYMGScMwyFcVmR/vFfXBcsXv5Z844sq9+FbKrYSnD+Tz7BAlzdZ7lggvJo0eP4oEHHsCDDz6I66+/funnPp8Pd9xxB5544gkcPHiw4rpd3W43XC4XUqmUqdcRBIEvE1FRBEEAmvoAecW2h+kEtHQCGmYvOF7q2weXfydS6bTp7WpsbDT1GlRbBEGAFugFlBVbxW2QZVvffjgbBpDOZExvF7NMxdCz3AMoy+uibpRl+7YDcHq3WZLlQCBg6jWMMrz8TzVZXFzE+Pi4qddobGxEb2+vqdeg2qEpMtTpM5DPvg41OLbp8WLnTjje+atYDIcxMTFhatuamprQ09Nj6jWodixn+ZdQg5vfZ8WuXXC841ewsLiIyclJU9vW3NyM7u5uU69BtUNTZCjTp6Gc+SXU0Ob3Wal7N+zv+CAWFszPcktLC7q6uky9hlGG39quJoFAAPPz86YtTi6KIjo7O005N9UOTdOgLc5AHj0GZXwIyBbWsyi29sHxjg9CEEU0NjZifn7etEVwJUk6b2tTorVomgZtYVrP8sRw4Vlu64fj7TdBEEU0NTVhYWHB1Cy3t7ebcm6qHctZfhPKxInCs9y+Dfa33wRB0LM8Pz9v2shnpWe5LnokASCdTuPUqVOmLBza19dXsV3OVH5aMgZ57DiU0WPQYvNFfVZo6oTz3R+FYHcs/YxZpnLRktEVWV7Y/AMrCE1dcF75EQg2a7Lc398Pv99f8vNSbVATUShjx6GMFZ9lsbkbjnd/BIJt+QXjVCqFU6dOlbqZACo/y3VTSAJAJBLB6OhoSc/Z2trK3ki6gKbIUKZOQRk9BnV2FEDx/5kJDc1wXnUYgsN9wf8XDocxNrb5kHgx2tra2BtJF9DkLJSp01BG34Q6Z+z+Kfhb4HzPYQgO1wX/H7NMVtGznLsvG85yG5zvOWRZltvb2yu6NxKos0ISKG0x2draio6OjvM2cKf6pWka1PlJKKPH9CES2fjka8Hjh/OqWyG4139Lr5Q3rba2NrS3tzPLBKDEWfYG9AciF7NM1tM0DWpoQs/y5MktZrkxl+ULl7TKK+U7Ge3t7Whra6v4LNddIQkAyWQS4+PjSBt8+1WSJHR3d3MIkAAAaiKiD5GMHoMWXyz684I3ALGtH8rIG/oPnB4433srRG/jpp9llqmU1Hh4ebgvHi7684K3EWJrL5RzR/UfuLxwXnUrRO/m+SpFlnt6eip6CJCso2f5GJTR49ASpciyT78vezbPVyKRwPj4ODIG3+SutizXZSEJAKqqIhQKIRgMFryFYn4piY6ODthsdfGeEq1DkzNQJnNDJAW8dX0BmwNSzx5I/fshNutvlaa/8xS0bArOqw5D9LcWfCqjWW5qakJ7ezuzXOf0LJ/MZdlAT8pSli+C2Ky/VZr+zpegZTNwXvWxorMcDAYRCoWYZSqall2R5ZCRLDsh9ebuy025LH/7b6Apsp7lhpaCT1VPWa7bQjJP0zREIhFEIhEkk8kLniBsNhvcbjd8Ph8aGxsrbp1Mso6maVCD48tDJErx2xWK7dsg9e+H1LULgnT+jSJ76jVIzd1LX8ZG2scsUyH0LI/lsnzKQJYFiO39kPovgtS188Isn/wZpNZeiE3G5o+rqopoNIpIJIJEInHB1qDMMuWdn+WTgFLsvtcCxI5tkPr2r5Pln0Jq64fYaGzOraqqiEQiiEajNZvlui8kV1NVFYqiQNM0SJJUlb9UKi01vqjfpMaOQ0sUv92m4GuG1L8ftr59G8551DStpHNhmGVaTY3ls3wMWrL4LQqFhlyWe63NsqIoUFWVWaYlamxh+b5sKMstuSzvZZa3iIUk0Rq0bBrKxEkoY29CDRlYaNbuhNS7F7b+/RAa+UIWlY+e5RP6cN88s0zVS8ukoEzmszxV/AnsrlyW9zHLJVQ9g/BEJtM0Fepcbohk6lTxQySCALF9O2z9+yF27rhgiITIKstZflMfulYLm6O1RBAgdgzA1rcfYucAs0xlo2kq1NnR5fty0VkWIXZsh63/Ij3LYvX3AFYa3h2o7qnReSijxyCPHQdSsaI/L/hbl4dINlgWgshsajSUy/KQ4Szb+i+C1DvILFNZqZEQlLH8fTle9OeFQBtsffsh9e2F4PSY0ELKYyFJdUnLpKBMDEMePQZtYbr4Ezjcy8N9gcpf54tql5ZJQRkfhjy2hSz37dV7Hxsre+Fjqm1aJqlnefQYtMWZ4k/g9Czdl8VAW+kbSGtiIUl1Q1NVqLPn9OG+6TPGhkg6d+g3qY7tHCKhstGzPAJ59BhUZpmqmKYqUGdGII8dgzp1BtDU4k4gShA7B/Sh6/ZtzHIZsJCkmqeGg8tDJOlE0Z8XGtv1IZLevRCcF25XSGQVNTynD12PDxnMcgds/fv1oes1tt4ksooanoM8egzKlrKcm4axxnaFZB0WklSTtHQSyviQPkQSni3+BE4PbH379IVpi1hQmajUtHQil+XjxrLs8sLWu5dZprLT0gkoY0P6NIzwXPEncHn1+3Lffoj+whcHJ3OxkKSasTREMvom1OmzhoZIpK6d+k2qfRsEUTSnoUSb0FQF6vRZfeh6ZgtZ7t8PsY1ZpvLRs3wml+URg1nepWe5vR+CwCxXGhaSVNU0TYMWnoM8+iaU8WEgkyz6HEJTF2z9+yD1cIiEykfP8uzycF8mVfQ5xOYufYeOnj3MMpWNpmnQFmcgjx7Xs5w1mOX+i/Qs250mtJJKhYUkVSUtFYc8PgRl9Bi0SLDozwtuH6T8EElDswktJCqMlopBHhvSd5uJhIr+vJ7l/ZD69jHLVFZLWR49Bi1qJMsNepb790H0NZnQQjIDC0mqGpoiLw+RzI4AxW7KJNmWh0ja+jhEQmWjKTKU6dP6Dh0z5wAwy1SdNEWGMnUaytgWsty9W89yax+XUqtCLCSpoi0PkeSGrrPpos8htvRA6t8PqXs3h0iobDRNg7YwrQ9dT2wlyxflsuwwoZVEm9M0DerClL7bzPgJQDaQ5dZevfeRWa56LCSpImnJGOSxY1BGj0OLzRf9ecHjXx4i8TaWvoFEBdKSUchjx/XhvthC0Z9nlqlSqIkolLHj+jQMQ1kO6A/1ffsgegMmtJDKgYUkVQx9iOSUPtw3O4rih0jskHp2Q+q/CGJLD4dIqGw0Obuc5bnR4k9gs0Pq3qMP9zHLVEZbz7IDUs8evXhklmsSC0kqK03ToM5P6kMkEycAOVP0OcTWvuWha5vdhFYSbU7TNKihCT3LkyeNZbmtb3m4j1mmMjk/yycAOVv0OcS2fv2+3LWLWa5xLCSpLNRERL9JjR2HFl8s+vOCt3F5iMTjL30DiQqkxsP6cN/oMWiJcNGf17N8EaS+vcwylZWe5WO5LEeK/rzga9Lvy737IHoaTGghVSIWkmQZTc5AmTwJZfQ41OBY8SewOSD1DupL9jR3cYiEykbL5rN8DGpovPgT2JyQenND103MMpXPcpbfhBqaKP4EdieknkHY+vdDaOpklusQC0kylaZpUIPjy8N9SrFDJALE9m25IZKdECRGlspDz/LYiizLRZ6BWabKUJIsd2yH1L8PUiezXO/42ydTqLHF3BDJcWhJA0MkDc2Q+vfD1rsPgttnQguJCqPGFpanYSSjRX9ez/JFsPXuZZaprLacZX8LpL79sPXtheBilknHQpJKRsumoUyc0BemDU0WfwK7C1JvboiksYNDJFQ2WiYFZfKEPnQ9P1X8CewuSL17YevfxyxTWWmZ1PJ92UiWHfks74cQaGeW6QIsJGlLNE2FOrdiiERVijuBIEDsGICtbz/EzgEOkVDZaJoKdXZUz/LUKQNZFiF2bIetfz/EDmaZymc5y29CmTptMMsDepY7ByCIkjkNpZrAOx0ZokbnoYwegzx2HEjFiv684G+DrX8/pN5BCC6vCS0kKowaCUEZy2c5XvTnhUAbbH37IfXtheD0mNBCosKokaB+Xx4fMpjl9uX7MrNMBWIhSQXTh0iGIY8eg7YwXfwJHG5IfXv13sfG9tI3kKhAWiYFZXxIz/LiTPEncLgh9e3Te2wCbaVvIFGBtEwSyviw8Sw7PbD17tVXEGCWyQAWkrQhTVWhzo7ow33TZ4wNkXTuyA33becQCZWNpipQZ0Ygjx2DOn22+CyLEsTO3DQMZpnKaCnLo8egTp8BNLW4E4gSpM4devHYvh2CKJrTUKoLLCRpTWo4uDzcl04U/XmhsWN5iMThNqGFRIVRw3OQR49BGR9ilqmq6Vl+E8rYEJBJFv15oalTz3LPIASHy4QWUj1iIUlLtHRieYgkPFv8CVze5SESf2vpG0hUIC2dgDI2BHnsGLTwXPEncHlh69unL37vbyl9A4kKtJTl0WPQIkazvB9S/z6IDcwylR4LyTqnqQrU6bP6EMnMWWNDJF07IfVfBLGtn0MkVDZ6ls/ksjxiMMu79AchZpnKSFNk/b48lr8va8WdQJQgde/OZbkPgsAsk3lYSNYhTdOghWdzw33DhoZIxOYuSH37IfXs4RAJlY2madAWZyCPHteHrrOpos8hNnfpu810M8tUPstZzt2XjWS5pXv5vmx3mtBKoguxkKwjWioOeew4lLFj0CKhoj8vuBsg9e3Tn3J9TSa0kKgwWioGeWwIyugxaFFmmaqXloxBHj+ey/J80Z8X3A36g1Dffoi+xtI3kGgTLCRrnKbIUKZPQxk9DnV2pPghEsmmD/dtuwhiax93NaCy0RQZytRpfYeOmXMADGQ5P9zHLFMZLWV59BjUWSNZtq/Ici+zTGXFQrIGaZoGbWFaHyKZGAay6aLPIbb0QOq/CFL3bgh2hwmtJNqcpmlQF6b05afGTwCykSz35oaumWUqH03ToM5PQRnbQpZb+yD179OzbGOWqTKwkKwhWjKqD12PHoMWWyj684LHr8+v6d8H0dtY+gYSFUhNRKHkp2EYynIgN9y3D6I3YEILiQqjJiJ6lkePQYsvFv15wRvQ78vMMlUoFpJVTpOzUKZO6UMkc6PFn8Bmh9S9Rx8iaenhEAmVzdaz7Fge7mOWqYw0OQtl8qSe5eBY8SewOSD15O7Lzd3MMlU0FpJVSNM0qKEJ/Sl34gQgZ4o+h9jWpw9dd+2CYLOb0EqizS1lefQYlMkTgJwt+hxiW7/e+8gsUxmVJMvt2/Tex66dzDJVDRaSVUSNh5eH++Lhoj8veBv14rFvL0SP34QWEhVGz/IxfbgvESn684KvSS8ee/dB9DSY0EKiwqjxRSijufuyoSw3Q+rfB1vfPghuZpmqDwvJCqfJGSgTJ/U3VYPjxZ/A5oTUmxsiaeriEAmVjZbN5Ib73oQamij+BDYnpN5B2Pr3Q2jqZJapbLRsenno2kiW7bks9zHLVP1YSFYgTdOgBsdyQyQnAUUu8gyCPkTSnxsikfhrpvJYyvK5N6FMnTKW5Y7t+puqncwylY+mqVDncvdlI1kWBIjt22Hr3w+xcwezTDWDSV5B0zSk02koigIAEEURTqcTokVbpamxRf0mNXYMWjJa9OeFhmZI/RfB1rsXgttnQgupWpQ/ywu5LB83mOUWSP37YevbC8HFLNezsmc5Oq9Pwxg7Di0ZK/rzgr8FUt9FuSx7TWghVYtyZ9ksdV9IyrKMhYUFRCIRpFIpaGss2O1wONDQ0IDm5mY4naXddkrLpqFMnNCH++anij+B3QWpdy9s/fsgNHZwiKSOlT3LmZSe5bFjxrLsyGd5P4RAO7NcxwrJstPpRENDA5qamkzK8jDk0ePQFoxk2b08DYNZrmv5LIfDYaTTacuzbAVBW+vfqg4oioLp6WksLBS3Rp3X60V3d/eWftmapkKdHV0eIlGV4k4gCBA7BvQhko4BDpHUOVmWMT09jcXFxaI+V9osvwll6rSBLIvLWe4cgCBKhttC1c9oln0+H7q6uraWZVWFOncud182mOXOAdj6mGUqb5atVpeFZDQaxfj4+FL3shEdHR1obW0t6klTjYagjB6DPHYcSMWLvqbgb4Otfz+kvr0QnJ6iP0+1JxKJYGJiwnCWBUFAR0cHWlpaistyJKhneXzIWJYD7bD174PUyyyTruxZHjsOpBPFXzfQrt+XeweZZQIAhMNhTE5OWp7lcqm7QjIYDGJ6erok5/L7/ejr23jPXi2TgjI+BHn0GLTFmeIv4nBD6tun99gE2rbQWqo1pcxyIBBAb+/Ge/ZqmSSU8WHjWXZ6YOvdq68gwCzTCnNzc5iZMZCpNRSU5XRSvy+PHYO2OFv8RZwe2Pr2QerbDzHQuoXWUq0pZZYbGxvR01P5myvUVSEZCoUwNWVgvssG1rppaaoCdfYc5NE3oU6fNTZE0rVDHyLp2M4hErqApVmeGYE8egzq9BlAU4s7qShB7NyhPwi1b2OW6QKlfCDKW+sLuBRZljp36A9C7dshVPkLElR6VmW50tTN5LpkMlnyL15A78L2eDxoaWmBGp6DPHoMyviQsSGSxo7lIRKHu+RtpdqQSCTMz/LiLOSxY1DGhoBMsuhzCU2dsPXls+wqeVupNiQSiZJ/8QLA4uIiPB4PmpqaoK28LxvNcv9+SD3MMq0vHo+blmWv14umpqaSn7tUTO2R/NSnPoVXX30VV1xxBf7iL/7CrMtsSlVVnD59Gul02pTzC4KAHdHTwPTp4j/s8i4PkfhbSt84qimqquLUqVPIZIrfFrMQgiBgR+QkMHO2+A/ns9y/H2IDs0wbsyTL4RPA7EjxH3b5VmS5ueRto9qiqipOnjyJbLb4bTELIQgC9uzZA7u9MrfNNLVH8s4778RHP/pRfO1rXzPzMptaWFgwrYgE9LWh4oITBa8QJkqQunbpN6m2fg6RUMHm5+dN++IFclkWXcVluXuX/iDU3g9BYJapMFZkOSG5UfDrL5JtxX25j1mmgoVCIdOKSEDP8vT0NPr6+ky7xlaYWkhefvnl+MlPfmLmJTalaRpCoZDp1wk6mjf98hWbu/TdZrr3cIiEAABj//tptH7g/XD39Gx6rHVZbikgy916lnv2QLBXzzIVZJ7Rp55C+w03wNXdvemxVmV5zt6MbZscI7Z0Q+q7CFLPbmaZAACjX3oK7TfdCFdX16bHapqG+fl509sUDofR1dUFm63yZiQW/cilqipuvPFGPPLII+f9/JVXXsGBAwfwwgsvlKxxpZBIJEx96s2T7W7IgY4Lfi64G2Db80443383nO/9OGzbL2ERSUvmvvMd/Py223Hyj/9/SE5svGdvPB439ak3T7a7ofjbL/i5nuV35bJ8K2zbL+YXLy2Z+9a38fNP3IaTf/InSE1ObnisZVl2eKA0XLhCgOD2wzb4Ljg/8OtwXnUrbNsPMMu0ZPaFF/Dzj38Cp/70z5DaZD56LBazJMsAil6T0ipFl7aiKOL+++/HkSNHcN999yEQCGBoaAif+cxn8NnPfhY33XSTGe00LB4vfo07o6K+LjQuTgOSDWLrNkjdOyE2dwG5N1XVeAQQAEAABBEQBECyAaJU0W9kkYk0DVAUzP7bv2H2W99C+w03oPeuX1uzh9LSLDd0IRCeWZHlXRCbO5llWp+mQVMUzP7rNzD3wjfRdtON6Lvz1+DqubCH0sosxwI98EdmAckOqWs3pP59EFuXVyfQ1CLf3qa6oCkKZr7+dcz+27+h/YM3offOO9fsbbc0y7EYWlsrb7kpQy/byLKMG264AQcPHsShQ4dw+PBhXHfddXjooYcuOPYnP/kJ/v7v/75sL9ucO3cO0Wjxe/0aIaXi2D5Z/FC+pmlQswrUrKz/Vc7/VYGakfW/Zlf8Naucf1x2xfHZ5Z/JiTSUtDVPSlRCkrRmQTkyMoJYrPi9fg01IRHB9umfFf05ZplWEiRpzYLy7Nmzln0Bi4kYFn73QUuuRbVLkKQ1C0orsyxJEvbt22fJtYphaLDdZrPh3nvvxWOPPYZvfetb2L9/Pz7/+c+Xum0lkUqlLLuWUvxMAQD6G1mSwwbJUfq5D5qiQk6mISfSkJMZyMk0soncPyfS+v+XXPnPGb2XjMpnnR5KK7OsVniWsyszvTLL5+WaWS639XoozXz5cTWj92WilfQeyn/F7L+9cF5BaWmNoShQFAWSVFnr8Rpe/icej+OKK67Atm3b8JWvfAUez4Xvxt1zzz148803kUwmEQgE8IUvfAGXXHLJlhtdjOPHj29pK8SipJLYOfkja65lEk3ToKQy5xWWS1/euS/obDSBTDiBTDTJL2orSBLab7oRmRtuhGa3ZqK1kIhhx/SrllzLLBdmWc+wkswwy+UiSej44E1I33ADNIteGtASCUR+979Yci2qH4Ikof1XfxWpD7wfsPAFmMHBwYpbBsjwv/2RI0cA6EvrrFcd/83f/I3R01OZCIIAm9sJm9sJbLIUoKaqyESSyETi+pdxJI50ePnvM9EkoPLLeUsEAa3vex96br0V51Ip6x6KaoDxLMeRiSSWsxyOs9AsBUFA6zXXoPvWWzGSSHBuIlUvUUTrddei+/DHMBKPQ63zLBsqJB9//HG89NJLeOaZZ3D33Xfjueeew+23317qtpWE3W7nl69JBFGEs9ELZ+Pai8VoqoZMNIFMJPdlvPoLOppgobkeQUDrtdei7+674BkYAADYTp5klk2yeZZVZKLJ87Kczj8wMcsbEwS0XnednuXt2wEAthMnLFlNg6ikRBFt778OvXfdBc82fWEpq7NcacPagIFC8tlnn8VTTz2Fp59+Gnv37sVdd92FJ598EocPH6647lYAcLvdls1hsLvdCIdyb6ye/5cVf7P8siugv+yaf+lV/5+2/Pfn/Xz5n6uFIApwBrxwBrxA34VLcGiavg25IgOKIkDOAnJW/6siA+f9odWo2W98A/LKl8EEAa3XXoO+u+9eKiDz3G63ZXPLbB5v6bK8OsdVmWWRWd7EzL/+K5SVL4OtUUDmeTwey758nV4vuj/+cUuuRbVh5utfh7LyBRpRXM7ytvNXJnW73dZl2emEWIEbmBRVSL788st4+OGH8eijj+Kyyy4DoO9e86UvfQnPP/88Dh06ZEYbt8TtdmNhYcGSa3n8AXT++u+Yeg1NU3PfVjI0RUb+m0pTsit+ngWyaWiZJLR0ClomAWSS0NJJaJkkkLFucvBG8ivGSDYAyPfm5P4qihB8TRAbmiE0tCz9VfD6a2rHiYUf/UgvJNfogVzN7XZbto6Yt7HJ2izLq/KryICShSbLgJzPcj6/1ZZlqS6yPP+DH+iFpCCg9f3vR99dv3ZBAZlnZZY9gQB6P/0pS65FtSH08st6IblGD+Rqbrcb4XDYknat9S5KJSi4kDx69CgeeOABPPjgg7j++uuXfu7z+XDHHXfgiSeewMGDByuu29Xv92Nyk8VxSyUQCJh+DUEQAZsDsDkM93FomgpkUtAyKf3LOPelvNYXdf7/h2bxHBBVhRYJQokEz/+5KEFoaL7wS9njr871C1f22qxTQOb5/X5MbbI4bqlYnmWDa0EvZ1nP7Mq/r5wsK/WT5Q98YMMCMq/Wsky1RZAktF3/gQ0LyDy/34/p6WlL2lWpWTb81nY1GRsbM/2JwWazYXBwsDq/ADahaRogZ/Qv5HQCWjICLRHN/XX571HOCceSDYIv96Xsb4HY0AKhoRmCu6GifyfpuTk42y4cKl3P6OgoIpGIiS3S5xXv2bOnov/cjFo3y4lclpMVkuWG5qUMM8vG1XKWyTzFZtmK9aorOct1UUgmk0mcPn3a1Gt0dXWhpWWTV0NrmKZpQDoONf+lvPILOqn/FWoZXhSR7BAb2yA2dkJs6oDQ1AnB5avI/xgLkUgkcObMGVOvwSxvkOVcnsuSZZsdYqAdYmMHxKZcnt0N1rejRKzIcnd3N5qbm029BlE8HsfZs2dNvUYlZ7kuCkkAmJ6eRjAY3PxAA9xuN3bs2FG1xYkV9C/nBLREBGoyel5PZv4L2rIvZ6cXYlPuy7ixQ/9CtjmsuXYJTE1NIRQKmXJuZnlza2d5+YFJS4St69F0ec8rLMVGZjnP4/FgYGCAWSZLTE5OYn5+3pRzV3qW66aQVFUVp0+fLvlbr4IgYNeuXXA6DU7yIgD68ipaIgwtOg81GtL/GglBiy1YMqdNaGheUVh26nPVKvDtOEDP8qlTp0r+piCzXBpLWY6EoEbnoUVzf7U8y7leyzrN8u7du+FwVE9RTdVNURScOnUK2Wxpt3IVRRG7du2q6CzXTSEJANlsFmfOnCnZL1oQBGzbtg0+n68k56MLaaoCLR5e/jJe+lJeNPdLWbLpw4j5IcTGTgjuyhkSz2QyOHPmDGRZLsn5BEHA9u3b4fWuvY4ibd15WV5RZGrxRXMXO1+d5Qqb3sEsU60wI8sDAwMV+7Z2Xl0VkoBeTI6MjGy5Z1KSJPT39/NmVSaaqkCLLS73Xub+qsUWsbz8Sok5Pcu9ls1des+lZN3WWKsxy7Xh/CyHoEbyBWYYpme5qQNiU/mznMlkcO7cuZJkedu2bRX/xUu1K5PJYGRkZMu97NWU5borJAF9OCUYDGJ2dtbQ5/1+P7q7u2GzcH9NKoymyNBiC8u9l4uzUBdngKwJC3mLEsTmbohtfZBa+yA0tlm+LqCqqpibm8Pc3JyhzzPLlevCLM9AXZgBZBMWP5Zs+sNRax+ktj4IgerLciAQQFdXF7NMZaeqKmZnZw2/l1FtWa7LQjIvnU4jFAphYWEBhfwxNDQ0oKWlhUPZVUbTNGjxRagL01AXZqAuTkMLB0s/NG53QmzpgdTWB7G1D4KvybLhw1Qqhfn5+YKz7Pf70dzczCxXmfOzrOdZi5iV5V5Ibb1VkeWWlhb2qFPFSaVSCIVCWFxcrOks13UhmacoCuLxOJLJJJLJJBRFgaZpkCQJLpcLbrcbXq+3IreAJGM0RYYanoO2OLP0pawlSrymndMLqbUXYq6wFD3mL9WyOsv5uTrMcu1ayvLCdK7X0oQsu3JZbu3T82zBskPMMtWKWs8yC0miHC2dWBo+VHNfyqUcEhe8gaWhQ7GlF4LTXbJzE61kfpYbc1nuZZaJ6hwLSaJ1nDeMmPtS1sJzJRtGFPytkPI9PC3dVbX+H1UXs6d3CP7WpSkdzDJRfWEhSVQETZH1onJuDGpwTH/5oRRfxoKov0XbuQNS5w6Ivsatn5NoA5oi64VlcFzP82IJs9zcCbGDWSaqBywkibZAkzNQQ5NQg2NQ5sb0Fx9KQGhohpQrKoXGjopZ849q11KW58agBJllIioMC0miEtLSSaihcSi5Hkt9LcAtcnohdQ7ovTutvWVd74/qh5ZOQAmO6z2WpcqyywupYwekrgF9biWzTFT1WEgSmUhNRPUh8OAYlLlxIB3f2gklO8T2bZC6dkBq3w7B4SpNQ4k2oSYiS8PgSnAMSCe2dkKbHVL7dn06R8d2CHZuzUlUjVhIEllE0zR9gelcUamGxrf2Jq0gQmzphtS5E2LnDkuWFyICVmd5DGpwfGsLpQuivgZr1w6IHcwyUTVhIUlUJpqmQgvP6V/EsyNQQ1PYypZ4gr8VUtdOfS6av5Vz0cgymqZCW5yDEhyDOjMCdX6LWQ60Lc+rZJaJKhoLSaIKoaUTUGZGoEyfgTo3Ciiy4XMJ7gZ9yLB7F8Tmbn4Rk6VKmmWPH2LHALNMVKFYSBJVIE3O6sOGU2egzJwBMinD5xLcDZB6ByH1DkJsaClhK4k2p8lZqHOjUKbPQJk5W6Is74XY0FzCVhKRUSwkiSqcpqlQ56ehTp+BMn16S2/PCoE22Hr3QurZA8FVXfu5UvXTszylZ3nqDLTEVrLcDlvvILNMVGYsJImqiP6Sw7zeuzN1BtrijMEzCRDb+vTena6d3ImELKdpGrRoLsvTW8xye7+e5c6dEGzVuV8xUbViIUlUxbRUDMr0WX0uWnAMUA3sTCLZIHXuhNQ3CLG1H4Iolr6hRJvQkjEoM2ehTJ3W3wI3ssuOZNeXxurdC7G1j1kmsgALSaIaoWXT+ly0qdxcNCPLsTjckHoHYevdCyHQxhcbqCy0bBrK7Dl9CHxmxFiWnR5IPXuYZSKTsZAkqkGaIkOdPQd5fAjqzFlDPZWCrwlS7179JR2P34RWEm1OU2SoMyOQx4f1LBvoqWSWiczDQpKoxmmZFJSpU1DGh6CGJg2dQ2zu1r+Iu3dxNx0qGy2TgjKZy/L8FrLctxdSF7NMVAosJInqiJqIQJkYhjI2BC22UPwJRBFS925I2y+B2NTJ4UIqGzUehjJxAsq40SxLkLp3w7b9YgjMMpFhLCSJ6pCmadDCc5DHh6BMnDC0b7Lgb4Vt+8WQegf51jeVTcmyPHAJpJ5BvvVNVCQWkkR1TlNVffHz8WEoU6cBJVvcCWx2SL37YNt+MUQ/Fzyn8lnO8lAuy0XuqGNzQOrbq2eZi/cTFYSFJBEt0eSsvq7f+JC+tV2RtwexpRvS9kv0tSlFyaRWEm1OkzP6CgbjQ1DnxlDs3t9iSw+k7Rczy0SbYCFJRGvSUgkokycgjw9BW5wt7sNOD2z9F0HadgCip8GcBhIVSEvFoUycgDw+DC1sIMvbcll2M8tEq7GQJKJNqdF5yOeOQhk7DmTTRXxSgNi5XR8qbNvGFxqo7NRoCPK5N6GMHityfUoBYudALsv9zDJRDgtJIiqYJmehTJ6EPPJ60b2UgscPafvFsPXth+B0m9RCosJoclbvpRx5HVp4rqjPCp6AnuX+fRAczDLVNxaSRGSIujADeeQNKBPDgKoU/sHcsivS9ou5hBCVnaZp0BbzWT5hKMtcQojqGQtJItoSLZOCMnYc8sgb0OKLRX1W8LfCtvOtkHp284UGKjstk4I8dgzKyBvQ4uGiPisE2vQsd+/mHt9UV1hIElFJaJoGNTgG+ewbUGfOFPXGt+Bu0L+E+/dzHT8qO03ToM6NQR55Her0WRTzxrfg8cO28y2Q+phlqg8sJImo5LRkDPK5o5DPvQmk44V/0OGCbeBS2AYu4dwzqghqMgrl3JuQzx0tbrFzhwu2gctyWeZWjFS7WEgSkWk0VYE6fVbv2QmOF/5ByQZp2wHYdryFywdRRdCzfAbyyBtFZtkOadtFsO18C5cPoprEQpKILLG0hFAxy64IIqSePbDteht3zaGKoUbn9Zdzxo4Xl+XeQdh2vZW75lBNYSFJRJbSl10Zhnz6F9BiCwV/TuzYDtuut0Nq6TaxdUSF0+QslPFhyKd/XtSLZmLHAGy73sYsU01gIUlEZaFpGtTpM8ie/Bm0xZmCPyc2dcG2+20QOwa43ApVBE1ToU6dQfbUa8Vlublb723v2M4sU9ViIUlEZaVpGtTQBORTr0GdPVfw54SGZth2vg1S7x4uHUQVQc/yOOSTr+l71RdIaGjWeyh7mGWqPiwkiahiqOE5yKd+ri8MXeCSK4LLpy+3su0iCDaHuQ0kKpAans1l+SQKzrK7Qc9y/0VcOoiqBgtJIqo4ajwM+fQvoIy+WfhOI3anvnTQzrdAsDvNbSBRgfQs/1x/yazgLLtg23EpbDsuY5ap4rGQJKKKpaUTkM++DvnsL4FsurAP2Z2w7XobbAOXsleHKoaWTkA+80vII68XkWVXLsuXMMtUsVhIElHF0+SMvij06V9AS8UK+5DTA/ued+jDhJLN3AYSFUiTM/pi/ad/AaQKXKw/n+VtBziHkioOC0kiqhqaqkAZPwH51M8KXjpIcDfANvguSL17uQcyVQw9y8OQT71WeJY9ftj2vJNZporCQpKIqo6maVBnzkI++TOoC9MFfUbwNekFZfduLrVCFWNpGaxTr0ErIsv2vZdD7NrFLFPZsZDMyWazSCaTSCaTUBR9QrQoinC5XHC73XA4HPwPlqpCPWVZ0zSo85OQT7wKdW6soM8I/lbY910BsZ1r91UyTdMgy3L9ZXn4VajBArMcaIN97xUQ27fVzJ9DLdI0DdlsFqlUqiazXNeFpKqqCIfDCIVCSKVSGx5rs9nQ3NyM5uZm2Gycb0WVpdgst7S0oKmpqaayrATHIR//EdSFqYKOF5u6YNt3BaTWXpNbRsVQVRWLi4sIhUJIpzd+KaV2szyWy3JhPZRicxds+94NqaXH5JZRMYrJst1uR3Nzc1VmuW4LyWg0ivHx8aUng2J0dHSgtbW1ap8eqLZEIhFMTEwUnWVBENDR0YGWlpaaybKmaVBnzyF7/IfQIsGCPiO29cG+990QmzpMbh1thllepk/fGEF26EdFZLlf721vZJbLLRwOY3Jysi6yXHeFpKqqmJycxOLi4pbO43a70dfXB4eDCyBTeaiqiomJCYTD4S2dx+12o7+/H3Z77Swvomka1KlTyA79uOAXGcTOHfowob/F5NbRaszy+jRNgzJ5EvLQjwvez1vs3KnPoWSWLVePWa6rQlJVVZw7dw7xeIFLLmzCZrNhx44dLCbJcqqqYmRkBIlEoiTnq9Usa6oKZXwI8vBPoCWjBX1G6hmEbfBdEH2N5jaOADDLhdKzfDyX5cKWwJJ6c1n2NprbOAIAKIqCkZERJJPJkpzPbrdjYGCg4rNcN4Wkpmk4d+4cYrEC16ArkN1ux86dO6tuTgNVL2a5eJoiQxl9E9kTPwXSBRQsggCpfz/sg5dDcHnNb2CdMjPLu3btgiTV3pqLmiJDOfcmsideBTIFFCyCmMvyu5hlE2mahpGRkZJ1VOU5HA7s3LmzorNcN4Xk/Pw8JicnTTl3IBBAX1+fKecmWi0UCmFqqrAXSopV61nW5Czks7+EfOq1wnYXkeyw7XmHvlUdFzUvOTOz3NjYiN7e2n2Rqugs2+yw7XmnvuMTs1xywWAQ09OFvRxVrErPsmmF5NTUFH7v934PoVAIkiTht3/7t3HTTTeZcalNZTIZnDx5EmbWzP39/fD7/aadnwhglktFy6Yhn/6FvruIkt30eMETgP3AVRA7BqpmAnylsyLL27ZtQ0NDg2nnrwR6ln8O+fR/FpZlbwD2i5jlUkqn0zh16lTdZtm0QnJ2dhahUAj79u1DKBTCwYMH8c1vfhMej8eMy21oamoKoVDI1Gs4nU7s2sXFYak4mqJAKGLIYnJyEvPz8ya2CHC5XNi1a5ep16gUWjoB+eRr+v7H6uZvV4ptfbAfeC/EBr7EsBqzXF5aOoHsyZ9BGXmjwCz357LcbEHrqkuxWZ6YmMDCQmEv9Rnldruxc+dOU69hlGl7LLW3t2Pfvn0AgJaWFgQCgS2/xWSEqqqm/4IB/YmkVBNsqX4M/1//FdP/5xkoqc2zoyiKJVlOpVIle/Gh0glOD+wHroLrursgbbsYEDa+JapzY0i/9A/IvPEytMzG63XWm+HP/S6m//lZKJusYwpYm+V6uS8LTg8cB94L13W/BmnbAWCTTg11bhTpl/4emaPfZ5ZXGfq9z2Lma/8H6iZrPwJ6lre6Ckwh8gvzV6KiC0lVVXHjjTfikUceOe/nr7zyCg4cOIAXXnjhgs+88cYb0DQNXV1dxltqUCQSgaqqllzLijBRbZHDixj/m7/GG79+x6YFZTQaNXXoZKV6y7Lg9sFx6TVwXnsHpJ49Gx+saVDO/hKpf/9byGdfh2bR/aXSZRcXMP7kF/HGJ2/ftKCMRCLMskkEdwMcl14L5zV3QurevfHBmgblzH/qWR55A5rGLANAdmEeY//rf+KNT96xaUHJLBsc2v7qV7+KI0eO4MUXX0QgEMDQ0BBuu+02fOpTn8I999xz3rELCwu4/fbb8Yd/+Id461vfWrKGF8qKYe08h82G1hlzXuih2jT2xBeRnV/Opy3QiM5Dt6LtV26G5HKfd6wVQ4F5TrsdLdMTllyrEqnRBchjx4FkZPOD3Q2w9e2t++Hu0f/1PyGv6GW0NTai89DH0fbBmyG5XOcda2WWXXY7mpnlIrK8r+6Hu0e/+JeQw4tL/2xratKzfNOvXpBlK4a18yp1eNtQISnLMm644QYcPHgQhw4dwuHDh3HdddfhoYceOu+4TCaDX//1X8fHPvYxfPjDHy5Vm4ty+vRpy7qDtUwG6c8/aMm1qLbpX8K35r6E9YLS0iynUkj/wecsuRbVtrUKylOnTm26lWfJpJJI/cF/s+ZaVNPsTc3o/JheUIpOJwBrsywIAvbv319x72IYmiNps9lw77334stf/jLuvfde7N+/H5///OfPO0bTNPy3//bfcPnll5etiASAbHbzt9iIKo28uIjxJ/8ab3zyDkz/sz7knclkyt0soqLpWT5/yNvK+3KdrHBHFlhryNvK+7KmaYa2dTab4Zdtbr755qXekUcfffSCxTJfe+01/Nu//Ru++93v4pZbbsEtt9yC4eHhrbXWAN5EqJrlC8rTRx4qaOI3UaXKF5Sn/+j/gZphlql65QvKU3/0/0C1+AG/Emsaw6uSHjlyBIA+B3KtFdff/va3Y2hoyHjLSqTSuoCJiuEe2IHu234NjVdciaHh4Yp8GiUqhHvHTj3Ll7+bWaaq5t6xC92361k+fvy4ZS/0ApVZ0xgqJB9//HG89NJLeOaZZ3D33Xfjueeew+23317qtpWE0+mELMuWXKsSf8FUnVYWkIKoDxw4nU7LluVhlqlUVhaQ+Sw7HA7L5vsyy1QqKwvIfK6cTqdlWRZFsSK3Siz6ZZtnn30Wf/iHf4inn34al112Gf7qr/4KzzzzDL797W/Dbreb1U7DpqenEQwGLbmWy+lEp2JN0Uq14cyfHEFmdmbpn90DO9D9iTvR+O73LH3p5lm5AgGzXKBsCvLIUSjTpzc/1uaEbcdlkNq3bbrGXzU6/ccPIxucW/rntQrIPCuz7HY60cEsby6TgnzuDSjTZzY/1p7LcluNZvkPHzpvNQ33jl3ovu1O/cF+1b+vlSsQeDwe7Nixw5JrFaOoHsmXX34ZDz/8MB599FFcdtllAIA777wTX/rSl/D888/j0KFDZrRxS6zcScfr88FXhrUyqXrl3/xbqwdyNY/HY9mXr6+hAb7OTkuuVfUufgvU8Cyyb3wf6vwmy3+FT0K0p2C/9FqI3oA17bOI6HAA2LiAzLMyy15muXCXvAXq4iyyRwvI8uJJiPY07JdcU3NZFpayfGEP5Goej8eyQtLr9VpynWIVXEgePXoUDzzwAB588EFcf/31Sz/3+Xy444478MQTT+DgwYMV1+3q8/kgSZIl83GamppMvwbVFvfADvT82ic3LCDzGhoaIIqiJfNxmOXiiIF2OK78KJTJk5CP/QBaMrbusWpwDOmX/h62wcth23HZpr/3auHZsRO9n7xvwwIyj1muXGLjiiy/+QNoqQ2ynNsdx7b3ctgGainLu9B3729tWEDm+f1+y7Lc2Nho+jWMMG2v7UoyMzODubm5zQ/cgkrtcqbawixXPk3OQj79c8inXgM2GVIVAm1wXHYdxEC7Ra2rHFZMO/J6vRgYGDD1GrVMk7OQT72mZ3mT/buFxnY4Lr0OYqDNotZVDiumavh8Pmzfvt3UaxhVG48Pm2hpaTG9p7Sjo8PU8xMB1mS5k8OAWyLY7LAPvgvOa+6E2LXxLhRaeA7p738F2WP/AU2urzVvW1tbIZrcg8X78tYINjvsey+H89o7IXZu/HCpLc4i/f1/0rNcZ3NS6z3LddEjCej7YY6Ojppy7paWlrLsI071KRwOY2xszJRzM8ulp0ydRub1l4B0fMPjBE8A9kuvhdTWZ03DKoCZWW5tbeVDUYkpk6eQeeMlIL3x6hGCN5fl1vrJ8uLiIsbHx005d1tbGwvJSmHGnpgulws7duww/WmEaCVmubpo2TSyx34I5dwbmx4r9e2H/aL3QHC4Nj222mmahomJCSwuLpb0vG63GwMDA8yyCfQs/weUc0c3PVbq3w/7fmZ5K6ohy3VVSGqahvHxcYTD4ZKcz+l0YmBgADab4XXdiQwpdZZdLhe2b9/OLJtMCU0g+8t/hxbb5CHA4Yb94qshde+u+XUQNU3D2NgYIpFISc7ncrkwMDBQcS9+1holOK5nOb648YFODxwXXw2xaxezXKRqyXJdFZKA/ouem5vD7Ozsls7j9/vR09NT8b9gql2apmF2dnbLL98wy9bSFBnyyZ9BPvkzQNv4TU+xY7u+vIq7waLWlUepshwIBNDd3c0sW0RTZMgnfqq/jLNZljsH4Lj4fRCY5YJUU5brrpDMSyaTGB8fR7rI/YslSUJ3dzcCgdpaN4uqF7NcndRICJlffhfawszGB0p22Pe/G9L2iyEIlTu8VQpbyXJPTw/8fr9JLaONqJEgMv/5PWiLm2TZZod935W5LNd272QikcDExETRWbbZbOju7q6qLNdtIQnoTw6JRAKhUAjRaHTDzdA9Hg+am5uX1owiqiSapiEej2N+fr6gLLe0tCyt5Uflo2kqlLNvIHv8h4Cy8VvbYlMn7JdeB9HfYlHrysNIlv1+f80XJpVOz/LryB7/UQFZ7oL9smshNtRHlkOhEGKxWM1mua4LyZU0TUM6nUYymUQyIyOWVdHqscPlcsHlcvELl6oGs1x91EQU2TdehDozsvGBggjb7rfDtucdEMTKH/LaqpVZTmRkJGQVLW5muZKpiQiyr78IdfbcxgcKImx73gHb7rfXZZaTsormGskyC8k1/Gx8EVPRFG7ex6UjqLr9dHwRs9E0fmVf5S4dQTpN06BMnkT2jZeBTHLDY4VAOxxvvR5iQ7NFrSu/V8cWEIxn8MG9zHKl0zQNysQJZI++DGRSGx4rNHboWfbVzw5EPxldwHwyi5sGa2MjguotgU2SllW8MR3BZCSNycjG/wEQVbKUrODodATjkRSmo8xypRMEAbaePXBdewekvn0bHquF9cWf5bO/3HC4rFaksgqOTkcxFk5hJlrcnDOyniAIsPUOwnXNnZB69254rLY4g/TL/wh55I26yHIyq+DoTBSji0nMxmojyywkV3ljOoKMoof5tYnF8jaGaAvemI4uZ3m8NMsEkfkEhxuOt3wAjis+DMGzwYR7RUb2jZeR+cm/QEttvNh5tXt9OoKsyvtytRGcbjjeej0clxeQ5ddfRObVr0NLbbzYebV7fSoCeSnLtXFfZiG5Qr43Mo+9klSt8r2ReeyVrD5SWz+c77sdtl1vAzaYfK/OnkPqpb+HMnXawtZZJ98bmcdeyeojteeyvPOtADbI8syInuXpM9Y1zkL53si8WumVZCG5wsreyDw+/VI1Wtkbmcdeyeoj2Oyw778SzqtuhbDRHLJMCpmffgOZ//wuNDljXQMtsLI3Mo/35eoj2OywX/QeON97eJMsJ5F59V+R+eX3ai/LK3oj82qhV5KFZM7q3sg89kpStVndG5nHXsnqJTa2w3n1JyANXLrhccroMaRf+gco81MWtcxcq3sj89grWb3Exg443/txSNsv2fA45dybSL/8j1BrJMureyPzaqFXkoVkzlq9kXl8+qVqslZvZB57JauXINnguPhqOC6/BXB61z1OS0SQ+cFzyA79GJqqWNjC0lurNzKP9+XqJdjscFzyPjgu/xDg9Kx7nBYPI/0f+SxvvHNOpVurNzKv2nslWUhi/d7IPPZKUrVYrzcyj72S1U9q3wbXNbdB7Nq5wVEa5BOvIv2D56Butq93hVqvNzKPvZLVT2rfDtf7bofYuUGWtVyW/+NZqLFFy9pWSuv1RuZVe68kC0ls3BuZx6dfqgYb9UbmsVey+gkONxxv/yDsl30AsNnXPa6al1bZqDcyj/fl6ic43XC844OwX/Z+QNogywszSL/8D5BHjlZfljfojcyr5l7Jui8kN+uNzGOvJFW6zXoj89grWRsEQYCtfx+cV98Gsblr/QOrcGmVzXoj89grWRv0LO+H8323QWzaLMv/jsyr/wotXR1Z3qw3Mq+aeyXrfmebSCqLqdyN6NhMFLPx898Sc0gC3r1N3z0i4LKjs8FpeRuJCrEyy2/ORDG3KstOScQV2/S3JRvddnT4mOVaoWkq5JOvQR7+CaBtMJfM4Ybjsusgde6wrnEGhFNZTOeyfHQ6imDi/Cy7bCIu79ez3OS2o51ZrhmaqkI+9TPIw68WkOX3Q+ocsK5xBqzM8hvTEYQS5+9DXgtZtpW7AeXmd9nhd+nd6WOLyQsKSZsoYrDNV46mERVlZZZHF5MXFJI2SWCWa5QgiLDveQek9m3I/Pxb0NabF5lbWkXadhHsF10FweawtqEFCrjsCOSyPLKQQHBV55NNZJZrlSCKsO95J6S2XJbji2sfmEki8+rXIW07kMvy+sPi5bQyy2fnExcUkg6p+muMuh/aJiKqFWJje3FLqyzOWNQyouKITR36klfbLt7wOOXc0VyWZy1qGa3GQpKIqIYsLa3yrgKWVvnBs1X5Ig7VB8Fmh+PSa+B4182Aw73ucVp8MZfl6nsRpxawkCQiqkFSx3a43ncbxI3mQ6oqsq+/iOzPv11zu4hQ7ZA6BuC65naIG82HVBVkX/93ZH/xHWhydv3jqORYSBIR1SjB6YHjHb8C+6XXbbi0ijIxjPQrz0CNzlvYOqLC6Vn+VdgvvXbjLI8PIf3KV6p2/dRqxEKSiKiGCYIA27aL4HzfJyA2da57nBadR/r7X4E8Pmxh64gKp2f5AJxXfwJCU8e6x2nReaRf/ifIEycsbF39YiFJRFQHRG8jHFcegm3X29Y/SMki+/NvIfP6i9AU2brGERVB9DXCeeXHYNv51vUPUrLIvvZNZN54ueq3Cq10LCSJiOqEIIqw778Sjnf+KmBff706ZeQNpP/jOaiJzRe4JyoHQRRhv+g9cLzjV4ANlrFSzv4yl+XNFwUnY1hIEhHVGalzB5zv/TiEQNu6x2iLs0i//I9QZs5a2DKi4khdO/Wh7o2yvKBvFarMjljXsDrCQpKIqA6J3gCc7/nYxuv0ZdPI/OTryB7/ITR1g11GiMpoOcsXrX9QNoXMj/8F2aEfQ9toxxwqGgtJIqI6JUg2OC69Bva3XA9I6290Jp/8GTI//hq0VNzC1hEVTs/ydbC/5QMbZ/nEq8j86Pmq2au7GrCQJCKqc7a+vXBedSsEX9O6x6jBcaRe/icooQkLW0ZUHFvfPjivOgzB27juMWpwDKmX/xFKaNK6htUwFpJERATR3wLne2+F1LNn/YPScWR++M/InnyNO4hQxRL9rXqWu3evf1AqjswP/w+yp37OLG8RC0kiIgIACDYH7G+9AfaLrwaEdb4eNA3y8f9A5qf/Ci2btraBRAUS7E7Y33Yj7Ac2yfKxHyDz039jlreAhSQRES0RBAG2gUvhfM8hCO6GdY9Tp88i/fI/Ql2ctbB1RIUTBAG2HZfCeeVHIbh96x6nTp9G+uV/ghqes7B1tYOFJBERXUBs6oTz6o9DbN+27jFaIoL0D56FPHrMwpYRFUds7oLzvZ+A2Na/7jFaIoz0K89AHjtuYctqAwtJIiJak+Bww/GuD8G29woAwtoHqQqy//ldZI5+n0sEUcUSnG44Lr8FtsHL1z9IVZD9xXeQPfoKs1wEFpJERLQuQRBg3/MOOK74MOBwr3uccuY/kfnx89AySesaR1QEQRBgH3wnHJd/GHC41j1OPvMLZH7yL9AyKesaV8VYSBIR0aaktj64rv4ExObudY9Rg2NIf/8rUCMhC1tGVBypvV/PclPXuseoc6NIv/IVqNF5C1tWnVhIEhFRQQS3D453H4Rt51vWPUZLRJB+5RkoU6ctbBlRcQR3AxxXfgTSjsvWPUaLh5F+5StQprlN6EZYSBIRUcEEUYL9oqtgf+v1gCitfZCSRean30D2xKvnrdGnhue4Zh9VDEGU4DjwXn03nPWyLGeRefXryJ74KbO8DhaSRERUNFvvXjjfcwhwedc9Rh76MbKvvQBNzkJNRJD+0Vehzp2zsJVEm7P17YPzyo9ukuUfIfvaN/Usx8O5LI9Z2MrKtf6GlERERBsQGzvgeu/HkfnpN6AuTK95jDJ5CmpsEdA0IJOCfOaXkNq3W9pOos2ITZ1wvffjSP/0G9DWzfJJqPFFQFX0LJ/9T0jt6y8pVC/YI0lERIYJLi8c7/4IpP796x6jRYLQovoLOOrsOb7AQBVJcHnhfPdHIPXtW/cYLTwHLZdfdWZEf0iqcywkiYhoSwTJBvul1+W2o1tnvckV5LO/tKBVRMUTJBvsl70f9ouuwrprp67ALLOQJCKiEshvR+e4/MOAff01+gBAGTvONfqoYgmCANvOt8BxxS2A3bnhscrosbrfp5uFJBERlYzU1gfne2+F4Gta/yBF5raKVPGktn44r7oVgrdx/YOULJQ6zzJftgGQyWQQiUTQJSXh82WgqCqg6U8lLqcTs7Oz8Pl8cLvdEAoYtiEql3Q6jWg0im4piYYVWRZFES6ng1kmawjCpj2OysjrsO28DIKwdn9GPsu9thQCzDKViyBAy26cZXnkdUg7Lls3h0tZtqfQeEGWsZRlj8djxr+B6QStjhdCisViCAaDiMViBR3vdDrR0tKCpqYm3rioosRiMczNzSEejxd0vNPpRGtrKxobG5llKilNziD9yrNLL9dsxPHOmyF1Dpz3s2g0imAwyCxT2WnZNNI/eHbp5ZqNOC7/0AWrERSbZZfLhZaWlqrLcl0WkoqiYHJyEuFw2NDn3W43ent74XRuPHeCyGyyLGNqaopZpoqhaSq0SAjq/CTU0CSU+UkgtfYXqdjWD+cVHwbALFPluSDLoUkgvU6W27fDefmHAOhZnpycRCQSMXTdasty3RWSqVQKIyMjkGV5y+fq6+tDIBAoQauIipdKpXD27FkoirKl8wiCgN7eXmaZTKFpGrREJPdlPAE1OAEtsVwsOq+9E2nJhZGREWaZKtpSlkOTUOcnoAbHoSWWi0Xntb+GtOQsWZb7+vrg9/u32mzT1VUhmUqlcObMGaiqWrJz9vb2orGxsWTnIyqEGVnmgxFZRU1GoQYnoIbGobj8OKv6mGWqSmoiCjU0DjU0AcUdwBnZU9KtE6shy3VTSCqKgpMnT5akJ3K1HTt2VO0kWao+sizj5MmTW37iXcvOnTvhdrtLfl6itTDLVCvqOct1s/zP1NSUKUUkAIyPj5f0aZpoI1NTU6bcrABgbGyMWSbLmJll3pfJSpOTk6ZmuZL7/EwrJGOxGD760Y/illtuwc0334xnnnnGrEsV1JbFxUXTzp/JZDA3N2fa+YnyYrGY4ZcRCpHJZBAMBk07P1FeNBo1NcvpdJpZJktEIhHDL9YUotKzbFoh6Xa78Xd/93d4/vnn8cwzz+Cv//qvsbCwYNblNmTFLyAUCvHpl4oWefNYUU+aVjywMMtkRLFZtuq+XMk9OVSZmOXimFZISpK0NKafTqehqmpZ/hAymUzB60Ruhaqqpj6RUG0aeuj/i5/f/RsI/cePNv3vI51OF7we2VYoisIsU9GOf/4h/OKT92H+Rz9mlqmqHfv9/xu/uOd+zP/41U2znEqlkEgkTG+TLMsVm+WiC0lVVXHjjTfikUceOe/nr7zyCg4cOIAXXnhh6WeRSAQf+tCHcPXVV+M3fuM30NzcvPUWFykajVp2rUr9JVNli755DG985nc3LSiZZap0kTeO4vXf+eymBSWzTJUu8vobeP3Tn9m0oLQyy1ZeqxiG3tr+6le/iiNHjuDFF19EIBDA0NAQbrvtNnzqU5/CPffcc8HxwWAQn/70p/GFL3wBra2tJWl4ocbHx02dH7mSpGlQ/vYfLLkW1YaFn7wKZdXTbMNF+7H9vt9A87svP293g7GxMVPnlK1k0zTIzDIVYf5HP4aaOn8rOf/FB7D9vnvQdPm7zsvy6OioZQWepKhQ/u4fLbkW1YY1s3zJAWy/7zfQ9K53li3LDocDe/bsseRaxTBUSMqyjBtuuAEHDx7EoUOHcPjwYVx33XV46KGH1v3MQw89hMsvvxw33XTTlhpcrBMnTiCTyVhyLS2dRuj+T1tyLap9qwtKK7OsJlOY/63fseRaVPtWF5TDw8PIZrOWXFuNJzD/qc9Yci2qfasLSiuzDAD79++HKFbWgjuGWmOz2XDvvffiy1/+Mu69917s378fn//85887ZuUe1rFYDD/72c8wMDCw1ulMZdbr+ERmWz3kbdbyVURmWz3kzSxTtYq8fhSvf/oB/OKe+zD/459YnuVKrGkMl7U333wzkskkAODRRx+FJEnn/f/T09O4/fbb8aEPfQif+MQncPvtt2Pv3r1bay1RHUqOjiF6fAiwqDeSyCyJc+cQPTYEWNiDQ2SGxLlR/b6c5UORzegHjxw5AgBYWFi4oIgEgAMHDuD555833rISEUWxIit4os3YGhrQe/sn0Pvxj8Hm82F4eBgqv4CpCtn8Dei7/Tb03Pox2HxeDA0NsVeSqpIt4EffHbeh5/Ah2LzWZ7nShrUBg4Xk448/jpdeegnPPPMM7r77bjz33HO4/fbbS922knC73ZbNX5BsNjg7OwAImx5LBADpuTlg1YPO6gIyz+VyWZhlCc7OTkuuRbVhzSwH/Oi7/RPoOawXkHlut9uyN1BtdhuzTEVZN8srCsg8l8tlyRKDgD6tcK2Ou3IrupB89tln8dRTT+Hpp5/G3r17cdddd+HJJ5/E4cOHYbfbzWjjlrjdbsveqPIEAtj/r1+z5FpUG1499HEkRs4BWL+AzLPyy9fX3IyL/vWrllyLasNPDn4MybFxAOsXkHlWZtnb0oL9zDIV4ce3fBSpiUkA6xeQeW6327JC0uPxWHKdYhVVSL788st4+OGH8eijj+Kyyy4DANx555340pe+hOeffx6HDh0yo41b4vP5MDMzY9m1iIq1WQGZ5/P5MDs7a0mbmGUyYrMCMo9Zpkq3WQGZ5/P5LNsiuVKzXHAhefToUTzwwAN48MEHcf311y/93Ofz4Y477sATTzyBgwcPVly3q9vthsvlQmrVmlClJggCmpqaTL0G1Z6+u+5E2zVXb1hA5lmZ5cbGRlOvQbWn/9fvQtu112xYQOa53W44nU6k02lT28QskxHbPnk32t5/7YYFZJ7H47Esy4FAwNRrGGVoHclqs7i4iPHxcVOv0djYiN7eXlOvQbSwsICJiQlTr9HU1ISenh5Tr0E0Pz+PyclJU6/R3NyM7u5uU69BZEWWW1pa0NXVZeo1jKq8139MEAgETJ1bIIoiOjmZmyzQ2Ni4tIe9GSRJQkdHh2nnJ8pramoyPcvt7e2mnZ8or6mpCS6Xy7TzV3qW66KQFAQBPT09521rVEo9PT2w2QyvpERUMEEQ0Nvba1qWu7u7mWWyhNlZ5n2ZrJLPsll6enoqbtrgSnVRSAKA0+lEX19fyc/b2tpasfMWqDY5nU5TblptbW3MMlnKzCz7/f6Sn5doPS6Xy5Qao729veKzXDeFJAD4/X709/eX7Hytra0cBqSyCAQCJb1ptbW1VfTQCdUuZplqRSAQKOmDUXt7O9ra2kp2PrPUxcs2qyWTSYyPjxt+y0qSJHR3d7P3hsqOWaZaUYos9/T0VHzvDdW+RCKB8fFxZAxua1ttWa7LQhIAVFVFKBRCMBgseAvF/FISHR0dnHtDFcNolpuamtDe3s4sU8VQVRXBYBChUIhZpqpWT1mu20IyT9M0RCIRRCIRpGJRZDPnPw1LNhtcPj98Ph8aGxsresIr1TdmmWqFqqqIRqOIRCJIRiOQs+f37DDLVC1UVUUkEkE0Gq3ZLNd9IblS+idfhzI+fP4PXV54fuW3ytMgIoPSP/4XKBMnzvuZ4G6A+4P3l6lFRMakf/Q8lMmT5/1M8Pjhvum+MrWIyJj0D78KZer0eT8TvAG4b7y3TC0qjbp62YaIiIiISoeFJBEREREZwkKSiIiIiAxhIUlEREREhrCQJCIiIiJDWEgSERERkSEsJImIiIjIEBaSRERERGQIC0kiIiIiMoSFJBEREREZwkKSiIiIiAxhIUlEREREhrCQJCIiIiJDWEgSERERkSEsJImIiIjIEBaSRERERGQIC0kiIiIiMoSFJBEREREZwkKSiIiIiAxhIUlEREREhrCQJCIiIiJDWEgSERERkSEsJImIiIjIEBaSRERERGQIC0kiIiIiMoSFJBEREREZYit3A8pNyyShJWP632fTFx6gqlDDc/rf250QPX4LW0dUuM2yrKnKiiy7IHoarGweUcG0dBJaaqP78oosO1wQ3cwyVabzsixnLjygBrIsaJqmlbsR5aTGw0h9628ATd30WMc7fxW2vr0WtIqoeGpsEalvf6mwLL/rZth6By1oFVHx1NhCLsubfz05Lr8Ftp7dFrSKqHhqdB6pbz8FoIAsX/Fh2Lp3md+oEqv7oW3RG4Bt+4FNjxMamiH17rGgRUTGiL5GSNsu2vQ4wd8KqYdZpsol+pog9e/f9Dgh0AapCr94qX6IDc2Q+vdtepzQ2A6pa6cFLSq9ui8kAcA2+C5A2PiPwr7v3RA2OYao3OwFZfkKCIJgUYuIjLHvvRzYJKf6fZlZpspm33s5gNrNMisjbN4ryd5Iqhab9UqyN5KqxWa9kuyNpGqxWa9kNfdGAiwkl2zUK8neSKomG/VKsjeSqslGvZLV3IND9WejXslqzzKro5z1eiXZG0nVZr1eSfZGUrVZr1eSvZFUbdbrlaz23kiAheR51uqVZG8kVaO1eiXZG0nVaK1eyWrvwaH6tFavZC1kmRXSCqt7JdkbSdVqda8keyOpWq3ulWRvJFWr1b2StdAbCbCQvMDKXkn2RlI1s5+XZfZGUvVa2StZCz04VL9W9krWSpZZJa2S75VkbyRVu3yvJHsjqdrleyXZG0nVLt8rWSu9kQB3tjmPpmlIp9NQYotAeBZi9244nU6IIuttqi5LWY4uANEQxK6dzDJVpaUsR+aB+DzETmaZqtNylkNAPAyxc6Amslz3haQsy1hYWEAkEkEqlcJafxwOhwMNDQ1obm6G0+ksQyuJNscsU60oJMtOpxMNDQ1oampilqli5bMcDoeRTqdrMst1W0gqioLp6WksLCwU9Tmv14vu7u6q/GVTbZJlGdPT01hcXCzqc8wyVRqjWfb5fOjq6mKWqWLUU5brspCMRqMYHx+HoiiGz9HR0YHW1taamChL1SsSiWBiYsJwlgVBQEdHB1paWphlKitmmWpFOBzG5ORk3WS57grJYDCI6enpkpzL7/ejr6+vKn7RVHtKmeVAIIDe3l5mmcpibm4OMzMzJTkXs0zlVMosNzY2oqenp+KzXN0zPIsUCoVK9sUL6E/Q4+Pja855IDJTqbMcDoeZZSqLYDBYsi9eQM/yxMQEs0yWK3WWFxcXqyLLdVNIJpNJTE1Nlfy84XAY8/PzJT8v0XoSiQSzTDUhkUiU9IEob3Fxsej570RbEY/HTctysfMsrWZ6IZlMJnHNNdfgT//0T82+1LpUVcX4+Lhp55+enkYmkzHt/ER5zDLVCrOzPDU1xSyTJczO8uTkJLLZrGnn3yrTC8kvfvGLuOSSS8y+zIYWFhaQTqdNO7+maaY8iRCtNj8/b+qXI7NMVrEiy6UcZiRaTygUMrXQq/T7sqmF5MjICM6cOYOrr77azMtsSNM0hEIh068TiUQq+omBKtP0c/+A9PRkQccyy1TJpp/5O6RnCvuysyrL4XAYsiybfh2qLdPP/B3Ss4Vn2YopQZWc5aILSVVVceONN+KRRx457+evvPIKDhw4gBdeeGHpZ3/6p3+K3/3d3916K7cgkUhYNrzBOTlUrIXv/zuO/849GP3LP9+0oIzH45YVeJU+J4cqz/zL38Px3/kkRv/nY5sWlFZmmfdlKtb8i9/B8U9/EmN/9fimBWUsFqv7+7Kt2A+Iooj7778fR44cwX333YdAIIChoSF85jOfwWc/+1ncdNNNAIDvfve72L59OwYGBvCLX/yi5A0vVDwet+xasVgMba2tll2PaoCmAaqK+X//NuZf+i6a3/d+dHz0E3B2dl9wqJVZjkajaG1psex6VAs0QFEw/71vYv6l76D5fR9Ax0c+Dmdn1wVHWn1fZpapOHqWQ999AaEXv43maz6Ajo98As6OzguOtDzLFVhjGFpHUpZl3HDDDTh48CAOHTqEw4cP47rrrsNDDz20dMyf//mf41/+5V8gSRLi8ThkWcav//qv49Of/nRJ/wU2c+7cOUSjUUuuJcgyskc+Z8m1qIaJ4poF5cjICGKxmCVNELIZZP/w/7LkWlTDJGnNgvLs2bOWfQGLmTQyf/T7llyLapgkrVlQWpllSZKwb98+S65VDMMLkv/TP/0THnvsMbS3t6Onpwd/+Zd/CUmS1jz2n//5n3Hy5El87nPWF1nDw8OWdTtrmQyUP+KXL5XIqoJyaGjIsjkyWjoF5Y//uyXXojqwqqC0NMvJJJQ/+bwl16I6sKqgPH78+JZ2ySvWvn371q21ysXwyzY333wzkskkAODRRx+tuH+xPFVVy90EImNyQ97Hf+cejP7Px6CkUuVuEZExuSHv47/zSYz+1WNQ0swyVSlFwfx39SyP/fX/gGLiijBrqcSapug5knlHjhwBoE9k3qyI/MhHPmL0MkT1TRDQeMV70X7zRxCPJSx98iUqKUFA47vfi/abP4pYJAatAr8QiQoiimi68mq0/cpBRCOxiizurGSokHz88cfx0ksv4ZlnnsHdd9+N5557Drfffnup21YSdrudX75UfQQBje++Gp0fuw2uvm0AANvJk8wyVR9BQOOVV6PzY7fD1dsPALCdOMHFwqn6iCKa3vM+dHz0E2XLciWO/hZdSD777LN46qmn8PTTT2Pv3r2466678OSTT+Lw4cOw2+1mtHFL3G43UhYNCTpcLvg+9FFLrkW1Yf7fvwVl5Qs0axSQeW6329SF9VdyuNzMMhUl9N1vQk2seOlAEPQv3UO3LX3p5nk8Hsu+fJ1eD7zMMhUh9N0XoCYSyz/I9UCulWW3221dlp1OiGLl7WxdVCH58ssv4+GHH8ajjz6Kyy67DABw55134ktf+hKef/55HDp0yIw2bonb7bZsHTFPQwN67rrPkmtRbYi89qpeSG5QQOa53W7L1hHzBgLMMhUl/OqPkEnENywg86zMssfPLFNxwj/+D2QSiTV7IFdzu90Ih8OWtMvj8VhynWIVXEgePXoUDzzwAB588EFcf/31Sz/3+Xy444478MQTT+DgwYMV1+3q9/sxOVnYziFbFQgELLkO1Q5BENB45fs2LCDz/H4/pqamLGkXs0zFEkQRTVdds2EBmccsU0UTRTS999oNC8g8v99v2faFlZplw8v/VJOxsTHTnxhsNhsGBwchCIKp16HakgkF4WgpfIHZ0dFRRCIRE1ukzyves2cPs0xFYZapVhSbZSvWq67kLFfeYLsJrFgJvq2trSJ/wVTZirlZAdZkubW1lVmmolVilnlfJiOY5eLURSHpdrtN/UW73W40Nzebdn6iPI/HgxYTt3tjlskqZmfZ4/GgqanJtPMT5Xm9XlPvm5We5booJAGgvb0dTqez5OcVBAG9vb0V+6RAtaejowMOh6Pk52WWyWrMMtWKjo4OU1auEUWx4rNcN4WkKIrYvn17SX/RgiBg27ZtphSoROvJZ9lmM7yfwAUEQcD27duZZbKUmVk2o0AlWo8kSRgYGKjLLNfFyzYrZbNZjIyMbHk9PkmS0N/fD6/XW6KWERWHWaZakclkcO7cuZJkedu2bRW7TArVvkwmg5GRkS2vLVlNWa67QhLQ96oMBoOYnZ019Hm/34/u7u6SPnkQGaGqKubm5jA3N2fo88wyVYqtZjkQCKCrq4tZprJTVRWzs7MIBoOGPl9tWa7LQjIvnU4jFAphYWEBhfwxNDQ0oKWlBT6fz4LWERUulUphfn6+4Cz7/X40Nzczy1RxjGS5paWFPepUcVKpFEKhEBYXF2s6y3VdSOYpioJ4PI5kMolkMglFUaBpGiRJgsvlgtvthtfrrcgtIIlWWp1lWZYBgFmmqsMsU62o9SyzkCQiIiIiQ+rmrW0iIiIiKi0WkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMYSFJRERERIawkCQiIiIiQ1hIEhEREZEhLCSJiIiIyBAWkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMYSFJRERERIawkCQiIiIiQ1hIEhEREZEhLCSJiIiIyBAWkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMYSFJRERERIawkCQiIiIiQ1hIEhEREZEhLCSJiIiIyBAWkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMYSFJRERERIawkCQiIiIiQ1hIEhEREZEhLCSJiIiIyBAWkkRERERkCAtJIiIiIjKEhSQRERERGcJCkoiIiIgMsZW7AZUim80imUwimUxCURQAgCiKcLlccLvdcDgcEAShzK0k2hyzTLVA0zTIsswsU9XTNA3ZbBapVKoms1zXhaSqqgiHwwiFQkilUhsea7PZ0NzcjObmZthsdf3HRhWo2Cy3tLSgqamJWaaKo6oqFhcXEQqFkE6nNzyWWaZKVkyW7XY7mpubqzLLgqZpWrkbUQ7RaBTj4+NLTwbF6OjoQGtra9U+PVBtiUQimJiYKDrLgiCgo6MDLS0tzDJVBGaZakU4HMbk5GRdZLnuCklVVTE5OYnFxcUtncftdqOvrw8Oh6M0DSMqkqqqmJiYQDgc3tJ53G43+vv7YbfbS9QyouIwy1Qr6jHLdVVIqqqKc+fOIR6Pl+R8NpsNO3bsYDFJllNVFSMjI0gkEiU5H7NM5cIsU61QFAUjIyNIJpMlOZ/dbsfAwEDFZ7lu3trWNA2jo6MlKyIBQJZlnD17FrIsl+ycRJvJZ7lUX7wAs0zlYWaWjUxbIjIqn+VSFZGA/uLkyMhIxWe5bgrJhYUFxGKxkp83m81iamqq5OclWs/8/DyzTDWBWaZaEQqFStpRlZfJZCo+y6a+GrR//37s3r0bAHDgwAH80R/9kZmXW5fZv4hwOIxAIAC/32/aNYgAPcvT09OmnZ9ZJquYneXFxUUEAgE0NDSYdg0iAEin05iZmTHt/JWeZVMLyYaGBjz//PNmXqIgoVAIZk8FnZmZQUNDQ9W8ZUWVQVNVCGLhAwPBYND0LM/OzrKQpKJVYpbz92WiYlRilmdnZys2yzU/tK2qKhYWFky/TjqdLuncCKoPmVe/DvnMf0KTs5seqyiKJVlOpVIlnbNG9SHzk+chn/klNKWyssz7MhUr85PnIZ/9JTRl8znjiqJseRWYQuQX5q9ERReSqqrixhtvxCOPPHLez1955RUcOHAAL7zwwtLP4vE4PvKRj+ATn/gEXn311a231oBIJAJVVS25lhVhohqTTkAe+hHSL/39pgVlNBo1/ak3j1mmoqWTkId+iPSLf79pQRmJRJhlqlypOOTjP9Tvy5sUlMyyweV/vvrVr+LIkSN48cUXEQgEMDQ0hNtuuw2f+tSncM899ywdNzMzg46ODpw4cQL3338/vv71r8Pn85X0X2AzU1NTCIVCllzL6bBjh6/mO3mphLLHfwikV/T+Odyw7bgMUv9FEGznrx82OTmJ+fl5S9rlcjow4OU0DSpc9th/AJkVPSYON2w73gJp234IUvmy7HY5sd1jyaWoRmSP/QDIrNghzOGGbedbIPVfmOWJiQlLetcBfW3JnTt3WnKtYhgqJGVZxg033ICDBw/i0KFDOHz4MK677jo89NBD637mN37jN/CZz3wGF1988ZYaXKzTp09b1h0sqAp2jv/QkmtRjVujoLQ2yzJ2jv/IkmtRjVujoDx16tSmW3mWiqQpGBjjfZlKwOlZvi9L+ismVmZZEATs37+/4t7FMPSyjc1mw7333ovHHnsM3/rWt7B//358/vOfP++YcDi8tBH59PQ0Tp8+jb6+vpI0uhjZ7ObzdYgqTiYJeehHkM/859KNK5PJlLtVRMXL6EPe8plfLBWUVt6X62jPDTJbOgH5+A/Ldl/WNA2KolTcXtyGW3PzzTfjj//4jwEAjz76KCRJOu//P336NB566CEIggBBEPDf//t/R2Nj45YaawRvIlTVcgWlGhwDPNsBVNaTKFHBcgWlnuVtYJapauUKSjU4Drj7YWWWK7GmMVxIHjlyBIC+0PfqIhIA3vrWt+LrX/+68ZaVSKV1ARMVQ2hogW332yF2DABDQ0CF73BAtB5mmWqF4G/Vs9y+HTh+HLDohV6gMmsaQ2+GPP7443jppZfwzDPPQJZlPPfcc6VuV8k4nU4LryZgQbL2ZSKqTUJDC+xvvQGO93wMUucOCIJgaZY1ZplKZK0sW7l3sAYBiyKzTFsn+Fthf9uNcFx5CFLHgOX3ZVEU1+y4K7eieySfffZZPPXUU3j66aexd+9e3HXXXXjyySdx+PBh2O32zU9gMbfbbcq2RWuJ2rz4fuAqtDoF7AnYsMsvwW2rvKcHqhyZX3wHSEaX/nllr83qJ0+3223Z+o5RyYdXAleh1SVg0G/DTmaZNpH5+beA1PK9Vs/yOyB2bL8gyx6Px7IXxyI2H77feBXaXMv3ZZfELNP6Mq9987zVNAR/K2y73r5mlt1ut2VZdrlcFdkjWVQh+fLLL+Phhx/Go48+issuuwwAcOedd+JLX/oSnn/+eRw6dMiMNm6Jx2Pdug+zsh2AimBaQ3A2ix/PZdHf6MbeNh/6Gz2QxMoLAJWXIErQsHEBmefxeCxbympWyWU5pSGYyuJHc1lsa/RgsM2H/kY3s0wXEETbiiyvXUDmWZnlmaye5bmUhrlUFj+azWJbkweDrcwyrW3pvrxiCHujLFu1lJXX67XkOsUquJA8evQoHnjgATz44IO4/vrrl37u8/lwxx134IknnsDBgwcrrtvV5/NBkiQoJs/HyWrAVPL8eRKqBowsJDGykITLJmJ3qxeDbT60ehwV+VRB1hP8rbANvmvDAjKvoaEBoiiavsB+VgOm18jy2YUEzi4kmGVak+BvgW3vFRsWkHlWZTmzXpbnEzg7r2d5T6sPg21etHqtnAZFlUzwt8K2/8oNC8g8v99vSZYBlOWF5UIYWkey2szMzGBubs7Ua4QED45FC5ty2uy2Y7DNhz2tXngclfUaP1U2K7I8Bw+GYoVlucWjZ3l3iw8eR2U9RFJlm56eRjAYNPUac4IXQ9HCHnSWstzqg8fOLFPhrNj4xOfzYfv27aZew6i6KCRlWcbJkydN7ZU8oTVhJl7c2mgCgL7c0Pe2JjdsRWwST/XJiiwPq02YTRSf5f5GNwbbfNjexGkctDlZlnHixAlTe3KG1EbMJTbfL3klAUB/kxuDrcwyFSabzeLkyZOmZnnnzp1wu92mnX8r6qKQBPT9MEdHR005d0tLC1raO3AmFMfQXAxT0XTR53BIIna1eLG3zYd2H4cLaX3hcBhjY2OmnLulpQUtbR04PR/HsMEsOyURu3JD3+1eZpnWZ2aWW1tb0dTavpTlaSNZtonY3aJnuY1Zpg0sLi5ifHzclHO3tbWho6PDlHOXQt0UkoA5e2K6XC7s2LED4orexEgqi+G5GIaDcUTTxT0NA0Cjy5Yb+vbB5+TQN13IqiyHc1k+YTjLduxt82F3mxc+TuOgVTRNw8TEBBYXF0t6XrfbjYGBgbWzPBdDNFN8j37TiilJXmaZVrEyy5WmrgpJTdMwPj6OcDhckvM5nU4MDAysu12RpmmYiqYxPBfD6VAcWbX4P+regAuDbT4MNHlglyo3SGStUmfZ5XJh+/btG2Z5MpLCcDCO06E45CKzLGBFlps9nMZBSzRNw9jYGCKRSEnO53K5MDAwsO6Ln0tZnovh9HzCYJbdGGzzMst0HquzXCnqqpAE9F/03NwcZmdnt3Qev9+Pnp6egn/BWUXF2fkEhuZimIgUv8G7XRKws1kfYulqcHKIhaBpGmZnZ7f88o2RLJ+ZT2DYYJYdkoCdueHCTh+zTKXLciAQQHd3d1FZPp3L8qTBLO/KZbmDWSaUL8vlVHeFZF4ymcT4+DjS6eLmzUiShO7ubgQCAcPXjqZlnAjGMDwXQzhV/HCh32lbGmLxuypvEXiyVtmzPBfDcNBYlgMuW275FR8aOI2j7m0lyz09PfD7/YavHUllcSKoz6eMGJjGEVgxJYlZpkQigYmJiaKzbLPZ0N3dvaUsW61uC0lAf3JIJBIIhUKIRqMbbobu8XjQ3Ny8tGZUqa4/E9OHvk+F4sgoxf8quv0uDLZ6sbPFy6HvOqZpGuLxOObn5wvKcktLy9JafqW6/kwsjaHcNA6jWd7b5sOOZk7jqGdGsuz3+0vWG6hpGqZjy1OSjGS5x69P42CW61s+y6FQCLFYzPIsW6WuC8mVNE1DOp1GMpmEkklByiSgeZvgcrngcrlMn+gqqypG5pMYmothPJxEsb8UmyhgR7O+80iPvzK3USJrrM6ymEkAFmf5bG64cDycMpTlnbksdzPLdW1lltV0EkI2BXgbLctyVlFxdiGBE3MxjIUNTEkSBezIrcbBKUn17YIsyynAY12WzcRCcg3KuaNQw7OwX3JtWa4fz8hLQywLyeLW8wMAn0PCYJs+XBjg0Hddk0fegBYNwn7xNWW5/laz3OCQsIdZJgDyyOvQYguwH7i6LNePLU1JimMxZSDLThv25JbFYpbrm3z2l9ASYdgvem+5m1ISLCRX0eQMsq9+HVCysF18LcTG9vK1RdMwF89geC6Gk6E40nLxi512Njgx2OrDzhYvnLbqfeKh4mnZNLI//Vc9y5dcBzHQVr62rMxyMI60YjDLbT7savbCwSzXFT3LXwcUGbZL3w/R31q+tmgaZnNZPmUwy125LO9kluuOlknp92VVhu2yD0BsaCl3k7aMheQqyrmjUEaPAgCEQHvZeiVXU1QN5xb1t75HF4of+pYEAQO54cLegAsih1hqnjzyBtSxNwEAQmNH2XolV1NUDSMLCQwHjWXZJgoYaMpN42CW64I88jrUsWMAAKGpq2y9kqstZXkuhtFFg1lu9mCwlVmuF/LZX0IdPw4AEJq7a6JXkoXkCit7I/PK3Su5lkRWwcncW9+hIreyAwCvXcKeNn2IpcntMKGFVG4reyPzyt0ruZZERsHJ0Bay7JByb317meUatbI3Mq/cvZJrSeSncQRjmN9Sln1ocnPouxat7I3Mq4VeSRaSK6zsjcyrpF7JtQRzQywngjGkDAx9t3sd+nBhqxcuW+WvV0WFWdkbmVdJvZJrCcbTGJ6LG8+yz4HBVh92t3rhZJZrxsreyLxK6pVcTdM0BBPL0ziMZLnD58Rgmxe7WpjlWrKyNzKvFnolWUjmrNUbmVeJvZKrKaqGsXASw3MxjCwkUOwmOqIAbM8NF/YF3JBEDrFUq7V6I/MqsVdyNUXVMLqYxHAwhnMGs5wf+u5rdHO4sIqt1RuZV4m9kqvpWU5geC6Oc4vFZ1laeV9mlqvaWr2RedXeK8lCMmet3si8Su+VXC2VVXAqFMfQXAxz8UzRn3fbRexu8WFvmw8tXg4XVpu1eiPzKr1XcrVUVsHJkP7Wt9Es54cLWzzMcrVZqzcyr5J7JdeSXHFfDhrIsscuYXfurW9mufqs1RuZV+29kiwksXFvZF419EquZT6RH/qOI5FViv58q0cf+t7d6oXbziGWSrdRb2ReNfRKroVZri8b9UbmVUOv5FpCieUpScls8UPfbfkpSS3McjXYqDcyr5p7JVlIYuPeyLxq65VcTdU0jIeTGJ6L4+x8HMVu1iAKQH+jG4NtPmxr9HDou0Jt1BuZV229kqupmoaxxSROBGM4O58wnOW9bT70M8sVa6PeyLxq65VcLZ/l4bkYzhqcxrGtUR/67m/klKRKtVFvZF4190rWfSFZSG9kXrX2Sq6WlhWcDulLVkzHitsHFABcNhG7crs1tHod3K2hQhTSG5lXrb2Sq6VlBadyWZ4xmOX8cGGrh1muFIX0RuZVa6/kanqW9aHv2VjxQ9/McmUqpDcyr1p7JVlIpmJQw7MAAHXqFLTo/PkHSHZIO98CABDc/pq4Ya20mMxiOBjDibkYYpnihwub3HYMtvmwp9ULr8NmQgupUFoyBjWSy/LkKWixVVm2OSDtuAwAILgDEP3Vd8PayEIyixNzMQwHY4gbyHLziix7mOWy0pJRqJE5AIA6eRJabOH8A1Zm2ROoyi/fjSwkM0srGBjKsseOvW0+7G7xwePg0Hc5nZfliRPQ4ovnH2BzQtpxKYDqzXLdF5Irycd/CDU4ev4P7S44Lv9wWdpjJU3TMBFJYXguhjPzCchFjrEIAPoa3Rhs9WF7sxu2Kt43tBZkj/8HtODY+T90uOF41y3laZCFVE3DZAmyvLfNh21NzHK5ZY/9AFpo/PwfOj1wvPND5WmQhVRNw0Q4tTT0bSTL+SlJ25s4jaPcsm++Am1+4vwfurxwvOPm8jSoRPjYTQAAQRDQG3CjN+DGVYqKM7k3ZSejhQ0XagBGF5MYXUzCIYnY1aLP2+nwOTnEQpYSV2ZZVnF6Xs/ylOEs69M42n0cLiRriYKAvkY3+hrdyOSyPDQXw3QRWT63mMS5xSSckohduaHvdk5JohJiIUkXcEgi9rY3YG97AyKpLIaD+hdxNL35HA8AyCgqjs3GcGw2hoDLhsE2HwZbffA5GTeylsMmYl97A/blszwXw3AwXmSWozg2G0VjLst7mGUqg5VZDueyfGIuhmiBQ99pRcWbM1G8ORNFo8uOwTYv9rT54OM0DtoiDm2vUM9D25vRNA1T0TSG52I4HYojW+zrhQB6Ay4Mtvow0OyBXeJwoZnqeWh7MyXLcpsPA03MstnqeWh7M9qKaRynDU7j6A24sIdZtgSHtqmuCYKAbr8L3X4X3rO9GWfnExgOxjAeThV8jvFwCuPhFOxnBexs0YdYuho49E3WWp3lM/P6W98TEQNZlgTsbNaHvjuZZbKYIAjoCbjRk5+SVGSWNQBj4RTGwik4pOX7cienJFERWEhS0eySiD1tPuxp8yGWljEcjGF4LoZwqrDhwqyqYWguhqG5GBqc+aFvL/wuu8ktJzqfXRL1/LX5EE3LOFFslpXlLPudtqW3vpllstoFWc7lMlLwNA4Nx2djOJ6bkpTfEaqB0zhoExzaXoFD28ZpmoaZmD5ceCoUR6bYVaIBdDc4Mdjmw44WLxwcYtkSDm0bV5Is+10YbPViZ4uXw4VbxKFt4zRNw3RseRqH4Sy3+bCTU5K2jEPbRBsQBAGdDS50Nrhw5fZmjMwnMRyMYWwxiUJvXZPRNCajabwyMo8dzfpb3z1+F4dYyFJrZXloLobxcBFZjqQwGUkxy1RWgiCgq8GFroYVU5Lm9ClJRWf5rICduSx3M8u0AgtJKjmbqC8zsavVi3hGxoncW98Lyc13XAEAWdVwIhjHiWAcPoeEPbm3vhvdHC4ka5U6y/mhxwCHvsliNlHE7lYfdrf6EMvIODkXx3CwuCwPB+MYDsbRkL8vM8sEFpJkMq/Dhrd0B3BZlx/BeAZDczGcDMWRltWCPh/LKPj5RBg/nwijw+fE3jYfdrZ44LRxtway1sosz8UzGDaQ5dcmwnhtIozOBicGW33Y2eKF08bhQrKWz2HDW3oCuKzbj9lclk8F40grhWU5ujrLbT7sbGaW6xULSbKEIAho8znR5nPi3duacW5RH2IZXUyi0BUrZmJpzMTS+MFICAO5IZbegBsih1jIQoIgoN3nRPuKLA/NxTC6UPjQ93Q0jeloGj8YmV+RZRezTJYSBAEdPic6fE5cua0ZIwvL9+Wis3x2xTQOZrmusJAky0migB3NXuxo9iKRVXAyGMOJuTiCiUxBn1c04FQogVOhBDx2CXtyuzU0exwmt5zofGtleXguhlCisOFCRdNwKhTHqVAcXruEPW16lpvczDJZSxL15X92tniRyCg4GdLf+p4vIssnQ3GcDMXhdUi5t769zHIdYCFJZeWxS7i0K4BLuwIIxTMYDsZwIhhDMlvYEEsiq+A/pyL4z6kI2rwODLb5sLvFC5edQ99krZVZDuaGC08EY0gVOPQdzyr4xWQEv5iMoD2X5V2tXrg4jYMs5nHoWb6k049gIjeNIxgvPMsZBb+YDOMXk+GlLO9u9XJKUo1iIUkVo8XrwLu9zXhXXxPGwkkMz8UwspAoeOh7Lp7BXHwePzw3j21NHgy2+tDf6IYkcoiFrNXqdaDV24zL+41leTaewWx8Hv9xbh7bm/Thwr4As0zWEgQBbV4n2rxOXNHfjNFFPcvnFo1leSCf5UZOSaolLCSp4kiigO1NHmxv8iAlKziVe1N2Nl7Y0LeqAWfnEzg7n4DLJi4trNvq5RALWeu8LGcVnArFMTQXw1wRWT4zn8CZ+QTcdhG7W3zY2+ZDC7NMFpNEAQPNHgw0e5DMZXm4yCyfnk/gdC7L+ftyC6ckVT0WklTRXDYJBzr9ONDpx0IyN1w4F0c8qxT0+ZSs4vXpCF6fjqDFY88Nsfjg4dA3WcxlX87yfCI/9B1HosAsJ7PLWW71LA8XupllspjbLuHiTj8u7vQjtGLou5gs/3Iqgl9OMcu1gDvbrMCdbaqDqmkYD6cwPBfD2fkElCIjLADob3JjsNWH7U2emhwu5M421UHPchLDc3GcnY+j2I1HRAHob3RjsM2HbY01mmXubFMVVE3D2OLyNA6jWd7b5kN/rWaZO9sQVQZRENDf6EZ/oxtpWcXpkL6w7nQ0XdDnNQDnFpI4t5CE0yZid4v+pmyb18HdGshSepY96G/0IC0343RIX35lOlZYllUNGFlIYmQhCZdNxK4WL/bmpnEwy2QlURCwrcmDbU0epGUFp3JZnjGY5d251ThaPcxypWMhSVXNaROxv6MB+zsasJjM4kRu+ZVYprAhlrSs4uhMFEdnomhy60Pfe1q98Dr4nwZZy2mTzsvycDCGE0VkOcUsU4Vw2iRc1NGAizoasJDMLq1gEC8iy29MR/HGdBTNK7LsYZYrEoe2V+DQdm3QNA0TEX3o+8x8AnKhrxfmCAB6A24Mtnkx0OyBTay+3Ro4tF0bSpHlvsbcNI5md3VmmUPbNUHVNExGUhjKTUkymuW9bT5sa6rSLHNom6g6CIKA3oAbvQE3rlJUnAnp+8NORlIFfV4DMBZOYiychEMSsCs39N3hc3KIhSy1ZpbnYpgsYhrH6GISo4tJOCQRu1o8zDKVhbgiyxlZxel5PctThrPsxWCbl1muACwkqaY5JBF72xuwt70BkVQWJ3JLCUXSckGfzygajs3GcGw2hoDLlhti8aHByf90yFqrszycy3K04CyrF2R5sNUHH7NMFnPYROxrb8C+fJbnYhgOxovMchTHZqNoXHFfZpbLg0PbK3Bouz5omoapaBrDczGcno8jW+zrhQB6/C4Mtvmwo9kDu1R5Qywc2q4Ppchyb8CFwVYfBio1yxzargvnZTkUR7bIoW8gl+U2HwaaKjTLHNomqg2CIKDb70K334X3bG/G2QX97cLxcGFD3wAwEUlhIpLCK2f1/WkH23zoauAQC1mrFFkeD6cwHk7BzixTGa3O8pl5PcsTBU5JAlZkWRKws5lZtgoLSaprdknfYWFPqw+xtLz01vdiqrAhlqyqYWguhqG5GBqcNgzmlqzwu+wmt5zofKuzPJzLctholtt8GGz1MstkObsk6vlr8yG64r5ccJaV5Sz7nbalt76ZZXNwaHsFDm0ToA+xzMYyGJqL4VQojoyiFn2OrgYnBtt82NnshcNm/RALh7YJ0LM8E9OHC/UsF3+772pwYm+bDztavHCUYbiQQ9sElCbL3X4XBlu92NniLcvQN4e2ieqEIAjoaHCio8GJK7c34dxCEkNzMYwtJlHorWsqmsZUNI0fjMxjoNmDvW0+dPtdEDnEQhYSBAGdDS50Nrhw5fZmjCzoO48YyfIrI/PY0ay/9d3jd3G4kCy1Ostn5xMYnotjPFx4licjKUxGUsxyibFHEkAmk0EkEkE2HEQ2EYOqqtA0DaIowOF0QWrqhM/ng9vtZuDqWCIjL731PZ/MFv15r0PCnlZ9uKbJfeEQy5n5ONq9zi29eZhOpxGNRi/IsiSKsDudzDIBAOIZGSeDcQzNxbBgIMu+FVluXC/LPid8W1hAeinLi3PIJuOrsuyC1NTBLBPiK+7LRrOcH0YPrDH0fToUR2eDc0sL+2+UZZvTBVsuyx6Px/A1yqmuC8lYLIZgMIhYLFbQ8U6nEy0tLWhqauKNq45pmoZgIoPhuRhOBuNIycUPfXf4nBhs82JXixdOmwQA+D9vTCKrarhlfyfcdqmo88ViMczNzSEejxd0vNPpRGtrKxobG5nlOqZpGoJxfRrHyVAcacNZ9mFXi2cpy8++MQlF1fDh/Z1wFZnlaDSKYDDILFNRNE3DXDx3XzaY5c4GJwZbfdjZ4oUzNyXpmdcnoGnALRd1wmUzN8sulwstLS1Vl+W6LCQVRcHk5CTC4bChz7vdbvT29sLpdJa4ZVRtFFXD6GICQ3MxjC4mUeyKFZIAbG/yoDfgxstnQwCANq8DH9rXWdDcSlmWMTU1xSzTlimqhnOL+puyRrM80OxBt9+F75+dBwC0ex24eX9nQXMrmWUqFUXVMLKQwHAwhtGFwoe+8yRBwECzB10NTrwyome5w+fEzfs6CppbKcsyJicnEYlEDLS++rJcd4VkKpXCyMgIZLmwt7820tfXh0AgUIJWUS1IZhWcDMYxHIwhGM9s6Vzdfhd+ZW/7htuApVIpnD17FopS2P616xEEAb29vcwyLUlkFZzKDRcGE1vLco/fhQ9ukuVkMomRkRFmmUoukVFwMqS/9R1KFD/0vVJvwIUPDnZAEtfvLSxllvv6+uD3+7d0HivUVSGZSqVw5swZqGrxXd7r6e3tRWNjY8nOR7UhlBv6PhGMIZk1lrdtTW7csLt9zZuWGVnmgxGtJRTPYDi4tSxvb3Ljhj3ta75slkwmcfbsWWaZTBeMpzE8F8eJYMzQlCQA2NHswQd2t62b5TNnzqCUZVU1ZLluCklFUXDy5MmS9ESutmPHjqqdJEvmUjUNY4v6m7JnFxJFDxfuafXi2p2t582XkWUZJ0+e3PIT71p27twJt9td8vNS9VNUDWNhPcsjzDJVsXyWh+ZiOGcgy3vbfHjfjhZmOaduCsnx8XEsLi6acm6Hw4Fdu3ZB3GDohigl54YLgzHMxgofLjzQ0YD3bG9eummNjY0Znke2GWaZCrGU5bkYZouYxnFxZwOu3GZNlp1OJ3bu3Mks04ZSWQWnQvoKBnNFZPnSLj+u6F9+8XZ0dNTwnMjNOJ1O7Nq1q2JfwDG1kBwbG8Pv//7vIxQKQZIkfOUrXylLz10sFsPIyIip12hra0NHR4ep16DasZDMLA2xxDObP8G+rSeAd/Y1WZLl9vZ2tLe3m3oNqh16lmM4MRdHPLt5lt/eE8A7+poQjUZx7tw5U9vGLFMx5pemJMWRKCDL7+xtxNt6GxGJRDA6Orrp8VvR0dGBtrY2U69hlKmF5B133IEHHngAb3/727G4uAifzwebzfo10EdGRgpe4scoURSxd+9ePv1SUU4On8B35+1AAU+a797WBH9qvuClJIySJAmDg4PMMhXlxNAwvrfgKCjLV25rRkMqZEmW9+7dW7E9OVSZhoeG8e8FZvmq7c3wJIJIJBKmtslms2FwcLAis2xaVXfy5EnYbDa8/e1vB4CyvZCSyWRMLyIBQFVVRCIRvnhDRfH+7Ou4XrDhjba3YsrXCwgCBAAeuwSvQ4LXYYPPKcFrt8EODdFYHBu8MFgSiqIwy1S0hp/9C64XnXij/a2Y8vYsZ9khwWuX4HXa4Mtl2gbV0ixX+ssKVFn8P3seHxBdeKP9rZjeJMuipiAeTxRSc26JLMsVm+WiC0lVVfHBD34Q1113HR588MGln7/yyiv4rd/6LTzyyCO46aabcO7cOXg8Hvzmb/4mZmZmcMMNN+A3f/M3S9r4QkSjUcuuxS9fKkZWUWETBbQm5nDN6LegNnfDduk18GwfhLRGb2AwGMS0RQ+jzDIVI6OokEQBrclZXHPum1BbemC77Bp4+vdURJYr8cuXKlNG1u/LbclZXHvum1BbenNZ3r1mlufm5jBjUZaj0WhFZrnoQlIURdx///04cuQI7rvvPgQCAQwNDeEzn/kMPvvZz+Kmm24CAGSzWbz22mv42te+hpaWFtxzzz24+OKLceWVV5b8X2IjyWTSsmslYlHEv/cPll2Pqp8zu9xbLs5PQn3x75Fs64XzLdfC1rv7vGEMK7OcZJapSM7s8jC1GJqA+r2/Q7KtD863Xgtbz/kvCpg9DLhSMhpG/HuvWHY9qn6O7HI+xdA41O99Gcn2Pv2+vCrLltYYFv53UwxDQ9s333wzvvCFL+DLX/4yDh06hPvuuw+33HIL7rnnnqVjOjs7ceDAAXR1dQEArr76ahw/ftzyQtLKP3glm4U8csyy61FtUubGkfj230JaVVBaecOSsxlmmbZMmRtD4ltPQ1pVUFqZ5WyGWaatU2ZzWV5VUFqZ5UwmA1VVK27+uqFC0maz4d5778Vjjz2Gb33rW9i/fz8+//nPn3fMxRdfjFAohHA4jIaGBvzsZz/DrbfeWpJGF8OMNZ2IrLC6oFRMWAOVyAqrC0pmmarV6oLS6iwrilJxhaTh1tx8881Llfijjz4KSTp/M3ObzYbPfvazuOOOO/ChD30I27ZtwzXXXLO11hLVISUchBKcgKDyoYiqm5rLMphlqnJqOAglNAlopduRqVoZfmv7yJEjAICFhYULisi8q6++GldffbXRS5SEKIrslaTq5HDBeeBKOC+6AoLDBWF4GMhuba9YonIQHG44Lr4Szv2XQ3C4IA4NQWWvJFUhwemG4+L3wLnvcggOp+VZrrTeSMBgIfn444/jpZdewjPPPIO7774bzz33HG6//fZSt60k3G43shZ9+YqSBMFbeW9UUeXSEtELn2hXFZB5LpfLsixLzDIVaa0sC043HAeWC8g8t9tt2YoaNpuNWaairJvlFQVknsvlsmSJQUDP8nodd+VUdCH57LPP4qmnnsLTTz+NvXv34q677sKTTz6Jw4cPw263m9HGLXG73aZtW3TBtXwN8H/8wc0PJMqJPvc/oIbn9H9Yp4DMs/LL190QYJapKNFnH4MaCQFYv4DMszLLLmaZihR55s+hRRcArF9A5rndbssKyXLsDFiIovpIX375ZTz88MN45JFHcNlllwEA7rzzTsRiMTz//PNmtG/LfD5fTV6LaojDBedbr4P/1v8K11uuWfOLF2CWqfIJTjecb3s/Gg7/F7guex+zTFVLcLrhfPsH0HD4v8J16dVrFpEAswwU0SN59OhRPPDAA3jwwQdx/fXXL/3c5/PhjjvuwBNPPIGDBw9WXLer2+2Gy+VCKpUy9TqCIKCpqcnUa1DtcV5yFezb96/7hbuSlVnmYuRULOel74V9+0UFZ9npdCKdTpvaJmaZjHBd9j7Ytx9Yt3hcyePxWJblSlyMHDB5r+1Ksbi4iPHxcVOv0djYiN7eXlOvQbSwsICJiQlTr9HU1ISenh5Tr0E0Pz+PyclJU6/R3NyM7u5uU69BZEWWW1paltblrjSV9/qPCQKBgKlzC0RRRGdnp2nnJ8prbGyE2+027fySJKGjo8O08xPlNTU1mZ7l9vZ2085PlNfU1ASXa/OeeKMqPct1UUgKgoCenp7ztjUqpZ6eHthshldSIiqYIAjo7e01Lcvd3d3MMlnC7CzzvkxWyWfZLD09PRU3bXCluigkAcDpdKKvr6/k521tba3YeQtUm5xOpyk3rba2NmaZLGVmlv1+f8nPS7Qel8tlSo3R3t5e8Vmum0ISAPx+P/r7+0t2vtbWVg4DUlkEAoGS3rTa2toqeuiEahezTLUiEAiU9MGovb0dbW1tJTufWeriZZvVkskkxsfHDb9lJUkSuru72XtDZccsU60oRZZ7enoqvveGal8ikcD4+DgymYyhz1dbluuykAQAVVURCoUQDAYL3kIxv5RER0cH595QxTCa5aamJrS3tzPLVDFUVUUwGEQoFGKWqarVU5brtpDM0zQNkUgEkUgEyWTygicIm80Gt9sNn8+HxsbGip7wSvWNWaZaoaoqotEoIpEIEonEBVuDMstULVRVRSQSQTQardks130huZqqqlAUBZqmQZKkqvylEgHMMtUORVGgqiqzTFWvFrPMQpKIiIiIDKmrt7aJiIiIqHRYSBIRERGRISwkiYiIiMgQFpJEREREZAgLSSIiIiIyhIUkERERERnCQpKIiIiIDGEhSURERESGsJAkIiIiIkNYSBIRERGRISwkiYiIiMgQFpJEREREZAgLSSIiIiIyhIUkERERERnCQpKIiIiIDGEhSURERESGsJAkIiIiIkNYSBIRERGRISwkiYiIiMgQFpJEREREZAgLSSIiIiIyhIUkERERERnCQpKIiIiIDGEhSURERESGsJAkIiIiIkNYSBIRERGRISwkiYiIiMgQFpJEREREZAgLSSIiIiIyhIUkERERERnCQpKIiIiIDGEhSURERESGsJAkIiIiIkNYSBIRERGRISwkiYiIiMgQFpJEREREZIit3A2oJJqmIZ1OQ1EUAIAoinA6nRBF1ttUXZhlqhXMMtWKWs1y3ReSsixjYWEBkUgEqVQKmqZdcIzD4UBDQwOam5vhdDrL0EqizTHLVCsKybLT6URDQwOampqYZapY+SyHw2Gk0+mazLKgrfVvVQcURcH09DQWFhaK+pzX60V3d3dV/rKpNsmyjOnpaSwuLhb1OWaZKo3RLPt8PnR1dTHLVDHqKct1WUhGo1GMj48vdS8b0dHRgdbWVgiCUMKWERUnEolgYmLCcJYFQUBHRwdaWlqYZSorZplqRTgcxuTkZN1kue4KyWAwiOnp6ZKcy+/3o6+vryp+0VR7SpnlQCCA3t5eZpnKYm5uDjMzMyU5F7NM5VTKLDc2NqKnp6fis1zdMzyLFAqFSvbFC+hP0OPj42vOeSAyU6mzHA6HmWUqi2AwWLIvXkDP8sTEBLNMlit1lhcXF6siy3VTSCaTSUxNTZX8vOFwGPPz8yU/L9F6EokEs0w1IZFIlPSBKG9xcbHo+e9EWxGPx03LcrHzLK1mWiF55swZ3HLLLUv/u+SSS/Dd737XrMttSFVVjI+Pm3b+6elpZDIZ085PlMcsU60wO8tTU1PMMlnC7CxPTk4im82adv6tsmSOZDwex7XXXosXX3wRHo/H7MtdIBQKmdKDs5Lf70d/f7+p1yAq5bzI9TDLZAUrshwIBNDX12fqNYhKOS9yPZWcZUuGtv/93/8dV1xxRVmKSE3TEAqFTL9OJBKp6CcGqkwT//BlpCYnCjqWWaZKNvH3f4v0dGEP7FZlORwOQ5Zl069DtWXi755GusCHHE3TLJkSVMlZLrqQVFUVN954Ix555JHzfv7KK6/gwIEDeOGFFy74zAsvvIAPfvCDxlu5BYlEwrLhDc7JoWKFXvweXv+Nu3Dm0T/btKCMx+OWFXiVPieHKk/we9/B6/f8Gs4+9v/ftKC0Msu8L1Oxgt/9Nl6/506c/R9/vmlBGYvF6v6+XPTONqIo4v7778eRI0dw3333IRAIYGhoCJ/5zGfw2c9+FjfddNN5x8diMfz85z/HY489VrJGFyMej1t2rVgshrbWVsuuRzVA0wBVRfDb30Twu99G6/v/3/buPTaK+1D7+DO7a3vXNjbYBoIdCKAKU5pX4qS0SG1zIIdAaAspUII4DQlVKIRUiRrSIqVR2ipKVFVKRKOXqAqXcgkpVASRoiqBHKURhLy0TapSAT2t0jQYwsX4fl/venfn/cOsMb5h/7wze/t+JCv27OzMb/CT8eOfd2cWqXz1g/KXV/Rb1c0st7a2qqy01LX9IQPYtuxoVLXvvK26d99R2b33adLq78g/qbzfqm6fl8kyRsKOZ/noW6r7n2MqW3ifylc/qLzbJvVb1/Usp2DHMHqNZCQS0X333afly5dr5cqVWrVqlRYsWKCf/exn/db93e9+pw8++EAvvfRSQgY8UhcuXFBra6sr+7IiEbU//ZQr+0IG83gGLJRVVVVqa2tzZQhWOKz2Z37kyr6QuSyvd8BCef78edd+AHvCIbU9s9mVfSFzWV7vgIXSzSx7vV59/vOfd2VfI2H0Gkmfz6f169dr3759Wr9+vWbNmqVnn312wHWPHTuWtD9rS1JnZ6dr+4rFYq7tCxns+gxl3z95k2Wkm/gM5dnvrdX5X76kzqtXJEmhUMi1MYzmDmZAnB2NqvbY290v33j5xss33DwvR6PRlMyz8Zttli5dqmAwKEnasmWLvF5vv3VaW1t15swZfe1rXzMf4SjxAxFpq1ehPP/LlxR18YQFJFK8UMZ/CJNlpKubCuX//aWiLv5SJKVmpzEuks8//7yk7hcyD1QiJWnMmDE6deqUcnNzTXcDZDfLUsnd83TbipXy5OUlezSAOctSyX/O120rHpDFzwSkM49HJf95j25b/m15yPLI32wjSS+//LKOHz+ugwcP6rvf/a4OHTqkBx98MNFjS4icnJyUnAoGhnT9h27Fdx5S4I6pkiTfv/5FlpF+LEsl8+7pzvKUOyRJvo8/5mLhSD8ej0rn/ZfKv7NGgcnd19p1O8uDTdwl04iL5BtvvKHdu3dr7969mjlzptauXaudO3dq1apVysnJcWKMoxIIBFx7DUOu36/ibz/gyr6QGWrfOaZoW683gw1QIOMCgYBrry3LDQTIMkak9tjbivZ+08EABTIuPz/ftR++efkFZBkjUnv0bUU7emXZ41HpvHtU/p2HegpkXCAQcC/LeXnyeFLvztYjKpInTpzQc889py1btmj27NmSpIceeki7du3SkSNHtHLlSifGOCqBQMC164jljxmjyesfc2VfyAxNH/65u0gOUSDjAoGAa9cRKygu1u1kGSPQ+MdT3UXSslQ6/79U/t9r+hXIODeznE+WMUKN/++D7iI5wAxkX4FAQM3Nza6MKxk3dRmOYRfJc+fO6cknn9TmzZu1aNGinuWFhYVas2aNduzYoeXLl6fctGtRUZGuXLniyr6Ki4td2Q8yh9V71maQAhlXVFTk+K0+48gyRsqyLJXes2DIAhlHlpHSPB6V3nPvkAUyrqioyPFbfcalapZdudd2sn322WeO/8bg8/lUWVkpy7Ic3Q8yS7iuVrll44e9/sWLF9XS0uLgiLpfVzxjxgyyjBEhy8gUI82yG9erTuUsp94f2x3gxpXgx48fn5LfYKS2kZysJHeyXFZWRpYxYqmYZc7LMEGWRyYrimQgEHD0Gx0IBFRSUuLY9oG4/Px8lTp4uzeyDLc4neX8/HyNGzfOse0DcQUFBY6eN1M9y1lRJCVpwoQJynPgOnyWZen2229P2d8UkHkmTpzoyLVZyTLcRpaRKSZOnOjIlWs8Hk/KZzlriqTH49HUqVMT+o22LEt33HGHIwUVGEw8yz6f0WVgB2RZlqZOnUqW4Sons8yNMOAmr9eradOmZWWWs+LNNr11dXWpqqpq1Nfj83q9mjJligoKChI0MmBkyDIyRTgc1oULFxKS5TvuuCNlL5OCzBcOh1VVVTXqa0umU5azrkhK3feqrKurU01NjdHzi4qKVF5entDfPAATsVhMtbW1qq2tNXo+WUaqGG2Wi4uLNWnSJLKMpIvFYqqpqVFdXZ3R89Mty1lZJONCoZDq6+vV2Nio4fwzjBkzRqWlpSosLHRhdMDwdXZ2qqGhYdhZLioqUklJCVlGyjHJcmlpKTPqSDmdnZ2qr69XU1NTRmc5q4tkXDQaVXt7u4LBoILBoCKRqLpitvw5Xvn9fgUCARUUFKTkLSCB3vpmuasroogkv48sI70MlOWopDyyjDST6VmmSA7gYmOHatpCmjM5dd9uDwxHVWOH6tvD+uLtY5M9FGBUzjd0qDEY1l0VY5M9FGBUzje0qynYpf/IkCxnzbu2h8u2bZ2tbtEn9e3qCEeTPRzAWMy2da66RZ/UtSnYRZaRvuJZ/ldtO1lGWuvOcqs+rmtXZ4ZkmSLZx2dNQTV3RhSzpf+95uztuwAnXWwKqqUzoqgt/e81Z2/fBTjpQmNQraGIoratf9SQZaSvC40d3VmOZU6WKZK9xGcj45iVRLqKz+DEMSuJdNU3y8xKIl3FZyPjMmVWkiLZS3w2Mo5ZSaSr+GxkHLOSSFfx2cg4ZiWRruKzkXGZMitJkbyu72xkHLOSSDd9Z3DimJVEuhksy8xKIt3EbFtnq/uXxkyYlaRIXtd3NjKOWUmkm76zkXHMSiLd9J2NjGNWEummqqFDbQNlOQNmJSmSGnw2Mo5ZSaSLwWZw4piVRLq4VZaZlUS6iNm2zg3xS3y6z0pSJDX4bGQcs5JIF4PNRsYxK4l0MdhsZByzkkgXg81GxqX7rGTWF8lbzUbGMSuJVHerGZw4ZiWR6oabZWYlkepuNRsZl86zkllfJJuCXSrI9am8yC+/r/8/h8eSyov8um2MX9faQkkYITA8TcEuFQ4jyxPH+HWtlSwjdTUFuzQmb/Ase3uynKcazstIYQ0dXSoaMstWd5YL0zfL3CKxlw/O1+tiU/CmZX6fRyv+T3mSRgSYOXm+Xp/1yXJ+jlfL7pyUpBEBZt7/tE6XmjtvWlaQ69W3vkCWkV5OfFqny32yXJjr1f1pnuWsn5EEAACAGYokAAAAjFAkAQAAYIQiCQAAACMUSQAAABihSAIAAMAIRRIAAABGKJIAAAAwQpEEAACAEYokAAAAjFAkAQAAYIQiCQAAACMUSQAAABihSAIAAMAIRRIAAABGKJIAAAAwQpEEAACAEYokAAAAjFAkAQAAYIQiCQAAACMUSQAAABihSAIAAMAIRRIAAABGKJIAAAAwQpEEAACAEYokAAAAjPiSPYBU0dXVpeIcW+X5lmzbvr7Ukj/Hq1AopNzcXFmWldQxAsPR1dWlsT5b0T5ZDuR6yDLShm3bikQiGpsjxcgy0pht293n5RzJ7pPl/AzIsmXfOKKsE4vF1NzcrPr6enV2dg65rs/nU0lJiUpKSuTz0b+RWkaa5dLSUo0bN44sI+XEYjE1NTWpvr5eoVBoyHXJMlLZSLKck5OjkpKStMxy1hbJ1tZWXbp0SdFodMTPnThxosrKytL2twdklpaWFl2+fHnEWbYsSxMnTlRpaSlZRkogy8gUzc3NunLlSlZkOeuKZCwW05UrV9TU1DSq7QQCAU2ePFm5ubmJGRgwQrFYTJcvX1Zzc/OothMIBDRlyhTl5OQkaGTAyJBlZIpszHJWFclYLKYLFy6ovb09Idvz+XyaPn06ZRKui8ViqqqqUkdHR0K2R5aRLGQZmSIajaqqqkrBYDAh28vJydG0adNSPstZ865t27Z18eLFhJVISYpEIjp//rwikUjCtgncSjzLifrBK5FlJIeTWTZ52RJgKp7lRJVIqfuNk1VVVSmf5awpko2NjWpra0v4dru6unT16tWEbxcYTENDA1lGRiDLyBT19fUJnaiKC4fDKZ9lR4vknj179M1vflPf+MY39MILLyhZf0V3+hvR3NyslpYWx7YPxIXDYVVXVzu2fbIMtzid5aamJrW2tjq2fSAuFArp2rVrjm0/1bPsWJFsaGjQ66+/rsOHD+v3v/+9zp07p7/97W9O7W5I9fX1jpfYa9euJa0oI3vU1dU5nrOamhpHtw9I7mTZyR/uQFy2n5cdnZGMRqMKhUKKRCKKRCIqLS11cncDisViamxsdHw/oVAooa+NAPqKRqOuZLmzszOhr1kD+nIzy5yX4aRoNDrqq8AMRzAYTNksj7hIxmIxLV68WC+++OJNy0+ePKk777xTR48elSSVlJTokUce0fz583X33XfrK1/5iqZMmZKYUY9AS0uLYrGYK/tyI0zIXq2tra7NepNlOKmlpYUsIyOQZYMi6fF49Oijj+rAgQM910n65z//qR/84AfatGmTvv71r0vqfq3V8ePH9d577+n999/X6dOn9dFHHyV29MPgZoN34oW2QJybs4TMSMJJbp6XyTKcxHnZ8E/bS5cu1bhx47Rv3z5VV1drw4YN+ta3vqV169b1rHPq1ClNmTJFY8eOld/v17x585LyGkk3/+FDoZBrs5/IPm7+8O3s7CTLcIyb5+XOzk5evw7HuH1eTsUsGxVJn8+n9evXa9++fVq/fr1mzZqlZ5999qZ1Jk2apNOnTysUCikajerDDz/UtGnTEjLokejq6nJ1f1yHD04Jh8Ou7o8swylunpdt2ybLcIyb52XbtlPympLGb7ZZunRpTxPfsmWLvF7vTY/Pnj1b8+bN07Jly3T//fdrypQpWrBgwehGa8Dt9p6Kvy0gM5BlZAqyjExBliWf6ROff/55Sd0X+u5bIuM2bdqkTZs2me4iIdy+6Xm63GQd6cftbHk8WXO/AriM8zIyhWVZrpa7VMyy0U+Kl19+WcePH9fBgwcViUR06NChRI8rYfLy8lzbl2VZaXGDdaQnt7Ps8xn/ngkMyc17B5NlOMnN87LH4xl04i6ZRlwk33jjDe3evVuvvvqqZs6cqbVr12rnzp2uvxZxuAKBgGv78vv9KfnbAjIDWUamyM/Pd21fgUCALMMxnJdHWCRPnDih5557Ti+++KJmz54tSXrooYfU1tamI0eOODG+UXPzhOXmvpB93MxXQUGBa/tC9uG8jEzBeXkERfLcuXN68skntXnzZi1atKhneWFhodasWaMdO3ak5LuJCgsLXZsKHjdunCv7QXYaM2aMa69bJMtwEllGpigqKnIty2PHjnVlPyNl2an4FqAEu3btmmprax3dR35+vqZPn+7oPgCyjExRXV2turo6R/dRUFCQlMvOIbtcvXpV9fX1ju6jsLBQU6dOdXQfprLibZmlpaWOz0pOnDjR0e0DkjtZvu222xzdPiBJZWVljs/kcF6GG7I9y1lRJH0+nyoqKhzbfmlpacq+dgGZxefzqby83LHtl5aW8poyuMLp83JZWRlZhitycnIcPS+PHz/e1Tf1jFRWFEmp+3UMTrxWxu/3p/RvCsg8xcXFZBkZoaioyJHXfQUCAU2YMCHh2wUGU1xc7FiWx48fn/DtJlLWFElJKi8vV3FxccK2l5eXp6lTp3LhZrgu0Vn2+/1kGa6zLEsVFRUqKipK2DbJMpIhm7OcFW+26c22bdXW1qqmpmZU2ykqKlJFRUVKXhwU2cG2bdXU1Iz6zTdkGcmWqCwXFxervLycLCNpsjHLWVck44LBoC5duqRQKDSi53m93oTPBgGjQZaRKUaT5UTPBgGj0dHRocuXL484y/HXwadTlrO2SErdvzl0dHSovr5era2tQ94vMz8/XyUlJa5eMwoYLtu21d7eroaGhmFlubS01NVr+QHDZZLloqKilLzjB7JbPMv19fVqa2vL2CxndZHszbZthUIhBYPBngurezwe+f1++f1+fuAibZBlZAqyjEyRyVmmSAIAAMBI+lZgAAAAJBVFEgAAAEYokgAAADBCkQQAAIARiiQAAACMUCQBAABghCIJAAAAIxRJAAAAGKFIAgAAwAhFEgAAAEYokgAAADBCkQQAAIARiiQAAACMUCQBAABghCIJAAAAIxRJAAAAGKFIAgAAwAhFEgAAAEYokgAAADBCkQQAAIARiiQAAACMUCQBAABghCIJAAAAIxRJAAAAGKFIAgAAwAhFEgAAAEZ8yR4AAGB0cv/jEVkeryyPVx5friyvV57rX3d/eHp97pXlvfH5zesNvE73epYsjyXLsm587rHksW587vUN/bjn+vMtjwbcnneAD99NX3tufty68XmezzPg8/t9WN1j8lrdY+j7dc/n17fd/2vdeI6ne3mOx9PzuWVJHl3/r6X+X6v3euo+/p71en2t+POtfs+zbFuyY7LsmBSL3vi890es9zJ7wHWs6+sN+HgsKjt2ffuxqOxotHvdWFR2rPtzOxLu/m80emO93s8Z4vl2LCY7ev2j1+exaP/HYtH+60a7IteXRfs8v/f27Otf24pF7V7Luj+Pxewb60TtodePxa4vsxUNR7uX27aitq2orSH+O9RjtmIa+vGoLb1qVyXx7HJrzEgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARizbtu1kDwIAkJrC4bC2bdumRx99VLm5uckejjGOI3VkwjFImXMco8WMJABgUOFwWK+88orC4XCyhzIqHEfqyIRjkDLnOEaLIgkAAAAjFEkAAAAYoUgCAADACEUSADCo3NxcPf7442n/ZgKOI3VkwjFImXMco8W7tgEAAGCEGUkAAAAYoUgCAADACEUSAAAARiiSAIB+Ghsb9fDDD2v16tU6fvz4TY/V1tZqzZo1euCBB3TixInkDHAYhjqGuKefflp//vOf3R3YMIXDYT322GNavXq1Dh48eMvlqepW4926dasOHz6chJEN32DH0NnZqXXr1mnVqlU6dOhQEkeYPBRJAEA/+/fv17p167R3717t3bv3psfeeustrVq1Sq+99pp27dqVpBHe2lDHIEmffPKJ3n333SSMbHjefvtt3X333dq/f7+OHTumUCg05PJUNdR4Gxoa0qIMD3YMJ0+e1Jw5c/Tb3/6WIgkAQNzf//53ffGLX1ReXp4KCwvV3Nzc81hlZaU6OjrU2dkpv9+fxFEObahjkKRf//rXWrZsWXIGNwzx8Xs8Hs2YMUP//ve/h1yeqoYa786dO1P6exA32DFMnz5dXV1dikQiysnJSfIok4MiCQDop729XQUFBZKkQCCgjo6Onsfy8/P16quvatmyZVqyZEmyhnhLQx3DmTNnVFFRoeLi4mQN75ba29uVn58v6ebxD7Y8VQ023qtXr6q9vV3Tpk1L5vCGZbBjyMnJ0VtvvaXFixfrq1/9ajKHmDS+ZA8AAJB8r732mo4ePdrz9dmzZ9XR0aGCggIFg8GeQiZJ27dv1yuvvKIZM2bokUce0cKFC1NiZnIkx7Br1y698MIL2r17dzKGOiz5+fkKBoOSpGAwqMLCwiGXp6rBxrtt2zatX79eH374YTKHNyyDHcPrr7+up556SgsXLtTjjz+uy5cvq6KiIplDdR0zkgAAPfzwwzpw4EDPx8aNG/WXv/xFoVBITU1NKioq6lk3EAiooKBAubm5sixLkUgkiSO/YbjH0N7ero8//liPPfaY3nzzTf385z9Xe3t7kkff3xe+8AV99NFHsm1b//jHP3pm7gZbnqoGG+/Zs2f14x//WNu3b9f27dt14cKFJI90cIMdQ/z/BY/Ho8LCwpSfHXYCd7YBAPTT0NCgH/7wh2pubtb3v/993XvvvfrFL36hjRs3qqGhQT/5yU8UiUS0aNEirVu3LtnDHdBQxzB27FhJ3e8Y/vKXv6y5c+cmd7ADCIVCeuqpp1RdXa0VK1YoGAxq/vz5mjx58k3LH3zwwWQPdUiDHcfnPvc5Sep5x/aKFSuSOcwhDXYMY8eO1ebNmxUKhXTnnXfqmWeeSfZQXUeRBAAAgBH+tA0AAAAjFEkAAAAYoUgCAJBElZWVqqys1Kefftrvsd27d6uyslJbt27tWRaLxbR//36tXLlSc+bM0dy5c7V27Vr98Y9/7Fnn0qVLqqys1KVLl1w5BmQviiQAAEk2btw4vfnmm/2WHz58+KbL+9i2rSeeeEIHDhzQ008/rT/96U86efKklixZoo0bN+oPf/iDm8MGKJIAACTb0qVLdeTIEcVisZ5lZ86cUTgc1qxZs3qWHTt2TO+//762bdumOXPmyOfzKTc3Vw888ICeeOKJlL/LDTIPRRIAgCSbP3++urq6dOrUqZ5lhw4d0sqVK29a77333tNdd92l8vLyftv43ve+pw0bNjg+VqA3iiQAAEnm8/m0dOnSnj9vd3Z26p133ul3H+qGhgaVlZUlYYTAwCiSAACkgBUrVujdd99VW1ubjh07prvuukvjx4+/aZ0JEyaotrZ2wOe3tbX13MYPcAtFEgCAFDBz5kxNnz5dR48e1eHDh/v9WVuS7rnnHp0+fVrV1dX9Htu6dauWL18u7jMCN1EkAQBIEStWrNCePXt0/vx5zZs3r9/jCxcu1Ny5c7Vhwwb99a9/VSwWU1tbm/bs2aPf/OY3+tGPfiTLspIwcmQriiQAACliyZIlunDhgu6//375fL5+j1uWpV/96ldavHixfvrTn+pLX/qSFixYoBMnTmjHjh269957kzBqZDPutQ0AAAAjzEgCAADACEUSAAAARiiSAAAAMEKRBAAAgBGKJAAAAIxQJAEAAGCEIgkAAAAjFEkAAAAYoUgCAADACEUSAAAARiiSAAAAMEKRBAAAgJH/DzBP3IM1Xy34AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -4221,7 +4223,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAALTCAYAAACljOKvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9RUlEQVR4nOz9d5Rb13nvD3/POegzA0zvvTcOIIqUqEpVSqIty7JpNVJWi+WVOPnZzvvavsW5vop8c3PjRPbNct7k/uRY19HNjS05cWRbvVJUoyowvVdM75gZ1FPePzAAZziYGQCDcgA8n7W0RGJO2SQ+3Oc5+9n72YwkSRIIgiAIgiAIIkTYeDeAIAiCIAiCSEwokCQIgiAIgiDCggJJgiAIgiAIIiwokCQIgiAIgiDCggJJgiAIgiAIIiwokCQIgiAIgiDCggJJgiAIgiAIIiwokCQIgiAIgiDCggJJgiAIgiAIIiwokCQIgiAIgiDCggJJgiAIgiAIIixSKpAUBAF///d/f6BrPPzww7j99ttxxx134L777kNPT0+EWkcQwXNQl10uF/7oj/4It9xyC+644w488sgjsFqtEWwhQQRHJPrlH/7wh7jhhhvQ0NCA/v7+CLWMIKJDJJyXEykVSPb39+Pll18+0DV+8pOf4He/+x2ee+45PPzww/hP/+k/Rah1BBE8kXD57rvvxksvvYTnnnsO119/Pf7Lf/kvEWodQQRPJFy+5ZZb8H//7/9FSUlJhFpFENEjEs7LiZQJJAcHB/Hoo49idnYWd9xxB/72b/82rOvo9Xr/r9fW1sAwTKSaSBBBEQmX1Wo1jh8/7vfXaDRiYmIi0k0liD2JVL989OhRFBYWRrh1BBF5IuW8nFDEuwGxora2FjfffDOqq6tx5syZA13ru9/9Ls6fPw8A+NnPfhaJ5hFE0ETSZR9PP/00rr/++ohciyCCJRouE4ScSUbnUyaQBIDOzk584Qtf2PH5fffdh6GhoYDn/Pu//zuKioq2ffZXf/VXAIDf/OY3+Ku/+is8+eSTkW8sQexBpFwGgH/4h3/A2NgYHnvssYi3kyD2I5IuE0QisJvziQojSZIU70bEAp7ncfToUXzwwQdQq9URu25bWxvOnj2LrKysiF2TIPYiki7/4z/+I55//nn87//9v7dN2yCIWBDpfvmGG27AP/zDP6C+vj4CrSOIyBOtWCSepMwcyZmZGaSlpR3oi1tfX8fs7Kz/96+++ioyMzORmZkZgRYSRHBEwmUAeOqpp/D888/jqaeeoiCSiAuRcpkgEoVkdD6lRiS//vWvw2q14pZbbsGf/umfhnyN6elp/Mmf/AlcLhcYhkF2dja+973voampKQotJojARMLlmZkZHD9+HGVlZUhLSwMAqFQqPPvss5FuLkHsSiRcBoDHHnsMr7/+OhYWFpCVlQWdTodXX301wq0liIMTKeflRMoEkgRBEARBEERkSZnUNkEQBEEQBBFZKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwkIR7wbIAbfbDZvNBofDAYfDAUEQIEkSWJaFVquFVqtFeno6tFotGIaJd3MJYldcLhfW1tZ2uMxxHDQaDblMJAzkMpEsBOuyTqeLd1PDgpEkSYp3I+LF+vo6FhYWsL6+HtTxarUaOTk5yMrKoo6LkBXr6+uYn5/HxsZGUMer1Wrk5uYiMzOTXCZkxdraGhYWFshlIuEJ1WWNRoOcnJyEczklA0lBEDA1NYXV1dWwztdqtSgtLYVarY5wywgiNHiex/T0NLlMJDzkMpEs8DyPqakp2Gy2sM5PNJdTLpB0Op0YHR0Fz/MHvlZZWRkMBkMEWkUQoeN0OjEyMgJBEA50HYZhUFpaSi4TccPhcGB0dJRcJhKeSLpcVlYGvV4foZZFj5QKJJ1OJ4aHhyGKYsSuWVpaiszMzIhdjyCCIRou04sREQ8cDgdGRkbIZSLhcTgcGB4eRiTDqkRwOWVWbQuCgNHR0Yh2VgBgtVpht9sjek2C2Aue5yP+4AWAiYkJOByOiF6TIPaC5/mo9MvkMhFrfC5HemwuEVxOmUByeno6IunsQFit1oh3hASxG9PT0wdOm+zGxMQEuUzEjGi6TP0yEUumpqai6rKck8dRDSTffPNN3HLLLThx4gSeffbZaN5qT9bX17GyshK167vdbszPz0ft+gThY319PezFCMHgdruxsLAQtesThI+1tbWouuxyuchlIibYbLawF9YEg9xdjlogyfM8/vIv/xL/9E//hH/7t3/Dk08+GdVgbi9i8QUsLi7S2y8RMuu9PSG9acbihYVcJsIhVJdj1S/LeSSHkCfkcmhELZBsb29HbW0tCgoKkJ6ejmuvvRbvvPNOtG63K263O+g6kQdBFMWovpEQycngX/4FOr/xh1g+/8G+nYTL5Qq6HtlBEASBXCZCZuC/PY7OP/kjrHz0IblMJDT9jz+Grv/nj7Hy8Uf7uux0OmOyToLnedm6HHIgKYoibr31VvzoRz/a9vm5c+fQ2tqKF198EQAwNzeHgoIC/88LCwsxOzt7wOaGztraWszuJdcvmZA367096P2P39s3oCSXCbmz3t2Nnu99Z9+Aklwm5M5aVyd6vvv/3TegjKXLsbxXKIS8RSLLsvj617+Oxx9/HI8++igMBgN6e3vxzW9+E9/+9rdx2223AUDAv/R4VGqP5Wonu92Ovh/8WczuRyQ+ri2pal9Amd7YhNIHHkTmZZdv+zcTS5cd5DIRIu7FRf+vfQFlenMzyh54CIYjR7e5HMtKF/aNDXKZCAnP8rL/176AMr25ZdPlI3Hrl+VaISasvbZvv/12/PSnP8XTTz+NU6dO4dFHH8Udd9yBRx55xH9MQUHBthHImZkZGI3Gg7c4RGL5F8/zPNY+/giQ+VJ9Qt7sFlDGssPy8DzWPvoQcDpjdk8i+dgtoIy5y+c/ANzumN2TSD7Wu7vQ872dAWUsXXa73RBFESwrr4I7YRck/+Uvf4kf//jHyM/PR0lJCf7u7/4OHMf5f87zPE6ePImnn34aaWlp+NKXvoRf/epXyMrKiljjg6GnpydqS/IDsf7nP4Ak49VVROLhCyhn9IbYuvxf/wzS0lLM7kckP76AciotPaYLutb/y3+GFKfFnkRy4gsop9LSYupyQ0MDlEplzO4XDGGHtbfffrs/En/iiSe2BZEAoFAo8L3vfQ9f/epXceedd+KRRx6JeRAZFxJoo3UiMXBYJ7DR3x/7FXvkMhFhHBMTWO/ri/2NyWUiwjitE9gY6JPtSupYElZqGwAef/xxAMDy8vKOINLHjTfeiBtvvDHcW0QElmVjOopDqUAiUnDp6Sj+yt0ovPNLUKSno6+vL7ZlechlIkJwGRkXXE5LQ29vb0xdlshlIkIo9HoU33U3Cr/4JXA6HdZ6e6O22Ukg5JbWBsIMJH/yk5/grbfewjPPPIMHH3wQv/71r3H69OlIty0iaLVaeDyemNyLZVkotTpAq4vJ/YjEx72wAIjbX3QuDiB9aDSamLnMsSyUaelAWvr+BxMEdnH5ogDSh1arjdkKVI7joMrQAxn6mNyPSHwCuXxxAOlDo9HEpMQg4M307jZwF09CDiSfffZZPPXUU/jFL36BxsZGPPDAA/jZz36Gu+66S3Z5e8DbYcWq/INOp0PzL5+Jyb2IxEfi3Rj6sz/FxpgVng0nJEaBoi/ftSOA9BHLh68uLQ1N5DIRJBLvxtB//hY2Jqa8LrMqFJ36Cgq/uD2A9BFTl3U6cpkIGsnjxuB//ibs1ml41p2QOBWKv3LXjgDSh1arjVkgqQtwfzkQUiB59uxZPPbYY3jiiSdgMpkAAPfffz9+/vOf47nnnsOpU6ei0cYDkZ6eHrP6lekBHv4EsSucErmNhSg+UnnhM/U6+PO/gaBNB6PNALPl/2msOmZNI5eJkOCUyG0uRvFl1Rc+U6+B/+DfArqsI5cJuaJQIq+lBKrLay58plmD5/1/BX+Rx4w2A2msErHaIFmuLgcdSHZ2duJb3/oWvvOd7+DEiRP+z9PT03HmzBk8+eSTuPPOO2U37KrVaqHRaOCM8hwZhmFSYzERETEYhoGUVQ545i586LJDdNmBlZ0vP1x5M9SZdXC5XFFvV2ZmZlTvQSQXXpfLAM+WR+oeLisqWqA21JLLhOzwulwKeLZUX3FuQHRuBHa58hBUGVVwR7m8FMMwMBgMUb1HuIRd/ieRWFlZgdVqjeo9MjMzUVpaGtV7EMmDJPAQpofAD1sgzo/vezxXVAvVsS9gZXUVk5OTUW1bVlYWSkpKonoPInm44LIZ4vzEvsdzxXVQXX47lldWMDU1FdW2ZWdno7i4OKr3IJIHr8uD4IfMEBf2jxm4knqoLv88lpej73JOTg6Kioqieo9wCXvVdiJhMBiwtLQUteLkLMuisLAwKtcmkgdJkiAuz0AY6wI/0Qt4ghslZ/PKobr882BYFpmZmVhaWopaEVyO47ZtbUoQgfC7PNoJ3toLeIIbWWTzK6C67HNgWBZZWVlYXl6Oqsv5+flRuTaRPEiSBHFp2tsvh+JyQaXXZcbr8tLSUtQyn3J3OSVGJAHA5XJhcHAwKjWfysrKZDvkTMQf0bEGYbwb/FgXpLXQCnyzWYVQX3MXGKXK/xm5TMQL0b4GYaIb/GgXpPUQXc4ugvqar4BRxMbl8vJy6PW0UpsIjGi3XeiX15f3P2ELbE4J1Fd/eZvLTqcTg4ODkW4mAPm7nDKBJADYbDaMj++fRgyF3NxcGo0kdiAJHghTg+BHuyDOjQEI/Z8Zk5EDzfF7wKi1O362urqKiYn904ihkJeXR6ORxA4kftPlsc5Nl0OH0edCc/xuMCpymYgfXpcHwI91he+yIQ+aa+8Go9Ls+Fk0XM7Pz5f1aCSQYoEkENlgMjc3FwUFBds2cCdSF0mSIC5OgR/rgmDtBfjwJ18zOgPU190LVrv7Kr1Idlp5eXnIz88nlwkAPpcnN13uO5jLaZneFyJymYgDkiRBXLCCH++CYO0/mMvpWV6XNTtLWvmI5JqM/Px85OXlyd7llAskAcDhcMBqtYa9YpDjOBQXF1MKkAAAiBurF1IkGyshn8+kZYLLLwc/0u79QJMGzfF7waZn7nsuuUxEEq/LXeDHusN2mc0rhzDqdZnRpEN93T1g0zL3PTcSLpeUlMg6BUjEDnFjBcJYN/jxLkgbqyGfz6Rngc0thTDa4f29Nh3q4/eCTdu/r7Tb7bBarWGv5E40l1MykAQAURSxuLiIhYWFoLdQ9JWSKCgogEKREuuUiF2QeDeEyQFvui+Ilao7UKjAlTZAUdEKNse7qtT58s8guV3QHL8brCEv6EuF63JWVhby8/PJ5RTH63K/N90XtsuNUFS2gM3edPmlJyHxbmiO3wNWnxv0pURRxMLCAhYXF8llImQkjxvCZJ/X5SBWXe9AqYaitBFcRQvYbO8KaeeL/y8kgd90OSfoS6WSyykbSPqQJAk2mw02mw0Oh2PHG4RCoYBWq0V6ejoyMzNlVyeTiB3eFMnEZrqvHxBC366Qza+EorIFXHEtGG77TlCe/o/B5paAyw6vxAO5TASLJEkQ5yfAj3VCmBwIw2UGbEEFFBWt4IprArj8Edjc0rBdFkURa2trsNlssNvtO7YGJZcJH9td7geEUPe9ZsAWVEJR4euXtwdwnr4PweWXg80Kby2EKIqw2WxYW1tLWpdTPpC8GFEUIQgCJEkCx3EJ+aUSkUVcX/HOrxnrgmQPfbtNJiPb20mVN4PVZux6nCRJEZ0LQy4TFyOuL3tfhMa7INlD36LQ63Lrpsu7z3mMtMuCIEAURXKZ8COuLXv75XBd1udAUd5CLkcACiQJIgCSxwXB2u9NXS+GUQBcqYGibDNFklUo+8nSRPLidXkz3UcuEwmM5HZ6XR7vgrgYRgFwlQaKsiavy5m0UDZSJE4SniCijCSJEOfGvSM2UwOhp0gYBmxBlXf0sahmR4qEIGLFBZc7IUwOAmLoLnOF1eAqWsAVVpPLRNyQJBHi7NhmvxyOyyy4wipwFa3giqrBsIk/Aig3qHcgUh7RtriZIumG5FgP+XxGnwtFRSsU5U17loUgiGgj2ha9D9yJMF025EFR0QJFGblMxBfRtrA5DaMHkjMcl/M3XW4kl6MMBZJESiK5neCtvRDGuiAuTYd+AZUWivImKCpawBioZh0RPyS3A/zEpsvLM6FfQK2FoqwZiooWsJnyLnxMJDeSy3GhXw7LZR0UZU3kcoyhQJJIGSRRhDg76k33TQ8BYnAlGfwwLLiims10XxWlSIi44XV5xDtiQy4TCYwkChBmRiGMd0KYGgIkMbQLsBy4ompvKbWCSnI5DlAgSSQ94uo8+LEu8BM9gHMj5PPZzAJwvhSJWheFFhJEcHhd7gQ/3gO47CGfz2YVgCvfTF0H2HqTIGKFuDJ3oV8Oy+XCC/1ygK03idhBgSSRlEguO/iJXu9uMyuzoV9Ak3YhRRJCcXCCiDSSyw5+vMe7Q8fKXMjnM5o0cOWbqesQioMTRKSRnBsX+uXVcFxOB7c5pYhclg8USBJJgzdFMgJhrBPC9HB4KZLiWijKWzZTJGx0GkoQ+yCJAoTpYQhjXRBmDuByRQvYfHKZiB9el4c2XR4Jw2XFBZcLKsAw5LLcoECSSGgkSYK0Ogd+dDNF4naEfA02u8ibIiltBKPSRKGVBLE/kiRBWpndTPf1huly8abLDeQyETckSYK4MgvBl7p2O0O+BptT7C1+X9oARqmOQiuJSEGBJJGQSM4Nb7pvrBOSbSHk8xltxoV0X0Z2FFpIEMEhOdbBT/R4033kMpHASI518OPd3mkYtsWQz2e0Gd4XofIWsBlZUWghEQ0okCQSBkngIUwPeXfomB0BQt2UiVOAK67zru7LL6MUCRE3vC4Pgh/tgjg7CiAMl0vqvQ9ccpmII5LAQ5ga3OyXRxG2yxWtYPPKqJRaAkKBJCFrJEmCuDwDYawT/EQf4AkjRZJb6t1tpqSeUiRE3JAkCeLStDfdZ+0FPK6Qr3HB5QYwSlUUWkkQ+xMRl/PKvHtdl9STywkOBZKELBEdaxDGu73pvrWlkM9ndPoLKZL0zMg3kCCCRLRvcXk9HJcN4CqayWUi7oh22xaXl0M+n0kzeF+EypvBpmVGvoFEXKBAkpANkuDxpkhGuyDOjSH0FIkSXOlmiiS3lFIkRNyQeA+EqQFvum9uLPQLKJTgShq88x7JZSKOSLz7Quo6LJdV4Eo3Xc4pIZeTEAokibgiSRLExUnvDh3WPoB3h3wNNq98M91XB0ZBKRIiPlxwuROCtZ9cJhIWSZIgLljBj/v6ZU/I12DzK7wuF9eBUSij0EpCLlAgScQFcWP1QopkYyXk85m0TCgqW70pEp0+8g0kiCDxuty16fJqyOcz6VkX0n3kMhFHxI0VCGOb/bI9HJezN11uIpdTCAokiZgh8W4Ik/3eFMn8ROgXUKigKGsEV9ECNruYUiRE3JA8Ppc7IS5YQ7+AUg1FaQO4ilaw2UXkMhE3vC73efvlsF329cvkcipCgSQRVbwpkonN1HU/IISaImHAFlR4C9MW14DhKEVCxAdJkiDOT3hT15P9gMCHeAVymZAHXpfHvf1yuC4XVnpHH4tqwXAUSqQy9O0TUUFcX/Z2UuPdkOy2kM9nMnIupPu06VFoIUEEh7i27J0rNt4Fyb4W8vnkMiEXxLWlC/2yIwyX9blQVLRAUdYEhlwmNqFAkogYkscFwbqZIlmcDP0CKs2FFElWIaVIiLghuZ1el8e7IC5OhX4BlQaKsiavy5kF5DIRNyS3E7y1D8JYF8SlcFzWQlHWCEVFK5jMfHKZ2AEFksSBkCQR4pwvRTIAiCGmSBgGXGE1uIoWcIXVlCIh4oYkiRBnx7wuTw2G4TILrrCKXCbizgWXOzddFkK7AMNe6JeLqsGwXHQaSiQF1NMRYSHaFjfTfd2QHOshn88Y8i6kSDRpUWghQQSHaFvYTPf1QHKG43L+psuN5DIRVy643A3JuRHy+UxmPhQVrV6X1bootJBIRiiQJIJGcjvBT/RCGOuEuDwT+gXUWijKmr2FaTPzI99AgggSye3YdLmLXCYSGsnlAD/RA2G8C+LybOgXUOugKG/ybuRgyIt8A4mkhwJJYk8kUYQ4O+J9y50eCi9FUlQDrqIVXGElpUiIuCGJAoSZUQjjnRCmh0N3meXAFVWDKyeXifjidXkEgq9flsTQLsBy4IpqvC9CBVVgWDY6DSVSAgokiYCIq/Pgx7rAj3cDLnvI57NZBeAqWqEobQSj1kahhQQRHOLKnNfliZ4wXS707ttOLhNx5oLL3YDLEfL5XpdboShrAKMil4nIQIEk4Udy2cFP9IIf64S0Mhfy+YwmDVz5ZrpPnxuFFhJEcEjOjU2XuyCtkstE4uJ1uWfT5fmQz2c06eAqmqEobwGrz4lCC4lUhwLJFEcSBQjTw94UycxweCmS4lrv/Jr8CkqREHHD6/LQpssjYbpc5w0eyWUijkgCD2Fma78shXYBVgGuxOdyORiGXCaiBwWSKYgkSZBW5sCPdYKf6AXcYaRIsos3030NYFSaKLSSIPZHkiSIK7MQfKlrtzPka7A5xVCUt4Ajl4k4IkkSxOUZr8vW3jBdLvEWvy9tAKNUR6GVBLETCiRTCMm5AX6825sisS2EfD6jzfAGj+XNYDOyo9BCgggOybHudXm8C5JtMeTzyWVCLoiOdQi+fnktDJd1GeDKW7yjj+lZUWghQewNBZJJjiTwEKYHvbvNzI6GniLhFOBK6r2dVF457WpAxA1J4CFMbXEZ5DKRmEiCB8LUEPixToizYwjdZSW40nrvvMe8MnKZiCsUSCYhkiRBXJq+kCLxuEK+Bptb6k2RlDSAUaqi0EqC2B9ymUgWvC5PbbrcF57LeWWbLteDUZDLhDygQDKJEO1rF1Ik60shn8/oDBdW96VnRr6BBBEkot22xeXlkM9n0gzeB255M9i0zMg3kCCC5OAuZ25x2RCFFhLEwaBAMsGReA+EqQFvum9uLPQLKJTgShu8wWNuKaVIiLgh8e4LqeuwXFZ5030VrWBzSshlIm5IvBvC5Ga/PD8e+gUUKm+/XNFCLhOyhwLJBESSJIiLk97dZqx9AO8O+RpsXjkUla3gimspRULEDUmSIC5YvS5P9gG8J+RrsPkV3hGb4jowCmUUWkkQ+xMZlys3Xa4ll4mEgQLJBELcWIUw3gV+rBvSxkrI5zPpWRdSJDp95BtIEEEibqxAGNtM99lXQz7f63IruPImcpmIK+L6CvjxLghjXZDstpDPZzKyvf1yWTNYXUYUWkgQ0YUCSZkj8W4I1n7w410Q5ydCv4BSDUVpA7iKVrDZRZQiIeKG5HFDmOzzpvsWrKFfQKmGorQRXEULuUzEFcnjgjDZfzCXyxq9/XJWIblMJDQUSMoQSZIgzk+AH+uEMNkPCHyIV2DAFlR4R2yKa8BwlCIh4oPX5fHNdF+YLhdupvuKasFw1GUR8UGSRIhzm/3y1EDoLjMM2IKqTZdryGUiaSCTtyBJElwuFwRBAACwLAu1Wg02RlulievL3gfueBck+1rI5zMZORdS19r0KLSQSBTi7vLa0qbL3ZAcYbisz4GiohWKsiYw5HJKk/gu50KxWfye0aRFoYVEohBvl6NFygeSPM9jeXkZNpsNTqcTUoCC3SqVChkZGcjOzoZaHdltpySPC4K1z1uYdnEq9AuoNFCUNXnTfZkFlCJJYeLustsJ3toHYawL4lI4LmuhKGuEoqIFDLmc0gTjslqtRkZGBrKysqLkcu+my9OhX0ClhaKsadPlfHI5hfG5vLq6CpfLFXOXYwEjBfpTpQCCIGBmZgbLy6HV9UpLS0NxcfGBvmxJEiHOjnnfcqcGATH0FAlXWA2uogVcYTWlSFIcnucxMzODlZWVkM6LrMudmy4LoV2AYS+4XFQNhuXCbguR+ITrcnp6OoqKig7msihCnBvd0i+H4XJRNbhycpmIr8uxJiUDybW1NVitVv/wcjgUFBQgNzc3pDdN0bZ4IUXiXA/5nowhbzPd10gpEgIAYLPZMDk5GbbLDMOgoKAAOTk5Ibq8sMXljdDvm5kPRXkLuUz4iZvLq/Pgx7rAT/QAYblc4E1dlzWCUetCPp9IPlZXVzE1NRVzl+NFygWSCwsLmJmZici19Ho9ysr23udUcjvAT2ymSJbDuK9aC0VZs7cwbWb+AVpLJBuRdNlgMKC0dO+C9JLLAX6iB8J4F8Tl2dBvotZBUd7kLRhuyDtAa4lkY35+HrOzYTgVgOBctl/ol1fCdXmzXyaXiS1E0uXMzEyUlMi/IH1KBZKLi4uYng5jvsseBOq0JFGAODvqTfdND4eXIimuAVfeCq6wklIkxA5i6bIwMwJhrAvC9BAgiaFdlOXAFdV4H7gF5DKxk0i+EPkI9ACOrMtVYBJ8gQQReWLlstxImcl1Docj4g9ewDuErdPpkJOTA3Fl7kKKxGUP+VpsVgG4ilYoShvBqLURbyuRHNjt9hi63A24HCFfi80qBOdL96nIZSIwdrs94g9eAFhZWYFOp0NWVhak1a39chguZxeBK2+BoqyBXCZ2ZWNjI2oup6WlISsrK+LXjhRRHZH8xje+gQ8//BBXXHEF/vZv/zZat9kXURQxNDQEl8sVleszDIOK9VGw1p7Qz9WkgfOlSPS5UWgdkUyIoojBwUG43aFvixkMDMOgYm0E7GRv6Odq0re4nBOF1hHJRExctg2DneoL/Vztpsvl5DKxP6IoYmBgAB5P6NtiBgPDMKivr4dSKc+a0FEdkbz//vvx5S9/Gf/+7/8ezdvsy/LyctSCSMBbG2ohrRj5CDKQZDlwxXXeB25+BaVIiKBZWlqK2oMX8Lq8mF6CPAQZSLIKcCW13gduQQUYhlwmgiMmLmeUIA9BBpKcYku/XE4uE0GzuLgYtSAS8Lo8MzODsrKyqN3jIEQ1kDx27BjOnz8fzVvsiyRJWFxcjPp91qFENqeGQtg9YGVziqEobwFX2gBGpYl6mwj5M/7U/0bezTdBW1q677GxcnkNSmRxKiiE3R/ybE6Jt/h9aQMYZeKUqSCix9g//hwFt90KTXHxvsfGzmUVsjkVuH1dbgVXWk8uEwA2XT55GzRFRfseK0kSlpaWot6m1dVVFBUVQaGQ34zEkF+5RFHErbfeih/96EfbPj937hxaW1vx4osvRqxxkcBut0f1rXcr68UtOz5jtBlQNB6D5sTD0Fx3HxTVRgoiCT9zL7+Cj++5D/0//As4rHvv2buxsRHVt96trBc17/iM0flcfgSa6+6FoqqNHryEn7mXXsbHd92D/r/473BO7V2QPrYuN+34jNHpoWi6Appb/mDT5UPkMuFn7oUX8fFX7sbAX/4POPeZj76+vh4zl0OtSRkrQg5tWZbF17/+dTz++ON49NFHYTAY0Nvbi29+85v49re/jdtuuy0a7QybjY3Q64KFiyM9DwYAYDmw+ZVQFNeCzSkGNleqihs2gAEABmBYgGEATgGwnKxXZBFRRJIAQcDs889j9qWXUHDrrSh78KsBRyhj6nJGwUUu14HNKSKXid2RJEiCgNnf/R5zL7yI/JO3oeyBr0JbUrLj0Ni6XAi9ZAY4JbiSeigqmsHmXijbJokhrt4mkh5p0+WZ536L2d8/j4LPnUTZA18NONoeS5fX19eRmyu/tRRhLbbheR633HIL7rzzTpw6dQp33XUXbrzxRvzgBz/Ycez58+fxz//8z3FbbDM2Noa1tdD3Rw0HhmFQNfQ6Qn2MSpIE0cND9AgX/s/7fs1D8AgX/eyiYy/6XPDwEN08eIcLgjM2b0pEBOG4gAHl6Ogo1tdDL2QfDizDoDLeLrsFCDy5nMgwHBcwoBwZGYnZA5hlGCz+waMxuReRvDAcFzCgjKXLHMehqWnnCHu8CSvZrlAo8LWvfQ0//vGP8fLLL6O5uRnf//73I922iOB0OmN2L0mSIOwztywQDMOAUynBqSK/IksURPAOF3j7lv8cLnj8v3eCt7s3f+8E73B7R8mI+LHLCGUsXRYT1uUtvyeX485uI5TRXPx4MaIkgUlPg7Qeu5EjIvmQBAEzv/0dZp9/YVtAGct+WRAECIIAjpNXPd6wy/9sbGzgiiuuQEVFBX71q19Bp9u5NdQjjzyCrq4uOBwOGAwG/PSnP0VbW9uBGx0KPT09B9oKMVTKJt6HyhN6rTK5IEkSBKd7y8P5wn+ezYe422aHe3UD7jUHPahjAceh4ORt4L94B8QYpuHKx9+HkieXiQjCcSj83El4vvAFiKEWBD8Aq9/7jxBjsCCCSB0YjkPB7Z+H+/OfQyz3dWloaJBdGaCwl/88/vjjALyldXaLjv/xH/8x3MsnLEyCP4wYhoFCq4ZCqwb2KZ8mieLmg9gO1+oG3KsbW/5vh2fNDklM7L+PuMMwyLvhepTcew/GY/jm6yWxv7twXPb6a7/I5Q24bRRoHhiGQd4NN6Dk3nswarfHVC+aB0lEFJZF7k03ouTuuzFq34hpIClHwgokf/KTn+Ctt97CM888gwcffBC//vWvcfr06Ui3LSIolcqYjkhyQurM42JYFurMdKgz05ER4OeSKMK95tgRYPp+77FRoLkrDIO8m25E2UMPIq2qCgCgGBiIscuxqXYgB7a6HIiALq9sumwjl/eEYZB3000of/hB6CorAQCK/v6YVdMAAClGc4uJJIdlkXfzTSh/8EHoKisAxN5luaW1gTACyWeffRZPPfUUfvGLX6CxsREPPPAAfvazn+Guu+6S3XArAGi12pjNYVAqFbDNiwAY/4JWP8z23/p+zzCSf9Ers2UBbMDfb/46UWBYFmpDGtSGtMCBpuTdhlzgAZ4HBA8D3gN4PIA3Hk+gP2yYzP7+9+C3LgZjGOTeeAPKH37IH0D60Gq1MZtbplIqYZuXQC57CdZlnvf67HfZ7f19Krg887vfQdgasAUIIH3odLqYPXxVShVKvvKVmNyLSA5mfvtbCFsX0LAs8m66EeUPPeQPIH1otdqYuaxWq8HKcAOTkALJs2fP4rHHHsMTTzwBk8kEwLt7zc9//nM899xzOHXqVDTaeCC0Wi2Wl5djci+dLg1FD/9JVO8hSeLmk4qHJPAA79n8tWfL5x7A44LkdkByOSG57YDbAcnlgOR2AO5Yp0gD46sYwykAFYBtuS6WBZOeDTYjG0xGjv//TJo+qXacWHrvPW8gGWAE8mK0Wm3M6ojp0mLsMn+Rv95oDBLPA7zPZZ+/8nbZy1aXOTDpWUnv8uK5c95AkmG8ozYP7QwgfcTWZR1K/58/jsm9iORg8exZbyAZYATyYrRaLVZXV2PSrkBrUeRA0IFkZ2cnvvWtb+E73/kOTpw44f88PT0dZ86cwZNPPok777xTdsOuer0eU/sUx40UBoMh6vdgGBZQqACFKuwxDkkSAbcTktvpfRhvPpQDPah9P0cMJ8YDAEQRkm0Bgm1h++csByYjQICp0ydk/UKG9T509wogfej1ekzvUxw3UsTc5TBrQV9w2evs1l/Lx2UhdVw+cfOeAaSPZHOZSDJYFnm3nNgzgPSh1+sxMzMTk2bJ1eWwV20nEhMTE1F/Y1AoFGhoaEjIB8B+SJIE8G7vA9llh+SwQbKvbf7/wq8RzwntnOLCCKY+B2xGDpiMbDDaDFl/J665eajz84I+fnx8HDabLYot8s4rrq+vl/XfW7js6rJ902WHTFzOyPY7TC6HTzK7TESPUF2ORb1qObucEoGkw+HA0NBQVO9RVFSEnJx9loYmMZIkAa4NiL6H8tYHtMP7f4ixWyjih1OCzcwDm1kINqsATFYhGE26LP8xBoPdbsfw8HBU70Eu7+Hyps9xcVmhBGvIB5tZADZr02dtoBmbiUEsXC4uLkZ2dnZU70EQGxsbGBkZieo95OxySgSSADAzM4OFhYX9DwwDrVaL6urqhA1OYoH34WyHZLdBdKxtG8n0PaBj9nBWp4HN2nwYZxZ4H8gKVWzuHQGmp6exuLgYlWuTy/sT2OULL0ySfTV2I5qatG2BJZtJLvvQ6XSoqqoil4mYMDU1haUo1SqVu8spE0iKooihoaGIr3plGAa1tbVQq8Oc5EUA8JZXkeyrkNaWIK4tev9vW4S0vhyTOW1MRvaWwLLQO1dNhqvjAK/Lg4ODEV8pSC5HBr/LtkWIa0uQ1jb/H3OXN0ctU9Tluro6qFSJE1QTiY0gCBgcHITHE9kSgCzLora2VtYup0wgCQAejwfDw8MR+6IZhkFFRQXS0wPXniMOjiQKkDZWLzyM/Q/lleg+lDmFN43oSyFmFoLRyicl7na7MTw8DJ7nI3I9hmFQWVmJtLS0iFyP2Mk2l7cEmdLGSnSLnV/sssymd5DLRLIQDZerqqpku1rbR0oFkoA3mBwdHT3wyCTHcSgvL6fOKk5IogBpfeXC6OXm/6X1FURtywy17sKoZXaRd+SSC3tzqANDLicH211ehGjzBZiriLrLWQVgs+LvstvtxtjYWERcrqiokP2Dl0he3G43RkdHDzzKnkgup1wgCXjTKQsLC5ibmwvrfL1ej+LiYigU8et4icBIAg9pffnC6OXKHMSVWcAThULeLAc2uxhsXhm43DIwmXkxrwsoiiLm5+cxPz8f1vnksnzZ6fIsxOVZgI9C8WNO4X05yi0Dl1cGxpB4LhsMBhQVFZHLRNwRRRFzc3Nhr8tINJdTMpD04XK5sLi4iOXl5aD2yszIyEBOTg6lshMMSZIgbaxAXJ6BuDwLcWUG0upC5FPjSjXYnBJweWVgc8vApGfFLH3odDqxtLQUtMt6vR7Z2dnkcoKx3WWvz5ItWi6XgssrTQiXc3JyaESdkB1OpxOLi4tYWVlJapdTOpD0IQgCNjY24HA44HA4IAgCJEkCx3HQaDTQarVIS0uT5RaQRHhIAg9xdR7Syqz/oSzZI1zTTp0GLrcU7GZgyeqiX6rlYpd9c3XI5eTF7/LyzOaoZRRc1my6nFvm9TkGZYfIZSJZSHaXKZAkiE0kl92fPhQ3H8qRTIkzaQZ/6pDNKQWj1kbs2gSxlei7nLnpcim5TBApDgWSBLEL29KImw9laXU+YmlERp8LzjfCk1OcUPX/iMQi2tM7GH2uf0oHuUwQqQUFkgQRApLAe4PK+QmICxPexQ+ReBgzrHcVbWE1uMJqsOmZB78mQeyBJPDewHLB6vV5JYIuZxeCLSCXCSIVoECSIA6AxLshLk5BXJiAMD/hXfgQAZiMbHCbQSWTWSCbmn9E8uJ3eX4CwgK5TBBEcFAgSRARRHI5IC5aIWyOWHprAR4QdRq4wirv6E5uaVzr/RGpg+SyQ1iwekcsI+WyJg1cQTW4oirv3EpymSASHgokCSKKiPY1bwp8YQLCvBVwbRzsgpwSbH4FuKJqcPmVYFSayDSUIPZBtNv8aXBhYQJw2Q92QYUSXH6ldzpHQSUYJW3NSRCJCAWSBBEjJEnyFpjeDCrFRevBVtIyLNicYnCFNWALq2NSXogggItdnoC4YD1YoXSG9dZgLaoGW0AuE0QiQYEkQcQJSRIhrc57H8RzoxAXp3GQLfEYfS64ohrvXDR9Ls1FI2KGJImQVuYhLExAnB2FuHRAlw15F+ZVkssEIWsokCQImSC57BBmRyHMDEOcHwcEPuxrMdoMb8qwuBZsdjE9iImYElGXdXqwBVXkMkHIFAokCUKGSLzHmzacHoYwOwy4nWFfi9FmgCttAFfaADYjJ4KtJIj9kXgPxPlxCDPDEGZHIuRyI9iM7Ai2kiCIcKFAkiBkjiSJEJdmIM4MQ5gZOtDqWcaQB0VpI7iSejCaxNrPlUh8vC5Pe12eHoZkP4jL+VCUNpDLBBFnKJAkiATCu8hhyTu6Mz0MaWU2zCsxYPPKvKM7RTW0EwkRcyRJgrS26fLMAV3OL/e6XFgDRpGY+xUTRKJCgSRBJDCScx3CzIh3LtrCBCCGsTMJpwBXWAOurAFsbjkYlo18QwliHyTHOoTZEQjTQ95V4OHsssMpvaWxShvB5paRywQRAyiQJIgkQfK4vHPRpjfnooVTjkWlBVfaAEVpIxhDHi1sIOKC5HFBmBvzpsBnR8NzWa0DV1JPLhNElKFAkiCSEEngIc6Ngbf2QpwdCWukkknPAlfa6F2ko9NHoZUEsT+SwEOcHQVv7fO6HMZIJblMENGDAkmCSHIktxPC9CAEay/ExamwrsFmF3sfxMW1tJsOETcktxPC1KbLSwdwuawRXBG5TBCRgAJJgkghRLsNwmQfhIleSOvLoV+AZcEV14GrbAObVUjpQiJuiBurECb7IVjDdZkDV1wHReUhMOQyQYQNBZIEkYJIkgRpdR68tRfCZH9Y+yYz+lwoKg+BK22gVd9E3IiYy1Vt4EoaaNU3QYQIBZIEkeJIougtfm7tgzA9BAie0C6gUIIrbYKi8hBYPRU8J+LHBZd7N10OcUcdhQpcWaPXZSreTxBBQYEkQRB+JN7jretn7fVubRdi98DmFIOrbPPWpmS5KLWSIPZH4t3eCgbWXojzEwh17282pwRc5SFymSD2gQJJgiACIjntEKb6wVt7Ia3MhXayWgdFeQu4ilawuozoNJAggkRybkCY7Adv7YO0GobLFZsua8llgrgYCiQJgtgXcW0J/FgnhIkewOMK4UwGbGGlN1WYV0ELGoi4I64tgh/rgjDeHWJ9SgZsYdWmy+XkMkFsQoEkQRBBI/EeCFMD4EfbQx6lZHR6cJWHoChrBqPWRqmFBBEcEu/xjlKOtkNanQ/pXEZn8Lpc3gRGRS4TqQ0FkgRBhIW4PAt+tAPCZB8gCsGfuFl2has8RCWEiLgjSRKkFZ/L/WG5TCWEiFSGAkmCIA6E5HZCmOgBP9oBaWMlpHMZfS4UNYfBldTRggYi7khuJ/iJbgijHZA2VkM6lzHkeV0urqM9vomUggJJgiAigiRJEBcmwI90QJwdDmnFN6PN8D6Ey5upjh8RdyRJgjg/AX60HeLMCEJZ8c3o9FDUXAKujFwmUgMKJAmCiDiSYx38WCf4sS7AtRH8iSoNFFVGKKraaO4ZIQtExxqEsS7wY52hFTtXaaCoMm26TFsxEskLBZIEQUQNSRQgzox4R3YWrMGfyCnAVbRCUX0JlQ8iZIHX5WHwox0huqwEV9ECRc0lVD6ISEookCQIIib4SwiFUnaFYcGV1ENReyntmkPIBnFtybs4Z6InNJdLG6CoPUy75hBJBQWSBEHEFG/ZlT7wQ59BWl8O+jy2oBKK2iPgcoqj2DqCCB6J90Cw9oEf+jSkhWZsQRUUtZeSy0RSQIEkQRBxQZIkiDPD8Ax8DGllNujz2KwiKOouBVtQReVWCFkgSSLE6WF4Bj8JzeXsYu9oe0EluUwkLBRIEgQRVyRJgrg4CX7wE4hzY0Gfx2RkQ1FzKbjSeiodRMgCr8tW8AOfePeqDxImI9s7QllCLhOJBwWSBEHIBnF1Hvzgp97C0EGWXGE06d5yKxUtYBSq6DaQIIJEXJ3bdHkAQbuszfC6XN5CpYOIhIECSYIgZIe4sQp+6DMI413B7zSiVHtLB9VcAkapjm4DCSJIvC5/6l1kFrTLGiiqjVBUm8hlQvZQIEkQhGyRXHbwI+3gRyyAxxXcSUo1FLWXQlFlpFEdQjZILjv4YQv40fYQXNZsutxGLhOyhQJJgiBkj8S7vUWhhz6D5FwP7iS1Dsr6o940IaeIbgMJIkgk3u0t1j/0GeAMsli/z+WKVppDScgOCiQJgkgYJFGAYO0HP/hx0KWDGG0GFA2XgyttpD2QCdngdbkP/OAnwbus00NRfxm5TMgKCiQJgkg4JEmCODsCfuBjiMszQZ3DpGd5A8riOiq1QsgGfxmswU8gheCysvEY2KJacpmIOxRIbuLxeOBwOOBwOCAI3gnRLMtCo9FAq9VCpVLRP1giIUgllyVJgrg0Bb7/Q4jzE0Gdw+hzoWy6Amw+1e6TM5Ikgef51HO570OIC0G6bMiDsvEKsPkVSfP3kIxIkgSPxwOn05mULqd0ICmKIlZXV7G4uAin07nnsQqFAtnZ2cjOzoZCQfOtCHkRqss5OTnIyspKKpeFBSv4nvchLk8HdTybVQRF0xXgckuj3DIiFERRxMrKChYXF+Fy7b0oJXldnth0ObgRSja7CIqmK8HllES5ZUQohOKyUqlEdnZ2QrqcsoHk2toarFar/80gFAoKCpCbm5uwbw9EcmGz2TA5ORmyywzDoKCgADk5OUnjsiRJEOfG4Ol5D5JtIahz2LwyKBuvBJtVEOXWEftBLl/AO31jFJ7e90Nwudw72p5JLseb1dVVTE1NpYTLKRdIiqKIqakprKysHOg6Wq0WZWVlUKmoADIRH0RRxOTkJFZXVw90Ha1Wi/LyciiVyVNeRJIkiNOD8PR+EPRCBraw2psm1OdEuXXExZDLuyNJEoSpAfC9HwS9nzdbWOOdQ0kux5xUdDmlAklRFDE2NoaNjSBLLuyDQqFAdXU1BZNEzBFFEaOjo7Db7RG5XrK6LIkiBGsv+L7zkBxrQZ3DlTRA0XA52PTM6DaOAEAuB4vX5Z5Nl4MrgcWVbrqclhndxhEAAEEQMDo6CofDEZHrKZVKVFVVyd7llAkkJUnC2NgY1teDrEEXJEqlEjU1NQk3p4FIXMjl0JEEHsJ4Fzz9HwGuIAIWhgFX3gxlwzEwmrToNzBFiabLtbW14Ljkq7koCTyEsS54+j8E3EEELAy76fLl5HIUkSQJo6OjERuo8qFSqVBTUyNrl1MmkFxaWsLU1FRUrm0wGFBWVhaVaxPExSwuLmJ6OrgFJaGS7C5LvAf8iAX84CfB7S7CKaGoP+rdqo6KmkecaLqcmZmJ0tLkXUgVsssKJRT1l3l3fCKXI87CwgJmZoJbHBUqcnc5aoHk9PQ0vvvd72JxcREcx+GP/uiPcNttt0XjVvvidrsxMDCAaMbM5eXl0Ov1Ubs+QQDkcqSQPC7wQ595dxcRPPsez+gMULZeA7agKmEmwMudWLhcUVGBjIyMqF1fDnhd/hT8kDk4l9MMULaQy5HE5XJhcHAwZV2OWiA5NzeHxcVFNDU1YXFxEXfeeSdeeukl6HS6aNxuT6anp7G4uBjVe6jVatTWUnFYIjQkQQATQspiamoKS0tLUWwRoNFoUFtbG9V7yAXJZQc/8Il3/2Nx/9WVbF4ZlK3Xgs2gRQwXQy7HF8llh2fgYwijHUG6XL7pcnYMWpdYhOry5OQklpeDW9QXLlqtFjU1NVG9R7hEbY+l/Px8NDU1AQBycnJgMBgOvIopHERRjPoXDHjfSCI1wZZIHXr/w/8H07/+FQTn/u4IghATl51OZ8QWPsgdRq2DsvUaaG58AFzFIYDZu0sU5yfgeuv/wt1xFpJ773qdqUbPd76N6X99FsI+dUyB2LqcKv0yo9ZB1XotNDd+FVxFK7DPoIY4Pw7XW/8Md+fb5PJF9HznW5j5za8h7lP7EfC6fNAqMMHgK8wvR0IOJEVRxK233oof/ehH2z4/d+4cWltb8eKLL+44p6OjA5IkoaioKPyWhonNZoMoijG5VyxkIpILz8oKJn72v2B54PS+AeXa2lpUUydbSTWXGW06VMbrob7hDLiS+r0PliQIIxY43/gn8CPtkGLUv8gdz8oyJp78e1gePL1vQGmz2cjlKMFoM6Ay3gD19feDK67b+2BJgjBs9ro82gFJIpcBwLO0hPH/9f+D5cHT+waU5HKYqe3f/OY3ePzxx/Hmm2/CYDCgt7cX9913H77xjW/gkUce2Xbs8vIyTp8+jR/+8Ic4fPhwxBoeLLFIa/tQq9XIngxuayuCAIDx//fv4Vm64KfCkImir9yN/M9/AZxGu+3YWKQCfaS6y+L6MoSJHkh2277HMtoMcGWNKZ/uHv9ffwfPllFGRWYWir5yD/I/dzs4jWbbsbF0WaNWIyulXV6CMNEbgstNKZ/uHvv7n4JfXfH/XpnldTnv5E6XY5HW9iHX9HZYgSTP87jllltw55134tSpU7jrrrtw44034gc/+MG249xuNx566CF85StfwRe/+MVItTkkhoaGYjocbP/enwICH7P7EcmJ9yF89+ZD2BtQxt7lbwNh7PxEEFsJFFAODg7uu5VnpGAAbHz3WwCNHBMHRJmVjaK77kH+ydvBqtUAYuwyw6C5uVl2azHCmiOpUCjwta99DU8//TS+9rWvobm5Gd///ve3HSNJEv7Df/gPOHbsWNyCSADwePZfxRZJmCRf7UrEBn5lGRNP/gMsD57B9L8+A8HpgNvtjmkbmHR5rhAkEgs+QMo7lv2yBABp6TG7H5G8eJZ3prxj2S9LkhTWts7RJuzFNrfffrt/dOSJJ57YUSzzk08+wQsvvIDXXnsNd9xxB+644w709fUdrLVhEPMymTIuGkokHr6AcuDP/0vsXU7CwuRE/PAFlIOP/yDm80oZBfXLROTwBZQDP/xBzPtlOZb+DvtJ8fjjjwPwzoEMVHH9yJEj6O3tDb9lESLmQ8CU1iYiiLaqGiWnv4qsK69Gb6xfxHhymYgcuuoaFJ/+KrKuuMrrcgxHViRymYgguppalJx5AJnHrkRPT09Mgzu5pbWBMAPJn/zkJ3jrrbfwzDPP4MEHH8Svf/1rnD59OtJtiwhqtRp8jDoRhmEgxaHEEZF8bA0gGdabOFCr1TEry8MwDCQbuUwcnK0BpM9llUoVs/m+DMMAEd6CkUhNtgaQvoBOrVbHzGWWZWW5VWLIi22effZZ/PCHP8QvfvELmEwm/P3f/z2eeeYZvPLKK1AqldFqZ9jMzMxgYWEhJvfSaDQo5GM7J5NIXERRxOBf/hD83Kz/s0ABpI9YViDQarUo8MR2TmYiIrmd4Mc6Ic4M7X+wQg1FlRFsQaUsRxUOgiiKGPyLPwe/MO//LFAA6YNclh+S2wl+tAPi7PD+ByvUUFQbweYnp8sDP/yvELZU09DV1KLk9FeRecVVO/68saxAoNPpUF1dHZN7hUJII5Jnz57FY489hieeeAImkwkAcP/99+PnP/85nnvuOZw6dSoabTwQsdxJJy0tDelxqJVJJCY8z+OlyjqwZVXQAcgqKUFOZRVWwULf2Qm9Xo+MjAzo9XoolUrodLqYPXzT0tKQXii/MhOypO0SiKtz8HS8DXFpau9jbYNgVS4ojTeATTPEpn0xwOPx4KXqBrAVNdAxDLJLSpBdUYkViSGXE4m2SyCuzMHTGYTLq4NgVW4o265PKpfdbjdeqm0CJ/B+l3Mqq7AiAvqODuj1er/PPpdjFUimpaXF5D6hEvSIZGdnJ+6//35861vfwgMPPLDtZ//zf/5PvPDCC3jhhRdkN+wqiiL6+vpistKptrYWmotqTBHEXvzz449hMIh1BxqNBtXV1WhpaYlJgf26ujqoN8tbEMEhSRKEqQHw3e9AcuyTSuUUUDQcg6LatGO0LlH5P3/+XzEk7T86pdFoUFNTg+bmZnJZpvhd7noHkjMIlxuPQVGVPC4//dh/xTD2d9lX17GpqSmlXY7aXttyYnZ2FvPz8/sfeADkOuRMyBe3241z587hnXfe2ffYjIwMPPzww3C5XOSyzJF4D/ihT8EPfrLv4jvGkAeV6UawhvwYtS46uN1uvP3223j33Xf3PVav1+Phhx+Gw+GI+rSjtLQ0VFVVRfUeyYzEe8APfuJ1eZ/9u5nMfKiMN4I15MWoddHB7Xbj7NmzeO+99/Y91mAw4OGHH8bGxkbUR9jT09NRWVkZ1XuES0oEkjzPY2BgIKqjklVVVbIddibkgyRJGBsbg8ViQXd3d1A1yLRaLR566CHk5eXFxOXq6uqYTglJVkT7Gjxdb0Oc3mf+JMNAUXMYivrLwCjkN898NyRJwujoqN/lYGpD6nQ6PPTQQ8jNzQXP8+jv74/qSA65HBlEu82b7p7ZZ/6kz+WGy8FwiVM+LByX09LS8NBDDyEnJwcejwcDAwNRdbmmpgZarXb/A+NASgSSgHc/zPHx8ahcOycnJy77iBOJw9LSEiwWC9rb20PaL1WlUuGBBx5AcXGx/7PV1VVMTERnyzdyOfII00Nwt78FuDb2PI7RGaA03gAuryw2DQsTn8sWiwWrIVSpUKvVeOCBB7b5FU2Xc3NzUVhYGJVrpyrC1CDcHW8Brr2rRzBpmy7nyt9ls9mM9vb2kF1+8MEHt/m1srICq9UajWYiLy8PBQUFUbl2JEiZQBKIzp6YvrlrbJLMDSEih8vlQldXFywWS1gvMRzH4cyZMwHTGeRyYiF5XPB0vwdhrGPfY7myZihbrgajks98a6fTie7u7rBdVigUOHPmDCoqKrZ9LkkSJicnQ3q5CgatVouqqipyOQp4XX4Xwljnvsdy5c1QNsvPZV+/HM5LjEKhwP3334/y8vJtn6eyyykVSEqSBKvVGtKbBwB0dHRgZGQEPM9DoVCgqqoKhw4dglqtRlVVFRS0AwixiSiKGBkZgcViQU9PT9g1TBmGwd13342GhoaAP4+0yxqNBpWVleRylBEWJ+GxvAFpfZ+XAJUWykPHwRXXxa28SqRcZlkW99xzD+rq6gL+XJIkTExMwGazhXTdvVyuqqqS3cLPZENYsHpd3ljZ+0C1DqpDx8EW1cbV5eHhYVgsFvT29h7I5XvvvRe1tbUBf56qLqdUIAl4v+j5+XnMzc0F/PmwS4kZXg1RAlgGEPrPY264F9XV1aitrcXg4CCGh4fR2tqKL37xi7L/gonYsLCw4E9dh9qJAN7FNGtra/7f33nnnWhra9vzHEmSMDc3t+viG3JZnkgCD37gY/ADHwPS3nOq2IJKb3kVbez2PV9YWPCn+7Y6GSwXu/zlL38Zra2te55DLicmksCD7//IuxhnP5cLq6A6dB2YGLo8Pz/v75cj4fKpU6fQ0tKy5zmp6HLKDT8wDIP8/HxkZGTAarXC5XL5fzbsUmLSo0apXoPyLC3Glx0wjw+huroaZ86cAcMwOHbsGJ5++mn09/cnxBdMRA+Hw+FPkYQzN0an0+HQoUMwGo3IycnB3/zN38DtduPkyZP7BpGA1+WCggLo9XpyOYFgOAWUjcfAFdfBbXkN0vLsrseKs6NwvfF/oGy+ElzlITBMdNJbDocDnZ2dsFgsmJycDPl8n8smkwnZ2dn467/+a3g8Hnzuc5/bN4gEyOVEheEUUDZdAa6kDm7z65BW9nB5ZgTOBSuUTVdtuhyd0cmDupyWlubvl7OysvDXf/3X4Hken//85/cNIoELLmdkZGBycjIlXE65QNKHVqtFbW0t7HY7FhcXsba2hhne+wV/vqkADMOgrVCPz37No7b2wpA8wzCoq6vD6OhofP8ARFwQRRFDQ0P+FEmoq6dZlkV9fT2MRiPq6uq2dRTNzc3IysrC0aNHQ7qmz+WNjQ0sLS2RywkCq8+B+uqvQBjpgKfnPUDYZaWo4IGn4ywEax+UxhvB6nMicn9RFDE4OAiLxRJWrV2WZdHQ0ACj0Yja2todLufm5uLIkSMhXZNcTkxYfS7U13wFwkg7PD3v7+4y74Gn4y2vy6YbwGZExmVBEPz9cjgucxzn75cvdrmpqQkFBQW49NJLQ7qmTqfzu7y4uIj19fWkdTllA0nA+4WlpaUhLS0NkiTh3PkxlGdpt32hnEKBwcFBHDt2zLv/sCRhYGBAlttBEtFjbm4OZrMZHR0dWA9j396ioiIYjUYcOnRo13IkN998c9jlHRiGQXp6OtLT08nlBIJhWO9Wc4XV8HS8CXF2dNdjxeUZuM7+CxR1R6CoPwqGDW+0YnZ21p/u29jYeyV5IIqLi2E0GtHa2rqryydOnCCXUwyvyyavy+1vQpwb2/VYcXkarrf+BYr6o1DUHTmQy75+OVou33rrrWGXkEoVl1M6kNwKwzBgGGB82YG2Qr3/C82uasJwfzuefvpp1NXVYWBgACMjI6ivr493k4koY7fb0dHRAYvFgunp6ZDPT0tLQ1tbG0wmE/Lz9y84Hal6d6G6vNuCHiJ2sLoMqC67HcLUADwdZwG3I/CBkgi+/0MIs6NQHT4BNiM7qOtvbGygs7MTZrMZMzMzIbcvPT0dbW1tMBqN5DKxJ6xOD9XlX4Aw2Q9P51nA7Qx8oCSC7zt/weX0rKCuv7Gx4e+Xw3E5IyPDPw0jL2//4unxcrmxsTEi940FFEhuQa9WwGpz4nc9s6jI0mJs2QFUXQLF3AzGxsYwOjrqf5OQ4zZFxMERBAEDAwOwWCxhFUvmOA6NjY0wGo2oqamJW8mGjBBcpm095QHDMFCU1IPLK4On6x0IEz27HiutzsH19i+hbL4KXGVbwPlmPpfNZnNYxZLl4nK6KniX5VqwOdVgGAaK0gZweeXwdJ2DYO3d9VhpZRaus/8CZcs14Cpad3W5v78fFoslLJcVCoXf5XiWOEtWlymQ3EJumgorTh5TNiembN63KAUDZDAeLG+K61vk7pNZzrWdiOCQJAkzMzOwWCzo6OiA3b53sd1AlJaWwmg0oqWlRRYdQI5OhdWLXWaBNMmF1Ytc9gXM5LI8YFRaqC65GUJpg7e8in2XKgAC7507OTsKlekmMJo0v8tmsxmdnZ1J47LNtd1lJQvoRCdsAfplSZLiVmaG2A6j1kJ1+ASE0kZ42vdxuf1NCLMjUBlvAqPRQZIkTE9P+112OHYZpd+DsrIyv8tyeGHO1ikDuMxAw9uxnsAuUyAZgK31kFQKDmX19Th//vy2Y5xOJ8bHx2W79yWxP+vr6+jo6IDZbN61HNRe6PV6f7ovNzc3Ci08OFtdVis4lDY04MMPP9x2jMPhgNVq3VFgl4gvXF452OtOg+//EPzQp8AuldrEuTEsvPJP6FeXon3YmhIuaxQciurr8fHHH287ZmNjA5OTkygtLY1t44g94fI3Xe47D37oM2z/Ni8gzo5i4ZV/Qp+qBO3DE7uW0NkLvV4Po9Hor4YhR7b+6bVKDgX19fj000+3HbO+vo6pqSmUlJTEtnFhQIFkEDQ0NOwIJAHvGwMFkomFb39fs9mMwcFBhFpGVaFQoKmpCUajUfa7DQSivr5+RyAJeEclKZCUH4xC6U1fF9fB/enL2wqZ86KEwVUPOpdcGLHxkBBaAKlQKNDc3Ayj0YjKysqEdPniQBLwukyBpPxgFEooW672lgr69JUdLg+setDld3n3MkKBUCqVaGpqgslkQmVlZUKM4m2loaFhRyAJeGMMCiSThPLycqjV6m31oABgbGz3VWmEfJAkCVNTU/4UidO5y+TvPSgvL/enSBJ5fmxlZSVUKhXcbve2z6O1Dz0RGdjMfKiP3wt31zuwdn2KziUXepY9cAmh7ydRUVEBo9GI5ubmhHa5qqoKSqUSHs/2UjPksrxhMwugvvYeuLvewUT3Z+hcdKF3JXyXTSYTmpqaEt5lhUKxY8edRIkxKJAMAo7jUFlZib6+vm2fT09Pw+12Q6VSxallxF7YbDa0t7fDYrFgYWEh5PMzMzP96b7s7OBWx8odjuNQUVGBgYGBbZ9PTk7C4/EkVMmJVMLnstncicXF0HfoyMzM9Kf7srKCWx0rdxQKBcrLyzE0NLTtc6vV6t9qjpAfq6urm/1yV1guZ2VlwWg0oq2tLWlcViqVKC8vx/Dw8LbPrVYrBEGQfWFy+pcWJOXl5TsCSVEUYbVaUV1dHadWERfj8XjQ29sLi8WC4eHhkFPXSqUSLS0tMBqNqKioSLgUSTAECiR9LldVVcWpVcTFeDwe9PT0+F0OFSULNOYbcMnxm1DZ0JK0Ll8cSAqCgMnJSVRUVMSpVcTFHNRlFQs0FBhw+NqbUdHQnJQuBwokeZ7H1NQUysrK4tSq4KBAMkh265TGxsYokIwzkiRhYmICZrMZ3d3dO6YgBENVVRWMRiOampqSfoR5L5cpkIwvW13u6uraMQUhGCrSFWjNUaHOoIKKY4ChtyFopF1LqyQye7lMgWR8kSQJ4+Pj/n45LJczFGjNVqE+UwUlywBDZzddTr4Xo71cpkAySSgqKgo4HydR5jAkIysrK/4dOpaWlkI+Pzs7258iyczMjHwDZUpRUVHA+Tg0tyx++Fy2WCxYXl7e/4SLyNKq0JrJoiVbDb3qokUzAUqrJAvFxcXgOG7HlnjkcvxYXl72u7yyshLy+dk6FVoNLJp3dfkNr8umG8Gok8flkpKSgC6PjY3h6quvjlOrgoMCySBhWZbm48gAt9uN7u5uWCyWsPYiVavV/tR1WVlZ0r3VBgPHcSgrK8PIyMi2zycmJhJiPk6yECmXTSYTSkqKIQx+Cr7vPCAFLtYszo7C+dY/Q2W6EVxhcmRRFAoFSktLd7zQj4+PU23UGOJyufwuhzO4olar0draCpPJhOKiIghDn4Dv+3APl0fgfPOfoTLdBK4wObIoSqUSJSUlO16CJiYmZO8yRT8hECiQFAQBU1NTVDolikiShNHRUVgsFnR3d+8YFd4PhmFQXV0Nk8mEhoYGWlACr8sXB5I8z2N6eppKp0SRSLhcU1MDo9G4w2W2/ii4/IodZYK24XbA/eHvwVW0QNlyDRhF4k/jKC8v3xG8eDweTE9PJ0TplERFkiSMjIzAYrGgp6cnbJd9/fLWwRi2/jJweZsub6wEvoDbAfeHvwNX0brpcuL36+Xl5TsCSZfLhdnZWRQVFcWpVftDgWQI7DWHgQLJyLO0tORPkayuroZ8fm5urj91rdfro9DCxGUvlymQjDxLS0swm81ob28Py+W8vDy/yxkZGbsex2bmQ33tPfB0vwthtH3X44SxLogLVqguvRVsZkHI7ZETFRUVOHfu3I7Px8bGKJCMAouLi/5+2WbbZaeaPcjLy4PJZMKhQ4f2djmrAOrj93q3Cx3r2PU4Yaxzi8v77wMvZyoqKvDOO+/s+HxsbIwCyWRhtzkMNB8ncjidTn+KJJy/V41GcyFFUlyckqnrYCgtLQXLsjv2rB0bG8NVV10Vp1YlF06nE11dXbBYLJiYmAj5fK1W63e5qKgoaJcZhRKqtusgFFTCbX4NcAXeJlHaWIXrnWehbD2e0AtxfFNULq7QMD4+jiuvvDJOrUoufC6bzWZYrdaQz9dqtTh06BCMRmPoLhuvh1BYCfdnrwHuwNskShsrW1xO3IU4e7l87NixOLVqfyiQDAGFQhFwDgPNxzkYoihuS5FcvAhkPxiGQV1dHYxGI+rr62m+ahAolUoUFxfveCiQywdDFEUMDw/DYrGgt7c3bJdNJhPq6uoO5DJXUAnNdffBbXkD4swuJVdEEZ72NyEuTkFpvD4hU90qlQrFxcWYnJzc9vnY2FjC7FUsR3wum81m9Pb27hhA2Q+WZbf1yweZe80VVEFz/Wm4La9DnBkJfJAowNP+BsSlKSjbrk/IVLdarUZhYSGmp6e3fS53l+mJGyIVFRU7Akm3242ZmRkUFxfHqVWJycLCgj/dt7YWemHagoICGI1GHDp0COnp6VFoYXJTUVGxI5B0uVyYm5tDYWFhnFqVmMzPz/srCITrsi/dl5aWFrF2MWodVEc/B2G8G57OtwEh8Dw2YbIPom0eqiMnwWYkXvH98vLyHYGk0+nE3NwcCgoSO3Ufa+bm5vwur6+vh3x+YWGhv1+OvMufhzDeBU/nud1dtvZCXJ2D6ujnwKYnXsHyioqKHYGk3W7HwsIC8vLy4tSqvaFAMkT2mo9DgeT+OBwOdHZ2wmKx7Oj4g0Gn0+HQoUMwmUwU7ByQiooKvPvuuzs+Hxsbo7/bIEgUlxmGgaKiBWxuCTyfvgJxeSbgcdLaElxv/wpK4w1QlDZErT3RoKKiAu+///6Oz8fHxymQDAK73e53eWpqKuTz09LS/C5H8+/b63Ir2JxSuD97GdJy4D25pbUluM7+EkrTjVCU1EetPdGgoqICH3zwwY7Px8bGKJBMFkpLS3edw3DFFVfEqVXyRhRFDA4OwmKxoK+vL6wUSX19PUwmE2pra6k8TYTYrcjt+Pg4Lr/88hi3JjEQBAFDQ0MHcrmhoQFGozHmLrNpmVBddQp87/vgBz8JfJDggefTl73pwZZrwHCJ8YjYbbHj2NgYjh49GuPWJAaCIGzrly+eL70fHMf5Xa6pqYmty+mZUF/1FfA974Ef+jTwQYIHnk9egrg0DWXL1WDYxHhu7Oby+Pg4jhw5EuPWBEdi9BIyQq1Wo6ioaMdbWzhvccnO7OysP0WysbER8vlFRUX+FIlOlzyFZ+WCRqNBYWEhZma2j1CFM7qW7MzOzsJsNqOjoyMsl4uLi2E0GtHa2hpXlxmWhbL5KrDZRXB/9irgCbwLlDDaAXFl1pvq1sm/4oFWq0V+fj7m5ua2fU798k5mZmZgNpvR2dkZlsslJSV+l7VabRRaGBwMy0LZcvUFl/nAO+cIIxaIKzNQXXoSrG73VeJyQafTIS8vD/Pz89s+l7PLFEiGQXFx8Y4v1WazweVyQa1Wx6lV8mBjYwOdnZ0wm807ApRgSE9PR1tbG4xGI/LzE7uUQyJQXFy843taXV2F2+1O+q0i92NjYwMdHR2wWCwHctlkMskuJcUVVkN97T1wf/wCpNX5gMdIK3Nwnf0XqA6fAFcg/6LPJSUlOwLJ5eVleDyelK8du7Gxgfb2dlgsFszOBk4H70VGRoa/X5ady0U1UOtz93Z5edbr8qUnwOVXxraBYVBSUrIjkFxaWpLthhEUSIbBbv+QFhYWUrJumSAIGBgYgNlsxsDAQFgpksbGRn+KhFYMx47dXF5cXJR13bJoIQgC+vv7YbFYwna5qakJRqMR1dXVsnaZTTNAffVX4Ok8t3udPo8L7vO/g6LuCBQNx8DI+M+Tm5sb8PPFxcWUnPPL8/w2ly+ejrUfCoXC3y8njstnIYx1BT7I44T7g99CUX8ZFA2XgWHk++cJ5LIkSVhcXJTlAAsFkmGwW4eVSoGkJEnbUiR2e+BadXtRWloKo9GIlpaWuKZIUpndXJ6fn0+ZQFKSJExPT/tddjgC16rbi9LSUphMJrS0tECj0UShldGB4RRQGa8Hn10ET/sbgBC4XBE/8DHE5RmoDt8CRhO5lbiRZK8X/FQJJCVJwtTUFCwWS9gul5WV+fvlxHP5RvDZxfC0v7m7y/0fQlyahurSW2S7V/deMQYFkknCbh3WxUPRycj6+ro/RXJxGikY9Hq9P0Wy2z8WInbs9fBNdtbW1vwuh/NvV6/Xw2g0wmg0IicnJwotjB2KskawhjxvenCX7RXFBSucZ38J1ZFbweXI74U5lfvlg7psMBj8/XLiu9zkdfmjF3bdXlFcmIDz7L9Adelt4HLkV20l0VymQDIM0tPToVar4XJtn6ierA9fnufR19cHi8WCwcHBsFIkvnRfVVWVrFMkqYZer4dKpYLbvX2iejK73NvbC4vFgqGhoZBdViqV21yWa4HgcGD1OVBfezc8ljcgTPYHPsi1Afd7/wZF45VQ1B6W1Z/fYDBAqVTu2PM5WV32eDz+fjlcl5ubm2E0GlFZWSmr7/KgsPrcCy5PDQQ+yLkB93v/CkXTVVDUXCKrP39mZmbAXfTk6jIFkmHAMAzy8vJ2FHOW69tCOEiShMnJSZjNZnR1dcHpdIZ8jfLycphMJjQ3N6f8IiS5wjAMcnNzdyweSzaXrVYrLBZL2C5XVFTAaDQmvcuMQgXl4VvAZhd5iz5LAeaIShL4nnchLk9BdckJMEp5/H0wDIOcnJwdC6OS0WVfv3zxYEYwVFZWwmg0oqmpKbldVqqhvPRWsNnF8HTt4XL3O95U9yU3ycZllmWRm5u7Y2GUXF2mQDJMcnNzdwSSy8vL4Hk+obfos9lssFgssFgsWFxcDPn8zMxMf7ovKyvxdhVIRQIFknJeIRgsq6ur/nQfuRw8DMNAUWUEm1kA98cvQnIE3qlHnBnxroQ9chJspjzmbeXl5e0IJBcXFxN+28/V1VV/v7y0tBTy+VlZWTAajWhra0s9l6uNYDPz4f7kRUiOwDv1iDNDcJ1dgOroSbAGeaxKDxRIytXlxI144sxuq6qWlpZkORl2LzweD3p6emCxWDA8vMuevHugUqn8KZKKigpZpQiI/Qk0H0cURSwtLcmu1Md+RMplk8mE8vLylHaZzSqE+vg9cH/6CsS5sYDHSHYbXO88C2Xb9VCUN8e4hTsJ1C+Loojl5eWEm/vndrv9Lo+M7LK/9B6oVCq0tLTAaDSSy9lFUF97L9yfvgxxfjzgMZJ9Fa5zz3h3diprinELdxLIZZ7nsbq6KruXAQokw2SvybCJEEhKkoTx8XF/uu/iOXLBUFVV5U+RpHrNwURmrxWCiRBI+lw2m83o7u4Oy+Xq6moYjUY0NjaSy1tgVFqoLv8C+IGPwfd+ACDAPDxRgMf8GkTbApTNV8e1RNBe/XIiBJKSJGFsbAwWi+XALjc1NaV8/cytMGotVMfuAN//Efi+nVsQAvC6/NmrkFYXoGi+SrYuUyCZJOz18JUzKysr/hTJ8nLg1Zl7kZ2d7U/3GQyGKLSQiDV7dVhNTfF/M9+N5eVlv8srKyshn5+Tk+NP95HLu8MwDJT1R8FmFcL9yUuAO3BJGWHYDMm2CNWRW8Go4lPOK1H7ZXI5NjAMA2XDZV6XP30JcAeeL80PfwZxbRGqS28Fo4pPCaS9XK6vl9f+4RRIhklmZiYUCgV4fnutKjlOhnW73eju7obFYsHo6GjI56vVarS0tMBkMvn3GieSh6ysrIRZIehyufwuj40FTrfuhVqtRmtrK0wmE0pKSsjlEODyyqA5fi/cn7wEcSnwdm3iwgRcb/8KqstuB6uP/QhgdnY2WJbdUUhejv2yz2Wz2Yzx8cDp1r3QaDT+fplcDg0uv9zr8scvQVyeDniMOD8O17lNlzOyY9xC78sBwzA7VuPL0WUKJMOEZVnk5OTsmAwrl4evJEkYHR31p0guLomxHwzDoKamBkajEQ0NDZQiSWJ8Ll9cF1QuHZYkSRgZGYHFYkFPT8+BXG5sbEzoxXDxhtGmQ3XlneB73gM/9FnAYyS7Da5zz3i3ViyqiWn7OI5Ddnb2jn5YLv2yKIoYHR2F2WxGT0/PjoGI/WAYBrW1tf5+mVwOH0abAdVVX4Kn+10Iw+aAx0gbq95g8vCt4Apju02oQqFAVlbWjsVVcnF5K2ThAcjLywsYSEqSFLe3w6WlJZjNZrS3t2N1dTXk8/Py8vwpkowM+W9wT0SG3NzcHYFkvF1eXFz0p/tsNlvI5+fl5cFkMuHQoUPkcgRhWA7KlmvAGPLgMb8OiMLOgwQP3B89D0XjMSjqjvodElfnwehzo+pUXl5ewEAy3i77+uVwXM7Pz/f3y+np6VFoYWrCsBxUrdeCN+TBY3kjsMu8B+4PfwdF4xVQ1B2JucsUSCY5gSa8CoIAp9MZ0y3/nE4nurq6YLFYMDExEfL5Wq3Wn+4rKiqiFEkKkp29M3XD8zxcLldMt0nzuWw2m3eU1woGcjl2KEobwaZnwfXh7wHnRsBj+N4PINkWoDTdDMntgOv933hHKvMro9auQP2y2+2Gx+OJ6UIqh8Ph75fDdfnQoUMwmUwoLCwkl6OIoqzJ6/JHz+/h8vubLt8EyWXfdPlWcPnlUWtXIJedTqfsygzKpyUJSFpa4D1n7XZ71ANJURQxPDwMi8WC3t7esFIkdXV1MBqNqK+vl5WUROzZy+VoB5I+l81mM3p7e3fM1dwPlmW3uZzItS8TDTazAJpr74H7o+chLs8EPEaYGoS4vgJIEuB2gh+2RDWQ3MvlaAeSoihiaGjI3y+H67LJZEJdXR25HEPYrEJorr0Hro+eh7SrywMQN1a8I5duJ/gRc1QDyb1c1uv1UbtvqFD0cAB0usAbvm9sbESt1MT8/DwsFgva29uxtha4UPBeFBQUwGg04tChQ5QiIfzs5rLdbg84WhkJ5ubm/C6vrwcuFLwXhYWFfpd363CJ6MNo0qC68kvwdLwFYbw74DGS7UI6Tpwbg7i2FLUFDHv1y5mZmVG559zcHMxmMzo6OsJyuaioCEajEa2treRyHGE0aVBf+SV42t+EMNET8Bhp9cLccXF2FOL6Ctj0zKi0Zy+XKZCUOVsTCG4hwLZKm+z1thBJHA4HOjs7YTabd+xAEgw6nW5bioRIHba67OJ3d3mvQDKS2O12dHZ2wmKxhOVyWlqa3+WCgoKIto0IH4ZTQGm8Eaw+D56ut72jj3vAj1igars+tHts+bVzD5dj1S/b7XZ0dHTAYrFgejrwyt+9SEtLQ1tbG4xGI7ksIxhOAaXpJrD6XHi63kHA2qlb4EcsUB06Hto9tvza6dl91DpWLh8UCiS3sLDhLf5aotegPEuL8WUHrDYn3h9bwhUVO9+eo/nwFQQBQ0NDMJvN6O/vDytF0tDQAKPRiNraWkqRpBiL9tBc3q3D2tgIPF8oFARBwODgICwWC/r6+naUZtkPjuP8LtfU1JDLMsW3HR2TkQ33xy8Cnt33NBcmeiA1XhFUjb5QXY52vzwwMACLxYL+/v4DuVxbWyu7re4ILwzDQFFzCRh9zqbLu+9pLox3Q2o8FtQ+3Ut2b8UJObgcSSiQ3ILNxaNUr8HnmwrAMAzaCvX4Xc8sumbXQvqSD/LwnZ2d9adIwrlOcXGxP0WyW/uI5GctQi4fpMOamZnxuxzOdUpKSvwux3LxGnEwuLwyqK+9G+7zv4W0vsumBwIPfrwbytrD+15v3R3/fplcTk24vHKor9l0eWMl8EGCB8J4NxQ1l+x7PTm4HA0okIR3RZ/NZoMkAeVZWv/qOIZhUJGlxZTN6V9As3XlXKQevhsbG/4UycxM4Em+e5Geno62tjaYTKaE2NKOiB4ulwtra2txdbm9vR0Wi2VHaaxgyMjI8Kf7yOUEhmEg7bJriA9htB2KGhMYJvCoXLguRyoduL6+7u+XD+KyyWTadZcSIgFgGEh7jK4DAD/aDq7atOvK+mBdvrgfptR2ArC+vo6FhQX/5GiWScf4sgNthXp/RfmxZQdYBhgeHoZarUZOTg6ysrK8Q98KBVQq1Y79UIP5kgVBQH9/PywWCwYGBsJKkTQ1NcFoNKK6uppSJCnO+vo65ufn/W+qwbicm5uLzMxM77ZhSiWUSuWOYt/BuMzz/DaXL96JYT8UCgUaGxvJ5SRB4t1wn//drlsp+o+z2yDOju0o9Ly2toaFhYUDuRxop6ZYuezrl6uqqsjlBEfyuOD+8He7bqXoP25jFeL82I5qBKG6rNFokJOT43dZrVYH3KmJAkkZIAgCpqamdhTsLlS4YLUBv+uZRUWWFmPLDkzanChReudHuFwuTE1NYXl5GaWlpVCr1UhLSws6kJQkCdPT0zCbzejs7ITDsXdHG4jS0lKYTCa0tLTEtL4fIU94nsf09HRYLk9OTmJpacnvsk6n23GdvVyempqCxWIJ2+WysjIYjUZyOdngFFAdPgFxaQri4hSEpanda/ONWPyBZCRdTktL21H4ez+Xff2y07l30BCI8vJyGI1GNDc3k8vJhEIJ1eFbLri8OAW4dnF5uN0fSPI8j6mpqR0O7uey0+kM2C9fXAmAAsk443Q6MTo6GrDuYrXaOxozswZM2ZxgGaBE6fJ/7sPhcGBgYABlZWXQ6XRYXt4+D+jiL3ltbc2f7gtn2zm9Xg+j0Qij0Ri1skJE4uF0OjEyMhJwIVYoLg8ODqK0tBRpaWk7HuIXz8U5qMsGg8GfuiaXkxOGYcEY8sAa8oAqIyRJ8o4+Lk1BXJyEuDAJye71TJwfh7i+DBenwejoaMRc1ul0+waSNpvN73I4u4UYDAZ/vxytEllEfNnV5cUpiEuTEBeskOxez8Q5bykgF6eOmMu+GOPiQJLmSMYRp9OJ4eHhPdPI1WrPji91NyYmJlBcXIzJycltn29sbIDnefT29sJisWBoaCjkFIlSqdyWIqFdDYitRNJlSZL8Ll9cksdut8Pj8aCvr+9ALjc3N8NoNKKyspJcTjEYhgGTZgCbZgDKmgAAomMN4sIkxEUr7NOjGPeoI+7yxfPNNzY24PF4/P3y8PBw2C6bTCZUVFSQyynGNpfLN122r0FctEJcnIR9ZhRjLuWeXoXi8vj4OIqLi3dsXyu3EUlGCvVfUoLiK9sQ6g4w+yFJEt58881to5Isy0KlUoWVIqmoqPCnSNTq/csJEKkHz/MYGBgIuSTUfkiShDfeeAMrKyv+z1iWhVKphMu1e/mL3aisrITRaERTUxO5TAQkmi6//vrr20bYOY6DQqEI22WTyYSmpqaYbrNIJA6xdFmn0+E73/lORO9zEFImkLRardsekJFCkiRsbGzg1VdfDXnBjI/MzEx/iiTQ3poEsZWJiYkdKehIIEkS1tbW8Prrr4ftclZWlt/laO0iQiQP0Xb5tddeC3nU0Qe5TITC+Pj4jukUkUCSJNhsNrz++uvbXP6zP/sz2Szmilpqe319HQ888AB4nocoirj//vtx1113Ret2+7YlGkEk4B3qTktLQ0NDA3p6Am+pFAiVSuVPkZSXl1OKhAiK9fX1qDx4Aa/LGRkZqK+vR29vb9DnqVQqtLS0wGQyoaysjFwmgmJtbS0mLvf19QV9nlqtRktLC4xGI7lMBI3NZotKEAl4Xdbr9airq0N/f7//c7fbLZuFXVELJLVaLf7P//k/0Gq1cDgc+PznP4+bb745LiNu4UykDgWGYVBbWxvUrh3V1dUwGo1obGykFAkBW1c3Mpqbgn5ghbPAJRS2urzfSE51dTVMJhMaGxuhVCqj2i5C/oTqciz6Zd/Ddz+Xa2pq/P0yuUzI1eVwSlLFgqgFkhzH+Sv4u1wuiKIYl78At9u9Y8VTNFCpVCgpKcHExMSOn+Xk5MBoNKKtrQ0GgyHqbSESh94f/Dm4tDRUPvoHyL7y2J4dl8vlislqPbVajZKSElit1h0/y8nJgclkQltbG/R6fdTbQiQOPd//AZSZmah89BFkHbtcNi4HWhAJALm5uf5+mVwmttL9n/4MqpwcVD76B8i6/OieLjudzpgsftFoNCgqKtqxIFIOhBxIiqKIkydP4sYbb9w22fPcuXP4wz/8Q/zoRz/CbbfdBsA73HvmzBmMjY3hu9/9blxKJKytrcXkPqIoori42B9IqtVqtLa2wmQyoaSkhFIkxK6sdXWj45t/ioyW5j0Dyli77Ask1Wo1Dh06BKPRSC4Te2Lr6ET7n3wb+kOtewaUsXbZF0hqNBp/v1xcXEwuE7tia+9A+x9/E/q2Q3sGlLF2WY6BZFiLbX7zm9/g8ccfx5tvvgmDwYDe3l7cd999+MY3voFHHnlkx/ELCwv44z/+Y/z0pz+N+VZR0VpkEwi73Y6xP/8LAEBtbQ2USkpdE3uzfP5DCBe9ze4WUEZrYUIgNjY2MP74fwcA1NbVQqmgdB+xN0vvfwDxokoVuwWU0VqYEIj19XVM/PAvAQB1dbVQkMvEPgR0ua11M6C8LG4ur62t4ZVXXgEAfO9730vsOZK33347fvrTn+Lpp5/GqVOn8Oijj+KOO+4IGEQC3hRCQ0MDPvroI/9oZayIZb0lnU6HfNsaJLsdqzOh781KEMDuI5Th7B4TLmlpachfWYXkdJLLRNjsNkIZa5fzlpYBtxsr5DIRJrb2TrT/8bd2BJSxdDk9PT3glonxJqy14wqFAl/72tfw9NNP42tf+xqam5vx/e9/f9sxW/ewXl9fx8cff4yqqqpAl4sqka7ptB/MLpusE0So+ALKTx/8Ayy++37sXU4nl4nI4AsoP3v4USy9/0FMXWYYBiz1y0SE8AWUnz3yKJY+OB9zl+W4SDfsIkS33367PxJ/4oknwHHctp/PzMzg9OnT+MIXvoB7770Xp0+fRmNj48FamwiwNOeGiCyO8Qms9fTGfrEazR8jIox9bAxr3cGXlooY5DIRYexj4/Hpl2VI2Ku2H3/8cQDA8vLyjiASAFpbW/Hcc8+F37IIwbJsTN8YpBgOcxPJjSIjA6Wn70XpPV+BIj09qPJSkURyhL4zE0EEQqHPQNnp+1By91egSE9Db29vbF12Ur9MRAaFQY+yM/eh5K5TUKR5XY70jnl7Ect7BUtYgeRPfvITvPXWW3jmmWfw4IMP4te//jVOnz4d6bZFBK1WC48nuL2zD4rb5UJ/WQnypmeRr1SCYeRRdZ6QL675eeCiF52LA0gfGo0mZi67nE4MVJQid3oG+UoVuUzsS0CXDXqUnb4XJXd5A0gfWq02ZqtdnQ4HBqoqyGUiaHZ1eUsA6UOj0cSkxCAAOByO5Agkn332WTz11FP4xS9+gcbGRjzwwAP42c9+hrvuukuWhVy1Wm1MVlRJkoSl5WVMVVdiqroSxcXFOHz4MFpaWmSzsoqQHx+eugf20TEAuweQPmL18PW5PFldicnqSpSUlPhdpj2zid04f+dX4JjwlozaLYD0ESuXRVHE4tKS3+XS0lIcPnwYzc3N5DKxKx/c8WU4J71ldnYLIH1otdqYBJKSJGFxcTHq9wmHkALJs2fP4rHHHsMTTzwBk8kEALj//vvx85//HM899xxOnToVjTYeiPT0dMzOxmal3tb7TE1NYWpqCi+99BIaGxthNBpRXV0tm70xCfmwXwDpIz09HXNzczFp01aXJycnMTk5iRdffBFNTU0wGo2oqqoil4kd7BdA+oiVywzDbLuP1WqF1WrFCy+8gKamJphMJlRWVpLLxA72CyB9pKenR33HMR+x6v9DJehAsrOzE9/61rfwne98BydOnPB/np6ejjNnzuDJJ5/EnXfeGXC+ZDzRarXQaDRwOqM730sURYyNje34nOd5dHZ2orOzExkZGWhra4PRaEReXl5U20MkBmUP3I+864/vGUD6iKXL4+PjOz7neR4dHR3o6Ojwu2wymWJeG5aQJ+UPPYC8G67fM4D0odVqoVar4XK5otqmYFzW6/V+l3NycqLaHiIxqHj4QeTddMOeAaQPnU4XE5cFQQjoshwIqyB5orGyshJwu7dI4QsiP/3006DPKSkpgdFoRGtrq38rSYLYj+Xl5YDbvUUKURQxOjqKzz77LOhzSkpKYDKZ0NLSQi4TQbO0tBTVXTpEUcTIyAjMZnPQ55SWlvr7ZZqSRARLLFweHh6GxWLxfyanguQpEUhKkoSRkZGoFCeXJAkejwevvPJKWG8kHMehoaEBRqMRtbW1lGIh9kSSJAwPD0elCK7P5Zdffhlutzvk88llIhSi7bLb7cYrr7wStsu+KUk1NTXkMrEnkiRhaGgoKtkiSZLgcrnwyiuvbFts+f3vf182GeCUCCQBwOVyYXBwMCo1nz744IOIjBKlpaXh0KFDMJlMKCgoiEDLiGQkmi6///77296sGYYJ6z7p6en+/bnJZWI3ounye++9h+npaf/vD+qyyWRCfn5+JJtIJBFOpxODg4NRufa7776LmZkZ/+81Gg2+973vReVe4ZAygSQA2Gy2iM8xWFhYwNmzZ7d9lpGRgTNnzsBisaC9vT2sFV2FhYUwGo04dOgQ0mhXBuIiVldXMTExEdFrzs3N4dy5c9s+MxgMuO+++2A2m9HR0RGWy0VFRX6XdTpdpJpLJAnRcHl2dhbvvPPOts8yMzNxzz33+PvljY2NkK9bVFQEk8mE1tZWcpnYQTRcnp6exnvvvbfts+zsbPzJn/xJRO9zEFIqkAQiG0zm5ubihRde2CFOYWEhvv71rwO4MLfBbDajt7c35OLoLMuirq4ORqMR9fX1shnKJuJPJDutvLw8/P73v98xl7ioqAiPPvooAK/LQ0NDsFgsYbtcX18Po9GIuro6cpnwE2mXf/vb3+6Ys1ZSUoI/+IM/AOB1eXBwEBaLBX19fWG7bDKZUFtbSy4TfiK5JiM/Px+/+c1vto1GAt65vI888khE7hEJwt7ZJlHR6/WoqamB1WoNOKcxe6EfBtskWFGAyHJY1ZdgKbd+2zEcx6G4uBgGgyHgvMutb6osy6K2tha1tbVwOp3o7OyExWIJWjRRFNHX14e+vj5otVp/urCoqAgMbfuV0hgMBqhUqoi5HGiE5mKX6+rqUFdXB4fDga6urpBd7u3tRW9vL3Q6HVpbW2EymVBYWEgupziRcrmkpAR6vT6ofrm+vh719fVwOBz+fjnYKUoXu+xLfRcWFob4JyeSjczMTL/LgebnRsJluWUpUy6QBLylJ2pqarC4uIiFhQX/22j2Qj+yVsbA5pWDLaiEODuKrHlvSZ+l3HowDIPMzEwUFBRAofD+1e3XYW1Fo9HgyJEjOHLkCBYXF2GxWGCxWIIumO5wOPDhhx/iww8/RH5+vj9dmJGREc5fA5EEHMTlrKws5Ofn7+nybh2WVqv1u7ywsOBPFwbrst1u3+FyW1sb0oMog0QkJz6XFxYWsLi4GHGXd+uXtVotjh49iqNHj2JhYQFmsxnt7e1BF0y32+04f/48zp8/j4KCAn+/TC6nLjqdDrW1tQd2WZKkgC7LrTpGyqW2L0aSJNhsNthsNuR89u/gcoqhuvJL/onZ7vf+FcLSNBxX3ofMzMxtKQxRFP17jm/lsssuw2233Rb0/UdGRmCxWNDd3R3y9kcMw6C2thZGoxENDQ3+jpRIPQ7isiAI+OEPf7jjmseOHcMtt9wS1P19pYPMZjN6enrIZSJsRFHE2tpaWC7zPI//9t/+245rXnHFFdtqIO93f1+/HK7LW6ckkcupiyiKsNlsWFtbC9llt9uN//7f//uOa1511VW46aabYvnH2JOUt5thGBgMBhgMBjg+EcAWVPrTbAzDgC2ogjhvDViodreyFaFMwmYYBtXV1aiursbJkyfR3d0Ni8USsLh5ICRJwsDAAAYGBqDRaNDS0gKTyYSSkhJKF6YYB3F5t9JYobjMsqzfZZfLhe7ubpjN5qDnJF/ssi/1XVxcTC6nGCzLxt3lmpoa1NTUwOl0+vvlUFzu7+9Hf38/uZzisCyLzMxMZGZmxsXlWJDygeQ2WBbi7CikmsP+twVxdgTY5W1yt1V/4c5fUKvVuOSSS3DJJZdgeXnZn/peWVkJ6nyn04lPPvkEn3zyCXJycmA0GmE0GqHX68NqD5HAhOhypDusSLj88ccf4+OPP0Zubq4/9U0upyBx7pc1Gg0OHz6Mw4cPY2lpye/y6upqUOeTy4QflomIyxRIyhhGlwFxfhzu9/7V+5YwOwJxfgKK2iMBj4/m20JWVhauu+46HD9+HOPj4zCbzeju7g66uO7i4iLeeOMNvPHGG6iurobRaERTUxOUSuWB20YkANrQXI5mh7XV5bGxMVgsFnR1dW0rrrsXCwsLeP311/H666+jpqYGRqMRjY2N5HKqoJFPv5ydnY3rr78e1113HcbGxvz9cqgub+2XyeUUIkIu02IbGcMa8iGsr0BcmIQ4bwUYBmAVULZeE/D4WAw7MwyDiooKVFRU4LbbbkNvby8sFguGh4eDvsbw8DCGh4fx/PPPo6WlBUajEeXl5ZRiSWJYQx7EjYtcVihDdjmSHRbDMKisrERlZSVuu+029PT0wGKxYGRkJOhrDA0NYWhoCGq1Gs3NzTCZTCgrKyOXkxjWkAvRfrHLqrj3yz6XT548iZ6eHpjNZoyOjgZ1vm8nFJ/Lvn6ZXE5uWH0ORPuqrFyOBBRIBkISN/8vAard97KMdAplP1QqFdra2tDW1obV1VW0t7fDYrFgcXExqPPdbjc+++wzfPbZZ8jKyvKnvjMzM6PSXkIGbHGZUe7e+cS6w1KpVH7/VldX/enCpaWloM53uVx+l7Ozs9HW1kYuJzvbXJZXv+xzeWVlxe/y8vJyUOe7XC58+umn+PTTT5Gdne2/lsFgiEp7CRmw1WXV7iuwKbWdAsTzbcFgMOCaa67B1VdfDavVCovFgs7OzqD3+15eXsZbb72Ft956CxUVFTCZTGhuboZKpYpyywk5Es8Oy2Aw4Nprr8U111wDq9UKs9mMrq6uoF1eWlryu1xZWQmj0UgupzDx7JczMzNx/PhxXHvttZiYmPBP4wjF5TfffBNvvvkmqqqq/FOSyOXUhFLbKUCghQMMw8S0xhPDMCgrK0NZWRluueUW9PX1wWKxYGhoKOh9ZcfGxjA2NoYXXngBzc3NMBqNqKyspBRLChHIZZZl4+byrbfeGpbLo6OjGB0dJZdTmEAucxwHtVodszYwDIPy8nKUl5fj1ltv9U9JGhoaCvoaIyMjGBkZ2TYlqaKiglxOIQK5rFAoZDenlgLJAzA/P7/js+zsbLAsG4fWAEqlEq2trWhtbcXa2po/9R2onYHweDz+tIzBYEBbWxtMJhOys7Oj3HIi3iwsLOz4LDs7O24PrUi77EsXksvJTyBHcnJy4uryoUOHcOjQIdhsNr/Lgf7NBcLj8cBsNsNsNiMzM9M/jYNcTn4CuZybmyu7lwkKJMNEkqSAHUFubm4cWrOTjIwMXHXVVbjyyisxPT0Ns9mMzs7OXWtfXszq6irOnTuHc+fOoaysDEajES0tLdBodp+bRCQmu7mcl5cXh9bsZKvLU1NTsFgs6OjogNPpDOr81dVVvP3223j77bdRXl7uT32Ty8mH3PtlvV6Pq6++GldddRWmpqb8/XKwLq+srOxwuaWlJaajrURsEEUx4PoHubi8FQokw2R9fT3gvBe5fckMw6C4uBjFxcU4ceIEBgYGYLFYMDAwAFEUg7rGxMQEJiYm8NJLL6GxsRFGoxHV1dVxG3klIovNZgtYVkqOLpeUlKCkpAQnTpxAf3+/3+VgU9/j4+MYHx/Hiy++iKamJhiNRlRVVZHLScLq6mrAXWjk7PItt9xCLhM7WFlZ8W+tuBW5uQxQIBk2u6XY5DKKEwiFQoGmpiY0NTVhY2MDHR0dsFgsmJmZCep8nufR2dmJzs5OZGRk+FMscv4zE/uzm8ty7LB8KBQKNDc3o7m5Gevr636XZ2dngzqf53l0dHSgo6PD77LJZJL1n5nYn0Ttly922Ww2Y25uLqjzt7qs1+v9/TK5nNgkkssUSIZJIj58t5KWloZjx47h2LFjmJmZ8acLd1u9ezFra2t499138e6776K4uBgmkwmtra2y20ye2J/d5mrJscMKRHp6Oq644gpcccUVmJmZgdlsRkdHx64rHi9mq8slJSUwGo3kcoKSSA/fQPhcvrhfDtZlm82Gd955B++88w5KS0v9qW9yOfFIpBiDAskw2e3hK8cveT8KCwtRWFiIm266CUNDQzCbzejv7w84rB6IqakpTE1N4eWXX0Z9fT1MJhNqamq2bT5PyJdE6rD2o7CwELfeeituvvlmDA4OwmKxoK+vL+hpHJOTk5icnMTLL7+MhoYGGI1G1NbWUrowQQjULzMME3AfYznDMAyKiopQVFSEm2++2T8lqb+/P2iXrVYrrFbrtilJNTU15HKCkEguUyAZJoG+ZL1en9CTnjmOQ319Perr6+FwONDZ2Qmz2YypqamgzhcEAT09Pejp6UFaWhoOHToEk8mEgoKCKLecOAiBXM7MzJRdiYlQ4DgODQ0NaGhogN1uR2dnJywWS0gud3d3o7u7G2lpaf50Ibksb3ZzWbHLXsaJAMdxaGxsRGNjI+x2u38ax/T0dFDnC4KArq4udHV1IT093d8v5+fnR7nlxEHYrZKGHAdoEvdfV5wJNIqTKOmTYNBqtTh69CiOHj2K+fl5WCwWtLe3Y21tLajzNzY28MEHH+CDDz5AYWEhjEYjDh06JLtCqsTuJSaSBZ1Oh8suuwyXXXYZ5ubm/C6vr68Hdf7Gxgbef/99vP/+++SyjJEkKen7ZZ1Oh8svvxyXX3455ubm/NM4gnV5fX3d73JRUZHfZbntlJLqJJrLFEiGgcPhCDiXMJkevlvJy8vDTTfdhBtuuAHDw8OwWCzo7e0NuDoyEDMzM5iZmcGrr76Kuro6GI1G1NfXy/LNKtXY2NgIWBIqWV3Oz8/HzTffjBtvvNHvck9PT9DTOC522WQyoa6ujlyWARsbGwHL6CSzyydOnPBPSfL1y8G6PD09jenpabzyyiuor6+H0Wgkl2XC2tpaQlTS8EGBZBgk05yyUGBZFrW1taitrYXT6URXVxcsFgsmJiaCOl8URfT19aGvrw9arRatra0wmUwoKiqSXYHVVCHRF9qESyCXzWYzrFZrUOdvdVmn0/ldLiwsJJfjRKIvtAkXlmVRV1eHuro6OBwOf78cisu9vb3o7e2FTqfDoUOHYDQayeU4kmgxBgWSYZCqD9+taDQaXHrppbj00kuxuLjoTxeurq4Gdb7D4cBHH32Ejz76CHl5eTAajWhra0NGRkaUW05sJVUfvlsJ5LLFYoHNZgvqfLvdjg8//BAffvgh8vPz/S6np6dHueXEVshl75SkI0eO4MiRI1hYWPD3y6G4fP78eZw/fx75+fkwmUw4dOgQuRxjEi3GoEAyDKjD2k5OTg5uuOEGXH/99RgdHYXFYkF3dzc8Hk9Q58/Pz+O1117D66+/jpqaGhiNRjQ2Nib0BPlEIdHefKPNVpdHRkb8qe9gXZ6bm8Orr76K1157DbW1tTAajWhoaCCXY0AyVdKIBLm5ubjxxhv9/bLZbEZPT0/QU5Lm5ubwyiuv4NVXX0VtbS1MJhPq6+vJ5RiQaP0yGREGgQp463S6lJ+wzDAMqqqqUFVVhdtuuw09PT2wWCwYHR0N6nxJkjA4OIjBwUFoNBq0tLTAaDSitLSUUixRIpDLaWlpKV93jmEYVFdXo7q6GidPnkR3dzcsFgvGxsaCOl+SJAwMDGBgYMDvsslkQklJCbkcJQK5nJGRkdCVNCIBy7J+l10ulz/1PT4+HtT5F7vsm8ZRXFxMLkeJQC4bDAaoVKo4tGZ/KJAMEUEQAs49KSwsjENr5ItarYbJZILJZMLy8jLa29thsViwvLwc1PlOpxOffPIJPvnkE+Tk5PjThQaDIcotTx14nsfk5OSOz8nl7ajValxyySW45JJLsLy87E99r6ysBHV+IJeNRiP0en10G55CeDwecjkI1Go1Dh8+jMOHD2NpacnfL4fi8scff4yPP/4Yubm5/n6ZXI4cbrc7YGknObtMgWSITE1NBUwNlJeXx6E1iUFWVhaOHz+Oa6+9FuPj47BYLOjq6gq4Ki0Qi4uLeOONN/DGG2+gurran/qW69tZojA5ORlwhWdFRUUcWpMYZGVl4brrrsPx48cxPj4Os9mM7u7uA7nc1NSU0DU75YDVag1YqJtc3p3s7Gy/y2NjY/5+OdhpHAsLC3j99dd39Mvk8sHYzWU5xxgUSIbIbqkt6rD2h2EYVFRUoKKiYlvqe3h4OOhrDA8PY3h4GCqVCs3NzTCZTCgvL6cUSxjs5rKcOyy5cLHLvb29Ybv8/PPP+6dxkMvhQS6HD8MwqKysRGVl5bZ+eWRkJKjzJUnC0NAQhoaGoFar/f1yWVkZuRwGiRhjUCAZIoHmlbAsi5KSkji0JnFRKpVoa2tDW1sbVldX/SmWxcXFoM53u90wm80wm83IzMz0pwuzsrKi3PLkIZDLHMeRyyGiUqkO7PJnn32Gzz77DFlZWX6XMzMzo9vwJCKQywqFAsXFxXFoTeKiUqn8/q2srPhdXlpaCup8l8vldzk7O9u/IxS5HDyBXFYqlZTaThZEUQz4JZeUlNBw/gEwGAy45pprcPXVV2NychJmsxldXV0BiwsHYmVlBWfPnsXZs2dRUVEBo9GI5ubmlJ9kvxe7uVxaWkqrMg/AVpetVissFgs6OzvhcrmCOn95eRlvvfUW3nrrLVRWVvpdpmkcuyMIQsBatmVlZVRc+wBkZmbi2muvxTXXXAOr1ervl4N1eWlpiVwOEZ7nA67BkLvL9MQIgdnZ2YD/iOQ85JxIMAyD0tJSlJaW4tZbb0VfXx8sFgsGBwchSVJQ1xgbG8PY2BhefPFFNDU1wWg0oqqqilIsFzE9PR1wLhSlAiMDwzAoKytDWVkZbrnlFr/LQ0NDQbs8OjqK0dFRvPDCC2hubobRaERlZSW5fBHT09M0bz2KbHXZ1y+bzWYMDw+TyxFmtzUYco8xKJAMgUScu5CoKBQKtLS0oKWlBWtra+jo6IDFYsHc3FxQ53s8HrS3t6O9vR16vd6frsnJyYlyyxOD3Up/kMuRR6lUorW1Fa2trVhbW/OnC3erFXcxHo/Hv1LcYDCgra0NJpMJ2dnZUW55YkD9cuwI5LLZbN61hufFXOyyr18ml70kqssUSIZAoIev722NiB4ZGRm48sorccUVV2BmZgZmsxkdHR0B94gOhM1mw7lz53Du3DmUlpbCZDKhpaUFGo0myi2XL4E6LHI5+mRkZOCqq67ClVdeienpaZjNZnR2dgbt8urqqt/lsrIyGI1GcjmAyyzLorS0NA6tSR22ujw1NQWLxYKOjo6gpyStrq7i7bffxttvv43y8nJ/6juVXU7UeesUSAaJJEkBO6zCwkKaixcjGIZBUVERioqKcOLECfT398NisWBgYCBguYRAWK1WWK1WvPjii2hsbITJZEJ1dTVYlo1y6+WDJEkBO6yioiKavxQjGIZBcXExiouLceLECQwMDITs8sTEBCYmJvDSSy+hsbERRqMx5Vzeba5vcXExzVuPEQzDoKSkBCUlJTv65WBT3+Pj4xgfH98xJYlc9q7BkPu8dXm3TkYsLi7Cbrfv+Jzm4cQHjuPQ1NSEpqYmbGxs+FPfgXYECIQgCOjq6kJXVxfS09P9qwvz8/Oj3PL4Mz8/H3AETO7pk2RFoVAcyGWe59HZ2YnOzk5kZGT4XU6FLVvn5uZo3rqMUCgUaG5uRnNzM9bX1/0uz87OBnU+z/Po6OhAR0eH32WTySTbrQEjyezsbMB6tIkQY1AgGSSJOnchFUhLS8OxY8dw7NgxzM7O+lPfGxsbQZ2/vr6O9957D++99x6Ki4thNBrR2tqatFteksvyZavLMzMz/nRhsC6vra3h3Xffxbvvvut3+dChQ0m75SW5LF/S09NxxRVX7JiSFGhAJhBbXS4pKfH3y+Sy/KBAMkio4G1iUFBQgFtuuQU333wzBgcHYbFY0NfXF3AHl0BMTU1hamoKL7/8MhoaGmA0GlFbWyvr0guhsttCG3JZXhQWFqKwsBA33XST3+X+/v6QXX7llVdQX18Pk8mEmpqalHCZ5vrKi8LCQtx66607+uVgp3FMTk5icnJyR7+cTKnvRJ63ToFkEEiShNHR0R2f5+XlIS0tLfYNIvaFZVnU19ejvr4eDocDnZ2dsFgsAffjDYQoiujp6UFPTw90Oh0OHToEk8kk66KwwbCby/n5+Un7pp/ocByHhoYGNDQ0wG63+12empoK6nxBEPwup6Wl+V0uKCiIcsujiyiKAV0uLCxM6QUbciYSLnd3d6O7uxtpaWn+aRzJ4HKgQLKoqCgh1mBQIBkEMzMzWFtb2/E5jeAkBlqtFkePHsXRo0cxPz8Pi8WC9vb2gN9pIOx2O86fP4/z58+joKAARqMRbW1tCfkSMTU1hfX19R2fk8uJgU6nw2WXXYbLLrsM8/PzMJvNaG9vD/idBmJjYwMffPABPvjgAxQWFvpT34no8uTkJM1bT2C2ujw3N+fvl0Nx+f3338f777+PwsJCmEwmtLa2JqTLVqs14Lz1RHGZkYJdVpUCuD96HsJk//YP1Tqc1zbg7NmzO46/++670djYGKPWEZFEFEUMDw/DYrGgt7c3YBHYvWAYBnV1dTAajaivr5fdqjrXh7+HODWw7TNGm473VbV4++23dxx/7733or6+PlbNIyLIQV1mWXaby3JLfbvO/w7i9OC2zxitHu8qKvHOO+/sOP706dOora2NVfOICCKKIoaGhvwuBzuNw4fPZZPJhLq6Ovm5/MFzEGeGt33G6Aw4x5Thvffe23H8mTNnUFNTE6vmhY28nn4ypb+/f8dnHMehuro6Dq0hIgHLsqitrUVtbS2cTie6u7thNpsDbrUWCEmS0N/fj/7+fmi1WrS2tsJoNKK4uFjWuzX09fXt+EyhUKCqqioOrSEiwcUud3V1wWKxBO2yKIro6+tDX1+f32WTyYSioqKEc1mpVKKysjL2jSEigi8QrKurg8Ph8LscaNvAQGx1WafT+V0uLCyUtcuBYgyVSpUwLlMgGQiGASQADCB53Jie3rlhfXV1NdXcSxI0Gg0OHz6Mw4cPY3Fx0Z9iWV1dDep8h8OBjz76CB999BFyc3NhMpnQ1taGjIyMKLc8CLa4LLqcmJ3d6XJNTQ3V3EsSNBoNLr30Ulx66aV+ly0WC2w2W1Dnb3U5Ly/PP41Dfi7bMT8f2GW5ZQeI8NBqtThy5AiOHDmChYUFf78crMt2ux0ffvghPvzwQ+Tn5/tdTk9Pj3LLg2CLy4LLjoWFxR2HJNIiT0ptb8H52lOQ1lfA5pWDLaiEODsKcX4c5+dcODfrgSRJYBgGoijic5/7HI4cORLvJhNRwrcoxWKxoLu7O+C+1HvBMAxqampgNBrR0NAQ80DN8epTwEZwLt9+++04fPhwTNtHxA5JkjAyMgKLxYKenp4DudzY2BjzQM3xylOAPTiXv/CFL+CSSy6JafuI2OFbYOXrl8OZklRbW+vvl2Pv8s8B+2pQLn/xi1+E0WiMafvChQLJLTh++7dgc0qguvJLYBgGkiTB/d6/wjVnxXPrOaitrcXg4CCGh4dx6aWX4vOf/3y8m0zEAJfLhZ6eHlgsloCrRPdDrVajpaUFJpMJpaWlu6ZYRFGMWDmLUFw+cuQIPve5z0XkvoS8cblc6O7uhsVi2bWk2V6o1Wr/NA5ymYgnB3VZo9H4++WSkhLZuXz06FGcPHkyIveNNikfSPI8j+XlZdhsNhR3/A6K1mugrL3U/3PP4CfgO89Bc8c3/V/8008/jcnJSfzH//gf49hyIh6srKz404XLy8shn5+dnQ2j0Qij0QiDwbDtZ6+//jpKSkrCXsBFLhOhsLy8jPb29rBdzsnJ8acLL3b5tddeQ3l5edgLuMhlIhSWl5f9/fLKykrI5/tcNhqN0Ov12372yiuvoKqqCnV1dWG1zefy6uoqSjp/n5Qup+xkEkEQMDMzs60DFVkO4uwopJrD/i9UnB2ByLL+txXfat1wRqaIxCczMxPHjx/Htddei4mJCZjNZnR1dQXc2ioQS0tLePPNN/Hmm2+iqqoKRqMRTU1NUCgUMJvNeP/993H69OmQFr/wPI+ZmZltHSi5TOxHVlaW3+Xx8XGYzWZ0d3cH7fLi4iLeeOMNvPHGG6iurvanvjmOg9lsxvnz53H69OmQFgyQy0Q4ZGVl4brrrsPx48cj5nJTUxNYloXFYsFHH32EM2fOhLTLTCq5nJKB5NraGqxW647SAqv6EmTNj8H93r+CLajyfsHzE+h3aWDanLsgSRIGBgagUCj88xmI1INhGJSXl6O8vBy33XYbent7YTabMTw8vP/Jm4yMjGBkZAQvvPACysrK/PXTfvnLX+KrX/0qSkpK9r2GzWbD5OQkuUyEDcMwqKioQEVFBU6ePOmfxhGKy8PDwxgeHoZKpUJZWZl/S8d/+Zd/wQMPPIDi4uJ9r0EuEwdlq8u33Xab3+WRkZGgr+Fz+fnnn0dZWZm/VqnP5aKion2vsbq6iqmpqZRxOeVS2wsLC5iZmdn159kL/TDYJsGKAkSWw6BLhX/vnvEPbQ8MDGBkZAT19fW46qqrUFZWlhBfNBEbbDabP8WyuLhzJV6waLVaPPjgg8jPz9/1mEi6fPXVV+85541IPVZXV/2p74O6/NBDDyEvL2/XY+bn5zE7O7vrz8ll4iCsrq76++WlpZ2r/YNFp9PhoYceQm5u7q7HRNLla665Zs/5m3IhpQLJxcVFTE9Ph3xeR0cHRkZGwPO8v+beoUOHAAAGg4E6LWIHkiRhcnLSn/p2Op0hXyMjIwMPPfQQsrKydvyMXCZixVaXOzs74XK5Qr5GRkYGHn74YWRmZu742X4vRLuxl8uZmZkJ8QAmYoskSbBarf5+ORyX9Xo9Hn744R3zgoHUdTllAkmHw4GhoaGoXLuoqAg5OTlRuTaR+PA8j76+PlgsFgwODiKUf3JZWVl46KGHttXxs9vtIaUdQ4FcJvbC57LZbMbQ0FBILmdnZ+Ohhx7aVscvmi4XFxcjOzs7KtcmEh+Px+Pvl0N1OScnBw899NC27Rg3NjZCSqGHQklJScABBbkQ9UDS4XDg5MmTuPXWW/G9730vmrfaFd+2S+G8fQSDb3IsFSgn9mN9fd2fLpybmwvqnPz8fDz44IPQarUQRRGDg4NBTyIPFXKZCJa1tTV0dHTAbDZjfn4+qHMKCgrw4IMPQqPRkMuEbFhbW/P3y8G6XFhYiAceeMDv8sDAQMg1WoOFYRjU19fLduOIqAeSP/7xjzE6Oori4uK4BZLhpgFDQa/XJ8wG60T8kSQJMzMzeO+999DZ2bnv8aWlpbj//vths9nCSp2EArlMhIIkSZiensZ7772Hrq6ufY8vKyvDmTNnYuKywWBAWVlZVO9BJA8+l9999110d3fve3x5eTnOnDmDlZWVPedFRgI5uxyZKpu7MDo6iuHhYRw/fjyat9kTSZIONFE8WGw2W9TeRojkg2EYFBUVoXCgGzqXY9/jrVYrfvWrX5HLhOxgGAbFxcUo6u+CzrX/XOCJiQk8++yzMXF5dXU15N1PiNRlq8vaIFweHx8nlxFG+R9RFHHy5EnceOON+M53vuP//Ny5c/jDP/xD/OhHP8Jtt90GAPgf/+N/4Lvf/S4+++yzyLU4ROx2e9RSJxezvLy85ypbgtiKKIqQ2j/FDfYNWHMKMF3bCGV+IfR6PTIyMqDX67f9mmVZTExMxKRtKysre66yJYitiKIItH+GG5wOWHPyMV3bBGV+gSxcXl5eJpeJoBFFEWz7Z7jR5cREbgGmaxqhLij0u3uxzwzDwGq1xqRtKysre64YjxchB5Isy+LrX/86Hn/8cTz66KMwGAzo7e3FN7/5TXz729/2B5GvvfYaKisrUVVVFddA0lfPLBasr68jT4ZfMiFPeI8H+owMCPYNlC/Oonx5HtnX34zCk7dBXbSz7l60UydbWV9fRy4tuiGChPd4kJGRDsFp97q8soCc629GwedOQl24s+4euUzIFY/bjbT0NIguByoWZlCxPI+cG06g4HO3QV2w0+VoT8/Yyvr6uiwDybDmSPI8j1tuuQV33nknTp06hbvuugs33ngjfvCDH/iP+Zu/+Rv89re/Bcdx2NjYAM/zeOihh/DHf/zHEf0D7MfY2BjW1tZici+WYeD6z9+Oyb2IJIZlvQHlqXu3BZSjo6P+ouXRbwIL13/6VkzuRSQxHOcNKE/duy2gHBkZidlLPrlMRASO8waUp+7ZFlDG0mWO49DU1BSTe4VC2IttfvnLX+LHP/4x8vPzUVJSgr/7u78Dx3EBj/23f/s3DAwMxGWxTV9fX0zne3n+x2PA2mrM7kckMRcFlL29vTGdI+P5yx8A67F5CSOSnIsCypi7/Bd/Bthjl50ikpiLAsqenp4dO9hEk6ampl1jrXgR9mKb22+/HQ6Hd5HAE088Ibs/mA9RFGN7Qyo1QUQKUcTS6y+j+xsPY/ynT5DLROIiCFh87SV0/9FDGP+7H5PLROIiCFh89UV0/9HDGP/7/xlzl2P+bycIwt5r+/HHHwfgnci8XxD5pS99KdzbJB5i7N5MiBSAYZB51bXIu+PL2Fi3x/beMuywiASGYZB11XHkf+HLWF+LzRQNPwK5TEQQlkXW1ceRf/udWLeth1TMPBkJK5D8yU9+grfeegvPPPMMHnzwQfz617/G6dOnI922iKBUKmM67IwYLu4hkhiGQebVx1F412loyyoAAIqBAXKZSDwYBllXX4fCu05DU+atT6ro749ZNQ0AgINcJiIAyyLrmutQ+JX7oCmNj8tyzP6GHEg+++yzeOqpp/CLX/wCjY2NeOCBB/Czn/0Md911lyyrrmu12rD2OQ4HpVKJrNtuj8m9iORg8fWXIWydhxgggPSh1WqjtjvTxaiUSmSd/EJM7kUkB4uvvghh6zxEhtl86F4IIH3odLqYPXxVKhWyPvfFmNyLSA4WXn0Bon1LBmhzBLLwrtP+ANKHVquNmctqtRosG9Xy32ERUiB59uxZPPbYY3jiiSdgMpkAAPfffz9+/vOf47nnnsOpU6ei0cYDodVqsby8HJN76XQ6lDz0aEzuRSQ+brcbL/cPQmlbhcbjRk51DUpvvBmZtfVQbtlb24dWq8XKykpM2qZLSyOXiaBxuVx4qW8AqjWb1+WaGpTdcAKG2joo4u0y9ctECGxzmXcjt6YWpTfcDEPN7i6vrsZmga1Op4vJfUIl6ECys7MT3/rWt/Cd73wHJ06c8H+enp6OM2fO4Mknn8Sdd94pu2FXvV6PqampmNzLYDDE5D5EcqBSqeBmOUzkb5b4cQnACy8BeAmAt9PYWgQ3Ozs7Zo6Ry0QoqNVquFkOVp/LTgF44UUALwIgl4nEQa1Ww7XVZQcPPL/d5a2FybOzs6HX62PSNrm6HPW9tuXAxMRE1N8YFAoFGhoawDBMVO9DJBcfnzuH5994I6hjT506hYyMDNhstqi2SalUor6+nlwmQuLDt9/Gi2++ue9xDMPg1KlTSE9PJ5cJWXL+/9/en0dHctZ5wu83ct+UKSkzte9SSVUqlSIBA90YsGmzmMWA3cYwjd0G3AYz3X2BnvE53T3MMBz39J17YNzMC3dOszRmZwb8Ah5esOlhsbFxL3Aho3ZJVSqpSrsyteWm3CLuH1KGJUtVygjlpszv5xwfqlIZEY/Qtx79Mn4R8TzzNJ56+pkD3ycIAu655x7Y7faiP6+6krOs+67to8Tn8xW9kPT7/RX5A6bKI8syLl++DEmScPHixby2edvb3oaTJ08iHo8X/Zevz+djlikvsizj0qVLkCQJY2NjeW1zxx13YHh4uCRZ5rxM+cpms+q8nG+W3/GOd+D48eOIxWJFLyQrOcs1UUja7Xb4fD6EQqGi7b+xsbEo+6bqsbS0hGAwiDNnzmhaoeb1r389XvaylwHYaqt4vV6Ew+GijJFZpnwsLi5CkiScPn1a06oeb3zjG/GSl7wEQPGz7HA40NDQUJR9U/VYXFxU52UtWb799tshiiIAwOl0orGxESsrK0UZY6VnuSYKSQBoampCJBIp+F2vgiCgo6OjYj8pUHnF43GcOXMGkiRhfn5e8/avfvWrcfPNN+96rbm5GZFIpOB3CjLLdCOHzfJrXvMa/P7v//6u15hlKodYLKZmWc9a2bfccgte+cpX7notl+VCr6RnMBgqPss1cY1kTjqdxuTkZMF+0IIgoLu7Gy6XqyD7o+qQzWYxMTEBSZIwPj6ueyWCl73sZXjrW9+67wSSSqUwOTlZsGXmBEFAT08PnE5nQfZH1aFQWX75y1+ON7/5zcwylU02m8X4+DgkScLExITuLL/iFa/A7bffXrIs9/b2Vuzd2jk1VUgCW8Xk1NTUoc9MGo1GdHV1cbIiAICiKFhYWIAkSThz5gzi8cOtQjMyMoK77rrrhp9CmWUqhlyWg8Egzp49e+gsnzp1CnfeeecNs5xKpTA9PV2QLHd3d1f8L14qDUVRMD8/r2Y5t6yzXqIo4h3veMeBWZ6amjr0WfajlOWaKySBrQvEQ6EQlpaWdG3vdrvR1tYGk6lmrgyg64hGo2qLZHFxUfP2dXV1GB0dRW9vL77xjW8AAI4dO4Z3v/vdeT1KS5ZlLC8vY3l5WfOxAWaZXhCNRnH69GlIkqRrbnS73RgdHUVPT4+a5cHBQdxzzz0lybLH40FrayuzTIhEImqW9eQpl+Xu7m5885vfBAAcP34c73rXu/J6ILgsy1haWtJ9X8ZRy/LRGGWBGQwGNDU1wePxIBwOY3V1Na+1Muvq6uD1etnKrnGZTGZXi0TrZzGTyYQTJ05AFEX09vaqE1NPTw9kWca73vWuvJ/HajAY0NzcDI/Hg5WVlbyznHv+GbNc2zKZDMbGxiBJEi5duqQ7y4FAAD09PWqWu7u3VmW6++67S5Jlr9fLM+o1LpPJ4OLFi5AkCZcvX9acZbPZvGtezp117OzshMlkwh/+4R/mvaqMwWBAS0sL6uvrEQ6Hsba2VtVZrskzki+WzWYRi8WQSCSQSCSQzWahKAqMRiNsNhvsdjucTmdFLgFJpaEoCubm5tQWiZ5lN7u6uiCKIoaHh2Gz2fZ8fXp6Gs3Nzft+LV8vznLuWh1mmXIURcHs7CyCwSDOnTt3qCyfPHkSVqt1z9enpqbQ2tq679fyxSzTQQqR5e7ubnVeZpb1YSFJdAMbGxtqi0RPm8Lj8UAURYiiyMfqUFnlshwMBnU9cqe+vh6jo6PMMpXd+vq6Oi/rzXJuXq7kx+ocFTXZ2ia6kXQ6rbZIJicndbVIhoeHEQgE0N3dXdGPbaDqlk6nceHCBTXLWpnNZpw8eRKiKDLLVFaHzbLFYlHn5a6uLma5gFhIEmGrRXLt2jUEg0GcP39e192jPT09CAQCOHHiBCwWSxFGSXSwnVk+d+6crrtHe3t7IYois0xlpSgKrl69qs7LerLc19cHURRx/PhxZrlIWEhSTVtbW1NX6NCzKkFDQ4PaIqmvry/8AInylMuyJElYXV3VvH1jY6OaZY/HU4QREuVndXVVnZf1ZNnr9UIURYyOjjLLJcBCkmpOKpXC+fPnIUkSpqamNG9vtVrVdl9nZydbJFQ2hcpyIBCo+NUzqLolk0k1y9PT05q3t1qtGBkZgSiKzHKJsZCkmqAoCqampiBJEs6fP69rdaP+/n61RXJU766jo++wWRYEAX19fQgEAhgaGmKWqWwURcGVK1cgSRIuXLigK8s75+Wj8tzFasP/16mqraysqO2+9fV1zdv7fD61ReJ2u4swQqL8rKysIBgM4vTp07qy7Pf71SzX1dUVYYRE+QmHw2rrmlk++lhIUtXZ3NxUWyRXr17VvL3NZsPIyAgCgQDa2trYIqGy2dzcxLlz5yBJEq5du6Z5e5vNhlOnTkEURWaZyiqX5WAwiJmZGc3b2+12dV5ubW1llisIC0mqCrIs72qR5B74mi9BEHDs2DGIoojBwUG2SKhsZFnG5OQkJEnCxYsXmWU6snJZDgaDuHjxIrLZrKbtDQbDriznu0oSlRZnGDrSQqGQ2u6LRCKat29qakIgEMCpU6e4XCCV1fLystru05Pl5uZmiKLILFPZLS0tqVmORqOat29paVGzfNSWC6xFLCTpyEkkEjh79iwkScLs7Kzm7R0Oh9rua2lpYYuEyqZQWQ4EAmhpaSnCCInyE4/H1SzPzc1p3t7pdO6al+noYCFJR4Isy7h06RIkScLY2JiuFsng4CBEUcSxY8fYIqGyyWazuHz58qGyPDQ0BFEUMTAwwCxT2WSz2V3zsizLmrY3Go0YHBxEIBBAf38/s3xEsZCkira4uKi2SGKxmObtW1tb1RaJw+EowgiJ8rO4uIhgMIgzZ87oynJbWxtEUcTIyAizTGW1sLCgZjkej2vevq2tDYFAACMjI7Db7UUYIZUSC0mqOLFYDGfPnkUwGMTCwoLm7V0ul9rua2pqKsIIifITi8Vw5swZSJKkO8ujo6MQRZFZprKKxWI4ffo0JEnC4uKi5u3r6urULPv9/iKMkMqFhSRVhGw2i4mJCQSDQUxMTOhqkRw/fhyiKKK/vx8Gg6FIIyW6sWw2i/HxcUiSdKgsBwIB9PX1MctUNplMRs3ypUuXNGfZZDKp8zKzXL1YSFLZKIqitkjOnj2rq0XS0dEBURRx8uRJtkiobBRFwfz8vJrlRCKheR8dHR0IBAI4efIkbDZbEUZJdDBFUTA3NwdJknRnubOzU52XmeXqx0KSSi4ajaotkqWlJc3bu91utUXi8/mKMEKi/EQiEZw5cwbBYBDLy8uat3e73RBFEaIowuv1FmGERPmJRCLqvKwnyx6PR52XmeXawkKSSiKTyWBsbExtkSiKoml7k8mEEydOIBAIoKenhy0SKptcloPBIC5fvqw5y2azGSdOnIAoiujt7eXjp6hs0um0Oi/rzfLw8DBEUURPTw+zXKNYSFLRKIqC2dlZtUWyubmpeR9dXV0IBAIYHh6G1WotwiiJDpbLcjAYxLlz53Rlubu7G6IoMstUVoqiYGZmRs1yMpnUvI+enh6IoogTJ04wy8RCkgpvY2MDp0+fRjAYRDgc1rx9fX292u5raGgowgiJ8rO+vq62+5hlOsrW19chSRIkScLKyorm7RsaGiCKIkZHR5ll2oWFJBVEOp3GhQsXIEkSJicnNW9vsVjUFkl3dzdbJFQ2hcpyIBBAV1cXs0xlk0ql1CxfuXJF8/YWiwUnT56EKIrMMl0XC0nSTVEUXLt2TW2RpFIpzfvo7e1VWyQWi6UIoyQ6mKIouHr1KoLBIM6fP68ry319fRBFEcePH2eWqWwURcH09DQkSTp0lk+cOAGz2VyEUVI1YSFJmq2traktktXVVc3bNzY2qu0+j8dThBES5Wd1dVVdOUlPlr1er9ruY5apnHJZliQJa2trmrdnlkkvFpKUl1QqhfPnz0OSJExNTWne3mq14uTJkwgEAujo6GCLhMommUyqWZ6enta8vdVqxcjICERRZJaprA6bZZvNps7L7e3tzDLpwkKSrktRFExNTaktknQ6rWl7QRDQ398PURQxNDTEFgmVjaIouHLlCiRJwoULFw6V5ePHj8Nk4tRJ5SHL8q55OZPJaNpeEAQMDAyo8zKzTIfFBNEeKysrCAaDOH36NNbX1zVv7/f71RZJXV1dEUZIlJ9wOKy2rpllOsrC4bA6L29sbGjevqmpCaIo4tSpU8wyFRQLSQIAbG5u4ty5c5AkCdeuXdO8vd1uV9t9bW1tbJFQ2RQqy4FAAK2trcwylc3m5ibOnj0LSZIwMzOjeXu73Y5Tp04hEAigpaWFWaaiYCFZw2RZxpUrVxAMBnHx4kVdLZJjx45BFEUMDg6yRUJlI8syJicnIUmSriwbDIZdWTYajUUaKdGNybKMy5cvq1nOZrOats9lORAI4NixY8wyFR1/89eg5eVltd0XiUQ0b9/c3Ky2SFwuVxFGSJSf5eVlBINBnDlzRleWW1pa1Cw7nc4ijJAoP0tLS+q8HI1GNW/f0tKCQCCAkZERZplKioVkjUgkEmqLZHZ2VvP2DodjV4uEqFzi8bia5bm5Oc3bO51ONcvNzc1FGCFRfnJZDgaDmJ+f17y90+nE6OgoRFFklqlsWEhWMVmWcenSJUiShLGxMV0tkqGhIYiiiIGBAbZIqGyy2eyuLMuyrGl7o9GIwcFBBAIB9Pf3M8tUNrksB4NBjI+P68ryznnZYDAUaaRE+WEhWYUWFxfVdl8sFtO8fVtbG0RRxMjICBwORxFGSJSfhYUFSJJ0qCzn2n12u70IIyTKz8LCgjovx+Nxzdu3t7er8zKzTJWEhWSViMViOHPmDCRJwsLCgubtXS6X2iJpamoqwgiJ8nPYLNfV1alZ9vv9RRghUX6i0aia5cXFRc3b57IcCATg8/mKMEKiw2MheYRls1mMj49DkiRMTEzoapGcOHECoiiir6+PLRIqm8Nm2WQy4fjx48wylV0mk9mVZUVRNG1vMpnUebm3t5dZporHQvKIURQF8/PzarsvkUho3kdHRwcCgQBOnjwJm81WhFESHSyX5WAwiLNnz+rKcmdnJ0RRZJaprBRFwdzcHILBIM6dO6cry11dXRBFEcPDw8wyHSksJI+ISCSitkiWlpY0b+92uyGKIkRRhNfrLcIIifITiURw+vRpSJKE5eVlzdt7PB61dc0sUzltbGyoWQ6FQpq393g86rzc2NhYhBESFR8LyQqWyWQwNjYGSZJw6dIlzS0Ss9m8q0XCVQ2oXDKZDC5evAhJknD58mVdWR4eHoYoiujp6WGWqWzS6TTGxsYQDAYxOTnJLFPNYyFZYRRFwezsrNoi2dzc1LyP7u5utUVitVqLMEqigymKgpmZGUiShLNnzyKZTGreR09PD0RRxIkTJ5hlKptclnPz8mGyPDw8DIvFUoRREpUHC8lt6XQaiUQCiURCfd6iwWCAzWaD3W6HxWIp6ifHjY0NSJIESZIQDoc1b19fX6+2SBoaGoowQjoqyp3l9fV1td2nJ8sNDQ1qluvr6ws/QDoSFEVBJpMpe5Zz8/LKyorm7ZllAraynE6nsbm5WbYsF1NNF5KyLGN9fR3hcPjAM38mkwmNjY1obGws2JrS6XQaFy5cgCRJmJyc1Ly9xWLB8PAwAoEAurq6jmwI6fC0Ztnr9aKhoaFgWU6lUmrrWm+WT548CVEUmeUaJ8sy1tbWEA6HDzzzV6ws5+blK1euaN7earWq83JnZyezXMO0ZNlsNqOxsbGgWS4VQdF6gUeViEQimJmZ0bzaC7C11rTP59M1QSiKgqtXr0KSJJw7dw6pVErzPvr6+iCKIo4fP84WCWFjYwOzs7OasywIApqbm+H1eg+V5WAwiPPnz+vOciAQwPHjx2E2mzVvT9WlnFmenp6GJEm6s9zf36/Oy8wyra+vY25uruRZLoeaKyRlWcbc3BzW1tYOtR+73Y7Ozs68C7m1tTW1RbK6uqr5eF6vF6IoYnR0FB6PR/P2VH1kWcbs7CzW19cPtR+73Y6urq68f/mtrq6qWdbz7yiXZVEU4Xa7NW9P1adcWV5ZWYEkSTh9+rSuLPt8PnVeZpYJKF+Wy6mmCklZljE9Pa1rqbX9mEwm9PX1XbeYTKVSOH/+PILBIKanpzXv32q1YmRkBIFAAO3t7Ufm0wkVnyzLmJqa0rXU2n4OynIymcT58+chSZKuLNtsNpw8eZJZpj3KleVgMIirV69q3r/NZlPn5ba2NmaZVNlsFlNTU7qeI7ofs9mM3t7eiu881kwhmWtdRKPRgu7XbDajv79fvaZBURRMTU0hGAziwoULSKfTmvYnCMKuFslRu1aCiq+UWb5y5QokSdKd5YGBAYiiiKGhIWaZ9ihmlgcGBmA0GgFsFas7s5zJZDTtTxAEHDt2DKIoYnBwkFmmPXK/+wt1oirHYrGgv79fzXIlqplCcmVlBXNzc0XZt8fjgcPhUFskek5p+/1+tUVSV1dXhFFStQiHw5ifny/KvnNZDgaDOH36NDY2NjTvo6mpSc2yy+UqwiipWhQzy/X19bDZbOq8rDfLgUAAp06dYpbphkKhEBYWFoqy7/r6enR0dBRl34VQ1EJyeHgYx44dAwCMjIzgv/yX/1KsQ91QKpXSteapFpOTk/jd736naRu73a62SFpbW9kioQOVIsuXLl2CJEmatrHb7Th16hQCgQBaWlqYZTpQKbI8Pj6OM2fOaNrG4XDg1KlTEEWRWaa8JJNJXYuGaNHd3V2xJ5mKen6+rq4OTzzxRDEPkZdwOFzUHzAA9Pb25lVIGgyGXS2SSj5dTcWnyDIEgyHv94dCoaJnub+/P69C0mAwYHBwEKIo4tixY8xyjavELA8MDORVSDLLtFMlZnlpaak2C8lKIMuyrruktRIEAU1NTdddB7ulpQWiKOLUqVNwOp1FHw8dDal//SGMTd0wdp2EYLrx3XnZbLZkWfb7/dddB7u1tRWiKGJkZIRZJlXqX56AsbkPxu5hCMbKyLLBYIDX673ug/FzWT516hQcDkfRx0NHQ+pfnoCxpW9rXjbeuEzKZrOHfgpMPnIP5rfb7UU/llaaC0lZlvGWt7wFt912Gx5++GH19WeffRYf/vCH8alPfQpvfvObAQCxWAx33XUXrFYrPvaxj+EVr3hF4Uaep42NDciyXJJjjY6O4qc//an6d6fTqbb7mpubSzIGOmKScWQu/hMyk0GY+gI3LCgjkUjRP/XmjI6O4mc/+5n6d6fTidHRUYiiyCzT/pIJZC4+j8zk72Dqe8kNC8qNjY2SZVkURfz85z9X/+5yudR5uampqSRjoCNmM4bMhed3z8vXKShLmeW1tbWKLCR1XSP5/e9/H4888gh+8YtfwOPx4OLFi/ijP/oj/Omf/ikeeOAB9X2Li4tobm7G+Pg4PvShD+GHP/xhyS9Ynp+f17VMmx4GQcC5p3+E1tZW9HR3o7m5GQYNp8ep9qQvPA8kdzz2xGK/bkE5Nzena5k2PXJZbmttQ3d3F5pbWmDgtWJ0A+nzvwJSOx57YrFft6AsZZYFQcD5p3+E9rY2dOXmZWaZbiB9/jkgtWOFMIsdpv6XwNi1N8uzs7MlObsObF2L3t/fX5JjaaGrkMxkMnjTm96EO++8E3fffTfuuece3HbbbfjEJz5x3W3+5E/+BB/5yEdw6tSpQw1Yq8uXLxfsmU756L/6HATUxI3wVEz7FJTMMh1J+xSUly5dOnApz0IRBKBv+lmwdKRDszr2nKEsbZYFDA8PV9wNYLpOl5lMJjz44IP4+te/jgcffBDDw8P4+Mc/vus96+vr6jJTCwsLuHz5Mjo7Ow8/Yo20PvvusDLGyn5wKB0RqQQyF/8Jyae/icxkEEomrWvZtsPIHHCdG1FeUlst7+QvvonMpAQlmy7pvKwoQNbALFMBJOPIXHh+a16+IkHJZko6LyuKomtZ52LTfbPNHXfcgb/9278FADz66KN77nK7fPkyPvGJT0AQBAiCgP/wH/4D6uvrDzVYPUr9mExFYCubCmi7oJRD16C4StzSYJapkLYLyq0s95X00JyXqaC2C0o5NAPF0VPSQ1fio791F5KPPPIIgK11d/d7VMJLX/pS/PCHP9Q/sgIp9SlgQSnNjT1UG4Q6L0zHboKhuRfCxYulPTazTAXELFO1ENy+rSw39UC4cKGkxV2ltbUBna3tz3zmM3j66afxne98B5lMBo8//nihx1UwVqu1ZMcSBAERsIVChyfUeWF+6ZtgefW7YGzpgyAIJc/yBniZBh3eflku5drBgiAgIpTu3w5VL8Htg/llt8Ny890wNveWfF42GAwV+YxTzWckv/vd7+Kxxx7DV7/6VRw/fhz3338/vvSlL+Gee+6B2Vx5RZTdbi/42pfXI5jM+GH9a+G1Chj0GNFfZ4TdVHmfHqgyyLKMVPCnMGy+sM7wrrM2L/rkabfbEY/HX7ybohBMFvyw/rXwWQUc8xgxUGeEjVmm65BlGanf/SMMO55AsJXll8PQ3LMnyw6Ho2Q3jgkmC/53/WvhswkYdBvR7zbCZmSWaX+yLCP125/AsOMJBILbB9PATftm2W63lyzLNputIs9Iaiokn3nmGXzyk5/Eo48+ikAgAAC477778OUvfxlPPPEE7r777mKM8VBK+ZDZDXnr/85wUsE/LWXwL8sZdNXbMehzoaveDqOh8gJA5SNnMvjsP03BJAB1NgvcXj/ccMF9aQ7upSjcbjfq6urgdrthNpvhcDhK9iirjezWp95QUkFoR5aHfC50Msv0Itl0Gp/956s7sty0neVZuJciZc3yei7LmwpCmxn883IG3fUODPqd6PQwy7RbJpXC//XP12A2AHX2rSx7BBfqdmQ5l+dclkv1KKtKXQAi78f/nD17Fvfddx8++tGP4v7779/1tf/+3/87fvzjH+PHP/5xxZ12lWUZY2NjJbnTKZhwICbv//3bTAYMeJ0Y9Dvhc1gq8lMFld4TX/l7BKcXD3yfzWZDX18fTp48WZIH7P8u4UD8Rln2OTHkc8HrMDPLBAD4wWP/A9LV/VdD2slms6G/vx/Dw8MlyrITcXn/q7hsJgOO+ZwY9Lngc/JSDtryvX/4/+LMTOjA9+We63jixImSZPnYsWMlbaXnS9dzJI+axcXF6y73VjAmK361nt9E1Gg3Y9DvwjGvEw5LZRXeVDqpVArPPvssnnvuuQPfW1dXhw984ANIJpOVlWWHGUM+FwZ8TjjMzHKtSqVS+OUvf4lf/epXB77X7XbjAx/4ABKJBEKhg39ZH4ZituL5tfyy7HWYMehz4ZjPCTuzXLNSqRSeeeYZPP/88we+1+Px4AMf+ABisVjRz7C7XC709PQU9Rh61UQhmclkMDExUdSzkrOCB1NRbZ9IBACd9XYM+pzobnDAxBZL1VMUBdPT05AkCefPn8/rGWR2ux3vf//74ff7S5LlGcGDaZ1ZHtrOMtuF1U9RFExNTalZzufZkA6HA+9///vh8/mQyWQwPj5e1DM51+DB1Zj2LHfV2zHod6K7nlmuBXqy7HQ68f73vx9erxfpdBoTExNFzXJ/f39FLo8I1EghCWyth3n16tWi7Nvr9cLb1IzJlTjGl6OYjyQ178NiNGDA68Cg34UmJ1vf1WZlZQWSJOH06dNYW1vLezuLxYL7778fbW1t6mvr6+u4du1aEUa5nWV/MyZXYhgLxbCgI8tWowH9XgeG/C74meWqk8uyJElYX1/Pezur1Yr7778fra2t6mvFzLLP50ODrwmTKzGM681y7pIkn5NZrkIrKysIBoM4ffq05iy/733vQ0tLi/ra2toaZmZmijFM+P1+NDc3F2XfhVAzhSRQnDUxc9eu7VxTe2MzjfHQ1uQVSWY077PeZlJbLC6r7kd9Upklk0mcO3cOkiTp+hBjNBpx77337tvOKFWW17ezPBGKIpLUfha03mbCkH8ry04Ls3xUbW5u4vz587qzbDKZcO+996K7u3vX64qiYHZ2VtOHq3zY7Xb09vbum+Xx5SiiKT1ZNmPI72SWj7jNzU11XtbzIcZkMuG+++5DV1fXrtdLmeVKU1OFpKIomJmZ0fTJ40asVit6e3thMu0/qSiKgvlIEuOhKCbDcaRl7f9Xd7htGPQ70dPggNlYuUGiLbIs48qVK5AkCRcuXEAmo/2DBLD17Lt3v/vdGBoa2vfrhc6yzWZDT0/PgVkeW45iciWOjMYsCwDaPTYM+VzoabTDVMGTIm0pVJYNBgPe85734NixY/t+XVEUXLt2DRsbG4cZrspms6G3t/e6N34qioK5je15WWeWOzw2DPpd6Glglo8CWZYxOTkJSZJw8eLFQ2X53/ybf4OBgYF9v17qLFeKmiokga0f9PLyMpaWlvb9ui8+j/rUKgyKAlkQsGZpQMjRuud9brcb7e3tef+A01kZV1bjGF+OYXZD+wLvZoOA/u0WS0udlS2WChMKhdTWtZ5JpK6uDpFIRP37nXfeidHR0RtuoygKlpaWrnvzTVGzvBLHWCiGOR1ZthgF9DU6MeR3otnFLFeaUCiktvt2ZjJfL87yH/7hH2JkZOSG2xQqyx6PB21tbZqyPLkSx3goirkNPZckvTAvM8uVZ3l5WZ2XC5Hlu+++GydPnrzhNuXKcjnVXCGZk0gkMDMzg2TyhcnDF59HYzIMob4ZhoZWyKvzUNYWsWL1qj9oo9GItrY2eDwe3ceOJDOYCMUwHopifVP7JyO31YRBnxODfhfq2Poum0QiobZI9Fwb43A4cOrUKYiiCK/Xi//23/4bUqkU3vKWt+DlL3+5pnGUN8tRjC3HsKHjMg631YRB/9bjV5jl8kkkEjh79iwkScLs7Kzm7XNZDgQCaGxsxKc//Wmk02m89a1vxU033aRpHHqz3N7eDrfbrXnsOZFkBuOhKMZ1Ztmz45IkZrl8Dptlp9OpzssNDQ349Kc/jUwmg7e97W142ctelvd+4vE4ZmdnNWfZZDKhra3tUFkutZotJIGtTw7xeBzhcBiRSAT9q+dg9PhhGrkVgiBAURRkzj6N7HoIc20vQ2NjI9xud8GuVVAUBYvRFMZDUVwOx5DKav9RtNVZMeh3oa+Rre9SkGUZly9fVlskWu+eNhgMGBwchCiKOHbs2K5Pm0888QQaGhrw2te+VvO4FEVBLBbDyspKXln2er2oq6srcJaTGFuOYXJFZ5bdVgz5XOhllktClmVcunQJkiTpetauwWDA0NAQRFHEwMDAriz/4Ac/gM/nw6tf/WrN49KTZbfbXbCzgYXJsg1DPiezXCLZbFadl/Vk2Wg0qvPyi7P8ve99D83Nzbj55ps1jyuX5XA4jGg0WvIsl0pNF5I7KYqC9HPfgbFXhLHjuPp6duYislckWF7z7qIePyPLmFpNYHw5ipn1TWj9oZgMAvoaHRj0OdHmrsxllI6ypaUlBINBnDlzBtFo9OANXqS1tRWiKOLUqVPXXW0pHo/Dbrcf+mdXKVkeW45i9hBZHvK70MrLOApucXFRbffpWT62ra0NoihiZGSk6rOczm7Py6GteVkrs0FAL7NcNIuLi+q8XMwsF2KFvHJnuZh4/n2bIAiAIEBenYehfUj9tCCvzgMluEbBZNh6zMSA14lYKtf6jmE1cfDzrAAgIyvqneIuixGDPhcG/U54bJW3/vlREY/HcebMGUiShPn5ec3bO51OjI6OIhAIoKmp6cD3F2o5z0rM8thyDGubOrPsd2HQxywfRiwWw9mzZxEMBrGwsKB5e5fLhdHRUYiiWFNZNhu3Vr455nMimsxgIrx11/danpckpXdkuc5qxDEfs3xYsVhMnZf1ZLmurk69DMPv9x/4/mrJcjHxjOQOqV//CNiM7Ll+wdB+HKa+QMnHoygKQrEUxkIxXArHkMxof9hpi8uKQb8TfY1OWE1ssRwkm81iYmICkiTpeliy0WjE8ePHIYoi+vv7y/bIhtSv/x9gM1pRWV6OpTAeiuFSKIZkVkeW66wY9DnR3+iEhVk+UC7LwWBQ18OSmeX95bI8thzF5XBcd5aHfFuXJDHLB8tmsxgfH4ckSbqybDKZ1Cy/+BFnpVRpWS4UFpI7ZC48Dzl0FRAEQFG2/lcwwHLzu8o9NGRlBdNrW63vq2sJze1CoyCgt9GOQZ8L7R4bDGyxqBRFwcLCAiRJwpkzZxCPxzXvo6OjA6Io4uTJkxWx+kD6wq+ghK69KMtGWG6+u9xD287y1hMM9GTZZBDQ08As7yeX5WAwiLNnzx4qyyMjI7DZbEUYpTbp889BCc9UbpZXt55gcE13lh0Y8m9dksQsv0BRFMzPz6tZTiQSmvfR2dmpzssVkeVzz0JZmd2dZYMRlleVP8uHwdb2fnK1taIApspoQRi3rxvra3Qgkc6qd32H4/m1C7OKgkvhOC6F43CYjepd3w32yvj+yiEajeLMmTMIBoPXfRzUjbjdbrXd5/P5ijDCAtiZZXNl/Ky3srx1ljyezuJSKIaxUBQreWY5I7+QZafZiGPMMqLRKE6fPg1Jkmojy5b81s8uNqNBQJ/XiT6vE/FUVm19r2i4JOlSeKvj5LRsZXnI50J9DWc5EomoWb7eI3RuxO12QxRF9WkYFWnXvGwt71gKgIXkEWQ3GzHa6sZoqxvhWApjoSgmQjFs5tn6jqezCM5vIDi/Ab/TgiG/C/1eB2ymo32dRj5y6/sGg0FcunQJWk/Im0wmnDhxAqIoVvxqA0eBY0eWQ7GtJxhoyXJsR5abnBYM+l0Y8DpgrZEsj42NQZIk3VkeHh6GKIro6elhlg/JYTFCbHVjtKUO4XgaY8tRXApryHIqi+DcBoJzG2hyWTDk25qXayXLFy9ehCRJuHz5suYsm81mnDhxAoFAAD09PbypqcRYSB5xXqcFr3I24pWdDbi2nsD4cgzTa3Hku1jDciyF5dgKnp9eQXf9Voulw2OH0VA9/xAVRcHc3JzaItnc1H73ZVdXl9oisVqP/ifISuRzWuA7RJaXYiksbWe5p2HrCQad9faqahfmlmELBoM4d+6crix3d3dDFEUMDw8zy0UgCIKa5d/rasDVta27vq+uJfLPcjSFpej2vNywddd3R5VdxpFbnUuSpENlORAI4MSJE8xyGbGQrBLG7Wttehoc2ExncSm8tVrDciyV1/ayAlxZjePKahx2kwEDPieG/C54HZXRQtJjY2NDbZGEQiHN29fX16vtvsbGxiKMkPazN8tbd71qyfLkShyTK3HYzQYc8249weCoZ1mSJEiShHA4rHn7+vp6td3X0NBQhBHSfozbj//p3b4k6XJ46wkGoXh+Wc7uyLLDbNyal31ONB7hLK+vr6vzsp4sNzQ0QBRFjI6OMssVgoVkFbKZjRhpqcNISx1W41t3fU+EYoin83tIayIj48xCBGcWIvA6zBjyuzDgdcJurvwWSzqdVlskk5OTulokJ0+ehCiK6O7uZoukzLay7MZIixsr8a27vjVlOS3j9MIGTi9swOewYNDvPFJZvnDhgpplrSwWC4aHhxEIBNDV1cUsl5l9R5bD8RTGl2OYCEeRSOd/SdLp+Q2cnt+Az2nBkM+JfmaZKgDv2t5BvWt7J7MNlt97Z1nGU0iyomBmfRPjoSimVuLQuliDQQA6PXYM+l3orq+s1reiKLh27RqCwSDOnz+/a0mqfPX29kIURZw4cQKWCrmQ/zDUu7Z3sthheeU7yjOgAlKzvBzF1Kq+LHfVb9313VXBWT537hxSqfzOXO1UdVnO3bW9k9UByyveXp4BFVAuy2PbWc639Z2Ty/KQz4XOCszy1atX1XlZT5b7+vrULJsr5GbBw1Dv2t7J5oTl5XeUZ0AFwjOSNcIgCOiqt6Or3o5kRsbllRjGl2NYjOZXdMkKML2WwPRaAjaTAf1eJ4b8TvgclrJ9OlxbW1NX6FhZWdG8fWNjo9oiqa+vL/wAqSh2ZzmLy+E4xkPasjy1msDU6laWB7xODFZIliVJwurqqubtGxsbEQgEMDo6eqi106m09svy2HIUSxou49iV5e27vr0Oc9myvLq6qmZ5bW1N8/Zer1edl5nlo4GFZA2ymgwYbqrDcFMd1hJp9U7ZaCq/duFmRsa5xQjOLUbQYDdjcHvlB6el+HFKpVI4f/48JEnC1NSU5u2tVqvauu7s7GSL5IizmowYbq7DcPMLWR4PxRDTkOWzixGcXYyg0W7GoN+FY14nHJbitwsLleVAIICOjg5m+YjbmeXV3Ly8HEMsz8s4NjMyzi5EcHZhK8tDfhcGfE44StD6TiaTapanp6c1b2+1WjEyMoJAIID29nZm+Yhha3uHam5tH0RRFMxubGI8FMOVlTgyGnssAoAOjw2Dfhd6GhwwFbDFoigKpqamIEkSzp8/j3Q6v2e0qWMTBPT19SEQCGBoaKgqWiQHqebW9kFkRcHcxibGl2O4sqovy531dgz6nOiuwCz39/dDFMXayXIVt7YPksvyVus7oTvLQ9tZLmTrW1EUXLlyBZIk4cKFC7qznJuXTabqP6/F1jZVNUEQ0OGxo8NjR6pHxuRKHOPLUcxH8msXKgCurW/i2vomLEYD+r0ODPpcaHbpbxeurKyoLZL19XXN2/t8PrVF4na7dY2Bjh7DzixntrMc0pblq2sJXF1LwGI0YMDrwKDfhSbn4bIcDAZx+vRpXVn2+/1qluvq6nSNgY6evVmOYSwUw4KOLFu35+Uhvwv+Q2Q5HA6r8/LGxobm7f1+PwKBAE6dOsUsVwkWkrSHxWjAcb8Lx/0ubGymMR7aevxKJJnJa/tUVsaFpSguLEXhsZkw6HNh0OeEy3pw3DY3N9UWydWrVw98/4vZbDa1RdLW1sYWSY2zmAw43uTC8Sb9WT6/FMX5pSjqt7N8TEOWz507B0mScO3atQPf/2J2u13NcmtrK7Nc47ayXIfjTXVYz2V5OZr3JUnJF2fZvzUv53NJUi7LwWAQMzMzB77/xex2O06dOgVRFJnlKsTW9g613No+iKIomI8kMR6KYjIcR1rr7YUA2t02DPqd6G1wwGx8YRUNWZZ3tUgymfx+yecIgoBjx45BFEUMDg7WRIvkILXc2j5IIbLcsZ3lnn2yPDk5CUmScPHiRc1ZNhgMapaPHTvGLKO2W9sHyWV5bDmKSZ2XJLV7bBj0udDTYN83y8FgEBcvXkQ2m1/BmrMzy4ODgzAaK/8xRcXG1jbVNEEQ0Oa2oc1tw83dMq6sxjG+HMPsRv6rEcxubGJ2YxPPGVbQ53WgyZDE3KULOH36NCKRiOYxNTc3QxRFnDp1Ci6XS/P2VJv2ZHll665vLVme2djEzMYmzIYV9Hud8BsSmJ24gDNnzujKcktLi5plp9OpeXuqTTuz/OqerSyPhWKYyzPLCoCZ9U3MrG/CYhTQ1+iEX4hjZjvL0WhU85iY5drDQpI0MxsN2+1qF6LJzHa7MIr1zYPPvsjpJNbnr+D5X11Cel37ajMOhwOnTp1CIBBAS0uLnuETqcxGw1aLz+9CJJnBhJYsp5JYX7iCXx0iy7mVk5hlOqy9WY5ibDmGjTwu45BTm1idv4Lnnr2EzIb21WacTqc6Lzc3N+sZPh1hLCTpUFxWE17a7sFL2txYiqYwForicjiG1I6nRCuyjGRoFonZS0guXQOU/FZyyDEYDBgcHEQgEMDAwABbJFQUdTuyvBhNYbwIWTYajRgcHIQoiswyFc1WluvxkjYPFqNJjC3HMLmyX5ZnkJi9rDvLQ0NDEEUR/f39zHINYyFJBSEIAprrrGius+JV3Y2YWo0jODGNqbHzSMxdhpzKv22Y42tqxk0vfQlOnToFh8NRhFET7SUIAlrqrGips+JV3Q2YWk1sZfniOSTmJ3Vl2d/cgpte+hKMjIwwy1QyW1m2oaXOhpt7GjC1ksDvJqYwPXb+EFluxU0v3brr2m63F2HUdNSwkKSCisViOHv2LILBIBYWFjRvb7DaYW/rh62tH6a6BlyyGCGEkxgymOGxVf8z86hyxGIxnDlzBpIkHSrL9vYBGF31mDAbIYRTGGSWqcRisRhOnz4NSZKwuLioeXuD1QF7W9+LspzEoM/ELBMLSTq8bDaLiYkJBINBTExMQJa1tUhgMMDW1AV7+wAs3jYIhhfuHIymsvjd3AZ+N7eBZpcVg34n+hudsJoMN9ghkT7ZbBbj4+OQJOkQWe6Gvb1/3yz/dm4dv51bR8t2lvuYZSqSTCazK8uaH9BiMMLW3AV72wAsvlYIwouyPLuO386uo6XOikEfs1zLWEiSLoqiYGFhAcFgEGfOnEEikdC8D5e3GcaWPlhbemAwWw98/2I0icVoEs9PraCnYesh0R0eGwx8JhkdgqIomJ+fRzAYxNmzZ/Vl2dcCY3Nv3lleiCaxEE3iV1Or6G20Y9DnQjuzTIekKArm5uYgSdIhs5ybly0Hvn8hksRChFmuZSwkSZNoNKq2SJaWljRv73a71TtVfT4fEumseqdsOJ7fEltZBbi8EsfllTgcZiOO+ZwY9DnR6Dh40iPKiUQiapaXl5c1b+92uyGKIkRRhNfr1ZllBZfCcVwKb2V50OfEoN+FBjvbhZS/w2bZ4/Go87LX60U8ncWlUAxjy1GsJLRn2Zmbl5nlmsBCkg6UyWQwNjYGSZJw6dIlzS0Sk8mEEydOQBRF9Pb2wrCj3Wc3GzHa6sZoqxvheArjy1FMhGJIZPJrKcbTWUjzG5DmN+B3WjDoc2LA64TNzDsIaa9MJoOLFy9CkiRcvnxZc5bNZvOuLO9coWNXlmNbTzCYCMWwqSHLwfkNBLezPOR3od/rgM3ELNNe6XRanZf1Znl4eBiiKKKnp2dXlh3bWT7VUodwPI2xUBSXNGQ5tiPLTU4LBv0uDHgdsDLLVYmFJO1LURTMzs4iGAzi3Llz2NzUfndfV1cXAoEAhoeHYbUe3O7zOiz4/e5GvKKzATPrCYwtxzC9Fke+izUsx1JYjqXwT1dX0V3vwKDfiU6PHUYDWyy1TFEUzMzMQJIk3Vnu7u6GKIr5Z9lpwaucjXhlZwOurScwrivLK3h+egXd9Q4M+Z3oYJZrXi7LuXk5mcxvze2denp6IIoiTpw4cWCWBUGAz2mBz9mI3+tswLW1BMZCUVxdS+Sd5aVYCkvbWe5pcGDQ50RnvZ2t7yrCQpJ22djYgCRJkCQJ4bD2B9PW19er7b6GhgZdYzAaBHQ3ONDd4MBmJovL4TjGlqNYjqXy2l5WgCurcVxZjcNmMuCYz4khnwteJ1vftWR9fV1t9+nJckNDA0RRxOjo6KGy3NPgQE+DA5vpLC6F4xgP6cuy3WTAgM+JIb8LXl7GUVPW19fVeXllZUXz9gXLcqMDPY0OJNJZXA7HMBaKIaQhy5MrcUyuxGE3G3DM68Kg38ksVwEWkoR0Oo0LFy5AkiRMTk5q3t5isagtku7u7l0tksOymYw42VyHk811WE2kMb4cxXgohng6v3VfNzMyzixEcGYhAq/DjEGfC8d8TtjZ+q5KqVRKbV0fJsuBQABdXV2FzbLZiJGWOoy01GE1nsJYKIYJDVlOvCjLQ34XBrzMcrVKpVLqvHzlyhXN21ssFpw8eRKiKBY8y3azESMtboy0uLGyneVLWrKclnF6YQOnFzbgc1gw6Hcyy0eYoGh+JkD1ylx4HnLo6u4XzTZYfu+dZRlPMSmKgqtXr6rtvlQqv0+VO/X29qotEouldJ8qZUXB7PomxkNRXFlJIKsxwgKArno7Bv1OdNc7qrJdmL7wKyiha7tftNhheeU7yjOgIsplORgM4vz587qy3NfXp2bZbC7dzQGyomBmO8tTK3FktT6hRQA6PXYM+l3orq/O1nf6/HNQwjO7X7Q6YHnF28szoCJSFAXT09OQJOnIZnlsOYrpVX1Z7qrfuuu7q1qzfO5ZKCuzu1+0OWF5+R3lGVCB8IxkjVlbW1NbJKurq5q3b2xsVFvXHo+nCCM8mEEQ0FlvR2e9HcmMjMmVGMaXY1iI5ne9kAJgei2B6bUErCYDBrxbd337nZaCfmqn4lpdXVWzvLa2pnl7r9ertvvKmeWueju6trN8eTvLi3lmWVZeyLLNZEC/14khvxM+B7N8lFRflrcvSQpFsRTNv/U9tZrA1OpWlge8Tgwyy0cCC8kakEqlcP78eUiShKmpKc3bW61WnDx5EoFAAB0dHRX1j9pqMuBEUx1ONNVhfTON8eWtx69EU/m1WJIZGecWIzi3GEGD3YxBnxPHfE44LfynUYmSyaSa5enpac3bW61WjIyMIBAIoL29veKyPNxUh+GmOqwl0hjfvus73yxvMstHSi7LwWAQV69ePXiDF7HZbOq8XHlZNmK4uQ7DzVtZzj3BIKYhy2cXIzi7GEGj3YxBvxPHvC44LGx9VyK2tneopta2oiiYmppSWyTpdH7PAssRBAH9/f0QRRFDQ0MlbZEclqIomNvYxHgohsmVODL53l64TQDQ4bFh0O9CT4MdJsPRW62hmlrbiqLgypUrkCQJFy5c0JXlgYEBNcsm09EprBRFwex2lq8cOssOmI5gu7CaWtuyLGNqagrBYBAXLlxAJpPRtP1RzrK8PS+PLccwtaovy531dgz6nOg+qllma5uOgpWVFQSDQZw+fRrr6+uat/f7/WqLpK6urggjLD5BENDusaPdY8fNPTKurMQxvhzFXCT/1ve19U1cW9+ExSigf7v13eyyVtSn/moXDofVdt/Gxobm7f1+PwKBAE6dOnWks9zhsaPDY0eqR8bkdpbndWXZgH6vA4M+F5pdbBeWUjgcVudlPVluampS52WXy1WEERafYWeWM1tZHgtFsaAhy1fXEri6loDFaMDAdpabmOWyYyFZBTY3N3Hu3DlIkoRr164dvMGL2O12td3X2tpaVf8oLUYDhvwuDPldiCQz6l3fG8n8zgSksgouLEVxYSkKj82k3vVdZ+U/nWLIZTkYDGJmZubgDV7Ebrfj1KlTEEWxKrN83O/Ccb8LG5tpjIdiGA/FEMk7y/KeLA/6nHAxy0WRSCTUefkwWQ4EAmhpaamuLJsMON7kwvGmnVmOIpLMr/Wdyso4vxTF+aUo6nfMy8xyebC1vcNRam3LsozJyUlIkoSLFy/qapEcO3YMoihicHDwSLVIDktRFCxEkhgPxXA5HENaY4sFANrcNgz5nOhtdMBsrLzW91FqbeeyHAwGcfHiRWSz+f0yyTEYDLuybDTWznVUiqJgPpLEeCiKyXBcV5bb3TYM+p3obajQLB+h1rYsy7h8+bI6L+vNciAQwLFjx5hljTq2s9xTqVlma5sqwfLyMiRJwunTpxGJRDRv39zcDFEUcerUqSPbIjksQRDQ6rah1W3Dq7obMLUax/hyDDMb+a94MrexibmNTTw3tYK+7RZLax1b31osLS2pWY5Go5q3b2lpUbPsdDqLMMLKJwgC2tw2tLltuLlbxtRqHGPLMcxqyPLsxiZmNzbxnIFZ1mtpaQnBYBBnzpzRleXW1laIooiRkRFmeTvLV1biGA9py/LMxiZmNjZhNqyolyS1MMtFx0JyXwK2rsgQgKy2C/uLIZFI4MyZM5AkCXNzc5q3dzgcu1ok9AKz0YBjPheO+VyIJjOY2G6xrG3md4Y3LSsYW45hbDmGOqtRbRe6bZVyc9KOLGfKn+V4PI6zZ8/qzrLT6VSz3NzcXIQRHl0vznKuXbiuK8smDPqclZvltPbnKxZaPB5X5+X5+XnN2zudToyOjkIURWb5RcxGAwb9LgxuX5I0oSPLF5ejuLgchTuXZb+rgi5J2pll7ctcVhq2tndI/fpHwGYEQn0zDA2tkFfnoawtwtB+HKa+QEnHks1mcfnyZQSDQYyPj+tqkQwNDUEURQwMDNRUi+SwFEXBUiyF8eUoLoXjSGVlzftoqbNiyOdCX6MDFlPpWyypX/8/wGa0YrJ86dIlSJKEsbExyLK2/z+NRqOa5f7+fmZZA0VRsBRNYSwUxeVwDCmtT4kG0FpnxaB/O8tlaBdWWpYnJiYgSRLGx8cPleWBgQEYjuATIcpFURQsRl+4JElPltt2ZLkcre9KynIhsZDcIfXcdyB4/DCN3ApBEKAoCjJnn4YSCcPyqrtLMobFxUW1RRKLxTRv39bWprZIHA5HEUZYWzKygunVrRbLtbUEtP5jMW2vtTzkd6LNbYOhRC2WSsjywsKCmuV4PK55+/b2djXLdru9CCOsLbksjy1HMbO+qSvLvQ0ODPqdaHfbStYuZJbpxTKyjKnVBMYPkeW+RgcGfVvzci1luRgq5TxvWaVSKWxsbMCtKDA0vHCnpyAIMDS0Iru2hHg8DrvdXpTAxWIxtUWysLCgeXuXy4XR0VEEAgH4/f6Cj6+WmQxbj//p9zoRT2UxEY5hfDmKlUR+beKMrOBSOIZL4RicFiOO+ZwY8rlQb9/bLryyEoffaTnUnYfJZBKRSKSsWT59+jQkScLi4qLm7evq6tR2H7NcWDuzHEtlcCm81cZe1ZDliXAME+EYXNtZHrxOlidX4mh2WQ71MPRyZzkajarz8mGyHAgE4PP5Cj6+WmYybK18M7Cd5YntJxhoyXLuqQcuy/YlSX4nPPtcxjG5EkOzy1qSLB/Vkz81fUYyGo0iFAqpF0cPrJ2HcZ9PC9n1EC7Vn4DVaoXX60VDQ8OhJ65sNovx8XFIkoSJiQldLZITJ05AFEX09fWxRVJCiqIgFE9hfHmrQNzMaG99N7ksGPK50O91wGraatV+7+w80lkFbx9uht2srX0bjUaxvLysnsXOJ8s+nw/19fWHznImk9mVZa1TislkwvHjx5nlMshleWw7y0kdWW52WTHo2ypQrduXcfzfZ+aRVRS8/UQzbBqzHIlEEAqFjmyWc/Nyb28vs1xCiqIgFEthLKQ/yy0uKwb9TvQ1vpDlx8/MQVGAO4abYTMVN8s2mw1er7cgWS6lmiwks9ks5ubm9jyw2xefR2MyvOf6hRWrDyHHCzep2O12dHR0wGq1ajquoiiYn59HMBjE2bNnkUgkNI+9o6MDgUAAJ0+ehM1m07w9FVZWVnB1LYHxUBRX1xLQ+sQKowB0NzjQ7rHh2SsrAAC/04K3HW/O69rKTCaD+fn5smR5bm4OkiTpznJnZydEUWSWK0Quy2PLUVxb15flngYH2tw2PDu1leUmpwVvPdGc17WV5c5ybl7e3Mz/LuGcrq4uiKKI4eFhZrkCZGUF02tbT+O4quOSJKMgoLfRjpY6G57LZdm1NS/nc21lJpPB3NzcnofPFzvL5VJzheTm5iampqau+9xFX3we9ak1GBQZsmDAmqVh1w94p87OTng8ngOPGYlE1Hbf8vKy5jG73W6IoghRFOH1ejVvT6WRSGdxKRzD+HIMofjh7iptq7Pizcebbrg84+bmJq5cuXLdG7HyzbIgCOjo6ChJlj0ej9q6ZpYrVy7LY8tRhOOHu9u/zW3Dm4eabrikXSKRwNTUVEmzvLGxoWY5FArl/w1t83g86rzc2NioeXsqjXg6i0vbd30fNssdbhtuH2qCsURZ7uzshNvtPtSYS6GmCsnNzU1MTk5qbiPfSEdHB+rr6/e8nslkcPHiRUiShMuXL2tukZjN5l0tkqN0mpuA8HbreyIcRSKtL2/d9Xa84Zh/30mrGFm+3gejdDqNsbGxQ2V5eHgYoiiip6eHWT5itrIcxUQohoSOdiEA9DRsZXm/m80SiQSuXLlSsizn5uXJyUndWQ4EAuju7maWj5hQLIXx0FaW9VySBAC9DQ68/pjvulnWk6sbyfeEVTnVTCGZe2yD1hVg8tHX1weHwwFFUTAzMwNJknDu3DldLZLu7m61RXJUTmvT9cmKgmtrCYyHYphajWtuFx7zOvG6fu+uX1iZTAYTExOaHwmVj/7+ftjtdjXLwWAQ586dQzKp/VlnPT09EEURJ06cYJarQFZWMLOuP8uDPidu7StPlq9du6bOy3qzHAgEcOLECVgsloKPlUorKyu4tp7A+HIM02vaszzkd+KW3tJnuVLVTCE5MzODtbW1ouzbYrFgdXUVv/71rxEOhzVvX19fr7ZIGhoaijBCqgSbmSwuh+MYX45iKZZ/6/tkcx1u7n7hBq9r167tuY6sUCwWC1ZWVvDrX/8aKysrmrdvaGhQs7zfmXqqDnqzPNJch1eVKMtWqxWhUAi/+c1vmGW6rs10FpfCcYyHoljWkOXRljr8XtcLWb569eqeayILxWq1YmBgoGLPgBf18T/Xrl3DX//1XyMcDsNoNOJ//a//VZbb26PRaNGKSGDr8UGpVEpTEWmxWNQWSVdXV8UGhArHZjLiZHMdTjbXYTWRVtuFsfSNP8GeW4zAajTg5Z31iEajRfvFC7yQZS2/eC0WC06ePIlAIIDOzk5muQbsl+XxUAzxA7J8djECq8mAmzrqEYlEiprlZDKJZDKpKctWqxUnT56EKIrMco2wmY0YaanDSEsdVuNbd31P5JHl0wtbWX5pez02NjaKVkQCW1kOhUIV+0i0ohaSf/VXf4WPfvSjuOmmm7C2tla2loCeC6m1amhogMFgOPA6n76+PoiiiOPHj7NFUsMa7Ga8sqsBDfFF/GLNBhzwC+u3c+uwmgyo29R+xlurxsZG9dEUN9LX14dAIIDjx4/DbK6UZfSo1HJZro8t4unUwVn+/81uZdmVKH6WfT5fXlnu7+9X52VmuXY1OCz4vS4LGqL5ZfnXM+uwGI1wxItfY4TDYTXPlaZoheTExARMJhNuuukmAChbayCVSqnPiSy2wcFBXLx4cc/rXq8XoihidHS04i+apdKyP/99/IFgxvm2V2DB0wUIAgQAdrMRLosRDosRLosJTosRNkHWtdqRHoODgxgbG9vzutfrRSAQwOjo6JG4m5BKx/n8/43XGaw43/4KLLpfyLLDbITTYoRzO8dOixEWlC7LAwMDmJiY2PO6z+dT52VmmXZyPv84bjXZcb7tFVhydx6Q5Yyu1Y60ymQy2NjYqMgaQnMhKcsy3vKWt+C2227Dww8/rL7+7LPP4sMf/jA+9alP4c1vfjOmp6fhcDjw0EMPYXFxEW9605vw0EMPFXTw+YhEIiU71sDAgFpIWq1WjIyMIBAIoL29vSI/RVB5pbMyTAYBjdFFvHrih1B8HTDf9Hq4+k7AuM9jf0KhELSve6TPwMCAWkjabDaMjIxAFEVmmfaVysowGgR4Y4t4zfgPofg7Ybnp9XD2Hi97lgcHB9VCMpflQCCAtrY2Zpn2SGW25mVfdAGvHf/fUJq6trLcM7RvlpeXl6F93SN9IpFIRRaSum62+f73v49HHnkEv/jFL+DxeHDx4kX80R/9Ef70T/8UDzzwAADgySefxH/+z/8ZP/jBD+D1evHAAw/goYcews0331zwb+JGinmTzYsZDAYoz34PHo8HdXV1JVtXmY6u1LUJIL37LlJTcyfsr3gjzF1Du37RFfPGhBcz5rJcXw+Xy8Us04FSV8eAzO7n9Jmau7azPLgry8W8MeHFmGXSat8st3TD/oo3wNxZvixbLBYMDg6W5Fha6Gpt33HHHfjc5z6Hr3/967j77rvxwQ9+EO94xzvUIhIAWlpaMDIygtbWVgDALbfcggsXLpS8kCzFKeccWZbRrCRgCK0jU/xLJqhKZRavIfLDf9hTUOpZPUavrCyjWY7DsLyOjPbnjhMBADKLVxH54Zf2FJQlz3I2xizToWQWphH531/aU1CWMsupVAqyLFfc0pu6CkmTyYQHH3wQf/d3f4ef/OQnGB4exsc//vFd7zl16hTC4TDW19dRV1eH3/zmN3j3u99dkEFrUYxnOt2IbLLCkDncqiZEwN6CMpst7ZO6ZLMFhuzhVoIgAvYWlKWelxWzBUgW/hnCVHteXFCWOsvZbLbiCkndo7njjjvUSvzRRx+F0bh7MXOTyYSPfexjuPfee/H2t78d3d3deN3rXne40R4F7JpQgWXXQsgszRR0tYT8MMxUWNm1ZWSWZ8pwZGaZCiu7uozs0mwZ5uXKo/uu7UceeQQAsLq6uqeIzLnllltwyy236D1EQRgMhpJ+YhAyPINDhSFY7bAFXgvb6M0wWO0wjo0VdBm5g/BsJBWKYLXD9pJbtrJsscFw8WJJsyxk2SWiwhCsDthfcgtso6+CYLHBePFiUVbMu55KOxsJ6CwkP/OZz+Dpp5/Gd77zHbzvfe/D448/jve+972FHltB2O12pNOl+YVoNBhgstkg2GwlOR4dfXJ0A1B2/0J9cQGZY7PZSpdloxEmmx2wVe6yXFRZ9s+yA7aXvFYtIHPsdnvJnqhhNBphsjtLciyqDtfL8s4CMsdms5XsEYMmk+m6J+7KSXMh+d3vfhePPfYYvvrVr+L48eO4//778aUvfQn33HNPRT7I1W63l+yOKrvDgcb7/0NJjkXVYe2bn0J2dQnA9QvInFL+8nU4HGhglkmD1a//fyCvb91leL0CModZpkq2+rX/N+SNrRWRrldA5tjt9pIVkuVYGTAfmgrJZ555Bp/85Cfx6KOPIhAIAADuu+8+fPnLX8YTTzyBu+++uxhjPBSXy4XFxdI85cnlcpXkOFRdDiogc1wuF5aWlkoyJmaZ9DiogMxhlqnSHVRA5rhcLiwvl+ZxAJWa5bwLybNnz+KjH/0oHn74YbzxjW9UX3e5XLj33nvxxS9+EXfeeWfFnXa12+2w2WzY3Nws6nEEQUBDQ0NRj0HVx/bSW2HpG7lhAZlTyiyXayUqOrrsL/sDWAZO3bCAVN9rt8NqtSKZTB743sNglkkP+023wTowesMCMsfhcJQsy5X4MHJA5wPJj5q1tTXMzBT3TsH6+np0dHQU9RhEq6urmJ2dLeoxGhoa0N7eXtRjEK2srGBubq6ox2hsbERbW1tRj0FUiix7vV71udyVpvJu/ykCj8dT1GsLDAYDWlpairZ/opz6+nrY7cW7AcZoNKK5ublo+yfKaWhoKHqWm5qairZ/opyGhgbYiniTbaVnuSYKSUEQirpGcHt7O0wm3U9SIsqbIAjo6OgoWpbb2tqYZSqJYmeZ8zKVSi7LxdLe3l5xlw3uVBOFJABYrVZ0dnYWfL8+n69ir1ug6mS1Wosyafn9fmaZSqqYWXa73QXfL9H12Gy2otQYTU1NFZ/lmikkAcDtdqOrq6tg+/P5fGwDUll4PJ6CTlp+v7+iWydUvZhlqhYej6egH4yamprg9/sLtr9iqYmbbV4skUhgZmZG911WRqMRbW1tPHtDZccsU7UoRJbb29sr/uwNVb94PI6ZmRmkUvpWVDpqWa7JQhIAZFlGOBxGKBTKewnF3KMkmpubee0NVQy9WW5oaEBTUxOzTBVDlmWEQiGEw2FmmY60WspyzRaSOYqiYGNjAxsbG0gkEns+QZhMJtjtdrhcLtTX11f0Ba9U25hlqhayLCMSiWBjYwPxeHzP0qDMMh0VsixjY2MDkUikarNc84Xki8myjGw2C0VRYDQaj+QPlQhglql6ZLNZyLLMLNORV41ZZiFJRERERLrU1F3bRERERFQ4LCSJiIiISBcWkkRERESkCwtJIiIiItKFhSQRERER6cJCkoiIiIh0YSFJRERERLqwkCQiIiIiXVhIEhEREZEuLCSJiIiISBcWkkRERESkCwtJIiIiItKFhSQRERER6cJCkoiIiIh0YSFJRERERLqwkCQiIiIiXVhIEhEREZEuLCSJiIiISBcWkkRERESkCwtJIiIiItKFhSQRERER6cJCkoiIiIh0YSFJRERERLqwkCQiIiIiXVhIEhEREZEuLCSJiIiISBcWkkRERESkCwtJIiIiItKFhSQRERER6cJCkoiIiIh0YSFJRERERLqwkCQiIiIiXVhIEhEREZEuLCSJiIiISBcWkkRERESkCwtJIiIiItLFVO4BVBJFUZBMJpHNZgEABoMBVqsVBgPrbTpamGWqFswyVYtqzXLNF5KZTAarq6vY2NjA5uYmFEXZ8x6LxYK6ujo0NjbCarWWYZREB2OWqVrkk2Wr1Yq6ujo0NDQwy1SxclleX19HMpmsyiwLyn7fVQ3IZrNYWFjA6uqqpu2cTifa2tqO5A+bqlMmk8HCwgLW1tY0bccsU6XRm2WXy4XW1lZmmSpGLWW5JgvJSCSCmZkZ9fSyHs3NzfD5fBAEoYAjI9JmY2MDs7OzurMsCAKam5vh9XqZZSorZpmqxfr6Oubm5momyzVXSIZCISwsLBRkX263G52dnUfiB03Vp5BZ9ng86OjoYJapLJaXl7G4uFiQfTHLVE6FzHJ9fT3a29srPstH+wpPjcLhcMF+8QJbn6BnZmb2veaBqJgKneX19XVmmcoiFAoV7BcvsJXl2dlZZplKrtBZXltbOxJZrplCMpFIYH5+vuD7XV9fx8rKSsH3S3Q98XicWaaqEI/HC/qBKGdtbU3z9e9EhxGLxYqWZa3XWZZa0QrJyclJvOMd71D/Gx0dxU9/+tNiHe6GZFnGzMxM0fa/sLCAVCpVtP0T5TDLVC2KneX5+XlmmUqi2Fmem5tDOp0u2v4PqyTXSMZiMfzBH/wBfvGLX8DhcBT7cHuEw+GinMHZye12o6urq6jHICrkdZHXwyxTKZQiyx6PB52dnUU9BlEhr4u8nkrOckla2z//+c/x+7//+2UpIhVFQTgcLvpxNjY2KvoTA1WmuW9/A5vzc3m9l1mmSjb3ra8huZDfB/ZSZXl9fR2ZTKbox6HqMvfNryG5mN+HHEVRSnJJUCVnWXMhKcsybr/9dnzqU5/a9fqzzz6LkZERPPnkk3u2efLJJ/GWt7xF/ygPIR6Pl6y9wWtySKuVp3+Gsw/ejyt/96kDC8pYLFayAq/Sr8mhyhP++U9x9sH7MfWZTx9YUJYyy5yXSavQz/4RZ//kjzH1fz16YEEZjUZrfl7WvLKNwWDAhz70ITzyyCP44Ac/CI/Hg4sXL+IjH/kIPvaxj+HNb37zrvdHo1H89re/xd/93d8VbNBaxGKxkh0rGo3C7/OV7HhUBRQFkGWE/89TCP/sH+G97Y1ofc97YWtt2/PWUmfZ5/WW7HhUBRQFSjaL0D8++UKW3/1HsDLLdNTksvzUjxD+P0/B+/o3bWW5pXXPW0ue5QqsMXRdI5nJZPCmN70Jd955J+6++27cc889uO222/CJT3xiz3t/8IMf4LnnnsOnP/3pggxYq+npaUQikZIcyyAIiD/8/yrJsaiKGQz7FpRTU1OIRqMlGoIB8X//5yU5FlUvwWjct6C8cuVKyX4BM8tUCILRuG9BWcosG41GnDhxoiTH0kLXNZImkwkPPvggvv71r+PBBx/E8PAwPv7xj+/73qeeeqpsbW0A2NzcLNmxZEUB3J6SHY+q1PYZyhe3vEuaZVkGXHUlOx5Vp9wZyrMffN9Wy3s7y8lksmRjkGUZcDhLdjyqTko2i9BPfrx1+cZ//2/q5RulnJez2eyhVuQrFt0329xxxx1IJBIAgEcffRRGo3HPeyKRCE6fPo1Xv/rV+kd4SLIsl/R4gsVS0uNRFdtRUE595tPMMh1ZuYLyzPYv4VJnGcwyFcjOgnL6s39X8iyX/N9OHnQXko888giArQuZ9ysiAaCurg7PP/88LLX0j7gCf8h0hAkCGl9zC5rvurvky2QpzDIVkiCg8TW3ovnOu0t/bGaZCslgQMNrb0XTO/+w4pcvLAXNN9sAwGc+8xk8/fTT+M53voP3ve99ePzxx/He97630GMrCLPZXNJTwUqsNNewUZUTBDS+9la0/pt7Ye/qAQCYJiZK29Yo4UXkVMUEAY2vfd12lrsBAKbx8dI+LDzOLFMBGAxovOV1aH3PvbB3bj1rt9RZvt6Ju3LSXEh+97vfxWOPPYavfvWrOH78OO6//3586Utfwj333AOz2VyMMR6K3W4v2TUMZrMZnre+vSTHouoQ+senkI3uuBlMENDwmlvQ9kf3qQVkjt1uL9m1ZRazGZ473lGSY1F1CP3kx8ju/PCxTwGZ43A4SvbL12KxwPP2O0tyLKoOoad+jOzODx8GwwtZ7ty9WIPdbi9Zlq1WKwyGylvZWlMh+cwzz+CTn/wkHn30UQQCAQDAfffdhy9/+ct44okncPfdZWhZHMBut5fsOWIOhwOdf/JQSY5F1WH91/+yVUjucwbyxex2e8meI+ZwOtHBLJMGa//8/FYhKQhovOUP0Pqe9+4pIHNKmmWHg1kmTVaff26rkNznDOSL2e12rK+vl2Rc5VjUJR95F5Jnz57FRz/6UTz88MN44xvfqL7ucrlw77334otf/CLuvPPOijvt6na7MTeX38ohh+Xx8I5t0kgQtiaqGxSQOW63u+hLfeYwy6SZIKDx1ttuWEDmMMtUyQSDAY2vu+2GBWSO2+0u+lKfOZWa5ZKstV1u165dK/onBpPJhKGhIV54S5qkQsuw+Px5v//q1avY2Ngo4oi2LtEYHBxklkkTZpmqhdYsl+J51ZWc5cprthdBKZ4E7/f7K/IHTJVNy2QFlCbLPp+PWSbNKjHLnJdJD2ZZm5ooJO12e1F/0Ha7HY2NjUXbP1GOw+GAt4jLvTHLVCrFzrLD4UBDQ0PR9k+U43Q6izpvVnqWa6KQBICmpiZYrdaC71cQBHR0dFTsJwWqPs3NzUV5NiuzTKXGLFO1aG5uLsqTawwGQ8VnuWYKSYPBgJ6enoL+oAVBQHd3d1EKVKLryWXZZNL1GNh9CYKAnp4eZplKqphZrqmFMKjsjEYjent7azLLNXGzzU7pdBpTU1OHfh6f0WhEV1cXnE6u4UrlwSxTtUilUpieni5Ilru7uyv2MSlU/VKpFKampg79bMmjlOWaKySBrbUqQ6EQlpaW9nxtJm1FSLZChgADFPgMSXSYd09ubrcbbW1tBf3kQaSHLMtYXl7G8vLynq8xy3SUHDbLHo8Hra2tzDKVnSzLWFpaQigU2vO1asxyTRaSOclkEuFwGKurq1AUBTNpKxZlG1rrrGj32DG7nsB8JIlmwyY6zEnU1dXB6/XC5XKVe+hEu2xubmJlZSXvLLvdbjQ2NjLLVHH0ZNnr9fKMOlWczc1NhMNhrK2tVXWWa7qQzMlms4jFYvjfl9bR5LLiDce2brNXFAX/Z2IZy7Ek7hlpqcglIIl2YpapWjDLVC2qPcs1c7PNjRiNRrjdbsgK0O6xq3dHCYKAdo8dWRlH9gdMtYVZpmrBLFO1qPYss5DcQRCA2fUEcidpFUXB7HoCRkPl3nZPtB9mmaoFs0zVolqzfDSu5CwRl8WE+UgS/2diedf1CyebeR0ZHS0uM7NM1cHJLFOVcJiNVZllFpI7NDrM2EhmsBBJYiGydReVSQBu6qjcJ8oT7afBYcZG6kVZNgjMMh05DQ4zIswyVYEGuxnRVHZXls1VkGUWkvvYefeR2cjuPx1dO7NsYZbpCNuZZauJWaajq9qyfPS/AyIiIiIqCxaSRERERKQLC0kiIiIi0oWFJBERERHpwkKSiIiIiHRhIUlEREREurCQJCIiIiJdWEgSERERkS4sJImIiIhIFxaSRERERKQLC0kiIiIi0oWFJBERERHpwkKSiIiIiHRhIUlEREREurCQJCIiIiJdWEgSERERkS4sJImIiIhIFxaSRERERKQLC0kiIiIi0oWFJBERERHpwkKSiIiIiHRhIUlEREREurCQJCIiIiJdWEgSERERkS4sJImIiIhIFxaSRERERKQLC0kiIiIi0oWFJBERERHpwkKSiIiIiHRhIUlEREREurCQJCIiIiJdTOUeQCUSdvw5nZXLNg6iw9qZ5RSzTEfYziwnM8wyHV3VlmWekdxhJZ4GALTUWfGyjnq01FmRUYDfzKyWeWRE2qzul2VZYZbpyGGWqVqsJvZmOV0FWWYhuS2dTiOWyqC1zoo3HPPjZHMd3nDMj9Y6K8aWY1AUpdxDJMpLOp1GLM0s09GmKArS6TTizDIdcYqiIJVKIZHOVmWWa7q1Lcsy1tfXEQ6Hsbm5CVnxoN1jhyBsnXgWBAHtHjsWIkmMjY2hsbERjY2NMJlq+v82qkBas+z1etHQ0MAsU8WRZRlra2sIh8NIJpPMMh1ZWrI8Pj6OxsbGI5nlozXaAopEIpiZmUE2m1VfM0DB7HoCw00uCIIARdn6u0FQkMlksLS0hKWlJTQ3N8Pn86lhICqnjY0NzM7Oasry4uKimmWv18ssU0VglqlarK+vY25uLu8sp9PpI5tlQTnK51N1kGUZc3NzWFtb2/O1mbQVi7INrXVWtHvsmF1PYD6SRLNhEx3m5K732u12dHZ2wmKxlGjkRLvJsozZ2Vmsr6/v+ZrWLHd1dcFsNpdq6ES7MMtULWoxyzVVSMqyjOnpacRiseu+ZyZtRUixQlYEGAQFPiG55wecYzKZ0NfXx2KSSk6WZUxNTSEej1/3PcwyHQXMMlWLbDaLqakpJBKJ675HS5bNZjN6e3srPss1U0gqioLp6WlEo9GC7tdsNqO/v//IXdNARxezTNWimFkeGBiA0Wgs6H6JrkdRFExNTd3wRJUeFosF/f39FZ3lmrlre3V1teCTFbB1h+z8/HzB90t0PSsrK8wyVQVmmapFOBwueBEJAKlUquKzXNRC8itf+Qre+ta34i1veQv+5m/+pmy3txf7B7G+vo6NjY2i7Z8oJ5VKYWFhoWj7Z5apVIqd5bW1NUQikaLtnygnmUxicXGxaPuv9CwXrZBcWVnBN77xDXzve9/DD3/4Q5w9exbBYLBYh7uhcDhc9CJ2cXHxSD8Hio6GUChU9JwtLS0Vdf9EQGmyXMxf7kQ5tT4vF/WMZDabRTKZRCaTQSaTgdfrLebh9iXLMlZXi//U+GQyecMLbIkOK5vNliTLm5ubN7zxgeiwSpllzstUTNlsdt+nwBRaIpGo2CxrLiRlWcbtt9+OT33qU7tef/bZZzEyMoInn3wSANDY2IgPfOADuPXWW/Ga17wGr3rVq9DV1VWYUWuwsbEBWS7NWpalCBPVrkgkUrKz3swyFdPGxgazTFWBWdZRSBoMBnzoQx/Ct7/9bfU5SRcvXsRHPvIRfOxjH8Ob3/xmAFvXWj399NP4+c9/jl/+8pf43e9+h1//+teFHX0eSlnBF+NCW6KcUp4l5BlJKqZSzsvMMhUT52Wdre077rgDDQ0N+PrXv46FhQV88IMfxDve8Q488MAD6nuef/55dHV1ob6+HjabDbfccktZrpEs5f/xyWSyZGc/qfaU8pfv5uYms0xFU8p5eXNzk9evU9GUel6uxCzrKiRNJhMefPBBfP3rX8eDDz6I4eFhfPzjH9/1ntbWVvzud79DMplENpvFv/7rv6K3t7cgg9YinU6X9HiZTKakx6PakUqlSno8ZpmKpZTzsqIozDIVTSnnZUVRdi25WCl032xzxx13qJX4o48+uudhmYFAALfccgve+c534u1vfzu6urpw2223HW60OpS6eq/ETwtUHZhlqhbMMlULZhnQvYTFI488AmDrQd/Xe+L6xz72MXzsYx/Te4iCKPWi50dlkXU6ekqdLYOhZtYroBLjvEzVQhCEkhZ3lZhlXb8pPvOZz+Dpp5/Gd77zHWQyGTz++OOFHlfBWK3Wkh1LEIQjscA6HU2lzjKXSqRiKeXawcwyFVMp52WDwVCRSyVqLiS/+93v4rHHHsPf//3f4/jx47j//vvxpS99qeTXIubLbreX7Fg2m60iPy1QdWCWqVo4HI6SHctutzPLVDSclzUWks888ww++clP4lOf+hQCgQAA4L777kM0GsUTTzxRjPEdWiknrFIei2pPKfPldDpLdiyqPZyXqVpwXtZQSJ49exYf/ehH8fDDD+ONb3yj+rrL5cK9996LL37xixV5N5HL5SrZqeCGhoaSHIdqU11dXcmuW2SWqZiYZaoWbre7ZFmur68vyXG0EpRKvAWowBYXF7G8vFzUYzgcDvT19RX1GETMMlWLhYUFhEKhoh7D6XSW5bFzVFvm5+cRDoeLegyXy4Wenp6iHkOvmrgt0+v1Fv2sZHNzc1H3TwSUJsstLS1F3T8RAPh8vqKfyeG8TKVQ61muiULSZDKhvb29aPv3er0Ve+0CVReTyYS2trai7d/r9fKaMiqJYs/LPp+PWaaSMJvNRZ2X/X5/SW/q0aomCklg6zqGYlwrY7PZKvqTAlUfj8fDLFNVcLvdRbnuy263o6mpqeD7Jboej8dTtCz7/f6C77eQaqaQBIC2tjZ4PJ6C7c9qtaKnp4cPbqaSK3SWbTYbs0wlJwgC2tvb4Xa7C7ZPZpnKoZazXBM32+ykKAqWl5extLR0qP243W60t7dX5MNBqTYoioKlpaVD33zDLFO5FSrLHo8HbW1tzDKVTS1mueYKyZxEIoGZmRkkk0lN2xmNxoKfDSI6DGaZqsVhslzos0FEhxGPxzE7O6s5y7nr4I9Slmu2kAS2PjnE43GEw2FEIpEbrpfpcDjQ2NhY0mdGEeVLURTEYjGsrKzklWWv11vSZ/kR5UtPlt1ud0Wu+EG1LZflcDiMaDRatVmu6UJyJ0VRkEwmkUgk1AerGwwG2Gw22Gw2/sKlI4NZpmrBLFO1qOYss5AkIiIiIl2ObglMRERERGXFQpKIiIiIdGEhSURERES6sJAkIiIiIl1YSBIRERGRLiwkiYiIiEgXFpJEREREpAsLSSIiIiLShYUkEREREenCQpKIiIiIdGEhSURERES6sJAkIiIiIl1YSBIRERGRLiwkiYiIiEgXFpJEREREpAsLSSIiIiLShYUkEREREenCQpKIiIiIdGEhSURERES6sJAkIiIiIl1YSBIRERGRLiwkiYiIiEgXFpJEREREpAsLSSIiIiLShYUkEREREenCQpKIiIiIdDGVewBERHQ4lpd8AILBCMFghMFkgWA0wrD9963/DDv+bIRgfOHPu9+3/3u23idAMAgQBOGFPxsEGIQX/mw03fjrhu3tBQP23Z9xn/9Mu/5u2P114YU/W02Gfbff85+wNSajsDWGF/9d/fP2vvf+HS9sY9h63WwwqH8WBMCA7f8VsPfv2Pk+bH3/6vt2/B257YU92wmKAigyBEUG5OwLf975n7zzNWXf9wjb79v363IWiry9fzkLJZvdeq+chSJv/VnJpLb+N5t94X07t7nB9oosQ8lu/7fjz3J279fk7N73ZtOZ7deyL9p+5/6U7b8rkLPKjte2/izLygvvySo3fr8sb7+mIJvKbr2uKMgqCrIKbvC/N/qaAhk3/npWAf5emSrj7HIwnpEkIiIiIl1YSBIRERGRLiwkiYiIiEgXFpJEREREpAsLSSIiIiLShYUkEREREenCQpKIiIiIdGEhSURERES6sJAkIiIiIl1YSBIRERGRLiwkiYiIiEgXFpJEREREpAsLSSIiIiLShYUkEREREenCQpKIiIiIdGEhSURERES6sJAkIiIiIl1YSBIRERGRLiwkiYiIiEgXFpJEREREpAsLSSIiIiLShYUkEREREenCQpKIiIiIdGEhSURERES6sJAkIiIiIl1YSBIRERGRLiwkiYiIiEgXFpJEREREpAsLSSIiIiLShYUkEREREenCQpKIiIiIdGEhSURERES6sJAkIiIiIl1YSBIRERGRLiwkiYiIiEgXFpJEREREpAsLSSIiIiLShYUkEREREenCQpKIiIiIdGEhSURERES6sJAkIiIiIl1YSBIRERGRLoKiKEq5B0FERJUplUrh85//PD70oQ/BYrGUezi68fuoHNXwPQDV830cFs9IEhHRdaVSKXzuc59DKpUq91AOhd9H5aiG7wGonu/jsFhIEhEREZEuLCSJiIiISBcWkkRERESkCwtJIiK6LovFgj/7sz878jcT8PuoHNXwPQDV830cFu/aJiIiIiJdeEaSiIiIiHRhIUlEREREurCQJCIiIiJdWEgSEdEeq6ur+OM//mO85z3vwdNPP73ra8vLy7j33nvxrne9C88880x5BpiHG30POX/5l3+Jf/mXfyntwPKUSqXw4Q9/GO95z3vwne9858DXK9VB4/3sZz+L733ve2UYWf6u9z1sbm7igQcewD333IPHH3+8jCMsHxaSRES0x7e+9S088MAD+OpXv4qvfvWru772ox/9CPfccw++9rWv4ctf/nKZRniwG30PAHDp0iX89Kc/LcPI8vPjH/8Yr3nNa/Ctb30LTz31FJLJ5A1fr1Q3Gu/KysqRKIav9z08++yzuOmmm/A//+f/ZCFJRESUc+7cObzsZS+D1WqFy+XC+vq6+rWhoSHE43Fsbm7CZrOVcZQ3dqPvAQD+4R/+Ae985zvLM7g85MZvMBgwODiIy5cv3/D1SnWj8X7pS1+q6J9BzvW+h76+PqTTaWQyGZjN5jKPsjxYSBIR0R6xWAxOpxMAYLfbEY/H1a85HA78/d//Pd75znfibW97W7mGeKAbfQ+nT59Ge3s7PB5PuYZ3oFgsBofDAWD3+K/3eqW63njn5+cRi8XQ29tbzuHl5Xrfg9lsxo9+9CPcfvvtuPnmm8s5xLIxlXsARERUfl/72tfw5JNPqn8/c+YM4vE4nE4nEomEWpABwBe+8AV87nOfw+DgID7wgQ/gDW94Q0WcmdTyPXz5y1/G3/zN3+Cxxx4rx1Dz4nA4kEgkAACJRAIul+uGr1eq643385//PB588EH867/+azmHl5frfQ/f+MY38Bd/8Rd4wxvegD/7sz/D7Ows2tvbyznUkuMZSSIiwh//8R/j29/+tvrfQw89hN/85jdIJpNYW1uD2+1W32u32+F0OmGxWCAIAjKZTBlH/oJ8v4dYLIbx8XF8+MMfxve//3387d/+LWKxWJlHv9fJkyfx61//Goqi4MKFC+qZu+u9XqmuN94zZ87gr/7qr/CFL3wBX/jCFzA9PV3mkV7f9b6H3L8Fg8EAl8tV8WeHi4Er2xAR0R4rKyv4d//u32F9fR3/9t/+W7z+9a/Hf/2v/xUPPfQQVlZW8B//439EJpPBG9/4RjzwwAPlHu6+bvQ91NfXA9i6Y/gVr3gFXvnKV5Z3sPtIJpP4i7/4CywsLOCuu+5CIpHArbfeis7Ozl2vv/e97y33UG/oet/HwMAAAKh3bN91113lHOYNXe97qK+vx8MPP4xkMomRkRH89V//dbmHWnIsJImIiIhIF7a2iYiIiEgXFpJEREREpAsLSSIiojIaGhrC0NAQJicn93ztsccew9DQED772c+qr8myjG9961u4++67cdNNN+GVr3wl7r//fvzTP/2T+p6ZmRkMDQ1hZmamJN8D1S4WkkRERGXW0NCA73//+3te/973vrfr8T6KouDP//zP8e1vfxt/+Zd/iX/+53/Gs88+i7e97W146KGH8LOf/ayUwyZiIUlERFRud9xxB5544gnIsqy+dvr0aaRSKQwPD6uvPfXUU/jlL3+Jz3/+87jppptgMplgsVjwrne9C3/+539e8avcUPVhIUlERFRmt956K9LpNJ5//nn1tccffxx33333rvf9/Oc/x0tf+lK0tbXt2cef/Mmf4IMf/GDRx0q0EwtJIiKiMjOZTLjjjjvU9vbm5iZ+8pOf7FmHemVlBT6frwwjJNofC0kiIqIKcNddd+GnP/0potEonnrqKbz0pS+F3+/f9Z6mpiYsLy/vu300GlWX8SMqFRaSREREFeD48ePo6+vDk08+ie9973t72toA8LrXvQ6/+93vsLCwsOdrn/3sZ3HnnXeC64xQKbGQJCIiqhB33XUXvvKVr+DKlSu45ZZb9nz9DW94A175ylfigx/8IH77299ClmVEo1F85StfwTe/+U38+3//7yEIQhlGTrWKhSQREVGFeNvb3obp6Wm8/e1vh8lk2vN1QRDwP/7H/8Dtt9+O//Sf/hNe/vKX47bbbsMzzzyDL37xi3j9619fhlFTLeNa20RERESkC89IEhEREZEuLCSJiIiISBcWkkRERESkCwtJIiIiItKFhSQRERER6cJCkoiIiIh0YSFJRERERLqwkCQiIiIiXVhIEhEREZEuLCSJiIiISBcWkkRERESkCwtJIiIiItLl/w+5+CS7tEUtcQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAALTCAYAAACljOKvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7b0lEQVR4nOz9d5xb13nnj3/uvegzA0zvvTcOIIpUlyiJEkXJlmXZtBopq3gtvxInX9u7Kzub9a5XkXc3G8eyNy/nl+zasdbRZmNLThzZUbcKRTVSDZjeK6Z3zAzqLb8/MABnOJgZAINyATzv18sWibnlkHjz3Oee55znMJIkSSAIgiAIgiCIEGHj3QCCIAiCIAgiMaFAkiAIgiAIgggLCiQJgiAIgiCIsKBAkiAIgiAIgggLCiQJgiAIgiCIsKBAkiAIgiAIgggLCiQJgiAIgiCIsKBAkiAIgiAIgggLCiQJgiAIgiCIsKBAkiAIgiAIgggLCiQJgiAIgiCIsEipQFIQBPzN3/zNga7x6KOP4s4778Rdd92FBx54AD09PRFqHUEEz0Fddrlc+MM//EPcdtttuOuuu/CVr3wFVqs1gi0kiOCIRL/8/e9/HzfffDMaGhrQ398foZYRRHSIhPNyIqUCyf7+frzyyisHusaPf/xj/O53v8Pzzz+PRx99FH/6p38aodYRRPBEwuV7770XL7/8Mp5//nncdNNN+M//+T9HqHUEETyRcPm2227D//t//w8lJSURahVBRI9IOC8nUiaQHBwcxGOPPYbZ2Vncdddd+Ku/+quwrqPX6/2/XltbA8MwkWoiQQRFJFxWq9U4duyY31+j0YiJiYlIN5Ug9iRS/fLRo0dRWFgY4dYRROSJlPNyQhHvBsSK2tpa3HrrraiursaZM2cOdK1vf/vbOH/+PADgZz/7WSSaRxBBE0mXfTzzzDO46aabInItggiWaLhMEHImGZ1PmUASADo7O/G5z31ux+cPPPAAhoaGAp7zL//yLygqKtr22V/8xV8AAH7zm9/gL/7iL/DTn/408o0liD2IlMsA8Ld/+7cYGxvDE088EfF2EsR+RNJlgkgEdnM+UWEkSZLi3YhYwPM8jh49ig8++ABqtTpi121ra8PZs2eRlZUVsWsSxF5E0uW/+7u/wwsvvID/83/+z7ZpGwQRCyLdL998883427/9W9TX10egdQQReaIVi8STlJkjOTMzg7S0tAN9cevr65idnfX//rXXXkNmZiYyMzMj0EKCCI5IuAwATz/9NF544QU8/fTTFEQScSFSLhNEopCMzqfUiOTXvvY1WK1W3Hbbbfi3//bfhnyN6elp/PEf/zFcLhcYhkF2dja+853voKmpKQotJojARMLlmZkZHDt2DGVlZUhLSwMAqFQqPPfcc5FuLkHsSiRcBoAnnngCr7/+OhYWFpCVlQWdTofXXnstwq0liIMTKeflRMoEkgRBEARBEERkSZnUNkEQBEEQBBFZKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwoICSYIgCIIgCCIsKJAkCIIgCIIgwkIR7wbIAbfbDZvNBofDAYfDAUEQIEkSWJaFVquFVqtFeno6tFotGIaJd3MJYldcLhfW1tZ2uMxxHDQaDblMJAzkMpEsBOuyTqeLd1PDgpEkSYp3I+LF+vo6FhYWsL6+HtTxarUaOTk5yMrKoo6LkBXr6+uYn5/HxsZGUMer1Wrk5uYiMzOTXCZkxdraGhYWFshlIuEJ1WWNRoOcnJyEczklA0lBEDA1NYXV1dWwztdqtSgtLYVarY5wywgiNHiex/T0NLlMJDzkMpEs8DyPqakp2Gy2sM5PNJdTLpB0Op0YHR0Fz/MHvlZZWRkMBkMEWkUQoeN0OjEyMgJBEA50HYZhUFpaSi4TccPhcGB0dJRcJhKeSLpcVlYGvV4foZZFj5QKJJ1OJ4aHhyGKYsSuWVpaiszMzIhdjyCCIRou04sREQ8cDgdGRkbIZSLhcTgcGB4eRiTDqkRwOWVWbQuCgNHR0Yh2VgBgtVpht9sjek2C2Aue5yP+4AWAiYkJOByOiF6TIPaC5/mo9MvkMhFrfC5HemwuEVxOmUByeno6IunsQFit1oh3hASxG9PT0wdOm+zGxMQEuUzEjGi6TP0yEUumpqai6rKck8dRDSTffPNN3HbbbThx4gSee+65aN5qT9bX17GyshK167vdbszPz0ft+gThY319PezFCMHgdruxsLAQtesThI+1tbWouuxyuchlIibYbLawF9YEg9xdjlogyfM8/vzP/xx///d/j3/+53/GT3/606gGc3sRiy9gcXGR3n6JkFnv7QnpTTMWLyzkMhEOobocq35ZziM5hDwhl0MjaoFke3s7amtrUVBQgPT0dNxwww145513onW7XXG73UHXiTwIoihG9Y2ESE4G//y/ofPrf4Dl8x/s20m4XK6g65EdBEEQyGUiZAb+65Po/OM/xMqHF8hlIqHpf/IJdP1/f4SVjz7c12Wn0xmTdRI8z8vW5ZADSVEUcfLkSfzgBz/Y9vm5c+fQ2tqKl156CQAwNzeHgoIC/88LCwsxOzt7wOaGztraWszuJdcvmZA367096P0P39k3oCSXCbmz3t2Nnu88vm9ASS4TcmetqxM93/73+waUsXQ5lvcKhZC3SGRZFl/72tfw5JNP4rHHHoPBYEBvby++8Y1v4Fvf+hZuv/12AAj4lx6PSu2xXO20sbqKvu/9p5jdj0h8XFtS1b6AMr2xCaUPPYzMK67c9m8mli7byWUiRNyLi/5f+wLK9OZmlD30CAxHjm5zOZaVLjaWl9H3s/8ds/sRiY9nedn/a19Amd7csunykfj1yzKtEBPWXtt33nknfvKTn+CZZ57BqVOn8Nhjj+Guu+7CV77yFf8xBQUF20YgZ2ZmYDQaD97iEInlXzzv8WD93Nsxux+RnOwWUMayw/K4XOQycWB2Cyhj6rLTSS4TB2a9uws939kZUMbSZbfbDVEUwbLyKrgTdkHyX/7yl/jRj36E/Px8lJSU4K//+q/BcZz/5zzP44477sAzzzyDtLQ0fOELX8CvfvUrZGVlRazxwdDT0xO1JfmXIrndWP/334rJvYjUwRdQTmfoY7YIRnI6sf7tfxeTexGpgy+gnNSlxWzhgGS3Y/1PHo/JvYjUwRdQTup0MV0E09DQAKVSGbP7BUPYYe2dd97pj8SfeuqpbUEkACgUCnznO9/Bl7/8Zdx99934yle+EvMgkiCSAYd1Ahv9/YDHE++mEMSBcExMYL2vj1wmEh6ndQIbA31AlOpTJxJhpbYB4MknnwQALC8v7wgifRw/fhzHjx8P9xYRgWXZmI1IEkQk4dLTUfyle1F49xegSE9HX18fRHoAEwkIl5Fx0eW0NKz39kZtgwiCiCYKvR7F99yLws9/AZxOh7UYuyy3tDYQZiD54x//GG+99RaeffZZPPzww/j1r3+N06dPR7ptEUGr1cITo4cvx3FQ5RfsfyBBbOJeWADE7S86lwaQPjQaDblMyJaALl8SQPrQarUxW4GqUCrJZSIkArl8aQDpQ6PRxKTEIODN9O42cBdPQg4kn3vuOTz99NP4xS9+gcbGRjz00EP42c9+hnvuuUd2eXvA22HFqvyDzmBA8y+fjcm9iMRH4t0Y+k//FhtjVng2nJAYBYq+eM+OANJHLB++adnZ5DIRNBLvxtB//CY2Jqa8LrMqFJ36Ego/vz2A9BFLl3XZ2Wgil4kgkTxuDP7Hb8BunYZn3QmJU6H4S/fsCCB9aLXamAWSugD3lwMhBZJnz57FE088gaeeegomkwkA8OCDD+LnP/85nn/+eZw6dSoabTwQ6enpMatfmR7g4U8Qu8IpkdtYiOIjlRc/U6+DP/8bCNp0MNoMMFv+mw4F5iQRYKKf2iCXiZDglMhtLkbxFdUXP1Ovgf/gn/dwWQJiUBKOXCZCQqFEXksJVFfWXPxMswbP+/8E/hKPGW0G0sFiPsVdDjqQ7OzsxDe/+U08/vjjOHHihP/z9PR0nDlzBj/96U9x9913y27YVavVQqPRwOl0RvU+DMPQYiIiJBiGgZRVDnjmLn7oskN02YGVnS8/XHkzNJl1cLpcUW9XZmZmVO9BJBdel8sAz5YtPPd0uQVqQw1cbnfU20UuE6HgdbkU8GzZ9tC5AdG5EdBlReUhqDOqYuKywWCI6j3CJezyP4nEysoKrFZrVO+RmZmJ0tLSqN6DSB4kgYcwPQR+2AJxfnzf47miWqiu+hxWVlcxOTkZ1bZlZWWhpKQkqvcgkoeLLpshzk/sezxXXAfVlXdieWUFU1NTUW1bdnY2iouLo3oPInnwujwIfsgMcWH/mIErqYfqys9ieTn6Lufk5KCoqCiq9wiXsFdtJxIGgwFLS0tRK07OsiwKCwujcm0ieZAkCeLyDISxLvATvYAnuFFyNq8cqis/C4ZlkZmZiaWlpagVweU4btvWpgQRCL/Lo53grb2AJ7hRcja/AqorPgOGZZGVlYXl5eWoupyfnx+VaxPJgyRJEJemvf1yKC4XVHpdZrwuLy0tRS3zKXeXU2JEEgBcLhcGBwejUji0rKxMtkPORPwRHWsQxrvBj3VBWlsK6Vw2qxDq6+8Bo1T5PyOXiXgh2tcgTHSDH+2CtB6iy9lFUF//JTCK2LhcXl4OvV4f8esSyYFot13sl9eX9z9hC2xOCdTXfXGby06nE4ODg5FuJgD5u5wygSQA2Gw2jI/vn0YMhdzcXBqNJHYgCR4IU4PgR7sgzo0BCP2fGZORA82x+8CotTt+trq6iomJ/dOIoZCXl0ejkcQOJH7T5bHOTZdDh9HnQnPsXjAqcpmIH16XB8CPdYXvsiEPmhvuBaPS7PhZNFzOz8+X9WgkkGKBJBDZYDI3NxcFBQXbNnAnUhdJkiAuToEf64Jg7QX48CdfMzoD1DfeD1a7+yq9SHZaeXl5yM/PJ5cJAD6XJzdd7juYy2mZ3hcicpmIA5IkQVywgh/vgmDtP5jL6VlelzU7S1r5iOSajPz8fOTl5cne5ZQLJAHA4XDAarXCFebqV47jUFxcTClAAgAgbqxeTJFsrIR8PpOWCS6/HPxIu/cDTRo0x+4Hm56577nkMhFJvC53gR/rDttlNq8cwqjXZUaTDvWN94FNy9z33Ei4XFJSIusUIBE7xI0VCGPd4Me7IG2shnw+k54FNrcUwmiH9/fadKiP3Q82bf++0m63w2q1wh3mSu5EczklA0kAEEURi4uLWFhYCHoLRV8piYKCAigUKbFOidgFiXdDmBzwpvuCWKm6A4UKXGkDFBWtYHO8q0qdr/wMktsFzbF7wRrygr5UuC5nZWUhPz+fXE5xvC73e9N9YbvcCEVlC9jsTZdf/ikk3g3NsfvA6nODvpQoilhYWMDi4iK5TISM5HFDmOzzuhzEqusdKNVQlDaCq2gBm+1dIe186X9DEvhNl3OCvlQquZyygaQPSZJgs9lgs9ngcDh2vEEoFApotVqkp6cjMzNTdnUyidjhTZFMbKb7+gEh9O0K2fxKKCpbwBXXguG27wTl6f8IbG4JuOzwSjyQy0SwSJIEcX4C/FgnhMmBMFxmwBZUQFHRCq64JoDLH4LNLQ3bZVEUsba2BpvNBrvdvmNrUHKZ8LHd5X5ACHXfawZsQSUUFb5+eXsA5+m7AC6/HGxWeGshRFGEzWbD2tpa0rqc8oHkpYiiCEEQIEkSOI5LyC+ViCzi+op3fs1YFyR76NttMhnZ3k6qvBmsNmPX4yRJiuhcGHKZuBRxfdn7IjTeBcke+haFXpdbN13efc5jpF0WBAGiKJLLhB9xbdnbL4frsj4HivIWcjkCUCBJEAGQPC4I1n5v6noxjALgSg0UZZspkqxC2U+WJpIXr8ub6T5ymUhgJLfT6/J4F8TFMAqAqzRQlDV5Xc6khbKRInGS8AQRZSRJhDg37h2xmRoIPUXCMGALqryjj0U1O1IkBBErLrrcCWFyEBBDd5krrAZX0QKusJpcJuKGJIkQZ8c2++VwXGbBFVaBq2gFV1QNhk38EUC5Qb0DkfKItsXNFEk3JMd6yOcz+lwoKlqhKG/asywEQUQb0bbofeBOhOmyIQ+KihYoyshlIr6ItoXNaRg9kJzhuJy/6XIjuRxlKJAkUhLJ7QRv7YUw1gVxaTr0C6i0UJQ3QVHRAsZANeuI+CG5HeAnNl1engn9AmotFGXNUFS0gM2Ud+FjIrmRXI6L/XJYLuugKGsil2MMBZJEyiCJIsTZUW+6b3oIEIMryeCHYcEV1Wym+6ooRULEDa/LI94RG3KZSGAkUYAwMwphvBPC1BAgiaFdgOXAFVV7S6kVVJLLcYACSSLpEVfnwY91gZ/oAZwbIZ/PZhaA86VI1LootJAggsPrcif48R7AZQ/5fDarAFz5Zuo6wNabBBErxJW5i/1yWC4XXuyXA2y9ScQOCiSJpERy2cFP9Hp3m1mZDf0CmrSLKZIQioMTRKSRXHbw4z3eHTpW5kI+n9GkgSvfTF2HUBycICKN5Ny42C+vhuNyOrjNKUXksnygQJJIGrwpkhEIY50QpofDS5EU10JR3rKZImGj01CC2AdJFCBMD0MY64IwcwCXK1rA5pPLRPzwujy06fJIGC4rLrpcUAGGIZflBgWSREIjSRKk1Tnwo5spErcj5Guw2UXeFElpIxiVJgqtJIj9kSQJ0srsZrqvN0yXizddbiCXibghSRLElVkIvtS12xnyNdicYm/x+9IGMEp1FFpJRAoKJImERHJueNN9Y52QbAshn89oMy6m+zKyo9BCgggOybEOfqLHm+4jl4kERnKsgx/v9k7DsC2GfD6jzfC+CJW3gM3IikILiWhAgSSRMEgCD2F6yLtDx+wIEOqmTJwCXHGdd3VffhmlSIi44XV5EPxoF8TZUQBhuFxS733gkstEHJEEHsLU4Ga/PIqwXa5oBZtXRqXUEhAKJAlZI0kSxOUZCGOd4Cf6AE8YKZLcUu9uMyX1lCIh4oYkSRCXpr3pPmsv4HGFfI2LLjeAUaqi0EqC2J+IuJxX5t3ruqSeXE5wKJAkZInoWIMw3u1N960thXw+o9NfTJGkZ0a+gQQRJKJ9i8vr4bhsAFfRTC4TcUe027a4vBzy+UyawfsiVN4MNi0z8g0k4gIFkoRskASPN0Uy2gVxbgyhp0iU4Eo3UyS5pZQiIeKGxHsgTA14031zY6FfQKEEV9LgnfdILhNxROLdF1PXYbmsAle66XJOCbmchFAgScQVSZIgLk56d+iw9gG8O+RrsHnlm+m+OjAKSpEQ8eGiy50QrP3kMpGwSJIEccEKftzXL3tCvgabX+F1ubgOjEIZhVYScoECSSIuiBurF1MkGyshn8+kZUJR2epNkej0kW8gQQSJ1+WuTZdXQz6fSc+6mO4jl4k4Im6sQBjb7Jft4bicvelyE7mcQlAgScQMiXdDmOz3pkjmJ0K/gEIFRVkjuIoWsNnFlCIh4obk8bncCXHBGvoFlGooShvAVbSCzS4il4m44XW5z9svh+2yr18ml1MRCiSJqOJNkUxspq77ASHUFAkDtqDCW5i2uAYMRykSIj5IkgRxfsKbup7sBwQ+xCuQy4Q88Lo87u2Xw3W5sNI7+lhUC4ajUCKVoW+fiAri+rK3kxrvhmS3hXw+k5FzMd2nTY9CCwkiOMS1Ze9csfEuSPa1kM8nlwm5IK4tXeyXHWG4rM+FoqIFirImMOQysQkFkkTEkDwuCNbNFMniZOgXUGkupkiyCilFQsQNye30ujzeBXFxKvQLqDRQlDV5Xc4sIJeJuCG5neCtfRDGuiAuheOyFoqyRigqWsFk5pPLxA4okCQOhCSJEOd8KZIBQAwxRcIw4AqrwVW0gCusphQJETckSYQ4O+Z1eWowDJdZcIVV5DIRdy663LnpshDaBRj2Yr9cVA2G5aLTUCIpoJ6OCAvRtriZ7uuG5FgP+XzGkHcxRaJJi0ILCSI4RNvCZrqvB5IzHJfzN11uJJeJuHLR5W5Izo2Qz2cy86GoaPW6rNZFoYVEMkKBJBE0ktsJfqIXwlgnxOWZ0C+g1kJR1uwtTJuZH/kGEkSQSG7Hpstd5DKR0EguB/iJHgjjXRCXZ0O/gFoHRXmTdyMHQ17kG0gkPRRIEnsiiSLE2RHvW+70UHgpkqIacBWt4AorKUVCxA1JFCDMjEIY74QwPRy6yywHrqgaXDm5TMQXr8sjEHz9siSGdgGWA1dU430RKqgCw7LRaSiRElAgSQREXJ0HP9YFfrwbcNlDPp/NKgBX0QpFaSMYtTYKLSSI4BBX5rwuT/SE6XKhd992cpmIMxdd7gZcjpDP97rcCkVZAxgVuUxEBgokCT+Syw5+ohf8WCeklbmQz2c0aeDKN9N9+twotJAggkNybmy63AVplVwmEhevyz2bLs+HfD6jSQdX0QxFeQtYfU4UWkikOhRIpjiSKECYHvamSGaGw0uRFNd659fkV1CKhIgbXpeHNl0eCdPlOm/wSC4TcUQSeAgzW/tlKbQLsApwJT6Xy8Ew5DIRPSiQTEEkSYK0Mgd+rBP8RC/gDiNFkl28me5rAKPSRKGVBLE/kiRBXJmF4Etdu50hX4PNKYaivAUcuUzEEUmSIC7PeF229obpcom3+H1pAxilOgqtJIidUCCZQkjODfDj3d4UiW0h5PMZbYY3eCxvBpuRHYUWEkRwSI51r8vjXZBsiyGfTy4TckF0rEPw9ctrYbisywBX3uIdfUzPikILCWJvKJBMciSBhzA96N1tZnY09BQJpwBXUu/tpPLKaVcDIm5IAg9haovLIJeJxEQSPBCmhsCPdUKcHUPoLivBldZ75z3mlZHLRFyhQDIJkSQJ4tL0xRSJxxXyNdjcUm+KpKQBjFIVhVYSxP6Qy0Sy4HV5atPlvvBczivbdLkejIJcJuQBBZJJhGhfu5giWV8K+XxGZ7i4ui89M/INJIggEe22LS4vh3w+k2bwPnDLm8GmZUa+gQQRJAd3OXOLy4YotJAgDgYFkgmOxHsgTA14031zY6FfQKEEV9rgDR5zSylFQsQNiXdfTF2H5bLKm+6raAWbU0IuE3FD4t0QJjf75fnx0C+gUHn75YoWcpmQPRRIJiCSJEFcnPTuNmPtA3h3yNdg88qhqGwFV1xLKRIibkiSBHHB6nV5sg/gPSFfg82v8I7YFNeBUSij0EqC2J/IuFy56XItuUwkDBRIJhDixiqE8S7wY92QNlZCPp9Jz7qYItHpI99AgggScWMFwthmus++GvL5XpdbwZU3kctEXBHXV8CPd0EY64Jkt4V8PpOR7e2Xy5rB6jKi0EKCiC4USMociXdDsPaDH++COD8R+gWUaihKG8BVtILNLqIUCRE3JI8bwmSfN923YA39Ako1FKWN4CpayGUirkgeF4TJ/oO5XNbo7ZezCsllIqGhQFKGSJIEcX4C/FgnhMl+QOBDvAIDtqDCO2JTXAOGoxQJER+8Lo9vpvvCdLlwM91XVAuGoy6LiA+SJEKc2+yXpwZCd5lhwBZUbbpcQy4TSQOZvAVJkuByuSAIAgCAZVmo1WqwMdoqTVxf9j5wx7sg2ddCPp/JyLmYutamR6GFRKIQd5fXljZd7obkCMNlfQ4UFa1QlDWBIZdTmsR3OReKzeL3jCYtCi0kEoV4uxwtUj6Q5Hkey8vLsNlscDqdkAIU7FapVMjIyEB2djbU6shuOyV5XBCsfd7CtItToV9ApYGirMmb7sssoBRJChN3l91O8NY+CGNdEJfCcVkLRVkjFBUtYMjllCYYl9VqNTIyMpCVlRUll3s3XZ4O/QIqLRRlTZsu55PLKYzP5dXVVbhcrpi7HAsYKdCfKgUQBAEzMzNYXg6trldaWhqKi4sP9GVLkghxdsz7ljs1CIihp0i4wmpwFS3gCqspRZLi8DyPmZkZrKyshHReZF3u3HRZCO0CDHvR5aJqMCwXdluIxCdcl9PT01FUVHQwl0UR4tzoln45DJeLqsGVk8tEfF2ONSkZSK6trcFqtfqHl8OhoKAAubm5Ib1pirbFiykS53rI92QMeZvpvkZKkRAAAJvNhsnJybBdZhgGBQUFyMnJCdHlhS0ub4R+38x8KMpbyGXCT9xcXp0HP9YFfqIHCMvlAm/quqwRjFoX8vlE8rG6uoqpqamYuxwvUi6QXFhYwMzMTESupdfrUVa29z6nktsBfmIzRbIcxn3VWijKmr2FaTPzD9BaItmIpMsGgwGlpXsXpJdcDvATPRDGuyAuz4Z+E7UOivImb8FwQ94BWkskG/Pz85idDcOpAATnsv1iv7wSrsub/TK5TGwhki5nZmaipET+BelTKpBcXFzE9HQY8132IFCnJYkCxNlRb7pveji8FElxDbjyVnCFlZQiIXYQS5eFmREIY10QpocASQztoiwHrqjG+8AtIJeJnUTyhchHoAdwZF2uApPgCySIyBMrl+VGykyuczgcEX/wAt4hbJ1Oh5ycHIgrcxdTJC57yNdiswrAVbRCUdoIRq2NeFuJ5MBut8fQ5W7A5Qj5WmxWIThfuk9FLhOBsdvtEX/wAsDKygp0Oh2ysrIgrW7tl8NwObsIXHkLFGUN5DKxKxsbG1FzOS0tDVlZWRG/dqSI6ojk17/+dVy4cAFXX301/uqv/ipat9kXURQxNDQEl8sVleszDIPq1X5I00Ohn6tJA+dLkehzo9A6IpkQRRGDg4Nwu0PfFjMYGIZB9UofpJnh0M/VpG9xOScKrSOSiZi4vNwLaXYk9HO1my6Xk8vE/oiiiIGBAXg8oW+LGQwMw6C+vh5KpTxrQkd1RPLBBx/EF7/4RfzLv/xLNG+zL8vLy1ELIgFvbah1VouglwywHLjiOu8DN7+CUiRE0CwtLUXtwQuE47ICXEmt94FbUAGGIZeJ4IiFyxucFkEvf+EUW/rlcnKZCJrFxcWoBZGA1+WZmRmUlZVF7R4HIaqB5FVXXYXz589H8xb7IkkSFhcXo36fBXXOvg9fNqcYivIWcKUNYFSaqLeJkD/jT/8f5N16C7SlpfseGyuXF4NyucRb/L60AYwyccpUENFj7O9+joLbT0JTXLzvsbHsl8v3Ocbrciu40npymQCw6fIdt0NTVLTvsZIkYWlpKeptWl1dRVFRERQK+c1IDPmVSxRFnDx5Ej/4wQ+2fX7u3Dm0trbipZdeiljjIoHdbo/qW68PQakFbyjc8TmjzYCi8SpoTjwKzY0PQFFtpCCS8DP3yqv46L4H0P/9/waHde89ezc2NqL61uuDV+kgGAp2fM7ofC5/BZob74eiqo0evISfuZdfwUf33If+//bf4ZzauyB97FxOg6DfWe2C0emhaLoamtv+zabLh8hlws/ciy/hoy/di4E//x9w7jMffX19PSYuAwi5JmWsCDm0ZVkWX/va1/Dkk0/iscceg8FgQG9vL77xjW/gW9/6Fm6//fZotDNsNjZCrwsWLuv6YhhWZwCWA5tfCUVxLdicYmBzpaq4YQMYAGAAhgUYBuAUAMvJekUWEUUkCRAEzL7wAmZffhkFJ0+i7OEvBxyhjKXLa/piGFZnt7hcBzaniFwmdkeSIAkCZn/3r5h78SXk33E7yh76MrQlJTsOjWm/nFkK/eoswCnBldRDUdEMNvdi2TZJDHH1NpH0SJsuzzz/W8z+6wso+MwdKHvoywFH22Pq8vo6cnPlt5YirMU2PM/jtttuw913341Tp07hnnvuwfHjx/G9731vx7Hnz5/HP/zDP8Rtsc3Y2BjW1kLfHzUcOMcGKqdDT+VLkgTRw0P0CBf/y/t+zUPwCJf87JJjL/lc8PAQ3Tx4hwuCMzZvSkQE4biAAeXo6CjW10MvZB8O7IYNVbMfhXxeRF12CxB4cjmRYTguYEA5MjISswcwa1/H4jf+XUzuRSQvDMcFDChj6TLHcWhqaorJvUIhrGS7QqHAV7/6VfzoRz/CK6+8gubmZnz3u9+NdNsigtPpjNm9hNBnCgDwrsjiVEpwqsivyBIFEbzDBd6+5X8OFzz+3zvB292bv3eCd7i9o2RE/NhlhDKWLkthLjSIv8tbfk8ux53dRiijufjxUvgw+2WC2IokCJj57e8w+8KL2wLKmMYYggBBEMBx8qrHG3b5n42NDVx99dWoqKjAr371K+h0O9fGfeUrX0FXVxccDgcMBgN+8pOfoK2t7cCNDoWenp4DbYUYEg4Haqbfj829ooQkSRCc7i0P54v/82w+xN02O9yrG3CvOehBHQs4DgV33A7P7Schxaj8A2NfR/XMhZjcK1qQyzKE41D4mTvgvv0kpBgtGhDtdqx+41sxuReROjAch4I7PwvXbSeAGC6AaWhokF0ZoLD/9E8++SQAb2md3aLjv/u7vwv38kScYBgGCq0aCq0a2Kd8miSKmw9iO1yrG3Cvbmz5rx2eNTskkR7OB4JhkHfzTSi5/z6MO52xeylKAsJx2euv/RKXN+C2UaB5YBgGeTffjJL778Oo3U5zE4nEhWWRe8txlNx7L0btGxBT3OWwAskf//jHeOutt/Dss8/i4Ycfxq9//WucPn060m2LCEqlkh6+UYJhWagz06HOTEdGgJ9Logj3mmNHgOn7vcdGgeauMAzybjmOskceRlpVFQBAMTBALkeJrS4HIqDLK5su28jlPWEY5N1yC8offRi6ykoAgKK/PybVNAgiorAs8m69BeUPPwxdZQWA2Lsst7Q2EEYg+dxzz+Hpp5/GL37xCzQ2NuKhhx7Cz372M9xzzz2yG24FAK1WG7M5DEqdFisL3pWAjP//NmG2/9b3e4aR/ItemS0LYAP+fvPXiQLDslAb0qA2pAUONCXvNuQCD/A8IHgY8B7A4wEED3DJ31hSMvuv/wp+62IwhkHu8ZtR/ugj/gDSh1arjdncMoU2jVzeQrAu87zXZ7/Lbu/vU8Hlmd/9DsLWxWABAkgfOp0uZg9fTVoa0u+/Pyb3IpKDmd/+FsLWBTQsi7xbjqP8kUf8AaQPrVYbM5fVajVYGW5gElIgefbsWTzxxBN46qmnYDKZAHh3r/n5z3+O559/HqdOnYpGGw+EVqvF8vJyTO6l0xtQ9OgfR/UekiRuPql4SAIP8J7NX3u2fO4BPC5IbgcklxOS2w64HZBcDkhuB+CO3eTgvfBVjOEUgAoAsGVEh2XBpGeDzcgGk5Hj/y+Tpk+qHSeW3nvPG0gGGIG8FK1WG7M6YmlZWbF1mb/EX280BonnAd7nss9febvsZavLHJj0rKR3efHcOW8gyTDeUZtHdgaQPmLpss5gQOn/90cxuReRHCyePesNJAOMQF6KVqvF6upqTNoVaC2KHAg6kOzs7MQ3v/lNPP744zhx4oT/8/T0dJw5cwY//elPcffdd8tu2FWv12Nqn+K4kcJgMET9HgzDAgoVoFCFPcYhSSLgdkJyO70P482HcqAHte/nkGI8B0QUIdkWINgWtn/OcmAyAgSYOn1C1i9kWO9Dd68A0oder8f0PsVxI0XMXQ6zFvRFl73Obv21fFwWUsflE7fuGUD6SDaXiSSDZZF324k9A0gfer0eMzMzMWmWXF0Oe9V2IjExMRH1NwaFQoGGhoaEfADshyRJAO/2PpBddkgOGyT72uZ/L/4a8ZxwzCkujmDqc8Bm5IDJyAajzZD1d+Kam4c6Py/o48fHx2Gz2aLYIu+84vr6eln/vYXLri7bN112yMTljGy/w+Ry+CSzy0T0CNXlWNSrlrPLKRFIOhwODA0NRfUeRUVFyMnZZ2loEiNJEuDagOh7KG99QDu8/4UYh4UinBJsZh7YzEKwWQVgsgrBaNJl+Y8xGOx2O4aHh6N6D3J5D5c3fY6LywolWEM+2MwCsFmbPmsDzdhMDGLhcnFxMbKzs6N6D4LY2NjAyMhIVO8hZ5dTIpAEgJmZGSwsLOx/YBhotVpUV1cnbHASC7wPZzskuw2iY23bSKbvAR2zh7M6DWzW5sM4s8D7QFaoYnPvCDA9PY3FxcWoXJtc3p/ALl98YZLsq7Eb0dSkbQss2Uxy2YdOp0NVVRW5TMSEqakpLC0tReXacnc5ZQJJURQxNDQU8VWvDMOgtrYWanWYk7wIAN7yKpJ9FdLaEsS1Re9/bYuQ1pdjMqeNycjeElgWeueqyXB1HOB1eXBwMOIrBcnlyOB32bYIcW0J0trmf2Pu8uaoZYq6XFdXB5UqcYJqIrERBAGDg4PweCK7lSvLsqitrZW1yykTSAKAx+PB8PBwxL5ohmFQUVGB9PTAteeIgyOJAqSN1YsPY/9DeSW6D2VO4U0j+lKImYVgtPJJibvdbgwPD4Pn+Yhcj2EYVFZWIi0tLSLXI3ayzeUtQaa0sRLdYueXuiyz6R3kMpEsRMPlqqoq2a7W9pFSgSTgDSZHR0cPPDLJcRzKy8ups4oTkihAWl+5OHq5+V9pfQXbSq9EErXu4qhldpF35JKL3dZYl0IuJwfbXV6EaPMFmKuIustZBWCz4u+y2+3G2NhYRFyuqKiQ/YOXSF7cbjdGR0cPPMqeSC6nXCAJeNMpCwsLmJubC+t8vV6P4uJiKGK4vyYRHJLAQ1pfvjh6uTIHcWUW8EShkDfLgc0uBptXBi63DExmXszrAoqiiPn5eczPz4d1PrksX3a6PAtxeRbgo1D8mFN4X45yy8DllYExJJ7LBoMBRUVF5DIRd0RRxNzcXNjrMhLN5ZQMJH24XC4sLi5ieXkZwfw1ZGRkICcnh1LZCYYkSZA2ViAuz0BcnoW4MgNpdSHyqXGlGmxOCbi8MrC5ZWDSs2KWPnQ6nVhaWgraZb1ej+zsbHI5wdjustdnyRYtl0vB5ZUmhMs5OTk0ok7IDqfTicXFRaysrCS1yykdSPoQBAEbGxtwOBxwOBwQBAGSJIHjOGg0Gmi1WqSlpclyC0giPCSBh7g6D2ll1v9QluwRrmmnTgOXWwp2M7BkddEv1XKpy765OuRy8uJ3eXlmc9QyCi5rNl3OLfP6HIOyQ+QykSwku8sUSBLEJpLL7k8fipsP5UimxJk0gz91yOaUglFrI3ZtgthK9F3O3HS5lFwmiBSHAkmC2IVtacTNh7K0Oh+xNCKjzwXnG+HJKU6o+n9EYhHt6R2MPtc/pYNcJojUggJJgggBSeC9QeX8BMSFCe/ih0g8jBnWu4q2sBpcYTXY9MyDX5Mg9kASeG9guWD1+rwSQZezC8EWkMsEkQpQIEkQB0Di3RAXpyAuTECYn/AufIgATEY2uM2gkskskE3NPyJ58bs8PwFhgVwmCCI4KJAkiAgiuRwQF60QNkcsvbUAD4g6DVxhlXd0J7c0rvX+iNRBctkhLFi9I5aRclmTBq6gGlxRlXduJblMEAkPBZIEEUVE+5o3Bb4wAWHeCrg2DnZBTgk2vwJcUTW4/EowKk1kGkoQ+yDabf40uLAwAbjsB7ugQgkuv9I7naOgEoyStuYkiESEAkmCiBGSJHkLTG8GleKi9WAraRkWbE4xuMIasIXVMSkvRBDApS5PQFywHqxQOsN6a7AWVYMtIJcJIpGgQJIg4oQkiZBW570P4rlRiIvTOMiWeIw+F1xRjXcumj6X5qIRMUOSREgr8xAWJiDOjkJcOqDLhryL8yrJZYKQNRRIEoRMkFx2CLOjEGaGIc6PAwIf9rUYbYY3ZVhcCza7mB7EREyJqMs6PdiCKnKZIGQKBZIEIUMk3uNNG04PQ5gdBtzOsK/FaDPAlTaAK20Am5ETwVYSxP5IvAfi/DiEmWEIsyMRcrkRbEZ2BFtJEES4UCBJEDJHkkSISzMQZ4YhzAwdaPUsY8iDorQRXEk9GE1i7edKJD5el6e9Lk8PQ7IfxOV8KEobyGWCiDMUSBJEAuFd5LDkHd2ZHoa0MhvmlRiweWXe0Z2iGtqJhIg5kiRBWtt0eeaALueXe10urAGjSMz9igkiUaFAkiASGMm5DmFmxDsXbWECEMPYmYRTgCusAVfWADa3HAzLRr6hBLEPkmMdwuwIhOkh7yrwcHbZ4ZTe0liljWBzy8hlgogBFEgSRJIgeVzeuWjTm3PRwinHotKCK22AorQRjCGPFjYQcUHyuCDMjXlT4LOj4bms1oErqSeXCSLKUCBJEEmIJPAQ58bAW3shzo6ENVLJpGeBK230LtLR6aPQSoLYH0ngIc6Ogrf2eV0OY6SSXCaI6EGBJEEkOZLbCWF6EIK1F+LiVFjXYLOLvQ/i4lraTYeIG5LbCWFq0+WlA7hc1giuiFwmiEhAgSRBpBCi3QZhsg/CRC+k9eXQL8Cy4IrrwFW2gc0qpHQhETfEjVUIk/0QrOG6zIErroOi8hAYcpkgwoYCSYJIQSRJgrQ6D97aC2GyP6x9kxl9LhSVh8CVNtCqbyJuRMzlqjZwJQ206psgQoQCSYJIcSRR9BY/t/ZBmB4CBE9oF1AowZU2QVF5CKyeCp4T8eOiy72bLoe4o45CBa6s0esyFe8niKCgQJIgCD8S7/HW9bP2ere2C7F7YHOKwVW2eWtTslyUWkkQ+yPxbm8FA2svxPkJhLr3N5tTAq7yELlMEPtAgSRBEAGRnHYIU/3grb2QVuZCO1mtg6K8BVxFK1hdRnQaSBBBIjk3IEz2g7f2QVoNw+WKTZe15DJBXAoFkgRB7Iu4tgR+rBPCRA/gcYVwJgO2sNKbKsyroAUNRNwR1xbBj3VBGO8OsT4lA7awatPlcnKZIDahQJIgiKCReA+EqQHwo+0hj1IyOj24ykNQlDWDUWuj1EKCCA6J93hHKUfbIa3Oh3QuozN4XS5vAqMil4nUhgJJgiDCQlyeBT/aAWGyDxCF4E/cLLvCVR6iEkJE3JEkCdKKz+X+sFymEkJEKkOBJEEQB0JyOyFM9IAf7YC0sRLSuYw+F4qaw+BK6mhBAxF3JLcT/EQ3hNEOSBurIZ3LGPK8LhfX0R7fREpBgSRBEBFBkiSICxPgRzogzg6HtOKb0WZ4H8LlzVTHj4g7kiRBnJ8AP9oOcWYEoaz4ZnR6KGouA1dGLhOpAQWSBEFEHMmxDn6sE/xYF+DaCP5ElQaKKiMUVW0094yQBaJjDcJYF/ixztCKnas0UFSZNl2mrRiJ5IUCSYIgooYkChBnRrwjOwvW4E/kFOAqWqGovozKBxGywOvyMPjRjhBdVoKraIGi5jIqH0QkJRRIEgQRE/wlhEIpu8Kw4Erqoai9nHbNIWSDuLbkXZwz0ROay6UNUNQepl1ziKSCAkmCIGKKt+xKH/ihTyGtLwd9HltQCUXtEXA5xVFsHUEEj8R7IFj7wA99EtJCM7agCoray8llIimgQJIgiLggSRLEmWF4Bj6CtDIb9HlsVhEUdZeDLaiiciuELJAkEeL0MDyDH4fmcnaxd7S9oJJcJhIWCiQJgogrkiRBXJwEP/gxxLmxoM9jMrKhqLkcXGk9lQ4iZIHXZSv4gY+9e9UHCZOR7R2hLCGXicSDAkmCIGSDuDoPfvATb2HoIEuuMJp0b7mVihYwClV0G0gQQSKuzm26PICgXdZmeF0ub6HSQUTCQIEkQRCyQ9xYBT/0KYTxruB3GlGqvaWDai4Do1RHt4EEESRelz/xLjIL2mUNFNVGKKpN5DIheyiQJAhCtkguO/iRdvAjFsDjCu4kpRqK2suhqDLSqA4hGySXHfywBfxoewguazZdbiOXCdlCgSRBELJH4t3eotBDn0Jyrgd3kloHZf1Rb5qQU0S3gQQRJBLv9hbrH/oUcAZZrN/nckUrzaEkZAcFkgRBJAySKECw9oMf/Cjo0kGMNgOKhivBlTbSHsiEbPC63Ad+8OPgXdbpoai/glwmZAUFkgRBJBySJEGcHQE/8BHE5ZmgzmHSs7wBZXEdlVohZIO/DNbgx5BCcFnZeBXYolpymYg7FEhu4vF44HA44HA4IAjeCdEsy0Kj0UCr1UKlUtE/WCIhSCWXJUmCuDQFvv8CxPmJoM5h9LlQNl0NNp9q98kZSZLA83zqudx3AeJCkC4b8qBsvBpsfkXS/D0kI5IkwePxwOl0JqXLKR1IiqKI1dVVLC4uwul07nmsQqFAdnY2srOzoVDQfCtCXoTqck5ODrKyspLKZWHBCr7nfYjL00Edz2YVQdF0Nbjc0ii3jAgFURSxsrKCxcVFuFx7L0pJXpcnNl0OboSSzS6CoukacDklUW4ZEQqhuKxUKpGdnZ2QLqdsILm2tgar1ep/MwiFgoIC5ObmJuzbA5Fc2Gw2TE5OhuwywzAoKChATk5O0rgsSRLEuTF4et6DZFsI6hw2rwzKxmvAZhVEuXXEfpDLF/FO3xiFp/f9EFwu9462Z5LL8WZ1dRVTU1Mp4XLKBZKiKGJqagorKysHuo5Wq0VZWRlUKiqATMQHURQxOTmJ1dXVA11Hq9WivLwcSmXylBeRJAni9CA8vR8EvZCBLaz2pgn1OVFuHXEp5PLuSJIEYWoAfO8HQe/nzRbWeOdQkssxJxVdTqlAUhRFjI2NYWMjyJIL+6BQKFBdXU3BJBFzRFHE6Ogo7HZ7RK6XrC5LogjB2gu+7zwkx1pQ53AlDVA0XAk2PTO6jSMAkMvB4nW5Z9Pl4EpgcaWbLqdlRrdxBABAEASMjo7C4XBE5HpKpRJVVVWydzllAklJkjA2Nob19SBr0AWJUqlETU1Nws1pIBIXcjl0JIGHMN4FT/+HgCuIgIVhwJU3Q9lwFRhNWvQbmKJE0+Xa2lpwXPLVXJQEHsJYFzz9FwB3EAELw266fCW5HEUkScLo6GjEBqp8qFQq1NTUyNrllAkkl5aWMDU1FZVrGwwGlJWVReXaBHEpi4uLmJ4ObkFJqCS7yxLvAT9iAT/4cXC7i3BKKOqPereqo6LmESeaLmdmZqK0NHkXUoXsskIJRf0V3h2fyOWIs7CwgJmZ4BZHhYrcXY5aIDk9PY1vf/vbWFxcBMdx+MM//EPcfvvt0bjVvrjdbgwMDCCaMXN5eTn0en3Urk8QALkcKSSPC/zQp97dRQTPvsczOgOUrdeDLahKmAnwcicWLldUVCAjIyNq15cDXpc/AT9kDs7lNAOULeRyJHG5XBgcHExZl6MWSM7NzWFxcRFNTU1YXFzE3XffjZdffhk6nS4at9uT6elpLC4uRvUearUatbVUHJYIDUkQwISQspiamsLS0lIUWwRoNBrU1tZG9R5yQXLZwQ987N3/WNx/dSWbVwZl6w1gM2gRw6WQy/FFctnhGfgIwmhHkC6Xb7qcHYPWJRahujw5OYnl5eAW9YWLVqtFTU1NVO8RLlHbYyk/Px9NTU0AgJycHBgMhgOvYgoHURSj/gUD3jeSSE2wJVKH3j/5d5j+9a8gOPd3RxCEmLjsdDojtvBB7jBqHZSt10Nz/CFwFYcAZu8uUZyfgOut/wd3x1lI7r3rdaYaPY9/C9P/9ByEfeqYArF1OVX6ZUatg6r1BmiOfxlcRSuwz6CGOD8O11v/AHfn2+TyJfQ8/k3M/ObXEPep/Qh4XT5oFZhg8BXmlyMhB5KiKOLkyZP4wQ9+sO3zc+fOobW1FS+99NKOczo6OiBJEoqKisJvaZjYbDaIohiTe8VCJiK58KysYOJn/wuWh07vG1Cura1FNXWylVRzmdGmQ2W8Ceqbz4Arqd/7YEmCMGKB842/Bz/SDilG/Yvc8awsY+KnfwPLw6f3DShtNhu5HCUYbQZUxpuhvulBcMV1ex8sSRCGzV6XRzsgSeQyAHiWljD+v/5/sDx8et+AklwOM7X9m9/8Bk8++STefPNNGAwG9Pb24oEHHsDXv/51fOUrX9l27PLyMk6fPo3vf//7OHz4cMQaHiyxSGv7UCkUyJmJzoIeIjkZ/99/A8/SRT8VhkwUfele5H/2c+A02m3HxiIV6EOtVCB7OnVdFteXIUz0QLLb9j2W0WaAK2tM+XT3+P/6a3i2jDIqMrNQ9KX7kP+ZO8FpNNuOjaXLGqUSWdOTMbmXHBHXlyBM9IbgclPKp7vH/uYn4FdX/L9XZnldzrtjp8uxSGv7kGt6O6xAkud53Hbbbbj77rtx6tQp3HPPPTh+/Di+973vbTvO7XbjkUcewZe+9CV8/vOfj1SbQ2JoaChmw8GS2w3Hn/77mNyLSG68D+F7Nx/C3oAypi47nXB899sxuReR3AQKKAcHB/fdyjNiOB2wf/c7sbkXkdQos7JRdM99yL/jTrBqNYDYuswwDJqbm2W3FiOsOZIKhQJf/epX8cwzz+CrX/0qmpub8d3vfnfbMZIk4U/+5E9w1VVXxS2IBACPZ/9VbAQhN/iVZUz89G9hefgMpv/pWQhOB9xud7ybRRAhwwdIeceyX06RCndEDPAs70x5x7JfliQprG2do03Yi23uvPNO/+jIU089taNY5scff4wXX3wRv//973HXXXfhrrvuQl9f38FaGwbUiRCJjC+gHPiz/xzUxG+CkCu+gHLwye+Ry0RC4wsoB77/PYgxfsGXY0wTdlXSJ598EoB3DmSgiutHjhxBb29v+C2LEHIbAiaIUNBWVaPk9JeRdc116O3rk+XbKEEEg666BsWnv4ysq68ll4mERldTi5IzDyHzqmvQ09MTswW9gDxjmrACyR//+Md466238Oyzz+Lhhx/Gr3/9a5w+fTrSbYsIarUaPM/H5F5y/IKJxGRrAMmw3sSBWq2OWVkecpmIFFsDSJ/LKpUqZvN9yWUiUmwNIH1eqdXqmLnMsqwst0oMebHNc889h+9///v4xS9+AZPJhL/5m7/Bs88+i1dffRVKpTJa7QybmZkZLCwsxOReGrUahUJsglYi8RFFEYN//n3wc7P+zwIFkD5iWYGAXA4Oye0EP9YJcWZo/4MVaiiqjGALKpMuuBFFEYP/7c/AL8z7PwsUQPqIpctatRoF5PK+SG4n+NEOiLPD+x+sUENRbQSbn5wuD3z/v0DYUk1DV1OLktNfRubV1+7488ayAoFOp0N1dXVM7hUKIY1Inj17Fk888QSeeuopmEwmAMCDDz6In//853j++edx6tSpaLTxQMRyJ5209HSkx6FWJpGY8DyPlyvrwJZVQQcgq6QEOZVVWAULfWcn9Ho9MjIyoNfroVQqodPpYvbwTc/IQHphYUzulfC0XQZxdQ6ejrchLu1TMsk2CFblgtJ4M9g0Q2zaFwM8Hg9erm4AW1EDHcMgu6QE2RWVWJGYuLucRi4HT9tlEFfm4OkMwuXVQbAqN5RtNyWVy263Gy/XNoETeL/LOZVVWBEBfUcH9Hq932efy7EKJNPS0mJyn1AJekSys7MTDz74IL75zW/ioYce2vaz//k//ydefPFFvPjii7IbdhVFEX0xmo9TW1sLzSU1pghiL/7hyScwGMT0Go1Gg8rKSrS0tES/UQDq6uqg3ixvQQSHJEkQpgbAd78DybG+98GcAoqGq6CoNu0YrUtU/u+f/RcMSfuPTmk0GlRVVaG5uTn6jQK5HA5+l7vegeQMwuXGq6CoSh6Xn3niv2AY+7us1WpRVVXl38Uv2sjV5ajttS0nZmdnMT8/v/+BB0CuQ86EfHG73Th37hzeeeedfY/NyMjAo48+CpfLRS7LHIn3gB/6BPzgx8A+KVXGkAeV6ThYQ36MWhcd3G433n77bbz77rv7HqvX6/Hoo4/C4XBEfdpRWloaqqqqonqPZEbiPeAHP/a6vM/+3UxmPlTG42ANeTFqXXRwu904e/Ys3nvvvX2PNRgMePTRR7GxsRH1Efb09HRUVlZG9R7hkhKBJM/zGBgYiOqoZFVVlWyHnQn5IEkSxsbGYLFY0N3dHVQNMq1Wi0ceeQR5eXkxcbm6ujqmU0KSFdG+Bk/X2xCn95k/yTBQ1ByGov4KMAr5zTPfDUmSMDo66nc5mNqQOp0OjzzyCHJzc8HzPPr7+6O64pVcjgyi3eZNd8/sM3/S53LDlWC4sIvCxJxwXE5LS8MjjzyCnJwceDweDAwMRNXlmpoaaLXa/Q+MAykRSALe/TDHx8ejcu2cnJy47CNOJA5LS0uwWCxob28Pab9UlUqFhx56CMXFxf7PVldXMTExEYVWksvRQJgegrv9LcC1sedxjM4ApfFmcHllsWlYmPhctlgsWF1dDfo8tVqNhx56aJtf0XQ5NzcXhTQ3MqIIU4Nwd7wFuPauHsGkbbqcK3+XzWYz2tvbQ3b54Ycf3ubXysoKrFZrNJqJvLw8FBQUROXakSBlAkkgOntiajQaVFdXg02SuSFE5HC5XOjq6oLFYgnrJYbjOJw5cyZgOoNcTiwkjwue7vcgjHXseyxX1gxly3VgVPKZb+10OtHd3R22ywqFAmfOnEFFRcW2zyVJwuTkZEgvV8Hgm7tGLkcer8vvQhjr3PdYrrwZymb5uezrl8N5iVEoFHjwwQdRXl6+7fNUdjmlAklJkmC1WkN68wCAjo4OjIyMgOd5KBQKVFVV4dChQ1Cr1aiqqoJCkThD+ER0EUURIyMjsFgs6OnpCbuGKcMwuPfee9HQ0BDw55F22beYh1yOLsLiJDyWNyCt7/MSoNJCeegYuOK6uJVXiZTLLMvivvvuQ11dXcCfS5KEiYkJ2Gy2kK67l8tVVVWyW/iZbAgLVq/LGyt7H6jWQXXoGNii2ri6PDw8DIvFgt7e3gO5fP/996O2tjbgz1PV5ZQKJAHvFz0/P4+5ubmAPx92KTHDqyFKAMsAQv95zA33orq6GrW1tRgcHMTw8DBaW1vx+c9/XvZfMBEbFhYW/KnrUDsRwLuYZm1tzf/7u+++G21tbXueI0kS5ubmdl18Qy7LE0ngwQ98BH7gI0Dae04VW1DpLa+izYhR67wu+9J9W50Mlktd/uIXv4jW1tY9zyGXExNJ4MH3f+hdjLOfy4VVUB26EUwMXZ6fn/f3y5Fw+dSpU/tWzkhFl1Nu+IFhGOTn5yMjIwNWqxWuLXu+DruUmPSoUarXoDxLi/FlB8zjQ6iursaZM2fAMAyuuuoqPPPMM+jv70+IL5iIHg6Hw58iCWdujE6nw6FDh2A0GpGTk4Mf/vCHcLvduOOOO/YNIgGvywUFBdDr9eRyAsFwCigbrwJXXAe35feQlmd3PVacHYXrjf8LZfM14CoPgWGik95yOBzo7OyExWLB5ORkyOf7XDaZTMjOzsZf/uVfwuPx4DOf+cy+QSRALicqDKeAsulqcCV1cJtfh7Syh8szI3AuWKFsunbT5eiMTh7U5bS0NH+/nJWVhb/8y78Ez/P47Gc/G1T5NZ/LGRkZmJycTAmXUy6Q9KHValFbWwu73Y7FxUWsra1hhvd+wZ9tKgDDMGgr1OPTX/Oorb04JM8wDOrq6jA6OhrfPwARF0RRxNDQkD9FEurqaZZlUV9fD6PRiLq6um0dRXNzM7KysnD06NGQrulzeWNjA0tLS+RygsDqc6C+7ksQRjrg6XkPEHZZKSp44Ok4C8HaB6XxOFh9TkTuL4oiBgcHYbFYwqq1y7IsGhoaYDQaUVtbu8Pl3NxcHDlyJKRrksuJCavPhfr6L0EYaYen5/3dXeY98HS85XXZdDPYjMi4LAiCv18Ox2WO4/z98qUuNzU1oaCgAJdffnlI19TpdH6XFxcXsb6+nrQup2wgCXi/sLS0NKSlpUGSJJw7P4byLO22L5RhWQwODuKqq64CwzCQJAkDAwOy3A6SiB5zc3Mwm83o6OjA+vo+BXoDUFRUBKPRiEOHDu1ajuTWW28Nu7wDwzBIT09Heno6uZxAMAzr3WqusBqejjchzo7ueqy4PAPX2X+Eou4IFPVHwbDhjVbMzs76030bG3uvJA9EcXExjEYjWltbd3X5xIkT5HKK4XXZ5HW5/U2Ic2O7HisuT8P11j9CUX8UirojB3LZ1y9Hy+WTJ0+GXUIqVVxO6UByKwzDgGGA8WUH2gr1/i9Um5WP4eFhPPPMM6irq8PAwABGRkZQX18f7yYTUcZut6OjowMWiwXT09Mhn5+Wloa2tjaYTCbk5+9fcDpS9e52c1mTmRvQ5d0W9BCxg9VlQHXFnRCmBuDpOAu4HYEPlETw/RcgzI5CdfgE2IzsoK6/sbGBzs5OmM1mzMzMhNy+9PR0tLW1wWg0ksvEnrA6PVRXfg7CZD88nWcBtzPwgZIIvu/8RZfTs4K6/sbGhr9fDsfljIwM/zSMvLz9i6dH3+WcgC43NjZG5L6xgALJLejVClhtTvyuZxYVWVqMLTugbrgCGwvPY2xsDKOjo/43CTluU0QcHEEQMDAwAIvFElaxZI7j0NjYCKPRiJqamriVbMgI4LKm4UrY3/vtDpdpW095wDAMFCX14PLK4Ol6B8JEz67HSqtzcL39SyibrwVX2RZwvpnPZbPZHFaxZLm4nK4K0C/XH4X9/X/d4bJcCzanGgzDQFHaAC6vHJ6ucxCsvbseK63MwnX2H6FsuR5cReuuLvf398NisYTlskKh8LsczxJnAV2uOwr74gsJ7TIFklvITVNhxcljyubElM37FqXOyERWVpa/Zp9vkbtPZjnXdiKCQ5IkzMzMwGKxoKOjA3b73sV2A1FaWgqj0YiWlhZZdAA5OhVWL3VZnwWDweAvGeRz2Rcwk8vygFFpobrsVgilDd7yKvZdqgAIvHfu5OwoVKZbwGjS/C6bzWZ0dnYmjcs213aXtYYcCHq9v0LC1n5ZkqS4lZkhtsOotVAdPgGhtBGe9n1cbn8TwuwIVMZbwGh0kCQJ09PTfpcdjl1G6fegrKzM77IcXpizdcodLusyc+FJT/dPmUpElymQDMDWekhqBYfy+nqcP39+2zFOpxPj4+Oy3fuS2J/19XV0dHTAbDbvWg5qL/R6vT/dl5ubG4UWHpytLmuUHMoaGnDhwoVtxzgcDlit1h0Fdon4wuWVg73xNPj+C+CHPgF2qdQmzo1h4dW/R7+6FO3D1pRwWavkUFxfj48++mjbMRsbG5icnERpaWlsG0fsCZe/6XLfefBDn2L7t3kRcXYUC6/+PfpUJWgfnti1hM5e6PV6GI1GfzUMObLNZZUCBfX1+OSTT7Yds76+jqmpKZSUlMS2cWFAgWQQNDQ07AgkAe8bAwWSiYVvf1+z2YzBwUGEWkZVoVCgqakJRqNR9rsNBKK+vn5HIAl4RyUpkJQfjELpTV8X18H9ySvbCpnzooTBVQ86l1wYsfGQEFoAqVAo0NzcDKPRiMrKyoR0+dJAEvC6TIGk/GAUSihbrvOWCvrk1R0uD6x60OV3efcyQoFQKpVoamqCyWRCZWVlQozibaWhoWFHIAl4YwwKJJOE8vJyqNXqbfWgAGBsbPdVaYR8kCQJU1NT/hSJ07nL5O89KC8v96dIEnl+bGVlJVQqFdxu97bPo7UPPREZ2Mx8qI/dD3fXO7B2fYLOJRd6lj1wCaHvJ1FRUQGj0Yjm5uaEdrmqqgpKpRIez/ZSM+SyvGEzC6C+4T64u97BRPen6Fx0oXclfJdNJhOampoS3mWFQrFjx51EiTEokAwCjuNQWVmJvr6+bZ9PT0/D7XZDpVLFqWXEXthsNrS3t8NisWBhYSHk8zMzM/3pvuzs4FbHyh2O41BRUYGBgYFtn09OTsLj8SRUyYlUwuey2dyJxcXQd+jIzMz0p/uysoJbHSt3FAoFysvLMTQ0tO1zq9Xq32qOkB+rq6ub/XJXWC5nZWXBaDSira0taVxWKpUoLy/H8PDwts+tVisEQZB9YXL6lxYk5eXlOwJJURRhtVpRXV0dp1YRl+LxeNDb2wuLxYLh4eGQU9dKpRItLS0wGo2oqKhIuBRJMAQKJH0uV1VVxalVxKV4PB709PT4XQ4VJQs05htw2bFbUNnQkrQuXxpICoKAyclJVFRUxKlVxKUc1GUVCzQUGHD4hltR0dCclC4HCiR5nsfU1BTKysri1KrgoEAySHbrlMbGxiiQjDOSJGFiYgJmsxnd3d07piAEQ1VVFYxGI5qampJ+hHkvlymQjC9bXe7q6toxBSEYKtIVaM1Roc6ggopjgKG3IWikXUurJDJ7uUyBZHyRJAnj4+P+fjkslzMUaM1WoT5TBSXLAENnN11OvhejvVymQDJJKCoqCjgfJ1HmMCQjKysr/h06lpaWQj4/OzvbnyLJzMyMfANlSlFRUcD5ODS3LH74XLZYLP5SY6GQpVWhNZNFS7YaetUli2YClFZJFoqLi8Fx3I4t8cjl+LG8vOx3eWVlJeTzs3UqtBpYNO/q8htel03HwaiTx+WSkpKALo+NjeG6666LU6uCgwLJIGFZlubjyAC3243u7m5YLJaw9iJVq9X+1HVZWVnSvdUGA8dxKCsrw8jIyLbPJyYmEmI+TrIQKZdNJhNKSoohDH4Cvu88IAUu1izOjsL51j9AZToOrjA5sigKhQKlpaU7XujHx8epNmoMcblcfpfDGVxRq9VobW2FyWRCcVERhKGPwfdd2MPlETjf/AeoTLeAK0yOLIpSqURJScmOl6CJiQnZu0zRTwgECiQFQcDU1BSVTokikiRhdHQUFosF3d3dO0aF94NhGFRXV8NkMqGhoYEWlMDr8qWBJM/zmJ6eptIpUSQSLtfU1MBoNO5wma0/Ci6/YkeZoG24HXBf+FdwFS1QtlwPRpH40zjKy8t3BC8ejwfT09MJUTolUZEkCSMjI7BYLOjp6QnbZV+/vHUwhq2/AlzepssbK4Ev4HbAfeF34CpaN11O/H69vLx8RyDpcrkwOzuLoqKiOLVqfyiQDIG95jBQIBl5lpaW/CkS324soZCbm+tPXev1+ii0MHHZy2UKJCPP0tISzGYz2tvbw3I5Ly/P73JGRsaux7GZ+VDfcB883e9CGG3f9ThhrAvighWqy0+CzSwIuT1yoqKiAufOndvx+djYGAWSUWBxcdHfL/t2FgqFvLw8mEwmHDp0aG+XswqgPna/d7vQsY5djxPGOre4vP8+8HKmoqIC77zzzo7Px8bGKJBMFnabw0DzcSKH0+n0p0jC+XvVaDQXUyTFxSmZug6G0tJSsCy7Y8/asbExXHvttXFqVXLhdDrR1dUFi8WCiYmJkM/XarV+l4uKioJ2mVEooWq7EUJBJdzm3wOuwNskShurcL3zHJStxxJ6IY5visqlFRrGx8dxzTXXxKlVyYXPZbPZDKvVGvL5Wq0Whw4dgtFoDN1l400QCivh/vT3gDvwNonSxsoWlxN3Ic5eLl911VVxatX+UCAZAgqFIuAcBpqPczBEUdyWIrl0Ech+MAyDuro6GI1G1NfX03zVIFAqlSguLt7xUCCXD4YoihgeHobFYkFvb2/YLptMJtTV1R3IZa6gEpobH4Db8gbEmV1KrogiPO1vQlycgtJ4U0KmulUqFYqLizE5Obnt87GxsYTZq1iO+Fw2m83o7e3dMYCyHyzLbuuXDzL3miuoguam03BbXoc4MxL4IFGAp/0NiEtTULbdlJCpbrVajcLCQkxPT2/7XO4u0xM3RCoqKnYEkm63GzMzMyguLo5TqxKThYUFf7pvbS30wrQFBQUwGo04dOgQ0tPTo9DC5KaiomJHIOlyuTA3N4fCwsI4tSoxmZ+f91cQCNdlX7ovLS0tYu1i1Dqojn4Gwng3PJ1vA0LgeWzCZB9E2zxUR+4Am5F4xffLy8t3BJJOpxNzc3MoKEjs1H2smZub87u8vr4e8vmFhYX+fjnyLn8WwngXPJ3ndnfZ2gtxdQ6qo58Bm554BcsrKip2BJJ2ux0LCwvIy8uLU6v2hgLJENlrPg4FkvvjcDjQ2dkJi8Wyo+MPBp1Oh0OHDsFkMlGwc0AqKirw7rvv7vh8bGyM/m6DIFFcZhgGiooWsLkl8HzyKsTlmYDHSWtLcL39KyiNN0NR2hC19kSDiooKvP/++zs+Hx8fp0AyCOx2u9/lqampkM9PS0vzuxzNv2+vy61gc0rh/vQVSMuB9+SW1pbgOvtLKE3HoSipj1p7okFFRQU++OCDHZ+PjY1RIJkslJaW7jqH4eqrr45Tq+SNKIoYHByExWJBX19fWCmS+vp6mEwm1NbWUnmaCLFbkdvx8XFceeWVMW5NYiAIAoaGhg7kckNDA4xGY8xdZtMyobr2FPje98EPfhz4IMEDzyeveNODLdeD4RLjEbHbYsexsTEcPXo0xq1JDARB2NYvXzpfej84jvO7XFNTE1uX0zOhvvZL4HveAz/0SeCDBA88H78McWkaypbrwLCJ8dzYzeXx8XEcOXIkxq0JjsToJWSEWq1GUVHRjre2cN7ikp3Z2Vl/imRjYyPk84uKivwpEp0ueQrPygWNRoPCwkLMzGwfoQpndC3ZmZ2dhdlsRkdHR1guFxcXw2g0orW1Na4uMywLZfO1YLOL4P70NcATeBcoYbQD4sqsN9Wtk3/FA61Wi/z8fMzNzW37nPrlnczMzMBsNqOzszMsl0tKSvwua7XaKLQwOBiWhbLluosu84F3zhFGLBBXZqC6/A6wut1XicsFnU6HvLw8zM/Pb/tczi5TIBkGxcXFO75Um80Gl8sFtVodp1bJg42NDXR2dsJsNu8IUIIhPT0dbW1tMBqNyM9P7FIOiUBxcfGO72l1dRVutzvpt4rcj42NDXR0dMBisRzIZZPJJLuUFFdYDfUN98H90YuQVucDHiOtzMF19h+hOnwCXIH8iz6XlJTsCCSXl5fh8XhSvnbsxsYG2tvbYbFYMDsbOB28FxkZGf5+WXYuF9VArc/d2+XlWa/Ll58Al18Z2waGQUlJyY5AcmlpSbYbRlAgGQa7/UNaWFhIybplgiBgYGAAZrMZAwMDYaVIGhsb/SkSWjEcO3ZzeXFxUdZ1y6KFIAjo7++HxWIJ2+WmpiYYjUZUV1fL2mU2zQD1dV+Cp/Pc7nX6PC64z/8OirojUDRcBUbGf57c3NyAny8uLqbknF+e57e5fOl0rP1QKBT+fjlxXD4LYawr8EEeJ9wf/BaK+iugaLgCDCPfP08glyVJwuLioiwHWCiQDIPdOqxUCiQlSdqWIrHbA9eq24vS0lIYjUa0tLTENUWSyuzm8vz8fMoEkpIkYXp62u+ywxG4Vt1elJaWwmQyoaWlBRqNJgqtjA4Mp4DKeBP47CJ42t8AhMDliviBjyAuz0B1+DYwmsitxI0ke73gp0ogKUkSpqamYLFYwna5rKzM3y8nnsvHwWcXw9P+5u4u91+AuDQN1eW3yXav7r1iDAokk4TdOqxLh6KTkfX1dX+K5NI0UjDo9Xp/imS3fyxE7Njr4ZvsrK2t+V0O59+uXq+H0WiE0WhETk5OFFoYOxRljWANed704C7bK4oLVjjP/hKqIyfB5cjvhTmV++WDumwwGPz9cuK73OR1+cMXd91eUVyYgPPsP0J1+e3gcuRXbSXRXKZAMgzS09OhVqvhcm2fqJ6sD1+e59HX1weLxYLBwcGwUiS+dF9VVZWsUySphl6vh0qlgtu9faJ6Mrvc29sLi8WCoaGhkF1WKpXbXJZrgeBwYPU5UN9wLzyWNyBM9gc+yLUB93v/DEXjNVDUHpbVn99gMECpVO7Y8zlZXfZ4PP5+OVyXm5ubYTQaUVlZKavv8qCw+tyLLk8NBD7IuQH3e/8ERdO1UNRcJqs/f2ZmZsBd9OTqMgWSYcAwDPLy8nYUc5br20I4SJKEyclJmM1mdHV1wel0hnyN8vJymEwmNDc3p/wiJLnCMAxyc3N3LB5LNpetVissFkvYLldUVMBoNCa9y4xCBeXh28BmF3mLPksB5ohKEviedyEuT0F12QkwSnn8fTAMg5ycnB0Lo5LRZV+/fOlgRjBUVlbCaDSiqakpuV1WqqG8/CTY7GJ4uvZwufsdb6r7sltk4zLLssjNzd2xMEquLlMgGSa5ubk7Asnl5WXwPJ/QW/TZbDZYLBZYLBYsLi6GfH5mZqY/3ZeVlXi7CqQigQJJOa8QDJbV1VV/uo9cDh6GYaCoMoLNLID7o5cgOQLv1CPOjHhXwh65A2ymPOZt5eXl7QgkFxcXE37bz9XVVX+/vLS0FPL5WVlZMBqNaGtrSz2Xq41gM/Ph/vglSI7AO/WIM0NwnV2A6ugdYA3yWJUeKJCUq8uJG/HEmd1WVS0tLclyMuxeeDwe9PT0wGKxYHh4lz1590ClUvlTJBUVFbJKERD7E2g+jiiKWFpakl2pj/2IlMsmkwnl5eUp7TKbVQj1sfvg/uRViHNjAY+R7Da43nkOyraboChvjnELdxKoXxZFEcvLywk398/tdvtdHhnZZX/pPVCpVGhpaYHRaCSXs4ugvuF+uD95BeL8eMBjJPsqXOee9e7sVNYU4xbuJJDLPM9jdXVVdi8DFEiGyV6TYRMhkJQkCePj4/5036Vz5IKhqqrKnyJJ9ZqDicxeKwQTIZD0uWw2m9Hd3R2Wy9XV1TAajWhsbCSXt8CotFBd+TnwAx+B7/0AQIB5eKIAj/n3EG0LUDZfF9cSQXv1y4kQSEqShLGxMVgslgO73NTUlPL1M7fCqLVQXXUX+P4Pwfft3IIQgNflT1+DtLoARfO1snWZAskkYa+Hr5xZWVnxp0iWlwOvztyL7Oxsf7rPYDBEoYVErNmrw2pqiv+b+W4sLy/7XV5ZWQn5/JycHH+6j1zeHYZhoKw/CjarEO6PXwbcgUvKCMNmSLZFqI6cBKOKTzmvRO2XyeXYwDAMlA1XeF3+5GXAHXi+ND/8KcS1RaguPwlGFZ8SSHu5XF8vr/3DKZAMk8zMTCgUCvD89lpVcpwM63a70d3dDYvFgtHR0ZDPV6vVaGlpgclk8u81TiQPWVlZCbNC0OVy+V0eGwucbt0LtVqN1tZWmEwmlJSUkMshwOWVQXPsfrg/fhniUuDt2sSFCbje/hVUV9wJVh/7EcDs7GywLLujkLwc+2Wfy2azGePjgdOte6HRaPz9MrkcGlx+udflj16GuDwd8Bhxfhyuc5suZ2THuIXelwOGYXasxpejyxRIhgnLssjJydkxGVYuD19JkjA6OupPkVxaEmM/GIZBTU0NjEYjGhoaKEWSxPhcvrQuqFw6LEmSMDIyAovFgp6engO53NjYmNCL4eINo02H6pq7wfe8B37o04DHSHYbXOee9W6tWFQT0/ZxHIfs7Owd/bBc+mVRFDE6Ogqz2Yyenp4dAxH7wTAMamtr/f0yuRw+jDYDqmu/AE/3uxCGzQGPkTZWvcHk4ZPgCmO7TahCoUBWVtaOxVVycXkrZOEByMvLCxhISpIUt7fDpaUlmM1mtLe3Y3V1NeTz8/Ly/CmSjAz5b3BPRIbc3NwdgWS8XV5cXPSn+2w2W8jn5+XlwWQy4dChQ+RyBGFYDsqW68EY8uAxvw6Iws6DBA/cH74AReNVUNQd9Tskrs6D0edG1am8vLyAgWS8Xfb1y+G4nJ+f7++X09PTo9DC1IRhOahabwBvyIPH8kZgl3kP3Bd+B0Xj1VDUHYm5yxRIJjmBJrwKggCn0xnTLf+cTie6urpgsVgwMTER8vlardaf7isqKqIUSQqSnb0zdcPzPFwuV0y3SfO5bDabd5TXCgZyOXYoShvBpmfBdeFfAedGwGP43g8g2RagNN0Kye2A6/3feEcq8yuj1q5A/bLb7YbH44npQiqHw+Hvl8N1+dChQzCZTCgsLCSXo4iirMnr8ocv7OHy+5su3wLJZd90+SS4/PKotSuQy06nU3ZlBuXTkgQkLS3wnrN2uz3qgaQoihgeHobFYkFvb29YKZK6ujoYjUbU19fLSkoi9uzlcrQDSZ/LZrMZvb29O+Zq7gfLsttcTuTal4kGm1kAzQ33wf3hCxCXZwIeI0wNQlxfASQJcDvBD1uiGkju5XK0A0lRFDE0NOTvl8N12WQyoa6ujlyOIWxWITQ33AfXhy9A2tXlAYgbK96RS7cT/Ig5qoHkXi7r9fqo3TdUKHo4ADpd4A3fNzY2olZqYn5+HhaLBe3t7VhbC1woeC8KCgpgNBpx6NAhSpEQfnZz2W63BxytjARzc3N+l9fXAxcK3ovCwkK/y7t1uET0YTRpUF3zBXg63oIw3h3wGMl2MR0nzo1BXFuK2gKGvfrlzMzMqNxzbm4OZrMZHR0dYblcVFQEo9GI1tZWcjmOMJo0qK/5Ajztb0KY6Al4jLR6ce64ODsKcX0FbHpmVNqzl8sUSMqcrQkEtxBgW6VN9npbiCQOhwOdnZ0wm807diAJBp1Oty1FQqQOW1128bu7vFcgGUnsdjs6OzthsVjCcjktLc3vckFBQUTbRoQPwymgNB4Hq8+Dp+tt7+jjHvAjFqjabgrtHlt+7dzD5Vj1y3a7HR0dHbBYLJieDrzydy/S0tLQ1tYGo9FILssIhlNAaboFrD4Xnq53ELB26hb4EQtUh46Fdo8tv3Z6dh+1jpXLB4UCyS0sbHiLv5boNSjP0mJ82QGrzYn3x5ZwdcXOt+doPnwFQcDQ0BDMZjP6+/vDSpE0NDTAaDSitraWUiQpxqI9NJd367A2NgLPFwoFQRAwODgIi8WCvr6+HaVZ9oPjOL/LNTU15LJM8W1Hx2Rkw/3RS4Bn9z3NhYkeSI1XB1WjL1SXo90vDwwMwGKxoL+//0Au19bWym6rO8ILwzBQ1FwGRp+z6fLue5oL492QGq8Kap/uJbu34oQcXI4kFEhuwebiUarX4LNNBWAYBm2FevyuZxZds2shfckHefjOzs76UyThXKe4uNifItmtfUTysxYhlw/SYc3MzPhdDuc6JSUlfpdjuXiNOBhcXhnUN9wL9/nfQlrfZdMDgQc/3g1l7eF9r7fujn+/TC6nJlxeOdTXb7q8sRL4IMEDYbwbiprL9r2eHFyOBhRIwruiz2azQZKA8iytf3UcwzCoyNJiyub0L6DZunIuUg/fjY0Nf4pkZibwJN+9SE9PR1tbG0wmU0JsaUdED5fLhbW1tbi63N7eDovFsqM0VjBkZGT4033kcgLDMJB22TXEhzDaDkWNCQwTeFQuXJcjlQ5cX1/398sHcdlkMu26SwmRADAMpD1G1wGAH20HV23adWV9sC5f2g9TajsBWF9fx8LCgn9yNMukY3zZgbZCvb+i/NiyAywDDA8PQ61WIycnB1lZWd6hb4UCKpVqx36owXzJgiCgv78fFosFAwMDYaVImpqaYDQaUV1dTSmSFGd9fR3z8/P+N9VgXM7NzUVmZqZ32zClEkqlckex72Bc5nl+m8uX7sSwHwqFAo2NjeRykiDxbrjP/27XrRT9x9ltEGfHdhR6Xltbw8LCwoFcDrRTU6xc9vXLVVVV5HKCI3lccF/43a5bKfqP21iFOD+2oxpBqC5rNBrk5OT4XVar1QF3aqJAUgYIgoCpqakdBbsLFS5YbcDvemZRkaXF2LIDkzYnSpTe+REulwtTU1NYXl5GaWkp1Go10tLSgg4kJUnC9PQ0zGYzOjs74XDs3dEGorS0FCaTCS0tLTGt70fIE57nMT09HZbLk5OTWFpa8rus0+l2XGcvl6empmCxWMJ2uaysDEajkVxONjgFVIdPQFyagrg4BWFpavfafCMWfyAZSZfT0tJ2FP7ez2Vfv+x07h00BKK8vBxGoxHNzc3kcjKhUEJ1+LaLLi9OAa5dXB5u9weSPM9jampqh4P7uex0OgP2y5dWAqBAMs44nU6Mjo4GrLtYrfaOxsysAVM2J1gGKFG6/J/7cDgcGBgYQFlZGXQ6HZaXt88DuvRLXltb86f7wtl2Tq/Xw2g0wmg0Rq2sEJF4OJ1OjIyMBFyIFYrLg4ODKC0tRVpa2o6H+KVzcQ7qssFg8KeuyeXkhGFYMIY8sIY8oMoISZK8o49LUxAXJyEuTEKyez0T58chri/DxWkwOjoaMZd1Ot2+gaTNZvO7HM5uIQaDwd8vR6tEFhFfdnV5cQri0iTEBSsku9czcc5bCsjFqSPmsi/GuDSQpDmSccTpdGJ4eHjPNHK12rPjS92NiYmJgHtQb2xsgOd59Pb2wmKxYGhoKOQUiVKp3JYioV0NiK1E0mVJknZ12W63w+PxoK+v70AuNzc3w2g0orKyklxOMRiGAZNmAJtmAMqaAACiYw3iwiTERStc1gGMiOkRdTlQ4fGNjQ14PB5/vzw8PBy2yyaTCRUVFeRyirHN5fJNl+1rEBetEBcn4ZocwDCv29OrUFweHx8P6DKNSMYJQRAwOjoa8lzE/QgkzNraGn74wx+GlSKpqKjwp0jU6v3LCRCpB8/zGBkZiYnLq6ur+OEPfwiXa/fyF7tRWVkJo9GIpqYmcpnYBqvNAFvWCL6oFkMDAxAD7XF8AKLhsslkQlNTU0y3WSTkD6vLAKtrAl9Uh6GBAUhSZF0OBAWScWJ6ejrkbQSDIdADUhTFkILIzMxMf4ok0N6aBLGV6enpkOuKBsNuLofy4M3KyvK7HK1dRIjkIZYuC4IQ0r3IZSIUpqamouLybiOSoijKZjFX1ALJ9fV1PPTQQ+B5HqIo4sEHH8Q999wTrdvt25aVlZWoXDvct1OVSuVPkZSXl1OKhAiK9fX1HfMYI8VBXG5paYHJZEJZWRm5TATF2tqa7FxWq9VoaWmB0Wgkl4mgsdlsO+bkRordXHa73bJZ2BW1QFKr1eL//t//C61WC4fDgc9+9rO49dZb4zLiFs5E6mhRXV0No9GIxsZGSpEQsHV1I6O5KegHVjgLXIIl1IdmdXU1TCYTGhsbA86vJFKLUF2OZr8cqss1NTX+fplcJhLZ5XgQtUCS4zh/BX+XywVRFEOe2BwJ3G73jhVPsSYnJwdGoxFtbW0wGAxxbQshL3q/92fg0tJQ+di/QfY1V+3Zabhcrriv1svJyYHJZEJbWxv0en1c20LIi57vfg/KzExUPvYVZF11pexdzs3N9ffL5DKxle4//U9Q5eSg8rF/g6wrj+7pstPplN2cxVgTciApiiLuuOMOHD9+HI8//rj/83PnzuEP/uAP8IMf/AC33347AO9w75kzZzA2NoZvf/vbcSmRsLa2FvN7At4USWtrK0wmE0pKShLirYKID2td3ej4xr9FRkvzngFlPF0+dOgQjEYjuUzsia2jE+1//C3oD7XuGVDGy2WNRuPvl4uLi8llYlds7R1o/6NvQN92aM+AMl4uywlGCmOY8De/+Q2efPJJvPnmmzAYDOjt7cUDDzyAr3/96/jKV76y4/iFhQX80R/9EX7yk5/EfKsoq9UatfmRANDX14fOzk4AACOIaPrEAgCora2BUkmpa2Jvls9fgHDJ2+xuAeXExETU5pQB211mBQGNn7QDAGrraqFUULqP2Jul9z+AeMkiw90CyvHx8ajNKQOA3t5edHV1AQBYnkfjpx0AgLq6WijIZWIfArrc1roZUF4RU5e7u7vR09Oz4/PvfOc7iT1H8s4778RPfvITPPPMMzh16hQee+wx3HXXXQGDSMCbQmhoaMCHH37oH62MFbEccmYkCXkz3j1ZV2dC35uVIIDdRyjD2T0mXMhlIhLsNkIZL5dXyGUiTGztnWj/o2/uCChj6bJcCWvtuEKhwFe/+lU888wz+OpXv4rm5mZ897vf3XbM1j2s19fX8dFHH6GqqirQ5aJKNJbjE0Qs8AWUnzz8b7D47vtRKV9FELHAF1B++uhjWHr/A3KZSFh8AeWnX3kMSx+cJ5cRZiAJeEclfZH4U089BY7jtv18ZmYGp0+fxuc+9zncf//9OH36NBobGw/WWoJIQRzjE1jr6QUu2dOdIBIN+9gY1rp7AU9wu4cRhFyxj417+2UPBZJhr9p+8sknAQDLy8s7gkgAaG1txfPPPx9+yyIEy7I0KkkkJIqMDJSevh+l930JivR09PX1QaQHMJGAKPQZKDv9AEru/RIU6Wno7e2lkRwiIVEY9Cg78wBK7jkFRRq5DIQZSP74xz/GW2+9hWeffRYPP/wwfv3rX+P06dORbltE0Gq18MTo4SsxwEBLI/KmZ5GvVIJh5FF1npAvrvl54JIXnUsDSB8ajSZmLosABlsakTs9g3ylilwm9iWgywY9yk7fj5J7vAGkD61WG7PVrhLIZSI0dnV5SwDpQ6PRxL3EYLwJOZB87rnn8PTTT+MXv/gFGhsb8dBDD+FnP/sZ7rnnHlkWctVqtVFdUbUVieMwVV2JqepKFBcX4/Dhw2hpaZHNyipCflw4dR/so2MAdg8gfcT04atQYLK6EpPVlSgpKfG7THtmE7tx/u4vwTFhBbB7AOkjli6LSqXf5dLSUhw+fBjNzc3kMrErH9z1RTgnpwDsHkD60Gq1FEiGcvDZs2fxxBNP4KmnnoLJZAIAPPjgg/j5z3+O559/HqdOnYpGGw9Eeno6Zmdjv1JvamoKU1NTePnll9HY2Aij0Yjq6mrZ7I1JyIf9Akgf6enpmJubi2HLvExOTmJychIvvfQSmpqaYDQaUVVVRS4TO9gvgPQRL5etViusVitefPFFNDU1wWQyobKyklwmdrBfAOkjPT09qjuOJQJBB5KdnZ345je/iccffxwnTpzwf56eno4zZ87gpz/9Ke6+++6A8yXjiVarhUajgfOSmlCxgud5dHZ2orOzExkZGWhra4PRaEReXl5c2kPIi7KHHkTeTcf2DCB9yMHljo4OdHR0+F02mUwxrw1LyJPyRx5C3s037RlA+tBqtVCr1XC5XDFo2U62uqzX6/0u5+TkxKU9hLyoePRh5N1y854BpA+dThdXl+VAWAXJE42VlRVYrdaoXHtrEedQKCkpgdFoRGtrq38rSYLYj+XlZUxOTkbl2luLOIdCSUkJTCYTWlpayGUiaJaWljA1NRWVa/f09KC7uzvk80pLS/39Mk1JIoIlmi4nbUHyRMNgMGBpaSkqxcnDXfzgSxe+8soraGhogNFoRG1tLaVYiD3JzMzE0tJSVIrgHtTll19+mVwmgiYrKwvLy8uyctmX+t46JammpoZcJvYkKysLS0tLUckW7eaynNakpEQgyTAMSkpKMDg4iEgPwB50OFsQBHR3d6O7uxtpaWk4dOgQTCYTCgoKItRCIplgGAalpaUxc5lhmKDvs9Xl9PR0//7c5DIRCLm73NXVha6uLr/LJpMJ+fn5EW0nkRxsdTnSBHJZo9HIahphSqS2fdhsNoyPj0f0mh9//DFGR0e3fZaRkYEzZ87AYrGgvb09rBVdhYWFMBqNOHToENKCmKdBpBarq6uYmJiI6DU/+ugjjI2NbfvMYDDggQcegNlsRkdHR1guFxUV+V3W6XSRai6RJETD5Q8//HBHX5+ZmYn77rvP3y9vbGyEfN2ioiKYTCa0traSy8QOouHyhQsXdlwzOzsbf/zHfxzR+xyElBiR9KHX61FeXh6xYDI3NzdgsfO0tDTk5+fj1ltvxfHjxzE8PAyz2Yze3t6gi6PPzMxgZmYGr732Gurq6mA0GlFfXy+rtxAifhgMBgCIWKeVl5cXsKiuTqdDfn4+Tpw4gVtuuQVDQ0OwWCwhuTw9PY3p6Wm8+uqrqK+vh9FoRF1dHblMAIidy2lpaSgoKPC7PDg4CIvFgr6+vpBdfuWVV1BfXw+TyYTa2lpymQDgdVmSpIitycjPzw+Y2pbbS0xKBZKAN5isqamB1WoNOGScvdAPg20SrChAZDms6kuwlFu/7RiO41BcXAyDwRBw3uXWL5llWdTW1qK2thZOpxOdnZ2wWCxBiyaKIvr6+tDX1wetVutPFxYVFYFhmBD/9EQyYTAYoFKpYupyXV0d6urq4HA40NXVFbLLvb296O3thU6nQ2trK0wmEwoLC8nlFCdSLpeUlECv1wflcn19Perr6+FwOPz9crAL2S512Zf6LiwsDPFPTiQbmZmZfpfdAba1jYTLcstSplwgCXhLT9TU1GBxcRELCwv+t9HshX5krYyBzSsHW1AJcXYUWfPeVN9Sbj0YhkFmZiYKCgqgUHj/6vbrsLai0Whw5MgRHDlyBIuLi7BYLLBYLEEXTHc4HLhw4QIuXLiA/Px8f7owIyMjnL8GIgk4iMtZWVnIz8/f0+XdOiytVut3eWFhwZ8uDNZlu92+w+W2tjakB1EGiUhOfC4vLCxgcXEx4i7v1i9rtVocPXoUR48excLCAsxmM9rb24MumG6323H+/HmcP38eBQUF/n6ZXE5ddDodamtrD+yyJEkBXZZbdYyUmiMZCEmSYLPZYLPZkPPpv4DLKYbqmi/4J2a73/snCEvTcFzzADIzM7elMERR9O85vpUrrrgCt99+e9D3HxkZgcViQXd3d8h7djIMg9raWhiNRjQ0NPg7UiL1OIjLgiDg+9///o5rXnXVVbjtttuCur8oihgdHYXZbEZPTw+5TISNKIpYW1sLy2We5/Ff/+t/3XHNq6++elsN5P3u7+uXw3V565Qkcjl1EUURNpsNa2trIbvsdrvx3//7f99xzWuvvRa33HJLLP8Ye5LydjMMA4PBAIPBAMfHAtiCSn+ajWEYsAVVEOetAQvV7la2IpT5CwzDoLq6GtXV1bjjjjvQ3d0Ni8WyY9HDbkiShIGBAQwMDECj0aClpQUmkwklJSWULkwxDuLybqWxQnGZZVm/yy6XC93d3TCbzUHPSb7UZV/qu7i4mFxOMViWjbvLNTU1qKmpgdPp9PfLobjc39+P/v5+cjnFYVkWmZmZyMzMjIvLsSDlA8ltsCzE2VFINYf9bwvi7Aiwy9vkbqv+wp2/oFarcdlll+Gyyy7D8vKyP/W9srIS1PlOpxMff/wxPv74Y+Tk5MBoNMJoNEKv14fVHiKBCdHlSHdYkXD5o48+wkcffYTc3Fx/6ptcTkHi3C9rNBocPnwYhw8fxtLSkt/l1dXVoM4nlwk/LBMRlymQlDGMLgPi/Djc7/2T9y1hdgTi/AQUtUcCHh/Nt4WsrCzceOONOHbsGMbHx2E2m9Hd3R1w8m4gFhcX8cYbb+CNN95AdXU1jEYjmpqaZFXElIgi2tBcjmaHtdXlsbExWCwWdHV1BV00emFhAa+//jpef/111NTUwGg0orGxkVxOFTTy6Zezs7Nx00034cYbb8TY2Ji/Xw7V5a39MrmcQkTIZVpsI2NYQz6E9RWIC5MQ560AwwCsAsrW6wMeH4thZ4ZhUFFRgYqKCtx+++3o7e2FxWLB8PBw0NcYHh7G8PAwXnjhBbS0tMBoNKK8vJxSLEkMa8iDuHGJywplyC5HssNiGAaVlZWorKzE7bffjp6eHlgsFoyMjAR9jaGhIQwNDUGtVqO5uRkmkwllZWXkchLDGnIh2i91WRX3ftnn8h133IGenh6YzeYdNYV3Q5KkbS77+mVyOblh9TkQ7auycjkSUCAZCEnc/K8EqHbfyzLSKZT9UKlUaGtrQ1tbG1ZXV9He3g6LxYLFxcWgzne73fj000/x6aefIisry5/6zszMjEp7CRmwxWVGuXvnE+sOS6VS+f1bXV31pwuXlpaCOt/lcvldzs7ORltbG7mc7GxzWV79ss/llZUVv8vLy8tBne9yufDJJ5/gk08+QXZ2tv9avvqaRBKy1WXV7iuwKbWdAsTzbcFgMOD666/HddddB6vVCovFgs7OzqC3bFxeXsZbb72Ft956CxUVFTCZTGhuboZKpYpyywk5Es8Oy2Aw4IYbbsD1118Pq9UKs9mMrq6uoF1eWlryu1xZWQmj0UgupzDx7JczMzNx7Ngx3HDDDZiYmPBP4wjF5TfffBNvvvkmqqqq/FOSyOXUhFLbKUCghQMMw8S0xhPDMCgrK0NZWRluu+029PX1wWKxYGhoKOh9ZcfGxjA2NoYXX3wRzc3NMBqNqKyspBRLChHIZZZl4+byyZMnw3J5dHQUo6Oj5HIKE8hljuOgVqtj1gaGYVBeXo7y8nKcPHnSPyVpaGgo6GuMjIxgZGRk25SkiooKcjmFCOSyQqGQ3ZxaCiQPwPz8/I7PsrOzwbJsHFoDKJVKtLa2orW1FWtra/7Ud6B2BsLj8fjTMgaDAW1tbTCZTMjOzo5yy4l4s7CwsOOz7OzsuD20Iu2yL11ILic/gRzJycmJq8uHDh3CoUOHYLPZ/C4H+jcXCI/HA7PZDLPZjMzMTP80DnI5+Qnkcm5uruxeJiiQDBNJkgJ2BLm5uXFozU4yMjJw7bXX4pprrsH09DTMZjM6Ozt3rX15Kaurqzh37hzOnTuHsrIyGI1GtLS0QKPZfW4SkZjs5nJeXl4cWrOTrS5PTU3BYrGgo6MDTqczqPNXV1fx9ttv4+2330Z5ebk/9U0uJx9y75f1ej2uu+46XHvttZiamvL3y8G6vLKyssPllpaWmI62ErFBFMWA6x/k4vJWKJAMk/X19YDzXuT2JTMMg+LiYhQXF+PEiRMYGBiAxWLBwMAARFEM6hoTExOYmJjAyy+/jMbGRhiNRlRXV8dt5JWILDabLWBZKTm6XFJSgpKSEpw4cQL9/f1+l4NNfY+Pj2N8fBwvvfQSmpqaYDQaUVVVRS4nCaurqwF3oZGzy7fddhu5TOxgZWXFv7XiVuTmMkCBZNjslmKTyyhOIBQKBZqamtDU1ISNjQ10dHTAYrFgZmYmqPN5nkdnZyc6OzuRkZHhT7HI+c9M7M9uLsuxw/KhUCjQ3NyM5uZmrK+v+12enZ0N6nye59HR0YGOjg6/yyaTSdZ/ZmJ/ErVfvtRls9mMubm5oM7f6rJer/f3y+RyYpNILlMgGSaJ+PDdSlpaGq666ipcddVVmJmZ8acLd1u9eylra2t499138e6776K4uBgmkwmtra2y20ye2J/d5mrJscMKRHp6Oq6++mpcffXVmJmZgdlsRkdHx64rHi9lq8slJSUwGo3kcoKSSA/fQPhcvrRfDtZlm82Gd955B++88w5KS0v9qW9yOfFIpBiDAskw2e3hK8cveT8KCwtRWFiIW265BUNDQzCbzejv7w84rB6IqakpTE1N4ZVXXkF9fT1MJhNqamq2bT5PyJdE6rD2o7CwECdPnsStt96KwcFBWCwW9PX1BT2NY3JyEpOTk3jllVfQ0NAAo9GI2tpaShcmCIH6ZYZhAu5jLGcYhkFRURGKiopw6623+qck9ff3B+2y1WqF1WrdNiWppqaGXE4QEsllCiTDJNCXrNfrE3rSM8dxqK+vR319PRwOBzo7O2E2mzE1NRXU+YIgoKenBz09PUhLS8OhQ4dgMplQUFAQ5ZYTByGQy5mZmbIrMREKHMehoaEBDQ0NsNvt6OzshMViCcnl7u5udHd3Iy0tzZ8uJJflzW4uK3bZyzgR4DgOjY2NaGxshN1u90/jmJ6eDup8QRDQ1dWFrq4upKen+/vl/Pz8KLecOAi7VdKQ4wBN4v7rijOBRnESJX0SDFqtFkePHsXRo0cxPz8Pi8WC9vZ2rK2tBXX+xsYGPvjgA3zwwQcoLCyE0WjEoUOHZFdIldi9xESyoNPpcMUVV+CKK67A3Nyc3+X19fWgzt/Y2MD777+P999/n1yWMZIkJX2/rNPpcOWVV+LKK6/E3NycfxpHsC6vr6/7XS4qKvK7LLedUlKdRHOZAskwcDgcAecSJtPDdyt5eXm45ZZbcPPNN2N4eBgWiwW9vb0BV0cGYmZmBjMzM3jttddQV1cHo9GI+vp6Wb5ZpRobGxsBS0Ilq8v5+fm49dZbcfz4cb/LPT09QU/juNRlk8mEuro6clkGbGxsBCyjk8wunzhxwj8lydcvB+vy9PQ0pqen8eqrr6K+vh5Go5Fclglra2sJUUnDBwWSYZBMc8pCgWVZ1NbWora2Fk6nE11dXbBYLJiYmAjqfFEU0dfXh76+Pmi1WrS2tsJkMqGoqEh2BVZThURfaBMugVw2m82wWq1Bnb/VZZ1O53e5sLCQXI4Tib7QJlxYlkVdXR3q6urgcDj8/XIoLvf29qK3txc6nQ6HDh2C0Wgkl+NIosUYFEiGQao+fLei0Whw+eWX4/LLL8fi4qI/Xbi6uhrU+Q6HAx9++CE+/PBD5OXlwWg0oq2tDRkZGVFuObGVVH34biWQyxaLBTabLajz7XY7Lly4gAsXLiA/P9/vcnp6epRbTmyFXPZOSTpy5AiOHDmChYUFf78cisvnz5/H+fPnkZ+fD5PJhEOHDpHLMSbRYgwKJMOAOqzt5OTk4Oabb8ZNN92E0dFRWCwWdHd3w+PxBHX+/Pw8fv/73+P1119HTU0NjEYjGhsbE3qCfKKQaG++0WaryyMjI/7Ud7Auz83N4bXXXsPvf/971NbWwmg0oqGhgVyOAclUSSMS5Obm4vjx4/5+2Ww2o6enJ+gpSXNzc3j11Vfx2muvoba2FiaTCfX19eRyDEi0fpmMCINABbx1Ol3KT1hmGAZVVVWoqqrC7bffjp6eHlgsFoyOjgZ1viRJGBwcxODgIDQaDVpaWmA0GlFaWkopligRyOW0tLSUrzvHMAyqq6tRXV2NO+64A93d3bBYLBgbGwvqfEmSMDAwgIGBAb/LJpMJJSUl5HKUCORyRkZGQlfSiAQsy/pddrlc/tT3+Ph4UOdf6rJvGkdxcTG5HCUCuWwwGKBSqeLQmv2hQDJEBEEIOPeksLAwDq2RL2q1GiaTCSaTCcvLy2hvb4fFYsHy8nJQ5zudTnz88cf4+OOPkZOT408XGgyGKLc8deB5HpOTkzs+J5e3o1arcdlll+Gyyy7D8vKyP/W9srIS1PmBXDYajdDr9dFteArh8XjI5SBQq9U4fPgwDh8+jKWlJX+/HIrLH330ET766CPk5ub6+2VyOXK43e6ApZ3k7DIFkiEyNTUVMDVQXl4eh9YkBllZWTh27BhuuOEGjI+Pw2KxoKurK+CqtEAsLi7ijTfewBtvvIHq6mp/6luub2eJwuTkZMAVnhUVFXFoTWKQlZWFG2+8EceOHcP4+DjMZjO6u7sP5HJTU1NC1+yUA1arNWChbnJ5d7Kzs/0uj42N+fvlYKdxLCws4PXXX9/RL5PLB2M3l+UcY1AgGSK7pbaow9ofhmFQUVGBioqKbanv4eHhoK8xPDyM4eFhqFQqNDc3w2Qyoby8nFIsYbCby3LusOTCpS739vaG7fILL7zgn8ZBLocHuRw+DMOgsrISlZWV2/rlkZGRoM6XJAlDQ0MYGhqCWq3298tlZWXkchgkYoxBgWSIBJpXwrIsSkpK4tCaxEWpVKKtrQ1tbW1YXV31p1gWFxeDOt/tdsNsNsNsNiMzM9OfLszKyopyy5OHQC5zHEcuh4hKpTqwy59++ik+/fRTZGVl+V3OzMyMbsOTiEAuKxQKFBcXx6E1iYtKpfL7t7Ky4nd5aWkpqPNdLpff5ezsbP+OUORy8ARyWalUUmo7WRBFMeCXXFJSQsP5B8BgMOD666/Hddddh8nJSZjNZnR1dQUsLhyIlZUVnD17FmfPnkVFRQWMRiOam5tTfpL9XuzmcmlpKa3KPABbXbZarbBYLOjs7ITL5Qrq/OXlZbz11lt46623UFlZ6XeZpnHsjiAIAWvZlpWVUXHtA5CZmYkbbrgB119/PaxWq79fDtblpaUlcjlEeJ4PuAZD7i7TEyMEZmdnA/4jkvOQcyLBMAxKS0tRWlqKkydPoq+vDxaLBYODg5AkKahrjI2NYWxsDC+99BKamppgNBpRVVVFKZZLmJ6eDjgXilKBkYFhGJSVlaGsrAy33Xab3+WhoaGgXR4dHcXo6ChefPFFNDc3w2g0orKykly+hOnpaZq3HkW2uuzrl81mM4aHh8nlCLPbGgy5xxgUSIZAIs5dSFQUCgVaWlrQ0tKCtbU1dHR0wGKxYG5uLqjzPR4P2tvb0d7eDr1e70/X5OTkRLnlicFupT/I5cijVCrR2tqK1tZWrK2t+dOFu9WKuxSPx+NfKW4wGNDW1gaTyYTs7OwotzwxoH45dgRy2Ww271rD81IuddnXL5PLXhLVZQokQyDQw9f3tkZEj4yMDFxzzTW4+uqrMTMzA7PZjI6OjoB7RAfCZrPh3LlzOHfuHEpLS2EymdDS0gKNRhPllsuXQB0WuRx9MjIycO211+Kaa67B9PQ0zGYzOjs7g3Z5dXXV73JZWRmMRiO5HMBllmVRWloah9akDltdnpqagsViQUdHR9BTklZXV/H222/j7bffRnl5uT/1ncouJ+q8dQokg0SSpIAdVmFhIc3FixEMw6CoqAhFRUU4ceIE+vv7YbFYMDAwELBcQiCsViusViteeuklNDY2wmQyobq6GizLRrn18kGSpIAdVlFREc1fihEMw6C4uBjFxcU4ceIEBgYGQnZ5YmICExMTePnll9HY2Aij0ZhyLu8217e4uJjmrccIhmFQUlKCkpKSHf1ysKnv8fFxjI+P75iSRC5712DIfd66vFsnIxYXF2G323d8TvNw4gPHcWhqakJTUxM2Njb8qe9AOwIEQhAEdHV1oaurC+np6f7Vhfn5+VFuefyZn58POAIm9/RJsqJQKA7kMs/z6OzsRGdnJzIyMvwup8KWrXNzczRvXUYoFAo0NzejubkZ6+vrfpdnZ2eDOp/neXR0dKCjo8Pvsslkku3WgJFkdnY2YD3aRIgxKJAMkkSdu5AKpKWl4aqrrsJVV12F2dlZf+p7Y2MjqPPX19fx3nvv4b333kNxcTGMRiNaW1uTdstLclm+bHV5ZmbGny4M1uW1tTW8++67ePfdd/0uHzp0KGm3vCSX5Ut6ejquvvrqHVOSAg3IBGKryyUlJf5+mVyWHxRIBgkVvE0MCgoKcNttt+HWW2/F4OAgLBYL+vr6Au7gEoipqSlMTU3hlVdeQUNDA4xGI2pra2VdeiFUdltoQy7Li8LCQhQWFuKWW27xu9zf3x+yy6+++irq6+thMplQU1OTEi7TXF95UVhYiJMnT+7ol4OdxjE5OYnJyckd/XIypb4Ted46BZJBIEkSRkdHd3yel5eHtLS02DeI2BeWZVFfX4/6+no4HA50dnbCYrEE3I83EKIooqenBz09PdDpdDh06BBMJpOsi8IGw24u5+fnJ+2bfqLDcRwaGhrQ0NAAu93ud3lqaiqo8wVB8Luclpbmd7mgoCDKLY8uoigGdLmwsDClF2zImUi43N3dje7ubqSlpfmncSSDy4ECyaKiooRYg0GBZBDMzMxgbW1tx+c0gpMYaLVaHD16FEePHsX8/DwsFgva29sDfqeBsNvtOH/+PM6fP4+CggIYjUa0tbUl5EvE1NQU1tfXd3xOLicGOp0OV1xxBa644grMz8/DbDajvb094HcaiI2NDXzwwQf44IMPUFhY6E99J6LLk5OTNG89gdnq8tzcnL9fDsXl999/H++//z4KCwthMpnQ2tqakC5brdaA89YTxWVGCnZZVQrg/vAFCJP92z9U63Be24CzZ8/uOP7ee+9FY2NjjFpHRBJRFDE8PAyLxYLe3t6ARWD3gmEY1NXVwWg0or6+Xnar6lwX/hXi1MC2zxhtOt5X1eLtt9/ecfz999+P+vr6WDWPiCAHdZll2W0uyy317Tr/O4jTg9s+Y7R6vKuoxDvvvLPj+NOnT6O2tjZWzSMiiCiKGBoa8rsc7DQOHz6XTSYT6urq5OfyB89DnBne9hmjM+AcU4b33ntvx/FnzpxBTU1NrJoXNvJ6+smU/v7+HZ9xHIfq6uo4tIaIBCzLora2FrW1tXA6neju7obZbA641VogJElCf38/+vv7odVq0draCqPRiOLiYlnv1tDX17fjM4VCgaqqqji0hogEl7rc1dUFi8UStMuiKKKvrw99fX1+l00mE4qKihLOZaVSicrKytg3hogIvkCwrq4ODofD73KgbQMDsdVlnU7nd7mwsFDWLgeKMVQqVcK4TIFkIBgGkAAwgORxY3p654b11dXVVHMvSdBoNDh8+DAOHz6MxcVFf4pldXU1qPMdDgc+/PBDfPjhh8jNzYXJZEJbWxsyMjKi3PIg2OKy6HJidnanyzU1NVRzL0nQaDS4/PLLcfnll/tdtlgssNlsQZ2/1eW8vDz/NA75uWzH/Hxgl+WWHSDCQ6vV4siRIzhy5AgWFhb8/XKwLtvtdly4cAEXLlxAfn6+3+X09PQotzwItrgsuOxYWFjccUgiLfKk1PYWnL9/GtL6Cti8crAFlRBnRyHOj+P8nAvnZj2QJAkMw0AURXzmM5/BkSNH4t1kIkr4FqVYLBZ0d3cH3Jd6LxiGQU1NDYxGIxoaGmIeqDleexrYCM7lO++8E4cPH45p+4jYIUkSRkZGYLFY0NPTcyCXGxsbYx6oOV59GrAH5/LnPvc5XHbZZTFtHxE7fAusfP1yOFOSamtr/f1y7F3+OWBfDcrlz3/+8zAajTFtX7hQILkFx2//CmxOCVTXfAEMw0CSJLjf+ye45qx4fj0HtbW1GBwcxPDwMC6//HJ89rOfjXeTiRjgcrnQ09MDi8UScJXofqjVarS0tMBkMqG0tHTXFIsoihErZxGKy0eOHMFnPvOZiNyXkDculwvd3d2wWCy7ljTbC7Va7Z/GQS4T8eSgLms0Gn+/XFJSIjuXjx49ijvuuCMi9402KR9I8jyP5eVl2Gw2FHf8DorW66Gsvdz/c8/gx+A7z0Fz1zf8X/wzzzyDyclJ/If/8B/i2HIiHqysrPjThcvLyyGfn52dDaPRCKPRCIPBsO1nr7/+OkpKSsJewEUuE6GwvLyM9vb2sF3Oycnxpwsvdfn3v/89ysvLw17ARS4TobC8vOzvl1dWVkI+3+ey0WiEXq/f9rNXX30VVVVVqKurC6ttPpdXV1dR0vmvSelyyk4mEQQBMzMz2zpQkeUgzo5Cqjns/0LF2RGILOt/W/Gt1g1nZIpIfDIzM3Hs2DHccMMNmJiYgNlsRldXV8CtrQKxtLSEN998E2+++SaqqqpgNBrR1NQEhUIBs9mM999/H6dPnw5p8QvP85iZmdnWgZLLxH5kZWX5XR4fH4fZbEZ3d3fQLi8uLuKNN97AG2+8gerqan/qm+M4mM1mnD9/HqdPnw5pwQC5TIRDVlYWbrzxRhw7dixiLjc1NYFlWVgsFnz44Yc4c+ZMSLvMpJLLKRlIrq2twWq17igtsKovQdb8GNzv/RPYgirvFzw/gX6XBqbNuQuSJGFgYAAKhcI/n4FIPRiGQXl5OcrLy3H77bejt7cXZrMZw8PD+5+8ycjICEZGRvDiiy+irKzMXz/tl7/8Jb785S+jpKRk32vYbDZMTk6Sy0TYMAyDiooKVFRU4I477vBP4wjF5eHhYQwPD0OlUqGsrMy/peM//uM/4qGHHkJxcfG+1yCXiYOy1eXbb7/d7/LIyEjQ1/C5/MILL6CsrMxfq9TnclFR0b7XWF1dxdTUVMq4nHKp7YWFBczMzOz68+yFfhhsk2BFASLLYdClwr90z/iHtgcGBjAyMoL6+npce+21KCsrS4gvmogNNpvNn2JZXNy5Ei9YtFotHn74YeTn5+96TCRdvu666/ac80akHqurq/7U90FdfuSRR5CXl7frMfPz85idnd315+QycRBWV1f9/fLS0s7V/sGi0+nwyCOPIDc3d9djIuny9ddfv+f8TbmQUoHk4uIipqenQz6vo6MDIyMj4HneX3Pv0KFDAACDwUCdFrEDSZIwOTnpT307nc6Qr5GRkYFHHnkEWVlZO35GLhOxYqvLnZ2dcLlcIV8jIyMDjz76KDIzM3f8bL8Xot3Yy+XMzMyEeAATsUWSJFitVn+/HI7Ler0ejz766I55wUDqupwygaTD4cDQ0FBUrl1UVIScnJyoXJtIfHieR19fHywWCwYHBxHKP7msrCw88sgj2+r42e32kNKOoUAuE3vhc9lsNmNoaCgkl7Ozs/HII49sq+MXTZeLi4uRnZ0dlWsTiY/H4/H3y6G6nJOTg0ceeWTbdowbGxshpdBDoaSkJOCAglyIeiDpcDhwxx134OTJk/jOd74TzVvtim/bpXDePoLBNzmWCpQT+7G+vu5PF87NzQV1Tn5+Ph5++GFotVqIoojBwcGgJ5GHCrlMBMva2ho6OjpgNpsxPz8f1DkFBQV4+OGHodFoyGVCNqytrfn75WBdLiwsxEMPPeR3eWBgIOQarcHCMAzq6+tlu3FE1APJH/3oRxgdHUVxcXHcAslw04ChoNfrE2aDdSL+SJKEmZkZvPfee+js7Nz3+NLSUjz44IOw2WxhpU5CgVwmQkGSJExPT+O9995DV1fXvseXlZXhzJkzMXHZYDCgrKwsqvcgkgefy++++y66u7v3Pb68vBxnzpzBysrKnvMiI4GcXY5Mlc1dGB0dxfDwMI4dOxbN2+yJJEkHmigeLDabLWpvI0TywTAMioqKUDjQDZ3Lse/xVqsVv/rVr4J+Wz4I5DIRCgzDoLi4GEX9XdC59p8LPDExgWeffTYmLq+uroa8+wmRumx1WRuEy+Pj43juueewsLAQ9bbJ2eWQy/+Ioog77rgDx48fx+OPP+7//Ny5c/iDP/gD/OAHP8Dtt98OAPgf/+N/4Nvf/jY+/fTTyLU4ROx2e9RSJ5eyvLy85ypbgtiKKIqQ2j/BzfYNWHMKMF3bCGV+IfR6PTIyMqDX67f9mmEYWK3WmLRtZWVlz1W2BLEVURSB9k9xs9MBa04+pmuboMwvkIXLy8vL5DIRNKIogm3/FMddTkzkFmC6phHqgkK/u5f6DACTk5MxadvKysqeK8bjRciBJMuy+NrXvoYnn3wSjz32GAwGA3p7e/GNb3wD3/rWt/xB5O9//3tUVlaiqqoqroGkr55ZLFhfX0eeDL9kQp7wHg/0GRkQ7BsoX5xF+fI8sm+6FYV33A510c66e9FOnWxlbW0NubTohggS3uNBRkY6BKfd6/LKAnJuuhUFn7kD6sKddfdi6fL6+jq5TASNx+1GWnoaRJcDFQszqFieR87NJ1DwmduhLtjpcrSnZ2xlfX1dloFkWHMkeZ7HbbfdhrvvvhunTp3CPffcg+PHj+N73/ue/5gf/vCH+O1vfwuO47CxsQGe5/HII4/gj/7ojyL6B9iPsbExrK2txeReDM/D/V++HZN7EUkMy3oDylP3bwsoR0dH/UXLow3jccP9xJ/E5F5EEsNx3oDy1P3bAsqRkZGYveSzbhdcf5YYW80RMobjvAHlqfu2BZSxdJnjODQ1NcXkXqEQ9mKbX/7yl/jRj36E/Px8lJSU4K//+q/BcVzAY//5n/8ZAwMDcVls09fXF7P5XpLbDf7P6OFLRIhLAsre3t6YzZGRXE7wT/5pTO5FpACXBJQxddnhAP9f/2NM7kWkAJcElD09PTt2sIkmTU1Nu8Za8SLsxTZ33nknHA7vIoGnnnpKdn8wH6IoxrsJBBEeooil119B99cfxfhPnoIQRlFzgpAFgoDF37+M7j98BON//SMIQSxkIAhZIghYfO0ldP/hoxj/m/8JIUplBXdDjjFN2HttP/nkkwC8E5n3CyK/8IUvhHsbgkhtGAaZ196AvLu+iI11e0zffAkiojAMsq49hvzPfRHra+uQZPhAJIigYFlkXXcM+XfejXXbuiyDu1gSViD54x//GG+99RaeffZZPPzww/j1r3+N06dPR7ptEUGpVNLDl0g8GAaZ1x1D4T2noS2rAAAoBgbIZSLxYBhkXXcjCu85DU2Ztz6por8/ZtU0CCJisCyyrr8RhV96AJrS+Lgsx+xvyIHkc889h6effhq/+MUv0NjYiIceegg/+9nPcM8998iy6rpWqw1rn+NwUGk0yL7rVEzuRSQHi6+/AmF9y2KwAAGkD61WG7XdmS5FpdGSy0RILL72EgT7lkUHDLP50L0YQPrQ6XQxe/iq03TkMhESC6+9CNFuv/jB5ghk4T2n/QGkD61WGzuX1WqwbFTLf4dFSIHk2bNn8cQTT+Cpp56CyWQCADz44IP4+c9/jueffx6nTsnvH6tWq8Xy8nJM7qXLyEDJI4/F5F5E4uN2u/FK/yCUtlVoPG7kVNeg9PityKyth3LL3to+tFotVlZWYtK2NIOBXCaCxuVy4eW+AajWbF6Xa2pQdvMJGGrroIizyzo9uUwEzzaXeTdya2pRevOtMNTs7vLq6mpM2qbT6WJyn1AJOpDs7OzEN7/5TTz++OM4ceKE//P09HScOXMGP/3pT3H33XfLbthVr9djamoqJvcyGAwxuQ+RHKhUKrhZDhP5myV+XALw4ssAXgbg7TS2FsE1GAzIzMyMyRspuUyEglqthpvlYPW57BSAF18C8BIAcplIHNRqNVxbXXbwwAvbXb60MHmquxz1vbblwMTERNTfGBQKBRoaGsAwTFTvQyQXH507hxfeeCOoY0+dOoWMjAzYbLaotkmpVKK+vp5cJkLiwttv46U339z3OIZhcOrUKaSnp5PLhCw5f/YtvPzW2X2PYxgG99xzD7RabdTrVcvZ5bBXbScSubm5UQ8k8/LyZPkFE/JDFEUMDQ3BYrGgt7c3qHM++9nPoqWlBXa7PeoP39zcXHKZCApRFDE4OAiLxYK+vr6gzrnzzjvR3NwcE5epXyaCRRAEf78crMt33XUXGhsbsbGxEfVAUs4up0QgqdVqkZubG7WN1bVaLbKzs6NybSJ5mJubg9lsRkdHR0g71Nxyyy24/PLLAXjTKjk5OVhcXIxKG8llIhhmZ2dhsVjQ3t4e0q4eJ06cwGWXXQYg+i7rdDpkZWVF5dpE8jA7O+vvl0Nx+eTJkzAajQCAtLQ0ZGdnY2lpKSptlLvLKRFIAkB+fj7W1tYivuqVYRiUlpb+/9v78+hIzjJN+L5yX5UpKTO172uVSlWRgIFuDNi02cGA3cYwjd0G3AYz3X3APePvdPcw08Mx0+98B8YwL3wzzdLsDTPGL+DhBQNDg42NgYbBGVWqRVKVSqrSnpnaclNuEd8fUoalkqqUEcpNmdfvHB9XpTIiHlmXH90Zd8QTFftJgcorHo/jzJkzEEURCwsLqrd/5StfiZtvvnnXa83NzYhEIgW/U5BZphs5bJZf9apX4Q//8A93vcYsUznEYjEly1qelX3LLbfg5S9/+a7Xclku9JP09Hp9xWe5Jq6RzEmn05iamirYD1qn06G7uxtOp7Mg+6PqkM1mMTk5CVEUMTExoXmx2pe85CV4y1vesu8EkkqlMDU1VbDHzOl0OvT09MDhcBRkf1QdCpXll770pXjTm97ELFPZZLNZTExMQBRFTE5Oas7yy172MrzxjW8sWZZ7e3sr9m7tnJoqJIGtYnJ6evrQZyYNBgO6uro4WREAQJZlLC4uQhRFnDlzBvGda5BpMDo6ijvvvPOGn0KZZSqGXJYDgQDGxsYOneWTJ0/ijjvuuGGWU6kUZmZmCpLl7u7uiv/FS6UhyzIWFhaULOce66yVIAh4+9vffmCWp6enD32W/ShlueYKSWDrAvFQKITl5WVN27tcLrS1tcForJkrA+g6otGo0iJZWlpSvX1dXR1OnTqF3t5efOMb3wAADA4O4l3veldeS2lJkoRgMIhgMKj62ACzTC+IRqM4ffo0RFHUNDe6XC6cOnUKPT09SpaHhoZw9913lyTLbrcbra2tzDIhEokoWdaSp1yWu7u78U//9E8AgGPHjuGd73xnXsv8SJKE5eVlzfdlHLUsH41RFpher0dTUxPcbjfC4TBWV1eRTz1dV1cHj8fDVnaNy2Qyu1okaj+LGY1GHD9+HIIgoLe3V5mYenp6IEkS3vnOd+a9Hqter0dzczPcbjdWVlbyzrLL5UJjYyOzXOMymQzGx8chiiIuXryoOct+vx89PT1Klru7t57KdNddd5Ukyx6Ph2fUa1wmk8GFCxcgiiIuXbqkOssmk2nXvJw769jZ2Qmj0Yg//uM/znutSL1ej5aWFtTX1yMcDmNtba2qs1yTZySvlc1mEYvFkEgkkEgkkM1mIcsyDAYDrFYrbDYbHA5HRT4CkkpDlmXMz88rLRItj93s6uqCIAgYGRmB1Wrd8/WZmRk0Nzfv+7V8XZvl3LU6zDLlyLKMubk5BAIBnD179lBZPnHiBCwWy56vT09Po7W1dd+v5YtZpoMUIsvd3d3KvMwsa8NCkugGNjY2lBaJljaF2+2GIAgQBIHL6lBZ5bIcCAQ0LblTX1+PU6dOMctUduvr68q8rDXLuXm5kpfVOSpqsrVNdCPpdFppkUxNTWlqkYyMjMDv96O7u7uil22g6pZOp3H+/Hkly2qZTCacOHECgiAwy1RWh82y2WxW5uWuri5muYBYSBJhq0Vy9epVBAIBnDt3TtPdoz09PfD7/Th+/DjMZnMRRkl0sJ1ZPnv2rKa7R3t7eyEIArNMZSXLMq5cuaLMy1qy3NfXB0EQcOzYMWa5SFhIUk1bW1tTntCh5akEDQ0NSoukvr6+8AMkylMuy6IoYnV1VfX2jY2NSpbdbncRRkiUn9XVVWVe1pJlj8cDQRBw6tQpZrkEWEhSzUmlUjh37hxEUcT09LTq7S0Wi9Lu6+zsZIuEyqZQWfb7/RX/9AyqbslkUsnyzMyM6u0tFgtGR0chCAKzXGIsJKkmyLKM6elpiKKIc+fOaXq6UX9/v9IiOap319HRd9gs63Q69PX1we/3Y3h4mFmmspFlGZcvX4Yoijh//rymLO+cl4/KuovVhv/VqaqtrKwo7b719XXV23u9XqVF4nK5ijBCovysrKwgEAjg9OnTmrLs8/mULNfV1RVhhET5CYfDSuuaWT76WEhS1dnc3FRaJFeuXFG9vdVqxejoKPx+P9ra2tgiobLZ3NzE2bNnIYoirl69qnp7q9WKkydPQhAEZpnKKpflQCCA2dlZ1dvbbDZlXm5tbWWWKwgLSaoKkiTtapHkFnzNl06nw+DgIARBwNDQEFskVDaSJGFqagqiKOLChQvMMh1ZuSwHAgFcuHAB2WxW1fZ6vX5XlvN9ShKVFmcYOtJCoZDS7otEIqq3b2pqgt/vx8mTJ/m4QCqrYDCotPu0ZLm5uRmCIDDLVHbLy8tKlqPRqOrtW1palCwftccF1iIWknTkJBIJjI2NQRRFzM3Nqd7ebrcr7b6Wlha2SKhsCpVlv9+PlpaWIoyQKD/xeFzJ8vz8vOrtHQ7HrnmZjg4WknQkSJKEixcvQhRFjI+Pa2qRDA0NQRAEDA4OskVCZZPNZnHp0qVDZXl4eBiCIGBgYIBZprLJZrO75mVJklRtbzAYMDQ0BL/fj/7+fmb5iGIhSRVtaWlJaZHEYjHV27e2tiotErvdXoQREuVnaWkJgUAAZ86c0ZTltrY2CIKA0dFRZpnKanFxUclyPB5XvX1bWxv8fj9GR0dhs9mKMEIqJRaSVHFisRjGxsYQCASwuLioenun06m0+5qamoowQqL8xGIxnDlzBqIoas7yqVOnIAgCs0xlFYvFcPr0aYiiiKWlJdXb19XVKVn2+XxFGCGVCwtJqgjZbBaTk5MIBAKYnJzU1CI5duwYBEFAf38/9Hp9kUZKdGPZbBYTExMQRfFQWfb7/ejr62OWqWwymYyS5YsXL6rOstFoVOZlZrl6sZCkspFlWWmRjI2NaWqRdHR0QBAEnDhxgi0SKhtZlrGwsKBkOZFIqN5HR0cH/H4/Tpw4AavVWoRREh1MlmXMz89DFEXNWe7s7FTmZWa5+rGQpJKLRqNKi2R5eVn19i6XS2mReL3eIoyQKD+RSARnzpxBIBBAMBhUvb3L5YIgCBAEAR6PpwgjJMpPJBJR5mUtWXa73cq8zCzXFhaSVBKZTAbj4+NKi0SWZVXbG41GHD9+HH6/Hz09PWyRUNnkshwIBHDp0iXVWTaZTDh+/DgEQUBvby+Xn6KySafTyrysNcsjIyMQBAE9PT3Mco1iIUlFI8sy5ubmlBbJ5uam6n10dXXB7/djZGQEFoulCKMkOlguy4FAAGfPntWU5e7ubgiCwCxTWcmyjNnZWSXLyWRS9T56enogCAKOHz/OLBMLSSq8jY0NnD59GoFAAOFwWPX29fX1SruvoaGhCCMkys/6+rrS7mOW6ShbX1+HKIoQRRErKyuqt29oaIAgCDh16hSzTLuwkKSCSKfTOH/+PERRxNTUlOrtzWaz0iLp7u5mi4TKplBZ9vv96OrqYpapbFKplJLly5cvq97ebDbjxIkTEASBWabrYiFJmsmyjKtXryotklQqpXofvb29SovEbDYXYZREB5NlGVeuXEEgEMC5c+c0Zbmvrw+CIODYsWPMMpWNLMuYmZmBKIqHzvLx48dhMpmKMEqqJiwkSbW1tTWlRbK6uqp6+8bGRqXd53a7izBCovysrq4qT07SkmWPx6O0+5hlKqdclkVRxNramurtmWXSioUk5SWVSuHcuXMQRRHT09Oqt7dYLDhx4gT8fj86OjrYIqGySSaTSpZnZmZUb2+xWDA6OgpBEJhlKqvDZtlqtSrzcnt7O7NMmrCQpOuSZRnT09NKiySdTqvaXqfTob+/H4IgYHh4mC0SKhtZlnH58mWIoojz588fKsvHjh2D0cipk8pDkqRd83Imk1G1vU6nw8DAgDIvM8t0WEwQ7bGysoJAIIDTp09jfX1d9fY+n09pkdTV1RVhhET5CYfDSuuaWaajLBwOK/PyxsaG6u2bmpogCAJOnjzJLFNBsZAkAMDm5ibOnj0LURRx9epV1dvbbDal3dfW1sYWCZVNobLs9/vR2trKLFPZbG5uYmxsDKIoYnZ2VvX2NpsNJ0+ehN/vR0tLC7NMRcFCsoZJkoTLly8jEAjgwoULmlokg4ODEAQBQ0NDbJFQ2UiShKmpKYiiqCnLer1+V5YNBkORRkp0Y5Ik4dKlS0qWs9msqu1zWfb7/RgcHGSWqej4m78GBYNBpd0XiURUb9/c3Ky0SJxOZxFGSJSfYDCIQCCAM2fOaMpyS0uLkmWHw1GEERLlZ3l5WZmXo9Go6u1bWlrg9/sxOjrKLFNJsZCsEYlEQmmRzM3Nqd7ebrfvapEQlUs8HleyPD8/r3p7h8OhZLm5ubkIIyTKTy7LgUAACwsLqrd3OBw4deoUBEFglqlsWEhWMUmScPHiRYiiiPHxcU0tkuHhYQiCgIGBAbZIqGyy2eyuLEuSpGp7g8GAoaEh+P1+9Pf3M8tUNrksBwIBTExMaMryznlZr9cXaaRE+WEhWYWWlpaUdl8sFlO9fVtbGwRBwOjoKOx2exFGSJSfxcVFiKJ4qCzn2n02m60IIyTKz+LiojIvx+Nx1du3t7cr8zKzTJWEhWSViMViOHPmDERRxOLiourtnU6n0iJpamoqwgiJ8nPYLNfV1SlZ9vl8RRghUX6i0aiS5aWlJdXb57Ls9/vh9XqLMEKiw2MheYRls1lMTExAFEVMTk5qapEcP34cgiCgr6+PLRIqm8Nm2Wg04tixY8wylV0mk9mVZVmWVW1vNBqVebm3t5dZporHQvKIkWUZCwsLSrsvkUio3kdHRwf8fj9OnDgBq9VahFESHSyX5UAggLGxMU1Z7uzshCAIzDKVlSzLmJ+fRyAQwNmzZzVluaurC4IgYGRkhFmmI4WF5BERiUSUFsny8rLq7V0uFwRBgCAI8Hg8RRghUX4ikQhOnz4NURQRDAZVb+92u5XWNbNM5bSxsaFkORQKqd7e7XYr83JjY2MRRkhUfCwkK1gmk8H4+DhEUcTFixdVt0hMJtOuFgmfakDlkslkcOHCBYiiiEuXLmnK8sjICARBQE9PD7NMZZNOpzE+Po5AIICpqSlmmWoeC8kKI8sy5ubmlBbJ5uam6n10d3crLRKLxVKEURIdTJZlzM7OQhRFjI2NIZlMqt5HT08PBEHA8ePHmWUqm1yWc/PyYbI8MjICs9lchFESlQcLyW3pdBqJRAKJREJZb1Gv18NqtcJms8FsNhf1k+PGxgZEUYQoigiHw6q3r6+vV1okDQ0NRRghHRXlzvL6+rrS7tOS5YaGBiXL9fX1hR8gHQmyLCOTyZQ9y7l5eWVlRfX2zDIBW1lOp9PY3NwsW5aLqaYLSUmSsL6+jnA4fOCZP6PRiMbGRjQ2NhbsmdLpdBrnz5+HKIqYmppSvb3ZbMbIyAj8fj+6urqObAjp8NRm2ePxoKGhoWBZTqVSSutaa5ZPnDgBQRCY5RonSRLW1tYQDocPPPNXrCzn5uXLly+r3t5isSjzcmdnJ7Ncw9Rk2WQyobGxsaBZLhWdrPYCjyoRiUQwOzur+mkvwNazpr1er6YJQpZlXLlyBaIo4uzZs0ilUqr30dfXB0EQcOzYMbZICBsbG5ibm1OdZZ1Oh+bmZng8nkNlORAI4Ny5c5qz7Pf7cezYMZhMJtXbU3UpZ5ZnZmYgiqLmLPf39yvzMrNM6+vrmJ+fL3mWy6HmCklJkjA/P4+1tbVD7cdms6GzszPvQm5tbU1pkayurqo+nsfjgSAIOHXqFNxut+rtqfpIkoS5uTmsr68faj82mw1dXV15//JbXV1Vsqzl/6NclgVBgMvlUr09VZ9yZXllZQWiKOL06dOasuz1epV5mVkmoHxZLqeaKiQlScLMzIymR63tx2g0oq+v77rFZCqVwrlz5xAIBDAzM6N6/xaLBaOjo/D7/Whvbz8yn06o+CRJwvT0tKZHre3noCwnk0mcO3cOoihqyrLVasWJEyeYZdqjXFkOBAK4cuWK6v1brVZlXm5ra2OWSZHNZjE9Pa1pHdH9mEwm9Pb2VnznsWYKyVzrIhqNFnS/JpMJ/f39yjUNsixjenoagUAA58+fRzqdVrU/nU63q0Vy1K6VoOIrZZYvX74MURQ1Z3lgYACCIGB4eJhZpj2KmeWBgQEYDAYAW8XqzixnMhlV+9PpdBgcHIQgCBgaGmKWaY/c7/5CnajKMZvN6O/vV7JciWqmkFxZWcH8/HxR9u12u2G325UWiZZT2j6fT2mR1NXVFWGUVC3C4TAWFhaKsu9clgOBAE6fPo2NjQ3V+2hqalKy7HQ6izBKqhbFzHJ9fT2sVqsyL2vNst/vx8mTJ5lluqFQKITFxcWi7Lu+vh4dHR1F2XchFLWQHBkZweDgIABgdHQU/+k//adiHeqGUqmUpmeeqvHb3/5WdZvEZrMpLZLW1la2SOhApcjyb37zG8zOzqraxmaz4eTJk/D7/WhpaWGW6UClyPKvf/1rzM3NqdrGbrfj5MmTEASBWaa8JJNJTQ8NUaO7u7tiTzIV9fx8XV0dnnjiiWIeIi/hcLioP2AAaG9vz6uQ1Ov1u1oklXy6mopPliTo9Pq83x8KhYqe5c7OzrwKSb1ej6GhIQiCgMHBQWa5xlVqlvMpJJll2qkSs7y8vFybhWQlkCRJ013SajU1NcFsNl932YiWlhYIgoCTJ0/C4XAUfTx0NKT+5fswNHXD0HUCOuON787LZrMly7LJZLruNZGtra0QBAGjo6PMMilSv3kChuY+GLpHoDNUTpaNRuN1r4nMZfnkyZOw2+1FHw8dDanfPAFDS9/WvGy4cZmUzWYPvQpMPnIL89tstqIfSy3VhaQkSXjzm9+M2267DQ8//LDy+jPPPIMPfehD+MQnPoE3velNAIBYLIY777wTFosFDz30EF72spcVbuR52tjYgCRJRT+O0WhET08PJiYmlNccDofS7mtubi76GOgISsaRufArZKYCMPb5b1hQRiKRon/qBV7I8uTkpPKaw+HAqVOnIAgCs0z7SyaQufAcMlPPw9j3ohsWlBsbGyXJsslkQk9PDy5evKi85nQ6lXm5qamp6GOgI2gzhsz553bPy9cpKEuVZWBrGcFKLCQ1XSP53e9+F4888gh+/vOfw+1248KFC/iTP/kT/Pmf/znuv/9+5X1LS0tobm7GxMQEPvjBD+L73/9+yS9YXlhY0PSYNi3W19YwLz6H1tZW9HR3o7m5GXoVp8ep9qTPPwckdyx7YrZdt6Ccn5/X9Jg2LdZXVzF/+ldoa21Dd3cXmltaoOe1YnQD6XO/BFI7lj0x265bUJY2yyuYP/1rtLe1oSs3LzPLdAPpc88CqR1PCDPbYOx/EQxde7M8NzdXkrPrwNa16P39/SU5lhqaCslMJoM3vOENuOOOO3DXXXfh7rvvxm233Ya/+7u/u+42f/Znf4YPf/jDOHny5KEGrNalS5cKtqbTgbIZDMz9qjTHouq2T0FZ2iynMTD369Ici6rbPgXlxYsXD3yUZ6HopQz6ZjkvUwFY7HvOUJYyyzqdDiMjIxV3A5imaySNRiMeeOABfOpTn8KPf/xjjIyM4KMf/eiu96yvrysPIl9cXMSlS5fQ2dlZkEGroXbtu8OotB8uHWGpxJ6Wt5bHtmnFLFPBpPa2vEs5LxMVTDK+p+VdynlZlmVks9mKW8dU82huv/12/P3f/z0A4NFHH91zl9ulS5fwd3/3d9DpdNDpdPh3/+7fob6+/lCD1aJGlsmkarVdUEqhq4C9BwALPDqitgvKrSx3g1mmI2u7oJRCs4CtC6XMciXWNJoLyUceeQTA1nN391sq4cUvfjG+//3vax9ZgfDMCh1lujoPjIM3Qd/cC1y4AGSz5R4SkSbMMlULncu7leWmHuD8eaAEN/Qqx67AmkbTnSCf/vSn8dRTT+Gxxx5DJpPB448/XuhxFYzFYinh0XRYNfDpB3R4ujoPTC9+A8yvfCcMLX3Q6XQlzbLMLFOB7JflUj47WIYOa8wyFYDO5YXpJW+E+ea7YGjuLfm8rNfrK3KNU9VnJL/97W/jy1/+Mr761a/i2LFjuO+++/DFL34Rd999N0ymG68dVg42m63gz768nqjRgWfrXw2PRYchtwH9dQbYjJX36YEqgyRJSAV+Cv3mC88Z3nnW5tpPnjabDfF4/NrdFEXU6MQv618Nr0WHQbcBA3UGWJllug5JkpB6/ifQ71iBYCvLL4W+uWdPlu12e8luHIsYnXi2/tXwWnUYchnQ7zLAamCWaX+SJCH1+x9Dv2MFAp3LC+PATftm2WazlSzLVqu1Is9Iqiokn376aXzsYx/Do48+Cr/fDwC499578aUvfQlPPPEE7rrrrmKM8VBKucjsctYMQEI4KeNXyxn8JphBV70NQ14nuuptMOgrLwBUPlImg8/8ahpGHVBnNcPl8cEFJ1wX5+FajsLlcqGurg4ulwsmkwl2u71kS1nlshxKygjtyPKw14lOZpmukU2n8ZlfX9mR5abtLM/BtRwpa5aXMttZ3pQR2szg18EMuuvtGPI50Olmlmm3TCqF//vXV2HSA3W2rSy7dU7U7chyLs+5LJdqKatKfQBE3sv/jI2N4d5778VHPvIR3Hfffbu+9l//63/FD3/4Q/zwhz+suNOukiRhfHwc2SJfj5ORgd8m6iBd57+m1ajHgMeBIZ8DXru5Ij9VUOk98ZV/QGBm6cD3Wa1W9PT04MSJE0UfU1oGfndQlr0ODHud8NhNzDIBAL735f8G8UrwwPdZrVb09vZiZGSk6GNKyzr8Nu7E9X7JWY16DHodGPI64XWUrt1Ole07//j/w5nZ0IHvs9ls6O3txfHjx0swKmBwcLDEl+vlR9M6kkfN0tISgsGDJ7jDCOscuBDN75LTRpsJQz4nBj0O2M2VVXhT6aRSKTzzzDN49tlnD3xvXV0d3v/+9yOZTBY9yyGdA+P5ZtluwrDXiQGvA3YTs1yrUqkUfvGLX+CXv/zlge91uVx4//vfj0QigVDo4F/Wh6Emyx67CUNeJwa9DtiY5ZqVSqXw9NNP47nnnjvwvW63G+9///sRi8WKfobd6XSip6enqMfQqiYKyUwmg8nJyaKelZyUG7Ac3/95rtejA9BZb8OQ14HuBjuMbLFUPVmWMTMzA1EUce7cubzWILPZbHjf+94Hn89X8Vke3s4y24XVT5ZlTE9PK1nOZ21Iu92O973vffB6vchkMpiYmCjqI2wn5AYENWS5q96GIZ8D3fXMci3QkmWHw4H3ve998Hg8SKfTmJycLGqW+/v7K/LxiECNFJLA1vMwr1y5UpR9ezweeJqaMbUSx0QwioVIUvU+zAY9Bjx2DPmcaHKw9V1tVlZWIIoiTp8+jbW1tby3M5vNuO+++9DW1qa8tr6+jqtXrxZhlNtZ9jVjaiWG8VAMixqybDHo0e+xY9jnhI9Zrjq5LIuiiPX19by3s1gsuO+++9Da2qq8Vswse71eNHibMLUSw4TWLOcuSfI6mOUqtLKygkAggNOnT6vO8nvf+160tLQor62trWF2drYYw4TP50Nzc3NR9l0INVNIAsV5JqbVakVfX9+uZ2pvbKYxEdqavCJJdZ+GAaDealRaLE5LZa1gT/lLJpM4e/YsRFHU9CHGYDDgnnvu2bedUaosr29neTIURSSp/ixovdWIYd9Wlh1mZvmo2tzcxLlz5zRn2Wg04p577kF3d/eu12VZxtzcnKoPV/nIXbu2X5YnglFEU1qybMKwz8EsH3Gbm5vKvKzlQ4zRaMS9996Lrq6uXa+XMsuVpqYKSVmWMTs7q+qTx41YLBb09vZe93FFsixjIZLERCiKqXAc6evdvXADHS4rhnwO9DTYYTJUbpBoiyRJuHz5MkRRxPnz55HJqP8gAWwtOvuud70Lw8PD+3690FnO3cxzUJbHg1FMrcSRUZllHYB2txXDXid6Gm0wVvCkSFsKlWW9Xo93v/vdGBwc3Pfrsizj6tWr2NjYOMxwFbmbea5346csy5jf2J6XNWa5w23FkM+JngZm+SiQJAlTU1MQRREXLlw4VJb/1b/6VxgYGNj366XOcqWoqUIS2PpBB4NBLC8v7/t1b3wB9alV6GUZkk6HNXMDQvbWPe9zuVxob2/P+weczkq4vBrHRDCGuQ31D3g36XXo326xtNRZ2GKpMKFQSGlda5lE6urqEIlElL/fcccdOHXq1A23kWUZy8vL1735pqhZXoljPBTDvIYsmw069DU6MOxzoNnJLFeaUCiktPt2ZjJf12b5j//4jzE6OnrDbQqVZbfbjba2NlVZnlqJYyIUxfyGlkuSXpiXmeXKEwwGlXm5EFm+6667Dlw5o1xZLqeaKyRzEokEZmdnkUy+MHl44wtoTIahq2+GvqEV0uoC5LUlrFg8yg/aYDCgra0Nbrdb87EjyQwmQzFMhKJY31T/ychlMWLI68CQz4k6tr7LJpFIKC0SLdfG2O12nDx5EoIgwOPx4L/8l/+CVCqFN7/5zXjpS1+qahzlzXIU48EYNjRcxuGyGDHk21p+hVkun0QigbGxMYiiiLm5OdXb57Ls9/vR2NiIT37yk0in03jLW96Cm266SdU4tGa5vb0dLpdL9dhzIskMJkJRTGjMsnvHJUnMcvkcNssOh0OZlxsaGvDJT34SmUwGb33rW/GSl7wk7/3E43HMzc2pzrLRaERbW9uhslxqNVtIAlufHOLxOMLhMCKRCPpXz8Lg9sE4eit0Oh1kWUZm7Clk10OYb3sJGhsb4XK5CnatgizLWIqmMBGK4lI4hlRW/Y+irc6CIZ8TfY1sfZeCJEm4dOmS0iJRe/e0Xq/H0NAQBEHA4ODgrk+bTzzxBBoaGvDqV79a9bhkWUYsFsPKykpeWfZ4PKirqytwlpMYD8YwtaIxyy4Lhr1O9DLLJSFJEi5evAhRFDWttavX6zE8PAxBEDAwMLAry9/73vfg9Xrxyle+UvW4tGTZ5XIV7GxgYbJsxbDXwSyXSDabVeZlLVk2GAzKvHxtlr/zne+gubkZN998s+px5bIcDocRjUZLnuVSqelCcidZlpF+9jEYegUYOo4pr2dnLyB7WYT5Ve8q6vEzkoTp1QQmglHMrm9edwHd6zHqdehrtGPI60CbqzIfo3SULS8vIxAI4MyZM4hGowdvcI3W1lYIgoCTJ09e92lL8XgcNpvt0D+7SsnyeDCKuUNkedjnRCsv4yi4paUlpd2n5fGxbW1tEAQBo6OjVZ/ldHZ7Xg5tzctqmfQ69DLLRbO0tKTMy8XMciGekFfuLBcTz79v0+l0gE4HaXUB+vZh5dOCtLoAlOAaBaN+a5mJAY8DsVSu9R3DauLg9awAICPJyp3iTrMBQ14nhnwOuK2V9/zzoyIej+PMmTMQRRELCwuqt3c4HDh16hT8fj+ampoOfH+hHudZiVkeD8awtqkxyz4nhrzM8mHEYjGMjY0hEAhgcXFR9fZOpxOnTp2CIAg1lWWTYevJN4NeB6LJDCbDW3d9r+V5SVJ6R5brLAYMepnlw4rFYsq8rCXLdXV1ymUYPp/vwPdXS5aLiWckd0j99gfAZmTP9Qv69mMw9vlLPh5ZlhGKpTAeiuFiOIZkRv1ipy1OC4Z8DvQ1OmAxssVykGw2i8nJSYiiqGmxZIPBgGPHjkEQBPT395dtyYbUb/9fYDNaUVkOxlKYCMVwMRRDMqshy3UWDHkd6G90wMwsHyiX5UAgoGmxZGZ5f7ksjwejuBSOa87ysHfrkiRm+WDZbBYTExMQRVFTlo1Go5Lla5c4K6VKy3KhsJDcIXP+OUihK4BOB8jy1r91ephvfme5h4asJGNmbav1fWUtobpdaNDp0Ntow5DXiXa3FXq2WBSyLGNxcRGiKOLMmTOIx+Oq99HR0QFBEHDixImKePpA+vwvIYeuXpNlA8w331XuoW1neWsFAy1ZNup16GlglveTy3IgEMDY2Nihsjw6Ogqr1VqEUaqTPvcs5PBs5WZ5dWsFg6uas2zHsG/rkiRm+QWyLGNhYUHJciKRUL2Pzs5OZV6uiCyffQbyytzuLOsNML+i/Fk+DLa295OrrWUZMFZGC8Kwfd1YX6MdiXRWues7HM+vXZiVZVwMx3ExHIfdZFDu+m6wVcb3Vw7RaBRnzpxBIBC47nJQN+JyuZR2n9frLcIIC2Bnlk2V8bPeyvLWWfJ4OouLoRjGQ1Gs5JnljPRClh0mAwaZZUSjUZw+fRqiKNZGls3m8o5lm0GvQ5/HgT6PA/FUVml9r6i4JOlieKvj5DBvZXnY60R9DWc5EokoWb7eEjo34nK5IAiCshpGRdo1L1vKO5YCYCF5BNlMBpxqdeFUqwvhWArjoSgmQzFs5tn6jqezCCxsILCwAZ/DjGGfE/0eO6zGo32dRj5yz/cNBAK4ePEi1J6QNxqNOH78OARBqPinDRwF9h1ZDsW2VjBQk+XYjiw3OcwY8jkx4LHDUiNZHh8fhyiKmrM8MjICQRDQ09PDLB+S3WyA0OrCqZY6hONpjAejuBhWkeVUFoH5DQTmN9DkNGPYuzUv10qWL1y4AFEUcenSJdVZNplMOH78OPx+P3p6enhTU4mxkDziPA4zXuFoxMs7G3B1PYGJYAwza3Hk+7CGYCyFYGwFz82soLt+q8XS4bbBoK+e/xFlWcb8/LzSItncVH/3ZVdXl9IisViO/ifISuR1mOE9RJaXYyksb2e5p2FrBYPOeltVtQtzj2ELBAI4e/aspix3d3dDEASMjIwwy0Wg0+mULP9BVwOurG3d9X1lLZF/lqMpLEe35+WGrbu+O6rsMo7c07lEUTxUlv1+P44fP84slxELySph2L7WpqfBjs10FhfDW09rCMZSeW0vycDl1Tgur8ZhM+ox4HVg2OeEx14ZLSQtNjY2lBZJKBRSvX19fb3S7mtsbCzCCGk/e7O8ddermixPrcQxtRKHzaTHoGdrBYOjnmVRFCGKIsLhsOrt6+vrlXZfQ0NDEUZI+zFsL//Tu31J0qXw1goGoXh+Wc7uyLLdZNial70ONB7hLK+vryvzspYsNzQ0QBAEnDp1ilmuECwkq5DVZMBoSx1GW+qwGt+663syFEM8nd8irYmMhDOLEZxZjMBjN2HY58SAxwGbqfJbLOl0WmmRTE1NaWqRnDhxAoIgoLu7my2SMtvKsgujLS6sxLfu+laV5bSE04sbOL24Aa/djCGf40hl+fz580qW1TKbzRgZGYHf70dXVxezXGa2HVkOx1OYCMYwGY4ikc7/kqTTCxs4vbABr8OMYa8D/cwyVQDetb2Dctf2TiYrzH/wjrKMp5AkWcbs+iYmQlFMr8Sh9mENeh3Q6bZhyOdEd31ltb5lWcbVq1cRCARw7ty5XY+kyldvby8EQcDx48dhrpAL+Q9DuWt7J7MN5pe/vTwDKiAly8Eople1Zbmrfuuu764KzvLZs2eRSuV35mqnqsty7q7tnSx2mF/2tvIMqIByWR7fznK+re+cXJaHvU50VmCWr1y5oszLWrLc19enZNlUITcLHoZy1/ZOVgfML729PAMqEJ6RrBF6nQ5d9TZ01duQzEi4tBLDRDCGpWh+RZckAzNrCcysJWA16tHvcWDY54DXbi7bp8O1tTXlCR0rKyuqt29sbFRaJPX19YUfIBXF7ixncSkcx0RIXZanVxOYXt3K8oDHgaEKybIoilhdXVW9fWNjI/x+P06dOnWoZ6dTae2X5fFgFMsqLuPYleXtu749dlPZsry6uqpkeW1tTfX2Ho9HmZeZ5aOBhWQNshj1GGmqw0hTHdYSaeVO2Wgqv3bhZkbC2aUIzi5F0GAzYWj7yQ8Oc/HjlEqlcO7cOYiiiOnpadXbWywWpXXd2dnJFskRZzEaMNJch5HmF7I8EYohpiLLY0sRjC1F0GgzYcjnxKDHAbu5+O3CQmXZ7/ejo6ODWT7idmZ5NTcvB2OI5XkZx2ZGwthiBGOLW1ke9jkx4HXAXoLWdzKZVLI8MzOjenuLxYLR0VH4/X60t7czy0cMW9s7VHNr+yCyLGNuYxMToRgur8SRUdlj0QHocFsx5HOip8EOYwFbLLIsY3p6GqIo4ty5c0in81ujTRmbToe+vj74/X4MDw9XRYvkINXc2j6IJMuY39jERDCGy6vastxZb8OQ14HuCsxyf38/BEGonSxXcWv7ILksb7W+E5qzPLyd5UK2vmVZxuXLlyGKIs6fP685y7l52Wis/vNabG1TVdPpdOhw29DhtiHVI2FqJY6JYBQLkfzahTKAq+ubuLq+CbNBj36PHUNeJ5qd2tuFKysrSotkfX1d9fZer1dpkbhcLk1joKNHvzPLme0sh9Rl+cpaAlfWEjAb9Bjw2DHkc6LJcbgsBwIBnD59WlOWfT6fkuW6ujpNY6CjZ2+WYxgPxbCoIcuW7Xl52OeE7xBZDofDyry8sbGhenufzwe/34+TJ08yy1WChSTtYTboccznxDGfExubaUyEtpZfiSQzeW2fyko4vxzF+eUo3FYjhrxODHkdcFoOjtvm5qbSIrly5cqB77+W1WpVWiRtbW1skdQ4s1GPY01OHGvSnuVzy1GcW46ifjvLgyqyfPbsWYiiiKtXrx74/mvZbDYly62trcxyjdvKch2ONdVhPZflYDTvS5KS12bZtzUv53NJUi7LgUAAs7OzB77/WjabDSdPnoQgCMxyFWJre4dabm0fRJZlLESSmAhFMRWOI6329kIA7S4rhnwO9DbYYTK88BQNSZJ2tUgymfx+yefodDoMDg5CEAQMDQ3VRIvkILXc2j5IIbLcsZ3lnn2yPDU1BVEUceHCBdVZ1uv1SpYHBweZZdR2a/sguSyPB6OY0nhJUrvbiiGvEz0Ntn2zHAgEcOHCBWSz+RWsOTuzPDQ0BIOh8pcpKja2tqmm6XQ6tLmsaHNZcXO3hMurcUwEY5jbyP9pBHMbm5jb2MSz+hX0eexo0icxf/E8Tp8+jUgkonpMzc3NEAQBJ0+ehNPpVL091aY9WV7ZuutbTZZnNzYxu7EJk34F/R4HfPoE5ibP48yZM5qy3NLSomTZ4XCo3p5q084sv7JnK8vjoRjm88yyDGB2fROz65swG3Toa3TAp4tjdjvL0WhU9ZiY5drDQpJUMxn02+1qJ6LJzHa7MIr1zYPPvkjpJNYXLuO5X15Eel3902bsdjtOnjwJv9+PlpYWLcMnUpgM+q0Wn8+JSDKDSTVZTiWxvngZvzxElnNPTmKW6bD2ZjmK8WAMG3lcxiGlNrG6cBnPPnMRmQ31T5txOBzKvNzc3Kxl+HSEsZCkQ3FajHhxuxsvanNhOZrCeCiKS+EYUjtWiZYlCcnQHBJzF5FcvgrI+T3JIUev12NoaAh+vx8DAwNskVBR1O3I8lI0hYkiZNlgMGBoaAiCIDDLVDRbWa7Hi9rcWIomMR6MYWplvyzPIjF3SXOWh4eHIQgC+vv7meUaxkKSCkKn06G5zoLmOgte0d2I6dU4ApMzmB4/h8T8JUip/NuGOd6mZtz04hfh5MmTsNvtRRg10V46nQ4tdRa01Fnwiu4GTK8mtrJ84SwSC1OasuxrbsFNL34RRkdHmWUqma0sW9FSZ8XNPQ2YXkng+clpzIyfO0SWW3HTi7fuurbZbEUYNR01LCSpoGKxGMbGxhAIBLC4uKh6e73FBltbP6xt/TDWNeCi2QBdOIlhvQlua/WvmUeVIxaL4cyZMxBF8VBZtrUPwOCsx6TJAF04hSFmmUosFovh9OnTEEURS0tLqrfXW+ywtfVdk+UkhrxGZplYSNLhZbNZTE5OIhAIYHJyEpKkrkUCvR7Wpi7Y2gdg9rRBp3/hzsFoKovn5zfw/PwGmp0WDPkc6G90wGLU32CHRNpks1lMTExAFMVDZLkbtvb+fbP8+/l1/H5+HS3bWe5jlqlIMpnMriyrXqBFb4C1uQu2tgGYva3Q6a7J8tw6fj+3jpY6C4a8zHItYyFJmsiyjMXFRQQCAZw5cwaJREL1PpyeZhha+mBp6YHeZDnw/UvRJJaiSTw3vYKehq1FojvcVui5JhkdgizLWFhYQCAQwNjYmLYse1tgaO7NO8uL0SQWo0n8cnoVvY02DHmdaGeW6ZBkWcb8/DxEUTxklnPzsvnA9y9GkliMMMu1jIUkqRKNRpUWyfLysurtXS6Xcqeq1+tFIp1V7pQNx/N7xFZWBi6txHFpJQ67yYBBrwNDXgca7QdPekQ5kUhEyXIwGFS9vcvlgiAIEAQBHo9HY5ZlXAzHcTG8leUhrwNDPicabGwXUv4Om2W3263Myx6PB/F0FhdDMYwHo1hJqM+yIzcvM8s1gYUkHSiTyWB8fByiKOLixYuqWyRGoxHHjx+HIAjo7e2Ffke7z2Yy4FSrC6daXQjHU5gIRjEZiiGRya+lGE9nIS5sQFzYgM9hxpDXgQGPA1YT7yCkvTKZDC5cuABRFHHp0iXVWTaZTLuyvPMJHbuyHNtawWAyFMOmiiwHFjYQ2M7ysM+Jfo8dViOzTHul02llXtaa5ZGREQiCgJ6enl1Ztm9n+WRLHcLxNMZDUVxUkeXYjiw3OcwY8jkx4LHDwixXJRaStC9ZljE3N4dAIICzZ89ic1P93X1dXV3w+/0YGRmBxXJwu89jN+MPuxvxss4GzK4nMB6MYWYtjnwf1hCMpRCMpfCrK6vorrdjyOdAp9sGg54tllomyzJmZ2chiqLmLHd3d0MQhPyz7DDjFY5GvLyzAVfXE5jQlOUVPDezgu56O4Z9DnQwyzUvl+XcvJxM5vfM7Z16enogCAKOHz9+YJZ1Oh28DjO8jkb8QWcDrq4lMB6K4spaIu8sL8dSWN7Ock+DHUNeBzrrbWx9VxEWkrTLxsYGRFGEKIoIh9UvTFtfX6+0+xoaGjSNwaDXobvBju4GOzYzWVwKxzEejCIYS+W1vSQDl1fjuLwah9Wox6DXgWGvEx4HW9+1ZH19XWn3aclyQ0MDBEHAqVOnDpXlngY7ehrs2ExncTEcx0RIW5ZtRj0GvA4M+5zw8DKOmrK+vq7MyysrK6q3L1iWG+3oabQjkc7iUjiG8VAMIRVZnlqJY2olDptJj0GPE0M+B7NcBVhIEtLpNM6fPw9RFDE1NaV6e7PZrLRIuru7d7VIDstqNOBEcx1ONNdhNZHGRDCKiVAM8XR+z33dzEg4sxjBmcUIPHYThrxODHodsLH1XZVSqZTSuj5Mlv1+P7q6ugqbZZMBoy11GG2pw2o8hfFQDJMqspy4JsvDPicGPMxytUqlUsq8fPnyZdXbm81mnDhxAoIgFDzLNpMBoy0ujLa4sLKd5YtqspyWcHpxA6cXN+C1mzHkczDLR5hOVr0mQPXKnH8OUujK7hdNVpj/4B1lGU8xybKMK1euKO2+VCq/T5U79fb2Ki0Ss7l0nyolWcbc+iYmQlFcXkkgqzLCOgBd9TYM+RzorrdXZbswff6XkENXd79otsH88reXZ0BFlMtyIBDAuXPnNGW5r69PybLJVLqbAyRZxux2lqdX4siqXaFFB3S6bRjyOdFdX52t7/S5ZyGHZ3e/aLHD/LK3lWdARSTLMmZmZiCK4pHN8ngwiplVbVnuqt+667urWrN89hnIK3O7X7Q6YH7p7eUZUIHwjGSNWVtbU1okq6urqrdvbGxUWtdut7sIIzyYXqdDZ70NnfU2JDMSplZimAjGsBjN73ohGcDMWgIzawlYjHoMeLbu+vY5zAX91E7Ftbq6qmR5bW1N9fYej0dp95Uzy131NnRtZ/nSdpaX8syyJL+QZatRj36PA8M+B7x2Zvkoqb4sb1+SFIpiOZp/63t6NYHp1a0sD3gcGGKWjwQWkjUglUrh3LlzEEUR09PTqre3WCw4ceIE/H4/Ojo6Kup/aotRj+NNdTjeVIf1zTQmglvLr0RT+bVYkhkJZ5ciOLsUQYPNhCGvA4NeBxxm/q9RiZLJpJLlmZkZ1dtbLBaMjo7C7/ejvb294rI80lSHkaY6rCXSmNi+6zvfLG8yy0dKLsuBQABXrlw5eINrWK1WZV6uvCwbMNJch5HmrSznVjCIqcjy2FIEY0sRNNpMGPI5MOhxwm5m67sSsbW9QzW1tmVZxvT0tNIiSafzWwssR6fTob+/H4IgYHh4uKQtksOSZRnzG5uYCMUwtRJHJt/bC7fpAHS4rRjyOdHTYINRf/Se1lBNrW1ZlnH58mWIoojz589ryvLAwICSZaPx6BRWsixjbjvLlw+dZTuMR7BdWE2tbUmSMD09jUAggPPnzyOTyaja/ihnWdqel8eDMUyvastyZ70NQ14Huo9qltnapqNgZWUFgUAAp0+fxvr6uurtfT6f0iKpq6srwgiLT6fTod1tQ7vbhpt7JFxeiWMiGMV8JP/W99X1TVxd34TZoEP/duu72WmpqE/91S4cDivtvo2NDdXb+3w++P1+nDx58khnucNtQ4fbhlSPhKntLC9oyrIe/R47hrxONDvZLiylcDiszMtastzU1KTMy06nswgjLD79zixntrI8HopiUUWWr6wlcGUtAbNBj4HtLDcxy2XHQrIKbG5u4uzZsxBFEVevXj14g2vYbDal3dfa2lpV/1OaDXoM+5wY9jkRSWaUu743kvmdCUhlZZxfjuL8chRuq1G567vOwv91iiGX5UAggNnZ2YM3uIbNZsPJkychCEJVZvmYz4ljPic2NtOYCMUwEYohkneWpT1ZHvI64GSWiyKRSCjz8mGy7Pf70dLSUl1ZNupxrMmJY007sxxFJJlf6zuVlXBuOYpzy1HU75iXmeXyYGt7h6PU2pYkCVNTUxBFERcuXNDUIhkcHIQgCBgaGjpSLZLDkmUZi5EkJkIxXArHkFbZYgGANpcVw14HehvtMBkqr/V9lFrbuSwHAgFcuHAB2Wx+v0xy9Hr9riwbDLVzHZUsy1iIJDERimIqHNeU5XaXFUM+B3obKjTLR6i1LUkSLl26pMzLWrPs9/sxODjILKvUsZ3lnkrNMlvbVAmCwSBEUcTp06cRiURUb9/c3AxBEHDy5Mkj2yI5LJ1Oh1aXFa0uK17R3YDp1TgmgjHMbuT/xJP5jU3Mb2zi2ekV9G23WFrr2PpWY3l5WclyNBpVvX1LS4uSZYfDUYQRVj6dToc2lxVtLitu7pYwvRrHeDCGORVZntvYxNzGJp7VM8taLS8vIxAI4MyZM5qy3NraCkEQMDo6yixvZ/nyShwTIXVZnt3YxOzGJkz6FeWSpBZmuehYSO5Lh60rMnRAVt2F/cWQSCRw5swZiKKI+fl51dvb7fZdLRJ6gcmgx6DXiUGvE9FkBpPbLZa1zfzO8KYlGePBGMaDMdRZDEq70GWtlJuTdmQ5U/4sx+NxjI2Nac6yw+FQstzc3FyEER5d12Y51y5c15RlI4a8jsrNclr9+oqFFo/HlXl5YWFB9fYOhwOnTp2CIAjM8jVMBj2GfE4MbV+SNKkhyxeCUVwIRuHKZdnnrKBLknZmWf1jLisNW9s7pH77A2AzAl19M/QNrZBWFyCvLUHffgzGPn9Jx5LNZnHp0iUEAgFMTExoapEMDw9DEAQMDAzUVIvksGRZxnIshYlgFBfDcaSykup9tNRZMOx1oq/RDrOx9C2W1G//X2AzWjFZvnjxIkRRxPj4OCRJ3X9Pg8GgZLm/v59ZVkGWZSxHUxgPRXEpHENK7SrRAFrrLBjybWe5DO3CSsvy5OQkRFHExMTEobI8MDAA/RFcEaJcZFnGUvSFS5K0ZLltR5bL0fqupCwXEgvJHVLPPgad2wfj6K3Q6XSQZRmZsacgR8Iwv+KukoxhaWlJaZHEYjHV27e1tSktErvdXoQR1paMJGNmdavFcnUtAbX/sxi3n7U87HOgzWWFvkQtlkrI8uLiopLleDyuevv29nYlyzabrQgjrC25LI8Ho5hd39SU5d4GO4Z8DrS7rCVrFzLLdK2MJGF6NYGJQ2S5r9GOIe/WvFxLWS6GSjnPW1apVAobGxtwyTL0DS/c6anT6aBvaEV2bRnxeBw2m60ogYvFYkqLZHFxUfX2TqcTp06dgt/vh8/nK/j4aplRv7X8T7/HgXgqi8lwDBPBKFYS+bWJM5KMi+EYLoZjcJgNGPQ6MOx1ot62t114eSUOn8N8qDsPk8kkIpFIWbN8+vRpiKKIpaUl1dvX1dUp7T5mubB2ZjmWyuBieKuNvaoiy5PhGCbDMTi3szx0nSxPrcTR7DQfajH0cmc5Go0q8/Jhsuz3++H1egs+vlpm1G89+WZgO8uT2ysYqMlybtUDp3n7kiSfA+59LuOYWomh2WkpSZaP6smfmj4jGY1GEQqFlIujB9bOwbDPp4XseggX64/DYrHA4/GgoaHh0BNXNpvFxMQERFHE5OSkphbJ8ePHIQgC+vr62CIpIVmWEYqnMBHcKhA3M+pb301OM4a9TvR77LAYt1q13xlbQDor420jzbCZ1LVvo9EogsGgchY7nyx7vV7U19cfOsuZTGZXltVOKUajEceOHWOWyyCX5fHtLCc1ZLnZacGQd6tAtWxfxvH/nFlAVpbxtuPNsKrMciQSQSgUOrJZzs3Lvb29zHIJybKMUCyF8ZD2LLc4LRjyOdDX+EKWHz8zD1kGbh9phtVY3CxbrVZ4PJ6CZLmUarKQzGazmJ+f37Ngtze+gMZkeM/1CysWL0L2F25Ssdls6OjogMViUXVcWZaxsLCAQCCAsbExJBIJ1WPv6OiA3+/HiRMnYLVaVW9PhZWVZFxZS2AiFMWVtQTUrlhh0AHdDXa0u6145vIKAMDnMOOtx5rzurYyk8lgYWGhLFmen5+HKIqas9zZ2QlBEJjlCpHL8ngwiqvr2rLc02BHm8uKZ6a3stzkMOMtx5vzuray3FnOzcubm/nfJZzT1dUFQRAwMjLCLFeArCRjZm1rNY4rGi5JMuh06G20oaXOimdzWXZuzcv5XFuZyWQwPz+/Z/H5Yme5XGqukNzc3MT09PR11130xhdQn1qDXpYg6fRYMzfs+gHv1NnZCbfbfeAxI5GI0u4LBoOqx+xyuSAIAgRBgMfjUb09lUYincXFcAwTwRhC8cPdVdpWZ8GbjjXd8PGMm5ubuHz58nVvxMo3yzqdDh0dHSXJstvtVlrXzHLlymV5PBhFOH64u/3bXFa8abjpho+0SyQSmJ6eLmmWNzY2lCyHQqH8v6FtbrdbmZcbGxtVb0+lEU9ncXH7ru/DZrnDZcUbh5tgKFGWOzs74XK5DjXmUqipQnJzcxNTU1Oq28g30tHRgfr6+j2vZzIZXLhwAaIo4tKlS6pbJCaTaVeL5Cid5iYgvN36ngxHkUhry1t3vQ2vG/TtO2kVI8vX+2CUTqcxPj5+qCyPjIxAEAT09PQwy0fMVpajmAzFkNDQLgSAnoatLO93s1kikcDly5dLluXcvDw1NaU5y36/H93d3czyEROKpTAR2sqylkuSAKC3wY7XDnqvm2UtubqRfE9YlVPNFJK5ZRvUPgEmH319fbDb7ZBlGbOzsxBFEWfPntXUIunu7lZaJEfltDZdnyTLuLqWwEQohunVuOp24aDHgdf0e3b9wspkMpicnFS9JFQ++vv7YbPZlCwHAgGcPXsWyaT6tc56enogCAKOHz/OLFeBrCRjdl17loe8DtzaV54sX716VZmXtWbZ7/fj+PHjMJvNBR8rlVZWknF1PYGJYAwza+qzPOxz4Jbe0me5UtVMITk7O4u1tbWi7NtsNmNlZQW/+93vEA6HVW9fX1+vtEgaGhqKMEKqBJuZLC6F45gIRrEcy7/1faK5Djd3v3CD19WrV/dcR1YoZrMZ4XAYv/vd77CysqJ6+4aGBiXL+52pp+qgNcujzXV4RYmybLFYEAwG8X/+z/9hlum6NtNZXAzHMRGKIqgiy6da6vAHXS9k+cqVK3uuiSwUi8WCgYGBij0DXtRC8urVq/jbv/1bhMNhGAwG/M//+T/Lcnt7NBrF9PR0UY9x9uxZXLhwIe/3m81mpUXS1dVVsQGh4lhNpJV2YSx98CfYF7e58dLO+pJkeWxsDOPj43m/32w248SJE/D7/ejs7GSWa0wuyxOhGOJ5ZPkl7W7c1FGPSCSCmZmZoo7tzJkzmJiYyPv9FosFJ06cgCAIzHINWo1v3fU9mWeWX9rhxovb67GxsYErV64UdWzNzc0VuyRaUdeR/Ju/+Rt85CMfwU033YS1tbWytQS0XEitVmtra16FZF9fHwRBwLFjx9giqWENNhNe3tWAhvgSfr5mBQ74hfX7+XVYjHrUbao/461Wa2trXoVkX18f/H4/jh07BpOpUh6jR6WWy3J9bAlPpQ7O8v+Z28qyM1GaLOdTSPb39yvzMrNcuxrsZvxBlxkN0fyy/NvZdZgNBtjjxa8xwuEwvF5vRX64KVohOTk5CaPRiJtuugkAytYaSKVSyjqRxdTQ0AC3271vm8bj8UAQBJw6dariL5ql0rI99138kc6Ec20vw6K7C9DpoANgMxngNBtgNxvgNBvhMBtg0kmIRGO4wQ2DBdHY2AiXy7Vvm8bj8cDv9+PUqVNH4m5CKh3Hc/8PXqO34Fz7y7DkeiHLdpMBDrMBju0cO8wGGFGaLHs8HtTV1SESiez5mtfrVeZlZpl2cjz3OG412nCu7WVYdnXeMMt6OYNYLH5QzXlomUwGGxsbFVlDqC4kJUnCm9/8Ztx22214+OGHldefeeYZfOhDH8InPvEJvOlNb8LMzAzsdjsefPBBLC0t4Q1veAMefPDBgg4+H/tNIMWg0+nQ19eH559/HsBWi2R0dBR+vx/t7e0V+SmCyiudlWDU69AYXcIrJ78P2dsB002vhbPvOAz7LPsTCoWwWIIY5bIcCAQAAFarFaOjoxAEgVmmfaWyEgx6HTyxJbxq4vuQfZ0w3/RaOHqPVUSWRVEE8EKW/X4/2tramGXaI5XZmpe90UW8euJ/QW7q2spyz/C+WQ4Gg1gqUYwikUhFFpKarpH87ne/i0ceeQQ///nP4Xa7ceHCBfzJn/wJ/vzP/xz3338/AODJJ5/Ef/yP/xHf+9734PF4cP/99+PBBx/EzTffXPBv4kaKeZPNtZKJOKy//wncbjfq6upK9lxlOrpSVyeB9O67SI3NnbC97PUwdQ3v+kVXzBsTrpWMR2F7/qdw19fD6XQyy3Sg1JVxILN7nT5jc9d2lod2ZbmYNyZcKxmLwhZglil/+2a5pRu2l70Ops7yZdlsNmNoaKgkx1JDU2v79ttvx2c/+1l8/etfx1133YUPfOADePvb364UkQDQ0tKC0dFRtLa2AgBuueUWnD9/vuSFZDweL9mxLGYzWtLrQGgdmeJfMkFVKrN0FZHv/+OeglLL02O0spotaE6vA8F1ZNSvO04EAMgsXUHk+1/cU1CWNstmZpkOLbM4g8j/+uKegrKUWU6lUpAkqeIevampkDQajXjggQfwqU99Cj/+8Y8xMjKCj370o7vec/LkSYTDYayvr6Ourg6/+93v8K53vasgg1ajGGs6EZXCtQVlVuMCukTldm1BmS3Cer5EpXBtQVnqLGez2YorJDWP5vbbb1cq8UcffRQGw+6HmRuNRjz00EO455578La3vQ3d3d14zWtec7jREtWg7FoImeVZQOKHIjrasmtBZILMMh192dUgsstzzDIOcdf2I488AgBYXV3dU0Tm3HLLLbjlllu0HqIg9Ho9z0rSkaSz2GD1vxrWUzdDb7FBPz6ObPpwz4olKgedxQbri27ZyrLZCv2FC5B4VpKOIJ3FDtuLboH11CugK0OWK+1sJKCxkPz0pz+Np556Co899hje+9734vHHH8d73vOeQo+tIGw2G9Il+uVrMBigd9YDvJab8iRFNwB5d8v62gIyx2q1ljbLdfUlORZVh/2zbIf1Ra9WCsgcm81WshU1jCYjs0yqXC/LOwvIHKvVWpIlBoGtTu/1TtyVk+q7tr/97W/j4x//OL761a/C7/fjv//3/47HHnsMP/nJTypyIddgMIilpaWSHMvpdKKnp6ckx6LqsPZPn0B2dRnA9QvInOXlZSwvL5dkXHV1deju7i7Jsag6rH79/wtpfesuw+sVkDnMMlWy1a/9X5A2th6reb0CMmdpaQnBYGnu4nK5XOjq6irJsdRQdUby6aefxsc+9jE8+uij8Pv9AIB7770XX/rSl/DEE0/grrvuKsYYD8XpdJa0kCRS66ACMsfpdJbsly+zTFocVEDmMMtU6Q4qIHOcTmfJCslKzXLeheTY2Bg+8pGP4OGHH8brX/965XWn04l77rkHX/jCF3DHHXdU3GlXm80Gq9WKzc3Noh5Hp9OhoaGhqMeg6mN98a0w943esIDMKWWWy/UkKjq6bC/5I5gHTt6wgFTea7PBYrEgmUwe+N7DYJZJC9tNt8EycOqGBWSO3W4vWZYrcTFyQOOC5EfN2toaZmdni3qM+vp6dHR0FPUYRKurq5ibmyvqMRoaGtDe3l7UYxCtrKxgfn6+qMdobGxEW1tbUY9BVIosezweZV3uSlN5t/8Ugdvtht1uL9r+9Xo9WlpairZ/opz6+nrYbAefvdTKYDCgubm5aPsnymloaCh6lpuamoq2f6KchoYGWK0Hn73UqtKzXBOFpE6nK+ozgtvb22E0al5JiShvOp0OHR0dRctyW1sbs0wlUewsc16mUslluVja29sr7rLBnWqikAQAi8WCzs7Ogu/X6/VW7HULVJ0sFktRJi2fz8csU0kVM8sul6vg+yW6HqvVWpQao6mpqeKzXDOFJFD4W+e9Xi/bgFQWbre7oJOWz+er6NYJVS9mmaqF2+0u6AejpqYm+Hy+gu2vWGriZptrJRIJzM7Oar7LymAwoK2tjWdvqOyYZaoWhchye3t7xZ+9oeoXj8cxOzuLVCqlafujluWaLCQBQJIkhMNhhEKhvB+hmFtKorm5mdfeUMXQmuWGhgY0NTUxy1QxJElCKBRCOBxmlulIq6Us12whmSPLMjY2NrCxsYFEIrHnE4TRaITNZoPT6UR9fX1FX/BKtY1ZpmohSRIikQg2NjYQj8f3PBqUWaajQpIkbGxsIBKJVG2Wa76QvJYkSchms5BlGQaD4Uj+UIkAZpmqRzabhSRJzDIdedWYZRaSRERERKRJTd21TURERESFw0KSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNjOUeQCWRZRnJZBLZbBYAoNfrYbFYoNez3qajhVmmasEsU7Wo1izXfCGZyWSwurqKjY0NbG5uQpblPe8xm82oq6tDY2MjLBZLGUZJdDBmmapFPlm2WCyoq6tDQ0MDs0wVK5fl9fV1JJPJqsyyTt7vu6oB2WwWi4uLWF1dVbWdw+FAW1vbkfxhU3XKZDJYXFzE2tqaqu2YZao0WrPsdDrR2trKLFPFqKUs12QhGYlEMDs7q5xe1qK5uRlerxc6na6AIyNSZ2NjA3Nzc5qzrNPp0NzcDI/HwyxTWTHLVC3W19cxPz9fM1muuUIyFAphcXGxIPtyuVzo7Ow8Ej9oqj6FzLLb7UZHRwezTGURDAaxtLRUkH0xy1ROhcxyfX092tvbKz7LR/sKT5XC4XDBfvECW5+gZ2dn973mgaiYCp3l9fV1ZpnKIhQKFewXL7CV5bm5OWaZSq7QWV5bWzsSWa6ZQjKRSGBhYaHg+11fX8fKykrB90t0PfF4nFmmqhCPxwv6gShnbW1N9fXvRIcRi8WKlmW111mWWtEKyampKbz97W9X/jl16hR++tOfFutwNyRJEmZnZ4u2/8XFRaRSqaLtnyiHWaZqUewsLywsMMtUEsXO8vz8PNLpdNH2f1gluUYyFovhj/7oj/Dzn/8cdru92IfbIxwOF+UMzk4ulwtdXV1FPQZRIa+LvB5mmUqhFFl2u93o7Ows6jGICnld5PVUcpZL0tr+2c9+hj/8wz8sSxEpyzLC4XDRj7OxsVHRnxioMs1/6xvYXJjP673MMlWy+W9+DcnF/D6wlyrL6+vryGQyRT8OVZf5f/oakkv5fciRZbkklwRVcpZVF5KSJOGNb3wjPvGJT+x6/ZlnnsHo6CiefPLJPds8+eSTePOb36x9lIcQj8dL1t7gNTmk1spT/4yxB+7D5U994sCCMhaLlazAq/RrcqjyhH/2U4w9cB+mP/3JAwvKUmaZ8zKpFfrnn2Dsz/4U0//3owcWlNFotObnZdVPttHr9fjgBz+IRx55BB/4wAfgdrtx4cIFfPjDH8ZDDz2EN73pTbveH41G8fvf/x6f+tSnCjZoNWKxWMmOFY1G4fN6S3Y8qgKyDEgSwv/7Rwj/80/gue31aH33e2Btbdvz1lJmORKJwOvxlOx4VAVkGXI2i9BPnnwhy+/6E1jKnOVoNMoskzq5LP/oBwj/7x/B89o3bGW5pXXPW0ue5QqsMTRdI5nJZPCGN7wBd9xxB+666y7cfffduO222/B3f/d3e977ve99D88++yw++clPFmTAas3MzCASiZTkWLpMBom//TclORZVMb1+34Jyenoa0Wi0JEPQpVJIfPThkhyLqpfOYNi3oLx8+XLJfgHrU0nEP/r/KcmxqHrpDIZ9C8pSZtlgMOD48eMlOZYamq6RNBqNeOCBB/D1r38dDzzwAEZGRvDRj3503/f+6Ec/KltbGwA2NzdLdixJkkp2LKpi22cor215M8t01OTOUI594L1bLe/tLCeTyZKN4TBPMCPKkbNZhH78w63LN/7rf1Eu3yjlvJzNZisyz5pvtrn99tuRSCQAAI8++igMBsOe90QiEZw+fRqvfOUrtY/wkPgLkY6sHQXl9Kc/iWwJJyyiQsoVlGe2fwlnk8wyHU07C8qZz3wK2RJ+KAIqs6bRXEg+8sgjALYuZN6viASAuro6PPfcczCbzVoPQ1TbdDo0vuoWNN95F/QWS7lHQ6SdTofGV92K5jvugs7E3wl0hOn1aHj1rWh6xx9Dz/pG/c02APDpT38aTz31FB577DG8973vxeOPP473vOc9hR5bQZhMpoo8FUx0QzodGl99K1r/1T2wdfUAAIyTk8wyHT06HRpf/ZrtLHcDAIwTE1wsnI4evR6Nt7wGre++B7bOrbV2S53l6524KyfVheS3v/1tfPnLX8ZXv/pVHDt2DPfddx+++MUv4u6774bJZCrGGA/FZrOV7BoGs9WK+jvfWZJjUXUI/eRHyEZ33Aym06HhVbeg7U/uVQrIHJvNVrJry8w2G7NMqoR+/ENkd950sE8BmWO320v2y9didzDLpEroRz9ENr4jy3r9C1nu3P2wBpvNVrosWyzQ6yvvydaqCsmnn34aH/vYx/Doo4/C7/cDAO6991586UtfwhNPPIG77rqrGGM8FJvNVrJ1xOx1dej8swdLciyqDuu//c1WIbnPGchr2Wy2kq0j5nC70cEskwprv35uq5DU6dB4yx+h9d3v2VNA5pQyy3ZmmVRafe7ZrUJynzOQ17LZbFhfXy/JuMrxUJd85F1Ijo2N4SMf+QgefvhhvP71r1dedzqduOeee/CFL3wBd9xxR8WddnW5XJifz+/JIYfldrtLchyqIjrd1kR1gwIyx+VyFf1RnznMMqmm06Hx1ttuWEDmMMtUyXR6PRpfc9sNC8gcl8tV9Ed95lRqlkvyrO1yu3r1atE/MRiNRgwPD0On0xX1OFRdUqEgzF5f3u+/cuUKNjY2ijiireuKh4aGmGVShVmmaqE2y6VYr7qSs1x5zfYiKMVK8D6fryJ/wFTZ1ExWQGmy7PV6mWVSrRKzzHmZtGCW1amJQtJmsxX1B22z2dDY2Fi0/RPl2O12eIr4uDdmmUql2Fm22+1oaGgo2v6JchwOR1HnzUrPck0UkgDQ1NQESxHW4dPpdOjo6KjYTwpUfZqbm4uyNiuzTKXGLFO1aG5uLsrKNXq9vuKzXDOFpF6vR09PT0F/0DqdDt3d3UUpUImuJ5dlo1HTMrD70ul06OnpYZappIqZZT4Ig0rJYDCgt7e3JrNcEzfb7JROpzE9PX3o9fgMBgO6urrgcDgKNDIidZhlqhapVAozMzMFyXJ3d3fFLpNC1S+VSmF6evrQa0sepSzXXCEJbD2rMhQKYXl5ec/XZtMWhCQLJOighwyvPokO0+7JzeVyoa2traCfPIi0kCQJwWAQwWBwz9eYZTpKDptlt9uN1tZWZpnKTpIkLC8vIxQK7flaNWa5JgvJnGQyiXA4jNXVVciyjNm0BUuSFa11FrS7bZhbT2AhkkSzfhMdpiTq6urg8XjgdDrLPXSiXTY3N7GyspJ3ll0uFxobG5llqjhasuzxeHhGnSrO5uYmwuEw1tbWqjrLNV1I5mSzWcRiMfyvi+toclrwusGt2+xlWcb/ngwiGEvi7tGWinwEJNFOzDJVC2aZqkW1Z7lmbra5EYPBAJfLBUkG2t025e4onU6HdrcNWQlH9gdMtYVZpmrBLFO1qPYss5DcQacD5tYTyJ2klWUZc+sJGPSVe9s90X6YZaoWzDJVi2rN8tG4krNEnGYjFiJJ/O/J4K7rF0408zoyOlqcJmaZqoODWaYqYTcZqjLLLCR3aLSbsJHMYDGSxGJk6y4qow64qaNyV5Qn2k+D3YSN1DVZ1uuYZTpyGuwmRJhlqgINNhOiqeyuLJuqIMssJPex8+4jk4Hdfzq6dmbZzCzTEbYzyxYjs0xHV7Vl+eh/B0RERERUFiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESaGMs9gEqk2/HndFYq2ziIDmtnllPMMh1hO7OczDDLdHRVW5Z5RnKHlXgaANBSZ8FLOurRUmdBRgZ+N7ta5pERqbO6X5YlmVmmI4dZpmqxmtib5XQVZJmF5LZ0Oo1YKoPWOgteN+jDieY6vG7Qh9Y6C8aDMciyXO4hEuUlnU4jlmaW6WiTZRnpdBpxZpmOOFmWkUqlkEhnqzLLNd3aliQJ6+vrCIfD2NzchCS70e62QafbOvGs0+nQ7rZhMZLE+Pg4Ghsb0djYCKOxpv+zUQVSm2WPx4OGhgZmmSqOJElYW1tDOBxGMplklunIUpPliYkJNDY2HsksH63RFlAkEsHs7Cyy2azymh4y5tYTGGlyQqfTQZa3/q7XychkMlheXsby8jKam5vh9XqVMBCV08bGBubm5lRleWlpScmyx+NhlqkiMMtULdbX1zE/P593ltPp9JHNsk4+yudTNZAkCfPz81hbW9vztdm0BUuSFa11FrS7bZhbT2AhkkSzfhMdpuSu99psNnR2dsJsNpdo5ES7SZKEubk5rK+v7/ma2ix3dXXBZDKVauhEuzDLVC1qMcs1VUhKkoSZmRnEYrHrvmc2bUFItkCSddDrZHh1yT0/4Byj0Yi+vj4Wk1RykiRhenoa8Xj8uu9hlukoYJapWmSzWUxPTyORSFz3PWqybDKZ0NvbW/FZrplCUpZlzMzMIBqNFnS/JpMJ/f39R+6aBjq6mGWqFsXM8sDAAAwGQ0H3S3Q9sixjenr6hieqtDCbzejv76/oLNfMXdurq6sFn6yArTtkFxYWCr5foutZWVlhlqkqMMtULcLhcMGLSABIpVIVn+WiFpJf+cpX8Ja3vAVvfvOb8fGPf7xst7cX+wexvr6OjY2Nou2fKCeVSmFxcbFo+2eWqVSKneW1tTVEIpGi7Z8oJ5lMYmlpqWj7r/QsF62QXFlZwTe+8Q185zvfwfe//32MjY0hEAgU63A3FA6Hi17ELi0tHel1oOhoCIVCRc/Z8vJyUfdPBJQmy8X85U6UU+vzclHPSGazWSSTSWQyGWQyGXg8nmIebl+SJGF1tfirxieTyRteYEt0WNlstiRZ3tzcvOGND0SHVcosc16mYspms/uuAlNoiUSiYrOsupCUJAlvfOMb8YlPfGLX68888wxGR0fx5JNPAgAaGxvx/ve/H7feeite9apX4RWveAW6uroKM2oVNjY2IEmleZZlKcJEtSsSiZTsrDezTMW0sbHBLFNVYJY1FJJ6vR4f/OAH8a1vfUtZJ+nChQv48Ic/jIceeghvetObAGxda/XUU0/hZz/7GX7xi1/g+eefx29/+9vCjj4Ppazgi3GhLVFOKc8S8owkFVMp52VmmYqJ87LG1vbtt9+OhoYGfP3rX8fi4iI+8IEP4O1vfzvuv/9+5T3PPfccurq6UF9fD6vViltuuaUs10iW8j98Mpks2dlPqj2l/OW7ubnJLFPRlHJe3tzc5PXrVDSlnpcrMcuaCkmj0YgHHngAX//61/HAAw9gZGQEH/3oR3e9p7W1Fc8//zySySSy2Sz+5V/+Bb29vQUZtBrpdLqkx8tkMiU9HtWOVCpV0uMxy1QspZyXZVlmlqloSjkvy7K865GLlULzzTa33367Uok/+uijexbL9Pv9uOWWW/COd7wDb3vb29DV1YXbbrvtcKPVoNTVeyV+WqDqwCxTtWCWqVowy4DmR1g88sgjALYW+r7eiusPPfQQHnroIa2HKIhSP/T8qDxknY6eUmdLr6+Z5xVQiXFepmqh0+lKWtxVYpY1/ab49Kc/jaeeegqPPfYYMpkMHn/88UKPq2AsFkvJjqXT6Y7EA9bpaCp1lvmoRCqWUj47mFmmYirlvKzX6yvyUYmqC8lvf/vb+PKXv4x/+Id/wLFjx3Dffffhi1/8YsmvRcyXzWYr2bGsVmtFflqg6sAsU7Ww2+0lO5bNZmOWqWg4L6ssJJ9++ml87GMfwyc+8Qn4/X4AwL333otoNIonnniiGOM7tFJOWKU8FtWeUubL4XCU7FhUezgvU7XgvKyikBwbG8NHPvIRPPzww3j961+vvO50OnHPPffgC1/4QkXeTeR0Okt2KrihoaEkx6HaVFdXV7LrFpllKiZmmaqFy+UqWZbr6+tLchy1dHIl3gJUYEtLSwgGg0U9ht1uR19fX1GPQcQsU7VYXFxEKBQq6jEcDkdZlp2j2rKwsIBwOFzUYzidTvT09BT1GFrVxG2ZHo+n6Gclm5ubi7p/IqA0WW5paSnq/okAwOv1Fv1MDudlKoVaz3JNFJJGoxHt7e1F27/H46nYaxeouhiNRrS1tRVt/x6Ph9eUUUkUe172er3MMpWEyWQq6rzs8/lKelOPWjVRSAJb1zEU41oZq9Va0Z8UqPq43W5mmaqCy+UqynVfNpsNTU1NBd8v0fW43e6iZdnn8xV8v4VUM4UkALS1tcHtdhdsfxaLBT09PVy4mUqu0Fm2Wq3MMpWcTqdDe3s7XC5XwfbJLFM51HKWa+Jmm51kWUYwGMTy8vKh9uNyudDe3l6Ri4NSbZBlGcvLy4e++YZZpnIrVJbdbjfa2tqYZSqbWsxyzRWSOYlEArOzs0gmk6q2MxgMBT8bRHQYzDJVi8NkudBng4gOIx6PY25uTnWWc9fBH6Us12whCWx9cojH4wiHw4hEIjd8XqbdbkdjY2NJ14wiypcsy4jFYlhZWckryx6Pp6Rr+RHlS0uWXS5XRT7xg2pbLsvhcBjRaLRqs1zTheROsiwjmUwikUgoC6vr9XpYrVZYrVb+wqUjg1mmasEsU7Wo5iyzkCQiIiIiTY5uCUxEREREZcVCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0MZZ7AEREdDjmF70fOr0BOr0BeqMZOoMB+u2/b/2j3/FnA3SGF/68+337v2frfTro9DrodLoX/qzXQa974c8G442/rt/eXqfHvvsz7POPcdff9bu/rnvhzxajft/t9/yj2xqTQbc1hmv/rvx5e997/44XttFvvW7S65U/63SAHtv/1mHv37Hzfdj6/pX37fg7ctvr9mynk2VAlqCTJUDKvvDnnf9IO1+T932Pbvt9+35dykKWtvcvZSFns1vvlbKQpa0/y5nU1r+z2Rfet3ObG2wvSxLk7PY/O/4sZfd+TcrufW82ndl+LXvN9jv3J2//XYaUlXe8tvVnSZJfeE9WvvH7JWn7NRnZVHbrdVlGVpaRlXGDf9/oazIk3PjrWRn4B3m6jLPLwXhGkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJroZFmWyz0IIiKqTKlUCp/73OfwwQ9+EGazudzD0YzfR+Wohu8BqJ7v47B4RpKIiK4rlUrhs5/9LFKpVLmHcij8PipHNXwPQPV8H4fFQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIR0XWZzWb8xV/8xZG/mYDfR+Wohu8BqJ7v47B41zYRERERacIzkkRERESkCQtJIiIiItKEhSQRERERacJCkoiI9lhdXcWf/umf4t3vfjeeeuqpXV8LBoO455578M53vhNPP/10eQaYhxt9Dzl//dd/jd/85jelHVieUqkUPvShD+Hd7343HnvssQNfr1QHjfczn/kMvvOd75RhZPm73vewubmJ+++/H3fffTcef/zxMo6wfFhIEhHRHt/85jdx//3346tf/Sq++tWv7vraD37wA9x999342te+hi996UtlGuHBbvQ9AMDFixfx05/+tAwjy88Pf/hDvOpVr8I3v/lN/OhHP0Iymbzh65XqRuNdWVk5EsXw9b6HZ555BjfddBP+x//4HywkiYiIcs6ePYuXvOQlsFgscDqdWF9fV742PDyMeDyOzc1NWK3WMo7yxm70PQDAP/7jP+Id73hHeQaXh9z49Xo9hoaGcOnSpRu+XqluNN4vfvGLFf0zyLne99DX14d0Oo1MJgOTyVTmUZYHC0kiItojFovB4XAAAGw2G+LxuPI1u92Of/iHf8A73vEOvPWtby3XEA90o+/h9OnTaG9vh9vtLtfwDhSLxWC32wHsHv/1Xq9U1xvvwsICYrEYent7yzm8vFzvezCZTPjBD36AN77xjbj55pvLOcSyMZZ7AEREVH5f+9rX8OSTTyp/P3PmDOLxOBwOBxKJhFKQAcDnP/95fPazn8XQ0BDe//7343Wve11FnJlU8z186Utfwsc//nF8+ctfLsdQ82K325FIJAAAiUQCTqfzhq9XquuN93Of+xweeOAB/Mu//Es5h5eX630P3/jGN/BXf/VXeN3rXoe/+Iu/wNzcHNrb28s51JLjGUkiIsKf/umf4lvf+pbyz4MPPojf/e53SCaTWFtbg8vlUt5rs9ngcDhgNpuh0+mQyWTKOPIX5Ps9xGIxTExM4EMf+hC++93v4u///u8Ri8XKPPq9Tpw4gd/+9reQZRnnz59Xztxd7/VKdb3xnjlzBn/zN3+Dz3/+8/j85z+PmZmZMo/0+q73PeT+X9Dr9XA6nRV/drgY+GQbIiLaY2VlBf/m3/wbrK+v41//63+N1772tfjP//k/48EHH8TKygr+/b//98hkMnj961+P+++/v9zD3deNvof6+noAW3cMv+xlL8PLX/7y8g52H8lkEn/1V3+FxcVF3HnnnUgkErj11lvR2dm56/X3vOc95R7qDV3v+xgYGAAA5Y7tO++8s5zDvKHrfQ/19fV4+OGHkUwmMTo6ir/9278t91BLjoUkEREREWnC1jYRERERacJCkoiIiIg0YSFJRERURsPDwxgeHsbU1NSer335y1/G8PAwPvOZzyivSZKEb37zm7jrrrtw00034eUvfznuu+8+/OpXv1LeMzs7i+HhYczOzpbke6DaxUKSiIiozBoaGvDd7353z+vf+c53di3vI8sy/vIv/xLf+ta38Nd//df49a9/jWeeeQZvfetb8eCDD+Kf//mfSzlsIhaSRERE5Xb77bfjiSeegCRJymunT59GKpXCyMiI8tqPfvQj/OIXv8DnPvc53HTTTTAajTCbzXjnO9+Jv/zLv6z4p9xQ9WEhSUREVGa33nor0uk0nnvuOeW1xx9/HHfdddeu9/3sZz/Di1/8YrS1te3Zx5/92Z/hAx/4QNHHSrQTC0kiIqIyMxqNuP3225X29ubmJn784x/veQ71ysoKvF5vGUZItD8WkkRERBXgzjvvxE9/+lNEo1H86Ec/wotf/GL4fL5d72lqakIwGNx3+2g0qjzGj6hUWEgSERFVgGPHjqGvrw9PPvkkvvOd7+xpawPAa17zGjz//PNYXFzc87XPfOYzuOOOO8DnjFApsZAkIiKqEHfeeSe+8pWv4PLly7jlllv2fP11r3sdXv7yl+MDH/gAfv/730OSJESjUXzlK1/BP/3TP+Hf/tt/C51OV4aRU61iIUlERFQh3vrWt2JmZgZve9vbYDQa93xdp9Phv/23/4Y3vvGN+A//4T/gpS99KW677TY8/fTT+MIXvoDXvva1ZRg11TI+a5uIiIiINOEZSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESa/P8B5vLkodQbDh4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -4273,7 +4275,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAALTCAYAAACljOKvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADzuklEQVR4nOz9d3gb55nvjX8HvZEgSLBXsRf1LktWsWzZsi3ZkuUmyb3IiTdONptsznvenJM3r/fa39nd88vm7G+vTXFRHNfYjmxZliXFltUtS1YvJCX23jtBAAQw8/tDwYQgABJ1OADuz3XNRXJmMPNI/PKZ7zzP/dw3w3EcB4IgCIIgCILwE8lMN4AgCIIgCIKITMhIEgRBEARBEAFBRpIgCIIgCIIICDKSBEEQBEEQRECQkSQIgiAIgiACgowkQRAEQRAEERBkJAmCIAiCIIiAICNJEARBEARBBAQZSYIgCIIgCCIgyEgSBEEQBEEQAUFGkiAIgiAIggiImDKSDocDv/nNb4K6xrPPPotNmzbhgQcewPbt21FVVRWi1hGE7wSrZavViu9///u4++678cADD+C5555Da2trCFtIEL4Rin75n/7pn3DHHXegpKQEN2/eDFHLCCI8hELzYiKmjOTNmzdx6NChoK7x61//Gvv27cPevXvx7LPP4r//9/8eotYRhO+EQsuPPvooDh48iL1792LdunX4n//zf4aodQThO6HQ8t1334333nsPmZmZIWoVQYSPUGheTMSMkaytrcWLL76Irq4uPPDAA/iP//iPgK4THx/Pfz8yMgKGYULVRILwiVBoWalUYs2aNbx+582bh5aWllA3lSCmJFT98pIlS5CWlhbi1hFE6AmV5sWEbKYbIBSFhYW46667kJ+fj507dwZ1rX/8x3/EmTNnAACvv/56KJpHED4TSi07efvtt7Fu3bqQXIsgfCUcWiYIMRONmo8ZIwkA165dw+bNm932b9++HXV1dR4/8+mnnyI9Pd1l37/+678CAD755BP867/+K1577bXQN5YgpiBUWgaA3/72t2hqasIvf/nLkLeTIKYjlFomiEjAm+YjFYbjOG6mGyEEdrsdS5YswbfffgulUhmy686dOxfHjh2DwWAI2TUJYipCqeU33ngD+/fvxx/+8AeXsA2CEIJQ98t33HEHfvvb36K4uDgErSOI0BMuLzKTxEyMZGdnJ7RabVC/uNHRUXR1dfE/f/nll0hISEBCQkIIWkgQvhEKLQPA7t27sX//fuzevZtMJDEjhErLBBEpRKPmY2pEcteuXWhtbcXdd9+NH//4x35fo6OjAz/4wQ9gtVrBMAwSExPxs5/9DGVlZWFoMUF4JhRa7uzsxJo1a5CdnQ2tVgsAUCgU+Oijj0LdXILwSii0DAC//OUvcfjwYfT29sJgMECj0eDLL78McWsJInhCpXkxETNGkiAIgiAIgggtMTO1TRAEQRAEQYQWMpIEQRAEQRBEQJCRJAiCIAiCIAKCjCRBEARBEAQREGQkCYIgCIIgiIAgI0kQBEEQBEEEBBlJgiAIgiAIIiDISBIEQRAEQRABQUaSIAiCIAiCCAgykgRBEARBEERAkJEkCIIgCIIgAoKMJEEQBEEQBBEQZCQJgiAIgiCIgJDNdAMIgiCIyIXjOLAsC5vNBpvNBrvdDgBgGCbojSAI8UNGkiAIIgrhOA52u503eE6TN/Hn6Y55O3/yfo7jwvJvCMR8SiQSKBQKKJVKfpvu58nHZDJ6NBKErzBcuHoAgiAIIiRwHAer1QqTyeS2jY2Nuf1stVr5kUHCf6RSqd8m1LlfpVJBq9VCrVbTqCoRE5CRJAiCEBiO42Cz2aY1hBN/Zll2pptN+IFUKoVOp0NcXBx0Oh3/vfNn5/cajYYMJxHRkJEkCIIIETabDYODgxgaGprSFJpMJhoxJAAAEokEWq3WxWR6Mp1arRYSCa2PJcQHGUmCIAgf4TgOIyMjGBgY4LfBwUH++9HR0ZluIhGlMAwDrVbrMso5eXTTaUKlUulMN5eIIchIEgRBTMBqtboYxYlmcXBwEA6HY6abKAgymQxyuZzfJv/sbb9MJgPDMOA4jt9YlnX5OdgNgNdrsiwLq9WK8fFxWK1WfrPZbDP8PyoccXFxSEpKQmJiIr8lJSXBYDBALpfPdPOIKIOMJEEQMQXLshgaGvI6qmg2m2e6iX7jXOCh1Wqh0WigUqk8mr7pTOFkMxhNsCzrZi6dm6f93s61Wq0RHa8aHx/vZjATExPJZBIBQ0aSIIiow2KxoK+vz6NRHBoaClu6mlChUCig0Wh4c+g0iBN/nrifpjKFxW63ezWcZrMZo6OjGBkZcflqMplmutnTMtFkTh7RpJRIhDfISBIEEbGwLIu+vj50dXW5bMPDwzPdNBekUqlHA+htH40MRR8OhwMmk8nFYDq/n/izyWQS5YuOXq93MZYTp8vJZMY2ZCQJgogITCaTm2Hs6emZ8ZhFqVSKhIQEGAwG/qvBYIBOp+MNokKhiLqpYiI8sCyLsbExF6Pp7atYptgnm0yj0YjU1FTEx8eT7mMAMpIEQYgKu92O3t5eN9M4k1ODOp2ON4gTzaLBYEBcXBw9LAnB4TgOY2NjbgZzeHgY/f396O/vn/EwDrVajbS0NKSmpiItLQ1paWkwGo0UihFlkJEkCGJGcKbSmWwYe3t7BX/4yeVyr0YxISGBppqJiMRut2NwcBB9fX28uXRug4ODM9ImqVSKlJQUF3OZmpoKlUo1I+0hgoeMJEEQYWd8fBw9PT1uptFisQjWBr1e79EoGgwGqi5CxBx2ux0DAwO8sXQuTuvr68PQ0JDg7UlISOCNpXOjqfHIgIwkQRAhxWq1oq2tDS0tLbxh7O/vF+TeCoUCqampSElJQUpKCr8YQK/X03QaQfjIRJM5eTRTSJOpUqnczCVNjYsPMpK4NVoyPDwMs9kMs9kMh8MBjuMgkUigVquhVquh0+mgVqvp7YgQNVarFSMjI25alkqlUKlUIdcyx3EYGhpCS0sLmpub0draiq6uLkGmppOSknjTmJqaitTUVCQkJNDfaJQgtJYJ33CazMkGs6+vT5BsCVKpFMnJyS7mUuxT475qWaPRzHRTAyKmjeTo6Ch6e3t9LmumVCr5EQ7quAgxMTo6ip6eHp8XpCiVShiNRr+Nl8PhQGdnJ28aW1paMDIyEmizfcI5KjHRMKakpFDcYpQyMjKC3t7esGuZCD02mw0DAwPo6upCZ2cnv42NjYX93hOnxlNTU5GRkYH4+Piw33cq/NWySqVCUlJSxGk5Jo2kw+FAe3t7wEP0arUaWVlZUCqVIW4ZQfiH3W5HR0dH2LQ8NjaGlpYWfmtvb4fdbg+myV6RSCR82pCJppFWRccG4dYyMTNwHIfR0VEXY9nZ2SlIuEt8fDyysrL4LT093a+clxaLJaCRTrvdjvb29oBHaCNNyzFnJC0WCxobG0PyMMzOzoZerw9BqwjCfywWCxoaGoLOo8gwDLKyshAfH4/e3l4X49jX1xei1rqi0+ncDKPRaKTExjGK2WxGY2NjyLRM/bL4sVqt6O7u5o2lM546XC+qwK2X1fT0dGRmZiI7O5vXiqcXVavVit/85jd45JFHkJGR4fM9Qqnl7OzsGR9V9YWYMpIWiwX19fUhTeKalZWFhISEkF2PIHwhlFp2dgEXL15EQ0ND0NebyMR4pommUavVhvQ+RORiNpvR0NAQ0n6ZXvIjE2elqonmsqOjI6xT4zqdDllZWcjMzERWVhYyMjKgUChQV1eHd955BzKZDA8++CAqKiqmvZbZbEZ9fX1IY8QjQcsxYyQdDgdqamrC8raTn58fsUGyRORht9tRU1MT0oouHMeB4zgcOXIkqPxyOp0O2dnZ/Jaenk4rLAmvhEPLTgoKCqBWq0N+XUJYJk+NO+MvwzVbwjAMUlNTIZFI0N7ezu9fs2YN1qxZ4zXMJpa1HDNGsrW1NWwJWBUKBQoLCyGRSMJyfYKYSEtLS1hScLAsi9HRURw+fNin0SGGYZCSkuJiHCMtSJyYWcKlZeDWIpyCggLql6OU8fFxl0U9QkyNl5eX48EHH/S40K+5uTlsq9aVSiUKCwtF27eG1UgeOXIE/+t//S9wHIcXXngBDz/8cLhuNSWjo6NobGwM6z2Sk5ORmpoa1nsQRLi1zHEcKisrUV1d7XZMoVDwcUXOr5ESDE6Ij5GRETQ1NYX1Hs58okRs4Jwab29vR2tra1jSkWVkZOCxxx5DXFwcv294eBjNzc0hu4cnUlNTkZycHNZ7BErYjKTdbsd9992HP/7xj9Bqtdi6dSs+/PDDGYknbGxs9DnFT6BIJBKUlpbS2y/hFyOVVdCVlfr8ptnQ0BD2mtNWqxX79+9HQkICbxhzcnKQnJxM+ia8IkYtS6VSlJb63iYi+hgfH0dHRwdaWlr4QgnB6i4uLg6PP/440tPTAQD19fVhT3Ekk8lQUlIiSi2HbYnklStXUFhYyI/SrV69GidPnsT9998frlt6ZHx8POwmErj1JjQ8PEwLbwi/uPH/vgqZVouc55+FYfnyKTsJq9Ua9gcvcGsa5cUXX0RaWlrY70VED9W/+H8gT9Aj97nnkLBsqSi07HA4MDw8LPrFCkT4UCgUyM3NRW5uLoC/FVFw5sFta2tDR0eHX4u9RkZGsHv3bmzduhV5eXmC5Mm02+2i1bLfRpJlWdx7771Yv349fvrTn/L7T5w4ge9973v4t3/7N2zcuBHd3d0uU71paWno6uoKTav9INzJkidCRpIIhJHKSlz/8U8QV17uZihtNhuam5tRW1sLi8WC/Px8Qd5Ix8fHw34PIvoYuXYd1/7+x4ibXTGloRS6Xxbjw5eYGRiGQUJCAhISEjB79mwAf8th6pwOv3H1KhzTLBK02WzYs2cPHnroISGaDeDW340Ytey3kZRIJNi1axdeffVVvPjii9Dr9aiursYPf/hD/P3f/z02btwIAB5jEmZiSNZsNgt2r7GxMVT+X/9dsPsRkc94Tzf//UhlJa79+CfAvLmwrVmNDocDTU1NfPD4kiVLwHGcIH9HZtIy4Sfjvb3899MZSiFGcPh7mUykZcIn9ADiAdQx8GgkNUolcvPzkZ2djZycHKSlpaGtrQ02m02Q9gn5d+MPAU1tb9q0Cf/5n/+Jt99+G9u2bcOLL76IBx54AM899xx/TmpqqssIZGdnJ+bNmxd8i/1EyP94u92OwbPfgRPpL5sQJza5DP1JSeg3JqE/yQirWgXcvOl2nsFgECxG0Wa3Y+DbM4DFIsj9iOjEm6EU8gXfZrdj4JvTAI2yEz5gVqlgXbsaAKA2mZAwMICE/kEkDAxAZTYjfvZs5D7/LBIyMgTX8vj4OFiWFV2sekBGUiaT4YUXXsC///u/49ChQygvL8fPf/5zl3Pmzp2LmpoadHV1QavV4vjx43j55ZdD0mh/CEdOp6lgtBoyksSUsAyDYb3+lnE0JmFYrwd8GGVUKBQCtO5vSLRasGQkiRAw2VA64uOm/1AIYbQacGQkCR/gJBJUXLqMhIEBKK3umhm5dg3XfvRjxP3VUDrihNWyw+GIDiMJ3BqV/Od//mcAwK9+9Su3pMMymQw/+9nP8OSTT4JlWTz//PMwGAzBtTYSYMT1CybEgVml+qtxNGIgKRF2D3nIpkPw0BARrg4kIhtzUzNGqquBpUuEvTFpmfARzdgYND4MBpmbmzFafQPc4kUCtErcBGwkX331VQDAwMCA18oV69evx/r16wO9RUiQSCSCjkpyAg5zE+KFAzAaF4ee1BR0p6ViTKcL+pp2u13QUUnOQlomQoMsLg6Z2x9HxsPbINNqUV1dHdKSiNNippF1IjTI4uORtf1xpG97iNdyOJOgT0Zso5FAgEby17/+NY4ePYoPP/wQTz/9ND7++GPs2LEj1G0LCWq1WrBAWIlEAoVWA2ipXGIswgEYUqvRmZCArgQ9xoJM1s0wDDIzM5Gfn4/CwkKwLCvYalepRAKFTgeEwAATsYG1pxeY9NI+2UA6UavVwmlZKoVCHw/o4wW5HxH5eNTyJAPpRKVSCZJiELg10yvGkrN+G8mPPvoIu3fvxltvvYXS0lI89dRTeP311/HII494LBs006jV6rCVLZqMRqNB+Sd7BLkXIQ44jkNraysqKytRVVUVdLk3jVSKorIyFJWWIj8/36W+and3t2APX41WizLSMuEH3z38KCytrQBuPXQzH3/MzUA6EdJIajQa0jLhF9899DAsf62z7c1AOlGr1YIZSY1GnINUfhnJY8eO4Ze//CV+9atfYf78+QCAJ554Am+++Sb27t2Lbdu2haONQaHT6QTLX9nZ2YmqqiqsWbNGtL9wInhYlkVzczNfSjCYB6KEZWEYGkbBrFmY/+ADSMvJ8RoLqdPp0N3d7fFYqGlvb0dVVRVWr15NWiZ8ZjoD6URILbe1tZGWCb+ZzkA60el06OnpEaRNOpHOEPlcIvHatWt44okn8KMf/QhPPfWUy7H/83/+D7744gt88cUXohx2dSZzDjdffPEFzGYzlEolVq1ahWXLlolylJbwH4fDgcbGRlRWVuLGjRtBVeVISUlBQUEBCgoKoKqsROq6dZD50EFwHIe6ujpBtLx//35YLBYolUrcfvvtWLZsGWSysBXCIqKAzs/3w7hu7ZQPXSccx6G2thZWqzXs7fr8889htVqhUqlw++23Y+nSpaRlYko6930O4x3rRKVlhmFQWloqSo8VtlrbYmJwcBCtf51yCRfDw8P48ssvXfbFx8fjjjvuwNy5c0VZH5OYGrvdjoaGBt48BpovTCqVorCwECUlJSgoKEB8fOCxWgMDA2hrawv4874wNDSEr776ymWfXq/HHXfcgTlz5pCWiZDQ39+P9r9OH4aLwcFBHD582GWfXq/H+vXrMXv2bNIyERKE0HJSUhJf21tsxISR5DgODQ0NYUtOzjAMPv/8c68jRWlpabjrrruQn58flvsTocNms6Gurg5VVVW4ceNGwG+ZcrkcRUVFKCsrQ1FREZRBLrxxwnEc6uvrw5YEl2EY7Nu3z+u/Oz09HXfddRdmzZoVlvsTsYMQWv7ss8+8lvtMT0/Hhg0bkJeXF5b7E7FDuGeLpFIpiouLRTkaCcSIkQQAq9WK2tpaj6Ubg6W1tRVnzpyZ9ryysjJs2LCB6nGLjPHxcdTU1KCqqgo3b94MeJW/QqFASUkJysrKUFhYGLawhnBqubm5Gd99992055WXl2PDhg2irPtKRA7h1HJjYyPOnz8/7XkVFRW46667SMtEUFgsFtTW1obl2jk5OUHNZIWbmDGSwK3p5+bm5pBe02g0Qi6X4/Dhw6iqqpr2fJlMhpUrV2LlypUUPzmDWK1W3Lx5E5WVlaitrQ04D5hKpUJJSQnKy8uRn58vWOzV0NAQWlpaQnrN5ORkyGQyfPXVV6iurp72fJlMhlWrVmHlypUUc0YETLi0LJVK8dVXX+HGjRvTni+Xy7Fq1SrcdtttpGUiYMKh5ZSUFKSkpIT0mqEmpowkEFozaTQakZqaysfZtLS04C9/+YtP8ZgJCQnYsGEDSktLKU5HIMxmM27cuIGqqirU1dUFnKheo9Hw5nHWrFkzNt0Qyk4rOTkZKSkpvBabm5vxl7/8xad4zISEBNx9990oKSkhLRMBEU4tNzU14csvv/RJywaDAXfffTeKi4tJy0RAhHJNRkpKCpKTk0WvxZgzksAtQ9Ha2hpw/JtUKkVGRobHqRCO41BVVYXDhw+jv79/2mvl5+fjnnvuQXJyckBtIabG4XDgxo0buHz5MmprawOupqHT6VBaWory8nLk5uaKprpAuLVcWVmJw4cPY2BgYNprFRQU4J577oHRaAyoLURsEwotZ2ZmepwC5DgO169fx+HDhzE4ODjttQoLC3HPPfcgKSkpoLYQsc3Y2BhaW1u9xudOx1RaFiMxaSSBW7kA+/r60Nvb6/PIFMMwSEhIQGpq6rTTHw6HA+fOncPRo0enDcCVSCRYunQp1q5dG7JFGbEMx3Ho7OzEpUuXcPXq1YCD+ePj41FWVoby8nJkZWWJxjxOJlAtGwwGpKSk+KTl7777DseOHfNJy8uWLcOaNWtIy4TfsCyL3t5e9PX1hUXLdrud1/J0hlUikWD58uVYvXo1aZnwm3BrWUzErJF0wnEchoeHMTw8DLPZ7PYGIZPJoFarodPpkJCQ4Pc05tjYGA4fPowLFy5Me65Wq8Wdd96JefPmiX4oW4yYTCZcuXIFly9fDjgJfUJCAsrLy1FWVobMzMyI+j2EW8smkwmHDx/GxYsXpz1Xp9PhzjvvpNRXREA4y4EODw9jbGzMbQGc0Fq+6667KPUVERAsy2J4eBgjIyNh0bIYiHkjORmWZeFwOMBxHKRSach+qe3t7Thw4IBPsRNZWVnYuHEjMjIyQnLvaMbhcKCmpgaXLl1CTU1NQFPXSUlJ/MhjWlpa1DwswqnlL774wqeYs+zsbGzcuFG0+c+IyMDhcIBl2ZBrua2tDQcOHPBJyzk5Odi4cSPS0tJCcm8iNgmXlmcSMpICwnEcrly5gq+++sqn2pwLFy7EnXfe6VJvmbjFxKnrQPKDpqSk8OYxEoKZxQbHcbh8+TK++uorn6r8LFq0CHfeeSdUKpUArSMI3+E4DpcuXcLhw4en1TLDMFi0aBHWr19PWiaIv0JGcgawWq04duwYzpw5M+0Imlarxb333ovy8nKBWidexsbGcPXqVVy6dAmdnZ1+f95gMGDevHmoqKigBSEhwmKx4NixYzh79uy0WtbpdLj33ntRVlYmUOsIwncsFguOHj2Ks2fPTpvXUqfT4b777kNpaalArSMI8UJGcgbp7e3FwYMHUVdXN+25paWluPfeexEXFydAy8SDw+FAbW0tLl++jBs3bvg9dS2Xy1FRUYH58+cjJyeHRh7DRE9PDw4ePIj6+vppzy0rK8O9994LnQ/1xQlCaLq7u3Hw4EE0NDRMe255eTk2btxIWiZiGjKSMwzHcbhx4wYOHTo0bVoKpVKJu+66CwsXLox6Q9Td3Y1Lly7hypUrPk2dTiYvLw/z5s1DeXk5FApFGFpITIbjOFRXV+PQoUMYGhqa8lyVSoUNGzZg/vz5Ua9lIvJwpnE7dOgQhoeHpzxXpVLh7rvvpkWSRMxCRlIk2Gw2fPPNNzh58uS0VVby8vKwadMmJCYmCtQ6YTCbzfzUdUdHh9+f1+v1mD9/PubNmweDwRCGFhK+YLPZcOrUKZw6dWpaLc+aNQv3339/1GmZiA5sNhtOnjyJU6dOTZvCJT8/H/fffz/1PUTMQUZSZAwODmL//v3T1uyUyWRYu3YtVqxYIdr8hr7Asizq6upw6dIl3Lhxw+9qM3K5HOXl5Zg3bx7y8vJoREBEDAwMYP/+/dOGbshkMqxbtw7Lly+PaC0T0cvAwAA+//zzaUM35HI51q1bh2XLlpGWiZiBjKQI4TgOV69excGDB6dNpp2eno7NmzdHXEqKnp4efuralxXsk8nJycH8+fNRXl5OyYJFjDNTwaFDh6bVckZGBjZt2hRxWiZiA2emgkOHDk2bmD8jIwObN29GamqqQK0jiJmDjKSIMZlMOHToEK5evTrleQzD4LbbbsOaNWsgl8sFap3/jI+P48qVK7h06ZJPedsmEx8fj3nz5mH+/Pk0FRphmEwmHDx4ENeuXZvyPIlEwms5kio7ELHD6OgoDhw4gMrKyinPk0gkWLlyJVavXk1aJqIaMpIRwM2bN7F///5pg74TExOxefNm5ObmCtQy3+jv78fZs2dx6dIlv+voymQylJWVYf78+Zg1axZNXUc4N2/exOeff46RkZEpz0tKSsLmzZuRk5MjUMsIwj+qq6vxxRdfTKtlo9GIzZs3Izs7W6CWEYSwkJGMEKxWKw4fPozvvvtu2nNXrlyJdevWzWjGfI7jUFdXh7Nnz6Kmpsbvz2dnZ/M5Hynxb3RhtVrx1Vdf4dy5c1OexzAMVq5cibVr10ZF9Qci+rBYLPjqq69w/vz5Kc9jGAarVq3CmjVrSMtE1EFGMsJobm7Gvn370NvbO+V5aWlp2Lp1K5KTkwVq2S2sVisuX76Ms2fPoq+vz6/PxsXF8VPXSUlJYWohIRaampqwb9++aXWSnp6OrVu3UhJ5QrQ0NjZi37596O/vn/K8jIwMbN26lfo3IqogIxmB2O12HD9+HKdOnZoyQbdMJsNdd92FJUuWhH1KuK+vj5++Hh8f9/lzUqnUZeqaVjrGFna7HceOHcOpU6emrCYik8mwYcMGLF68mMIbCFFis9lw7NgxfPPNN1NqWS6XY8OGDVi0aBFpmYgKyEhGMF1dXfjss8/Q3t4+5XmFhYV44IEHQl59geM41NbW4uzZs9OmK5pMRkYGFixYgNmzZ9PUNYHOzk589tln0+YPLSoqwubNm6mSCCFaOjo6sG/fvmm1XFxcjM2bN0Or1QrUMoIID2QkIxyWZXH69Gl8/fXXU45OajQabNq0KSS1YS0WCy5duoTvvvtu2qmciUgkEsyePRtLly5FZmZm0O0goguWZfHNN9/gyJEj02p58+bNKCkpEbB1BOE7LMvi1KlTOHr06JRa1mq12Lx5M4qLiwVsHUGEFjKSUUJnZyf27NmDnp6eKc9bsGAB7rnnnoDKBvb09ODs2bO4cuWKX9PXOp0OixcvxqJFi2gkiZiWjo4O7NmzZ9o44EWLFmHDhg1UApMQLe3t7dizZ8+0ccCLFy/Ghg0bRJ2+jSC8QUYyirDZbDh8+DDOnDkz5XmJiYnYsmULsrKypr0my7KoqanB2bNnp63qMJns7GwsXboUZWVltFKR8AubzYYvv/xy2iwFiYmJ2Lp1K41wE6LFZrPhL3/5y7RZCpKSkrB161ZkZGQI1DKCCA1kJKOQuro6fPrpp1NWjGEYBmvWrMHtt9/ucYGLxWLBxYsX8d1332FgYMDne0ulUsyZMwdLly5Fenp6QO0nCCc1NTX47LPPptXy2rVrsWrVKlqsRYiWmpoa7N27FyaTyes5EokEa9euxcqVK0nLRMRARjJKGRsbw+eff46qqqopz8vKysK2bdug1+sBAN3d3fz0tc1m8/l+8fHxWLx4MRYuXEjB40RIMZlM+Pzzz1FdXT3lednZ2XjooYd4LROE2DCZTNi3bx9u3Lgx5Xk5OTl46KGHEB8fL1DLCCJwyEhGMc7asAcOHJgyplGlUmHp0qVoaWlBQ0ODX/fIycnBsmXLUFpaSm/QRNjgOA4XL17EwYMHp3zB0Wg02Lp1KwoKCgRsHUH4DsdxuHDhAg4dOjStlh966CHk5+cL2DqC8B8ykjHAwMAAPvnkE7S0tITkejKZjJ++TktLC8k1CcIX+vv7sWfPnmlrta9ZswZr1qyhPH2EaOnr68Mnn3wyrZbXrl2L1atXk5YJ0UJGMkZgWRYnT57E0aNHp0yWOxV6vZ6fvtZoNCFuIUH4BsuyOH78OI4fPz6llgsKCrB161bSKiFaHA4Hjh8/jhMnTkyp5cLCQmzZsoW0TIgSMpIxREdHB7788ku/p6/z8vKwdOlSlJSU0PQ1IRpaW1uxZ8+eKReDxcfH4+GHH/YpQwFBzBQtLS345JNPptSyXq/Hww8/TBkKCNFBRjIGaG5uxsmTJ1FTU+PX57KysnDffffR9DUhWiwWCz777LMpF5VJJBJs2LABS5cupelBQrRYLBbs3bt3ykVlEokEd999tyBlbwnCV8hIRikcx6G+vh4nTpxAU1NTwNcpLy/H5s2boVQqQ9g6gggdHMfh22+/xZdffjnl9GBFRQU2bdpEWiZEC8dxOH36NL766qsptTx79mxs2rSJkvETooCMZJTBcRyqq6tx8uTJaWtw+0pSUhIefvhhpKamhuR6BBEOmpub8fHHH2NkZMTrOUlJSXjkkUeQkpIiYMsIwj+amprw8ccfT5k/1Wg04pFHHkFycrKALSMId8hIRgksy+LatWs4efLktGUSnUilUsyfPx9z5szB8ePHp6xcI5PJcP/992PevHmhajJBhByTyYQ///nPU8YBy+Vy3H///Zg7d66ALSMI/xgdHcWf//xnNDY2ej1HLpdj06ZNmDNnjnANI4hJkJGMcOx2Oy5duoRTp05hcHDQp88oFAosXrwYy5cvR1xcHIC/rYQ9duzYlJ9dtGgRNm7cSCUPCdHCsiyOHj2KEydOTHne4sWLcc8995CWCdHCsiyOHDmCkydPTnnekiVLcPfdd5OWiRmBjGSEMj4+jvPnz+Obb76ZcvpjIiqVCsuWLcOyZcugVqs9nlNbW4s9e/bAbDZ7vU5eXh4efvhhSkVBiJqamhrs2bMHFovF6zmzZs3Cww8/7PXvgSDEwM2bN/HJJ59MqeX8/Hxs27aNtEwIDhnJCMNsNuPs2bM4c+bMlGZvIjqdDitWrMCiRYt8WmgwNDSEjz76aMpEuQaDAdu3b4fRaPS57QQhNIODg/joo4+mjBdOTEzE448/TlomRM3AwAA++ugjdHR0eD0nKSkJjz/+OJKSkgRsGRHrkJGMEEZHR/Htt9/iu+++m7Lc4UQSEhJw2223YcGCBZDJZH7dz+Fw4NChQ/juu++8nqNUKvHwww9TOTpC1Njtdhw6dAjnzp3zeo5KpcLDDz9M5egIUWO323Hw4EGcP3/e6zkqlQqPPPIIZs2aJWDLiFiGjKTIGRoawqlTp3Dx4kXY7XafPmM0GrFq1SrMnj076JiZa9eu4bPPPvNaE5ZhGNxzzz1YunRpUPchiHBz9epV7Nu3b0otb9y4EUuWLBG4ZQThH1euXMG+ffu8PhMkEgk2btyIxYsXC9wyIhYhIylSent7cerUKVy5cgUsy/r0mfT0dNx+++0oLS0NabLazs5OvP/++xgeHvZ6Di1cICKBjo4OvP/++1OmCFqyZAnuuecequJEiJr29nZ88MEHU2p52bJl2LBhA2mZCCtkJEVGZ2cnTpw4gcrKSp8/k5OTg9tvvx0FBQVhq3YwOjqKDz74YMq4SQr2JiKBkZERfPDBB1PGTRYUFGDbtm1QqVQCtowg/GN4eBgffPDBlHGThYWFeOihh0jLRNggIykSWlpacOLECb/KGBYWFmLVqlXIzc0NY8v+hs1mw2effYZr1655PYeCvYlIwGazYe/evbh+/brXc4xGIx5//HEkJiYK2DKC8A+bzYZPP/10ysEH0jIRTshIziCBljEsLy/HqlWrkJ6eHsbWeYbjOJw4cQJHjhzxeg4FexORAMdxOHbs2JS5U9VqNR555BHk5eUJ1zCC8BOO43D06FEcP37c6zlqtRqPPvqoYAMPROxARnKGaGhowJEjR9DS0uLT+QzDYO7cuVi5cqUoSmJVVlbik08+oWBvIuK5fv06Pv300ym1fO+992LRokUCt4wg/OPq1avYu3cvHA6Hx+MSiQT3338/FixYIHDLiGiGjKTAtLS04MiRI1OWcJuIVCrFggULsHLlSiQkJIS3cX7iS7D3qlWrcMcdd4QtdpMgQkFbWxs++OCDKZP7r169GmvXriUtE6KmtbUVH3zwAUwmk9dz1qxZgzVr1pCWiZBARnICHMfBarXyb3MSiQRKpTIkK946Ojpw5MgRn2MgPZUxFCO+LFxYsGAB7r//flo5KCDh1HK04svChYULF+K+++6j/0cBIS37z9DQEN5//310dXV5PWfx4sXYuHEj/T8KSLRqOeaNpN1ux8DAAIaHh2GxWODpv0OhUCAuLg6JiYk+VYaZSE9PD44ePerzKmxfyhiKDV+CvUtLS7F161bI5XIBWxZbhFvLscD4+Dg+/fRTVFVVeT2nrKwMW7du9TvJP+E7vmhZqVQiLi4OBoOBtOyB8fFxfPLJJ6iurvZ6Tnl5ObZs2UJaDiNOLQ8NDcFqtUallmPWSDocDnR2dmJgYMCvz2m1WmRkZEz7y+7v78exY8dw5coVn67rbxlDseHLwoXc3Fw89thjlIYixNjtdnR2dmJwcNCvz/mq5ViD4zgcOXIEJ06c8HpOXl4eHn30UdJyiAlUyzqdDunp6aTlSXAch6+//honT570es6sWbPw6KOP0v9diIklLcekkRwZGUFra6vXgGRfSE1NhdFodIsxGRoawvHjx3Hx4kWPbx6T0Wg0WLlyJZYsWRIVo3WXL1/G3r17vf7bU1NTsWPHDlFP10cSw8PDaGtrC1jLDMMgNTUVSUlJFC81iYsXL2Lfvn1etZyWloYdO3ZAp9MJ3LLohLQcPi5cuIDPP//cq5bT09OxY8cOaLVagVsWnQwNDaG9vT1mtBxzRrK3txednZ0huVZ8fDyys7PBMAxGR0dx4sQJnD9/3ifxKJVK3HbbbVi2bFlEvXn4ws2bN/HRRx95XQWbkJCAnTt3Uq7JIAmllvV6PbKysiKi0xKSGzdu4OOPP/aqZYPBgJ07d1J+viDp6emZMp7PH0jLnqmursbHH3/s9fmUmJiInTt3wmAwCNyy6CKUWk5ISEBmZqbotRxTRrKvr2/KQPpA0Ov1qKmpwenTp32qhS2Xy7F8+XKsWLEiYmIgA6GlpQXvvfceLBaLx+MajQY7d+6ckVyY0UC4tEwPYHeam5vx/vvve9WyVqvFjh07SMsBEsoXIieR8gAWmsbGRnzwwQewWq0ej+t0OuzcuROpqakCtyw6iFUtx4yRNJvNqKurC8u1+/r6cPTo0SnPkUqlWLJkCVatWhUz0wfd3d145513vKYHUigUeOyxxyhxuZ+MjY2hvr4+LNdOT0+nkWIPdHV14d133/WqZaVSiccee4wSl/tJOLWckZFBI8Ue6OzsxLvvvus11ZVSqcTjjz9Oicv9xGQy+ZzWz18yMzNFPVIc1jXnL7/8MpYsWYJXXnklnLeZFpZl0draGrbrJyUlIT4+3uMxiUSCxYsX45VXXsHdd98dMyYSAFJSUvDcc895NSbj4+N49913/aorHuuEW8udnZ0YHx8P2/UjldTUVDz77LNetWy1WvHOO+9MudqbcCXcWu7o6CAteyAtLQ3PPvusV5Pt1PKNGzcEblnkEm4tt7e3w2azhe36wRJWI/nEE0/gX/7lX8J5C58YGBjwOpQfKlatWuXyM8MwmD9/Pv7u7/4O9913n1ejGe3o9Xo8++yzyMzM9Hjc4XDgo48+wrlz5wRuWWTS398f1ocjx3Ehn5qJFhISEvDMM88gIyPD43Gnls+fPy9wyyITIbQcqli1aMNgMOCZZ55BWlqax+N2ux1/+tOfcPHiRYFbFpn09fWF1eiJvV8Oq5Fcvnz5jI/AcRyHvr6+sN9HrVZDr9cDACoqKvD9738fDzzwgKiHo4VCo9HgySefREFBgddz9u/fj2+//VbAVomDlj+8BXNbm0/nCqXl4eFhUb/9ziRarRZPPvkk8vPzPR7nOA6ff/45zpw5I3DLZp7m3bthmaIwwUSE0vLQ0JBPseuxiE6nw9NPP+01tIjjOHz22Wf47rvvBG7ZzNP85m5YfIxB5zgO/f39YW6RuLXst5FkWRb33HMP/u3f/s1l/4kTJzB79mwcOHAgZI0LBWNjY4JNb9x111146aWXsG3bNhiNRkHuGSkoFAo8/vjjmD17ttdzDh06hNOnTwvYqpmn58svcWH7DtT88/9nWkNpMpkEM3j+5j6LJZRKJbZv346Kigqv5xw8eDDmzGTPob/gwuPbUfO//te0hlJILfubKziWcGq5vLzc6zlffPEFzp49K2CrZp7uAwdw4bHHUfsv/zqtoRwdHY35ftnvdPYSiQS7du3Cq6++ihdffBF6vR7V1dX44Q9/iL//+7/Hxo0bw9HOgJmq3mioUavVSElOBseygt0zkpAwDLY8+CC0Go3Xh+xfDh0Cx7JYsWKFwK2bITgOcDjQ/cUX6D50CCl3342sp56E2kMogJBaHh0dhZEW3XhFwjDYumULNGq11xGbgwcOgHU4sHz5coFbN0NwHDiHA92f70fPgYNI3ngPsp94EqpM91AA0rJ4kEokvJa9hRgd+OILcCyLpUuXCty6mYNzONC1bx+6v/gCKfduRNYTT0DlIaxFcC2LcJAqoFXbdrsdd999N7Zs2YJt27bhkUcewfr16/GLX/zC7dwzZ87g3XffxX/8x3+EpMH+0tTU5HWlZaiRMAwGdr0kyL2IKEYq9WgoGxsbva60DDUSiQQDL+4S5F5E9MJIpR4NZUNDg2APYNIyEQoYqdSjoRRSy1KpFGVlZYLcyx8CipGUyWR44YUX8Pbbb+OFF15AeXk5fv7zn4e6bSHBW+63cMByHJgEvWD3I6KUv45QTp7yFlTLLAsmRheIEaHDOUJ5Yftfp7zbbk15h3vx40RYlgUTQ9kyiPBwa4Tyc1x4fDtq/+Vf+PANIftlh8MRVEW+cBFwHkmTyYQVK1YgNzcXf/rTn6DRaNzOee6553D9+nWYzWbo9Xr853/+J+bOnRt0o/2hqqpK0P/4kf/5C7Dd3YLdj4gBpFKkbLwHts2bwQoYNjHy8/8BtrdXsPsRMYBUitR7N2J80yZBtTz83/9vcAIsiCBiB0YqRcr998N670afyiGHipKSEtGVU/Y7RtLJq6++CuBWILNUKvV4zhtvvBHo5SMWio8kQgrDwLh2LTIffRRNAr75AqRlIsQwDIzr1iHj0UfRODYm7L1Z8Y3iEBGMRALj+juQ8cjDaDSZBDWSYiQgI/nrX/8aR48exYcffoinn34aH3/8MXbs2BHqtoUEuVwu6IgkJ1A8JhHlMAyMd9yB7Kefguav6TlkNTXCalmgeEwiymEYGNevv6Xlv1b+kd28KWiycG5UuAURRBQjkSD5zvXIeuopaP5a+UdoLXsbuJtJ/DaSH330EXbv3o233noLpaWleOqpp/D666/jkUceEd1wK3BrJbVQMQxyuRwZW7YIcq9opLOzY8oSU9nZ2cjKyhawReGne/9+2Ce+fDAMjHesQ/bTT/MG0olarRYstkwhlyNj61ZB7hWNdHR0oLHRu5ZzcnKQmZklYIvCT9fnn8Mx8eXDg4F0otFoBHv4KhQKZGzbJsi9opGOjnY0NjZ6PZ6Tk+u14ESk0rVvHxwTF9BIJH/T8qTSkWq1WjAtK5VKSCRhTf8dEH4ZyWPHjuGXv/wlfvWrX2H+/PkAblWvefPNN7F3715sE+Efq1qtFiyPmEajQfbfvSzIvaKRWQBk332HL774wuPxGgBrZldg7dq1QjYrrAycPn3LSHoYgZyMWq0WLI+YRqtFFmk5YGYBkJ096zWvbg2AdXPnYPXq1YK2K5z0nzx5y0gyDIx33onsp550M5BOBNWyRkNaDoJZACTffotDhw55PF4DYP38eW7V3SKZvmPHbhlJDyOQk1Gr1RgaGhKkXZ7WoogBn43ktWvX8KMf/Qg//elPsWHDBn6/TqfDzp078dprr2HLli2iG3aNj49Hu4/VFoLFWdmGCJwlS5aAYRjs37/f4/Fjx45BJpNFT6c1cdTGi4F0Eh8fjw4fqy0EC2k5eJYuXQqGYby+GB05cgRSqRQrV64UuGVhgmFgvOuuKQ2kE9JyZLF8+XIwDIODBw96PH748GFIpdKoyf/LSKVI3nDXlAbSSXx8vGDlC8Wq5YBXbUcSLS0tYX9jkMlkKCkpAcMwYb1PrHD+/Hl8/vnnXo/ff//9WLRokYAtCg/Wnh4ok5N9Pr+5uRnDw8NhbNGtEI3i4mLScog4d+6c1xcjANi8eTMWLFggYIvCA2k5+jk7xSg7ADzwwAP8bGUk46+WhchXLWYti2+yPQwIkQk+OTlZlL/gSGXRokXYtGmT1+P79+9HZWWlgC0KD/50VoAwWjYajaTlELJ48WLcd999Xo/v27cPVVVVArYoPIhRy9Qvh5alS5fi3nvv9Xr8s88+Q3V1tYAtCg+kZf+ICSOpVqvD+otWq9VITEwM2/VjlYULF2Lz5s0ej3Echz179qC+vl7gVs0sGo0GSWEs90ZaDg+LFy/G/fff7/EYx3H485//POVCs2gk3FrWaDQwGAxhu36ssmTJEq8vRhzH4eOPP55ycU40otVqw9pvil3LMWEkASAlJQVKpTLk12UYBllZWaJ9U4h0FixY4PUN2OFw4IMPPkDbXyu/xAqpqalQKBQhvy5pObwsWrQI99xzj8djTi0LFc8tFkjLkcnixYtx9913ezzmcDjw/vvvCxYDKxZSU1PDkrlGIpGIXssxYyQlEgny8vJC+otmGAa5ublhMajE31iyZInXldo2mw3vvvsuenp6hG3UDOLUskwWcD0BNxiGQV5eHmk5zCxbtgxr1qzxeGx8fBzvvvsuemOomlA4tRwOg0r8jeXLl+P222/3eGx8fBzvvPMO+vr6BG7VzCGVSjFr1qyY1HJMLLaZiM1mQ2NjY9D5+KRSKXJycqClGq6CwHEcDh48iLNnz3o8HhcXh2effRYJCQnCNmwGIS3fqqM8Pj4Oq9U65Tb5HJZlwXFcWDcAHvczDAOWZWG32z3+m+RyOUpKSqDVaiGXywPaxJhrbirGx8fR1NQUEi3n5uaKNk1KtMFxHPbv34/z5897PK7X6/Hss88iPj5e4JbNHOPj42hsbAw6t2QkaTnmjCRw6+HT29uL7gBrYsfHxyMjIyOkbx7E9HAch08//RRXrlzxeDwpKQnPPPNMRBqiQGFZFj09PQGPyM6Ulh0Ox7Tmz5sJnHyMcEcikXg1mVqtFhqNBlqt1uOmVCpnZBotWC3r9Xqkp6dTvywwLMtiz549uH79usfjRqMRzzzzTEQYolDBsiy6u7sDnl2INC3HpJF0YrVa0dfXh4GBAZ9qZcbFxSEpKQk6nU6A1hGecDgc+NOf/oSamhqPx9PT0/HUU0/F3BStxWJBf3+/z1qOj49HYmJiyLVst9sxMjKCkZERjI6O8t9P3EZHRwWrNkX4j0Qi8WoyPRnQUMeFBaLlpKSkmHqBFBvOuMi6ujqPxzMzM/Hkk0+Kfoo21FgsFvT19WFwcDCqtRzTRtKJw+GAyWSC2WyG2WyGw+EAx3GQSqVQqVRQq9Vh6TCJwLDZbHjnnXfQ3Nzs8XheXh527NgRMW9zoWSylp3Tp8Fq2eFwTGkMnd+bzeZw/LMIEaNQKKY1mxOP+TrtHi4tE+FhfHwcb7/9NlpbWz0ez8/Px+OPP079chRqmYwkEZFYLBb84Q9/QFdXl8fjJSUleOSRRyIuVkxonB3cdAZxbGxspptKRAFSqRR6vR4Gg8FlS0hIgMFggEqlmukmEkFgNpuxe/dur+EJ5eXleOihh6hfjjLISBIRy+joKN58802vtdSXLFkyZfLcWMEZwuHc+vv70dfXh6GhIZhMpplunmBIJBKoVCooFArIZDIwDCPoBsBloY3NZuM353Quy7Iz/L80s6jVajdz6dzi4+NFV4KXcGd4eBi7d+/2Wkt9+fLlXlMHEZEJGUkiohkYGMCbb76J0dFRj8c3btyIpUuXCtwq4bHb7bxBdH51bpFuFhUKBZRKJf/V123y+WKfUuvv78ebb77p9fd1++23o6SkBDabzc2I+rpZrVaMjY1FZAgCwzD8aOZkk2kwGKBWq0Wday+W6Ovrw+7du71qOVpK3BK3ICNJRDzd3d3YvXu3xwUcDMPg8ccfR1FR0Qy0LLSwLIuhoSGPo4ve3v7FgkwmQ1xcHL/pdDqoVCqfzGAsTYN1dnbiD3/4g8c0OAzDYMeOHSgoKAj6Pg6HA2NjYzCZTB63ycdsNlvQ9ww3CoXCzVw6TWdCQoLoXySijY6ODrz11ltetbxz507k5+fPQMuIUENGkogKWlpa8Mc//tFjbj6FQoHnnnsOKSkpM9Ay/+A4DqOjox7N4sDAABwOx0w30QWpVOpmECf+7NxmKqVMJNLc3Iw//vGPHn/XSqUSzz33HJL9rAUcLOPj416Np6f9Ypyi1+v1SElJQWpqKr8lJSXF1IuK0DQ1NeHtt9/2quXnn39ekDrVRHghI0lEDdevX8fHH3/s8Zher8fzzz8vmtRNNpsN3d3dLobRaRrFkBtRIpH4ZBBVKhUZxDBw9epV7Nmzx+OxhIQEPP/886JNEcJxHCwWi5u5HB0dxeDgIAYGBjAwMOA1HEVIpFIpkpOTkZqa6mIyxdJPRANXrlzBJ5984vGYwWDA888/H1M5JqMRMpJEVHH8+HEcOXLE47GsrCw8+eSTgqdYsFgs6OzsREdHB/+1t7fXp7xi4UAqlSIxMZFfwODJIFK82cxz9OhRHDt2zOOx7OxsPPnkkxE9XWuz2VyM5cDAgMvPMzmdrtFoXEYuU1NTkZycHNH/3zPJkSNHcPz4cY/HcnJy8MQTT9D/bQRDRpKIKqarfjN79mxs3bo1bCbJZDK5GMaOjg6vq8rDiXNhQlJSksuWmJgIvV5P03kRAMdx2LNnD65du+bx+Ny5c/Hggw9GpeHnOA5jY2MuJnOi0RweHhb8RYxhGCQlJbmNXur1+qj8HYQSjuPw5z//2Wv1m3nz5uGBBx6g/8cIhYwkEXXY7Xa8/fbbXhOWr1mzBmvXrg3qHhzHYWRkhDeLTuM4PDwc1HX9RafT8QZxomE0GAz0hh8F2O12vPXWW16TPK9btw6rV68WuFUzj8PhwNDQkEeT2d/fH3TNbn9QKpUuxtL5faxV15oOm82Gt956C21tbR6P33HHHbj99tsFbhURCshIElHJ2NgYXn/9da+jgVu3bsWcOXN8uhbHcRgYGHAzjUIl6VYqlTAajW6GMTExkR5WMYDJZMLrr7/udWX+tm3bUFFRIWyjRI7ZbHYzlz09Pejq6hIsBjkhIcHFWGZmZsb86OXo6Chef/11DA0NeTz+8MMPo7y8XOBWEcFCRpKIWnp6evDGG294HJ2QSqV46qmnkJ2d7bKfZVn09va6GMbOzs6wj3DIZDK3UUXnzxqNJqYfPsStFFdvvPGGRxMkk8nw1FNPISsrawZaFllwHIfBwUF0d3ejq6uL3/r7+wWZKtfpdMjOzkZ2djaysrKQnp4eczMHXV1dePPNN71q+emnn0ZmZuYMtIwIFDKSRFRTX1+Pd955x+NDQq1W44EHHnCJa+zs7PSYQiiUGI1GpKenIz09nU9BEh8fT2aRmJLa2lq89957HrWs1Wrx/PPPIyEhQfiGRQE2m40fsezq6uKNZrhnHaRSKTIyMpCVlcWby7i4uLDeUwzU1NTg/fff96hlnU6H559/Hnq9fgZaRgQCGUki6jl37hz2798v+H0lEglSUlKQlpbmYhwVCoXgbSGig7Nnz+LAgQMej6WlpeHZZ58VPCtBtMJxHEwmk8vIZVdXF3p6esKaJzMhIYE3ldnZ2UhNTY3KxXFnzpzBwYMHPR5LT0/Hs88+G3OjtZEKGUkiarFYLGhubkZTUxOuXLkS1rx1MpkMaWlpLqaR0oUQ4eDAgQM4e/asx2Pz58/HAw88IHCLYguHw4G+vj630ctwLbSTy+XIzMx0MZdqtTos9xISjuPwxRdf4Ny5cx6PL1y4EJs2bRK4VUQgkJEkoobR0VHeODY1NaGrqyss91EqlS6GMS0tDUajMSpHDQjxwbIs3n//fdTW1no8vmnTJixcuFDgVhFms9kt9rK7uzss+TCNRiNvKrOzs2E0GiMyNIZlWbz33nuoq6vzeHzz5s1YsGCBwK0i/IWMJBGRcByHoaEh3jQ2Nzejr68v5PfRaDS8WXQaR4PBEJGdNhE9WK1WvPHGG+jp6XE7JpVK8dxzzyE9PX0GWkZMxJnxoa2tDS0tLWhpaUFXV1fIF/aoVCpkZWXx5jIzMzNiMjpYLBa88cYb6O3tdTsmk8nw3HPPIS0tbQZaRvgKGUkiIuA4Dr29vbxpbGpqCvlUEsMwKCgoQGZmJm8a4+LiyDQSoqS3txevvfaax9WvCQkJePHFF6NiCjTaGB8f541la2srWlpaYLFYQnoPhmGQkpLCT4fn5uaKeiFWT08PXnvtNY+jtwaDAS+88AJpWcSQkSRECcuy6Ozs5E1jc3OzIHkbCwoKsH37dpqmJiKCyspKfPTRRx6PFRUV4fHHH6cXIZHDcRz6+vr4EcvW1laPI83BkpiYiIKCAhQUFCAvL090I5bXrl3Dn//8Z4/HiouL8dhjj5GWRQoZSUIU2O12tLe386axubk5pImDlUolcnJykJubi5ycHFRWVuLbb7/1eO7q1auxbt26kN2bIMLJoUOHvGp57dq1WLNmjcAtIoLFbDa7TIe3tbWFtD9kGAbZ2dnIz89HQUEBMjIyRPHyfPDgQZw5c8bjMap8I17ISBIzAsuyaGtrQ21tLZqamtDa2gqHwxGy62u1Wt405ubmIiUlxaWjZFkWb7/9NhobGz1+fvv27SgqKgpZewgiXDgcDvzxj3/0WhJ0586dKCgoELhVRChhWRbd3d0u0+HeqnYFgkqlwqxZs3hjaTAYQnZtf3A4HHjrrbfQ0tLidoxhGOzcuRP5+fkz0DJiKshIEoJhMplQV1eH2tpa1NbWwmw2h+zaCQkJvGnMzc1FYmLitNMgo6Oj+N3vfucxLZBKpcKuXbtEHVdEEE5GRkbw+9//3qOW1Wo1du3aRQmeo4zR0VHeVLa2tqKtrS1kL+OJiYm8qczLy4NKpQrJdX1heHgYv//972EymdyOaTQa7Nq1C/Hx8YK1h5geMpJE2OA4Du3t7aipqUFtbS3a2tpCdm2j0egy4hjoQ7K5uRlvvfWWxwTDlBSXiCSamprw1ltveVwRnJGRgWeeeYa0HMU4HA50dnby0+EtLS0YGRkJ+roMwyArK4s3lpmZmWGfBm9oaMDbb7/tUctZWVl4+umnIZVKw9oGwnfISBIhxWw2o66ujjePoVggwzAM0tLSXGIctVptCFp7i2+//RaHDh3yeIyS4hKRxDfffIMvv/zS47HFixfjvvvuE7hFxEwyNDSExsZG1NfXo66uzuMon78olUqXafDExMQQtNSdU6dO4auvvvJ4bMmSJbj33nvDcl/Cf8hIEkHBcRw6Ozt549ja2hp0jjSJRILMzEx+mjo7OzusKww5jsOf//xnXL9+3ePxBx54APPnzw/b/QkiVHAch48++ghVVVUej2/ZsgVz584VuFWEGOA4Dt3d3airq0NdXR2amppCMhVuMBh4Uzlr1qyQTYNzHIcPP/wQ1dXVHo9v3boVc+bMCcm9iOAgI0n4jcVicYl1DLb0oEwmQ05ODj/imJmZKXi9YKvVitdff91jUly5XI5du3YhKSlJ0DYRRCBYrVa89tprHhP0KxQK7Nq1K2yjSETkYLPZ0NzcjLq6OtTX14ekEhjDMMjMzHSZBg9mCtpiseC1115Df3+/2zGlUoldu3bN2MIg4m+QkSSmxfkmW1NTg5qaGrS0tAQ96piYmIjCwkIUFRUhLy9PFLFbUyXFzcjIwLPPPktxOURE0N3djddff92jlrOysvDMM8+IIt0LIR5GR0f5KfD6+vqgBwiAWy8us2bNQmlpKYqLi6HRaPy+RldXF15//XXY7Xa3Y9nZ2Xj66adJyzMMGUnCI1arFfX19fyUdbBB21KpFLNmzeLNo1hHRK5fv46PP/7Y47Hbb78dd9xxh8AtIojAuHr1Kvbs2ePx2Jo1a7B27VphG0REDM7BA6exbGpq8mjk/IFhGOTl5aG0tBSlpaV+rby+fPkyPv30U4/H1q1bh9WrVwfVNiI4yEgSAG51HD09PbxxbG5u9riS2R8SEhJQVFTEjzoKPV0dKPv27cOFCxfc9jMMg6effho5OTkz0CqC8J/PPvsMFy9edNvPMAyeeeYZZGdnz0CriEjDbre7TIN3dnYGfc3MzEyUlpairKzMp7ChTz/9FJcvX3bbzzAMnnvuOWRmZgbdJiIwyEjGMA6HAw0NDaiurkZtbS2GhoaCup5UKkVubi6KiopQWFiIpKSkiCxpNT4+jt///vceY8z0ej1eeuklQfOqEUSgjI+P43e/+53HGDODwYBdu3aJrlQeIX5GR0fR0NDAL9wJdho8JSWFN5WpqakenxtWqxW//e1vMTg46HYsMTERu3btgkKhCKodRGCQkYwxHA4HGhsbcf36dVRXVwedFFyv1/PT1bNmzYqaP+T29na88cYbHkdl586diy1btsxAqwjCf9ra2vDGG294jGueP38+HnjggRloFREtOGeznKOVjY2NQU2DJyQk8KYyOzvbxVS2tLRg9+7dHrW8YMECbN68OeD7EoFDRjIGCKV5lEgkyM3N5c2j0WiMyFFHXzhx4gS+/vprj8co9QQRSRw/fhxHjhzxeGzbtm2oqKgQuEVEtGK329HS0sLnE+7u7g74Wlqtlo+pnDVrFqRSKY4ePYpjx455PP+RRx5BWVlZwPcjAoOMZJTCsiwaGhpQWVmJqqqqoMxjXFwcH+s4a9asmJkKY1kWf/zjH9HU1OR2TKlU4qWXXqISikREwLIs/vCHP3isYaxSqfDSSy9RCUUiLPT396OqqgrV1dVobW0N+DpKpRIlJSUoLi7GN998g/b2drdz1Go1XnrpJSqhKDBkJKMIlmVdRh4DrSrDMAxycnL4UceUlJSoHXWcjsHBQfz2t7+F1Wp1O5abm4snn3ySUk8QEcHAwAB++9vfYnx83O1YXl4ennzyyZj9OyeEYXh4GDdu3EB1dTUaGhoCTiMnk8ngcDg8fj4/Px87d+4kLQsIGckIJ1TmUavV8qOO+fn5tJhkAlOlUVm/fj1WrVolcIsIIjCuXLmCTz75xOOxO++8EytXrhS4RUSsYjabeVNZV1cXdHqhiWzYsAErVqwI2fWIqSEjGYE4zaNz2joY81hWVoaKigrk5OTQyNoU7NmzB1evXnXbL5FI8NxzzyEjI2MGWkUQ/sFxHPbs2YNr1665HZNIJHj++eeRnp4+Ay0jYpnx8XHU1taiuroaN2/e9DgD5A8Mw+Cxxx5DcXFxiFpITAUZyQiBZVk0NTXh+vXrZB5nAIvFgt/+9rceUyQlJSVh165dEZMnk4htLBYLfvOb32B4eNjtmNFoxIsvvkhaJmYMu92OxsZGPq4y0GcdcCutUEVFBebMmUOlFMMIGUkRE2rzWF5ejtzcXDKPAdLU1IS33nrLY1zOihUrsGHDhhloFUH4T2NjI9566y2Px1auXIk777xT4BYRhDssy6KlpYU3lcHkOs7KysKcOXNQUVEBrVYbwlYSZCRFhtM8OqetTSZTQNfRaDT8yCOZx9Dx9ddf48SJE277GYbB888/T1PcRMTw1Vdf4dSpU277GYbBCy+8QFPchKjgOA6dnZ28qezp6QnoOgzDoKCgAHPmzEFpaWnU5D6eSchI/hWbzQaz2Qyz2QyHwwHgVsyQSqWCWq2GQqEI2yowMo+Rg8PhwJtvvukx9URqaipeeOEFSKXSGWjZ35hJLRORg8PhwBtvvIGOjg63Y2lpaXj++ednVMscx8Fut5OWCY/09vaiuroaVVVVHvtjX5DJZCgtLcWcOXNQUFDgUe9NTU1ITk6GRqMJuK0cx8Fms8FisUSllmPaSLIsi6GhIfT19cFisUx5rkwmQ2JiIhITEyGTyUJy/+7ubly+fBlXrlwJuMSU0zyWl5cjLy+PzKMAdHd343e/+53Hqjfr1q3D6tWrBW+Tv1pOSkqCwWAImZaJyKSrqwu///3vPWp5pjISsCyLwcFB9PX1TbvogrRMAMDQ0BC+++47jyPsvqJWq1FeXo45c+YgJyeHN3XvvvsuxsbG8OSTT/qdQ9kfLcvlciQmJkaklmPWSI6MjKC1tZV/M/CH1NTUgCu6mEwmXL16FVeuXPE4EuALarWaH3kk8zgzeKuuIJVKsWvXLiQnJwvWluHhYbS1tfmtZYZhkJqaGrE10YnQcOTIERw/ftxtv1Qqxfe+9z0kJSUJ1hbSMhEMhw8fxsmTJ4O+jl6vx+zZs1FQUIC3334bHMchNzcXO3bs8Hkh2tDQENrb22NCyzFnJFmWRXt7u8fC7/6gVquRnZ3tU3yF3W7HzZs3cfnyZdTW1np8+/flfmQexYPD4cDvfvc7j3E62dnZeOaZZ8LeCbAsi7a2tqAC0IFb2srJyaGVujGK3W7H7373O/T29rody8nJwdNPP01aJiICu92O3/72t+jr6wvL9YuKivDoo49OGfIRi1qOKSPpjEUMNAZxMjKZDPn5+R7NJMdxaGtrw6VLl3D9+vVppxs94TSPzmnrmY69I1xpbW3FG2+84fHYxo0bsXTp0rDd25lLNJjUGBOZSstE9NPS0oI333zT47H77rsPixcvDtu9SctEKGlubsbu3bs9HispKUF/f3/AC3UAoKKiAlu3bvU4mONwONDY2BhUSeKJyOVyzJo1S/RajhkjyXEcmpqaAo5F9IZcLkdBQQEf0zA4OIgrV67gypUrAb0VqdVqlJaW8iOPZB7FzcGDB3HmzBm3/QqFAt///vfDUr9YKC0TscWBAwdw9uxZt/0KhQIvv/xyWOoXh1PLhYWF1H/GKPv378e5c+fc9iuVSnz/+9/H2NgYrl69imvXrnnMpzodCxcuxP333+8yUs9xHBobG0M2UOVEoVB4XQgkFmLGSPb39we8sms64uPj0d/fj8uXL6OxsdHvz8tkMpSVlWHu3LmYNWuWqAVDuDI+Po7f/OY3HkMlCgsLsX379pBPC/b19QUcXzsder0e2dnZYbk2IW7Gx8fxX//1Xx6n5IqLi/HYY49FlJYTEhKQlZUVlmsT4sZqteK//uu/PJrEkpISPProo2AYBhzHobm5GVeuXEFlZaVfM4erVq3C+vXr+Z97e3vR2dkZkvZPRuxaDpuR7OjowD/+4z+ir68PUqkU3//+97Fx48Zw3GpaxsfHUVNTE3CBeF+oqanBlStX/PpMbm4u5s2bh/Lycr9XgxHiob6+Hm+//bbHY1u2bMHcuXNDdi8htJyTkxOW0SdC/NTW1uLdd9/1eOyhhx7C7NmzQ3YvIbScm5uLuLi4sF2fEC81NTV47733PB7btm0bKioqXPY5HA7U1tbi6tWruHHjhk+1v++66y7cdtttsFqtqK2tjVkth81Idnd3o6+vD2VlZejr68OWLVtw8ODBoHIxBUpHR0fYgm+dOGvYTofBYMC8efMwd+5cKtkURezduxeXLl1y269Wq/Hyyy97raTA2u2Q+DGV3N7ejv7+/kCb6RMqlQqFhYVhvQchXj799FNcvnzZbb9Go8HLL7/stQ8nLRNiY8+ePbh69arbfq1Wi5dffhlqtdrj525UVeGDDz/06R6bN29GSkoKBgYGgmrrdKjVahQUFIT1HoEStqW/KSkpKCsrA3CrFrFerw96FVMgsCwb9l8wcGvJfkpKisdjSqUSCxcuxDPPPIMf/OAHWLNmDZnIKGPDhg0ezaLZbMbBgwe9fu7Srr9D8x/fgcOH4GyHwyGIli0WS8gWPhCRx4YNGzyaxbGxMRw6dMjr5y698D00v/0eHObppweF1HKoFj4Qkcc999zjUcsmk2lKLTf/4/+NzNoGSDyk7tFqtUhLS0NxcTEWLlyI0dHRoLPA+IIzMb8Y8dtIsiyLe+65B//2b//msv/EiROYPXs2Dhw44PaZq1evguO4GSm5NTw8HFC6nUCYOIXJMAyKiorw0EMP4R/+4R+wadMmlySnRHShVqtx7733ejx27do11NXVeTxmGxhA3b///3D6vi3TGsqRkZGwTp1MRIiOkRAnGo3Gq5avXLmC+vp6j8fG+/pR96v/g9P3PzitoRweHiYtE2FHo9Hgnnvu8XjM25oGlmXBjI6i4FoVVh37Bhs1cXhq+3b88Ic/xM9//nP85Cc/wa5du/D4449j06ZNmD17dsxrOaCp7U8++QSvvvoqjhw5Ar1ej+rqamzfvh0vv/wynnvuOZdzBwYGsGPHDvzTP/0TFi5cGLKG+4oQ09pOGIbBkS++QLExGUVJRmhEvmSfCD2nT5/2uKhLp9PhrrvucksZUfv//T8Yn5C/T24wIOfpnch8+CFIJ027CDEV6ESpVCK+rkGQexHigwNw+pvT6Ohw13J8fDzWr1/vruX//e8Y7/ubPuWJBuQ8/SQyt22FVK1yOVdILauUSsSRlmMWDsA3p055XAgTHx+PO++8022Ap+ZffwXbhBFzRVIicp5+EhkPbXHTcltbmyCj64B4p7cDMpJ2ux133303tmzZgm3btuGRRx7B+vXr8Ytf/MLlvPHxcTzzzDN4+OGH8eCDD4aqzX5RV1cn6HBwzzO7AB+CdAliKuSJBuQ89QQyH97KG0rBtfz0i0AAlZ8IYiKeDGVtbW1AuXUDgQHQ/dQLgEAzU0T0ojAmIefpJ24ZStUMaJlhUF5eLrqZzYBiJGUyGV544QW8/fbbeOGFF1BeXo6f//znLudwHIf/9t/+G5YvXz5jJhIAbDaboPeTJIQ+byARe9j6B1D37/+B0/dvQfMf34XDbMb4+LigbZDoaeU2ETy2/gG3KW8h+2UOgESkq12JyGK8tw+1//vX+HbTVrS8+z4cFoug/TLHcQGVdQ43AS+22bRpEz868qtf/cot9+H58+fxxRdf4KuvvsIDDzyABx54ADdu3AiutQEgdJpMhpI5EyHEaSiv/vgfBdcySMtECHEayms/+Rk4oUcHSctECHEayms/+W+C98tiTP0d8F/Xq6++CuBWDKSnBNqLFy9GdXV14C0LEUIPAXM2mtYmQoe2qBCzdj0P47o1qBb6RYy0TIQQXXER8nY9D+Pa1be0LODICmcXdmaKiG50JcW8lquqqgQ1d2Kb1gYCNJK//vWvcfToUXz44Yd4+umn8fHHH2PHjh2hbltIUCqVPiUWDQUMGLACBd0S0c1EA8n8dVGDUqkULC0PwzBgRbpCkIgsJhpIp5YVCoVg8b4Mw4AbHhHkXkR0M9FAOg2dUqkUTMsSiUSUle/8Xmzz0Ucf4Z/+6Z/w1ltvYf78+fjNb36DDz/8EH/5y18gl8vD1c6A6ezsRO+EVbHhRKVSIdmHHGpEbDBmMuGjjz6C3e4+8rJy1UqUlpai8mc/h2VCiThtUSHyXnwOyXes5R+6ToTMQKBWq2EcE2fOMkJ4TKOj+Oijjz3GZ91+++0oLinG9Z/+X7B2dfP7PRlIJ6RlYqYYHRnFxx971vKaNatRWFSEaz/+mUs2DU8G0omQGQg0Gg3y8/MFuZc/+DUieezYMfzyl7/Er371K8yfPx8A8MQTT+DNN9/E3r17sW3btnC0MSiErKSj1WqhpyoKxF/RA1hgG8fXX3/tdux4YwPm3n8fJKpbpTE9jUBORqPRCPbw1Wq10IswzQQxMzi1fOTIEbdjxxrrMef+eyH5a7ozXXER8l56AcY1t5OWCdGhBzBv3IJjx465HTvaUI/Z990LifKvWp7CQDrRaDSCGUlvFdJmGp+N5LVr1/CjH/0IP/3pT7FhwwZ+v06nw86dO/Haa69hy5Ytoht21el0kEqlgqx0omo1xGRWrFiBS5cuuXU0Y2NjOHr0KHKKCpH/8ktTGkgncXFxkEgkgiTYJy0Tk7nttttw6dIlt5x5JpMJR48eRVZJMQr+/pUpDaQT0jIxk6xcuRKXL192S/A9OjqKY8eOIaOkGIX/8KMpDaST+Ph4wbSckJAQ9nsEQthqbYuJrq4u9PT0hPUeYh1yJmaemzdv4v3333fbzzAMdu3ahdTUVJ+vRVomZpIbN27ggw8+cNvPMAxeeuklr2ViPSFE2JFWq8WsWbPCeg8iMqmqqsKHHuppSyQSfO9734PRaPT5WkKEauh0OuTl5YX1HoEStlrbYiIpKSnsI6X+mAEitiguLkZRUZHbfo7jcODAAb9W/Amh5bS0tLBen4hciouLPVbW4DgOBw8e9EvLRqPRrTpOqKF+mfBGaWmpxxdmlmVJy34SE0ZSJpMhMzMzbNdPSkoSbewCIQ7uvvtujwawqakJ169f9/k6MpkMGRkZoWyaC0lJSYLGFRORBcMwuOeeezw+NBsaGlBVVeXztcLdLxuNRtIy4ZWptFxXV+dX3mu5XB7Wfjk5ORnqSSVzxURMGEngVhxDOGJlVCqVqN8UCHGQlJSE5cuXezx2+PBhv1JU6fV60jIxYxiNRq9a/uqrr/yKR4+Pjw9L3JdarfZrmp2ITZKTk7F06VKPx7788ku/tKzX68Om5eTk5JBfN5TEVLr/jIwMsCyLoaEhnz/Dsiy+/PJLjI+PY+nSpTh79iwUCgXuuusuqNVq5OXlhX1Im4gOVq9ejStXrmBkxDWn3eDgIM6fP49ly5b5fK1Qa1mj0cSEljmOg81mA8uy4DhuRjaJRAK5XA6ZTAa5XO62RcLvwKnl0dFRl/0DAwO4cOEClixZ4tN1GIZBZmYmWJbF8PCwz/cnLROhYu3atbh69SpMJpPL/v7+fly8eBGLFy/26TqxrOWYWGwzEY7j0NPTg+7u7ulPBnDo0CGYTCYoFApYrVYolUqMj48jLi4Or7zyiuhWqRPi5sqVK/jkk0/c9ms0GrzyyitQKpU+X4vjOHR3d/u8+CaStcyyLKxWq9s2Pj7ucf9U54q9y5NKpR4N5uTNmxGdblOr1SGpjnH58mV8+umnbvu1Wi1eeeUVKP6aDsgXQqXl+Ph4/OAHPxC1lgnxcfHiRXz22Wdu+3U6HV555RW/cmTHopZjakQSuPXWkJKSgri4OLS2tsJqtU55/vj4OBQKBe69915cu3YNs2fPxhdffIHx8fGI+AUT4mLOnDk4ffo0Ojs7XfaPjY3h9OnTWLt2rc/XYhgGqampiI+PF72WOY6DxWLByMgIRkZGYDKZpjV8EzebLXZK3DkcDjgcDlgs4SluwDAMNBoNtFotv03+eeKmUCg8Gs+5c+fi9OnT6OrqctlvMpnw7bffYvXq1X61KRRatlqt1C8TfjNv3jx8++23bgNMo6OjOHPmDFatWuXztZxajouLQ1tbW0xoOeZGJCfCcRzGxsbQ19eHkZERjyMVXV1dOHnyJIqKirB9+3a89957qKmpwRNPPEEpUoiAqKurwzvvvOO2X6FQ4JVXXglo4RbHcTCZTOjv7xdUyxzHwWq18gZxZGQEo6OjLj87NyFyuRKhRyaTeTWcIyMj+Pbbb90+o1Ao8MMf/jCgxS4zpWUitvGWpk2pVOKHP/xhQItdnFru6+vD6Oho1Go5po3kRJwPRLPZzD/wJBIJfvOb30Aqlbq9LTAMg5/97Gcz3GoiEuE4Dm+//TYaGhrcji1duhQbN24M+vqh0PL4+LhHQzjZLMbSaCHhOzqdDllZWS7m07no0WAw+BTGQf0yIRQcx+EPf/gDmpub3Y7ddtttuOuuu4K+frRqOeamtr3BMAxUKhVUKpXLfoVCAbPZzA81Nzc3Y3x8nNL9EAHDMAzWr1+P119/3e3YuXPnsHz58qBWZfurZYVCgb/85S9uI4nj4+MBt4EgRkdHUV1d7fW4RqPhTWVCQgL/vcFg4KuFeNOyXC6HxWJx07JOpwv3P4uIUpz98u7du92OnT17FsuWLUN8fHxQ149WLdOI5DR0dHTg97//PRiGAcdx/NeKigpR1hYnIoePPvoIlZWVbvvnzp2LLVu2BHXtiVMqfX196O/vR2trK5qamty0HG3IZDIolUqPm0KhgFKphFQqBcMwM7KxLAubzTblZrfbpz3HZrNF5e8PuDVS40xzNdlkGgwG9Pb24s0333TTcij+dojY5v3338fNmzfd9i9YsACbN28O+f2am5uxe/duNy3PmzcPDz74YMjvFw5oRHIa0tLSYDAY+Pqyzo67rq4OLMuKflk+IV7WrVuHqqoqNzNw5coV3HbbbT7ldLRYLOjv7+cNo9M09vX1eQ3ydt5PbCZkOvPny6ZQKCImQD1YOI6Dw+HwyXA6N6vVirGxMZhMJpdtugUBQsOyLAYGBtzqejtRKpUu9Y2dWq6pqYHdbodMRo82IjDWr1/v0UheunQJK1asCHlOx+zsbOh0Oj6V1kSP4TSWYof+2qaBYRgUFxfjzJkzLvstFguam5tFW/uSED9GoxELFizAhQsX3I4dPnwY27dvBwDY7XavZnFy7jMxoVarodPpEBcX57bpdDqoVCoXAxgJHaaYYBgGMpkMMpks6KoXdrvdo8E0mUwe9/uTQD8ceDO+ZrMZ//zP/8zHYk4czUxMTERycrJfaYmI2CMlJQXz5s3D5cuXXfZzHIcjR47gkUceCen9nB5j8nNgdHQU7e3tYa3+FCrISPpASUmJm5EEbr39kpEkgmHNmjW4cuWK24O5pqYGr732Gkwmk19Jx4VAqVS6mUJPZpFGhSIHmUyG+Ph4n2LAnEndJ5vLvr4+nD59esZHujmOw9DQkNe/m8TERKSmpiIlJQWpqalITU2FwWCgFxmCZ+3atbh27Zpbpomqqiq0trYiKysrpPcrKSnxOKBQU1NDRjJayMnJgVKpdHsLbmpqmqEWEZEKy7Lo6+tDR0cHOjs70d/fD7lc7nGEp729XdC2yeVyxMfHT2kQdTodjejEOAzDQKFQQKFQuC0K4zgOp0+fdvtMZmYmNm3ahKGhIX7KenBwkP9eyJX//f396O/vd6kLLpfLeWM50WCKub4xET4SEhKwePFijwNIhw8fxpNPPhnSF49Zs2ZBJpO5PQcixWOQkfQBqVSKvLw8tyLuHR0d/KpXgpiMw+FAd3c3bxo7OjrQ1dU1Y+lyFAoFjEYjhoeH3UrbMQyDn/70p35VcCCIyaxatQoXLlxwe+lua2vD0NAQiouL3T7jXBjmyWAODAz4VW4uUGw2G9ra2tDW1uayPz4+3sVYpqamIikpKWbicGOZ1atX4+LFi27ZKxobG1FXV4fCwsKQ3UsulyMnJwf19fUu+1tbW+FwOESvNzKSPpKTk+NmJFmWRWtra8QkDSXCh81mQ1dXFzo6Onjj2NXVxS8GEAqpVIrExEQkJSXxX52bVqsFwzA4deoUvvrqK5fPcRyH1tZWzJo1S9D2EtGFRqPBypUr8fXXX7sdO3LkCIqKitxGchiGgU6ng06nQ3Z2ttvn7Ha7y0jmRLPZ09MT1kT3w8PDGB4eRm1tLb9PIpEgOTnZbfRSp9PR9HgUodFocNttt+Ho0aNux77++msUFBSE9PftyUja7Xa0t7d7/LsQE2QkfSQ3N9fj/qamJjKSMYbFYuFHGJ1fe3t7BYsNYxgGCQkJHs2iM//eVEylZTKSRLAsW7YMZ8+edRv17uzsRE1NjcdRyamQyWS8vifT1NSEP/zhD277nVPug4ODIf+7ZFkWXV1dbqUh1Wo1byonTpPTKH/ksmLFCnz33Xduixo7OjpCPio5Vb9MRjJKSE9Ph1wud5uWjJQYBiIwTCaTi2Hs6OjwmpIkXDjfjI1GIxITE2EwGIJayJKenu4xHsdTRQeC8BeFQoHVq1fjiy++cDt2/Phxj6OSgZKZmQmpVOo2KpmYmIidO3eCZVkMDQ2hv78fPT09vAHs6ekJ+cpzs9mMxsZGNDY2uuxPSkpCamoqMjIykJ2dzT9LCPHj1PKBAwfcjh0/fjyko5LetNzU1ORXre+ZgIykj0gkEuTk5KCurs5lf2trK+UtiwI4jsPIyAhvFp3mMdzxWSqVih9tMRgMOHv2LMxms8s5Y2NjSE1NDdnbr1QqRXZ2tluJxpaWloiIxyHEz4IFC3Dy5Em3v5+2tjY0NDSEbBZHJpMhKyvL7YW+ubmZz/PrTP9TUFDAH2dZFv39/byx7O7uRldXFwYHB0PSrok4U3Y5iw9IJBKkp6cjOzsbWVlZyM7ODqpiChFeFi5ciJMnT2JkZMRlf0tLC5qamkKWuUUulyMzM9Pthb6lpUX0OavJ/fiBJyPpcDjQ3t6OnJycGWoVEQhjY2Nobm5Ga2srP9o4NjYW1nvGxcUhPT0daWlpSE9PR3p6OuLj413eaLVarceRnBMnToR0GiUnJ8fNSNrtdnR0dIQ8tQURe8hkMtx22204ePCg27ETJ06ENBwoJyfHzUjabDZ0dHR4TZ0ikUhgNBphNBpRUVHB77darbypnGgwQ5mwnWVZt4U9er2eN5XZ2dlITU2lFzqR4NTyoUOH3I6dOHEipCkAc3Jy3Iyk1WpFV1cX0tPTQ3afUENG0g+mimEgIyluhoeH0dTUhKamJjQ3N6Onpyes9zMYDC6mMS0tzafaqQsWLMDx48fd4suam5vR1NTkVYP+MpWWyUgSoWDhwoU4ceKEW3xZY2MjmpubQ9Zn5ubm4sSJE277m5qa/M7Bp1QqeTPnxJmXcqLB7OrqQl9fX8jiL515L69fvw7glnnJzMx0MZcajSYk9yL8x6nlyYMN9fX1Ic0rmZubi5MnT7rtb2pqIiMZLXiLYaDYMnHBcRz6+/t589XU1BSWKSvg1sKXpKQkfoQxLS0NaWlpAeefk8lkWLFiBb788ku3Y4cOHcKGDRvAsiw4jvPr6+R93mptV1dX8znNnJtcLue/p1WphK/I5XIsX74chw8fdjv2l7/8BXfeeWdA2vX01RPV1dXIy8sLWsvOxW0JCQkuC4XsdrtL3KXTaIai2pTdbuf7LieJiYm8qczKykJycrKopzujCYVCgeXLl3vMRnDixAk8/vjjIblPdna2x365ubkZy5cvD8k9wgHDzXQZgghj9+7dbsZRoVDgZz/7Gf1RzxAcx6G7u5sfbWxqanIb0QsFEokEKSkpLlPTqampLnlEOY6DxWKBxWKB1WrlN08/j4+Pez1P6LRBviKVSt0eyDKZDEqlEhqNBmq1GhqNxutGpRAjB09ank7XnvbHmpZHR0d5U9nd3Y3Ozk50d3eH/P9BqVQiKyuLH7XMzMyESqUK6T2Iv2G1WvHrX/8aFovF7diLL74YshHD3//+9+jo6HDZp9Fo8JOf/ES0fSeNSPpJbm6um5EcHx9HZ2cnMjIyZqhVsYXD4UBHRwdvHJubmz3+cQeDTCbjRxedI416vR5msxkjIyMYGRlBc3Mzrl+/zv/s3MKZ126mcTgccDgcAceMSaVStweypwe2VquFXq+HSqUSbecZqXAcB6vV6qbbkZERjI6OkpZ9ZDot63Q6pKSkYNmyZdBqtejv70dLSwtaW1vR0tISdEy21WpFXV2dS9x+SkqKyyKexMRE+vsJEUqlEkuXLsXx48fdjp08eRIPP/xwSO6Tm5vrZiTHxsbQ29uL5OTkkNwj1JCR9JOp4nHISIYHm82G1tZWfrSxtbU1pNVhlEoljEYj9Ho9tFot5HI5WJbF6Ogoenp6UF9fj5GRkRmrSBNNOBwO3qT4glKphF6vR0JCAv/Vuen1emg0GnpQTmB8fNzNDHraSMvBE4yWKyoqoFAoMD4+jpGREfT29qK3tzfoNnV3d6O7uxvnz58HcGskKysrC7m5ucjPz0dqair9vQTBsmXL8O2337pVu6msrERPT09IjF5ubi6+/fZbt/1NTU1kJKOFrKwsrzEMK1asmKFWRRcWi4VPrdDc3Iy2traQTgsplUqo1WowDAOLxQKz2eyxPBox8zhX0XZ3d3s8LpfLPRpN5/fRWG3EZrPx9aKdqWWc34ciPo8ID75oWaPRQCqVwm63w2QyBT0iPDY2hps3b+LmzZsAbmWFKCgoQH5+PvLz8xEXFxfU9WMNjUaDxYsX45tvvnE7dvLkSWzZsiXoe3hbhNbc3IzFixcHff1wQEbST5RKJdLT09He3u6yf/LPhO+YTCaXFdWdnZ0hvb5EInExos7YLSLysdlsU47mSKVS3lQajUYkJycjJSUFycnJAS+IEgKHw4HBwUHeKE40i0LUniaEx2azYWhoKKz3MJlMuHLlCq5cuQLg1lR4fn4+CgoKkJubS4nSfWDFihU4e/asW0L7q1evYs2aNUhMTAzq+hqNBsnJyW6ZRcTsMchIBkBGRobbL3V4eBhWqxVKpXKGWhU52O12NDc3o6amBrW1tSGZ0pkKsQb7K5VKqFQqKJVKflOpVFAoFPz+hoYGt0oZADBr1izcdtttYBgGEonE768sy8Jut+Prr79GdXW12/XvueceALcebna7nd9sNhscDofLfpvNBqvVirGxMYyNjYnq/9vhcPCjd5Pr2MbFxSE5OdnFXCYnJwu2YMGZVmayUezv78fAwIBgJTdDgS9arq+v91gJLFRaPnz4MG7cuOF2/Y0bN4LjuIjXcjhwjpB+++23kEqlyMnJ4Ucs09LSom40PxTodDosXLgQZ8+eddnPcRxOnTqFTZs2BX2PzMxMNyPZ398v2oIRZCQDwFucQm9vr995y2KFoaEh3jjW19dHVYyWSqVCXFwcv+l0Omi1WreH6sSffV29vHDhQvz61792m+JqbGzEpk2b+JrCgZKbm+vRSObk5AS0CtG5kMP5IPa0mc1mt30zgTO+bbLBjI+P92gwg3lJdDgc6Onp4SsmObfJsVYzjVqtdtOyRqMJiZbnz5+P//iP//BYAm7z5s1ISEgIqu05OTkejWROTg7S0tL8vp6vWjaZTC4/RyoOhwMNDQ18oQKNRuMyDU7Vd/7GbbfdhnPnzrm9aFy6dAmrV6+GXq8P6vpGo9FtH8dx6OvrQ0pKSlDXDgdkJAPA0y8ZICM5EYfDgebmZtTW1qKmpibsCcDDgUKhcHmoetp0Ol1Yp4Ocb7/fffedy36O43D69Gnce++9QV3fm5Z7enoCMpIMw0ClUkGlUvk8xcOyLCwWi8sDenh4GENDQxgcHOS/ChX/Nzw8jOHhYbcqVnq93sVcpqene8zl58zi4KyY1NnZiZ6enhldAa1UKt1060nP4Sz1Gh8fj/nz5/MLQZywLItvv/2WHwUPlKle8AMxkqHQsslkwsjIiIuOh4aGIiKWdWxsDFevXsXVq1cB3Pr/nTgNPjHtWayh1+sxf/58XLhwwWU/y7I4c+YMNmzYENT1p/IYZCSjBG8dViSapVAyPDyM2tpa1NbWoq6uTnSjLRNhGAZ6vR5JSUlITExEQkKC24NWLGEKK1euxPnz5z2+/a5bty6oWL+pHr5CIZFI+JQpU+GMIRscHHR7MA8ODvq8ejZQnNVHamtr+X0ymQyJiYlQqVTgOA6jo6MYGBgIazsm40yYnZiY6FHLcXFxonnor1q1ChcuXHCbtr948SLWrl0bVFiBGPrlQLU8Wc/h1nIg9PT0oKenB2fOnIFUKkV2djYKCgpQUFAQk9Pgq1atwsWLF920fOHCBaxZsyao54cYtOwPZCQDwGkyJi/YEPLhKwZYlkVLSws/Zd3V1TXTTXIjLi6ON4tJSUn89waDIayjL6FEr9dj7ty5uHTpkst+m82G8+fPY9WqVQFfOz4+nk9DMhExalkul/P1kT1ht9sxPDzs9mB2LloJxyiQ3W73ugo31HjSclJSEhISEiJGywkJCZgzZw6/2MPJ+Pg4Lly4gNtuuy3ga+v1esjlcrewmWjQ8kQ9i2F1vsPhQGNjIxobG3H48GFoNBp+CrygoCAmpsENBgMqKipw7do1l/1WqxUXLlwIKotLQkKCxyp6YtQyQEYyIBiGQXJyMlpbW132i/VtIZSMjo7y09V1dXWiWP2s0WhcTKLza2JiomhGYoJl+fLlbkYSAM6ePYsVK1YEHIDNMAyMRqPb4rFI1LJzdNDbNOTY2Bh6enrQ3d3Nj650d3fPWIymJzxpOSkpCQaDIWq0vGLFCjcjCQBnzpzBsmXLgtJyUlKSW9aHaNWyU8cT9TxTWh4bG8O1a9d4U2U0Gvn4yry8vKjR7mRWrFjhZiSBv2k50Gp3EokERqPRbXBGrFomIxkgRqPRzUgODAzAbrdHzOiAL7Asi7a2Nn7UcXLGfSHR6XR8tZnk5GT+IRsLZcFSU1ORn5/vtjBkZGQE165dw7x58wK+ticjKeYVgoGi0WiQm5uL3Nxcl/0mkwmdnZ2ora1Fa2sr+vr6BFk04Yy9y8zMRH5+PnJzc0WdkihUpKWlYdasWfyiDifDw8OorKzEnDlzAr52cnKym5Hs6+sDy7JRVcJWo9EgLy8PeXl5LvtNJpNHgyn0IiBnSi7nNHh+fj5KS0tRUlICrVYraFvCSUZGBnJzc92yEQwNDaGqqgoVFRUBX9uTkRSrlqPH8QiMt1VV/f39ogyG9QeTyeQS6zgTKxENBgNfmtBZplCn0wneDjGxYsUKNyMJAN9++y3mzp0LhmFgNpv9NiOe4nFYlkV/f79oKykEi9Vq5aslNTc3o7W11S0vXLixWCxob29He3s7vvvuO+h0OsyaNYvfgl3FLGaWL1/uZiQB4PTp05g9e3bAWvbUL7Msi4GBASQlJQXc3khBq9Xy+nHCcZxXgxnq0rKecDgcqKmpQU1NDT7//HPk5OSgtLQUZWVlQa9uFgMrVqzwmNbq9OnTKC8vD6mW7XY7hoaGgs7WEWrISAbIVMGwkWYkOY5De3s7/8cuZOJTZ5jARNOYlpYWE6OM/lJQUOAxUW1nZyfOnz+P9vZ21NbW4sc//rFf151qhWC0GMnR0VHeNDqT3ostT+Po6KjLKtmEhAQXYxlNL1JFRUUwGo1uMV8dHR24cOEC2traUF9fjx/96Ed+XXeqfjkWjKQnGIaBTqeDTqdDfn4+v9+5OKyjowOtra1ob29HW1tbWM0lx3F88YlDhw4hPT0dZWVlKC0tjdi+pri4GImJiejv73fZ39bWhosXL6KlpQWNjY344Q9/6Nd1p9IyGckoYaqHbyTgDJa+fv06bty4IUhsjVwuR2pqqssoY0pKSlSFAoQThmGwYsUKfPbZZ27H9u/fDwABjWJN1WGVlZX5fT0xMDIygrq6Or5a0uROPlgma1mj0cBisaCjowPt7e3o7OwMOt3P4OAgLl68iIsXLwK49XvKy8vDrFmzkJeXF9HT4AzDYPny5fj888/djjn3BVIhJNL7ZSFhGIZf1V9cXAzgb7Nqra2tfNnYzs7OsCVm7+joQEdHB77++msYjUZ+pDI9PT1iVoE7tfzFF1+4Hdu3bx8ABPQSM5WWnb8vsUBP8ABxrpScPB0m1mBYwNU8VldXh33KOikpCTk5OcjJyUFmZiaSkpJEF9sRacyZMweHDx/2umozkJQTBoMholYIesLhcKClpYUPyQh1BgGj0YicnBxkZ2cjKysLiYmJHrW8YMECALemoLq6uviRntbW1qDNrHM60plTND09nTeWkZjXb+7cufj666+9vsQGomXn72Wy8RFzvywmnAuWkpKS+Lhru92Ozs5O3li2tbWF/MUMuNXfnDx5EidPnkR8fDxvKnNyckT/3Jg/fz6OHDni9ZkayAxbUlISGIZxmzkRo5bJSAaIRCJBUlKS2wNLbA9flmXR0NCAyspKVFVVhc08MgyD9PR03jjm5OREVVC1GBgYGMCZM2emzM8ZyMPXqeXJaWzE2GFNZHBwkDeODQ0NIctbKpFIXLScnZ3tt5ZlMhkyMzNdChSYzWaXh3FbW1tQMwHO0ZzTp09DIpEgMzOTN5bZ2dmiHunv7+/H2bNnp6xwFYiWpVIpEhMT3fphsfXLkYRMJkNWVhaysrL4faHW8mSGh4dx9uxZnD17Fmq1GqWlpSgtLUV+fr7odN3f348zZ85MGWMdiJZlMhkMBoObaRejlsX1G4kwkpOTPRpJjuNmdFieZVl+5DFc5lEulyMrK4t/2GZlZUXciEgkYbfb8emnn6K5uXnK8wKNLTUajW5GUgxanojNZkNTUxNvHvv6+kJyXblcjuzsbJfR83BoWa1Wo7CwEIWFhQBuTSMODg6ira0NTU1NaGxsDPgh4czp2tLSghMnTkAqlSI3NxfFxcUoLi4WVUyVzWbDp59+ipaWlinPCzShc3JyskcjKSYtRzretOxcwNbQ0BCyv0+z2cyHeMjlcpSUlKC0tBSFhYUzXjTCZrPhk08+ccvgMplgtExGMsrx1Dk7HA5YLBbB45cmmsfKysqQB0xrNBqX0ca0tLSoSg0jdmQyGZ544gns27fPYw4+J4F2WJ7i0ex2O6xW64wtfHLWlnUax6amppCsrHamAcrOzkZubi7S0tJmZOqMYRgYDAYYDAbMnj0bwK3YTme944aGBgwNDQV0bYfDgfr6etTX1+PgwYNISUlBcXExSkpKkJmZOaOGSi6X48knn8Rnn33GLyzyRKC689Qvj4+Pw2az0ctumJioZWf6puHhYTQ2Ngat5YnYbDY+X6VEIkFBQQHKyspQUlIybTWhcODU8t69e3H9+nWv5wXaL3vSssViEV2aQfG0JALxNt01NjYmiJF0mserV6+iqqoqpMnBDQaDi3F0xmsQM4dMJsODDz4Io9GIr7/+2uM5gXZYU2lZSCNptVrR0NDAm8dQPHwMBoOLcUxMTBStluPi4jB37lzMnTsXwK1whoaGBv6BPDo6GtB1u7u70d3djZMnT0Kr1fIjlfn5+TNirmQyGbZs2QKj0YgjR454PCccWiYjKRzx8fG8lp0jlhNfkoKtzsOyLJ9pBABycnJQUVGB0tJSQSvryOVyPPTQQzAajTh27JjHcwLtQ6fSspiqB5GRDAJvb0AmkylsqSac5vHSpUu4ceNGyOLCFAoF8vPzUVhYiIKCgqjOYRfJMAyD22+/HUlJSfjkk0/cRugCfSv39rmxsbGAVs/6w/DwMKqqqlBdXY3m5uagV4gqlUq+VFthYWFE56pzjvIsXLgQHMeht7eXfxA3NjYGNPNgMpn4qUKZTIb8/HzeWMbFxYXhX+EZhmGwevVqJCUl4dNPPw27lk0mE/VrM8TEEcuJWq6vr+dLLQY7i+ZM7XXgwAGkpaWhoqICZWVlgqR9YhgGa9euhdFoxN69e920HOjA0lRaJiMZJUz1thBKWJZFU1MTLl68iOrq6ikD1P0hLS2Nj3PJysqiqeoIory8HAkJCXj//fddRqlC3WGFKy3U4OAgvwBsuvgiX0hPT+eNY7Rq2ZlzNTk5GUuXLgXLsujq6uKNZVNTk999g91ux82bN3Hz5k0Atyp1OKfAU1NTBRm5raio4LU8cZQqUC0L1S8TgTNRy8uWLQPLsujs7ORfkALR8kQ6OzvR2dmJw4cPIzExEQsWLMCcOXPC/lI5e/ZsXssT9RbtWiYjGQThfPg6zeOFCxdw48aNkJhHlUrFG8eCgoKoSnAci2RkZOC5557De++9x6+wDnWHFez000T6+vp48xhsqU1nsH9BQUHMatm5ujw9PR233XYbHA4H2tvbUV9fz5d79BdnpZ2jR48iPj6eN5V5eXlhjcnKzMzktexcTBApL0VE8EgkEmRkZCAjIwMrV66Ew+FAW1sbGhoaUFNTg7a2toCv3d/fj8OHD+Pw4cNISUnBokWLMGfOnLCFn2VlZeH555/Hu+++yy84inYtk5EMgqmGnQPBaR7Pnz+PmzdvhsQ8ZmZmoqioCIWFhUhPTxd9Pi7CPxISEvDss8/iT3/6ExobG0XVYXEch56eHlRVVaGystJtVbg/MAyDrKwsftSRtOyOVCpFdnY2srOzsWbNGphMJn60sa6uzu/+ZHh4GOfOncO5c+egUChQWFiI8vJyFBUVhSXW0GAw8FpuamoKy3QgERlIpVI+Pn/NmjUYHR1FTU0Nbty4gbq6uoAX3XV3d+PAgQM4cOAAMjIysGTJElRUVEAul3v9TCCr/Sdqubm5OSxhGmKCjCRuregbHh6G2WyG2WyGw+EAx3GQSCRQq9VQq9XQ6XRQq9UuggrFw9dZMuq7775DTU1N0OZRpVKhpKQERUVFyM/Pj+jqF4RvqFQq7NixA/v27YNCoUBvb6+blqVSKVQqVVi1DNzSc1dXFz/yGEyqiri4ON44kpb9R6vVYsGCBViwYAHsdjsaGhpw48YN3Lx5EyMjI35da3x8HJWVlaisrIRMJkNxcTEqKipQVFTk8SF87tw5lJSU+B1zqVarsXPnTnz22WcBazlSpgMJ39HpdLyWbTYbGhoacPPmTVRXVwdsqtrb27F3717s27cP2dnZWL58OYqLi91eUD/++GPMnj3b7ypfGo0GTzzxBD799FOftTy5H44ULce0kRwdHUVvb6/XlZAsy2JkZAQjIyPo7u6GUqlEUlISDAYDGIaBTCaDQqFwW/Diyy+5r68Pp06dQmVlZdCrrZOTkzFnzhwUFxcjJSVFtCtSifBhsVgwf/58jI6OetQzy7Kw2WwuWjYajUhISADDMJDL5ZDL5W4vMr5o2Vmr3WkeBwYGAv535OTkoLi4GIWFhaTlECKTyVBUVISioiJwHIfOzk7eVPobZmC323lTKZfLeVNZWFgIuVwOjuNw8uRJnDlzBk8//bTfydzNZjMWLFiA4eFhDA8Pux33RcueKjWJ7eFLBIZTc8XFxbjvvvvQ0dGBGzduoLq6OqBZD+dMYFNTE6RSKfLz83HbbbchNzcXHMehuroaVVVV2L59O58301fMZjMWLVqEwcFBr/eeqGWVSoWkpCRey0ql0mOlJrFpOSaNpDOWyN/UIlarFe3t7RgYGEBWVhaUSiW0Wq3PRtJsNuPkyZO4evWq3yMCk0lNTcX8+fNRUVEh6EpLQlzY7XZ0dHQEpGVnqTOnljUajdt1vGmZ4zi0tLSgsrIS1dXVAafpYRgGeXl5KCsrQ2lpKWlZAJxVqNLT07F27VoMDw/j5s2buHHjBhoaGvyqEW6z2XD9+nVcv34dCoUCJSUlSElJ4fXwxz/+EU899ZRPU3uh1LJWq3UzoWJ7+BLBwzAMH1u5bt06DA0N4ebNm6iqqkJTU5PfGSAcDgefUkihUMBoNPLXeO+99/D0008jJydn2uvY7Xa0t7d7fBGaCovF4rFfnjw4IDYtx5yRtFgsaGxsDCqxsdlsRk1NDbKzs6HRaNxGYCb+klmWxYULF3DmzJmgM9Knp6djwYIFKC8vp/KDBCwWi98P/smYzWbU1tYiKysLWq3W7SE+edqop6cHV65cwdWrVwM2jxKJBLNmzeLNI2l5ZomPj8fixYuxePFijI+Po66ujo+t9OeBNT4+7pZgvLu7G++88w6efPLJKXPpmc1mNDY2hkzLGo2GjGQMotfrsWTJEixZsgRWqxX19fW4fv16QGsOxsfH0d7ezv/McRzeeustPP/880hPT/f6uVBq2ekxJhtJipGcQSwWC+rr64POU+ekpaUFGRkZbivKTCYT6uvrcfz4cbS0tAR8P+fb1sKFC1FWVkYxYgRPKLXsHF3MyMhw6TiBWw/fkZERXLt2DVeuXEFnZ2dA95BKpS5VKEjL4kShUKCsrAxlZWVgWRZtbW24ceMGqqqq3Eq1+UpHRwfeffdd7Ny502OScbPZjIaGhpBrebJWxfbwJcKLUql00/KlS5eCKhvMsizeeOMNvPTSSzAajW7HzWYz6uvrwXFcsM0Hx3Fobm5GRkaG25S92F6KGC4U/+IIwDlkHYoSaxPhOA5HjhwJKi5sIs7VqYsWLUJJScmMlacjxIvdbkdNTU1Qb7ye4DgOX3/9tUs8jzNGMZBuwhmXV1ZWhuLi4hmvi0sEjnMRlXMaO5D+Li8vD9u3b3dZnBNOLR8+fNhl1FylUuFnP/tZSO9DRB4cx6GjowNnz55FdXV1QGsU5HI5/u7v/s4lKbiQWtZoNPjpT38a0vsEQ8wYydbWVq8Br8HAcRxMJhO+/PLLoEYes7KysGTJEpSUlFAZL2JKWlpaQlI6cDIcx2FkZASHDx8OWMsKhQJFRUUoLy9HYWEhaTkKcT6Ir1+/jsrKSr/61aKiIjz66KN8wvhwa/mrr75yeQn6+c9/HpXJ6onA4DgObW1tOH36tN9ZU1QqFX7wgx/w8b/Nzc1+x0T62sbh4WEcPnzYRcv/43/8D9GkQAubkRwdHcVTTz0Fu90OlmXxxBNP4JFHHgnHrXxqS2NjY9iuz3EcqqqqUFVV5fNnnAHvS5cuRXl5+ZR5rAjCiRBadi6g8RWlUomSkhKUlZWhoKCAtBxDOFfsO0cqfXmQlpeX46GHHoLJZEJTU1NY23b9+nXcuHGD3/fTn/404Jx+RHTjTMV3+vRp1NfX+zR7qdVq8corr8BisaC5uTmsbbt27RpfgQoAfvazn4lmxjJsMZJqtRrvvPMO1Go1zGYz7r//ftx1110wGAzhuqVXgl3kMh0Mw6CwsBA3btyYdiQnKSkJS5YswaJFi8JaKYKIDAYvXYN+XoXPaW6cFWzCxUQtT/WOKZVKUVJSgrlz56KgoIC0HKMwDIPMzExkZmYi2WTFZ5fPA9NoubKyEgqFAnPnzg1724qKinDz5s2QxKwR0Y0zg0ReXh4+/8/f4Hxv17RaNplM+M1vfoNNmzaFvW1FRUWoqakRpZbD1vtLpVI+oN5qtYJl2Rn5DxgfH/eaJzKUKBQKZGZmoqWlxe2YVqvFnDlzcPvtt9PbMOHCpVf+O2RxOhT/w/eQvG7VlIbSarUKsmBAqVQiMzPTY4m9vLw8zJ07F2VlZaJ5GybEQcsv/jdKJEDH4nIMZ6UCDAONRoOEhATEx8dDr9fzX3U6XdAp0HxBqVR6XBBJEFMx/p9/RIlaifbF5RjJTAEYBhKJBAqFgk8ertfrkZiYiOTkZEEWv6hUKqSnp7stiBQDfhtJlmVx7733Yv369S7BnidOnMD3vvc9/Nu//Rs2btwI4FaJrZ07d6KpqQn/+I//iMTExNC13EeE6KyAW/8vGRkZvJF0LjRYt24dkpOTBWkDEZkMXryKszu/j4QFc6Y0lEJr2WkkjUYj5s+fj9mzZ0Ov1wvSBiKyuFWlQwJdVy+KvjgJ7dwylPzD95F+5xqPWu7t7RVEz04tk5EkfMXhcNwqNtLVh+L9J6CdV47Sn7yMtDtu96jlnp4edHV1hb1dTi2L0UgGFCP5ySef4NVXX8WRI0eg1+tRXV2N7du34+WXX8Zzzz3ndn5vby/+7u/+Dv/5n//pccl8OAnXIhtPjI2N4ev3/oSE+lbMS0yBnKb7iGnoOfYNHCbXt1lvhjJcCxM8YTKZcPq3b0LX3oPZ6Zk0dU1MS8+RU3BMSquSsGguiv/h+0hec5uLlsO1MMETo6OjqPmH/wcAUFxcBKmUtExMjSctGxbNQ/E/fB/GNStmTMsjIyP4y1/+AkBcMZIBGUm73Y67774bW7ZswbZt2/DII49g/fr1+MUvfuH1M7/4xS+wfPlyfrRSKG7evOlWeSacNG99Huwo5SsjgmeyoRRay00PPgtuLLB8awQxkcmG8saNG34niA4UjuPQ/MAz4CzBlaIlCMDdUAqt5U8//RQsy4rKSAa0dlwmk+GFF17A22+/jRdeeAHl5eX4+c9/7nLOxBrWo6OjOHfuHGbNmhV8i/0k1DmdpkMSR1U6iNDgnPI+df8OdH99QnAtS0nLRIgYPH8FZ7e/hFObd6L76ClBtcwwDCQ60jIRGgbOX8aZ7bvwzeYn0HP0G8G1LMaUagEnIdq0aROfHf5Xv/qVW26uzs5O7NixA5s3b8bjjz+OHTt2oLS0NLjWRgKMOPI6EdGDqb4RQ1cqhV+sRlomQoyprhFDl68Lf2MfsyIQhK+M1jdi6OoM9MsiJOBgkVdffRUAMDAw4DHB6+zZs7F3797AWxYiJBKJoG8MLE0FEiFCro9D/q6nkPfsdsjj43xKLxVKSMtEqJAnxP9Ny3E6VFdXC6plCtEgQoXcoEfBS08j75nHIdNpUV1dHfKKeVMh5L18JSAj+etf/xpHjx7Fhx9+iKeffhoff/wxduzYEeq2hQS1Wi1Y/MK41Qqz3QboNIiPj4OERnSIabB0doOb9KIz2UA6UalUgmnZarHAzDr+quV4SGhEh5gGj1o26G9p+ZnHIY/T8fvVarVgWQgsZjPMDEjLhM940/JEA+lEpVIJkmIQuFXLOyqM5EcffYTdu3fjrbfeQmlpKZ566im8/vrreOSRR0RZ0UKtVguyoorjOPQPDODajnsBAD/+8Y8RFxc3zaeIWOfo6s0YrW0A4N1AOhHq4TtZyz/5yU+g1VKMGTE1X6+8D2MNt6p7eDOQToTSMsuy6Ovv57VMlW0IX/h6+T0Ya76VMsqbgXSiVqsFMZIcx6Gvry/s9wkEv4zksWPH8Mtf/hK/+tWvMH/+fADAE088gTfffBN79+7Ftm3bwtHGoNDpdILkeAIg2H2I6GI6A+lEp9Ohu7tbkDaRlolAmM5AOhFKywzDCPY3Q0QX0xlIJzqdLuwVx5yIVcs+G8lr167hRz/6EX76059iw4YN/H6dToedO3fitddew5YtWzzGS84karUaKpUKFoslrPdhWTasdWOJ6KTg5WeRtnH9lAbSiZBaDmfdWCI6KfrB80i7764pDaQTtVoNpVIJqzW8KXlIy0QgFP5wFzI2bZjSQDrRaDSCaNnhcIhWyz4H8c2ePRsXL17EU0895Xbshz/8IQ4dOiQ6E+kk3EnQnZ2VUPFrRPSQ/eiDPplI4NboSlJSUljb43whIi0T/pL92BafTCQgnJYbGxtFGVNGiJucx7f4ZCIBYbUsdAo4X4mJ1SB6vT5scTEcx8Fut+P6ddeUFmLM9UREPgkJCXwN+1BDWiaExGAwhFXLNpsNlZWVLvtJy0Q4MBgMYUsOznEcxsfH3bQspjUpMWEkGYZBZmamxzqZobj2hQsXXIa1pVIpdVhEWGAYBllZWWHT8vnz512q58jlclF1WET0ILSWFQoFlfokwoJTy+G69vnz511miVQqlahmgGPCSAKAUqlEdnZ2yK/b29uLtrY2l30ajSYsnSNBALe0HI5Oq7u7G+3t7S77aIUrEU7CpeWuri50dHS47CMtE+FEpVKFxWN0dHSgs7PTZZ/YtBxTr2fx8fHIyckJWcCq0WjE2bNn3fZTqhQi3Oj1egBAS0tLSK6XnJyMM2fOuO0XW4flK87pIKvV6nFjWRYcx4V1c7Zj8sYwDD/SG8gmlUqj6kU1HFo+ffq0237ql4lwo9frwXEcWltbQ3K9lJQUnDp1ym2/2PrlmDKSwC0zWVBQgNbW1oBXWUmlUmRkZECv12NsbMztuNh+yUR0otfroVAoQqZlk8nkdlxoLTscDjfTN5Uh9LZNnNKMRnw1nTKZzOVnhUIBjUYDrVbLbyqVasaNaai0nJmZifj4eOqXiRkjISGB13Kg/dB0WhbbS1HMGUngVuqJgoIC9PX1obe31+eVUAzDICEhAampqXysDXVYxEwSjJYNBgNSUlKm1HIwHRbLsjCZTBgZGeG30dFRjIyMwGQyeTSAtMLWN2w2W8hW1kskEmi1WjeD6WnTaDRhi/92arm3txd9fX0h1zL1y4RQaDQaFBYWBq1ljuM8ajlci9QCJSaNJHCr80xOTobRaMTw8DCGh4dhNpvd3iBkMhnUajV0Oh0SEhJcAlxZloXZ7F7DlTosQkhCoWXnSOBkPGnZ2blNNIiezOLo6Cg/xUuIF5Zl+d+dL8jlcjdzOZXx9GdRgEQiQUpKCoxGI0ZGRjA8PIyxsTE30zyVlu12u8eRIOqXCSGZqOXh4WGMjIz4rWWbzebx5ZpGJEUGwzDQ6/V8nA7LsnA4HOA4DlKpdMpO0JOJBKjDImaGYLTs6a0XuLUAZ//+/bw5dBpElmXD8m8gxI/NZsPg4CAGBwd9Ol+lUvHGMj4+HgaDwWWLi4uDROK67lMikbho2eFw8HGtgWqZ+mViJpBIJEhISEBCQgKA6NRyzBvJyUgkErdOzRueYsoA8b0tELHJZC3b7XYMDAygr68PfX19/FvyyMiIV1NQX1+P+vp6gVocPTAM43VjWTamEr5bLBZYLBavdYKdD1qDwcB/nbg5U534OrJJ/TIhZkKhZTKSUUSkvC0QsQPLshgaGkJfXx/6+/t509jX14ehoaGommqWy+VQKpUeN4VCMeUxmUw2pdkLdAPg08IVjuPgcDj4WMdANrvd7tM5YodlWfT396O/v9/jcZVK5WYunYZTr9e7PZSpXyaiBW9aFttLERnJIKAOi5gJOI6DyWRyMYlO09jf3y/aMlpOGIaBTqeDSqXyavZ8MYe+zhyIEYZhIJPJ+PiocOGs8OLcrFYrxsbGYDKZptzEtOrdYrGgo6PDLS8k8Ldwjonm0lusJ/XLRKQRKR6DjGQQ0BQKEU6c04GTzWJfX5+oHvROGIaBVqtFXFwcv+l0Opef4+LioNFoItoERhIMw0ChUPi90tput3s1mZ6M6Ey9vHAc53O85sWLF9Hf34/U1FQYjUaqckOIHprajgEi5W2BEC82m83FIE783pu+ZoKJBtGTOYyLi4NWqyWDGCXIZDKXxS5T4Uz+Pt0o5+joKAYHB2dsuv3ixYu4ePEigFsG22g0IjU1FSkpKUhNTUVqairi4+NnPKcmQTihqe0YwNNbMMMwosvxRMw8HMdhZGSEn6Lr7OxEZ2cnhoaGZrRdarUacXFxGBsbw+joqMsxhmHwyiuvIC4uTlR1XQlxwTAMH26QmJg45bkcx2F0dBQDAwMYHBzEwMCAy+ZrCqJg4TgOPT096OnpcdmvUqlcjKXTaIYrdyZBTIUnj+EsMiAmyEgGweROCAASExNpVCbG4TgOAwMDLqaxo6NjxkYYtVotkpKS+C0xMRFJSUkwGAx8h/Taa6+5GcmkpCQ+ZQVBhAKGYfgR7JycHLfjdrvdzWBO/DncIR0WiwXNzc1uZXQNBoPb6KXBYKC+nggrnjyG0WgU3ag5GckA4TgOvb29bvuNRuMMtIaYKViWRV9fH28ancYx0DJvgaJUKt2MonNTKpVTftablpOTk8PVXILwiEwmg9Fo9NiPchwHs9nsNorpNJvhzErgvE91dbVLW1NSUtxGMCm0iQgFzmfLZMToMchIBsjo6KhHsyDGXzIRGhwOB7q7u92mp4WK+ZJKpV7NokajCfgtdXh42ONID2mZEBMMw0Cj0UCj0SAzM9PtuMPhQEtLC9566y23Y1KpNOQLgux2O9rb29He3u6yPy4uzs1cGo1GCg8h/GJwcNCjZsXYL5ORDBBPQ84AjeJECzabjTeKTuPY3d0d9oouzlqrk41iUlJS2BYCeNOyGDssgvCGVCr1muj9gQceQG5uLrq6utDV1YXu7m50dXWht7c35H/TziT/dXV1/D6JRIK0tDRkZWUhOzsb2dnZPi1kImKXSPIYZCQDhB6+0YPFYuENo/Nrb29vWJN3y2QypKWlISUlxcUsGgwGwUcuPE1rA+LssAhiKrz1yykpKYiPj0d8fDyKior4/Q6HA729vW4GM9SLfliW5Ucvz549CwCIj493MZZpaWk0aknwRJLHICMZIN4evmL8JRN/wxkP2NTUhObmZrS2tmJgYCCs91QqlUhLS0N6ejr/1Wg0iiZQP5I6LIKYCk/9MsMwSEpK8ni+VCrlp58nMjY2xpvKiSYzlGEsw8PDqKysRGVlJYBbL5cZGRku5lJsaV4I4fBXyzMJGckA8fRLjo+Pn3ZhAyEsLMuis7MTzc3NvHkM5+ppjUbjYhjT09NhMBhEt8puIp60nJCQILoUEwQxHd607G/ycY1Gg7y8POTl5fH7WJbFwMCA2+hlqF5E7Xa724pxg8HAm8qsrCykpKSI5gWUCC+etJyYmCjKUWsykgHiaRSHpgJnHmcAvNM0Njc3hy1lSFxcHG8WneYxEhMae0sxQRCRhDM35GRC1S9LJBI+BKW8vJzfPz4+7jJ66fzeYrEEfU/navErV64AABQKBbKysvhRy6ysLKhUqqDvQ4iLcGs51JCRDACz2eyxdBE9fIVnfHwcLS0tLlPV4SjXZjAY3EYao2HayWQywWw2u+0nLRORhslk8mjewq3liebOCcdxGB4eRnd3Nzo7O9He3o6WlhavJe98ZXx8HPX19aivr+f3JScnu0yHJyUlRdzLLOHKyMhIRGXSICMZABRTNnOMjY3xI41NTU3o6OgI6aIYZ+m0iYYxLS0tat/6aaENES2IaZUrwzB8iUnn4h5noYLW1la0tLSgpaUF3d3dQfdfzgo9zvKParXaxVhmZGRQZZ4II9I8BhnJAKCHr3AMDw+7xDd2d3eH9PpGoxFZWVm8aUxNTY2pTldMD1+CCAaxa5lhGCQmJiIxMRFz584FAFitVrS1taGlpQWtra1obW0NekrcbDajpqYGNTU1/H3T09NRUFCAgoICZGVliTLOjvgbkeYxyEgGgNg7rEjF+cbuNI1NTU0hXVHNMAzS0tKQm5uLnJwc5OTkRMX0dDBE2psvQXgjEjNpKJVK5OfnIz8/H8Dfsko4RyxbW1u9/rt8heM4PvXQiRMnIJfLMWvWLOTn56OgoICmwkVIpPXLZCQDoLOz022fs+IC4TvOgOKmpiZ+m1zvORikUikyMzORk5OD3NxcZGdn06r6SXjSslarhVqtnoHWEETgeNJyXFxcRP3NMwyD5ORkJCcnY+HChQBujTBOnA5va2vzmnjdF2w2G27evImbN28CuJVtpKCggDe09BybeTxpWa/Xi3a2jIyknzgcDrS2trrtT0tLm4HWRB7OYPGamhrU1tZieHg4ZNeWy+X8SGNubi4yMzP9TvsRS9jtdrS1tbntJy0TkYbNZotaLavVahQVFfGxlizLoqurix+xbGlpweDgYMDXHx4exsWLF/kYy8nT4NSHCsv4+Dg6Ojrc9otZy6QQP2lvb/eYlDYnJ2cGWiN+nFM1TuPY1NQUspJkarXaxTimp6dTjjU/aGtr87jCPTc3dwZaQxCB09ra6rFfiUYtSyQSPqZ76dKlAIDR0VGX6fD29vaAs1c4S8KePHkScrkceXl5/DS40WikafAw403LYvYYZCT9pKmpyeP+aOywAmV8fByNjY18wPfQ0FBIrhsXF8fHN+bm5iI5OZk6tSDwpmUxd1gE4YlY17JOp0NZWRnKysoA3Jpt6OzsREtLCxobG9HY2BhQPl2bzeaycCcuLs5lGjzWY8zDQSR6DDKSfjKx6oATiUSCzMzMGWiNOOA4Dv39/fyoY2NjY0hyOSYmJvKmMTc3FwkJCWQcQ4gnLTvjSgkikvCkZWfJwVhEJpPxuS1XrFjBh2TV1dWhvr7eYxiAL4yMjODSpUu4dOkSgFvTrc5p8OzsbJoGDwGetCyXy2lqO1pgWdbjLzkzMzPmysnZbDZ+1LG2tjYkq6tTUlJcRhzj4uJC0FLCE960TDFRRKThcDjQ0tLitj87O5vS3PwVqVTKv5DfcccdMJvNfGLzurq6gGeNOjs70dnZiVOnTkEmk7lMg9OMkf/Y7XaPazDErmV6YvhBV1cXrFar234xDzmHkv7+ftTW1qKmpgaNjY0eY0X9QafToaioCIWFhZg1axatFBaQjo4Ojys/Y2UqkIgeOjo6KG7dT9RqNSoqKlBRUcHPKDlHKxsaGgKaBrfb7aitrUVtbS2AW/27cxq8qKiI+ncf8LYGQ+weg4ykH0Ri7EIw2O12NDU18aOOfX19QV2PYRhkZ2ejsLAQRUVFSE1NpTfWGcLTaCQQvVomopdY65dDDcMwfA3xpUuXwuFwoK2tDXV1dairq0N7e3tA1XdGR0dx+fJlXL58GRKJBHl5eSgrK0NJSQnNNnkhUrVMRtIPPD18neYoWhgcHOSNY0NDQ1D5yoBbOQmdo44FBQVRW2ow0vDUYUWblonYwJOWJRKJS+1rwnekUimfDWPdunUwm81oaGjgRywDSTXEsiw/lb5//35kZ2ejtLQUZWVlMBgMof9HRCiRGrdORtJHOI7z2GGlpaVFVMLbyTgcDjQ3N/Mr84KtosAwDLKysvhRx7S0NBp1FBkcx3nssNLT00Wb8JYgPOEt1jcjIyPm4tbDhVqtRnl5OcrLy/nqYxOnwT2Fe02HM1XRl19+idTUVJSVlaG0tBQpKSkx+7yYag2G2OPWxd06EdHX14exsTG3/ZEYh+NwONDQ0IDKykpUV1fDbDYHdT2NRoPCwkJ+1JEqI4ibnp4ej79zsU+fEMRkuru7YzpuXWgm1gtfsmQJWJZ1mQZva2vzexq8q6sLXV1dOHr0KBITE/mRyszMzJgylV1dXR5jUyPBY5CR9JFIjV1w4nA40NjYiOvXr4fEPGZmZvKjjhkZGTH1Bx/pRLqWCcIJaXlmkUgkyM7ORnZ2NtauXQuLxeIyDe5vNo/+/n588803+OabbxAXF4eSkhKUlZUhNzdX1KuWQ0Eka5mMpI9EYsJblmXR0NAQEvOoVqtRUFCAoqIiFBQUUCLaCMbbQhsxa5kgPOFNyxTrOzOoVCqXxOi9vb2orq5GVVUV2tvb/brWyMgIzp07h3PnzkGtVqO4uBhlZWXIz8+PyrCFSI5bJyPpAxzHobGx0W1/cnKy6AwVy7L8yGNVVVVQ5jE9PZ1fKJOZmUnlB6MAb1pOSUmh9BxEROHs6yaTlpZGi/pEgtFoxKpVq7Bq1SoMDQ2huroa1dXVaGpq8msK3Gw28yvA5XI5ioqKUFpaiqKioqj4XbMs69FIpqenR8QaDDKSPtDZ2YmRkRG3/WIZwZloHqurqz3GcvqCSqVCQUEBH++o0+lC3FJipmlvb8fo6KjbfrFomSB8pa2tLWri1mMBvV6PZcuWYdmyZTCZTLh58yaqqqpQX1/vVyU0m82GyspKVFZWQiKRID8/H6WlpSgtLRXdwI6vtLa2ehz0iRQtk5H0gRs3bnjcX1hYKHBL/obTPFZWVqKqqipg86jVavkVeTk5OTTqGOXcvHnT4/6ioiKBW0IQwUFajly0Wi0WLFiABQsWwGq1oqamBtXV1aipqfErGTrLsnwSdGdaIecK8ISEhPD9A0KMGD2GP5CR9AFPHZZUKkV+fr6g7XAOfzunrYMxj2VlZaioqCDzGGN46rBkMhlmzZo1A60hiMDxpGW5XI68vDzhG0MEjFKpxOzZszF79mzY7XbU19ejqqoKN27c8Cs0y5nWrLm5GYcOHUJ6ejpKS0tRUVGBpKSkMP4LgseTx1AoFBGjZTKS0zA8PIyOjg63/fn5+YLk3CPzSISKoaEhdHV1ue0vKCiIyuB1InoZGBhAT0+P2/6CggLR59wjvCOTyVBcXIzi4mI+r2JVVRWqq6sxPDzs17U6OjrQ0dGBI0eOICMjA3PmzEFFRYXoqur09/d7zN9cWFgYMSvV6S9uGqqrqwHcWj3FcRz/NZxDzk7z+P9v796j27jue9F/B+8BSYBPUSLFh16URFECcuw4aV527PilRHHkqkpiS5FjV36cuImdLp2ctjnL9VLa214ntu9pem8Su/FxnCat7eXYcWMnaRLLceK6dlZNSJRESZZESXyTIAmQIN4z9w8QEEXxNQPMYAB8P2tpRQIxM5vh18Mf9t6zd3rYOhQKqTpPunhsb29HS0sLi8cSl48sE2mBWS5+6W0VW1tbcdNNN6G/vz9TVCrdrre/vx/9/f345S9/iTVr1qCjowObN282xIM6x48fB1DYWWYhOYssy4hGo5mJvyaTCb/+9a8hCAJsNhui0ShsNhtisRjeeustXHXVVTm7dvrTV7rnUW3x6HQ6Mz2PLB5Ll5Isv/nmm7jyyivz3GKi+c2X5ddee23eLP/+97/HFVdckecWU64JgoDGxkY0Njbiuuuuw+joaKaonG/EcCGyLF+yVWNbWxu2bt2KDRs2LNiTHQqF4HQ6c7JW8nxZfv311+fN8htvvIH3ve99WV9TDyVfSCYSCYyPjyMYDCISicy7JIHNZsP27dvR1dWFjo4OvPLKK1kv6A2kQjUwMACfz4ejR4+yeKSsLJXl9M1KiywT5RKzTAsRBAF1dXWoq6vDxz72MUxMTGTWqlxoXdH5JJNJHD9+HMePH4fdbkd7ezu2bt162e/QQ4cOwW634xOf+ISq9qazHAgEEI1GizLLJVtIJpNJDA4OLrny/lVXXYXf/e536Orqwm233YYf/ehHiEaj2Lt3r+prB4NBHD58GD6fT/Xe1unisb29Ha2trSweS1gikcDg4CAmJiYWfZ8WWSbKJWaZlKqsrMQHP/hBfPCDH8TU1BROnDiB7u5unDlzBpIkLesc0WgU7777Lt59911UVFSgo6MDW7duRV1dHbq6uhCJROBwOPCRj3xk2e0qpSwLstKNMYvA5OQkent7l7V21csvvwxBEC77tAAAX/va15bd3R2LxdDd3Q2fz4czZ86oarcoipmeRxaPBKQ+lPT19emaZSItMMuUS+FwGMeOHUNXV9e8C9cvR0VFxSVrSG/fvh3vf//7lzwuEAigv7+/ZLJccj2So6OjGBwcXPb7bTYbQqEQXnnlFUSjUZw/fx6xWAxlZWW4cOECmpqaFvxBp3cROXz4MI4dO6Zofaw0Fo+0kFxmube3F6tXry6ImxYVn5GRkXlXFFgIs0xLEUURV1xxBa644goEAgF0dXWhq6tL0T1z7kYkr7zyCux2O7Zt27bgMbnMcl9fHxobGw2f5ZLqkfT7/Yom5gKph2D+/d//HbFYDFdddRXefvtt2Gw2XH/99TCZTHC73ZfdtPx+P3w+Hw4fPoxAIKC4neniMT1sXShLAJB+9MoykdaUfiACls5yZWVlQfwCJv2NjIzgyJEjOHLkyJLDzvMRBAGf/exnsXHjxsu+VqpZLplCMhwO4/Tp05qce9WqVXA6nTh69Ch8Ph96e3sVn8Nms6G9vR0dHR0sHmlR09PTqqdHLGXVqlWGX7yXioeWWW5oaEB1dbUm56bCJ8syent7ceTIERw9elTRGs1msxl79uy5ZMHwUCiEs2fPatBSoLGxEVVVVZqcOxc0LyTD4TC2b9+Om266CV/72te0vNSCJEnC6dOnEY1GNTm/IAj4j//4D/T19Sk+bt26ddi2bRs2bdrERaFpSektwdRMk1gOQRCwYcMGXRbbp9LGLJNRJJNJnDlzBl1dXTh+/Dji8fiSx9hsNuzbtw8NDQ2QJAmnTp1a1nFqCIKAtrY2w9YImheSjz32GHp6etDQ0JC3QlLNMKBSkUgEP/vZz5b13rq6Ong8Hmzbts1wq+yTsakZOlHK5XKhublZ02sQ6ZFlt9uNpqYmTa9BxSUWi+Htt9/Gr3/96yXf63Q68cUvfhGyLCuaF6mGkbOs6ZMbPT09OHPmDK6++motL7MoWZYVr4KvhsPhWHSVfKfTiQ984AO4++67cd999+HDH/4wi0jC2e/9E6YvLG8qhF5ZDgaDmn2ypuJ19jtPIty7vFEZvbIcCASQSCQ0vw4VD5vNhthPX4E9tPRQtyRJ+OUvf1nyWVb81LYkSdi+fTuuu+46HDhwIPP6G2+8gfvuuw+PPPIIbr75ZgDA3//93+N//I//gXfffTd3LVZoenpas6GTubxeL956663Mv81mM9ra2uDxeApq30zSz9DPfoGe/+9JrNyxHS37vwhn0+oF3xsKhXQr8CYmJlBXV6fLtag4DP7bq+j53j9h5Y5PonX/FyGublzwvXpmeXx8nFmmZZNlGbHfv4X3T4Uw2b4R8Ws+gvLmJrjdbrhcLlRUVGT+WK1WTE5O4ty5c7q0bWJiArW1tbpcSwnFhaTJZMI999yDgwcP4u6774bb7UZ3dze+8pWv4MEHH8wUkb/61a/Q2tqKNWvW5LWQVLtbjBoNDQ0AUhNjPdu2YcuWLRBFMfN1eZmLo1IJkWXIySQGXnwZgy+/smhBqWeWp6amUMuHbkgJWYacSGLgJz/F4Ms/W7SgZJbJqGRZhquiApHJKbiOdkM4cQorP/0ptP7pHcbIsgELSVVzJBOJBG688Ubs3LkTu3btwu7du3HdddfhoYceyrznW9/6Fn7605/CbDYjFAohkUjgi1/8Iu6///6cfgNLOXfu3GVrQWlFEASc3X8/nFP6BYuKj2A2z1tQ9vT0YGpqSpc2mEwmDH7uDl2uRcVLsJjnLSjPnj2r2y9gZplyQbCY5y0o9cyy2WzG5s2bdbmWEqoftvmXf/kXPPbYY1ixYgUaGxvxj//4jwsO3b7wwgs4depUXh62OXHihK7zvUa/9FVI4xO6XY+K19yCsru7W9c5MqP3PQApENTtelS85haUemd55J4vQ57U50MYFbe5BeXx48eXtYNNrmzevNlw0+RUP2yzY8eOzKbijz76qOG+sbTl7rWZK4Ldruv1qHilh7z/89N/guMPfYNZpoKVHvJ+a8cuHP/rv4Gk4y9egFmm3JETSQy88BLe+vQudB/8v3S/L+t9veVQvUXiwYMHAaQmMi9VRN56661qL1NwOA+SckoQUHf9dWj+wm04H9NmHdSFMMuUU4KAFTeksnwuEgb03AtD58KVipzJhBU3Xo+mPZ/HufA0SmRflwWpKiQff/xxHDp0CM8++yzuuOMOPP/887j99ttz3bacsFqtunY7y0F95mNSkRMErLjxeqy5506UrVsLALCcOqVrliWd5hZTkRME1N90PVrvuQtla9cAACwnT+q2mgYASDrNLaYiZzKh/uYb0Hr3nShb0wpA/ywbcfRXcSH53HPP4amnnsLTTz+NTZs2Yd++fXjyySexe/duQ666LooiIpGILteyWq1YvfuPdbkWFYeBF19GIjhrHuI8BWSaKIqa7c40l81qRdNn/0SXa1FxGPjJS0jMnocoCBd/6c4UkGlOp1O3X742qxVNn/+sLtei4tD/wotIzn5o1mS6+GFopoBME0VRtyzb7XaYTJou/62KoodtXn/9dXzpS1/Co48+ihtuuAFA6nH0j3/84/ja176GXbt2adZQtcbGxtDf36/LtYy88jwZ01u37Mb02Z5FC8g0PXZoSqusrMTq1QuvaUk013986o8RPn9h0QIyjVkmI3vz5s8g0tc/bw/kXHrs0JRWVVWFxsaF12fNl2X3SHZ1deGBBx7AgQMHMkUkAJSXl2PPnj144oknsHPnTsN1u7pcLl0LSSIlBJOAFTfdsGgBmeZyuXT75cssk1KCIKB++42LFpBpzDIZmWA2o/6TNy1aQKa5XC7dCkmjZlnzvbaN4MKFCwgEAppew2KxYOPGjRAEQdPrUHGJDg3DXr9i2e8/f/48gkFtl+SxWq1oa2tjlkkRZpmKhdIs67FetZGzbLzBdg3osRJ8XV2dIX/AZGxKblaAPlmura1llkkxI2aZ92VSg1lWpiQKSVEUNf1Bi6KI6upqzc5PlOZ0OlGj4XZvzDLpRessO51OVFVVaXZ+orSysjJN75tGz3JJFJIAsGLFCtg1WJRWEASsXr3asJ8UqPjU19fDZrPl/LzMMumNWaZiUV9fr8nKNSaTyfBZLplC0mQyobW1Nac/aEEQ0NLSokmBSrSQdJYtFtX7CVxGEAS0trYyy6QrLbOsRYFKtBCz2Yw1a9aUZJZL4mGb2eLxOHp6erJej89sNqO5uRllZWU5ahmRMswyFYtYLIZz587lJMstLS1wOp05ahmRMrFYDD09PVmvLVlIWS65QhJI7VU5OjqK4eFhVce7XC40NDTk9JMHkRqSJGFkZAQjIyOqjmeWySiyzbLb7caqVauYZco7SZIwPDyM0dFRVccXWpZLspBMi0aj8Pv9GB8fX9ZemRUVFaipqUF5ebkOrSNavkgkgrGxsWVn2eVyobq6mlkmw1GT5ZqaGvaok+FEIhH4/X5MTEwUdZZLupBMSyaTCIVCCIfDCIfDSCaTkGUZZrMZDocDoiiirKzMkFtAEs02N8uJRAIAmGUqOMwyFYtizzILSSIiIiJSpWSe2iYiIiKi3GIhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVS74bYBTxeBzhcBjhcBjJZBIAYDKZ4HA4IIoibDYbBEHIcyuJlsYsUzGQZRmJRIJZpoInyzLi8TgikUhRZrmkC0lJkhAIBOD3+xGJRBZ9r8ViQXV1Naqrq2GxlPT/bWRASrNcU1ODqqoqZpkMR5IkTExMwO/3IxqNLvpeZpmMTEmWrVYrqqurCzLLgizLcr4bkQ+Tk5Po7e3NfDJQor6+HrW1tQX76YGKSzAYRF9fn+IsC4KA+vp61NTUMMtkCMwyFYtAIID+/v6SyHLJFZKSJKG/vx8TExNZnUcURTQ1NcFms+WmYUQKSZKEvr4+BAKBrM4jiiKam5thtVpz1DIiZZhlKhalmOWSKiQlScK5c+cQCoVycj6LxYK1a9eymCTdSZKEnp4eTE9P5+R8zDLlC7NMxSKZTKKnpwfhcDgn57NarVizZo3hs1wyT23Lsozz58/nrIgEgEQigbNnzyKRSOTsnERLSWc5V794AWaZ8kPLLKuZtkSkVjrLuSoigdSDkz09PYbPcskUkuPj45iamsr5eePxOAYGBnJ+XqKFjI2NMctUFJhlKhZ+vz+nHVVpsVjM8FnW9NGg9vZ2bNiwAQDQ0dGBv/mbv9HycgvS+gcRCATgdrvhcrk0uwYRkMry4OCgZudnlkkvWmd5YmICbrcbFRUVml2DCACi0SiGhoY0O7/Rs6xpIVlRUYGXXnpJy0ssi9/vh9ZTQYeGhlBRUVEwT1mRMciSBMG0/IGB0dFRzbM8PDzMQpIUM2KW0/dlIiWMmOXh4WHDZrnoh7YlScL4+Ljm14lGozmdG0GlIfrbf0X8xNuQE7El35tMJnXJciQSyemcNSoN0UM/RvzkO5AT8SXfq2eWeV8mpVJZ/gPk5PKynO0qMMuRXpjfiBQXkpIk4aabbsIjjzxyyetvvPEGOjo68Oqrr2ZeC4VCuPXWW/H5z38eb7/9dvatVSEYDEKSJF2upUeYqLjIkRDihw8h/Mr3liwoJycnNf/Um8Ysk1JyNIS47zWEX/nukgVlMBhklsmw5MgU4r7fpO7LSxSUzLLK5X9+8pOf4ODBg3jttdfgdrvR3d2N2267DV/60pdw1113Zd43NDSE+vp6nDx5Evfccw9efvlllJeX5/QbWMrAwAD8fr8u17Lb7Vhj51OvtHxx328gR2ZN0LY7Yd14FSzrvBAsly750N/fj7GxMV3a5bDb0coskwKxzt8A0TlZ3vQBWNZ6IVguXQtP1yw7HGi1Ld2zRJQW6/w1EJ01KmMvg3XTVfNmua+vT5fedSC1tuS6det0uZYSqgrJRCKBG2+8ETt37sSuXbuwe/duXHfddXjooYcWPOZP//RP8ZWvfAVbt27NqsFKnT59Wtfu4DXdP4cg69MDSkVsnoJS9ywffxUCSmaZWdLKPAXle++9t+RWnrkiCAJaj73CLFP2HGWwbvwALOs8EMz5yXJ7e7vhnsVQNUfSYrFg//79eOaZZ7B//360t7fj61//+iXvCQQCiMVSw3SDg4M4ffo0mpqasm+xQvG4vp9EExa7rtejIhWdvmzIO/3fk16SzDLlQnT6siFvPe/LsiwjaTH2gs5UICKhy4a89bwvy7JsyDUlVT+1vWPHDvzt3/4tAODRRx+F2Wy+5OunT5/GQw89BEEQIAgC/uqv/gqVlZVZNVYNvTfukYWif36J9DRTUCaHeiDXduh6aWaZcmqmoEwO9kCu3aLrpWUYqweHCtxMQZkc6oFcvVnXSxtxM0LVheTBgwcBpBb6nltEAsB/+2//DS+//LL6luWI3l3AgmS8TwtUuAR3HaztH4a5cQOE7m59r80pGpRDgnsFrFs+BHMDs0yFTahckbovN6yHcPy4rsWd0Ya1AZVD248//jgOHTqEZ599FolEAs8//3yu25Uzdrt+w3OCIECyibpdj4qX4K6D7Y8+A8f1d8Cyug2CIOie5SSzTDkguFfA9qHPwHH9PlgaU1nWc+9gQRCQtJfpdj0qXkLlCtg+tBOOT+yDpXGD7vdlk8k0b8ddvinukXzuuefw1FNP4emnn8amTZuwb98+PPnkk9i9ezesVuvSJ9CZKIqabFs0H6vNhoErPgs7knCbEqgwxWEx3ocHMghJkhD7z5chhCczr13SAznnk6coirqt72i12VNZFpJwC8wyLU6SJMTe+imEyMXtDlM9kDO9NnOy7HQ6dXtwzGpPZdkhJOESEnCZ4jAzy7QASZIQ+48XIcx6avuSHsh57st6ZdnhcBiyR1JRIfn666/j4YcfxqOPPgqv1wsA2Lt3L77//e/jpZdewq5du7RoY1acTqdu1xKsDgBAFGYMS2YMS3ZU2C1wi1ZU2C2GDADlj5xI4Nu+EVggo9xug7t2BVxl9XD1DMM1FoHL5UJFRQVcLhesViucTqduS1nBmvqUHZXNGJYvZrlStKKcWaY5pHgc3/aNwiLMzvIKuM4OweUP5zXLgiV1X47IZkSYZVpCMhbDPxweg1WQUeGwwVWzAu7yelTMynI6z+ks67WUVVmZMXvWl11IdnV14YEHHsCBAwdwww03ZF4vLy/Hnj178MQTT2Dnzp2G63YtLy+H2WzW5UmnuOXyocDJaAKT0QTMggC3aIVbtMJhMfHmRbBYLNi0shqdvX5MJWIYDPUC53rnfa/D4cDatWuxZcsWXRbYj1uclz2ekMmySYDbwSzTRVarFW0rq3C4b2xZWV63bh3a29t1yXLMKi6Z5UrRCofVWL+7KD9sNhva6itxpH8cU1MxDEwtnOX0uo6bN2/WJcv5eGB5OVStI1lohoaGMDIyouk1rHYHkhUrlvVeu8WEStEKt8MKi5lPxpaqWCyGN954A7/73e+WfG9FRQXuvPNORKNRzbNsc4hIlNct673MMgGpLP/2t7/F73//+yXf63K5cOeddyIcDmN0dFTTdjHLpFQsFsPrr7+ON998c8n3ut1u3HnnnQiFQpr3sJeXl6O1tVXTa6il+qntQlJTU4OxsTFNeyUt5VVY7tmjCQlDk1EMTUZRPmuIxcSenaInyzLOnTsHn8+HY8eOLWsNMlEUsXfvXlRWViKRSGieZVNZ5bLfyyyXLlmW0dPTk8nyctaGdDqd2Lt3L9xuN8rKyjA2NqZpTw6zTMuhJstlZWXYu3cvXC4XRFHE+Pi4plmur6/X7NzZKokeSSC1H+b58+c1OXdNTQ1W1K/EZCSOiXAc03Hlv+RNAjLDhaLVzOHCIjM2Ngafz4fDhw8r2i/VZrNh3759aGhoyLwWCARw4cIFDVp5McvBSByBbLIsWlHpsMFh5dB3sUln2efzIRAILPs4u92Offv2YdWqVZnXtMxybW0t6lbUIzhzXw6ryLJZEOASLagUbZzGUYTGxsbQ2dmJw4cPK87yHXfcgZUrV2Zem5iYQG/v/EPg2aqrq2MhaRRa7ImZnrtmMl0cCoklJEyEYwhE4ognlf/fazPPDLGIVlg5xFKwotEojh49Cp/Pp+pDjNlsxp49e+YdzmCWSU+RSATHjh1TnWWLxYI9e/agpaXlktdlWUZfX5+iD1fLIYoi1qxZM3+Ww3HEJWa5VEUikcx9Wc2HGIvFgr1796K5ufmS1/XMstGUVCEpyzJ6e3sVffJYjN1ux5o1a2CxzD9DQJZlTMeTCITjCEbiUHHvQpnNjErRhgoHh1gKgSRJOHv2LHw+H44fP45EIqHqPIIg4LOf/Sw2btw479dznWWHw4HW1tbFsxxLYiKSyrKauwazXFhylWWTyYTPfe5z2LBhw7xfl2UZFy5cQDAYzKa5GQ6HA2vWrFnwwc9MlsNxBKPMcimQJAlnzpyBz+dDd3d3Vln+/Oc/j/Xr18/7db2zbBQlVUgCqR/0yMgIhoeHszqPy+VCY2Pjsn/AkiQjGE0NF4Zi6oYLXTND304OfRvO6OhoZuhazU2koqICk5MX15PcuXMntm3btugxsixjeHg464dv1GZ5IhzHdBZZruQ0DkMaHR3NDPfNzuRyzc3yH//xH6OjY/HtPXOVZbfbjYaGBmaZAAAjIyOZ+3Iusrxr1y5s2bL49p75ynI+lVwhmRYOh9Hb24toNKroOLPZjIaGBrjdbtXXjiclTIRTRWUsqXxyrtUsoFK0we2wwmYxbnd3sQuHw5khEjVzY5xOJ7Zu3QqPx4Oamhp861vfQiwWw/bt2/H+979fUTvyleVYUkIgiyzbzKbMslg2DhfmTTgcRldXF3w+H/r6+hQfn86y1+tFdXU1vvnNbyIej+OTn/wkrrzySkXtUJvlxsZGuFwupU3PiCUkBCJxTIRjqqdxuMVUUcmh7/zJNstlZWWZ+3JVVRW++c1vIpFI4FOf+hSuuOKKZZ9nenoafX19irNssVjQ0NCQVZb1VrKFJDAzxDE9Db/fj8nJyUX3y3Q6naiurobL5crZXAVZlhGOzwyxqBz6dtrMqHRY4XJYYTLx07DWJEnC6dOnM0MkSp+eNplMaGtrg8fjwYYNGy75tPnSSy+hqqoKH/vYxxS3S5ZlhEIhjI2NLSvLNTU1qKioMF6WRStcdmZZD5Ik4b333oPP58OJEydUZXnjxo3weDxYv379JVl+8cUXUVtbi4985COK26Umyy6XK2e9gcxy4Ukmk5n7sposm83mzH15bpZfeOEF1NfX48Mf/rDidqWz7Pf7MTU1pXuW9VLSheRssiwjGo0iHA5nQmgymeBwOOBwODSf6CrJMiYjCUyEY6qGvgUBcNlTn4adNg6x5Nrw8DA6Oztx5MgRTE1NLX3AHKtWrYLH48HWrVsX3G1penoaoihm/bNjlmkxQ0NDmeE+NdvHNjQ0wOPxoKOjg1legkkAKmaGvjklKfeGhoYy92Uts5yLHfLynWUtsZA0oHgyNcQSCMcRTagY+jYJM0MsNg59Z2F6ehpHjhyBz+fDwMCA4uPLysqwbds2eL1erFixvMXqi018Zuh7Qu00DmY5J0KhELq6utDZ2YnBwUHFx5eXl2Pbtm3weDzMchZTklK76DDL2QiFQpn7sposV1RUZKZh1NUtb7F6WhwLSQOTZRmRmSUrguEEkip+VKJ1ZojFYYWZQyxLSiaTOHXqFHw+H06ePKl4gVmz2YxNmzbB4/Fg3bp1Bf0pM5dmZzkQVjdcyCwrk85yZ2cnTp06xSzniCzLiMQvLoulaujbaoabWV62ZDKJkydPwufzqcqyxWLJZHnuEmeUPRaSBUKSZUxFE5gIxzEVVb50gQCgwpFaWLeMw4WXkGUZg4OD8Pl8OHLkCKanpxWfY/Xq1fB4PNiyZQtE8fI91+kiZlk76Sx3dnaiq6srqyx3dHTA4XBo0MrikYssp1fjYJYvJcsyBgYGMlkOh8OKz9HU1JS5LzPL2mEhWYASyfTTheqGvi2Z4UIr7BbjLy2glampKRw5cgSdnZ2qloNyuVyZ4b7a2loNWlj8mOXcmJqawuHDh+Hz+ZjlPGGWc2NycjKTZTVL6LhcLng8nsxqGKQ9FpIFLjLzdGEgEkdSxRiLw2rKLCVUCkMsiUQCJ0+eRGdnJ957771Fn6Kbj8ViwebNm+HxeAy/20ChyTbL4sxwYSll+cSJE/D5fKqz3N7eDo/Hg9bWVmY5R9LTONLLYqmdklRqWe7u7obP58Pp06cVZ9lqtWLz5s3wer1obW1lz67OWEgWCXnWEMukyiGWcrsFlaIV5XZLUf2HKMsy+vv7M0MkkUhE8Tmam5szQyR2u12DVlJaLrJc4bDA7SjOLPf19aGzsxNHjx5VleWWlhZ4PB60t7czyxqTZRmT0QQC2WZZtKLcVnxZ7u3thc/nyyrLXq8XmzdvZpbziIVkEUpIEoLh1JIVERVDLGZT+ulCKxzWwh1iCQaDmSGS0dFRxcdXVlZmhvuqq6s1aCEthVlOCQaD8Pl88Pl88Pv9io+vrKzMDPdVVVVp0EJaSrZZtsxk2V3gWQ4EApn7sposV1VVwePxYNu2bcyyQbCQLHLRRDKzi05CzdC35eLOI5YCGPqKx+OZIZIzZ86oGiLZsmULPB4PWlpaiqoHoNBF4snMslilkuXjx49nsqyUzWZDe3s7vF4vmpubmWUDyXpKkiU1JcklWphlyjsWkiVClmWEYklMhGOYjCSg5oeeHvquMNhwoSzLuHDhAjo7O3Hs2DHFW1IBwJo1a+DxeLB582bYbDYNWkm5IssypmIzw4Uqs1xhTw0XGjnLR48eRSwWU3wOZrlw5CrLRpySJMsyzp8/n7kvq8ny2rVrM1m2Wq0atJJygYVkCUpKMoIzTxeG48p3azALAlxiavkVh8WUt5vXxMREZoeOsbExxcdXV1dnhkgqKytz30DSXC6ynO6lNEKWfT4fxsfHFR9fXV0Nr9eLbdu2ZbV3OuVPUpIzPe6FnOXx8fFMlicmJhQfX1NTk7kvM8uFgYVkiYsmkpndGtQMF9rTw4UOK6xm7YdYYrEYjh07Bp/Ph56eHsXH2+32zNB1U1OToT7BU3ZykeXKmSxbCijLXq8Xq1evZpaLSLZTkvTOcjQazWT53Llzio+32+3o6OiA1+tFY2Mjs1xgWEgSgItD34FwHMFoHGpSUW6bGS50WGDK4Y1AlmX09PTA5/Ph2LFjiMfjio4XBAFr166F1+vFxo0bOURS5C7JciSe1TSOcrvxsrxu3Tp4PB5muQTkckqSFlk+e/YsfD4fjh8/rjrL6fuyxWLJWdtIXywk6TJJScbkzHDhtIohFpOAzNOFolX9bg1jY2OZIZJAIKD4+Nra2swQicvlUtUGKmzpoe+AAbLc2dmJw4cPq8pyXV1dJssVFRWq2kCFLdtpHCYBqQXPHTY4rOqHvv1+f+a+HAwGFR9fV1cHr9eLrVu3MstFgoUkLSqWSO/WEEM8qTwqNrMps1vDcoa+I5FIZojk/Pnziq/ncDgyQyQNDQ0cIqGMWOLi/shqs1w5MwdtuVk+evQofD4fLly4oPh6oihmsrxq1SpmmTJis/atj6sY+lab5c7OTvT29iq+niiK2Lp1KzweD7NchFhI0rLIsozp+MXhQhX3LpTZUrs1uOxWmGbt1iBJ0iVDJImEsoV7BUHAhg0b4PF40NbWxiESWlSuslwp2i6bxiFJEs6cOQOfz4fu7m7FWTaZTJksb9iwgVmmRcmyjOlYaj6l2ilJS2W5s7MT3d3dSCaV9YLOznJbWxvM5sJd+5IWx0KSFJMkGcFoargwFFM3xOJyWJGYDuDk0S4cPnwYk5OTis9TX18Pj8eDrVu3ory8XPHxRLnKcjIUQPfRIzhy5IiqLK9cuTKT5bKyMsXHE6WzPBGOYzqb+/LURCbLU1NTis/DLJceFpKUlXhSyjxdGEsuvVtDLBrBhfdOoOfkMYwNDyq+ntPpxNatW+H1erFy5Uo1TSaal+IsRyI4f/oEek4cxfjIkOLrOZ3OzM5JzDLlUiwpzaxgsLwpSdFIOHNfVpPlsrKyzH25vr5eTZOpgLGQpJyQZRnhmeHCwJzhQkmSMHShBz0nj6G/5wwkSfkQSVtbG7xeL9avX88hEtJUOssT8wx9S8kkBnvPoefEUQycO6s4y2azGW1tbfB4PMwyaW7JLKfvy+fOQJaUbdtoNpuxceNGeDwerFu3jlkuYSwkKeckWcZkJIGzF/px/OhhnDvVjWh4WvF56leuxPtmnu5zOp0atJRoceksn7nQh+NdR3D+PXVZXrlqFd7n9aKjo4NZprzIZPl8L44fPYLz751QmeUGvM+bGroWRVGDllKh4UxuyqlQKISuri50dnZicFD50LXD6UTLhs1oaWuHu7oWFpOAqaQJ5kQSdgs/8ZJ+QqEQjhw5Ap/PpzLLZWjZsBmtG9vhqqqBdSbLloQEm8X4+yNT8QiFQjh8+DB8Ph+GhpQPXTucZWhp24zWtotZnkwIMDPLBPZIUg4kk0mcOnUKnZ2dOHXqFCSFQyQmsxkNLevQurEd9atbYDLNf2MSrWZUila4HFaYTVw+gnIvmUzi5MmT8Pl8qrPc2LoerW3tWLG6mVmmvEkkEpdkWemvepPZjMY1qSzXNzZDYJZpASwkSRVZljE4OIjOzk4cOXIE4XBY8TnqVq5C04Z2NK1rg83uWPZxAoAKR2qv7zKb+kWiiYBUlgcGBtDZ2Ymuri5VWV6xqgFN6zdjNbNMeSTLMvr7++Hz+bLIciOaNmxG09o2WO32ZR/HLJcuFpKkyNTUVGaIZHh4WPHxLpcr86RqbW0tEsnUgueBcByRhLLeHwCwmITMXt8OK4e+afkmJyczWR4ZGVF8vMvlgsfjgcfjQU1NTSbLE+E4ollkuVK0choHKZJtlt1ud+a+zCyTUiwkaUmJRAInTpyAz+fDe++9p3iIxGKxYPPmzfB4PFizZs2Cw32RmacLA5E4kipWiXZYTKgUbXCJFlgWuAaVtkQige7ubvh8Ppw+fVpxlq1W6yVZXqjXJessW1NZdnO4kBYQj8cz92W1WW5vb4fH40Fra+u8WZZlGZFEaimhQDiOpIpygVkufiwkaV6yLKOvrw+dnZ04evQoIpGI4nM0NzfD6/Wivb0ddgVDJLIsYyqawEQ4jqloAmoCWmG3oFK0otxu4RBLiZNlGb29vfD5fKqz3NLSAo/Hk1WWJ6PKdrkBUsOF5cwyzUhnOX1fjkajis/R2toKj8eDzZs3657lCocFbgezXGxYSNIlgsEgfD4ffD4f/H6/4uMrKyszw31VVVVZtycpyZm9viNx5UMsZpMAtyM1xMKh79ISCAQyw31qslxVVQWPx4Nt27blJMsJSUIwnEhlWcVwIbNcugKBQOa+PDY2pvh4Zpm0xEKSEI/Hcfz4cfh8Ppw5c0bx8TabLTNE0tLSotknzWgimdl5JKFiuNBuMaFyZj6lxcyh72IUi8UyQ9fZZNnr9aK5udmwWXZYTKm5waKV0ziKVCwWy9yXz549q/h4m82GLVu2wOPxaJrlyKyNKJjl0sRCskTJsozz589nhvtisZjic6xZsyYzRGKz2TRo5fxkWUYolsREOIbJiLqh79nDhSYOsRS0dJY7Oztx7NgxVVleu3ZtJstWq1WDVs4vl1mu4HBhwZNlGefOnYPP5yvILE/FEgiE46qzXGG3wM0sFxwWkiVmYmIiM0QyPj6u+Pjq6urM0LXb7daghcokJRnBmacLw3Fl29UBgFkQ4BJTS1Y4LCbevArI+Ph4JssTExOKj6+pqckM9zHLlE/M8qXMgpDppWSWjY+FZAmIxWI4duwYfD4fenp6FB9vt9uxZcsWeL1erF692rD/UUcTyczThXGVQ99uR+rmZeXQtyFFo9FMls+dO6f4eLvdjo6ODni9XjQ2Nho+yxNZTONIL4vFLBtTOsudnZ04f/684uMdDkfmvmz0LGc7JcktWlHJKUmGxUKySMmyjJ6enswQSTweV3S8IAhYt24dPB4PNm7cqOsQSbZkWcZ0LHXzCkbjUJPwMpsZlaINFQ4OfeebLMs4e/YsfD4fjh8/rirL69evz2TZYimcnWHTQ9+BLLJcbpsZLmSW806SJPT09KCzsxPHjx9HIqHs6eeiyXIkzilJRYSFZJEZGxtDZ2cnDh8+jEAgoPj4urq6zBBJRUWFBi3UV1KSMRmJYyISx3RM+RCLSQBcM08Xilbu1qAnv9+fGe4LBoOKj6+rq4PX68XWrVuLK8vhOKZVDBeaBGR63Jllffn9/sx9WU2WV6xYkbkvl5eXa9BCfaWHvgPMclFgIVkEIpEIjh49Cp/PhwsXLig+XhTFzHDfqlWrivY/ylhCyiwlFE8qj73NbMrs1sDhQm2ks9zZ2Yne3l7Fx4uiiK1bt8Lj8TDLi2CWtRcOhzP35Wyy7PV6sXLlyqLO8kQ4hkAkrjrLlSKnJOUTC8kCJUkSzpw5A5/Ph+7ublVDJBs2bIDH40FbW1tBDZFkS5ZlTMcvDrGomLYDp82MStEKl90KE3dryEo6y52dneju7kYyqayHwmQyXZJls7l01qXLRZbLbGa4meWckCQJp0+fztyX1WbZ6/Viw4YNzLJCnJKUHywkC8zIyAh8Ph8OHz6MyclJxcfX19fD4/Fg69atRTFEki1JljEZSS2sG8pi6NstWuHkEIsiw8PDmSxPTU0pPn7lypWZLJeVlWnQwsLCLOfP8PAwOjs7ceTIEVVZXrVqFTweDzo6OphlAJIkIxhNDX0zy8bHQrIAhMNhHDlyBD6fD/39/YqPdzqdlwyR0PziSSnzpGwsqXy3Bqs5vVuDDTYLh1jmMz09ja6uLtVZLisry2S5vr5egxYWh3hSyjwpqzbL6f2RmeX5TU9PZ+7LAwMDio8vKyvDtm3b4PF4mOVFMMvGx0LSoJLJJE6fPo3Ozk6cPHlS1RDJxo0b4fF4sH79+pIaIsmWLMsIz9qtQdXQt3VmuNBhhbnEhwuTySTee+89+Hw+nDhxApKk7JeB2WzOZHndunXMsgK5ynKlaEUFs4xkMolTp07B5/Ph5MmTWWV5/fr1MHEnl2VLZ3ki2ylJjtR9mdM4coeFpMEMDQ1lhkhCoZDi4xsaGjJDJE6nU4MWlhZJljEVTWAiHMdUVNk8VAAQcHGIpcxWWkMsg4ODmSxPT08rPr6xsTGTZVEUNWhhaUkPfQfCcUzFVGRZAFx2ZplZzr9sp3Gks1wpWuEssSxrgYUkUgt2B4NBhMNhhMNhJJNJyLIMk8kEURQhiiLKy8shiqImgQuFQpkhksHBQcXHl5eXY9u2bfB6vairq8t5+yglkUw/KRtHNKF8iMViEjJPytotl/eqBSNxiFZzVk8eRqNRTE5OXpZls9kMh8OhS5YPHz4Mn8+HoaEhxcdXVFRkhvuYZe3EZ7IcyCLL6SdlizXLU1NTmftyNln2er2ora3NefsoJT0lKRBRl2Vr5r48/5QkPbNcqJ0/JV1ITk1NYXR0dNmTo+12O2pqalBVVZX1jSuZTOLkyZPw+Xw4deqUqiGSzZs3w+PxYO3atRwi0ZEsy4gkpMwuOkkV/wmJM0Pf7lnDhWf8U5AkoLXGCYvCn+fU1BRGRkaW3Yttt9tRW1uLysrKrLOcSCQuybLSW4rFYsGmTZuY5TxIZ3kiHEMwnFCd5co50zjOjE5BBtBSrTzLk5OTGB0dLdgsp+/La9asYZZ1pFWWT4+m6oPW6jLFUzuUZtnhcKCmpiYnWdZTSRaSyWQS/f39qhbsBlLre61evRp2u13RcbIsY2BgAJ2dnejq6kI4HFZ87dWrV8Pr9WLLli1wOByKj6fckmUZk9HUcOGkyqHvCocFZTYLBoIRAIDDYkLLMm9aiUQCAwMDeclyf38/fD6f6iw3NTXB4/EwywaRznI20zgqHBY4bRYMprNsNaGlqjCynL4vRyIRxddubm6Gx+NBe3s7s2wAuZiSNDfLotWMlirnsuZWJhIJ9Pf3q1p8HlCf5XwpuUIyEomgp6dH8bqL82lqaoLb7V7yfZOTk5nhvpGREcXXcblc8Hg88Hg8qKmpUdNU0kFCuthLGVExxDKb02ZGc5Vz0bXQIpEIzp49q/hBrLkEQcDq1at1ybLb7c4MXTPLxpWYNfStR5bD4TB6enp0zXIwGMxkeXR0VPG13G535r5cXV2tprmkg2ynJM1WZjOjSccsNzU1weVyZXUePZRUIRmJRHDmzBnFw8iLWb16NSorKy97PZFIoLu7Gz6fD6dPn1Y8RGK1Wi8ZIimkbm4CIjNPFwYicSTVPF6I1L6yTZXzz//SIssLfTCKx+M4ceJEVllub2+Hx+NBa2srs1xgcpHlCrsFqxfIcjgcxtmzZ3XLcvq+fObMGdVZ9nq9aGlpYZYLjB5ZVpOrxSy3wyqfSqaQTC/bkIueyLnWrl0Lp9MJWZbR29sLn8+Ho0ePqhoiaWlpyQyRFEq3Ni1MnhliCUTimIwkoPQ/NrfDiga345KbViKRwKlTp7L+xDufdevWQRTFTJY7Oztx9OhRRKNRxedqbW2Fx+PB5s2bmeUiIM8ZLiykLF+4cCFzX1abZa/Xi82bN8Nms+W8raSv2VlWMyWpUrRilUv/LBtVyRSSvb29mJiY0OTcNpsN4+PjeOedd+D3+xUfX1lZmRkiqaqq0qCFZARJSc4MF4bjy7/ZVDmtWFlx8aZ14cIF1fPIlmKz2TA2NoZ33nkHY2Njio+vqqrKZHm+nnoqDuksT4RjiMSX35NY7bShvsKuS5btdjtGR0fxhz/8gVmmBSUkCcFwaikhJdM45mb5/PnzqudELsVut2P9+vWG7QHXdIPlCxcu4C//8i/h9/thNpvxr//6r3l5vH1qakqzIhJILR8Ui8UUFZE2my0zRNLc3GzYgFDumE0Cqp02VDttiCaSmd0aEksMsYxPx2EWBKyocGBqakqzX7zAxSwr+cVrs9mwZcsWeL1eNDU1McslQG2Wx6ZjMAnAigoHJicnNc1yNBpFNBpVlGW73Y4tW7bA4/EwyyXCYjKhusyG6jLlWTabBNSV2xEMBjUrIoFUlkdHRw27JJqmheRf/MVf4IEHHsCVV16JiYmJvA0JqJlIrVRVVRVMJtOS83zWrl0Lj8eDTZs2cYikhNktZtRXmGEPDqHfVJlaIXcRo6HUTSuo4gEXpaqrqyEIwpLzfNauXQuv14tNmzbBarVq3i4ypnSWbcEhDCjJsg735dra2mVled26dZn7MrNcujJZDgxhwFy5ZJZHpqIwCwImdMiy3+/P5NloNCskT506BYvFgiuvvBIA8jY0EIvFlr1OZLba2trQ3d192es1NTXweDzYtm2b4SfNks7eeRn1ZisCaz6ISE1r5sZlMQmwmAVYTSZYzSZYTAKQTKja7UiNtrY2nDhx4rLXa2pq4PV6sW3btoJ4mpD0I7z9EuotDgTWfhCR6pZFsywn9Mvy+vXrcerUqcter62tzdyXmWWazfT2i6i3OVP35ermRbMsJWKqdjtSKpFIIBgMGrKGUFxISpKE7du347rrrsOBAwcyr7/xxhu477778Mgjj+Dmm2/GuXPn4HQ6ce+992JoaAg33ngj7r333pw2fjkmJyd1u9b69eszhaTdbkdHRwe8Xi8aGxsN+SmC8kuSZJgEwBIcwgrfS0B1AywdH4Otcf49eEdH9c1yupB0OBzo6OiAx+NhlmleyUyWB7Gi80WguhHWrR+DtWFd3rPc1taWKSTTWfZ6vWhoaGCW6TJJSYYgAPbAAFZ0/gSoWZ3K8qr5N0sYGdFuSHuuyclJQxaSqh62+clPfoKDBw/itddeg9vtRnd3N2677TZ86Utfwl133QUAePXVV/HXf/3XePHFF1FTU4O77roL9957Lz784Q/n/JtYjJYP2cxlNplgfvdVuN1uVFRU8CZFS0oOnAESsUteM9U0wLb1apgbLp1creWDCXMxy6RUsv80kIxf8pqptjGV5VXrLsmQlg8mzJXOcqW7EuUV5cwyLWn+LK+GbdvVMK9cm7cs22w2tLW16XItJVQNbe/YsQPf/va38cwzz2DXrl24++67ccstt2SKSABYuXIlOjo6sGrVKgDA1VdfjePHj+teSOrR5ZyWlCQ0mGMwB/oh6fP7noqQ5O9H5NCPLyso1eweo1ZSktBoisLELFMWpNE+RF770WUFpf5ZjsAU6GOWSTVptBeR3/zzZQWlnlmOxWKQJMlwW2+qKiQtFgv279+Pxx57DL/4xS/Q3t6Or3/965e8Z+vWrfD7/QgEAqioqMAf/vAHfPazn81Jo5XQYk2nxUhmG8xzPskQqTG3oNQ7y0mzDSYp9+uuUumZW1Dm475skvT7hU/Fa25Bqft9OZk0XCGpujU7duzIVOKPPvoozGbzJV+3WCx48MEHsWfPHnz6059GS0sLPv7xj2fXWqISJE2OQRobyOluCcvCEUDKMSnohzQ2kO9mEGVNCvoh+fNwXzYg1U9tHzx4EAAwPj5+WRGZdvXVV+Pqq69We4mcMJlMun5iYA8O5YzNAdumD8K68SoINgfMJ07kdBu5pZiSzDLliM0B2+Y/SmXZaoepu1vXLAvMMuWKTZzJ8vshWO0wd3drsmPeQozWGwmoLCQff/xxHDp0CM8++yzuuOMOPP/887j99ttz3bacEEUR8bg+Q81mkwlmmwOCzaHL9ajwyeEgMPcT7ZwCMs3hcOiXZbMZFrsIwLjbcpGxzJ9lEbbNH8wUkGmiKOq2oobFbIbFof9GGFS4Fs7yxQIyzeFw6LbEoMViWbDjLp8UF5LPPfccnnrqKTz99NPYtGkT9u3bhyeffBK7d+825EKuoijq9kSV6HSifOdXdLkWFYfQy/8v5ODMYrYLFJBpev7ydTqdKGOWSYHQT78NeXJmF5kFCsg0PbMsMsukUOil/w15aiL1jwUKyDRRFHUrJPOxM+ByKOojff311/Hwww/jkUcegdfrBQDs3bsXU1NTeOmll7RoX9bKy8uL8lpURGwO2LZdg7Jbvgzb1o8t2KPNLJPh2UTYPB9H2We+DFvHR+f9xQswy1QAbCJsnmtnsvwRZnkRy+6R7OrqwgMPPIADBw7ghhtuyLxeXl6OPXv24IknnsDOnTsN1+0qiiIcDgcikYim1xEEAVVVVZpeg4qPrf1DsDRtWtZ0CD2znK+dqKhw2bZ8BJbmzQv+wp1NFEXY7XZEo1FN28Qskxq2jo/C0ty+rCw7nU7dsmzExcgBlQuSF5qJiQn09vZqeo3KykqsXr1a02sQjY+Po6+vT9NrVFVVobGxUdNrEI2NjaG/v1/Ta1RXV6OhoUHTaxDpkeWamprMutxGY7zHfzTgdrs1nVtgMpmwcuVKzc5PlFZZWQlR1O4BGLPZjPr6es3OT5RWVVWleZZXrFih2fmJ0qqqquBwaPeQrdGzXBKFpCAImu4R3NjYCItF9UpKRMsmCAJWr16tWZYbGhqYZdKF1lnmfZn0ks6yVhobGw03bXC2kigkAcBut6OpqSnn562trTXsvAUqTna7XZObVl1dHbNMutIyyy6XK+fnJVqIw+HQpMZYsWKF4bNcMoUkALhcLjQ3N+fsfLW1tRwGpLxwu905vWnV1dUZeuiEihezTMXC7Xbn9IPRihUrUFdXl7PzaaUkHraZKxwOo7e3V/VTVmazGQ0NDey9obxjlqlY5CLLjY2Nhu+9oeI3PT2N3t5exGIxVccXWpZLspAEAEmS4Pf7MTo6uuwtFNNLSdTX13PuDRmG2ixXVVVhxYoVzDIZhiRJGB0dhd/vZ5apoJVSlku2kEyTZRnBYBDBYBDhcPiyTxAWiwWiKKK8vByVlZWGnvBKpY1ZpmIhSRImJycRDAYxPT192dagzDIVCkmSEAwGMTk5WbRZLvlCci5JkpBMJiHLMsxmc0H+UIkAZpmKRzKZhCRJzDIVvGLMMgtJIiIiIlKlpJ7aJiIiIqLcYSFJRERERKqwkCQiIiIiVVhIEhEREZEqLCSJiIiISBUWkkRERESkCgtJIiIiIlKFhSQRERERqcJCkoiIiIhUYSFJRERERKqwkCQiIiIiVVhIEhEREZEqLCSJiIiISBUWkkRERESkCgtJIiIiIlKFhSQRERERqcJCkoiIiIhUYSFJRERERKqwkCQiIiIiVVhIEhEREZEqLCSJiIiISBUWkkRERESkCgtJIiIiIlKFhSQRERERqcJCkoiIiIhUYSFJRERERKqwkCQiIiIiVVhIEhEREZEqLCSJiIiISBUWkkRERESkCgtJIiIiIlKFhSQRERERqcJCkoiIiIhUYSFJRERERKqwkCQiIiIiVVhIEhEREZEqlnw3wEhkWUY0GkUymQQAmEwm2O12mEyst6mwMMtULJhlKhbFmuWSLyQTiQTGx8cRDAYRiUQgy/Jl77HZbKioqEB1dTXsdnseWkm0NGaZisVysmy321FRUYGqqipmmQwrneVAIIBoNFqUWRbk+b6rEpBMJjE4OIjx8XFFx5WVlaGhoaEgf9hUnBKJBAYHBzExMaHoOGaZjEZtlsvLy7Fq1SpmmQyjlLJckoXk5OQkent7M93LatTX16O2thaCIOSwZUTKBINB9PX1qc6yIAior69HTU0Ns0x5xSxTsQgEAujv7y+ZLJdcITk6OorBwcGcnMvlcqGpqakgftBUfHKZZbfbjdWrVzPLlBcjIyMYGhrKybmYZcqnXGa5srISjY2Nhs9yYc/wVMjv9+fsFy+Q+gTd29s775wHIi3lOsuBQIBZprwYHR3N2S9eIJXlvr4+Zpl0l+ssT0xMFESWS6aQDIfDGBgYyPl5A4EAxsbGcn5eooVMT08zy1QUpqenc/qBKG1iYkLx/HeibIRCIc2yrHSepd40KyTPnDmDW265JfNn27Zt+NWvfqXV5RYlSRJ6e3s1O//g4CBisZhm5ydKY5apWGid5YGBAWaZdKF1lvv7+xGPxzU7f7Z0mSMZCoVw7bXX4rXXXoPT6dT6cpfx+/2a9ODM5nK50NzcrOk1iHI5L3IhzDLpQY8su91uNDU1aXoNolzOi1yIkbOsy9D2b37zG/zRH/1RXopIWZbh9/s1v04wGDT0JwYypr4fPYNIf9+y3sssk5H1/fMPEB1c3gd2vbIcCASQSCQ0vw4Vl74fPo3oMj/kyLKsy5QgI2dZcSEpSRJuuukmPPLII5e8/sYbb6CjowOvvvrqZce8+uqr2L59u/pWZmF6elq34Q3OySGl/K/9Gof/dB/OPPp/L1lQhkIh3Qo8o8/JIeMZ/fW/4/BdX8DZx765ZEGpZ5Z5XyalRn/1Sxy+ay/O/j/fWrKgnJqaKvn7suKdbUwmE+655x4cPHgQd999N9xuN7q7u/GVr3wFDz74IG6++eZL3j81NYX/+q//wmOPPZazRisRCoV0u9bU1BTqamt1ux4VAVkGJAmjv/w5Rn/1S9R+4gY0fO52OBoaL3ur3lmuranR7XpUBGQZcjKJkV+8gtFf/QK1n7gRqz53GxyrGi57K7NMRians/zqzzD6y5+j9vob0fC522Ffueqy9+qeZQPWGKrmSCYSCdx4443YuXMndu3ahd27d+O6667DQw89dNl7X3zxRfzud7/DN7/5zZw0WKlz585hcnJSl2uZBAFTf/5nulyLipjJNG9B2dPTg6mpKZ2aYMLUV+/X5VpUvASzed6C8uzZs7r9AmaWKRcEs3neglLPLJvNZmzevFmXaymhao6kxWLB/v378cwzz2D//v1ob2/H17/+9Xnf+/Of/zxvw9oAEIlEdLuWJMsQXG7drkdFaqaHcu6Qt65ZliSgokK361FxSvdQHvnTfTj72DcRGegHAESjUd3aIEkS4CzT7XpUnORkEiM/fyU1fePxi9M39LwvJ5PJrHbk04rqh2127NiBcDgMAHj00UdhNpsve8/k5CQOHz6Mj3zkI+pbmCVJkvS9oM2m7/WoeM0qKM8+9k3dsyzYCmevVzK2dEGZ/iWse5btvC9TblxSUP7vx3TPsu41zTKoLiQPHjwIIDWReb4iEgAqKirw5ptvwlZKxZUBf8hUwAQB1R+9Gitv3aX/NlmS8T75UgETBFR/7BqsvPVP9L92kvdlyiGTCdUf+zhW7vxjw29fqAfFD9sAwOOPP45Dhw7h2WefxR133IHnn38et99+e67blhNWq1XXrmA5pM8cNipyM790G2/bC7GlFQBgOXVK5yzrN4mcipggoPrqj6ey3NwCALCcPKnrYuHyNLNMOWAyoebqa9Fw2x6ITam1dvXO8kIdd/mkuJB87rnn8NRTT+Hpp5/Gpk2bsG/fPjz55JPYvXs3rFarFm3MiiiKus1hsFqtWPmpT+tyLSoOI7/4OZJTsx4Gm6eATBNFUbe5ZTarFa4dt+hyLSoOIz9/BcnZHz7mKSDTnE6nbr98bTYbXLfs1OVaVBxGXn0FydkfPkwm1Fz9cTTctjdTQKaJoqhblu12O0wm4+1sraiQfP311/Hwww/j0UcfhdfrBQDs3bsX3//+9/HSSy9h165dWrQxK6Io6raOmNPpRNP++3S5FhWHibf/M1VILlJApomiqNs6Ys6yMqxmlkmB8f94M1VICgJqrrkWDZ/fc1kBmaZrlp1OZpkUGf/971KF5Dw9kHOJoohAIKBLu/KxqctyLLuQ7OrqwgMPPIADBw7ghhtuyLxeXl6OPXv24IknnsDOnTsN1+3qcrnQ39+vy7Xcbj6xTcoIs3ttFigg01wul+ZbfaYxy6SUIAio+fh1ixaQacwyGZrJhJqPf2LRAjLN5XJpvtVnmlGzrMte2/l24cIFzT8xWCwWbNy4kRNvSZHY6AhstXXLfv/58+cRDAY1bFFqikZbWxuzTIowy1QslGZZj/WqjZxl4w22a0CPleDr6uoM+QMmY1NyswL0yXJtbS2zTIoZMcu8L5MazLIyJVFIiqKo6Q9aFEVUV1drdn6iNKfTiRoNt3tjlkkvWmfZ6XSiqqpKs/MTpZWVlWl63zR6lkuikASAFStWwG7P/QLLgiBg9erVhv2kQMWnvr5ek7VZmWXSG7NMxaK+vl6TlWtMJpPhs1wyhaTJZEJra2tOf9CCIKClpUWTApVoIeksWyyqloGdlyAIaG1tZZZJV1pmuaQ2wqC8M5vNWLNmTUlmuSQetpktHo+jp6cn6/X4zGYzmpubUVbGPVwpP5hlKhaxWAznzp3LSZZbWloMu0wKFb9YLIaenp6s15YspCyXXCEJpPaqHB0dxfDwsKrjXS4XGhoacvrJg0gNSZIwMjKCkZERVcczy2QU2WbZ7XZj1apVzDLlnSRJGB4exujoqKrjCy3LJVlIpkWjUfj9foyPj2M5/zdUVFSgpqYG5eXlOrSOaPkikQjGxsaWnWWXy4Xq6mpmmQxHTZZramrYo06GE4lE4Pf7MTExUdRZLulCMi2ZTCIUCiEcDiMcDiORSEAGYDGb4XA4IIoiysrKDLkFJNFszDIVC2aZikWxZ5mF5DxC0Tgi8SRqyh35bgpRVqaicUSZZSoCU5E4oskkasqYZSpsk5E44kkJ1WXF8XBjyTy1vVyyLGN8OoZgJI5EUsp3c4hUk2UZE9MxTEbiSEjMMhUuWZYxEY5iMhxHklmmApa6L0cRDMeKJsssJOeYjiUQnykgA+HsnroiyqfQTJZlAIFpZpkKVyiaQDwpQwYwwfsyFbCpaAIJKZXlQDie7+bkBAvJWdK9kWnslaRCle6NTGOvJBWqdG9kGnslqVCleyPTiqVXkoXkLLN7I9PYK0mFKDQny+yVpEKV7o1MY68kFap0b2RasfRKspCcMbc3Mo29klRo5vZGprFXkgrN3N7INPZKUqGZ2xuZVgy9kiwkZ8zXG5nGXkkqJHN7I9PYK0mFZm5vZBp7JanQzO2NTCuGXkkWkli4NzKNvZJUKBbqjUxjryQVioV6I9PYK0mFYqHeyLRC75VkIYnFeyPT2CtJhWCh3sg09kpSoVioNzKNvZJUKBbqjUwr9F7Jki8kl+qNTGOvJBndUr2RaeyVJKNbqjcyjb2SZHRL9UamFXKvZMkXkrGkBItJgGg1wywI875HtJohWs2IxJM6t45o+ZbKsoBUlh3MMhlcKsumZWU5zCyTgcUSEqzmVJZNRXpf5haJswwHwwjFEpe8ZhYENNeU56lFROoMBcOYnptlk4DmamaZCst8WbaYBDQxy1RgijXLJd8jSURERETqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlUs+W6AUcTjcUjxMBAOQ5IkQAYEkwCT3Y5o1AqbzQZBEPLdTKIlxeNxyDFmmQqbLMtIJBLzZlmwO5hlKhiyLC94Xy6GLAuyLMv5bkS+SJKEQCAAv9+PSCSy6HstFguqq6tRXV0Ni4X1NxmL0izX1NSgqqqKWSbDkSQJExMT8Pv9iEaji76XWSYjU5Jlq9WK6urqgsxyyRaSk5OT6O3tRTKZVHxsfX09amtrC/bTAxWXYDCIvr4+xVkWBAH19fWoqalhlskQmGUqFoFAAP39/SWR5ZIrJCVJQn9/PyYmJrI6jyiKaGpqgs1my03DiBSSJAl9fX0IBAJZnUcURTQ3N8NqteaoZUTKMMtULEoxyyVVSEqShHPnziEUCuXkfBaLBWvXrmUxSbqTJAk9PT2Ynp7OyfmYZcoXZpmKRTKZRE9PD8LhcE7OZ7VasWbNGsNnuWSe2pZlGefPn89ZEQkAiUQCZ8+eRSKRyNk5iZaSznKufvECzDLlh5ZZVjNtiUitdJZzVUQCqQcne3p6DJ/lkikkx8fHMTU1lfPzxuNxDAwM5Py8RAsZGxtjlqkoMMtULPx+f047qtJisZjhs6xpIfl//s//wSc/+Uls374d3/jGN5CvUXStfxCBQADBYFCz8xOlxWIxDA4OanZ+Zpn0onWWJyYmMDk5qdn5idKi0SiGhoY0O7/Rs6xZITk2NoYf/vCHeOGFF/Dyyy+jq6sLnZ2dWl1uUX6/X/MidmhoKG+FMpWO0dFRzXM2PDys6fmJAH2yrOUvd6K0Ur8va9ojmUwmEY1GkUgkkEgkUFNTo+Xl5iVJEsbHxzW/TjQazencCKK5ksmkLlmORCI5nbNGNJeeWeZ9mbSUTCazXgVmOcLhsGGzrLiQlCQJN910Ex555JFLXn/jjTfQ0dGBV199FQBQXV2NO++8E9dccw0++tGP4kMf+hCam5tz02oFgsFgahV5HegRJipdk5OTuvV6M8ukpWAwyCxTUWCWVRSSJpMJ99xzD3784x9n1knq7u7GV77yFTz44IO4+eabAaTmWh06dAi/+c1v8Nvf/hbvvvsu3nnnndy2fhn0rOC1mGhLlKZnLyF7JElLet6XmWXSEu/LKoe2d+zYgaqqKjzzzDMYHBzE3XffjVtuuQV33XVX5j1vvvkmmpubUVlZCYfDgauvvjovcyT1/D8+Go3q1vtJpUfPX76RSIRZJs3oeV+ORCKcv06a0fu+bMQsqyokLRYL9u/fj2eeeQb79+9He3s7vv71r1/ynlWrVuHdd99FNBpFMpnE22+/jTVr1uSk0UrE43Fdr8d1+EgrsVhM1+sxy6QVPe/Lsiwzy6QZPe/Lsiwbck1J1Q/b7NixI1OJP/roozCbzZd83ev14uqrr8ZnPvMZfPrTn0ZzczOuu+667Fqrgt7VuxE/LVBxYJapWDDLVCyYZcCi9sCDBw8CSC30PbeITHvwwQfx4IMPqr1ETui96XmhbLJOhUfvbJlMJbNfAemM92UqFoIg6FrcGTHLqn5TPP744zh06BCeffZZJBIJPP/887luV87Y7XbdriUIQkFssE6FSe8sWyyqP2cSLUrPvYOZZdKSnvdlk8m0YMddPikuJJ977jk89dRT+M53voNNmzZh3759ePLJJ3Wfi7hcoijqdi2Hw2HITwtUHJhlKhZOp1O3a4miyCyTZnhfVlhIvv7663j44YfxyCOPwOv1AgD27t2LqakpvPTSS1q0L2t63rD0vBaVHj3zVVZWptu1qPTwvkzFgvdlBYVkV1cXHnjgARw4cAA33HBD5vXy8nLs2bMHTzzxhCGfJiovL9etK7iqqkqX61Bpqqio0G3eIrNMWmKWqVi4XC7dslxZWanLdZQSZCM+ApRjQ0NDGBkZ0fQaTqcTa9eu1fQaRMwyFYvBwUGMjo5qeo2ysrK8LDtHpWVgYAB+v1/Ta5SXl6O1tVXTa6hVEo9l1tTUaN4rWV9fr+n5iQB9srxy5UpNz08EALW1tZr35PC+THoo9SyXRCFpsVjQ2Nio2flramoMO3eBiovFYkFDQ4Nm56+pqeGcMtKF1vfl2tpaZpl0YbVaNb0v19XV6fpQj1IlUUgCqXkMWsyVcTgchv6kQMXH7XYzy1QUXC6XJvO+RFHEihUrcn5eooW43W7NslxXV5fz8+ZSyRSSANDQ0AC3252z89ntdrS2tnLhZtJdrrPscDiYZdKdIAhobGyEy+XK2TmZZcqHUs5ySTxsM5ssyxgZGcHw8HBW53G5XGhsbDTk4qBUGmRZxvDwcNYP3zDLlG+5yrLb7UZDQwOzTHlTilkuuUIyLRwOo7e3F9FoVNFxZrM5571BRNlglqlYZJPlXPcGEWVjenoafX19irOcngdfSFku2UISSH1ymJ6eht/vx+Tk5KL7ZTqdTlRXV+u6ZhTRcsmyjFAohLGxsWVluaamRte1/IiWS02WXS6XIXf8oNKWzrLf78fU1FTRZrmkC8nZZFlGNBpFOBzOLKxuMpngcDjgcDj4C5cKBrNMxYJZpmJRzFlmIUlEREREqhRuCUxEREREecVCkoiIiIhUYSFJRERERKqwkCQiIiIiVVhIEhEREZEqLCSJiIiISBUWkkRERESkCgtJIiIiIlKFhSQRERERqcJCkoiIiIhUYSFJRERERKqwkCQiIiIiVVhIEhEREZEqLCSJiIiISBUWkkRERESkCgtJIiIiIlKFhSQRERERqcJCkoiIiIhUYSFJRERERKqwkCQiIiIiVVhIEhEREZEqLCSJiIiISBUWkkRERESkCgtJIiIiIlKFhSQRERERqcJCkoiIiIhUseS7AURElB3b++6EYDJDMJlhstggmM0wzfw79cc06+9mCOaLf7/0ffO/J/U+AYJJgCAIF/9uEmASLv7dbFn866aZ4wUT5j2feZ4/lkv+bbr068LFv9stpnmPv+yPkGqTWUi1Ye6/M3+fOffl/8bFY0yp160mU+bvggCYMPO/Ai7/N2a/D6nvP/O+Wf9G+njhsuMEWQZkCYIsAVLy4t9n/5FmvybP+x5h5n3zfl1KQpZmzi8lISeTqfdKSchS6u9yIpb632Ty4vtmH7PI8bIkQU7O/Jn1dyl5+dek5OXvTcYTM68l5xw/+3zyzL9lSEl51mupv0uSfPE9SXnx90vSzGsykrFk6nVZRlKWkZSxyP8u9jUZEhb/elIGviP35PHusjT2SBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVQZZlOd+NICIiY4rFYvjud7+Le+65BzabLd/NUY3fh3EUw/cAFM/3kS32SBIR0YJisRi+/e1vIxaL5bspWeH3YRzF8D0AxfN9ZIuFJBERERGpwkKSiIiIiFRhIUlEREREqrCQJCKiBdlsNtx///0F/zABvw/jKIbvASie7yNbfGqbiIiIiFRhjyQRERERqcJCkoiIiIhUYSFJRERERKqwkCQiosuMj4/jC1/4Aj73uc/h0KFDl3xtZGQEe/bswZ/8yZ/g9ddfz08Dl2Gx7yHtf/7P/4n//M//1LdhyxSLxXDffffhc5/7HJ599tklXzeqpdr7D//wD3jhhRfy0LLlW+h7iEQiuOuuu7B79248//zzeWxh/rCQJCKiy/zoRz/CXXfdhaeffhpPP/30JV/72c9+ht27d+MHP/gBvv/97+ephUtb7HsAgPfeew+/+tWv8tCy5XnllVfw0Y9+FD/60Y/w85//HNFodNHXjWqx9o6NjRVEMbzQ9/DGG2/gyiuvxL/8y7+wkCQiIko7evQorrjiCtjtdpSXlyMQCGS+tnHjRkxPTyMSicDhcOSxlYtb7HsAgH/6p3/CZz7zmfw0bhnS7TeZTGhra8Pp06cXfd2oFmvvk08+aeifQdpC38PatWsRj8eRSCRgtVrz3Mr8YCFJRESXCYVCKCsrAwCIoojp6enM15xOJ77zne/gM5/5DD71qU/lq4lLWux7OHz4MBobG+F2u/PVvCWFQiE4nU4Al7Z/odeNaqH2DgwMIBQKYc2aNfls3rIs9D1YrVb87Gc/w0033YQPf/jD+Wxi3ljy3QAiIsq/H/zgB3j11Vcz/z5y5Aimp6dRVlaGcDicKcgA4Hvf+x6+/e1vo62tDXfeeSeuv/56Q/RMKvkevv/97+Mb3/gGnnrqqXw0dVmcTifC4TAAIBwOo7y8fNHXjWqh9n73u9/F/v378fbbb+ezecuy0Pfwwx/+EF/96ldx/fXX4/7770dfXx8aGxvz2VTdsUeSiIjwhS98AT/+8Y8zf+6991784Q9/QDQaxcTEBFwuV+a9oiiirKwMNpsNgiAgkUjkseUXLfd7CIVCOHnyJO677z785Cc/wd/+7d8iFArlufWX27JlC9555x3Isozjx49neu4Wet2oFmrvkSNH8Bd/8Rf43ve+h+9973s4d+5cnlu6sIW+h/R/CyaTCeXl5YbvHdYCd7YhIqLLjI2N4c///M8RCATw3//7f8cnPvEJ/N3f/R3uvfdejI2N4X/9r/+FRCKBG264AXfddVe+mzuvxb6HyspKAKknhq+66ip84AMfyG9j5xGNRvHVr34Vg4ODuPXWWxEOh3HNNdegqanpktdvv/32fDd1UQt9H+vXrweAzBPbt956az6buaiFvofKykocOHAA0WgUHR0d+Mu//Mt8N1V3LCSJiIiISBUObRMRERGRKiwkiYiIiEgVPrVNRERkENdeey1GRkZgsaR+PcuyjPLycuzYsQMHDhyAyWRCLBbDU089hX/7t39Df38/7HY7PB4P7r//fmzZsiXP3wGVGhaSREREBvLwww9f8uDJiRMncMcdd0AURdxzzz3Yu3cvbDYb/v7v/x6bNm1COBzGD37wA+zZswdPP/00tm3blsfWU6lhIUlERGRgGzduxPvf/34cO3YMzzzzDHp7e/HLX/4ys5ZhWVkZ7rvvPgSDQZw8eZKFJOmKhSQREZFBxeNx/Nd//Rfeeust/Nmf/RleffVVXHPNNfMuQv61r30tDy2kUsflf4iIiAzi2muvhd/vv2Tf5pUrV+KTn/wk7r33Xtx888248cYb8eCDD+axlUQXsUeSiIjIQB566KEFF+euq6vD8PDwvF8LBAIQRRE2m03L5hFdgsv/EBERFYhrr70Wv/3tbzE1NXXZ1/7qr/4K9913Xx5aRaWMhSQREVGBuO2221BbW4v77rsP3d3dkGUZ4+Pj+Na3voXf//73+PKXv5zvJlKJ4dA2ERFRgbDb7fjnf/5n/OM//iO+/OUvY3R0FA6HA16vFz/84Q+5jiTpjg/bEBEREZEqHNomIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpAoLSSIiIiJShYUkEREREanCQpKIiIiIVGEhSURERESqsJAkIiIiIlVYSBIRERGRKiwkiYiIiEgVFpJEREREpMr/DyNDK3tU432XAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAALTCAYAAACljOKvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADygklEQVR4nOz9d3QbV5rujT6FDBAkCALMOQdlWdGSFSxbtmRLsuRsyTnIndw9fcbT55vb65uvr2fNPTN9rqfP3FmdnNrt2JZbDrIsybasbEUri6TEnHMCCSJX3T/UqCYIgARAhALw/taqRbKqULUlPtz11N7vfl+G4zgOBEEQBEEQBOEnokg3gCAIgiAIgohOyEgSBEEQBEEQAUFGkiAIgiAIgggIMpIEQRAEQRBEQJCRJAiCIAiCIAKCjCRBEARBEAQREGQkCYIgCIIgiIAgI0kQBEEQBEEEBBlJgiAIgiAIIiDISBIEQRAEQRABQUaSIAiCIAiCCIi4MpIOhwO/+93vZnSNZ555Bps2bcKWLVvw2GOPoaamJkitIwjfmamWLRYLfvjDH+Kuu+7Cli1b8Oyzz6K9vT2ILSQI3whGv/yv//qvuP3221FeXo4bN24EqWUEERqCoXkhEVdG8saNGzhw4MCMrvGb3/wGe/bswWeffYZnnnkG//zP/xyk1hGE7wRDyw8//DD279+Pzz77DGvXrsX//X//30FqHUH4TjC0fNddd+H9999HdnZ2kFpFEKEjGJoXEnFjJOvr6/HCCy+gp6cHW7ZswX/9138FdJ2kpCT++9HRUTAME6wmEoRPBEPLcrkcq1ev5vU7b948tLW1BbupBDElweqXFy9ejIyMjCC3jiCCT7A0LyQkkW5AuCgpKcGdd96JoqIi7NixY0bX+qd/+iecPn0aAPD6668Ho3kE4TPB1LKTd955B2vXrg3KtQjCV0KhZYIQMrGo+bgxkgBw9epVbN682W3/Y489hoaGBo+f+fTTT5GZmemy7z/+4z8AAJ988gn+4z/+A6+99lrwG0sQUxAsLQPA73//e7S0tOBXv/pV0NtJENMRTC0TRDTgTfPRCsNxHBfpRoQDu92OxYsX49SpU5DL5UG77ty5c3HkyBFotdqgXZMgpiKYWn7jjTewd+9e/OlPf3IJ2yCIcBDsfvn222/H73//e5SVlQWhdQQRfELlRSJJ3MRIdnd3IyEhYUa/uLGxMfT09PA/f/3110hOTkZycnIQWkgQvhEMLQPAW2+9hb179+Ktt94iE0lEhGBpmSCihVjUfFyNSO7cuRPt7e2466678POf/9zva3R1deEnP/kJLBYLGIZBSkoKfvGLX6CysjIELSYIzwRDy93d3Vi9ejVyc3ORkJAAAJDJZNi1a1ewm0sQXgmGlgHgV7/6FQ4ePIj+/n5otVqoVCp8/fXXQW4tQcycYGleSMSNkSQIgiAIgiCCS9xMbRMEQRAEQRDBhYwkQRAEQRAEERBkJAmCIAiCIIiAICNJEARBEARBBAQZSYIgCIIgCCIgyEgSBEEQBEEQAUFGkiAIgiAIgggIMpIEQRAEQRBEQJCRJAiCIAiCIAKCjCRBEARBEAQREGQkCYIgCIIgiIAgI0kQBEEQBEEEBBlJgiAIgiAIIiAkkW4AQRAEEb1wHAeWZWGz2WCz2WC32wEADMPMeCMIQviQkSQIgohBOI6D3W7nDZ7T5E38ebpj3s6fvJ/juJD8GwIxnyKRCDKZDHK5nN+m+3nyMYmEHo0E4SsMF6oegCAIgggKHMfBYrHAaDS6bePj424/WywWfmSQ8B+xWOy3CXXuVygUSEhIgFKppFFVIi4gI0kQBBFmOI6DzWab1hBO/Jll2Ug3m/ADsVgMtVqNxMREqNVq/nvnz87vVSoVGU4iqiEjSRAEESRsNhuGh4cxMjIypSk0Go00YkgAAEQiERISElxMpifTmZCQAJGI1scSwoOMJEEQhI9wHIfR0VEMDQ3x2/DwMP/92NhYpJtIxCgMwyAhIcFllHPy6KbThIrF4kg3l4gjyEgSBEFMwGKxuBjFiWZxeHgYDocj0k0MCxKJBFKplN8m/+xtv0QiAcMw4DiO31iWdfl5phsAr9dkWRYWiwVWqxUWi4XfbDZbhP9Hw0diYiJ0Oh1SUlL4TafTQavVQiqVRrp5RIxBRpIgiLiCZVmMjIx4HVU0mUyRbqLfOBd4JCQkQKVSQaFQeDR905nCyWYwlmBZ1s1cOjdP+72da7FYojpeNSkpyc1gpqSkkMkkAoaMJEEQMYfZbMbAwIBHozgyMhKydDXBQiaTQaVS8ebQaRAn/jxxP01lhhe73e7VcJpMJoyNjWF0dNTlq9FojHSzp2WiyZw8okkpkQhvkJEkCCJqYVkWAwMD6OnpcdkMBkOkm+aCWCz2aAC97aORodjD4XDAaDS6GEzn9xN/NhqNgnzR0Wg0LsZy4nQ5mcz4howkQRBRgdFodDOMfX19EY9ZFIvFSE5Ohlar5b9qtVqo1WreIMpkspibKiZCA8uyGB8fdzGa3r4KZYp9ssnU6/VIT09HUlIS6T4OICNJEISgsNvt6O/vdzONkZwaVKvVvEGcaBa1Wi0SExPpYUmEHY7jMD4+7mYwDQYDBgcHMTg4GPEwDqVSiYyMDKSnpyMjIwMZGRnQ6/UUihFjkJEkCCIiOFPpTDaM/f39YX/4SaVSr0YxOTmZppqJqMRut2N4eBgDAwO8uXRuw8PDEWmTWCxGWlqai7lMT0+HQqGISHuImUNGkiCIkGO1WtHX1+dmGs1mc9jaoNFoPBpFrVZL1UWIuMNut2NoaIg3ls7FaQMDAxgZGQl7e5KTk3lj6dxoajw6ICNJEERQsVgs6OjoQFtbG28YBwcHw3JvmUyG9PR0pKWlIS0tjV8MoNFoaDqNIHxkosmcPJoZTpOpUCjczCVNjQsPMpK4OVpiMBhgMplgMpngcDjAcRxEIhGUSiWUSiXUajWUSiW9HRGCxmKxYHR01E3LYrEYCoUi6FrmOA4jIyNoa2tDa2sr2tvb0dPTE5apaZ1Ox5vG9PR0pKenIzk5mf5GY4Rwa5nwDafJnGwwBwYGwpItQSwWIzU11cVcCn1q3Fctq1SqSDc1IOLaSI6NjaG/v9/nsmZyuZwf4aCOixASY2Nj6Ovr83lBilwuh16v99t4ORwOdHd386axra0No6OjgTbbJ5yjEhMNY1paGsUtxiijo6Po7+8PuZaJ4GOz2TA0NISenh50d3fz2/j4eMjvPXFqPD09HVlZWUhKSgr5fafCXy0rFArodLqo03JcGkmHw4HOzs6Ah+iVSiVycnIgl8uD3DKC8A+73Y6urq6QaXl8fBxtbW381tnZCbvdPpMme0UkEvFpQyaaRloVHR+EWstEZOA4DmNjYy7Gsru7OyzhLklJScjJyeG3zMxMv3Jems3mgEY67XY7Ojs7Ax6hjTYtx52RNJvNaG5uDsrDMDc3FxqNJgitIgj/MZvNaGpqmnEeRYZhkJOTg6SkJPT397sYx4GBgSC11hW1Wu1mGPV6PSU2jlNMJhOam5uDpmXql4WPxWJBb28vbyyd8dShelEFbr6sZmZmIjs7G7m5ubxWPL2oWiwW/O53v8NDDz2ErKwsn+8RTC3n5uZGfFTVF+LKSJrNZjQ2NgY1iWtOTg6Sk5ODdj2C8IVgaHlirJNzxabFYgliK13jmSaaxoSEhKDeh4heTCYTmpqagtov00t+dOKsVDXRXHZ1dYV0alytViMnJwfZ2dnIyclBVlYWZDIZGhoa8O6770IikeC+++7DrFmzpr2WyWRCY2NjUGPEo0HLcWMkHQ4H6urqQvK2U1RUFLVBskT0YbfbUVdX5/cb7/j4OAYHB9Hf38/nkQv2n79arUZubi6/ZWZm0gpLwiuBatkXiouLoVQqg35dIrxMnhp3xl+GaraEYRikp6dDJBKhs7OT37969WqsXr3aa5hNPGs5boxke3t7yBKwymQylJSUQCQSheT6BDGRtra2aePInJ1vb28vbxyD/VbPMAzS0tJcjGO0BYkTkcUXLQeKXC5HcXEx9csxitVqdVnUE46p8aqqKtx3330eF/q1traGbNW6XC5HSUmJYPvWkBrJQ4cO4X/9r/8FjuPw/PPP48EHHwzVraZkbGwMzc3NIb1Hamoq0tPTQ3oPgphKyzabDb29vXyHGmzjKJPJ+Lgi59doCQYnhMfo6ChaWlpCeg9nPlEiPnBOjXd2dqK9vT0k6ciysrLwyCOPIDExkd9nMBjQ2toatHt4Ij09HampqSG9R6CEzEja7Xbcc889+POf/4yEhARs27YNH330UUTiCZubm31O8RMoIpEIFRUV9PZL+MVodQ3UlRU+v2k2NTXxqSQ4juNTbTiTfgfzz1mr1fKGMS8vD6mpqaRvwisz0XKoEIvFqKjwvU1E7GG1WtHV1YW2tja+UMJMdZeYmIhHH30UmZmZAIDGxsaQpziSSCQoLy8XpJZDtkTy8uXLKCkp4UfpVq1ahePHj+Pee+8N1S09YrVaQ24igZtvQgaDgRbeEH5x/f/9CiQJCch77hloly2bspOwWCzo7+/njWNvby+sVmtQ2sEwDLRaLXQ6HXQ6HWbPno3s7OygXJuID2r/5f+BNFmD/GefRfLSJdNqOdQmErgZG28wGAS/WIEIHTKZDPn5+cjPzwfw9yIKzjy4HR0d6Orq8mux1+joKN566y1s27YNBQUFYcmTabfbBatlv40ky7LYuHEj1q1bh5dffpnff+zYMfzgBz/Ar3/9a2zYsAG9vb0uU70ZGRno6ekJTqv9INTJkidCRpIIhNHqalz7+T8isarKzVDabDa0traivr4eN27cCFruNblcjpSUFN44arVal0UxoQgYJ2Kf0avXcPUffo7E2bOmNJTh7peF+PAlIgPDMEhOTkZycjJmz54N4O85TJ3T4devXIFjmkWCNpsNu3fvxoYNG8JWHGF0dFSQWvbbSIpEIuzcuROvvPIKXnjhBWg0GtTW1uKnP/0p/uEf/gEbNmwAAI9TbJEYkjWZTGG7l3FkBNX/1z+H7X5E9GPt6+W/H62uxtWf/yMwby5sq1ehy+FAS0tLUILHk5KSkJKSAr1ej5SUFKjV6in/HsdJy4SfWPv7+e+nM5ThGMFxYhwaQvVvfxe2+xHRiwZAEoAGBh6NpEouR35REXJzc5GXl4eMjAx0dHSEpTQkEN6/G38IaGp706ZN+O///m+88847eOCBB/DCCy9gy5YtePbZZ/lz0tPTXUYgu7u7MW/evJm32E/C+R9vt9owfPhI2O5HxAY2qQSDOh0G9ToM6vSwKBXAjRszuqZCoXApJ+jvohibxUJaJmaMN0MZzhd8q9mMEdIy4SMmhQKWNasAAEqjEclDQ0geHEby0BAUJhOSZs9G/nPPIDkrK/xatlrBsqzgYtUDMpISiQTPP/88/vM//xMHDhxAVVUVfvnLX7qcM3fuXNTV1aGnpwcJCQk4evQofvSjHwWl0f5AU3SE0GAZBgaN5qZx1Otg0GiAGY7Wi0Qi6HQ6pKenIyMjA0lJSYIMyibik8mG0p6ojnSTCMIjnEiEWRcvIXloCHKLewz66NWruPqznyPxb4bSrg6vlh0OR2wYSeDmqOS//du/AQBeffVVt6TDEokEv/jFL/DEE0+AZVk899xz0Gq1M2stQUQpJoXib8ZRjyFdCuxBiKlJTEzkRxxTU1OpvCAheEwtrRitrQXmzwNIr4QAUY2PQ+XDTKaptRVjtddvajnOiy4E/Jf8yiuvAACGhoa8Vq5Yt24d1q1bF+gtgoJIJKJRSSLscADGEhPRl56G3ox0jAfhrVUqlfJlBtPS0qjMIBE1SBITkf3Yo8h68AFIEhJQW1sb0sTRBBEqJElJyHnsUWQ+cH9EtCy00UggQCP5m9/8BocPH8ZHH32Ep556Ch9//DG2b98e7LYFBaVSCZvNFpZ7iSViyNPTAZpRjEs4ACNKJbqTk9GTrMH4DJN1MwyD7OxsFBUVoaSkBHa7PSwpU4Cb+ffkGZRgn/AdS18/MOmlfbKBdKJUKsO2clsikZCWCb/wqOVJBtKJQqEIS4pB4KaWhVhy1m8juWvXLrz11lt4++23UVFRgSeffBKvv/46HnroobAtgfcHpVIZthVVKo0GVZ/uDsu9CGHAcRza29tRXV2NmpqaGZd7U4nFKK2sRGlFBYqKilzqq/b29obNSCakpKDqE9Iy4TtnH3wY5vZ2ADcfutmPPuJmIJ2E00gm6HSkZcIvzt7/IMx/q7PtzUA6USqVYTOSKpUqLPfxF78q2xw5cgQ/+tGP8Oqrr2L9+vUAbpZsW7t2LX7xi1/ggQceCFlDA8VkMqGhoSEs92ppaYFIJMLq1asF+wsnZg7LsmhtbUV1dTVqa2tn9EAUsSy0IwYUFxZi/n1bkJGX53WRzPj4OBobGwO+lz+0tLRALBZj1apVpGXCJ84++DDsBsOUBtJJOLXc1NQEqVRKWiZ85uz9D8I+NjalgXRiNBrR1NQUlnZlZWUhJSUlLPfyB59HJK9evYqf/exnePnll3kTCQBqtRo7duzAa6+9hq1btwpu2FWpVEKhUMBsNof0PmazGRcvXoTdbselS5ewcuVKLF26VJCjtIT/OBwONDc3o7q6GtevX5/RyGBaWhqKi4tRXFwMRXU10teuhcSHGMpwadlkMuHChQtwOBy4ePEibrvtNixdupQW8xBTkvvkE9CvXTPlQ9eJUqmEXC6HxWIJaZvGx8dx6dIlOBwOXLp0CbfddhuWLFlCWiamJPepJ6G/fa1PWlapVGHRMsMwgkxGDoSw1raQGB4eRvvfplxCxZUrV3BjUu6/pKQk3H777Zg7dy6lYolC7HY7mpqaePMYaL4wsViMkpISlJeXo7i4GElJSQG3aWhoCB0dHQF/3hc8aVmj0eD222/HnDlzSMtEUBgcHETn36YPQ8WlS5dQX1/vsk+j0WDdunWYPXs2aZkICuHQsk6n42t7C424MJIcx6GpqSlkycnHxsbw1VdfeazmA9wsD3nnnXeiqKgoJPcngofNZkNDQwNqampw/fr1gN8ypVIpSktLUVlZidLSUr8TgnuD4zg0NjaGLAnudFrOzMzEnXfeicLCwpDcn4gfQq3l0dFRfPXVV16PZ2ZmYv369SgoKAjJ/Yn4geM4NDQ0hGy2SCwWo6ysTHAzvk7iwkgCgMViQX19vdcH5Ey4fPky6urqpj2vsrIS69evp3rcAsNqtaKurg41NTW4ceNGwKv8ZTIZysvLUVlZiZKSkpCFNYRSyxcvXvQppriqqgrr168X7FQLER2EUssXLlzwKQ5z1qxZuPPOO0nLxIwwm81uo9/BIi8vb0YzWaEmbowkABgMBrS2tgb1mnq9HlKpFAcPHkRNTc2050skEqxYsQIrVqyg+MkIYrFYcOPGDVRXV6O+vj7gPGAKhQLl5eWoqqpCUVFR2GKvRkZG0NbWFtRrOpOaf/PNN6itrZ32fIlEgpUrV2LFihUUc0YETKi0LBaL8c033+D69evTni+VSrFy5UrceuutpGUiYEKh5bS0NKSlpQX1msEmrowkEFwzqdfrkZ6ezsfZtLW14auvvvIpHjM5ORnr169HRUUFxemECZPJhOvXr6OmpgYNDQ0BJ6pXqVS8eSwsLIzYdEMwO63U1FSkpaXxWmxtbcVXX33lUzxmcnIy7rrrLpSXl5OWiYAIpZZbWlrw9ddf+6RlrVaLu+66C2VlZaRlIiCCuSbDWbVM6FqMOyMJ3DQU7e3tAce/icViZGVleZwK4TgONTU1OHjwIAYHB6e9VlFREe6++26kpqYG1BZiahwOB65fv84H3bMsG9B11Go1KioqUFVVhfz8fMFUFwi1lqurq3Hw4EEMDQ1Ne63i4mLcfffd0Ov1AbWFiG+CoeXs7GyPU4Acx+HatWs4ePAghoeHp71WSUkJ7r77buh0uoDaQsQ34+PjaG9vh9XqXqvbF6bSshCJSyMJ3MwFODAwgP7+fp9HphiGQXJyMtLT06ed/nA4HDh37hwOHz48bQCuSCTCkiVLsGbNmqAtyohnOI5Dd3c3Ll68iCtXrgQczJ+UlITKykpUVVUhJydHMOZxMoFqWavVIi0tzSctnz17FkeOHPFJy0uXLsXq1atJy4TfsCyL/v5+DAwMhETLdrud1/J0hlUkEmHZsmVYtWoVaZnwm1BrWUjErZF0wnEcDAYDDAYDTCaT2xuERCKBUqmEWq1GcnKy39OY4+PjOHjwIM6fPz/tuQkJCbjjjjswb948wQ9lCxGj0YjLly/j0qVL6OnpCegaycnJqKqqQmVlJbKzs6Pq9xBqLRuNRhw8eBAXLlyY9ly1Wo077riDUl8RAcGyLEZHR2EwGDA+Pu62AC7cWr7zzjsp9RURECzLwmAwYHR0NCRaFgJxbyQnw7IsHA4HOI6DWCwO2i+1s7MT+/bt8yl2IicnBxs2bEBWVlZQ7h3LOBwO1NXV4eLFi6irqwto6lqn0/EjjxkZGTHzsAillr/88kufYs5yc3OxYcMGweY/I6IDh8MBlmWDruWOjg7s27fPJy3n5eVhw4YNyMjICMq9ifgkVFqOJGQkwwjHcbh8+TK++eYbn2pzLly4EHfccYdLvWXiJhOnrgPJD5qWlsabx2gIZhYaHMfh0qVL+Oabb3yq8nPLLbfgjjvugEKhCEPrCMJ3OI7DxYsXcfDgwWm1zDAMbrnlFqxbt460TBB/g4xkBLBYLDhy5AhOnz497QhaQkICNm7ciKqqqjC1TriMj4/jypUruHjxIrq7u/3+vFarxbx58zBr1ixaEBIkzGYzjhw5gjNnzkyrZbVajY0bN6KysjJMrSMI3zGbzTh8+DDOnDkzbV5LtVqNe+65BxUVFWFqHUEIFzKSEaS/vx/79+/3KQF0RUUFNm7ciMTExDC0TDg4HA7U19fj0qVLuH79ut9T11KpFLNmzcL8+fORl5dHI48hoq+vD/v37/cpAXRlZSU2btwItQ/1xQki3PT29mL//v1oamqa9tyqqips2LCBtEzENWQkIwzHcbh+/ToOHDgwbVoKuVyOO++8EwsXLox5Q9Tb24uLFy/i8uXLPk2dTqagoADz5s1DVVUVZDJZCFpITIbjONTW1uLAgQMYGRmZ8lyFQoH169dj/vz5Ma9lIvpwpnE7cOAADAbDlOcqFArcddddtEiSiFvISAoEm82G7777DsePH5+2ykpBQQE2bdqElJSUMLUuPJhMJn7ququry+/PazQazJ8/H/PmzYNWqw1BCwlfsNlsOHHiBE6cODGtlgsLC3HvvffGnJaJ2MBms+H48eM4ceLEtClcioqKcO+991LfQ8QdZCQFxvDwMPbu3TttzU6JRII1a9Zg+fLlgs1v6Assy6KhoQEXL17E9evX/a42I5VKUVVVhXnz5qGgoIBGBATE0NAQ9u7dO23ohkQiwdq1a7Fs2bKo1jIRuwwNDeGLL76YNnRDKpVi7dq1WLp0KWmZiBvISAoQjuNw5coV7N+/f9pk2pmZmdi8eXPUpaTo6+vjp659WcE+mby8PMyfPx9VVVWULFjAODMVHDhwYFotZ2VlYdOmTVGnZSI+cGYqOHDgwLSJ+bOysrB582akp6eHqXUEETnISAoYo9GIAwcO4MqVK1OexzAMbr31VqxevRpSqTRMrfMfq9WKy5cv4+LFiz7lbZtMUlIS5s2bh/nz59NUaJRhNBqxf/9+XL16dcrzRCIRr+VoquxAxA9jY2PYt28fqqurpzxPJBJhxYoVWLVqFWmZiGnISEYBN27cwN69e6cN+k5JScHmzZuRn58fppb5xuDgIM6cOYOLFy/6XUdXIpGgsrIS8+fPR2FhIU1dRzk3btzAF198gdHR0SnP0+l02Lx5M/Ly8sLUMoLwj9raWnz55ZfTalmv12Pz5s3Izc0NU8sIIryQkYwSLBYLDh48iLNnz0577ooVK7B27dqIZsznOA4NDQ04c+YM6urq/P58bm4un/OREv/GFhaLBd988w3OnTs35XkMw2DFihVYs2ZNTFR/IGIPs9mMb775Bt9///2U5zEMg5UrV2L16tWkZSLmICMZZbS2tmLPnj3o7++f8ryMjAxs27YNqampYWrZTSwWCy5duoQzZ85gYGDAr88mJibyU9c6nS5ELSSEQktLC/bs2TOtTjIzM7Ft2zZKIk8IlubmZuzZsweDg4NTnpeVlYVt27ZR/0bEFGQkoxC73Y6jR4/ixIkTUybolkgkuPPOO7F48eKQTwkPDAzw09dWq9Xnz4nFYpepa1rpGF/Y7XYcOXIEJ06cmLKaiEQiwfr167Fo0SIKbyAEic1mw5EjR/Ddd99NqWWpVIr169fjlltuIS0TMQEZySimp6cHn3/+OTo7O6c8r6SkBFu2bAl69QWO41BfX48zZ85Mm65oMllZWViwYAFmz55NU9cEuru78fnnn0+bP7S0tBSbN2+mSiKEYOnq6sKePXum1XJZWRk2b96MhISEMLWMIEIDGckoh2VZnDx5Et9+++2Uo5MqlQqbNm0KSm1Ys9mMixcv4uzZs9NO5UxEJBJh9uzZWLJkCbKzs2fcDiK2YFkW3333HQ4dOjStljdv3ozy8vIwto4gfIdlWZw4cQKHDx+eUssJCQnYvHkzysrKwtg6ggguZCRjhO7ubuzevRt9fX1TnrdgwQLcfffdAZUN7Ovrw5kzZ3D58mW/pq/VajUWLVqEW265hUaSiGnp6urC7t27p40DvuWWW7B+/XoqgUkIls7OTuzevXvaOOBFixZh/fr1gk7fRhDeICMZQ9hsNhw8eBCnT5+e8ryUlBRs3boVOTk5016TZVnU1dXhzJkz01Z1mExubi6WLFmCyspKWqlI+IXNZsPXX389bZaClJQUbNu2jUa4CcFis9nw1VdfTZulQKfTYdu2bcjKygpTywgiOJCRjEEaGhrw6aefTlkxhmEYrF69GrfddpvHBS5msxkXLlzA2bNnMTQ05PO9xWIx5syZgyVLliAzMzOg9hOEk7q6Onz++efTannNmjVYuXIlLdYiBEtdXR0+++wzGI1Gr+eIRCKsWbMGK1asIC0TUQMZyRhlfHwcX3zxBWpqaqY8LycnBw888AA0Gg0AoLe3l5++ttlsPt8vKSkJixYtwsKFCyl4nAgqRqMRX3zxBWpra6c8Lzc3F/fffz+vZYIQGkajEXv27MH169enPC8vLw/3338/kpKSwtQygggcMpIxjLM27L59+6aMaVQoFFiyZAna2trQ1NTk1z3y8vKwdOlSVFRU0Bs0ETI4jsOFCxewf//+KV9wVCoVtm3bhuLi4jC2jiB8h+M4nD9/HgcOHJhWy/fffz+KiorC2DqC8B8yknHA0NAQPvnkE7S1tQXlehKJhJ++zsjICMo1CcIXBgcHsXv37mlrta9evRqrV6+mPH2EYBkYGMAnn3wyrZbXrFmDVatWkZYJwUJGMk5gWRbHjx/H4cOHp0yWOxUajYafvlapVEFuIUH4BsuyOHr0KI4ePTqllouLi7Ft2zbSKiFYHA4Hjh49imPHjk2p5ZKSEmzdupW0TAgSMpJxRFdXF77++mu/p68LCgqwZMkSlJeX0/Q1IRja29uxe/fuKReDJSUl4cEHH/QpQwFBRIq2tjZ88sknU2pZo9HgwQcfpAwFhOAgIxkHtLa24vjx46irq/Prczk5Objnnnto+poQLGazGZ9//vmUi8pEIhHWr1+PJUuW0PQgIVjMZjM+++yzKReViUQi3HXXXWEpe0sQvkJGMkbhOA6NjY04duwYWlpaAr5OVVUVNm/eDLlcHsTWEUTw4DgOp06dwtdffz3l9OCsWbOwadMm0jIhWDiOw8mTJ/HNN99MqeXZs2dj06ZNlIyfEARkJGMMjuNQW1uL48ePT1uD21d0Oh0efPBBpKenB+V6BBEKWltb8fHHH2N0dNTrOTqdDg899BDS0tLC2DKC8I+WlhZ8/PHHU+ZP1ev1eOihh5CamhrGlhGEO2QkYwSWZXH16lUcP3582jKJTsRiMebPn485c+bg6NGjU1aukUgkuPfeezFv3rxgNZkggo7RaMRf//rXKeOApVIp7r33XsydOzeMLSMI/xgbG8Nf//pXNDc3ez1HKpVi06ZNmDNnTvgaRhCTICMZ5djtdly8eBEnTpzA8PCwT5+RyWRYtGgRli1bhsTERAB/Xwl75MiRKT97yy23YMOGDVTykBAsLMvi8OHDOHbs2JTnLVq0CHfffTdpmRAsLMvi0KFDOH78+JTnLV68GHfddRdpmYgIZCSjFKvViu+//x7ffffdlNMfE1EoFFi6dCmWLl0KpVLp8Zz6+nrs3r0bJpPJ63UKCgrw4IMPUioKQtDU1dVh9+7dMJvNXs8pLCzEgw8+6PXvgSCEwI0bN/DJJ59MqeWioiI88MADpGUi7JCRjDJMJhPOnDmD06dPT2n2JqJWq7F8+XLccsstPi00GBkZwa5du6ZMlKvVavHYY49Br9f73HaCCDfDw8PYtWvXlPHCKSkpePTRR0nLhKAZGhrCrl270NXV5fUcnU6HRx99FDqdLowtI+IdMpJRwtjYGE6dOoWzZ89OWe5wIsnJybj11luxYMECSCQSv+7ncDhw4MABnD171us5crkcDz74IJWjIwSN3W7HgQMHcO7cOa/nKBQKPPjgg1SOjhA0drsd+/fvx/fff+/1HIVCgYceegiFhYVhbBkRz5CRFDgjIyM4ceIELly4ALvd7tNn9Ho9Vq5cidmzZ884Zubq1av4/PPPvdaEZRgGd999N5YsWTKj+xBEqLly5Qr27NkzpZY3bNiAxYsXh7llBOEfly9fxp49e7w+E0QiETZs2IBFixaFuWVEPEJGUqD09/fjxIkTuHz5MliW9ekzmZmZuO2221BRURHUZLXd3d344IMPYDAYvJ5DCxeIaKCrqwsffPDBlCmCFi9ejLvvvpuqOBGCprOzEx9++OGUWl66dCnWr19PWiZCChlJgdHd3Y1jx46hurra58/k5eXhtttuQ3FxcciqHYyNjeHDDz+cMm6Sgr2JaGB0dBQffvjhlHGTxcXFeOCBB6BQKMLYMoLwD4PBgA8//HDKuMmSkhLcf//9pGUiZJCRFAhtbW04duyYX2UMS0pKsHLlSuTn54ewZX/HZrPh888/x9WrV72eQ8HeRDRgs9nw2Wef4dq1a17P0ev1ePTRR5GSkhLGlhGEf9hsNnz66adTDj6QlolQQkYyggRaxrCqqgorV65EZmZmCFvnGY7jcOzYMRw6dMjrORTsTUQDHMfhyJEjU+ZOVSqVeOihh1BQUBC+hhGEn3Ach8OHD+Po0aNez1EqlXj44YfDNvBAxA9kJCNEU1MTDh06hLa2Np/OZxgGc+fOxYoVKwRREqu6uhqffPIJBXsTUc+1a9fw6aefTqnljRs34pZbbglzywjCP65cuYLPPvsMDofD43GRSIR7770XCxYsCHPLiFiGjGSYaWtrw6FDh6Ys4TYRsViMBQsWYMWKFUhOTg5t4/zEl2DvlStX4vbbbw9Z7CZBBIOOjg58+OGHUyb3X7VqFdasWUNaJgRNe3s7PvzwQxiNRq/nrF69GqtXryYtE0GBjOQEOI6DxWLh3+ZEIhHkcnlQVrx1dXXh0KFDPsdAeipjKER8WbiwYMEC3HvvvbRyMIyEUsuxii8LFxYuXIh77rmH/h/DCGnZf0ZGRvDBBx+gp6fH6zmLFi3Chg0b6P8xjMSqluPeSNrtdgwNDcFgMMBsNsPTf4dMJkNiYiJSUlJ8qgwzkb6+Phw+fNjnVdi+lDEUGr4Ee1dUVGDbtm2QSqVhbFl8EWotxwNWqxWffvopampqvJ5TWVmJbdu2+Z3kn/AdX7Qsl8uRmJgIrVZLWvaA1WrFJ598gtraWq/nVFVVYevWraTlEOLU8sjICCwWS0xqOW6NpMPhQHd3N4aGhvz6XEJCArKysqb9ZQ8ODuLIkSO4fPmyT9f1t4yh0PBl4UJ+fj4eeeQRSkMRZOx2O7q7uzE8POzX53zVcrzBcRwOHTqEY8eOeT2noKAADz/8MGk5yASqZbVajczMTNLyJDiOw7fffovjx497PaewsBAPP/ww/d8FmXjSclwaydHRUbS3t3sNSPaF9PR06PV6txiTkZERHD16FBcuXPD45jEZlUqFFStWYPHixTExWnfp0iV89tlnXv/t6enp2L59u6Cn66MJg8GAjo6OgLXMMAzS09Oh0+koXmoSFy5cwJ49e7xqOSMjA9u3b4darQ5zy2IT0nLoOH/+PL744guvWs7MzMT27duRkJAQ5pbFJiMjI+js7IwbLcedkezv70d3d3dQrpWUlITc3FwwDIOxsTEcO3YM33//vU/ikcvluPXWW7F06dKoevPwhRs3bmDXrl1eV8EmJydjx44dlGtyhgRTyxqNBjk5OVHRaYWT69ev4+OPP/aqZa1Wix07dlB+vhnS19c3ZTyfP5CWPVNbW4uPP/7Y6/MpJSUFO3bsgFarDXPLYotgajk5ORnZ2dmC13JcGcmBgYEpA+kDQaPRoK6uDidPnvSpFrZUKsWyZcuwfPnyqImBDIS2tja8//77MJvNHo+rVCrs2LEjIrkwY4FQaZkewO60trbigw8+8KrlhIQEbN++nbQcIMF8IXISLQ/gcNPc3IwPP/wQFovF43G1Wo0dO3YgPT09zC2LDeJVy3FjJE0mExoaGkJy7evXr09Z7QW4mcZn8eLFWLlyZdxMH/T29uLdd9/1mh5IJpPhkUceocTlfjI+Po7GxsaQXDszM5NGij3Q09OD9957z6uW5XI5HnnkEUpc7ieh1HJWVhaNFHugu7sb7733ntdUV3K5HI8++iglLvcTo9Hoc1o/f8nOzhb0SHFI15z/6Ec/wuLFi/HSSy+F8jbTwrIs2tvbQ3b9/Px8r6veRCIRFi1ahJdeegl33XVX3JhIAEhLS8Ozzz7r1ZhYrVa89957ftUVj3dCreXu7m5YrdaQXT9aSU9PxzPPPONVyxaLBe++++6Uq70JV0Kt5a6uLtKyBzIyMvDMM894NdlOLV+/fj3MLYteQq3lzs5O2Gy2kF1/poTUSD7++OP493//91DewieGhoa8DuUHA4VCgcrKSpd9DMNg/vz5+PGPf4x77rkHSUlJIbu/kNFoNHjmmWeQnZ3t8bjD4cCuXbtw7ty5MLcsOhkcHAzpw5HjuKBPzcQKycnJePrpp5GVleXxuFPL33//fZhbFp2EQ8vBilWLNbRaLZ5++mlkZGR4PG632/GXv/wFFy5cCHPLopOBgYGQGj2h98shNZLLli2L+Agcx3EYGBgI+X0KCgr4VCCzZs3CD3/4Q2zZskXQw9HhQqVS4YknnkBxcbHXc/bu3YtTp06FsVXCoO1Pb8PU0eHTueHSssFgEPTbbyRJSEjAE088gaKiIo/HOY7DF198gdOnT4e5ZZGn9a23YJ6iMMFEwqXlkZERn2LX4xG1Wo2nnnrKa2gRx3H4/PPPcfbs2TC3LPK0vvkWzD7GoHMch8HBwRC3SNha9ttIsiyLu+++G7/+9a9d9h87dgyzZ8/Gvn37gta4YDA+Ph6W6Q2ZTIbVq1fjxRdfxAMPPAC9Xh/ye0YTMpkMjz76KGbPnu31nAMHDuDkyZNhbFXk6fv6a5x/bDvq/u3/M62hNBqNYTN4/uY+iyfkcjkee+wxzJo1y+s5+/fvjzsz2XfgK5x/9DHU/a//Na2hDKeW/c0VHE84tVxVVeX1nC+//BJnzpwJY6siT+++fTj/yKOo//f/mNZQjo2NxX2/7Hc6e5FIhJ07d+KVV17BCy+8AI1Gg9raWvz0pz/FP/zDP2DDhg2haGfATFVvNNikpaUhLTUVHMuG7Z7RhIhhsPW++5CgUnl9yH514AA4lsXy5cvD3LoIwXGAw4HeL79E74EDSLvrLuQ8+QSUHkIBwqnl0dFR6GnRjVdEDINtW7dCpVR6HbHZv28fWIcDy5YtC3PrIgTHgXM40PvFXvTt24/UDXcj9/EnoMh2DwUIp5bHxsZIy1MgFol4LXsLMdr35ZfgWBZLliwJc+siB+dwoGfPHvR++SXSNm5AzuOPQ+EhrCXsWhbgIFVAq7btdjvuuusubN26FQ888AAeeughrFu3Dv/yL//idu7p06fx3nvv4b/+67+C0mB/aWlp8brSMtgwNjuGf/KTsNyLiGHEYo+Gsrm52etKy2DDWK0YfumnYbkXEbswYrFHQ9nU1BS2BzBjsWD4pz8Ly72I2IURiz0aynBqWSwWu63HEAIBxUhKJBI8//zzeOedd/D888+jqqoKv/zlL4PdtqDgLfdbKGA5GokkgsDfRignT3mHVcs0qk4EAecI5fnH/jbl3XFzyjuUix8nw86gghlBOLk5QvkFzj/6GOr//d/58I1w9ssOh2NGFflCRcB5JI1GI5YvX478/Hz85S9/gUqlcjvn2WefxbVr12AymaDRaPDf//3fmDt37owb7Q81NTVh+4/nrFYYaBSHCDZiMdI23A3rXXeDk/odjRIQnNkMw8/+ISz3IuIIsRjpGzfActdd4LykTAs23Pg4DD//H2G5FxE/MGIx0u69F+Y77wDCpGUAKC8vF1w55YD/9a+88gqAm4HMYrHY4zlvvPFGoJcnCAIAGAb6NWuQ/fDDaDGbBfk2ShA+wTDQr12LrIcfRvP4OMWSE9GLSAT9utuR9dCDaDYa434GJyAj+Zvf/AaHDx/GRx99hKeeegoff/wxtm/fHuy2BQWpVEoPXyL6YBjob78duU89CdXf0nNI6upIy0T0wTDQr1t3U8t/q/wjuXGDkoUT0YdIhNQ71iHnySeh+lvln3Br2dvAXSTx20ju2rULb731Ft5++21UVFTgySefxOuvv46HHnpIcMOtAKBUKsMWwyBTKJD1yCNhuVcs0t3dNWWJqdzcXOTk5IaxRaGnd+9e2CcuBmMY6G9fi9ynnuINpBOlUhm22DKZUklangFdXV1obvau5by8PGRn54SxRaGn54sv4Ji4GMyDgXSiUqnC9vCVJySQlmdAV1cnmpubvR7Py8v3WnAiWunZsweOiQtoRKK/a3lS6UilUhk+LcvlEIlCmv47IPwykkeOHMGvfvUrvPrqq5g/fz6Am9Vr3nzzTXz22Wd44IEHQtHGGaFUKsOWR0yVmIjcH/8oLPeKRQoBSM6exZdffunxeB2A1bNnYc2aNeFsVkgZOnnyppH0MAI5GaVSGbY8YgkaDXJIywFTCEBy5ozXvLp1ANbOnYNVq1aFtV2hZPD48ZtGkmGgv+MO5D75hJuBdBJOLatIyzOiEIDo1CkcOHDA4/E6AOvmz8PKlSvD2q5QMnDkyE0j6WEEcjJKpRIjIyNhaZentShCwGcjefXqVfzsZz/Dyy+/jPXr1/P71Wo1duzYgddeew1bt24V3LBrUlISOn2stjBTNBpNWO4TyyxevBgMw2Dv3r0ejx85cgQSiSR2Oq2JozZeDKSTpKQkdPlYbWGmkJZnzpIlS8AwjNcXo0OHDkEsFmPFihVhblmIYBjo77xzSgPphLQcXSxbtgwMw2D//v0ejx88eBBisThm8v8yYjFS1985pYF0kpSUFLbyhULVcsCrtqOJtra2kL8xSCQSlJeXg2GYkN4nXvj+++/xxRdfeD1+77334pZbbglji0KDpa8P8tRUn89vbW2FwWAIYYtuxhWXlZWRloPEuXPnvL4YAcDmzZuxYMGCMLYoNJCWY58zU4yyA8CWLVv42cpoxl8thyNftZC1LLzJ9hAQjkzwqampgvwFRyu33HILNm3a5PX43r17UV1dHcYWhQZ/OisgPFrW6/Wk5SCyaNEi3HPPPV6P79mzBzU1NWFsUWgQopapXw4uS5YswcaNG70e//zzz1FbWxvGFoUG0rJ/xIWRVCqVIf1FK5VKpKSkhOz68crChQuxefNmj8c4jsPu3bvR2NgY5lZFFpVKBV0Iy72RlkPDokWLcO+993o8xnEc/vrXv0650CwWCbWWVSoVtFptyK4fryxevNjrixHHcfj444+nXJwTiyQkJIS03xS6luPCSAI362DL5fKgX5dhGOTk5Aj2TSHaWbBggdc3YIfDgQ8//BAdf6v8Ei+kp6dDJpMF/bqk5dByyy234O677/Z4zKnlcMVzCwXScnSyaNEi3HXXXR6PORwOfPDBB2GLgRUK6enpIclcIxKJBK/luDGSIpEIBQUFQf1FMwyD/Pz8kBhU4u8sXrzY60ptm82G9957D319feFtVARxalkSxGoKDMOgoKCAtBxili5ditWrV3s8ZrVa8d5776G/vz/MrYocodRyKAwq8XeWLVuG2267zeMxq9WKd999FwMDA2FuVeQQi8UoLCyMSy3HxWKbidhsNjQ3N884H59YLEZeXh4SEhKC1DJiKjiOw/79+3HmzBmPxxMTE/HMM88gOTk5vA2LIKTlmzXBrVYrLBbLlNvkc1iWBcdxId0AeNzPMAxYloXdbvf4b5JKpSgvL0dCQgKkUmlAmxBzzU2F1WpFS0tLULScn58v2DQpsQbHcdi7dy++//57j8c1Gg2eeeYZJCUlhbllkcNqtaK5uXnGuSWjSctxZySBmw+f/v5+9Pb2BvT5pKQkZGVlBfXNg5gejuPw6aef4vLlyx6P63Q6PP3001FpiAKFZVn09fUFPCIbKS07HI5pzZ83Ezj5GOGOSCTyajITEhKgUqmQkJDgcZPL5RGZRpupljUaDTIzM6lfDjMsy2L37t24du2ax+N6vR5PP/10VBiiYMGyLHp7ewOeXYg2LcelkXRisVgwMDCAoaEh+PLfkJiYCJ1OB7VaHYbWEZ5wOBz4y1/+grq6Oo/HMzMz8eSTT8bdFK3ZbMbg4KDPWk5KSkJKSkrQtWy32zE6OorR0VGMjY3x30/cxsbGwlZtivAfkUjk1WR6MqDBjgsLRMs6nS6uXiCFhjMusqGhwePx7OxsPPHEE4Kfog02ZrMZAwMDGB4ejmktx7WRdOJwOGA0GmEymWAymeBwOMBxHMRiMRQKBZRKZUg6TCIwbDYb3n33XbS2tno8XlBQgO3bt0fN21wwmaxl5/TpTLXscDimNIbO700mUyj+WYSAkclk05rNicd8nXYPlZaJ0GC1WvHOO++gvb3d4/GioiI8+uij1C/HoJbJSBJRidlsxp/+9Cf09PR4PF5eXo6HHnoo6mLFwo2zg5vOII6Pj0e6qUQMIBaLodFooNVqXbbk5GRotVooFIpIN5GYASaTCW+99ZbX8ISqqircf//91C/HGGQkiahlbGwMb775ptda6osXL54yeW684AzhcG6Dg4MYGBjAyMgIjEZjpJsXNkQiERQKBWQyGSQSCRiGCesGwGWhjc1m4zfndC7LshH+X4osSqXSzVw6t6SkJMGV4CXcMRgMeOutt7zWUl+2bJnX1EFEdEJGkohqhoaG8Oabb2JsbMzj8Q0bNmDJkiVhblX4sdvtvEF0fnVu0W4WZTIZ5HI5/9XXbfL5Qp9SGxwcxJtvvun193XbbbehvLwcNpvNzYj6ulksFoyPj0dlCALDMPxo5mSTqdVqoVQqBZ1rL54YGBjAW2+95VXLsVLilrgJGUki6unt7cVbb73lcQEHwzB49NFHUVpaGoGWBReWZTEyMuJxdNHb279QkEgkSExM5De1Wg2FQuGTGYynabDu7m786U9/8pgGh2EYbN++HcXFxTO+j8PhwPj4OIxGo8dt8jGbzTbje4YamUzmZi6dpjM5OVnwLxKxRldXF95++22vWt6xYweKiooi0DIi2JCRJGKCtrY2/PnPf/aYm08mk+HZZ59FWlpaBFrmHxzHYWxszKNZHBoagsPhiHQTXRCLxW4GceLPzi1SKWWikdbWVvz5z3/2+LuWy+V49tlnkepnLeCZYrVavRpPT/uFOEWv0WiQlpaG9PR0ftPpdHH1ohJuWlpa8M4773jV8nPPPReWOtVEaCEjScQM165dw8cff+zxmEajwXPPPSeY1E02mw29vb0uhtFpGoWQG1EkEvlkEBUKBRnEEHDlyhXs3r3b47Hk5GQ899xzgk0RwnEczGazm7kcGxvD8PAwhoaGMDQ05DUcJZyIxWKkpqYiPT3dxWQKpZ+IBS5fvoxPPvnE4zGtVovnnnsurnJMxiJkJImY4ujRozh06JDHYzk5OXjiiSfCnmLBbDaju7sbXV1d/Nf+/n6f8oqFArFYjJSUFH4BgyeDSPFmkefw4cM4cuSIx2O5ubl44oknonq61mazuRjLoaEhl58jOZ2uUqlcRi7T09ORmpoa1f/fkeTQoUM4evSox2N5eXl4/PHH6f82iiEjScQU01W/mT17NrZt2xYyk2Q0Gl0MY1dXl9dV5aHEuTBBp9O5bCkpKdBoNDSdFwVwHIfdu3fj6tWrHo/PnTsX9913X0wafo7jMD4+7mIyJxpNg8EQ9hcxhmGg0+ncRi81Gk1M/g6CCcdx+Otf/+q1+s28efOwZcsW+n+MUshIEjGH3W7HO++84zVh+erVq7FmzZoZ3YPjOIyOjvJm0WkcDQbDjK7rL2q1mjeIEw2jVqulN/wYwG634+233/aa5Hnt2rVYtWpVmFsVeRwOB0ZGRjyazMHBwRnX7PYHuVzuYiyd38dbda3psNlsePvtt9HR0eHx+O23347bbrstzK0iggEZSSImGR8fx+uvv+51NHDbtm2YM2eOT9fiOA5DQ0NupjFcSbrlcjn0er2bYUxJSaGHVRxgNBrx+uuve12Z/8ADD2DWrFnhbZTAMZlMbuayr68PPT09YYtBTk5OdjGW2dnZcT96OTY2htdffx0jIyMejz/44IOoqqoKc6uImUJGkohZ+vr68MYbb3gcnRCLxXjyySeRm5vrsp9lWfT397sYxu7u7pCPcEgkErdRRefPKpUqrh8+xM0UV2+88YZHEySRSPDkk08iJycnAi2LLjiOw/DwMHp7e9HT08Nvg4ODYZkqV6vVyM3NRW5uLnJycpCZmRl3Mwc9PT148803vWr5qaeeQnZ2dgRaRgQKGUkipmlsbMS7777r8SGhVCqxZcsWl7jG7u5ujymEgoler0dmZiYyMzP5FCRJSUlkFokpqa+vx/vvv+9RywkJCXjuueeQnJwc/obFADabjR+x7Onp4Y1mqGcdxGIxsrKykJOTw5vLxMTEkN5TCNTV1eGDDz7wqGW1Wo3nnnsOGo0mAi0jAoGMJBHznDt3Dnv37g37fUUiEdLS0pCRkeFiHGUyWdjbQsQGZ86cwb59+zwey8jIwDPPPBP2rASxCsdxMBqNLiOXPT096OvrC2mezOTkZN5U5ubmIj09PSYXx50+fRr79+/3eCwzMxPPPPNM3I3WRitkJImYxWw2o7W1FS0tLbh8+XJI89ZJJBJkZGS4mEZKF0KEgn379uHMmTMej82fPx9btmwJc4viC4fDgYGBAbfRy1AttJNKpcjOznYxl0qlMiT3Ciccx+HLL7/EuXPnPB5fuHAhNm3aFOZWEYFARpKIGcbGxnjj2NLSgp6enpDcRy6XuxjGjIwM6PX6mBw1IIQHy7L44IMPUF9f7/H4pk2bsHDhwjC3ijCZTG6xl729vSHJh6nX63lTmZubC71eH5WhMSzL4v3330dDQ4PH45s3b8aCBQvC3CrCX8hIElEJx3EYGRnhTWNraysGBgaCfh+VSsWbRadx1Gq1UdlpE7GDxWLBG2+8gb6+PrdjYrEYzz77LDIzMyPQMmIizowPHR0daGtrQ1tbG3p6eoK+sEehUCAnJ4c3l9nZ2VGT0cFsNuONN95Af3+/2zGJRIJnn30WGRkZEWgZ4StkJImogOM49Pf386axpaUl6FNJDMOguLgY2dnZvGlMTEwk00gIkv7+frz22mseV78mJyfjhRdeiIkp0FjDarXyxrK9vR1tbW0wm81BvQfDMEhLS+Onw/Pz8wW9EKuvrw+vvfaax9FbrVaL559/nrQsYMhIEoKEZVl0d3fzprG1tTUseRuLi4vx2GOP0TQ1ERVUV1dj165dHo+Vlpbi0UcfpRchgcNxHAYGBvgRy/b2do8jzTMlJSUFxcXFKC4uRkFBgeBGLK9evYq//vWvHo+VlZXhkUceIS0LFDKShCCw2+3o7OzkTWNra2tQEwfL5XLk5eUhPz8feXl5qK6uxqlTpzyeu2rVKqxduzZo9yaIUHLgwAGvWl6zZg1Wr14d5hYRM8VkMrlMh3d0dAS1P2QYBrm5uSgqKkJxcTGysrIE8fK8f/9+nD592uMxqnwjXMhIEhGBZVl0dHSgvr4eLS0taG9vh8PhCNr1ExISeNOYn5+PtLQ0l46SZVm88847aG5u9vj5xx57DKWlpUFrD0GECofDgT//+c9eS4Lu2LEDxcXFYW4VEUxYlkVvb6/LdLi3ql2BoFAoUFhYyBtLrVYbtGv7g8PhwNtvv422tja3YwzDYMeOHSgqKopAy4ipICNJhA2j0YiGhgbU19ejvr4eJpMpaNdOTk7mTWN+fj5SUlKmnQYZGxvDH/7wB49pgRQKBXbu3CnouCKCcDI6Ooo//vGPHrWsVCqxc+dOSvAcY4yNjfGmsr29HR0dHUF7GU9JSeFNZUFBARQKRVCu6wsGgwF//OMfYTQa3Y6pVCrs3LkTSUlJYWsPMT1kJImQwXEcOjs7UVdXh/r6enR0dATt2nq93mXEMdCHZGtrK95++22PCYYpKS4RTbS0tODtt9/2uCI4KysLTz/9NGk5hnE4HOju7uanw9va2jA6Ojrj6zIMg5ycHN5YZmdnh3wavKmpCe+8845HLefk5OCpp56CWCwOaRsI3yEjSQQVk8mEhoYG3jwGY4EMwzDIyMhwiXFMSEgIQmtvcurUKRw4cMDjMUqKS0QT3333Hb7++muPxxYtWoR77rknzC0iIsnIyAiam5vR2NiIhoYGj6N8/iKXy12mwVNSUoLQUndOnDiBb775xuOxxYsXY+PGjSG5L+E/ZCSJGcFxHLq7u3nj2N7ePuMcaSKRCNnZ2fw0dW5ubkhXGHIch7/+9a+4du2ax+NbtmzB/PnzQ3Z/gggWHMdh165dqKmp8Xh869atmDt3bphbRQgBjuPQ29uLhoYGNDQ0oKWlJShT4VqtljeVhYWFQZsG5zgOH330EWpraz0e37ZtG+bMmROUexEzg4wk4Tdms9kl1nGmpQclEgny8vL4Ecfs7Oyw1wu2WCx4/fXXPSbFlUql2LlzJ3Q6XVjbRBCBYLFY8Nprr3lM0C+TybBz586QjSIR0YPNZkNraysaGhrQ2NgYlEpgDMMgOzvbZRp8JlPQZrMZr732GgYHB92OyeVy7Ny5M2ILg4i/Q0aSmBbnm2xdXR3q6urQ1tY241HHlJQUlJSUoLS0FAUFBYKI3ZoqKW5WVhaeeeYZisshooLe3l68/vrrHrWck5ODp59+WhDpXgjhMDY2xk+BNzY2zniAALj54lJYWIiKigqUlZVBpVL5fY2enh68/vrrsNvtbsdyc3Px1FNPkZYjDBlJwiMWiwWNjY38lPVMg7bFYjEKCwt58yjUEZFr167h448/9njstttuw+233x7mFhFEYFy5cgW7d+/2eGz16tVYs2ZNeBtERA3OwQOnsWxpafFo5PyBYRgUFBSgoqICFRUVfq28vnTpEj799FOPx9auXYtVq1bNqG3EzCAjSQC42XH09fXxxrG1tdXjSmZ/SE5ORmlpKT/qGO7p6kDZs2cPzp8/77afYRg89dRTyMvLi0CrCMJ/Pv/8c1y4cMFtP8MwePrpp5GbmxuBVhHRht1ud5kG7+7unvE1s7OzUVFRgcrKSp/Chj799FNcunTJbT/DMHj22WeRnZ094zYRgUFGMo5xOBxoampCbW0t6uvrMTIyMqPricVi5Ofno7S0FCUlJdDpdFFZ0spqteKPf/yjxxgzjUaDF198Max51QgiUKxWK/7whz94jDHTarXYuXOn4ErlEcJnbGwMTU1N/MKdmU6Dp6Wl8aYyPT3d43PDYrHg97//PYaHh92OpaSkYOfOnZDJZDNqBxEYZCTjDIfDgebmZly7dg21tbUzTgqu0Wj46erCwsKY+UPu7OzEG2+84XFUdu7cudi6dWsEWkUQ/tPR0YE33njDY1zz/PnzsWXLlgi0iogVnLNZztHK5ubmGU2DJycn86YyNzfXxVS2tbXhrbfe8qjlBQsWYPPmzQHflwgcMpJxQDDNo0gkQn5+Pm8e9Xp9VI46+sKxY8fw7bffejxGqSeIaOLo0aM4dOiQx2MPPPAAZs2aFeYWEbGK3W5HW1sbn0+4t7c34GslJCTwMZWFhYUQi8U4fPgwjhw54vH8hx56CJWVlQHfjwgMMpIxCsuyaGpqQnV1NWpqamZkHhMTE/lYx8LCwriZCmNZFn/+85/R0tLidkwul+PFF1+kEopEVMCyLP70pz95rGGsUCjw4osvUglFIiQMDg6ipqYGtbW1aG9vD/g6crkc5eXlKCsrw3fffYfOzk63c5RKJV588UUqoRhmyEjGECzLuow8BlpVhmEY5OXl8aOOaWlpMTvqOB3Dw8P4/e9/D4vF4nYsPz8fTzzxBKWeIKKCoaEh/P73v4fVanU7VlBQgCeeeCJu/86J8GAwGHD9+nXU1taiqakp4DRyEokEDofD4+eLioqwY8cO0nIYISMZ5QTLPCYkJPCjjkVFRbSYZAJTpVFZt24dVq5cGeYWEURgXL58GZ988onHY3fccQdWrFgR5hYR8YrJZOJNZUNDw4zTC01k/fr1WL58edCuR0wNGckoxGkendPWMzGPlZWVmDVrFvLy8mhkbQp2796NK1euuO0XiUR49tlnkZWVFYFWEYR/cByH3bt34+rVq27HRCIRnnvuOWRmZkagZUQ8Y7VaUV9fj9raWty4ccPjDJA/MAyDRx55BGVlZUFqITEVZCSjBJZl0dLSgmvXrpF5jABmsxm///3vPaZI0ul02LlzZ9TkySTiG7PZjN/97ncwGAxux/R6PV544QXSMhEx7HY7mpub+bjKQJ91wM20QrNmzcKcOXOolGIIISMpYIJtHquqqpCfn0/mMUBaWlrw9ttve4zLWb58OdavXx+BVhGE/zQ3N+Ptt9/2eGzFihW44447wtwignCHZVm0tbXxpnImuY5zcnIwZ84czJo1CwkJCUFsJUFGUmA4zaNz2tpoNAZ0HZVKxY88knkMHt9++y2OHTvmtp9hGDz33HM0xU1EDd988w1OnDjhtp9hGDz//PM0xU0ICo7j0N3dzZvKvr6+gK7DMAyKi4sxZ84cVFRUxEzu40hCRvJv2Gw2mEwmmEwmOBwOADdjhhQKBZRKJWQyWchWgZF5jB4cDgfefPNNj6kn0tPT8fzzz0MsFkegZX8nklomogeHw4E33ngDXV1dbscyMjLw3HPPRVTLHMfBbreTlgmP9Pf3o7a2FjU1NR77Y1+QSCSoqKjAnDlzUFxc7FHvLS0tSE1NhUqlCritHMfBZrPBbDbHpJbj2kiyLIuRkREMDAzAbDZPea5EIkFKSgpSUlIgkUiCcv/e3l5cunQJly9fDrjElNM8VlVVoaCggMxjGOjt7cUf/vAHj1Vv1q5di1WrVoW9Tf5qWafTQavVBk3LRHTS09ODP/7xjx61HKmMBCzLYnh4GAMDA9MuuiAtEwAwMjKCs2fPehxh9xWlUomqqirMmTMHeXl5vKl77733MD4+jieeeMLvHMr+aFkqlSIlJSUqtRy3RnJ0dBTt7e38m4E/pKenB1zRxWg04sqVK7h8+bLHkQBfUCqV/MgjmcfI4K26glgsxs6dO5Gamhq2thgMBnR0dPitZYZhkJ6eHrU10YngcOjQIRw9etRtv1gsxg9+8APodLqwtYW0TMyEgwcP4vjx4zO+jkajwezZs1FcXIx33nkHHMchPz8f27dv93kh2sjICDo7O+NCy3FnJFmWRWdnp8fC7/6gVCqRm5vrU3yF3W7HjRs3cOnSJdTX13t8+/flfmQehYPD4cAf/vAHj3E6ubm5ePrpp0PeCbAsi46OjhkFoAM3tZWXl0crdeMUu92OP/zhD+jv73c7lpeXh6eeeoq0TEQFdrsdv//97zEwMBCS65eWluLhhx+eMuQjHrUcV0bSGYsYaAziZCQSCYqKijyaSY7j0NHRgYsXL+LatWvTTjd6wmkendPWkY69I1xpb2/HG2+84fHYhg0bsGTJkpDd25lLdCapMSYylZaJ2KetrQ1vvvmmx2P33HMPFi1aFLJ7k5aJYNLa2oq33nrL47Hy8nIMDg4GvFAHAGbNmoVt27Z5HMxxOBxobm6eUUniiUilUhQWFgpey3FjJDmOQ0tLS8CxiN6QSqUoLi7mYxqGh4dx+fJlXL58OaC3IqVSiYqKCn7kkcyjsNm/fz9Onz7ttl8mk+GHP/xhSOoXh0vLRHyxb98+nDlzxm2/TCbDj370o5DULw6llktKSqj/jFP27t2Lc+fOue2Xy+X44Q9/iPHxcVy5cgVXr171mE91OhYuXIh7773XZaSe4zg0NzcHbaDKiUwm87oQSCjEjZEcHBwMeGXXdCQlJWFwcBCXLl1Cc3Oz35+XSCSorKzE3LlzUVhYKGjBEK5YrVb87ne/8xgqUVJSgsceeyzo04IDAwMBx9dOh0ajQW5ubkiuTQgbq9WK3/72tx6n5MrKyvDII49ElZaTk5ORk5MTkmsTwsZiseC3v/2tR5NYXl6Ohx9+GAzDgOM4tLa24vLly6iurvZr5nDlypVYt24d/3N/fz+6u7uD0v7JCF3LITOSXV1d+Kd/+icMDAxALBbjhz/8ITZs2BCKW02L1WpFXV1dwAXifeHUqVPo6Ojw6zP5+fmYN28eqqqq/F4NRgiHxsZGvPPOOx6Pbd26FXPnzg3avcKh5by8vJCMPhHCp76+Hu+9957HY/fffz9mz54dtHuFQ8v5+flITEwM2fUJ4VJXV4f333/f47EHHngAs2bNctnncDhQX1+PK1eu4Pr16z7V/r7zzjtx6623wmKxoL6+Pm61HLI5LLFYjH/+539GZWUlBgYGsHXrVqxevXpGuZgCZWBgIKS/YOBm1nxfjKRWq8W8efMwd+5cKtkUIxQVFWH+/Pm4ePGi27H9+/ejuLjYayUF1m6HyI+p5P7+/pBrube3l4xknFJSUoJ58+bh0qVLbsf27duHoqIir324ELXc09Mj2IcvEVpKS0sxZ84cXLlyxe2YU8tKpZLfJxaLUV5ejvLyclyvqcGHH3007T2+/vprKJVKpKWlhaVfFqqWQ7b0Ny0tDZWVlQBu1iLWaDQzXsUUCCzLYmhoKOT3ycjI8Lq6Si6XY+HChXj66afxk5/8BKtXryYTGWOsX7/eo1k0mUzYv3+/189d3PljtP75XTh8CM52OBxh0bLZbA7awgci+li/fr1Hszg+Po4DBw54/dzF53+A1nfeh8M0/fRgOLUcrIUPRPRx9913e9Sy0WicUsut//T/QnZ9E0QeUvckJCQgIyMDZWVlWLhwIQwGQ8hWiU/EmZhfiPg9IsmyLDZu3Ih169bh5Zdf5vcfO3YMP/jBD/DrX//abQr7ypUr4DguIiW3DAZDQOl2/EUikaCwsBA3btwAcDMXVElJCebOnYvy8vKoWMJPBI5SqcTGjRuxa9cut2NXr17F/PnzUVxc7HbMNjSEhv/8/6H1T+8i76kdyH7wfognvCVPZHR0NORvvU6Gh4cjMntARB6VSoWNGzfi448/djt2+fJlzJs3D0VFRW7HrAODaHj1/6D1T39G3lNPIPuBbRArFR7vYTAYwqplpZe/KSK2UalUuPvuu7F79263Y5cuXcL8+fNRUFDgsp9lWTBjYyhu70BxazsS7t2ItPs2ITk1FYmJiW5rGIaGhvwOawsUoWo5oBjJTz75BK+88goOHToEjUaD2tpaPPbYY/jRj36EZ5991uXcoaEhbN++Hf/6r/+KhQsXBq3hvtLV1RWWtwUAGBkawoVTp1CmT0WpTg+VwJfsE8Hn5MmTHhd1qdVq3HnnnW4pI+r/v/8H1gn5+6RarVdD2dnZicHBwdA0fBJyiQRJza1huRchPDgAJ787ia4udy0nJSVh3bp17lr+3/8J68Df9SlN0Xo1lOHUskIiRWJzS1juRQgPDsB3J054XAiTlJSEO+64w20RWd1/vArbhBFzmS4FeU89gaz7t7ppuaOjIyyj68DNAQtPAxKRJiAjabfbcdddd2Hr1q144IEH8NBDD2HdunX4l3/5F5fzrFYrnn76aTz44IO47777gtVmv2hoaAjbcDBrNmPg+R+F5V5EbCNN0SLvyceR/eA23lCGVcsmEwZe+HFY7kXENp4MZX19fUC5dQOBGzehfydpmZg5Mr0OeU89ftNQKsKvZYZhUFVVJbiKNwHFSEokEjz//PN455138Pzzz6Oqqgq//OUvXc7hOA7/83/+TyxbtixiJhIAbDZb2O4ltF8uEb3YBofQ8J//hZP3bkXrn9+Dw2SC1WqNdLMIwm9sg0NoePX/4OS99/ExlOHsl+Mkwx0RBqz9A6j/37/BqU3b0PbeB3CYzWHtlzmOC6isc6gJeLHNpk2b+NGRV1991S1u4Pvvv8eXX36Jb775Blu2bMGWLVtw/fr1mbU2AKgTIaIZp6G88vN/Ahumt16CCAVOQ3n1H38B1mKJdHMIImCchvLqP/5PsJbwvuAL0dMEnP7nlVdeAXAzBtJTAu1FixahtrY28JYFCRolJKKZhNISFO58Dvq1q1F7/bog30YJwhfUZaUo2Pkc9GtWkZaJqEZdXsZruaamJiwLep0I0dMEZCR/85vf4PDhw/joo4/w1FNP4eOPP8b27duD3bagIJfLfUosGgyE+AsmopOJBpL526IGuVwetrQ8pGUiWEw0kE4ty2SysMX7kpaJYDHRQDp1JZfLw6ZlkUgkyMp3fi+22bVrF/71X/8Vb7/9NubPn4/f/e53+Oijj/DVV18JMsVNd3c3+iesig0lCpkcqTRlQ/yNcaMRu3btgt3uPvKyYuUKVFRUoPoXv4R5Qom4hNISFLzwLFJvX8M/dJ2EMwMBaZmYiHFsDLt2fexxFPG2225DWXkZrr38f8HS08vv92QgnYRTy0q5HHozaZm4ydjoGD7+2LOWV69ehZLSUlz9+S9csml4MpBOwpmBQKVSeUy9FWn8GpE8cuQIfvWrX+HVV1/F/PnzAQCPP/443nzzTXz22Wd44IEHQtHGGRHOXHgJiWpoykrDdj9C2GgALLBZ8e2337odO9rchLn33gOR4mZpTE8jkJNRqVRhe/iqkxKhySAtEzdxavnQoUNux440N2LOvRsh+lu6M3VZKQpefB761bcJQssJiYnQlJKWiZtoAMyzmnHkyBG3Y4ebGjH7no0Qyf+m5SkMpBOVShU2I+mtQlqk8dlIXr16FT/72c/w8ssvY/369fx+tVqNHTt24LXXXsPWrVsFN+yqVqshFovDEo9D1WqIySxfvhwXL15062jGx8dx+PBh5JWWoOhHL05pIJ0kJiZCJBKFJR6HtExM5tZbb8XFixfdcuYZjUYcPnwYOeVlKP6Hl6Y0kE5Iy0QkWbFiBS5duoTh4WGX/WNjYzhy5AiyystQ8j9+NqWBdJKUlBQ2LScnJ4f8HoEQUB7JaKOnpwd9fX0hvYdQh5yJyHPjxg188MEHbvsZhsHOnTuRnp7u87VIy0QkuX79Oj788EO3/QzD4MUXX0RaWprP1wpH2FFCQgIKCwtDeg8iOqmpqcFHHuppi0Qi/OAHP4Ber/f5WuEI1VCr1W5VeIRCyGptCwmdThfykVJ/zAARX5SVlaHUw9Qax3HYt2+fX+kcwqHljIyMkF6fiF7Kyso8VtbgOA779+/3S8t6vd6tOk6woX6Z8EZFRYXHF2aWZUnLfhIXRlIikSA7Oztk19fpdIKNXSCEwV133eXRALa0tODatWs+X0cikSArKyuYTXNBp9NRjW3CKwzD4O677/b40GxqakJNTY3P1wp1v6zX60nLhFem0nJDQ4Nfea+lUmlI++XU1FRB1th2EhdGErgZxxCKWBmFQiHoNwVCGOh0OixbtszjsYMHD/qVokqj0ZCWiYih1+u9avmbb77xKx49KSkpJHFfSqXSr2l2Ij5JTU3FkiVLPB77+uuv/dKyRqMJmZZTU1ODft1gEnBC8mgkKysLLMtiZGTE58+wLIuvv/4aVqsVS5YswZkzZyCTyXDnnXdCqVSioKAg5EPaRGywatUqXL58GaOjoy77h4eH8f3332Pp0qU+XyvYWlapVHGhZY7jYLPZwLIsOI6LyCYSiSCVSiGRSCCVSt22aPgdOLU8Njbmsn9oaAjnz5/H4sWLfboOwzDIzs4Gy7IwGAw+35+0TASLNWvW4MqVKzAajS77BwcHceHCBSxatMin68SzluNisc1EOI5DX18fent7pz8ZwIEDB2A0GiGTyWCxWCCXy2G1WpGYmIiXXnpJcKvUCWFz+fJlfPLJJ277VSoVXnrpJcjlcp+vxXEcent7fV58E81aZlkWFovFbbNarR73T3Wu0Ls8sVjs0WBO3rwZ0ek2pVIZlCTdly5dwqeffuq2PyEhAS+99BJkf0sH5AvB0nJSUhJ+8pOfCFrLhPC4cOECPv/8c7f9arUaL730kl85suNRy3E1IgncfGtIS0tDYmIi2tvbYZkm6bLVaoVMJsPGjRtx9epVzJ49G19++SWsVmtU/IIJYTFnzhycPHkS3d3dLvvHx8dx8uRJrFmzxudrMQyD9PR0JCUlCV7LHMfBbDZjdHQUo6OjMBqN0xq+iZvNZgtp+4SEw+GAw+GAOUS11RmGgUqlQkJCAr9N/nniJpPJPBrPuXPn4uTJk+jp6XHZbzQacerUKaxatcqvNgVDyxaLhfplwm/mzZuHU6dOuQ0wjY2N4fTp01i5cqXP13JqOTExER0dHXGh5bgbkZwIx3EYHx/HwMAARkdHPY5U9PT04Pjx4ygtLcVjjz2G999/H3V1dXj88ccpRQoREA0NDXj33Xfd9stkMrz00ksBLdziOA5GoxGDg4Nh1TLHcbBYLLxBHB0dxdjYmMvPzo1qK0cnEonEq+EcHR3FqVOn3D4jk8nw05/+NKDFLpHSMhHfeEvTJpfL8dOf/jSgxS5OLQ8MDGBsbCxmtRzXRnIizgeiyWTiH3gikQi//e1vIZFI3N4WGIbBL37xiwi3mohGOI7DO++8g6amJrdjS5YswYYNG2Z8/WBo2Wq1ejSEk81iPI0WEr6jVquRk5PjYj6dix61Wq1PYRzULxPhguM4/OlPf0Jra6vbsVtvvRV33nnnjK8fq1qOu6ltbzAMA4VCAYVC4bLfWZDdOdTc2toKq9VK6X6IgGEYBuvWrcPrr7/uduzcuXNYtmzZjFZlT6flvXv3wmq1orm5GTabDXK5HF999ZXbSKLVag24DQQxNjaG2tpar8dVKhVvKpOTk/nvtVotXy3Em5ZlMhnMZrNbv6xWq0P9zyJiFGe//NZbb7kdO3PmDJYuXYqkpKQZXT9WtUwjktPQ1dWFP/7xj2AYBhzH8V9nzZolyNriRPSwa9cuVFdXu+2fO3cutm7dOqNrT5xSGRgYwODgINrb29HS0jKj60YDEokEcrnc4yaTySCXyyEWi8EwTEQ2lmVhs9mm3Ox2+7Tn2Gw2wS8cChSRSMSnuZpsMrVaLfr7+/Hmm2+69cvB+Nsh4psPPvgAN27ccNu/YMECbN68Oej3a21txVtvveWm5Xnz5uG+++4L+v1CAY1ITkNGRga0Wi1fX9bZcTc0NIBlWcEvyyeEy9q1a1FTU+NmBi5fvoxbb73Vp5yOZrMZg4ODvGF0msaBgYFpg7yFxnTmz5dNJpNFTYD6TOE4Dg6HwyfD6dwsFgvGx8dhNBpdNqFphWVZDA0NudX1diKXy13qGzv/hurq6mC32yGR0KONCIx169Z5NJIXL17E8uXLg57TMTc3F2q1mk+lNdFjOI2l0KG/tmlgGAZlZWU4ffq0y36z2YzW1lbB1r4khI9er8eCBQtw/vx5t2MHDx7EY489BgCw2+1ezeLk3GdCQqlUQq1WIzEx0W1Tq9VQKBQuBjAaOkwhwTAMJBIJJBLJjKte2O12jwbTaDR63O9PAv1Q4M34mkwm/Nu//RsfizlxNDMlJQWpqal+pSUi4o+0tDTMmzcPly5dctnPcRwOHTqEhx56KKj3c3qMyc+BsbExdHZ2hrT6U7AgI+kD5eXlbkYSuPn2S0aSmAmrV6/G5cuX3R7MdXV1eO2112A0Gv1KOh4O5HK5myn0ZBZpVCh6kEgkSEpK8ikGzJnUfbK5HBgYwMmTJyM+3c5xHEZGRrz+3aSkpCA9PR1paWlIT09Heno6tFotvcgQPGvWrMHVq1fdMk3U1NSgvb0dOTk5Qb1feXm5xwGFuro6MpKxQl5eHuRyudtbcDzEmxHBhWVZDAwMoKurC93d3RgcHIRUKvU4wtPZ2RnWtkmlUiQlJU1pENVqNY3oxDkMw0Amk0Emk7ktCuM4DidPnnT7THZ2NjZt2oSRkRF+ynp4eJj/Ppwr/wcHBzE4OOhSF1wqlfLGcqLBFHJ9YyJ0JCcnY9GiRR4HkA4ePIgnnngiqC8ehYWFkEgkbs+BaPEYZCR9QCwWo6CgwK2Ie1dXF59MlCAm43A40Nvby5vGrq4u9PT0RCxdjkwmg16vh8FgcCttxzAMXn75Zb8qOBDEZFauXInz58+7vXR3dHRgZGQEZWVlbp9xLgzzZDCHhob8KjcXKDabDR0dHejo6HDZn5SU5GIs09PTodPp4iYON55ZtWoVLly44Ja9orm5GQ0NDSgpKQnavaRSKfLy8tDY2Oiyv729HQ6HQ/B6IyPpI3l5eW5GkmVZtLe3R03SUCJ02Gw29PT0oKurizeOPT09/GKAcCEWi5GSkgKdTsd/dW4JCQlgGAYnTpzAN9984/I5juPQ3t6OwsLCsLaXiC1UKhVWrFiBb7/91u3YoUOHUFpa6jaSwzAM1Go11Go1cnNz3T5nt9tdRjInms2+vr6QJro3GAwwGAyor6/n94lEIqSmprqNXqrVapoejyFUKhVuvfVWHD582O3Yt99+i+Li4qD+vj0ZSbvdjs7OTo9/F0KCjKSP5Ofne9zf0tJCRjLOMJvN/Aij82t/f3/YYsMYhkFycrJHs+jMvzcVU2mZjCQxU5YuXYozZ864jXp3d3ejrq7O46jkVEgkEl7fk2lpacGf/vQnt/3OKffh4eGg/12yLIuenh630pBKpZI3lROnyWmUP3pZvnw5zp4967aosaurK+ijklP1y2QkY4TMzExIpVK3acloiWEgAsNoNLoYxq6uLq8pSUKF881Yr9cjJSUFWq12RgtZMjMzPcbjeKroQBD+IpPJsGrVKnz55Zdux44ePepxVDJQsrOzIRaL3UYlU1JSsGPHDrAsi5GREQwODqKvr483gH19fUFfeW4ymdDc3Izm5maX/TqdDunp6cjKykJubi7/LCGEj1PL+/btczt29OjRoI5KetNyS0uLX7W+IwEZSR8RiUTIy8tDQ0ODy/729nbKWxYDcByH0dFR3iw6zWOo47MUCgU/2qLVanHmzBmYTCaXc8bHx5Genh60t1+xWIzc3Fy3Eo1tbW1REY9DCJ8FCxbg+PHjbn8/HR0daGpqCtosjkQiQU5OjtsLfWtrK5/n15n+p7i4mD/OsiwGBwd5Y9nb24uenh4MDw8HpV0TcabschYfEIlEyMzMRG5uLnJycpCbmzujiilEaFm4cCGOHz+O0dFRl/1tbW1oaWkJWuYWqVSK7Oxstxf6trY2weesJvfjB56MpMPhQGdnJ/Ly8iLUKiIQxsfH0draivb2dn60cXx8PKT3TExMRGZmJjIyMpCZmYnMzEwkJSW5vNEmJCR4HMk5duxYUKdR8vLy3Iyk3W5HV1dX0FNbEPGHRCLBrbfeiv3797sdO3bsWFDDgfLy8tyMpM1mQ1dXl9fUKSKRCHq9Hnq9HrNmzeL3WywW3lRONJjBTNjOsqzbwh6NRsObytzcXKSnp9MLnUBwavnAgQNux44dOxbUFIB5eXluRtJisaCnpweZmZlBu0+wISPpB1PFMJCRFDYGgwEtLS1oaWlBa2sr+vr6Qno/rVbrYhozMjJ8qp26YMECHD161C2+rLW1FS0tLV416C9TaZmMJBEMFi5ciGPHjrnFlzU3N6O1tTVofWZ+fj6OHTvmtr+lpcXvHHxyuZw3c06ceSknGsyenh4MDAwELf7Smffy2rVrAG6al+zsbBdzqVKpgnIvwn+cWp482NDY2BjUvJL5+fk4fvy42/6WlhYykrGCtxgGii0TFhzHYXBwkDdfLS0tIZmyAm4ufNHpdPwIY0ZGBjIyMgLOPyeRSLB8+XJ8/fXXbscOHDiA9evXg2VZcBzn19fJ+ybWdJ1IbW0tn9PMuUmlUv57WpVK+IpUKsWyZctw8OBBt2NfffUV7rjjjoC06+mrJ2pra1FQUDBjLTsXtyUnJ7ssFLLb7S5xl06jGYxqU3a7ne+7nKSkpPCmMicnB6mpqYKe7owlZDIZli1b5jEbwbFjx/Doo48G5T65ubke++XW1lYsW7YsKPcIBQwX6TIEUcZbb73lZhxlMhl+8Ytf0B91hOA4Dr29vfxoY0tLi9uIXjAQiURIS0tzmZpOT093ySPKcRzMZjPMZjMsFgu/efrZarV6PS/caYN8RSwWuz2QJRIJ5HI5VCoVlEolVCqV141KIUYPnrQ8na497Y83LY+NjfGmsre3F93d3ejt7Q36/4NcLkdOTg4/apmdnQ2FQhHUexB/x2Kx4De/+Q3MZrPbsRdeeCFoI4Z//OMf0dXV5bJPpVLhH//xHwXbd9KIpJ/k5+e7GUmr1Yru7m5kZWVFqFXxhcPhQFdXF28cW1tbPf5xzwSJRMKPLjpHGjUaDUwmE0ZHRzE6OorW1lZcu3aN/9m5hTKvXaRxOBxwOBwBx4yJxWK3B7KnB3ZCQgI0Gg0UCoVgO89oheM4WCwWN92Ojo5ibGyMtOwj02lZrVYjLS0NS5cuRUJCAgYHB9HW1ob29na0tbXNOCbbYrGgoaHBJW4/LS3NZRFPSkoK/f0ECblcjiVLluDo0aNux44fP44HH3wwKPfJz893M5Lj4+Po7+9HampqUO4RbMhI+slU8ThkJEODzWZDe3s7P9rY3t4e1Oowcrkcer0eGo0GCQkJkEqlYFkWY2Nj6OvrQ2NjI0ZHRyNWkSaWcDgcvEnxBblcDo1Gg+TkZP6rc9NoNFCpVPSgnIDVanUzg5420vLMmYmWZ82aBZlMBqvVitHRUfT396O/v3/Gbert7UVvby++//57ADdHsnJycpCfn4+ioiKkp6fT38sMWLp0KU6dOuVW7aa6uhp9fX1BMXr5+fk4deqU2/6WlhYykrFCTk6O1xiG5cuXR6hVsYXZbOZTK7S2tqKjoyOo00JyuRxKpRIMw8BsNsNkMnksj0ZEHucq2t7eXo/HpVKpR6Pp/D4Wq43YbDa+XrQztYzz+2DE5xGhwRctq1QqiMVi2O12GI3GGY8Ij4+P48aNG7hx4waAm1khiouLUVRUhKKiIiQmJs7o+vGGSqXCokWL8N1337kdO378OLZu3Trje3hbhNba2opFixbN+PqhgIykn8jlcmRmZqKzs9Nl/+SfCd8xGo0uK6q7u7uDen2RSORiRJ2xW0T0Y7PZphzNEYvFvKnU6/VITU1FWloaUlNTA14QFQ4cDgeGh4d5ozjRLIaj9jQRfmw2G0ZGRkJ6D6PRiMuXL+Py5csAbk6FFxUVobi4GPn5+ZQo3QeWL1+OM2fOuCW0v3LlClavXo2UlJQZXV+lUiE1NdUts4iQPQYZyQDIyspy+6UaDAZYLBbI5fIItSp6sNvtaG1tRV1dHerr64MypTMVQg32l8vlUCgUkMvl/KZQKCCTyfj9TU1NbpUyAKCwsBC33norGIaBSCTy+yvLsrDb7fj2229RW1vrdv27774bwM2Hm91u5zebzQaHw+Gy32azwWKxYHx8HOPj44L6/3Y4HPzo3eQ6tomJiUhNTXUxl6mpqWFbsOBMKzPZKA4ODmJoaChsJTeDgS9abmxs9FgJLFhaPnjwIK5fv+52/Q0bNoDjuKjXcihwjpCeOnUKYrEYeXl5/IhlRkZGzI3mBwO1Wo2FCxfizJkzLvs5jsOJEyewadOmGd8jOzvbzUgODg4KtmAEGckA8Ban0N/f73fesnhhZGSEN46NjY0xFaOlUCiQmJjIb2q1GgkJCW4P1Yk/+7p6eeHChfjNb37jNsXV3NyMTZs28TWFAyU/P9+jkczLywtoFaJzIYfzQexpM5lMbvsigTO+bbLBTEpK8mgwZ/KS6HA40NfXx1dMcm6TY60ijVKpdNOySqUKipbnz5+P//qv//JYAm7z5s1ITk6eUdvz8vI8Gsm8vDxkZGT4fT1ftWw0Gl1+jlYcDgeampr4QgUqlcplGpyq7/ydW2+9FefOnXN70bh48SJWrVoFjUYzo+vr9Xq3fRzHYWBgAGlpaTO6diggIxkAnn7JABnJiTgcDrS2tqK+vh51dXUhTwAeCmQymctD1dOmVqtDOh3kfPs9e/asy36O43Dy5Els3LhxRtf3puW+vr6AjCTDMFAoFFAoFD5P8bAsC7PZ7PKANhgMGBkZwfDwMP81XPF/BoMBBoPBrYqVRqNxMZeZmZkec/k5szg4KyZ1d3ejr68voiug5XK5m2496TmUpV6TkpIwf/58fiGIE5ZlcerUKX4UPFCmesEPxEgGQ8tGoxGjo6MuOh4ZGYmKWNbx8XFcuXIFV65cAXDz/3fiNPjEtGfxhkajwfz583H+/HmX/SzL4vTp01i/fv2Mrj+VxyAjGSN467Ci0SwFE4PBgPr6etTX16OhoUFwoy0TYRgGGo0GOp0OKSkpSE5OdnvQCiVMYcWKFfj+++89vv2uXbt2RrF+Uz18w4VIJOJTpkyFM4ZseHjY7cE8PDzs8+rZQHFWH6mvr+f3SSQSpKSkQKFQgOM4jI2NYWhoKKTtmIwzYXZKSopHLScmJgrmob9y5UqcP3/ebdr+woULWLNmzYzCCoTQLweq5cl6DrWWA6Gvrw99fX04ffo0xGIxcnNzUVxcjOLi4ricBl+5ciUuXLjgpuXz589j9erVM3p+CEHL/kBGMgCcJmPygo1wPnyFAMuyaGtr46ese3p6It0kNxITE3mzqNPp+O+1Wm1IR1+CiUajwdy5c3Hx4kWX/TabDd9//z1WrlwZ8LWTkpL4NCQTEaKWpVIpXx/ZE3a7HQaDwe3B7Fy0EopRILvd7nUVbrDxpGWdTofk5OSo0XJycjLmzJnDL/ZwYrVacf78edx6660BX1uj0UAqlbqFzcSClifqWQir8x0OB5qbm9Hc3IyDBw9CpVLxU+DFxcVxMQ2u1Woxa9YsXL161WW/xWLB+fPnZ5TFJTk52WMVPSFqGSAjGRAMwyA1NRXt7e0u+4X6thBMxsbG+OnqhoYGQax+VqlULibR+TUlJUUwIzEzZdmyZW5GEgDOnDmD5cuXBxyAzTAM9Hq92+KxaNSyc3TQ2zTk+Pg4+vr60Nvby4+u9Pb2RixG0xOetKzT6aDVamNGy8uXL3czkgBw+vRpLF26dEZa1ul0blkfYlXLTh1P1HOktDw+Po6rV6/ypkqv1/PxlQUFBTGj3cksX77czUgCf9dyoNXuRCIR9Hq92+CMULVMRjJA9Hq9m5EcGhqC3W6PmtEBX2BZFh0dHfyo4+SM++FErVbz1WZSU1P5h2w8lAVLT09HUVGR28KQ0dFRXL16FfPmzQv42p6MpJBXCAaKSqVCfn4+8vPzXfYbjUZ0d3ejvr4e7e3tGBgYCMuiCWfsXXZ2NoqKipCfny/olETBIiMjA4WFhfyiDicGgwHV1dWYM2dOwNdOTU11M5IDAwNgWTamStiqVCoUFBSgoKDAZb/RaPRoMMO9CMiZkss5DV5UVISKigqUl5cjISEhrG0JJVlZWcjPz3fLRjAyMoKamhrMmjUr4Gt7MpJC1XLsOJ4w421V1eDgoCCDYf3BaDS6xDpGYiWiVqvlSxM6yxSq1eqwt0NILF++3M1IAsCpU6cwd+5cMAwDk8nktxnxFI/DsiwGBwcFW0lhplgsFr5aUmtrK9rb293ywoUas9mMzs5OdHZ24uzZs1Cr1SgsLOS3ma5iFjLLli1zM5IAcPLkScyePTtgLXvql1mWxdDQEHQ6XcDtjRYSEhJ4/TjhOM6rwQx2aVlPOBwO1NXVoa6uDl988QXy8vJQUVGBysrKGa9uFgLLly/3mNbq5MmTqKqqCqqW7XY7RkZGZpytI9iQkQyQqYJho81IchyHzs5O/o89nIlPnWECE01jRkZGXIwy+ktxcbHHRLXd3d34/vvv0dnZifr6evz85z/367pTrRCMFSM5NjbGm0Zn0nuh5WkcGxtzWSWbnJzsYixj6UWqtLQUer3eLearq6sL58+fR0dHBxobG/Gzn/3Mr+tO1S/Hg5H0BMMwUKvVUKvVKCoq4vc7F4d1dXWhvb0dnZ2d6OjoCKm55DiOLz5x4MABZGZmorKyEhUVFVHb15SVlSElJQWDg4Mu+zs6OnDhwgW0tbWhubkZP/3pT/267lRaJiMZI0z18I0GnMHS165dw/Xr18MSWyOVSpGenu4yypiWlhZToQChhGEYLF++HJ9//rnbsb179wJAQKNYU3VYlZWVfl9PCIyOjqKhoYGvljS5k58pk7WsUqlgNpvR1dWFzs5OdHd3zzjdz/DwMC5cuIALFy4AuPl7KigoQGFhIQoKCqJ6GpxhGCxbtgxffPGF2zHnvkAqhER7vxxOGIbhV/WXlZUB+PusWnt7O182tru7O2SJ2bu6utDV1YVvv/0Wer2eH6nMzMyMmlXgTi1/+eWXbsf27NkDAAG9xEylZefvSyjQEzxAnCslJ0+HCTUYFnA1j7W1tSGfstbpdMjLy0NeXh6ys7Oh0+kEF9sRbcyZMwcHDx70umozkJQTWq02qlYIesLhcKCtrY0PyQh2BgG9Xo+8vDzk5uYiJycHKSkpHrW8YMECADenoHp6eviRnvb29hmbWed0pDOnaGZmJm8sozGv39y5c/Htt996fYkNRMvO38tk4yPkfllIOBcs6XQ6Pu7abreju7ubN5YdHR1BfzEDbvY3x48fx/Hjx5GUlMSbyry8PME/N+bPn49Dhw55faYGMsOm0+nAMIzbzIkQtUxGMkBEIhF0Op3bA0toD1+WZdHU1ITq6mrU1NSEzDwyDIPMzEzeOObl5cVUULUQGBoawunTp6fMzxnIw9ep5clpbITYYU1keHiYN45NTU1By1sqEolctJybm+u3liUSCbKzs10KFJhMJpeHcUdHx4xmApyjOSdPnoRIJEJ2djZvLHNzcwU90j84OIgzZ85MWeEqEC2LxWKkpKS49cNC65ejCYlEgpycHOTk5PD7gq3lyRgMBpw5cwZnzpyBUqlERUUFKioqUFRUJDhdDw4O4vTp01PGWAeiZYlEAq1W62bahahlYf1GoozU1FSPRpLjuIgOy7Msy488hso8SqVS5OTk8A/bnJycqBsRiSbsdjs+/fRTtLa2TnleoLGler3ezUgKQcsTsdlsaGlp4c3jwMBAUK4rlUqRm5vrMnoeCi0rlUqUlJSgpKQEwM1pxOHhYXR0dKClpQXNzc0BPyScOV3b2tpw7NgxiMVi5Ofno6ysDGVlZYKKqbLZbPj000/R1tY25XmBJnROTU31aCSFpOVox5uWnQvYmpqagvb3aTKZ+BAPqVSK8vJyVFRUoKSkJOJFI2w2Gz755BO3DC6TmYmWyUjGOJ46Z4fDAbPZHPb4pYnmsbq6OugB0yqVymW0MSMjI6ZSwwgdiUSCxx9/HHv27PGYg89JoB2Wp3g0u90Oi8USsYVPztqyTuPY0tISlJXVzjRAubm5yM/PR0ZGRkSmzhiGgVarhVarxezZswHcjO101jtuamrCyMhIQNd2OBxobGxEY2Mj9u/fj7S0NJSVlaG8vBzZ2dkRNVRSqRRPPPEEPv/8c35hkScC1Z2nftlqtcJms9HLboiYqGVn+iaDwYDm5uYZa3kiNpuNz1cpEolQXFyMyspKlJeXT1tNKBQ4tfzZZ5/h2rVrXs8LtF/2pGWz2Sy4NIPCaUkU4m26a3x8PCxG0mker1y5gpqamqAmB9dqtS7G0RmvQUQOiUSC++67D3q9Ht9++63HcwLtsKbScjiNpMViQVNTE28eg/Hw0Wq1LsYxJSVFsFpOTEzE3LlzMXfuXAA3wxmampr4B/LY2FhA1+3t7UVvby+OHz+OhIQEfqSyqKgoIuZKIpFg69at0Ov1OHTokMdzQqFlMpLhIykpideyc8Ry4kvSTKvzsCzLZxoBgLy8PMyaNQsVFRVhrawjlUpx//33Q6/X48iRIx7PCbQPnUrLQqoeREZyBnh7AzIajSFLNeE0jxcvXsT169eDFhcmk8lQVFSEkpISFBcXx3QOu2iGYRjcdttt0Ol0+OSTT9xG6AJ9K/f2ufHx8YBWz/qDwWBATU0Namtr0draOuMVonK5nC/VVlJSEtW56pyjPAsXLgTHcejv7+cfxM3NzQHNPBiNRn6qUCKRoKioiDeWiYmJIfhXeIZhGKxatQo6nQ6ffvppyLVsNBqpX4sQE0csJ2q5sbGRL7U401k0Z2qvffv2ISMjA7NmzUJlZWVY0j4xDIM1a9ZAr9fjs88+c9NyoANLU2mZjGSMMNXbQjBhWRYtLS24cOECamtrpwxQ94eMjAw+ziUnJ4emqqOIqqoqJCcn44MPPnAZpQp2hxWqtFDDw8P8ArDp4ot8ITMzkzeOsaplZ87V1NRULFmyBCzLoqenhzeWLS0tfvcNdrsdN27cwI0bNwDcrNThnAJPT08Py8jtrFmzeC1PHKUKVMvh6peJwJmo5aVLl4JlWXR3d/MvSIFoeSLd3d3o7u7GwYMHkZKSggULFmDOnDkhf6mcPXs2r+WJeot1LZORnAGhfPg6zeP58+dx/fr1oJhHhULBG8fi4uKYSnAcj2RlZeHZZ5/F+++/z6+wDnaHNdPpp4kMDAzw5nGmpTadwf7FxcVxq2Xn6vLMzEzceuutcDgc6OzsRGNjI1/u0V+clXYOHz6MpKQk3lQWFBSENCYrOzub17JzMUG0vBQRM0ckEiErKwtZWVlYsWIFHA4HOjo60NTUhLq6OnR0dAR87cHBQRw8eBAHDx5EWloabrnlFsyZMydk4Wc5OTl47rnn8N577/ELjmJdy2QkZ8BUw86B4DSP33//PW7cuBEU85idnY3S0lKUlJQgMzNT8Pm4CP9ITk7GM888g7/85S9obm4WVIfFcRz6+vpQU1OD6upqt1Xh/sAwDHJycvhRR9KyO2KxGLm5ucjNzcXq1athNBr50caGhga/+xODwYBz587h3LlzkMlkKCkpQVVVFUpLS0MSa6jVanktt7S0hGQ6kIgOxGIxH5+/evVqjI2Noa6uDtevX0dDQ0PAi+56e3uxb98+7Nu3D1lZWVi8eDFmzZoFqVTq9TOBrPafqOXW1taQhGkICTKSuLmiz2AwwGQywWQyweFwgOM4iEQiKJVKKJVKqNVqKJVKF0EF4+HrLBl19uxZ1NXVzdg8KhQKlJeXo7S0FEVFRVFd/YLwDYVCge3bt2PPnj2QSCTo7+9307JYLIZCoQiploGbeu7p6eFHHmeSqiIxMZE3jqRl/0lISMCCBQuwYMEC2O12NDU14fr167hx4wZGR0f9upbVakV1dTWqq6shkUhQVlaGWbNmobS01OND+Ny5cygvL/c75lKpVGLHjh34/PPPIRaLA9JytEwHEr6jVqt5LdtsNjQ1NeHGjRuora0N2FR1dnbis88+w549e5Cbm4tly5ahrKzM7QX1448/xuzZs/2u8qVSqfD444/j008/9VnLk/vhaNFyXBvJsbEx9Pf3e10JybIsRkdHMTo6it7eXsjlcuh0Omi1WjAMA4lEAplM5rbgxZdf8sDAAE6cOIHq6uoZr7ZOTU3FnDlzUFZWhrS0NMGuSCVCh9lsxrx58zA6OupRfyzLwmazuWhZr9cjOTkZDMNAKpVCKpW6vcj4omVnrXaneRwaGgr435GXl4eysjKUlJSQloOIRCJBaWkpSktLwXEcuru7eVPpb5iB3W7nTaVUKuVNZUlJCaRSKTiOw/Hjx3H69Gk89dRTfidzN5lMmD9/PgwGg0eT4IuWPVVqEtrDlwgMp+bKyspwzz33oKurC9evX0dtbW1Asx7OmcCWlhaIxWIUFRXh1ltvRX5+PjiOQ21tLWpqavDYY4/xeTN9xWQyYeHChRgeHvb48jZZywqFAjqdjteyXC73WKlJaFqOSyPpjCXyN7WIxWJBZ2cnhoaGkJOTA7lcjoSEBJ+NpMlkwvHjx3HlyhW/RwQmk56ejvnz52PWrFlhXWlJCAu73Y6uri5ey74uMrFYLHypM6eWVSqV29+ENy1zHIe2tjZUV1ejtrY24DQ9DMOgoKAAlZWVqKioIC2HAWcVqszMTKxZswYGgwE3btzA9evX0dTU5FeNcJvNhmvXruHatWuQyWQoLy9HWloar4c///nPePLJJ32a2gumlhMSEmAwGFzOE9rDl5g5DMPwsZVr167FyMgIbty4gZqaGrS0tPidAcLhcPAphWQyGfR6PX+N999/H0899RTy8vKmvY7dbkdnZyevQV+1bDabPfbLkwe7hKbluDOSZrMZzc3NM0psbDKZUFdXh9zcXKhUKrcRmIm/ZJZlcf78eZw+fXrGGekzMzOxYMECVFVVUflBAmaz2e8H/2RMJhPq6+uRk5ODhIQEN0M4eUSor68Ply9fxpUrVwI2jyKRCIWFhbx5JC1HlqSkJCxatAiLFi2C1WpFQ0MDH1vpzwPLarW6JRjv7e3Fu+++iyeeeGLKXHomkwnNzc1B07JKpSIjGYdoNBosXrwYixcvhsViQWNjI65duxbQmgOr1YrOzk7+Z47j8Pbbb+O5555DZmam188FU8tOjzHZSFKMZAQxm81obGyccZ46J21tbR7jg4xGIxobG3H06FG0tbUFfD/n29bChQtRWVlJMWIETzC17Bxd9KTl8fFxjI6O4urVq7h8+TK6u7sDuodYLHapQkFaFiYymQyVlZWorKwEy7Lo6OjA9evXUVNT41aqzVe6urrw3nvvYceOHR6TjJtMJjQ1NQVVy54WAwnt4UuEFrlc7qblixcvzqhsMMuyeOONN/Diiy9Cr9e7HTeZTGhsbATHcTNtPjiOQ2trq0ctC+2liOGC8S+OApxD1sEosTaRc+fOoaWlJWjXc65OveWWW1BeXh6x8nSEcLHb7airq5vRG68nzp4961bL2xmjGEg34YzLq6ysRFlZWcTr4hKB41xE5ZzGDiQOtqCgAI899pjLC0uotHzmzBm3Wt4KhQK/+MUvgnofIvrgOA5dXV04c+YMamtrA1qjIJVK8eMf/9glKXiotHz69Gm3VF4qlQovv/xyUO8zE+JmRLKrqyvoJhIIvIzXRJzmcfHixSgvL6cyXsSUdHV1Bb2zAjxr2V8DKZPJUFpaiqqqKpSUlJCWYwSGYZCRkYGMjAzcfvvt6OrqwrVr11BdXY3h4WGfrtHc3Ixdu3bh4Ycf5mPGwqlls9kMh8MRk8nqCd9xzvTdd9994DgOHR0dOHnypF9ZU2w2G373u9/hJz/5CR//29nZGRItexuRZFlWMCnQQmYkx8bG8OSTT8Jut4NlWTz++ON46KGHQnW7advia2fnL4E+KJ0B70uWLEFVVdWUeawIwsnY2FhQ6k97IlAty+VylJeXo7KyEsXFxaTlGGfiAoc77rgDnZ2d/Ejl5LjEydTV1WH37t24//77YTQaw65li8UScE4/IvZwDuI8+OCDfCq+kydPorGxcdqBJ7PZjN/+9rd46aWXYDabp9V+oHjTstVqFcyMZciMpFKpxLvvvgulUgmTyYR7770Xd955J7Rabahu6ZWZLnIJJjqdDosXL8Ytt9wS0koRRHQwfPEqNPNm+ZzmxlnBJhT4k2pHLBajvLwcc+fORXFxMWk5TmEYBtnZ2cjOzkaq0YLPL30PTKOj6upqyGQyzJkzJ6TtIgh/cGaQKCgowBf//Tt8398zrZaNRiN+97vfYePGjSFtl9AJWe8vFov5gHqLxQKWZYMSgOovVqvVa57IcJGQkIA5c+bgtttuo7dhwoWLL/0zJIlqlP2PHyB17copOw2LxRLxBQMFBQWYO3cuKisrBfM2TAiDtn/53ygXAV2LqmDISQcYBiqVCsnJyUhKSoJGo+G/KpVKjI6O0jQzIUis//1nlCvl6FxUhdHsNIBhIBKJIJPJ+OThGo0GKSkpSE5OhtFojOuXab//5SzLYuPGjVi3bp1LsOexY8fwgx/8AL/+9a+xYcMGADdLbO3YsQMtLS34p3/6J6SkpASv5T4y03yNgeJcaLB27VqkpqZGpA1EdDB84QrO7PghkhfMmdJQRkrLer0e8+fPx+zZs6HRaCLSBkLY3KzSIYK6px+lXx5HwtxKlP+PHyLzjtUetdzf3y+4lacEAdxcmCuRSCDrGUDZ3mNImFeFin/8ETJuv82jlvv6+tDT0xOBlgoHv42kSCTCzp078corr+CFF16ARqNBbW0tfvrTn+If/uEfeBMJ3MxP9vnnn6O/vx8//vGPcdddd3lcMh9KAl3mHxAOB+QGI5Ib2zEvJQ3Spn60fHUSwVvTTcQapq6/d0DTGcqwatnugKa9B+rOPszOzIbkQj3q8HH47k9EHSKDEc6lBsbLNTj/5E+QfMtclP2PHyJ19a0uWg6niRTZ7Cg4dBYAcKX5FxCL43fkiPANqcnydy1fqsb3j/8I2lvmoex//BD61csj1y8LlID+ojZt2oT//u//xjvvvIMHHngAL7zwArZs2YJnn33W4/l6vR7l5eU4e/asi9EMB+HssBiWw+yPvgIADKA6bPclYgtvhjKcHZaIZVFy4DsAQP+VurDdl4gthr+/jDOPvehmKMOpZYZloW3qAAD0/e0rQfjL0PeXcPqxnW6GkowkENDacYlEgueffx7vvPMOnn/+eVRVVeGXv/ylyzkTa1iPjY3h3LlzKCwsnHmL/SQUy/EJIhw4DeWJe7ej99tjIUlfRRDhwGkoT2zegd7DJ0jLRNTiNJTfbX4cfYe/Iy0jQCMJ3ByVdDrxV1991S1ouru7G9u3b8fmzZvx6KOPYvv27aioqJhZawkiDjE2NmPkcjU4i3X6kwlCwBgbmjFy6Ro4q3/l6ghCaIw1NmPkSjU4P0svxiIBB4u88sorAIChoSGPK+9mz56Nzz77LPCWBQmRSESjkkRUItUkomjnkyh45jFIkxJx/fp1v+vFEoQQkCYn/V3LiWrU1tbSSA4RlUi1GhS/+BQKnn4UEnUCaRkBGsnf/OY3OHz4MD766CM89dRT+Pjjj7F9+/Zgty0oKJXK8D18GQYW9c30PklJiRAxwsg6TwgXc3cvuEkvOpMNpBOFQhEhLSdBFAW5zIjI4lHLWs1NLT/9KKSJan6/M/1POOBAWib8w5uWJxpIJwqFIuIpBiON30Zy165deOutt/D222+joqICTz75JF5//XU89NBDgqxooVQqQ5ZxfjKcRIyr228mJv35z3+OxMTEaT5BxDuHV23GWH0TAO8G0kk4H76sVMJr+R//8R+RkJAwzSeIeOfbFfdgvOlmrXZvBtJJWLUsl/JafvnllymXLzEt3y67G+OtNxdmeTOQTpRKJRlJf04+cuQIfvWrX+HVV1/F/PnzAQCPP/443nzzTXz22Wd44IEHQtHGGaFWq+M+xxMhbKYzkE7UajV6e3vD2DKC8I/pDKQT0jIhdKYzkE7UanVIK45FAz4byatXr+JnP/sZXn75Zaxfv57fr1arsWPHDrz22mvYunWr4CoVKJVKKBQKmM3mSDeFINwo/tEzyNiwbkoD6YS0TAiZ0p88h4x77pzSQDpRKpWQy+WwWCxhaBlB+EfJT3cia9P6KQ2kE5VKFfda9jmIb/bs2bhw4QKefPJJt2M//elPceDAAcGZSCfhToJOEL6S+/B9PplI4GbNVZ1OF7K2RKKEKRE75D6y1ScTCZCWCWGT9+hWn0wkEHotRwNxsRpEo9GELC7G2+IHmUwWkvsR8U1ycjJfwz7YkJaJcKLVaknLREyg1WqhUChCcm1vWhbSmpS4MJIMwyA7O9tjncyZ4mk4WywWU4dFhASGYZCTkxM2LUulUkF1WETsEG4ty2QySCRUHpEIPk4thwJPWlYoFIKaAY4LIwkAcrkcubm5YbmXSqUKSedIEMBNLYeq05oMrXAlQglpmYgVFApFWD2GkIir17OkpCTk5eWhtbU1KNfT6/Uek51TqhQi1Gg0GgBAW1tbUK6XmprqMamu0DosX+E4DlarFRaLxePGsiw4jgvp5mzH5I1hGH6kN5BNLBbH1ItquLRM/TIRajQaDTiOQ3t7e1Cul5aW5nFqW2j9clwZSeCmmSwuLkZ7e3vAq6zEYjGysrKg0WgwPj7udlxov2QiNtFoNJDJZDGlZYfD4Wb6pjKE3jarNbbLSfpqOiUSicvPMpkMKpUKCQkJ/KZQKCJuTIOl5ezsbCQlJQlCy0R8kpyczGs50H5oOi0L7aUo7owkcDP1RHFxMQYGBtDf3+9zCUWGYZCcnIz09HQ+1oY6LCKSzETLWq0WaWlpU2p5Jh0Wy7IwGo0YHR3lt7GxMYyOjsJoNHo0gPFeasxXbDZb0KociUQiJCQkuBlMT5tKpQpZ/LdTy/39/RgYGAi6lqlfJsKFSqVCSUnJjLXMcZxHLYdqkVqgxKWRBG52nqmpqdDr9TAYDDAYDDCZTG5vEBKJBEqlEmq1GsnJyS4BrizLwmQyuV2bOiwinARDy86RwMl40rKzc5toED2ZxbGxMUrDEgWwLMv/7nxBKpW6mcupjKc/iwJEIhHS0tKg1+sxOjoKg8GA8fFxN9M8lZbtdrvHkSDql4lwMlHLBoMBo6OjfmvZZrNFRZhG3BpJJwzDQKPR8HE6LMvC4XCA4ziIxeIpO0FPJhKgDouIDDPRsqe3XgDo7e3F3r17eXPoNIgsy4bk30AIH5vNhuHhYQwPD/t0vkKh4I1lUlIStFqty5aYmAiRyHXdp0gkctGyw+Hg41oD1TL1y0QkEIlESE5ORnJyMoDY1HLcG8nJiEQit07NG0aj0eN+ob0tEPHJZC3b7XYMDQ1hYGAAAwMD/Fvy6OioV1PQ2NiIxsbGMLU4dmAYxuvGsmzQpqWjAbPZDLPZjIGBAY/HnQ9arVbLf524OVOd+DqySf0yIWSCoWUykjFEtLwtEPEDy7IYGRnBwMAABgcHedM4MDCAkZGRmJpqlkqlkMvlHjeZTDblMYlEMqXZC3QD4NPCFY7j4HA4+FjHQDa73e7TOUKHZVkMDg5icHDQ43GFQuFmLp2GU6PRuD2UqV8mYgVvWhbaSxEZyRlAHRYRCTiOg9FodDGJTtM4ODjoc2B3pGAYBmq1GgqFwqvZ88Uc+jpzIEQYhoFEIuHjo0IFx3EuxtJisWB8fBxGo3HKTUir3s1mM7q6utDV1eV2zBnOMdFceov1pH6ZiDaixWOQkZwBNIVChBLndOBkszgwMCCoB70ThmGQkJCAxMREflOr1S4/JyYmQqVSRbUJjCYYhoFMJvN7pbXdbvdqMj0Z0Ui9vHAc53O85oULFzA4OIj09HTo9XqqckMIHprajgOi5W2BEC42m83FIE783pu+IsFEg+jJHCYmJiIhIYEMYowgkUhcFrtMhTP5+3SjnGNjYxgeHo7YdPuFCxdw4cIFADcNtl6vR3p6OtLS0pCeno709HQkJSVFPKcmQTihqe04wNNbMMMwgsvxREQejuMwOjrKT9F1d3eju7sbIyMjEW2XUqlEYmIixsfHMTY25nKMYRi89NJLSExMFFRdV0JYMAzDhxukpKRMeS7HcRgbG8PQ0BCGh4cxNDTksvmagmimcByHvr4+9PX1uexXKBQuxtJpNEOVO5MgpsKTx3AWGRASZCRnwOROCABSUlJoVCbO4TgOQ0NDLqaxq6srYiOMCQkJ0Ol0/JaSkgKdTgetVst3SK+99pqbkdTpdHzKCoIIBgzD8CPYeXl5bsftdrubwZz4c6hDOsxmM1pbW93K6Gq1WrfRS61WS309EVI8eQy9Xi+4UXMykgHCcRz6+/vd9uv1+gi0hogULMtiYGCAN41O4xhombdAkcvlbkbRucnl8ik/603LqampoWouQXhEIpFAr9d77Ec5joPJZHIbxXSazVBmJXDep7a21qWtaWlpbiOYFNpEBAPns2UyQvQYZCQDZGxszKNZEOIvmQgODocDvb29btPT4Yr5EovFXs2iSqUK+C3VYDB4HOkhLRNCgmEYqFQqqFQqZGdnux13OBxoa2vD22+/7XZMLBYHfUGQ3W5HZ2cnOjs7XfYnJia6mUu9Xk/hIYRfDA8Pe9SsEPtlMpIB4mnIGaBRnFjBZrPxRtFpHHt7e0Ne0cVZa3WyUdTpdCFbCOBNy0LssAjCG2Kx2Gui9y1btiA/Px89PT3o6elBb28venp60N/fH/S/aWeS/4aGBn6fSCRCRkYGcnJykJubi9zcXJ8WMhHxSzR5DDKSAUIP39jBbDbzhtH5tb+/P6TJuyUSCTIyMpCWluZiFrVabdhHLjxNawPC7LAIYiq89ctpaWlISkpCUlISSktL+f0OhwP9/f1uBjPYi35YluVHL8+cOQMASEpKcjGWGRkZNGpJ8ESTxyAjGSDeHr5C/CUTf8cZD9jS0oLW1la0t7djaGgopPeUy+XIyMhAZmYm/1Wv1wsmUD+aOiyCmApP/TLDMNDpdB7PF4vF/PTzRMbHx3lTOdFkBjOMxWAwoLq6GtXV1QBuvlxmZWW5mEuhpXkhwoe/Wo4kZCQDxNMvOSkpadqFDUR4YVkW3d3daG1t5c1jKFdPq1QqF8OYmZkJrVYruFV2E/Gk5eTkZMGlmCCI6fCmZX+Tj6tUKhQUFKCgoIDfx7IshoaG3EYvg/Uiarfb3VaMa7Va3lTm5OQgLS1NMC+gRGjxpOWUlBRBjlqTkQwQT6M4NBUYeZwB8E7T2NraGrKUIYmJibxZdJrHaExo7C3FBEFEE87ckJMJVr8sEon4EJSqqip+v9VqdRm9dH5vNptnfE/navHLly8DAGQyGXJycvhRy5ycHCgUihnfhxAWodZysCEjGQAmk8lj6SJ6+IYfq9WKtrY2l6nqUJRr02q1biONsTDtZDQaYTKZ3PaTlolow2g0ejRvodbyRHPnhOM4GAwG9Pb2oru7G52dnWhra/Na8s5XrFYrGhsb0djYyO9LTU11mQ7X6XRR9zJLuDI6OhpVmTTISAYAxZRFjvHxcX6ksaWlBV1dXUFdFOMsnTbRMGZkZMTsWz8ttCFiBSGtcmUYhi8x6Vzc4yxU0N7ejra2NrS1taG3t3fG/ZezQo+z/KNSqXQxlllZWVSZJ8qINo9BRjIA6OEbPgwGg0t8Y29vb1Cvr9frkZOTw5vG9PT0uOp0hfTwJYiZIHQtMwyDlJQUpKSkYO7cuQAAi8WCjo4OtLW1ob29He3t7TOeEjeZTKirq0NdXR1/38zMTBQXF6O4uBg5OTmCjLMj/k60eQwykgEg9A4rWnG+sTtNY0tLS1BXVDMMg4yMDOTn5yMvLw95eXkxMT09E6LtzZcgvBGNmTTkcjmKiopQVFQE4O9ZJZwjlu3t7V7/Xb7CcRyfeujYsWOQSqUoLCxEUVERiouLaSpcgERbv0xGMgC6u7vd9jkrLhC+4wwobmlp4bfJ9Z5nglgsRnZ2NvLy8pCfn4/c3FxaVT8JT1pOSEiAUqmMQGsIInA8aTkxMTGq/uYZhkFqaipSU1OxcOFCADdHGCdOh3d0dHhNvO4LNpsNN27cwI0bNwDczDZSXFzMG1p6jkUeT1rWaDSCnS0jI+knDocD7e3tbvszMjIi0JrowxksXldXh/r6ehgMhqBdWyqV8iON+fn5yM7O9jvtRzxht9vR0dHhtp+0TEQbNpstZrWsVCpRWlrKx1qyLIuenh5+xLKtrQ3Dw8MBX99gMODChQt8jOXkaXDqQ8OL1WpFV1eX234ha5kU4iednZ0ek9Lm5eVFoDXCxzlV4zSOLS0tQStJplQqXYxjZmYm5Vjzg46ODo8r3PPz8yPQGoIInPb2do/9SixqWSQS8THdS5YsAQCMjY25TId3dnYGnL3CWRL2+PHjkEqlKCgo4KfB9Xo9TYOHGG9aFrLHICPpJy0tLR73x2KHFShWqxXNzc18wPfIyEhQrpuYmMjHN+bn5yM1NZU6tRngTctC7rAIwhPxrmW1Wo3KykpUVlYCuDnb0N3djba2NjQ3N6O5uTmgfLo2m81l4U5iYqLLNHi8x5iHgmj0GGQk/WRi1QEnIpEI2dnZEWiNMOA4DoODg/yoY3Nzc1ByOaakpPCmMT8/H8nJyWQcg4gnLTvjSgkimvCkZWfJwXhEIpHwuS2XL1/Oh2Q1NDSgsbHRYxiAL4yOjuLixYu4ePEigJvTrc5p8NzcXJoGDwKetCyVSmlqO1ZgWdbjLzk7OzvuysnZbDZ+1LG+vj4oq6vT0tJcRhwTExOD0FLCE960TDFRRLThcDjQ1tbmtj83N5fS3PwNsVjMv5DffvvtMJlMfGLzhoaGgGeNuru70d3djRMnTkAikbhMg9OMkf/Y7XaPazCErmV6YvhBT08PLBaL234hDzkHk8HBQdTX16Ourg7Nzc0eY0X9Qa1Wo7S0FCUlJSgsLKSVwmGkq6vL48rPeJkKJGKHrq4uilv3E6VSiVmzZmHWrFn8jJJztLKpqSmgaXC73Y76+nrU19cDuNm/O6fBS0tLqX/3AW9rMITuMchI+kE0xi7MBLvdjpaWFn7UcWBgYEbXYxgGubm5KCkpQWlpKdLT0+mNNUJ4Go0EYlfLROwSb/1ysGEYhq8hvmTJEjgcDnR0dKChoQENDQ3o7OwMqPrO2NgYLl26hEuXLkEkEqGgoACVlZUoLy+n2SYvRKuWyUj6gaeHr9McxQrDw8O8cWxqappRvjLgZk5C56hjcXFxzJYajDY8dVixpmUiPvCkZZFI5FL7mvAdsVjMZ8NYu3YtTCYTmpqa+BHLQFINsSzLT6Xv3bsXubm5qKioQGVlJbRabfD/EVFKtMatk5H0EY7jPHZYGRkZUZXwdjIOhwOtra38yryZVlFgGAY5OTn8qGNGRgaNOgoMjuM8dliZmZmCTXhLEJ7wFuublZUVd3HroUKpVKKqqgpVVVV89bGJ0+Cewr2mw5mq6Ouvv0Z6ejoqKytRUVGBtLS0uH1eTLUGQ+hx68JunYAYGBjA+Pi42/5ojMNxOBxoampCdXU1amtrYTKZZnQ9lUqFkpISftSRKiMIm76+Po+/c6FPnxDEZHp7e+M6bj3cTKwXvnjxYrAs6zIN3tHR4fc0eE9PD3p6enD48GGkpKTwI5XZ2dlxZSp7eno8xqZGg8cgI+kj0Rq74MThcKC5uRnXrl0LinnMzs7mRx2zsrLi6g8+2ol2LROEE9JyZBGJRMjNzUVubi7WrFkDs9nsMg3ubzaPwcFBfPfdd/juu++QmJiI8vJyVFZWIj8/X9CrloNBNGuZjKSPRGPCW5Zl0dTUFBTzqFQqUVxcjNLSUhQXF1Mi2ijG20IbIWuZIDzhTcsU6xsZFAqFS2L0/v5+1NbWoqamBp2dnX5da3R0FOfOncO5c+egVCpRVlaGyspKFBUVxWTYQjTHrZOR9AGO49Dc3Oy2PzU1VXCGimVZfuSxpqZmRuYxMzOTXyiTnZ1N5QdjAG9aTktLo/QcRFTh7Osmk5GRQYv6BIJer8fKlSuxcuVKjIyMoLa2FrW1tWhpafFrCtxkMvErwKVSKUpLS1FRUYHS0tKY+F2zLOvRSGZmZkbFGgwykj7Q3d2N0dFRt/1CGcGZaB5ra2s9xnL6gkKhQHFxMR/vqFarg9xSItJ0dnZibGzMbb9QtEwQvtLR0REzcevxgEajwdKlS7F06VIYjUbcuHEDNTU1aGxs9KsSms1mQ3V1NaqrqyESiVBUVISKigpUVFQIbmDHV9rb2z0O+kSLlslI+sD169c97i8pKQlzS/6O0zxWV1ejpqYmYPOYkJDAr8jLy8ujUccY58aNGx73l5aWhrklBDEzSMvRS0JCAhYsWIAFCxbAYrGgrq4OtbW1qKur8ysZOsuyfBJ0Z1oh5wrw5OTk0P0DgowQPYY/kJH0AU8dllgsRlFRUVjb4Rz+dk5bz8Q8VlZWYtasWWQe4wxPHZZEIkFhYWEEWkMQgeNJy1KpFAUFBeFvDBEwcrkcs2fPxuzZs2G329HY2Iiamhpcv37dr9AsZ1qz1tZWHDhwAJmZmaioqMCsWbOg0+lC+C+YOZ48hkwmixotk5GcBoPBgK6uLrf9RUVFYcm5R+aRCBYjIyPo6elx219cXByTwetE7DI0NIS+vj63/cXFxYLPuUd4RyKRoKysDGVlZXxexZqaGtTW1sJgMPh1ra6uLnR1deHQoUPIysrCnDlzMGvWLMFV1RkcHPSYv7mkpCRqVqrTX9w01NbWAri5eorjOP5rKIecnebROW1tNBoDuo7TPFZVVSE/P5/MY5wTCS0TRCggLcc+zrKKBQUFuPvuu9HZ2cmbSn/L9XZ2dqKzsxNfffUVCgsLMXv2bFRWVgpioU5NTQ2A6NYyGckJcBwHi8XCB/6KRCJ88803YBgG///27j06jqvOF/23+l0tqVtPy5YsWfLbsuxuTgLM8Aok5AkGnPEYSGwckslr4JCEc32YYTgrN8vM3JkbSHLPMPcCyZATwgCTZIWEDAlhgDgEciAwg9qWbdmObdnWW2pJ3a1WP6vq/tHqtmzrVaWu6uru72etrNiteuyOvqn+9d67djkcDiQSCTgcDiSTSfz2t7/Fu971rrydO/vtK9vzqLV4dLvduZ5HFo/la64s/+IXv5gzy2+++SauvPLKAreYaG5zZfm1116bM8u/+c1vcMUVVxS4xZRvgiCgubkZzc3NuOaaazA2NpYrKucaMZyPoigXPapx48aN2LZtGzZs2DBvT3Y0GoXb7c7LWslzZfn111+fM8tvvPEG3vGOdyz7nEYo+0IynU5jYmIC4XAY8Xh8ziUJHA4HbrrpJnR3d6OzsxMvv/zyshf0BjKhGhwcRCAQwJEjR1g80rIUMstE+cQs03wEQUBDQwMaGhrwgQ98AJOTk7m1KudbV3QukiTh2LFjOHbsGJxOJzo6OrBt27bLPkMPHjwIp9OJD3/4w5ram81yKBRCIpEoySwLitrnGZUISZIwNDS06Mr7w8PD+PWvf40NGzbglltuwfe//32cPHkSe/fu1XyzTTgcxqFDhxAIBDQ/2zpbPHZ0dKCtrY3FYxlLp9MYGhrC5OTkgtvpkWWifGKWaTmmpqZw/Phx9PT04PTp05BlWfUxqqqq0NnZiW3btqGhoQFf//rXEY/Hcc011+B973vfko9TTlkuy0IyEomgr69vSWtXvfTSSxAE4bJvCwDwpS99acnd3clkEj09PQgEAjh9+rSmdouimOt5ZPFIQOZLSX9/v6FZJtIDs0z5FIvFcPToUXR3d8+5cP1SVFVVXbSG9E033YR3vvOdi+4XCoUwMDBQNlkuu6HtsbExDA0NLXl7h8OBaDSKl19+GYlEAufOnUMymURFRQXOnz+PlpaWeX/R2aeIHDp0CEePHlW1PlYWi0eaTz6z3NfXh9WrVxfFRYtKz+jo6JwrCsyHWabFiKKIK664AldccQVCoRC6u7vR3d2t6pp56YNIXn75ZTidTmzfvn3effKZ5f7+fjQ3N5s+y2XVIxkMBlVNzAUyN8H8+7//O5LJJN71rnfhrbfegsPhwLXXXguLxQKv13vZRSsYDCIQCODQoUMIhUKq25ktHrPD1sWyBAAZx6gsE+lN7RciYPEsV1dXF8UHMBlvdHQUhw8fxuHDhxcddp6LIAj45Cc/iU2bNl32s3LNctkUkrFYDKdOndLl2KtWrYLb7caRI0cQCATQ19en+hgOhwMdHR3o7Oxk8UgLmp6e1jw9YjGrVq0y/eK9VDr0zHJTUxNqa2t1OTYVP0VR0NfXh8OHD+PIkSOq1mi2Wq3Ys2fPRQuGR6NRnDlzRoeWAs3NzaipqdHl2PmgeyEZi8Vw00034YYbbsCXvvQlPU81L1mWcerUKSQSCd3O8dprr2F8fFzVPoIgYN26ddi+fTs2b97MRaFpUdlHgmmZJrEUgiBgw4YNhiy2T+WNWSazkCQJp0+fRnd3N44dO4ZUKrXoPg6HA/v27UNTUxNkWcbJkyeXtJ8WgiBg48aNpq0RdC8kH330UfT29qKpqalghaSWYUC1Tp06ha6uriVt29DQAJ/Ph+3bt5tulX0yNy1DJ2p5PB60trbqeg4iI7Ls9XrR0tKi6zmotCSTSbz11lv4xS9+sei2brcbn/3sZ6Eoiqp5kVqYOcu63rnR29uL06dP46qrrtLzNAtSFEX1KvharFy5csGfu91uvPvd78Zdd92Fe++9F+9973tZRBLOfPufMX1+aVMhjMpyOBzW7Zs1la4z33wCsb7+JW1rVJZDoRDS6bTu56HS4XA4kPzxy3BGFx/qlmUZr776KkZGRnRvl5mzrPqubVmWcdNNN+Gaa67B/v37c6+/8cYbuPfee/Hwww/jxhtvBAD8wz/8A/77f//v+OMf/5i/Fqs0PT2t29DJbBUVFWhqasLAwEDuNavVio0bN8Ln8xXVczPJOMM/eRW9/98TWLnjJqy587Nwt6yed9toNGpYgTc5OYmGhgZDzkWlYejfXkHvt/8ZK3d8BG13fhbi6uZ5tzUyyxMTE8wyLZmiKEj+5rd451QUkY5NSH3wfahsbYHX64XH40FVVVXuH7vdjkgkgrNnzxrStsnJSdTX1xtyLjVUF5IWiwV33303Dhw4gLvuugterxc9PT2477778MADD+SKyJ///Odoa2tDe3t7QQtJrU+L0aK9vR0DAwNobm6Gb/t2bN26FaIo5n6uaFgclUqcokCRJAy+8BKGXnp5wYLSyCxHIhHU86YbUkNRoKQlDP7oxxh66ScLFpRGZnlqaopZpiVTFAWeqirEI1PwHOmBcPwkVn7so2j7i9vMkWUTFpKa5kim02lcf/312LlzJ3bt2oXdu3fjmmuuwYMPPpjb5utf/zp+/OMfw2q1IhqNIp1O47Of/Sw+//nP5/UNLObs2bOXrQWlFzkex7kv7Id7yrhgUekRrNY5C8re3l5MTU0Z04hEAiOfvdeYc1HJEmzWOQvKM2fOGPYBLMTjGL79Lw05F5UuwWads6A0MstWqxVbtmwx5FxqaL7Z5oc//CEeffRRrFixAs3Nzfinf/qneYdun3/+eZw8ebIgN9scP37csCEUJZHAKD98KU8uLSh7enoMmyMjx2IYu+NzhpyLSt+lBaWhWY5OY+xOYzswqHRdWlAeO3ZsSU+wyZctW7aYbpqc5pttduzYkXuo+COPPGK6N5al5VmbRGaQHfL+3cf+HMce/Cqkmf/fiIpNdsj7tzt24dj/+beQ4vFCN4lIEyUtYfD5F/Hbj+1Cz4H/C1Jcv2UF52LGmkbzIxIPHDgAIDORebEi8uabb9Z6GqLyJghouPYatH7mFpxLJgz95kuUV4KAFddlsnw2HuOccSpeFgtWXH8tWvZ8Gmdj06Ys7oykqZB87LHHcPDgQTzzzDO47bbb8Nxzz+HWW2/Nd9vywm6388OXio8gYMX116L97ttRsW4tAMB28iSzTMVHENB4w7Vou/sOVKxtBwDYTpwwZDUNoryyWNB443Vou+t2VLS3ATA+y2Yc/VVdSD777LN48skn8dRTT2Hz5s3Yt28fnnjiCezevduUq66Looi4QcMoDpeIls+Ys6Amcxp84SWkw+ELL8xRQGaJoqjr05lmc4rMMqkz+KMXkY7MuhlMEC586M4UkFlut9uwD19nRQWzTKoMPP8CpNk3zVosF74MzRSQWaIoGpdlpxMWi67Lf2ui6mab119/HZ/73OfwyCOP4LrrrgOQuR39Qx/6EL70pS9h165dujVUq/Hx8YvWdtSTmVeeJ3P67cd3Y/pM74IFZJYRT2jKqq6uxurV869pSXSp//3RP0Ps3PkFC8gsZpnM7M0bP4F4/8CcPZCXMuIJTVk1NTVobp5/fdZCWXKPZHd3N+6//37s378/V0QCQGVlJfbs2YPHH38cO3fuNF23q8fjMbSQJFJDsAhYccN1CxaQWR6Px7APX2aZ1BIEAY03Xb9gAZnFLJOZCVYrGj9yw4IFZJbH4zGskDRrlnV/1rYZnD9/HqFQSNdz2Gw2bNq0CYIg6HoeKi2J4RE4G1cseftz584hPHsoXAd2ux0bN25klkkVZplKhdosG7FetZmzbL7Bdh0YsRJ8Q0ODKX/BZG5qLlaAMVmur69nlkk1M2aZ12XSgllWpywKSVEUdf1Fi6KI2tpa3Y5PlOV2u1Gn4+PemGUyit5ZdrvdqKmp0e34RFkVFRW6XjfNnuWyKCQBYMWKFXA6nXk/riAIWL16tWm/KVDpaWxshMPhyPtxmWUyGrNMpaKxsVGXlWssFovps1w2haTFYkFbW1tef9GCIGDNmjW6FKhE88lm2WbT/DyBywiCgLa2NmaZDKVnlvUoUInmY7Va0d7eXpZZLoubbWZLpVLo7e1d9np8VqsVra2tqKioyFPLiNRhlqlUJJNJnD17Ni9ZXrNmDdxud55aRqROMplEb2/vsteWLKYsl10hCWSeVTk2NoaRkRFN+3s8HjQ1NeX1mweRFrIsY3R0FKOjo5r2Z5bJLJabZa/Xi1WrVjHLVHCyLGNkZARjY2Oa9i+2LJdlIZmVSCQQDAYxMTGBpfxnqKqqQl1dHSorKw1oHdHSxeNxjI+PLznLHo8HtbW1zDKZjpYs19XVsUedTCcejyMYDGJycrKks1zWhWSWJEmIRqOIxWKIxWKQJAmKosBqtcLlckEURVRUVJjyEZBEs12a5XQ6DQDMMhUdZplKRalnmYUkEREREWlSNndtExEREVF+sZAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpImt0A0wi1QqhVgshlgsBkmSAAAWiwUulwuiKMLhcEAQhAK3kmhxzDKVAkVRkE6nmWUqeoqiIJVKIR6Pl2SWy7qQlGUZoVAIwWAQ8Xh8wW1tNhtqa2tRW1sLm62s/7ORCanNcl1dHWpqaphlMh1ZljE5OYlgMIhEIrHgtswymZmaLNvtdtTW1hZllgVFUZRCN6IQIpEI+vr6ct8M1GhsbER9fX3Rfnug0hIOh9Hf3686y4IgoLGxEXV1dcwymQKzTKUiFAphYGCgLLJcdoWkLMsYGBjA5OTkso4jiiJaWlrgcDjy0zAilWRZRn9/P0Kh0LKOI4oiWltbYbfb89QyInWYZSoV5ZjlsiokZVnG2bNnEY1G83I8m82GtWvXspgkw8myjN7eXkxPT+fleMwyFQqzTKVCkiT09vYiFovl5Xh2ux3t7e2mz3LZ3LWtKArOnTuXtyISANLpNM6cOYN0Op23YxItJpvlfH3wAswyFYaeWdYybYlIq2yW81VEApkbJ3t7e02f5bIpJCcmJjA1NZX346ZSKQwODub9uETzGR8fZ5apJDDLVCqCwWBeO6qyksmk6bOs661BHR0d2LBhAwCgs7MTf/u3f6vn6eal9y8iFArB6/XC4/Hodg4iIJPloaEh3Y7PLJNR9M7y5OQkvF4vqqqqdDsHEQAkEgkMDw/rdnyzZ1nXQrKqqgovvviinqdYkmAwCL2ngg4PD6Oqqqpo7rIic1BkGYJl6QMDY2Njumd5ZGSEhSSpZsYsZ6/LRGqYMcsjIyOmzXLJD23LsoyJiQndz5NIJPI6N4LKQ+JX/4rU8begpJOLbitJkiFZjsfjeZ2zRuUhcfAHSJ34PZR0atFtjcwyr8ukVibLf4AiLS3Ly10FZimyC/ObkepCUpZl3HDDDXj44Ycvev2NN95AZ2cnXnnlldxr0WgUN998Mz796U/jrbfeWn5rNQiHw5Bl2ZBzGREmKi1KPIrUoYOIvfztRQvKSCSi+7feLGaZ1FISUaQCryH28rcWLSjD4TCzTKalxKeQCvwyc11epKBkljUu//OjH/0IBw4cwGuvvQav14uenh7ccsst+NznPoc77rgjt93w8DAaGxtx4sQJ3H333XjppZdQWVmZ1zewmMHBQQSDQUPO5XTY0e4ypmil0pAK/BJKfNYEbacb9k3vgm2dH4Lt4iUfBgYGMD4+bki7XE4H2pzmvlOQzCXZ9UsgcUmWN78btrV+CLaL18IzMsui04k1Tq5GQEuX7PoFkJg1KuOsgH3zu+bMcn9/vyG960Bmbcl169YZci41NBWS6XQa119/PXbu3Ildu3Zh9+7duOaaa/Dggw/Ou89f/MVf4L777sO2bduW1WC1Tp06ZVh3sCBLaD/+qiHnohI3R0FpaJalNNpP/MyQc1GJm6OgfPvttxd9lGe+WOU01hxnlikPXBWwb3o3bOt8EKzGZ1kQBHR0dJjuXgxNN9vYbDbceeedePTRR/Hqq6+io6MDX/nKVy7aJhQK5R5EPjQ0hFOnTqGlpSUvjVYjlVp8jgOR6SSmkTp0EKnjb+UKymRy8XmURKaTmEYq8BpSPb/LFZRGXpfL6JkbpLd4FKnAL5E6/rtcQWnkdVlRFEiSZLpncWtuzY4dO/B3f/d3AIBHHnkEVqv1op+fOnUKDz74IARBgCAI+Ju/+RtUV1cvq7Fa8CJCRW2moJSGe4HaLQDM9U2UaMlmCkppqBeo3QxmmYrWTEEpDfcC1RsBwbj7ls1Y02guJA8cOAAgs9D3pUUkAPyX//Jf8NJLL2lvWZ6YrQuYSA3B2wB7x3thbd4A9PQAJn/CAdF8BO8K2Le+B9YmZpmKm1C9InNdbloPHDsGGHRDL2DOmkZTGf3YY4/h4MGDeOaZZ5BOp/Hcc8/lu11543Q6DTuXIAhIumsMOx+VLsHbAMeffgKua2+DbfVGCILALFNRErwr4HjPJ+C6dh9szZksG/rsYGaZ8kSoXgHHe3bC9eF9sDVvMPy6bLFY5uy4KzTVPZLPPvssnnzySTz11FPYvHkz9u3bhyeeeAK7d++G3W5f/AAGE0VRl8cWzcVWWY2BKz4JJyR4LWlUWVKwme/LA5mELMtI/u4lCLFI7rXZPZCXfvMURdGw9R1tVTWZLAsSvAKzTAuTZRnJ3/4YQvzC4w4zPZCZXptLs+x2uw27cczuqcXAFZ+ES5DgEdLwWFKwMss0D1mWkfzfL0CYddf27B7Iua7LRmXZ5XKZskdSVSH5+uuv46GHHsIjjzwCv98PANi7dy++853v4MUXX8SuXbv0aOOyuN1uw84luDJLGyVgxYhsxYjsRJXTBq9oR5XTZsoAUOEo6TS+ERiFDQoqnQ5461fAU9EIT+8IPONxeDweVFVVwePxwG63w+12G7aUlSDOZFmxYkS5kOVq0Y5KZpkuIadS+EZgDDZhdpZXwHNmGJ5grKBZxsx1Oa5YEWeWaRFSMol/PDQOu6CgyuWAp24FvJWNqJqV5Wyes1k2aimriooKQ86j1pILye7ubtx///3Yv38/rrvuutzrlZWV2LNnDx5//HHs3LnTdN2ulZWVsFqtkPSejyMISAmX/+eMJNKIJNKwCgK8oh1e0Q6XzcKLF8Fms2Hzylp09QUxlU5iKNoHnO2bc1uXy4W2tjZs3bpV/4YJFqTmuDTksmwR4HUxy3SB3W7HxpU1ONQ/vqQst7e3o6OjQ/+GLTHL1aIdLru5PruoMBwOBzY2VuPwwASmppIYnJo/y6Ioor29HVu2bDGkbYW4YXkpNK0jWWyGh4cxOjqq6zkcnlqkHUtbbN1ps6BatMPrssNmLfmnVNI8kskk3njjDfz6179edNuqqircfvvtSCQSzDKZTjKZxK9+9Sv85je/WXRbj8eD22+/HbFYDGNjY7q2y+mpQ8qxtF4cZpmATJZff/11vPnmm4tu6/V6cfvttyMajerew15ZWYm2tjZdz6GVuRYj0kldXR3Gx8d17ZW0ipVIL/HwibSM4UgCw5EEKmcNsVjYs1PyFEXB2bNnEQgEcPTo0SWtQSaKIvbu3Yvq6mqk02lmmUxBURT09vbmsryUtSHdbjf27t0Lr9eLiooKjI+P6/oIW4tYATDLtAgtWa6oqMDevXvh8XggiiImJiZ0zXJjY6Nux16usuiRBDLPwzx37pwux66rq8OKxpWIxFOYjKUwnVL/IW8RkBsuFO1WDheWmPHxcQQCARw6dEjV81IdDgf27duHpqam3GuhUAjnz5/XoZUXshyOpxBaTpZFO6pdDrjsHPouNdksBwIBhEKhJe/ndDqxb98+rFq1Kveanlmur69Hw4pGhGeuyzENWbYKAjyiDdWig9M4StD4+Di6urpw6NAh1Vm+7bbbsHLlytxrk5OT6Oubewh8uRoaGlhImoUez8R0uVxYu3YtLJYLQyHJtIzJWBKheAopSf1/Xod1ZohFtMPOIZailUgkcOTIEQQCAU1fYqxWK/bs2TPncAazTEaKx+M4evSo5izbbDbs2bMHa9asueh1RVHQ39+v6svVUmTnrs2Z5VgKKZlZLlfxeDx3XdbyJcZms2Hv3r1obW296HUjs2w2ZVVIKoqCvr4+Vd88FuJ0OtHe3j7v44oURcF0SkIolkI4noKGaxcqHFZUiw5UuTjEUgxkWcaZM2cQCARw7NgxpNNpTccRBAGf/OQnsWnTpjl/nu8sZ2/mWTDLSQmT8UyWtVw1mOXikq8sWywWfOpTn8KGDRvm/LmiKDh//jzC4fBympuTvZlnvhs/c1mOpRBOMMvlQJZlnD59GoFAAD09PcvK8qc//WmsX79+zp8bnWWzKKtCEsj8okdHRzEyMrKs43g8HjQ3Ny/5FyzLCsKJzHBhNKltuNAzM/Tt5tC36YyNjeWGrrVcRKqqqhCJXFhPcufOndi+ffuC+yiKgpGRkWXffKM1y5OxFKaXkeVqTuMwpbGxsdxw3+xMLtWlWf6zP/szdHZ2LrhPvrLs9XrR1NTELBMAYHR0NHddzkeWd+3atejKGYXKciGVXSGZFYvF0NfXh0QioWo/q9WKpqYmeL1ezedOSTImY5miMimpn5xrtwqoFh3wuuxw2Mzb3V3qYrFYbohEy9wYt9uNbdu2wefzoa6uDl//+teRTCZx00034Z3vfKeqdhQqy0lJRmgZWXZYLbllsRwcLiyYWCyG7u5uBAIB9Pf3q94/m2W/34/a2lp87WtfQyqVwkc+8hFceeWVqtqhNcvNzc3weDxqm56TTMsIxVOYjCU1T+PwipmikkPfhbPcLFdUVOSuyzU1Nfja176GdDqNj370o7jiiiuWfJzp6Wn09/erzrLNZkNTU9Oysmy0si0kgZkhjulpBINBRCKRBR+G7na7UVtbC4/Hk7e5CoqiIJaaGWLROPTtdlhR7bLD47LDYuG3Yb3JsoxTp07lhkjU3j1tsViwceNG+Hw+bNiw4aJvmy+++CJqamrwgQ98QHW7FEVBNBrF+Pj4krJcV1eHqqoq82VZtMPjZJaNIMsy3n77bQQCARw/flxTljdt2gSfz4f169dflOUXXngB9fX1eN/73qe6XVqy7PF48tYbyCwXH0mSctdlLVm2Wq256/KlWX7++efR2NiI9773varblc1yMBjE1NSU4Vk2SlkXkrMpioJEIoFYLJYLocVigcvlgsvl0n2iq6woiMTTmIwlNQ19CwLgcWa+DbsdHGLJt5GREXR1deHw4cOYmppafIdLrFq1Cj6fD9u2bZv3aUvT09MQRXHZvztmmRYyPDycG+7T8vjYpqYm+Hw+dHZ2MsuLsAhA1czQN6ck5d/w8HDuuqxnlvPxhLxCZ1lPLCRNKCVlhlhCsRQSaQ1D3xZhZojFwaHvZZiensbhw4cRCAQwODioev+Kigps374dfr8fK1as0KGF5peaGfqe1DqNg1nOi2g0iu7ubnR1dWFoaEj1/pWVldi+fTt8Ph+zvIwpSZmn6DDLyxGNRnPXZS1Zrqqqyk3DaGho0KGF5YeFpIkpioL4zJIV4VgakoZflWifGWJx2WHlEMuiJEnCyZMnEQgEcOLECdULzFqtVmzevBk+nw/r1q0r6m+Z+TQ7y6GYtuFCZlmdbJa7urpw8uRJZjlPFEVBPHVhWSxNQ992K7zM8pJJkoQTJ04gEAhoyrLNZstl+dIlzmj5WEgWCVlRMJVIYzKWwlRC/dIFAoAqV2Zh3QoOF15EURQMDQ0hEAjg8OHDmJ6eVn2M1atXw+fzYevWrRBFUYdWlg5mWT/ZLHd1daG7u3tZWe7s7ITL5dKhlaUjH1nOrsbBLF9MURQMDg7mshyLxVQfo6WlJXddZpb1w0KyCKWl7N2F2oa+bbnhQjucNvMvLaCXqakpHD58GF1dXZqWg/J4PLnhvvr6eh1aWPqY5fyYmprCoUOHEAgEmOUCYZbzIxKJ5LKsZQkdj8cDn8+XWw2D9MdCssjFZ+4uDMVTkDSMsbjsltxSQuUwxJJOp3HixAl0dXXh7bffXvAuurnYbDZs2bIFPp/P9E8bKDbLzbI4M1xYTlk+fvw4AoGA5ix3dHTA5/Ohra2NWc6T7DSO7LJYWqcklVuWe3p6EAgEcOrUKdVZttvt2LJlC/x+P9ra2tizazAWkiVCmTXEEtE4xFLptKFatKPSaSup/xEVRcHAwEBuiCQej6s+Rmtra26IxOl06tBKyspHlqtcNnhdpZnl/v5+dHV14ciRI5qyvGbNGvh8PnR0dDDLOlMUBZFEGqHlZlm0o9JRelnu6+tDIBBYVpb9fj+2bNnCLBcQC8kSlJZlhGOZJSviGoZYrJbs3YV2uOzFO8QSDodzQyRjY2Oq96+urs4N99XW1urQQloMs5wRDocRCAQQCAQQDAZV719dXZ0b7qupqdGhhbSY5WbZNpNlb5FnORQK5a7LWrJcU1MDn8+H7du3M8smwUKyxCXSUu4pOmktQ9+2C08esRXB0FcqlcoNkZw+fVrTEMnWrVvh8/mwZs2akuoBKHbxlJRbFqtcsnzs2LFcltVyOBzo6OiA3+9Ha2srs2wiy56SZMtMSfKINmaZCo6FZJlQFAXRpITJWBKReBpafunZoe8qkw0XKoqC8+fPo6urC0ePHlX9SCoAaG9vh8/nw5YtW+BwOHRoJeWLoiiYSs4MF2rMcpUzM1xo5iwfOXIEyWRS9TGY5eKRryybcUqSoig4d+5c7rqsJctr167NZdlut+vQSsoHFpJlSJIVhGfuLoyl1D+twSoI8IiZ5VdcNkvBLl6Tk5O5J3SMj4+r3r+2tjY3RFJdXZ3/BpLu8pHlbC+lGbIcCAQwMTGhev/a2lr4/X5s3759Wc9Op8KRZCXX417MWZ6YmMhleXJyUvX+dXV1uesys1wcWEiWuURayj2tQctwoTM7XOiyw27Vf4glmUzi6NGjCAQC6O3tVb2/0+nMDV23tLSY6hs8LU8+slw9k2VbEWXZ7/dj9erVzHIJWe6UJKOznEgkclk+e/as6v2dTic6Ozvh9/vR3NzMLBcZFpIE4MLQdyiWQjiRgpZUVDpmhgtdNljyeCFQFAW9vb0IBAI4evQoUqmUqv0FQcDatWvh9/uxadMmDpGUuIuyHE8taxpHpdN8WV63bh18Ph+zXAbyOSVJjyyfOXMGgUAAx44d05zl7HXZZrPlrW1kLBaSdBlJVhCZGS6c1jDEYhGQu7tQtGt/WsP4+HhuiCQUCqnev76+PjdE4vF4NLWBilt26Dtkgix3dXXh0KFDmrLc0NCQy3JVVZWmNlBxW+40DouAzILnLgdcdu1D38FgMHddDofDqvdvaGiA3+/Htm3bmOUSwUKSFpRMZ5/WkERKUh8Vh9WSe1rDUoa+4/F4bojk3Llzqs/ncrlyQyRNTU0cIqGcZPrC85G1Zrl6Zg7aUrN85MgRBAIBnD9/XvX5RFHMZXnVqlXMMuUkZz23PqVh6Ftrlru6utDX16f6fKIoYtu2bfD5fMxyCWIhSUuiKAqmUxeGCzVcu1DhyDytweO0wzLraQ2yLF80RJJOq1u4VxAEbNiwAT6fDxs3buQQCS0oX1muFh2XTeOQZRmnT59GIBBAT0+P6ixbLJZcljds2MAs04IURcF0MjOfUuuUpMWy3NXVhZ6eHkiSul7Q2VneuHEjrNbiXfuSFsZCklSTZQXhRGa4MJrUNsTicdmRng7hxJFuHDp0CJFIRPVxGhsb4fP5sG3bNlRWVqrenyhfWZaiIfQcOYzDhw9ryvLKlStzWa6oqFC9P1E2y5OxFKaXc12emsxleWpqSvVxmOXyw0KSliUlybm7C5PS4k9rSCbiOP/2cfSeOIrxkSHV53O73di2bRv8fj9WrlyppclEc1Kd5Xgc504dR+/xI5gYHVZ9PrfbnXtyErNM+ZSU5JkVDJY2JSkRj+Wuy1qyXFFRkbsuNzY2amkyFTEWkpQXiqIgNjNcGLpkuFCWZQyf70XviaMY6D0NWVY/RLJx40b4/X6sX7+eQySkq2yWJ+cY+pYlCUN9Z9F7/AgGz55RnWWr1YqNGzfC5/Mxy6S7RbOcvS6fPQ1FVvfYRqvVik2bNsHn82HdunXMchljIUl5JysKIvE0zpwfwLEjh3D2ZA8SsWnVx2lcuRLvmLm7z+1269BSooVls3z6fD+OdR/Gube1ZXnlqlV4h9+Pzs5OZpkKIpflc304duQwzr19XGOWm/AOf2boWhRFHVpKxYYzuSmvotEouru70dXVhaEh9UPXLrcbazZswZqNHfDW1sNmETAlWWBNS3Da+I2XjBONRnH48GEEAgGNWa7Amg1b0LapA56aOthnsmxLy3DYzP98ZCod0WgUhw4dQiAQwPCw+qFrl7sCazZuQdvGC1mOpAVYmWUCeyQpDyRJwsmTJ9HV1YWTJ09CVjlEYrFa0bRmHdo2daBx9RpYLHNfmES7FdWiHR6XHVYLl4+g/JMkCSdOnEAgENCc5ea29Wjb2IEVq1uZZSqYdDp9UZbVftRbrFY0t2ey3NjcCoFZpnmwkCRNFEXB0NAQurq6cPjwYcRiMdXHaFi5Ci0bOtCybiMcTteS9xMAVLkyz/qucGhfJJoIyGR5cHAQXV1d6O7u1pTlFaua0LJ+C1Yzy1RAiqJgYGAAgUBgGVluRsuGLWhZuxF2p3PJ+zHL5YuFJKkyNTWVGyIZGRlRvb/H48ndqVpfX4+0lFnwPBRLIZ5W1/sDADaLkHvWt8vOoW9aukgkksvy6Oio6v09Hg98Ph98Ph/q6upyWZ6MpZBYRparRTuncZAqy82y1+vNXZeZZVKLhSQtKp1O4/jx4wgEAnj77bdVD5HYbDZs2bIFPp8P7e3t8w73xWfuLgzFU5A0rBLtsllQLTrgEW2wzXMOKm/pdBo9PT0IBAI4deqU6izb7faLsjxfr8uys2zPZNnL4UKaRyqVyl2XtWa5o6MDPp8PbW1tc2ZZURTE05mlhEKxFCQN5QKzXPpYSNKcFEVBf38/urq6cOTIEcTjcdXHaG1thd/vR0dHB5wqhkgURcFUIo3JWApTiTS0BLTKaUO1aEel08YhljKnKAr6+voQCAQ0Z3nNmjXw+XzLynIkoe4pN0BmuLCSWaYZ2Sxnr8uJREL1Mdra2uDz+bBlyxbDs1zlssHrYpZLDQtJukg4HEYgEEAgEEAwGFS9f3V1dW64r6amZtntkWQl96zveEr9EIvVIsDrygyxcOi7vIRCodxwn5Ys19TUwOfzYfv27XnJclqWEY6lM1nWMFzILJevUCiUuy6Pj4+r3p9ZJj2xkCSkUikcO3YMgUAAp0+fVr2/w+HIDZGsWbNGt2+aibSUe/JIWsNwodNmQfXMfEqblUPfpSiZTOaGrpeTZb/fj9bWVtNm2WWzZOYGi3ZO4yhRyWQyd10+c+aM6v0dDge2bt0Kn8+na5bjsx5EwSyXJxaSZUpRFJw7dy433JdMJlUfo729PTdE4nA4dGjl3BRFQTQpYTKWRCSubeh79nChhUMsRS2b5a6uLhw9elRTlteuXZvLst1u16GVc8tnlqs4XFj0FEXB2bNnEQgEijLLU8k0QrGU5ixXOW3wMstFh4VkmZmcnMwNkUxMTKjev7a2Njd07fV6dWihOpKsIDxzd2Espe5xdQBgFQR4xMySFS6bhRevIjIxMZHL8uTkpOr96+rqcsN9zDIVErN8Masg5HopmWXzYyFZBpLJJI4ePYpAIIDe3l7V+zudTmzduhV+vx+rV6827f/UibSUu7swpXHo2+vKXLzsHPo2pUQikcvy2bNnVe/vdDrR2dkJv9+P5uZm02d5chnTOLLLYjHL5pTNcldXF86dO6d6f5fLlbsumz3Ly52S5BXtqOaUJNNiIVmiFEVBb29vbogklUqp2l8QBKxbtw4+nw+bNm0ydIhkuRRFwXQyc/EKJ1LQkvAKhxXVogNVLg59F5qiKDhz5gwCgQCOHTumKcvr16/PZdlmK54nw2aHvkPLyHKlY2a4kFkuOFmW0dvbi66uLhw7dgzptLq7n0smy/EUpySVEBaSJWZ8fBxdXV04dOgQQqGQ6v0bGhpyQyRVVVU6tNBYkqwgEk9hMp7CdFL9EItFADwzdxeKdj6twUjBYDA33BcOh1Xv39DQAL/fj23btpVWlmMpTGsYLrQIyPW4M8vGCgaDueuyliyvWLEid12urKzUoYXGyg59h5jlksBCsgTE43EcOXIEgUAA58+fV72/KIq54b5Vq1aV7P+UybScW0ooJamPvcNqyT2tgcOF+shmuaurC319far3F0UR27Ztg8/nY5YXwCzrLxaL5a7Ly8my3+/HypUrSzrLk7EkQvGU5ixXi5ySVEgsJIuULMs4ffo0AoEAenp6NA2RbNiwAT6fDxs3biyqIZLlUhQF06kLQywapu3A7bCiWrTD47TDwqc1LEs2y11dXejp6YEkqeuhsFgsF2XZai2fdenykeUKhxVeZjkvZFnGqVOnctdlrVn2+/3YsGEDs6wSpyQVBgvJIjM6OopAIIBDhw4hEomo3r+xsRE+nw/btm0riSGS5ZIVBZF4ZmHd6DKGvr2iHW4OsagyMjKSy/LU1JTq/VeuXJnLckVFhQ4tLC7McuGMjIygq6sLhw8f1pTlVatWwefzobOzk1kGIMsKwonM0DezbH4sJItALBbD4cOHEQgEMDAwoHp/t9t90RAJzS0lybk7ZZOS+qc12K3ZpzU44LBxiGUu09PT6O7u1pzlioqKXJYbGxt1aGFpSEly7k5ZrVnOPh+ZWZ7b9PR07ro8ODioev+Kigps374dPp+PWV4As2x+LCRNSpIknDp1Cl1dXThx4oSmIZJNmzbB5/Nh/fr1ZTVEslyKoiA262kNmoa+7TPDhS47rGU+XChJEt5++20EAgEcP34csqzuw8BqteayvG7dOmZZhXxluVq0o4pZhiRJOHnyJAKBAE6cOLGsLK9fvx4WPsllybJZnlzulCRX5rrMaRz5w0LSZIaHh3NDJNFoVPX+TU1NuSESt9utQwvLi6womEqkMRlLYSqhbh4qAAi4MMRS4SivIZahoaFclqenp1Xv39zcnMuyKIo6tLC8ZIe+Q7EUppIasiwAHiezzCwX3nKncWSzXC3a4S6zLOuBhSQyC3aHw2HEYjHEYjFIkgRFUWCxWCCKIkRRRGVlJURR1CVw0Wg0N0QyNDSkev/Kykps374dfr8fDQ0NeW8fZaSl7J2yKSTS6odYbBYhd6es03Z5r1o4noJoty7rzsNEIoFIJHJZlq1WK1wulyFZPnToEAKBAIaHh1XvX1VVlRvuY5b1k5rJcmgZWc7eKVuqWZ6amspdl5eTZb/fj/r6+ry3jzKyU5JCcW1Ztueuy3NPSTIyy8Xa+VPWheTU1BTGxsaWPDna6XSirq4ONTU1y75wSZKEEydOIBAI4OTJk5qGSLZs2QKfz4e1a9dyiMRAiqIgnpZzT9GRNPwvJM4MfXtnDReeDk5BloG2OjdsKn+fU1NTGB0dXXIvttPpRH19Paqrq5ed5XQ6fVGW1V5SbDYbNm/ezCwXQDbLk7EkwrG05ixXXzKN4/TYFBQAa2rVZzkSiWBsbKxos5y9Lre3tzPLBtIry6fGMvVBW22F6qkdarPscrlQV1eXlywbqSwLSUmSMDAwoGnBbiCzvtfq1avhdDpV7acoCgYHB9HV1YXu7m7EYjHV5169ejX8fj+2bt0Kl8ulen/KL0VREElkhgsjGoe+q1w2VDhsGAzHAQAumwVrlnjRSqfTGBwcLEiWBwYGEAgENGe5paUFPp+PWTaJbJaXM42jymWD22HDUDbLdgvW1BRHlrPX5Xg8rvrcra2t8Pl86OjoYJZNIB9Tki7Nsmi3Yk2Ne0lzK9PpNAYGBjQtPg9oz3KhlF0hGY/H0dvbq3rdxbm0tLTA6/Uuul0kEskN942Ojqo+j8fjgc/ng8/nQ11dnZamkgHS8oVeyriGIZbZ3A4rWmvcC66FFo/HcebMGdU3Yl1KEASsXr3akCx7vd7c0DWzbF7pWUPfRmQ5Fouht7fX0CyHw+FclsfGxlSfy+v15q7LtbW1WppLBljulKTZKhxWtBiY5ZaWFng8nmUdxwhlVUjG43GcPn1a9TDyQlavXo3q6urLXk+n0+jp6UEgEMCpU6dUD5HY7faLhkiKqZubgPjM3YWheAqSltsLkXmubEv13PO/9MjyfF+MUqkUjh8/vqwsd3R0wOfzoa2tjVkuMvnIcpXThtXzZDkWi+HMmTOGZTl7XT59+rTmLPv9fqxZs4ZZLjJGZFlLrhay1A6rQiqbQjK7bEM+eiIvtXbtWrjdbiiKgr6+PgQCARw5ckTTEMmaNWtyQyTF0q1N81NmhlhC8RQi8TTU/s/mddnR5HVddNFKp9M4efLksr/xzmXdunUQRTGX5a6uLhw5cgSJREL1sdra2uDz+bBlyxZmuQQolwwXFlOWz58/n7sua82y3+/Hli1b4HA48t5WMtbsLGuZklQt2rHKY3yWzapsCsm+vj5MTk7qcmyHw4Hx8XH84Q9/QDAYVL1/dXV1boikpqZGhxaSGUiykhsujKWWfrGpcduxsurCRev8+fOa55EtxuFwIBgM4g9/+APGx8dV719TU5PL8lw99VQaslmejCURTy29J7HW7UBjldOQLDudToyOjuI//uM/mGWaV1qWEY5llhJSM43j0iyfO3dO85zIxTidTqxfv960PeC6PmD5/Pnz+PKXv4xgMAir1Yp//dd/Lcjt7VNTU7oVkUBm+aCzZ8+qKiIdDkduiKS1tdW0AaH8sVoE1LodqHU7kEhLuac1pBcZYpmYTsEqCFhR5cLU1JRuH7zAhSyr+eB1OBzYunUr/H4/WlpamOUyoDXL49NJWARgRZULkUhE1ywnEgnVWXY6ndi6dSt8Ph+zXCZsFgtqKxyorVCfZatFQEOlE+FwWLciEshkeWxszLRLoulaSP71X/817r//flx55ZWYnJws2JCAlonUaq1atQo9PT2Lbrd27Vr4fD5s3ryZQyRlzGmzorHKCmd4GAOW6swKuQsYi2YuWmENN7iotWrVKhw/fnzR7dauXQu/34/NmzfDbrfr3i4yp2yWHeFhDKrJskHX5RMnTiy63bp163LXZWa5fOWyHBrGoLV60SyPTiVgFQRMGpDlYDCI+vp6U3650a2QPHnyJGw2G6688koAKNjQQDKZXPI6kctRU1MDr9c75zfsuro6+Hw+bN++3fSTZslgv38JjVY7Qu1/gnhdW+7CZbMIsFkF2C0W2K0W2CwCFFnS9LQjtWpra+HxeOb8hl1XVwe/34/t27cXxd2EZBzhrRfRaHMhtPZPEK9dY4os19XVoaqqCpFI5LKf1dfX567LzDLNZnnrBTQ63Jnrcm3rglmWpZSmpx2plU6nEQ6HTVlDqC4kZVnGTTfdhGuuuQb79+/Pvf7GG2/g3nvvxcMPP4wbb7wRZ8+ehdvtxj333IPh4WFcf/31uOeee/La+KWY6wKiB0EQsHbtWvzxj38EkBki6ezshN/vR3Nzsym/RVBhybICiwDYwsNYEXgRqG2CrfMDcDTP/QxeI3rWgQtZ7urqApBZJLezsxM+n49ZpjlJuSwPYUXXC0BtM+zbPgB70zpTZDkQCAC4kGW/34+mpiZmmS4jyQoEAXCGBrGi60dA3epMllfN/bCE0VH9hrQvFYlESqOQtFgsuPvuu3HgwAHcdddd8Hq96OnpwX333YcHHngAN954I4DMMgv/8R//gRdeeAF1dXW44447sG3bNrz3ve/N+5tYiJaFkrVavWolNkcq4fV6UVVVBUGYBk6/ifhpw5pARcYSn9VbPj6A9K9+CLmuCY5tV8HadPHkaqOzvGVqdpajzDItyBKf1cM43o/U6z+AVN+cyfKqdRdl2YgenKyWppXoiJ5CtbcalVWVmSyf+g3ipwxrAhUZS2JWPoN9SB38PqT61XBsvwrWlWsLdl028v8bNTQNbe/YsQPf+MY38PTTT2PXrl2466678PGPfxx33HFHbpuVK1eis7MTq1atAgBcddVVOHbsmOGFpJH/4Z1OB5oQBUJRyPrNIacSJwcHED/4A1guKSiNvGC5mGXKA3msH/HXvg/LJQWlkVkWmWXKA3msD/Ff/gsslxSURmY5mUxClmXTPXpTUyFps9lw55134tFHH8Wrr76Kjo4OfOUrX7lom23btiEYDCIUCqGqqgp/+MMf8MlPfjIvjVZDjzWdiIxwaUEp6bAGKpERLi0omWUqVpcWlEZnWZIk0xWSmluzY8eOXCX+yCOPwGq1XvRzm82GBx54AHv27MHHPvYxrFmzBh/60IeW11qiMiRHxiGPD0JQ+KWIipscDs5kOX9PsSEqBDkchBwcBJhl7XdtHzhwAAAwMTFxWRGZddVVV+Gqq67Seoq8sFgs7JWk4uRwwbH5T2Df9C4IDheE48eBVKrQrSJSz+GCY8ufZrJsd0Lo6QHYK0nFyCHOZPmdEOxOWHp6IBuYZbP1RgIaC8nHHnsMBw8exDPPPIPbbrsNzz33HG699dZ8ty0vRFFEyqAPX6vVBsFtvjuqyLyUWBi49OFSlxSQWS6Xi1km05o7yyIcW/4kV0BmiaJo2IoaVhuzTOrMn+ULBWSWy+UyZIlBIDPSO1/HXSGpLiSfffZZPPnkk3jqqaewefNm7Nu3D0888QR2795tyoVcRVHUdcX52VwVlajYeZ8h56LSEH3p/4USnlkKZZ4CMsvID1+xysMskyrRH38DSmTmKTLzFJBZRmbZVelllkmV6Iv/E8rUZOYv8xSQWaIoGlZIFuLJgEuhqo/09ddfx0MPPYSHH34Yfr8fALB3715MTU3hxRdf1KN9y1ZZWVmS56IS4nDBsf2DqPj4F+DY9oE5i0iAWaYi4BDh8H0IFZ/4Ahyd75/zgxdglqkIOEQ4fFfPZPl9zPICltwj2d3djfvvvx/79+/Hddddl3u9srISe/bsweOPP46dO3earttVFEW4XC7E43FdzyMIAmpqanQ9B5UeR8d7YGvZPG/xOJuRWS7Uk6ioeDm2vg+21i3zfuDOJooinE4nEomErm1ilkkLR+f7YWvtWFKW3W63YVk242LkACAoyqUTAUrP5OQk+vr6dD1HdXU1Vq9eres5iCYmJtDf36/rOWpqatDc3KzrOYjGx8cxMDCg6zlqa2vR1NSk6zmIjMhyXV1dbl1uszHf7T868Hq9us4tsFgsWLlypW7HJ8qqrq6GKIq6Hd9qtaKxsVG34xNl1dTU6J7lFStW6HZ8oqyamhq4XIuPKmll9iyXRSEpCIKuzwhubm6GzaZ5JSWiJRMEAatXr9Yty01NTcwyGULvLPO6TEbJZlkvzc3Npps2OFtZFJIA4HQ60dLSkvfj1tfXm3beApUmp9Opy0WroaGBWSZD6Zllj8eT9+MSzcflculSY6xYscL0WS6bQhIAPB4PWltb83a8+vp6DgNSQXi93rxetBoaGkw9dEKli1mmUuH1evP6xWjFihVoaGjI2/H0UhY321wqFouhr69P811WVqsVTU1N7L2hgmOWqVTkI8vNzc2m772h0jc9PY2+vj4kk0lN+xdblsuykAQAWZYRDAYxNja25EcoZpeSaGxs5NwbMg2tWa6pqcGKFSuYZTINWZYxNjaGYDDILFNRK6csl20hmaUoCsLhMMLhMGKx2GXfIGw2G0RRRGVlJaqrq0094ZXKG7NMpUKWZUQiEYTDYUxPT1/2aFBmmYqFLMsIh8OIRCIlm+WyLyQvJcsyJEmCoiiwWq1F+UslAphlKh2SJEGWZWaZil4pZpmFJBERERFpUlZ3bRMRERFR/rCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIE1uhG2AmiqIgkUhAkiQAgMVigdPphMXCepuKC7NMpYJZplJRqlku+0IynU5jYmIC4XAY8XgciqJcto3D4UBVVRVqa2vhdDoL0EqixTHLVCqWkmWn04mqqirU1NQwy2Ra2SyHQiEkEomSzLKgzPWuyoAkSRgaGsLExISq/SoqKtDU1FSUv2wqTel0GkNDQ5icnFS1H7NMZqM1y5WVlVi1ahWzTKZRTlkuy0IyEomgr68v172sRWNjI+rr6yEIQh5bRqROOBxGf3+/5iwLgoDGxkbU1dUxy1RQzDKVilAohIGBgbLJctkVkmNjYxgaGsrLsTweD1paWoriF02lJ59Z9nq9WL16NbNMBTE6Oorh4eG8HItZpkLKZ5arq6vR3Nxs+iwX9wxPlYLBYN4+eIHMN+i+vr455zwQ6SnfWQ6FQswyFcTY2FjePniBTJb7+/uZZTJcvrM8OTlZFFkum0IyFothcHAw78cNhUIYHx/P+3GJ5jM9Pc0sU0mYnp7O6xeirMnJSdXz34mWIxqN6pZltfMsjaZbIXn69Gl8/OMfz/2zfft2/PznP9frdAuSZRl9fX26HX9oaAjJZFK34xNlMctUKvTO8uDgILNMhtA7ywMDA0ilUrodf7kMmSMZjUZx9dVX47XXXoPb7db7dJcJBoO69ODM5vF40Nraqus5iPI5L3I+zDIZwYgse71etLS06HoOonzOi5yPmbNsyND2L3/5S/zpn/5pQYpIRVEQDAZ1P084HDb1NwYyp/7vP434QP+StmWWycz6/+W7SAwt7Qu7UVkOhUJIp9O6n4dKS//3nkJiiV9yFEUxZEqQmbOsupCUZRk33HADHn744Ytef+ONN9DZ2YlXXnnlsn1eeeUV3HTTTdpbuQzT09OGDW9wTg6pFXztFzj0F/tw+pH/e9GCMhqNGlbgmX1ODpnP2C/+HYfu+AzOPPq1RQtKI7PM6zKpNfbzn+HQHXtx5v/5+qIF5dTUVNlfl1U/2cZiseDuu+/GgQMHcNddd8Hr9aKnpwf33XcfHnjgAdx4440XbT81NYX//M//xKOPPpq3RqsRjUYNO9fU1BQa6usNOx+VAEUBZBljP/spxn7+M9R/+Do0fepWuJqaL9vUyCxHIhHU19UZdj4qAYoCRZIw+urLGPv5q6j/8PVY9alb4FrVdNmmRl+XmWVSQ8lm+ZWfYOxnP0X9tdej6VO3wrly1WXbGp5lE9YYmuZIptNpXH/99di5cyd27dqF3bt345prrsGDDz542bYvvPACfv3rX+NrX/taXhqs1tmzZxGJRAw5l5BOI/pXXzTkXFTCLJY5C8re3l5MTU0Z0gQhmUT0y/+HIeei0iVYrXMWlGfOnDHsA9iSTGDqy/sNOReVLsFqnbOgNDLLVqsVW7ZsMeRcamiaI2mz2XDnnXfi6aefxp133omOjg585StfmXPbn/70pwUb1gaAeDxu2LlkWTbsXFTCZnooLx3yZpap2GR7KA//xT6cefRriA8OAAASiYRhbVjOE8yIshRJwuhPX85M33jswvQNI6/LkiSZMs+ab7bZsWMHYrEYAOCRRx6B1Wq9bJtIJIJDhw7hfe97n/YWLhM/EKlozSoozzz6NUgGXrCI8ilbUGY/hJllKlYXFZT/81FIBn4pAsxZ02guJA8cOAAgM5F5riISAKqqqvDmm2/C4XBoPQ1ReRME1L7/Kqy8eRcsTmehW0OknSCg9gMfxMqb/xwCPxOomFksqP3Ah7By55/Bwiyrv9kGAB577DEcPHgQzzzzDG677TY899xzuPXWW/Pdtryw2+2m7AomWtDMh27zLXshrmkDANhOnmSWqfgIAmqv+lAmy61rAAC2Eye4WDgVH4sFdVddjaZb9kBsyay1a3SW5+u4KyTVheSzzz6LJ598Ek899RQ2b96Mffv24YknnsDu3btht9v1aOOyiKJo2BwGh8sF75/9uSHnotIw+upPIU3NuhlsjgIySxRFw+aWOUSRWSZVRn/6MqTZNx3MUUBmud1uwz58ne4KZplUGX3lZUjTs7JssaDuqg+h6Za9uQIySxRF47LsdMJiMd+TrVUVkq+//joeeughPPLII/D7/QCAvXv34jvf+Q5efPFF7Nq1S482LosoioatI+auqkLLnfcaci4qDZNv/S5TSC5QQGaJomjYOmIVXi9WM8ukwsT/fjNTSAoC6j54NZo+veeyAjLLyCy7mWVSaeI3v84UknP0QF5KFEWEQiFD2lWIh7osxZILye7ubtx///3Yv38/rrvuutzrlZWV2LNnDx5//HHs3LnTdN2uHo8HAwMDhpzL6/Uach4qHcLsXpt5Csgsj8ej+6M+s5hlUksQBNR96JoFC8gsZplMzWJB3Yc+vGABmeXxeHR/1GeWWbNsyLO2C+38+fO6f2Ow2WzYtGkTBEHQ9TxUWpJjo3DUNyx5+3PnziEcDuvYosy84o0bNzLLpAqzTKVCbZaNWK/azFk232C7DoxYCb6hocGUv2AyNzUXK8CYLNfX1zPLpJoZs8zrMmnBLKtTFoWkKIq6/qJFUURtba1uxyfKcrvdqNPxcW/MMhlF7yy73W7U1NTodnyirIqKCl2vm2bPclkUkgCwYsUKOHVYh08QBKxevdq03xSo9DQ2NuqyNiuzTEZjlqlUNDY26rJyjcViMX2Wy6aQtFgsaGtry+svWhAErFmzRpcClWg+2SzbbJqWgZ2TIAhoa2tjlslQemaZD8IgI1mtVrS3t5dllsviZpvZUqkUent7l70en9VqRWtrKyoqKvLUMiJ1mGUqFclkEmfPns1LltesWWPaZVKo9CWTSfT29i57bcliynLZFZJA5lmVY2NjGBkZ0bS/x+NBU1NTXr95EGkhyzJGR0cxOjqqaX9mmcxiuVn2er1YtWoVs0wFJ8syRkZGMDY2pmn/YstyWRaSWYlEAsFgEBMTE1jKf4aqqirU1dWhsrLSgNYRLV08Hsf4+PiSs+zxeFBbW8ssk+loyXJdXR171Ml04vE4gsEgJicnSzrLZV1IZkmShGg0ilgshlgsBkmSoACwWixwuVwQRREVFRWmfAQk0WyXZjmdTgOCwCxT0WGWqVSUepZZSM4hmkghnpJQV+kqdFOIlmUqkUKCWaYSMBVPISFJqKtglqm4ReIppCQZtRWlcXNj2dy1vVSKomBiOolwPIW0JBe6OUSaKYqCyekkIvEU0jKzTMVLURRMxhKIxFKQmGUqYpnrcgLhWLJkssxC8hLTyTRSMwVkKLa8u66ICik6k2UFQGiaWabiFU2kkZIUKAAmeV2mIjaVSCMtZ7IciqUK3Zy8YCE5S7Y3Mou9klSssr2RWeyVpGKV7Y3MYq8kFatsb2RWqfRKspCcZXZvZBZ7JakYRS/JMnslqVhleyOz2CtJxSrbG5lVKr2SLCRnXNobmcVeSSo2l/ZGZrFXkorNpb2RWeyVpGJzaW9kVin0SrKQnDFXb2QWeyWpmFzaG5nFXkkqNpf2RmaxV5KKzaW9kVml0CvJQhLz90ZmsVeSisV8vZFZ7JWkYjFfb2QWeyWpWMzXG5lV7L2SLCSxcG9kFnslqRjM1xuZxV5JKhbz9UZmsVeSisV8vZFZxd4rWfaF5GK9kVnslSSzW6w3Mou9kmR2i/VGZrFXksxusd7IrGLulSz7QjIpybBZBIh2K6yCMOc2ot0K0W5FPCUZ3DqipVssywIyWXYxy2RymSxblpTlGLNMJpZMy7BbM1m2lOh1mY9InGUkHEM0mb7oNasgoLWuskAtItJmOBzD9KVZtghorWWWqbjMlWWbRUALs0xFplSzXPY9kkRERESkDQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItLEVugGmEUqlQKkFKyyBEWRAQCCIMBmtSKRSMDhcEAQhAK3kmhxqVQKwlxZFphlKh6KoiCdTs+ZZSuzTEVEUZT5a4wSyLKgKIpS6EYUiizLCIVCCAaDiMfjC25rs9lQW1uL2tpa2Gysv8lc1Ga5rq4ONTU1zDKZjizLmJycRDAYRCKRWHBbZpnMTE2W7XY7amtrizLLZVtIRiIR9PX1QZIk1fs2Njaivr6+aL89UGkJh8Po7+9XnWVBENDY2Ii6ujpmmUyBWaZSEQqFMDAwUBZZLrtCUpZlDAwMYHJyclnHEUURLS0tcDgc+WkYkUqyLKO/vx+hUGhZxxFFEa2trbDb7XlqGZE6zDKVinLMclkVkrIs4+zZs4hGo3k5ns1mw9q1a1lMkuFkWUZvby+mp6fzcjxmmQqFWaZSIUkSent7EYvF8nI8u92O9vZ202e5bO7aVhQF586dy1sRCQDpdBpnzpxBOp3O2zGJFpPNcr4+eAFmmQpDzyxrmbZEpFU2y/kqIoHMjZO9vb2mz3LZFJITExOYmprK+3FTqRQGBwfzflyi+YyPjzPLVBKYZSoVwWAwrx1VWclk0vRZ1rWQ/F//63/hIx/5CG666SZ89atfRaFG0fX+RYRCIYTDYd2OT5SVTCYxNDSk2/GZZTKK3lmenJxEJBLR7fhEWYlEAsPDw7od3+xZ1q2QHB8fx/e+9z08//zzeOmll9Dd3Y2uri69TregYDCoexE7PDxcsEKZysfY2JjuORsZGdH1+ESAMVnW88OdKKvcr8u69khKkoREIoF0Oo10Oo26ujo9TzcnWZYxMTGh+3kSiURe50YQXUqSJEOyHI/H8zpnjehSRmaZ12XSkyRJy14FZilisZhps6y6kJRlGTfccAMefvjhi15/44030NnZiVdeeQUAUFtbi9tvvx0f/OAH8f73vx/vec970Nramp9WqxAOhyHLsiHnMiJMVL4ikYhhvd7MMukpHA4zy1QSmGUNhaTFYsHdd9+NH/zgB7l1knp6enDffffhgQcewI033gggM9fq4MGD+OUvf4lf/epX+OMf/4jf//73+W39EhhZwesx0ZYoy8heQvZIkp6MvC4zy6QnXpc1Dm3v2LEDNTU1ePrppzE0NIS77roLH//4x3HHHXfktnnzzTfR2tqK6upquFwuXHXVVQWZI2nkf/hEImFY7yeVHyM/fOPxOLNMujHyuhyPxzl/nXRj9HXZjFnWVEjabDbceeedePrpp3HnnXeio6MDX/nKVy7aZtWqVfjjH/+IRCIBSZLw1ltvob29PS+NViOVShl6Pq7DR3pJJpOGno9ZJr0YeV1WFIVZJt0YeV1WFMWUa0pqvtlmx44duUr8kUcegdVqvejnfr8fV111FT7xiU/gYx/7GFpbW3HNNdcsr7UaGF29m/HbApUGZplKBbNMpYJZBmxadzxw4ACAzELflxaRWQ888AAeeOABrafIC6Mfel4sD1mn4mN0tiyWsnleARmM12UqFYIgGFrcmTHLmj4pHnvsMRw8eBDPPPMM0uk0nnvuuXy3K2+cTqdh5xIEoSgesE7Fyegs22yav2cSLcjIZwczy6QnI6/LFotl3o67QlJdSD777LN48skn8c1vfhObN2/Gvn378MQTTxg+F3GpRFE07Fwul8uU3xaoNDDLVCrcbrdh5xJFkVkm3fC6rLKQfP311/HQQw/h4Ycfht/vBwDs3bsXU1NTePHFF/Vo37IZecEy8lxUfozMV0VFhWHnovLD6zKVCl6XVRSS3d3duP/++7F//35cd911udcrKyuxZ88ePP7446a8m6iystKwruCamhpDzkPlqaqqyrB5i8wy6YlZplLh8XgMy3J1dbUh51FLUMx4C1CeDQ8PY3R0VNdzuN1urF27VtdzEDHLVCqGhoYwNjam6zkqKioKsuwclZfBwUEEg0Fdz1FZWYm2tjZdz6FVWdyWWVdXp3uvZGNjo67HJwKMyfLKlSt1PT4RANTX1+vek8PrMhmh3LNcFoWkzWZDc3Ozbsevq6sz7dwFKi02mw1NTU26Hb+uro5zysgQel+X6+vrmWUyhN1u1/W63NDQYOhNPWqVRSEJZOYx6DFXxuVymfqbApUer9fLLFNJ8Hg8usz7EkURK1asyPtxiebj9Xp1y3JDQ0Pej5tPZVNIAkBTUxO8Xm/ejud0OtHW1saFm8lw+c6yy+VilslwgiCgubkZHo8nb8dklqkQyjnLZXGzzWyKomB0dBQjIyPLOo7H40Fzc7MpFwel8qAoCkZGRpZ98w2zTIWWryx7vV40NTUxy1Qw5Zjlsisks2KxGPr6+pBIJFTtZ7Va894bRLQczDKViuVkOd+9QUTLMT09jf7+ftVZzs6DL6Ysl20hCWS+OUxPTyMYDCISiSz4vEy3243a2lpD14wiWipFURCNRjE+Pr6kLNfV1Rm6lh/RUmnJssfjMeUTP6i8ZbMcDAYxNTVVslku60JyNkVRkEgkEIvFcgurWywWuFwuuFwufuBS0WCWqVQwy1QqSjnLLCSJiIiISJPiLYGJiIiIqKBYSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYiIiEgTFpJEREREpAkLSSIiIiLShIUkEREREWnCQpKIiIiINGEhSURERESasJAkIiIiIk1YSBIRERGRJrZCN4CIiJbH8Y7bIVisECxWWGwOCFYrLDN/z/xjmfVnKwTrhT9fvN3c22S2EyBYBAiCcOHPFgEW4cKfrbaFf26Z2V+wYM7jWef4x3bR3y0X/1y48GenzTLn/pf9I2TaZBUybbj077k/zxz78r/jwj6WzOt2iyX3Z0EALJj5t4DL/47Z2yHz/nPbzfo7svsLl+0nKAqgyBAUGZClC3+e/Y88+zVlzm2Eme3m/LksQZFnji9LUCQps60sQZEzf1bSycy/JenCdrP3WWB/RZahSDP/zPqzLF3+M1m6fFsplZ55Tbpk/9nHU2b+rkCWlFmvZf4sy8qFbSRl4e1leeY1BVJSyryuKJAUBZKCBf690M8UyFj455ICfFPpLeDVZXHskSQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmLCSJiIiISBMWkkRERESkCQtJIiIiItKEhSQRERERacJCkoiIiIg0YSFJRERERJqwkCQiIiIiTVhIEhEREZEmgqIoSqEbQURE5pRMJvGtb30Ld999NxwOR6Gboxnfh3mUwnsASud9LBd7JImIaF7JZBLf+MY3kEwmC92UZeH7MI9SeA9A6byP5WIhSURERESasJAkIiIiIk1YSBIRERGRJiwkiYhoXg6HA5///OeL/mYCvg/zKIX3AJTO+1gu3rVNRERERJqwR5KIiIiINGEhSURERESasJAkIiIiIk1YSBIR0WUmJibwmc98Bp/61Kdw8ODBi342OjqKPXv24M///M/x+uuvF6aBS7DQe8j6q7/6K/zud78ztmFLlEwmce+99+JTn/oUnnnmmUVfN6vF2vuP//iPeP755wvQsqWb7z3E43Hccccd2L17N5577rkCtrBwWEgSEdFlvv/97+OOO+7AU089haeeeuqin/3kJz/B7t278d3vfhff+c53CtTCxS30HgDg7bffxs9//vMCtGxpXn75Zbz//e/H97//ffz0pz9FIpFY8HWzWqi94+PjRVEMz/ce3njjDVx55ZX44Q9/yEKSiIgo68iRI7jiiivgdDpRWVmJUCiU+9mmTZswPT2NeDwOl8tVwFYubKH3AAD//M//jE984hOFadwSZNtvsViwceNGnDp1asHXzWqh9j7xxBOm/h1kzfce1q5di1QqhXQ6DbvdXuBWFgYLSSIiukw0GkVFRQUAQBRFTE9P537mdrvxzW9+E5/4xCfw0Y9+tFBNXNRC7+HQoUNobm6G1+stVPMWFY1G4Xa7AVzc/vleN6v52js4OIhoNIr29vZCNm9J5nsPdrsdP/nJT3DDDTfgve99byGbWDC2QjeAiIgK77vf/S5eeeWV3N8PHz6M6elpVFRUIBaL5QoyAPj2t7+Nb3zjG9i4cSNuv/12XHvttabomVTzHr7zne/gq1/9Kp588slCNHVJ3G43YrEYACAWi6GysnLB181qvvZ+61vfwp133om33nqrkM1bkvnew/e+9z188YtfxLXXXovPf/7z6O/vR3NzcyGbajj2SBIRET7zmc/gBz/4Qe6fe+65B3/4wx+QSCQwOTkJj8eT21YURVRUVMDhcEAQBKTT6QK2/IKlvodoNIoTJ07g3nvvxY9+9CP83d/9HaLRaIFbf7mtW7fi97//PRRFwbFjx3I9d/O9blbztffw4cP467/+a3z729/Gt7/9bZw9e7bALZ3ffO8h+/+CxWJBZWWl6XuH9cAn2xAR0WXGx8fx3/7bf0MoFMJf/uVf4sMf/jD+/u//Hvfccw/Gx8fxP/7H/0A6ncZ1112HO+64o9DNndNC76G6uhpA5o7hd73rXXj3u99d2MbOIZFI4Itf/CKGhoZw8803IxaL4YMf/CBaWlouev3WW28tdFMXNN/7WL9+PQDk7ti++eabC9nMBc33Hqqrq7F//34kEgl0dnbiy1/+cqGbajgWkkRERESkCYe2iYiIiEgTFpJEREREpAnv2iYiIjKJq6++GqOjo7DZMh/PiqKgsrISO3bswP79+2GxWJBMJvHkk0/i3/7t3zAwMACn0wmfz4fPf/7z2Lp1a4HfAZUbFpJEREQm8tBDD11048nx48dx2223QRRF3H333di7dy8cDgf+4R/+AZs3b0YsFsN3v/td7NmzB0899RS2b99ewNZTuWEhSUREZGKbNm3CO9/5Thw9ehRPP/00+vr68LOf/Sy3lmFFRQXuvfdehMNhnDhxgoUkGYqFJBERkUmlUin853/+J37729/iv/7X/4pXXnkFH/zgB+dchPxLX/pSAVpI5Y7L/xAREZnE1VdfjWAweNFzm1euXImPfOQjuOeee3DjjTfi+uuvxwMPPFDAVhJdwB5JIiIiE3nwwQfnXZy7oaEBIyMjc/4sFApBFEU4HA49m0d0ES7/Q0REVCSuvvpq/OpXv8LU1NRlP/ubv/kb3HvvvQVoFZUzFpJERERF4pZbbkF9fT3uvfde9PT0QFEUTExM4Otf/zp+85vf4Atf+EKhm0hlhkPbRERERcLpdOJf/uVf8E//9E/4whe+gLGxMbhcLvj9fnzve9/jOpJkON5sQ0RERESacGibiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSYsJImIiIhIExaSRERERKQJC0kiIiIi0oSFJBERERFpwkKSiIiIiDRhIUlEREREmrCQJCIiIiJNWEgSERERkSb/Py3TriNXpGGLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -4315,7 +4317,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAALTCAYAAACljOKvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACRxklEQVR4nO39eXxcd30v/r/OMssZjWa0y5Zkx85qG5MEGii0QBaXOAGcYDAGEmcB4ywkkIT+0gBNyc3Xab+luZhcSr8FEuIGszopIaU0lC0JoVx2WgjEWS3b2qWRNItmPcvvj5mRtWvmzDlnzsy8no+HH7bk0fkcWS+f857PdgTDMAwQEREREZVJrPYJEBEREVFtYiFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiUxqqkNQ0Df/8z/9c0THe//73Y8eOHbj88stxxRVX4Nlnn7Xo7IhKV2mWM5kMPvjBD2L79u24/PLLsXfvXgwMDFh4hkSlseK6fM899+Ciiy7CWWedheeff96iMyOyhxWZd5OGKiSff/55/Od//mdFx7jvvvvw7W9/G4899hje//734+Mf/7hFZ0dUOiuy/O53vxvf/e538dhjj+HCCy/EJz7xCYvOjqh0VmR5+/bt+OpXv4re3l6LzorIPlZk3k0appB88cUXcd1112F0dBSXX345PvOZz5g6TigUmv1zPB6HIAhWnSJRSazIss/nw/nnnz+b33POOQcnTpyw+lSJVmTVdfk1r3kN1qxZY/HZEVnPqsy7iVztE3DK6aefjje/+c049dRTsWfPnoqO9Vd/9Vf4+c9/DgB44IEHrDg9opJZmeWiQ4cO4cILL7TkWESlsiPLRG5Wj5lvmEISAJ555hlcdtlliz5/xRVX4KWXXlrya771rW9h7dq18z73D//wDwCARx99FP/wD/+A+++/3/qTJVqBVVkGgM997nM4duwY7r77bsvPk2g1VmaZqBYsl/laJRiGYVT7JJygqipe85rX4Gc/+xl8Pp9lxz377LPx1FNPobW11bJjEq3Eyix/8YtfxHe+8x38y7/8y7xpG0ROsPq6fNFFF+Fzn/sczjzzTAvOjsh6dtUi1dQwcyRHRkbQ1NRU0Q8ukUhgdHR09uPvf//7aGlpQUtLiwVnSFQaK7IMAAcPHsR3vvMdHDx4kEUkVYVVWSaqFfWY+Ybqkbz++usxMDCA7du34yMf+UjZxxgeHsaHPvQhZDIZCIKAtrY23HHHHdi8ebMNZ0y0NCuyPDIygvPPPx/r1q1DU1MTAMDr9eLhhx+2+nSJlmVFlgHg7rvvxg9/+ENMTEygtbUVgUAA3//+9y0+W6LKWZV5N2mYQpKIiIiIrNUwQ9tEREREZC0WkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmSJX+wTcIJvNIhaLIZVKIZVKQdM0GIYBURShKAoURUEwGISiKBAEodqnS7SsTCaDeDy+KMuSJMHv9zPLVDOYZaoXpWY5EAhU+1RNEQzDMKp9EtWSSCQwMTGBRCJR0ut9Ph/a29vR2trKCxe5SiKRwPj4OGZmZkp6vc/nQ0dHB1paWphlcpV4PI6JiQlmmWpeuVn2+/1ob2+vuSw3ZCGpaRqGhoYQjUZNfb2iKOjr64PP57P4zIjKo6oqhoeHmWWqecwy1QtVVTE0NIRYLGbq62styw1XSKbTafT390NV1YqPtW7dOoTDYQvOiqh86XQaR48ehaZpFR1HEAT09fUxy1Q1qVQK/f39zDLVPCuzvG7dOoRCIYvOzD4NVUim02m8/PLL0HXdsmP29fWhpaXFsuMRlcKOLPONEVVDKpXC0aNHmWWqealUCi+//DKsLKtqIcsNs2pb0zT09/dberECgIGBASSTSUuPSbQSVVUtv/ECwIkTJ5BKpSw9JtFKVFW15brMLJPTilm2um+uFrLcMIXk8PCwJcPZSxkYGLD8Qki0nOHh4YqHTZZz4sQJZpkcY2eWeV0mJw0NDdmaZTcPHttaSD7xxBPYvn07Lr74Yjz88MN2NrWiRCKB6elp246fzWYxPj5u2/GJihKJhOnFCKXIZrOYmJiw7fhERfF43NYsZzIZZpkcEYvFTC+sKYXbs2xbIamqKv7+7/8eX/rSl/DNb34T999/v63F3Eqc+AFEIhG++6WyHf/l/5T1TtOJNyzMMplRbpadui67uSeH3IlZLo9theTvfvc7nH766eju7kYwGMSb3vQm/OQnP7GruWVls9mS94mshK7rtr4jofr0lff9Je77s5149vEnV71IZDKZkvcjq4Smacwyle3QVbfi/7zhnTjyn08xy1TTHrriQ/jMm96F577/9KpZTqfTjqyTUFXVtVkuu5DUdR2XXHIJ7r333nmff/rpp7F161Y8/vjjAICxsTF0d3fP/v2aNWswOjpa4emWLx6PO9aWW3/I5G7Hf/k/+MKO961aUDLL5HbHfv5bfP6t165aUDLL5Hb9//fX+NylV69aUDqZZSfbKkfZj0gURRHXX3899u/fj+uuuw7hcBhHjhzBLbfcgttuuw2XXnopACz5j16NndqdXO2UTCZx8F03OtYe1b7owMjsn4sF5frXnINLPnErNl1y/rz/M8wyuVls6GRHQbGgPOVPX4VLPnELzrr4TfOy7OROFzMzM8wylSUxenKoulhQbnjdq7H9E7fgrDe/sarXZTcy9aztHTt24LOf/SwOHTqEXbt24brrrsPll1+OvXv3zr6mu7t7Xg/kyMgIzjnnnMrPuExO/sOrqoojP3ga2bj9QzZUv5YrKJ28YKmqime/9xRyM+7edoLcbbmC0uks//HxJ6CmM461SfWn/2e/weffcs2igtLJLGezWei6DlF014Y7ps5GlmXs27cPhw4dwr59+7Blyxbceeed815z9tln44UXXsDo6CgSiQR+/OMf4w1veIMlJ10Ou5bjL8cXbna0PapfC4e8mWWqVQuHvJ3OsjcUdLQ9ql/FgvIzb9yFI9/7seNZdrq9Upgua3fs2DFbiR84cACSJM37e1mWcccdd+Dqq6/Gzp07sXfvXrS2tlZ2tjVAEGvnQetUG8ZfOIoTv/m94yv2qjEVherb+PMv48Svf+94u4LLenCo9o09/zIGfvOMa1dSO8nU0DYA7N+/HwAwNTW1qIgs2rZtG7Zt22a2CUuIouhoBZ9NcCiQrKG0hHDBbR/AG2++Bko4hOeee87RbXmyHNYmiwRaw7NZ9oeaceTIEUeznJtx59wyqj2BthZc+JF9eMNNV8PfHMSRI0dse9jJUtw2rA2YLCTvu+8+PPnkkzh8+DCuvfZaPPLII7jyyiutPjdLKIqCXC7nSFuiKEIJBqAEA460R7UvOjgKfcEbnYUFZJHf73csy5IoIhAKIsAhQSrRUlleWEAWKYri2ApUSRTR1BpGU6u7n1dM7rFklhcUkEV+v9+RLQaB/Ejvch131VR2Ifnwww/j4MGDeOihh7Bp0yZcc801eOCBB7B79254PB47zrEiiqI4tv1DIBDAJ17+L0faotpnGAa+eesncPyXv0dseAy5dAZvuvnaRQVkkZM330BTE7NMJTMMA//6oTtx4jd/QGx4DGomizd96H14401Xzysgi5hlcivDMPDwBz+Owf95FtGhUWjZHM7/8PsXFZBFiqI4VkgGAu7spBKMMgb4n3rqKdx00004cOAALr74YgD5R7ZdeOGFuOOOO7Br1y7bTtSsVCqFl156yZG21qxZg46ODkfaotpnGAZG/vBHtJ3SW/g4P8dWEMT8XFtBLPxZzK8OzGRw9Gi/I+e2du1atLe3O9IW1T7DMDD6x2fRur6n8PHKWU6m0+jvP+bIuTHLVA7DMDD67BG0rlub/xj5+eJuyHJPTw/a2tocaascJQ+2P/PMM7j11ltx++23zxaRABAMBrFnzx7cf//9rlxNpCgK/H6/7e0IgtAQi4nIOoIgIBNPzfkYgGHA0DXoqgo9l4WWTUNNJ5FLzcAjAD6fz5Hzamlpsb0dqh+CICAdT875GCtm2SuKzDK5kiAISMdObuEnACtnWRLh9XodOa9w2J3TM8rqkaxV09PTGBgYsLWNlpYW9PX12doG1Q/DMKCrOWi5LAxt9YnaoixD9jdhenoag4ODtp5ba2srent7bW2D6kf5WfZA9gcwNTWFoaEhW8+tra0NPT09trZB9eNkljMwSugYczLL7e3tWLt2ra1tmOW+5T82CIfDts4tEEURa9asse34VB8Mw4Cuqcilk8gmYlDTyZJuvIKULyKLvSuKoth2jpIkzXu0KdFSKstyYHYEx+4sd3V12XZ8qg9LZ3n1InJhlu0c+XR7lhuikBQEAb29vbbti9fb2wtZNr2TEtU5Q9ehZtLIJePIJRPQc1nkZ96sThAleJSm2ewKgoC+vj7bstzT08Ms07JqKcu8LtNKZrM8YyLL0tJZtktvb68rV2sXNUQhCeTnlq1bt87y43Z0dLh23gJVj2EY0HJZZJMJZGdi0LJpGGXumyeIIjyBpkU3Wp/PZ8tFq7Ozk1mmRWo1y6HQ4p0PqLEtmWXDRJaVxVn2+/221BhdXV2uz3JDzJGcKxaL4fjx45Ycq6OjA93d3XwCCAHIX6QMTYOmZgvvbisgiPAGgis+kSMajeLEiROVtVPQ2dmJrq4uZpkAMMtUP6zMsiCI8KySZSvXZHR1daGzs9P1WW64QhLIbwk0MDCATCZj6uslSUJPTw97bwhAfohEy+UvUuW+uwUACCJEWT55kROEwo139aEMZpmsZOgatFx+4QxMZFkQRAhVzHJvb6/re2/IGfZkubmkx20mk0kMDAwgmzVXuNZalhuykAQAXdcRiUQwMTFR8rZFxcUO3d3dnHvT4MpdqboU0eOFJHshFOa+ZGfigGHAEwhCLGM+jNkst7a2oquri1lucJZl2eOdLRgryfLExAQikQizTGXLZzlbyLK57QgXZzn/QBOPwiwvp2ELySLDMBCLxRCLxZBKpRa9g5BlGYqiIBgMoqWlxdUTXsle+SESNd/7qJp7VKEgyZA8XoiyZ9FwhZpNQ5RkiJK5CwizTKVye5Z1XUc8HkcsFkMymVz0aFBmmYqsyLIoyRCXy3ImDVGuLMuxWAzxeLxus9zwheRCuq5D0zQYhgFJkmryh0rWyg+RZKHlcuaGSEQRolx8l7v8sIhhGJbOhWGWaaGTWc7mHz9TpmplWdM06LrOLNMsXdfym4NXkuXiqBCzXBEWkkRLMAwjf5FSzQ6RCBA9ntkhErdPlqb6xSxTvTAMHXph3qOhM8tuUTuD8EQ2s3uIhMgpzDLVC0uyLMsQZWbZLiwkqeHpmjY7QdvOIRIiuzHLVC8qz7KU731klm3HQpIaUsVDJIIASfZA5BAJVZk1WfZC9HhMLyggsoJ1WfaWtcKaKsOrBjWM4jNV9YqGSDyFIRKZxSNVjWVZ9nghSswyVQ+zXPtYSFLd0zVtdrGB2SGS2W1OOERCVWRZlj0eCAKzTNXDLNcPFpJUlwxdh6bm8k+b4RAJ1TBmmepFPstZ6Lmc+Sx7vPlRIWbZNVhIUt3IP9VAha5yiIRqW/FpM/ksm3zaDLNMLmBVliWPFwKz7EosJKmmGYYBo7gxrZrjEAnVLGaZ6kUxy1ou3/sIVJJlL4tHl2MhSTXp5BBJFoZe/tNmZodIPF6IIodIqHqYZaoXzHJjYiFJNWN2iCSXha5xiIRqF7NM9YJZJhaS5GqWDJFI0uwEbV6kqFqYZaoX87OcNXUMQZIheTzMch1gIUmuZOh64ZFYZodIREhznqlKVC3MMtWL2SznsjAMs1n2QvJ4mOU6wkKSXKM4RKLlsjBMD5F4C0MkfNoMVQ+zTPXCkiwXH7vJLNclFpJUVYZhwNC02QnaZuSHSAobhvMiRVXCLFO9YJapHCwkqSoqHSIRBDH/Ltfj5dNmqKryc8XyPTZglqmGVZxlUTzZk84sNwwWkuQYy4ZICnPF+C6XqiWf5Wwhyyae0AFmmdyh8iwLEOfM4WWWGw8LSbJVfohELSw2MPe0GQ6RkBswy1QvrMiyKMn5/R6Z5YbHQpJsUdwaIj9EYuapBhwiIXfQi0+bqSTLxcUGzDJVEbNMdmAhSZYxDKPweDcOkVBtMwwdemGumKEzy1S7Ks6yIEAqPLedWaalsJCkinCIhOqFJVmWZYgys0zVxSyTk1hIkim6ps1O0OYQCdWyyrMs5XsfmWWqMl3TZkeFzGfZC0n2MMtUMhaSVDJrhki8ED0eiBKjR9VjXZa9ECU+oYOqh1mmauPdnFZkGAZ0TYVe0RCJp3CRkjlEQlXDLFO9YJbJTVhI0pKsGCKRPPneR0HgEAlVD7NM9YJZJjdiIUmzDF2HpubyT5vhEAnVsHyWs9BzOfNZ9njziw2YZaqik1nOwtDLf9oMs0x2YyHZ4IpPm9HVLHTV5NNm5MI2JxwioSpilqlezGY5l4Vu9ilgzDI5hIVkAzIMA0ZxY1o1xyESqlnFLOef254DwCxTbbIky5I0OyrE4pGcwkKygVg2ROLxQhQ5RELVwyxTvTB0vbDfY2VZLm5+T+Q0FpJ1jkMkVC+YZaoXxSxruSwMZplqHAvJOmTZEElhgjYvUlQt87OcNXUMZpncwJosy4Us82kz5B4sJOtI5UMkIqQ5zwcmqpbZLOeyMAyzWfZC8niYZaoqZpnqHQvJGmfJEEnxUYWSxHe5VDXMMtULZpkaCQvJGmQYBgxNm11sYAaHSMgNZrNc6Ek3g1kmN2CWqVGxkKwh+fk1+Xe5MDFEIghi/l2uxwtB5DYnVD3MMtWL4rxHLZczl2VRhCgzy1S7WEi6XH6IJH+RqmiIpDDvke9yqVpOZjkLQzPxtBkwy+QOlWdZgDhnPjqzTLWMhaQL5YdI1MIQSc7UMThEQm5gRZZFSc7v98gsUxUxy0RLYyE5h2EYyGQy0ArvMEVRhM/ng+jQcMPJIZKsyafNiCcnaHOIpKFVO8t68clJzDJViFmmelHtLNul4QtJVVUxNTWFWCyGdDoNY4kLhdfrRXNzM9ra2uDz+Sxt3zCM2YuUoXOIhMyrfpZ16IV5j6ayLAiQZE/+8W7MckMrJcs+nw/Nzc1obW1llsm1ilmORqPIZDKOZ9kJgrHUd9UANE3DyMgIpqamyvq6pqYm9PT0VPTD5hAJWUlVVYyMjGB6erqsr3NNlmUZoswsk/ksB4NBrF27tuIs65qaf3KS6Sx7Zn8xy42tmll2WkMWkvF4HAMDA7Pdy2Z0d3ejo6OjrIuFrmmzE7Q5REJWiMViGBwcNJ1lQRDQ3d2N9vb28rOcy0JTzWZZKmTZwywTAGaZ6kc0GsXQ0JDjWa6WhiskJyYmMDIyYsmxQqEQ1q1bt+IP2pohEm++91HiUw3oJCuzHA6H0dfXxyxTVYyPj2N0dNSSY5WUZV0/uWE4s0wWsjLLLS0t6O3tdX0x2VCFZCQSwfDwsKXHXOqiZdkQiccLUZJdHyJyHrNM9cLKN0RFS92A81v2qNBVZpns4VSW3aZhFtukUinLb7xAvgs7EAigvb3dkiESyeOF6PFAEDhEQktLJpMOZFnN9z4yy2SjZDJp+Y0XAKanpxEIBNDa2gqjuOpazTHLZJuZmRnbstzU1ITW1lbLj20VWwvJm266Cb/4xS/w+te/Hp/5zGfsbGpFuq5jYGDAtuOPjIzA75Egm3nDIAiF/R45REKrcyLLikeCxCyTzezO8vDwMPyyyCyT7ezO8tDQEILBIDwej21tVMLWt1dXXXUVPvnJT9rZREmmpqaQyWRsO75hGJiYLG/1tyh74FGa4G0KQfYpvFhRSSYnJ5HNmnuObykMw8D45HRZX8MskxnMMtWLSCSCXM7cdIlSGIZhS2+nVWwtJF/3utehqanJziZWZRgGIpGI7e3EEzNQ1ZUnbQuiBNmnwBsMwaM0cYsIwo/+388i8tKxkl7rXJYTUFdZbShIxSyHmWUCAPzwb/8Rk0dPlPRaZpnc7If3fAZT/aX1MBqGgcnJSZvPKD/1SFXNPSbZbmUXkrqu45JLLsG999477/NPP/00tm7discff9yyk7NCMpm09V3vXLFkavEnBQGS1wdPUzO8Tc2QvD7Os6FZ//O1f8OnX/lm/Ot1d6xaUM7MzNj6rneu+MwqWQ4Us8wbLuX991cexYGtf4Fv3vCxVQtKR7O8wnXZyyzTEn5z6Jv41Cu24dEbP75qQZlIJBzLcrl7Ujql7DmSoiji+uuvx/79+3HdddchHA7jyJEjuOWWW3Dbbbfh0ksvteM8TZuZmXGsrWQ6g3Aw3wMryHJhXzEZEAToOqAb898Zz71s8SLWmPKrojX8+qFH8NsvP4pX7dmJC+74INpPO2XRa53OcohZpjIUV0X/6uBh/ObQN/Hqq96BC/7qRrSdun7Ra53MciqdRUuTDgAQ5MJTwAqrrg3ktwIimqeQ5V8++A38+kv/ildf/Q5c8FcfRNvGdYte6mSWE4kEOjo6HGuvVKa2/1FVFdu3b8fOnTuxa9cu7N69G9u2bcNdd9216LU///nP8ZWvfKVqi22OHTuGeDzuSFuCIKD3lI1l30gNXUcumUYulUIumYKaSi/zcRq5ZHLex2oqhexM4TWpNHLJ/NfkZpJIRqaRicZs+m7JLqIkLVlQ9vf3I5FIOHMOgoAeh7NczC6zXD9EWV6yoDx69KhjN2BREPHlV+9wpC2qX6IsL1lQOpllSZKwefNmR9oqh+l9JL/+9a/j05/+NLq6utDb24t/+qd/grTExORqF5LPPfecY93OALB23SmQZffsqqTlckhFppGMTCEVmUIyMoXkxGT+zxOTCz4/hdTkNIwKnvhD1llYUB45csTROTI9606B5NIsz2a4mN9ClpMTU0hFJvO/T0WZZZdYWFA6neV/3bYHmWlnOhSovi0sKJ999tmKnpJXrs2bNy9Za1WT6UJyZmYGr3/963HKKafgG9/4BgKBwKLX7N27F3/4wx+QSqUQDofx2c9+FmeffXbFJ10Op3/Ia/rWwePxOtae1QxdR3o6NqfInEayeGMu/B4fGkX0+CDiw2O8UTtAlCS8+up3YtOHr4Lu4DDc2r71kF263UQpFmZ5NsORaWa5SkRJwquveSc23bwHuoPPwvjWWz+A5Mi4Y+1R/RNlGedd+y6c8cH3wsnnupx11lmu2wbIdHfD/v37AeS31lmuOv7iF79o9vA1S0Btzw8TRBFKWwuUtha0r/JaXVURGxxB7MQwoscHET0xlP/9+BBiJ4YQHxqF7tJVZrVCEARsfeel+PNb3o9J8N+yHGaynM/uIKLFTB/PZzo+NMpCs0KCIGDrrrfgDR/eiwnD3Eb3ZvFnR1YSRBFnv+ut+LMPvQ8TesbRQtKNTBWS9913H5588kkcPnwY1157LR555BFceeWVVp+bJTwej6M9ko2075goy2g5pQ8tp/QBeM2iv9c1bbbHp1hczi0244MjLDSXIQgCXvmut+LCj9+M7s1nAABiL7zALNtkfpYX01UV8eGx+Vk+Plh4AzXMLK9AEAS8cvfbcNHHbkbX5tMBANPPP+/YbhoAkIlyWJsqJ4giznn3Dlzw0ZvQtek0AM5n2W3D2oCJoe2HH34Y99xzDx566CGce+65+Od//mccPnwY3/ve91zX3QoAg4ODmJoqb7NwszweD+K/OZJfoCAIJ38XT34893OCKEKUZYgeD0SPDKnwu+jxQFrwu+iRIXk9EF00Z61Shq4jG08gHY0jMx1DenIKybEIkuMRpCanHe2xqJZfP/QIUlPR2Y+LvTYX/fWHZgvIooGBAce2f6gky3MzK3o8s7ltiCxPx5CZjiE1OZ3PcQNl+VcHDyM9p2BbqoAscjLLXo8HLz74r460RfXhlw9+A5nYyYWNgiji7N1vw4Ufu3m2gCw6ceIEotHowkPYwufz4Ywzzlj9hQ4rq5B86qmncNNNN+HAgQO4+OKLAeSXo1944YW44447sGvXLttO1KzJyUkMDQ050lY4HMa6dYu3B7BS8cdl5D/Ib1+R/2D2XmXMft7Ib8lh5P+u+HGt3NJEUYAkiPnfxfzvYrGAqROfPvtijD/30pI9kAtFIhFbnrG9lJaWFvT1Ld07ZxVmub6y/KktFyHy0jEIgoCz370DF370pkUFZFG9ZZnqy71nXYCp/hNL9kAuNDEx4dhTZ1pbW9Hb2+tIW+UouUvgmWeewa233orbb799togEgGAwiD179uD+++/Hzp07XdftGgqFHC0k7Va88Qj5D0wdY+HN2TBQuEGf/NgwDOg4+XE16LoBHRqwYDR34U1ZEuf0kNWY2Xe6KxSQRaFQyLGbbz1lWTcMGMyy7QRRxDnvuWzFArKo3rJM9UWURJz73stXLCCLQqGQY4WkW7NsetV2LXGi61mWZZx11lk1eQNYTTEi+pxeIV0v9A4VfndyBeZyJFGAKIqQhMLvNXBTjg6OINy7puTXHz9+HLGYvfspejwenHnmma7+dzOLWbYPs0z1otwsO7FftZuzXD+TlFbQ0dFheyHZ2dnpyh+wFYrfl7TC93ey90efvTkvvFHbTdMNaLqGhbuGSqIISRIhu/CGXM7FCshn2e6bb0dHh2v+faxWX1nO92S6hRuzXM/XZbKPmSzbXUi6OcsNUUgqioKOjg5MTEzYdvy2tjZbjl0r8sUZIGLpqQ1zhxl1Q5/X+2P3zVnTdWi6juK6OkEo3JBFEbKU/92t/0EXCgQCaG9vRyQSseX4zHL5WXay0GSWyzt+a2urLccmmqupqQltbW2YnJy05fhuz3JDFJIA0NXVhXg8jkwmY+lxBUFAX19fzVy8q+XkzVkAIC76+7k3Yk3XT/5uw03ZMABV06FqOjKFLh9RECAVbsRyoafHrT/T7u5uxONxy7ecYJZLUytZnttr6dafKbNM9aKYZaufpCeKouuz3BBzJItyuRxefvlly37QgiDglFNOQTAYtOR4tJiTN+WF3Dwkns1m8fLLL1v2mDlBELBhwwY0NTVZcjxabGGWi3lmlpllqg92ZHnjxo1LPjnQTRqqkATyxWR/f3/FPZOSJGH9+vW8WFVJ8aY8r7i0+abstmFEZrk+MMv5G/CxY8csyfIpp5zi+hsv1a9sNov+/v6Ke9lrKcsNV0gCgK7rmJiYwNjYmKmvD4VC6OnpgVxHGyrXC6PY42OcvCmrmn3Pp5aLPT2SNNvT4yRd1zE+Po7xcXPPEWaW3WtRljUdqo3PWpeLRWWNZjkcDmPt2rXMMlWdrusYGxszvS6j1rLckIVkUSaTQSQSwdTUVEnPymxubkZ7ezuHsmvMbI+Pps8OKWq6PbGXC0WlLImObjidTqcxOTlZcpZDoRDa2tqY5RrDLC8WCoXQ3t7OHnVynXQ6jUgkgunp6brOckMXkkWapmFmZgapVAqpVAqapsEwDEiSBL/fD0VR0NTU5MpHQJI5hmHM3oSLN2WrhxIFAZBFqXBDFiGKixdmWG1hlotzdZjl+rUwy6qul3TTKgezTGRevWeZhSRRwaKeHk239BF8oiDM9vJIhV4eIjsszLLV0zuYZSIqYiFJtAy7hxFFUZjXy+OWVbRUf5hlIrILC0miMhSHEYt792kWLn6QRBEeubhwx/6hQ2pszDIRWYGFJFEFDMOYvRGrugbdol4eURDgkaWqrQanxsMsE5EZLCSJLFQcPlQ1DapmzQIeQQA8kjS7gpY3YnKCbhhQNa2QZ2aZiJbGQpLIRvqcoUNV12DF/zZZEuGRJXgkiTdicowdWfZIEmRZZJaJahgLSSKHFBc8qHN6LCuVn4smwePQlixEALNMRCexkCSqkvxiBwOapiFnwWIHURTgkfI9lSLnopGDilkuFpXMMlHjYCFJ5BK6YUBVNeQs6OERBAGewhB4tZ+jTI2HWSZqHCwkiVyouII2p2lQVa2ijdEFQYBXlmZvxEROYpaJ6hsLSSKXK+73l9N0qKpW0epZURTgleXZIUMiJ81mWc3Prawky5IowMMsE1UdC0miGlJc5JBTtfzWLBXs9SdL+dWyHpkrZsl5lmeZOxkQVQULSaIaputGYR5aZXPRigUl9/ajamGWiWoTC0miOjE7F62wyMEMAYBHluCVZa6WpaoxjEJRqerms1zY/JxZJrIXC0miOlQsKrOqarp3p/hoO68scV8/qhpmmcjdWEgS1TmjMA8tq2qm9/eTRHF2tSx7dqhaitsKMctE7sFCkqiB6LqOrKohV8Hqb48kwevhnn5UXZZkuTCNQ+LQN5FpLCSJGpBhGNB1A1lVRU4z99zk4lZCXvbsUBVZlWWfLLOXksgEFpJEDW7uhtE51dzCBq8sweuRuUk0VZUVC86YZaLysJAkolnF1bL5vf3Kn4MmiSK8Hu7nR9XHLBM5g4UkES2puFl0TlXL3ixaEDA77M1VslRtxT0qmWUi67GQJKJVabqObE5F1sTQtyyJ8MoyN4gmV2CWiazFQpKISnZyK6Hye3ZEQchvu+KRIfImTFVWzHJGVaGbybJHgkdmlolYSBKRKcVNos0s0CluDs0thKjaDMOAVlz1bTrL3EKIGhcLSSKqSHEuZTanlr2fnygK8HlkLmggV8hnWUU2V/7elMwyNSoWkkRkiXzPjo5MrvxH2QlC/ibMPSnJDQzDgFqYS8ksE62MhSQRWa64QXRWVcvaIFoA4PXI8HIeJblE8Qk6zDLR0lhIEpFtihtEZ3Jq2c9G9soSfB6ZW66QKzDLREtjIUlEjjC77YqncBPmk0bILZhlopNYSBKRo2a3XSlzcY4sifB5ZMiSZOPZEZWOWSZiIUlEVXJyqDBX1p6Ukli8CXPrIHIHZpkaGQtJIqoqs6u9xcLqWA9Xx5JLMMvUiFhIEpFraIXFDDmt9Lln3G6F3IhZpkbBQpKIXEcv9OqUs5ihuN2KzyPzJkyuwSxTvWMhSUSupRtGfnVsTkWpFyoByPfq8CZMLlLMcianlvw1zDLVAhaSROR6hmEgW1gdW+olSxAAn8fDYUJylXyW1UKWS/saZpncjIUkEdUMM9utCIIAPxcykMswy1QvWEgSUc0x85QRURDg88rwSLwJk3uY2TpIFAT4vR5uG0SuwEKyIJfLIZVKIZVKQSusshNFEX6/H4qiwOv18j8s1YRGyvLsditZFWqpBaUowO/hTdjtDMOAqqoNl+V0tow3R8xyTTAMA7lcDul0ui6z3NCFpK7riEajiEQiSKfTK75WlmW0tbWhra0Nsiw7dIZEpSk3y+3t7Whtba2rLKuaVtZNWBJF+L18uojb6LqO6elpRCIRZDKZFV/LLOcxy+5UTpY9Hg/a2tpqMssNW0jG43EMDAzMvjMoR3d3Nzo6Omr23QPVl1gshsHBwbKzLAgCuru70d7eXjdZLg4TpnM56CUOE8qiCF9hmJCqi1k+yVSWJRE+D7PsBtFoFENDQw2R5YYrJHVdx9DQEKanpys6jqIoWLduHbxerzUnRlQmXdcxODiIaDRa0XEURcH69evh8XgsOrPqm70JZ3MlL2SQJRF+rweSyJuw05jl5RmGgZymIZMtfVEOs1w9jZjlhiokdV3HsWPHMDMzY8nxZFnGqaeeymKSHKfrOvr7+5FMJi05Xr1mubgyNl3GtkEeSYLPK/Mm7BBmuTTMsvtpmob+/n6kUilLjufxeLBx40bXZ7lhCknDMHDs2DEkEglLj+vxeHDaaafV3JwGql3McvlO7kOZK3nvPo8swe/xQBRrY3ipFtmZ5dNPPx1SHc4ZnM1yNlfyJv1eWYKPWbaVYRjo7++3rKOqyOv14rTTTnN1lhvmbcrU1JTlFysgv0J2eHjY8uMSLWdycpJZLlPxGcbNih9+j4xSbqc5VUM8lc7fsBvj/bbjmOXyzWY54IfPU9qbviyzbLtIJGJ5EQkA2WzW9Vm2rZAcHh7GVVddhbe85S3YsWMHHn/8cbuaWpXdP4hoNIpYLGbb8YmKstksRkZGbDt+vWdZEAT4vJ6ybsLpnIpEKoOcqvEmbCG7szw9PY14PG7b8atNKOwlGWKWqy6TyWB0dNS247s9y7aNYUmShI9//OPYvHkzIpEIdu7cifPPPx+BQMCuJpcViURs/08zOjqK5ubmmlllRe6gqSqkMoaSJyYmbM/y2NgYQqGQrW1UW/Em7PXIyGRVZNWVn3+sGwaSmSxkUYTfx0UMS3FjlovX5Xo2P8s5ZNWVVwnPZpkLcpblxiyPjY25Nsu2JairqwubN28GALS3tyMcDle8iskMXdcxNTVlezuZTMayCbbUOO7bdgW+97+/gMzM6gsNNE1zJMvpdNqyhQ9uJwoCFJ8HzYofXnn1OUiqriORyiCVybJHZ4EDF7wHPzjwALLJ1a+DTma5Ua7L+Sx7S8+yxiwv51Pnvxs/vO+LyKZW3pMXyGe50l1gSlHcmN+Nyi4kdV3HJZdcgnvvvXfe559++mls3bp1ySHs3//+9zAMA2vXrjV/pibFYjHoJW7qWiknwkT1JT4WwTdv/zvcufGNqxaU8XjcsQt+o2VZFPM34aDig6eESe1ZVUM8mUamjBW09S42OoFH/vIe/PXGN65aUMZiMWbZJsxy5WLDY3j4tv2489Q3rlpQMssmV20/+uij2L9/P5544gmEw2EcOXIEV1xxBW666Sbs3bt33munpqZw5ZVX4p577sGrX/1qy068VMPDw4hEIo605fP5MP3rZx1pi+rDIx+5B9HhsdmPmzvb8ea/uh7n37gHvqb500CGhoYwOTnpyHk1epY1XUdO1UraCFoUBXhkqeGHCB++9f9BbHRi9uPmrg5sv+MGvOmGK+ENKPNe62SW/T4fpphlZrkMhz98N+LjJ+uGUHcHLr7jBrzp+sVZHhwcdKR3HcjvLXnaaac50lY5TBWSqqpi+/bt2LlzJ3bt2oXdu3dj27ZtuOuuu+a9LpvN4n3vex/e9a534e1vf7tV51yWl156ydHu4P/v1W+Hnlt5vhXRapq7OnDxX12PN91w5WxB6XiWX/V26KvMHSRazVIF5Ysvvrjqozyt9E/nXgZDc2ZkiupXaE0ntt9xA954/ZXwKn4AzmZZEARs2bLFdWsxTL3tkGUZ+/btw6FDh7Bv3z5s2bIFd95557zXGIaBj370o3jd615XtSISyG8D4aSmzjZH26P6FB+bwL/+//4Wd576Jnz/U/cjM5NENpt19BwC7S2Otkf1KT62eMjb6euy0hp2tD2qT7GR8UVD3k5elw3DMPVYZ7uZ7r/esWPHbO/IgQMHFm2W+etf/xr/8R//gR/84Ae4/PLLcfnll+O5556r7GxNcHrOh1TiNgxEpSgWlJ/beb3jWRaZZbJQsaD83Duuh+HQvPUiXpfJSsWC8vPvvMHx67Ib57Ga/t+1f/9+APk5kEvtuH7eeefhyJEj5s/MIk53AWtZZ99pU33rPXsT3nbXrTjn7Rc7/kZMc7jXiOpb3zmb8da7bsE5lxey7GDPCq/LZKV1527BW//XrTjnsjfj2WefdbS4c9uwNmCykLzvvvvw5JNP4vDhw7j22mvxyCOP4Morr7T63Czh8/mgOjTPSwCQGHNmYQ/Vt7kFpFiY+O7z+RzblkcQBCTHnZlATvVtbgFZzLLX63Vsvq8gCEhOOr/1HNWfuQVksaDz+XyOZVkURVc+KrHsxTYPP/ww7rnnHjz00EM499xz8c///M84fPgwvve978Hj8dh1nqaNjIxgYmJi9RdawO/3Q4q4d/d5cp/7330zJo8Nzn7ce/YmvPUTt+Dcndtnb7pFTu5AoCgKxIn6fcKNVXTDQC6nIVdC75oAwOuRIUuiK3sVKvWFXR/E1MDJJ4gtVUAWMcvuoxsGsjkNKrOMz+28ft5uGuvO3TKb5YXfr5M7EAQCAZx66qmOtFWOsnokn3rqKdx99904cOAAzj33XADAVVddhQcffBCPPfYYdu3aZcc5VsTJJ+k0NTVh7emnO9Ye1b7iyr+leiAXCgQCjt18m5qasMaF20y4labpSGVz0EqY+yeLIhSfZ9mfc62S/T4A+QLybf/rVpx92ZuZ5RpUVpYlEYq3/rLsKWR5qR7IhQKBgGOFZFNTkyPtlKvkQvKZZ57Brbfeittvvx0XX3zx7OeDwSD27NmD+++/Hzt37nRdt2swGIQkSY6sdGptbbW9DaovfedsxuV/e/uKBWRRc3MzRFF0ZIN9Zrk8kiSiye9FTtOQzq68sbOq64inMvB7ZXhluW56dNaduwXvvPdjKxaQRcyye5WVZa1Os/yqV2DXp/9mxQKyKBQKOZbllpYW29sww9Q+krVmdHQU4+Pjtrbh1i5nqi/MsvsZhoFMTkWmhP1kRVFAwOuFJNVXj04pnJh21NTUhI0bN9raRj0rJ8uSKEBp0Cw7MVUjGAxiw4YNtrZhVkP8xNvb223vKe3u7rb1+ESAM1les2aNrcevd4IgwO/1oFnxQV7lpqrrBhLpDFLZnCu39bBTR0eH7UOivC5Xppwsa4Usp5llW7g5yw1RSMqyjN7eXtuO397e7tq5C1RfZFlGT0+Pbcdvb293dF5xPRNFEU1+HwI+L1Yb8cvmVCRSmZIWOtQLu6/LHR0dzLJFyslypgGz7PF4bL0ud3Z2QlGU1V9YJQ1RSAL5eQx2zJXx+/2ufqdA9SccDjPLNcQjS2hW/PDKK/ck64aBmXQWyUwWeoP06IRCIVvmfSmKgq6uLsuP2+jMZLlReifD4bBtWe7s7LT8uFZqiDmSRYZhYGBgANGoNXuK+Xw+bNy4EbLMpyaQs6zOst/vx4YNG5hlm6mahlQmt2qhKADw+zzwSFLdLGBYjmEYOHHiBGIxa7bo8fv92Lhxo+sWftabkrMsAIrXW7dbBc3VqFluqEISyP+gx8fHMTY2tvqLVxAKhdDb2+v6HzDVL8MwMDY2VvHiG2bZWeUsYKjX7VUWsirL4XAYPT09zLJDys+yF6JY/8Vko2W54QrJolQqhYGBAWQymbK+TpIk9PT0IBwO23RmROVhlmuTputIZbLQ9NUvwX6vB165/nsnK8lyb28vQqGQTWdGK2GWF0smkxgcHCw7y8V58LWU5YYtJIH8O4dkMolIJIJ4PL7iXI5AIIC2trbZPaOI3MQwDMzMzGBycrKkLLe3t8/u5UfVYxgGsqqGdAnPgpYKG5lLdf4zM5PlUChU94WJ2zHLixWzHIlEkEgk6jbLDV1IzmUYBjKZDFKp1Ozm5aIowu/3w+/384ZLNYNZrj26nn+aiKqtvqmxzyPD56mfzZ9XwizXHmZ5afWcZRaSREQuYBhG/mkimRxWuyhLogDF5637Hh2qTcxyY2EhSUTkIrphIJ3NIaeuvg9fo8w3o9rELDcGFpJERC5U6vYqjbIalmpXrpDl1coNWRKh+LwQWUzWFBaSREQuZRgG0jkV2VW2VxEAKD4vPKtsFE1ULcxy/WIhSUTkcpqml/TEG48sQfF6ODxIrqVq+a2CmOX6wUKSiKgGGIX5ZtlV5puJggDF54FcAxsZU2MqL8v5p+KQe7GQJCKqITlVQyqbxWpX7kbaWoVqE7NcH1hIEhHVGN0wkMpkV92rj1urkNsxy7WPhSQRUQ0yDKPQo7P6k0S4tQq5WTlZVrweeJhlV2EhSURUw3RdRzKTg6av3KPDrVXI7Zjl2sRCkoioxhmGgUxORYZbq1CNY5ZrDwtJIqI6wW2CqF6Uuk2QV5bgZ5arioUkEVEd4dYqVC/KyXLA54XELFcFC0kiojpU6tYqXIhDbpdTNaQyWaxWrHAhTnWwkCQiqlOlbq3ikSQoPg4PknuVnGVO23AcC0kiojpW6tYqoiAg4Oc+feRezLI7sZAkImoAmq4jVcLWKorPA68sO3RWROXLZzkLTV+5fGGWncFCkoioQZS6tQpXwpLbGYaBdE5FllmuOhaSREQNJqdqSGayK75GEvMrYUUOD5KLMcvVx0KSiKgB6bqOmUwW+grDg9z0mWoBs1xdLCSJiBpUqfv0+TwyfB6Zw4PkWoZhIJXNIccsO46FJBFRg8uqKlKZlVfCSqJYGB7kDZjcK5tTV13VLYkiAn4+q9sqLCSJiAiariOZXvmRdIIABHxeyBKHB8m9mGVnsZAkIiIAheHBTA45beXhQb9HhpfDg+RiJWfZK8MrM8uVYCFJRESzDMNAVtWQXmV4UJbyQ928AZNbMcvOYCFJRESLqJqOZCaLlW4RgiCgyeeFJHFbFXKvUrIsCvktgpjl8rGQJCKiJZX6fGPF64HXwyeIkHsxy/ZhIUlERMvi03CoXpSeZRl+L+dNloqFJBERrUrVNCTTWax0w+C2KlQLcpqG1CpZ5rzJ0rGQJCKikui6gWQmC01ffnhQFAQE/F5IfBwduRizbB0WkkREVLL803BUZNWVhwcDfBwduVypT3ZillfGQpKIiMpWytNwFj6OTtN0iKLA4UJylVKehsMsL4/9tUREVDavLKPJ78NK99FMLl9sGoYBXdcxk86sumqWyGlej8ksrzAs3kjYI0lERKaVNNdMFAAjvwWLLIlo8vscPEOi0uSznIGmr7DfJLO8CHskiYjINFEU0ORfeQ6Zrhuzzz1WNX3FopOoWvJZ9jHLZWIhSUREFREEAYrXA7/XU9Lrs6vs40dULcxy+VhIEhFRxQRBgM8jo8nvxWrLD7KqtuLj6oiqiVkuDwtJIiKyjCxJCCq+VTclX237IKJqkyUJTSVleeXtg+odHygJIJvNIhaLIZVKIZVKQdPy7zBEUYSiKFAUBcFgEIqicKk/uVomk0E8Hl+UZUmS4Pf7mWVyzGq9NNmcBq+8/GPomGVyAwGlZFmFV5YqznIgELDhO7BfQ6/aTiQSmJiYQCKRKOn1Pp8P7e3taG1t5YWLXCWRSGB8fBwzMzMlvd7n86GjowMtLS3MMlnKMAwkUpnZBQkrWWqj53g8jomJCWaZqs7pLPv9frS3t9dclhuykNQ0DUNDQ4hGo6a+XlEU9PX1wefjsn+qLlVVMTw8zCyTa+T32TOg6jo0TYeqa1juLjN3+xRmmdymkiwPDQ0hFouZarfWstxwhWQ6nUZ/fz9UC+bnrFu3DuFw2IKzIipfOp3G0aNHoWmVzc8RBAF9fX3MMtnCMAwYhgFV02dvyHN7eIKKD9lMBv39/cwyuZrTWV63bh1CoVClp227hiok0+k0Xn75ZegW7vvU19eHlpYWy45HVAo7ssw3RuQUXc/fiFVNh5rNYuDEcWaZapJezLGuI5fNYuD4MUtXcddClhtm1bamaejv77f0YgUAAwMDSCaTlh6TaCWqquLo0aOWZ/nEiRNIpVKWHpNoKaIowivL8EoiBgdOMMtUs0RRhNeTz/LQwAnLtwKqhSw3TCE5PDxsyXD2UgYGBiy/EBItZ3h4uOJhk+WcOGH9TZ1oOXZmmddlctLQ0JCtWXbz4LFthWQikcA73/lOXH755dixYwcOHz5sV1Mlncv09LRtx89msxgfH7ft+ERFiUTC9GKEUmSzWUxMTNh2fKKieDxua5YzmQyzTI6IxWKmF9aUwu1Ztq2QVBQFX/7yl/HYY4/h8OHD+PznP4+pqSm7mluREz+ASCTCd79UtsFf/a6sd5pOvGFhlsmMcrPs1HXZzT055E7McnlsKyQlSYKiKADy1bSu61X5R8hmsyXvE1kJXddtfUdC9emxD9yOL75pF174z6dW/f+RyWRK3o+sEpqmMctUtkevvQ0PXvAuvPj9HzPLVNP+9apbcPCid+OlH/5k1Syn02lH1kmoquraLJddSOq6jksuuQT33nvvvM8//fTT2Lp1Kx5//PHZz8ViMVx22WU4//zz8YEPfABtbW2Vn3GZ4vG4Y2259YdM7jb0q//B196+d9WCklkmtxv8xX/jq5e9f9WCklkmtxv42W/wlbddu2pB6WSWnWyrHKa2/3n00Uexf/9+PPHEEwiHwzhy5AiuuOIK3HTTTdi7d++i109MTODmm2/GZz/7WXR0dFhy4qUaGBiwdX7kXLIs43f/6x8daYvqw8s//Amyifk9Mz3nnYPz7/wwTr/4TfOebnDixAlb55TNxSxTuV76/o+RS85fXdr72nNx/p0fxml/8cZ5WT5+/LhjBR6zTOVaKst9f/oqnH/nh3HqtjdULcterxdnnnmmI22Vw1Qhqaoqtm/fjp07d2LXrl3YvXs3tm3bhrvuumvZr7nrrrvwute9DpdeemlFJ1yu559/Htls1rH2vn3RlcjF7R+yofq3sKB0Osv/dsF7oc64e9sJqg0LC8rnnnsOuVzOsfYfe+O7oaUzjrVH9WthQel0lrds2QJRdNeGO6bORpZl7Nu3D4cOHcK+ffuwZcsW3HnnnfNeM/cZ1olEAr/61a+wcePGys+4THYtx1+ON9TsaHtUvxYOeTPLVKsWDnk7n+Wgo+1R/Rr4+W/xlR3vw8ELd+OlHzzteJadbq8UpsvaHTt2zG6SeeDAAUjS/IeVj4yM4Morr8Rll12G9773vbjyyiuxadOmys62Foi186B1qg2TLx7F8G+fcX6xGrNMFou8cBTDv3nG+YYFZpmsFXmhStdlF5LNfuH+/fsBAFNTU4uKSADYunUrHnvsMfNnZhFRFB2t4NUZPuWGrOFvCeF1t+zFa2+8Gv5wM5577jlHt+VRE8wyWcPfGsbrb9mL1954FXyhZhw5csTZLHOKBllEaWvB62/di9fccBV8zUEcOXLEtoedLMVtw9qAyULyvvvuw5NPPonDhw/j2muvxSOPPIIrr7zS6nOzhKIojs1fEEUR/qYm+JuaHGmPal9saBTGgjc6CwvI2c/7/Y5lWRJFKKFmKBzephItlWWlrQWvu+X9eO0N+QJy9vOK4tgKVEkUEWgNA63ufl4xucdyWZ5bQBb5/X5HthgE8tMKl+q4q7ayC8mHH34YBw8exEMPPYRNmzbhmmuuwQMPPIDdu3fD4/HYcY4VURTFsRVVgUAAtzz/Y0faovrw/527HRPPvQRg+QKyyMmbb6CpiVmmsnx26zZMvnQMwPIFZBGzTG72mc0XYrr/BIDlC8giRVEcKyQDgYAj7ZSrrELyqaeewt13340DBw7g3HPPBQBcddVVePDBB/HYY49h165ddpxjRYLBIEZHRx1ri6hcqxWQRcFgEGNjY46cE7NMZqxWQBYxy+R2qxWQRcFg0LFHJLs1yyUXks888wxuvfVW3H777bj44otnPx8MBrFnzx7cf//92Llzp+u6XRVFgd/vRzqdtrUdQRDQ2tpqaxtUf/7sL6/DpssuXrGALHIyyy0tLba2QfXnDX91Iza/ffuKBWSRoijw+XzIZOzdkodZJjPe+NEPYss7Ll2xgCwKBAKOZTkcduf0DFP7SNaa6elpDAwM2NpGS0sL+vr6bG2DaGpqCoODg7a20drait7eXlvbIJqcnMTQ0JCtbbS1taGnp8fWNoicyHJ7ezvWrl1raxtmuW/5jw3C4bCtcwtEUcSaNWtsOz5RUUtLy+wz7O0gSRK6u7ttOz5RUWtrq+1Z7urqsu34REWtra3w+/22Hd/tWW6IQlIQBPT29s57rJGVent7Icumd1IiKpkgCOjr67Mtyz09PcwyOcLuLPO6TE4pZtkuvb29rps2OFdDFJIA4PP5sG7dOsuP29HR4dp5C1SffD6fLRetzs5OZpkcZWeWQ6GQ5cclWo7f77elxujq6nJ9lhumkASAUCiE9evXW3a8jo4ODgNSVYTDYUsvWp2dna4eOqH6xSxTvQiHw5a+Merq6kJnZ6dlx7NLQyy2WSiVSmFgYMD0KitJktDT08PeG6o6ZpnqhRVZ7u3tdX3vDdW/ZDKJgYEBZLNZU19fa1luyEISAHRdRyQSwcTERMmPUCxuJdHd3c25N+QaZrPc2tqKrq4uZplcQ9d1TExMIBKJMMtU0xopyw1bSBYZhoFYLIZYLIZUKrXoHYQsy1AUBcFgEC0tLa6e8EqNjVmmeqHrOuLxOGKxGJLJ5KJHgzLLVCt0XUcsFkM8Hq/bLDd8IbmQruvQNA2GYUCSpJr8oRIBzDLVD03ToOs6s0w1rx6zzEKSiIiIiExpqFXbRERERGQdFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZkiV/sE3MQwDGQyGWiaBgAQRRE+nw+iyHqbaguzTPWCWaZ6Ua9ZbvhCUlVVTE1NIRaLIZ1OwzCMRa/xer1obm5GW1sbfD5fFc6SaHXMMtWLUrLs8/nQ3NyM1tZWZplcq5jlaDSKTCZTl1kWjKW+qwagaRpGRkYwNTVV1tc1NTWhp6enJn/YVJ9UVcXIyAimp6fL+jpmmdzGbJaDwSDWrl3LLJNrNFKWG7KQjMfjGBgYmO1eNqO7uxsdHR0QBMHCMyMqTywWw+DgoOksC4KA7u5utLe3M8tUVcwy1YtoNIqhoaGGyXLDFZITExMYGRmx5FihUAjr1q2riR801R8rsxwOh9HX18csU1WMj49jdHTUkmMxy1RNVma5paUFvb29rs9ybc/wLFMkErHsxgvk30EPDAwsOeeByE5WZzkajTLLVBUTExOW3XiBfJYHBweZZXKc1Vmenp6uiSw3TCGZSqUwPDxs+XGj0SgmJyctPy7RcpLJJLNMdSGZTFr6hqhoenq67PnvRJWYmZmxLcvlzrN0mu2FZCqVwoUXXohPfvKTdje1LF3XMTAwYNvxR0ZGkM1mbTs+URGzTPXC7iwPDw8zy+QIu7M8NDSEXC5n2/ErZXsh+bnPfQ5nn3223c2saGpqCplMxrbjG4ZhyzsRooUmJydtvTkyy+QUJ7Js5TAj0XIikYithZ7br8u2FpL9/f14+eWXcf7559vZzIoMw0AkErG9nVgs5up3DORO/3HPP2L8pWMlvZZZJjf7zv/zfzBx9ERJr3Uqy9FoFKqq2t4O1Zd/v/s+TPSXnmUnpgS5OctlF5K6ruOSSy7BvffeO+/zTz/9NLZu3YrHH3989nOf/OQn8ZGPfKTys6xAMpl0bHiDc3KoXL/4yrdw11kX4Uvvv33VgnJmZsaxAs/tc3LIfX526FF84swLcegDd6xaUDqZZV6XqVw/e+hf8YkzLsSXr/vYqgVlIpFo+Oty2U+2EUUR119/Pfbv34/rrrsO4XAYR44cwS233ILbbrsNl156KQDgBz/4ATZs2ICNGzfit7/9reUnXqqZmRnH2kokEujo6HCsPap9hmFA1zT89ODD+NmXvonXXf0OXPrXN6PztFMWvdbpLLe3tzvWHtUBw4CuqvivL34D//ehf8Xrr3knLvn4Teg8df2ilzLL5GZGIcs/uf9r+OnBh/H6a3fh0o/fhI6N6xa9ljWGyX0kVVXF9u3bsXPnTuzatQu7d+/Gtm3bcNddd82+5lOf+hT+7d/+DZIkYWZmBqqq4n3vex9uvvlmS7+B1Rw7dgzxeNyRtgRBwD9ufasjbVH9EiVpyYKyv78fiUTCmXMQBHyGWaYKibK8ZEF59OhRx27AoiDiM1vf4khbVL9EWV6yoHQyy5IkYfPmzY60VQ7TG5J//etfx6c//Wl0dXWht7cX//RP/wRJkpZ87Te/+U288MILuOOOOyo6WTOee+45R+d7Hdx2DWbG7J/7Q/VvYUF55MgRR+fIPHjBHiQj0461R/VrYUHpdJYfeOMVSE/HHGuP6tfCgvLZZ5+t6Cl55dq8efOytVa1mF5ss2PHDqRSKQDAgQMHXPeNFem67mh7HqV2no9J7lYc8r7rrItw6AN3OJ5lWfE72h7Vr+KQ911nXohD+z4K3cEbL8DrMllHV1X81wNfxyfOvBBfueHjjl+XnW6vFGXPkSzav38/gPxE5tWKyHe84x1mm6k5Tl8gqb4JgoBXv+st2PaRDyAqOLtiz2CWyUKCIOBPdr8Vf/GRD2DKyAIOPq1D19x386XaJYgiznv327Dt1vdjUs+6/skzdjPVI3nffffhySefxOHDh6GqKh555BGrz8syHo/H0fZSkxw+ocoJgoDz3rMDf/PM9/CBr/0jeracAVk2/b7PlBSHAskCgiDgNe+9DJ/4w/ex96ufwdrNpzueZQ5rkxUEUcRrr3w77vrD9/D+L9+HNZucz7IbR3/L/hd4+OGHcfDgQTz00EPYtGkTrrnmGjzwwAPYvXu340VbKRRFQTqddqQtj8eD82/c40hbVB9++uBhJKeisx8LgoA/effb8Ja/+TB6tpwx77WKoti6sf5cHo8HF3zwakfaovrwXw98HanoyYWNgiDgvPdehrfc+SGs3Xz6vNcGAgHHtmXzejy48EPXOtIW1Yef3P91pGNzsiyKOO89O/DWv/kQ1myan2VFURzLss/ngyi678nWZS22eeqpp3DTTTfhwIEDuPjiiwHkl6NfeOGFuOOOO7Br1y7bTtSsyclJDA0NOdJWOBzGunWLtwcgWs7/2rwNI0deWrGALIpEIrY8Y3spLS0t6Ovrc6Qtqg9/c8YFGH+xf8UCsohZJje789Q3YuLoCQiiiNe89zK85c6bFxWQRRMTE449daa1tRW9vb2OtFWOknskn3nmGdx66624/fbbZ4tIAAgGg9izZw/uv/9+7Ny503XdrqFQyNFCkqgcxXe6KxWQRaFQyLGbL7NM5RJFEa+54vIVC8giZpncTJAkvPbKt69YQBaFQiHHCkm3Ztn09j+15MSJE4hGo6u/sAKyLOOss86CIAi2tkP1ZWpwBK29a0p+/fHjxxGL2Tvfy+Px4Mwzz2SWqSzMMtWLcrPsxH7Vbs6y+wbbbeDETvCdnZ2u/AGTu5VzsQKcyXJHRwezTGVzY5Z5XSYzmOXyNEQhqSiKrT9oRVHQ1tZm2/GJigKBgK2Pe2OWySl2ZzkQCKC1tdW24xMVNTU12XrddHuWG6KQBICuri74fNZvSisIAvr6+lz7ToHqT3d3N7xer+XHZZbJacwy1Yvu7m5bdq4RRdH1WW6YQlIURWzYsMHSH7QgCDjllFNsKVCJllPMspX7lwmCgA0bNjDL5Cg7s2xHgUq0HEmSsHHjxobMckMstpkrl8uhv7+/4v34JEnC+vXr0dTUZNGZEZWHWaZ6kc1mcezYMUuyfMoppyAQCFh0ZkTlyWaz6O/vr3hvyVrKcsMVkkD+WZUTExMYGxsz9fWhUAg9PT2O72hPtJCu6xgfH8f4+Lipr2eWyS0qzXI4HMbatWuZZao6XdcxNjaGiYkJU19fa1luyEKyKJPJIBKJYGpqqqRnZTY3N6O9vR3BYNCBsyMqXTqdxuTkZMlZDoVCaGtrY5bJdcxkub29nT3q5DrpdBqRSATT09N1neWGLiSLNE3DzMwMUqkUUqkUNE2DYRiQJAl+vx+KoqCpqcmVj4AkmmthllVVBQBmmWoOs0z1ot6zzEKSiIiIiExpmFXbRERERGQtFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITJGrfQJukcvlkEqlkEqloGkaAEAURfj9fiiKAq/XC0EQqnyWRKtjlqkeGIYBVVWZZap5hmEgl8shnU7XZZYbupDUdR3RaBSRSATpdHrF18qyjLa2NrS1tUGWG/qfjVyo3Cy3t7ejtbWVWSbX0XUd09PTiEQiyGQyK76WWSY3KyfLHo8HbW1tNZllwTAMo9onUQ3xeBwDAwOz7wzK0d3djY6Ojpp990D1JRaLYXBwsOwsC4KA7u5utLe3M8vkCswy1YtoNIqhoaGGyHLDFZK6rmNoaAjT09MVHUdRFKxbtw5er9eaEyMqk67rGBwcRDQareg4iqJg/fr18Hg8Fp0ZUXmYZaoXjZjlhiokdV3HsWPHMDMzY8nxZFnGqaeeymKSHKfrOvr7+5FMJi05HrNM1cIsU73QNA39/f1IpVKWHM/j8WDjxo2uz3LDrNo2DAPHjx+3rIgEAFVVcfToUaiqatkxiVZTzLJVN16AWabqsDPLZqYtEZlVzLJVRSSQXzjZ39/v+iw3TCE5NTWFRCJh+XFzuRyGh4ctPy7RciYnJ5llqgvMMtWLSCRiaUdVUTabdX2WbV0atGXLFpxxxhkAgK1bt+Jv//Zv7WxuWXb/IKLRKMLhMEKhkG1tEAH5LI+MjNh2fGaZnGJ3lqenpxEOh9Hc3GxbG0QAkMlkMDo6atvx3Z5lWwvJ5uZmPPbYY3Y2UZJIJAK7p4KOjo6iubm5ZlZZkTsYug5BLH1gYGJiwvYsj42NsZCksrkxy8XrMlE53JjlsbEx12a57oe2dV3H1NSU7e1kMhlL50ZQY8g8fRi5538JQ82u+lpN0xzJcjqdtnTOGjWGzI+/gdzzv4Kh5lZ9rZNZ5nWZypX58deRe+HXMLTSslzpLjClKG7M70ZlF5K6ruOSSy7BvffeO+/zTz/9NLZu3YrHH3989nMzMzN4xzvegfe+9734xS9+UfnZmhCLxaDruiNtOREmqi9GJonc759C6rsPrFpQxuNx29/1FjHLVC4jPYPc759E6rv3r1pQxmIxZplcy0jNIPe7J/LX5VUKSmbZ5PY/jz76KPbv348nnngC4XAYR44cwRVXXIGbbroJe/funX3d6Ogouru78fzzz+P666/Ht7/9bQSDQUu/gdUMDw8jEok40pbP58NGv7tXV5G75H73BIz0nAnavgA8Z74G8qnnQJDnb/kwNDSEyclJR87L7/NhA7NMZcj+z4+AzJyebF8AnjNfW8jy/L3wHM2y348NPu5GQKXL/s8Pgcyc3j9fAJ6zXgt54+IsDw4OOtK7DuT3ljzttNMcaascpgpJVVWxfft27Ny5E7t27cLu3buxbds23HXXXct+zQc+8AHccssteOUrX1nRCZfrpZdecrQ7eOPz/wmhcbbmJLssUVA6nuXn/hMCmGWq0BIF5YsvvrjqozytIggCNhz5LrNMlfM3FbJ8NgSpOlnesmWL69ZimJojKcsy9u3bh0OHDmHfvn3YsmUL7rzzznmviUajyGbzw3QjIyN46aWXsG7dusrPuEy53OpzHKykSn5H26M6tcSQd/H/k1M02edoe1SnMslFQ95OXpcNw4AmuXtDZ6oR6cVD3k5elw3DcOWekqZXbe/YsQN/93d/BwA4cOAAJEma9/cvvfQS7rrrLgiCAEEQ8Nd//ddoaWmp6GTNcPrBPYbL3ilQjSsUlNpoP4z2VzjaNLNMlioUlNpYP4y2LY42zSyTpQoFpTbaD6N1k6NNu/FhhKYLyf379wPIb/S9sIgEgFe/+tX49re/bf7MLOJ0F7BgOLOwhxqDEO6EZ/PrIfWcAeHIEWfbZpbJQvks/xmkntOZZappQrgLni1/BmntaRCefdbR4s5tw9qAyaHt++67D08++SQOHz4MVVXxyCOPWH1elvH5nBueEwQBGQ5tkwWEcCe8r7sM/m1XQ+49E4IgOJ7lNLNMFshn+fJCls+AIAiOPjtYEASkZcWx9qh+CeEueF//dvi3XQW553THr8uiKC7ZcVdtZfdIPvzwwzh48CAeeughbNq0Cddccw0eeOAB7N69Gx6PZ/UDOExRFFseW7QUyePFr0/fgWbZQI/fwFo/4K37nTqpEtmffxtGMjb78bweyAXvPBVFcWx/x3yWL0OokOU1zDKtIvuzf4ORis9+PK8HckGWA4GAYwvHJI+PWaayZP/vt+btpiGEuwrX5cVZVhTFsSz7/X5X9kiWVUg+9dRTuPvuu3HgwAGce+65AICrrroKDz74IB577DHs2rXLjnOsSCAQcKytjJAvpOOqgOcSAp5PAJ1BH/rCfnQGfRBdGACqMin/X3ClArIoEAg4tpVVMcsxVUAsIeC5BNAV9KGXWabliPmekpUKyCIns5xmlqlcYvG6PGcIe4UsO7WVVVNTkyPtlKvkQvKZZ57Brbfeittvvx0XX3zx7OeDwSD27NmD+++/Hzt37nRdt2swGIQkSY6sdBrX5vfIGgDGEhmMJTLwSAJ6Qn70hhWEfLIr31WQ88RwJ6RXvGHFArKoubkZoig6ssH+uOoB5pyOAWA0kcFoIgOvJGBtSEFv2M8s0yyxpQvSK89fsYAscjLLE6q8YpZ7iln2u29EjapDbOmCdM6FKxaQRaFQyLEsV2PBcilM7SNZa0ZHRzE+Pm5rG5LXh369tOcTB30y+kJ+9IT98MnuKrzJ3ZzJsh/9emnPdG32yegN+9ETYpapPCMjI5iYmLC1DdHrx7Gys6zAJ3Psm0rnxINPgsEgNmzYYGsbZjVEIamqKl544QVbeyVTSjsmcuVdfAQAHU1e9IYVdAV9kET27NDKnMhyMtCBSLa8LDLLVC5VVfH888/b2pMzE+jApIksdwa96A0p6GSWqQS5XA4vvPCCrVk+7bTToCjuXDTWEIUkkH8e5vHjx205dnt7Ozq7ujESz2AgmsJUqvzNdmVRwNqQH31hBWE/hwtpedFoFCdOnLDl2O3t7egoZHnQZJY9hSz3Msu0Cjuz3NHRgfbOLozE0xiMppllstX09DQGBgZsOXZnZye6u7ttObYVGqaQBOx5Jqbf78epp54KUTzZG5nMqhiMpjEYSyOVK7/nqMkroTesoCfkh+LhcCEt5lSWZ7IqhqJpDMZSSOXKf7ddzHJvyA8/s0wLGIaBwcFBTE9PW3pcRVGwcePGRVkejKYxFE0hpZrLcl/husws00JOZtltGqqQNAwDAwMDiEajlhzP5/Nh48aNkOWl1ywZhoGpVA4D0RRG4hloevn/1O0BL3rDfqxp9nOIhWZZnWW/348NGzasmOXJZA6DsRRGYhloJi4b+aFvP7qDzDKdZBgGTpw4gVgstvqLS+D3+7Fx48ZlF37OZrl4XTadZQXdHPqmOZzOsls0VCEJ5H/Q4+PjGBsbq+g4oVAIvb29Jf+AVd3AaGGIJZIs/9mckihgbbMPvWEFrYqHQywEwzAwNjZW8eIbp7MsiwLWNPvRF/ajhVkmWJflcDiMnp6eMrKsz07jmEyan5LUG2KWKa9aWa6mhiski1KpFAYGBpDJZMr6OkmS0NPTg3A4bL7tnIahaBoD0RSSJoa+Ax4JPWE/ekMKAl73h4zsVe0sD0ZTGIymTWe5N5yfg8ZpHFRJlnt7exEKlbZzxlKSWQ1DMWaZrJFMJjE4OFh2lmVZRk9PT0VZdlrDFpJA/p1DMplEJBJBPB5f8XmZgUAAbW1ts3tGWdX+dDqHwWgaw7E0VBND320BD3pDCtaEfJBdPIeC7GUYBmZmZjA5OVlSltvb22f38rOq/elUIctx81nuCyvobmaWG5mZLIdCIct6A4tZHoimMWIyy8UpSd3Nfsgc+m5YxSxHIhEkEgnHs+yUhi4k5zIMA5lMBqlUCmouCyObgRwIwu/3w+/32z7RVdMNjCXyq74nZkwMfQsC1hSGvtsCHGJpZPOynM3CUDOQFWezPJrIDxcyy1SJ+VnOwFCzzmc5nl84aSrL4pwsc+i7oS3KspaD7G9yLMt2YiG5BO3EH6HHJuB5xZuq0n46p2EolsZgNIVEtvwhFr8s5lfKhv1o8pb9OHWqI+rxP8BITMKz5Y1Vab+Y5YFoCjMmsqzIInqYZQKgHn8Gxsw0PJvfUJX2U3Ouy6ay7BHRG1LQwyw3PPXY72EkY/Bs/vNqn4olWEguYKhZ5H7zXUDLQd7yJojhzuqdi2EgllYxGE1hKJZGzsQQS6vimV317ZFq9x0Plc/IZZH77eOApkJ+xfkQQx3VOxfDQLSQ5WFmmcpk5DL567KuQt56AcTm9uqdi2VZVrCm2ccsN5h8lh8HdA3yKy+EGGyr9ilVjIXkAtqJP0IbeBYAIIQ6q9YruZCmGxifyQ8XjieyKPeHJgpAd3N+dWFHk5dDLA1APf4H6INHAABCuKtqvZILabqB8UQGg7EKsxz2oyPALDcC9fgz0AefAwAILd1V65VcqDglqTiNw0yW1xSy3M4sNwT12O+hDz0PABBa1tRFryQLyTnm9kYWVbtXcikZVZ9dXRjPqGV/vU8W0Vt4WkPQxyGWejS3N7Ko2r2SS8moxeFCZpmWNrc3sqjavZJLyahaYfN+c1n2y+LsbhzMcn2a2xtZVA+9kiwk55jbG1nkpl7JpcQKq76HYilktfJ/lGG/jN6wgrUhP7wcYqkbc3sji9zUK7mUyrOcH/ruCXHou57M7Y0sclOv5EKGYSCWmTMlyUSWWwpZXsss15W5vZFF9dAryUKyYKneyCI39koupBsGxhNZDMZSGItnyh5iEQSgK+hDX1hBR5MXIodYatZSvZFFbuyVXCif5QwGo2mMJcxluTuYXynLLNe2pXoji9zYK7lQpVkWC9dlZrn2LdUbWVTrvZIsJAuW6o0scnuv5EJZTcdwYXVhNF3+EItXEtETys/bCfk9Npwh2Wmp3sgit/dKLmRFlnvD+bnBzcxyzVmqN7LIzb2SS8mq+uyq75iZaRxSYeg7rKCZQ981Z6neyKJa75VkIYmVeyOLaqFXcinxOUMsGVUv++ubfTL6CkPfPplDLG63Um9kUS30Si6l0iyHfCencTDL7rdSb2RRLfRKLiWezmGwMDc4q5nIsl/ObyUU8sPLLLveSr2RRbXcK8lCEiv3RhbVWq/kQrphIDKTxWA0hdFEBuXuWCEA6Az60Bv2oyvo4xCLS63UG1lUa72SC1mV5b6wH53Msmut1BtZVGu9kgvphoGJOVku924soDj0zSy72Uq9kUW13CvZ8IVkKb2RRbXaK7lQTtMxHM+/G55Orf59L+SRBPQ0+9HboiDkk7llhUuU0htZVKu9kgvlikPfsQqyXFj1zSy7Rym9kUW12iu5UDHLA9E0ommzWc5v3s8su0cpvZFFtdoryUIyPQM9Ng4A0EdfhpGYmv8CSYa04RwAgKA018UFa66ZrIrBaH7eTtrEcGHQK6E3nH9ag1+WbDhDKpWRTkCPTQAA9JGXYcwszLIH0oazAQCCEoLYXHsXrJUkMursHDRTWfbJ6Av50RP2w8csV9X8LL8EY2Z6/gtkL6RTXgmgfrM8WNjizeyUpOIOBsxydRmpBPR4IcvDL8JIRue/YG6WAyEWkrVOff7n0CMD8z/p8cN73lurc0IOMgwDkWQWg9E0RuNpmNixAp1NXvSGFXQFfZBEvhuuptxzP4MxOTj/k14F3j95S3VOyEFzszwST5sa+u5gll0j99z/hTE5NP+TvgC8r760OifkoGKWBwrXZWa5tuWO/BTG1PD8T/qa4H31JdU5IYtw6RcBAARBQEeTDx1NPqhaM0bi+ac1TJYxXDg+k8X4TBayKGBtYdV3i9/DIRZy1Nwsb5mT5akSs2xgcZb7wgrCfg4XkrPmZjlXYZY9s9dlZpmsxUKSFpElEX0tCvpaFCSz2uwQSyq3+hwPAFB1AyemUzgxnUKTV8qvLgz7oXg4xELO8kgi1rUoWNeiIFmcxhGrIMvh/EpZZpmcNjfLM1k1/xSdaAqpEoe+c7qB49MpHJ+T5d6QH35mmSrEQpJWFPBKOKMjiNPbmzCVymEwmsJwPAOtxDGWmayG5ycSeH4igfaAF71hP7qb/ZA5xEIOC3hlnNEZxOkd+SwPRFMYKTfL4wk8P34yy2ua/RwuJMc1zcnyZDJ/XR6JZ6CVOFNtbpY7mrzoDeWvy8wymcFCkkoiCALaAl60BbzY3G1gtLDqO5LMlnyMSDKLSDILaTSOtc35pzW0Khz6JmfNzfKWCrP8B2aZqkgQBLQ3edHe5MUWXcdoPFN2lidmspiYyUIejWNNsx99YT9amGUqAwtJKpssCvlhkbCCVE7LD7HEUpjJljZcqOkGBqL5bS4Uj1R48oiCgJdDLOSshVkejOancSRLHPqem+WAR8o/eYRZpiqQRbGiLKu6gYFoCgPRFALF63JY4TQOWhULSaqI4pFwWkcTTm0PYDqdw2A0jeFYGmqJw4WpnIYXJ2bw4sQM2hQPesMK1jT7IEt8WgM5S/FIOL0jiNPam0xlOTk3ywEPekMK1oR8kEVmmZw1L8upQpbj5WX5hYkZvFDMcvG6zCzTElhIkiUEQUCr4kWr4sXmrmaMJfKrC8dnSh9imUzlMJnK4Y+jQHdzftV3e8DLIRZy1FJZHoimMFFOlpM5TCZz+OOogDWFoe+2AIcLyVmCIKA14EVrwIvN3c0YTeSncZjK8gizTEtjIUmWkwrbTKwN+ZFWtdnVhYlSh74NYCiWxlAsDb9cHK7xo8nLuJKz5mU5p81ueF56lo38M5WZZaoyScw/+aYnpCCd0wrP+i5jStKcLCuyiB5mmQqYALKVX5ZwansTNrYFEMuoGJxOYSiWRq7EIZa0quOlyAxeisygRfGgN+zH2mY/PBz6Jof5PXOynFYxGDWf5dZCltcwy1QFfo+E09qbcGpbANFClofLyHKKWaY5WEiSIwRBQNjvQXiNB5u6i0PfaYwnMij1YQ3TqRymUzk8OxpHdzA/xNLRxKFvcpYgCAgrHoQVD87qasb4TGEaRyJbcpanUjlMpXL442g8P40j5GeWyXGCIKBF8aBF8WDTnClJEzMVZDnsRwenJDUUFpLkOFEQsKY5/w42o+oYKmx4Hs+oJX29bgDD8QyG4xn4ZBE9hac1NPsYZ3KWJFqQ5Vh+UY9PFtFbyHKQWSaHzZ3GkVGL0ziYZVodf8JUVT5ZxMa2Jmxsa0KssFJ2KJZGVivtaQ0ZVcfRySSOTiYR9svoDStYG/LDyyEWctjSWU4hW+KD6zOqjpcnk3iZWaYq88kSNrY1YUNrYUpSIcu5CrLcE+LQd71iIUmuEfJ7EPJ7cFZXEBMzWQxEUxhLZFDiwxoQTauIpuN4djSOrqAPvWE/OoM+iBxiIYfNzfJ4IovBWApj8dKnccxmeSyf5b7CNA5mmZw0OyXJ78GmriDGC1OSxsqYkjQ3y3OnJDHL9YOFJLmOKAjoCvrQFfQhq+kYLqwujKZLG2IxAIwmMhhNZOCV8isVe8N+hPwee0+caAFRENDd7EN3s8ksG8BoPIPReAZeqTiNg1km5+WznH+UYlbV80PfsRRiZWR5JJ7BSCHL+QdR+NHMLNc8FpLkal5JxCmtAZzSGkAik19dOBhLI6OWNvSd1Qz0TyXRP5VEs09Gb9iPnpACn8whFnLW3CzHMydXfZeeZX1elvsKQ9/MMjnNK4vY0BbAhrY5WY6mkSlxSlJWOzklKeQ7OY2DWa5NLCSpZgR9Ms7qasaZnfmh78FYGqPxNErcsQLxjIojYwk8N5ZAZ9CL3pCCzqAPksghFnJWs0/GpkKWIzNZDEZTGE1kysrys2NxHBmLo7MwjaOL0zioCuZmeaKQ5bEyshzLqIjNyXIfpyTVHBaSVHMEQUBn0IfOoA85rRkj8fzqwqlUrqSvNwCMJbIYS2ThKaxU7A0rCPtlbllBjhLnZVnHcCHL02VlOYOxRAYeSUBPsx+9LQpCPmaZnDV3SlJudhpHGtNpk1kuXJeZZfdjIUk1zSOJWNcSwLqWAGay+dWFg9EU0iUOF+Z0A8enUzg+nULQK82uLvR7JJvPnGg+jyRifUsA681mWTNwbDqFY3OzHPbDLzPL5CyPJGJ9awDri1OSYvmh77KyPJXCsakUgj65sJWQHz5m2ZVYSFLdaPLKOLMziDM6mjCZzGEwmsJIPI0Sd6xAIqvhufEEnhtPoKPJi96wgm4OfVMVzM1yJJnFYDQ/jcNMljsLWe5ilqkKgj4ZZ3U248yO4GyWR8qYkpTIqHhuPIHn51yXmWV3YSFJdUcQBLQ3edHe5MUWrRkj8QwGYylMJksbYgGAiZksJmaykItD3yE/WhQPh1jIUYIgoKPJh44mH9RilqMpTJY49A0A4zNZjM/NctiPFj+zTM6am+Utc7JczpQkZtmdWEhSXZMlEX0tCvpaFCSzGgYLTx5J5bSSvl7VDZyYTuHEdAoBj5TfsiKsQOHQNznMyiw3eSX0hvJD38wyOS0/JUnBuhYFyeI0jlgKqVxpQ9+LslyYksQsVwcLSWoYAa+EMzqCOL29CVOp/ND3cDwDrcQxlmROwwsTM3hhYgbtAS96w/k91WQOsZDDKs3yTFbD8xMJPD+RYJapqgJeGWd0BnF6RxMmU8UpSWVmuTD0XczymmY/h74dxEKSGo4gCGgLeNEW8GJLtzG76juSzJZ8jEgyi0gyC2k0jjXN+ac1tHHomxxmdZbXFrLcyiyTwwRBQHvAi/ZClkcryPIfmGVHsZCkhiaJAnrDCnrDClI5Lf+0hmgKM9nShgs13Sisrk1D8YjoLTxFJ+Dlfy1y1qIsF4YLy8nyQDSNgWgaSnEaR0hBwMvhQnKWvCDLg9H8NI5kidM45mY54JHQwyzbinc7ogLFI+G09iac2hZANK1iIJrCcCwNtcQhllROx4uRGbwYmUGr4kFvWMGaZh88Ep/WQM5SPBJO62jCqe0BTKdzGIymy8yyhhcnZvDiRD7LfYUsy8wyOUzxSDi9I4jT2pswncphMFZelpNzstwW8KA3pGBNyAdZZJatwkKSaAFBENCieNCieLC5qxljifzqwomZLErcsQJTqRymUjn8cRRY05xfXdge8HKIhRwlCAJaFS9aFe+8LI/PlD5cODfL3cwyVYkgCGgNeNEayGd5dM51uVSTyRwmkzn8cVQ4OSUpwKHvSgmGYZR6b6xb2WwWsVgMqXgMqUwGmq7DMABRFOD3yAiEWhAMBqEoCgPXwDJqfrhwIJZGIqOW/fV+WZwdYgn6Fr+HG4mnEfZ7Klp5mMlkEI/HZ7OsFp59yyzTXOlClgejKSRKHPqeyy+LhaFHP5qWmMYxEk+jxe+paGP/YpaT8ShS6ZOLL0RRgN8rI9DMLBOQnjMlyZYsx9JoCXgq2th/pSwrXg+U5jCCwSACgYDpNqqpoQvJRCKBiYkJJBKJkl7v8/nQ3t6O1tZWXrgamGEYiGVUDEZTGIqlkSt1l+g5Wvwe9Ib9WBvyzw59/7Q/AlU38Lr1bfDK5Q27JBIJjI+PY2ZmpqTX+3w+dHR0oKWlhVluYLNZni5kudRdoudoUTzoDc3P8n8djUA3DPzpKW3wljkcHo/HMTExwSxTWQzDQGzOlCQzWc5PScqv+i5m+SdHIzAA/On6Vtuz7Pf70d7eXnNZbshCUtM0DA0NIRqNmvp6RVHQ19cHn89n8ZlRrdENA+OJDAaiaYwnMiUPfReJAtAV9KG9yYs/jMQBAGG/jNesay1pbqWqqhgeHmaWqWK6YRSGvs1nuTvoQ1vAiz+Mnszya9e1ljS3klkmq2h6/ro8GEthPFH6lKQiUchP42hVPPhjIcstfg9es76lpLmVqqpiaGgIsVjMxNnXXpYbrpBMp9Po7++HqpY/NLnQunXrEA6HLTgrqgcZVcdwYYglZmLoe662gAfn9bWuuBdaOp3G0aNHoWnlD+fMJQgC+vr6mGWaVczyQDSFeIVZbg948Sd9LStmOZVKob+/n1kmy2XU4tB3uuayvG7dOoRCoYqO44SGKiTT6TRefvll6Hppu+eXoq+vDy0tLZYdj+pDPJ1fXTgYTSOrmctbV9CLV/W2QFxiiMOOLPONES0lVlj1PRSrJMs+vKo3vGSWU6kUjh49yiyT7U5mOYWsiSlJANDd7MO5Pctn+eWXX4aVZVUtZLlhCklN0/DCCy9Y0hO50Kmnnlqzk2TJXrphYGImi8FoCqOJDMr939YT8uPstaF582VUVcULL7xQ8TvepZx22mlQFMXy41LtqzTLvSE/XskskwvkpyTlszxmYhpHX9iPrWuY5aKGKSQHBgYwPT1ty7G9Xi9OP/10iNyXilaQ1YpD32lE07mSv259i4It3c2zF60TJ06Ynke2GmaZSnEyyylE06W/OT+lVcHmLmey7PP5cNpppzHLtCKzWd7QGsCmruBslo8fP256TuRqfD4fTj/9dNcuwLG1kDxx4gQ+/vGPIxKJQJIkfOMb36hKz10ikUB/f7+tbXR2dqK7u9vWNqh+JAqrvgdjaWTU1Yf0TmtvwpmdQUey3NXVha6uLlvboPpRbpZPb2/CGZ1BxONxHDt2zNZzY5apHPE5u3GUkuUzOppwekcQsVgMx48ft/Xcuru70dnZaWsbZtm6IfnHPvYx3HrrrTjvvPMwPT0Nr9drZ3PLmpiYsL2NSCSCzs5OvvulkgR9Ms7qakZzZhL/k/MBq7zTfCkyA48kANFx288tEomgo6ODWaaSFLMcTE/idyVk+cXIDDySCCPq3HXZrT055C7NPhmbuprRXGKWX5jIZ1mbcibLHR0drsyybYXkCy+8AFmWcd555wFA1RakZLPZkveJrISu64jFYlx4Q2VRjvwYr4aE/rYtmAysmb1w+WQRflmEX5bg94jwyRJkQ0O0xP3IKqFpGrNMZQsceRKvErzob9uCqUD3sln2yxIkPedolt2+WIHcpenZJ/AqyZ/PstK1YpZFPYd4Mmn7Oamq6tosl11I6rqOt7zlLdi2bRtuv/322c8//fTTuPHGG3Hvvffi0ksvxbFjxxAIBHDDDTdgdHQU27dvxw033GDpyZciHo871hZvvlQOVTcgCQJC6SmcPfxf0EOdEE9/DbxrToG0RG/gxMQE7JlNthizTOVQNR2SICCcmcQ5wz+BHuqCeMZr4O1e74osu/HmS+6U03SIooBwOoJzhp6GHu6GePp5y2Z5fHzcsSzH43FXZrnsQlIURVx//fXYv38/rrvuOoTDYRw5cgS33HILbrvtNlx66aUAgFwuh1//+tf41re+hfb2duzduxevfOUr8ed//ueWfxMrSaVSjrWVTCaR+dXjjrVHtc+TO/lOVoyNA7/5D+RauoAzXwuxc/28YQwns5xKMctUHo96Mp9ibAz49XeQa+kuZHndvCwnHejBmdsWs0zl8Kjp2T+L0VHg19+B2roGOPM1EDvWVe267OT/m3KYGtresWMHPvvZz+LQoUPYtWsXrrvuOlx++eXYu3fv7GvWrFmDrVu3Yu3atQCA888/H88++6zjhaST//CqqiI3dhySbv0WQ9Q4jOkxZH/x7xBauuCZU1A6ecHK5VSoo8cgGtZvZUGNw5geRfYX34bQ0l3I8roqZDkHdbQfomHdPpXUePSpEWR//m2IrWsgzykoncxyNpuFruuum79uqpCUZRn79u3Dpz/9afznf/4ntmzZgjvvvHPea175ylciEokgGo2iubkZv/rVr/Dud7/bkpMuhx17Oq1EF2UWkmSJhQWl01nWJBmiykKSKrewoKzGdVnUso62SfVpYUHp+HVZ01xXSJo+mx07dsxW4gcOHIAkSfP+XpZl3HbbbdizZw8uu+wynHLKKbjwwgsrO9saYMB9K6qothkzUejRcUufllAaZpmsZcxMQ4+OOd8us0wW0xNTVbouu4/pVdv79+8HAExNTS0qIovOP/98nH/++WabsIQoio6+YxDZG0lW8fggn3ou5A2vhODxQXruOUsfI7caZpksM5vlsyF4vBCPHHE2ywazTBbx+CCf9qr8dVn2QjpyxJYn5i3Hbb2RgMlC8r777sOTTz6Jw4cP49prr8UjjzyCK6+80upzs4SiKMjlSn+KSCUkUYTs80GAz5H2qPYZ6RksetbcggKyyO/3O5dlSYLs8zvSFtWHlbOcLyCLFEVxbEcNWZIg+9z7eDlyn2WzPKeALPL7/Y5sMQjkR3qX67irprILyYcffhgHDx7EQw89hE2bNuGaa67BAw88gN27d8Pj8dhxjhVRFMW2xxYtaisQgLLtGkfaovqQfvKrMBJT+Q+WKSCLnLz5BgIB+JllKkP6R1+GkSxshLJMAVnkZJYVZpnKlP7RIRjJQt2wTAFZpCiKY4VkNZ4MWIqy+kifeuop3H333bj33ntx7rnnAgCuuuoqJBIJPPbYY3acX8WCwWBdtkV1xOODfNafwn/RVfCccd6SRSTALFMNmM3y1YUsL/00M2aZXM/jg7zpdfBvuxqe0/9kySISYJaBMnokn3nmGdx66624/fbbcfHFF89+PhgMYs+ePbj//vuxc+dO13W7KooCv9+PdDq9+osrIAgCWltbbW2D6o982qsgrTl12eJxLiezzM3IqVzyGX8Cac1pyxaPcymKAp/Ph0wmY+s5Mctkhnz6n0DqOX3Z4nGuQCDgWJbduBk5AAhGAyw5mp6exsDAgK1ttLS0oK+vz9Y2iKampjA4OGhrG62trejt7bW1DaLJyUkMDQ3Z2kZbWxt6enpsbYPIiSy3t7fP7svtNu5b/mODcDhs69wCURSxZs0a245PVNTS0gJFsW/hgCRJ6O7utu34REWtra22Z7mrq8u24xMVtba2wu+3b3Gi27PcEIWkIAjo7e2d91gjK/X29kKWTe+kRFQyQRDQ19dnW5Z7enqYZXKE3VnmdZmcUsyyXXp7e103bXCuhigkAcDn82HdunWWH7ejo8O18xaoPvl8PlsuWp2dncwyOcrOLIdCIcuPS7Qcv99vS43R1dXl+iw3TCEJAKFQCOvXr7fseB0dHRwGpKoIh8OWXrQ6OztdPXRC9YtZpnoRDoctfWPU1dWFzs5Oy45nl4ZYbLNQKpXCwMCA6VVWkiShp6eHvTdUdcwy1Qsrstzb2+v63huqf8lkEgMDA8hmzT3fvday3JCFJADouo5IJIKJiYmSH6FY3Eqiu7ubc2/INcxmubW1FV1dXcwyuYau65iYmEAkEmGWqaY1UpYbtpAsMgwDsVgMsVgMqVRq0TsIWZahKAqCwSBaWlpcPeGVGhuzTPVC13XE43HEYjEkk8lFjwZllqlW6LqOWCyGeDxet1lu+EJyIV3XoWkaDMOAJEk1+UMlAphlqh+apkHXdWaZal49ZpmFJBERERGZ0lCrtomIiIjIOiwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyRa72CbiJYRjIZDLQNA0AIIoifD4fRJH1NtUWZpnqBbNM9aJes9zwhaSqqpiamkIsFkM6nYZhGIte4/V60dzcjLa2Nvh8viqcJdHqmGWqF6Vk2efzobm5Ga2trcwyuVYxy9FoFJlMpi6zLBhLfVcNQNM0jIyMYGpqqqyva2pqQk9PT03+sKk+qaqKkZERTE9Pl/V1zDK5jdksB4NBrF27llkm12ikLDdkIRmPxzEwMDDbvWxGd3c3Ojo6IAiChWdGVJ5YLIbBwUHTWRYEAd3d3Whvb2eWqaqYZaoX0WgUQ0NDDZPlhiskJyYmMDIyYsmxQqEQ1q1bVxM/aKo/VmY5HA6jr6+PWaaqGB8fx+joqCXHYpapmqzMcktLC3p7e12f5dqe4VmmSCRi2Y0XyL+DHhgYWHLOA5GdrM5yNBpllqkqJiYmLLvxAvksDw4OMsvkOKuzPD09XRNZbphCMpVKYXh42PLjRqNRTE5OWn5couUkk0lmmepCMpm09A1R0fT0dNnz34kqMTMzY1uWy51n6TTbCsmXX34Zl19++eyvs88+Gz/4wQ/sam5Fuq5jYGDAtuOPjIwgm83adnyiImaZ6oXdWR4eHmaWyRF2Z3loaAi5XM6241fKkTmSMzMzuOiii/DEE08gEAjY3dwikUjElh6cuUKhENavX29rG0RWzotcDrNMTnAiy+FwGOvWrbO1DSIr50Uux81ZdmRo+0c/+hFe//rXV6WINAwDkUjE9nZisZir3zGQO/3o//0sIi8dK+m1zDK52Q//9h8xefRESa91KsvRaBSqqtreDtWXH97zGUz1l9bDaBiGI1OC3JzlsgtJXddxySWX4N577533+aeffhpbt27F448/vuhrHn/8cbzlLW8xf5YVSCaTjg1vcE4Olet/vvZv+PQr34x/ve6OVQvKmZkZxwo8t8/JIff57688igNb/wLfvOFjqxaUTmaZ12Uq128OfROfesU2PHrjx1ctKBOJRMNfl00NbT/66KPYv38/nnjiCYTDYRw5cgRXXHEFbrrpJuzdu3feaxOJBP7iL/4CTz31VFU22BwbG8PY2JgjbQUCAWzYsMGRtqg+3HfOdkw8/zIAQJQkvGrPTlxwxwfRftopi147OjqK8fFxR86rqakJp5yy+ByIlnPgFdsw+fJxAIAoy3j1Ve/ABX91I9pOXTxNglkmN/vUpgsxdSxfQIqyjFdf/Q5c8FcfRNvGxUPLIyMjmJiYcOS8gsGgK2sMU4WkqqrYvn07du7ciV27dmH37t3Ytm0b7rrrrkWv/da3voWf/OQn+N//+39bcsLlOnbsGOLxuCNtCYKAr7z6Mkfaovq1XEHZ39+PRCLhzDkIAr7MLFOFlisojx49ipmZGWfOQRDx5VfvcKQtql/LFZROZlmSJGzevNmRtsphao6kLMvYt28fDh06hH379mHLli248847l3ztd7/73aoNawNAOp12rC3DMKB0tjnWHtUnXdPw64ceWTTk7WSWdcOAv73FsfaoPumqil8dPIwDr3xzfsi70GOZyWScOwdDh6+l2bH2qD7pqopfPXg4P33jxpPTN5y8LmuaVtET+exierHNjh07kEqlAAAHDhyAJEmLXhOPx/G73/0Ob3jDG8yfYYV0XXe0PVnxO9oe1a+5BeU3b/gYs0w1a7agLNyEdYdvhpKfWSZrzC0ov3XTnY5fl51urxSmC8n9+/cDyE9kXqqIBIDm5mb89Kc/hdfrNdtMzXH6Akn1TRAEbH3npfjzW97v+GOydJVZJusIgoCtu96CN3x4L+Bwlg1el8lCgiji7He9FX/2ofe5/vGFTjBVSN5333148skncfjwYaiqikceecTq87KMx+NxtL3MVMzR9qg+CYKAs3e/DR/+7eN4z6H/g+7NZ0CWZUfPITPNLFPlBEHA2e/egVt++12850v3oWvz6c5nOerMPHmqb4Io4tz3Xo5bfvtd7P6XA+jadJrjWV6u466ayv4XePjhh3Hw4EE89NBD2LRpE6655ho88MAD2L17t+NFWykURXFsDoPH48HrrrvCkbaoPvz6oUeQmorOflzstbnorz+E7s1nzHutoiiOzS3zeDx4/Q17HGmL6sOvDh5Gek7BJggCXrn7bbjoYzeja/Pp814bCAQc25bN6/Hgzz54tSNtUX345YPfQCZ2cmGjIIo4e/fbcOHHbkbXptPmvVZRFMey7PP5IIrue7J1Wau2n3rqKdx00004cOAALr74YgD57X0uvPBC3HHHHdi1a5dtJ2rW5OQkhoaGHGnLzTvPkzt9+uyLMf7cS/mb7rveigs/fvOiArLIiSc0FbW0tKCvr8+Rtqg+fGrLRYi8dGy2B/LCj960qIAsYpbJze496wJM9Z+AIIo45907cMFHb1pUQBY58YSmotbWVvT29jrSVjlK7pF85plncOutt+L222+fLSKB/L5Ge/bswf3334+dO3e6rts1FAo5WkgSlWP2ne4KBWRRKBRy7ObLLFO5BFHEOe+5bMUCsohZJjcTpfwQ9koFZFEoFHKskHRrlh151na1nThxAtFodPUXVkCWZZx11lmceEtliQ6OINy7puTXHz9+HLGYvXMXPR4PzjzzTGaZysIsU70oN8tO7Fft5iy7b7DdBh0dHba30dnZ6cofMLlbORcrwJksd3R0MMtUNjdmmddlMoNZLk9DFJKKotj6g1YUBW1t3Iic7BcIBNDe3m7b8ZllcordWQ4EAmhtbbXt+ERFTU1Ntl433Z7lhigkAaCrq8uWZ30LgoC+vj7XvlOg+tPd3W3L3qzMMjmNWaZ60d3dbcvONaIouj7LDVNIiqKIDRs2WPqDFgQBp5xyii0FKtFyilm2cv8yQRCwYcMGZpkcZWeWG+lBGFR9kiRh48aNDZnlhlhsM1cul0N/f3/F+/FJkoT169ejqanJojMjKg+zTPUim83i2LFjlmT5lFNOQSAQsOjMiMqTzWbR399f8d6StZTlhiskgfyzKicmJjA2Nmbq60OhEHp6ehzf0Z5oIV3XMT4+jvHxcVNfzyyTW1Sa5XA4jLVr1zLLVHW6rmNsbAwTExOmvr7WstyQhWRRJpNBJBLB1NQUSvlnaG5uRnt7O4LBoANnR1S6dDqNycnJkrMcCoXQ1tbGLJPrmMlye3s7e9TJddLpNCKRCKanp+s6yw1dSBZpmoaZmRmkUimkUimoqgoDgCxJ8Pv9UBQFTU1NrnwEJNFczDLVC2aZ6kW9Z5mF5BKSWRXpnIa2Ji48oNo2k8khq+poZZapxs1kcshqOloDzDLVtnrLcsOs2i6VYRiIprJIZHJQdb3ap0Nk2twsa8wy1bDZLKeZZapt87NcH/14LCQXSOU05LT8hSqWylX5bIjMS2ZVqLoBA8wy1bZ5WU4zy1S75me5spXdbsFCco7iO4Ui9kpSrVoqy+zJoVq0KMvslaQatXSWa79XkoXkHHN7I4vYk0O1qPiut4i9klSrlswyeyWpBi2d5drvlWQhWbDwnUIReyWp1qyUZfbkUC1ZNsvslaQas3KWa7tXkoVkwVK9kUXsyaFasvBdbxF7JanWrJhl9kpSDZlZMcu13SvJQhLLv1MoYq8k1YpSssyeHKoFq2aZvZJUIwzDQGzVLNduryQLSazcG1nEnhyqBcv14BSxV5JqRUlZZq8k1YDleiOLar1XsuELydXe9RaxV5LcrpwssyeH3KzkLLNXklxutd7IolrulWz4QjKn6ZBEAX6PBFEQlnyN3yPB75GQyWkOnx1R6XKaDlkSV82yzyMhzSyTi62WZQHMMtWGbBlZzqi1mWU+InGOiUQayaw673OiIKCvtbYeoE40Hk8hteAGK4kCeluYZaotzDLVi6WyLIsCemo8yw3fI0lERERE5rCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJT5GqfgFvkcjnomRT0VBK6rgMGIIgCJK8PmYwMr9cLQRCqfZpEq5rNcjoFXdMBFLLsY5apdhiGAVVVl8yy7PMzy1QzDMNY9rpcD1kWDMMwqn0S1aLrOqLRKCKRCNLp9IqvlWUZbW1taGtrgyyz/iZ3KTfL7e3taG1tZZbJdXRdx/T0NCKRCDKZzIqvZZbJzcrJssfjQVtbW01muWELyXg8joGBAWiaVvbXdnd3o6Ojo2bfPVB9icViGBwcLDvLgiCgu7sb7e3tzDK5ArNM9SIajWJoaKghstxwhaSu6xgaGsL09HRFx1EUBevWrYPX67XmxIjKpOs6BgcHEY1GKzqOoihYv349PB6PRWdGVB5mmepFI2a5oQpJXddx7NgxzMzMWHI8WZZx6qmnspgkx+m6jv7+fiSTSUuOxyxTtTDLVC80TUN/fz9SqZQlx/N4PNi4caPrs9wwq7YNw8Dx48ctKyIBQFVVHD16FKqqWnZMotUUs2zVjRdglqk67MyymWlLRGYVs2xVEQnkF0729/e7PssNU0hOTU0hkUhYftxcLofh4WHLj0u0nMnJSWaZ6gKzTPUiEolY2lFVlM1mXZ9lWwvJf/mXf8Fb3/pWvOUtb8E999yDao2i2/2DiEajiMVith2fqCibzWJkZMS24zPL5BS7szw9PY14PG7b8YmKMpkMRkdHbTu+27NsWyE5OTmJL3/5y/jmN7+Jb3/723jmmWfw3//933Y1t6JIJGJ7ETs6Olq1Qpkax8TEhO05Gxsbs/X4RIAzWbbz5k5U1OjXZVt7JDVNQyaTgaqqUFUV7e3tdja3JF3XMTU1ZXs7mUzG0rkRRAtpmuZIltPptKVz1ogWcjLLvC6TnTRNq3gXmFKkUinXZrnsQlLXdVxyySW49957533+6aefxtatW/H4448DANra2vD+978fF1xwAd74xjfiz/7sz7B+/XprzroMsVgs/6QaBzgRJmpc8XjcsV5vZpnsFIvFmGWqC8yyiUJSFEVcf/31+NrXvja7T9KRI0dwyy234LbbbsOll14KID/X6sknn8SPfvQj/PjHP8Zvf/tb/PKXv7T27EvgZAVvx0RboiInewnZI0l2cvK6zCyTnXhdNjm0vWPHDrS2tuLQoUMYGRnBddddh8svvxx79+6dfc1Pf/pTrF+/Hi0tLfD7/Tj//POrMkfSyX/4TCbjWO8nNR4nb77pdJpZJts4eV1Op9Ocv062cfq67MYsmyokZVnGvn37cOjQIezbtw9btmzBnXfeOe81a9euxW9/+1tkMhlomoZf/OIX2LhxoyUnXY5cLudoe9yHj+ySzWYdbY9ZJrs4eV02DINZJts4eV02DMOVe0qaXmyzY8eO2Ur8wIEDkCRp3t+fe+65OP/88/H2t78dl112GdavX49t27ZVdrYmOF29u/HdAtUHZpnqBbNM9YJZBmSzX7h//34A+Y2+FxaRRbfddhtuu+02s01YwumHntfKQ9ap9jidLVFsmOcVkMN4XaZ6IQiCo8WdG7Ns6k5x33334cknn8Thw4ehqioeeeQRq8/LMj6fz7G2BEGoiQesU21yOsuybPp9JtGKnHx2MLNMdnLyuiyK4rIdd9VUdiH58MMP4+DBg/jc5z6HTZs24ZprrsEDDzzg+FzEUimK4lhbfr/fle8WqD4wy1QvAoGAY20pisIsk214XS6zkHzqqadw9913495778W5554LALjqqquQSCTw2GOP2XF+FXPyguVkW9R4nMxXU1OTY21R4+F1meoFr8tlFJLPPPMMbr31Vtx+++24+OKLZz8fDAaxZ88e3H///a5cTRQMBh3rCm5tbXWkHWpMzc3Njs1bZJbJTswy1YtQKORYlltaWhxpp1yC4cYlQBYbHR3F+Pi4rW0EAgGceuqptrZBxCxTvRgZGcHExIStbTQ1NVVl2zlqLMPDw4hEIra2EQwGsWHDBlvbMKshlmW2t7fb3ivZ3d1t6/GJAGeyvGbNGluPTwQAHR0dtvfk8LpMTmj0LDdEISnLMnp7e207fnt7u2vnLlB9kWUZPT09th2/vb2dc8rIEXZflzs6OphlcoTH47H1utzZ2enoop5yNUQhCeTnMdgxV8bv97v6nQLVn3A4zCxTXQiFQrbM+1IUBV1dXZYfl2g54XDYtix3dnZaflwrNUwhCQA9PT0Ih8OWHc/n82HDhg3cuJkcZ3WW/X4/s0yOEwQBvb29CIVClh2TWaZqaOQsN8Rim7kMw8D4+DjGxsYqOk4oFEJvb68rNwelxmAYBsbGxipefMMsU7VZleVwOIyenh5mmaqmEbPccIVkUSqVwsDAADKZTFlfJ0mS5b1BRJVglqleVJJlq3uDiCqRTCYxODhYdpaL8+BrKcsNW0gC+XcOyWQSkUgE8Xh8xedlBgIBtLW1ObpnFFGpDMPAzMwMJicnS8pye3u7o3v5EZXKTJZDoZArn/hBja2Y5UgkgkQiUbdZbuhCci7DMJDJZJBKpWY3VhdFEX6/H36/nzdcqhnMMtULZpnqRT1nmYUkEREREZlSuyUwEREREVUVC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMkWu9gkQEVFlvK96PwRRgiBKEGUvBEmCWPg4/0uc82cJgnTyz/Nft/Rr8q8TIIgCBEE4+WdRgCic/LMkr/z3YuHrBRFLHk9a4pc872Nx/t8LJ//sk8Ulv37RLyF/TpKQP4eFH8/+uXDsxR/j5NeI+c97RHH2z4IAiCj8LmDxx5j7OuS//9nXzfkYxa8XFn2dYBiAoUMwdEDXTv557i997ueMJV8jFF635N/rGgy9cHxdg6Fp+dfqGgw9/2dDzeZ/17STr5v7NSt8vaHrMLTCrzl/1rXFf6dri1+r5dTC57QFXz/3eEbhYwO6Zsz5XP7Pum6cfI1mrPx6XS98zoCW1fKfNwxohgHNwAq/r/R3BnSs/PeaAXzO6K/i1WV17JEkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKYJhGEa1T4KIiNwpm83i85//PK6//np4vd5qn45p/D7cox6+B6B+vo9KsUeSiIiWlc1m8dnPfhbZbLbap1IRfh/uUQ/fA1A/30elWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIlqW1+vFzTffXPOLCfh9uEc9fA9A/XwfleKqbSIiIiIyhT2SRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIgWmZqawtVXX433vOc9ePLJJ+f93fj4OPbs2YN3vetdeOqpp6pzgiVY6Xso+uhHP4qf//znzp5YibLZLG688Ua85z3vweHDh1f9vFutdr7/+I//iG9+85tVOLPSLfc9pNNp7N27F7t378YjjzxSxTOsHhaSRES0yFe/+lXs3bsXDz30EB566KF5f/ed73wHu3fvxpe+9CU8+OCDVTrD1a30PQDAiy++iB/84AdVOLPS/Md//Afe+MY34qtf/Sq++93vIpPJrPh5t1rpfCcnJ2uiGF7ue3j66adx3nnn4etf/zoLSSIioqI//OEP+JM/+RP4fD4Eg0FEo9HZvzvrrLOQTCaRTqfh9/ureJYrW+l7AIAvfvGLePvb316dkytB8fxFUcSZZ56Jl156acXPu9VK5/vAAw+4+mdQtNz3cOqppyKXy0FVVXg8niqfZXWwkCQiokVmZmbQ1NQEAFAUBclkcvbvAoEAPve5z+Htb3873va2t1XrFFe10vfwu9/9Dr29vQiHw9U6vVXNzMwgEAgAmH/+y33erZY73+HhYczMzGDjxo3VPL2SLPc9eDwefOc738Ell1yCP//zP6/mKVaNXO0TICKi6vvSl76Exx9/fPbj3//+90gmk2hqakIqlZotyADgC1/4Aj772c/izDPPxPvf/368+c1vdkXPZDnfw4MPPoh77rkHBw8erMapliQQCCCVSgEAUqkUgsHgip93q+XO9/Of/zz27duHX/ziF9U8vZIs9z18+ctfxkc+8hG8+c1vxs0334zBwUH09vZW81Qdxx5JIiLC1Vdfja997Wuzv2644Qb86le/QiaTwfT0NEKh0OxrFUVBU1MTvF4vBEGAqqpVPPOTSv0eZmZm8Pzzz+PGG2/Eo48+ir/7u7/DzMxMlc9+sVe84hX45S9/CcMw8Oyzz8723C33ebda7nx///vf42Mf+xi+8IUv4Atf+AKOHTtW5TNd3nLfQ/H/giiKCAaDru8dtgOfbENERItMTk7iL//yLxGNRvHBD34Qf/EXf4G///u/xw033IDJyUn8zd/8DVRVxcUXX4y9e/dW+3SXtNL30NLSAiC/Yvi1r30t/vRP/7S6J7uETCaDj3zkIxgZGcE73vEOpFIpXHDBBVi3bt28z1955ZXVPtUVLfd9nH766QAwu2L7He94RzVPc0XLfQ8tLS24/fbbkclksHXrVnz84x+v9qk6joUkEREREZnCoW0iIiIiMoWFJBERERGZwlXbRERELnHRRRdhfHwcspy/PRuGgWAwiB07duD222+HKIrIZrM4ePAg/v3f/x1DQ0Pw+Xw455xzcPPNN+MVr3hFlb8DajQsJImIiFzk7rvvnrfw5LnnnsO1114LRVFw/fXX46qrroLX68UnP/lJbNq0CalUCl/60pewZ88ePPTQQzj77LOrePbUaFhIEhERudhZZ52F17zmNfjjH/+IQ4cOYWBgAN/73vdm9zJsamrCjTfeiFgshueff56FJDmKhSQREZFL5XI5/OY3v8HPfvYzfOhDH8Ljjz+OCy64YMlNyO+4444qnCE1Om7/Q0RE5BIXXXQRIpHIvOc2r1mzBm9961txww034NJLL8X27dtx2223VfEsiU5ijyQREZGL3HXXXctuzt3Z2YmxsbEl/y4ajUJRFHi9XjtPj2gebv9DRERUIy666CL8+Mc/RiKRWPR3f/3Xf40bb7yxCmdFjYyFJBERUY244oor0NHRgRtvvBFHjhyBYRiYmprCpz71KfzXf/0XPvzhD1f7FKnBcGibiIioRvh8PnzlK1/BP/3TP+HDH/4wJiYm4Pf7ce655+LLX/4y95Ekx3GxDRERERGZwqFtIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKb8/wEK3HW2UxQNlgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAALTCAYAAACljOKvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ5klEQVR4nO39eZxcdZ0v/r/OUsuprq7qvZPuzkqAECOgg446KkuUgBowGqOyCBrDIijg/BjUYeTyDTN3HK6Rr+P8REEYxDUwIOM4uAvieN2dUZSwppP03l3dXUvXepbvH1XV6b2rTp1z6lTV6/l48Ei6u/qcT6dfnPOuz3YEwzAMEBERERGVSax2A4iIiIioNrGQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSkNVUhqmobPf/7zFR3jAx/4AHbt2oWLL74Yl1xyCZ555hmLWkdUukqznMlk8KEPfQg7d+7ExRdfjH379mFgYMDCFhKVxorr8h133IHzzjsPp556Kp577jmLWkZkDysy7yYNVUg+99xz+N73vlfRMe666y58+9vfxmOPPYYPfOAD+MQnPmFR64hKZ0WW3/3ud+O73/0uHnvsMZx77rn45Cc/aVHriEpnRZZ37tyJr33ta+jt7bWoVUT2sSLzbtIwheQLL7yAq666CqOjo7j44ovx2c9+1tRxQqHQ7N/j8TgEQbCqiUQlsSLLPp8PZ5999mx+zzjjDBw/ftzqphKtyKrr8qte9SqsWbPG4tYRWc+qzLuJXO0GOGXLli1485vfjM2bN+Oyyy6r6Fh/8zd/g1/+8pcAgHvvvdeK5hGVzMosFz344IM499xzLTkWUansyDKRm9Vj5humkASAp59+GhdddNGiz19yySV48cUXl/yeb33rW1i7du28z/3TP/0TAODRRx/FP/3TP+Gee+6xvrFEK7AqywBw99134+jRo7j99tstbyfRaqzMMlEtWC7ztUowDMOodiOcoKoqXvWqV+EXv/gFfD6fZcc9/fTT8eSTT6K1tdWyYxKtxMosf+lLX8J3vvMd/Ou//uu8aRtETrD6unzeeefh7rvvximnnGJB64isZ1ctUk0NM0dyZGQETU1NFf3iEokERkdHZz/+wQ9+gJaWFrS0tFjQQqLSWJFlALj//vvxne98B/fffz+LSKoKq7JMVCvqMfMN1SN59dVXY2BgADt37sRHP/rRso8xPDyMD3/4w8hkMhAEAW1tbbjllltw2mmn2dBioqVZkeWRkRGcffbZWLduHZqamgAAXq8XDz30kNXNJVqWFVkGgNtvvx0/+tGPMDExgdbWVgQCAfzgBz+wuLVElbMq827SMIUkEREREVmrYYa2iYiIiMhaLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjJFrnYD3CCbzSIWiyGVSiGVSkHTNBiGAVEUoSgKFEVBMBiEoigQBKHazSVaViaTQTweX5RlSZLg9/uZZaoZzDLVi1KzHAgEqt1UUwTDMIxqN6JaEokEJiYmkEgkSnq9z+dDe3s7WltbeeEiV0kkEhgfH8fMzExJr/f5fOjo6EBLSwuzTK4Sj8cxMTHBLFPNKzfLfr8f7e3tNZflhiwkNU3D0NAQotGoqe9XFAV9fX3w+XwWt4yoPKqqYnh4mFmmmscsU71QVRVDQ0OIxWKmvr/WstxwhWQ6nUZ/fz9UVa34WOvWrUM4HLagVUTlS6fTOHLkCDRNq+g4giCgr6+PWaaqSaVS6O/vZ5ap5lmZ5XXr1iEUClnUMvs0VCGZTqfx0ksvQdd1y47Z19eHlpYWy45HVAo7ssw3RlQNqVQKR44cYZap5qVSKbz00kuwsqyqhSw3zKptTdPQ399v6cUKAAYGBpBMJi09JtFKVFW1/MYLAMePH0cqlbL0mEQrUVXVlusys0xOK2bZ6r65WshywxSSw8PDlgxnL2VgYMDyCyHRcoaHhyseNlnO8ePHmWVyjJ1Z5nWZnDQ0NGRrlt08eGxrIfmTn/wEO3fuxPnnn4+HHnrIzlOtKJFIYHp62rbjZ7NZjI+P23Z8oqJEImF6MUIpstksJiYmbDs+UVE8Hrc1y5lMhlkmR8RiMdMLa0rh9izbVkiqqop//Md/xJe//GU88sgjuOeee2wt5lbixC8gEonw3S+V7div/6esd5pOvGFhlsmMcrPs1HXZzT055E7McnlsKyT/8Ic/YMuWLeju7kYwGMQb3/hG/OxnP7PrdMvKZrMl7xNZCV3XbX1HQvXpq+//a9z1ut145vEnVr1IZDKZkvcjq4Smacwyle3By2/E//v6d+Lw955klqmmPXDJh/HZN74Lz/7gqVWznE6nHVknoaqqa7NcdiGp6zouuOAC3HnnnfM+/9RTT2H79u14/PHHAQBjY2Po7u6e/fqaNWswOjpaYXPLF4/HHTuXW3/J5G7Hfv0/+OKu969aUDLL5HZHf/l7fOGtV65aUDLL5Hb9//e3uPvC961aUDqZZSfPVY6yH5EoiiKuvvpqHDhwAFdddRXC4TAOHz6MG264ATfddBMuvPBCAFjyH70aO7U7udopPj2N+//6fzt2Pqp90YGR2b8XC8r1rzoDF3zyRmy94Ox5/884muUpZpnKExs60VFQLCg3/OUrcMEnb8Cp579xXpad3OkiOjGJH370Hxw7H9W+xOiJoepiQbnxNa/Ezk/egFPf/IaqXZfdukOMqWdt79q1C5/73Ofw4IMPYs+ePbjqqqtw8cUXY9++fbOv6e7untcDOTIygjPOOKPyFpfJyX/4XCaLPzz6XcfOR/VpuYLSyQtWJp1mlqliyxWUjmY5lWKWqWL9v/gdvvCWKxYVlE5mOZvNQtd1iKK7Ntwx1RpZlrF//348+OCD2L9/P7Zt24Zbb7113mtOP/10PP/88xgdHUUikcBPf/pTvP71r7ek0eWwazk+kd0WDnnbtX0Vkd0WDnkzy1SrigXlZ9+wB4e//1PHs+zGmsZ0Wbtr167ZSvzgwYOQJGne12VZxi233IL3ve992L17N/bt24fW1tbKWkvUgMafP4Ljv/sjtHSm2k0hqsj4cy/h+G//CC2TrXZTiCoy9txLGPjd09CyuWo3pepMDW0DwIEDBwAAU1NTi4rIoh07dmDHjh1mT2EJURRdWcETrUZpCeGcmz6IN1x/BZRwCM8++yxyOV60qPYEWsOzWfaHmnH48GH2SlJNCrS14NyP7sfrr3sf/M1Bx7PstmFtwGQhedddd+GJJ57AoUOHcOWVV+Lhhx/GpZdeanXbLKEoimM3X0mW0bq+x5FzUX2IDo5CX/BGZ2EBWeT3+x3LsswsU5mWyvLCArJIURTHVqDKHg+zTGVZMssLCsgiv9/vyBaDQP66vFzHXTUJRpk7XD700EO444478MADD+DMM8/E5z//eRw6dAjf//734fF47GqnaePj445tOxQMBrFx40ZHzkW1zzAMPHLjJ3Hs139EbHgMuXQGb7z+ykUFZNHY2BjGxsYcaVtzczM2bNjgyLmo9hmGgX/78K04/rs/ITY8BjWTxRs//H684br3zSsgi5hlcivDMPDQhz6Bwf95BtGhUWjZHM7+yAcWFZBFo6Ojjj3ZLhQKYf369Y6cqxxlFZJPPvkkrrvuOhw8eBDnn38+gPwj284991zccsst2LNnj20NNSuVSuHFF1905Fxr1qxBR0eHI+ei2mcYBkb+9Ge0begtfAwIogBBECGIAiCIhb+LEAQB6UwWLx054kjb1q5di/b2dkfORbXPMAyM/vmZ2Z4/ZplqlWEYGH3mMFrXrc1/jPzWhctlOZXO4Eh/vyNt6+npQVtbmyPnKkfJg+1PP/00brzxRtx8882zRSSQ74W77LLLcM8997hyLqKiKPD7/bafRxAELiaisgiCgEw8NedjAIYBQ9egqyr0XBZaNg01nUQuNQOPCMey3NLSYvt5qH4IgoB0PDnnY6yaZZ/P50i7mGUqhyAISMdOPHVJAFbMslcSHMtyOBy2/TxmlD20XYump6cxMDBg6zlaWlrQ19dn6zmofhiGAV3NQctlYWirT9QWZRmyvwnT09MYHBy0tW2tra3o7e219RxUP8rPsgeyP4CpqSkMDQ3Z2ra2tjb09HB+JJXmRJYzMEroGHMyy+3t7Vi7dq2t5zDLfct/bBAOhxEIBGw7viiKWLNmjW3Hp/pgGAZ0TUUunUQ2EYOaTpZ04xWkfBFZ7F1RFMW2NkqSNO/RpkRLqSzLgdkRHLuz3NXVZdvxqT4sneXVi8iFWbZztMjtWW6IQlIQBPT29tr2iMbe3l7IsumdlKjOGboONZNGLhlHLpmAnssiP/NmdYIowaM0zWZXEAT09fXZluWenh5mmZZVS1nmdZlWMpvlGRNZlpbOsl16e3tduVq7qCEKSSA/H2fdunWWH7ejo8O18xaoegzDgJbLIptMIDsTg5ZNw9D1so4hiCI8gaZFN1qfz2fLRauzs5NZpkVqNcuh0OKdD6ixLZllw0SWlcVZ9vv9ttQYXV1drs9yQ8yRnCsWi+HYsWOWHKujowPd3d22vaOm2mIYBgxNg6ZmC+9uKyCI8AaCEFbYfDYajeL48eOVnaegs7MTXV1dzDIBYJapfliZZUEQ4Vkly1auyejq6kJnZ6frs9xwhSSQ3xJoYGAAmYy5R85JkoSenh723hCA/BCJlstfpMp9dwsAEESIsnziIicIhRvv6kMZzDJZydA1aLn8whmYyLIgiBCqmOXe3l7X996QM+zJcvOKRWRRMpnEwMAAsllzhWutZbkhC0kA0HUdkUgEExMTJW9bVFzs0N3dzbk3Da7clapLET1eSLIXQmHuS3YmDhgGPIEgxDLmw5jNcmtrK7q6upjlBmdZlj3e2YKxkixPTEwgEokwy1S2fJazhSyb245wcZZjAACPwiwvp2ELySLDMBCLxRCLxZBKpRa9g5BlGYqiIBgMoqWlxdUTXsle+SESNd/7qJp7VKEgyZA8XoiyZ9FwhZpNQ5RkiJK5CwizTKVye5Z1XUc8HkcsFkMymVz0aFBmmYqsyLIoyRCXy3ImDVGuLMuxWAzxeLxus9zwheRCuq5D0zQYhgFJkmryl0rWyg+RZKHlcuaGSEQRolx8l7v8sIhhGJbOhWGWaaETWc7mHz9TpmplWdM06LrOLNMsXdfym4NXkuXiqBCzXBEWkkRLMAwjf5FSzQ6RCBA9ntkhErdPlqb6xSxTvTAMHXph3qOhM8tuUTuD8EQ2s3uIhMgpzDLVC0uyLMsQZWbZLiwkqeHpmjY7QdvOIRIiuzHLVC8qz7KU731klm3HQpIaUsVDJIIASfZA5BAJVZk1WfZC9HhMLyggsoJ1WfaWtcKaKsOrBjWM4jNV9YqGSDyFIRKZxSNVjWVZ9nghSswyVQ+zXPtYSFLd0zVtdrGB2SGS2W1OOERCVWRZlj0eCAKzTNXDLNcPFpJUlwxdh6bm8k+b4RAJ1TBmmepFPstZ6Lmc+Sx7vPlRIWbZNVhIUt3IP9VAha5yiIRqW/FpM/ksm3zaDLNMLmBVliWPFwKz7EosJKmmGYYBo7gxrZrjEAnVLGaZ6kUxy1ou3/sIVJJlL4tHl2MhSTXpxBBJFoZe/tNmZodIPF6IIodIqHqYZaoXzHJjYiFJNWN2iCSXha5xiIRqF7NM9YJZJhaS5GqWDJFI0uwEbV6kqFqYZaoX87OcNXUMQZIheTzMch1gIUmuZOh64ZFYZodIREhznqlKVC3MMtWL2SznsjAMs1n2QvJ4mOU6wkKSXKM4RKLlsjBMD5F4C0MkfNoMVQ+zTPXCkiwXH7vJLNclFpJUVYZhwNC02QnaZuSHSAobhvMiRVXCLFO9YJapHCwkqSoqHSIRBDH/Ltfj5dNmqKryc8XyPTZglqmGVZxlUTzRk84sNwwWkuQYy4ZICnPF+C6XqiWf5Wwhyyae0AFmmdyh8iwLEOfM4WWWGw8LSbJVfohELSw2MPe0GQ6RkBswy1QvrMiyKMn5/R6Z5YbHQpJsUdwaIj9EYuapBhwiIXfQi0+bqSTLxcUGzDJVEbNMdmAhSZYxDKPweDcOkVBtMwwdemGumKEzy1S7Ks6yIEAqPLedWaalsJCkinCIhOqFJVmWZYgys0zVxSyTk1hIkim6ps1O0OYQCdWyyrMs5XsfmWWqMl3TZkeFzGfZC0n2MMtUMhaSVDJrhki8ED0eiBKjR9VjXZa9ECU+oYOqh1mmauPdnFZkGAZ0TYVe0RCJp3CRkjlEQlXDLFO9YJbJTVhI0pKsGCKRPPneR0HgEAlVD7NM9YJZJjdiIUmzDF2HpubyT5vhEAnVsHyWs9BzOfNZ9njziw2YZaqiE1nOwtDLf9oMs0x2YyHZ4IpPm9HVLHTV5NNm5MI2JxwioSpilqlezGY5l4Vu9ilgzDI5hIVkAzIMA0ZxY1o1xyESqlnFLOef254DwCxTbbIky5I0OyrE4pGcwkKygVg2ROLxQhQ5RELVwyxTvTB0vbDfY2VZLm5+T+Q0FpJ1jkMkVC+YZaoXxSxruSwMZplqHAvJOmTZEElhgjYvUlQt87OcNXUMZpncwJosy4Us82kz5B4sJOtI5UMkIqQ5zwcmqpbZLOeyMAyzWfZC8niYZaoqZpnqHQvJGmfJEEnxUYWSxHe5VDXMMtULZpkaCQvJGmQYBgxNm11sYAaHSMgNZrNc6Ek3g1kmN2CWqVGxkKwh+fk1+Xe5MDFEIghi/l2uxwtB5DYnVD3MMtWL4rxHLZczl2VRhCgzy1S7WEi6XH6IJH+RqmiIpDDvke9yqVpOZDkLQzPxtBkwy+QOlWdZgDhnPjqzTLWMhaQL5YdI1MIQSc7UMThEQm5gRZZFSc7v98gsUxUxy0RLYyE5h2EYyGQy0ArvMEVRhM/ng+jQcMOJIZKsyafNiCcmaHOIpKFVO8t68clJzDJViFmmelHtLNul4QtJVVUxNTWFWCyGdDoNY4kLhdfrRXNzM9ra2uDz+Sw9v2EYsxcpQ+cQCZlX/Szr0AvzHk1lWRAgyZ78492Y5YZWSpZ9Ph+am5vR2trKLJNrFbMcjUaRyWQcz7ITBGOpn6oBaJqGkZERTE1NlfV9TU1N6OnpqeiXzSESspKqqhgZGcH09HRZ3+eaLMsyRJlZJvNZDgaDWLt2bcVZ1jU1/+Qk01n2zP7HLDe2ambZaQ1ZSMbjcQwMDMx2L5vR3d2Njo6Osi4WuqbNTtDmEAlZIRaLYXBw0HSWBUFAd3c32tvby89yLgtNNZtlqZBlD7NMAJhlqh/RaBRDQ0OOZ7laGq6QnJiYwMjIiCXHCoVCWLdu3Yq/aGuGSLz53keJTzWgE6zMcjgcRl9fH7NMVTE+Po7R0VFLjlVSlnX9xIbhzDJZyMost7S0oLe31/XFZEMVkpFIBMPDw5Yec6mLlmVDJB4vREl2fYjIecwy1Qsr3xAVLXUDzm/Zo0JXmWWyh1NZdpuGWWyTSqUsv/EC+S7sQCCA9vZ2S4ZIJI8XoscDQeAQCS0tmUw6kGU13/vILJONksmk5TdeAJienkYgEEBrayuM4qprNccsk21mZmZsy3JTUxNaW1stP7ZVbC0kr7vuOvzqV7/Ca1/7Wnz2s5+181Qr0nUdAwMDth1/ZGQEQb8XMDtE4vHmFxtwiIRWwSxTvbA7y8PDw2jyeZhlsp3dWR4aGkIwGITH47HtHJWw9e3V5Zdfjk996lN2nqIkU1NTyGQyth3fMAwkZmbK+h5R9sCjNMHbFILsU3ixopJMTk4imzX3HN9SMMvkFCeyPJNMlvU9zDKZEYlEkMuZmy5RCsMwbOnttIqtheRrXvMaNDU12XmKVRmGgUgkYvt5xiOrbyMkiBJknwJvMASP0sQtIgg//t+fQ+TFoyW91rEsT5aQZamY5TCzTACAH/39P2PyyPGSXuvcdXly1dcwy7TQj+74LKb6S+thNAwDk5Or56xS0WgUqmruMcl2K7uQ1HUdF1xwAe688855n3/qqaewfft2PP7445Y1zgrJZNLWd71FqqZB1fTFXxAESF4fPE3N8DY1Q/L6OM+GZv3P1/8dn3n5m/FvV92yakE5MzNj67veIlXVoOqrZDlQzDJvuJT33199FAe3vwmPXPPxVQtKp7KcWyXLXmaZlvC7Bx/Bp1+2A49e+4lVC8pEIuFIlgGUvSelU8qeIymKIq6++mocOHAAV111FcLhMA4fPowbbrgBN910Ey688EI72mnaTJnDdJWIzSQRDuZ7YAVZLuwrJgOCAF0HdGP+XJ25ly1exBpTflW0ht8+8DB+/5VH8YrLduOcWz6E9pM2LHqto1lOMMtUnuKq6N/cfwi/e/ARvPLyd+Ccv7kWbZvXL3qtk1mOz6TQ0qQAAAS58BSwwqprA/mtgIjmKWT51/d9E7/98r/hle97B875mw+hbdO6RS91MsuJRAIdHR2Ona9Uprb/UVUVO3fuxO7du7Fnzx7s3bsXO3bswG233bbotb/85S/x1a9+tWqLbY4ePYp4PO7MyXIq1p1yatnfZug6csk0cqkUcskU1FR6mY/TyCWT8z5WUylkZwqvSaWRS+a/JzeTRDIyjUw0ZsMPSnYSJWnJgrK/vx+JRMKRNhjZHNafurX876sgy8XsMsv1Q5TlJQvKI0eOOHYD1pNpfOMN73bkXFS/RFlesqB0MsuSJOG0005z5FzlMLVqW5Zl7N+/H5/5zGfwve99D9u2bcOtt95qddsskU6nHTuXttTQdgkEUYQ3GIA3GLC4RYCWyyEVmUYyMoVUZArJyBSSE5P5v09MLvj8FFKT0zAqeOIPVW65Hkpns2zyiQwOZXk2w8X8FrKcnJhCKjKZ/3MqyixX2XI9lHYuflxI1dw5r4xqi66q+M19h/C7Lz8yr6B0+rqsaRokly0CM70h+czMDF772tdiw4YN+OY3v4lAYPGNY9++ffjTn/6EVCqFcDiMz33uczj99NMrbnQ5nnnmmYoehVgOLZ3FRhe+WyiHoetIT8fmFJnTSBZvzIU/40OjiB4bRHx4jDdqB4iShFe+753Ysv9dEH1eR86pptLYtO1ljpzLLguzPJvhyDSzXCWiJOGVV7wTW/bvheh1ZiuTbDyBh8+51JFzUeMQZRlnXfkubN73TseyDACnnnqq67YBMr2P5IEDBwDkt9ZZrjr+0pe+ZPbwVCWCKEJpa4HS1oL2VV6rqypigyOIHR9G9NggoseH8n8eG0Ls+BDiQ6PQXbrKrFYIgoDt77wQf3XDBzAJ1bE3RfXATJbz2R1EtJjpY/lMx4dGWWhWSBAEbN/zFrz+I/swYWShc24i1ShBFHH6u96K1334/ZjQMw2fZVOF5F133YUnnngChw4dwpVXXomHH34Yl17qznd8Ho+HN1+biLKMlg19aNnQB+BVi76ua9psj0+xuJxbbMYHR1hoLkMQBLz8XW/FuZ+4Ht2nnQwAiD3/PLNsk/lZXkxXVcSHx+Zn+dhg4Q3UMLO8AkEQ8PK9b8N5H78eXadtAQBMP/ecI7tpEFlJEEWc8e5dOOdj16Fr60kAnM+y24a1ARND2w899BDuuOMOPPDAAzjzzDPx+c9/HocOHcL3v/9913W3AsDg4CCmplbfF88KkiBg5g8v5FetCsKJP8UTH8/9nCCKEGUZoscD0SNDKvwpejyQFvwpemRIXg9EuX6eamnoOrLxBNLRODLTMaQnp5AciyA5HkFqctrU48xqzW8feBipqejsx8Vem/P+9sOzBWTRwMCAY9s/iAaQfPpFU1mem1nR45nNbUNkeTqGzHQMqcnpfI4bKMu/uf8Q0tETCxuXKiCLnMyyZABHvvLvjpyL6sOv7/smMrETCxsFUcTpe9+Gcz9+/WwBWXT8+HFEo9GFh7CFz+fDySefvPoLHVZWIfnkk0/iuuuuw8GDB3H++ecDyC9HP/fcc3HLLbdgz549tjXUrMnJSQwNDTlyrnA4jHXrFm8PYKXir8vIf5DfviL/wey9ypj9vJHfksPIf634ca3c0kRRgCSI+T/F/J9isYCpE585/XyMP/vikj2QC0UiEVuesb2UlpYW9PUt3TtnFWa5vrL86W3nIfLiUQiCgNPfvQvnfuy6RQVkUb1lmerLnaeeg6n+40v2QC40MTHh2FNnWltb0dvb68i5ylFyl8DTTz+NG2+8ETfffPNsEQkAwWAQl112Ge655x7s3r3bdd2uoVDI0ULSbsUbj5D/wNQxFt6cDQOFG/SJjw3DgI4TH1eDrhvQoQELRnMX3pQlcU4PWY2Zfae7QgFZFAqFHLv51lOWdcOAwSzbThBFnPGei1YsIIvqLctUX0RJxJnvvXjFArIoFAo5Vki6NcumV23XEie6nmVZxqmnnlqTN4DVFCOiz+kV0vVC71DhT90FMZJEAaIoQhIKf9bATTk6OIJw75qSX3/s2DHEYvbup+jxeHDKKae4+t/NLGbZPswy1Ytys+zEftVuznL9TFJaQUdHh+2FZGdnpyt/wVYo/lzSCj/fid4fffbmvPBGbTdNN6DpGhY+rEoSRUiSCNmFN+RyLlZAPst233w7Ojpc8+9jtfrKcr4n0y3cmOV6vi6Tfcxk2e5C0s1ZbohCUlEUdHR0YGJiwrbjt7W12XLsWpEvzgARS09tmDvMqBv6vN4fu2/Omq5D03UU19UJQuGGLIqQpfyfbv0fdKFAIID29nZEIhFbjs8sl59lJwtNZrm847e2ttpybKK5mpqa0NbWhsnJSVuO7/YsN0QhCQBdXV2Ix+OWP1FBEAT09fXVzMW7Wk7cnAUA4qKvz70Ra7p+4k8bbsqGAaiaDlXTkSl0+YiCAKlwI5YLPT1u/Z12d3cjHo9bvuUEs1yaWsny3F5Lt/5OmWWqF8Us53ILxxEqI4qi67PcEHMki3K5HF566SXLftGCIGDDhg0IBoOWHI8Wc/KmvJCbh8Sz2SxeeuklqBbtXSgIAjZu3IimpiZLjkeLLcxyMc/MMrNM9cGOLG/atGnJJwe6SUMVkkC+mOzv76+4Z1KSJKxfv54Xqyop3pTnFZc235TdNozILNcHZjl/Az569KglWd6wYYPrb7xUv7LZLPr7+yvuZa+lLDdcIQkAuq5jYmICY2Njpr4/FAqhp6cHch1tqFwvjGKPj3Hipqxq9j2+Si729EjSbE+Pk3Rdx/j4OMbHx019P7PsXouyrOlQbXwUm1wsKms0y+FwGGvXrmWWqep0XcfY2JjpdRm1luWGLCSLMpkMIpEIpqamUMo/Q3NzM9rb2zmUXWNme3w0fXZIUdPtib1cKCplSXR0w+l0Oo3JycmSsxwKhdDW1sYs1xhmebFQKIT29nb2qJPrpNNpRCIRTE9P13WWG7qQLNI0DTMzM0ilUkilUtA0DYZhQJIk+P1+KIqCpqYmVz4CkswxDGP2Jly8KVs9lCgIgCxKhRuyCFFcvDDDaguzXJyrwyzXr4VZVnW9pJtWOZhlIvPqPcssJIkKFvX0aLqlj+ATBWG2l0cq9PIQ2WFhlq2e3sEsE1ERC0miZdg9jCiKwrxeHresoqX6wywTkV1YSBKVoTiMWNy7T7Nw8YMkivDIxYU79g8dUmNjlonICiwkiSpgGMbsjVjVNegW9fKIggCPLFVtNTg1HmaZiMxgIUlkoeLwoappUDVrFvAIAuCRpNkVtLwRkxN0w4CqaYU8M8tEtDQWkkQ20ucMHaq6Biv+b5MlER5ZgkeSeCMmx9iRZY8kQZZFZpmohrGQJHJIccGDOqfHslL5uWgSPA5tyUIEMMtEdAILSaIqyS92MKBpGnIWLHYQRQEeKd9TKXIuGjmomOViUcksEzUOFpJELqEbBlRVQ86CHh5BEOApDIFX+znK1HiYZaLGwUKSyIWKK2hzmgZV1SraGF0QBHhlafZGTOQkZpmovrGQJHK54n5/OU2HqmoVrZ4VRQFeWZ4dMiRy0myW1fzcykqyLIkCPMwyUdWxkCSqIcVFDjlVy2/NUsFef7KUXy3rkblilpxneZa5kwFRVbCQJKphum4U5qFVNhetWFBybz+qFmaZqDaxkCSqE7Nz0QqLHMwQAHhkCV5Z5mpZqhrDKBSVqm4+y4XNz5llInuxkCSqQ8WiMquqpnt3io+288oS9/WjqmGWidyNhSRRnTMK89CyqmZ6fz9JFGdXy7Jnh6qluK0Qs0zkHiwkiRqIruvIqhpyFaz+9kgSvB7u6UfVZUmWC9M4JA59E5nGQpKoARmGAV03kFVV5DRzz00ubiXkZc8OVZFVWfbJMnspiUxgIUnU4OZuGJ1TzS1s8MoSvB6Zm0RTVVmx4IxZJioPC0kimlVcLZvf26/8OWiSKMLr4X5+VH3MMpEzWEgS0ZKKm0XnVLXszaIFAbPD3lwlS9VW3KOSWSayHgtJIlqVpuvI5lRkTQx9y5IIryxzg2hyBWaZyFosJImoZCe2Eiq/Z0cUhPy2Kx4ZIm/CVGXFLGdUFbqZLHskeGRmmYiFJBGZUtwk2swCneLm0NxCiKrNMAxoxVXfprPMLYSocbGQJKKKFOdSZnNq2fv5iaIAn0fmggZyhXyWVWRz5e9NySxTo2IhSUSWyPfs6Mjkyn+UnSDkb8Lck5LcwDAMqIW5lMwy0cpYSBKR5YobRGdVtawNogUAXo8ML+dRkksUn6DDLBMtjYUkEdmmuEF0JqeW/WxkryzB55G55Qq5ArNMtDQWkkTkCLPbrngKN2E+aYTcglkmOoGFJBE5anbblTIX58iSCJ9HhixJNraOqHTMMhELSSKqkhNDhbmy9qSUxOJNmFsHkTswy9TIWEgSUVWZXe0tFlbHerg6llyCWaZGxEKSiFxDKyxmyGmlzz3jdivkRswyNQoWkkTkOnqhV6ecxQzF7VZ8Hpk3YXINZpnqHQtJInIt3TDyq2NzKkq9UAlAvleHN2FykWKWMzm15O9hlqkWsJAkItczDAPZwurYUi9ZggD4PB4OE5Kr5LOsFrJc2vcwy+RmLCSJqGaY2W5FEAT4uZCBXIZZpnrBQpKIao6Zp4yIggCfV4ZH4k2Y3MPM1kGiIMDv9XDbIHIFFpIFuVwOqVQKqVQKWmGVnSiK8Pv9UBQFXq+X/8NSTWikLM9ut5JVoZZaUIoC/B7ehN3OMAyoqtpwWU5ny3hzxCzXBMMwkMvlkE6n6zLLDV1I6rqOaDSKSCSCdDq94mtlWUZbWxva2togy7JDLSQqTblZbm9vR2tra11lWdW0sm7CkijC7+XTRdxG13VMT08jEokgk8ms+FpmOY9ZdqdysuzxeNDW1laTWW7YQjIej2NgYGD2nUE5uru70dHRUbPvHqi+xGIxDA4Olp1lQRDQ3d2N9vb2uslycZgwnctBL3GYUBZF+ArDhFRdzPIJprIsifB5mGU3iEajGBoaaogsN1whqes6hoaGMD09XdFxFEXBunXr4PV6rWkYUZl0Xcfg4CCi0WhFx1EUBevXr4fH47GoZdU3exPO5kpeyCBLIvxeDySRN2GnMcvLMwwDOU1DJlv6ohxmuXoaMcsNVUjquo6jR49iZmbGkuPJsozNmzezmCTH6bqO/v5+JJNJS45Xr1kuroxNl7FtkEeS4PPKvAk7hFkuDbPsfpqmob+/H6lUypLjeTwebNq0yfVZbphC0jAMHD16FIlEwtLjejwenHTSSTU3p4FqF7NcvhP7UOZK3rvPI0vwezwQxdoYXqpFdmZ5y5YtkOpwzuBslrO5kjfp98oSfMyyrQzDQH9/v2UdVUVerxcnnXSSq7PcMG9TpqamLL9YAfkVssPDw5Yfl2g5k5OTzHKZis8wblb88HtklHI7zaka4ql0/obdGO+3Hccsl282ywE/fJ7S3vRlmWXbRSIRy4tIAMhms67Psm2F5PDwMC6//HK85S1vwa5du/D444/bdapV2f2LiEajiMVith2fqCibzWJkZMS249d7lgVBgM/rKesmnM6pSKQyyKkab8IWsjvL09PTiMfjth2/2oTCXpIhZrnqMpkMRkdHbTu+27Ns2xiWJEn4xCc+gdNOOw2RSAS7d+/G2WefjUAgYNcplxWJRGz/n2Z0dBTNzc01s8qK3EFTVUhlDCVPTEzYnuWxsTGEQiFbz1FtxZuw1yMjk1WRVVd+/rFuGEhmspBFEX4fFzEsxY1ZLl6X69n8LOeQVVdeJTybZS7IWZYbszw2NubaLNuWoK6uLpx22mkAgPb2doTD4YpXMZmh6zqmpqZsP08mk7Fsgi01jrt2XILv/58vIjOz+kIDTdMcyXI6nbZs4YPbiYIAxedBs+KHV159DpKq60ikMkhlsuzRWeDgOe/BDw/ei2xy9eugk1lulOtyPsve0rOsMcvL+fTZ78aP7voSsqmV9+QF8lmudBeYUhQ35nejsgtJXddxwQUX4M4775z3+aeeegrbt29fcgj7j3/8IwzDwNq1a8231KRYLAa9xE1dK+VEmKi+xMcieOTmf8Ctm96wakEZj8cdu+A3WpZFMX8TDio+eEqY1J5VNcSTaWTKWEFb72KjE3j4r+/A3256w6oFZSwWY5ZtwixXLjY8hoduOoBbN79h1YKSWTa5avvRRx/FgQMH8JOf/AThcBiHDx/GJZdcguuuuw779u2b99qpqSlceumluOOOO/DKV77SsoaXanh4GJFIxJFzeSQZsf95zpFzUX14+KN3IDo8Nvtxc2c73vw3V+Psay+Dr2n+NJChoSFMTk460q5Gz7Km68ipWkkbQYuiAI8sNfwQ4UM3/j+IjU7Mftzc1YGdt1yDN15zKbwBZd5rncyyV5IRZZaZ5TIc+sjtiI+fqBtC3R04/5Zr8MarF2d5cHDQkd51IL+35EknneTIucphqpBUVRU7d+7E7t27sWfPHuzduxc7duzAbbfdNu912WwW73//+/Gud70Lb3/7261qc1lefPFFx7qDc6k0vvDqPY6ci+pbc1cHzv+bq/HGay6dLSidzHJ2JokvvmavI+ei+rZUQfnCCy+s+ihPq2TjM/ji697tyLmovoXWdGLnLdfgDVdfCq/iB+BslgVBwLZt21y3FsPU2w5ZlrF//348+OCD2L9/P7Zt24Zbb7113msMw8DHPvYxvOY1r6laEQnkt4EgqjXxsQn82//v73Hr5jfiB5++B5mZJLLZbLWbRVS2+NjiIW8nr8scriWrxEbGFw15O3ldNgzD1GOd7Wa6/3rXrl2zvSMHDx5ctFnmb3/7W/znf/4nfvjDH+Liiy/GxRdfjGeffbay1prAiwjVsmJBeffuq0taxEDkVsWC8u53XI1cCYsYiNyqWFB+4Z3XIJfOOHpuN9Y0prf/OXDgAID8HMildlw/66yzcPjwYfMts4jbuoCJytF7+la87bYbccbbz8ezzz7rynejRKXoO+M0vPW2G3DGxcwy1bZ1Z27DW//XjTjjojfjmWeecWxBL+DOmsZUIXnXXXfhiSeewKFDh3DllVfi4YcfxqWXXmp12yzh8/mgrrJHnFXc+Aum2jS3gBQLE999Pp9j2/Iwy2SVuQVkMcter9ex+b7MMlllbgFZzJXP53Msy6IouvJRiWUvtnnooYdwxx134IEHHsCZZ56Jz3/+8zh06BC+//3vw+Px2NVO00ZGRjAxMbH6Cy3g83ohT1n/iCSqX/e8+3pMHh2c/bj39K146ydvwJm7d87edIuc3IGAWS6NbhjI5TTkSuhdEwB4PTJkSazL4uaLez6EqYETTxBbqoAscjLLfq8P0pT1j2GsN7phIJvToDLLuHv31fN201h35rbZLC/8eZ3cgSAQCGDz5s2OnKscZfVIPvnkk7j99ttx8OBBnHnmmQCAyy+/HPfddx8ee+wx7NnjvhXLTj5JJ9jcjLWnnOLY+aj2FVf+LdUDuVAgEHDs5tscCmENs1wyTdORyuaglTDEJYsiFJ9n2d9zrZL9PgD5AvJt/+tGnH7Rm12R5WCoGWtOOdmRc9WDsrIsiVC89ZdlTyHLS/VALhQIBBwrJJuamhw5T7lKLiSffvpp3Hjjjbj55ptx/vnnz34+GAzisssuwz333IPdu3e7rts1GAxCkiRH5uO0trbafg6qL31nnIaL//7mFQvIoubmZoii6Mh8HGa5PJIkosnvRU7TkM6uvLGzquuIpzLwe2V4ZbluenTWnbkN77zz4ysWkEXMsnuVlWWtTrP8ipdhz2f+bsUCsigUCjmW5ZaWFtvPYYapfSRrzejoKMbHx209h1u7nKm+MMvuZxgGMjkVmdzqc7NFUUDA64Uk1VePTimcmHbU1NSETZs22XqOelZOliVRgNKgWXZiqkYwGMTGjRttPYdZDfEbb29vt72ntLu729bjEwHOZHnNmjW2Hr/eCYIAv9eDZsUHeZWbqq4bSKQzSGVzrtzWw04dHR22D4nyulyZcrKsFbKcZpZt4eYsN0QhKcsyent7bTt+e3u7a+cuUH2RZRk9PT22Hb+9vd3RecX1TBRFNPl9CPi8WG3EL5tTkUhlSlroUC/svi53dHQwyxYpJ8uZBsyyx+Ox9brc2dkJRVFWf2GVNEQhCeTnMdgxV8bv97v6nQLVn3A4zCzXEI8soVnxwyuv3JOsGwZm0lkkM1noDdKjEwqFbJn3pSgKurq6LD9uozOT5UbpnQyHw7ZlubOz0/LjWqkh5kgWGYaBgYEBRKNRS47n8/mwadMmyLLpfd2JTLE6y36/Hxs3bmSWbaZqGlKZ3KqFogDA7/PAI0l1s4BhOYZh4Pjx44jFYpYcz+/3Y9OmTa5b+FlvSs6yACheb91uFTRXo2a5oQpJIP+LHh8fx9jY2OovXkEoFEJvb6/rf8FUvwzDwNjYWMWLb5hlZ5WzgKFet1dZyKosh8Nh9PT0MMsOKT/LXohi/ReTjZblhiski1KpFAYGBpDJlPecTEmS0NPTg3A4bFPLiMrDLNcmTdeRymSh6atfgv1eD7xy/fdOVpLl3t5ehEIhm1pGK2GWF0smkxgcHCw7y8V58LWU5YYtJIH8O4dkMolIJIJ4PL7iXI5AIIC2trbZPaOI3MQwDMzMzGBycrKkLLe3t8/u5UfVYxgGsqqGdDa36mulwkbmUp3/zsxkORQK1X1h4nbM8mLFLEciESQSibrNckMXknMZhoFMJoNUKjW7ebkoivD7/fD7/bzhUs1glmuPruefJqJqq29q7PPI8HnqZ/PnlTDLtYdZXlo9Z5mFJBGRCxiGkX+aSCaH1S7KkihA8XnrvkeHahOz3FhYSBIRuYhuGEhnc8ipq+/D1yjzzag2McuNgYUkEZELlbq9SqOshqXalStkebVyQ5ZEKD4vRBaTNYWFJBGRSxmGgXRORXaV7VUEAIrPC88qG0UTVQuzXL9YSBIRuZym6SU98cYjS1C8Hg4PkmupWn6rIGa5frCQJCKqAUZhvll2lflmoiBA8Xkg18BGxtSYysty/qk45F4sJImIakhO1ZDKZrHalbuRtlah2sQs1wcWkkRENUY3DKQy2VX36uPWKuR2zHLtYyFJRFSDDMMo9Ois/iQRbq1CblZOlhWvBx5m2VVYSBIR1TBd15HM5KDpK/focGsVcjtmuTaxkCQiqnGGYSCTU5Hh1ipU45jl2sNCkoioTnCbIKoXpW4T5JUl+JnlqmIhSURUR7i1CtWLcrIc8HkhMctVwUKSiKgOlbq1ChfikNvlVA2pTBarFStciFMdLCSJiOpUqVureCQJio/Dg+ReJWeZ0zYcx0KSiKiOlbq1iigICPi5Tx+5F7PsTiwkiYgagKbrSJWwtYri88Aryw61iqh8+Sxnoekrly/MsjNYSBIRNYhSt1bhSlhyO8MwkM6pyDLLVcdCkoioweRUDclMdsXXSGJ+JazI4UFyMWa5+lhIEhE1IF3XMZPJQl9heJCbPlMtYJari4UkEVGDKnWfPp9Hhs8jc3iQXMswDKSyOeSYZcexkCQianBZVUUqs/JKWEkUC8ODvAGTe2Vz6qqruiVRRMDPZ3VbhYUkERFB03Uk0ys/kk4QgIDPC1ni8CC5F7PsLBaSREQEoDA8mMkhp608POj3yPByeJBcrOQse2V4ZWa5EiwkiYholmEYyKoa0qsMD8pSfqibN2ByK2bZGSwkiYhoEVXTkcxksdItQhAENPm8kCRuq0LuVUqWRSG/RRCzXD4WkkREtKRSn2+seD3wevgEEXIvZtk+LCSJiGhZfBoO1YvSsyzD7+W8yVKxkCQiolWpmoZkOouVbhjcVoVqQU7TkFoly5w3WToWkkREVBJdN5DMZKHpyw8PioKAgN8LiY+jIxdjlq3DQpKIiEqWfxqOiqy68vBggI+jI5cr9clOzPLKWEgSEVHZSnkazsLH0WmaDlEUOFxIrlLK03CY5eWxv5aIiMrmlWU0+X1Y6T6ayeWLTcMwoOs6ZtKZVVfNEjnN6zGZ5RWGxRsJeySJiMi0kuaaiQJg5LdgkSURTX6fgy0kKk0+yxlo+gr7TTLLi7BHkoiITBNFAU3+leeQ6box+9xjVdNXLDqJqiWfZR+zXCYWkkREVBFBEKB4PfB7PSW9PrvKPn5E1cIsl4+FJBERVUwQBPg8Mpr8Xqy2/CCrais+ro6ompjl8rCQJCIiy8iShKDiW3VT8tW2DyKqNlmS0FRSllfePqje8YGSALLZLGKxGFKpFFKpFDQt/w5DFEUoigJFURAMBqEoCpf6k6tlMhnE4/FFWZYkCX6/n1kmx6zWS5PNafDKyz+GjlkmNxBQSpZVeGWp4iwHAgEbfgL7NfSq7UQigYmJCSQSiZJe7/P50N7ejtbWVl64yFUSiQTGx8cxMzNT0ut9Ph86OjrQ0tLCLJOlDMNAIpWZXZCwkqU2eo7H45iYmGCWqeqczrLf70d7e3vNZbkhC0lN0zA0NIRoNGrq+xVFQV9fH3w+Lvun6lJVFcPDw8wyuUZ+nz0Dqq5D03Souobl7jJzt09hlsltKsny0NAQYrGYqfPWWpYbrpBMp9Po7++HasH8nHXr1iEcDlvQKqLypdNpHDlyBJpW2fwcQRDQ19fHLJMtDMOAYRhQNX32hjy3hyeo+JDNZNDf388sk6s5neV169YhFApV2mzbNVQhmU6n8dJLL0G3cN+nvr4+tLS0WHY8olLYkWW+MSKn6Hr+RqxqOnRNw7H+I8wy1SS9kGNVz2f56JGXLF3FXQtZbphV25qmob+/39KLFQAMDAwgmUxaekyilaiqiiNHrL3xAsDx48eRSqUsPSbRUkRRhFeW4ZVEHD9q/XWZWSaniKIIr+dElq3um6uFLDdMITk8PGzJcPZSBgYGLL8QEi1neHi44mGT5Rw/fpxZJsfYmWVel8lJQ0NDtmbZzYPHthWSiUQC73znO3HxxRdj165dOHTokF2nKqkt09PTth0/m81ifHzctuMTFSUSCdOLEUqRzWYxMTFh2/GJiuLxuK1ZzmQyzDI5IhaLmV5YUwq3Z9m2QlJRFHzlK1/BY489hkOHDuELX/gCpqam7Drdipz4BUQiEb77pbIN/uYPZb3TdOINC7NMZpSbZaeuy27uySF3YpbLY1shKUkSFEUBkK+mdV2vyj9CNpsteZ/ISui6bus7EqpPj33wZnzpjXvw/PeeXPX/j0wmU/J+ZJXQNI1ZprI9euVNuO+cd+GFH/yUWaaa9m+X34D7z3s3XvzRz1bNcjqddmSdhKqqrs1y2YWkruu44IILcOedd877/FNPPYXt27fj8ccfn/1cLBbDRRddhLPPPhsf/OAH0dbWVnmLyxSPxx07l1t/yeRuQ7/5H3z97ftWLSiZZXK7wV/9N7520QdWLSiZZXK7gV/8Dl9925WrFpROZtnJc5XD1PY/jz76KA4cOICf/OQnCIfDOHz4MC655BJcd9112Ldv36LXT0xM4Prrr8fnPvc5dHR0WNLwUg0MDNg6P3IuQTfwp3+425FzUX146Uc/QzYxv2em56wzcPatH8GW89847+kGx48ft3VO2VyCpuNP//sLjpyL6sOLP/gpcsn5q0t7X30mzr71IzjpTW+Yl+Vjx445VuAJqoY//eMXHTkX1Yelstz3l6/A2bd+BJt3vL5qWfZ6vTjllFMcOVc5TBWSqqpi586d2L17N/bs2YO9e/dix44duO2225b9nttuuw2vec1rcOGFF1bU4HI999xzyGazjpxLTWfw7294tyPnovq3sKB0Msu5mRS+fc57HTkX1b+FBeWzzz6LXC7nyLmz8QT+47zLHDkX1b+FBaWTWQaAbdu2QRTdteGOqdbIsoz9+/fjwQcfxP79+7Ft2zbceuut814z9xnWiUQCv/nNb7Bp06bKW1wmu5bjE9lt4ZC3XdtXEdlt4ZA3s0y1auCXv8dXd70f95+7Fy/+8CnHs+zGmsZ0Wbtr167ZTTIPHjwISZr/sPKRkRFceumluOiii/De974Xl156KbZu3VpZa4ka0OQLRzD8+6ehpTPVbgpRRSLPH8Hw756GnnGmZ53ILpHn89dlPetcb6RbyWa/8cCBAwCAqampRUUkAGzfvh2PPfaY+ZZZRBRFV1bwRKvxt4Twmhv24dXXvg/+cLPjQyhEVvG3hvHaG/bh1ddeDl+oGYcPH2avJNUkpa0Fr71xH151zeXwNQcdz7LbhrUBk4XkXXfdhSeeeAKHDh3ClVdeiYcffhiXXnqp1W2zhKIojt18ZUlCeF2PI+ei+hAbGoWx4I3OwgJy9vN+v3NZlpllKs9SWVbaWvCaGz6AV1+TLyBnP68ojq1AlWUPs0xlWS7LcwvIIr/f78gWg0B+WuFSHXfVVnYh+dBDD+H+++/HAw88gK1bt+KKK67Avffei71798Lj8djRxoooiuLYiqpgawtueO6njpyL6sP//8ydmHj2RQDLF5BFTt58Qx3tzDKV5XPbd2DyxaMAli8gi5zMcrirg1mmsnz2tHMx3X8cwPIFZJGiKI4VkoFAwJHzlKusQvLJJ5/E7bffjoMHD+LMM88EAFx++eW477778Nhjj2HPnj12tLEiwWAQo6Ojjp2LqFyrFZBFwWAQY2NjjrSJWSYzVisgi5hlcrvVCsiiYDDo2COS3ZrlkgvJp59+GjfeeCNuvvlmnH/++bOfDwaDuOyyy3DPPfdg9+7drut2VRQFfr8f6XTa1vMIgoDW1lZbz0H153V/fRW2XnT+igVkkZNZbmlpsfUcVH9e/zfX4rS371yxgCxSFAU+nw+ZjL0LyJhlMuMNH/sQtr3jwhULyKJAIOBYlsPhsK3nMMvUPpK1Znp6GgMDA7aeo6WlBX19fbaeg2hqagqDg4O2nqO1tRW9vb22noNocnISQ0NDtp6jra0NPT2cH0n2ciLL7e3tWLt2ra3nMMt9y39sEA6HbZ1bIIoi1qxZY9vxiYpaWlpmn2FvB0mS0N3dbdvxiYpaW1ttz3JXV5dtxycqam1thd/vt+34bs9yQxSSgiCgt7d33mONrNTb2wtZNr2TElHJBEFAX1+fbVnu6elhlskRdmeZ12VySjHLdunt7XXdtMG5GqKQBACfz4d169ZZftyOjg7Xzlug+uTz+Wy5aHV2djLL5Cg7sxwKhSw/LtFy/H6/LTVGV1eX67PcMIUkAIRCIaxfv96y43V0dHAYkKoiHA5betHq7Ox09dAJ1S9mmepFOBy29I1RV1cXOjs7LTueXRpisc1CqVQKAwMDpldZSZKEnp4e9t5Q1THLVC+syHJvb6/re2+o/iWTSQwMDCCbNfco0FrLckMWkgCg6zoikQgmJiZKfoRicSuJ7u5uzr0h1zCb5dbWVnR1dTHL5Bq6rmNiYgKRSIRZpprWSFlu2EKyyDAMxGIxxGIxpFKpRe8gZFmGoigIBoNoaWlx9YRXamzMMtULXdcRj8cRi8WQTCYXPRqUWaZaoes6YrEY4vF43Wa54QvJhXRdh6ZpMAwDkiTV5C+VCGCWqX5omgZd15llqnn1mGUWkkRERERkSkOt2iYiIiIi67CQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFLnaDXATwzCQyWSgaRoAQBRF+Hw+iCLrbaotzDLVC2aZ6kW9ZrnhC0lVVTE1NYVYLIZ0Og3DMBa9xuv1orm5GW1tbfD5fFVoJdHqmGWqF6Vk2efzobm5Ga2trcwyuVYxy9FoFJlMpi6zLBhL/VQNQNM0jIyMYGpqqqzva2pqQk9PT03+sqk+qaqKkZERTE9Pl/V9zDK5jdksB4NBrF27llkm12ikLDdkIRmPxzEwMDDbvWxGd3c3Ojo6IAiChS0jKk8sFsPg4KDpLAuCgO7ubrS3tzPLVFXMMtWLaDSKoaGhhslywxWSExMTGBkZseRYoVAI69atq4lfNNUfK7McDofR19fHLFNVjI+PY3R01JJjMctUTVZmuaWlBb29va7Pcm3P8CxTJBKx7MYL5N9BDwwMLDnngchOVmc5Go0yy1QVExMTlt14gXyWBwcHmWVynNVZnp6eroksN0whmUqlMDw8bPlxo9EoJicnLT8u0XKSySSzTHUhmUxa+oaoaHp6uuz570SVmJmZsS3L5c6zdJrthWQqlcK5556LT33qU3afalm6rmNgYMC244+MjCCbzdp2fKIiZpnqhd1ZHh4eZpbJEXZneWhoCLlczrbjV8r2QvLuu+/G6aefbvdpVjQ1NYVMJmPb8Q3DsOWdCNFCk5OTtt4cmWVyihNZtnKYkWg5kUjE1kLP7ddlWwvJ/v5+vPTSSzj77LPtPM2KDMNAJBKx/TyxWMzV7xjInf7zjn/G+ItHS3ots0xu9p3/5//FxJHjJb3WqSxHo1Goqmr7eai+/Mftd2Giv/QsOzElyM1ZLruQ1HUdF1xwAe688855n3/qqaewfft2PP7447Of+9SnPoWPfvSjlbeyAslk0rHhDc7JoXL96qvfwm2nnocvf+DmVQvKmZkZxwo8t8/JIff5xYOP4pOnnIsHP3jLqgWlk1nmdZnK9YsH/g2fPPlcfOWqj69aUCYSiYa/Lpf9ZBtRFHH11VfjwIEDuOqqqxAOh3H48GHccMMNuOmmm3DhhRcCAH74wx9i48aN2LRpE37/+99b3vBSzczMOHauRCKBjo4Ox85Htc8wDOiahp/f/xB+8eVH8Jr3vQMX/u316Dxpw6LXOpnleDyO9vZ2x85HdcAwoKsq/utL38T/feDf8Nor3okLPnEdOjevX/RSp6/LzDKVwyhk+Wf3fB0/v/8hvPbKPbjwE9ehY9O6Ra9ljWFyH0lVVbFz507s3r0be/bswd69e7Fjxw7cdttts6/59Kc/jX//93+HJEmYmZmBqqp4//vfj+uvv97SH2A1R48eRTwed+RcWiaLz5/1DkfORfVLlKQlC8r+/n4kEglH2qCm0rj71XscORfVL1GWlywojxw54tgNWJ1J4e7XvMuRc1H9EmV5yYLSySxLkoTTTjvNkXOVw/SG5N/4xjfwmc98Bl1dXejt7cW//Mu/QJKkJV/7yCOP4Pnnn8ctt9xSUWPNePbZZx3rds6l0vgCb75kkYUF5eHDhx2bI5OdSeKLr9nryLmo/i0sKJ3MciaWwD1/9R5HzkX1b2FB+cwzz1T0lLxynXbaacvWWtVierHNrl27kEqlAAAHDx503Q9WpOt6tZtAZEpxyPu2U8/Dgx+8BZmZZLWbRGRKccj7tlPOxYP7P4ZsMlXtJhGZoqsq/uveb+CTp5yLr17zCWRTaWfP78Kapuw5kkUHDhwAkJ/IvFoR+Y53cLiXyAxBEPDKd70FOz76QUQF1dF3vkRWEgQBf7H3rXjTRz+IKSPryhsiUSkEUcRZ734bdtz4AUzqzLKpHsm77roLTzzxBA4dOgRVVfHwww9b3S7LeDyeajeBqGyCIOCs9+zC3z39fXzw6/+Mnm0nQ5ZNv+8jqhpBEPCq916ET/7pB9j3tc9i7WlbmGWqSYIo4tWXvh23/en7+MBX7sKarc5n2Y2jv2X/Czz00EO4//778cADD2Dr1q244oorcO+992Lv3r2uLNoURUE67UzXs19R8Ka/3u/Iuag+/Py+Q0hORWc/FgQBf/Hut+Etf/cR9Gw7ed5rFUWxdWP9ufyBALNMZfmve7+BVPTEwkZBEHDWey/CW279MNaetmXeawOBgGPbsinNQWaZyvKze76BdGxOlkURZ71nF976dx/Gmq3zs6woimNZ9vl8EEX3Pdm6rMU2Tz75JK677jocPHgQ559/PoD8cvRzzz0Xt9xyC/bscd9Ck8nJSQwNDTlyrnA4jHXrFm8PQLSc/3XaDowcfnHFArIoEonY8oztpbS0tKCvr8+Rc1F9+LuTz8H4C/0rFpBFzDK52a2b34CJI8chiCJe9d6L8JZbr19UQBZNTEw49tSZ1tZW9Pb2OnKucpTcI/n000/jxhtvxM033zxbRAJAMBjEZZddhnvuuQe7d+92XbdrKBRytJAkKkfxne5KBWRRKBRy7ObLLFO5RFHEqy65eMUCsohZJjcTJAmvvvTtKxaQRaFQyLFC0q1ZNr39Ty05fvw4otHo6i+sgCzLOPXUUyEIgq3nofoyNTiC1t41Jb/+2LFjiMViNrYoP6/4lFNOYZapLMwy1Ytys+zEftVuzrL7Bttt4MRO8J2dna78BZO7lXOxApzJckdHB7NMZXNjlnldJjOY5fI0RCGpKIqtv2hFUdDW1mbb8YmKAoGArY97Y5bJKXZnORAIoLW11bbjExU1NTXZet10e5YbopAEgK6uLvh8PsuPKwgC+vr6XPtOgepPd3c3vF6v5cdllslpzDLVi+7ublt2rhFF0fVZbphCUhRFbNy40dJftCAI2LBhgy0FKtFyilm2cv8yQRCwceNGZpkcZWeW7ShQiZYjSRI2bdrUkFluiMU2c+VyOfT391e8H58kSVi/fj2amposahlReZhlqhfZbBZHjx61JMsbNmxAIBCwqGVE5clms+jv7694b8laynLDFZJA/lmVExMTGBsbM/X9oVAIPT09fDoDVZ2u6xgfH8f4+Lip72eWyS0qzXI4HMbatWuZZao6XdcxNjaGiYkJU99fa1luyEKyKJPJIBKJYGpqCqX8MzQ3N6O9vR3BYNCB1hGVLp1OY3JysuQsh0IhtLW1McvkOmay3N7ezh51cp10Oo1IJILp6em6znJDF5JFmqZhZmYGqVQKqVQKmqbBMAxIkgS/3w9FUdDU1OTKR0ASzbUwy6qqAgCzTDWHWaZ6Ue9ZZiFJRERERKY0zKptIiIiIrIWC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREpsjVboBb5HI5pFIppFIpaJoGABBFEX6/H4qiwOv1QhCEKreSaHXMMtUDwzCgqiqzTDXPMAzkcjmk0+m6zHJDF5K6riMajSISiSCdTq/4WlmW0dbWhra2NshyQ/+zkQuVm+X29na0trYyy+Q6uq5jenoakUgEmUxmxdcyy+Rm5WTZ4/Ggra2tJrMsGIZhVLsR1RCPxzEwMDD7zqAc3d3d6OjoqNl3D1RfYrEYBgcHy86yIAjo7u5Ge3s7s0yuwCxTvYhGoxgaGmqILDdcIanrOoaGhjA9PV3RcRRFwbp16+D1eq1pGFGZdF3H4OAgotFoRcdRFAXr16+Hx+OxqGVE5WGWqV40YpYbqpDUdR1Hjx7FzMyMJceTZRmbN29mMUmO03Ud/f39SCaTlhyPWaZqYZapXmiahv7+fqRSKUuO5/F4sGnTJtdnuWFWbRuGgWPHjllWRAKAqqo4cuQIVFW17JhEqylm2aobL8AsU3XYmWUz05aIzCpm2aoiEsgvnOzv73d9lhumkJyamkIikbD8uLlcDsPDw5Yfl2g5k5OTzDLVBWaZ6kUkErG0o6oom826Psu2Lg3atm0bTj75ZADA9u3b8fd///d2nm5Zdv8iotEowuEwQqGQbecgAvJZHhkZse34zDI5xe4sT09PIxwOo7m52bZzEAFAJpPB6Oiobcd3e5ZtLSSbm5vx2GOP2XmKkkQiEdg9FXR0dBTNzc01s8qK3MHQdQhi6QMDExMTtmd5bGyMhSSVzY1ZLl6XicrhxiyPjY25Nst1P7St6zqmpqZsP08mk7F0bgQ1hsxTh5B77tcw1Oyqr9U0zZEsp9NpS+esUWPI/PSbyD33GxhqbtXXOpllXpepXJmffgO5538LQysty5XuAlOK4sb8blR2IanrOi644ALceeed8z7/1FNPYfv27Xj88cdnPzczM4N3vOMdeO9734tf/epXlbfWhFgsBl3XHTmXE2Gi+mJkksj98UmkvnvvqgVlPB63/V1vEbNM5TLSM8j98QmkvnvPqgVlLBZjlsm1jNQMcn/4Sf66vEpBySyb3P7n0UcfxYEDB/CTn/wE4XAYhw8fxiWXXILrrrsO+/btm33d6Ogouru78dxzz+Hqq6/Gt7/9bQSDQUt/gNUMDw8jEok4ci6f14NNSsPspkQWyP3hJzDScyZo+wLwnPIqyJvPgCDP3/JhaGgIk5OTjrTL7/Nio9+ZN2BUH7L/82MgM6cn2xeA55RXF7I8fy88J7Os+HzY4Hf3qldyl+z//AjIzOn98wXgOfXVkDctzvLg4KAjvetAfm/Jk046yZFzlcNUIamqKnbu3Indu3djz5492Lt3L3bs2IHbbrtt2e/54Ac/iBtuuAEvf/nLK2pwuV588UXHuoMFXcOm53/gyLmozi1RUDqbZRWbnv+hI+eiOrdEQfnCCy+s+ihPq0i6ig3MMlnB31TI8ukQJOezLAgCtm3b5rq1GKYW28iyjP379+Mzn/kMvve972Hbtm249dZb570mGo3OPoh8ZGQEL774ItatW2dJo8uRy60+x4HIdQpD3rnnfj1bUGazq8+jJHKdTBK5Pz6B3HO/mi0onbwuN9AzN8hu6fyQ94ksn+7oddkwDGia5rpncZtuza5du/AP//APAICDBw9CkqR5X3/xxRdx2223QRAECIKAv/3bv0VLS0tFjTWDFxGqaYWCUhvtB1q3AnDXO1GikhUKSm2sH2g5Fcwy1axCQamN9gPhkwHBuXXLbqxpTBeSBw4cAJDf6HthEQkAr3zlK/Htb3/bfMss4rYuYKJyCOFOeE57LaSek4HDhwGXP+GAaDn5LL8OUs8WZplqmhDugmfb6yCtPQl45hnAoQW9gDtrGlNl9F133YUnnngChw4dgqqqePjhh61ul2V8Pp9zJxMEzPhanDsf1S0h3Anvay6Cf8f7IPeeAkEQnM0yBMz4wg6ej+pVPssXF7J8MgRBcPbZwQKzTNYQwl3wvvbt8O+4HHLPFsevy6IoLtlxV21l90g+9NBDuP/++/HAAw9g69atuOKKK3Dvvfdi79698Hg8qx/AYYqi2PLYoqWovmb8ZssuNMsGevwG1voBb93v1EmVyP7y2zCSsdmP5/ZALnznqSiKY/s7qv4QfrPlIoQKWV7DLNMqsr/4dxip+OzHc3sgF2Y5EAg4tnAsp7Qwy1SW7P/91rzdNIRwV+G6vDjLiqI4lmW/3+/KHsmyCsknn3wSt99+Ow4ePIgzzzwTAHD55Zfjvvvuw2OPPYY9e/bY0caKBAIBx86VlBRAB+KqgGcTAp5LAJ1BH/rCfnQGfRBdGACqMin/v+BKBWRRIBBwbCurmUKWY6qAWELAswmgK+hDL7NMyxHzPSUrFZBFjmZZ8ANglqkMYvG6fGIIe6UsO7WVVVNTkyPnKVfJheTTTz+NG2+8ETfffDPOP//82c8Hg0FcdtlluOeee7B7927XdbsGg0FIkgTN5vk4OgREc/ODZgAYS2QwlsjAIwnoCfnRG1YQ8smufFdBzhPDnZBe9voVC8ii5uZmiKJo+wb7GgTElsjyaCKD0UQGXknA2pCC3rCfWaZZYksXpJefvWIBWeRoltWVs9xTzLLffSNqVB1iSxekM85dsYAsCoVCjmQZQFUWLJfC1D6StWZ0dBTj4+O2niPrC2FUK22uRNAnoy/kR0/YD5/srsKb3M2JLGd8IYyVmOVmn4zesB89IWaZyjMyMoKJiQlbz5HxhTGmlTYf80SWFfhkjn1T6Zx48EkwGMTGjRttPYdZDVFIqqqK559/3tZeyVhTN6KZ8t6RCAA6mrzoDSvoCvogiezZoZU5keVo0xrEMuUdn1mmcqmqiueee87WnpxooBuxbPnX5c6gF70hBZ3MMpUgl8vh+eeftzXLJ510EhRFse34lWiIQhLIPw/z2LFjthy7vb0dnV3dGIlnMBBNYSpV/ma7sihgbciPvrCCsJ/DhbS8aDSK48eP23Ls9vZ2dBSyPGgyy55ClnuZZVqFnVnu6OhAe2cXRuJpDEbTzDLZanp6GgMDA7Ycu7OzE93d3bYc2woNU0gC9jwT0+/3Y/PmzRDFE0MhyayKwWgag7E0Urnye46avBJ6wwp6Qn4oHg4X0mJOZXkmq2IomsZgLIVUrvx328Us94b88DPLtIBhGBgcHMT09LSlx1UUBZs2bVqU5cFoGkPRFFKquSz3Fa7LzDIt5GSW3aahCknDMDAwMIBoNGrJ8Xw+HzZt2rTs44oMw8BUKoeBaAoj8Qw0vfx/6vaAF71hP9Y0+znEQrOszrLf78fGjRtXzPJkMofBWAojsQw0E5eN/NC3H91BZplOMAwDx48fRywWW/3FJfD7/di0adOyCz9ns1y8LpvOsoJuDn3THE5n2S0aqpAE8r/o8fFxjI2NVXScUCiE3t7ekn/Bqm5gtDDEEkmW/2xOSRSwttmH3rCCVsXDIRaCYRgYGxurePGN01mWRQFrmv3oC/vRwiwTrMtyOBxGT09PGVnWZ6dxTCbNT0nqDTHLlFetLFdTwxWSRalUCgMDA8hkMmV9nyRJ6OnpQThs/kkJqZyGoWgaA9EUkiaGvgMeCT1hP3pDCgJe94eM7FXtLA9GUxiMpk1nuTecn4PGaRxUSZZ7e3sRCoVMnzuZ1TAUY5bJGslkEoODg2VnWZZl9PT0VJRlpzVsIQnk3zkkk0lEIhHE4/EVH4YeCATQ1tY2u2eUVeefTucwGE1jOJaGamLouy3gQW9IwZqQD7KL51CQvQzDwMzMDCYnJ0vKcnt7++xefladfzpVyHLcfJb7wgq6m5nlRmYmy6FQyLLewGKWB6JpjJjMcnFKUnezHzKHvhtWMcuRSASJRMLxLDuloQvJuQzDQCaTQSqVgpbNQMolYQRa4Pf74ff7bZ/oqukGxhL5Vd8TMyaGvgUBawpD320BDrE0svlZTkPMpQCHszyayA8XMstUiblZ1rNpCLk0EAg7m+V4fuGkqSyLc7LMoe+GNi/LmRQENeNolu3EQnIJ2vE/Q49NwPOyN1bl/OmchqFYGoPRFBLZ8odY/LKYXykb9qPJW/bj1KmOqMf+BCMxCc+2N1Tl/MUsD0RTmDGRZUUW0cMsEwD12NMwZqbhOe31VTl/as512VSWPSJ6Qwp6mOWGpx79I4xkDJ7T/qraTbEEC8kFDDWL3O++C2g5yNveCDHcWb22GAZiaRWD0RSGYmnkTAyxtCqe2VXfHql23/FQ+YxcFrnfPw5oKuSXnQ0x1FG9thgGooUsDzPLVCYjl8lfl3UV8vZzIDa3V68tlmVZwZpmH7PcYPJZfhzQNcgvPxdisK3aTaoYC8kFtON/hjbwDABACHVWrVdyIU03MD6THy4cT2RR7i9NFIDu5vzqwo4mL4dYGoB67E/QBw8DAIRwV9V6JRfSdAPjiQwGYxVmOexHR4BZbgTqsaehDz4LABBauqvWK7lQcUpScRqHmSyvKWS5nVluCOrRP0Ifeg4AILSsqYteSRaSc8ztjSyqdq/kUjKqPru6MJ5Ry/5+nyyit/C0hqCPQyz1aG5vZFG1eyWXklGLw4XMMi1tbm9kUbV7JZeSUbXC5v3msuyXxdndOJjl+jS3N7KoHnolWUjOMbc3sshNvZJLiRVWfQ/FUshq5f8qw34ZvWEFa0N+eDnEUjfm9kYWualXcimVZzk/9N0T4tB3PZnbG1nkpl7JhQzDQCwzZ0qSiSy3FLK8llmuK3N7I4vqoVeShWTBUr2RRW7slVxINwyMJ7IYjKUwFs+UPcQiCEBX0Ie+sIKOJi9EDrHUrKV6I4vc2Cu5UD7LGQxG0xhLmMtydzC/UpZZrm1L9UYWubFXcqFKsywWrsvMcu1bqjeyqNZ7JVlIFizVG1nk9l7JhbKajuHC6sJouvwhFq8koieUn7cT8ntsaCHZaaneyCK390ouZEWWe8P5ucHNzHLNWao3ssjNvZJLyar67KrvmJlpHFJh6DusoJlD3zVnqd7IolrvlWQhiZV7I4tqoVdyKfE5QywZVS/7+5t9MvoKQ98+mUMsbrdSb2RRLfRKLqXSLId8J6ZxMMvut1JvZFEt9EouJZ7OYbAwNzirmciyX85vJRTyw8ssu95KvZFFtdwryUISK/dGFtVar+RCumEgMpPFYDSF0UQG5e5YIQDoDPrQG/ajK+jjEItLrdQbWVRrvZILWZXlvrAfncyya63UG1lUa72SC+mGgYk5WS73biygOPTNLLvZSr2RRbXcK9nwhWQpvZFFtdoruVBO0zEcz78bnk6t/nMv5JEE9DT70duiIOSTuWWFS5TSG1lUq72SC+WKQ9+xCrJcWPXNLLtHKb2RRbXaK7lQMcsD0TSiabNZzm/ezyy7Rym9kUW12ivJQjI9Az02DgDQR1+CkZia/wJJhrTxDACAoDTXxQVrrpmsisFoft5O2sRwYdAroTecf1qDX5ZsaCGVykgnoMcmAAD6yEswZhZm2QNp4+kAAEEJQWyuvQvWShIZdXYOmqks+2T0hfzoCfvhY5aran6WX4QxMz3/BbIX0oaXA6jfLA8WtngzOyWpuIMBs1xdRioBPV7I8vALMJLR+S+Ym+VAiIVkrVOf+yX0yMD8T3r88J711uo0yEGGYSCSzGIwmsZoPA0TO1ags8mL3rCCrqAPksh3w9WUe/YXMCYH53/Sq8D7F2+pToMcNDfLI/G0qaHvDmbZNXLP/l8Yk0PzP+kLwPvKC6vTIAcVszxQuC4zy7Utd/jnMKaG53/S1wTvKy+oToMswqVfBAAQBAEdTT50NPmgas0Yieef1jBZxnDh+EwW4zNZyKKAtYVV3y1+D4dYyFFzs7xtTpanSsyygcVZ7gsrCPs5XEjOmpvlXIVZ9sxel5llshYLSVpElkT0tSjoa1GQzGqzQyyp3OpzPABA1Q0cn07h+HQKTV4pv7ow7Ifi4RALOcsjiVjXomBdi4JkcRpHrIIsh/MrZZllctrcLM9k1fxTdKIppEoc+s7pBo5Np3BsTpZ7Q374mWWqEAtJWlHAK+HkjiC2tDdhKpXDYDSF4XgGWoljLDNZDc9NJPDcRALtAS96w350N/shc4iFHBbwyji5M4gtHfksD0RTGCk3y+MJPDd+Istrmv0cLiTHNc3J8mQyf10eiWeglThTbW6WO5q86A3lr8vMMpnBQpJKIggC2gJetAW8OK3bwGhh1XckmS35GJFkFpFkFtJoHGub809raFU49E3OmpvlbRVm+U/MMlWRIAhob/KivcmLbbqO0Xim7CxPzGQxMZOFPBrHmmY/+sJ+tDDLVAYWklQ2WRTywyJhBamclh9iiaUwky1tuFDTDQxE89tcKB6p8OQRBQEvh1jIWQuzPBjNT+NIljj0PTfLAY+Uf/IIs0xVIItiRVlWdQMD0RQGoikEitflsMJpHLQqFpJUEcUj4aSOJmxuD2A6ncNgNI3hWBpqicOFqZyGFyZm8MLEDNoUD3rDCtY0+yBLfFoDOUvxSNjSEcRJ7U2mspycm+WAB70hBWtCPsgis0zOmpflVCHL8fKy/PzEDJ4vZrl4XWaWaQksJMkSgiCgVfGiVfHitK5mjCXyqwvHZ0ofYplM5TCZyuHPo0B3c37Vd3vAyyEWctRSWR6IpjBRTpaTOUwmc/jzqIA1haHvtgCHC8lZgiCgNeBFa8CL07qbMZrIT+MwleURZpmWxkKSLCcVtplYG/IjrWqzqwsTpQ59G8BQLI2hWBp+uThc40eTl3ElZ83Lck6b3fC89Cwb+WcqM8tUZZKYf/JNT0hBOqcVnvVdxpSkOVlWZBE9zDIVMAFkK78sYXN7Eza1BRDLqBicTmEolkauxCGWtKrjxcgMXozMoEXxoDfsx9pmPzwc+iaH+T1zspxWMRg1n+XWQpbXMMtUBX6PhJPam7C5LYBoIcvDZWQ5xSzTHCwkyRGCICDs9yC8xoOt3cWh7zTGExmU+rCG6VQO06kcnhmNozuYH2LpaOLQNzlLEASEFQ/CigendjVjfKYwjSORLTnLU6kcplI5/Hk0np/GEfIzy+Q4QRDQonjQoniwdc6UpImZCrIc9qODU5IaCgtJcpwoCFjTnH8Hm1F1DBU2PI9n1JK+XzeA4XgGw/EMfLKInsLTGpp9jDM5SxItyHIsv6jHJ4voLWQ5yCyTw+ZO48ioxWkczDKtjr9hqiqfLGJTWxM2tTUhVlgpOxRLI6uV9rSGjKrjyGQSRyaTCPtl9IYVrA354eUQCzls6SynkC3xwfUZVcdLk0m8xCxTlflkCZvamrCxtTAlqZDlXAVZ7glx6LtesZAk1wj5PQj5PTi1K4iJmSwGoimMJTIo8WENiKZVRNNxPDMaR1fQh96wH51BH0QOsZDD5mZ5PJHFYCyFsXjp0zhmszyWz3JfYRoHs0xOmp2S5Pdga1cQ44UpSWNlTEmam+W5U5KY5frBQpJcRxQEdAV96Ar6kNV0DBdWF0bTpQ2xGABGExmMJjLwSvmVir1hP0J+j70NJ1pAFAR0N/vQ3WwyywYwGs9gNJ6BVypO42CWyXn5LOcfpZhV9fzQdyyFWBlZHolnMFLIcv5BFH40M8s1j4UkuZpXErGhNYANrQEkMvnVhYOxNDJqaUPfWc1A/1QS/VNJNPtk9Ib96Akp8MkcYiFnzc1yPHNi1XfpWdbnZbmvMPTNLJPTvLKIjW0BbGybk+VoGpkSpyRltRNTkkK+E9M4mOXaxEKSakbQJ+PUrmac0pkf+h6MpTEaT6PEHSsQz6g4PJbAs2MJdAa96A0p6Az6IIkcYiFnNftkbC1kOTKTxWA0hdFEpqwsPzMWx+GxODoL0zi6OI2DqmBulicKWR4rI8uxjIrYnCz3cUpSzWEhSTVHEAR0Bn3oDPqQ05oxEs+vLpxK5Ur6fgPAWCKLsUQWnsJKxd6wgrBf5pYV5ChxXpZ1DBeyPF1WljMYS2TgkQT0NPvR26Ig5GOWyVlzpyTlZqdxpDGdNpnlwnWZWXY/FpJU0zySiHUtAaxrCWAmm19dOBhNIV3icGFON3BsOoVj0ykEvdLs6kK/R7K55UTzeSQR61sCWG82y5qBo9MpHJ2b5bAffplZJmd5JBHrWwNYX5ySFMsPfZeV5akUjk6lEPTJha2E/PAxy67EQpLqRpNXximdQZzc0YTJZA6D0RRG4mmUuGMFElkNz44n8Ox4Ah1NXvSGFXRz6JuqYG6WI8ksBqP5aRxmstxZyHIXs0xVEPTJOLWzGad0BGezPFLGlKRERsWz4wk8N+e6zCy7CwtJqjuCIKC9yYv2Ji+2ac0YiWcwGEthMlnaEAsATMxkMTGThVwc+g750aJ4OMRCjhIEAR1NPnQ0+aAWsxxNYbLEoW8AGJ/JYnxulsN+tPiZZXLW3Cxvm5PlcqYkMcvuxEKS6posiehrUdDXoiCZ1TBYePJIKqeV9P2qbuD4dArHp1MIeKT8lhVhBQqHvslhVma5ySuhN5Qf+maWyWn5KUkK1rUoSBanccRSSOVKG/pelOXClCRmuTpYSFLDCHglnNwRxJb2Jkyl8kPfw/EMtBLHWJI5Dc9PzOD5iRm0B7zoDef3VJM5xEIOqzTLM1kNz00k8NxEglmmqgp4ZZzcGcSWjiZMpopTksrMcmHou5jlNc1+Dn07iIUkNRxBENAW8KIt4MW2bmN21XckmS35GJFkFpFkFtJoHGua809raOPQNznM6iyvLWS5lVkmhwmCgPaAF+2FLI9WkOU/McuOYiFJDU0SBfSGFfSGFaRyWv5pDdEUZrKlDRdqulFYXZuG4hHRW3iKTsDL/7XIWYuyXBguLCfLA9E0BqJpKMVpHCEFAS+HC8lZ8oIsD0bz0ziSJU7jmJvlgEdCD7NsK97tiAoUj4ST2puwuS2AaFrFQDSF4VgaaolDLKmcjhciM3ghMoNWxYPesII1zT54JD6tgZyleCSc1NGEze0BTKdzGIymy8yyhhcmZvDCRD7LfYUsy8wyOUzxSNjSEcRJ7U2YTuUwGCsvy8k5WW4LeNAbUrAm5IMsMstWYSFJtIAgCGhRPGhRPDitqxljifzqwomZLErcsQJTqRymUjn8eRRY05xfXdge8HKIhRwlCAJaFS9aFe+8LI/PlD5cODfL3cwyVYkgCGgNeNEayGd5dM51uVSTyRwmkzn8eVQ4MSUpwKHvSgmGYZR6b6xb2WwWsVgMuWgEuVQCuq7DMAyIogivzweppRvBYBCKojBwDSyj5ocLB2JpJDJq2d/vl8XZIZagb/F7uJF4GmG/p6KVh5lMBvF4fFGWJUmEx+uH1NLFLBPShSwPRlNIlDj0PZdfFgtDj340LTGNYySeRovfU9HG/ieyPIFcaoZZpiWl50xJsiXLsTRaAp6KNvZfKcuy1w+5kOVAIGD6HNXU0IVkIpHAxMQEEolESa/3+Xxob29Ha2srL1wNzDAMxDIqBqMpDMXSyJW6S/QcLX4PesN+rA35Z4e+f94fgaobeM36Nnjl8oZdEokExsfHMTMzU9LrfT4fOjo60NLSwiw3sNksTxeyXOou0XO0KB70huZn+b+ORKAbBv5yQxu8ZQ6Hx+NxTExMMMtUFsMwEJszJclMlvNTkvKrvotZ/tmRCAwAf7m+1fYs+/1+tLe311yWG7KQ1DQNQ0NDiEajpr5fURT09fXB5/NZ3DKqNbphYDyRwUA0jfFEpuSh7yJRALqCPrQ3efGnkTgAIOyX8ap1rSXNrVRVFcPDw8wyVUw3jMLQt/ksdwd9aAt48afRE1l+9brWkuZWMstkFU3PX5cHYymMJ0qfklQkCvlpHK2KB38uZLnF78Gr1reUNLdSVVUMDQ0hFouZaH3tZbnhCsl0Oo3+/n6oavlDkwutW7cO4XDYglZRPcioOoYLQywxE0Pfc7UFPDirr3XFvdDS6TSOHDkCTSt/OGcuQRDQ19fHLNOsYpYHoinEK8xye8CLv+hrWTHLqVQK/f39zDJZLqMWh77TNZfldevWIRQKVXQcJzRUIZlOp/HSSy9B10vbPb8UfX19aGlpsex4VB/i6fzqwsFoGlnNXN66gl68orcF4hJDHHZkmW+MaCmxwqrvoVglWfbhFb3hJbOcSqVw5MgRZplsdyLLKWRNTEkCgO5mH87sWT7LL730Eqwsq2ohyw1TSGqahueff96SnsiFNm/eXLOTZMleumFgYiaLwWgKo4kMyv2/rSfkx+lrQ/Pmy6iqiueff77id7xLOemkk6AoiuXHpdpXaZZ7Q368nFkmF8hPScpneczENI6+sB/b1zDLRQ1TSA4MDGB6etqWY3u9XmzZsgUi96WiFWS14tB3GtF0ruTvW9+iYFt38+xF6/jx46bnka2GWaZSnMhyCtF06W/ON7QqOK3LmSz7fD6cdNJJzDKtyGyWN7YGsLUrOJvlY8eOmZ4TuRqfz4ctW7a4dgGOrYXk8ePH8YlPfAKRSASSJOGb3/xmVXruEokE+vv7bT1HZ2cnuru7bT0H1Y9EYdX3YCyNjLr6kN5J7U04pTPoSJa7urrQ1dVl6zmofpSb5S3tTTi5M4h4PI6jR4/a2jZmmcoRn7MbRylZPrmjCVs6gojFYjh27Jitbevu7kZnZ6et5zDL1g3JP/7xj+PGG2/EWWedhenpaXi9XjtPt6yJiQnbzxGJRNDZ2cl3v1SSoE/GqV3NaM5M4n9yPmCVd5ovRmbgkQQgOm572yKRCDo6OphlKkkxy8H0JP5QQpZfiMzAI4kwos5dl93ak0Pu0uyTsbWrGc0lZvn5iXyWtSlnstzR0eHKLNtWSD7//POQZRlnnXUWAFRtQUo2my15n8hK6LqOWCzGhTdUFuXwT/FKSOhv24bJwJrZC5dPFuGXRfhlCX6PCJ8sQTR0xGZmYPdlRNM0ZpnKFjj8BF4heNHftg1Tge5ls+yXJQiGhriDWXb7YgVyl6ZnfoJXSP58lpWuFbMMTcVMMml7llVVdW2Wyy4kdV3HW97yFuzYsQM333zz7OefeuopXHvttbjzzjtx4YUX4ujRowgEArjmmmswOjqKnTt34pprrrG08aWIx+OOnYs3XyqHqhuQBAGh9BROH/4v6KFOiFteBe+aDZCW6A2cmJiAU2lmlqkcqqZDEgSEM5M4Y/hn0ENdEE9+Fbzd612RZTfefMmdcpoOURQQTkdwxtBT0MPdELectWyWx8fHHctyPB53ZZbLLiRFUcTVV1+NAwcO4KqrrkI4HMbhw4dxww034KabbsKFF14IAMjlcvjtb3+Lb33rW2hvb8e+ffvw8pe/HH/1V39l+Q+xklQq5di5kjMJZH7zuGPno9rnySVn/y7GxoHf/SdyLV3AKa+G2Ll+3jCGk1lOM8tUJo96Ip9ibAz47XeQa+kuZHndvCwnk8mlDmGLVCLOLFNZPGp69u9idBT47Xegtq4BTnkVxI51VbsuO/n/TTlMDW3v2rULn/vc5/Dggw9iz549uOqqq3DxxRdj3759s69Zs2YNtm/fjrVr1wIAzj77bDzzzDOOF5JO/sNruRz0kZccOx/VJ2N6DNlf/QeEli545hSUTl6wcrkss0wVM6ZHkf3VtyG0dBeyvM7xLKtZZpkqp0+NIPvLb0NsXQN5TkHpZJaz2Sx0XXfd/HVThaQsy9i/fz8+85nP4Hvf+x62bduGW2+9dd5rXv7ylyMSiSAajaK5uRm/+c1v8O53v9uSRpfDjj2diJywsKDUbNgDlcgJCwtKZplq1cKC0uksa5rmukLSdGt27do1W4kfPHgQkiTN+7osy7jppptw2WWX4aKLLsKGDRtw7rnnVtZaogZkzEShR8chGNY9+YOoGoyZaejRMWaZap6emOJ1ucD0qu0DBw4AAKamphYVkUVnn302zj77bLOnsIQoiuyVpNrk8UHefCbkjS+H4PFBePZZIFf6RuZErjGb5dMheLwQDh8G2CtJtcjjg3zSK/LXZdn5LLutNxIwWUjeddddeOKJJ3Do0CFceeWVePjhh3HppZda3TZLKIqCnEM3X0mSACVo+zYAVD+M9AwWPWtuQQFZ5Pf7Hc2yoAQdORfVh5WznC8gixRFcWxHDUmWmWUqy7JZnlNAFvn9fke2GATyI73LddxVU9mF5EMPPYT7778fDzzwALZu3YorrrgC9957L/bu3QuPx2NHGyuiKIptjy1ayN8UhLLjCkfORfUh/cTXYCSm8h8sU0AWOXnzVYIh+JllKkP6x1+BkSw87nCZArLIySz7g83MMpUl/eMHYSQLdcMyBWSRoiiOFZLVeDJgKcrqI33yySdx++23484778SZZ54JALj88suRSCTw2GOP2dG+igWDzr0TdfJcVEc8Psin/iX8510Oz8lnLVlEAswy1YDZLL+vkOWln2bGLJPreXyQt74G/h3vg2fLXyxZRALMMlBGj+TTTz+NG2+8ETfffDPOP//82c8Hg0FcdtlluOeee7B7927XdbsqigK/3490Or36iysgCAJaW1ttPQfVH/mkV0Bas3nZ4nEuJ7PMzcipXPLJfwFpzUnLFo9zKYoCn8+HTCZja5uYZTJD3vIXkHq2LFs8zhUIBBzLshs3IwcAwTAWTgSoP9PT0xgYGLD1HC0tLejr67P1HERTU1MYHBy09Rytra3o7e219RxEk5OTGBoasvUcbW1t6OnpsfUcRE5kub29fXZfbrdx3/IfG4TDYVvnFoiiiDVr1th2fKKilpYWKIpi2/ElSUJ3d7dtxycqam1ttT3LXV1dth2fqKi1tRV+v9+247s9yw1RSAqCgN7e3nmPNbJSb28vZNn0TkpEJRMEAX19fbZluaenh1kmR9idZV6XySnFLNult7fXddMG52qIQhIAfD4f1q1bZ/lxOzo6XDtvgeqTz+ez5aLV2dnJLJOj7MxyKBSy/LhEy/H7/bbUGF1dXa7PcsMUkgAQCoWwfv16y47X0dHBYUCqinA4bOlFq7Oz09VDJ1S/mGWqF+Fw2NI3Rl1dXejs7LTseHZpiMU2C6VSKQwMDJheZSVJEnp6eth7Q1XHLFO9sCLLvb29ru+9ofqXTCYxMDCAbDZr6vtrLcsNWUgCgK7riEQimJiYKPkRisWtJLq7uzn3hlzDbJZbW1vR1dXFLJNr6LqOiYkJRCIRZplqWiNluWELySLDMBCLxRCLxZBKpRa9g5BlGYqiIBgMoqWlxdUTXqmxMctUL3RdRzweRywWQzKZXPRoUGaZaoWu64jFYojH43Wb5YYvJBfSdR2apsEwDEiSVJO/VCKAWab6oWkadF1nlqnm1WOWWUgSERERkSkNtWqbiIiIiKzDQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlNYSBIRERGRKSwkiYiIiMgUFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiIiITGEhSURERESmsJAkIiIiIlPkajfATQzDQCaTgaZpAABRFOHz+SCKrLeptjDLVC+YZaoX9Zrlhi8kVVXF1NQUYrEY0uk0DMNY9Bqv14vm5ma0tbXB5/NVoZVEq2OWqV6UkmWfz4fm5ma0trYyy+RaxSxHo1FkMpm6zLJgLPVTNQBN0zAyMoKpqamyvq+pqQk9PT01+cum+qSqKkZGRjA9PV3W9zHL5DZmsxwMBrF27VpmmVyjkbLckIVkPB7HwMDAbPeyGd3d3ejo6IAgCBa2jKg8sVgMg4ODprMsCAK6u7vR3t7OLFNVMctUL6LRKIaGhhomyw1XSE5MTGBkZMSSY4VCIaxbt64mftFUf6zMcjgcRl9fH7NMVTE+Po7R0VFLjsUsUzVZmeWWlhb09va6Psu1PcOzTJFIxLIbL5B/Bz0wMLDknAciO1md5Wg0yixTVUxMTFh24wXyWR4cHGSWyXFWZ3l6eromstwwhWQqlcLw8LDlx41Go5icnLT8uETLSSaTzDLVhWQyaekboqLp6emy578TVWJmZsa2LJc7z9JpthWSL730Ei6++OLZ/04//XT88Ic/tOt0K9J1HQMDA7Ydf2RkBNls1rbjExUxy1Qv7M7y8PAws0yOsDvLQ0NDyOVyth2/Uo7MkZyZmcF5552Hn/zkJwgEAnafbpFIJGJLD85coVAI69evt/UcRFbOi1wOs0xOcCLL4XAY69ats/UcRFbOi1yOm7PsyND2j3/8Y7z2ta+tShFpGAYikYjt54nFYq5+x0Du9OP//TlEXjxa0muZZXKzH/39P2PyyPGSXutUlqPRKFRVtf08VF9+dMdnMdVfWg+jYRiOTAlyc5bLLiR1XccFF1yAO++8c97nn3rqKWzfvh2PP/74ou95/PHH8Za3vMV8KyuQTCYdG97gnBwq1/98/d/xmZe/Gf921S2rFpQzMzOOFXhun5ND7vPfX30UB7e/CY9c8/FVC0ons8zrMpXrdw8+gk+/bAcevfYTqxaUiUSi4a/Lpoa2H330URw4cAA/+clPEA6HcfjwYVxyySW47rrrsG/fvnmvTSQSeNOb3oQnn3yyKhtsjo2NYWxszJFzBQIBbNy40ZFzUX2464ydmHjuJQCAKEl4xWW7cc4tH0L7SRsWvXZ0dBTj4+OOtItZpnIdfNkOTL50DAAgyjJeefk7cM7fXIu2zYunSTiZ5aamJmzYsPj/J6LlfHrruZg6mi8gRVnGK9/3DpzzNx9C26bFQ8sjIyOYmJhwpF3BYNCV12VThaSqqti5cyd2796NPXv2YO/evdixYwduu+22Ra/91re+hZ/97Gf4P//n/1jS4HIdPXoU8XjckXPpmSy+8bp3OXIuql/LFZT9/f1IJBKOtEFLpfHN17/bkXNR/VquoDxy5AhmZmYcaYM2k8I33/geR85F9Wu5gtLJLEuShNNOO82Rc5XD1BxJWZaxf/9+PPjgg9i/fz+2bduGW2+9dcnXfve7363asDYApNNpx86l6+7e64lqg65p+O0DDy8a8nY2y7pj56L6pasqfnP/IRx8+ZvzQ96FHstMJuNYGzTd/BPMiIp0VcVv7juUn75x7YnpG05elzVNq+iJfHYxvdhm165dSKVSAICDBw9CkqRFr4nH4/jDH/6A17/+9eZbWCHeEKlWzS0oH7nm48jOJKvdJCJTZgvKwk04m0xVu0lEpswtKL913a3IpZwrJAF31jSmC8kDBw4AyE9kXqqIBIDm5mb8/Oc/h9frNXsaooYmCAK2v/NC/NUNH4AnoFS7OUSmCYKA7Xvegtd/ZB9kv/Pz5YmsIogiTn/XW/G6D7+fWYbJQvKuu+7CE088gUOHDkFVVTz88MNWt8syHo+n2k0gKpsgCDh979vwkd8/jvc8+P+i+7STIctytZtFVDZBEHD6u3fhht9/F+/58l3oOm0Ls0w1SRBFnPnei3HD77+Lvf96EF1bT3I8y8t13FVT2f8CDz30EO6//3488MAD2Lp1K6644grce++92Lt3ryuLNkVRHJvD4Av48fob963+QqKC3z7wMFJT0dmPi7025/3th9F92snzXqsoimNzy3yBALNMZfnN/YeQjp5Y2CgIAl6+92047+PXo+u0LfNeGwgEHNuWTQkGmWUqy6/v+yYysRMLGwVRxOl734ZzP349uraeNO+1iqI4lmWfzwdRdN+Trctatf3kk0/iuuuuw8GDB3H++ecDyG/vc+655+KWW27Bnj17bGuoWZOTkxgaGnLkXG7eeZ7c6TOnn4/xZ1/M33Tf9Vac+4nrFxWQRU48oamopaUFfX19jpyL6sOnt52HyItHZ3sgz/3YdYsKyCJmmdzszlPPwVT/cQiiiDPevQvnfOy6RQVkkRNPaCpqbW1Fb2+vI+cqR8k9kk8//TRuvPFG3HzzzbNFJJDf1+iyyy7DPffcg927d7uu2zUUCjlaSBKVY/ad7goFZFEoFHLs5sssU7kEUcQZ77loxQKyiFkmNxOl/BD2SgVkUSgUcqyQdGuWHXnWdrUdP34c0Wh09RdWQJZlnHrqqRAEwdbzUH2JDo4g3Lum5NcfO3YMsVjMxhbl5xWfcsopzDKVhVmmelFulp3Yr9rNWXbfYLsNOjo6bD9HZ2enK3/B5G7lXKwAZ7Lc0dHBLFPZ3JhlXpfJDGa5PA1RSCqKYusvWlEUtLW12XZ8oqJAIID29nbbjs8sk1PsznIgEEBra6ttxycqampqsvW66fYsN0QhCQBdXV22POtbEAT09fW59p0C1Z/u7m5b9mZllslpzDLVi+7ublt2rhFF0fVZbphCUhRFbNy40dJftCAI2LBhgy0FKtFyilm2cv8yQRCwceNGZpkcZWeW+SAMcpIkSdi0aVNDZrkhFtvMlcvl0N/fX/F+fJIkYf369WhqarKoZUTlYZapXmSzWRw9etSSLG/YsAGBQMCilhGVJ5vNor+/v+K9JWspyw1XSAL5Z1VOTExgbGzM1PeHQiH09PTw6QxUdbquY3x8HOPj46a+n1kmt6g0y+FwGGvXrmWWqep0XcfY2BgmJiZMfX+tZbkhC8miTCaDSCSCqakplPLP0NzcjPb2dgSDQQdaR1S6dDqNycnJkrMcCoXQ1tbGLJPrmMlye3s7e9TJddLpNCKRCKanp+s6yw1dSBZpmoaZmRmkUimkUilomgYDgCSK8Pv9UBQFTU1NrnwEJNFcC7OsqiogCMwy1RxmmepFvWeZheQSklkV6ZyGtiYuPKDaNpPJIavqaGWWqcbNZHLIajpaA8wy1bZ6y3LDrNoulWEYiKaySGRyUHW92s0hMm1uljVmmWrYbJbTzDLVtvlZro9+PBaSC6RyGnJa/kIVS+Wq3Boi85JZFapuwACzTLVtXpbTzDLVrvlZrmxlt1uwkJyj+E6hiL2SVKuWyjJ7cqgWLcoyeyWpRi2d5drvlWQhOcfc3sgi9uRQLSq+6y1iryTVqiWzzF5JqkFLZ7n2eyVZSBYsfKdQxF5JqjUrZZk9OVRLls0yeyWpxqyc5drulWQhWbBUb2QRe3Kolix811vEXkmqNStmmb2SVENmVsxybfdKspDE8u8UitgrSbWilCyzJ4dqwapZZq8k1QjDMBBbNcu12yvJQhIr90YWsSeHasFyPThF7JWkWlFSltkrSTVgud7IolrvlWz4QnK1d71F7JUktysny+zJITcrOcvslSSXW603sqiWeyUbvpDMaTokUYDfI0EUhCVf4/dI8HskZHKaw60jKl1O0yFL4qpZ9nkkpJllcrHVsiyAWabakC0jyxm1NrPMRyTOMZFII5lV531OFAT0tdbWA9SJxuMppBbcYCVRQG8Ls0y1hVmmerFUlmVRQE+NZ7nheySJiIiIyBwWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkilztBrhFLpeDoWYh6hoM3QAACIIAWZKQyWTg9XohCEKVW0m0ulwuB2i5RVmWwCxT7TAMA6qqMstU8wzDWPa6LNZBlgXDMIxqN6JadF1HNBpFJBJBOp1e8bWyLKOtrQ1tbW2QZdbf5C7lZrm9vR2tra3MMrmOruuYnp5GJBJBJpNZ8bXMMrlZOVn2eDxoa2urySw3bCEZj8cxMDAATdPK/t7u7m50dHTU7LsHqi+xWAyDg4NlZ1kQBHR3d6O9vZ1ZJldglqleRKNRDA0NNUSWG66Q1HUdQ0NDmJ6erug4iqJg3bp18Hq91jSMqEy6rmNwcBDRaLSi4yiKgvXr18Pj8VjUMqLyMMtULxoxyw1VSOq6jqNHj2JmZsaS48myjM2bN7OYJMfpuo7+/n4kk0lLjscsU7Uwy1QvNE1Df38/UqmUJcfzeDzYtGmT67PcMKu2DcPAsWPHLCsiAUBVVRw5ciQ/IZzIIcUsW3XjBZhlqg47s2xm2hKRWcUsW1VEAvmFk/39/a7PcsMUklNTU0gkEpYfN5fLYXh42PLjEi1ncnKSWaa6wCxTvYhEIpZ2VBVls1nXZ9nWQvJf//Vf8da3vhVvectbcMcdd6Bao+h2/yKi0ShisZhtxycqymazGBkZse34zDI5xe4sT09PIx6P23Z8oqJMJoPR0VHbju/2LNtWSE5OTuIrX/kKHnnkEXz729/G008/jf/+7/+263QrikQithexo6OjVSuUqXFMTEzYnrOxsTFbj08EOJNlO2/uREWNfl22tUdS0zRkMhmoqgpVVdHe3m7n6Zak6zqmpqZsP08mk7F0bgTRQpqmOZLldDpt6Zw1ooWczDKvy2QnTdMq3gWmFKlUyrVZLruQ1HUdF1xwAe688855n3/qqaewfft2PP744wCAtrY2fOADH8A555yDN7zhDXjd616H9evXW9PqMsRiMei67si5nAgTNa54PO5YrzezTHaKxWLMMtUFZtlEISmKIq6++mp8/etfn90n6fDhw7jhhhtw00034cILLwSQn2v1xBNP4Mc//jF++tOf4ve//z1+/etfW9v6EjhZwdsx0ZaoyMleQvZIkp2cvC4zy2QnXpdNDm3v2rULra2tePDBBzEyMoKrrroKF198Mfbt2zf7mp///OdYv349Wlpa4Pf7cfbZZ1dljqST//CZTMax3k9qPE7efNPpNLNMtnHyupxOpzl/nWzj9HXZjVk2VUjKsoz9+/fjwQcfxP79+7Ft2zbceuut816zdu1a/P73v0cmk4GmafjVr36FTZs2WdLocuRyOUfPx334yC7ZbNbR8zHLZBcnr8uGYTDLZBsnr8uGYbhyT0nTi2127do1W4kfPHgQkiTN+/qZZ56Js88+G29/+9tx0UUXYf369dixY0dlrTXB6erdje8WqD4wy1QvmGWqF8wyIJv9xgMHDgDIb/S9sIgsuummm3DTTTeZPYUlnH7oea08ZJ1qj9PZEsWGeV4BOYzXZaoXgiA4Wty5Mcum7hR33XUXnnjiCRw6dAiqquLhhx+2ul2W8fl8jp1LEISaeMA61SansyzLpt9nEq3IyWcHM8tkJyevy6IoLttxV01lF5IPPfQQ7r//ftx9993YunUrrrjiCtx7772Oz0UslaIojp3L7/e78t0C1QdmmepFIBBw7FyKojDLZBtel8ssJJ988kncfvvtuPPOO3HmmWcCAC6//HIkEgk89thjdrSvYk5esJw8FzUeJ/PV1NTk2Lmo8fC6TPWC1+UyCsmnn34aN954I26++Wacf/75s58PBoO47LLLcM8997hyNVEwGHSsK7i1tdWR81Bjam5udmzeIrNMdmKWqV6EQiHHstzS0uLIecolGG5cAmSx0dFRjI+P23qOQCCAzZs323oOImaZ6sXIyAgmJiZsPUdTU1NVtp2jxjI8PIxIJGLrOYLBIDZu3GjrOcxqiGWZ7e3ttvdKdnd323p8IsCZLK9Zs8bW4xMBQEdHh+09ObwukxMaPcsNUUjKsoze3l7bjt/e3u7auQtUX2RZRk9Pj23Hb29v55wycoTd1+WOjg5mmRzh8XhsvS53dnY6uqinXA1RSAL5eQx2zJXx+/2ufqdA9SccDjPLVBdCoZAt874URUFXV5flxyVaTjgcti3LnZ2dlh/XSg1TSAJAT08PwuGwZcfz+XzYuHEjN24mx1mdZb/fzyyT4wRBQG9vL0KhkGXHZJapGho5yw2x2GYuwzAwPj6OsbGxio4TCoXQ29vrys1BqTEYhoGxsbGKF98wy1RtVmU5HA6jp6eHWaaqacQsN1whWZRKpTAwMIBMJlPW90mSZHlvEFElmGWqF5Vk2ereIKJKJJNJDA4Olp3l4jz4WspywxaSQP6dQzKZRCQSQTweX/F5mYFAAG1tbY7uGUVUKsMwMDMzg8nJyZKy3N7e7uhefkSlMpPlUCjkyid+UGMrZjkSiSCRSNRtlhu6kJzLMAxkMhmkUqnZjdVFUYTf74ff7+cNl2oGs0z1glmmelHPWWYhSURERESm1G4JTERERERVxUKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiExhIUlEREREprCQJCIiIiJTWEgSERERkSksJImIiIjIFBaSRERERGQKC0kiIiIiMoWFJBERERGZwkKSiIiIiEyRq90AIiKqjPcVH4AgShBECaLshSBJEAsf5/8T5/xdgiCd+Pv81y39mvzrBAiiAEEQTvxdFCAKJ/4uySt/XSx8vyBiyeNJS/wnz/tYnP914cTffbK45Pcv+k/It0kS8m1Y+PHs3wvHXvwxTnyPmP+8RxRn/y4IgIjCnwIWf4y5r0P+55993ZyPUfx+YdH3CYYBGDoEQwd07cTf5/6nz/2cseRrhMLrlvy6rsHQC8fXNRialn+trsHQ83831Gz+T0078bq537PC9xu6DkMr/Dfn77q2+Gu6tvi1Wk4tfE5b8P1zj2cUPjaga8acz+X/ruvGiddoxsqv1/XC5wxoWS3/ecOAZhjQDKzw50pfM6Bj5a9rBnC30V/Fq8vq2CNJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiUwTDMIxqN4KIiNwpm83iC1/4Aq6++mp4vd5qN8c0/hzuUQ8/A1A/P0el2CNJRETLymaz+NznPodsNlvtplSEP4d71MPPANTPz1EpFpJEREREZAoLSSIiIiIyhYUkEREREZnCQpKIiJbl9Xpx/fXX1/xiAv4c7lEPPwNQPz9Hpbhqm4iIiIhMYY8kEREREZnCQpKIiIiITGEhSURERESmsJAkIqJFpqam8L73vQ/vec978MQTT8z72vj4OC677DK8613vwpNPPlmdBpZgpZ+h6GMf+xh++ctfOtuwEmWzWVx77bV4z3veg0OHDq36ebdarb3//M//jEceeaQKLSvdcj9DOp3Gvn37sHfvXjz88MNVbGH1sJAkIqJFvva1r2Hfvn144IEH8MADD8z72ne+8x3s3bsXX/7yl3HfffdVqYWrW+lnAIAXXngBP/zhD6vQstL853/+J97whjfga1/7Gr773e8ik8ms+Hm3Wqm9k5OTNVEML/czPPXUUzjrrLPwjW98g4UkERFR0Z/+9Cf8xV/8BXw+H4LBIKLR6OzXTj31VCSTSaTTafj9/iq2cmUr/QwA8KUvfQlvf/vbq9O4EhTbL4oiTjnlFLz44osrft6tVmrvvffe6+rfQdFyP8PmzZuRy+Wgqio8Hk+VW1kdLCSJiGiRmZkZNDU1AQAURUEymZz9WiAQwN133423v/3teNvb3latJq5qpZ/hD3/4A3p7exEOh6vVvFXNzMwgEAgAmN/+5T7vVsu1d3h4GDMzM9i0aVM1m1eS5X4Gj8eD73znO7jgggvwV3/1V9VsYtXI1W4AERFV35e//GU8/vjjsx//8Y9/RDKZRFNTE1Kp1GxBBgBf/OIX8bnPfQ6nnHIKPvCBD+DNb36zK3omy/kZ7rvvPtxxxx24//77q9HUkgQCAaRSKQBAKpVCMBhc8fNutVx7v/CFL2D//v341a9+Vc3mlWS5n+ErX/kKPvrRj+LNb34zrr/+egwODqK3t7eaTXUceySJiAjve9/78PWvf332v2uuuQa/+c1vkMlkMD09jVAoNPtaRVHQ1NQEr9cLQRCgqmoVW35CqT/DzMwMnnvuOVx77bV49NFH8Q//8A+YmZmpcusXe9nLXoZf//rXMAwDzzzzzGzP3XKfd6vl2vvHP/4RH//4x/HFL34RX/ziF3H06NEqt3R5y/0Mxf8XRFFEMBh0fe+wHfhkGyIiWmRychJ//dd/jWg0ig996EN405vehH/8x3/ENddcg8nJSfzd3/0dVFXF+eefj3379lW7uUta6WdoaWkBkF8x/OpXvxp/+Zd/Wd3GLiGTyeCjH/0oRkZG8I53vAOpVArnnHMO1q1bN+/zl156abWbuqLlfo4tW7YAwOyK7Xe84x3VbOaKlvsZWlpacPPNNyOTyWD79u34xCc+Ue2mOo6FJBERERGZwqFtIiIiIjKFhSQRERERmcJV20RERC5x3nnnYXx8HLKcvz0bhoFgMIhdu3bh5ptvhiiKyGazuP/++/Ef//EfGBoags/nwxlnnIHrr78eL3vZy6r8E1CjYSFJRETkIrfffvu8hSfPPvssrrzySiiKgquvvhqXX345vF4vPvWpT2Hr1q1IpVL48pe/jMsuuwwPPPAATj/99Cq2nhoNC0kiIiIXO/XUU/GqV70Kf/7zn/Hggw9iYGAA3//+92f3MmxqasK1116LWCyG5557joUkOYqFJBERkUvlcjn87ne/wy9+8Qt8+MMfxuOPP45zzjlnyU3Ib7nlliq0kBodt/8hIiJyifPOOw+RSGTec5vXrFmDt771rbjmmmtw4YUXYufOnbjpppuq2EqiE9gjSURE5CK33Xbbsptzd3Z2YmxsbMmvRaNRKIoCr9drZ/OI5uH2P0RERDXivPPOw09/+lMkEolFX/vbv/1bXHvttVVoFTUyFpJEREQ14pJLLkFHRweuvfZaHD58GIZhYGpqCp/+9KfxX//1X/jIRz5S7SZSg+HQNhERUY3w+Xz46le/in/5l3/BRz7yEUxMTMDv9+PMM8/EV77yFe4jSY7jYhsiIiIiMoVD20RERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhMYSFJRERERKawkCQiIiIiU1hIEhEREZEpLCSJiIiIyBQWkkRERERkCgtJIiIiIjKFhSQRERERmcJCkoiIiIhM+f8Apa5KCIoWyG8AAAAASUVORK5CYII=", "text/plain": [ "
" ] From bce2352c9f76a7fe5709a675a1213b6702f67475 Mon Sep 17 00:00:00 2001 From: jakobrunge Date: Tue, 27 Jun 2023 16:36:43 +0200 Subject: [PATCH 4/5] made significance=fixed_thres more coherent, now assumes pc_alpha / alpha_level is threshold --- setup.py | 2 +- tests/test_independence_tests.py | 21 +- tests/test_models.py | 3 +- tigramite/independence_tests/cmiknn.py | 106 +++++- .../independence_tests_base.py | 163 ++++++--- .../oracle_conditional_independence.py | 11 +- tigramite/independence_tests/parcorr.py | 1 + tigramite/lpcmci.py | 88 +++-- tigramite/pcmci.py | 129 ++++--- tigramite/rpcmci.py | 4 +- .../biogeoscience_case_study.ipynb | 28 +- .../case_studies/climate_case_study.ipynb | 4 +- .../tigramite_tutorial_assumptions.ipynb | 31 +- ...e_tutorial_causal_discovery_overview.ipynb | 28 +- ...orial_conditional_independence_tests.ipynb | 29 +- ..._tutorial_heteroskedastic_ParCorrWLS.ipynb | 89 ++--- .../tigramite_tutorial_latent-pcmci.ipynb | 48 +-- .../tigramite_tutorial_pcmciplus.ipynb | 83 +++-- .../tigramite_tutorial_regime_pcmci.ipynb | 332 +----------------- ...ite_tutorial_sliding_window_analysis.ipynb | 16 +- ...orial_general_causal_effect_analysis.ipynb | 46 +-- ...rial_linear_causal_effects_mediation.ipynb | 72 ++-- .../tigramite_tutorial_prediction.ipynb | 28 +- .../tigramite_tutorial_missing_masking.ipynb | 155 ++++---- ...tigramite_tutorial_multiple_datasets.ipynb | 26 +- 25 files changed, 721 insertions(+), 822 deletions(-) diff --git a/setup.py b/setup.py index 7f973b97..b856e83c 100644 --- a/setup.py +++ b/setup.py @@ -62,7 +62,7 @@ def run(self): # Run the setup setup( name="tigramite", - version="5.2.1.22", + version="5.2.1.23", packages=["tigramite", "tigramite.independence_tests", "tigramite.toymodels"], license="GNU General Public License v3.0", description="Tigramite causal inference for time series", diff --git a/tests/test_independence_tests.py b/tests/test_independence_tests.py index 4a3ae15c..ccc85001 100644 --- a/tests/test_independence_tests.py +++ b/tests/test_independence_tests.py @@ -120,14 +120,20 @@ def check_run_test(ind_test, sample): x_nds = true_parents[0] z_nds = true_parents[1] tau_max = 3 + alpha_or_thres = 0.1 # Run the test - val, pval = ind_test.run_test(x_nds, y_nds, z_nds, tau_max) + val, pval, dependent = ind_test.run_test(X=x_nds, Y=y_nds, Z=z_nds, + tau_max=tau_max, alpha_or_thres=alpha_or_thres) + # Get the array the test is running on array, xyz, _, _ = ind_test._get_array(x_nds, y_nds, z_nds, tau_max) dim, T = array.shape # Get the correct dependence measure val_expt = ind_test.get_dependence_measure(array, xyz) - pval_expt = ind_test.get_significance(val, array, xyz, T, dim) + pval_expt = ind_test._get_p_value(val, array, xyz, T, dim) + if ind_test.significance == 'fixed_thres': + dependent = val_expt >= alpha_or_thres + pval_expt = 0. if dependent else 1. # Check the values are close np.testing.assert_allclose(np.array(val), np.array(val_expt), atol=1e-2) np.testing.assert_allclose(np.array(pval), np.array(pval_expt), atol=1e-2) @@ -232,14 +238,14 @@ def check_std_approximation(ind_test, sample, xlag, ylag): ('analytic', False, 'analytic'), ('analytic', False, 'bootstrap'), ('shuffle_test', False, 'analytic'), - ('fixed_thres', False, 'analytic')]) + ('fixed_thres', False, 'analytic'), + ]) def par_corr(request): # Unpack the parameters sig, recycle, conf = request.param # Generate the par_corr independence test return ParCorr(mask_type=None, significance=sig, - fixed_thres=0.1, sig_samples=10000, sig_blocklength=3, confidence=conf, @@ -359,7 +365,6 @@ def par_corr_wls(request): window_size=100, mask_type=None, significance=sig, - fixed_thres=0.1, sig_samples=10000, sig_blocklength=3, confidence=conf, @@ -385,7 +390,6 @@ def par_corr_wls_expert(request): window_size=50, mask_type=None, significance=sig, - fixed_thres=0.1, sig_samples=10000, sig_blocklength=3, confidence=conf, @@ -414,7 +418,6 @@ def par_corr_wls_expert_time(request): window_size=50, mask_type=None, significance=sig, - fixed_thres=0.1, sig_samples=10000, sig_blocklength=3, confidence=conf, @@ -570,7 +573,6 @@ def test_std_approximation(par_corr_wls_expert_time, data_sample_hs_time, x_lag, def gpdc(request): return GPDC(mask_type=None, significance='analytic', - fixed_thres=0.1, sig_samples=1000, sig_blocklength=1, confidence='bootstrap', @@ -676,7 +678,6 @@ def test_trafo2uniform(gpdc, data_sample_a): def gpdc_torch(request): return GPDCtorch(mask_type=None, significance='analytic', - fixed_thres=0.1, sig_samples=1000, sig_blocklength=1, confidence='bootstrap', @@ -785,7 +786,6 @@ def test_trafo2uniform_torch(gpdc_torch, data_sample_a): def cmi_knn(request): return CMIknn(mask_type=None, significance='shuffle_test', - fixed_thres=None, sig_samples=10000, sig_blocklength=3, knn=10, @@ -862,7 +862,6 @@ def test_cmi_knn(cmi_knn, data_sample_c): def cmi_symb(request): return CMIsymb(mask_type=None, significance='shuffle_test', - fixed_thres=0.1, sig_samples=10000, sig_blocklength=3, confidence='bootstrap', diff --git a/tests/test_models.py b/tests/test_models.py index 7ccfc9c8..325111fa 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -62,8 +62,7 @@ def test_predictions(data_frame_a): (dataframe, true_parents), links_coeffs = data_frame_a T = dataframe.T[0] # Build the prediction - a_cond_ind_test = ParCorr(significance='analytic', - fixed_thres=0.01) + a_cond_ind_test = ParCorr(significance='analytic') pred = Prediction(dataframe=dataframe, cond_ind_test=a_cond_ind_test, prediction_model=sklearn.linear_model.LinearRegression(), diff --git a/tigramite/independence_tests/cmiknn.py b/tigramite/independence_tests/cmiknn.py index f778893e..66192c8b 100644 --- a/tigramite/independence_tests/cmiknn.py +++ b/tigramite/independence_tests/cmiknn.py @@ -82,6 +82,9 @@ class CMIknn(CondIndTest): Number of workers to use for parallel processing. If -1 is given all processors are used. Default: -1. + model_selection_folds : int + Number of folds in cross-validation used in model selection. + significance : str, optional (default: 'shuffle_test') Type of significance test to use. For CMIknn only 'fixed_thres' and 'shuffle_test' are available. @@ -102,6 +105,7 @@ def __init__(self, significance='shuffle_test', transform='ranks', workers=-1, + model_selection_folds=3, **kwargs): # Set the member variables self.knn = knn @@ -112,6 +116,7 @@ def __init__(self, self.residual_based = False self.recycle_residuals = False self.workers = workers + self.model_selection_folds = model_selection_folds # Call the parent constructor CondIndTest.__init__(self, significance=significance, **kwargs) # Print some information about construction @@ -453,6 +458,78 @@ def get_restricted_permutation(self, T, shuffle_neighbors, neighbors, order): return restricted_permutation + def get_model_selection_criterion(self, j, parents, tau_max=0): + """Returns a cross-validation-based score for nearest-neighbor estimates. + + Fits a nearest-neighbor model of the parents to variable j and returns + the score. The lower, the better the fit. Here used to determine + optimal hyperparameters in PCMCI(pc_alpha or fixed thres). + + Parameters + ---------- + j : int + Index of target variable in data array. + + parents : list + List of form [(0, -1), (3, -2), ...] containing parents. + + tau_max : int, optional (default: 0) + Maximum time lag. This may be used to make sure that estimates for + different lags in X, Z, all have the same sample size. + + Returns: + score : float + Model score. + """ + + import sklearn + from sklearn.neighbors import KNeighborsRegressor + from sklearn.model_selection import cross_val_score + + Y = [(j, 0)] + X = [(j, 0)] # dummy variable here + Z = parents + array, xyz, _ = self.dataframe.construct_array(X=X, Y=Y, Z=Z, + tau_max=tau_max, + mask_type=self.mask_type, + return_cleaned_xyz=False, + do_checks=True, + verbosity=self.verbosity) + dim, T = array.shape + + # Standardize + array = array.astype(np.float64) + array -= array.mean(axis=1).reshape(dim, 1) + std = array.std(axis=1) + for i in range(dim): + if std[i] != 0.: + array[i] /= std[i] + if np.any(std == 0.) and self.verbosity > 0: + warnings.warn("Possibly constant array!") + # raise ValueError("nans after standardizing, " + # "possibly constant array!") + + predictor_indices = list(np.where(xyz==2)[0]) + predictor_array = array[predictor_indices, :].T + # Target is only first entry of Y, ie [y] + target_array = array[np.where(xyz==1)[0][0], :] + + if predictor_array.size == 0: + # Regressing on ones if empty parents + predictor_array = np.ones(T).reshape(T, 1) + + if self.knn < 1: + knn_here = max(1, int(self.knn*T)) + else: + knn_here = max(1, int(self.knn)) + + knn_model = KNeighborsRegressor(n_neighbors=knn_here) + + scores = cross_val_score(estimator=knn_model, + X=predictor_array, y=target_array, cv=self.model_selection_folds, n_jobs=self.workers) + + # print(scores) + return -scores.mean() if __name__ == '__main__': @@ -463,8 +540,8 @@ def get_restricted_permutation(self, T, shuffle_neighbors, neighbors, order): random_state = np.random.default_rng(seed=42) cmi = CMIknn(mask_type=None, - significance='shuffle_test', - fixed_thres=None, + significance='fixed_thres', + fixed_thres=0.01, sig_samples=1000, sig_blocklength=1, transform='none', @@ -474,12 +551,25 @@ def get_restricted_permutation(self, T, shuffle_neighbors, neighbors, order): T = 1000 dimz = 1 - # Continuous data - z = random_state.standard_normal((T, dimz)) - x = (0.8*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) - y = (0.8*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) + # # Continuous data + # z = random_state.standard_normal((T, dimz)) + # x = (1.*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) + # y = (1.*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) # print('X _|_ Y') # print(cmi.run_test_raw(x, y, z=None)) - print('X _|_ Y | Z') - print(cmi.run_test_raw(x, y, z=z)) + # print('X _|_ Y | Z') + # print(cmi.run_test_raw(x, y, z=z)) + + # Continuous data + z = random_state.standard_normal((T, dimz)) + x = random_state.standard_normal(T).reshape(T, 1) + y = (0.*z[:,0] + 1.*x[:,0] + random_state.standard_normal(T)).reshape(T, 1) + + data = np.hstack((x, y, z)) + print (data.shape) + dataframe = DataFrame(data=data) + cmi.set_dataframe(dataframe) + print(cmi.get_model_selection_criterion(j=1, parents=[], tau_max=0, folds=5)) + print(cmi.get_model_selection_criterion(j=1, parents=[(0, 0)], tau_max=0, folds=5)) + print(cmi.get_model_selection_criterion(j=1, parents=[(0, 0), (2, 0)], tau_max=0, folds=5)) diff --git a/tigramite/independence_tests/independence_tests_base.py b/tigramite/independence_tests/independence_tests_base.py index 3a547197..ba56b051 100644 --- a/tigramite/independence_tests/independence_tests_base.py +++ b/tigramite/independence_tests/independence_tests_base.py @@ -37,8 +37,7 @@ class CondIndTest(): 'fixed_thres' and 'shuffle_test' are available. fixed_thres : float, optional (default: 0.1) - If significance is 'fixed_thres', this specifies the threshold for the - absolute value of the dependence measure. + Deprecated. sig_samples : int, optional (default: 500) Number of samples for shuffle significance test. @@ -88,7 +87,7 @@ def __init__(self, seed=42, mask_type=None, significance='analytic', - fixed_thres=0.1, + fixed_thres=None, sig_samples=500, sig_blocklength=None, confidence=None, @@ -104,7 +103,8 @@ def __init__(self, self.significance = significance self.sig_samples = sig_samples self.sig_blocklength = sig_blocklength - self.fixed_thres = fixed_thres + if fixed_thres is not None: + raise ValueError("fixed_thres is replaced by providing alpha_or_thres in run_test") self.verbosity = verbosity self.cached_ci_results = {} self.ci_results = {} @@ -159,9 +159,9 @@ def print_info(self): if self.significance == 'shuffle_test': info_str += "\nsig_samples = %s" % self.sig_samples info_str += "\nsig_blocklength = %s" % self.sig_blocklength - # Check if we are using a fixed threshold - elif self.significance == 'fixed_thres': - info_str += "\nfixed_thres = %s" % self.fixed_thres + # # Check if we are using a fixed threshold + # elif self.significance == 'fixed_thres': + # info_str += "\nfixed_thres = %s" % self.fixed_thres # Check if we have a confidence type if self.confidence: info_str += "\nconfidence = %s" % self.confidence @@ -324,7 +324,7 @@ def _get_array_hash(self, array, xyz, XYZ): return combined_hash - def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): + def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None): """Perform conditional independence test. Calls the dependence measure and signficicance test functions. The child @@ -338,11 +338,9 @@ def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): X, Y, Z : list of tuples X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag. - tau_max : int, optional (default: 0) Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size. - cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} How many samples to cutoff at the beginning. The default is '2xtau_max', which guarantees that MCI tests are all conducted on @@ -350,11 +348,16 @@ def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): which uses the maximum of tau_max and the conditions, which is useful to compare multiple models on the same sample. Last, 'max_lag' uses as much samples as possible. + alpha_or_thres : float (optional) + Significance level (if significance='analytic' or 'shuffle_test') or + threshold (if significance='fixed_thres'). If given, run_test returns + the test decision dependent=True/False. Returns ------- - val, pval : Tuple of floats - The test statistic value and the p-value. + val, pval, [dependent] : Tuple of floats and bool + The test statistic value and the p-value. If alpha_or_thres is + given, run_test also returns the test decision dependent=True/False. """ # Get the array to test on @@ -363,13 +366,14 @@ def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): # Record the dimensions dim, T = array.shape - + # Ensure it is a valid array if np.any(np.isnan(array)): raise ValueError("nans in the array!") combined_hash = self._get_array_hash(array, xyz, XYZ) + # Get test statistic value and p-value [cached if possible] if combined_hash in self.cached_ci_results.keys(): cached = True val, pval = self.cached_ci_results[combined_hash] @@ -377,18 +381,39 @@ def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): cached = False # Get the dependence measure, reycling residuals if need be val = self._get_dependence_measure_recycle(X, Y, Z, xyz, array, data_type) - # Get the p-value - pval = self.get_significance(val, array, xyz, T, dim) + # Get the p-value (None if significance = 'fixed_thres') + pval = self._get_p_value(val=val, array=array, xyz=xyz, T=T, dim=dim) self.cached_ci_results[combined_hash] = (val, pval) - # self.ci_results[(X, Y, Z)] = (val, pval) + # Make test decision + if self.significance == 'fixed_thres': + if alpha_or_thres is None: + raise ValueError("significance == 'fixed_thres' requires setting alpha_or_thres") + if self.two_sided: + dependent = np.abs(val) >= np.abs(alpha_or_thres) + else: + dependent = val >= alpha_or_thres + pval = 0. if dependent else 1. + else: + if alpha_or_thres is None: + dependent = None + else: + dependent = pval <= alpha_or_thres + + self.ci_results[(tuple(X), tuple(Y),tuple(Z))] = (val, pval, dependent) + + # Return the calculated value(s) if self.verbosity > 1: - self._print_cond_ind_results(val=val, pval=pval, cached=cached, + self._print_cond_ind_results(val=val, pval=pval, cached=cached, dependent=dependent, conf=None) - # Return the value and the pvalue - return val, pval - def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None): + if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent + + + def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None, alpha_or_thres=None): """Perform conditional independence test directly on input arrays x, y, z. Calls the dependence measure and signficicance test functions. The child @@ -405,11 +430,16 @@ def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None): are continuous or discrete: 0s for continuous variables and 1s for discrete variables + alpha_or_thres : float (optional) + Significance level (if significance='analytic' or 'shuffle_test') or + threshold (if significance='fixed_thres'). If given, run_test returns + the test decision dependent=True/False. + Returns ------- - val, pval : Tuple of floats - - The test statistic value and the p-value. + val, pval, [dependent] : Tuple of floats and bool + The test statistic value and the p-value. If alpha_or_thres is + given, run_test also returns the test decision dependent=True/False. """ if np.ndim(x) != 2 or np.ndim(y) != 2: @@ -467,13 +497,30 @@ def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None): # Get the p-value if has_data_type: - pval = self.get_significance(val=val, array=array, xyz=xyz, + pval = self._get_p_value(val=val, array=array, xyz=xyz, T=T, dim=dim, data_type=data_type) else: - pval = self.get_significance(val=val, array=array, xyz=xyz, - T=T, dim=dim) + pval = self._get_p_value(val=val, array=array, xyz=xyz, + T=T, dim=dim) + + # Make test decision + if self.significance == 'fixed_thres': + if self.two_sided: + dependent = np.abs(val) >= np.abs(alpha_or_thres) + else: + dependent = val >= alpha_or_thres + pval = 0. if dependent else 1. + else: + if alpha_or_thres is None: + dependent = None + else: + dependent = pval <= alpha_or_thres + # Return the value and the pvalue - return val, pval + if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent def _get_dependence_measure_recycle(self, X, Y, Z, xyz, array, data_type=None): """Get the dependence_measure, optionally recycling residuals @@ -558,12 +605,12 @@ def _get_cached_residuals(self, x_nodes, z_nodes, array, target_var): # Return these residuals return x_resid - def get_significance(self, val, array, xyz, T, dim, + def _get_p_value(self, val, array, xyz, T, dim, data_type=None, sig_override=None): """ Returns the p-value from whichever significance function is specified - for this test. If an override is used, then it will call a different + for this test. If an override is used, then it will call a different function then specified by self.significance Parameters @@ -610,12 +657,25 @@ def get_significance(self, val, array, xyz, T, dim, value=val) # Check if we are using the fixed_thres significance elif use_sig == 'fixed_thres': - pval = self.get_fixed_thres_significance( - value=val, - fixed_thres=self.fixed_thres) + # Determined outside then + pval = None + # if self.two_sided: + # dependent = np.abs(val) >= np.abs(alpha_or_thres) + # else: + # dependent = val >= alpha_or_thres + # pval = 0. if dependent else 1. + # # pval = self.get_fixed_thres_significance( + # # value=val, + # # fixed_thres=self.fixed_thres) else: raise ValueError("%s not known." % self.significance) - # Return the calculated value + + # # Return the calculated value(s) + # if alpha_or_thres is not None: + # if use_sig != 'fixed_thres': + # dependent = pval <= alpha_or_thres + # return pval, dependent + # else: return pval def get_measure(self, X, Y, Z=None, tau_max=0, @@ -729,7 +789,7 @@ def get_confidence(self, X, Y, Z=None, tau_max=0, # Return the confidence interval return (conf_lower, conf_upper) - def _print_cond_ind_results(self, val, pval=None, cached=None, conf=None): + def _print_cond_ind_results(self, val, pval=None, cached=None, dependent=None, conf=None): """Print results from conditional independence test. Parameters @@ -740,12 +800,17 @@ def _print_cond_ind_results(self, val, pval=None, cached=None, conf=None): pval : float, optional (default: None) p-value + dependent : bool + Test decision. + conf : tuple of floats, optional (default: None) Confidence bounds. """ printstr = " val = % .3f" % (val) if pval is not None: printstr += " | pval = %.5f" % (pval) + if dependent is not None: + printstr += " | dependent = %s" % (dependent) if conf is not None: printstr += " | conf bounds = (%.3f, %.3f)" % ( conf[0], conf[1]) @@ -1038,31 +1103,15 @@ def _get_shuffle_dist(self, array, xyz, dependence_measure, return null_dist def get_fixed_thres_significance(self, value, fixed_thres): - """Returns signficance for thresholding test. - - Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 else. - - Parameters - ---------- - value : number - Value of test statistic for unshuffled estimate. - - fixed_thres : number - Fixed threshold, is made positive. - - Returns - ------- - pval : bool - Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 - else. - + """DEPRECATED Returns signficance for thresholding test. """ - if np.abs(value) < np.abs(fixed_thres): - pval = 1. - else: - pval = 0. + raise ValueError("fixed_thres is replaced by alpha_or_thres in run_test.") + # if np.abs(value) < np.abs(fixed_thres): + # pval = 1. + # else: + # pval = 0. - return pval + # return pval def _trafo2uniform(self, x): """Transforms input array to uniform marginals. diff --git a/tigramite/independence_tests/oracle_conditional_independence.py b/tigramite/independence_tests/oracle_conditional_independence.py index 7ccc148e..0ba2569a 100644 --- a/tigramite/independence_tests/oracle_conditional_independence.py +++ b/tigramite/independence_tests/oracle_conditional_independence.py @@ -1049,7 +1049,7 @@ def check_shortest_path(self, X, Y, Z, return any_path_observed - def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', + def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None, verbosity=0): """Perform oracle conditional independence test. @@ -1064,6 +1064,8 @@ def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', Not used here. cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} Not used here. + alpha_or_thres : float + Not used here. Returns ------- @@ -1088,15 +1090,20 @@ def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', if self.dsepsets[str((X, Y, Z))]: val = 0. pval = 1. + dependent = False else: val = 1. pval = 0. + dependent = True if verbosity > 1: self._print_cond_ind_results(val=val, pval=pval, cached=False, conf=None) # Return the value and the pvalue - return val, pval + if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent def get_measure(self, X, Y, Z=None, tau_max=0): """Returns dependence measure. diff --git a/tigramite/independence_tests/parcorr.py b/tigramite/independence_tests/parcorr.py index 5aa0a510..1a77008e 100644 --- a/tigramite/independence_tests/parcorr.py +++ b/tigramite/independence_tests/parcorr.py @@ -308,4 +308,5 @@ def get_model_selection_criterion(self, j, parents, tau_max=0, corrected_aic=Fal score = T * np.log(rss) + 2. * p + (2.*p**2 + 2.*p)/(T - p - 1) else: score = T * np.log(rss) + 2. * p + return score diff --git a/tigramite/lpcmci.py b/tigramite/lpcmci.py index 8e9db741..5439e087 100644 --- a/tigramite/lpcmci.py +++ b/tigramite/lpcmci.py @@ -341,6 +341,8 @@ def _initialize(self, link_assumptions, tau_min, tau_max, pc_alpha, n_preliminar self.remember_only_parents = remember_only_parents self.no_apr = no_apr + if isinstance(pc_alpha, (list, tuple, np.ndarray)): + raise ValueError("pc_alpha must be single float in LPCMCI.") if pc_alpha < 0. or pc_alpha > 1: raise ValueError("Choose 0 <= pc_alpha <= 1") @@ -828,7 +830,8 @@ def _run_ancestral_removal_phase(self, prelim = False): Z = Z.union(S_default_YX) # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: print("ANC(Y): %s _|_ %s | S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" % @@ -839,7 +842,7 @@ def _run_ancestral_removal_phase(self, prelim = False): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: #pval > self.pc_alpha: # Mark the edge from X to Y for removal and save sepset to_remove[Y[0]][X] = True @@ -867,7 +870,8 @@ def _run_ancestral_removal_phase(self, prelim = False): Z = Z.union(S_default_XY) # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: print("ANC(X): %s _|_ %s | S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" % @@ -878,7 +882,7 @@ def _run_ancestral_removal_phase(self, prelim = False): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: # Mark the edge from X to Y for removal and save sepset to_remove[Y[0]][X] = True @@ -1154,7 +1158,9 @@ def _run_non_ancestral_removal_phase(self): Z = Z.union(S_default_YX) # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: print("Non-ANC(Y): %s _|_ %s | S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" % @@ -1165,7 +1171,7 @@ def _run_non_ancestral_removal_phase(self): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: # Mark the edge from X to Y for removal and save sepset to_remove[Y[0]][X] = True @@ -1197,7 +1203,9 @@ def _run_non_ancestral_removal_phase(self): Z = Z.union(S_default_XY) # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: print("Non-ANC(X): %s _|_ %s | S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" % @@ -1208,7 +1216,7 @@ def _run_non_ancestral_removal_phase(self): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: # Mark the edge from X to Y for removal and save sepset to_remove[Y[0]][X] = True @@ -1876,7 +1884,9 @@ def _make_sepset_weakly_minimal(self, X, Y, Z_list, ancs): Z_A = [node for node in Z if node != A] # Run the conditional independence test - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, tau_max = self.tau_max) + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: print("MakeMin: %s _|_ %s | Z_A = %s: val = %.2f / pval = % .4f" % @@ -1887,7 +1897,7 @@ def _make_sepset_weakly_minimal(self, X, Y, Z_list, ancs): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_A)) # Check whether the test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: new_sepsets.append(frozenset(Z_A)) val_values.append(val) @@ -1972,7 +1982,9 @@ def _B_not_in_SepSet_AC(self, A, B, C): Z = Z.union(Z_add) # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: print("BnotinSepSetAC(A): %s _|_ %s | Z_add = %s, Z = %s: val = %.2f / pval = % .4f" % @@ -1983,7 +1995,7 @@ def _B_not_in_SepSet_AC(self, A, B, C): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: all_sepsets.add(frozenset(Z)) # Test for independence given all subsets of non-future adjacencies of C @@ -2001,7 +2013,9 @@ def _B_not_in_SepSet_AC(self, A, B, C): Z = Z.union(Z_add) # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: # print("BnotinSepSetAC(C): %s _|_ %s | Z = %s: val = %.2f / pval = % .4f" % @@ -2014,7 +2028,7 @@ def _B_not_in_SepSet_AC(self, A, B, C): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: all_sepsets.add(frozenset(Z)) # Append the already known sepset @@ -2098,8 +2112,10 @@ def _B_in_SepSet_AC(self, A, B, C): Z = Z.union(Z_add) # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) + if self.verbosity >= 2: # print("BinSepSetAC(A): %s _|_ %s | Z = %s: val = %.2f / pval = % .4f" % # (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval)) @@ -2111,7 +2127,7 @@ def _B_in_SepSet_AC(self, A, B, C): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: all_sepsets.add(frozenset(Z)) # Test for independence given all subsets of non-future adjacencies of C @@ -2129,8 +2145,10 @@ def _B_in_SepSet_AC(self, A, B, C): Z = Z.union(Z_add) # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) + if self.verbosity >= 2: # print("BinSepSetAC(C): %s _|_ %s | Z = %s: val = %.2f / pval = % .4f" % # (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval)) @@ -2142,7 +2160,7 @@ def _B_in_SepSet_AC(self, A, B, C): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: all_sepsets.add(frozenset(Z)) # Append the already known sepset @@ -2764,7 +2782,9 @@ def _apply_ER00a(self, only_lagged): Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: # print("ER00a(part1): %s _|_ %s | Z_test = %s: val = %.2f / pval = % .4f" % @@ -2777,7 +2797,7 @@ def _apply_ER00a(self, only_lagged): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: # Mark the edge from X to Y for removal and save sepset remove_AB = True @@ -2821,7 +2841,9 @@ def _apply_ER00a(self, only_lagged): Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: # print("ER00a(part2): %s _|_ %s | Z_test = %s: val = %.2f / pval = % .4f" % @@ -2834,7 +2856,7 @@ def _apply_ER00a(self, only_lagged): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: # Mark the edge from X to Y for removal and save sepset remove_CB = True @@ -2929,7 +2951,9 @@ def _apply_ER00b(self, only_lagged): Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) + # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) + val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), + tau_max = self.tau_max, alpha_or_thres=self.pc_alpha) if self.verbosity >= 2: # print("ER00b: %s _|_ %s | Z_test = %s: val = %.2f / pval = % .4f" % @@ -2942,7 +2966,7 @@ def _apply_ER00b(self, only_lagged): self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test)) # Check whether test result was significant - if pval > self.pc_alpha: + if not dependent: # pval > self.pc_alpha: # Mark the edge from X to Y for removal and save sepset remove_AB = True @@ -3552,7 +3576,7 @@ def _delete_sepsets(self, X, Y): if __name__ == '__main__': - from tigramite.independence_tests import ParCorr + from tigramite.independence_tests.parcorr import ParCorr import tigramite.data_processing as pp from tigramite.toymodels import structural_causal_processes as toys import tigramite.plotting as tp @@ -3579,15 +3603,15 @@ def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) # Data must be array of shape (time, variables) print(data.shape) dataframe = pp.DataFrame(data) - cond_ind_test = ParCorr() + cond_ind_test = ParCorr(significance='fixed_thres') lpcmci = LPCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test) - # results = pcmci.run_lpcmci(tau_max=2, pc_alpha=0.01) + results = lpcmci.run_lpcmci(tau_max=2, pc_alpha=0.01) # # For a proper causal interpretation of the graph see the paper! # print(results['graph']) # tp.plot_graph(graph=results['graph'], val_matrix=results['val_matrix']) # plt.show() - results = lpcmci.run_sliding_window_of( - window_step=499, window_length=500, - method='run_lpcmci', method_args={'tau_max':1}) + # results = lpcmci.run_sliding_window_of( + # window_step=499, window_length=500, + # method='run_lpcmci', method_args={'tau_max':1}) diff --git a/tigramite/pcmci.py b/tigramite/pcmci.py index 27b51796..926cb9b8 100644 --- a/tigramite/pcmci.py +++ b/tigramite/pcmci.py @@ -414,12 +414,13 @@ def _run_pc_stable_single(self, j, if link_assumptions_j[parent] == '-->': val = 1. pval = 0. + dependent = True else: - val, pval = self.cond_ind_test.run_test(X=[parent], + val, pval, dependent = self.cond_ind_test.run_test(X=[parent], Y=[(j, 0)], Z=Z, tau_max=tau_max, - # verbosity=self.verbosity + alpha_or_thres=pc_alpha, ) # Print some information if needed if self.verbosity > 1: @@ -441,7 +442,7 @@ def _run_pc_stable_single(self, j, a_iter[comb_index]['val'] = val a_iter[comb_index]['pval'] = pval # Delete link later and break while-loop if non-significant - if pval > pc_alpha: + if not dependent: #pval > pc_alpha: nonsig_parents.append((j, parent)) nonsig = True break @@ -1081,10 +1082,9 @@ def _run_mci_or_variants(self, val = 1. pval = 0. else: - val, pval = self.cond_ind_test.run_test(X, Y, Z=Z, + val, pval, _ = self.cond_ind_test.run_test(X, Y, Z=Z, tau_max=tau_max, - # verbosity= - # self.verbosity + alpha_or_thres=alpha_level, ) val_matrix[i, j, abs(tau)] = val p_matrix[i, j, abs(tau)] = pval @@ -1107,13 +1107,21 @@ def _run_mci_or_variants(self, # Correct the p_matrix if there is a fdr_method if fdr_method != 'none': + if self.cond_ind_test.significance == 'fixed_thres': + raise ValueError("FDR-correction not compatible with significance == 'fixed_thres'") p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, tau_max=tau_max, link_assumptions=_int_link_assumptions, fdr_method=fdr_method) - # Threshold p_matrix to get graph - final_graph = p_matrix <= alpha_level + # Threshold p_matrix to get graph (or val_matrix for significance == 'fixed_thres') + if self.cond_ind_test.significance == 'fixed_thres': + if self.cond_ind_test.two_sided: + final_graph = np.abs(val_matrix) >= np.abs(alpha_level) + else: + final_graph = val_matrix >= alpha_level + else: + final_graph = p_matrix <= alpha_level # Convert to string graph representation graph = self.convert_to_string_graph(final_graph) @@ -2438,7 +2446,7 @@ def _pcmciplus_mci_skeleton_phase(self, # Update all entries computed in the MCI step # (these are in links_for_pc); values for entries - # that were removed in the lagged-condition phase are kept + # that were removed in the lagged-condition phase are kept from before for j in range(self.N): for link in links_for_pc[j]: i, tau = link @@ -2770,7 +2778,7 @@ def run_pcalg_non_timeseries_data(self, pc_alpha=0.01, def _run_pcalg_test(self, graph, i, abstau, j, S, lagged_parents, max_conds_py, - max_conds_px, max_conds_px_lagged, tau_max): + max_conds_px, max_conds_px_lagged, tau_max, alpha_or_thres=None): """MCI conditional independence tests within PCMCIplus or PC algorithm. Parameters @@ -2796,15 +2804,16 @@ def _run_pcalg_test(self, graph, i, abstau, j, S, lagged_parents, max_conds_py, tests. If None is passed, this number is equal to max_conds_px. tau_max : int Maximum time lag. + alpha_or_thres : float + Significance level (if significance='analytic' or 'shuffle_test') or + threshold (if significance='fixed_thres'). If given, run_test returns + the test decision dependent=True/False. Returns ------- - val : float - Test statistic value. - pval : float - Test statistic p-value. - Z : list - List of conditions. + val, pval, Z, [dependent] : Tuple of floats, list, and bool + The test statistic value and the p-value and list of conditions. If alpha_or_thres is + given, run_test also returns the test decision dependent=True/False. """ # Perform independence test adding lagged parents @@ -2834,13 +2843,15 @@ def _run_pcalg_test(self, graph, i, abstau, j, S, lagged_parents, max_conds_py, if graph[i,j,abstau] != "" and graph[i,j,abstau][1] == '-': val = 1. pval = 0. + dependent = True else: - val, pval = self.cond_ind_test.run_test(X=[(i, -abstau)], Y=[(j, 0)], + val, pval, dependent = self.cond_ind_test.run_test(X=[(i, -abstau)], Y=[(j, 0)], Z=Z, tau_max=tau_max, + alpha_or_thres=alpha_or_thres, # verbosity=self.verbosity ) - return val, pval, Z + return val, pval, Z, dependent def _print_triple_info(self, triple, index, n_triples): """Print info about the current triple being tested. @@ -3043,9 +3054,11 @@ def _pcalg_skeleton(self, break # Run MCI test - val, pval, Z = self._run_pcalg_test(graph, - i, abstau, j, S, lagged_parents, max_conds_py, - max_conds_px, max_conds_px_lagged, tau_max) + val, pval, Z, dependent = self._run_pcalg_test(graph=graph, + i=i, abstau=abstau, j=j, S=S, lagged_parents=lagged_parents, + max_conds_py=max_conds_py, + max_conds_px=max_conds_px, max_conds_px_lagged=max_conds_px_lagged, + tau_max=tau_max, alpha_or_thres=pc_alpha) # Store minimum test statistic value for sorting adjt # (only internally used) @@ -3068,7 +3081,7 @@ def _pcalg_skeleton(self, # If conditional independence is found, remove link # from graph and store sepsets - if pval > pc_alpha: + if not dependent: # pval > pc_alpha: nonsig = True if abstau == 0: graph[i, j, 0] = graph[j, i, 0] = "" @@ -3330,15 +3343,17 @@ def subsets(s): # Test which neighbor subsets separate i and j neighbor_sepsets = [] for iss, S in enumerate(neighbor_subsets): - val, pval, Z = self._run_pcalg_test(graph, - i, abs(tau), j, S, lagged_parents, max_conds_py, - max_conds_px, max_conds_px_lagged, tau_max) + val, pval, Z, dependent = self._run_pcalg_test(graph=graph, + i=i, abstau=abs(tau), j=j, S=S, lagged_parents=lagged_parents, + max_conds_py=max_conds_py, + max_conds_px=max_conds_px, max_conds_px_lagged=max_conds_px_lagged, + tau_max=tau_max, alpha_or_thres=pc_alpha) if self.verbosity > 1: self._print_cond_info(Z=S, comb_index=iss, pval=pval, val=val) - if pval > pc_alpha: + if not dependent: #pval > pc_alpha: neighbor_sepsets += [S] if len(neighbor_sepsets) > 0: @@ -3877,9 +3892,9 @@ def _optimize_pcmciplus_alpha(self, parents = [] for i, tau in zip(*np.where(dag[:,j,:] == "-->")): parents.append((i, -tau)) - score[iscore] += \ - self.cond_ind_test.get_model_selection_criterion( + score_j = self.cond_ind_test.get_model_selection_criterion( j, parents, tau_max) + score[iscore] += score_j score[iscore] /= float(self.N) # Record the optimal alpha value @@ -3903,6 +3918,8 @@ def _optimize_pcmciplus_alpha(self, if __name__ == '__main__': from tigramite.independence_tests.parcorr import ParCorr + from tigramite.independence_tests.cmiknn import CMIknn + import tigramite.data_processing as pp from tigramite.toymodels import structural_causal_processes as toys import tigramite.plotting as tp @@ -3915,10 +3932,10 @@ def _optimize_pcmciplus_alpha(self, def lin_f(x): return x def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) - T = 20000 + T = 1000 data = random_state.standard_normal((T, 4)) # Simple sun - data[:,3] = np.sin(np.arange(T)*20/np.pi) + 0.1*random_state.standard_normal((T)) + data[:,3] = random_state.standard_normal((T)) # np.sin(np.arange(T)*20/np.pi) + 0.1*random_state.standard_normal((T)) c = 0.8 for t in range(1, T): data[t, 0] += 0.4*data[t-1, 0] + 0.4*data[t-1, 1] + c*data[t-1,3] @@ -3927,40 +3944,42 @@ def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) dataframe = pp.DataFrame(data, var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun']) # tp.plot_timeseries(dataframe); plt.show() - parcorr = ParCorr() + ci_test = CMIknn(significance="fixed_thres", verbosity=3) # + # ci_test = ParCorr() #significance="fixed_thres") # # dataframe_nosun = pp.DataFrame(data[:,[0,1,2]], var_names=[r'$X^0$', r'$X^1$', r'$X^2$']) # pcmci_parcorr = PCMCI( # dataframe=dataframe_nosun, # cond_ind_test=parcorr, # verbosity=0) - tau_max = 2 + tau_max = 1 #2 # results = pcmci_parcorr.run_pcmci(tau_max=tau_max, pc_alpha=0.2, alpha_level = 0.01) # Remove parents of variable 3 # Only estimate parents of variables 0, 1, 2 - link_assumptions = {} - for j in range(4): - if j in [0, 1, 2]: - # Directed lagged links - link_assumptions[j] = {(var, -lag): '-?>' for var in [0, 1, 2] - for lag in range(1, tau_max + 1)} - # Unoriented contemporaneous links - link_assumptions[j].update({(var, 0): 'o?o' for var in [0, 1, 2] if var != j}) - # Directed lagged and contemporaneous links from the sun (3) - link_assumptions[j].update({(var, -lag): '-?>' for var in [3] - for lag in range(0, tau_max + 1)}) - else: - link_assumptions[j] = {} - - for j in link_assumptions: - print(link_assumptions[j]) + link_assumptions = None #{} + # for j in range(4): + # if j in [0, 1, 2]: + # # Directed lagged links + # link_assumptions[j] = {(var, -lag): '-?>' for var in [0, 1, 2] + # for lag in range(1, tau_max + 1)} + # # Unoriented contemporaneous links + # link_assumptions[j].update({(var, 0): 'o?o' for var in [0, 1, 2] if var != j}) + # # Directed lagged and contemporaneous links from the sun (3) + # link_assumptions[j].update({(var, -lag): '-?>' for var in [3] + # for lag in range(0, tau_max + 1)}) + # else: + # link_assumptions[j] = {} + + # for j in link_assumptions: + # print(link_assumptions[j]) pcmci_parcorr = PCMCI( dataframe=dataframe, - cond_ind_test=parcorr, - verbosity=0) - results = pcmci_parcorr.run_pcmciplus(tau_max=tau_max, pc_alpha=0.01, - reset_lagged_links=True, - link_assumptions=link_assumptions - ) #, alpha_level = 0.01) + cond_ind_test=ci_test, + verbosity=1) + results = pcmci_parcorr.run_pcmciplus(tau_max=tau_max, + pc_alpha=[0.001, 0.01, 0.05, 0.8], + reset_lagged_links=False, + link_assumptions=link_assumptions + ) #, alpha_level = 0.01) print(results['graph'].shape) # print(results['graph'][:,3,:]) print(np.round(results['p_matrix'][:,:,0], 2)) @@ -3968,7 +3987,7 @@ def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) print(results['graph'][:,:,0]) # Plot time series graph - # tp.plot_time_series_graph( + # tp.plot_graph( # val_matrix=results['val_matrix'], # graph=results['graph'], # var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun'], diff --git a/tigramite/rpcmci.py b/tigramite/rpcmci.py index a452a291..e402e80c 100644 --- a/tigramite/rpcmci.py +++ b/tigramite/rpcmci.py @@ -80,8 +80,8 @@ def __init__(self, dataframe, cond_ind_test=None, if dataframe.analysis_mode != 'single': raise ValueError("Only single time series data allowed for RPCMCI.") - if dataframe.vector_vars is not None: - raise ValueError("Only single time series data allowed for RPCMCI.") + if dataframe.has_vector_data: + raise ValueError("Only scalar data allowed for RPCMCI.") # Masking is not available in RPCMCI, but missing values can be specified diff --git a/tutorials/case_studies/biogeoscience_case_study.ipynb b/tutorials/case_studies/biogeoscience_case_study.ipynb index 26c1e3f4..a9ee79d2 100644 --- a/tutorials/case_studies/biogeoscience_case_study.ipynb +++ b/tutorials/case_studies/biogeoscience_case_study.ipynb @@ -346,7 +346,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHwCAYAAABHU3CkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Qc132njT/3VlXnMDkgE5lgBEGBIiVRVKColSwr0St7ba9Wr8Na3mP/fNYr2/tatrXWkcNK59WuvGt7ZVnWKtjKkkWJSlQgKYkAEwgwgcAgDTC5u6dzV7z390dNNzAEAQLEADMD1HPOHGC6eqpupXs/95uu0FprIiIiIiIiIiKuYORiNyAiIiIiIiIiYrGJBFFERERERETEFU8kiCIiIiIiIiKueCJBFBEREREREXHFEwmiiIiIiIiIiCueSBBFREREREREXPFEgigiIiIiIiLiiicSRBERERERERFXPJEgioiIiIiIiLjiiQTRAlAsFvnt3/5tbr75Zm655RY+9KEP4fv+YjfriuTee+9l27ZtbN++vfPzvve9D4C9e/fyC7/wC2zfvp3Xvva1fOlLX5r3t1/72te48847ufHGG3nHO97Bnj17FuMULltKpRJ33nknu3fv7nx2IfckCAL++q//mttuu43t27fz3ve+l+np6Ut2PpcrL3Sf/uzP/oxrr7123nv1hS98obM9uk+Xjv379/Oe97yHnTt38opXvII/+IM/oFQqAdH7dMHoiAvmV37lV/Tv//7v62azqUdHR/Wb3/xm/Q//8A+L3awrkr/6q7/Sf/RHf3Ta5+VyWe/cuVN/9rOf1Z7n6Z/97Gd6+/bteu/evVprrXft2qW3b9+uH330Ue26rv6nf/onfcstt+hms3mpT+Gy5NFHH9Wvf/3r9ebNm/WuXbu01hd+T/7mb/5Gv+Utb9Hj4+O6Vqvp3/u939O/8Ru/sWjneDnwQvdJa63f/va3669+9asv+DfRfbp0tFot/YpXvEL/z//5P7XjOLpUKunf+I3f0P/xP/7H6H1aACJBdIEcPXpUb968WU9OTnY++9a3vqXvuOOORWzVlcsv//Iv689+9rOnff7FL35Rv+ENb5j32Z/+6Z/qP/iDP9Baa/37v//7+v3vf/+87W984xv1l7/85YvX2CuEr371q/qOO+7Q3/rWt+YNtBd6T26//Xb9jW98o7NtZmZGb9myRY+Ojl7M07lsOdN9chxHX3PNNfrAgQMv+HfRfbp0HDp0SP/ar/2a9n2/89l9992nb7rppuh9WgAil9kFcvDgQbq6uhgcHOx8tmHDBsbHx6lWq4vYsisPpRRPP/00P/7xj3nNa17D7bffzp/8yZ9QqVQ4ePAgmzdvnvf9jRs3sn//fgBGRkbOuj3ipfPKV76S73//+7zpTW+a9/mF3JNarcbk5OS87X19feTzeZ577rmLdCaXN2e6T/v378f3fT72sY9x2223cdddd/Hxj38cpRQQ3adLyfr16/nEJz6BYRidz7773e9yzTXXRO/TAhAJoguk0WiQTCbnfdb+vdlsLkaTrlhKpRLbtm3jrrvu4t577+Xzn/88R48e5X3ve98L3qdEItG5Ry+2PeKl09/fj2map31+Ifek0WgAkEqlTtve3hZxfpzpPtVqNXbu3Mmv/uqvcv/99/PhD3+Yz3zmM3zyk58Eovu0WGit+ehHP8qPfvQj/viP/zh6nxaASBBdIKlUilarNe+z9u/pdHoxmnTF0tfXx+c+9znuvvtukskkK1as4H3vex8PPPAAWmts2573fdu2O/comUyedXvEwvNi1/xs29sd+/PfveieLTyveMUr+PSnP83OnTuxLIvrr7+ed7/73dx7771AdJ8Wg3q9zu/+7u9yzz338NnPfpYtW7ZE79MCEAmiC2TTpk2Uy2UKhULns0OHDjE0NEQ2m13Ell157N+/n4985CNorTufua6LlJLrr7+egwcPzvv+yMgImzZtAsL7eLbtEQvP5s2bX/I9yefzDA4OMjIy0tk2MzNDuVw+zS0QcWHcd999fP7zn5/3meu6JBIJILpPl5rR0VHe+c53Uq/X+fKXv8yWLVuA6H1aCCJBdIGsW7eOHTt28Bd/8RfU63WOHz/O3/7t33L33XcvdtOuOLq6uvjc5z7HJz7xCXzfZ3x8nA9/+MO8/e1v56677qJQKPCpT30Kz/PYtWsX99xzD+985zsBuPvuu7nnnnvYtWsXnufxqU99imKxyJ133rnIZ3X5cuedd17QPXnHO97B3/3d33H8+HHq9Tp/8Rd/wc6dO1mzZs1intZlh9aav/zLv+Shhx5Ca82ePXv49Kc/zbve9S4guk+Xkkqlwrvf/W5uuukm/vEf/5Genp7Otuh9WgAWNaT7MmFmZkb/zu/8jt65c6d++ctfrv/qr/5qXhZAxKVj9+7d+l3vepfevn27fvnLX64/+MEPatu2tdZa79u3r7Ptda97nf7KV74y72+//vWv67vuukvfeOON+u6779ZPPPHEYpzCZc3z07kv5J64rqs//OEP61e96lX6pptu0u9973t1oVC4ZOdyOfP8+/Qv//Iv+g1veIO+4YYb9Ote97rTMjmj+3Rp+OQnP6k3b96sb7jhBn3jjTfO+9E6ep8uFKH1Kf6FiIiIiIiIiIgrkMhlFhEREREREXHFEwmiiIiIiIiIiCueSBBFREREREREXPFEgigiIiIiIiLiiicSRBERERERERFXPJEgioiIiIiIiLjiiQTRAuK6Ln/zN3+D67qL3ZSIsxDdp6VPdI+WB9F9Wh5E9+nciATRAuK6Lv/rf/2v6KFb4kT3aekT3aPlQXSflgfRfTo3IkEUERERERERccUTCaKIiIiIiIiIKx5zsRtwqVFKMT09TTqdRgixoPuu1+vz/o1YmkT3aekT3aPlQXSflgfRfQp5sXH/ilvLbHJykle/+tWL3YyIiIiIiIiIS8hjjz1GJpM54/YrzkKUTqcBuP/++896YV4KpVKJ5557jlwut6D7jYg4Fd/38X2fbdu2kUwmF7s5EREREcuC9vh/Jq44QdQ2l2UymQUXRI7jkE6n6erqWtD9LgTJ6T20BrYvdjMiFgDP82i1WmQymUgQRVxZTOyF4RsWuxURlylRUPUVQmrqkcVuQkRERMSFsf/exW5BxGVMJIgiIiIiIiIirngiQRQRERGxGBQOhv/6UbG8l4JSmissJyjiIhMJooiIiPNmZHZksZuw/HnyS+G/P/n/Frcdy4iZoMVMcwaAB0cKPDlWWeQWRVxORILoCuTZ6rN4ylvsZiwJbF8tdhOWJd899t3FbsLlQ9vK4bUWtx3LAFsHtPzwOgVKERmIzh2tz8GidoVf0EgQXYEcrB+MBNEcX36yvNhNuKw4p073Ckdrzb6ZfcDzCsT99H+e/P/4E5eyScsHrQl0cPLXUzbNNiLX49moFlo0K2e5RkrB3n+B1uyla9QSIxJEVwD3z9y/2E1YsmjmD95WbXSRWrK8EM8fzOfYc7zMnuPlzu+q2eTAI5OXqFXLg0enHqXuzq8YXLWfN0E58J1L2KLlg0KjdGjVFQgqTZf7jz0MwL7IfXZWVKB56oExguAMVvHju8MfFbzw9iuASBBdJrzgrFz5oDVTztS8jxd6yZLLCas+Pu/3WPkQscqRzu/VyWgWeiZ8L8B1A1ruyQ61+fgeypNNAKrf+x4AhVZhUdq3VHACB1/7HB3v6nz21e/+aPEatESou3UOzh4863c0EOigI4qenpjlwHT4PNlewBcfOX6xm7lkae3de8ZthbqDUppmzWXkU9/CtX0AgmoVbzKcsAT1GkHryvYcRILoMuHbU98+7bN45TCT+wrzxNLBgg2cbhk5lZH6lRUwq7VGq7CDnaranetV8SpUS1PMzhZwGgGBr2H6yNl2dUVTnmqh7AClNZTC66TsVicswXnuAMCLDnqXM/cduw8vcPGUx3TpZNXcLYXvUyidLLJZqcWwG3ODU7N0qZu5KHjKww3OPOHQOuy1AhXwT0/9EwAtz8Uwwu22FzBWvnLjsILKGSxkY4/zmYeOdfyLx49Mc+LZYwC4x49jP/00AM7IMewTVU5z5V5BRILoMqHm1U7/UAcUS6eY5pVPueUjEGcVRI/NPnYRWrh08Z/ax4Gf7kVrzfFRi+9NfQ/t+3xn8js0XMV0PcCpBQSeQjtXbofrK//s270AeeQQrZLDxN5Q9Bw7XuD4bHPe967k+LXnis9wZPfX5k1S7muEg9Ohse7OZ7PVJJWZ8FmrffX/4k1PX9qGLgKBDjr90oGpsD/TSlMcq8PhH3Pky/eh0dS9OoYIVVDTszHnRjHHe54rqHKi898rIbZNu2cQkwe+Q7xc7Jy/p3xG7nvotK/5wdnf7yuBSBBdpsTKhxAq4HDrWCfeIzP2IO70QRru/M7hcu8ozobWih+MfouRss/ED56kVY3RDBroL38ZAEsqDrlTBCdCV5q6grPSHps6u1BWvqL20L04tkur6oRBmk8+ge8HaM/DnwnTpa9UQfTgiQcptAqU6mUCHSAEBEHAQbdEy1VUZ+qdd9E0Fb4Tuh6Dag3tPu+alQ5f6uZfdJRWKK0IAp+pqj33mebI3gKUjzM26lBuejxybIKEEUcEDsqtgQ7QWuOXZubvsHDSEvnQ4SJPj1cv5elccpTjdJ6fYsXm8a//hNZTT6M1rPrpd/E8n/rEIbSCoOWc9vfHCzW4wsMpIkG0jHGUQ8WrEKjwJVD2nDtMKbLHf0jFq6JR1OxwEE9P7GKq5jBZ89k1Oef60Zrn6s8tSvuXArGCB45L0Rc0SjNorRFac6B6KBzQtaJ4JIn95BO4z+1n1mnyvZFpjtamKDZ9KvaVE4AYnBJsqZTuxAqpw2FQq2d7eG6T0t4CnqfxfvpxJoNVKKUpfvKfcAOHulvHVz5aadyWj/bdyzbVV2s9z6pW9+qgNT7QPNzAbbYofelfoNpNrZyhcbxB8bOf4dn7D+P4gplGg8NPzGB7gtFinZnaKYPY3i9c+hO6SGit8aamcR2Pulvnn7/7O8h6GNdSnmyGHpxQPfL0swMcmKqQ+en9DIzey4anniD2lWdwqzW2/ux/zd9x4HUyplxf4Z4pmPhyIQjCPguYmmpw6LlZGg8+QLFm46gm9x+/H9Uqo9F4Uw2+++QP58WTVpoOtn/l9GcvRCSIlimtqs/Y1AxPV5/mC0+GL/3oZx6mFbR46Jm9aCH5VuVhIMBuabQO44aEshmoPMnuyR8z9swIieKTeI3xMAD7CiRW1whfkWikmG1Iap6L6WvKlc2s3n0UNTWDQHC0cYxGoUzFb3KiNcGhxkGOlV2Ony2N9TLD1+EzYtc9ml7A4UKdp+4/QfF//3+cmG3yxMg4TrOOE7Q4srvITOEQ9SCLUgojl8WZ3MesPYunPOyGx/5dk0zc+4XLNs13ojHBvfs+iVIKjv4EMXsUtMYTmtHDRyg3obD/BLWplewOwjih4oM/4qmf7uO7lUm+9L1PUp1p8vT0ao4XG0xW7MU9oYuFUrhHDnNsTxm7rAiUy8pn/hGAatEOjRZCooMA7cfR2secPs4z/gSqGaNlaypNm4JTJV4poGfnXGXKg11/DxN7EUJcrrq7g/YDdBAKGq1BBj4IyXOFMo5XRStNoEOruEYz8vRXAfjpc1PoIGCmatN0IkEUsQxx6gFuVeMfSxIozarHR/EDSVAfo9aqcX9RIct58uMnWPP4KqZne1BKMyK/SM4t0Fcahcd3QakIdhHpt0gUnwEuzyy0dtD08xmyD4LWJJstjKZDlQab7n0IVIBfncDzAywvidaCiRNptA7wtI8QEkPQsc5dCfhzWYtPPTjGc48XsA8cpDxrA5rZz3yYQ4fGUUqjDj6Odl2emvXQdomaW8YlINABfuDhBR6tuodhCnyfsPf2Lr/BXqMJTjzCx7/yDF/d92kY3wta4QlNNahztK55aiIJwkOqsCs+5NYIwovCiiMzVB0XX0ncqh8Gq887wGXy7CkVDuZaARotDb4ShC7BSq2FKB8DBJPVGp7vIoKAerKfn7iH0WiUV+cD3/0HZr0qO7/1V5z44O/R8lsE1QrNI0V4rp1wcnlcL601DSecnBRahU4JB+X7aN+nMtOi5QWgNQcOH6JRGAV3hBNP1Ak0tPwWCiDwadR9ms+OEnz/vxNoGSoCfZlb0s5CJIiWMc2ghZqNkZ6dITNTCwf2o/eSKE1i76uhihWEVgil2TvboOS6XPNslfykw8t+NoFRr7D7yC6KTw9wbLRJauxBdLkM0ElrvRzQjkP5a5/jaONo57MfTv8QAFPbDB+exfQchK8ICDDsMkIrCDTVY0WkBuk1wbPRbp3JapNs8SmkEFwpekg/9dXwmRh9iBPj0wxMJ5l8+jlGpuoEWjKz6wcE/ixCaaQKXTuOHw5BunaIA4e/TdF1COpT+PVJJp8epTL7GH5A2AH/5KOLen4XDbtKV+FJJhszBK1ZmNyHhybAA6Vx/AAtAtAGnrQIiKFdh1jdRWho+jYFr4ZdCAhOFUBCXDaCSGsNKkylV66LUAJHuVA8xLeevRdKh9EIZp1JHN2gWm3gOgFSKyrNJrpVYOXsEwR+kxoOu+1JHh55nNYzh2g8O47SGtu7fCwfWsPeuVpfTx9/lGPVMCh/ugBB4Shf/dpz/OueMey6xUzVJZjwUUIgmjGabkCjPEvCOw7K4L6nJghcl8YTh4kXS2HCzSP/iC5cmZmgkSBaxkzY4+ALVj55AOm1QCu+elwQq9Sxqhb5sW5U0IcMFMcChycrTVae8Ik1AixfI5otao0pGqWAvQfqEGj43veQSNTDDy/26S0otl2j7s9l3CmfxvgPOwGIWoNSCo1EeHHK2gy/5q1herYLg4CMMtCBj1ePsfOR/SSaUxiSeYNUuXV5uR2bVZe63QBAT+8PKwS7DfZPzzBQiWNPP4BXPMqz7nUczylS9lN4KrRuICS1so/SCtOpYzdr1F0ff+pZPLdBXh2iVt3PvrEql8vM/YUQaHLOJNhg3nMcAo/u8TrW4T5ihkTqFsoyQVvY2qdi3Ig/O4OeqhLXLZ6cfZymb5Md/S5+4HNg9gDjh38AQl4+M/kgQPuhIBLTBayGQgPuwV10Hx4Dt87st3djujZlN81g5SCuE4BWBIDhdJMqDSOVhaUcEmWHR78xgarXEYGD6ysOTtUuF/2I0hqlwTl4EOvh3Wg0xckGI1MH4dBPEDOH6Wn8DLRGap8ZnURJSdwpgaqiAnAbdWxXErgOMXuGo88dpTlzAkclefLJBI9/8x8W+zQXhUgQLUO01uhWCy/wMZpVXKOLVk4hBvroaQ6SqkBMTSPdbhCQm22SmEhSPLoBAMNRoWXUtWk4VQzlYng+Ew+EWRiGMODQCFMHL58Uc3O6iClNdLPJ6HQFtOJYYxThBThyI1p7GChM3UKJHkDgNw1cP0AgSGCiWnUCP0bKVcjAxdn7U4qTJ4sMPvLEI4t3gheBw0/M8PixsByBYi4z0XdA+/gEOJUCidHjzHguDSEoqAo17NAqpHyC567C1i4i0DS8AJc0wde+gu03KcxWaHoBvtaXzcBe/vrXX/BzoRU9hxyE3cXw8Z0MHquTbAUYRo2Ue4Lk8RK5aoCvwVMaP/DJFTySTQ/d8gDNMdfhYOUZdo3v4vNP/P2chUjxL/v/5ZKe40VBqTkLkUb5PkFpGK3hobEjWK0Az1fsH5kGJUjYmmsefpZyvYXg5HOTmcohgxXIOdUjylVGZzJoIcPn9zIRQ9AuTqmpfOMbyMln0c+OsO+n4xSbVVp+imzxACXvUUDR23qKoHkUSztYdotqq4nWHkJ5yJZPtfYsNX+WhvZxZDc1t5uWG8MOLh+L2vkQCaLlyP79iIkJ3EaZZrMCEgzPpWxPkRiPowvduKKLeHAyeyxXBasap9i7BeFK7Nj1BE4dEVh0TbRIHz1GodmPAuRcJ9IonEz1faL8xKU/z4ViYgKjMYF33MTbtZup79yPRnKgeoDEeB1PrCWmD1CWHgEKN/DR2iBjS8BAKo0OJMqz8fHocgtIrWnOalR1lPjMPhqlfdTsexb7TBccf/opTtRPMBE0QpdZ4CIIAIFfmkYITcuu0lXuRWofJdYglSRoNHB1QDknkVqiVIZK+rVMT1XYfeIwu8b24gSajDN1muunWlieQtw7frLuze7DRX56YjcAIoDErMI1+hHNNLbeQdx9ltR0g5qQpCoe/TOKMJ0qzLrTSAQaGg18rVHuAJ7vcKR6hGrD71iISvZc0cZW+ZKf70JQarjYU4fQ5XG0b0NlnOmJLGbB4fAPYmgN0werqFoToxWQL/u04q/HdxVDB8pAaIUzXAtTJyib29BA91SJYi2FSuRRSl8WsX4Nr8Hx6vFQOCpNUKlC3UP/5FE8z0ejeeK5Pk6oCmkVQ6sAhcZwNYEQZKYcEq3Q+lY2bZzCEHZxFte6GolJK7aNkjuEX3P4cauG7Z20eFe/c2Us5rwogmj//v285z3vYefOnbziFa/gD/7gDyiVwhf7z/7sz7j22mvZvn175+cLXziZYvq1r32NO++8kxtvvJF3vOMd7NmzZzFOYdHwlY/etYuqXUKP5fEQJB0H6bSYtseQTY3SGkfkSTZcDE9TGOpCiySgUOJ6vGAbnrWJGXMDrrsaoTRNNU3T17SaFQJfMt2YX/fkudoyTs2fmEB4DfxRD+Ur7MazBFowWnoSqWx0ECC1i1n3SFZCN0+gFG5sFVLFSUxVqLs+li7g6gaBAHu8iXKhMuVhj4zz5ZFP4nD6rMqzl6f1QyvNzPEavu/g+A5u08H8yuOUCz7xZgPLc/HENRjaxTOGmO26BakUSmYwfZgNQteZJ0EqTdNZg4/GVQrXc/DGU9g1m0AL5rnMjjxIZXp5CqI2Wmv+x8P/l/sOP4xf7MVtxHF9TUOmCLwkCIi5LTxCN62SKwmMfjRgBiVQGo3AjxlMOGMorZC+YsX//TqyIan5Pvvd2fmWtbHHOinXy4mZmkOzOIYujeJUbVRlDFt5eFqhdIx02WVa24zFr+48JloIuryt9IxU8Y0Y9axEapdA5CkbV4G4BqEB18Fv+owfOlnluvbDH+HPLs+sxpnmDHsLe1HqZDLH9GyTputTmy3QUAFPT80gfU33wU20nClcmSTmKDJlRTNjIgNNHMnEsABPIDXEtUQQhgmU7ST2VIPBp4b4zEMHwufKruIcvDJiii65ILJtm1//9V9n+/bt/OQnP+Gb3/wm5XKZ//f//X8BePLJJ/ngBz/Inj17Oj/vete7ANi9ezcf/OAH+au/+iseeeQRfv7nf573vve9tFrLuwM9H56pPYNhVzhWPUSmaiOUwtIOQkkQAl+Y2ELNFSvz0a4mEVTRGIBASYGnNgJQNfqQ9jVoITBUQMsYoNxIMnTiR7Rac5Vi52bvVmNi+RZwnJvpiEqdyUoXQWuW8bpH/pgEHQYAG1qAhnRdYQQZDBFDCBAKLCdAao1t2JSURznukxqzcJrhAPTwkccp1w0mjMZp16g2vfzS8n03YN8PjoCGYr1G+ds/pLXrGPXDAc99b4xsqUpX+RimOYAZVBFaU8lbWNpCiBgIgWeY+JZESZAVh0AEIDRNV+J7HrgJnPFq6Mo4dWA/+uCZF59c4gRaM1W12Xeigq9bCC0onXDxSwrf7cI2ktScGq70sTybQCtA4hoZksTQhFaiwFcoYlSGVpNxawQSIKBZrmF9Z4ZAaxo6QCmFFDKsDxW44c8yQ2mNj4kaf4pmGXR1koGpZmhVa1XQgUY4HjVpEMgEMKeL/AxxJ0BoQaEnhdAeEoMGAS4ZPDNgwqng+3Ci0B/WcJqdxRsfC+v1LEM0YV2rw5VD+EGYRSYD8ErPES88jUbS9FxibkCiqVACtAQl1uIa/ShThGJSBwgZ0DVt0QgsPJlgMnDRAvyWi0Ijgiz9GY/qoQNgXzmL5l5yQTQ+Ps7WrVv5T//pPxGLxeju7uZd73oXjzzyCK7rcuDAAa699toX/NsvfelLvPnNb2bHjh1YlsV/+A//ge7ubu69995LfBaLR8t3MStHMdyAuOuT9GvYUtHQBvmCgzLDzCctBGgf4WsMIdAItDBREgJTEqgGggChNULVSc0FBFeDbmLawPA83MDj4O5ZGn4DqQMUy3OgwveQCKarDuMNhWjWyc1uxJxdg6NbBCZkTzm3RtokEHW0EMxlQxPocNZuBRptKJzqtei516fRrJGpriBVV5iVER594GTF3GU3aXeb6NIRSnsfCYtS1pvseaDA4WKZeqvE4ckxHN9FqioSjdIWdkJiZLqQWiGNKo5hIIVAIMN4h5bCsTQgmI29hlvHejA9SVU1eE60CGbLpzRAoILlKbyrLY/vPj2JrzQ9sw16n1tH2fRQTYeWvh4lcqyenMYUTWJzS+1oYaLRGNpBaH/OGSmwxRBePMH60RpaODjGCQKgd7qK1hK3eoIDj8yQekIzW6yFsV3LsQK4UyNQEju+ci7bTBBzA/JFH4WNa+RBGwh8lAzfNy0EyncxVTc9sx5pmSFuBBjCxFQHaZl9VHvG8JSPrwQtN47rFJn4zLcYf/JBxkaWZ8VqjabpNXl4YheVp2bxAoEODEbtMhOuhx1AvFog4yVIOodx8ZmMubTiN+OYq3BTBprDxAwBBCgDBmZcAtOgYr0SYUhs26WhAxwZ8OyDH2P/szGeKDw9vyGHLt+FiM9bEG3dupWrr776tJ/rrruOV7/61XzgAx/Ats9cU2T9+vV84hOfwGivyAd897vf5ZprrmH//v34vs/HPvYxbrvtNu666y4+/vGPh4XNgJGRETZv3jxvfxs3bmT//v3nexrLCuHbxB75FnpkhCOPCqbqHqYfoKWmZ6xOVQYEsWHcuKScjVHNS2KY5ISFRlMQPmIuJkGYEjcZR6g6Cd1W/j6WDmeXXqDofc7GUcOMt4qcqBYYKT6D1MszFd97Yi8jhXFaBFhenaKjSKphEtVBtO/h6wYWBkkzixKSuLsHoa6BJAhcoIkAtDBopQzijoUywJdZVBDQVbLpnVDEXYudD9WYKU1Rf+4QZbeM0ppZe5mZ532bVm1iruaNpm63cLSi5ORRSlIXAUJ7JJRGSJ+GMHHiEhlPkCn7bFbj1DNemOYrJK30IwTSROkEaIUgoGvSRvoK0wdVdSh/89u4hRoVp0LV9patIBJuHS/QfGHvw/QVa2gFTqDwRDjZ0CKGqRV91QqmKiFw0CJGSsexVAWEhzY1YKBxUEik6gc5TbzgUbeuxVA+hqdxtKIR1DAmDUrTDbTvhJWZlwnTc0tzJKafIPAdflgcxgt8ZmsegciSriiQAUIkEAgM7RJIAyUstAAjaODGX0UuOIEWJmZMk8/lEVYOJRIIHWahTTU8PMcn8/TXqHkZDntNmpW5it+PfnIRr8D54SkvTN4UguoTj2IfP4jWiqq+BV+tpRh4KCRxJVAkwMwRCEXTGiLh7MYxV+HnDiGozhX+DvAMExBoKWgZyc6aruMijpaClz2nsewxDh45wdhsE8bnwlNGdy3WZbjonLcg+qM/+iO2bt3K3//93/Otb32Lj3/841x33XW8+93v5gMf+ACHDh3iIx/5yDntS2vNRz/6UX70ox/xx3/8x9RqNXbu3Mmv/uqvcv/99/PhD3+Yz3zmM3zyk+GD22g0SCaT8/aRSCRoNpsvtPvLBhHYmEefQTdbmI4EBDTc0HSsFQhw7WtAKwzTIKNbKGVguDa1jIkSBkJAXPvEDYPpdAkBJFB4hJVf7eQgKhGjbjukj7QzhcCq1incvxeq9lkXhF1qHG0cZfTZMSZ+8DPKTz+AgyYIwkFKySSrRkcxnVlWex6mlAiRQAoJKKTSmLKB3Q2CcBD3jRb1XguJRTJmEAgQdotU08GTKxka68I11vHt0T3IWoWiXecL+wqUlpsgCjweKz1LRbnYxVlqtg1aIQMxZxEzAE0MAyFsAq3DZykVI1P1OLD51RxdV0KZAlNIhoMkIKnJcLC2fE2s3IVQEHc0iZbAe+oHuNN1/uXRT/LkeIVgGa4X98x4lfrkCGuO/TOHaj9lqJwjXVPkyxa+9rETEiFACh8xtzBpyn2IjPc4loiRT8eRpoGWkpjykKqIqQ08s5/uKQ8IRZWlHCwvxmwjyZHDh5H1Mo8dK3L8R48vC0EUrq2leWYitNJo5aNcl1pVcPzoMYxSeJ65qokSARITLSzSOoGShwAXqcAbACUzpICM0YXMWNC1Ck2AFvEw8F8ENPw4TadJulqkGZQZ88PsPO26UJtidrKxeBfjPPjEvk+ElsQnyiQKdbxqwNHWAC55PLagfUXSbSGURksJQqJUHR3ciFRlAHRqmm6dJyE06YyJEhKhFVpKJJricBJPKHwTAikwHBu3ZDPxwOOUJ0ao3PcZXPvyKi3yfM5bEH3xi1/kb//2b3n1q1/N+vXredWrXsXf/M3f8MMf/pDXvOY1/I//8T/4zne+86L7qdfr/O7v/i733HMPn/3sZ9myZQuveMUr+PSnP83OnTuxLIvrr7+ed7/73R2XWDKZPM36ZNs26XT6fE9j2aDrdQy3jndwEj2XFi5pkSjWSNcUjvDCyAOVRQc2iVyZtHEAjcRfnWCqR5Ixw2wNoTxk7sc4RprA6MMXCQJMlLbRYhpNuMRHybiaSUNiuxoVmPiepOeByXlrWS1lROBSsKdo/Og5bNtHKzcMQvQc4nYLLxYno+LEPYuMP42ftUjKElJARgmMACzpkE7GkMJEIAhEEMZaaQPTlHgoLAFC+bjGCuJ2Gj9xE6v2ZRGuz4PHJ2kF9rKzdnz5kSMQKLQQeDPTWE6VuBtgKgEYKNlDTEuyOo6UVUw1GsYyrGkgkZzovppmOsBHIIXJRj+LFgKh2xNQk0CkiGtB0lEYvmDCX0m1FWfF13/EATGL5/vLLl7N9gMMt8bk7G62PLePlNdHumGTK8dABVS6DQTQGkjiDbwSUyaovfFOUv057HweK5kLxZAIvzfglejVcZTxHATHkEEorA2RZXD8tdQf3kLroUPIVpNABQTHpwn8pR9DVP7Kl6nec0+nUKLyXczpZzACTa5SwWmtwgxO0CXWg/YIhEVgZFAyR7lL00prDKWZucpAySTDO64jZaSJ6bA8hhIBJoJGxsSLC6asaymqFindoMsZQckM+wtPU/j4xznmVakWlkeFdD1X9sJ71sRqefj1EmM1D3vOTZprBOSrNjEh0IYE5aOFH7532kNJgaUl2UweyzSRaRdphBPAbCpGrdsgHQ/fOd+UBJbE9+IUKkmS5T4q7gxP3PcoP/vi42GM4OTkIl6Ni8d5C6KpqSl6enrmfZbP55mYmACgp6fnrC4zgNHRUd75zndSr9f58pe/zJYtWwC47777+PznPz/vu67rkkiEwXSbNm3i4POi3UdGRti0adP5nsby4ZvfJFEMfbh6dBTlFZiIuXhBLXTlaA8l5mrEaBehDMoxm0CAjsdoySTZhEErdgBXCxJJhRYSw+pCGhk8cZSEsxtLlKiJ0JTsGv0Yvo9p19FKIJxePLagpp5cxAvx4nQCwOvH8e0CQigCwtl4iwAZKKSGAZHEwiTmgyBA5X1SYpqU9xAxVQM0ScPgRGIr9soB3PQ4471dKKEwtEFgCtyUSUI3EWIK0w0XyhVCEJBDaE1s/ziu/0wno3y5pP0Wq2VOtKap+g52rcD1D42FG4w8CCO0EYrQcoYMZ/gJQ9CVz5GMraW7L8W2+E5ilkSuXoEpWgSmhU9o2dUyg2v0sVE/juVppBKM2XBgJk+5lqL7mQIPjD7AA3/xsUW7Bi9GoxFaFVzbp16YK1zZnnAUmmw5lMZsuaRnG2iRQugAJQS+JTBjJqlMP8PpLpI9V7Elnae1xsS0DJrZJKaMIfFZ25ujR0oKgxo/HSClFx4DAy0U0lEYfoAIBInDhwi05NEDU6ilHpAeKFQzXFrC9gIe+dfPIgsHwwrnOsAxViC0opC8gcAMXdVa21iGZP+1fbgxgW+5BHGXWlc3PTdcC1IihUJrgZYBAti06la8GNi4oA1M3yCww+K1pcIBAhXw4JHn8N3lMcmDUBQRBASWxKzXaKpKmE0HJJuhi9BEQMxEqQDDCjDMJLve1I2IGZjaoO+td4FhkZy1kUHoXYjHDNyERK3bgxcLJYGhBCVzGy3bI/BTOCr0EKhjzwJQ/tKXF+syXFTOWxBt376dD37wgzjOXHl+x+Gv//qvueGGG9Ba84UvfIENGzac8e8rlQrvfve7uemmm/jHf/zHeeJKa81f/uVf8tBDD6G1Zs+ePXz605/uZJndfffd3HPPPezatQvP8/jUpz5FsVjkzjvvPN/TWBbkD30dADU+iUZQODBCfrrBdPcg5WweqWsIVScQJlpDWoH0JF2pLgzLpGn1oVFIIXj4ZSnGhyVW3GL0qjIq5rJWPkL3QA8CTZfwCHicpH8IV6aw/CrN5jQVr4KUARBgTT/Bib1L18Tsum6YXntigtjIKLLVoGmsR8o+mrEbSaou4tpBZBJh7RLfAHwMCSTySNmYC3AV9A9vITMwSH0VeDGDA+v7CYwmAslwz11YA/0M6hieKRFCYARhILUvQGpFT7FBw74H5YBd8/nCviXsOps50PlvMKKYtRv4QYAbN2jEd4DI4lnrsfszIARO0oS4gRKClNYMZkd444a7whmnYaCMPH09Uwys6qUv2UBLA9eQWIaFQCAA1dNNRsdJNAeoYnHc8/G1JFl2sCotyjMl1BIVkW0XvWcHfPuzP+T4syWe/MZ/J6j7aDdAkCTtHEHqI2jidPsPM9v3OIYuk1yxhtzajRjrB7iqZyuxniyFgasw1q2iMpAnJQwsaZLI9yGET5AscGJlloQR2tfSIk8Qn4RA46Mwyg6x8gR1TzOxt8X4SGXpL+lhmfiTuyg98S28YpXDx9ZiaQ+EIo4MiylKCVpiJ1MY/kEMEZZe8mMuMVwQilh/D8bQZiqJFcRTNUASmJpAGKRSQxhJA4HE0AlM16KWAVekEc0iTqCJPzFLa24cWw5UbQdzfIzBJ0fm7nHorjaMBDEER7d4GEpj51IktKDfMjGNEqmkiRANUmYDgYm1YgM9Y00MD5QwiScUnlmnJ2mCBikAY861GGi00rhiDQCV5gw4tcW8DBeV8xZE/+2//Tf27NnDjh07eNWrXsWOHTvYs2cPf/7nf87u3bv56Ec/yh/+4R+e8e+/+tWvMj4+zre//W127Ngxr97QnXfeyX/9r/+VD3zgA2zfvp33ve99/M7v/A5vfetbAbj11lv5sz/7Mz7wgQ+wc+dOvvWtb/EP//APdHV1veQLsJQxm9MUGj77D48yUy9gzhxAqgBf9SHUejyZIKOfAVkjTgYTRb03h3jlewkME9vs5dDQQczuKiu7s4iYhxaafGwdiYEk2b51NK5bhydNZLaFYIL1XmEuC8FDuA6xagHLbyC0wlPgVcJA7CAIOsHuSwWtNUIIykcmEJMFXOXi6xZ2/OU0k72YGhK6hU7GEGiyKgANcRF2BD/5t9fiDq1HCUlw+x3oAQt39TQmBo24Yry/yHBgImWSXDKPZQncwGNiRZyZoYlwljrXlkC16C02oeYwc8gmmLtWjuMQLLW038rxzn+DpsY+OIhhBxSSAZ7RTVJ5hA6vGIEw0LKBQHNdPkVMeLw8lUEaguHVQ2hpcOP1N5IZ7sEx0uQyaZKJAeqpJhlzgl5nP5UVBk/cdQ3xRJpaVwyFgas9EnVAC7IHZyjYE/yfBw4v1hU5JypHf0a9YlMeL2M/cZDj8Z24ArRM4RDQLSwQ4K30yaSLSEwO970aTAv/tTeQWbOZ+G07UNKiZ0ASaI3XvZH+qzcQ7x3A2raSXLfFtr4tZCyLmGHQsNYwcKQJaAIUXqBpTR7naLOBEAGVZhVGH1rsS3NGtNbUdcATh7+K/dBXwAho2hm8mCCOAYZg7/Ym7kAOJSTKtMgag6wcHkPFXexXTeLHJNtiOVbvWI2VMLluZR4rHWD2dmOv7Efg0Z21qPaY+JaBVCANAzsvyQXD+J7iyenj+PTQai0PQaSrHt/9/lM0LQ2Bg0ahRQ5DT2MZ0xhSEB8oYRKgDJOEdlgj8yRj4YLdJrvZqjJICWve/TZMK8ZAvIu4zJJamScts7yqeyOmfpZsS2P5YeXwCh5GoAn0ABqYVjb4y8PN+FIwz/cP0uk099xzD3v27GFqaooVK1awZcsWPvKRj/CHf/iHPPTQQ0h5Zp31nve8h/e85z1n3P6Lv/iL/OIv/uIZt7/1rW/tCKTLHg2Op5hxrqYh9pPUEvCAzWHchjA5enWSdMHA0DJUt8LghuEcT23aQcvbi0j4GMkqL0u/mp8N/owtmSnevGE11cEexIPTCMvg03fdyK/05BG7n8OoaJRIIJVLrtZCiTieKBInoFAcIOEfIzkzw2x2C0II4vH44l6jF+BQo4Rfh0DnQYfrl/km5OwpZs0+zKRC6QCTFAJNr0yCafHawTtIx79PpWmgtMY0BFpKVusUq+UdlMQ+EskkjmuSzwus4RT6iE0138Wgm4Ri6I70RYAOYP2B7cS3FKk9O465uhsAz/PmZVguCQKXwhMPM7Uigw58ukdqtNKSWlyQsgRJR+BJDUoSjxlg+eTVcVZlr6aVdehZl8AxBPmkCVLyhmuG2LOvn9xAP9lWF2vMAe7psnjVimvI3v8g5T4LJ15kW3cClMSx1tISGtNcjfRnkK0a2q+jbJ9yubwkJzyzrVl+evxxdDDAfXt+QFfwMrSu4TovIy4MoBXGfQgobc3Q8EwKWw9haEAYrM0OU5UCke4HIJNN0NBj9HetJdaXJhVUeN3t25j4ZhcDqT7Wv2s7T323xmyhQcy3yfEEY5kbMZ0keAXqcjMrvBI/fmiGbf9muJ0wtORwfMVjR8chqDP+pINO9jBbqUAiBdoEfDzLJd87ynRJhkWHpMXWwRYbu17OtbHnKG65jlf3tRh4fRgqcezJAnYiwbU7TKb2XEt5a5aVm6/GfnIX6bn4NT8Z1hXLJuqcaLlMVOJIvZNmzcE9cYLYqlWLel3ORq3Ugt15Nh7dRckcJhBZ0GENJ1OYxGMjmPbNvDE1wBEzjP+bvv1qNpyQrM6uwu/N48nHEVaKLdeuI9Gbozc7xGaO8Firn1e9LMbPvt3FmnySfuObaONGpgIPhKCZ0GSbGl+nKPsOyg5QjsszM328KlBzcUiXD+d8Ns8++yyve93ruPXWW/mlX/olNm7cyJve9CaSySS/8Au/wDe+8Q1isdhZxVDEuaO1pvn4cZpBHbdcwzVXUo9vBQIsVyM0GMKkryW5avphWv19SK3RVoA0BIaQaC3Z0pegPxPn6qEcs33drMrk2dK1GkPOdZkC+tjOy9OrWamG0aZFStVJa0g2iqSaFVAGWgaUK90YXhWjNXPWti8GnhcGF+4erVPRdWQrjhG0OplxWvYhhIHUFUzDJ0jHMS0QUiKlYPYtd9Af6ydpJugKqsQtyZp8DAwDJ5HDlDHiOobo70XPmfW3rngWzQRxHWcomSOwTrYn0RIInUQ6PrpcRYulmwE0Ne7xyJf/gR/85KdYbhOrGYAKwgKKc11Es8sKa1YZBrFME9OKIQzBpo1Xk7jxtrmOUfMrL18LwIqutaTjJtmr+tjx715GPBlnXXYtOmYyvcbEiEFfxkQiaKRNlJIEIodwPYSnibcamM8WaTabVCpLpzBcEARorTk0e4h9s0cJ6nHc4jgATRxslUSLOFLVcLsaWFgESLxEnlr/XNCzgJWbfw5TCvS62/n3t64llkjgixgrVyW48bVD9P7aryGE5GWrX4kwDXJuEXwHuTaNIQJiqkHC6EKgsVmBh0Vs6gi0fMrN8EH0PG9JBae3q0UHpQD8NBUPfLGWOqEFUhsmGsF0YjWZTB0hRkAIjm/fiblyFZYhuTa9imSPgbzm5xFCIETYj4n+q8jkTPxEnDf929tJZJL0ibUQhvfjxVJYrThmS5Gurife6kZrGPnZfRQ//g9MH6uilOr0I0uJ3c/uIag20a08PhrPPzkJtQyLsuOT7kpxdS5Nb9LBjFkcH76D2LbrEAO93HTt7zC5eZhaZj2J3vD9vGr1LcQHBugd6sOISVZ2ZxDJbgwB+RXdNPIGPX11AgMM7eNZgoaxnXjF48ixWY5VKmgVJkddTpyzevnQhz7E5s2b+bu/+zsymQx///d/z65du/ilX/olstksX/va1y5mO684muUypWqNY80C8bByBPXYBoSwkMqkkTLwZRw05IMGqr8LzxzA3jIFQKLbwk91kbfyGNLAisXZ0JPouHRW52MASCFY35MkI2M0jS5q+atIGlUGkjEQFil3N71qLcpQNHyJRIEwaDQaLxo8fymZnp4mCAJmxp9BaYXj9KCVHwaaA4Fh4ZlpTFHHkF644GY+jjAs+nZuQxgWCSNBxkwTtyT5pMHVAwkQgsL2l4MJrw12MHzrMLGhXhIpjbfuVqQAVyaxTEmQgC5lIgRYfh5NF9oWaAHHgwc6g5PWesl0vKOjozzzswrl2o2kH/TI1adAK5IVF0s7aGJoU2J3G+GiXENZghsnGM/egJmNkft3/wm2/BukIYivXUN/Nuys0/0ZNt48gBCSXE+SmCGJb9jA5Ctez1tuugFLWiTSKYI4TA5WYS74vWxspaEVlqnIHTlI4Cscx8H3l0a6b6vVCuMn942gKwlQAakgdLuUk1lyswaaAAyP0haXlGGBKXlj3w1o4OrhLKu39kAsxYb+DP25BFcP5+i65gYskWBg0CCx7lqElDBwNex4Fc7N25DXvYNsUuMYGbQK1zrLZJMgBNJTmJ5meqqCbMxwbKwMhIJoqbi1bduGIMALFL5qIAJJMbYZX6TxZRptaGKxfrQQZM2VJAyBkj7JRIqUYZF4xx9hGgIMCwO/I4QAVm7uRiSTGFe9klb/tSTiBqYlQUkqg+P4uRzN5Cri+npwAaUwtUBrRaxiM1ob5ei+AuVyecmVcKmWSqjRoxA4WH4JQwV48ZsxVAWhm2hhYShN1wpBzIC+IQsxLHjdNUPo7EqCn7sDMJha30c2cXLGJuJxrJUryG3aAMrHMkwYug4hTWIDK1CGILE6hRA2fdKiOhigZBYlsjwykqRqu5SbNarV5Vnk8kycl4XoQx/6EHfccQcf+tCH+P73v8/v/u7v8iu/8it87nOfY9USNjkuB7TWnY6/2WxycGo/j7CeQLZIaIOmiOOhwTdIqQMc2LabQMbQAhLawFodY8u1G9CEcTTdOwZxt97E5sxmhBFDS4stvd0k5m55f9pE3HorwxmLTb0xQGPE4piJOL0ZA7kqhyHiWKpMqlnFj5k0tUdVBDRtSa1WWzKdLYQz90KhgHZ+Bk4vwrcQ2g5L+gtBb6IPM+UiDJ+41SCdqhJPekzvuIXkygHiRgJTmkgBTro3XE0cQMDtNw7Sk7bYsSpDvCuBliZrtijs7i1IAcWBJ7EMgSF9Ysgw0FEptABrygbf5eVPPE2pVMJxnHD17SVy7WzbJpgp0dJxvJhBrNKkljVwY2HnaQkLX8ZJGhKZNohvruAnU/jCRAofsz90+RimJPeqV3T2m7l5B7GECehwYXbASCaZyW/j9etvpTvezdDNO7lm7SieGSeQLbSIUTMHEYGD0j6uMqmVHFqt1pK4Xr7vU6lUqFQqNApl0oXVKL9OUgdhtqKRJCbGwXsYRAMlIJ6sY8UNbu5bS/eKX2DbcJ5UezIiT1o4zL4+8okMmPOjGIQQCGkgLBOdHaaVGGKtO4U2LUxpULhqDVLV0CJBVaRRaAJfLonrBXSe9XK5jOe6HG10UXQ8kk4a3xhCCROhXQrrm6TjYSzfQOw6UrFwmSF7xQDuqpUAmELAwDZWb74OccrItXJLN8ENW5GGwS+/ej2pXAzTkCgtOH6DxcCG1fgxTXX9dlrZLmTgohEYrgLl0ahP0XRa2LaNEGLJTFZmZ2eZKpTwjzwNOiDulbB0hZjoJh48QMIEJQyOXbOWhOXCjb/MuhtN1HaHl2/sA2D74HZA8LL8K7llfW9n372//mt0v/1tmMMrQAVIYSC6ViEyA8RjGmU1SGX7aKaexhIBWNMg6mgE9cZ6YqrF7hMPo5QKvRlLTEi+VM5ZECmlOhlhQ0NDTE5O8lu/9Vv85//8nyM32QLQFkSe52HbNr7j0Ap6ybQ24sksrsxgx0wy1SIIwVZyGCIctGwzSzJjknnjyQGpJ2nw2vUZNmU3MTh0B0iT6/PXk1t1MiNPrFtHKiZJxw3QmuuHUgxkY5imwDQFAoNG1iCpyiijn5pf55lWjIdGFb7vL5lO17ZtlFK0Wi32ihMoewVCWSjdopENkGYMO9ZHoreKkYyR6ZY8tf715LesZfWN1wOwLr2OuIyjb7uNyuaXnXaMt2/Lk4oZCGlixgQqlkEbcRIyQ8XM4W3aiJcJU36FVpj+KMoQtFSArE9jNW+ed82WiitDCIEkoJ7M4KKwRZ2WqakkTGJaomIxfJng+vQganWe1JZVeGacLcNdJE/pYBNpi54VL1APbOubgbmAd8S8BChpWsQMgWv04MYnSZkJmqkYGdHNbO5l0KzRaDaZnJxc9GdNa02lUmF2dpZWq0Wj3iLpC7CrxBDE/EPE4inilsBJSOpbrmai9yq2rh5g/bW/SCxm8fqr3zR3HV6Y1151E8K05n2m5gqvCkOCgOtXZHG6c8h4P7lEnDVrN2NQxxCACsWHX22F7qklILw9z6NarVIsFjkxdYJqyyZLDIVECEkta1AZzLIx0YthWTT7EgipySdNtufWEyQSqGQKILQQxbPcct16kpnYvOMYc6VZYnGTRNrCihsY/Q36Uldx1fo+RHINAkmyaxqDFt2tH2MaMYRr47seE2OHOxPS2UVc/NV1XYIgwHVdfN/HdT18RxJY4+Fad0LRMjIgJGnRpCdeoJXv4rp1R6B3IwlT865tv9DZX9JMsqIrwR2broHUyfdVtMdsDQQehgyF+LF33tbpm7qGtrEycwMr9BHsXBM/0ZpbAspAa5/aY59hZiYMn2iXoljunLOSOdVECWBZFr/6q7+64A26UlFKUalU0Fpj2zZ2zSOQgnJ+OCzZbnThx30S/hROMsabcsNzjjSoxIbJxsNb2RXrAuj417NmlqSZ6hzH7r3mjG0IZ6MC6w13kEp5mBJuMDKsZR/SapAv+MxIh9lSEaXUone2EM7a2+4UpRTrjrYQykWLBLVuHz9bJSXGEBJKXdfh9K1jIBunGuuFNZsRK7bN25+5bi2JPpPnPe7h8y/C3N81N2XwMitRsQxD1npa5gCbN76GoGcCadh0e0cQ+ATGWLiuVWM3Imd1OrvFFEOnHtt1XfL5PMJpoYOAWKWKUg18YaHmhu36QA8awba7f470yn42DGzE6t1MVyqGvOM/v/gBh2/o9B1SCvRc4RSNRlgW0pAY2sQ0wTIkzUSKQMdRshepW7h2OHP3PK9T6mMxaLs5a7UazWYTp9kibQdIpbCEgdQ2cXGCZl+asaEsa4ZexfWbX0MqFuP2jW8mn4xx7cp8uLPnP1xzbHrZIDI+f6APV9ATyHSa1PbtCK0Zy19Hy7a4bmWDoXw/6WyOTCJHzNOIQGPXGzSbTZRSNBqnLzh8qQiCoGNtqdfrjBx9jG6K5EWMtM4QM5LYaUFx8wBi8FqufvftqPwA2vCRQpJNSHa+bnVnfyu6wlpWsYRJKvc8QSTmJyokYgbb1uW4pvcuNt+xlTuveyXveOsm4n0NckYB0zSQwgCRpqUHOTFZZGpqin379i1qBm1blJVKJWq1GlJC04H+I0UcFI4RLgCMIRk2drMmnaYY34BYdTMQ9lNdiS4AelZkAMgmLIaGVsHVb5l3LCFF+GysuhnDCscIHTPRc+UuZP9VvGnjtQykprEzXbgJBxCYQRktWjR8l2azyezsLFrrJZl5fL68ZNOOZVlYlvXiX4w4J051mTmOA7YfZnjNWdATVpyu1ZNUB9JYIklPQmCZRaoDcZRpcs1g2FncNXjXeR13VXIVa5JrAB0uCCslDA7iDV9Hj7+LbmEREzGMZIW4dwLhOPitJM1mc9FdGY7jUC6Xw1Teep2g2eSq6SSmgmZXlqNDLnJYYNEkPegQSElzqIeYqbnlhjyirw/xvCw5QwpuvCGHNE4ftNrB1KdODgxp8Hvb/i1SSKRokByqYEmNwGcq5aEl6MDFNMqcOHGCWi2s4dFu96WmbdputVpMTEwwOztLsTlKpvUo2cBg9GpNKj6ENr25cVsghaRnOEM2meGG/hv4f677NTJ3vBpiqbMeaz6CNVu7ufsNJ2uUpV52M6u6kmRjCXTSIm1IgkQCISUxbSOVh92s02w28TyPYrG4oNfifAmCgHK5jO/76JkjpAKN1D7a7mWFtkn4kwy9/JU8uW2Iq1f18EvXvpGYIUEYtH08XQMpcr2JF9x/91Ca5M03z/tsOD3Mlp4tmJZBz8ospNJUt1wHzC0rIyRSSvJdNWJIhsZ93MBn7969jI2NddrcarUu7sV5AWzb7lipXNclaDapugVkwydbNNBGDETATTszKKA3n2D90GYysW7Gt/57hBXj1g19nf11pWJnPFZPYn6xYNOQvGJDH2/dvpp0zEAgGFiZxblumPhgBU9Icuo5hDCoWzeScypUq1Vc16VarVIoFBalb/M8rzMG1Go16o06tqsQyqfaFefQmj6UMEBKhAbV18cvbd8J238FUvOvwcYdA2c9Vqcb69tET3rw5AYN9uBjGLEYeC5dO1fiZLoZWe+CEChTErOmiT1UwHVd9u/fj+OEru3l7jo7Z0Hk+z5f//rXOz+e5837/etf//pFbOblj23b+L5PrVbDcRwSVUVgJMN6Of0zpGSDHcM3MbtpiL6rb0JZaZ575e3U+2LY+Z4XP8AZyFm50Kqk52YeQoKUqOuuxevyw5dGSMxMBRNFt5dBuRPU63Wq1Wqn012MF8G2ber1ehg7pDXK8zD8W7A8n2YyCZaLvXIbKm4iEnFI+BiDTezea1l7hkHp+dzac+vJX4QIB7dTmLntNQykQ2HgpyQ9K9Nh4UFZZqLXxE4+y6xsMJ6IEQQBvu/TaDRotVqXXBC13Sizs7OUSiWq1TCzxo7ZZGceAK1wr4rTt2EL4voyWkr8mMW6ntAcnuieq2IrDZLXXXfex5eGZCgfCveNXRsRhsGariTrenJMXX0N64Z8WokMOm5iGhM4wqNUOkSrFVqJqtXqotVwas+A2z+2TJHTCt96jqA1Qy6ZoOvOV3PNta+kN93P8PVXn3riHUGU60uS7jpzqYrnW+K7E92szKzEjBmsu66PrpV5zIEB1MpVaBUWXZVCkuwJy24opbFdH9u2KZVKTExMdN6PS43jOJ1jt1otKnWPBmk0EsPrQcYU9AyTSMU6C0fnMhkSySwq0U1vd3be/m5fdTsbuza+4LG29Gw5/cMVN2KZJkKElhApBYNOje2btmPFVmKYofWty3+KuBd0rPOFQoHx8fFFedaUUgRBQLFYZHp6Oqw6ICUol8rGPLNdUwjtM7WuG6w47u2305PoPyXm8dwLLoQu7PC5SJnhe/lv1r8R0PR2K6QpQhdEuh+ywzixMtrKUFtfxNqxEj8dw3GczljgeR5jY2MLe0EuMedch6ivr4+PfexkOf3u7u55vwsheNvb3ragjbtS8DyPSqVCEAQdE7cwkwgpSTBLYdsruOnYPmQsiSECrBVdlDe+E54o4SV6GXvtm9n24od5ccxQDCHDeAUxZzoVc8teIGL01CUTqTJSSqrVKqlUCtu2aTabpFLnYzG4MFzX7RQ5bAcqO0rhmnlMt4SVUtyd7WbXEFTX9mMNDOK0quhshcbQbed8nNWpkyZ7LczTOhzdc9IvX1m9glTvDrz7jjMeH2N0aIgbpjfwzKZJwCSRSHSuVefv50TKpYrD8/1wsCyXy4yNjdHf34/TnSBe1oiuWXSshSKJ09VPkI4xvDbLqmveAECq/7zLlp2RN6wL9ylv/g9kJvazKrsVI/5jeqwk+jj09FcZ84dI2y4ipTh27BjJZJLDhw8v2lI97RRjrTV+ECceNPES+1nTM4AYi7F19UaGV/Vwc7kHazCccad23BQ+M32bF6QNW18+zEa7h0/UG1iZSlj5e0sK43W3IstPEByvEUtlUUpRKBSwbZuBgYHThNbFpF6vk8lkCIKA8fFx8vl8mJ1XCcjrgGzMwAksErKEvkljybUordAaugZTCLvBhv4MyeT8SUvMOLOF6AWJnxRUKtAICa9oNmH7TmKNHr4lPIyHWjQ3CoyJ/bhu+Fy1YxIbjcYlr4HVHgPaSSvl2VkMIXESPpaO0Z2zyHtP8ejWzby8NYFvZZh3lczzqAsnTylqPvd8XJW/ihnxLMKMYxiSrp97M+bDBxkMrqWyfgfGEyn6e23WrOxj6kAWx3FIp9OdemHtxJGlWJ/uXDjnHu6HP/zhxWzHFU2lEpprW60WrusihCDXk8GuBGSPHsZaeSNiVMM11yAf2kXPSgVzMUK6+ypevyp3wW0QaOS2zXB1DxgGKECDNi3s3/yviB/+d6SIk/MFk72hALasMC5mdnaWWOw8O6sL4NRZFIQdmJQSZUgytBhPlBlek6Jvw062prspxpsoIWh15YmZF1A3Q55eUNE85SNlZUjlN2HdPMBj4wZru7PMrt5KPfUIPROKRCJBrVajWCySSCTwPI/Z2Vm6uro66/VdLNqxHEePHiUWi1GpVGg2m9RqNVqDKfxilq5MkuGYQDcVr13zVr7gf4lfvm2YrmQo+kyxcIKoQ26YtHUCpTVSgCkFph/Q072OQ7UE8WwfVjJJq9UilUp1XD/tquQXk7bVVmtNPB6fd2wVT+PPSAbScTb1zBJPJMhkBjGs+S7V9G1z4ju/csHaZSbivOPnbiGfSyDvPYJ44zWksikGttzB8RPfpClixOZqELVarU67Pc+7JGEOzWYT27YpFoud58z3fQzTJZWMYUhNYOUQVEGCJS2Unr8w7YquJLWuFQD84s7VL3SY80IrjWjXXlMBUmuaV61g/ews1X6NO3OAdDo9z6Vcq9VIJBIX/d08lfY1a7vrHMeh7OWobO1jnUyST5kIGuQyN3HVa3M8Y2aQp74Ht/3/zvlYAjqKaP2N/Sc39G2B1a+hZ2UaM20hpOQ/37GD/7PvEQwpGUzHSGqXVPcaPAJM02R2dpZsNovruhw7doxVq1Yty7CaKD1skWnPRtoZSEqpsGZHuKAMXd5BTDOJ2LgREYtRSb6GZCZcV+YXr+/mtt7bFmZg0DpM7+3pQUhJxsiwVWTRsQQ6nkKqgJz/CD2my7C5BtM0kVLSbDY5fvzk0g+ue/FX3J6ZmenEXLU7jzCw2idtOTgxE7+3iNCKVclVrFh9Pd0pk1xCIi/gkbd7tp72WXfidJHgrNpJTFgkzTRCxHgLfWxa6dHbGwqLdpCw67oddxCEA8nFMtN7ntexplWrVWq1Gp7nIYQggYESJj2xBn2pDLGYpK87x3VrsliGhTmXgZKyXroFcG3y9My9Nv3pPnrSc4J6VZOV/jNsSqyiK5slPzTQ6VSVUh3T/OTk5EV3abRdwrZtdzLdpJQEQYCZaIIUbBwcxHvNb2GZ6rzcFRfKQC4cpG+6ay3ZWJaVmZWs3BI+X4EFyWSy847U6/VODNaleD+BzjVrZ0sBJCxNV7qOyA0w1OUgBLx8+OVkYhnUijrG3LqAW4ZCy47oDku5DM+5WS+EZDYW9pOrb4EtbwJg7crNJLasxln1Wux0BsuyCIKgIyCr1SpHjhy54GOfC1prfN/H8zwKhUIniSDwXYQ0kX1Z1m3+97zr+p9j9cbVvGH9q+h7zevYOJDpBJsDoXX/HAldieH/+1ZlTt0AQpDMzF2z/s2YhgShWd1tcPvwINbAZorNnRjS7LiTm80m9Xq9ExJQKpUW6OpcOi7ClC/ibJw6S3Ndt+Mis2077GhNk3g8juNnwSiBNBFmHPGycECxrf6OWdSUYp5L54LQel6HLoQguWUQcyhHM51GBpquuE+/cYyy2IojBKZpdtwItm3jOE4nkPJimUwbjQaVSoVsNtvJMJMyrLuSTSRJDimcmokdz+Ilw1lPcnAlWUtgWTGOXEB2qIqdbonb0Hv6eaav2cqaQ+s5YQrKRh/D+X5sP08sFuuIV8/zqNfDgOFMJuyMLuYAX6/XMQwD27apVCodMeQ4DlvikgcGezF6PNZf/WY29awlF89x/7RmfX59p803Dtz4ko/fa60/47ab3riWm6VgZJcJUpPqTxFfuxq/qDsDe7VaJZFI4Ps+U1NTzMzMkEwmyWazF2UplPa9aFsMjh07hm3bxGIxtNaYcYUQsHZ9Lz2rB6hbBqp16QuVSkPSFe9iIDVAdpvL00mXqmezItFHrVbrBDVPTEx0zmfdunUX1UXrOA7T09OdAGEx11dYVpgXm1kxzMYNBv9c3c6/G96GKU0abqOTyPCm64YBEObCDU/X3TFXJ+/GfweEdXjebBjoq8Ngg398+NskEgmklB1XfPudqdVqZLPZM+16QWjHWrXj+qSUJJNJGnWPjKxSiyn6VmfY0DNEddsRureEAdNre1+g1MW5ImBw3Tl4F659JwBbu7diGAViZpL0VZuJ9+whkUwhpcQwwmK97WKgMzMzy9JtFlmILjGnxo8EQcDs7GwnXVFr3bG8ZHuS0L+awXgSzJMzgNdtuHD32Au2a/gWvPTwvM+slV00V98eFnpUBoO94XpcSkA8Hicej3eC8prNJlNTUyilLmp6dDuToS0g2+UFhBD09QzQ1deDsXIlLSuNnwlN7mFguKDL6mJj5oWDMhcSIQTF3lt45cAOskmDpDRZlV7ZEcJSys7A7jjORa/h0bZC2bZNo9HoWDni8TipVIr+dI0jW1eTT1rcNHQ9XYmuMOCSi++WAjCM0DKQe9vbQUD/2s1YCQsRKGKxGMlkstPJKqU6Ivzw4cOdrL2FplgszksZd10X13WxLAspJfXN1+IOrMYwTQSaxOoejO7ui9KWF6MtVJOZGFcln2H7+jWkUqk5EWJhmia2bTMzM0Or1eqUfrgYgdbtIn2zs7M0m01M08Q0TZLJJN25PAjJ5i1xcne+HjvfSz6eJ22led3a14U7OOVxs9asXfD2tRFzwdZShj83rb6NZDLZcf17nteZfI2MjFwSa+SJEyc6ltx2n6aRyLlyKOuu7cPI5ei6++4FOaYQgjXX9J72+fNLGrR53drXkV4VTjIt08KMq06fls1mEULMSwxajkSCaJFozwYcx8FxnI6/1TCMcHaQtTCMOKmEyaqukw/oitzF8ckG8S60MV/R11e8Ers3nEHdqDNkN25G/NZv4W29jlQqhWEYnQ6v7YIpFoudjnehOXXpi3bHLqXENE3S6TSBtrCEzauvegWvG3hd5+9iKQMrIUibaYYSQwverjZvHHpj5/9D217F5uzmMDh9rpO3LGuuE5YddyOEFWnbMQMXY22g8fFxJicn2b9/P81mE8MwiMVixONxpJQ0Bm9mXerfotbc2lnj7lIG4baJpSxI+phSYuayGCtCi2k2m+1YTtvBwq7rMjMz03l/FpJ2h14oFPD9cIHZtqspmQwnJ719OUrXbA/rv2iF1Z0mtmrh4oReKletW8mqFb3k8/nO5CoWi1EsFmm1WkgpOwkJC3nd2rVoDh06RLFY7JQQSaVSpNNphoaGSKV7ad12A2ZPN0KIk+spzhFLGPOKe17K65ncGFrNuudEbSwWCwtwNhrMzs6ya9euBX83lVJMT093Arinpqao1WqkUikSiQRKKVLZ0AIzmBvsBJVf7Hfz2lev4pbhW15w28t+87XQuwFTmgRBmGwFkMvlOiKuHcqwlJZ2Olcil9klpt0RteMh2m6mdmffHjBN02Tz9Rnc8WtImIujW53ek7lrjZW3oteGayz1dWXIi9Bdls1mO+c0OzuLYRgYhsHU1BTr1q0DFi4A9tTifM1mM3TrJZOdoEcjbtA35JHYnDwZQAlYiUtz/fJWvvP/DT2huDTyBqaci6FIJDpxCrFYrGMV1FpTKBRIpVILPhOt1Wq0Wi2mp6exLAulFIZhkEgkGBwcxDRNhBrkqt4hXnbL/E5wIHX2Oibnw60bTp+JPp/uoTRi0oYDkLzpJjZnZujNeJTLYVajZVmd9wXoiMpMJjPPHXmhtGMgisUipmniOE7nWTNNk3w+z8r+lRRaWZJDG8G6ALfFApP7nQ/TaDQYEIKRkZHO+9nOCJ2enmZgYICZmZkFXW7J8zxGR0c5fvw41WoV3/cxTZOurq5Of+avGsZeHSO5/kYAfvuODfP2EU9ZDF2Vf4G9X3w2DWQ5JmKkUqmO6G0v5dF2n9VqtY57eyFwHIfDhw9TqVSYnp7uhABkMhmkDK2mfb19VDPrCMwTC3bcc2HH4I4zb7z+3zKgPKpNi+6e3k4Iw9TUFFLKTjbtxMQE69evJwiCS5qBfCFEFqJLSKPRYGZmhmq1SqVSoVardWaebQtRIpHoiIqevhjiIsRHvBT0qvWddZbW9YQiJJPJdAb5thumHeDcDhhudyYXytTUVKd6K4QmZiEEiUSC7u7u0D0QM2lse+c8MbTY3H1DN41VtwPhzC4ej2MYRsfE3K6AfOzYsY7lYyE5evQoU1NTaK2p1WoIIUin0/T09JBOp+nt7eWaHa/gl2853T1x9+aFMc0DvHz9iwsigLdsCKvpCiG4fcsAyWSyk9GYyWTo6enpiKJ2AOrMzAylUmlBXEDtWXvb5dOOhQG46qqr8DwPwzBY1buKDYNZYle9AjL9pxXFWyxO1tyR5HI5+vr6SKVSHeHdtuQGQTCv/7lQCoUCk5OTp8Um5fN5crkclmWRyveQjZ8UPKaxdIYfY+iak673vr6Om7Ydd9fObD18+PCCHbNtTRkbG6NSqdBqtTruxfZ40NvTSyw7OJdks3SwpAVpi65Uimw2SyaTYXBwkEQigTk3TgRBwPHjxzl8+PCSWaroxYgsRJeQdkr91NQUvu93BETbhRKPx+nu7qZUKnUU9WK4Ll4Isfn0OiqmadLb29vJzGh3KO1gyrb590I73XbQueu6HdeS67pks1nWrl3bmbktxRRPIQROz1YYexKAwcFBms0mUkq6uro6xSXbKfjpdJp0Ot1xSZ4v7TRxy7I6Fkjf9zsWqXbcUDqdZnBwsGPqXiqszq5m5pTfe3p6qFQqpFIpMpkMnudhmmbnOSiVSiQSCRqNBolEgnT6pVtrPM9jamqKQqGAEKIzQLU7+ba1pf0eD204xZqx8zdf8nEXmrYrdHCuFpLWujOwx2IxarVa59k49Xsvlenp6Y4VrVar0d3d3XHNti0uyWSSVCrFRi5+DN9LQWb7SVRDV+KqVas62YXt7F/P85iYmCAIAtavP3OCwPnQruDd9gxAaEVuZ6Oapkkmk6E7m2So7wUKTy4yP/crryeeiZHP50mn0/T19WEYBvV6vWO9PXr0KH19fZ1AdcuyLmmJlvMlEkSXkEaj0Vnfp92hx2KxziDY29uL1pq+vr6Tg/vQxYt5uRCEEGQyGXzf7wRutt1B7eKDbaHUTrt9qbR9+W13WTtzJZPJdFxm7Qy9JcucoIzH43ieR1dXF/V6vZOyWq/XO0XOGo0GjUaD/v7+8xZF7Q7WNE0ef/xxIHzG2gNUPp9HSsmaNWHphqUkhtr0/OqvzPt91apVOI5DPp9nenqawcFBZmdncd1wLaVisUhvby+lUuklCaK2O+nYsWO0Wi2q1SoQXpt169ZRLBZZsWJF556l0+lwFh875d6cch13Du18aSe+QLQHnHYMUXd3d0dYWpbF2NgYjUaDTCZzwXFEWmuOHz/O2NgYpmkSBEHHYtB2DbctHkudTCZDtVrttLcdZ9eOuZqZmSGVSjEyMsKKFSteshvIcRxM02Tv3r1YlkWlUukkqcRiMRKJBKlUikKhQDwexzQsbho6iwtrkRicK4cwPDyM4zide+15XmdZp3b6/eTkJJ4Xlh5pLxK/FFnCI8jlR3vQ8zyvYxXK5/Nks1nS6XQnSPnUQmDijjsWrb1nwzCMMDDSMEJz+FwgoO/78wqztWeGLxXP8zh69CitVgvDMDoB6N3d3fT3hxkP7bTepUx7zbR2fEIymcT3/Y4ASqfTuK6Lbdu0Wi2y2Sy2bZ/3AN+2cgwPD1OpVOYJbiEEvb29nU53qWI8rzqwZVls3bqVYrGI1ppMJoNSKlzrqV7vrC/WarVIJBL09PScl5BsL8dRKBTChVvnREJfXx9dXV1Uq9VOsG02m2VwcPCsA/zNQzefcdtiMDw8TCaT4ZFHHsEwDMrlMoZhoLVmYmKClStX4rousVjsnK9bOy6wUql0JivpdBrP80gmkwRBwMqVKzvWqqUovJ+PEILh4WHi8Tg9PT0IIToV+Ov1OvV6HcuyOpWk22n650q7LtTo6ChCCKanp8nn8/i+Tz6fZ2BggEajQXd3N7lcjmq1imVZrNzUhVjKVhXTxHVdpJT09vZ2kkfaJWUajQZHjhyhp6en4wVZqs/D0h5FLhPa2VDt4NB24FnblNyOLVlOnJpCPjQ0xLFjx8jlcp2lIdrp9+1ZfHd3N7FY7Jw7EN/3qdfrnYGuHbvRfpHi8fgFuUcWi3Y8DNAZ3OPxeMeNdvz4cbQO6++8FEHUzihrLwXTFtrtKrJCiGUT4Ph8DMMgnU6jlGLlypUcPHgQCJ+VSqXSSY1ft27dOQcMty22tVqN2dnZTgBwPB5neHiYXC7H1VeH65K139vlgmma9PX1dSZesViM1atX88QTT5BMJpFSdtY76+7u7sTMnAuFQoFsNsv4+DiNRiOsAzZXE6r9jF3qZS8ulHbcFcCaNWuQUqK1ZuPGjTz99NMdN1B7Yeaurq7z6rcbjQblcrkj4g3DoNVqkU6nWbduHdlslnK53Jk0mXOlAda+YnGWqjlX2rGc7Qleuw5dqVTqlBRxHIcTJ07g+z7d3d0Xva7TS2VZCqJiscif/Mmf8PDDD2MYBj//8z/PH/7hHy5JK4HjOExMTHT80fF4vGPhaAckt4sLLlXV/GIYhkEul+ukiiaTSVzXpV6vd7LmxsfH6e7u7sy0X4xKpcLk5CSGYXSKWSYSiU58zHITkG3aAfNAxxqolKLZbHaq1SYSic4A393djeu6xOPxF30+2qb9Wq1Go9GYJyD6+/s7omu50raiQRis23YptDPp2uc+MjLC0NDQOfUHjUaDQqFAoVCgWq3S29vbGdDbbrJ2Uci2VWW5vKftcgVthoeHO8Us8/k8jUYDy7J49tln2bRpE4lEgqFzcNF7nkepVKJYLFIoFDpCcfPmzYyOjnYCqZcbz49tkVKSzWaxLKsTnD4+Pt5J6PA877yyGw8cOEC1WiWdTlOv1xkYGKBYLHbEN5wszQFctKKjF4O2Ox7COKh4PN753fO8Tt24ZrPJ+Pg4W7YsvZgoWKaC6Pd+7/cYHBzkwQcfpFAo8N73vpdPfepT/Pqv//piN61DO4WyXZfn1ICydDpNLpcjlUp10oaXopg7H9ovcjqdpquri+np6U4QrBCCUqnUsfasWLHijPvRWuO6LgcOHOiIRaAzM2+7GNuzqOVM21Kjte48C11dXZ3ig0EQcOLEiU681NnEZKVS4Zlnnum4exzHYeXKlZ04knbgY7ty8XLEsiwGBgY6AbzpdJrh4WGKxSJHjhw5rQ5KNps9YwBnu77Q4cOHKZfL1Go1hoaGOvdiYGCgI7pPHdwXMu36YvN862JfXx+e57F+/XoMw+Do0aOdIqFPP/0069atwzRNcrncGa9btVqlXC5TLpc7C3n29/fT19dHLBajq6urk1W23Hj+OedyuU7GXm9vL0NDQ52A9FKpxDPPPNOxvg4MDJzVIlapVDrW31arRU9PD+vWraOnp4eJiYnOs3bqRG+5jgntMID2JLm9vJKUkunpaYQQrFixYklaiZbdFT927BgPP/wwDzzwAMlkktWrV/Pbv/3bfPjDHz4vQdRoNBZ8pteuX9JoNKhWq0xMTMzLUmgHY8ZiMWKxWEc5t+vRLGfaaffNZrOTWp7JZDrppO0sjVPrLLXdhXAy46K9CnsikehUuo3Fwvog7VTUtrBaztaOU2m7F9uB6fF4vOOGmJyc7AzSbetYe727RqOB7/tUq1UOHDhAsVgkk8l0Kp63Z56VSqVjfdJadzqs5Uq7km8ul+u4fvr6+jBNs7NO24MPPkhvby+5XI6NG+dnNrXX2Tpx4gS1Wo1cLtcpF7F69eqONdP3/WV9nZ5PLBbrxEMppejr60MpxYkTJ2g0Ghw8eJCRkREGBgbYsmXLaVbYIAh46KGHcByHVqvVcYPncrnOwqjxeLxjDb9U66ZdLNpWoPa7CScLEFqW1VnDMRaLUSgUWL16Nblcbp6QqVQqVCoVDhw40LGkua7bEauWZbFixYoXfM7amYHLkVar1enLYrFYJyv48OHDnQw+pRQDAwNs3LjxklhdzyX8YNkJooMHD9LV1TUvVXTDhg0dU+a5mmpXrFix4DNlIQSDg4Ns3bq1I3wajUZnzapqtdpJQywUCgCdzvhiVCheTCzLwvM81q1bx/j4ONu2bWNgYIAgCDpBl9PT04yOjhIEAdu3b+/M0Npisj3DGBsbY2xsrHO/LMsinU5TLpcX8QwXjnawM9DJ1tBa09PTQyaTobe3t+P6KpfLHDp0iFKpxJYtW1ixYkVnLbd2dlq7KF7bYtQ20V+uWJbF0NAQMzMz5PN5Nm7c2HFHCiGo1+ucOHGCmZkZBgYGuOqqqzoWx2KxyNjYWKfoY7FYZNOmTRw+fHjeMjuXC6ZpdrI0h4eHqVarrF+/vpN+HwRBZ9Cu1Wo888wzCCHYuHEjPT09mKbZmeQ89dRTnTpabXdi28V9uZDP56lUKp3fhRCdumcbNmygXq8zNDTUmdxNTk4yMjKC67ps2LCBrq4uLMvqiMPjx493njPbtsnn81iW1RkPLieEEHR1ddFsNsnlcgRBQF9fH93d3R1rWjsz8dlnn2V0dPSiGgbOZd9CLzPTxL/+67/y0Y9+lB//+Medz0ZHR7nzzju5//77X9QHXq/X2bFjByMjIwsuiNrunPaigK7r4nleJ81+mV3qBaHdAcdisc4aSu101rblp+0mazabNJvNzoB+6v15/r1qF6C7XGiLmheiXSW5HdvSLjXQarWYmZnB8zxSqVRnltl2HV1ouYPlyqnVwNuLZCYSCRKJRMe60bYytjPM2rSv3XJ1K54PhmF0XPntWjhtUROPxztlLYBOpWalVMfifaXTtna3rRv5fL5Ts8o0zc6q9W0vgZQSz/Muq37rXOmszTb3fLVjo9prKrZrV5VKpYvWhnO57svOQpRKpU5bJ6v9+/lk5IyPjy94PECxWOTgwYNLus5CxPKn7Wrdtm3bZRFLFREREbEUWHaCaNOmTZTLZQqFQmdhuUOHDjE0NHReQVrt2iwLiW3bF1x3JyLixWgHqrdj0iIiIiIiLpxlF5W6bt06duzYwV/8xV9Qr9c5fvw4f/u3f8vddy/cuksRERERERERVxbLLoYIwqJgf/7nf87u3buRUvK2t72N//Jf/ss51WxoV85sV+6NiIiIiIiIiFiWgigiIiIiIiIiYiFZdi6ziIiIiIiIiIiFJhJEEREREREREVc8kSCKiIiIiIiIuOKJBFFERERERETEFU8kiCIiIiIiIiKueCJBFBEREREREXHFEwmiiIiIiIiIiCueSBBFREREREREXPFEgigiIiIiIiLiiicSRBERERERERFXPJEgioiIiIiIiLjiiQRRRERERERExBVPJIgiIiIiIiIirngiQRQRERERERFxxRMJooiIiIiIiIgrnitOEGmtqdfraK0XuykRERERERERSwRzsRtwqWk0GuzYsYPHHnuMTCazoPsulUocOnQI3/cXdL8AE3s9hq4zEVJc0H66px9iduBWAPY395OtjrA1vo5a97UL0cwlxfCRLzO1+k0oM3XG74w5Y6Rkim6r+xK27MJJJBJs3bqVZDK5aG2oz9rEUxZW3Jj3+cP3HGbnW9YvUqsiljNaa4S4sD4O4MjeGTLdCfrXZE/b5gYuhjAwpPECf7n0CSoV3CNHAEjeeCMAx6vH+csffZv//fO/wYn9swysyxFPmvzjT47wju0r6Upa/O39h/iNV60nZr64HeQbh77B9v7trM6tvpinsuS44gTRxURrjeu69Pb2Lvi+q9k6uWwKM3ZhRr1sPQHd4eCfM3LEvTS5ZAqze3kJgnMhOZ2hO59DxU7vFNscnj1MwkrQnVk+5+/7Pq1Wa1HboFyXsScn6d/UT89welHbErHMKR2GnlBAPzL5CDuHdy7Ibk/zAmgNQnDkXz5J9zvewUBqYEGOsygYJtpzO786gUPCjGN7ChVodBCee0/aotLyOPTAODIpCNS5eUakkAQ6uChNX8osSZfZvffey7Zt29i+fXvn533vex8Ae/fu5Rd+4RfYvn07r33ta/nSl760yK2djxDiovwYlkAHC7B/5Xf+P9dguEhtXuwfpIFEnfU7pjTZV9134cdq2ZfuvJYAQblMUJhGn0MHO9mYvAQtWn5orfECb7Gbsfjs+2Lnv65yz/LF8+D570ngw9GfAKDGJ/DVwlvxXypKqfOb4GiNMA30KZ6Ix6YeI2XGaHkBWmnU3HtpGRI3UAS+wpQCX6nwD+zqWQ9hCAOl1Xmfy3JnSQqiJ598kre+9a3s2bOn8/PhD3+YSqXCb/7mb/K2t72NRx55hA996EP85V/+Jfv27VvsJl90DFMQeBce9yTUFdQBCwPU2Wc5pjApOIULPpT+169f8D6WFUqhbfucYvG+evCrl6BBy4+qW+WLB7744l+8glhIgXhkX4EgmBvUtQInFAGBVnhLrB88n5hWrTVICaf8yVX5q0hbGbxAoZQORZFWxAyJ4wXh5M8Q+IFGuS787GNnPUZkIVpCPPnkk1x77ekxLd/73vfo6uril3/5lzFNk1tvvZW3vOUtfO5zn1uEVl5apClQ/kIIoqUzM7rYaGGEHeFZkOLMr4Buts69o7rSYvSDAOwWKjj7iSutEAi+/NgJavbSGoQWE6XCWJkrcRZ+tnfK1/P7J/foUbzx8fPerwCaVRe7NvfMaQVOfe576rKzzAkhMAzBPXvHUUFoIfryF/4blhkKIinFnIVI03r00XCyeBYiC9ESQSnF008/zY9//GNe85rXcPvtt/Mnf/InVCoVDh48yObNm+d9f+PGjezfv3+RWnvpkKYgWAhBpP3Ql74EUErhugtkIn8BtDAQLzLLickY1+SueeG//9evwzfuOePfzvPHLw1P1iVDKwW+92J6E6UVUkhGiw0+8eCRJZ/deTHa99ORQseF0ebx7x4LA4ivtAcHmDpaZeJQ5QW3PV+oeBMT5yyI9v3wBHuPl/nq0z+h4TeJJUzs5imCyA0FkVpiFiKt9Ut47uY/N0ppLENyaKZBEIRxRJmnjhI3JLPHG2itMaQkUJrStN0+8Bn3HlmIlgilUolt27Zx1113ce+99/L5z3+eo0eP8r73vY9Go3FaVk0ikaDZbC5Say8dxgJZiNAaTnnQhVYI5S6aSLqoA6SQLyqIAExpnrEdutkAQLpVOMW6picn+erTZdxTLCRLfbBfUIIAicavnjkWQQWK53ZNIoVECIEU5x7UuVgUi8UF3+cTx8t4ar5yDHyF0mrZZjpdCLG4SX3WPvlBbQKKhwBOFyqGgfbPbWC2mx4TFZuvPPk4T08WaXgBntP+Ww1u+C4HQuP5zoWexoJyIX3Hgyce5MmxWeKGgdYKhcZpeqBDy1H5WA2n6XdiiI4c9kGaZw0niCxES4S+vj4+97nPcffdd5NMJlmxYgXve9/7eOCBB9BaY9v2vO/btk06fflnuQgpUOf5fOpjx9BBgB4bA6BZ9gE9z22mhSB7/MdI94VnbBebiyuIjHni74VQWvFc7bmOqT7w9Qu6gTLHf4zc87OT7R0bIx2T1OY6XCEl532DljFaKWhUqOx67PSNQqC1xvcU5Sf2I1UY4yoF+EtcEKkFvIePj85iewGWIfCe90wJINABxou4Li5HhIRqoTU/IH9ucH6+IBKmiTc5weyXvgRKsb+0nydnnnzh/QLlpktZHaLYctGWIHBPiSGao+rV8f2LZ5m+JJxiINpf2k/D80hacWJFG2lKPPtkv2dZkljCQHgKP1AI5RMIE85iJZP1qchCtBTYv38/H/nIR+YNlK7rIqXk+uuv5+DBg/O+PzIywqZNmy51M5cF+mc/CwfpyTDLpzbjcZogOk+TvQgWriO52BYVLQ3Ei8xyNBpf+zxdfRpXudhVH7cxJ3LSaSiHQlHoAF2uQzuzw3Gw5CkD3TIRREEQLIybMgiQyRTHi4nTNklJGNTpa1RhClMLrLnHbKkLooXkS4+e4JmJKkcKTTx/7tnYfy/lqSZ1t9FxJ54Ll5P1UWuoFm389jVZ96rONl/5OC2/c77CMGg9vgf7yafgZx/DVz4lu/SC+21UXWamGnP7CUjkY/MPKiRKK7qS3QTB0oqlPK/7+7zvajS2G5CyEkjbozEXN9X0G5SdAoneBOtu6MOfbOH5Ctcv8cPCLK2zJEUYRx6cZyG6nJ6/s7HkBFFXVxef+9zn+MQnPoHv+4yPj/PhD3+Yt7/97dx1110UCgU+9alP4Xkeu3bt4p577uGd73znYjd76aI1+vE9aM/Da84p/nbgoh/Q+609BEoh5mZou47VzzpopaYeXeDmXbwXTQv5ohYijSZQAftr+wl0gApO0TW5/PygbMcJfwBcDwN90gUk5JKJzTobWmuC4MJnflopZDbDujWndyFCCoJAE/gKYQiyBydZ981/Zrrm8MP90xd87IvJQtZ4Wteb4sDhWbYNZEKXWeUEzWM/oTAxy7PT+wnUmS1EJ2bnhwH83f2hS0kvwL1bbL73dDhB053JhNFxR3vKY2a0dtJ6NOdSjK9dSVCrEjfitIIz35/SVHjdtA6IrTylIKtWICT/9NQ/gWEsi8nLGTmleGVpoi0ANWiJRp0UmkDZLRCLGyS74/gzDr7vc7zyNBMHV3B0qkzz4Ude8BBSSIK5MaHu1vnXQ/96kU9qabDkBNHQ0BD/5//8H37wgx+wc+dO3vnOd3Ldddfxp3/6p3R3d/PJT36S73znO9xyyy28//3v5/3vfz8vf/nLF7vZ50WtVrto+9a2jX72lCBzrcFzCSp1nLKNFiZC+Vj1MeShE6h6jEbuKoQOZ2X2o4/TcM/cWUivTnVyafnfz4gwOkLvTCit0Ggc5aB02Jl0AmAzacTgEDCXseZ74MxZVwIfQ/l0PCHLxEJ03gGco7uhMnbax5OlBubKlRjpJK49f7ad60tSnWlx7Kki0oTcyARitoSvdCfTLAjUOdUwWgwcZ2Ge763DOcb3FPCeKoeWxPo0k26FQqUAgeCf933+jH/7pUdPzPvdlIKa7VH8xD++4PcfPfrCVpOlyEQlDHvouKal1RFEgQrC+Kq5Z0OYBmZfL+bMT2k89mxoUXveY3Noz0mR3Y9Bj7EVITS7TpRP+VZYlHH/VBGEYLwy//ouNi91Yjjy6BSBUgRa4weQTEjGZptoNCLQBNrHkAIjbpBZm8F2W0jlobwMTqmOmouRnIdSSCHQp1zoivPSQiq01jQaL3CMJcqSE0QAO3fu5POf/zyPP/44Dz30EO9///uJx+MAXHfddZ1t9913H+94xzsWubXnz/nGKXReFq2ZOfQis9diEaamEF6Tupfk+5PfBWD6qTJOsYHCQAU+hl0iqAiUSFLu20589gB84xvkZqf5571n7lyF8gjskwPGhQ4eF9dC9OJp90orXjfwOpJGEqUVk1WPUn1ugI/HYfOcO1bIsNZbW2AFAZYOTlqIjOUhiOA8r3l9EuzTO8MfPDOBkc8jDIM93xudt82KGez78QnGHhnBMEEEGtMIu5q26+jwnhlKk2fuKC+HgE5TivB8BfiBgsDFE4LW3m+DArW365z289ixErmERcMJ0J73glaiBw9eeC2tS4WYe/w6NYKk2RFECoUf+J3Xtlxy0cLASChAEeig42acqobCqnAizB5Da67tLfFz164JJzdKMfpMGCTveD4IyXTVRjWblO5dWrWxzrsfPKXw5A+enaHlKrwAbtvUi+0GBLNl4jWH5MO7sewSgdIYUvCd0a+QkAY6ZuCXi+jn999KgW8jjNjcr5rZpnPOrt3no5Q6Le53KbMkBVHE6QgBUwdazJ44Pf4jcPyTRfIcB+IWPc/9MxOtHo43j4OQJGiyYqWLp+J8ce80M3WPxLEZBBL9vfvJjP0E/ADTC7MT1JleUBUg/ZMP+IUGoV78LLMXb9+61DoSMoFoTeN6+gUzoZpOkkCLk6LH9zFVcNJCJMR5C6LF8Mufq4Xokck5U/qc21EXDs/bLpRCGCZCn26dMCxJw/aJz45hTB3H8BQDuQS/eft64lboAjnx3Cym9cLuorJd5msHv/YSzm5pIYUgmPv3ieNlnFYTRxnM2qtABggtcYL5A9JjU2GQ+uqHvk+gwnv13aenSMVNfKWQycS8QWyqMXUyVX0uU2s5YEhB0HbtyJMFVLXW+H7QsRDNznioICC5Jo+RiaF8r+NmfPzY7Lx9XnVtHiNoYlZjeNpDabAbodD61E+PUmwGCOFBw2ZtYelkJp93P/C873cbG8nqrfhKk04YJE0D7Tgcu20t+ZETJGrHQp1TcUmKPGtyazAymqf2H0LXy9Radf7vt78S7uzBjxB4Nhhxml6T+48+wf/4wXPIlygVFmptuktFJIiWG897tvQPf8jkvT+F73wHWjb4PonaIZSwkHYJoUHceAM0W1h4PFIu43k+o7NNWkELLROoegsnfxVkM9SNDaQNQetMVbGluaCB1RcTLc+eZXaiEp6HKU22ZrdilQ9iu4riMy1q0yfPsTzu0HLiKBHGHow2RwnQGOoUC9FLcJmVSqUFiec5X57fATe9Jt85+p15n3UEkbQg8Jh6aoSJ4slBxHIbCMvCMKHW8LC9k+chpeDIVJUudwLba6FyKfwNm1hbeJC6eIqpsXAgK43XTx4w8OHpUARNNafInrL+XBAEeN6lqxtzvh249j28J743/8PHPxPuS0PcNNgzWqbebNBKrSe1xkT01VlfTrIuv27en+2e2A1AqlLECxS+0viBJh0zwsdLGvMsRH+/7+9PBhkXR6AcWuteWm2bS4UmnrZOcZmdtBCZ0uSp6ac68UWuHeC7ioZUPOVVeeC5E2gtKNQdZuqhMPTcOo8+/g88MzEbltmomPhBwHA+wbqb+gFQgc+Y7aP9OMJx6Ul1XfKzPhsvxUJ08m8kN63pwbU1pROtcEJr21T7YrRWD2F6dQKtcWdsmrU0mXiW+MYSGXcWVS3y2P/+KM2ZOWtt4PLIlz4ChkXJLnG0NoLWipJd5tNPf5qGd37uL6UUUi4fmbF8WnolM/fcb76ji7518fnbWjbC88IB+dAI+D7x2uFwxqU8NqTW07R6qM1q5P4nqagAoWxkWVKMxUBa+GYMbSYQ/V14qQy9cYHtzx/c9dyApMwEcm5Wq5S6oE73onfaL1KY8elpm/ZpZs0seA1c10dpwHfB99EaSsccvEITpTRPnKjz7clv0xAOpg44UJibrZ8iiH44/cPOMQ43DnMmgiBY0DTvc+GFrrnSiiOz8+OEOvEDsTS4dZTb4vO7T7rGBmrPIqTENMU8i+K+mXAZnXh3A5nNccCq0DItDsZ6EJP7OFZ7hvHDswQxyfjoKbF0yg8X+QQenXqUrngX03MuEcdxFiyu51w4V0F0rNjA9RXaaVH5/GfmbyyPEmtMkIwZ9GZiSCFwlaRubCNzXZyyGEOVq2hb8cTx+bWPtNY4fsBXHx/DCxS2H5BNCqaak4jAhmMPz/t+y2/hKyess7MnrNrv+/5FLXr6Umg2w3cIDfGUOT9wWvnw7DcxhMHh2SMdC5FSmkALHKGZUh73T36L3Udm///s/XmUZNd13on+zp1jjpyHmmegMBMgABEkRZG0KFEiJbYoyWrbtOSW1W2a1vIf7eXnltqv3cvDepael63X7mVZsixbpi3Jssy2KFokBRIEBwDEjMJQ81w5Z8Ycccdz3h+R5+bNrKwBQAJVhYpvrVpARtyMvPfEOWd/e+9v78P/92vHWemEJInkpcWXqNVPc3KuhiUS7NjCjyMe3jNMEEviMEE0EtpPnmZvZYTkjn2EFPGPH7+Bo/E2sLqGlVQYpmAm/h6P7R8l7kLQjkEqZBzx/ugAdrCIM/caiezXE4/NlKj3cjgmTFdzJN0uvTOzCOEThQmxO4HTXkYaNkES4FouCslcZ4EzzTPrzoCTUl7TUclGiKSUtNvtq15/ozEgRDcI2ihdz6alzZdpicsPLbRMumHSb2D27X7aS1oexBFNQuzEJZAOkS+x2nXiFZfDT30P61KL0Mhh7dnDUlKDlaOYYQtMk7G4e5mwWv3Wb6Hm51dbviviOGZhYeGm9kSVMEAmBO0+Keq3HYBG1KAVtVjqxDx+qt9Y0BAGSoYYKsSumnDqNOzbh+wXp5A0QxKlOF2/xI6WSxD3qAcXOV5f7P8xy6LR6RvtxWAxvYdnVzav4tB4twkRXO6NKhTPna2nP0dJhG3Y665PQp8w7nuHf/TcBYp0UbWzGKYCFGGUoJTibPMsANPz3+bplYTzKIxI8bBocPbYBWrBHPQWaTgR9UZ/vJJI0lzupscJHBw6iBCC/3bsu7S6LaSUN2XYfbbh0wsTCH1EtF5npdoLDF36BqNFh6JrYRoQSJOVJEa4NtNHZpFhwCtPH+HPXr9AnPSdixfOdnnu/FwabFzphCgFLXmBo7XXQEhOXfhe+nfMlQJnm2d5qf2H1LqLaTblZlyX/cNsY2zTYPpANSPvE4CCuSPEMsaKBPNnG/idCNOAWJostxWNhY/z0PfPc3qxt/p58Pr3LiKciBBBEoW0khYiMhjK2+Rti6Q1w7NfOYs6l6C6IfePlUmsMt2gTDR38xw6fK3vqrnUY/ZkPf35v7xwCakEwhAMFxxKns2+eQfof+8yiRFdi9z5BWQ7RCpFZX8F1YQwtnDPzGH4Cd+ceYqmr/DDkBf+7ByNjkWzMUXy0iXE+RncWg+FpBSNgiIlRCeenb+uitWNKbN307F5KxgQohuA7AS5GsNOq53U5TxIYzmAdihXRaj967snAvzKAXxRx4xsGisGU+IU1kc+iNVqMBRJfLNH1ywjHvgBTuxx6VouIDBNg73f/DLn6huImuOC768KlRPi+Mp9PKSUNyQVlCUXqt1Gqf6gnX66id+MWTjZQ8aKmd4MXzz+XVT+NabzDiIJMBBIGbFv5Zt4u2yOdk8iymW6RoIgIYkNpJRciL6He/IcLC0hTj3PQ9tXiYNl8c2jtXWiT41ESvxoc+LzjorKN/nser1+Gbnonze2ds/fm/keOavfET5MJH/8jRUWVhqcqT3BzIk6o7/3Dxk2YurnZlFCMXrpFCefmadTDzi9MsOpxTb+2SJF2aRom5ihxKmU+c65o5gownPPkRMrzNX7hi0KY1YWO1A704/Mrd77ycZrNNvNd6R79NVwveQrjCVBnKDisB8hBGhchLBDohQqN4xtGpiGQCjodCSdox6JYbK/WCJv5jBXZphvteiECZGMCII8T546x3TVY89oga8cmaWcsxAiIGcWQSmeaJwB+r2enPMjdKMuhhDU/DYvvjGe3t+bnVsLCwvU6/WrXnO1dX89kKefZL7psxz0q1qjS5dIOl38E2fAcpgsTnLwWJezLy/yyjcuYJmK1sg0Mw0D4VaYnG1Rdh0e3WfgxAqVAym6RMqklzQ4H84T1WFbs4BtKgrH/gCUwigrYtPigDvB8dkQJW2UIS7TcN0o6O/qiuMvoDbf5Y9P/DH1XoPzKz2WZn2aJ84znOu3FxjfV8CwBSBQcUgSSpY+ch/CMjheO4YyFKH0uXO6iej06JrjDMV1bGFhtecxegv0ohg/mCZ+fYXGN89SODWLQnJw7hFQglj2v7cjbyyx/PTj1zXHgiCg0+ncdAR9MwwI0Q2CnhxXSzstnbq6Ol8pxWzbwzLa9BpRn7SEAQrFqxebQEzyxjC9Low0nwfHQWEgSi6v2T2aag5Mi6JTwbdzzEcreI5BwTE5vri+mk28733Q7aEMkyAM1xG5jZtkkiT4vv+u6j42pgjC517l/KkcnbaJMATff/EYhiuJI4lruuz65jOMnD5N9ViF+NzL1DoRlzoKN2kTqZhO3CXyJY8vvoRIIpJIIpXCVPD+yQ9CFDFxei797ppBEVMmhEmMJdaOArEMi98/ssixJf+y+32nqy8WFxcve20zoirVWgSm1mvw52f/HM/ykKpP5MITLRoXlinXK7TPnmRbUmO5M067FhHEMcNeX+eiWos023UWlxu4cZ3RoRnykSRqrbD0xhcRSrD91BLxc2/gBU0WWwEnF1p88+U5jl+o92/meF/L5McJtENWzpx718Ps10uIgniV6EYhojLVf/HE16BXJ5x6GDM/TO7SJbrNEO9Ml0TCXNNHGTYEc4RBSBIIEgL+8NkLXDj2ApUOSEJYWUY06tyzrcrf+9E7ESommX+B3sUXWGr153kcS7AktaCGEiF+kNBbNfCbRYiuZZA8z8OyrE3f02v8rczZRmMtehb1migFMf3S+u4rrxAt1mh993mon2f23CKOZUI/s0Zy5iTBzjGOqYRocowX9o/juAFPz34Vt5Pw3ScuotT3CLp5EL1+7xxpIBMwZYwhErq9gDPuSyyoLlVlE8UG3Y5Ppz7DNy98E4CV2o1tW6Dn3BUzBqtO8ZGlI5xbOsZocJ7XzjWIuhd5ZPyHATC/9y1Ep87E+8cgiejWciSJQ1LYxndmvkmchDTDGpYF0jCpy4jR8QpVIcjNgnLaNChhmSYRFey5EVRocP+2MhgmIjYIkxC/HTFfW+T8izPXnFNZO3crYECIbgAMw0gnyNVC20En4UTtFL24l4qpjbCf4lFRRG32NDMrJcrNRbq1EPHQQ6jvf59IKqywQZgHtz7L6HgPI/Yx/AbD5+scKzksmMX0fKW7yofp2DlWohoKicjnsZc3GFPL6vfhEf2KECklpmmilLpsEeswabfbveKzXWuBRFH0phbRRlIWL9YwTUV9NkZJRShDAnx69aQflu8s4y2OkkjFN1+vM/LMl2hEAoHgG6cWsYTN/PEejaVJkiRARopYGJhKUaKH2ZmnJ9uMP/UUALONIt3lhHYY9qtg/mtfIOwYDkHmwEop5dvWXl0N15OC3WjwE5WkEaLTSw2qi4qSU8IPA8I4we8pmp2YXCtP/dTTGEGDQJXYMXaeKPDx3H4JtbzwHPkgpPTV/4prGYhSAWt4km43T5MOyjA48PwMK52IXNRGmYJ/8+0znPjOLIEfM1PvIc/100FffmmGlfYscfTu6mDy+fymhGizyEgYS544vkAS+OCVoL3QF6GrBD8/RXPZYnvzRc4YRxHDDp1AYtabfOvkCoYRY3oJw5eW+dlKl9NLHb755H9gqO5DFNIqTxLUfI7VXyRMQkwSXrz037GCGkkCKEXy9O+ys7KNeGkJRcy3XijyfHIp1bLpvUXPiaWlq5fmm6Z5RSdGE6E3M2+TpJ9GjaIo7UXz9cXneGRyqa/dUzDX8GkFcV9DZHl4R7+EEzYh8nE8C7WyRMePeF2NIisx050PkCufRiiBLcGqH8c2fIyoyLZhGCnlMBCMPixQMiCpbCORMcoLCRDYcQCYLE+XOTFznLnXX2Ju/jR//vhXr/os76RB30gaoii6zHFRCsIg5mM7PobfWuD++tdZNqeZs22qJ/v3LpeXmPJfw5Q+KglIEhsZC2RhEiUTOnELIVVf5CygFq5gC4FdNiguKl4JX6VjjjH94Q8yzx2AotMqMTP3HWg1IDE48cQifici31vBMq89Jkr1/56eizdj6juLLSVEv/3bv31bHLT6dpElRNn/3wjTMTh1ZhY1fwSr19/MVp4/gd+K4cgRSksvY5FgJgnK72CUPcThO5ESikmHCXcIP5RcbJ8FBeH0OHHOJcxtJxcNM7Xc/7uWsPhvK3PMtf1+h1d/hvuee3zTe+qoiDAK1+k6NvNEhRCIdZUQ69Fqtej1elfcgDeShjcjQFZf+QoqThAClmqV/lgaJlJIZl7rcKR5hIvjJUQe/AkfK47Jv3qM+bpJzZngwZe+ihv1aMyHONEQRH6/87Kw2ZNYWAgWxx1evWcMu9OPXsTSpFS3qAdh/7DY1Vy5iYnVayFWDXsURQRBgFKKUqm05RttEASEYfimcvVRspbmazR89na3c+FCjteevEQQSwzbx6iHCKAVm2AaBHaH3+09gwpaVIoRzZpPFMcU4xxLnR7R0DjN8V2Ydz1IJzEJ7qyyd+duTMNAGCbG4lMcODiEtxTSCxO6vS6LvYB4Nc259/Sz5LszxIaBbdtXufutxZX+Vr1ep16vr5uTlik4t9xlqdFG5Idg6QRf+85/hiSiF8UsvNjE7C0gdyyxvejRWFZUm6/SiSKisQP4kzs56Fnkkr7jENfPsO3cLMZKTOxWWPzS73O2fYJe3CNaUbS6EYkBbhIRnX2OeP44JS+Hd3oW1/Som23i3BKc/15qgJIkYWlp6bo1RVfq0q1/980QIn+1FYjneSwvL3NmsUWnV2Pslf9GEIdIqYgvXuxXasoEHvx5Vrwd0AtQtbM4nkkQxywFsxRX9tHa5lPpzHHH66cBiQxiLtrniP2IOHIRRJh2wvgBl1eC5zn3H/8VynIwWkfZcfYcARLZCZCxQy/cxp/PH2HxZMzF2ZOUZeOKa0Yp9bbTttczbtp2XrYvLp9CrZxh4WKTnF8mbpxHITAMA8OIKfYavP6dGYRfxzMaTBz/jxhRG2G5KCyik+dQScyp4ktMX1rk7EoXhMA9f5FOL6YznMcgh2G28QOBnQvpKFgerxJIA6fbxn3pRT6797MEZ17o69QCWOp1r+ncaUJ0q/Qi2lJC9K//9b9OGygOcGVkWfJmpCFJErqdLqYlEDMlolaI0aujLl5E1lcnVqdLR1UxRUg+iMAEJ5xDVHLESmDIGGUBicJWdcRQiS+/PoOIQeEhEp/G5MNAnxCNX4iRHQezsUItGSGXqSY41jrWj1CdPcdTreM06KVGHdYv9k6nQ5Ik1yREsEYOrkSis78bBMF16xfUxUsoL48w1n5fWApMhe0ZVKwKnaKNm9QIyj0O23XmzIdZafqcMjxkPI/TvEhn6QIiCTg99y1a3YTQLnGodQGk5Nw9I0xj0YqnMbuLhEDFDVhodbCEBQpem+8RS4Ptp1/HWVokDMM0/RPHMUII2u32dRuZ63l+KSXNZvOK11YqlcvKYMMkwRR9L84PIpwkZmYuQjgQRJLYtqCVYE35DMkLVKd3Y+YKBG6bRmsW07Y4fq6BH0Z4sY00wN+2i4O7xikuvoAjChhegZxS2IlPzpTMmAa+I3Etk7Bq02g3eKn2McK4vzZ2vH4KK+ohEQwNDV3X+LxT8H0f0zTpdrvroiw522Si7NJotRGOB2Gb+PUliLq0fBBJgjnkkitJRtuS2kULgzqGALdzHrmtihMnmN99ll7ndVQSccBvoVSHAhGdZo/C06doBk1OvLDIsCyyYuVwQ5+Xv3ERf/RRDCNB9AI+s/uv4hdO9yskmzPA5dHn5eVl4ji+qk5I700bHZW3EtHs9xTqp7JN0yQIAkSzjmiGjL7yb1BxhJq9tEqIYvCqBNYoALLVhCTm28N5DKnAUvi2YDq+xOFagCkUoR/SHT7KbpXHVg6omGbOZmzIpmp6nJ17FcOxGJu8wMjMLIkwCZYDkqDEkr2tf3RR6yLd5gp+Ydu61N6VxuWtIrvOlVKbOkJXdI7igOOvvkAiE5qnEsz5V+nFQxgCMCLMxKY1u4wpWhxZfIKecPEvPYXtCRbDNt3aIs7iqwRBnbI7xGvzbeYbPqrXIYxcJqsuVXkUSwXEkYmb6/cYk/khvFN13EtV1PbtVKwhpEpQUmESMUy/bUitVtv8vlehlMI0TeI4ptlsvq1xfKexpYToQx/6EL/1W7/FwsLNfV7RuwVtnDZqILJEYbOFppQiChNsT9BKmiy9LghOHockQUnZZ+jdDoFysW2wDYEbLCBmX6fVtjhlPcaXOE1dSlxjFmUpuj///yaO6nSDUaQdkdhn2T/W33ysSGK1dqLaeZBtgtI4Q3mTlxefQyrJ1y4+x8KCjbpwnnxiEtPvC+P7PnEcX0ZctJd5LUKksVk/nmv93sbrswRAPPIwys2h2l2Qium7C5jFBKskGd7lMWpPcKi0l5FwBcsMEe0QYSQYkYcrTIbyEczuJJEXMEQLxx+nHQ/hGzlMIXBnn0G9/hDbgm0oIRBBk3YYYwmf4drzFBbb2O2LLHZiOkH/yIWVXrxadtyPrGX/e73l0dfTAl9KeUUBY7YniI4kAQRxhGfbxFIRhDGiB6XTJtJI8H1JZayAYbqUrIQ4SoiH76ZULhFJRbdTo1z0OOAfoTF7hlKUY8+oy9hohbv27ur3S8FCTd0PSuElET0hOOGfpxm2yOsO1k1JGOfo2uP9CKOhIDGIDXCcftfcrYg+v5WIXLPZTOebUio9escyBSMFFxmEYLuwmhrtPPUM3T9+AsuxiEdHyCNwPUGYSPKO6ndoiCNWqOAZgmY7R3vlOySmDQ8/iCs9/MSkmMuRczyW/WVypkulNcwlYwyRjNOqS/70dIuCbSA6HUZdg4TV6FbmuBpNbLQDE4bhVc9qK5fLAJcZOU2urrUuoyhKx0cpxdLSEt1uFyEEjpBMP3GRyJ1C9DqsnOpX08VxDDLhG6caxO0eK2WBO3OSV0/Ps+gsEcUSY4fgzIJJcncVwwgpuSYTeRtFTDEykQoMJK18wPYhiz1ffhnflCTHZ7CKXYQKiQ0T0fPZPVYkdgROEmLGCWG7w97JzUl3HMfr9pZrRTo2m19xHNNqtdL3rtS9OSujEELQ6XSQUhKcPc8bcx26+Zjg9Cn8ULJnNI9lCWKjjYg8zMZprOkqCyPQWjzDhajOirdCjiKxCjF6y/izJxkrNdjTfpZOCESKi0OPYRsxrloh6vaQjQ5HHv+PDJVyDIthDGFSPdPG9DyM17+KMhLiSDI6ep7o5Eq/mu06yKJt2zdl5eNGbCkhev755/nn//yf84M/+IPceeed6/7djlBK0W63NxWyZheEniTZ62SisByDEelhnrtEc/wF+kpDgTN/BDpdepFJaDYxRqt0c1Msd4bpmmVy/knsSNCzTXJJGy9cRpoeM8XnGLHO4G97DTOYxc+tpry6ESLKkwjB0R0zNHNlBALrD/6I3z//n2g1e7Qb4P/gJ3EiSai6dDodhBCpTgDW0lxvxpu6Wtot+5oQgjAM09c0ydQVbdpYNub6FT/x/kOoIGJ0/nmm1AuQGP0okVJEUnG4dDemYfDg898nTIZILJNYTKKUItedQyU2+akXcVTCcGERi4BmuwSmR83agaEEYaFEaOcRJ56jFgQIoUiSiOnvn8Buz2Gi8I7OApK51Y65ptkvLc+KV9/MJnGtVJg2fJuRpyRJME2TXq9HGIYsLi4SxzHdToRnWZyun+X4yivEdRg/d4woCQlaPn7hDKFjsOcbT9M8ZRD5CU7FRSkoHP8uhohRGLReOE+l2cISAZ5jw/T9nGg52PvuIl/cBij2GzlCAUrA+Pe+jmsKunKBwAqI7Ryt0p28fLFBRwoicgSJSsdsM3H1m0mlvtVjBHSUQ0c89FwTMuKBKQcV+iTtHtGlC2Dniebm6LUNJsZmaSuXIhZq8RVCv8tEwWZycZmF3D66scLodJG2ywde3kFRDeOYLiKUzEUxsbeDw3smaIUtthXG2XZiO+eEgW/vJorbvLgwz6SSiOY8nt8lzFfBK4JaS2PU63Usy+L8+fPYtv2Wqz+vJ2WmnaMsedTEXwhB2G1i9xLETB3h+5z7s6dRSci35p8FGTPfBS/oEkUN7M5RGs06oW1xcqnJQ9s+gmOa9PZ/HDF5H0IqKjkTp1zh2+M/Tz3sUhA2yrHw6GAZFhDTWWrjK4cIH8soQqeLbZvsfrjMjlyB6cIUp88uklN5er3eZXOs2+0yNzeXOndXiyJpB3iz12Ftf79SFa6UkjiO07Xr+z5hGBLNznHAM7HVCq1anebY/biW4mLzGPmZY+wrFqFTQ9gOaixHb2ERU0kaXcEBby+RkPhxAXdlHukISqpJPucSOHuodYsYCFCS5rklZJDQmT+PlbdwxwPywid2PEzLQHQbYCZEQULZmCMxbdqtxrpn22yOZOfObaUh+qf/9J/y7//9v+ff/bt/d9m/2xFX23z1IslOkGxYVcZgugIDA4nB0WQF6w9+i0Oll/EWjqACH4KIpfIxKj98DwrIOx3MwiydxKdQ38lMJY+lQhAx3724QEhI5869FNwy1U5MdU+VJJbUlkx2DDn4Zo3e6BC+yoNrYHVDbOFQkSCSkKVjizhhwnnXSUXT2fSMTpVpA6YjINdK9Wymo9ps4w3D8LKNpN1up15wkiQsHVkiWaoxd1ah/Ii8rFO68E3MkzFSSs7XQ4yLC7iL81yiR2XlAsVt41TtU+yaM5mPF1CqgD9lUgsUYvgUpfkXiO2YlVYXY3QfL7YncDBJpIXt1/jW4hw5J0Gg8OM8cbmI7IZYiwH2ySVQcToWemySJFm3QW6GzSIiWpdxJYRhSBzHm35mFEVYlkUURanQtdPpMHekiWdbdHttFhtnKNh1rCDilaf+C/KN0ziOwcKwh0mC8kMKP/FTmMNF7rUn8A/kseyYyBuhG4QMz7yGsBXb73I4XT/NWMnDtEpYdgESSW7/JCd+6D7sxGIxOI4MegThG3RGl0BA15e4teMkhomZ9PueXG0T3UyAuhlWVlaumKq4XoRhyPz8fLqu7d4ie4wFZLdDOF8neP0pVH6SP6vVkFgExiWSoXmm7ALKkGw7NIMTx+x+/TzL3k4MAXYlB7ZD0XQQQZG4Z+OGVVqEJLbFG0vH6QYNHNMgZIJlV5JEIYuqzlAjoV2LmYgewHjij7ELDlR3oXY8kt5vuVymUqmwvLxMEASp03KtCtCN0d3riRD5vr9ufLP/bxgGYdRCCYgfvQcRBKjIRw5LRp56A9OzMEybCWUQFAS+I+nVLlIZtdmejFNxbHaPuii7jLBLWC+PI5Xkvom76dqTLK6cZX/tdTAdRNTFaZ3j/aW9nJnt0Ri/j5IMGbL2EJ48j7At3n9glKoosH1omHu+/1XmjscsLS1Rq9XStKgeI6VUmrLPzrV2u33ZHt9sNi+bY3r+9nprUoMrEaJCoZBenyRJf976PqaEruxiDTUIrArdHY8inSW8M5dQkQX1Bdx7fwwjXyESEbZpY1PCVza+8inHQxxMdjI1kmN4uELO9VjZvY16HBBLRfjYR9j/eo2o1saKAsLpMcrjCbEXUClN06hZXJiPMYMOnfkFnLCGdMo0G02EEOncSpKEubm5yypchRC3hI5oSwnRww8/fMV/tyOCIFgXAdnooWajHXqjSv/J/plQVj5AIahLj15nFsuM++W2gDFfI8n5WLZAKQiGD/Hlzn+FfIIZ3UFg7eKsNwUi5FjzNMIwmNq3HWUYfHjyQWzbYrYVsVjzqIgCTbeFEAqpJK2qJIrhvuL92AKCpEsv6BB1Q5J4fSRIL+6NqUDDMAiC4IoGSy+gjWm3KyH7OZpkOY6ThrXrS4uoRpNgpgbCQF6cx5D9tFBuYRFrSNJ78tuYtQ5ufYW9lJFJi5FiB18m2HHEHW0bO4hIPJe28EDEtHOSc6V5zuxdQdkupnDYMdwh59dRMmR5ZS/e8AqGkoSJgazkARO72Wa61uX+aghKrSM4ui2BHgO9oWQ34c2M1rXSkIZhUCgUNjX+9XodwzDSaiLLspidnaX71J8ysliHV59F1WuU7p9GYDLSTpCmg2NbJJ6FM9IhNm2M6hDG5BCHzVGCkRznkjeQhsuKDKnPWJheB3NE8cLCC0x2lwBJlEhMJXDu+SBG3qbpS/ZOP4jfmKEQN0miHovjAb1AMrz0CvleyCFRRViXVz4tLy+vM77XQ3I0Ab3WPMtGITV0ZaCUklwux/z8PJ1OBzPucvKVDu2lBOen/yrHz00gsFlu7EAKk0gGBAbkJBy4e5HEziEMgRsJItNGKcjvHiYpONiqS6dt0p6R1Fci7iyMUzCPMWFO0H39S1iGIGfmiG0oUeLkxDdQKiFamUX2ciydcrg/dxem6REN7Uznj0696HStfv1aWo7N5pnem7L6wex72ZRw9nr9eSutGTqFIrXOCCoKSSQsK5/lHTnMag7pLmGrnfQsk+N2HaM5w5Ljo4brvP+uMe6Y9hgp5FlYHEW0F5FScl9lN0IYDJ+NmRwdTxu2bfdK5EyHIOzw+uxxMCSJhLjtUyoLbMtCKgtH9XCVQ9HrR2/DMGR5eTnVxmTJ+MZn7na765w9vX6vNMe0I3KlSEm2chf6aUulFInfhRiCwKdhT/C9pYRaHJCfnuHSgUmUXewf5zK0nbu9UZi4j2YElWKeVmSy+IEDjDZb2JFgbPEbDB14H261SGV3if13H6DoWdx15w6csot/7iS2H1PcvZd7tlewDUmpNIJpKmZfW6JXr3Hu2Ks8XtlDVJrG8fJpg17t/K6srKyTAeh5oOfjzZw22xJC9KlPfQqAj370o3zsYx/b9N/tDL0RZ6MCQghmZ2fX9Z/o9XppSF7G/Y72uYnFfsTBrhCjSAR0O11qXhn77AyWI0hUQu/+Q/RKu1mJY2qHekzkq5jGFEoZNEWH492XMIRg95DL9uIuRi9ewDYFL8z2OOtUMR9+FHHP/0jsRhSGa4Td11h0qwRRTHnB51xrkYZyOb8cglBYlkWpVEo1KdmyymyVWa/XW5dS09cC5HK5NHW02SLZmDLLEqder5caRR2laqwsEAcxTT9HedLEiEOsskPcDPrNFWWMHXVZ6YIpFJXcNLvNHMmTz+LYUCoX2CkbGEnM89MxPeExNPQwp0vTdOOQxE5ITIch16GU71IxcygUKgbH6zE+/AonV15C2YLwoV2obgfcMosLbyDivvYka1C08dA9ibIkZjNClBWqX2m8sq9vjMzp9/R9WJaF7/u02j2Gewn86bf7lSqYjN3doSg8jtbPkBOA6VDI51g295DECsM2UVjMlu6iJy8inTY9z2VorMDij93N+WC538doZQhbKELhYo3eC6P7aMgVSp7NA/t2sd1J8IkhCTjjXuTMUgczVEw7NhN7f5ztQzvodrvrIkHaWM3NzbGysnJdhMgwDJIkuWJPIx1Z20x/tbi4mDoylmURBAFL3SWeXHyci2dCFuc8ErdM0ggJ1CSohMR28esNYsPAVSbx0HYO/uDPED5wF/H0IZQ1gmkIKj/9SyyFkxj782xLprCSHrmgQ2k0D90F7jjSpZGEEBmYwsSV9zFkTSASiTAFqtcgDHySHngrDTzTox2207nQbDbXHZ0QhiGGYWwatdXGWlcGrWt0mkl76MIJ/V3o39OOXXYuZ/+Ok0jO58YJAgdDSqY4wzk3ol28l2cWH2Sud4qQEpGbx7cMtjkwUT4E+y9QHPL4wPYH2VXZxkShxJThMXrAIBcG7ArrlMw7MeK1VF2+mMcLFd34AsfOtNhmeSRWjsIHH+Ke9xnkPI94/B7yrQu0q7uIzryefv+1Wo1arZZq7kqlUrqeoihKn2njWgzDkGKxuOna1JFh/T1kCxuy+6WuvtXkNY5jZBCiopgoCrhjosJofpyaTChKRXfEY+loi7hrIQyLD7uTqPw4zVhx9+5xjCQPtmDXS3McFApkP/OQH7K57/472b/9HpyDf4Gp4Rzdjx1ECJNDI3fwsQ/uY+9Ynvt3VLDGxqgechDtiFj1kG+8QSQDknKVSrFIs9lkcbFPUJeXl5FSphWZ2lmt1WpphOxmO1Imiy0hRL/0S78EwN/6W3+LL3zhC5v+u12hNQ5ZwgBrIUQ9+X3fT3P8SZJgmTamJXASiIaLmFFC+L7dyG5A+OwCr59epJEvM1QQBJaH8Bxeby+QYJAIBdKiZxiIxOR4LmI8X8QTfXHqvaW7ADAFBFWDjuHSXEwIYwtMRTLqIfcVqW27l27LwVveiZKSldggMUo4lpsSGW20tZAS1kLn3W53ncetBdfNZjN9TZc56yiJxkYPSldlbaya0aFsIQRePkcx16PZa5A3v4/hGojJKf587hLtaJ6k1cE0BO1Lk5iGgYoVlEaQdokxR1DIeZRHdhE7ZXrCwDAiytsfpJkoinZCkSH8cJqV0GG+2cIzFbPueQxvBiOco7F4hnI9pqEinosamCsnGfmLn8IOEozOGnHUxsRxnJTY6ff0820Mz2c34jAMN91U4jjGdd10I9oYJWo0GqkXOzo6iu/7JElCLzApunmS1iJ7ZI5k9AEMU7HS7mCeXaB1/hhy8gJDe3ZQME5zaWWGrhHSi+DpzjiloIXc1mVOuZjCYObCtznTnccQBmMHa4wWDCIpMY08sryTSqGM4Tk4NngqpJLPo2TMtvAktbMOxIp9j7yf8cIeyuUK3W4Xx3HWPU+v10v1HPq1bPXUxqijTlluHBOlFPV6nSAI8H0/1W9kvwvXddOeWjqydql+lPP14/3O1IFPKC1MQvy4TGzN0Bj2eLbcILEEZpIQq4TdYzkqlSLEIJwSCBCmS6diMVx0kLGLY8HdzUscutelcKeJ98AD9BLFjpGAYaeGYVQIagXMRGFZijA3iTAEKj/GaGEnH9r/AZZXGun9Ly4u4jgOnuetG6uNUVu9F3U6HXq9HqZprtc0ZvYwHfnVr2dJjx4/nT7XZCmOYwrKoD5UQjkW53oN5nrLXCwu0J2eIlp8HdtPiAMLw3YwEkFeSO6f+ABDdp+QDHlDeKaHncsjnCKGsUTBKjLhCizHxZAxO0o7UFGMXZCM7u6nGou+wb6RbfilIextUxgGbKtM8eCuxygc/FHmHzuMXT9Pt9tNI7cbU9q6dUCr1Vrn1GbnknZsOp3OZZFxwzA2LabZjKC3Wi2iKMIwDObn5wm6CSSKKArI2xaP7pyio0yUAGGGLC7bjLg9lALu/zlM00AJSWnnQYadCmPeBJYhKHZ7yCjBKns083B4epr6iQaNTh4MG+m4IEzKuSqO19/fBQLhOphlm8CpUhDzBKUKfqg4bRYRq/u3FoDr/T5JktRR1SL+brdLoVC47HlvJmxphOgzn/nMpv/0+7cbPM9LN46NoVKlVBqe1bloy7LSRSljMCyBJ006KMrJCK+7Lst2wlxeMTfhEYQJpiGJhEGztJuznVm2RVPk8w5BJEjMfqNBUZwkb5T4TP4H+4edrm5gu4Yc3rctT2NEEHQSgtggb5QI3RKt4jZckSNqSyZjl9jMkZgJiV3h0e4OSqVSaly0tkcb2DiOuXTpUpoy1BtDFEUsLS0hpaTX66VeEWwuNMxWYOkQv/5vNo0B/WiTY7t4TsjsZJFXexcwkERD++nltmFaF2BxDkyQygBhILZNorbtRBkGRuUgql5DnTjBiR+6C7AYKwgMx6Br5rC9BBm5CLPA9rEq88VDBOUDTNizoErIeI6ikjihojPfRSqX0tw5hhaeIbYFFddIPUy92WriGIZhuhFnBfbZ6JmeR1nDvtET1b+jlEoNYLZ/ivZA9bg3Go3VMVfkLYX063y8NIaRG0WoEBUpEhx6qscDH/4opV0jHP0Bl69+9ft8deYJbBmyoC6QGz2IH4NwbYRhEAYNDNPBMiyMyTsod44TRiGW7J+jlC8LfvbOj2GIGFO2GHIriCii2OhhT3WQoaQV5yGRSPpEWqcztL4jm2aenZ1dRxJXVlb6hmQDwZZSMjw8vI4s6e8hG7HVOivdv0fr5fR8NgwD89LzDLdMVNQl8Soo2e+sHMcuOQTIBL9gYjguRgyJjJlvzzOUq/AD20sktsOP3jUJpo1lRIyOOiTCRXg5ckkNp5TjY/c/hEokMrEwe3Vc10CNKpyVGkYiGS7liYSLEgamaWDaBsPVCovLy2mJvV5f+pl0tC2ru9PpLj0mnU4HwzDWCYh1KkdHFrPCaf17+nUd9cx+vlIKJ4qYHylzwV+gF/t0Eh8rZ6Kq4/iyjRsbDLvjFKdKeLlROnGHj9w5yZC9wYi6JQzHZvbYn2AZRX708Bj7RouIqbv41L5PoYIAw0ww9zyAfN8dPDA3g/ngZ8Dod7A2TBCGoNF1CBtduuUivT1TqSHX7TCyer8oiqjX65imiZSSRqNxGclWSuH7fqozyxLFbIQou26zafRms4nv+5TLZXzfx3EcSqUSy4s+0rAg9il6Fo/s2MlK5HPCStg7bWGWy1hDQ/3PHdqNZYA0FIVhj7s/tI1PHH6UfqvrfjTb+vAv8FMf+1t4Vr9Fzo5DRbBcQmEx9767MEvldcNdKDvY+YRebhwpO8RYTFXKWKvPlM/nU2cL1g5xDYKARqORkuhsBuFmxZZqiM6fP8/f/bt/l5//+Z/nc5/7HJ/73Of4uZ/7OT74wQ9u5Z+5ZZBNH0VRRBiG6wiAUipdYL7v026301CtVYzh9dcxo4TEDbn7hRVaBDx+wCeybIIJl0AUsEyDSIC0bZJYcPfEfiK3QN6yUEJQdUwmc1Pc5X2cfL6ISAJY7etiCEGUKIQCGStypknVqXA+qbNQuouHivPQ6+IpQd6zaVlNykEPObeAbduYponneeRyufT5sl6VTgllSaH2fHTkTC8U/Tv6Oj122uPU3qtOw+nNJitOF6bJeKWGodq8Ki8i8DEMhcDGtkKMxhLm8jxFFB3fwSjmSAr91gNJfpzRahfx879AY1sZsCnZ/e8qb3+IylSRbpggDBsv7zK0+zCV4YSGs53ikkcsIkqVA+w076STuNiiQhg5uO0a0/c73FNcq8pLkiRNXehNdeOJ7joaoY233nS11kgb6Sz0xgN9j9S27TQFFIYhlUolNZIXLlzA931yuRxCgasSaofKuLaNl4SMdl7FjCwKhTzve/CTfODgx3Empklyq4bQAkNKutRx93yQqNPGdkoIYfAhewTTcjGFiSDGtmLCJKLl7CC0CuRLDiNTh6G9gGsEiEKMr+rcP3QYL+diRwHnV4YQShJEfhp216marJetIzvZyI82YNlIpJ5zer5pYqVTPVltlW3b6wjDxjEWQlCfj8h7Y8SWQ3lbHikVpyeGUYlLLEPOHjxEmBMYroeBg4y6dDo1SvkhVOAj7f6BnJgOP7TfYf+hYcbKHuWKYv+OJrnhMkJF+D0wawHRN36fsV/8SXIHbbx4hXzXYLhkEhse0vQ4XDiLYRhYtkmr3iGXy62rNNTrTqewdWqmVquxuLhIFEWUy2Wq1Wr67JsJ+PXzawOv03LpGlyd40tLS+ucIaUUFWFhVk0QgrYxjDRNiEaxDY/lXR6XVo5w1/4Kf+UzX+D4Rz5EL25RcG3uL+/duLVS3DfFs/4iZqDovfwyo6MCa++j/T2h10U4JuK+n+XAh34Cd3GZpNEmLJSRYf8AZ4B628S650F8x+aiWGte6XneurWUdfTy+TxhGLKyspKmT2Et0rNxXer5qh2UbKZAp66zEaUkSbBtO3UcHcdBGDmUYfPoyms4lokrXCIZcVbEBIaP49oUp6cY29GPpJmy37ICYGxnCWtqisSzMAoOhXv3IzwPy7AQpsB2TApVDyyXS02o9RKEtUbeMAws18SIeyhTEiX9Q64vRicZKrrr0q9xHON5HoVCAcMw6HQ6FItFYE1vdbWWDzcDtpQQ/cqv/AqXLl2iVCoRxzEHDx7kxIkT/OW//Je38s/cMsh6sVJKarVaukFoj02TCu2ltdvtvhBSNEmOvoERJbBjARD0bLCSNj5VdgVvUPbGyRuCEGiwhJIKMfEgoe1ScS0QcGDIxrZccrbAsHMYcQ9RLkO1T4oOjXnsGep7CvdMFHh04gBVu0yCSbVxmt1PfBWrFxEWXags4zQ8li8l6aK2LCs1Mtog6cWtPWrtmTYaDUzTXBcuLhQK63pUKKVSXUjW+9TX6GiK/ox+t9a+MTMMA6FiDLOFQGL++EFME3qWDWZM0ulQzUWMOiZmZx6AsLoXcjlIYiqf/hAin6NkFcF0cEV/oR/eVsV2cuwfcugsF8A0eXBXgaEpi50jeUrdiNCAkZFDuHGR/fE4UpSwcybB8H0oU+A0zqRpH51C0NGGQqFAHMcpOYa+AdObrDZiuVxuXXRDX6s9+WwE0rKs9HP1+BeLxXQD1711LMtixBFYjQa9uIxVHqcSdXlu+tPYSkDO5q4f+TkMYSCTGGWtEgRDcXL7Z7EMgWM6JL02Y0YVQskdZolI9a8z3Ry2GRNGEXWxDeF6/NW7P4dRHUe2GkxUQ7btA6+wwvZ8lV0XL9Ge3Y3hWKhugGnZFItFTp06lT73zMxMKkCN43jdc8KaoF8TcO2IaAKebYWhx0OTJf2ajgBoDY4QIm1qmcvl8FsWZvVu/Ht2kAifeifgpRGFEnn2lhP2VSv9tOzkOMnJeZKghfx3/xnT9ZA9n8RebWBrOgi/gVkexYpr7NtRRzUWQUYgYxqNGG/RRrRb2OUKD03ej6deYMK8j0NjQ7zULBMaHkIIXANC3yc/3yc5uveNJt5JkpDP59M1OD8/n0Z+pJTk83mazSb5fD6de77vp32EsuQoGz3KttvQhk+T9qzmz9u2nZ9/6MfZUdrBRedOusEysS0Yy5VplQQ7Xp/DMAHD5JMPHMIV5wCo2sV1++qlSwmG4/G+oTv6f8P3mXrkDrxc35A3v/EMhm2C5VK1LGKpUEmMtGy48BTifP+4neGpAoxPk8SSi7tcHMdJ9xNN8rTzop2R7J5kmmYaRVxYWNhUNKxf19KAbCR8Y8WZJki6l1gYhiS9DlGzi5SCeFRgi35LFgRMlIb5wdI0Qw/fhzdSpjrRP+TVXqljjFcZL/dJmFkswmgeq+jh3XEQsUpmDSHIlWwM2wXT5e6778MQBiN//a+n9z/6P/8SD/yFndgiYc+eIaYrOaylBg939nL/7uGUZOu1UqvV6Ha72La9Ti7h+z6+769zgGEtxaqf/UZjSwnRq6++yr/8l/+Sz3/+85RKJX71V3+Vf/bP/hlPrZ73dDtAp0F0OiIMw7S8WQuAW60WlmXheV5q3LMixDiOmWvP0RA9itImNgTL992Bbdp0vDH8EIzIgWIOz7EJSHjFf5LESMg5+X6aTBn88mPjVImw8yU8y8B2c4i4r1cR738IgJG8RdlbnQbCYMwdI2flMI08l7r3Mto5TT5nsmtsiCTXIIkLmKwZ86xgXKeD9AYJ/XAq9ImL4zgpEcx67tqId7vd1HPVn6ub8kGfFOnO1rpniN7ckyTBEyZiZQVhdZn2FzmBzasLPivCoDtqUTh6nvieHENOgIGin+QAsW8/SJVWqHxy6pP82OFxxldbBXl5F9vJoaQCZfbPdQN6Y/eR5IYpJBd4pFiEQ4fohCO0jAI9X5C3QoKh+wjL08RGv5xW6zmyxkkbkGyKI1w9QFdrrvQ8yWqr9BjpVFGSJKmOptlspkcAaD2S9uaDIGBhYYE4jrEsi0qwiHH+DS7V7ybqjlHqtvgrn3qU/SOuHqL+XNn9YX7k8E+ya89Ev3O5N0bOMTEsm7nGEeKd08jExPTKdKMuOSuHqE5hP/AZmis9kg7IVc9bFAqoMGK04PC+0UPsL5QRUQKGTeiPYhddVLOFWJ03WcOhDbTneaneJTvnsuO0uLi4jhBlI5bQP99LNxPUG3uj0Uh7NWmtUhzH2LbdJx6uSz4x2Z7fzcvOU0Qq4L++cJHJ6gFC6bDNSyACwxvCLVUIXzpG4rdQK3Wc4VFUGKJWDaRCIOIORq6Mt/8A1YP78KZzMHYIZH9eDF0o4AyV2TZa5YHt2zhz3zYORBPsG9oGcUyrsgdrYpzcygLdP/sakb+Wgs2OR6FQSE8SyEZps2lDHdnVc2Vubi51bLKE2/f9VDibbTpommYamet0OmlTwkajQXs5ZsrZhWu6GH6LMx/4OWy/yrhXZomYoT3vw16NyhbdMhXz8lMPpFKEgcIQBkPGXYTnLyD9AGGtHagczi5geBaYLtbYCENFF2EYPLRvlOVWGe7+KQDu/MAUF4+usD3Yx86hXf3vdfUsO93RWymFbdvp/qXTYtBPR9frdc6fP5/OI9d1ieN+CX+r1Up1RdkoyvLy8mVVfr1ej6GhIfL5fFo0UK1WMb0cR3vThGYROeIgl2vMnOtHWQ6NDzNpWky+bx9mtZp+lhWGdDZode7IjbB9/w7Y+Wj6mjBWyZXlgldmfGI7cSIRukea6v+/EKKvQdpRwSlUCJSPYecQhrlOJ6ZJtHa0dORRE0UdActWKWpCpKUiNxpbSohyuRyVSoWdO3dy/PhxAD784Q9z+vTprfwzNzW096/ZsTb4vV4Py7LWaR08z7usKgv6YttCMyI8d4xCDD2l6Nx9mOE9h6jHMb18AQMb8+4xnIkHaAoJhkFHRnimg2t6axVJvR52rsTOqoOXK2Akq12kDxxYu2kB5ckM8TBtclRW781AFkap5EooEZCERVj9XW3INZnToWLLsnAcB8dxkFKm4V/tfW0UdmojldU26BJe7bVroui6bipET5Ik9aSiKOqXOteWOT50FNPwmO0FHGskGEmImXcQHR/D9tlTOItzeHt/RwAYqsIPfhhWq0kA7q7ezY7pfnWkdD1srwCJwLIFWGvnXQkBtgjZZudhdBQpTTpenqg9STRdwTQcsPOIV15KvXG9OSilcF33MrGvNv5JkjA/P59uqhuR9cz1OAohKJfL6bEoOo2pjV527PRxCty/jcgdoSQKiNAHITCKYziyh8xUw9jVndy7/UFMaa2mwyzGVo1NXkCulAfDgQ/8MgCjuVEmxoeo7NnF7vn7MA2L5Yv9TdMaGqL6I49RwmBHYZqi3U+RhTN18q1FhGUiE5BSrdOR9Xo9crkcUkoqlUrfaGQIUbPZpNPpsLS0RBiGaVuGte9rjVDqdKLWcenom/5+sp3Y8/n8Ou/Wnn6Mqdx2ZCFECclkycKulnA9ibv3fZzb8SIPH/oMufwowrCRQQuJxJucovpT/0PKM2vzXQwvjyhN4FbLiDt+lOKd0+BVIYkxzATMPKM/fBjbsnAtk1N7xyg5FsK2MZIYaVl4hw/j9DpEiSSy1kq39XwqFotpNDY7V/T80Cnbbreb6olarVaqb+x2u2kZuCbves1HUcTy8nJKLHXEe2lpKV3XSZJgCMkr31nGMAxO33+AcOIOhhp7CI6ZLLqjGMrGXrXF28s72OaNXDbnVaLYs9eidPZVhh0bI+ehwhDMNb1d+ZFDmPkcGAYq55Jb7UI9Wcn3CZHRv9bJWfidiHG5jR/a+ZF0TZqmmaYENZnO6vNmZmbSuZAkSSq21s6J67qXlZ7rzt96/6vX6+m+qJ1m/f/6WiEECINOYZRmKDijLmLUZzl/og0IfvGevw5KUZ0okH/4/WtzPIpYKWxbN26GZWLlFIzsX7vOENzzke3glWH8ThzLZLy0Zgew8+DXAdhWzTFS7BNUixghE8TqlxUEAbZtp3uLYRhpNFrPMf08Wgqg9yBNwHUE6UZjSwjR888/D8DOnTv51re+RaFQQErJhQsX0g39dkLWwOlQfJYE6M2oVCphWda6Mk4trJZeiVZ7DmdlDqkcpMozzDjdRNI8uB+vWCaYWmFs+H6aJBimoGY2GfY8XNOlf9ANiB//MfaW9lPxTHCKBNUDl9+wgIuOZLHdv48Jb4KcHMI0YpQSGKUSIwcm6I2WMcMIHDud3LlcLk33ZRszep6XptP0RqI9LZ2P1/1yNgqvTdNMxXiaTGaPHtAhaNu20xC94zjguiz2AnaLcc6ZEl9ZBMKAMCZ3z2dJpMSig9VeoNkyCMO1XLkoFhEbzvjqjT+AVJBUqgzvuZtd5l6m75pADa+1+c+ZORARzb0/DqaJZ4SMDAkW3TJvPDLG4qkewnQRh/al378egyRJ8DwvnSfa29Leo9ay6DShDt3rcdAtGrJCfR3BgDViqiOTuVwOz/OwbTs18JZlYRy4m9gexSTBzK16lm4Ja/s484/uWzcmTs5i/EGHnJUjkpKCayGVYjjvMDzs4eYdKI7zV+/6q9w/fj/7h/eTLztM7xzuP3+8VpUjSMCt0PjuqxScUUSrQ3zvYRwnIrfnEEhJEvebC+pozdmzZ4F+KsKyLKanp8nn8+kaMk0zTU3X6/WURGWJkCbpOhWZ7VCcJRK1Wo2VlRXK5XKagtSfc7xuUHJyHJwRnO8c50z3OaKcQ6FsYQ5vYyVc4bFtj/H+yfdjmDbx2GHijz6KaTvY29aM1WvfvoT5wM9AeRp7x12ZNSlgx8OYeRe78ijmh/9W+tYHx3+CytQYwrYRSuLtMDFcF7PbJrl4CT+MyOfzlEolJiYmWF5eTtfp3NwcYRjS7XbTikQdCYmiiEKhQKvV4sKFC2lFUL1eX+f86DSijmBalkWj0UhTs57npYfhVqtVcrlcf+5WtoFh4zg2oRv3iSKKnJXDMMeRUqADwpOFScbdav84FHPNAZGJwjYVYysXGCtUqPzET/SPghf0G/lHEcJ14OP/x7p5qxKJU7CZrNb6qupVGOaa5q5YLOK6LqVSKSWOvV4vjd5ox01HYbMRy7SJ4uoa1Pv9ysrKuvPvsml/ndbVkZQgCFheXkYpldpQx3FI8nkCZXO0VMQqVNLPss2sY5bpl/Sh9+MXdq57fmEaUBgFy1v3O14h8xkmVL1MVM6w4MlfBykZNVqMFPrvqYlxrDBCre7rOgJt2/Y6YbUuntF7evbUex1pazabaTXyzXAw/JYQor++mnP8pV/6JX75l3+ZCxcu8LM/+7P8xb/4F/npn/7p26oPUTbio8V0ekLodJHeQHT0Q1fQaGOmlGKx51DPmVw6O4etCjx1RvL8xS45x2D7jip2ZQppCzzDYyFYwDMKWGMdcmYOx/LWCFG5TNWp9m/OtOmNv2/Te25GCfGqMSjYeaTIYRgShYFXdfFKNj++55MgE4yck6a/sqFQzfRhTSOlQ816wWtxrCaFWm+kyZMW3WkvU28utm2nVXtSylRPI4RI2xX4QcD5O8fpmPfwY+wiSAz8sRHqQyVyuWFU5GNFK0hlcWDyGJXpax9EbBmCPUMOU94UhSEbr+wQZU7P2JXfxcjIDpLSGBgGu4oLTFfztJMOh4cPM7YvhzBdosJoGtHSJE7rUnRaUHvcWUIEpIdjZoXF3W7/+JSVlZV1JdAb02rFYnFdE8N8Po9t93U5IyMj/ShmvkCS2MRWBcO1+wYGMKa3c9+e9cfuCCGYrk7yhQe+QCIVj049hjQUQikS1+lHN1i/QVu2SXksx/t+eBdJlOkZdPTLgCBcaJA38ohqhXikSkktMXXnFLLZpn3qFOVymVwul6YTcrkcQEqydYo6K4TO5/PpZr1x3ukeRtqYJ0my7vw93ZBPV8tIKbEsKzWESimsoonqJjx0xmBFnWVl8jSvtX2YGkOurj3XdLENGxA8KzecZ7j63yRWGFZ/H7BdbahXSdn+j2HufmS19HlNR/PA9u1U7rsHEIzOnaPn9qNFppTIZpNQJhSLRUZHR9PnqVQq6di0220cx6Fer6cGyzAMLl26lJJknR7UY6fXL5CSBl3c4Hke7XY7JefZ42GGhobSKLnluCAg57ocnBZ85OAkOH1i/smDH8DAwDAyc/fR+yBs9yMVq5BSEc9cJNdNkM++lJZ9p05Bt4tRGQVnLWUkEJDEjO8qc8f28+sIkeOZCKPvnObz+ZS86VRzEATMzc2tK5vX46DHSj+zJgA6lZ/L5XAcZ116UcsB9BmX2f3LsqxUGzcxMZFGce1qD6SAkb1Ykwf7N64Prs48i8b0offx8I571s+37ffB+z6XygKuBMPMvC8MUBJOPQ6nn4AkRgnF0of3MHL8PIERp3uxtmX5fD5NLWqJgxCCXC6X2jmdQdFOjta73QzYEkKkvaqPfvSjfO1rX2NycpLPf/7z/Mqv/Apf+MIX+D//z/9zK/5MiuXlZT7/+c/z0EMP8cgjj/CP/tE/ummiUNrT0ptxPp9PSZCODARBkJZUu667rotuqomRJvcFBkO9C8w0d+FQoe5MY+QPIlF0itswhIkhDPzExxQWB/PvQwhB3syvpYOuA8IQzHdibQf7fU0SQa+wjcDMU9nZ35DGvXHCqSH2PVpdtwmYpsnISD+8rRdGtopOewedTic1zr7vpylDfZq4/lkbf1gzUNkeOzo6pKumdDROCMGsOcm8uYNtysEwLfbtKLE8NU7R9jhxsExSscEwMEsljKm9YJqQ6SWyEfdM5iitGqrJQ3ls1yAO1qIIRr1BZec2RLncTx3tHcewTFzTZldpR38svBGisb3phqBJjT5IU4fntQHW6RpNJvUmoj0x7ZHqtGSv1+PChQvroo/ZuaWPN8nqcPT71WoVM++w4CiE6WDonAWQGHnuGT982Zjsre7FNV0+uH+UouMgBXxi5w9zZ/UghqEuux7A8Sws20g9cg3ZbmHk8kx8+xjiYx8kNg2KByq4eQsVS8LVELzneYyMjKQC+mKxuK45YL1eT9dQNoWoxzIMw9QA6YhlNmqmDyvWRs1xnJRshWG47nccx+EDB0YRCoaGphg1BQcmx/jUoccojxlMVbfzi/f8IsbqGjSEYL49Cxsq1uLVju/mKiHKV1bDIx9Yiwa5eZuN2DdWxLvjDmSvy1RwhI8+uBeRz+Pt2kE3TJgz1p4zjuOU1BUKBdrtNq7rppFDTY60s5H1+DudTlpJpYmRNnAjIyPpvuW6LkEQ0Ol0cN1+5ZHrulQqlTSSlM/nSVYbJ7qOy/6RaX70ninueeBBDjw0wb7RMkPe8LrnzO3fBWF3HbmRicJw+mOSf+SR9QOjJLLXwzj4kdTw76vu445HfgSVSAzLQmx/sB8K0eNbsBGQ7s963kA/CtlsNtP3tB4y24NNz8exsbH0//U/3b5Ar98kSWi1Wuk80ykzvTa1fkkIkf4tqRSlkmJsXw9TmBgG/f2qsGrvMhEfjcnCJD9x/651r4mpuy67biMSlTD+2Ea7IeDon8LD/zNJvY7adQ++ELhDw/To66yy96sjz1ovCX2bUKlU0oj34uJiGnnTRQ56rG40tuQOst7gxMRE6tl+8pOf5Gd+5mfWCWO3An/7b/9t8vk83/72t/mjP/ojnnrqKX73d393S//GW0UURWlJZrFY7Ic8V8XVWpgZx3H65WvPzXXdNH1imia78wG9e0dZuGc/5dEphIDx3HYOFt+PRHK0fYycmetX/yhJJCN2e4cA2Fc68KYIkVMx2D7qMFHsf2+GCXeNeDjje/Arw9hj/RSRKUysew4Qq/73rcvtsyFR7Vlrkqz/qwWGG6s0gHQj0R5RtuRVR0JSHcLqtXrB6TCsbdsMj4xyIXeQe3ZMcHz7Z/Eci2PR13BEAc90ifYOkTNNrI89THvbh1cf/s3Nzb7TlDH6jQbq4oW19z/wARzXpuy46bpotfYgx4bT3k1AWpqqn39j2lQLO7XuCtY0W1q0qqM+y8vLqWYhS4iq1WpKJrPlrnrcK5UKrutilnKcni5gIvvVOau/L80cZoYgbcTesSL3jt/FZHGavJkjiZLLCI9GedTDyVlYTuZ9w0KaZYTnUrALGMLAGkvY++A+TMtAJopQ9sdn7969TE5OUq1WqdfrjI+Pp1oW3T5ARyWllKysrKQGSFc/ZSt8HMdhYWGBbrfb98Jtm5GRkTQtqb8XDcdx0s8YGxvDdixklGB4Hj808Si7Kzv4sXu34ToWlu2xrbiWFnMPHeLuWhHzey+uG5Pzr/V7RGlCNLlnNR3irmnZRrevr7DKIlleRqCY2jFB7q67qH7mM7R3H4KcmzoI2rlQSqUEXEc2gDRlkU3XdzqddZqpdrud6kA0CVhZWUl/1qSz3W5TqVTStV4qldL9wHVdhledpvs/tpMf3/vjAEwPT5Ir2gx7w2wrTPZTO1mEnXWESEmFEJuQbj1nez3EagSx/7Kg+sOfQCVxvxhCqXV7Y3l07Vo9ZjoaqdM6ej1pUqzngY5cW5aVzqFqtUqlUmF6ejpNI2lBu65ezGYMgiAgl8ulUcqh1X5C+m8GQYw3OoI14vHX7v5rCBRKSh45uKoZstfu/2rQkbSrQaq1sxZXB7s/roc+CWOHUFEE04fpSfD+5t8gXHXqtFOh9/axsbG0HQuwLoWvnTSlVKpJ09+Tbk1wI3Hl3e5NoNfrXTMt9vjjj2/Fn+LcuXN8//vf58knnySXy7Fjxw4+//nP82u/9mv84i/+4nV/jg6fbyU6nQ6NRiOd6KVSKc0D6yiI4zgEQUCz2UxJkFbhay/VsizcsIUwIHZMPjBt8jwGZU/hx/0I07A5xJQxRa/bI4gCSkwS+v3ogQgCDDu57pxsrCJMJblzqL8hBlGC35ZIFeOXioQyJO720xGjw7DS7OCtlqRrr1LrNLQ3qYW93W43TYVp0qM995WVlbT3y/z8fL/nhlirssq2e9dhVk0etPHXBqzb7fYjM0NPMZ37C5xYMFjyfRpmjXwyggwSWiqAsQ8Q+R1a5cPQ7SKkRIQh8nrHKpAE/lq+2zQM8HIkmd83Sh67c0P93HgU0zoB5bt8LGWkqbKxsbHUS4K1k9j1P12BqAmRDi9r45PP59OUmY4iAemYLi8vMzo6mpaP66of3fBNR5wKhQJB2GPHyh24nCRKEoIkhk6HysGdJI61rp/NRhQoEKsmfq9LN0iwxw5tfr0FYRyTyLXTvPngr9D7r3+CUS4RxxGBH5AMtWH6cwRhDyPpYue2p2nYVquVft/aAPu+nx7IOTk5SaPRSEXAunxcV6NFUcTs7GzaFV7/rj5ywTRNKpUKKysraSWonnOWZXHp0iVgVTOyvELz+XNEU4phKnx86qN9ImGBH4UkmTEQhw4xcbFLrC6kzx5FIYk0iaOEIPQxOpuf92cVFN6d+zcd08658+THh+nFcdpsted4xCRpYzydFtXzSqeCPM9L21u0Wi1GRkbI5XIsLS2ta+OgIxu6OabuTaQF6+fOneOee+5Ji0j0WtTEvVKprB2GOwl3/9AECSGdTn++mjlJokJ6fkDY7eEnFmr1WQ3fh/AScrwCaT8yHxH0yN9/H77fg06HMArp9nxEHCNrNaxikXDDeEVBQKfbxQ4Ckl4XZfXfL46ZhKsHHQdBkEbPdD8dna7WWjSd2lpZWUkjOzqFFgRBqv1ZXl5O17Ym6nr+6vWoSZCWFPi+z8TEBIuLi2l/Ld/3efTjD3Gi+To5mesLmC2LPUP9OWFJQXyV9akhD15hXWbQ7XUJ4zC9zvB9rE4d3vgK4bbH8Dsd/DhPsxtjqwRncq2bvr5/vd/rsdTtPnQrg0KhQKPRYGZmJt3TlFIpGd/q4EkW19MlW6gtKP6/9957+Qf/4B9c9ZrPfOYzb/fPAPDnf/7n/Mqv/ArPPPNM+tqxY8f49Kc/zbPPPpt6QVdCu93mwQcf5OTJk6knuFWoVqvccUe/N0an02FxcTE1+Pv3709LMcfHx9POpwsLC4yOjuJ5HqZpMjU1xfnz59lVhgP33MWBXJO/9x9exNt1LyQJRq7GJ/f9MEvxJb75p18CYPwnx1n40iIYBsiEXbZNyTR59TpV+9bIdgy3QDhzDIBKfoQfffBzvHTmSe66/1H+y5f/5dq1w9txJvbCueeQUlKtVimXy+siPI7jsLS0RLFYxLIsTp48yf79+9fpf3SvDS2ILRaLzMzMpCmg8fFxDMNIP1uXimtxqxYfmqZJqVSi1WpxafkSkz89ycKXFpBRkeGPHMadmqf58g7aLz/NL/3kvTz73eeYLhp8+XjfgGyzbaYsi+eus2GYY3l86K5P8/jLfwjAT5Yr/GmrSbRhGd2354O8fOY77B6/k8ce/DH+07f+GR4e+/btQ0rJmTNn6Ha7jI2NpWJOXUGVFaFrsul5HqVSiWKxmBp3TQIWFhYoFAq8/vrr7N27lwsXLuB5Hs1mk/vvvz8lDktLS1Sr1ZQs6Y23fEeZ9018nCk82i8/zouNRc5G13/e0KRl8VihwNnR93Fx+STz9QtXvPbRQ5/g6WNfTX+umiYHHZdPlEr8f8wauZ05Gs80EAj+lzt/kK/685w5exSlFJOTk+zdu5cgCDhz5gzFYpF2u83+/fuxbTvtjj48PEyxWEy9eE0SdYpHV1xpUbA25LVajeXlZQ4fPpySgx07dnDx4kUWFxfZt28fURRx4cIFDhUqPLzzI8wf+zIxiv+2qvu6w3XpSsn5zDl0d7ou23YXSVB881g/slJ+9Kf5QVmm4Jb5f5751/TCzY1VKTfE9pF9vHHxucve+0SxxBHfZyZe+1vF+z6BM9HEPXI2FareddddnDt3jpWVFQ4ePEir1cJ1XSYmJoiiiFKpxJEjR1BKMT09jWX1SbCOxOrKMb1OdeqwVqtx8OBBjhw5wgc/+EG63S6nT59mfHw8dfhmZ2fZuXMnSZJw9OjRK86LA9P385lyma+fe5YXV9fiD+4y+bl7bP7Gl/20Ku/RQ5/gUOs08605luOEZ3td/ubIKP+t2SBSih22w3O9LhuN2o+Vyvxpq8kvvs/mv5+IudRau+KTD36Orzz/79mzZw+tVislNsPDw6kDV6vV8DwvXYedTicl1UNDQym5nJ+fT7VbruuSy+VoNBoEQUC1WiWfzzM3N4eUku3bt6cR3OHhYWq1GrOzs1Sr1ZSk63WdO5ije7zL+708d9/7F/ni9/8toVL87F0Wf/Da1shFDM8AA2S3bxfvGTf49CEL1xL8/W8G/HSlwvcnJZ0D72flG0/gjDqYyyaFQgHP8xgbG0sF+cPDw6lGcmlpiSRJ2LNnD81mM4286rMUp6am0mfPCtC3GtdDdbYkQmRZ1pYRnmuh0+mkoTgN/XO3270mIXonsWNHXzOiNxHt6WvvSUeBdG5fs2utZVhZWUk3HBX2+PP6NnJGAkqiQh9h2iDBwcVJNoYXFcg1LzN5Ezw3Xr647uco6RvDWnuBuVNn11+cRHg77yE4/3zqKWajPtoLbbValEolTNNM+2usrKykEZ5arcaOHTvWCbO18ddeuTZinuelXquuONIRAN0NtdfroQJFuBCipELFAUqF9C6EyMBCyYSG79ILIVNYQSDlZZvn1ZDIGNNYWzaxUpeRIQA/7EeMukELVlOAKlGphiOrSYC1Pk1BENBut9m+fXuaymi1WqmWwTRNLly4gBCC0dF+l23TNCmXy+uqOFzXZffu3WnYXms/tOCx3W6n5djt822eOf91Htr7UZaDHpfeBBkCaCaSc2GIZdrEydU35yhe/9n1JCFUiraU/QT+atBWoegtvkboeFQqlXUpQj2HhoaG0mafsFZVl03L6miInlOe51Fd7dmio7FacK03al29aNs2zWYzJd86ItDr9ZDCIsZAAgZrkWYJxBumg6S/0X6fNTV+8+k/Innoc/17lFces1avtikZAvhq+3IhqjO5H+Rz6f1r50yfwaV7BuleWNlmn5oELSwspOlo3WBPR0t0ibVSikqlgpSS8fHxtFRf6ySFEGl1W1YTeCXYpkMY+RzZ4Jj84WvRuvVpCBNDSeSGMVasTZ/N1vOftvqEtRMq4iv4wTrtpe+/Xq+nxSM68qPTtFqUntX4NRqNtBLRtu10burf0yS91WqlOqswDNP9TUfHdTRdp7/dnavpd62jFiItgOltoXRW+usH5siC5MhCyP/xETf9uxLonXwGFSvcKRdZk+kayzbp1RKK7JEd2TYE2dSctiE3Q8psSyJEDzzwAC+++OK1L9wCfP3rX+dXf/VXN40QPffcc+nJxFeCjhA9+eSTaVvxrcL3vve9lB3n8/nUULuuy+LiYlrho/tMjI+Pp31oGo0GxWIxDdVX/PN8P9rL9qE8k0WL842IomOwGC7TezGkMGxy1wP9ip4/nvtj/ofJ/yG9DzE/D0GA2rlz0/u8Hlx4rsfEXS7Lp0Km7l6bqLPtmC+90eZzh+001Ku9J22IoyiiWq0yNzeXeuQrKyvrhJi6SqXT6aQGy7btVCisq6e0BiGfz6fVLNkTpT3Po1arMTY2huu6fHXpqzxWfQzPKPClC09zoDzJwso4P7QnzzePnOZHD1WpznyLpb2r49XtIi5cQB06dF3jopTiwvM+Ox/qk3DjueeRDz246XV6g7vQvUjZKpEX+VRPpgmf3gx0qDkbci+VSvi+z/DwcBpRS5KEarWaeu1BEDA6Osry8jL33XcfnU6HSqXCzMxMWkbd6XQolUqpsH18fDwV/Pu+T7VaxTAMXv3mLId+YBzbu7xy5Xpw/OkFtt1ZpVC5ctj7/Ksr7Lx7vXg2vniR6Px5Fu/Zzmsrr/Gju34UgO43nyA4fCeBUmmaT5+mvXPnTubn56lUKszPz9NsNhkdHaXX6zE6OppW8+VyuTSFq42WUopSqZSSQk3MtT7o+PHjaRTAMAx27dpFGIbMzMzgeR6Tk5P4z7/I0dcld4wtouKY4k/8BADhiZMYlTLW+Hj6fOGJkxx75RuEjz3Ag5Nr/WJeeXyGyrjHjruG1lVXvR38i2+eZmTkAp/adX/qIDYaDaan+3uFLvm+dOkSvu+nqX3HcdixYwdHjx5leno6JTi6jH5ubo6pqSlyuRy1Wg3TNNO08cTEBHNzcziOw8jISEr0dUm/YRh0u13uuOOOK9732VdWcJ78EtNf+Gvpa8b57wEgd34gfe3od+eZ6BzHiVvYe/bg3Hkn3W99C2f/fjAM4kuX8B566MoDpNYasGq8/uQchz88yenTp9fdO/S1Y51Oh1qtlqZcdHonq3vRDoluRhlFUVp9pduu6CjSztV9+fz585TLZXq9Xkpep6amUtKtU1dfbX+VB8ce5MHxB/Gfe44jRyTv/4WHATDPPEGy5yNXft4tgPXS7xHf/1do/f7vc+LBKVSlyL2j9/Ivj/xLfmH3L+B5HmfOnGF2dpapqSn27NnD7OxsmjbTNnl5eTlN/+u5UygUqNfr5PN5JiYmmJycfMee43pSZlsSIfr0pz+9FR9zXThw4EDa1Ep7yKdOnWJycvKaZCiLQqGw5Sfv6nSE53lMTEyknmoul2NsbCwV4en+MTqlpJtZaU1RGIbkY4OP759IBYDV1UcbChPOPzjD0Ny2dPHqvjIaKpcDy0JkXnuzsKyYYinPbDNa99ljRsK+MYlpyvRcH63JKBQKqfBZExjthRaLxVSErTUw2gvS46ZWDV8ul0sryvR4eJ7H9PQ0jUYjPUxQCyD1GHueh2EZFPNFcmaOfaMlSmaRFduhWMjTzm3DGariFz9N3lnd+FwXTPNNjdXOe1zy+dVGcNumr/m7eXK4hkvOyKXkLn0vn091V7q1gNb2aA2a9iR1ZZUWaGYjHYVCAdM009JhLWTM5XJ0u1327t3L4uJi6r3p8H8+n0/XwfBkiWKpgOW8NUJkmTbFYoF84cqEqFD0L193hw7BoUP0mhdwO276fuHHf4x6vY67WqWko456LGq1Gr7vrytM0IJVncrVG7A2Srocempqivn5ebrdLjt27ODcuXMpaRwbG0v/f3R0ND1sc2xsDMuy+tVAnodlheSnpnD27MVZvWe7WsGoVLAyz2gV8hSPnKL5sUfWPbtt2ey/bwontyXbMNAvaXcdJ+3xpaPn6Ziuvr60tIRt25RKJUqlErVaLU3xuK6bGntdEaXfGx4ept1upz3UtNHL5/NMT08jpUzJpE4D6yq0q+23hx/NUzs5tP4azwUEZMfMthn9Cx+j/R9/l8qP34WRy1H45CcJL/b1XZGXe9P7+kM/sjd9Xj1eOrKjq0E10ZmcnEwJQLFYZHh4mDAM0zQXkFYR60pYrUGybZvx8fF0XupKMy26LhQKqZhdywSGx4YpXCiQy/WfK+l2kReX155x3wcgt7V27DI89r/gAnL3bryyAzmPcrFMLPtVh2NjY2lqzHGctKWHaZq0220mJydTYb5hGMzMzKRzU2cIdLR6q23ym8WWVJldSz+0ldi9ezcPPvgg//gf/2Pa7TYXLlzg//6//28++9nPvmv3cCVUKpXUwGXb/OtqD8uyKJfL6eLbGEbM9rSIq7s3rRQzhYntmciNMeMshOiXk78diA09KVZR9kx2V9dXLExPT/cPCc14XtlmgUCaNtOpIR0O1roj3aRMi7R1pESHoLW3pcPvumHjRmG8a7jkzP695CwL2zCRqh/uVQoQBtJZS6sK00QMDfFmkB9aM2Bi376rXNmHrgTUz5z1LLM/Z6vHNEHW5dHpZ61upPqYAG24dUl1Nj2brebLVgHqlIBOgWgceGjiLZMh6PeIuVakY3THVZwW0a90yaJYLFKpVNLeTDoto58liiKGhobSChY9N7LtGXTKUKcPdSRSE3RYm6+6Y7Bpmuu8W/0d6XSREDBSjhCOi7N9raLM2b0ba8N8UlLiWg7L/vL615XCct/mOt2A//GRneueRwumsxCif+xOLpfDtu20541OjQEpKZ+amsIwDKrVajqvqtVqv5v+qnZERy11VVk+n08rTfV81gT9ShBCMPSX/9L6FzdUmK1eiWEKcvffh5HbpMLqLSQ89FhNTU1hWVY/Qr9KsnV6TLcV0H3DHMdJU2zAOidHV3VqeQSsnWGmjwRptVppuk0TMS1E15V8SikqpQp3DK9F1uKFhfUVY7k3t3e9HZQ+9jHI9/ctQxjpnq3nh47yZNsPFAqFdKwqlcq6qL9+Rtd10/3+RuPGF/6/BfzGb/wGcRzzsY99jJ/5mZ/hQx/6EJ///Odv9G2lCyVJkrTxoiZGWXJUqVTSCaAXDKz1wvA874oT3TZsik6BoW1X2WCKRXibWqqpO/MIgys0L1TrdFxZ8TOskSAtDt5YUp49wkL/i6IoFZYDqcHSY5R9XbcvyOaptR7rRyZ/JN3gTGHiGA5y9X4+uPvGeB+C9edAbSRxOnrmum7aM0cTY13+q6NpOo2miYFlWWm6sNPp0Gw2L5tXetOuVqspWTAM401FVK8HSqprdnvIl68cPdLEMQutC9LPrwm1fnbLsiiVSqmDkdVwaA9da9t0z5zh4WFc103PEwTSLuq6KZ/e6PV3peebjhw4kxOU3/jW9RngJCFvFVjqrReM9kvIr/3rbwYTZY/pirtujpmbOEejo6OMjY1RrVbTqJfWgugmq9leaaOjoymB1mtNR5iybTKyazXbekMTjKvhsqrfJALT2XANCFNQePjhy15HvT2DWiwW06hrtjGs1pnpaijXddP9rlKppHNPP4OeY57npfNUO4PNZjMl98PDw2lkyHXdtGw/bcho2xjCIGet7bVJp0N5+tpj+W7gR/b+CLDmLOiAQLafk64a08U2el/LNlX1PC91Zm40ti5W+y5idHSU3/iN37jRt3EZsk25YG2B6+hQ1mPPevC6LBNYJ2TcDDkzx87iDriK/ElsQdgxX+1PjenDl6eD9Maw6d/O9NHR6UB91EaWAG3sqrxjx46035DeYDWB1Gm4jdAbkfY0NsIUJrZhpSLL3UPX7kz9TkAIAYJ1bQey0PNFe+l6E9Gbqw6f6zA8kOpgtFG6ePFi2iFXazx075zNOl7r+9gCCWEKJftNPd8qjKv4ZzrVozUvWSdDkxUg7beTJddaKKsNlV6PQKrP0l2wddoN1vch0l6vUoqVlRXyQ0OM/fLfQl5HdaJKJIYw+CuH/8pl72116w+AvCGueS5Udi3atp0S8uzeJYRIdUj1ej0tlsim+fP5/LqjQTSy1aCGYTCe0VRdN2ScnjuWxaZRSD2Ob3M8HcdhKBPh0wTPNM107mjofUpLN/R3WS6X03MEs5Fyx3HI5/NpkYBt2wwNDaWCdSB1bBzHYWJi4jIyW/roR7l3aL0G791E1rGzDItiqZju0dmjmCqVStoWRJPHLMEsFAppWwvdtyj/NiQeW4VbMkJ0s0JHKsrlcno2EqyFqDW0piZLkLTR0t7vTY3MotgM2Tx8pVJJjU92E84uDm2gtL5KH5CoIyTZ8cgace3d53K5yyoPoR9xcAyL+GrpxXcBBgaItQ1zs7HTDd40WdQpQq3dyEZIYK1b7vj4eKof0v90MzkdAdHerjb8OsW25YRIXTtldjWYhslYfmzT9/S8GRkZScm1Jim6E66u5tEbrm7hoA3TyMhIesCpjrbpqJzesLW3qj3/jfegr4vjGGt0FGe1svSqWK3+tDYx7u8IBGl062pVt7pyDvrEUD+/JjBZh0XvT9nu4DrdoyMa2XmdTatlCeubgkwuI0RCXIUQKfWWUmYbYWdSUnpv0oQo+ywbIxq6SWX/dnRjxSA9SiZbIKLXnSZCOvKkU+JXgnfHHdgTb4FcbhFiFafz+PDIYczVE+91mlk7urraE9bOb9QR3EqlkjYthv6zT05OXlcU8Z3GLRkhulmR7Va6tLS0LpWz8brsKdw6nwxvzWN839Dl55O9k9CekZ78V4KOiOhwfLYzs04D6bQHrKXDsp10syke/bPGRj3ORjiGQ9l1uGdiSx77LSObCrrSeBmGkYoRV1ZW1kXagDSkrDdjvXlmyWKW+OhNSnttQFr5osXb2fL0rYCU6m1FiMbz44znN9/sNeHVIt9sGkKn0bSGKhvlyJ4tpQm2rs7TxEinRDRR3DgHNTZGjK4XKtncwI3vemdahDiuk3bdvlIaQmvTsk6Khhb9CiHS369UKpw4cSIl6rqZrNYiFQqFVMCvPx/Wzs57S5EwIS47q0sY4m3NsTeD7FzIRs80YZyfn193vdZK6XHRZDGO47SDta4m1dDzeXh4fdQnu+fdTIhljCVWU6mmy9hY34GpVqubNgLWWsV8Pp8WhwBpqkyn2d6JSOlbwc034rcwsmLOrJHWkyIbbjRNMy37f7tisgPFTU6wfweh1BoR2mzRaiNbLBbTU6I39ijRm8ZGrYMWdWbHRBsyIO0iuxlB2oj9xf14psehsRvb30L0G+6v/ZwJo2fvX0fJxsbG0vC8fk5NHrOGemP4XmsbdH8oXfGj56Lu4aVFtlufMnt7hOhq2Gi0s2kYHbLXkbUsmdbQBEqLe/Wz63lVqVTSaIr+/Y0HTm4k49cLI5/Dmrycle++d/S6P+PNQH8HGwlzFlmR9EZsjPYA6yLY2ghmxbPp397k895WfxlzfQGHPubkMgjRP+NrCw2rXktaQ5Udy80i+Xrt6rmaTeNmSVL29zT5XP8o4orfzY1GlETYme8kuw/rY0ey2LhP6wirbqirD9W9WTAgRO8AbNu+LFS9meHRYuLNCNFbCjG/SxCsGaeNi1aTP1jbMLPGTOuPdDv3jUYmCIJ1J3ALcbkeQm9SN+umsRFCCOb8OYBUIAzrCZHWwwCXjQusT6vqn7MbqY72ZPVBujRaQx8jk8XQm6ywuxreCZHwZsiOmV5XuqppYmJiU32b1ltlf3fjGG803BvXYJbIv5kjBrw77mDkf/qfrvv6rYKulLsS9NhdbQ1ljfn09DT5fD6N+uh5uhkB3fg33hKEuDxldiXCLQSdp58hnp9763/vso8U6d6cPdEd+qR5Y5p+ZGRkXVpbG/6swddVofp3Nxuz0dHRdXtDLGOOrRzbsud6OwiSANfcfE7pCkwNXWyTPTJER6anpqbSoMDNtIcPCNEWYmO043o2gytdkzV+NxtMe80YbJzM2TSPxkbDn+0svJl3lBXB6uqgzYiXFnbe7DAwmA/mL3t94+Z5LU9aj4H2MjfTTTmOw+jo6BVF7xuxpfNsE5LxTmBjpAjW0hW6s7DG2NhYqifKvn6t6JjWsWWh07tvRQBqXKPs/J3AZqQvCx3N1tduNh7ZtZs9kFhXYwHpSeabaZay5xO+hSe4jBBdMUKEQMkEa2xzDdrbgd6zrnev0RHLrI4U1myCdlau9vvZ7yNv5/nMgXfnJIhrQQiBZ26+T22cQ9m1qaEja1r3eLM5tTe/NbnFkPW6Nn7Zm2042ZLNWw06ApTFZs+iSQ6QNg7Uv79xY9CCPH0KtK5k2WwctZd6s0OX3W9ENr3zZjYG27bTsnGNcrmcRp+0xiZLJMMwvGyDvlWRHSed/tMC6Y1aDF1BlU2XZXElUp0VyGro+Z4lAzcjrqTD2gilVDpe2sG4moMzPDy8LoWr9XvZjv8bx1gfmvuWsEmEaLPeaOnlpkXhB37grf2tK0ALfbPPvnZ7V9/rdNRS2wJdjZbF1Rwb/ffuG7uPgn1jGxZqCCFwrSuT+82i+dk+WDq1ln3/ZrJ/N781uYWR7cPhuu6mkQ7db+dWxGaEaDPonjBw+Ya5GaHamKvf6I1nxdQ302K6EoRYryG62nVvFdrj0lGmrKEDrimA3wpUxt75ebwx6qH//2rH8DiOc1kFiyY2urpvI3TF2q2IXeVd132tXpemaaZC6Sx0B3h9jR4TXS4N66tHtxTCuH5CJNiSCrONyO5XG59vM4IDa2kh3SpDF5EIIS4r3a9Wq5sSddd1r9nM8kZAcOUIkS4WSq+9gqwii2wrkZsBA0K0hbhaqujN/u6tjCsRmOuBvi4bFdqo17jVxsrg8oaDm173NqJdOl+vN+NsV/Qref9bjUOPvHPnEGVxJc98Y0dmjStFMrXIdbMN2TCMLdVX3YzY7JiEq82RjSnerMF+x4zam4gQbX6s69Zh43hdKx2pz3TUP1+Pbu1mhyEMHHNz/ZwQYh1JzBLBK2GgIXoPIyu23OjFXi2S8o54V+8gpq/SbRje3uZoWRZDQ0PrqhM2G7tbabwMYVwzQrSVcyB7HEc2QjT2DugrbgSuNE5b7VHfCunYt4Osgb8egTWwrkIxOz7vTDTj8pTZlTqdC8N4RyJE6/7Gm1yf2WaUzWbzltqzrgTHcK67n1a2UeOtgvf2ir8ByJKBbPPB7NlVm+FWmjRjhc0XxFa0XteVK1oPo/t6ZHGrEUiBuGaEaKuMr/bcN2rYoii6TF9zq+JW+u5vFVwvIdJ4V8iiMC7rQzS6/cpi5K1sIfF2odT64402k0vcipguTr+p6weEaIAUb2aB3kqT5krItqrP4nq1RsBlVSqbkZ9bbayuR0O0VR52ds5lNyPdTfhWx0Yx+TsBKeV7RoD+ZvBmjNe7QohM5/r7Ct2Ee4Iey5uJqL1dHBh6cz3vbjVCNOhU/Q5hsyqzq117K02aq2Gz53i7hvhqlS+3AhzDYV9h31Wv2coIkZ5Po6Oj6zbl90IK6N343nUX3dsJOqLxZiod33GYb9I83UTEI1u9qPV9tyNuteceEKJ3EBs9gyttIm+mydvNjnfCYG38zFvNsJvC5O7K3e/K3/I8L9WGZMet2+3eUiTyRuNWrfx8q9CE6Hqjb+/K+Izdef3XGgbiJoqAZglR9nii2w23mmMh1HspnncdaLfbPPjggzz//PNXLdV9K1heXubYsWNXrHYZYICtQBRF9Ho97r777tvOcA8wwAADvFO47QiRUopOp5Oe9j3AAAMMMMAAAwxw2xGiAQYYYIABBhhggI24tcQYAwwwwAADDDDAAO8ABoRogAEGGGCAAQa47TEgRAMMMMAAAwwwwG2PASEaYIABBhhggAFuewwI0QADDDDAAAMMcNtjQIgGGGCAAQYYYIDbHgNCNMAAAwwwwAAD3PYYEKIBBhhggAEGGOC2x4AQDTDAAAMMMMAAtz0GhGiAAQYYYIABBrjtMSBEAwwwwAADDDDAbY8BIRpggAEGGGCAAW57DAjRAAMMMMAAAwxw22NAiAYYYIABBhhggNseA0I0wAADDDDAAAPc9rjtCJFSina7jVLqRt/KAAMMMMAAAwxwk8C60TewGb7yla/wv/6v/yuu66avffzjH+fXfu3XePnll/mH//AfcvLkSYaGhvgbf+Nv8NM//dPX/dmdTocHH3yQ559/nmKxuKX3vby8zPHjx7f0MwcYYCOSJCGXy3H48GFyudyNvp0BBhhggPcEbkpCdOTIEX7iJ36Cf/JP/sm61xuNBr/0S7/EL//yL/OzP/uzPPvss/zNv/k3OXToEPfee+8Nutv1UEoxMjJyo29jgPcwoiii1+vd6NsYYIABBnhP4aZMmR05coS77777ste/9rWvUa1W+Ut/6S9hWRY/8AM/wKc+9Sm++MUv3oC7fG/AXTmKt/zajb6NAd5DOP3S4o2+hQEGGGCAN42bjhBJKXnttdd44okn+KEf+iE+/OEP87//7/87jUaDEydOcPDgwXXX79+/n6NHj96gu731YURtRBLc6NsY4D2EpYvtG30LAwwwwABvGjcdIVpZWeHw4cN84hOf4Ctf+Qq///u/z9mzZ/k7f+fv0Ol0LtNMeJ5Ht9u9QXd760PIGIR5o29jgAEGGGCAAW4objpCNDo6yhe/+EU++9nPksvlmJ6e5u/8nb/Dk08+iVIK3/fXXe/7PoVC4Qbd7a0PoSTqNiZEkYx4vvb8jb6NAQYYYIAtx6uXGhy52LjRt3HL4KYjREePHuXXf/3X15XFh2GIYRjce++9nDhxYt31J0+e5MCBA+/2bb53oBKUuOmmwbuGRCVc6F240bfx3sKgpcUAA7yjUFF02WuvL79+2WuNXkQ3jN+NW3pP4KazhNVqlS9+8Yv89m//NnEcMzMzw6/92q/xmc98hk984hMsLS3xu7/7u0RRxNNPP82f/Mmf8FM/9VM3+rZvWQiVgHFTFhu+K5BKYtx8y2CAAQZ4C7gd+ssppVj6rd+67PWaX7vstUQqTEOse235UpsoTN6x+7uVcdNZgsnJSX7zN3+Txx9/nIcffpif+qmf4p577uHv//2/z9DQEL/zO7/Dn/3Zn/HII4/wq7/6q/zqr/4qjz766I2+7VsGbm2tT1IkI173Z27g3dx4SCQr4cptsZEOMMB7Hb/97TM3+hbeeSiFbHcu27MieXnUKFEKYwMhCv0E1bt64cN/Of5fNv289zpuytDAww8/zO///u9v+t4999xzxfcGuDaKF58gGOpX6vnS53i0xAElb/Bd3ThIJQlkgEIhENf+hQGuG0opklhyvHmMwyOHb/TtDPAegDbStmFv+n47uD3SQ7LdRrZamOUy0F9rmxEYKRWm6O9rL1+oc9+OKkpK1FO/CT/y/7ry5yOp+TXG8+PvzAPcpLjpIkQDvHtIZIJlmHCbEyIAxSBCtFUIewntmk8cSV75xkWeuPDEjb6lmw5JfPuuubeDlxde5vn527wIYpNotkKRyMvTYFKR7mzfOLrQfy1RqGuYftuwb8sI0YAQ3caIVIQtbMRtTAYkfcMkb2NSuNWIooSFsy0E/b5iA1yO5//s3I2+hVsSlmFtavhvK2hClCFGiUw23cOUUvzBsxdo9NbITRIlPPXKDjr1K/efM4V5W47zgBDdxghlSKgk6jac+BrXihCpgUF/axD9/br3wgsYt/kQXqx1L9eoDTRrbwmWYRHL2yMtdkWszp1obi59KVEJibp8HzdW02Wr/0EpReMrfwaA37lyBMgU5qaf917HgBDdxuglPU5HC7d1dCQlRFcyUP/1S1f83UQq5G1q2FQYkrSvLsxUSqHi8LbXZv3R8xeRG/nQjbmVWx6mMInVbU6IVlH/w/+c/n+iNo8QGasW/tQzcxhCoBQkcUyMvGohiWkMIkQD3GbwEx8QlM/+d4yweaNv54YgTZmxOSlU4VpYeeMGMteOWOrcnptzeO4cne9854rvCwGo/n+t23ybsU3jtiXOW43rjRCF/nt4Xa7OpWxkf7m3vCkhEquhoU4twBAglaId9ZiNuyTxJnMy7IJSgwjRALcxlLpthdVXixCpU6eglunt8Sd/sv59xWWe/22Faxh5KRWgbvP4UB+JvFz3IZWkEQy6CF8PdOraFOZ1RbTnTr93xzWdQZm59Huv/96mc0lXmCkFhiFIlEJJgWEmqGSTcXzpi9BdHhCiAW5PKCFu6worHRnadAyWltb9qDqdtf+XEilv45EzDJJYoa7ACFWfC4EQGOr2pkSmIdYiRN//rZR8d6MuJ+snb+Cd3SRQ6prkevnf/Jv+pag06nElvDHbRMYKuZnBfy9gdayEsWa+TcPkXOvchsv6TRknu/3THYSA587WaIQtctX6lcdHKUzj+ojnew1bRoiCIODv/b2/x6c//Wn+6T/9p4RhuFUfPcA7DEX/TLPbEXrRz/qzl79pmigFYbfvKQlhrImsz5+HVvO2ToWcmzGYP7c+1aqUIk7WSKaq1zBv8xiRKcRaJLG7zH984z8CECYhQXzlSp/bBhefhZkXNn1LtydQnRYc/VOkktfUpP2zp3+HlU7I/GLvPd5wdW0cTGH2HbTM89Z+7/cQAg43vg2GwBCCbx1fpBP5GKa6asGIKczbUry+ZYToH/yDf8CLL77IY489xte+9jX+xb/4F1v10QNsNTZsEgrgNhTQwRohuti7ePmbZv/Q24uvdDB7SyAU6E0kjlGJvH2LhYRAoHjje+uJpFJQC2IMU6Dkqkd/m0eIhFhNmSkFKqFx6usIIQjjcFXHd5sj6kK0+TjMnKz3/2fhDTjxNRSKVi/h6FyTlU5Iy1+rlNJkwFdtmt2QV5+4QBy9Bx29TYiMKUzemG0Sxmvj0VqeI4h7KCVQsUS0I6TsN3A0jM0/pw+FGXQGKbO3gyeeeIJ/+2//LX/37/5dfuM3foPHH398qz56gC2EMhyEbrgVJ1QWerd3hGg1ZdZLegB4px9fExt6Hjz6AyCgdOFxBDEkq5tEkqCUum01RMcW2oSnTqGC9ZHgSErK+8rYjolSff2QuXp4cJQJ0cvk6lUu7yWYhug/6/E/g84ian4MJRVBEhImg0g6sFYXvgEyWY16rM4hpRRNP+bccpeldkArI57+rW+fxjQENh7dqIdhGoS9TJRj5T12rEcmZWYIg0OVhzh+apGV2Q6XjtWY6y6w2L0ICEI/gflgdb+Sq796lSqzY18ZpMzeDnzfZ2pqCoA77riD5eXlrfroAd4C7NZaxEM+9zxmu+/Jv04Xkfi0Lr2O6bfIN7urXvztFx6FtQiR9tQb55q0l1YJY5KAaSKEoOPnSYQJSSZClNEQqdlNUm7vYdS7q2O0YdOUsl/JokCHHvtnL/V6/P3/57X0utpcl0799iADhk6ZaQLYGkZKhf/Ed6+q37tdCGMWSim6UXftZ6mQQUhc7xB2ZTpephCEsVxtfdGfg51ehCFAYBFEEQiIgkyU45U/AOC1pbV5eEtCz4vMGWWGMNhRrfLqU3O8/I0L+N0ILAORJMjE6mfXFOSPNAADaUho9ztXN0+cRnZXx1yI27pH1jsiqjYM45rCtwHeHGoX34TWQEnKZ/97+qP/+lmimUsAPBMv0mq3uXTmGFZ3mR3utlXj1d84etHt47lDhhDJ1ZC9yigU1NoJZ0HkIpW5llpMEpRM1sYq0yTtdkAYJQjUZXMllrIfcUQbdIWFweJv/TaJiuhF/XkcR/K9K3rdAEOnzCy3/4KQLHWXSE6fw7xCSsdvR+vSkb0wWRdhe6/iiQtPcHTlaPqzUrD0m/8aUDx3dB9SSZQSGAY8e3YFqRS/8+rvIHs9KueOc8fRJ+mFgiCKVotnL9/LGuEtXoG2uuaKH/pw+pJpmNiGjRL992SiONO5gEgSet0h4jDBoJ+2tYSNbRj9iCXwnS99kaS5qgUURurk3E52QGNQZXaLIGhfO5+r/nt/giMTlGHhP/Vy/0dMSBKCTkI7ErxwsY6wXYy4x6Q5hBJrKbOTywFRcvsshI0pMwV9rRDAseP9/wqQyupbtlRDlCBlJmUW3V7n/kTRakRxw6aZyLXKs9SRRTBT69FTSxxf6hPzZObobXOel6FTZqtpHwyFH/lIU2IvbqJdY1WcHq6Nz//vGyc4MX/1RpjvBby48OK6VE0/Ctsft6QTIaOQSzUfQwiOz7eJE0mYhKhEkswZqI6BIUz8VWdFbrKX3eoNB/W6Eo6TvmZgItpmVmeNNEV/n0rsvpPSD9Yy5A2Rs6w0YzbfPk+k+7BlCNHtiC077T4MQ/6v/+v/Sn/2fX/dzwBf+MIXturP3XYIe1efpCpJUPUaAhAqAWFw8UiHwj0XKRomKolpLUQ4pkXbDxkzbEQcIqSgseuHya9qGRKluI34ULr56oMMFZnDbo1+Z1chIMHGVFkN0WrKTI9VfHulHMMo7hPHyyJEKm1xKZfOoPsQNf2ID9XP8+y5CvdN7SXuNDdvDPcewkon5OhcE0P0+7+kFkhIelGPOGoh2mtjEJ49i8jnscfHVyPsmYqhbrQmswk74BTeted4NyGV3IQQQe7wQaJXYua++ZucNR/lIzv6gxH4ASK0QEmUL/CGIwQmARG5YW9zQvQeEwtLqXjhfJ3HMNM5YloG0jIQScy+SZtZBSqUqzNKoEhgdc8XhkM3bJMHECZLrb5zeDtmebaMED3wwAM888wz6c/33Xffup9vx8HdSsT+NVj7l/8UVlsdCBWjRP+r/c78k/ywPYoKIxJbIoSBlDHYFv5CiZKs4Q/fSbF2AjU/j1SltSZytwFmWgF5M0836efQlRJrhufAAYjpR4gwKSy/TpT8BYIkIA6aqNzYWtn9bRAhUkqlDd7iKMHkckIkV0li0utx9A+/RhjFGFIQxJKR0yd5aafLXGcXMore8ymzThBz7lwDs+SsRhJXJ5aRsNBZpBF3Mamk1wenTvGaucCj4z8H6PY8a3139LlUfPc34If+3rv4JO8wgjbkh4E+WamfDlETCrHqkCglsKcmMY6F1OoNGBGYq/qZdiNEnKjwyshLGCiECQYWvooYO1hZbQ66itW5euuXk69fc36cIDAxpAlG/z3DECizryFyrRgUmGUbtdIDBCLxAYOk3cZpB0SrqWwMk1cv1liYVex54N19qpsBW0aIfu/3fm+rPmqAzSD6xsYwrkAsk3gtnaMkyrAQQmEvDyFNB8KI+PwJxG6TnqohhUPUcUEI1KqQTn3t6wzbZZKf/LF377luMI7M+fzifT/Jvz/7ReZaASJSFDLHePQJkiC+sIwyDEgS2nGbKGjQjpoYSQHwII6RUmIY790sdGvZZ/ZUg0OPTFKoHcUUCdUhiyBOcMy+bjBKJFJKOq0OCysWC0WbHYaLVV/BLMNc7zTtsIUrovdmSfQGJCshVtnpG2ajX3knzQgCgwSFq/oN8AxhoOKE7y++zsNS8fSpZUYMwX945jzbqzmgH6nsPvss+fdaO9CTX4d7fxbot2loX+yno01DEFy6RA7ANOkmPWoq4H07h3Cs/jp7/NgsVUvx/ZlnsNQhlABT2LT8AGEZyF4/hSsy++YtT4g2OCHfObHIhLsXu+OmjSsNUyBNgYgjzKBBdYfJQk2hUASxxJM9oIBs1nG7IbFueyAM2r2QbqtIZzaByXf/8W4ktnT3fuaZZ/jd3/1djh49eu2LB3hTMExB0No81JvECjkxhdizBwAh+ykzkhgRGUjTRkYx8VIdIUw6/pdYlJcgFsjExE/8VABrtFrvmQhR9cQfXfX9s7W+V1Q0i+zx7uHVhS6tQBH5Cf7pGRjue60IiGZa+CN3gpSEMkTGEUHSpbuqPSJJ+IOXV97Jx7nhyKYfTL8OwPC4wz/5ylGCVT3Qy4sv0H35cd549QWSWJIQUTbyNPbdiRX0COIIoRSGkKj3eG5WKZB+QtU0mV3pEvhwen4SYbRISnX8xMJZPZvr66/Pg0w4V+vy4sLLnP7OsygFUSz52uvz6Wd2nn76Bj7ROw+lFMpY0/5cePqba8V5sc+ZbgWUSPeoRjckkAlGYiCQSAF/8cFDdCMfBCTLF3jx6+cBuPSd4zxzevnWPxxW5/FXcWT5JeYbEiQgYPJABcMykIZBbuUkCNj70Ag5BKYBYawwpg/2fzkOUQmEUUBjsUe9YeGcfAmhTKLOhn51t4HIessI0Ze+9CV+4Rd+gX/1r/4Vn/3sZ/nzP//zrfroAVZx8eXOZa+1lyJeONKkkVRhZAQ1Pw8qQQoDu7eIEVksdKqcvzhCrKy+QDGJeUUewwqXUNLkbPcsPdVPtykEkVR8++ytL+A0/asTlCfPtjEigR8rhp0hgkSSKOh0EuJaB0ZHV+VEfWFngsF8MyBUIQkJUsZrAs0kIUneW9oEjdaKj5KKuNPBMARfe20OGQW0kxxISdSOCKP+s690l3AXl2jPtQCJsCJMKTCcEFktE8kYlURXaQr33kC9G3Kh1kX5CcH5Dp16iFJwdmECI1H4Q2c533SpNWO6YciRSw1UImnFkppfY/zUq3SjhE7QN95TFY84WW0MaqwF9ntx7z3VLyZRCRhrx240wiYomG/6KAROUFk9Q3BVDaMSjJpHPFPAUIpEKOwlq9/7CTjxxJE0EhnNN/n2zDco/Pen1qqqbkEopWh8/FPpzzkvABRx3Jef/9k3z3HiuXmi+j6UlKsVnzHbHhxn21AOQUxuGL4eLvLfXvzXuEGNr5/+Ku0Vn3rLxFm5BMpAJYo4c5bjfz7+n2mFrXf9ed9NbBkh+s3f/E1+/dd/naeffpr/7X/73/id3/mdrfroAeh758K8/PXud1/idC3op8wALlxAxTHQrzjoBj0kBkhJkLgYyuLO51wMleAut5CWg1lrkiiJ4TfwZZ6nzrZZ6d7iXtR1YuximT96tYYlTKSKEYbB8sV+1QqGwRvnT2B35lEIpDBodkJme7PESMaff3HN24wTxHvUg3rje7Mc+U9fZukP/x+EITi73EFGIe2xQyAlhdmAIJSwdJKjc8/0U4s9k5KcB0PQeu4NhprP4993J5FMaPZ6qXD9+XPvsaja8ino1eiGCV9+ZZaZlf7xEToadibpImr3EgqTILbo9mJmGn3nQ5gGhlT4cYDXbXN6rsZMo5/KsEtH+f+z9+fRch33fS/6qdpTz2c+OJhncBAHidQsS7Iky4NiK7Y8rZd4KXauk9zYia8zOFkrTv7Iykpy30tWkuu865fEluwk9o1seZAt2RI1U5RIcQQJEsR4gIMzn9PzsOddVe+PPt0ACFAESZAAyP5yYfF07+69q6qrfvX9jZUpje51WUwvKkZnmmfopT0W68GVbbkFYYzBCMPZJze33pB0QwundQYrX0c7jeFxwZaEexoPkMsMSer3Q4UlyMTCtvoB2of3bm3oKu0nmvjn0I029d/6rRvUw1cPrQ0Pn6uztpaxUauxHixiMNTbESIMhwRQh4re8afQiQKtkI5EWGCMRBtDR6f4YRPMOAe5h0495On5iI3mboyxMImi9uizZFvKTqziN/y5l9eNEK2vr/Oxj30MgE984hOcO3fuet16BMAtWOTKNkHrIlHxmmfIai3c0Ce/+Ej/zSji/FGFQaJjhRdojGP1s6DiGGMcNDNIFPHsTmTdp/i175ChWelM0kunWGwmuPYbOwje9IuUYLZisxqBRJMQiQyV9s/5CX3DclZDxj4GgUKy0upx4thXEELidjpkAwuRVt+r8OstDSkha9eohg2EhLxrI9KIoCAI4y7FagN59H/CxrNkYQshJLZOaedySAnO6iZGCAquJFOKs+st2IrTeuhM7Xs++1ZBfKZ/gCZRC7J4eFRHlpeoRKMyzWYnoW4MeCWkMBgjyUmL1bbf1+KlRBhDmEX9Ct+9i1aMleAM851T6DBgudcavp+oBKUVf/zU1dP3bzVo+vWpas/2S15o47HULGIlNTr7ZpjayJCt56lGqxQ9uCBqTFget1f2ITAcTZcQWuLZFkalwwNQjy7WCTODv9hgNUjQ/pXW9lsFWmukAL9nqHbq1OJ1fuCOWTwdU4jm+xmNWYYdW0xsBpgoG55bJvICW/ic3uiSKM34mTqBtRuxFhPUugi5pXVrCdU2YaCH5R9GLrOXc6NLgklzuRz6DW4Sf71RmLApTNj06hezmexgndWuodSsolohaI05dgzCNk+uxsQ6oqJyYNvoVgBorKCCxsNKHYybR7RC2kmbTCsy4SLQeDrEebHg7VsUz7Wfo55crJ6+GdWY119BGnAams2uwIQJVUJSneLWz5BGUFTrmK0MMi0E6/4Kh47NY6UKMKRbFiKVpfj6jVGc0Rhz2ZESQvYrLW8ENYSAvGOBjul2LtBuL2EnEbqz2Y9tUAYsibdVxkAYg9XsQM4Fk2GANEv6R3e8gRhkZ1ADLItBZyhtmIhXMVuZUg+drnJ6o0tsHHQJEAYjBTaCWrSJS9/NnTcVznfOI1EIYCzvADBTmGLFvwDGEG8tzbCX4DfjWy6N/JunNq9885LNVitDOt8nRFJnFEWPWLjEpe0oB5K4wanWUd51cJyaiBBaY+sEoTUNfMgEniMxy4sYIcEYwigl03Dg1Bp24GOyW2vMLoUaBIkLaC333WWzFRe76zM2llEZ99BhxGTokjMO4d4Pc3y5wUozwJEJdj7AbgfoTFM+38bRAefme0StAMvq7+MiFXBuBZ1pji40WG0Fb4pM8etGiN4M7PFGQ2cGnV4cZ5mFpMYiSE3/SImttPvk5Hn8bhltEoRKaTo9vKzDvt63yJ3ejkxdxlfv5bwPNXEIgSFJwRIZrvL5UOfPL6b43sq4pMhYI20QJv3g8Wpc5Tv17+AID6MyZpsrKOVQWVon1g5B1sNtzaMzQyIEyqRINAqLXcECmSORYYzhYk2TDEUtu8WPBNhCrGKOVY/1X6w8Sfbon5I2Qlqhoh6kPHmhyfNcAARpllKxDKkyGK0QW9lUsgvB5ASWl9DUu1HlPE9uPobERmUJrTCmGaSXJ8xsWdsSldy6cTFZBFqhtGJbuICxBNoYhIZ2DZLJOpa0scMqM/Y0BeGx0p1nvPYwCy2fHZs+9bBJ0DnOcrPvBtMmY8/YHCVrEozhzGbfctSpRXQ30lsqaypKFQ8cvxgkPl/t0Tn04wTPnR6+p02douhbDl1dQ+o6T1o2mDI5baFUjBQWGMV4zkNgQMVYIusToFQykXfhKw9ghI2QAksYUmOwRJ5MKOZbZ2+5PasW1nhi/Qm0MUMDRP1shBQWUkBlcQGBYO+BcaS1xTG1BiM4s97kmTPreCeeI5MOEycW8boZzSQACSKNiZdOU9l8HgCRgtlooA2c/+I3+Pff/S0EgtWTt3iV75fAdSVEa2trrK6usrq6itb6sterq6vX61FvWujs8sqrMguRwsIIQRak1PQ2EuMichZTyRrGxASpJtYKKw3JGR+3FZLZOzBoUqNx6Atd4a8hMBTTOp6UTHZufVeGtjzssAqARNJ43pBGmo1og6JVwcbFN1Wm28u8/c//FDdbJkZijCIOBCoxWMLGz0IsFKm2mI6XOeBNI8MIoRPQCUIlW1kftz6JNMYQJNHF2ChpI/KTKG1QykZL+NG7tyGT7djllPVaGxUnRKkhMwoG2qu0yIo5cqZBpPJUVA3QvOPoEo6/TKIE2QvrEH37PwLwwMIDLHWXXt+Ov1oMFIgtC5HorOBGPvles5/2bQz1ZZuwuJMxbxzP71GOoCg8Sie2cTY6w7lmk91LG5yr9ojQOEGPkt+iUow5cfwkVrCOFG06qYS1Z/oFQzN1kRC1V25c/68Rcab7FsYtnFzr0goSVC+AsImzuYL1yHdo+SHBqbMkYcpaJ6QeFpCWxb7VDGetgYWDFhlGCGQakEYxlncWy5KYKGGukqOw+STGSIQUqE5C13jYVpHAhVbzHOoWIpIAYRqy6q+ilMaSgnR5GdPt8mO7/wbvmHsnIktR8zUmbhvnrncW+l/acsPevfJZ7CQCW5BZNmhD2rT7VeWlQSrD5vl5rKCvVNtRzHPbd5FKFzN/Fs9VaKPZmB8FVV8TwjDkwx/+MB/+8If5yEc+Qq/X40Mf+tBl743w6qAyw2VV57MEsCiTxxhI8hPU3/XDaCCnfbRJMHEXW2p22Ufxx4vkwozOmMTIBIMiTz/oULYWAEFGjunzm+z82ucve7ap33rBr2l5N1bcBp3167zoi0Xu5r75NL0I4ryNLbsUkybdLKajBeiMY+09bM775MKDqPYi0iRoJKnOGHOK+J0eVryB3Qyw/bWh4LnVsdaO+LNjizy18VT/jY3jSNvCjxWp7qeBT7oaGd2OPRHitdqQZSyvTPLskxE7LwTkq33XZMGGZDyPyudBCN7aWmOq1SG3+CBnqwFhqlDa0I223MDtJVApnuXRjJov0sKbHFsWIu/M19mVM4x3lmgH/fgepQ2RXcIYQ74bI3sB8vFjiDjlrDhLuSiAvmqfYij0NilvrrB/uoKzUaF48nkaE3fgpW14op+0kpmMdtJGmRRqp25gx68RBnZO5IcvBzzSJAkkAVMnVrHiFD+bYu1bz4ARdFKbuLMPt5BD2wV2PLOMUjF013GbuzHdNWqdmHZaY0oIktVl3OVFWu02RjiINKDRqxMYw5HZSSJPkBM2St1ahwtLKfuVvPXWMTBxjIliLGHjWBbRzDQm1z8vT5AhEMRS0k06LJsNrNinqjZoppJqK2Bb00IJC2kJTJCSGEMw/RamxitYwiZzczSiDtpoiidOkpkMY97YZ11et8KMX/va167XrUZ4EWhlkJcEO+tugJWkjIUtpE5ASqKVb5M1JExaKBOTUzHSMmQFh+9W2kzWVzBiG8t2kYnoAr3b78N9+gRhZwchFTIUZOqyOhcALJyHqUlQab8Stp3nZoeWHkLFNB/4GnrnNuLmxYVst3uEpoqrPHKWT9c5xNM5m4rOQHb6Mb9aI+wArWw2shkKaE7YLfbJKdJEoY2hdFwjDiv8JI8cHBD7ApilJRgbQ1Qqr1PPXznCNKGTbdAKq2TNJtmjX8WID9MJ+yW782c/T755AaUnWQzb3LXeQbr7yEJFNcw4fM5HeWCmJ5mY1az4Djrnspk/xIz/JHtaa/SyXQjL5punqoztLnFhrcdd+yf6DTCailehFt5CFkqVwsYl7lKjSP7ym9z+4Q9Qe/YsHLDZXJwBoNhpoytjBGmMQwx+wPTx0xzZsc4T3jF25d/D3nUBnKbkaUIDP+g8zaelIcwkfurg0QF2IoI6wVnJt2a+xXJ3L9XH/pyZgx++IUNwrdDGYF3FkKrjFM48QDQ8305zbiNPmGqaU+PEro1HjqSQhxSWlza501oDo9HSweiMvMiw2Y5KoHBqHltAM9Y018/zF+IUHyDhjukJHm8YEtQWIbp1jkAR9M/E01r3q8SLrXpEBuh2cfwuumjz1ObXmJA5sCx8SpxpPc+zXp3b/EW6poNjzyK1IbEOgLWA5zqYBPL6NEbchl0skdXPEZmIZ6vnODTusenHLHWXOGi9C60NC89UOXjfLEopLOsq6c+3KK6bhWjnzp2cO3eOkydPsnPnTn7xF3+RT37yk3zyk5/k137t15idnb1ej3pTQZmLJ6rrzGDZAm/rNOjMTxEY9jnfHoanJiYjUbAhUkJjcHSC7fkYxxARkU+XEBYkVsJsIyDq5VBiAn1uHSpFtlXOIRrhFdVQiftFDCdO/wG5+q0RK2MsB6ESwtjDNF2cif7p7AbIah12LW8w14zJ6YT2+D4MDtIYpk6dRQBaKyJLgRHEehAzLEi6myiTEXsfJNcIiHzDWneOO09sXDzK41LMn4PurWFqrgZ1TnS+DcDmqQ3qiy1iZfpxGgjWFhz+vHuaQqxpqgQ9W2HKDlDCQ2Mo22WMUQhLcGQujyUlKYJa8QAi0+xUHuNHA5Z1g3ZSo+dv4rf7cytIFDpsYwmLMW/se7Ty5sFnHlvsxz5FbVAZ4dlVjjdPI7IIjMW0XCKoNCm0M6QQHDx5krV6j/FOhLuzAI6DnXcpt3ZCOI5j2cwkO0BIdo+5YEBtngCpcbRLtdq+GF+19nS/OrhOybKIIL75A4WVMYx15mltbrnq6ZMkkyS0zz3Rn9v2mQAA+CNJREFUjwFi69gSACNoTY0R5CxqkWRppsx9roWnDI0kxbghrfw+pL/OnqSHSSykkKiwivITkl5CEofI2CdDUMmPYTv7ScUY9bDKau/WCeWQQhJkAQv1k0z5pzBKYxsf+8vfxF9tMNWbRwmJf+p3WPqt/4YSNlnZRdp5IqvIevAVlG3YHZ2lUu+gccnYTugcwpUWnl7CGFiNm7QzhScr1LsxEwUHt3Gg/4P4q+jMUF/tZ+mFYXhjB+U647oRoocffphf+ZVfobsl+Dc2Nvh7f+/v8cu//Musr6/zx3/8x9frUW8q/OnSn2DSPvFRqcH2BKLXd0ko4WGbCIsM3P7Bfq1IoYXgTGyzvNPGUYrZ7HlMycLIfqVS6WbccfYc1Qlvi2wJFv19aMvBcTKYLl3ZkCjmxGaE210i8PuZL9lNfKCpqVbRzS5JCFHiIiyBkRqjIVWGKJHskDb5zKbg2LjS4GQWCijGpymk83QmzrEhM4yB2MQs06Rs8ggEkStQ5NDCo7lh0AjmahaJMmTf+DrikloxaEX35h2qy6CNQZsUDATdjDBV1OI2QiukVKRaYSUaNwW0IJrwKKs1Ou5BDH2hfXpWITDkbOilmnai0Y6LzAyJzLPJB9nMusS00WlKliiOLbc4X/dpPPD/xgQh8597CIAgCDDGkN6kZ8WttSPQGcRtWHqU3lOneHDzSbQBZSwKJUkj7eIkBktCVMjhd3ocPBUidk5DPodxLKQ+gtYCKSW2VLB/N86BGTD9sqBGKtI4ZNlk+KY/J888FyGQZCbjQvY1boXEUGPAatZYnb8kOFdpzPpJMmXYwSy28IhKLkgLEGipsfIOwYQkyTLGpINrUtK2h54L0MImjlNAoo1CSJuNYBPtGkS9A0lAMVYYYeGU8oyVD2GZMTpRE39rnQ7m2c0MYwybfp0zy6fZaPYgi4jmz+DMz3P8kU2EK1GOjZMa0k4VpKDxtj040uLep9tIlbBjapJt2SqeDsnpp9B4GDdP5kq2b5/FGMFa0iaRMUlqsKREC4UVe6ANsjWPyi7G/r3RssmvGyH6nd/5Hf7lv/yX/PiP/zgAtm3zEz/xE3ziE5/gV37lV/jCF75wvR71poJ3Pk86v0y+/izbb8/jFS1U3N8cYpEjn5yjoBogBW64ThrNMhM9wnTVcJdVYUxLHO3z5GyCQJK3BNLS5JMWiZ2wZCzG3Am0yLOsekhLYdFPWvvSmVX8bGtjj2OeWNkSHr3+tEmSm8cH77+wrsjqKqbWYn01B4AU/Y3Fr6dkyrBy28eoWAZbRWhtUXEN958tsGujQyFbZcyc4Vn32+SxqWpFS7RZFHV2WmNIBOcOvRslPDINj51p4ouUHF1OViNOnvo6kyd/n8eXfZJMYzLFl+dvjcrfSoNBk/kBKtO0w4zleBGjJDkpyIxh34Mdctk5lFYsd0IKdPuVvI3BjxRd1yKp1SgVUvJxHTFWIpIOorKX0kQJE51n33wDWVzFJIr1s5ust3t8yrrAhXoHlCKaX+Ybpza3DpQ1N9VcuwJbwbkmDaC1iDAKJV2ebC9RL1ZIVULeREyk60S5Io3ck7CthHQMCCikKbtyBSwVIoHxVpPitnHEnbvJFTYITIaRijldJMXC0nB8cR/1IERKzcRzy1hK0RAp1aWb2xJpjKHe6nG+3l+vQqt+jbTER2OIlKblR31CmcT9Q0s9RalQINMSK82QnsXtvWfwetvYtmcXCxPjlPe9m3IuR6Y0U1MCYzK8uTLmwiomi3AyGy1sHEtwZNxiUhYIUn8YvC+EuOkJUc2POLO5jjr9l7i2wLNS8skZHL+K6daxZvOcU22KF3wwAjNWJY3BMlDqZUgs3GYD6eTI3DGkTtHY6JkCLjUa3RiDoFyY5vbNGsKAZWWcb59Hao3MQEh9kRCFTbR+Y8UUXTdCdOzYMb7/+79/+PrSQfroRz/KqVO3QMDfTQjL91Cxwu0t4xX7h/ZVWwEmCPBTSZpmrDm3k7olcp15qpYhcARC5hm3CjhGcNos8bCbojU07tqHtPIUZJE9lR0kdoWsdJCw5JCiEZYmL/vCIfzWf2Pen2fBX4A46ruq91wMjr+ZtINLrVVCJVinnwYh8Bd7mNQgRd/n7jcy0jTj0Kknud/s5GB4jNiaYGdugbxx2d3qUlMVktwYbm+JRB0iMQplMlJLkJQSZos2U5tbmyCGSHWpWy3auwpE57+DoT//W5GiFigyBJ51YwXutRKKJOtnsNy32UUrQ83bRjPtEPsebqSImwFZJvCsDt3pFWwR4ntt3JxhenaB0ExQnR1Ha0WxBEXX4DhwaPckevd2nMwgdZux5jHStE5uCc6tPsXzjx0jn93GdDkH9OsePbvcD+QfxE3cjOi7dTQIQfbYH4NOkVlKXNqFTh1iR6B0Rr4smd4dEhcE02IHj+36fhbH34ESEs8zTFvT7FysAQotIY3HyUyI5bYJjQKp8LszGCSxO0m1M8aG6GLt7jJ1cp2fevg5/rJj02vGEN2cx1Kc3ugSbFYZP3+eNNM899mvcO7zD5D++dfAKdAozLEhe9gmIecs0Vlb6pe2sGN2je2jlHPxwgS74qE234NtWShHkI25OMJiIm+zZ9d9eHmPvdu2kzqCNX+NKFO4mYcXaKTOKOen6IlpFp6s8tSZP+fM2hM3emheEudrPq0gwY8DnizsxDYVFjoVXN1FEGMaKyAl3XJKd2KK2r5xnjo0RqObMn5qmUnhkpeSKX+R1cpbiO0ifbu2xCkYbt9fQSuFxrB9aop8EuElHiKcwBjJZH4WK+rvDyrbih945DeHCssbBdeNECVJQrlcHr7+jd/4jeHfxWLxphVoNxpKqcsm1GBj11qTRhphFLUHT9EMpxBGAZqlWg8ee5ylFjhOB6kUjXvfhxNXyVBkIiGVOxCepGtPU6XHpruLtV1Fop0TCJnHVYq9lTtx3QKTU3ksIRCFNaJ8hePWvfT2HkLGAZnOWAlXMfU1ADaVz2JSHbbxZsJgHM2D34TFJZCCqBqjqj2cThfZ7pBstnBX+wG7uSShktXp5vYgwgiBwDFVcsUx1lOJESCEZLq6gkajLIt2UKKz44OI0gXUZIA0PdwsRmQGK51jv19lM9SgDRXPoh76rAcaBz10J98IvBxCJIWheUax2lmjaU8wEdpkQuBZBaxeSnVfmWQsh7Yc7LlVju44w0K8SrM5QXTg+/jR295BXvZ4qHueiaJNJVxnbBa6R3az72feh7Xl27nvkVUEBtsPMDVJob6fbLVDuLJIpDTHep8bro+bba4NIAVkYYB0LKLlDu1tb8FrBaheSG91P76IsIIG731XGfu2D7F3pkBZbCfvHKAZaSZ++ocozFqoTCCkRW5snPGlJbxKwnznHKQpf1R7HtE5i/QzpALSewAo2Q4HcnswwsJOE7zWXlbaK7D2zGVtvFniPJJMEz73HG6jTu7cU1TP9esRRe0GwnXxpYNOSiwdyiMKGWlUpfO+/Wgropwv41oO2/M20rPI2R7SUv3zO5CQGDxb8LGf+EHuvFdy25jH8aRFotY45abkY+hWCkQ9qK3k6DJN9s3j+LUzPPLwb1Dzk5vaCrnWDlld85FotHZITUYc+mRxTAsb2jUOzFm84y0S4xRx3Dwz7u04wsGOE7xAYRuJVJBOTnD0ox+iedcBbNti38R29uw4h9CG7uYmTruLJQWOyGGZMTI9ju3ksRINQqGzfhymQRCF4YgQXQ2Tk5MsLCwMX7/nPe8Z/r2wsMD09PT1etQbCmmaXtzIjRm6frrdLu21BGH6Z2R1eyHNB/899hc+ixNEEAY0I8Hz9+WRKqNbL+DHHhqLC3dUiD0X/7Y70bggIcPGLzuInI2QDjttw+RYgdLtOc7XQ3Z4kikPHinn2TA22raIJRxrncQ/C6vdCYyBatahmfpXELkbDSHERbfZc8f7WruBkt1GovAaDdCKzE/Z/o1HKboWIkkQWm3FbmiKusHtpTmEMJw4so+MmPqeM8Szy0SeIXVdJhZ3I4ozWCImHi8TlQuUNPjl57FKPl/MqiRiguRMlclsgwc2/pz5aoC4wYUGL/2tjDFXxH+1w5Sg26TbWKa+VkNvHMZvhxg0e30HbQIEHmPJMfxxj/auMtrKIQzgFekqxcL8Ajkb7MZZinKdY8EKljBILJ5pn2HJljgzW3LAscmJTWryAkGaoZRGpjnSTJJunEcLg5T9dXCzEiKz8Ty2FGRBgPQsdJJxtHkG61yXNX0YGSlSFaIWzpDW52mqJpGOsIxEWH1X7vaJIuPFDjE5tJjBsi0cDRPFOVaCZTZ7VUTqMrHZRHdinMQwJw4TxBkt24KGjZLjSCWRaYlnas9c0c4bScQvhW0JslNfxykKHBmBSnCJWIo2UL2INOjhBEewZIBVnCJvIiZ3bycoVzl8YBKMJBvLIyrbwC1hXJ+54ra+lSMW5EoOQgiEkFgOTJbLxFqhdIYXpijLxlYxtm0hLE2lcQbXT+lFiuVGSKNx40uLvFhcZpppGk/7TNgTTMu9KC2YNH9O6kkMFjINyLmCD1UOMuP111hY3sMdb3k/zXceBsBWUAqa4FhsO7CNmfs/RH76Hbi5fsbw2h3bSALJeCZR5QK2MNhIVDiNSvP8zK6PQ8cniAIeOf0cz/zFWdqt+k21D7xaXDdC9P73v59PfepTV7326U9/+jJ32gh9JMlFrWQQJ3FpefQs7luIutpBWU8Tnl4iVz+BE8aYQhGlHYxrUK5H4paJnQqJzINQjLcyOhNHMEaSOWVyjk2mDXdPTDF52CXbs425PTNMF23aYcZsMaLhx/RyBTLLZS58ikxD2Rwg7azS0mO0QkVsUjbSDvFW1pkx5qYRuEMNb3qC06JJGEnydkzOivCbVQyG9MIKG37GrpLZIkIGz++RsyNydLGlTeZKVnfsIsg0lAKKiaZdttHSIsxNIwpjODLD4IAdYBtDQ3fAzRDGQcsy6XyNPWsPMHF+gfHGMhvtmCAIUOr1yQQaCKmBdUBrPfxbKUWn08EYQxRFaK15arGJv3Kc9ep5SlkLLQWOTKisbzBeGmNtPKKolwidMmHFo7t7gtSdwAj4vtIuJva4eEGI11lEtBe5Y9cEzvTtCAtm8nnCp/OkOkW4BRKvgrWtyFixhJMuodGUewvsEUVUJtBRSGH9eRwMSinSNEUIMZxzNwqDtvi+TxzHLD30+0gEQaOLzNm0V7uk2qbTKpMJG8uPseOMOx7q0N04zSbLVMYzpFYgJdsqOaQA185wbIGRFlbWwzUpu7bdyftn7gJls21es7ubUspHpJZAGEHPOJyMfFSWkooyY7rCrm1nEe7Fc6duOhKpFKyfxc1ZIC12TNYpmjb16X1ststsbuxCmiKR7WFsyNk13nPg/WzzJjl8+zbevmcb7/yx/51H/I8jJvZRyMd8/MCPsj1nkT/fwp3ctvUgg7Qy7n/3W3j4XTsRBqQxJI6NCEM81yIr5Vifsime7tLqJSRxdFNY0i4lZcaYobxQyhAqxTt4LwaXkr/M19+ukA6EYjsdJpHCIOMOe0q7AIMSgjumjoBrUTEu21oGW/XH5iO3HSCXd8nJPJbVP+w1Lbh0VYBeWcL7vh/m3twyjjConEthOodcW0edWcKvXyBJM1b9OYrl8VdNiG4mQnXdCNHf+Tt/hwceeIB/+A//IY899hgXLlzgscce49d+7dd44IEH+Ft/629dr0e9YaC1RilFlmWEYUiz2RwKMmMMWayxjKKtMkKRIdYDLMsQJoqNuE2Ggy4YWkcOYiyXx3IFcnIMSxo8mQdbEGYSIwWOJclTZsaR3P3Wd7HzJ/83xPg42oAwOarJdvIJSJnHSMlf7lujNuEiTEbcXUWRkc+6/bRy5dBut4eBiO32jSvnPtgktdb0ej2iXgYH9hEzxfJZi7LbZa93CmF8pFH4SYayduIkbRAWJc/CbnVw9+/BqoD4q3+VpOzhWgWkEEgBpSSP7+bQ0iPNeWingCcTjHIQhfMIIyjmBJBhtEVmWegkZfHcHt79bILSPmJrM42iq9cqejG8Uh99rdZ3Cw7IqjGGXq93GVFaXV0lSRK01nTDhM9/81+zPP8ABZWihMDWITpxsO6/F78gKDrraCBzHYKpPBLJMbuLEIJybZX+RmRDGmPyOfJuEXH4I1hOCSt2uX/b/WzUC2T5PGElxz5RptxpIITBKR9HZBEqszBxSnv7AbY3n0RrTbVaRQhxw10aQRCwubmJUgq1eozvVmssrbX4w8+fQzgWvXpAL30naeTQP1ZcIATMSY+C1OwuS7y8y7hnsWOqyPcdmobWIvbdf5WpsZQ4ZyFMgo1C5EroM1+A6hGULHMgUWx3z9MdtxFGICRIyyPrNaCzjLBncN0uVtQi3agTRRG+7/cPApWSLMuoVquv+5iFYTj83ZY6Z+j5AUaCxkIKzVS8hIwzMpmjM3Y70nZZL+wHJyWvl3Adh0PWXpAWH7ljDturgLTZ9YE8M/OP0P7SV5mIOxzKryAOfBCgf5BpUMPLQlJbUl71yZOjOTFDWmv05aNr43uz2L5grBoxd/y/0em8+tir6xlT02q1iKKIo0c/RXDiIVQSEZyQCOGSiYyN4jYsU8OTGbNyFem6UD+L8EosFu/m59+3n241QtuQw6acSPYcmca1NXsre7lj5x5cCdLpEyKLfiycxDA3O8P+OwrkhMfE7oOcVgXOfvkMS7pL9/Q5hFJ0sh1EUfSq+zuQVTcDrhsh2r59O7//+7/P6uoqn/zkJ/nhH/5hPvnJT7KwsMDv/d7vjVxmV8Fg8aRpOiRBSilarRZaa9qbMW4wjdKasec2SFF0NPTI+MbaBRqmjWULUs9FT1r4WYj7lgKWFAgEmQGFRZKb5EMzH2FuLI9QEZawcK1+RVNl+qdyG89ldd9biEVGPmfTknBvehCzeYzDxiOTgvc8+jUEoJzSZZaHSzXRMAyvMPu+VHr+K9Vk0zQdbvitVossy6ifj2l1YXX3e5GdNpgY4eVB29i6TS5ewRMSicby8lTyNgJN8oFPYAkQO3dy29RdjDnTuJag7ynfgXYq1CMHZ3oOUyySOXvZu3cNmWnG/GeZLsC45WGHmtR2iVwLtR5h42B0gsAMC5gppUiSBN/3X3KTj6LoFVlGXiikjDGXZdIMjtZZWlqi04l5Zn4D003ZVq/zQ+E4ypacX3mOllXBE4KNGZdk1zih7tfXQRq25w8RCIERkplnjiNkP+aqZhJO/MjtzORniPIlEGAZi8Pjh1lZzZGzSrR3VchFNfa5EtdxEHadqCpY6NyFSVJsmcfoPLXVKs1m84osoF7v9cvaq9f7ZS6yLKPX65GmKb3uOl91FlA08KMOFzoRK7m3o43HRC2HLVMqH9pN9EPvY3ashMlCxv/waxjXZlvJwXNdWpsBQTNAFMfZNxfj76tg5SW5rINVHGPu0A8ABuMUcbUiswvsEwKpU+rbvsNsbj8yXOWwPQUU6RaLWCqjs7SGlHJIgIUQKKVelIwPrIUvxMspdXBFlid9a4dSimazSb1eJ018ukGINv3aXtFSi+LSOi1hc1xZqDTCcnMkjqBKyppoMzm3VQLkEst5qSzJT9hYgY/uBfzUvjyOVOig3wbthwgh8A79EIl0KPg1JrKUKO+hg4T73y3Z9WMfArWN1Gxj//EOZVvS7XZfkSxqNpv0er2hYhsEwfDatVrPL7UMZVlGvV4nyzI2NzdZW3yU4pPPMNGqIXWKkGVOuk383HbqROzeXmbHoT1UZgqQG0c6LpFVREhobQZEcxWyQoEJlady2zQfOeCRt/PsmdqDs307lm2ht6xoAE6lSCQncCdnQEoqxUm6pSKFCnhhSu+p41TCKlJnZFl21bnzckjSG9JCBHDkyBE+85nP8OCDD/KZz3yGr3/963z2s5/l8OHD1/MxbzhorYdugUvrYaQ6xcXFUheQ0u6TFw0TC222myW2LZewhCQV8CxdjIYdszksN4cQEGcGz4IsV2HSmWSssB3H37js2ZmGvNM/gNJID7/cJVdqE1kF3Ewyt7qLuLaXttZklsQy/WytdrtNrVaj0+lcRngGFq/BQhkQvksnfZIkQ9KXpuk1b/gvJA8DMvZCIXau2yLQipZOCFVKLB0QNq2gi61XMcUCwpbgFcnKs+yyl5BSkM7OAeB6Htu9vfxYOs1e7y7q3j7ys33NvFicgnIFR5a4v9xmb+sMEyvPkbctnirXsQOHyM2zun8Ck7QYi6sYISikfzDcmAZxMQOy872EsDHmRTXXS03qL4aBC1ZrjRBiaIUMt4IhkyThwpk6xYXnmFgIcePbmasUsZwuuYaPcYqMlSrs3pbDkoKcY+Mkd4M03FZ+H5mwQUqMMUghyNkx757dTxfFrvIueqqLFAYdSqrnfShMMrXnfvK338ae75vhiBuBkEiVUSlrIlkh9iMEmp5K6HY7w039UkvkYNMZWFlfiBcSgMH8G8zVS+fcS21ag/tnWYaUklqtxm+c+Qq5cIoDuLhJh4dFnlBIciZHWM6wduQoHshRyI0hDJgsxMPhnbvfy7v2jON5NvXlHr2uQbgFpOfhlUBWZjDSRToWe8pzCGMQ2iHn2XTe/1ewnAK6LrBOLbNzY507Zh6jq8toa5ITE3vYrJ+CpD82hUJhOEatVotWqzXs06VzLkmSKxI7giCg2fzex6dc+p1LScDgmtZ6uNEHQYCLoGPvRaiIXs+nGTh4s2V6k/egzQ7mG89hS8Fs+QOkgF0eo5B3sV9QAX5mRm4dxaNxdu0iOnYMpCA+eRIdx3S+/SRJI8TLVZgpeOTVBd4zGaIsi/JHvw/Lgp0HpvEsC1u9F2nZiMjG9/0r5s2A6LVarWF/Xyivms3mZWM46HuSJJeRzauRxsH4R1E0lG+bm5u0Wq2hEtB8ZAWRpuRiG5HEON4snufgWILTd5WY2zOBbUvc7/8/ALC2zlSUW8kLnu3Snbm/nwGQG8N7x8/3r1sSa3ICaVl0xu/ABgQ+he3T9Nopk5OCe26bAGlhbFj1SzTHJGpzGVs1+6Vat2TaQEEexMG22+2XJDpKqZvOrXtdCdEA27Zt495772XHjh2vxe1vOQw2/wEGmlsYhkgpUUpRr9dJkoQ4jvtCO0uRtTMkStAal0hhozHEaYoWMGYiNAI7WOBBvsUJ/acII7CFhcpPMyE2iTODJMN2JLOFPD+04+PI7PJFqS8538sIC2VbGAmxPYajBe5SAUuDlWnOlzRZ2sFIM9yofd8fEp7BRn9pZtBAyxz8f0CQms0mWZYNY1iuBUEQ0Ol0+i6LSzbBXq83fGa716PaWSbThgwLOm3Wgx6RJ0lNnch6Bsf1sHIWOldE58Zhy3LTec/7ARCuw307CqjiOxjLv4Pa3W+HSgFhBIVZsXUmmiGcfRtjlqAjx8lLyZ4db2OvGGOMOWJp4Zs6KQUKpoWtmkPB1+v1qNf7bo2NjY3hBvRCaK0vzoerYHD9hYQgDMPLyPWlmu9g8x9YWFqtFlFjgST+X7TT+3D1ATpmD+8UZ/ExaFGmWCpy5OBO/LftpDBWZo+5m9umjvRPrpcOrpQYoCAnGM/32DXrUY8aTOQmSFWK2HE3YKie60FhCu55K/nCNCJXpBxWQUiEDshNBKTCQoUpu3L7yIdvIUr7pLHdbhPHMZ1OZzgHarXacPN44Ri82MY2IISXkoOXih0Z3GdA/sMwRAY7mMrGSP0Mk3+OttlL3dpJlmpqkxd49tBOJnfOks+NIy2PzqnzdOI2s5UdGJXhuk4/U+eun0Y6DiJXAE9x2z0OUoCUIHsr5Ls+MzWD5UnE9m3s2JXHljEqH5KfKnO22kOKlJxV5i2V+wlTBSobKliDTWmw3mDrAN8guGLdDdas7/ucPHly+H6j0SCO4yuI49ra2mXfvXSsqtXqkPQP12cYk0oPohwqMTR23sOOD+zGsRxK6gRJ1K/mPT5WYffhOXKWgwAO1h+84jexhIVsdonnz4EB6XmUf+iHUa02QkDxgz+EyFWYuWMvByd3IQRsE3fSavcL2E5sGyOuTFOxx2nvKHPseH+vWllZod1us7q6SrVaHR5U3uv1LrNGD8au2WwSx/Gw/0EQ0Gq1CMOQXq9Hs9m8rFjxwNp4KTkazMWVlZVhjJrv+7RaLZKgh9WdI0xciiiceosPOhUQdl9JmCogi5V+GryUcPdPI+Xl2/rHD32ce3dPMjORh9w4OFu12bYIk2UDwmbivp/AlUXsUp7x6RyOC3fcNsWOQxXutPr1nNaKU2RYiGJE9bZDCCFYXl4ekmff9wnDkGq1SrvdvszKeKl12vd9ut3u0GV/s+A1IUQj9JGmKUqpyzTbdrtNFEVDMjHQ2gekQkpJsVjkfPcEy/q79FJBNJZDCAt/osDCtgk0UJN7Mdk5WkIzMTGJEQZMP1ZIAOzfQ6oMtmmRczym8oV+5dcXZDtlGno79xGWdmBN7mWi6KAdwe7ih9mrFnH9ACdRrO/XQIFNvwkSXNe9LAZq0M+BphTHMVEUDX3Mg419IIgH8TSD2JYwDC+zLl2axTbQyAaaRxAEZFk2vE+328XzPIIgoFpvkWaajemncWWRVAjqQY+omLIjPc/mQQdXGKyKh3E8VHEG8f4+Ebpjpi8ocFwcS3Bq8iOkyjCzb45d+TtwTAHHL9KrpiBAeRNob5JQFhiPamzffQez7VX2R2scT6rYDrRliaazH8vIy6wy6+vrNJtNms0mGxsbV5jMB3NlIFAujQXqdrtD7coYQ71e5/z58wRBMJxbvV6PdrtNGIa0Wi3iOGZ9fZ3FxUV832djYwPH6WflbNbPU8w0RTFBQVhs5D6AtdTi9N2zqHye3MwE77nt7ZRLBYzVrx78np3vRmAjx3biSUHtwD4whqipkCYj1SkFu0CqUyZ2TaMxdGr9zfK22TK5XAWx/32o+QbBPUeZ9myU65IhIJKgc2wLjiAdTRAEhGF4GfEeBIkP5lutVhtuIgNCOLjWbreH82Xw/8GaGwjygYJyNQzm9mA9NxoNdOIx6bioNCVxPLpiEiUMdraGMoYdt08yUZqmYBcQe97L5uoqrbjdDyzOMtyc23+usBBSIPJ57p06wI777sR1HCwpkMEGU3NTaOlgTc4xUS5R/uEfZ6ukFnMTBZQ2ZIUxcoTsEdvZfqrNUk0PCckgo3BAKBuNBisrK0NCCReLEnY6HRqNBr1e77L5OCBDgw0+CALa7Ta+71+Rvbi4uEin02F9fX1oIRnEwgTVgMwqUBMGX/mEKsb31yE/S21vgQIWO7IytmthH9mHLW0wmqmSO3yG3rIWCiHQloNqNjFxzOTf/N+wJsaJjh8nPDmPc/vbYef9lHMV9m/vk51cNkGnbZAWSGmRFHPkZqbp3LUPaUniOGZzc5NarcbZs2eHSRBpmuK67mUyXWs9vD5YmwPZNlB8BsRmcD1N0+Fv0Wg0hkTg0vEfjGOj0egTJelCMk5ogn58Ty/AX+v2D5MWkMNCOO5W+QFg+tCwYvlA0bUdSe7uu5idLMLEvuFYCikojXu4nsAIQVKcQjku+z/xQQ596DaEUThzM0zunWRn2UFkikq3RLMwgzAZaot4dTqd4XgN+jDo49raGvV6Ha016+vrQ1m2vLw8/OzA+vZ6JZx8L1y3w11HuKiVNptNSqUSSZLgOA5hGOL7Prlcjl6vh+M4wwDHgVnZcRxs2x4GVycX1kiiBs54zG69yLG5vTimR890mZQ5WqVpOrvW+4JVWMyNOTitHI6wEcD0NpcPHSyzlBP8xO6f7AuXqyDKNBQKyAM53jvt8u0OzNzxTnzlUso9iERjK0l+f4JVdUkuTCGnXWT58mrVjUZjuEHZtk2p1Pf9p2lKoVAYusksyyKfz/cDebtdyuUyzWaTKIooFArk8/lhCv3Y2BhS9gVVmqb0ej0sy6LZbDI5OYnWmnq9TrlcJp/PI6VFPdrAETbKUUzq0xx//8/R+NZ/wtvxNLlleHthDJWzyL/rAGI9T2rvGlqI8s6WUHH7R5MgINWG7SWXTqQZ92yyWNOtpdw2m0NbLunkbXgrZ5gSBm0XiLoR2YzNxlSeXWoXot3CUxN0xRRRFJGm6XDjHWhyaZoipaTT6VAqlTh//jwHDx4cWs8GAbFRFFEsFgmCAMuyaLfb5PP5oZm6Wq0yOTlJvV6n3W4zOTlJp9NhbGyMbrc7fP6FCxewLAulFEII1h+uUcw+gpAR5UAQ1CXZ3iMIldDcnmPsLYeYsCS7cnM8/MG78NfAczy0idkxUSQnDlJeWqRYcPFMCjpj3JvCkhamEjM7VoEnDQJBrugwPlsgF+QQMiPnWHxsdRsts0HoeSgMJq4wY1dJ0139CrlScubMGVzXZXp6euhC01pTq9WG9c+01mxsbLB//36SJKHX6w03rrGxMTY3N4ebVhiGnD9/nrGxsSHJqdfrHD58GKXUcP41m83h2EopSZIEKSX5TYtCxSPpLpPZkNkuOXWUopHUCw6aiIJToOAUENIGIVm7Zzvujh30vvo1dr713SyttTDaIKXAO3yE3QsNmNhL7o7dOBMVxM7/F+VHvkGYgdz5Fu44dBCAp1JFphRT+Qk6TQM7pzh0WLBw+hS7ghxPNQ17z52jXC6zvLyMEIIoilBKsb6+PiSFnucNlbXz58+jlBrKp8HfAytPt9ul1WqxY8cO1tbWmJiYoN1u0+l0huM/IPiDNdtoNIZrWUqJ6hpCZydZoUXUO0uy+CyPe9twKg4ty2asMQ29ACzBmDdGT2s48wA73/FXh/JKZ6a/XGtNRH4S4diYNMWenQGl6H3zm5DFkLt4Fp70cqgoxrgWImkgF5/Dvv39jBcniewppvx3o2drQxIdhuFQPg2sQxsbG7iuy9TU1JA42bZ92ZoeKH5SSjY3N/F9f6jgpWk6tNiGYUgul+OZZ57h0KFDw7GzbXuo1CRJQhAE5PMFMlGmqzZ5S+4R1rLdCAMlt8RbJ95Nu3UW4XlMX5K0JEWfMHt2X77kSg72938/rWe+BDveOvycEHDPh3YRNVvM7foQMYqTe/fguFuHta4/izMdYRW/DxlU2Rd9haa5i8gTxFlCJLqkOh2SwAsXLtDpdJidnSVJkiERbDQadLtd4jjGtu0hqVZKUSwWybKMlZUVbNtmbm7uRffX1wMjQnQdkWUZ3W6XTqfD1NTUkCwMXBsDK8hgU3ddl2KxOLQMDTSfLMvQQZ57Ys2ilaJpUs/dxjMHDjOrFHbRZTqX49TMLPfZGxTcKTrxJomTYG9pCoW8QViCA2M2uBdPWQ9n3npZm1NlsEuSb634/PSsx5Q3xZQzzUovxlh9b7RMNTNjU0S6jWgY5IQ9jEkJwxDLsmg0GmRZNlzUYRhi2za5XG4oULvdLpOTk0Mh0e12sW17KHwGwlMpheM4w/igwecHxGgQG1EqlYakwbIsbG0Y22wROZMYGpz3NAs6YjIzRLkJajJlux1RdCVO9zxm6u0Q1oeEaAjH6VughSBMNSXPQhlDybYZ3+HRWo3J33kPWX4MpMSyJPad/weWlWfVvYcJJ0PG76a7u8T75nKcPh/gxEfIsmyY+WOMwbbtYfBrPp9nc3Nz6DYdWL8GVo40TbEsa2hyV0qxbds2giCg1+uxubnJ7OwsY2Nj1Ov1y6yO5XJ56MqQUrK8vDwk6lEUIcwxctF+krxFQUOu4MAHfwTOPEB2uI3cmlP2XT/F/nxMPH0K13LRph//M33ww+w8/ftkJYMmAZ0xW5jFszx2l3f342F3BhDDxoUOd37fDvIX8kAbp+RSrkZwqoH9V8qcX2ixraYob+viZjY5dxInxzBodbBuBkH0AytEoVAYWjI6nc6w/wNL2GDjarfbeJ5HvV4fps8PNjLf9xkfH8d1XRYXF9m+fTsbGxusr68Pr2VZhhCCvJ9SKo/Timp0Mew4uIdHdzzP3553ebRSZLKsKdgF3jn3TmrmYZAWacFBOA46CDiwZ5blh1s01322HxzHmdvOdNInyla5gOW5sEU0YrEfa2Lq4pqNbe509iEtaIjtMD5LqZJhf+VxpseP0CjuIE3ToVvWsiyklERRNFRaoihienp6qKXX63Usyxq6Uo0xLC0tMTk5OZRJ7XabZrPJ+Pj40O3RaDTY2NigUqmwvr6OUorTp08PiXqSJGRZ1lf4dITJWURTb2Hmuf+bx/d/gMlegYkDNuFzZcZbIVg5hBC8fdvb+fO9ZWich+33DvuuMo1oNxF/+RTZrn2wdRisEALs/nbm3fMuqFwM15DFIqrd5tB7t6OeWcWKNhBCsHNsD41qQBxALHy8rWSHgUVaKUUcx0PL2GBdDmTcYLwGFts0TVldXaVcLg8tYxMTE/R6PR555JGLZDqfH8rIgSxot9vMzc1d5mLzfZ9isUiYnyb1eviVOmXpw+oC3D7HXZP3892FTyPc/rwawIpicmWP6ZJHoexiO335Jh1rOF6DMfMKDl5hBpjh7kzxsH1JfJSQcPpLWNuLWK1llJNj2jTpWtN4UmG1bNrNNrZlD4nzwOI/GEPLsoaW27GxPkkdWM8GpGlg4b0ZYo1vSUJUr9f5F//iX/DYY49hWRYf//jH+af/9J9i2ze2OwNNII5jHMcZuj4GGUUDa5Bt2yRJMjS3DiwEA03DsizyUrKDmMVelbQiUJnLtuinCMb+lO2zBXLrFZzxPHr6rVScCm8pz/H8jvM44q28e+LdFxtldN+3vIVg7p2Xtfljt1VYaqecPN5CCviB2R+gs5FQbmpWKx8lE8u4ruGeybs5ax4lrrdwDu0F+sJ7sFF3u12klEOi1Ol0+unY5fKQBA60o4HJeRBDAwxfDwhOPp8niiJarRaFQgHLsoaCfBB3NQg8HGhTKgvJdVLYW8MIxeNvu4dl9R2+3xiUdOitbxAeyZOTNoG7B9w8BOay8QHA6ZvHBfAjRypYUrB33KVZSJg+kCONNIyPY4SgXJgi985xxnZsQwnDtDVPmH87Ttzh4O63c/a8QbpfwUr34nneUFMfaOmDfg3+DoKAJEnY2Nig0+kMr7muS7VaxbbtoSVxcXGx304hhu6fxcXFoZAdxG5MTU0NM6RyudzQiue6LpZl4SVN0sqdyDRjxixh3V1mzBgO6zm8seLFcclVMNQRttgiRIaZ/AyukydLE6xcHm9uGmTKfdvuw7M8PrTnQ9RXeyBgbn8Fx+uv0bydRzgxue1lCt2Mbnkbe+YqHHd7OLkZjOhAu01c17ilmaF7dnV1dThOURRdRooHa29xcXFIXAabcpIkwzk1Pz8/tNKFYUgYhszMzNButzl37txws3ddd2gFGdRBsu1+7MaE41A4nsd31qi4CTnhktiSopPnb7/jhziug6FVtvKjPwrPf/GyKSaEwLIlm4tdtu2vQK5C8XB/4x+f8bC9LZJe2cn0244gxy7GmOVYZ37s3eyWsMohyvlpvB/8GOY7/xbLVyithi6KQcDr5OQkwFDxEEIwPz+P67qMj48PrThpml6W9Qr9cykdx6HX610mpwZu2AGJaDQaw8yyQQzTILmi0+lguzlit8TYRA5pj+PaMzi2h1h0COM7cWckcxMlDt49R8EpUL9rFupnYOrgsO8q1bhZjGUESvbbJ5yLct/ZsYPiD/4g2P0s2h/Z/yNYpx8nXV3lh9+2i8efegpr63uzYx651HCu3iJHf10O+ud5Huvr68N+DyyL3W6XUqk0VNySJBmSTynl0D3tuu7w+oDkDJS6SqUytDYOLI8D5afT6VwWk9Su11G5MTwrR7znMOMLDpaM0VGZ8YLDT9uHkZ532dyy3n4vG0fPAXDbuy9aXMQLCNELYUuJNpecELz12Ypc5cC77mPzyAT6K4t0ch7TpkdQAkHfsm1ZFqurq0xMTKCUuswSmyTJ0DtSqVSwbXs4l+I4HhLEG11nDG5RQvSrv/qrbNu2jYceeoharcbf/bt/l9/93d/lF3/xF29ouwZm5VwuN7RmDIRLtVq97P2BfzdJEizLGmrrcRwjhMCWHnGiuDf8Lt/ZXqamZ5HY7HPvo2iqdGOY8CrYMuAHt/0g31x/nF57N94+m7yd78cqwMVguxeBEGIrvZzhkQq2J5m0LPzCHoy9hjPj4eUqlIVNnPqshAFTtjPchAZ1ToQQ5PP5IemRUg7NxEIIPM9jc3OT8fHxYQzRwDw/iHVI03S4eDzPGwZeu647vMcgniRN0yHhyrIMC4HId5l9708ytv5fWEti3r5jvN8vx2W6ExOOHSJXFczLHyRf9KB+4crxueN2trs2s6XScEyOTOc4GjaxbIGTk8Pfr1CchL17EJaFDUw6BVYsG60NNg6IDDHusG99HSknh65Tz/OGJGgwFoNxcByHzc3NoZXt0gKKA7fsYFwG4+55Hr7vs76+Ppxzg/ijc+fODZWFwXuu6w6FtpPFdIslZvyYue97N0Xbxx2foCBjfvzuT1w2NFr1T8B2LZfDs2V+ePbnkVqThj6eN47zvp+Fu6eYvGRMLUuCMNzx3ota+1um3gLmLCpMGXvr2+CEIc452EhSiuh9eyhtQua52LZNsVikVuu7NSzLGloPB0H90I9l8DzvsqD7waZULBaHAZ8D8j7QXgcbned5NJtNisUi3W6XxcVF8vk8juMM56cxhlwuh8Awba+R9uDt33cH6+PbeaRhIYRAWg76kli93MGDlAszOOKiFg/w9o/t45HPzZOlerAYAdj14z938UPlWfJA/m23Dd+6fQYe9fJMjyvm/uw49T33IhwHU67g+mtQqmHM3NBNM4j3G8Qrjo2NDZWWcrk81OAHY5fP9ysXN5vNobV2MKeAoTwbvDeQaYNAYdu2h3FXuVxu+KxCaQJjrXHn5BHUttt5rlRm3N2DJwqElQKi5eNOj3P7XN+ifXthDsJV4OImLW0BKsMql9G9dcZ/9mewt8geQPkjH8bZuXP4ev/YfnpzS6h6HaRkwl0fXtt39zTjswWOfPlRlkt3s97qu5E9z8OyrGEcpOu6xHGM53lDArO2toZt2xQKBaSUrK+vD8tqXGrlHih0A0v3QDEcKMSDOD5jzNByO7Dq+r6PsSWtsmBPOM32vUegcJZAWRhp8fZ9k5x/3EK4F2OsAI7svJeZk32SND5buDh2rtWvj/UikFKwfSx38Y2tQ4ut9jmm9n+Qpd1/jajzONn8YxT9mHrZYMzFDOmBzB+MxWBfGMRfDZTARqNBoVC4rKTIQBm+0bjlCNGg4OO3vvUt8vk8u3fv5pd+6Zf4d//u370sQjQIaL6eGGSKDWJDnC0z5sD0OrCMXJoKPWDKY2NjtFotpJTYts1kIU9KBXHBZ98nfpbF+TxhnFHf3Mvduy2O11a4a9bjbWMf7As9A4VsHyaBKI4RSqGDACtJUS+RRWPSPqGIo5AACyUMcZRQ3CZRIqawvUyoDP7MbcR+zHvHExqJGRKdAVkZ+JIHG/nAVTEYh8GGMijq6LruUHu4tPBeEATYtj10wQ0Cpgc+/OXl5eFYDgrPKaWQOuPZnU9wZ/Zxfqh8mE93FIdz+zj67jOUEWxOScYsA8qnuhgz4xmcnTvA8+CFWV5bY3Zpon+WZYRxgCIdflxi0OPjw+8LFZJO7MRuhxizZQkqz+FmR0mzI8PfPZfLDQnRIJZnIFAGBGgwRgPBOXDxDARoPp+n0WgM/7404HgQS+S6LlmWUSqV6Ha7Q7fPYPyUUmyb3E1cLiN7CaY8QfAnn8X+m3+TnzoSg+dclhFTnLG4XR4gDmLumesLzzDLkGGKfOs9xEmM/4L5ZhcN6c7GZfdxcPDdGQr37SD94EcoZh0aScTBvT326Trc9h7atUWwxfB3b7VaQ9dZqVQil8sNNdDB/BNCDD/jed6QyAzcE4PxvTS75VKLxiBYeEDOLcsaEoLBuvY8jx1vvYPyN76M1BF77vgAO+/Yz3/7SwmTU0hl0fAv9tdszdMf2v7RPoEzfSKnMs3coSLSUS+akp2l/U0pEgK2PjPpQmQ5aMsgMTST/veVFAiVMe46Q8XhUqXDdV2CIMD3fSzLGlosLs08LBQKKKXYtWvX0FoRBEGf6G1ZgJvN5nBsB5lCg3iaSqUyHLuBnMvn8yRJgqstkql5bnvPx/DrdzBt78aJbPa/dQcnFkIKZ48za7nDsXhfbj9pukgy945h37cdLhAs5UnsfYxVN0mKRZI4hoF1YccOsjSFS7Kb9MGD5O69lyAI2FM+Qaog8X1y44IoCZnaPc74gQ+z8fVv4HneUJ4M1snAmjjY0Acb/oDoGXOxxtjAxT02NjYMwB64vAcybaDsRVE0dN8OYk7DMGR8fJwoiiiXy/1n3ltjKv4AB2cm6HiPcbq7kwy9ReYV5vbbr5g/UjlXvGftLuNnDMfyathZufg9q7wHvClkY550/DYOOw6HP/5eHv7sFxBPBHRmG2jdrw6ey+UuC0K/ND5Sa82uXbtYXl4eKrOFQmFosR4odAMS+FqhWCy+5GeEuZmqIl0DvvrVr/Lrv/7rPProo8P3Tp06xcc//nEef/xxKpXK9/h2f9Hff//9nD179rqn+91xxx2sr69zzz33DIM2K5XKUMBcmvUyOzs7jGtoNpuEYcj+/fup1WpEUcSunk9+vMdT7TG67QaVd/4Ewi2Q1hYJTj7E3F/bTnDKp/NkPwZAFiTj7//faT34PzHRVkYScMh1OXtNFX7F1jf6GCtM4dguP3boDr6ztsHpteP88H0/x/dPK7796F/y/NQU7XabnTt3sry8zOHDh5FSDgPEXddlc3OTbdu2DTPrgiBgZmaGmZkZ1tbWKBaLeJ7H6uoqhUIB27YZHx/Htu1hrMzA4jYzMzNcUOPj41SrVQ4cOMDS0hJTU1N9EpbEvP+O7fzRSp652mNUd8/in9gECe/c6fHDb9/Bn3x7ibdu/xGa1hQPPPX7pOraqx9bRQvlK8YK07SDfoZOQQiCS5bQ9xdLPJYoDh18GwuL/dTl0O2RP5ijslHZCpTMDzeqVqvFwYMH6fV6lEqlIamcnp4eZog1m022bds2jMkqFovD1N/JyUl6vd7QbVEsFikUCqysrHDgwAGeffZZSqXSMMi90WgwPj4OwNLSEhMTExyUGzy8pPgbh27jLxfO8tZ8nm/0emTCkF3jEvlYuczp0n6Uzji/8fwV18e/b5zWt1tXvP+BvRYPLynuLXlsjNuUizYXTnYJjOb+ve/hTOMEjmth2za7du0aBjsPtPDBBjZws25ubiKlHM67TqdDsVgcaqnVapWZmZmhW7tarTI1NYVSilKp1Hcheh4rKyvDew7S1AeWpYHl8+ddj4/ucfmFYxvUlWLiwz9K78G/QBnDxA9OUf9SfdjPf3V4J//Pap0TfoQErlXyvPPwR2kFNU6vHB2+9/enpvlit4snBD+zbQf/yU9o1pe5b3YPO7wcgerxpO8zMTGBbdtYljWUNaVSaehCHcSfTU9P4299fmVlhWKxSL1eJ5/PMzY2NkzHH4zZ1NTUMPZDSonneeRyuWFM0cCyOwig1VozPT2Ns77O3g+O860vnsNKLXJv+ys0T36DVElyFY+/v3OGP3zuzFBeffw2m+0lwX998uoFIv/O5BT/tVG/6rUXw/v3WNy33eL/evTKdS+lpFKpDF2I27dvHxKZgWVwYM3f2NhgZmaGQqEwDCTvdDrMzc3R7XYZGxsbWkcG8UaW1Z/HA6I0qGs1OTk5DEjfuXPn0C3XbDZpNBoEpYBoMcIBPlgqcV+xwpP3vJevfeWP+BcfKvKvvnElicgfeifh2ccue+8Dey2+deF7Z3Id2fm2y+ZawYFfeKvD//34xd9g/7jg5/ZN8tCu93H0oQfZtWsXtVqNvXv3curUKebm5oYuedd1WVpaIk1T9u/fP1QCBx6TAbFUSg0zZV8rXBPVMbcYPve5z5kPfvCDl7134cIFc+TIEbO2tvaS3+92u+bIkSNGStk/sPc6/hNCvKafv9H/pLS+Zx+u5e9r6ffg+ssZn8s+K67+21rie/fl9fp3Lf262pi94vF4vfrF6/fM69G/F7vHtd7bAuNZL3JdvPJ2XctzX24fX8v5cL3u/XL69Uo+f73693LX7yuZZ9/r2qX9tuXrMwYvd7xeTF7dyD3vWnDLucwKhcIV9UIGr6/FJDbA6urqUGu+XqjX65w5c2YYwDjCCK8FBjFHd9555zDeY4QRRhhhhFeHW44QHT58mFarRa1WG56PNj8/z9zc3LAexrWgWCy+LAJ1LYiiiHw+P0wLH2GE1wKD+IxisTgiRCOMMMII1wm3XKXqffv2cf/99/Nv/s2/odfrsbS0xG/+5m/yUz/1Uze6aSOMMMIII4wwwi2KW44QAfzGb/wGWZbxkY98hJ/5mZ/h/e9/P7/0S790o5s1wggjjDDCCCPcorjlssxeLczWMQfFYvG6p92PMMIII4wwwgi3Jt50hGiEEUYYYYQRRhjhhbglXWYjjDDCCCOMMMII1xMjQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx5vOkJkjKHX62GMudFNGWGEEUYYYYQRbhLYN7oBrzd83+f+++/nySefpFQqXdd71+t1Tpw4gZRvOp4JQBRFWJaF4zg3uik3HUIVkrfy1+VeWZaRz+e56667yOdf+p5pmuL7PmNjYwghrksbRhjhNcczn4G7fgqsl96m4nPnyGo13H37cGZnX4fGvX5YaC+Qs3PMFedudFP42uLX+Miej7yqe3S7XWzbvibZ9XrjTUeIXmtIKZmamrrRzbghCIIA27ZxXfdGN+Wmwx8s/QE/u/tnr8u90jQlDMPrcq8RRrhp8TKt+ELKl/2dWwEajTb6+txLaaR1ucJujLlmRSnT2cv6/NUghLhpPTRvTlPGTYg4jm90E141RtaHEa4VSmna1eBGN2OEmxpm6981QkrQ14c43FQwYF7OOLwItDY8+JnTqFRTXeqSRBkAjy80X0ZTzHUjZzcjRoToJkEURTe6CSOM8MpxDRvRpVqhzgx+K3ktW3TTIF1fJ1leAZWBX7+278SKtbOt17ZhtwAynb3oNWMMQXLpdfGGJETa6OtiUdHZxbFprvvUlnsA+PGLj/EVMIwI0QgjvBlhlMK02ze6GdcFr7mZ+jv/6SU/0vwf/2P4tzEGrW9Os/n1Rrq8TLp4AZIetBau6TtZqqgudV/bht3sMIbH15940ctxpjm23GYz2ARjEJZ8I3rMMFv/vVoM1pvBkISKLFEAxJl6WW1R5to/f6thRIhGGOESuO35i3EIcQJra1f9nJmfx7Rar1/Dbnaol7b2qM7FDd4EHYx6A+5e3ws6A615tvrsFZeSTLPZuWgl7hPY17NxNyMMYXalW3XD3+B4/ThxpkkyzR+d/qP+BWmBfuNt1trol+U5fNH7bK03YyAJM7Kz3wH6xPJaYcyrd5ndzKEVI0L0BoOJY4w2mBukfd+swXLXgiTTOP56f+OCvnBVCitqXCloV1ah13v9G/kK8Lr8Ji/zGWb16TeNhWgIlYLRtOLWFZf8OGOl9YJA+TfZ8FwNkboylKAVt1jtrZKqPiEaWk/kG9NlBv3A6leKwfrfON/pxyPpvnU2aayB1oyvPnTxw8tPQOK/+L2uk4XoZt0nRoTojYbjz9NcSWiuJIgsvLi5j/CSeG4zQugMqbY2JqVAa5zuMuKFglmKN2RGy6uFMYYTa52X/lyWvfkIke4TokQnRH6KVnq4+fSSkPRSi5kBbl5F+vWBMYRpSNBJ6NS31uTCt4eXU6WJUoVAQHsZYVmYNyAherUxRJ99Ypl2mHLumWrfCrlFir7Z2wCjGK8fvfjhjecgevEwgVFQ9QivOa4XWzbGQBhitEEIcDsLdBaa+PX0qs8IO5eTJff5L72q59/MptCXgjGGRBkwCpldTogEGh3FRF31wi+9/g19hbgev43RZpiZcjWEvYRUGRp+wpePr7N6icXDZNll42WyuE8I3kzYshAlKuHkI2skjRr6qf8JwFPVJ1Ab68N1aoyhsfbimvqbBZGKSMKMJNxae+cf6rsT0xDWjxOrDCkknPxLvnxikzAJaEUtPj//+Rvb8OsIvfXfK0WQ9JUPYyDTZjjHlNCw/Dj6UhJpuZj0xTOejRnFEI1wq+CppyBNiboKIUGqhNhXtNcTGosXJ/lgQRz97uWawIUz+b5r6Bba6K8HlDacqsVobRBaIbIta9AWIcIY4k5/LIcQbz4LUbcR8Z0/PgtAPaxD4xyEreH12lKPKIvxmwHN+Q7RJRlA0fHjZPU64bPPAWCyZBjT8HJws5ravxc6HU2rbfiLZ5aGhMh2JGr1Of7iC3/BE+e+TDfuYubPortdHlh44IqpFSaKb52uAlyTBe7lIsuym2ZsL2aWGcIspN3r0ug1iVWMNgaBwMQ95PpRpKRvIQJq7S7zG+f5wpkHWeouDe+38Gztde+D1vr61Qp7YfWB5gVoLV3xschPr/JdQzHeYL0TsdAMyLShser355cE5r8BWchTG0/1P2+5PPXNfibkI6uPABA+/fRltxxZiF5nnDx5kl/4hV/gne98J+973/v4J//kn9BoNAB45pln+Omf/mne9ra38eEPf5jPfvazN7i1L440vcoEvQpebaGr4X2OPk2c+DTXIoQUCBVTX1ZIW2Di/iZ/tHWU1ecCHjzdYa2b8tSKj1AxMulghETolHz16Es86Xv35VaBMopu2uWp1YALWyngxnJ5ovU0paWvE3Yyqps2WmvSVg+7u8zZeszxjbBPiG4RGGOuy4Z36dePrj/P5tmnoHUB6GeqqFTz5MZRFroncesrlJ/5barPXcBoQ1avgzGoVguMwWQZG72NKx+y9Nj3bEOn07nlanZ9+2Sdbk/T6PhDl5m0JZ31BYSf8MXn/5DW5tPoTJFtbDDfmiernoVLXIrNZsT5Wt9itN65/iU6ut0uQRCg1I3V/hOV8PTm07T+5E8JTi+TqIRu6NMO2vyfj/2frGS9rSBqQ6bBkfQtRCZjLjpLr95g8QXJDpsXugRJRpS+fn0zxlw3WaiNvjzLrLkA7SsJ0TNfv/I9tOLQ6p+jtMGeyyGKFuefr6NS3d/9jSLTijV/rU9EpU0SZyw1Ao5u9vcB1blIwEcus9cZURTxi7/4i7ztbW/j29/+Nl/4whdotVr8s3/2z2i32/ztv/23+fEf/3Eef/xx/vW//tf823/7bzl27NiNbvZV8boLlyShl3RIdIIQ0NwQlMc1QSujeXID8/DDnOmdIY0VO89/lgw4UWsgn/kOhfXHQch+DE36xjfVG2PoZT0eqj9EJ9ZcWK+htUZJj7PhAsnKM9S/dYLaJjzr91OmRdQjyjTyzJlbykKUpimdzqu3KnS+cNEN8e35dZ6o+Xzrsc9zar3DkxeaqEz3DWoaJtrPIaImF779GE99+QIgcPfuxWQp31l+CK0UG73NKx9y9muvup03G0qezVIjRJpsaCGybMlz59YwlkCmKXHUJLUdska/SN6fPvbfSS70yWatF3PmkTXkFkFS0WsTzK/19al382qgjCJRCeHTT6M6AWBQmSLtdtm11GU5rJLoBIwm04IMn2bUZL0Tsrf9XXq9ACku6UN9HoCjiy2eXmrdkD69Wmhe+Ltc+2+kgw5aWyhtkJ6F2FXg/GKH6V0lcn4bozVhmtD4zGc48/Q3QUiU1jz7rc8NSZhJLmaQXo8ss5sZNx0hWl1d5fbbb+eXf/mXcV2XiYkJfvZnf5bHH3+cL3/5y4yPj/PX//pfx7Zt3vOe9/BjP/Zj/P7v//6NbvZV8XKEy6uxEGltSCMNGJQl0EYjpGBzycLp1oi7iplZH/eZr2NhkSQhcZIgTMr55FtkR5/tp6xuWYjkVTI73kjIdMZfrP8Fmc5wcOjGirl0CRmE/HH9GLYWnO0uU23MYzWWaJ6Z5aHe04gsptKbx21umeBvAULUbrevi4VosxNRXb5IYBbqHUKTEa9vEj/xBEGqUalCGYNSpu/KiHusn32WKE6Qpku0/zAmTXl09Uk2OyGLzfYN34BfUzz5uwB4joUxILKMVkOTqhRpCezAR1sCd2kXRitaqkbnL/4CAN3pMT1j8fxqh099+zyZDfaWfrXnxG9f96YO6lTd6N/DGEOsYhbCORQWa60YZRTB/FmOfOcMzbRDtRODMXR1wheOfY6dF97OU2u7kUIwv9kkZ3kXb3jsDwEouBZhcmtaiIzp1yFaaYV889RVlIgtpItLBCdOXPZe+NSTmNUuKo2QWUoWRnQTH+lIXD9jo7STpzswsdiErz9KtnEGjEacriEyhf/II+jocovs9Y4hupmKEt90hOjAgQP89m//NpZlDd974IEHeMtb3sKZM2c4cuTIZZ8/dOgQJ0+efL2beV3xahdO2M6onuv7q7VjYU2muJ0FTJZh0pisWsMVAVbcAgX+ua/wtHMGW8UcOV1lefM8DRVjhEVrJSaNIta71+bue71xPQRNohO00XzpTAPr1AwNf5lKdR3nmRXUySNYSZ5aDIgUFSlEPULrBHRKyV/G9OrMd0/gfPvmDNy8dHySJBm+rtVeWSxFrRdzdrNHO7woCGViEJbGyQwyDEhEDhVFZJkmOfYwlmOjox5hZPPUxpNw+st849mz1JuLVIMqSZqy3vV5/MLV6zzd6ohSRdTehGxrMzEgU8Xa2YDo3HO4eRt5qo5OMmS3gmME3axBsFV3R2QZwalTnF2uE8QZf3jqz3CtvtKUvYbZeTeEEJ396vBPbTRxmmAO3Mlz1f3EEcRRSuvR79DplYgb29hs9Dix2iFKQ+4tpqhIspK10FjMqjmsSw7XHnTHsy2iVBGr+GX1sfUqao1dN0K05aby4ww/7q/B9CoJCanIOHP+knCHxUchTVjp3M7YN/89k0uPkX/+GLFfI05itEn5n+eeINEpad6ht9qku17DaE0S5zjyO9/Cf/hhHnp+dXhLKeTlQdjXAVl282RC33SE6FIYY/iP//E/8o1vfINf//Vfx/f9K07IzeVyBMEb/0wk279KvAXQiRRJovHOPo5QKXb3BORSstMPs7HeZaUVUq/3EH7fzD7+J09S73VJBewPjjPeztBo1PHzCCmIjj7GsYVNVr71+OvSr5crNJRSr3oBRTrCkS6dOKFRM2xf/Q65Thtj6hjAWTjM2WwGLRysrEE+OIfMIrRycLMO4+uPEIoMO23xVO10/6Y6w2zVKtI3WMuu1y8/HuKVCmbV65EsLlKtBnTjbFjiRSnNzGoJhMZODSKJUdJBZxk6UxSWVpGWhX9sk9TYKKNBWqT+kzy6+BAYQ5QlgODLJy+8yt7ehAga1HoxHeUO0+ovNAKSNGPj26fRbZ9GUuN40SGNXXZTYc9KE6MDFtoLZFnK+OOr6LRL8Pt/QKIMRhjElqvCV2k/oB0I0uCGuDCuqzVp6aKs0WiiJEa2ztDotvCX8jz2SD+YnDQminN88ME1gjgjViEFQGiJbwQrnTuJO3m0ERjfovH//C8yP0aIiyF/pxqn6KZXVgB/sU0+SV7Z8TLXk1gOft9qUONC8CxaGz739OWKxNnNLpu9Dn/2zDK9wVEcYRPTq2JnIccem6XTPIoxBhlHhM0WmBS/njJtTyKlzXJ3laiV8PxGHWH6kdzaQNAL+ctn+8+TQo6yzG4Eer0ev/Irv8LnP/95fu/3fo/bbruNfD5/hXktiiKKxeINauX3xvVcFGPnv9APzgBKS98Yvn/hTMDm+QBZv4B7RwVDhFYB7SSH6fg0sk3cJIQ4xCCw0wyZKTASoRXS7KKlC5jnVgBNutTBqrcon3zuurX9hRgIH631KxI4r3Zcv7j+RVKtWTYPk2UC6RvGln1aySmcMMUOLZxQkMhpYidCNSZBCNYefZI0DgmSjHpoY2Yr/NmFR6jGVazTX2T+gf8EwB8+e+2HJV4vXLouribcX4lLVgcButfj+Fcf77tltUVh3KPdS1Ayw16uYscZYuE8DVJ0mvLEfAMtJFnicrJ6P0pctDTuXTyOu1jFGE234yIcC6VvrQDpa8Kj/5VUGfxUcvK5VYyB8pnnUErQTW2casL86mkCmSLyeSZTi+mjy5jAwZY21OoYA6FI6ew+hC0FRhiUjkh1ygldh+/8XwA88/xJGp3Wq26yEOJlxRB1u93XJLjdrD9LEsdYOkbpGCfO0+s0Wdq3nZ57J1GSUEmbLPvfxVcBhSCP1gIjMgwWMlxHCgueG+PYN+dJmiFCCpTS2N12P1PtKusjiqLrKq8vvd+rjSUdxO2EWUg72djKtIPNZy8Qh33y88Vn11kL+0HV/+orn+cPHv9TFs9rTNBCa0mSCnpWg9AEVDZrxJ0uxiTYiWDbsVWEtDEIonpIEp7BaIkxgnaUI4syFht9o0OyZF9GwK9L326i2lHXnRAZY/jv//2/87GPfYx7772XH/iBH+C//Jf/8rIm2+LiIj/5kz9Jr9fjj/7oj7jtttsAOHLkCGfOnLnss2fPnuXw4cPXtQ/XC69kgb2Y9UOnkDU7xD2F1+qPQXHlIXqLMWEjxVfj9Ep7ibGwsoDEF2QKvHgDmSWIJCbtJghxBzKeQWiLiDw5XcVQoKZCBGCEpLhWxYtfO6vbyyVBr1ZQyfjy8gL3jt3LpD1LakIkVj9bxZYUkpjZpc9RXqmz53QHZUNLQDJewl32WFN5aj3NRjnHxGaLjsooqhzfPPcdul8/w9pyP4AzvQFHUrzYvHlVY6cUZ9faLHbP8q0zfXdbMubwuceXmNrcIDxeRjRiqG/ypLxA2mtQ/M5DICyMMmzKHLGdoeMeBoHVzaATbQWvZxT9PLJ5C2ub3Sutts2TJyGokWSalWqHZ373wX4WKYZA+QSZRPW2c+HMKsqSYElMmmEsh6Q5gcFBBwFjMsd6WMOxLMaSx5lsj/GdC3/Mv3/ov7KxFQvTiZqkmSK6xbLurkBvHea/DsaQnvgS9WNHEWEDyJjd7OJFVaLYIRFjpPVDlLRDIa7S6maotQl0EiPVLjZ1gU0JIpaUl2pk2IQLNaQU6CRm4n99mqTd5Pxmq18X6wW4noSo2+0O7/dq0+8HZ5kZI0AYnussIKTAn19k/ql+TNH8+jw710Jmih7t7jepN1pEgUanKd3ifjI02trAxE3A0G6tYklBoZWj594BskSGREsLQwQaqtm9WLv2oBNFwe2HsESL1mUH7r7QGn2tmdWDcQmC4GV957XGdSdE/+N//A9+53d+h5/7uZ/jP//n/8zP//zP85nPfIbf+q3fuqbvt9tt/sbf+Bvcd999fOpTn2JycnJ47aMf/Si1Wo3f/d3fJU1Tvvvd7/L5z3+en/zJn7ze3XhdcSlDfuHGVo/rZNqQLnfIzpwj6l2sE5SvP4dstSl0z6GMRLoW6y2FfuosnXUfWwpsk0cVFPHSJom2EczhJJpC9f3oiQNY0mCEINKaJLYJxRgCkK9hWvmlxeeuBa9EEzWXaLv5+nOXBUAXTp5n2tpGHAkinVAXMU3Ro9gxZElMgecJvbeB0wVjUXQuYG/M4VCF0006+TKzzZM0dMo2MUO24bIWCGRSBvp1UQrrl7sc68Fr6ye/1IWhlLrq2F7LeLeiLp87/SX+5SP/EqMUrW4I9I8wWe2sEKaKby79GeNCY5RGBZBkhulihbXjD1NZO0GpnYJKyZyMXi4kiSISLI7d4yGAA98+SqI1jt4Srlvt+l4nm9+U2OhbUdf99eFbpx9bh9wYcaawt87F6zx+np3jOapLCql6JJFFFmygHEGwcwKtFGlpF700pKPLzNTuwggJThdjoBn8GYVIMd7O0X7UJa3tA+Czp/6AMImIs1fv1hlYEG9UULWqr0EWk0gH8awiDn0Mim22Q0t8nSQUZNLHKENFTvN23sF63UKQUq010cIikgKFpHRuCafaIcMiXGr1rV+qX6xWLS7z4INP03voocue/1oUlX25cu5SbGxsDENBBkHVxgjA8GDzeWyh2Wz6NNd8lDZEtRNkxTxzzaPMBKch8nnqfI+nF2uE1SUSNNoYKqtrCKN5/sIfIxyH7QsJre0H6MaHCAuH6MQKX2REmeLUzBQ1p4jKUsZPPY0xBssVpPFFJeaFh0ZfKqtfighmWUaWZW9sC9FnPvMZfvM3f5O/9tf+Gh/4wAf4uZ/7OX7zN3+TP/iDP7im7//Jn/wJq6urfPGLX+T+++/nbW972/DfxMQEn/70p/nSl77Eu971Lv75P//n/PN//s9597vffb278arxchbBwGJyte8sBAs8ux4CBpQmizWnav0sCyMsZK0GQZdeIJCOjcYi7Pq0sj7r1tqGomGjC4vmAJbK6JUklZ4ijDqkQiCMJgXSTKLDBLuXXnFqQP1CRNi+PhuWMWZoan2pcbparMLgtdb66u6hLMJcOEnYVsPXC715jj+zDIC3vMlYx+ZI9jPMulUcY2EbTZr1yUzqWhiRQ+Rq+HN7QYAWEmEMKhVEVp7MT1jt7qAU5HAb4zTELlT67osk7AW1nObEjlcwUteONE2HAaCvRsisdhp8e1ALKMtIk5RIh5RWT2H8Bs0g4a1PnELEhnYS4/sZ6x1J7tTbSZTB1hopJRqNp0+SWDFpnLHQhpMTGUVTZGq5g2oGlA918aMEHvn/AvCpZz91PYbidUMv7rLaW+VPzvwJycICOgjAKMye95Jkmm/qGqQxZbWJJaA7to6TLiBSC5UqKiHUD03TrMcoq4Lbu0AjuZOKmgLAyAwv6VHQEbmsh5s4OIlLaPXntWUgzhKipL8JvdyN1/cvL6/xckszvOJSDi9oZ/f5TcJTy5CFpNLF1z3W41WUNuQUeElGJfVxVIBxVnEl0JnAJCW0lOxMl3CFpE2CsuuIhk8QJ2gh0cJBSFD9xU2cRhSr62SbVdL1dTj6e8CVG/v1wKVy6uVCKXUxtID+4a7agCZDCgsLOLHUIoxiHvr0v8fzY/y5KYS0kVphTpdothrYK6uINOufb2kMm3dMkzMxTqrYUd5GXhuM5WCkxszm6SUQCEU78jHOJGeWQgLdxDnxMKfWnkU6kA7qOdXOXjFul/5dq9W+p0ttUH/vRmc2XorrTog2Nze5/fbbL3vv9ttvv+Zo/V/4hV/g1KlTPP300xw9evSyfwB33303n/nMZ3jqqaf46le/yic+8Ynr3YXXHZcWZhz4VIfmVtU/48hIh2rdI0sMcdY/YkLbBcJMYZJVpM4wwiaW25BWhJVa6JxBaJtytkmgDU2rjJhpEOcsir6imaySAMoChSRbaTAWPE/etpiUNfQl7smoo1jqXJsm+sIJfjUX2csxk77YgtFaDxfcpdqIMBmYbHjArVQJX3j+eZJa/5nxjhn06ipWaiiwQl5IjLCRaYwQAkWB9kSOuFCjndMoI4htQ6skCKanuGcux+o9Y0TJDvLnJG6zjaSHMi5q69iUF2K8t3LN/X0l+F6++MH4Xc2tNhRYxsCZrxBnemipmT/eIUkSlEhpqwUAwlThZQptQdFfIQpjCvEaCActNEILLOmgMKTuGDNjZcZbUFVQ9CwqOo82HkmmmMhZ9LJVwrCFTlMKZ1dZqPuvuJzBy7EkXo/4l2bc4ImNJzCredqf/wL1T/8OonaKb86vk7Q77Dvq98kpNpZJcIxPouapaItYTHKw7qIxTFkGS40x1gxRgOx0MUjm75kBoxmX0+xvn6OQTVLqddEokkaIYwxJmJKkKZvfeIg/fqo/x651A36hhejFLIuX4tI59IqTG777/xv+qZOEeK3HcrvKxkqXC+enMUJiFITpJG5mcNJ+f5K9B0ldgSNBGE3ZcRG2gyPB7kcQUchmyLqzCAwuAU0xRxTFrMyfBgynaiewQ5/nFo9Sf/q5q1Z8HuDVZJjBRcXv0t+j0+m8bIJkjCHVaf9AVhWQxQIhwEpjjGnQO7fIPQsB0nEx2mbH89MYJDrw6ZguAokwmiBJcZMltpujzGkXciUir4SUFmkSI1OBERJlKRIUlnBJI9DSwfFsTjzw38lIUdmWzHj2s33lR+thWY8XU16/V9/e0IRo7969fOUrX7nsva985Svs3bv3ej/qDYMXTogwDIfCJlABiTJoYeH3HM6c7rKqApIsYGVtmlxUpeE+RSW3QS/M03PvhWJEKqfozRbQVpFNK6U9kSMQMfGYJHbqaGEzs9mlbM9tPdXCz0JypkuWd8lt05x+pJ9W/mjjUeykyRPLfRPuC2NyXogXbjYvNJ2+HIFwrQvsMtKlFUZpYl/Tq6UIHVNodSGKKKx9FwSkmeZdvW+gRIZjbBAWJRL2OAewCpMs3dnmVFHSnlxCYrEweYpCL6WX5lhRTQJ9Gz0DbhLhRRGWbCKUIMk0UkB0dJlT1YuBzkK9tnEel5r8r+YK0VrT611Z0G/42xiNf/4xnl1pkxkFGlq1mPHlryFQFGsZRlj4cYYlLIzUfZeYeze64kIuQRuDLQrI6W10khgsm+lkk+lGwOnuDK4lKUbrRPogrUCx+2vfwTebHNts8+T5k7hHT7FxtooKfJqPP/WyBWWavsiZfVcx3b/SuIU4jodzzdb9mkKsFDFbgaYGqF5wKP/2/wdjFXF0jwyJnXXIZx0evndvvyK8AlfC7c4hLKHxxS7aUwYjJHJjg3as8cdthDHkQoOnM2bENqTuYVAkmz7y2KOsPpcSJTHtxx7Hki/e36vh5W5evu9fZlXqdq/M1nopxEEKcd+yVP/y/yTbrGJXPB7fOIkf9ljdsFGui9AFXHsVW0tycUZqeSTlEuCwf6aAEZrJ8x3Ij5HaRWZCG1BASk7mkEKhgdWxtxD2fKJjR0mUQaQWsguL602OHmvT7OT41vK3rmqpeKUZZgDFYhHHcWg2m0OlI03TK+ZokiQvaWkzxvBn83/WL0mgQ5ZrCu0LTE9i6vPUNvcwYU2xM1yh07kHGU/hOz22V55HD+rHSo9AzjHRnscShumCzVMrXZbHp7Asq1+eQzhcyALGrCmMew6BoBulGHMAUchTXKuihSK7itWn1WpdQW601letMeT7PvV6/Xt6Rm4Urjsh+qVf+iX+0T/6R/yDf/AP+A//4T/wq7/6q/zjf/yP+ft//+9f70fd1HglzPfSQLwBoqhD6fljZNoGNKk5zzNygwdXv87JDZe44NCiQ+pWMGsLWAoyEqQQyF0LJFaZ0K2TCk1zqogupmhnH1K6SK1xnTlsIVF2nuXbnqB3oEJmLJQSrG0RnwV/gXztmaHmPnH6Dy7bUF5oFn2p+JXB2Fzr+HwvwX21ewijMEFI0groPLtMtVrASzOMUcjVpzEGMgNjOZtCPeKgLhDfvQdPe0QKEFUsN8dqSeKXqvRSl8xKuXCgQpaNc7e3B9XbR2hiSk2fbeIcUgvQhsaX/gIpBKoR8NjSRQLyWhAiY8yQfA7Gs9lsvqimJqW86ve11qAVGZJnlpr9sgFaIoWh0/K43crjZgKJoROmjCeKqfoJhMnQuKi8zY7DGYzvw3j3UWkv0gwjpvJTKEuBluhkjMNWCWPAUEEbiReFCCQBksXFM3T9d+EsN2k2Ojz4+Bk+9e3zQ4GaZdlLkphut0ur1bpCCF9t436lboxGo9Ef89WnUSrqZ4UB1XoD4g5ZKyEzGrc5T967h1y6Qj1uINFYbUXkKBreduq71tC5GYJ2jtxtewkp0KsICp5NFgYgHGS6SK5RZ+xsD4uEyvIJhLOGuxUTo7rTdMKMY19fQquUvUuX18V6qQyelxtD9MJjUy4t9vnC3+aFwbYDbC50h3Jk/hSsLqygczYTKwEL9SU2ux2icp5EHCTvuCSqQqUbE+Yd9LjC4GLvvQ8/jVGpZO6uMTKnxL2lBeyxw9giw7Ny5EWbXTxFXbv4YUgUFdmMoNYwdHtN7AQKq0/SaUuerR67ou9XI0NXG8sXGy/btq9QRpaXly/7TKPRGFrmXgzGmOHBrs7CAmEWYBmXfLeKEwVknQ5gyDsdHNUlNQmxbagsbFJIFVoIfKfB/5+9846zqyj//2fmlHtuL9v7biophARCCaG3AIL0jiggSvNrARUIEBI6iiBFqdKMyg+UoBSxUESKgoBSQgnpu8n2vb2cMr8/bubknr27yZZ7926y5/165QV39pw5056ZZ555ZiYtqJAzOhJBAT6SQbBGBM2oMFgCkkIg6zGoBkE8bsARE0GIAQoKBgZJEqD5fGAVHuhEh6pqpt/ctpbMgIGtiKlUynJNzE7tQ3TYYYfhoYcegizL+Pjjj+Hz+bB8+XIcfPDBhf7UuGWku6j6N4wXN78IoS2B0H/fhd6TBOvpRWV0JcpbE6h7/kMYbb1IogP1X6ZABBG6BkSQQopkhYQ4dBAAuvcjqMoqxFyAW2+Hl9YhRPuwqdoDLe2GKpYjEzwQM+vq8Z4/jlaSAgwDCSOKT8Nr0af24d+xXsSM7uzlr0SwnP00nNl2Op09GI3PYkczOxjUt+izL6C+uxJaWxeEcDe+bPPDmaCgRhSRta3YsCaKNTGGkNuDyq7/ISB1wS8cCFARZP8DQHUGIkiQBQYqAsQQ4BAJYl4ZUdYHieggSjc0kYAISaQ0NxKkBQIBPomn4WpLAsxAQzJ7aqyxeTOkZHxISxIDMViHOZAvlq7rAyoAuc/mhiUSCeiZNJihQd3Qmz30jzEITAQlDF3JciipMCRNgGiocIoU6vxJMOQ0+srLYEgUfUYTJEFEzF0LQ9BBNQEaSYMASFaK6AtVQGcUJPQVdMgNcCMEj6JAJEC9uBB9BtCxMQoDMphAsbrnU2TSfYimNESjUei6jvb2dstgnE6n884f03UdsVhsWGb6wcp2oI6cy2cikYCW6IWuptDamwYzDNBN78OIbEI67YFBNawT94QKN1hFFMzQQbUUKlsNqBIFEynKnALSBy1CX1KFt7EaIApAGeSp9RCYBk1wg6qdcCfaIaQBAg2e8AaUd2fg81RADc2G1tUEShiiagx6eD1WdW5d4uaWidyDOQcqh4HyPdhS2LaWGfsvL/Fy1XXdYrHSNQNdsTQ2dMegGwY+e/1PaE8ZYIygr2sjmAaUMx1gAGEZSFoM/51ZhV0rmkBkBwSdgnp8iHtqIQoS9uqMwDOnHk5XELvtNwvTnH0QBBE9FRVgZQGkRQW97ZuRjseQSW2EkmgGzagQ0gZUpqInHkf9n/8HQgg6OzvNdPI+PHfAH0jJ6+rqGtQiF4/HEY1GzYte+9cFVygHc+hOp9OIxWLm5bViVydSahxOyYN1yS/gSPfg89TbkIxOlKudSAg+6CQGQXMjGNXhSRGEWQZt+9Qh4XNhxto4hAY33CfsDuWY8/D59F1ADQLFLYEwFQQEBF6UtYkIuWWkAhl4FAqDJgFdh8wY9O6Pkc6k8ejTz4Lp29+px2VG13VzotLf2XynthAB2cxfccUVePjhh3HooYcOaKrfmYnFYpaO1jAMS2fCOypN0/IGSd6AlJ5P0ZvphdhbhQwU9LR2AOk03Ou7IaUp5L44HLEIKLqRoQp6DzkSuiHAxxQIJAWF+hDxzQdhAAQKqoQBRmDQDHQCBOUOeFwaiG7AoIAR8ED3OdHt0tDHdGS0NJJ6Bs+sexFA9kyUuJoGMTLQqWObs4L+il1up8LP5+jv+DtYp8IY26Zpns+Cc8/9IKkkWE8Emkagx1PI6AJCfX4wQ4WaMQCdoF2lYBqBAAOGQUAEARBkNExrggARBhXhFIBKqRweXYTocsLNfJB1N6D4QJROJNwpyK7PQKCBEcAhEvTpGupXvgGN6Sjf8CWMdBrs9X9CSiYRj8eRTCa3e3YHVzB5meTKT39lcqB64B1PKpVCKpWCqqpwOp1wOByWZ7lChA3ZE237Pl6H6vi/IKpRVLSlQHQVGqHQO7sQ6DEAQrCXpxt9NAVGgfVTq5EKOJCBApFK0CmQ8Anodc5A3AhDEwGtrAk9wWroVITIahATQxAMFSAEIgEmKzI6wzLk9W+BMR1MlLCm+3Mgk8D0zpcAZAedgZTf/gP3QGH9yZVDxhg6OjqyCo6mWU7y7m9l4ssdvF50TYeup7GhJwWmpmFoGXREGCgy0JgGjYgwIIF19cEgFJFMHxQBmNkUgiJTGBkNWpSg2uGGJBJUeATUCDXwONyghob2yZVgAFxqDwxG4XcKqM18BEciBUnwYHVvFVhSh8rSgCGjNeHG55vKEE6qUHXDTCtjDPF4fMA2199CpKoqUqkUMpnMgIfd5i738D5ue4OapmmWCWI6o+ODDX2I/fMuqKqKZEbFqvRUdFbUQ974Hghj8IQbASPbj3hJHzbViQipCfQ5G2FQAWHVjT5XAxgjSK1ajWP2nAMlncT++7Rg91oVsghMrvIhvtcUxDxxZNIxOHozIIxiUjoBwfDAMBTEBIp1qSSkeBpr28NQVdXsk7Y1SOe2DV5u/J3c97jrw7biGkwhyrXYka5VcHfGgHQKzDAgEAe6kYKkJ+BOr4dLj6KatsLp7QQlCaR8XyCkvo6EpwGa1Ihd6n04ZI4fIRKAQ6ZweiRI7groogIKgoDfAxAVHkVCtDwIt0MEg4FQUEZHejWoSEF1HdAomBpHOpOB2O1BOhxGV2eHmQdN0/KU5tzJfm45xGIxRKPRQZe5S0XBFaLly5fju9/9rqltd3d343vf+x5WrFhR6E+NW/rvfjIMw2JFYYwhk8nkCSCldOvMREtBZSqoCPTqYXQZKaSMNCQWhSPlzM4ZmAoJm5HwOwCBghAGh0jhgI60NwhD8ABgYASA4oKoOqAJcRACBCQRtVUMqPYj5Z0Nt+DBF91pxF2V0NgMsC2Os3NbD8YMQ4SnNwqmA+lUD+JMtqx7j8Qi1t/UygduXdeh67r5//x5IKtIRiKRvN0xqqqayyWMMTCHmLWIaAyJvjQymgTBSIPAgJpmoKky7Kv9A9CBgFwFR7sbolOESAkQDEJVQ0jGp6MSPuzr2htEMxB1e6FmHBANAkIkgGqQBQIBDCCr0SV2QyIR6EyApqr4lEVQvn4DEn1RsK4uCEw10wrAVIa5YpjbXvhAk8lkkE6n8wb5/h1w7nKZqqrIZDJIJpPo6OiArutIp9N5nW5XVxdisZhZlkxN40O9Gx+Rj9DR0wt5VQIIZ7cz96ERIASaTwH+/mcYoggqUxAAqtNA3AP4v2hDhIXRorhBBArDSCG67wzoogBGJfT5fZAgI+kNQIcIlaThFGTM6XkCTNUBnUJibwCCAJZJg2ZUlKc3AFvKhqd/sNn0tgay3LbGZa6npwdAVkHi7YeX90DxGDnpSCaTMIiAcCy6ZcmMIQOKvh4VKutDONKDNGQkmYz2GS5kZCHr6A+GMmcZIOkw0lrWidUgIBRQJA3VRjUcVAJhBnS5BZPde8KhCACjcMqAIGgIqiJ81Ie2uAcOVYBKMvBrQUQTGRAQ/P2jTdgU3joT5xMGnt9c+ucxHo+bshmPx/Msv3xQ0zQNyWRyq0I9CLlWFk4skQ37a/s6aJu6IMfjWG10Iag4wTRAgwiVytBdIhQwVAUNMIFBMHRokhdMoFjbmT2METqD3tMHmk4BW9Kt7HoM3OFuOFMpvBb7DP8t+w/EL98DoKJtqgtzpD5IohdRvQVRQ4e2MQGDEDz/302mNSe3bAZqb7zvi0aj5qCeTqfR2dmJjRs35k1S+OaPgZQjXob9+1BCCDo6smcM0VQYzW+sQbJXwP5li0CJCIFJELUEvH0qArIASVGwS40LuiQg7hOgE4JIYBp0NgugQOXC3cEcMnQwiFoaIhVR43diqn8m6hs9WD9NAAFB0rMLquQeME3FXs3l2TQSgvboWnSs3AVyewYd//wQftmPdMtXEYnGTJnJtQLl5r0/PJwxZipG/Y0GpaLgCtEjjzyCxx57zLxz7MQTT8SvfvUr/PKXv9zOmzsXvNIHsnzwdeNYLNuYeEPgnS0ArE63I6UnIQgUaaEOAnHASH8O0YhD0FzIpJNISjWQmIGVc8qwsjOFeGhXUCkDQzLAvAoESFBEQHd44GvcFwnpI3i9Chqn1kCZPRezfTOhBsvQUTsNguRAMqODOXQYcCBTrSAjhSAlNDhiUfg3qgAoWiMrEXW4kUgkTMsFXwbjlpztzYh42fD3gKyCwJWi3FlDblx8wM/tWLhQcR8TQgg2//U5xIkGpmqoz/wDkZQBd3ccBAybU0EgE0RLjRukrRcuKkOXAqic6oIRCIC4XGCiBEIknBFJgBEBclMaiYCEpMGgiOGs/xXVoVWsgVuNgLA0NgZWQ1e/hEtToDMDYaJBFoFoNIVOrSrbeefM0uPxuJlfPihzcmdT/ZWl3PIIh8NIJpPo7u7ODtKGgWg0CkIIIpGI2dEwxiznefF4urq6tg4AmQwYMeBhMQgGkIjOgFNIQepVIfR4IUOAKEkw4t3QMxE0VJTDCKkwPBHEBArnhg4k2z5GiHSDygxpQkBFCp0aAATQLRfpuo88GlT2QPQYCMyshMNIQSMi9PhUaGIKEEUoa94AMmkw0QGmJs02M5BFiCt0iUTC/M0HMd4u+ivfvEy5osB3AvWf7eeWc+5/DcPIKoqxCCRKYVAVGnEAjKAzlobY1osMkZABQ7pCgkgEOIgBp0SwX91+EJ0GZr31ORyyiJDCoLhltFQm4JBlOJ1ALJlGJuGEoEzDR1IMugGIMCC4JUggcDIHOtNppA0Ba2u/AFUziDIGaqQQfasLmsEs8qHr+oADO1eiufzxcuLP8iUiHgcvMz64E0IsTsP94ctEnI3dfdj8/seIp+PIMBFMUyGocRB1OjKZGhiaASlFkBFdIM2dEHUDM0/cEwvJURAIIAkUjAhgVABAAZa1Whq5KxCiEzMquxB0x5FiSUTcSQAUDDEYDgJB1eER3aAwkCEG0t1pdGYY6tyiqYDk1j/va7q6uhCPx82JDJCdxOm6jt7eXsRiMaiqing8ji+//NJSBj09PaYc9u8juQ/fQH1mKpUCIQSCnsEU/1QYKQNBhx/MkEEMCtFIATqDM7kK4vQDEHJJaJ40E5oooAd1cPbFQKkAEECqrQWTRGhgEJsWQqQidBAEFBlKVSUyrj6UBaIQNBnVLgbCGCQQMACMAvFwNaBq0BQByc3doIlurOtKmLcNDHY5MO+XGWOmbPH+juebLyWOh5WkgitE3d3dmDFjhiVs5syZgzrZ7azwgYZ34v13AcViMdOxzDAM9Pb2WmbBXYkUxFgXHFQCIIFRBU71YxCmwhWncKtR6MSBKqMHAuLwOgRoggxDdkISdNRVG3DTMoTEAAglCE2di4938aLW7cfs3UJAWRlAsrtiCAhcfgOGoUP1uECcHXBMbwGhLsh6CrRVQcLZjNpMK7R0GGGlEsDWGSAfjHhet6UQcR8PvlUzt7xyO3GuLOVaB5LJJJLJpLnVk3+Tm2tTqRRgaOhJtKGtqgKxWBcyhgEYDNTIOltv1JoggIEoCtAVhkIIECoHBGJenglR2lpXREB3w3RUOycjTWTA5UIqNB1xRwi6pxUetQ8REoDhn4r1M4MQDQlAthNiREYmkUFY9yEiVVkUQF5uucowkJ1l9beAAdmD2nLLqb9FLVeBylWs+fMOh8OyQ0pVVUiSBMYY+uJJMDUDxjJQWArVWhcErRtd4U4YIAAIZFD0TA5B90hIORiaK+swo2E+VEVFVUU3RELREHdBhABFckAjGgSBwl87GSJEqCwJp+GGz+2ES9ThXrMOPqkNkqZDgggwwKA6mKxASmeQiHvABBnhcB82b95smTjwZcPcGWjuTJzD20s4HM7ms68PsVgMnZ2dZgfNLXD9fdpy64nXm6qq5iAfjjBougqRiugxehAjAkAIVM0AMYIAoWCUAiJDvaCAMB2UMNS7a6FQLxgDZFnCbi0VEBUZToeBGU1hSGon/Ho3DABNfg80kUBMAQIMpJrmo6ImBJEBqqYio2ZgCEkI0KEKMhxEByVAPGy1RufKEIcPSFzJ45YewzDQ2tqKSCSCVCqFcDhsmaTwZZHBdjVyuEzqum7G8ffP3kbys5VIrPwCGUjIEEDxiTBEChUh6DrgTKbR0xJCqqoGRBcgeD2YEXsXtc0iqnwOMIecvcTVo0DWowAIoi+/Yvm2Q9ThEHWkKo4EiAhVFuBAAkQECAQQpsOjb4Yu6NCZjEi6Cm5jq+LN65sQYpaPrutIJBJIJpPmwE4IMa88yXWg5lYSQoilb+QKVa5ljf8/b5M8rLOzc+uVVGr22iWW0eD98ku4Mgxiz1S0ygTMYOgIzAZ1ewCHGyEqocHRAkHX4W7fCImIIBQQtihGGpUgNuwNkYowDAJNIxDdHqRqvoM59TE4BR+IJEIUDQif/wVgDDX1KUD1QTG6QVM6pHgcVE2hL7q1/8lta7l5S6VS5kaPXONA/yNTxst9pAVXiKZMmYJnn33WEvanP/0JkyZNKvSnxiW5nfW21tcJIchkMuasK7eTYSx7qV7tqumA6gEFhUZ8AM3AoRoACPrq/NnZkkMGgQg4VyPNJGiOMhAKeP0aAIr6QO8WgRBx/uRvo2L2/4EKBJAkUJFCnpo9PbisPgMYBESgqAvVIM1kzBJUSAwI/WcNkrKIxuhHyHy6GhEhYHYCvGHzToR3KLlOlf1nDrlLhrll1F/x4VtSeQfDlx4ppdA0zbLkw8M8a14ENVRsdldBj7cj5qwGjUegEQGqkYabOSEwAiLLABFARAGsqRmUUlR5soqQLskAgI2eXWGAQKmbgxbHrtDB0BKaDE0IoXbGvjjFMxfEYKiLMjRWuKFJIgQShk4IDABhUoXkX15CTyoBDRJSqZRl6YXnlZcTJ7dcuNLY19dnthM+6+LKTn9fED4YAVlLFJ95ORwOdHZ2IpVKoa+vD4IgQBRFrO9OIB1NQqcEgihDFiToSCG9uR2iKKJZ3ohAKAPilKFTEXL7FIhl9ZjinwVNEFHrYUB9FZx9fQAI/C4JjOggAsHJc0/HMSc1wCULoF1OCKCQqApvpheiQ4SoaZCNWgikGy5RRAohUJUglXLgCf19pNIxZDKZvB1yueXFGEM4HM6zVITDYXNJg5drJBKxWCkppRbFKtcJtP+MVdM0RCIRqKqKV//bA9XQIBMKOdWOTl1HKqODagZcSRVMEMEoARUYROhgMNAxswKOlklb6gkI1XrA5AAgOAAClFcwCJE1cDX44XBU4Ihd94YgZa0hIgjgrwD5/pVwrfwcWjwJYqig0OGI98AQAnBmDAS8adCuHrNMePn099WIRCIW2eTWVSCrAPI+TFVVcxLDFaNUKoVkMmmZtHBy/f3C4TDS6TT6+vrQ1tYGv+JAImNAo0CcOpEWKRqnhZByiWAeGWmaPSVfryhDqnEqdG8MhBnYzRdF7VfPwTf2bcaCo/aFwQjqYk5UsPcBAug9/SbbmRgEg0ElBBIoeqsdmKxEQeCAChfY5BoIfgURMQODiHDrQVB1q7Kd68rALR99fX3mZIIvSecqQfxd3t5y72mUJMl8Lx6PW5b9w+EwUqmUpS+LRCKmdbOnsx3o/gKRlI7OngS8r7+BQ0JuUEKRoV3QKcBEF6iigO1xPpyKjL0b6hDxeSC4XQjM2hMgDAIRICgKNEGEQAWIVIRDEkEB1IbcuO3EhfA4JLiEIASvF0KoHA6DwkH9mFQxFQmfCxJJw7M+DjHaC0E1kI6noW9xws+d0OUqN5s2bYKqqujq6rJYC7nPJ28/uQaBUlJwheh73/selixZgjPOOAOXXXYZzjzzTCxZsgSXX355oT81LuGD1Pa2EvLZE19Wy10aMQwDgkgAHeiIZkBZBimPH59PC2I9Ioh7RGSYH73BWrTvXYuO6kZ8nHgLQj2BPEtHqmxW1orCGJyiil3EAEQiYpcKF4iwxfohSSCCAAOAQACNymjUgpjlmwXB4UJGz2AXIsC5pgOSTtDt+gjG2hZEkxH0pLIdriAIpkLEO8JIJILkFgdiPlvqP1DxToaH84siuWBxE2o0GjU7i4He5/DO3DAMJA0NKi0H0ZzZqyV0AVI8Dk0S0RaOgZAEYOgQRAlkckP2lFZk/TjIvguy8QkiDpvizc7KDCPrWwQgI6fhdFOkMyJEUYSoZ8CYmDUrSxJ0gcKVNlBGReiihE7WhWiqAxqLA4Zg+kbFYjGzQ+X1zjtDnn9gq/M97zj4IMbbTCwWs1jWuCJKCLEMYvwdvqTEO6xoNJp9zgDWrIohoxoI6AzEoJAEAt3IKlf17hSm1QUwu7IOhiAgU7seUrASEqVICC5QUUN2ArrlZHAQyETB9LLssnnAGYDHIWU78dU6jOpayC4PqCyA6jqkjAeeTWsxSQ6hI9kMUWUQRQN1G/eFA9R0Dud1zWUE2HraMh/Ac59JpVJobW0170vKlUuuDOSa+vksnSve3d3d6OrqQiqVQjqdhiRJ5i6s92KfYJUehYOK8BGAEYqkkIGgxyFBhRJsR0NjLxqdDmSbjwZD2moJ3K9xDibvXoE4qQTxlgGiAyibhN1aVqNuVj3o5CqQYBOESbPBIEBxuEE9HogihahqIGCodFMITIdgABoVEdgUh97zKqR1H5vtgdd5b28vDMPIs9Rz+eVbwHkZ5voT8XbI64C3H26xyx0A161bZ8oxV5oymQw2b96MMrcTTNeRFFNIaAxhfxMSqpptMZSiJ5NAb1USDknGp/G3EclkraLVPgWylN3GPr08e6+lQCnStW5INTVwTN96EHBmzWqg6zNIegYZLQ2npwLEGUCd0wNJKkOKeQCRgnkcyBgy1jeXgzp1yCv/Z+mXeLnwtpE78eB9d+45Ory/4haTrq4utLW1QRAESJJkTnwymQx0XUdfX5+pOHHrNm+bqVTK9CfVWLa9rO5IotLjRJL54fzHxwg6FcjuBP63hyfbfzkUUJHC5RUgMh3RqQ3wBb2gkgQd2bPDpjWUwSE6IRIRIhFx7NxaOGbOBHE4QGl2LxtjgHPGLhAbpsFXPQtllECQHRBC5eiqDYERAUm3G1QHWGu7xdLD+6hcxYbLTu7yKWMMoiiaZcV91gRBQKkpuEK0cOFCPPvss1i4cCE8Hg8OOOAA/OlPf8Jee+1V6E+NO/h6cu6OFG6W729i5gMhXz7j/gvmDEXVEWxNwUUJkt4kNnhFJFMMAENrtYyNoWYYAoVEGRRZRL3ShC5XO2RRxD6V+4EYWSsTKAUjBJT0q2pJAiiBwQCBEMSlMmwW6uFzuAGnhD4tAZEQUMYgOF1Iytnj45FWsVHdCFmWIYqi6RRMKYUgCKbDYTweR19fH9LptGkqDofDlpkENxfzJQ1uNcrtgHMVS0KIOaPnzxuGgUgkAkopSDqKL1cqSDibYBBAjGSwTvPBAEUySEGgQpWyJyFTQgGNgSnZs3EIBUhzMwDAEEWUu0XoEKAZBiQhW05RbwSeOU3oWq9CECgELQUiubLxiRKqXZVw96QgOEQkXAoYDDAwGERDQhUsZ45wBTLXstbe3o5IJGLxkeI7oHg76u7utiwP8TIKh8N5O3q4kzBjzPJeNBqFpmnmQNa5XsTbH24GTQKesIYgU1AnurGZREFgQA5VQCZAbZkHaZEBTIdr6jQIlKBbaQAJ1kIUNYgsDEYl7LZHHG27TEeNtwYA4JSccFZSgADU5YR60GHAEQeC1M2F+nkMCSMNBkD3liEODeK6CGRJQxOphq5n893R0YFwOIzOzk7TcZxv6c71neJlyuWst7cX0WgUGzduhGEY6OjoMBVBLne5cXEFgu/M4lZKfsLw1qVIHV19IdA4Q1JLw6EEkIIGH21H3IgiOiWAqkAjDvJNxnTPGkhIgjizdU4MAyIVQSjBZ++FQR0uEMUDMv1wkJlfhSF5se+0rENry8wD4BadcIZaQKonQxIIIqgFA4VHMhBUN4EQIK1QEGTwifwZuiPd5jIFV7YJIejr67Msr3IFoKury2wLfJmHK9u5S1/9rb2MMbhcLlPRz13W5O1SVVVzyYzqFIIRh+iohhz3osfowNrNDYiGekAJRdrQ4Pc6UOV1o9zlhyxs2RW5RQkCAEGiMFIpiN0dyPhkSA2NYNrWJcLUJyuBSQdDZAQZIwWRuiE4XCCSAkYd0CCiYm4vUDEJbq0ZKdGPsFIJx9ovzX5p3bp16OvrM/srTdNMCy1XEnN9FrkClGuR6y/HXCHlbTIcDqOrqwvRaNTcjZZrXeGKUrZ/BZqkCGQtgr5MAKtSUxHRMnAGXIh5shtsqOKA4pYwefcqUNkBgQJemUIWKao8VaCEgjocOKt6P0iCBJGKEAURVFFAtlhf03tdDAYGuboKokcBVSOoUAxIigO7hKaDOv0ICQF0BZyIZAxs1pJIZJKm9ay/Ez1vK9xXNtexX5ZlcyLN+63+VuBSUJQUtLS04Gtf+xpOOeUUXHDBBaiqqirGZ8YdvNPgM1reuAeykvTvYERRBKXZ2XBPTw8oo6iGgur0BuiOOKjugAEBquBCWnHDoDJ0CkiEwCkJiOo9+F/kPxCpCFlQQJkBxgAIIupq9oNTcFoTK8kApdAZg+ggSAkKNshTMNndjFiFB/9WuyBsOfJdRQA+cQYoAJrSkdwkI5FImIMUH0wikYhFKHgnAMBiBcld7uHlRQgxB3xukg6Hw+jp6TFnX7kdPO9sc/2ImA5E0kH0VAaRNhgMCmycsQeIS0TCT1DtVeF2ZwDG4Ex3ZJ0Ey5qy6c25vW3B5CAcAkGXowkx6oNIs86FokAheJzZY/OpgFTNArirZkNnDIrkgK+SguodSFU2IqU4kBYpKASAGKj6ZAMIIejp6TG33vOOk6+hc+dMvqWZK5u8/fCOBdjqhJ47UHOrUK7VI7d8FEWBKIpmHIZhQBRFhDdEEAtvhIIghFg1dH0mxFQKn8wOQiIfQ/L74Zs5GfWVTqQlA6d558DZ0ARJIKiodUGeNhsQRVR4KAgV4HYbYIoTwSqXWabUzSBsOUpZEgj2PPRswN8AxRNEzEhBkSh0bxn69ASEcAZpEoEie9EXT5vlwPPc3t5ulk8mk0FnZ6dpScu1unG4Iz5XzHn74VaQcDiMcDhsvieKovkMLzvDMEyFQtd1UCag+RMN7HMgTCvQwyqRET2oDCqIBSR071oLSXGB7fN/EKFZ7gac+fm7cC9caN05RyiIKAFTDgVEBZMqsxcFx9YTiK5aEIcH0u7zIVCKoNQDQigEKYGT4w5UhzqBMhWi1IM0NdAjZn05CSGIRqOm8z3fSdfZ2WlacPjEjS/npNNp0zrB89va2mq2w/67oSiliMWyy5pcVlOplLl0lKsk0ISADAxorB6iKiBq9CLNgD5XCBSAISgQBAnnLpyMqxZeCpFusRhU72p+z+ES4SFxtGx+BUJ3AtTlAlNVuPacbz5DFDcUWUCNYzYEogBUAAQJU8UaaIzin70fQN2zF1QUQJgCTRCQ0eOglKK7uxupVAqbNm0yl515OeUqkv3v6eITFK5Ec0dj/jyf2PRf4uZLsPF4HBs2bEBfX5+p3PP3VqcWQFM9IFoMkhbPLvUTgkkz9zX7LuJQshHWzwcNNkJkOpwSgUAJFtYvhEtygSgKSPNCAIBTdKLR2wiHe6u/JFWybY66nBADLlBBwLSqPigihaTFUOXWEZM8SJS5kRFkCKs3gRnZiWlbW5vpPN5/KT/XMt2/f+JjQu54WUoKrhDF43Fcdtll2HvvvXH22Wdj3bp1OPzww7F69epCf2pcwiubz7JyNX/uCMtnX3xmxRWA3C3nhqHBYIBPjQBiGiEhAJ05kHArCDhFMIjY4H8fkLKCIFERYTUCiQiA0wld3mKql2T4q/dBhaPCmlBJzCpEBiA0yDDErPCWK+UIB0VIib2BmAYGgoRYCZ+3DGCAnNaR0YllvVzTNMsp29yKw61D3JGVL/kAWx2nga3WIm5h4/FwnxnDMLBx40bTVymVSpmCpGmaaWrNaECvnoAMBUkNSDoEGIoLIhJgchrB1EoEPFlrhOGuAigFJAmVtQac/q3mWtrYkD2oTWlClAa2WIgYRApQkUB2CxAdFFpgCigIUj4Fu7cciOZAHShLg4oUqr47NElBsoJBUrygBrVYAHmeeZvgHQm3VkQiEXR0dJjKNe9oeRy8c0kkEqZfTCKRMDte7rDPy4yXuSAIFgsRIQRquAfUYEjQhaiNz0FDz3SIfWHoOvDRvDjkSS3wLToCEgBdoiB6tn4ESrDP1DIQSQAkAQ6BAhkDhBmQBCdkp2iWqUAoZCX7uznkgkQlgOlwyBIMQ0fAJSNR1giDOqBr2eMjJMmHGHOabYoPEFwJ5P5la9assbQV7hicuzyWyWTMtsVN+Nxym7t829vbayoDfX190DQNiqKYjtfmTiyDAJoLWjiGlrY4GBT0BrxgAIRdZgFER21VEB6nA4I765O2T/XeAIC6oBOC3w9utKUCASgBxGz5UEnOhgHIxAz0iJNBCEGZ14GQW4ZHNCBQN+rrA1gZOAK1qXfA/N0A0cGgokwJmWde8Z2GiUQC3d3diMVi6OnpMf17uru7TUsEl1NKqWnx6e3tNf3zCCHmMjmlFJRSc/lHlmWzPnp7e00LCv8+IQSyRsCIDDmpwBPXUbUpjAzR4aA+CI4UdMmDqWUzt/RnEpB3xTQgOQQ0lCUhEACqDqm2BtA0eA48cEthEmTaNiGwzyyEpBZQJsEpugBCUCYq0JiIemcIQlkQrFKGTJwoc/jgdlGIomhaHDOZjHn+Va6PGld0enp6oGmaWTa5CkDukSEc7oyeu/TIw7nixcuMH/ao6zoSyQRWh2NIGuXQBB0q9WXbIIA5+xwLH1wACJQZW5cNmUAhg0DyZxUcUc42NOpQwBudQAUElSDmHFy/td/bosBJDQ2QygKors6gPvk/iGoY7r53EXRGkSROSCIFIREk9T44Fac5lnV0dJj9E1+mdTqdUJTsGOVyucz+ibtC5K4YDPXKmWJScIXotttuQyKRwIsvvghJktDQ0ICDDz4YN954Y6E/NW7hg52qqhAEwZzB8sGtq6vLbDi5Dti8oei6jkTKQEY3IDERbreGnngKH08rx+uHTkLKKyKjyFhf0YvIlk5WogIMhqwpfuoUJJqz5nVQmv3XH68XaG6GzhgkSqAaDAubs7saZgdmo0WbgzQth05FMCqjeVIVKIBUIoMpym7mTq9cMzzPAx9QRFE0882XbLhymDuLyBWi3N0+fC2fd0K52/L5bIIrnC6XC0Qm8MkpTIYLG6v/B0H5BJrQh7SxEjS4DpQkIcpp+KVN2eW32dOBigpQkYLQrZ0vqagAIcCkkANp3YBDIHCKFC6JglICyUERkP1wUAdEKsLlYAi5JAiCEwCDIBEQtQpEYBAphShRtFbPN/PGlbncczdyd49RSs3Bly958fLObS+8vMLhsHmYHt85lkgkLA6evMz59QF811q27HU4EwkwCPAZfvipA+VKe/YMINmA/ytfAQCIDj9UQYCyW/a3JFAYTAcVxOz5QbIII6kBzEBAbNja1ghACYXsEFA/PYhpM8q3ZFqD75CFSMxbCUqADUkdmrIavbUOgGTgkh3Zs7a2OKXyowr4VvHVq1ebljX+Xz4TbW1ttfiW5e6w4+XCl9O4/5ogCOagx9sXX+7hiioACIIAX68OlQShCDJCyY3QJQ8MJsEpOrFwcg0oZXC6XRCogNChuyLDDLRF27aWibF1KzyhABEl8zeV5KwPYVYSsh7YzIBPkeB3SgjIKQhUQN28faFCAiEGMlVdEFUDofY4yn1lIISgtbUV6XTatEJwy0U6ncamTZvMdsH7JyC7RCvLsrnDiVt4UqmUxSrJlze40snLPncLNZdNLt+eLdvmRdUDH/NAzqhIEhVV8mxMrU5ASAbhEnMt2QwwNIBuVawJIfC4GUQqwqNUQNllFxiJBKgz+54yYya03jjI9CO3XLQsYZfmpuyuPyN7IvYRFbtDIwSVk+oQlOqhVCcRqXab9c6XS/lSFp+wcuU7V/HhS0G51qPcpWs+6eAKEZdXbg3OtXTn7hwVRTHrvJ5KIsbSyCCABAsCAGqkTghKGNTtQptvDuqDTojl5WYZ6QKBxBjKvnFOVk7l7GSPKEq2LeWQ68pBtyhaDqcIhyhDkGWAEAhQEfJGIboU6AaBzFIQWC80Wg1mMEiSZI5r3I/x448/NvuyXN+r9evXm5NbnvfcI1dKTcEVoldeeQW33HILWlpaQAiBJEm44oor8OGHHxb6U+MOLky5yg7vFLgJnvsY8VnTQAc2plIppGMSKNEBIqOqvg+bakNICRTTvXvBI3jhkBn87npkmAoHdWxRiBiELQ08oAiYWuYABGFAhYiQ7OnMmsEgCQRpjWFGRbZTcctu+CU/kr4pMAQBVFLgqylHJChASzMIW2aHfMAGrKey5i73cHNz7kCTewZP/7wLgmDGYxgGBEGAIAhmWcmybFqneMezdeYKwABUJgOSjp6Da7HZtQlOqROCU0dPOgl0RdDg07JjDBWA3XcHGhvzysfnELBrtRMzKhSUu0UsbHKjOZj1aRBkgjK5DIqgQICAzO5bTPquahhUhMMhgMABSfZClYII6F3wxFzmYMGtGOFw2LRu8eUbnifeoebuduHWCl5euYM1fz53UOfWNF4n3FzN25/ZGYUAZ1wDIxQwDBBDR3qv+WgUqnCWq9YsE0FyAe521EwvAwD4nRJ0pOFVAoCY3d5LkVWIfOalwVveJSJkpwhm5Oy4pBLg8EJQ/BAow/poGtAZNAOQu7tAUhl4nE7TV43nNTftmUwG4hbLCrcwcusYVya5xY1befhBeLwu+KyVUmqeNwNkd/Zxi1Hu7JUQAj8JwG2UA3oaoTRgKA5Ar4ZMZchi9i4o566zTWUmsctU9Ca3+lAwXTeVcEIIiLR16YJIDlBhq8yqk+sROPlk87coUsjiZhBZhqZJ0GMqplVMRkAqQ8OqMFJbFMH+Gxv4sitX/nieEomEeYo5t4A5HA5zoNI0DZs3bzblOBwOIx6PmxYiXvZ8d+imTZtMZ1rLUQ/pOARQZMrLQV1loEYcENOQBQGYegQ8rArCVt0H04LTAV0FhK1lky08wCE40LhlMug5+GCz/FgqCaK4AE8l6gJOHDq9FgcevQBl3/wm5s7ogkAMhGQ3Tpp2EubP3R+y3wnRoSMjShAEwSwfPtEzDAOdnZ2mzHLrGT/4lPdZfMmHtzlFUUyFPLdM+YSQrxTwsunq6jKXc3Odj9OpNCrXJQEqg0hb7v4CQA0d1OWCIovY9aJzrcUjUEhsq7IjbLEQZRWiwR2XCQGYg4IKFGVKGUAlEMUNStJgjEByOsAgYtdMBuUKEPHXmPXPFaHcFQ8+ceXWbD6Z5X02t8hxt4md0qnaMAzIctZEnLv0wcN2ZsyzcLbQ34xvGNmD4LhCAMAc7Hknz82PZSQACg0pwQMmiIBEEDLmI6z1gEAApSoqFQ8yRgYu0QWBUBgMICRb5j5FQL1f3rJ+PnhD27fRg2qPhH+ui0EReQcNEErQF3PCkEXIDgEBtwMyEWBQNwRFsCgulGbNzXzA5YeUccfK3N0rvIPNzS8fqPqfdSIIAmRZtsxGXS6XuWTW3d1tWj40TYPDqQCqDo0KmKXtClkUkTZUEIEg7ZmMTiagt9EFMd0FTaUQZAqyRbEbjOagAzSnUwO2mqCzhQXM3TM7WIlURLVXgCQLMCCh3FkJMTENLocKp/qpqfQxxkynQr4Ewf9xBYbnUZIk86gBQRBMS5EkSfB4PJYt+Lxj4UtjvH1xGNs6m+N5TqVS+FB5HQbbcgibwUANDSlHCLPcftSWNW/NquxCutxhvtsQcsHjcCDkLgdEEYwZENwBgDHs3bL1IEgCAoEIqJkSsAz0kN0AEVD/7obsTe2igjLZD8pqITACQzWgpq3LXrxNJRIJuFxbfZS4FYkP0lwp5/1OrhMst8bxZQ/+dz6J4QO5YRhQFAWZTMZyyKWmafDJEhgkKN09EAQBZaEa6GK2LVVUBOGSKQS/P7ttR5CRnjUL+9VmfT6o1wPnvHlm2qlgVYhyl8wICFzVEqTarYopNQxAYiCyjKOayxBpk+BwuuEUXGAsA7dbhyRJliXY3DYAZI9g4MokV274poVkMgmfz2fu/OFLZ3w3Wq41hC/L5e7s4wd+8rLmbZeRJFxaKzTZgQZXHT7aTYExaxqCbhnU5QGUJCZP2tpe/Q4/YOQrRO5990X5hd82fyu7bF0u8n31q6i8/DIAwEl71CPodIOIIuTmSRD2uwRCwAdCCWRBRkOjF5P2rwFAoDdnHbdjsZi5M4xSah7dIEmSqfQlEgmIomgqRrz9+Hw+y8GNXE75b77MmOsPJ8syFEWBJEmW3Vi8vzF0A8GuJIihw+3YBABIUy+oYYA6nditIQCpstJSPg7ZBTeyE6fpe1WZvnuu3WbnWYhyyf4p+/cZZTMAKoKKFKLWDd2gkF0KnLKKstBcVDgIwt6tfVBufrkizpencw/9jMVioJSaluzcc/pyfatKRcEVon322QfLli2znNNw5513TohdZrm7CrgQcI2fz155Zw3A7IxyZ+2UUvh8PlBGAKJjY1JESimDUKHDzerRlYqDUQpKVOxe54XGst/0iB5Ui7sgJFtPJIYwyJLZFtwyhSxmT2gU6FYTvigTJCubs7N+jwxR8SBUpaPX70ci5xJEILs2TClFOp02O1quKAFbZyq8k+ZbLQVBMGf6XBniu37i8TgURTHj4AMhNydz6xTvdLMdmQxHWxyp+kqITAOlAvrYKvz30MnQ3A0gjCHtbwBkJ9SkBtHjwkgQpJzlNWWriV8gAigYFK8DKtERqGyB4a6GKpTDrSTMcuADNbfm8DM4MpkMZFk2lSCuQHGHaABQFMU0RcuyDFmWzQE8GAyaiih31BcEwVxa44MU3wnIO3WqCDCojBjVUdb3GRrW/AUJKYipIQa6+xlbMx6ahOSs3S1lEXAEEHCGQGUJECmU2XsDTMe+U7aa8EGyymJFgxeTd8/xZZOzvh179YQQPn5ffOuAhaiWqxCf+g107bUHQEVoqa3nNnH54g77uW1GkiRzpwqfqfO2wpVN7jCcu1MxVxZ5HfT09JgTFb5ZwOVymbItSRLcDhmy0QOJpBB0ORBsnoTW+i5Iu86Cf/IkmHqfwwPs9S3oMEC3DDbOObtB8HiyyhKy8iH4vFuLK1BnDmLlvhAOPXBvS5kr5SEcc8W3QWQZFaEKRBxVUAQnHIITcYRgYOvp1IqimFYKbv3gZZO7CSSdTsPj8QCAqbDnWrl5H8Zn+oqiwO12mzuHeP/lcDgsfRpXzl0uF2RBQ8DngugDQqkelDkmQ4sQNHgUEEpA5CQo7Tdg6xlAsE6mHZNaLApiLmIwCJpzZ59D2Pr/EEQ4GitAwtllY4coYL+p5agKeMArTJZlEELg9XpNpYjLILfg8OV7Lj98kuH3+802xC1J3PrI2xNXfHhfpmkaRFE0/dS4pdjhcMDj8UCmAjShIbslfstkVyQ6iJJV9MgAflb1wWbUKtnyqZ0aNMOp02X6EA0EJVlfya0BAhyHfR2ywqAzGfUVQfiPmI/yUDkkpiMjZRAIBJBOp80JMZ885CrYsiyjurravKyWMQafL+sL5XQ6zbZlHkRZQgquEF155ZX48ssvseeeeyIajWLevHl455138OMf/7jQnxp3cOEQBME0pfLt1bnLZnwGwoWMC18mk8l2tm43XFQEJRoMiIChgckCKATE0iqYQGCAQCQiNKZhUdUiHFZ5GJqkPSH2V35yfBMGgwLYpVIxfwsigShTKOUegLDsjhYioM5RD00JoKO71+zoHA6HuUOOMQan05m3fZJbKfisgXcksiybOyr4M3wbqyzL5mzL4XCY5RoMBs3nuBDyztsAAVQdsZYpmFMpQiUEVcJ0GCIFgQhqMBiyC0QAYu7poC4vhsOiqkUAAH9NTgd9/HFbi5qIoGAwvOUw6mohVNch6qoEExQ4zzzCPKqAWyr4gEwIgSzLpvXM6XRalrgAmFYivhORz8Z4ORFC4PF4zHhFUYTD4bAsbeb6dfh8PpSVlcHtdqM85EIyJEMlCjyVFSirrsJBcyah2t0N2bW1XYAQnDPbap6fUzEHoiACkgQmi3DP3gWYtiiv7ASytX5NpGwHXX/C6TjkwHPQUBUA0zKor2mAJriQWb8egpY25YOXyWCnJfMBh+/S4xMMIDvQ8YGcl0nu5IVbmPiyNldYeZlxZcHr9UJRFBiGiF38EfhFDYooYfLeVYi5e7PHVFABGsu5ZkQQYTAGuqW79S06Ipsmp4hdD6wDoQTO3XYzH6ehBtNCVNnsg6/MukOUUorykBegFPE/PI01hx4PpyPblgMuyZyMyLJsLstyBYUP0r29veap77Iso6KiwlzS4QPbQCfQ83hyNzX09vaaRxM4HA643W6zfGVZhtPpzO5gI07QBhl7Tp6BmtQXaPTOgdYhQY2q+NOH7Vn9MKdOy84/D1j9ap5CxPEeduiA4bnMKLPemmB0rgLd/K752yWLkAUZBrYu/3MLau6qBveH5OWQq9Bw+ePt0eVymf/P25jb7YZzi58Tb6e8XrjiwC0nlFLzMua65iYI2cvukJ6anWRMmxcyVwJOnX5qXp6JKKDSJeaFw1MJKIFBy4oSAlaeo0BSEXB4QKHCkLxwOmTsecieMNo+hGNdO9gWhTtX+fH5fKbVXhAEeDwec/mQl5vX6zVdIRwOBwzDgMfjMWWwlBRcIRIEAU8++SR+85vf4Gc/+xl+9atf4de//jUeeOCBQn9q3JG7y4r7JDidTnM2yu9w4YKQ24lzAeNasleWIdIMNMgwWAagTsyr8YIKOphAoAlZJUUzNATkAESBQNWZuVPApKa6fzLzoJRYGgIVCXSdQXJROMvqYdAtyxGEYLJzChrdApxOp5kPQRDgdrtNE33uLJzPAhRFMZUlvlzEFUJeBvxfrkUJgDk7F0XR7Ci4MOV2RIahI+b2gVEKGSpUwuANrAWQVVYEg4EJFKKLYm1bHagyvGXcgBzIpkvZWlq5g7JABOgBL6hDhugLAKKUXYYSXSBbZoFcGc6m1zCtOLlLPrxccnfyADDLjDt49jfNh0IhUErh9/vh9XrNcqWUIhgMmuXHrSGiKMLr9UJ0UGSojt7aBjhmzsmenAxAQRjUaVUaPbJnwLLRpjeDCAIEUQBq51nfCTrgaRhg2dZdCeL0QaqqgkQlEEmCoG05tgEEfo8OT8iDQCBgtjWu4PC88DLiSw2KopiWSr6s63K5TIWbt0lFUcxwXq68rJPJpLk0y5/hM/2ysqzDsrdcQoVXRiiuwS27UVXvR0bOgLDsmV8Gsx7Mmmshym07oVoPvGWKJbyy0Wvu0Ju25wDyu6WfEXw+SD4v0rIbc6afAIMxSFSCQxThdrtNawSfUPABSdM0+P1+0/eKT06AbBvj7ZQr7Lxt8kEskUigr6/PfJ6XK//Nv8cte5WVlVnLEhQEAz5o1A3BUKE4ZYAwMIMhoRIw3QDJWVKlfEmUDjC4A1D6XRE1EEElaPmt6SJEat0BRqkMJsFUCCVJgs/ngyRJ8Pv9FsdgWZbN9shliftWRaNReDweU3lyOp3w+XyIxWKQZdlsk16vF5RSuFwueL1eS5nz8uP9iixJYC4dzvoKLNrzSDjFNIgsQ0xmXS7KneXoD3U64SdaXjicwazFchAoAfSKfgqR7M6eU0QIQAV4HCKIO4ig5Mj6I1HRbANc+eV+fnwi097ebl72zpf9PZ6sXDudTrO8fT7fdmqz+BRMIVq5ciUOPfRQLFiwAKeffjqamppw1FFHweVy4bTTTsMf//jHQn0K3d3duPjiizF//nzsvffeuPHGG81ZTCnJPe+Fm+t5JecqQUB24HM4HOZvv9+fPd+E+4hQBl+mHSSto4m40BX2Y0GDF7qhY35od2yknRZzKSUEmgH0tziTmprtppsSINfXlRCCUIMDgkhAyrcucTiEDJh7EubWuuHz+RAIBEwTMx+c+ACf6zDOOwM+EHP/Fz6o5/7d4XCYAzqfVXEfBA5XxrhSxBF0Da1+JzaGM6hyMuzjn4tdvFnfgGa/CwpBVlmqdELXGKi4bcvZcKGEIuSvg8Mt4PApXhgaQ1lAAquciiZ3k5kPvowhyzLKysrMwZ0vl3EFiSua3LKUe7orL9fy8nJUVVVllyRk2bSK8M6WO2Xz2TofKL1eL7xeL6qrq+GRnfA4nagub4DvwP3h3n8/wDC2bH8aWhkRnxfp0w+H05evZMqKCFdggNmfuwxwhSBskREiSZhb44bHJeHEwxZh7+8cBW95CJWVlRbHVIfDAUVRTMXa6XSaA38wGITT6YTL5TLLmQ9S/L9utxuBQAAejwdut9tcugUAn89nln+u8p3JZOD1euHxeOD1ejFnchXkxkYILA0QAQ7BAYMSUCOrfOtGv3PHiAFi5PtIUErylolIfyEeBLGsDHokCsnhgEfOWgdrXZMgAAiFQqYPnsvlgqZpkCQJlZWV5u4o3p74cmw4HDZP4+aWMEKyRx0IgoBAIGBZ6sjd6MD9YGRZxsyZM+HxeOByueBwOOByubLl6XBg1r6LAGcZJJnCKcuAW0PV3DJAF+BMRMH67zRSAtlTvAtEWXNFXpP2Ki7U+2vg9/uz1vktslNdXW368ZWXl5v+ftxay//LlRpumePHYyiKYlpAuALOJ4Qej8fs60KhkOnfRyk1J5c8rGdaNdxuBtlbASKKMNJpxJtDA2cQWUXSGMGZPoRk/Qi3RiQCsgeK34tZh003l9tozSy4y3yYEtgN2GLR59ZpYOukgxBiKo+5vqa8DXFLUSAQQGVl5YB3OI41BVOIbrzxRkybNg2//OUv4fF4cN999+Htt9/GGWecAa/Xi2eeeaZQn8L3vvc9uFwuvP7663j66afx1ltv4dFHHy1Y/COFNwSu5fOD8ICs7wdv+D6fD16vF4FAAG632zSVcuXA6/VCdrqgeaYg2jwVdcQJiXghCRQEEoKuSpT5A5jtn40qZeuhl2nNgDTEzjQXSgj0fg5twXoHqEhACJAOZq9gUOZMhs8bhFPODtS5ectdC5ckyaLsiaKI6upqBINBSJJkDkp80OedBTc15+6m4ooAH+j5Dg4eP1fAFEWBqBvwic1gAFxIocrViIMrD4ZH9EARFVBQ1CjVCPjjkN3CdpcSR4J0wknwVkjQMwyiQjF3gR+C1w+H4DCVQb4cw+uaW9ZEUTT/zq1l/DluweCKP+9IFUWB3+83FSreaft8PrM8uYWNEGKG89lcKBQCkQn2XFSG/WfVZDsyQQDrd47K9nBLbiRpGqGagf0ApP47hbYgN9RnnY8BEFEE1bKHGFY1+CFVVUIQBPj9fvh8PtMSxpUirkSrqmoq59zywcutvr4eFRVblXqv12uWlcPhMMuaK4585soHcQBm++LWKKfTidCsWWAZFQLLIHDS8RCogPoyH4Qtu3vEflYNXRZBU9ZDDUdMv3Z7zr7NAICQW4bPKUESRQQCATPNjY2NZtvigxO3IHKlh8/cuTWbMWbuFOYTmYaGBjMeAOZSOfdlE0URLpcLPp8PqVQK5eXlZtyEkC0O5gLmHt4AwemAwyFCmBsGEwka6wKo7PoUWleXNa/u8uzSaoGY3BwD/PWWsPKyJkypnmlOUrjPUyQSMSdiPH/cMZiXo6Zplr6eyxUvF75sHQqFTBnmbTC3rVVWVpqnfvv9fgiCgFAohEAga/2XFC+oL4hJoY1gmQz2n3TAoHkkkgT3woUjKp/z92vZ+oMKgKgArhBo/e7mDjVBEhE6eDfMa6qCyyHB5XKhqqrKMonNneBRSs3+nC/Z55YNtw6NB6fqgW2RI2DlypX461//ilAohF122QVnn302fv/73+Pss8/G9773vYIdy71u3Tr8+9//xj/+8Q84nU40NDTg4osvxk9+8hN885vfHHI83DmukHBn19w1U246zRUsAKZfB/cBcbvdptOnLMtQ4zG4502HU1WwrvEkVKxjSCUTaNAPQlrVsKD6ACQSCezl3ss8MyWZzkDPJJFQh5evdEpHKr317BWOpmdQNk1A+ydbrnnweiAFM6ZTIM9frrNzrgmdK4b8/CU+u+b+H3wHD7D1ElPurFhdXY2uri5zhs6FSFVVuFwubN682VwSYIzB7XZnBapSxlenOJBezxDTJbBEAkxjqKN1KPdVwClUYWPzDNDP9bz8FhLBwyASQKcGMlt2o3DHc55u3sHm7mrhZypxx1fDMOB0OtHX12daw3Jn/l1dXaipqUFXV5fZkbvdbrM8+Yyft0PDMEzrCB/ojvDtgrq6KdgcFkAdOrRQCIYsQ8ikoQ5x1lYtVaMsUDboLK9Wrh34by4XkE5n/wFgVVWg8tbbwEOhkLmEBcC0uPLyrK2txfr1601rIZc7Pjjl7nLkiqCqqmZbLS8vR2dnp6mIAjCtStFoFD6fz7LjjC8zMkqRyaRBtCS0uhbE43Hs1jwHmVTWV/DUllMt+U3qGWQSyYLMgqWDDzbjUY4/DhmHDDUeByUAJQbULT4coVDI3M3qdDpRXl5u7opyOByIRqOorKxEa2ur2fZqa2tNixAvL0VRzPOvKioq0NnZaU6GuALU1dVlDuyZTMac8OQ6Zzt7e5EMBmEkEtDdHoiU4YzJp+P9DTFMrnKitroemDHTUkZSPAw1YwB6YawHYjoNfdoJYDnfyMguMCqgvLzcPONKlmVzkhIOhzFjxgwQQvKOx+D9ksuVPVbD4/GAn4LOFW3+rKIoqKmpgcvlMs/JArITSp/PB4/HY1rW+NERhmFgun8KiCwjKTjgL8sgGY+jfnL5ttvS5MkjamsigHg82ydTVYeRTIK4G8CSKdBMBkY8DpXpYE4GtyCZ+QJg9tVlZWVob283z7TifT236HKjAB8jPB6PuYO0mLvRh+K0TViB1LJ58+bh/fffN3/Pnj0bP/jBD3DeeecVInqTv/3tb1i8eDH+9a9/mWGfffYZvvrVr+Kdd97Z7jpkLBbDHnvsgVWrVpmzwkIxffp080qLmpoacwmMO1Tz2QDfUr158+Zs58qyh+w1NzcjlUplL0KUZXSl09llMYcLnjmHI/rOCvgXnAb1vReg6SoyWsryfeek+UiufneQ1A0OdfogBmuQafvMEj6jfj4+a30Px+x5Lv7474fN8D2dLryTzG49raioQCQSMWfmfPDizpWrVq2Cy+UyT6zOvcaFm+s7OztNa0ZFRQUymQzWrFljdr6BQADBYBC9vb2m78Juu+1m7qDihxBqmoaETmEkI/3yR2EkDfxwXxn3vpNBYozP/1o44xi8sfI5TJo0CYZhoL29HRUVFebuMt6B8k73yy+/RDqdNq058XgcNTU15kFuHo8H69atgyzL8Pl8aGtrM5dguaWOm+T5rJc71Pb19Zk71fjgePRUEV/2GPis2yoPi/eXcePrBbJqDIO6sslo7f7SEub1ejF16lR8+OGHCAQCprW1ra0NkydPNgfpeDyOiooK8yoOfu4J3xLd1dUFt9ttzk47OztNK5soiqZiyWfyiUQCyWQSNTU1YIxh3bp1ZpoO8XhQP7UWj7//+XbzVDHDA3FtGpuSxWt8B7k9qJZEbFY1/HuLD1MikTAdwtPpNOrr6xEMBvHJJ5+grq7OnIB0dnaam0BaWlqwcWP2vsLKykpEo1G4XC50dnYimUxixowZiEaj5k4/j8eDsrIyyynLdXV15kWyuq6jrq4Oanc3tFgcbZqKhS43VqZT6NF1CN6sH4wn3oNwvz55VgXFx52F66e/ubuEF77Q0BbdOuxJggyd6TAM3ZSpZDKJyspKhMNheL1erF+/Hj6fz1T0uILOz0TLvdcsFArB5XJh1apVpkLI5c3tdiORSJgWunA4jEAgYJ5fx5eVZFk2LVGL5p6FF//zBBgYDvC6MENy4oGebhTbnrJfo4C3N+rQjOxm/IOaBbyyVsfsxj2xdvM7iGVgTr7cbjfKysqwfv16uN1uBINB89DTYDCI1tZWNDY2mn12a2trtuy3WC35xgXevxeDIak6rEDMmzfP8nvu3Lksk8kUKnqTFStWsAMPPNAStm7dOjZt2jS2adOm7b4fjUbZtGnTGKU0e1NqAf/5/X5Gsu7/jFLKCCFMFEUmCIIZJooiI4QM+H1KKZMkaYC4CSOyM/v/pPDpHuyf2+FjAJgsKpbw0Jb85P4jhDBJkpgoikySJPM3/xt/ThAEy+/+cRBCzPLqX5b9n3c6ncOqR0Ucm3Ibzr/c/OaWXW6b4O1GUaz1IIriNvOf2576l99Qyk0gpS+f3H+yLFvKrX84lytRFBmAPFnieeb/zS2bgdpYrpxKkjSIbO5Y/wRByCuHbf2TJMlSpjyO3N+8HXL5HSge3o5LnX+vDEaH0K77y2X/vOTmmf8/f473cbwshAH6y9z2tq0+EQALeirN/w8JAhPHqKz6l5NXzv5Xkd2DltlAYVxuBuvHx+rfUCjYkll/uA9EoXG5XHl3nvDfwznHoK2tzZw5FYru7m588cUXCIUGd3izsRkt/KyhmTNnmlt5bWxsbGxGR8EUIk3TsGLFCvO3qqqW3wBw/PHHj/o7U6dORV9fH7q6ulC+5f6WL7/8EtXV1fB6h36ujNvtLvhBUKlUytzhYmNTLLh5PvdsExsbGxub0VEwhai8vBx33XWX+TsYDFp+E0IKohA1Nzdjjz32wE033YRly5aht7cXv/jFL3Byzl0/NjY2NjY2NjbDoWAK0csvv1yoqLbLXXfdhWXLluHQQw8FpRTHH388Lr744jH7vo2NjY2Njc3ORdF8iIpJf2uUjY2NjY2Njc1oKPjVHTY2NjY2NjY2Oxq2QmRjY2NjY2Mz4bEVIhsbGxsbG5sJj60Q2djY2NjY2Ex4bIXIxsbGxsbGZsJjK0Q2NjY2NjY2Ex5bIbKxsbGxsbGZ8NgKkY2NjY2Njc2Ex1aIbGxsbGxsbCY8hDHGSp2IsYQxhng8DrfbDUJIqZNjY2NjY2NjMw6YcAqRjY2NjY2NjU1/7CUzGxsbGxsbmwmPrRDZ2NjY2NjYTHhshcjGxsbGxsZmwmMrRDY2NjY2NjYTHlshsrGxsbGxsZnw2AqRjY2NjY2NzYTHVohsbGxsbGxsJjy2QmRjY2NjY2Mz4bEVIhsbGxsbG5sJj60Q2djY2NjY2Ex4bIXIxsbGxsbGZsJjK0Q2NjY2NjY2Ex5bIbKxsbGxsbGZ8NgKkY2NjY2Njc2Ex1aIbGxsbGxsbCY8tkJkY2NjY2NjM+GxFSIbGxsbGxubCY+tENnY2NjY2NhMeGyFyMbGxsbGxmbCYytENjY2NjY2NhMeWyGysbGxsbGxmfDYCpGNjY2NjY3NhEcsdQJs8jEMA8lkEqlUCoZhgFIKRVHgdDpBqa3DjgcYY1BVFYlEApqmAQBEUYTL5YIkSSCElDiFNsDAsuRwOOByuWxZGkdkMhmLLAmCAJfLBVmWbVkaJ0wEWbIVonFEMplER0cHotHooM94vV5UVlbC6XSOYcpsOIZhoKenB11dXWbn3R9RFFFeXo5QKLTTdBQ7GslkEp2dnYhEIoM+4/F4UFlZCZfLNYYps+EYhoHe3l50dXVBVdUBnxFFEWVlZQiFQhAEYYxTaAMAqVQKHR0dE0KWCGOMlToREx1d19Ha2rrNBtcfv9+P2tpau5MYQ6LRKDZu3Ahd14f0vCAIqKurg8/nK3LKbDi6rqOtrQ3hcHjI73i9XtTX19uyNIbEYjFs2LBhyLJEKUVdXR38fn+RU2bDMQwDbW1t6OvrG/I7Ho8H9fX1EMUd09ZiK0QlJp1OY926dchkMsN+V5ZlNDU1weFwFCFlNhzGGDo7O9HR0TGi9ysqKlBZWWmb/ovMaGRJkiQ0NTVBUZQipMyGwxhDV1cX2tvbR/R+eXk5qqqqbFkqMplMBuvWrUM6nR72u6IooqmpaYdcxbAVohKSyWTw5ZdfDnmWNBCCIGDy5MmQZbmAKbPJpb29HZ2dnaOKo7y8HNXV1QVKkU1/VFXFl19+Oegy5lAQBAGTJk2yJxhFpLOzc8TKEKesrAw1NTUFSpFNf1RVxerVqwddxhwKlFJMnjx5h5Ml28GhRBiGgXXr1o1KGQKySwTr1q2DYRgFSplNLuFweNTKEAB0dXUNy/RsM3S4LI1GGQK2ytJoZdJmYCKRyKiVIQDo7u5GT09PAVJk0x/GGNavXz8qZQjIyuTatWt3OFmyFaIS0dnZOSJz5ECk02l0dXUVJC6brXDfrkLR1tY26kHbJp/u7m6kUqmCxJXJZAqiANtYKbQsbdq0adSDtk0+3d3dSCaTBYlLVdURuxmUClshKgGZTKbgCkxnZ6fdQRSYjo6OglreDMPY4TqI8U4xOt2urq4R+SHZDE5nZ2dBrQWMsYJYm2y2omlawWWpu7u7YBP/scBWiEpAV1cXCu26xZ0VbQqDpmno7u4ueLw9PT224lpAuru7Cy5LAGwrUQHRdb0ostTX12crrgWku7u7KK4XO9Ik0FaIxhjGWNF8Sfr6+ooyOExEhrNte7gM53gFm8FhjKG3t7cocYfDYdsvr0BEIpGi9UvFlNOJRDHHpUgkssPIkq0QjTGxWKxojUPXdcTj8aLEPdEopgN0sQbxiUYikSia06ZhGIjFYkWJe6JRTFmyNyoUhmQyWTTLNWNsm4cNjyd2zNOTdmASiYTl9y9+8Qtzu/DmzZtRX18PADjssMNw1FFHWZ797W9/iylTpmDPPffcZvwej6fwCZ9AMMYsjoWFrqPco+9tRk5/5b8YsmQfqjk6GGOWPq/QdZROp6Hrun2o5igZi3FpRzhU0z6HaIxZt27dgNpyR0cHrr32Wtx3332jit/n86GxsXFUcUx0UqkUVq1alRdeqDoCgMmTJ++QB5eNJzZs2DDgkkmh6snj8aC5uXlUcUx0MpkMPv/887zwQsrSpEmTdvgrI0rNxo0bB7S2Faqe3G43WlpaRhXHWGBbiMaYoWwP/vjjj/Gb3/zGvPDwnHPOwd577427774bs2bNwuzZs7Fs2TIEAgEAwA033DCs+G22zVB2RYymjoDsQGErRKOj2LK0I+2OGa+MhSyl02lbIRolxa6nHWVcshWiMWYo/kMvvPACLrroItTX1+Pjjz/GQw89hL333tvyzKZNm7B48eK8E1t3FOe18Uyx6wjADndg2XjElqXxz1jIkl1Po2co/dFEkCVbIRqH/N///R/effddvPnmm/j8888H1K59Pp99fH0Jsetox2A09WR7E4yeoZShLUs7BhOhnmyvzjFmKI60ixcvxurVqzF58mScfPLJA3Yqg90RYzvqjp5i19FQv2GzbWxZGv8MxdnZlqXSU+x62lHqyLYQjTGKomxze2M0GkV7eztOPfVUyLKM5cuXD8vcaN/WPXq2dyHhaOtoKN+w2T6KomzT98GWpdKzvUunbVkaHzgcjm1e2THaetpR6shWiMYYRVG2eSaD1+vFIYccgksvvRSKomD27NnIZDJDvl9mR2l445ntdeKjrSPArqdCsL0yHG092QrR6JFlGYSQQZfObFkaH2yvrU8UWbK33Y8x0WgU69atK1r8TU1N8Hq9RYt/ovDll18W7JLD/iiKgilTphQl7olELBbD2rVrixZ/Y2OjfQ5RAVi9enXeOTeFQpZlTJs2rShxTyQSiQRWr15dtPjr6+vN3WfjmR1jYW8nwuPxFG09lVJqH8pYIIopvDtCx7Aj4Ha7i3Ygny1LhcOWpfGP0+mEKBZnwYgQssNMLGyFaIwhhBRNiAOBAAghRYl7olHMU1V3hBNbdwSKKUt+v3+HcQQd7xSzvdsKUWEghCAYDBYlbp/Pt8PI0o6Ryp2M8vLygsdJCClKvBMVURQRCoUKHm8wGIQkSQWPd6JSXl5elEmALUuFQxCEopRnIBDYrr+fzdApKysriixVVFQUPM5iYStEJUCW5YJ3EOXl5XbnUGAqKysLOrMhhKCqqqpg8dkAkiQVvMMtLy+3HXULTEVFhS1L4xxRFFFZWVnQOEOh0A7jUA3YClHJqKioKJgC43A4digtfEdBFEXU1tYWLL7a2tqirdNPZAqpwMiybMtSERAEAXV1dQWLr7q62ra0FoGysrKCKTCSJO1wSqutEJUIQRDQ1NQ0aqdQHs+Oska7oxEIBApizSsrKyvaGv1Eh1JaEFkqVDw2A+P3+wuibAaDwaIsZ9tslYHRTtx2VFmyR9ES4nA48PTTT6O1tXVE70uShJaWFnuprMisX78eL7300jYP1NwW5eXlqK6uLnCqbHKRZRnPPPMMNmzYMKL3uSzZS2XFZdOmTXj++eeRyWRG9H5ZWRlqa2vtzSNFRJIk/PGPfxzxkRaiKKKlpWWHWirj2OcQlZBXX30VBx98MARBwIknnojzzz9/yGbl9vZ2SJKEAw44oMiptDnssMPw97//Hc3Nzbjgggtw9NFHD2kGRSnFm2++ibPOOsu+2b7IvP3221iwYAEopTj++ONx/vnno7GxcUjvdnd3Q9M0HHrooUVOpc2xxx6L5557Dg0NDfjWt76Fr3zlK0Na+iKE4O2338bpp58Ot9s9BimduHzwwQeYN28eCCE49thj8c1vfhMtLS1Derevrw/RaBRHHXVUkVNZHGwLUYlgjOGaa64BkL1p+KmnnsKFF1643YHT4/Fg0qRJUBQFhxxyCG666Sb75vQi8uqrr+Lvf/87AGDt2rVYvHgxXn755W2aggVBQFVVFaZPn44//OEP2GuvvfDxxx+PVZInJNdeey2A7K3af/jDH/DNb35zu9Yet9uNlpYWeL1eHH744ViyZAk0TRuL5E5I/vWvf+G5554DAGzYsAHXXHMNXnzxxW1OLgRBQGVlJXbZZRc8//zzmD9/Pv773/+OVZInJEuWLAGQHaP++Mc/4rzzztvuKoTL5UJzczNCoRCOPvpoXHHFFSO2qJcUZlMS/vznPzMAln+/+MUvGGOMaZrGfvazn7FFixaxI444gi1atIj9/Oc/Z5qmme+/9dZb5nuHHnooa2trK1VWdloMw2D77befpY5qa2tZIpFghmGwjo4OduSRR7IjjjiCHXHEEezII49kmzZtYoZhmHEcc8wxDABzOp3swQcftPzNpjC89tprebJ0++23M8aysnTPPfdYZOm2226zyNIHH3xgvrf//vuzDRs2lCorOzWHH364pY7Ky8tZNBplhmGwcDjMjjzySLOejjzySLZ27VqLvJx88skMAHM4HOzee++1ZakI/Otf/8qTpRtuuIExxpiu6ywajbLOzk7W3t7OOjo6WCQSscjSZ599Zr63zz77sDVr1pQoJyPDVohKgGEYbM8997Q0uqamJpZOp81nLrzwQsvfL7nkEksc//73vy1/r6ioYC+++OJYZ2Wn5qWXXsrrHO655x7z711dXXl/37RpkyWOr371q5a/n3baaayvr2+ss7LTYhgGO+CAAyxlXFNTwxKJhPnM97//fcvfzz//fEscH374oeXvoVCIPfvss2OdlZ2af/zjH3my8pOf/MT8ezwez/v76tWrLXGcdtpplr+fcMIJrKenZ6yzslOzaNEiSxmXlZWxSCQy5PdXrVpled/v97OnnnqqiCkuLPaSWQl47rnn8M4771jCrr322mE5R/ffVdbZ2YmjjjoKP/rRj0bssGizFZazpMlpbGzEN7/5zWHF07+ennzyScybNw///ve/R51GG+Dvf/87/vGPf1jCFi9ePCyfrf511NPTg+OOOw7f/e53kU6nC5LOicxAslRdXY2LL754WPH0r6dnnnkGc+fOxZtvvjnqNNoAb7zxBl566SVL2BVXXDGsuzH711E4HMYpp5yCiy66qGh3QxYSWyEaYwzDMP0dOFOmTME555wzrHgG82H5yU9+ggMPPBCxWGzEabQBnn/++Tyl5Zprrhn2LqSB6mnNmjVYuHAhnnjiiVGlcaIz0EDb0NAwbKV1MFm66667sHDhQoTD4RGn0QZ4+eWX8dprr1nCrrrqKrhcrmHFM1A9rV+/HgcccAAeeuihUaXRBgVRWgeTpfvuuw977703uru7R5y+scBWiMaYZ555Bh988IElbMmSJcM+92Gwc4cWLlyIhx56yL6YchQMpLROmjQJX//614cd12D1dPvtt+PUU08dUfpssrz44ot4++23LWEjUVoHq6O99toLv/rVr+y750bBQEprfX09LrjggmHHNVg93XrrrTjrrLNGlD6bLC+//DJeeeUVS9iVV145bKV1sDqaN28eHn30UZSVlY04jWOBrRCNIbqumx78nBkzZuCMM84YdlyDaeLRaBQzZswYUfpssjzzzDN4//33LWFLliwZ0cm4g9VTdXW1febNKBhooJ00aRK+8Y1vDDuuweooHA5j5syZI0mezRZefPFFvPXWW5awq6++ekRn1AxWT+Xl5faxFqNgMKX1W9/61rDjGkwh6uvrw+zZs0eUvrHEVojGkCeffDJv+/XSpUtHdJonb3i77babJfx///sfnn766ZEncoIzkNI6ffr0Ec9AKaUIBoOor6+3hC9ZssQ+LmEUrFixAu+9954l7Nprrx2R0jqYLH322Wf4zW9+M/JETnAYY3mW1ubmZpx77rkjio9SCr/fn3e+1NKlS3fMLd7jhJdeeinPD2vx4sWjUlr7y9KaNWvwyCOPjDyRY0UJHbonFKqqsqlTp1o88OfMmcN0XR/w+e3tMuvs7GT//Oc/maZpbObMmZZnZ8yYYdkKaTN0fvOb3+Ttdvnd73434LND2WX297//nfX19bHf//73ec8+/vjjY5GlnQ5d19ns2bMtZTl9+nSmquqAz29vl1lvby975ZVXmGEYbPfdd7c8O2nSJJbJZMYiWzsdzzzzTF6bf+SRRwZ8dii7zF599VXW09PDXnjhhbxn77///jHI0c6HYRhs/vz5lrJsbm627HgeDtFolP31r39lhmGwfffd1xJvfX09SyaTBc5BYbEVojHikUceyRPiFStWDPr89hSiXJ566qm8uJ944oliZGOnRlVVNm3aNEs57rrrroMqrUNRiDiGYbB58+ZZnp08ebI92I6A3/3ud3nl/tvf/nbQ57enEOXy3HPP5cX94IMPFiMbOzW6rrNdd93VUo7Tpk0bVGkdikLEMQyDLViwwPJsQ0MDS6VSxczSTsmzzz6bV+6/+tWvChL33//+97y477rrroLEXSxshWgMyGQyrKWlxdIw5s+fv82DxYajEOm6znbbbTfL81OmTLEH22Hy6KOP5gnwH/7wh0GfH45CxBhjf/rTn/Kef+ihh4qRlZ0WVVXZ9OnTLWU4e/bsQZVWxoanEBmGwfbee2/L842NjfZgO0yefPLJvLa+fPnyQZ8fjkLEGGN/+9vf8p6/++67i5GVnZaBxo2pU6cOqrSOhIMOOsgSf3V1NYvH4wWLv9DYPkRjwCOPPII1a9ZYwpYtW1awCwoppVi2bJklbNWqVXj88ccLEv9EQFVVLF261BK2++674/jjjy/YN77yla9g7733toQtW7bMPutmGPzmN7/BZ599ZglbunTpoM6cw4UQguuvv94Stn79entb9zAYyA9v5syZOO200wr2jUMOOQQHHnigJezGG29EIpEo2Dd2dn7/+9/nXYMykh3P26K/LG3evBm/+MUvChZ/wSm1Rrazk0wmWX19vUVL3nfffbd77PxwLESMDe30a5vBuf/++/NmnM8999w23xmuhYgxxv7yl7/kvXPvvfcWMis7LZlMhk2aNMlSdvPmzduuLA3HQsTY0E6/thmcxx9/PK+Nb++04uFaiBgb+PTrn/70p4XMyk6LpmlsxowZlrKbOXNmUXxP+59+XV5ePqzTr8cS20JUZB588EFs3LjREnb99dcXzDrEGWhmu27dOjz88MMF/c7OSDqdxg033GAJ22effXD00UcX/FuHHXYY9t9/f0vYjTfeuEOc4lpqHnvsMaxevdoSNlaytGnTJtx3330F/c7OyECW1rlz5+LEE08s+Lf2339/HHHEEZawW265xT6Udgj87ne/w8qVKy1hI93xvD36r150dXXh7rvvLvh3CkKpNbKdmXg8zqqrqy3a8UEHHTSkd4drIWIsO7NduHCh5b26urpx79lfau6+++68meZf//rX7b43EgsRY9ndMv3fu+OOOwqQk52XVCrFGhsbLWW29957D+mCz+FaiDiHHXaY5b3KykoWi8VGm5Wdmoceeiivbf/xj3/c7nsjsRAxNvBlpDfddFMhsrLTMtCO5912222bfnij5dhjj7V8LxgMjss7HW0LURH55S9/ic2bN1vC+s88C8lAM9vW1lbcf//9Rfvmjk4ikcCNN95oCTvggANw6KGHFu2bBx54YF78N998M+LxeNG+uaPz8MMPY/369ZawYliH+sefS0dHB+65556ifW9HJ51O51kD9tprLxxzzDFF++ZA8f/kJz+xr1vZBk888QS++OILS9iyZcsK5oc3EP3bRW9vL+64446ifW/ElFoj21mJRCKsvLzcohUfccQRQ35/JBYizsEHH2zPbIfIT3/607wZ5muvvTakd0dqIWKMsTfffDPv3VtuuWU0WdlpSSQSrKamxlJW+++//5CsQ4yN3ELEGGNHH3205d1QKMTC4fBIs7JTc++99+a16T//+c9DenekFiLGGHvvvffy3l2yZMkocrLzkk6nWVNTk6Ws9txzzyHL0mg46aSTLN/1er2sq6ur6N8dDraFqEjcfffd6OrqsoQV0zq0re90dHTg3nvvHZNv70jEYjHccsstlrDDDjsMBxxwQNG/vWDBgjwfpdtuuw2RSKTo397RuO+++7Bp0yZLWLGtQ5z+M9uenh7ceeedRf/ujkYymcyztC5cuDDPx6cYzJs3DyeddJIl7I477kBPT0/Rv72j8atf/Qrr1q2zhBVyx/O2WLp0qeU70WgUP/3pT4v+3WFRao1sZ6Svr48Fg0GLNnzssccOK47RWIgYY+zII4+0vF9WVjZuPftLxU033ZQ3s3zrrbeG/P5oLESMMfbuu+/mvb9s2bKRZGWnJRaLscrKSksZHXbYYcOKYzQWIsYYO+GEEyzv+/1+1tPTM6w4dnbuuOOOvLb8yiuvDPn90ViIGGPso48+YoQQy/tXXnnlCHKy85JMJlldXZ2ljBYuXDgm1iHOmWeeafm+y+Vi7e3tY/b97WFbiIrAHXfcgd7eXktY/5lmsen/ve7ubvz85z8f0zSMZ8LhMH7yk59Ywr7yla9gn332GbM07LHHHnnnHN1+++15bWcic88996Cjo8MSNlaWVk7/mW04HMbtt98+pmkYz8Tjcdx8882WsEMOOQQHHXTQmKVh1qxZOP300y1hd911Fzo7O8csDeOdBx54AK2trZawsbK0cpYsWWLxVUokErj11lvH7PvbpdQa2c7CunXrWCqVYl1dXczn81m04JNOOmnY8Y3WQsQYY1/96lftmW0/vvjiC8YYY9ddd13ejPQ///nPsOIarYWIMcb++9//5sVx9dVXDyuOnY0NGzawRCLBwuEwC4VClrI5+uijhx3faC1EjDF22mmnWeLweDyso6Nj2PHsTHBZuvXWW/Pa8BtvvDGsuEZrIWKMsU8//ZRRSi1xXHbZZcOKY2ejtbWVxWIxFo/HWVVVlaVsDj744JKk6Rvf+IYlHYqisNbW1pKkpT+2QlQg7rrrLlZfX593CBUhhH300UfDjq8QCtEHH3xgD7b9qKmpYSeffHKe0nrCCScMO65CKESMMXbqqafmDbadnZ3Djmdn4cEHH2Q1NTV5Ds0A2Lvvvjvs+AqhEK1cuTJvsL388suHHc/OREtLCzvuuOPylNYjjzxy2HEVQiFijLGvf/3r43awLQW//vWvWWVlZd62dwDsn//8Z0nStHr1aiaK4qjHt2JgL5kVCMMwsHHjRrz00kuW8NNPPx2zZs0qSZp22203nHLKKZawO++8M8/ZeyKhqiqefvppi/MyISTvMLmx5LrrrrOYkWOxGG677baSpafU6LqOTZs24YUXXrCEH3/88dhjjz1KkqZddtkFZ599tiXs3nvvzTtWYyKhaRqeffbZPOflsXYPyOXaa6+1XD2RSqXylvMmErquo6OjA3/6058s4YsWLcLChQtLkqaWlhacf/75lrAHH3ww71iNUmArRAXCMIwBw3fddVfouj7GqdnKddddZ1kjjsVieb4zE4mB6qmxsRFer7cEqckyY8YMnHXWWZawe+65Z8IOtoPJ0pw5c0oqS9dee63lJN9kMjmhB9uB6qm2thbBYLAEqckyadIknHfeeZawBx54YFwMtqVgMFnabbfdoKrqGKdmK4sXL4Ysy+bvTCaTd1tAKbAVogIxWEd91VVX4aKLLgJjbIxTlGXmzJk488wzLWH33HMP2tvbS5KeUjNQPa1btw6zZ8/GRx99VIIUZRlosO1/JMBEYTBZWrZsGb7xjW+UTJYmT56Mc8891xJ233335V3NM1EYqJ7a2tqw66674r333itBirJcffXVeYNt/yMBJgqDydJtt92GM888s2Sy1NDQgG9/+9uWsEceeSTvap6xxlaICsRAmjghBFdeeSXuvffeMfXk78+SJUssg20ikZiwg+1A9TRlyhS89tprmD17dglStDUN3/jGNyxhE3WwHWxW+4Mf/AAPP/xwSWXp6quvhiRJ5u+JPNgOVE/Nzc145ZVXsPvuu5cgRVkaGhrwrW99yxL2q1/9quSDbSkYTJYuueQSPPHEEyWVpSuvvBKKopi/NU0r6XIrYCtEBaO/Jl5VVYWXXnoJN910k6UDLQVTp07FOeecYwn75S9/OSEH2/71dNZZZ+G9994rmW9KLtdcc42lraTT6Qk52Pavo/Lycjz33HO4/fbbLTP/UtDU1IQLLrjAEvbQQw9hzZo1JUpR6ehfT6eccgref//9MT26YjCuuuqqcTfYloL+dRQMBvGHP/wB99xzj6V8SkFNTQ0uueQSS9gTTzyBTz/9tEQpshWiIcEYQzqdRjQaRSQSQTwez2toub+POOII/Pe//8Xhhx8+1kkdlGuvvTZvsL3pppvM37quIx6PIxKJIBqNIp1Ol8ycOlKGkgdeTy6XC4888gieeOKJkvoP5TLQYPvwww9j7dq1APLbYSwWK6lPzUgYiizlzmoPOuggfPDBB/jKV74y1kkdlMWLF+cNtrlnIxmGYWmHqVRqp5YlRVFw33334cknn0QgEChBavMZbLD97LPPAOycsjRQHnJlaeHChfjggw9wwgknjHVSB+XHP/4x3G63+dswDMsGl7GWJXH7j0xckskkurq6EI1GBzQ9KoqCUCiEQCAAwzAgiiJuvPFGXH755UW9KG8kNDc34/zzz8d9991nhj300EP41re+BY/Hg1QqlfcOpRRerxcVFRUln00MhmEY6O3tRU9PD9LpdN7f++fBMAzstttuePLJJzF9+vQSpHjbXHXVVXj44YfNvKiqiuuuuw433HADotHogJ22w+FAKBRCMBgcd+2Ok0ql0NnZOags5ebBMAxQSrF06VJceeWVluXe8UBtbS0uuugiy+WUjz/+OC666CIEg8FBZcnj8aCiogJOp3MskztkDMNAX18fenp6ttkflJeXw+l0wjAMzJo1C7/73e9Kutw8GD/+8Y9x3333mZcmG4aBa6+9Frfffvs2ZSkYDCIUCo1bWUqn06YsbS8PhmGAEILFixdjyZIllh1444GKigp897vftUzOn3zySVx66aWorq5GMpnMe4fLUnl5OVwuV0HTM75KZ5ygaRpaW1sRjUa3+VwqlUJbWxs6OjpQUVGB119/fVyYiwdj8eLFeOSRR5BOp1FdXY3zzz8fhmEM2PkB2Q4kHA4jHA7D5/OhtrZ2XAlUOBxGW1vbNmd2/fNw0UUX4dZbbx23Cl5dXR0uuugi876sI444Asceeyz6+voGfSedTmPTpk3o6OhATU3NuJmlA1krQmtr63bvaMvNQyAQwKuvvor9999/jFI5fK644grcf//9SCQSqKiowPnnnw9CyDZlKRKJIBKJwOv1oq6ublzJUiQSQVtbGzRNG/SZXFnyer0499xzcdNNNxV8UCoUFRUV+L//+z9zJ+Chhx6Kk046abuytHnzZlOWSrljrj+6rqOtrQ3hcHibz/E8dHZ2wuPx4G9/+xsOOeSQMUrl8Lnssstwzz33IBKJIBQK4bzzzoMsywMqQ4BVljweD+rq6grmljJ+JHKckEwmsW7dum12DP3RNA37778/ysvLwRgrqaPatqivr8eVV14JxhiOOeaYYSkFkUgEiUQCTU1NJZ/hMsawefNmdHd3D+u9SCSCiy++eNwvX1xxxRX48ssvcc4552CXXXYZ8nu6rmPjxo1IJpOorq4ueTtMJpNYv379sLb36rqOBQsWoKysbFzLUmVlJa6++mokEgkce+yxw1IKotEoVq1ahcbGxpIrE4wxtLe3D/tssmg0igsvvHDc1g/n8ssvx8cff4yzzjoLM2fOHPJ7hmGgtbUViUQCNTU1JbcWpVIprFu3btiyNH/+fNNSVOo8DEYoFMKSJUvQ2dmJ448/3rKEtj1isZgpS8N5bzBshSiHRCKBNWvWjHjA7OrqgqZpqKurG5cdBWMM559//jZnSNtC0zSsXr0akyZNKplSxBjDxo0btztLGgxVVUueh+3h9/txyy23DLpDZHt0d3dDVVU0NDSUrB0mk0msXr16xLLU3d0NTdNQX18/bmXpnHPOGfG9c5qmYc2aNWhpaSmZUsQYQ2tr66j7g1LmYXu43W7cfPPNI5al3t5eaJqGxsbGkrXDVCqF1atXjzgPPT090DStpP3BtmCM4Ywzzhj2BJej67opS6NVisanylgCVFXFunXrRm096OvrG3HFFpuurq4Rd34cxhjWrl1bskO9Ojs7R6wMcRhjw7YCjhWapmHt2rUj7vw4kUgk71LUsULTtILIUjgcHreXc3Z3d4/6El7eDjOZTIFSNTy6u7sL0h8M13IxVui6XhBZikajJTu3jcvSjtwfbI/e3t6CjJmFkCVbIdrC9nxRhsPmzZsHdPAtJalUqmBCzdeyx5pkMlkwodY0rSR52B6bNm0qmKLW2dk56Dp8MdmeL8pw6OjoKEketgX30SgEpZKlQueh/y3q44HNmzcXTFHr6upCIpEoSFzDoZB56OzsLEketkUmkylY++fXZ41mImYrRMiuQ27PgXq4bNq0qaDxjQbGWMHTE41Gzd0bY0Ex8sD9osYLiURi1Nav/mzatGlMfaYSicR2HaiHy1jnYXsU+kqVYvQ/26PQshSLxRCLxQoa52hIJpOjtuD1p62tbUzbYTKZHLUFrz87uywlEolRyZKtEKHwlQJkO4ixVBi2RSKRKEpaxvKurXg8XhTlZTzdF1YMs3wikRjTgaoY5Vms9jsSRtvhDsZYtsNitYmdXZZSqdSYKq7FyEMymRxz5XswUqlUwSdPQLYdjlTpm/AKUTqdHnSr7GgptHY/Ugo9U+Ikk8kx838oVh4SiUTJfDhyUVW1aIP+WLXDTCZTNItbsep/uBSrLIvZD/WnWGWZSqXGhauApmlFmwSMVTtUVbVoeRgv41Kx0pHJZEYsSxNeISr0EkX/uEfrDDda+JkNxWIshKvYeShmGxgPaYhEImPSDneGPGwLxlhR2/tYtEN+llCxGA+DbTHzN9hhiIWmmP3dWOVhWxRblkYa94Tfds+1cF3X8cwzz+D1118HkJ1l7LXXXjjzzDPx+uuv47HHHkN5eTkIIeaW5ksuuQROpxMXXnghHA6HedAaYwynnHIKFixYgHQ6PeD2bk3TsHz5crz66qt45JFHipa/VCo16EDS0dGB73znO6ivrweQ7SyTySQOOuggnH766UOKPxaLobKysmDpHYhkMgnGWNHqKBaLoaKiomjp/8c//oFHHnkEixcvxpQpUwZ8ZrDZYCHqiDGGRCIBj8czsgwMkWLLUjKZHHBbra7rePLJJ/HCCy/g17/+ddHyNxayVFVVVbD0DkQ6nTbzUIx6OuSQQ4qah3//+9+46667cM011wx60vxgltZC1BGQtSoX+7qfYsvSYHkwDANPP/00fv/73+PJJ58sWv4ymcygGy8KJUsjYUIrRIwx07T20EMPobOzEzfccAO8Xi8ymQzuuece/Pa3v0V9fT3mz5+P73znO+a7P/vZz/D73/8eZ599NoDsKdBcMVi/fj2uuOIKzJkzB6lUyqIQcUXo+uuvx5dffon99tuvqHncnukwGAzi9ttvN3/39PTg0ksvxcKFC9HQ0LDd+MfCRM6/Uaw6KvbVEJqm4dFHH8UTTzyBr33tawMqRtuqp9HWEZAtw2IrRMWWpXQ6bVGIuCK0bNkyfPbZZ0W/oHd7bX209cTvaSrmWTG57awY9TR37lxMmjSpaHnQdR3Lly/Hb3/7W5xxxhkDKkbFlqVUKlV0hWgsZCk3D1wRWrp0KT755BPMmjVrTPI3GKOtp0wmMyJZmtAKka7rMAwDPT09ePXVV3HfffeZjUSWZZx33nl45513Bnx35syZeO+99wb8W2NjIxRFwebNm9HU1AQgXxHivP322wNaJ/pruA8//PCINPazzz4b559//pCf7+3tBWMMLpcLv/71r/HWW2/B5/MhGAxi/vz5eUfA67oOTdOKeg1BKpUqah0RQkZkIRrIWjBr1qy8E2G5j5Ku66ZidPbZZ+Pqq6/GlClTYBjGsLapD7eOgOIrrrquQ9f1otYT7wj7K0KcDz74YEiy9Otf/xrPPvvssPN4yimn4OKLLx7y88OtJ8YYNE0r2DUEA8HbQbHqacOGDTj66KOHna6BnGD32GOPvMkK34JuGMaAihFjbFg+geNRlgzDgKqqRZWlXOtLriLEWblyZVGt5l/96lfx/e9/f8jPj0SWMpkMHA7HsNI14RUiAPjiiy/Q0NAAv99v+XsgEMDhhx+Ol19+2RKeTCbx9ttvY86cOQPG+5///AeGYaC2thbpdBqPPfZYniLE0TRtSMfmp1KpETmKbc902Nvbi8suuwyZTAaRSARTpkzBFVdcgdWrV+OTTz7BnXfeiVQqhcsvvxzz588fMA5d14uqEOm6XtQ6Mgxj2FcXDEZPT892n9F1HY899hh+/etf42tf+xp+9KMfbfP5QtVRMRkLWcpkMvjNb36TpwjlpmEo9ZhOp0c0qI2VLBVTIRqLeiqULA3Fgbm/YnTllVduN87xLkt8olXMOlJVFf/v//2/PEUoNw2FqseBGCtZGi4TWiHis5L+s5P333/f9EXo6+vDWWedhXfffReXXXYZgKwSM2fOHBxzzDHmOzfeeCNEUYSmafD7/bjsssvgdDqxdu1aPPXUUwMqQ+MBbpo0DAOPPfYYNmzYgNmzZ+PRRx/FwoULIUkSJEnC3nvvXdJ0FrOOSrWlW9d1PP/885g1axYWLVo0qHm3EHU0VmePFLOeNmzYgP/3//7fgMrQeMCup8tKdmmyYRh48cUXMXv2bBx99NGD3tu1I/R3YzEutba24qmnnhpQGRorCCGDtvdS1dOEVoi40EyePBkbN25EPB6H2+3GvHnzMG/ePADASSedBAB5a7X9yV2rzWXq1Kl47rnn8M4772Dp0qV4/vnni5CTwRnqGiqlFOeccw4uu+wyrFixIq9D2VY8xb40kFJa1DoqBRUVFfjRj36Eiy66CA6HA59++ul23xnvdQQUV5YmTZqEFStW4P3338fSpUtHtOw1GnYGWeLfLlY9leI6nFAohMsvvxyXXnop3G73kAb50dRRse8DGwtZamxsxFNPPYUPP/wQy5Ytw9NPP12EnGyboSj/Yy1LE1oh4qbpiooKHHzwwbjrrrtw6aWXwuv1wjAMvPPOO6PuoPga5p577jmgYjR79mzcfffdee/dcccd+OMf/2j+Pv744/Hd73532N8fzqWLgiDg61//On7605/i29/+Nv7yl7/giCOOgKqqePfdd9Hc3Jz3DiGkqMtlQHbdvJh1pCgKXn755WF3dOFwGMcff7wl7Pe//z1CoZAl7L333jNncRUVFfjhD3+Iiy++2HQQZoyBUjqkbeUjqSMgW4bFRBAE0xerWPXE8zBv3jxTMVq2bBlWrFgBAJg2bRruv//+vPfuvfdeS4d/9NFH44c//OGwvz+cy4BHWk/FXC4DtvZHxaonQRBGJEupVApHHXWUJew3v/kNampqLGEff/wxLr30UgBAWVkZLrvsMjP9uWkYynLJSOtouH4pw0UQBFBKx0SWdt111wEVo+bm5qLufh4LWRpJnzehFSJCCBwOB9LpNM4//3y88MILWLZsGXRdRyKRwLRp03Drrbdi7dq1I/5Gf+HprxiFw2EcdNBBee/1d6Cuq6sb8LntEY1GsW7duiE/P2/ePEyfPh3/+9//MHPmTFx++eXwer0IhUIDNjCHw1H0GRM3wxerjtxuN3bbbbdhvzfQhYT77rsvqqurLWGGYVgsQv23jvN2ONQ7u4ZbRwCKvpTB85BKpYpWT/3zMG/ePDzzzDOmYrRx48YBZSR3YgEANTU1I5KleDyONWvWDPn54daTLMtFtxDl9kfFqCdFUXDwwQcP+72BDvTcZ5990NLSYglzOBwoKyvD5ZdfjksuuWTA3V6Kogx5GXwkslRshQjI5iGRSIyZLPVXjD799NMRychQSSQSWL169ZCfH249SZI0IlkibDxdbFICWltbi3r66C677LJNC8qGDRsG3EZ40UUX4b777jN/X3LJJbjnnnuG/X1N04a0HNOfzz//HK2trTj44IOhqiquvPJKXHrppXnaeCgUQm1t7bDjHw6qqhbVb2Skeeju7kZ5ebklbNOmTXkKUU9PDxwOx4Bn6OS+N9wbn4daRwAwffr0olsf2trahuRUPlK2l4fBZOkHP/gB7rjjDvP3+eefj4ceemjY39d1HStXrhz2e0Otp0AgYO7+KRYj7Q+GSjAYRF1d3bDfSyQSefKxevXqPIWor68PgiBsc9t7e3s7Ojs7h/X94cjS1KlTi64Ubd68uahOzdOmTdumBWUwWSoUhmFg5cqVw/aZG2o9+Xw+NDY2DjtdE9pCBAB+v79oCpHH49nuclIxGx0AiKIIt9s9bMfhmpoaPPnkk/jTn/4EwzBwwAEHDNg59N8BUQwkSYLL5SratRDFzkP/JbTB0jBchWiodeR0OouuDAHZPBRLIXK5XNvNQ7FlSRAEeDyeYR/6Np5kSRTFEeVhqBQ7D4FAYEhpGK5CNNQ6UhRlTCxEfr+/aAqRoijbXU4qtixRSuH1eod9IvdQ62ko7WQgJrxC5Ha7h7zmPFzGooMbCoFAYNgKkdfrxTXXXLPNZ0RRHJaP0mgIBAJFUYjGMg/bgist/JyVoTCUOgJG3jkMF5fLZe5oKTRjlYftEQgEhq1MDKWeuLI1FowkD0NBEIRtWkHHCofDAVmWh3Ue0XiTJa60FOOexfEkS8NViIZST5TSEcvShL/LbKSH8m0PSZLGjULk9/uL4vhcUVFRdP8hTiAQ2OHzsC2K1Q4FQRizDrBYeRBFcdx04j6fryjWNn79wlhQrDyMJ1kqxm5SSimCwWDB4x2IYvYHY5WH7eH1eouy2aO8vHzEvngTXiECsksahe4gXnrpJTz22GMFjXOkUErz/FpGiyzLQ1oKKhSU0oLfkTTWedgewWCw4Ob46urqol9Nksu2nFFHSlVVVdGdjYcKpTRv59NoEUURZWVlBY1zWxSjP5AkaVzJkt/vL/hGgqqqqjGVpUAgUPD+YKzzsC0IIUWRpf5+ncNhfPQyJYZSOiJHwIEwDAN33303vvvd7+Lb3/423nzzzYLEO1r8fn9Bzdm1tbVjPhsMBAIFzUNdXd24mNFyCCEFa4dAdglrrC0rO0MetofX6y3o8lZdXd2YK3w+n2+Hz8O2KHQ7VBRlzBW+0eZB0zT89a9/hWEY+Otf/wpJksaNdYjj9Xrh8/kKFl9tbe2o2uH4acElxuPxjHrWpOs6fvjDH+KBBx4AkN0ddeKJJ2LDhg2FSOKoIISgoaGhIJaw6urqMfN3yKWQeaipqRkX/g79cblcBdm1J0kSGhsbS6Lwud3ugsz8SpmHbcHbYSFm71VVVUW/KHQgeB4KYc0rVX+wPZxOZ0GUIlEU0dTUVJJ26HK5RpQHTdNw4okn4gc/+AEWLFiAH/zgBzjuuOOKfu3ISKirqyuILFVUVIxaubIVohzKyspGtfbc2dmZVyHt7e0444wzSnKCa39EUcT69evR3t4+4jiqqqpGZZIcLaIooqWlZcQduaZpePPNN0syCA0Vr9eLN954Y8RtRpZlNDc3F/3AzG1RVlY2qglGe3s71q1bV9I8bAtBENDc3DyqjryioqKksjTaPOi6jjfffHNcbEoYjGAwOCrlXJIktLS0jMkuzcEYSR5eeeUVrFmzBn6/H4lEAn6/H5999tmYn+4+FARBQEtLy6iWOMvLywviN2YrRDlwZ7ympqZhmd3a2tpw44034sgjj8R//vMfHH744Za/v/HGG7jpppsKndxhww+gPPLII3HTTTdh06ZNQ36XUoqmpqai3oA8VGRZxuTJk4c1G+B3HZ1yyin49re/jV/96ldFTOHoePzxx3HhhRfi5JNPxgsvvDCsWZ3X68XkyZPHZGvw9igvL0dzc/OwZGnz5s245ZZbcOSRR+Lcc88d8mGVpUCSJEyePHnYS3qEEDQ2NqKqqqrk1i8uS8PZAMKXYE4//XR8+9vfNi3i45WysjK0tLQM23fG4/FgypQp40KWysrK0NzcPOQ8HHrooXA6nQiHw3jjjTcQDofh8XhwwgknFDmlI0MURUyaNGnYS3rc0lldXV0QWbIVogHwer2YNm3akHZNbNq0Cccccwx+97vfQdd1rFmzBkcffTQmTZpkeW7p0qUl9yd68MEHsWHDBmiaht/+9rc45phjsHnz5m2+w4+QnzZt2riyqgiCgIaGBjQ3N293hkopxc0334wf/ehHWLVqFQDghhtuQCqVGoukDot0Oo1ly5YBAL788kv8+Mc/xg033LBdpcLlcqG5uRmNjY3jxmkSyA4q06dPR2Vl5Xbz0NXVhWOOOQbLly+Hpmloa2sb8CqO8QSlFPX19WhpadnuEizfOTR9+vSC+k2MFkopGhoahpyHn/3sZ/jBD35gHvB48803l+yC5KHidrsxbdq0ITnoO51ONDU1oampadzJ0rRp04YkS3/605+QTCbh9/uxcOFC+P1+xGIxPPPMM2OU2uHDfXknTZq03SVYQgjKy8sxffr0gu7mnvAnVW8PwzCQSCSQSCSQyWTAGIMgCHC5XOZhcQsXLsRbb71lvlNfX4/ly5fjkEMOsczum5ub8cEHHwypAgt1UjUnmUxi8uTJFqvQ/vvvj9deew2qqiIejyOZTELXdRBCIMuymcfx5Cw5GJlMZsA8uN1uOJ1OvPrqqzj00EMt79x5550juh+OM9STqofDL37xC1xyySWWsJdeegmHHXYYkskk4vG4pR06nU64XK5xMYvdHoZhDJoHt9sNWZZx6KGH4uWXXzbfqaysxOrVq0fl71Wok6qHQiaTMfuLHVmWtpWHf/3rX9h3330t79xyyy348Y9/POJvDvWk6kLA22EikUA6nc6TJVmWS2652x7bywOlFKFQyHLelCAIaG9vH9MdjaOBt8NkMglN00AIgSRJZp9eFGWV2Yyav//97wyA5d9dd93Fbrjhhrzws846a0hxXnjhhZb3LrnkklGl8fbbb89Ly2uvvTaqOHc0Dj74YEv+q6qqWDweH3F8XV1deWW6adOmEceXSCRYbW2tJb7999+fGYYx4jh3NN544428Mr311ltHFef3v/99S3znn39+gVI7cTn66KMtZRoKhVg4HB5xfPF4PK/eV69eXcAUTzz+9a9/5ZXpddddV+pkjWvG/3RlB+CQQw7Juwjvpptuwv/93//hgAMOsIQvX74cy5cvxxtvvIHjjz8ey5YtG9It56MhFovhlltusYQddthheWnb2bn++ustv9vb23HvvfeWKDX53H///Whra7OEXX/99eN+tlpI9t1337xbz2+77TZEo9ESpchmIPiyLqenpwc///nPS5Qam4HYa6+9cOKJJ1rCfvaznxX1vsEdHVshKhD9B9vNmzfjgQcewBNPPJHndHnRRRdhv/32w6pVq7BkyRK8/vrrRU3bPffck3e3T//0TgQWLlyIRYsWWcJuvfXWcTHYxuNx3HzzzZawQw89FAceeGCJUlQ6+g+23d3d9mA7zthjjz1w/PHHW8Juv/32ol6UbTN8li5daplQRSIR3H777SVM0fjGVogKxH777YcjjjjCEnbLLbcgFArl7cKIRqM4/vjjsWLFCgAY1Tb47REOh3HbbbdZwo4++mjss88+RfvmeGa8Drb33nsvOjo6LGETUWkFgPnz5+O4446zhP30pz+1B9txxtKlSy2/w+Ewfvazn5UoNTYDMXv2bJx22mmWsJ///OfDvvx2omArRAWk/wDW1dWFu+66C6eccgpOOukky9/6+vrw2muvFT1Nd955Z95A0l8pmEjstddeOPbYYy1ht99+O/r6+kqTIGRnbbfeeqsl7KijjsKCBQtKlKLS07+N2oPt+GPOnDk49dRTLWF33nln0W5ptxkZ1113ncWZPx6P502SbbLYClEBGWiw/elPf4pwOIzbb78dTqfTDH/11VfBirzBr6enJ28QOeGEE7DHHnsU9bvjnf6DbV9fX0kH25///Od56/oT1TrEsQfbHYP+g20sFrMH23HG9OnTcfbZZ1vC7rnnnmGdQzdRsBWiAtN/sO3t7cUdd9yBpqYmXHHFFWOalttvvx2RSMT8TQjJM3NPRObOnYuTTz7ZElaqwba3tzdvTf/444+f8EorMPBg+5Of/KSEKbLpz4wZM3DWWWdZwu65557tnm9mM7Zce+21llPfU6lUns+ija0QFZy5c+fmLY/dcccd6OnpwQ9/+EM0Nzeb4e+88w4AFOV+mc7OzjzfmFNPPRW77rprwb+1I3LddddZnA2j0WhJBtuf/exnCIfDljBbac0yY8YMnHnmmZawu+++2x5sxxnXXnut5UyYZDKZt6vVprRMnjwZ5557riXs/vvvHxf3bI4nbIWoCAzk2f/Tn/4UTqfTckAcd7bmpycXkltvvdVyeiylFNddd13Bv7OjMmvWLJxxxhmWsHvuuaeoDu796erqwp133mkJO/XUUzFnzpwxS8N4Z8mSJfZgO86ZMmUKvvGNb1jC7rvvPmzcuLE0CbIZkKuvvtpyB2Qmk8GNN95YwhSNP2yFqAgMNNj+/Oc/R0dHB4477ri83Wj33ntvQa+R2LRpU975OmeddRZ22WWXgn1jZ+C6666zDLaJRGJMB9vbbrvNcpKsrbTmYw+2OwbXXHON5QLUdDptD7bjjMbGRlxwwQWWsIcffhhr1qwpUYrGH7ZCVCSWLFli8X9IJBK49dZbQQjJ6yja29vxyCOPFOzbN998s0XBEgQBS5YsKVj8OwtTp07FOeecYwn75S9/idbW1qJ/e/PmzXlXsZx11lmYMWNG0b+9ozHQYDseLku22UpTU9OAg+3atWtLkyCbAbnqqqsst8prmjbhN3DkYitERWLatGl5g+0vfvELtLW1Yf78+Tj88MMtf7vtttugadqov7thw4a8CzHPPfdcTJ48edRx74xcc801FmfDsRpsb7nlFstN7oIg4Nprry36d3dEmpqa8M1vftMS9tBDD2HdunUlSpHNQFx11VWWO/VUVbUH23FGbW0tLr74YkvY448/js8//7xEKRpf2ApREdmWZ/9VV11leXbt2rX43e9+N+pv3njjjchkMuZvSZJw9dVXjzrenZWWlhacf/75lrAHH3ywqIPtxo0bLRf3AsA3vvENTJkypWjf3NFZvHixPdiOc+rq6nDRRRdZwh577LGi+EjajJwf//jHlot0dV23N3JswVaIikhLSwvOO+88S9gDDzyA9evX48ADD8w7Lfrmm28e1b1mq1evxsMPP2wJu+CCC9DU1DTiOCcCixcvtjgbFnuwvemmm5BOp83fkiThmmuuKdr3dgbq6upw4YUXWsIeffRRe7AdZ1xxxRVwuVzmb3uwHX9UVlbiO9/5jiXst7/9LT7++OMSpWj8YCtERWYgz/4bbrgBhJA8K9Enn3yCF154YcTfuv766y3LboqiYPHixSOOb6LQ0NAwZoPt2rVr8dBDD1nCbKV1aNiD7finqqoqb7Bdvnw5PvnkkxKlyGYgLr/8cni9XvM3Y8ze0AFbISo6DQ0N+Pa3v20Je+SRR7B69Wp85StfyTsXqP+9Z0Pl888/x+OPP24Ju+iii1BbWzui+CYaV155peUkcV3Xi3LFyfXXXw9VVc3fDocjTzG2GZjq6mpceumllrDly5dj5cqVJUqRzUD88Ic/tAfbcU5ZWRm+//3vW8KefvppfPDBB6VJ0DjBVojGgCuvvDLPs3/ZsmWglObNpp5//vkR7XJaunSpZbnN5XKN+cnYOzLV1dW45JJLLGHLly/Hp59+WrBvrFq1Co899pgl7KKLLkJdXV3BvrGz88Mf/hAej8f8bQ+244+ysjJ873vfs4Q99dRT+O9//1uaBNkMyPe//30Eg0FL2ITf2MFsxoTLLruMATD/UUrZp59+yiKRCPN4PJa/7b///qyqqsoSdtRRR7EVK1aw//73v3lxf/TRR4wQYnn+xz/+cQlyuWPT0dHB3G63pRxPO+20vOdSqRRbsWIFe/zxxy3PAmCPPPIIW7FiBUsmk3nvnX322ZZnXS4X27x581hkbafi6quvziv3geTif//7H1uxYgU79thjLc8edthhbMWKFey9994rQeonBr29vSwQCFjK/bjjjst7TlVVtmLFCvbkk0/m1en999/PVqxYwWKx2NhnYIJw44035pX7v/71r1Inq2TYCtEYMdBge8YZZzDGGDvvvPPyGuVg/15++WXGGGPJZJKl02nGGGMnnXSS5Rmv18u6urpKltcdmcWLFw862EYiEcYYY4ZhsAMOOGDQOtp3332ZYRiWdz7++GNbaS0Q2xps0+m0qYy+9tpr25Sl559/voS52Pm54YYb8sr8nXfeYYxtlQvGGFu0aNGgdTRv3jxTlmwKTzQaZeXl5ZYyX7RoUamTVTJshWgMueqqqywNjxDCFi1axERRHJIydMABB5idw8qVK1lTUxNbunRp3nPXXnttiXO649LT08P8fn+eReGss85iZ555pvncyy+/PGg9/eUvfzGf+9rXvsZOP/30vE7fVlpHx/XXX59X7tdddx1rbm5mH374ofncIYccMmAd7bnnnvZAW2QikQgrKyuzlPuBBx7Ivv71r7MTTzzRfO7NN98cVJaeffbZEuZgYvCTn/wkr9xff/31UierJNgK0RjS3d3NfD7fkK1Bg1mHGMtaHAZ6JhAIsN7e3tJlcidgICUTADvllFPMZwazEuVahxhj7IwzzhgwrmuuuaYUWdtpGGiw5f8++OAD87nBrES2dWhsuO222wYs/2OOOcby3EBWIts6NDbE43FWXV1tKfuDDjqo1MkqCbZT9RgSCASwaNGiIT2be+0HAOy///446KCDzN+6rg/43pFHHgmfzzfiNNoAJ598suVyXk5umRNCBnTmXbJkieXdwerp5JNPHn1CJzButxtHH330gH/L3VxwwAEH4JBDDrH8fc8998RRRx1V1PTZZDnhhBMs9wVy+svFQFcL9Zclm+Lgcrnydrq++uqrePnll0uUotJhK0RjRDQaxd57742nnnpqwL/3v5qg/6nFS5cutXQOgx3g+Lvf/Q777ruv5dJQm6GzfPlyzJs3D4yxvL/1L/ODDjoIBxxwgPl7wYIFeVeyDFZPe+65Jx599NHRJ3gCkkgksP/+++OJJ54Y8O/9y7z/YHvdddfZA+0Y8PTTT2PXXXcdcFLQv44WLFhgmSzOnTsXX/3qV4ueRpssF1xwAerr6y1h11xzzYD94M6MrRCNEV6vFw899BCmT58+4N8vvfRSXH755ebv/fbbDwsWLACQneXmWoeAwS0PM2bMwIMPPmjZmmwzdE477TRcccUV27UQAflWooEG2oHqiRCCH/7whzj77LMLk+gJhsvlwgMPPIBZs2YN+Pf+ZZ5rJbKtQ2PHCSecgGuuuWZIFiLAqrjaSuvYoihK3hVPb775Jv785z+XKEUlotRrdhONWCzGzj333Lz18vfff58ZhmH+7a677mIvvfRSnu8Q59///ndeHBdccAGLx+MlyNXOxyuvvMJqa2st5Xv00UfnPcd9iRYsWDCgv8Nxxx1niaO6upr97W9/G4ss7PQkEgl24YUX5snBm2++mfcs9yWyfYfGnn/+85+ssbHRUkcHH3zwgM8uWrSIzZ071/YdKgHpdJo1Nzdb6mn+/PkTqi5shahELF++3HL+0LvvvssYy57Lcdxxx7FXXnnl/7d3b6FRXGEcwP+zl272lt1c0N2s2Zg2Wy+koNiINi0o1tISKfSpFcHqW0stFCNBpe1LC0rpTSitfSkU+iAIpSi0IcVUsUUpVBBq29io2STGZHVvyex9dqYPYbeuMZLNnjO7s/P9XoQkc5jjmW/mOzPnoqTTaeXQoUNKOp1ecFFevny5eGxjY6Ny6tSpalSjrt29e1fp6+sr/j+/+OKLC/5GkiRlcHBQOXv2rCJJ0oLf79q1q+T4mZkZNU5dV06fPl0yM/DXX38t+b0sy0omk1k0lgh/kUhEeeWVV0pmmz1IkiTl/PnzyunTpx8aS4S/b775ZkEHY2BgQMnlcoqi/B9L6XRayWQydRdLgqLo7CNhDRkdHcWrr76KK1eu4Pfff8emTZsQj8cRCoUgiiIsFgsURYEgCDAYDLDZbHC5XHC73bh06RJ6e3vR09ODU6dO4fHHH692deqSoig4ceIEBgYGsG3bNgwNDSGTySAcDkMURWSz2eJ3dkEQ8Nhjj8HhcKClpQUWiwV9fX0YGhrCsWPHcPDgwQWD5QkbY2Nj2L17Ny5fvowLFy7gueeeQywWQzweRzKZhCzLxVgSBAF2ux2NjY1wu93UJipRFAVfffUVDh48iJ6eHly8eBHZbLYYS4UNjwvtVIil5ubmkpX+CT+SJGHt2rW4ceNGyc8DgQB++uknZDKZkvFfgiCUPJe0HkuUEFVZJpPBkSNH0NfXB5/PV7I562JMJhPGxsYwPDyMDz/8sGTzWMLHH3/8ga+//hrvvfce4vH4ko5pbGzEsWPHsH//fmzevJnzGZJcLof3338fzz77LLq6ukr2jFuMyWTCypUrF2xhQPi5evUqPv/8c3zwwQeIxWJLOqaxsRFerxdms5nvyRG88847OHHiBFwuF+LxePHfTz/9dMGkkfsZjcZiLGl1/BclRFUmyzLu3LmDcDhcVnYtyzJaWlrg9Xo1n5VrQTKZxNjY2KKzxhYjCAI6OztLdmknfCiKgunpady9e7fsmHC73Whra6NYUkEqlcKtW7fKjiWj0Qi/3w+73c7pzAgw37FoaGiALMv47bff0NvbC5vNhkuXLi0pPlwuF3w+nyZjSXtnXEdkWUYwGEQ0Gi374jEYDIhGowgGg7qbGqk2URRx8+bNsm/gwPxD+ubNm5ibm+NwZqRAURQEg8GyOxYFsVhsWQkvKU8ikVh2LOXzedy6dQuzs7MczowUnDlzBrIsw+Vyobe3Fy6XC8lkEufOnVvS8fF4fFkJby2ghKhKFEXB1NQUEolEReUkEglMTU0xOivyoEwmg2AwWHE54+PjSKfTDM6IPMzU1FTFa28lk0ncvn2bOhicFGKp0v/fiYkJpFIpRmdFHrR582Z0dnYiHo/DZrMhHo+js7MT27dvX3IZqVQKk5OTmosl+mRWJfF4HBMTE8zK8/v9tEI1Y4qiYHR0tDjYs1IWiwVdXV2a/b5eq2ZnZzE+Ps6svFWrVsHtdjMrj/z/ppRVImM2mxEIBDT5WaaWiaKIsbExSJKEX375BTt27MC5c+ewfft2mEymsstra2tDc3MzhzPlg66mKiiMG2Lpzp07mnxFWcui0SizZAiY7yFHo1Fm5RE+sTQ9PU2xxFg8Hmf6VieXyyESiTArj8wnrYVYMplM2LlzJwwGA3bu3LmsZAgAZmZmFl1EuBZRQlQFkUhkSbPJypHL5ehhy5Asy5iZmWFe7szMDD1sGYpGo0uaTVYOSZIQDoeZlqlnhcHurIVCIU09bGtdLBZj2gEE5sd9aSmWKCGqAl49G+oxsSOKIpebbT6fpwHWDPHqBESjUc2Nf6hVoigy7wAC850WiiV2eD6XtBJLlBCpLJ1OI5vNcik7k8nQwF1Glro+Sq2VrSc8r/dsNkuxxMhS1+1aDoolNrLZLLeB6pIkaWYQ/PI+DJJlu379Onbv3l3cWViWZaRSKWzbtg2vvfZaxeWLokirulZIURTcuHEDBw4c4NJOoigWV+MlyyeKIkKhEN5++20u7TQ3Nwer1criVHVtdHQUb731FrdYkmWZBldXSI1Y0sJabJQQqSybzaKpqQmffPJJ8WeRSAQHDhxAb28v2tvbKyqferWVy+VyUBSFWzspioJcLkcrjFeocK3zaifW4yn0SJIkyLLM9Z6XzWapE1ihwrXOq5208lyihEhlD7swCuMVbDYbzpw5g4sXLyKfz2P9+vXYv38/jEYjBgcH8eOPP0IQBGzYsAH79u3D7OwsvvzyS4RCIRiNRuzZswdbt26tQq3qy2IPQpbt5Pf7KSGq0GI3WVbttG/fPiZvbfWMdxvt2bMH7e3tlBBViHc77d27Fx0dHSrXqnyUEKksn88jGo2iv78f2WwWs7Oz6OrqwuHDhzE5OYmRkREcP34cBoMBJ0+exNDQENasWYOzZ8/io48+gtVqxfHjx/HXX39hcHAQ69atw5EjRzA9PY13330XgUAAXV1d1a6mphUGgPJsp61bt9K6URVSo52ef/55tLa2Vrmm2lWYmMCzjbZs2QKXy1XlmmqbGrH0wgsv1HwsUUKksvs/xciyjG+//RYTExPo7u7Gd999h3///RcDAwMA5l8Fm0wm5HI5PP3008U9fI4ePQoA+Pjjj/HGG28AADweDwKBAEZGRrBly5bqVK7O8Gyna9euUeJaocLMFV7t9OSTT+Lq1avYsWNHFWpXH3i3USAQwJ9//olAIFCF2tUPNdpJC7FECZHK7h9IazAYsHfvXvT39+OHH36ALMvYtWsXXn75ZQDz23IIgoDh4eGS4yKRCMxm84L1bBRFoTVuGHhwsDOPduIxDVlvHhxIS+1Ue9SIJbrnVY53OwHQRCzR0HyVPThuxGg04vXXX8f333+P1atX4/z580ilUsjn8/jss88wPDyM9evX48qVK0ilUpBlGV988QX++ecfdHd34+effwYwv7ru33//jaeeeqoa1aorDxvbw7qdNm3apHa16o4a7bRhwwaVa1Vf1GijjRs3ql2tumOxWBb8TI+xRG+IVPawC2/jxo1Ys2YNrl27hmeeeQaHDx+GLMvo7u7GSy+9BKPRiL6+Phw9ehSyLKOnpwc9PT144okncPLkSVy4cAEA8Oabb8Ln86ldpbrzsDYC2LZTYWorWb7FBtKyaqdDhw5h5cqValap7qgRS5XOUiP826m/v18TsUSbu6osGo3i9u3b3Mr3+XxoamriVr5ejIyMMN8SosBkMmHt2rVcytaTWCyGyclJbuVrbWPKWnX9+nVui9EaDAasW7eO1vSqEOsNkh/k9XrR0tLCrXxW6JOZypxOJ9fyaeYSGzxnrdCMGDacTifXByHFEhtut5tr2ZQMVc7hcFAsgRIi1ZlMJjgcDi5lO51OGI1GLmXrDe+bOKmc0Wjk1sGw2+3L3uGblKLORe0zGAzckhabzQaz2cylbNYoIaoCXmsx1PoaD1pisVi4LDVvtVppETmGeL2Gp1hix2KxcOkENjQ0aGI7CK2g5xIlRFXhcDiY3yCcTmdxLQhSOUEQ4PV6mZfr9XrpFT9Ddrudec/Wbrdz/7StNx6Ph3mZFEtsWa1W5m/cbDabpmKJEqIqYRnMgiBwueHondVqZTqotqmpiXq0HHg8Hqax1NbWxqQs8r+Ghgamb/NcLhd1ADnweDxMN8rVWtJKCVGVWCwWZlOv29vbF502SSrj8XiY7Hje0NDA5Y0TmV/rxu/3Mylr1apVFEuceDweJh0Ci8VCy4twYjabmcWSz+djcu9UEyVEVeRyuSrujfp8Ps2M4Ncig8GAjo6Oisb9WCwWrF69mmnPi5RyOp0VPyS9Xi8N0uVIEAR0dHRU9JCkWOLP4XBUvLaTx+PR5PIvtA5RDUgkEhgfHy9uhLgURqMRfr+fXhurRJZlTE1NIRaLlXWc2+1GW1sb3cBVkkwmEQwGy4olg8EAv9/PbfYnKSXLMqanpxGJRMo6zuVywefzUSypJJlMYnx8vKwtNwwGA9rb2zU1buh+lBDVCEmScO/ePYTDYTyqSQRBQEtLC1pbW2lacBXMzc0hFAohlUo98u+sVitWrFjBfX0PspAkSQiHw7h37x7FUg0TRRGhUAjJZPKRf9fQ0IAVK1ZwX3eKLJTP54ux9Kg94wRBQHNzM1pbWzUzxf5hKCGqMZIkIZFIIJFIIJVKQVEUCIIAq9UKu90Oh8NBaw1VmaIoSKfTEEURyWSyuKK12WyGzWaD3W6H1Wqlm3eV5fN5iKKIRCKBdDoNWZaLsWSz2eBwOCgRqgGpVKp4zyvEkslkgt1up1iqEYVYSiaTxX3L6jGWKCEihBBCiO7Rx1hCCCGE6B4lRIQQQgjRPUqICCGEEKJ7lBARQgghRPcoISKEEEKI7lFCRAghhBDdo4SIEEIIIbpHCREhhBBCdI8SIkIIIYToHiVEhBBCCNE9SogIIYQQonuUEBFCCCFE9yghIoQQQojuUUJECCGEEN2jhIgQQgghuvcfgtxYFv5a5SEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHwCAYAAABHU3CkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Qc132njT/3VlXnMDkgE5lgBEGBIiVRVKColSwr0St7ba9Wr8Na3mP/fNYr2/tatrXWkcNK59WuvGt7ZVnWKtjKkkWJSlQgKYkAEwgwgcAgDTC5u6dzV7z390dNNzAEAQLEADMD1HPOHGC6eqpupXs/95uu0FprIiIiIiIiIiKuYORiNyAiIiIiIiIiYrGJBFFERERERETEFU8kiCIiIiIiIiKueCJBFBEREREREXHFEwmiiIiIiIiIiCueSBBFREREREREXPFEgigiIiIiIiLiiicSRBERERERERFXPJEgioiIiIiIiLjiiQTRAlAsFvnt3/5tbr75Zm655RY+9KEP4fv+YjfriuTee+9l27ZtbN++vfPzvve9D4C9e/fyC7/wC2zfvp3Xvva1fOlLX5r3t1/72te48847ufHGG3nHO97Bnj17FuMULltKpRJ33nknu3fv7nx2IfckCAL++q//mttuu43t27fz3ve+l+np6Ut2PpcrL3Sf/uzP/oxrr7123nv1hS98obM9uk+Xjv379/Oe97yHnTt38opXvII/+IM/oFQqAdH7dMHoiAvmV37lV/Tv//7v62azqUdHR/Wb3/xm/Q//8A+L3awrkr/6q7/Sf/RHf3Ta5+VyWe/cuVN/9rOf1Z7n6Z/97Gd6+/bteu/evVprrXft2qW3b9+uH330Ue26rv6nf/onfcstt+hms3mpT+Gy5NFHH9Wvf/3r9ebNm/WuXbu01hd+T/7mb/5Gv+Utb9Hj4+O6Vqvp3/u939O/8Ru/sWjneDnwQvdJa63f/va3669+9asv+DfRfbp0tFot/YpXvEL/z//5P7XjOLpUKunf+I3f0P/xP/7H6H1aACJBdIEcPXpUb968WU9OTnY++9a3vqXvuOOORWzVlcsv//Iv689+9rOnff7FL35Rv+ENb5j32Z/+6Z/qP/iDP9Baa/37v//7+v3vf/+87W984xv1l7/85YvX2CuEr371q/qOO+7Q3/rWt+YNtBd6T26//Xb9jW98o7NtZmZGb9myRY+Ojl7M07lsOdN9chxHX3PNNfrAgQMv+HfRfbp0HDp0SP/ar/2a9n2/89l9992nb7rppuh9WgAil9kFcvDgQbq6uhgcHOx8tmHDBsbHx6lWq4vYsisPpRRPP/00P/7xj3nNa17D7bffzp/8yZ9QqVQ4ePAgmzdvnvf9jRs3sn//fgBGRkbOuj3ipfPKV76S73//+7zpTW+a9/mF3JNarcbk5OS87X19feTzeZ577rmLdCaXN2e6T/v378f3fT72sY9x2223cdddd/Hxj38cpRQQ3adLyfr16/nEJz6BYRidz7773e9yzTXXRO/TAhAJoguk0WiQTCbnfdb+vdlsLkaTrlhKpRLbtm3jrrvu4t577+Xzn/88R48e5X3ve98L3qdEItG5Ry+2PeKl09/fj2map31+Ifek0WgAkEqlTtve3hZxfpzpPtVqNXbu3Mmv/uqvcv/99/PhD3+Yz3zmM3zyk58Eovu0WGit+ehHP8qPfvQj/viP/zh6nxaASBBdIKlUilarNe+z9u/pdHoxmnTF0tfXx+c+9znuvvtukskkK1as4H3vex8PPPAAWmts2573fdu2O/comUyedXvEwvNi1/xs29sd+/PfveieLTyveMUr+PSnP83OnTuxLIvrr7+ed7/73dx7771AdJ8Wg3q9zu/+7u9yzz338NnPfpYtW7ZE79MCEAmiC2TTpk2Uy2UKhULns0OHDjE0NEQ2m13Ell157N+/n4985CNorTufua6LlJLrr7+egwcPzvv+yMgImzZtAsL7eLbtEQvP5s2bX/I9yefzDA4OMjIy0tk2MzNDuVw+zS0QcWHcd999fP7zn5/3meu6JBIJILpPl5rR0VHe+c53Uq/X+fKXv8yWLVuA6H1aCCJBdIGsW7eOHTt28Bd/8RfU63WOHz/O3/7t33L33XcvdtOuOLq6uvjc5z7HJz7xCXzfZ3x8nA9/+MO8/e1v56677qJQKPCpT30Kz/PYtWsX99xzD+985zsBuPvuu7nnnnvYtWsXnufxqU99imKxyJ133rnIZ3X5cuedd17QPXnHO97B3/3d33H8+HHq9Tp/8Rd/wc6dO1mzZs1intZlh9aav/zLv+Shhx5Ca82ePXv49Kc/zbve9S4guk+Xkkqlwrvf/W5uuukm/vEf/5Genp7Otuh9WgAWNaT7MmFmZkb/zu/8jt65c6d++ctfrv/qr/5qXhZAxKVj9+7d+l3vepfevn27fvnLX64/+MEPatu2tdZa79u3r7Ptda97nf7KV74y72+//vWv67vuukvfeOON+u6779ZPPPHEYpzCZc3z07kv5J64rqs//OEP61e96lX6pptu0u9973t1oVC4ZOdyOfP8+/Qv//Iv+g1veIO+4YYb9Ote97rTMjmj+3Rp+OQnP6k3b96sb7jhBn3jjTfO+9E6ep8uFKH1Kf6FiIiIiIiIiIgrkMhlFhEREREREXHFEwmiiIiIiIiIiCueSBBFREREREREXPFEgigiIiIiIiLiiicSRBERERERERFXPJEgioiIiIiIiLjiiQTRAuK6Ln/zN3+D67qL3ZSIsxDdp6VPdI+WB9F9Wh5E9+nciATRAuK6Lv/rf/2v6KFb4kT3aekT3aPlQXSflgfRfTo3IkEUERERERERccUTCaKIiIiIiIiIKx5zsRtwqVFKMT09TTqdRgixoPuu1+vz/o1YmkT3aekT3aPlQXSflgfRfQp5sXH/ilvLbHJykle/+tWL3YyIiIiIiIiIS8hjjz1GJpM54/YrzkKUTqcBuP/++896YV4KpVKJ5557jlwut6D7jYg4Fd/38X2fbdu2kUwmF7s5EREREcuC9vh/Jq44QdQ2l2UymQUXRI7jkE6n6erqWtD9LgTJ6T20BrYvdjMiFgDP82i1WmQymUgQRVxZTOyF4RsWuxURlylRUPUVQmrqkcVuQkRERMSFsf/exW5BxGVMJIgiIiIiIiIirngiQRQRERGxGBQOhv/6UbG8l4JSmissJyjiIhMJooiIiPNmZHZksZuw/HnyS+G/P/n/Frcdy4iZoMVMcwaAB0cKPDlWWeQWRVxORILoCuTZ6rN4ylvsZiwJbF8tdhOWJd899t3FbsLlQ9vK4bUWtx3LAFsHtPzwOgVKERmIzh2tz8GidoVf0EgQXYEcrB+MBNEcX36yvNhNuKw4p073Ckdrzb6ZfcDzCsT99H+e/P/4E5eyScsHrQl0cPLXUzbNNiLX49moFlo0K2e5RkrB3n+B1uyla9QSIxJEVwD3z9y/2E1YsmjmD95WbXSRWrK8EM8fzOfYc7zMnuPlzu+q2eTAI5OXqFXLg0enHqXuzq8YXLWfN0E58J1L2KLlg0KjdGjVFQgqTZf7jz0MwL7IfXZWVKB56oExguAMVvHju8MfFbzw9iuASBBdJrzgrFz5oDVTztS8jxd6yZLLCas+Pu/3WPkQscqRzu/VyWgWeiZ8L8B1A1ruyQ61+fgeypNNAKrf+x4AhVZhUdq3VHACB1/7HB3v6nz21e/+aPEatESou3UOzh4863c0EOigI4qenpjlwHT4PNlewBcfOX6xm7lkae3de8ZthbqDUppmzWXkU9/CtX0AgmoVbzKcsAT1GkHryvYcRILoMuHbU98+7bN45TCT+wrzxNLBgg2cbhk5lZH6lRUwq7VGq7CDnaranetV8SpUS1PMzhZwGgGBr2H6yNl2dUVTnmqh7AClNZTC66TsVicswXnuAMCLDnqXM/cduw8vcPGUx3TpZNXcLYXvUyidLLJZqcWwG3ODU7N0qZu5KHjKww3OPOHQOuy1AhXwT0/9EwAtz8Uwwu22FzBWvnLjsILKGSxkY4/zmYeOdfyLx49Mc+LZYwC4x49jP/00AM7IMewTVU5z5V5BRILoMqHm1U7/UAcUS6eY5pVPueUjEGcVRI/NPnYRWrh08Z/ax4Gf7kVrzfFRi+9NfQ/t+3xn8js0XMV0PcCpBQSeQjtXbofrK//s270AeeQQrZLDxN5Q9Bw7XuD4bHPe967k+LXnis9wZPfX5k1S7muEg9Ohse7OZ7PVJJWZ8FmrffX/4k1PX9qGLgKBDjr90oGpsD/TSlMcq8PhH3Pky/eh0dS9OoYIVVDTszHnRjHHe54rqHKi898rIbZNu2cQkwe+Q7xc7Jy/p3xG7nvotK/5wdnf7yuBSBBdpsTKhxAq4HDrWCfeIzP2IO70QRru/M7hcu8ozobWih+MfouRss/ED56kVY3RDBroL38ZAEsqDrlTBCdCV5q6grPSHps6u1BWvqL20L04tkur6oRBmk8+ge8HaM/DnwnTpa9UQfTgiQcptAqU6mUCHSAEBEHAQbdEy1VUZ+qdd9E0Fb4Tuh6Dag3tPu+alQ5f6uZfdJRWKK0IAp+pqj33mebI3gKUjzM26lBuejxybIKEEUcEDsqtgQ7QWuOXZubvsHDSEvnQ4SJPj1cv5elccpTjdJ6fYsXm8a//hNZTT6M1rPrpd/E8n/rEIbSCoOWc9vfHCzW4wsMpIkG0jHGUQ8WrEKjwJVD2nDtMKbLHf0jFq6JR1OxwEE9P7GKq5jBZ89k1Oef60Zrn6s8tSvuXArGCB45L0Rc0SjNorRFac6B6KBzQtaJ4JIn95BO4z+1n1mnyvZFpjtamKDZ9KvaVE4AYnBJsqZTuxAqpw2FQq2d7eG6T0t4CnqfxfvpxJoNVKKUpfvKfcAOHulvHVz5aadyWj/bdyzbVV2s9z6pW9+qgNT7QPNzAbbYofelfoNpNrZyhcbxB8bOf4dn7D+P4gplGg8NPzGB7gtFinZnaKYPY3i9c+hO6SGit8aamcR2Pulvnn7/7O8h6GNdSnmyGHpxQPfL0swMcmKqQ+en9DIzey4anniD2lWdwqzW2/ux/zd9x4HUyplxf4Z4pmPhyIQjCPguYmmpw6LlZGg8+QLFm46gm9x+/H9Uqo9F4Uw2+++QP58WTVpoOtn/l9GcvRCSIlimtqs/Y1AxPV5/mC0+GL/3oZx6mFbR46Jm9aCH5VuVhIMBuabQO44aEshmoPMnuyR8z9swIieKTeI3xMAD7CiRW1whfkWikmG1Iap6L6WvKlc2s3n0UNTWDQHC0cYxGoUzFb3KiNcGhxkGOlV2Ony2N9TLD1+EzYtc9ml7A4UKdp+4/QfF//3+cmG3yxMg4TrOOE7Q4srvITOEQ9SCLUgojl8WZ3MesPYunPOyGx/5dk0zc+4XLNs13ojHBvfs+iVIKjv4EMXsUtMYTmtHDRyg3obD/BLWplewOwjih4oM/4qmf7uO7lUm+9L1PUp1p8vT0ao4XG0xW7MU9oYuFUrhHDnNsTxm7rAiUy8pn/hGAatEOjRZCooMA7cfR2secPs4z/gSqGaNlaypNm4JTJV4poGfnXGXKg11/DxN7EUJcrrq7g/YDdBAKGq1BBj4IyXOFMo5XRStNoEOruEYz8vRXAfjpc1PoIGCmatN0IkEUsQxx6gFuVeMfSxIozarHR/EDSVAfo9aqcX9RIct58uMnWPP4KqZne1BKMyK/SM4t0Fcahcd3QakIdhHpt0gUnwEuzyy0dtD08xmyD4LWJJstjKZDlQab7n0IVIBfncDzAywvidaCiRNptA7wtI8QEkPQsc5dCfhzWYtPPTjGc48XsA8cpDxrA5rZz3yYQ4fGUUqjDj6Odl2emvXQdomaW8YlINABfuDhBR6tuodhCnyfsPf2Lr/BXqMJTjzCx7/yDF/d92kY3wta4QlNNahztK55aiIJwkOqsCs+5NYIwovCiiMzVB0XX0ncqh8Gq887wGXy7CkVDuZaARotDb4ShC7BSq2FKB8DBJPVGp7vIoKAerKfn7iH0WiUV+cD3/0HZr0qO7/1V5z44O/R8lsE1QrNI0V4rp1wcnlcL601DSecnBRahU4JB+X7aN+nMtOi5QWgNQcOH6JRGAV3hBNP1Ak0tPwWCiDwadR9ms+OEnz/vxNoGSoCfZlb0s5CJIiWMc2ghZqNkZ6dITNTCwf2o/eSKE1i76uhihWEVgil2TvboOS6XPNslfykw8t+NoFRr7D7yC6KTw9wbLRJauxBdLkM0ElrvRzQjkP5a5/jaONo57MfTv8QAFPbDB+exfQchK8ICDDsMkIrCDTVY0WkBuk1wbPRbp3JapNs8SmkEFwpekg/9dXwmRh9iBPj0wxMJ5l8+jlGpuoEWjKz6wcE/ixCaaQKXTuOHw5BunaIA4e/TdF1COpT+PVJJp8epTL7GH5A2AH/5KOLen4XDbtKV+FJJhszBK1ZmNyHhybAA6Vx/AAtAtAGnrQIiKFdh1jdRWho+jYFr4ZdCAhOFUBCXDaCSGsNKkylV66LUAJHuVA8xLeevRdKh9EIZp1JHN2gWm3gOgFSKyrNJrpVYOXsEwR+kxoOu+1JHh55nNYzh2g8O47SGtu7fCwfWsPeuVpfTx9/lGPVMCh/ugBB4Shf/dpz/OueMey6xUzVJZjwUUIgmjGabkCjPEvCOw7K4L6nJghcl8YTh4kXS2HCzSP/iC5cmZmgkSBaxkzY4+ALVj55AOm1QCu+elwQq9Sxqhb5sW5U0IcMFMcChycrTVae8Ik1AixfI5otao0pGqWAvQfqEGj43veQSNTDDy/26S0otl2j7s9l3CmfxvgPOwGIWoNSCo1EeHHK2gy/5q1herYLg4CMMtCBj1ePsfOR/SSaUxiSeYNUuXV5uR2bVZe63QBAT+8PKwS7DfZPzzBQiWNPP4BXPMqz7nUczylS9lN4KrRuICS1so/SCtOpYzdr1F0ff+pZPLdBXh2iVt3PvrEql8vM/YUQaHLOJNhg3nMcAo/u8TrW4T5ihkTqFsoyQVvY2qdi3Ig/O4OeqhLXLZ6cfZymb5Md/S5+4HNg9gDjh38AQl4+M/kgQPuhIBLTBayGQgPuwV10Hx4Dt87st3djujZlN81g5SCuE4BWBIDhdJMqDSOVhaUcEmWHR78xgarXEYGD6ysOTtUuF/2I0hqlwTl4EOvh3Wg0xckGI1MH4dBPEDOH6Wn8DLRGap8ZnURJSdwpgaqiAnAbdWxXErgOMXuGo88dpTlzAkclefLJBI9/8x8W+zQXhUgQLUO01uhWCy/wMZpVXKOLVk4hBvroaQ6SqkBMTSPdbhCQm22SmEhSPLoBAMNRoWXUtWk4VQzlYng+Ew+EWRiGMODQCFMHL58Uc3O6iClNdLPJ6HQFtOJYYxThBThyI1p7GChM3UKJHkDgNw1cP0AgSGCiWnUCP0bKVcjAxdn7U4qTJ4sMPvLEI4t3gheBw0/M8PixsByBYi4z0XdA+/gEOJUCidHjzHguDSEoqAo17NAqpHyC567C1i4i0DS8AJc0wde+gu03KcxWaHoBvtaXzcBe/vrXX/BzoRU9hxyE3cXw8Z0MHquTbAUYRo2Ue4Lk8RK5aoCvwVMaP/DJFTySTQ/d8gDNMdfhYOUZdo3v4vNP/P2chUjxL/v/5ZKe40VBqTkLkUb5PkFpGK3hobEjWK0Az1fsH5kGJUjYmmsefpZyvYXg5HOTmcohgxXIOdUjylVGZzJoIcPn9zIRQ9AuTqmpfOMbyMln0c+OsO+n4xSbVVp+imzxACXvUUDR23qKoHkUSztYdotqq4nWHkJ5yJZPtfYsNX+WhvZxZDc1t5uWG8MOLh+L2vkQCaLlyP79iIkJ3EaZZrMCEgzPpWxPkRiPowvduKKLeHAyeyxXBasap9i7BeFK7Nj1BE4dEVh0TbRIHz1GodmPAuRcJ9IonEz1faL8xKU/z4ViYgKjMYF33MTbtZup79yPRnKgeoDEeB1PrCWmD1CWHgEKN/DR2iBjS8BAKo0OJMqz8fHocgtIrWnOalR1lPjMPhqlfdTsexb7TBccf/opTtRPMBE0QpdZ4CIIAIFfmkYITcuu0lXuRWofJdYglSRoNHB1QDknkVqiVIZK+rVMT1XYfeIwu8b24gSajDN1muunWlieQtw7frLuze7DRX56YjcAIoDErMI1+hHNNLbeQdx9ltR0g5qQpCoe/TOKMJ0qzLrTSAQaGg18rVHuAJ7vcKR6hGrD71iISvZc0cZW+ZKf70JQarjYU4fQ5XG0b0NlnOmJLGbB4fAPYmgN0werqFoToxWQL/u04q/HdxVDB8pAaIUzXAtTJyib29BA91SJYi2FSuRRSl8WsX4Nr8Hx6vFQOCpNUKlC3UP/5FE8z0ejeeK5Pk6oCmkVQ6sAhcZwNYEQZKYcEq3Q+lY2bZzCEHZxFte6GolJK7aNkjuEX3P4cauG7Z20eFe/c2Us5rwogmj//v285z3vYefOnbziFa/gD/7gDyiVwhf7z/7sz7j22mvZvn175+cLXziZYvq1r32NO++8kxtvvJF3vOMd7NmzZzFOYdHwlY/etYuqXUKP5fEQJB0H6bSYtseQTY3SGkfkSTZcDE9TGOpCiySgUOJ6vGAbnrWJGXMDrrsaoTRNNU3T17SaFQJfMt2YX/fkudoyTs2fmEB4DfxRD+Ur7MazBFowWnoSqWx0ECC1i1n3SFZCN0+gFG5sFVLFSUxVqLs+li7g6gaBAHu8iXKhMuVhj4zz5ZFP4nD6rMqzl6f1QyvNzPEavu/g+A5u08H8yuOUCz7xZgPLc/HENRjaxTOGmO26BakUSmYwfZgNQteZJ0EqTdNZg4/GVQrXc/DGU9g1m0AL5rnMjjxIZXp5CqI2Wmv+x8P/l/sOP4xf7MVtxHF9TUOmCLwkCIi5LTxCN62SKwmMfjRgBiVQGo3AjxlMOGMorZC+YsX//TqyIan5Pvvd2fmWtbHHOinXy4mZmkOzOIYujeJUbVRlDFt5eFqhdIx02WVa24zFr+48JloIuryt9IxU8Y0Y9axEapdA5CkbV4G4BqEB18Fv+owfOlnluvbDH+HPLs+sxpnmDHsLe1HqZDLH9GyTputTmy3QUAFPT80gfU33wU20nClcmSTmKDJlRTNjIgNNHMnEsABPIDXEtUQQhgmU7ST2VIPBp4b4zEMHwufKruIcvDJiii65ILJtm1//9V9n+/bt/OQnP+Gb3/wm5XKZ//f//X8BePLJJ/ngBz/Inj17Oj/vete7ANi9ezcf/OAH+au/+iseeeQRfv7nf573vve9tFrLuwM9H56pPYNhVzhWPUSmaiOUwtIOQkkQAl+Y2ELNFSvz0a4mEVTRGIBASYGnNgJQNfqQ9jVoITBUQMsYoNxIMnTiR7Rac5Vi52bvVmNi+RZwnJvpiEqdyUoXQWuW8bpH/pgEHQYAG1qAhnRdYQQZDBFDCBAKLCdAao1t2JSURznukxqzcJrhAPTwkccp1w0mjMZp16g2vfzS8n03YN8PjoCGYr1G+ds/pLXrGPXDAc99b4xsqUpX+RimOYAZVBFaU8lbWNpCiBgIgWeY+JZESZAVh0AEIDRNV+J7HrgJnPFq6Mo4dWA/+uCZF59c4gRaM1W12Xeigq9bCC0onXDxSwrf7cI2ktScGq70sTybQCtA4hoZksTQhFaiwFcoYlSGVpNxawQSIKBZrmF9Z4ZAaxo6QCmFFDKsDxW44c8yQ2mNj4kaf4pmGXR1koGpZmhVa1XQgUY4HjVpEMgEMKeL/AxxJ0BoQaEnhdAeEoMGAS4ZPDNgwqng+3Ci0B/WcJqdxRsfC+v1LEM0YV2rw5VD+EGYRSYD8ErPES88jUbS9FxibkCiqVACtAQl1uIa/ShThGJSBwgZ0DVt0QgsPJlgMnDRAvyWi0Ijgiz9GY/qoQNgXzmL5l5yQTQ+Ps7WrVv5T//pPxGLxeju7uZd73oXjzzyCK7rcuDAAa699toX/NsvfelLvPnNb2bHjh1YlsV/+A//ge7ubu69995LfBaLR8t3MStHMdyAuOuT9GvYUtHQBvmCgzLDzCctBGgf4WsMIdAItDBREgJTEqgGggChNULVSc0FBFeDbmLawPA83MDj4O5ZGn4DqQMUy3OgwveQCKarDuMNhWjWyc1uxJxdg6NbBCZkTzm3RtokEHW0EMxlQxPocNZuBRptKJzqtei516fRrJGpriBVV5iVER594GTF3GU3aXeb6NIRSnsfCYtS1pvseaDA4WKZeqvE4ckxHN9FqioSjdIWdkJiZLqQWiGNKo5hIIVAIMN4h5bCsTQgmI29hlvHejA9SVU1eE60CGbLpzRAoILlKbyrLY/vPj2JrzQ9sw16n1tH2fRQTYeWvh4lcqyenMYUTWJzS+1oYaLRGNpBaH/OGSmwxRBePMH60RpaODjGCQKgd7qK1hK3eoIDj8yQekIzW6yFsV3LsQK4UyNQEju+ci7bTBBzA/JFH4WNa+RBGwh8lAzfNy0EyncxVTc9sx5pmSFuBBjCxFQHaZl9VHvG8JSPrwQtN47rFJn4zLcYf/JBxkaWZ8VqjabpNXl4YheVp2bxAoEODEbtMhOuhx1AvFog4yVIOodx8ZmMubTiN+OYq3BTBprDxAwBBCgDBmZcAtOgYr0SYUhs26WhAxwZ8OyDH2P/szGeKDw9vyGHLt+FiM9bEG3dupWrr776tJ/rrruOV7/61XzgAx/Ats9cU2T9+vV84hOfwGivyAd897vf5ZprrmH//v34vs/HPvYxbrvtNu666y4+/vGPh4XNgJGRETZv3jxvfxs3bmT//v3nexrLCuHbxB75FnpkhCOPCqbqHqYfoKWmZ6xOVQYEsWHcuKScjVHNS2KY5ISFRlMQPmIuJkGYEjcZR6g6Cd1W/j6WDmeXXqDofc7GUcOMt4qcqBYYKT6D1MszFd97Yi8jhXFaBFhenaKjSKphEtVBtO/h6wYWBkkzixKSuLsHoa6BJAhcoIkAtDBopQzijoUywJdZVBDQVbLpnVDEXYudD9WYKU1Rf+4QZbeM0ppZe5mZ532bVm1iruaNpm63cLSi5ORRSlIXAUJ7JJRGSJ+GMHHiEhlPkCn7bFbj1DNemOYrJK30IwTSROkEaIUgoGvSRvoK0wdVdSh/89u4hRoVp0LV9patIBJuHS/QfGHvw/QVa2gFTqDwRDjZ0CKGqRV91QqmKiFw0CJGSsexVAWEhzY1YKBxUEik6gc5TbzgUbeuxVA+hqdxtKIR1DAmDUrTDbTvhJWZlwnTc0tzJKafIPAdflgcxgt8ZmsegciSriiQAUIkEAgM7RJIAyUstAAjaODGX0UuOIEWJmZMk8/lEVYOJRIIHWahTTU8PMcn8/TXqHkZDntNmpW5it+PfnIRr8D54SkvTN4UguoTj2IfP4jWiqq+BV+tpRh4KCRxJVAkwMwRCEXTGiLh7MYxV+HnDiGozhX+DvAMExBoKWgZyc6aruMijpaClz2nsewxDh45wdhsE8bnwlNGdy3WZbjonLcg+qM/+iO2bt3K3//93/Otb32Lj3/841x33XW8+93v5gMf+ACHDh3iIx/5yDntS2vNRz/6UX70ox/xx3/8x9RqNXbu3Mmv/uqvcv/99/PhD3+Yz3zmM3zyk+GD22g0SCaT8/aRSCRoNpsvtPvLBhHYmEefQTdbmI4EBDTc0HSsFQhw7WtAKwzTIKNbKGVguDa1jIkSBkJAXPvEDYPpdAkBJFB4hJVf7eQgKhGjbjukj7QzhcCq1incvxeq9lkXhF1qHG0cZfTZMSZ+8DPKTz+AgyYIwkFKySSrRkcxnVlWex6mlAiRQAoJKKTSmLKB3Q2CcBD3jRb1XguJRTJmEAgQdotU08GTKxka68I11vHt0T3IWoWiXecL+wqUlpsgCjweKz1LRbnYxVlqtg1aIQMxZxEzAE0MAyFsAq3DZykVI1P1OLD51RxdV0KZAlNIhoMkIKnJcLC2fE2s3IVQEHc0iZbAe+oHuNN1/uXRT/LkeIVgGa4X98x4lfrkCGuO/TOHaj9lqJwjXVPkyxa+9rETEiFACh8xtzBpyn2IjPc4loiRT8eRpoGWkpjykKqIqQ08s5/uKQ8IRZWlHCwvxmwjyZHDh5H1Mo8dK3L8R48vC0EUrq2leWYitNJo5aNcl1pVcPzoMYxSeJ65qokSARITLSzSOoGShwAXqcAbACUzpICM0YXMWNC1Ck2AFvEw8F8ENPw4TadJulqkGZQZ88PsPO26UJtidrKxeBfjPPjEvk+ElsQnyiQKdbxqwNHWAC55PLagfUXSbSGURksJQqJUHR3ciFRlAHRqmm6dJyE06YyJEhKhFVpKJJricBJPKHwTAikwHBu3ZDPxwOOUJ0ao3PcZXPvyKi3yfM5bEH3xi1/kb//2b3n1q1/N+vXredWrXsXf/M3f8MMf/pDXvOY1/I//8T/4zne+86L7qdfr/O7v/i733HMPn/3sZ9myZQuveMUr+PSnP83OnTuxLIvrr7+ed7/73R2XWDKZPM36ZNs26XT6fE9j2aDrdQy3jndwEj2XFi5pkSjWSNcUjvDCyAOVRQc2iVyZtHEAjcRfnWCqR5Ixw2wNoTxk7sc4RprA6MMXCQJMlLbRYhpNuMRHybiaSUNiuxoVmPiepOeByXlrWS1lROBSsKdo/Og5bNtHKzcMQvQc4nYLLxYno+LEPYuMP42ftUjKElJARgmMACzpkE7GkMJEIAhEEMZaaQPTlHgoLAFC+bjGCuJ2Gj9xE6v2ZRGuz4PHJ2kF9rKzdnz5kSMQKLQQeDPTWE6VuBtgKgEYKNlDTEuyOo6UVUw1GsYyrGkgkZzovppmOsBHIIXJRj+LFgKh2xNQk0CkiGtB0lEYvmDCX0m1FWfF13/EATGL5/vLLl7N9gMMt8bk7G62PLePlNdHumGTK8dABVS6DQTQGkjiDbwSUyaovfFOUv057HweK5kLxZAIvzfglejVcZTxHATHkEEorA2RZXD8tdQf3kLroUPIVpNABQTHpwn8pR9DVP7Kl6nec0+nUKLyXczpZzACTa5SwWmtwgxO0CXWg/YIhEVgZFAyR7lL00prDKWZucpAySTDO64jZaSJ6bA8hhIBJoJGxsSLC6asaymqFindoMsZQckM+wtPU/j4xznmVakWlkeFdD1X9sJ71sRqefj1EmM1D3vOTZprBOSrNjEh0IYE5aOFH7532kNJgaUl2UweyzSRaRdphBPAbCpGrdsgHQ/fOd+UBJbE9+IUKkmS5T4q7gxP3PcoP/vi42GM4OTkIl6Ni8d5C6KpqSl6enrmfZbP55mYmACgp6fnrC4zgNHRUd75zndSr9f58pe/zJYtWwC47777+PznPz/vu67rkkiEwXSbNm3i4POi3UdGRti0adP5nsby4ZvfJFEMfbh6dBTlFZiIuXhBLXTlaA8l5mrEaBehDMoxm0CAjsdoySTZhEErdgBXCxJJhRYSw+pCGhk8cZSEsxtLlKiJ0JTsGv0Yvo9p19FKIJxePLagpp5cxAvx4nQCwOvH8e0CQigCwtl4iwAZKKSGAZHEwiTmgyBA5X1SYpqU9xAxVQM0ScPgRGIr9soB3PQ4471dKKEwtEFgCtyUSUI3EWIK0w0XyhVCEJBDaE1s/ziu/0wno3y5pP0Wq2VOtKap+g52rcD1D42FG4w8CCO0EYrQcoYMZ/gJQ9CVz5GMraW7L8W2+E5ilkSuXoEpWgSmhU9o2dUyg2v0sVE/juVppBKM2XBgJk+5lqL7mQIPjD7AA3/xsUW7Bi9GoxFaFVzbp16YK1zZnnAUmmw5lMZsuaRnG2iRQugAJQS+JTBjJqlMP8PpLpI9V7Elnae1xsS0DJrZJKaMIfFZ25ujR0oKgxo/HSClFx4DAy0U0lEYfoAIBInDhwi05NEDU6ilHpAeKFQzXFrC9gIe+dfPIgsHwwrnOsAxViC0opC8gcAMXdVa21iGZP+1fbgxgW+5BHGXWlc3PTdcC1IihUJrgZYBAti06la8GNi4oA1M3yCww+K1pcIBAhXw4JHn8N3lMcmDUBQRBASWxKzXaKpKmE0HJJuhi9BEQMxEqQDDCjDMJLve1I2IGZjaoO+td4FhkZy1kUHoXYjHDNyERK3bgxcLJYGhBCVzGy3bI/BTOCr0EKhjzwJQ/tKXF+syXFTOWxBt376dD37wgzjOXHl+x+Gv//qvueGGG9Ba84UvfIENGzac8e8rlQrvfve7uemmm/jHf/zHeeJKa81f/uVf8tBDD6G1Zs+ePXz605/uZJndfffd3HPPPezatQvP8/jUpz5FsVjkzjvvPN/TWBbkD30dADU+iUZQODBCfrrBdPcg5WweqWsIVScQJlpDWoH0JF2pLgzLpGn1oVFIIXj4ZSnGhyVW3GL0qjIq5rJWPkL3QA8CTZfwCHicpH8IV6aw/CrN5jQVr4KUARBgTT/Bib1L18Tsum6YXntigtjIKLLVoGmsR8o+mrEbSaou4tpBZBJh7RLfAHwMCSTySNmYC3AV9A9vITMwSH0VeDGDA+v7CYwmAslwz11YA/0M6hieKRFCYARhILUvQGpFT7FBw74H5YBd8/nCviXsOps50PlvMKKYtRv4QYAbN2jEd4DI4lnrsfszIARO0oS4gRKClNYMZkd444a7whmnYaCMPH09Uwys6qUv2UBLA9eQWIaFQCAA1dNNRsdJNAeoYnHc8/G1JFl2sCotyjMl1BIVkW0XvWcHfPuzP+T4syWe/MZ/J6j7aDdAkCTtHEHqI2jidPsPM9v3OIYuk1yxhtzajRjrB7iqZyuxniyFgasw1q2iMpAnJQwsaZLI9yGET5AscGJlloQR2tfSIk8Qn4RA46Mwyg6x8gR1TzOxt8X4SGXpL+lhmfiTuyg98S28YpXDx9ZiaQ+EIo4MiylKCVpiJ1MY/kEMEZZe8mMuMVwQilh/D8bQZiqJFcRTNUASmJpAGKRSQxhJA4HE0AlM16KWAVekEc0iTqCJPzFLa24cWw5UbQdzfIzBJ0fm7nHorjaMBDEER7d4GEpj51IktKDfMjGNEqmkiRANUmYDgYm1YgM9Y00MD5QwiScUnlmnJ2mCBikAY861GGi00rhiDQCV5gw4tcW8DBeV8xZE/+2//Tf27NnDjh07eNWrXsWOHTvYs2cPf/7nf87u3bv56Ec/yh/+4R+e8e+/+tWvMj4+zre//W127Ngxr97QnXfeyX/9r/+VD3zgA2zfvp33ve99/M7v/A5vfetbAbj11lv5sz/7Mz7wgQ+wc+dOvvWtb/EP//APdHV1veQLsJQxm9MUGj77D48yUy9gzhxAqgBf9SHUejyZIKOfAVkjTgYTRb03h3jlewkME9vs5dDQQczuKiu7s4iYhxaafGwdiYEk2b51NK5bhydNZLaFYIL1XmEuC8FDuA6xagHLbyC0wlPgVcJA7CAIOsHuSwWtNUIIykcmEJMFXOXi6xZ2/OU0k72YGhK6hU7GEGiyKgANcRF2BD/5t9fiDq1HCUlw+x3oAQt39TQmBo24Yry/yHBgImWSXDKPZQncwGNiRZyZoYlwljrXlkC16C02oeYwc8gmmLtWjuMQLLW038rxzn+DpsY+OIhhBxSSAZ7RTVJ5hA6vGIEw0LKBQHNdPkVMeLw8lUEaguHVQ2hpcOP1N5IZ7sEx0uQyaZKJAeqpJhlzgl5nP5UVBk/cdQ3xRJpaVwyFgas9EnVAC7IHZyjYE/yfBw4v1hU5JypHf0a9YlMeL2M/cZDj8Z24ArRM4RDQLSwQ4K30yaSLSEwO970aTAv/tTeQWbOZ+G07UNKiZ0ASaI3XvZH+qzcQ7x3A2raSXLfFtr4tZCyLmGHQsNYwcKQJaAIUXqBpTR7naLOBEAGVZhVGH1rsS3NGtNbUdcATh7+K/dBXwAho2hm8mCCOAYZg7/Ym7kAOJSTKtMgag6wcHkPFXexXTeLHJNtiOVbvWI2VMLluZR4rHWD2dmOv7Efg0Z21qPaY+JaBVCANAzsvyQXD+J7iyenj+PTQai0PQaSrHt/9/lM0LQ2Bg0ahRQ5DT2MZ0xhSEB8oYRKgDJOEdlgj8yRj4YLdJrvZqjJICWve/TZMK8ZAvIu4zJJamScts7yqeyOmfpZsS2P5YeXwCh5GoAn0ABqYVjb4y8PN+FIwz/cP0uk099xzD3v27GFqaooVK1awZcsWPvKRj/CHf/iHPPTQQ0h5Zp31nve8h/e85z1n3P6Lv/iL/OIv/uIZt7/1rW/tCKTLHg2Op5hxrqYh9pPUEvCAzWHchjA5enWSdMHA0DJUt8LghuEcT23aQcvbi0j4GMkqL0u/mp8N/owtmSnevGE11cEexIPTCMvg03fdyK/05BG7n8OoaJRIIJVLrtZCiTieKBInoFAcIOEfIzkzw2x2C0II4vH44l6jF+BQo4Rfh0DnQYfrl/km5OwpZs0+zKRC6QCTFAJNr0yCafHawTtIx79PpWmgtMY0BFpKVusUq+UdlMQ+EskkjmuSzwus4RT6iE0138Wgm4Ri6I70RYAOYP2B7cS3FKk9O465uhsAz/PmZVguCQKXwhMPM7Uigw58ukdqtNKSWlyQsgRJR+BJDUoSjxlg+eTVcVZlr6aVdehZl8AxBPmkCVLyhmuG2LOvn9xAP9lWF2vMAe7psnjVimvI3v8g5T4LJ15kW3cClMSx1tISGtNcjfRnkK0a2q+jbJ9yubwkJzyzrVl+evxxdDDAfXt+QFfwMrSu4TovIy4MoBXGfQgobc3Q8EwKWw9haEAYrM0OU5UCke4HIJNN0NBj9HetJdaXJhVUeN3t25j4ZhcDqT7Wv2s7T323xmyhQcy3yfEEY5kbMZ0keAXqcjMrvBI/fmiGbf9muJ0wtORwfMVjR8chqDP+pINO9jBbqUAiBdoEfDzLJd87ynRJhkWHpMXWwRYbu17OtbHnKG65jlf3tRh4fRgqcezJAnYiwbU7TKb2XEt5a5aVm6/GfnIX6bn4NT8Z1hXLJuqcaLlMVOJIvZNmzcE9cYLYqlWLel3ORq3Ugt15Nh7dRckcJhBZ0GENJ1OYxGMjmPbNvDE1wBEzjP+bvv1qNpyQrM6uwu/N48nHEVaKLdeuI9Gbozc7xGaO8Firn1e9LMbPvt3FmnySfuObaONGpgIPhKCZ0GSbGl+nKPsOyg5QjsszM328KlBzcUiXD+d8Ns8++yyve93ruPXWW/mlX/olNm7cyJve9CaSySS/8Au/wDe+8Q1isdhZxVDEuaO1pvn4cZpBHbdcwzVXUo9vBQIsVyM0GMKkryW5avphWv19SK3RVoA0BIaQaC3Z0pegPxPn6qEcs33drMrk2dK1GkPOdZkC+tjOy9OrWamG0aZFStVJa0g2iqSaFVAGWgaUK90YXhWjNXPWti8GnhcGF+4erVPRdWQrjhG0OplxWvYhhIHUFUzDJ0jHMS0QUiKlYPYtd9Af6ydpJugKqsQtyZp8DAwDJ5HDlDHiOobo70XPmfW3rngWzQRxHWcomSOwTrYn0RIInUQ6PrpcRYulmwE0Ne7xyJf/gR/85KdYbhOrGYAKwgKKc11Es8sKa1YZBrFME9OKIQzBpo1Xk7jxtrmOUfMrL18LwIqutaTjJtmr+tjx715GPBlnXXYtOmYyvcbEiEFfxkQiaKRNlJIEIodwPYSnibcamM8WaTabVCpLpzBcEARorTk0e4h9s0cJ6nHc4jgATRxslUSLOFLVcLsaWFgESLxEnlr/XNCzgJWbfw5TCvS62/n3t64llkjgixgrVyW48bVD9P7aryGE5GWrX4kwDXJuEXwHuTaNIQJiqkHC6EKgsVmBh0Vs6gi0fMrN8EH0PG9JBae3q0UHpQD8NBUPfLGWOqEFUhsmGsF0YjWZTB0hRkAIjm/fiblyFZYhuTa9imSPgbzm5xFCIETYj4n+q8jkTPxEnDf929tJZJL0ibUQhvfjxVJYrThmS5Gurife6kZrGPnZfRQ//g9MH6uilOr0I0uJ3c/uIag20a08PhrPPzkJtQyLsuOT7kpxdS5Nb9LBjFkcH76D2LbrEAO93HTt7zC5eZhaZj2J3vD9vGr1LcQHBugd6sOISVZ2ZxDJbgwB+RXdNPIGPX11AgMM7eNZgoaxnXjF48ixWY5VKmgVJkddTpyzevnQhz7E5s2b+bu/+zsymQx///d/z65du/ilX/olstksX/va1y5mO684muUypWqNY80C8bByBPXYBoSwkMqkkTLwZRw05IMGqr8LzxzA3jIFQKLbwk91kbfyGNLAisXZ0JPouHRW52MASCFY35MkI2M0jS5q+atIGlUGkjEQFil3N71qLcpQNHyJRIEwaDQaLxo8fymZnp4mCAJmxp9BaYXj9KCVHwaaA4Fh4ZlpTFHHkF644GY+jjAs+nZuQxgWCSNBxkwTtyT5pMHVAwkQgsL2l4MJrw12MHzrMLGhXhIpjbfuVqQAVyaxTEmQgC5lIgRYfh5NF9oWaAHHgwc6g5PWesl0vKOjozzzswrl2o2kH/TI1adAK5IVF0s7aGJoU2J3G+GiXENZghsnGM/egJmNkft3/wm2/BukIYivXUN/Nuys0/0ZNt48gBCSXE+SmCGJb9jA5Ctez1tuugFLWiTSKYI4TA5WYS74vWxspaEVlqnIHTlI4Cscx8H3l0a6b6vVCuMn942gKwlQAakgdLuUk1lyswaaAAyP0haXlGGBKXlj3w1o4OrhLKu39kAsxYb+DP25BFcP5+i65gYskWBg0CCx7lqElDBwNex4Fc7N25DXvYNsUuMYGbQK1zrLZJMgBNJTmJ5meqqCbMxwbKwMhIJoqbi1bduGIMALFL5qIAJJMbYZX6TxZRptaGKxfrQQZM2VJAyBkj7JRIqUYZF4xx9hGgIMCwO/I4QAVm7uRiSTGFe9klb/tSTiBqYlQUkqg+P4uRzN5Cri+npwAaUwtUBrRaxiM1ob5ei+AuVyecmVcKmWSqjRoxA4WH4JQwV48ZsxVAWhm2hhYShN1wpBzIC+IQsxLHjdNUPo7EqCn7sDMJha30c2cXLGJuJxrJUryG3aAMrHMkwYug4hTWIDK1CGILE6hRA2fdKiOhigZBYlsjwykqRqu5SbNarV5Vnk8kycl4XoQx/6EHfccQcf+tCH+P73v8/v/u7v8iu/8it87nOfY9USNjkuB7TWnY6/2WxycGo/j7CeQLZIaIOmiOOhwTdIqQMc2LabQMbQAhLawFodY8u1G9CEcTTdOwZxt97E5sxmhBFDS4stvd0k5m55f9pE3HorwxmLTb0xQGPE4piJOL0ZA7kqhyHiWKpMqlnFj5k0tUdVBDRtSa1WWzKdLYQz90KhgHZ+Bk4vwrcQ2g5L+gtBb6IPM+UiDJ+41SCdqhJPekzvuIXkygHiRgJTmkgBTro3XE0cQMDtNw7Sk7bYsSpDvCuBliZrtijs7i1IAcWBJ7EMgSF9Ysgw0FEptABrygbf5eVPPE2pVMJxnHD17SVy7WzbJpgp0dJxvJhBrNKkljVwY2HnaQkLX8ZJGhKZNohvruAnU/jCRAofsz90+RimJPeqV3T2m7l5B7GECehwYXbASCaZyW/j9etvpTvezdDNO7lm7SieGSeQLbSIUTMHEYGD0j6uMqmVHFqt1pK4Xr7vU6lUqFQqNApl0oXVKL9OUgdhtqKRJCbGwXsYRAMlIJ6sY8UNbu5bS/eKX2DbcJ5UezIiT1o4zL4+8okMmPOjGIQQCGkgLBOdHaaVGGKtO4U2LUxpULhqDVLV0CJBVaRRaAJfLonrBXSe9XK5jOe6HG10UXQ8kk4a3xhCCROhXQrrm6TjYSzfQOw6UrFwmSF7xQDuqpUAmELAwDZWb74OccrItXJLN8ENW5GGwS+/ej2pXAzTkCgtOH6DxcCG1fgxTXX9dlrZLmTgohEYrgLl0ahP0XRa2LaNEGLJTFZmZ2eZKpTwjzwNOiDulbB0hZjoJh48QMIEJQyOXbOWhOXCjb/MuhtN1HaHl2/sA2D74HZA8LL8K7llfW9n372//mt0v/1tmMMrQAVIYSC6ViEyA8RjGmU1SGX7aKaexhIBWNMg6mgE9cZ6YqrF7hMPo5QKvRlLTEi+VM5ZECmlOhlhQ0NDTE5O8lu/9Vv85//8nyM32QLQFkSe52HbNr7j0Ap6ybQ24sksrsxgx0wy1SIIwVZyGCIctGwzSzJjknnjyQGpJ2nw2vUZNmU3MTh0B0iT6/PXk1t1MiNPrFtHKiZJxw3QmuuHUgxkY5imwDQFAoNG1iCpyiijn5pf55lWjIdGFb7vL5lO17ZtlFK0Wi32ihMoewVCWSjdopENkGYMO9ZHoreKkYyR6ZY8tf715LesZfWN1wOwLr2OuIyjb7uNyuaXnXaMt2/Lk4oZCGlixgQqlkEbcRIyQ8XM4W3aiJcJU36FVpj+KMoQtFSArE9jNW+ed82WiitDCIEkoJ7M4KKwRZ2WqakkTGJaomIxfJng+vQganWe1JZVeGacLcNdJE/pYBNpi54VL1APbOubgbmAd8S8BChpWsQMgWv04MYnSZkJmqkYGdHNbO5l0KzRaDaZnJxc9GdNa02lUmF2dpZWq0Wj3iLpC7CrxBDE/EPE4inilsBJSOpbrmai9yq2rh5g/bW/SCxm8fqr3zR3HV6Y1151E8K05n2m5gqvCkOCgOtXZHG6c8h4P7lEnDVrN2NQxxCACsWHX22F7qklILw9z6NarVIsFjkxdYJqyyZLDIVECEkta1AZzLIx0YthWTT7EgipySdNtufWEyQSqGQKILQQxbPcct16kpnYvOMYc6VZYnGTRNrCihsY/Q36Uldx1fo+RHINAkmyaxqDFt2tH2MaMYRr47seE2OHOxPS2UVc/NV1XYIgwHVdfN/HdT18RxJY4+Fad0LRMjIgJGnRpCdeoJXv4rp1R6B3IwlT865tv9DZX9JMsqIrwR2broHUyfdVtMdsDQQehgyF+LF33tbpm7qGtrEycwMr9BHsXBM/0ZpbAspAa5/aY59hZiYMn2iXoljunLOSOdVECWBZFr/6q7+64A26UlFKUalU0Fpj2zZ2zSOQgnJ+OCzZbnThx30S/hROMsabcsNzjjSoxIbJxsNb2RXrAuj417NmlqSZ6hzH7r3mjG0IZ6MC6w13kEp5mBJuMDKsZR/SapAv+MxIh9lSEaXUone2EM7a2+4UpRTrjrYQykWLBLVuHz9bJSXGEBJKXdfh9K1jIBunGuuFNZsRK7bN25+5bi2JPpPnPe7h8y/C3N81N2XwMitRsQxD1npa5gCbN76GoGcCadh0e0cQ+ATGWLiuVWM3Imd1OrvFFEOnHtt1XfL5PMJpoYOAWKWKUg18YaHmhu36QA8awba7f470yn42DGzE6t1MVyqGvOM/v/gBh2/o9B1SCvRc4RSNRlgW0pAY2sQ0wTIkzUSKQMdRshepW7h2OHP3PK9T6mMxaLs5a7UazWYTp9kibQdIpbCEgdQ2cXGCZl+asaEsa4ZexfWbX0MqFuP2jW8mn4xx7cp8uLPnP1xzbHrZIDI+f6APV9ATyHSa1PbtCK0Zy19Hy7a4bmWDoXw/6WyOTCJHzNOIQGPXGzSbTZRSNBqnLzh8qQiCoGNtqdfrjBx9jG6K5EWMtM4QM5LYaUFx8wBi8FqufvftqPwA2vCRQpJNSHa+bnVnfyu6wlpWsYRJKvc8QSTmJyokYgbb1uW4pvcuNt+xlTuveyXveOsm4n0NckYB0zSQwgCRpqUHOTFZZGpqin379i1qBm1blJVKJWq1GlJC04H+I0UcFI4RLgCMIRk2drMmnaYY34BYdTMQ9lNdiS4AelZkAMgmLIaGVsHVb5l3LCFF+GysuhnDCscIHTPRc+UuZP9VvGnjtQykprEzXbgJBxCYQRktWjR8l2azyezsLFrrJZl5fL68ZNOOZVlYlvXiX4w4J051mTmOA7YfZnjNWdATVpyu1ZNUB9JYIklPQmCZRaoDcZRpcs1g2FncNXjXeR13VXIVa5JrAB0uCCslDA7iDV9Hj7+LbmEREzGMZIW4dwLhOPitJM1mc9FdGY7jUC6Xw1Teep2g2eSq6SSmgmZXlqNDLnJYYNEkPegQSElzqIeYqbnlhjyirw/xvCw5QwpuvCGHNE4ftNrB1KdODgxp8Hvb/i1SSKRokByqYEmNwGcq5aEl6MDFNMqcOHGCWi2s4dFu96WmbdputVpMTEwwOztLsTlKpvUo2cBg9GpNKj6ENr25cVsghaRnOEM2meGG/hv4f677NTJ3vBpiqbMeaz6CNVu7ufsNJ2uUpV52M6u6kmRjCXTSIm1IgkQCISUxbSOVh92s02w28TyPYrG4oNfifAmCgHK5jO/76JkjpAKN1D7a7mWFtkn4kwy9/JU8uW2Iq1f18EvXvpGYIUEYtH08XQMpcr2JF9x/91Ca5M03z/tsOD3Mlp4tmJZBz8ospNJUt1wHzC0rIyRSSvJdNWJIhsZ93MBn7969jI2NddrcarUu7sV5AWzb7lipXNclaDapugVkwydbNNBGDETATTszKKA3n2D90GYysW7Gt/57hBXj1g19nf11pWJnPFZPYn6xYNOQvGJDH2/dvpp0zEAgGFiZxblumPhgBU9Icuo5hDCoWzeScypUq1Vc16VarVIoFBalb/M8rzMG1Go16o06tqsQyqfaFefQmj6UMEBKhAbV18cvbd8J238FUvOvwcYdA2c9Vqcb69tET3rw5AYN9uBjGLEYeC5dO1fiZLoZWe+CEChTErOmiT1UwHVd9u/fj+OEru3l7jo7Z0Hk+z5f//rXOz+e5837/etf//pFbOblj23b+L5PrVbDcRwSVUVgJMN6Of0zpGSDHcM3MbtpiL6rb0JZaZ575e3U+2LY+Z4XP8AZyFm50Kqk52YeQoKUqOuuxevyw5dGSMxMBRNFt5dBuRPU63Wq1Wqn012MF8G2ber1ehg7pDXK8zD8W7A8n2YyCZaLvXIbKm4iEnFI+BiDTezea1l7hkHp+dzac+vJX4QIB7dTmLntNQykQ2HgpyQ9K9Nh4UFZZqLXxE4+y6xsMJ6IEQQBvu/TaDRotVqXXBC13Sizs7OUSiWq1TCzxo7ZZGceAK1wr4rTt2EL4voyWkr8mMW6ntAcnuieq2IrDZLXXXfex5eGZCgfCveNXRsRhsGariTrenJMXX0N64Z8WokMOm5iGhM4wqNUOkSrFVqJqtXqotVwas+A2z+2TJHTCt96jqA1Qy6ZoOvOV3PNta+kN93P8PVXn3riHUGU60uS7jpzqYrnW+K7E92szKzEjBmsu66PrpV5zIEB1MpVaBUWXZVCkuwJy24opbFdH9u2KZVKTExMdN6PS43jOJ1jt1otKnWPBmk0EsPrQcYU9AyTSMU6C0fnMhkSySwq0U1vd3be/m5fdTsbuza+4LG29Gw5/cMVN2KZJkKElhApBYNOje2btmPFVmKYofWty3+KuBd0rPOFQoHx8fFFedaUUgRBQLFYZHp6Oqw6ICUol8rGPLNdUwjtM7WuG6w47u2305PoPyXm8dwLLoQu7PC5SJnhe/lv1r8R0PR2K6QpQhdEuh+ywzixMtrKUFtfxNqxEj8dw3GczljgeR5jY2MLe0EuMedch6ivr4+PfexkOf3u7u55vwsheNvb3ragjbtS8DyPSqVCEAQdE7cwkwgpSTBLYdsruOnYPmQsiSECrBVdlDe+E54o4SV6GXvtm9n24od5ccxQDCHDeAUxZzoVc8teIGL01CUTqTJSSqrVKqlUCtu2aTabpFLnYzG4MFzX7RQ5bAcqO0rhmnlMt4SVUtyd7WbXEFTX9mMNDOK0quhshcbQbed8nNWpkyZ7LczTOhzdc9IvX1m9glTvDrz7jjMeH2N0aIgbpjfwzKZJwCSRSHSuVefv50TKpYrD8/1wsCyXy4yNjdHf34/TnSBe1oiuWXSshSKJ09VPkI4xvDbLqmveAECq/7zLlp2RN6wL9ylv/g9kJvazKrsVI/5jeqwk+jj09FcZ84dI2y4ipTh27BjJZJLDhw8v2lI97RRjrTV+ECceNPES+1nTM4AYi7F19UaGV/Vwc7kHazCccad23BQ+M32bF6QNW18+zEa7h0/UG1iZSlj5e0sK43W3IstPEByvEUtlUUpRKBSwbZuBgYHThNbFpF6vk8lkCIKA8fFx8vl8mJ1XCcjrgGzMwAksErKEvkljybUordAaugZTCLvBhv4MyeT8SUvMOLOF6AWJnxRUKtAICa9oNmH7TmKNHr4lPIyHWjQ3CoyJ/bhu+Fy1YxIbjcYlr4HVHgPaSSvl2VkMIXESPpaO0Z2zyHtP8ejWzby8NYFvZZh3lczzqAsnTylqPvd8XJW/ihnxLMKMYxiSrp97M+bDBxkMrqWyfgfGEyn6e23WrOxj6kAWx3FIp9OdemHtxJGlWJ/uXDjnHu6HP/zhxWzHFU2lEpprW60WrusihCDXk8GuBGSPHsZaeSNiVMM11yAf2kXPSgVzMUK6+ypevyp3wW0QaOS2zXB1DxgGKECDNi3s3/yviB/+d6SIk/MFk72hALasMC5mdnaWWOw8O6sL4NRZFIQdmJQSZUgytBhPlBlek6Jvw062prspxpsoIWh15YmZF1A3Q55eUNE85SNlZUjlN2HdPMBj4wZru7PMrt5KPfUIPROKRCJBrVajWCySSCTwPI/Z2Vm6uro66/VdLNqxHEePHiUWi1GpVGg2m9RqNVqDKfxilq5MkuGYQDcVr13zVr7gf4lfvm2YrmQo+kyxcIKoQ26YtHUCpTVSgCkFph/Q072OQ7UE8WwfVjJJq9UilUp1XD/tquQXk7bVVmtNPB6fd2wVT+PPSAbScTb1zBJPJMhkBjGs+S7V9G1z4ju/csHaZSbivOPnbiGfSyDvPYJ44zWksikGttzB8RPfpClixOZqELVarU67Pc+7JGEOzWYT27YpFoud58z3fQzTJZWMYUhNYOUQVEGCJS2Unr8w7YquJLWuFQD84s7VL3SY80IrjWjXXlMBUmuaV61g/ews1X6NO3OAdDo9z6Vcq9VIJBIX/d08lfY1a7vrHMeh7OWobO1jnUyST5kIGuQyN3HVa3M8Y2aQp74Ht/3/zvlYAjqKaP2N/Sc39G2B1a+hZ2UaM20hpOQ/37GD/7PvEQwpGUzHSGqXVPcaPAJM02R2dpZsNovruhw7doxVq1Yty7CaKD1skWnPRtoZSEqpsGZHuKAMXd5BTDOJ2LgREYtRSb6GZCZcV+YXr+/mtt7bFmZg0DpM7+3pQUhJxsiwVWTRsQQ6nkKqgJz/CD2my7C5BtM0kVLSbDY5fvzk0g+ue/FX3J6ZmenEXLU7jzCw2idtOTgxE7+3iNCKVclVrFh9Pd0pk1xCIi/gkbd7tp72WXfidJHgrNpJTFgkzTRCxHgLfWxa6dHbGwqLdpCw67oddxCEA8nFMtN7ntexplWrVWq1Gp7nIYQggYESJj2xBn2pDLGYpK87x3VrsliGhTmXgZKyXroFcG3y9My9Nv3pPnrSc4J6VZOV/jNsSqyiK5slPzTQ6VSVUh3T/OTk5EV3abRdwrZtdzLdpJQEQYCZaIIUbBwcxHvNb2GZ6rzcFRfKQC4cpG+6ay3ZWJaVmZWs3BI+X4EFyWSy847U6/VODNaleD+BzjVrZ0sBJCxNV7qOyA0w1OUgBLx8+OVkYhnUijrG3LqAW4ZCy47oDku5DM+5WS+EZDYW9pOrb4EtbwJg7crNJLasxln1Wux0BsuyCIKgIyCr1SpHjhy54GOfC1prfN/H8zwKhUIniSDwXYQ0kX1Z1m3+97zr+p9j9cbVvGH9q+h7zevYOJDpBJsDoXX/HAldieH/+1ZlTt0AQpDMzF2z/s2YhgShWd1tcPvwINbAZorNnRjS7LiTm80m9Xq9ExJQKpUW6OpcOi7ClC/ibJw6S3Ndt+Mis2077GhNk3g8juNnwSiBNBFmHPGycECxrf6OWdSUYp5L54LQel6HLoQguWUQcyhHM51GBpquuE+/cYyy2IojBKZpdtwItm3jOE4nkPJimUwbjQaVSoVsNtvJMJMyrLuSTSRJDimcmokdz+Ilw1lPcnAlWUtgWTGOXEB2qIqdbonb0Hv6eaav2cqaQ+s5YQrKRh/D+X5sP08sFuuIV8/zqNfDgOFMJuyMLuYAX6/XMQwD27apVCodMeQ4DlvikgcGezF6PNZf/WY29awlF89x/7RmfX59p803Dtz4ko/fa60/47ab3riWm6VgZJcJUpPqTxFfuxq/qDsDe7VaJZFI4Ps+U1NTzMzMkEwmyWazF2UplPa9aFsMjh07hm3bxGIxtNaYcYUQsHZ9Lz2rB6hbBqp16QuVSkPSFe9iIDVAdpvL00mXqmezItFHrVbrBDVPTEx0zmfdunUX1UXrOA7T09OdAGEx11dYVpgXm1kxzMYNBv9c3c6/G96GKU0abqOTyPCm64YBEObCDU/X3TFXJ+/GfweEdXjebBjoq8Ngg398+NskEgmklB1XfPudqdVqZLPZM+16QWjHWrXj+qSUJJNJGnWPjKxSiyn6VmfY0DNEddsRureEAdNre1+g1MW5ImBw3Tl4F659JwBbu7diGAViZpL0VZuJ9+whkUwhpcQwwmK97WKgMzMzy9JtFlmILjGnxo8EQcDs7GwnXVFr3bG8ZHuS0L+awXgSzJMzgNdtuHD32Au2a/gWvPTwvM+slV00V98eFnpUBoO94XpcSkA8Hicej3eC8prNJlNTUyilLmp6dDuToS0g2+UFhBD09QzQ1deDsXIlLSuNnwlN7mFguKDL6mJj5oWDMhcSIQTF3lt45cAOskmDpDRZlV7ZEcJSys7A7jjORa/h0bZC2bZNo9HoWDni8TipVIr+dI0jW1eTT1rcNHQ9XYmuMOCSi++WAjCM0DKQe9vbQUD/2s1YCQsRKGKxGMlkstPJKqU6Ivzw4cOdrL2FplgszksZd10X13WxLAspJfXN1+IOrMYwTQSaxOoejO7ui9KWF6MtVJOZGFcln2H7+jWkUqk5EWJhmia2bTMzM0Or1eqUfrgYgdbtIn2zs7M0m01M08Q0TZLJJN25PAjJ5i1xcne+HjvfSz6eJ22led3a14U7OOVxs9asXfD2tRFzwdZShj83rb6NZDLZcf17nteZfI2MjFwSa+SJEyc6ltx2n6aRyLlyKOuu7cPI5ei6++4FOaYQgjXX9J72+fNLGrR53drXkV4VTjIt08KMq06fls1mEULMSwxajkSCaJFozwYcx8FxnI6/1TCMcHaQtTCMOKmEyaqukw/oitzF8ckG8S60MV/R11e8Ers3nEHdqDNkN25G/NZv4W29jlQqhWEYnQ6v7YIpFoudjnehOXXpi3bHLqXENE3S6TSBtrCEzauvegWvG3hd5+9iKQMrIUibaYYSQwverjZvHHpj5/9D217F5uzmMDh9rpO3LGuuE5YddyOEFWnbMQMXY22g8fFxJicn2b9/P81mE8MwiMVixONxpJQ0Bm9mXerfotbc2lnj7lIG4baJpSxI+phSYuayGCtCi2k2m+1YTtvBwq7rMjMz03l/FpJ2h14oFPD9cIHZtqspmQwnJ719OUrXbA/rv2iF1Z0mtmrh4oReKletW8mqFb3k8/nO5CoWi1EsFmm1WkgpOwkJC3nd2rVoDh06RLFY7JQQSaVSpNNphoaGSKV7ad12A2ZPN0KIk+spzhFLGPOKe17K65ncGFrNuudEbSwWCwtwNhrMzs6ya9euBX83lVJMT093Arinpqao1WqkUikSiQRKKVLZ0AIzmBvsBJVf7Hfz2lev4pbhW15w28t+87XQuwFTmgRBmGwFkMvlOiKuHcqwlJZ2Olcil9klpt0RteMh2m6mdmffHjBN02Tz9Rnc8WtImIujW53ek7lrjZW3oteGayz1dWXIi9Bdls1mO+c0OzuLYRgYhsHU1BTr1q0DFi4A9tTifM1mM3TrJZOdoEcjbtA35JHYnDwZQAlYiUtz/fJWvvP/DT2huDTyBqaci6FIJDpxCrFYrGMV1FpTKBRIpVILPhOt1Wq0Wi2mp6exLAulFIZhkEgkGBwcxDRNhBrkqt4hXnbL/E5wIHX2Oibnw60bTp+JPp/uoTRi0oYDkLzpJjZnZujNeJTLYVajZVmd9wXoiMpMJjPPHXmhtGMgisUipmniOE7nWTNNk3w+z8r+lRRaWZJDG8G6ALfFApP7nQ/TaDQYEIKRkZHO+9nOCJ2enmZgYICZmZkFXW7J8zxGR0c5fvw41WoV3/cxTZOurq5Of+avGsZeHSO5/kYAfvuODfP2EU9ZDF2Vf4G9X3w2DWQ5JmKkUqmO6G0v5dF2n9VqtY57eyFwHIfDhw9TqVSYnp7uhABkMhmkDK2mfb19VDPrCMwTC3bcc2HH4I4zb7z+3zKgPKpNi+6e3k4Iw9TUFFLKTjbtxMQE69evJwiCS5qBfCFEFqJLSKPRYGZmhmq1SqVSoVardWaebQtRIpHoiIqevhjiIsRHvBT0qvWddZbW9YQiJJPJdAb5thumHeDcDhhudyYXytTUVKd6K4QmZiEEiUSC7u7u0D0QM2lse+c8MbTY3H1DN41VtwPhzC4ej2MYRsfE3K6AfOzYsY7lYyE5evQoU1NTaK2p1WoIIUin0/T09JBOp+nt7eWaHa/gl2853T1x9+aFMc0DvHz9iwsigLdsCKvpCiG4fcsAyWSyk9GYyWTo6enpiKJ2AOrMzAylUmlBXEDtWXvb5dOOhQG46qqr8DwPwzBY1buKDYNZYle9AjL9pxXFWyxO1tyR5HI5+vr6SKVSHeHdtuQGQTCv/7lQCoUCk5OTp8Um5fN5crkclmWRyveQjZ8UPKaxdIYfY+iak673vr6Om7Ydd9fObD18+PCCHbNtTRkbG6NSqdBqtTruxfZ40NvTSyw7OJdks3SwpAVpi65Uimw2SyaTYXBwkEQigTk3TgRBwPHjxzl8+PCSWaroxYgsRJeQdkr91NQUvu93BETbhRKPx+nu7qZUKnUU9WK4Ll4Isfn0OiqmadLb29vJzGh3KO1gyrb590I73XbQueu6HdeS67pks1nWrl3bmbktxRRPIQROz1YYexKAwcFBms0mUkq6uro6xSXbKfjpdJp0Ot1xSZ4v7TRxy7I6Fkjf9zsWqXbcUDqdZnBwsGPqXiqszq5m5pTfe3p6qFQqpFIpMpkMnudhmmbnOSiVSiQSCRqNBolEgnT6pVtrPM9jamqKQqGAEKIzQLU7+ba1pf0eD204xZqx8zdf8nEXmrYrdHCuFpLWujOwx2IxarVa59k49Xsvlenp6Y4VrVar0d3d3XHNti0uyWSSVCrFRi5+DN9LQWb7SVRDV+KqVas62YXt7F/P85iYmCAIAtavP3OCwPnQruDd9gxAaEVuZ6Oapkkmk6E7m2So7wUKTy4yP/crryeeiZHP50mn0/T19WEYBvV6vWO9PXr0KH19fZ1AdcuyLmmJlvMlEkSXkEaj0Vnfp92hx2KxziDY29uL1pq+vr6Tg/vQxYt5uRCEEGQyGXzf7wRutt1B7eKDbaHUTrt9qbR9+W13WTtzJZPJdFxm7Qy9JcucoIzH43ieR1dXF/V6vZOyWq/XO0XOGo0GjUaD/v7+8xZF7Q7WNE0ef/xxIHzG2gNUPp9HSsmaNWHphqUkhtr0/OqvzPt91apVOI5DPp9nenqawcFBZmdncd1wLaVisUhvby+lUuklCaK2O+nYsWO0Wi2q1SoQXpt169ZRLBZZsWJF556l0+lwFh875d6cch13Du18aSe+QLQHnHYMUXd3d0dYWpbF2NgYjUaDTCZzwXFEWmuOHz/O2NgYpmkSBEHHYtB2DbctHkudTCZDtVrttLcdZ9eOuZqZmSGVSjEyMsKKFSteshvIcRxM02Tv3r1YlkWlUukkqcRiMRKJBKlUikKhQDwexzQsbho6iwtrkRicK4cwPDyM4zide+15XmdZp3b6/eTkJJ4Xlh5pLxK/FFnCI8jlR3vQ8zyvYxXK5/Nks1nS6XQnSPnUQmDijjsWrb1nwzCMMDDSMEJz+FwgoO/78wqztWeGLxXP8zh69CitVgvDMDoB6N3d3fT3hxkP7bTepUx7zbR2fEIymcT3/Y4ASqfTuK6Lbdu0Wi2y2Sy2bZ/3AN+2cgwPD1OpVOYJbiEEvb29nU53qWI8rzqwZVls3bqVYrGI1ppMJoNSKlzrqV7vrC/WarVIJBL09PScl5BsL8dRKBTChVvnREJfXx9dXV1Uq9VOsG02m2VwcPCsA/zNQzefcdtiMDw8TCaT4ZFHHsEwDMrlMoZhoLVmYmKClStX4rousVjsnK9bOy6wUql0JivpdBrP80gmkwRBwMqVKzvWqqUovJ+PEILh4WHi8Tg9PT0IIToV+Ov1OvV6HcuyOpWk22n650q7LtTo6ChCCKanp8nn8/i+Tz6fZ2BggEajQXd3N7lcjmq1imVZrNzUhVjKVhXTxHVdpJT09vZ2kkfaJWUajQZHjhyhp6en4wVZqs/D0h5FLhPa2VDt4NB24FnblNyOLVlOnJpCPjQ0xLFjx8jlcp2lIdrp9+1ZfHd3N7FY7Jw7EN/3qdfrnYGuHbvRfpHi8fgFuUcWi3Y8DNAZ3OPxeMeNdvz4cbQO6++8FEHUzihrLwXTFtrtKrJCiGUT4Ph8DMMgnU6jlGLlypUcPHgQCJ+VSqXSSY1ft27dOQcMty22tVqN2dnZTgBwPB5neHiYXC7H1VeH65K139vlgmma9PX1dSZesViM1atX88QTT5BMJpFSdtY76+7u7sTMnAuFQoFsNsv4+DiNRiOsAzZXE6r9jF3qZS8ulHbcFcCaNWuQUqK1ZuPGjTz99NMdN1B7Yeaurq7z6rcbjQblcrkj4g3DoNVqkU6nWbduHdlslnK53Jk0mXOlAda+YnGWqjlX2rGc7Qleuw5dqVTqlBRxHIcTJ07g+z7d3d0Xva7TS2VZCqJiscif/Mmf8PDDD2MYBj//8z/PH/7hHy5JK4HjOExMTHT80fF4vGPhaAckt4sLLlXV/GIYhkEul+ukiiaTSVzXpV6vd7LmxsfH6e7u7sy0X4xKpcLk5CSGYXSKWSYSiU58zHITkG3aAfNAxxqolKLZbHaq1SYSic4A393djeu6xOPxF30+2qb9Wq1Go9GYJyD6+/s7omu50raiQRis23YptDPp2uc+MjLC0NDQOfUHjUaDQqFAoVCgWq3S29vbGdDbbrJ2Uci2VWW5vKftcgVthoeHO8Us8/k8jUYDy7J49tln2bRpE4lEgqFzcNF7nkepVKJYLFIoFDpCcfPmzYyOjnYCqZcbz49tkVKSzWaxLKsTnD4+Pt5J6PA877yyGw8cOEC1WiWdTlOv1xkYGKBYLHbEN5wszQFctKKjF4O2Ox7COKh4PN753fO8Tt24ZrPJ+Pg4W7YsvZgoWKaC6Pd+7/cYHBzkwQcfpFAo8N73vpdPfepT/Pqv//piN61DO4WyXZfn1ICydDpNLpcjlUp10oaXopg7H9ovcjqdpquri+np6U4QrBCCUqnUsfasWLHijPvRWuO6LgcOHOiIRaAzM2+7GNuzqOVM21Kjte48C11dXZ3ig0EQcOLEiU681NnEZKVS4Zlnnum4exzHYeXKlZ04knbgY7ty8XLEsiwGBgY6AbzpdJrh4WGKxSJHjhw5rQ5KNps9YwBnu77Q4cOHKZfL1Go1hoaGOvdiYGCgI7pPHdwXMu36YvN862JfXx+e57F+/XoMw+Do0aOdIqFPP/0069atwzRNcrncGa9btVqlXC5TLpc7C3n29/fT19dHLBajq6urk1W23Hj+OedyuU7GXm9vL0NDQ52A9FKpxDPPPNOxvg4MDJzVIlapVDrW31arRU9PD+vWraOnp4eJiYnOs3bqRG+5jgntMID2JLm9vJKUkunpaYQQrFixYklaiZbdFT927BgPP/wwDzzwAMlkktWrV/Pbv/3bfPjDHz4vQdRoNBZ8pteuX9JoNKhWq0xMTMzLUmgHY8ZiMWKxWEc5t+vRLGfaaffNZrOTWp7JZDrppO0sjVPrLLXdhXAy46K9CnsikehUuo3Fwvog7VTUtrBaztaOU2m7F9uB6fF4vOOGmJyc7AzSbetYe727RqOB7/tUq1UOHDhAsVgkk8l0Kp63Z56VSqVjfdJadzqs5Uq7km8ul+u4fvr6+jBNs7NO24MPPkhvby+5XI6NG+dnNrXX2Tpx4gS1Wo1cLtcpF7F69eqONdP3/WV9nZ5PLBbrxEMppejr60MpxYkTJ2g0Ghw8eJCRkREGBgbYsmXLaVbYIAh46KGHcByHVqvVcYPncrnOwqjxeLxjDb9U66ZdLNpWoPa7CScLEFqW1VnDMRaLUSgUWL16Nblcbp6QqVQqVCoVDhw40LGkua7bEauWZbFixYoXfM7amYHLkVar1enLYrFYJyv48OHDnQw+pRQDAwNs3LjxklhdzyX8YNkJooMHD9LV1TUvVXTDhg0dU+a5mmpXrFix4DNlIQSDg4Ns3bq1I3wajUZnzapqtdpJQywUCgCdzvhiVCheTCzLwvM81q1bx/j4ONu2bWNgYIAgCDpBl9PT04yOjhIEAdu3b+/M0Npisj3DGBsbY2xsrHO/LMsinU5TLpcX8QwXjnawM9DJ1tBa09PTQyaTobe3t+P6KpfLHDp0iFKpxJYtW1ixYkVnLbd2dlq7KF7bYtQ20V+uWJbF0NAQMzMz5PN5Nm7c2HFHCiGo1+ucOHGCmZkZBgYGuOqqqzoWx2KxyNjYWKfoY7FYZNOmTRw+fHjeMjuXC6ZpdrI0h4eHqVarrF+/vpN+HwRBZ9Cu1Wo888wzCCHYuHEjPT09mKbZmeQ89dRTnTpabXdi28V9uZDP56lUKp3fhRCdumcbNmygXq8zNDTUmdxNTk4yMjKC67ps2LCBrq4uLMvqiMPjx493njPbtsnn81iW1RkPLieEEHR1ddFsNsnlcgRBQF9fH93d3R1rWjsz8dlnn2V0dPSiGgbOZd9CLzPTxL/+67/y0Y9+lB//+Medz0ZHR7nzzju5//77X9QHXq/X2bFjByMjIwsuiNrunPaigK7r4nleJ81+mV3qBaHdAcdisc4aSu101rblp+0mazabNJvNzoB+6v15/r1qF6C7XGiLmheiXSW5HdvSLjXQarWYmZnB8zxSqVRnltl2HV1ouYPlyqnVwNuLZCYSCRKJRMe60bYytjPM2rSv3XJ1K54PhmF0XPntWjhtUROPxztlLYBOpWalVMfifaXTtna3rRv5fL5Ts8o0zc6q9W0vgZQSz/Muq37rXOmszTb3fLVjo9prKrZrV5VKpYvWhnO57svOQpRKpU5bJ6v9+/lk5IyPjy94PECxWOTgwYNLus5CxPKn7Wrdtm3bZRFLFREREbEUWHaCaNOmTZTLZQqFQmdhuUOHDjE0NHReQVrt2iwLiW3bF1x3JyLixWgHqrdj0iIiIiIiLpxlF5W6bt06duzYwV/8xV9Qr9c5fvw4f/u3f8vddy/cuksRERERERERVxbLLoYIwqJgf/7nf87u3buRUvK2t72N//Jf/ss51WxoV85sV+6NiIiIiIiIiFiWgigiIiIiIiIiYiFZdi6ziIiIiIiIiIiFJhJEEREREREREVc8kSCKiIiIiIiIuOKJBFFERERERETEFU8kiCIiIiIiIiKueCJBFBEREREREXHFEwmiiIiIiIiIiCueSBBFREREREREXPFEgigiIiIiIiLiiicSRBERERERERFXPJEgioiIiIiIiLjiiQRRRERERERExBVPJIgiIiIiIiIirngiQRQRERERERFxxRMJooiIiIiIiIgrnitOEGmtqdfraK0XuykRERERERERSwRzsRtwqWk0GuzYsYPHHnuMTCazoPsulUocOnQI3/cXdL8AE3s9hq4zEVJc0H66px9iduBWAPY395OtjrA1vo5a97UL0cwlxfCRLzO1+k0oM3XG74w5Y6Rkim6r+xK27MJJJBJs3bqVZDK5aG2oz9rEUxZW3Jj3+cP3HGbnW9YvUqsiljNaa4S4sD4O4MjeGTLdCfrXZE/b5gYuhjAwpPECf7n0CSoV3CNHAEjeeCMAx6vH+csffZv//fO/wYn9swysyxFPmvzjT47wju0r6Upa/O39h/iNV60nZr64HeQbh77B9v7trM6tvpinsuS44gTRxURrjeu69Pb2Lvi+q9k6uWwKM3ZhRr1sPQHd4eCfM3LEvTS5ZAqze3kJgnMhOZ2hO59DxU7vFNscnj1MwkrQnVk+5+/7Pq1Wa1HboFyXsScn6d/UT89welHbErHMKR2GnlBAPzL5CDuHdy7Ibk/zAmgNQnDkXz5J9zvewUBqYEGOsygYJtpzO786gUPCjGN7ChVodBCee0/aotLyOPTAODIpCNS5eUakkAQ6uChNX8osSZfZvffey7Zt29i+fXvn533vex8Ae/fu5Rd+4RfYvn07r33ta/nSl760yK2djxDiovwYlkAHC7B/5Xf+P9dguEhtXuwfpIFEnfU7pjTZV9134cdq2ZfuvJYAQblMUJhGn0MHO9mYvAQtWn5orfECb7Gbsfjs+2Lnv65yz/LF8+D570ngw9GfAKDGJ/DVwlvxXypKqfOb4GiNMA30KZ6Ix6YeI2XGaHkBWmnU3HtpGRI3UAS+wpQCX6nwD+zqWQ9hCAOl1Xmfy3JnSQqiJ598kre+9a3s2bOn8/PhD3+YSqXCb/7mb/K2t72NRx55hA996EP85V/+Jfv27VvsJl90DFMQeBce9yTUFdQBCwPU2Wc5pjApOIULPpT+169f8D6WFUqhbfucYvG+evCrl6BBy4+qW+WLB7744l+8glhIgXhkX4EgmBvUtQInFAGBVnhLrB88n5hWrTVICaf8yVX5q0hbGbxAoZQORZFWxAyJ4wXh5M8Q+IFGuS787GNnPUZkIVpCPPnkk1x77ekxLd/73vfo6uril3/5lzFNk1tvvZW3vOUtfO5zn1uEVl5apClQ/kIIoqUzM7rYaGGEHeFZkOLMr4Buts69o7rSYvSDAOwWKjj7iSutEAi+/NgJavbSGoQWE6XCWJkrcRZ+tnfK1/P7J/foUbzx8fPerwCaVRe7NvfMaQVOfe576rKzzAkhMAzBPXvHUUFoIfryF/4blhkKIinFnIVI03r00XCyeBYiC9ESQSnF008/zY9//GNe85rXcPvtt/Mnf/InVCoVDh48yObNm+d9f+PGjezfv3+RWnvpkKYgWAhBpP3Ql74EUErhugtkIn8BtDAQLzLLickY1+SueeG//9evwzfuOePfzvPHLw1P1iVDKwW+92J6E6UVUkhGiw0+8eCRJZ/deTHa99ORQseF0ebx7x4LA4ivtAcHmDpaZeJQ5QW3PV+oeBMT5yyI9v3wBHuPl/nq0z+h4TeJJUzs5imCyA0FkVpiFiKt9Ut47uY/N0ppLENyaKZBEIRxRJmnjhI3JLPHG2itMaQkUJrStN0+8Bn3HlmIlgilUolt27Zx1113ce+99/L5z3+eo0eP8r73vY9Go3FaVk0ikaDZbC5Say8dxgJZiNAaTnnQhVYI5S6aSLqoA6SQLyqIAExpnrEdutkAQLpVOMW6picn+erTZdxTLCRLfbBfUIIAicavnjkWQQWK53ZNIoVECIEU5x7UuVgUi8UF3+cTx8t4ar5yDHyF0mrZZjpdCLG4SX3WPvlBbQKKhwBOFyqGgfbPbWC2mx4TFZuvPPk4T08WaXgBntP+Ww1u+C4HQuP5zoWexoJyIX3Hgyce5MmxWeKGgdYKhcZpeqBDy1H5WA2n6XdiiI4c9kGaZw0niCxES4S+vj4+97nPcffdd5NMJlmxYgXve9/7eOCBB9BaY9v2vO/btk06fflnuQgpUOf5fOpjx9BBgB4bA6BZ9gE9z22mhSB7/MdI94VnbBebiyuIjHni74VQWvFc7bmOqT7w9Qu6gTLHf4zc87OT7R0bIx2T1OY6XCEl532DljFaKWhUqOx67PSNQqC1xvcU5Sf2I1UY4yoF+EtcEKkFvIePj85iewGWIfCe90wJINABxou4Li5HhIRqoTU/IH9ucH6+IBKmiTc5weyXvgRKsb+0nydnnnzh/QLlpktZHaLYctGWIHBPiSGao+rV8f2LZ5m+JJxiINpf2k/D80hacWJFG2lKPPtkv2dZkljCQHgKP1AI5RMIE85iJZP1qchCtBTYv38/H/nIR+YNlK7rIqXk+uuv5+DBg/O+PzIywqZNmy51M5cF+mc/CwfpyTDLpzbjcZogOk+TvQgWriO52BYVLQ3Ei8xyNBpf+zxdfRpXudhVH7cxJ3LSaSiHQlHoAF2uQzuzw3Gw5CkD3TIRREEQLIybMgiQyRTHi4nTNklJGNTpa1RhClMLrLnHbKkLooXkS4+e4JmJKkcKTTx/7tnYfy/lqSZ1t9FxJ54Ll5P1UWuoFm389jVZ96rONl/5OC2/c77CMGg9vgf7yafgZx/DVz4lu/SC+21UXWamGnP7CUjkY/MPKiRKK7qS3QTB0oqlPK/7+7zvajS2G5CyEkjbozEXN9X0G5SdAoneBOtu6MOfbOH5Ctcv8cPCLK2zJEUYRx6cZyG6nJ6/s7HkBFFXVxef+9zn+MQnPoHv+4yPj/PhD3+Yt7/97dx1110UCgU+9alP4Xkeu3bt4p577uGd73znYjd76aI1+vE9aM/Da84p/nbgoh/Q+609BEoh5mZou47VzzpopaYeXeDmXbwXTQv5ohYijSZQAftr+wl0gApO0TW5/PygbMcJfwBcDwN90gUk5JKJzTobWmuC4MJnflopZDbDujWndyFCCoJAE/gKYQiyBydZ981/Zrrm8MP90xd87IvJQtZ4Wteb4sDhWbYNZEKXWeUEzWM/oTAxy7PT+wnUmS1EJ2bnhwH83f2hS0kvwL1bbL73dDhB053JhNFxR3vKY2a0dtJ6NOdSjK9dSVCrEjfitIIz35/SVHjdtA6IrTylIKtWICT/9NQ/gWEsi8nLGTmleGVpoi0ANWiJRp0UmkDZLRCLGyS74/gzDr7vc7zyNBMHV3B0qkzz4Ude8BBSSIK5MaHu1vnXQ/96kU9qabDkBNHQ0BD/5//8H37wgx+wc+dO3vnOd3Ldddfxp3/6p3R3d/PJT36S73znO9xyyy28//3v5/3vfz8vf/nLF7vZ50WtVrto+9a2jX72lCBzrcFzCSp1nLKNFiZC+Vj1MeShE6h6jEbuKoQOZ2X2o4/TcM/cWUivTnVyafnfz4gwOkLvTCit0Ggc5aB02Jl0AmAzacTgEDCXseZ74MxZVwIfQ/l0PCHLxEJ03gGco7uhMnbax5OlBubKlRjpJK49f7ad60tSnWlx7Kki0oTcyARitoSvdCfTLAjUOdUwWgwcZ2Ge763DOcb3FPCeKoeWxPo0k26FQqUAgeCf933+jH/7pUdPzPvdlIKa7VH8xD++4PcfPfrCVpOlyEQlDHvouKal1RFEgQrC+Kq5Z0OYBmZfL+bMT2k89mxoUXveY3Noz0mR3Y9Bj7EVITS7TpRP+VZYlHH/VBGEYLwy//ouNi91Yjjy6BSBUgRa4weQTEjGZptoNCLQBNrHkAIjbpBZm8F2W0jlobwMTqmOmouRnIdSSCHQp1zoivPSQiq01jQaL3CMJcqSE0QAO3fu5POf/zyPP/44Dz30EO9///uJx+MAXHfddZ1t9913H+94xzsWubXnz/nGKXReFq2ZOfQis9diEaamEF6Tupfk+5PfBWD6qTJOsYHCQAU+hl0iqAiUSFLu20589gB84xvkZqf5571n7lyF8gjskwPGhQ4eF9dC9OJp90orXjfwOpJGEqUVk1WPUn1ugI/HYfOcO1bIsNZbW2AFAZYOTlqIjOUhiOA8r3l9EuzTO8MfPDOBkc8jDIM93xudt82KGez78QnGHhnBMEEEGtMIu5q26+jwnhlKk2fuKC+HgE5TivB8BfiBgsDFE4LW3m+DArW365z289ixErmERcMJ0J73glaiBw9eeC2tS4WYe/w6NYKk2RFECoUf+J3Xtlxy0cLASChAEeig42acqobCqnAizB5Da67tLfFz164JJzdKMfpMGCTveD4IyXTVRjWblO5dWrWxzrsfPKXw5A+enaHlKrwAbtvUi+0GBLNl4jWH5MO7sewSgdIYUvCd0a+QkAY6ZuCXi+jn999KgW8jjNjcr5rZpnPOrt3no5Q6Le53KbMkBVHE6QgBUwdazJ44Pf4jcPyTRfIcB+IWPc/9MxOtHo43j4OQJGiyYqWLp+J8ce80M3WPxLEZBBL9vfvJjP0E/ADTC7MT1JleUBUg/ZMP+IUGoV78LLMXb9+61DoSMoFoTeN6+gUzoZpOkkCLk6LH9zFVcNJCJMR5C6LF8Mufq4Xokck5U/qc21EXDs/bLpRCGCZCn26dMCxJw/aJz45hTB3H8BQDuQS/eft64lboAjnx3Cym9cLuorJd5msHv/YSzm5pIYUgmPv3ieNlnFYTRxnM2qtABggtcYL5A9JjU2GQ+uqHvk+gwnv13aenSMVNfKWQycS8QWyqMXUyVX0uU2s5YEhB0HbtyJMFVLXW+H7QsRDNznioICC5Jo+RiaF8r+NmfPzY7Lx9XnVtHiNoYlZjeNpDabAbodD61E+PUmwGCOFBw2ZtYelkJp93P/C873cbG8nqrfhKk04YJE0D7Tgcu20t+ZETJGrHQp1TcUmKPGtyazAymqf2H0LXy9Radf7vt78S7uzBjxB4Nhhxml6T+48+wf/4wXPIlygVFmptuktFJIiWG897tvQPf8jkvT+F73wHWjb4PonaIZSwkHYJoUHceAM0W1h4PFIu43k+o7NNWkELLROoegsnfxVkM9SNDaQNQetMVbGluaCB1RcTLc+eZXaiEp6HKU22ZrdilQ9iu4riMy1q0yfPsTzu0HLiKBHGHow2RwnQGOoUC9FLcJmVSqUFiec5X57fATe9Jt85+p15n3UEkbQg8Jh6aoSJ4slBxHIbCMvCMKHW8LC9k+chpeDIVJUudwLba6FyKfwNm1hbeJC6eIqpsXAgK43XTx4w8OHpUARNNafInrL+XBAEeN6lqxtzvh249j28J743/8PHPxPuS0PcNNgzWqbebNBKrSe1xkT01VlfTrIuv27en+2e2A1AqlLECxS+0viBJh0zwsdLGvMsRH+/7+9PBhkXR6AcWuteWm2bS4UmnrZOcZmdtBCZ0uSp6ac68UWuHeC7ioZUPOVVeeC5E2gtKNQdZuqhMPTcOo8+/g88MzEbltmomPhBwHA+wbqb+gFQgc+Y7aP9OMJx6Ul1XfKzPhsvxUJ08m8kN63pwbU1pROtcEJr21T7YrRWD2F6dQKtcWdsmrU0mXiW+MYSGXcWVS3y2P/+KM2ZOWtt4PLIlz4ChkXJLnG0NoLWipJd5tNPf5qGd37uL6UUUi4fmbF8WnolM/fcb76ji7518fnbWjbC88IB+dAI+D7x2uFwxqU8NqTW07R6qM1q5P4nqagAoWxkWVKMxUBa+GYMbSYQ/V14qQy9cYHtzx/c9dyApMwEcm5Wq5S6oE73onfaL1KY8elpm/ZpZs0seA1c10dpwHfB99EaSsccvEITpTRPnKjz7clv0xAOpg44UJibrZ8iiH44/cPOMQ43DnMmgiBY0DTvc+GFrrnSiiOz8+OEOvEDsTS4dZTb4vO7T7rGBmrPIqTENMU8i+K+mXAZnXh3A5nNccCq0DItDsZ6EJP7OFZ7hvHDswQxyfjoKbF0yg8X+QQenXqUrngX03MuEcdxFiyu51w4V0F0rNjA9RXaaVH5/GfmbyyPEmtMkIwZ9GZiSCFwlaRubCNzXZyyGEOVq2hb8cTx+bWPtNY4fsBXHx/DCxS2H5BNCqaak4jAhmMPz/t+y2/hKyess7MnrNrv+/5FLXr6Umg2w3cIDfGUOT9wWvnw7DcxhMHh2SMdC5FSmkALHKGZUh73T36L3Udm///s/XmUZNd13on+zp1jjpyHmmegMBMgABEkRZG0KFEiJbYoyWrbtOSW1W2a1vIf7eXnltqv3cvDepael63X7mVZsixbpi3Jssy2KFokBRIEBwDEjMJQ81w5Z8Ycccdz3h+R5+bNrKwBQAJVhYpvrVpARtyMvPfEOWd/e+9v78P/92vHWemEJInkpcWXqNVPc3KuhiUS7NjCjyMe3jNMEEviMEE0EtpPnmZvZYTkjn2EFPGPH7+Bo/E2sLqGlVQYpmAm/h6P7R8l7kLQjkEqZBzx/ugAdrCIM/caiezXE4/NlKj3cjgmTFdzJN0uvTOzCOEThQmxO4HTXkYaNkES4FouCslcZ4EzzTPrzoCTUl7TUclGiKSUtNvtq15/ozEgRDcI2ihdz6alzZdpicsPLbRMumHSb2D27X7aS1oexBFNQuzEJZAOkS+x2nXiFZfDT30P61KL0Mhh7dnDUlKDlaOYYQtMk7G4e5mwWv3Wb6Hm51dbviviOGZhYeGm9kSVMEAmBO0+Keq3HYBG1KAVtVjqxDx+qt9Y0BAGSoYYKsSumnDqNOzbh+wXp5A0QxKlOF2/xI6WSxD3qAcXOV5f7P8xy6LR6RvtxWAxvYdnVzav4tB4twkRXO6NKhTPna2nP0dJhG3Y665PQp8w7nuHf/TcBYp0UbWzGKYCFGGUoJTibPMsANPz3+bplYTzKIxI8bBocPbYBWrBHPQWaTgR9UZ/vJJI0lzupscJHBw6iBCC/3bsu7S6LaSUN2XYfbbh0wsTCH1EtF5npdoLDF36BqNFh6JrYRoQSJOVJEa4NtNHZpFhwCtPH+HPXr9AnPSdixfOdnnu/FwabFzphCgFLXmBo7XXQEhOXfhe+nfMlQJnm2d5qf2H1LqLaTblZlyX/cNsY2zTYPpANSPvE4CCuSPEMsaKBPNnG/idCNOAWJostxWNhY/z0PfPc3qxt/p58Pr3LiKciBBBEoW0khYiMhjK2+Rti6Q1w7NfOYs6l6C6IfePlUmsMt2gTDR38xw6fK3vqrnUY/ZkPf35v7xwCakEwhAMFxxKns2+eQfof+8yiRFdi9z5BWQ7RCpFZX8F1YQwtnDPzGH4Cd+ceYqmr/DDkBf+7ByNjkWzMUXy0iXE+RncWg+FpBSNgiIlRCeenb+uitWNKbN307F5KxgQohuA7AS5GsNOq53U5TxIYzmAdihXRaj967snAvzKAXxRx4xsGisGU+IU1kc+iNVqMBRJfLNH1ywjHvgBTuxx6VouIDBNg73f/DLn6huImuOC768KlRPi+Mp9PKSUNyQVlCUXqt1Gqf6gnX66id+MWTjZQ8aKmd4MXzz+XVT+NabzDiIJMBBIGbFv5Zt4u2yOdk8iymW6RoIgIYkNpJRciL6He/IcLC0hTj3PQ9tXiYNl8c2jtXWiT41ESvxoc+LzjorKN/nser1+Gbnonze2ds/fm/keOavfET5MJH/8jRUWVhqcqT3BzIk6o7/3Dxk2YurnZlFCMXrpFCefmadTDzi9MsOpxTb+2SJF2aRom5ihxKmU+c65o5gownPPkRMrzNX7hi0KY1YWO1A704/Mrd77ycZrNNvNd6R79NVwveQrjCVBnKDisB8hBGhchLBDohQqN4xtGpiGQCjodCSdox6JYbK/WCJv5jBXZphvteiECZGMCII8T546x3TVY89oga8cmaWcsxAiIGcWQSmeaJwB+r2enPMjdKMuhhDU/DYvvjGe3t+bnVsLCwvU6/WrXnO1dX89kKefZL7psxz0q1qjS5dIOl38E2fAcpgsTnLwWJezLy/yyjcuYJmK1sg0Mw0D4VaYnG1Rdh0e3WfgxAqVAym6RMqklzQ4H84T1WFbs4BtKgrH/gCUwigrYtPigDvB8dkQJW2UIS7TcN0o6O/qiuMvoDbf5Y9P/DH1XoPzKz2WZn2aJ84znOu3FxjfV8CwBSBQcUgSSpY+ch/CMjheO4YyFKH0uXO6iej06JrjDMV1bGFhtecxegv0ohg/mCZ+fYXGN89SODWLQnJw7hFQglj2v7cjbyyx/PTj1zXHgiCg0+ncdAR9MwwI0Q2CnhxXSzstnbq6Ol8pxWzbwzLa9BpRn7SEAQrFqxebQEzyxjC9Low0nwfHQWEgSi6v2T2aag5Mi6JTwbdzzEcreI5BwTE5vri+mk28733Q7aEMkyAM1xG5jZtkkiT4vv+u6j42pgjC517l/KkcnbaJMATff/EYhiuJI4lruuz65jOMnD5N9ViF+NzL1DoRlzoKN2kTqZhO3CXyJY8vvoRIIpJIIpXCVPD+yQ9CFDFxei797ppBEVMmhEmMJdaOArEMi98/ssixJf+y+32nqy8WFxcve20zoirVWgSm1mvw52f/HM/ykKpP5MITLRoXlinXK7TPnmRbUmO5M067FhHEMcNeX+eiWos023UWlxu4cZ3RoRnykSRqrbD0xhcRSrD91BLxc2/gBU0WWwEnF1p88+U5jl+o92/meF/L5McJtENWzpx718Ps10uIgniV6EYhojLVf/HE16BXJ5x6GDM/TO7SJbrNEO9Ml0TCXNNHGTYEc4RBSBIIEgL+8NkLXDj2ApUOSEJYWUY06tyzrcrf+9E7ESommX+B3sUXWGr153kcS7AktaCGEiF+kNBbNfCbRYiuZZA8z8OyrE3f02v8rczZRmMtehb1migFMf3S+u4rrxAt1mh993mon2f23CKOZUI/s0Zy5iTBzjGOqYRocowX9o/juAFPz34Vt5Pw3ScuotT3CLp5EL1+7xxpIBMwZYwhErq9gDPuSyyoLlVlE8UG3Y5Ppz7DNy98E4CV2o1tW6Dn3BUzBqtO8ZGlI5xbOsZocJ7XzjWIuhd5ZPyHATC/9y1Ep87E+8cgiejWciSJQ1LYxndmvkmchDTDGpYF0jCpy4jR8QpVIcjNgnLaNChhmSYRFey5EVRocP+2MhgmIjYIkxC/HTFfW+T8izPXnFNZO3crYECIbgAMw0gnyNVC20En4UTtFL24l4qpjbCf4lFRRG32NDMrJcrNRbq1EPHQQ6jvf59IKqywQZgHtz7L6HgPI/Yx/AbD5+scKzksmMX0fKW7yofp2DlWohoKicjnsZc3GFPL6vfhEf2KECklpmmilLpsEeswabfbveKzXWuBRFH0phbRRlIWL9YwTUV9NkZJRShDAnx69aQflu8s4y2OkkjFN1+vM/LMl2hEAoHgG6cWsYTN/PEejaVJkiRARopYGJhKUaKH2ZmnJ9uMP/UUALONIt3lhHYY9qtg/mtfIOwYDkHmwEop5dvWXl0N15OC3WjwE5WkEaLTSw2qi4qSU8IPA8I4we8pmp2YXCtP/dTTGEGDQJXYMXaeKPDx3H4JtbzwHPkgpPTV/4prGYhSAWt4km43T5MOyjA48PwMK52IXNRGmYJ/8+0znPjOLIEfM1PvIc/100FffmmGlfYscfTu6mDy+fymhGizyEgYS544vkAS+OCVoL3QF6GrBD8/RXPZYnvzRc4YRxHDDp1AYtabfOvkCoYRY3oJw5eW+dlKl9NLHb755H9gqO5DFNIqTxLUfI7VXyRMQkwSXrz037GCGkkCKEXy9O+ys7KNeGkJRcy3XijyfHIp1bLpvUXPiaWlq5fmm6Z5RSdGE6E3M2+TpJ9GjaIo7UXz9cXneGRyqa/dUzDX8GkFcV9DZHl4R7+EEzYh8nE8C7WyRMePeF2NIisx050PkCufRiiBLcGqH8c2fIyoyLZhGCnlMBCMPixQMiCpbCORMcoLCRDYcQCYLE+XOTFznLnXX2Ju/jR//vhXr/os76RB30gaoii6zHFRCsIg5mM7PobfWuD++tdZNqeZs22qJ/v3LpeXmPJfw5Q+KglIEhsZC2RhEiUTOnELIVVf5CygFq5gC4FdNiguKl4JX6VjjjH94Q8yzx2AotMqMTP3HWg1IDE48cQifici31vBMq89Jkr1/56eizdj6juLLSVEv/3bv31bHLT6dpElRNn/3wjTMTh1ZhY1fwSr19/MVp4/gd+K4cgRSksvY5FgJgnK72CUPcThO5ESikmHCXcIP5RcbJ8FBeH0OHHOJcxtJxcNM7Xc/7uWsPhvK3PMtf1+h1d/hvuee3zTe+qoiDAK1+k6NvNEhRCIdZUQ69Fqtej1elfcgDeShjcjQFZf+QoqThAClmqV/lgaJlJIZl7rcKR5hIvjJUQe/AkfK47Jv3qM+bpJzZngwZe+ihv1aMyHONEQRH6/87Kw2ZNYWAgWxx1evWcMu9OPXsTSpFS3qAdh/7DY1Vy5iYnVayFWDXsURQRBgFKKUqm05RttEASEYfimcvVRspbmazR89na3c+FCjteevEQQSwzbx6iHCKAVm2AaBHaH3+09gwpaVIoRzZpPFMcU4xxLnR7R0DjN8V2Ydz1IJzEJ7qyyd+duTMNAGCbG4lMcODiEtxTSCxO6vS6LvYB4Nc259/Sz5LszxIaBbdtXufutxZX+Vr1ep16vr5uTlik4t9xlqdFG5Idg6QRf+85/hiSiF8UsvNjE7C0gdyyxvejRWFZUm6/SiSKisQP4kzs56Fnkkr7jENfPsO3cLMZKTOxWWPzS73O2fYJe3CNaUbS6EYkBbhIRnX2OeP44JS+Hd3oW1/Som23i3BKc/15qgJIkYWlp6bo1RVfq0q1/980QIn+1FYjneSwvL3NmsUWnV2Pslf9GEIdIqYgvXuxXasoEHvx5Vrwd0AtQtbM4nkkQxywFsxRX9tHa5lPpzHHH66cBiQxiLtrniP2IOHIRRJh2wvgBl1eC5zn3H/8VynIwWkfZcfYcARLZCZCxQy/cxp/PH2HxZMzF2ZOUZeOKa0Yp9bbTttczbtp2XrYvLp9CrZxh4WKTnF8mbpxHITAMA8OIKfYavP6dGYRfxzMaTBz/jxhRG2G5KCyik+dQScyp4ktMX1rk7EoXhMA9f5FOL6YznMcgh2G28QOBnQvpKFgerxJIA6fbxn3pRT6797MEZ17o69QCWOp1r+ncaUJ0q/Qi2lJC9K//9b9OGygOcGVkWfJmpCFJErqdLqYlEDMlolaI0aujLl5E1lcnVqdLR1UxRUg+iMAEJ5xDVHLESmDIGGUBicJWdcRQiS+/PoOIQeEhEp/G5MNAnxCNX4iRHQezsUItGSGXqSY41jrWj1CdPcdTreM06KVGHdYv9k6nQ5Ik1yREsEYOrkSis78bBMF16xfUxUsoL48w1n5fWApMhe0ZVKwKnaKNm9QIyj0O23XmzIdZafqcMjxkPI/TvEhn6QIiCTg99y1a3YTQLnGodQGk5Nw9I0xj0YqnMbuLhEDFDVhodbCEBQpem+8RS4Ptp1/HWVokDMM0/RPHMUII2u32dRuZ63l+KSXNZvOK11YqlcvKYMMkwRR9L84PIpwkZmYuQjgQRJLYtqCVYE35DMkLVKd3Y+YKBG6bRmsW07Y4fq6BH0Z4sY00wN+2i4O7xikuvoAjChhegZxS2IlPzpTMmAa+I3Etk7Bq02g3eKn2McK4vzZ2vH4KK+ohEQwNDV3X+LxT8H0f0zTpdrvroiw522Si7NJotRGOB2Gb+PUliLq0fBBJgjnkkitJRtuS2kULgzqGALdzHrmtihMnmN99ll7ndVQSccBvoVSHAhGdZo/C06doBk1OvLDIsCyyYuVwQ5+Xv3ERf/RRDCNB9AI+s/uv4hdO9yskmzPA5dHn5eVl4ji+qk5I700bHZW3EtHs9xTqp7JN0yQIAkSzjmiGjL7yb1BxhJq9tEqIYvCqBNYoALLVhCTm28N5DKnAUvi2YDq+xOFagCkUoR/SHT7KbpXHVg6omGbOZmzIpmp6nJ17FcOxGJu8wMjMLIkwCZYDkqDEkr2tf3RR6yLd5gp+Ydu61N6VxuWtIrvOlVKbOkJXdI7igOOvvkAiE5qnEsz5V+nFQxgCMCLMxKY1u4wpWhxZfIKecPEvPYXtCRbDNt3aIs7iqwRBnbI7xGvzbeYbPqrXIYxcJqsuVXkUSwXEkYmb6/cYk/khvFN13EtV1PbtVKwhpEpQUmESMUy/bUitVtv8vlehlMI0TeI4ptlsvq1xfKexpYToQx/6EL/1W7/FwsLNfV7RuwVtnDZqILJEYbOFppQiChNsT9BKmiy9LghOHockQUnZZ+jdDoFysW2wDYEbLCBmX6fVtjhlPcaXOE1dSlxjFmUpuj///yaO6nSDUaQdkdhn2T/W33ysSGK1dqLaeZBtgtI4Q3mTlxefQyrJ1y4+x8KCjbpwnnxiEtPvC+P7PnEcX0ZctJd5LUKksVk/nmv93sbrswRAPPIwys2h2l2Qium7C5jFBKskGd7lMWpPcKi0l5FwBcsMEe0QYSQYkYcrTIbyEczuJJEXMEQLxx+nHQ/hGzlMIXBnn0G9/hDbgm0oIRBBk3YYYwmf4drzFBbb2O2LLHZiOkH/yIWVXrxadtyPrGX/e73l0dfTAl9KeUUBY7YniI4kAQRxhGfbxFIRhDGiB6XTJtJI8H1JZayAYbqUrIQ4SoiH76ZULhFJRbdTo1z0OOAfoTF7hlKUY8+oy9hohbv27ur3S8FCTd0PSuElET0hOOGfpxm2yOsO1k1JGOfo2uP9CKOhIDGIDXCcftfcrYg+v5WIXLPZTOebUio9escyBSMFFxmEYLuwmhrtPPUM3T9+AsuxiEdHyCNwPUGYSPKO6ndoiCNWqOAZgmY7R3vlOySmDQ8/iCs9/MSkmMuRczyW/WVypkulNcwlYwyRjNOqS/70dIuCbSA6HUZdg4TV6FbmuBpNbLQDE4bhVc9qK5fLAJcZOU2urrUuoyhKx0cpxdLSEt1uFyEEjpBMP3GRyJ1C9DqsnOpX08VxDDLhG6caxO0eK2WBO3OSV0/Ps+gsEcUSY4fgzIJJcncVwwgpuSYTeRtFTDEykQoMJK18wPYhiz1ffhnflCTHZ7CKXYQKiQ0T0fPZPVYkdgROEmLGCWG7w97JzUl3HMfr9pZrRTo2m19xHNNqtdL3rtS9OSujEELQ6XSQUhKcPc8bcx26+Zjg9Cn8ULJnNI9lCWKjjYg8zMZprOkqCyPQWjzDhajOirdCjiKxCjF6y/izJxkrNdjTfpZOCESKi0OPYRsxrloh6vaQjQ5HHv+PDJVyDIthDGFSPdPG9DyM17+KMhLiSDI6ep7o5Eq/mu06yKJt2zdl5eNGbCkhev755/nn//yf84M/+IPceeed6/7djlBK0W63NxWyZheEniTZ62SisByDEelhnrtEc/wF+kpDgTN/BDpdepFJaDYxRqt0c1Msd4bpmmVy/knsSNCzTXJJGy9cRpoeM8XnGLHO4G97DTOYxc+tpry6ESLKkwjB0R0zNHNlBALrD/6I3z//n2g1e7Qb4P/gJ3EiSai6dDodhBCpTgDW0lxvxpu6Wtot+5oQgjAM09c0ydQVbdpYNub6FT/x/kOoIGJ0/nmm1AuQGP0okVJEUnG4dDemYfDg898nTIZILJNYTKKUItedQyU2+akXcVTCcGERi4BmuwSmR83agaEEYaFEaOcRJ56jFgQIoUiSiOnvn8Buz2Gi8I7OApK51Y65ptkvLc+KV9/MJnGtVJg2fJuRpyRJME2TXq9HGIYsLi4SxzHdToRnWZyun+X4yivEdRg/d4woCQlaPn7hDKFjsOcbT9M8ZRD5CU7FRSkoHP8uhohRGLReOE+l2cISAZ5jw/T9nGg52PvuIl/cBij2GzlCAUrA+Pe+jmsKunKBwAqI7Ryt0p28fLFBRwoicgSJSsdsM3H1m0mlvtVjBHSUQ0c89FwTMuKBKQcV+iTtHtGlC2Dniebm6LUNJsZmaSuXIhZq8RVCv8tEwWZycZmF3D66scLodJG2ywde3kFRDeOYLiKUzEUxsbeDw3smaIUtthXG2XZiO+eEgW/vJorbvLgwz6SSiOY8nt8lzFfBK4JaS2PU63Usy+L8+fPYtv2Wqz+vJ2WmnaMsedTEXwhB2G1i9xLETB3h+5z7s6dRSci35p8FGTPfBS/oEkUN7M5RGs06oW1xcqnJQ9s+gmOa9PZ/HDF5H0IqKjkTp1zh2+M/Tz3sUhA2yrHw6GAZFhDTWWrjK4cIH8soQqeLbZvsfrjMjlyB6cIUp88uklN5er3eZXOs2+0yNzeXOndXiyJpB3iz12Ftf79SFa6UkjiO07Xr+z5hGBLNznHAM7HVCq1anebY/biW4mLzGPmZY+wrFqFTQ9gOaixHb2ERU0kaXcEBby+RkPhxAXdlHukISqpJPucSOHuodYsYCFCS5rklZJDQmT+PlbdwxwPywid2PEzLQHQbYCZEQULZmCMxbdqtxrpn22yOZOfObaUh+qf/9J/y7//9v+ff/bt/d9m/2xFX23z1IslOkGxYVcZgugIDA4nB0WQF6w9+i0Oll/EWjqACH4KIpfIxKj98DwrIOx3MwiydxKdQ38lMJY+lQhAx3724QEhI5869FNwy1U5MdU+VJJbUlkx2DDn4Zo3e6BC+yoNrYHVDbOFQkSCSkKVjizhhwnnXSUXT2fSMTpVpA6YjINdK9Wymo9ps4w3D8LKNpN1up15wkiQsHVkiWaoxd1ah/Ii8rFO68E3MkzFSSs7XQ4yLC7iL81yiR2XlAsVt41TtU+yaM5mPF1CqgD9lUgsUYvgUpfkXiO2YlVYXY3QfL7YncDBJpIXt1/jW4hw5J0Gg8OM8cbmI7IZYiwH2ySVQcToWemySJFm3QW6GzSIiWpdxJYRhSBzHm35mFEVYlkUURanQtdPpMHekiWdbdHttFhtnKNh1rCDilaf+C/KN0ziOwcKwh0mC8kMKP/FTmMNF7rUn8A/kseyYyBuhG4QMz7yGsBXb73I4XT/NWMnDtEpYdgESSW7/JCd+6D7sxGIxOI4MegThG3RGl0BA15e4teMkhomZ9PueXG0T3UyAuhlWVlaumKq4XoRhyPz8fLqu7d4ie4wFZLdDOF8neP0pVH6SP6vVkFgExiWSoXmm7ALKkGw7NIMTx+x+/TzL3k4MAXYlB7ZD0XQQQZG4Z+OGVVqEJLbFG0vH6QYNHNMgZIJlV5JEIYuqzlAjoV2LmYgewHjij7ELDlR3oXY8kt5vuVymUqmwvLxMEASp03KtCtCN0d3riRD5vr9ufLP/bxgGYdRCCYgfvQcRBKjIRw5LRp56A9OzMEybCWUQFAS+I+nVLlIZtdmejFNxbHaPuii7jLBLWC+PI5Xkvom76dqTLK6cZX/tdTAdRNTFaZ3j/aW9nJnt0Ri/j5IMGbL2EJ48j7At3n9glKoosH1omHu+/1XmjscsLS1Rq9XStKgeI6VUmrLPzrV2u33ZHt9sNi+bY3r+9nprUoMrEaJCoZBenyRJf976PqaEruxiDTUIrArdHY8inSW8M5dQkQX1Bdx7fwwjXyESEbZpY1PCVza+8inHQxxMdjI1kmN4uELO9VjZvY16HBBLRfjYR9j/eo2o1saKAsLpMcrjCbEXUClN06hZXJiPMYMOnfkFnLCGdMo0G02EEOncSpKEubm5yypchRC3hI5oSwnRww8/fMV/tyOCIFgXAdnooWajHXqjSv/J/plQVj5AIahLj15nFsuM++W2gDFfI8n5WLZAKQiGD/Hlzn+FfIIZ3UFg7eKsNwUi5FjzNMIwmNq3HWUYfHjyQWzbYrYVsVjzqIgCTbeFEAqpJK2qJIrhvuL92AKCpEsv6BB1Q5J4fSRIL+6NqUDDMAiC4IoGSy+gjWm3KyH7OZpkOY6ThrXrS4uoRpNgpgbCQF6cx5D9tFBuYRFrSNJ78tuYtQ5ufYW9lJFJi5FiB18m2HHEHW0bO4hIPJe28EDEtHOSc6V5zuxdQdkupnDYMdwh59dRMmR5ZS/e8AqGkoSJgazkARO72Wa61uX+aghKrSM4ui2BHgO9oWQ34c2M1rXSkIZhUCgUNjX+9XodwzDSaiLLspidnaX71J8ysliHV59F1WuU7p9GYDLSTpCmg2NbJJ6FM9IhNm2M6hDG5BCHzVGCkRznkjeQhsuKDKnPWJheB3NE8cLCC0x2lwBJlEhMJXDu+SBG3qbpS/ZOP4jfmKEQN0miHovjAb1AMrz0CvleyCFRRViXVz4tLy+vM77XQ3I0Ab3WPMtGITV0ZaCUklwux/z8PJ1OBzPucvKVDu2lBOen/yrHz00gsFlu7EAKk0gGBAbkJBy4e5HEziEMgRsJItNGKcjvHiYpONiqS6dt0p6R1Fci7iyMUzCPMWFO0H39S1iGIGfmiG0oUeLkxDdQKiFamUX2ciydcrg/dxem6REN7Uznj0696HStfv1aWo7N5pnem7L6wex72ZRw9nr9eSutGTqFIrXOCCoKSSQsK5/lHTnMag7pLmGrnfQsk+N2HaM5w5Ljo4brvP+uMe6Y9hgp5FlYHEW0F5FScl9lN0IYDJ+NmRwdTxu2bfdK5EyHIOzw+uxxMCSJhLjtUyoLbMtCKgtH9XCVQ9HrR2/DMGR5eTnVxmTJ+MZn7na765w9vX6vNMe0I3KlSEm2chf6aUulFInfhRiCwKdhT/C9pYRaHJCfnuHSgUmUXewf5zK0nbu9UZi4j2YElWKeVmSy+IEDjDZb2JFgbPEbDB14H261SGV3if13H6DoWdx15w6csot/7iS2H1PcvZd7tlewDUmpNIJpKmZfW6JXr3Hu2Ks8XtlDVJrG8fJpg17t/K6srKyTAeh5oOfjzZw22xJC9KlPfQqAj370o3zsYx/b9N/tDL0RZ6MCQghmZ2fX9Z/o9XppSF7G/Y72uYnFfsTBrhCjSAR0O11qXhn77AyWI0hUQu/+Q/RKu1mJY2qHekzkq5jGFEoZNEWH492XMIRg95DL9uIuRi9ewDYFL8z2OOtUMR9+FHHP/0jsRhSGa4Td11h0qwRRTHnB51xrkYZyOb8cglBYlkWpVEo1KdmyymyVWa/XW5dS09cC5HK5NHW02SLZmDLLEqder5caRR2laqwsEAcxTT9HedLEiEOsskPcDPrNFWWMHXVZ6YIpFJXcNLvNHMmTz+LYUCoX2CkbGEnM89MxPeExNPQwp0vTdOOQxE5ITIch16GU71IxcygUKgbH6zE+/AonV15C2YLwoV2obgfcMosLbyDivvYka1C08dA9ibIkZjNClBWqX2m8sq9vjMzp9/R9WJaF7/u02j2Gewn86bf7lSqYjN3doSg8jtbPkBOA6VDI51g295DECsM2UVjMlu6iJy8inTY9z2VorMDij93N+WC538doZQhbKELhYo3eC6P7aMgVSp7NA/t2sd1J8IkhCTjjXuTMUgczVEw7NhN7f5ztQzvodrvrIkHaWM3NzbGysnJdhMgwDJIkuWJPIx1Z20x/tbi4mDoylmURBAFL3SWeXHyci2dCFuc8ErdM0ggJ1CSohMR28esNYsPAVSbx0HYO/uDPED5wF/H0IZQ1gmkIKj/9SyyFkxj782xLprCSHrmgQ2k0D90F7jjSpZGEEBmYwsSV9zFkTSASiTAFqtcgDHySHngrDTzTox2207nQbDbXHZ0QhiGGYWwatdXGWlcGrWt0mkl76MIJ/V3o39OOXXYuZ/+Ok0jO58YJAgdDSqY4wzk3ol28l2cWH2Sud4qQEpGbx7cMtjkwUT4E+y9QHPL4wPYH2VXZxkShxJThMXrAIBcG7ArrlMw7MeK1VF2+mMcLFd34AsfOtNhmeSRWjsIHH+Ke9xnkPI94/B7yrQu0q7uIzryefv+1Wo1arZZq7kqlUrqeoihKn2njWgzDkGKxuOna1JFh/T1kCxuy+6WuvtXkNY5jZBCiopgoCrhjosJofpyaTChKRXfEY+loi7hrIQyLD7uTqPw4zVhx9+5xjCQPtmDXS3McFApkP/OQH7K57/472b/9HpyDf4Gp4Rzdjx1ECJNDI3fwsQ/uY+9Ynvt3VLDGxqgechDtiFj1kG+8QSQDknKVSrFIs9lkcbFPUJeXl5FSphWZ2lmt1WpphOxmO1Imiy0hRL/0S78EwN/6W3+LL3zhC5v+u12hNQ5ZwgBrIUQ9+X3fT3P8SZJgmTamJXASiIaLmFFC+L7dyG5A+OwCr59epJEvM1QQBJaH8Bxeby+QYJAIBdKiZxiIxOR4LmI8X8QTfXHqvaW7ADAFBFWDjuHSXEwIYwtMRTLqIfcVqW27l27LwVveiZKSldggMUo4lpsSGW20tZAS1kLn3W53ncetBdfNZjN9TZc56yiJxkYPSldlbaya0aFsIQRePkcx16PZa5A3v4/hGojJKf587hLtaJ6k1cE0BO1Lk5iGgYoVlEaQdokxR1DIeZRHdhE7ZXrCwDAiytsfpJkoinZCkSH8cJqV0GG+2cIzFbPueQxvBiOco7F4hnI9pqEinosamCsnGfmLn8IOEozOGnHUxsRxnJTY6ff0820Mz2c34jAMN91U4jjGdd10I9oYJWo0GqkXOzo6iu/7JElCLzApunmS1iJ7ZI5k9AEMU7HS7mCeXaB1/hhy8gJDe3ZQME5zaWWGrhHSi+DpzjiloIXc1mVOuZjCYObCtznTnccQBmMHa4wWDCIpMY08sryTSqGM4Tk4NngqpJLPo2TMtvAktbMOxIp9j7yf8cIeyuUK3W4Xx3HWPU+v10v1HPq1bPXUxqijTlluHBOlFPV6nSAI8H0/1W9kvwvXddOeWjqydql+lPP14/3O1IFPKC1MQvy4TGzN0Bj2eLbcILEEZpIQq4TdYzkqlSLEIJwSCBCmS6diMVx0kLGLY8HdzUscutelcKeJ98AD9BLFjpGAYaeGYVQIagXMRGFZijA3iTAEKj/GaGEnH9r/AZZXGun9Ly4u4jgOnuetG6uNUVu9F3U6HXq9HqZprtc0ZvYwHfnVr2dJjx4/nT7XZCmOYwrKoD5UQjkW53oN5nrLXCwu0J2eIlp8HdtPiAMLw3YwEkFeSO6f+ABDdp+QDHlDeKaHncsjnCKGsUTBKjLhCizHxZAxO0o7UFGMXZCM7u6nGou+wb6RbfilIextUxgGbKtM8eCuxygc/FHmHzuMXT9Pt9tNI7cbU9q6dUCr1Vrn1GbnknZsOp3OZZFxwzA2LabZjKC3Wi2iKMIwDObn5wm6CSSKKArI2xaP7pyio0yUAGGGLC7bjLg9lALu/zlM00AJSWnnQYadCmPeBJYhKHZ7yCjBKns083B4epr6iQaNTh4MG+m4IEzKuSqO19/fBQLhOphlm8CpUhDzBKUKfqg4bRYRq/u3FoDr/T5JktRR1SL+brdLoVC47HlvJmxphOgzn/nMpv/0+7cbPM9LN46NoVKlVBqe1bloy7LSRSljMCyBJ006KMrJCK+7Lst2wlxeMTfhEYQJpiGJhEGztJuznVm2RVPk8w5BJEjMfqNBUZwkb5T4TP4H+4edrm5gu4Yc3rctT2NEEHQSgtggb5QI3RKt4jZckSNqSyZjl9jMkZgJiV3h0e4OSqVSaly0tkcb2DiOuXTpUpoy1BtDFEUsLS0hpaTX66VeEWwuNMxWYOkQv/5vNo0B/WiTY7t4TsjsZJFXexcwkERD++nltmFaF2BxDkyQygBhILZNorbtRBkGRuUgql5DnTjBiR+6C7AYKwgMx6Br5rC9BBm5CLPA9rEq88VDBOUDTNizoErIeI6ikjihojPfRSqX0tw5hhaeIbYFFddIPUy92WriGIZhuhFnBfbZ6JmeR1nDvtET1b+jlEoNYLZ/ivZA9bg3Go3VMVfkLYX063y8NIaRG0WoEBUpEhx6qscDH/4opV0jHP0Bl69+9ft8deYJbBmyoC6QGz2IH4NwbYRhEAYNDNPBMiyMyTsod44TRiGW7J+jlC8LfvbOj2GIGFO2GHIriCii2OhhT3WQoaQV5yGRSPpEWqcztL4jm2aenZ1dRxJXVlb6hmQDwZZSMjw8vI4s6e8hG7HVOivdv0fr5fR8NgwD89LzDLdMVNQl8Soo2e+sHMcuOQTIBL9gYjguRgyJjJlvzzOUq/AD20sktsOP3jUJpo1lRIyOOiTCRXg5ckkNp5TjY/c/hEokMrEwe3Vc10CNKpyVGkYiGS7liYSLEgamaWDaBsPVCovLy2mJvV5f+pl0tC2ru9PpLj0mnU4HwzDWCYh1KkdHFrPCaf17+nUd9cx+vlIKJ4qYHylzwV+gF/t0Eh8rZ6Kq4/iyjRsbDLvjFKdKeLlROnGHj9w5yZC9wYi6JQzHZvbYn2AZRX708Bj7RouIqbv41L5PoYIAw0ww9zyAfN8dPDA3g/ngZ8Dod7A2TBCGoNF1CBtduuUivT1TqSHX7TCyer8oiqjX65imiZSSRqNxGclWSuH7fqozyxLFbIQou26zafRms4nv+5TLZXzfx3EcSqUSy4s+0rAg9il6Fo/s2MlK5HPCStg7bWGWy1hDQ/3PHdqNZYA0FIVhj7s/tI1PHH6UfqvrfjTb+vAv8FMf+1t4Vr9Fzo5DRbBcQmEx9767MEvldcNdKDvY+YRebhwpO8RYTFXKWKvPlM/nU2cL1g5xDYKARqORkuhsBuFmxZZqiM6fP8/f/bt/l5//+Z/nc5/7HJ/73Of4uZ/7OT74wQ9u5Z+5ZZBNH0VRRBiG6wiAUipdYL7v026301CtVYzh9dcxo4TEDbn7hRVaBDx+wCeybIIJl0AUsEyDSIC0bZJYcPfEfiK3QN6yUEJQdUwmc1Pc5X2cfL6ISAJY7etiCEGUKIQCGStypknVqXA+qbNQuouHivPQ6+IpQd6zaVlNykEPObeAbduYponneeRyufT5sl6VTgllSaH2fHTkTC8U/Tv6Oj122uPU3qtOw+nNJitOF6bJeKWGodq8Ki8i8DEMhcDGtkKMxhLm8jxFFB3fwSjmSAr91gNJfpzRahfx879AY1sZsCnZ/e8qb3+IylSRbpggDBsv7zK0+zCV4YSGs53ikkcsIkqVA+w076STuNiiQhg5uO0a0/c73FNcq8pLkiRNXehNdeOJ7joaoY233nS11kgb6Sz0xgN9j9S27TQFFIYhlUolNZIXLlzA931yuRxCgasSaofKuLaNl4SMdl7FjCwKhTzve/CTfODgx3Empklyq4bQAkNKutRx93yQqNPGdkoIYfAhewTTcjGFiSDGtmLCJKLl7CC0CuRLDiNTh6G9gGsEiEKMr+rcP3QYL+diRwHnV4YQShJEfhp216marJetIzvZyI82YNlIpJ5zer5pYqVTPVltlW3b6wjDxjEWQlCfj8h7Y8SWQ3lbHikVpyeGUYlLLEPOHjxEmBMYroeBg4y6dDo1SvkhVOAj7f6BnJgOP7TfYf+hYcbKHuWKYv+OJrnhMkJF+D0wawHRN36fsV/8SXIHbbx4hXzXYLhkEhse0vQ4XDiLYRhYtkmr3iGXy62rNNTrTqewdWqmVquxuLhIFEWUy2Wq1Wr67JsJ+PXzawOv03LpGlyd40tLS+ucIaUUFWFhVk0QgrYxjDRNiEaxDY/lXR6XVo5w1/4Kf+UzX+D4Rz5EL25RcG3uL+/duLVS3DfFs/4iZqDovfwyo6MCa++j/T2h10U4JuK+n+XAh34Cd3GZpNEmLJSRYf8AZ4B628S650F8x+aiWGte6XneurWUdfTy+TxhGLKyspKmT2Et0rNxXer5qh2UbKZAp66zEaUkSbBtO3UcHcdBGDmUYfPoyms4lokrXCIZcVbEBIaP49oUp6cY29GPpJmy37ICYGxnCWtqisSzMAoOhXv3IzwPy7AQpsB2TApVDyyXS02o9RKEtUbeMAws18SIeyhTEiX9Q64vRicZKrrr0q9xHON5HoVCAcMw6HQ6FItFYE1vdbWWDzcDtpQQ/cqv/AqXLl2iVCoRxzEHDx7kxIkT/OW//Je38s/cMsh6sVJKarVaukFoj02TCu2ltdvtvhBSNEmOvoERJbBjARD0bLCSNj5VdgVvUPbGyRuCEGiwhJIKMfEgoe1ScS0QcGDIxrZccrbAsHMYcQ9RLkO1T4oOjXnsGep7CvdMFHh04gBVu0yCSbVxmt1PfBWrFxEWXags4zQ8li8l6aK2LCs1Mtog6cWtPWrtmTYaDUzTXBcuLhQK63pUKKVSXUjW+9TX6GiK/ox+t9a+MTMMA6FiDLOFQGL++EFME3qWDWZM0ulQzUWMOiZmZx6AsLoXcjlIYiqf/hAin6NkFcF0cEV/oR/eVsV2cuwfcugsF8A0eXBXgaEpi50jeUrdiNCAkZFDuHGR/fE4UpSwcybB8H0oU+A0zqRpH51C0NGGQqFAHMcpOYa+AdObrDZiuVxuXXRDX6s9+WwE0rKs9HP1+BeLxXQD1711LMtixBFYjQa9uIxVHqcSdXlu+tPYSkDO5q4f+TkMYSCTGGWtEgRDcXL7Z7EMgWM6JL02Y0YVQskdZolI9a8z3Ry2GRNGEXWxDeF6/NW7P4dRHUe2GkxUQ7btA6+wwvZ8lV0XL9Ge3Y3hWKhugGnZFItFTp06lT73zMxMKkCN43jdc8KaoF8TcO2IaAKebYWhx0OTJf2ajgBoDY4QIm1qmcvl8FsWZvVu/Ht2kAifeifgpRGFEnn2lhP2VSv9tOzkOMnJeZKghfx3/xnT9ZA9n8RebWBrOgi/gVkexYpr7NtRRzUWQUYgYxqNGG/RRrRb2OUKD03ej6deYMK8j0NjQ7zULBMaHkIIXANC3yc/3yc5uveNJt5JkpDP59M1OD8/n0Z+pJTk83mazSb5fD6de77vp32EsuQoGz3KttvQhk+T9qzmz9u2nZ9/6MfZUdrBRedOusEysS0Yy5VplQQ7Xp/DMAHD5JMPHMIV5wCo2sV1++qlSwmG4/G+oTv6f8P3mXrkDrxc35A3v/EMhm2C5VK1LGKpUEmMtGy48BTifP+4neGpAoxPk8SSi7tcHMdJ9xNN8rTzop2R7J5kmmYaRVxYWNhUNKxf19KAbCR8Y8WZJki6l1gYhiS9DlGzi5SCeFRgi35LFgRMlIb5wdI0Qw/fhzdSpjrRP+TVXqljjFcZL/dJmFkswmgeq+jh3XEQsUpmDSHIlWwM2wXT5e6778MQBiN//a+n9z/6P/8SD/yFndgiYc+eIaYrOaylBg939nL/7uGUZOu1UqvV6Ha72La9Ti7h+z6+769zgGEtxaqf/UZjSwnRq6++yr/8l/+Sz3/+85RKJX71V3+Vf/bP/hlPrZ73dDtAp0F0OiIMw7S8WQuAW60WlmXheV5q3LMixDiOmWvP0RA9itImNgTL992Bbdp0vDH8EIzIgWIOz7EJSHjFf5LESMg5+X6aTBn88mPjVImw8yU8y8B2c4i4r1cR738IgJG8RdlbnQbCYMwdI2flMI08l7r3Mto5TT5nsmtsiCTXIIkLmKwZ86xgXKeD9AYJ/XAq9ImL4zgpEcx67tqId7vd1HPVn6ub8kGfFOnO1rpniN7ckyTBEyZiZQVhdZn2FzmBzasLPivCoDtqUTh6nvieHENOgIGin+QAsW8/SJVWqHxy6pP82OFxxldbBXl5F9vJoaQCZfbPdQN6Y/eR5IYpJBd4pFiEQ4fohCO0jAI9X5C3QoKh+wjL08RGv5xW6zmyxkkbkGyKI1w9QFdrrvQ8yWqr9BjpVFGSJKmOptlspkcAaD2S9uaDIGBhYYE4jrEsi0qwiHH+DS7V7ybqjlHqtvgrn3qU/SOuHqL+XNn9YX7k8E+ya89Ev3O5N0bOMTEsm7nGEeKd08jExPTKdKMuOSuHqE5hP/AZmis9kg7IVc9bFAqoMGK04PC+0UPsL5QRUQKGTeiPYhddVLOFWJ03WcOhDbTneaneJTvnsuO0uLi4jhBlI5bQP99LNxPUG3uj0Uh7NWmtUhzH2LbdJx6uSz4x2Z7fzcvOU0Qq4L++cJHJ6gFC6bDNSyACwxvCLVUIXzpG4rdQK3Wc4VFUGKJWDaRCIOIORq6Mt/8A1YP78KZzMHYIZH9eDF0o4AyV2TZa5YHt2zhz3zYORBPsG9oGcUyrsgdrYpzcygLdP/sakb+Wgs2OR6FQSE8SyEZps2lDHdnVc2Vubi51bLKE2/f9VDibbTpommYamet0OmlTwkajQXs5ZsrZhWu6GH6LMx/4OWy/yrhXZomYoT3vw16NyhbdMhXz8lMPpFKEgcIQBkPGXYTnLyD9AGGtHagczi5geBaYLtbYCENFF2EYPLRvlOVWGe7+KQDu/MAUF4+usD3Yx86hXf3vdfUsO93RWymFbdvp/qXTYtBPR9frdc6fP5/OI9d1ieN+CX+r1Up1RdkoyvLy8mVVfr1ej6GhIfL5fFo0UK1WMb0cR3vThGYROeIgl2vMnOtHWQ6NDzNpWky+bx9mtZp+lhWGdDZode7IjbB9/w7Y+Wj6mjBWyZXlgldmfGI7cSIRukea6v+/EKKvQdpRwSlUCJSPYecQhrlOJ6ZJtHa0dORRE0UdActWKWpCpKUiNxpbSohyuRyVSoWdO3dy/PhxAD784Q9z+vTprfwzNzW096/ZsTb4vV4Py7LWaR08z7usKgv6YttCMyI8d4xCDD2l6Nx9mOE9h6jHMb18AQMb8+4xnIkHaAoJhkFHRnimg2t6axVJvR52rsTOqoOXK2Akq12kDxxYu2kB5ckM8TBtclRW781AFkap5EooEZCERVj9XW3INZnToWLLsnAcB8dxkFKm4V/tfW0UdmojldU26BJe7bVroui6bipET5Ik9aSiKOqXOteWOT50FNPwmO0FHGskGEmImXcQHR/D9tlTOItzeHt/RwAYqsIPfhhWq0kA7q7ezY7pfnWkdD1srwCJwLIFWGvnXQkBtgjZZudhdBQpTTpenqg9STRdwTQcsPOIV15KvXG9OSilcF33MrGvNv5JkjA/P59uqhuR9cz1OAohKJfL6bEoOo2pjV527PRxCty/jcgdoSQKiNAHITCKYziyh8xUw9jVndy7/UFMaa2mwyzGVo1NXkCulAfDgQ/8MgCjuVEmxoeo7NnF7vn7MA2L5Yv9TdMaGqL6I49RwmBHYZqi3U+RhTN18q1FhGUiE5BSrdOR9Xo9crkcUkoqlUrfaGQIUbPZpNPpsLS0RBiGaVuGte9rjVDqdKLWcenom/5+sp3Y8/n8Ou/Wnn6Mqdx2ZCFECclkycKulnA9ibv3fZzb8SIPH/oMufwowrCRQQuJxJucovpT/0PKM2vzXQwvjyhN4FbLiDt+lOKd0+BVIYkxzATMPKM/fBjbsnAtk1N7xyg5FsK2MZIYaVl4hw/j9DpEiSSy1kq39XwqFotpNDY7V/T80Cnbbreb6olarVaqb+x2u2kZuCbves1HUcTy8nJKLHXEe2lpKV3XSZJgCMkr31nGMAxO33+AcOIOhhp7CI6ZLLqjGMrGXrXF28s72OaNXDbnVaLYs9eidPZVhh0bI+ehwhDMNb1d+ZFDmPkcGAYq55Jb7UI9Wcn3CZHRv9bJWfidiHG5jR/a+ZF0TZqmmaYENZnO6vNmZmbSuZAkSSq21s6J67qXlZ7rzt96/6vX6+m+qJ1m/f/6WiEECINOYZRmKDijLmLUZzl/og0IfvGevw5KUZ0okH/4/WtzPIpYKWxbN26GZWLlFIzsX7vOENzzke3glWH8ThzLZLy0Zgew8+DXAdhWzTFS7BNUixghE8TqlxUEAbZtp3uLYRhpNFrPMf08Wgqg9yBNwHUE6UZjSwjR888/D8DOnTv51re+RaFQQErJhQsX0g39dkLWwOlQfJYE6M2oVCphWda6Mk4trJZeiVZ7DmdlDqkcpMozzDjdRNI8uB+vWCaYWmFs+H6aJBimoGY2GfY8XNOlf9ANiB//MfaW9lPxTHCKBNUDl9+wgIuOZLHdv48Jb4KcHMI0YpQSGKUSIwcm6I2WMcMIHDud3LlcLk33ZRszep6XptP0RqI9LZ2P1/1yNgqvTdNMxXiaTGaPHtAhaNu20xC94zjguiz2AnaLcc6ZEl9ZBMKAMCZ3z2dJpMSig9VeoNkyCMO1XLkoFhEbzvjqjT+AVJBUqgzvuZtd5l6m75pADa+1+c+ZORARzb0/DqaJZ4SMDAkW3TJvPDLG4qkewnQRh/al378egyRJ8DwvnSfa29Leo9ay6DShDt3rcdAtGrJCfR3BgDViqiOTuVwOz/OwbTs18JZlYRy4m9gexSTBzK16lm4Ja/s484/uWzcmTs5i/EGHnJUjkpKCayGVYjjvMDzs4eYdKI7zV+/6q9w/fj/7h/eTLztM7xzuP3+8VpUjSMCt0PjuqxScUUSrQ3zvYRwnIrfnEEhJEvebC+pozdmzZ4F+KsKyLKanp8nn8+kaMk0zTU3X6/WURGWJkCbpOhWZ7VCcJRK1Wo2VlRXK5XKagtSfc7xuUHJyHJwRnO8c50z3OaKcQ6FsYQ5vYyVc4bFtj/H+yfdjmDbx2GHijz6KaTvY29aM1WvfvoT5wM9AeRp7x12ZNSlgx8OYeRe78ijmh/9W+tYHx3+CytQYwrYRSuLtMDFcF7PbJrl4CT+MyOfzlEolJiYmWF5eTtfp3NwcYRjS7XbTikQdCYmiiEKhQKvV4sKFC2lFUL1eX+f86DSijmBalkWj0UhTs57npYfhVqtVcrlcf+5WtoFh4zg2oRv3iSKKnJXDMMeRUqADwpOFScbdav84FHPNAZGJwjYVYysXGCtUqPzET/SPghf0G/lHEcJ14OP/x7p5qxKJU7CZrNb6qupVGOaa5q5YLOK6LqVSKSWOvV4vjd5ox01HYbMRy7SJ4uoa1Pv9ysrKuvPvsml/ndbVkZQgCFheXkYpldpQx3FI8nkCZXO0VMQqVNLPss2sY5bpl/Sh9+MXdq57fmEaUBgFy1v3O14h8xkmVL1MVM6w4MlfBykZNVqMFPrvqYlxrDBCre7rOgJt2/Y6YbUuntF7evbUex1pazabaTXyzXAw/JYQor++mnP8pV/6JX75l3+ZCxcu8LM/+7P8xb/4F/npn/7p26oPUTbio8V0ekLodJHeQHT0Q1fQaGOmlGKx51DPmVw6O4etCjx1RvL8xS45x2D7jip2ZQppCzzDYyFYwDMKWGMdcmYOx/LWCFG5TNWp9m/OtOmNv2/Te25GCfGqMSjYeaTIYRgShYFXdfFKNj++55MgE4yck6a/sqFQzfRhTSOlQ816wWtxrCaFWm+kyZMW3WkvU28utm2nVXtSylRPI4RI2xX4QcD5O8fpmPfwY+wiSAz8sRHqQyVyuWFU5GNFK0hlcWDyGJXpax9EbBmCPUMOU94UhSEbr+wQZU7P2JXfxcjIDpLSGBgGu4oLTFfztJMOh4cPM7YvhzBdosJoGtHSJE7rUnRaUHvcWUIEpIdjZoXF3W7/+JSVlZV1JdAb02rFYnFdE8N8Po9t93U5IyMj/ShmvkCS2MRWBcO1+wYGMKa3c9+e9cfuCCGYrk7yhQe+QCIVj049hjQUQikS1+lHN1i/QVu2SXksx/t+eBdJlOkZdPTLgCBcaJA38ohqhXikSkktMXXnFLLZpn3qFOVymVwul6YTcrkcQEqydYo6K4TO5/PpZr1x3ukeRtqYJ0my7vw93ZBPV8tIKbEsKzWESimsoonqJjx0xmBFnWVl8jSvtX2YGkOurj3XdLENGxA8KzecZ7j63yRWGFZ/H7BdbahXSdn+j2HufmS19HlNR/PA9u1U7rsHEIzOnaPn9qNFppTIZpNQJhSLRUZHR9PnqVQq6di0220cx6Fer6cGyzAMLl26lJJknR7UY6fXL5CSBl3c4Hke7XY7JefZ42GGhobSKLnluCAg57ocnBZ85OAkOH1i/smDH8DAwDAyc/fR+yBs9yMVq5BSEc9cJNdNkM++lJZ9p05Bt4tRGQVnLWUkEJDEjO8qc8f28+sIkeOZCKPvnObz+ZS86VRzEATMzc2tK5vX46DHSj+zJgA6lZ/L5XAcZ116UcsB9BmX2f3LsqxUGzcxMZFGce1qD6SAkb1Ykwf7N64Prs48i8b0offx8I571s+37ffB+z6XygKuBMPMvC8MUBJOPQ6nn4AkRgnF0of3MHL8PIERp3uxtmX5fD5NLWqJgxCCXC6X2jmdQdFOjta73QzYEkKkvaqPfvSjfO1rX2NycpLPf/7z/Mqv/Apf+MIX+D//z/9zK/5MiuXlZT7/+c/z0EMP8cgjj/CP/tE/ummiUNrT0ptxPp9PSZCODARBkJZUu667rotuqomRJvcFBkO9C8w0d+FQoe5MY+QPIlF0itswhIkhDPzExxQWB/PvQwhB3syvpYOuA8IQzHdibQf7fU0SQa+wjcDMU9nZ35DGvXHCqSH2PVpdtwmYpsnISD+8rRdGtopOewedTic1zr7vpylDfZq4/lkbf1gzUNkeOzo6pKumdDROCMGsOcm8uYNtysEwLfbtKLE8NU7R9jhxsExSscEwMEsljKm9YJqQ6SWyEfdM5iitGqrJQ3ls1yAO1qIIRr1BZec2RLncTx3tHcewTFzTZldpR38svBGisb3phqBJjT5IU4fntQHW6RpNJvUmoj0x7ZHqtGSv1+PChQvroo/ZuaWPN8nqcPT71WoVM++w4CiE6WDonAWQGHnuGT982Zjsre7FNV0+uH+UouMgBXxi5w9zZ/UghqEuux7A8Sws20g9cg3ZbmHk8kx8+xjiYx8kNg2KByq4eQsVS8LVELzneYyMjKQC+mKxuK45YL1eT9dQNoWoxzIMw9QA6YhlNmqmDyvWRs1xnJRshWG47nccx+EDB0YRCoaGphg1BQcmx/jUoccojxlMVbfzi/f8IsbqGjSEYL49Cxsq1uLVju/mKiHKV1bDIx9Yiwa5eZuN2DdWxLvjDmSvy1RwhI8+uBeRz+Pt2kE3TJgz1p4zjuOU1BUKBdrtNq7rppFDTY60s5H1+DudTlpJpYmRNnAjIyPpvuW6LkEQ0Ol0cN1+5ZHrulQqlTSSlM/nSVYbJ7qOy/6RaX70ninueeBBDjw0wb7RMkPe8LrnzO3fBWF3HbmRicJw+mOSf+SR9QOjJLLXwzj4kdTw76vu445HfgSVSAzLQmx/sB8K0eNbsBGQ7s963kA/CtlsNtP3tB4y24NNz8exsbH0//U/3b5Ar98kSWi1Wuk80ykzvTa1fkkIkf4tqRSlkmJsXw9TmBgG/f2qsGrvMhEfjcnCJD9x/651r4mpuy67biMSlTD+2Ea7IeDon8LD/zNJvY7adQ++ELhDw/To66yy96sjz1ovCX2bUKlU0oj34uJiGnnTRQ56rG40tuQOst7gxMRE6tl+8pOf5Gd+5mfWCWO3An/7b/9t8vk83/72t/mjP/ojnnrqKX73d393S//GW0UURWlJZrFY7Ic8V8XVWpgZx3H65WvPzXXdNH1imia78wG9e0dZuGc/5dEphIDx3HYOFt+PRHK0fYycmetX/yhJJCN2e4cA2Fc68KYIkVMx2D7qMFHsf2+GCXeNeDjje/Arw9hj/RSRKUysew4Qq/73rcvtsyFR7Vlrkqz/qwWGG6s0gHQj0R5RtuRVR0JSHcLqtXrB6TCsbdsMj4xyIXeQe3ZMcHz7Z/Eci2PR13BEAc90ifYOkTNNrI89THvbh1cf/s3Nzb7TlDH6jQbq4oW19z/wARzXpuy46bpotfYgx4bT3k1AWpqqn39j2lQLO7XuCtY0W1q0qqM+y8vLqWYhS4iq1WpKJrPlrnrcK5UKrutilnKcni5gIvvVOau/L80cZoYgbcTesSL3jt/FZHGavJkjiZLLCI9GedTDyVlYTuZ9w0KaZYTnUrALGMLAGkvY++A+TMtAJopQ9sdn7969TE5OUq1WqdfrjI+Pp1oW3T5ARyWllKysrKQGSFc/ZSt8HMdhYWGBbrfb98Jtm5GRkTQtqb8XDcdx0s8YGxvDdixklGB4Hj808Si7Kzv4sXu34ToWlu2xrbiWFnMPHeLuWhHzey+uG5Pzr/V7RGlCNLlnNR3irmnZRrevr7DKIlleRqCY2jFB7q67qH7mM7R3H4KcmzoI2rlQSqUEXEc2gDRlkU3XdzqddZqpdrud6kA0CVhZWUl/1qSz3W5TqVTStV4qldL9wHVdhledpvs/tpMf3/vjAEwPT5Ir2gx7w2wrTPZTO1mEnXWESEmFEJuQbj1nez3EagSx/7Kg+sOfQCVxvxhCqXV7Y3l07Vo9ZjoaqdM6ej1pUqzngY5cW5aVzqFqtUqlUmF6ejpNI2lBu65ezGYMgiAgl8ulUcqh1X5C+m8GQYw3OoI14vHX7v5rCBRKSh45uKoZstfu/2rQkbSrQaq1sxZXB7s/roc+CWOHUFEE04fpSfD+5t8gXHXqtFOh9/axsbG0HQuwLoWvnTSlVKpJ09+Tbk1wI3Hl3e5NoNfrXTMt9vjjj2/Fn+LcuXN8//vf58knnySXy7Fjxw4+//nP82u/9mv84i/+4nV/jg6fbyU6nQ6NRiOd6KVSKc0D6yiI4zgEQUCz2UxJkFbhay/VsizcsIUwIHZMPjBt8jwGZU/hx/0I07A5xJQxRa/bI4gCSkwS+v3ogQgCDDu57pxsrCJMJblzqL8hBlGC35ZIFeOXioQyJO720xGjw7DS7OCtlqRrr1LrNLQ3qYW93W43TYVp0qM995WVlbT3y/z8fL/nhlirssq2e9dhVk0etPHXBqzb7fYjM0NPMZ37C5xYMFjyfRpmjXwyggwSWiqAsQ8Q+R1a5cPQ7SKkRIQh8nrHKpAE/lq+2zQM8HIkmd83Sh67c0P93HgU0zoB5bt8LGWkqbKxsbHUS4K1k9j1P12BqAmRDi9r45PP59OUmY4iAemYLi8vMzo6mpaP66of3fBNR5wKhQJB2GPHyh24nCRKEoIkhk6HysGdJI61rp/NRhQoEKsmfq9LN0iwxw5tfr0FYRyTyLXTvPngr9D7r3+CUS4RxxGBH5AMtWH6cwRhDyPpYue2p2nYVquVft/aAPu+nx7IOTk5SaPRSEXAunxcV6NFUcTs7GzaFV7/rj5ywTRNKpUKKysraSWonnOWZXHp0iVgVTOyvELz+XNEU4phKnx86qN9ImGBH4UkmTEQhw4xcbFLrC6kzx5FIYk0iaOEIPQxOpuf92cVFN6d+zcd08658+THh+nFcdpsted4xCRpYzydFtXzSqeCPM9L21u0Wi1GRkbI5XIsLS2ta+OgIxu6OabuTaQF6+fOneOee+5Ji0j0WtTEvVKprB2GOwl3/9AECSGdTn++mjlJokJ6fkDY7eEnFmr1WQ3fh/AScrwCaT8yHxH0yN9/H77fg06HMArp9nxEHCNrNaxikXDDeEVBQKfbxQ4Ckl4XZfXfL46ZhKsHHQdBkEbPdD8dna7WWjSd2lpZWUkjOzqFFgRBqv1ZXl5O17Ym6nr+6vWoSZCWFPi+z8TEBIuLi2l/Ld/3efTjD3Gi+To5mesLmC2LPUP9OWFJQXyV9akhD15hXWbQ7XUJ4zC9zvB9rE4d3vgK4bbH8Dsd/DhPsxtjqwRncq2bvr5/vd/rsdTtPnQrg0KhQKPRYGZmJt3TlFIpGd/q4EkW19MlW6gtKP6/9957+Qf/4B9c9ZrPfOYzb/fPAPDnf/7n/Mqv/ArPPPNM+tqxY8f49Kc/zbPPPpt6QVdCu93mwQcf5OTJk6knuFWoVqvccUe/N0an02FxcTE1+Pv3709LMcfHx9POpwsLC4yOjuJ5HqZpMjU1xfnz59lVhgP33MWBXJO/9x9exNt1LyQJRq7GJ/f9MEvxJb75p18CYPwnx1n40iIYBsiEXbZNyTR59TpV+9bIdgy3QDhzDIBKfoQfffBzvHTmSe66/1H+y5f/5dq1w9txJvbCueeQUlKtVimXy+siPI7jsLS0RLFYxLIsTp48yf79+9fpf3SvDS2ILRaLzMzMpCmg8fFxDMNIP1uXimtxqxYfmqZJqVSi1WpxafkSkz89ycKXFpBRkeGPHMadmqf58g7aLz/NL/3kvTz73eeYLhp8+XjfgGyzbaYsi+eus2GYY3l86K5P8/jLfwjAT5Yr/GmrSbRhGd2354O8fOY77B6/k8ce/DH+07f+GR4e+/btQ0rJmTNn6Ha7jI2NpWJOXUGVFaFrsul5HqVSiWKxmBp3TQIWFhYoFAq8/vrr7N27lwsXLuB5Hs1mk/vvvz8lDktLS1Sr1ZQs6Y23fEeZ9018nCk82i8/zouNRc5G13/e0KRl8VihwNnR93Fx+STz9QtXvPbRQ5/g6WNfTX+umiYHHZdPlEr8f8wauZ05Gs80EAj+lzt/kK/685w5exSlFJOTk+zdu5cgCDhz5gzFYpF2u83+/fuxbTvtjj48PEyxWEy9eE0SdYpHV1xpUbA25LVajeXlZQ4fPpySgx07dnDx4kUWFxfZt28fURRx4cIFDhUqPLzzI8wf+zIxiv+2qvu6w3XpSsn5zDl0d7ou23YXSVB881g/slJ+9Kf5QVmm4Jb5f5751/TCzY1VKTfE9pF9vHHxucve+0SxxBHfZyZe+1vF+z6BM9HEPXI2FareddddnDt3jpWVFQ4ePEir1cJ1XSYmJoiiiFKpxJEjR1BKMT09jWX1SbCOxOrKMb1OdeqwVqtx8OBBjhw5wgc/+EG63S6nT59mfHw8dfhmZ2fZuXMnSZJw9OjRK86LA9P385lyma+fe5YXV9fiD+4y+bl7bP7Gl/20Ku/RQ5/gUOs08605luOEZ3td/ubIKP+t2SBSih22w3O9LhuN2o+Vyvxpq8kvvs/mv5+IudRau+KTD36Orzz/79mzZw+tVislNsPDw6kDV6vV8DwvXYedTicl1UNDQym5nJ+fT7VbruuSy+VoNBoEQUC1WiWfzzM3N4eUku3bt6cR3OHhYWq1GrOzs1Sr1ZSk63WdO5ije7zL+708d9/7F/ni9/8toVL87F0Wf/Da1shFDM8AA2S3bxfvGTf49CEL1xL8/W8G/HSlwvcnJZ0D72flG0/gjDqYyyaFQgHP8xgbG0sF+cPDw6lGcmlpiSRJ2LNnD81mM4286rMUp6am0mfPCtC3GtdDdbYkQmRZ1pYRnmuh0+mkoTgN/XO3270mIXonsWNHXzOiNxHt6WvvSUeBdG5fs2utZVhZWUk3HBX2+PP6NnJGAkqiQh9h2iDBwcVJNoYXFcg1LzN5Ezw3Xr647uco6RvDWnuBuVNn11+cRHg77yE4/3zqKWajPtoLbbValEolTNNM+2usrKykEZ5arcaOHTvWCbO18ddeuTZinuelXquuONIRAN0NtdfroQJFuBCipELFAUqF9C6EyMBCyYSG79ILIVNYQSDlZZvn1ZDIGNNYWzaxUpeRIQA/7EeMukELVlOAKlGphiOrSYC1Pk1BENBut9m+fXuaymi1WqmWwTRNLly4gBCC0dF+l23TNCmXy+uqOFzXZffu3WnYXms/tOCx3W6n5djt822eOf91Htr7UZaDHpfeBBkCaCaSc2GIZdrEydU35yhe/9n1JCFUiraU/QT+atBWoegtvkboeFQqlXUpQj2HhoaG0mafsFZVl03L6miInlOe51Fd7dmio7FacK03al29aNs2zWYzJd86ItDr9ZDCIsZAAgZrkWYJxBumg6S/0X6fNTV+8+k/Innoc/17lFces1avtikZAvhq+3IhqjO5H+Rz6f1r50yfwaV7BuleWNlmn5oELSwspOlo3WBPR0t0ibVSikqlgpSS8fHxtFRf6ySFEGl1W1YTeCXYpkMY+RzZ4Jj84WvRuvVpCBNDSeSGMVasTZ/N1vOftvqEtRMq4iv4wTrtpe+/Xq+nxSM68qPTtFqUntX4NRqNtBLRtu10burf0yS91WqlOqswDNP9TUfHdTRdp7/dnavpd62jFiItgOltoXRW+usH5siC5MhCyP/xETf9uxLonXwGFSvcKRdZk+kayzbp1RKK7JEd2TYE2dSctiE3Q8psSyJEDzzwAC+++OK1L9wCfP3rX+dXf/VXN40QPffcc+nJxFeCjhA9+eSTaVvxrcL3vve9lB3n8/nUULuuy+LiYlrho/tMjI+Pp31oGo0GxWIxDdVX/PN8P9rL9qE8k0WL842IomOwGC7TezGkMGxy1wP9ip4/nvtj/ofJ/yG9DzE/D0GA2rlz0/u8Hlx4rsfEXS7Lp0Km7l6bqLPtmC+90eZzh+001Ku9J22IoyiiWq0yNzeXeuQrKyvrhJi6SqXT6aQGy7btVCisq6e0BiGfz6fVLNkTpT3Po1arMTY2huu6fHXpqzxWfQzPKPClC09zoDzJwso4P7QnzzePnOZHD1WpznyLpb2r49XtIi5cQB06dF3jopTiwvM+Ox/qk3DjueeRDz246XV6g7vQvUjZKpEX+VRPpgmf3gx0qDkbci+VSvi+z/DwcBpRS5KEarWaeu1BEDA6Osry8jL33XcfnU6HSqXCzMxMWkbd6XQolUqpsH18fDwV/Pu+T7VaxTAMXv3mLId+YBzbu7xy5Xpw/OkFtt1ZpVC5ctj7/Ksr7Lx7vXg2vniR6Px5Fu/Zzmsrr/Gju34UgO43nyA4fCeBUmmaT5+mvXPnTubn56lUKszPz9NsNhkdHaXX6zE6OppW8+VyuTSFq42WUopSqZSSQk3MtT7o+PHjaRTAMAx27dpFGIbMzMzgeR6Tk5P4z7/I0dcld4wtouKY4k/8BADhiZMYlTLW+Hj6fOGJkxx75RuEjz3Ag5Nr/WJeeXyGyrjHjruG1lVXvR38i2+eZmTkAp/adX/qIDYaDaan+3uFLvm+dOkSvu+nqX3HcdixYwdHjx5leno6JTi6jH5ubo6pqSlyuRy1Wg3TNNO08cTEBHNzcziOw8jISEr0dUm/YRh0u13uuOOOK9732VdWcJ78EtNf+Gvpa8b57wEgd34gfe3od+eZ6BzHiVvYe/bg3Hkn3W99C2f/fjAM4kuX8B566MoDpNYasGq8/uQchz88yenTp9fdO/S1Y51Oh1qtlqZcdHonq3vRDoluRhlFUVp9pduu6CjSztV9+fz585TLZXq9Xkpep6amUtKtU1dfbX+VB8ce5MHxB/Gfe44jRyTv/4WHATDPPEGy5yNXft4tgPXS7xHf/1do/f7vc+LBKVSlyL2j9/Ivj/xLfmH3L+B5HmfOnGF2dpapqSn27NnD7OxsmjbTNnl5eTlN/+u5UygUqNfr5PN5JiYmmJycfMee43pSZlsSIfr0pz+9FR9zXThw4EDa1Ep7yKdOnWJycvKaZCiLQqGw5Sfv6nSE53lMTEyknmoul2NsbCwV4en+MTqlpJtZaU1RGIbkY4OP759IBYDV1UcbChPOPzjD0Ny2dPHqvjIaKpcDy0JkXnuzsKyYYinPbDNa99ljRsK+MYlpyvRcH63JKBQKqfBZExjthRaLxVSErTUw2gvS46ZWDV8ul0sryvR4eJ7H9PQ0jUYjPUxQCyD1GHueh2EZFPNFcmaOfaMlSmaRFduhWMjTzm3DGariFz9N3lnd+FwXTPNNjdXOe1zy+dVGcNumr/m7eXK4hkvOyKXkLn0vn091V7q1gNb2aA2a9iR1ZZUWaGYjHYVCAdM009JhLWTM5XJ0u1327t3L4uJi6r3p8H8+n0/XwfBkiWKpgOW8NUJkmTbFYoF84cqEqFD0L193hw7BoUP0mhdwO276fuHHf4x6vY67WqWko456LGq1Gr7vrytM0IJVncrVG7A2Srocempqivn5ebrdLjt27ODcuXMpaRwbG0v/f3R0ND1sc2xsDMuy+tVAnodlheSnpnD27MVZvWe7WsGoVLAyz2gV8hSPnKL5sUfWPbtt2ey/bwontyXbMNAvaXcdJ+3xpaPn6Ziuvr60tIRt25RKJUqlErVaLU3xuK6bGntdEaXfGx4ept1upz3UtNHL5/NMT08jpUzJpE4D6yq0q+23hx/NUzs5tP4azwUEZMfMthn9Cx+j/R9/l8qP34WRy1H45CcJL/b1XZGXe9P7+kM/sjd9Xj1eOrKjq0E10ZmcnEwJQLFYZHh4mDAM0zQXkFYR60pYrUGybZvx8fF0XupKMy26LhQKqZhdywSGx4YpXCiQy/WfK+l2kReX155x3wcgt7V27DI89r/gAnL3bryyAzmPcrFMLPtVh2NjY2lqzHGctKWHaZq0220mJydTYb5hGMzMzKRzU2cIdLR6q23ym8WWVJldSz+0ldi9ezcPPvgg//gf/2Pa7TYXLlzg//6//28++9nPvmv3cCVUKpXUwGXb/OtqD8uyKJfL6eLbGEbM9rSIq7s3rRQzhYntmciNMeMshOiXk78diA09KVZR9kx2V9dXLExPT/cPCc14XtlmgUCaNtOpIR0O1roj3aRMi7R1pESHoLW3pcPvumHjRmG8a7jkzP695CwL2zCRqh/uVQoQBtJZS6sK00QMDfFmkB9aM2Bi376rXNmHrgTUz5z1LLM/Z6vHNEHW5dHpZ61upPqYAG24dUl1Nj2brebLVgHqlIBOgWgceGjiLZMh6PeIuVakY3THVZwW0a90yaJYLFKpVNLeTDoto58liiKGhobSChY9N7LtGXTKUKcPdSRSE3RYm6+6Y7Bpmuu8W/0d6XSREDBSjhCOi7N9raLM2b0ba8N8UlLiWg7L/vL615XCct/mOt2A//GRneueRwumsxCif+xOLpfDtu20541OjQEpKZ+amsIwDKrVajqvqtVqv5v+qnZERy11VVk+n08rTfV81gT9ShBCMPSX/9L6FzdUmK1eiWEKcvffh5HbpMLqLSQ89FhNTU1hWVY/Qr9KsnV6TLcV0H3DHMdJU2zAOidHV3VqeQSsnWGmjwRptVppuk0TMS1E15V8SikqpQp3DK9F1uKFhfUVY7k3t3e9HZQ+9jHI9/ctQxjpnq3nh47yZNsPFAqFdKwqlcq6qL9+Rtd10/3+RuPGF/6/BfzGb/wGcRzzsY99jJ/5mZ/hQx/6EJ///Odv9G2lCyVJkrTxoiZGWXJUqVTSCaAXDKz1wvA874oT3TZsik6BoW1X2WCKRXibWqqpO/MIgys0L1TrdFxZ8TOskSAtDt5YUp49wkL/i6IoFZYDqcHSY5R9XbcvyOaptR7rRyZ/JN3gTGHiGA5y9X4+uPvGeB+C9edAbSRxOnrmum7aM0cTY13+q6NpOo2miYFlWWm6sNPp0Gw2L5tXetOuVqspWTAM401FVK8HSqprdnvIl68cPdLEMQutC9LPrwm1fnbLsiiVSqmDkdVwaA9da9t0z5zh4WFc103PEwTSLuq6KZ/e6PV3peebjhw4kxOU3/jW9RngJCFvFVjqrReM9kvIr/3rbwYTZY/pirtujpmbOEejo6OMjY1RrVbTqJfWgugmq9leaaOjoymB1mtNR5iybTKyazXbekMTjKvhsqrfJALT2XANCFNQePjhy15HvT2DWiwW06hrtjGs1pnpaijXddP9rlKppHNPP4OeY57npfNUO4PNZjMl98PDw2lkyHXdtGw/bcho2xjCIGet7bVJp0N5+tpj+W7gR/b+CLDmLOiAQLafk64a08U2el/LNlX1PC91Zm40ti5W+y5idHSU3/iN37jRt3EZsk25YG2B6+hQ1mPPevC6LBNYJ2TcDDkzx87iDriK/ElsQdgxX+1PjenDl6eD9Maw6d/O9NHR6UB91EaWAG3sqrxjx46035DeYDWB1Gm4jdAbkfY0NsIUJrZhpSLL3UPX7kz9TkAIAYJ1bQey0PNFe+l6E9Gbqw6f6zA8kOpgtFG6ePFi2iFXazx075zNOl7r+9gCCWEKJftNPd8qjKv4ZzrVozUvWSdDkxUg7beTJddaKKsNlV6PQKrP0l2wddoN1vch0l6vUoqVlRXyQ0OM/fLfQl5HdaJKJIYw+CuH/8pl72116w+AvCGueS5Udi3atp0S8uzeJYRIdUj1ej0tlsim+fP5/LqjQTSy1aCGYTCe0VRdN2ScnjuWxaZRSD2Ob3M8HcdhKBPh0wTPNM107mjofUpLN/R3WS6X03MEs5Fyx3HI5/NpkYBt2wwNDaWCdSB1bBzHYWJi4jIyW/roR7l3aL0G791E1rGzDItiqZju0dmjmCqVStoWRJPHLMEsFAppWwvdtyj/NiQeW4VbMkJ0s0JHKsrlcno2EqyFqDW0piZLkLTR0t7vTY3MotgM2Tx8pVJJjU92E84uDm2gtL5KH5CoIyTZ8cgace3d53K5yyoPoR9xcAyL+GrpxXcBBgaItQ1zs7HTDd40WdQpQq3dyEZIYK1b7vj4eKof0v90MzkdAdHerjb8OsW25YRIXTtldjWYhslYfmzT9/S8GRkZScm1Jim6E66u5tEbrm7hoA3TyMhIesCpjrbpqJzesLW3qj3/jfegr4vjGGt0FGe1svSqWK3+tDYx7u8IBGl062pVt7pyDvrEUD+/JjBZh0XvT9nu4DrdoyMa2XmdTatlCeubgkwuI0RCXIUQKfWWUmYbYWdSUnpv0oQo+ywbIxq6SWX/dnRjxSA9SiZbIKLXnSZCOvKkU+JXgnfHHdgTb4FcbhFiFafz+PDIYczVE+91mlk7urraE9bOb9QR3EqlkjYthv6zT05OXlcU8Z3GLRkhulmR7Va6tLS0LpWz8brsKdw6nwxvzWN839Dl55O9k9CekZ78V4KOiOhwfLYzs04D6bQHrKXDsp10syke/bPGRj3ORjiGQ9l1uGdiSx77LSObCrrSeBmGkYoRV1ZW1kXagDSkrDdjvXlmyWKW+OhNSnttQFr5osXb2fL0rYCU6m1FiMbz44znN9/sNeHVIt9sGkKn0bSGKhvlyJ4tpQm2rs7TxEinRDRR3DgHNTZGjK4XKtncwI3vemdahDiuk3bdvlIaQmvTsk6Khhb9CiHS369UKpw4cSIl6rqZrNYiFQqFVMCvPx/Wzs57S5EwIS47q0sY4m3NsTeD7FzIRs80YZyfn193vdZK6XHRZDGO47SDta4m1dDzeXh4fdQnu+fdTIhljCVWU6mmy9hY34GpVqubNgLWWsV8Pp8WhwBpqkyn2d6JSOlbwc034rcwsmLOrJHWkyIbbjRNMy37f7tisgPFTU6wfweh1BoR2mzRaiNbLBbTU6I39ijRm8ZGrYMWdWbHRBsyIO0iuxlB2oj9xf14psehsRvb30L0G+6v/ZwJo2fvX0fJxsbG0vC8fk5NHrOGemP4XmsbdH8oXfGj56Lu4aVFtlufMnt7hOhq2Gi0s2kYHbLXkbUsmdbQBEqLe/Wz63lVqVTSaIr+/Y0HTm4k49cLI5/Dmrycle++d/S6P+PNQH8HGwlzFlmR9EZsjPYA6yLY2ghmxbPp397k895WfxlzfQGHPubkMgjRP+NrCw2rXktaQ5Udy80i+Xrt6rmaTeNmSVL29zT5XP8o4orfzY1GlETYme8kuw/rY0ey2LhP6wirbqirD9W9WTAgRO8AbNu+LFS9meHRYuLNCNFbCjG/SxCsGaeNi1aTP1jbMLPGTOuPdDv3jUYmCIJ1J3ALcbkeQm9SN+umsRFCCOb8OYBUIAzrCZHWwwCXjQusT6vqn7MbqY72ZPVBujRaQx8jk8XQm6ywuxreCZHwZsiOmV5XuqppYmJiU32b1ltlf3fjGG803BvXYJbIv5kjBrw77mDkf/qfrvv6rYKulLsS9NhdbQ1ljfn09DT5fD6N+uh5uhkB3fg33hKEuDxldiXCLQSdp58hnp9763/vso8U6d6cPdEd+qR5Y5p+ZGRkXVpbG/6swddVofp3Nxuz0dHRdXtDLGOOrRzbsud6OwiSANfcfE7pCkwNXWyTPTJER6anpqbSoMDNtIcPCNEWYmO043o2gytdkzV+NxtMe80YbJzM2TSPxkbDn+0svJl3lBXB6uqgzYiXFnbe7DAwmA/mL3t94+Z5LU9aj4H2MjfTTTmOw+jo6BVF7xuxpfNsE5LxTmBjpAjW0hW6s7DG2NhYqifKvn6t6JjWsWWh07tvRQBqXKPs/J3AZqQvCx3N1tduNh7ZtZs9kFhXYwHpSeabaZay5xO+hSe4jBBdMUKEQMkEa2xzDdrbgd6zrnev0RHLrI4U1myCdlau9vvZ7yNv5/nMgXfnJIhrQQiBZ26+T22cQ9m1qaEja1r3eLM5tTe/NbnFkPW6Nn7Zm2042ZLNWw06ApTFZs+iSQ6QNg7Uv79xY9CCPH0KtK5k2WwctZd6s0OX3W9ENr3zZjYG27bTsnGNcrmcRp+0xiZLJMMwvGyDvlWRHSed/tMC6Y1aDF1BlU2XZXElUp0VyGro+Z4lAzcjrqTD2gilVDpe2sG4moMzPDy8LoWr9XvZjv8bx1gfmvuWsEmEaLPeaOnlpkXhB37grf2tK0ALfbPPvnZ7V9/rdNRS2wJdjZbF1Rwb/ffuG7uPgn1jGxZqCCFwrSuT+82i+dk+WDq1ln3/ZrJ/N781uYWR7cPhuu6mkQ7db+dWxGaEaDPonjBw+Ya5GaHamKvf6I1nxdQ302K6EoRYryG62nVvFdrj0lGmrKEDrimA3wpUxt75ebwx6qH//2rH8DiOc1kFiyY2urpvI3TF2q2IXeVd132tXpemaaZC6Sx0B3h9jR4TXS4N66tHtxTCuH5CJNiSCrONyO5XG59vM4IDa2kh3SpDF5EIIS4r3a9Wq5sSddd1r9nM8kZAcOUIkS4WSq+9gqwii2wrkZsBA0K0hbhaqujN/u6tjCsRmOuBvi4bFdqo17jVxsrg8oaDm173NqJdOl+vN+NsV/Qref9bjUOPvHPnEGVxJc98Y0dmjStFMrXIdbMN2TCMLdVX3YzY7JiEq82RjSnerMF+x4zam4gQbX6s69Zh43hdKx2pz3TUP1+Pbu1mhyEMHHNz/ZwQYh1JzBLBK2GgIXoPIyu23OjFXi2S8o54V+8gpq/SbRje3uZoWRZDQ0PrqhM2G7tbabwMYVwzQrSVcyB7HEc2QjT2DugrbgSuNE5b7VHfCunYt4Osgb8egTWwrkIxOz7vTDTj8pTZlTqdC8N4RyJE6/7Gm1yf2WaUzWbzltqzrgTHcK67n1a2UeOtgvf2ir8ByJKBbPPB7NlVm+FWmjRjhc0XxFa0XteVK1oPo/t6ZHGrEUiBuGaEaKuMr/bcN2rYoii6TF9zq+JW+u5vFVwvIdJ4V8iiMC7rQzS6/cpi5K1sIfF2odT64402k0vcipguTr+p6weEaIAUb2aB3kqT5krItqrP4nq1RsBlVSqbkZ9bbayuR0O0VR52ds5lNyPdTfhWx0Yx+TsBKeV7RoD+ZvBmjNe7QohM5/r7Ct2Ee4Iey5uJqL1dHBh6cz3vbjVCNOhU/Q5hsyqzq117K02aq2Gz53i7hvhqlS+3AhzDYV9h31Wv2coIkZ5Po6Oj6zbl90IK6N343nUX3dsJOqLxZiod33GYb9I83UTEI1u9qPV9tyNuteceEKJ3EBs9gyttIm+mydvNjnfCYG38zFvNsJvC5O7K3e/K3/I8L9WGZMet2+3eUiTyRuNWrfx8q9CE6Hqjb+/K+Izdef3XGgbiJoqAZglR9nii2w23mmMh1HspnncdaLfbPPjggzz//PNXLdV9K1heXubYsWNXrHYZYICtQBRF9Ho97r777tvOcA8wwAADvFO47QiRUopOp5Oe9j3AAAMMMMAAAwxw2xGiAQYYYIABBhhggI24tcQYAwwwwAADDDDAAO8ABoRogAEGGGCAAQa47TEgRAMMMMAAAwwwwG2PASEaYIABBhhggAFuewwI0QADDDDAAAMMcNtjQIgGGGCAAQYYYIDbHgNCNMAAAwwwwAAD3PYYEKIBBhhggAEGGOC2x4AQDTDAAAMMMMAAtz0GhGiAAQYYYIABBrjtMSBEAwwwwAADDDDAbY8BIRpggAEGGGCAAW57DAjRAAMMMMAAAwxw22NAiAYYYIABBhhggNseA0I0wAADDDDAAAPc9rjtCJFSina7jVLqRt/KAAMMMMAAAwxwk8C60TewGb7yla/wv/6v/yuu66avffzjH+fXfu3XePnll/mH//AfcvLkSYaGhvgbf+Nv8NM//dPX/dmdTocHH3yQ559/nmKxuKX3vby8zPHjx7f0MwcYYCOSJCGXy3H48GFyudyNvp0BBhhggPcEbkpCdOTIEX7iJ36Cf/JP/sm61xuNBr/0S7/EL//yL/OzP/uzPPvss/zNv/k3OXToEPfee+8Nutv1UEoxMjJyo29jgPcwoiii1+vd6NsYYIABBnhP4aZMmR05coS77777ste/9rWvUa1W+Ut/6S9hWRY/8AM/wKc+9Sm++MUv3oC7fG/AXTmKt/zajb6NAd5DOP3S4o2+hQEGGGCAN42bjhBJKXnttdd44okn+KEf+iE+/OEP87//7/87jUaDEydOcPDgwXXX79+/n6NHj96gu731YURtRBLc6NsY4D2EpYvtG30LAwwwwABvGjcdIVpZWeHw4cN84hOf4Ctf+Qq///u/z9mzZ/k7f+fv0Ol0LtNMeJ5Ht9u9QXd760PIGIR5o29jgAEGGGCAAW4objpCNDo6yhe/+EU++9nPksvlmJ6e5u/8nb/Dk08+iVIK3/fXXe/7PoVC4Qbd7a0PoSTqNiZEkYx4vvb8jb6NAQYYYIAtx6uXGhy52LjRt3HL4KYjREePHuXXf/3X15XFh2GIYRjce++9nDhxYt31J0+e5MCBA+/2bb53oBKUuOmmwbuGRCVc6F240bfx3sKgpcUAA7yjUFF02WuvL79+2WuNXkQ3jN+NW3pP4KazhNVqlS9+8Yv89m//NnEcMzMzw6/92q/xmc98hk984hMsLS3xu7/7u0RRxNNPP82f/Mmf8FM/9VM3+rZvWQiVgHFTFhu+K5BKYtx8y2CAAQZ4C7gd+ssppVj6rd+67PWaX7vstUQqTEOse235UpsoTN6x+7uVcdNZgsnJSX7zN3+Txx9/nIcffpif+qmf4p577uHv//2/z9DQEL/zO7/Dn/3Zn/HII4/wq7/6q/zqr/4qjz766I2+7VsGbm2tT1IkI173Z27g3dx4SCQr4cptsZEOMMB7Hb/97TM3+hbeeSiFbHcu27MieXnUKFEKYwMhCv0E1bt64cN/Of5fNv289zpuytDAww8/zO///u9v+t4999xzxfcGuDaKF58gGOpX6vnS53i0xAElb/Bd3ThIJQlkgEIhENf+hQGuG0opklhyvHmMwyOHb/TtDPAegDbStmFv+n47uD3SQ7LdRrZamOUy0F9rmxEYKRWm6O9rL1+oc9+OKkpK1FO/CT/y/7ry5yOp+TXG8+PvzAPcpLjpIkQDvHtIZIJlmHCbEyIAxSBCtFUIewntmk8cSV75xkWeuPDEjb6lmw5JfPuuubeDlxde5vn527wIYpNotkKRyMvTYFKR7mzfOLrQfy1RqGuYftuwb8sI0YAQ3caIVIQtbMRtTAYkfcMkb2NSuNWIooSFsy0E/b5iA1yO5//s3I2+hVsSlmFtavhvK2hClCFGiUw23cOUUvzBsxdo9NbITRIlPPXKDjr1K/efM4V5W47zgBDdxghlSKgk6jac+BrXihCpgUF/axD9/br3wgsYt/kQXqx1L9eoDTRrbwmWYRHL2yMtdkWszp1obi59KVEJibp8HzdW02Wr/0EpReMrfwaA37lyBMgU5qaf917HgBDdxuglPU5HC7d1dCQlRFcyUP/1S1f83UQq5G1q2FQYkrSvLsxUSqHi8LbXZv3R8xeRG/nQjbmVWx6mMInVbU6IVlH/w/+c/n+iNo8QGasW/tQzcxhCoBQkcUyMvGohiWkMIkQD3GbwEx8QlM/+d4yweaNv54YgTZmxOSlU4VpYeeMGMteOWOrcnptzeO4cne9854rvCwGo/n+t23ybsU3jtiXOW43rjRCF/nt4Xa7OpWxkf7m3vCkhEquhoU4twBAglaId9ZiNuyTxJnMy7IJSgwjRALcxlLpthdVXixCpU6eglunt8Sd/sv59xWWe/22Faxh5KRWgbvP4UB+JvFz3IZWkEQy6CF8PdOraFOZ1RbTnTr93xzWdQZm59Huv/96mc0lXmCkFhiFIlEJJgWEmqGSTcXzpi9BdHhCiAW5PKCFu6worHRnadAyWltb9qDqdtf+XEilv45EzDJJYoa7ACFWfC4EQGOr2pkSmIdYiRN//rZR8d6MuJ+snb+Cd3SRQ6prkevnf/Jv+pag06nElvDHbRMYKuZnBfy9gdayEsWa+TcPkXOvchsv6TRknu/3THYSA587WaIQtctX6lcdHKUzj+ojnew1bRoiCIODv/b2/x6c//Wn+6T/9p4RhuFUfPcA7DEX/TLPbEXrRz/qzl79pmigFYbfvKQlhrImsz5+HVvO2ToWcmzGYP7c+1aqUIk7WSKaq1zBv8xiRKcRaJLG7zH984z8CECYhQXzlSp/bBhefhZkXNn1LtydQnRYc/VOkktfUpP2zp3+HlU7I/GLvPd5wdW0cTGH2HbTM89Z+7/cQAg43vg2GwBCCbx1fpBP5GKa6asGIKczbUry+ZYToH/yDf8CLL77IY489xte+9jX+xb/4F1v10QNsNTZsEgrgNhTQwRohuti7ePmbZv/Q24uvdDB7SyAU6E0kjlGJvH2LhYRAoHjje+uJpFJQC2IMU6Dkqkd/m0eIhFhNmSkFKqFx6usIIQjjcFXHd5sj6kK0+TjMnKz3/2fhDTjxNRSKVi/h6FyTlU5Iy1+rlNJkwFdtmt2QV5+4QBy9Bx29TYiMKUzemG0Sxmvj0VqeI4h7KCVQsUS0I6TsN3A0jM0/pw+FGXQGKbO3gyeeeIJ/+2//LX/37/5dfuM3foPHH398qz56gC2EMhyEbrgVJ1QWerd3hGg1ZdZLegB4px9fExt6Hjz6AyCgdOFxBDEkq5tEkqCUum01RMcW2oSnTqGC9ZHgSErK+8rYjolSff2QuXp4cJQJ0cvk6lUu7yWYhug/6/E/g84ian4MJRVBEhImg0g6sFYXvgEyWY16rM4hpRRNP+bccpeldkArI57+rW+fxjQENh7dqIdhGoS9TJRj5T12rEcmZWYIg0OVhzh+apGV2Q6XjtWY6y6w2L0ICEI/gflgdb+Sq796lSqzY18ZpMzeDnzfZ2pqCoA77riD5eXlrfroAd4C7NZaxEM+9zxmu+/Jv04Xkfi0Lr2O6bfIN7urXvztFx6FtQiR9tQb55q0l1YJY5KAaSKEoOPnSYQJSSZClNEQqdlNUm7vYdS7q2O0YdOUsl/JokCHHvtnL/V6/P3/57X0utpcl0799iADhk6ZaQLYGkZKhf/Ed6+q37tdCGMWSim6UXftZ6mQQUhc7xB2ZTpephCEsVxtfdGfg51ehCFAYBFEEQiIgkyU45U/AOC1pbV5eEtCz4vMGWWGMNhRrfLqU3O8/I0L+N0ILAORJMjE6mfXFOSPNAADaUho9ztXN0+cRnZXx1yI27pH1jsiqjYM45rCtwHeHGoX34TWQEnKZ/97+qP/+lmimUsAPBMv0mq3uXTmGFZ3mR3utlXj1d84etHt47lDhhDJ1ZC9yigU1NoJZ0HkIpW5llpMEpRM1sYq0yTtdkAYJQjUZXMllrIfcUQbdIWFweJv/TaJiuhF/XkcR/K9K3rdAEOnzCy3/4KQLHWXSE6fw7xCSsdvR+vSkb0wWRdhe6/iiQtPcHTlaPqzUrD0m/8aUDx3dB9SSZQSGAY8e3YFqRS/8+rvIHs9KueOc8fRJ+mFgiCKVotnL9/LGuEtXoG2uuaKH/pw+pJpmNiGjRL992SiONO5gEgSet0h4jDBoJ+2tYSNbRj9iCXwnS99kaS5qgUURurk3E52QGNQZXaLIGhfO5+r/nt/giMTlGHhP/Vy/0dMSBKCTkI7ErxwsY6wXYy4x6Q5hBJrKbOTywFRcvsshI0pMwV9rRDAseP9/wqQyupbtlRDlCBlJmUW3V7n/kTRakRxw6aZyLXKs9SRRTBT69FTSxxf6hPzZObobXOel6FTZqtpHwyFH/lIU2IvbqJdY1WcHq6Nz//vGyc4MX/1RpjvBby48OK6VE0/Ctsft6QTIaOQSzUfQwiOz7eJE0mYhKhEkswZqI6BIUz8VWdFbrKX3eoNB/W6Eo6TvmZgItpmVmeNNEV/n0rsvpPSD9Yy5A2Rs6w0YzbfPk+k+7BlCNHtiC077T4MQ/6v/+v/Sn/2fX/dzwBf+MIXturP3XYIe1efpCpJUPUaAhAqAWFw8UiHwj0XKRomKolpLUQ4pkXbDxkzbEQcIqSgseuHya9qGRKluI34ULr56oMMFZnDbo1+Z1chIMHGVFkN0WrKTI9VfHulHMMo7hPHyyJEKm1xKZfOoPsQNf2ID9XP8+y5CvdN7SXuNDdvDPcewkon5OhcE0P0+7+kFkhIelGPOGoh2mtjEJ49i8jnscfHVyPsmYqhbrQmswk74BTeted4NyGV3IQQQe7wQaJXYua++ZucNR/lIzv6gxH4ASK0QEmUL/CGIwQmARG5YW9zQvQeEwtLqXjhfJ3HMNM5YloG0jIQScy+SZtZBSqUqzNKoEhgdc8XhkM3bJMHECZLrb5zeDtmebaMED3wwAM888wz6c/33Xffup9vx8HdSsT+NVj7l/8UVlsdCBWjRP+r/c78k/ywPYoKIxJbIoSBlDHYFv5CiZKs4Q/fSbF2AjU/j1SltSZytwFmWgF5M0836efQlRJrhufAAYjpR4gwKSy/TpT8BYIkIA6aqNzYWtn9bRAhUkqlDd7iKMHkckIkV0li0utx9A+/RhjFGFIQxJKR0yd5aafLXGcXMore8ymzThBz7lwDs+SsRhJXJ5aRsNBZpBF3Mamk1wenTvGaucCj4z8H6PY8a3139LlUfPc34If+3rv4JO8wgjbkh4E+WamfDlETCrHqkCglsKcmMY6F1OoNGBGYq/qZdiNEnKjwyshLGCiECQYWvooYO1hZbQ66itW5euuXk69fc36cIDAxpAlG/z3DECizryFyrRgUmGUbtdIDBCLxAYOk3cZpB0SrqWwMk1cv1liYVex54N19qpsBW0aIfu/3fm+rPmqAzSD6xsYwrkAsk3gtnaMkyrAQQmEvDyFNB8KI+PwJxG6TnqohhUPUcUEI1KqQTn3t6wzbZZKf/LF377luMI7M+fzifT/Jvz/7ReZaASJSFDLHePQJkiC+sIwyDEgS2nGbKGjQjpoYSQHwII6RUmIY790sdGvZZ/ZUg0OPTFKoHcUUCdUhiyBOcMy+bjBKJFJKOq0OCysWC0WbHYaLVV/BLMNc7zTtsIUrovdmSfQGJCshVtnpG2ajX3knzQgCgwSFq/oN8AxhoOKE7y++zsNS8fSpZUYMwX945jzbqzmgH6nsPvss+fdaO9CTX4d7fxbot2loX+yno01DEFy6RA7ANOkmPWoq4H07h3Cs/jp7/NgsVUvx/ZlnsNQhlABT2LT8AGEZyF4/hSsy++YtT4g2OCHfObHIhLsXu+OmjSsNUyBNgYgjzKBBdYfJQk2hUASxxJM9oIBs1nG7IbFueyAM2r2QbqtIZzaByXf/8W4ktnT3fuaZZ/jd3/1djh49eu2LB3hTMExB0No81JvECjkxhdizBwAh+ykzkhgRGUjTRkYx8VIdIUw6/pdYlJcgFsjExE/8VABrtFrvmQhR9cQfXfX9s7W+V1Q0i+zx7uHVhS6tQBH5Cf7pGRjue60IiGZa+CN3gpSEMkTGEUHSpbuqPSJJ+IOXV97Jx7nhyKYfTL8OwPC4wz/5ylGCVT3Qy4sv0H35cd549QWSWJIQUTbyNPbdiRX0COIIoRSGkKj3eG5WKZB+QtU0mV3pEvhwen4SYbRISnX8xMJZPZvr66/Pg0w4V+vy4sLLnP7OsygFUSz52uvz6Wd2nn76Bj7ROw+lFMpY0/5cePqba8V5sc+ZbgWUSPeoRjckkAlGYiCQSAF/8cFDdCMfBCTLF3jx6+cBuPSd4zxzevnWPxxW5/FXcWT5JeYbEiQgYPJABcMykIZBbuUkCNj70Ag5BKYBYawwpg/2fzkOUQmEUUBjsUe9YeGcfAmhTKLOhn51t4HIessI0Ze+9CV+4Rd+gX/1r/4Vn/3sZ/nzP//zrfroAVZx8eXOZa+1lyJeONKkkVRhZAQ1Pw8qQQoDu7eIEVksdKqcvzhCrKy+QDGJeUUewwqXUNLkbPcsPdVPtykEkVR8++ytL+A0/asTlCfPtjEigR8rhp0hgkSSKOh0EuJaB0ZHV+VEfWFngsF8MyBUIQkJUsZrAs0kIUneW9oEjdaKj5KKuNPBMARfe20OGQW0kxxISdSOCKP+s690l3AXl2jPtQCJsCJMKTCcEFktE8kYlURXaQr33kC9G3Kh1kX5CcH5Dp16iFJwdmECI1H4Q2c533SpNWO6YciRSw1UImnFkppfY/zUq3SjhE7QN95TFY84WW0MaqwF9ntx7z3VLyZRCRhrx240wiYomG/6KAROUFk9Q3BVDaMSjJpHPFPAUIpEKOwlq9/7CTjxxJE0EhnNN/n2zDco/Pen1qqqbkEopWh8/FPpzzkvABRx3Jef/9k3z3HiuXmi+j6UlKsVnzHbHhxn21AOQUxuGL4eLvLfXvzXuEGNr5/+Ku0Vn3rLxFm5BMpAJYo4c5bjfz7+n2mFrXf9ed9NbBkh+s3f/E1+/dd/naeffpr/7X/73/id3/mdrfroAeh758K8/PXud1/idC3op8wALlxAxTHQrzjoBj0kBkhJkLgYyuLO51wMleAut5CWg1lrkiiJ4TfwZZ6nzrZZ6d7iXtR1YuximT96tYYlTKSKEYbB8sV+1QqGwRvnT2B35lEIpDBodkJme7PESMaff3HN24wTxHvUg3rje7Mc+U9fZukP/x+EITi73EFGIe2xQyAlhdmAIJSwdJKjc8/0U4s9k5KcB0PQeu4NhprP4993J5FMaPZ6qXD9+XPvsaja8ino1eiGCV9+ZZaZlf7xEToadibpImr3EgqTILbo9mJmGn3nQ5gGhlT4cYDXbXN6rsZMo5/KsEtH+f+z9+fRch33fS/6qdpTz2c+OJhncBAHidQsS7Iky4NiK7Y8rZd4KXauk9zYia8zOFkrTv7Iykpy30tWkuu865fEluwk9o1seZAt2RI1U5RIcQQJEsR4gIMzn9PzsOddVe+PPt0ACFAESZAAyP5yYfF07+69q6qrfvX9jZUpje51WUwvKkZnmmfopT0W68GVbbkFYYzBCMPZJze33pB0QwundQYrX0c7jeFxwZaEexoPkMsMSer3Q4UlyMTCtvoB2of3bm3oKu0nmvjn0I029d/6rRvUw1cPrQ0Pn6uztpaxUauxHixiMNTbESIMhwRQh4re8afQiQKtkI5EWGCMRBtDR6f4YRPMOAe5h0495On5iI3mboyxMImi9uizZFvKTqziN/y5l9eNEK2vr/Oxj30MgE984hOcO3fuet16BMAtWOTKNkHrIlHxmmfIai3c0Ce/+Ej/zSji/FGFQaJjhRdojGP1s6DiGGMcNDNIFPHsTmTdp/i175ChWelM0kunWGwmuPYbOwje9IuUYLZisxqBRJMQiQyV9s/5CX3DclZDxj4GgUKy0upx4thXEELidjpkAwuRVt+r8OstDSkha9eohg2EhLxrI9KIoCAI4y7FagN59H/CxrNkYQshJLZOaedySAnO6iZGCAquJFOKs+st2IrTeuhM7Xs++1ZBfKZ/gCZRC7J4eFRHlpeoRKMyzWYnoW4MeCWkMBgjyUmL1bbf1+KlRBhDmEX9Ct+9i1aMleAM851T6DBgudcavp+oBKUVf/zU1dP3bzVo+vWpas/2S15o47HULGIlNTr7ZpjayJCt56lGqxQ9uCBqTFget1f2ITAcTZcQWuLZFkalwwNQjy7WCTODv9hgNUjQ/pXW9lsFWmukAL9nqHbq1OJ1fuCOWTwdU4jm+xmNWYYdW0xsBpgoG55bJvICW/ic3uiSKM34mTqBtRuxFhPUugi5pXVrCdU2YaCH5R9GLrOXc6NLgklzuRz6DW4Sf71RmLApTNj06hezmexgndWuodSsolohaI05dgzCNk+uxsQ6oqJyYNvoVgBorKCCxsNKHYybR7RC2kmbTCsy4SLQeDrEebHg7VsUz7Wfo55crJ6+GdWY119BGnAams2uwIQJVUJSneLWz5BGUFTrmK0MMi0E6/4Kh47NY6UKMKRbFiKVpfj6jVGc0Rhz2ZESQvYrLW8ENYSAvGOBjul2LtBuL2EnEbqz2Y9tUAYsibdVxkAYg9XsQM4Fk2GANEv6R3e8gRhkZ1ADLItBZyhtmIhXMVuZUg+drnJ6o0tsHHQJEAYjBTaCWrSJS9/NnTcVznfOI1EIYCzvADBTmGLFvwDGEG8tzbCX4DfjWy6N/JunNq9885LNVitDOt8nRFJnFEWPWLjEpe0oB5K4wanWUd51cJyaiBBaY+sEoTUNfMgEniMxy4sYIcEYwigl03Dg1Bp24GOyW2vMLoUaBIkLaC333WWzFRe76zM2llEZ99BhxGTokjMO4d4Pc3y5wUozwJEJdj7AbgfoTFM+38bRAefme0StAMvq7+MiFXBuBZ1pji40WG0Fb4pM8etGiN4M7PFGQ2cGnV4cZ5mFpMYiSE3/SImttPvk5Hn8bhltEoRKaTo9vKzDvt63yJ3ejkxdxlfv5bwPNXEIgSFJwRIZrvL5UOfPL6b43sq4pMhYI20QJv3g8Wpc5Tv17+AID6MyZpsrKOVQWVon1g5B1sNtzaMzQyIEyqRINAqLXcECmSORYYzhYk2TDEUtu8WPBNhCrGKOVY/1X6w8Sfbon5I2Qlqhoh6kPHmhyfNcAARpllKxDKkyGK0QW9lUsgvB5ASWl9DUu1HlPE9uPobERmUJrTCmGaSXJ8xsWdsSldy6cTFZBFqhtGJbuICxBNoYhIZ2DZLJOpa0scMqM/Y0BeGx0p1nvPYwCy2fHZs+9bBJ0DnOcrPvBtMmY8/YHCVrEozhzGbfctSpRXQ30lsqaypKFQ8cvxgkPl/t0Tn04wTPnR6+p02douhbDl1dQ+o6T1o2mDI5baFUjBQWGMV4zkNgQMVYIusToFQykXfhKw9ghI2QAksYUmOwRJ5MKOZbZ2+5PasW1nhi/Qm0MUMDRP1shBQWUkBlcQGBYO+BcaS1xTG1BiM4s97kmTPreCeeI5MOEycW8boZzSQACSKNiZdOU9l8HgCRgtlooA2c/+I3+Pff/S0EgtWTt3iV75fAdSVEa2trrK6usrq6itb6sterq6vX61FvWujs8sqrMguRwsIIQRak1PQ2EuMichZTyRrGxASpJtYKKw3JGR+3FZLZOzBoUqNx6Atd4a8hMBTTOp6UTHZufVeGtjzssAqARNJ43pBGmo1og6JVwcbFN1Wm28u8/c//FDdbJkZijCIOBCoxWMLGz0IsFKm2mI6XOeBNI8MIoRPQCUIlW1kftz6JNMYQJNHF2ChpI/KTKG1QykZL+NG7tyGT7djllPVaGxUnRKkhMwoG2qu0yIo5cqZBpPJUVA3QvOPoEo6/TKIE2QvrEH37PwLwwMIDLHWXXt+Ov1oMFIgtC5HorOBGPvles5/2bQz1ZZuwuJMxbxzP71GOoCg8Sie2cTY6w7lmk91LG5yr9ojQOEGPkt+iUow5cfwkVrCOFG06qYS1Z/oFQzN1kRC1V25c/68Rcab7FsYtnFzr0goSVC+AsImzuYL1yHdo+SHBqbMkYcpaJ6QeFpCWxb7VDGetgYWDFhlGCGQakEYxlncWy5KYKGGukqOw+STGSIQUqE5C13jYVpHAhVbzHOoWIpIAYRqy6q+ilMaSgnR5GdPt8mO7/wbvmHsnIktR8zUmbhvnrncW+l/acsPevfJZ7CQCW5BZNmhD2rT7VeWlQSrD5vl5rKCvVNtRzHPbd5FKFzN/Fs9VaKPZmB8FVV8TwjDkwx/+MB/+8If5yEc+Qq/X40Mf+tBl743w6qAyw2VV57MEsCiTxxhI8hPU3/XDaCCnfbRJMHEXW2p22Ufxx4vkwozOmMTIBIMiTz/oULYWAEFGjunzm+z82ucve7ap33rBr2l5N1bcBp3167zoi0Xu5r75NL0I4ryNLbsUkybdLKajBeiMY+09bM775MKDqPYi0iRoJKnOGHOK+J0eVryB3Qyw/bWh4LnVsdaO+LNjizy18VT/jY3jSNvCjxWp7qeBT7oaGd2OPRHitdqQZSyvTPLskxE7LwTkq33XZMGGZDyPyudBCN7aWmOq1SG3+CBnqwFhqlDa0I223MDtJVApnuXRjJov0sKbHFsWIu/M19mVM4x3lmgH/fgepQ2RXcIYQ74bI3sB8vFjiDjlrDhLuSiAvmqfYij0NilvrrB/uoKzUaF48nkaE3fgpW14op+0kpmMdtJGmRRqp25gx68RBnZO5IcvBzzSJAkkAVMnVrHiFD+bYu1bz4ARdFKbuLMPt5BD2wV2PLOMUjF013GbuzHdNWqdmHZaY0oIktVl3OVFWu02RjiINKDRqxMYw5HZSSJPkBM2St1ahwtLKfuVvPXWMTBxjIliLGHjWBbRzDQm1z8vT5AhEMRS0k06LJsNrNinqjZoppJqK2Bb00IJC2kJTJCSGEMw/RamxitYwiZzczSiDtpoiidOkpkMY97YZ11et8KMX/va167XrUZ4EWhlkJcEO+tugJWkjIUtpE5ASqKVb5M1JExaKBOTUzHSMmQFh+9W2kzWVzBiG8t2kYnoAr3b78N9+gRhZwchFTIUZOqyOhcALJyHqUlQab8Stp3nZoeWHkLFNB/4GnrnNuLmxYVst3uEpoqrPHKWT9c5xNM5m4rOQHb6Mb9aI+wArWw2shkKaE7YLfbJKdJEoY2hdFwjDiv8JI8cHBD7ApilJRgbQ1Qqr1PPXznCNKGTbdAKq2TNJtmjX8WID9MJ+yW782c/T755AaUnWQzb3LXeQbr7yEJFNcw4fM5HeWCmJ5mY1az4Djrnspk/xIz/JHtaa/SyXQjL5punqoztLnFhrcdd+yf6DTCailehFt5CFkqVwsYl7lKjSP7ym9z+4Q9Qe/YsHLDZXJwBoNhpoytjBGmMQwx+wPTx0xzZsc4T3jF25d/D3nUBnKbkaUIDP+g8zaelIcwkfurg0QF2IoI6wVnJt2a+xXJ3L9XH/pyZgx++IUNwrdDGYF3FkKrjFM48QDQ8305zbiNPmGqaU+PEro1HjqSQhxSWlza501oDo9HSweiMvMiw2Y5KoHBqHltAM9Y018/zF+IUHyDhjukJHm8YEtQWIbp1jkAR9M/E01r3q8SLrXpEBuh2cfwuumjz1ObXmJA5sCx8SpxpPc+zXp3b/EW6poNjzyK1IbEOgLWA5zqYBPL6NEbchl0skdXPEZmIZ6vnODTusenHLHWXOGi9C60NC89UOXjfLEopLOsq6c+3KK6bhWjnzp2cO3eOkydPsnPnTn7xF3+RT37yk3zyk5/k137t15idnb1ej3pTQZmLJ6rrzGDZAm/rNOjMTxEY9jnfHoanJiYjUbAhUkJjcHSC7fkYxxARkU+XEBYkVsJsIyDq5VBiAn1uHSpFtlXOIRrhFdVQiftFDCdO/wG5+q0RK2MsB6ESwtjDNF2cif7p7AbIah12LW8w14zJ6YT2+D4MDtIYpk6dRQBaKyJLgRHEehAzLEi6myiTEXsfJNcIiHzDWneOO09sXDzK41LMn4PurWFqrgZ1TnS+DcDmqQ3qiy1iZfpxGgjWFhz+vHuaQqxpqgQ9W2HKDlDCQ2Mo22WMUQhLcGQujyUlKYJa8QAi0+xUHuNHA5Z1g3ZSo+dv4rf7cytIFDpsYwmLMW/se7Ty5sFnHlvsxz5FbVAZ4dlVjjdPI7IIjMW0XCKoNCm0M6QQHDx5krV6j/FOhLuzAI6DnXcpt3ZCOI5j2cwkO0BIdo+5YEBtngCpcbRLtdq+GF+19nS/OrhOybKIIL75A4WVMYx15mltbrnq6ZMkkyS0zz3Rn9v2mQAA+qdJREFUjwFi69gSACNoTY0R5CxqkWRppsx9roWnDI0kxbghrfw+pL/OnqSHSSykkKiwivITkl5CEofI2CdDUMmPYTv7ScUY9bDKau/WCeWQQhJkAQv1k0z5pzBKYxsf+8vfxF9tMNWbRwmJf+p3WPqt/4YSNlnZRdp5IqvIevAVlG3YHZ2lUu+gccnYTugcwpUWnl7CGFiNm7QzhScr1LsxEwUHt3Gg/4P4q+jMUF/tZ+mFYXhjB+U647oRoocffphf+ZVfobsl+Dc2Nvh7f+/v8cu//Musr6/zx3/8x9frUW8q/OnSn2DSPvFRqcH2BKLXd0ko4WGbCIsM3P7Bfq1IoYXgTGyzvNPGUYrZ7HlMycLIfqVS6WbccfYc1Qlvi2wJFv19aMvBcTKYLl3ZkCjmxGaE210i8PuZL9lNfKCpqVbRzS5JCFHiIiyBkRqjIVWGKJHskDb5zKbg2LjS4GQWCijGpymk83QmzrEhM4yB2MQs06Rs8ggEkStQ5NDCo7lh0AjmahaJMmTf+DrikloxaEX35h2qy6CNQZsUDATdjDBV1OI2QiukVKRaYSUaNwW0IJrwKKs1Ou5BDH2hfXpWITDkbOilmnai0Y6LzAyJzLPJB9nMusS00WlKliiOLbc4X/dpPPD/xgQh8597CIAgCDDGkN6kZ8WttSPQGcRtWHqU3lOneHDzSbQBZSwKJUkj7eIkBktCVMjhd3ocPBUidk5DPodxLKQ+gtYCKSW2VLB/N86BGTD9sqBGKtI4ZNlk+KY/J888FyGQZCbjQvY1boXEUGPAatZYnb8kOFdpzPpJMmXYwSy28IhKLkgLEGipsfIOwYQkyTLGpINrUtK2h54L0MImjlNAoo1CSJuNYBPtGkS9A0lAMVYYYeGU8oyVD2GZMTpRE39rnQ7m2c0MYwybfp0zy6fZaPYgi4jmz+DMz3P8kU2EK1GOjZMa0k4VpKDxtj040uLep9tIlbBjapJt2SqeDsnpp9B4GDdP5kq2b5/FGMFa0iaRMUlqsKREC4UVe6ANsjWPyi7G/r3RssmvGyH6nd/5Hf7lv/yX/PiP/zgAtm3zEz/xE3ziE5/gV37lV/jCF75wvR71poJ3Pk86v0y+/izbb8/jFS1U3N8cYpEjn5yjoBogBW64ThrNMhM9wnTVcJdVYUxLHO3z5GyCQJK3BNLS5JMWiZ2wZCzG3Am0yLOsekhLYdFPWvvSmVX8bGtjj2OeWNkSHr3+tEmSm8cH77+wrsjqKqbWYn01B4AU/Y3Fr6dkyrBy28eoWAZbRWhtUXEN958tsGujQyFbZcyc4Vn32+SxqWpFS7RZFHV2WmNIBOcOvRslPDINj51p4ouUHF1OViNOnvo6kyd/n8eXfZJMYzLFl+dvjcrfSoNBk/kBKtO0w4zleBGjJDkpyIxh34Mdctk5lFYsd0IKdPuVvI3BjxRd1yKp1SgVUvJxHTFWIpIOorKX0kQJE51n33wDWVzFJIr1s5ust3t8yrrAhXoHlCKaX+Ybpza3DpQ1N9VcuwJbwbkmDaC1iDAKJV2ebC9RL1ZIVULeREyk60S5Io3ck7CthHQMCCikKbtyBSwVIoHxVpPitnHEnbvJFTYITIaRijldJMXC0nB8cR/1IERKzcRzy1hK0RAp1aWb2xJpjKHe6nG+3l+vQqt+jbTER2OIlKblR31CmcT9Q0s9RalQINMSK82QnsXtvWfwetvYtmcXCxPjlPe9m3IuR6Y0U1MCYzK8uTLmwiomi3AyGy1sHEtwZNxiUhYIUn8YvC+EuOkJUc2POLO5jjr9l7i2wLNS8skZHL+K6daxZvOcU22KF3wwAjNWJY3BMlDqZUgs3GYD6eTI3DGkTtHY6JkCLjUa3RiDoFyY5vbNGsKAZWWcb59Hao3MQEh9kRCFTbR+Y8UUXTdCdOzYMb7/+79/+PrSQfroRz/KqVO3QMDfTQjL91Cxwu0t4xX7h/ZVWwEmCPBTSZpmrDm3k7olcp15qpYhcARC5hm3CjhGcNos8bCbojU07tqHtPIUZJE9lR0kdoWsdJCw5JCiEZYmL/vCIfzWf2Pen2fBX4A46ruq91wMjr+ZtINLrVVCJVinnwYh8Bd7mNQgRd/n7jcy0jTj0Kknud/s5GB4jNiaYGdugbxx2d3qUlMVktwYbm+JRB0iMQplMlJLkJQSZos2U5tbmyCGSHWpWy3auwpE57+DoT//W5GiFigyBJ51YwXutRKKJOtnsNy32UUrQ83bRjPtEPsebqSImwFZJvCsDt3pFWwR4ntt3JxhenaB0ExQnR1Ha0WxBEXX4DhwaPckevd2nMwgdZux5jHStE5uCc6tPsXzjx0jn93GdDkH9OsePbvcD+QfxE3cjOi7dTQIQfbYH4NOkVlKXNqFTh1iR6B0Rr4smd4dEhcE02IHj+36fhbH34ESEs8zTFvT7FysAQotIY3HyUyI5bYJjQKp8LszGCSxO0m1M8aG6GLt7jJ1cp2fevg5/rJj02vGEN2cx1Kc3ugSbFYZP3+eNNM899mvcO7zD5D++dfAKdAozLEhe9gmIecs0Vlb6pe2sGN2je2jlHPxwgS74qE234NtWShHkI25OMJiIm+zZ9d9eHmPvdu2kzqCNX+NKFO4mYcXaKTOKOen6IlpFp6s8tSZP+fM2hM3emheEudrPq0gwY8DnizsxDYVFjoVXN1FEGMaKyAl3XJKd2KK2r5xnjo0RqObMn5qmUnhkpeSKX+R1cpbiO0ifbu2xCkYbt9fQSuFxrB9aop8EuElHiKcwBjJZH4WK+rvDyrbih945DeHCssbBdeNECVJQrlcHr7+jd/4jeHfxWLxphVoNxpKqcsm1GBj11qTRhphFLUHT9EMpxBGAZqlWg8ee5ylFjhOB6kUjXvfhxNXyVBkIiGVOxCepGtPU6XHpruLtV1Fop0TCJnHVYq9lTtx3QKTU3ksIRCFNaJ8hePWvfT2HkLGAZnOWAlXMfU1ADaVz2JSHbbxZsJgHM2D34TFJZCCqBqjqj2cThfZ7pBstnBX+wG7uSShktXp5vYgwgiBwDFVcsUx1lOJESCEZLq6gkajLIt2UKKz44OI0gXUZIA0PdwsRmQGK51jv19lM9SgDRXPoh76rAcaBz10J98IvBxCJIWheUax2lmjaU8wEdpkQuBZBaxeSnVfmWQsh7Yc7LlVju44w0K8SrM5QXTg+/jR295BXvZ4qHueiaJNJVxnbBa6R3az72feh7Xl27nvkVUEBtsPMDVJob6fbLVDuLJIpDTHep8bro+bba4NIAVkYYB0LKLlDu1tb8FrBaheSG91P76IsIIG731XGfu2D7F3pkBZbCfvHKAZaSZ++ocozFqoTCCkRW5snPGlJbxKwnznHKQpf1R7HtE5i/QzpALSewAo2Q4HcnswwsJOE7zWXlbaK7D2zGVtvFniPJJMEz73HG6jTu7cU1TP9esRRe0GwnXxpYNOSiwdyiMKGWlUpfO+/Wgropwv41oO2/M20rPI2R7SUv3zO5CQGDxb8LGf+EHuvFdy25jH8aRFotY45abkY+hWCkQ9qK3k6DJN9s3j+LUzPPLwb1Dzk5vaCrnWDlld85FotHZITUYc+mRxTAsb2jUOzFm84y0S4xRx3Dwz7u04wsGOE7xAYRuJVJBOTnD0ox+iedcBbNti38R29uw4h9CG7uYmTruLJQWOyGGZMTI9ju3ksRINQqGzfhymQRCF4YgQXQ2Tk5MsLCwMX7/nPe8Z/r2wsMD09PT1etQbCmmaXtzIjRm6frrdLu21BGH6Z2R1eyHNB/899hc+ixNEEAY0I8Hz9+WRKqNbL+DHHhqLC3dUiD0X/7Y70bggIcPGLzuInI2QDjttw+RYgdLtOc7XQ3Z4kikPHinn2TA22raIJRxrncQ/C6vdCYyBatahmfpXELkbDSHERbfZc8f7WruBkt1GovAaDdCKzE/Z/o1HKboWIkkQWm3FbmiKusHtpTmEMJw4so+MmPqeM8Szy0SeIXVdJhZ3I4ozWCImHi8TlQuUNPjl57FKPl/MqiRiguRMlclsgwc2/pz5aoC4wYUGL/2tjDFXxH+1w5Sg26TbWKa+VkNvHMZvhxg0e30HbQIEHmPJMfxxj/auMtrKIQzgFekqxcL8Ajkb7MZZinKdY8EKljBILJ5pn2HJljgzW3LAscmJTWryAkGaoZRGpjnSTJJunEcLg5T9dXCzEiKz8Ty2FGRBgPQsdJJxtHkG61yXNX0YGSlSFaIWzpDW52mqJpGOsIxEWH1X7vaJIuPFDjE5tJjBsi0cDRPFOVaCZTZ7VUTqMrHZRHdinMQwJw4TxBkt24KGjZLjSCWRaYlnas9c0c4bScQvhW0JslNfxykKHBmBSnCJWIo2UL2INOjhBEewZIBVnCJvIiZ3bycoVzl8YBKMJBvLIyrbwC1hXJ+54ra+lSMW5EoOQgiEkFgOTJbLxFqhdIYXpijLxlYxtm0hLE2lcQbXT+lFiuVGSKNx40uLvFhcZpppGk/7TNgTTMu9KC2YNH9O6kkMFjINyLmCD1UOMuP111hY3sMdb3k/zXceBsBWUAqa4FhsO7CNmfs/RH76Hbi5fsbw2h3bSALJeCZR5QK2MNhIVDiNSvP8zK6PQ8cniAIeOf0cz/zFWdqt+k21D7xaXDdC9P73v59PfepTV7326U9/+jJ32gh9JMlFrWQQJ3FpefQs7luIutpBWU8Tnl4iVz+BE8aYQhGlHYxrUK5H4paJnQqJzINQjLcyOhNHMEaSOWVyjk2mDXdPTDF52CXbs425PTNMF23aYcZsMaLhx/RyBTLLZS58ikxD2Rwg7azS0mO0QkVsUjbSDvFW1pkx5qYRuEMNb3qC06JJGEnydkzOivCbVQyG9MIKG37GrpLZIkIGz++RsyNydLGlTeZKVnfsIsg0lAKKiaZdttHSIsxNIwpjODLD4IAdYBtDQ3fAzRDGQcsy6XyNPWsPMHF+gfHGMhvtmCAIUOr1yQQaCKmBdUBrPfxbKUWn08EYQxRFaK15arGJv3Kc9ep5SlkLLQWOTKisbzBeGmNtPKKolwidMmHFo7t7gtSdwAj4vtIuJva4eEGI11lEtBe5Y9cEzvTtCAtm8nnCp/OkOkW4BRKvgrWtyFixhJMuodGUewvsEUVUJtBRSGH9eRwMSinSNEUIMZxzNwqDtvi+TxzHLD30+0gEQaOLzNm0V7uk2qbTKpMJG8uPseOMOx7q0N04zSbLVMYzpFYgJdsqOaQA185wbIGRFlbWwzUpu7bdyftn7gJls21es7ubUspHpJZAGEHPOJyMfFSWkooyY7rCrm1nEe7Fc6duOhKpFKyfxc1ZIC12TNYpmjb16X1ststsbuxCmiKR7WFsyNk13nPg/WzzJjl8+zbevmcb7/yx/51H/I8jJvZRyMd8/MCPsj1nkT/fwp3ctvUgg7Qy7n/3W3j4XTsRBqQxJI6NCEM81yIr5Vifsime7tLqJSRxdFNY0i4lZcaYobxQyhAqxTt4LwaXkr/M19+ukA6EYjsdJpHCIOMOe0q7AIMSgjumjoBrUTEu21oGW/XH5iO3HSCXd8nJPJbVP+w1Lbh0VYBeWcL7vh/m3twyjjConEthOodcW0edWcKvXyBJM1b9OYrl8VdNiG4mQnXdCNHf+Tt/hwceeIB/+A//IY899hgXLlzgscce49d+7dd44IEH+Ft/629dr0e9YaC1RilFlmWEYUiz2RwKMmMMWayxjKKtMkKRIdYDLMsQJoqNuE2Ggy4YWkcOYiyXx3IFcnIMSxo8mQdbEGYSIwWOJclTZsaR3P3Wd7HzJ/83xPg42oAwOarJdvIJSJnHSMlf7lujNuEiTEbcXUWRkc+6/bRy5dBut4eBiO32jSvnPtgktdb0ej2iXgYH9hEzxfJZi7LbZa93CmF8pFH4SYayduIkbRAWJc/CbnVw9+/BqoD4q3+VpOzhWgWkEEgBpSSP7+bQ0iPNeWingCcTjHIQhfMIIyjmBJBhtEVmWegkZfHcHt79bILSPmJrM42iq9cqejG8Uh99rdZ3Cw7IqjGGXq93GVFaXV0lSRK01nTDhM9/81+zPP8ABZWihMDWITpxsO6/F78gKDrraCBzHYKpPBLJMbuLEIJybZX+RmRDGmPyOfJuEXH4I1hOCSt2uX/b/WzUC2T5PGElxz5RptxpIITBKR9HZBEqszBxSnv7AbY3n0RrTbVaRQhxw10aQRCwubmJUgq1eozvVmssrbX4w8+fQzgWvXpAL30naeTQP1ZcIATMSY+C1OwuS7y8y7hnsWOqyPcdmobWIvbdf5WpsZQ4ZyFMgo1C5EroM1+A6hGULHMgUWx3z9MdtxFGICRIyyPrNaCzjLBncN0uVtQi3agTRRG+7/cPApWSLMuoVquv+5iFYTj83ZY6Z+j5AUaCxkIKzVS8hIwzMpmjM3Y70nZZL+wHJyWvl3Adh0PWXpAWH7ljDturgLTZ9YE8M/OP0P7SV5mIOxzKryAOfBCgf5BpUMPLQlJbUl71yZOjOTFDWmv05aNr43uz2L5grBoxd/y/0em8+tir6xlT02q1iKKIo0c/RXDiIVQSEZyQCOGSiYyN4jYsU8OTGbNyFem6UD+L8EosFu/m59+3n241QtuQw6acSPYcmca1NXsre7lj5x5cCdLpEyKLfiycxDA3O8P+OwrkhMfE7oOcVgXOfvkMS7pL9/Q5hFJ0sh1EUfSq+zuQVTcDrhsh2r59O7//+7/P6uoqn/zkJ/nhH/5hPvnJT7KwsMDv/d7vjVxmV8Fg8aRpOiRBSilarRZaa9qbMW4wjdKasec2SFF0NPTI+MbaBRqmjWULUs9FT1r4WYj7lgKWFAgEmQGFRZKb5EMzH2FuLI9QEZawcK1+RVNl+qdyG89ldd9biEVGPmfTknBvehCzeYzDxiOTgvc8+jUEoJzSZZaHSzXRMAyvMPu+VHr+K9Vk0zQdbvitVossy6ifj2l1YXX3e5GdNpgY4eVB29i6TS5ewRMSicby8lTyNgJN8oFPYAkQO3dy29RdjDnTuJag7ynfgXYq1CMHZ3oOUyySOXvZu3cNmWnG/GeZLsC45WGHmtR2iVwLtR5h42B0gsAMC5gppUiSBN/3X3KTj6LoFVlGXiikjDGXZdIMjtZZWlqi04l5Zn4D003ZVq/zQ+E4ypacX3mOllXBE4KNGZdk1zih7tfXQRq25w8RCIERkplnjiNkP+aqZhJO/MjtzORniPIlEGAZi8Pjh1lZzZGzSrR3VchFNfa5EtdxEHadqCpY6NyFSVJsmcfoPLXVKs1m84osoF7v9cvaq9f7ZS6yLKPX65GmKb3uOl91FlA08KMOFzoRK7m3o43HRC2HLVMqH9pN9EPvY3ashMlCxv/waxjXZlvJwXNdWpsBQTNAFMfZNxfj76tg5SW5rINVHGPu0A8ABuMUcbUiswvsEwKpU+rbvsNsbj8yXOWwPQUU6RaLWCqjs7SGlHJIgIUQKKVelIwPrIUvxMspdXBFlid9a4dSimazSb1eJ018ukGINv3aXtFSi+LSOi1hc1xZqDTCcnMkjqBKyppoMzm3VQLkEst5qSzJT9hYgY/uBfzUvjyOVOig3wbthwgh8A79EIl0KPg1JrKUKO+hg4T73y3Z9WMfArWN1Gxj//EOZVvS7XZfkSxqNpv0er2hYhsEwfDatVrPL7UMZVlGvV4nyzI2NzdZW3yU4pPPMNGqIXWKkGVOuk383HbqROzeXmbHoT1UZgqQG0c6LpFVREhobQZEcxWyQoEJlady2zQfOeCRt/PsmdqDs307lm2ht6xoAE6lSCQncCdnQEoqxUm6pSKFCnhhSu+p41TCKlJnZFl21bnzckjSG9JCBHDkyBE+85nP8OCDD/KZz3yGr3/963z2s5/l8OHD1/MxbzhorYdugUvrYaQ6xcXFUheQ0u6TFw0TC222myW2LZewhCQV8CxdjIYdszksN4cQEGcGz4IsV2HSmWSssB3H37js2ZmGvNM/gNJID7/cJVdqE1kF3Ewyt7qLuLaXttZklsQy/WytdrtNrVaj0+lcRngGFq/BQhkQvksnfZIkQ9KXpuk1b/gvJA8DMvZCIXau2yLQipZOCFVKLB0QNq2gi61XMcUCwpbgFcnKs+yyl5BSkM7OAeB6Htu9vfxYOs1e7y7q3j7ys33NvFicgnIFR5a4v9xmb+sMEyvPkbctnirXsQOHyM2zun8Ck7QYi6sYISikfzDcmAZxMQOy872EsDHmRTXXS03qL4aBC1ZrjRBiaIUMt4IhkyThwpk6xYXnmFgIcePbmasUsZwuuYaPcYqMlSrs3pbDkoKcY+Mkd4M03FZ+H5mwQUqMMUghyNkx757dTxfFrvIueqqLFAYdSqrnfShMMrXnfvK338ae75vhiBuBkEiVUSlrIlkh9iMEmp5K6HY7w039UkvkYNMZWFlfiBcSgMH8G8zVS+fcS21ag/tnWYaUklqtxm+c+Qq5cIoDuLhJh4dFnlBIciZHWM6wduQoHshRyI0hDJgsxMPhnbvfy7v2jON5NvXlHr2uQbgFpOfhlUBWZjDSRToWe8pzCGMQ2iHn2XTe/1ewnAK6LrBOLbNzY507Zh6jq8toa5ITE3vYrJ+CpD82hUJhOEatVotWqzXs06VzLkmSKxI7giCg2fzex6dc+p1LScDgmtZ6uNEHQYCLoGPvRaiIXs+nGTh4s2V6k/egzQ7mG89hS8Fs+QOkgF0eo5B3sV9QAX5mRm4dxaNxdu0iOnYMpCA+eRIdx3S+/SRJI8TLVZgpeOTVBd4zGaIsi/JHvw/Lgp0HpvEsC1u9F2nZiMjG9/0r5s2A6LVarWF/Xyivms3mZWM46HuSJJeRzauRxsH4R1E0lG+bm5u0Wq2hEtB8ZAWRpuRiG5HEON4snufgWILTd5WY2zOBbUvc7/8/ALC2zlSUW8kLnu3Snbm/nwGQG8N7x8/3r1sSa3ICaVl0xu/ABgQ+he3T9Nopk5OCe26bAGlhbFj1SzTHJGpzGVs1+6Vat2TaQEEexMG22+2XJDpKqZvOrXtdCdEA27Zt495772XHjh2vxe1vOQw2/wEGmlsYhkgpUUpRr9dJkoQ4jvtCO0uRtTMkStAal0hhozHEaYoWMGYiNAI7WOBBvsUJ/acII7CFhcpPMyE2iTODJMN2JLOFPD+04+PI7PJFqS8538sIC2VbGAmxPYajBe5SAUuDlWnOlzRZ2sFIM9yofd8fEp7BRn9pZtBAyxz8f0CQms0mWZYNY1iuBUEQ0Ol0+i6LSzbBXq83fGa716PaWSbThgwLOm3Wgx6RJ0lNnch6Bsf1sHIWOldE58Zhy3LTec/7ARCuw307CqjiOxjLv4Pa3W+HSgFhBIVZsXUmmiGcfRtjlqAjx8lLyZ4db2OvGGOMOWJp4Zs6KQUKpoWtmkPB1+v1qNf7bo2NjY3hBvRCaK0vzoerYHD9hYQgDMPLyPWlmu9g8x9YWFqtFlFjgST+X7TT+3D1ATpmD+8UZ/ExaFGmWCpy5OBO/LftpDBWZo+5m9umjvRPrpcOrpQYoCAnGM/32DXrUY8aTOQmSFWK2HE3YKie60FhCu55K/nCNCJXpBxWQUiEDshNBKTCQoUpu3L7yIdvIUr7pLHdbhPHMZ1OZzgHarXacPN44Ri82MY2IISXkoOXih0Z3GdA/sMwRAY7mMrGSP0Mk3+OttlL3dpJlmpqkxd49tBOJnfOks+NIy2PzqnzdOI2s5UdGJXhuk4/U+eun0Y6DiJXAE9x2z0OUoCUIHsr5Ls+MzWD5UnE9m3s2JXHljEqH5KfKnO22kOKlJxV5i2V+wlTBSobKliDTWmw3mDrAN8guGLdDdas7/ucPHly+H6j0SCO4yuI49ra2mXfvXSsqtXqkPQP12cYk0oPohwqMTR23sOOD+zGsRxK6gRJ1K/mPT5WYffhOXKWgwAO1h+84jexhIVsdonnz4EB6XmUf+iHUa02QkDxgz+EyFWYuWMvByd3IQRsE3fSavcL2E5sGyOuTFOxx2nvKHPseH+vWllZod1us7q6SrVaHR5U3uv1LrNGD8au2WwSx/Gw/0EQ0Gq1CMOQXq9Hs9m8rFjxwNp4KTkazMWVlZVhjJrv+7RaLZKgh9WdI0xciiiceosPOhUQdl9JmCogi5V+GryUcPdPI+Xl2/rHD32ce3dPMjORh9w4OFu12bYIk2UDwmbivp/AlUXsUp7x6RyOC3fcNsWOQxXutPr1nNaKU2RYiGJE9bZDCCFYXl4ekmff9wnDkGq1SrvdvszKeKl12vd9ut3u0GV/s+A1IUQj9JGmKUqpyzTbdrtNFEVDMjHQ2gekQkpJsVjkfPcEy/q79FJBNJZDCAt/osDCtgk0UJN7Mdk5WkIzMTGJEQZMP1ZIAOzfQ6oMtmmRczym8oV+5dcXZDtlGno79xGWdmBN7mWi6KAdwe7ih9mrFnH9ACdRrO/XQIFNvwkSXNe9LAZq0M+BphTHMVEUDX3Mg419IIgH8TSD2JYwDC+zLl2axTbQyAaaRxAEZFk2vE+328XzPIIgoFpvkWaajemncWWRVAjqQY+omLIjPc/mQQdXGKyKh3E8VHEG8f4+Ebpjpi8ocFwcS3Bq8iOkyjCzb45d+TtwTAHHL9KrpiBAeRNob5JQFhiPamzffQez7VX2R2scT6rYDrRliaazH8vIy6wy6+vrNJtNms0mGxsbV5jMB3NlIFAujQXqdrtD7coYQ71e5/z58wRBMJxbvV6PdrtNGIa0Wi3iOGZ9fZ3FxUV832djYwPH6WflbNbPU8w0RTFBQVhs5D6AtdTi9N2zqHye3MwE77nt7ZRLBYzVrx78np3vRmAjx3biSUHtwD4whqipkCYj1SkFu0CqUyZ2TaMxdGr9zfK22TK5XAWx/32o+QbBPUeZ9myU65IhIJKgc2wLjiAdTRAEhGF4GfEeBIkP5lutVhtuIgNCOLjWbreH82Xw/8GaGwjygYJyNQzm9mA9NxoNdOIx6bioNCVxPLpiEiUMdraGMoYdt08yUZqmYBcQe97L5uoqrbjdDyzOMtyc23+usBBSIPJ57p06wI777sR1HCwpkMEGU3NTaOlgTc4xUS5R/uEfZ6ukFnMTBZQ2ZIUxcoTsEdvZfqrNUk0PCckgo3BAKBuNBisrK0NCCReLEnY6HRqNBr1e77L5OCBDgw0+CALa7Ta+71+Rvbi4uEin02F9fX1oIRnEwgTVgMwqUBMGX/mEKsb31yE/S21vgQIWO7IytmthH9mHLW0wmqmSO3yG3rIWCiHQloNqNjFxzOTf/N+wJsaJjh8nPDmPc/vbYef9lHMV9m/vk51cNkGnbZAWSGmRFHPkZqbp3LUPaUniOGZzc5NarcbZs2eHSRBpmuK67mUyXWs9vD5YmwPZNlB8BsRmcD1N0+Fv0Wg0hkTg0vEfjGOj0egTJelCMk5ogn58Ty/AX+v2D5MWkMNCOO5W+QFg+tCwYvlA0bUdSe7uu5idLMLEvuFYCikojXu4nsAIQVKcQjku+z/xQQ596DaEUThzM0zunWRn2UFkikq3RLMwgzAZaot4dTqd4XgN+jDo49raGvV6Ha016+vrQ1m2vLw8/OzA+vZ6JZx8L1y3w11HuKiVNptNSqUSSZLgOA5hGOL7Prlcjl6vh+M4wwDHgVnZcRxs2x4GVycX1kiiBs54zG69yLG5vTimR890mZQ5WqVpOrvW+4JVWMyNOTitHI6wEcD0NpcPHSyzlBP8xO6f7AuXqyDKNBQKyAM53jvt8u0OzNzxTnzlUso9iERjK0l+f4JVdUkuTCGnXWT58mrVjUZjuEHZtk2p1Pf9p2lKoVAYusksyyKfz/cDebtdyuUyzWaTKIooFArk8/lhCv3Y2BhS9gVVmqb0ej0sy6LZbDI5OYnWmnq9TrlcJp/PI6VFPdrAETbKUUzq0xx//8/R+NZ/wtvxNLlleHthDJWzyL/rAGI9T2rvGlqI8s6WUHH7R5MgINWG7SWXTqQZ92yyWNOtpdw2m0NbLunkbXgrZ5gSBm0XiLoR2YzNxlSeXWoXot3CUxN0xRRRFJGm6XDjHWhyaZoipaTT6VAqlTh//jwHDx4cWs8GAbFRFFEsFgmCAMuyaLfb5PP5oZm6Wq0yOTlJvV6n3W4zOTlJp9NhbGyMbrc7fP6FCxewLAulFEII1h+uUcw+gpAR5UAQ1CXZ3iMIldDcnmPsLYeYsCS7cnM8/MG78NfAczy0idkxUSQnDlJeWqRYcPFMCjpj3JvCkhamEjM7VoEnDQJBrugwPlsgF+QQMiPnWHxsdRsts0HoeSgMJq4wY1dJ0139CrlScubMGVzXZXp6euhC01pTq9WG9c+01mxsbLB//36SJKHX6w03rrGxMTY3N4ebVhiGnD9/nrGxsSHJqdfrHD58GKXUcP41m83h2EopSZIEKSX5TYtCxSPpLpPZkNkuOXWUopHUCw6aiIJToOAUENIGIVm7Zzvujh30vvo1dr713SyttTDaIKXAO3yE3QsNmNhL7o7dOBMVxM7/F+VHvkGYgdz5Fu44dBCAp1JFphRT+Qk6TQM7pzh0WLBw+hS7ghxPNQ17z52jXC6zvLyMEIIoilBKsb6+PiSFnucNlbXz58+jlBrKp8HfAytPt9ul1WqxY8cO1tbWmJiYoN1u0+l0huM/IPiDNdtoNIZrWUqJ6hpCZydZoUXUO0uy+CyPe9twKg4ty2asMQ29ACzBmDdGT2s48wA73/FXh/JKZ6a/XGtNRH4S4diYNMWenQGl6H3zm5DFkLt4Fp70cqgoxrgWImkgF5/Dvv39jBcniewppvx3o2drQxIdhuFQPg2sQxsbG7iuy9TU1JA42bZ92ZoeKH5SSjY3N/F9f6jgpWk6tNiGYUgul+OZZ57h0KFDw7GzbXuo1CRJQhAE5PMFMlGmqzZ5S+4R1rLdCAMlt8RbJ95Nu3UW4XlMX5K0JEWfMHt2X77kSg72938/rWe+BDveOvycEHDPh3YRNVvM7foQMYqTe/fguFuHta4/izMdYRW/DxlU2Rd9haa5i8gTxFlCJLqkOh2SwAsXLtDpdJidnSVJkiERbDQadLtd4jjGtu0hqVZKUSwWybKMlZUVbNtmbm7uRffX1wMjQnQdkWUZ3W6XTqfD1NTUkCwMXBsDK8hgU3ddl2KxOLQMDTSfLMvQQZ57Ys2ilaJpUs/dxjMHDjOrFHbRZTqX49TMLPfZGxTcKTrxJomTYG9pCoW8QViCA2M2uBdPWQ9n3npZm1NlsEuSb634/PSsx5Q3xZQzzUovxlh9b7RMNTNjU0S6jWgY5IQ9jEkJwxDLsmg0GmRZNlzUYRhi2za5XG4oULvdLpOTk0Mh0e12sW17KHwGwlMpheM4w/igwecHxGgQG1EqlYakwbIsbG0Y22wROZMYGpz3NAs6YjIzRLkJajJlux1RdCVO9zxm6u0Q1oeEaAjH6VughSBMNSXPQhlDybYZ3+HRWo3J33kPWX4MpMSyJPad/weWlWfVvYcJJ0PG76a7u8T75nKcPh/gxEfIsmyY+WOMwbbtYfBrPp9nc3Nz6DYdWL8GVo40TbEsa2hyV0qxbds2giCg1+uxubnJ7OwsY2Nj1Ov1y6yO5XJ56MqQUrK8vDwk6lEUIcwxctF+krxFQUOu4MAHfwTOPEB2uI3cmlP2XT/F/nxMPH0K13LRph//M33ww+w8/ftkJYMmAZ0xW5jFszx2l3f342F3BhDDxoUOd37fDvIX8kAbp+RSrkZwqoH9V8qcX2ixraYob+viZjY5dxInxzBodbBuBkH0AytEoVAYWjI6nc6w/wNL2GDjarfbeJ5HvV4fps8PNjLf9xkfH8d1XRYXF9m+fTsbGxusr68Pr2VZhhCCvJ9SKo/Timp0Mew4uIdHdzzP3553ebRSZLKsKdgF3jn3TmrmYZAWacFBOA46CDiwZ5blh1s01322HxzHmdvOdNInyla5gOW5sEU0YrEfa2Lq4pqNbe509iEtaIjtMD5LqZJhf+VxpseP0CjuIE3ToVvWsiyklERRNFRaoihienp6qKXX63Usyxq6Uo0xLC0tMTk5OZRJ7XabZrPJ+Pj40O3RaDTY2NigUqmwvr6OUorTp08PiXqSJGRZ1lf4dITJWURTb2Hmuf+bx/d/gMlegYkDNuFzZcZbIVg5hBC8fdvb+fO9ZWich+33DvuuMo1oNxF/+RTZrn2wdRisEALs/nbm3fMuqFwM15DFIqrd5tB7t6OeWcWKNhBCsHNsD41qQBxALHy8rWSHgUVaKUUcx0PL2GBdDmTcYLwGFts0TVldXaVcLg8tYxMTE/R6PR555JGLZDqfH8rIgSxot9vMzc1d5mLzfZ9isUiYnyb1eviVOmXpw+oC3D7HXZP3892FTyPc/rwawIpicmWP6ZJHoexiO335Jh1rOF6DMfMKDl5hBpjh7kzxsH1JfJSQcPpLWNuLWK1llJNj2jTpWtN4UmG1bNrNNrZlD4nzwOI/GEPLsoaW27GxPkkdWM8GpGlg4b0ZYo1vSUJUr9f5F//iX/DYY49hWRYf//jH+af/9J9i2ze2OwNNII5jHMcZuj4GGUUDa5Bt2yRJMjS3DiwEA03DsizyUrKDmMVelbQiUJnLtuinCMb+lO2zBXLrFZzxPHr6rVScCm8pz/H8jvM44q28e+LdFxtldN+3vIVg7p2Xtfljt1VYaqecPN5CCviB2R+gs5FQbmpWKx8lE8u4ruGeybs5ax4lrrdwDu0F+sJ7sFF3u12klEOi1Ol0+unY5fKQBA60o4HJeRBDAwxfDwhOPp8niiJarRaFQgHLsoaCfBB3NQg8HGhTKgvJdVLYW8MIxeNvu4dl9R2+3xiUdOitbxAeyZOTNoG7B9w8BOay8QHA6ZvHBfAjRypYUrB33KVZSJg+kCONNIyPY4SgXJgi985xxnZsQwnDtDVPmH87Ttzh4O63c/a8QbpfwUr34nneUFMfaOmDfg3+DoKAJEnY2Nig0+kMr7muS7VaxbbtoSVxcXGx304hhu6fxcXFoZAdxG5MTU0NM6RyudzQiue6LpZl4SVN0sqdyDRjxixh3V1mzBgO6zm8seLFcclVMNQRttgiRIaZ/AyukydLE6xcHm9uGmTKfdvuw7M8PrTnQ9RXeyBgbn8Fx+uv0bydRzgxue1lCt2Mbnkbe+YqHHd7OLkZjOhAu01c17ilmaF7dnV1dThOURRdRooHa29xcXFIXAabcpIkwzk1Pz8/tNKFYUgYhszMzNButzl37txws3ddd2gFGdRBsu1+7MaE41A4nsd31qi4CTnhktiSopPnb7/jhziug6FVtvKjPwrPf/GyKSaEwLIlm4tdtu2vQK5C8XB/4x+f8bC9LZJe2cn0244gxy7GmOVYZ37s3eyWsMohyvlpvB/8GOY7/xbLVyithi6KQcDr5OQkwFDxEEIwPz+P67qMj48PrThpml6W9Qr9cykdx6HX610mpwZu2AGJaDQaw8yyQQzTILmi0+lguzlit8TYRA5pj+PaMzi2h1h0COM7cWckcxMlDt49R8EpUL9rFupnYOrgsO8q1bhZjGUESvbbJ5yLct/ZsYPiD/4g2P0s2h/Z/yNYpx8nXV3lh9+2i8efegpr63uzYx651HCu3iJHf10O+ud5Huvr68N+DyyL3W6XUqk0VNySJBmSTynl0D3tuu7w+oDkDJS6SqUytDYOLI8D5afT6VwWk9Su11G5MTwrR7znMOMLDpaM0VGZ8YLDT9uHkZ532dyy3n4vG0fPAXDbuy9aXMQLCNELYUuJNpecELz12Ypc5cC77mPzyAT6K4t0ch7TpkdQAkHfsm1ZFqurq0xMTKCUuswSmyTJ0DtSqVSwbXs4l+I4HhLEG11nDG5RQvSrv/qrbNu2jYceeoharcbf/bt/l9/93d/lF3/xF29ouwZm5VwuN7RmDIRLtVq97P2BfzdJEizLGmrrcRwjhMCWHnGiuDf8Lt/ZXqamZ5HY7HPvo2iqdGOY8CrYMuAHt/0g31x/nF57N94+m7yd78cqwMVguxeBEGIrvZzhkQq2J5m0LPzCHoy9hjPj4eUqlIVNnPqshAFTtjPchAZ1ToQQ5PP5IemRUg7NxEIIPM9jc3OT8fHxYQzRwDw/iHVI03S4eDzPGwZeu647vMcgniRN0yHhyrIMC4HId5l9708ytv5fWEti3r5jvN8vx2W6ExOOHSJXFczLHyRf9KB+4crxueN2trs2s6XScEyOTOc4GjaxbIGTk8Pfr1CchL17EJaFDUw6BVYsG60NNg6IDDHusG99HSknh65Tz/OGJGgwFoNxcByHzc3NoZXt0gKKA7fsYFwG4+55Hr7vs76+Ppxzg/ijc+fODZWFwXuu6w6FtpPFdIslZvyYue97N0Xbxx2foCBjfvzuT1w2NFr1T8B2LZfDs2V+ePbnkVqThj6eN47zvp+Fu6eYvGRMLUuCMNzx3ota+1um3gLmLCpMGXvr2+CEIc452EhSiuh9eyhtQua52LZNsVikVuu7NSzLGloPB0H90I9l8DzvsqD7waZULBaHAZ8D8j7QXgcbned5NJtNisUi3W6XxcVF8vk8juMM56cxhlwuh8Awba+R9uDt33cH6+PbeaRhIYRAWg76kli93MGDlAszOOKiFg/w9o/t45HPzZOlerAYAdj14z938UPlWfJA/m23Dd+6fQYe9fJMjyvm/uw49T33IhwHU67g+mtQqmHM3NBNM4j3G8Qrjo2NDZWWcrk81OAHY5fP9ysXN5vNobV2MKeAoTwbvDeQaYNAYdu2h3FXuVxu+KxCaQJjrXHn5BHUttt5rlRm3N2DJwqElQKi5eNOj3P7XN+ifXthDsJV4OImLW0BKsMql9G9dcZ/9mewt8geQPkjH8bZuXP4ev/YfnpzS6h6HaRkwl0fXtt39zTjswWOfPlRlkt3s97qu5E9z8OyrGEcpOu6xHGM53lDArO2toZt2xQKBaSUrK+vD8tqXGrlHih0A0v3QDEcKMSDOD5jzNByO7Dq+r6PsSWtsmBPOM32vUegcJZAWRhp8fZ9k5x/3EK4F2OsAI7svJeZk32SND5buDh2rtWvj/UikFKwfSx38Y2tQ4ut9jmm9n+Qpd1/jajzONn8YxT9mHrZYMzFDOmBzB+MxWBfGMRfDZTARqNBoVC4rKTIQBm+0bjlCNGg4OO3vvUt8vk8u3fv5pd+6Zf4d//u370sQjQIaL6eGGSKDWJDnC0z5sD0OrCMXJoKPWDKY2NjtFotpJTYts1kIU9KBXHBZ98nfpbF+TxhnFHf3Mvduy2O11a4a9bjbWMf7As9A4VsHyaBKI4RSqGDACtJUS+RRWPSPqGIo5AACyUMcZRQ3CZRIqawvUyoDP7MbcR+zHvHExqJGRKdAVkZ+JIHG/nAVTEYh8GGMijq6LruUHu4tPBeEATYtj10wQ0Cpgc+/OXl5eFYDgrPKaWQOuPZnU9wZ/Zxfqh8mE93FIdz+zj67jOUEWxOScYsA8qnuhgz4xmcnTvA8+CFWV5bY3Zpon+WZYRxgCIdflxi0OPjw+8LFZJO7MRuhxizZQkqz+FmR0mzI8PfPZfLDQnRIJZnIFAGBGgwRgPBOXDxDARoPp+n0WgM/7404HgQS+S6LlmWUSqV6Ha7Q7fPYPyUUmyb3E1cLiN7CaY8QfAnn8X+m3+TnzoSg+dclhFTnLG4XR4gDmLumesLzzDLkGGKfOs9xEmM/4L5ZhcN6c7GZfdxcPDdGQr37SD94EcoZh0aScTBvT326Trc9h7atUWwxfB3b7VaQ9dZqVQil8sNNdDB/BNCDD/jed6QyAzcE4PxvTS75VKLxiBYeEDOLcsaEoLBuvY8jx1vvYPyN76M1BF77vgAO+/Yz3/7SwmTU0hl0fAv9tdszdMf2v7RPoEzfSKnMs3coSLSUS+akp2l/U0pEgK2PjPpQmQ5aMsgMTST/veVFAiVMe46Q8XhUqXDdV2CIMD3fSzLGlosLs08LBQKKKXYtWvX0FoRBEGf6G1ZgJvN5nBsB5lCg3iaSqUyHLuBnMvn8yRJgqstkql5bnvPx/DrdzBt78aJbPa/dQcnFkIKZ48za7nDsXhfbj9pukgy945h37cdLhAs5UnsfYxVN0mKRZI4hoF1YccOsjSFS7Kb9MGD5O69lyAI2FM+Qaog8X1y44IoCZnaPc74gQ+z8fVv4HneUJ4M1snAmjjY0Acb/oDoGXOxxtjAxT02NjYMwB64vAcybaDsRVE0dN8OYk7DMGR8fJwoiiiXy/1n3ltjKv4AB2cm6HiPcbq7kwy9ReYV5vbbr5g/UjlXvGftLuNnDMfyathZufg9q7wHvClkY550/DYOOw6HP/5eHv7sFxBPBHRmG2jdrw6ey+UuC0K/ND5Sa82uXbtYXl4eKrOFQmFosR4odAMS+FqhWCy+5GeEuZmqIl0DvvrVr/Lrv/7rPProo8P3Tp06xcc//nEef/xxKpXK9/h2f9Hff//9nD179rqn+91xxx2sr69zzz33DIM2K5XKUMBcmvUyOzs7jGtoNpuEYcj+/fup1WpEUcSunk9+vMdT7TG67QaVd/4Ewi2Q1hYJTj7E3F/bTnDKp/NkPwZAFiTj7//faT34PzHRVkYScMh1OXtNFX7F1jf6GCtM4dguP3boDr6ztsHpteP88H0/x/dPK7796F/y/NQU7XabnTt3sry8zOHDh5FSDgPEXddlc3OTbdu2DTPrgiBgZmaGmZkZ1tbWKBaLeJ7H6uoqhUIB27YZHx/Htu1hrMzA4jYzMzNcUOPj41SrVQ4cOMDS0hJTU1N9EpbEvP+O7fzRSp652mNUd8/in9gECe/c6fHDb9/Bn3x7ibdu/xGa1hQPPPX7pOraqx9bRQvlK8YK07SDfoZOQQiCS5bQ9xdLPJYoDh18GwuL/dTl0O2RP5ijslHZCpTMDzeqVqvFwYMH6fV6lEqlIamcnp4eZog1m022bds2jMkqFovD1N/JyUl6vd7QbVEsFikUCqysrHDgwAGeffZZSqXSMMi90WgwPj4OwNLSEhMTExyUGzy8pPgbh27jLxfO8tZ8nm/0emTCkF3jEvlYuczp0n6Uzji/8fwV18e/b5zWt1tXvP+BvRYPLynuLXlsjNuUizYXTnYJjOb+ve/hTOMEjmth2za7du0aBjsPtPDBBjZws25ubiKlHM67TqdDsVgcaqnVapWZmZmhW7tarTI1NYVSilKp1Hcheh4rKyvDew7S1AeWpYHl8+ddj4/ucfmFYxvUlWLiwz9K78G/QBnDxA9OUf9SfdjPf3V4J//Pap0TfoQErlXyvPPwR2kFNU6vHB2+9/enpvlit4snBD+zbQf/yU9o1pe5b3YPO7wcgerxpO8zMTGBbdtYljWUNaVSaehCHcSfTU9P4299fmVlhWKxSL1eJ5/PMzY2NkzHH4zZ1NTUMPZDSonneeRyuWFM0cCyOwig1VozPT2Ns77O3g+O860vnsNKLXJv+ys0T36DVElyFY+/v3OGP3zuzFBeffw2m+0lwX998uoFIv/O5BT/tVG/6rUXw/v3WNy33eL/evTKdS+lpFKpDF2I27dvHxKZgWVwYM3f2NhgZmaGQqEwDCTvdDrMzc3R7XYZGxsbWkcG8UaW1Z/HA6I0qGs1OTk5DEjfuXPn0C3XbDZpNBoEpYBoMcIBPlgqcV+xwpP3vJevfeWP+BcfKvKvvnElicgfeifh2ccue+8Dey2+deF7Z3Id2fm2y+ZawYFfeKvD//34xd9g/7jg5/ZN8tCu93H0oQfZtWsXtVqNvXv3curUKebm5oYuedd1WVpaIk1T9u/fP1QCBx6TAbFUSg0zZV8rXBPVMbcYPve5z5kPfvCDl7134cIFc+TIEbO2tvaS3+92u+bIkSNGStk/sPc6/hNCvKafv9H/pLS+Zx+u5e9r6ffg+ssZn8s+K67+21rie/fl9fp3Lf262pi94vF4vfrF6/fM69G/F7vHtd7bAuNZL3JdvPJ2XctzX24fX8v5cL3u/XL69Uo+f73693LX7yuZZ9/r2qX9tuXrMwYvd7xeTF7dyD3vWnDLucwKhcIV9UIGr6/FJDbA6urqUGu+XqjX65w5c2YYwDjCCK8FBjFHd9555zDeY4QRRhhhhFeHW44QHT58mFarRa1WG56PNj8/z9zc3LAexrWgWCy+LAJ1LYiiiHw+P0wLH2GE1wKD+IxisTgiRCOMMMII1wm3XKXqffv2cf/99/Nv/s2/odfrsbS0xG/+5m/yUz/1Uze6aSOMMMIII4wwwi2KW44QAfzGb/wGWZbxkY98hJ/5mZ/h/e9/P7/0S790o5s1wggjjDDCCCPcorjlssxeLczWMQfFYvG6p92PMMIII4wwwgi3Jt50hGiEEUYYYYQRRhjhhbglXWYjjDDCCCOMMMII1xMjQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx4jQjTCCCOMMMIII7zpMSJEI4wwwggjjDDCmx5vOkJkjKHX62GMudFNGWGEEUYYYYQRbhLYN7oBrzd83+f+++/nySefpFQqXdd71+t1Tpw4gZRvOp4JQBRFWJaF4zg3uik3HUIVkrfy1+VeWZaRz+e56667yOdf+p5pmuL7PmNjYwghrksbRhjhNcczn4G7fgqsl96m4nPnyGo13H37cGZnX4fGvX5YaC+Qs3PMFedudFP42uLX+Miej7yqe3S7XWzbvibZ9XrjTUeIXmtIKZmamrrRzbghCIIA27ZxXfdGN+Wmwx8s/QE/u/tnr8u90jQlDMPrcq8RRrhp8TKt+ELKl/2dWwEajTb6+txLaaR1ucJujLlmRSnT2cv6/NUghLhpPTRvTlPGTYg4jm90E141RtaHEa4VSmna1eBGN2OEmxpm6981QkrQ14c43FQwYF7OOLwItDY8+JnTqFRTXeqSRBkAjy80X0ZTzHUjZzcjRoToJkEURTe6CSOM8MpxDRvRpVqhzgx+K3ktW3TTIF1fJ1leAZWBX7+278SKtbOt17ZhtwAynb3oNWMMQXLpdfGGJETa6OtiUdHZxbFprvvUlnsA+PGLj/EVMIwI0QgjvBlhlMK02ze6GdcFr7mZ+jv/6SU/0vwf/2P4tzEGrW9Os/n1Rrq8TLp4AZIetBau6TtZqqgudV/bht3sMIbH15940ctxpjm23GYz2ARjEJZ8I3rMMFv/vVoM1pvBkISKLFEAxJl6WW1R5to/f6thRIhGGOESuO35i3EIcQJra1f9nJmfx7Rar1/Dbnaol7b2qM7FDd4EHYx6A+5e3ws6A615tvrsFZeSTLPZuWgl7hPY17NxNyMMYXalW3XD3+B4/ThxpkkyzR+d/qP+BWmBfuNt1trol+U5fNH7bK03YyAJM7Kz3wH6xPJaYcyrd5ndzKEVI0L0BoOJY4w2mBukfd+swXLXgiTTOP56f+OCvnBVCitqXCloV1ah13v9G/kK8Lr8Ji/zGWb16TeNhWgIlYLRtOLWFZf8OGOl9YJA+TfZ8FwNkboylKAVt1jtrZKqPiEaWk/kG9NlBv3A6leKwfrfON/pxyPpvnU2aayB1oyvPnTxw8tPQOK/+L2uk4XoZt0nRoTojYbjz9NcSWiuJIgsvLi5j/CSeG4zQugMqbY2JqVAa5zuMuKFglmKN2RGy6uFMYYTa52X/lyWvfkIke4TokQnRH6KVnq4+fSSkPRSi5kBbl5F+vWBMYRpSNBJ6NS31uTCt4eXU6WJUoVAQHsZYVmYNyAherUxRJ99Ypl2mHLumWrfCrlFir7Z2wCjGK8fvfjhjecgevEwgVFQ9QivOa4XWzbGQBhitEEIcDsLdBaa+PX0qs8IO5eTJff5L72q59/MptCXgjGGRBkwCpldTogEGh3FRF31wi+9/g19hbgev43RZpiZcjWEvYRUGRp+wpePr7N6icXDZNll42WyuE8I3kzYshAlKuHkI2skjRr6qf8JwFPVJ1Ab68N1aoyhsfbimvqbBZGKSMKMJNxae+cf6rsT0xDWjxOrDCkknPxLvnxikzAJaEUtPj//+Rvb8OsIvfXfK0WQ9JUPYyDTZjjHlNCw/Dj6UhJpuZj0xTOejRnFEI1wq+CppyBNiboKIUGqhNhXtNcTGosXJ/lgQRz97uWawIUz+b5r6Bba6K8HlDacqsVobRBaIbIta9AWIcIY4k5/LIcQbz4LUbcR8Z0/PgtAPaxD4xyEreH12lKPKIvxmwHN+Q7RJRlA0fHjZPU64bPPAWCyZBjT8HJws5ravxc6HU2rbfiLZ5aGhMh2JGr1Of7iC3/BE+e+TDfuYubPortdHlh44IqpFSaKb52uAlyTBe7lIsuym2ZsL2aWGcIspN3r0ug1iVWMNgaBwMQ95PpRpKRvIQJq7S7zG+f5wpkHWeouDe+38Gztde+D1vr61Qp7YfWB5gVoLV3xschPr/JdQzHeYL0TsdAMyLShser355cE5r8BWchTG0/1P2+5PPXNfibkI6uPABA+/fRltxxZiF5nnDx5kl/4hV/gne98J+973/v4J//kn9BoNAB45pln+Omf/mne9ra38eEPf5jPfvazN7i1L440vcoEvQpebaGr4X2OPk2c+DTXIoQUCBVTX1ZIW2Di/iZ/tHWU1ecCHjzdYa2b8tSKj1AxMulghETolHz16Es86Xv35VaBMopu2uWp1YALWyngxnJ5ovU0paWvE3Yyqps2WmvSVg+7u8zZeszxjbBPiG4RGGOuy4Z36dePrj/P5tmnoHUB6GeqqFTz5MZRFroncesrlJ/5barPXcBoQ1avgzGoVguMwWQZG72NKx+y9Nj3bEOn07nlanZ9+2Sdbk/T6PhDl5m0JZ31BYSf8MXn/5DW5tPoTJFtbDDfmiernoVLXIrNZsT5Wt9itN65/iU6ut0uQRCg1I3V/hOV8PTm07T+5E8JTi+TqIRu6NMO2vyfj/2frGS9rSBqQ6bBkfQtRCZjLjpLr95g8QXJDpsXugRJRpS+fn0zxlw3WaiNvjzLrLkA7SsJ0TNfv/I9tOLQ6p+jtMGeyyGKFuefr6NS3d/9jSLTijV/rU9EpU0SZyw1Ao5u9vcB1blIwEcus9cZURTxi7/4i7ztbW/j29/+Nl/4whdotVr8s3/2z2i32/ztv/23+fEf/3Eef/xx/vW//tf823/7bzl27NiNbvZV8boLlyShl3RIdIIQ0NwQlMc1QSujeXID8/DDnOmdIY0VO89/lgw4UWsgn/kOhfXHQch+DE36xjfVG2PoZT0eqj9EJ9ZcWK+htUZJj7PhAsnKM9S/dYLaJjzr91OmRdQjyjTyzJlbykKUpimdzqu3KnS+cNEN8e35dZ6o+Xzrsc9zar3DkxeaqEz3DWoaJtrPIaImF779GE99+QIgcPfuxWQp31l+CK0UG73NKx9y9muvup03G0qezVIjRJpsaCGybMlz59YwlkCmKXHUJLUdska/SN6fPvbfSS70yWatF3PmkTXkFkFS0WsTzK/19al382qgjCJRCeHTT6M6AWBQmSLtdtm11GU5rJLoBIwm04IMn2bUZL0Tsrf9XXq9ACku6UN9HoCjiy2eXmrdkD69Wmhe+Ltc+2+kgw5aWyhtkJ6F2FXg/GKH6V0lcn4bozVhmtD4zGc48/Q3QUiU1jz7rc8NSZhJLmaQXo8ss5sZNx0hWl1d5fbbb+eXf/mXcV2XiYkJfvZnf5bHH3+cL3/5y4yPj/PX//pfx7Zt3vOe9/BjP/Zj/P7v//6NbvZV8XKEy6uxEGltSCMNGJQl0EYjpGBzycLp1oi7iplZH/eZr2NhkSQhcZIgTMr55FtkR5/tp6xuWYjkVTI73kjIdMZfrP8Fmc5wcOjGirl0CRmE/HH9GLYWnO0uU23MYzWWaJ6Z5aHe04gsptKbx21umeBvAULUbrevi4VosxNRXb5IYBbqHUKTEa9vEj/xBEGqUalCGYNSpu/KiHusn32WKE6Qpku0/zAmTXl09Uk2OyGLzfYN34BfUzz5uwB4joUxILKMVkOTqhRpCezAR1sCd2kXRitaqkbnL/4CAN3pMT1j8fxqh099+zyZDfaWfrXnxG9f96YO6lTd6N/DGEOsYhbCORQWa60YZRTB/FmOfOcMzbRDtRODMXR1wheOfY6dF97OU2u7kUIwv9kkZ3kXb3jsDwEouBZhcmtaiIzp1yFaaYV889RVlIgtpItLBCdOXPZe+NSTmNUuKo2QWUoWRnQTH+lIXD9jo7STpzswsdiErz9KtnEGjEacriEyhf/II+jocovs9Y4hupmKEt90hOjAgQP89m//NpZlDd974IEHeMtb3sKZM2c4cuTIZZ8/dOgQJ0+efL2beV3xahdO2M6onuv7q7VjYU2muJ0FTJZh0pisWsMVAVbcAgX+ua/wtHMGW8UcOV1lefM8DRVjhEVrJSaNIta71+bue71xPQRNohO00XzpTAPr1AwNf5lKdR3nmRXUySNYSZ5aDIgUFSlEPULrBHRKyV/G9OrMd0/gfPvmDNy8dHySJBm+rtVeWSxFrRdzdrNHO7woCGViEJbGyQwyDEhEDhVFZJkmOfYwlmOjox5hZPPUxpNw+st849mz1JuLVIMqSZqy3vV5/MLV6zzd6ohSRdTehGxrMzEgU8Xa2YDo3HO4eRt5qo5OMmS3gmME3axBsFV3R2QZwalTnF2uE8QZf3jqz3CtvtKUvYbZeTeEEJ396vBPbTRxmmAO3Mlz1f3EEcRRSuvR79DplYgb29hs9Dix2iFKQ+4tpqhIspK10FjMqjmsSw7XHnTHsy2iVBGr+GX1sfUqao1dN0K05aby4ww/7q/B9CoJCanIOHP+knCHxUchTVjp3M7YN/89k0uPkX/+GLFfI05itEn5n+eeINEpad6ht9qku17DaE0S5zjyO9/Cf/hhHnp+dXhLKeTlQdjXAVl282RC33SE6FIYY/iP//E/8o1vfINf//Vfx/f9K07IzeVyBMEb/0wk279KvAXQiRRJovHOPo5QKXb3BORSstMPs7HeZaUVUq/3EH7fzD7+J09S73VJBewPjjPeztBo1PHzCCmIjj7GsYVNVr71+OvSr5crNJRSr3oBRTrCkS6dOKFRM2xf/Q65Thtj6hjAWTjM2WwGLRysrEE+OIfMIrRycLMO4+uPEIoMO23xVO10/6Y6w2zVKtI3WMuu1y8/HuKVCmbV65EsLlKtBnTjbFjiRSnNzGoJhMZODSKJUdJBZxk6UxSWVpGWhX9sk9TYKKNBWqT+kzy6+BAYQ5QlgODLJy+8yt7ehAga1HoxHeUO0+ovNAKSNGPj26fRbZ9GUuN40SGNXXZTYc9KE6MDFtoLZFnK+OOr6LRL8Pt/QKIMRhjElqvCV2k/oB0I0uCGuDCuqzVp6aKs0WiiJEa2ztDotvCX8jz2SD+YnDQminN88ME1gjgjViEFQGiJbwQrnTuJO3m0ERjfovH//C8yP0aIiyF/pxqn6KZXVgB/sU0+SV7Z8TLXk1gOft9qUONC8CxaGz739OWKxNnNLpu9Dn/2zDK9wVEcYRPTq2JnIccem6XTPIoxBhlHhM0WmBS/njJtTyKlzXJ3laiV8PxGHWH6kdzaQNAL+ctn+8+TQo6yzG4Eer0ev/Irv8LnP/95fu/3fo/bbruNfD5/hXktiiKKxeINauX3xvVcFGPnv9APzgBKS98Yvn/hTMDm+QBZv4B7RwVDhFYB7SSH6fg0sk3cJIQ4xCCw0wyZKTASoRXS7KKlC5jnVgBNutTBqrcon3zuurX9hRgIH631KxI4r3Zcv7j+RVKtWTYPk2UC6RvGln1aySmcMMUOLZxQkMhpYidCNSZBCNYefZI0DgmSjHpoY2Yr/NmFR6jGVazTX2T+gf8EwB8+e+2HJV4vXLouribcX4lLVgcButfj+Fcf77tltUVh3KPdS1Ayw16uYscZYuE8DVJ0mvLEfAMtJFnicrJ6P0pctDTuXTyOu1jFGE234yIcC6VvrQDpa8Kj/5VUGfxUcvK5VYyB8pnnUErQTW2casL86mkCmSLyeSZTi+mjy5jAwZY21OoYA6FI6ew+hC0FRhiUjkh1ygldh+/8XwA88/xJGp3Wq26yEOJlxRB1u93XJLjdrD9LEsdYOkbpGCfO0+s0Wdq3nZ57J1GSUEmbLPvfxVcBhSCP1gIjMgwWMlxHCgueG+PYN+dJmiFCCpTS2N12P1PtKusjiqLrKq8vvd+rjSUdxO2EWUg72djKtIPNZy8Qh33y88Vn11kL+0HV/+orn+cPHv9TFs9rTNBCa0mSCnpWg9AEVDZrxJ0uxiTYiWDbsVWEtDEIonpIEp7BaIkxgnaUI4syFht9o0OyZF9GwK9L326i2lHXnRAZY/jv//2/87GPfYx7772XH/iBH+C//Jf/8rIm2+LiIj/5kz9Jr9fjj/7oj7jtttsAOHLkCGfOnLnss2fPnuXw4cPXtQ/XC69kgb2Y9UOnkDU7xD2F1+qPQXHlIXqLMWEjxVfj9Ep7ibGwsoDEF2QKvHgDmSWIJCbtJghxBzKeQWiLiDw5XcVQoKZCBGCEpLhWxYtfO6vbyyVBr1ZQyfjy8gL3jt3LpD1LakIkVj9bxZYUkpjZpc9RXqmz53QHZUNLQDJewl32WFN5aj3NRjnHxGaLjsooqhzfPPcdul8/w9pyP4AzvQFHUrzYvHlVY6cUZ9faLHbP8q0zfXdbMubwuceXmNrcIDxeRjRiqG/ypLxA2mtQ/M5DICyMMmzKHLGdoeMeBoHVzaATbQWvZxT9PLJ5C2ub3Sutts2TJyGokWSalWqHZ373wX4WKYZA+QSZRPW2c+HMKsqSYElMmmEsh6Q5gcFBBwFjMsd6WMOxLMaSx5lsj/GdC3/Mv3/ov7KxFQvTiZqkmSK6xbLurkBvHea/DsaQnvgS9WNHEWEDyJjd7OJFVaLYIRFjpPVDlLRDIa7S6maotQl0EiPVLjZ1gU0JIpaUl2pk2IQLNaQU6CRm4n99mqTd5Pxmq18X6wW4noSo2+0O7/dq0+8HZ5kZI0AYnussIKTAn19k/ql+TNH8+jw710Jmih7t7jepN1pEgUanKd3ifjI02trAxE3A0G6tYklBoZWj594BskSGREsLQwQaqtm9WLv2oBNFwe2HsESL1mUH7r7QGn2tmdWDcQmC4GV957XGdSdE/+N//A9+53d+h5/7uZ/jP//n/8zP//zP85nPfIbf+q3fuqbvt9tt/sbf+Bvcd999fOpTn2JycnJ47aMf/Si1Wo3f/d3fJU1Tvvvd7/L5z3+en/zJn7ze3XhdcSlDfuHGVo/rZNqQLnfIzpwj6l2sE5SvP4dstSl0z6GMRLoW6y2FfuosnXUfWwpsk0cVFPHSJom2EczhJJpC9f3oiQNY0mCEINKaJLYJxRgCkK9hWvmlxeeuBa9EEzWXaLv5+nOXBUAXTp5n2tpGHAkinVAXMU3Ro9gxZElMgecJvbeB0wVjUXQuYG/M4VCF0006+TKzzZM0dMo2MUO24bIWCGRSBvp1UQrrl7sc68Fr6ye/1IWhlLrq2F7LeLeiLp87/SX+5SP/EqMUrW4I9I8wWe2sEKaKby79GeNCY5RGBZBkhulihbXjD1NZO0GpnYJKyZyMXi4kiSISLI7d4yGAA98+SqI1jt4Srlvt+l4nm9+U2OhbUdf99eFbpx9bh9wYcaawt87F6zx+np3jOapLCql6JJFFFmygHEGwcwKtFGlpF700pKPLzNTuwggJThdjoBn8GYVIMd7O0X7UJa3tA+Czp/6AMImIs1fv1hlYEG9UULWqr0EWk0gH8awiDn0Mim22Q0t8nSQUZNLHKENFTvN23sF63UKQUq010cIikgKFpHRuCafaIcMiXGr1rV+qX6xWLS7z4INP03voocue/1oUlX25cu5SbGxsDENBBkHVxgjA8GDzeWyh2Wz6NNd8lDZEtRNkxTxzzaPMBKch8nnqfI+nF2uE1SUSNNoYKqtrCKN5/sIfIxyH7QsJre0H6MaHCAuH6MQKX2REmeLUzBQ1p4jKUsZPPY0xBssVpPFFJeaFh0ZfKqtfighmWUaWZW9sC9FnPvMZfvM3f5O/9tf+Gh/4wAf4uZ/7OX7zN3+TP/iDP7im7//Jn/wJq6urfPGLX+T+++/nbW972/DfxMQEn/70p/nSl77Eu971Lv75P//n/PN//s9597vffb278arxchbBwGJyte8sBAs8ux4CBpQmizWnav0sCyMsZK0GQZdeIJCOjcYi7Pq0sj7r1tqGomGjC4vmAJbK6JUklZ4ijDqkQiCMJgXSTKLDBLuXXnFqQP1CRNi+PhuWMWZoan2pcbparMLgtdb66u6hLMJcOEnYVsPXC715jj+zDIC3vMlYx+ZI9jPMulUcY2EbTZr1yUzqWhiRQ+Rq+HN7QYAWEmEMKhVEVp7MT1jt7qAU5HAb4zTELlT67osk7AW1nObEjlcwUteONE2HAaCvRsisdhp8e1ALKMtIk5RIh5RWT2H8Bs0g4a1PnELEhnYS4/sZ6x1J7tTbSZTB1hopJRqNp0+SWDFpnLHQhpMTGUVTZGq5g2oGlA918aMEHvn/AvCpZz91PYbidUMv7rLaW+VPzvwJycICOgjAKMye95Jkmm/qGqQxZbWJJaA7to6TLiBSC5UqKiHUD03TrMcoq4Lbu0AjuZOKmgLAyAwv6VHQEbmsh5s4OIlLaPXntWUgzhKipL8JvdyN1/cvL6/xckszvOJSDi9oZ/f5TcJTy5CFpNLF1z3W41WUNuQUeElGJfVxVIBxVnEl0JnAJCW0lOxMl3CFpE2CsuuIhk8QJ2gh0cJBSFD9xU2cRhSr62SbVdL1dTj6e8CVG/v1wKVy6uVCKXUxtID+4a7agCZDCgsLOLHUIoxiHvr0v8fzY/y5KYS0kVphTpdothrYK6uINOufb2kMm3dMkzMxTqrYUd5GXhuM5WCkxszm6SUQCEU78jHOJGeWQgLdxDnxMKfWnkU6kA7qOdXOXjFul/5dq9W+p0ttUH/vRmc2XorrTog2Nze5/fbbL3vv9ttvv+Zo/V/4hV/g1KlTPP300xw9evSyfwB33303n/nMZ3jqqaf46le/yic+8Ynr3YXXHZcWZhz4VIfmVtU/48hIh2rdI0sMcdY/YkLbBcJMYZJVpM4wwiaW25BWhJVa6JxBaJtytkmgDU2rjJhpEOcsir6imaySAMoChSRbaTAWPE/etpiUNfQl7smoo1jqXJsm+sIJfjUX2csxk77YgtFaDxfcpdqIMBmYbHjArVQJX3j+eZJa/5nxjhn06ipWaiiwQl5IjLCRaYwQAkWB9kSOuFCjndMoI4htQ6skCKanuGcux+o9Y0TJDvLnJG6zjaSHMi5q69iUF2K8t3LN/X0l+F6++MH4Xc2tNhRYxsCZrxBnemipmT/eIUkSlEhpqwUAwlThZQptQdFfIQpjCvEaCActNEILLOmgMKTuGDNjZcZbUFVQ9CwqOo82HkmmmMhZ9LJVwrCFTlMKZ1dZqPuvuJzBy7EkXo/4l2bc4ImNJzCredqf/wL1T/8OonaKb86vk7Q77Dvq98kpNpZJcIxPouapaItYTHKw7qIxTFkGS40x1gxRgOx0MUjm75kBoxmX0+xvn6OQTVLqddEokkaIYwxJmJKkKZvfeIg/fqo/x651A36hhejFLIuX4tI59IqTG777/xv+qZOEeK3HcrvKxkqXC+enMUJiFITpJG5mcNJ+f5K9B0ldgSNBGE3ZcRG2gyPB7kcQUchmyLqzCAwuAU0xRxTFrMyfBgynaiewQ5/nFo9Sf/q5q1Z8HuDVZJjBRcXv0t+j0+m8bIJkjCHVaf9AVhWQxQIhwEpjjGnQO7fIPQsB0nEx2mbH89MYJDrw6ZguAokwmiBJcZMltpujzGkXciUir4SUFmkSI1OBERJlKRIUlnBJI9DSwfFsTjzw38lIUdmWzHj2s33lR+thWY8XU16/V9/e0IRo7969fOUrX7nsva985Svs3bv3ej/qDYMXTogwDIfCJlABiTJoYeH3HM6c7rKqApIsYGVtmlxUpeE+RSW3QS/M03PvhWJEKqfozRbQVpFNK6U9kSMQMfGYJHbqaGEzs9mlbM9tPdXCz0JypkuWd8lt05x+pJ9W/mjjUeykyRPLfRPuC2NyXogXbjYvNJ2+HIFwrQvsMtKlFUZpYl/Tq6UIHVNodSGKKKx9FwSkmeZdvW+gRIZjbBAWJRL2OAewCpMs3dnmVFHSnlxCYrEweYpCL6WX5lhRTQJ9Gz0DbhLhRRGWbCKUIMk0UkB0dJlT1YuBzkK9tnEel5r8r+YK0VrT611Z0G/42xiNf/4xnl1pkxkFGlq1mPHlryFQFGsZRlj4cYYlLIzUfZeYeze64kIuQRuDLQrI6W10khgsm+lkk+lGwOnuDK4lKUbrRPogrUCx+2vfwTebHNts8+T5k7hHT7FxtooKfJqPP/WyBWWavsiZfVcx3b/SuIU4jodzzdb9mkKsFDFbgaYGqF5wKP/2/wdjFXF0jwyJnXXIZx0evndvvyK8AlfC7c4hLKHxxS7aUwYjJHJjg3as8cdthDHkQoOnM2bENqTuYVAkmz7y2KOsPpcSJTHtxx7Hki/e36vh5W5evu9fZlXqdq/M1nopxEEKcd+yVP/y/yTbrGJXPB7fOIkf9ljdsFGui9AFXHsVW0tycUZqeSTlEuCwf6aAEZrJ8x3Ij5HaRWZCG1BASk7mkEKhgdWxtxD2fKJjR0mUQaQWsguL602OHmvT7OT41vK3rmqpeKUZZgDFYhHHcWg2m0OlI03TK+ZokiQvaWkzxvBn83/WL0mgQ5ZrCu0LTE9i6vPUNvcwYU2xM1yh07kHGU/hOz22V55HD+rHSo9AzjHRnscShumCzVMrXZbHp7Asq1+eQzhcyALGrCmMew6BoBulGHMAUchTXKuihSK7itWn1WpdQW601letMeT7PvV6/Xt6Rm4Urjsh+qVf+iX+0T/6R/yDf/AP+A//4T/wq7/6q/zjf/yP+ft//+9f70fd1HglzPfSQLwBoqhD6fljZNoGNKk5zzNygwdXv87JDZe44NCiQ+pWMGsLWAoyEqQQyF0LJFaZ0K2TCk1zqogupmhnH1K6SK1xnTlsIVF2nuXbnqB3oEJmLJQSrG0RnwV/gXztmaHmPnH6Dy7bUF5oFn2p+JXB2Fzr+HwvwX21ewijMEFI0groPLtMtVrASzOMUcjVpzEGMgNjOZtCPeKgLhDfvQdPe0QKEFUsN8dqSeKXqvRSl8xKuXCgQpaNc7e3B9XbR2hiSk2fbeIcUgvQhsaX/gIpBKoR8NjSRQLyWhAiY8yQfA7Gs9lsvqimJqW86ve11qAVGZJnlpr9sgFaIoWh0/K43crjZgKJoROmjCeKqfoJhMnQuKi8zY7DGYzvw3j3UWkv0gwjpvJTKEuBluhkjMNWCWPAUEEbiReFCCQBksXFM3T9d+EsN2k2Ojz4+Bk+9e3zQ4GaZdlLkphut0ur1bpCCF9t436lboxGo9Ef89WnUSrqZ4UB1XoD4g5ZKyEzGrc5T967h1y6Qj1uINFYbUXkKBreduq71tC5GYJ2jtxtewkp0KsICp5NFgYgHGS6SK5RZ+xsD4uEyvIJhLOGuxUTo7rTdMKMY19fQquUvUuX18V6qQyelxtD9MJjUy4t9vnC3+aFwbYDbC50h3Jk/hSsLqygczYTKwEL9SU2ux2icp5EHCTvuCSqQqUbE+Yd9LjC4GLvvQ8/jVGpZO6uMTKnxL2lBeyxw9giw7Ny5EWbXTxFXbv4YUgUFdmMoNYwdHtN7AQKq0/SaUuerR67ou9XI0NXG8sXGy/btq9QRpaXly/7TKPRGFrmXgzGmOHBrs7CAmEWYBmXfLeKEwVknQ5gyDsdHNUlNQmxbagsbFJIFVoIfKfB/5+9846zqyj//2fmlHtub9v7ppJCIBAIEHoLIAjSEcSCiBQrIJ1A6GBAISgoiIAgfMUfARW/fFEEEURRQCkhkLZJdjfb9/Zyyvz+uJmTe/buJlvu3d1kz/v1ygvu7Dlzpj0zzzzzzExGUCFndSSDAnwki2C1CJpVYbAkJIVA1uNQDYJEwoAjLoIQAxQUDAySJEDz+cDKPdCJDlXVTL+5HS2ZAYNbEdPptOWamN3ah+joo4/GI488AlmW8dFHH8Hn8+Gpp57CEUccUexPTVpGu4tqYMP449Y/QmhLIvSff0HvTYH19qEithplrUnU/uEDGG19SKETdevSIIIIXQOiSCNNckJCHDoIAN37IVRlLeIuwK13wEtrEaL9aK/yQMu4oYplyAYPw9zaOrzrT6CVpAHDQNKI4ZPIRvSr/fhnvA9xoyd3+SsRLGc/jWS2ncnkDkbjs9ixzA6G9C1a8xnUf62G1tYNIdKDdW1+OJMU1IghurEVmzfEsCHOEHJ7UNH9XwSkbviFwwAqghxyKKjOQAQJssBARYAYAhwiQdwrI8b6IREdROmBJhIQIYW05kaSNEMgwMeJDFxtKYAZqE/lTo01tm6FlEoMa0liMIbqMAfzxdJ1fVAFIP/Z/LBkMgk9mwEzNKib+3KH/jEGgYmghKE7VQYlHYGkCRANFU6RQl00DYacQX9ZGIZE0W80QhJExN01MAQdVBOgkQwIgFSFiP5QOXRGQUKfQ6dcDzdC8CgKRALUiUvQbwCdW2IwIIMJFOt7P0E2049YWkMsFoOu6+jo6LAMxplMpuD8MV3XEY/HR2SmH6psB+vIuXwmk0loyT7oahqtfRkwwwBtfw9GtB2ZjAcG1dAi7gcVbrDyGJihg2ppVLQaUCUKJlKEnQIyhy9Ff0qFt6EKIApAGeSZdRCYBk1wg6pdcCc7IGQAAg2eyGaU9WTh85RDDc2H1t0IShhiahx6ZBPWdm1f4uaWifyDOQcrh8HyPdRS2I6WGQcuL/Fy1XXdYrHSNQPd8Qw298ShGwbWvPE7dKQNMEbQ370FTAPKmA4wgLAsJC2O/8ytxJ7ljSCyA4JOQT0+JDw1EAUJ+3dF4VlQB6criL0OnodZzn4Igoje8nKwcAAZUUFfx1ZkEnFk01ugJJtAsyqEjAGVqehNJFD3v/8FIQRdXV1mOnkfnj/gD6bkdXd3D2mRSyQSiMVi5kWvA+uCK5RDOXRnMhnE43Hz8lqxuwtpNQGn5EFL6jM4Mr34NP02JKMLZWoXkoIPOolD0NwIxnR40gQRlkXbAbVI+lyYszEBod4N9xf2gXLi1/Dp7D1ADQLFLYEwFQQEBF6E20SE3DLSgSw8CoVBU4CuQ2YMes9HyGQz+OVzL4DpO9+px2VG13VzojLQ2Xy3thABucxfffXVePTRR3HUUUcNaqrfnYnH45aO1jAMS2fCOypN0woGSd6AlN5P0Jftg9hXiSwU9LZ2ApkM3Jt6IGUo5P4EHPEoKHqQpQr6jjwOuiHAxxQIJA2F+hD1LQJhAAQKqkQARmDQLHQCBOVOeFwaiG7AoIAR8ED3OdHj0tDPdGS1DFJ6Fs+3/BFA7kyUhJoBMbLQqWOHs4KBil1+p8LP5xjo+DtUp8IY26Fpns+C88/9IOkUWG8UmkagJ9LI6gJC/X4wQ4WaNQCdoEOlYBqBAAOGQUAEARBk1M9qhAARBhXhFIAKqQweXYTocsLNfJB1N6D4QJQuJN1pyK41INDACOAQCfp1DXWr34TGdJRtXgcjkwF742+QUikkEgmkUqmdnt3BFUxeJvnyM1CZHKweeMeTTqeRTqehqiqcTiccDoflWa4QYXPuRNv+j1pQlfgHRDWG8rY0iK5CIxR6VzcCvQZACPb39KCfpsEosGlmFdIBB7JQIFIJOgWSPgF9zjlIGBFoIqCFG9EbrIJORYisGnExBMFQAUIgEmC6IqMrIkPe9HcwpoOJEjb0fApkk5jd9TKA3KAzmPI7cOAeLGwg+XLIGENnZ2dOwdE0y0neA61MfLmD14uu6dD1DDb3psHUDAwti84oA0UWGtOgEREGJLDufhiEIprthyIAcxtDUGQKI6tBixFUOdyQRIJyj4BqoRoehxvU0NAxvQIMgEvthcEo/E4BNdkP4UimIQkerO+rBEvpUFkGMGS0Jt34tD2MSEqFqhtmWhljSCQSg7a5gRYiVVWRTqeRzWYHPew2f7mH93E7G9Q0TbNMEDNZHe9v7kf8b/dDVVWksirWZmaiq7wO8pZ3QRiDJ9IAGLl+xEv60V4rIqQm0e9sgEEFRFQ3+l31YIwgvXY9TtxvAZRMCocc0Ix9alTIIjC90ofE/jMQ9ySQzcTh6MuCMIppmSQEwwPDUBAXKFrSKUiJDDZ2RKCqqtkn7WiQzm8bvNz4O/nvcdeHHcU1lEKUb7Ej3Wvh7ooDmTSYYUAgDvQgDUlPwp3ZBJceQxVthdPbBUqSSPs+Q0h9A0lPPTSpAXvU+XDkAj9CJACHTOH0SJDc5dBFBRQEAb8HICo8ioRYWRBuhwgGA6GgjM7MelCRguo6oFEwNYFMNguxx4NMJILurk4zD5qmFSjN+ZP9/HKIx+OIxWJDLnNPFEVXiJ566il85zvfMbXtnp4efPe738WqVauK/alJy8DdT4ZhWKwojDFks9kCAaSUbp+ZaGmoTAUVgT49gm4jjbSRgcRicKSduTkDUyFhK5J+ByBQEMLgECkc0JHxBmEIHgAMjABQXBBVBzQhAUKAgCSippIBVX6kvfPhFjz4rCeDhKsCGpsDts1xdu/WIzDHEOHpi4HpQCbdiwSTLeveo7GIDTS18oFb13Xoum7+P38eyCmS0Wi0YHeMqqrmcgljDMwh5iwiGkOyP4OsJkEwMiAwoGYYaDqMg7S/AjoQkCvh6HBDdIoQKQGCQahqCKnEbFTAh4Nci0E0AzG3F2rWAdEgIEQCqAZZIBDAALIe3WIPJBKFzgRoqopPWBRlmzYj2R8D6+6GwFQzrQBMZZgrhvnthQ802WwWmUymYJAf2AHnL5epqopsNotUKoXOzk7ouo5MJlPQ6XZ3dyMej5tlydQMPtB78CH5EJ29fZDXJoFIbjtzPxoAQqD5FODP/wtDFEFlCgJAdRpIeAD/Z22IsgiaFTeIQGEYacQOmgNdFMCohH6/DxJkpLwB6BChkgycgowFvU+CqTqgU0jsTUAQwLIZ0KyKssxmYFvZ8PQPNZve0UCW39a4zPX29gLIKUi8/fDyHiweIy8dqVQKBhEQice2LZkxZEHR36tCZf2IRHuRgYwUk9Exx4WsLOQc/cEQdoYBSYeR0XJOrAYBoYAiaagyquCgEggzoMvNmO7eDw5FABiFUwYEQUNQFeGjPrQlPHCoAlSShV8LIpbMgoDgzx+2oz2yfSbOJww8v/kMzGMikTBlM5FIFFh++aCmaRpSqdR2hXoI8q0snHgyF/ZKRwu09m7IiQTWG90IKk4wDdAgQqUydJcIBQyVQQNMYBAMHZrkBRMoNnblDmOEzqD39oNm0sC2dCt7ngh3pAfOdBqvx9fgP+F/Q1z3LgAVbTNdWCD1QxK9iOnNiBk6tC1JGITgD/9pN605+WUzWHvjfV8sFjMH9Uwmg66uLmzZsqVgksI3fwymHPEyHNiHEkLQ2Zk7Y4imI2h6cwNSfQIOCS8FJSIEJkHUkvD2qwjIAiRFwR7VLuiSgIRPgE4IooFZ0Nk8gAIVS/YBc8jQwSBqGYhURLXfiZn+uahr8GDTLAEEBCnPHqiUe8E0Ffs3leXSSAg6YhvRuXoPyB1ZdP7tA/hlPzLNn0c0FjdlJt8KlJ/3gfBwxpipGA00GkwURVeIHnvsMTz++OPmnWOnnnoqfvGLX+CnP/3pTt7cveCVPpjlg68bx+O5xsQbAu9sAWB9pgNpPQVBoMgItRCIA0bmU4hGAoLmQjaTQkqqhsQMrF4QxuquNBKhPUGlLAzJAPMqECBBEQHd4YGv4SAkpQ/h9SpomFkNZf7emO+bCzUYRmfNLAiSA6msDubQYcCBbJWCrBSClNTgiMfg36ICoGiNrkbM4UYymTQtF3wZjFtydjYj4mXD3wNyCgJXivJnDflx8QE/v2PhQsV9TAgh2PrK75EgGpiqoS77V0TTBtw9CRAwbE0HgWwQzdVukLY+uKgMXQqgYqYLRiAA4nKBiRIIkXBONAlGBMiNGSQDElIGgyJGcv5XVIdWvgFuNQrCMtgSWA9dXQeXpkBnBiJEgywCsVgaXVplrvPOm6UnEgkzv3xQ5uTPpgYqS/nlEYlEkEql0NPTkxukDQOxWAyEEESjUbOjYYxZzvPi8XR3d28fALJZMGLAw+IQDCAZmwOnkIbUp0Lo9UKGAFGSYCR6oGejqC8vgxFSYXiiiAsUzs2dSLV9hBDpAZUZMoSAihQ6NQAIoNsu0nUfdwKo7IHoMRCYWwGHkYZGROiJmdDENCCKUDa8CWQzYKIDTE2ZbWYwixBX6JLJpPmbD2K8XQxUvnmZckWB7wQaONvPL+f8/xqGkVMU41FIlMKgKjTiABhBVzwDsa0PWSIhC4ZMuQSRCHAQA06J4ODagyE6Dcz7+6dwyCJCCoPiltFckYRDluF0AvFUBtmkE4IyCx9KcegGIMKA4JYggcDJHOjKZJAxBGys+QxUzSLGGKiRRuzv3dAMZpEPXdcHHdi5Es3lj5cTf5YvEfE4eJnxwZ0QYnEaHghfJuJs6enH1vc+QiKTQJaJYJoKQU2AqLORzVbD0AxIaYKs6AJp6oKoG5h76n5YQo6HQABJoGBEAKMCAAqwnNXSyF+BEJ2YU9GNoDuBNEsh6k4BoGCIw3AQCKoOj+gGhYEsMZDpyaAry1DrFk0FJL/+eV/T3d2NRCJhTmSA3CRO13X09fUhHo9DVVUkEgmsW7fOUga9vb2mHA7sI7kP32B9ZjqdBiEEgp7FDP9MGGkDQYcfzJBBDArRSAM6gzO1FuLsQxFySWiaNheaKKAXtXD2x0GpABBAqqkBk0RoYBAbl0CkInQQBBQZSmUFsq5+hAMxCJqMKhcDYQwSCBgARoFEpApQNWiKgNTWHtBkD1q6k+ZtA0NdDsz7ZcaYKVu8v+P55kuJk2ElqegKUU9PD+bMmWMJmzt37pBOdrsrfKDhnfjAXUDxeNx0LDMMA319fZZZcHcyDTHeDQeVAEhgVIFT/QiEqXAlKNxqDDpxoNLohYAEvA4BmiDDkJ2QBB21VQbcNIyQGAChBKGZe+OjPbyocfsxf68QEA4DJLcrhoDA5TdgGDpUjwvE2QnH7GYQ6oKsp0FbFSSdTajJtkLLRBBRKgBsnwHywYjndUcKEffx4Fs188srvxPnylK+dSCVSiGVSplbPfk3ubk2nU4DhobeZBvaKssRj3cjaxiAwUCNnLP1Fq0RAhiIogDdESiEAKEyQCDm5ZkQpe11RQT01M9GlXM6MkQGXC6kQ7ORcISge1rhUfsRJQEY/pnYNDcI0ZAA5DohRmRkk1lEdB+iUqVFAeTllq8MA7lZ1kALGJA7qC2/nAZa1PIVqHzFmj/vcDgsO6RUVYUkSWCMoT+RAlOzYCwLhaVRpXVD0HrQHemCAQKAQAZF7/QQdI+EtIOhqaIWc+oXQVVUVJb3QCQU9QkXRAhQJAc0okEQKPw10yFChMpScBpu+NxOuEQd7g0t8EltkDQdEkSAAQbVwWQFUiaLZMIDJsiIRPqxdetWy8SBLxvmz0DzZ+Ic3l4ikUgun/39iMfj6OrqMjtoboEb6NOWX0+83lRVNQf5SJRB01WIVESv0Ys4EQBCoGoGiBEECAWjFBAZ6gQFhOmghKHOXQOFesEYIMsS9mouh6jIcDoMzGmMQFK74Nd7YABo9HugiQRiGhBgIN24COXVIYgMUDUVWTULQ0hBgA5VkOEgOigBEhGrNTpfhjh8QOJKHrf0GIaB1tZWRKNRpNNpRCIRyySFL4sMtauRw2VS13Uzjj+veRupNauRXP0ZspCQJYDiE2GIFCpC0HXAmcqgtzmEdGU1iC5A8HowJ/4v1DSJqPQ5wBxy7hJXjwJZjwEgiL36F8u3HaIOh6gjXX4cQESosgAHkiAiQCCAMB0efSt0QYfOZEQzlXAb2xVvXt+EELN8dF1HMplEKpUyB3ZCiHnlSb4DNbeSEEIsfSNXqPIta/z/eZvkYV1dXduvpFJz1y6xrAbvunVwZRnE3plolQmYwdAZmA/q9gAON0JUQr2jGYKuw92xBRIRQSggbFOMNCpBrF8MkYowDAJNIxDdHqSrv4UFdXE4BR+IJEIUDQif/h/AGKrr0oDqg2L0gKZ1SIkEqJpGf2x7/5Pf1vLzlk6nzY0e+caBgUemTJb7SIuuEM2YMQMvvPCCJex3v/sdpk2bVuxPTUryO+sdra8TQpDNZs1ZV34nw1juUr2atbMB1QMKCo34AJqFQzUAEPTX+nOzJYcMAhFwrkeGSdAcYRAKeP0aAIq6QN82gRBxwfSLUD7/26ACASQJVKSQZ+ZODw7XZQGDgAgUtaFqZJiMeYIKiQGhf29AShbREPsQ2U/WIyoEzE6AN2zeifAOJd+pcuDMIX/JML+MBio+fEsq72D40iOlFJqmWZZ8eJhnwx9BDRVb3ZXQEx2IO6tAE1FoRIBqZOBmTgiMgMgyQAQQUQBrbAKlFJWenCKkSzIAYItnTxggUGoXoNmxJ3QwNIemQxNCqJlzEM7w7A1iMNTGGBrK3dAkEQKJQCcEBoAIqUTq/15GbzoJDRLS6bRl6YXnlZcTJ79cuNLY399vthM+6+LKzkBfED4YATlLFJ95ORwOdHV1IZ1Oo7+/H4IgQBRFbOpJIhNLQacEgihDFiToSCOztQOiKKJJ3oJAKAvilKFTEXLHDIjhOszwz4MmiKjxMKCuEs7+fgAEfpcERnQQgeD0vc/GiafVwyULoN1OCKCQqApvtg+iQ4SoaZCNGgikBy5RRBohUJUgnXbgSf09pDNxZLPZgh1y+eXFGEMkEimwVEQiEXNJg5drNBq1WCkppRbFKt8JdOCMVdM0RKNRqKqK1/7TC9XQIBMKOd2BLl1HOquDagZcKRVMEMEoARUYROhgMNA5txyO5mnb6gkI1XjA5AAgOAAClJUzCNENcNX74XCU49g9F0OQctYQEQTwl4N87xq4Vn8KLZECMVRQ6HAkemEIATizBgLeDGh3r1kmvHwG+mpEo1GLbHLrKpBTAHkfpqqqOYnhilE6nUYqlbJMWjj5/n6RSASZTAb9/f1oa2uDX3EgmTWgUSBBnciIFA2zQki7RDCPjAzNnZKvl4eRbpgJ3RsHYQb28sVQ8/nz8ZWDmnDg8QfBYAS1cSfK2XsAAfTeAZPtbByCwaASAgkUfVUOTFdiIHBAhQtsejUEv4KomIVBRLj1IKi6XdnOd2Xglo/+/n5zMsGXpPOVIP4ub2/59zRKkmS+l0gkLMv+kUgE6XTa0pdFo1HTutnb1QH0fIZoWkdXbxLeN97EkSE3KKHI0m7oFGCiC1RRwPa9AE5FxuL6WkR9HghuFwLz9gMIg0AECIoCTRAhUAEiFeGQRFAANSE37j51CTwOCS4hCMHrhRAqg8OgcFA/ppXPRNLngkQy8GxKQIz1QVANZBIZ6Nuc8PMndPnKTXt7O1RVRXd3t8VayH0+efvJNwhMJEVXiL773e9i2bJlOOecc3D55Zfji1/8IpYtW4Yrrrii2J+alPBBamdbCfnsiS+r5S+NGIYBQSSADnTGsqAsi7THj09nBbEJUSQ8IrLMj75gDToW16CzqgEfJf8OoY5AnqcjHZ6Xs6IwBqeoYg8xAJGI2KPcBSJss35IEoggwAAgEECjMhq0IOb55kFwuJDVs9iDCHBu6ISkE/S4PoSxsRmxVBS96VyHKwiCqRDxjjAajSK1zYGYz5YGDlS8k+Hh/KJILljchBqLxczOYrD3ObwzNwwDKUODSstANGfuagldgJRIQJNEtEXiICQJGDoEUQKZXp87pRU5Pw5y0IG5+AQRR8/w5mZlhpHzLQKQlTNwuikyWRGiKELUs2BMzJmVJQm6QOHKGAhTEboooYt1I5buhMYSgCGYvlHxeNzsUHm9886Q5x/Y7nzPOw4+iPE2E4/HLZY1rogSQiyDGH+HLynxDisWi+WeM4ANa+PIqgYCOgMxKCSBQDdyylWdO41ZtQHMr6iFIQjI1myCFKyARCmSggtU1JCbgG47GRwEMlEwO5xbNg84A/A4pFwnvl6HUVUD2eUBlQVQXYeU9cDTvhHT5BA6U00QVQZRNFC75SA4QE3ncF7XXEaA7act8wE8/5l0Oo3W1lbzvqR8ueTKQL6pn8/SueLd09OD7u5upNNpZDIZSJJk7sJ6N/4x1uoxOKgIHwEYoUgJWQh6AhJUKMEO1Df0ocHpQK75aDCk7ZbAgxsWYPo+5UiQChBvGBAdQHga9mpej9p5daDTK0GCjRCmzQeDAMXhBvV4IIoUoqqBgKHCTSEwHYIBaFREoD0Bvfc1SC0fme2B13lfXx8Mwyiw1HP55VvAeRnm+xPxdsjrgLcfbrHLHwBbWlpMOeZKUzabxdatWxF2O8F0HSkxjaTGEPE3IqmquRZDKXqzSfRVpuCQZHySeBvRbM4qWuVTIEu5beyzy3L3WgqUIlPjhlRdDcfs7QcBZzesB7rXQNKzyGoZOD3lIM4Aap0eSFIYaeYBRArmcSBryNjUVAbq1CGv/q+lX+LlwttG/sSD99355+jw/opbTLq7u9HW1gZBECBJkjnxyWaz0HUd/f39puLErdu8babTadOfVGO59rK+M4UKjxMp5ofzrx8h6FQgu5P4776eXP/lUEBFCpdXgMh0xGbWwxf0gkoSdOTODptVH4ZDdEIkIkQi4qS9a+CYOxfE4QClub1sjAHOOXtArJ8FX9U8hCmBIDsghMrQXRMCIwJSbjeoDrDWDoulh/dR+YoNl5385VPGGERRNMuK+6wJgoCJpugK0ZIlS/DCCy9gyZIl8Hg8OPTQQ/G73/0O+++/f7E/Neng68n5O1K4WX6giZkPhHz5jPsvmDMUVUewNQ0XJUh5U9jsFZFKMwAMrVUytoSaYAgUEmVQZBF1SiO6XR2QRREHVBwMYuSsTKAUjBBQMqCqJQmgBAYDBEKQkMLYKtTB53ADTgn9WhIiIaCMQXC6kJJzx8cjo2KLugWyLEMURdMpmFIKQRBMh8NEIoH+/n5kMhnTVByJRCwzCW4u5ksa3GqU3wHnK5aEEHNGz583DAPRaBSUUpBMDOtWK0g6G2EQQIxm0aL5YIAiFaQgUKFKuZOQKaGAxsCU3Nk4hAKkqQkAYIgiytwidAjQDAOSkCunmDcKz4JGdG9SIQgUgpYGkVy5+EQJVa4KuHvTEBwiki4FDAYYGAyiIakKljNHuAKZb1nr6OhANBq1+EjxHVC8HfX09FiWh3gZRSKRgh093EmYMWZ5LxaLQdM0cyDr2iTi7Q+2gqYAT0RDkCmoFd3YSmIgMCCHyiEToCbsQUZkANPhmjkLAiXoUepBgjUQRQ0ii4BRCXvtm0DbHrNR7a0GADglJ5wVFCAAdTmhHn40cOxhILV7Q/00jqSRAQOge8NIQIPYEoUsaWgkVdD1XL47OzsRiUTQ1dVlOo7zLd35vlO8TLmc9fX1IRaLYcuWLTAMA52dnaYiyOUuPy6uQPCdWdxKyU8Y3r4UqaO7PwSaYEhpGTiUANLQ4KMdSBgxxGYEUBlowOG+6Zjt2QAJKRBnrs6JYUCkIgglWPNuBNThAlE8ILOPAZn7eRiSFwfNyjm0Ns89FG7RCWeoGaRqOiSBIIoaMFB4JANBtR2EABmFgiCLj+U16In2mMsUXNkmhKC/v9+yvMoVgO7ubrMt8GUermznL30NtPYyxuByuUxFP39Zk7dLVVXNJTOqUwhGAqKjCnLCi16jExu31iMW6gUlFBlDg9/rQKXXjTKXH7KwbVfkNiUIAASJwkinIfZ0IuuTIdU3gGnblwjTH68Gph0BkRFkjTRE6obgcIFIChh1QIOI8r37gPJpcGtNSIt+RJQKODauM/ullpYW9Pf3m/2VpmmmhZYrifk+i1wByrfIDZRjrpDyNhmJRNDd3Y1YLGbuRsu3rnBFKde/Ao1SFLIWRX82gLXpmYhqWTgDLsQ9uQ02VHFAcUuYvk8lqOyAQAGvTCGLFJWeSlBCQR0OnFt1MCRBgkhFiIIIqigg26yvmf0vAQODXFUJ0aOAqlGUKwYkxYE9QrNBnX6EhAC6A05Eswa2aikksynTejbQiZ63Fe4rm+/YL8uyOZHm/dZAK/BEUJIUNDc340tf+hLOOOMMXHjhhaisrCzFZyYdvNPgM1reuAezkgzsYERRBKW52XBvby8oo6iCgqrMZuiOBKjugAEBquBCRnHDoDJ0CkiEwCkJiOm9+G/03xCpCFlQQJkBxgAIImqrD4ZTcFoTK8kApdAZg+ggSAsKNsszMN3dhHi5B/9UuyFsO/JdRQA+cQ4oAJrWkWqXkUwmzUGKDybRaNQiFLwTAGCxguQv9/DyIoSYAz43SUciEfT29pqzr/wOnne2+X5ETAeimSB6K4LIGAwGBbbM2RfEJSLpJ6jyqnC7swBjcGY6c06C4cZcevNubztwehAOgaDb0Yg49UGkOedCUaAQPM7csflUQLr6QLgr50NnDIrkgK+CguqdSFc0IK04kBEpKASAGKj8eDMIIejt7TW33vOOk6+hc+dMvqWZK5u8/fCOBdjuhJ4/UHOrUL7VI798FEWBKIpmHIZhQBRFRDZHEY9sgYIghHgVdH0uxHQaH88PQiIfQfL74Zs7HXUVTmQkA2d5F8BZ3whJICivcUGeNR8QRZR7KAgV4HYbYIoTwUqXWabUzSBsO0pZEgj2O+o8wF8PxRNE3EhDkSh0bxj9ehJCJIsMiUKRvehPZMxy4Hnu6OgwyyebzaKrq8u0pOVb3TjcEZ8r5rz9cCtIJBJBJBIx3xNF0XyGl51hGKZCoes6KBPQ9LEG9ikQoeXoZRXIih5UBBXEAxJ69qyBpLjADvg2RGiWuwHnfvovuJcsse6cIxRElIAZRwGigmkVuYuC45sIRFcNiMMDaZ9FEChFUOoFIRSClMTpCQeqQl1AWIUo9SJDDfSKOV9OQghisZjpfM930nV1dZkWHD5x48s5mUzGtE7w/La2tprtcOBuKEop4vHcsiaX1XQ6bS4d5SsJNCkgCwMaq4OoCogZfcgwoN8VAgVgCAoEQcJXl0zHtUsug0i3WQyq9jS/53CJ8JAEmrf+BUJPEtTlAlNVuPZbZD5DFDcUWUC1Yz4EogBUAAQJM8VqaIzib33vQ92vD1QUQJgCTRCQ1ROglKKnpwfpdBrt7e3msjMvp3xFcuA9XXyCwpVo7mjMn+cTm4FL3HwJNpFIYPPmzejv7zeVe/7e+vSB0FQPiBaHpCVyS/2EYNrcg8y+iziUXIR1i0CDDRCZDqdEIFCCJXVL4JJcIIoC0rQEAOAUnWjwNsDh3u4vSZVcm6MuJ8SAC1QQMKuyH4pIIWlxVLp1xCUPkmE3soIMYX07mJGbmLa1tZnO4wOX8vMt0wP7Jz4m5I+XE0nRFaJEIoHLL78cixcvxnnnnYeWlhYcc8wxWL9+fbE/NSnhlc1nWfmaP3eE5bMvPrPiCkD+lnPD0GAwwKdGATGDkBCAzhxIuhUEnCIYRGz2vwdIOUGQqIiIGoVEBMDphC5vM9VLMvxVB6DcUW5NqCTmFCIDEOplGGJOeMuUMkSCIqTkYiCugYEgKVbA5w0DDJAzOrI6sayXa5pmOWWbW3G4dYg7svIlH2C74zSw3VrELWw8Hu4zYxgGtmzZYvoqpdNpU5A0TTNNrVkN6NOTkKEgpQEphwBDcUFEEkzOIJhejYAnZ40w3JUApYAkoaLGgNO/3VxLG+pzB7UpjYjRwDYLEYNIASoSyG4BooNCC8wABUHap2Cf5sPQFKgFZRlQkULV94EmKUiVM0iKF9SgFgsgzzNvE7wj4daKaDSKzs5OU7nmHS2Pg3cuyWTS9ItJJpNmx8sd9nmZ8TIXBMFiISKEQI30ghoMSboENYkFqO+dDbE/Al0HPlyYgDytGb6lx0ICoEsURM/Vj0AJDpgZBpEEQBLgECiQNUCYAUlwQnaKZpkKhEJWcr+bQi5IVAKYDocswTB0BFwykuEGGNQBXcsdHyFJPsSZ02xTfIDgSiD3L9uwYYOlrXDH4PzlsWw2a7YtbsLnltv85du+vj5TGejv74emaVAUxXS8NndiGQTQXNAicTS3JcCgoC/gBQMg7DEPIDpqKoPwOB0Q3DmftAOqFgMAaoNOCH4/uNGWCgSgBBBz5UMlORcGIBs30CtOByEEYa8DIbcMj2hAoG7U1QWwOnAsatLvgPl7AKKDQUVYCZlnXvGdhslkEj09PYjH4+jt7TX9e3p6ekxLBJdTSqlp8enr6zP98wgh5jI5pRSUUnP5R5Zlsz76+vpMCwr/PiEEskbAiAw5pcCT0FHZHkGW6HBQHwRHGrrkwczw3G39mQQUXDENSA4B9eEUBAJA1SHVVAOaBs9hh20rTIJsWzsCB8xDSGoGZRKcogsgBGFRgcZE1DlDEMJBsAoZMnEi7PDB7aIQRdG0OGazWfP8q3wfNa7o9Pb2QtM0s2zyFYD8I0M43Bk9f+mRh3PFi5cZP+xR13UkU0msj8SRMsqgCTpU6su1QQALDjgJPrgAEChzti8bMoFCBoHkzyk4opxraNShgDc6gQoIKkEsOKJue7+3TYGT6ushhQOoqsqiLvVfiGoE7v5/IeiMIUWckEQKQqJI6f1wKk5zLOvs7DT7J75M63Q6oSi5Mcrlcpn9E3eFyF8xGO6VM6Wk6ArR3XffjWQyiT/+8Y+QJAn19fU44ogjcNtttxX7U5MWPtipqgpBEMwZLB/curu7zYaT74DNG4qu60imDWR1AxIT4XZr6E2k8dGsMrxx1DSkvSKyioxN5X2IbutkJSrAYMiZ4mfOQLIpZ14Hpbl/A/F6gaYm6IxBogSqwbCkKberYX5gPpq1BcjQMuhUBKMymqZVggJIJ7OYoexl7vTKN8PzPPABRRRFM998yYYrh/mziHwhyt/tw9fyeSeUvy2fzya4wulyuUBkAp+cxnS4sKXqvxCUj6EJ/cgYq0GDLaAkBVHOwC+155bf5s8GystBRQpCt3e+pLwchADTQg5kdAMOgcApUrgkCkoJJAdFQPbDQR0QqQiXgyHkkiAITgAMgkRA1EoQgUGkFKJE0Vq1yMwbV+byz93I3z1GKTUHX77kxcs7v73w8opEIuZhenznWDKZtDh48jLn1wfwXWu5stfhTCbBIMBn+OGnDpQpHbkzgGQD/s99DgAgOvxQBQHKXrnfkkBhMB1UEHPnB8kijJQGMAMBsX57WyMAJRSyQ0Dd7CBmzSnblmkNviOXILlwNSgBNqd0aMp69NU4AJKFS3bkztra5pTKjyrgW8XXr19vWtb4f/lMtLW11eJblr/DjpcLX07j/muCIJiDHm9ffLmHK6oAIAgCfH06VBKEIsgIpbZAlzwwmASn6MSS6dWglMHpdkGgAkJH7YksM9AWa9teJsb2rfCEAkSUzN9UknM+hDlJyHlgMwM+RYLfKSEgpyFQAbULD4IKCYQYyFZ2Q1QNhDoSKPOFQQhBa2srMpmMaYXglotMJoP29nazXfD+Ccgt0cqybO5w4haedDptsUry5Q2udPKyz99CzWWTy7dn27Z5UfXAxzyQsypSREWlPB8zq5IQUkG4xHxLNgMMDaDbFWtCCDxuBpGK8CjlUPbYA0YyCerMvafMmQutLwEy+7htFy1L2KOpMbfrz8idiH1s+T7QCEHFtFoEpTooVSlEq9xmvfPlUr6UxSesXPnOV3z4UlC+9Sh/6ZpPOrhCxOWVW4PzLd35O0dFUcw5r6dTiLMMsgggyYIAgGqpC4ISAXW70OZbgLqgE2JZmVlGukAgMYbwV87Pyamcm+wRRcm1pTzyXTnoNkXL4RThEGUIsgwQAgEqQt4YRJcC3SCQWRoC64NGq8AMBkmSzHGN+zF+9NFHZl+W73u1adMmc3LL855/5MpEU3SF6C9/+QvuvPNONDc3gxACSZJw9dVX44MPPij2pyYdXJjylR3eKXATPPcx4rOmwQ5sTKfTyMQlUKIDREZlXT/aa0JICxSzvfvDI3jhkBn87jpkmQoHdWxTiBiEbQ08oAiYGXYAgjCoQkRI7nRmzWCQBIKMxjCnPNepuGU3/JIfKd8MGIIAKinwVZchGhSgZRiEbbNDPmAD1lNZ85d7uLk5f6DJP4NnYN4FQTDjMQwDgiBAEASzrGRZNq1TvOPZPnMFYAAqkwFJR+8RNdjqaodT6oLg1NGbSQHdUdT7tNwYQwVgn32AhoaC8vE5BOxZ5cSccgVlbhFLGt1oCuZ8GgSZICyHoQgKBAjI7rPNpO+qgkFFOBwCCByQZC9UKYiA3g1P3GUOFtyKEYlETOsWX77heeIdav5uF26t4OWVP1jz5/MHdW5N43XCzdW8/ZmdUQhwJjQwQgHDADF0ZPZfhAahEue6aswyESQX4O5A9ewwAMDvlKAjA68SAMTc9l6KnELkMy8N3vYuESE7RTAjb8cllQCHF4Lih0AZNsUygM6gGYDc0w2SzsLjdJq+ajyv+WnPZrMQt1lWuIWRW8e4MsktbtzKww/C43XBZ62UUvO8GSC3s49bjPJnr4QQ+EkAbqMM0DMIZQBDcQB6FWQqQxZzd0E595xvKjPJPWaiL7Xdh4LpuqmEE0JApO1LF0RygArbZVadXofA6aebv0WRQha3gsgyNE2CHlcxq3w6AlIY9WsjSG9TBAdubODLrlz543lKJpPmKebcAuZwOMyBStM0bN261ZTjSCSCRCJhWoh42fPdoe3t7aYzreWoh0wCAiiyZWWgrjCokQDEDGRBAGYeCw+rhLBd98Gs4GxAVwFhe9nkCg9wCA40bJsMeo44wiw/lk6BKC7AU4HagBNHza7BYScciPDXv46953RDIAZCshunzToNi/Y+BLLfCdGhIytKEATBLB8+0TMMA11dXabMcusZP/iU91l8yYe3OUVRTIU8v0z5hJCvFPCy6e7uNpdz852PM+kMKlpSAJVBpG13fwGghg7qckGRRex58VetxSNQSGy7siNssxDlFKKhHZcJAZiDggoUYSUMUAlEcYOSDBgjkJwOMIjYM5tFmQJE/dVm/XNFKH/Fg09cuTWbT2Z5n80tctxtYrd0qjYMA7KcMxHnL33wsN0Z8yycbQw04xtG7iA4rhAAMAd73slz82OYBEChIS14wAQRkAhCxiJEtF4QCKBURYXiQdbIwiW6IBAKgwGE5Mrcpwio88vb1s+HbmgHNXhQ5ZHwt5Y4FJF30AChBP1xJwxZhOwQEHA7IBMBBnVDUASL4kJpztzMB1x+SBl3rMzfvcI72Pz88oFq4FkngiBAlmXLbNTlcplLZj09PablQ9M0OJwKoOrQqIB52p6QRREZQwURCDKe6ehiAvoaXBAz3dBUCkGmINsUu6FoCjpA8zo1YLsJOldYwN775QYrkYqo8gqQZAEGJJQ5KyAmZ8HlUOFUPzGVPsaY6VTIlyD4P67A8DxKkmQeNSAIgmkpkiQJHo/HsgWfdyx8aYy3Lw5j22dzPM/pdBofKG/AYNsOYTMYqKEh7QhhntuPmnDT9qzKLmTKHOa79SEXPA4HQu4yQBTBmAHBHQAYw+Lm7QdBEhAIRED1jIBloIfsBoiAun9tzt3ULioIy35QVgOBERiqATVjXfbibSqZTMLl2u6jxK1IfJDmSjnvd/KdYLk1ji978L/zSQwfyA3DgKIoyGazlkMuNU2DT5bAIEHp6YUgCAiHqqGLubZUXh6ES6YQ/P7cth1BRmbePBxck/P5oF4PnAsXmmmnglUhyl8yIyBwVUmQarYrptQwAImByDKObwoj2ibB4XTDKbjAWBZutw5JkixLsPltAMgdwcCVSa7c8E0LqVQKPp/P3PnDl874brR8awhflsvf2ccP/ORlzdsuIym4tFZosgP1rlp8uJcCY94sBN0yqMsDKClMn7a9vfodfsAoVIjcBx2Esm9eZP5W9ti+XOT7/OdRccXlAIDT9q1D0OkGEUXITdMgHHwphIAPhBLIgoz6Bi+mHVINgEBvyjlux+Nxc2cYpdQ8ukGSJFPpSyaTEEXRVIx4+/H5fJaDG7mc8t98mTHfH06WZSiKAkmSLLuxeH9j6AaC3SkQQ4fb0Q4AyFAvqGGAOp3Yqz4AqaLCUj4O2QU3chOn2ftXmr57rr3mF1iI8sn9Kff3OeE5ABVBRQpR64FuUMguBU5ZRTi0N8odBBHv9j4oP79cEefL0/mHfsbjcVBKTUt2/jl9+b5VE0XRFaIDDjgAy5cvt5zT8KMf/WhK7DLL31XAhYBr/Hz2yjtrAGZnlD9rp5TC5/OBMgIQHVtSItJKGEK5DjerQ3c6AUYpKFGxT60XGst90yN6UCXugZBsPZEYwhBLZttwyxSymDuhUaDbTfiiTJCqaMrN+j0yRMWDUKWOPr8fybxLEIHc2jClFJlMxuxouaIEbJ+p8E6ab7UUBMGc6XNliO/6SSQSUBTFjIMPhNyczK1TvNPNdWQyHG0JpOsqIDINlAroZ2vxn6OmQ3PXgzCGjL8ekJ1QUxpEjwujQZDylteU7SZ+gQigYFC8DqhER6CiGYa7CqpQBreSNMuBD9TcmsPP4Mhms5Bl2VSCuALFHaIBQFEU0xQtyzJkWTYH8GAwaCqi3FFfEARzaY0PUnwnIO/UqSLAoDLiVEe4fw3qN/wfklIQM0MMdJ9ztmc8NA2peftYyiLgCCDgDIHKEiBSKPMXA0zHQTO2m/BBcspieb0X0/fJ82WTc74d+/eGEDnlIHzj0CWokiuRmPkVdO+/L0BFaOnt5zZx+eIO+/ltRpIkc6cKn6nztsKVTe4wnL9TMV8WeR309vaaExW+WcDlcpmyLUkS3A4ZstELiaQRdDkQbJqG1rpuSHvOg3/6NJh6n8MD7P8N6DBAtw02zgV7QfB4csoScvIh+LzbiytQaw5iZb4QjjpssaXMlbIQTrz6IhBZRnmoHFFHJRTBCYfgRAIhGNh+OrWiKKaVgls/eNnkbwLJZDLweDwAYCrs+VZu3ofxmb6iKHC73ebOId5/ORwOS5/GlXOXywVZ0BDwuSD6gFC6F2HHdGhRgnqPAkIJiJwCpQMGbD0LCNbJtGNas0VBzEcMBkHz7uxzCNv/H4IIR0M5SCS3bOwQBRw8swyVAQ94hcmyDEIIvF6vqRRxGeQWHL58z+WHTzL8fr/ZhrgliVsfeXviig/vyzRNgyiKpp8atxQ7HA54PB7IVIAm1Oe2xG+b7IpEB1Fyih4ZxM+qLtiEGiVXPjUzg2Y4dbpMH6LBoCTnK7k9QIDj6C9DVhh0JqOuPAj/sYtQFiqDxHRkpSwCgQAymYw5IeaTh3wFW5ZlVFVVmZfVMsbg8+V8oZxOp9m2zIMoJ5CiK0TXXHMN1q1bh/322w+xWAwLFy7EO++8g6uuuqrYn5p0cOEQBME0pfLt1fnLZnwGwoWMC182m811tm43XFQEJRoMiIChgckCKATEMyqYQGCAQCQiNKZhaeVSHF1xNBql/SAOVH7yfBOGggLYo0IxfwsigShTKGUegLDcjhYioNZRB00JoLOnz+zoHA6HuUOOMQan01mwfZJbKfisgXcksiybOyr4M3wbqyzL5mzL4XCY5RoMBs3nuBDyztsAAVQd8eYZWFAhQiUElcJsGCIFgQhqMBiyC0QA4u7ZoC4vRsLSyqUAAH91Xgd9ysnbi5qIoGAwvGUwamsgVNUi5qoAExQ4v3iseVQBt1TwAZkQAlmWTeuZ0+m0LHEBMK1EfCcin43xciKEwOPxmPGKogiHw2FZ2sz36/D5fAiHw3C73SgLuZAKyVCJAk9FOcJVlTh8wTRUuXsgu7a3CxCC8+dbzfMLyhdAFERAksBkEe75ewCzlhaUnUC216+JlOug675wNo487HzUVwbAtCzqquuhCS5kN22CoGVM+eBlMtRpyXzA4bv0+AQDyA10fCDnZZI/eeEWJr6szRVWXmZcWfB6vVAUBYYhYg9/FH5RgyJKmL64EnF3X+6YCipAY3nXjAgiDMZAt3W3vqXH5tLkFLHnYbUglMC5117m4zRUb1qIKpp88IWtO0QppSgLeQFKkfh/z2HDUafA6ci15YBLMicjsiyby7JcQeGDdF9fn3nquyzLKC8vN5d0+MA22An0PJ78TQ19fX3m0QQOhwNut9ssX1mW4XQ6czvYiBO0XsZ+0+egOv0ZGrwLoHVKUGMqfvdBR04/zKvT8AVfA9a/VqAQcbxHHzVoeD5zwtZbE4yutaBb/2X+dskiZEGGge3L/9yCmr+qwf0heTnkKzRc/nh7dLlc5v/zNuZ2u+Hc5ufE2ymvF644cMsJpdS8jLm2qRFC7rI7ZGbmJhmzFobMlYAzZ59ZkGciCqhwiQXh8FQASmDIsqKEgJXlKZBUBBweUKgwJC+cDhn7HbkfjLYP4GjpANumcOcrPz6fz7TaC4IAj8djLh/ycvN6vaYrhMPhgGEY8Hg8pgxOJEVXiARBwLPPPounn34a9957L37xi1/gV7/6FX72s58V+1OTjvxdVtwnwel0mrNRfocLF4T8TpwLGNeSvbIMkWahQYbBsgB1YmG1F1TQwQQCTcgpKZqhISAHIAoEqs7MnQIm1VUDk1kApcTSEKhIoOsMkovCGa6DQbctRxCC6c4ZaHALcDqdZj4EQYDb7TZN9PmzcD4LUBTFVJb4chFXCHkZ8H/5FiUA5uxcFEWzo+DClN8RGYaOuNsHRilkqFAJgzewEUBOWREMBiZQiC6KjW21oMrIlnEDciCXLmV7aeUPygIRoAe8oA4Zoi8AiFJuGUp0gWybBXJlOJdew7Ti5C/58HLJ38kDwCwz7uA50DQfCoVAKYXf74fX6zXLlVKKYDBolh+3hoiiCK/XC9FBkaU6+mrq4Zi7IHdyMgAFEVCnVWn0yJ5By0ab3QQiCBBEAahZaH0n6ICnfpBlW3cFiNMHqbISEpVAJAmCtu3YBhD4PTo8IQ8CgYDZ1riCw/PCy4gvNSiKYloq+bKuy+UyFW7eJhVFMcN5ufKyTqVS5tIsf4bP9MPhnMOyt0xCuVdGKKHBLbtRWedHVs6CsNyZXwazHsyabyHKbzuhGg+8YcUSXtHgNXfozdpvEPnd1s8IPh8knxcZ2Y0Fs78AgzFIVIJDFOF2u01rBJ9Q8AFJ0zT4/X7T94pPToBcG+PtlCvsvG3yQSyZTKK/v998npcr/82/xy17FRUVOcsSFAQDPmjUDcFQoThlgDAwgyGpEjDdAMlbUqV8SZQOMrgDUAZcETUYQSVo+a3pIkRq3QFGqQwmwVQIJUmCz+eDJEnw+/0Wx2BZls32yGWJ+1bFYjF4PB5TeXI6nfD5fIjH45Bl2WyTXq8XlFK4XC54vV5LmfPy4/2KLElgLh3OunIs3e84OMUMiCxDTOVcLsqcZRgIdTrhJ1pBOJzBnMVyCCgB9PIBCpHszp1TRAhABXgcIog7iKDkyPkjUdFsA1z55X5+fCLT0dFhXvbOl/09npxcO51Os7x9Pt9OarP0FE0hWr16NY466igceOCBOPvss9HY2Ijjjz8eLpcLZ511Fl588cVifQo9PT245JJLsGjRIixevBi33XabOYuZSPLPe+Hmel7J+UoQkBv4HA6H+dvv9+fON+E+IpTBl+0AyehoJC50R/w4sN4L3dCxKLQPttAui7mUEgLNAAZanEl19U7TTQmQ7+tKCEGo3gFBJCBl25c4HEIWzD0Ne9e44fP5EAgETBMzH5z4AJ/vMM47Az4Qc/8XPqjn/93hcJgDOp9VcR8EDlfGuFLEEXQNrX4ntkSyqHQyHODfG3t4c74BTX4XFIKcslThhK4xUHHHlrORQglFyF8Lh1vAMTO8MDSGcEACq5iJRnejmQ++jCHLMsLhsDm48+UyriBxRZNblvJPd+XlWlZWhsrKytyShCybVhHe2XKnbD5b5wOl1+uF1+tFVVUVPLITHqcTVWX18B12CNyHHAwYxrbtT8MrI+LzInP2MXD6CpVMWRHhCgwy+3OHAVcIwjYZIZKEvavd8LgknHr0Uiz+1vHwloVQUVFhcUx1OBxQFMVUrJ1OpznwB4NBOJ1OuFwus5z5IMX/63a7EQgE4PF44Ha7zaVbAPD5fGb55yvf2WwWXq8XHo8HXq8XC6ZXQm5ogMAyABHgEBwwKAE1csq3bgw4d4wYIEahjwSlpGCZiAwU4iEQw2Ho0RgkhwMeOWcdrHFNgwAgFAqZPngulwuapkGSJFRUVJi7o3h74suxkUjEPI2bW8IIyR11IAgCAoGAZakjf6MD94ORZRlz586Fx+OBy+WCw+GAy+XKlafDgXkHLQWcYUgyhVOWAbeGyr3DgC7AmYyBDdxppARyp3gXiXBTeUGT9iou1Pmr4ff7c9b5bbJTVVVl+vGVlZWZ/n7cWsv/y5Uabpnjx2MoimJaQLgCzieEHo/H7OtCoZDp30cpNSeXPKx3VhXcbgbZWw4iijAyGSSaQoNnEDlF0hjFmT6E5PwIt0ckArIHit+LeUfPNpfbaPU8uMM+zAjsBWyz6HPrNLB90kEIMZXHfF9T3oa4pSgQCKCiomLQOxzHm6IpRLfddhtmzZqFn/70p/B4PHjooYfw9ttv45xzzoHX68Xzzz9frE/hu9/9LlwuF9544w0899xz+Pvf/45f/vKXRYt/tPCGwLV8fhAekPP94A3f5/PB6/UiEAjA7XabplKuHHi9XshOFzTPDMSaZqKWOCERLySBgkBC0FWBsD+A+f75qFS2H3qZ0QxIw+xM86GEQB/g0Basc4CKBIQAmWDuCgZlwXT4vEE45dxAnZ+3/LVwSZIsyp4oiqiqqkIwGIQkSeagxAd93llwU3P+biquCPCBnu/g4PFzBUxRFIi6AZ/YBAbAhTQqXQ04ouIIeEQPFFEBBUW1UoWAPwHZLex0KXE0SF84Dd5yCXqWQVQo9j7QD8Hrh0NwmMogX47hdc0ta6Iomn/n1jL+HLdgcMWfd6SKosDv95sKFe+0fT6fWZ7cwkYIMcP5bC4UCoHIBPstDeOQedW5jkwQwAaco7Iz3JIbKZpBqHpwPwBp4E6hbcj1dTnnYwBEFEG13CGGlfV+SJUVEAQBfr8fPp/PtIRxpYgr0aqqmso5t3zwcqurq0N5+Xal3uv1mmXlcDjMsuaKI5+58kEcgNm+uDXK6XQiNG8eWFaFwLIInHYKBCqgLuyDsG13jzjAqqHLImjaeqjhqBnQbs8/qAkAEHLL8DklSKKIQCBgprmhocFsW3xw4hZErvTwmTu3ZjPGzJ3CfCJTX19vxgPAXCrnvmyiKMLlcsHn8yGdTqOsrMyMmxCyzcFcwN7H1ENwOuBwiBD2joCJBA21AVR0fwKtu9uaV3dZbmm1SExvigP+OktYWbgRM6rmmpMU7vMUjUbNiRjPH3cM5uWoaZqlr+dyxcuFL1uHQiFThnkbzG9rFRUV5qnffr8fgiAgFAohEMhZ/yXFC+oLYlpoC1g2i0OmHTpkHokkwb1kyajK54KDm7f/oAIgKoArBFq3j7lDTZBEhI7YCwsbK+FySHC5XKisrLRMYvMneJRSsz/nS/b5ZcOtQ5PBqXpwW+QoWL16NV555RWEQiHsscceOO+88/Db3/4W5513Hr773e8W7VjulpYW/POf/8Rf//pXOJ1O1NfX45JLLsE999yDr3/968OOhzvHFRPu7Jq/ZspNp/mCBcD06+A+IG6323T6lGUZaiIO98LZcKoKWhpOQ3kLQzqVRL1+ODKqhgOrDkUymcT+7v3NM1NSmSz0bApJdWT5yqR1pDPbz17haHoW4VkCOj7eds2D1wMpmDWdAnn+8p2d803oXDHk5y/x2TX3/+A7eIDtl5hyZ8Wqqip0d3ebM3QuRKqqwuVyYevWreaSAGMMbrc7J1AVMj4/w4HMJoa4LoElk2AaQy2tRZmvHE6hElua5oB+qhfkt5gIHgaRADo1kN22G4U7nvN08w42f1cLP1OJO74ahgGn04n+/n7TGpY/8+/u7kZ1dTW6u7vNjtztdpvlyWf8vB0ahmFaR/hAd6xvD9TWzsDWiADq0KGFQjBkGUI2A3WYs7YqqQrhQHjIWV6NXDP431wuIJPJ/QPAKitB5e23gYdCIXMJC4BpceXlWVNTg02bNpnWQi53fHDK3+XIFUFVVc22WlZWhq6uLlMRBWBalWKxGHw+n2XHGV9mZJQim82AaClotc1IJBLYq2kBsumcr+CZzWda8pvSs8gmU0WZBUtHHGHGo5xyMrIOGWoiAUoASgyo23w4QqGQuZvV6XSirKzM3BXlcDgQi8VQUVGB1tZWs+3V1NSYFiFeXoqimOdflZeXo6ury5wMcQWou7vbHNiz2aw54cl3znb29SEVDMJIJqG7PRApwznTz8Z7m+OYXulETVUdMGeupYykRARq1gD04lgPxEwG+qwvgOV9Iyu7wKiAsrIy84wrWZbNSUokEsGcOXNACCk4HoP3Sy5X7lgNj8cDfgo6V7T5s4qioLq6Gi6XyzwnC8hNKH0+Hzwej2lZ40dHGIaB2f4ZILKMlOCAP5xFKpFA3fSyHbel6dNH1dZEAIlErk+mqg4jlQJx14Ol0qDZLIxEAirTwZwMbkEy8wXA7KvD4TA6OjrMM614X88tutwowMcIj8dj7iAt5W704ThtE1YktWzhwoV47733zN/z58/H97//fXzta18rRvQmf/rTn3DdddfhH//4hxm2Zs0afP7zn8c777yz03XIeDyOfffdF2vXrjVnhcVi9uzZ5pUW1dXV5hIYd6jmswG+pXrr1q25zpXlDtlrampCOp3OXYQoy+jOZHLLYg4XPAuOQeydVfAfeBbUd1+CpqvIamnL953TFiG1/l9DpG5oqNMHMViNbNsaS/icukVY0/ouTtzvq3jxn4+a4fs5XXgnldt6Wl5ejmg0as7M+eDFnSvXrl0Ll8tlnlidf40LN9d3dXWZ1ozy8nJks1ls2LDB7HwDgQCCwSD6+vpM34W99trL3EHFDyHUNA1JncJIRQfkj8JIGbjyIBkPvpNFcpzP/1oy50S8ufr3mDZtGgzDQEdHB8rLy83dZbwD5Z3uunXrkMlkTGtOIpFAdXW1eZCbx+NBS0sLZFmGz+dDW1ubuQTLLXXcJM9nvdyhtr+/39ypxgfHE2aKWNdrYE2PVR6uO0TGbW8UyaoxAmrD09Has84S5vV6MXPmTHzwwQcIBAKmtbWtrQ3Tp083B+lEIoHy8nLzKg5+7gnfEt3d3Q23223OTru6ukwrmyiKpmLJZ/LJZBKpVArV1dVgjKGlpcVM05EeD+pm1uCJ9z7daZ7K53ggbsygPVW6xne424MqScRWVcM/t/kwJZNJ0yE8k8mgrq4OwWAQH3/8MWpra80JSFdXl7kJpLm5GVu25O4rrKioQCwWg8vlQldXF1KpFObMmYNYLGbu9PN4PAiHw5ZTlmtra82LZHVdR21tLdSeHmjxBNo0FUtcbqzOpNGr6xC8OT8YT6IXkQF98rxyio+6itdPf30fCS99pqEttn3YkwQZOtNhGLopU6lUChUVFYhEIvB6vdi0aRN8Pp+p6HEFnZ+Jln+vWSgUgsvlwtq1a02FkMub2+1GMpk0LXSRSASBQMA8v44vK8mybFqilu59Lv747yfBwHCo14U5khM/6+1Bqe0pBzcIeHuLDs3IbcY/vEnAXzbqmN+wHzZufQfxLMzJl9vtRjgcxqZNm+B2uxEMBs1DT4PBIFpbW9HQ0GD22a2trbmy32a15BsXeP9eCoal6rAisXDhQsvvvffem2Wz2WJFb7Jq1Sp22GGHWcJaWlrYrFmzWHt7+07fj8VibNasWYxSmrsptYj//H4/Izn3f0YpZYQQJooiEwTBDBNFkRFCBv0+pZRJkjRI3IQR2Zn7f1L8dA/1z+3wMQBMFhVLeGhbfvL/EUKYJElMFEUmSZL5m/+NPycIguX3wDgIIWZ5DSzLgc87nc4R1aMijk+5jeRffn7zyy6/TfB2oyjWehBFcYf5z29PA8tvOOUmkIkvn/x/sixbym1gOJcrURQZgAJZ4nnm/80vm8HaWL6cSpI0hGzuWv8EQSgohx39kyTJUqY8jvzfvB1y+R0sHt6OJzr/XhmMDqNdD5TLgXnJzzP/f/4c7+N4WQiD9Jf57W1HfSIAFvRUmP8fEgQmjlNZDSwnr5z7ryK7hyyzwcK43AzVj4/Xv+FQtCWzgXAfiGLjcrkK7jzhv0dyjkFbW5s5cyoWPT09+OyzzxAKDe3wZmMzVvhZQ3PnzjW38trY2NjYjI2iKUSapmHVqlXmb1VVLb8B4JRTThnzd2bOnIn+/n50d3ejbNv9LevWrUNVVRW83uGfK+N2u4t+EFQ6nTZ3uNjYlApuns8/28TGxsbGZmwUTSEqKyvD/fffb/4OBoOW34SQoihETU1N2HfffXH77bdj+fLl6Ovrw09+8hOcnnfXj42NjY2NjY3NSCiaQvTqq68WK6qdcv/992P58uU46qijQCnFKaecgksuuWTcvm9jY2NjY2Oze1EyH6JSMtAaZWNjY2NjY2MzFop+dYeNjY2NjY2Nza6GrRDZ2NjY2NjYTHlshcjGxsbGxsZmymMrRDY2NjY2NjZTHlshsrGxsbGxsZny2AqRjY2NjY2NzZTHVohsbGxsbGxspjy2QmRjY2NjY2Mz5bEVIhsbGxsbG5spD2GMsYlOxHjCGEMikYDb7QYhZKKTY2NjY2NjYzMJmHIKkY2NjY2NjY3NQOwlMxsbGxsbG5spj60Q2djY2NjY2Ex5bIXIxsbGxsbGZspjK0Q2NjY2NjY2Ux5bIbKxsbGxsbGZ8tgKkY2NjY2Njc2Ux1aIbGxsbGxsbKY8tkJkY2NjY2NjM+WxFSIbGxsbGxubKY+tENnY2NjY2NhMeWyFyMbGxsbGxmbKYytENjY2NjY2NlMeWyGysbGxsbGxmfLYCpGNjY2NjY3NlMdWiGxsbGxsbGymPLZCZGNjY2NjYzPlsRUiGxsbGxsbmymPrRDZ2NjY2NjYTHlshcjGxsbGxsZmymMrRDY2NjY2NjZTHlshsrGxsbGxsZny2AqRjY2NjY2NzZRHnOgE2BRiGAZSqRTS6TQMwwClFIqiwOl0glJbh50MMMagqiqSySQ0TQMAiKIIl8sFSZJACJngFNoAg8uSw+GAy+WyZWkSkc1mLbIkCAJcLhdkWbZlaZIwFWTJVogmEalUCp2dnYjFYkM+4/V6UVFRAafTOY4ps+EYhoHe3l50d3ebnfdARFFEWVkZQqHQbtNR7GqkUil0dXUhGo0O+YzH40FFRQVcLtc4psyGYxgG+vr60N3dDVVVB31GFEWEw2GEQiEIgjDOKbQBgHQ6jc7OzikhS4QxxiY6EVMdXdfR2tq6wwY3EL/fj5qaGruTGEdisRi2bNkCXdeH9bwgCKitrYXP5ytxymw4uq6jra0NkUhk2O94vV7U1dXZsjSOxONxbN68ediyRClFbW0t/H5/iVNmwzEMA21tbejv7x/2Ox6PB3V1dRDFXdPWYitEE0wmk0FLSwuy2eyI35VlGY2NjXA4HCVImQ2HMYauri50dnaO6v3y8nJUVFTYpv8SMxZZkiQJjY2NUBSlBCmz4TDG0N3djY6OjlG9X1ZWhsrKSluWSkw2m0VLSwsymcyI3xVFEY2NjbvkKoatEE0g2WwW69atG/YsaTAEQcD06dMhy3IRU2aTT0dHB7q6usYUR1lZGaqqqoqUIpuBqKqKdevWDbmMORwEQcC0adPsCUYJ6erqGrUyxAmHw6iuri5SimwGoqoq1q9fP+Qy5nCglGL69Om7nCzZDg4ThGEYaGlpGZMyBOSWCFpaWmAYRpFSZpNPJBIZszIEAN3d3SMyPdsMHy5LY1GGgO2yNFaZtBmcaDQ6ZmUIAHp6etDb21uEFNkMhDGGTZs2jUkZAnIyuXHjxl1OlmyFaILo6uoalTlyMDKZDLq7u4sSl812uG9XsWhraxvzoG1TSE9PD9LpdFHiymazRVGAbawUW5ba29vHPGjbFNLT04NUKlWUuFRVHbWbwURhK0QTQDabLboC09XVZXcQRaazs7OoljfDMHa5DmKyU4pOt7u7e1R+SDZD09XVVVRrAWOsKNYmm+1omlZ0Werp6SnaxH88sBWiCaC7uxvFdt3izoo2xUHTNPT09BQ93t7eXltxLSI9PT1FlyUAtpWoiOi6XhJZ6u/vtxXXItLT01MS14tdaRJoK0TjDGOsZL4k/f39JRkcpiIj2bY9UkZyvILN0DDG0NfXV5K4I5GI7ZdXJKLRaMn6pVLK6VSilONSNBrdZWTJVojGmXg8XrLGoes6EolESeKeapTSAbpUg/hUI5lMlsxp0zAMxOPxksQ91SilLNkbFYpDKpUqmeWaMbbDw4YnE7vm6Um7MMlk0vL7Jz/5ibldeOvWrairqwMAHH300Tj++OMtz/7617/GjBkzsN9+++0wfo/HU/yETyEYYxbHwmLXUf7R9zajZ6DyXwpZsg/VHBuMMUufV+w6ymQy0HXdPlRzjIzHuLQrHKppn0M0zrS0tAyqLXd2duLGG2/EQw89NKb4fT4fGhoaxhTHVCedTmPt2rUF4cWqIwCYPn36Lnlw2WRi8+bNgy6ZFKuePB4PmpqaxhTHVCebzeLTTz8tCC+mLE2bNm2XvzJiotmyZcug1rZi1ZPb7UZzc/OY4hgPbAvRODOc7cEfffQRnn76afPCw/PPPx+LFy/GAw88gHnz5mH+/PlYvnw5AoEAAODWW28dUfw2O2Y4uyLGUkdAbqCwFaKxUWpZ2pV2x0xWxkOWMpmMrRCNkVLX064yLtkK0TgzHP+hl156CRdffDHq6urw0Ucf4ZFHHsHixYstz7S3t+O6664rOLF1V3Fem8yUuo4A7HIHlk1GbFma/IyHLNn1NHaG0x9NBVmyFaJJyLe//W3861//wltvvYVPP/10UO3a5/PZx9dPIHYd7RqMpZ5sb4KxM5wytGVp12Aq1JPt1TnODMeR9rrrrsP69esxffp0nH766YN2KkPdEWM76o6dUtfRcL9hs2NsWZr8DMfZ2ZaliafU9bSr1JFtIRpnFEXZ4fbGWCyGjo4OnHnmmZBlGU899dSIzI32bd1jZ2cXEo61jobzDZudoyjKDn0fbFmaeHZ26bQtS5MDh8Oxwys7xlpPu0od2QrROKMoyg7PZPB6vTjyyCNx2WWXQVEUzJ8/H9lsdtj3y+wqDW8ys7NOfKx1BNj1VAx2VoZjrSdbIRo7siyDEDLk0pktS5ODnbX1qSJL9rb7cSYWi6GlpaVk8Tc2NsLr9ZYs/qnCunXrinbJ4UAURcGMGTNKEvdUIh6PY+PGjSWLv6GhwT6HqAisX7++4JybYiHLMmbNmlWSuKcSyWQS69evL1n8dXV15u6zycyusbC3G+HxeEq2nkoptQ9lLBKlFN5doWPYFXC73SU7kM+WpeJhy9Lkx+l0QhRLs2BECNllJha2QjTOEEJKJsSBQACEkJLEPdUo5amqu8KJrbsCpZQlv9+/yziCTnZK2d5thag4EEIQDAZLErfP59tlZGnXSOVuRllZWdHjJISUJN6piiiKCIVCRY83GAxCkqSixztVKSsrK8kkwJal4iEIQknKMxAI7NTfz2b4hMPhkshSeXl50eMsFbZCNAHIslz0DqKsrMzuHIpMRUVFUWc2hBBUVlYWLT4bQJKkone4ZWVltqNukSkvL7dlaZIjiiIqKiqKGmcoFNplHKoBWyGaMMrLy4umwDgcjl1KC99VEEURNTU1RYuvpqamZOv0U5liKjCyLNuyVAIEQUBtbW3R4quqqrItrSUgHA4XTYGRJGmXU1pthWiCEAQBjY2NY3YK5fHsKmu0uxqBQKAo1rxwOFyyNfqpDqW0KLJUrHhsBsfv9xdF2QwGgyVZzrbZLgNjnbjtqrJkj6ITiMPhwHPPPYfW1tZRvS9JEpqbm+2lshKzadMmvPzyyzs8UHNHlJWVoaqqqsipsslHlmU8//zz2Lx586je57JkL5WVlvb2dvzhD39ANpsd1fvhcBg1NTX25pESIkkSXnzxxVEfaSGKIpqbm3eppTKOfQ7RBPLaa6/hiCOOgCAIOPXUU3HBBRcM26zc0dEBSZJw6KGHljiVNkcffTT+/Oc/o6mpCRdeeCFOOOGEYc2gKKV46623cO6559o325eYt99+GwceeCAopTjllFNwwQUXoKGhYVjv9vT0QNM0HHXUUSVOpc1JJ52E3//+96ivr8c3vvENfO5znxvW0hchBG+//TbOPvtsuN3ucUjp1OX999/HwoULQQjBSSedhK9//etobm7e6XuGYeDtt9+Gy+XCeeedNw4pLT62QjRBMMZw6KGH4m9/+5sZ1tTUhD/96U87PBDQ4/GgoqIC7733Hg477DAsX74cV1111S5nmtxV4EprPitWrMDxxx8/5A3RfFdNKBTCSSedhM2bN+OZZ57BvHnzxiPJU5Jjjz0Wr7zyivm7uroar7/++g6v9nC73aioqMCaNWuwaNEi3HDDDbjhhhtsP68S8Y9//AMHHHCAJey2227DqaeeCk3TBn1HEASEw2GEw2GcccYZWL16NZ555hnstdde45HkKcnJJ5+MF1980fxdVlaGN998c0ir3j/+8Q+88soreO2119DR0QEAuOqqq3DLLbfsen5ezGZC+N///V8GwPLvJz/5CWOMMU3T2L333suWLl3Kjj32WLZ06VL24x//mGmaZr7/97//3XzvqKOOYm1tbROVld0WwzDYwQcfbKmjmpoalkwmmWEYrLOzkx133HHs2GOPZcceeyw77rjjWHt7OzMMw4zjxBNPZACY0+lkP//5zy1/sykOr7/+eoEsrVixgjGWk6WVK1daZOnuu++2yNL7779vvnfIIYewzZs3T1RWdmuOOeYYSx2VlZWxWCzGDMNgkUiEHXfccWY9HXfccWzjxo0WeTn99NMZAOZwONiDDz5oy1IJ+Mc//lEgS7feeitjjDFd11ksFmNdXV2so6ODdXZ2smg0yr7xjW8UvAOAHXDAAWzDhg0Tm6ERYitEE4BhGGy//fazNJ7GxkaWyWTMZ775zW9a/n7ppZda4vjnP/9p+Xt5eTn74x//ON5Z2a15+eWXC4R85cqV5t+7u7sL/t7e3m6J4/Of/7zl72eddRbr7+8f76zsthiGwQ499FBLGVdXV7NkMmk+873vfc/y9wsuuMASxwcffGD5eygUYi+88MJ4Z2W35q9//WuBrNxzzz3m3xOJRMHf169fb4njrLPOsvz9C1/4Auvt7R3vrOzWLF261FLG4XCYRaPRHb7zwgsvDKoQAWB+v5/95je/GafUjx3bqXoC+P3vf4933nnHEnbjjTeOyDl64K6yrq4uHH/88fjBD34waodFm+0wxnDDDTdYwhoaGvD1r399RPEMrKdnn30WCxcuxD//+c8xp9EG+POf/4y//vWvlrDrrrtuRD5bA+uot7cXJ598Mr7zne/scMnNZngMJktVVVW45JJLRhTPwHp6/vnnsffee+Ott94acxptgDfffBMvv/yyJezqq6/e6d2YRx555JBjVyQSwRlnnIGLL764ZHdDFhNbIRpnDMPAjTfeaAmbMWMGzj///BHFM5TP0D333IPDDjsM8Xh81Gm0Af7whz8UKC033HDDiHchDVZPGzZswJIlS/Dkk0+OKY1TncEG2vr6+hErrUPJ0v33348lS5YgEomMOo02wKuvvorXX3/dEnbttdfC5XKNKJ7B6mnTpk049NBD8cgjj4wpjTYYtdLq8Xh2urnnoYcewuLFi9HT0zOmNJYaWyEaZ55//nm8//77lrBly5aN2JFzqHOHlixZgkceecS+mHIMDKa0Tps2DV/+8pdHHNdQ9bRixQqceeaZo0qfTY4//vGPePvtty1ho1Fah6qj/fffH7/4xS/su+fGwGBKa11dHS688MIRxzVUPd11110499xzR5U+mxyvvvoq/vKXv1jCrrnmmmErrUuXLt3h3xcuXIhf/vKXCIfDo07jeGArROOIrutYtmyZJWzOnDk455xzRhzXULPaWCyGOXPmjCp9Njmef/55vPfee5awZcuWjWrHxFD1VFVVZZ95MwYGG2inTZuGr3zlKyOOa6g6ikQimDt37miSZ7ONP/7xj/j73/9uCbv++utHdUbNUPVUVlZmH2sxBoZSWr/xjW8MO46dWYj6+/sxf/78UaVvPLEVonHk2WefxUcffWQJu/nmm0e1ZZ7PlgZuP/3vf/+L5557bvSJnOIMprTOnj171DNQSimCwSDq6uos4cuWLRty277Nzlm1ahXeffddS9iNN944KqV1KFlas2YNnn766dEncorDGCuwtDY1NeGrX/3qqOKjlMLv9xecL3XzzTeP+tBUG+Dll18u8MO67rrrRqS0Lly4cIfWpA0bNuCxxx4bdRrHjQl06J5SqKrKZs6cafHAX7BgAdN1fdDnd7bLrKuri/3tb39jmqaxuXPnWp6dM2eOZVuxzfB5+umnC3ZKPPPMM4M+O5xdZn/+859Zf38/++1vf1vw7BNPPDEeWdrt0HWdzZ8/31KWs2fPZqqqDvr8znaZ9fX1sb/85S/MMAy2zz77WJ6dNm0ay2az45Gt3Y7nn3++oM0/9thjgz47nF1mr732Guvt7WUvvfRSwbMPP/zwOORo98MwDLZo0SJLWTY1NVl2PA+XI488suCIkvzfdXV1LJVKlSAXxcNWiMaJxx57rECIV61aNeTzO1OI8vnNb35TEPeTTz5Zimzs1qiqymbNmmUpxz333HNIpXU4ChHHMAy2cOFCy7PTp0+3B9tR8MwzzxSU+69//eshn9+ZQpTP73//+4K4f/7zn5ciG7s1uq6zPffc01KOs2bNGlJpHY5CxDEMgx144IGWZ+vr61k6nS5llnZLBtsy/4tf/GJUcS1btqxgYj4w7vvvv7/IOSgutkI0DmSzWdbc3GxpGIsWLdrhwWIjUYh0XWd77bWX5fkZM2bYg+0I+eUvf1kgwP/v//2/IZ8fiULEGGO/+93vCp5/5JFHSpGV3RZVVdns2bMtZTh//vwhlVbGRqYQGYbBFi9ebHm+oaHBHmxHyLPPPlvQ1p966qkhnx+JQsQYY3/6058Knn/ggQdKkZXdlsHGjZkzZw6ptO6MV155xRKXKIrskEMOsYRVVVWxRCJR5JwUD9uHaBx47LHHsGHDBkvY8uXLi3ZBIaUUy5cvt4StXbsWTzzxRFHinwqoqoqbb77ZErbPPvvglFNOKdo3Pve5z2Hx4sWWsOXLl9tn3YyAp59+GmvWrLGE3XzzzUPuQBophBDccsstlrBNmzbZ27pHwGB+eHPnzsVZZ51VtG8ceeSROOywwyxht912G5LJZNG+sbvz29/+Fv/5z38sYaPZ8cw54IADLP6wmqbhjDPOsDyzdetW/OQnPxlV/OOBrRCVmHQ6XdDBHnTQQTjuuOOK+p2TTjoJ++23nyXslltusQ9pHCalVlqBoQfbRx99tGjf2J0ZTGlduHAhvvCFLxT1O0cffXTBrpnbbrttlzhYbjLw9NNP45NPPrGEjXbzyFAMJktbt27FT3/606J9Y3dmKKX17LPPHnWcHo8HCxcutIT19/cXbMm/6667EIvFRv2dUmIrRCXm5z//ObZs2WIJu+WWW4o60AKDdxAtLS32YDsMMpkMbr31VkvYAQccgBNOOKHo3zr66KNxyCGHWMLswXZ4PP7441i/fr0lbLxkqb29HQ899FBRv7M7MpjSuvfee+PUU08t+rcOOeQQHHvssZawO++80z6Udhg888wzWL16tSWsGErrwQcfbPn9t7/9rWD1oru7Gw888MCYvlMyJnrNbncmkUiwqqoqyxrq4YcfPqx3R+JDxDEMgy1ZssTyXm1t7aT37J9oHnjggQJ/hFdeeWWn743Uh4jz2muvFbx33333FSEnuy/pdJo1NDRYymzx4sXDuuBzJD5E+Rx99NGW9yoqKlg8Hh9rVnZrHnnkkYK2/eKLL+70vZH6EHEGu4z09ttvL0ZWdlsG2/G811577dAPb7gM3E0bDAaZYRjspJNOKgifjHc62haiEvLTn/4UW7dutYQNnHkWk8Fmtq2trXj44YdL9s1dnWQyidtuu80Sduihh+Koo44q2TcPO+ywgvjvuOMOJBKJkn1zV+fRRx/Fpk2bLGGlsA4NjD+fzs5OrFy5smTf29XJZDIF1oD9998fJ554Ysm+OVj899xzj33dyg548skn8dlnn1nCli9fXhQ/vL333tvyu6+vDx0dHQXtoq+vD/fdd9+Yv1d0Jloj212JRqOsrKzMohUfe+yxw35/NBYizhFHHGHPbIfJD3/4w4IZ5uuvvz6sd0drIWKMsbfeeqvg3TvvvHMsWdltSSaTrLq62lJWhxxyyLCsQ4yN3kLEGGMnnHCC5d1QKMQikchos7Jb8+CDDxa06f/93/8d1rujtRAxxti7775b8O6yZcvGkJPdl0wmwxobGy1ltd9++w1blnaGruvM6XRa4v/Tn/7EGGPstNNOs4R7vV7W3d1dlO8WC9tCVCIeeOABdHd3W8JKaR3a0Xc6Ozvx4IMPjsu3dyXi8TjuvPNOS9hgDrWl4MADDyzwUbr77rsRjUZL/u1djYceegjt7e2WsFJbhzgDZ7a9vb340Y9+VPLv7mqkUqkCS+uSJUsKfHxKwcKFC3HaaadZwu677z709vaW/Nu7Gr/4xS/Q0tJiCSv2jueBV0d9/PHHAHI+SvnficVi+OEPf1iU7xYLWyEqAZFIpKCiTzrpJOy///7j8v0lS5YU7GK7++67J61n/0QxkUorMPhg++Mf/3jcvr8rkEgkBlVaB265LhX77rtvwS62e++9F319fePy/V2Fhx9+GG1tbZawW2+9dVyUVqBwsI1Go5NusJ1o0ul0weaRJUuW7PRi1pEyb948y29+XdW8efMK7u28//770dnZWdTvjwVbISoB9913X0GHOXDwKzUDv9fT02MPtnlEIhHcc889lrDPfe5zOOCAA8YtDfvuu2/BOUcrVqywB9s8Vq5cWdBhjqfSChQOtpFIBCtWrBjXNExmEokE7rjjDkvYkUceicMPP3zc0jBv3ryCLeP3338/urq6xi0Nk52f/exnaG1ttYSVwtI6lEIE5M45yvdVSiaTuOuuu4r6/TEx0Wt2uwstLS0snU6z7u5u5vP5LGulp5122ojjG4sPEefzn/+8JQ6/3896e3tHHM/uxGeffcYYY+ymm24q8Dv497//PaK4xuJDxPnPf/5TEMf1118/ojh2NzZv3sySySSLRCIsFApZyuaEE04YcXxj8SHinHXWWZY4PB4P6+zsHHE8uxNclu66666CNvzmm2+OKK6x+BBxPvnkE0YptcRx+eWXjyiO3Y3W1lYWj8dZIpFglZWVlrI54ogjSvLNF198cdCdZpyvfOUrlr8risJaW1tLkpaRYitEReL+++9ndXV1bOnSpZbKJoSwDz/8cMTxFUMhev/99+3BdgDV1dXs9NNPL1Bav/CFL4w4rmIoRIwxduaZZxYMtl1dXSOOZ3fh5z//Oauuri5waAbA/vWvf404vmIoRKtXry4YbK+44ooRx7M70dzczE4++eQCpfW4444bcVzFUIgYY+zLX/7ypB1sJ4Jf/epXrKKiomDbOwD2t7/9rSTfXLdu3Q77xfXr1zNRFMc8vpUCe8msSBiGgS1btuDll1+2hJ999tkFJsTxYq+99io4Ov1HP/pRgd/MVEJVVTz33HMW52VCSMFhcuPJTTfdZDEjx+Nx3H333ROWnolG13W0t7fjpZdesoSfcsop2HfffSckTXvssQfOO+88S9iDDz5YcKzGVELTNLzwwgsFzsvj7R6Qz4033mi5eiKdThcs500ldF1HZ2cnfve731nCly5diiVLlpTkm01NTXA6nZaw/GWz5uZmXHDBBZa///znPy84VmMisBWiImEYxqDhe+65J3RdH+fUbOemm26yrBHH4/EC35mpxGD11NDQAK/XOwGpyTFnzhyce+65lrCVK1dO2cF2KFlasGDBhMrSjTfeaDnJN5VKTenBdrB6qqmpQTAYnIDU5Jg2bRq+9rWvWcJ+9rOfTYrBdiIYSpb22msvqKpakm/uaKcZ57rrroMsy+bvbDZb4PA9EdgKUZEYqqO+9tprcfHFF4MxNs4pyjF37lx88YtftIStXLkSHR0dE5KeiWawemppacH8+fPx4YcfTkCKcgw22A7cXTVVGEqWli9fjq985SsTJkvTp0/HV7/6VUvYQw89VHA1z1RhsHpqa2vDnnvuiXfffXcCUpTj+uuvLxhsBx4JMFUYSpbuvvtufPGLXyyZLM2cOdPye6CM1NfX46KLLrKEPfbYYwVX84w3tkJUJAbTxAkhuOaaa/Dggw+O2/bTwVi2bJllsE0mk1N2sB2snmbMmIHXX38d8+fPn4AUbU/DV77yFUvYVB1sh5rVfv/738ejjz46obJ0/fXXQ5Ik8/dUHmwHq6empib85S9/wT777DMBKcpRX1+Pb3zjG5awX/ziFxM+2E4EQ8nSpZdeiieffLJkslRdXW35PfAcMQC45pproCiK+VvTtAldbgVshahoDNTEKysr8fLLL+P222+3dKATwcyZM3H++edbwn76059OycF2YD2de+65ePfddyfMNyWfG264wdJWMpnMlBxsB9ZRWVkZfv/732PFihWWmf9E0NjYiAsvvNAS9sgjj2DDhg0TlKKJY2A9nXHGGXjvvffG9eiKobj22msn3WA7EQyso2AwiP/3//4fVq5caSmfYjMchai6uhqXXnqpJezJJ5/EJ598UrJ07QxbIRoGjDFkMhnEYjFEo1EkEomChpb/+9hjj8V//vMfHHPMMeOd1CG58cYbCwbb22+/3fyt6zoSiQSi0ShisRgymcyELU2MluHkgdeTy+XCY489hieffHJC/YfyGWywffTRR7Fx40YAhe0wHo9PqE/NaBiOLOXPag8//HC8//77+NznPjfeSR2S6667rmCwzT8byTAMSztMp9O7tSwpioKHHnoIzz77LAKBwASktpChBts1a9YA2D1labA85MvSkiVL8P777xccNFoKampqLL8HU4gA4KqrroLb7TZ/G4Zh2eAy3rIk7vyRqUsqlUJ3dzdisdigpkdFURAKhRAIBGAYBkRRxG233YYrrriiKBflFZOmpiZccMEFeOihh8ywRx55BN/4xjfg8XiQTqcL3qGUwuv1ory8vKSzibFgGAb6+vrQ29uLTCZT8PeBeTAMA3vttReeffZZzJ49ewJSvGOuvfZaPProo2ZeVFXFTTfdhFtvvRWxWGzQTtvhcCAUCiEYDE66dsdJp9Po6uoaUpby82AYBiiluPnmm3HNNddYlnsnAzU1Nbj44ostl1M+8cQTuPjiixEMBoeUJY/Hg/Ly8oIdOJMFwzDQ39+P3t7eHfYHZWVlcDqdMAwD8+bNwzPPPDOhy81DcdVVV+Ghhx4yL002DAM33ngjVqxYsUNZCgaDCIVCk1aWMpmMKUs7y4NhGCCE4LrrrsOyZcssO/BKyXAsRABQXl6O73znO5bJ+bPPPovLLrsMVVVVSKVSBe9wWSorK4PL5SpquidnjU8wmqahpaUF69atQyQSGXIdNp1Oo62tDZ9++inKy8vxxhtv4Ac/+MGkFaTrrrsODocDAFBVVYUf/OAHMAxj0M4PyHUgkUgEa9euxaZNm6Bp2ngmd6dEIhGsWbMG7e3tgypDQGEeLr74Yrz99tuTUhkCgNraWlx88cXm72OPPRYnnXQS+vv7h5zBZjIZtLe3Y82aNejv7x+nlA4PXdexadMmrF27doeylJ+HQCCA1157Dddff/2kU4Y4V199tdkZl5eX48orrwQhZIeyFI1GsW7dOrS0tEw6WYpGo/j000/R1ta20/6A5+GrX/0q/vnPf05KZQjI1cu3v/1t8/dRRx2F0047baeytHXrVnzyySeT7sR4XdexefNmfPbZZ8PKw5o1a+DxePCnP/0Jt9xyy7gpQ0ChQjTUhBUALr/8cvh8PgBAKBTC5ZdfDlmWB1WGgO2ytH79emzcuLGou+VsC9EAUqnUiDssTdNwyCGHoKysDIyxCXX63BF1dXW45pprwBjDiSeeOCKrTzQaRTKZRGNj44TPcBlj2Lp1K3p6ekb0XjQaxSWXXDLply+uvvpqrFu3Dueffz722GOPYb+n6zq2bNmCVCqFqqqqCW+HqVQKmzZtGlGHpes6DjzwQITD4UktSxUVFbj++uuRTCZx0kknjWimGovFsHbtWjQ0NBR9hjtSGGPo6OgY8dlksVgM3/zmNydt/XCuuOIKfPTRRzj33HMxd+7cYb9nGAZaW1uRTCZRXV094ZPcdDqNlpaWEcvSokWLTEvReOZhoEIEAFu3bkVjY2NBeCgUwrJly9DV1YVTTjnFsoS2M+LxuClLI3lvKGyFKI9kMokNGzaMesDs7u6Gpmmora2dlB0FYwwXXHDBqK0ImqZh/fr1mDZt2oQpRYwxbNmyBZFIZFTvq6o64XnYGX6/H3feeeeQ1pSd0dPTA1VVUV9fP2HtMJVKYf369aOWpZ6eHmiahrq6ukkrS+eff/6orQiapmHDhg1obm6eMKWIMYbW1tYx9wcTmYed4Xa7cccdd4xalvr6+qBpGhoaGiasHabTaaxfv37Ueejt7YWmaePaHwQCATgcDotVqL29fVCFiDGGc845Z8QTXI6u66YsjVUpmpxrOxOAqqpoaWkZs/Wgv79/1BVbarq7u8e8pMIYK7qZciR0dXWNWhniMMYm5bIFkBtkNm7cOOrOjxONRifsFmm+5DxWWYpEIpP2cs6enp4xL6nwdpjNZouUqpHR09NTlP5gpJaL8ULX9aLIUiwWm7Bz27gs7Wr9ASFk2H5EfX19RRkziyFLtkK0jba2tqLtMti6deuQ66UTRTqdLppQ67qOtra2osQ1ElKpVNGEWtO0CcnDzmhvby+aotbV1TXkOnwpaWtrK1oeOjs7JyQPO4L7aBSDiZKlYudh4C3qk4GtW7cWTVHr7u5GMpksSlwjoZh56OrqGtc8VFZWFnx/INlstmjtn1+fNZaJmK0QIbcOGYvFihrnUNrwRMAYK3p6YrGYuXtjPChFHrhf1GQhmUyO2fo1kPb29nH1mUomk5Z74orBeOdhZxT7SpVS9D87o9iyFI/HEY/HixrnWEilUkV3im5raxvXdphKpYq+SWI8ZWngMuqLL75YIDvFlqVkMjkmWbIVIhS/UoBcBzGeCsOOSCaTJUnLeN61lUgkSqK8TKb7wkphlk8mk+M6UJWiPEvVfkfDWDvcoRjPdliqNrG7y1I6nR5XxbUUeUilUuOWh/xNO4QQvPXWW/je975nhqXT6aJPnoBcOxyt0jflFaJMJjPkNtOxMlm2QJdq+2gqlRo3/4dS5SGZTE6YD0c+qqqWbNAfr3aYzWZLZnGbLFugS1WWpeyHBlKqskyn05PCVUDTtJJNAsarHaqqWrI8jFd/wI94kSQJK1aswFlnnYW333675OnIZrOjlqUprxAVe4liYNxjdYYbK/zMhlIxHsJV6jyUsg1MhjREo9FxaYe7Qx52BGOspO19PNohP0uoVEyGSWAp8zfUYYjFppT93XjlgVuIDjjgAHz00UcAgM2bNwMovSyNNu4pv+2ea+G6ruP555/HG2+8ASA3y9h///3xxS9+EW+88QYef/xxlJWVgRBibmm+9NJL4XQ68c1vfhMOh8M8+IoxhjPOOAMHHnggMpnMoNu7NU3DU089hddeew2PPfZYyfKXTqeHHEg6OzvxrW99C3V1dQBynWUqlcLhhx+Os88+e1jxx+NxVFRUFC29g5FKpcAYK1kdxeNxlJeXlyz9f/3rX/HYY4/huuuuw4wZMwZ9ZqjZYDHqiDGGZDIJj8czugwMk1LLUiqVGnRbra7rePbZZ/HSSy/hV7/6VcnyNx6yNNARtdhkMhkzD6WopyOPPLKkefjnP/+J+++/HzfccMOQh6sOZWktRh0BOatyqa/7KbUsDZUHwzDw3HPP4be//S2effbZMeWBW4jeeOMNJBIJ7L///ubfstnskBsviiVLo2FKK0SMMdO09sgjj6Crqwu33norvF4vstksVq5ciV//+teoq6vDokWL8K1vfct8995778Vvf/tbnHfeeQByp0BzxWDTpk24+uqrsWDBAqTTaYtCxBWhW265BevWrcPBBx9c0jzuzHQYDAaxYsUK83dvby8uu+wyLFmyBPX19TuNfzxM5PwbpaqjUp+GrGkafvnLX+LJJ5/El770pUEVox3V01jrCMiVYakVolLLUiaTsShEXBFavnw51qxZU/ILenfW1sdaT/yeplKeFZPfzkpRT3vvvTemTZtWsjzouo6nnnoKv/71r3HOOecMqhiVWpbS6XTJFaLxkKX8PHBF6Oabb8bHH3+MefPmjTkPOzr4t9TjUjabHZUsTWmFSNd1GIaB3t5evPbaa3jooYfMRiLLMr72ta/hnXfeGfTduXPn4t133x30bw0NDVAUxXIy50BFiPP2228Pap0YqOE++uijo9LYzzvvPFxwwQXDfr6vrw+MMbhcLvzqV7/C3//+d/h8PgSDQSxatAhHHnmk5Xld16FpWkmPhU+n0yWtI0LIqCxEg1kL5s2bV3AiLPdR0nXdVIzOO+88XH/99ZgxYwYMwxjRNvWR1hFQesVV13Xoul7SeuId4UBFiPP+++8PS5Z+9atf4YUXXhhxHs844wxccsklw35+pPXEGIOmaZZLmIsNbwelqqfNmzfjhBNOGHG6BnOC3XfffQsmK3wLumEYgypGjLER+QRORlkyDAOqqpZUlvKtL/mKEGf16tVjtprnyx3vww3DQHl5OT7/+c9bHKx3xmhkKZvNmlaq4TLlFSIA+Oyzz1BfXw+/32/5eyAQwDHHHINXX33VEp5KpfD2229jwYIFg8b773//G4ZhoKamBplMBo8//niBIsTRNG1Yx+an0+lROYrtzHTY19eHyy+/HNlsFtFoFDNmzMDVV1+N9evX4+OPP8aPfvQjpNNpXHHFFVi0aNGgcei6XlKFSNf1ktaRYRgjvrpgKHp7e3f6jK7rePzxx/GrX/0KX/rSl/CDH/xgh88Xq45KyXjIUjabxdNPP12gCOWnYTj1mMlkRjWojZcslVIhGo96KpYsDceBeaBidM011+w0zskuS3yiVco6UlUV//M//1OgCOWnoVj1CAAff/yx+Z3u7u5xk6WRMqUVIj4rGTg7ee+990xfhP7+fpx77rn417/+hcsvvxxATolZsGABTjzxRPOd2267DaIoQtM0+P1+XH755XA6ndi4cSN+85vfDKoMTQa4adIwDDz++OPYvHkz5s+fj1/+8pdYsmQJJEmCJElYvHjxhKazlHU0UVu6dV3HH/7wB8ybNw9Lly4d0rxbjDoar7NHSllPmzdvxv/8z/8MqgxNBux6unxE9yMWE8Mw8Mc//hHz58/HCSecMOS9XbtCfzce41Jrayt+85vfDKoMjReEkCHb+0TV05RWiLjQTJ8+HVu2bEEikYDb7cbChQuxcOFCAMBpp50GAAVrtQPJX6vNZ+bMmfj973+Pd955BzfffDP+8Ic/lCAnQzPcNVRKKc4//3xcfvnlWLVqVUGHsqN4Sn1pIKW0pHU0EZSXl+MHP/gBLr74YjgcDnzyySc7fWey1xFQWlmaNm0aVq1ahffeew8333zzqJa9xsLuIEv826Wqp4m4DicUCuGKK67AZZddBrfbPaxBfix1VOr7wMZDlhoaGvCb3/wGH3zwAZYvX47nnnuuBDnZMcNR/sdblqa0QsRN0+Xl5TjiiCNw//3347LLLoPX64VhGHjnnXfG3EHxNcz99ttvUMVo/vz5eOCBBwreu++++/Diiy+av0855RR85zvfGfH3R3LpoiAI+PKXv4wf/vCHuOiii/B///d/OPbYY6GqKv71r3+hqamp4B1CSEmXy4Dcunkp60hRFLz66qsj7ugikQhOOeUUS9hvf/tbhEIhS9i7775rzuLKy8tx5ZVX4pJLLjEdhBljoJQOa1v5aOoIyJVhKREEwfTFKlU98TwsXLjQVIyWL1+OVatWAQBmzZqFhx9+uOC9Bx980NLhn3DCCbjyyitH/P2RXAY82noq5XIZsL0/KlU9CYIwKllKp9M4/vjjLWFPP/10wX1YH330ES677DIAQDgcxuWXX26mPz8Nw1kuGW0djdQvZaQIggBK6bjI0p577jmoYtTU1DTm3c87krvxkKXR9HlTWiEihJg38l5wwQV46aWXsHz5cui6jmQyiVmzZuGuu+7Cxo0bR/2NgcIzUDGKRCI4/PDDC94b6EBdW1s76HM7IxaLoaWlZdjPL1y4ELNnz8Z///tfzJ07F1dccQW8Xi9CodCgDczhcJR8xsTN8KWqI7fbjb322mvE7w12IeFBBx2EqqoqSxh3JOQWoYFbx3k7HO6dXSOtI2DHOz6KAc9DOp0uWT0NzMPChQvx/PPPm4rRli1bBpWR/IkFAFRXV49KlhKJBDZs2DDs50daT7Isl9xClN8flaKeFEXBEUccMeL3BjvQ84ADDkBzc7MlzOFwIBwO44orrsCll1466G4vRVGGvQw+GlkqtUIE5PKQTCbHTZYGKkaffPLJqGQkn1//+teW39OnTzfjTCaTWL9+/bDjGmk9SZI0KlkibDJdEjQBtLa2lvT00T322GOHFpTNmzcPuo3w4osvxkMPPWT+vvTSS7Fy5coRf1/TtGEtxwzk008/RWtrK4444gioqoprrrkGl112WYE2HgqFUFNTM+L4R4KqqiX1GxltHnp6elBWVmYJa29vL1CIent74XA4Bj1DJ/+9kd74PNw6AoDZs2eX3PrQ1tY2LKfy0bKzPAwlS9///vdx3333mb8vuOACPPLIIyP+vq7rWL169YjfG249BQIBc/dPqRhtfzBcgsEgamtrR/xeMpkskI/169cXKET9/f0QBGGH2947OjoGvUh0R4xElmbOnFlypWjr1q1FdWoeyKxZs3ZoQRlKlkbCl770Jcu5YFdddRXuvPNOALlJ4urVq0fsMzfcevL5fGhoaBhxmqe0hQgA/H5/yRQij8ez0+WksTa6nSGKItxu94gdh6urq/Hss8/id7/7HQzDwKGHHjpo5zBwB0QpkCQJLperZNdClDoPA5fQhkrDSBWi4daR0+ksuTIE5PJQKoXI5XLtNA+lliVBEODxeEZ86NtkkiVRFEeVh+FS6jwEAoFhpWGkCtFw60hRlHGxEPn9/pIpRIqi7HQ5qRiyNLC/znffoJTC6/WO+ETu4dbTcNrJYEx5hcjtdg97zXmkjEcHNxwCgcCIFSKv14sbbrhhh8+IojgiH6WxEAgESqIQjWcedgRXWvg5K8NhOHUEjL5zGCkul8vc0VJsxisPOyMQCIxYmRhOPXFlazwYTR6GgyAIO7SCjhcOhwOyLI/oPKLJJktcaSnFPYvjlYeBY87AfjYQCIxYIRpOPVFKRy1LU/4us9EeyrczJEmaNAqR3+8vieNzeXl5yf2HOIFAYJfPw44oVTsUBGHcOsBS5UEUxUmjEPl8vpJY2/j1C+NBqfIwmWSpFLtJKaUIBoNFj3cwStkfjFcedmQhAnLKTSk2e5SVlY3aF2/KK0RAbkmj2B3Eyy+/jMcff7yocY4WSmmBX8tYkWV5WEtBxYJSWvQ7ksY7DzsjGAwW3RxfVVVV8qtJ8tmRM+poqaysLLmz8XChlBbsfBoroigiHA4XNc4dUYr+QJKkSSVLfr+/6BsJKisrx1WWAoFA0fuD8czDQIVosM0kpZClgX6dI2Fy9DITDKV0VI6Ag2EYBh544AF85zvfwUUXXYS33nqrKPGOFb/fX1Rzdk1NzbjPBgOBQFHzUFtbOylmtBxCSNHaIZCbkY23ZWV3yMPO8Hq9RV3eqq2tHXeFz+fz7fJ52BHFboeKooy7wjfWPGiahldeeQWGYeCVV16BJEnjZh0Cdm4hAnKy5PP5ivbNmpqaMbXDydOCJxiPxzPmWZOu67jyyivxs5/9DEBud9Spp56KzZs3FyOJY4IQgvr6+qJYwqqqqsbN3yGfYuahurp6Uvg7DMTlchVl154kSWhoaJgQhc/tdhdl5jeRedgRvB0WY/ZeWVlZ8otCB4PnoRjWvInqD3aG0+ksilIkiiIaGxsnpB26XK5R5UHTNJx66qn4/ve/jwMPPBDf//73cfLJJ5f82pF8+vv7Lb+H6m9ra2uLIkvl5eVjVq5shSiPcDg8prXnrq6uggrp6OjAOeecMyEnuA5EFEVs2rQJHR0do46jsrJyTCbJsSKKIpqbm0fdkWuahrfeemtCBqHh4vV68eabb466zciyjKamppIfmLkjwuHwmCYYHR0daGlpmdA87AhBENDU1DSmjry8vHxCZWmsedB1HW+99dak2JQwFMFgcEzKuSRJaG5uHpddmkMxmjz85S9/wYYNG+D3+5FMJuH3+7FmzZpxO91d07SCcWaoiZ4gCGhubh7TEmdZWVlR/MZshSgP7ozX2Ng4IrNbW1sbbrvtNhx33HH497//jWOOOcby9zfffBO33357sZM7YvgBlMcddxxuv/12tLe3D/tdSikaGxtL4ug3UmRZxvTp00c0G+B3HZ1xxhm46KKL8Itf/KKEKRwbTzzxBL75zW/i9NNPx0svvTSiWZ3X68X06dPHZWvwzigrK0NTU9OIZGnr1q248847cdxxx+GrX/3qsA+rnAgkScL06dNHvKRHCEFDQwMqKysn3PrFZWkkG0D4EszZZ5+Niy66yLSIT1bC4TCam5tH7Dvj8XgwY8aMSSFL4XAYTU1Nw87DUUcdBafTiUgkgjfffBORSAQejwdf+MIXSpzSHFu3bi04eX9HZ2yJoohp06aNeEmPWzqrqqqKIku2QjQIXq8Xs2bNGtauifb2dpx44ol45plnoOs6NmzYgBNOOAHTpk2zPHfzzTdPuD/Rz3/+c2zevBmapuHXv/41TjzxRGzdunWH7/Aj5GfNmjWprCqCIKC+vh5NTU07naFSSnHHHXfgBz/4AdauXQsAuPXWW5FOp8cjqSMik8lg+fLlAIB169bhqquuwq233rpTpcLlcqGpqQkNDQ3j6vi5MzweD2bPno2Kioqd5qG7uxsnnnginnrqKWiahra2tkGv4phMUEpRV1eH5ubmnS7B8p1Ds2fPLqrfxFihlKK+vn7Yebj33nvx/e9/3zzg8Y477piwC5KHi9vtxqxZs4bloO90OtHY2IjGxsZJJ0uzZs0aliz97ne/QyqVgt/vx5IlS+D3+xGPx/H888+PS1q3bNli+c1PGN8R3Jd32rRpO12CJYSgrKwMs2fPLupu7slpj54EiKKIyspKlJeXI5lMIplMIpvNgjEGQRDgcrngcrkwb948LFq0CH//+9/Nd1esWIGnnnoKRx55pDm7NwwD5557Lt5///0J2Y6fSqUKrFSLFy/GUUcdBVVVkUgkkEqloOs6CCGQZdnM42RylsyHEAKPxwOPx4NsNjtoHtxuN5xOJy688EI888wz5rutra14+OGHR3U/XCl59NFHsWnTJkvYhRdeiD322AOpVAqJRMLSDp1OJ1wu16SYxQ6FIAioqKhAWVnZkHlwu92YP38+lixZgldffdV894477sCFF144Kf298nG73WhubkY2mzX7i11JloDh5+Giiy6y7KDt7OzEypUrcdVVV01g6neOIAgoLy9HOBxGKpVCMplEJpMpkCVZlifccjcUA2VpqDz84Ac/wJ133olIJAIgd++iIAhjvo5juAxUiOrq6oZdpnxyx9thKpWCpmkghECSJLNPL4myymzGzJ///GcGwPLv/vvvZ7feemtB+LnnnjusOL/5zW9a3rv00kvHlMYVK1YUpOX1118fU5y7GkcccYQl/5WVlSyRSIw6vu7u7oIybW9vH3V8yWSS1dTUWOI75JBDmGEYo45zV+PNN98sKNO77rprTHF+73vfs8R3wQUXFCm1U5cTTjjBUqahUIhFIpFRx5dIJArqff369UVM8dTjH//4R0GZ3nTTTePy7fvuu8/y3UMPPXRcvjtWJu90ZRfiyCOPLNC8b7/9dnz729/GoYceagl/6qmn8NRTT+HNN9/EKaecguXLlw/rlvOxEI/HzTtkOEcffXRB2nZ3brnlFsvvjo4OPPjggxOUmkIefvhhtLW1WcJuueWWSTtbLQUHHXRQwa3nd999N2Kx2ASlyGYw+LIup7e3Fz/+8Y8nKDU2g7H//vvj1FNPtYTde++9Jb1vkDOYhWhXwFaIisTAwXbr1q342c9+hieffLLA6fLiiy/GwQcfjLVr12LZsmV44403Spq2lStXFtztMzC9U4ElS5Zg6dKllrC77rprUgy2iUQCd9xxhyXsqKOOwmGHHTZBKZo4Bg62PT099mA7ydh3331xyimnWMJWrFhR0ouybUbOzTffbJlQRaNRrFixouTfbW1ttfy2FaIpxsEHH4xjjz3WEnbnnXciFAoV7MKIxWI45ZRTsGrVKgAY0zb4nRGJRHD33Xdbwk444QQccMABJfvmZGayDrYPPvggOjs7LWFTUWkFgEWLFuHkk0+2hP3whz+0B9tJxs0332z5HYlEcO+9905QamwGY/78+TjrrLMsYT/+8Y9HfPntSLEtRDYFA1h3dzfuv/9+nHHGGTjttNMsf+vv78frr79e8jT96Ec/KhhIBioFU4n9998fJ510kiVsxYoVBYeIjSfRaBR33XWXJez444/HgQceOEEpmngGtlF7sJ18LFiwAGeeeaYl7Ec/+lHJbmm3GR033XSTxZk/kUgUTJKLzcCNIbZCNAUZbLD94Q9/iEgkghUrVsDpdJrhr732GhhjJU1Pb29vwSDyhS98Afvuu29JvzvZGTjY9vf3T+hg++Mf/7hgXX+qWoc49mC7azBwsI3H4yUfbG1GxuzZs3HeeedZwlauXDmic+hGQiwWK1CImpubS/KtYmMrREVm4GDb19eH++67D42Njbj66qvHNS0rVqxANBo1fxNCCszcU5G9994bp59+uiVsogbbvr6+gjX9U045ZcorrcDgg+0999wzgSmyGcicOXNw7rnnWsJWrly50/PNbMaXG2+80XLqezqdLvBZLBYffvih5bcgCJgzZ05JvlVsbIWoyOy9994Fy2P33Xcfent7ceWVV6KpqckMf+eddwCgJPfLdHV1FfjGnHnmmdhzzz2L/q1dkZtuusnibBiLxSZksL333nvNs0I4ttKaY86cOfjiF79oCXvggQfswXaSceONN1rOhEmlUgW7Wm0mlunTp+OrX/2qJezhhx8uyT2bH3zwgeX37NmzJ/U5afnYClEJGMyz/4c//CGcTifuu+8+M5w7W/PTk4vJXXfdZTk9llKKm266qejf2VWZN28ezjnnHEvYypUrS+rgPpDu7m786Ec/soSdeeaZWLBgwbilYbKzbNkye7Cd5MyYMQNf+cpXLGEPPfRQgWOtzcRy/fXXW+6AzGazuO2224r+nYEK0a40CbcVohIw2GD74x//GJ2dnTj55JMLdqM9+OCDRb1Gor29veB8nXPPPRd77LFH0b6xO3DTTTdZBttkMjmug+3dd9+NeDxu/raV1kLswXbX4IYbbrBcgJrJZEoy2NqMnoaGBlx44YWWsEcffRQbNmwo6nf++9//Wn7vShM8WyEqEcuWLbP4PySTSdx1110ghBR0FB0dHXjssceK9u077rjDomAJgoBly5YVLf7dhZkzZ+L888+3hP30pz8tOEOjFGzduhUrV660hJ177rm7zFr7eDLYYDsZLku22U5jY+Ogg+3GjRsnJkE2g3LttddabpXXNK2oGzgYY7aFyKaQWbNmFQy2P/nJT9DW1oZFixbhmGOOsfzt7rvvhqZpY/7u5s2bCy7E/OpXv4rp06ePOe7dkRtuuMHibDheg+2dd95pucldEATceOONJf/urkhjYyO+/vWvW8IeeeQRtLS0TFCKbAbj2muvtfiKqKo65XdLTjZqampwySWXWMKeeOIJfPrpp0WJv7W1teCYF9tCZANgx5791157reXZjRs3Wi4fHS233XYbstms+VuSJFx//fVjjnd3pbm5GRdccIEl7Oc//3lJB9stW7bgoYcesoR95StfwYwZM0r2zV2d6667zh5sJzm1tbW4+OKLLWGPP/54SXwkbUbPVVddZbksWdf1om3kGGgd8vl8aGhoKErc44GtEJWQ5uZmfO1rX7OE/exnP8OmTZtw2GGHFZwWfccdd4zpXrP169fj0UcftYRdeOGFaGxsHHWcU4HrrrvO4mxY6sH29ttvRyaTMX9LkoQbbrihZN/bHaitrcU3v/lNS9gvf/lLe7CdZFx99dVwuVzm72IOtjbFoaKiAt/61rcsYb/+9a/x0UcfjTnugf5D8+fP36XuYrQVohIzmGf/rbfeCkJIgZXo448/xksvvTTqb91yyy2WZTdFUXDdddeNOr6pQn19/bgNths3bsQjjzxiCbOV1uFhD7aTn8rKyoLB9qmnnsLHH388QSmyGYwrrrgCXq/X/M0YK8qGDn6UDGdX8h8CbIWo5NTX1+Oiiy6yhD322GNYv349Pve5zxU0mIH3ng2XTz/9FE888YQl7OKLL0ZNTc2o4ptqXHPNNZaTxHVdL8kVJ7fccgtUVTV/OxyOAsXYZnCqqqpw2WWXWcKeeuoprF69eoJSZDMYV155ZUkGW5viEQ6H8b3vfc8S9txzz+H9998fdZyMMbz55puWsMWLF486vonAVojGgWuuuabAs3/58uWglBbMpv7whz+MapfTzTffbFluc7lc434y9q5MVVUVLr30UkvYU089hU8++aRo31i7di0ef/xxS9jFF1+M2traon1jd+fKK6+Ex+Mxf9uD7eQjHA7ju9/9riXsN7/5Df7zn/9MTIJsBuV73/segsGgJWwsGzs2btxYcGjqkiVLRh3fhMBsxoXLL7+cATD/UUrZJ598wqLRKPN4PJa/HXLIIayystISdvzxx7NVq1ax//znPwVxf/jhh4wQYnn+qquumoBc7tp0dnYyt9ttKcezzjqr4Ll0Os1WrVrFnnjiCcuzANhjjz3GVq1axVKpVMF75513nuVZl8vFtm7dOh5Z2624/vrrC8p9MLn473//y1atWsVOOukky7NHH300W7VqFXv33XcnIPVTg76+PhYIBCzlfvLJJxc8p6oqW7VqFXv22WcL6vThhx9mq1atYvF4fPwzMEW47bbbCsr9H//4x6ji+tWvfmWJp6ysjBmGUeQUlxZbIRonBhtszznnHMYYY1/72tcKGuVQ/1599VXGGGOpVIplMhnGGGOnnXaa5Rmv18u6u7snLK+7Mtddd92Qg200GmWMMWYYBjv00EOHrKODDjrI7Aj4Ox999JGttBaJHQ22mUzGVEZff/31HcrSH/7whwnMxe7PrbfeWlDm77zzDmNsu1wwxtjSpUuHrKOFCxfucoPqrkQsFmNlZWWWMl+6dOmI4rj//vvZ17/+dXbkkUda4vn85z9folSXDlshGkeuvfZaS4MhhLClS5cyURSHpQwdeuihZuewevVq1tjYyG6++eaC52688cYJzumuS29vL/P7/QUWhXPPPZd98YtfNJ979dVXh6yn//u//zOf+9KXvsTOPvvsgk7fVlrHxi233FJQ7jfddBNrampiH3zwgfncwE6a/9tvv/3sgbbERKNRFg6HLeV+2GGHsS9/+cvs1FNPNZ976623hpSlF154YQJzMDW45557Csr9jTfeGPb7//M//zNo3Z155plsw4YNpUt4CbAVonGkp6eH+Xy+YVuDhrIOMZazOAz2TCAQYH19fROXyd2AwZRMAOyMM84wnxnKSpRvHWKMsXPOOWfQuG644YaJyNpuw2CDLf/3/vvvm88NZSWyrUPjw9133z1o+Z944omW5wazEtnWofEhkUiwqqoqS9kffvjhw35/8+bNQ45ZXq+XrVmzpoSpLy62U/U4EggEsHTp0mE9m3/tBwAccsghOPzww83fuq4P+t5xxx0Hn8836jTaAKeffvqgZ2fklzkhZFBn3mXLllneHaqeTj/99LEndArjdrtxwgknDPq3/M0Fhx56KP5/e3cf21T1xgH8e9uOvm7dGIFu3crQbbw4kxE2ZAwjiFNxRFxiggSDkKDBiIlhcwIRY6IJxPiGMQpqNCZoSJYYA0YnyoCAQIiiJKKCA/bG2AZb1+32vb3n98fSSteO37bec9uuz+cfwtp7ck9Pn3ufc3ruOQ8++GDE65WVlVi1ahXX8yMj6urqIvYLDBkdF7G2FhodS4QPg8EQ9aTr8ePH0dLSMq7jCwoKUFBQEPV3tVqNpqYmlJaWynKeikh0RpYuhoaGWEVFxZiZ9ObNmyP+X1paOuboEGOM/fHHH2OWdd9997Hh4eEE1TS1HThwgE2bNi3m5/rEE09EvHf0KFFVVVVUj/bJJ5+MWda0adPYF198oWDNpg6n08mWLl065vf/119/jXj/6FEiGh1SRlNTE9PpdDHbKNY8ldtHicrLy2l0SEFut5sVFBTccbT7TmJd5/bv38/5rOVHI0QKyczMxGeffYa5c+fGfH3r1q1oaGgI/3/ZsmWoqqoCMNLLvX10CBh75GH+/Pn49NNPIx5NJuO3du1abN++/f+OEAHRo0Svv/561HGx2kkQBLz88st4+umn5TnpNGMwGPDJJ5/gnnvuifn66M/89lEiGh1STl1dHXbt2jWuESIgcpQoViwRfnQ6XdQWT6dPn0Zzc/O4jl+4cGHE/1955RU899xzsp2fYhKdkaUbURTZpk2borLp33//nUmSFH7tgw8+YD/++GPM0SHGGDt37lxUGc8++yxzOp0JqNXUc+zYMZafnx/x+T722GNR7wuNEsUaHWKMsTVr1kSUYbFY2M8//6xEFaY8l8vFtmzZEhUHp0+fjnpvaJSIRoeUd+rUKWaz2SLaaMWKFTHf+8gjj9DoUIJ4vV5WVFQU0U4VFRXjaovvvvsufMzGjRtTtv0oIUqQr776KmL9odAwv9/vZ2vWrGHHjh1jHo+HNTQ0MI/HE/UFO3v2bPjYrKwsdvDgwURUY0q7efMmq62tDX/Ojz76aNR7AoEAa25uZocPH2aBQCDq9dWrV0cc39vbq8Spp5WmpqaIJwNPnToV8bokSczr9Y4ZS4S/gYEBVldXF26jBx54IOo9gUCAHT9+nDU1NcWMJcLf559/HtXBaGxsZH6/nzH2Xyx5PB7m9XrDsdTV1RWeLB96byoSGGOMx8gT+f9aW1uxdu1anD9/HufOncOiRYvgcDjQ19cHURSh1WrBGIMgCFCpVDAYDDCbzcjOzsaZM2dQXV2NyspKHDx4EHfddVeiqzMlMcawd+9eNDY2Yvny5Thy5Ai8Xi/6+/shiiJ8Ph9CISQIAqZNmwaTyYTc3FxotVrU1tbiyJEj2L17N7Zt2xY1WZ7Io62tDevWrcPZs2dx4sQJ3H///RgcHITD4YDL5YIkSeFYEgQBRqMRWVlZyM7OpjZRCGMMH3/8MbZt24bKykqcPHkSPp8vHEuhDY9D7RSKpenTp0es9E/4CQQCmDdvHq5cuRLx95KSEvzwww/wer0RDy0IggCDwYCsrCxs3rwZX3/9dcQWSKmGEqIE83q92LFjB2pra2G1WiM2Zx2LRqNBW1sbWlpa8Oabb0ZsHkv4+O2337B//37s2rULDodjXMdkZWVh9+7d2LRpExYvXsz5DInf78drr72GZcuWobi4OGLPuLFoNBrMmjUragsDws+FCxfw/vvv44033sDg4OC4jsnKykJeXh4yMjL4nhzBSy+9hL1798JsNsPhcIT/fffdd1FTUzPmcYwxWK1W5OTkpOz8L0qIEkySJNy4cQP9/f0T6qlKkoTc3Fzk5eVRD1cBLpcLbW1tEb2j8RAEAXPmzInYpZ3wwRhDT08Pbt68OeGYyM7ORn5+PsWSAtxuN65duzbhWFKr1bDZbDAajZzOjAAjHQudTgdJkvDLL7+guroaBoMBZ86cGVd8mM1mWK3WlIyl1DvjKUSSJLS3t8Nut0/4y6NSqWC329He3g7KafkSRRFXr16d8AUcGLlJX716FcPDwxzOjIQwxtDe3j7hjkXI4ODgpBJeMjFOp3PSsRQMBnHt2jUMDQ1xODMScujQIUiSBLPZjOrqapjNZrhcLhw9enRcxzscjkklvMmAEqIEYYyhu7sbTqczrnKcTie6u7tlOisymtfrRXt7e9zldHR0wOPxyHBGJJbu7m6IohhXGS6XC9evX6cOBiehWIr38+3s7ITb7ZbprMhoixcvxpw5c+BwOGAwGOBwODBnzhysWLFi3GW43W50dXWlXCzRT2YJ4nA40NnZKVt5NpuNVqiWGWMMra2t4cme8dJqtSguLk7Z39eT1dDQEDo6OmQrr6CgANnZ2bKVR/4bKZUrkcnIyEBJSUlK/iyTzERRRFtbGwKBAI4dO4aVK1fi6NGjWLFiBTQazYTLy8/Px/Tp0zmcKR/0bUqA0LwhOd24cSMlhyiTmd1uly0ZAkZ6yHa7XbbyCJ9Y6unpoViSmcPhkHVUx+/3Y2BgQLbyyEjSGooljUaDmpoaqFQq1NTUTCoZAoDe3t4xFxFORpQQJcDAwMC4niabCL/fTzdbGUmShN7eXtnL7e3tpZutjOx2+7ieJpuIQCCA/v5+WctMZ6HJ7nLr6+tLqZttshscHJS1AwiMzPtKpViihCgBePVsqMckH1EUuVxsg8EgTbCWEa9OgN1uT7n5D8lKFEXZO4DASKeFYkk+PO9LqRJLlBApzOPxwOfzcSnb6/XSxF2ZjHd9lGQrO53w/L77fD6KJZmMd92uyaBYkofP5+M2UT0QCKTMJPjJ/TBIJu3y5ctYt24dCgoKAIz0ctxuN5YvX46nnnoq7vJFUaRVXePEGMOVK1ewdetWLu0kimJ4NV4yeaIooq+vDy+++CKXdhoeHk7pVXeTRWtrK1544QVusSRJEk2ujpMSsZQKa7FRQqQwn8+HnJwcvPPOO+G/DQwMYOvWraiurkZhYWFc5VOvNn5+vx+MMW7txBiD3++nFcbjFPqu82onuedTpKNAIABJkrhe83w+H3UC4xT6rvNqp1S5L1FCpLBYX4zQfAWDwYBDhw7h5MmTCAaDWLBgATZt2gS1Wo3m5mZ8//33EAQB5eXl2LhxI4aGhvDRRx+hr68ParUa69evR1VVVQJqNbWMdSOUs51sNhslRHEa6yIrVztt3LhRllHbdMa7jdavX4/CwkJKiOLEu502bNiA2bNnK1yriaOESGHBYBB2ux319fXw+XwYGhpCcXExtm/fjq6uLly6dAl79uyBSqXCvn37cOTIEcydOxeHDx/GW2+9Bb1ejz179uCvv/5Cc3Mz5s+fjx07dqCnpwevvvoqSkpKUFxcnOhqprTQBFCe7VRVVUXrRsVJiXZ66KGHMGPGjATXNHWFHkzg2UZLliyB2WxOcE1TmxKx9PDDDyd9LFFCpLDbf4qRJAlffvklOjs7UVZWhgMHDuDff/9FY2MjgJGhYI1GA7/fj4qKivAePjt37gQAvP3229iyZQsAwGKxoKSkBJcuXcKSJUsSU7kphmc7Xbx4kRLXOIWeXOHVTqWlpbhw4QJWrlyZgNpNDbzbqKSkBH/++SdKSkoSULupQ4l2SoVYooRIYbdPpFWpVNiwYQPq6+vx7bffQpIkrF69Go8//jiAkW05BEFAS0tLxHEDAwPIyMiIWs+GMUZr3Mhg9GRnHu3E4zHkdDN6Ii21U/JRIpbomhc/3u0EICViiabmK2z0vBG1Wo1nnnkG33zzDYqKinD8+HG43W4Eg0G89957aGlpwYIFC3D+/Hm43W5IkoQPP/wQ//zzD8rKyvDTTz8BGFld9++//8a9996biGpNKbHm9sjdTosWLVK6WlOOEu1UXl6ucK2mFiXaaOHChUpXa8rRarVRf0vHWKIRIoXF+uItXLgQc+fOxcWLF7F06VJs374dkiShrKwMq1atglqtRm1tLXbu3AlJklBZWYnKykrcfffd2LdvH06cOAEAeP7552G1WpWu0pQTq40Aedsp9GgrmbyxJtLK1U4NDQ2YNWuWklWacpSIpXifUiP826m+vj4lYok2d1WY3W7H9evXuZVvtVqRk5PDrfx0cenSJdm3hAjRaDSYN28el7LTyeDgILq6uriVn2obUyary5cvc1uMVqVSYf78+bSmV5zk3iB5tLy8POTm5nIrXy70k5nCMjMzuZZPTy7Jg+dTK/REjDwyMzO53ggpluSRnZ3NtWxKhuJnMpkolkAJkeI0Gg1MJhOXsjMzM6FWq7mUnW54X8RJ/NRqNbcOhtFonPQO3yQSdS6Sn0ql4pa0GAwGZGRkcClbbpQQJQCvtRiSfY2HVKLVarksNa/X62kRORnxGoanWJKPVqvl0gnU6XQpsR1EqqD7EiVECWEymWS/QGRmZobXgiDxEwQBeXl5spebl5dHQ/wyMhqNsvdsjUYj95+2043FYpG9TIoleen1etlH3AwGQ0rFEiVECSJnMAuCwOWCk+70er2sk2pzcnKoR8uBxWKRNZby8/NlKYv8R6fTyTqaZzabqQPIgcVikXWj3FRLWikhShCtVivbo9eFhYVjPjZJ4mOxWGTZ8Vyn03EZcSIja93YbDZZyiooKKBY4sRiscjSIdBqtbS8CCcZGRmyxZLVapXl2qkkSogSyGw2x90btVqtKTODPxWpVCrMnj07rnk/Wq0WRUVFsva8SKTMzMy4b5J5eXk0SZcjQRAwe/bsuG6SFEv8mUymuNd2slgsKbn8C61DlAScTic6OjrCGyGOh1qths1mo2FjhUiShO7ubgwODk7ouOzsbOTn59MFXCEulwvt7e0TiiWVSgWbzcbt6U8SSZIk9PT0YGBgYELHmc1mWK1WiiWFuFwudHR0TGjLDZVKhcLCwpSaN3Q7SoiSRCAQwK1bt9Df3487NYkgCMjNzcWMGTPoseAEGB4eRl9fH9xu9x3fp9frMXPmTO7re5BogUAA/f39uHXrFsVSEhNFEX19fXC5XHd8n06nw8yZM7mvO0WiBYPBcCzdac84QRAwffp0zJgxI2UesY+FEqIkEwgE4HQ64XQ64Xa7wRiDIAjQ6/UwGo0wmUy01lCCMcbg8XggiiJcLld4ReuMjAwYDAYYjUbo9Xq6eCdYMBiEKIpwOp3weDyQJCkcSwaDASaTiRKhJOB2u8PXvFAsaTQaGI1GiqUkEYoll8sV3rdsKsYSJUSEEEIISXv0YywhhBBC0h4lRIQQQghJe5QQEUIIISTtUUJECCGEkLRHCREhhBBC0h4lRIQQQghJe5QQEUIIISTtUUJECCGEkLRHCREhhBBC0h4lRIQQQghJe5QQEUIIISTtUUJECCGEkLRHCREhhBBC0h4lRIQQQghJe5QQEUIIISTt/Q+qV3VLmvriBQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -515,7 +515,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -557,7 +557,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -578,7 +578,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -813,7 +813,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 14, @@ -892,7 +892,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 15, @@ -901,7 +901,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEkCAYAAADO5pEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkbUlEQVR4nO3dd3hT1f/A8XfSNOnek1HKKkOQISIqQ6sgMhSQ4QABEfALgqIsN6AgboZMWQIuQJClgj82goCAbFraUrpbupt0pEnu74+0oaUtbdN0n9fz9OnNzcm557bNpzfnnvM5MkmSJARBEIQ6TV7dDRAEQRAqnwj2giAI9YAI9oIgCPWACPaCIAj1gAj2giAI9YAI9oIgCPWACPaCIAj1gAj2giAI9YCiuhtQWXQ6HdeuXcPd3R25XPxPEwSh9jMYDCQlJdGmTRsUivKF7zob7K9du8bQoUOruxmCIAgWt23bNtq3b1+u19TZYO/u7g4Yfyienp6Vdpzw8HD8/f0rrf7qIs6rdhHnVfuYc263b99m6NChpvhWHnU22Od33Xh6euLj41Npx1Gr1ZVaf3UR51W7iPOqfSpybuZ0TYvObEEQhHpABHtBEIR6QAR7QRCEekAEe0EQhHpABHtBEIR6QAR7QRCEekAEe0EQhHpABHtBEIQqlKnV4T97L0+uCSJTq6uy44pgLwiCUA+IYC8IglAPiGAvCIJQD4hgLwiCYAH5ffH+s/dWaV98WYlgLwiCUA+IYC8IglAPiGAvCIJQD4hgLwj1iVYDc5yNX1qN+WUqo1wNVdP74stKBHtBqANkuqxaHVBr+z+E2qBGBPvk5GR69+7NqVOnijyXkJDAI488wvbt26uhZYJQzUQQLEz8PMxW7cH+7NmzjBgxgoiIiCLPGQwGpk+fTkpKSjW0TBCEWquM/xQy1WmmcpnqtCpsYNWr1mC/Y8cOpk+fzrRp04p9ftmyZfj4+ODr61vFLROESiauUGsPrYZwmxcJt3mxVv+uqjXYd+/enb/++ot+/foVee6ff/5h7969fPTRR2WqS6vVolarTV8aTe39pQiCUAvV8H8Kiuo8uKenZ7H7k5KSePfdd1myZAn29vZlqmvVqlV8++23RfaHh4ejVqsr1M570Wg0hISEVFr91UWcl/lkuiya/9wdgNDnjyMpbIsvk7cdGhZWbJnylMsqcHFT0fos3baKHPPu35el25adpaFd3nbYzXBsbIvGm7KUKW+5cJsXAbgcdLTEcsVJTEwsc9m7VWuwL44kScycOZNRo0bRrl270l+QZ+LEiYwdO9b0OD4+nn79+uHv74+Pj09lNBWAkJAQWrRoUWn1VxdxXhVQ4KquebNmoCzmzVyWMuUoF3o9y3L1WbhtFTlmkd9XGY9ZsP/dt5Efdg7OpZZr1tS/2HJlKVMZ5Yrj4OBQ5rJ3q3HBPjY2ltOnT3PhwgWWLVsGgFqtZu7cuezbt49Vq1YV+zqlUolSqTQ9rsyreUEQhNqmxgX7Bg0acOnSpUL7AgMDef311xkyZEg1tUoQMF5VLmhg3H43puQr2eogSdXdAqGGq3HBXhDqLZ0WMmIhPQbSo43fU2/def77gaDXgi4HdNmm75Iuh+a6bFMx6dPGGKyUGORKJCsVBrk1Bnned5kCp7xy6dvfQuHmh8qtEVaOXmDvCfYeYF2D/ondJVOrw67gtvKexYUCakywDwoKKvG5gwcPVmFLBKESSRKkRUFkgQmE6/pCRhxoEu792uizxe6W3f1Y0mOly8KKrGLL53O6/nOpzY3/uicGlyaovANwaHwfSs/m4OIHjmI4dG1TY4K9INRJ6dFwOxhizkPsf8bvmUmFy8RdNG0a5Nao5c7czrEmKl0iMiWbkc1SAZh91ge1To5WLyPHYPyuNcjIMcgw6HL5/aloAF67+hAyuRyVXEJllfeVt21vlcv/fC4AsDXSExuycVXqcVXpccv7bmN1p0vIOzsE4kIg7gBcuNNkPXI0ClfTpwTDqdXIfduDRytwbgSyu/8FCdVNBHtBsKTUSLj6253H3z5YtIxcgcE9APntqwCsTunOmbAkwhJzSMuVU/Ba3cbK3hTs7ToOxtvNG3d3d9OXm5sbHh4eJMVFwpaeAKzcvOPeI2Py7jsMW3EBvZUNGRkZpKenk5Sezs20NLKTIgk8NxGAbbrHIS0WW+1tPBSZNLTT4WObi0JuwEl355+W/MAc07ZOrkLv2hxlg/uQebYCF/9Sf2yie6byiWAvCBW58SpJxiv2oD8g6HeIKzy4ALkCPNsgNehIssqPf6N17D17i0v7/+PQk8YiG/+JJVsvRy63pnnzprRq1YqAgAACAgJo6d8QlrcF4MMPPiixbSkJ0eU8aSMrKytcXFxwcXG5s1OrgbxgP/TDH0BpjyRJpKenExkZyeXICJLDr6CLu8LLsh0AHI6zx88+Fz97LQpyUCRdhaSrRQ+4tg/4dgDvduDTzvjdzs2stgvlI4K9IJgj9BCEHjQG+YyYO/tlcmj0oKlP/mT3TRw9c4m///ibmJh/TMVsrAym7Xdmz6Z5m/tp1qxZoeHDQI2ZiSmTyXB2dsbZ2Tlv/ku/vH+SxmDf9O3/48qNcHZevUzijTMYEq7TUKmhqaOWZg5a2rjkGCuKv2z8KsipISqPVneOlRoO9veLriALE8G+gEytjrYf7gPg6rynsFOKH4+QR5Ig4k6w5peX7mxb20HzQGjdH22Txzj2z788kRfsZ7zzPtl6Y1YSa2trOnfuzKOPPkr3rp1gczcA+vfvX7OGcZqhSZMmNGnZ1pT6xGAwEB4eztWrV/nzyn+0yfoCgHfPeePvkEuAUw4tHHNoZK+D9Gis0u98MrFd0xNsnMG3I+52/pDzODToBC5NquPU6gwRzQThXrLT4eIvcGYt3L52Z7+9F7TuB636QdNehEfHsWPHDvbsGUWOOoUnnjYW8/Hx4YFuPXj00Ufp0qULdnZ5PdM15Iq9ssjlcpo1a0azZs3IfKwHfGkM9k9MWcqFS1dYefo0If+GYK/Q08JRS1vXXN5uGw+AHiusstPg5hFcOQJXvjdWauuKyuvOrHpZRhyUY/ZpfSeCvRkKfgLYPbplNbdGqBTxV+HMGmOg1+bNxra2hdy84YxTz6GVqThw4AA7vpzKuXPnTC9t7OMJhAKwdcsWZCrzp7jXNQ8/3I0nej8FGNex+Pfff/n33385efYMYAz2gftb0Mgmk0eb2dOlgYJ2brnYpochy0rB6tYxU122q7qCYwNo9AA07AKNuhg/AdTyT0mVRQR7oe4y58br1Z1wbhNEnLizz70lPPgqtH0Gvm4DwOKl37Lz979IT08HjFey3bt3Z/DgwTzSpQN81hgw9nULxXNzc6NPnz706dPHmC/mSz8AOnXpyqkzZwn6L5cVpzJRqVR4u3dkcPfWPNrUljYhqwGQZHJkGTFwLQau7TZWKpODV1uU3u3vHEgy3H3oekkE+0oi+v9rEW3mne3f/mf8LrOC1v2NQb5pT5DJOPfPMTrnFdu6dSvZejk+Pj4MGjSIZ555Bi8vr7z66nYXTb7KGi65YMF8kFtz4sQJtm/fztWrV4lPSmXlzn9Yb23F38YPBhx6cB09Alyxjr8AUf8aJ52lR0P8ZRQFbgLbLusAjR+Cxl2N3xs+UC+v/kUEEuovfS6c3QBHPruzz94LuoyFB8aAk/FTwcWLF1mxYgWXzp3ieF5ffM+ePRkweDjdunVDLq/2Bd/qHDs7O5588kn8/f3x9/fn3LlzHD58mL+PHTGV+eDjhahs7XnyySfp23caHYd1RK6Oh+h/yb35N9anVwAgy06DG/uNX2D8R+7TDhp3w8qrfXGHr1SSJJEiOeBC1SZrFMG+molPANXAYIAr2+HgJ5Bys/Bzr58BWxcArl27xsqVK/n7778BcFDd+d0smD+/Xl4dVgeFQkHXrl3p2rUrmv9NgK+Mo3LcPdyJiU1g+/btbN++HR8fH/r27Uu/fv3w6dnTFOyzRu7BNumqcThsxClIj4LYCxB7AVWB4yj3TIFmPaDJI+DZBir4T1ySJOLTcwiOzzB9BcWruRGfQaZ2Na9Z7WJqhY5QPiKyCPWHJGEXcwL+b+ydFAX2nvDom7D/PeNjK2tCQ0NZtWqVKSeTXC7nmWee4dWXX4B1nYuvW6gSBe+B/PjDD1wLCuGPP/7gwIEDxMXFsWHDBjZs2EDb1i3ZmJcGX/K5H1r0gIeME8WMuYlOQ+Rp9LdOYBVnzAOhuL4Tru80lrFxhsbdwK8bcq/7S21XojqHizdTidD1IVhqxPUNFwlJzCQ9W1dseSW5NJHFm/+DMIMI9rWE+ARQQdHn4MhnNAjPG82hdIRH34Bu/zNO3skL9nPnzWPPvoNIkoRMJuPpp59m/PjxNG7cWPTF1zByuZwHH3yQBx98kFmzZnH8+HF+//13/v77b0JDwyAv2M+ZM4dBQ4bd6XJzbmT8ajeEHHUadnk3hrWPvIUy7hxEnoHsNLixD27sw6bAMfWHFnLdrRvnpQCuJenzrtjVJGu0eSXGGL9FGW/cW8llNHG3o5W3Iy29HWnl7UhjR2iz4T6sZXoK3C2qdCJiCLVTeUfafD8AAINcifyhCdD9LbB3B0CdnED+4Mi//voLSZLzxBNPMHHiRJo1a1ZJJyBYkkql4oknnuCJJ54gPT2dP//YC9deA+Dvv09w8PCx4m+mF6B75E2UDs6g16GJPE/y1SMQ8Q+uif/ioEsBwPHsclqznOaSFZelppwytMHG0JpzslY4u7jRKu04AbJo/AfOoH0Tb5p52qNSWBU6TqY6DWuZvvJ/KHcRwb4OEVf/BRgMcHrNnccyOXR4kYimz+PfoYdp99GjR/nm8/ns6GJ8/Ogjj/DKa1No1aoVQu3k5OTEgP79IG8O3HPPDWHP7/uIi4tj5cqVrF69mu7duzNkyBACWrfmhqEZwYZGXPm/m9xM1nIjPoOYtGygTd7XGPxlcXSVX+ch+TUetQrCR3abTrIQOslDeI3dSDI5klNb5FnGUUCZLd7DzsOppCZWi3ocDYQ6K/EG7HwdIgukN3j1IDTshC5v8erk5GS+/PJL9u/fXyhPzWeffVanb7zWli4aS3rttdcY/7+p/PT7IXYd+ZfQ25nsTvPity03MdilAZ8YC/5TOJmcj5MNLb0daOam5L6zq2kpj6LRG3/h6e4OqREQ/jfcOg7hfyNLuYms4HDPbzuA7/3g38P41eRh432AaiSCfT1UZz8B6HXwzzI4tMC4kpPS/k4/u2cAYBwhsXfvXr766ivS09ORy+W8+OLzkPJxNTZcsBStzsDNRA2Xb90mPHcYwVJDri//l8iUbAwS4PAA3DWh2YM0AuSRJElu9O7ansc6BdDS2xFnW2vA2O1id8E45DMzf0SWix909IOOLxgfp8eQE/R/qPZOAUCGZBrxw8lvjZ8sfTuCf3fkPg9UwU+iqDryLhfqvfirsHMyxOSlLWj+BPT9FJZ1NRWJiYnh448/5upVY+rdgIAAPvzwQ1o3awwLRLCvTXSSnJtJmUTczCQ4Xm0a2ngzUYPOkL/4ymDjt2Tjko3Otta08nYkwMeBAG9HmrrZEHP1FCMuGCfSPbqvNT//pedK+/a88MILBAYGolCUMUQ6NUDf5lnIC/ZZr53GNuEihB8zfiWHGf82Y84VuuFblUSwF0pUaz4BHF8Ex78BQy6onI1BvuOLkHtnrMOWrVtZunItqampODo6MmHCBEaOHGl8M9eTUTa1kUGSuJWkMQX0q1HJhOUsIFRqiHbFuWJf46BS0MLTltaxO2kpi6LJ8M+5398bT0dVkfQVmQ0fM63A9WTv3uz/6wCXLl3i0qVLeHl5MXz4cPr2edLU9VVWkoMP+LSC+4cZd6RFQ/hxCD+KIewo8rSIctZYcTX03SsI5XD0c+P3gKdhwDfgVHR91CVLlpCtl9O2bVs+//xzmjSpW+lys3Lv3HeojX3xkiQRLbkTbGjM5ZNRhKeEExyfwY34dLJ1wXeV9gfA1lpOS29HWno50srHwTS00dfZhixNOnZfDgQgs9lq7BxKv56eNXMGb7z5Ftu2bWPbtm0kJCTw7bff8v36tRx6vIIn6NwQOoyADiPILjDcsyqJYC/ULGUZUilJxoyU+Wxdod+X0O65QgteHDt+nPxxN3a2tkyb8hbt27evc4G+NjHOKs0mKC4jL5irCYrP4EZ8BhrtUmOhA+GFXqNUyGnh6UCAtwP+rta0Oz6FAFkUbjPO4ODoYtH2ubm5MWHCBMaMGcNff/3Fjz/+SHhYiOn59957n5fHvELHjh1rXZK7Mgf75ORk3NzE8mFCUVXa3aPNhN1T4dLWO/vGHwY3f9NDg8HAypUr+fH7NaZcNpt/+AGvhv6EhIQgVI1EdQ7BcRlcjrxNeO4rBBsaE/zVP6RnFz/G3BodTWWxNG/TiTYN3QjwdsQmJ5nuHVujsDKmLshUp2F30th9k1mJwVapVNK/f3/69evH6X/+hn39ATh9+jTH/j7J/fffz5gxY+jevXutyY1U5nfl888/z5o1a/Dzq/qPH4IAGG9y/TLKuKydzAqkvKDh4GkqkpaWxnvvvcc///yDTYG5LF6entRGtWGoZKpkz8WINCLSUwvkgSk4qxQgb8HdbH3ps0qHRGCXtyhJSIjaFOirg0wmo3379mC8lqF///7s3vsHFy9e5K233qJZs2a8/PLL9O3bt9raWFZlDvbdunVjxIgRrFy5kg4dOlRmm4Q6qMJX/8H7Yfurxmns9p4waCX88FyhItevX2fGjBnExsaiUqn46N0ZcGa0pU6h3svIzuVGgprgOGMwvxaTQmj2MhJwhY2XipSXycDPzY5m7ja0CV1PK3kkfmPW0raJd42ZVVpeb775BhNem8RPP/3Etm3bCAsLY86cOaxYsYIXRwzjpdKrqDZlfsfNmzePhg0bMmbMGL744guefPJJizUiOTmZESNG8Mknn/DQQw8B8MMPP/D9999z+/ZtPD09efnllxk5cqTFjinUEgYDHP0CDn8KSMbFvIdvLDJBZdeuXSxcuBCtVkujRo344osvaNmkAZypnmbXZplaPSGGpgRLebNKU7QEx+XPKr2bKwC+Tipa+zoR4O1o+mrh5YCt0srY9fLlL8a6vYumD6htPDw8mDJlCmPHjuXXX3/lxx9/JD4+nuUrVvBSXq79DLXG9OmkpijX5dXEiRPx9fXl7bffZvr06YwaNarCDTh79iyzZ88mIuLOUKSDBw+yePFi1q1bR7t27bh48SIjR46kRYsWdOvWrcLHFGquQt0W6UnY7Z8BwX8ad3QZZxxWqVAVGi75xRdf8MuOPQD06NGDefPm4ejoKIZUliJHZ+BmTBo3CoxTD45XE5mcicR8Y6G7ZpV6O6lMwdzf2Yr7/nqRlrJorKYG1bjgVtkcHBwYPXo0L7zwAnv27OHHHzYB1wEY+dJLPDdsBC+++CJOTjUjbUK576Q988wzODs7M2nSJPbt28f9999Pu3btaNu2Lf7+/uWqa8eOHSxZsoQZM2Ywbdo00/7AwEAOHjyIg4MDOp2OlJQUZDJZjfmhCVXDZvMASL0FVirjkMpOxX9I3rlrFzKZFRMmTGDcuHG14oZZVfbF588qDY7P4GpkImHaN7khNSL8sxOY5h/dxZ00WsqjaNb5Se5r7G4M8F6OONtZ3zkHdRp2B4w3vKsye2NNo1QqGTJkCH2efBy+9gcgMzOTNWvW8OOPP/L888/z0ksv4exci9IlpKWl8cMPP/DDDz/g6uqKt7c3x44d4/vvv0ev12Nvb8/Zs2fLXF/37t0ZOHAgCoWiULAH43/NsLAwBgwYgF6vZ+zYsbRt27bEurRaLVrtnRtCGo24qqvt5Km3wNkPRmw0LiRdwH+XrtIxb9veyZXP537MI488UuVtrEl0kpxbkjeXriVyKy2B4IQMguPunlUKcGdWcf6s0pbeDqYr9sYOEo1WNAcgs+/EenfFbq6CFxkfffgh6zdu5saNG6xbt46ff/6Z4cOHM3LkSJSK6hmyWeZgP3/+fLZt24aLiwuTJk1i2LBhKJXGy5GcnByuXr1qmoZeVp6ljJBo3LgxFy5c4Pr160yaNMk0BrY4q1at4ttvvy2yPzw8HLW6bMt/FZyYEhoahq118VeIhSawZGqKHc5nTl0VLWfJujQajTEneBW3zf7COtMVr9qrCwk9F2LIdIQCP+MrV67wxWefcryP8fGs2bPx8vIq8nvIztLQLm/7clAINrb2aDRFf18yXRbN89sWFoaksC22bZYsV7BtYTfDsbEtPvlaceUMkkRcRi7hKVrCU3IIT8khNDGT2Jx1aFHCr9eL1GNnLaeJq5LGjlY8dGsFAbIopIFL8XV1LDBeXAdSCqkJGhqZ2TZzy5VU5u7flyWPWdG23atcg0aNmDt3LqdPn+aXX34hPDycVatW8f3339P3qd58rCi9vuIkJiaWuezdyhzsDx8+zLvvvsugQYOwtrYu9JxKpaJTp0506tSphFebJ/847du35+WXX2b37t0lBvuJEycyduxY0+P4+Hj69euHv78/Pj4+ZTpeplYH3ACgefNmJY4YKVjOzs6eFi1aWKSuipazZF0hISE08POvurZJEvzfHLi0zLRLPnIrzZwKz+04fvw4n332GTLpzpVqt4e6Fnv1malOM203a+qPnYMzISEhRX9fBfr2mzdrVnLWyzKWK3hc30Z+ZW7b3SRJIjQmgUP6DgRLjbl2SUtoUgYhCWqycosbuaLElmya+3rQytelyKxSmUyWd7PUeA8ks21zs9tm6XIllbn791WT2laWcgEBAbz00kscO3aM1atXc/36dQ4eOMDHT5VeX3EcHBxKL1SCMgf7P//8EyurqrmLvmHDBv777z8WLVpk2qfVau/Z56VUKk2fNIAyX80LVUSrIdzmRQAytRGgLPC71OtgzxtwfnPh18gL/73t37+fDz74AL1ez2M9HyX/ZlhFlbX/vLL62fNnlQbHZxAUZ5xVGpxg/K7O0QGzjAUvJpheo1TIae7pQCtvY0C3yU6k98lRNJLdJnvcLdH1UoPIZDJ69uxJjx49OH78OOvXrsZSf7vlUeZgX1WBHqBLly58+eWX/P777/Tt25fz58+zceNGPvrooyprg1BFcrNg2zgI2gsyOTl9FqLaN7NIsR07drBgwQIkSaJv377MnD4NFm2o+vZWUJI6h6D4DK5E3OZm7ivcMDQi6B6zShVyGc2kCFrKomjWYwT3NfYgwNsRPze7QpONLl/S4CdPKLYOoWaQyWT06NGDzh3bw1e7qvz4NTI3Trt27ViyZAmLFi3i/fffp2HDhrz33nv069evupsmWFJ2Gvz0Atz62zjiZug69I17wF3BftOmTSxevBiA5557jlmzZpGdmVEdLS6zNMmeYKkRl87Gcis1Mi//i5qkEmaVymXg72FPgJcjAT6OBOTdMPWy0eHyjTFnemaPGSVesUsKW/yzfwTg6r0WX1Hal16uLGUEs1VXTp0aE+yDgoIKPQ4MDCQwMLCaWiNUuox42PwcxF8ClRO88BP4d4cC/Z6SJLF8+XLWrVsHwOjRo3n99ddrVAKq/FmlN+IzCIpTcyMhg6C4dBJyvjMW+CO0UHmZDBq72tHcwzirNEAehd+Y72jr54ONddFPz5laXc0NvOKfQq1SY4K9UH/IUsPh15chJRzsvWDkr8Yl3O6ybNkytmzbAcDrr7/OmDFjqrSdBWVp9VyJVXNL34MbhkZc/ekKYUnZRKdmlfiaBiTSvHlL2jZ0paW38Wq9hZcDdkpFXvqIZNDD1cbexQb6OkP8U6gRzAr28fHxrFixgvDwcAwGQ6HnNm7caJGGCXWXzY/PQeZtcPWHUTvArVmx5Xbu3IVMJmPWrFkMHTq0StqWozMQHpNeaEZpcHwGkSmZGAcAGVc1IjTF9BovR1WBNAEONHGS0e6nB3GUZZH5QoS4WSrUCGYF+3feeYfExEQef/zxIsMwBaE0sszb4N0eRm4Dx8LDYvX6Ozcq5XI58+bN4emnn7Z4G3L1d2aVXolI5Kb2TYJLmVXqaqegVfYFAmTR+Pf5H+38vAjwdsDlrmE5mVodbXPWAuJKtszE1X+lMyvYX7p0iX379on89kKZyaP/NW3rGz2E1UtbwNalUBlJkvj6m2/IH3M1Z84cnuj9VIWOmz+r9PJ146zSsyGxxO6O5maihlx98bNKnWwUtPIxpt8N8HLIu2HqiB3Z2H05HIDMB+aJK3ahVjEr2Ds6OhYa0y4I9xR9FtWvd1IN5zy3Cbu7Aj3A0qVL2b9vPx/lxfeHHy570juDQSIqJcs4Vj1v5aNrsWnczJ9Vuq3ouGZ7pRUtvR1p7q6izeUvCZBF4TdpO018PIu9CZypLi7ro1ClxCcAs5kV7CdNmsQ777zD+PHj8fDwKPRcgwYNLNIwoY6IvQibBiPTFhgqaV10PdBNmzaxceNGVKXcqJQkidi0bC6GJxOh60+w1Ijra/8jNDGrxFmlNuTQzMeN1g1ccLfK4ZH7mtLS24GGLrZ3ZpVe/wOAzGIWpb5TVdkCjZ1SQfjC/vc8j7KUEQRLMivYv//++wD89ddfgHHcqCRJyGQyrl27ZrnWCbVDSbNj46/CxmchOw19gwewiik+Sd6ePXtM4+jHj38VIqYjSXA7Q0tkbKLpSj0oPoOQeDUZObq8V+ZlwYw1zpZWWslp5mlPq7xuFz8nOffvfIpGstvkvHqrQLoEL7NOUwRooTYzK9gfOHDA0u0Q6prEG8ZAn5UMDTqT89z32C1tV6TYsWPHmPPpl2hd/Xngsf5cc7if4TkfECQ1Jm3x6WKrVshlNHGzpXXyQQLkkTR59gPaNfHG373wrNJMdRp2YlZp/SS6e4owK9g3bNgQgKSkJKKjo/H09MTX19eiDRNqseQw+H4gaBLApz2M2g56OWmSHTfyZ5WmRXE2JIYrUckYeswA4FAGcC4OaANgnFXqbl8o/W6AtyNNPezRZWdg9+UgADLbLMauAgmiBKE+MCvYq9VqZs6cycGDBwFjN87DDz/MokWLxAIj9ZwsLQrDL8ORZ8SS5tCCNd6f8d+PwXmzStcYCxWcVao0BunGrrbGQO6m5L4z79BSFkWDaYdxcy1+xJeu2L3msXNwhjnGmbt2pZStaqLrqJLVo08AZgX7r776iszMTPbu3UujRo24desWCxYs4IsvvuDjjz+2dBuFGipLqyf0tppLt+IJz32eRMmZt74bTEPiCTX48nziW9xOTC30Gl+SaNyoMSHnjqO9fYvWvs6s+mIu7s7GoJ+pTsPu3N/G7bo8q1QQqphZwf7QoUP8+uuvuLu7AxAQEMAXX3zBM888I4J9HXU9Lp3I5KxCs0ojkvNnlYInPflZ+TENieeWwYspyrm08vNnQF4XTP6sUidZFsMPP4E8PIL7mjfnuy+/xslJdMEIQmUzK9hnZWUZF3QuwMnJqUjqBKF2ydUbCE/UEByv5p9ricSfSDU9N2T5yWJf42avpJOblk8T3sVLlkq2nS8uo/byu2/zQuUy1WnYyYx5ZKKjo/H19WXp0qWi289CbK3lorunstSRrh6zgn2HDh1YvHgx06dPNw27XLx4Me3bt7d0+4RKoC+QD2Dl4VDCEjXciFcTlqi+a1bpHU42CgK8HfNWPsq7YerjiIdSj359f6xkqQBIL/6C812BHih0IeDs7MSyZcvw8jJvCGRZFVwNq6RVtgShvjDrHTB9+nRGjRrFrl27aNiwIdHR0chkMtavX2/p9gkVYDBIRKdmERSXYVr5KCgug9Dbd1bxWnKw8Hqs+bNKfWwl7m/qw+f7jKmnT74TiL3qrjxIBj1seQWr2HOmXZKLf7Ft2fD9Rl7P214wfwF+fn4VPr9SKe1NN14FodLV8E8AZgX7gIAA9u3bx4EDB0hKSqJhw4b06tWrQusjCubLn1V6KTrVtG/EqpOE3taQqS1+BaR8z3ZsQBtfJ1p5OxaaVZq/Bm1+sC8yq1SSYN+7cH0PkpUSmV5bTO1Ghw4d4qcff+T1vDQIAa0CzDpPoeLE6J76y+zPti4uLjz33HOWbItQRidCk4hIyjSl4b1RaFap0aXodKDorNKWXg74udvRd9ExAD4d0r7kLo57rRt7chmcWmks9vTXqPa8XlwN3Lx5s1KWkxRdNIJQPuJdUkMla7QFcqpncC32Tm6ZV7//t0h5hVxGE3c7Qm9rAFg0ogPtGroUmVUKxhS8FXJlB+x/z7jd+2P0rZ+BYoK9RqNh+vTpZGZm0uWBTlTHIstC+Ymr/0pWTd09IthXs/SsXNP2/L3X8nKsq0lU55T4mibudrTOv1L3dqRV/qxSg4G2H+4DoM99PpVzxXvrJGyfaNzuOgEemQKa9CLFDAYDH374Ibdu3cLLy4sP338f1m6xfHsEQSgTEeyriCZHx40ENcFxGQXS8KqJS7+TNveHUxGFXtPYzZYAL2NA9/ewY/avlwD4440exQZynbaSh74m3oCfXwB9DrTqD30XGhdVLcb69es5cuQI1tbWfPHFF7i4upTpEKJ7pvYQnwBqF7PeTZ988okp82VBM2fO5PPPP69wo2qz7Fw9IQlqLkffGQXS++uj91yrNN+YR/xp28B4s7SFlwP2qju/nkytzhTsq4XmNvz0HGSlQMMu8NwakBc/w/XEiROsXGnsz581axb33XcfmWoLj4oRI21qDfFPoWYoc7CPj4/n5EnjxJqtW7fSrl3hDIYZGRmmlMf1yZGwDP6MuE5wvJob8RncKjCrNF9+oPdwUNHKx4GWXo55N0yNo1+6fWrMMTSzb6saezWr2j4WUm+Ba1N48RdQFp9FJjo6hvfeew9JkhgyZAiDBg2q2oYKglCsMkcWV1dXNm/eTHJyMlqtliVLlhR6XqVS8frrxY/IqM1y9QZuJWkIilObbpYGxd25Wfrlsbgir3G1s6a5pwP/3jIuSr3xlQdp39AFV/uiq3tV+GZpFbGKvwi2bjDyV7D3KLHc3LlzycjIoH379kyfPr0KWyjUZuLqv/KVOdgrlUq2bdsGwLhx41i7dm2lNaommL71AqEJmnvOKgVo42VDR3/jwtP5KXg9HJRk5epNN0u7+LvV2Cv2eyrwEUVSqJC9+Au4F50dW9DNmzdxc3Pjs88+K7R0peiLFyxB/FMwn1nvurVr17JlyxZ69eqFt7c3u3btIicnh2HDhpnViOTkZEaMGMEnn3zCQw89BMC+fftYvnw5kZGRuLi4MGTIECZNmoRcLi+lNvOlZt6ZGPT7pTtX7PZKK1oUSBPg52bHhE3GVZc+f7ox7dvUzUlCivMbTNva/ktRNe5acuE8VlZWfPbZZ5WeCkEQhPIxK9gvWbKEHTt20LWr8c1vb2/P4sWLSUtL49VXXy1XXWfPnmX27NlERNwZiXL58mVmzpzJokWL6NWrFzdv3mT8+PHY2dnxyiuvmNPkMnGyuZMO4K3eLWnX0JmWXo40dLFFLr8z6qS2dL1UhG3caawPzTM91rfsW2LZixcvkr80+P9ee41OnTpVcusE4d7EJ4CizLpM3rZtGxs3bsTf3x+AJ554gvXr1/PDDz+Uq54dO3Ywffp0pk2bVmh/dHQ0zz//PI8//jhyuZzmzZvTu3dvzpw5Y05zy6xgQH+1RzMCW3vT2M2u0P56ISUcn6OzkUn3TrUAxoVsPvvszgisZ559pjJbJgiCmcxeqeruZQh9fX3JzMwsVz3du3dn4MCBKBSKQgH/qaee4qmnnjI9zs7O5vDhwwwcOLDEurRaLVrtnW4YjUZTrrbUK/dKg5Cjhp9exEqbht77fuON2Xv44osvuB0XbXpcJFmaINRg9ekTgFnB/r777mP16tVMmjTJtG/dunW0bt26XPV4enqWWkatVvPGG29gY2PDmDFjSiy3atUqvv322yL7w8PDUavVxbyiqKzcO5OSQkPDsLUu/oNPwXKZmRpCQkLuWaasdVW0XFnrys7SkD9wNuxmODa2eVO2JQM+x2bjkHCFXJUboQ98ROvfnytaLs+JEyfYvn079gXie2hYGJLCtsgxZbosmpdSxmSk8X4IEbEllzGTRlP876u2E+dVearjvVySxMTEMpe9m1nBfvbs2bzyyits2bIFHx8f4uLi0Ol0rFmzxuyGFCcsLIypU6fi7u7Oxo0b75lVc+LEiYwdO9b0OD4+nn79+uHv74+Pj0+Zjmfsi78BQPPmzUocNVKwnJ2dPS1atLBIXRUtV+a6CkxwatbU37gGK8CRzyHiAFgpiX/sK/zaPgi/F1MOuH37Nhs2bEClUvHK2JFw25jsrHmzZsYJT3fT3vmkVWKZKhASElLs76u2E+dVucIXlj4Iw9Lv+eJUJLOw2Vf2+/fv59ChQ0RHR+Pn58fjjz9u0RTHR44c4a233mL48OG8/fbbKBT3bqpSqSw01K+sV/NCnut74dB843b/r8l2ur/E4ZKSJDFv3jzS09Np3bo1Y8eMgS8sn9lSEGqTmt4lZFaw1+l0rFu3js2bN6PX69m1axejR49mxYoVFhly999//zF58mTmzJnD0KFDK1yfUIqEa7B9gnG760ToPAru8dF527ZtnDx5EqVSybx587C2Fv30glDTmTUaZ+nSpfzzzz8sWbIEa2trPDw88PHxYf78+RZp1MqVK9HpdMyfP59OnTqZvso7rFMog6xU+OkF0KrBvwc8de/f4a1bt1i0aBEAU6dOpVmzZpXfRkGoQ/I/Afzfq1WbHsWsI+3evZuffvoJb29vZDIZdnZ2fPrpp/Tu3dvshgQFBZm285NoCZVPtWcSpNwEFz8Y9j1YlXyVrtPp+OCDD8jJyaFr164MHz68ClsqCEJFmHVln5mZiZubG2DsvwWwsbGp1NmtguUUvJqwunUcrO3h+Z/A3v2er1u7di1Xr17FycmJOXPmiN+3INQiZr1bO3bsaBrmmL826aZNm2jfvr3lWiZUncErwKfdPYtcvnLFlA9p9uzZIh2CINQyZnXjvPvuu4wZM4YdO3ag0Wjo168fGo2G9evXW7p9QmWIv3xnu/s0aPtsqS/55JNPMBgMPP300/Tp06cSGycIQmUoV7A/cuQIvXr1ws/Pj71793Lo0CFiYmLw8fHhscces+jQS6GSZKXCr+PvPO7xdpleFhUVhZeXDzNnzjTvuGKxEUGoVuUK9tOnT+fMmTP06dOH/fv3069fv8pql2CGUsf5ShL8Nsm4CEk+Wdl78ubOnYujo2MFWigIQnUpV7C3trZm/vz5xMTEFJuaAKiTC5jUGloNLGhg3H43pugs1b8XQ9BesFKCXlv09XdJz8jAKW97xIgRPPjgg5ZtryAIVaZcwf6DDz5g69atGAwGTp06VeR5WQmLTws1wM1jcGCucbvPJ/BH6d0xK5YvZ1be9sQJEyqvbYIgVLpyBXs7OzvWrVvHsGHD2LRpU2W1SShGhaZiZ8TBtldAMkCHF6DjS6UG+2vXrrF7zx5mPW18XDAVhSAItU+5hl7mrymaliZutNUa+lzYOhY0CeB1H/T/Gkr5BKbT6cTENkGoY8zqs4+NjRV99rXFgbkQcQKUjjB8IyjtCmWgLM6PP/5IREQETXxLXlhcEITaRfTZ12XXdsOJpcbtQcvBo/RUsbGxsaxevRqAyZMnw/lxldlCQRCqSLmC/dNPP83TTz8t+uwtqNLSoiaHGYdZAjz8OrQtfblASZL4/PPPyc7O5r777qNv375w3vJNEwSh6pk1g3br1q2m7eTkZFOeHKEG2T4BctLB72F4ck6ZXnLkyBGOHTuGQqFg4sSJZf+kJiZMCUKNZ1ZuHJ1OxzfffMMDDzxAYGAgERERPPfccyQkJFi6fYK5Eq6CvRcMXX/PTJb5MjMz+fxz48LhL7/8Mo0bN67sFgqCUIUqlM9+8eLFlZLPXrAAmRyGrgMn39LLYlzDNyEhgYYNGzJunOinF4S6psbks69rqmWJsoRrd7Z7zYKmPcr0suDgYH766ScAZs2ahUqlqozWCYJQjUQ++7pCq4EdE+88fnhymV5mMBhYsGABBoOBJ598kkceeaSSGigIQnUS+exrC60G5jgbv4obJ793OiQVWDe2jAnOdu/Zw+XLl7Gzs+Ptt8uWAVMQhNrHrG6c9957j9GjR9fbfPYFu2hC7rEwd5X570e48KMxwEuGcr105YoVgHFMvaenZ2W0ThCEGsCsYN+4cWP27t3L4cOHiY6OFvnsq9PtINibd0XeYzoc/bxcL89Qq2nT5j6GDRtWCY0TBKGmMHtpc1tbW55++mlLtkUor9ws2DoGcjOhaS94ZEq5g71MJuOdd94R91sEoY4zO9gLNcAfs+6Mpx/yHcityvSy3Nxc8kfeDxk8mLZt2xZfUEyWEoQ6QwT7AqpluKS5Lm2Dc98DMnjuO3D0LjXBWb7tO3YwIm97/HiRp14Q6gPx2b02Sg6D3W8Yt3vOgGaPlfmlqampbChwI93Bwf4epQVBqCvKdWU/atSoUvOlbNy40ayGJCcnM2LECD755BMeeugh0/7z58/z8ssvc+nSJbPqrZN2TAStGpo8apw8VQ4rV64kQ62upIYJglBTlevK/qGHHqJr1640aNCAq1ev0qZNG5566ik6dOhAUFAQTZs2NasRZ8+eZcSIEURERJj2SZLEtm3beOWVV9BqS18vtV6JvwJ27vDcGrAq+//rkJAQtm/fXokNEwShpirXlX3+wiQvvvgiq1evpnPnzqbnnnrqKT744INyN2DHjh0sWbKEGTNmMG3aNNP+d999l7CwMKZOncrChQvLXW+dN3gVODUoc3FJkvj6668xGAz0CuwFhFZe2wRBqHHM6rO/du0aHTp0KLSvVatWhIeHl7uu7t2789dff9GvX79C+9944w1++eWXkkeK1Depdz710G0StCxfHqJjx45x+vRplEolr08uWyoFQRDqDrOCffPmzdmwYUOhfStXrqR169blrsvT0xOFougHDB8fn3LVo9VqUavVpi+NpmwjU6pdaWkQwLiObP5CJFDufnqtVss333wDwEsvvYSvb9kyYQqCUHeYNfTy3Xff5bXXXmPTpk34+PgQExODwWBg7dq1lm5fma1atarYdXHDw8NRV+INSY1GU6GUCTJdFs3ztkPDwpAUtkXKuJ9fimvMOdPj0FuRSIrEMtf122+/ERISgouLCz179iQ0LKzUY1b0vGoqcV61S109LzDv3BITi77vy8qsYN+5c2f279/PoUOHSEhIwMfHh8DAQBwdHc1uSEVNnDiRsWPHmh7Hx8fTr18//P39y/0poTxCQkJo0aL0tV1LVOBqvnmzZsaJTAWFHoIr3xfaVWy5EupKTk5m9+7dqFQqZsyYYUxWV9oxscB51VDivGqXunpeYN65VSQljdmTqlxcXBg8eHCNWZZQqVSiVCpNjyvzar7KqBPy0hZL0GkUnC//ur8rVqxAo9HQpk0bBgwYYPk2CoJQK5jVZ5+bm1toWcLIyEixLKGlGQyw4zVQx4NnmzKvI1tQcHAwv/32GwBvv/22yH8jCPWYWe/+b7/9ttCyhO7u7hZZljAoKKjQhCowju0PCgqqUL210slvIfQAKGxg2HqwLtqvfi+SJPHVV18hSRK9e/emY8eOldNOQRBqBbEsYU0UfRYOzDVu9/0UvNqUOe9NviNHj3L27FmUSiVTp04t/KRIcCYI9Y5YlrCmyU6Hba+AQQdtnoEHxpb+mmIsW7YMMKa4EEMtBUEQyxLWJJIEe9+ClHBwbgzPLIFSchGVJDY2Fk9PT0aPHm3ZNgqCUCuZPc5+zJgx9XZZwkpzaQtc2goyK3huLdi6Vqi6119/HTs7Ows1ThCE2sysYO/n58fevXs5dOgQMTExYlnC4mg1sCAvd827McWPi7/bvneN3x9/B/weunfZUrRp00asJCYIgolZ3TiffPIJtra29OvXj1dffZUBAwbg4ODAzJkzLd2++iU3C/x7QPe3zHp5aFiYaXvq1KniHoogCCZlvrKPj4/n5MmTAGzdupV27doVej4jI4O//vrLsq2rb2zdyrW84N2WL1vGV+7G7fZ3/X4EQajfyhzsXV1d2bx5M8nJyWi1WpYsWVLoeZVKZUqBLJTDjf13tgcuAifzRs6cPHmSU6dPg+i5EQShGGUO9kqlkm3btgEwbty4ak16Vmekx8KeOzn8afGkWdUYDAYWL15soUYJglAXmdWpW1Kg1+l0FWpMvWLQw/bxkJVS4ar27NlDSEgIjuIGuSAIJTBrNE5ERATLli0jPj4eg8EAGPPl3Lx5k3/++ceiDayz/l4E4ceMaRBys8yuJisri+XLlwMweswYCJ127xcIglAvmXVl/9577xEdHY2joyM6nY6AgABu3LjByJEjLd2+uinyDBzMyyPUp2L5hDZv3kxiYiINGjRgyODBFmicIAh1kVnB/vLlyyxbtoxJkybh6OjI+++/z9dff20arVPnFVhdSqYr51V5dhr8+gpIemj3HNw/wuxmJCYmsnHjRgCmTJlSKMWzIAhCQWYFe1tbW5ydnfHz8yM4OBiAnj17ElZgnLdQDEmC3W8a15N18YMB35idDgGMq3NlZWXRrl07nnzSvJu7giDUD2YFez8/P44cOYK9vT0Gg4HIyEji4+PFDdrS/PcDXNmelw5hHdg4m11VaGgoO3fuBGDatGmmHEWCIAjFMesG7YQJE5g6dSp79uxhxIgRPP/881hZWREYGGjp9tUdiTfg9xnG7cD3oPGDFapu8eLFGAwGAgMD6dChg3GnSF0sCEIJzAr2gYGB7N+/H3d3dyZNmoS/vz9qtZrB4gZh8XQ5sG0s5GZC057w6JsVqu7MmTOcOHECKysrpkyZYpk2CoJQp5kV7FNTU/n111+Jjo42Db0EOH/+PJ9++qnFGldnHFoAcZeM6RAGrzY7HUK+/Fz1w4cPp3HjxpZooSAIdZxZwf7NN98kNjaWjh07imRbZXHmO+P3QSvMTodQUEhoKI6Ozrz66qsVrksQhPrBrGB/4cIFDh06hIuLi4WbU83MSUtcVg+9Bq36Wqy6cePG4exs/g1eQRDqF7NH4+Tm5lq6LXWLQX9n26stPDnXYlX7+voyfPhwi9UnCELdZ9aV/YcffsiECRMYNGhQkavLQYMGWaJdtd/RL+9sD1oB1jYVqi4pOZm87MW8NnGimEAlCEK5mBXst23bRnBwMOvXry/UZy+TyUSwBwjeBycKZKH0aFnhKjesX8/bedtiiKsgCOVlVrD/888/2blzJy1atLB0e2q/1AjYPsGiVUZERLBz1y7efsr4WEygEgShvMzqs3d1dcXPz89ijUhOTqZ3796cOnXKtO/ChQsMGzaMTp06ERgYyNatWy12vEqjy4GtYyA7FXw7WKzab7/9ttAQV0EQhPIyK9hPnTqVd955h6tXrxIdHU1MTIzpq7zOnj3LiBEjiIiIMO1LS0sz3RM4c+YM8+fP59NPP+XixYvmNLfq7H8fos+CjYtxPL0FXLp0iYMHD4ohroIgVIhZ3TizZ88GYO/evaYuBUmSkMlkXLt2rcz17NixgyVLljBjxgymTbuTh33//v24uLjw0ksvAfDwww8zcOBAfvjhB+6//35zmlz5Lm2D03kBfshqcKn4ZCdJkli6dCkAT/d9GqQbFa5TEIT6yaxgf+DAAYscvHv37gwcOBCFQlEo2N+4cYOAgIBCZVu0aGFaFrHGuR0Eu6Yat3u8DQFPGcfsV9Dx48c5d+4cSqWSV8a9AmuWlP4iQRCEYpQr2MfFxeHj42OxG4Senp7F7tdoNNja2hbaZ2NjQ2ZmZol1abVatFptoTqqgkyXBVtehVwN+PeAx961SL0Gg8F0Vf/888/j7eVlkXoFobz0en21zavR6/VkZ2dXy7ErW3HnZmVlhUKhqJRBGOUK9v369ePcuXMEBgYWaYw53TglsbW1JSMjo9C+7Oxs7O1LntG6atUqvv322yL7w8PDUavVZTquTJdF87zt0LAwJIVtqeVcT34Kt6+js/Ug8oH30d8MN7uuguUOHDjAtWvXcHBwoEePHoSGhZWpPkvRaDSEhIRU6jGqgziv8tHpdOTk5FTbCDBJkkxrZtQ1JZ2bTCZDpVIVe58uMTHR7OOVK9jv3bsXsFw3TkkCAgL4+++/C+0LCQmhZcuSx6tPnDiRsWPHmh7Hx8fTr18//P398fHxKduBC3S9NG/WrOR0CQXKuUYfBJkVihEbaerfrUJ15ZfLyclh586dqFQqJk+eTKdOncpen4WEhITUyaG14rzKTq/Xc+PGDVxdXfH09KyWgJ+Tk4NKpary41aFu89NkiS0Wi23b99Gr9fTrFmzIgHfwcHB7OOVK9j7+hqTeK1fv57333+/yPMzZ87k888/N7sx+Xr37s0XX3zBhg0beOmllzh79iy7d+82LaxdHKVSWWhWaVmv5i3iyY/A/1GLVffLL7+QkJCAj4/PnbQIIle9UMVyc3ORJAlPT88i3apVycamYrPPa7K7z83W1hZra2tu3bqFVqu16LmXOdjHx8eb1pjdunUr7dq1K/R8RkYGf/31l0Ua5erqyrp165g/fz5LlizBzc2N999/n27dupX+4qqQlWLa1DTsgf0jUy1WdXp6OuvXrwfgf//7n0iLIFQ7MYmvalXWMOsyB3tXV1c2b95McnIyWq2WJUsKjwxRqVS8/vrrZjckKCio0OP27dvz888/m11fpclMhp+eNz1MeOhdmlrwzbBu3ToyMjJo0aIFTz/9tMXqFQShfitzsFcqlaahj+PGjWPt2rWV1qgaS5MIG5+F+MumXQalo8Wqj4uL45dffgGME9fERCpBqBnCw8Px9/ev7mZUiFnRZO3atej1d1L4HjlyhEuXLlmsUTVSRjxs6G8M9PaVMwxyzdq15Obm0qVLFx5++OFKOYYg1HUffvghnTp1olOnTrRv357WrVubHnfq1Il///23XPX98MMPfPDBB6bHgYGBbN++3dLNrnRmBfuDBw/So0cPAJYvX86UKVMYOXIkW7ZssWjjaoz0WGOgv30dHBvAyF8r5TD79u0DjFf1op9UEMwzb948zp8/z/nz55k7dy4NGjQwPT5//jxdunQpV33JycmV1NKqZdYM2uXLl/Pmm29iMBjYvHkzS5cuxd3dnWnTptW9RTXSouD7gZAcBs6NYfQucPCulENJkkTv3n1o27ZtpdQvCBUlSVKVTnLKzs5GpVJZ7OInKiqKJ554grFjx/Lrr78yYMAA3NzcOH36NJs2bTKVCwwM5PXXX0cmk7Fq1Sr0ej1dunQxfSq4cuUKW7ZsITg4GF9fXz766CO6du1qkTZWFrOCfWRkJMOHD+fq1atkZWXx6KOPolAoKjTgv0ZKuWUM9Km3wMUPRu8B1yYWSYVQHCsrKyZNmlQpdQtCRUmSxLhx46o0IaEkSXTs2JE1a9ZY9NOuRqPh77//Jjs7m++//77EcoMHDyYqKqrIP4Pjx4/z3Xff0aBBA+bMmcMHH3xg+mReU5nVjWNra0tSUhIHDx7kgQceQKFQcP36dVxdXS3dvuqTEm7sukm9Ba5NYewfxkBvYZIkmbYHPfssjRtXPIGaIFSWutK9OGjQIJRKJU5OTma9fsSIEfj5+aFQKOjbty+RkZEWbqHlmXVl/9xzzzFo0CDS09NZsmQJly9f5tVXX+WVV16xdPuqz+bnICMW3Fsau26cGlTKYQ4dPkz+ulOjx4yplGMI5jEYDIW+9Ho9BoMBSZJQKBQoFAqsra3rTAAsjUwmY82aNVXejePi4mLxn7FXBXNNubi4mLatra0LDVipqcwK9lOmTKFr166oVCo6duxIbGws8+bNo0+fPpZuX/XJiAXP1vDyLnCsnD56nU7Hd6u/I7C98bFbXfpkVAvk5uaSkZGBWq0mIyODlJQUtFotOp2uUGAv7ksul5u+8mdvq1QqVCoVSqUShUKBSqXC3t4ee3t7bG1t68Q/BZlMVqWzaWUyWaX83ArWKZfLCyV6MxgMpKamWvyY1a1cwf7s2bM88MADADz00EOm/b6+vvj6+rJ27VrGjRtn2RZWpdysO9tebWH0brD3qLTD7dq1i8ioSGhfaYcQ8mi1WtRqNQkJCWRnZ5OcnEx6ejpardb0RlcoFFhZWZkCjFwuL/S94FfBq/3MzEzUarVpX8GuOblcjrW1NTY2Njg7O+Ps7IyDg4Ppn4BSqawT/wRqs+bNm7NmzRpu3LhB06ZNWbduXaEMuyqVCrVabUr2WFuVK9iPHz+ec+fOmR4/++yz7Ny50/R42bJltTvYF3iT8uKWSg302dnZrF5tmdWshOJptVri4+OJiooiKSmJnJwc0tLScHBwQKFQoFQqcXR0rLSUsmBMJqbVasnJySEqKsq0IpuVlRVKpRJbW1s8PT3x8PDA3d29TueBqamefPJJTpw4wZgxYzAYDAwaNMh0UQvw+OOP89NPP/HAAw9w+PDh6mtoBZUr2Be8YgGKLEN49/O1jtLuzradW6Ue6ueffyYxMZGmjXyB0Eo9Vn1iMBhITk4mJiaGqKgo1Go1MpkMOzs70804d3f3KmuPlZUVtra2hbo+JElCp9ORm5uLWq0mOTmZoKAgbG1tcXd3x9vbGzc3N5ydncUs6goaMmQIQ4YMMT1u1KhRkdQsCoWCefPmMW/evGLraNmyJYcOHTI9PnjwYKHnH3rooSJ11kTlCvZ3X/2U9lgoXnp6Ohs2bADg1XHj4Ozx6m1QHaDRaIiLiyMiIoKUlBRyc3NNwdPKyspUrib8jcpkMqytrbG2tsbOzniBYTAYyMrKIiYmhsjISJRKJQ4ODvj6+uLu7o6bm1udTfUrVA2zbtAKFbNhwwbUajUtWrSgd+/ecLa6W1Q76fV64uPjiY6OJjY2lqysLKytrXFwcKh12ULlcrmpHz8/r7lGo+Hq1aumm6INGjTA19cXT09PFArx1hXKR/zFVLGEhARTNs/Jkycjt3EUeerLSa/XEx0dTUhICElJSUiShL29PV5eXjXiyr2i8lcqyr+S1+v1ZGVlERISQlhYGE5OTjRq1AhfX99KGZYo1E3lCvY6nY7ffvvN9Dg3N7fQ49ow1rS6rV69Gq1WS8eOHenevXt1N6dWyQ/yoaGhJCYmIpfLcXV1rfNXuVZWVjg4OODg4IBOp0OtVnPp0iWCgoJwc3OjcePGdXadVsFyyvUu8fDwKJTH3tXVtdDjqrzxVRuFh4eza9cuQCQ7Kw+9Xk9MTAwhISEkJiYik8nqRZAvjkKhwMXFxdTVk5iYSFxcHLm5uWRlZdGwYUO8vb0L3acQBChnsL/7LrRQPsuXL8dgMNCzZ0/uv//+6m5OjVdckHdxccHa2rq6m1btCnb1SJJEbGws4eHhhIeH4+rqir+/Pw0bNqzW5QSFmqX+XRpVkytXrnDw4EFkMhmTJ0+u7ubUaAaDwRTkb9++LYJ8KWQyGTY2Nri5uaHT6cjIyODs2bNcv34dPz8/GjduLPr2BRHsq4IkSSxduhSA/v3707x582puUc0kSRJJSUlcv36duLg4ABHky0mhUODq6orBYECj0XDt2jVCQ0Px9vbG39+/Wrp4MrU62n5ozAh5dd5T2ClF2KkO4qdeBc6c+Zd///0Xa2trJk6cWN3NqZE0Gg3BwcGEh4eTm5uLi4tLrRs+WZPI5XIcHR1xcHAgJyeH6OhooqOjcXV1pWnTpjRs2FDM1q1nRLCvAitXrgBg2LBh+Pr6VnNrapbc3FzCwsIICQlBrVbj6OgouhwsKL+Lx8bGBp1OR3p6Ov/++y/BwcG0aNECPz8/MVmrnhBzsatA8I0b2NnZ1a0U0BVkMBiIioriyJEj/Pfff+h0Ory8vLCzsxOBvpIoFArc3Nzw9PREq9Vy7tw5Dh8+TGhoaKGsj7Vdq1atOHXqVLHPrVy5kldffbVM9Wzfvr3I+rUdOnTg8ccf56uvvqp16WHElX0VefnllwvlwK7PkpOTuX79uim3koeHhxgqWIXkcjnOzs44OjqSlpbG2bNnCQsLo2XLljRq1KhOD2l97bXXylW+QYMGhUYh6vV6jhw5wtSpU/Hz82PYsGGWbmKlqbu/1RrEzdWVF198sbqbUe2ysrIIDg7m5s2baLVa0S9fzfInpen1etLS0jh9+jRhYWG0aNGChg0bFvsaSZLIyi3f5MlMra7Y7bLI1upRqSyXWnjp0qWmJQa3b9/O1q1bue+++9izZw8ymYzAwEDmzJlT4qAAKysrAgMDCQgI4Nq1a6b9e/fuZeXKlcTExNCkSRPeeust06TJ7OxsPv30U/744w9sbW0ZPHgwu3btYu7cufTo0cMi51UWIthXErVag0Pe9ugxY0wJr+ojg8FAZGQk169fJzU1FQcHB5ydnUV3TQ1hZWVlGraZkpLCqVOn8PT0xM/PD4PBYConSRJDV57k7K0Us4/V5ZMD5X9NE1e2vvZwpfy9nDt3jp49e3Ls2DGuXbvG6NGjeeSRR+jfv3+x5bVaLQcOHCAoKIg33ngDgCNHjvDRRx+xYsUKOnfuzNGjR5kyZQpbtmyhZcuWLFiwgMuXL7Nz506cnJyYO3cu0dHRFj+X0tToYB8aGsqCBQu4cOECDg4OjBgxgokTJ9aKtK/fb/ye/NH0zz7zTLW2pTqlpqZy9epVoqOjsbKywtPTs1b8/uojhUKBu7s7ubm5JCYmEh8fj0qlwtPT0zRyp679e7axseG1115DJpNx//3306pVK27evGl6PiYmhi5duphmLEuSxCOPPMLSpUvp1asXAJs3b+aFF17gwQcfBIz57wMDA/n555+ZPXs2u3btYunSpabBGR9++CF79uyp8nOtscFeo9Hw6quv8uijj7J06VJSUlJ47bXX0Ov1vP7669XdvHuKiIhg69atTO5tfFyX+0BLotVqCQ0N5caNG2RlZeHq6iq6bGoJa2trPDw8yMzMJCYmhhMnTtCmTRuaN2/O1tceNqsbJ/+K/t/3nyjXOPvs7BxcHSvvpr27u3uhuq2trQvdeC3YZx8aGsqbb76JUqks1P0SHR3N6dOn+emnn0z79Ho93bp1IzU11ZTGIp+DgwOu1bAEaY2NQmfPniUpKYkPP/wQpVKJnZ0d//vf/5g/fz6TJ0+u0V0AixYtQqcrX99kXZE/df/atWskJiZiZ2dXZ7JR1jdKpRInJyckSeK///4jLi6Otm3b4uHhYfbv006pKFewlxt0NeZvp3nz5nz33XcMHjyY9957j88//xwAHx8fBg0axIQJE0xlY2JisLGxwcXFBRsbG2JiYmjWrBkAmZmZpKSY3xVmrhr7edpgMJgWeMgnk8lITEwkPT29SPn8NUbzvzQaTVU21+TUqVMcPXq0Xo4uUavVnD17lpMnT5KSkoKHhweOjo415s0qlJ9MJsPR0RF3d3fi4+M5fvw4Fy9erPFZNpOTk4mLiyv0ZYkLMB8fHxYuXMjOnTvZsWMHAMOHD2fjxo1cvHgRgEuXLjFkyBD27NmDXC5n6NChLF26lPj4eLKysvj000+rJUNwjb2y79y5MzY2Nnz11VdMnjyZ5ORk1q5dCxjvbjs7Oxcqv2rVKr799tsi9YSHh6NWq8t0TJkui/xEBqFhYUiK4pNIFSyXqdEQEhICGD+6zZ07l5ycHHr3HkDIyLyPdRGxZTp+TaIpcF6l0el0JCQkEB0dTWZmpmkh7bS0mpenX6vVkpycXN3NsLjKOK/8BdR1Op1pjH5mZiZXrlwhJiaGgIAAGjRoUOo/82ztncCWnZ2D3FD2oGswGMz6x/Lmm28W2ffbb7+h0+lMdebm5iJJUqH688+3pOfBuAzh888/z8cff0z79u157LHHSEtLY/bs2cTFxeHs7MzIkSMZNmwY2dnZTJ48mU8//ZR+/fphZ2fH0KFDkcvlWFlZFXtuOTk55ObmcuvWrSIXjYmJieX+WeSTSTV4ZsDVq1f59NNPCQ4Oxs/Pj2effZaPP/6Y//77r0g2P61Wi1arNT2Oj4+nX79+HDlyBB8fn7IdUKuBBQ2M2+/GgNK+1HKhzx+neev2AGzZsoXPP/8cZ2dnduzYYVrztDYKCQmhRYsW9yyTn7AsKCiIpKQkVCoVTk5ONfpKPjk5GTe3yl1fuDpUxnnlj865O520wWAgJSUFSZLw8/OjTZs2ODo6llhPRXLjZGdn1/q0DmfOnKFVq1ameKBWq3nggQfYtWsXrVq1KlI+Ozubmzdv0rRp0yLnHhcXR69evcoX1/LU2Ct7rVaLTqdj48aNpuDx448/0qJFi2LTtiqVykI3AMt6NW8p6enprFy5EjBO3KjNgb40dycsk8lkRdZ6FeouuVyOu7s7OTk53Lx5k9u3b9OmTRv8/f3FSKtirFu3zjTkUiaTsWTJEpo2bUqTJk2qtB01+jczbtw4tm3bhiRJXL58mZUrVzJ69OjqblaxVq9eTXp6Os2bNy+0mn1dk5GRwfnz5zl27BgxMTE4OTmJQF9PqVQqvLy8yM3N5ezZs5w+fZqMjIwi5eyUCsIX9id8Yf96mfFyzpw5ZGRk0KtXLx599FFu3brF6tWrq7wdNfYnr1QqWb58OZ9++ikLFizA3d2d8ePHM3z48OpuWhE3b95ky5YtALz99tt1MvDl5OQQFhZGaGgoGo0GJyenahk+JtQs+WsNaLVabt26RXJyMm3btsXPz09c5efx9vZm+fLlRfZX9U3uGhvsAR588EG2b99e3c0o1TfffGNagapr167V3RyLys3NJTo6muDgYFJSUsRQSqFYSqUSLy8vUlNTOXPmDPHx8dx33304ODiU/mKhStToYF8bnD9/nhMnTqBQKIodAVBbZWVlERQUxK1bt0hNTcXa2lrMfhXuKX9t4JycHMLDwwtd5YuLg+ongn0Fbdy4EYAXXngBPz+/am5NxUiSRGJiIpGRkVy9ehVra2tUKpXokxfKJb8v/+6rfHv7Eka3CVVCBPsKiouNxdWzAePGjavupphNq9WaFqxOTExEp9Mhl8tFd41gtoJX+WGhN0j+/RPacoNGs08jtyl5mKZQeUSwt4BJkybVur5JSZLIyMggOjqa8PBwMjIykMvlODk5oVQqSU5OFoFeqDCVSoWXhzupQbacohNRZ87Spl0HcXO/GohgX0F+TZrw7LPPVnczyiQ/wN++fZuYmBiSk5PJysrC1tZWdNUIlUYul+NGGlqsiYyK4XZyGi1atKBFixZiScQqJIK9GUJCQ8mfWzpm9JgafdOyYICPjo4mOTmZnJwcrKyssLe3r/EzXoW6Q0kuXp7uaLJzuXz5MtHR0bRu3ZpGjRrV6PdQXSF+wuWUlZXF3DlzTI/btG1TfY0pgSRJpKWlERISwrFjxzh48CD//vsvt2/fNt088/DwwNbWVgR6oUrJZDIcHBzw9PRErVZz6tQp/vnnH4tmgWzVqhWtWrUiLCysyHPr16+nVatWLF26FDCuXDVq1KgS6xo1ahTt2rUrtA5tt27deOedd2p8Mri7iSv7cvr888+5GR4ONSzG51/B5yckS0lJIScnB4VCgb29vVgZSrAMSQJDORcn1+cW2ZYDbs4OaLVaIm+Fczs+lhbNmtKimX/hrh1tNqhUUM6/XVdXV3bs2MHbb79daP/27dvLfX9t4sSJTJkyxfQ4OjqaV155hY8++ojPPvusXHVVJxHsy2H37t3s3r0buVzBuWcO0blzZ6QyZoasDJIkoVarSUhIICYmhqSkJBHghcojSXB+M6RXYEm9E0sLPVQCXoAGOy5fsCOaVAK4SUPisEaHDUDjbvDKn+UK+AMHDmTnzp1MmzbN1EV08eJFtFotbdu2Nb/9QMOGDQkMDOT48eMVqqeqiWBfRmFhYSxcuBAwJjrr3LlztbRDkiQ0Gk2hAJ+dnY1CocDOzk4EeKGSWf5vSwY4kIkdWaTixGk64kI6TYmkMTGYk/PyscceY8+ePZw4ccK08Pe2bdsYOnQoR48eNbuter2eoKAg9u/fT+/evc2upzqIYF8GmZmZzJo1i5ycHLp168aYMWOqvA05OTnExcURFRVFYmIi2dnZ4iarULVkMuj0knndOPlX9I9MASvrYovJATeMATUjQ805bS7XbG1o0bIVjdXqe6ZRvptCoWDgwIHs2LGD7t27k52dzb59+9izZ0+5g/3q1av5/vvvAePFloeHB3369Kl1M+ZFsC+FJEksXLiQmzdv4unpybx586ps5IDBYCApKYmYmBiioqJQq9VYWVlhZ2cnArxQPWQysKrAWsJW1qW+3soKXNxtMRgMpKWlcfHSJUJCQ2ncuDH+/v64uLiU6W9/yJAhjBgxArVazf/93//RuXNnPD09y93kCRMmFOqzr61EsC/F7t27+f3335HL5cyfP79KFr7QaDTExsYSERFBSkoKOp0OOzs7kZtGqFfkcjmOjo64uLig0WgIDg7m1q1b+Pr60rRpUzw8PO75fmjdujXNmjXjjz/+YPfu3TU2PXpVEcH+HkJCQkz99P/73/8qtZ8+f2m/qKgo4uLiyMrKwtraGkdHx0KLsghCfZM/XNPe3p7s7Gxu3bpFVFQULi4uNGrUCC8vrxKv9ocMGcKGDRtIT0+nV69exdav1WqJi4srtC9/sfC6RAT7EmRmZjF79my0Wi0PP/xwpVwVSJJEeno6MTExREREmBZSF2mEBaEomUyGra0ttra2aLVa0tPT+e+//1Aqlbi6upoCf0EDBgzgs88+Y/To0YWWVizov//+K/KPoF+/fnzzzTeVdi7VQQT7Enz19VeEh4fj5eVl8X763Nxc4uPjiYyMJD4+npycHFQqVZG1PgVBKF7+MqSSJJkWW4+Pj0elUrFmzRo8PT3RaDS4urpy+fLlQq/dtGmTaXvKlCn37I8vWLa2E5GlIKU9zEnjt99+Y+cnnyCXy1mwYIFFkjblz2rNv4rPX77NwcFBDJcU6jYrJTw2u1KqlslkqFQqVCoVkiSRnZ1NfHw8sbGx2NjY4OHhgbe3N+7u7jg5OdXre14i2N/lxo0bfP7554Axm2XHjh0rVF9ubi5xcXFERkaSkJBAdnY2tra2uLm5icRjgmBBBbt5JEkiKyuLmJgYIiMjUSqVODg44Ovri5ubG+7u7vUuCZsI9gUYDAZTP/0jjzzCyy+/bFY9er2exMRE4uLiiImJISMjw3STSVzFC0Llk8lk2NnZYWdnZ+rq0Wg0XL16FZlMZrrq9/Lyws3NDWdn5zp/1S+CfQFqtZrY2Fh8fHzK3U9vMBhISUkhPj6eqKgo0tPTMRgM2NjYiPTBglCNCnb1gPFiLDs7m+joaCIiIlAqldjb2+Ph4WEK/E5OTnXuPSuCfQFOTk6mREllSZaUn7ogODiYqKgoUlNTyc3NRaVS4ezsjLV18TMFBaE2kSSpuptgUfkzz+3t7U1X/VlZWYSEhCBJEtbW1tja2hYK/lX5fq6sn7cI9nfx8fG55/M6nY60tDSSk5NNS/mpVCpTn6C1tbXophHqhPy/Y71eX2cvXO6+6pckidzcXLKzswkPDycsLAyFQmFai9nV1dU05j///W5pmZmZABavWwT7UhgMBjIyMkhJSSExMZHbt2+TmZmJTqdDoVCgVCrFmHihTpLL5VhbW5OZmYmVlVW1/I3rdLoqP6ZcLi/U36/X68nJySEyMpLw8HAA03vf3t4eFxcX0z8Ae3v7Mq8TkZOTU+ixJElkZmaSkJCAi4uLxbuRRLAvRmZmJsnJyaaxu2q1Gq1Wi1wuR6VS4eTkhEKhQCaTibVahTpLJpPh6OhISkoKqamp1dIGg8FQY26cymQyFAoFkiSh0+nIzs4mOTnZ9A8g/3mlUomNjQ12dnYolUrTJ3+lUmmKG2AcqVfc1buLi0upPQzmqNHB/sqVKyxYsICgoCBsbGzo27cvM2fOrNT0AampqZw4cQK1Wg0YJ2/Y2dmVOfmSINQlVlZWuLu7o9frq+X4qamptSZtgV6vJzc31/SVnJxsek6hUGBtbY1SqcTR0REHBwdycnKKDO22trautBvDNTbYGwwGJk6cyIQJE9i0aRMJCQmMGTMGV1dXJk+eXGnHzc3NRaPR4ObmJmazCgJ3rlirg1wurzXvw/y+/bvl3wfQ6XTk5uaSkJBAZGQktra2dOvWreraV2VHKqe0tDRu376NwWAw3Z2Wy+XY2tpWyfFrykdHQRBqN5lMZurGyZeSklLlo5xqbERzdXVlzJgxfPbZZ7Rv355evXrh7+9f4sIhWq0WtVpt+tJoNFXbYEEQhBqsxl7Z509I+uCDDxg6dCi3bt3i9ddfZ8mSJcWuELNq1Sq+/fbbIvvDw8NN/e9lkZaWhlqtRiaTlenqPj8JU10jzqt2EedVu6jValQqFSHlXMM6MTHR7GPW2GD/119/sW/fPv78808AWrZsyeTJk5k/f36xwX7ixImMHTvW9Dg2NpYBAwaYxsOWlVarBSArK6tMN2TVanW5V6uvDcR51S7ivGqX3NxcJEkq97llZWUBxovh8qqxwT42NtYUePPl39Euzt19YtnZ2QAMHTq08hopCIJQAQsWLDDrdUlJSTRo0KBcr5FJNXQudEhICIMHD2by5MmMHz+emJgYJk2aRPfu3Zk1a1apr9fpdFy7dg13d3dxs1UQhDohf13qNm3alHuUUo0N9gAnTpxg0aJFhIWF4ejoyDPPPMPkyZPFMn2CIAjlVKODvSAIgmAZon9DEAShHhDBXhAEoR4QwV4QBKEeEMFeEAShHhDBXhAEoR4QwV4QBKEeEMHeDElJSUyaNIkuXbrw0EMPMX/+/GpZUceSkpOT6d27N6dOnTLtu3DhAsOGDaNTp04EBgaydevWamxh+Vy/fp2xY8fStWtXHn30UWbOnGnKsVKbz+vkyZMMGzaMzp078+ijj/Lxxx+bZovX5vPKp9frGTVqFLNnzzbtq+3n9fvvv9O2bVs6depk+poxYwZQxecmCeU2cuRI6e2335YyMzOliIgIqX///tJ3331X3c0y27///is9+eSTUkBAgPTPP/9IkiRJqampUteuXaXNmzdLubm50okTJ6ROnTpJFy5cqObWli4rK0t69NFHpcWLF0s5OTlScnKyNH78eGnixIm1+rySkpKk9u3bS7/++quk1+ul+Ph4acCAAdLixYtr9XkVtGjRIql169bSrFmzJEmq3X+H+RYuXCjNnj27yP6qPjdxZV9Ot27d4vTp08yYMQNbW1saN27MpEmT+OGHH6q7aWbZsWMH06dPZ9q0aYX279+/HxcXF1566SUUCgUPP/wwAwcOrBXnGRMTQ+vWrU2zrV1dXRkxYgRnzpyp1efl5ubGiRMnGDJkCDKZjNTUVHJycnBzc6vV55Xv5MmT7N+/nz59+pj21YXzunTpEu3atSuyv6rPTQT7crpx4wYuLi54e3ub9jVv3pyYmBjS09OrsWXm6d69O3/99Rf9+vUrtP/GjRsEBAQU2teiRQuuX79elc0zS7NmzVizZk2h5d327dvHfffdV6vPCzBlSezVqxcDBw7E09OTIUOG1PrzSkpK4r333uOrr74qtEBRbT8vg8HAlStXOHz4MI8//jg9e/bkgw8+IC0trcrPTQT7ctJoNEVWy8p/nJmZWR1NqhBPT89iEyoVd542Nja17hwlSeKbb77h0KFDvPfee3XmvPbv38/Ro0eRy+VMnTq1Vp+XwWBgxowZjB07ltatWxd6rjafFxjvhbVt25annnqK33//nZ9//pnw8HBmzJhR5ecmgn052dnZmXJK58t/bG9vXx1NqhS2tramG3/5srOza9U5qtVqpk6dyu7du9m8eTOtWrWqE+cFxqDg7e3NjBkzOHbsWK0+r1WrVqFUKhk1alSR52rzeQF4eHjwww8/MHToUGxtbWnQoAEzZszg6NGjSJJUpecmgn05tWzZktTU1EIrxoSGhuLj44Ojo2M1tsyyAgICuHHjRqF9ISEhtGzZsppaVD4RERE899xzqNVqtm3bRqtWrYDafV7nzp2jb9++hdZ50Gq1WFtb06JFi1p7Xjt37uT06dN06dKFLl26sGfPHvbs2UOXLl1q9e8LjKPCvvzyy0LrzWq1WuRyOffff3/Vnlul3Pat41544QVp2rRpUkZGhmk0zpIlS6q7WRVWcDROcnKy1KVLF2n9+vWSVquVTp48KXXq1Ek6efJkNbeydKmpqdJjjz0mzZ49W9Lr9YWeq83npVarpV69ekkLFiyQcnJypKioKGno0KHSRx99VKvP626zZs0yjcap7ecVGxsrdezYUVq9erWUm5srRUdHS8OHD5fefffdKj83EezNcPv2bWnKlClS165dpW7dukkLFy6UdDpddTerwgoGe0mSpIsXL0ojRoyQOnXqJD3xxBPSr7/+Wo2tK7t169ZJAQEBUocOHaSOHTsW+pKk2ntekiRJN27ckMaOHSt16dJFevzxx6Wvv/5aysnJkSSpdp9XQQWDvSTV/vM6deqUqf3dunWTPv74Yyk7O1uSpKo9N5HPXhAEoR4QffaCIAj1gAj2giAI9YAI9oIgCPWACPaCIAj1gAj2giAI9YAI9oIgCPWACPaCIAj1gAj2giAI9YAI9kKly8nJIS4urrqbUaya3LaazGAw0LdvX7744otC+48dO0a7du34448/qqllQklEsBfMMmrUKJYuXVqmsi+++CInTpyo5BaZp2DbYmJi6NSpEzExMdXcqjuioqJo1aoVUVFRFq23oucql8uZOHEiP/30E2lpaYAx6dcbb7zBtGnTePrppy3ZXMECRLAXKl1KSkp1N6FEBdvWoEEDzp8/T4MGDaqxRVXDEuc6cOBAXF1d2bRpE3FxcUyYMIFnn32WcePGWbClgqWIYC9USP6V59atWwkMDOSBBx5g7Nixpq6RV155hZiYGD766CPmzZsHGNMPv/baazz00EM8/vjjfPPNN6a0vfn1LVy4kAcffJBXX32Vt99+u9Ax33zzTebOnVvmusratruvooOCghg/fjxdu3alZ8+ezJkzh4yMjFLrvdvMmTPveQ4HDx7k+eef5+GHH6ZDhw6MHDmS8PDwEn/WBa/yly5dasoDf6+fxb3qKu/55FMoFIwfP55NmzYxfvx42rZty/vvv3/P1wjVRwR7wSIOHz7Mb7/9xr59+0hMTGT58uUArFu3jgYNGjB37lw+/PBDMjMzGTNmDC1btuTo0aP8+OOPnDhxokiXkEaj4e+//+a1117j//7v/1Cr1QCkp6dz8OBBhg4dWua6ytq2glJSUnj55Zdp0aIFR48e5ddff+XmzZvMnDmz1HrvNnz48BLPIS4ujjfeeIMJEyZw8uRJDh8+jCRJLFu2rFw//7L+LO6lrOdT0MCBA02L93z99deFloIUahYR7AWLGD9+PE5OTnh4eBAYGFjslSkYA4pWq+Wtt95CpVLh6+vLG2+8UWSR5UGDBqFUKunSpQu+vr6mG3579uyhWbNm3HfffWWuq6xtK+jAgQNYW1szffp0bGxs8PT05IMPPuDgwYOmhWvKWu+9zsHNzY29e/cSGBiIWq0mLi4OV1dX4uPjS22jOT/XezHn5/Txxx8Dxn+OItDXbEUXHxUEM3h4eJi2FQoFJWXOjo6OJjk5mQcffNC0T5IkcnNzSUpKMu3z8vIybQ8bNoydO3cybNgwduzYwbBhw8pVV1nbVlBSUhINGjQoFMAaNWpk1jnf6xysra3Zs2cPP//8MzKZjICAANRqdbHrAt9LaT8Ld3f3Uuso789p0aJFHD58mC1btjBmzBi2bdvGSy+9VK52C1VHBHuhSvn4+ODn58eff/5p2qdWq0lKSsLNzY3o6GgAZDKZ6fnBgwezaNEiTpw4QVBQEAMGDChXXeZo2LAhMTEx6PV6U8CPiIgAKLEf/F5KOoc//viDzZs389NPP9GkSRPAeLUcHBxcpI78duTm5pr25d9gLu1nYWlbt25l/fr1fP/997Ru3ZrRo0ezZs0ahg8fjrW1tcWPJ1Sc6MYRKp1SqSQjIwOAxx9/HI1Gw5o1a9BqtaSnpzNr1iymTZtWKMAX5ObmxuOPP877779Pnz59cHZ2Nruue7WtoF69egHw5Zdfkp2dze3bt5k/fz7dunUzawRLSeeQkZGBXC7HxsYGSZI4evQov/32W6GAns/d3R1nZ2f27t2LJElcuXLFFNwt8bMoqyNHjjB37ly++OILOnbsCBiH4qrVanbu3GnRYwmWI4K9UOmGDh3KN998w/Tp03FwcGDDhg2cOnWKnj178uSTTyKXy1mxYsU96xg+fDjR0dEMHTrUtM/cukpqW0GOjo6sX7+e4OBgevXqxYABA2jYsCGLFy8u38mXcg6DBw/mkUceoX///nTr1o0VK1YwevRobt68WeQThFKp5OOPP+aPP/6gc+fOLFy4kOHDh1vsZ1EWly9f5s0332TGjBn06dPHtN/BwYGRI0fy3XffodfrLXpMwTLEsoSCIAj1gLiyFwRBqAdEsBcEQagHRLAXBEGoB0SwFwRBqAdEsBcEQagHRLAXBEGoB0SwFwRBqAdEsBcEQagHRLAXBEGoB0SwFwRBqAdEsBcEQagHRLAXBEGoB/4ft7c6Y4nW0BMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEkCAYAAADO5pEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABleklEQVR4nO2deViUVfvHPzMMMzDsoKyKqIBLLrmkZpavVlampeXS4l5qP23RXDLL1NKy3VxSy6VSq9clWzRT31xaNDXN3EFERBbZt2GZ9fn9MTCAIMIwwADnc11z8TzPnDnPfQb4zpn73Oe+ZZIkSQgEAoGgQSOvawMEAoFAUPMIsRcIBIJGgBB7gUAgaAQIsRcIBIJGgBB7gUAgaAQIsRcIBIJGgBB7gUAgaAQIsRcIBIJGgKKuDagpDAYDFy5cwMfHB7lcfKYJBIL6j8lkIi0tjXbt2qFQVE2+G6zYX7hwgWHDhtW1GQKBQGBztm3bRseOHav0mgYr9j4+PoD5TWnatGmN3ScmJoaQkJAa67+uEOOqX4hx1T+sGVtKSgrDhg2z6FtVaLBiX+S6adq0Kf7+/jV2H41GU6P91xViXPULMa76R3XGZo1rWjizBQKBoBEgxF4gEAgaAULsBQKBoBHQYH32lUGSJAwGA0aj0eo+jEYjBQUFNrTKPrD1uBwcHFAoFMhkMpv1KRAIKk+jFXudTkdiYiJ5eXnV6kev13PlyhUbWWU/1MS41Go1AQEBKJVKm/YrEAhuTaMUe5PJxJUrV3BwcCAwMBClUmn1jFOr1aJSqWxsYd1jy3FJkoROpyMlJYUrV64QFhYmNroJBLVMoxR7nU6HyWSiefPmqNXqavfn5ORkA6vsD1uOy9nZGUdHR65evYpOp2uw75lAYK806umVmF3WLuL9FgggT2cgZM4u7lsbQZ7OUGv3Ff99AoFA0AgQYt/IiYmJqWsTBAJBLSDEvh7xxhtv0KVLF7p06ULHjh1p27at5bxLly78/fffVepv8+bNzJs3z3Lev39/vvvuO1ubLRAI7IBGuUBbX3nzzTd58803Afjuu+9YsWIF+/fvt7q/9PR0W5kmEDR68nQG2r+xB4Dzbz6AWmlf8mpf1tQhkiRZtYmooKAASZKsuqeTk5PNNhnFxcVx7733Mn78eLZv386gQYPw9vbm2LFjbNy40dKuf//+PP/888hkMtasWYPRaKR79+6WbwXnzp1jy5YtREZGEhAQwPz58+nRo4dNbBQIBHWHEHvMQv/MM89w+vRpq15rrWB37tyZtWvX2nRXaW5uLn/++ScFBQV8+eWXN203dOhQ4uLiynwY/PHHH3z++ed4e3uzZMkS5s2bx549e2xmn0AgqBuEz76QhrKNf8iQISiVStzd3a16/ciRIwkODkahUPDggw9y7do1G1soENQvikIlQ+bsqtVQSVsjZvaYhX7t2rVWu3Gs3SBkSzdOEb6+vtV6vaenp+XY0dGxWnmDBAKB/SDEvhCZTIazs7NVr7On3aAlPzzkcjl6vd5ybjKZyMzMrAOrBAJBXSPcOA2Y1q1bExERwaVLlzAYDKxdu7ZU4jeVSoVGo7F6gVkgENQfhNg3YO677z4GDx7MuHHjuPvuu8nIyKBbt26W5/v160dmZibdunUjOzu7Di0VCOqGhuKPrwzCjVNPeeyxx3jssccs582aNSMiIqJUG4VCUSo2/0bCwsI4cOCA5fzGmP2ePXuW6VMgENRP7GJmn56ezv3338/Ro0fLPJecnEzv3r3Fzk5B40SXCws8zA9d7k2byQz5lWpX2f4EDY86F/sTJ04wcuRIYmNjyzxnMpmYOXMmGRkZdWCZQNBIaQAfCI3JPVNZ6lTsd+zYwcyZM5k+fXq5z69cuRJ/f38CAgJqxR6jSeJ0XCan4zIxmsSipaAGaQCC2iDG0IioU7Hv06cP+/btY+DAgWWe++uvv9i1axfz58+vVF86nQ6NRmN55OaKPz6BwC4QHwp2QZ0u0DZt2rTc62lpacydO5dly5bh4uJSqb7WrFnDihUrylyPiYlBo9GUumY0GtHr9Wi12lLXS07mtVot8krsdzKZTA2y4HhNjEur1aLX67l69SoODg427buy5ObmEhUVVaP3kBnyaf1tHwAuP/EHkqLs/g2ZIZ/WhceXo6PLbVOVdvklJjfV7c/WtlW2XXlY+/vK15ssx5cvR+PsWP68tjLtbNlXVdqVR2pqaqXb3ojdReNIksTs2bMZPXo0HTp0qPTrJk+ezPjx4y3nSUlJDBw4kJCQEPz9/Uu1LSgo4MqVK6hUqlIbosyuG7PAqVQqHG6i9kaTxLmELABCfZzsalOVrajOzuCKcHR0pEWLFnX2nkVFRREaGlqzNykxe23dqhUoy5mwVKZNFdpdvphvu/5sbFul7/l2oPl4boKlzY2/r8pmljT76S+Z79m6VbXa2bKvqrQrD1dX10q3vRG7E/vExESOHTvGv//+y8qVKwHQaDQsXLiQPXv2sGbNmnJfp1QqUSqVlvMbZ/MCQbW5iSAJahFdLjFOTwGQp4sFpUcdG1R/sDuxDwwM5MyZM6WuFaXlLRlXbg8U6I20X/grYJ/5qwUCgaAIoU41RElXz22BHjd1CQkEFkwmyEuF7ITCRzxklghJ/uYJMBrAUAAGreWnZCggRFecBsP4QRtMchWSgxLJQYlJrsIkd8TkoESSKSjKh6r5eT7KJi1w9AhA5tIEXJqCugk4NgC3pPgGUAa7EfuKdmpWpxqTQGB35CTBtRIbCL96FDRJkJ0IJv3NX3flt3Ivy4CSy90OuhwcyLmlGa6nPr9lm+uf3AdeLVH5h+HW/DYUPq3AM9j8wWBD8nQG1CWPlRU2tx2N6EPBbsRecGvatGnDV199Rc+ePcs8t3r1av7++2/Wrl17y36+++475s6dWyrLp8lkwtvbm0GDBvHyyy/b1G67pyZ98dkJkHoJEk9B4r/mR05i6TZxxy2HEjLyHdxI0zuRqIFrGVoeb2H+hrjwX19y9XK0Jjk6owydSYbWJENvkqHX6fju/usATDndEblcjlIu4eQASgcTKgdQOUi4yI1MbnYRgO+veeLqYMBLZcRTacRbacRDaSwVheafex5yz0McUKLEsR4FeQpviqTRdHwdcv+O0CQc3AOhgdSHaEgIsa9jbOXuee6556rUPjAwsNQ3JqPRyKFDh3jxxRcJDg5m8ODBVtnR6Mm4Cud/KD5f0b1sG5kck1dr5OnmiIz1mXfyT0wG0akFpGoVGKXivwEnB5NF7HVhg/Dx8cfHxwdvb+9SPzNTEmDHvQB8+u2eiiNjCj/YHv30HAUmB7Kzs8nOziY6O5vsrAz0qVcZcN78gf9dQW/QJKHWp+GnLCBAbcDXyYCjzICHIdnSrXxfceF6g9wJg1crlIEdkDcNB88WVX8f7YkGMvsXYl+IJEnk6QwU6M3FOvJ0hgpDLwv0RkvbovbltamoL2dH28WaL1++3FJi8LvvvmPr1q3cdttt7Ny5E5lMRv/+/VmwYAGOjo7lvt7BwYH+/fsTHh7OhQsXLGK/a9cuVq9eTUJCAi1atODll1+mTx9zDHlBQQHvvPMOu3fvxtnZmaFDh/Ljjz/yzjvvlPvto0FiMkH8CYjcDRG7Ifl86edlDtC0LVJgZ1IUgZxIMPLzyWuc3nOaQwPMTdYfSabAKEcuVxHSMoSwsDDCw8MJCwsjLCQIPusEwOJFi24q4vnZaVU2vaiGg7OzM35+fsVP6HKhUOwfe3MbKF2QJIn09HTi4uI4cfUKmbHnMCRdYKzDTwD8lqQm2EVPM7UeBQUo0s5D2vky95TW3ovMvxP43QZ+HcwP1+oV3LEbKvuhUEcfHkLsMQv9sNVHOHHV+hw83Rf9WvXXtPDi20m9rL5nRZw8eZJ77rmH33//nQsXLjB27Fh69+7Nww8/XG57nU7Hr7/+SkREBC+99BIAhw4dYv78+axatYquXbvy22+/8cILL7BlyxbCwsJ4++23OXv2LD/88APu7u4sXLiQ+Pj4GhmP3RGxGy4fgEt7IDel+LrMAZrdAdf+AuDgHWv57e+zHPnpCCkpxe4aJ4fijTWvzplDq7Ydad26danwYcBudpzKZDJ8fHzw8fGhc+fOwJDCbwlmsQ+e/ivno2L4/sI50qL+xph0kUDHHEJcdbR003Obp3n/iiz5AiRfKN25ugmqJm2K75VyAZy7g4OQJ1si3s1C7N3DWJSrJzpFQ3eTdEt3j5OTE8899xwymYxOnTrRpk0brly5Ynk+ISGB7t27I0kSOp0OSZLo3bs3y5cvp2/fvhQUFLBp0yaefPJJ7rjjDsCc/75///58++23zJkzhx9//JHly5dbche98cYb7Ny5s4begTrGZIRLe4vPtz9TfKzygNB7oc1D5Ab25n8Hf+fRQrF/feEiCozmHZIqlYo77riD3r1707t7Z/iqB4D5A7iex+yHhLQgJLy9JfWJyWQiNjaWCxcusOfcaW7TvA3A7JNBhKgLCHXXEu6upbmLHoe8VBxii3eGOn/5ACicwK8DTVxaQvY9EHA7+Lari6E1GITYY561bH3uTjRaAxcSzUU82gW4V+jGuZCYTYHeyJj15tna36/fWyrOvqhNRX05OzpQU/nWfHx8SpUodHR0LFWRqqTP/vLly0ybNg2lUsndd99taRMfH8+xY8f45ptvLNeMRiO9evUiMzOT/Px8goKCLM+5urri5eVVMwOyBlssvOYkwcmv4MQXkB1XfN2zBbR9GMIfRAq+kzPnL/L999+zd+8y0Ofx6EPmZiEtWtDtznvo3bs3Xbp0KZ6528mMvaaQy+WEhIQQEhJC37t7wwdmsR8881NOnznH18ePc/638zhioJWbjnZeeuZ2MC8wa1GiMhRA/N948jdEbjV36qBC1bSt5R7iG0DVEO9SITKZDLVSgVOhH12tVFQo9k43+NvVSkUZsa9MX9iwJKAkmbN2XkvPq1KpwdatW/P5558zdOhQXnvtNd577z0A/P39GTJkCJMmTbK0TUhIwMnJCU9PT5ycnEhISKBVq1YA5OXlNYx01JJkDnP8ex1c3AWmwvUYZy/ILxzf/x0mM9/Azz//zPdzRhEdHW15eZuWLYDLAGzatKnez9ptSbeuXbj7nv8A5rw3p06d4vjx45w6eRwwfyu8d09LmioL6BbgwJ0tnOkaIMcz/yoybTYO1/+19OX85QPg6AKBt0NQVwjqZn54NK/9gdUDhNjXM7KzMrl+/XqpD48mTZpUu19/f3+WLFnCpEmTuPPOO3nooYcYMWIEixYtolevXnTq1IkzZ84wceJEpkyZwpgxYxg2bBjLly8nLCwMd3d33nnnHYxG461vZs8c+wz+2QRpJZJvNe8J3Z+BsPvgPfMH2xsLFrD3wB8YDOYPApVKxYABAxgyZAid2raGd4LK671BUd3YeBcXF+666y7uuusu8jRZ8IFZ7Pvdex9//HmE76Ny+O+5HFQqFUplMx7q1Y5723nRO94cXiwpXZHpNHD1T/PD0nFTVH6dis+1OeBaPyNobIkQ+3rGR2/O5aMbqgz+/PPPNum7b9++jBo1irfeeouOHTvy4IMPkpeXx9y5c0lISMDT05Nx48YxevRoAGbMmMFbb73FwIEDcXFxYeTIkcjl8ptG/NgtJePe/7fA/FPpCp1GQvcJ4N8Bo9HI3p07KPTOsH//fgxGOe3atWPo0KEMGDCgOElVA3fR1DSvznkFpZML//77L9u3b+fs2bMkJCTww2+n+eWIA38+YG73TbNFDLyzPZ6aKHNEVPwJSDoLuSk4RBcHTDgv72D29zfvAc16mH/6hDa6vQBC7OsRW38177osLx7/hRdeYMrU5zmXkEW/Bwfx/ISnSz2/ceNGy/GjQ4YS2qM/p+Myy/Q1b9485s2bZ0lvfGOt25KcO3eOV199lXfeeQcwJ59btmwZ3t7e1R9sbZCbBn9+DMdK7CT1bQ89JkLH4aByw2QysWf3bj7//HOS42N4qFDtH3/sMQYOGU6bNm3K71tQLRQKBd26dcPDw4PWrVtz5coVDh48yOE/DgHmTWErV61m6QqJO+64gwcffJB+T7+Jq0oB18+gu/IHyv0LAJAhmUNik8+b117A7JJr1gNFyW8AtYAkSaRqdKSbWtNWVrY6X00ixF5gNevXr7eEXMpkMpYtW0bLli0JCQmpa9MqRpsDRz6Fw8tBd0NagWf2gcoVk8nE//bu5bPPPiMmJgYAPy93S7Pp06cLX3wtIZPJaNWqFa1ateKJEY/DB98D0K5dO06dPsvRo0c5evQo77zzDn369OHBBx+k6+2jLWKf939/o06PMKeoiDsOCf+Y114u7UF5aY/lPqqNgyDkLgjuZX64+ZdjTeWQJImUHC2XknKITMrhUrKGS0kaIpNzyMzTA28xymEfc6vxvlQVIfbVwMnRgfPz70Xt3AASR1nBggULWLhwIX379sVoNNKtWzc+++yz2rm5NZE2+gI8LmyG776EvMJNSP4doe8r8N9RAJgkiQO//sqaNWssi67u7u6MHj2akUMHw9LWN+u9wVBneWqqyLJln5CRpWHPnj3s3r2bK1eusH//fvbv34+Xhxv7CgPLTM5NoF0YtBtkvmDQwfUzEHcMw5U/UUSY9wo4JJ2GpNNwdJW5nVcINO+Fg1/nm9pQNFO/lJTDuWspxOgncMkURMRHR8nKL7/2rQwIkSVyj/y0jd6JyiHEXnBTbpXKwc/Pj08//bQuTKs6/2yGP5fSNLtw05dPKPR7DdoPAUNx4Y8JEyZwNtK8H8HNzY1Ro0bxxBNPmCumCV+83REUFMSECRMYP348ly5d4pdffmHPnj1kphfH7Y8bP4GHBz3C4MGDzcEMCiU06wbNuqHr8JRF7LUPL0eVfBpi/zL7/jNiICMGFd8C5kp2uZvHcN6tK8eltvyWHcjFlHwy8komr7vP/CPfgEwGLbzVhPq6Ee7nSrifG6G+rgSqjXh/0hKAPGoPIfaCxsHuWQDo1X443jcPOj9pic+Ojr5Cq8JmUZcv4+LixtNPP82TTz6Jm5tbHRksqAoymYzw8HDCw8N5/vnnOX70MOwx7xZPTEhg5cqVrFq1irvvvpuhQ4dy5513limNaWz3KFL30aRqdETHJZB96TAO8cdomn6SUN1FnGU6miYepGniQboDYyQVJ01hHFe0Jcb1dgqadCT0yteEyeNoPvZzOrTwLxOiDZgjj+oAIfaChkluGvw8s/hc7QP3zCLW6x5at7kNMKeIWLt2Lf/dtMGSp2bMmDE8MXoC7u7u5XQqqA/I5XI6duwIhe74GTNmsPPnXzh9+jSHDh3i0KFDNPX15b6HhxDS8Q40hgFckoK4+NVpLqeWnKl7AgOAASgw0FEWzX0u0fRWRtFWexYXYzZ3O5zlbs5CwTakRCUyRx0ABQUncTL1A6wvI2hrhNgLqo1dFWqRJDi7HXbPLvbLA/zfEXDzQyosXn3ixAkWL15MbGxsqTw1kyZObNALr/XFH29L7ri7H/5d+nPkXAwH/7nIpaRc0py8uHDNBa4lAOPMDWPNO95lMgj2VhPm60aYnystPBzosPtxWssSkaZFoXb1MCfAS7kAVw8XxvkfRqZJstzTadsokCsgsKt50TekDzTvBaq6E38h9tVAps9D/W5h+lZRk7TuyYqHXS9D5C/m86btzP+QYPkny8nJ4a233uKHH8xpiJs0acKcGS/Cn0/WhcUCG5Kq0RKZlENUsobzcWlEa+cRJQWR/vGxEq28wL0wpYck4VCQQT+XK4TJ4tgd58ZDvbsybthA/HyK037kabJQ77lqPi66KJcXZu68zRyqK0nkx53Ged09AJjcgpDnxEPcMfPjj4/NSfICu+AYdEfNvxnlIMReUP+RTHB8Heybbw6ldFDCPbPM/4TvhpibSBL79u7lzTfftOwhePzxx3nhhRdwVcrgzwr6F9gVaZIbkaZmnPs7gZjMWCKTNEQla0jP1d3Q0pw4TQYE+6gJ83UlzM+8WBrm60brpq4kxkbRatPzAPwY2Zat5w7x41efMnDgQEaOHEloaGjljJLJkLxCLKcFk4+g1mdCzB/mx9U/zCUm4//GMf7vm3ZTk1Ra7NPT0+vPZhmB3WE0SURczyY5Ix//IANOtoxW3TTMklKYZj3gkeXg27ZU9Mwrr7zC/j+OotVqadu2La+99hq33367+UkRZWOXpGq0nErI43BKjDlWPUlDZFI2Gdo15ga/RJdqL5NBcy814X6uhHgpaX98LuGyOAKmH8DHq3zt8vcvjqWfMWMG2777nsjISHbs2MGOHTvo1q0bjw95hAHWDMCrhfnRpXCDY8ZVuPonhqgDKM5usabHalFpsX/iiSdYu3YtwcHBNWmPoLFT2fh5U4kcPNf+MifEuvcN82xeXjYC4vCRIzg6qhg6dCizZs0qmze+npOvL153qG+++DSNljMxmcQa7i9eKE0rKGembkaGieayFFqHtqNNoJclrLF1U1eclebffZ4mC/XJP8zHlSwS9OCDDzD08eGcOnWKb7/9lgMHDnDixAnOnj7FgMIUDTmaXLPP3hoKxV8X+rB9i32vXr0YOXIkq1evLixeIKhtht9rrv606+efCW1denPPhg0bWLJkCcPHPMuIsRNZsWI5fx8/XipNQknmv/x/RJw7jVKptOTyV6lU9OvXj/nz59fkMCqkUguIuWmwbVzxecu+5tm8V3H5O61Wy8fvLmFO4XmnTp2YNXc+RqOxwQl9fSFNcjOLek5G4SzdvLO0WNTHm3+UWCj1d3XktmZellj1YDcZt226HWeZjryRsdYL702QyWR06dKFLl26kJSUxLZt29j54w7L808/9RSDHhnCU089ha9v/aqwVWmxf/PNNwkKCmLcuHG8//773HfffTVpV+0jSaDLRaYvXILRKeBmUSUmCZk+r7gtgC6v3DYV9uWoLnvtFrh5eLJjxw5mzZxZ6vp3331XnIirkjz21DgWvjrTEj0THx/PhAkTmD9/PgsXLqyybbVC3AnYMqZ0bvknvi4V5RAfH8/s2bO5GnWBOYW5bFYsX47cyY2oqCgENUuaRktkkoZLyWbXy8WEDC4XrCYdd9h0tkx7mQyaeTgRnn2YMFkcIQ/P5LZgX0J9XYmPvVLKb56nycJZVv6M39b4+fkxdepUnnpyJCwzT67y8/PZtGkT33zzDQ8++CCjR4+uvF+/jqnSAu3kyZMJCAhgxowZzJw505L9sN4jSbD+ARyuHaVjJZo7QNl2H4Teus2NNO8F43ZX1koA7r73AX768UdmvPwycrm5AtLp06fR6XS0a1e9Sj5BQUH079+fP/74o1r91AiSZM4vv3sOmPTg3QrSC322JbIX/vbbb8yfP5+cnBz8vYtnfUXvVX3DnkMl03P1nDa15ZKpGed3XyY6XUtUsoa0ct0v7sgw0cxTTbi/e+mFUl/z7mT1B+aEe3md3rP5jL06qJTFWVwXLV7Mt//dyokTJ9i1axe7du2id+/ejB07lrbh9p1Ko8rROI888ggeHh5MmTKFPXv20KlTJzp06ED79u3tPwFWhdSPdKdde97FXwf3cfjwYUvh723btjFs2DAOHTpkdb9Go5GIiAj27t3L/fffbytzbYMuD3ZOh9Pmbeu0G0zefUtQLzdvjsrTGXBSmFi9ejXr168HoGPHjry7aD58LlyO1SU9V1e4QJpTasZuFvU3zI1OJJZ6TXNvZ8J93Qjzc6OFh5wOv4ygtSwBnr9UrpDn1c5kvdr07HEH/frfx/nz5/nqq6/Yv38/hw8f5vDhw3Tq0I71IXVt4c2pkthnZWWxefNmNm/ejJeXF35+fvz+++98+eWXGI1GXFxcOHHiRJWNSE9PZ+TIkSxatIiePc1+6c2bN/Pll1+SkpJC06ZNGTNmDKNGjapy35VCJoMJv2DU5nK+sJRg+1uUJTyfmI1Mn0eHr7uZL86MAqW6TJsK+3JUQxULVSkUCgYNGsyOHTvo06cPBQUF7Nmzh507d1ZZ7L//5it+2fFfwBya2KRJEwYMGMC0adOqVOmqRkm7DP8dDcnnzHHK9y+EO5+H3GxLk8yMTBbNfpVjx8zx1CNHjmTatGk4SvVEQeyEIlE/fy2FGP04IqUgIj86Snqp3C+laS5LJlwWR0jPwbRv1sS8UOrrUqpqW54mC/Vec76h2swFU5O0b9+eJUuWcO3aNTZv3syPP/5IREQkhJif/+WXPQx+dKhd1XaotNgvXryYbdu24enpyZQpUxg+fLhloUur1XL+/HnOnz9fZQNOnDjBnDlziI0tzu28f/9+PvnkE9avX0+HDh04ffo0o0aNIjQ0lF69elX5HpVCJgOlC5JjYaY6pUuFPntLuyKU6tKRIyXbVNSXFaI69LHHePKJkWg0Gv73v//RtWtXmjZtWuV+hjw5ppTPviRFseh1icOlPfDLDNBmg4svDN9g3ol4A/83ZQrxiUk4OTkxb948HnjAHDqRp8mzWxdIXbpn0iU3IqUgzp9IJCbzmmUjUqqm5IdjYbBhodA393a27CgN93Uj3M+NALWRJssKE3rd+6JduV5qi+bNmzNnzhwmT57Mt99shuTXAPjwww9Z/8VXjBs3jkceecQuggIqLfYHDx5k7ty5DBkypMynlUqlsqxgV4UdO3awbNkyZs2aZc4PXkj//v3Zv38/rq6uGAwGMjIykMlkIl9JIW3atKFVq1bs3r2bn376ibFjx9a1STWC6oeJ5oPgO2HYBnAPsDxX8ptHamoqISEhvPfee5Z6uIIS7pdkTXFe9aQc0ori1HdfLvOaZl7OtPZxou2VLwmTxxM8ejUdQvxLzdSLqKuEXvaIl5cXY8eMhg9eKzz35Pr16yxZsoR169YxZswYhg4dipNNN5hUjUqL/S+//FImS1x16dOnD4MHD0ahUJQSewBXV1eio6MZNGgQRqOR8ePH0759+5v2pdPp0OmKZya5uQ17o8xjjz3GF198QXZ2Nn379i23jU6n4/r166WuOTk54eZuxzMwbXbp8zufh/sWgEPxBMNkMrFq1SqK4pH69u3L628sQK2uenRTQyA9V8eZJC3/GO7jktSMixvPEJ2Wf8NMvTTNZMm0bt2GtkFehBWGNYb6uqJWKsxulw/M6yN5gW7lCr2gYjZu2sy+/+3niy++IDk5mQ8//JANGzYwatQoBj70AHXxl1rp36KthR64peuhefPm/Pvvv1y8eJEpU6bg7e3NpEmTym27Zs0aVqxYUeZ6TEwMGo2m1DWj0Yher0er1Za6birhUdFqtRV5ccpQUFAAJody21S2r6q0u//++3n33Xd5+umnMRgMGAwGTCUaGQ1GTp06VeaD4IEHHmDJu+/d8p4mk6nU+1PdMUgmE23kcShlKVyLkZOmLhsm6pCXgv+vUy3nsT0Xoms9CK5ctVwzGAysWLGCo0f+YOZg87Unn3qKhISEMv0V5OfSofA4+koMTs4u5Obmlgm/LNnubEQUTs7lb+SSGfIpire4HB2NpHAut11l+ivPtlv1deriZa7nK4jJ0HI1U8fVDB0xGVoyC4o2mE0w/7haPOP2d3WkhZeSFp5KQrxUBKhNDDjwMC4yLWd7/oaTsyNQAAUFJMSmWm1bddvdrM2Nvy97sq2idvHx8XTt2pUOHTpw4MABvvvuOxITE3n//fdZ9/kaDt176/7KIzU19daNboJdf2QXuYs6duzImDFj+Omnn24q9pMnT2b8+PGW86SkJAYOHEhISEipLdFgFuYrV66gUqlKfa0ymiTA7KtWqVQVLtAWtSvCyckJlNXr61btimrQqlQq/P39OXu2dMzyxk2bLNknX5o2jZdfnl6mn6K+Fn60qsJ7FhQU4KhU2WwMRqOBomW+5kFBePnc8EGfegl+mgRZxWs3Te4eX8oPXFBQwJw5c/jrr79QOxfPjVq3all+hEcJN0OrliGoXT2IiooqExddXrvyKNkuoFlwpdrdrL+K2mTk6riUbN50dD7OSIxuLpGmZqRuSyzTTxF+Lg60z/+bcFkcLQa+TIcWvrRu6oqLqvS/eJ4mC/VBrdW21VS7m7W58fdlT7ZVtl379u2ZPHkyv/zyC+vXrycpMb5S/ZVHVffSlMQuxf6LL77g1KlTLF261HJNp9Ph4XHzN0WpVJZaBLlxNl8TSI5q8l5JarRlCW1G3N+weTjkp2Pyaok840qZJjk5OUyfPp1Tp06hVCpZsHAh/D6sDoy1HZmSC5FSM86eSCQ2K47IwtDGVI32hpYdLEfNvJwJ8zWnByiKVW/d1JUrkefosP19API6v9soF0vtGXMU3SAGDhzI7l0/wonaX2ezS7Hv3r07H3zwAT///DMPPvgg//zzD1999VWdbuMX1BCRe2DLWHNpwMCuFAxZh/rT0gv9aWlpvPDCC0RGRuLq6srSpUsJD20Jv9eRzVUkM09XKj49MimHiOvZpGk/NzcoZ6E0yNOZcD9XWnoraXd8HuHyOAKn/UpTkYywXiOXy+nXrx9UPUK92lgl9klJSaxatYqYmBhMJlOp57766qtqG9WhQweWLVvG0qVLef311wkKCuK1115j4MCB1e5bYEf8swl+fBEkI4TeB8O/BL2xVJOEhASmTJlCXFwc3t7erFixgvDwcLuMBCkS9XOxyVzVjyFSakbk0qOkam4epx5ECq1Dw2kb6GWZsYf6Frtf8jRZqP/5zXystP26maDxYJXYv/rqq6SmptKvXz+bbRqIiIgodd6/f3/69+9vk74F9oYEv38Iv75pPu38pDmRmYMj6ItF/ErMVWbMnE1qaiqBgYGsXLmS5s2b15HNxWRKLpyOzeJaTmaphF4pOSXdLw+afxQKfZCnszlG3c+NMF9XmrvJ6PB1N1xlBeQ9YfuEXgLBjVgl9mfOnGHPnj31Pr+93ewSbSQUvd2Ofy2D48vNJ3dNM4dWysou6r48fTppGVm0bt2aFStWWLVxrDrc6H65kJBBdMFKUvCCr86U+5ogT2da+TjRLmYjYbI4mo9eRYcQf1zLWyiV1f3GNUHjwSqxd3Nzs4sdYdZS9G0kLy8PZ+fyw+cEtidPDxh1OJ9ca77w4BLo9X83ba/RaOjUqRNLly6t0Q11mfl6zpnaEGkK4vyey1xJ15UzUy/CXK4u0ENFuL+7ZaYeVuh+cVUVxal/DUBekBtqVTWWxpQuhBSY+zpfQdlLSeFcqXaCxotVf4VTpkzh1VdfZeLEiTRp0qTUc4GBgTYxrCZxcHDA09OT5ORkANRqNTKZDKNJQjIUVYcvqDDUsKidVisrN67cmr6q286WfWm1Wpv1J0kSmpwcUtMz8by6G7lkgMfXQcey0TQnT/5DUUKEO+64g3fefd9mH8hZeXrOXM/jaNpVLhXO2COTikS9cPH/eOnwxpLul2B3BzrsfYJQWTzyFyKr53qppIjbnLq6r6DOsUrsX3/9dQD27dsHmBP+S5KETCbjwoULtrOuBimKvS8SfACTJJGcaf5qrchzQl6Oa+HGdmQrUJazbmFNX9VtZ8u+9Ho9DgqFbfqTJKScRLyituN/6Wu0wzfjdNvDZfo5d+4c8+fP59fCfWALFy6wSuiz8vREJudwLjaFGP0YLknNiCi1UHqtzGuCSCFMHk/LHg/TrpmPZaG0pPslT5OF+n/myJkKE3rVd0Gt7/YLysUqsf/1119tbUetI5PJCAgIwNfXF73eLAL5OgOTdphzue98oQ/ON9kmXrLdqiEtaNmyZYVtKttXddvZsq+rV6/iGxBU/f4MOvh5Fo4RP+BgzAfA1KJsMrPo6GheeOEFtCUSsN1q8T9LcuGSFMTZk9eJyYwjqnAjUnIFC6VNXRS0DzKXsgsrdME0czHRdLk5p07efc+LxdLKIj4U6hVWiX1QUBBgjn+Oj4+nadOmBAQE3OJV9omDg4MlFYRJbiA+xxz6p3Jywukm4laynUzuUG5yI2v6qm47W/bl4OCAysmpcv0ZsvhTPxKAPHksTk6Fu/wMOvhuEkTuRlLcfONZQkICzz//PNnZ2XTu2B64WOr5rDy9xeVStFgacT2blKI49Z/LVp8K9HCiVRNn2sZsIlwWR/PRn9KhhR9JcVcr3EFbIZUUN7VSQcySst9cqtpGILAlVom9RqNh9uzZ7N+/HzDPku+8884aX0gT1COMetg2HiJ3g8IJ7dB1OG19ukyz9PR0pk6dSnJyMsGhbRkx9TW+/j7HXHh681kup+bfMFMvTSCptGodRtsAz8JdpeaEXm5OjoULpZuBwoVSJ0eSqjEkIdBWIr4B2AVWif2HH35IXl4eu3btolmzZly9epW3336b999/n7feesvWNgrqG0Y9bJsAF3eCgwqe+BqTf3fL09kFBs6npnP6aiqf//cnUpv0Q2rlT6qjC5O3RQHPmhteybS8JtDDyeJ2Cfdzo7kbdPjmDtxk+eQ9KeLUBYJbYZXYHzhwgO3bt+Pj4wNAeHg477//Po888ogQ+8aOyQDfTYQLPyI5KInqv5q/08M4fzqaK7pXuWQKIumDv4rbu7ct9XJ/dxXhmmPmhF4PvUSHwsLTbk6l/ffmOPV8m5isdvWABWZXTuNMkmwHiNl/jWOV2Ofn5+Pm5lbqmru7e5nUCYLGQXaBgQumMKJMAbRbP5FOmb+iR8Hk/BfZ/5MKKNqAVFyC3cmUjzE9Dmd9Fs8Of5g+nVoT5uuKgyEP9QePA5B3+zuNfsYuXEcCW2GV2Hfu3JlPPvmEmTNnWsIuP/nkEzp27HjrFwvqLVn5eqIsybyKF0uvZxcgZz4fOK42C73kwBT9i+w3dSXAw4lQX1daeStpf2IBYfI4vtE9wIH9e1GpVHz66ad07lxcFDyv5pOVCuoz4huA1Vgl9jNnzmT06NH8+OOPBAUFER8fj0wmY8OGDba2T1AHZBfoOZeUz+GUOMu1fh8cJCm7/IVSOSaWOy7jYYdjGHHgr24f8lznIXzo54p7ofslT5OF+t+DALxwSIFCoeD9998vJfS2pmSFpYZebcnZUS6+AQgqxKr/gPDwcPbs2cOvv/5KWloaQUFB9O3bt1qJ9QV1w6nYTGLT88rM1G+kSOj93Z1KJfQK83Wl3Yn5qM8cA8AweAV3d3uqwnvKZDLeXPgmvXv3tv2ABAIQ3wDKwerpjqenJ48//rgtbRHUENkFenN6gMLiGBHXi+u8PrX2aLmvaaJW0CbAgz8vpwHw9bM96dDMwzJTt/DHx3CmOK21sU35s8s/fv+DAYXHL7z4IgMGDCi3nU1RulgWXgWCxk7D/m7byMgpKM6bvmT3Ra6k5t50pl6En7uqcJbuZtlVGurrSkr8VQKDQ2j/xh4Abg/2LOsK+fdb+N+CW9p1+fJl3n3vPQYUpkEYPKj67obG5KKxJWLB9wYa0TcA8V9SD8kp0HMhMYdLhXnUI5PKul++OnK11GuK3C9hvm6ENFHzxg/nADgw8z/limXKrYyI+hV+MBcH13efjOPfa8ptlp2dzYwZM8wF2QUCQZ0hxN6OKXK/RCXncD6h2PXS8+39t3ztmDtb0D7AvXBHqRsezsXulzydwSL2FaLLJcbpqcLXxIKyMAwy4RRsGWOOqe84HH3fV8sVe5PJxNy5c4mLi6NF8yBuTIMgEAhqD6vEftGiRZbMlyWZPXs27733XrWNaqxsPxFHTFoekUk5RCVrSMyqnPvFvGDqSpCnM73eMX8QzHmobc24N9KvwOZhoNNAy77w6KdQUP7mphUrVvDXX3/h5OTEggULYMd/bG+PwOYIV88NNBBXT6XVICkpiSNHjgCwdetWOnToUOr5nJwcS8pjQfnkFOi5lFy8UHopWUPk9RzL8/PKmW37uasI83WjZRM1G/+KBeDIq/0J8Cib+jdPZ6g54wFy02DT45CbAn4dYeQmUCiBsmK/d+9eSz3i+fPn07p1q0rdQvjiBYKaodL/TV5eXmzatIn09HR0Oh3Lli0r9bxKpeL555+3uYH1kZwCPWfji6NAJn31N5dTciucqQPc2cqHtgElFkt93fBQF8ap6wwWsS/pkqk1dHmwfRSkXwaPYHh6KziVn/QuMjKShQsXAjBu3Djuv/9+2xcIF5E2AnvDzr8BVFrslUol27ZtA+CZZ55h3bp1NWZUfeJiSj4XNNeITMohMllDVFIOCTeI+h9RaZZjXzeVJTtjmK8bwd7OjFpnjlFfN6673c5mVTunQvzf4OwFo7aDe/kprbMys5gxYwZarZbevXszZcqUWrZUUFsId0/9wiplWbduHVu2bKFv3774+fnx448/otVqGT58uK3tsws0WoM58iXJHPlysYTrZdbPcUBcmdc0dVNZapgueKQ9HQI9Ss3Ui6hx14uNcIj+FRRO8OS30DT8pu3eWryYxMREmjdvzqJFi5DL5YBwzwgEdY1V/3XLli1jx44d9OjRAwAXFxc++eQTsrKyePbZZ21qYF3x3i8RXEnNJSpZQ3zmzbMrejs70D7IyzJTL3K/OCpklhj1Ed2b13uBk2RyZI+vg+BeFbb799Qp1Go1H374oahtIBCURx25e6xSoG3btrF582aaN28OwL333ktYWBhjx461SuzT09MZOXIkixYtomfPngDs2bOHTz/9lGvXruHp6cljjz3GlClTLDPFmiA7v3hT0heHY0o9V+R+CfV1JaSJmgU/ngfgyxGt6Niu7Ey3vszYK8Lh/A7Lsf7et1C2G1Sp17355pu0alW5BVmBQFA7WF2p6sYyhAEBAeTlVViGuVxOnDjBnDlziI2NtVw7e/Yss2fPZunSpfTt25crV64wceJE1Go1EyZMsMbkSqFWOliOR/UKpl2AuyUHjKdaaXkuT2ewiH1DRZV6BuW+2ZZzw+2jUd6k7aXISxSlMxs9ejT/+c9/ato8QT1C+PbtA6umybfddhufffZZqWvr16+nbdu2N3lF+ezYsYOZM2cyffr0Utfj4+N54okn6NevH3K5nNatW3P//fdz/Phxa8ytNAqH4rdj7sB2PN2zBXeEeJcS+kZBVjwBB2cgM968HGAR+fn5LFlcXLBm0oSxNWmZQCCwEqtm9nPmzGHChAls2bIFf39/rl+/jsFgYO3atVXqp0+fPgwePBiFQlFK8B944AEeeOABy3lBQQEHDx5k8ODBN+1Lp9Oh0+ks57m5uVWyRVCILg++fQpFQRqmJm2Qp0ZU2Pzjjz/mWtw1S12SarvZREilQFAjWCX2t912G3v37uXAgQPEx8cTHBxMv379qpziuGnTprdso9FoeOmll3BycmLcuHE3bbdmzRpWrFhR5npMTAwaTeUqYuTriyttXb4cjbNj+cJVsl1eXi5RUVE26au67ardlyTh98druCWewqD04HL3hbT55QkAoq/E4ORcejHp6NGjfPPNN6gVUnF/0dFIirIbvmSGfFrfok1tkJtb/u+rvtMQxvW/Z9sAkBAbY7l247jq5f+Vle3KIzU1tdJtb8QqsTcYDKxfv55NmzZhNBr58ccfGTt2LKtWrcLX19dqY24kOjqaF198ER8fH7766qsKP0wmT57M+PHjLedJSUkMHDiQkJAQ/P39K3U/86LqJQBat2510wiaku3UahdCQ0Nt0ld121W6L00WMU53mI+blyjW/dv7cHUPyBVc7/s+zTv0hl/MT7VqGVKqRGBaWhobNmxApVIxZtRIyFxkvm+rVubZ+Y3oir9p3bRNLRAVFVXu76u+01jGZdf/VzZuVx7VqRli1Xfu5cuX89dff7Fs2TIcHR1p0qQJ/v7+LF682GpDbuTQoUMMHz6cu+++m3Xr1uHhUXEtUqVSiaurq+Xh4mJ/O9jsmgs/wX6zYDPwAwr8ut00Nt5kMrFgwQIyMzMJDw9nYgMJtxUIGjJWzex/+uknvvnmG/z8/JDJZKjVat555x3uv/9+mxh16tQppk6dyoIFCxg2bJhN+hRUwPUz8N1k83GPydB9PFTgEtiyZQtHjhxBqVSyePFilMpGtoAtqDNEZI/1WDWzz8vLw9vbGwBJMvtrnZycbBYDv3r1agwGA4sXL6ZLly6WR0PZsGVX5KbCN0+CPhda/QceeLvC5pcvX7bkRZo2bRotW7asBSMFAkF1sWpmf/vtt7NixQqmT5+OTCYDYOPGjXTs2NFqQyIiiqM+Vq9ebXU/gqqh+nEyZF0D71YwbAM43PxPQqfT8frrr6PT6bjrrrsabHoMgaAhYpXYz507l3HjxrFjxw5yc3MZOHAgubm5bNiwwdb2CWqAkv53h/jjoPKAJ/8Lau8KX7dy5UouXbqEl5cX8+fPt3zQCwT2hnD3lKVKYn/o0CH69u1LcHAwu3bt4sCBAyQkJODv789//vOfaq0UC+oImRyGra8wuRnA8ePH2bx5MwBvvPGGxY1XaUT8vEBQp1RJ7GfOnMnx48cZMGAAe/fuZeDAgTVll6AmuXq4+PjeNyDsvlu+ZPHbZl/+sGHDuPvuu2vKMoFAUENUSewdHR1ZvHgxCQkJ5W5gAkQBkzqkUl9dsxNgx3PF53dMrFTfqamphIS0Ytq0adYbKBDYGY3J3VMlsZ83bx5bt27FZDJx9OjRMs8LH66dY9DBlrGQV2IXXiV/ZwqFgkWLFuHk5FRDxgkEgpqkSmKvVqtZv349w4cPZ+PGjTVlk6Cm2DMX4o6Byh202bdsnpiYSFFu04nPPlvlRHcCgcB+qFJg/MyZMwHIyhILbfWOf7+F45+bjx9ZfsvmkiTx0UcfWc6ffPLJmrJMIBDUAlb57BMTE4XPvpaplm/x+hn4aZr5uO8rEHbrnc5//vknR/76Cx4yn9dk0RiBwJ5pKH594bNvSOhy4e1A8/HcBHO4Y34G/HcUGPIh9D6z2BsKKuwmJydHFJQXCBoYVRL7hx56iIceekj47OsLJpM5501GDHgGw2Ofg9zhli9bsWIFmZmZdGzTGrhc42YKBIKax6odtFu3brUcp6enV32DjcBCjX5F/P0DuLQHFE4wctMtd8gCnD59mu3btwMwe/Ys+PlAzdgmEDQw7N3dY5Uj1mAw8PHHH9OtWzf69+9PbGwsjz/+OMnJyba2T2Atl/fDgcKkZg9/BAGdK24P6PV6Fi0ypznu378/t99+e+XuVbQ7dkFWneWpFwgEFVOtfPaffPJJjeWzF1STH54HJOg2Hro8XamXbNy4kejoaDw9PSusCiYQCOofdpnPXmADCjIhqBs89G6lml+7ds1SQ/jll1/Gzc2tBo0TCBovRe6eqKioKlWpqi5W3amm89k3BOrcf+fsDSO+AoXqlk0lSeKdd95Bp9PRs2dPHnroIS5fFguzAkFDwip1LspnD9gsn73ABpzeUnw8ZBV4NKvUy3bv3s2xY8dQKpW8+uqrIoRWIGiAWDWzf+211xg7dqzIZ29PJF+AX+YUn7esXGbKrOxsy07ZiRMn0qxZ5T4gBAJB/cIqsW/evDm7du3i4MGDxMfHi3z2dY1WY05wdovNUuXx6cpPyczMpFWrVowaNaoGjBMIBPaA1asDzs7OPPTQQ7a0pd5Q0h8fVUFh7lpBkmDndEiNAFd/0Fyv0st3/bwLkPP666/j6OhYMzYKBII6R6yo1ndOfglntoDMweynt4LHH3+cTp062dgwgUBgTwixry/ocmGBh/mhyzVfSzwNP882H987D4J7Vrlbb29vkbxOIGgE1F6QZz2gzsMlq0JBNmwdC0YthA2A3i+Zk51VgoSEBArTpfHSSy+JmHqBoBFQJbEfPXr0LcPyvvrqq2oZJKgEkgQ/vgDp0eDeDIaugSrscVixciVvF2Y16N+vXw0ZKRAI7IkquXF69uxJjx49CAwM5Pz587Rr144HHniAzp07ExERQcuWLWvKTkFJTnwB578HuQKGf1GpBGdFHDt2jN9++81yXuGHt8h5IxA0GKo0sy/y7T711FN89tlndO3a1fLcAw88wLx586w2JD09nZEjR7Jo0SJ69iz2Pf/zzz+MGTOGM2fOWN13g+PXheaf978Jze+o9MsMBgMffPBBDRklEAjsGasWaC9cuEDnzqWzKLZp04aYmBirjDhx4gQjR44kNjbWck2SJLZt28aECRPQ6XRW9dtgMeqg7SDoNaVKL9u2bRvR0dF4uLvXkGECgcBesUrsW7duzRdffFHq2urVq60qSL1jxw5mzpzJ9OnTS12fO3cuW7du5cUXX7TGxIZHYQ4iwFyI5NGVUIW0BhkZGaxZswaASZMn29o6gUBg51gVjTN37lyee+45Nm7ciL+/PwkJCZhMJqtK2fXp04fBgwejUChKCf5LL72Ev79/ueUPy0On05X6BpCbm1tlW+ya4yXe26FrwNmzSi9ftWoVOTk5hIeHM3jQIDhrW/MEAoF9Y5XYd+3alb1793LgwAGSk5Px9/enf//+VoXwNW3atNzr/v7+VepnzZo15RZBj4mJQaPRVNmuypKbm1vju2hVqedotv9Niubxl/PdkMq5p8yQT+uiNtHRSApnAKKjo/n222+RJImRI0dyJSam3HYlqY1x1QViXPWLhjousG5sqampVt/P6jh7T09Phg4dajdlCSdPnsz48eMt50lJSQwcOJCQkJAqf3BUhaioKEJDQ2usfwqyYOc8MBksl1q3alV+dIwut0wbSZJYsmQJSqWSAQMG8Oijj5bb7kZqfFx1hBhX/aKhjgusG1t18o9Z5bPX6/WlyhJeu3atzssSKpVKXF1dLQ8XlwYQKlgUT595FTyaW9XFvn37OHXqFCqVipdeesnGBgoEgvqCVWK/YsWKUmUJfXx8RFlCaykvDUIRf6+H8z+Y4+mtyHuTn5/P0qVLARg/fjx+fn42MFggENRHRFlCe+X6GfjlVfPxfQsgqGuFzcvjyy+/JDk5mcDAQEaPHm1b+wQCQb3CrsoSRkRElLnWs2fPcq83aLQa2DquMO/NA9BraqXz3hSRmJhoSV0xbdo0VKpblycUCAQNF1GW0N6QJNj1MqRFgVug2X1jxYfoipUr0el0dO/enX4i/41A0OixOs5+3LhxoixhTXDqazj9X3N++mHrwcXHqm4OHTqEXK5g5syZoqasQCCwTuyDg4PZtWsXBw4cICEhQZQltBUpkfDzTPNxv7nQ4s5qdTds2LDyQ7uKEpwJBIJGg1VunEWLFuHs7MzAgQN59tlnGTRoEK6ursyePdvW9jUuvn8O9HnQqh/0eblaXXm4u/Pcc8/ZyDCBQFDfqfTMPikpiSNHjgCwdetWOnToUOr5nJwc9u3bZ1vrGhspF8HFFx77zCo/fXZODkUpzp559lncRcIzgUBQSKXF3svLi02bNpGeno5Op2PZsmWlnlepVKK8XbWRweOfg6uvVa/+8ssveaHw+NFHHrGdWQKBoN5TabFXKpVs27YNgGeeecaqpGeCckiPLj6+6yVo9R+ruomNjWX79u28ULjVwcHBofq2CQSCBoNVPvubCb3BYCj3uuAmGLTw/f8Vn99tvZ9++fLl4v0XCAQ3xaponNjYWFauXElSUhImkwkw58u5cuUKf/31l00NrLfocuHtwrLecxPKT1y27w3zTtki5NblpTt58iQHDhxA7Vi9TW0CgaDhYpU6vPbaa8THx+Pm5obBYCA8PJxLly4xatQoW9vXcLm4C46urnY3JpOJjz76CBB+eoFAcHOsEvuzZ8+ycuVKpkyZgpubG6+//jofffSRJVpHcAsyr8H3hSUFe1SvatTPP//MxYsXcXFxYfyECTYwTiAQNESsEntnZ2c8PDwIDg4mMjISgHvuuYfo6OhbvFKA0QDbn4WCTAjsCv1etbqr/Px8Vq5cCZgXzb29vGxkpEAgaGhYJfbBwcEcOnQIFxcXTCYT165dIykpSSwQVoaDb8O1v0Dlbk6H4KC0uquNGzeSkpJCYGAgTzzxhA2NFAgEDQ2rVgQnTZrEiy++yM6dOxk5ciRPPPEEDg4O9O/f39b2NSwuH4Dfzf51Bn8C3i3L5rCvJMnJyXz55ZcAvPjiiyiVStDpbWWpQCBoYFgl9v3792fv3r34+PgwZcoUQkJC0Gg0DB061Nb2NRw0yfDdJECCbuOgw2PV6u7TTz9Fq9XSuXNn7r33XpuYKBAIGi5WiX1mZibbt28nPj7eEnoJ8M8///DOO+/YzLgGg2QyC31uMvi2hweXVKu7ixER7Ny5E4AZM2aIrJYCgeCWWCX206ZNIzExkdtvv73aBUsaBUdWQvQBUDjDsA3g6Fyt7opqCQwcOJD27dvbwkKBQNDAsUrs//33Xw4cOICnp6eNzWmgHHrP/HPg++DbttrdmQuIOzN16tRq9yUQCBoHVkfj6PViMbDSSEboOBy62G7T2ejRo0UBcYFAUGmsmtm/8cYbTJo0iSFDhuDh4VHquSFDhtjCLvumRCoE2RN/lN9GKl7LwKslDPoYbORb9/b2ZsyYMWWfEEVJBALBTbBK7Ldt20ZkZCQbNmwo5bOXyWSNQ+wrw5GVxcdDV4HKrVrdZWZl4Vl4PHnSJNRqdbX6EwgEjQurxP6XX37hhx9+KL/knQCiD8Khd4vP/TtVu8svv/iClwqPH3rooWr3JxAIGhdW+ey9vLwIDg62tS0Ng6w42DahtBunmly7do3vduywnIsIKIFAUFWsUo0XX3yRV199lfPnzxMfH09CQoLlYQ3p6encf//9HD161HLt33//Zfjw4XTp0oX+/fuzdetWq/quVQxa2DIG8tLAr8Ot21eSlStXYjQabdafQCBofFjlxpkzZw4Au3btsmzokSQJmUzGhQsXqtTXiRMnmDNnDrGxsZZrWVlZlpQMI0eO5Pjx40ydOpU2bdrQqVP1XSI1xi+vQvwJcPKEx9fCp72q3eWZM2f43//+J3LVCwSCamGV2P/66682ufmOHTtYtmwZs2bNYvr06Zbre/fuxdPTk6effhqAO++8k8GDB7N58+aaFfvKFBy5Gf9+C3+vA2Tw2OfgWX03lyRJLF26FICHHnwIpEvV7lMgEDROqjRdvH79OmCOurnZoyr06dOHffv2MXDgwFLXL126RHh4eKlroaGhXLx4sUr91xrXz8JP08zHfWdD+ACbdHvw4EH+/fdfVCoVzzz7jE36FAgEjZMqzewHDhzIyZMn6d+/fxlht8aN07Rp03Kv5+bm4uxcOqWAk5MTeXl5N+1Lp9Oh0+lK9VEbyHU58N8pYMiH1vdC31ds0q/BYGD58uUAjBo1Ct+bvFcCgUBQGaok9rt27QJs58a5Gc7OzuTk5JS6VlBQgIvLzd0qa9asseSMKUlMTAwajaZS95UZ8mldeHw5OhpJUX4Om5LtfP5cCBlX0LsEcK3rXEzRV6zuq2S7n3/+mUuXLuHh4UGfPn24HB1dqf5sRW5uLlFRUTV6j7pAjKt+0VDHBdaNLTU11er7VUnsAwICANiwYQOvv/56mednz57Ne++9Z7UxRYSHh/Pnn3+WuhYVFUVYWNhNXzN58mTGjx9vOU9KSmLgwIGEhITg7+9fuRuXyC3fulWrm/vsS7RzT/oLHJQ4PvU1rYK6Vquvona5ubn89NNPqFQqpk2bRseOHSvfn42IiopqkPsoxLjqFw11XGDd2FxdXa2+X6XFPikpyVJjduvWrXToUDq0MCcnh3379lltSEnuv/9+3n//fb744guefvppTpw4wU8//cSnn35609colUpzAY9CKjubtwkD34eSQl9NvvzySzIyMggODhY7kgUCgU2otNh7eXmxadMm0tPT0el0LFu2rNTzKpWK559/3iZGeXl5sX79ehYvXsyyZcvw9vbm9ddfp1ev6ocy2oTMa5bD7JYDce861mZdJycns2nTJsC8n0GhsCpgSiAQCEpRaSVRKpVs27YNMBe3XrdunU0NiYiIKHXesWNHvv32W5vewyakXYZNxVWmUrvNwN2GxUNWrVqFTqfj9ttvp2/fvjbrVyAQNG6smjauW7cOo9GIg4MDAIcOHcLb29vsW27IpETAl4+A5rrlkqRQ2az7S1FRlgpU06ZNKx3xJDJaCgSCamDVtsz9+/dz9913A+ZaqC+88AKjRo1iy5YtNjXOrrh+BjYMNAt90+oXICmP1atWIUkS999/f5k1EYFAIKgOVon9p59+yrRp0zCZTGzatInly5ezefNmPv/8c1vbZx/En4AvBkFeKgR0hqe31chtjh47hkKhsNnah0AgEBRhlRvn2rVrjBgxgvPnz5Ofn89dd92FQqGoVgyo3XL1CGweDrocaNYDnt4KDo41drsRI0YQFBRUY/0LBILGiVUze2dnZ9LS0ti/fz/dunVDoVBw8eJFvLy8bG1f3RJ90LwYq8uBkLth9A5w9qyx27m6uPDMMyItgkAgsD1Wzewff/xxhgwZQnZ2NsuWLePs2bM8++yzTJgwwdb21R1Rv8L2Z8GohdD7YOQmcLT9rlWtVkvREu+YMWPKlHkU1B0mk6nUw2g0YjKZkCQJhUKBQqHA0dGxyjmhBIK6wCqxf+GFF+jRowcqlYrbb7+dxMRE3nzzTQYMsE0CMLtg2wQw6aHtIBi2HmwYdVPqNtu28XTh8bBhw2rkHoLy0ev15OTkoNFoyMnJISMjA51Oh8FgKCXs5T3kcrnlUbShT6VSoVKpUCqVKBQKVCoVLi4uuLi44OzsLD4UBHVKlcT+xIkTdOvWDYCePXtargcEBBAQEMC6desajhvCpIcOj8PQNTXmo8/KymLjxo08fY/5vOQOYIFt0el0aDQakpOTKSgoID09nezsbHQ6HXq9HgCFQoGDg4Mlg6tcLi/1s+Sj5Gw/Ly8PjUZjuSZJkuW+crkcR0dHnJyc8PDwwMPDA1dXV8uHgFKpFB8CglqhSmI/ceJETp48aTl/9NFH+eGHHyznK1eurN9in59RfNxpBAxZDXKHGrvd+vXr0dRSds7GiE6nIykpibi4ONLS0tBqtWRlZeHq6opCoUCpVOLm5oZCoagxwTUajeh0OrRaLXFxcZYiPQ4ODiiVSpydnWnatClNmjTBx8cHJyenGrFDIKiS2JecsQBlyhDe+Hy9w6mEv/zhj2pU6BMSEtiyZQs1d4fGiclkIj09nYSEBOLi4tBoNMhkMtRqNe7u7gD4+PjUmj0ODg44OzuXStktSRIGgwG9Xo9GoyE9PZ2IiAicnZ3x8fHBz88Pb29vPDw8RL1hgc2oktjfOPu51Xm9QyYv/7gGWL16NXq9nh53dAMu1+i9GgO5ublcv36d2NhYMjIy0Ov1FvEs2ukN9vE3KpPJcHR0xNHREbVaDZg/pPLz80lISODatWsolUpcXV0JCAjAx8cHb29vVKqaWTcSNA5Elq06IDIykt27dwPwf1P+D7Y34J3HNYjRaCQpKYn4+HgSExPJz8/H0dERV1fXerf+IZfLLX58SZLQ6XTk5uZy/vx5ZDIZzs7OBAYGEhAQQNOmTUWCPEGVEX8xdcDy5cuRJIkBAwbQtk2bujan3mE0GomPjycqKoq0tDQkScLFxQVfX1+7mLlXF5lMZonsAfN48/PziYqKIjo6Gnd3d5o1a0ZAQACenp4NYsyCmqdKYm8wGPj+++8t53q9vtS50Wi0lV0NlmPHjnHkyBEUCgVTp06ta3PqFUUif/nyZVJTU5HL5Xh5eTX4Wa6DgwOurq64urpiMBjQaDScOXOGiIgIvL29ad68OQUFBXVtpsDOqdJ/SZMmTUrlsffy8ip1XpsLX/URk8lkeb+GDRtWnBZBZLOsEKPRSEJCAlFRUaSmpiKTyRqFyJeHQqHA09PT4upJTU3l+vXr6PV68vPzCQoKws/Pr9Q6hUAAVRT7/fv315QdjYJ9+/Zx8eJF1Gp1/Q5RrSXKE3lPT08cHWsuN1F9oaSrR5IkEhMTiYmJISYmBi8vL0JCQggKCioVBSRo3DS+qVEdodPpWLlyJQDjxo1reHmEbIjJZLKIfEpKihD5WyCTyXBycsLb2xuDwUBOTg4nTpzg4sWLBAcH07x5c+HbFwixry22b99OQkICTZo04cknn6xrc+wSSZJIS0vj4sWLXL9uLhAjRL5qKBQKvLy8MJlM5ObmcuHCBS5fvoyfnx8hISHCxdOIEWJfC2g0uaxduxaAyZMni6/W5ZCbm0tkZCQxMTHo9Xo8PT3rXfikPSGXy3Fzc8PV1RWtVkt8fDzx8fF4eXnRsmVLgoKCxG7dRoYQ+1rg62++Jisri5CQEB555JG6Nseu0Ov1REdHExUVhUajwc3NTbgcbEiRi8fJyQmDwUB2djZ///03kZGRhIaGEhwcLDZrNRKE2NcC//32v4A5W6j4Cm2myC9/8eJF0tLScHJyajBx8vaKQqHA29sbk8lETk4OJ0+eJDo62iL6wl3WsBFiXwtodVo6d+7CPffcU9em2AXp6elcvHjRklupSZMm4kOwFpHL5Xh4eODm5kZWVhYnTpwgOjqasLAwmjVr1ihDWhsD4rdaS7z00kuNftaan59PZGQkV65cQafTCb98HVO0Kc1oNJKVlcWxY8csM/2goCDxAdzAEGJfC9xzzz106tSprs2oM0wmE9euXePixYtkZmbi6uqKh4dHo//wsxccHBwsYZsZGRkcPXqUpk2bEhYWRkBAgMi82UCwa7G/fPkyb7/9Nv/++y+urq6MHDmSyZMn14s/vr/+OkqvwuPnJk+uU1vqkszMTM6fP098fDwODg40bdq0Xvz+GiMKhQIfHx/0ej2pqamkpqYSFBRE+/btRbnMBoDdin1ubi7PPvssd911F8uXLycjI4PnnnsOo9HI888/X9fmVYher2fZsmX06mA+Dw4OrluD6gCdTsfly5e5dOkS+fn5eHl5CZdNPcHR0ZEmTZqg0+mIjY0lNTWV8PBwWrduLfz59Ri7nWKdOHGCtLQ03njjDdRqNUFBQfzf//0f33zzjd0XSdmyZQux12Lr2ow6QZIkEhIS+P333zl9+jQymQxfX18h9PUQpVKJr68vkiRx6tQp/vzzT1JSUuz+/09QPnb7MW0ymSwFHoqQyWSkpqaSnZ1d5mulTqdDp9NZznPrqNxfeno6n332WZ3cu67RaDRcvHiRq1evIkmSiLJpAMhkMtzd3VGr1SQlJZGenk6rVq1o06aN2JRVz7Bbse/atStOTk58+OGHTJ06lfT0dNatWwdAQUFBGbFfs2YNK1asKNNPTEwMGo2mUveUGfJpXXh8OToaSVH+TteS7fJyc4mKirI8t3z5ctLT0wkNDSXyqW/N/unYxErd357IvWFcFWEwGEhOTiY+Pp68vDxLIe2sLPvL5qnT6UhPT69rM2xObYxLoVCQn5/P33//TUREBMHBwfj4+NToQntV/g7rG9aMLTU11er72a3Yu7u78/nnn/POO+/wn//8h+DgYIYMGcKZM2cstURLMnnyZMaPH285T0pKYuDAgYSEhODv71+5m+qKvw20btUKlC63bKd2caF1aCgA58+f588//0SlUvHmm28SHh5eufvaIVFRUYQWjutmFG2MioiIIC0tDbVajb+/v11H2aSnp+Pt7V3XZtic2hyXyWQiIyODuLg45HI57dq1w83NrUbuVZm/w/qKNWNzdXW1+n52K/Y6nQ6DwcBXX31lEY+vv/6a0NDQcnPLKJXKUn7hys7mbYXJZOL9998H4OGHH6Zjx461ev/a5MaEZTKZrEytV0HDRS6X4+Pjg1ar5cqVK6SkpNCuXTtCQkJEpJUdY9e/mWeeeYZt27YhSRJnz55l9erVjB07tq7NKpfdu3dz5swZ1Go1L7zwQl2bU2Pk5OTwzz//8Pvvv5OQkIC7u7sQ+kaKSqXC19cXvV7PiRMnOHbsGDk5OXVtluAm2O3MXqlU8umnn/LOO+/w9ttv4+Pjw8SJExkxYkRdm1aGvLw8SwWqZ599liZNmtSxRbZHq9USHR3N5cuXyc3Nxd3dXeTkF1hqDeh0Oq5evUp6ejrt27cnODhYzPLtDLsVe4A77riD7777rq7NuCVr164lLS2N5s2b88QTT9S1OTZFr9cTHx9PZGQkGRkZqNVqkbBMUIaiMM3MzEyOHz9OUlISt912W7V8zALbYtdiXx9ITEzk66+/BmDGjBkNJp48Pz+fiIgIrl69SmZmJo6OjmL3q6BCimoDa7VaYmJiSs3yxeSg7hFiX002btyIwWCgd+/e9OnTp67NqRaSJJGamsq1a9c4f/48jo6OqFQq4ZMXVIkiX/6Ns3wXl5tEtwlqBSH21eSfkydxULkyY8aMujbFanQ6naVgdWpqKgaDAblcLtw1AqspOcuPjo62zPKbNWsmvh3WEULsbcBTTz1FixYt6tqMKiFJEjk5OcTHxxMTE0NOTg5yuRx3d3eUSiXp6elC6AXVpuQs/+jRo8TFxdGuXTuxuF8HCLGvJu7uHjz77LN1bUalKBL4lJQUEhISSE9PJz8/H2dnZ+GqEdQYcrkcb29vdDod165dIyUlhdDQUEJDQ0VJxFpEiL0VpKWn41N4/OSTT9q1L7KkwMfHx5Oeno5Wq8XBwQEXFxfc3d3FDF5QKxRF7OTm5nL27Fni4+Np27atcO3UEkLsq4jJZOLtxYv5sFDt7+lrf6UGJUkiOzu71Axeq9WiUChQq9WicIigzpDJZLi6uqJWq4Vrp5YRYl9F1q9fz9Fjx+Ah87m9zEiKZvBFCckyMjIsAu/i4iIEXmBXCNdO7SPEvgocO3aMNWvWoLIPfUeSJDQaDcnJySQkJJCWliYEXlCvKM+1Ex4eTlBQUKn05oLqI8S+kiQnJ/Paa68hSRIPDBoK8+YBINVy+lVJksjNzS0l8AUFBcJFI6i33OjaOXbsGJ6enrRs2RK9Xl/X5jUYhNhXAoPBwNy5c8nIyCA8PJzZs2fXug1arZbr168TFxdHamoqBQUFYpFV0KAocu0YjUZycnI4efIkJpMJgObNm9dYGuXGghD7SrBy5UpOnTqFi4sL7777bq35FE0mE2lpaSQkJBAXF4dGo8HBwQG1Wi0EXtBgcXBwwNPT01Iv4fTp00RFRdG8eXNCQkLw9PQUf/tWIMT+Fhw8eJCNGzcCMH/+fJo3b17j98zNzSUxMZHY2FgyMjIwGAyo1WqRm0bQqJDL5ajVary8vMjNzSUyMpKrV68SEBBAy5YtadKkifh/qAJC7CsgLi6OBQsWAPD000/Tv3//GrtXUWm/uLg4rl+/Tn5+Po6Ojri5uTWY5GoCgTUU+fRdXFwoKCjg6tWrxMXF4enpSbNmzfD19RWz/UogxP4m6HQ6XnnlFTQaDZ06daqRgiRF8fAJCQnExsaSnZ0NINIICwTlIJPJcHZ2xtnZGZ1OR3Z2NqdOnUKpVOLl5WURfjc3N/G/Uw5C7G/CJ598QkREBJ6enixZsgSFwnZvlV6vJykpiWvXrpGUlIRWq0WlUuHl5WXT+wgEDZWiMqSSJFmKrSclJVmytAYFBeHn52fXu9trG6EsN+GHH39EJnNg8eLF+Pr6Vrs/SZLIysqyzOKLyre5urqKcEmBwEpkMhkqlQqVSoUkSRQUFJCUlERiYiJOTk40adIEPz8/fHx8cHd3b9Q+fiH2JVG6cHn0ScaMGYPWqGXSpIn07NmzWl3q9XquX7/OtWvXSE5OpqCgAGdnZ7y9vUXiMYHAhpR080iSRH5+PgkJCVy7dg2lUomrqysBAQF4e3vj4+PT6HbqCrEvgclk4pVXXkGr1dKrVy+rs1kajUZSU1O5fv06CQkJ5OTkWBaZxCxeIKh5ZDIZarUatVptcfXk5uZy/vx5ZDKZZdbv6+uLt7c3Hh4eDX7WL8S+BBqNhoSEBPz9/Xnrrbeq9Ms3mUxkZGSQlJREXFwc2dnZmEwmnJycRPpggaAOKenqAfNkrKCggPj4eGJjY1Eqlbi4uNCkSROL8Lu7uze4/1kh9iVwd3fnu+++w9XVtVKFkotSF0RGRhIXF0dmZiZ6vR6VSoWHh4fI7SEQ2CFFO89dXFwss/78/HyioqKQJAlHR0ecnZ1LiX9D+H8WYn8D/v7+FT5vMBjIysoiPT3dUspPpVJZfIKOjo7CTSMQ1BNunPVLkoRer6egoICYmBiio6NRKBSWKB8vLy9LzH/R/3t9QYj9LTCZTOTk5JCRkUFqaiopKSnk5eVhMBhQKBSWrH1C4AWC+o9MJrOEdYJZ/A0GA1qt1uL2kclklv99V1dXvLy8cHNzs3gEnJ2d7VIPhNiXQ15eHunp6ZbYXY1Gg06nQy6Xo1KpcHd3R6FQIJPJRK1WgaABI5PJcHR0xNHR0eLaLZr96/V6MjIySE5OtrRVKpU4OTnh5uaGu7s7zs7OqNVqS5SQUqmsM72wa7E/d+4cb7/9NhERETg5OfHggw8ye/bsGk0fkJmZyeHDh9FoNIB584ZarRbbsQUCAVB69l9y05bRaESn06HVatFoNMTFxSFJkuWbgKOjo2Wy6OrqSl5eXq3abbdibzKZmDx5MpMmTWLjxo0kJyczbtw4vLy8mDp1ao3dV6/Xk5ubi7e3t9jNKhAIKo2Dg4NlBl+Som8CBoOB/Px8cnJy0Gq1ZdrVNHarZllZWaSkpGAymZAkCTBnwautN6ihx9wKBILa4cZ1AICMjAyLrtUWdqtoXl5ejBs3jnfffZeOHTvSt29fQkJCGDduXLntdTodGo3G8sjNza1dgwUCgcCOsduZfdGGpHnz5jFs2DCuXr3K888/z7Jly5g2bVqZ9mvWrGHFihVlrsfExFj875UhKysLjUaDTCar1Oy+KAlTQ0OMq34hxlW/0Gg0qFQqoqpY1jQ1NdXqe9qt2O/bt489e/bwyy+/ABAWFsbUqVNZvHhxuWI/efJkxo8fbzlPTExk0KBBlnjYyqLT6QDIz8+v1IKsRqOpUv/1BTGu+oUYV/1Cr9cjSVKVx5afnw9gKddYFexW7BMTEy3CW0TRinZ53OgTKygoAGDYsGE1Z6RAIBBUg7ffftuq16WlpREYGFil18ik2l4lqCRRUVEMHTqUqVOnMnHiRBISEpgyZQp9+vThlVdeueXrDQYDFy5cwMfHRyy2CgSCBkFRXep27dpVOVrQbsUe4PDhwyxdupTo6Gjc3Nx45JFHmDp1qijTJxAIBFXErsVeIBAIBLZB+DcEAoGgESDEXiAQCBoBQuwFAoGgESDEXiAQCBoBQuwFAoGgESDEXiAQCBoBQuytIC0tjSlTptC9e3d69uzJ4sWLMRgMdW1WtUhPT+f+++/n6NGjlmv//vsvw4cPp0uXLvTv35+tW7fWoYVV4+LFi4wfP54ePXpw1113MXv2bEuOlfo8riNHjjB8+HC6du3KXXfdxVtvvWXZLV6fx1WE0Whk9OjRzJkzx3Ktvo/r559/pn379nTp0sXymDVrFlDLY5MEVWbUqFHSjBkzpLy8PCk2NlZ6+OGHpc8//7yuzbKav//+W7rvvvuk8PBw6a+//pIkSZIyMzOlHj16SJs2bZL0er10+PBhqUuXLtK///5bx9bemvz8fOmuu+6SPvnkE0mr1Urp6enSxIkTpcmTJ9frcaWlpUkdO3aUtm/fLhmNRikpKUkaNGiQ9Mknn9TrcZVk6dKlUtu2baVXXnlFkqT6/XdYxJIlS6Q5c+aUuV7bYxMz+ypy9epVjh07xqxZs3B2dqZ58+ZMmTKFzZs317VpVrFjxw5mzpzJ9OnTS13fu3cvnp6ePP300ygUCu68804GDx5cL8aZkJBA27ZtLbutvby8GDlyJMePH6/X4/L29ubw4cM89thjyGQyMjMz0Wq1eHt71+txFXHkyBH27t3LgAEDLNcawrjOnDlDhw4dylyv7bEJsa8ily5dwtPTEz8/P8u11q1bk5CQQHZ2dh1aZh19+vRh3759DBw4sNT1S5cuER4eXupaaGgoFy9erE3zrKJVq1asXbsWBwcHy7U9e/Zw22231etxAZYsiX379mXw4ME0bdqUxx57rN6PKy0tjddee40PP/ywVIGi+j4uk8nEuXPnOHjwIP369eOee+5h3rx5ZGVl1frYhNhXkdzc3DLVsorOa7umpC1o2rRpuQmVyhunk5NTvRujJEl8/PHHHDhwgNdee63BjGvv3r389ttvyOVyXnzxxXo9LpPJxKxZsxg/fjxt27Yt9Vx9HheY18Lat2/PAw88wM8//8y3335LTEwMs2bNqvWxCbGvImq12pJTuoii85LFh+s7zs7OloW/IgoKCurVGDUaDS+++CI//fQTmzZtok2bNg1iXGAWBT8/P2bNmsXvv/9er8e1Zs0alEolo0ePLvNcfR4XQJMmTdi8eTPDhg3D2dmZwMBAZs2axW+//YYkSbU6NiH2VSQsLIzMzMxSFWMuX76Mv78/bm5udWiZbQkPD+fSpUulrkVFRREWFlZHFlWN2NhYHn/8cTQaDdu2baNNmzZA/R7XyZMnefDBB0vVedDpdDg6OhIaGlpvx/XDDz9w7NgxunfvTvfu3dm5cyc7d+6ke/fu9fr3BeaosA8++KBUvVmdTodcLqdTp061O7YaWfZt4Dz55JPS9OnTpZycHEs0zrJly+rarGpTMhonPT1d6t69u7RhwwZJp9NJR44ckbp06SIdOXKkjq28NZmZmdJ//vMfac6cOZLRaCz1XH0el0ajkfr27Su9/fbbklarleLi4qRhw4ZJ8+fPr9fjupFXXnnFEo1T38eVmJgo3X777dJnn30m6fV6KT4+XhoxYoQ0d+7cWh+bEHsrSElJkV544QWpR48eUq9evaQlS5ZIBoOhrs2qNiXFXpIk6fTp09LIkSOlLl26SPfee6+0ffv2OrSu8qxfv14KDw+XOnfuLN1+++2lHpJUf8clSZJ06dIlafz48VL37t2lfv36SR999JGk1WolSarf4ypJSbGXpPo/rqNHj1rs79Wrl/TWW29JBQUFkiTV7thEPnuBQCBoBAifvUAgEDQChNgLBAJBI0CIvUAgEDQChNgLBAJBI0CIvUAgEDQChNgLBAJBI0CIvUAgEDQChNgLBAJBI0CIvaDG0Wq1XL9+va7NKBd7ts2eMZlMPPjgg7z//vulrv/+++906NCB3bt315FlgpshxF5gFaNHj2b58uWVavvUU09x+PDhGrbIOkralpCQQJcuXUhISKhjq4qJi4ujTZs2xMXF2bTf6o5VLpczefJkvvnmG7KysgBz0q+XXnqJ6dOn89BDD9nSXIENEGIvqHEyMjLq2oSbUtK2wMBA/vnnHwIDA+vQotrBFmMdPHgwXl5ebNy4kevXrzNp0iQeffRRnnnmGRtaKrAVQuwF1aJo5rl161b69+9Pt27dGD9+vMU1MmHCBBISEpg/fz5vvvkmYE4//Nxzz9GzZ0/69evHxx9/bEnbW9TfkiVLuOOOO3j22WeZMWNGqXtOmzaNhQsXVrqvytp24yw6IiKCiRMn0qNHD+655x4WLFhATk7OLfu9kdmzZ1c4hv379/PEE09w55130rlzZ0aNGkVMTMxN3+uSs/zly5db8sBX9F5U1FdVx1OEQqFg4sSJbNy4kYkTJ9K+fXtef/31Cl8jqDuE2AtswsGDB/n+++/Zs2cPqampfPrppwCsX7+ewMBAFi5cyBtvvEFeXh7jxo0jLCyM3377ja+//prDhw+XcQnl5uby559/8txzz/G///0PjUYDQHZ2Nvv372fYsGGV7quytpUkIyODMWPGEBoaym+//cb27du5cuUKs2fPvmW/NzJixIibjuH69eu89NJLTJo0iSNHjnDw4EEkSWLlypVVev8r+15URGXHU5LBgwdbivd89NFHpUpBCuwLIfYCmzBx4kTc3d1p0qQJ/fv3L3dmCmZB0el0vPzyy6hUKgICAnjppZfKFFkeMmQISqWS7t27ExAQYFnw27lzJ61ateK2226rdF+Vta0kv/76K46OjsycORMnJyeaNm3KvHnz2L9/v6VwTWX7rWgM3t7e7Nq1i/79+6PRaLh+/TpeXl4kJSXd0kZr3teKsOZ9euuttwDzh6MQevumbPFRgcAKmjRpYjlWKBTcLHN2fHw86enp3HHHHZZrkiSh1+tJS0uzXPP19bUcDx8+nB9++IHhw4ezY8cOhg8fXqW+KmtbSdLS0ggMDCwlYM2aNbNqzBWNwdHRkZ07d/Ltt98ik8kIDw9Ho9GUWxe4Im71Xvj4+Nyyj6q+T0uXLuXgwYNs2bKFcePGsW3bNp5++ukq2S2oPYTYC2oVf39/goOD+eWXXyzXNBoNaWlpeHt7Ex8fD4BMJrM8P3ToUJYuXcrhw4eJiIhg0KBBVerLGoKCgkhISMBoNFoEPzY2FuCmfvCKuNkYdu/ezaZNm/jmm29o0aIFYJ4tR0ZGlumjyA69Xm+5VrTAfKv3wtZs3bqVDRs28OWXX9K2bVvGjh3L2rVrGTFiBI6Ojja/n6D6CDeOoMZRKpXk5OQA0K9fP3Jzc1m7di06nY7s7GxeeeUVpk+fXkrgS+Lt7U2/fv14/fXXGTBgAB4eHlb3VZFtJenbty8AH3zwAQUFBaSkpLB48WJ69eplVQTLzcaQk5ODXC7HyckJSZL47bff+P7770sJehE+Pj54eHiwa9cuJEni3LlzFnG3xXtRWQ4dOsTChQt5//33uf322wFzKK5Go+GHH36w6b0EtkOIvaDGGTZsGB9//DEzZ87E1dWVL774gqNHj3LPPfdw3333IZfLWbVqVYV9jBgxgvj4eIYNG2a5Zm1fN7OtJG5ubmzYsIHIyEj69u3LoEGDCAoK4pNPPqna4G8xhqFDh9K7d28efvhhevXqxapVqxg7dixXrlwp8w1CqVTy1ltvsXv3brp27cqSJUsYMWKEzd6LynD27FmmTZvGrFmzGDBggOW6q6sro0aN4vPPP8doNNr0ngLbIMoSCgQCQSNAzOwFAoGgESDEXiAQCBoBQuwFAoGgESDEXiAQCBoBQuwFAoGgESDEXiAQCBoBQuwFAoGgESDEXiAQCBoBQuwFAoGgESDEXiAQCBoBQuwFAoGgESDEXiAQCBoB/w/YjzFka+CyfAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -984,7 +984,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -997,7 +997,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -1011,7 +1011,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1088,7 +1088,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 19, @@ -1169,16 +1169,16 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 26, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, diff --git a/tutorials/case_studies/climate_case_study.ipynb b/tutorials/case_studies/climate_case_study.ipynb index abaccc5a..985f430b 100644 --- a/tutorials/case_studies/climate_case_study.ipynb +++ b/tutorials/case_studies/climate_case_study.ipynb @@ -666,7 +666,7 @@ "source": [ "All these effects are in units of the seasonally-standardized data.\n", "\n", - "As a note, because there is no hidden confounding here, you can also use the faster ``LinearMediation`` class for linear causal effect and mediation estimation (see [tutorial on linear mediation](https://github.com/jakobrunge/tigramite/blob/master/tutorials/causal_effect_estimation/tigramite_tutorial_linear_causal_effects_mediation.ipynb)). To this end, you need to provide the class with the parents of all nodes (read-off from the graph):" + "As a note, because there is no hidden confounding here, you can also use the (often) faster ``LinearMediation`` class for linear causal effect and mediation estimation (see [tutorial on linear mediation](https://github.com/jakobrunge/tigramite/blob/master/tutorials/causal_effect_estimation/tigramite_tutorial_linear_causal_effects_mediation.ipynb)). To this end, you need to provide the class with the parents of all nodes (read-off from the graph):" ] }, { @@ -721,7 +721,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 18, "metadata": {}, "outputs": [ { diff --git a/tutorials/causal_discovery/tigramite_tutorial_assumptions.ipynb b/tutorials/causal_discovery/tigramite_tutorial_assumptions.ipynb index 888a3f0c..63c569b4 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_assumptions.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_assumptions.ipynb @@ -18,8 +18,7 @@ "This tutorial explains the causal assumptions and gives walk-through examples. See the following paper for theoretical background:\n", "Runge, Jakob. 2018. “Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation.” Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310.\n", "\n", - "Last, the following Nature Communications Perspective paper provides an overview of causal inference methods in general, identifies promising applications, and discusses methodological challenges (exemplified in Earth system sciences): \n", - "https://www.nature.com/articles/s41467-019-10105-3" + "Last, the following Nature Review Earth and Environment paper provides an overview of causal inference for time series in general: https://github.com/jakobrunge/tigramite/blob/master/tutorials/Runge_Causal_Inference_for_Time_Series_NREE.pdf" ] }, { @@ -259,7 +258,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3gc1dk+fK9Wu6uVdrXSqrp3G4wLBmKbYnAKYAihmhJCjwktgQTMm5jwhpIfmADBhBBaqAGS16bXgOkYjDEugLtxwZItq2uLyvb9/tD3HJ05OzM7W6SV5HNfly5b2tmZMzPnPOc+91OOKR6PxyEhISEhISEhITGgkZfrBkhISEhISEhISGQOSeokJCQkJCQkJAYBJKmTkJCQkJCQkBgEkKROQkJCQkJCQmIQQJI6CQkJCQkJCYlBAEnqJCQkJCQkJCQGASSpk5CQkJCQkJAYBJCkTkJCQkJCQkJiEOCAJnXxeBw+nw+y/rKEhISEhITEQMcBTer8fj9cLhf8fn+umyIhISEhISEhkREOaFInISEhISEhITFYIEmdhISEhISEhMQggCR1EhISEhISEhKDAJLUSUhISEhISEgMAkhSJyEhISEhISGhg3fffRf//Oc/c92MpJCkTkJCQkJCQkJCB8uWLcMjjzyS62YkhSR1EhISEhISEhI6iEajCAaDuW5GUkhSJyEhISEhISGhg2g0ikAgkOtmJIUkdRISEhISEhISOpCkTkJCQkJCQkJiEEC6XyUkJCQkJCQkBgEikYhU6iQkJCQkJCQkBjqkUichISEhISEhMQgQjUYRDocRi8Vy3RRdSFInISEhISEhIaGDaDQKAP1erZOkTkJCQkJCQkJCBXV1dfD5fIhEIgDQ7+PqBgyp8/v9mDVrFhwOBzZu3Kj4LBKJ4JJLLsGcOXNw3XXX5aiFEhISEhISEoMJ5557Lv785z9LpS7bsNvtePPNNzF//vyEz9544w0MHz4cK1asQGdnJ1auXJmDFvYPxOPxfu/zl+g7hEIhtLW15boZEhISEgMSHo8HXq+XkTqp1GUJ+fn5qKioUP3siy++wAknnAAAmDdv3gFN6u6//34cd9xxuW6GRD/Bww8/jGOOOSbXzZCQkMgB9uzZk+smDHhEIhFEo1Gp1PUlPB4PiouLAQAulwutra2qxwWDQfh8PsXPYMPevXvlQJZgqK+vR11dXa6bISEh0cf49ttvMWbMGNTU1OS6KQMa4XCYETtAKnV9gtLSUkbQPB4P3G636nGLFy+Gy+ViPyNGjOjLZvYJBkotHYm+QTAYRHt7e66bISEh0cdoaWlBPB6H1+vNdVMGNIjQyUSJPsTs2bOxfPlyAMC7776Lo48+WvW4RYsWwev1sp/a2tq+bGafIBKJSFInwRAMBhGJRBAKhXLdFAkJiT5EOBwGABljnSEikYhCqevv8+uAInUnn3wyli9fjssvvxxPP/00rrjiCgDAz372M9TW1mLOnDmw2+048sgjVb9vs9lQXFys+BlskEqdBA/qCx0dHTluiYSERF+CFnJERiTSg0jq+rtSl5/rBqSCt99+W/H7JZdcAqA7ieKZZ57JQYv6H2h/ung8DpPJlOvmSOQYPKkrLS3NcWskJCT6CqTUSVKXGcLhsEyUkMgdqOPRgJY4sCGVOols4+abb8aGDRty3QyJJCClTrpfM8NAU+okqRtkoGDO/r6akOgbDFRSt2/fPpx77rkyFrCfIR6P484778R7772X66ZIJIF0v2YHYqJEpnPrsmXL0NLSko2mqUKSukGGgSIRD3TU19fj2muv7fcGc6CSunXr1mHZsmVoaGjIdVMkOLS3tyMej0tPwACATJTIDrKp1EUiEZx77rl4+eWXs9W8BEhSN8gwUNKuBzpWrlyJv//979i3b1+um6KLgUrqSGWg/izRP0DlMaSC2v8xWJS6v/zlL3jggQdydn2xTl0mgklXV5fi396AJHWDDFKp6xsQ2ejvW3BJUpc93Hbbbdi6dWuum5FTEKmTSl3/wptvvokPP/xQ8Tee1EUiEcTj8Vw0LWO8+eabeP/993Ny7Vgshng8rkiUyEQw6ezsBCBJnUQKyMTvHwqFcNVVV2nuyCHRA3rORp/V3r17MWzYMOzfv783m5WAgUrqiDT0J1J36623Yt68ebluRk4hlbr+ifvvvx9///vfFX+jMRQKhVBdXZ0zYpQp2traciZSkP0hFyyQGakjMtebnjRJ6gYZMlHqvv/+ezzyyCNYs2ZNtps16EAG0yipq62tRV1dHXbv3t2bzUrAQCV1/U2po3HV393tvQ2p1PVPhMPhhJ1jaAx1dXWhpaVlwBbb7w+kLlslTUipk6ROwjAyWU3Qd+QqPDlSVero+GzuN2zEnZJrUvfoo4/immuuSfl7eqQuGAz2qvtCDf1ROcwFqP9KG9G/EIlE4Pf7FX/jlTr+395uR7YJWH8gddlKlJCkTiJlZLKaoI7WlwNo+/bteO211/rsetlCqjF1ZGCzRerefvtt5OXlYdeuXbrH0bvM1f6vX375JT799NOUv6dH6o499liUlJRk2rSUIJWpbqSr1P2///f/8M9//rM3miQBdVInkrm+6MM33XQTzj333KydjxZwuSJ1fAFnqdRJ5ASZxNSR+tGXA+iJJ57Ab37zm6yd77e//S3++Mc/Zu18WkjV/UrvRTS86eLbb78FAJx++um62W25VuoCgUBa/UlPGVu9ejVCoVCfupN4lWOgBpxnA+nG1L3yyisDNqZrICASiWi6X0XFrjdRU1ODvXv3Zu18tGjOlTIslTqJnGOgKXWBQCCrKtLXX3/dJ9Xuc+1+tdlsAIANGzagrq5O87hck7qurq60DJieUjd16lQAwPPPP59Z41IAr3I0NzcDAP7xj3/goosu6rM29Aekq9S1trbmpMzSI4880u8z1LMBPfdrX5K6bKtqZF/7g/s1G8WHZaKERMrIRkxdXw6gYDCYVVLXV1J9uqQuW0odP6nqnTPXpC4QCGSd1JnNZgDAq6++mlHb0mkPAOzZswcA8M0332Dt2rV91ob+gHSVura2tj6Pg2xtbcVVV12FN998s0+vmwuEw2H4/X6Fiiy6XwcKqYvFYpg1axY+//xzRshzTeqyXdJEkjoJw8iGUteXUncwGEQ4HM7aNdNVhjo6OlLK+s11TB3/vLTOGY/Hc07q0jXyeqSODGNflofhSTSRuq6urgMuYSAdUheJROD1evuc1Hk8HgDZTU7qryAliX8volLXFzF16dpfHh0dHVi9ejU2b96cc1LHh4H0Zkzdp59+ij/96U9pn5eHJHWDDJlIxLlS6oDsBfJ3dnam1f7nnnsOc+fONXx8ujF12ZpgjCh1fMHRdEhdNtxW6Sp1ejF1HR0dcDqdvbp/olZ7gB5SFwgEDjhSR/03FYJA5Kqv3a9EQPuC1N1111247rrrev06WlDzBAxUpY5sVSgUyjmp492vtN1abyh1b7zxRtYSiSSpG2TIRCLORaJEtkldukalqakJHR0dhoPgc+1+DYVCLANUa9Ki55Cfn58yqdu+fTsqKiqwc+fOjNpJxCfV/SeTKXUjR45ER0dHnxEFfkJsbGwE0H1vB1pWbDpKHU3Mfa3U9SWpW7VqVU5d8TROVq9ejZdeeglAbhIl0l1Ux+Nx7NixA0D/JHX8s+uNHSVaWlqyZkskqRtkGGhKHV0zm0pdOoOOJgCjdchSdb8aVeo2bdqE6dOnJ50Aw+EwysrKdM9J79HtdqdM6r777jtEo1HU19en9D0RdB+pTih6+1YSqQPQZ2odb3D5YOfemCj/8pe/4OSTT876ebOBdBIlaOHT10pdX7pfPR5PTgk+2Zd7772XVRMQyVx/dr++8847mDx5MrxeL7NVwWBQQepykXUuzqdms7lXEiVaW1slqZNQx0DLfu1rpW7Pnj2qxC1VBYJX3owMRqNK3ZYtW/Dtt98yNUgLoVAIhYWFsNvtmufMhNQRmaOVZbqgPpWqoddyv0ajUQSDQYwYMQJA9kjdsGHDdIkU9QuHw6FwofTGRLlr166k9QdzhXSUOiJ1/V2pe/jhh9PeItHr9ebUFU/9cOfOnWhsbEQsFsup+zVVAlZbW4twOAyfz6eq1MXj8ZwU/qbnSra0qKioV9yvra2tuu9n7dq1hncjGlCkbuHChZgzZw5+8YtfKB7Axx9/jBEjRmDu3Ln48Y9/nMMW5h7ZUOr6OlECyA6pi8ViCAaDmvceiUQwefJk1azJVGOF+OOMqHVGEyWMJjaEw2FYLBY4nc5eUepyTeq03K/UHlLqqLxIpqirq8N///tfzc/p/ZWUlChcKL0xVkQFsKOjA+eff36/KM2RjlI3ENyvPp8PV199tW4fSHatcDiMr776Kqt1N42CxkltbS2i0Sja2tpyVtKEv6ZR0OKss7NTldQBuXHBiu7XoqKiXkmUSOZ+veqqq3DPPfcYusaAIXXr169HfX09VqxYgcmTJ+PFF19UfH7uuefi448/xgcffNBnbdq2bVvGk162kUlMXS6VumxkZyarARQKhdDZ2am6Gk91suLJhpHVvVH3ayqkzmq1ori4uFeUuoaGBgCZT8Tp1mXSInV0H9lW6oy2x+VyKQxzb5E6fgzu3LkT//nPf7Bp06aMzuv3+3VrGiZDPB6Hz+dDXl5eWkpdf3a/Zlo/jEjdJ598gscffzytc2QCGiekkDU0NORMqQNSn0NoHHd1dfVLUkfzamFhYa8pddFoVFPh7OzsNMw1Bgyp++KLL3DCCScAAObNm4eVK1cqPn/ppZcwZ84c/O1vf9M8RzAYhM/nU/xkgjlz5uCZZ57J6BzZxkCLqcumUpfMoOgZt3Tcr1arFYAxpc6o+5XanmwAh0KhlJS6VJ9vtpW6VPtUMqVu6NChMJvNfR5Txyt1gUAAsVgM0WgUe/bswQ9/+MOsLPJEUpetSXnx4sU49dRT2e+xWAyPP/64YbcWuZvdbnfaSl1fxkWlotRlQuri8TgjdaFQKCfxX+I7VCN1vR1TF4lE2DVSfY5qSh3F1FHscC5JHcHhcGS00FUjdfF4nC18tN5RKBQyPP4HDKnzeDwoLi4G0L1a5tWRI444Atu2bcMHH3yAd955RzMLafHixXC5XOyHVvvpIB6Po6WlJWNiuGbNGsycOTNrq6hMYuoGevYrDRit9ovxETxSVerC4TAqKysBZFepo36QTaXO5XIhHA6nlIFKpE40YDt27GBZaskQjUbTNvJaMXX0jh0OB9xud9ZJndZkrKXUUVs3btyIjz/+OCu180S3brbqjDU1NaGmpob9vmXLFlx++eX44osvDH2fxmhZWZlhe9XQ0ICmpib2e1+GdqRC6tINEwC6x2o0GkUoFEI4HEY8Htfduq83oEbq+tr9ytuKbCl1Xq8XFRUVaZ0zGxCfq9PpzGjhprZ46OjoSLpwCwaDg4/UlZaWssHp8XjgdrvZZw6HA1arFVarFaeeeiq++eYb1XMsWrQIXq+X/WSydySVacg0ePOzzz7DV199pTC2mUAqdcpCkTz0jFs67tdUSB1/bb3na9T9mopS53Q6FW0wAi2lbsKECZgwYYKhc/CGK9vu18LCQpSVlWUtpo6gpbpqKXXUVmpvNlyMvaXUdXV1oaWlhZF7ug+jZXboeFokGEF1dTX+/ve/K9rQV+gr9ytvO/rS1UlQSyJobGzsc/drNkidGFMXCATgcrnSOichEAjglltuSXr/8Xg8YR4W+3lxcXFGoUK88EALSH7+0FPqjN7/gCF1s2fPxvLlywEA7777Lo4++mj2GT9oV6xYgfHjx6uew2azobi4WPGTLtINCBVBhUyzReqyEVNnZPBHo1EsWrQoY6UymyVNkhkVPVKXaqJEJBKB0+mE3W5PSakDUt/W6/vvv08gV5QoYUSpczgcANTv++mnn8aHH36Y8Pdk7tdU1A++LUaRzP1aVFSE8vJyxQr/d7/7XcbuT60SLmpKHW8D6P6yRepCoRAz+tlS6rq6uhCLxRhxTXXs0X2XlJQk9KUtW7bggQce0Pwube3Wl6QuHaUuHeKQa1KntoDllbpckLp03a+8UkdJb0Tq0m3/unXrcPvtt2Pjxo26x3388ceYMGECe59Aov0pLi5WuJlTRWdnJwvbob7Gexu0zjsolboZM2aguroac+bMwebNm3HWWWfhiiuuAAAsW7YMM2fOxFFHHYVhw4bh2GOP7fX28KpQJjBC6r799lssXbrU0Pn6Sqnbs2cP7rrrLqxatSrl6/DoDfcrf14eWqQuGo0yYpRKTF1+fj7cbndKMXVAzyTz7rvv4ttvv1Ucp0bqfvzjH+PBBx9UHBcKhWC1WlNS6tTu7dJLL03IGO/o6GDPQ5yEhw8fDqB78aSFtWvXorm5OSMjb1SpI4P49ddf4/7778eGDRsQj8fTjmmqra1VJYbUd4jUxeNxVaUuGyo379al8/P/pgt6H6Rupkvq1JS6o48+OmFHBf4dZGPfzFTh8XhgtVoNJbRkQ6kj9yv9v68gjpEhQ4YoYur6apuw/qzU8f9qobm5GaFQSGFPxWdLbUlXrevs7GReRmqPUaVu0JE6oLuw4ooVK/D888/DarXi0UcfBQAsWLAAq1evxsqVKw2n/WaKbCl1ROb0SN3jjz+O3//+94bO11d16jIhjzx6w/0KqA9gLYPLK11673PlypWsHEo4HEZ+fj5KS0vTVurmzZuH6dOnK45TI3Wtra3Yu3dvwr2QUpdt9ytlvgKJSh2VEtHLMj/ttNPwj3/8IyP3a7KYuqKiIoX7lf4Nh8MYNWoUXn/9dQDdtcf0FCQR8+bNU1Xwqc9QTA2/bVBvuF+B7r1tn3nmmawRhWyROjWlTm1ho7bg7WuljuKmk7mYMyF15Obllbq+DGERn/PUqVNzkv2aLqmLxWLMhvYGqaN2GSnoLl5HTakDeo/U6cXUDTr3a39DtpU6+lcNra2tht2cmZCtVBIl1LZPSQe5UOrEz3i5XY/43Hfffbj99tsBKJW6VEmd+C75rbjUEiVCoVBCQgCv1CVzv+opdWogF2RhYWGCIaTnI2afE+LxOBobG9HS0tKr7le73a5wv9K/oVAItbW1bDy9+eabePvtt5Nez2KxsP9rxWNarVYUFRUl7FrSG+5XAHjhhRdwySWXpLXfqhroXVLiQiakzkhb6B2ee+65+Pe//61oQ7bw/PPPay4weFKXzH6qLWh3796NzZs3J21Drt2v/BgpKSnBiBEj0NjYOGASJbxeL1sgie7XQCDAiFRvK3VqCzOxn5MtTZfUdXV1MVJHzyuZ+5Vi9welUteXIMP+2WefqdYdSkWp+/LLL1WP6+joQHNzM/Ly8nSVura2Nvh8PkMupXTcHH6/H88995yuUkeV/AnZUOqi0Shrr97EsmbNGs3kFx7pxtRpkbrGxkaFwdy9ezebHCKRCCwWi2H3azgcZsaJ7rW6uhoA8K9//Suh3bzRCAaDaG5uVpThSUep0zMKfN8ipW706NEJSh2dQ4vIdnZ2IhwOw+v19pr71WKxwGKxoKSkhKkkpD6JC5Ourq6kC694PJ50HFNiSmFhYULNqN5yv9K98cpFJhCVOvo9G0odgc+wpmPOPvtspkhn0/364Ycf4oILLsCVV16p+rnH49EldU1NTbj33nsRj8dVlbqxY8fikEMOAdD9Dt577z3V65D9EF3yeti3b1/GoSsE6t9msxlVVVWorKzMSUmTdMc7T2p4pY7c5tlS6oySOiNKXbqxu52dnSgtLVW0J5n7NVVSLkmdCuLxOC655BJcddVVmD9/Pn7/+98nECp6qckmjPb2dsyePRuXX355wmeUfTtjxgxdUkeFCY0MlHTI1uuvv44LL7yQtYHv3HS+++67TxGrSGQsk4mGb6PexPKDH/wAhx56KPu9qakJt912W0KJjnTdrzyp4w1gVVUVhg0bxkjO7t27FavyVJU6SligtlHw+FdffcWOE0kdEd+WlhYsWLAA11xzDbs+lTTRIi7BYBAmkwmFhYWq982Dv4empiaYTCYMHz5ck9RpqYN0Hq/X2yvZr52dnSgqKgLQ7YKl58TH5ABKUpdsMhOvUVBQkHAMPW96lkS46LPecL9SX6OxkemkTM8mU6XO5XIhGo2y8cfbRr6N9H+LxQK73Q4gdaWus7MTW7duVf1s4cKFAIDJkycnfEaEQI/UvfPOO7jxxhvh8Xh01Zx4PI6pU6fihBNOUH1WvP2gz5PZxQceeAAXXHCB7jFGQc/54IMPxtSpU1FZWZkTpU70lHR0dOC5555L+j2e1PFKHdmYbMXUiX3vqquuwt13381+VxvDfeF+TabU0X1L92uGmD17Np544gk0NDSgtbU1ISvOqFJHL0ytSDG5iObMmYOamhpNJY4mymQuhHg8jlgshoKCgpQGAK3cibzw+9zRfpjbt29X1CfLhlLHZ2em4n59//33ceuttyrclkD6iRL8c6Vj6Jk3NjbiySefhNfrRVtbG7xeLyshkC6po7ZRO9SqpovqTHNzM7Zu3cp2BOBLmgDqJCsYDMJms7FsKz2jvm/fPvb/pqYmlJWVqRbaDIVCKCgoSOiL8Xgcjz76KFuo+Hy+Xomp6+joYMSK9mGMRqOsD6uRumQLL3ouVORUzf3KK3VAYhxMNt2v9MxFUtcfYupMJlNCjKba+OHba7VaGakTn49aWalYLMZs4ZNPPqmZ+KZXsJWenR6p45OBRIWXt8VvvfUW23dT7f3ypI76X7J3RbYkG6D+fe+992LZsmUoLS1FV1dXwmKgr92vL7zwAi688EJFjK4aaI6kJKTeInX8u/N4PHjkkUcUsepGYuoySZQgb5dI6pqbm3W9Kam69CWpU4HJZMI111yD9evX44UXXgCAhHRoozF1/Ir+u+++U3xWU1ODvLw8HHnkkQgEApo1t4ySOpqMUt2fTrwufTcajeK9995DPB5Hc3Mz2tra2Oo8GzF11KnLy8tTInX0TLdt26b4ezaUOjqGJ1oejwfff/89+zwQCDBSp5UocfXVV+P0009nv0ciEaYwiSsv/lpiTB393tLSgn379ikMNSl1gDFSp7cA4RMxmpubUV5ezlyNPMLhMMrLy1myAGHXrl248sorWUa66H7NZkwdr9TR30Sljr5vRKmjzx955BE89dRTCIfDCd8RlTqR1GXL/RqJRNg9Z1upy5TUEaEW+xNPzLSUOlI/+T6xcuVKjB49OiEJqLy8nGVkt7a2KmwoDz0Fg8YUJfao2U66b57UqaknfFydmr3j26fnKg8Gg8xG+3w+3eSNhQsXYtmyZZqf86D+kp+fD5PJhJKSEgDZz55OBtH+ksKqVSC8s7MTXq+XfT58+HCFUkf9PxVS19TUlHA9tUQJivGcNm0a+5uRmDo9pe6JJ57Ali1bNNtG5xVJXX19PVt8iNf785//zJ6jVOqygEMOOQRnnHEG7HZ72qSOn7DfeecdxWd79+5FVVUVe6H8iqa9vZ3tApAOqUs3pqGwsDCh83z33Xdobm5m2+EA2VXqysrKDK186P7IiG7fvl3xudGYOr1ECTFmzGKxoL29na3Uge73IMbU8Sv7eDyOhx9+GK+99pri2gUFBTCZTIq4m8rKSkNKXXt7O1pbWxWqDa/Uqa36jSh15AIWlbqKigpVUhcKhZiixU9KeXndpoTGCe9+tdvtTFHT273g448/xlNPPaVoazKljv6WDaXOYrEoiKJ4jJZSl033K983qZ9nW6nLxP3Kk7pQKISFCxfipJNOYsckU+r4MbphwwbEYjHU1tbijjvuQGNjI4Bum/nRRx+x48PhsKp6qkfqyJaOHTsWJpNJl9TxiS/0765du9hx/DtVewdq7le1Np1wwgnM3ef3+xEMBjWJ+tKlS1kGdzLwpA7oIUFim+lay5cv1y1JlC66urqYHQgGg2zRrRVz/Mc//hHnnXcePB4PbDYb3G63QqmjdyZ6OPRw5ZVX4tprr1X8TXy3DQ0NuPfeewGAxbcBxmLqyN6K9sHn82HBggW46KKLNNtG3zFK6oLBIP70pz+xfiCVuizBbDbj4IMP1iR1/EvYuXMn3n//fcVx1KFNJlPCymz//v0YOnSoqgvN6XTixz/+Mfx+P1PHfD4fampqMGXKFN0SAqkqdTypc7lcCenTb731Fps0aTLLZkxdWVmZoYmFJiMtpa6zs5MpAmr3r7Vi9Xq9sNlsABKVuhEjRqC9vZ0pdXQ8H1PH17lTaxfQk1jBu8ZDoRCqqqoUpJA+09ryTFTqyECoqYVGSB1dlyd1pNTZ7XZV92t5eTkA/VIwvPu1pKQEgUAAH374IY466ijNAr8PPPAAbrvtNsX5jCh1HR0dacfUvffee6xfUXYrnZOHqNTxYyabJU3479Oklg1SR8kAeXl5GblfCwsLWaZwOBzGmjVrFEob30ZeqbNarYoFDdBDnDZu3Iibb74Z//3vfxPet5rr7JFHHkFbW5suqaM+NnToUDgcDlVVTE2po3NR28QN3LVIHdkPPffr999/z1RNao9ebCpvc/QgkjpS6giiYnfHHXdgyZIlmud78skn09p+r6urC4WFhbDZbApSpxWe0tzcjIaGBgQCAdjtdmZvaOzRO7Hb7eycydDQ0MAWB3y7+H/POussBAIBHHvssYr3ZCSmrqioCCaTKcE+EEmmXYYIjY2NeP755wH02BRaFPOli0hR5m0VLRZS3ZdckjoDmDJliiGl7qGHHmKB7AQiINXV1QkGv66uDkOGDNGMi1qxYoViQPh8PmzduhWbNm1SjUXJhvvV5XIhFAopXAorVqxgg5zak22lzshWRRRPpqfUkUFLxf3q8XjY/oJiTB2Rut27d7NVqNfrVcTU8ccDYCU0yMgCPaSOjBPVOauqqkI4HE6YVDo6OrB+/fqE+xCVOmo3/w5PP/10jBgxAl9++aUuqeOD3dNR6nj1Q0397OrqYjFYwWCQGSetMINNmzahpqZGUT1djdSlqtRpkbp4PI6f/vSnLPuYJ22pKHV8TF2m7lf+fWfT/UrtGjp0KCOx6WS/ikodjUmCllJnMplQUFCgWCRQTOymTZsA9IQY8BDdol6vF1dddRXeeecd9k4oHII/9/79+2G32+F0OmGz2VQnRLI5ekqdzWbTdccBSvuh537t6OhgbaSxo2b3AoEAOjs7dctcAT2xhzx5BrSVOj6GVyt70+Px4Je//KUiI98ourq6GAHr6OhgMdhapI7sXiAQQEFBAbM3HR0dzIMAdCcuGSV1HR0dCf2Zf7eBQAArV67E7bffjoMPPlh1EaKn1JENoPccj8exbNkyVr9UJHUvv/wyLrzwQsTjcdYuWhQHAgGEw2E0NzczUse3h98WVWyXHiSpM4DJkycn+MppUPCDvKurK+HBt7W1wel0wuFwJHymp9QR+IHt8/kStijiQR3Q4XCklHKtptRRR5o0aRK+//57TVKXDaWuoqIiIUaLB5Ej2ixdT6kjOT2VRImGhga2UwKv1NntdlRUVKC9vR179uxhe57ypI6u9+KLL7JB+/HHHwNQkiY6niYJakNVVRW7Ht/udevW4bDDDsMjjzyiaCv1ESppUlJSArPZrNg0/bXXXsPevXvx3nvvwe/3M2MfCoXQ1dWF008/Hd9//73iOfDqWXNzMyN1ekodT+rEZ0oLA7vdjoKCAgQCPfuZqrnCAoEAduzYgXg8jl27dqXkfm1vb1eNqSN1SqtfEeGjZ8+7X9WUunTcrzfeeCMeeugh1eurQQzmpvuje+JRX1+fQIK0QO9x6NCh7LyZKnWhUAj79u3Dscceizlz5gDQjqkDetzwBCJOPKkjdYpIkqiy0Psle0H26p577sFPfvITdu76+npUV1fDZDJpEgLe/SqSR2ob1UojqNm7lpYWDBkyBIBxUkfjWO3ZU1/et2+fpn2NRCKoqqrChx9+mFSpE0mdx+PRzEImO7BhwwbVz7Xw4Ycf4uuvv2akbsuWLarxyTwoPpnIIK/U8fdgs9kMk7r29vaEZ8r3oZ07dyIej2PSpEmwWq0pK3Vms1mRdb93716ce+65rOyZOIcHg917vIZCIVWlrqmpCfF4XNX9qqbUGSlrljKp83g8WLp0Ke677z4sWbIE//d//2eoTtdAxogRI+D3+xUvTE2p6+rqShiEbW1tKCkpYRMbj/379+sqdUC365Pg8/lYx1AjbaTUud3ulCpQi6QuFosx5WP69OnYvHkzIye9odTR6kYrZpAGOE/q8vLysH///oR3QsemSuqqqqqQn5+viKkrLS1lmbktLS1sT2E+po4mnxtvvBH/+c9/2PmcTifi8ThrH5E6cr9qkTqxbXTP/D2Qu89qtSIvL0+xs0I8HofNZsNNN93E2sIHtq9btw6vvfYaVqxYwZ5Hfn6+whA2NTUx9yvfz8g4qSl1apNPY2MjCgoKEkidWvzftm3bWB/jS1gYcb/u37+f9X1eqaOYVC2FS3SB8UqdSOroeSdLlBDH+Pvvv68bRyhCz/0q3scll1yCBQsWGDov2auSkpKETF3+3d944424//77Vc8hKnXNzc3o7OzE1Vdfjb/85S8AoDpJ0vG8Oz8ejzOljhIReJcjjQtRQRMzg0kFrq2tVcS9EqkDkJTUqSVK0LmI1PH7J0ciEZxxxhmMjLa2trL2apE6KklF59dT6sgex+NxVY8M0P0umpubUVNTk0DqxB1RqN/EYjFEo1FdpY5Inbh9YTL8+Mc/xgsvvMAWcfR9q9WqqdRFIhH2TEip6+joUCzOgW6lzmq1ZkWpo2TFiRMnJpxTLaZOHHMiqeM9Wmpufvp+IBBg7XK5XMjPz0cgEGDPW43UiUodYGyzg5RI3RNPPIGZM2di1apVrIOsWrWKlf8YrBg6dCgA5QSrFlPHKzCEtrY2lJaWJpC6aDSKhoYGDB06lLnl+A5BA5OC7a1Wq4LU6Sl1NOkaTZkXSR3QM7inTZum6ORiTF02SZ1We2my50kdZS3xCmpXVxccDgcbMCK0EiWI1FmtVsXq0u12M1Ln8XiYRM7H1I0cORKvvPIKKioqWGxRS0sLxo4dq7gnOp4mGGoDTTyiUkcQV91ATxINKSDl5eVMqfP5fAgGg5g2bRpWrVqFN954Q+EuW7duHYBuVzb11dLS0gTVQs39Su9cLaaO7/cUX9TQ0MCMPK94qL1nmiAtFosi25D69FNPPYX9+/erKnW8ms2TumTJTHTPZDz1EiVEpU6MqdMqadLe3o5AIIANGzYoFmha4Me1WJibf8Z+vx8ffvhhUhedeF6+cLAaqXv//ffx7rvvqp5DJHVEwIYNG6aaYS0qdbz7ld8lh1y4LS0tCmLGt1skXfTd4uJi9q75flVfX8/UM1GRIaglStB7rK+vh9PpRDQaRUdHB7PHoVAI27dvx6uvvopVq1YhHo+jtbWVjWM+1jgajWLx4sWMqPD3oRdTx/cter/79u1ji0Y6Pz1jkdSZzWYmFPDH0vXb29uTkrpNmzbhiSeewOrVq1WP0wIpdZs3b4bdbsfEiRN1lToi1ETqWltbEY/HWVgL0ON+NeIVam9vT1iQ8X1o+/btcDqdqKysTDhnKkodPT/qh5s2bcI555yTIEzw56R2FRUVMT5Az9tITB1gbL5NidTdfffdWLduHZYsWYKFCxdi4cKFuP/++7FmzRq2UhuMIFLHx4+oTRi8GkHweDyqpK6xsRGxWIwZHnG7J3q53333HcxmM4YOHZqU1JFBSYXU0SROE7UaqeORTfcrPY9kpI6eKR9Td/TRR8NsNmP9+vWKe9ELqk2m1FksFkVMHa/UeTweVuaDd78C3TFso0ePZq6w1tZWjBkzBkDPoBcTJUSljo+bIFWA7olAMX1+v58F7gPdrioidRQkXFVVhVmzZuGUU05RkDp6Xrxrhyd1dB5S6qLRaMJzI4OrpdSNGjUKQHcfIoOczP26adMmDBs2DJMmTUogdaFQCJdddhmWLVuG1tZWdn0iWHzhbjVSp6XUiaTOiFJHWZytra0wmUzs/FolTfx+PwKBAB555BHceOONqu3gobYYUSN1H3zwAcLhcIKSK2LRokV49913FaSOClrzpI7cOl6vV7MQuuh+JVJHC1NAO6YOULpfSaUj2woo3a+iMif+zpM6cuHRbiaAMaWOj6kTr9PY2KhYxPGkjuKrfT4fW2DRtQjBYBBbtmzBTTfdhI8++khht/lFALWBV6d5UkfPY+HChTj//POZXeaTrURSBygXg/w7ofGtReqoPwUCASxYsAC//OUv8fXXX7OQkmTo7Oxkz3vIkCEoKyszpNSR+5XaJyp1Rtyv8Xg8qVK3fft2TJw4ESaTKYHsG4mpM5vNipg6vh86nU5dUkftcjgcbIFDz3vYsGGK4/lzq1Vn0ENKpM5kMqnGALS3tzMDNxhBxEuN1BlR6tTcr/QyyaiJpC4UCmHWrFkAusmay+WC3+83pNTRpGeE1JEBOfjggwH0kLqGhgbk5+ezvwNQ1GTrDferVnvpmfJKXXV1NQ455BCmPAE92VdaxZfVSB3tVapG6kSlrqSkBMXFxQmkDugelHV1dYhGo/B4PIzU8SVgjMbU8atU+n5BQYHinPF4nE2kFRUVzP1KpI4P2OVjoHhSR/fqdrtZvyKjSkodkJjRZ7fbUVRUpJkoMXr0aADdfcio+3Xr1q04+OCDMWHChARSx+/vqkfqTCZTRkodn/2qpdTl5eWhoKAAra2tKCwshNls1nW/tre3s7YY2b9Zj9TxtoZUP734qFgshr/97W94//332TF8zCnvCqX/ezweXZdfUVFRglKnRerUYuroOvTdH/zgB+x43v0qul21SB3F1Ilu2f3796fkfuWvQ32OSJ3H41GQOoo38/l8zB6KpC4UCrGxRAoznZ+3836/HytWrMDBBx/MEr9aWlqQl5eH6upqptTReP7vf/8LQJ3U8fsX88kSvL2jUi96MXU8oRo/fjzuueceFs6RDNu3b2dKfXV1tW5x9nA4zN4dKXX0XklkAIyTukAggFgshq6uLkUJHFGpmzhxIgBoul9TianjSV1xcXGC8sov9ognEYHt7OxEfX09ysvLWdWGZO7XrJO6e++9F8cddxzOOussXHvttbj22mtx5plnYu7cufjrX/+ayqkGFCjRQc39Kip1YjCjmvs1Go0yN4OaUkcrab54Le3xaSSmjlfqxMKeQPeETpO/HqmjzaEJEyZM6JWSJnqkjs/uamhoQDweZwRrxowZClLHK3VGs1/b2toQDocZqeMzxNxuN5xOJ7xeL9rb21FSUgKXywWfz6dwfwLdE1tdXR0rTyK6X3lSx7tfHQ4HCgsL8fTTT+NXv/oVQqGQgtTRwL7vvvtw8803A+hRS2ly5d2vZLSJLALdZIfq7W3atAn5+fkK96vb7WYTHJFDntRRX6fj1fac5Z8pT+r4RAk992tzczOqqqowfvz4BFJH99bU1MTeC9CtXNrtdkbqqCgytSdVpY7fzkpLqQPA3EQU66Plfo3FYujo6GD3biTD26hSt2nTJmY7tErE1NbWsuQtehZ8IddAIMDcdKTWeb1e+P1+1XekptS53W72HMQ2ikodbwO9Xi9MJhOLUwW6bRElKIgkTi0LFuiJqeNJHfUZIlq8InPdddfhpz/9qeK58kpdMBhkwevJlDq+cC4/3ug46rd1dXWKxTg/bvx+P3NxUihJS0sL3G43Ro8ezUgdLTYos553v/KxsQReqePnI7L7eu7Xgw8+GMcddxw7v8fjSZp4R+0DerbZq6qqQmlpqab7leZOj8eDgoICNvYAKMQESpRYunQpK26uBn7M8v8XY+oo4U3L/SrG1PF2Pj8/X5XUORwO1X24RfcrlURxOBzo6OhgYQJko9Xcr6kWcU+J1J1yyinYvHkzFi5ciOOOOw7HHnssbrzxRmzevBmnnHJKKqcacKBJm6Cl1AFKokcEhDdol19+OebPnw+gh9DwpI46Ak+oqMMYyX4lUvfhhx9i1KhRCfWOFixYgBtuuAFAzySuRupKS0ths9lQXV0Nl8vFaqrx10pHqbvxxhuxdOlSQ4kSvJpEtc9CoRBKSkpw2GGHYcOGDQiHwyy2ha+TpHUutZVrZWWlIqaOd7/SuVwuF1wul6pSN3ToUOzbt48RLiJ19fX1+Oqrr1hMneh+tdlsKCkpwUcffYSXXnoJwWBQsVKmgT1//ny2XRJfGBlIdL+azWbFOejYjRs3IhwO45hjjjHsfgUSlTrayUIrpo4UxaamJqbU8URW7T3T4mf48OHsXAUFBQpSt2vXLsTjcda/ge7JZM+ePXA4HIpYFyNKHbWfV+qIKGopdUA3qaPMXjLE/GJg5MiRWLNmjUKdIVKXLHtNjdTRcxNVMHrOWi5Yyg6nEhlAz2QfCoUQCASYIkJZgxS/Wltbi3A4rKj5pRZTR26jVJW69vZ2OBwOlmhkMpnQ0NCAvXv3YurUqUndrzQuiouLEY/HFa4qImVEenl78MADDzBiJCZK2Gw2xGIxZufJ/uq5X2ks6pE6Xqnr6upSjJv29nZ8/fXXAHpc0i0tLSgrK0NJSYnCRQx0Fw4mhYuuo+d+FfcxJnvX2dmp2heJZHz88ce48MIL4fP5EnaHUQO158QTT0xJqQN6Kg3QItJms2HcuHEAehakNpsNra2teOqpp5Iq7+L/eRW6vr6ejRuj2a/8MySl7pNPPsGIESNQV1cHp9OJvLw8Nofzz1V0v4r7VtfX17O+w88/gLqdzLpSRzd15JFH4qyzzsL8+fNx5JFHKmrKDFaIpI4GWSQSwY033oh77rmHdQZRCRKVOj4bjgaiGqmzWq1YsWIF3n777QSlTi+mjpSM9evXIxaLJQQf7927l63uaaV59NFHw+FwMJWFl+FHjhyJ8vJyxQDNJKZu6dKleP/99xEMBtmqxWKxaO6KAHSTDJ/Px6RoInXBYBCbN2/GZ599hu3bt+OEE05I6n7lP+OVLX6lxCdKEEip0yJ1zc3NbIIdMWIEzGYzlixZgmOPPZaRAtH9arVa2XOmXRjU3K82m42pKkSseaWOdvxoaGhAZWUli78jWK1WNslMmzYN+/fvZ8/B7XYzYkLV3XkjK5bvIVKnptTNmTMHRx99NCOEajF1au+Zxgk/ORYWFiISibCFB7mn+OdTVFSE5uZmlJWVwWKxpBVTx2e/0jmTKXV0bzQx0P1TgdmdO3cqdhcIBAIs5ocQjUZxxRVXKNydZCN41YJvAyEcDjMlSUup47cX4mPq+DbxpI5389TW1uKJJ55QuEcpSYVX6ih8xEhMHZ8oQaSOrj969Gjm5ZgyZYqm+1VMlKBFKLWdJm4Auu5XvmA4JUrQsyHlV8392tbWxsgXr9SpuV+p3/JKXSAQSFDqtEgd73HgA/M3btyomyjBPxeR1BFJ52NlefBuaxrjXq9XV6mLRqOIRCJ4/PHH8c4772iSutraWoVblLe1vFI3ZswYhf2gsjT0HXHPb4IWqaNnSPM3LQpp7BIJ04qpE0kduYn37t2LzZs3s75RXFyMWCymeFaiUkfzCYX18J4H3lMEqNvJXiF1hJdeeindr6aNhQsXYs6cOfjFL36huLlIJIJLLrkEc+bMwXXXXdcr1x46dKhm9usXX3yBVatWJWRQAT2TFT9AR48eDZvNpkgu0SJ1xxxzDE466aSUSJ3NZkNRURGbBEWj39TUxIxgS0sL8vPzccQRR8Dn8ym2LCMjN2rUKFRUVKiSulSVOoph83q9CAaDbNASWRJBz6K8vBx+v19B6g455BAA3YrEX/7yFxxyyCE45ZRTYLPZ8N133+GDDz5QnEtNqeMTC2hQkepHSh1Bj9SRYkFZnGVlZSguLsbmzZtZILea+5UndbTh85gxY2A2m5GXl6dQkagtakpdMBjEHXfcgbVr1yYUwKTv07MbP348IpEIS+wgo9Le3g6/38/Io7i1E98vxaBg+uyTTz7BnDlz2IqU4kWSuV/VSB0lahAZpclWJHV0HYvFwsYHT2Si0aiqKiHGqvFKnFadOvoc6J5waCHAZ03S9Wk80/sHlKvvhoYGPPbYY4pFHj0jsSwF3076P/XZZEqdUVLHv5fa2lpWB4+enajUBQKBBKVOLfCcPistLWVqq9/vV5C6yZMns+9NmTKF7YErul/VEiWAHlLn9XqZ3aMFqlr2665du5gqSe5XGociqevq6mLX2b17N+LxOFtktra2Ij8/X6Ee0/NNptSVlpaiubmZuV137dqF1157Dd9//z3KysoUi9POzk7MnDkTZrMZq1evTlup45VXtTmETzCh+OFkSh21ha5F/1ZXVzP3q8/nw6RJk9he6kDPHEKkjsbV8OHDFQsBuk8CH57Bgx+zakodjU2yH1arFfF4PEGgSEbqeFfzrl27FKQOUI5xsaQJ2XBaOPL2VnS/qil1WXe/8jj//PN1txoBkNTVkArWr1+P+vp6rFixApMnT8aLL77IPnvjjTcwfPhwrFixAp2dnVi5cmXWrkvQcr9GIhEEg0EWOwMo2XkwGExwv3Z1dWH+/Pn4n//5H3Y+LVJHMELqqHOazWa4XC6m0PF7ysbjcTQ3NzMjSPKvyWRSrIh4pe7222/H3//+dwWpSzemjvY8JFJH10tG6ioqKuDz+ZhKVVJSgtLSUpSUlOC7777De++9hwULFiAvLw82mw1vvvkmfvrTnybUExPbTHXcXC4XG1QdHR2IRCKqSh29B3KnEkixoCBqInU0cfj9fk33q+gqnTJlCpqamjBt2jT2TKxWKwoKCpCXl6colkvPBgD+93//F2+88YYmqaNzURwT9Q8tUqeVKKGm1AWDQbZzANDj1r/hhhs03a+PPPIIS9jo6OjQVOpocqRnqUbq9JQ6oHtsrF27FqeeeiqzS2LSF6/Uqe0oQZ/T81VT6viFHZ2fJ7RikDwdSyA3II0LsQ0Eyn6urq5OidSJMXVaSl1NTQ0LOOcL//JKHdDT79VKmoRCIbbJPABcfPHF2LJlC959990EpY7CP4qKihgZ49utV6cO6FGvvV4v1q5dy7wLgFKpo3fH12GjRAkiQnv27EFRUZGinxUWFiIvL49dd8iQIfB6vSxxh38mdO/JYuqGDRuGVatWIRqN4qijjsLnn3+O008/HZ988gncbrei3R0dHSgvL8fUqVOxevVqVaVOLVFCj9SphRg0NzcztzXFDycjdfRu6FqiUheLxfDJJ5+gq6tLUTCe+gqFMtAiki+RQ+fks4PFjQAA4MEHH8SqVavY72pKHT0nsrfUTnFe4N2v4XDYMKmjvqi22CWOQN+lmDo9UtfnSt3rr7+OW2+9Fddee20CeYtGo3j66acVwY6Z4osvvsAJJ5wAAJg3b56CuOl9li0MGTKEZTc+9thjzADSKp2vFs7H1wBg7ld+1UUTJiEZqSNlxEiiRH5+PkpKStgkyCt1Xq+XFaAEug0OX1aAX4WTkTvooINwxBFHMDdfLBZLW6kjQ0euxmSkjs5fVlaGeDzOiDW1bezYsfjwww8RCoWYcsfv/8pvd0MDhrboAnrKmVCKezgcZi4VkdSJMXVqk9u3336LoqIi2Gw2RQYakTo19ys/eQA9RI8WAvn5+cjLy2NbbqklSvAQ43voWOqzFChMsZZk5Nrb2+Hz+ZiR0iJ1lCghxtTx/XXKlCmYMWMGjjjiCFX3ayQSwVVXXYXnn39eMU703K8EMaaO/saTOj5RAuh+92vXrsUbb7zB+oFI6uh9qrlfeaXu0ksvBQDs2LEjgdQReFLH1+jjDT79nx9DVN7BCKnLz8/XJXWi+5UWBvzfaEFAkzfQrXBRkgUAFickKnUAksbU8WNk7ty5mDlzJu677z5G6kaPHg2LxYLZs2cD6F5w0OTOK5xa7lc+1g3o7ltr1qzBEUccwa7LkyMiLETqzGYzU+p492tVVZXiHRCBp+tWVVXB5/MxV6keqWtoaFCotnSO6upqbNiwASaTCaeffrpiPBGx592vhYWFmDlzJr766iuFUqeXKCG68fkFvjiHUCwijUFS6nw+H7q6ujRFGlGpo+dWVVXFbNvy5cvZsyXQHEJqGLV/+PDh7Bx8zUugO1tajdTdfPPN+Oc//8l+F5U6/v3wSh2gTDrh74faxveD/Px8hQu5tbU1QalTizVWU+rERbTVakV7eztefvllAH0YU0c48cQT8emnn+KVV17BmWeeyervPPzwwxg/fjyuv/56nHvuuemePgF8XIPL5VIoMHqf8QgGg/D5fIofoxg1ahQ6Ojrw/PPP44orrmAGU0+p412FolInDjae1PGuOUJJSQk8Ho+qUjd8+HDcfvvtCUodgSd1ZGg8Hg8jSTyp4zuwqCANHTqUucNEybq+vt7QdkO0UqQiuXQ9MiAiePcr0GMUyGiNGTOGbaZMqeo0gK1WKx577DF2LrUgbiJ19L1wOKyIyRFJHbUzFospjCi52Dds2MCMhhapE92vCxcuxN///nd2LD0T6iN8P3A4HAnuV5pYzz//fACJ+w/SsfR8qY6c6M4UjQy1Q+zXWjF1fDvXr1+Pr776it0HXzaCMiyBbrWQJ3V8nxOVOmoTP3ZE9yufxSgqdfxECCQWfuXdq3pK3VlnnQWgewyJiRIE0f2qptRpkTo+m5QH339pUTFkyBBVUtfe3o59+/YhLy+PPQueLFKiRHV1NWw2G/bt28fs1eTJk1FXV8eegd/vRygUQiwW01TqtGLq+PswmUw4/vjjsXXrVjbBDRs2DM3NzZg7dy6AblJH5IAyd+n//L98dX4ebW1tWLduHQ4//HD2N979SqohkTraolAkdVScliCSusrKSuZ+1VLqaE/PaDTKFlDxeBwtLS1wOBxwuVyIx+OYOHEipk6dCgD44Q9/yI5TEwJmzpyJTZs2MRuQiftVjdTRvQHdNpkIDO0mowbq2yIRq66uZl4B2tSejx/l+wqVCQK645FFpe7QQw8F0B0PLLpfyZ3Px9qJ2a/8wplsjEjqjCZK0J62BD33q1aihJZS9+abb+Kss85CfX29rsihh4z2fp0+fTpWrVqFXbt2Yfbs2RgzZgxuueUWXH755dizZw9uu+22TE6vQGlpqaJui/iStD7jsXjxYqa2uFwuRXZpMsydOxd5eXn44x//yP5mMplYcVS1quR8MC9P6qj0Bg81pY43KuXl5QgGgwl1hhoaGrBv3z7cfffdCqVOjdTdc889+OijjwCAVUrXI3W0iifwRZhFpe7UU0/FHXfckeQpKpW6VNyvPKnjJfCxY8ciHA7Dbrez90llXMjdQ4aMNyLU7n379ikmplAopErqioqK2I4D1E7eiJpMJkybNg1+v58pSfw7INVCzf06ZcoUnHHGGexY0aDx74QndXzx4X379uH555/HpZdeiuOPPz7hOZL7leLAKIMT6DFyopHRck9oxdSJK1pKoCLlix8X9F2R1PH1Lu12O1PqqE1ut1txjKjUEURSp1YgmF+EWCwWdt5kSp3FYsHy5cvxzjvvKEqa8AljfLHRdEidEaXOYrFg+PDheOeddzBhwgTFjgMUVzZx4kT2LCgznK4ZCARQWFiIUaNGYc+ePYykVlVVob29XRG/RgSgsLBQNZaU7l3MJhTJTmlpKTwej0K1KC4uRklJCStxQv2edweL7leCGHu4bt06eL1eTaWO/iVSV1lZyWw3H1NXVVWlmMzVlDpKlHC73SwGlr/3pqYmTJ8+HQDY9lRAt80uLi5m93/ooYfi4IMPhslkwsKFC/H555/jrrvuUrSbSN3BBx+MWCzG3Ji8+5Xvf0OGDIHFYlEsSoFuUkekTXyW5KEg+yU+Wy0XrFZMXVVVFUaPHo0f/vCHbIyrKXVA91g/66yzcP311+Oiiy5KsIErVqxAS0sL24dd3B4yFospyBiNParBSO+WHwP8WAC0Y+porqYQJdrnmDJ0jbhfxUQJXqmjv1ksFjY/kteE2qg2vrSQEanzer148sknsW/fPnz33XfweDz44IMPcNNNNym2KckGZs+ezSTcd999F0cffbShz3gsWrSIBX56vV7NIptqKCsrw+zZsxV135xOJ3O/UpFRQOkKALpfuqjUablf+RURv8olgkXX7+rqwuOPP45///vfAIBZs2YlVepuueUWxb6ObW1tuqTuggsuULSRJ3XiNmH79+9nrlG+tpwIIlhGSR2dn+5/165dKCsrYxMwpadPmDCBGVVSUS+++GIAwDfffANAPTNv3759bGIi92t9fT3MZjPKysrYgKPn6XA42ATHT25AN7EFega3qCLw7ldRjeWPpWdCBk1U6sSYOqDn3Tz55JOYN29ewnOkoGDqd2qkTkupE0tq6MXUqYFi1Ph4KPrurl27FKSOB6/UHXTQQQCQsGATlTq+PcmUOpHU8dfVy34FgOOPPx4nnniiwv3Kv0PR/aqWKMEreQQ9Uqfm2vz973+PBx54AFOmTMH555+P6667DvF4nI0B2uZPVOrIs1JQUMBIndfrRUlJCXtfvFLHkzoqMwH09Ds+fIFvo9gnqEyHx+NREA6z2Yyrr74aZ5xxBuv3fH0z0Q1LEOeZTz75BAAUSh1Pjuj7VA+voqJC4VEBwDLI1ZQ6slFEfJuamhgJEvtfc3MzU+B4daexsRFOp5O1/dBDD8WoUaOwe/dunHzyyTjqqKNYTJ3ofqXxy2/yHolEYDabFYudk08+Gd9++22CDWpqamLvTFTqRFInfleL1KkpdeSdAsBqy82YMQM1NTUJ2ab0fIuKivDXv/5V0U/pHA6HA263G/Pnz0c4HFa4WnmCR1tw0dijUBuyLbyNMarUicTqd7/7HTo7O5krPxX3K1/ShEKZePcr9XmKvSQvEh3Tq6Ru0aJFGDVqFJ5++mnceeedaGpqwtlnn42f/OQnzO2STcyYMQPV1dWYM2cONm/ejLPOOot1lp/97Geora3FnDlzYLfbceSRR6qew2azscrP9JMKqGglZUU5nU42WagF5GspdVruV9q6R4/UEXGrq6vD5Zdfjuuvvx5At7FVU+pKSkpQX1/PMsn4eITGxkY0NTWxzknnAbqLdIpuPCqVwSt1/L2Sobn77rthtVrR3NyMTz/9FCaTiRE+InW0HyIN2mRKHRmaHTt2KNpF9eDI9crjyCOPRFFRkWFSx7tfKysrFYogGXw+SFZUIYjUUbKE2L9496v4jouKipjR0HO/qsXUGQG/VRMAtt0ZoO1+pe+IZIivU0cGWiQ9PIqKilhhW5PJhFAoxPrBnj172GSiR+omTZoEAAlZhlpKXSwWU5A2XqlTI3V829USJcT4MALvfuUJBu9+BdQ3cE/V/RoKhTB16lS8/vrrrD0jR47Er3/9a7zyyiu477778MADD+Dbb7/Ftm3bUF1djaqqKlVSR9e22+0Kpc7lcjFSq6XU0fMym80JO5eIY0xNqQO6x51IyB588EHMmjUrI6XO5/Nh9OjRin7Cu1+DwaDiO5WVlWw88QV7R4wYkTSmDuguQ0JeBP5eGxsbEYlEMGXKFJjNZqac0mciqQN6wiL4a4pKHY1fPqZbjO8FugtzH3TQQWyhy39O9k6N1PGCgJ5SF41G8dvf/hYVFRWsygC9t2OOOQY///nP2bFnnnkmbr/9dvz6179GV1dXQgUF/rsEUakjjBw5EhdccAH++te/sr4mkjoqFwL09Bvqd/yi0EhMHZ8oQfaZdoWgOZmek81mU/QR/twUoiWWNAGgcL/yGdk+n49lItMxvep+ffXVV/HAAw9g+/bt+NWvfoWioiJWFf+HP/wh24g+m7j33nuxYsUKPP/887BarXj00UcBdE+WzzzzDFasWIEHHngg69clnHfeeTjmmGPYHo5U60dUBUSlzul0sgFKAcdqpA7oiV8BlBONGAwv7hTh8/kUSh0ZqGnTpilKmPCg1Tyv1FksFvh8PoWiR8jPz0dVVVWC+5ViGuh+33vvPQDARRddxHZBINmdj4/av38/ew4iqWtqakIsFktwv+7atUsxkZBSR5M+ALzwwgu48847kZeXh6lTp7I6UOKEEwwG0dLSoiB1oVAI+/fvZ0TXbDbDbrerkjpRqaNVObVFJCli9islQABgZV2ARKVOy/2qRjK0INZY45U6l8vFtgDkSR2pL1qkTiyCqkfqgO5Jg94jqeShUAibNm1iLmG+jXa7nWXkparUAUpSwCt1au5Xvu1aJU3U7o93v/KTIK/UAYmlOPj/G3W/dnZ2YuPGjdi5c2dC9jXQrYiYzWZ8+eWX2LZtGyZNmsQWEUTq6B747edGjx6N77//XqHU8aSO356QnrfFYkF1dbXC5SfW2VJ7ZjQm9u/fn+AaJKgpdWqkLi8vT3WRxat0QKL79ZJLLmGfVVZWqi4qJk+erKvUkQ1qbm5miUd0rxSjCHSHcAwbNkzR7vr6erhcLjbOyEUrQs39SvaSV+rU+gKB3g8/35DbUI3U8eENeqRu9+7d+Nvf/obm5masXbuWtRcATjvtNDz00EPsWIvFgv/93/9l9pHmAt4ei/Mh/yxFXHrppairq2PzF0/qHA6HgjCJpXz4d0zn3rBhA5YuXZo0pk58xmTL+MWJGJYiljThlTr+O4DSnre2tiIajfatUrd582ZcdNFFCYWH//znP+P+++/HueeeiwcffDDd0/dLjB07FitWrMAxxxwDAEwBE9kzT+ocDgfMZjPrGJ2dnQiFQqruV8AYqTOZTMyletddd+Gss86Cz+dTVeqmT5+eUICYrkUBpzyp4z9XA5V24UuadHR0MCWGP8d///tflsRAg6uxsZEZja1bt7KVCE/qgsEgxo4dizfeeIM9W7r/YDCoiPUbNWoU3G43Zs6cyf42f/58LFq0CED3KphX6vh6WqQeqil1fDFRCmqm/xPEQW4ymbB7925Wsf7KK6/Ec889xz7niw+ruSvJ8CRzv/K164xCj9RRXUOR1NFnIqmzWCwJ8SNGSR0ZKT70Ye3atYp4On5v1+bmZkSjUYwfPx4mkymB1NH9qGUg8v1RTanjJwP+u1olTdRItNVqRSAQYPszE0RSRzBS0oQndfwzJfKhpc4UFhZi6tSp+PLLL7F161YcdNBBCaSOzsuTulGjRqGlpQX79u2Dy+VKcL/SxvVAT/+3Wq1s3PDPIplSR308Ho8bJnX5+fmq7lex9AuN2WSkjlfEXC6XatLFIYccgry8PNZ+ikX1er2wWCyKfkhVHuhYh8PBSF1FRQW7Ht373r17UVZWhiOPPBJnnnlmQuFivt2i+1VLqUuF1NHzUYup4xVO0f3KjwmeuFC/FFU1EeThUiN14ndFG8iDyCF5RPRInRGl7tFHH8Vvf/tbhEIhllhEUHO/EkSljv6v5X4VlTqCGqkTt3skG9qrpI7334tYsGABXnnlFcObAA80TJ06FVdddRV+//vfK7KPCHxAOL1w0VDpKXVq2a/kOga6OyjJtOeffz7Gjx8Pv9+vGlOnFqhLKzUtUqcHInW8Usdv0QN0G63LL78cF110EfsedfSmpiY2uHfv3s0mBpfLBb/fj1gshsbGRrS3t6O+vp51YqfTyQYXr9TZbDbU1dXhZz/7mWp7p0+fji1btiAYDCIcDrPBEQwGmeFVi6njDa3T6TSk1AHd5SDIcIwYMUKxfZ7ofhVJEL0z0VXKT1y8AUlFqRML55Jrk+qIkSE0QupIqQOUpE5tVQ30PDM+RqSmpobZkHXr1ilW0HxQM19eprS0NCtKHe9+FZ85ndOoUscXPBaVOrW9Xo0qdWKspcViUYw5NVIHdMfWfvHFF9i+fbtCqeP3RQYSSR3QnTxQUlKS4H71+/0JpM5isSTYDdH9qqfU8ecSIbpfS0pKVJU6LVLHJ0kAie7XgoICrFq1CjfccINicU2qP9BjI/ngf6vVypQb/l2TisyTOnq3PKmjhanH40F5eTnmzp2Ll156SXMuFb07WkqdHqkjTwA/3xx66KHIy8tTVep4Uicu7vlnzy+YqOSQ1vgnVFRUwGazMVKXjvsVANtOUI3Uie5XarNeTF1raysTUxwOR4JSZ7FYYDabE0gdvU+R1Ollv/KJEgQx3AVQ7sEN9Lh2ez37VQ8nnXQSPv744946fU5hNpvx0EMPYcKECaq1e3ilTnSpaZE66hg8kREHCb1gXrUrKytjkq9Ypw6AaqDu8OHDUVBQgM2bN8NisSTEKelBJHWhUIgNKq/Xi3g8jr1792LYsGH4xz/+wXYeoWMaGxtZmns8Hsfw4cMB9ExeXq9Xsem0GpEQY/1sNpumYZw4cSKi0Sjby5IGVSgUSiB1NCnxW+UA3c+bfteLqVMD/57J/UruOvH9GlHqRFe5UagpdfzfHQ4H/H4//H6/wkhpKXViUHCyRAkCve+dO3eiuLgYI0aMQEtLi8LYPvvss/jlL38Jm83G+pnD4cAtt9ySUCaJ3qeaUufxeNhkp5X9SmNJJHWiyqan1NEzEGPqkil1aqSOJm8+gYjaxB8DqL//mTNnskXMnDlzFKSuqKgIeXl5yM/PT3C/At3qKblfo9EoI1VGlTrR/aoXU8efS4S4AHa73aqkjq+7B/SQusMOO0xxPnoGsVgM4XAYNpsNs2bNwr333svGp8ViYbaSfqfv0r880aD+73a7E2Lq+HfldrsTSB2QGBuqBpvNxkJbAKRF6oiI8M9p4sSJqmV7aLs9gvh8+WdPfbe0tNSwUpeXl4fy8nK0tLQkJNNpuV+1zjl16tSsKXWtra0sO7+4uDghpo4y+Y0odVo77VB9WL6kCf8dQDme6Zny9slms/V+9msyiINrsEFrUuWTB8TK3mSoRPfr+PHjMXnyZNx9992qSh2QSOpoaxVaHfBK3SmnnIInnniCrSL37NnDzlNeXo7S0lJs374dQ4YMSdgnVA+0cT1dKxaLsRgvyiru6OjA8OHD4XA4cMYZZyAvL48NMp7UAT2EisqR7NmzR1G2hX8W1PnFUit6IBKxd+9ehVJHpI6eH9D9PoPBINvUmrBs2TL87//+LwB996saLBYLe76k1AHdhkhLqdOLqaP7ATJLlKDnwJM6imPUUurC4TAzbqm4X/lnRu3/7rvvUFxczAKq+e9Onz4djz/+uGJ8ORwOXHvttQkqzKmnnooHH3wwoX4aoKxfqaXUqQW5i0kgNAFpKXXUt9WUOjGuMplSJ8a+qZE6UgbV7M/cuXPhcDjw0EMPscLPFKTNv3M+UWLo0KHsekTqgB61QC2m7vbbb8eCBQsSnkUypc7pdLIFmBapoz7KZ0VruV/5859++um44YYbEggTTYZilibQY4cnTpyoSiD4sciPIXrXBx10ELsffixRuy0WCyN1fLuMkjqgZ1vAwsJCmM1mRc1JLVc8gYgIb6to3kim1AE9BdcBdVJHe17TeZOB5iryNPFt4pEuqSOl7ptvvsGqVat0lTp6vkSgAoEAnE5nglKXn5+vKNFE0FLq1NyvdA09pY5/h/RM6X1QX885qRvs0JrUeXZu1P1qNpvxl7/8BR999BHef/99ANqkjv6lVQetLqgDU0zdZZddBqfTCbPZzEjd8ccfj9mzZzNVSCtTWAtDhw5FY2OjouNTB4xEIszNS5M3ufZoYti/f78iMJhIHbk7du7cyZQ6KrsAKN3PasV1tUDn37t3L0KhUAKpGzZsGDPKVCcoFAoplLpRo0YxY5DM/SqCMqXo/Hz2YbKYOrXsV762YjaUOt5lREVs9dyvdB4196sRpa64uBilpaXYu3cviouLcfXVVwOAYv9TAv98tQjAkCFDcM011yjuhcCTOjGmLh6Payp1lIku7h2rpdQR4VGLqePVGbfbnTSmTlTqqP1GlbqxY8eipaWFVQbgSR29c5vNplDqzGYzXn/9ddx2221YsGCBIkQB6FHqrFYru+YFF1zAsjb5Z6FXfBjoVmuon2u9U7p3I+5XSuYBgDlz5uDee+/VPB+Rb57U0RjjF5rTpk1j/xfdr/R/h8MBk8mk2DWJno24+MxEqQMShQC73c6eTbJECVpQioSECoID3WEwF198Merr6xPaVVxczGyhSOqsVivKyspY/zeyyOS3WeQhkjdKItNy6U6dOhU1NTWskDnFPTscDkQiEWzbtg1HHnmkIaWOJ7dOp5O5vIEe9ysROx60EKBwIv7+CGRzaI5US5TgQxoIdDxvn3Lufj0QkIlSJ5I6oNtlDfTsbaeVbUP/0gAU9z/kB7DJZEJpaSkjdW+99RauuOIK5qo98cQTDd5tN9xuN+LxuCIzjd/GiTa0510zVIOPspUOO+wwdm90XEVFBZxOp4LU8e7X/Pz8tEhdUVERIxFqSh3fTqvVqsha0zofwQipA3reNblfge4JXTRYWkodbywzVer03K9GSB31+XRJnc1mU1SsHzVqFG6++WY8++yzCd/jn6+RupdqiRL0PT5Tl9yR8XicTbyiUgf0kC6+Pp8Iq9WaUJrAZDKpkjrahYCgp9QZcb9q9T8xFjcajcLn87Fz2Gw2Rgqoj5144on405/+hIMOOijBi0AxdVokjKCm1KnZyGSkjvag1nK/ipmR4iJIBB1P71ON1FFppOXLl7MSHfyxolKXl5eHESNGKJRj0f1K7z5dUqfl3bHb7UzpMpooQf+SveOVuk8++QT/+te/sGfPnpRIXXFxsaJP6cXZE2guEOPQ1d6d6P7lQRUGdu7cyeKAhwwZAqfTiSuvvJK1y0hMndg+fhtMerZq7texY8fC7/crEm+0sl9FpY5X7Ih4q8XU8fsX9wv362CH1kAiI62n1ImGE+gpn9Ha2gqr1ZowSGgCooEnVv7ms8V4uN1u1NTUsAwuoKfifKqkTm11w5O6zZs3w2QyKdyXTqcT7e3tjKwefPDBbLLii5eOGzcuQamjWC2TycTuMxX3K9CtbhGpo8FEiRI8qeMnJSOkzqhSxqfEG1HqRNeDlvtVNDJ6SEbqioqKdEkd7fzAT2xms1mxC4oWqeP7us1mU+wtCXRnzKttKWhEqeMhJoOI7ldeqaN2U18SlTqgO3HgRz/6EVO1tOrUie7XiooK5n7lJ/KKigpWeHfRokXM0ItKXSbuVxG82sNPwFRaSI0s89cCepQ6I6ROjKlT6xM0seqdr6CgQNP9qjVOtEidWJuPH0/0bonUHX/88Yp3pkbq6HrffvstLr/8csX98/dFfYuUnJKSEjaBZ6rUEYzG1JnNZrz00kts03ue1PFlpsR2ud1uVFRUKLbgA3oEC7rXZEkSBKNKHaBP6ugdUZKD0+nEo48+it/97nf46U9/ysqd0dxE3hYKR9JqM41hPuREy/0KJM61Wu5XmtNovNEY48efEaXOCKkzJjVIqCIdpY7iI7QMkMPhQEtLi6oxFGPqSErWU+rouO3btyvI0MiRI1FTU5NS5ivQMxC0SN2mTZtQVVWVUIbD7/djy5YtGDZsGIqLi1ltNH7QEqmjNpH7VXRFpaLUAd1ESCtR4qijjmLH8e9Ti9TxGazpKHV6pE4r+5U/LtWC2QS17Ff+3BRTB6iTuuOPP57V1wK6STi/KlVL/CDk5eUxd09BQQF7f2LJBBH0fM1ms6FJg46nXT+i0SibpMSaevzOAPxz4O//o48+wkcffcTKAWkpdTQWxowZA7vdjsmTJ6Orq0tVqdu1axc+/fRT3HXXXezvolJXWFiIUCgEs9nM3lM2SB3/zmnMJiN1BQUFGSl1WtmLWtfmr9vW1sbiN3mlrqSkBI2NjYaVOpHU8W2aPHkyAKhurccfKyp1QGL/FWPqyN7a7XbMnz+fFVbu7OxMO6ZOvE+j2a9msxlnnnkm+7tRUrdkyRK2LZ6Y/cpvdWYkng7otl/19fWGSN2IESM0t/KkuY8ndccee2zC59u3b4fZbMbIkSMT9oRXGz/UJwOBAHPlail1atBKlBCzWem5aZE6sXZiKtmvktRlALWBxK9WU4mpIzgcDuzZsychwBroITOiYscrdSaTKSHxgY+9I6xevTphyx0jUFPqeKOwcePGhKw4ktybm5tZDApffJMwbtw4LFu2jA0ecr/SNZ1OJywWS1IyIGL48OFYs2YNIpGIIl6orq4uwf0K9GRQaaGoqCgtUmexWBTuV/EaJ554Im644Qam0KopdekiWUwdHxeiRuqam5vR0dGhWBjw8SN6Sh3Q/cy6uroS3K964EmaEdcOr5TQypjKVIhKnUjq1NyvVHqBDKyaus7f8+jRo9He3o7f/OY3+PzzzxNIHe0XKu6cwo9DfrcZ3g2bKanjM+9sNhuam5sTSoIQ+GtVVVXB5/MpEi20oBZTp/aOk7lfge6+39zcjIKCAhQUFDBC0dXVxRZcIqnTIhb0jtSUulmzZiEWi2n2Lz2lToSo1PHv/oUXXgDQ/U47OzsTismrQc/9SjCaKCESksLCQqxduxavvPKKLqk75JBD2PFq7td0lToj7td169Zp2tji4mKYzWYFqeNB8+f27dtRVlammgxImeB8W8SdG/iYOiOkTkupI/CJD3l5ebqkjt8Wrt9kvw52qA2k4uJiQ0qd2gQBdBuEWCymOkGefvrpeOqpp5hrU43UqXU8tZVxVVVVwrY0RkDt6ujoYPfU3NzMiGNNTY1idwe6p/b2dmzevJmtjEtKShSuRKCb1NXU1Cj2t+VLZZSUlKCystLQBM9j+PDhCTF19fX1CAaDCe5XQFulI9A5sq3UTZ48WRHorRZTly5ElUFU6ubOncuOVSN1ROJF1TAVUkfnE92vWqDna3QfaXFSBXpInRhTZ0SpozhUWmWrjVneBlitVhbcreZ+HTJkCNsvlMDHLAI9iRITJ07EIYcckqD+AOmROkD5DmKxmObz5++zsrIyJaVO3FFCrY1G3a8dHR2w2+2w2+2M+PLuV57U0SSpBj33K6Bfc1UrUUINWu5XHna7XREfrAfR/Urvj79+Ku5XHnl5edi8eTPOPPNMNDU1obq6GiaTSVMZ4xMrgERSZ1SpowU+kX89Qk7jSQ0UK65F6mg+2rZtm264jtgXeKUO6Mn4T4XUtbe3IxqNstg8uge32836CCUQ8u3mbVAsFkNRUZEiGUhmv/YBxIGUn5+PwsJCVhy0o6MjLaUOUJ/Ii4uLcckll7Dvqrlf1Qa3eFwm4N2vZPybmpoUWaRTpkxRfMfpdKKtrQ07duxgMQ133nknbr/9dsVx48ePRywWY0WRyf1Kz+LXv/41nn/++ZTbPHz4cDQ2NioyAMmllg6pU8tW0oNRUqf1vWySOi33K58FLSY2dHR0qCYL8KtSo6SOd7+motQZgRqpoxpsWkodvWs1F7cRUicmJdC/VPeKVz5oMcaXF6L4u8ceewyrV69GOByG3W7Heeedh1WrVqkqdckSJXhokTr+PkWoKXXpuF+1+gSRMq2FLaCMkxP3zVaLqdOyp0ByUqcHtTp1WtcyQuoKCgoUW3EZubae+zUcDqeV/bpt2zb2/7179+Kkk05CTU0Niy0UQQojIVtKHc1JRkkhD7fbnZTUiWFHIsT+SWOC+hudm4hdMlA72tvb2Vigv4lhQ1R+hSDOJ0VFRSxEqV8UHz4QIL4EWs3xgdhq2a9Ua0gNeqSOQIOaJgz6jpZSp+Z+TRe8+5WMTHNzM0pKSljnVSN127dvRzQaZZPs7NmzE+oYHnXUUYoBSO5XMhjDhw/Hcccdl3KbSRGsqalhZRn0SB2f5KGGTJQ6vexXEVruV36nDqNI5n7lJwp+wuGzEPnjAWX8iF7xYQAK45+qUpcqqeNJiZpSFwqFWPYnGVr+vii7kTKh9Ugd/9z4rExy2bpcroR+9f3337PvEKm79dZb8cQTTyRch09kIeiVNBGhVpMtGanjVa+qqirDSp3oftVS6txuNxwOh259TF4hI/cr7bXNxxnRv3qkTi/7NRloMuVLpyRz89K70lLqjBZ7F4UAtYSQdJW6Z599lpUT2rRpEyoqKhI8J2K7s6HUiYkSTqdTsR1bKtAjdUT8u7q6dF3dos0iUrt161a2Babb7U5JqQOU231q1VctKirSdL/S5wBY4pR0v/YB+IFks9kUpI6UACJ1VHentbVVd4VqhNTx+10C3asxh8PRJ0odT+r4IqWU/ABAUZkdUAbh6xmOgoICXHDBBez/olKXLsRdGKxWK3bv3g2TyaRQ5eg6feF+DQQCSe9Ly/361FNPGVqx8UiWKAEgoZgskEjq9NyvepMlrxL1tlLHEyAKMeCVOnK/Op3OhCLMAFimNZWN0CN1s2fPZv/nSR0RL4fDwd4jkbrdu3ezvW7HjBnDXLVUdFuNKGYaU8efg86p9fxNJhM7trq6GtFoFPX19VlT6i6++GLVEjY86JkdeuihsNvtir2l1dyvqSh1qahCRCqBxBAGEbSdFB2vRiZSIXW8UkcLDfH6qZY0IRx11FG4/vrrAXSPjWQVBbRInZpLWA/FxcWsxA7QPScVFBSkHFID6JM6fv/zVJS6sWPH4qCDDsK7776rKKljNFGCL/VEY0Erwc/tdiv6Ao1nMeP9Jz/5CQ477DDpfu0L8Ea1tLRUQeqo0/KGkzK69AyQETl7+PDhOOiggxSKWHFxMVpbWw3H1KULNfcrlY6gFHc+6F68rphEIeIPf/gD5s6di5/+9KcJMXXpgidpVAB49+7dqKysVLzDVN2v6SRK8O/VqPtV7At5eXkpP5Nk7lcAeOyxxxICmFMhdUbdr70dU6dGZNSyX10uF5uMRILEX1OP1PHZ02L9NKC7r9hsNsV2fLt378bMmTOxZ88eHHHEESxTlkidWAKGvw8gOzF14j2KoDZQUd6dO3cmTZQwsk0Y0L3IOv3003XPRaraSSedxMgwuQzVttPrTferSOr0Yuoo9gnIXKnjSR3fJ9SUOq2+oOV+BZQL7FRJnZj9avSZUp8jlzK/6EkVeqSOPgfUyTVBbLfVasUJJ5yA5cuXszaWlpYaVur4nXZoLGiV4vrXv/6Fm2++WXFtoIf80TtfunQpzjjjDPz+97/HjTfemLQNktRlAH5Sd7vdLFstFAqxDkEGCEiN1OlNkC6XC1u2bGG7MADdHScQCOgqddl0v4ZCIYWhcTqdcLlcOOSQQxLcKnRPdrtdNauXR2VlJT766CMcdNBBCSVN0gVt1wN0G94ZM2ags7NTde9KwLhSl06dOt6AGXW/9mZMHX8PJpMpwXDZbDZFtmamMXU2mw2jR4/GlVdeiWOOOUa3zekqdfw90f2oxdSVlJQwYy22nZ8k9LJf+WuJ2Zh0HlJ7qO+3t7ejpKQEI0aMUJBmo0odFQ430v/4/mbU/cpfj0gdbXauByPbhBnFunXrAADz5s3DjBkzAAArV64EkFjP0aj7NVukTk+ps1qtmDBhAsaNG6dqR/7whz/ghhtuMHRt3v2qRuosFgtisZhuJj71fzVXt81mY21MR6nj69SlotQBPWPK6XTqvjs9GCV1RpQ6fqu3E088EXv27GE1/bLlfhWVukmTJiUIDvxx4iLqmGOOwdFHH520DZLUZQAtpS4YDOLbb7+F1WplMT1Ad8ePRqMZu1/VQB1HL6Yum+5XQDnJFRcX4+yzz8Yvf/lLzbbxyRTJQHWUsuF+zcvLU5SuuPLKK1l7ePRFTF0qSl1vZr+quR3VoLaSJfAxdakodfn5+Xj44YeTPmfqy5mQOpPJhPz8fNXsVz7eVStgGkDSvS3/9re/AdBW6ojUORwOdk/87iG0JVF9fT2A5EqdeL96SCdRgj+W3z4r1Zg6LaXOCGiyGzJkCMrLyzFy5Ei204MYU9ebSl1VVRWbZI3E1FksFsyaNQs7duxQvc68efMwZ84cQ9em6zU3NyuePd0r/a2zszNl9yuBwhOMkrp4PI6amhpWriadRAmgR6k788wz8etf/9rQd0W43W40NDSgo6MjY1LH7yxDIRUff/wxgO7+ZjRRgne/JlPqRNBYoeOSKeNakKQuA9BLphgc3v26bt06TJs2TWHUklU+B9IndbR67avsVyBxT8/rrrtOUWGdQNfVi6cTQUYkG+5XoGeSsFgsOO200zB06FAF4Qb6JqYuPz+f1X5KN1EiHRhxv6pBvLZYz81oooRIKIwgG0od/S7u/erxeBSkLpn7tbCwUHNBcu211yIajbKJk5/0yf1qt9thMpnYOBVdiEDPlkbJlDpCutmvyWLq+GPLysoMlSAB1EuaZKLU8Qklhx12GP773//C4XAwhZfu7dprr8Uf//hHzXOJpC4Vorlw4UK88847AIy7X7MFSs5ob29XqDypkDo99yvQU58yWd08sscvvPACI4LpljQBepS6H/7wh/jDH/5g6Lsi3G43W3Dxe/ASqN8acb/yWfAk0GzcuJGdJxP3q5ZSJyKZUmcUA6b48MKFC/Hll19i5MiReOqppxSD5+OPP8aFF16IcePGwWw2K/bu603wMTxFRUXw+/2M1G3cuDFBKh0+fDh27drVK0odqU56MXXZdL/S+a644grs27eP7VurBrqnZPF0PLJN6vh6ZBaLBZ9//nlCEWMaRMl22cgkpg7ojhPatGlT0smlL0uaaEFPqRs2bBj8fj/uuOMOhMNhw4kSRpFuTJ3FYsFVV12FE044gZ1Hzf1KSqHT6UwYk/xYaW1tVWwErgbevaXmfiUFq7S0FC0tLaqkjsCTOlGp491gvanUFRYWsiz9YcOGKbYZ04JaokS6Sp2o4h522GF49dVXMX/+fPYu6D74uEY18NmvqQblp5ookU1SR9cPhUIKlUckdV1dXWkrdUTqjCp1tbW17G/ZUOrS7R9Aj1iRn5+fUEmB/9yIUjdkyBDmXTOZTBg2bBi2bNmCwsJC5l0wQury8/Nht9txzz33sPnOKKkrLS1FUVERi7kc1Erd+vXrUV9fjxUrVmDy5Ml48cUXE44599xz8fHHH/cZoQN6Jh2bzYarrroKN9xwA2y27s2yN2/enNDRfvaznwEAc7eoIV1SR0Uj1QZ3WVkZTj75ZPzgBz9I6Zxq4Adhfn4+HnnkEbzxxhuKja1FpKPUFRYWIhqNoqOjIytKlbhx++jRoxPi+0488UR88sknjABqIROlDgBOPvlkAGD1+LRgtVpx9NFHJ5SISQda2a/JjKoeqZs/fz5uuOEGFuxr1P1qFJkodQ899BALxrdYLKx2JJDofl22bBkr70DgiWQsFtNdiImgZ2YymVicLd039Tk9UqdX0kQtW85IW/jzGnW/0vE0bvsypk4E2a5LLrmEtd/oufmYukxsCT1vrT48bNiwlBauRkDtVVPqqI92dnamvKMEYcqUKaiqqkpKIGhHCT6+1m63px1TR6TOqA1VA42FadOmqRJtI4kSoneGfh86dCi6urrYeDWa/Qp03+OWLVvw/vvvs9+B5MT57LPPxjfffJNgo1PFgCB1X3zxBVt1z5s3jwXM8njppZcwZ84cFt/SF+BJ3Y9+9COcfvrpsFqtWLNmDWKxGA4//HDF8TTJfP7555rnTHXlQ6AVF5Vh4GE2m/HWW29h+vTpKZ1TDXy9JqMDMl2lDujOssrGxEAGQG8itFgsiv0DtVBUVIS8vDzdOls8RFJHCm6yLDiTyYTPPvssaUKBEYwbNw7Dhg1jBi4dpU7c0zc/Px/XXnst+91onTqjyJb7NT8/X1E4lU+UALoJg7iKFglPOqSOtjfj1R6aJPiYOhFq7teKigocfPDBioWiEVKXn58Pk8kEm83GJiWjpI7aQePWaEzd7t274XK50N7enpESw+OEE07Ap59+iuOOO47dj9G+RHXQMiV1yZS63/3ud1kXFai96Sp1ydyvF154IbZu3ZpUvXS5XGhtbUVDQwOGDx+Oiy++GFOnTk15XFMmeDaVupkzZ+p+nsz9arVa2bHUHvLW8GqgUVInYvz48XA4HElFDavVinHjxiXEPaeKAeF+9Xg87CFT5+JxxBFHsHT30047Dcccc0wCoQK6V+h8fS9+4910oFZCwWq1wufzwWQysdgpAgUd67n3MlXqKIOuN0EuZqOkLt2YOqD73WeT1GWyMiT85Cc/UZCZZBBJndVqxY4dO5IqgtnE9OnT2fZrfJuMkrr8/HyMGzdOkc0NKN+p3rkqKipQWFiY0rvMZkwdlQEBlCVNtEB9luIG0yF1fLV8Ugn1YuoIPGk4/PDDccEFF2Ds2LHYvHkz7rzzTrz++uuq96kGIkBqyRd6bu10SB3F1L344ovMtmZLqcvLy1MkGMybN0/V5aYFssvJsu+TnQPQVqVSUXOMgq6lR+o6OjrSdr+azeaEMa2GESNGoKmpCXv27MHUqVPx9NNPAwDr10aVOpPJBKfTyWLqMrHHRLhmzZql+vlJJ52EpqYmXcJptVoVe33zSh1/DaOJEkDiHDxnzhy0tramvAPRoCB19fX1mD9/fsLfTzrpJGYkPB5PQnwLb2xOPfVUfPPNN6qkbvHixbjtttuy1l5eqSNQpxgxYoRqR9+1a5duJ8uU1PGTV2+B2mbUgI0bNw6LFi3Cj370I8PX4GvgZcP9SqSuvb0943NNnToVS5YsMXy8GFMHQFGOJhfIz89n8YV6oGdfWFiIZcuWJRiavLw8VFZWorGxUbfPnnPOOZg5c6ZhdZPaCKQXUyeehx8XovtVDXzGdrqkjsZySUkJa1My96vFYlFMHpWVlYpCvWL4g9H2qLl09ZQ6t9vN2pqq+/W1115TbW828eqrr6Z0vM1mQ2tra9IkKD0kU+p6A3ru12xkvxoFeYLWrl2LU045hf2dMvpTCaugmqpAZv1j7NixuPvuu3HmmWeqfj558mTcdddduucgUkfjXVTqaAwceuihabfViJ3lMahIXXV1NT777LOEv69fvx5//etfcdFFF+Hdd99NSECg6tYAsGLFClayQsSiRYtYFW36ntYGxkZAL4qfzGgQipmVBK2/EzIldX0BXr0xgvz8fNx5550pXYN3v2ZjYiBSRyvEvgRfp64/wYhyxgfqa7nPR48ejcbGRl3ybbFYMGHChJTal65SJ94Tr9QVFhaira0NkUhEl9SRPeEDpo1CJHX33Xcfqy2XjNQluw5/b0YnakrkEtunR+r+8Ic/4IorrgDQM6HrPS9qW1NTE5qbmzFr1ix8+eWXbDu2XIMvf5Iukil1vQEj7let+qRAcverUdD80tzcnOBhGD58eEpkubi4mHkNMrGJeXl5horx6oFI3ZgxY1BdXc2eF9k6EpCSkUMeZ555Jt55552UtvPjQe93UMfUzZgxA9XV1ZgzZw42b96Ms846CwCY0Vm2bBlmzpyJo446CsOGDdOMi7LZbCguLlb8ZAI9pU5rY+RkyLROXV8g1Zi6dEAdOxKJZLS6JtD7yMT9ki5mzZqFn//854YryfcVxo0bx8oTaIFX6rRAC5VsZ/7R+Yz2beqPeu5Xfss6PbfT3LlzcfnllydUdzcC0b1ZVVWVsPKna4sEIZkKRM/EYrEYzuJMh9S53W6mJv/kJz/B22+/nXRBSs89Ho/jH//4B4DkpTL6CmqFoVNFLkmdnlLHHyciW0odH2Yh2uM1a9ao1ifVQnFxMSu43VtKrlG43W5UVlbirLPOwq5du9jfRfdrKnjppZfw9ddfs99TtYuDSqnTw7333pvwt0cffRRA956VavtW9jb6E6nrS/QFqeMnUb4AarqYMWMGPvvsMxx55JEZnytVjBw5Ev/+97/7/LrJsGbNmqTHpELqAoFAdhr2/4Nid/Qyq3kYcb86nU5G6vSUp4MPPhiPPfYYfvWrXwFIP1FCBE0SYqJESUkJPB6PYaUulclQK6bO6KLWbDbrliwiUJsOPfRQHH744WhsbOw3C5l0E9B45ML9aiSmDtAul5EtUme321FRUYGmpqYEpc5ITB4Pp9PJKkDk2ntx++23o6uri2WqE8RFWKrg31dfk7oBodT1V9C2SryhoESMdEkdre6zEUfWW6C2ZTsomAc/wLJB6oDurNNUYrokjJG6H//4xwCSu+dSRV5eHi6++GLD/cxIogQfpG1kFZ5OeQE9UnfmmWfiueeeS6gZR0pIKkpdKu1RU+qyre5Tm6g/VFRU9JvxRiVRMrGr9Az70itis9mQl5en6KtiSRNAu2B6ttyvQI8bPtMEL1pMmM3mlGoG9gZcLpfqs8tEqaPz8olxqUCSuhxD3KR93759AJLHzmnB6PZNanj44YdTjl1LB33pfgWyR+okUodYtFgNP/nJT1BbW8u218kVjCp1hGR1o4DMSJ3W1kW/+MUvEo6lGJ5kpE7rHpO1h58gfvrTn+LRRx/NOjnZuXMngG7XdX/DcccdByCzRLLZs2dj+fLlfZrkZLPZUFZWpiBlpN7xiwYtUpctpQ7oiavLFqnLtetVD0VFRfi///s/nHPOOWl932QysdCDVO+T1O10QxckqcsQlEVIIFKXrlJntVrZT6q48sorsWjRorSumwr60v1aWlqakzg4iW4YUeqA1MrV9Bb0lDrKeiYiYzKZDPWrbCt1WsdWVFQkuEnVkM7YczqdChW1vLycuZWzCSo5QgSqP4HatHr16rTPkZeXh+OPPz5bTTKEgoKCBNcquTt513ZfkLpsKXU0BnPtek2Gc889N22lDuge06nEvhImT56Mb775RnXrMyPo3091AEBU6g4//HB8+eWXSbcE0cNpp52mWpKlvyDV7Nd0QKtRqdLlFkZJXX9AKkqd2+02NNH1FalzOp0oLi7uFffrQw89lLYrJxWccsopurvl5BKjR4/OdRPSwsSJExPs7IgRI/DFF18oFMO+cL+OGTMGNpstI6IDDAylLhuoqKhQJF+kgmnTpqV9XUnqMgTV6SEsWbIEN998c0axAsuWLctG03oNqdapSwd5eXmw2WyS1OUYg4HUidmvgDHXK5BeeYFUYtb4pIXi4uJeSZSYPHmy4WMHM1566aUBp/rffvvtqn+fPXu2oni+VkJKNpW6X/7yl5g9e3bGcZJE6vq7UpcpSKnrawzup9oHEJU6q9WasBn1YENfuF+B7kkx1dpmEtmFuKF8f0YqSp3ReJV0lDqTyYRRo0YZWpDwhYB7S6mT6IZWkdqBCr4P6O0YASArCStOpzMrcbMHklKXiyoWktRlCFGpOxDQF+5XAFi6dGlWNrOXSB8DSamrqKjAhRdeyDIdCRaLhe2JTKTOqFKX7ubau3fvNnQcZTYOGTIE559/ftLYxHQSJSQGJ4wQhmy6X7MFcfeGwYopU6bgq6++6vPrSlKXISwWS7+uKdcb6CulLpVtxSR6BwOJ1OXn5+Nf//pXwt/5yaMvlDoAKYVfrF+/HtXV1YbsiFTqJAhGiFo23a/ZwoHifr3iiivYBgl9icH9VPsAM2bMOODUpL6IqZPoHxhIpE4L/ORBbuTeVupSAWUVGkFfLagkBgf6M6mTC5PegbQMGeKFF17IdRP6HH3lfpXIPQYDqeNdlpRV3dtKXW9BKnUSIvTCf/qj+/VAUepyBVmnTiJlSLXgwEF+fj4OO+ywAZ1ByVd2pwnQKKmrrq5Gfn4+qzCfa0hSJ8HjpJNOwn/+8x/Nz/ujUnegxNTlCnJWlkgZktQdODCZTFi7dm2um5ERaPKw2Wys7xp1v44aNQpNTU0p72/ZW5CJEhI83n77bd3P+yOpk+7X3oVU6iRSRl/s/SohkS2Ew2EAwMyZMxmpS2ULnv5C6ACp1Emkhv7ofh0oO0oMVEhSJ5EypFInMZBw3XXX4aGHHsLrr7+OkpISmEymfuNOTRVy7Emkgv6o1OXn58Nut8uFSS9BWgaJlCEnFomBhBkzZmDGjBkAgGOPPRbr168f8KROTogSRtAfSR3Q7YKV80fvQCp1EilDul8lBipMJhOmT5+e62akDUnqJFJBf3S/At2kTvbh3oEkdRIpQyp1EhK5gUyUkEgFUqk78DAgSJ3f78esWbPgcDiwcePGhM8jkQguueQSzJkzB9ddd10OWnhgQZI6CYncwGQyIT8/X5I6CUPor6TO6XTKPtxLGBCkzm63480338T8+fNVP3/jjTcwfPhwrFixAp2dnVi5cmUft/DAgiw+LCGRO1itVjkhShhCf3W/XnvttViwYEGumzEoMSBm5fz8fN26Ul988QVOOeUUAMC8efOwcuVKHHXUUQnHBYNBBINB9rvP58t+Yw8AyG3CJCRyB6vVKhdUEobQX5W6M844I9dNGLQYEEpdMng8HlbQ0OVyobW1VfW4xYsXw+VysZ8RI0b0ZTMHDaT7VUIid7BYLFKpkzCE/krqJHoP/WpWrq+vV3Wxvv7663C73ZrfKy0tZaqbx+PRPHbRokW4/vrr2e8+n08SuzQg3a8SErmDdL9KGAW5X+lficGPfjUrV1dX47PPPkv5e7Nnz8by5ctx7LHH4t1338Vll12mepzNZtPd/FjCGKRSJyGRO5SXl6OsrCzXzZAYAJBK3YGHAUPfTz75ZCxfvhyXX345nn76aQDAFVdcAQD42c9+htraWsyZMwd2ux1HHnlkDls6+CFj6iQkcof33nsPv/3tb3PdDIkBAEnqDjwMGKlFbePiRx99FEC3YvTMM8/0dZMOWJBK4HK5ctwSCYkDD3pJYxISPPpr9qtE72HAKHUS/QfTp0/Hjh07MHLkyFw3RUJCQkJCA1KpO/AgSZ1EWhg3blyumyAhISEhoQNJ6g48SFInISEhISExCOFyuWC1WlFZWZnrpkj0EQZMTJ2EhISEhISEcZSXl6OpqYnVcZUY/JBKnYSEhISExCCFJHQHFiSpk5CQkJCQkJAYBJCkTkJCQkJCQkJiEECSOgkJCQkJCQmJQQBJ6iQkJCQkJCQkBgFM8Xg8nutG5ArxeBx+vx9OpxMmkynXzZGQkJCQkJCQSBsHNKmTkJCQkJCQkBgskO5XCQkJCQkJCYlBAEnqJCQkJCQkJCQGASSpk5CQkJCQkJAYBJCkTkJCQkJCQkJiEECSOgkJCQkJCQmJQQBJ6iQkJCQkJCQkBgEkqZOQkJCQkJCQGASQpE5CQkJCQkJCYhBAkjoJCQkJCQkJiUEASeokJCQkJCQkJAYBJKmTkJCQkJCQkBgEOKBJXTweh8/ng9z+VkJCQkJCQmKg44AmdX6/Hy6XC36/P9dNkZCQkJCQkJDICAc0qZOQkJCQkJCQGCyQpE5CQkJCQkJCYhBAkjoJCQkJCQkJiUEASeokJCQkJCQkJAYBJKmTkJCQkJCQkNBAc3MzWlpact0MQ8jPdQMkJCQkJCQkJPorrrnmGlgsFjz33HO5bkpSDBpSt3HjRlxxxRXIz8+Hw+HA0qVL4XA4ct0sCQkJCQkJiQEMr9cLk8mU62YYwqBxv06aNAmff/45PvnkE8ycOROvvPJKrpskISEhISEhMcARiUQQCARy3QxDGDRKncViYf/v7OzEQQcdlHBMMBhEMBhkv/t8vj5pm4SEhISEhMTARDQaVXCH/oxBo9QBwHvvvYcZM2bgo48+wrhx4xI+X7x4MVwuF/sZMWJEDlopISEhISEhMVAQjUYHjFJnig/CjU/vvvtuxGIx/OEPf1D8XU2pGzFiBLxeL4qLi/u6mRISEhISEhL9HEcffTQ8Hg82bdqU66YkxaBxvwaDQdhsNgCAy+VCKBRKOMZms7FjJCQkJCQkJCSSYSApdYOG1L333nu45557kJeXh4qKCjz99NO5bpKEhISEhITEAEckEhkwMXWD0v1qFD6fDy6XS7pfJSQkJCQkJFQxY8YM1NbWorm5OddNSYpBlSghISEhISEhIZFNyOxXCQkJCQkJCYkBjN/85jf44IMPZEydhISEhISEhMRAxtKlS1FRUYFoNIpIJIJoNAqz2ZzrZulCKnWDCB9++CFefPHFXDdDop/gzTffxAMPPJDrZkhISEgMSITDYUbmAAwIF6wkdYMITz75JJYsWZLrZkj0E7z88st44oknct0MCQmJPsauXbvwi1/8gpERifRAhC4SiQDAgHDBSlI3iDCQ0q4leh/BYBAdHR25boaEhEQfY/Xq1fj3v/8tt8LMEJFIRCp1ErnDQMrQkeh9SFInIXFggorvS6UuM4ikTip1En0KqdRJ8JCkTkLiwEQ4HAYgSV0miMfjjNBJpU4iJxhIadcSvQ8idQdwfXEJiQMSpNTFYrEct2TggoicVOokcgap1EnwCAaDiMVisk9IZA3btm2T6s8AgHS/Zg5KjuATJQaCLZWkbhBBxtRJ8KC+MNBcsIFAAGvXrs11MyQE+P1+TJ06Fe+8806umyKRBNL9mjmIyEmlLkdYu3Yt5syZg+OOOw7nnHMO69QHEqRS1zcIhULYvXt3rpuRFAOV1L3wwgs46qijpOuon6GlpQXhcBgejyfXTZFIAul+zRzEIbJF6nw+H9xuN9avX5+V9mlh0JC6YcOG4d1338Unn3yC8ePH49VXX811k/ocFFMnY6h6F//3f/+H6dOn9/vnPFBJnd/vRygUkipDP4PX6wWAA3LBPNAwWJS6tWvXora2NifX5t2v2UiUaGpqQltbG77//vtsNE8Tg4bUVVdXo7CwEABgsViQn3/g7YBGnVAa3d6Fx+OB3++H3+/PdVN0MVBJHakM1J/7A3bv3t3vSXxvg0gdvR+J/gGfz5dANgZLTN2ll16Ke++9NyfXzrb7taurK+NzGMGgIXWEmpoavP/++zjllFMSPgsGg/D5fIqfwYRMVxNbt27NZnMGLYg0t7W1GTre5/PhgQce6HNSIElddtDS0oKxY8fir3/9a66bklOQvZSLxv6Fn/70p7jrrrsUf6MxFA6HsWjRogE71zU1NeXMfqmRukyUus7OTgCS1KUEn8+HCy+8EE899RQsFkvC54sXL4bL5WI/I0aMyEErew+ZbGWyfv16HHzwwb0uDQ8G0HNubW01dPxHH32E6667DnV1db3ZrARIUpcd0HM80BMEpFLXP9HY2JjgoiTivXv3btx1111YtWpVLpqWMdra2nIWJ07PMBwOswV5JoRMkroUEY1G8Ytf/AJ/+tOfMHHiRNVjFi1aBK/Xy35y5avvLWSymmhubgYAGQRtAKmSOpoE+9pdS/2gvb29T69LWL9+PdatW5fy9/gA5f4Aas/+/ftz3JLcQsbU9U9EIpGEMU42h1fsBhq6uroQDAZzRurI/vCLGKnU9SGWLVuGlStX4s9//jPmzp2LpUuXJhxjs9lQXFys+BlMyKSWDnW0vhxAsVhsQMZ8pErq6PhsuUA2b96Mxx57LOlxuVbqbr31VvzpT39K+Xt6St1jjz2GN954I+O2pdOevlZa+xvSVerWrl2L+vr63miSBLrHibhgJBInkrvexNKlS/Haa69l7XwU3pIrZVhtPh0IMXWDJpvg5z//OX7+85/nuhk5RSZKXS5I3U033YTt27fj5Zdfzsr53nrrLYwcORJTp07Nyvm0kGpMHRmHbCl1999/P/75z38iFovhyiuvVD0mHo8zY5grUpfubhZ6pO6KK64A0L0gMJlMmTXQIOh9H+gqdrpK3bnnnouzzz4bixcv7o1mHfBQI3WiQtcXxOjRRx+Fy+XCaaedlpXzkX3NtVLHX18qdRJ9ikxi6nJB6vbs2ZPVem//8z//g0cffTRr59NCrpU6t9sNALj++us1SRNvxHNF6gKBQFp90Yj7tS+LE6tNiKtXr8bnn3/eZ23oD0hXqWtqaspJpviBUrMzHA73C/cruUuzhVyTOnpm2VLqiNSRYtdbkKRuECEbSl1fSt3BYDCr8V6dnZ19UvE7VVJHxiFbpI7eUVdXFzMUIvg+kCtSl66R11PqqqurAQDPPvtsZo1LAfyESORk8eLF+POf/9xnbegPSIfURSIR+Hy+Pq/EX19fj5KSEmzatKlPr5sL9Bf3azZIXTwexxNPPIFAIJBzUpdt96tU6iRSRiYxdbR66MsBlG1Sl+2VohbSVeqypVbwJEOLKPYHUpeuUqdH6ui+vv3228wal0Z7gG51GejuawdaFmg67ldyWfe2OiGitrYWgUDggMjm7y/u166urowJy549e7BgwQJ88skn/ZLU9Yb7tbm5Oav9VJK6QYSBFlPXX5S6F154ARdddJHh49ONqcu2UgdoE8XBSuo6OzthMpnQ0tKScfuMgicxROoCgcABR+qo/6Zy37Tw6WtSRwS0L+qzffbZZ2lleWcLatmvIpkbKO5XsmfBYLDfkDq+v/dGosQtt9yCCy+8MO3zipCkbhBhoMXUBYNBdHR0ZG1/wnSNysqVK/Hhhx8aPj7XMXXhcBh2u133nJmQuvr6elx11VUZlxRJd+WuFVMXjUYRDAYxYsSIPiV1vFHfu3cvgAOT1KWj1NHE3Nfu174kdTfddBPuueeeXr+OFiKRCDo6OhAKhTTdrn3RVzs7OzOeP8hWhUKhnJM6tZi63lDq6urqstpPJakbRBiISl08Hs/KKj4cDiMSiaTVfq/Xm9JElW5MXTL3a1NTE1544YWk5wuFQigrK9M9Jz2H4uLilEndRx99hEceeSTjumyBQCCrMXVkFEeOHImWlpY+26GD7xukiHR1dfWK+vHBBx/grbfeyvp5s4F0YupypdSR27cvSJ3H48lpUgaNk6uvvhpnn302gIHlfv3qq69w2WWXAeghdf1JqevtmLrW1tas2hJJ6gYRslGnri/VB7pmNlywmdQA6m1SZ1Spe+mll3DuuecmVS7D4TAjdcmUurKysrSUOgCaSRhGka6R1yJ1dB8jR45kKm828Oyzz2Ljxo2an1PfsFgsCsPcG2PlwQcfxJIlS7J+3mwgHaWOxkh/V+oyaV+q9iObiEajbHGzevVqbNmyBUDfJ0rQ4jydueeDDz7AU089hXg83q+UOnE+tdvtvaLUSVInoYlMNh3OlVIHZJfUabU/GAzi7LPPVi0g6/V6UzJ6NACznSjR1dVlSLlMRalzu91pk7pM1JV4PJ71kiZkFGl7v2y5YC+66CLd2obUN1wuV6+TOvG88Xgca9asyfp1UkUsFksrpo4m5v4cU9fY2JhRpiyRutbW1j7fP5sfIzt37kRjYyOAvi9pEgqFEI/H05o/aBzzC7X+SOoKCwt7RalraWnRHVMnnngi/v3vfxu+jiR1gwgDMfsV6BtSV1dXhxdffBFff/11wmfpKnVGY0iMKnVGd4AIh8NwOp2wWCxJlTq3253y882GUserbanuGmLE/Qpkj9QlA/WNkpIShWHujYlSVDs+++wz/OAHP8j5FmXt7e1MEUpHqevP7teGhgYEg0Hs27cv5esQ2Q2FQliyZAnmz5+f8jkyAT9GOjs7mSu4r92vmXhKaBx3dnb2K/crv/crABQVFWXUFrVnFI/Hkyp169atYwqsEUhSlwai0ShOOeWUflcDaSDG1AHZIXXJagDpGTefz5cWqQOMZcAarVOXCqmzWq1wOp29qtRlQur4STzVPmXE/Qr07Ffc21BT6viSJu3t7Xjvvfeyci0xDpH6TKZj5PHHH8d9992X9vdJ+XI4HGnF1PVn92smhMTv9yMejyMcDsPv9/d5kWW1ZKbGxsY+d79mIgqokTpS6mw2W86VOkJRUVFGixO1OYqEAb35JxQKpfT+JKlLA16vF2+99Zaq6pMKGhoa8Prrr2enURh4MXXZ3Js0mVHRI3VerxfxeNywohSJRNiuDkZcsEbdr0afRygUgsViQXFxcVKlrrS0NGVylg33K2+4Up0s+6NSZzKZ4HQ6Vd2vr7zyCubNm5eVsSO6X7M1Kb/55ptYtmwZ+33Tpk1wuVyGQwio75aVlaWV/dqf3a+ZLGj5OMNUJ99sQI3UNTQ09Hn2K29/U01gonHc1dWVQOqqqqoQi8UyzsRPB+I1i4uLs07qaPzpjalgMJhS35SkLg3Qy8m0oz3++OOYP39+Vja150nJQImp68tEiWSkTuszrXNVVlYCSI3UJZtgjO7VGg6HYbFYDCl1TqczZTehllJ3+umn47rrrjN0Dt74pdofqb3iuKDnUlFRAavV2mekLhQKwWq1orCwEJ2dnYhGowiHw6ydVJYnG2NHVOpEF1C66OrqUiib33//PXw+n2G3LvWF0tJSQ+MkFovhsssuw8qVK9n1+xJ9pdSRmzdXpE6tX/BKXbb6TzLwtiLVZ6Dlfu3s7GSxw+k+13g8nradEOd3p9OZkQChtk0YtU3r/mgP7wNSqfP7/Zg1axYcDoduJls2QC8l04GyZ88ehMNhNolmAj5jsi/cr+nEn4joDferVvu1VqyhUIjdu9H3GYlEUFVVBcCY+zXbMXVEMowodU6nU9Mg1NfXJzyvSCSCpqYmAIkT8WuvvYYHHnhAt20EfoLMlvuV3nFRURHKysqYQYzH46wocKrgVQU9lddisTBSR8eJfSobLsbeUuq6urrYe6XrAMbHHj17l8uVME74LZ0IHo8HTz31FHbs2KG4Xl8hlZg6alu6mfMAWI24vnYVJlPq+jqmDkh9vGspdYFAAC6XK61zEj799FMMHz48qZfkm2++wVVXXaX4m9jP0ykPxSMdpS4SiTBiZxSDhtTZ7Xa8+eabfRKoSh04U6WOJqKamhrNY3jSoQde1ejtRImNGzdi5MiRqK2tTfk6hEgkwohoXyRKaBk3Msr8MckQiURQUVEBwJhSR+cllYfOIbopRFIXj8dx3nnnYf369QnnM6rU6cVADRkyBGeeeabib01NTaxdWm5byrDTQ2+4X+m5FBYWory8nClPn376KcaPH5/Wipx/51r3JSp14qIu26ROTanLBqmjgH66DmB87NGzLykpSWjL3LlzWTiC2G6gmwhGIpE+daGlo9QNBvdrQUFBTt2vQGrPkRIFgG57wy/Og8EgiouLUz4nj/379yMQCCjsvBpWrFiBRx55RGGT1dyvmZC6rq4ulJSUKOwE2Sy1+QDoeW8HpPs1Pz+fTbS9jWwqdYA+qbvhhhtw/vnnJz0X3wF72/3a0tKCWCyWkfuLv05ful/F++MHu57h42uuRSIRFBYWoqioKCX3K9ATm2SxWLBgwQLFcSKpC4fDWLp0KT799FPFcUaVOrPZDLvdrntfb7/9tuJ3XjUWSR3tYvHRRx+pnisej2POnDn4+OOPs+J+VVPqrFYr8vPzFUrdnj172Mbxt956K3snW7ZsYTtAJLsWANx///2qpQNEpY7uJxqNsl0ugOyELpBSR+EU2SpJQe+DV0WA7Ch1X375ZcLxfJ+jMdaXLliv14uKioo+U+qI1IXD4T4rig0ox4jdbseoUaPQ0NDQ5+7XdEmd1+tlC11eqSM7malSR+0yUiZKvI4aqevs7Ez7/XZ2dsLtdqsqdWrX49t1QCp1RhAMBuHz+RQ/6SAbSl08HmdkTs91tHPnTkOupUyVulQSJehamaz+sk3qaNKhiVaEluLB9wE9w3fJJZfg17/+NTvOYrHA7XanTOr46z355JOq7j/eBQEkZnkaVepsNhusViui0ajhrdiI1JlMpgRDWF5eDgCaW6p1dHSwfTB7K1GisLAQABSkjp7Pvn37cNttt+Hjjz8GACxYsAB33HGHoWsBwH333Ydf/OIXqsfwSh1/PzSZA9lV6p555hkceuihWVPqaHyQCzZd96uaUqcGfiydd955imtmCx6PR3XMxuNxeDwejBw5Eu3t7UljlrMZU0f/7yvwY6SqqgpVVVVobGzMqVKXynPk7ScfU0d2MlNSZ5SwGyV1/EIrVRCp41Vr/v7VziuGehjBAUXqFi9eDJfLxX6oiKkWOjs7VSdNMnCZDN7m5mY2EPSUura2NkPkk++AvR1Tl0mWLaG3lDrx3IRM3a/ffPMNvv/+ewDd95+fnw+32204ps5mswFIzID97LPP2P/FRAm6D5HUGVXqiNQluzceDQ0NAIBhw4YlKHV0jt27d6t+lwyUz+frlZi6jo4OFBUVAVCSOj7Qmr+e1+tNmvlr5LloKXX0WbZIHRVvDQaD+P7777Fnz56sK3XUl9IhdXl5eXA4HIbaQu3+9NNPcckllyjakA3U1dWhtLQUN910k2pbo9Eos+9q9xiNRtnYUSN1P/rRj/CrX/0qaTvEmDr6f1+BfxdE6urr6xM2o++v7lfe28MrddkidUaVOnqO4tjmQa7gdFywlFhFiR90P/z9q42rA9r9agSLFi2C1+tlP3oxYdFoFCeccALOOeechM+MKnVerxeTJk3CN998k/AZqW/V1dW6pK61tdUQqUtXqXvhhRcwYcIEXVL3zjvv4LnnnmO/iwYjHfCDR29iKS4uVrifo9GoqtuXn7zVJtdUSF0oFMKll16Kd999F0BPID4dS6SutLTUcEyd0+kE0NN38vK6h97LL7/MjtNS6lpaWnDPPfew8jdEMoqLiw0pdWr3rQWqrl9SUpJgCOkcWtckguv1ejNyvxpR6hwOB+s3RFREMmxkf1bxuYwbN071GLWYOvqMrpcpqaPvx+NxtLe3Z5UoUJszUeoKCwthtVoVbdGygXSM1WplbvtskrpLL70UAFTd6zROqfSNmv189tlnMW3aNADqC9qPPvoI//znPwEAd955J4488kjVdojuV/E8arjjjjsSgvLTBT3/4uJiRur4Z9LfEyV4W96XSt2XX37JFumAcaUOSI/U0fMpLS1VtIefP9Rs1QGv1J188slYvnw5Lr/8cjz99NMJn9tsNhQXFyt+tPC3v/0Nn3/+Ob766qsEH7rRmLpt27Zh+/btuOGGGxI+IyI3Z86crJA66oBmszmlyWXjxo3YsWMHcyNQJ1q8eDGrw/fEE0/gb3/7G/tOJkWOCfTd/Px83YnF7/fjP//5D/v9+eefx6RJkxJcKtlQ6uizXbt24emnn8a8efPwySefoL6+HoFAgL0HXqkz6n51OBwAugdzLBZj7lBSxvh2q7lfH3roIbz22mvsXsj9qqfUWa1WWCwW1fvmnx//7Jqbm1FeXg673Z6gctE51K4ZjUbZs/B6vRm5X7Vi6nilrqioiD0nUamjdnZ1dSVdeInPxWQyqbZHS6njg+Mzjanjz0tb12Uz+xXITKkrLCyExWJR2D2tzH1+v1widan2gxdeeAG//e1vVT+jOFM1G062jJQ6tf5aU1PDMvhFpY4fGxs2bMAf//hHrFq1SrUdaqQu2btau3YtvvrqK91jjIL691133YU//elPKCsrU7yTvnIJi4vql156CRMmTEj6PRq7+fn5CqWOnmumiRJqSl0gEMDs2bNx2mmnsb+pqe29QeoooYiu09LSArPZDEBfqTtgSd3bb7+Nuro6fPHFF0zyTwfxeByrVq3ClClT0NLSkpAVZ1SpI4P5wQcfJMQ07dmzB3a7HYcddpgmqYvFYmhtbTW0zyQZolS3MuH33QN6Os9NN92EGTNmAOieCNQCOrNB6srKylJyv9bU1KClpSVBZTVK6vQSJegY3qW6efNm5m7kDbheTN3KlSsVRjsSiTAywm/hI15LJHW8+7Wuro49J979ShXtRSRT6ngDwu+H29TUhIqKCkZgeIRCIbjd7oRJcsOGDcjPz2fKpqjUpZoNZ0Sp40kdERXR/WpEqaPP77jjDpx99tmqBltPqcum+1UkdfF4PCuhHnwcUKakTlTqtBJReKWuoKAAgHKMbt++HZdcckmCXXzqqaewdu1aAN3E7Y033tA9v9ozp3GqR+ra29sRiUQQDocT1By+XNOzzz6ren0CH1NnVBXz+Xy6z33lypWGwjqAnjFy7LHH4vDDD0dJSYnifnPlfl2xYgV27NiRdEy0tLSgoKAAbre7z5S6V199FYByQZCKUqcW0uHz+XTjluk7IqlraGjA0KFDFW0g1NTUpJWENahIXbZgMpmwdOlSLF26FAAS6t4ZJXX8wBRXerW1tRg5ciRGjBiBtrY21cnE7/ezjpKszg61JV1SB3SrfMFgUDEAYrGYJqnLRqJEqqSOjOi2bdsUf8+m+5W/1/b29gRSx7tf1Yzv0UcfjZkzZ7LfeaWOJ3VFRUWqpE5UnL777juEQiHWB3ilLh6Pq/adZKROa2JuampiSh1vqIlslZWVJUyS3333HQDgxRdfBNATU0cuZiNkh0Ii+DGlptSpkTqtmLpUlLof//jHmDlzpuqz5JU6oKcP0vez7X4FevoaT+SzcV6xBmEmSt0bb7yB559/XvV4OoZ3v/LtePvtt/HMM8+gublZUT/vsssuY65OPuOcB18OSc3W0fnIla5G6mgs8SSdzrVr1y4A3TFqvF1RS7jgY+r0CNRdd92FDRs2sGvr2fOTTz4ZDz30kObnPKh/5+fnA+ghQQTR7hkZE+lAJHVkn7XI6VNPPYV///vfaG1thdvtZgumTLJfb7nlFrzwwguKv1H/ofbF43E88sgjAIDRo0ez49Ri6owqdR0dHXC5XPjHP/6h2TYtUrd//34WJsAv3FpaWjBu3Di8//77AA5gpS6bMJlMmDRpEgoKCjRJXbLVM2/8d+7cqfisrq4OQ4cORUlJCQCl4fnTn/6EdevWKciFz+eD3+/XNKK8UpfK5MKTOpfLhWAwqBiIa9asQXNzMzwej6LGGpAdpa68vDwtUrd9+3bF37u6upjrTK1dWgbX5/Ox74mkrry8HH6/n5E6Ukz13K9qSQThcFjhfqU2VFVVKfqIllInqiqkHJHB48/Bn0svUYJ/Drwy0dzcrKrU0bunZ8Krg9SHqY+T+9XpdCIvLw+BQACrVq3C8ccfr1kOYMGCBbjssssU7VRT6nj3K70LNaWOdngwqtRZLBYUFRWprsJ5pQ5QjpnedL8Cia74dCC61/lrZaLU3XLLLXjwwQfZMfy7pWMsFouqUkd9Zd26dRgyZAi++eYbdq90fCAQSLBl4pZJas+8vr4eeXl5GDt2LABtpY7aJKo5ROqGDBmS4GoX4fV6YTKZEIvFdCsI3H777XjrrbdYe/RiYb1eL2tDMvD9F+gZi2Kb6d8TTzwRixcv1jxfuoSvq6uLxQ0HAgFs3boVgHYdz//85z9YunQpOjo64HA42CIyE6Vu2bJlzFvAt4vaBAALFy7EJ598AkD5ntTGsNFECUp2E/eCj8fjbPEhkrquri7E43HU19czRZm/XlNTEyKRCPNISaUuSzCbzZg8eXICqVPbJuz3v/89LrroIsVxbW1tio7OY//+/Rg6dCj7nB/kf/7zn3H44YcnkLo333wTF1xwgWohRWpLYWFhSh2Az6wsKSlBMBhUkIT//ve/7Bj6ezZLmhhV6uj5aCl1VNiRPzcPPaWOglfps7a2NhQUFKCiogLt7e2KgFqfz5eQ/crL7lT3bcyYMexvovuV2lddXa0g0GL2q9jW9vZ2xONxRCIRWCwWVmKEf4dPP/003njjjZTcrzypI6WusLAwISEA6CZ1ojoouh3I/Wq322Gz2RAIBLB+/Xq8//77mtmoa9aswYYNG3SD8EWljv6mFlPH1xRUQ2dnJyZMmIDVq1cD6FaUioqKEIlEVJ8Vr9SJwc295X4FoFBn0wW9x5KSkqwkSlChVHFXGf5Zqyl1aqTuq6++QjQaZdm+QDeZouP57zQ0NMDlcin23NYidZWVlayPqL0Xum9eqRNJXTweN0TqyH5o7WoTi8UU9+L3+9lYFsHXXjSCZEqdGFO3a9cuTZd5U1MTXC4X1qxZY+jaPHj76/V6Wfu1SB25vclOiEod2ZRUSF17e3sC4eKVOq/Xi/vuuw//7//9P5x88smqpC5VpS4ej+ODDz4A0NNvCY8++ihmzZrF2gaAZb8GAgF4PB6EQiFVpY7Gf6pbWAKS1CXFlClTmGxOUFPqduzYkbC6amtrg9vtRkFBQYJhqaurw5AhQ1RJHf99Ah+HoTYxZkupC4VC7LplZWX46quvEmrqZEOpozaWl5cbSgShPSr13K9kVFJxvzY1NbGYBl6pc7vdLMNy9+7djEB5vV5FTF08HleQbCJ1PNHRiqmrqqpCW1sbM+70PLds2YJRo0YlGN/29nbFZEnFtnn31aWXXopTTz0V//rXvxJIXTwex0cffZSw7YyaUicmStDxZJTU4nYIpNQVFBSgoKBA4dJXW5AQcd69e7fimsmUOqB7Aud37KDnmExNb2pqwo4dO9jqmlfixIkhFAppkjo99+vHH3+ctPgxD/771M+z4X6lZzFixIisJErQ742Njex3QPmseaVOzf1KtpKef0tLC1O5q6urWbsDgQAbH7StHX3X4XAgEAjgzTffVGTn19fXo7q6mvV9NTvFK3Va7ldRKVR7B62trWzLQK3FmLjnJyndaq5+ssf8QlJENBrFzTffDL/fn0DqRKVOtHttbW2aC6tdu3ahs7NTUWbJCCj2k8jtxo0b2TvTcr+Gw2H2fgsKCmC329kCmcY2kFqiRHt7e0J/5gk7hYmceOKJsFqtinMaiamjuZreW01NDRwOBx5++GEAiXN4TU0NI7f0HZpHAoEAS2ghpY7vN2RfyQ70O1JHga8DEePGjUtYNanF1KklM3g8HpSUlCSQung8rqnU8as36oRA90umjqE2KKktJSUlSePveOi5X6dNm4Z169axz0VSlw2lrrKyUpPU8c9CJHVq7lcyKqkkSjQ0NCTI321tbSgtLWWkbv/+/Zg8eTIAsLgviqkDuon/5s2bAfS8M568RCIR2O125orkSV04HE5Y4W/btg01NTXMTUDw+/0Kd4uo1FEfO+SQQwB0uwX47NfPPvsMP/rRj7Bu3TrFu+Mzn30+H1Pq1EgdXVOP1Pl8PnR1dTFSRwV1xe8R6NlFIhG2Vyj9zkNMlACUNR7VSJ2WUkfGn9pD7lf+PIRwOKwgfVpKndi3Lr74Yha/YwR6MXUiOf3DH/6Axx57zNB56X7KysoSVCl+Evz44481k7ZIJSWiRMf961//YpMa30Z+8SG6X6PRKCNw9O5bWloYkeHLPsTjcXYu+j69s+LiYlaomY9B279/P4YMGQKTyZQweRP4mDot9ystRkS1+7333kMsFmObxRMJ1SJ19HdyudG11ew02ePa2lrNwPtdu3bhjjvuwKpVq5KSOt79GgqFFFtxiSCS8e2336p+roW8vDz885//ZASML+GlpdRFIhFGmgsKClBYWMjsGL/lHM2PRuaajo6OBFLHv1uaMyZMmACbzaY4p5GYusLCQuTl5bHnR4tQuqb4PnmPgZpSJ5I6PaWu37lfzzjjjL64TK9g6NChaGhoULxgNRWAn7gIRA7IBUXw+/3o6OhQVer4c1JdMkBJ6tTqPVH7ysrKku5zx7eZXy2SkaRJfvr06YxMAdlV6nhS5/f7VYOQ+b9RhqbX60VlZSVqamoUxskoqRONQ0NDA4YPH674TFTqPB4PRo0axa5PpG7KlCmYNWsW6urq2MKlpaUFo0aNgs/nY6SUlD2bzaZwv9IKn0i02G5SOAhUuwzoISEFBQVMqaMs7XvuuQeHHXYYrrnmGsWERG6VPXv2sOdRXFzMDA5NKKTUablfAaUBE59pV1cX/H6/wv3KFwQWwcei0CQPJPYzsaQJ3QshFaVOJHXkfqXr8Eim1Gm5X6n4cTQaNRSrxH9fTGTgn3FXVxceeOABFqOVDLz7lQ+Y588PdO+a8te//lX1HKJSRwRs8uTJzO2kpdTl5eXBarWya+7bt499Too7T+rENopElC93Qe+a71ek1AFIyNYl6LlfSV0l0kFkJRQK4dtvv8UJJ5yAFStWoKOjA+FwmF1LjKmjvkX9iewt2QU1lZTGYCgUYpM+hVyIzzYcDqfkfiW7rkXqyNZ/++23ihhqo7Db7SgoKMC3337L7Gcy92sgEIDdbofdbmd2jOw4nVOLmIv3GQ6HNZW6rq4ufPfdd6iqqoLL5UroF0Zi6vLz8xUJWvR+//73v+OYY45JWLDyKj59h0+UoOetRuroXDl1v55zzjmqP2effbahWl79FUOHDkU8HlfUEzOq1BGpE5U6eplqpI7vVO+88w7KysqQl5eXlNTRAHS73YZKOQA9BoQmfl6ps1gsmDRpkuJ4eo/ZrFNXWVkJQH3Vyp+fV+rmzJkDAAq3eLruV57UablfeVLHx9RVVVVh1apVKC0tRV1dHWKxGNra2jB27FjEYjH2vuh4InW8UgcoSR0ZZ7oWj46ODvZMrFYrTCYTKioqEkhddXU11q5diyVLligSJdavXw+gmyBTG0pLS1k76TxqiRJG3a90Tw0NDQqlTs/9umnTJowaNQoWiyWB1Pl8PpSVleHzzz+Hz+dj48WoUpeM1FG/45W4VJQ6LfcrFRAOBoP4zW9+g8suu0y1HTzUxrWa+kN76/ILLjV8/fXX6OjoUJA6reQboLsfail1fEwd0EPqhg4dqloLkVfqAChsIClhvFrS2tqqSEjin4f4O6/UUVwWHwfMkzoacyK0EiXi8TgaGxsxcuRIptSJpI7aS/aT+jwhGAxiw4YNKC8vx969exV2mx83ekod0POMb7jhBoWbmy8/lUr2K9kZrSLQRCI3btyI0tJSLF68GPF43PBep4WFhbDZbGhoaMDIkSM1qwMA3WObXN+iUseTOqvVqvkOedAzTqbUUe08LfernlJnNptVSd0vf/lL1aoApOLHYjG0t7fDbrcr4jzr6+tRVFTEiJ6aUpdT9+v777+Piy++GNdcc03CD+8jH2igVShvQNVqR6XifiXVaejQocwtRwNcnDzLysrYdlBibAYPXqkD1CdPEWRAqKMTqfN4PCgtLWVEBug2Gtl2v5rNZtah1drLn3///v1sT8djjjkG+fn5CtdwOkpdR0cHOjo6Ekgd735tbW1FV1cXW03xMXWEoUOHoq6uDh6PB/F4nGXdiSVQqB/okTre9cAbibKyMkX8Hl2/vLycGUNaeBBRBqBQ6ojU8UqJ2+1O2JlBLVGCno0aqeOfNyWINDQ0sJU7r06quV83bdqEadOmYezYsQmkjibFrVu3oq2tjV1fT6kLhUKG3a/880ym1JFy2trayv6vlSgRCAQQjUYRCARQU1OTkP2uBr2Aft7WUNymHqkLh8M48sgj8dxzzxkidbRtltYuO2pKndVqRVlZGfubmlJHZINXfnfu3AmTyYTp06ez43mlTiRx4r/0zshe8UodhbYYJXViSRPaT5YndbwLkBaSXq+X2UO6Fn/v3333HcLhMHbs2KEgdTyR8/v92LJlC8444wz27FpaWljfor79yiuvAOgJOaH74Wvj0TsgNUl8D6FQKKlSR1nDfGzhxRdfjOuuu071eEAZO+z1etl2iNXV1brF2XmljmLqRKWuoKAAJpPJEKmj96mn1G3fvh0TJ04EkKjgqoXniLYjLy8vgdSRXVfb3YdX/yjLl55PV1cX6uvrMWTIENVFkajU5cT9OnfuXDgcDhx33HGKn7lz57IitgMRFETPF2hNR6lTU50o7oPfmJ3OceaZZwLonkCI1BlR6tIhdQcffDCAbiNJ23CVlJSwrByHw4GKioqsu19tNhtbWRohdZ2dnYhEIqiqqsKUKVMSSF2q2a/8Pqf8MbxSR0kEVVVVsNlsCvcrYejQodi3bx97nkRsRFInul9pMvj666/x9ddfIxwOK1ap9P3Zs2fjRz/6EYAeAkhkjVfq9Eid1+vFli1bAGiTOl6pSzdRgid1BQUFhtyve/fuxejRozF+/PgEUkdt2r17N2KxGCO9vFJHMVupKHU03nj3q1aihJpSx6s3aq4beqY0cRmJc9Ujdfwz/uijj1BQUID6+nrduKtAIMDiG4FEUsfv5kLPQY/UFRUVKZS6oUOHsrg1IDGmzmKxsHJBPKlraGhAWVkZG3eAOqnT+leMqaNSGJFIBF6vF8FgkC3G+cn7yy+/VNSKo/viz09q98iRI1Xdr1QJwefzsfGuRuqo39bV1ekqda+//jpeffVVplK2tLRgxIgRKC0tZc9j9uzZAHrIPE/URKUOUMbV8ZUKyHbokbof/OAH7PfCwkJs375dc69nQNnnN2zYkBKpI5WUsl/pXmhRTOey2WzYtm2bbqxfMqVOJHViTJ2WUke1NvPy8mAymRQeDJ/Ph+LiYphMJtV9uPlztre3o6ioCCaTiRFDUpTVFkViTF00GjXsDs8aqXv55Zdx3HHHqX72zjvvZOsyfY6KigqYzWZVUpdMqVNzvz733HNYsmQJnE4nq13mcDgSSN3JJ58MoFs9EUmdXqIETbrr1q3DJZdcktARrr/+eixbtgxAD6k76KCDAPQYg4aGBpSWljJ1qry8XDFAM1HqvvjiC7S0tCAQCChInZqCQ+cvKChAW1sbW2mWlJRgxowZTHkCeiYdi8Wi637ljRAZ8CFDhiAvL0/hCiKljtQrl8sFl8vFngFvRIcNG4a6ujr2mUjqxJg6Uam74YYb2A4ovFJH31+5ciWuvvpq1jZAXalrbGyE2+1WqIj0/7Vr1yIajWLMmDHYt28fex6lpaUKUme1WuFwOFBYWKiI2aE2O51O2Gw2zZg6KuiZivuVxsmYMWPYgsdsNitq0FECiqjU1dTUoLy8HBaLJa1ECboPvUQJUalraWlRTPTUp9rb2/GXv/wFoVCInZ/aYiTD26hS5/P5MH78eEQiEdV9kIGeWDX+WYikrry8HIFAgJEhoLsPqS2K1JQ6ImVqSgM9MwJvA9vb2+F0Oll8JtCt3rW0tChqwyVzvzqdTsX9+Xw+5kJUU+pmz56NadOmKYg4uQBNJhMCgQBbGI0cOZKFUPDv2qhSR/12//79ipg6Uamj8iyk5La0tMDtdmPIkCHsXogYUwwlr9Tx20MSyI7zNioWiyWU/hGxf/9+HHLIIVi+fDlmzJgBn8+XsDuMCL7Pms1mtsCqrq5O6n4l1zkpdUA3Uad+Reey2Wx45plnEkqG8eCVOt5dTO2rra1l4wZIVOq0YuqIWNLzLSoqwvbt2/HYY48xUgdAdctGntSRUkfn6OjoYIqyGqmjc/H3YrSskSxpkgR5eXkYMmSIplL3wQcfYOfOnejq6lJ0EnIViu7XCy+8EGvWrFEMbjWlzu1245BDDsFFF12UllL3yiuv4Jlnnklw0bzwwgusrk5zczPy8vIU7legh9QVFxejpKQkgdRlElN38skn4/HHH2dKHQ0KtcmeL1Ds9/sVpO6www5jdc127NiB+vp6jB49WlOq11PqqqqqYLVaEQ6HEY/HWSkaGoR0TZ7UqblfRaXu8ccfxwUXXKDpfiXyFIlEWP8S3a82mw0mk4m1ha6vpdTxKh1/HK22jznmGIVSx5O6lpYWlJWVwWQyJdQWo+NpezItpY5WwrQCN+J+JVLHT470XOjeiNTR8yHXTG1tLXMBZpIowbuttJQ6s9nMVvjkkuPdr19++SX+8Ic/KMa3nlInKg+BQEAxOQM9Rl10FZGKrrX3KhV/pWdBHgFa8QcCAVYSp6OjQxGTtnfvXrzzzju466672N/UYurIi6E2KdEzI/BKXXt7OxwOByN1LpeLJSdMmTJF0/2qptQRMQC6bYhI6tSC7Pn3S+5XcuXySh2dk2xUU1MTUzJ9Ph9aW1sVISSEVJQ6InUUZ0hjkPfuUL/+9NNPFYtCUury8vKYokTPE+ghRQS6Nz2lrrq6GscffzyGDh1qiNRRG6+//nqsWLEiZaWOj6kDejJT+fbT71u3btVUq/j4ZTGpCOiJveUVXCMxddQGIshFRUVYvnw5rrjiCia4AEjqfqU+D4DFatOWjGpKt958mAy9Qupeeuml3jhtzqBF6sLhMK6++mo89NBDCdmvRPJEpW7q1KkAeiR1QJ3UWa1WbNy4Ec888wxbBRjJfiUDQ/EXvNGPx+NoampiqycyIGeccQaefvppphzV19ez1d7IkSOzptRRQHNLS0tK7teKigr4fD4FqTv00EMRCoWwbds23HPPPaioqMB5552nSep4Q0hoaGhAXl4eU3ooeyoSiaiSuuLiYsUG1AQidbQ6J1L34osv4r333tN0v1qtVuZuVUvn93q9bMBTW+jd8UpdU1MTfD4fGhsbE4K2efcr0G00+UQJ3v3q8/nY+xCTBvh+Ka5KQ6EQKisrsWLFCpxzzjns70aUumAwyGpc8W1PRurIjREOhxOUulRi6jo6OljSCRFFrZg6/rmouV9pAUVGHFCSOrFc0fTp0xXlHwKBQEKgO98GQjgcZiq6VlwdKXVEeigTmX8+RKra29sV76W2thZvvPEGHn/8cQA9dch4pa6xsTFBqRNj6kSljldTeFJH4R+AktSJ/+rF1AHdMcxEunilTrRT/ORLLsDS0lKm1FksFtYXeVJHJNxmszH3q9vtVpBXoPv9U7/llTo+ps5qtaKhoYG9J16pKysrU1RM6OzsxMiRI1mihqjU8bYI6FHqRFJHi1i1+YN2N6DnRgs3j8ejSQKBnndz0kknYeLEiQpSR0pdZ2cnzj33XEU9TNrqjRIIeFLHJ9fw7Q0Gg5quYN7tyv+f2kfzN9lbrZImYkwdLW55pY6we/duBalLptTxmfsdHR3w+/0oLi7WjalTO18y9AqpO//887FkyRLdY4xm1KSChQsXYs6cOfjFL36RURC/iKFDh6omSlAGT3t7e4L7lSZfkdRFIhFcffXVTC0DlKSOn/AJRhIlRKWOJkGe1FH2JJEj2j3A6XTi4osvZgOSlDoAOPXUU/HjH/9YldSlqtSRofP5fAgGg2yFZjabdUkdFSjmSR3J6Js3b8YzzzyD3/zmN4xELFq0CKeddpriXFpKXXl5OcxmMywWC0KhELtHcr8SSKkj8iWSunA4jO3bt8Nut6OyshImk4ntgaqV/Wqz2ZgBpvFw0kkn4c4770Rpaaki8JiUIVEpJKWuvLwcb731VoJSR+2kZzdu3Dj4/X52HrfbjY6ODsRiMfj9fnYdPVInGrBgMAir1YpjjjmGfQ8Ajj/+eM2YOjK8/Djh22632xXuVzqeJ71kJI0odU1NTfj888/Zd3nDT89SjJkh8KoTb5jNZrPC/UqEnyd1FGwfDodVXf+8eyoQCLC4GxGiCmaU1NGzoNIQfJt4UscrdbW1tejs7GTvOBgMIh6PK5Q6oCfeWG3XElGpmzVrFt566y1WIJZ3v1INyPLyclRXV7MxQ3ZGL/uVf9derxfr16/HmDFjWD9WW+TxReJJqSspKWGkrrKykhGKWCzGJm7qi8OHD2fu17KysgRSx7tfeaWOYhwtFgvKysrwxRdfIB6Po6qqCitWrMCIESOwcuVKVaXuyCOPhMViwerVqxUL1HA4nEDqaGEglkTSU+podwMidWTr+OLMaqB3Q8+Ld7/SnPHll19i2bJlWLFiBfsen5TGu195Ykjn4gsx8zG3hIaGBoU94se22GfIfmi5X0WlTnS/8vZt586dCvcrbwv4e6SYOt792t7ezuytXkwdj5ySutdffx233norrr322gTyFo1G8fTTTytWZ9nA+vXrUV9fjxUrVmDy5Mlsc/FsgJQYoHvy5ScMymyhbDciVzwB4Ukdld7gO4eWUkdIJaaOav5QJ+ZJnbjdF+0/S6AOTIkSQPeWZQsXLoTb7WaTVrrbhJFRoWBmci26XK6k7leR1FVVVcFut2P58uUIBoMsnpPu4fXXX1cYAC1SRytyUup4kkETA9D9jlwul6pSR4rFhg0bWAka+i6Vl6E9MHlSxyt1hKqqKixatAiFhYXw+/0JSp3ofqWJMRwOw+v1Jih1FMju8XhQWFjI2kor3tLSUtaneVInul/5LDvR1RAKhdhz53HOOeeoFh+mWoOffvqp4nnrKXVA97vlxw0RLCMxdY8//jjmz5/Pvssbfn6s8dlt/P2R4f3hD3/IngP1GXEcBIPBBPcroFSIeMJEIJe12rMUCZPD4UBpaakmqePdr52dnYrzUpuo73R0dLDx53Q6UVtbq1CV6LnySh0AXferqNT97ne/g9/vx2OPPaap1I0fP571F55IaLlfqa/ymcxr167F4Ycfzr6r5n7lSyHRrgxk7/bu3cuSogg0cdN1q6qqFEodf59071ruV1JnnE4nPv/8c5jNZpxyyilYs2YNc0GTUseTutLSUkyfPh2rV69OKGkiXl9LqSP7G4lEEsISRLd1cXExUz2NuF/5pAY6D22jSFvx8eVy6PodHR0oKChgc8r48eMTlDqC0+lkyV6ESCSCCRMm4F//+hf7G/WHWCyWMDbJ3hqNqaM2EKnjv7Nnzx6FUgeo1+8UlTqHw8GUOqfTCZPJBLPZrBpTxyOn7tcTTzwRn376KV555RWceeaZzBX58MMPY/z48bj++utx7rnnZvWaX3zxBU444QQAwLx587By5cqEY4LB7or5/I8RDB06FLW1tVi7di2Ki4uZIY1EIqyuG19oFtBW6mjVzMMIqfN6varu1+eeew579uxhg8JsNitcOHx9PTI01DYtUkft5lFdXc0GfqZKHU/qAGiSOl6p8/v9zB1JbrIxY8awJByK5eLJFl9xX01e50kdxdSR4ausrGREqri4mD1XInVqk9uGDRvYSpAGORF/UuqI4NBAPuaYY3DooYeyc/Gr1Hg8zn4ngyAqdfSu6b5FpY6O9Xg8sNvtjNTR6pfay68cgR5SZ9T9yvfX//znP9iyZQtzaYru18bGRnR1dWH9+vUpkTq3261QsUSljnfTiGS0o6NDsRjijS/f9mRK3W9+8xsA3SWcaGJQI3Wi+xVQGmotUldQUJCg/PD3AYBN5EOGDFEldc3NzQrVUHS/Utuo3zY1NcHj8aCgoABjx45lpI4URp7U8W3Tc7+KSt3IkSNxyimn4I033oDf72eVEu68805Wd1KL1Gm5X2mMEdra2rBu3TocccQR7G+8m43GM7lRi4uL2XgiIlRTU6NQ6vjr0HWJ1JFSp0bqmpubUVRUlOB+pVqLNIYOOuggtgMMv0+4SOoKCwsxc+ZMfPXVV4bcr3xWMoFsG52TBx9fTPdMi+hUlDrqY1VVVWyfaCqiz2dW82ERdrudiSbDhw9n7RYXNwcffHACqfP5fPD7/YqkOX7sAT02ks/eFhXcZDF1ROr4XZ6i0WgCqVOLNRZj6oqKiuDxeBTlcqxWK95++21MnTo1YetJ8XzJ0GuJEtOnT8eqVauwa9cuzJ49G2PGjMEtt9yCyy+/HHv27MFtt92W1et5PB72YPmAdh6LFy9mWYwul4u5MJLh8MMPR0tLC+68807FCp+CMsVipIAy7iMdUsd36LKyMrS2tiaQupaWFlx44YW48sorFantPKkjIlZbW8sGNQ1W2qqMwF9T3G5m6NCh8Pv9iv0GaVBcc801CmldC7xSR4aLnlEyUhcKhdDQ0MAMFtCd+l5XV4eSkhIW9E2rwcMPP5xl+QLqSh1fz4pUF3peVVVVbBDSs3A4HOzZ8YaUEi12797N3N/8O+js7Exwv5JKuXjxYjz44IPsWHGVSr9TooVY0uSoo47C//zP/2Dz5s2wWCwswJuH1WqF1+tFYWEhI+tiTSiR1PHxV/y/WokS/ARy3nnnsYxqIkm8+5W+u3v37qSkjpJ5ACQEpItKHf+ORaVOJF9q7lc6p55S94Mf/ADl5eW47LLLmAqkR+p4gplMqaOgcT2ljrbNIlL34Ycf4plnnlEQKnK9lpeXq5I6Gmvjx4+H2WzGnj17WFJXWVmZYn9Qv9+fVKlTC/QWlTqgmwS2trayCa6oqAiLFi1iY3fChAlsMcP3LzG2joiMaEe/+uortLe3K5Q6fvKm+ydSV1lZqUrqkil1lZWVzP2qptRRTN3UqVPR3t6uiGXjlToAOPTQQ1kJj/vuuw8nnHAC5s+fn+DdKSoqwhFHHIGtW7cqCtKqkTqXywWLxZKQdNPY2KhZYJsWAWr2KxWljvqvy+XCj370I9jtdiawqCl19J2ZM2cC6N7iUHS/vvTSS3j11VcxefJkxe4zQM+Y4sULkdSRjROLGlNcH98eMaZOTJSgz+md8+5XQJ3UqSl11F76nsViwfr167Fx40aEw+H+p9QB3YbjySefxL59+/Ddd9/B4/Hggw8+wE033aRwa2ULpaWlik1wxQkAABYtWgSv18t+tGoyiZg7dy4KCgrw8ssvs78VFBQwFYYvKyBm+blcroSgV96FBCRX6srLy9HS0qKogh4Oh/Hhhx+yz7WUuvr6egQCAUyaNAmPPvooez7xeDxBqeOvySdyAD0GfP/+/QmJEk8++aQiRlALYkwdT+r0AkPJTfP9998rBiYlJEycOJERPXrOV1xxBfbv38+IpBqp27dvn0JtCIW6t+ZxuVyw2+2M1PErPZoQeUNqsViYW07NKNLxvPuVf9b8sfRMaMLiJxd+2x0+cP8vf/kLJkyYgI0bN+LnP/95wnMk8lFYWMgMi8fjQX5+PrtHLVLHu3roXMlIHQ8iSfy40CJ1/CRNMXVNTU3sPWuROlEtUVPqRPKl5X4tLCzUzH4lNDY24m9/+5vC5csHUBtxv/KfE0ip0yN1NM4tFgtOOeUUtLe349JLL8Vhhx3GXOrbtm2DyWTCIYccwp4Fr7JRH3Y4HBg2bBj27NkDr9cLl8vF3hdPROl5aMXUae0oIfaJ0tJSeDwehWoBdJMkm82GqVOnskmUjzUUs2CB7v4pPieyQVruV3rWaqSO7Aopdfy5+V1/TCYTCwfRSpRoa2tDIBDAtGnTAPSoOxRTR0od0E3q5s6di9/+9rc4//zz8e6772L69OmqSh0VIKf5RkupO/nkk7Fw4UJFRiygTG4RiVpLSwtMJhMjt7wKmqpSV11dzc5FHrnS0lJG6sRtzwoKCjB//nwEAgFUVlYmLGzPPPNMnHbaaZgzZw7Wrl2rUMv4cUzzKj9P0rUBpf0QFyJGlbrXX38d//nPf9hCxKj7VVTqSDzgSR31RYo7pXmP7iunSt2iRYswatQoPP3007jzzjvR1NSEs88+Gz/5yU/w1Vdf9cYlMXv2bCxfvhwA8O677+Loo49OOIZKaPA/RmC321nxV4LT6UQgEFDU/wGUSp3ZbEZhYSFbdYXDYUSj0ZTdrxUVFSxTCOj25VutVvz6178G0E0KeKWOBqbZbEZ9fT1LSycSSJX6A4GAqlI3Y8YMlqVLIGOwb98+RUkTqgxOE8V7772HJ554AkC3G2jJkiXMNa0WUwf0uJdFkFGjAbRjxw72f6CnSKW4nRnQTcSBns2lxcFLpJbui9yvtBk4gASlrqioiK3sREP6s5/9DEDP4BdJHdWpI/cr/355VVRcpfLHOZ3OhJg6HhMnTlT9O/2NtvExmUzweDysJh3QbUj4uktapE4tpo5/lyKIJPDuVyJ1u3btQltbG6xWa8KYsNlsjNSR6keEmT830KPU8e0hgx6NRhGPxxEKdW/XQ31XT6nTqlNHoAWE1Wpl5+FtCRlxAIqs10zcr6FQCPfddx9bGFksFvz2t7/F7t27sWbNGnR1deGYY45hGeGjRo1idelEpY6UnoKCAowaNQrff/89U+pEUscnaPFKXXFxMes7WjF1aqSura0tgdQ5HA5s374dp59+Ouv3fOKG6H4F1Endtm3bMHbsWMXCj3e/8uQuLy9PESfMFy6vqqpSuF/tdjtL5rLb7WwRSpmqolJHWZ5E6qgSQSQSQVtbWwKpc7lcWLJkiWKxr0bqaIzwSp1aosTUqVNxxx13MFtE5K6rq4vZOzWlzu12s+/w/TkajSbE4G3cuBFLlixhbaF3Ie5E9Jvf/AYulwtnn302I3ViWRJxAasVU3f++eejqqoKd999N/sbb4dI6ecTU6hN/L/8NUT7lqxO3aRJk3DeeecxwmXE/aqW/UpzIU/qqH/TZ3Q//I4mRtArpO7VV1/FAw88gO3bt+NXv/oVioqK8PTTT+NXv/oVfvjDH+K1117L+jVnzJiB6upqzJkzB5s3b8ZZZ52V1fOfcsopyMvLw7x58wB0v0TqPPyqkid1VG2aFBp6aXpKnVr2K09kALC4Anr5Pp9PVambNGkS6uvrEzaWBnqyiHhSN3bsWNx55514//33E+6fiE5dXZ1CqaN2Eym74oorsGDBArz99ts444wzcP3117MEjUxi6oBuUsfHjPFKHcHhcMBqtWLcuHEoKipKIHU0sbe0tCAUCimUOnK/kktWzf1KEA05kToKUFdT6kT3K0FNqVMjdQ6HI6GkiRHQOex2O8vwFEkdH7jLt4OP3zGbzTCbzUlj6nhQplcwGITD4VB1v5aWliZkfFIcYCgUYqQ9HaUO6Il95e/HaKIEqQpqz9tisbBj+UmQV+r4fm0kUUJLqdu7dy9uuOEGtqsAP5EfdthhePbZZ1FXV4dvvvkGW7duxaRJk1h/E0kdXfv/a++846Qo0v//mdnJszOzeZclrAiIBFEQRQVEUUTFeIcgcuaEnlnPr3ieiTN7nuHOU08FA4qcAcMZ8UwEE6CCgOS8C5vzzoaZ3x/ze2qra6pnetIm6v16+RKGme7q7urqT3+ep54iUcc7dRQu1wu/0rniV4PQy6mTJfBTvUn+XgJCOXc0VgJyp453Uex2e9hDH4Amn46+5/f7EQgE0NraikmTJgEIjQNutzss/AqAnTuChHZNTQ1bEqq6uhqlpaXo06eP5jjNZjMTdeQY8pPV9u7dqwm/8kul8ZAREAgEmNNK4ocvaq7XN4F2IcK/MEUSdfxLkzh+8ffTr7/+ikMOOQQ33XQTPvnkE9ZeALj33nvx6quvsu+OGjUKlZWVGD9+PEshEssMiddRT9Q5HA5cc801eOWVV9izgb+ncnNzYTKZDIVf6fpSaohRp47fFxA5/Ko3+zU9PZ296NFn/BhEoVl6DtG2OzX8unbtWlxwwQVhJ2LOnDl4/PHHMX36dE0eUbJ49NFH8c0332D+/Pm6D5l4ueyyy/DDDz8wx661tZV1Hn6GL3UO3vWgG5RuJJlT19jYqCmcGEnU0aBRVFSE7OxsTZ4bn1N36KGHoqSkRNPx6a2NchN4UZeWlobZs2dLQ9fp6enwer0aUUcTT4D2gYZ+e+GFF2LJkiUA2m88EqG1tbUoLS1l3+VFnd/vx8UXX4x9+/aFibp9+/ZpRJ3Mqdu9ezfLwxoxYgQr7tnS0sKEg9/vZ+fQiKjjw6+E+Hbcr18/3HrrrfjnP/8JIFTklw9hRwq/pqens+sSa/jVCGKNNZfLherqalit1pjCr7xLE4uooxmYeXl5aGxsZO5IfX09NmzYEDYpBwidL5oEQE6d2C/peCI5dYC2ICn932j4VVyYnsdms7G+LYo62dggW8w90uxXXujy5wwIv/4jR46E1WrFd999h99++w2DBw/WvEzKcup4URfJqaNjSU9PZ/uVpW2IswllTh0dpyjqCJmokzl1tNA7QX2DD73S9/jakPwEPafTKRV1fF4XtYlEndPphNfrZdd1yJAhYU4vjS19+/Zl4xVtb8+ePcjKykJubi6KiorCxnaCxCgdu55TJwu/EjSm8OKIJmVFE3ViFIs/93y9OXphp33k5OSE5aqbTCaW67tz584w108Ub+KLLc/48ePh9/uZ+8k/29LT01lhX77NkcKvt956K84++2xpQf1Iok506qgUkSz8WldXh+bmZo1TR/BOHSFOWukSTp2szhJx2WWX4Z133sHtt9+eil2nDKvVilGjRuGEE04AEJqlI+beAFqnjq/szc/okok6oP3i0/4I/sbnHzq//vorJk2apHHqzGYz2++IESNQV1eneVMka5ycOnLgjEClXXinThR1e/bswVVXXaVZk5IXdTQg/vbbb0xQ8aJuw4YNmDdvHlasWMFuMH6w4c/FsGHD8Pjjj7Ml1QCEvQWTU9fc3KzJTaCBic8Lam5u1oRfHQ4HzGazJvxKyAbShx56iIX9//jHP2pm3/KzX0Wnjsq6APoTJYDQoEXnPh6njhd1VHSXHq7ibCyZqKPteL1e9hIi/psIP2uXHnB8LuvKlSt1RR29BNCKJ0adOn6iBNA+A5n+DYCmXEyk8Ku4YDqPXviVF3U8Rpw6u93O2kXXgn9YUNvE9jgcDhx22GFYsmQJNm/ejIMPPjjMqRNz6pxOJw444ADs2bMHpaWlujl1MlHHO3V0Lxhx6gi9vGpR1FGaCxA5/EovYjKnjq8f5vP5MGrUKACh+4DGTf5lsaioSCMoSNTV1dUxp444+OCDNWNBeno6G29zcnLYeEsioLi4GNnZ2bj55pulERG+3fQyRG0Vnbpook7m1NH5keXUGRV1/MsJvWxEM1FI6O3YsSNM1InPQ73Zr0B78X5xDV8gXNQZCb9u3LiR5eg5nc6oK0oQolNHK7bIwq90jvicOkIm6iiiRX2yS4i6aJxyyin48ssvO2PXCTNq1CiUlpZi0qRJ0pPMJ4TriTpZ+BUIddDm5mZYLBZNkmtmZib7Ow0OVLOLOhJ/c/OiDtBOw6YH5Nq1a5GVlaWbCyWDRB3/VsOHmcjpGjVqFF544QW2L35tUf6zPn36sPbya08CoYcXnQv+YcAPvmazGddff73mJuE55JBD2NIyVNsLaBd1JpNJs5yQ6NTR8lyy8KveQMrDD1b82q9iTh2dAyD8LZW/PnTtzWZz2JtjJGSijj632WywWq3MFeOn2AP6og6AJg80mqhrbW1lAnrr1q3sWNatW6cZbM8++2wA0Cw2X1hYiPz8fNZ3+G2TMOUHxdbWVs0LF+/U8eFXakOk8KvMOSeMhF95ouXUifXkxNU96Du0b5ExY8bg/fffR2trK4YMGcL6W319PcunBMKdukAggDVr1ug6dfX19WyJNJPJBIvFonHq6DMjOXVENKeO3KjMzEzd8Ct/b9CLGAk2/nu84+VwOLB8+XJUVFSw8+p0OjV9y2w2S506+jNdl8LCQpZiQ9cjPT0dgUCArZEsirq2tjZkZ2drCqjrnQc9UUfnRm+iBEFjBC9Qhw8fDiCx8Cu/tF5ZWRnrF5Hgc7LjDb8Cof7Qu3dvQ6IuklPH12Ql0UVrCROyOnWE6NTRn2VOHbmZ/OxXQibq6Pu0D/p+p89+jYZ483UnxHAPj5hTB4Q6Z2trK7vg4psJhRE/+ugjaSFXs9nMbji60FSzizpSW1sb63ijRo3C2LFjw2qSAdCsxMAPzEYQnTox/FpSUoJgMIg+ffrgrLPOYrPReKeOH8iofXl5eaiqqkJjYyMTdVTbkJLo6dhkddj06NevH1pbW7F37160tLSwm4pEXX5+PruOVquVFcbl1yC97rrrMGXKFADaNywjThl/nSOFX4F2F0MMv/Lfo7fdWFMLIok6IDRoiKKO6lzJRJ2YPxJpogQ/gFEIZuPGjejbty976+Yf9gsWLEBZWZnmQeX1erFt27awPNkhQ4Zg1KhRmocqUV1dza6X6NRRgrlM1PH5rfRbQN+pixR+FR9KRkqa8HlrsrC/XvgVCIm6hoYGnHHGGRg/frzG7XG73bqiDgjlmOnl1FE+ED24Bw4ciJEjR4adi1icOqPhV1q+i84PIebUHXTQQTjkkEPCSjGJ4VdyQvnZ1sOGDWP3BP2e7xO8qKPwK9CeFgC0Xw+6N8jJEUUdED7hRwa5+ok4dWQE8OMQtc9o+JWOiz/31dXVLB2nvLzckDFA43hNTU1C4Vcg9LIuE3Vut5vl8ALtLwF0TWVOXXl5ORPJvCsMxBZ+pT/H4tTRiz7fHv77dD26hVPXE9C7kficOnFhZRqoRFF30EEH4bzzzsOdd96JiooK6UObBgn6P11w6kj8zT1lyhQsWbKEvZls374dZrMZTqcT/fr1g8PhQHV1tWaCgRF69+4dMfxKFdFJrPFh5crKSjQ2NmoGQvoeidqtW7dqRB05WiRe+eM3AjmBu3btChN1/MxXIHSDietGAqE8UMqNixZ+FRFFnV74FQg9wMnxAOROHR2PkX3z8A8koF3U0YDtdrtZ8U9+kOJn4MmcOrr2Rpw6oF3Ubdq0CV6vl83e5icT2Gw2ZGdnh4W0qOA0z/nnn4/ly5cDCD8nfN1KftWH5uZmNuhTX+LFhxhCiZZTFyn8yvdVh8MRtaSJmPtG949RUfe73/0OTz75JBYsWMCcNXLq9ERd//79MW7cOPh8PhxyyCHsoUhuPOXU8W1Yt26dZo1fao/RnDrAuKij5bvEcyXm1N1999346quvwrYnhl/539B9wOfQDRgwAEBIEPGOEf/nSKKOn5ENtIs6XjAZFXXRwq8tLS3S2a+EGH5NS0uDzWaD2Wxm221oaMCvv/4aJursdrtmDVzRqaPZzxUVFbriS4R/VvHohV+Nijp+AkJ9fT3+9a9/4bLLLjOUU8cvHCA6dZFEHZkL/H2vN3aQSBOdOj4FwYhTp0RdionVqQPaByox/AoAt912G/bu3YtvvvkmoqijG486KDkLvFNHUGfevn07PB4PPv30U1x22WXsDY5W4DBKfn4+SkpKNE4dH34lUUfigzpjbW0tm7E7ZswYtj0SVTSQbtmyhSWJUviVL3sCxObU6Yk6miihJ+r08gxTHX7lwxiynDo6Hlm+ViRkEyX4bcucOkAr6vi6Y/GKOnJGm5qa4PV6MXPmTM1x8fDnV3a/6B0jUVVVxY6Fn/3KizojTp0sx5XfZ6TwK/+QzMvLMxR+pTApPwuWP4f0MJb1P5fLhWuvvVYzyYYPv4o5dQ6HA1arFd988w2qqqpwxhlnhKUy8E5dJPjiz4DcqaMlkQBj4VdKMeHr1NHvxfBrRkaGNDeTv+fo7+K+hg8fDo/Hg6KiIjzyyCOa39L3+BcjelnnRR1/LwGRnTr+z3qQq8/XCBSX7iOnLtrsVzrOgQMHhq1vPG/ePIwePZqtjkFQni+94OqJukAgYDiFh+6taE6dEVG3fft2NrnrgAMOgMVigdvtZhNBXnrpJUOzX/mJTLSWMBFJ1J1yyin417/+pYl28eFXKhIO6Dt10UQdPeMpUmU0/BrbK7+CEY9TRzOtxDcToN0dKi8vjyjqaEDgnTqaYCG2ye12w2q1MlE3btw4AO0PhsmTJxs9XNZuv9+vWfuVfzht2bIFLpeL2d0UciRRZzabccQRRwAI3VR0DL169YLD4cDmzZul4Veg/QaIRdTRGook6sScumOOOYZ912azMRued+p4Yg2/8oMSnQuq6ycLv/KfyWa/Gl0BRSSe8CvtW2/2KxBbTh0QOh95eXnYvXs3vF4vmymoN1GCfi8WUZVBbbNYLGhtbUV1dTUT7bxTx7+IyEQdDeyVlZX48ccf2UPZ6OzX9PR05tQdcMAB7Lt5eXns5ausrEw3/EoTGnjHzqhTJ8JPlHC73SxXN9I4JIq6mpoallsaCVHUyfoETTqqrKw05NQ5nc6w1XionAgffjWbzbrnQxZ+JSghfdiwYbBYLJo0FfpubW2tZvKKw+FARkYGHnroIY1byefUAckJv/LLRVGNQLPZrFkFwUj4ldp03333sW2RSNu9ezc7v6LY9Hq9bCzkw7V8ZQc6J0Ygp85o+FVPLJKQ2rdvH1uhY8qUKTj88MMxe/ZsDBo0CC+88AJ7CaDnEX/eZfezGH6V1akj0tPTMWvWLOnx0W8JMafOiKhzuVxsnKb+p5y6FKM3iNDgwTt11DH0wq+AdsH2WEQddYyqqqqwjmcymViBTdlsM/6hYwS73Y62tjZ2jK2trZoiob/++it69+6tCZN5PB7U1dVh3bp16N+/P7Kzs5GWlqb5ntlsxoEHHhhR1FFCsqzcih4mkwl9+vSRhl9lTh0QEgV6g26s4VeTycSuPYVfAbAHBQ85dUQkpy5W9EQd/yCKJOqmT5+OZcuW6ebUxSrqgHYRVFhYKL0f6PwaXX1GfKg2NDSwfYhOHb/cE/9bfn/PP/88Tj755Igiig+/0gtcQUGBNPyam5uLmpoavPvuuxgwYICmhA8hOnV0ThMRdY2NjUzU0WdlZWXweDxSsczvi2bd1tfXRxV14kNH5tQB7W5JNFFXUVERJuqamprY73mhRfUX9c5Bc3Mz2wZ/j9G510tD4VMgeFFnMplw6623apa1E8OvdO0POOAApKWlaRwdo6IO0EZ3TCaT5l4xOvvVZrMhGAyynFSn08lEGr+2stiuM888k+UT6zl1fFujkazwKz0DKioqWBmmRYsW4ayzzoLL5UJhYSEqKytZDczRo0fj+eef1+SB6ok6PafOyHjPh1/5e4FSW6jdsvAr3x5aN5jPq+aLaEdDibo4ES8yDSrx5NTRd+gtWk/U8YWFxYXjKysrpR2PBkH+zerpp5/Giy++aPRQGdQu/q2NX03j119/DRMe6enpzKkbMmQIy4/jBRUQCsGKok5cdSInJyemWZ8ApKKutrYWZWVlmoGWBuX8/HxdZyjW8CvQfq1FUSde46KiIo1DKBN1sbiUPNGcuoyMDNZvRVFXV1eHhQsX4ocffggLMfEDmN7AzosEu90uzUWRQec3mpggxER1oN3ZFHPq+IXZgXCnDgjldwYCgYiultVqZa71SSedhGeeeQZDhgxhxUZl4dedO3eivr6euS18eJtWm7Hb7bpOXaTZryIk6gBo3vpLS0t1zz8f6qblsOIJv+oJfVl5IHE7tOKJw+GA0+lEY2MjgsEgGhsbNROKaDKP7NoQdrsdgUCAnTdeKPzlL3/BSy+9xNI/ZL+1WCywWCxheamydpMbD7S/fPt8Pnz//fc499xzAWhLTkVCJurE/RsVdeKY6XK5mGscSdQ99thjuPTSSwGEizqfz8f6RCxOnSz8Ko4dNpsN//73v3HGGWdItyMTdeK/Nzc3Y9u2beyZcemll2rG9UhOHYVkW1tbdZ26SMcHhNdsTE9PZ9cumlNXXl6uCbdTlYIuP/u1uyPLFwHA3gqbm5ulOXU2m03aQSjE0dDQIH1AHnnkkRg3bhy7ufnwK21btl0+94646qqrcPHFF8d2wGi/ERobG9m+SktLWXt//fVXzRIxtN/a2lqsXbsWQ4YMARAa6PREnZhTxzt1sUySIHhRR4MQhVn4NtB+9EKvQPjEByPQb6xWK+sHNTU1YYPKddddh2+++Sbsd3xfMBKGlKE3UYI+p8W009LSNP3aZrMxUcN/Py0tDenp6ZoQop5Tx7soDoeDCalUiTpeLNCKI+KKEmKYXebUbd++HUB76ESW18cfs8/nw5VXXgm73c7OGR/OKigoQFVVlcbZNplMmqWgaD9Op5OVaxHPQayijqDzYrPZNC6mCH/+KGQsTpSQYSSnDgi9ZFISvgxaVUIMvzY3NyMYDIbNTiUBrAd9j/oqf058Ph8uuOAC3d/yId5o7hE9eOl7/Fg1atQo1q+ysrIM3ceiEUB/54812kQJ2o+4P6fTiSeffBITJ05EaWkpuz9lDqLVakVaWlrY7FfeqTMq6vjyW0B7JEPmsl522WW64300UUdGxm+//RaxuLOsfUB76JQEs8ViMSzqZE4doO0P0SZK0Gx1/hmgwq8dgHgj8fladGFlTl2kpG/ZkiHElClT8OWXX7ILLYo1PadOJurihW4Efh27srIy5s75/X5WB4nweDzYt28ftm/fzkTdhAkT2NqsxIEHHoitW7eyMKAYfp0wYYKmyLBRSNTxFb1p4XNZ+DWSqDObzWGhy2jInLqampqwQcVqtWre4GVOXbzoTZSgz48//ngA4Wsy2u12jQjRm1AQKfxKidm0PXLqorkV8Yo6/vsk6mROndlsZgOteFyAMVEnCmA6RvoNbd9sNiMvLw+VlZWa85mVlQW/34+9e/dqyh1dd911ePrpp5MSfiX48CugL6rFiS1GnTqxpEkkpy7aWORwOBAMBpmoa2xsDCtPwU9iiObUAXJRFw2HwxF2H0Zy6qxWq1TUAe2174yEXvl2UhhatjpEvE7dypUrAQBff/01ysrKcO6552L27Nm6Yx+5pQSFX8U+FQ0xp453r2IhPT0dFoslolMHhArZ64k6PacOgOYlwmazGRZ1fPiVjpGOj4+yRHPq6Dvxhl/VRIk4ES8CJTjz4R2ZUxepE0cSdfx+AONOnSz8Gi98+NXlcqGmpoaJus2bNwNor/hNpKenY/Xq1QgGg6zA57x588K2PXr0aE2nbWxs1Aihq6++Oq429+3bl60eYUTURVthg9zUZIdfRWQlTeIlWvhVXFqJsNvtmuWaxDClkZw6oL3UgN1uj9mpizenDpA7dXR/er1eaS1AalesTh2f3E2/oXvU6XQiMzMTdXV1mnBXbm4umpqaMHz4cPzxj39k+xkwYAAGDBjA1tCUiToj/U9WviNWUbd9+3a0tbUZCr8azamLti3elaIq/2J5Cv58p0rUxeLUkaCj78lmuDocjphFnWgEiE6dkdmv4nNh5syZmD9/PiwWC0pKSjBixAjcdtttum3RE3UyoRkJMfzq9XrDXiSNQLnV0UTdnj17dGcay8Yr+h2FP+kzWvM6GnR8wWCQ3Qu0+g4v6ugFQC+nDoDUqVPh1xTDD6oUMqATr+fU0VuXHkZEnRh+7UinThR1ANii1oTMqdu0aROAyLM3jzrqKHYDOhyOsPBrvPTu3ZsVnOVFncvl0rhFRpw6oP2hF4+oixR+FdFz6lasWIGPPvrI0L6JaKJO76Egijr+e6Koi/SwpHMmmyihRzKcOhKQMqfO5/OxcywLv9IECMoZlYk6qrvHt5c/Z3x/JoeJn2FJkyfKysrYPcKPDzKnLtHwq1gDT4Q/TsoDTGZO3VFHHcVm4evBuxsUftVz6hIJv0aDF3V0vuMJv/LHZaScCb+fSKLOaPFhUZC88sor+OCDD9gs8WhpLXqiLtaJEmL41ePxGBaEIkZEHaBf19RisYSFfY899liYTCZ8+eWXLIUiKyuLhWCjQSKVokz0mawd6enpUqeOH6udTidbn1tMhYlEjxB1tbW1GDNmDNLT07FmzZoO2Sc/W9LlcrG6UrxTl8zwKyHWa+NFndGcunihm5efTVdWVoasrCy43W5kZmaGOV0ej4fdxJFcMJPJhDvuuANAKBQrhl/jhd8nL+rEWbpGcur4bRjNb+Nz6vjBL9pAKMupA0L5OSeffLKhfRPRZr8CwKpVq/DJJ59ofhfNqTMSfgW0gqIjc+qoTbKcuoyMDN31dXnKyso0s5h5TjnlFPZnPm+QEq1pIHc4HMxh2rZtGyZPnoxbbrkFgwcPZq4erRcaTdQlGn7lc1Rl8PsqKipiFfdjDb/qOXWXXnopXnnllYjboms1adIkpKeno7q6mh13rDl1vFNnNptjKtwda/jViKiLJ/war6jTc+pMJpMm9zma0ORFXTAYDBN18ZY08Xg8cYVfAbCqDjJRR4XcAf1jo0k2PAUFBRg9ejQ++eQTJqAyMzMNO3V8VQBx4pk4ye2iiy5i68gD7fcz9Rsq5fT1119j2rRpOOmkk/DSSy/h5ptvjtqOHiHqnE4nPvjgA0ydOrXD9sm/mbvdbubU8Tl1qQi/HnXUUfjwww9Z4Uur1Qqn04mqqirDs1/jRebUtba2wuPxsIr04tsPHVN+fn5UgXbdddfh559/xuGHHx42+zVeeJHm8XjgcrlQXFwctkSaUaeO1hmNttYhIQu/AtFz5ZKZUxdtogQAHHbYYWHFqCOJOv6tOxAIGBJ1DocDAwYMQFpaWtTyLMlw6uizaE4d3/a0tDSNsKGaUbLrfeihh4Z9xl9jeqHiRd2ePXswYMAAPPLII0hPT2fhWBJ1/ANcNvuVHKtYRZ3R8CvlEAGhYrWBQCBiXTnCyIoSRqF0iVNOOQXDhw9HU1MTfvnlFwDx59RRGSGj9y39Npbwq9VqZS/4spfooUOHsvW4jewb0HfqTCaT4RUlZIKEd5ljcerq6+sRDAbjLmnCr5KRqFNXXFzMnj88aWlprJ9EOjaxf9psNkyePBmfffaZpgBwLBMlgPY13IHwZeOIxx57DBMnTmR/p/uZxB/d80cddRRcLhceeugh/OMf/2CrL0WiR4g6i8ViaGYkhUb5/+KFt0tFUbd161aWRwNoJxgkKurMZrPGIQDaO06qnTpqVzAY1DxovF4vCgsLpblZtF9xtqsMk8mEESNGsIrnyXDq+FpSDocDM2bMkLbHaE4dFXE1Cl/niB/AOjKnLtqKEnqIybmynLpIC94TvFM3cOBA7Nu3T7OAuoxEc+p4V4YvwRMt/Cruk0SdDLFuGKC9XrSoOy/qgsEgc/CpDiAANus7mlMnHm8k4pkoQd+12WyaB3+yZr/GQlFREasttmzZMgCJhV9jvZf4VT2MOnUzZ87Ee++9JxWPH3zwAW644QbD+wb0nTq32x13+BUIXX/qh7GIOj5fPB6njo4JCAnLaOOtHllZWSzvVTZG0HMvkgtJ15YfD0844QRUVFRg6dKlAEKmSKyijh8Xja6EJDq84v1mMpnwxz/+keXeRmK/mijxwAMP4J577knKtninjt7OSNStXLkShx56qOZNiQY9I+HXWAcfr9eLffv2ddjsV0DrKHi9Xrz33nvSfcQi6ggaRPiyDvHCDzhWqxVXXXUVXnjhBV1RZyT8Gouo4506n8/HKsIbDb8m06mLR9TJtgPEL+oAGCognWj4NTc3l31GoTugXdQVFRXpnmOv18ucs0iiDgiVTaDZhID2nNGatfwLHhAuTGg/QHSnTjzeSPB936hTR/szmUyaeySWnDpKFI+37z7xxBNsf9nZ2SgqKsIbb7wBi8XCCqbTcQwdOjSiMIg04zwal1xyCZutbLSkSU5ODiZNmhTTfmRQW/ft26dZWpH6LE3Yiif8SvTr1w+rV682LOpWrVrFwn8+n09a0DkS9CwgUffwww8nFH7dsmULAPmYTfebEaeuV69e2Lx5M2w2GwYOHAgA+Pnnn1kh8HjCryTqjYo6KnlF2zCyNKIe3UrUlZSUSEOs7733nqEHxezZs3HTTTexv9fU1MS99BINqnz4ld68V6xYwcpEEG63G1VVVQk7dTLy8vKwadOmiE5dMsOvtE8SKIWFhVHXS41lNQQaRKIl4BuFkmqtVisOP/xw3HzzzTjrrLM03zGaU0fT6Y3C59R5vV4cddRRmtUZ9EhF+JUGChIJ0YRBNFFXXFzMQmVGJkrEci3jFXV03s4++2y2DV7UUU7diBEjWHuiOXWRVl7p27evZgyhbdJ6jeTUpaenIy0tDW1tbVJRR8icOt59pKLFRh4yvMtE5yJaTh0Q6ifBYJAts+f3+w3l1FHkg2Y0xtt3r7vuOs3fDz/8cLz99ts488wz2ThD237++ecjbisRUcenIxgNvyYLamswGNQIAl7UVVVVxTX7lSgqKsK6deuilhei8fhvf/sbvvjiCwCh/kP3VbxOXbwlTYDQmE6CltZ7Ff8diC7qqLTR5s2bYbVakZ+fD5PJhDVr1rBtxDJRAgCWL1/Oxlq9iRIiNCFCLFAcD91K1BUUFGDJkiVx/95utydFJABap27gwIEoLCzE1q1bUVlZifXr14clNI4fPx7vv/9+whMlZNBDRdbxSKTEU7hXhG9XQUEBdu7ciaamJlY6QkY8Th2FXyMVtY2F7OxsJuoA4NFHHw37ztFHH40LLrgg6hsSradrFN6pA4BTTz0Vy5Yti5rbQ+fNqKiJRLKcOv64f//73+PZZ5/FqFGjom6LHNdY8pniFXU2mw07duxAr169mHMkc+oyMjJgMpkwffp0th4xwYu6xsbGmN6axdmllGxPa1CWl5dHFHWyED0N8FlZWSgrK5PO3IvUFnFVDyC6UxcIBJhbt2XLlpicOnJvkyVyRo0ahbfffhsXXXRRzGkJfPg13vwtfjt6IoSfJJEM+LbyYzcv6oyu/RrJqcvJyYnal5xOJ6qrqzUvN/zs91hFHc0oj+XlWIQE16GHHirdv5Hwq81mY7NQ6Z6yWq3Iy8vDnj17WP5jrOHXP//5z+zYjDp1p512GtxuN3MfExF1PSKnDgg9LD/99FNcfvnl0jpoyYYXdfPnz8cjjzwCm82GH374AcFgMCy/7OyzzwbQvgi6jERFnazjFRUVYeXKlZrF6+OFH0gtFgsKCwtx4IEHRhwU6OEWr1OXLFEHRH7IHHHEEXjppZeibiuR8CvQPmNy3bp1EX9XUFCAxYsXa5Jp44WWoKPBL1ZRJwtTjho1CvPmzTMUfqUwZCzEm1NntVrRt29fzdu1TNSRO7FgwQIcddRRmm2JgiceUcfnG9GxU0iIz6njoeskbou+L1ur1khbZCHdSOfV7Xaz39DLmFFRV11djb/85S8AkuMyA6Gxc9q0aTj11FM1uXRGSMSp44nm1F1//fXsuJMBf+70RB2twx1v+PXyyy/Hgw8+GLUtbrcbdXV1LO8TCI2p8UyUANqdukREHY3ptBqOSFZWFluZRQ+73c5EHX++aRId3a9Gw6/8eaCKD3TM0WYYjxkzBrfddtv+59RF4sMPP+zQ/Yl1ZejP69evh9VqxdChQzXfP+200wCAJWDKSIWoA6BZyDgR+HYZvSHpmOLJqUuWqKO3tmQ4B7179zZcawoIF3UjR47EH//4R1xzzTVRf8tPeU+Ec845B4WFhUwwGF0VgwYpShYWrwWtEAJEd+pifaDG6tTR9/ljkom6xsZGzbrMMkjwWCwWtLa2JiTq+BmU9JDQc+rE/eTm5iI9PR2HHnoo3n33XXz44YdYu3ZtzKIuHqeOXDejoo5Kmrz66qt47LHHACTPqRs6dCjeeOMN1ra0tDTD6ST87NdY7luRaE6dnriIFyq50dzcLA2/Uh+lIu0yoom6ww47TBq6FOnVqxe+/PJL2O12zJgxg+U8xrNMGBBy6tLS0mJy7kVoTOfzDXkOPPBAlh+nh81mg8fjCRN1vXv3xqpVqzThVyOiTnY806ZNQ9++fQ2Pf2KFgnjoMaKuo+GdOoL+PGDAgLCHXG5uLm699VZMmDBBd5uJijq+/EQqiEfU9e/fH06nk5VgMYLT6URLS4vuOrixQm91yRCI1113HVvk2gh8Th0QuvH/8Y9/JNyOWMjMzGQvFUDsTp3L5cLVV18d5hry4ZhI2zr99NNjzp2JN/zKCwmTyYS0tDSNqCsvL9fMQJVBgqFXr17YuXNnwuFXOvZook48R2eccQY2btwIi8WCM844A//73//CjtFIW2S1+6Ll1NGsXHLYjcx+bW5uxqJFi8L2lUzcbjeWLFmiuwqKCLWhuro6pU5dKnA4HGhubtZ16gBEXN0mWvjVKP369cPu3bvhcDhw2GGHsfbE6tTRBBw+FSZeDjroIOTl5YUtN0lcf/31uOKKKyJug8KvVKaKEJ063m2PlX79+kUVlzzKqetE+IkSBN34erVkHnrooYjbTFTU7dmzJ6bfxYpYz8sIgwYNQk1NTUxWOz1Eq6qqkhp+pSTzRIg1d4ZuUqPFijuCeETdn//857B/5/tApIF9zJgxum/UetC24wm/ip/zS2tRXTgSVjI8Hg/S0tKQl5cXs6ijwZ/u5QsvvDDsIWFU1JnNZs3EHbpeyQi/RhJ155xzDksTiSX8WlpaitWrV2s+SwViuDwSdLytra3dTtRRe/UmSgAhURfvRAmj9O3bF62trdi4cSMuuugi9nmsos5sNsPj8aCioiKh0CsQeqHkw8EiFosl6thht9uZWycLv5JT99xzzxkuGi0S6z2gRF0nInPqqGNEmjgQiXhLmpCoi9TJkwHlFrS1tcV0U8Z6A1PHrq+vT8pEAbohjS6zkkzy8vKQmZmZUKgh2eitViEiEwUieXl52LdvX9JdmWQ4dfR3EnUej4eJukhOXe/evdGvXz82sCYSfuXrSpGY08upi7YfvWOM9v1Yw68zZ85kfz7++ONx+umnRw13Wq1W7Nq1CwBw00034bHHHkuoDmiy4MesVE6USAV0rSI5dW1tbbqiLVmijuoVBgIBTd1Pl8uFhx9+OKYVbjweT9QyQR2FzWaD1WrFRRddpElREkVdLOlL3377LVasWIE//vGPMRWpJ5So60RkOXX0mZGqzzLideqSMbPVKDabLWIeRzLgB854zyXPZZddhs8//xzHHntswtuKlXPPPTesvE1nY7FY8Prrr+PEE0+M+D0joq5///4pEXWDBw/GqFGjDBcn1RM8FoslZlE3a9YsnHvuubjwwgsBxCfqZC5BZmamJseOL37c0tISVTDQOTZ679HyZjJRZ9QBPfTQQ/Hee+9F/R61bfjw4bjvvvvgcDgwefJkQ/tINTRmdTenjvYVSdQB0NRA5Elm+JXgRZ3JZMKf/vSnmLbl9Xqxe/fuqGVUOoKLL74YaWlpGDx4MAYPHsw+F531WBgzZkxY+aBYSEZOXdeJCXUzZE4dVdvuaFHXkaE9aluiA0Uk+A4dSz6CHgUFBfjiiy86ZSCxWCwxTRLpKM4999yoieNGRB1dH1rvNFkcdNBBWLFiheHBzYhTl56eztzsSOFXm82GvLy8sLp+RhCdOp4jjjhCkwNE36X+Ee1YYw2/0j747dpstqSWdiKoTSeeeCIcDgfuu+++hNyGZELjcSLHTMfX0U6dz+fTPA9kok6vtiaN0Yk+H3w+n2a5x0QgxzeVpoBRzj33XJxzzjlhn9P9aKT2rQwaV+NJP0iGU6dEXZzIcuoo/NDRoo5I9IYzAh1vd3LqFPFhRNQ9/vjj+L//+7+4Uw6ShVGnjkqwGJkJKdb1M0IkUfe73/0OH3/8cdh36SFi1KmLVdTxD4ghQ4aE1eVLBrRkU7JmbCcTmpyWiKgbPXo0zjzzzA59MbTb7WH1zeIRdYm+gJtMJubWRSvOHg0SdanKt0wGAwYMwPDhww2v0ytCzmoiTp0SdZ2AzKkjUZdoTl08naG8vBwbNmyIa7+xEGsIKB6oY/fu3btD34wVWoyIupycHDz44IOdPhHEaE4dEHIejDxU4gmFxBLepO/SDNNk59TRPvgHxNSpU/HNN98Y/r1RaGJFpNn9nQW5o1T0Nh4OPvhgLFq0KKURChG73R6WWiNOxAH0hVaywq9Ae952tCK60eDLBXVVPB4PVq9eHVPFBh6XywWXyxXXc/zoo4/G5ZdfzkLA8aBEXZzIcuoo/BrvOqterxcWiyWuJb2ysrKSshRYNDoy/DpgwICU7UMRHSOirqsgux+BcKcOMJ6DmmynTu+7JOpS4dT9/ve/1y37kEyefvppfPzxx0lZYzrZUC7td99918ktiQ2XyxUmog499FCcc845GsGhF6FJllMHhPLqsrKyEnbYuoNTlwxyc3PjEnW9evXCc889l5Do7bpyuYsjc+qWLVuGn376Ke5tut1ufPfddzjkkEMSbV7K6MjwazLy6RTxIy4v1pWJ5NRR/UYSWkaL0HaUqMvPz0daWlpKcuoef/xxw99NhPz8/C4zMUKERM95553XyS2JjQceeCAsZJydnY2FCxdi7dq17DO9yRvJFHVnnHFGUioRdKWculSSm5uLurq6Ttl3zz6zKUQm6o4++mgcffTRCW2X1tLsqnRk+FWJus6lOzp1ejl1ZrOZHUcqnTqx4n8k+PIiXq836bNfFe20tbV1eopArETKfTTiAiUz/HraaadpCpjHy/7i1OXk5LD83Y6me/XyLoTZbIbZbE76LLKuTkc8WNxuN0444YSoJTcUqaU7ibqsrCyYTKawIqFWqxV+v5/N+gRS69Tl5OTghRdeYGv8RoIXdYWFhVHzleLJqVOE6G6CLhpG+kAynbpkQS87Pb0P5+XldZo26BGvfCtWrMANN9wAs9mM/Px8zJ8/v0M6jdVq3e9EHR1vKgcKs9mMxYsXp2z7CmPIlpnqqhx44IHYsWMHy08j+Fnq9EKSSqcOAC655BJD38vNzcWNN96I4447Dscff3zUmZXxhF8VPRMjy711RVG3v4Rfb731VlYTs6PpEWe2d+/e+OSTT+ByuXD77bdj0aJF0vozycbhcHQLFyOZqBDQ/kN3cuoAhAk6AJpCoNR3jTp1ySgEGgmz2YzHHnvM8PeVqFMQ1Aci1VJLZvg1Wewv4ddhw4Z12r57xJOZn9JttVo7THAsWrSoS09qSAVK1O0/dDdRJ6MznLpUoUSdgqC+EEnUdUWnrjuUNOnu9Kgzu2PHDixevBh33HGH9N/9fj/8fj/7e6JrE3ZEqYCuRkeEXxVdAwq7dsUyFUbhnbp4c+q6Sq1ElVOnIKgvT5w4Ufc7XVHU7S9OXWfSrURdSUkJpk6dGvb5e++9B4vFgvPPPx9z587V7TAPPPAA7rnnnlQ3s0ejnLr9h/z8fLz//vuYNGlSZzclbhJx6o499ljcd999OOCAA1LVvJhQ956CsNvtWLt2LQYNGqT7na4cflV9OHV0qzNbUFCAJUuWhH3e1taGs846C3feeScOOugg3d/Pnj0bN910E/t7TU0Nq5StMIZ6sOxfJKOMQWdCBcG9Xm/MOXUejwe33357ytoWKyr8quAZMmRIxH9XTt3+SY+Y571w4UIsW7YMc+bMwXHHHYc33nhD+j273c5qQtF/itjoiOLDCkWyGDt2LLKzs/GPf/yD9V2jTl1XQ4k6RSx0RVG3v5Q06Ux6xJN5xowZmDFjRmc3Y7+gI5YJUyiSxSOPPIJHHnkEQOiBcs0113TbHEGVU6eIBRV+3T9RZ1YREyr8quiuDB48GE899VRnNyNulFOniIWu6NTZ7XZYrVbVh1NIjwi/KjoOJeoUis5BiTpFLJCY60qraZhMJni9XvX8SCFd52orugWqpIlC0TmoFypFLHTF8CsQSoNQLyapQ4k6RUyoB4tC0TmonDpFLHTF8CsADBw4ULr6iyI5qCezIiaUqFMoOgcVflXEQlcVdR999FGXCgn3NNSTWRETqqSJQtE5KFGniIWuGn5Vz47UouSyIiZUSROFonNQ4VdFLHRVp06RWpSoU8SECr8qFJ2DyWRS5SAUhlGibv9EiTpFTKjwq0LRedx77704+eSTO7sZim5AVw2/KlKLejIrYkKFXxWKzuO2227r7CYougnKqds/UU6dIiaOPfZY3HzzzcjIyOjspigUCoVCByXq9k+UU6eIicLCQjz66KOd3QyFQqFQRECFX/dPeoRTt2bNGowdOxYTJkzAlClTUFdX19lNUigUCoWi06C8ZyXq9i96hKgbPHgwli5diq+++gpHHnkk3nnnnc5ukkKhUCgUncbhhx+O++67DwcffHBnN0XRgfSI8Cs/xb+hoUF1YoVCoVDs1zgcDtx+++2d3QxFB9MjnDoA+OyzzzBy5Eh88cUXGDBggPQ7fr8fNTU1mv8UCoVCoVAoegKmYDAY7OxGGKWkpARTp04N+/y9995DVlYWAODhhx9GIBCQTv2/++67cc8994R9Xl1dDa/Xm/wGKxQKhUKhUHQQ3UrU6eH3+1lR3GeffRbNzc249tprpd/z+/3s7zU1Nejbt68SdQqFQqFQKLo9PSKn7rPPPsMjjzwCs9mM3NxczJs3T/o9u93OxJ9CoVAoFApFT6JHOHXxUlNTA5/Pp5w6hUKhUCgU3Z79WtQFg0HU1tbC4/HAZDJ1dnMUCoVCoVAo4ma/FnUKhUKhUCgUPYUeU9JEoVAoFAqFYn9GiTqFQqFQKBSKHoASdQqFQqFQKBQ9ACXqFAqFQqFQKHoAStQpFAqFQqFQ9ACUqFMoFAqFQqHoAShRp1AoFAqFQtEDUKJOoVAoFAqFogegRJ1CoVAoFApFD0CJOoVCoVAoFIoegBJ1CoVCoVAoFD2A/VrUBYNB1NTUQC1/q1AoFAqForuzX4u62tpa+Hw+1NbWdnZTFAqFQqFQKBJivxZ1CoVCoVAoFD0FJeoUCoVCoVAoegBK1CkUCoVCoVD0AJSoUygUCoVCoegBKFGnUCgU+ymtra2YOnUqNm3a1NlNUSgUSUCJOoVCodhPqa6uxltvvYUVK1Z0dlMUCkUSUKJOoVAo9lOam5sBAC0tLZ3cEoVCkQyUqFMoFIr9FBJzStQpFD0DJeoUCoViP4XEXGtraye3RKFQJIMeJepef/115ObmdnYzFAqFolugnDqFomfRY0RdIBDAm2++ib59+3Z2UxQKhaJboHLqFIqeRY8Rda+99hqmTp0Ks1n/kPx+P2pqajT/KRQKxf6KcuoUip5FjxB1bW1tWLhwIaZPnx7xew888AB8Ph/7T7l6CoVif0aJOoWiZ9EjRN2rr76KadOmRXTpAGD27Nmorq5m/+3cubODWqhQKBRdDwq/qokSCkXPoEeIurVr1+Lll1/GySefjI0bN+LGG2+Ufs9ut8Pr9Wr+UygUiv0V5dQpFD0LS2c3IBk89NBD7M+jR4/G3//+905sjUKhUHQPlKhTKHoWPcKp4/nxxx87uwkKhULRLVCiTqHoWfQ4UadQKBQKY6iSJgpFz0KJOoVCodhPUU6dQtGzUKJOoVAo9lPUMmEKRc9CiTqFQqHYT1HhV4WiZ6FEnUKhUOynqPCrQtGzUKJOoVAo9lOUqFMoehZK1CkUCsV+ihJ1CkXPQok6hUKh2E9Ry4QpFD0LJeoUCoViP0U5dQpFz0KJOoVCodhPUaJOkWoaGxs7uwn7FUrUKRQKxX6KEnWKVLJx40ZkZGRg165dnd2U/QYl6hQKhWI/RdWpU6SSPXv2oLm5GXv27Onspuw3KFGnUCgU+ylqRQlFKvH7/QCA+vr6Tm7J/oMSdQpFN+Cuu+7CggULOrsZih6GCr8qUokSdR2PEnUKRTdg0aJF+Pzzzzu7GYoeRncPv1577bW4//77O7sZPZby8nJUVVXF/Xsl6joeS2c3QKFQRKelpYUNkApFsujuTt2qVauwd+/ezm5Gj+WKK66A1+vF3Llz4/q9EnUdjxJ1CkU3oKWlBU1NTZ3dDEUPo7uLOvWyk1rKy8uZmxsP9Fsl6joOFX5VKLoB6uGlSAXdfaKEetlJLc3NzQmNO/TbhoaGZDVJEQUl6hSKbkBra2uHibpVq1bB5XIllEuj6B4kM6du7dq1mD59OgKBQMLbMop62Uktfr8/KaJOOXUdhxJ1CkU3oCMdibfffhuNjY347rvvOmR/Cn0qKipw3XXXpSw8mszw63fffYeFCxd2qCujnLrUkiynTom6jkOJOoWiG5BKR2LWrFmYNWsW+3vfvn0BADt27EjJ/hTG+f777/HUU0+lrCJ/MkUdLQeVSA5WrCQqOrobW7ZsQa9evVBaWtoh+0v0/Kqcuo5HiTqFIk62b98Or9eL3bt3p3xfqXQktm7diq1bt7K/W61WAErUdQXoodjW1pbS7SdT1HXkpIv9Lfy6efNmlJSUoLi4uEP2p5y67kePEXUrVqzA+PHjMWHCBEybNq3bzuZSdB92796N2tpabN++PeX7SuXDq7m5WbPoNonHzZs3p2R/CuOQ6ErVRIZkTpSgftPRom5/Cr+SOOqoc6xEXfejx4i63r1745NPPsFXX32FgQMHYtGiRZ3dJEUPhx6ENTU1Kd9XKkWd3+/XPBjpzxs2bEjJ/vTYvHkzvv322w7dZ1enI0Sd2WxGS0sLgsFgQtvqjPDr/ubUkTjqqHOsZr92P3qMqCsoKIDL5QIQCh9ZLOEl+Px+P2pqajT/9UQqKyvx9ddfd3Yzejz0oK2trU3pfgKBAAKBQMocCT2nbsOGDQk/6GNh4MCBOProozWflZWVddj+uyL0UEylqKNxM9EQr3LqUk9Hi7qeNPs1GAxi8uTJ+P777zu7KSmlx4g6YseOHVi8eDFOO+20sH974IEH4PP52H+UEN7TmD9/PqZMmdLZzejxdJRTR/tJpVMnE3W1tbWdWq1/y5YtyM/Px2+//dZpbYjGq6++iiOPPDJl20+1U9fc3MxEXaJiTOXUpZ7u5tR1pYkSTU1N+PTTT7Fy5cq4t1FcXIwlS5YksVXJp0eJupqaGpx//vmYO3cuS/bmmT17Nqqrq9l/O3fu7IRWpp6GhgbU1dV1aL2o/RF6eKVa1NF+UunUycKvAFI261JE1lf37t2LQCDQITmL8bJ58+aUhqk7IvyabFHX0eHXjnLqWltbsXDhwg51r0U6UtQFg8GwsSFWupJTR8eRyPFMmjQJ48ePT1aTUkKPEXVtbW2YOXMm7rzzThx00EHS79jtdni9Xs1/PREjIqCtra3bVpHvKnRU+JWuZ0c6dZS+IOtDy5cvx8KFC5PaBtlMW2pTZWVlUveVTMR8xGST6tmvLS0tcLvdABIXjh0dfg0Gg2hra2P/pZrHH38c06dPx48//pjyfemRiKhbtmwZKioqDH33pJNOwptvvolgMIiWlhZDBsExxxyDqVOnaj7rSqKOxhN+rIuVPXv2AEjd/ZgMeoyoW7hwIZYtW4Y5c+bguOOOwxtvvNHZTeo0aFCNdCPddtttmDFjRkzbbWpqwqZNmxJqW0+io8Kv/AzFVAwmspy6jIwM9meRuXPn4t57701qG9atWxf2WXcQdRSeSpV70xHhV6fTCaD7hV/5/XRECHbVqlUAALO58x6biYi6s846Cy+++KKh7y5btgwrVqxgfzeyv+XLl+Ott97SfJbIRIny8vKk9iUayxIRddnZ2QC6dq5vjxF1M2bMQHl5Ob788kt8+eWXmD59emc3qdOgGyHSjbRz586Y66u98sorKc0f6m6kOvwaDAYxZswYfP755+yzVDy8yG0iYRJN1DU3Nyd9CbG1a9cCANsv0N5/u7Koo+uRqnBYdwq/drRTx++nI0Kw5CYnIgoSJZGSJo2NjYbEVTAYRGNjo2Zcizbu6L3U8E7dO++8g+rqasPtHTlyJJ599lnD349GMpy6rKwsAEBJSUlCbamurk7ZPd1jRJ2iHSOirrm5OeZOVVVVhcrKyi5tPXckqQ6/+v1+fP/99/j55581n8XKd999h7POOkt34G1ubmb5M4BW1Mn219LSknShRU4d3yejOXWfffYZrrzyyqS2I1b4c5YKOnL2a3fLqeP30xFOHeV2dmZ5jmhO3fLly/Hkk0+yvweDQcydOxfNzc1oaWkxdI0p3MoLsGjnV0/kUDubm5vxu9/9Dv/5z3+i7h8IOWE7d+5k4c54aWxsZKkiyXDqMjMzASChCWTNzc3IyMjA7bffHvc2IqFEXQ8kVaKuK81k6gqkOvxKgxB/vuN5eH377bd49913dd+SaZs02Pn9/ohOXUtLCxoaGpL68KZBkt9mNFH31Vdf4fnnn+/QxHwROneRrksiOV8d4dRRTl13Dr+m2qkLBoNsYl1XFnVvvvkmHnzwQfb3LVu24JJLLsE333yDlpYWQ/cKXcdYRN2WLVsAAOnp6WhoaGArXvj9fqSnp7PvlZeXR90/ADbjva6uztD39Xj33Xcxffp0lJWVJcWpS4aoe//99wEgZalMStR1E+rr61mIKhpGRV2sg293E3WfffYZJkyYkLTtXXbZZRg0aBD7O52/VDl1NPjw5zuehxcNjLKlhSgRmt9fU1MTm0SkF34FkNQQLP9GT45iNFFXW1uLQCDAHiidgRGn7tprr8Ull1yS0Pa7Q0mTzgy/ptqp27dvH/tzskRdY2NjzDOno4m6hoYGVFRUsHuIxqampiYEAoGo1+bXX39NSNQVFhbi8ccfx0knncR+RyFLAIYnaiRL1FHIvKGhISlOHU0gS0TUUV4j/yxJJkrUdRB/+9vfpMngRpk9ezaGDRtmyBVKlVNH2030RusoVq1aha+//jpppV1eeOEFzdtVd3HqaGCXiTr+4cBP+Xc6nbDZbLpOHSAXdQ0NDXFNGuAfNqLI1BN11A83btwY8/4S4Z///CdbscaIU7d9+/a419FN5exXmj1KEyUSFY4dHX7tSKdu/fr17M/JEnUvv/wyxowZE9NvjIg6v9/P2kj3CJ2fSNempKQEhxxyCBYvXgwgNlFHa0enpaWhtLQUpaWl7He8qEuGU7d+/XpMnDgx4rH4/X6Ul5czd7WpqSkpoo76HB9ZuPDCCw2vxdva2opPPvlEs61ko0RdB3HHHXcktHQZ3VTUISKhwq8haFBKZMDfvHlz2PGSmEm1qKPBhx/YjB7Lhx9+iI8++ghAu6iT5afIwp1NTU1wOBxwOBwxi7r+/fvjnXfeMdRGsR1UW5LaZMSpAzp+ObPnn3+ezfIz4tQ1NTVJH4pGZtCl0qmj6xiPU7djx44whzoep27fvn0YNmxYzJO2xP2k2qnj6zUmS9RVVlaiqqpKur0HH3yQ3b880UQd/Ts5YvR32kckIVRdXa0JM8cyUYKcOpp0xYvIZDt1y5cvxxdffBFRID7++OM46qijNKIuGeFXUdTt3LkTL7/8suEyNxUVFewFLdaXH35Mj4QSdR0ALfGUyMO/sLAQQChHIBqJhF9bW1sxZswYfP/993j++eexdOlSzW+A7iPq6HwnMggfe+yxeOaZZwAAffr0AdA+4PDh11dffTXp09xlos7ow+vJJ5/EE088ofm97G2S316sok4UW62trdi3bx97a4+FlpYWlnvTWaJu8eLF+OCDD6J+r7a2lt0DRpw6majbsWMHCgoKsGbNmoj76ghRx+fUbd682VBy+qmnnoq///3vms/iyal77bXXsHbtWuYOxUJHirr6+nqYTCZkZWWhoaEBy5cvT3ifdG/Jxo1nn30Wr7zyirQdQGSnDmgXT3TvG7k2tE1qTyxO3ebNmwG0iydZfi7frmhEEnUkqCK9SG3ZsgWbNm3C6tWr2XeT4dTROaI20DPG6Db5ax2rU/fPf/6TPYsioURdB0CdKZqo+/7776NODf/vf/8bNRSTiFNXVVWF77//HqtXr8bDDz+M119/XfMboPuIOhqU4hV1LS0t2LNnD8un6devH4B2EUHnr7y8HOeffz7efPPNRJusIZHwa2NjIxND8YRfI4k6vZw6+jyeHMPm5uaYRV2yw6+TJk3C6aefHjV8XFtbG+Z8RHrANDY2hl23srIytLW1Rc0HTOXsV2o779RdccUVuPPOO6P+dvfu3WEP6HjCr/TQ7dWrl+HfEB0Zfm1oaIDL5YLb7UZpaSnGjx+P9957L6FtUptljlN1dbWmXzc2NuK3336LWtKE+iVtMxanjvoaCQ+jTt1vv/2GZcuWoaioiDl1zc3NCAQC8Pv9yM3NBRAqV2Qk/BoIBLB582ZYLJaIoi5Smyj8S/dXqpw6OkdG+x8df1ZWVsxOnd/vh8PhiPo9Jeo6ALqhIom67du3Y8yYMfj222+l/04duKqqKupDMxFRxwuhxsZGjaCgTthdcuricer4m5NuQNoOJcnSWySdPxIBRt9CjZJI+LWhoYGJoY5y6hIRdfwsTFHUVVdXS19kkuHUTZ48GV999RWAUD4QIC+ELO43UadOdEX0SKZTV1FRwRwVQB5+raqqijoBhspdiMcUT/iVRF08+UUd6dSRqHO5XNi9ezfa2toSTrvQE3XBYBDV1dXYsGEDG1uuueYaHHzwwexejtWpo89jcer4XORI5/fee+9FYWEhZs2apVlhhfr9gAEDUFxcjBtuuMHQGNnU1ISWlhbk5eXF7dSJ91WqcuriFXW9evWKuc/7/X7Y7fao31OizgCtra2GEyFlUCeKNAjQAzJa2Qkg+ptwIuFX2j8VquRFnZGVKroSsTp1TzzxBJxOJxtI6G1PvHHF8CuRbFGXqFNHD+eOyqlLVNSJTh1/3WT3RV1dHXJycrB79+64RE8wGMSnn37KKuePGzcOACKGYFtbWzUvO0adOvGepb9TH9MjEVG3aNEizazNE044AQMHDmR/F0UdHVu0h15NTQ2CwaCmL7a0tDDhHY+o48/PM888g+eff579ffny5RgyZEjYOexIp66+vp6JOnoWJLpPvfArrdtdU1PD+geNOdHcUFHUUT814qJGetHQO9ZgMIhFixbhqquugs/n0zhiJOrsdjsKCgqQlZUVcYysq6vD9ddfz8aVnJycuEWdeF/xSyEmQ9SVlpYiGAzGLOrKyspgMpmQn58fl1OnRF2SmDFjBstpA0Id+amnnjI8k8eIU8fnIMjgO4BRURdJfOk5dby7JVYgl4Vfly1blpQB9aOPPsItt9yStJmqQOxO3Q033ACgXUBEE3Xi+UuVUxdPSRMKvwaDwYScOll/pH6QTKeuublZ6tRRuEEWgq2trUVBQYGm7bEg3ic0USNSMrLofCTq1BkVdbHOfg0Gg5g2bRpefvll9hk5kLt27cJbb70lDb82NTVFvV/oWvDHxPdLow+rffv2Sd29q666CpdffjnLH163bh3Wr18f9lLS0U6d2+2Gy+VihXaTlVMnPkf4FxhyoamfUZrhAAAAYNpJREFUE9FEHW1TzKmLJfwq+zeRiooKNDQ0YPDgwbDb7WhtbWVtoDAsCZGsrKyI/euHH37Ak08+iZ9++glAaEmuRMOvRDJz6qxWK9ra2tDS0hKXU5eZmQmHw9E9RF1jY6N0FtOvv/6azN10OJQrRQNrRUUFrrvuOvz3v//FvHnzos58iUXU6XWOVDh1iYZf6+rqMH78+IRm9QKhYoynnnoq/va3vyVU/0ckFqeOv4Z0rkVRR5/TgNlRoi6eiRKNjY1obW1FfX09amtr4XQ6k5ZTp+fUUdtEUffbb79pxIUMvYkS9DIlE3V1dXUsXyeegVp8SaHrGakP0rHF4tR1VPh1165d+P3vf4/a2lrU1dWhpaVFcyyDBw9m/586dSo7Fl7UGXHqZKKO/41Rp46vu8n3wwMPPBAA8NRTTwFov3/F/psMp27Lli0YMGBA1HuXD7/G69R98cUXmpJIeqKOv68or86oqNOb/cpPlPjqq6+kaT6R+uRnn32GqVOn4vHHH9d8TrNL+/btywQHjbvkONLntG6q3rmmz0WnTsxxpT5dXV2NyZMnIy8vD1988QX797a2NlRUVKB3797sM17UJWJCtLS0sBqeDQ0NcTl12dnZsNlsXT/8+uabb+Kggw7CqaeeihEjRuC7775j/3b++ecnazcdzrZt29ifaRDkE9DvvvtuzJ8/P+I2jIg68c1fxO/3w2azAeiY8CvdYJGcuj179iAQCCScY8eL/ngK2v7rX//ShJmIWJy65cuXsz/ribqmpiaYzWb27y0tLTCZTAAAk8lk2LmNRl1dHa688kq2vXiWQ6JBnHIwBw0ahLq6ujDBJYZfKayWzJy6119/HTfddFPE9uo5dXqirq2tDQ0NDcjLywMQ30AtvqSQcIokauIRdbKJEmIf0yOWiRKffPIJ3n77bfz3v/9l9xF/XxxwwAEA2u8HuteT7dQZfVjx4yH/Gz4FhG+v6NQlY5mwjRs3YsuWLVFn/PLhV76gbyxMnDhRU3BWL/xKx28ymZhTR2M/Qcd++OGHayaz6YVf+YkSxx13HI4++uiw9tE2Zc+p1157DW+99RZuvvlmjcjiRR256tT36P+8U8e3TYTGO17U0Tq0RGtrK/ve5s2b8emnn6K0tFTzDKHiyzfddBMefvhhmEympE6UoNm88Yi68vJyZGdnw2q1dn2n7q9//StWrlyJn3/+GS+++CIuueQSvPbaawD0F/vtDvAlRMTOWlNTg5qamqgDiqxCt953Iok6j8cDoGOcOnH2FL9f+ixZYQheBMQq6hoaGnD11VezpVd4YpluLntAyJw6n8+nedAWFRVhzJgxmDx5ctKcup9++gnPPfec1AGWDR7Lli3DpEmTNAVu+ZmjdXV1rByLKLhEt4X+brfbkzb71e/3sxpYeug5deRQiA8a6oOiU/f1119HFEA7d+7EGWecwUJD/LaMiDrxRSFa+JVEckc4dbRG8LvvvsuuDe/UiSFc+g6NK0adOvod3zf43xh9WPEvgzRmBYNBtn06Z0acunjHIKMzdvnwKxGv40MCJFr4dcyYMXjqqaewYMECzfG53W7W3vXr17PJL8FgUDf8amSihN45NJvN7PeBQEDzTNixYwesVivy8/OZ4KDrR8dBgpScOr2XXxo/6Xf0/bq6OrzyyiuYM2cOy2UDtC96/PhA4/aYMWPwpz/9iY1jfPg1Xk3S3NwMn88HIH6nLicnp3s4dS0tLWyAHT16NL7++ms8++yzuPfee5mb0R359ttvWaekzsZPaqipqUFTUxOefPJJ3HHHHdJtJCunLtmiLhgMIhAIYMWKFcjIyMDHH38cUdSJOUgk6hKtIF9XV8fefmIVdSQgxKT6nTt3hj0UIiEL5cicOq/XqxF1Pp8P3377LY4++uikiTo6JtF9tNlsYf3j559/xtixY7F48WKsXLkSAFgpASD0UG9ubmZrFooDiRh+pd85HA7Y7fakOHV+vx+tra0RBz49p47GFDE/lPZBTl1jYyPKy8sxYcKEiAW6V6xYgffffx87duxgxyqKukjtpP36/X60tbVFdero80AgoBFm0XLqtm3bhjfeeCMmUffLL7/AZDLhww8/ZH2H70OiWJOJOj6hXI9Ew6/FxcV4//33UVtbC7PZDJvNpnFN29rakJeXZ1jUpaWlxS2wokVI+O+RU0fEKiTpOfjvf/9b83u98Otbb72FUaNG4cknn9QcX2ZmJjv25uZmTaHfQCAAs9lsaKKEOL7IxnGz2cyOmVYe4Z9jO3fuRO/evWE2m5lTR/dIrE4dfU79KycnB0CoT7z66qt46qmnNC8p0UQd/Z5EHd9HY712L7zwAubNm4eWlhYm6hobG+N26vg+b5QOF3V5eXn45Zdf2N+zs7Px2WefYd26dZrPuxtr1qzB+PHjAYSLur1796KtrQ1+vx9ff/01PvvsM+k2+IFD7Ex1dXVYsGCBofCr6GToEU3U8QuMt7S04KeffkJ1dTVOOeUUlkwdKfwqJt7L2izm80SitrYWffv2BRC7qKO28A/922+/na09CBgTdZGcOj7c4vP50NLSgmAwiNbWVpZcTzO7kuFK0/7E85eenh42eNx9993Iz8/XtJv/DoVH9EQd/cZms6GxsZH9Nlr41Ww26+bU0UB3/fXX45prrmHnNpJTrefU+Xw+pKWlhV1Duu68U0fnTRSV27Ztw/fffw+gvZ9UV1cnFH6lbUVz6vjzJ8uL1RN18+fPxxVXXGFY1AWDQfzyyy8488wzUVNTg88//xyA9sHd1NQEl8sFszk07NM4RqJOdHX0iBR+NZlMUUXdK6+8ghkzZqCurg7p6emwWq1hLwr87EA+3YOHfuPxeOJ26hIRdbEIyaamJjY2bN++XfP7srIy1NfX46STTsLu3btRXV2NtLQ09OrVC8OHDw/LyczMzGQCrrW1NUz8FhYW6pY0aW5uZqWZxMLXsueK3W5nQmLAgAEAtPfxzp072dgtCg4aB+hzEkMXXXSRJgeOkIVfgdD1X79+PUpLSzXRC+or6enpGlFH7jeNDaJTB8Qegl2wYAHeeustjaiLN/yak5Oj6fNG6XBR98orr7C3ZsJms+H1119ndaC6G83NzVi/fj0rdSCGX2npGOoweg8tfpAUHzjvvPMOZsyYETWUyYdfo3WGaKKO/31ra6umTfTwiyX8KhsMXn31VRxyyCER20nQLEaLxRK3qOOPddeuXTGv1agn6kwmExPjFH6l77e0tLABMjs7G83NzUlZQoiOiRd1JpMJTqdT0z9+/fVXLFq0CPfddx+A9oGFbwOJOnpL1nPqfD6frqibM2cOtmzZghtuuAHPPfccmpubkZ2dHTX8un79emzcuDFM7IkEg0HdOnVOpxNut1vXqeNFnV4i9AMPPIBLLrkEQPu55UUd79Slp6ejublZd7Ypf680NDQYduoAuairq6uT/ra+vh51dXXsN9Fmv+7atQuVlZU488wzAbSH+Pbt28fERGNjIy644AL88MMPANrHMafTibS0NMPpCmJ4lP+Nx+PRfelcuXIllixZwkolVVZWwuPxaFwLXtRFcuquvfZattoN/7JTXV2NefPmRWw/T7QICVFfX59Q+JWeDQ6Hg/U3Pvy6detWfPbZZ/jll19QXV0Nn8/H7nm+bwPtok58oaDz1Ldv37Dxm58oQakYVE6GkJ0Dm83GhARNYBFFHRVlFwUHfY8+N5vNbEYrn4f+xRdfYNKkSazNYvh17969LLWEyg2ZzWZNXxGdurS0NBb94Z06qkWp18dLS0tx7LHHhrmJ9fX1rH6eTNTFsqJEvE4dTWCLRtJEXZ8+fcJm6BBjx45N1m46lA0bNqC1tZWJOtGpI1FHBRf1Hlr8BRe/Qw/uaNO0I+XU/fLLLxoBEE3U8b9vbW1FdXU1uwGoAje97fALtIsPQRpkZZ1z9+7dKC0tNfQ2UltbC4/Hg4yMjKSEX8WwoNHwK51fXtTRW2h5eTmCwSCb+UQhRRJ10UILsUDHxOdbWa1W2O12Tf+gQXnatGkwm83SKfvRRB1tj2pMiaKusrISd955J/773//ik08+wbfffouWlhbk5OSE9WVejFHNM96d1nvpIRdK5tQ5nU64XK4wUUfijA+/6s0gLy4uZi4P/a6qqoq1i3fqqA169yEv6miGaaTv64V8+HtGllfX0NCAQCAQts6wHhQNOe6442C1WjW1FPkcOLqugFbU2Ww2jesQqbRQJKfO6/WG9bHi4mLU19fj3nvvxZ133snOyZ49e8KcOmpTQUFBRFH33HPPsTA779RdccUVuPjii6MWBv78889xzjnndJhTR32/sLBQI+rMZjPKy8s1uZpVVVVsPCZR5/f7UVhYiOHDhzMXUxR1tN3CwsKwwuN8+JX6khGnTibq+HO7Y8cONkaKgkMMvwKhMeuwww7T9OeffvoJixcvZjODRaeO0kqAUKWEwYMHw+PxSEXdp59+ihdeeAE5OTnMkeadOopY6ImwTZs24ZtvvmH3D9HQ0MDycON16tra2lBZWckmSsiejbt27cIVV1wR9m8UXeu0OnW02HV3hx6ahx9+OGw2W5io4xcLNurUiYMNhV8oTKLXOSLl1M2YMQN/+9vf2N9jEXUtLS2orq5mxSFpMOdXS+BzNoD2gSKSu0gPPyMzY0nU+Xy+pDh1vLCyWCyGnTo6v3xOHYUc6DrRDU2ijg+/AvpJwLFA545/sFqt1rBwaHl5OaxWK9LT0zU15WSiLlpOnZ5TRw/S6upqVFdXo7GxkYk6/sHCbwsIXRd+IAT0nTr6d9Gpa2hoiMupE/vjvn37UFlZiaampqhOHfUBvUGfF3X8y0O8Th0gD8FSnxVDw3rs3r0bJpMJ/fr1Q15enmblCH5scTqdYaLO4XDA7XZrxGWkh1SknDqZqCssLMTxxx+P4uJi1ieozenp6Zqkcdp2QUGBph8A7eFXymWsqqpibhZtU1zCT48lS5Zg0aJFHZZTR8+GXr16aeq4FRQUoLa2lp37+vp65tQBoWtDfXvs2LFYvXo1c5NFl5i2m5ubC7/fr5nUwDt11O5YRZ0Yfg0EAti9e7du+FWcKEHHn5ubqxmTqW2U+iOKOgq5HnvssQgEArjjjjvYCycQ6is0tsyaNQs//vijxuTgRR2N03r3N7+eN080p46uwRtvvKGppMBTVVWFQCAQ0al7/fXX8e9//ztMVPIT2KKRElF33nnnhS32LNIdZsSuWbMGvXv3RmZmJjIyMlgnpU7Hv3FRoV6Z+o5F1MWTU1deXi6d0BCLU+fz+ZgtLyKuN2jEqaPjNFKIlnJrEnHq+OPnH7b5+fnS81BaWhoWWuadura2NpSXl7OBjK4P79Tx4dd4nToxgZc/Jh6ZU1dRUYGsrCyYTCaN4OO3R2GLSE6d2WxGenq6VNTxOWjV1dVMZFBohO/PfD+ora017NRRm/j+TQ/uaKLOiFNH127v3r0pE3WxOnX8n/WcOp5oIqW6uhperxdmsxn5+fmaFw46firmzBd0NplMsNlsSE9P14jLSOGkaKJONh788MMPTNTRd0nU8eUdaNuyiRJlZWWaiQGVlZXsZUfMg40W2qqoqEBra6s0lCwjWeFX0amjNW/pPm1oaNCIOhKsVGYIABMEeuFXujcbGxulOXVNTU3Izs7G+vXrNc9h/hyQELPZbGy/VBKHH9tbW1uZ+BIFh8ypA0IldPj+zU8m4n/Hi7r8/Hz84Q9/wNixYzFjxgzY7XZNX6E2UQmkp59+mm2fD7/Sy+0LL7wgFV96L6D0MhJtosScOXPw3HPPhW2XtgEgzJ3moVxD/qUM6AKi7r333sPdd9+N6667Lky8tbW1Yd68eRgyZEgqdp00iouLMXfuXBY65l0kMbxH4VdA7kbQdHjZv4uz1GIJv+7du5ctJyO6bw6HI2miTlwM2khJEz5pffXq1WH9YOfOnUwUJhJ+jebUFRQUSM/Dqaeeqlm4XBR1ZWVlCAQCOOiggwDIRV0ywq8jR44MO+8yd1Pm1JGoAyAVdRkZGYacOrvdDqfTiQULFuC8885j2+PDKeXl5WhoaGDXlR4cvFDj+wEv6ow6dU6nEyaTSfPgJlEnmyhhMpmQkZEBk8kUMaeO3tqLi4ulok4WftV7YFNfBWJ36hYuXIjTTz+dHTM9HGSFleMVdUB7oVrxhUR06iorK+FwOGAymcJEXSR3WyaE6Dg9Ho9uykVJSYnmOu3evZvl1PFOndvthtvt1ogVEj979+5lbSPhyr/s6Im6N998U5NDRuc82rjLn49UhF/pWpGoI6dODL82NTWxB3o0UUdiiC8ez5c08fv9OPTQQ1FVVaW55vw5o3GFnyiRn58Pj8fDjoXuZ+p3YvhVnChB0DEVFxdj48aNYS8Q1dXVMJlMcLvdsFgs2Lp1Kw4++GBcfvnlWLJkCdLS0uBwOFBRUQGn0wmfz6fJbbvyyitx1VVXse3Jwq+PP/44jjnmGIhQP5SVUCJR53a72eQtUdTV1tbqPgNo21arVerUtba24ptvvgHQBUXd5MmT8fXXX+Odd97B7373O7b24b/+9S8MHDgQN910E6ZPn56KXSeFYDDIHm5PPPEEgJCoE8OvBJ+LJHtwRaq3FcmpW7p0KVatWsU+50VdQ0MDDjzwQLz77rtha0vS24TeMmHid2tqauD1epm4oGRSgi+0arFYUF9fj9bW1ohvxXScX375JUaMGIELL7xQI+yuuuoq3HLLLQCSm1PHXwu73Y6MjIywB1QgEMCaNWs0BStbWlpgt9thtVrh9/uZ4KQq/HSsoqgjN8Tn82lKCURj+/btaGxsxPr161FRUYGXXnoJs2bN0hwTDw0Ec+fOZcW8KyoqmLjiy4/QIFlYWMgESySnjt7G29raWE6lKOrooUNtowfH8uXLMXToUNTV1YU5dQ0NDTE5dfxgR8egl1NXW1uL9PR0VkpBT9TV19ez619SUqIRdbKSJkacOrqXjTh1fFuWLVuGxYsXAwjdM3wRU5FYRV1NTQ0TiTQbun///gCAqVOn4uWXXw5z6qqqqtifPR6PxjGM5tRZLJYwp44EgJ6oE+vgVVVVhTl1VVVVyMzMZEtOBQIBNDQ0sDVr9+zZo2mb+LJD2xHHpD/96U+YO3cu+zvdp7Jxd+bMmXjhhRfY3wOBABobG6OKupUrV+KVV16RHjsffpWJOnr5opw63qlraWlBQ0ODxqlraWlhxyiKOr4MkBh+pZesQw89FAA0YT7+nJH44cOvOTk58Hq97FhoLKB7JtpECYKcurvuuguXXnpp2HnkXzbopZkqUBAOhwMtLS1wOp3wer0aUUelVwgaG3mnTg+9skwNDQ1oaGhAW1sbrFYrXC4XampqWIoI//zXewbQPWyxWKR16lasWIG6ujrY7XbNyiNAFxB1AHDooYfi22+/xZYtW3DUUUehf//+uOuuu3D55Zdj+/btuOeee1K164QxmUy466678NZbb7GbThZ+JXghIXtwNTQ0IDs7WzPDjCCxIHv7vfXWW/HQQw8BCHU2Pjy1Y8cONDQ0MGHC/45EHT/JgUfPqaNlVcRZzLyoy8zMRF1dHfbu3Rs2gYKHbgpa5uaVV17R2N3l5eWakiHJcur4Gkc+nw8ulyvsAVVcXIympiYmYOgYaABrampioo6cOllOHR9+NZvNyMzMNCTqXnjhBRxwwAF47LHH2O8vvfRSvPzyywgGg1JRZ7FYWDL8hx9+iGAwKHXq5syZg//9738A2kMRFouFOcV6Tp1Ys4qKDxN6ou7rr7/GunXrsHXr1qjhVz2njtpks9mkok4Wfq2rq2MPE3rzl4Vf+ePSc+roAWlU1JFoor5mtVp1XRt+O+Xl5WysoLp8VqvVkKgTZ79WVlZqzgkfsqMxi3+APffcc/D7/XA6nZoisXSNjYRfa2trcdhhh2HDhg3Iy8sLKxHhcDiilmoQixvLSpqQqAPaX2DJdaQQLiFLSwDC+znVEyXoPqVj5n+/fPlyNkOYPxdi+FXc5zPPPKNbq7S6uhputxterxf19fUsV1kMv8py6oDQtdJz6sScOn45Lhqj6d+ozwwbNgxms1lTJYA/HhpXeFGXnZ2tccVEp85o+JXu14qKCpany9Pc3MyOm47tD3/4g+Y7tE2XyxVV1MmcOgDs3Iv75o8NCPWllpYWNvaRqKOxhe4FGruNOHWyFSU+/vhjeDweTJo0qes5dUCoE7/44ovYvXs3Nm7ciKqqKnz++ee4/fbb2cCZbG655RaMHz8eM2fOjHm6sIi4lIro1NGNA2jDr3qiTux8hJgkzd9Y/ABGNWosFguam5vZmx3VPJI5dYFAQHoeooVfxVnMfPg1MzMT9fX1LJQxYMCAiOFXaiegFcP19fWoqalh4YBEnTpxzcMLL7wQZ599dlj+BgD2FrRt2zb2sORFnd/vZ6HlAw88EGazWXeiBIkyIDQQRpso0draykIDO3fuZPdCW1sbG+j0nLpnnnkG5557LioqKrBv3z6pqHv88cfZSi4XXHAB2yc5inpOHT/DjLYnE3XUf6n/0+BTXFysK+qi1amjf5c5dS6XSzenjl5yxLIPfH/kRZ3o1PHtJfc5Wvi1pqYmTNTxBal5XnnlFY044Es2UH+T9U8gslMXDAZx4oknapZe44UAtS8zMxOff/45DjroIHb9HQ4H0tLSYLVamSMChMQVf+/J2vTee+/h559/xvDhw3HccccxJw1ozzkTH1biS6VYnkNW0iQjI4PldPn9fjQ0NKBfv36wWCwoLi6WOnVitEJsQ01NjeZ3YviV/7446Y3OBe/U2Wy2sD6yZcsW3Rxiuj5ut5utyQwgLPxKOXV8+BXQCnA6x3qzX+ne5Pu+eB28Xi/69+9v2KmzWq1sMpte+FUUHJT2QPcUQX2eXHT+PFKUSNwWRUwIOhfk1NHLIz1rxe+SU0fjJQBWioVHNlFCnLRE9y0dH4m6pqYmtu6sjGjh17feegunn346Bg8e3PVE3ezZs1FUVIR58+bh/vvvR2lpKc455xyceOKJmkEumaxatQolJSX45ptvMHToULz55ptJ3b6YU1dUVMT+jU9218upI1HHDxZ8IitBFy8YDKKkpETzoLLb7awzkFiiwUAUdTQoyPKzZLNfeVEnvsHwEyWysrLQ2tqKpUuXIjMzEwcffHDE8Csv6vjvUX4Wb+En06m79NJL8cwzz0gfmnTDtLS0sLI0oqgrLi5ms5S8Xm9YTh05O/SwBNoLEEeChCwQEvRVVVWYNGkSzjnnHAChKe38NaPtW61WTJs2DXfffTeA0GLo5eXlYaKuoaGBHdM555yD22+/HWeccYauqCOn7v3338e//vUv9jmtKEGI5T/IqSO3k0Qdn69Fgj1VTp0o6mROHQ28ffr00XXqgHZRZ8Sp8/l8LKcHCPUJmQj805/+pDmnMlEnOzZALur++9//oqmpCatWrcLKlSvxyy+/YOnSpZg3bx5LoQDaRV1GRgYmTpyIo48+mvVfEgkOhwM1NTXs7+KLtuz433jjDRx99NFYvXo1Tj31VABaQSHOZAXC+xtNKCNkJU14p87v96O+vh4ejwcFBQVh4Ve6P2tqajQlT/hrSyV2jDp1fr9f01dloo53KhcvXoxly5Zhy5YtqKmpkUZHaIyl39P+qfQGzeytr68PC7/S50Zy6mgmM39s4rqxQOj6Dx482LBTl5OTA5PJFDH8mpaWpnnJLS4uhtvtDnPO6H6lGfL89SSRS+PI888/zyIPPLxTR/unF0mZU0fGC+/UyWq+yZw6uv50Xa1WK5xOJ3vxz8/PR1NTEzsfekXoqY9bLJYwR3vDhg1YvXo1pk6digEDBmD79u2aFzm6Nh1ap45n0aJFePLJJ7FhwwZcccUVcLvdmDdvHq644gocf/zxmvVUk8Xy5cvZKgInn3wyli1bltTt0xsKrU3Iq/xo4VfKx/B4PJoHtqyUAZ9wSW+1wWCQPXxFUSc6dYFAgE2bpu2I6Dl1NDWdwnZ8zg8ViCUxu2DBAowePVoa+uD3u3PnTjaQiQ/Rmpoadj6SlVNHoo5uXj2njgYfEiUtLS2amXTFxcVM3PKiTi/8CoTekKOJOj58uWHDBgSDQcyaNQuPP/44gND54q8Z7Y9E2YABA2C1WrF27dowp46SeZubm2EymWC323Hffffh3XffjejU2e12nHjiiZg1axYefPBBtj/ZAEICxOPxwGq1sn5YXFzMHFer1ap5WCbi1OlNlOAnH4lOnRh+NZlMGD58uMap4+vUASGRaFTUeb1euN1ujVMnirpgMIjKykrNPc6nb5BDatSpKy0txWmnnYaPPvqIFdfdsGEDnnjiCdx7773S8Cvdv16vl4lbuqbi/0U35aOPPsJTTz2lafvHH3/McqF50QVonbpoa7Ly97ispIks/OpyudCrVy9p+DUzMxNVVVXYvXs3+5wfa8RkdkpdANpnXIqTPvi+Sn3e5XIxwcCLunvuuQf/93//hx07djDHXYR36oB2ge90OpGRkcHaUVtbi7q6ujBRByBM1Mly6njhSX1PlkfmcDgwZMgQrFixQpOHSP2BfkN5kvQSJwu/8i8E9Huv14tgMMjy+3ioz/Nlj3r37o28vDyWB0rbufTSS3H88cdL20/nh15myI2ViToaH+j80/kSkU2UEF+6KPxKL88FBQWaFW2oz4qQSKNxLhAIsEjRBx98AKfTicmTJ2PAgAFobW1lz3agve92mlO3du1aXHDBBWEJ93PmzMHjjz+O6dOn4x//+EdS91lVVcUurs/nkz5c6Q2M/88olFNHaxPyoq6uro4p80jhV/GtXCbq6AaltwCacQNAI+qoQ4lOHX2XbkLZMYpvsbQc08EHH4yFCxfilFNO0Wyjvr6ebfekk05CXl4eNm3axERdJKdu7969LEdPJuroRqCSJvzMRyOIy4TRdY8k6jZv3owjjzwSJpOJiToxp66kpEQq6vRmvwLGnToAGDhwIKuplZ2djfz8fFgsFibq6N6hBzOJMovFgsGDB+PXX3/VTJTg6zbR3/k1lyM5dfyb/P/93/+htbWVlUnRw2q1wuv1sofRnj172LZ4EcFfz3idOtlECRIR9J1Ioi47O5s5dbJlwmh70cKvS5cuxaZNm9C7d2+4XK6I4Ve+Pp9IVVUVe0kzKuro3NXX1+Ojjz5iS0F9/fXX2Lt3rzT8Sn3H4/FoRAQQXdQ9++yz+Mtf/sLGtfXr16OlpQUTJkwAEFnU8cctE3V8P6WXgObmZtTW1mLbtm0aUUdjDy/qxPBrRkYGKisrNaKO7+eiqKNrzRNJ1NG1cLvdyM7OhslkwgEHHMB+U1VVhWXLlrEH9N69e/Hhhx9qtq8n6hwOB7tOQHuZKDH8St8FIufUyUQdv33Cbrfj4osvxt69e/Hiiy8CCN2r9JLIh1+PO+44tlKJ6NRRHiW/Xf739AzhkTl148ePx969ezUTvyJB54IiYEB7mRqZqKutrUUgEND8W0NDA7Zt24affvqJfSabKCHeiyTqSHT169dP49RRW0TEnDr+sx07dqB///5wuVysMsjatWvZbzs9/Mo/TEQuu+wyvPPOO7j99tuTus/MzEx281ZVVWli58QDDzwAn8/H/iNnygjk1NGAxIdfeatVT9TJHk5005EzBshFHX3GP/TIIRGXuaFOIis5QfCDLg0uXq8XJpMJ55xzjkYcp6Wlob6+nv3G5XKxXK0jjjhCmhvQ1tamsaxJ1PGh5fr6etTW1mre9mjwoTf577//XlrugUfm1LlcLtb5nU6nVNQNHToUffr0kYo60anLyspi4RG94sP0vVhEHZ03mkRTWFjIRB25LaJTBwBDhw7Ft99+i7a2No1Tx+9bHNiiOXU8JCijiTpqG9AefrXZbPB4PKz/Au3XKBanjq4ZH3494YQT2GLo9fX1moXG+RQIUdTl5eUxQVBXVwe32x0m6sipI3Ejc1umTZuGo446Ctdcc01Up47vt6JgijWnjq8XSOHII488EkB7iY89e/aw+7Z3795wOp1sjKLPaVv8/8XwK72k1NbWorq6GosXL8asWbNY/6d7QhR1dF7F8KtM1PH9lA+/nnvuuairq8PFF1/MXjToPLpcLhQWFkpnvxp16uh3ei/8AFieoF5OXZ8+fbBu3TpMmDCBXXMqKku8/PLLmDJlCuv3n376KUpKSgyJOnGc4e9BI+FX3k2kF1HZs9DhcGDYsGE499xzmTvv9/s1L8NkIlx++eWYM2cOaxefU8f3Lb6NkUQdTV6jGfN1dXW6Lxt68OM7tYFeJGU5dXyhbaKhoQF//etf2fMM0Dp1r732GluXl4fu28bGRlgsFrb6Cf/SKsutFnPqgPZ+ykdd+vTpg+zsbFb5AugCoi4ap5xyCr788sukbvOoo47Cp59+CgD45JNPpEuTzZ49mxVRra6u1uR7RYNKY7z77rswmUwYM2YMgPB8Bb2SJjKnjm46Wn4FiCzqZOFXQnTqZMVhxe8C7Z2Pf0DTDUZtbmhoX+PSZrNh1qxZOOaYYzB+/Hhp+FXM48vOzmYTPOgYA4EAyxsE5KLutNNOw/PPPx/WfmLdunWanDoKefHhBtlDc9u2bTjggAMwYMAAVsWcHrJ8+JWEVU5Ojqa4Kh2DGH41MlGCF3X8+QFCazbu3LkTdXV1bCYyXRd+PyNGjMDPP//M9gmEBit+36Koo99Hc+p4aAAUZ0MD7blMBC/qfD6fpqI7PdxicerowZGRkcHum6VLl7LUjUjhV74/klPcu3dvFBcXo6amBr1799aUNOHb5nA4YLFYwkRdIBDAnj17cMEFF8DhcER16kRRx7/oklOnl1MXDAY1fZZ/GaRUj+HDh2t+Q247tWfbtm048cQT2d+JaE6dx+NhyysBwPXXX49nn30WK1euRFpaGgunxRN+pZdofvyh8GtzczMWL16MO++8EyNGjNDM0KVzECn8GggEsHnzZk3YlhCdukiiTuYq8+FXIJS0TzmslI7DQzP+GxoaUFpaismTJ2PZsmVSUWe32zXjFTl1svAr79S1trZGFXU0tvKT+gg6T5MmTcL27dvZDHB+vVSHwxE2NojhVzEXUwzfysKv1D4qoUP15vjfRxN1MqeOjlfm1NH96HQ6EQwGMWfOHDQ2NqKyshK//fabZsIcEKqhOHPmTNxwww26Th0QejbQ/vjIm6yPiSVNgPaxr7y8nF0nk8mEww47TOMgdnlRBwCjRo1K6vZGjhyJgoICjB8/HmvXrsXvf//7sO/Y7XZ4vV7Nf0YZP348rFYrbrnlFkyaNAnDhg0DEN5p+Te8QCCAp556CmVlZVJRV1ZWhvT0dM3bDF08eihGEnV8x48m6r799ltpDSeZqKMOy7eZF3UDBgzA0qVLkZOTo3HqKOQkPrxpNht9jz8H9GYqijrKe6Hz+eqrr+KBBx5gv1uxYgWGDh2Kn376ic30XbBgAT755JMwUVdZWYkpU6agoqICgUAAlZWVyMnJwUknnYSPP/4YtbW1LKeOL2lCrgR/fSKFXymn7q233sJ7770HGXRuqEQD/Q4IPfQ2bdqE1tZW5t7KnLqJEycyZ4AvEsoPJOLbKtV8MuLUEdS/KM+Fh8KvtG3KqbPb7fD5fBqnjkppxOLUVVVVwWKxaHLq/H4/vv32W+b08k6d3kQJyoHr06cPAoEA/H4/evfuzSYI0YBMbbNYLGFFnvlt0vdjcer4MiKAVtTJXjpILBD8uEETT3JycsJmqfP3cF5eHhOSspwnPVFHEQWCXnq+++475OfnM8EnE3VizTn+31966SVW85OHfkO5l3wuF38eSdTt27dPE+ai8CsQyjGkyV58G+ja8itRiMhEHd1jfPiVP49UloReLGks2Lp1K4CQ0OZrYaanp7Nzq+fU8YXDAf2cOqD95ZnaTG4pJeLTPajn1PH/VllZqQm/Op1OtiYwjxh+1XPqqP16Th3QLnIqKip0+6Uespw6embKRB3ti9pF911tbS2am5uxbds2AO39hiI4NNbw0EQJIHSfUVuiiTpZ+FXm1AHonqIuFTz66KP45ptvMH/+fF33IV4OPPBAXH311WhubsYll1zCBkrexbBYLCgpKWHlPtauXYvrrrsOpaWl0ll8VDCUBlR+uRveqaMLT6KutLQUtbW1TFgC4aKOiuFS3trYsWPxxhtvaL4LtL8tyZw6PmTMuyk8NpuNtfn888/HddddxwZdunkzMzNjFnU0PZwG1I8//hj/+c9/2O9o4GxoaGA5ROeddx6+++47Tb4MteHDDz/EF198wXIrMjMzcd5556GxsRHvvPOOJvxaWlqKxsbGMFGXlpYGu90Os9msG371+/2455578Mwzz0AGnRsSSuRUACFRR3kUkUTdEUccwc4V79TxYloc2Ggb8Th1tDyQuC0aTAcMGMBEHTl1vKgDQi8/sTp1tFoELzLKy8uxceNGwxMlSGjyqRbkgpaWljIRQW4LCUnRqaNt0jlxu92akg6RnDpxJnG08Cv9nUQZ79TRLD6Hw4FBgwZpxh/+HuaJ5NSJ4Vd6mIt8//33mlnxdDx8nlqk8OuQIUM0LzIkDqmkCQkF2rde+DUYDLIHMNDu1AGhQrp0bSPl1NEDlz93oqgLBoNhM+v5fkjnj6Itffr0YSWwqH1NTU2avKgtW7awPktt4EUd7+ZGc+qA9rGE2s7Phne5XCgpKYHb7ZYKJLp+/Eo4fr8fWVlZuPjiizFu3LiwfkvtovWf9cKvFouFPdP0cup4qqqqwvplNPHCh19dLhfMZnNEUUfQWEZpOXQOqbQL9Rt6qZItM0n3LRAa10RRp1eEXhZ+lTl1QMik2rp1a1j92v1O1KWau+++G/fffz/OPvtspKWlITs7W5Nbl5eXh0WLFmHEiBEIBoOacJjMqSNRRwNqZmamoZw6Cr3yS62Joo6f6r9r1y4EAgEmhGJ16vjwKy8uAGgmSqxZswY7duwIW4dPdOr4m2T37t3suHhRJ+bKUSI1wZcvIFEng3848zl6mZmZKCoqwoQJE7Bw4UKNqKNJKDTo08DEDzh64VcA+PXXX3Vn8VLIglwW/kbu168fO3f0cBInSgAh4XHCCSdo9ikO3EZFXbxOHYk3ADjkkEPQ2NiIsrIy9rk4qOXm5jJBLaLn1NH2eYcECM105526SCtKyEQd9cvS0lK4XC6NqNATdfzEDUDrfpFTFwwG8dFHH6GtrS3MqeOFs+jUiU6AuNwT/536+noEAgHY7XZcdtlluOuuu1gf1Is8RMqpE506h8PBjpFSBOx2O6qrqzWijn5nNPxKS9ERFOEgp47OP11TvfAroF1CiXfqduzYwe6baDl1JpOJfZdvpywk39DQALPZrLmGdPw0Tr/44ov4+OOPAbS/qDY2NmLt2rUYOnQo7rjjDtx1110RRR0vgCLl1NFYwIu6YDCIsrIydl6pjprX6w0bs/ntkiCuqKhgs19ffPFFHHzwwVKnjtpYUlKiWTKP3y7fh/Rmv/IEg8Gwl4xYwq9UaoWuhSynDgidN7r3XS4XWltb2XWg0i5ifnhWVpbu7Fc6Pj78mp6erluEPppTxz8LDjvsMABgBeepX8qupYgSdTGQkZGB2bNns46+fPlyzRpzfGeqqanRiDrKn+EFDa3XyIs6eiBRB6UCrkC7U0cdhp+BK4o6clJqampYAjGJQb2JEoSYUyeGX3noIRwMBlmSPw02dANFcupo/UcAbE09PVHHOz16ou6+++7Df//7X/b3cePGIScnB+PGjcN3330XNjt2yJAhmnwwh8PB3vjEZF8aVEnUyWa/AmAh3lWrVuGf//wngNB1vP3227Fv3z54vV4mGPkbmYQaf+5kTh0QqkFXWFjIzl28oi6SU0fboJxP/lh5p+6QQw4BECqvw4s9nvz8fASDQWkIln8RoZeEqqoq9rDjRV2/fv3www8/SJ06WfiVRF1GRga7P+lhvm/fPtjtdrjdbo1TFyn8SueZv/c8Hg/8fj9++eUXnHrqqbjjjjs0ol50PPiSJnrlWoD20iROpzOsLIzD4cAFF1yAq6++mvUlPaeOf/BGy6njw6933HEHHnvsMSbuZE6dOFFCL/wqijq6Z8mpFp06MfzqdrvZcfL5xLxTFwwGw0Tdb7/9xrbBh18zMjI054tPISGoTXRsvJNG7ePz1vgJWrStX3/9FcOGDcOcOXMwcuRI5vTLwq90fvn+wt/XolPH5y63tLSgtLSUiSin04nW1lZdUSc6dRR+5ceCBx54AJdffrnmdyQ2Vq5cqevU8esLG3Hq+M/imSgBhJ7NkXLqgNB9T5PAqI/TWE+iThwfW1tbI+bUiU6dx+PRTJj7+eefceWVV7JtAdqcuvLyclRVVaGyslITfiVHkQwGv98fVtFADyXqEmDQoEGa/C26AEBIdPCibseOHWFv5XRTyJy64uJilhBLnUoUdfxC8OLs11hEHYkZgg+/er1e9hYHhIs6Ejg1NTWor69HXV0dE2S826Qn6nbt2sWO32QysSLP4koRkZw6PowyceJEzcSTww47DKWlpTj99NPx448/snCzWPKEz6mj8yu+QfNOXXNzePFhXqBVVVVh/vz5uP7661FZWYkffvgBDzzwAL744gt4vV6kp6fDbrdrfsM7r/3790daWho7h+LAPH36dOzcuZPd5Klw6goLCzFv3jxWm4w/z7yoO/jggwGErgnlrYrQQ1x0MD/44AOWWM47dXxVfRJv6enpGDRoEEpLS6U5dbKJEnR8JpMprA4j9X2aDQsYd+po0KWFx/1+Pzu2Bx98EHv37tU8eOjPZrPZcPiVzhn/sihbT5O+ZyT8qufU8S8HdIwnnHACbrzxRiZgI4k6veLDvKjjj4PaTCVNRKdOFn6le0UUdfxxU2kgegk85JBDWMkO6h/l5eXIzMzUzPitq6vDgQceiM8//5xti9rE90XxPJIo4CepEBR+HTp0KPuM+otM1Ikz3oFQf+FfJvlzw4+HTU1NKC0t1bi71B6jTp04Fpx55pkYMWKE5ndUT27FihXSiRK0vCD1oUg5dbL2GA2/8k4dEBqrySGVrf0KaFdKot/RNdZz6mi2OQ8v6sScOq/XqxF1n376KZ577jn2jKHf0zW55JJLcM4552hqywJgRZtLS0tx991343//+5+h0CugRF3C8Cf6tddew6233gqgXdT5fD7cdtttrAyCTNTRW3JGRgaz0jdt2sSWRiGHikQdDXS8qNNz6qqrq6WijjpVTU1NWHiLd+pGjhyJH374IapTR4KWL1NCDwESdfwDgNi4caMmNEYFiGVOHVWGB0JvyHQMvFPHh1R4xowZw2ZQAtAkBFN4mZwivi2AvlOnF34FQuKlrKwMbW1t+PTTT9k1W79+PSsfk5eXFzYz7aijjgIQEnXr169nMxj5/RD8LEVe1JnN5phEXaT80wsvvBBerxdOp1Mj6vjZr+Tk7Nu3T9epowFVTFK//PLL8fTTT7P2RQq/9urVCz6fD5WVlZpCokacOgBhK6aQqLPb7ayfGc2pI1EXDAbD3voBYP78+ejfvz/MZrPGeSkoKIhapy6SqONn6YrnNlr41WQysWsthrtEp85kMrH9GxV1fPg1GAziX//6F3NPRKfu8MMPR1FRERMddF+LTh09HGlWp8PhYGEuoP0BSX/Py8tjbdi5cydaWlpYPTG6hjt27ECfPn00425xcTG2bt3KZpUDwNtvv4133nlH0xcJUdTxhZ6JXbt2Yd++fZrcZzoWo6JOdk5kTh1FSHinjtpD4yQ/XvAvHE6nU+rUyTCZTBg9ejR+/PFH6UQJCr/S+TESfuXbG89ECSAkTvVEHX2X7798G7KysjRF6Hn8/tDSY3zNXZvNpgkv8/mVHo8HeXl5TCSSiVBWVqZZUYLO85YtW/DNN9+wdvDk5uaitLQUjzzyCBYtWqREXUfBd77x48ezBZ2Li4tRUVGB3NxcPPDAA+jbty8TdZSEKTp1GRkZaG1txbZt21BbW8tqUfFv5zabjYmiaKKOpp+TqNuxYwdbnYI6Nb9UEJGWlsY67jHHHIM9e/YwN0VvogSJOnLqHA4HewukYqIyp66trU3jrEUSdUD722lxcTHGjx8PoF3ImUymsBmBBIUIv/32W+YIAu01k0RRR3kagH5OnRh+9fl8zDlrampi5/2DDz5gDyf+7fbQQw8NK03xn//8B9dccw169+6NgQMHhuXR6MG3jZ9mzyOKukAggE2bNhmq19irVy9Nbh3vkFACfFtbW8yirqamBmVlZTCbzazfiU4d9dWCggL4fD7m0uo5dXqijo6TBveKigqpqJOFX/WcOqD9IUwvTW63G9u3b0d2dja7FnwbopU0SbZTx7tworOrl1OXk5PD+hzlDeuJOnKt+fDrTz/9hKuvvhqLFi1i3+fHypNOOgnbtm3TJI3z51eWUwe0u+EkFqiN1Ffy8vJYH+Lr1gGhMaStrQ1bt25F//792TFnZmYyccZHV/72t7/hoYceiujUkWilc89fAxKTfB1SABqnzmazsXFSXAlEPCeRwq90rHxOHRASdTRG0WdWq1Uj8CgHjF40onH44YdHdOr4yTZGw6+xzn6ldvKT8WQTWvht8c8Gvg1FRUWsnzU3N2sEHDl1vOCKFn696KKLsHTpUixZsoRNnigtLUVLSwvS0tI0L1d8zrz4gp+bm4stW7ZoInVGUKIuQcScB4/HA7fbzZw6vjO43W42DR6QT5QAQuU6gNAsR6B9IKcJBQSJOsq5oaW8gPDwq8lkQl1dHQv9RBJ1QGgA79WrF5vRRXUFZeFXvm4eOXUej0cjVmXhVxJNvFiIJurIqSguLsZxxx2Hzz//HFOmTAEQerjpiZ/MzEy4XC788ssvbGYwoA2/8mFo/juRRB2/P7PZrAnHb9q0CUBo5i7/sKDjfv/99/HnP/9Z084+ffrgqaeeYgMLne9ooo4f5HJycqRvw7L1BisrK9k1jsT//vc/3HLLLZptnX766Xj00UeRmZnJ2hcppw7Qijqa3Uznnn5PoUyZU0euCv85L+osFktUUZednQ2r1YpgMBj2omTUqeMnSNFDeOfOnTCbzayGZWZmJhv0qQ29e/eOWtKE/t6vXz9YrVaNk87n1PHn1ul06vYRp9OJtLQ06UxKvZw6XsBFc+pIXNDs17a2NraiAl+PjV+lhG8/327qtxaLBSaTCZWVlaxEB6Av6vi6aGL0gMfv90tFHY0rYp3JiooKTX6nePwlJSVIT0+XTlahbYmRELfbzcp4mEwm9O/fHzabDYMGDQIQLs7FkKQs/Erjr0zU0TkSJ6EQFC6M5toTo0ePxr59+1h+sNhWejEQx0PCiFNnNPzKO3Xitgh6dug5dX379mUVHviyLkC7U6cn6vjwKzl1Z511FkaMGIGHHnqIibqysjLN80J2r8pEHe8cK1HXQfAnmrd5S0pKwqYp083NL1Ukhl+BkKjzeDzsJhedOtoXdbScnBwEg0G0tbXpijrKe9q5cyeb5UQlT2Q32Y8//oiLL74YOTk5GDx4ML744gu2XR6bzaYpM9DQ0MCWbOPFqijqLBYLOzexOnWtra0oLS1FQUEBJk6cyPajF3oFwHKqSkpKwgYAqoFGOXX8tQDak7n5QVXm1AGhAZLeCCnMU1ZWxpZzA/TDZDJidercbjcee+wxXHPNNWHf4UXd3//+d7z22muaQtqRKCoq0vRlq9WKfv364eabb4bJZGLni+rUAdC88dLDhs+p450GXhTq5dSRU0cPS1mduoyMDLS1tbFwHi/qBg4cCIcjtOA59Rl6UYo1/Mo7FHS8lB9KeUiZmZm49NJLccYZZ2hCwGJOXUtLi0ZsU1suuOACLF26NKpTN2nSJMyYMQN6mEwmeDweadI9X3ePPh8wYIAml+rII4/EsGHDcNBBB7HP6Hr99ttvrPI9zWQFwIpE86KO3x//4JU5deRm0AoxBI15eqKOwq+iU0djbHl5Ofbt26cRdfy9Loo6SmSP5NTxIsyoqOO3MXToUFRVVemKOj2njhd1JGDpBVQWfuVni/NkZWUZDr8CwIQJE9g2xbHsoosuwo033ohp06Zh/vz5YUuF8m3jSWT2K9B+/S0WS9iYTIWF+f7L9yl6aamurkZLSwv69esHl8sFh8Mhder0SpoEAgFWvHvKlClYvXq1RtRR3jZtQ0QWfqVSK4ASdR0GXVC+M1Hlc1HUUUcgUUfh1wEDBsDtdrOQzooVKzB8+HDWwcWcOqB9pmjfvn2ZKGpubtYVdZSrRaKO6gk1NzdLbzI+/HLkkUcy10nm1AHaMgM7d+5EVlYWS1rOzs4OK2nidrvZgBCrqNu7dy+CwSB786L2RxJ1QLuzKRYnDgaDCAQCGuHGf8dkMiEnJydqSRMgNKhdffXVAEI3OeXTUBFXILWizuVyYfLkyWEJzrSNlpYWlJeX46abbsKcOXMwbNgww+3h+7o4C4seRLxTxz8InU4ny4cjeFHHO3ViTh3dN5RTR/BOHc2spX3+/PPPbJYpncMZM2bgp59+gsViYcesF3796aefcO2117JUCTH8Kjv2nTt3wuv1slB/ZmYmbrzxRpxzzjkaUVdbW4uGhgbNw4EXkdQWn8+HI444QvNglDl1J5xwAl544YWwdvFQXiQhOmZpaWksb+2xxx7Dyy+/zL47aNAgrFmzRnM9TSYT7HY77r//fsycORMAWPgVAH744QcAIafLbDaz+0T20JY5dUCo7+/du1dzL9J4SvXtqN9Q28ipa2lp0Th1lA9KuU79+/cPi5AA7UKMnxVaWVkZMaeOPy/8vUT5VHqijn9I87OO9cKvMqeO/qwXfvX5fOz8yvZLxxpL+NXn8+G0007T7IeYOHEizj33XBQUFODcc8+V/t5qtbIxhH8xAxKb/cr/nefMM8/EggULMG3aNPaZ6NQB7fUj8/LyUFFRgfHjxzOnzuPxsD5stVoxbNgwjBw5En379tW0la5/3759sWvXLhbWp/CrnlMnqw+Zm5vLBCl/zNFQoi5BZFPP9UQd3VQNDQ0IBAIs0XTw4MGoq6tjouPHH3/E8OHD2TZlTh29Za5atQqzZs0C0L50FdAu6ioqKrB3716MHj0aZrOZiTqbzcY6luxG4OHLN8hy6oBQwie1d/v27cjKysIpp5yCNWvWwOfzhTl1/PIusYRf582bF5bwTsno0UQd3bz8G5HoGNAxiANrTk5O2ESJtra2sJvzz3/+My655BL2d8qZi1fURbLreXinLtK2Wlpa2IMNgKHQq7gPWVvofOmJOsod4kWduDIAfa+uro65bvRv06dPx8SJE6X1FOkaUqkKADjuuOPwj3/8QyPqrFYrm3wkOnVi+HXv3r34xz/+oVnZhT8HPJFEHUFtoLBtfX09y6mjvxO0VjSF//kXB5lTZwSv1yt16vjP0tPT2d+NlE6gNtA5ovArQa4q31bxmgHa/sR/breHVnfh71e+uC7vDNJsVofDocmpI/eLwv9UDFgMvxKU+0rfpyhEpNmveqJOz6nTc8zoe0adOr6kyK5du5gLzf/GiFNHOXVGw68A8Mc//hFA+LrGRnE6Q8X4xTbFO/uVr2YgYjabMX36dE2f5r9Hz5OqqiqWCmK329k4T5OA+PFv6NChWLlyJXP0xJeWvn37oq2tjUWwKPxK3xPPs2zVD3GSiRJ1HUQkUScWFOQHcHIpZOUGKisrMWzYsDBRxycV081E9ZEAuVNXWlqKQCCAoqIiDBo0CL/88gsTdWJH1IMXS3pO3datW5m9TaLObDazh6go6igE5nA4NAmsoqjjK+kDoXV9+fNMFBQUsAFcDxJ1olPHH5ss/Apoi0za7XaNCBDhf0tOHR8KikXUURhKth8ecZCTwYs6k8mExx57DNddd53hthgVdXR8/MPJbrdHFHW8U0chC/48LliwAEceeaTmM/EBxq9dWVdXh4qKCrS0tEgHQ17UyWa/EuRQNzY2wmw2a479rrvuwimnnMLWdi0pKYHH48GwYcNgNps19z454/zkJt6p4/PqaA1Pgr/2FFaO5mTIjlfm1PGf9e/f39CkGULsB7xTN2LECBx44IFhZTIihV/F0Bl9LnPqSBTQ/nJzc9mEBD6n7thjj0VaWhpz6tatWwebzYbCwkJp+LW1tRVpaWnIyspibaytrdXNqaurq5OKOpvNpuvUUQFumtlO8O4ajyh0aH9UQgMIvVDk5uZqViGh9ogTJWROHa2MYVTUnXDCCVi/fj1OPfVUQ98XIVEer1Onl1MX7VlG8N+jPk+5rtSnSNTR/ci72jxpaWn497//DaC9vJN4H0Vy6jIzM6Xr84prbhu95yM/KRRRoTCETNTV1dWFTZQAQkKFhBr/gOdvtoMOOkgj6mw2m2bWDD9Q0GcyUUccccQRGDduHJYsWYLDDz9cIxQiCQEgsqijv5eWlmLs2LH45ZdfUFxcHPbmYbPZNEKNwq9U9oGQOXU0YxcIVWsvKirCX/7yF42oW7ZsmfRth0cv/ErwOXVigu+DDz7IbuZoos7lcsFisaC1tRUDBw5kf/b5fKiurg6bMRYN3lXVIxanbt26dejfvz9uvPHGmNohOgU8svArFWMlByAzM9NQTh2dW9mEC5lTxwsl/rrRviKJOnK/eVHH16ratGkTxo0bx5bm4t/27777bvZnKh/k9Xrhcrnw0UcfsYlOtB+Px6N5+45H1PHbiwWv16txA2UPz6+//lqaA6WHmH/GO2ennnoqKx8kE3Wy8Ks4DtHv+PuaF3Xnnnsuxo4dCwC45ZZbcP7557PttbS0YPfu3TjnnHPw0ksvwePx4N1338W6detQVFQEs9mMU045BX//+9816+xS2+666y5s2rSJpVKIfVFW+ggAK1eUn5/PSuaI1+/+++/HpZdeirPOOkvzOd27svCryWTSzPQ1m82suDAQcur4maa8qKPrHimnjiYfxdKv6IU9HpxOp0bExzr7la9dCcQu6mw2G8xmMwKBgCb8yk/astvtKC8v1zh19BwWueiii3DhhReyv/PRrbS0NJSVlWlSmvgx9OGHH9akIBH8qit1dXXKqetIxBpMNMOttbVV16mjPDnRzSBEUSfmU/C2N/2bnqgbOXIk8vLyMG7cOKxevZrVEzMafuWn5MsmShB8mQeZqBOduosvvhi33Xab5ntUq4/ecoPBICubAIRKthx22GG49NJLNTdXr169onZ6mVMnOgZ6Tt3o0aMxcuRIAFpRJxNbJpNJk7hNoRxy7WJx6mh/seTU6cE7dfRGGQuRZuLyEyU8Hg9MJpOmlIfdHlrVIZpTx7dLvAYApDl1/MOF/40RUScLv/74448AQueUd+oi3Sdi8dmTTjopLPyanp6uEXVUpw6IXdTF6tT17dtXuswXvx2bzRaTqBOhgqlASNTRGGXUqdMrGqsXfn344Ydx5plnAgiFSymP1GazsVI5ffr0wcyZM5mLv2HDBhYCz8nJwQ033BDWPxwOByZNmoTTTz+dfSb2Rf5FlO+TEydOxKxZs1hBa9n9OGLECJx99tlh4iA9PR1paWlhYTe6j+j7/KxS6m+7d+/W/E4WfqXrK3PqKKfTqFOXKLRakejUGZ0ocfjhh+M///kPS2+JVdTx+XxkWhhx6iKNwyaTiV2jjIwMNj4NGDAgbKIEv52xY8di4sSJYduj63nooYey9hhBibokQNO4icmTJ7M/RxN1ek5dUVGRYVGn59SRzX/SSScBCC2ZFQwG8dVXX8UdfhUHIr7NvKgT7WSxTp3b7cZJJ52ECy64QPM9vjwEwa89C2jDrrFgJPyql1MnHkskp47/fU5ODhN1lGsVadsyLr30UulNzxNrTh2/eoVRyJWWDWy8U2c2m1m4jxd1RnLqTj755LBtyvYDaPOzKFTBX1val2wwFCdKUM6cxWLB5ZdfDofDoZkgRE6dHrIVBXgcDgfS09Ph8/k0eTWynLpff/1VE75JhlP3xBNPsJUVqD38/5OB2+3G2LFj8eabb2LcuHG6oi4tLU3Th+J16vSw2WxhNeLo+yUlJWFhLfFcyvYru2ep3TRRBAgVOX/66acN3Y8iTqcTS5cuxe9+97uwz8U20nmg/tbS0iJdMYEXdZS+I3PqiFj7Vbw4nU5N+DXWnDqz2YypU6dqRBQQPerEw+dlpqena0oNURvEnLpoL9cEv4LN0KFDUVpaqsmpS0tLYy8GevUllajrRERRl5uby1wdmYC44447mJjRE3V8bg+FX4F2AScLv/ITJSwWC4499lgcc8wxuOGGGwCE3hjy8/NRV1cXk6gTB0GeRJw6Gbyoo20kS9RRmI5vm9GcOh6joo5KfZCoGz16NBYsWBCWSxONhx56CMcee2zE71C7o4m6uro6bN26NS6nDgALQYjwOXVAaKDi18KUTZSQhV/5AU52DfjJE/wAS5Nt4nXqCIvFglmzZqGxsRGDBg3CV199hcMPPxxbt2415NTphdYvvfRSzJkzh82kpn2LTl1DQwO++OILnHLKKZo28fChOKPQA4yQ5dTFS8b/r0NJ9eR+//vfw2Qy6Yo6UVToOXXRcur0sFqtLC+TfsvvM5qo413vSC95mzZtQk1NDY455piwfxNLxRhlzJgxYfeX7JyJog7QVhGQOXV0z4jHy6940ZFOnSynLjc3F263WxO+NEKsTh21ga+lSuFX3tmMxakToWMYMmRImFNH2weii7qioiJWwN8IStQlATGnDggtE3T88cdrQkM08G3YsIE5ADJRx+duAfE5dRaLBQUFBVi6dCl7gzOZTCyPatWqVbpvyCKRQjJ8R+vbty97c4ok6sTwEg8NnsXFxUwM1dfXa0SdWKHdKBkZGXjllVc0b8LiLDy9nDoeu93OBImeqMvMzERWVhbS0tLYcWRnZ2P69OkpGTiNhl937dqlySOJZz/RJkoAoYFK5tTxOXWy8CsAXH/99QDkrpdYkJigF4pYRR0/oxzQXs+BAweipKQEK1euxHfffZeQUzdq1Cj8/ve/B9A+WMtE3f/+9z80NTWxgtpA+P3Hh+LiJZlOXb9+/aSzIPVEnfjg1UsDiRZ+1YPq2/FtiEfU8fuTPXj79eunK+Ljcer0cDgcuk4df95pZRdA7tTR8lTiNedd+44SdZSWIjp1GRkZqKmpYe6UUeIRdU6nUyPq9Jw6KsGl90KrB5U7KSoqQnl5OauFSlitVlZKSIbH48HUqVNx/PHHo6CgwPC9qkRdEhCdOiB0o/zvf/8Lu+nFTifLjSOFT+Gu8vJyTbhI/B0v6sji1Rv0b775ZthsNkyaNMmwUxcJvpPn5OSwdsXr1PEhBBJDFKom4nXqAOAPf/iDtHYgtdGIU8fnYOm9uWVkZDBHho4pklBMFKPhVxI6sU7W4PcTKfxK5+/aa6/F9OnTNZMryKmjxHRZ+BUIFUYuLi6WvkxYrVZNTS+CRB1/H0YKv4qzXwlR1BH79u2LKacuEpFE3UcffYQBAwZoCqWKLw7JEGJDhw7F6NGj435BAoAXXngB77zzDvr16yftd7K6aLz7RaQi/EqlSeg689+PViqC/zvtL9aUiXidOhknnnhiWM03ahffVl7UZWZmstw7vr6azKkzm81sjOqo8Otzzz2Hxx9/HC6XKywcz+crGoVWXknEqeNLmgDtJXXIhDCS28xz+OGHY/jw4cjNzUUgEEBpaWnY7G5+aUkRk8mE//znPzjiiCPwyCOP4KqrrjK0XyXqkoDD4TDcmfgHGaB9C6fBjn9LcTgcCAaDLK9NFn4VJ0pE6ngWiwX19fV48cUXkyLqxAHQiKgrKyvTFTi5ubkYNWoUAP31QhMRdSJG69TxGAm/HnnkkWxtWhKn0WbnJoJRp47OZbwPG6Ph1yuuuAKTJ09mrpLFYkHG/1/bmM4dpQHwvwMir+ELhASU2H5KdzBa0y1S+JU45ZRT8PTTTwMI9cFEnDoePvxqsViQk5ODBx98EGvXrsXWrVtxyCGHaAZ6sY8l48F7wAEH4Icffohb3APAJZdcgrPOOgsDBw6U9m2jTl0s4dfc3Fz86U9/wnHHHafbLqvVykq/UBv4a6zn1Mncy0hOXSSS6dRNmTIFDz30kOazaKLu1FNPxbJly5CRkRHVqQPa759Yw/rxkpWVhczMTGloOV5oKUijyESdOFGCxpBYc+oAYNasWfjhhx9YH6yqqgpz6oz2qylTprBrFA0l6pKALPwaDx6PB3PnzsXcuXPZZ7RdeqOmThEp/Bqt45GTZ3T2K6D/9sS/1fA3iThRgvIT/H4/tm/fHrGm3BlnnAGgfUAld4namYi7IGs/HZvNZkPfvn2RkZEhnWJO6Dk7PDfffDOrXUQCpSNEXTSnjoR1vEVDjYZfCQpvmkwmdvzkotTW1rKXlVgGy4yMjLDBe9q0afjggw/CksypDSK8860n6txuN6666irW7kRy6nh4pw4APv30U5SXl2Pu3LmagrKyNgHJndyQDO644w785z//CftcJuouuOAC/OUvf9F8Lxanzmw24+GHH9aUsRHhryfdD/y6s3qijvqiKOpk4c9oJFPUyZCJOt6BtFqtbPk/caKE7FhIJJMY7ihoFZNk0KtXr5jGWK/Xy14YqNyU6NSRCUMOcyzhV3oxo75QW1sbllMX68uCEVSduiRwxRVXxGzPz549G4sXLw77/KKLLtL8XRR1RnLqjD4gY3HqfvvtN2zYsCHsc9p3dna2JjlaPB/k1G3evBnBYFATXhI57bTTcPfdd7OHP4m67Oxs7NmzJyx8kgg0tb2urg5WqxUHHHBAmDMowg+KRs71lClT8M9//jPqiheJQCUzIk1q4duabFHHz34V20XnixyqsrIy9OvXD7W1tSgsLMTWrVtjGix9Pl9YaNZkMmHKlClsWZ20tDT252g5ddFEOlXcT5ZTJ4q6kSNHon///qiqqkJ1dXXYQJ8Kpy6ZZGdnS4unykTd6NGjMXr0aM33YilpYgR+e/y5czgcaGpq0g2/FhYWYvPmzWHRh1jHdto3ENtszFiQiTq9MB4v6jwej1RI3HTTTejTpw+OPPLIFLRWH36yRKK8+eabMTnPjz76KBtHMjIysGbNmjCnjohnogTBL/cprp8dT9+KhhJ1SYCKXsbC/fffj/vvvz/q9/REnWz26/z58/Hxxx8bvkmMTpQAQvlFfI4RQR2fX5ORL9vAf6+5uZkJw0iFK0eNGoW7774b06ZNw4IFC5jIIscrkVpaMpxOpyYUGA0jTh2Px+NhRUxThdlsxpo1ayIKR35ASiT8GqtTR+eLHqY0M5GKc8c6WPp8PlauRyQtLQ0jRoyAz+fDN998w9ogYiT8SmRlZWHz5s1Jy6kjccu3i8I/kUSd0+lEY2Njl3Pq9JCJOhl6EQO6LvGKOvHFxel0oqqqStepozGWP7+HHHIIK48SCx3l1BkZs/jw6+uvvy49nxaLBeedd15yG2mAK6+8Escff3xSthXrjFmxJqZsogThdrvh8/niehnmRZ0spy7ZKFHXwcyfPz+mt4lYnLqFCxcCCJ9YoEcyJ0rQg8rj8UgHDXLqNmzYAK/XG9FRMplMuOuuu9iDm5y6m2++OWJYNF5I1BoVdfygb0TUdRRUVFUPXjjF+3bscDikofh+/frh/vvvD8t14meX8k4d0B5+pbWBjXLhhRdqFroW+fnnn/HEE08kTdTJymKIJOLUAe0PlUjhV6/Xi8bGxi7n1OkRq6iThV+tVmvMfZW2J46zFEYVH8x0HWTh1+uuuy6mpfSIZE6UkME7dYMGDWK1SGXwEyUiRUg6g6KioqjjVkcgK2kiOnV/+ctfwnLijcAvN6fCrz2QWN+GqEOIEyVks2ZjJRmijjopP8U+kqj77bffcNBBBxkqyWA2m+FwOJio69evX0rCA3T8RoUFPwh1VGJxMuAfnvHMMAMQFjojTCYTZs+eHfY579S5XC64XC7m1NXW1sLj8WjKLhjByD3ECwEjxYcJmQtspFwC9Xkj4ZSRI0di+PDhmhebjIwMbNmyBTU1NWEDPbXJ6/Vi7969Pc6pixR+zcrKirl8i55T53A4kJeXF7a9vLw8OBwOVhw8GaK5I3PqZGkxPLxTp5BDoo5filN06goKCiJO4NKD+nVDQ4NmnDv77LMTWmpNjx5xlVesWIEbbrgBZrMZ+fn5mD9/frd62EbCSPiVqlMHAgGcdtppuPzyyw1tO5aJEnrQTUCDzJVXXsmcGB6bzYa2tjasW7cuprdFl8vFRF2qaiiRADDaZ2g5IqB7DZSySTax8te//jWm74t14HJyclj/qKurg8fjQWFhYdInkfB9WvaQJuHEJz+bzWap2KW2RRJTJ5xwAt566y1DrsOgQYOwevVqzWcZGRnYtWsXgsGgbviVhOj+4tT17ds3rodeJFEnc/3y8vJQVVWFLVu2sO8lSmdMlNBDtjSVQktWVhaCwSCCwaBU1CWS9yfWQiXuuuuuuLcZiR4x+7V379745JNP8NVXX2HgwIFYtGhRZzcpaTgcDs16gHoDFn0+YcIENns0GvSwSDRRlRd1xx13HKZOnSr9DgCsW7cu4sxXEbfb3WGizuj2oy3h1FWhASVVDxoZ4kSE3NxcjVOXnp6OhQsX4u67707qfqM5dfn5+ViwYAEmT57MrnukQtJA5Ie91WqVzrw1is/nw969e9mfeahdvBDtDiTq1N1yyy34/PPPY96vXvjV6XTqTrKy2+3svkjG+U11+DU3NxdZWVkRZwETyqmLjjiBAQh36uKF79cdcQ16xFXmLVGr1dqjOq/D4UBBQQELwfTr1096M9tsNunMrkgkI/wKAJMmTcLYsWMjfocG7qqqqphKkrhcLjZRIlWijo4/lnX9iO709psMpy5Wzj//fFavD9A6dRR+jZRfGS90TS0Wi26oefr06QDCV3IRMVLSJFH4sK1eTp1Y4Lmrk+hECT3nNBp6L75HHnlkxPHRaHuNkGqnzmazYc+ePTFNlOhOY1VHw0cKku3UUa3OYDDYIdeg56gfADt27MDixYtxxx13SP+d6qQRRicUdCZOp1NTbHfgwIEoLy8P+x51xFgekMkIvwLA22+/HfU7YgjOKOnp6ay0SaoeZi6XC1arNabcnQMPPBBbtmzpVi8QneHUTZgwARMmTGB/z83Nxfbt2xEIBFBfX59Q8dtIUJ820meS4dQlCi/qooVfu4tTJ1tRQkYss/CNoCfq/v73v0f8XSqculSVNAGMj4dK1EUnklOXlpaWkKFANRIbGxuVqBMpKSmRhvbee+89WCwWnH/++Zg7d67uiXvggQdwzz33pLqZSeX6669nVa0jEY+oS5ZTZwT+pojFTfR6vSzXJZVOXaw322GHHcba1V3oDKdOJCcnBytWrEBdXR2CwaCh2aLxQA/TZIq6jnLqooVfu4tTZ1TU6YVf44W2F+sLg81mQ1paWrfIqYsF6j/d6QW0o4nk1LlcrqSstdzY2KjCryIFBQVYsmRJ2OdtbW0466yzcOedd0ZMwp89ezZuuukm9veampq4FzbvKKgqeDTEWmBGSFZOnRH4gT0Wp87r9aY8/OpyuWLe9rPPPotDDz00qUuWpZquIOoop45eVFIxpR+Izamj7+gNuEYmSiRKpPArP/s11e1IJrQeZzRh4/P58Nhjj+Hkk09O2n6B2Pu5yWTCqFGjkjIjsSuJOuXURYcm0fAzVGlcSMY1dDqdqKysVE6dURYuXIhly5ahtrYWc+bMwVVXXcXyZXjEpO2eBImSWERdssKvRkjEqZNtI5nEI+pycnJw5513pqQ9qaIzwq8iOTk5qKioYEJdOXUhSNzyq7IQ3XX2KwB8+OGHmtniMkwmE2688cak7TNepw4Avv/++6S0IdUTJWJBTZQwRlZWFhoaGqROXaLEmredCD3iKs+YMQMzZszo7GZ0KjabDR6PJ6YHD60BmyqxxEP7MJlMmgW6o9ERos7pdHbIOehsuopTFwgEWJV+5dSFIKfO6/WGTQ7orrNfAeDYY4/t8H3q5dR1JNT/OrMNhMPhgNvtjilCsj+SnZ2NXbt2hYm6ZDl1gBJ1ihiw2Wwxr4lqsVjgdDoTzhcwAr9GbCzLfPEP/VQJr5NOOinpS491RbqKUwcAmzdvBtA9nLrevXtjzpw5SVvOSAaJOpnI7a45dZ1FV3h5Ofroo/HPf/5TsxRVZ2G1WrFx40bk5+d3dlO6NPTyJoZfk+nUqZw6hWFsNlvMpSHiWYInXsSlooxCD32z2Zwy4XXiiSfixBNPTMm2uxJd4WEnirqu4NRFE3Umk0l3Rn2ycLvdSEtLk4pcaheFE7uTU9cZJBJ+TWYbUr3ecyx0p9zfzkJcT1c5dYpOxW63xzyIkVPXEcST8wdol3NSJEZXcOro+m/evFmaP5YsbDYbzGZzUsKvHYHJZILP54vo1LlcLqSlpSmnLgpdIfyq6H50hFOnRJ3CMDfddFPMnW/EiBHYvXt3ilqkJVGnTj3IEqcrOHWZmZkwmUzYvHkzPB5P3GvQRsNkMsHpdCbFqesoMjIypKIuJycHNpsNhYWF+Otf/4pTTz21E1rXfegKTp2i+6GcOkWX4vTTT4/5NxdccAEuuOCCFLQmnHhKrgDKqUsmXcGpS0tLQ3Z2NrZu3ZryHB+Xy9XtRJ0s/FpYWIiqqio4nU7cdtttndCy7kVXeHlRdD9Epy6ZJb9UTp2ixxGvU0fOhRJ1idNVHna0VFiq8ukIo05dVwi/AiG3XS8vtqPSJHoC/fr1g8fjQe/evTu7KYpuhOjUmUwmzZrAiUB5sMqpU/QYVE5d59MVnDog1AfWr1+fspmvRHcLv86cObNT999TGDx4cLdYAlLRtRg0aBDcbrdmXLLb7SqnTqGQ4XA4kJubi6FDh8b0OyXqkkdXcuqA1M18Jbpb+FWhUHQe48aNw759+zQiLj09PSnjlAq/KnocFosFJSUlMSfGK1GXPPLz82G1Wjs9LEVubaqduiuvvBJ9+vSJ+j2LxQKz2axEnUKxnyO6cm+//TYGDBiQ8HaVU6fokcQz01GJuuTRv39/VFVVdVhtQj06yqm78sorDX/XZrMpUadQKDQYXXs9Gh0p6lJTT0ChSBI2mw0Oh0OJuiTR2YIO6DinLhaUqFMoFKlCiTqFgsPr9ao6dT2IjnLqYsFutytRp1AoUkJH5tQpUafo8ni9XuXU9SCUU6dQKPYnlFOnUHAoUdez6IpOnRJ1CoUiVShRp1BwKFHXs6ACu11J1Knwq0KhSBWq+LBCwXHnnXcqUdeD6NOnD1566SVMnjy5s5vCUE6dQqFIFapOnULBcfzxx3d2ExRJxGQyddiaw0ax2WxIS0vr7GYoFIoeiKpTp1AoFB3I7bffjvz8/M5uhkKh6IEUFRUhOzsbhYWFKd+XKRgMBlO+ly5KTU0NfD4fqquru9RMPIVCoVAoFIpYURMlFAqFQqFQKHoAStQpFAqFQqFQ9ACUqFMoFAqFQqHoAShRp1AoFAqFQtEDUKJOoVAoFAqFogewX89+DQaDqK2thcfjgclk6uzmKBQKhUKhUMTNfi3qFAqFQqFQKHoKKvyqUCgUCoVC0QNQok6hUCgUCoWiB6BEnUKhUCgUCkUPQK39qgNNolAoFAqFQqHoCkSb2KlEnQ5lZWXIy8vr7GYoFAqFQqFQAEDUteqVqNPBZrMBAHbu3BnxBCq6FjU1Nejbt6+6bt0Mdd26J+q6dU/Udeu+eDyeiP+uRJ0OZG96vV7V6bsh6rp1T9R1656o69Y9Udet56EmSigUCoVCoVD0AJSoUygUCoVCoegBKFGng91ux1133QW73d7ZTVHEgLpu3RN13bon6rp1T9R167moZcIUCoVCoVAoegDKqVMoFAqFQqHoAShRp1AoFAqFQtEDUKJOoVAoFAqFogegRJ0Ot9xyC8aPH4+ZM2eiubm5s5ujEKitrcWYMWOQnp6ONWvWAADeeOMNHH300Zg4cSJ27twJAFi7di3GjRuHo48+GosXL+7MJisArFixAuPHj8eECRMwbdo0tLS0qOvWDVizZg3Gjh2LCRMmYMqUKairq1PXrRvx+uuvIzc3F4AaJ3s8QUUYK1euDM6cOTMYDAaDf/3rX4Pz58/v5BYpRFpaWoL79u0LXnjhhcHVq1cHm5ubg0ceeWTQ7/cHlyxZErz88suDwWAweOaZZwY3bNgQrK6uDh599NGd3GpFcXFxsL6+PhgMBoOzZ88OLly4UF23bkBzczP789133x18+eWX1XXrJrS1tQV/97vfBUeOHKnGyf0A5dRJWL58OU466SQAwMknn4xly5Z1cosUIhaLhb15AsDGjRsxbNgw2Gw2jB07FqtXrwYAFBcXY9CgQfB6vcjOzkZZWVlnNVkBoKCgAC6XCwBgtVqxYcMGdd26AVarlf25oaEB/fr1U9etm/Daa69h6tSpMJvNapzcD1CiTkJVVRVbOsXn86GioqKTW6SIBn/NAKCtrQ0AEOQq9qhr2XXYsWMHFi9ejHHjxqnr1k347LPPMHLkSHzxxRewWq3qunUD2trasHDhQkyfPh2AGif3B5Sok5CZmYmamhoAoZsgKyurk1ukiAZ/zQAgLS0NAGA2t3dxdS27BjU1NTj//PMxd+5c5OXlqevWTZg0aRJWrVqFqVOn4quvvlLXrRvw6quvYtq0aey6qHGy56NEnYSjjjoKn376KQDgk08+wdixYzu5RYpoDBw4EGvXrkVzczOWLl2KESNGAAiF+zZu3IiamhpUVFQgJyenk1u6f9PW1oaZM2fizjvvxEEHHaSuWzfB7/ezP/t8PqSnp6vr1g1Yu3YtXn75ZZx88snYuHEjnnvuOXXdejhqRQkdbrnlFnz33Xfo168f5s6dC5vN1tlNUgiceuqp+Omnn1BUVIQrr7wSDocDTzzxBBwOB15++WX07dsXa9euxRVXXIG2tjbce++9mDRpUmc3e7/m9ddfxzXXXINDDjkEAHDVVVchGAyq69bF+eCDD/DII4/AbDYjNzcX8+bNw3vvvaeuWzdi9OjR+PHHH7FgwQJ13XowStQpFAqFQqFQ9ABU+FWhUCgUCoWiB6BEnUKhUCgUCkUPQIk6hUKhUCgUih6AEnUKhUKhUCgUPQAl6hQKhUKhUCh6AErUKRQKhUKhUPQAlKhTKBQKhUKh6AEoUadQKBQKhULRA1CiTqFQKBQKhaIHoESdQqFQKBQKRQ9AiTqFQqFQKBSKHsD/A3GfBDhys/9lAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3gc1dk+fK9Wu6uVdrXSqrp3G4wLBmKbYnAKYAihmhJCjwktgQTMm5jwhpIfmADBhBBaqAGS16bXgOkYjDEugLtxwZItq2uLyvb9/tD3HJ05OzM7W6SV5HNfly5b2tmZMzPnPOc+91OOKR6PxyEhISEhISEhITGgkZfrBkhISEhISEhISGQOSeokJCQkJCQkJAYBJKmTkJCQkJCQkBgEkKROQkJCQkJCQmIQQJI6CQkJCQkJCYlBAEnqJCQkJCQkJCQGASSpk5CQkJCQkJAYBJCkTkJCQkJCQkJiEOCAJnXxeBw+nw+y/rKEhISEhITEQMcBTer8fj9cLhf8fn+umyIhISEhISEhkREOaFInISEhISEhITFYIEmdhISEhISEhMQggCR1EhISEhISEhKDAJLUSUhISEhISEgMAkhSJyEhISEhISGhg3fffRf//Oc/c92MpJCkTkJCQkJCQkJCB8uWLcMjjzyS62YkhSR1EhISEhISEhI6iEajCAaDuW5GUkhSJyEhISEhISGhg2g0ikAgkOtmJIUkdRISEhISEhISOpCkTkJCQkJCQkJiEEC6XyUkJCQkJCQkBgEikYhU6iQkJCQkJCQkBjqkUichISEhISEhMQgQjUYRDocRi8Vy3RRdSFInISEhISEhIaGDaDQKAP1erZOkTkJCQkJCQkJCBXV1dfD5fIhEIgDQ7+PqBgyp8/v9mDVrFhwOBzZu3Kj4LBKJ4JJLLsGcOXNw3XXX5aiFEhISEhISEoMJ5557Lv785z9LpS7bsNvtePPNNzF//vyEz9544w0MHz4cK1asQGdnJ1auXJmDFvYPxOPxfu/zl+g7hEIhtLW15boZEhISEgMSHo8HXq+XkTqp1GUJ+fn5qKioUP3siy++wAknnAAAmDdv3gFN6u6//34cd9xxuW6GRD/Bww8/jGOOOSbXzZCQkMgB9uzZk+smDHhEIhFEo1Gp1PUlPB4PiouLAQAulwutra2qxwWDQfh8PsXPYMPevXvlQJZgqK+vR11dXa6bISEh0cf49ttvMWbMGNTU1OS6KQMa4XCYETtAKnV9gtLSUkbQPB4P3G636nGLFy+Gy+ViPyNGjOjLZvYJBkotHYm+QTAYRHt7e66bISEh0cdoaWlBPB6H1+vNdVMGNIjQyUSJPsTs2bOxfPlyAMC7776Lo48+WvW4RYsWwev1sp/a2tq+bGafIBKJSFInwRAMBhGJRBAKhXLdFAkJiT5EOBwGABljnSEikYhCqevv8+uAInUnn3wyli9fjssvvxxPP/00rrjiCgDAz372M9TW1mLOnDmw2+048sgjVb9vs9lQXFys+BlskEqdBA/qCx0dHTluiYSERF+CFnJERiTSg0jq+rtSl5/rBqSCt99+W/H7JZdcAqA7ieKZZ57JQYv6H2h/ung8DpPJlOvmSOQYPKkrLS3NcWskJCT6CqTUSVKXGcLhsEyUkMgdqOPRgJY4sCGVOols4+abb8aGDRty3QyJJCClTrpfM8NAU+okqRtkoGDO/r6akOgbDFRSt2/fPpx77rkyFrCfIR6P484778R7772X66ZIJIF0v2YHYqJEpnPrsmXL0NLSko2mqUKSukGGgSIRD3TU19fj2muv7fcGc6CSunXr1mHZsmVoaGjIdVMkOLS3tyMej0tPwACATJTIDrKp1EUiEZx77rl4+eWXs9W8BEhSN8gwUNKuBzpWrlyJv//979i3b1+um6KLgUrqSGWg/izRP0DlMaSC2v8xWJS6v/zlL3jggQdydn2xTl0mgklXV5fi396AJHWDDFKp6xsQ2ejvW3BJUpc93Hbbbdi6dWuum5FTEKmTSl3/wptvvokPP/xQ8Tee1EUiEcTj8Vw0LWO8+eabeP/993Ny7Vgshng8rkiUyEQw6ezsBCBJnUQKyMTvHwqFcNVVV2nuyCHRA3rORp/V3r17MWzYMOzfv783m5WAgUrqiDT0J1J36623Yt68ebluRk4hlbr+ifvvvx9///vfFX+jMRQKhVBdXZ0zYpQp2traciZSkP0hFyyQGakjMtebnjRJ6gYZMlHqvv/+ezzyyCNYs2ZNtps16EAG0yipq62tRV1dHXbv3t2bzUrAQCV1/U2po3HV393tvQ2p1PVPhMPhhJ1jaAx1dXWhpaVlwBbb7w+kLlslTUipk6ROwjAyWU3Qd+QqPDlSVero+GzuN2zEnZJrUvfoo4/immuuSfl7eqQuGAz2qvtCDf1ROcwFqP9KG9G/EIlE4Pf7FX/jlTr+395uR7YJWH8gddlKlJCkTiJlZLKaoI7WlwNo+/bteO211/rsetlCqjF1ZGCzRerefvtt5OXlYdeuXbrH0bvM1f6vX375JT799NOUv6dH6o499liUlJRk2rSUIJWpbqSr1P2///f/8M9//rM3miQBdVInkrm+6MM33XQTzj333KydjxZwuSJ1fAFnqdRJ5ASZxNSR+tGXA+iJJ57Ab37zm6yd77e//S3++Mc/Zu18WkjV/UrvRTS86eLbb78FAJx++um62W25VuoCgUBa/UlPGVu9ejVCoVCfupN4lWOgBpxnA+nG1L3yyisDNqZrICASiWi6X0XFrjdRU1ODvXv3Zu18tGjOlTIslTqJnGOgKXWBQCCrKtLXX3/dJ9Xuc+1+tdlsAIANGzagrq5O87hck7qurq60DJieUjd16lQAwPPPP59Z41IAr3I0NzcDAP7xj3/goosu6rM29Aekq9S1trbmpMzSI4880u8z1LMBPfdrX5K6bKtqZF/7g/s1G8WHZaKERMrIRkxdXw6gYDCYVVLXV1J9uqQuW0odP6nqnTPXpC4QCGSd1JnNZgDAq6++mlHb0mkPAOzZswcA8M0332Dt2rV91ob+gHSVura2tj6Pg2xtbcVVV12FN998s0+vmwuEw2H4/X6Fiiy6XwcKqYvFYpg1axY+//xzRshzTeqyXdJEkjoJw8iGUteXUncwGEQ4HM7aNdNVhjo6OlLK+s11TB3/vLTOGY/Hc07q0jXyeqSODGNflofhSTSRuq6urgMuYSAdUheJROD1evuc1Hk8HgDZTU7qryAliX8volLXFzF16dpfHh0dHVi9ejU2b96cc1LHh4H0Zkzdp59+ij/96U9pn5eHJHWDDJlIxLlS6oDsBfJ3dnam1f7nnnsOc+fONXx8ujF12ZpgjCh1fMHRdEhdNtxW6Sp1ejF1HR0dcDqdvbp/olZ7gB5SFwgEDjhSR/03FYJA5Kqv3a9EQPuC1N1111247rrrev06WlDzBAxUpY5sVSgUyjmp492vtN1abyh1b7zxRtYSiSSpG2TIRCLORaJEtkldukalqakJHR0dhoPgc+1+DYVCLANUa9Ki55Cfn58yqdu+fTsqKiqwc+fOjNpJxCfV/SeTKXUjR45ER0dHnxEFfkJsbGwE0H1vB1pWbDpKHU3Mfa3U9SWpW7VqVU5d8TROVq9ejZdeeglAbhIl0l1Ux+Nx7NixA0D/JHX8s+uNHSVaWlqyZkskqRtkGGhKHV0zm0pdOoOOJgCjdchSdb8aVeo2bdqE6dOnJ50Aw+EwysrKdM9J79HtdqdM6r777jtEo1HU19en9D0RdB+pTih6+1YSqQPQZ2odb3D5YOfemCj/8pe/4OSTT876ebOBdBIlaOHT10pdX7pfPR5PTgk+2Zd7772XVRMQyVx/dr++8847mDx5MrxeL7NVwWBQQepykXUuzqdms7lXEiVaW1slqZNQx0DLfu1rpW7Pnj2qxC1VBYJX3owMRqNK3ZYtW/Dtt98yNUgLoVAIhYWFsNvtmufMhNQRmaOVZbqgPpWqoddyv0ajUQSDQYwYMQJA9kjdsGHDdIkU9QuHw6FwofTGRLlr166k9QdzhXSUOiJ1/V2pe/jhh9PeItHr9ebUFU/9cOfOnWhsbEQsFsup+zVVAlZbW4twOAyfz6eq1MXj8ZwU/qbnSra0qKioV9yvra2tuu9n7dq1hncjGlCkbuHChZgzZw5+8YtfKB7Axx9/jBEjRmDu3Ln48Y9/nMMW5h7ZUOr6OlECyA6pi8ViCAaDmvceiUQwefJk1azJVGOF+OOMqHVGEyWMJjaEw2FYLBY4nc5eUepyTeq03K/UHlLqqLxIpqirq8N///tfzc/p/ZWUlChcKL0xVkQFsKOjA+eff36/KM2RjlI3ENyvPp8PV199tW4fSHatcDiMr776Kqt1N42CxkltbS2i0Sja2tpyVtKEv6ZR0OKss7NTldQBuXHBiu7XoqKiXkmUSOZ+veqqq3DPPfcYusaAIXXr169HfX09VqxYgcmTJ+PFF19UfH7uuefi448/xgcffNBnbdq2bVvGk162kUlMXS6VumxkZyarARQKhdDZ2am6Gk91suLJhpHVvVH3ayqkzmq1ori4uFeUuoaGBgCZT8Tp1mXSInV0H9lW6oy2x+VyKQxzb5E6fgzu3LkT//nPf7Bp06aMzuv3+3VrGiZDPB6Hz+dDXl5eWkpdf3a/Zlo/jEjdJ598gscffzytc2QCGiekkDU0NORMqQNSn0NoHHd1dfVLUkfzamFhYa8pddFoVFPh7OzsNMw1Bgyp++KLL3DCCScAAObNm4eVK1cqPn/ppZcwZ84c/O1vf9M8RzAYhM/nU/xkgjlz5uCZZ57J6BzZxkCLqcumUpfMoOgZt3Tcr1arFYAxpc6o+5XanmwAh0KhlJS6VJ9vtpW6VPtUMqVu6NChMJvNfR5Txyt1gUAAsVgM0WgUe/bswQ9/+MOsLPJEUpetSXnx4sU49dRT2e+xWAyPP/64YbcWuZvdbnfaSl1fxkWlotRlQuri8TgjdaFQKCfxX+I7VCN1vR1TF4lE2DVSfY5qSh3F1FHscC5JHcHhcGS00FUjdfF4nC18tN5RKBQyPP4HDKnzeDwoLi4G0L1a5tWRI444Atu2bcMHH3yAd955RzMLafHixXC5XOyHVvvpIB6Po6WlJWNiuGbNGsycOTNrq6hMYuoGevYrDRit9ovxETxSVerC4TAqKysBZFepo36QTaXO5XIhHA6nlIFKpE40YDt27GBZaskQjUbTNvJaMXX0jh0OB9xud9ZJndZkrKXUUVs3btyIjz/+OCu180S3brbqjDU1NaGmpob9vmXLFlx++eX44osvDH2fxmhZWZlhe9XQ0ICmpib2e1+GdqRC6tINEwC6x2o0GkUoFEI4HEY8Htfduq83oEbq+tr9ytuKbCl1Xq8XFRUVaZ0zGxCfq9PpzGjhprZ46OjoSLpwCwaDg4/UlZaWssHp8XjgdrvZZw6HA1arFVarFaeeeiq++eYb1XMsWrQIXq+X/WSydySVacg0ePOzzz7DV199pTC2mUAqdcpCkTz0jFs67tdUSB1/bb3na9T9mopS53Q6FW0wAi2lbsKECZgwYYKhc/CGK9vu18LCQpSVlWUtpo6gpbpqKXXUVmpvNlyMvaXUdXV1oaWlhZF7ug+jZXboeFokGEF1dTX+/ve/K9rQV+gr9ytvO/rS1UlQSyJobGzsc/drNkidGFMXCATgcrnSOichEAjglltuSXr/8Xg8YR4W+3lxcXFGoUK88EALSH7+0FPqjN7/gCF1s2fPxvLlywEA7777Lo4++mj2GT9oV6xYgfHjx6uew2azobi4WPGTLtINCBVBhUyzReqyEVNnZPBHo1EsWrQoY6UymyVNkhkVPVKXaqJEJBKB0+mE3W5PSakDUt/W6/vvv08gV5QoYUSpczgcANTv++mnn8aHH36Y8Pdk7tdU1A++LUaRzP1aVFSE8vJyxQr/d7/7XcbuT60SLmpKHW8D6P6yRepCoRAz+tlS6rq6uhCLxRhxTXXs0X2XlJQk9KUtW7bggQce0Pwube3Wl6QuHaUuHeKQa1KntoDllbpckLp03a+8UkdJb0Tq0m3/unXrcPvtt2Pjxo26x3388ceYMGECe59Aov0pLi5WuJlTRWdnJwvbob7Gexu0zjsolboZM2aguroac+bMwebNm3HWWWfhiiuuAAAsW7YMM2fOxFFHHYVhw4bh2GOP7fX28KpQJjBC6r799lssXbrU0Pn6Sqnbs2cP7rrrLqxatSrl6/DoDfcrf14eWqQuGo0yYpRKTF1+fj7cbndKMXVAzyTz7rvv4ttvv1Ucp0bqfvzjH+PBBx9UHBcKhWC1WlNS6tTu7dJLL03IGO/o6GDPQ5yEhw8fDqB78aSFtWvXorm5OSMjb1SpI4P49ddf4/7778eGDRsQj8fTjmmqra1VJYbUd4jUxeNxVaUuGyo379al8/P/pgt6H6Rupkvq1JS6o48+OmFHBf4dZGPfzFTh8XhgtVoNJbRkQ6kj9yv9v68gjpEhQ4YoYur6apuw/qzU8f9qobm5GaFQSGFPxWdLbUlXrevs7GReRmqPUaVu0JE6oLuw4ooVK/D888/DarXi0UcfBQAsWLAAq1evxsqVKw2n/WaKbCl1ROb0SN3jjz+O3//+94bO11d16jIhjzx6w/0KqA9gLYPLK11673PlypWsHEo4HEZ+fj5KS0vTVurmzZuH6dOnK45TI3Wtra3Yu3dvwr2QUpdt9ytlvgKJSh2VEtHLMj/ttNPwj3/8IyP3a7KYuqKiIoX7lf4Nh8MYNWoUXn/9dQDdtcf0FCQR8+bNU1Xwqc9QTA2/bVBvuF+B7r1tn3nmmawRhWyROjWlTm1ho7bg7WuljuKmk7mYMyF15Obllbq+DGERn/PUqVNzkv2aLqmLxWLMhvYGqaN2GSnoLl5HTakDeo/U6cXUDTr3a39DtpU6+lcNra2tht2cmZCtVBIl1LZPSQe5UOrEz3i5XY/43Hfffbj99tsBKJW6VEmd+C75rbjUEiVCoVBCQgCv1CVzv+opdWogF2RhYWGCIaTnI2afE+LxOBobG9HS0tKr7le73a5wv9K/oVAItbW1bDy9+eabePvtt5Nez2KxsP9rxWNarVYUFRUl7FrSG+5XAHjhhRdwySWXpLXfqhroXVLiQiakzkhb6B2ee+65+Pe//61oQ7bw/PPPay4weFKXzH6qLWh3796NzZs3J21Drt2v/BgpKSnBiBEj0NjYOGASJbxeL1sgie7XQCDAiFRvK3VqCzOxn5MtTZfUdXV1MVJHzyuZ+5Vi9welUteXIMP+2WefqdYdSkWp+/LLL1WP6+joQHNzM/Ly8nSVura2Nvh8PkMupXTcHH6/H88995yuUkeV/AnZUOqi0Shrr97EsmbNGs3kFx7pxtRpkbrGxkaFwdy9ezebHCKRCCwWi2H3azgcZsaJ7rW6uhoA8K9//Suh3bzRCAaDaG5uVpThSUep0zMKfN8ipW706NEJSh2dQ4vIdnZ2IhwOw+v19pr71WKxwGKxoKSkhKkkpD6JC5Ourq6kC694PJ50HFNiSmFhYULNqN5yv9K98cpFJhCVOvo9G0odgc+wpmPOPvtspkhn0/364Ycf4oILLsCVV16p+rnH49EldU1NTbj33nsRj8dVlbqxY8fikEMOAdD9Dt577z3V65D9EF3yeti3b1/GoSsE6t9msxlVVVWorKzMSUmTdMc7T2p4pY7c5tlS6oySOiNKXbqxu52dnSgtLVW0J5n7NVVSLkmdCuLxOC655BJcddVVmD9/Pn7/+98nECp6qckmjPb2dsyePRuXX355wmeUfTtjxgxdUkeFCY0MlHTI1uuvv44LL7yQtYHv3HS+++67TxGrSGQsk4mGb6PexPKDH/wAhx56KPu9qakJt912W0KJjnTdrzyp4w1gVVUVhg0bxkjO7t27FavyVJU6SligtlHw+FdffcWOE0kdEd+WlhYsWLAA11xzDbs+lTTRIi7BYBAmkwmFhYWq982Dv4empiaYTCYMHz5ck9RpqYN0Hq/X2yvZr52dnSgqKgLQ7YKl58TH5ABKUpdsMhOvUVBQkHAMPW96lkS46LPecL9SX6OxkemkTM8mU6XO5XIhGo2y8cfbRr6N9H+LxQK73Q4gdaWus7MTW7duVf1s4cKFAIDJkycnfEaEQI/UvfPOO7jxxhvh8Xh01Zx4PI6pU6fihBNOUH1WvP2gz5PZxQceeAAXXHCB7jFGQc/54IMPxtSpU1FZWZkTpU70lHR0dOC5555L+j2e1PFKHdmYbMXUiX3vqquuwt13381+VxvDfeF+TabU0X1L92uGmD17Np544gk0NDSgtbU1ISvOqFJHL0ytSDG5iObMmYOamhpNJY4mymQuhHg8jlgshoKCgpQGAK3cibzw+9zRfpjbt29X1CfLhlLHZ2em4n59//33ceuttyrclkD6iRL8c6Vj6Jk3NjbiySefhNfrRVtbG7xeLyshkC6po7ZRO9SqpovqTHNzM7Zu3cp2BOBLmgDqJCsYDMJms7FsKz2jvm/fPvb/pqYmlJWVqRbaDIVCKCgoSOiL8Xgcjz76KFuo+Hy+Xomp6+joYMSK9mGMRqOsD6uRumQLL3ouVORUzf3KK3VAYhxMNt2v9MxFUtcfYupMJlNCjKba+OHba7VaGakTn49aWalYLMZs4ZNPPqmZ+KZXsJWenR6p45OBRIWXt8VvvfUW23dT7f3ypI76X7J3RbYkG6D+fe+992LZsmUoLS1FV1dXwmKgr92vL7zwAi688EJFjK4aaI6kJKTeInX8u/N4PHjkkUcUsepGYuoySZQgb5dI6pqbm3W9Kam69CWpU4HJZMI111yD9evX44UXXgCAhHRoozF1/Ir+u+++U3xWU1ODvLw8HHnkkQgEApo1t4ySOpqMUt2fTrwufTcajeK9995DPB5Hc3Mz2tra2Oo8GzF11KnLy8tTInX0TLdt26b4ezaUOjqGJ1oejwfff/89+zwQCDBSp5UocfXVV+P0009nv0ciEaYwiSsv/lpiTB393tLSgn379ikMNSl1gDFSp7cA4RMxmpubUV5ezlyNPMLhMMrLy1myAGHXrl248sorWUa66H7NZkwdr9TR30Sljr5vRKmjzx955BE89dRTCIfDCd8RlTqR1GXL/RqJRNg9Z1upy5TUEaEW+xNPzLSUOlI/+T6xcuVKjB49OiEJqLy8nGVkt7a2KmwoDz0Fg8YUJfao2U66b57UqaknfFydmr3j26fnKg8Gg8xG+3w+3eSNhQsXYtmyZZqf86D+kp+fD5PJhJKSEgDZz55OBtH+ksKqVSC8s7MTXq+XfT58+HCFUkf9PxVS19TUlHA9tUQJivGcNm0a+5uRmDo9pe6JJ57Ali1bNNtG5xVJXX19PVt8iNf785//zJ6jVOqygEMOOQRnnHEG7HZ72qSOn7DfeecdxWd79+5FVVUVe6H8iqa9vZ3tApAOqUs3pqGwsDCh83z33Xdobm5m2+EA2VXqysrKDK186P7IiG7fvl3xudGYOr1ECTFmzGKxoL29na3Uge73IMbU8Sv7eDyOhx9+GK+99pri2gUFBTCZTIq4m8rKSkNKXXt7O1pbWxWqDa/Uqa36jSh15AIWlbqKigpVUhcKhZiixU9KeXndpoTGCe9+tdvtTFHT273g448/xlNPPaVoazKljv6WDaXOYrEoiKJ4jJZSl033K983qZ9nW6nLxP3Kk7pQKISFCxfipJNOYsckU+r4MbphwwbEYjHU1tbijjvuQGNjI4Bum/nRRx+x48PhsKp6qkfqyJaOHTsWJpNJl9TxiS/0765du9hx/DtVewdq7le1Np1wwgnM3ef3+xEMBjWJ+tKlS1kGdzLwpA7oIUFim+lay5cv1y1JlC66urqYHQgGg2zRrRVz/Mc//hHnnXcePB4PbDYb3G63QqmjdyZ6OPRw5ZVX4tprr1X8TXy3DQ0NuPfeewGAxbcBxmLqyN6K9sHn82HBggW46KKLNNtG3zFK6oLBIP70pz+xfiCVuizBbDbj4IMP1iR1/EvYuXMn3n//fcVx1KFNJlPCymz//v0YOnSoqgvN6XTixz/+Mfx+P1PHfD4fampqMGXKFN0SAqkqdTypc7lcCenTb731Fps0aTLLZkxdWVmZoYmFJiMtpa6zs5MpAmr3r7Vi9Xq9sNlsABKVuhEjRqC9vZ0pdXQ8H1PH17lTaxfQk1jBu8ZDoRCqqqoUpJA+09ryTFTqyECoqYVGSB1dlyd1pNTZ7XZV92t5eTkA/VIwvPu1pKQEgUAAH374IY466ijNAr8PPPAAbrvtNsX5jCh1HR0dacfUvffee6xfUXYrnZOHqNTxYyabJU3479Oklg1SR8kAeXl5GblfCwsLWaZwOBzGmjVrFEob30ZeqbNarYoFDdBDnDZu3Iibb74Z//3vfxPet5rr7JFHHkFbW5suqaM+NnToUDgcDlVVTE2po3NR28QN3LVIHdkPPffr999/z1RNao9ebCpvc/QgkjpS6giiYnfHHXdgyZIlmud78skn09p+r6urC4WFhbDZbApSpxWe0tzcjIaGBgQCAdjtdmZvaOzRO7Hb7eycydDQ0MAWB3y7+H/POussBAIBHHvssYr3ZCSmrqioCCaTKcE+EEmmXYYIjY2NeP755wH02BRaFPOli0hR5m0VLRZS3ZdckjoDmDJliiGl7qGHHmKB7AQiINXV1QkGv66uDkOGDNGMi1qxYoViQPh8PmzduhWbNm1SjUXJhvvV5XIhFAopXAorVqxgg5zak22lzshWRRRPpqfUkUFLxf3q8XjY/oJiTB2Rut27d7NVqNfrVcTU8ccDYCU0yMgCPaSOjBPVOauqqkI4HE6YVDo6OrB+/fqE+xCVOmo3/w5PP/10jBgxAl9++aUuqeOD3dNR6nj1Q0397OrqYjFYwWCQGSetMINNmzahpqZGUT1djdSlqtRpkbp4PI6f/vSnLPuYJ22pKHV8TF2m7lf+fWfT/UrtGjp0KCOx6WS/ikodjUmCllJnMplQUFCgWCRQTOymTZsA9IQY8BDdol6vF1dddRXeeecd9k4oHII/9/79+2G32+F0OmGz2VQnRLI5ekqdzWbTdccBSvuh537t6OhgbaSxo2b3AoEAOjs7dctcAT2xhzx5BrSVOj6GVyt70+Px4Je//KUiI98ourq6GAHr6OhgMdhapI7sXiAQQEFBAbM3HR0dzIMAdCcuGSV1HR0dCf2Zf7eBQAArV67E7bffjoMPPlh1EaKn1JENoPccj8exbNkyVr9UJHUvv/wyLrzwQsTjcdYuWhQHAgGEw2E0NzczUse3h98WVWyXHiSpM4DJkycn+MppUPCDvKurK+HBt7W1wel0wuFwJHymp9QR+IHt8/kStijiQR3Q4XCklHKtptRRR5o0aRK+//57TVKXDaWuoqIiIUaLB5Ej2ixdT6kjOT2VRImGhga2UwKv1NntdlRUVKC9vR179uxhe57ypI6u9+KLL7JB+/HHHwNQkiY6niYJakNVVRW7Ht/udevW4bDDDsMjjzyiaCv1ESppUlJSArPZrNg0/bXXXsPevXvx3nvvwe/3M2MfCoXQ1dWF008/Hd9//73iOfDqWXNzMyN1ekodT+rEZ0oLA7vdjoKCAgQCPfuZqrnCAoEAduzYgXg8jl27dqXkfm1vb1eNqSN1SqtfEeGjZ8+7X9WUunTcrzfeeCMeeugh1eurQQzmpvuje+JRX1+fQIK0QO9x6NCh7LyZKnWhUAj79u3Dscceizlz5gDQjqkDetzwBCJOPKkjdYpIkqiy0Psle0H26p577sFPfvITdu76+npUV1fDZDJpEgLe/SqSR2ob1UojqNm7lpYWDBkyBIBxUkfjWO3ZU1/et2+fpn2NRCKoqqrChx9+mFSpE0mdx+PRzEImO7BhwwbVz7Xw4Ycf4uuvv2akbsuWLarxyTwoPpnIIK/U8fdgs9kMk7r29vaEZ8r3oZ07dyIej2PSpEmwWq0pK3Vms1mRdb93716ce+65rOyZOIcHg917vIZCIVWlrqmpCfF4XNX9qqbUGSlrljKp83g8WLp0Ke677z4sWbIE//d//2eoTtdAxogRI+D3+xUvTE2p6+rqShiEbW1tKCkpYRMbj/379+sqdUC365Pg8/lYx1AjbaTUud3ulCpQi6QuFosx5WP69OnYvHkzIye9odTR6kYrZpAGOE/q8vLysH///oR3QsemSuqqqqqQn5+viKkrLS1lmbktLS1sT2E+po4mnxtvvBH/+c9/2PmcTifi8ThrH5E6cr9qkTqxbXTP/D2Qu89qtSIvL0+xs0I8HofNZsNNN93E2sIHtq9btw6vvfYaVqxYwZ5Hfn6+whA2NTUx9yvfz8g4qSl1apNPY2MjCgoKEkidWvzftm3bWB/jS1gYcb/u37+f9X1eqaOYVC2FS3SB8UqdSOroeSdLlBDH+Pvvv68bRyhCz/0q3scll1yCBQsWGDov2auSkpKETF3+3d944424//77Vc8hKnXNzc3o7OzE1Vdfjb/85S8AoDpJ0vG8Oz8ejzOljhIReJcjjQtRQRMzg0kFrq2tVcS9EqkDkJTUqSVK0LmI1PH7J0ciEZxxxhmMjLa2trL2apE6KklF59dT6sgex+NxVY8M0P0umpubUVNTk0DqxB1RqN/EYjFEo1FdpY5Inbh9YTL8+Mc/xgsvvMAWcfR9q9WqqdRFIhH2TEip6+joUCzOgW6lzmq1ZkWpo2TFiRMnJpxTLaZOHHMiqeM9Wmpufvp+IBBg7XK5XMjPz0cgEGDPW43UiUodYGyzg5RI3RNPPIGZM2di1apVrIOsWrWKlf8YrBg6dCgA5QSrFlPHKzCEtrY2lJaWJpC6aDSKhoYGDB06lLnl+A5BA5OC7a1Wq4LU6Sl1NOkaTZkXSR3QM7inTZum6ORiTF02SZ1We2my50kdZS3xCmpXVxccDgcbMCK0EiWI1FmtVsXq0u12M1Ln8XiYRM7H1I0cORKvvPIKKioqWGxRS0sLxo4dq7gnOp4mGGoDTTyiUkcQV91ATxINKSDl5eVMqfP5fAgGg5g2bRpWrVqFN954Q+EuW7duHYBuVzb11dLS0gTVQs39Su9cLaaO7/cUX9TQ0MCMPK94qL1nmiAtFosi25D69FNPPYX9+/erKnW8ms2TumTJTHTPZDz1EiVEpU6MqdMqadLe3o5AIIANGzYoFmha4Me1WJibf8Z+vx8ffvhhUhedeF6+cLAaqXv//ffx7rvvqp5DJHVEwIYNG6aaYS0qdbz7ld8lh1y4LS0tCmLGt1skXfTd4uJi9q75flVfX8/UM1GRIaglStB7rK+vh9PpRDQaRUdHB7PHoVAI27dvx6uvvopVq1YhHo+jtbWVjWM+1jgajWLx4sWMqPD3oRdTx/cter/79u1ji0Y6Pz1jkdSZzWYmFPDH0vXb29uTkrpNmzbhiSeewOrVq1WP0wIpdZs3b4bdbsfEiRN1lToi1ETqWltbEY/HWVgL0ON+NeIVam9vT1iQ8X1o+/btcDqdqKysTDhnKkodPT/qh5s2bcI555yTIEzw56R2FRUVMT5Az9tITB1gbL5NidTdfffdWLduHZYsWYKFCxdi4cKFuP/++7FmzRq2UhuMIFLHx4+oTRi8GkHweDyqpK6xsRGxWIwZHnG7J3q53333HcxmM4YOHZqU1JFBSYXU0SROE7UaqeORTfcrPY9kpI6eKR9Td/TRR8NsNmP9+vWKe9ELqk2m1FksFkVMHa/UeTweVuaDd78C3TFso0ePZq6w1tZWjBkzBkDPoBcTJUSljo+bIFWA7olAMX1+v58F7gPdrioidRQkXFVVhVmzZuGUU05RkDp6Xrxrhyd1dB5S6qLRaMJzI4OrpdSNGjUKQHcfIoOczP26adMmDBs2DJMmTUogdaFQCJdddhmWLVuG1tZWdn0iWHzhbjVSp6XUiaTOiFJHWZytra0wmUzs/FolTfx+PwKBAB555BHceOONqu3gobYYUSN1H3zwAcLhcIKSK2LRokV49913FaSOClrzpI7cOl6vV7MQuuh+JVJHC1NAO6YOULpfSaUj2woo3a+iMif+zpM6cuHRbiaAMaWOj6kTr9PY2KhYxPGkjuKrfT4fW2DRtQjBYBBbtmzBTTfdhI8++khht/lFALWBV6d5UkfPY+HChTj//POZXeaTrURSBygXg/w7ofGtReqoPwUCASxYsAC//OUv8fXXX7OQkmTo7Oxkz3vIkCEoKyszpNSR+5XaJyp1Rtyv8Xg8qVK3fft2TJw4ESaTKYHsG4mpM5vNipg6vh86nU5dUkftcjgcbIFDz3vYsGGK4/lzq1Vn0ENKpM5kMqnGALS3tzMDNxhBxEuN1BlR6tTcr/QyyaiJpC4UCmHWrFkAusmay+WC3+83pNTRpGeE1JEBOfjggwH0kLqGhgbk5+ezvwNQ1GTrDferVnvpmfJKXXV1NQ455BCmPAE92VdaxZfVSB3tVapG6kSlrqSkBMXFxQmkDugelHV1dYhGo/B4PIzU8SVgjMbU8atU+n5BQYHinPF4nE2kFRUVzP1KpI4P2OVjoHhSR/fqdrtZvyKjSkodkJjRZ7fbUVRUpJkoMXr0aADdfcio+3Xr1q04+OCDMWHChARSx+/vqkfqTCZTRkodn/2qpdTl5eWhoKAAra2tKCwshNls1nW/tre3s7YY2b9Zj9TxtoZUP734qFgshr/97W94//332TF8zCnvCqX/ezweXZdfUVFRglKnRerUYuroOvTdH/zgB+x43v0qul21SB3F1Ilu2f3796fkfuWvQ32OSJ3H41GQOoo38/l8zB6KpC4UCrGxRAoznZ+3836/HytWrMDBBx/MEr9aWlqQl5eH6upqptTReP7vf/8LQJ3U8fsX88kSvL2jUi96MXU8oRo/fjzuueceFs6RDNu3b2dKfXV1tW5x9nA4zN4dKXX0XklkAIyTukAggFgshq6uLkUJHFGpmzhxIgBoul9TianjSV1xcXGC8sov9ognEYHt7OxEfX09ysvLWdWGZO7XrJO6e++9F8cddxzOOussXHvttbj22mtx5plnYu7cufjrX/+ayqkGFCjRQc39Kip1YjCjmvs1Go0yN4OaUkcrab54Le3xaSSmjlfqxMKeQPeETpO/HqmjzaEJEyZM6JWSJnqkjs/uamhoQDweZwRrxowZClLHK3VGs1/b2toQDocZqeMzxNxuN5xOJ7xeL9rb21FSUgKXywWfz6dwfwLdE1tdXR0rTyK6X3lSx7tfHQ4HCgsL8fTTT+NXv/oVQqGQgtTRwL7vvvtw8803A+hRS2ly5d2vZLSJLALdZIfq7W3atAn5+fkK96vb7WYTHJFDntRRX6fj1fac5Z8pT+r4RAk992tzczOqqqowfvz4BFJH99bU1MTeC9CtXNrtdkbqqCgytSdVpY7fzkpLqQPA3EQU66Plfo3FYujo6GD3biTD26hSt2nTJmY7tErE1NbWsuQtehZ8IddAIMDcdKTWeb1e+P1+1XekptS53W72HMQ2ikodbwO9Xi9MJhOLUwW6bRElKIgkTi0LFuiJqeNJHfUZIlq8InPdddfhpz/9qeK58kpdMBhkwevJlDq+cC4/3ug46rd1dXWKxTg/bvx+P3NxUihJS0sL3G43Ro8ezUgdLTYos553v/KxsQReqePnI7L7eu7Xgw8+GMcddxw7v8fjSZp4R+0DerbZq6qqQmlpqab7leZOj8eDgoICNvYAKMQESpRYunQpK26uBn7M8v8XY+oo4U3L/SrG1PF2Pj8/X5XUORwO1X24RfcrlURxOBzo6OhgYQJko9Xcr6kWcU+J1J1yyinYvHkzFi5ciOOOOw7HHnssbrzxRmzevBmnnHJKKqcacKBJm6Cl1AFKokcEhDdol19+OebPnw+gh9DwpI46Ak+oqMMYyX4lUvfhhx9i1KhRCfWOFixYgBtuuAFAzySuRupKS0ths9lQXV0Nl8vFaqrx10pHqbvxxhuxdOlSQ4kSvJpEtc9CoRBKSkpw2GGHYcOGDQiHwyy2ha+TpHUutZVrZWWlIqaOd7/SuVwuF1wul6pSN3ToUOzbt48RLiJ19fX1+Oqrr1hMneh+tdlsKCkpwUcffYSXXnoJwWBQsVKmgT1//ny2XRJfGBlIdL+azWbFOejYjRs3IhwO45hjjjHsfgUSlTrayUIrpo4UxaamJqbU8URW7T3T4mf48OHsXAUFBQpSt2vXLsTjcda/ge7JZM+ePXA4HIpYFyNKHbWfV+qIKGopdUA3qaPMXjLE/GJg5MiRWLNmjUKdIVKXLHtNjdTRcxNVMHrOWi5Yyg6nEhlAz2QfCoUQCASYIkJZgxS/Wltbi3A4rKj5pRZTR26jVJW69vZ2OBwOlmhkMpnQ0NCAvXv3YurUqUndrzQuiouLEY/HFa4qImVEenl78MADDzBiJCZK2Gw2xGIxZufJ/uq5X2ks6pE6Xqnr6upSjJv29nZ8/fXXAHpc0i0tLSgrK0NJSYnCRQx0Fw4mhYuuo+d+FfcxJnvX2dmp2heJZHz88ce48MIL4fP5EnaHUQO158QTT0xJqQN6Kg3QItJms2HcuHEAehakNpsNra2teOqpp5Iq7+L/eRW6vr6ejRuj2a/8MySl7pNPPsGIESNQV1cHp9OJvLw8Nofzz1V0v4r7VtfX17O+w88/gLqdzLpSRzd15JFH4qyzzsL8+fNx5JFHKmrKDFaIpI4GWSQSwY033oh77rmHdQZRCRKVOj4bjgaiGqmzWq1YsWIF3n777QSlTi+mjpSM9evXIxaLJQQf7927l63uaaV59NFHw+FwMJWFl+FHjhyJ8vJyxQDNJKZu6dKleP/99xEMBtmqxWKxaO6KAHSTDJ/Px6RoInXBYBCbN2/GZ599hu3bt+OEE05I6n7lP+OVLX6lxCdKEEip0yJ1zc3NbIIdMWIEzGYzlixZgmOPPZaRAtH9arVa2XOmXRjU3K82m42pKkSseaWOdvxoaGhAZWUli78jWK1WNslMmzYN+/fvZ8/B7XYzYkLV3XkjK5bvIVKnptTNmTMHRx99NCOEajF1au+Zxgk/ORYWFiISibCFB7mn+OdTVFSE5uZmlJWVwWKxpBVTx2e/0jmTKXV0bzQx0P1TgdmdO3cqdhcIBAIs5ocQjUZxxRVXKNydZCN41YJvAyEcDjMlSUup47cX4mPq+DbxpI5389TW1uKJJ55QuEcpSYVX6ih8xEhMHZ8oQaSOrj969Gjm5ZgyZYqm+1VMlKBFKLWdJm4Auu5XvmA4JUrQsyHlV8392tbWxsgXr9SpuV+p3/JKXSAQSFDqtEgd73HgA/M3btyomyjBPxeR1BFJ52NlefBuaxrjXq9XV6mLRqOIRCJ4/PHH8c4772iSutraWoVblLe1vFI3ZswYhf2gsjT0HXHPb4IWqaNnSPM3LQpp7BIJ04qpE0kduYn37t2LzZs3s75RXFyMWCymeFaiUkfzCYX18J4H3lMEqNvJXiF1hJdeeindr6aNhQsXYs6cOfjFL36huLlIJIJLLrkEc+bMwXXXXdcr1x46dKhm9usXX3yBVatWJWRQAT2TFT9AR48eDZvNpkgu0SJ1xxxzDE466aSUSJ3NZkNRURGbBEWj39TUxIxgS0sL8vPzccQRR8Dn8ym2LCMjN2rUKFRUVKiSulSVOoph83q9CAaDbNASWRJBz6K8vBx+v19B6g455BAA3YrEX/7yFxxyyCE45ZRTYLPZ8N133+GDDz5QnEtNqeMTC2hQkepHSh1Bj9SRYkFZnGVlZSguLsbmzZtZILea+5UndbTh85gxY2A2m5GXl6dQkagtakpdMBjEHXfcgbVr1yYUwKTv07MbP348IpEIS+wgo9Le3g6/38/Io7i1E98vxaBg+uyTTz7BnDlz2IqU4kWSuV/VSB0lahAZpclWJHV0HYvFwsYHT2Si0aiqKiHGqvFKnFadOvoc6J5waCHAZ03S9Wk80/sHlKvvhoYGPPbYY4pFHj0jsSwF3076P/XZZEqdUVLHv5fa2lpWB4+enajUBQKBBKVOLfCcPistLWVqq9/vV5C6yZMns+9NmTKF7YErul/VEiWAHlLn9XqZ3aMFqlr2665du5gqSe5XGociqevq6mLX2b17N+LxOFtktra2Ij8/X6Ee0/NNptSVlpaiubmZuV137dqF1157Dd9//z3KysoUi9POzk7MnDkTZrMZq1evTlup45VXtTmETzCh+OFkSh21ha5F/1ZXVzP3q8/nw6RJk9he6kDPHEKkjsbV8OHDFQsBuk8CH57Bgx+zakodjU2yH1arFfF4PEGgSEbqeFfzrl27FKQOUI5xsaQJ2XBaOPL2VnS/qil1WXe/8jj//PN1txoBkNTVkArWr1+P+vp6rFixApMnT8aLL77IPnvjjTcwfPhwrFixAp2dnVi5cmXWrkvQcr9GIhEEg0EWOwMo2XkwGExwv3Z1dWH+/Pn4n//5H3Y+LVJHMELqqHOazWa4XC6m0PF7ysbjcTQ3NzMjSPKvyWRSrIh4pe7222/H3//+dwWpSzemjvY8JFJH10tG6ioqKuDz+ZhKVVJSgtLSUpSUlOC7777De++9hwULFiAvLw82mw1vvvkmfvrTnybUExPbTHXcXC4XG1QdHR2IRCKqSh29B3KnEkixoCBqInU0cfj9fk33q+gqnTJlCpqamjBt2jT2TKxWKwoKCpCXl6colkvPBgD+93//F2+88YYmqaNzURwT9Q8tUqeVKKGm1AWDQbZzANDj1r/hhhs03a+PPPIIS9jo6OjQVOpocqRnqUbq9JQ6oHtsrF27FqeeeiqzS2LSF6/Uqe0oQZ/T81VT6viFHZ2fJ7RikDwdSyA3II0LsQ0Eyn6urq5OidSJMXVaSl1NTQ0LOOcL//JKHdDT79VKmoRCIbbJPABcfPHF2LJlC959990EpY7CP4qKihgZ49utV6cO6FGvvV4v1q5dy7wLgFKpo3fH12GjRAkiQnv27EFRUZGinxUWFiIvL49dd8iQIfB6vSxxh38mdO/JYuqGDRuGVatWIRqN4qijjsLnn3+O008/HZ988gncbrei3R0dHSgvL8fUqVOxevVqVaVOLVFCj9SphRg0NzcztzXFDycjdfRu6FqiUheLxfDJJ5+gq6tLUTCe+gqFMtAiki+RQ+fks4PFjQAA4MEHH8SqVavY72pKHT0nsrfUTnFe4N2v4XDYMKmjvqi22CWOQN+lmDo9UtfnSt3rr7+OW2+9Fddee20CeYtGo3j66acVwY6Z4osvvsAJJ5wAAJg3b56CuOl9li0MGTKEZTc+9thjzADSKp2vFs7H1wBg7ld+1UUTJiEZqSNlxEiiRH5+PkpKStgkyCt1Xq+XFaAEug0OX1aAX4WTkTvooINwxBFHMDdfLBZLW6kjQ0euxmSkjs5fVlaGeDzOiDW1bezYsfjwww8RCoWYcsfv/8pvd0MDhrboAnrKmVCKezgcZi4VkdSJMXVqk9u3336LoqIi2Gw2RQYakTo19ys/eQA9RI8WAvn5+cjLy2NbbqklSvAQ43voWOqzFChMsZZk5Nrb2+Hz+ZiR0iJ1lCghxtTx/XXKlCmYMWMGjjjiCFX3ayQSwVVXXYXnn39eMU703K8EMaaO/saTOj5RAuh+92vXrsUbb7zB+oFI6uh9qrlfeaXu0ksvBQDs2LEjgdQReFLH1+jjDT79nx9DVN7BCKnLz8/XJXWi+5UWBvzfaEFAkzfQrXBRkgUAFickKnUAksbU8WNk7ty5mDlzJu677z5G6kaPHg2LxYLZs2cD6F5w0OTOK5xa7lc+1g3o7ltr1qzBEUccwa7LkyMiLETqzGYzU+p492tVVZXiHRCBp+tWVVXB5/MxV6keqWtoaFCotnSO6upqbNiwASaTCaeffrpiPBGx592vhYWFmDlzJr766iuFUqeXKCG68fkFvjiHUCwijUFS6nw+H7q6ujRFGlGpo+dWVVXFbNvy5cvZsyXQHEJqGLV/+PDh7Bx8zUugO1tajdTdfPPN+Oc//8l+F5U6/v3wSh2gTDrh74faxveD/Px8hQu5tbU1QalTizVWU+rERbTVakV7eztefvllAH0YU0c48cQT8emnn+KVV17BmWeeyervPPzwwxg/fjyuv/56nHvuuemePgF8XIPL5VIoMHqf8QgGg/D5fIofoxg1ahQ6Ojrw/PPP44orrmAGU0+p412FolInDjae1PGuOUJJSQk8Ho+qUjd8+HDcfvvtCUodgSd1ZGg8Hg8jSTyp4zuwqCANHTqUucNEybq+vt7QdkO0UqQiuXQ9MiAiePcr0GMUyGiNGTOGbaZMqeo0gK1WKx577DF2LrUgbiJ19L1wOKyIyRFJHbUzFospjCi52Dds2MCMhhapE92vCxcuxN///nd2LD0T6iN8P3A4HAnuV5pYzz//fACJ+w/SsfR8qY6c6M4UjQy1Q+zXWjF1fDvXr1+Pr776it0HXzaCMiyBbrWQJ3V8nxOVOmoTP3ZE9yufxSgqdfxECCQWfuXdq3pK3VlnnQWgewyJiRIE0f2qptRpkTo+m5QH339pUTFkyBBVUtfe3o59+/YhLy+PPQueLFKiRHV1NWw2G/bt28fs1eTJk1FXV8eegd/vRygUQiwW01TqtGLq+PswmUw4/vjjsXXrVjbBDRs2DM3NzZg7dy6AblJH5IAyd+n//L98dX4ebW1tWLduHQ4//HD2N979SqohkTraolAkdVScliCSusrKSuZ+1VLqaE/PaDTKFlDxeBwtLS1wOBxwuVyIx+OYOHEipk6dCgD44Q9/yI5TEwJmzpyJTZs2MRuQiftVjdTRvQHdNpkIDO0mowbq2yIRq66uZl4B2tSejx/l+wqVCQK645FFpe7QQw8F0B0PLLpfyZ3Px9qJ2a/8wplsjEjqjCZK0J62BD33q1aihJZS9+abb+Kss85CfX29rsihh4z2fp0+fTpWrVqFXbt2Yfbs2RgzZgxuueUWXH755dizZw9uu+22TE6vQGlpqaJui/iStD7jsXjxYqa2uFwuRXZpMsydOxd5eXn44x//yP5mMplYcVS1quR8MC9P6qj0Bg81pY43KuXl5QgGgwl1hhoaGrBv3z7cfffdCqVOjdTdc889+OijjwCAVUrXI3W0iifwRZhFpe7UU0/FHXfckeQpKpW6VNyvPKnjJfCxY8ciHA7Dbrez90llXMjdQ4aMNyLU7n379ikmplAopErqioqK2I4D1E7eiJpMJkybNg1+v58pSfw7INVCzf06ZcoUnHHGGexY0aDx74QndXzx4X379uH555/HpZdeiuOPPz7hOZL7leLAKIMT6DFyopHRck9oxdSJK1pKoCLlix8X9F2R1PH1Lu12O1PqqE1ut1txjKjUEURSp1YgmF+EWCwWdt5kSp3FYsHy5cvxzjvvKEqa8AljfLHRdEidEaXOYrFg+PDheOeddzBhwgTFjgMUVzZx4kT2LCgznK4ZCARQWFiIUaNGYc+ePYykVlVVob29XRG/RgSgsLBQNZaU7l3MJhTJTmlpKTwej0K1KC4uRklJCStxQv2edweL7leCGHu4bt06eL1eTaWO/iVSV1lZyWw3H1NXVVWlmMzVlDpKlHC73SwGlr/3pqYmTJ8+HQDY9lRAt80uLi5m93/ooYfi4IMPhslkwsKFC/H555/jrrvuUrSbSN3BBx+MWCzG3Ji8+5Xvf0OGDIHFYlEsSoFuUkekTXyW5KEg+yU+Wy0XrFZMXVVVFUaPHo0f/vCHbIyrKXVA91g/66yzcP311+Oiiy5KsIErVqxAS0sL24dd3B4yFospyBiNParBSO+WHwP8WAC0Y+porqYQJdrnmDJ0jbhfxUQJXqmjv1ksFjY/kteE2qg2vrSQEanzer148sknsW/fPnz33XfweDz44IMPcNNNNym2KckGZs+ezSTcd999F0cffbShz3gsWrSIBX56vV7NIptqKCsrw+zZsxV135xOJ3O/UpFRQOkKALpfuqjUablf+RURv8olgkXX7+rqwuOPP45///vfAIBZs2YlVepuueUWxb6ObW1tuqTuggsuULSRJ3XiNmH79+9nrlG+tpwIIlhGSR2dn+5/165dKCsrYxMwpadPmDCBGVVSUS+++GIAwDfffANAPTNv3759bGIi92t9fT3MZjPKysrYgKPn6XA42ATHT25AN7EFega3qCLw7ldRjeWPpWdCBk1U6sSYOqDn3Tz55JOYN29ewnOkoGDqd2qkTkupE0tq6MXUqYFi1Ph4KPrurl27FKSOB6/UHXTQQQCQsGATlTq+PcmUOpHU8dfVy34FgOOPPx4nnniiwv3Kv0PR/aqWKMEreQQ9Uqfm2vz973+PBx54AFOmTMH555+P6667DvF4nI0B2uZPVOrIs1JQUMBIndfrRUlJCXtfvFLHkzoqMwH09Ds+fIFvo9gnqEyHx+NREA6z2Yyrr74aZ5xxBuv3fH0z0Q1LEOeZTz75BAAUSh1Pjuj7VA+voqJC4VEBwDLI1ZQ6slFEfJuamhgJEvtfc3MzU+B4daexsRFOp5O1/dBDD8WoUaOwe/dunHzyyTjqqKNYTJ3ofqXxy2/yHolEYDabFYudk08+Gd9++22CDWpqamLvTFTqRFInfleL1KkpdeSdAsBqy82YMQM1NTUJ2ab0fIuKivDXv/5V0U/pHA6HA263G/Pnz0c4HFa4WnmCR1tw0dijUBuyLbyNMarUicTqd7/7HTo7O5krPxX3K1/ShEKZePcr9XmKvSQvEh3Tq6Ru0aJFGDVqFJ5++mnceeedaGpqwtlnn42f/OQnzO2STcyYMQPV1dWYM2cONm/ejLPOOot1lp/97Geora3FnDlzYLfbceSRR6qew2azscrP9JMKqGglZUU5nU42WagF5GspdVruV9q6R4/UEXGrq6vD5Zdfjuuvvx5At7FVU+pKSkpQX1/PMsn4eITGxkY0NTWxzknnAbqLdIpuPCqVwSt1/L2Sobn77rthtVrR3NyMTz/9FCaTiRE+InW0HyIN2mRKHRmaHTt2KNpF9eDI9crjyCOPRFFRkWFSx7tfKysrFYogGXw+SFZUIYjUUbKE2L9496v4jouKipjR0HO/qsXUGQG/VRMAtt0ZoO1+pe+IZIivU0cGWiQ9PIqKilhhW5PJhFAoxPrBnj172GSiR+omTZoEAAlZhlpKXSwWU5A2XqlTI3V829USJcT4MALvfuUJBu9+BdQ3cE/V/RoKhTB16lS8/vrrrD0jR47Er3/9a7zyyiu477778MADD+Dbb7/Ftm3bUF1djaqqKlVSR9e22+0Kpc7lcjFSq6XU0fMym80JO5eIY0xNqQO6x51IyB588EHMmjUrI6XO5/Nh9OjRin7Cu1+DwaDiO5WVlWw88QV7R4wYkTSmDuguQ0JeBP5eGxsbEYlEMGXKFJjNZqac0mciqQN6wiL4a4pKHY1fPqZbjO8FugtzH3TQQWyhy39O9k6N1PGCgJ5SF41G8dvf/hYVFRWsygC9t2OOOQY///nP2bFnnnkmbr/9dvz6179GV1dXQgUF/rsEUakjjBw5EhdccAH++te/sr4mkjoqFwL09Bvqd/yi0EhMHZ8oQfaZdoWgOZmek81mU/QR/twUoiWWNAGgcL/yGdk+n49lItMxvep+ffXVV/HAAw9g+/bt+NWvfoWioiJWFf+HP/wh24g+m7j33nuxYsUKPP/887BarXj00UcBdE+WzzzzDFasWIEHHngg69clnHfeeTjmmGPYHo5U60dUBUSlzul0sgFKAcdqpA7oiV8BlBONGAwv7hTh8/kUSh0ZqGnTpilKmPCg1Tyv1FksFvh8PoWiR8jPz0dVVVWC+5ViGuh+33vvPQDARRddxHZBINmdj4/av38/ew4iqWtqakIsFktwv+7atUsxkZBSR5M+ALzwwgu48847kZeXh6lTp7I6UOKEEwwG0dLSoiB1oVAI+/fvZ0TXbDbDbrerkjpRqaNVObVFJCli9islQABgZV2ARKVOy/2qRjK0INZY45U6l8vFtgDkSR2pL1qkTiyCqkfqgO5Jg94jqeShUAibNm1iLmG+jXa7nWXkparUAUpSwCt1au5Xvu1aJU3U7o93v/KTIK/UAYmlOPj/G3W/dnZ2YuPGjdi5c2dC9jXQrYiYzWZ8+eWX2LZtGyZNmsQWEUTq6B747edGjx6N77//XqHU8aSO356QnrfFYkF1dbXC5SfW2VJ7ZjQm9u/fn+AaJKgpdWqkLi8vT3WRxat0QKL79ZJLLmGfVVZWqi4qJk+erKvUkQ1qbm5miUd0rxSjCHSHcAwbNkzR7vr6erhcLjbOyEUrQs39SvaSV+rU+gKB3g8/35DbUI3U8eENeqRu9+7d+Nvf/obm5masXbuWtRcATjvtNDz00EPsWIvFgv/93/9l9pHmAt4ei/Mh/yxFXHrppairq2PzF0/qHA6HgjCJpXz4d0zn3rBhA5YuXZo0pk58xmTL+MWJGJYiljThlTr+O4DSnre2tiIajfatUrd582ZcdNFFCYWH//znP+P+++/HueeeiwcffDDd0/dLjB07FitWrMAxxxwDAEwBE9kzT+ocDgfMZjPrGJ2dnQiFQqruV8AYqTOZTMyletddd+Gss86Cz+dTVeqmT5+eUICYrkUBpzyp4z9XA5V24UuadHR0MCWGP8d///tflsRAg6uxsZEZja1bt7KVCE/qgsEgxo4dizfeeIM9W7r/YDCoiPUbNWoU3G43Zs6cyf42f/58LFq0CED3KphX6vh6WqQeqil1fDFRCmqm/xPEQW4ymbB7925Wsf7KK6/Ec889xz7niw+ruSvJ8CRzv/K164xCj9RRXUOR1NFnIqmzWCwJ8SNGSR0ZKT70Ye3atYp4On5v1+bmZkSjUYwfPx4mkymB1NH9qGUg8v1RTanjJwP+u1olTdRItNVqRSAQYPszE0RSRzBS0oQndfwzJfKhpc4UFhZi6tSp+PLLL7F161YcdNBBCaSOzsuTulGjRqGlpQX79u2Dy+VKcL/SxvVAT/+3Wq1s3PDPIplSR308Ho8bJnX5+fmq7lex9AuN2WSkjlfEXC6XatLFIYccgry8PNZ+ikX1er2wWCyKfkhVHuhYh8PBSF1FRQW7Ht373r17UVZWhiOPPBJnnnlmQuFivt2i+1VLqUuF1NHzUYup4xVO0f3KjwmeuFC/FFU1EeThUiN14ndFG8iDyCF5RPRInRGl7tFHH8Vvf/tbhEIhllhEUHO/EkSljv6v5X4VlTqCGqkTt3skG9qrpI7334tYsGABXnnlFcObAA80TJ06FVdddRV+//vfK7KPCHxAOL1w0VDpKXVq2a/kOga6OyjJtOeffz7Gjx8Pv9+vGlOnFqhLKzUtUqcHInW8Usdv0QN0G63LL78cF110EfsedfSmpiY2uHfv3s0mBpfLBb/fj1gshsbGRrS3t6O+vp51YqfTyQYXr9TZbDbU1dXhZz/7mWp7p0+fji1btiAYDCIcDrPBEQwGmeFVi6njDa3T6TSk1AHd5SDIcIwYMUKxfZ7ofhVJEL0z0VXKT1y8AUlFqRML55Jrk+qIkSE0QupIqQOUpE5tVQ30PDM+RqSmpobZkHXr1ilW0HxQM19eprS0NCtKHe9+FZ85ndOoUscXPBaVOrW9Xo0qdWKspcViUYw5NVIHdMfWfvHFF9i+fbtCqeP3RQYSSR3QnTxQUlKS4H71+/0JpM5isSTYDdH9qqfU8ecSIbpfS0pKVJU6LVLHJ0kAie7XgoICrFq1CjfccINicU2qP9BjI/ngf6vVypQb/l2TisyTOnq3PKmjhanH40F5eTnmzp2Ll156SXMuFb07WkqdHqkjTwA/3xx66KHIy8tTVep4Uicu7vlnzy+YqOSQ1vgnVFRUwGazMVKXjvsVANtOUI3Uie5XarNeTF1raysTUxwOR4JSZ7FYYDabE0gdvU+R1Ollv/KJEgQx3AVQ7sEN9Lh2ez37VQ8nnXQSPv744946fU5hNpvx0EMPYcKECaq1e3ilTnSpaZE66hg8kREHCb1gXrUrKytjkq9Ypw6AaqDu8OHDUVBQgM2bN8NisSTEKelBJHWhUIgNKq/Xi3g8jr1792LYsGH4xz/+wXYeoWMaGxtZmns8Hsfw4cMB9ExeXq9Xsem0GpEQY/1sNpumYZw4cSKi0Sjby5IGVSgUSiB1NCnxW+UA3c+bfteLqVMD/57J/UruOvH9GlHqRFe5UagpdfzfHQ4H/H4//H6/wkhpKXViUHCyRAkCve+dO3eiuLgYI0aMQEtLi8LYPvvss/jlL38Jm83G+pnD4cAtt9ySUCaJ3qeaUufxeNhkp5X9SmNJJHWiyqan1NEzEGPqkil1aqSOJm8+gYjaxB8DqL//mTNnskXMnDlzFKSuqKgIeXl5yM/PT3C/At3qKblfo9EoI1VGlTrR/aoXU8efS4S4AHa73aqkjq+7B/SQusMOO0xxPnoGsVgM4XAYNpsNs2bNwr333svGp8ViYbaSfqfv0r880aD+73a7E2Lq+HfldrsTSB2QGBuqBpvNxkJbAKRF6oiI8M9p4sSJqmV7aLs9gvh8+WdPfbe0tNSwUpeXl4fy8nK0tLQkJNNpuV+1zjl16tSsKXWtra0sO7+4uDghpo4y+Y0odVo77VB9WL6kCf8dQDme6Zny9slms/V+9msyiINrsEFrUuWTB8TK3mSoRPfr+PHjMXnyZNx9992qSh2QSOpoaxVaHfBK3SmnnIInnniCrSL37NnDzlNeXo7S0lJs374dQ4YMSdgnVA+0cT1dKxaLsRgvyiru6OjA8OHD4XA4cMYZZyAvL48NMp7UAT2EisqR7NmzR1G2hX8W1PnFUit6IBKxd+9ehVJHpI6eH9D9PoPBINvUmrBs2TL87//+LwB996saLBYLe76k1AHdhkhLqdOLqaP7ATJLlKDnwJM6imPUUurC4TAzbqm4X/lnRu3/7rvvUFxczAKq+e9Onz4djz/+uGJ8ORwOXHvttQkqzKmnnooHH3wwoX4aoKxfqaXUqQW5i0kgNAFpKXXUt9WUOjGuMplSJ8a+qZE6UgbV7M/cuXPhcDjw0EMPscLPFKTNv3M+UWLo0KHsekTqgB61QC2m7vbbb8eCBQsSnkUypc7pdLIFmBapoz7KZ0VruV/5859++um44YYbEggTTYZilibQY4cnTpyoSiD4sciPIXrXBx10ELsffixRuy0WCyN1fLuMkjqgZ1vAwsJCmM1mRc1JLVc8gYgIb6to3kim1AE9BdcBdVJHe17TeZOB5iryNPFt4pEuqSOl7ptvvsGqVat0lTp6vkSgAoEAnE5nglKXn5+vKNFE0FLq1NyvdA09pY5/h/RM6X1QX885qRvs0JrUeXZu1P1qNpvxl7/8BR999BHef/99ANqkjv6lVQetLqgDU0zdZZddBqfTCbPZzEjd8ccfj9mzZzNVSCtTWAtDhw5FY2OjouNTB4xEIszNS5M3ufZoYti/f78iMJhIHbk7du7cyZQ6KrsAKN3PasV1tUDn37t3L0KhUAKpGzZsGDPKVCcoFAoplLpRo0YxY5DM/SqCMqXo/Hz2YbKYOrXsV762YjaUOt5lREVs9dyvdB4196sRpa64uBilpaXYu3cviouLcfXVVwOAYv9TAv98tQjAkCFDcM011yjuhcCTOjGmLh6Payp1lIku7h2rpdQR4VGLqePVGbfbnTSmTlTqqP1GlbqxY8eipaWFVQbgSR29c5vNplDqzGYzXn/9ddx2221YsGCBIkQB6FHqrFYru+YFF1zAsjb5Z6FXfBjoVmuon2u9U7p3I+5XSuYBgDlz5uDee+/VPB+Rb57U0RjjF5rTpk1j/xfdr/R/h8MBk8mk2DWJno24+MxEqQMShQC73c6eTbJECVpQioSECoID3WEwF198Merr6xPaVVxczGyhSOqsVivKyspY/zeyyOS3WeQhkjdKItNy6U6dOhU1NTWskDnFPTscDkQiEWzbtg1HHnmkIaWOJ7dOp5O5vIEe9ysROx60EKBwIv7+CGRzaI5US5TgQxoIdDxvn3Lufj0QkIlSJ5I6oNtlDfTsbaeVbUP/0gAU9z/kB7DJZEJpaSkjdW+99RauuOIK5qo98cQTDd5tN9xuN+LxuCIzjd/GiTa0510zVIOPspUOO+wwdm90XEVFBZxOp4LU8e7X/Pz8tEhdUVERIxFqSh3fTqvVqsha0zofwQipA3reNblfge4JXTRYWkodbywzVer03K9GSB31+XRJnc1mU1SsHzVqFG6++WY8++yzCd/jn6+RupdqiRL0PT5Tl9yR8XicTbyiUgf0kC6+Pp8Iq9WaUJrAZDKpkjrahYCgp9QZcb9q9T8xFjcajcLn87Fz2Gw2Rgqoj5144on405/+hIMOOijBi0AxdVokjKCm1KnZyGSkjvag1nK/ipmR4iJIBB1P71ON1FFppOXLl7MSHfyxolKXl5eHESNGKJRj0f1K7z5dUqfl3bHb7UzpMpooQf+SveOVuk8++QT/+te/sGfPnpRIXXFxsaJP6cXZE2guEOPQ1d6d6P7lQRUGdu7cyeKAhwwZAqfTiSuvvJK1y0hMndg+fhtMerZq7texY8fC7/crEm+0sl9FpY5X7Ih4q8XU8fsX9wv362CH1kAiI62n1ImGE+gpn9Ha2gqr1ZowSGgCooEnVv7ms8V4uN1u1NTUsAwuoKfifKqkTm11w5O6zZs3w2QyKdyXTqcT7e3tjKwefPDBbLLii5eOGzcuQamjWC2TycTuMxX3K9CtbhGpo8FEiRI8qeMnJSOkzqhSxqfEG1HqRNeDlvtVNDJ6SEbqioqKdEkd7fzAT2xms1mxC4oWqeP7us1mU+wtCXRnzKttKWhEqeMhJoOI7ldeqaN2U18SlTqgO3HgRz/6EVO1tOrUie7XiooK5n7lJ/KKigpWeHfRokXM0ItKXSbuVxG82sNPwFRaSI0s89cCepQ6I6ROjKlT6xM0seqdr6CgQNP9qjVOtEidWJuPH0/0bonUHX/88Yp3pkbq6HrffvstLr/8csX98/dFfYuUnJKSEjaBZ6rUEYzG1JnNZrz00kts03ue1PFlpsR2ud1uVFRUKLbgA3oEC7rXZEkSBKNKHaBP6ugdUZKD0+nEo48+it/97nf46U9/ysqd0dxE3hYKR9JqM41hPuREy/0KJM61Wu5XmtNovNEY48efEaXOCKkzJjVIqCIdpY7iI7QMkMPhQEtLi6oxFGPqSErWU+rouO3btyvI0MiRI1FTU5NS5ivQMxC0SN2mTZtQVVWVUIbD7/djy5YtGDZsGIqLi1ltNH7QEqmjNpH7VXRFpaLUAd1ESCtR4qijjmLH8e9Ti9TxGazpKHV6pE4r+5U/LtWC2QS17Ff+3BRTB6iTuuOPP57V1wK6STi/KlVL/CDk5eUxd09BQQF7f2LJBBH0fM1ms6FJg46nXT+i0SibpMSaevzOAPxz4O//o48+wkcffcTKAWkpdTQWxowZA7vdjsmTJ6Orq0tVqdu1axc+/fRT3HXXXezvolJXWFiIUCgEs9nM3lM2SB3/zmnMJiN1BQUFGSl1WtmLWtfmr9vW1sbiN3mlrqSkBI2NjYaVOpHU8W2aPHkyAKhurccfKyp1QGL/FWPqyN7a7XbMnz+fFVbu7OxMO6ZOvE+j2a9msxlnnnkm+7tRUrdkyRK2LZ6Y/cpvdWYkng7otl/19fWGSN2IESM0t/KkuY8ndccee2zC59u3b4fZbMbIkSMT9oRXGz/UJwOBAHPlail1atBKlBCzWem5aZE6sXZiKtmvktRlALWBxK9WU4mpIzgcDuzZsychwBroITOiYscrdSaTKSHxgY+9I6xevTphyx0jUFPqeKOwcePGhKw4ktybm5tZDApffJMwbtw4LFu2jA0ecr/SNZ1OJywWS1IyIGL48OFYs2YNIpGIIl6orq4uwf0K9GRQaaGoqCgtUmexWBTuV/EaJ554Im644Qam0KopdekiWUwdHxeiRuqam5vR0dGhWBjw8SN6Sh3Q/cy6uroS3K964EmaEdcOr5TQypjKVIhKnUjq1NyvVHqBDKyaus7f8+jRo9He3o7f/OY3+PzzzxNIHe0XKu6cwo9DfrcZ3g2bKanjM+9sNhuam5sTSoIQ+GtVVVXB5/MpEi20oBZTp/aOk7lfge6+39zcjIKCAhQUFDBC0dXVxRZcIqnTIhb0jtSUulmzZiEWi2n2Lz2lToSo1PHv/oUXXgDQ/U47OzsTismrQc/9SjCaKCESksLCQqxduxavvPKKLqk75JBD2PFq7td0lToj7td169Zp2tji4mKYzWYFqeNB8+f27dtRVlammgxImeB8W8SdG/iYOiOkTkupI/CJD3l5ebqkjt8Wrt9kvw52qA2k4uJiQ0qd2gQBdBuEWCymOkGefvrpeOqpp5hrU43UqXU8tZVxVVVVwrY0RkDt6ujoYPfU3NzMiGNNTY1idwe6p/b2dmzevJmtjEtKShSuRKCb1NXU1Cj2t+VLZZSUlKCystLQBM9j+PDhCTF19fX1CAaDCe5XQFulI9A5sq3UTZ48WRHorRZTly5ElUFU6ubOncuOVSN1ROJF1TAVUkfnE92vWqDna3QfaXFSBXpInRhTZ0SpozhUWmWrjVneBlitVhbcreZ+HTJkCNsvlMDHLAI9iRITJ07EIYcckqD+AOmROkD5DmKxmObz5++zsrIyJaVO3FFCrY1G3a8dHR2w2+2w2+2M+PLuV57U0SSpBj33K6Bfc1UrUUINWu5XHna7XREfrAfR/Urvj79+Ku5XHnl5edi8eTPOPPNMNDU1obq6GiaTSVMZ4xMrgERSZ1SpowU+kX89Qk7jSQ0UK65F6mg+2rZtm264jtgXeKUO6Mn4T4XUtbe3IxqNstg8uge32836CCUQ8u3mbVAsFkNRUZEiGUhmv/YBxIGUn5+PwsJCVhy0o6MjLaUOUJ/Ii4uLcckll7Dvqrlf1Qa3eFwm4N2vZPybmpoUWaRTpkxRfMfpdKKtrQ07duxgMQ133nknbr/9dsVx48ePRywWY0WRyf1Kz+LXv/41nn/++ZTbPHz4cDQ2NioyAMmllg6pU8tW0oNRUqf1vWySOi33K58FLSY2dHR0qCYL8KtSo6SOd7+motQZgRqpoxpsWkodvWs1F7cRUicmJdC/VPeKVz5oMcaXF6L4u8ceewyrV69GOByG3W7Heeedh1WrVqkqdckSJXhokTr+PkWoKXXpuF+1+gSRMq2FLaCMkxP3zVaLqdOyp0ByUqcHtTp1WtcyQuoKCgoUW3EZubae+zUcDqeV/bpt2zb2/7179+Kkk05CTU0Niy0UQQojIVtKHc1JRkkhD7fbnZTUiWFHIsT+SWOC+hudm4hdMlA72tvb2Vigv4lhQ1R+hSDOJ0VFRSxEqV8UHz4QIL4EWs3xgdhq2a9Ua0gNeqSOQIOaJgz6jpZSp+Z+TRe8+5WMTHNzM0pKSljnVSN127dvRzQaZZPs7NmzE+oYHnXUUYoBSO5XMhjDhw/Hcccdl3KbSRGsqalhZRn0SB2f5KGGTJQ6vexXEVruV36nDqNI5n7lJwp+wuGzEPnjAWX8iF7xYQAK45+qUpcqqeNJiZpSFwqFWPYnGVr+vii7kTKh9Ugd/9z4rExy2bpcroR+9f3337PvEKm79dZb8cQTTyRch09kIeiVNBGhVpMtGanjVa+qqirDSp3oftVS6txuNxwOh259TF4hI/cr7bXNxxnRv3qkTi/7NRloMuVLpyRz89K70lLqjBZ7F4UAtYSQdJW6Z599lpUT2rRpEyoqKhI8J2K7s6HUiYkSTqdTsR1bKtAjdUT8u7q6dF3dos0iUrt161a2Babb7U5JqQOU231q1VctKirSdL/S5wBY4pR0v/YB+IFks9kUpI6UACJ1VHentbVVd4VqhNTx+10C3asxh8PRJ0odT+r4IqWU/ABAUZkdUAbh6xmOgoICXHDBBez/olKXLsRdGKxWK3bv3g2TyaRQ5eg6feF+DQQCSe9Ly/361FNPGVqx8UiWKAEgoZgskEjq9NyvepMlrxL1tlLHEyAKMeCVOnK/Op3OhCLMAFimNZWN0CN1s2fPZv/nSR0RL4fDwd4jkbrdu3ezvW7HjBnDXLVUdFuNKGYaU8efg86p9fxNJhM7trq6GtFoFPX19VlT6i6++GLVEjY86JkdeuihsNvtir2l1dyvqSh1qahCRCqBxBAGEbSdFB2vRiZSIXW8UkcLDfH6qZY0IRx11FG4/vrrAXSPjWQVBbRInZpLWA/FxcWsxA7QPScVFBSkHFID6JM6fv/zVJS6sWPH4qCDDsK7776rKKljNFGCL/VEY0Erwc/tdiv6Ao1nMeP9Jz/5CQ477DDpfu0L8Ea1tLRUQeqo0/KGkzK69AyQETl7+PDhOOiggxSKWHFxMVpbWw3H1KULNfcrlY6gFHc+6F68rphEIeIPf/gD5s6di5/+9KcJMXXpgidpVAB49+7dqKysVLzDVN2v6SRK8O/VqPtV7At5eXkpP5Nk7lcAeOyxxxICmFMhdUbdr70dU6dGZNSyX10uF5uMRILEX1OP1PHZ02L9NKC7r9hsNsV2fLt378bMmTOxZ88eHHHEESxTlkidWAKGvw8gOzF14j2KoDZQUd6dO3cmTZQwsk0Y0L3IOv3003XPRaraSSedxMgwuQzVttPrTferSOr0Yuoo9gnIXKnjSR3fJ9SUOq2+oOV+BZQL7FRJnZj9avSZUp8jlzK/6EkVeqSOPgfUyTVBbLfVasUJJ5yA5cuXszaWlpYaVur4nXZoLGiV4vrXv/6Fm2++WXFtoIf80TtfunQpzjjjDPz+97/HjTfemLQNktRlAH5Sd7vdLFstFAqxDkEGCEiN1OlNkC6XC1u2bGG7MADdHScQCOgqddl0v4ZCIYWhcTqdcLlcOOSQQxLcKnRPdrtdNauXR2VlJT766CMcdNBBCSVN0gVt1wN0G94ZM2ags7NTde9KwLhSl06dOt6AGXW/9mZMHX8PJpMpwXDZbDZFtmamMXU2mw2jR4/GlVdeiWOOOUa3zekqdfw90f2oxdSVlJQwYy22nZ8k9LJf+WuJ2Zh0HlJ7qO+3t7ejpKQEI0aMUJBmo0odFQ430v/4/mbU/cpfj0gdbXauByPbhBnFunXrAADz5s3DjBkzAAArV64EkFjP0aj7NVukTk+ps1qtmDBhAsaNG6dqR/7whz/ghhtuMHRt3v2qRuosFgtisZhuJj71fzVXt81mY21MR6nj69SlotQBPWPK6XTqvjs9GCV1RpQ6fqu3E088EXv27GE1/bLlfhWVukmTJiUIDvxx4iLqmGOOwdFHH520DZLUZQAtpS4YDOLbb7+F1WplMT1Ad8ePRqMZu1/VQB1HL6Yum+5XQDnJFRcX4+yzz8Yvf/lLzbbxyRTJQHWUsuF+zcvLU5SuuPLKK1l7ePRFTF0qSl1vZr+quR3VoLaSJfAxdakodfn5+Xj44YeTPmfqy5mQOpPJhPz8fNXsVz7eVStgGkDSvS3/9re/AdBW6ojUORwOdk/87iG0JVF9fT2A5EqdeL96SCdRgj+W3z4r1Zg6LaXOCGiyGzJkCMrLyzFy5Ei204MYU9ebSl1VVRWbZI3E1FksFsyaNQs7duxQvc68efMwZ84cQ9em6zU3NyuePd0r/a2zszNl9yuBwhOMkrp4PI6amhpWriadRAmgR6k788wz8etf/9rQd0W43W40NDSgo6MjY1LH7yxDIRUff/wxgO7+ZjRRgne/JlPqRNBYoeOSKeNakKQuA9BLphgc3v26bt06TJs2TWHUklU+B9IndbR67avsVyBxT8/rrrtOUWGdQNfVi6cTQUYkG+5XoGeSsFgsOO200zB06FAF4Qb6JqYuPz+f1X5KN1EiHRhxv6pBvLZYz81oooRIKIwgG0od/S7u/erxeBSkLpn7tbCwUHNBcu211yIajbKJk5/0yf1qt9thMpnYOBVdiEDPlkbJlDpCutmvyWLq+GPLysoMlSAB1EuaZKLU8Qklhx12GP773//C4XAwhZfu7dprr8Uf//hHzXOJpC4Vorlw4UK88847AIy7X7MFSs5ob29XqDypkDo99yvQU58yWd08sscvvPACI4LpljQBepS6H/7wh/jDH/5g6Lsi3G43W3Dxe/ASqN8acb/yWfAk0GzcuJGdJxP3q5ZSJyKZUmcUA6b48MKFC/Hll19i5MiReOqppxSD5+OPP8aFF16IcePGwWw2K/bu603wMTxFRUXw+/2M1G3cuDFBKh0+fDh27drVK0odqU56MXXZdL/S+a644grs27eP7VurBrqnZPF0PLJN6vh6ZBaLBZ9//nlCEWMaRMl22cgkpg7ojhPatGlT0smlL0uaaEFPqRs2bBj8fj/uuOMOhMNhw4kSRpFuTJ3FYsFVV12FE044gZ1Hzf1KSqHT6UwYk/xYaW1tVWwErgbevaXmfiUFq7S0FC0tLaqkjsCTOlGp491gvanUFRYWsiz9YcOGKbYZ04JaokS6Sp2o4h522GF49dVXMX/+fPYu6D74uEY18NmvqQblp5ookU1SR9cPhUIKlUckdV1dXWkrdUTqjCp1tbW17G/ZUOrS7R9Aj1iRn5+fUEmB/9yIUjdkyBDmXTOZTBg2bBi2bNmCwsJC5l0wQury8/Nht9txzz33sPnOKKkrLS1FUVERi7kc1Erd+vXrUV9fjxUrVmDy5Ml48cUXE44599xz8fHHH/cZoQN6Jh2bzYarrroKN9xwA2y27s2yN2/enNDRfvaznwEAc7eoIV1SR0Uj1QZ3WVkZTj75ZPzgBz9I6Zxq4Adhfn4+HnnkEbzxxhuKja1FpKPUFRYWIhqNoqOjIytKlbhx++jRoxPi+0488UR88sknjABqIROlDgBOPvlkAGD1+LRgtVpx9NFHJ5SISQda2a/JjKoeqZs/fz5uuOEGFuxr1P1qFJkodQ899BALxrdYLKx2JJDofl22bBkr70DgiWQsFtNdiImgZ2YymVicLd039Tk9UqdX0kQtW85IW/jzGnW/0vE0bvsypk4E2a5LLrmEtd/oufmYukxsCT1vrT48bNiwlBauRkDtVVPqqI92dnamvKMEYcqUKaiqqkpKIGhHCT6+1m63px1TR6TOqA1VA42FadOmqRJtI4kSoneGfh86dCi6urrYeDWa/Qp03+OWLVvw/vvvs9+B5MT57LPPxjfffJNgo1PFgCB1X3zxBVt1z5s3jwXM8njppZcwZ84cFt/SF+BJ3Y9+9COcfvrpsFqtWLNmDWKxGA4//HDF8TTJfP7555rnTHXlQ6AVF5Vh4GE2m/HWW29h+vTpKZ1TDXy9JqMDMl2lDujOssrGxEAGQG8itFgsiv0DtVBUVIS8vDzdOls8RFJHCm6yLDiTyYTPPvssaUKBEYwbNw7Dhg1jBi4dpU7c0zc/Px/XXnst+91onTqjyJb7NT8/X1E4lU+UALoJg7iKFglPOqSOtjfj1R6aJPiYOhFq7teKigocfPDBioWiEVKXn58Pk8kEm83GJiWjpI7aQePWaEzd7t274XK50N7enpESw+OEE07Ap59+iuOOO47dj9G+RHXQMiV1yZS63/3ud1kXFai96Sp1ydyvF154IbZu3ZpUvXS5XGhtbUVDQwOGDx+Oiy++GFOnTk15XFMmeDaVupkzZ+p+nsz9arVa2bHUHvLW8GqgUVInYvz48XA4HElFDavVinHjxiXEPaeKAeF+9Xg87CFT5+JxxBFHsHT30047Dcccc0wCoQK6V+h8fS9+4910oFZCwWq1wufzwWQysdgpAgUd67n3MlXqKIOuN0EuZqOkLt2YOqD73WeT1GWyMiT85Cc/UZCZZBBJndVqxY4dO5IqgtnE9OnT2fZrfJuMkrr8/HyMGzdOkc0NKN+p3rkqKipQWFiY0rvMZkwdlQEBlCVNtEB9luIG0yF1fLV8Ugn1YuoIPGk4/PDDccEFF2Ds2LHYvHkz7rzzTrz++uuq96kGIkBqyRd6bu10SB3F1L344ovMtmZLqcvLy1MkGMybN0/V5aYFssvJsu+TnQPQVqVSUXOMgq6lR+o6OjrSdr+azeaEMa2GESNGoKmpCXv27MHUqVPx9NNPAwDr10aVOpPJBKfTyWLqMrHHRLhmzZql+vlJJ52EpqYmXcJptVoVe33zSh1/DaOJEkDiHDxnzhy0tramvAPRoCB19fX1mD9/fsLfTzrpJGYkPB5PQnwLb2xOPfVUfPPNN6qkbvHixbjtttuy1l5eqSNQpxgxYoRqR9+1a5duJ8uU1PGTV2+B2mbUgI0bNw6LFi3Cj370I8PX4GvgZcP9SqSuvb0943NNnToVS5YsMXy8GFMHQFGOJhfIz89n8YV6oGdfWFiIZcuWJRiavLw8VFZWorGxUbfPnnPOOZg5c6ZhdZPaCKQXUyeehx8XovtVDXzGdrqkjsZySUkJa1My96vFYlFMHpWVlYpCvWL4g9H2qLl09ZQ6t9vN2pqq+/W1115TbW828eqrr6Z0vM1mQ2tra9IkKD0kU+p6A3ru12xkvxoFeYLWrl2LU045hf2dMvpTCaugmqpAZv1j7NixuPvuu3HmmWeqfj558mTcdddduucgUkfjXVTqaAwceuihabfViJ3lMahIXXV1NT777LOEv69fvx5//etfcdFFF+Hdd99NSECg6tYAsGLFClayQsSiRYtYFW36ntYGxkZAL4qfzGgQipmVBK2/EzIldX0BXr0xgvz8fNx5550pXYN3v2ZjYiBSRyvEvgRfp64/wYhyxgfqa7nPR48ejcbGRl3ybbFYMGHChJTal65SJ94Tr9QVFhaira0NkUhEl9SRPeEDpo1CJHX33Xcfqy2XjNQluw5/b0YnakrkEtunR+r+8Ic/4IorrgDQM6HrPS9qW1NTE5qbmzFr1ix8+eWXbDu2XIMvf5Iukil1vQEj7let+qRAcverUdD80tzcnOBhGD58eEpkubi4mHkNMrGJeXl5horx6oFI3ZgxY1BdXc2eF9k6EpCSkUMeZ555Jt55552UtvPjQe93UMfUzZgxA9XV1ZgzZw42b96Ms846CwCY0Vm2bBlmzpyJo446CsOGDdOMi7LZbCguLlb8ZAI9pU5rY+RkyLROXV8g1Zi6dEAdOxKJZLS6JtD7yMT9ki5mzZqFn//854YryfcVxo0bx8oTaIFX6rRAC5VsZ/7R+Yz2beqPeu5Xfss6PbfT3LlzcfnllydUdzcC0b1ZVVWVsPKna4sEIZkKRM/EYrEYzuJMh9S53W6mJv/kJz/B22+/nXRBSs89Ho/jH//4B4DkpTL6CmqFoVNFLkmdnlLHHyciW0odH2Yh2uM1a9ao1ifVQnFxMSu43VtKrlG43W5UVlbirLPOwq5du9jfRfdrKnjppZfw9ddfs99TtYuDSqnTw7333pvwt0cffRRA956VavtW9jb6E6nrS/QFqeMnUb4AarqYMWMGPvvsMxx55JEZnytVjBw5Ev/+97/7/LrJsGbNmqTHpELqAoFAdhr2/4Nid/Qyq3kYcb86nU5G6vSUp4MPPhiPPfYYfvWrXwFIP1FCBE0SYqJESUkJPB6PYaUulclQK6bO6KLWbDbrliwiUJsOPfRQHH744WhsbOw3C5l0E9B45ML9aiSmDtAul5EtUme321FRUYGmpqYEpc5ITB4Pp9PJKkDk2ntx++23o6uri2WqE8RFWKrg31dfk7oBodT1V9C2SryhoESMdEkdre6zEUfWW6C2ZTsomAc/wLJB6oDurNNUYrokjJG6H//4xwCSu+dSRV5eHi6++GLD/cxIogQfpG1kFZ5OeQE9UnfmmWfiueeeS6gZR0pIKkpdKu1RU+qyre5Tm6g/VFRU9JvxRiVRMrGr9Az70itis9mQl5en6KtiSRNAu2B6ttyvQI8bPtMEL1pMmM3mlGoG9gZcLpfqs8tEqaPz8olxqUCSuhxD3KR93759AJLHzmnB6PZNanj44YdTjl1LB33pfgWyR+okUodYtFgNP/nJT1BbW8u218kVjCp1hGR1o4DMSJ3W1kW/+MUvEo6lGJ5kpE7rHpO1h58gfvrTn+LRRx/NOjnZuXMngG7XdX/DcccdByCzRLLZs2dj+fLlfZrkZLPZUFZWpiBlpN7xiwYtUpctpQ7oiavLFqnLtetVD0VFRfi///s/nHPOOWl932QysdCDVO+T1O10QxckqcsQlEVIIFKXrlJntVrZT6q48sorsWjRorSumwr60v1aWlqakzg4iW4YUeqA1MrV9Bb0lDrKeiYiYzKZDPWrbCt1WsdWVFQkuEnVkM7YczqdChW1vLycuZWzCSo5QgSqP4HatHr16rTPkZeXh+OPPz5bTTKEgoKCBNcquTt513ZfkLpsKXU0BnPtek2Gc889N22lDuge06nEvhImT56Mb775RnXrMyPo3091AEBU6g4//HB8+eWXSbcE0cNpp52mWpKlvyDV7Nd0QKtRqdLlFkZJXX9AKkqd2+02NNH1FalzOp0oLi7uFffrQw89lLYrJxWccsopurvl5BKjR4/OdRPSwsSJExPs7IgRI/DFF18oFMO+cL+OGTMGNpstI6IDDAylLhuoqKhQJF+kgmnTpqV9XUnqMgTV6SEsWbIEN998c0axAsuWLctG03oNqdapSwd5eXmw2WyS1OUYg4HUidmvgDHXK5BeeYFUYtb4pIXi4uJeSZSYPHmy4WMHM1566aUBp/rffvvtqn+fPXu2oni+VkJKNpW6X/7yl5g9e3bGcZJE6vq7UpcpSKnrawzup9oHEJU6q9WasBn1YENfuF+B7kkx1dpmEtmFuKF8f0YqSp3ReJV0lDqTyYRRo0YZWpDwhYB7S6mT6IZWkdqBCr4P6O0YASArCStOpzMrcbMHklKXiyoWktRlCFGpOxDQF+5XAFi6dGlWNrOXSB8DSamrqKjAhRdeyDIdCRaLhe2JTKTOqFKX7ubau3fvNnQcZTYOGTIE559/ftLYxHQSJSQGJ4wQhmy6X7MFcfeGwYopU6bgq6++6vPrSlKXISwWS7+uKdcb6CulLpVtxSR6BwOJ1OXn5+Nf//pXwt/5yaMvlDoAKYVfrF+/HtXV1YbsiFTqJAhGiFo23a/ZwoHifr3iiivYBgl9icH9VPsAM2bMOODUpL6IqZPoHxhIpE4L/ORBbuTeVupSAWUVGkFfLagkBgf6M6mTC5PegbQMGeKFF17IdRP6HH3lfpXIPQYDqeNdlpRV3dtKXW9BKnUSIvTCf/qj+/VAUepyBVmnTiJlSLXgwEF+fj4OO+ywAZ1ByVd2pwnQKKmrrq5Gfn4+qzCfa0hSJ8HjpJNOwn/+8x/Nz/ujUnegxNTlCnJWlkgZktQdODCZTFi7dm2um5ERaPKw2Wys7xp1v44aNQpNTU0p72/ZW5CJEhI83n77bd3P+yOpk+7X3oVU6iRSRl/s/SohkS2Ew2EAwMyZMxmpS2ULnv5C6ACp1Emkhv7ofh0oO0oMVEhSJ5EypFInMZBw3XXX4aGHHsLrr7+OkpISmEymfuNOTRVy7Emkgv6o1OXn58Nut8uFSS9BWgaJlCEnFomBhBkzZmDGjBkAgGOPPRbr168f8KROTogSRtAfSR3Q7YKV80fvQCp1EilDul8lBipMJhOmT5+e62akDUnqJFJBf3S/At2kTvbh3oEkdRIpQyp1EhK5gUyUkEgFUqk78DAgSJ3f78esWbPgcDiwcePGhM8jkQguueQSzJkzB9ddd10OWnhgQZI6CYncwGQyIT8/X5I6CUPor6TO6XTKPtxLGBCkzm63480338T8+fNVP3/jjTcwfPhwrFixAp2dnVi5cmUft/DAgiw+LCGRO1itVjkhShhCf3W/XnvttViwYEGumzEoMSBm5fz8fN26Ul988QVOOeUUAMC8efOwcuVKHHXUUQnHBYNBBINB9rvP58t+Yw8AyG3CJCRyB6vVKhdUEobQX5W6M844I9dNGLQYEEpdMng8HlbQ0OVyobW1VfW4xYsXw+VysZ8RI0b0ZTMHDaT7VUIid7BYLFKpkzCE/krqJHoP/WpWrq+vV3Wxvv7663C73ZrfKy0tZaqbx+PRPHbRokW4/vrr2e8+n08SuzQg3a8SErmDdL9KGAW5X+lficGPfjUrV1dX47PPPkv5e7Nnz8by5ctx7LHH4t1338Vll12mepzNZtPd/FjCGKRSJyGRO5SXl6OsrCzXzZAYAJBK3YGHAUPfTz75ZCxfvhyXX345nn76aQDAFVdcAQD42c9+htraWsyZMwd2ux1HHnlkDls6+CFj6iQkcof33nsPv/3tb3PdDIkBAEnqDjwMGKlFbePiRx99FEC3YvTMM8/0dZMOWJBK4HK5ctwSCYkDD3pJYxISPPpr9qtE72HAKHUS/QfTp0/Hjh07MHLkyFw3RUJCQkJCA1KpO/AgSZ1EWhg3blyumyAhISEhoQNJ6g48SFInISEhISExCOFyuWC1WlFZWZnrpkj0EQZMTJ2EhISEhISEcZSXl6OpqYnVcZUY/JBKnYSEhISExCCFJHQHFiSpk5CQkJCQkJAYBJCkTkJCQkJCQkJiEECSOgkJCQkJCQmJQQBJ6iQkJCQkJCQkBgFM8Xg8nutG5ArxeBx+vx9OpxMmkynXzZGQkJCQkJCQSBsHNKmTkJCQkJCQkBgskO5XCQkJCQkJCYlBAEnqJCQkJCQkJCQGASSpk5CQkJCQkJAYBJCkTkJCQkJCQkJiEECSOgkJCQkJCQmJQQBJ6iQkJCQkJCQkBgEkqZOQkJCQkJCQGASQpE5CQkJCQkJCYhBAkjoJCQkJCQkJiUEASeokJCQkJCQkJAYBJKmTkJCQkJCQkBgEOKBJXTweh8/ng9z+VkJCQkJCQmKg44AmdX6/Hy6XC36/P9dNkZCQkJCQkJDICAc0qZOQkJCQkJCQGCyQpE5CQkJCQkJCYhBAkjoJCQkJCQkJiUEASeokJCQkJCQkJAYBJKmTkJCQkJCQkNBAc3MzWlpact0MQ8jPdQMkJCQkJCQkJPorrrnmGlgsFjz33HO5bkpSDBpSt3HjRlxxxRXIz8+Hw+HA0qVL4XA4ct0sCQkJCQkJiQEMr9cLk8mU62YYwqBxv06aNAmff/45PvnkE8ycOROvvPJKrpskISEhISEhMcARiUQQCARy3QxDGDRKncViYf/v7OzEQQcdlHBMMBhEMBhkv/t8vj5pm4SEhISEhMTARDQaVXCH/oxBo9QBwHvvvYcZM2bgo48+wrhx4xI+X7x4MVwuF/sZMWJEDlopISEhISEhMVAQjUYHjFJnig/CjU/vvvtuxGIx/OEPf1D8XU2pGzFiBLxeL4qLi/u6mRISEhISEhL9HEcffTQ8Hg82bdqU66YkxaBxvwaDQdhsNgCAy+VCKBRKOMZms7FjJCQkJCQkJCSSYSApdYOG1L333nu45557kJeXh4qKCjz99NO5bpKEhISEhITEAEckEhkwMXWD0v1qFD6fDy6XS7pfJSQkJCQkJFQxY8YM1NbWorm5OddNSYpBlSghISEhISEhIZFNyOxXCQkJCQkJCYkBjN/85jf44IMPZEydhISEhISEhMRAxtKlS1FRUYFoNIpIJIJoNAqz2ZzrZulCKnWDCB9++CFefPHFXDdDop/gzTffxAMPPJDrZkhISEgMSITDYUbmAAwIF6wkdYMITz75JJYsWZLrZkj0E7z88st44oknct0MCQmJPsauXbvwi1/8gpERifRAhC4SiQDAgHDBSlI3iDCQ0q4leh/BYBAdHR25boaEhEQfY/Xq1fj3v/8tt8LMEJFIRCp1ErnDQMrQkeh9SFInIXFggorvS6UuM4ikTip1En0KqdRJ8JCkTkLiwEQ4HAYgSV0miMfjjNBJpU4iJxhIadcSvQ8idQdwfXEJiQMSpNTFYrEct2TggoicVOokcgap1EnwCAaDiMVisk9IZA3btm2T6s8AgHS/Zg5KjuATJQaCLZWkbhBBxtRJ8KC+MNBcsIFAAGvXrs11MyQE+P1+TJ06Fe+8806umyKRBNL9mjmIyEmlLkdYu3Yt5syZg+OOOw7nnHMO69QHEqRS1zcIhULYvXt3rpuRFAOV1L3wwgs46qijpOuon6GlpQXhcBgejyfXTZFIAul+zRzEIbJF6nw+H9xuN9avX5+V9mlh0JC6YcOG4d1338Unn3yC8ePH49VXX811k/ocFFMnY6h6F//3f/+H6dOn9/vnPFBJnd/vRygUkipDP4PX6wWAA3LBPNAwWJS6tWvXora2NifX5t2v2UiUaGpqQltbG77//vtsNE8Tg4bUVVdXo7CwEABgsViQn3/g7YBGnVAa3d6Fx+OB3++H3+/PdVN0MVBJHakM1J/7A3bv3t3vSXxvg0gdvR+J/gGfz5dANgZLTN2ll16Ke++9NyfXzrb7taurK+NzGMGgIXWEmpoavP/++zjllFMSPgsGg/D5fIqfwYRMVxNbt27NZnMGLYg0t7W1GTre5/PhgQce6HNSIElddtDS0oKxY8fir3/9a66bklOQvZSLxv6Fn/70p7jrrrsUf6MxFA6HsWjRogE71zU1NeXMfqmRukyUus7OTgCS1KUEn8+HCy+8EE899RQsFkvC54sXL4bL5WI/I0aMyEErew+ZbGWyfv16HHzwwb0uDQ8G0HNubW01dPxHH32E6667DnV1db3ZrARIUpcd0HM80BMEpFLXP9HY2JjgoiTivXv3btx1111YtWpVLpqWMdra2nIWJ07PMBwOswV5JoRMkroUEY1G8Ytf/AJ/+tOfMHHiRNVjFi1aBK/Xy35y5avvLWSymmhubgYAGQRtAKmSOpoE+9pdS/2gvb29T69LWL9+PdatW5fy9/gA5f4Aas/+/ftz3JLcQsbU9U9EIpGEMU42h1fsBhq6uroQDAZzRurI/vCLGKnU9SGWLVuGlStX4s9//jPmzp2LpUuXJhxjs9lQXFys+BlMyKSWDnW0vhxAsVhsQMZ8pErq6PhsuUA2b96Mxx57LOlxuVbqbr31VvzpT39K+Xt6St1jjz2GN954I+O2pdOevlZa+xvSVerWrl2L+vr63miSBLrHibhgJBInkrvexNKlS/Haa69l7XwU3pIrZVhtPh0IMXWDJpvg5z//OX7+85/nuhk5RSZKXS5I3U033YTt27fj5Zdfzsr53nrrLYwcORJTp07Nyvm0kGpMHRmHbCl1999/P/75z38iFovhyiuvVD0mHo8zY5grUpfubhZ6pO6KK64A0L0gMJlMmTXQIOh9H+gqdrpK3bnnnouzzz4bixcv7o1mHfBQI3WiQtcXxOjRRx+Fy+XCaaedlpXzkX3NtVLHX18qdRJ9ikxi6nJB6vbs2ZPVem//8z//g0cffTRr59NCrpU6t9sNALj++us1SRNvxHNF6gKBQFp90Yj7tS+LE6tNiKtXr8bnn3/eZ23oD0hXqWtqaspJpviBUrMzHA73C/cruUuzhVyTOnpm2VLqiNSRYtdbkKRuECEbSl1fSt3BYDCr8V6dnZ19UvE7VVJHxiFbpI7eUVdXFzMUIvg+kCtSl66R11PqqqurAQDPPvtsZo1LAfyESORk8eLF+POf/9xnbegPSIfURSIR+Hy+Pq/EX19fj5KSEmzatKlPr5sL9Bf3azZIXTwexxNPPIFAIJBzUpdt96tU6iRSRiYxdbR66MsBlG1Sl+2VohbSVeqypVbwJEOLKPYHUpeuUqdH6ui+vv3228wal0Z7gG51GejuawdaFmg67ldyWfe2OiGitrYWgUDggMjm7y/u166urowJy549e7BgwQJ88skn/ZLU9Yb7tbm5Oav9VJK6QYSBFlPXX5S6F154ARdddJHh49ONqcu2UgdoE8XBSuo6OzthMpnQ0tKScfuMgicxROoCgcABR+qo/6Zy37Tw6WtSRwS0L+qzffbZZ2lleWcLatmvIpkbKO5XsmfBYLDfkDq+v/dGosQtt9yCCy+8MO3zipCkbhBhoMXUBYNBdHR0ZG1/wnSNysqVK/Hhhx8aPj7XMXXhcBh2u133nJmQuvr6elx11VUZlxRJd+WuFVMXjUYRDAYxYsSIPiV1vFHfu3cvgAOT1KWj1NHE3Nfu174kdTfddBPuueeeXr+OFiKRCDo6OhAKhTTdrn3RVzs7OzOeP8hWhUKhnJM6tZi63lDq6urqstpPJakbRBiISl08Hs/KKj4cDiMSiaTVfq/Xm9JElW5MXTL3a1NTE1544YWk5wuFQigrK9M9Jz2H4uLilEndRx99hEceeSTjumyBQCCrMXVkFEeOHImWlpY+26GD7xukiHR1dfWK+vHBBx/grbfeyvp5s4F0YupypdSR27cvSJ3H48lpUgaNk6uvvhpnn302gIHlfv3qq69w2WWXAeghdf1JqevtmLrW1tas2hJJ6gYRslGnri/VB7pmNlywmdQA6m1SZ1Spe+mll3DuuecmVS7D4TAjdcmUurKysrSUOgCaSRhGka6R1yJ1dB8jR45kKm828Oyzz2Ljxo2an1PfsFgsCsPcG2PlwQcfxJIlS7J+3mwgHaWOxkh/V+oyaV+q9iObiEajbHGzevVqbNmyBUDfJ0rQ4jydueeDDz7AU089hXg83q+UOnE+tdvtvaLUSVInoYlMNh3OlVIHZJfUabU/GAzi7LPPVi0g6/V6UzJ6NACznSjR1dVlSLlMRalzu91pk7pM1JV4PJ71kiZkFGl7v2y5YC+66CLd2obUN1wuV6+TOvG88Xgca9asyfp1UkUsFksrpo4m5v4cU9fY2JhRpiyRutbW1j7fP5sfIzt37kRjYyOAvi9pEgqFEI/H05o/aBzzC7X+SOoKCwt7RalraWnRHVMnnngi/v3vfxu+jiR1gwgDMfsV6BtSV1dXhxdffBFff/11wmfpKnVGY0iMKnVGd4AIh8NwOp2wWCxJlTq3253y882GUserbanuGmLE/Qpkj9QlA/WNkpIShWHujYlSVDs+++wz/OAHP8j5FmXt7e1MEUpHqevP7teGhgYEg0Hs27cv5esQ2Q2FQliyZAnmz5+f8jkyAT9GOjs7mSu4r92vmXhKaBx3dnb2K/crv/crABQVFWXUFrVnFI/Hkyp169atYwqsEUhSlwai0ShOOeWUflcDaSDG1AHZIXXJagDpGTefz5cWqQOMZcAarVOXCqmzWq1wOp29qtRlQur4STzVPmXE/Qr07Ffc21BT6viSJu3t7Xjvvfeyci0xDpH6TKZj5PHHH8d9992X9vdJ+XI4HGnF1PVn92smhMTv9yMejyMcDsPv9/d5kWW1ZKbGxsY+d79mIgqokTpS6mw2W86VOkJRUVFGixO1OYqEAb35JxQKpfT+JKlLA16vF2+99Zaq6pMKGhoa8Prrr2enURh4MXXZ3Js0mVHRI3VerxfxeNywohSJRNiuDkZcsEbdr0afRygUgsViQXFxcVKlrrS0NGVylg33K2+4Up0s+6NSZzKZ4HQ6Vd2vr7zyCubNm5eVsSO6X7M1Kb/55ptYtmwZ+33Tpk1wuVyGQwio75aVlaWV/dqf3a+ZLGj5OMNUJ99sQI3UNTQ09Hn2K29/U01gonHc1dWVQOqqqqoQi8UyzsRPB+I1i4uLs07qaPzpjalgMJhS35SkLg3Qy8m0oz3++OOYP39+Vja150nJQImp68tEiWSkTuszrXNVVlYCSI3UJZtgjO7VGg6HYbFYDCl1TqczZTehllJ3+umn47rrrjN0Dt74pdofqb3iuKDnUlFRAavV2mekLhQKwWq1orCwEJ2dnYhGowiHw6ydVJYnG2NHVOpEF1C66OrqUiib33//PXw+n2G3LvWF0tJSQ+MkFovhsssuw8qVK9n1+xJ9pdSRmzdXpE6tX/BKXbb6TzLwtiLVZ6Dlfu3s7GSxw+k+13g8nradEOd3p9OZkQChtk0YtU3r/mgP7wNSqfP7/Zg1axYcDoduJls2QC8l04GyZ88ehMNhNolmAj5jsi/cr+nEn4joDferVvu1VqyhUIjdu9H3GYlEUFVVBcCY+zXbMXVEMowodU6nU9Mg1NfXJzyvSCSCpqYmAIkT8WuvvYYHHnhAt20EfoLMlvuV3nFRURHKysqYQYzH46wocKrgVQU9lddisTBSR8eJfSobLsbeUuq6urrYe6XrAMbHHj17l8uVME74LZ0IHo8HTz31FHbs2KG4Xl8hlZg6alu6mfMAWI24vnYVJlPq+jqmDkh9vGspdYFAAC6XK61zEj799FMMHz48qZfkm2++wVVXXaX4m9jP0ykPxSMdpS4SiTBiZxSDhtTZ7Xa8+eabfRKoSh04U6WOJqKamhrNY3jSoQde1ejtRImNGzdi5MiRqK2tTfk6hEgkwohoXyRKaBk3Msr8MckQiURQUVEBwJhSR+cllYfOIbopRFIXj8dx3nnnYf369QnnM6rU6cVADRkyBGeeeabib01NTaxdWm5byrDTQ2+4X+m5FBYWory8nClPn376KcaPH5/Wipx/51r3JSp14qIu26ROTanLBqmjgH66DmB87NGzLykpSWjL3LlzWTiC2G6gmwhGIpE+daGlo9QNBvdrQUFBTt2vQGrPkRIFgG57wy/Og8EgiouLUz4nj/379yMQCCjsvBpWrFiBRx55RGGT1dyvmZC6rq4ulJSUKOwE2Sy1+QDoeW8HpPs1Pz+fTbS9jWwqdYA+qbvhhhtw/vnnJz0X3wF72/3a0tKCWCyWkfuLv05ful/F++MHu57h42uuRSIRFBYWoqioKCX3K9ATm2SxWLBgwQLFcSKpC4fDWLp0KT799FPFcUaVOrPZDLvdrntfb7/9tuJ3XjUWSR3tYvHRRx+pnisej2POnDn4+OOPs+J+VVPqrFYr8vPzFUrdnj172Mbxt956K3snW7ZsYTtAJLsWANx///2qpQNEpY7uJxqNsl0ugOyELpBSR+EU2SpJQe+DV0WA7Ch1X375ZcLxfJ+jMdaXLliv14uKioo+U+qI1IXD4T4rig0ox4jdbseoUaPQ0NDQ5+7XdEmd1+tlC11eqSM7malSR+0yUiZKvI4aqevs7Ez7/XZ2dsLtdqsqdWrX49t1QCp1RhAMBuHz+RQ/6SAbSl08HmdkTs91tHPnTkOupUyVulQSJehamaz+sk3qaNKhiVaEluLB9wE9w3fJJZfg17/+NTvOYrHA7XanTOr46z355JOq7j/eBQEkZnkaVepsNhusViui0ajhrdiI1JlMpgRDWF5eDgCaW6p1dHSwfTB7K1GisLAQABSkjp7Pvn37cNttt+Hjjz8GACxYsAB33HGHoWsBwH333Ydf/OIXqsfwSh1/PzSZA9lV6p555hkceuihWVPqaHyQCzZd96uaUqcGfiydd955imtmCx6PR3XMxuNxeDwejBw5Eu3t7UljlrMZU0f/7yvwY6SqqgpVVVVobGzMqVKXynPk7ScfU0d2MlNSZ5SwGyV1/EIrVRCp41Vr/v7VziuGehjBAUXqFi9eDJfLxX6oiKkWOjs7VSdNMnCZDN7m5mY2EPSUura2NkPkk++AvR1Tl0mWLaG3lDrx3IRM3a/ffPMNvv/+ewDd95+fnw+32204ps5mswFIzID97LPP2P/FRAm6D5HUGVXqiNQluzceDQ0NAIBhw4YlKHV0jt27d6t+lwyUz+frlZi6jo4OFBUVAVCSOj7Qmr+e1+tNmvlr5LloKXX0WbZIHRVvDQaD+P7777Fnz56sK3XUl9IhdXl5eXA4HIbaQu3+9NNPcckllyjakA3U1dWhtLQUN910k2pbo9Eos+9q9xiNRtnYUSN1P/rRj/CrX/0qaTvEmDr6f1+BfxdE6urr6xM2o++v7lfe28MrddkidUaVOnqO4tjmQa7gdFywlFhFiR90P/z9q42rA9r9agSLFi2C1+tlP3oxYdFoFCeccALOOeechM+MKnVerxeTJk3CN998k/AZqW/V1dW6pK61tdUQqUtXqXvhhRcwYcIEXVL3zjvv4LnnnmO/iwYjHfCDR29iKS4uVrifo9GoqtuXn7zVJtdUSF0oFMKll16Kd999F0BPID4dS6SutLTUcEyd0+kE0NN38vK6h97LL7/MjtNS6lpaWnDPPfew8jdEMoqLiw0pdWr3rQWqrl9SUpJgCOkcWtckguv1ejNyvxpR6hwOB+s3RFREMmxkf1bxuYwbN071GLWYOvqMrpcpqaPvx+NxtLe3Z5UoUJszUeoKCwthtVoVbdGygXSM1WplbvtskrpLL70UAFTd6zROqfSNmv189tlnMW3aNADqC9qPPvoI//znPwEAd955J4488kjVdojuV/E8arjjjjsSgvLTBT3/4uJiRur4Z9LfEyV4W96XSt2XX37JFumAcaUOSI/U0fMpLS1VtIefP9Rs1QGv1J188slYvnw5Lr/8cjz99NMJn9tsNhQXFyt+tPC3v/0Nn3/+Ob766qsEH7rRmLpt27Zh+/btuOGGGxI+IyI3Z86crJA66oBmszmlyWXjxo3YsWMHcyNQJ1q8eDGrw/fEE0/gb3/7G/tOJkWOCfTd/Px83YnF7/fjP//5D/v9+eefx6RJkxJcKtlQ6uizXbt24emnn8a8efPwySefoL6+HoFAgL0HXqkz6n51OBwAugdzLBZj7lBSxvh2q7lfH3roIbz22mvsXsj9qqfUWa1WWCwW1fvmnx//7Jqbm1FeXg673Z6gctE51K4ZjUbZs/B6vRm5X7Vi6nilrqioiD0nUamjdnZ1dSVdeInPxWQyqbZHS6njg+Mzjanjz0tb12Uz+xXITKkrLCyExWJR2D2tzH1+v1widan2gxdeeAG//e1vVT+jOFM1G062jJQ6tf5aU1PDMvhFpY4fGxs2bMAf//hHrFq1SrUdaqQu2btau3YtvvrqK91jjIL691133YU//elPKCsrU7yTvnIJi4vql156CRMmTEj6PRq7+fn5CqWOnmumiRJqSl0gEMDs2bNx2mmnsb+pqe29QeoooYiu09LSArPZDEBfqTtgSd3bb7+Nuro6fPHFF0zyTwfxeByrVq3ClClT0NLSkpAVZ1SpI4P5wQcfJMQ07dmzB3a7HYcddpgmqYvFYmhtbTW0zyQZolS3MuH33QN6Os9NN92EGTNmAOieCNQCOrNB6srKylJyv9bU1KClpSVBZTVK6vQSJegY3qW6efNm5m7kDbheTN3KlSsVRjsSiTAywm/hI15LJHW8+7Wuro49J979ShXtRSRT6ngDwu+H29TUhIqKCkZgeIRCIbjd7oRJcsOGDcjPz2fKpqjUpZoNZ0Sp40kdERXR/WpEqaPP77jjDpx99tmqBltPqcum+1UkdfF4PCuhHnwcUKakTlTqtBJReKWuoKAAgHKMbt++HZdcckmCXXzqqaewdu1aAN3E7Y033tA9v9ozp3GqR+ra29sRiUQQDocT1By+XNOzzz6ren0CH1NnVBXz+Xy6z33lypWGwjqAnjFy7LHH4vDDD0dJSYnifnPlfl2xYgV27NiRdEy0tLSgoKAAbre7z5S6V199FYByQZCKUqcW0uHz+XTjluk7IqlraGjA0KFDFW0g1NTUpJWENahIXbZgMpmwdOlSLF26FAAS6t4ZJXX8wBRXerW1tRg5ciRGjBiBtrY21cnE7/ezjpKszg61JV1SB3SrfMFgUDEAYrGYJqnLRqJEqqSOjOi2bdsUf8+m+5W/1/b29gRSx7tf1Yzv0UcfjZkzZ7LfeaWOJ3VFRUWqpE5UnL777juEQiHWB3ilLh6Pq/adZKROa2JuampiSh1vqIlslZWVJUyS3333HQDgxRdfBNATU0cuZiNkh0Ii+DGlptSpkTqtmLpUlLof//jHmDlzpuqz5JU6oKcP0vez7X4FevoaT+SzcV6xBmEmSt0bb7yB559/XvV4OoZ3v/LtePvtt/HMM8+gublZUT/vsssuY65OPuOcB18OSc3W0fnIla5G6mgs8SSdzrVr1y4A3TFqvF1RS7jgY+r0CNRdd92FDRs2sGvr2fOTTz4ZDz30kObnPKh/5+fnA+ghQQTR7hkZE+lAJHVkn7XI6VNPPYV///vfaG1thdvtZgumTLJfb7nlFrzwwguKv1H/ofbF43E88sgjAIDRo0ez49Ri6owqdR0dHXC5XPjHP/6h2TYtUrd//34WJsAv3FpaWjBu3Di8//77AA5gpS6bMJlMmDRpEgoKCjRJXbLVM2/8d+7cqfisrq4OQ4cORUlJCQCl4fnTn/6EdevWKciFz+eD3+/XNKK8UpfK5MKTOpfLhWAwqBiIa9asQXNzMzwej6LGGpAdpa68vDwtUrd9+3bF37u6upjrTK1dWgbX5/Ox74mkrry8HH6/n5E6Ukz13K9qSQThcFjhfqU2VFVVKfqIllInqiqkHJHB48/Bn0svUYJ/Drwy0dzcrKrU0bunZ8Krg9SHqY+T+9XpdCIvLw+BQACrVq3C8ccfr1kOYMGCBbjssssU7VRT6nj3K70LNaWOdngwqtRZLBYUFRWprsJ5pQ5QjpnedL8Cia74dCC61/lrZaLU3XLLLXjwwQfZMfy7pWMsFouqUkd9Zd26dRgyZAi++eYbdq90fCAQSLBl4pZJas+8vr4eeXl5GDt2LABtpY7aJKo5ROqGDBmS4GoX4fV6YTKZEIvFdCsI3H777XjrrbdYe/RiYb1eL2tDMvD9F+gZi2Kb6d8TTzwRixcv1jxfuoSvq6uLxQ0HAgFs3boVgHYdz//85z9YunQpOjo64HA42CIyE6Vu2bJlzFvAt4vaBAALFy7EJ598AkD5ntTGsNFECUp2E/eCj8fjbPEhkrquri7E43HU19czRZm/XlNTEyKRCPNISaUuSzCbzZg8eXICqVPbJuz3v/89LrroIsVxbW1tio7OY//+/Rg6dCj7nB/kf/7zn3H44YcnkLo333wTF1xwgWohRWpLYWFhSh2Az6wsKSlBMBhUkIT//ve/7Bj6ezZLmhhV6uj5aCl1VNiRPzcPPaWOglfps7a2NhQUFKCiogLt7e2KgFqfz5eQ/crL7lT3bcyYMexvovuV2lddXa0g0GL2q9jW9vZ2xONxRCIRWCwWVmKEf4dPP/003njjjZTcrzypI6WusLAwISEA6CZ1ojoouh3I/Wq322Gz2RAIBLB+/Xq8//77mtmoa9aswYYNG3SD8EWljv6mFlPH1xRUQ2dnJyZMmIDVq1cD6FaUioqKEIlEVJ8Vr9SJwc295X4FoFBn0wW9x5KSkqwkSlChVHFXGf5Zqyl1aqTuq6++QjQaZdm+QDeZouP57zQ0NMDlcin23NYidZWVlayPqL0Xum9eqRNJXTweN0TqyH5o7WoTi8UU9+L3+9lYFsHXXjSCZEqdGFO3a9cuTZd5U1MTXC4X1qxZY+jaPHj76/V6Wfu1SB25vclOiEod2ZRUSF17e3sC4eKVOq/Xi/vuuw//7//9P5x88smqpC5VpS4ej+ODDz4A0NNvCY8++ihmzZrF2gaAZb8GAgF4PB6EQiFVpY7Gf6pbWAKS1CXFlClTmGxOUFPqduzYkbC6amtrg9vtRkFBQYJhqaurw5AhQ1RJHf99Ah+HoTYxZkupC4VC7LplZWX46quvEmrqZEOpozaWl5cbSgShPSr13K9kVFJxvzY1NbGYBl6pc7vdLMNy9+7djEB5vV5FTF08HleQbCJ1PNHRiqmrqqpCW1sbM+70PLds2YJRo0YlGN/29nbFZEnFtnn31aWXXopTTz0V//rXvxJIXTwex0cffZSw7YyaUicmStDxZJTU4nYIpNQVFBSgoKBA4dJXW5AQcd69e7fimsmUOqB7Aud37KDnmExNb2pqwo4dO9jqmlfixIkhFAppkjo99+vHH3+ctPgxD/771M+z4X6lZzFixIisJErQ742Njex3QPmseaVOzf1KtpKef0tLC1O5q6urWbsDgQAbH7StHX3X4XAgEAjgzTffVGTn19fXo7q6mvV9NTvFK3Va7ldRKVR7B62trWzLQK3FmLjnJyndaq5+ssf8QlJENBrFzTffDL/fn0DqRKVOtHttbW2aC6tdu3ahs7NTUWbJCCj2k8jtxo0b2TvTcr+Gw2H2fgsKCmC329kCmcY2kFqiRHt7e0J/5gk7hYmceOKJsFqtinMaiamjuZreW01NDRwOBx5++GEAiXN4TU0NI7f0HZpHAoEAS2ghpY7vN2RfyQ70O1JHga8DEePGjUtYNanF1KklM3g8HpSUlCSQung8rqnU8as36oRA90umjqE2KKktJSUlSePveOi5X6dNm4Z169axz0VSlw2lrrKyUpPU8c9CJHVq7lcyKqkkSjQ0NCTI321tbSgtLWWkbv/+/Zg8eTIAsLgviqkDuon/5s2bAfS8M568RCIR2O125orkSV04HE5Y4W/btg01NTXMTUDw+/0Kd4uo1FEfO+SQQwB0uwX47NfPPvsMP/rRj7Bu3TrFu+Mzn30+H1Pq1EgdXVOP1Pl8PnR1dTFSRwV1xe8R6NlFIhG2Vyj9zkNMlACUNR7VSJ2WUkfGn9pD7lf+PIRwOKwgfVpKndi3Lr74Yha/YwR6MXUiOf3DH/6Axx57zNB56X7KysoSVCl+Evz44481k7ZIJSWiRMf961//YpMa30Z+8SG6X6PRKCNw9O5bWloYkeHLPsTjcXYu+j69s+LiYlaomY9B279/P4YMGQKTyZQweRP4mDot9ystRkS1+7333kMsFmObxRMJ1SJ19HdyudG11ew02ePa2lrNwPtdu3bhjjvuwKpVq5KSOt79GgqFFFtxiSCS8e2336p+roW8vDz885//ZASML+GlpdRFIhFGmgsKClBYWMjsGL/lHM2PRuaajo6OBFLHv1uaMyZMmACbzaY4p5GYusLCQuTl5bHnR4tQuqb4PnmPgZpSJ5I6PaWu37lfzzjjjL64TK9g6NChaGhoULxgNRWAn7gIRA7IBUXw+/3o6OhQVer4c1JdMkBJ6tTqPVH7ysrKku5zx7eZXy2SkaRJfvr06YxMAdlV6nhS5/f7VYOQ+b9RhqbX60VlZSVqamoUxskoqRONQ0NDA4YPH674TFTqPB4PRo0axa5PpG7KlCmYNWsW6urq2MKlpaUFo0aNgs/nY6SUlD2bzaZwv9IKn0i02G5SOAhUuwzoISEFBQVMqaMs7XvuuQeHHXYYrrnmGsWERG6VPXv2sOdRXFzMDA5NKKTUablfAaUBE59pV1cX/H6/wv3KFwQWwcei0CQPJPYzsaQJ3QshFaVOJHXkfqXr8Eim1Gm5X6n4cTQaNRSrxH9fTGTgn3FXVxceeOABFqOVDLz7lQ+Y588PdO+a8te//lX1HKJSRwRs8uTJzO2kpdTl5eXBarWya+7bt499Too7T+rENopElC93Qe+a71ek1AFIyNYl6LlfSV0l0kFkJRQK4dtvv8UJJ5yAFStWoKOjA+FwmF1LjKmjvkX9iewt2QU1lZTGYCgUYpM+hVyIzzYcDqfkfiW7rkXqyNZ/++23ihhqo7Db7SgoKMC3337L7Gcy92sgEIDdbofdbmd2jOw4nVOLmIv3GQ6HNZW6rq4ufPfdd6iqqoLL5UroF0Zi6vLz8xUJWvR+//73v+OYY45JWLDyKj59h0+UoOetRuroXDl1v55zzjmqP2effbahWl79FUOHDkU8HlfUEzOq1BGpE5U6eplqpI7vVO+88w7KysqQl5eXlNTRAHS73YZKOQA9BoQmfl6ps1gsmDRpkuJ4eo/ZrFNXWVkJQH3Vyp+fV+rmzJkDAAq3eLruV57UablfeVLHx9RVVVVh1apVKC0tRV1dHWKxGNra2jB27FjEYjH2vuh4InW8UgcoSR0ZZ7oWj46ODvZMrFYrTCYTKioqEkhddXU11q5diyVLligSJdavXw+gmyBTG0pLS1k76TxqiRJG3a90Tw0NDQqlTs/9umnTJowaNQoWiyWB1Pl8PpSVleHzzz+Hz+dj48WoUpeM1FG/45W4VJQ6LfcrFRAOBoP4zW9+g8suu0y1HTzUxrWa+kN76/ILLjV8/fXX6OjoUJA6reQboLsfail1fEwd0EPqhg4dqloLkVfqAChsIClhvFrS2tqqSEjin4f4O6/UUVwWHwfMkzoacyK0EiXi8TgaGxsxcuRIptSJpI7aS/aT+jwhGAxiw4YNKC8vx969exV2mx83ekod0POMb7jhBoWbmy8/lUr2K9kZrSLQRCI3btyI0tJSLF68GPF43PBep4WFhbDZbGhoaMDIkSM1qwMA3WObXN+iUseTOqvVqvkOedAzTqbUUe08LfernlJnNptVSd0vf/lL1aoApOLHYjG0t7fDbrcr4jzr6+tRVFTEiJ6aUpdT9+v777+Piy++GNdcc03CD+8jH2igVShvQNVqR6XifiXVaejQocwtRwNcnDzLysrYdlBibAYPXqkD1CdPEWRAqKMTqfN4PCgtLWVEBug2Gtl2v5rNZtah1drLn3///v1sT8djjjkG+fn5CtdwOkpdR0cHOjo6Ekgd735tbW1FV1cXW03xMXWEoUOHoq6uDh6PB/F4nGXdiSVQqB/okTre9cAbibKyMkX8Hl2/vLycGUNaeBBRBqBQ6ojU8UqJ2+1O2JlBLVGCno0aqeOfNyWINDQ0sJU7r06quV83bdqEadOmYezYsQmkjibFrVu3oq2tjV1fT6kLhUKG3a/880ym1JFy2trayv6vlSgRCAQQjUYRCARQU1OTkP2uBr2Aft7WUNymHqkLh8M48sgj8dxzzxkidbRtltYuO2pKndVqRVlZGfubmlJHZINXfnfu3AmTyYTp06ez43mlTiRx4r/0zshe8UodhbYYJXViSRPaT5YndbwLkBaSXq+X2UO6Fn/v3333HcLhMHbs2KEgdTyR8/v92LJlC8444wz27FpaWljfor79yiuvAOgJOaH74Wvj0TsgNUl8D6FQKKlSR1nDfGzhxRdfjOuuu071eEAZO+z1etl2iNXV1brF2XmljmLqRKWuoKAAJpPJEKmj96mn1G3fvh0TJ04EkKjgqoXniLYjLy8vgdSRXVfb3YdX/yjLl55PV1cX6uvrMWTIENVFkajU5cT9OnfuXDgcDhx33HGKn7lz57IitgMRFETPF2hNR6lTU50o7oPfmJ3OceaZZwLonkCI1BlR6tIhdQcffDCAbiNJ23CVlJSwrByHw4GKioqsu19tNhtbWRohdZ2dnYhEIqiqqsKUKVMSSF2q2a/8Pqf8MbxSR0kEVVVVsNlsCvcrYejQodi3bx97nkRsRFInul9pMvj666/x9ddfIxwOK1ap9P3Zs2fjRz/6EYAeAkhkjVfq9Eid1+vFli1bAGiTOl6pSzdRgid1BQUFhtyve/fuxejRozF+/PgEUkdt2r17N2KxGCO9vFJHMVupKHU03nj3q1aihJpSx6s3aq4beqY0cRmJc9Ujdfwz/uijj1BQUID6+nrduKtAIMDiG4FEUsfv5kLPQY/UFRUVKZS6oUOHsrg1IDGmzmKxsHJBPKlraGhAWVkZG3eAOqnT+leMqaNSGJFIBF6vF8FgkC3G+cn7yy+/VNSKo/viz09q98iRI1Xdr1QJwefzsfGuRuqo39bV1ekqda+//jpeffVVplK2tLRgxIgRKC0tZc9j9uzZAHrIPE/URKUOUMbV8ZUKyHbokbof/OAH7PfCwkJs375dc69nQNnnN2zYkBKpI5WUsl/pXmhRTOey2WzYtm2bbqxfMqVOJHViTJ2WUke1NvPy8mAymRQeDJ/Ph+LiYphMJtV9uPlztre3o6ioCCaTiRFDUpTVFkViTF00GjXsDs8aqXv55Zdx3HHHqX72zjvvZOsyfY6KigqYzWZVUpdMqVNzvz733HNYsmQJnE4nq13mcDgSSN3JJ58MoFs9EUmdXqIETbrr1q3DJZdcktARrr/+eixbtgxAD6k76KCDAPQYg4aGBpSWljJ1qry8XDFAM1HqvvjiC7S0tCAQCChInZqCQ+cvKChAW1sbW2mWlJRgxowZTHkCeiYdi8Wi637ljRAZ8CFDhiAvL0/hCiKljtQrl8sFl8vFngFvRIcNG4a6ujr2mUjqxJg6Uam74YYb2A4ovFJH31+5ciWuvvpq1jZAXalrbGyE2+1WqIj0/7Vr1yIajWLMmDHYt28fex6lpaUKUme1WuFwOFBYWKiI2aE2O51O2Gw2zZg6KuiZivuVxsmYMWPYgsdsNitq0FECiqjU1dTUoLy8HBaLJa1ECboPvUQJUalraWlRTPTUp9rb2/GXv/wFoVCInZ/aYiTD26hS5/P5MH78eEQiEdV9kIGeWDX+WYikrry8HIFAgJEhoLsPqS2K1JQ6ImVqSgM9MwJvA9vb2+F0Oll8JtCt3rW0tChqwyVzvzqdTsX9+Xw+5kJUU+pmz56NadOmKYg4uQBNJhMCgQBbGI0cOZKFUPDv2qhSR/12//79ipg6Uamj8iyk5La0tMDtdmPIkCHsXogYUwwlr9Tx20MSyI7zNioWiyWU/hGxf/9+HHLIIVi+fDlmzJgBn8+XsDuMCL7Pms1mtsCqrq5O6n4l1zkpdUA3Uad+Reey2Wx45plnEkqG8eCVOt5dTO2rra1l4wZIVOq0YuqIWNLzLSoqwvbt2/HYY48xUgdAdctGntSRUkfn6OjoYIqyGqmjc/H3YrSskSxpkgR5eXkYMmSIplL3wQcfYOfOnejq6lJ0EnIViu7XCy+8EGvWrFEMbjWlzu1245BDDsFFF12UllL3yiuv4Jlnnklw0bzwwgusrk5zczPy8vIU7legh9QVFxejpKQkgdRlElN38skn4/HHH2dKHQ0KtcmeL1Ds9/sVpO6www5jdc127NiB+vp6jB49WlOq11PqqqqqYLVaEQ6HEY/HWSkaGoR0TZ7UqblfRaXu8ccfxwUXXKDpfiXyFIlEWP8S3a82mw0mk4m1ha6vpdTxKh1/HK22jznmGIVSx5O6lpYWlJWVwWQyJdQWo+NpezItpY5WwrQCN+J+JVLHT470XOjeiNTR8yHXTG1tLXMBZpIowbuttJQ6s9nMVvjkkuPdr19++SX+8Ic/KMa3nlInKg+BQEAxOQM9Rl10FZGKrrX3KhV/pWdBHgFa8QcCAVYSp6OjQxGTtnfvXrzzzju466672N/UYurIi6E2KdEzI/BKXXt7OxwOByN1LpeLJSdMmTJF0/2qptQRMQC6bYhI6tSC7Pn3S+5XcuXySh2dk2xUU1MTUzJ9Ph9aW1sVISSEVJQ6InUUZ0hjkPfuUL/+9NNPFYtCUury8vKYokTPE+ghRQS6Nz2lrrq6GscffzyGDh1qiNRRG6+//nqsWLEiZaWOj6kDejJT+fbT71u3btVUq/j4ZTGpCOiJveUVXCMxddQGIshFRUVYvnw5rrjiCia4AEjqfqU+D4DFatOWjGpKt958mAy9Qupeeuml3jhtzqBF6sLhMK6++mo89NBDCdmvRPJEpW7q1KkAeiR1QJ3UWa1WbNy4Ec888wxbBRjJfiUDQ/EXvNGPx+NoampiqycyIGeccQaefvppphzV19ez1d7IkSOzptRRQHNLS0tK7teKigr4fD4FqTv00EMRCoWwbds23HPPPaioqMB5552nSep4Q0hoaGhAXl4eU3ooeyoSiaiSuuLiYsUG1AQidbQ6J1L34osv4r333tN0v1qtVuZuVUvn93q9bMBTW+jd8UpdU1MTfD4fGhsbE4K2efcr0G00+UQJ3v3q8/nY+xCTBvh+Ka5KQ6EQKisrsWLFCpxzzjns70aUumAwyGpc8W1PRurIjREOhxOUulRi6jo6OljSCRFFrZg6/rmouV9pAUVGHFCSOrFc0fTp0xXlHwKBQEKgO98GQjgcZiq6VlwdKXVEeigTmX8+RKra29sV76W2thZvvPEGHn/8cQA9dch4pa6xsTFBqRNj6kSljldTeFJH4R+AktSJ/+rF1AHdMcxEunilTrRT/ORLLsDS0lKm1FksFtYXeVJHJNxmszH3q9vtVpBXoPv9U7/llTo+ps5qtaKhoYG9J16pKysrU1RM6OzsxMiRI1mihqjU8bYI6FHqRFJHi1i1+YN2N6DnRgs3j8ejSQKBnndz0kknYeLEiQpSR0pdZ2cnzj33XEU9TNrqjRIIeFLHJ9fw7Q0Gg5quYN7tyv+f2kfzN9lbrZImYkwdLW55pY6we/duBalLptTxmfsdHR3w+/0oLi7WjalTO18y9AqpO//887FkyRLdY4xm1KSChQsXYs6cOfjFL36RURC/iKFDh6omSlAGT3t7e4L7lSZfkdRFIhFcffXVTC0DlKSOn/AJRhIlRKWOJkGe1FH2JJEj2j3A6XTi4osvZgOSlDoAOPXUU/HjH/9YldSlqtSRofP5fAgGg2yFZjabdUkdFSjmSR3J6Js3b8YzzzyD3/zmN4xELFq0CKeddpriXFpKXXl5OcxmMywWC0KhELtHcr8SSKkj8iWSunA4jO3bt8Nut6OyshImk4ntgaqV/Wqz2ZgBpvFw0kkn4c4770Rpaaki8JiUIVEpJKWuvLwcb731VoJSR+2kZzdu3Dj4/X52HrfbjY6ODsRiMfj9fnYdPVInGrBgMAir1YpjjjmGfQ8Ajj/+eM2YOjK8/Djh22632xXuVzqeJ71kJI0odU1NTfj888/Zd3nDT89SjJkh8KoTb5jNZrPC/UqEnyd1FGwfDodVXf+8eyoQCLC4GxGiCmaU1NGzoNIQfJt4UscrdbW1tejs7GTvOBgMIh6PK5Q6oCfeWG3XElGpmzVrFt566y1WIJZ3v1INyPLyclRXV7MxQ3ZGL/uVf9derxfr16/HmDFjWD9WW+TxReJJqSspKWGkrrKykhGKWCzGJm7qi8OHD2fu17KysgRSx7tfeaWOYhwtFgvKysrwxRdfIB6Po6qqCitWrMCIESOwcuVKVaXuyCOPhMViwerVqxUL1HA4nEDqaGEglkTSU+podwMidWTr+OLMaqB3Q8+Ld7/SnPHll19i2bJlWLFiBfsen5TGu195Ykjn4gsx8zG3hIaGBoU94se22GfIfmi5X0WlTnS/8vZt586dCvcrbwv4e6SYOt792t7ezuytXkwdj5ySutdffx233norrr322gTyFo1G8fTTTytWZ9nA+vXrUV9fjxUrVmDy5Mlsc/FsgJQYoHvy5ScMymyhbDciVzwB4Ukdld7gO4eWUkdIJaaOav5QJ+ZJnbjdF+0/S6AOTIkSQPeWZQsXLoTb7WaTVrrbhJFRoWBmci26XK6k7leR1FVVVcFut2P58uUIBoMsnpPu4fXXX1cYAC1SRytyUup4kkETA9D9jlwul6pSR4rFhg0bWAka+i6Vl6E9MHlSxyt1hKqqKixatAiFhYXw+/0JSp3ofqWJMRwOw+v1Jih1FMju8XhQWFjI2kor3tLSUtaneVInul/5LDvR1RAKhdhz53HOOeeoFh+mWoOffvqp4nnrKXVA97vlxw0RLCMxdY8//jjmz5/Pvssbfn6s8dlt/P2R4f3hD3/IngP1GXEcBIPBBPcroFSIeMJEIJe12rMUCZPD4UBpaakmqePdr52dnYrzUpuo73R0dLDx53Q6UVtbq1CV6LnySh0AXferqNT97ne/g9/vx2OPPaap1I0fP571F55IaLlfqa/ymcxr167F4Ycfzr6r5n7lSyHRrgxk7/bu3cuSogg0cdN1q6qqFEodf59071ruV1JnnE4nPv/8c5jNZpxyyilYs2YNc0GTUseTutLSUkyfPh2rV69OKGkiXl9LqSP7G4lEEsISRLd1cXExUz2NuF/5pAY6D22jSFvx8eVy6PodHR0oKChgc8r48eMTlDqC0+lkyV6ESCSCCRMm4F//+hf7G/WHWCyWMDbJ3hqNqaM2EKnjv7Nnzx6FUgeo1+8UlTqHw8GUOqfTCZPJBLPZrBpTxyOn7tcTTzwRn376KV555RWceeaZzBX58MMPY/z48bj++utx7rnnZvWaX3zxBU444QQAwLx587By5cqEY4LB7or5/I8RDB06FLW1tVi7di2Ki4uZIY1EIqyuG19oFtBW6mjVzMMIqfN6varu1+eeew579uxhg8JsNitcOHx9PTI01DYtUkft5lFdXc0GfqZKHU/qAGiSOl6p8/v9zB1JbrIxY8awJByK5eLJFl9xX01e50kdxdSR4ausrGREqri4mD1XInVqk9uGDRvYSpAGORF/UuqI4NBAPuaYY3DooYeyc/Gr1Hg8zn4ngyAqdfSu6b5FpY6O9Xg8sNvtjNTR6pfay68cgR5SZ9T9yvfX//znP9iyZQtzaYru18bGRnR1dWH9+vUpkTq3261QsUSljnfTiGS0o6NDsRjijS/f9mRK3W9+8xsA3SWcaGJQI3Wi+xVQGmotUldQUJCg/PD3AYBN5EOGDFEldc3NzQrVUHS/Utuo3zY1NcHj8aCgoABjx45lpI4URp7U8W3Tc7+KSt3IkSNxyimn4I033oDf72eVEu68805Wd1KL1Gm5X2mMEdra2rBu3TocccQR7G+8m43GM7lRi4uL2XgiIlRTU6NQ6vjr0HWJ1JFSp0bqmpubUVRUlOB+pVqLNIYOOuggtgMMv0+4SOoKCwsxc+ZMfPXVV4bcr3xWMoFsG52TBx9fTPdMi+hUlDrqY1VVVWyfaCqiz2dW82ERdrudiSbDhw9n7RYXNwcffHACqfP5fPD7/YqkOX7sAT02ks/eFhXcZDF1ROr4XZ6i0WgCqVOLNRZj6oqKiuDxeBTlcqxWK95++21MnTo1YetJ8XzJ0GuJEtOnT8eqVauwa9cuzJ49G2PGjMEtt9yCyy+/HHv27MFtt92W1et5PB72YPmAdh6LFy9mWYwul4u5MJLh8MMPR0tLC+68807FCp+CMsVipIAy7iMdUsd36LKyMrS2tiaQupaWFlx44YW48sorFantPKkjIlZbW8sGNQ1W2qqMwF9T3G5m6NCh8Pv9iv0GaVBcc801CmldC7xSR4aLnlEyUhcKhdDQ0MAMFtCd+l5XV4eSkhIW9E2rwcMPP5xl+QLqSh1fz4pUF3peVVVVbBDSs3A4HOzZ8YaUEi12797N3N/8O+js7Exwv5JKuXjxYjz44IPsWHGVSr9TooVY0uSoo47C//zP/2Dz5s2wWCwswJuH1WqF1+tFYWEhI+tiTSiR1PHxV/y/WokS/ARy3nnnsYxqIkm8+5W+u3v37qSkjpJ5ACQEpItKHf+ORaVOJF9q7lc6p55S94Mf/ADl5eW47LLLmAqkR+p4gplMqaOgcT2ljrbNIlL34Ycf4plnnlEQKnK9lpeXq5I6Gmvjx4+H2WzGnj17WFJXWVmZYn9Qv9+fVKlTC/QWlTqgmwS2trayCa6oqAiLFi1iY3fChAlsMcP3LzG2joiMaEe/+uortLe3K5Q6fvKm+ydSV1lZqUrqkil1lZWVzP2qptRRTN3UqVPR3t6uiGXjlToAOPTQQ1kJj/vuuw8nnHAC5s+fn+DdKSoqwhFHHIGtW7cqCtKqkTqXywWLxZKQdNPY2KhZYJsWAWr2KxWljvqvy+XCj370I9jtdiawqCl19J2ZM2cC6N7iUHS/vvTSS3j11VcxefJkxe4zQM+Y4sULkdSRjROLGlNcH98eMaZOTJSgz+md8+5XQJ3UqSl11F76nsViwfr167Fx40aEw+H+p9QB3YbjySefxL59+/Ddd9/B4/Hggw8+wE033aRwa2ULpaWlik1wxQkAABYtWgSv18t+tGoyiZg7dy4KCgrw8ssvs78VFBQwFYYvKyBm+blcroSgV96FBCRX6srLy9HS0qKogh4Oh/Hhhx+yz7WUuvr6egQCAUyaNAmPPvooez7xeDxBqeOvySdyAD0GfP/+/QmJEk8++aQiRlALYkwdT+r0AkPJTfP9998rBiYlJEycOJERPXrOV1xxBfbv38+IpBqp27dvn0JtCIW6t+ZxuVyw2+2M1PErPZoQeUNqsViYW07NKNLxvPuVf9b8sfRMaMLiJxd+2x0+cP8vf/kLJkyYgI0bN+LnP/95wnMk8lFYWMgMi8fjQX5+PrtHLVLHu3roXMlIHQ8iSfy40CJ1/CRNMXVNTU3sPWuROlEtUVPqRPKl5X4tLCzUzH4lNDY24m9/+5vC5csHUBtxv/KfE0ip0yN1NM4tFgtOOeUUtLe349JLL8Vhhx3GXOrbtm2DyWTCIYccwp4Fr7JRH3Y4HBg2bBj27NkDr9cLl8vF3hdPROl5aMXUae0oIfaJ0tJSeDwehWoBdJMkm82GqVOnskmUjzUUs2CB7v4pPieyQVruV3rWaqSO7Aopdfy5+V1/TCYTCwfRSpRoa2tDIBDAtGnTAPSoOxRTR0od0E3q5s6di9/+9rc4//zz8e6772L69OmqSh0VIKf5RkupO/nkk7Fw4UJFRiygTG4RiVpLSwtMJhMjt7wKmqpSV11dzc5FHrnS0lJG6sRtzwoKCjB//nwEAgFUVlYmLGzPPPNMnHbaaZgzZw7Wrl2rUMv4cUzzKj9P0rUBpf0QFyJGlbrXX38d//nPf9hCxKj7VVTqSDzgSR31RYo7pXmP7iunSt2iRYswatQoPP3007jzzjvR1NSEs88+Gz/5yU/w1Vdf9cYlMXv2bCxfvhwA8O677+Loo49OOIZKaPA/RmC321nxV4LT6UQgEFDU/wGUSp3ZbEZhYSFbdYXDYUSj0ZTdrxUVFSxTCOj25VutVvz6178G0E0KeKWOBqbZbEZ9fT1LSycSSJX6A4GAqlI3Y8YMlqVLIGOwb98+RUkTqgxOE8V7772HJ554AkC3G2jJkiXMNa0WUwf0uJdFkFGjAbRjxw72f6CnSKW4nRnQTcSBns2lxcFLpJbui9yvtBk4gASlrqioiK3sREP6s5/9DEDP4BdJHdWpI/cr/355VVRcpfLHOZ3OhJg6HhMnTlT9O/2NtvExmUzweDysJh3QbUj4uktapE4tpo5/lyKIJPDuVyJ1u3btQltbG6xWa8KYsNlsjNSR6keEmT830KPU8e0hgx6NRhGPxxEKdW/XQ31XT6nTqlNHoAWE1Wpl5+FtCRlxAIqs10zcr6FQCPfddx9bGFksFvz2t7/F7t27sWbNGnR1deGYY45hGeGjRo1idelEpY6UnoKCAowaNQrff/89U+pEUscnaPFKXXFxMes7WjF1aqSura0tgdQ5HA5s374dp59+Ouv3fOKG6H4F1Endtm3bMHbsWMXCj3e/8uQuLy9PESfMFy6vqqpSuF/tdjtL5rLb7WwRSpmqolJHWZ5E6qgSQSQSQVtbWwKpc7lcWLJkiWKxr0bqaIzwSp1aosTUqVNxxx13MFtE5K6rq4vZOzWlzu12s+/w/TkajSbE4G3cuBFLlixhbaF3Ie5E9Jvf/AYulwtnn302I3ViWRJxAasVU3f++eejqqoKd999N/sbb4dI6ecTU6hN/L/8NUT7lqxO3aRJk3DeeecxwmXE/aqW/UpzIU/qqH/TZ3Q//I4mRtArpO7VV1/FAw88gO3bt+NXv/oVioqK8PTTT+NXv/oVfvjDH+K1117L+jVnzJiB6upqzJkzB5s3b8ZZZ52V1fOfcsopyMvLw7x58wB0v0TqPPyqkid1VG2aFBp6aXpKnVr2K09kALC4Anr5Pp9PVambNGkS6uvrEzaWBnqyiHhSN3bsWNx55514//33E+6fiE5dXZ1CqaN2Eym74oorsGDBArz99ts444wzcP3117MEjUxi6oBuUsfHjPFKHcHhcMBqtWLcuHEoKipKIHU0sbe0tCAUCimUOnK/kktWzf1KEA05kToKUFdT6kT3K0FNqVMjdQ6HI6GkiRHQOex2O8vwFEkdH7jLt4OP3zGbzTCbzUlj6nhQplcwGITD4VB1v5aWliZkfFIcYCgUYqQ9HaUO6Il95e/HaKIEqQpqz9tisbBj+UmQV+r4fm0kUUJLqdu7dy9uuOEGtqsAP5EfdthhePbZZ1FXV4dvvvkGW7duxaRJk1h/E0kdXfv/a++846Qo0v//mdnJszOzeZclrAiIBFEQRQVEUUTFeIcgcuaEnlnPr3ieiTN7nuHOU08FA4qcAcMZ8UwEE6CCgOS8C5vzzoaZ3x/ze2qra6pnetIm6v16+RKGme7q7urqT3+ep54iUcc7dRQu1wu/0rniV4PQy6mTJfBTvUn+XgJCOXc0VgJyp453Uex2e9hDH4Amn46+5/f7EQgE0NraikmTJgEIjQNutzss/AqAnTuChHZNTQ1bEqq6uhqlpaXo06eP5jjNZjMTdeQY8pPV9u7dqwm/8kul8ZAREAgEmNNK4ocvaq7XN4F2IcK/MEUSdfxLkzh+8ffTr7/+ikMOOQQ33XQTPvnkE9ZeALj33nvx6quvsu+OGjUKlZWVGD9+PEshEssMiddRT9Q5HA5cc801eOWVV9izgb+ncnNzYTKZDIVf6fpSaohRp47fFxA5/Ko3+zU9PZ296NFn/BhEoVl6DtG2OzX8unbtWlxwwQVhJ2LOnDl4/PHHMX36dE0eUbJ49NFH8c0332D+/Pm6D5l4ueyyy/DDDz8wx661tZV1Hn6GL3UO3vWgG5RuJJlT19jYqCmcGEnU0aBRVFSE7OxsTZ4bn1N36KGHoqSkRNPx6a2NchN4UZeWlobZs2dLQ9fp6enwer0aUUcTT4D2gYZ+e+GFF2LJkiUA2m88EqG1tbUoLS1l3+VFnd/vx8UXX4x9+/aFibp9+/ZpRJ3Mqdu9ezfLwxoxYgQr7tnS0sKEg9/vZ+fQiKjjw6+E+Hbcr18/3HrrrfjnP/8JIFTklw9hRwq/pqens+sSa/jVCGKNNZfLherqalit1pjCr7xLE4uooxmYeXl5aGxsZO5IfX09NmzYEDYpBwidL5oEQE6d2C/peCI5dYC2ICn932j4VVyYnsdms7G+LYo62dggW8w90uxXXujy5wwIv/4jR46E1WrFd999h99++w2DBw/WvEzKcup4URfJqaNjSU9PZ/uVpW2IswllTh0dpyjqCJmokzl1tNA7QX2DD73S9/jakPwEPafTKRV1fF4XtYlEndPphNfrZdd1yJAhYU4vjS19+/Zl4xVtb8+ePcjKykJubi6KiorCxnaCxCgdu55TJwu/EjSm8OKIJmVFE3ViFIs/93y9OXphp33k5OSE5aqbTCaW67tz584w108Ub+KLLc/48ePh9/uZ+8k/29LT01lhX77NkcKvt956K84++2xpQf1Iok506qgUkSz8WldXh+bmZo1TR/BOHSFOWukSTp2szhJx2WWX4Z133sHtt9+eil2nDKvVilGjRuGEE04AEJqlI+beAFqnjq/szc/okok6oP3i0/4I/sbnHzq//vorJk2apHHqzGYz2++IESNQV1eneVMka5ycOnLgjEClXXinThR1e/bswVVXXaVZk5IXdTQg/vbbb0xQ8aJuw4YNmDdvHlasWMFuMH6w4c/FsGHD8Pjjj7Ml1QCEvQWTU9fc3KzJTaCBic8Lam5u1oRfHQ4HzGazJvxKyAbShx56iIX9//jHP2pm3/KzX0Wnjsq6APoTJYDQoEXnPh6njhd1VHSXHq7ibCyZqKPteL1e9hIi/psIP2uXHnB8LuvKlSt1RR29BNCKJ0adOn6iBNA+A5n+DYCmXEyk8Ku4YDqPXviVF3U8Rpw6u93O2kXXgn9YUNvE9jgcDhx22GFYsmQJNm/ejIMPPjjMqRNz6pxOJw444ADs2bMHpaWlujl1MlHHO3V0Lxhx6gi9vGpR1FGaCxA5/EovYjKnjq8f5vP5MGrUKACh+4DGTf5lsaioSCMoSNTV1dUxp444+OCDNWNBeno6G29zcnLYeEsioLi4GNnZ2bj55pulERG+3fQyRG0Vnbpook7m1NH5keXUGRV1/MsJvWxEM1FI6O3YsSNM1InPQ73Zr0B78X5xDV8gXNQZCb9u3LiR5eg5nc6oK0oQolNHK7bIwq90jvicOkIm6iiiRX2yS4i6aJxyyin48ssvO2PXCTNq1CiUlpZi0qRJ0pPMJ4TriTpZ+BUIddDm5mZYLBZNkmtmZib7Ow0OVLOLOhJ/c/OiDtBOw6YH5Nq1a5GVlaWbCyWDRB3/VsOHmcjpGjVqFF544QW2L35tUf6zPn36sPbya08CoYcXnQv+YcAPvmazGddff73mJuE55JBD2NIyVNsLaBd1JpNJs5yQ6NTR8lyy8KveQMrDD1b82q9iTh2dAyD8LZW/PnTtzWZz2JtjJGSijj632WywWq3MFeOn2AP6og6AJg80mqhrbW1lAnrr1q3sWNatW6cZbM8++2wA0Cw2X1hYiPz8fNZ3+G2TMOUHxdbWVs0LF+/U8eFXakOk8KvMOSeMhF95ouXUifXkxNU96Du0b5ExY8bg/fffR2trK4YMGcL6W319PcunBMKdukAggDVr1ug6dfX19WyJNJPJBIvFonHq6DMjOXVENKeO3KjMzEzd8Ct/b9CLGAk2/nu84+VwOLB8+XJUVFSw8+p0OjV9y2w2S506+jNdl8LCQpZiQ9cjPT0dgUCArZEsirq2tjZkZ2drCqjrnQc9UUfnRm+iBEFjBC9Qhw8fDiCx8Cu/tF5ZWRnrF5Hgc7LjDb8Cof7Qu3dvQ6IuklPH12Ql0UVrCROyOnWE6NTRn2VOHbmZ/OxXQibq6Pu0D/p+p89+jYZ483UnxHAPj5hTB4Q6Z2trK7vg4psJhRE/+ugjaSFXs9nMbji60FSzizpSW1sb63ijRo3C2LFjw2qSAdCsxMAPzEYQnTox/FpSUoJgMIg+ffrgrLPOYrPReKeOH8iofXl5eaiqqkJjYyMTdVTbkJLo6dhkddj06NevH1pbW7F37160tLSwm4pEXX5+PruOVquVFcbl1yC97rrrMGXKFADaNywjThl/nSOFX4F2F0MMv/Lfo7fdWFMLIok6IDRoiKKO6lzJRJ2YPxJpogQ/gFEIZuPGjejbty976+Yf9gsWLEBZWZnmQeX1erFt27awPNkhQ4Zg1KhRmocqUV1dza6X6NRRgrlM1PH5rfRbQN+pixR+FR9KRkqa8HlrsrC/XvgVCIm6hoYGnHHGGRg/frzG7XG73bqiDgjlmOnl1FE+ED24Bw4ciJEjR4adi1icOqPhV1q+i84PIebUHXTQQTjkkEPCSjGJ4VdyQvnZ1sOGDWP3BP2e7xO8qKPwK9CeFgC0Xw+6N8jJEUUdED7hRwa5+ok4dWQE8OMQtc9o+JWOiz/31dXVLB2nvLzckDFA43hNTU1C4Vcg9LIuE3Vut5vl8ALtLwF0TWVOXXl5ORPJvCsMxBZ+pT/H4tTRiz7fHv77dD26hVPXE9C7kficOnFhZRqoRFF30EEH4bzzzsOdd96JiooK6UObBgn6P11w6kj8zT1lyhQsWbKEvZls374dZrMZTqcT/fr1g8PhQHV1tWaCgRF69+4dMfxKFdFJrPFh5crKSjQ2NmoGQvoeidqtW7dqRB05WiRe+eM3AjmBu3btChN1/MxXIHSDietGAqE8UMqNixZ+FRFFnV74FQg9wMnxAOROHR2PkX3z8A8koF3U0YDtdrtZ8U9+kOJn4MmcOrr2Rpw6oF3Ubdq0CV6vl83e5icT2Gw2ZGdnh4W0qOA0z/nnn4/ly5cDCD8nfN1KftWH5uZmNuhTX+LFhxhCiZZTFyn8yvdVh8MRtaSJmPtG949RUfe73/0OTz75JBYsWMCcNXLq9ERd//79MW7cOPh8PhxyyCHsoUhuPOXU8W1Yt26dZo1fao/RnDrAuKij5bvEcyXm1N1999346quvwrYnhl/539B9wOfQDRgwAEBIEPGOEf/nSKKOn5ENtIs6XjAZFXXRwq8tLS3S2a+EGH5NS0uDzWaD2Wxm221oaMCvv/4aJursdrtmDVzRqaPZzxUVFbriS4R/VvHohV+Nijp+AkJ9fT3+9a9/4bLLLjOUU8cvHCA6dZFEHZkL/H2vN3aQSBOdOj4FwYhTp0RdionVqQPaByox/AoAt912G/bu3YtvvvkmoqijG486KDkLvFNHUGfevn07PB4PPv30U1x22WXsDY5W4DBKfn4+SkpKNE4dH34lUUfigzpjbW0tm7E7ZswYtj0SVTSQbtmyhSWJUviVL3sCxObU6Yk6miihJ+r08gxTHX7lwxiynDo6Hlm+ViRkEyX4bcucOkAr6vi6Y/GKOnJGm5qa4PV6MXPmTM1x8fDnV3a/6B0jUVVVxY6Fn/3KizojTp0sx5XfZ6TwK/+QzMvLMxR+pTApPwuWP4f0MJb1P5fLhWuvvVYzyYYPv4o5dQ6HA1arFd988w2qqqpwxhlnhKUy8E5dJPjiz4DcqaMlkQBj4VdKMeHr1NHvxfBrRkaGNDeTv+fo7+K+hg8fDo/Hg6KiIjzyyCOa39L3+BcjelnnRR1/LwGRnTr+z3qQq8/XCBSX7iOnLtrsVzrOgQMHhq1vPG/ePIwePZqtjkFQni+94OqJukAgYDiFh+6taE6dEVG3fft2NrnrgAMOgMVigdvtZhNBXnrpJUOzX/mJTLSWMBFJ1J1yyin417/+pYl28eFXKhIO6Dt10UQdPeMpUmU0/BrbK7+CEY9TRzOtxDcToN0dKi8vjyjqaEDgnTqaYCG2ye12w2q1MlE3btw4AO0PhsmTJxs9XNZuv9+vWfuVfzht2bIFLpeL2d0UciRRZzabccQRRwAI3VR0DL169YLD4cDmzZul4Veg/QaIRdTRGook6sScumOOOYZ912azMRued+p4Yg2/8oMSnQuq6ycLv/KfyWa/Gl0BRSSe8CvtW2/2KxBbTh0QOh95eXnYvXs3vF4vmymoN1GCfi8WUZVBbbNYLGhtbUV1dTUT7bxTx7+IyEQdDeyVlZX48ccf2UPZ6OzX9PR05tQdcMAB7Lt5eXns5ausrEw3/EoTGnjHzqhTJ8JPlHC73SxXN9I4JIq6mpoallsaCVHUyfoETTqqrKw05NQ5nc6w1XionAgffjWbzbrnQxZ+JSghfdiwYbBYLJo0FfpubW2tZvKKw+FARkYGHnroIY1byefUAckJv/LLRVGNQLPZrFkFwUj4ldp03333sW2RSNu9ezc7v6LY9Hq9bCzkw7V8ZQc6J0Ygp85o+FVPLJKQ2rdvH1uhY8qUKTj88MMxe/ZsDBo0CC+88AJ7CaDnEX/eZfezGH6V1akj0tPTMWvWLOnx0W8JMafOiKhzuVxsnKb+p5y6FKM3iNDgwTt11DH0wq+AdsH2WEQddYyqqqqwjmcymViBTdlsM/6hYwS73Y62tjZ2jK2trZoiob/++it69+6tCZN5PB7U1dVh3bp16N+/P7Kzs5GWlqb5ntlsxoEHHhhR1FFCsqzcih4mkwl9+vSRhl9lTh0QEgV6g26s4VeTycSuPYVfAbAHBQ85dUQkpy5W9EQd/yCKJOqmT5+OZcuW6ebUxSrqgHYRVFhYKL0f6PwaXX1GfKg2NDSwfYhOHb/cE/9bfn/PP/88Tj755Igiig+/0gtcQUGBNPyam5uLmpoavPvuuxgwYICmhA8hOnV0ThMRdY2NjUzU0WdlZWXweDxSsczvi2bd1tfXRxV14kNH5tQB7W5JNFFXUVERJuqamprY73mhRfUX9c5Bc3Mz2wZ/j9G510tD4VMgeFFnMplw6623apa1E8OvdO0POOAApKWlaRwdo6IO0EZ3TCaT5l4xOvvVZrMhGAyynFSn08lEGr+2stiuM888k+UT6zl1fFujkazwKz0DKioqWBmmRYsW4ayzzoLL5UJhYSEqKytZDczRo0fj+eef1+SB6ok6PafOyHjPh1/5e4FSW6jdsvAr3x5aN5jPq+aLaEdDibo4ES8yDSrx5NTRd+gtWk/U8YWFxYXjKysrpR2PBkH+zerpp5/Giy++aPRQGdQu/q2NX03j119/DRMe6enpzKkbMmQIy4/jBRUQCsGKok5cdSInJyemWZ8ApKKutrYWZWVlmoGWBuX8/HxdZyjW8CvQfq1FUSde46KiIo1DKBN1sbiUPNGcuoyMDNZvRVFXV1eHhQsX4ocffggLMfEDmN7AzosEu90uzUWRQec3mpggxER1oN3ZFHPq+IXZgXCnDgjldwYCgYiultVqZa71SSedhGeeeQZDhgxhxUZl4dedO3eivr6euS18eJtWm7Hb7bpOXaTZryIk6gBo3vpLS0t1zz8f6qblsOIJv+oJfVl5IHE7tOKJw+GA0+lEY2MjgsEgGhsbNROKaDKP7NoQdrsdgUCAnTdeKPzlL3/BSy+9xNI/ZL+1WCywWCxheamydpMbD7S/fPt8Pnz//fc499xzAWhLTkVCJurE/RsVdeKY6XK5mGscSdQ99thjuPTSSwGEizqfz8f6RCxOnSz8Ko4dNpsN//73v3HGGWdItyMTdeK/Nzc3Y9u2beyZcemll2rG9UhOHYVkW1tbdZ26SMcHhNdsTE9PZ9cumlNXXl6uCbdTlYIuP/u1uyPLFwHA3gqbm5ulOXU2m03aQSjE0dDQIH1AHnnkkRg3bhy7ufnwK21btl0+94646qqrcPHFF8d2wGi/ERobG9m+SktLWXt//fVXzRIxtN/a2lqsXbsWQ4YMARAa6PREnZhTxzt1sUySIHhRR4MQhVn4NtB+9EKvQPjEByPQb6xWK+sHNTU1YYPKddddh2+++Sbsd3xfMBKGlKE3UYI+p8W009LSNP3aZrMxUcN/Py0tDenp6ZoQop5Tx7soDoeDCalUiTpeLNCKI+KKEmKYXebUbd++HUB76ESW18cfs8/nw5VXXgm73c7OGR/OKigoQFVVlcbZNplMmqWgaD9Op5OVaxHPQayijqDzYrPZNC6mCH/+KGQsTpSQYSSnDgi9ZFISvgxaVUIMvzY3NyMYDIbNTiUBrAd9j/oqf058Ph8uuOAC3d/yId5o7hE9eOl7/Fg1atQo1q+ysrIM3ceiEUB/54812kQJ2o+4P6fTiSeffBITJ05EaWkpuz9lDqLVakVaWlrY7FfeqTMq6vjyW0B7JEPmsl522WW64300UUdGxm+//RaxuLOsfUB76JQEs8ViMSzqZE4doO0P0SZK0Gx1/hmgwq8dgHgj8fladGFlTl2kpG/ZkiHElClT8OWXX7ILLYo1PadOJurihW4Efh27srIy5s75/X5WB4nweDzYt28ftm/fzkTdhAkT2NqsxIEHHoitW7eyMKAYfp0wYYKmyLBRSNTxFb1p4XNZ+DWSqDObzWGhy2jInLqampqwQcVqtWre4GVOXbzoTZSgz48//ngA4Wsy2u12jQjRm1AQKfxKidm0PXLqorkV8Yo6/vsk6mROndlsZgOteFyAMVEnCmA6RvoNbd9sNiMvLw+VlZWa85mVlQW/34+9e/dqyh1dd911ePrpp5MSfiX48CugL6rFiS1GnTqxpEkkpy7aWORwOBAMBpmoa2xsDCtPwU9iiObUAXJRFw2HwxF2H0Zy6qxWq1TUAe2174yEXvl2UhhatjpEvE7dypUrAQBff/01ysrKcO6552L27Nm6Yx+5pQSFX8U+FQ0xp453r2IhPT0dFoslolMHhArZ64k6PacOgOYlwmazGRZ1fPiVjpGOj4+yRHPq6Dvxhl/VRIk4ES8CJTjz4R2ZUxepE0cSdfx+AONOnSz8Gi98+NXlcqGmpoaJus2bNwNor/hNpKenY/Xq1QgGg6zA57x588K2PXr0aE2nbWxs1Aihq6++Oq429+3bl60eYUTURVthg9zUZIdfRWQlTeIlWvhVXFqJsNvtmuWaxDClkZw6oL3UgN1uj9mpizenDpA7dXR/er1eaS1AalesTh2f3E2/oXvU6XQiMzMTdXV1mnBXbm4umpqaMHz4cPzxj39k+xkwYAAGDBjA1tCUiToj/U9WviNWUbd9+3a0tbUZCr8azamLti3elaIq/2J5Cv58p0rUxeLUkaCj78lmuDocjphFnWgEiE6dkdmv4nNh5syZmD9/PiwWC0pKSjBixAjcdtttum3RE3UyoRkJMfzq9XrDXiSNQLnV0UTdnj17dGcay8Yr+h2FP+kzWvM6GnR8wWCQ3Qu0+g4v6ugFQC+nDoDUqVPh1xTDD6oUMqATr+fU0VuXHkZEnRh+7UinThR1ANii1oTMqdu0aROAyLM3jzrqKHYDOhyOsPBrvPTu3ZsVnOVFncvl0rhFRpw6oP2hF4+oixR+FdFz6lasWIGPPvrI0L6JaKJO76Egijr+e6Koi/SwpHMmmyihRzKcOhKQMqfO5/OxcywLv9IECMoZlYk6qrvHt5c/Z3x/JoeJn2FJkyfKysrYPcKPDzKnLtHwq1gDT4Q/TsoDTGZO3VFHHcVm4evBuxsUftVz6hIJv0aDF3V0vuMJv/LHZaScCb+fSKLOaPFhUZC88sor+OCDD9gs8WhpLXqiLtaJEmL41ePxGBaEIkZEHaBf19RisYSFfY899liYTCZ8+eWXLIUiKyuLhWCjQSKVokz0mawd6enpUqeOH6udTidbn1tMhYlEjxB1tbW1GDNmDNLT07FmzZoO2Sc/W9LlcrG6UrxTl8zwKyHWa+NFndGcunihm5efTVdWVoasrCy43W5kZmaGOV0ej4fdxJFcMJPJhDvuuANAKBQrhl/jhd8nL+rEWbpGcur4bRjNb+Nz6vjBL9pAKMupA0L5OSeffLKhfRPRZr8CwKpVq/DJJ59ofhfNqTMSfgW0gqIjc+qoTbKcuoyMDN31dXnKyso0s5h5TjnlFPZnPm+QEq1pIHc4HMxh2rZtGyZPnoxbbrkFgwcPZq4erRcaTdQlGn7lc1Rl8PsqKipiFfdjDb/qOXWXXnopXnnllYjboms1adIkpKeno7q6mh13rDl1vFNnNptjKtwda/jViKiLJ/war6jTc+pMJpMm9zma0ORFXTAYDBN18ZY08Xg8cYVfAbCqDjJRR4XcAf1jo0k2PAUFBRg9ejQ++eQTJqAyMzMNO3V8VQBx4pk4ye2iiy5i68gD7fcz9Rsq5fT1119j2rRpOOmkk/DSSy/h5ptvjtqOHiHqnE4nPvjgA0ydOrXD9sm/mbvdbubU8Tl1qQi/HnXUUfjwww9Z4Uur1Qqn04mqqirDs1/jRebUtba2wuPxsIr04tsPHVN+fn5UgXbdddfh559/xuGHHx42+zVeeJHm8XjgcrlQXFwctkSaUaeO1hmNttYhIQu/AtFz5ZKZUxdtogQAHHbYYWHFqCOJOv6tOxAIGBJ1DocDAwYMQFpaWtTyLMlw6uizaE4d3/a0tDSNsKGaUbLrfeihh4Z9xl9jeqHiRd2ePXswYMAAPPLII0hPT2fhWBJ1/ANcNvuVHKtYRZ3R8CvlEAGhYrWBQCBiXTnCyIoSRqF0iVNOOQXDhw9HU1MTfvnlFwDx59RRGSGj9y39Npbwq9VqZS/4spfooUOHsvW4jewb0HfqTCaT4RUlZIKEd5ljcerq6+sRDAbjLmnCr5KRqFNXXFzMnj88aWlprJ9EOjaxf9psNkyePBmfffaZpgBwLBMlgPY13IHwZeOIxx57DBMnTmR/p/uZxB/d80cddRRcLhceeugh/OMf/2CrL0WiR4g6i8ViaGYkhUb5/+KFt0tFUbd161aWRwNoJxgkKurMZrPGIQDaO06qnTpqVzAY1DxovF4vCgsLpblZtF9xtqsMk8mEESNGsIrnyXDq+FpSDocDM2bMkLbHaE4dFXE1Cl/niB/AOjKnLtqKEnqIybmynLpIC94TvFM3cOBA7Nu3T7OAuoxEc+p4V4YvwRMt/Cruk0SdDLFuGKC9XrSoOy/qgsEgc/CpDiAANus7mlMnHm8k4pkoQd+12WyaB3+yZr/GQlFREasttmzZMgCJhV9jvZf4VT2MOnUzZ87Ee++9JxWPH3zwAW644QbD+wb0nTq32x13+BUIXX/qh7GIOj5fPB6njo4JCAnLaOOtHllZWSzvVTZG0HMvkgtJ15YfD0844QRUVFRg6dKlAEKmSKyijh8Xja6EJDq84v1mMpnwxz/+keXeRmK/mijxwAMP4J577knKtninjt7OSNStXLkShx56qOZNiQY9I+HXWAcfr9eLffv2ddjsV0DrKHi9Xrz33nvSfcQi6ggaRPiyDvHCDzhWqxVXXXUVXnjhBV1RZyT8Gouo4506n8/HKsIbDb8m06mLR9TJtgPEL+oAGCognWj4NTc3l31GoTugXdQVFRXpnmOv18ucs0iiDgiVTaDZhID2nNGatfwLHhAuTGg/QHSnTjzeSPB936hTR/szmUyaeySWnDpKFI+37z7xxBNsf9nZ2SgqKsIbb7wBi8XCCqbTcQwdOjSiMIg04zwal1xyCZutbLSkSU5ODiZNmhTTfmRQW/ft26dZWpH6LE3Yiif8SvTr1w+rV682LOpWrVrFwn8+n09a0DkS9CwgUffwww8nFH7dsmULAPmYTfebEaeuV69e2Lx5M2w2GwYOHAgA+Pnnn1kh8HjCryTqjYo6KnlF2zCyNKIe3UrUlZSUSEOs7733nqEHxezZs3HTTTexv9fU1MS99BINqnz4ld68V6xYwcpEEG63G1VVVQk7dTLy8vKwadOmiE5dMsOvtE8SKIWFhVHXS41lNQQaRKIl4BuFkmqtVisOP/xw3HzzzTjrrLM03zGaU0fT6Y3C59R5vV4cddRRmtUZ9EhF+JUGChIJ0YRBNFFXXFzMQmVGJkrEci3jFXV03s4++2y2DV7UUU7diBEjWHuiOXWRVl7p27evZgyhbdJ6jeTUpaenIy0tDW1tbVJRR8icOt59pKLFRh4yvMtE5yJaTh0Q6ifBYJAts+f3+w3l1FHkg2Y0xtt3r7vuOs3fDz/8cLz99ts488wz2ThD237++ecjbisRUcenIxgNvyYLamswGNQIAl7UVVVVxTX7lSgqKsK6deuilhei8fhvf/sbvvjiCwCh/kP3VbxOXbwlTYDQmE6CltZ7Ff8diC7qqLTR5s2bYbVakZ+fD5PJhDVr1rBtxDJRAgCWL1/Oxlq9iRIiNCFCLFAcD91K1BUUFGDJkiVx/95utydFJABap27gwIEoLCzE1q1bUVlZifXr14clNI4fPx7vv/9+whMlZNBDRdbxSKTEU7hXhG9XQUEBdu7ciaamJlY6QkY8Th2FXyMVtY2F7OxsJuoA4NFHHw37ztFHH40LLrgg6hsSradrFN6pA4BTTz0Vy5Yti5rbQ+fNqKiJRLKcOv64f//73+PZZ5/FqFGjom6LHNdY8pniFXU2mw07duxAr169mHMkc+oyMjJgMpkwffp0th4xwYu6xsbGmN6axdmllGxPa1CWl5dHFHWyED0N8FlZWSgrK5PO3IvUFnFVDyC6UxcIBJhbt2XLlpicOnJvkyVyRo0ahbfffhsXXXRRzGkJfPg13vwtfjt6IoSfJJEM+LbyYzcv6oyu/RrJqcvJyYnal5xOJ6qrqzUvN/zs91hFHc0oj+XlWIQE16GHHirdv5Hwq81mY7NQ6Z6yWq3Iy8vDnj17WP5jrOHXP//5z+zYjDp1p512GtxuN3MfExF1PSKnDgg9LD/99FNcfvnl0jpoyYYXdfPnz8cjjzwCm82GH374AcFgMCy/7OyzzwbQvgi6jERFnazjFRUVYeXKlZrF6+OFH0gtFgsKCwtx4IEHRhwU6OEWr1OXLFEHRH7IHHHEEXjppZeibiuR8CvQPmNy3bp1EX9XUFCAxYsXa5Jp44WWoKPBL1ZRJwtTjho1CvPmzTMUfqUwZCzEm1NntVrRt29fzdu1TNSRO7FgwQIcddRRmm2JgiceUcfnG9GxU0iIz6njoeskbou+L1ur1khbZCHdSOfV7Xaz39DLmFFRV11djb/85S8AkuMyA6Gxc9q0aTj11FM1uXRGSMSp44nm1F1//fXsuJMBf+70RB2twx1v+PXyyy/Hgw8+GLUtbrcbdXV1LO8TCI2p8UyUANqdukREHY3ptBqOSFZWFluZRQ+73c5EHX++aRId3a9Gw6/8eaCKD3TM0WYYjxkzBrfddtv+59RF4sMPP+zQ/Yl1ZejP69evh9VqxdChQzXfP+200wCAJWDKSIWoA6BZyDgR+HYZvSHpmOLJqUuWqKO3tmQ4B7179zZcawoIF3UjR47EH//4R1xzzTVRf8tPeU+Ec845B4WFhUwwGF0VgwYpShYWrwWtEAJEd+pifaDG6tTR9/ljkom6xsZGzbrMMkjwWCwWtLa2JiTq+BmU9JDQc+rE/eTm5iI9PR2HHnoo3n33XXz44YdYu3ZtzKIuHqeOXDejoo5Kmrz66qt47LHHACTPqRs6dCjeeOMN1ra0tDTD6ST87NdY7luRaE6dnriIFyq50dzcLA2/Uh+lIu0yoom6ww47TBq6FOnVqxe+/PJL2O12zJgxg+U8xrNMGBBy6tLS0mJy7kVoTOfzDXkOPPBAlh+nh81mg8fjCRN1vXv3xqpVqzThVyOiTnY806ZNQ9++fQ2Pf2KFgnjoMaKuo+GdOoL+PGDAgLCHXG5uLm699VZMmDBBd5uJijq+/EQqiEfU9e/fH06nk5VgMYLT6URLS4vuOrixQm91yRCI1113HVvk2gh8Th0QuvH/8Y9/JNyOWMjMzGQvFUDsTp3L5cLVV18d5hry4ZhI2zr99NNjzp2JN/zKCwmTyYS0tDSNqCsvL9fMQJVBgqFXr17YuXNnwuFXOvZook48R2eccQY2btwIi8WCM844A//73//CjtFIW2S1+6Ll1NGsXHLYjcx+bW5uxqJFi8L2lUzcbjeWLFmiuwqKCLWhuro6pU5dKnA4HGhubtZ16gBEXN0mWvjVKP369cPu3bvhcDhw2GGHsfbE6tTRBBw+FSZeDjroIOTl5YUtN0lcf/31uOKKKyJug8KvVKaKEJ063m2PlX79+kUVlzzKqetE+IkSBN34erVkHnrooYjbTFTU7dmzJ6bfxYpYz8sIgwYNQk1NTUxWOz1Eq6qqkhp+pSTzRIg1d4ZuUqPFijuCeETdn//857B/5/tApIF9zJgxum/UetC24wm/ip/zS2tRXTgSVjI8Hg/S0tKQl5cXs6ijwZ/u5QsvvDDsIWFU1JnNZs3EHbpeyQi/RhJ155xzDksTiSX8WlpaitWrV2s+SwViuDwSdLytra3dTtRRe/UmSgAhURfvRAmj9O3bF62trdi4cSMuuugi9nmsos5sNsPj8aCioiKh0CsQeqHkw8EiFosl6thht9uZWycLv5JT99xzzxkuGi0S6z2gRF0nInPqqGNEmjgQiXhLmpCoi9TJkwHlFrS1tcV0U8Z6A1PHrq+vT8pEAbohjS6zkkzy8vKQmZmZUKgh2eitViEiEwUieXl52LdvX9JdmWQ4dfR3EnUej4eJukhOXe/evdGvXz82sCYSfuXrSpGY08upi7YfvWOM9v1Yw68zZ85kfz7++ONx+umnRw13Wq1W7Nq1CwBw00034bHHHkuoDmiy4MesVE6USAV0rSI5dW1tbbqiLVmijuoVBgIBTd1Pl8uFhx9+OKYVbjweT9QyQR2FzWaD1WrFRRddpElREkVdLOlL3377LVasWIE//vGPMRWpJ5So60RkOXX0mZGqzzLideqSMbPVKDabLWIeRzLgB854zyXPZZddhs8//xzHHntswtuKlXPPPTesvE1nY7FY8Prrr+PEE0+M+D0joq5///4pEXWDBw/GqFGjDBcn1RM8FoslZlE3a9YsnHvuubjwwgsBxCfqZC5BZmamJseOL37c0tISVTDQOTZ679HyZjJRZ9QBPfTQQ/Hee+9F/R61bfjw4bjvvvvgcDgwefJkQ/tINTRmdTenjvYVSdQB0NRA5Elm+JXgRZ3JZMKf/vSnmLbl9Xqxe/fuqGVUOoKLL74YaWlpGDx4MAYPHsw+F531WBgzZkxY+aBYSEZOXdeJCXUzZE4dVdvuaFHXkaE9aluiA0Uk+A4dSz6CHgUFBfjiiy86ZSCxWCwxTRLpKM4999yoieNGRB1dH1rvNFkcdNBBWLFiheHBzYhTl56eztzsSOFXm82GvLy8sLp+RhCdOp4jjjhCkwNE36X+Ee1YYw2/0j747dpstqSWdiKoTSeeeCIcDgfuu+++hNyGZELjcSLHTMfX0U6dz+fTPA9kok6vtiaN0Yk+H3w+n2a5x0QgxzeVpoBRzj33XJxzzjlhn9P9aKT2rQwaV+NJP0iGU6dEXZzIcuoo/NDRoo5I9IYzAh1vd3LqFPFhRNQ9/vjj+L//+7+4Uw6ShVGnjkqwGJkJKdb1M0IkUfe73/0OH3/8cdh36SFi1KmLVdTxD4ghQ4aE1eVLBrRkU7JmbCcTmpyWiKgbPXo0zjzzzA59MbTb7WH1zeIRdYm+gJtMJubWRSvOHg0SdanKt0wGAwYMwPDhww2v0ytCzmoiTp0SdZ2AzKkjUZdoTl08naG8vBwbNmyIa7+xEGsIKB6oY/fu3btD34wVWoyIupycHDz44IOdPhHEaE4dEHIejDxU4gmFxBLepO/SDNNk59TRPvgHxNSpU/HNN98Y/r1RaGJFpNn9nQW5o1T0Nh4OPvhgLFq0KKURChG73R6WWiNOxAH0hVaywq9Ae952tCK60eDLBXVVPB4PVq9eHVPFBh6XywWXyxXXc/zoo4/G5ZdfzkLA8aBEXZzIcuoo/BrvOqterxcWiyWuJb2ysrKSshRYNDoy/DpgwICU7UMRHSOirqsgux+BcKcOMJ6DmmynTu+7JOpS4dT9/ve/1y37kEyefvppfPzxx0lZYzrZUC7td99918ktiQ2XyxUmog499FCcc845GsGhF6FJllMHhPLqsrKyEnbYuoNTlwxyc3PjEnW9evXCc889l5Do7bpyuYsjc+qWLVuGn376Ke5tut1ufPfddzjkkEMSbV7K6MjwazLy6RTxIy4v1pWJ5NRR/UYSWkaL0HaUqMvPz0daWlpKcuoef/xxw99NhPz8/C4zMUKERM95553XyS2JjQceeCAsZJydnY2FCxdi7dq17DO9yRvJFHVnnHFGUioRdKWculSSm5uLurq6Ttl3zz6zKUQm6o4++mgcffTRCW2X1tLsqnRk+FWJus6lOzp1ejl1ZrOZHUcqnTqx4n8k+PIiXq836bNfFe20tbV1eopArETKfTTiAiUz/HraaadpCpjHy/7i1OXk5LD83Y6me/XyLoTZbIbZbE76LLKuTkc8WNxuN0444YSoJTcUqaU7ibqsrCyYTKawIqFWqxV+v5/N+gRS69Tl5OTghRdeYGv8RoIXdYWFhVHzleLJqVOE6G6CLhpG+kAynbpkQS87Pb0P5+XldZo26BGvfCtWrMANN9wAs9mM/Px8zJ8/v0M6jdVq3e9EHR1vKgcKs9mMxYsXp2z7CmPIlpnqqhx44IHYsWMHy08j+Fnq9EKSSqcOAC655BJD38vNzcWNN96I4447Dscff3zUmZXxhF8VPRMjy711RVG3v4Rfb731VlYTs6PpEWe2d+/e+OSTT+ByuXD77bdj0aJF0vozycbhcHQLFyOZqBDQ/kN3cuoAhAk6AJpCoNR3jTp1ySgEGgmz2YzHHnvM8PeVqFMQ1Aci1VJLZvg1Wewv4ddhw4Z12r57xJOZn9JttVo7THAsWrSoS09qSAVK1O0/dDdRJ6MznLpUoUSdgqC+EEnUdUWnrjuUNOnu9Kgzu2PHDixevBh33HGH9N/9fj/8fj/7e6JrE3ZEqYCuRkeEXxVdAwq7dsUyFUbhnbp4c+q6Sq1ElVOnIKgvT5w4Ufc7XVHU7S9OXWfSrURdSUkJpk6dGvb5e++9B4vFgvPPPx9z587V7TAPPPAA7rnnnlQ3s0ejnLr9h/z8fLz//vuYNGlSZzclbhJx6o499ljcd999OOCAA1LVvJhQ956CsNvtWLt2LQYNGqT7na4cflV9OHV0qzNbUFCAJUuWhH3e1taGs846C3feeScOOugg3d/Pnj0bN910E/t7TU0Nq5StMIZ6sOxfJKOMQWdCBcG9Xm/MOXUejwe33357ytoWKyr8quAZMmRIxH9XTt3+SY+Y571w4UIsW7YMc+bMwXHHHYc33nhD+j273c5qQtF/itjoiOLDCkWyGDt2LLKzs/GPf/yD9V2jTl1XQ4k6RSx0RVG3v5Q06Ux6xJN5xowZmDFjRmc3Y7+gI5YJUyiSxSOPPIJHHnkEQOiBcs0113TbHEGVU6eIBRV+3T9RZ1YREyr8quiuDB48GE899VRnNyNulFOniIWu6NTZ7XZYrVbVh1NIjwi/KjoOJeoUis5BiTpFLJCY60qraZhMJni9XvX8SCFd52orugWqpIlC0TmoFypFLHTF8CsQSoNQLyapQ4k6RUyoB4tC0TmonDpFLHTF8CsADBw4ULr6iyI5qCezIiaUqFMoOgcVflXEQlcVdR999FGXCgn3NNSTWRETqqSJQtE5KFGniIWuGn5Vz47UouSyIiZUSROFonNQ4VdFLHRVp06RWpSoU8SECr8qFJ2DyWRS5SAUhlGibv9EiTpFTKjwq0LRedx77704+eSTO7sZim5AVw2/KlKLejIrYkKFXxWKzuO2227r7CYougnKqds/UU6dIiaOPfZY3HzzzcjIyOjspigUCoVCByXq9k+UU6eIicLCQjz66KOd3QyFQqFQRECFX/dPeoRTt2bNGowdOxYTJkzAlClTUFdX19lNUigUCoWi06C8ZyXq9i96hKgbPHgwli5diq+++gpHHnkk3nnnnc5ukkKhUCgUncbhhx+O++67DwcffHBnN0XRgfSI8Cs/xb+hoUF1YoVCoVDs1zgcDtx+++2d3QxFB9MjnDoA+OyzzzBy5Eh88cUXGDBggPQ7fr8fNTU1mv8UCoVCoVAoegKmYDAY7OxGGKWkpARTp04N+/y9995DVlYWAODhhx9GIBCQTv2/++67cc8994R9Xl1dDa/Xm/wGKxQKhUKhUHQQ3UrU6eH3+1lR3GeffRbNzc249tprpd/z+/3s7zU1Nejbt68SdQqFQqFQKLo9PSKn7rPPPsMjjzwCs9mM3NxczJs3T/o9u93OxJ9CoVAoFApFT6JHOHXxUlNTA5/Pp5w6hUKhUCgU3Z79WtQFg0HU1tbC4/HAZDJ1dnMUCoVCoVAo4ma/FnUKhUKhUCgUPYUeU9JEoVAoFAqFYn9GiTqFQqFQKBSKHoASdQqFQqFQKBQ9ACXqFAqFQqFQKHoAStQpFAqFQqFQ9ACUqFMoFAqFQqHoAShRp1AoFAqFQtEDUKJOoVAoFAqFogegRJ1CoVAoFApFD0CJOoVCoVAoFIoegBJ1CoVCoVAoFD2A/VrUBYNB1NTUQC1/q1AoFAqForuzX4u62tpa+Hw+1NbWdnZTFAqFQqFQKBJivxZ1CoVCoVAoFD0FJeoUCoVCoVAoegBK1CkUCoVCoVD0AJSoUygUCoVCoegBKFGnUCgU+ymtra2YOnUqNm3a1NlNUSgUSUCJOoVCodhPqa6uxltvvYUVK1Z0dlMUCkUSUKJOoVAo9lOam5sBAC0tLZ3cEoVCkQyUqFMoFIr9FBJzStQpFD0DJeoUCoViP4XEXGtraye3RKFQJIMeJepef/115ObmdnYzFAqFolugnDqFomfRY0RdIBDAm2++ib59+3Z2UxQKhaJboHLqFIqeRY8Rda+99hqmTp0Ks1n/kPx+P2pqajT/KRQKxf6KcuoUip5FjxB1bW1tWLhwIaZPnx7xew888AB8Ph/7T7l6CoVif0aJOoWiZ9EjRN2rr76KadOmRXTpAGD27Nmorq5m/+3cubODWqhQKBRdDwq/qokSCkXPoEeIurVr1+Lll1/GySefjI0bN+LGG2+Ufs9ut8Pr9Wr+UygUiv0V5dQpFD0LS2c3IBk89NBD7M+jR4/G3//+905sjUKhUHQPlKhTKHoWPcKp4/nxxx87uwkKhULRLVCiTqHoWfQ4UadQKBQKY6iSJgpFz0KJOoVCodhPUU6dQtGzUKJOoVAo9lPUMmEKRc9CiTqFQqHYT1HhV4WiZ6FEnUKhUOynqPCrQtGzUKJOoVAo9lOUqFMoehZK1CkUCsV+ihJ1CkXPQok6hUKh2E9Ry4QpFD0LJeoUCoViP0U5dQpFz0KJOoVCodhPUaJOkWoaGxs7uwn7FUrUKRQKxX6KEnWKVLJx40ZkZGRg165dnd2U/QYl6hQKhWI/RdWpU6SSPXv2oLm5GXv27Onspuw3KFGnUCgU+ylqRQlFKvH7/QCA+vr6Tm7J/oMSdQpFN+Cuu+7CggULOrsZih6GCr8qUokSdR2PEnUKRTdg0aJF+Pzzzzu7GYoeRncPv1577bW4//77O7sZPZby8nJUVVXF/Xsl6joeS2c3QKFQRKelpYUNkApFsujuTt2qVauwd+/ezm5Gj+WKK66A1+vF3Llz4/q9EnUdjxJ1CkU3oKWlBU1NTZ3dDEUPo7uLOvWyk1rKy8uZmxsP9Fsl6joOFX5VKLoB6uGlSAXdfaKEetlJLc3NzQmNO/TbhoaGZDVJEQUl6hSKbkBra2uHibpVq1bB5XIllEuj6B4kM6du7dq1mD59OgKBQMLbMop62Uktfr8/KaJOOXUdhxJ1CkU3oCMdibfffhuNjY347rvvOmR/Cn0qKipw3XXXpSw8mszw63fffYeFCxd2qCujnLrUkiynTom6jkOJOoWiG5BKR2LWrFmYNWsW+3vfvn0BADt27EjJ/hTG+f777/HUU0+lrCJ/MkUdLQeVSA5WrCQqOrobW7ZsQa9evVBaWtoh+0v0/Kqcuo5HiTqFIk62b98Or9eL3bt3p3xfqXQktm7diq1bt7K/W61WAErUdQXoodjW1pbS7SdT1HXkpIv9Lfy6efNmlJSUoLi4uEP2p5y67kePEXUrVqzA+PHjMWHCBEybNq3bzuZSdB92796N2tpabN++PeX7SuXDq7m5WbPoNonHzZs3p2R/CuOQ6ErVRIZkTpSgftPRom5/Cr+SOOqoc6xEXfejx4i63r1745NPPsFXX32FgQMHYtGiRZ3dJEUPhx6ENTU1Kd9XKkWd3+/XPBjpzxs2bEjJ/vTYvHkzvv322w7dZ1enI0Sd2WxGS0sLgsFgQtvqjPDr/ubUkTjqqHOsZr92P3qMqCsoKIDL5QIQCh9ZLOEl+Px+P2pqajT/9UQqKyvx9ddfd3Yzejz0oK2trU3pfgKBAAKBQMocCT2nbsOGDQk/6GNh4MCBOProozWflZWVddj+uyL0UEylqKNxM9EQr3LqUk9Hi7qeNPs1GAxi8uTJ+P777zu7KSmlx4g6YseOHVi8eDFOO+20sH974IEH4PP52H+UEN7TmD9/PqZMmdLZzejxdJRTR/tJpVMnE3W1tbWdWq1/y5YtyM/Px2+//dZpbYjGq6++iiOPPDJl20+1U9fc3MxEXaJiTOXUpZ7u5tR1pYkSTU1N+PTTT7Fy5cq4t1FcXIwlS5YksVXJp0eJupqaGpx//vmYO3cuS/bmmT17Nqqrq9l/O3fu7IRWpp6GhgbU1dV1aL2o/RF6eKVa1NF+UunUycKvAFI261JE1lf37t2LQCDQITmL8bJ58+aUhqk7IvyabFHX0eHXjnLqWltbsXDhwg51r0U6UtQFg8GwsSFWupJTR8eRyPFMmjQJ48ePT1aTUkKPEXVtbW2YOXMm7rzzThx00EHS79jtdni9Xs1/PREjIqCtra3bVpHvKnRU+JWuZ0c6dZS+IOtDy5cvx8KFC5PaBtlMW2pTZWVlUveVTMR8xGST6tmvLS0tcLvdABIXjh0dfg0Gg2hra2P/pZrHH38c06dPx48//pjyfemRiKhbtmwZKioqDH33pJNOwptvvolgMIiWlhZDBsExxxyDqVOnaj7rSqKOxhN+rIuVPXv2AEjd/ZgMeoyoW7hwIZYtW4Y5c+bguOOOwxtvvNHZTeo0aFCNdCPddtttmDFjRkzbbWpqwqZNmxJqW0+io8Kv/AzFVAwmspy6jIwM9meRuXPn4t57701qG9atWxf2WXcQdRSeSpV70xHhV6fTCaD7hV/5/XRECHbVqlUAALO58x6biYi6s846Cy+++KKh7y5btgwrVqxgfzeyv+XLl+Ott97SfJbIRIny8vKk9iUayxIRddnZ2QC6dq5vjxF1M2bMQHl5Ob788kt8+eWXmD59emc3qdOgGyHSjbRz586Y66u98sorKc0f6m6kOvwaDAYxZswYfP755+yzVDy8yG0iYRJN1DU3Nyd9CbG1a9cCANsv0N5/u7Koo+uRqnBYdwq/drRTx++nI0Kw5CYnIgoSJZGSJo2NjYbEVTAYRGNjo2Zcizbu6L3U8E7dO++8g+rqasPtHTlyJJ599lnD349GMpy6rKwsAEBJSUlCbamurk7ZPd1jRJ2iHSOirrm5OeZOVVVVhcrKyi5tPXckqQ6/+v1+fP/99/j55581n8XKd999h7POOkt34G1ubmb5M4BW1Mn219LSknShRU4d3yejOXWfffYZrrzyyqS2I1b4c5YKOnL2a3fLqeP30xFOHeV2dmZ5jmhO3fLly/Hkk0+yvweDQcydOxfNzc1oaWkxdI0p3MoLsGjnV0/kUDubm5vxu9/9Dv/5z3+i7h8IOWE7d+5k4c54aWxsZKkiyXDqMjMzASChCWTNzc3IyMjA7bffHvc2IqFEXQ8kVaKuK81k6gqkOvxKgxB/vuN5eH377bd49913dd+SaZs02Pn9/ohOXUtLCxoaGpL68KZBkt9mNFH31Vdf4fnnn+/QxHwROneRrksiOV8d4dRRTl13Dr+m2qkLBoNsYl1XFnVvvvkmHnzwQfb3LVu24JJLLsE333yDlpYWQ/cKXcdYRN2WLVsAAOnp6WhoaGArXvj9fqSnp7PvlZeXR90/ADbjva6uztD39Xj33Xcxffp0lJWVJcWpS4aoe//99wEgZalMStR1E+rr61mIKhpGRV2sg293E3WfffYZJkyYkLTtXXbZZRg0aBD7O52/VDl1NPjw5zuehxcNjLKlhSgRmt9fU1MTm0SkF34FkNQQLP9GT45iNFFXW1uLQCDAHiidgRGn7tprr8Ull1yS0Pa7Q0mTzgy/ptqp27dvH/tzskRdY2NjzDOno4m6hoYGVFRUsHuIxqampiYEAoGo1+bXX39NSNQVFhbi8ccfx0knncR+RyFLAIYnaiRL1FHIvKGhISlOHU0gS0TUUV4j/yxJJkrUdRB/+9vfpMngRpk9ezaGDRtmyBVKlVNH2030RusoVq1aha+//jpppV1eeOEFzdtVd3HqaGCXiTr+4cBP+Xc6nbDZbLpOHSAXdQ0NDXFNGuAfNqLI1BN11A83btwY8/4S4Z///CdbscaIU7d9+/a419FN5exXmj1KEyUSFY4dHX7tSKdu/fr17M/JEnUvv/wyxowZE9NvjIg6v9/P2kj3CJ2fSNempKQEhxxyCBYvXgwgNlFHa0enpaWhtLQUpaWl7He8qEuGU7d+/XpMnDgx4rH4/X6Ul5czd7WpqSkpoo76HB9ZuPDCCw2vxdva2opPPvlEs61ko0RdB3HHHXcktHQZ3VTUISKhwq8haFBKZMDfvHlz2PGSmEm1qKPBhx/YjB7Lhx9+iI8++ghAu6iT5afIwp1NTU1wOBxwOBwxi7r+/fvjnXfeMdRGsR1UW5LaZMSpAzp+ObPnn3+ezfIz4tQ1NTVJH4pGZtCl0qmj6xiPU7djx44whzoep27fvn0YNmxYzJO2xP2k2qnj6zUmS9RVVlaiqqpKur0HH3yQ3b880UQd/Ts5YvR32kckIVRdXa0JM8cyUYKcOpp0xYvIZDt1y5cvxxdffBFRID7++OM46qijNKIuGeFXUdTt3LkTL7/8suEyNxUVFewFLdaXH35Mj4QSdR0ALfGUyMO/sLAQQChHIBqJhF9bW1sxZswYfP/993j++eexdOlSzW+A7iPq6HwnMggfe+yxeOaZZwAAffr0AdA+4PDh11dffTXp09xlos7ow+vJJ5/EE088ofm97G2S316sok4UW62trdi3bx97a4+FlpYWlnvTWaJu8eLF+OCDD6J+r7a2lt0DRpw6majbsWMHCgoKsGbNmoj76ghRx+fUbd682VBy+qmnnoq///3vms/iyal77bXXsHbtWuYOxUJHirr6+nqYTCZkZWWhoaEBy5cvT3ifdG/Jxo1nn30Wr7zyirQdQGSnDmgXT3TvG7k2tE1qTyxO3ebNmwG0iydZfi7frmhEEnUkqCK9SG3ZsgWbNm3C6tWr2XeT4dTROaI20DPG6Db5ax2rU/fPf/6TPYsioURdB0CdKZqo+/7776NODf/vf/8bNRSTiFNXVVWF77//HqtXr8bDDz+M119/XfMboPuIOhqU4hV1LS0t2LNnD8un6devH4B2EUHnr7y8HOeffz7efPPNRJusIZHwa2NjIxND8YRfI4k6vZw6+jyeHMPm5uaYRV2yw6+TJk3C6aefHjV8XFtbG+Z8RHrANDY2hl23srIytLW1Rc0HTOXsV2o779RdccUVuPPOO6P+dvfu3WEP6HjCr/TQ7dWrl+HfEB0Zfm1oaIDL5YLb7UZpaSnGjx+P9957L6FtUptljlN1dbWmXzc2NuK3336LWtKE+iVtMxanjvoaCQ+jTt1vv/2GZcuWoaioiDl1zc3NCAQC8Pv9yM3NBRAqV2Qk/BoIBLB582ZYLJaIoi5Smyj8S/dXqpw6OkdG+x8df1ZWVsxOnd/vh8PhiPo9Jeo6ALqhIom67du3Y8yYMfj222+l/04duKqqKupDMxFRxwuhxsZGjaCgTthdcuricer4m5NuQNoOJcnSWySdPxIBRt9CjZJI+LWhoYGJoY5y6hIRdfwsTFHUVVdXS19kkuHUTZ48GV999RWAUD4QIC+ELO43UadOdEX0SKZTV1FRwRwVQB5+raqqijoBhspdiMcUT/iVRF08+UUd6dSRqHO5XNi9ezfa2toSTrvQE3XBYBDV1dXYsGEDG1uuueYaHHzwwexejtWpo89jcer4XORI5/fee+9FYWEhZs2apVlhhfr9gAEDUFxcjBtuuMHQGNnU1ISWlhbk5eXF7dSJ91WqcuriFXW9evWKuc/7/X7Y7fao31OizgCtra2GEyFlUCeKNAjQAzJa2Qkg+ptwIuFX2j8VquRFnZGVKroSsTp1TzzxBJxOJxtI6G1PvHHF8CuRbFGXqFNHD+eOyqlLVNSJTh1/3WT3RV1dHXJycrB79+64RE8wGMSnn37KKuePGzcOACKGYFtbWzUvO0adOvGepb9TH9MjEVG3aNEizazNE044AQMHDmR/F0UdHVu0h15NTQ2CwaCmL7a0tDDhHY+o48/PM888g+eff579ffny5RgyZEjYOexIp66+vp6JOnoWJLpPvfArrdtdU1PD+geNOdHcUFHUUT814qJGetHQO9ZgMIhFixbhqquugs/n0zhiJOrsdjsKCgqQlZUVcYysq6vD9ddfz8aVnJycuEWdeF/xSyEmQ9SVlpYiGAzGLOrKyspgMpmQn58fl1OnRF2SmDFjBstpA0Id+amnnjI8k8eIU8fnIMjgO4BRURdJfOk5dby7JVYgl4Vfly1blpQB9aOPPsItt9yStJmqQOxO3Q033ACgXUBEE3Xi+UuVUxdPSRMKvwaDwYScOll/pH6QTKeuublZ6tRRuEEWgq2trUVBQYGm7bEg3ic0USNSMrLofCTq1BkVdbHOfg0Gg5g2bRpefvll9hk5kLt27cJbb70lDb82NTVFvV/oWvDHxPdLow+rffv2Sd29q666CpdffjnLH163bh3Wr18f9lLS0U6d2+2Gy+VihXaTlVMnPkf4FxhyoamfUZrhAAAAYNpJREFUE9FEHW1TzKmLJfwq+zeRiooKNDQ0YPDgwbDb7WhtbWVtoDAsCZGsrKyI/euHH37Ak08+iZ9++glAaEmuRMOvRDJz6qxWK9ra2tDS0hKXU5eZmQmHw9E9RF1jY6N0FtOvv/6azN10OJQrRQNrRUUFrrvuOvz3v//FvHnzos58iUXU6XWOVDh1iYZf6+rqMH78+IRm9QKhYoynnnoq/va3vyVU/0ckFqeOv4Z0rkVRR5/TgNlRoi6eiRKNjY1obW1FfX09amtr4XQ6k5ZTp+fUUdtEUffbb79pxIUMvYkS9DIlE3V1dXUsXyeegVp8SaHrGakP0rHF4tR1VPh1165d+P3vf4/a2lrU1dWhpaVFcyyDBw9m/586dSo7Fl7UGXHqZKKO/41Rp46vu8n3wwMPPBAA8NRTTwFov3/F/psMp27Lli0YMGBA1HuXD7/G69R98cUXmpJIeqKOv68or86oqNOb/cpPlPjqq6+kaT6R+uRnn32GqVOn4vHHH9d8TrNL+/btywQHjbvkONLntG6q3rmmz0WnTsxxpT5dXV2NyZMnIy8vD1988QX797a2NlRUVKB3797sM17UJWJCtLS0sBqeDQ0NcTl12dnZsNlsXT/8+uabb+Kggw7CqaeeihEjRuC7775j/3b++ecnazcdzrZt29ifaRDkE9DvvvtuzJ8/P+I2jIg68c1fxO/3w2azAeiY8CvdYJGcuj179iAQCCScY8eL/ngK2v7rX//ShJmIWJy65cuXsz/ribqmpiaYzWb27y0tLTCZTAAAk8lk2LmNRl1dHa688kq2vXiWQ6JBnHIwBw0ahLq6ujDBJYZfKayWzJy6119/HTfddFPE9uo5dXqirq2tDQ0NDcjLywMQ30AtvqSQcIokauIRdbKJEmIf0yOWiRKffPIJ3n77bfz3v/9l9xF/XxxwwAEA2u8HuteT7dQZfVjx4yH/Gz4FhG+v6NQlY5mwjRs3YsuWLVFn/PLhV76gbyxMnDhRU3BWL/xKx28ymZhTR2M/Qcd++OGHayaz6YVf+YkSxx13HI4++uiw9tE2Zc+p1157DW+99RZuvvlmjcjiRR256tT36P+8U8e3TYTGO17U0Tq0RGtrK/ve5s2b8emnn6K0tFTzDKHiyzfddBMefvhhmEympE6UoNm88Yi68vJyZGdnw2q1dn2n7q9//StWrlyJn3/+GS+++CIuueQSvPbaawD0F/vtDvAlRMTOWlNTg5qamqgDiqxCt953Iok6j8cDoGOcOnH2FL9f+ixZYQheBMQq6hoaGnD11VezpVd4YpluLntAyJw6n8+nedAWFRVhzJgxmDx5ctKcup9++gnPPfec1AGWDR7Lli3DpEmTNAVu+ZmjdXV1rByLKLhEt4X+brfbkzb71e/3sxpYeug5deRQiA8a6oOiU/f1119HFEA7d+7EGWecwUJD/LaMiDrxRSFa+JVEckc4dbRG8LvvvsuuDe/UiSFc+g6NK0adOvod3zf43xh9WPEvgzRmBYNBtn06Z0acunjHIKMzdvnwKxGv40MCJFr4dcyYMXjqqaewYMECzfG53W7W3vXr17PJL8FgUDf8amSihN45NJvN7PeBQEDzTNixYwesVivy8/OZ4KDrR8dBgpScOr2XXxo/6Xf0/bq6OrzyyiuYM2cOy2UDtC96/PhA4/aYMWPwpz/9iY1jfPg1Xk3S3NwMn88HIH6nLicnp3s4dS0tLWyAHT16NL7++ms8++yzuPfee5mb0R359ttvWaekzsZPaqipqUFTUxOefPJJ3HHHHdJtJCunLtmiLhgMIhAIYMWKFcjIyMDHH38cUdSJOUgk6hKtIF9XV8fefmIVdSQgxKT6nTt3hj0UIiEL5cicOq/XqxF1Pp8P3377LY4++uikiTo6JtF9tNlsYf3j559/xtixY7F48WKsXLkSAFgpASD0UG9ubmZrFooDiRh+pd85HA7Y7fakOHV+vx+tra0RBz49p47GFDE/lPZBTl1jYyPKy8sxYcKEiAW6V6xYgffffx87duxgxyqKukjtpP36/X60tbVFdero80AgoBFm0XLqtm3bhjfeeCMmUffLL7/AZDLhww8/ZH2H70OiWJOJOj6hXI9Ew6/FxcV4//33UVtbC7PZDJvNpnFN29rakJeXZ1jUpaWlxS2wokVI+O+RU0fEKiTpOfjvf/9b83u98Otbb72FUaNG4cknn9QcX2ZmJjv25uZmTaHfQCAAs9lsaKKEOL7IxnGz2cyOmVYe4Z9jO3fuRO/evWE2m5lTR/dIrE4dfU79KycnB0CoT7z66qt46qmnNC8p0UQd/Z5EHd9HY712L7zwAubNm4eWlhYm6hobG+N26vg+b5QOF3V5eXn45Zdf2N+zs7Px2WefYd26dZrPuxtr1qzB+PHjAYSLur1796KtrQ1+vx9ff/01PvvsM+k2+IFD7Ex1dXVYsGCBofCr6GToEU3U8QuMt7S04KeffkJ1dTVOOeUUlkwdKfwqJt7L2izm80SitrYWffv2BRC7qKO28A/922+/na09CBgTdZGcOj7c4vP50NLSgmAwiNbWVpZcTzO7kuFK0/7E85eenh42eNx9993Iz8/XtJv/DoVH9EQd/cZms6GxsZH9Nlr41Ww26+bU0UB3/fXX45prrmHnNpJTrefU+Xw+pKWlhV1Duu68U0fnTRSV27Ztw/fffw+gvZ9UV1cnFH6lbUVz6vjzJ8uL1RN18+fPxxVXXGFY1AWDQfzyyy8488wzUVNTg88//xyA9sHd1NQEl8sFszk07NM4RqJOdHX0iBR+NZlMUUXdK6+8ghkzZqCurg7p6emwWq1hLwr87EA+3YOHfuPxeOJ26hIRdbEIyaamJjY2bN++XfP7srIy1NfX46STTsLu3btRXV2NtLQ09OrVC8OHDw/LyczMzGQCrrW1NUz8FhYW6pY0aW5uZqWZxMLXsueK3W5nQmLAgAEAtPfxzp072dgtCg4aB+hzEkMXXXSRJgeOkIVfgdD1X79+PUpLSzXRC+or6enpGlFH7jeNDaJTB8Qegl2wYAHeeustjaiLN/yak5Oj6fNG6XBR98orr7C3ZsJms+H1119ndaC6G83NzVi/fj0rdSCGX2npGOoweg8tfpAUHzjvvPMOZsyYETWUyYdfo3WGaKKO/31ra6umTfTwiyX8KhsMXn31VRxyyCER20nQLEaLxRK3qOOPddeuXTGv1agn6kwmExPjFH6l77e0tLABMjs7G83NzUlZQoiOiRd1JpMJTqdT0z9+/fVXLFq0CPfddx+A9oGFbwOJOnpL1nPqfD6frqibM2cOtmzZghtuuAHPPfccmpubkZ2dHTX8un79emzcuDFM7IkEg0HdOnVOpxNut1vXqeNFnV4i9AMPPIBLLrkEQPu55UUd79Slp6ejublZd7Ypf680NDQYduoAuairq6uT/ra+vh51dXXsN9Fmv+7atQuVlZU488wzAbSH+Pbt28fERGNjIy644AL88MMPANrHMafTibS0NMPpCmJ4lP+Nx+PRfelcuXIllixZwkolVVZWwuPxaFwLXtRFcuquvfZattoN/7JTXV2NefPmRWw/T7QICVFfX59Q+JWeDQ6Hg/U3Pvy6detWfPbZZ/jll19QXV0Nn8/H7nm+bwPtok58oaDz1Ldv37Dxm58oQakYVE6GkJ0Dm83GhARNYBFFHRVlFwUHfY8+N5vNbEYrn4f+xRdfYNKkSazNYvh17969LLWEyg2ZzWZNXxGdurS0NBb94Z06qkWp18dLS0tx7LHHhrmJ9fX1rH6eTNTFsqJEvE4dTWCLRtJEXZ8+fcJm6BBjx45N1m46lA0bNqC1tZWJOtGpI1FHBRf1Hlr8BRe/Qw/uaNO0I+XU/fLLLxoBEE3U8b9vbW1FdXU1uwGoAje97fALtIsPQRpkZZ1z9+7dKC0tNfQ2UltbC4/Hg4yMjKSEX8WwoNHwK51fXtTRW2h5eTmCwSCb+UQhRRJ10UILsUDHxOdbWa1W2O12Tf+gQXnatGkwm83SKfvRRB1tj2pMiaKusrISd955J/773//ik08+wbfffouWlhbk5OSE9WVejFHNM96d1nvpIRdK5tQ5nU64XK4wUUfijA+/6s0gLy4uZi4P/a6qqoq1i3fqqA169yEv6miGaaTv64V8+HtGllfX0NCAQCAQts6wHhQNOe6442C1WjW1FPkcOLqugFbU2Ww2jesQqbRQJKfO6/WG9bHi4mLU19fj3nvvxZ133snOyZ49e8KcOmpTQUFBRFH33HPPsTA779RdccUVuPjii6MWBv78889xzjnndJhTR32/sLBQI+rMZjPKy8s1uZpVVVVsPCZR5/f7UVhYiOHDhzMXUxR1tN3CwsKwwuN8+JX6khGnTibq+HO7Y8cONkaKgkMMvwKhMeuwww7T9OeffvoJixcvZjODRaeO0kqAUKWEwYMHw+PxSEXdp59+ihdeeAE5OTnMkeadOopY6ImwTZs24ZtvvmH3D9HQ0MDycON16tra2lBZWckmSsiejbt27cIVV1wR9m8UXeu0OnW02HV3hx6ahx9+OGw2W5io4xcLNurUiYMNhV8oTKLXOSLl1M2YMQN/+9vf2N9jEXUtLS2orq5mxSFpMOdXS+BzNoD2gSKSu0gPPyMzY0nU+Xy+pDh1vLCyWCyGnTo6v3xOHYUc6DrRDU2ijg+/AvpJwLFA545/sFqt1rBwaHl5OaxWK9LT0zU15WSiLlpOnZ5TRw/S6upqVFdXo7GxkYk6/sHCbwsIXRd+IAT0nTr6d9Gpa2hoiMupE/vjvn37UFlZiaampqhOHfUBvUGfF3X8y0O8Th0gD8FSnxVDw3rs3r0bJpMJ/fr1Q15enmblCH5scTqdYaLO4XDA7XZrxGWkh1SknDqZqCssLMTxxx+P4uJi1ieozenp6Zqkcdp2QUGBph8A7eFXymWsqqpibhZtU1zCT48lS5Zg0aJFHZZTR8+GXr16aeq4FRQUoLa2lp37+vp65tQBoWtDfXvs2LFYvXo1c5NFl5i2m5ubC7/fr5nUwDt11O5YRZ0Yfg0EAti9e7du+FWcKEHHn5ubqxmTqW2U+iOKOgq5HnvssQgEArjjjjvYCycQ6is0tsyaNQs//vijxuTgRR2N03r3N7+eN080p46uwRtvvKGppMBTVVWFQCAQ0al7/fXX8e9//ztMVPIT2KKRElF33nnnhS32LNIdZsSuWbMGvXv3RmZmJjIyMlgnpU7Hv3FRoV6Z+o5F1MWTU1deXi6d0BCLU+fz+ZgtLyKuN2jEqaPjNFKIlnJrEnHq+OPnH7b5+fnS81BaWhoWWuadura2NpSXl7OBjK4P79Tx4dd4nToxgZc/Jh6ZU1dRUYGsrCyYTCaN4OO3R2GLSE6d2WxGenq6VNTxOWjV1dVMZFBohO/PfD+ora017NRRm/j+TQ/uaKLOiFNH127v3r0pE3WxOnX8n/WcOp5oIqW6uhperxdmsxn5+fmaFw46firmzBd0NplMsNlsSE9P14jLSOGkaKJONh788MMPTNTRd0nU8eUdaNuyiRJlZWWaiQGVlZXsZUfMg40W2qqoqEBra6s0lCwjWeFX0amjNW/pPm1oaNCIOhKsVGYIABMEeuFXujcbGxulOXVNTU3Izs7G+vXrNc9h/hyQELPZbGy/VBKHH9tbW1uZ+BIFh8ypA0IldPj+zU8m4n/Hi7r8/Hz84Q9/wNixYzFjxgzY7XZNX6E2UQmkp59+mm2fD7/Sy+0LL7wgFV96L6D0MhJtosScOXPw3HPPhW2XtgEgzJ3moVxD/qUM6AKi7r333sPdd9+N6667Lky8tbW1Yd68eRgyZEgqdp00iouLMXfuXBY65l0kMbxH4VdA7kbQdHjZv4uz1GIJv+7du5ctJyO6bw6HI2miTlwM2khJEz5pffXq1WH9YOfOnUwUJhJ+jebUFRQUSM/Dqaeeqlm4XBR1ZWVlCAQCOOiggwDIRV0ywq8jR44MO+8yd1Pm1JGoAyAVdRkZGYacOrvdDqfTiQULFuC8885j2+PDKeXl5WhoaGDXlR4cvFDj+wEv6ow6dU6nEyaTSfPgJlEnmyhhMpmQkZEBk8kUMaeO3tqLi4ulok4WftV7YFNfBWJ36hYuXIjTTz+dHTM9HGSFleMVdUB7oVrxhUR06iorK+FwOGAymcJEXSR3WyaE6Dg9Ho9uykVJSYnmOu3evZvl1PFOndvthtvt1ogVEj979+5lbSPhyr/s6Im6N998U5NDRuc82rjLn49UhF/pWpGoI6dODL82NTWxB3o0UUdiiC8ez5c08fv9OPTQQ1FVVaW55vw5o3GFnyiRn58Pj8fDjoXuZ+p3YvhVnChB0DEVFxdj48aNYS8Q1dXVMJlMcLvdsFgs2Lp1Kw4++GBcfvnlWLJkCdLS0uBwOFBRUQGn0wmfz6fJbbvyyitx1VVXse3Jwq+PP/44jjnmGIhQP5SVUCJR53a72eQtUdTV1tbqPgNo21arVerUtba24ptvvgHQBUXd5MmT8fXXX+Odd97B7373O7b24b/+9S8MHDgQN910E6ZPn56KXSeFYDDIHm5PPPEEgJCoE8OvBJ+LJHtwRaq3FcmpW7p0KVatWsU+50VdQ0MDDjzwQLz77rtha0vS24TeMmHid2tqauD1epm4oGRSgi+0arFYUF9fj9bW1ohvxXScX375JUaMGIELL7xQI+yuuuoq3HLLLQCSm1PHXwu73Y6MjIywB1QgEMCaNWs0BStbWlpgt9thtVrh9/uZ4KQq/HSsoqgjN8Tn82lKCURj+/btaGxsxPr161FRUYGXXnoJs2bN0hwTDw0Ec+fOZcW8KyoqmLjiy4/QIFlYWMgESySnjt7G29raWE6lKOrooUNtowfH8uXLMXToUNTV1YU5dQ0NDTE5dfxgR8egl1NXW1uL9PR0VkpBT9TV19ez619SUqIRdbKSJkacOrqXjTh1fFuWLVuGxYsXAwjdM3wRU5FYRV1NTQ0TiTQbun///gCAqVOn4uWXXw5z6qqqqtifPR6PxjGM5tRZLJYwp44EgJ6oE+vgVVVVhTl1VVVVyMzMZEtOBQIBNDQ0sDVr9+zZo2mb+LJD2xHHpD/96U+YO3cu+zvdp7Jxd+bMmXjhhRfY3wOBABobG6OKupUrV+KVV16RHjsffpWJOnr5opw63qlraWlBQ0ODxqlraWlhxyiKOr4MkBh+pZesQw89FAA0YT7+nJH44cOvOTk58Hq97FhoLKB7JtpECYKcurvuuguXXnpp2HnkXzbopZkqUBAOhwMtLS1wOp3wer0aUUelVwgaG3mnTg+9skwNDQ1oaGhAW1sbrFYrXC4XampqWIoI//zXewbQPWyxWKR16lasWIG6ujrY7XbNyiNAFxB1AHDooYfi22+/xZYtW3DUUUehf//+uOuuu3D55Zdj+/btuOeee1K164QxmUy466678NZbb7GbThZ+JXghIXtwNTQ0IDs7WzPDjCCxIHv7vfXWW/HQQw8BCHU2Pjy1Y8cONDQ0MGHC/45EHT/JgUfPqaNlVcRZzLyoy8zMRF1dHfbu3Rs2gYKHbgpa5uaVV17R2N3l5eWakiHJcur4Gkc+nw8ulyvsAVVcXIympiYmYOgYaABrampioo6cOllOHR9+NZvNyMzMNCTqXnjhBRxwwAF47LHH2O8vvfRSvPzyywgGg1JRZ7FYWDL8hx9+iGAwKHXq5syZg//9738A2kMRFouFOcV6Tp1Ys4qKDxN6ou7rr7/GunXrsHXr1qjhVz2njtpks9mkok4Wfq2rq2MPE3rzl4Vf+ePSc+roAWlU1JFoor5mtVp1XRt+O+Xl5WysoLp8VqvVkKgTZ79WVlZqzgkfsqMxi3+APffcc/D7/XA6nZoisXSNjYRfa2trcdhhh2HDhg3Iy8sLKxHhcDiilmoQixvLSpqQqAPaX2DJdaQQLiFLSwDC+znVEyXoPqVj5n+/fPlyNkOYPxdi+FXc5zPPPKNbq7S6uhputxterxf19fUsV1kMv8py6oDQtdJz6sScOn45Lhqj6d+ozwwbNgxms1lTJYA/HhpXeFGXnZ2tccVEp85o+JXu14qKCpany9Pc3MyOm47tD3/4g+Y7tE2XyxVV1MmcOgDs3Iv75o8NCPWllpYWNvaRqKOxhe4FGruNOHWyFSU+/vhjeDweTJo0qes5dUCoE7/44ovYvXs3Nm7ciKqqKnz++ee4/fbb2cCZbG655RaMHz8eM2fOjHm6sIi4lIro1NGNA2jDr3qiTux8hJgkzd9Y/ABGNWosFguam5vZmx3VPJI5dYFAQHoeooVfxVnMfPg1MzMT9fX1LJQxYMCAiOFXaiegFcP19fWoqalh4YBEnTpxzcMLL7wQZ599dlj+BgD2FrRt2zb2sORFnd/vZ6HlAw88EGazWXeiBIkyIDQQRpso0draykIDO3fuZPdCW1sbG+j0nLpnnnkG5557LioqKrBv3z6pqHv88cfZSi4XXHAB2yc5inpOHT/DjLYnE3XUf6n/0+BTXFysK+qi1amjf5c5dS6XSzenjl5yxLIPfH/kRZ3o1PHtJfc5Wvi1pqYmTNTxBal5XnnlFY044Es2UH+T9U8gslMXDAZx4oknapZe44UAtS8zMxOff/45DjroIHb9HQ4H0tLSYLVamSMChMQVf+/J2vTee+/h559/xvDhw3HccccxJw1ozzkTH1biS6VYnkNW0iQjI4PldPn9fjQ0NKBfv36wWCwoLi6WOnVitEJsQ01NjeZ3YviV/7446Y3OBe/U2Wy2sD6yZcsW3Rxiuj5ut5utyQwgLPxKOXV8+BXQCnA6x3qzX+ne5Pu+eB28Xi/69+9v2KmzWq1sMpte+FUUHJT2QPcUQX2eXHT+PFKUSNwWRUwIOhfk1NHLIz1rxe+SU0fjJQBWioVHNlFCnLRE9y0dH4m6pqYmtu6sjGjh17feegunn346Bg8e3PVE3ezZs1FUVIR58+bh/vvvR2lpKc455xyceOKJmkEumaxatQolJSX45ptvMHToULz55ptJ3b6YU1dUVMT+jU9218upI1HHDxZ8IitBFy8YDKKkpETzoLLb7awzkFiiwUAUdTQoyPKzZLNfeVEnvsHwEyWysrLQ2tqKpUuXIjMzEwcffHDE8Csv6vjvUX4Wb+En06m79NJL8cwzz0gfmnTDtLS0sLI0oqgrLi5ms5S8Xm9YTh05O/SwBNoLEEeChCwQEvRVVVWYNGkSzjnnHAChKe38NaPtW61WTJs2DXfffTeA0GLo5eXlYaKuoaGBHdM555yD22+/HWeccYauqCOn7v3338e//vUv9jmtKEGI5T/IqSO3k0Qdn69Fgj1VTp0o6mROHQ28ffr00XXqgHZRZ8Sp8/l8LKcHCPUJmQj805/+pDmnMlEnOzZALur++9//oqmpCatWrcLKlSvxyy+/YOnSpZg3bx5LoQDaRV1GRgYmTpyIo48+mvVfEgkOhwM1NTXs7+KLtuz433jjDRx99NFYvXo1Tj31VABaQSHOZAXC+xtNKCNkJU14p87v96O+vh4ejwcFBQVh4Ve6P2tqajQlT/hrSyV2jDp1fr9f01dloo53KhcvXoxly5Zhy5YtqKmpkUZHaIyl39P+qfQGzeytr68PC7/S50Zy6mgmM39s4rqxQOj6Dx482LBTl5OTA5PJFDH8mpaWpnnJLS4uhtvtDnPO6H6lGfL89SSRS+PI888/zyIPPLxTR/unF0mZU0fGC+/UyWq+yZw6uv50Xa1WK5xOJ3vxz8/PR1NTEzsfekXoqY9bLJYwR3vDhg1YvXo1pk6digEDBmD79u2aFzm6Nh1ap45n0aJFePLJJ7FhwwZcccUVcLvdmDdvHq644gocf/zxmvVUk8Xy5cvZKgInn3wyli1bltTt0xsKrU3Iq/xo4VfKx/B4PJoHtqyUAZ9wSW+1wWCQPXxFUSc6dYFAgE2bpu2I6Dl1NDWdwnZ8zg8ViCUxu2DBAowePVoa+uD3u3PnTjaQiQ/Rmpoadj6SlVNHoo5uXj2njgYfEiUtLS2amXTFxcVM3PKiTi/8CoTekKOJOj58uWHDBgSDQcyaNQuPP/44gND54q8Z7Y9E2YABA2C1WrF27dowp46SeZubm2EymWC323Hffffh3XffjejU2e12nHjiiZg1axYefPBBtj/ZAEICxOPxwGq1sn5YXFzMHFer1ap5WCbi1OlNlOAnH4lOnRh+NZlMGD58uMap4+vUASGRaFTUeb1euN1ujVMnirpgMIjKykrNPc6nb5BDatSpKy0txWmnnYaPPvqIFdfdsGEDnnjiCdx7773S8Cvdv16vl4lbuqbi/0U35aOPPsJTTz2lafvHH3/McqF50QVonbpoa7Ly97ispIks/OpyudCrVy9p+DUzMxNVVVXYvXs3+5wfa8RkdkpdANpnXIqTPvi+Sn3e5XIxwcCLunvuuQf/93//hx07djDHXYR36oB2ge90OpGRkcHaUVtbi7q6ujBRByBM1Mly6njhSX1PlkfmcDgwZMgQrFixQpOHSP2BfkN5kvQSJwu/8i8E9Huv14tgMMjy+3ioz/Nlj3r37o28vDyWB0rbufTSS3H88cdL20/nh15myI2ViToaH+j80/kSkU2UEF+6KPxKL88FBQWaFW2oz4qQSKNxLhAIsEjRBx98AKfTicmTJ2PAgAFobW1lz3agve92mlO3du1aXHDBBWEJ93PmzMHjjz+O6dOn4x//+EdS91lVVcUurs/nkz5c6Q2M/88olFNHaxPyoq6uro4p80jhV/GtXCbq6AaltwCacQNAI+qoQ4lOHX2XbkLZMYpvsbQc08EHH4yFCxfilFNO0Wyjvr6ebfekk05CXl4eNm3axERdJKdu7969LEdPJuroRqCSJvzMRyOIy4TRdY8k6jZv3owjjzwSJpOJiToxp66kpEQq6vRmvwLGnToAGDhwIKuplZ2djfz8fFgsFibq6N6hBzOJMovFgsGDB+PXX3/VTJTg6zbR3/k1lyM5dfyb/P/93/+htbWVlUnRw2q1wuv1sofRnj172LZ4EcFfz3idOtlECRIR9J1Ioi47O5s5dbJlwmh70cKvS5cuxaZNm9C7d2+4XK6I4Ve+Pp9IVVUVe0kzKuro3NXX1+Ojjz5iS0F9/fXX2Lt3rzT8Sn3H4/FoRAQQXdQ9++yz+Mtf/sLGtfXr16OlpQUTJkwAEFnU8cctE3V8P6WXgObmZtTW1mLbtm0aUUdjDy/qxPBrRkYGKisrNaKO7+eiqKNrzRNJ1NG1cLvdyM7OhslkwgEHHMB+U1VVhWXLlrEH9N69e/Hhhx9qtq8n6hwOB7tOQHuZKDH8St8FIufUyUQdv33Cbrfj4osvxt69e/Hiiy8CCN2r9JLIh1+PO+44tlKJ6NRRHiW/Xf739AzhkTl148ePx969ezUTvyJB54IiYEB7mRqZqKutrUUgEND8W0NDA7Zt24affvqJfSabKCHeiyTqSHT169dP49RRW0TEnDr+sx07dqB///5wuVysMsjatWvZbzs9/Mo/TEQuu+wyvPPOO7j99tuTus/MzEx281ZVVWli58QDDzwAn8/H/iNnygjk1NGAxIdfeatVT9TJHk5005EzBshFHX3GP/TIIRGXuaFOIis5QfCDLg0uXq8XJpMJ55xzjkYcp6Wlob6+nv3G5XKxXK0jjjhCmhvQ1tamsaxJ1PGh5fr6etTW1mre9mjwoTf577//XlrugUfm1LlcLtb5nU6nVNQNHToUffr0kYo60anLyspi4RG94sP0vVhEHZ03mkRTWFjIRB25LaJTBwBDhw7Ft99+i7a2No1Tx+9bHNiiOXU8JCijiTpqG9AefrXZbPB4PKz/Au3XKBanjq4ZH3494YQT2GLo9fX1moXG+RQIUdTl5eUxQVBXVwe32x0m6sipI3Ejc1umTZuGo446Ctdcc01Up47vt6JgijWnjq8XSOHII488EkB7iY89e/aw+7Z3795wOp1sjKLPaVv8/8XwK72k1NbWorq6GosXL8asWbNY/6d7QhR1dF7F8KtM1PH9lA+/nnvuuairq8PFF1/MXjToPLpcLhQWFkpnvxp16uh3ei/8AFieoF5OXZ8+fbBu3TpMmDCBXXMqKku8/PLLmDJlCuv3n376KUpKSgyJOnGc4e9BI+FX3k2kF1HZs9DhcGDYsGE499xzmTvv9/s1L8NkIlx++eWYM2cOaxefU8f3Lb6NkUQdTV6jGfN1dXW6Lxt68OM7tYFeJGU5dXyhbaKhoQF//etf2fMM0Dp1r732GluXl4fu28bGRlgsFrb6Cf/SKsutFnPqgPZ+ykdd+vTpg+zsbFb5AugCoi4ap5xyCr788sukbvOoo47Cp59+CgD45JNPpEuTzZ49mxVRra6u1uR7RYNKY7z77rswmUwYM2YMgPB8Bb2SJjKnjm46Wn4FiCzqZOFXQnTqZMVhxe8C7Z2Pf0DTDUZtbmhoX+PSZrNh1qxZOOaYYzB+/Hhp+FXM48vOzmYTPOgYA4EAyxsE5KLutNNOw/PPPx/WfmLdunWanDoKefHhBtlDc9u2bTjggAMwYMAAVsWcHrJ8+JWEVU5Ojqa4Kh2DGH41MlGCF3X8+QFCazbu3LkTdXV1bCYyXRd+PyNGjMDPP//M9gmEBit+36Koo99Hc+p4aAAUZ0MD7blMBC/qfD6fpqI7PdxicerowZGRkcHum6VLl7LUjUjhV74/klPcu3dvFBcXo6amBr1799aUNOHb5nA4YLFYwkRdIBDAnj17cMEFF8DhcER16kRRx7/oklOnl1MXDAY1fZZ/GaRUj+HDh2t+Q247tWfbtm048cQT2d+JaE6dx+NhyysBwPXXX49nn30WK1euRFpaGgunxRN+pZdofvyh8GtzczMWL16MO++8EyNGjNDM0KVzECn8GggEsHnzZk3YlhCdukiiTuYq8+FXIJS0TzmslI7DQzP+GxoaUFpaismTJ2PZsmVSUWe32zXjFTl1svAr79S1trZGFXU0tvKT+gg6T5MmTcL27dvZDHB+vVSHwxE2NojhVzEXUwzfysKv1D4qoUP15vjfRxN1MqeOjlfm1NH96HQ6EQwGMWfOHDQ2NqKyshK//fabZsIcEKqhOHPmTNxwww26Th0QejbQ/vjIm6yPiSVNgPaxr7y8nF0nk8mEww47TOMgdnlRBwCjRo1K6vZGjhyJgoICjB8/HmvXrsXvf//7sO/Y7XZ4vV7Nf0YZP348rFYrbrnlFkyaNAnDhg0DEN5p+Te8QCCAp556CmVlZVJRV1ZWhvT0dM3bDF08eihGEnV8x48m6r799ltpDSeZqKMOy7eZF3UDBgzA0qVLkZOTo3HqKOQkPrxpNht9jz8H9GYqijrKe6Hz+eqrr+KBBx5gv1uxYgWGDh2Kn376ic30XbBgAT755JMwUVdZWYkpU6agoqICgUAAlZWVyMnJwUknnYSPP/4YtbW1LKeOL2lCrgR/fSKFXymn7q233sJ7770HGXRuqEQD/Q4IPfQ2bdqE1tZW5t7KnLqJEycyZ4AvEsoPJOLbKtV8MuLUEdS/KM+Fh8KvtG3KqbPb7fD5fBqnjkppxOLUVVVVwWKxaHLq/H4/vv32W+b08k6d3kQJyoHr06cPAoEA/H4/evfuzSYI0YBMbbNYLGFFnvlt0vdjcer4MiKAVtTJXjpILBD8uEETT3JycsJmqfP3cF5eHhOSspwnPVFHEQWCXnq+++475OfnM8EnE3VizTn+31966SVW85OHfkO5l3wuF38eSdTt27dPE+ai8CsQyjGkyV58G+ja8itRiMhEHd1jfPiVP49UloReLGks2Lp1K4CQ0OZrYaanp7Nzq+fU8YXDAf2cOqD95ZnaTG4pJeLTPajn1PH/VllZqQm/Op1OtiYwjxh+1XPqqP16Th3QLnIqKip0+6Uespw6embKRB3ti9pF911tbS2am5uxbds2AO39hiI4NNbw0EQJIHSfUVuiiTpZ+FXm1AHonqIuFTz66KP45ptvMH/+fF33IV4OPPBAXH311WhubsYll1zCBkrexbBYLCgpKWHlPtauXYvrrrsOpaWl0ll8VDCUBlR+uRveqaMLT6KutLQUtbW1TFgC4aKOiuFS3trYsWPxxhtvaL4LtL8tyZw6PmTMuyk8NpuNtfn888/HddddxwZdunkzMzNjFnU0PZwG1I8//hj/+c9/2O9o4GxoaGA5ROeddx6+++47Tb4MteHDDz/EF198wXIrMjMzcd5556GxsRHvvPOOJvxaWlqKxsbGMFGXlpYGu90Os9msG371+/2455578Mwzz0AGnRsSSuRUACFRR3kUkUTdEUccwc4V79TxYloc2Ggb8Th1tDyQuC0aTAcMGMBEHTl1vKgDQi8/sTp1tFoELzLKy8uxceNGwxMlSGjyqRbkgpaWljIRQW4LCUnRqaNt0jlxu92akg6RnDpxJnG08Cv9nUQZ79TRLD6Hw4FBgwZpxh/+HuaJ5NSJ4Vd6mIt8//33mlnxdDx8nlqk8OuQIUM0LzIkDqmkCQkF2rde+DUYDLIHMNDu1AGhQrp0bSPl1NEDlz93oqgLBoNhM+v5fkjnj6Itffr0YSWwqH1NTU2avKgtW7awPktt4EUd7+ZGc+qA9rGE2s7Phne5XCgpKYHb7ZYKJLp+/Eo4fr8fWVlZuPjiizFu3LiwfkvtovWf9cKvFouFPdP0cup4qqqqwvplNPHCh19dLhfMZnNEUUfQWEZpOXQOqbQL9Rt6qZItM0n3LRAa10RRp1eEXhZ+lTl1QMik2rp1a1j92v1O1KWau+++G/fffz/OPvtspKWlITs7W5Nbl5eXh0WLFmHEiBEIBoOacJjMqSNRRwNqZmamoZw6Cr3yS62Joo6f6r9r1y4EAgEmhGJ16vjwKy8uAGgmSqxZswY7duwIW4dPdOr4m2T37t3suHhRJ+bKUSI1wZcvIFEng3848zl6mZmZKCoqwoQJE7Bw4UKNqKNJKDTo08DEDzh64VcA+PXXX3Vn8VLIglwW/kbu168fO3f0cBInSgAh4XHCCSdo9ikO3EZFXbxOHYk3ADjkkEPQ2NiIsrIy9rk4qOXm5jJBLaLn1NH2eYcECM105526SCtKyEQd9cvS0lK4XC6NqNATdfzEDUDrfpFTFwwG8dFHH6GtrS3MqeOFs+jUiU6AuNwT/536+noEAgHY7XZcdtlluOuuu1gf1Is8RMqpE506h8PBjpFSBOx2O6qrqzWijn5nNPxKS9ERFOEgp47OP11TvfAroF1CiXfqduzYwe6baDl1JpOJfZdvpywk39DQALPZrLmGdPw0Tr/44ov4+OOPAbS/qDY2NmLt2rUYOnQo7rjjDtx1110RRR0vgCLl1NFYwIu6YDCIsrIydl6pjprX6w0bs/ntkiCuqKhgs19ffPFFHHzwwVKnjtpYUlKiWTKP3y7fh/Rmv/IEg8Gwl4xYwq9UaoWuhSynDgidN7r3XS4XWltb2XWg0i5ifnhWVpbu7Fc6Pj78mp6erluEPppTxz8LDjvsMABgBeepX8qupYgSdTGQkZGB2bNns46+fPlyzRpzfGeqqanRiDrKn+EFDa3XyIs6eiBRB6UCrkC7U0cdhp+BK4o6clJqampYAjGJQb2JEoSYUyeGX3noIRwMBlmSPw02dANFcupo/UcAbE09PVHHOz16ou6+++7Df//7X/b3cePGIScnB+PGjcN3330XNjt2yJAhmnwwh8PB3vjEZF8aVEnUyWa/AmAh3lWrVuGf//wngNB1vP3227Fv3z54vV4mGPkbmYQaf+5kTh0QqkFXWFjIzl28oi6SU0fboJxP/lh5p+6QQw4BECqvw4s9nvz8fASDQWkIln8RoZeEqqoq9rDjRV2/fv3www8/SJ06WfiVRF1GRga7P+lhvm/fPtjtdrjdbo1TFyn8SueZv/c8Hg/8fj9++eUXnHrqqbjjjjs0ol50PPiSJnrlWoD20iROpzOsLIzD4cAFF1yAq6++mvUlPaeOf/BGy6njw6933HEHHnvsMSbuZE6dOFFCL/wqijq6Z8mpFp06MfzqdrvZcfL5xLxTFwwGw0Tdb7/9xrbBh18zMjI054tPISGoTXRsvJNG7ePz1vgJWrStX3/9FcOGDcOcOXMwcuRI5vTLwq90fvn+wt/XolPH5y63tLSgtLSUiSin04nW1lZdUSc6dRR+5ceCBx54AJdffrnmdyQ2Vq5cqevU8esLG3Hq+M/imSgBhJ7NkXLqgNB9T5PAqI/TWE+iThwfW1tbI+bUiU6dx+PRTJj7+eefceWVV7JtAdqcuvLyclRVVaGyslITfiVHkQwGv98fVtFADyXqEmDQoEGa/C26AEBIdPCibseOHWFv5XRTyJy64uJilhBLnUoUdfxC8OLs11hEHYkZgg+/er1e9hYHhIs6Ejg1NTWor69HXV0dE2S826Qn6nbt2sWO32QysSLP4koRkZw6PowyceJEzcSTww47DKWlpTj99NPx448/snCzWPKEz6mj8yu+QfNOXXNzePFhXqBVVVVh/vz5uP7661FZWYkffvgBDzzwAL744gt4vV6kp6fDbrdrfsM7r/3790daWho7h+LAPH36dOzcuZPd5Klw6goLCzFv3jxWm4w/z7yoO/jggwGErgnlrYrQQ1x0MD/44AOWWM47dXxVfRJv6enpGDRoEEpLS6U5dbKJEnR8JpMprA4j9X2aDQsYd+po0KWFx/1+Pzu2Bx98EHv37tU8eOjPZrPZcPiVzhn/sihbT5O+ZyT8qufU8S8HdIwnnHACbrzxRiZgI4k6veLDvKjjj4PaTCVNRKdOFn6le0UUdfxxU2kgegk85JBDWMkO6h/l5eXIzMzUzPitq6vDgQceiM8//5xti9rE90XxPJIo4CepEBR+HTp0KPuM+otM1Ikz3oFQf+FfJvlzw4+HTU1NKC0t1bi71B6jTp04Fpx55pkYMWKE5ndUT27FihXSiRK0vCD1oUg5dbL2GA2/8k4dEBqrySGVrf0KaFdKot/RNdZz6mi2OQ8v6sScOq/XqxF1n376KZ577jn2jKHf0zW55JJLcM4552hqywJgRZtLS0tx991343//+5+h0CugRF3C8Cf6tddew6233gqgXdT5fD7cdtttrAyCTNTRW3JGRgaz0jdt2sSWRiGHikQdDXS8qNNz6qqrq6WijjpVTU1NWHiLd+pGjhyJH374IapTR4KWL1NCDwESdfwDgNi4caMmNEYFiGVOHVWGB0JvyHQMvFPHh1R4xowZw2ZQAtAkBFN4mZwivi2AvlOnF34FQuKlrKwMbW1t+PTTT9k1W79+PSsfk5eXFzYz7aijjgIQEnXr169nMxj5/RD8LEVe1JnN5phEXaT80wsvvBBerxdOp1Mj6vjZr+Tk7Nu3T9epowFVTFK//PLL8fTTT7P2RQq/9urVCz6fD5WVlZpCokacOgBhK6aQqLPb7ayfGc2pI1EXDAbD3voBYP78+ejfvz/MZrPGeSkoKIhapy6SqONn6YrnNlr41WQysWsthrtEp85kMrH9GxV1fPg1GAziX//6F3NPRKfu8MMPR1FRERMddF+LTh09HGlWp8PhYGEuoP0BSX/Py8tjbdi5cydaWlpYPTG6hjt27ECfPn00425xcTG2bt3KZpUDwNtvv4133nlH0xcJUdTxhZ6JXbt2Yd++fZrcZzoWo6JOdk5kTh1FSHinjtpD4yQ/XvAvHE6nU+rUyTCZTBg9ejR+/PFH6UQJCr/S+TESfuXbG89ECSAkTvVEHX2X7798G7KysjRF6Hn8/tDSY3zNXZvNpgkv8/mVHo8HeXl5TCSSiVBWVqZZUYLO85YtW/DNN9+wdvDk5uaitLQUjzzyCBYtWqREXUfBd77x48ezBZ2Li4tRUVGB3NxcPPDAA+jbty8TdZSEKTp1GRkZaG1txbZt21BbW8tqUfFv5zabjYmiaKKOpp+TqNuxYwdbnYI6Nb9UEJGWlsY67jHHHIM9e/YwN0VvogSJOnLqHA4HewukYqIyp66trU3jrEUSdUD722lxcTHGjx8PoF3ImUymsBmBBIUIv/32W+YIAu01k0RRR3kagH5OnRh+9fl8zDlrampi5/2DDz5gDyf+7fbQQw8NK03xn//8B9dccw169+6NgQMHhuXR6MG3jZ9mzyOKukAggE2bNhmq19irVy9Nbh3vkFACfFtbW8yirqamBmVlZTCbzazfiU4d9dWCggL4fD7m0uo5dXqijo6TBveKigqpqJOFX/WcOqD9IUwvTW63G9u3b0d2dja7FnwbopU0SbZTx7tworOrl1OXk5PD+hzlDeuJOnKt+fDrTz/9hKuvvhqLFi1i3+fHypNOOgnbtm3TJI3z51eWUwe0u+EkFqiN1Ffy8vJYH+Lr1gGhMaStrQ1bt25F//792TFnZmYyccZHV/72t7/hoYceiujUkWilc89fAxKTfB1SABqnzmazsXFSXAlEPCeRwq90rHxOHRASdTRG0WdWq1Uj8CgHjF40onH44YdHdOr4yTZGw6+xzn6ldvKT8WQTWvht8c8Gvg1FRUWsnzU3N2sEHDl1vOCKFn696KKLsHTpUixZsoRNnigtLUVLSwvS0tI0L1d8zrz4gp+bm4stW7ZoInVGUKIuQcScB4/HA7fbzZw6vjO43W42DR6QT5QAQuU6gNAsR6B9IKcJBQSJOsq5oaW8gPDwq8lkQl1dHQv9RBJ1QGgA79WrF5vRRXUFZeFXvm4eOXUej0cjVmXhVxJNvFiIJurIqSguLsZxxx2Hzz//HFOmTAEQerjpiZ/MzEy4XC788ssvbGYwoA2/8mFo/juRRB2/P7PZrAnHb9q0CUBo5i7/sKDjfv/99/HnP/9Z084+ffrgqaeeYgMLne9ooo4f5HJycqRvw7L1BisrK9k1jsT//vc/3HLLLZptnX766Xj00UeRmZnJ2hcppw7Qijqa3Uznnn5PoUyZU0euCv85L+osFktUUZednQ2r1YpgMBj2omTUqeMnSNFDeOfOnTCbzayGZWZmJhv0qQ29e/eOWtKE/t6vXz9YrVaNk87n1PHn1ul06vYRp9OJtLQ06UxKvZw6XsBFc+pIXNDs17a2NraiAl+PjV+lhG8/327qtxaLBSaTCZWVlaxEB6Av6vi6aGL0gMfv90tFHY0rYp3JiooKTX6nePwlJSVIT0+XTlahbYmRELfbzcp4mEwm9O/fHzabDYMGDQIQLs7FkKQs/Erjr0zU0TkSJ6EQFC6M5toTo0ePxr59+1h+sNhWejEQx0PCiFNnNPzKO3Xitgh6dug5dX379mUVHviyLkC7U6cn6vjwKzl1Z511FkaMGIGHHnqIibqysjLN80J2r8pEHe8cK1HXQfAnmrd5S0pKwqYp083NL1Ukhl+BkKjzeDzsJhedOtoXdbScnBwEg0G0tbXpijrKe9q5cyeb5UQlT2Q32Y8//oiLL74YOTk5GDx4ML744gu2XR6bzaYpM9DQ0MCWbOPFqijqLBYLOzexOnWtra0oLS1FQUEBJk6cyPajF3oFwHKqSkpKwgYAqoFGOXX8tQDak7n5QVXm1AGhAZLeCCnMU1ZWxpZzA/TDZDJidercbjcee+wxXHPNNWHf4UXd3//+d7z22muaQtqRKCoq0vRlq9WKfv364eabb4bJZGLni+rUAdC88dLDhs+p450GXhTq5dSRU0cPS1mduoyMDLS1tbFwHi/qBg4cCIcjtOA59Rl6UYo1/Mo7FHS8lB9KeUiZmZm49NJLccYZZ2hCwGJOXUtLi0ZsU1suuOACLF26NKpTN2nSJMyYMQN6mEwmeDweadI9X3ePPh8wYIAml+rII4/EsGHDcNBBB7HP6Hr99ttvrPI9zWQFwIpE86KO3x//4JU5deRm0AoxBI15eqKOwq+iU0djbHl5Ofbt26cRdfy9Loo6SmSP5NTxIsyoqOO3MXToUFRVVemKOj2njhd1JGDpBVQWfuVni/NkZWUZDr8CwIQJE9g2xbHsoosuwo033ohp06Zh/vz5YUuF8m3jSWT2K9B+/S0WS9iYTIWF+f7L9yl6aamurkZLSwv69esHl8sFh8Mhder0SpoEAgFWvHvKlClYvXq1RtRR3jZtQ0QWfqVSK4ASdR0GXVC+M1Hlc1HUUUcgUUfh1wEDBsDtdrOQzooVKzB8+HDWwcWcOqB9pmjfvn2ZKGpubtYVdZSrRaKO6gk1NzdLbzI+/HLkkUcy10nm1AHaMgM7d+5EVlYWS1rOzs4OK2nidrvZgBCrqNu7dy+CwSB786L2RxJ1QLuzKRYnDgaDCAQCGuHGf8dkMiEnJydqSRMgNKhdffXVAEI3OeXTUBFXILWizuVyYfLkyWEJzrSNlpYWlJeX46abbsKcOXMwbNgww+3h+7o4C4seRLxTxz8InU4ny4cjeFHHO3ViTh3dN5RTR/BOHc2spX3+/PPPbJYpncMZM2bgp59+gsViYcesF3796aefcO2117JUCTH8Kjv2nTt3wuv1slB/ZmYmbrzxRpxzzjkaUVdbW4uGhgbNw4EXkdQWn8+HI444QvNglDl1J5xwAl544YWwdvFQXiQhOmZpaWksb+2xxx7Dyy+/zL47aNAgrFmzRnM9TSYT7HY77r//fsycORMAWPgVAH744QcAIafLbDaz+0T20JY5dUCo7+/du1dzL9J4SvXtqN9Q28ipa2lp0Th1lA9KuU79+/cPi5AA7UKMnxVaWVkZMaeOPy/8vUT5VHqijn9I87OO9cKvMqeO/qwXfvX5fOz8yvZLxxpL+NXn8+G0007T7IeYOHEizj33XBQUFODcc8+V/t5qtbIxhH8xAxKb/cr/nefMM8/EggULMG3aNPaZ6NQB7fUj8/LyUFFRgfHjxzOnzuPxsD5stVoxbNgwjBw5En379tW0la5/3759sWvXLhbWp/CrnlMnqw+Zm5vLBCl/zNFQoi5BZFPP9UQd3VQNDQ0IBAIs0XTw4MGoq6tjouPHH3/E8OHD2TZlTh29Za5atQqzZs0C0L50FdAu6ioqKrB3716MHj0aZrOZiTqbzcY6luxG4OHLN8hy6oBQwie1d/v27cjKysIpp5yCNWvWwOfzhTl1/PIusYRf582bF5bwTsno0UQd3bz8G5HoGNAxiANrTk5O2ESJtra2sJvzz3/+My655BL2d8qZi1fURbLreXinLtK2Wlpa2IMNgKHQq7gPWVvofOmJOsod4kWduDIAfa+uro65bvRv06dPx8SJE6X1FOkaUqkKADjuuOPwj3/8QyPqrFYrm3wkOnVi+HXv3r34xz/+oVnZhT8HPJFEHUFtoLBtfX09y6mjvxO0VjSF//kXB5lTZwSv1yt16vjP0tPT2d+NlE6gNtA5ovArQa4q31bxmgHa/sR/breHVnfh71e+uC7vDNJsVofDocmpI/eLwv9UDFgMvxKU+0rfpyhEpNmveqJOz6nTc8zoe0adOr6kyK5du5gLzf/GiFNHOXVGw68A8Mc//hFA+LrGRnE6Q8X4xTbFO/uVr2YgYjabMX36dE2f5r9Hz5OqqiqWCmK329k4T5OA+PFv6NChWLlyJXP0xJeWvn37oq2tjUWwKPxK3xPPs2zVD3GSiRJ1HUQkUScWFOQHcHIpZOUGKisrMWzYsDBRxycV081E9ZEAuVNXWlqKQCCAoqIiDBo0CL/88gsTdWJH1IMXS3pO3datW5m9TaLObDazh6go6igE5nA4NAmsoqjjK+kDoXV9+fNMFBQUsAFcDxJ1olPHH5ss/Apoi0za7XaNCBDhf0tOHR8KikXUURhKth8ecZCTwYs6k8mExx57DNddd53hthgVdXR8/MPJbrdHFHW8U0chC/48LliwAEceeaTmM/EBxq9dWVdXh4qKCrS0tEgHQ17UyWa/EuRQNzY2wmw2a479rrvuwimnnMLWdi0pKYHH48GwYcNgNps19z454/zkJt6p4/PqaA1Pgr/2FFaO5mTIjlfm1PGf9e/f39CkGULsB7xTN2LECBx44IFhZTIihV/F0Bl9LnPqSBTQ/nJzc9mEBD6n7thjj0VaWhpz6tatWwebzYbCwkJp+LW1tRVpaWnIyspibaytrdXNqaurq5OKOpvNpuvUUQFumtlO8O4ajyh0aH9UQgMIvVDk5uZqViGh9ogTJWROHa2MYVTUnXDCCVi/fj1OPfVUQ98XIVEer1Onl1MX7VlG8N+jPk+5rtSnSNTR/ci72jxpaWn497//DaC9vJN4H0Vy6jIzM6Xr84prbhu95yM/KRRRoTCETNTV1dWFTZQAQkKFhBr/gOdvtoMOOkgj6mw2m2bWDD9Q0GcyUUccccQRGDduHJYsWYLDDz9cIxQiCQEgsqijv5eWlmLs2LH45ZdfUFxcHPbmYbPZNEKNwq9U9oGQOXU0YxcIVWsvKirCX/7yF42oW7ZsmfRth0cv/ErwOXVigu+DDz7IbuZoos7lcsFisaC1tRUDBw5kf/b5fKiurg6bMRYN3lXVIxanbt26dejfvz9uvPHGmNohOgU8svArFWMlByAzM9NQTh2dW9mEC5lTxwsl/rrRviKJOnK/eVHH16ratGkTxo0bx5bm4t/27777bvZnKh/k9Xrhcrnw0UcfsYlOtB+Px6N5+45H1PHbiwWv16txA2UPz6+//lqaA6WHmH/GO2ennnoqKx8kE3Wy8Ks4DtHv+PuaF3Xnnnsuxo4dCwC45ZZbcP7557PttbS0YPfu3TjnnHPw0ksvwePx4N1338W6detQVFQEs9mMU045BX//+9816+xS2+666y5s2rSJpVKIfVFW+ggAK1eUn5/PSuaI1+/+++/HpZdeirPOOkvzOd27svCryWTSzPQ1m82suDAQcur4maa8qKPrHimnjiYfxdKv6IU9HpxOp0bExzr7la9dCcQu6mw2G8xmMwKBgCb8yk/astvtKC8v1zh19BwWueiii3DhhReyv/PRrbS0NJSVlWlSmvgx9OGHH9akIBH8qit1dXXKqetIxBpMNMOttbVV16mjPDnRzSBEUSfmU/C2N/2bnqgbOXIk8vLyMG7cOKxevZrVEzMafuWn5MsmShB8mQeZqBOduosvvhi33Xab5ntUq4/ecoPBICubAIRKthx22GG49NJLNTdXr169onZ6mVMnOgZ6Tt3o0aMxcuRIAFpRJxNbJpNJk7hNoRxy7WJx6mh/seTU6cE7dfRGGQuRZuLyEyU8Hg9MJpOmlIfdHlrVIZpTx7dLvAYApDl1/MOF/40RUScLv/74448AQueUd+oi3Sdi8dmTTjopLPyanp6uEXVUpw6IXdTF6tT17dtXuswXvx2bzRaTqBOhgqlASNTRGGXUqdMrGqsXfn344Ydx5plnAgiFSymP1GazsVI5ffr0wcyZM5mLv2HDBhYCz8nJwQ033BDWPxwOByZNmoTTTz+dfSb2Rf5FlO+TEydOxKxZs1hBa9n9OGLECJx99tlh4iA9PR1paWlhYTe6j+j7/KxS6m+7d+/W/E4WfqXrK3PqKKfTqFOXKLRakejUGZ0ocfjhh+M///kPS2+JVdTx+XxkWhhx6iKNwyaTiV2jjIwMNj4NGDAgbKIEv52xY8di4sSJYduj63nooYey9hhBibokQNO4icmTJ7M/RxN1ek5dUVGRYVGn59SRzX/SSScBCC2ZFQwG8dVXX8UdfhUHIr7NvKgT7WSxTp3b7cZJJ52ECy64QPM9vjwEwa89C2jDrrFgJPyql1MnHkskp47/fU5ODhN1lGsVadsyLr30UulNzxNrTh2/eoVRyJWWDWy8U2c2m1m4jxd1RnLqTj755LBtyvYDaPOzKFTBX1val2wwFCdKUM6cxWLB5ZdfDofDoZkgRE6dHrIVBXgcDgfS09Ph8/k0eTWynLpff/1VE75JhlP3xBNPsJUVqD38/5OB2+3G2LFj8eabb2LcuHG6oi4tLU3Th+J16vSw2WxhNeLo+yUlJWFhLfFcyvYru2ep3TRRBAgVOX/66acN3Y8iTqcTS5cuxe9+97uwz8U20nmg/tbS0iJdMYEXdZS+I3PqiFj7Vbw4nU5N+DXWnDqz2YypU6dqRBQQPerEw+dlpqena0oNURvEnLpoL9cEv4LN0KFDUVpaqsmpS0tLYy8GevUllajrRERRl5uby1wdmYC44447mJjRE3V8bg+FX4F2AScLv/ITJSwWC4499lgcc8wxuOGGGwCE3hjy8/NRV1cXk6gTB0GeRJw6Gbyoo20kS9RRmI5vm9GcOh6joo5KfZCoGz16NBYsWBCWSxONhx56CMcee2zE71C7o4m6uro6bN26NS6nDgALQYjwOXVAaKDi18KUTZSQhV/5AU52DfjJE/wAS5Nt4nXqCIvFglmzZqGxsRGDBg3CV199hcMPPxxbt2415NTphdYvvfRSzJkzh82kpn2LTl1DQwO++OILnHLKKZo28fChOKPQA4yQ5dTFS8b/r0NJ9eR+//vfw2Qy6Yo6UVToOXXRcur0sFqtLC+TfsvvM5qo413vSC95mzZtQk1NDY455piwfxNLxRhlzJgxYfeX7JyJog7QVhGQOXV0z4jHy6940ZFOnSynLjc3F263WxO+NEKsTh21ga+lSuFX3tmMxakToWMYMmRImFNH2weii7qioiJWwN8IStQlATGnDggtE3T88cdrQkM08G3YsIE5ADJRx+duAfE5dRaLBQUFBVi6dCl7gzOZTCyPatWqVbpvyCKRQjJ8R+vbty97c4ok6sTwEg8NnsXFxUwM1dfXa0SdWKHdKBkZGXjllVc0b8LiLDy9nDoeu93OBImeqMvMzERWVhbS0tLYcWRnZ2P69OkpGTiNhl937dqlySOJZz/RJkoAoYFK5tTxOXWy8CsAXH/99QDkrpdYkJigF4pYRR0/oxzQXs+BAweipKQEK1euxHfffZeQUzdq1Cj8/ve/B9A+WMtE3f/+9z80NTWxgtpA+P3Hh+LiJZlOXb9+/aSzIPVEnfjg1UsDiRZ+1YPq2/FtiEfU8fuTPXj79eunK+Ljcer0cDgcuk4df95pZRdA7tTR8lTiNedd+44SdZSWIjp1GRkZqKmpYe6UUeIRdU6nUyPq9Jw6KsGl90KrB5U7KSoqQnl5OauFSlitVlZKSIbH48HUqVNx/PHHo6CgwPC9qkRdEhCdOiB0o/zvf/8Lu+nFTifLjSOFT+Gu8vJyTbhI/B0v6sji1Rv0b775ZthsNkyaNMmwUxcJvpPn5OSwdsXr1PEhBBJDFKom4nXqAOAPf/iDtHYgtdGIU8fnYOm9uWVkZDBHho4pklBMFKPhVxI6sU7W4PcTKfxK5+/aa6/F9OnTNZMryKmjxHRZ+BUIFUYuLi6WvkxYrVZNTS+CRB1/H0YKv4qzXwlR1BH79u2LKacuEpFE3UcffYQBAwZoCqWKLw7JEGJDhw7F6NGj435BAoAXXngB77zzDvr16yftd7K6aLz7RaQi/EqlSeg689+PViqC/zvtL9aUiXidOhknnnhiWM03ahffVl7UZWZmstw7vr6azKkzm81sjOqo8Otzzz2Hxx9/HC6XKywcz+crGoVWXknEqeNLmgDtJXXIhDCS28xz+OGHY/jw4cjNzUUgEEBpaWnY7G5+aUkRk8mE//znPzjiiCPwyCOP4KqrrjK0XyXqkoDD4TDcmfgHGaB9C6fBjn9LcTgcCAaDLK9NFn4VJ0pE6ngWiwX19fV48cUXkyLqxAHQiKgrKyvTFTi5ubkYNWoUAP31QhMRdSJG69TxGAm/HnnkkWxtWhKn0WbnJoJRp47OZbwPG6Ph1yuuuAKTJ09mrpLFYkHG/1/bmM4dpQHwvwMir+ELhASU2H5KdzBa0y1S+JU45ZRT8PTTTwMI9cFEnDoePvxqsViQk5ODBx98EGvXrsXWrVtxyCGHaAZ6sY8l48F7wAEH4Icffohb3APAJZdcgrPOOgsDBw6U9m2jTl0s4dfc3Fz86U9/wnHHHafbLqvVykq/UBv4a6zn1Mncy0hOXSSS6dRNmTIFDz30kOazaKLu1FNPxbJly5CRkRHVqQPa759Yw/rxkpWVhczMTGloOV5oKUijyESdOFGCxpBYc+oAYNasWfjhhx9YH6yqqgpz6oz2qylTprBrFA0l6pKALPwaDx6PB3PnzsXcuXPZZ7RdeqOmThEp/Bqt45GTZ3T2K6D/9sS/1fA3iThRgvIT/H4/tm/fHrGm3BlnnAGgfUAld4namYi7IGs/HZvNZkPfvn2RkZEhnWJO6Dk7PDfffDOrXUQCpSNEXTSnjoR1vEVDjYZfCQpvmkwmdvzkotTW1rKXlVgGy4yMjLDBe9q0afjggw/CksypDSK8860n6txuN6666irW7kRy6nh4pw4APv30U5SXl2Pu3LmagrKyNgHJndyQDO644w785z//CftcJuouuOAC/OUvf9F8Lxanzmw24+GHH9aUsRHhryfdD/y6s3qijvqiKOpk4c9oJFPUyZCJOt6BtFqtbPk/caKE7FhIJJMY7ihoFZNk0KtXr5jGWK/Xy14YqNyU6NSRCUMOcyzhV3oxo75QW1sbllMX68uCEVSduiRwxRVXxGzPz549G4sXLw77/KKLLtL8XRR1RnLqjD4gY3HqfvvtN2zYsCHsc9p3dna2JjlaPB/k1G3evBnBYFATXhI57bTTcPfdd7OHP4m67Oxs7NmzJyx8kgg0tb2urg5WqxUHHHBAmDMowg+KRs71lClT8M9//jPqiheJQCUzIk1q4duabFHHz34V20XnixyqsrIy9OvXD7W1tSgsLMTWrVtjGix9Pl9YaNZkMmHKlClsWZ20tDT252g5ddFEOlXcT5ZTJ4q6kSNHon///qiqqkJ1dXXYQJ8Kpy6ZZGdnS4unykTd6NGjMXr0aM33YilpYgR+e/y5czgcaGpq0g2/FhYWYvPmzWHRh1jHdto3ENtszFiQiTq9MB4v6jwej1RI3HTTTejTpw+OPPLIFLRWH36yRKK8+eabMTnPjz76KBtHMjIysGbNmjCnjohnogTBL/cprp8dT9+KhhJ1SYCKXsbC/fffj/vvvz/q9/REnWz26/z58/Hxxx8bvkmMTpQAQvlFfI4RQR2fX5ORL9vAf6+5uZkJw0iFK0eNGoW7774b06ZNw4IFC5jIIscrkVpaMpxOpyYUGA0jTh2Px+NhRUxThdlsxpo1ayIKR35ASiT8GqtTR+eLHqY0M5GKc8c6WPp8PlauRyQtLQ0jRoyAz+fDN998w9ogYiT8SmRlZWHz5s1Jy6kjccu3i8I/kUSd0+lEY2Njl3Pq9JCJOhl6EQO6LvGKOvHFxel0oqqqStepozGWP7+HHHIIK48SCx3l1BkZs/jw6+uvvy49nxaLBeedd15yG2mAK6+8Escff3xSthXrjFmxJqZsogThdrvh8/niehnmRZ0spy7ZKFHXwcyfPz+mt4lYnLqFCxcCCJ9YoEcyJ0rQg8rj8UgHDXLqNmzYAK/XG9FRMplMuOuuu9iDm5y6m2++OWJYNF5I1BoVdfygb0TUdRRUVFUPXjjF+3bscDikofh+/frh/vvvD8t14meX8k4d0B5+pbWBjXLhhRdqFroW+fnnn/HEE08kTdTJymKIJOLUAe0PlUjhV6/Xi8bGxi7n1OkRq6iThV+tVmvMfZW2J46zFEYVH8x0HWTh1+uuuy6mpfSIZE6UkME7dYMGDWK1SGXwEyUiRUg6g6KioqjjVkcgK2kiOnV/+ctfwnLijcAvN6fCrz2QWN+GqEOIEyVks2ZjJRmijjopP8U+kqj77bffcNBBBxkqyWA2m+FwOJio69evX0rCA3T8RoUFPwh1VGJxMuAfnvHMMAMQFjojTCYTZs+eHfY579S5XC64XC7m1NXW1sLj8WjKLhjByD3ECwEjxYcJmQtspFwC9Xkj4ZSRI0di+PDhmhebjIwMbNmyBTU1NWEDPbXJ6/Vi7969Pc6pixR+zcrKirl8i55T53A4kJeXF7a9vLw8OBwOVhw8GaK5I3PqZGkxPLxTp5BDoo5filN06goKCiJO4NKD+nVDQ4NmnDv77LMTWmpNjx5xlVesWIEbbrgBZrMZ+fn5mD9/frd62EbCSPiVqlMHAgGcdtppuPzyyw1tO5aJEnrQTUCDzJVXXsmcGB6bzYa2tjasW7cuprdFl8vFRF2qaiiRADDaZ2g5IqB7DZSySTax8te//jWm74t14HJyclj/qKurg8fjQWFhYdInkfB9WvaQJuHEJz+bzWap2KW2RRJTJ5xwAt566y1DrsOgQYOwevVqzWcZGRnYtWsXgsGgbviVhOj+4tT17ds3rodeJFEnc/3y8vJQVVWFLVu2sO8lSmdMlNBDtjSVQktWVhaCwSCCwaBU1CWS9yfWQiXuuuuuuLcZiR4x+7V379745JNP8NVXX2HgwIFYtGhRZzcpaTgcDs16gHoDFn0+YcIENns0GvSwSDRRlRd1xx13HKZOnSr9DgCsW7cu4sxXEbfb3WGizuj2oy3h1FWhASVVDxoZ4kSE3NxcjVOXnp6OhQsX4u67707qfqM5dfn5+ViwYAEmT57MrnukQtJA5Ie91WqVzrw1is/nw969e9mfeahdvBDtDiTq1N1yyy34/PPPY96vXvjV6XTqTrKy2+3svkjG+U11+DU3NxdZWVkRZwETyqmLjjiBAQh36uKF79cdcQ16xFXmLVGr1dqjOq/D4UBBQQELwfTr1096M9tsNunMrkgkI/wKAJMmTcLYsWMjfocG7qqqqphKkrhcLjZRIlWijo4/lnX9iO709psMpy5Wzj//fFavD9A6dRR+jZRfGS90TS0Wi26oefr06QDCV3IRMVLSJFH4sK1eTp1Y4Lmrk+hECT3nNBp6L75HHnlkxPHRaHuNkGqnzmazYc+ePTFNlOhOY1VHw0cKku3UUa3OYDDYIdeg56gfADt27MDixYtxxx13SP+d6qQRRicUdCZOp1NTbHfgwIEoLy8P+x51xFgekMkIvwLA22+/HfU7YgjOKOnp6ay0SaoeZi6XC1arNabcnQMPPBBbtmzpVi8QneHUTZgwARMmTGB/z83Nxfbt2xEIBFBfX59Q8dtIUJ820meS4dQlCi/qooVfu4tTJ1tRQkYss/CNoCfq/v73v0f8XSqculSVNAGMj4dK1EUnklOXlpaWkKFANRIbGxuVqBMpKSmRhvbee+89WCwWnH/++Zg7d67uiXvggQdwzz33pLqZSeX6669nVa0jEY+oS5ZTZwT+pojFTfR6vSzXJZVOXaw322GHHcba1V3oDKdOJCcnBytWrEBdXR2CwaCh2aLxQA/TZIq6jnLqooVfu4tTZ1TU6YVf44W2F+sLg81mQ1paWrfIqYsF6j/d6QW0o4nk1LlcrqSstdzY2KjCryIFBQVYsmRJ2OdtbW0466yzcOedd0ZMwp89ezZuuukm9veampq4FzbvKKgqeDTEWmBGSFZOnRH4gT0Wp87r9aY8/OpyuWLe9rPPPotDDz00qUuWpZquIOoop45eVFIxpR+Izamj7+gNuEYmSiRKpPArP/s11e1IJrQeZzRh4/P58Nhjj+Hkk09O2n6B2Pu5yWTCqFGjkjIjsSuJOuXURYcm0fAzVGlcSMY1dDqdqKysVE6dURYuXIhly5ahtrYWc+bMwVVXXcXyZXjEpO2eBImSWERdssKvRkjEqZNtI5nEI+pycnJw5513pqQ9qaIzwq8iOTk5qKioYEJdOXUhSNzyq7IQ3XX2KwB8+OGHmtniMkwmE2688cak7TNepw4Avv/++6S0IdUTJWJBTZQwRlZWFhoaGqROXaLEmredCD3iKs+YMQMzZszo7GZ0KjabDR6PJ6YHD60BmyqxxEP7MJlMmgW6o9ERos7pdHbIOehsuopTFwgEWJV+5dSFIKfO6/WGTQ7orrNfAeDYY4/t8H3q5dR1JNT/OrMNhMPhgNvtjilCsj+SnZ2NXbt2hYm6ZDl1gBJ1ihiw2Wwxr4lqsVjgdDoTzhcwAr9GbCzLfPEP/VQJr5NOOinpS491RbqKUwcAmzdvBtA9nLrevXtjzpw5SVvOSAaJOpnI7a45dZ1FV3h5Ofroo/HPf/5TsxRVZ2G1WrFx40bk5+d3dlO6NPTyJoZfk+nUqZw6hWFsNlvMpSHiWYInXsSlooxCD32z2Zwy4XXiiSfixBNPTMm2uxJd4WEnirqu4NRFE3Umk0l3Rn2ycLvdSEtLk4pcaheFE7uTU9cZJBJ+TWYbUr3ecyx0p9zfzkJcT1c5dYpOxW63xzyIkVPXEcST8wdol3NSJEZXcOro+m/evFmaP5YsbDYbzGZzUsKvHYHJZILP54vo1LlcLqSlpSmnLgpdIfyq6H50hFOnRJ3CMDfddFPMnW/EiBHYvXt3ilqkJVGnTj3IEqcrOHWZmZkwmUzYvHkzPB5P3GvQRsNkMsHpdCbFqesoMjIypKIuJycHNpsNhYWF+Otf/4pTTz21E1rXfegKTp2i+6GcOkWX4vTTT4/5NxdccAEuuOCCFLQmnHhKrgDKqUsmXcGpS0tLQ3Z2NrZu3ZryHB+Xy9XtRJ0s/FpYWIiqqio4nU7cdtttndCy7kVXeHlRdD9Epy6ZJb9UTp2ixxGvU0fOhRJ1idNVHna0VFiq8ukIo05dVwi/AiG3XS8vtqPSJHoC/fr1g8fjQe/evTu7KYpuhOjUmUwmzZrAiUB5sMqpU/QYVE5d59MVnDog1AfWr1+fspmvRHcLv86cObNT999TGDx4cLdYAlLRtRg0aBDcbrdmXLLb7SqnTqGQ4XA4kJubi6FDh8b0OyXqkkdXcuqA1M18Jbpb+FWhUHQe48aNw759+zQiLj09PSnjlAq/KnocFosFJSUlMSfGK1GXPPLz82G1Wjs9LEVubaqduiuvvBJ9+vSJ+j2LxQKz2axEnUKxnyO6cm+//TYGDBiQ8HaVU6fokcQz01GJuuTRv39/VFVVdVhtQj06yqm78sorDX/XZrMpUadQKDQYXXs9Gh0p6lJTT0ChSBI2mw0Oh0OJuiTR2YIO6DinLhaUqFMoFKlCiTqFgsPr9ao6dT2IjnLqYsFutytRp1AoUkJH5tQpUafo8ni9XuXU9SCUU6dQKPYnlFOnUHAoUdez6IpOnRJ1CoUiVShRp1BwKFHXs6ACu11J1Knwq0KhSBWq+LBCwXHnnXcqUdeD6NOnD1566SVMnjy5s5vCUE6dQqFIFapOnULBcfzxx3d2ExRJxGQyddiaw0ax2WxIS0vr7GYoFIoeiKpTp1AoFB3I7bffjvz8/M5uhkKh6IEUFRUhOzsbhYWFKd+XKRgMBlO+ly5KTU0NfD4fqquru9RMPIVCoVAoFIpYURMlFAqFQqFQKHoAStQpFAqFQqFQ9ACUqFMoFAqFQqHoAShRp1AoFAqFQtEDUKJOoVAoFAqFogewX89+DQaDqK2thcfjgclk6uzmKBQKhUKhUMTNfi3qFAqFQqFQKHoKKvyqUCgUCoVC0QNQok6hUCgUCoWiB6BEnUKhUCgUCkUPQK39qgNNolAoFAqFQqHoCkSb2KlEnQ5lZWXIy8vr7GYoFAqFQqFQAEDUteqVqNPBZrMBAHbu3BnxBCq6FjU1Nejbt6+6bt0Mdd26J+q6dU/Udeu+eDyeiP+uRJ0OZG96vV7V6bsh6rp1T9R1656o69Y9Udet56EmSigUCoVCoVD0AJSoUygUCoVCoegBKFGng91ux1133QW73d7ZTVHEgLpu3RN13bon6rp1T9R167moZcIUCoVCoVAoegDKqVMoFAqFQqHoAShRp1AoFAqFQtEDUKJOoVAoFAqFogegRJ0Ot9xyC8aPH4+ZM2eiubm5s5ujEKitrcWYMWOQnp6ONWvWAADeeOMNHH300Zg4cSJ27twJAFi7di3GjRuHo48+GosXL+7MJisArFixAuPHj8eECRMwbdo0tLS0qOvWDVizZg3Gjh2LCRMmYMqUKairq1PXrRvx+uuvIzc3F4AaJ3s8QUUYK1euDM6cOTMYDAaDf/3rX4Pz58/v5BYpRFpaWoL79u0LXnjhhcHVq1cHm5ubg0ceeWTQ7/cHlyxZErz88suDwWAweOaZZwY3bNgQrK6uDh599NGd3GpFcXFxsL6+PhgMBoOzZ88OLly4UF23bkBzczP789133x18+eWX1XXrJrS1tQV/97vfBUeOHKnGyf0A5dRJWL58OU466SQAwMknn4xly5Z1cosUIhaLhb15AsDGjRsxbNgw2Gw2jB07FqtXrwYAFBcXY9CgQfB6vcjOzkZZWVlnNVkBoKCgAC6XCwBgtVqxYcMGdd26AVarlf25oaEB/fr1U9etm/Daa69h6tSpMJvNapzcD1CiTkJVVRVbOsXn86GioqKTW6SIBn/NAKCtrQ0AEOQq9qhr2XXYsWMHFi9ejHHjxqnr1k347LPPMHLkSHzxxRewWq3qunUD2trasHDhQkyfPh2AGif3B5Sok5CZmYmamhoAoZsgKyurk1ukiAZ/zQAgLS0NAGA2t3dxdS27BjU1NTj//PMxd+5c5OXlqevWTZg0aRJWrVqFqVOn4quvvlLXrRvw6quvYtq0aey6qHGy56NEnYSjjjoKn376KQDgk08+wdixYzu5RYpoDBw4EGvXrkVzczOWLl2KESNGAAiF+zZu3IiamhpUVFQgJyenk1u6f9PW1oaZM2fizjvvxEEHHaSuWzfB7/ezP/t8PqSnp6vr1g1Yu3YtXn75ZZx88snYuHEjnnvuOXXdejhqRQkdbrnlFnz33Xfo168f5s6dC5vN1tlNUgiceuqp+Omnn1BUVIQrr7wSDocDTzzxBBwOB15++WX07dsXa9euxRVXXIG2tjbce++9mDRpUmc3e7/m9ddfxzXXXINDDjkEAHDVVVchGAyq69bF+eCDD/DII4/AbDYjNzcX8+bNw3vvvaeuWzdi9OjR+PHHH7FgwQJ13XowStQpFAqFQqFQ9ABU+FWhUCgUCoWiB6BEnUKhUCgUCkUPQIk6hUKhUCgUih6AEnUKhUKhUCgUPQAl6hQKhUKhUCh6AErUKRQKhUKhUPQAlKhTKBQKhUKh6AEoUadQKBQKhULRA1CiTqFQKBQKhaIHoESdQqFQKBQKRQ9AiTqFQqFQKBSKHsD/A3GfBDhys/9lAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -597,7 +596,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHOCAYAAADEwkAMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnNElEQVR4nO3dd3wUdfoH8M9sb+m9kRCKCEgVRBEVFRuWs+CBgNTT+0kR22E5z3JWbAjeqScgKAr2LmIBFZCidKSFkgDpvWwv8/tjIYJkN213Znfzeb9evAi7z+48QCb5ZOY7zwiiKIogIiIiCgCF3A0QERFR5GCwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBRyd0AEYUWURQBjweiR4TocQPHfxfdnuOPe3+d9rHbc2q9RzzlOQiAUqeFQqs7/rsWCp0WCo0GgiDI/dcmogBhsCAKc6Iowm2xwtXQAHeDGS6zGa4G7y+3ueGkj0883tRjZrgtFohuNyD1MF5BgEKrgVKr8wYNrfaU4KE85Xed9/k/PafQaqGKMkETFwd1XCw08XFQx8RAoVFL+3chIggc6U0UOkRRhLvBDHtZOezlFbCXl8NeVgF7eQUcFRVw1dX/KTh4f5c8DIQJVZQJ6tjjQSMu1hs6ToSPE3+O/+PPSqORR0+I2onBgkgCoijCbTY3hoTGwFBWDkdFRePH9ooKeKw2udvtsAS1+o/AERcLdVycN3jExkCbmgJ9Rjr0GWnQpqRAoeYBX6KmRHywcLvdeOaZZ/DQQw+16fU2mw2jR4/G7t27YTAYkJqaitdeew05OTmBbZTCliiKcFRUwnLkKOzFpaccZTjxsaO8Am6rVe5W28wtilheUYyxSeltfo//lBzB+voalDod+F9uL3TW6QPYocQUCuhSkqHLSIM+PR26zHTo09OgawweyVCoGDyo9dr7PSsURHyw2LZtGyZNmoStW7e26fU2mw2rVq3ClVdeCUEQ8Morr+Dzzz/Ht99+G+BOKZSJoghnTS0sBUdgyT8CS8FRWI94f7cUHIXbYpG7xaA6YLPg+aLDeC23V5vfY4e5HmkaLe7K34t/Z3UL72DRDEGphPZE8MhIhz4jHbr0NOgzvOFDm5zE4EFNau/3rFAQ0cFi9+7dGDFiBJxOJ9LT03Hdddfhsccea9d7/vbbbxg9ejQOHDgQoC4plDjr6mEpOAJrwVFYjhyFJb/AGx6OHIWrrl7u9tpNUKmgijJBZTJCaTRCZTJCZTr+Z4MBgkoFQSFAUCiB478fKCvBpNf/A6fbjZSYWFzatz/uuu56CAoFoFBAUCggKARAqYQgCBCUSuD47401SgVEtwceux3nTrsdC6bdia6JSfDY7HDb7fDY7fDYbN6PTzxm8z7utp143g633QaPzS73P2O7CSoldKkp0KWnHz/qkQZjl1yYunWBvlMmQ0cHFYzvWXKI6GABANOnT0ePHj0wffr0gLzfrbfeioSEBLz00ksBeT+SnstsgfXIieBwxHsU4nh4cFZVy92eT6roKKhjY71hwGiE0nRqMDjlMaMRyhOPN/5uhEKjadO2A7kf5eTk4Msvv0Tv3r3b9HpRFOFxOE4NHjYbnHV1cFTVwFlTA0dVNZzVNXBWV8NRXQNndQ0c1dVwVtXA43C0++8QTIJaDWPnHJi65cLYrQtMXby/6zPSvUGNIlqgv2fJIeJj8W+//YZx48ad9viwYcOwZ8+eJl+zdetWZGVlnfb4U089hby8PLz22msB75MCT3S7Yck/gvo9+1C/dx/q9+5Hw4FDcJRXyN3aKVTRUdAmJkKbnAhNclLjx9rjH2uSE6FNSoRSp5Otx0DuR+0lCAKUxy85ba0Tl+aeGjiOB5Cqajhrak8KJd4wIvWRKtHpRMP+PDTszzvlcYVeB1NuZ2/Y6NYFpq5dYOyaC21KMq9kiSC+9rVwEtFHLFwuF+Li4lBeXg5dO78oP//881i+fDm+//57xMbGBqZBChi33Y6G/QeOh4j9aNi7H/X782S9wkIVZYImyRsKtH8KDN7Hk7yBQS9fYGiJQO5HQPuPWEjN43TBUVUFW1ExbIXFsBYVw1ZYBGthEayFxbAVFUN0uWTrTxVlgrGrN2wYu+bCdPxjTXycbD1R2wR6X5NLRB+xOHbsGKKiotr9H/Tiiy9i2bJlDBUhwllbh/q9+70hYp/3d8uhfO9wJwkpdFoYOnWCITsLhuws6LM7wZCVAW1ysjcwGCJjcWKg9qNwpVCrvFeApCQD/fue9rzo8cBeXnE8dBR5fy8sOh4+imErLglq8HDVN6B263bUbt1+yuOahPjGdRumbl0QfVYvGLvmcv1GCIuUfS3ij1hcffXVOHz4MG688UY89dRTrX6PY8eOISsrC7m5uYiKigIAaLVabNy4MdDt0p+Iogh7aZk3QDSGiP2wFRZJ1oOgVsOQlQl9dhaMOZ2g75QFQ7Y3TGiTkzrEOe9A7EcAMG3aNHz22WcoKSlBYmIiTCZTh1gELbrdpwQPa+EfRzxsRSeChzShWKHXIbp3T8Sc1RsxfXohuk9vb2CikBCofU1uER0sKHyIoghbYRFqt+/yHo3Y6w0TzuqaoG9bUCqhz8yAPjsLhk7eow+GnGwYsrOgS03xXuVAFCSi2w3rsSI0HDiIhryDMB84hIYDB2E5nC9J4NCmJiPmrN6I7tMbMX17I7rnmSF/eo5CG4MFyUJ0u9GQdxA1m7ehZus21GzZDntpWVC3qYqORlSP7jDm5sCQ06nxyIMuPZ1TFCnkeBxOWI4c8QaNvINoOHAQ5rxDsBw9Bng8QduuoFTC2K0LYvr0bvxl6JzdIY7OUWAwWJAk3HY76nb+jpot21GzZRtqt+2Aq74haNvTpqYg6swzvL96dEfUmWdAl5bK1fMU9tw2G8yHC2A+ETaOBw9bUXHQtqmKMiH6rF6IOct7+iSmT28uDiWfGCwoKJw1tajZtgM1W7ahZvM21P2+B6LTGfgNKRQw5mQj6szuMPU4A1FndkdUjzOgiYsN/LaIQpjLbIb54GHv0Y28gzAf9AaOYF1erc/KQPTxtRqx/fsi6swzeNqQADBYUIDYikpQs2UbqrdsQ82WbTDnHQz4NhQaDUzduvxxJOLMM2Dq1jVirr4gCgZHdQ3qdv2O2u27ULdjF2p3/h6U2Ryq6CjEDRqIuHPORvw5g2Ds0plHCDsoBgtqNdHjgfngIe/6iC3bUL15G+wlpQHdhio6ClFndD8pRHSHISeHayGI2kn0eGApOILaHb83Bo2GffsDvlBUk5SI+HPORvyQQYg/ZzB06akBfX8KXQwW1CxRFGEpOILKtetR9ctG1GzdAVddXeA2IAgwdeuC2P59ETuwP2L69oYuI50/7RBJxG2zoX73PtTu2IXaHd4jG7bikoBuQ98p63jIOBtx5wzi6coIxmBBTXKZzaje+Bsq165H5br1sB4L3OwIQa1GdO+eiBvYD7ED+iGmXx+oY6ID9v5E1H728orGkFG743fU7dod0Lv4ms7o5g0aQwYjdmB/qIyGgL03yYvBggB4j0o07D/gDRJr16Nmy7aATQtURZkQ078vYgf0RdyA/ojqfWab7vNARPIR3W6YDx5uPKpRu2MXzAcOAQH4FiKolIg+q3fjEY2Yvme1+YZ5JD8Giw7MWVOLyvUbUbluAyrXrg/Y6nFtSjJiB/RD7PEjEqZuXXgNPFEEcpnNqN22E1UbfkXVxl9Rv3tvQIKGQqdF7ID+x49oDEJUj+684iSMMFh0IKLbjbrf9zQelajd+XtABu0Yu+Z6g8QA7xoJzosg6picNbWo/nWzN2hs+g2WQ/kBeV91fBySLhqGxOEXIOHcczgZNMQxWEQ4e3lF4xGJql82wllb2743FATv+oizByB2YD/E9O8DDW/MRkRNsJWWoXrjb6jasAlVG3+FvaT903UVWi3izx2MpOEXIPGiYdAmJgSgUwokBosI43G6ULttOyrXrkfF2vVo2Lu/3e+pSUxAwvnnIuH8cxF/7mAGCSJqtRNXl1Vv+BVVG35F9abNAflBJ6ZPb2/IGH4BZ2eECAaLCOC22VC5dj3KvluF8h/XwN1gbtf7CSolYvv3awwTpjO6cWclooASPR7U78tD9YZN3qCxeSs8Vlu73lOflYmkiy9A0vALENO/L28RLxMGizDlMltQuWYdSr9dhcqf18Fttbbr/XTpaUgYdp73qMTggVCZTAHqlIioeR6HE7U7d3lDxsbfULt9Z7uuTFPHxCDhwqFIuugCJJw/BCqjMYDdkj8MFmHEVd+A8p/WoOzbVahcux4eu73N76XQahE3aEDjUQlDTjaPShBRyHBbrKjevAUVP65F+Y8/t2t9hqBWI/6csxtPmehSkgPYKf0Zg0WIc9bUonz1Tyj7bjUqf9nYrht5GXJzkDD0XCSefy5iz+4PpY4rq4ko9ImiiPo9+1C++mdUrP4Z9Xv2tev9onqdiaTh3lMmPNUbeB02WIiiCKfTCZvNBofDAVEUIQgCFAoF9Ho9tFotFDLNXnBUVqHshx9R9t0qVG/6rc0z/JUGA+LPHew9KjF0CPQZ6QHulDo6URThcDhgtVrhcrka9yOlUtm4H/GLNgWaragE5T/+jPLVP6N60+Z2nTLRpach+dLhSLnyMkSf1VOWz1ePxwO73Q6bzQa32924H6nVauj1eqjV6rDajzpUsBBFEVarFZWVlaivr4enmRkOOp0O8fHxiImJgTLIw1nsZeUo+341yr5dherNW9s8X0KXlorkyy5G4kUXILZfHyg06gB3Sh2dKIqor69HVVUVzGYz/H0JEQQBBoMB8fHxiIqKki2sU+Ry1TegYu0vqFj9Myp+XgdXfUOb30ufmY7kyy9FypWXeYdy+fhm7qpvgNJkbNc3e4/Hg9raWlRVVcHazBo5hUIBk8mE+Ph4GI3t264UOkywqK+vR0lJCextWJcgCALi4+ORnJwc0IBhKypB6XerUPbdKtRu29HmiXX6rEwkX3YxUi67BFG9zgz5TzoKT6Ioorq6GmVlZXC14SdEpVKJpKQkJCQk8HOUgsLjdKFm81aUr/4J5avXwFbY9nscGbI7IeWKS5Fy1WUwde1yynOH/vsGnLV16H7/3a3+XPZ4PCgvL0dlZWWzP9w2Ra1WIzU1FdHR0SG7H0V8sHC5XCguLkZte6+XBqBSqZCZmQlTO66YsBw9hrJvV6Hs2x9Qt2t3m9/HmNsZySOGI/myS3iOkILObrejsLAQlgDchEqn0yEzMxM6rvGhIBJFEea8gyhb9RMqVv/cvq+3XXORcsUIpFw5AobsTlh/9U2w5B9Bzt8mosudd7T466/FYsGxY8fgcDja3MsJUVFRSE9Ph1odekelIzpY2Gw25Ofnt+mnK3+SkpKQnJzc4k8mR00Nyr75HsVfrPAemWgj0xndkDziYiSPuBimrrltfh+i1qivr8eRI0f8nvJoi8zMTMRy2BpJxFZahoqf1qJ81U+o2vBrmxfCG3M7w3zocOOfc6ffjtz/m9rs6yoqKlBSEthb0SsUCuTk5MBgCK07w0ZssLBarTh8+HCbDjW1REJCAlJTfd8Tw223o+LHtSj+4mtUrvmlzYuLonud6Q0Tl10MQ3an9rRM1Gp1dXU4cuRI0N4/IyMDcXFxQXt/oqa4zBZU/bIBZd+vRvmqn9t9O/hu985E9qTxPp8vKytDWVn7x5k3RRAE5OTkwBhCczoiMlg4nU4cOHAAbnfbrqZoqZSUFCQlJTX+WfR4UP3bVpR8uQKlK79v8wTMmH5nIXnEJUgeMZxXcpBsLBYLDh06FPTtZGdnIyoqKujbIWqK22ZD5ZpfUPrNdyj/aW2bp3/2eHg2MkffdNrj1dXVKCwsbG+bfgmCgK5du0Kr1QZ1Oy0VccFCFEXk5+fDbG7fWOuW6tKlC9yFRSj+/GuUfLUS9pLS1r+JICD27P7eIxOXDufwFpKdx+NBXl4enO2Ym9JSSqUS3bp1g4rjl0lmbosV5T+tQek336Hy51/gaeVaiF5PP4a0a69q/LPD4UBeXl7ATyM2RafToUuXLiGx3i7igkVVVRWKitq+Eri11Aoljo6ZDLTyVIegVCJu8EAkX3YJki6+kHfoo5BSWFiI6upqybYXHR2NTp14qo9Ch6uhAeWrf0bpiu9QuW5Di05nC0olznrxaSRfOhyiKOLw4cMBWfDcUsnJyUhOlv8H06AGiy+//BL33HMPPB4PZs+ejalTm1/g0h4ejwd79+4N2roKXxxffYuqt5a1qDam31lIvfpKpFwxApq42OA2RtQGDocD+/e3/664rdWlSxfo9XrJt0vUHGdtHUq/+Q57H3+m2VpBrUa//7wI9Vk9g7o+qcltCwJ69OgR9LlLzfYRrGDhcrnQs2dPrF69GtHR0RgwYAA2btyI+Pj4YGwOgDTnspqisNlRNOHvPp/Xd8pC2jVXIvXqK2HolClhZ0RonOLXUsXFxaisrAxiR02LjY1FZib3DwpNpat+ws4Z9zZbp4qOgrFzDuIfuR9WZ/svK22t1NRUJCYmSr7dkwXtpOamTZvQq1cvZGRkAACuuuoqrFy5EmPGjAnWJmX5YggAHp0Wml5nwvH7nsbH1HGxSLnyMqRdcyWiz+oVEue9qGNaV1CFGJ0aPZJMUCv9T770eDySngI5WU1NDVJTU7nWgkLSWqsGqgsuRvzBvdCnpUCfng5dRhp06WnQpaZAl5oCbUoyVEYD7HY78vLyZOmzsrJS9iF0rd6DPR4Pevbsieuuuw7PPvts4+MrV67ENddcg3feeQejRo1CUVFRY6gAvNesB/Nogsvlgs3WttW8gRB37VUoP3AISRdfiLRrrkT8eUOgUPMLJMnP7vJgS2Etfi+pR6/UKL8Bw2KxSH4q8WRmsxkxMTGybZ/IF09GJmqmTodbq0Kf1GjkJhig8PHNu6Gh7WPF28vpdMLhcMh6hUirv/MpFAo88MADmDFjBu6//37ExcVh+/btGDVqFJ566imMGjUKAJpcBRvMBCVnqAAA/dn90eXLT6E0GmEDUGRxAgj+inqi5lid3qBgdzcfMOTej+rNFtRDI2sPRE1xCwoAHtTbXVhXUIUdJXU+A0Zz9/4INqvVGl7BAgDGjh2Lxx57DPPmzcOUKVMwcuRIjB8/Hvfe+8f5p4yMjFOOUBw7dgznnHNO+zv2QcqVt02xe9xYV2wFIO8nFFFz/AUMufej+gYzNhUHdlIuUTD4Cxhy70dWq1XWqbZtXrz5+uuv48EHH0RGRgZycnLwySefnLIS1eVy4cwzz8SPP/7YuHhzw4YNSEgIzmWVRUVFqKqqCsp7t9RmezQArqWg8KJVKhoDxpH8w7L+tCUoVfjNEjoTBIlaKuqkUyR79+yR9ZRiTEwMsrKyZNt+m+9hPHbsWFgsFoiiiGXLlp12eYtKpcILL7yA4cOHo3///rjvvvuCFiqApk+9SI03hKZwdOIIxtd7y+D2yLwfhcB+TNQWJ45grD5YIfv3IzlDDdCOq0KmT58OwHtjFV/XzF577bW49tpr27qJVgmFqy7k/a8kahudSoHeqdE4I8mIgsPSTKz1KQT2Y6K2iNaq0Dc9GjlxBuzdUy5ruFAo5P0xt01bf/jhh/HVV19hw4YNcLlcWLhwYaD7ajW5bx3r/Y/kF0UKHzqVAmdnxuLGs9LQKyUKKoVC/v1IySupKLxEa1UY1jke1/VKRW68EQpBkP2Sadm339oXLFiwAC+88AJWrVqFvn37YtasWZgzZw5uu+02Wb8oyT2xT6/XY0RmUvOFRBLbWliLCssfg3pOPkKh+tNPNgaDAXV1dVK32CjKZMSIVN7tlELPmsOVsLn+OC598hGKP18VYjAY4GjlfUYCSe7vh60KFitWrMC0adOwbNkyDBkyBAAwY8YMPP/883j77bcxefLkoDTZEnL/QxoMBqRE62Ttgagpe8rqAfgPFCfIvR9FGQ2I4X5EIUh5PDz4CxQn6PV61NTUSNjd6duXU4uDxebNmzFq1CjMmTMHN9xwQ+Pj0dHRmDFjBp555hlMmDBBthnlSqUSer1ethXtvO0zhSq9SomzM2P9BorGWr0eCoVCtsVfRiOvCKHQFK1TYUBmjN9AcYLJZJKoq9Op1WpoNPLOgomou5vW1NTg2LFjkm83lG5XS/Rnrb1XSElJCSoqKoLYUdN4rxAKZa3djw4fPgyzWfrF0KFwr5CIukIyOjpaliMmcs9lJ/KntZ+bwbxRoD/BvBydqL1aux/J8c1dEATExcm/RimigoVCoUBKSoqk29Rqtby3AUUUjUYj+Tf5mJgY2c8LEwWSyWSCwWCQdJvJycmy3zIdiLBgAQBxcXGSnt/KysqS/ZphokBLTk6GWqJL1pRKJdLS0iTZFpFUBEFARkaGZEez9Xq97KdAToi4i8ZP/GceOHAAbrc7qNtKTU2FTscV7BS+RFFEfVkFin7PQ/Hv+1G8O6/x4/HvvASVBJdQZ2Zmyn7dPVF7iKKIqiOFp+w/Rb/noTzvMO5c/yHqXcG99FShUCAzMzNkTslH5N6sVqvRuXNnHDp0KGir2xMTE3lOmMJKQ2U1CnfsOS1EmCurT6vNHtQXfS+/CPX19Thy5EjQesrIyOAVVRRWqgtLULhjD4p3HzgeIPajePcB2BtOX6g5dMpfkd2jOyoqKlBSUhKUfgRBQE5Ojqx3M/2ziAwWgPdKjdzcXOTn58PlCuzdEpOTk5GUlBQy6ZCoJUr2HMDcS8dBbEHYvu6JeyAIAqKjo5GTk4OCgoKAjyjOysri+iQKO7u+WoV3bn+w2TqlWo2rHp4BwPuDqCAIKC4uDmgvSqUSOTk5Ibc+KaIXB+h0OnTr1i1gt49Vq9XIyclBcnIyQwWFna7nD8LVj85qtq7bBYNx5ohhjX82mUzo1q1bwGZM6PV6dOvWjaGCwtL5fxuD/jde2WzdsNtvQUL2H5dPJyQkIDc3N2BHFqKjo9GtW7eQCxVABB+xOEGpVCIzMxOxsbEoKSmBzWZr9XsoFArEx8cjOTmZCzUpbHk8Hqi0zQ/OufaJe08LzhqNBjk5OaipqUFZWRmcTmert69SqZCUlIT4+HgGcwpbTpsd+hj/p+/Ueh2ufHDaaY8bDAZ06dIFFRUVqKioaNOpeo1Gg9TUVERHR7f6tVKJ+GBxgslkQteuXWG1WlFZWYn6+vpmF3fq9XrEx8cjJiaGgYLCWl1pOZZMvBe/f/OT37qelw1Dt2GDm3zuxDXysbGxMJvNqKqqQkNDg98vjoIgwGg0Ij4+HlFRUQwUFNaKdudh4egZKNy512/dRdNuRUxacpPPKRQKJCcnIzExEXV1daiqqoLVavV7qlGhUCAqKgrx8fEwGAwhvx9F1OTN1nI6nbDZbHA4HI1T1RQKBfR6PbRabcj/5xG1xO7v1mDx+LtQV9r8NM37N32GnEF9W/zeoijC6XTCarXC5XI17kcqlQo6nQ4ajYb7EYU9URSx9o1leH/W43Ba/R/11kWZ8MShn2FKbPmgOVEUYbfbYbPZ4Ha7G/cjtVoNvV4PlUoVVvtRhzli0RS1Wi37baKJgsXlcODzh1/At3Neb1F9379c1qpQAXiPSGg0GtnvTUAULObqWrxz2wPY8uHXLaq/5K7JrQoVgHc/0ul0ETO+oEMHC6JIVX6wAAvGzETBr9t91giCgKiURNSVlEMQBFz7+N0SdkgU+g6s+w2LbrkTVUcKfdZoDHoo1SpYa+thiIvBpXdPlbDD0MSFA0QRZtO7n+HJ/iP9hoqY9BTMWvUuZv3wLtR6Hc4efQ0yzuohYZdEocvjduPrJ+bjxQv/6jdUZPY9Ew9u/gITlrwAALjsH7dDHxO6iyql0qHXWBBFEluDGcun/wsblnzkt67PNZfi1kVzGg/Xrlv0PrqefzZSuudK0SZRSKs+VoxF42Yh76eNfusuvnMSrn9mNtTHT1989e95uPTuqdAapb0/SChisCCKAEe27MKC0TNQlnfYZ41Kq8GNzz+Ei6bdGlYLwYiksv3z7/DWpPtgrqrxWWNMiMOExc+jz9WXSNdYmOEaC6IwJooifpi7EJ/MfhZuP7MlUnt0wdTl85HZt6eE3RGFB6fNho/uexo/vrLEb90Zw8/FpKVzEZsu7V20ww2DBVGYqiurwFuT7sOur1f7rRs6dTRunvsvHqIlakLxngNYMHo6Cnf4nk2hUCpxzeN34/LZf4ciBG5LHuoYLIjC0J7v1+LN8XehrqTcZ40+Jgpj//c0zr75agk7IwoPoihi3cL38N7MR/3OpojPzsDUZfOQe+5ACbsLbwwWRGHE7XQ2zqbwtzyq85D+mLJsHhJzsiTsjig8WGpqsfS2B7Hlg6/81g28eSTGvv4UDLG8r01rMFgQhYnyQ0ewcMwM5G/yP5vi8gfuwDWPzoKSw9+ITnPwl81YeMtMVBX4voxUrddh9PzHcN7km7nQuQ0YLIjCwK/LPsM7tz8EW32Dz5qYtGRMWjoXPS4+T8LOiMKDx+3GN8+8ii8feQkeP/eJyujTA1OXv4K0M7tK2F1kYbAgCmG2BjPen/kofnnzA791Z119CSa8+VyrRwkTdQTVhSVYPP4u7Fu93m/d8BkTccOc+xtnU1DbMFgQhagjW3dh4eiZKN1/yGeNSqPBDc89gOEzJvKQLVETdnz5A5ZMvBfmymqfNcb4WNz65nPoe+0ICTuLXAwWRCFGFEWsmvcmPvnHM3A5HD7rUs7IxdTl85HVr5eE3RGFB6fNho9nP4PV8xb7ret+0RBMWjoXcRmp0jTWATBYEIWQ+vJKvDXpPuz8apXfuvMm34y/znuUsymImlCy9wAWjJ6BY9v3+KxRKJW4+rG7cMX9/8fZFAHGYEEUIvau+gVvjpuF2uIynzW66CiMff1JDBp9rYSdEYUHURTxy5sf4L0Zj8Bhsfqsi++UgSnL5qHLeZxNEQwMFkQyczud+OKRl7DymVf9z6Y4px8mvzsPSbmdJOyOKDxYa+vwzu0P4rf3vvRbN+CmqzD2f0/DGMfZFMHCYEEko4rDR7Hwlpk4vGGrzxpBEHD5/f+Hax67i7MpiJpwaMMWLBwzE5X5x3zWqPU63PzyIzh/6mgudA4yBgsimfz23hdYetuDsNXV+6yJTk3C5KVz0eOSoRJ2RhQePB4Pvn32VXz+8Iv+Z1Oc1QNTls9Hes9uEnbXcTFYEEnMbrbgvZmP4pdF7/ut633VcExY/DyikhIk6owofNQUlWLxrXdj7w/r/NZdOO1W3Pjcg9DoOZtCKgwWRBI6uu13LBg9A6X7fM+mUKrVuGHO/bj4zsk8ZEvUhJ1frcKSifeioaLKZ40xPhbjF81Bv+suk7AzAhgsiCQhiiJWz1+Mj+972u9siuRunTF1+Xx0GtBbwu6IwoPTbscns5/Bqpff9FvX7YLBmPzOy4jLTJOoMzoZgwVRkDVUVGHJpPuw88sf/NadO/Em/HX+Y9CZjBJ1RhQ+SvYdxMLRM3B0226fNYJCgasfnYUrH5zG2RQyYrAgCqJ9q3/BonF3obao1GeNLsqEW157EoNvuU7CzojCgyiKWL/4Ayyf7n82RVxWOqa8+zK6nj9Iwu6oKQwWREHgdjrx5WMv45un/uN3NkXO4L6Ysmw+Z1MQNcFaW4d3/++f+HXZ537r+t94Jca98QxnU4QIBguiAKvIP4pFt9yJQ+u3+K27fPbfce2/7+FsCqImHN64FQvHzETF4aM+a9Q6LUbN/ReG3XYLFzqHEAYLogDa/MFXWPq3+2Gt9TObIiURE99+CT1HDJOwM6Lw4PF48N1zr+Ozf74Aj8vlsy699xmYunw+0nt1l7A7agkGC6IAsJsteH/W41i3YLnful5XXIgJS15AdHKiRJ0RhY/a4jK8eevd2Pv9Wr91F94xHjc+/xBnU4QoBguidjq2fTcWjJ6Bkr0HfdYo1Wpc/8xsXDxrMhQKhYTdEYWHXStWY8mEe1FfXumzxhAXg/ELn0X/66+QsDNqLQYLojYSRRE//uctfHTvk3DZfc+mSOqag6nL5yN74FkSdkcUHpx2Oz59YA5+eGmh37quwwZj8tKXEN8pQ6LOqK0YLIjaoKGyGm9Nvg87Pv/eb92QCTdi9PzHoIsySdQZUfgo3X8IC8fMxJEtu3zWCAoFRv5rJq58aDqUKn7LCgf8XyJqpX0/rseb4+5CTWGJzxqtyYhbXnsS54z9i3SNEYUJURSx4a2PsHzav2A3W3zWxWWmYfK7L6PbsMESdkftxWBB1EJulwtfPfYyVjz5it/ZFNln98GUZfOQ3DVHuuaIwoS1rh7L7ngYm9751G9dv+svx/gFz8IYHytJXxQ4DBZELVBZcAwLb7kTh37Z7LduxH2347on7oFKo5GoM6LwcXjTNu9sikNHfNaodVqMeulhDLt9LGdThCkGC6JmbP7wa7zzt/thqanzWROVnIhJb7+InpddIGFnROHB4/Hgu+f/h88eet7vbIq0nt0w9b1XkNH7DAm7o0BjsCDywWGx4oO7Hsea/y3zW9fz8gswcckLiE5JkqgzovBRW1KGxbfegz3frfFbN+z2WzDqxYehMegl6oyChcGCqAmFO/fijb9OR8meAz5rlGo1/vL0P3DJXVM4m4KoCb9/8yMWT7gX9WUVPmsMsdEYt+BZDLjxSgk7o2BisCA6iSiK+OnVpfjw7n83P5ti2Txkn91Hwu6IwoPL4cCnDz6H7194w29d1/MHYfI7czmbIsIwWBAd11BZjben/APbP/vOb905467HmP/+m7MpiJpQmnfYO5ti806fNYJCgav+OR1XPTyTsykiEP9HiQDs/2kD3hx3F6qPFfus0ZqMGPPff2PI+Bsk7IwofGx4+2Msu+Nh2BvMPmtiM1Ix+Z256H7hEAk7IykxWFCH5na58PW/5+HrJ16B6PH4rOs08CxMWTYPKd06S9gdUXiw1Tdg2R0PY+PST/zW9b1uBMYvnANTQpxEnZEcGCyow6o6UohFY2fhwNpf/dZdes/f8Jen7uNsCqImFPy2AwtGz0D5wQKfNSqtBje9+DAu/L9xnE3RATBYUIe05aMVWDp1drOzKSYueR69rrhIusaIwoTH48EPLy3Epw/Mgdvp9FmXemZXTF0+H5l9zpSwO5ITgwV1KA6rzTub4vV3/dadOWIYJr71AmJSkyXqjCh81JWWY/GEe7B75c9+64bdNgajXvoXZ1N0MAwW1GEU7tqHhaNnoOj3/T5rFCoV/vLUfbj0nr9xNgVRE3Z/+zPeHH+339kU+pgojHvjGQwcNVLCzihUMFhQxBNFET+/thQf3v0EnDa7z7rE3E6YsmweOg/uJ11zRGHC5XDgs3++gO+ee91vXe55AzHl3ZeRkJ0pUWcUahgsKKKZq2rw9tTZ2PbJSr91g265Dre8+gT00VESdUYUPsoO5GPhmJko+G2HzxpBEHDlQ9Mx8pE7OZuig+P/PkWsvDWbsOiWO/3PpjAaMOa//8Y542/ganWiJmx851O8+/eH/M6miElPweR35uKMi86VsDMKVQwWFHHcLhdWPPkKvnp8nt/ZFFn9e2Hq8vlI6Z4rYXdE4cFW34Dl0/+FDW997LeuzzWX4tZFc2BKjJeoMwp1DBYUUaqOFnlnU6zZ5Lfu0run4rqn7oNaq5WoM6LwUbB5JxaOmYmyvMM+a1RaDW58/iFcNO1WHu2jUzBYUMTY+sk3eHvKbFiqa33WRCUl4NbFz+Osq4ZL2BlRePB4PFg1dxE+uf9Z/7MpenTxzqbo21PC7ihcMFhQ2HNYbfjwnifw86tL/db1uPR8THrrRcSkcTYF0Z/VlVVgyYR78Ps3P/mtGzp1NG6e+y9ojQaJOqNww2BBYa3o9/1YMHoGinbt81mjUKlw3RP3YMR9t3M2BVETdn+3BovH34W6Uv+zKcb+72mcffPVEnZG4YjBgsKSKIpY87938cGsx/3Ppuic5Z1NcU5/CbsjCg9upxOf/fN5fDvH/2yKzkP6Y8qyeUjMyZKoMwpnDBYUdszVtVj6t/ux9aMVfusGjbnWO5siJlqizojCR/mhI1g4ZgbyN233WSMIAi5/4A5c8+gsKNVqCbujcMZgQWHlwNpfsfCWO1F9tMhnjcagx+j/PI5zJ9zE1epETfh12Wd45/aHYKtv8FkTk5aMSUvnosfF50nYGUUCBgsKCx63GyuefAVfPvay/9kU/XpiyvL5SD2ji4TdEYUHW4MZ7814BOsXf+i37qyrL8GEN5/jbApqEwYLCnnVx4qxaOydyPvZ/2yKi++chOufvZ+zKYiacGTrLiwcPROl+w/5rFFpNLjhuQcwfMZEHu2jNmOwoJC27bNv8fbkf8BcVeOzxpQYj1vffA59rr5EusaIwoQoilj18iJ8MvtZuBwOn3UpZ+Ri6vL5yOrXS8LuKBIxWFBIclht+Oi+p/DTf97yW3fGxedh0tsvITY9RaLOiMJHfXkllky8F7u+Xu237rzJN+Ov8x7lbAoKCAYLCjlFu/OwcPQMFO7c67NGoVTi2ifuwWX33Q6FUilhd0ThYe8P67Bo3CzUlZT7rNFFR2Hs609i0OhrJeyMIh2DBYUMURSxdsFyvH/nY3BabT7rEnIyMWXZPOQOGSBhd0Thwe104otHXsLKZ16FKIo+6zqf0w9Tls1HYmfOpqDAYrCgkGCursU7tz2ALR9+7bfu7L9ejbGvP8XZFERNqDh8FAvHzMDhjdt81giCgMvv/z9c89hdnE1BQcFgQbI7+MtmLBwzE1VHCn3WaAx6/HX+Yzhv0iiuVidqwq/LP/fOpqir91kTk5aMSW+/hB6XDJWwM+poGCxINh63G988/V98+ehceNxun3WZfc/E1OXzkdqjq4TdEYUHu9mC92Y8gl/e/MBvXe+rhmPC4ucRlZQgUWfUUTFYkCyqC0vw5rhZ2P/jBr91w2dMxA1z7odap5OoM6LwcXTb71gwegZK9/meTaFUq3HDnPtx8Z2TebSPJMFgQZLb/vl3eGvSfX5nUxgT4jDhzefQ55pLpWuMKEyIoojV8xfj4/ue9j+bonsupiybh04DekvYHXV0DBYkGafNho/uexo/vrLEb133i4Zg0tK5iMtIlagzovBRX16Jtybdh51frfJbd+7Em/DX+Y9BZzJK1BmRF4MFSaJ4zwEsGD0dhTv8z6a4+rG7cMX9/8fZFERN2LvqF7w5bhZqi8t81uiiTLjltScx+JbrJOyM6A8MFhRUoijil0Xv472Zj8Jhsfqsi8/OwJR356HLeQMl7I4oPLidTnzx6FysfPq/fmdT5AzuiynL5iMpt5OE3RGdisGCgsZSU4t3bn8Qm9//ym/dgFEjMe5/T8EQGyNRZ0Tho+LwUSy8ZSYOb9jqt+7y2X/Htf++h7MpSHYMFhQUh9ZvxoIxM1FV4Hs2hVqvw1/nPYqhU/7K1epETfjt/S+x9G8P+J1NEZ2ahIlvvYieI4ZJ2BmRbwwWFFAetxsrn30NX/zrRb+zKTL69MDU5a8g7UzOpiD6M7vZgvdnPY51C5b7ret1xYWYsOQFRCcnStQZUfMYLChgqgtLsHj8Xdi3er3fuoumT8CNzz3A2RRETTi2fTcWjJ6Bkr0HfdYo1Wpc/+xsXHznZCgUCgm7I2oegwUFxI4vf8CSiffCXFnts8YYH4tb33wOfa8dIWFnROFBFEX8+MoSfHTvU35nUyR1zcHU5fORPfAsCbsjajkGC2oXp92Oj//xNFbPW+y3rtuF52Dy0rmIy0yTpjGiMNJQUYW3Jv8DO7743m/dkAk3YvT8x6CLMknUGVHrMVhQm5XsPYCFY2bi6LbdPmsUSiWufnQWrnjgDs6mIGrCvtW/YNG4u1BbVOqzRmsy4pbXnsQ5Y/8iXWNEbcRgQa0miiJ+efMDvDfjEf+zKTplYPK7L6Pr0LMl7I4oPLhdLnz12MtY8eQrfmdTZA/qi6nL5iGpS7aE3RG1HYMFtYq1tg7v3P4gfnvvS791/W+8EuPeeAbGOM6mIPqzivyjWHTLnTi0fovfuhH33Y7rnrgHKo1Gos6I2o/Bglrs0IYtWDhmJirzj/msUet1uPnlR3D+1NGcTUHUhM0ffIWlf7sf1lo/sylSEr2zKS67QMLOiAKDwYKa5fF48O2zr+Lzh5uZTXFWD0xZPh/pPbtJ2B1ReHBYrHh/1uNY+8Yyv3U9L78AE5e8gOiUJIk6IwosBgvyq6aoFItvvRt7f1jnt+7CO8bjxucfgkbP2RREf3Zsxx7vbIo9B3zWKNVq/OXpf+CSu6ZwNgWFNQYL8mnn16uxZMI9aKio8lljiIvBrYvmoN9fLpewM6LwIIoifvrv2/jwnifgsjczm2LZPGSf3UfC7oiCg8GCTuO02/HJ/c9i1dxFfuu6XTAYk5bORXxWukSdEYWPhspqvD3lH9j+2Xd+684ZfwPG/OdxzqagiMFgQaco2XcQC0fP8DubQlAocPWjs3Dlg9M4m4KoCft/2oBFY2ehprDEZ43WZMSY//4bQ8bfIGFnRMHHYEEAvIds1y/5EO9NfwR2s8VnXVxWOqa8+zK6nj9Iwu6IwoPb5cJXj8/Diifm+51N0WngWZi6fD6Su+ZI1xyRRBgsCNa6erz794fw67LP/db1v+EK72yK+FhpGiMKI5UFx7Bo7CwcXPeb37oR996G6568l7MpKGIxWHRwhzduxcIxM1Fx+KjPGrVOi1Fz/4Vht93C2RRETdjy0QosnToblpo6nzVRyYmY+NYL6HX5hRJ2RiQ9BosOyuPx4LvnXsdn/3wBHpfLZ116r+6Y+t4rSO/VXcLuiMKDw2LFB3c9jjX/8z+b4swRwzDxrRcQk5osUWdE8mGw6IBqi8vw5q13Y+/3a/3WXfB/43DTC//kbAqiJhTu2oeFo2eg6Pf9PmsUKhX+8tR9uPSev3E2BXUYDBYdzK4Vq7Fkwr2oL6/0WWOIi8H4hc+i//VXSNgZUXgQRRE/v7YUH979BJw2u8+6pC7ZmLJsHnIG9ZWwOyL5MVh0EE67HZ8+MAc/vLTQb13XYYMxeelLiO+UIVFnROHDXFWDt6b8A9s//dZv3eCxf8GY//4b+ugoiTojCh0MFh1A6f5DWDhmJo5s2eWzRlAoMPJfM3HlQ9OhVPHTgujP8n7eiEVjZ6H6WLHPGq3R4J1NceuNEnZGFFr4HSSCiaKIjW9/jGV3POx/NkVmGia/MxfdLjhHwu6IwoPb5cLXT8zH1/+eD9Hj8VnXaUBvTFk2DyndcyXsjij0MFhEKGtdPZbd8TA2vfOp37p+11+O8Que5WwKoiZUHSnEonF34cCaTX7rLr17Kq576j6otVqJOiMKXQwWESj/1+1YMHoGKg4d8Vmj0mow6qWHccHfx3E2BVETtn7yDd6eMhuW6lqfNVFJCZiw5Hn0vnK4hJ0RhTYGiwji8Xjw/Qtv4NMHn/M7myKtZzdMXT4fGWf1kLA7ovDgsNrw4T1P4OdXl/qt63Hp+Zj01ouISeNsCqKTMVhEiNqSMiy+9R7s+W6N37pht9+CUS8+DI1BL1FnROGjpbMprnvyXoy49zbOpiBqAoNFBPj9mx+xeMK9qC+r8FljiI3GuAXPYsCNV0rYGVF4EEURa15/Bx/c9W+/sykSczthyrJ56Dy4n3TNEYUZBosw5nI48OmDz+H7F97wW9dl6NmY8u7LnE1B1ARzVQ2W/u1+bP34G791g8Zci1tee5KzKYiawWARpkrzDntnU2ze6bNGUChw1T+n46qHZ3I2BVET8tZs8s6mOFrks0ZrNOCvrzyGcyfcxIXORC3A7zZhaMOJ2RQNZp81sRmpmPzOXHS/cIiEnRGFB4/bjRVPvoIvH3vZ72yKrP69MGXZPKSe0UXC7ojCG4NFGLHVN2DZHQ9j49JP/Nb1vW4Exi+cA1NCnESdEYWPqqNFeHPcLOT97H82xcWzJuP6Z2ZzNgVRKzFYhImC33ZgwZiZKD+Q77NGpdXgphf+iQvvGM9DtkRN2PbpSrw9ZTbMVTU+a0yJ8Ziw+HmcNfJi6RojiiAMFiHO4/Hgh5cW4tMH5sDtdPqsSz2zK6Yun4/MPmdK2B1ReHBYbfjo3ifx03/f9lvX45KhmPT2S5xNQdQODBYhrK60HIsn3IPdK3/2WzfstjEY9dK/OJuCqAlFu/OwcPQMFO7c67NGoVTi2ifuwWX/+DtnUxC1E4NFiNr97c9YfOvdqCv1PZtCHxOFcW88g4GjRkrYGVF4EEURa99YhvdnPQ6n1eazLiEnE1OWzUPukAESdkcUuRgsQozL4cBn/3wB3z33ut+63PMGYsq7LyMhO1OizojCh7m6Fu/c9gC2fPi137qz/3o1xr7+FPQx0RJ1RhT5GCxCSNmBfCwcMxMFv+3wWSMIAq58aDpGPnInZ1MQNeHAut+w6JY7UXWk0GeNxqDH6Fcew7kTR3GhM1GA8TtTiNj4zqd49+8P+Z1NEZOegsnvzMUZF50rYWdE4cHjdmPFU//Bl4/O9TubIrPvmZi6fD5Se3SVsDuijoPBQma2+gYsn/4vbHjrY791fa65FLcumgNTYrxEnRGFj+pjxVg0bhbyftrot+7iOyd5Z1PodBJ1RtTxMFjIqGDzTiwcMxNleYd91qi0Gtz4/EO4aNqtPGRL1IRtn32Ltyf/w+9sCmNCHCYsfh59rr5EusaIOigGCxl4PB6smrsIn9z/rP/ZFD26eGdT9O0pYXdE4cFps+Gj+57Gj68s8Vt3xvBzMWnpXMSmp0jUGVHHxmAhsbqyCiyZeC9+X/Gj37qhU0fj5rn/gtZokKYxojBSvOcAFoyejsId/mdTXPP43bh89t+hUCol7I6oY2OwkNDu79Zg8fi7mp1NMfZ/T+Psm6+WsDOi8CCKItYtfA/vzXzU72yK+OwMTF02D7nnDpSwOyICGCwk4XY68dk/n8e3c/zPpug8pD+mLJuHxJwsiTojCh+Wmlosve1BbPngK791A28eibGvPwVDbIxEnRHRyRgsgqz80BEsHDMD+Zu2+6wRBAGXP3AHrnl0FpRqtYTdEYWHg79sxsJbZqKqwPdsCrVeh9HzH8N5k2/mQmciGTFYBNGvyz7DO7c/BFt9g8+amLRkTFo6Fz0uPk/CzojCg8ftxjfPvIovH3kJHrfbZ11Gnx6YuvwVpJ3J2RREcmOwCAJbgxnvzXgE6xd/6LfurKsvwYQ3n+NsCqImVBeWYPH4u7Bv9Xq/dcNnTMQNc+7nbAqiEMFgEWBHtu7CwtEzUbr/kM8alUaDG557AMNnTOQhW6Im7PjieyyZdB/MldU+a4wJcZjw5nPoc82lEnZGRM3pkMFCFEXYbDZYrVbYbDY4HA54PB4IggClUgmdTge9Xg+9Xg9VC+/HIYoiVr28CJ/MfhYuh8NnXcoZuZi6fD6y+vUK1F+HSBYej6dxP7JarXA6nRBFEYIgQKVSNe5DOp0OyhZe7um02fDx7Gewet5iv3XdLxqCSUvnIi4jNQB/EyL5uN3uxn3IZrPB5XJBFEUoFAqo1erGfUin00GhUMjdbosIoiiKcjchFafTierqalRVVcHlcrXoNVFRUUhISIDRaPR5dKG+vBJLJt6LXV+v9vte502+GX+d9yhnU1BYs9lsqKqqQk1NDTx+7slxgiAIiI2NRXx8PPR6vc+6kr0HsGD0DBzbvsdnjUKpxNWP3YUr7v8/zqagsCWKIiwWC6qqqlBbW9ui1yiVSsTFxSE+Ph4ajSbIHbZPhwgWHo8HpaWlqKysbPN7aLVaZGRkwGA4NRTs/WEdFo2bhbqScp+v1UVHYezrT2LQ6GvbvH0iuTmdThQVFaG+vr7N72E0GpGRkXHKF0ZRFPHLovfx3sxH4bBYfb42PjsDU96dhy7ncTYFhS+bzYbCwkJYrb4/15sTGxuLtLS0Fh8JlFrEB4uGhgYUFhbC6Wd0dmskJiYiOTkZotuNz//1Ir599jX4+yfsfE4/TFk2H4mdOZuCwld1dTWKi4tbdISiOYIgIDU1FfHx8bDV1eOd2x/Eb+996fc1A266CuPeeJqzKShsiaKI8vJylJWVBeT9lEolMjIyEB0dHZD3C6SIDhbV1dUoLPR93XtbGQwGfHPvM9jxybc+awRBwOX3/x+ueewuzqagsCWKIkpLS1FR4XtabFtFR0VhwWWTUOZnobNar8PNLz+C86eO5kJnClsejwdHjhxBQ4Pv0QNtlZqaisTExIC/b3tEbLAIVqg4wWO1440LxzY5VjgmLRmT3n4JPS4ZGrTtEwWbKIooKSlp1ynE5tQXFGHJNbcDTXwZyjirB6Ysn4/0nt2Ctn2iYPN4PCgoKIDZbA7aNlJSUpCUlBS092+t8Fhi2kpmszmooQIAFHot/vrui6c93vuq4fjn9hUMFRT2qqurgxoqACAqOx2XPXHXaY9fOO1W3L/pU4YKCnslJSVBDRUAUFpairq6uqBuozUiLli43W4cO3ZMkm3Fdu2EwVNvBgAo1WqMeulhTPtyEaKSEiTZPlGwOBwOFBcXS7Kt7tdejMxBfQAAxvhY/P3T/2HMK49z4BWFvYaGBlRVVUmyrcLCwhZf7RhsEXcqpKioSLL/yBO+vuNRjJ77KDoN6C3pdomCQRRFHD58GBaLRbpt2p347r5nMemtlxCXmSbZdomCxe12Iy8vT9Jv9tHR0ejUqZNk2/MlqEcsrr/+esTFxeGmm24K5mYauVwuyUMFAEz44D8MFRQxLBaLpKECAAStGlM+eZ2hgiJGTU2N5EcQ6urqYLfbJd1mU4IaLGbOnIm33normJs4hRyh4sR2A3EZHlEoCPa6ilDbLlGgiaIo2+ezXN8HTxbUYDF8+HBERUUFcxONRFGU7R/U7Xa3a2gQUahwuVyyLQKzWCwh8dMWUXtZLBY4/NzaIZhC4QfdVgcLj8eDHj16YPbs2ac8vnLlSmg0GnzwwQcBa641nE6nrAtXpD50TBQMcn8ey719okAI9lUg/oiiKHtAb/VNyBQKBR544AHMmDED999/P+Li4rB9+3aMGjUKTz31FEaNGhWMPpvVnvGogWCuq0XpB694/9A4x0fw8eeTBv0IAgSV+rRfUKkgqDQQVKo/Pa4+/pjm+GMqCGoNBKXK+5z6eK3yj48bXyNE3EVAFGBy70dWqxVxcXGy9kDUXqGwH/m7L0+wtenupmPHjsVjjz2GefPmYcqUKRg5ciTGjx+Pe++9N9D9tZjNdvqgKinZnS7o66oQyrMBBZUagt4EhcEIhf5Pvwym0x/TGyHoDQwkHYjcXxB5xIIigdz7kdzbb1OwUKlUmD17Nh588EF89NFHGDBgAObNmxfo3lrF7XbLun0RABQKIIQXcYouJ8T6anjqq1vxKgGC3tCyIHLiMYPJe6SEwo7c+5Hc2ycKBLk/j+XefpuCBeA9ajFr1iyIoohly5Y1eZe1yy+/HFu2bIHZbEZmZiY++eQTDBo0qF0N+xIS4zgEBYDQDRZtI0K0muG2mtGaT1WF3ghlTDyU0fFQxsQd/z0eyug4KGPioTBF80hICJJ7P5J7+0SRQO79qM3BYvr06QCAiooKn7duXblyZVvfvtUUihD4JsWfthp5rGZ4rGY4S442XaBQQhkde1rgODmMKDScvCg1ufcjubdPFAiCIMj6zV3u/ahNweLhhx/GV199hQ0bNuDSSy/FwoULMW3atED31ioajUbW7auVSuh79D1+TgRo/OBPfz7tk83j8Z6icLsAlxOi03n8z398DHdojGkNKI8b7ppKuGt8X+st6AxQxsRD1eSRj+NHPfiNKKC0Wq2s6xy0Wq1s2yYKFK1WK+s6B7n3o1YHiwULFuCFF17AqlWr0LdvX8yaNQtz5szBbbfdBrWMtweXcwUsABhMJsTfdHtQ3lsUPYDbDdHpgOhyeYPH8V846eNTH3dBdP2p3mY9fiShofGIgsdqDtl1IaLNApfNAlepj3u/KBRQxSdDlZgKVUIqVElpUCemQZmQAoVa3qAZrvR6PaqrW7MGJ7AMBoNs2yYKFL1eL2uwkPv7YauCxYoVKzBt2jQsW7YMQ4YMAQDMmDEDzz//PN5++21Mnjw5KE22hE7mGxYF8z9SEBSAShGUBZGiKEK0204NG5ZTw4doMf8pkFggOuS9CgcA4PHAVVECV0XJn54QoIyNhyoxDarEVKiP/65KTINCJ+8OF+rk/oIk9/aJAkHuz2O5t9/iYLF582aMGjUKc+bMwQ033ND4eHR0NGbMmIFnnnkGEyZM8LneItgUCgWio6NlmxoYHR0ty3bbSxAECDq99xtuXFKLXye6XX8KIicFj4ZauOuq4a6thruuCh6z1FNJxcbTLPYDu055RmGK+SNsJKVCleANHQpjFAQhlC8WloZOp4NGo5FlaqBSqeQRC4oIUVFRsq2zMBgMUKnavHwyICLq7qZmsxmHDx+WfLtRUVHIzs6WfLvhQnQ64K6vgbu2yvurrgru2mq46k78uRpwOWXtUdAboT5+OsV7dMN7hEMZHdfhAkdlZaVkt0w/WVJSElJSUiTfLlEwFBYWynJaMSsrCzExMZJv92TyxpoAMxgM0Gq1ko8zTUhIkHR74UZQa7xrIeKTm3xeFEV4LA2NgcN9UuA4EUQ8DcE9EiVazXAcOwjHsYN/6l3rXbuRng1NWjbU6TlQJaRE9KLR2NhYlJaWSn6/gfj4eEm3RxRMCQkJkgcLlUoVEkfPI+qIBeCd3Hfo0CHJthcTE4OsrCzJttdRiS4n3HU1f4SO2iq4qsrgqiyBq6IUolO6MClotFCndvKGjfQcqNOyoYxNiKgjG9XV1SgsLJRseykpKUhKavmpOKJwUFxcLOldTrOzsyW78ac/ERcsAKC0tBTl5eVB345KpUK3bt1kW1dCXqLo8Z5aqSyBq7y4cUGns6IYok2aSycVBhPUaZ2gTsuBJj0b6vRsKE3yHo5sD1EUUVBQgIaGhqBvS6/XIzc3N6KCGRHgvWnngQMHJFmzFBcXh4yMjKBvpyUiMlh4PB7k5+cH/Xr8nJwcmEymoG6D2k4URXjM9XBVnBo2XBUl8DTUBn37yug4qNOz/wgbadlhdVWKy+XCwYMH4XQGb/2LUqlEly5dZJ9DQxQsVqsVhw4dCupCTq1Wi9zc3JD5ITcigwXgnZWen58ftGuJQ+WQE7WNx2Y5LWy4Kor9DuwKBGV8svf0yYk1G6lZEEJ45obD4cChQ4fgcgV+SJtSqUTnzp1lv1ScKNjMZjPy8/ODEi60Wi06d+4s+5UgJ4vYYAF4j1wcPXoU9fWBu9xRqVSiU6dOMBqNAXtPCh0epwPuylI4y4u9RzrKi+AoKgjeEQ5BAVVyOjTpOdBkd4M2+wwoo0LrFIrT6URBQUFA7yCs0WiQnZ0t+4RAIqlYrVYUFBQENKQbjUZ06tQpZI5UnBDRwQLwHg6vq6tDUVFRu+/4Fhsbi9TU1JBKhiQNd10NHMX5cBYVwFlUAEdxQdDWb6gSUqDJ7g5tzhnQZHeD0ij/Km9RFFFRUYGysrJ2/9SVlJSEpKQk2e9nQCQ1t9uN0tJSVFVVtet9BEFAWloa4uJC83L4iA8WJ7hcLlRUVKC6urrVAcNkMiExMZHrKaiRKIpwV5fDUVQAZ3EBnEX5cJYchegM/CItVVI6tDndock+A9rsblDo5TtaZrfbUVFRgZqamlYFDEEQEB0djaSkJJ76oA7PYrGgoqKi1QMdFQoF4uLikJiYKOstNJrTYYLFCR6PB/X19aivr4fFYmlyta5SqYRer4fBYEBsbCwXllGLiB63d81GUQEcRfnesFFWGOB7sQhQpWRAm3MGtNndoenUTZYFoW63G7W1tWhoaIDVam1ygadKpYJer4fJZEJMTAyP9BH9idPpRE1NDSwWCywWS5M/9Go0mlP2o3A40tfhgsWfeTweOJ1OiKIIQRCgUCigUqlC8vAShR/R5YSz9NgfYaO4AK6KUpx029v2EQSo0zpBm30GNDndocnqIsvt5t1uN1wuV+N+pFQqGSSIWsnlcsHtdjfuR2q1OiyCxJ91+GBBJDWP3Qpn8VE4i/PhKCqA49hheOoDNKFPoYA6PQfaE2s0MnND+qoTIoo8DBZEMjuxXsOevx+Ogn2wF+wP3AhzpQqajM7exaCde0CT2RmCIrRWkBNRZGGwIAoxoijCVVnqDRn5++Eo2A+PJTATMBV6I7Rde0PXvQ+0uT2h0HIhJREFFoMFUYgTRQ9c5cWw5++Do2A/7AV5gbnUVamCNrubN2R06wNVDG8CRkTtx2BBFGZEjweuskLY872nTRxH8iDa2z+8SpWSCV23PtB1PwvqtE4QhPBbNEZE8mOwIApzoscNZ/FR2Av2wZG/H46jB9t9t1eFKQa6bmd5j2bknMEFoETUYgwWRBFGdLvhLMqHvWC/9/TJsUOAq+03EhNUamhzz4S2Wx/oup0FpUn+SaBEFLoYLIginOhywl6QB1veDtj374C7rj2XtgpQZ2QfP2XSB6qkdM58IaJTMFgQdSCiKMJVVgjb/h2w7d8BZ3FBu95PGZMAXXdvyNB06gpByaFYRB0dgwVRB+aur4Etbyds+3fAnr+vfadMtHrozugLfe/B3nUZYTgxkIjaj8GCiAAAHocd9sN7Yc/bAVveTnjM9W1+L4UxGvpeA6HvPRjqtGyeLiHqQBgsiOg0ouiBszC/8WiGq7yoze+ljE+GvtcgGHoPgiohJYBdElEoYrAgoma5qitgy/Ouy3AcyWvzHVvVadnQ9x4Efc+BUEbFBrZJIgoJDBZE1CoemxX2g797F4Ae3AXRZm3DuwjQ5HSHofdg6Hr0l+XW70QUHAwWRNRmotsNx9GDsO3dCuvu39p2TxOlCrpuvaHvPRi6rr0hqNSBb5SIJMNgQUQBIbrdsOfvhXXXr7Dt2wbR0frpn4JWD32P/tD3HgRNdndeWUIUhhgsiCjgPE4H7Pt3wLJrE+wHf2/TmgyFKQb6XmdD33sQ1KmdeGUJUZhgsCCioPJYGmDdsxXWXZvgOHqgTe+hSkiBvtcg6Puey7uwEoU4BgsikoyrtgrW33+FddevcJUVtv4NBAHarr1hHDAM2i69eKqEKAQxWBCRLJxlhbDu+hXW33+Fu7aq1a9XRsfD0H8oDP2GQhkVE4QOiagtGCyISFai6IHj2GFYd22CbfdmeKzm1r2BQgFd974wDhgGTeczIAg8ikEkJwYLIgoZotsN+6Hd3itL9m+H6HS06vXKuCQYB5wPfZ9zoTRGBalLIvKHwYKIQpLHYYdt/3ZYd/0K+8HdgNiKK0uUKuh79Idh4DBosrryihIiCTFYEFHIc9dVw7JtHcxb18FTX9Oq16oS02AYOAyGs86BQmcIToNE1IjBgojChuhxw35gF8yb13iPYqDlX74ElRq6XmfDOOACqNN5x1WiYGGwIKKw5KqugGXrWli2/9LqW7yrU7NgGDAM+t6DoNDogtQhUcfEYEFEYU10u2Dbtx3mLWvgyN/XqtcKGh30vQfBOPACqFMyg9QhUcfCYEFEEcNVWQLzlrWwbF8P0WZp1WvVmbkwDbkUuu59OXiLqB0YLIgo4ohOB6x7tsK85Wc4jx1q1WuV8ckwDbkUhj5DeKdVojZgsCCiiOYsK4R5yxpYd2yE6LC1+HUKYxSMg4bDOPACKPTGIHZIFFkYLIioQ/A4bLD+/hssW9bAWXykxa8T1FoY+p8H4+BLoIpNCGKHRJGBwYKIOhxHUQEsW9bA+vuvLZ/uKSig7zkQpnNHQJ2aFdwGicIYgwURdVgemxWWHeth3vhDq26Eps09E6YhI6Dp3IPzMIj+hMGCiDo80eOGdfcWmDd8B2fJ0Ra/Tp2aBdO5I6A7cwAEhTKIHRKFDwYLIqLjRFGE4/BeNKz/DvbDe1r8OmVMAoznXAxDv6FQaLRB7JAo9DFYEBE1wVlyFA3rv4N19+YW3wBN0BthHHghjIMuhNIYHeQOiUITgwURkR+umkqYN/0Ay9Z1LV/oqVLD0GcITEMuhSo+ObgNEoUYBgsiohbwWM0wb/4Z5l9Xt+LeJAJ0PfrBdO5l0GTkBLM9opDBYEFE1AqiywnLjg1o2PA93FVlLX6dtksvRF10DTRp2UHsjkh+DBZERG0gejyw7d+BhvUr4SzMb/HrdGf0RdSF10CdnBG85ohkxGBBRNQOoijCcfSA90qSvJ0tfJUAfc+BiLpwJFQJqUHtj0hqDBZERAHiLC+GecP3sOzcCHjczb9AEKA/awiihl0FVVxi8BskkgCDBRFRgLnra2D+dTXMm3+GaG/Bjc8UChj6DUXU+VdCGR0X/AaJgojBgogoSDxWMxo2/gDzplUQHfbmX6BUwThwGEznXQ6lKSb4DRIFAYMFEVGQuc31aFj/Lcy//QS4nM3WC2oNjGdfBNO5I6AwmCTokChwGCyIiCTirq9Fw7pvYN6ypkVrMASNDsZzLobpnEuh0Okl6JCo/RgsiIgk5qqpRMPaFbBsX9+iceGCzgDTuSNgHHQRFBqdBB0StR2DBRGRTFxVZahf8zWsOzcBaP5LscJggmnoFTAOGAZBrQl+g0RtwGBBRCQzZ3kx6n/+ErY9W1pUr4iKQdTQK2Hodx4ElTrI3RG1DoMFEVGIcJYcRd1PX7R40JYyJh5Rw0ZC32cIBIUiyN0RtQyDBRFRiHEU5qP+p89hP7SnRfWqlEzEXDYK2uzuQe6MqHkMFkREIcpekIf6Hz+H4+iBFtXrevRD9CU3QBWXFOTOiHxjsCAiCmGiKMJ+eC/qf/wczqL85l+gVMF0ziUwDb0CCi2vICHpMVgQEYUBURRhP7ALdT9+DlfpsWbrFcZoRA+/jusvSHIMFkREYUQUPbDt3Ya61Z/BXVXWbL06NQvRl42CtlM3CbojYrAgIgpLotsF868/on7N1xDt1mbrdWcO8K6/iE2QoDvqyBgsiIjCmNtcj/qfvoBl61qguS/nShVMQy6FaejlnOBJQcNgQUQUAZylx1D73Ydw5O9rtlZhikb08L9A3+ccCALXX1BgMVgQEUUIURRh278Ddd9/BHd1ebP16rROiB4xCtpOXSXojjoKBgsioggjupze9Rdrv4ZotzVbr+s5ENEXX8/1FxQQDBZERBHKba5D/Y9fwLJ1HZq9yZlK7V1/cd5lXH9B7cJgQUQU4Zylx1D77QdwFOxvtlYRFeNdf3HWYK6/oDZhsCAi6gBEUYRt33bv+ouaimbr1enZiLliNDTpOcFvjiIKgwURUQciupxo2LQaDWtXQHQ0s/5CEGAcdBGiLryW48GpxRgsiIg6IHdDLep//ByWbevR3PoLZXQcYq4YDV33PtI0R2GNwYKIqANzlhz1rr84ktdsre7MAYi57GYoo2Ik6IzCFYMFEVEHJ4oibHu3ou77j+GurfRbK2j1iL74ehgGDOXiTmoSgwUREQE4vv5i/XeoX7sCcLv81moyuyBm5Fiok9Ik6o7CBYMFERGdwlVZgpqv3m3+9IhCCdPQyxE19AoIKrU0zVHIY7AgIqLTiKII6/b1qP3+I4g2i99aVUIKYq66Bdrs7hJ1R6GMwYKIiHxym+tQ9+2HsP7+a7O1hn5DEX3J9VDojRJ0RqGKwYKIiJplO/g7ar9e1uziToUxCjGX3Qxdz4EQBEGi7iiUMFgQEVGLeBx21P/8JcwbVwGix2+ttmtvxFwxmjc264AYLIiIqFWcJUdR89VSOIuP+K0T1BpEXXgNjIOHQ1AoJeqO5MZgQURErSZ63N5bs//4BUSn3W+tOjULMSPHQZPWSaLuSE4MFkRE1GaumkrUfrMc9gO7/BcKAoznXIKoC66GQqOVpjmSBYMFERG1iyiKsO3ZgtqV78NjrvNbq4yJR+zIcdDmnilRdyQ1BgsiIgoIj9WMulWfwrJ1bbO1xkHDEX3xXyCoNRJ0RlJisCAiooCyH8lD7VfvwlVZ4rdOlZCK2L9MhCYtW6LOSAoMFkREFHCiy4mGX1aift1K//cdUSgQNWwkTEMv55UjEYLBgoiIgsZZUYzar96F4+gBv3XqjM6Iu24iVPHJEnVGwcJgQUREQSWKHlg2/4y67z+G6HL6rBPUGkRfehMMA87n1M4wxmBBRESScFWWoPqzxXAWFfit03btjdiR46CMipGoMwokBgsiIpKM6Hajfu0KNKxd4XcsuEJvRMzIsdD36C9hdxQIDBZERCQ5R2E+qj97E+6qMr91+j5DEHPZzVDo9BJ1Ru3FYEFERLLwOOyo++FjWDb/7LdOGR2P2OsmQJvdXaLOqD0YLIiISFa2g7+j5ou34GnwN7VTgHHIJYi+6FoIKrVkvVHrMVgQEZHsPJYG1KxYBtueLX7rVEnpiPvLJKhTMiXqjFqLwYKIiEKCKIqw7tqE2m+WQ7TbfBcqlIi66BqYhoyAoFBI1yC1CIMFERGFFFdtFWo+XwJHwX6/dZqsLoi9diJUcYkSdUYtwWBBREQhRxQ9MG9ajbpVn/odCS5otIi57Gbo+57LoVohgsGCiIhClrOsENWfLYar9JjfOt0ZfRE7chwUBpNEnZEvDBZERBTSRLcL9T99iYb13wJ+vmUpo+MRd+NUaDI6S9gd/RmDBRERhQX7kQOo+Xwx3DWVvosUSkRfegOMg4bz1IhMGCyIiChseOw21H33ASzbfvFbp+vRH7FXj+fEThkwWBARUdix7d+Omi+XwmNp8FmjjEtC/I1/gzo1S8LOiMGCiIjCkruhDtWfLoIjf5/vIqUKMZffDEN/3opdKgwWREQUtkSPB/U/f+W9Wyp8fzvT9x6MmKvGQKHRSddcB8VgQUREYc92cDdqPnvT76kRVWIq4m78G9RJ6RJ21vEwWBARUURw11Wj+uOFcBw76LNGUGsQc+UtMPQ5R8LOOhYGCyIiihii2426Hz+Def13fusM/YYi5vKbIag1EnXWcTBYEBFRxLHt347qz5dAtFl91qiSMxB/49+gSkiRsLPIx2BBREQRyVVdgeqPF8BZXOCzRtDoEHv1OOh7DpSws8jGYEFERBFLdDlR98PHMP/6o98649kXIfrSGyCo1NI0FsEYLIiIKOJZd29GzZdLITpsPmvU6dmIu+FvUMUmSNhZ5GGwICKiDsFVWYqqj96Aq6zQZ42g0yPu2gnQde8rYWeRhcGCiIg6DNHpQO3K92HZts5vnfHcEYi+6DoISqVEnUUOBgsiIupwLDs2oHbFMohOh88aTWYXxN04FcqoWOkaiwAMFkRE1CE5y4tQ/dEbcFWU+KxRmKIRf9Pt0GTmSthZeGOwICKiDsvjsKH262Ww7trku0ipQswVo2HsP1S6xsIYgwUREXVooijCsnUtale+D7hdPusMZ1+ImBGjuO6iGQwWREREAJwlR1H10RtwV5f7rNF06oa4G/8GpTFKws7CC4MFERHRcR6bBdWfvgn7gV0+a5TR8Yi/+e9Qp2ZJ2Fn4YLAgIiI6iejxoP7Hz9Hwy0qfNYJKjZirx8PQe5CEnYUHBgsiIqImWHdvRs0Xb/m9JNV07mWIGn4dBIUCrupyWHduQtQFIyXsMvQwWBAREfngLD2Gqvdfhbu2ymeNtktPxFw1FlXLX4G7pgopdz4Fhc4gYZehhcGCiIjID7elAdUfvQFHwX7fRQol4HEDAKIvuQGmc0dI1F3oUcjdABERUShTGkxIuGUmjIOG+y46HioAwPzrjxBP+nNHw2BBRETUDEGpRMzlNyP26vGAUuW31l1XBdvebdI0FoIYLI4TRRE8K0TUdif2Ie5HFMkM/c5D4vi7oDDF+K1r2PhDm94/EvajDrnGwmazob6+HlarFVarFU6ns/E5hUIBnU4HvV4Pg8GAqKgoKBTMX0QnE0URFosFDQ0NsNlssFgscLv/OPSrVCqh1+uh1+thNBphNBohCIKMHRMFlqOoABWLnvFbkzhpNjQZOT6fF0UR9fX1sFgsjd+PPB5P4/MqlapxP4qKioJerw9U+0HVYYKFKIqoqalBVVUVrFZri1+nUCgQHx+P+Ph4aDSaIHZIFPrcbjeqq6tRVVUFh8P3JXh/plarER8fj7i4OKhU/g8jE4U60elAxVsvwllc4LdO33sw4v4y6bTHnU4nqqqqUFVVdUogb45Wq0VCQgJiY2ND+gfeDhEsrFYrjh07Brvd3q73SUlJQWJiIn/yog6prq4ORUVFcLl830uhOQqFAunp6YiJieF+RGHLunsz6lZ/5nf0NwBAoUTKzCehPH7aRBRFVFVVoaSkpF2nOtRqNTIzM2E0Gtv8HsEU0cFCFEWUlZWhvLyZ//xW0Gq16NSpE7RabcDekyiUeTweFBYWora2NmDvaTKZkJWVBSVv5kRhzN1QC8exQ3AcPQjH0YNwlhwBTjqVAQBRF4xE1AVXw+l04siRI606Yt6c+Ph4pKWlhVxIj9hgIYoijh07FtAvhicolUrk5OSEzfkuorZyu93Iz88P6BfDE7RaLXJycqBWqwP+3kRy8DjscBYehv1IHhxHDsBReBgKrR6xf38E+QVH2nW0zxeTyYROnTqF1KmRiAwWwQwVJygUCuTm5kKn0wVtG0Ry8ng8OHz4cFBCxQkajQa5ublcd0ERSXQ5YT6Wj2NWJ1xuT/MvaCOTyYTs7OyQOXIROhEngKqrq4MaKgDvF92jR4+esoKXKJIUFxcHNVQAgMPhQFFRUVhfWkfkk1KFUrciqKECABoaGgJ6yr+9Ii5Y2O12FBcXS7atsrIySbZFJKX6+npUV1dLsq26urqg/yBAJIfKysqgh/MTysrKJNtWcyIuWEj9009FRQVsNptk2yMKthOLNaVUVFTUqsvuiEKdw+FASUmJpNs8duxYSBz9C1qwOHr0KC666CL07NkTffr0wQcffBCsTTWy2Wwwm81B386fVVRUSL5NomCpq6sLyiIzfzwej2RHSIikUFXl+26owWK322X5HvhnQQsWKpUKc+fOxe7du/H999/jrrvuCvpfuLKyMqjv70ttba3kX4iJgkWu/aiysjIkftoiai+PxyNLsADk239PFrRgkZaWhn79+gEAkpOTER8fH9R/6BOTNeUgiiLq6upk2TZRINntdtnO0zqdzpA5R0zUHvX19bIt7K+vr5f9tGKrg4XH40GPHj0we/bsUx5fuXIlNBpNk6c8fvvtN3g8HmRlZbW902bY7XZZf9qxWCyybZsoUOT+xs79iCKB3PuR3NtvdbBQKBR44IEH8OqrrzaeE92+fTtGjRqFp556CqNGjTqlvrKyErfeeiv+97//BaZjH+T+h+QXRIoEcu9Hcm+fKBDk/n4g937UplMhY8eORWJiIubNm4djx45h5MiRGD9+PO69995T6ux2O66//no88MADOO+88wLSsC9yX5nhcDh4fpjCntz7kdzbJwqE9t6XKty336ZgoVKpMHv2bMybNw9XXXUVBgwYgHnz5p1SI4oiJk6ciIsvvhjjx48PSLP+hMKgKgYLCndyn5sNhf2YqL3k/jyWe/ttXrw5duxYWCwWiKKIZcuWnXYzoXXr1uG9997Dp59+in79+qFfv37YuXNnuxsmouAJlZHARBS+2jygf/r06QC8MxyaukPh+eefL2lqCoW7JPKLMoU7uW9kJPf2iQJBoVDIevRP7v2oTVt/+OGH8dVXX2HDhg1wuVxYuHBhoPtqNblvBqbT6RgsKOzJfcdeubdPFAih8P1ITq0OFgsWLMALL7yAL774An379sWsWbMwZ84cOJ3OYPTXYnJ/QZJ7+0SBIPfnsdzbJwoEg8Eg6/bl3o9aFSxWrFiBadOmYenSpRgyZAgAYMaMGairq8Pbb78dlAZbSqPRyHr4R+5PJKJAkPsLEvcjigRy70dhc8Ri8+bNGDVqFObMmYMbbrih8fHo6GjMmDEDzzzzjKznlARBQFxcnGzbjo6OlmXbRIGk0WhgNBpl2bZWq5X9CyJRIERFRUGlavMSxnaJiYmRfc2hIEbQNZJ2ux15eXmSbzchIQFpaWmSb5coGOrq6nDkyBHJt5uRkSHbDwdEgVZWVoaysjLJt9ulSxfZj5hE1BJsrVaLqKgoybcbHx8v+TaJgiUqKgoajUbSbapUKsTExEi6TaJgio+Pl3xBv8FgkD1UABEWLAAgPT1d0rUWqamp0Gq1km2PKNgEQUBmZqak28zIyJD9EjmiQFKpVEhPT5dse4IgICMjQ7Lt+RNxe7JarZbsH1ev1yMhIUGSbRFJyWAwICkpSZJtxcXFyXKkkSjYYmNjYTKZJNlWKP2QG3HBAvAuXklMTAzqNtRqNTp16sTZFRSxkpOTg/5FUa/Xc30SRawTR/+C/Q0/NjY2pE7JR2SwAICUlJSghQu1Wo3OnTtDrVYH5f2JQoEgCOjUqVPQjiYYDAbk5OTwFAhFNJVKhc6dOwctXMTGxiIjIyOkfsiNqKtCmlJVVYXi4uKA3SDMZDIhMzNTtkuJiKQmiiJKS0tRUVERsPeMi4tDWloaQwV1GG63G0VFRaitrQ3Ye574ATqUQgXQAYIF4L2leWFhIcxmc5vfQ6FQID09HTExMSH3n0gkBavVimPHjrXrlsxqtRqZmZmyzcogkltdXR0KCwvbNfdJr9dLcoqlrTpEsAC8P3WZzWZUVVWhrq6uxa/TaDRISEhAbGys7ENHiOQmiiLq6upQVVXVqqB+YqFzdHQ0j1JQh+d2u1FbW4vKyspWBfWoqCjEx8fDZDKF9A+4HSZYnMzlcqGhoQFWqxVWqxUOhwOiKEIQBCgUChgMBuh0usZrgkP5P5BILna7HWazGTabDRaLBS6Xq3E/UqlU0Ov10Ov1jfsTEZ1KFMXG/efE9yO32924H6nV6sb9x2Qyhc26vg4ZLIiIiCg4eEySiIiIAobBgoiIiAKGwYKIiIgChsGCiIiIAobBgoiIiAKGwYKIiIgChsGCiIiIAobBgoiIiAKGwYKIiIgChsGCiIiIAobBgoiIiAKGwYKIiIgChsGCiIiIAobBgoiIiAKGwYKIiIgCRiV3A0REraHpPxmCQglBoYRCpYGgVELR+Gf1H8+pNX98fKK2ieeUKhUEhQBBEKBQCFCoFFAIAgSFAKVKAUEB388JAgQFvM8pFVAovM9pVAooFULjL23jnxV/PCd461Qn1Z38ulPeQxCgVnh7OPljhSBAKQBqpeJPHwNKwfu8Wimc8rEgAAoIUCrQ+LEgAEoB3r9b42tPPA8oFQIEwPu+jR97awWPG4LoAUQPcPLHogdwu5p+znP8cY8HEEUIHlfja0SXE/C4AY8botsNuJwQPW7A44Hocnh/dx9//uTa4x97n/PWih4PRLcHHqcLotv7sdvpbPxY9HjgdrgaP/Y4XPAcf43odje+ztP4HiI8bg9Ejwi3w338zyLcTvcfz7mPP+fxPudxuOFxi8e3dbwftwjRLcLp8cAtAm5RhMMjNn7sFnHKn0/+2IMTz51c5/34NTFf1n3zBB6xICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooBhsCAiIqKAYbAgIiKigGGwICIiooARRFEU5W6CiEgOdrsdTz/9NB544AFotVq52zkN+2u7UO4NCP3+2oPBgog6rLq6OsTExKC2thbR0dFyt3Ma9td2odwbEPr9tQdPhRAREVHAMFgQERFRwDBYEBERUcAwWBBRh6XVavHII4+E7OI59td2odwbEPr9tQcXbxIREVHA8IgFERERBQyDBREREQUMgwUREREFDIMFEXVI9957L4YNG4axY8fC4XCc8pzVasXVV1+NCy+8ECNGjEBVVVVI9XfC008/jbPPPlvWflwuFyZOnIhhw4bhzjvvlKSX1vR3gpT/Vk3x1V8ofK4FGoMFEXU4W7duRUlJCdasWYOePXviww8/POX5FStWoHfv3vjpp59w88034+233w6p/gCgvr4eu3btkr2fL774ApmZmVizZg0sFgt++eUXSXpqaX+AtP9WTfHXn9yfa8HAYEFEHc769etx2WWXAQCuuOKK074ZduvWDRaLBQBQU1ODpKSkkOoPAF5++WVMmzZN9n5a0quc/QHS/ls1xV9/cn+uBYNK7gaIiKRWU1OD9PR0AEBMTMxph5+7dOmCXbt2oXfv3hAEARs3bgyp/mpra7Fz507885//lL2fmpqaxntdNNWr3P1J/W/VFH/9yf25Fgw8YkFEEaukpATnn3/+ab9EUURdXR0A7xf9+Pj4U163ZMkSXHTRRdi1axcee+wxPP744yHV39y5czF9+vSg9NSUuLg4n/34ey4U+pP636op/vqT6nNNSgwWRBSxUlNTsXbt2tN+XXXVVfj2228BACtXrsTQoUNPe+2JL/6xsbGoqakJqf4OHDiAJ598EldccQXy8vLwzDPPBKW/E4YMGeKzH3/PScVfD1L/W7W2P0CazzVJiUREHdA999wjnn/++eItt9wi2u12URRF8bbbbhNFURRra2vFq666SrzwwgvFoUOHivv27Qup/k42cOBAWfo50YvT6RRvvfVW8fzzzxdnzJghSS+t6e9kUv1bNcVXf6HwuRZoHOlNREREAcNTIURERBQwDBZEREQUMAwWREREFDAMFkRE1GjixIkQBAF///vfT3vujjvugCAImDhxYuNjJSUlmDFjBnJzc6HVapGVlYVrrrkGP/zwQ2NNTk4O5s6dK0H3FAoYLIiI6BRZWVlYvnw5rFZr42M2mw3Lli1Dp06dGh/Lz8/HwIEDsWrVKsyZMwc7d+7EN998g+HDh8s66ZLkxcmbRER0igEDBuDQoUP4+OOPMXbsWADAxx9/jKysLOTm5jbWnTiCsWnTJhiNxsbHe/XqhcmTJ0veN4UGHrEgIqLTTJo0CW+++WbjnxctWnRKWKiqqsI333yDadOmnRIqToiNjZWiTQpBDBZERHSa8ePHY+3atcjPz0dBQQHWrVuHcePGNT5/4MABiKKIHj16yNglhSKeCiEiotMkJiZi5MiRWLJkCURRxMiRI5GYmNj4/InZioIgyNUihSgesSAioiZNnjwZixcvxpIlS05bM9GtWzcIgoA9e/bI1B2FKgYLIiJq0hVXXAGHwwGHw4HLL7/8lOfi4+Nx+eWX4z//+Q/MZvNpr42Im2lRmzBYEBFRk5RKJfbs2YM9e/ZAqVSe9vx///tfuN1uDB48GB999BHy8vKwZ88ezJs3D+eee64MHVMo4BoLIiLyKTo62udznTt3xpYtW/Dkk0/innvuQXFxMZKSkjBw4EC8+uqrEnZJoYR3NyUiIqKA4akQIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKmP8HFk9eVQNDFeIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHOCAYAAADEwkAMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnJklEQVR4nO3dd3wUdfoH8M9sb+m9kRAIIr2IgoiKig3shwcCUtX7SRHbYTkLnhUbgnfqKQiKgr2LWEAFBVE6AlITIL2X7WV+fyxEkOym7c7sbj7v14sXYffZnQfIJJ/MfOcZQRRFEUREREQBoJC7ASIiIoocDBZEREQUMAwWREREFDAMFkRERBQwDBZEREQUMAwWREREFDAMFkRERBQwDBZEREQUMCq5GyCi0CKKIuDxQPSIED1u4Njvottz7HHvr1M+dntOrveIJz0HAVDqtFBodcd+10Kh00Kh0UAQBLn/2kQUIAwWRGFOFEW4LVa4GhrgbjDDZTbD1eD95TY3nPDx8cebeswMt8UC0e0GpB7GKwhQaDVQanXeoKHVnhQ8lCf9rvM+/5fnFFotVFEmaOLioI6LhSY+DuqYGCg0amn/LkQEgSO9iUKHKIpwN5hhLyuHvbwC9vJy2MsqYC+vgKOiAq66+r8EB+/vkoeBMKGKMkEdeyxoxMV6Q8fx8HH8z/F//llpNPLoCVE7MVgQSUAURbjN5saQ0BgYysrhqKho/NheUQGP1SZ3ux2WoFb/GTjiYqGOi/MGj9gYaFNToM9Ihz4jDdqUFCjUPOBL1JSIDxZutxtPPvkk7r///ja93mazYcyYMdi1axcMBgNSU1Px8ssvIycnJ7CNUtgSRRGOikpYDh+Bvbj0pKMMxz92lFfAbbXK3WqbuUURKyqKMS4pvc3v8Z+Sw1hfX4NSpwP/y+2Jzjp9ADuUmEIBXUoydBlp0KenQ5eZDn16GnSNwSMZChWDB7Vee79nhYKIDxZbt27F5MmTsWXLlja93mazYfXq1bjssssgCAJefPFFfPrpp/j6668D3CmFMlEU4ayphaXgMCz5h2EpOALrYe/vloIjcFsscrcYVPttFjxTdAgv5/Zs83tsN9cjTaPF7fl78O+svPAOFs0QlEpojwePjHToM9KhS0+DPsMbPrTJSQwe1KT2fs8KBREdLHbt2oURI0bA6XQiPT0dV111FebOnduu9/ztt98wZswY7N+/P0BdUihx1tXDUnAY1oIjsBw+Akt+gTc8HD4CV1293O21m6BSQRVlgspkhNJohMpkhMp07M8GAwSVCoJCgKBQAsd+319Wgsmv/AdOtxspMbG4qG9/3H7VNRAUCkChgKBQQFAIgFIJQRAgKJXAsd8ba5QKiG4PPHY7hky/Ba9Nvw1dE5Pgsdnhttvhsdvhsdm8Hx9/zOZ93G07/rwdbrsNHptd7n/GdhNUSuhSU6BLTz921CMNxi65MOV1gb5TJkNHBxWM71lyiOhgAQAzZsxA9+7dMWPGjIC834033oiEhAQ8//zzAXk/kp7LbIH18PHgcNh7FOJYeHBWVcvdnk+q6CioY2O9YcBohNJ0cjA46TGjEcrjjzf+boRCo2nTtgO5H+Xk5ODzzz9Hr1692vR6URThcThODh42G5x1dXBU1cBZUwNHVTWc1TVwVlfDUV0DZ3UNHNXVcFbVwONwtPvvEEyCWg1j5xyY8nJhzOsCUxfv7/qMdG9Qo4gW6O9Zcoj4WPzbb79h/Pjxpzw+bNgw7N69u8nXbNmyBVlZWac8/vjjj2Pfvn14+eWXA94nBZ7odsOSfxj1u/9A/Z4/UL9nLxr2H4SjvELu1k6iio6CNjER2uREaJKTGj/WHvtYk5wIbVIilDqdbD0Gcj9qL0EQoDx2yWlrHb809+TAcSyAVFXDWVN7QijxhhGpj1SJTica9u5Dw959Jz2u0Otgyu3sDRt5XWDq2gXGrrnQpiTzSpYI4mtfCycRfcTC5XIhLi4O5eXl0LXzi/IzzzyDFStW4Ntvv0VsbGxgGqSAcdvtaNi7/1iI2IuGPXtRv3efrFdYqKJM0CR5Q4H2L4HB+3iSNzDo5QsMLRHI/Qho/xELqXmcLjiqqmArKoatsBjWomLYCotgLSyCtbAYtqJiiC6XbP2pokwwdvWGDWPXXJiOfayJj5OtJ2qbQO9rconoIxZHjx5FVFRUu/+DnnvuOSxfvpyhIkQ4a+tQv2evN0T84f3dcjDfO9xJQgqdFoZOnWDIzoIhOwv67E4wZGVAm5zsDQyGyFicGKj9KFwp1CrvFSApyUD/vqc8L3o8sJdXHAsdRd7fC4uOhY9i2IpLgho8XPUNqN2yDbVbtp30uCYhvnHdhimvC6J794Sxay7Xb4SwSNnXIv6IxahRo3Do0CFcd911ePzxx1v9HkePHkVWVhZyc3MRFRUFANBqtfjll18C3S79hSiKsJeWeQNEY4jYC1thkWQ9CGo1DFmZ0GdnwZjTCfpOWTBke8OENjmpQ5zzDsR+BADTp0/HJ598gpKSEiQmJsJkMnWIRdCi231S8LAW/nnEw1Z0PHhIE4oVeh2ie/VATO9eiOnTE9F9enkDE4WEQO1rcovoYEHhQxRF2AqLULttp/doxB5vmHBW1wR924JSCX1mBvTZWTB08h59MORkw5CdBV1qivcqB6IgEd1uWI8WoWH/ATTsOwDz/oNo2H8AlkP5kgQObWoyYnr3QnSfXojp2wvRPU4P+dNzFNoYLEgWotuNhn0HULNpK2q2bEXN5m2wl5YFdZuq6GhEde8GY24ODDmdGo886NLTOUWRQo7H4YTl8GFv0Nh3AA37D8C87yAsR44CHk/QtisolTDmdUFMn16NvwydszvE0TkKDAYLkoTbbkfdjt9Rs3kbajZvRe3W7XDVNwRte9rUFESdfpr3V/duiDr9NOjSUrl6nsKe22aD+VABzMfDxrHgYSsqDto2VVEmRPfuiZje3tMnMX16cXEo+cRgQUHhrKlFzdbtqNm8FTWbtqLu990Qnc7Ab0ihgDEnG1Gnd4Op+2mIOr0borqfBk1cbOC3RRTCXGYzzAcOeY9u7DsA8wFv4AjW5dX6rAxEH1urEdu/L6JOP42nDQkAgwUFiK2oBDWbt6J681bUbN4K874DAd+GQqOBKa/Ln0ciTj8NpryuEXP1BVEwOKprULfzd9Ru24m67TtRu+P3oMzmUEVHIW7QQMSddQbizxoEY5fOPELYQTFYUKuJHg/MBw5610ds3orqTVthLykN6DZU0VGIOq3bCSGiGww5OVwLQdROoscDS8Fh1G7/vTFoNPyxN+ALRTVJiYg/6wzEDx6E+LPOhC49NaDvT6GLwYKaJYoiLAWHUbluPap+/gU1W7bDVVcXuA0IAkx5XRDbvy9iB/ZHTN9e0GWk86cdIom4bTbU7/oDtdt3ona798iGrbgkoNvQd8o6FjLOQNxZg3i6MoIxWFCTXGYzqn/5DZXr1qPyp/WwHg3c7AhBrUZ0rx6IG9gPsQP6IaZfH6hjogP2/kTUfvbyisaQUbv9d9Tt3BXQu/iaTsvzBo3BZyJ2YH+ojIaAvTfJi8GCAHiPSjTs3e8NEuvWo2bz1oBNC1RFmRDTvy9iB/RF3ID+iOp1epvu80BE8hHdbpgPHGo8qlG7fSfM+w8CAfgWIqiUiO7dq/GIRkzf3m2+YR7Jj8GiA3PW1KJy/S+o/GkDKtetD9jqcW1KMmIH9EPssSMSprwuvAaeKAK5zGbUbt2Bqg2/ouqXX1G/a09AgoZCp0XsgP7HjmgMQlT3brziJIwwWHQgotuNut93Nx6VqN3xe0AG7Ri75nqDxADvGgnOiyDqmJw1taj+dZM3aGz8DZaD+QF5X3V8HJLOH4bE4eciYchZnAwa4hgsIpy9vKLxiETVz7/AWVvbvjcUBO/6iDMGIHZgP8T07wMNb8xGRE2wlZah+pffULVhI6p++RX2kvZP11VotYgfciaShp+LxPOHQZuYEIBOKZAYLCKMx+lC7dZtqFy3HhXr1qNhz952v6cmMQEJ5wxBwjlDED/kTAYJImq141eXVW/4FVUbfkX1xk0B+UEnpk8vb8gYfi5nZ4QIBosI4LbZULluPcq+WY3y79fC3WBu1/sJKiVi+/drDBOm0/K4sxJRQIkeD+r/2IfqDRu9QWPTFnistna9pz4rE0kXnIuk4ecipn9f3iJeJgwWYcpltqBy7U8o/Xo1Kn/8CW6rtV3vp0tPQ8Kws71HJc4cCJXJFKBOiYia53E4Ubtjpzdk/PIbarftaNeVaeqYGCScNxRJ55+LhHMGQ2U0BrBb8ofBIoy46htQ/sNalH29GpXr1sNjt7f5vRRaLeIGDWg8KmHIyeZRCSIKGW6LFdWbNqPi+3Uo//7Hdq3PENRqxJ91RuMpE11KcgA7pb9isAhxzppalK/5AWXfrEHlz7+060ZehtwcJAwdgsRzhiD2jP5Q6riymohCnyiKqN/9B8rX/IiKNT+ifvcf7Xq/qJ6nI2m495QJT/UGXocNFqIowul0wmazweFwQBRFCIIAhUIBvV4PrVYLhUyzFxyVVSj77nuUfbMa1Rt/a/MMf6XBgPghZ3qPSgwdDH1GeoA7pY5OFEU4HA5YrVa4XK7G/UipVDbuR/yiTYFmKypB+fc/onzNj6jeuKldp0x06WlIvmg4Ui67GNG9e8jy+erxeGC322Gz2eB2uxv3I7VaDb1eD7VaHVb7UYcKFqIowmq1orKyEvX19fA0M8NBp9MhPj4eMTExUAZ5OIu9rBxl365B2derUb1pS5vnS+jSUpF88QVIPP9cxPbrA4VGHeBOqaMTRRH19fWoqqqC2WyGvy8hgiDAYDAgPj4eUVFRsoV1ilyu+gZUrPsZFWt+RMWPP8FV39Dm99JnpiP5kouQctnF3qFcPr6Zu+oboDQZ2/XN3uPxoLa2FlVVVbA2s0ZOoVDAZDIhPj4eRmP7tiuFDhMs6uvrUVJSAnsb1iUIgoD4+HgkJycHNGDYikpQ+s1qlH2zGrVbt7d5Yp0+KxPJF1+AlIsvRFTP00P+k47CkyiKqK6uRllZGVxt+AlRqVQiKSkJCQkJ/ByloPA4XajZtAXla35A+Zq1sBW2/R5HhuxOSLn0IqRcfjFMXbuc9NzB/74KZ20dut1zR6s/lz0eD8rLy1FZWdnsD7dNUavVSE1NRXR0dMjuRxEfLFwuF4qLi1Hb3uulAahUKmRmZsLUjismLEeOouzr1Sj7+jvU7dzV5vcx5nZG8ojhSL74Qp4jpKCz2+0oLCyEJQA3odLpdMjMzISOa3woiERRhHnfAZSt/gEVa35s39fbrrlIuXQEUi4bAUN2J6wf9TdY8g8j56ZJ6HLbrS3++muxWHD06FE4HI4293JcVFQU0tPToVaH3lHpiA4WNpsN+fn5bfrpyp+kpCQkJye3+JPJUVODsq++RfFnK71HJtrIdFoekkdcgOQRF8DUNbfN70PUGvX19Th8+LDfUx5tkZmZiVgOWyOJ2ErLUPHDOpSv/gFVG35t80J4Y25nmA8eavxz7oxbkPt/05p9XUVFBUpKAnsreoVCgZycHBgMoXVn2IgNFlarFYcOHWrToaaWSEhIQGqq73tiuO12VHy/DsWffYnKtT+3eXFRdM/TvWHi4gtgyO7UnpaJWq2urg6HDx8O2vtnZGQgLi4uaO9P1BSX2YKqnzeg7Ns1KF/9Y7tvB5931yxkT57g8/mysjKUlbV/nHlTBEFATk4OjCE0pyMig4XT6cT+/fvhdrftaoqWSklJQVJSUuOfRY8H1b9tQcnnK1G66ts2T8CM6dcbySMuRPKI4bySg2RjsVhw8ODBoG8nOzsbUVFRQd8OUVPcNhsq1/6M0q++QfkP69o8/bP7A3OQOeZvpzxeXV2NwsLC9rbplyAI6Nq1K7RabVC301IRFyxEUUR+fj7M5vaNtW6pLl26wF1YhOJPv0TJF6tgLylt/ZsIAmLP6O89MnHRcA5vIdl5PB7s27cPznbMTWkppVKJvLw8qDh+mWTmtlhR/sNalH71DSp//BmeVq6F6PnEXKRdeXnjnx0OB/bt2xfw04hN0el06NKlS0ist4u4YFFVVYWioravBG4tZW0dCm++rdWvE5RKxJ05EMkXX4ikC87jHfoopBQWFqK6ulqy7UVHR6NTJ57qo9DhamhA+ZofUbryG1T+tKFFp7MFpRK9n3sCyRcNhyiKOHToUEAWPLdUcnIykpPl/8E0qMHi888/x5133gmPx4M5c+Zg2rTmF7i0h8fjwZ49e4K2rsKX+kefgXnH7y2qjenXG6mjLkPKpSOgiYsNbmNEbeBwOLB3b/vvittaXbp0gV6vl3y7RM1x1tah9KtvsOeRJ5utFdRq9PvPc1D37hHU9UlNblsQ0L1796DPXWpO0I49ulwu3HHHHVizZg2io6MxYMAAXHvttYiPjw/WJlFbWyt5qAAA7bAhfoOFvlMW0q64DKmjLoOhU6aEnRGhcYpfS1VWVgaxG//bzczk/kGhRx0TDXVSYotqlXodDv7nf4i9ayYg8YDC47NmEhNb1muwBC1YbNy4ET179kRGRgYA4PLLL8eqVaswduzYYG1Sti+IqkH9odBq4LH/eT5OHReLlMsuRtoVlyG6d8+QOO9FHdNPBVWI0anRPckEtdL/5EuPxyPpKZAT1dTUIDU1lWstKCSts2qgOvcCxB/YA31aCvTp6dBlpEGXngZdagp0qSnQpiRDZTTAbrdj3759svRZWVkp+xC6Vu/BHo8HPXr0wFVXXYWnnnqq8fFVq1bhiiuuwFtvvYXRo0ejqKioMVQA3mvWg7ky1uVywWZr22re9lIYDIg6ezDqf/4FSRech7QrLkP82YOhUPMLJMnP7vJgc2Etfi+pR8/UKL8Bw2KxyHLU7ziz2YyYmBjZtk/kiycjEzXTZsCtVaFPajRyEwxQ+Pjm3dDQ9rHi7eV0OuFwOGS9QqTV3/kUCgXuvfdezJw5E/fccw/i4uKwbds2jB49Go8//jhGjx4NAE2ugg1mgpIrVBwXPfEGJN93L5RGI2wAiixOAMFfUU/UHKvTGxTs7uYDhtz7UU2DBfXQyNoDUVPcggKAB/V2F34qqML2kjqfAaO5e38Em9VqDa9gAQDjxo3D3LlzsWDBAkydOhUjR47EhAkTcNdddzXWZGRknHSE4ujRozjrrLPa37EPUq68bYpZb8CGYisAeT+hiJrjL2DIvR+VNtixu6RC1h6IWsJfwJB7P7JarbJOtW3zVSGvvPIK7rvvPmRkZCAnJwcfffTRSStRXS4XTj/9dHz//feNizc3bNiAhITgXFZZVFSEqqqqoLx3S9g8Cvzu5JAfCj9apaIxYBzOPyTrT1v1gg57baEx5IeoNaJOOEWyZ/duWU8pxsTEICsrS7btt/kexuPGjYPFYoEoili+fPkpl7eoVCo8++yzGD58OPr374+77747aKECaPrUCxE17/gRjC/3lMHulnc/4n5M4er4EYw1Byrg9sj7eSxnqAHacVXIjBkzAHhvrOLrmtkrr7wSV155ZVs30Sq86oKobXQqBXqlRuO0JCMKDpllPZnH/ZjCVbRWhb7p0ciJM2DP7nJ4ZAwXCkWbjxkEZvttedEDDzyAL774Ahs2bIDL5cKiRYsC3VeryX3rWIWCXxApvOhUCpyRGYvreqehZ0oUVAqF7PuRkpeaUpiJ1qowrHM8ruqZitx4IxSCIPsl07Jvv7UveO211/Dss89i9erV6Nu3L2bPno158+bh5ptvlvWLktwT+2KMeozolNR8IZHEthTWosLy54yVE49QqP7yk43BYEBdXZ3ULTZKMWmRmca7nVLoWXuoEjbXn6cYTjxC8derQgwGAxytvM9IIMn9/bBVwWLlypWYPn06li9fjsGDBwMAZs6ciWeeeQZvvvkmpkyZEpQmW0Luf0iTQY+UaJ2sPRA1ZXdZPQD/geI4ufejWJMBMdyPKAQpj4UHf4HiOL1ej5qaGgm7O3X7cmpxsNi0aRNGjx6NefPm4dprr218PDo6GjNnzsSTTz6JiRMnyjajXKlUQq/Xy7ainbd9plClVylxRmas30DRWKvXQ6FQyLb4y2g0yrJdouZE61QYkBnjN1AcZzKZJOrqVGq1GhqNvLNgIurupjU1NTh69Kjk2w2l29US/VVr7xVSUlKCigrpZ0nExsbyXiEUslq7Hx06dAhmszmIHTUtNTVV9nuFyLt0NMCio6NlOWIi91x2In9a+7kZzBsF+hPMy9GJ2qu1+5Ec39wFQUBcnPxrlCIqWCgUCqSkpEi6Ta1Wy3sbUETRaDSSf5OPiYmR/bwwUSCZTCYYDAZJt5mcnCz7LdOBCAsWABAXFyfp+a2srCzZrxkmCrTk5GQIbmnWWSiVSqSlpUmyLSKpCIKAjIwMuB3S3DNKr9fLfgrkuIi7aPz4f+b+/fvhdruDuq3U1FTodFzBTuFLFEXUl1Wg6Pd9KP59L4p37Wv8+O8v/RuGHp2D3kNmZqbs190TtYcoiqg6XHjS/lP0+z6U7zuE//vmDdiDvH2FQoHMzMyQOSUfkXuzWq1G586dcfDgwaCtbk9MTOQ5YQorDZXVKNy++5QQYa6sPqU2e1BfDBo9CvX19Th8+HDQesrIyOAVVRRWqgtLULh9N4p37T8WIPaieNd+2BtOXag5dOrfkXdGP1RUVKCkpCQo/QiCgJycHFnvZvpXERksAO+VGrm5ucjPz4fL5QroeycnJyMpKSlk0iFRS5Ts3o/5F42H2IKwfdWjd0IQBERHRyMnJwcFBQUBv49HVlYW1ydR2Nn5xWq8dct9zdYp1Wpc/sBMAN4fRAVBQHFxcUB7USqVyMnJCbn1SRG9OECn0yEvLy9gt49Vq9XIycnxnn9mqKAw0/WcQRj18Oxm6/LOPROnjxjW+GeTyYS8vLyAzZjQ6/XIy8tjqKCwdM5NY9H/usuarRt2yw1IyP7z8umEhATk5uYG7MhCdHQ08vLyQi5UABF8xOI4pVKJzMxMxMbGoqSkBDabrdXvoVAoEB8fj+TkZC7UpLDl8Xig0jY/OOfKR+86JThrNBrk5OSgpqYGZWVlcDpbvyBNpVIhKSkJ8fHxDOYUtpw2O/Qx/k/fqfU6XHbf9FMeNxgM6NKlCyoqKlBRUdGmU/UajQapqamIjo5u9WulEvHB4jiTyYSuXbvCarWisrIS9fX1zS7u1Ov1iI+PR0xMDAMFhbW60nIsnXQXfv/qB791PS4ehrxhZzb53PFr5GNjY2E2m1FVVYWGhga/XxwFQYDRaER8fDyioqIYKCisFe3ah0VjZqJwxx6/dedPvxExaclNPqdQKJCcnIzExETU1dWhqqoKVqvV76lGhUKBqKgoxMfHw2AwhPx+FFGTN1vL6XTCZrPB4XA0TlVTKBTQ6/XQarUh/59H1BK7vlmLJRNuR11p89M079n4CXIG9W3xe4uiCKfTCavVCpfL1bgfqVQq6HQ6aDQa7kcU9kRRxLpXl+Pd2Y/AafV/1FsXZcKjB3+EKbHlg+ZEUYTdbofNZoPb7W7cj9RqNfR6PVQqVVjtRx3miEVT1Gq17LeJJgoWl8OBTx94Fl/Pe6VF9X2vvrhVoQLwHpHQaDSy35uAKFjM1bV46+Z7sfn9L1tUf+HtU1oVKgDvfqTT6SJmfEGHDhZEkar8QAFeGzsLBb9u81kjCAKiUhJRV1IOQRBw5SN3SNghUejb/9NvWHzDbag6XOizRmPQQ6lWwVpbD0NcDC66Y5qEHYYmLhwgijAb3/4Ej/Uf6TdUxKSnYPbqtzH7u7eh1utwxpgrkNG7u4RdEoUuj9uNLx9diOfO+7vfUJHZ93Tct+kzTFz6LADg4n/eAn1M6C6qlEqHXmNBFElsDWasmPEgNiz9wG9dnysuwo2L5zUerv1p8bvoes4ZSOmWK0WbRCGt+mgxFo+fjX0//OK37oLbJuOaJ+dAfez0xRf/XoCL7pgGrVHa+4OEIgYLoghwePNOvDZmJsr2HfJZo9JqcN0z9+P86TeG1UIwIqls+/QbvDH5bpiranzWGBPiMHHJM+gz6kLpGgszXGNBFMZEUcR38xfhozlPwe1ntkRq9y6YtmIhMvv2kLA7ovDgtNnwwd1P4PsXl/qtO234EExeNh+x6dLeRTvcMFgQham6sgq8Mflu7Pxyjd+6odPG4Pr5D/IQLVETinfvx2tjZqBwu+/ZFAqlElc8cgcumfMPKELgtuShjsGCKAzt/nYdXp9wO+pKyn3W6GOiMO5/T+CM60dJ2BlReBBFET8tegfvzHrY72yK+OwMTFu+ALlDBkrYXXhjsCAKI26ns3E2hb/lUZ0H98fU5QuQmJMlYXdE4cFSU4tlN9+Hze994bdu4PUjMe6Vx2GI5X1tWoPBgihMlB88jEVjZyJ/o//ZFJfceyuueHg2lBz+RnSKAz9vwqIbZqGqwPdlpGq9DmMWzsXZU67nQuc2YLAgCgO/Lv8Eb91yP2z1DT5rYtKSMXnZfHS/4GwJOyMKDx63G189+RI+f+h5ePzcJyqjT3dMW/Ei0k7vKmF3kYXBgiiE2RrMeHfWw/j59ff81vUedSEmvv50q0cJE3UE1YUlWDLhdvyxZr3fuuEzJ+Haefc0zqagtmGwIApRh7fsxKIxs1C696DPGpVGg2ufvhfDZ07iIVuiJmz//DssnXQXzJXVPmuM8bG48fWn0ffKERJ2FrkYLIhCjCiKWL3gdXz0zyfhcjh81qWclotpKxYiq19PCbsjCg9Omw0fznkSaxYs8VvX7fzBmLxsPuIyUqVprANgsCAKIfXllXhj8t3Y8cVqv3VnT7kef1/wMGdTEDWhZM9+vDZmJo5u2+2zRqFUYtTc23HpPf/H2RQBxmBBFCL2rP4Zr4+fjdriMp81uugojHvlMQwac6WEnRGFB1EU8fPr7+GdmQ/BYbH6rIvvlIGpyxegy9mcTREMDBZEMnM7nfjsoeex6smX/M+mOKsfpry9AEm5nSTsjig8WGvr8NYt9+G3dz73Wzfgb5dj3P+egDGOsymChcGCSEYVh45g0Q2zcGjDFp81giDgknv+D1fMvZ2zKYiacHDDZiwaOwuV+Ud91qj1Olz/wkM4Z9oYLnQOMgYLIpn89s5nWHbzfbDV1fusiU5NwpRl89H9wqESdkYUHjweD75+6iV8+sBz/mdT9O6OqSsWIr1HnoTddVwMFkQSs5steGfWw/h58bt+63pdPhwTlzyDqKQEiTojCh81RaVYcuMd2PPdT37rzpt+I657+j5o9JxNIRUGCyIJHdn6O14bMxOlf/ieTaFUq3HtvHtwwW1TeMiWqAk7vliNpZPuQkNFlc8aY3wsJiyeh35XXSxhZwQwWBBJQhRFrFm4BB/e/YTf2RTJeZ0xbcVCdBrQS8LuiMKD027HR3OexOoXXvdbl3fumZjy1guIy0yTqDM6EYMFUZA1VFRh6eS7sePz7/zWDZn0N/x94VzoTEaJOiMKHyV/HMCiMTNxZOsunzWCQoFRD8/GZfdN52wKGTFYEAXRH2t+xuLxt6O2qNRnjS7KhBtefgxn3nCVhJ0RhQdRFLF+yXtYMcP/bIq4rHRMffsFdD1nkITdUVMYLIiCwO104vO5L+Crx//jdzZFzpl9MXX5Qs6mIGqCtbYOb//fv/Dr8k/91vW/7jKMf/VJzqYIEQwWRAFWkX8Ei2+4DQfXb/Zbd8mcf+DKf9/J2RRETTj0yxYsGjsLFYeO+KxR67QYPf9BDLv5Bi50DiEMFkQBtOm9L7DspntgrfUzmyIlEZPefB49RgyTsDOi8ODxePDN06/gk389C4/L5bMuvddpmLZiIdJ7dpOwO2oJBguiALCbLXh39iP46bUVfut6XnoeJi59FtHJiRJ1RhQ+aovL8PqNd2DPt+v81p136wRc98z9nE0RohgsiNrp6LZdeG3MTJTsOeCzRqlW45on5+CC2VOgUCgk7I4oPOxcuQZLJ96F+vJKnzWGuBhMWPQU+l9zqYSdUWsxWBC1kSiK+P4/b+CDux6Dy+57NkVS1xxMW7EQ2QN7S9gdUXhw2u34+N55+O75RX7rug47E1OWPY/4ThkSdUZtxWBB1AYNldV4Y8rd2P7pt37rBk+8DmMWzoUuyiRRZ0Tho3TvQSwaOwuHN+/0WSMoFBj54Cxcdv8MKFX8lhUO+L9E1Ep/fL8er4+/HTWFJT5rtCYjbnj5MZw17mrpGiMKE6IoYsMbH2DF9AdhN1t81sVlpmHK2y8gb9iZEnZH7cVgQdRCbpcLX8x9ASsfe9HvbIrsM/pg6vIFSO6aI11zRGHCWleP5bc+gI1vfey3rt81l2DCa0/BGB8rSV8UOAwWRC1QWXAUi264DQd/3uS3bsTdt+CqR++ESqORqDOi8HFo41bvbIqDh33WqHVajH7+AQy7ZRxnU4QpBguiZmx6/0u8ddM9sNTU+ayJSk7E5DefQ4+Lz5WwM6Lw4PF48M0z/8Mn9z/jdzZFWo88THvnRWT0Ok3C7ijQGCyIfHBYrHjv9kew9n/L/db1uORcTFr6LKJTkiTqjCh81JaUYcmNd2L3N2v91g275QaMfu4BaAx6iTqjYGGwIGpC4Y49ePXvM1Cye7/PGqVajauf+CcuvH0qZ1MQNeH3r77Hkol3ob6swmeNITYa4197CgOuu0zCziiYGCyITiCKIn54aRnev+Pfzc+mWL4A2Wf0kbA7ovDgcjjw8X1P49tnX/Vb1/WcQZjy1nzOpogwDBZExzRUVuPNqf/Etk++8Vt31vhrMPa//+ZsCqImlO475J1NsWmHzxpBocDl/5qByx+YxdkUEYj/o0QA9v6wAa+Pvx3VR4t91mhNRoz9778xeMK1EnZGFD42vPkhlt/6AOwNZp81sRmpmPLWfHQ7b7CEnZGUGCyoQ3O7XPjy3wvw5aMvQvR4fNZ1GtgbU5cvQEpeZwm7IwoPtvoGLL/1Afyy7CO/dX2vGoEJi+bBlBAnUWckBwYL6rCqDhdi8bjZ2L/uV791F915E65+/G7OpiBqQsFv2/HamJkoP1Dgs0al1eBvzz2A8/5vPGdTdAAMFtQhbf5gJZZNm9PsbIpJS59Bz0vPl64xojDh8Xjw3fOL8PG98+B2On3WpZ7eFdNWLERmn9Ml7I7kxGBBHYrDavPOpnjlbb91p48YhklvPIuY1GSJOiMKH3Wl5Vgy8U7sWvWj37phN4/F6Ocf5GyKDobBgjqMwp1/YNGYmSj6fa/PGoVKhasfvxsX3XkTZ1MQNWHX1z/i9Ql3+J1NoY+JwvhXn8TA0SMl7IxCBYMFRTxRFPHjy8vw/h2Pwmmz+6xLzO2EqcsXoPOZ/aRrjihMuBwOfPKvZ/HN06/4rcs9eyCmvv0CErIzJeqMQg2DBUU0c1UN3pw2B1s/WuW3btANV+GGlx6FPjpKos6IwkfZ/nwsGjsLBb9t91kjCAIuu38GRj50G2dTdHD836eItW/tRiy+4Tb/symMBoz9779x1oRruVqdqAm/vPUx3v7H/X5nU8Skp2DKW/Nx2vlDJOyMQhWDBUUct8uFlY+9iC8eWeB3NkVW/56YtmIhUrrlStgdUXiw1TdgxYwHseGND/3W9bniIty4eB5MifESdUahjsGCIkrVkSLvbIq1G/3WXXTHNFz1+N1Qa7USdUYUPgo27cCisbNQtu+QzxqVVoPrnrkf50+/kUf76CQMFhQxtnz0Fd6cOgeW6lqfNVFJCbhxyTPofflwCTsjCg8ejwer5y/GR/c85X82Rfcu3tkUfXtI2B2FCwYLCnsOqw3v3/kofnxpmd+67hedg8lvPIeYNM6mIPqrurIKLJ14J37/6ge/dUOnjcH18x+E1miQqDMKNwwWFNaKft+L18bMRNHOP3zWKFQqXPXonRhx9y2cTUHUhF3frMWSCbejrtT/bIpx/3sCZ1w/SsLOKBwxWFBYEkURa//3Nt6b/Yj/2RSds7yzKc7qL2F3ROHB7XTik389g6/n+Z9N0Xlwf0xdvgCJOVkSdUbhjMGCwo65uhbLbroHWz5Y6bdu0NgrvbMpYqIl6owofJQfPIxFY2cif+M2nzWCIOCSe2/FFQ/PhlKtlrA7CmcMFhRW9q/7FYtuuA3VR4p81mgMeoz5zyMYMvFvXK1O1IRfl3+Ct265H7b6Bp81MWnJmLxsPrpfcLaEnVEkYLCgsOBxu7HysRfx+dwX/M+m6NcDU1csROppXSTsjig82BrMeGfmQ1i/5H2/db1HXYiJrz/N2RTUJgwWFPKqjxZj8bjbsO9H/7MpLrhtMq556h7OpiBqwuEtO7FozCyU7j3os0al0eDap+/F8JmTeLSP2ozBgkLa1k++xptT/glzVY3PGlNiPG58/Wn0GXWhdI0RhQlRFLH6hcX4aM5TcDkcPutSTsvFtBULkdWvp4TdUSRisKCQ5LDa8MHdj+OH/7zht+60C87G5DefR2x6ikSdEYWP+vJKLJ10F3Z+ucZv3dlTrsffFzzM2RQUEAwWFHKKdu3DojEzUbhjj88ahVKJKx+9ExfffQsUSqWE3RGFhz3f/YTF42ejrqTcZ40uOgrjXnkMg8ZcKWFnFOkYLChkiKKIda+twLu3zYXTavNZl5CTianLFyB38AAJuyMKD26nE5899DxWPfkSRFH0Wdf5rH6YunwhEjtzNgUFFoMFhQRzdS3euvlebH7/S791Z/x9FMa98jhnUxA1oeLQESwaOxOHftnqs0YQBFxyz//hirm3czYFBQWDBcnuwM+bsGjsLFQdLvRZozHo8feFc3H25NFcrU7UhF9XfOqdTVFX77MmJi0Zk998Ht0vHCphZ9TRMFiQbDxuN7564r/4/OH58LjdPusy+56OaSsWIrV7Vwm7IwoPdrMF78x8CD+//p7ful6XD8fEJc8gKilBos6oo2KwIFlUF5bg9fGzsff7DX7rhs+chGvn3QO1TidRZ0Th48jW3/HamJko/cP3bAqlWo1r592DC26bwqN9JAkGC5Lctk+/wRuT7/Y7m8KYEIeJrz+NPldcJF1jRGFCFEWsWbgEH979hP/ZFN1yMXX5AnQa0EvC7qijY7AgyThtNnxw9xP4/sWlfuu6nT8Yk5fNR1xGqkSdEYWP+vJKvDH5buz4YrXfuiGT/oa/L5wLnckoUWdEXgwWJIni3fvx2pgZKNzufzbFqLm349J7/o+zKYiasGf1z3h9/GzUFpf5rNFFmXDDy4/hzBuukrAzoj8xWFBQiaKInxe/i3dmPQyHxeqzLj47A1PfXoAuZw+UsDui8OB2OvHZw/Ox6on/+p1NkXNmX0xdvhBJuZ0k7I7oZAwWFDSWmlq8dct92PTuF37rBoweifH/exyG2BiJOiMKHxWHjmDRDbNwaMMWv3WXzPkHrvz3nZxNQbJjsKCgOLh+E14bOwtVBb5nU6j1Ovx9wcMYOvXvXK1O1ITf3v0cy2661+9siujUJEx64zn0GDFMws6IfGOwoIDyuN1Y9dTL+OzB5/zOpsjo0x3TVryItNM5m4Lor+xmC96d/Qh+em2F37qel56HiUufRXRyokSdETWPwYICprqwBEsm3I4/1qz3W3f+jIm47ul7OZuCqAlHt+3Ca2NmomTPAZ81SrUa1zw1BxfcNgUKhULC7oiax2BBAbH98++wdNJdMFdW+6wxxsfixtefRt8rR0jYGVF4EEUR37+4FB/c9bjf2RRJXXMwbcVCZA/sLWF3RC3HYEHt4rTb8eE/n8CaBUv81uWddxamLJuPuMw0aRojCiMNFVV4Y8o/sf2zb/3WDZ54HcYsnAtdlEmizohaj8GC2qxkz34sGjsLR7bu8lmjUCox6uHZuPTeWzmbgqgJf6z5GYvH347aolKfNVqTETe8/BjOGne1dI0RtRGDBbWaKIr4+fX38M7Mh/zPpuiUgSlvv4CuQ8+QsDui8OB2ufDF3Bew8rEX/c6myB7UF9OWL0BSl2wJuyNqOwYLahVrbR3euuU+/PbO537r+l93Gca/+iSMcZxNQfRXFflHsPiG23Bw/Wa/dSPuvgVXPXonVBqNRJ0RtR+DBbXYwQ2bsWjsLFTmH/VZo9brcP0LD+GcaWM4m4KoCZve+wLLbroH1lo/sylSEr2zKS4+V8LOiAKDwYKa5fF48PVTL+HTB5qZTdG7O6auWIj0HnkSdkcUHhwWK96d/QjWvbrcb12PS87FpKXPIjolSaLOiAKLwYL8qikqxZIb78Ce737yW3ferRNw3TP3Q6PnbAqivzq6fbd3NsXu/T5rlGo1rn7in7jw9qmcTUFhjcGCfNrx5RosnXgnGiqqfNYY4mJw4+J56Hf1JRJ2RhQeRFHED/99E+/f+Shc9mZmUyxfgOwz+kjYHVFwMFjQKZx2Oz665ymsnr/Yb13euWdi8rL5iM9Kl6gzovDRUFmNN6f+E9s++cZv3VkTrsXY/zzC2RQUMRgs6CQlfxzAojEz/c6mEBQKjHp4Ni67bzpnUxA1Ye8PG7B43GzUFJb4rNGajBj7339j8IRrJeyMKPgYLAiA95Dt+qXv450ZD8Futvisi8tKx9S3X0DXcwZJ2B1ReHC7XPjikQVY+ehCv7MpOg3sjWkrFiK5a450zRFJhMGCYK2rx9v/uB+/Lv/Ub13/ay/1zqaIj5WmMaIwUllwFIvHzcaBn37zWzfirptx1WN3cTYFRSwGiw7u0C9bsGjsLFQcOuKzRq3TYvT8BzHs5hs4m4KoCZs/WIll0+bAUlPnsyYqORGT3ngWPS85T8LOiKTHYNFBeTwefPP0K/jkX8/C43L5rEvv2Q3T3nkR6T27SdgdUXhwWKx47/ZHsPZ//mdTnD5iGCa98SxiUpMl6oxIPgwWHVBtcRlev/EO7Pl2nd+6c/9vPP727L84m4KoCYU7/8CiMTNR9PtenzUKlQpXP343LrrzJs6moA6DwaKD2blyDZZOvAv15ZU+awxxMZiw6Cn0v+ZSCTsjCg+iKOLHl5fh/TsehdNm91mX1CUbU5cvQM6gvhJ2RyQ/BosOwmm34+N75+G75xf5res67ExMWfY84jtlSNQZUfgwV9Xgjan/xLaPv/Zbd+a4qzH2v/+GPjpKos6IQgeDRQdQuvcgFo2dhcObd/qsERQKjHxwFi67fwaUKn5aEP3Vvh9/weJxs1F9tNhnjdZo8M6muPE6CTsjCi38DhLBRFHEL29+iOW3PuB/NkVmGqa8NR95554lYXdE4cHtcuHLRxfiy38vhOjx+KzrNKAXpi5fgJRuuRJ2RxR6GCwilLWuHstvfQAb3/rYb12/ay7BhNee4mwKoiZUHS7E4vG3Y//ajX7rLrpjGq56/G6otVqJOiMKXQwWESj/1214bcxMVBw87LNGpdVg9PMP4Nx/jOdsCqImbPnoK7w5dQ4s1bU+a6KSEjBx6TPoddlwCTsjCm0MFhHE4/Hg22dfxcf3Pe13NkVajzxMW7EQGb27S9gdUXhwWG14/85H8eNLy/zWdb/oHEx+4znEpHE2BdGJGCwiRG1JGZbceCd2f7PWb92wW27A6OcegMagl6gzovDR0tkUVz12F0bcdTNnUxA1gcEiAvz+1fdYMvEu1JdV+KwxxEZj/GtPYcB1l0nYGVF4EEURa195C+/d/m+/sykSczth6vIF6HxmP+maIwozDBZhzOVw4OP7nsa3z77qt67L0DMw9e0XOJuCqAnmqhosu+kebPnwK791g8ZeiRtefoyzKYiawWARpkr3HfLOpti0w2eNoFDg8n/NwOUPzOJsCqIm7Fu70Tub4kiRzxqt0YC/vzgXQyb+jQudiVqA323C0IbjsykazD5rYjNSMeWt+eh23mAJOyMKDx63GysfexGfz33B72yKrP49MXX5AqSe1kXC7ojCG4NFGLHVN2D5rQ/gl2Uf+a3re9UITFg0D6aEOIk6IwofVUeK8Pr42dj3o//ZFBfMnoJrnpzD2RRErcRgESYKftuO18bOQvn+fJ81Kq0Gf3v2Xzjv1gk8ZEvUhK0fr8KbU+fAXFXjs8aUGI+JS55B75EXSNcYUQRhsAhxHo8H3z2/CB/fOw9up9NnXerpXTFtxUJk9jldwu6IwoPDasMHdz2GH/77pt+67hcOxeQ3n+dsCqJ2YLAIYXWl5Vgy8U7sWvWj37phN4/F6Ocf5GwKoiYU7dqHRWNmonDHHp81CqUSVz56Jy7+5z84m4KonRgsQtSur3/EkhvvQF2p79kU+pgojH/1SQwcPVLCzojCgyiKWPfqcrw7+xE4rTafdQk5mZi6fAFyBw+QsDuiyMVgEWJcDgc++dez+ObpV/zW5Z49EFPffgEJ2ZkSdUYUPszVtXjr5nux+f0v/dad8fdRGPfK49DHREvUGVHkY7AIIWX787Fo7CwU/LbdZ40gCLjs/hkY+dBtnE1B1IT9P/2GxTfchqrDhT5rNAY9xrw4F0MmjeZCZ6IA43emEPHLWx/j7X/c73c2RUx6Cqa8NR+nnT9Ews6IwoPH7cbKx/+Dzx+e73c2RWbf0zFtxUKkdu8qYXdEHQeDhcxs9Q1YMeNBbHjjQ791fa64CDcungdTYrxEnRGFj+qjxVg8fjb2/fCL37oLbpvsnU2h00nUGVHHw2Aho4JNO7Bo7CyU7Tvks0al1eC6Z+7H+dNv5CFboiZs/eRrvDnln35nUxgT4jBxyTPoM+pC6Roj6qAYLGTg8Xiwev5ifHTPU/5nU3Tv4p1N0beHhN0RhQenzYYP7n4C37+41G/dacOHYPKy+YhNT5GoM6KOjcFCYnVlFVg66S78vvJ7v3VDp43B9fMfhNZokKYxojBSvHs/XhszA4Xb/c+muOKRO3DJnH9AoVRK2B1Rx8ZgIaFd36zFkgm3NzubYtz/nsAZ14+SsDOi8CCKIn5a9A7emfWw39kU8dkZmLZ8AXKHDJSwOyICGCwk4XY68cm/nsHX8/zPpug8uD+mLl+AxJwsiTojCh+Wmlosu/k+bH7vC791A68fiXGvPA5DbIxEnRHRiRgsgqz84GEsGjsT+Ru3+awRBAGX3Hsrrnh4NpRqtYTdEYWHAz9vwqIbZqGqwPdsCrVehzEL5+LsKddzoTORjBgsgujX5Z/grVvuh62+wWdNTFoyJi+bj+4XnC1hZ0ThweN246snX8LnDz0Pj9vtsy6jT3dMW/Ei0k7nbAoiuTFYBIGtwYx3Zj6E9Uve91vXe9SFmPj605xNQdSE6sISLJlwO/5Ys95v3fCZk3DtvHs4m4IoRDBYBNjhLTuxaMwslO496LNGpdHg2qfvxfCZk3jIlqgJ2z/7Fksn3w1zZbXPGmNCHCa+/jT6XHGRhJ0RUXM6ZLAQRRE2mw1WqxU2mw0OhwMejweCIECpVEKn00Gv10Ov10PVwvtxiKKI1S8sxkdznoLL4fBZl3JaLqatWIisfj0D9dchkoXH42ncj6xWK5xOJ0RRhCAIUKlUjfuQTqeDsoWXezptNnw450msWbDEb1238wdj8rL5iMtIDcDfhEg+bre7cR+y2WxwuVwQRREKhQJqtbpxH9LpdFAoFHK32yKCKIqi3E1Ixel0orq6GlVVVXC5XC16TVRUFBISEmA0Gn0eXagvr8TSSXdh55dr/L7X2VOux98XPMzZFBTWbDYbqqqqUFNTA4+fe3IcJwgCYmNjER8fD71e77OuZM9+vDZmJo5u2+2zRqFUYtTc23HpPf/H2RQUtkRRhMViQVVVFWpra1v0GqVSibi4OMTHx0Oj0QS5w/bpEMHC4/GgtLQUlZWVbX4PrVaLjIwMGAwnh4I93/2ExeNno66k3OdrddFRGPfKYxg05so2b59Ibk6nE0VFRaivr2/zexiNRmRkZJz0hVEURfy8+F28M+thOCxWn6+Nz87A1LcXoMvZnE1B4ctms6GwsBBWq+/P9ebExsYiLS2txUcCpRbxwaKhoQGFhYVw+hmd3RqJiYlITk6G6Hbj0wefw9dPvQx//4Sdz+qHqcsXIrEzZ1NQ+KqurkZxcXGLjlA0RxAEpKamIj4+Hra6erx1y3347Z3P/b5mwN8ux/hXn+BsCgpboiiivLwcZWVlAXk/pVKJjIwMREdHB+T9Aimig0V1dTUKC31f995WBoMBn0+fi11f/eCzRhAEXHLP/+GKubdzNgWFLVEUUVpaiooK39Ni28qo1WPx5VNRvj/fZ41ar8P1LzyEc6aN4UJnClsejweHDx9GQ4Pv0QNtlZqaisTExIC/b3uEx0qQNghWqAAAi8WCvCuG+3w+Ji0Zt32zDFc//k+GCgpboiiipKQkKKECAMx2K7qP8r0fZfTujnt/+wzDbhrLUEFhy+PxoKCgICihAgBKSkpQXu77VLwcIjJYmM3moIWK47LOPQP9x191yuO9Lh+Of21bie4XDg3q9omCrbq6ul3rklqi98SrkT243ymPnzf9Rtyz8WOk98gL6vaJgq2kpARmszmo2ygtLUVdXV1Qt9EaERcs3G43jh49Ksm2zrrtRqR07wIAUKrVGP38A5j++WJEJSVIsn2iYHE4HCguLg76dhQqJc5/ZBYMcd61E8b4WPzj4/9h7IuPcOAVhb2GhgZUVVVJsq3CwsIWX+0YbBG3xqKoqEiy/0gAqD5wGN8/uBATX38anQb0kmy7RMEiiiIOHToEi8Ui2TYP//Ardr/3FaYsm4+4zDTJtksULG63G/v27ZP0m310dDQ6deok2fZ8CWqwuOaaa/D999/jwgsvxPvv+x9vHQgulwt79uwJ+nb+KikpCSkpKZJvlygYzGYzDh06JPl2s7KyEBPDqz4oMlRWVkpy1O+v8vLyoNVqJd/uiYJ6KmTWrFl44403grmJk0h5pOKv2w3EZXhEoSDY6ypCbbtEgSaKomyfz3J9HzxRUIPF8OHDERUVFcxNNBJFUbZ/ULfb3a6hQUShwuVyybYIzGKxwG63y7JtokCyWCxw+Lm1QzCFwg+6rQ4WHo8H3bt3x5w5c056fNWqVdBoNHjvvfcC1lxrOJ1OWReuSHk+mihY5P48lnv7RIEQ7KtA/BFFUfaA3uqbkCkUCtx7772YOXMm7rnnHsTFxWHbtm0YPXo0Hn/8cYwePToYfTarPeNRA7L9kiMofe9F7x8aL7kXfPz5hGvyBQGCSn3KL6hUEFQaCCrVXx5XH3tMc+wxFQS1BoJS5X1OfaxW+efHja8RIu4iIAow2fcjqxVxcXGy9kDUXqGwH/m7L0+wtenupuPGjcPcuXOxYMECTJ06FSNHjsSECRNw1113Bbq/FrPZbLJtGwDsNht0dfKf2/JHUKkh6E1QGIxQ6P/yy2A69TG9EYLewEDSgcj9BZFHLCgSyL0fyb39NgULlUqFOXPm4L777sMHH3yAAQMGYMGCBYHurVXcbres2w+Ha3ZFlxNifTU89dWteJUAQW9oWRA5/pjB5D1SQmFH7v1I7u0TBYLcn8dyb79NwQLwHrWYPXs2RFHE8uXLm7zL2iWXXILNmzfDbDYjMzMTH330EQYNGtSuhn2RfxxHpI4cFiFazXBbzWjNp6pCb4QyJh7K6HgoY+KO/R4PZXQclDHxUJiieSQkBMm9H8m9faJIIPd+1OZgMWPGDABARUWFz1u3rlq1qq1v32oKhczfpHgvg5N4rGZ4rGY4S440XaBQQhkde0rgODGMKDScvCg1ufcjubdPFAiCIMj6zV3u/ahNweKBBx7AF198gQ0bNuCiiy7CokWLMH369ED31ioajUbW7av0Bui69zvhnIh40m/HPzjlk83j8Z6icLsAlxOi03nsz39+DHdojGkNKI8b7ppKuGt8X+st6AxQxsRD1eSRj2NHPfiNKKC0Wq2s6xzkHuxDFAharVbWdQ5y70etDhavvfYann32WaxevRp9+/bF7NmzMW/ePNx8881Qy3gnTzlXwAKAPj4J8X+7JSjvLYoewO2G6HRAdLm8wePYL5zw8cmPuyC6/lJvsx47ktDQeETBYzUDITrcS7RZ4LJZ4Cr1ce8XhQKq+GSoElOhSkiFKikN6sQ0KBNSoFDLGzTDlV6vR3V1a9bgBJbBYJBt20SBotfrZQ0Wcn8/bFWwWLlyJaZPn47ly5dj8ODBAICZM2fimWeewZtvvokpU6YEpcmW0Ml8w6Jg/kcKggJQKYKyIFIURYh228lhw3Jy+BAt5r8EEgtEh7xX4QAAPB64Kkrgqij5yxMClLHxUCWmQZWYCvWx31WJaVDo5N3hQp3cX5Dk3j5RIMj9eSz39lscLDZt2oTRo0dj3rx5uPbaaxsfj46OxsyZM/Hkk09i4sSJPtdbBJtCoUB0dLRsUwOjo6Nl2W57CYIAQaf3fsONS2rx60S36y9B5ITg0VALd1013LXVcNdVwWOWeiqp2Hiaxb5/50nPKEwxf4aNpFSoEryhQ2GMgsB1MtDpdNBoNLJMDVQqlTxiQREhKipKtnUWBoMBKlWbl08GRETd3VSumydFRUUhOztb8u2GC9HpgLu+Bu7aKu+vuiq4a6vhqjv+52rA5ZS1R0FvhPrY6RTv0Q3vEQ5ldFyHCxxy3TyJN/OjSFJYWCjLacVQuJmfvLEmwAwGA7RareTjTBMSEiTdXrgR1BrvWoj45CafF0URHktDY+BwnxA4jgcRT0Nwj0SJVjMcRw/AcfTAX3rXetdupGdDk5YNdXoOVAkpEb1oNDY2FqWlpZLfbyA+Pl7S7REFU0JCguTBQqVShcTR84g6YgF4J/cdPHhQsu3FxMQgKytLsu11VKLLCXddzZ+ho7YKrqoyuCpL4KooheiULkwKGi3UqZ28YSM9B+q0bChjEyLqyEZ1dTUKCwsl215KSgqSklp+Ko4oHBQXF0t6l9Ps7GzJbvzpT8QFCwAoLS1FeXl50LejUqmQl5cn27oS8hJFj/fUSmUJXOXFjQs6nRXFEG3SXDqpMJigTusEdVoONOnZUKdnQ2mS93Bke4iiiIKCAjQ0NAR9W3q9Hrm5uREVzIgA70079+/fL8mapbi4OGRkZAR9Oy0RkcHC4/EgPz8/6Nfj5+TkwGQyBXUb1HaiKMJjroer4uSw4aoogaehNujbV0bHQZ2e/WfYSMsOq6tSXC4XDhw4AKczeOtflEolunTpIvscGqJgsVqtOHjwYFAXcmq1WuTm5obMD7kRGSwA76z0/Pz8oF1LHCqHnKhtPDbLKWHDVVHsd2BXICjjk72nT46v2UjNghDCMzccDgcOHjwIlyvwQ9qUSiU6d+4s+6XiRMFmNpuRn58flHCh1WrRuXNn2a8EOVHEBgvAe+TiyJEjqK8P3OWOSqUSnTp1gtFoDNh7UujwOB1wV5bCWV7sPdJRXgRHUUHwjnAICqiS06FJz4EmOw/a7NOgjAqtUyhOpxMFBQUBvYOwRqNBdna27BMCiaRitVpRUFAQ0JBuNBrRqVOnkDlScVxEBwvAezi8rq4ORUVF7b7jW2xsLFJTU0MqGZI03HU1cBTnw1lUAGdRARzFBUFbv6FKSIEmuxu0OadBk50HpVH+Vd6iKKKiogJlZWXt/qkrKSkJSUlJst/PgEhqbrcbpaWlqKqqatf7CIKAtLQ0xMWF5uXwER8sjnO5XKioqEB1dXWrA4bJZEJiYiLXU1AjURThri6Ho6gAzuICOIvy4Sw5AtEZ+EVaqqR0aHO6QZN9GrTZeVDo5TtaZrfbUVFRgZqamlYFDEEQEB0djaSkJJ76oA7PYrGgoqKi1QMdFQoF4uLikJiYKOstNJrTYYLFcR6PB/X19aivr4fFYmlyta5SqYRer4fBYEBsbCwXllGLiB63d81GUQEcRfnesFFWGOB7sQhQpWRAm3MatNndoOmUJ8uCULfbjdraWjQ0NMBqtTa5wFOlUkGv18NkMiEmJoZH+oj+wul0oqamBhaLBRaLpckfejUazUn7UTgc6etwweKvPB4PnE4nRFGEIAhQKBRQqVQheXiJwo/ocsJZevTPsFFcAFdFKU647W37CALUaZ2gzT4Nmpxu0GR1keV28263Gy6Xq3E/UiqVDBJEreRyueB2uxv3I7VaHRZB4q86fLAgkprHboWz+AicxflwFBXAcfQQPPUBmtCnUECdngPt8TUambkhfdUJEUUeBgsimR1fr2HP3wtHwR+wF+wN3AhzpQqajM7exaCdu0OT2RmCIrRWkBNRZGGwIAoxoijCVVnqDRn5e+Eo2AuPJTATMBV6I7Rde0HXrQ+0uT2g0HIhJREFFoMFUYgTRQ9c5cWw5/8BR8Fe2Av2BeZSV6UK2uw8b8jI6wNVDG8CRkTtx2BBFGZEjweuskLY872nTRyH90G0t394lSolE7q8PtB16w11WicIQvgtGiMi+TFYEIU50eOGs/gI7AV/wJG/F44jB9p9t1eFKQa6vN7eoxk5p3EBKBG1GIMFUYQR3W44i/JhL9jrPX1y9CDgavuNxASVGtrc06HN6wNdXm8oTfJPAiWi0MVgQRThRJcT9oJ9sO3bDvve7XDXtefSVgHqjOxjp0z6QJWUzpkvRHQSBguiDkQURbjKCmHbux22vdvhLC5o1/spYxKg6+YNGZpOXSEoORSLqKNjsCDqwNz1NbDt2wHb3u2w5//RvlMmWj10p/WFvteZ3nUZYTgxkIjaj8GCiAAAHocd9kN7YN+3HbZ9O+Ax17f5vRTGaOh7DoS+15lQp2XzdAlRB8JgQUSnEEUPnIX5jUczXOVFbX4vZXwy9D0HwdBrEFQJKQHskohCEYMFETXLVV0B2z7vugzH4X1tvmOrOi0b+l6DoO8xEMqo2MA2SUQhgcGCiFrFY7PCfuB37wLQAzsh2qxteBcBmpxuMPQ6E7ru/WW59TsRBQeDBRG1meh2w3HkAGx7tsC667e23dNEqYIurxf0vc6ErmsvCCp14BslIskwWBBRQIhuN+z5e2Dd+Stsf2yF6Gj99E9Bq4e+e3/oew2CJrsbrywhCkMMFkQUcB6nA/a922HZuRH2A7+3aU2GwhQDfc8zoO81COrUTryyhChMMFgQUVB5LA2w7t4C686NcBzZ36b3UCWkQN9zEPR9h/AurEQhjsGCiCTjqq2C9fdfYd35K1xlha1/A0GAtmsvGAcMg7ZLT54qIQpBDBZEJAtnWSGsO3+F9fdf4a6tavXrldHxMPQfCkO/oVBGxQShQyJqCwYLIpKVKHrgOHoI1p0bYdu1CR6ruXVvoFBA160vjAOGQdP5NAgCj2IQyYnBgohChuh2w35wl/fKkr3bIDodrXq9Mi4JxgHnQN9nCJTGqCB1SUT+MFgQUUjyOOyw7d0G685fYT+wCxBbcWWJUgV99/4wDBwGTVZXXlFCJCEGCyIKee66ali2/gTzlp/gqa9p1WtViWkwDBwGQ++zoNAZgtMgETVisCCisCF63LDv3wnzprXeoxho+ZcvQaWGrucZMA44F+p03nGVKFgYLIgoLLmqK2DZsg6WbT+3+hbv6tQsGAYMg77XICg0uiB1SNQxMVgQUVgT3S7Y/tgG8+a1cOT/0arXChod9L0GwTjwXKhTMoPUIVHHwmBBRBHDVVkC8+Z1sGxbD9FmadVr1Zm5MA2+CLpufTl4i6gdGCyIKOKITgesu7fAvPlHOI8ebNVrlfHJMA2+CIY+g3mnVaI2YLAgoojmLCuEefNaWLf/AtFha/HrFMYoGAcNh3HguVDojUHskCiyMFgQUYfgcdhg/f03WDavhbP4cItfJ6i1MPQ/G8YzL4QqNiGIHRJFBgYLIupwHEUFsGxeC+vvv7Z8uqeggL7HQJiGjIA6NSu4DRKFMQYLIuqwPDYrLNvXw/zLd626EZo293SYBo+ApnN3zsMg+gsGCyLq8ESPG9Zdm2He8A2cJUda/Dp1ahZMQ0ZAd/oACAplEDskCh8MFkREx4iiCMehPWhY/w3sh3a3+HXKmAQYz7oAhn5DodBog9ghUehjsCAiaoKz5Aga1n8D665NLb4BmqA3wjjwPBgHnQelMTrIHRKFJgYLIiI/XDWVMG/8DpYtP7V8oadKDUOfwTANvgiq+OTgNkgUYhgsiIhawGM1w7zpR5h/XdOKe5MI0HXvB9OQi6HJyAlme0Qhg8GCiKgVRJcTlu0b0LDhW7irylr8Om2Xnog6/wpo0rKD2B2R/BgsiIjaQPR4YNu7HQ3rV8FZmN/i1+lO64uo866AOjkjeM0RyYjBgoioHURRhOPIfu+VJPt2tPBVAvQ9BiLqvJFQJaQGtT8iqTFYEBEFiLO8GOYN38Ky4xfA427+BYIAfe/BiBp2OVRxicFvkEgCDBZERAHmrq+B+dc1MG/6EaK9BTc+Uyhg6DcUUedcBmV0XPAbJAoiBgsioiDxWM1o+OU7mDeuhuiwN/8CpQrGgcNgOvsSKE0xwW+QKAgYLIiIgsxtrkfD+q9h/u0HwOVstl5Qa2A843yYhoyAwmCSoEOiwGGwICKSiLu+Fg0/fQXz5rUtWoMhaHQwnnUBTGddBIVOL0GHRO3HYEFEJDFXTSUa1q2EZdv6Fo0LF3QGmIaMgHHQ+VBodBJ0SNR2DBZERDJxVZWhfu2XsO7YCKD5L8UKgwmmoZfCOGAYBLUm+A0StQGDBRGRzJzlxaj/8XPYdm9uUb0iKgZRQy+Dod/ZEFTqIHdH1DoMFkREIcJZcgR1P3zW4kFbyph4RA0bCX2fwRAUiiB3R9QyDBZERCHGUZiP+h8+hf3g7hbVq1IyEXPxaGizuwW5M6LmMVgQEYUoe8E+1H//KRxH9reoXte9H6IvvBaquKQgd0bkG4MFEVEIE0UR9kN7UP/9p3AW5Tf/AqUKprMuhGnopVBoeQUJSY/BgogoDIiiCPv+naj7/lO4So82W68wRiN6+FVcf0GSY7AgIgojouiBbc9W1K35BO6qsmbr1alZiL54NLSd8iTojojBgogoLIluF8y/fo/6tV9CtFubrdedPsC7/iI2QYLuqCNjsCAiCmNucz3qf/gMli3rgOa+nCtVMA2+CKahl3CCJwUNgwURUQRwlh5F7Tfvw5H/R7O1ClM0oodfDX2fsyAIXH9BgcVgQUQUIURRhG3vdtR9+wHc1eXN1qvTOiF6xGhoO3WVoDvqKBgsiIgijOhyetdfrPsSot3WbL2ux0BEX3AN119QQDBYEBFFKLe5DvXffwbLlp/Q7E3OVGrv+ouzL+b6C2oXBgsiogjnLD2K2q/fg6Ngb7O1iqgY7/qL3mdy/QW1CYMFEVEHIIoibH9s866/qKlotl6dno2YS8dAk54T/OYoojBYEBF1IKLLiYaNa9CwbiVERzPrLwQBxkHnI+q8KzkenFqMwYKIqANyN9Si/vtPYdm6Hs2tv1BGxyHm0jHQdesjTXMU1hgsiIg6MGfJEe/6i8P7mq3VnT4AMRdfD2VUjASdUbhisCAi6uBEUYRtzxbUffsh3LWVfmsFrR7RF1wDw4ChXNxJTWKwICIiAMfWX6z/BvXrVgJul99aTWYXxIwcB3VSmkTdUbhgsCAiopO4KktQ88XbzZ8eUShhGnoJooZeCkGllqY5CnkMFkREdApRFGHdth61334A0WbxW6tKSEHM5TdAm91Nou4olDFYEBGRT25zHeq+fh/W339tttbQbyiiL7wGCr1Rgs4oVDFYEBFRs2wHfkftl8ubXdypMEYh5uLroesxEIIgSNQdhRIGCyIiahGPw476Hz+H+ZfVgOjxW6vt2gsxl47hjc06IAYLIiJqFWfJEdR8sQzO4sN+6wS1BlHnXQHjmcMhKJQSdUdyY7AgIqJWEz1u763Zv/8MotPut1admoWYkeOhSeskUXckJwYLIiJqM1dNJWq/WgH7/p3+CwUBxrMuRNS5o6DQaKVpjmTBYEFERO0iiiJsuzejdtW78Jjr/NYqY+IRO3I8tLmnS9QdSY3BgoiIAsJjNaNu9cewbFnXbK1x0HBEX3A1BLVGgs5ISgwWREQUUPbD+1D7xdtwVZb4rVMlpCL26knQpGVL1BlJgcGCiIgCTnQ50fDzKtT/tMr/fUcUCkQNGwnT0Et45UiEYLAgIqKgcVYUo/aLt+E4st9vnTqjM+KumgRVfLJEnVGwMFgQEVFQiaIHlk0/ou7bDyG6nD7rBLUG0Rf9DYYB53BqZxhjsCAiIkm4KktQ/ckSOIsK/NZpu/ZC7MjxUEbFSNQZBRKDBRERSUZ0u1G/biUa1q30OxZcoTciZuQ46Lv3l7A7CgQGCyIikpyjMB/Vn7wOd1WZ3zp9n8GIufh6KHR6iTqj9mKwICIiWXgcdtR99yEsm370W6eMjkfsVROhze4mUWfUHgwWREQkK9uB31Hz2RvwNPib2inAOPhCRJ9/JQSVWrLeqPUYLIiISHYeSwNqVi6Hbfdmv3WqpHTEXT0Z6pRMiTqj1mKwICKikCCKIqw7N6L2qxUQ7TbfhQolos6/AqbBIyAoFNI1SC3CYEFERCHFVVuFmk+XwlGw12+dJqsLYq+cBFVcokSdUUswWBARUcgRRQ/MG9egbvXHfkeCCxotYi6+Hvq+QzhUK0QwWBARUchylhWi+pMlcJUe9VunO60vYkeOh8Jgkqgz8oXBgoiIQprodqH+h8/RsP5rwM+3LGV0POKumwZNRmcJu6O/YrAgIqKwYD+8HzWfLoG7ptJ3kUKJ6IuuhXHQcJ4akQmDBRERhQ2P3Ya6b96DZevPfut03fsjdtQETuyUAYMFERGFHdvebaj5fBk8lgafNcq4JMRfdxPUqVkSdkYMFkREFJbcDXWo/ngxHPl/+C5SqhBzyfUw9Oet2KXCYEFERGFL9HhQ/+MX3rulwve3M32vMxFz+VgoNDrpmuugGCyIiCjs2Q7sQs0nr/s9NaJKTEXcdTdBnZQuYWcdD4MFERFFBHddNao/XATH0QM+awS1BjGX3QBDn7Mk7KxjYbAgIqKIIbrdqPv+E5jXf+O3ztBvKGIuuR6CWiNRZx0HgwUREUUc295tqP50KUSb1WeNKjkD8dfdBFVCioSdRT4GCyIiikiu6gpUf/ganMUFPmsEjQ6xo8ZD32OghJ1FNgYLIiKKWKLLibrvPoT51+/91hnPOB/RF10LQaWWprEIxmBBREQRz7prE2o+XwbRYfNZo07PRty1N0EVmyBhZ5GHwYKIiDoEV2Upqj54Fa6yQp81gk6PuCsnQtetr4SdRRYGCyIi6jBEpwO1q96FZetPfuuMQ0Yg+vyrICiVEnUWORgsiIiow7Fs34DalcshOh0+azSZXRB33TQoo2KlaywCMFgQEVGH5CwvQvUHr8JVUeKzRmGKRvzfboEmM1fCzsIbgwUREXVYHocNtV8uh3XnRt9FShViLh0DY/+h0jUWxhgsiIioQxNFEZYt61C76l3A7fJZZzjjPMSMGM11F81gsCAiIgLgLDmCqg9ehbu63GeNplMe4q67CUpjlISdhRcGCyIiomM8NguqP34d9v07fdYoo+MRf/0/oE7NkrCz8MFgQUREdALR40H995+i4edVPmsElRoxoybA0GuQhJ2FBwYLIiKiJlh3bULNZ2/4vSTVNORiRA2/CoJCAVd1Oaw7NiLq3JESdhl6GCyIiIh8cJYeRdW7L8FdW+WzRtulB2IuH4eqFS/CXVOFlNseh0JnkLDL0MJgQURE5Ifb0oDqD16Fo2Cv7yKFEvC4AQDRF14L05AREnUXehRyN0BERBTKlAYTEm6YBeOg4b6LjoUKADD/+j3EE/7c0TBYEBERNUNQKhFzyfWIHTUBUKr81rrrqmDbs1WaxkIQg8UxoiiCZ4WI2u74PsT9iCKZod/ZSJxwOxSmGL91Db9816b3j4T9qEOusbDZbKivr4fVaoXVaoXT6Wx8TqFQQKfTQa/Xw2AwICoqCgoF8xfRiURRhMViQUNDA2w2GywWC9zuPw/9KpVK6PV66PV6GI1GGI1GCIIgY8dEgeUoKkDF4if91iROngNNRo7P50VRRH19PSwWS+P3I4/H0/i8SqVq3I+ioqKg1+sD1X5QdZhgIYoiampqUFVVBavV2uLXKRQKxMfHIz4+HhqNJogdEoU+t9uN6upqVFVVweHwfQneX6nVasTHxyMuLg4qlf/DyEShTnQ6UPHGc3AWF/it0/c6E3FXTz7lcafTiaqqKlRVVZ0UyJuj1WqRkJCA2NjYkP6Bt0MEC6vViqNHj8Jut7frfVJSUpCYmMifvKhDqqurQ1FREVwu3/dSaI5CoUB6ejpiYmK4H1HYsu7ahLo1n/gd/Q0AUCiRMusxKI+dNhFFEVVVVSgpKWnXqQ61Wo3MzEwYjcY2v0cwRXSwEEURZWVlKC9v5j+/FbRaLTp16gStVhuw9yQKZR6PB4WFhaitrQ3Ye5pMJmRlZUHJmzlRGHM31MJx9CAcRw7AceQAnCWHgRNOZQBA1LkjEXXuKDidThw+fLhVR8ybEx8fj7S0tJAL6REbLERRxNGjRwP6xfA4pVKJnJycsDnfRdRWbrcb+fn5Af1ieJxWq0VOTg7UanXA35tIDh6HHc7CQ7Af3gfH4f1wFB6CQqtH7C0PIv/wkXYd7fPFZDKhU6dOIXVqJCKDRTBDxXEKhQK5ubnQ6XRB2waRnDweDw4dOhSUUHGcRqNBbm4u111QRBJdTlgO78fROgucquAd5TaZTMjOzg6ZIxehE3ECqLq6OqihAvB+0T1y5MhJK3iJIklxcXFQQwUAOBwOFBUVhfWldUQ+KVUoETVBDRUA0NDQENBT/u0VccHCbrejuLhYsm2VlZVJsi0iKdXX16O6ulqSbdXV1QX9BwEiOVRWVgY9nB9XVlYm2baaE3HBQuqffioqKmCz2STbHlGwHV+sKaWioqJWXXZHFOocDgdKSkok3ebRo0dD4uhf0ILFkSNHcP7556NHjx7o06cP3nvvvWBtqpHNZoPZbA76dv6qoqJC8m0SBUtdXV1QFpn54/F4JDtCQiSFqirfd0MNFrvdLsv3wL8KWrBQqVSYP38+du3ahW+//Ra333570P/ClZWVQX1/X2prayX/QkwULHLtR5WVlSHx0xZRe3k8HlmCBSDf/nuioAWLtLQ09OvXDwCQnJyM+Pj4oP5DH5+sKQdRFFFXVyfLtokCyW63y3ae1ul0hsw5YqL2qK+vl21hf319veynFVsdLDweD7p37445c+ac9PiqVaug0WiaPOXx22+/wePxICsrq+2dNsNut8v6047FYpFt20SBIvc3du5HFAnk3o/k3n6rg4VCocC9996Ll156qfGc6LZt2zB69Gg8/vjjGD169En1lZWVuPHGG/G///0vMB37IPc/JL8gUiSQez+Se/tEgSD39wO596M2nQoZN24cEhMTsWDBAhw9ehQjR47EhAkTcNddd51UZ7fbcc011+Dee+/F2WefHZCGfZH7ygyHw8HzwxT25N6P5N4+USC0975U4b79NgULlUqFOXPmYMGCBbj88ssxYMAALFiw4KQaURQxadIkXHDBBZgwYUJAmvUnFAZVMVhQuJP73Gwo7MdE7SX357Hc22/z4s1x48bBYrFAFEUsX778lJsJ/fTTT3jnnXfw8ccfo1+/fujXrx927NjR7oaJKHhCZSQwEYWvNg/onzFjBgDvDIem7lB4zjnnSJqaQuEuifyiTOFO7hsZyb19okBQKBSyHv2Tez9q09YfeOABfPHFF9iwYQNcLhcWLVoU6L5aTe6bgel0OgYLCnty37FX7u0TBUIofD+SU6uDxWuvvYZnn30Wn332Gfr27YvZs2dj3rx5cDqdweivxeT+giT39okCQe7PY7m3TxQIBoNB1u3LvR+1KlisXLkS06dPx7JlyzB48GAAwMyZM1FXV4c333wzKA22lEajkfXwj9yfSESBIPcXJO5HFAnk3o/C5ojFpk2bMHr0aMybNw/XXntt4+PR0dGYOXMmnnzySVnPKQmCgLi4ONm2HR0dLcu2iQJJo9HAaDTKsm2tViv7F0SiQIiKioJK1eYljO0SExMj+5pDQYygayTtdjv27dsn+XYTEhKQlpYm+XaJgqGurg6HDx+WfLsZGRmy/XBAFGhlZWUoKyuTfLtdunSR/YhJRC3B1mq1iIqKkny78fHxkm+TKFiioqKg0Wgk3aZKpUJMTIyk2yQKpvj4eMkX9BsMBtlDBRBhwQIA0tPTJV1rkZqaCq1WK9n2iIJNEARkZmZKus2MjAzZL5EjCiSVSoX09HTJticIAjIyMiTbnj8Rtyer1WrJ/nH1ej0SEhIk2RaRlAwGA5KSkiTZVlxcnCxHGomCLTY2FiaTSZJthdIPuREXLADv4pXExMSgbkOtVqNTp06cXUERKzk5OehfFPV6PdcnUcQ6fvQv2N/wY2NjQ+qUfEQGCwBISUkJWrhQq9Xo3Lkz1Gp1UN6fKBQIgoBOnToF7WiCwWBATk4OT4FQRFOpVOjcuXPQwkVsbCwyMjJC6ofciLoqpClVVVUoLi4O2A3CTCYTMjMzZbuUiEhqoiiitLQUFRUVAXvPuLg4pKWlMVRQh+F2u1FUVITa2tqAvefxH6BDKVQAHSBYAN5bmhcWFsJsNrf5PRQKBdLT0xETExNy/4lEUrBarTh69Gi7bsmsVquRmZkp26wMIrnV1dWhsLCwXXOf9Hq9JKdY2qpDBAvA+1OX2WxGVVUV6urqWvw6jUaDhIQExMbGyj50hEhuoiiirq4OVVVVrQrqxxc6R0dH8ygFdXhutxu1tbWorKxsVVCPiopCfHw8TCZTSP+A22GCxYlcLhcaGhpgtVphtVrhcDggiiIEQYBCoYDBYIBOp2u8JjiU/wOJ5GK322E2m2Gz2WCxWOByuRr3I5VKBb1eD71e37g/EdHJRFFs3H+Ofz9yu92N+5FarW7cf0wmU9is6+uQwYKIiIiCg8ckiYiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYFRyN0BE1Bqa/lMgKJQQFEooVBoISiUUjX9W//mcWvPnx8drm3hOqVJBUAgQBAEKhQCFSgGFIEBQCFCqFBAU8P2cIEBQwPucUgGFwvucRqWAUiE0/tI2/lnx53OCt051Qt2JrzvpPQQBaoW3hxM/VggClAKgVir+8jGgFLzPq5XCSR8LAqCAAKUCjR8LAqAU4P27Nb72+POAUiFAALzv2/ixt1bwuCGIHkD0ACd+LHoAt6vp5zzHHvd4AFGE4HE1vkZ0OQGPG/C4IbrdgMsJ0eMGPB6ILof3d/ex50+sPfax9zlvrejxQHR74HG6ILq9H7udzsaPRY8Hboer8WOPwwXPsdeIbnfj6zyN7yHC4/ZA9IhwO9zH/izC7XT/+Zz72HMe73Mehxset3hsW8f6cYsQ3SKcHg/cIuAWRTg8YuPHbhEn/fnEjz04/tyJdd6PXxbzZd03j+MRCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYBgsiIiIKGAYLIiIiChgGCyIiIgoYQRRFUe4miIjkYLfb8cQTT+Dee++FVquVu51TsL+2C+XegNDvrz0YLIiow6qrq0NMTAxqa2sRHR0tdzunYH9tF8q9AaHfX3vwVAgREREFDIMFERERBQyDBREREQUMgwURdVharRYPPfRQyC6eY39tF8q9AaHfX3tw8SYREREFDI9YEBERUcAwWBAREVHAMFgQERFRwDBYEFGHdNddd2HYsGEYN24cHA7HSc9ZrVaMGjUK5513HkaMGIGqqqqQ6u+4J554AmeccYas/bhcLkyaNAnDhg3DbbfdJkkvrenvOCn/rZriq79Q+FwLNAYLIupwtmzZgpKSEqxduxY9evTA+++/f9LzK1euRK9evfDDDz/g+uuvx5tvvhlS/QFAfX09du7cKXs/n332GTIzM7F27VpYLBb8/PPPkvTU0v4Aaf+tmuKvP7k/14KBwYKIOpz169fj4osvBgBceumlp3wzzMvLg8ViAQDU1NQgKSkppPoDgBdeeAHTp0+XvZ+W9Cpnf4C0/1ZN8def3J9rwaCSuwEiIqnV1NQgPT0dABATE3PK4ecuXbpg586d6NWrFwRBwC+//BJS/dXW1mLHjh3417/+JXs/NTU1jfe6aKpXufuT+t+qKf76k/tzLRh4xIKIIlZJSQnOOeecU36Jooi6ujoA3i/68fHxJ71u6dKlOP/887Fz507MnTsXjzzySEj1N3/+fMyYMSMoPTUlLi7OZz/+nguF/qT+t2qKv/6k+lyTEoMFEUWs1NRUrFu37pRfl19+Ob7++msAwKpVqzB06NBTXnv8i39sbCxqampCqr/9+/fjsccew6WXXop9+/bhySefDEp/xw0ePNhnP/6ek4q/HqT+t2ptf4A0n2uSEomIOqA777xTPOecc8QbbrhBtNvtoiiK4s033yyKoijW1taKl19+uXjeeeeJQ4cOFf/444+Q6u9EAwcOlKWf4704nU7xxhtvFM855xxx5syZkvTSmv5OJNW/VVN89RcKn2uBxpHeREREFDA8FUJEREQBw2BBREREAcNgQURERAHDYEFERI0mTZoEQRDwj3/845Tnbr31VgiCgEmTJjU+VlJSgpkzZyI3NxdarRZZWVm44oor8N133zXW5OTkYP78+RJ0T6GAwYKIiE6SlZWFFStWwGq1Nj5ms9mwfPlydOrUqfGx/Px8DBw4EKtXr8a8efOwY8cOfPXVVxg+fLisky5JXpy8SUREJxkwYAAOHjyIDz/8EOPGjQMAfPjhh8jKykJubm5j3fEjGBs3boTRaGx8vGfPnpgyZYrkfVNo4BELIiI6xeTJk/H66683/nnx4sUnhYWqqip89dVXmD59+kmh4rjY2Fgp2qQQxGBBRESnmDBhAtatW4f8/HwUFBTgp59+wvjx4xuf379/P0RRRPfu3WXskkIRT4UQEdEpEhMTMXLkSCxduhSiKGLkyJFITExsfP74bEVBEORqkUIUj1gQEVGTpkyZgiVLlmDp0qWnrJnIy8uDIAjYvXu3TN1RqGKwICKiJl166aVwOBxwOBy45JJLTnouPj4el1xyCf7zn//AbDaf8tqIuJkWtQmDBRERNUmpVGL37t3YvXs3lErlKc//97//hdvtxplnnokPPvgA+/btw+7du7FgwQIMGTJEho4pFHCNBRER+RQdHe3zuc6dO2Pz5s147LHHcOedd6K4uBhJSUkYOHAgXnrpJQm7pFDCu5sSERFRwPBUCBEREQUMgwUREREFDIMFERERBQyDBREREQUMgwUREREFDIMFERERBQyDBREREQUMgwUREREFDIMFERERBQyDBREREQUMgwUREREFDIMFERERBcz/A6M+U5v4VTH2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -677,7 +676,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABk5UlEQVR4nO3dd3wUdf4/8NfMbN8kmwpJICRAqFKlV0GkiIoV+52ed3qnnl7vxa/Xfte801PvbGdviO1sIIggvSm99xZaerJ9Zz6/PzYEQs0mMzu72dfz8eDBsrufz7wTstnXznyKJIQQICIiopQlm10AERERmYthgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcRazCyAiai6hqQgeLkNg3x5EaquhhUIQqgrZaoVktcGW1w7Oki6wZOVAkiSzyyVKGgwDRJSwtHAItV+uQN3ar+DfvQOBg/shIuHog5J08o8QgCYACACA7HLDWdIFri7d4Bk2Cq7uvRgOiM5DEkIIs4sgIjqVf+9uVC6Yg8oFn0HzeQFFAVQ19o4a2tnaFyDnssuRNXYCrFnZ+hdMlOQYBogoYXi3b8Gh//4b/j07AVkGNE2/zhvODHiGj0GHO+6GNTtXv76JkhzDABGZLlJfh8OvPY/KebP1DwGnk2VIFisKbrkDuVOmQVIU445FlCQYBojINEIIVC36HGUvPAXV7zM2BJyFo6gERfd+H67SHnE9LlGiYRggIlMIVcWhF59GxacfnhwEGG+yDEgSOt3/I2SNHh//4xMlCIYBIoo7LRTC3n/8EXVfrTS7lEYFt92FdldPN7sMIlMwDBBRXGmhEPb89WHUb1hjztmA88i/6etof/0tZpdBFHdcgZCI4kYIgQP/+UdCBgEAODLjZVR8/qnZZRDFHcMAEcVN1RefoXrJFwkZBE449N8nESg7aHYZRHHFMEBEcRE8fAgHn33C7DIuSKgq9v3jj9DCIbNLIYobhgEiMpwWCWPvP/8fhBoxu5QL0zQEDuzDkTdeMrsSorhhGCAiw1V9MQ+Bvbvivo5AiwmB4x+9i+CRMrMrIYoLhgEiMpTQNBz730wASbZRkCzj+Cfvm10FUVwwDBCRoerWrkboSBlO7CiYNDQNlfNmI1JfZ3YlRIZjGCAiQx374J3oSn9JSEQiqPhsltllEBkuOV+hRJQUQuXH4d28PnnGCpxOCFQyDFAKYBggIsP4tm8xu4RWCx07gkhdrdllEBmKYYCIDOPdsRXQeYtgIQS+/cUq3Ltw1RmPzdi5H6Pf+wyHfX5dj+nbuU3X/ogSDcMAERnGt20zoKq69ilJEh4e0gcbKmvw9q79jfcf8vrw2IZt+MnAnihwOfU7oKzAt2Orfv0RJSCGASIyhFBV+PfsMqTvfJcTPx3QC/9Yvw2HvD4IIfB/qzZiaLscXF3SUd+DaRq82xkGqG2zmF0AEbVNqt9n6IqD00o64PNDR/HbVRtwWYd87KytxzuTRhlwJIFIdaUB/RIlDp4ZICJDiFDQ8GP8dtBF2F3rxd/WbsFvBl2EbIfdkONoQeO/FiIzMQwQkSFEHHYmzHbYcX2XjuickYZLO7Q37kAJvMsikR4YBojIELLVFpfjKJIERTJ2qWPJFp+vhcgsDANEZAjZ6QQMfpOOF0t6htklEBmKYYCIDCFbbbAXFpldRuspClxdu5tdBZGhGAaIyDDuXhfpvuhQ3KkqXN16ml0FkaEYBojIMK7SHrovOnS6ey/qhrcMmVJ4EsMAtXUMA0RkGHf35H8TVTI8sObkml0GkaEYBojIMPYOnWAv7Ji8AwllGVmjx0FK1vqJmolhgIgMI0kSci69LHnn6QuB3KnXmF0FkeG4HDERGUKtqUBgxSxYyjZCcbmg+nxmlxQbWYFnyAjY2+WbXQmR4RgGiEhXIhRA4Kv5CG5cCmgqJFlGeqd2qN62L7nOEGgq8q66zuwqiOKCYYCIdCE0DaFtqxFYNRci4G3yWFr7dNTtd0L1BwChmVRhDGQZ6QMGw929l9mVEMWFJOKxgDgRtWnhsl3wL/0YWuWRcz4nUO3F0dXb41hVC0kSlPQM9PzH07BkeMyuhigueGaAiFpMra1AYPkshPduvuBzHZluZPbrher1W+JQWSsIgeIHf8YgQCmFYYCIYqYFvAiuXdg4LqC5MnLtCHQsQqCsLKZ2cSNJyLvqeqT3G2h2JURxxTBARM2mBXwIrl+M4KalQDgUc3tJlpDXpxOOBkMIVZQnViCQJHiGjEDBzXeYXQlR3HHMABFdkBb0I7hhMYIblgLhYKv7s/QYjgPv/A+hY0cALTEGFHpGjEHxAz+FZOFnJEo9DANEdE4iFEBwwxIENiwBQgH9OlascE39Fvb9+1H4tm8xfcph3pXXoeD2uyDJSb6pElELMQwQ0RlEKIjgxqUIblgMEfTr3r+1pDecI68E7C4cfuW/KJ/9ASDL8T1LIMuQbTYU3vkd5Fw6OX7HJUpADANE1EiEgwhuWo7guoWGhAA5Ox/OEVfA2qFrk/t9u7bjwFOPIbBvt+7HPIMkA0JD5uhxKPz63bBmZht/TKIExzBARBDhEIKbG0JAQP9lgyWHG44hE2HrMRiSfPYtUYSmomLOJzj82vPQgoHo5kZ6/npqOPNga5+Pjvc8iPS+nDFAdALDAFEKE5EQgptXIrjuCwi/98INYiUrsPcZCcfF4yHZHM1qovp9qF62CJXzZsO3Y2vrLx9IUsNMgZFILy1G1hU3QrbYWt4fURvEMECUgkQkjNDWVQis+QLCX2fIMSzFveAcPhWKJ6fFfQTKDqLy809Rt2YVAmUHAbVhKqKiRM8anPgjySe3SW6YrijbHXCUdEHmiLHIGj0OlgwPamf8A5LVDte4G6Bkt2/tl0jUZjAMEKUQoUZOhgBfrSHHiI4LmAprh1Jd+xWRCAJlB+DfuxuBvbsRqa2BFg4DagSSxQrJZoMttx2cJV3gKOkCW157SCcCQoO69/4N9fhBQFbgGHwZ7P1GcwYBERgGiFKCUCMIbfsSgTULILw1hhxDSsuE4+JLYes+MGHfYOs/fh6RQzsb/63kdYRr3PVQsniWgFIbwwBRG6YFvAhtXY3gpuXGhQC3B46Lx8PW/WJISmIv2OOd8xrCezc1vVNWYO83JjquwWI1pzAikyX2K5eIWiRy/CBCm5YjtGs9oEYMOYbkzoBjwDjYeg5O+BBwwlkHMWoqgmsXILxrPZyjp8Fa1D3+hRGZLDlewUR0QUKNILx7A4KblkM9dsCw40jOdDgGXgJbzyFJ90lasp97RoNWVwnvrBdh7dIXzpFXQHZlxLEyInMxDBAlOa2+GsEtKxHasgoiYMD0wAaSMw32AZfA3mto0oWAEyRn2gWfE969AeED2+EcOgm2XsPOuS4CUVvCMECUhIQQiBzejdCm5Qjv3QII45bxlRxu2AeMhb33MEhJPj+/OWEAABAOwr/kQ4S2r4FzzDWw5BYaWxiRyTiAkCiJiHAQoR1rENy0HFrVMUOPJdldsPcfC/tFwyFZkzsEnBDevxXe2S/H1kiSogsnDb4MktVuTGFEJmvTZwaEEBCRMISqQrbaICmJOd2J6ELU6uMIbl6O0LavdNlC+HwkuxP2fmNgv2gEJFvbevNr9pmBUwmB4IYlCO3eAOfQybCW9ock8dIBtS1t4syAUFUEDu6Hf190MRLfnp0I7N0N1Vvf9ImSDGtODpxdusFZ0gXOkq5wlnSFLTfPnMKJzkNoGiIHtiG4aTkiB3cYfjzJ5oC932jY+4xs9tLByUarr0bt639tVR9KXkc4R1wBS36xTlURmS+pw0Cw7CAqF8xFxeefQq1tmEOtKCeXLD2XhrXKT6x37uzcFdkTLkfWqEuguFvwyYFIR1rAh9DW1QhtWQGtrsr4A1rtsPcdBXvfUZDtTuOPZyKhRlDz39/q0pe1az84h06GnJ6lS39EZkq6MCA0FVWL5qNi7sfwbddhExOgcXc0yWKBZ/ho5F5+NdzdeupTMFEziEgY4QPbEd61HuF9WwxbG6AJqw32PqNg7ze6zYeAU1W/+DsgFGh1P5LNAefoabCVDmh9UUQmS6ow4Nu1HQee/hcCe3fpv73pCbICaCqyxk9C4e3fhCWdc43JGEKNIHJwJ0InAoDBYwFOkNwZsPcaClvv4ZAdrrgcM5HUzvgHtJryVvVh6dQTrjHXQHbz9wO1DUkRBlSfF4fffAkVsz/U50xAc8gyZIcTHe64B1njJp6x4QlRSwhNReTQrugZgL2bIXT4hNpcloLOsF00AtaSXgm7d0A81H3wDNQje1vUVrI74Rx1Faxd+/N3ArUpCR8GfDu3YfefH4JaV2foXOrzSevTHyU/+jXHE1CLCE1F5PAehHdtQHjPJoigL34Ht9hg6zYA9ouGQ8nOj99xE5h37usI79nYoraOwZfBcfGlOldEZL6EDgM1K5di36N/htDU+JwNOBdZhr19Abr8+o+w5XF3M7owITSoR/ZFLwHs2QjhN25lwLORPTmwXzQiunlQG50Z0FK+xR8gtHl5yxorFqRfdz93OaQ2J2HDQNXi+dj/+N+MGRfQErIMiycTpQ//DfZ8rkZGZxJCg3r0AEK71yO8eyOEry7OFUiwdOoBe58RsHToyrnw5xD4ch4CX85rcXsltwPSrvlOSl9qobYnIcNA9dKF2PfYnxMnCJwgy7CkZ6Db/3sMttx2ZldDCUAIAfX4IYR3r0do1wbDtgk+H8nuhK3HYNh6D4OSkR334yeb4NbV8C98t1V9OAZNgGPQBJ0qIjJfwq1AGDxShv3/fiTxggAAaBoidbXY9+ifUfq7v/GTQYoSagTqsQMNUwE3QKurNKUOJacQtj4jYOvaL2k3DjKDnOZpdR+Br+bD0qknLHkddKiIyHwJFQa0SBh7//EniMgFFg0yk6bBt30Ljr77JvJvuM3saigOhKZBrShD5NAuRMp2I3J4L6CGzSlGVmDt0gf2i0ZAaVfEEe0tIKfpsEiQ0OBbMBPp197PIEZtQkKFgSMzXkFg3+7EPCtwmqMzX0N6nwFw97zI7FJIZ0IIaNXHTr75l+2O6xTAs2lcG6DnEMiudFNrSXZnOzNg6zkYkUO7YzrLo1UdQ2D1Z3AOv1zP8ohMkTBhwLdzG47/b6bZZTSfJGHfY39Br8efh2RJmG8jtZBaV9Xw5r8LkUO7IfzxHvx3FpIMS4eusPUcDGtJb16W0olksUJyuiH8XkhpmXCNvQ7WjqWIHN6D+g+fA9D8DyPB9YthLe4JS0Fn4womioOEeRc79v5b8VtQSA+ahnDFcVQvX4Ss0ePNroZipPnqGj7174r5E6GhJAmWgs6wdukLa+eLILdklz26IDktC0rnvnAOm9y4LbGloDPs/UYhuH5xDD0JeOfNQPr13+X/FSW1hJhNEDx6GFsf/GZSXB5oQpLgKCpB9789yWu3CU6EAoiU7UG4bBcih3ZBqzpqdkmnkKDkF8PWtS+snfvwMkAcaPU1Z71cICJh1L33JLSqYzH1Z+nYDe7L7+B0TkpaCXFmoPzj943ba8BIQiCwfw+8mzcg7aJ+ZldDDUQkDLXqGNSKw1ArD0M9egBq+aEzfr40TWD2+h1YtvMg1u47jON1XqQ77Pj5VWMw4aIuhteptCuCtWs/2Lr0gexu/Qh3ar5zzSiQLFa4xk1H/fv/iWnF08jBHQiuWcDVCSlpmR4GVL8PFfNmJ8/lgdPJMo5/9C7DgAmEEBC+uoY3/SPRvysOQ6upaNYv8r9+vBh/+WgxSkpKMHjwUAzt1AmLFy/G79//wrAwoOR1gLVLQwDg1rcJyZLXAY6Lx8e8MFHgy3lQ2hfD2qGrQZURGcf0MODbsRUiHDK7jJbTNNRtXAuhqboO8BJCIHJwB0I71sJ96Y269ZushBqBWnUMWuURqBVHop/4Kw5DBFq+zv9Xew/j2muvxbvvvouKigpkZGTgt7/9Ld587ikdKwfknALYuvSFtWtfKBk5uvZNxrAPHIfwvq3RM0rNJQR8nzeMH3BxN0NKLuaHge1bdR84qAqBb8xfgTyHHY+MHNh4f104jBs+XYKrSgrx3T7ddTueCAYRPHQQjqLi1velqQjv3ojguoVQKw5DTsE3D81f3/Ap/0jjp36t6pjuG1Vlpzkxb9EilJSUYN++fdi3b59ufctZ7RoCQD8omXm69UvxIckKXONvQN27TwJqpNnthL8e3nkzkHbFXZz9QUnF9DDg3bFF97ECiiTh90P64qa5S/HxvjJcURzdS+Ava7bAY7Pi271LdT0eAHh3bG1VGBDhEELbv0Jw/eKmI9vb4IImQtMg/PXQvDXQvDUQ3lpo9dVQK49CrTgSt2l9v5w2Fo5ZS3G81gs9coDsyYW1a1/YuvSDks2NbJKdktUezuFT4V/yQUzt1MN7EPhyHpxDJhlUGZH+TA0DQgh4t+kfBgCgON2NB/t2w1/WbMGQdtnYVFmD2fsP49XLRsAq6zziV1Hg27EVOZdOjrmpWluJ0OblCG1dfdaFbSTF9LwWE6FGIHx10Ly1J9/s60/e1ry10Q18TNqO+lSdcjx49PbL8fnm3fhk3Y7YO7BYYckvgaWwK6xF3SBn53NWSRtj6z0suv307g0xtQuuWQBL+2JYO/UwqDIifZn6TqPW1ULzGbe16y2lxfj80DH8ZuUG7Kipw7d7l6JnpgHX8lQVgQN7m/10IQQiZbsR3LgUkX1bcd5FThJkQSOhaUAkDK3hE71oeGPX6k/5dO+thfDXI5ZFW5KKrEBpVwRLYRdYO3SNLgecZGGNYiNJElxjr0VdRVl0YGoMfPNnRscPpGUaUxyRjkz9TaaFgob2L0kSfnVxb1z76WJ086ThGz2NWyVMC1z4axHhEEI71iC4aVmz5zGLgA+h7WsAWQIkGZBlSJISHWchy4AkQ2r4G7IMQALUMIQaASJhiIY/iIQh1PDJ+xpvR4BIKPqJPhICIpEmzz9xG1oC7xdhGAlKbgEshV1h6dAVlvwSSFab2UVRnEk2B9yX3Yq69/8T2/iBoA/eeW8i7aq7OX6AEp65lwkizX9htdT7ew/BoSg45PXjqD+ADm6XIccR4XNvXKPWVSG0aTlCW1fFvMa9VnUMvgVJtExzGyDZHHBNvBWWgi6QHcb8vFByUXIK4Bw1Leatj9Wj+xFY+Smcw6caVBmRPkxdLsvoNf3XVVThte178eiogeiXk4mHV2+EUQsuStamA/2E0BA+sB3eOa+i7s2/I7h+kemb3VBTR2vqcdO/38V9r3za5P79R4+j75Tr8fd/PWFSZZSIbD0Gwdpt4IWfeJrg+sUI791sQEVE+jH1zIBsM+6Ua0BV8ZuVG3B9lyIMb5+L4nQ3bvh0Md7efQDTu3bS/XiyI7q+uVZfg9D2LxHcuhqivlr341DrSA5X42n/99/+BMv3HMb9998PAPB4PBg/fjwkScKuXbvwy1/+Et/+9rfh8XB1QGoYPzD6atSVH4p5uWLfgreRdt13oWRkG1QdUeuYGgaUtAzIDie0gF/3vh9bvx1CAN/vF11PoMDlxA/798Qj67ZiZH6uvpcLFAW2nBzUz34ZkQPbkm9Z5TZKcrig5BRAyS6AkpMPJbcQcla7xvXjg2I2bDYbBg0aBAD47LPPAACDBg2CJElQVRXh81z+odQjWW3R8QPvPRkdS9NMIhSAb94bSJv2bQ46pYRk+kZFu/7wS9RvWKvrG+jq45X49her8Ny4oRiY23TJ13sXroIqBJ4eO0TXaWAdvvVdpBdkwr/6MyBs7MBIOo0kQ87MhZKdH33zzymAkp0PyZV+3v/jzZs3Y+LEiSgrKzvr47feeitee+01o6qmJBbasQa++bGP5bGW9odr/I2cgkoJx/QwcOStV3H03TeSd2+CBt3/9m84iztD89XBv2I2wjvWmF1SmyTZnVCy8yHn5Dd84i+AktUOUgsXZ4pEIqirO3ORI0VRkJHBJWXp3HwL30No66qY29kHjuOCRJRwTD9f5erWI+mDgGS1wVEUHYcgu9LhHj8dkV5D4VvyAbSKwyZXl6wkyJ6c6On9E2/6OfmQ3B5dP1VZLBZkZXHDIIqdc+SViBw/GPNrPLhmAeT0bNh7DjaoMqLYmR4G3N17QVIs0XnxyUiW4e7d54x5xJb8YqRfex9CW1YisGouZxKcjWKB7PZAdmdAcnsgp3kgp2c1fNpvzzn9lNAkixXuy26J7l8Q46VB/6L3Iad5YO3YzaDqiGJj+mUCADjw9GOonD8nac8QdP7l75Ex4NwpX/PXI7DyU4S2fRnHqkxmtUN2ZzS82XsgpZ28feLNX7I7ee2Ukl5o9wb4Pnsj9oZWO9Kn3QMlp0D/oohilBBhIHDoALb94B6zy4idJMFe0AE9/vlMs97UIkf3w7/kA6jlZx+wliwkuzP6Sb7hjV1O8zT8O+Pkm73NYXaZRHHjW/IhQpuWxdxOcnuQfs13ILs5fZXMlRBhAAB2/+k3qFv/VdKdHej4ne/HtEGR0DSEtn+FwOq50Q17LkDOagfZmRbdG0Bo0e+PpkEILbpEcMN9TR63WCEpluigOos1+rcS/fts9518vg2wNP1bUiyAxRZdIEqxQrLaODWK6DRCjaD+g2egHj8Yc1s5pwDpV90DyWY3oDKi5kmYMFC/eQN2/d9PzS6j+SQJlgwPev37JcgtuLYtwiEE1y9CYN0iIBI65/Ncl90CW5e+ramUiOJA89ag7v2nILw1Mbe1FHWHe/LXuIcBmcbU5YhPlda7L3ImXQEkyzVkIdDpgZ+0KAgADTMQBk1Axs0/gq3nkHN+3ZLSsilzRBRfstuDtClfB6yxf8KPHNgO/+IPDFsunehCEiYMAEDh1++GvbBjw+57CUySkDftBqT3u7jVXcmudLjGXov0Gx6EpVPPM5+QIFsYE9GFKTkFcE+8NbqLaIxCW1chuG6hAVURXVhCvevKNjuKf/DL6Ja8iUpW4Cjugvybv65rt0pWe6RN+TrcV34TSm5h4/08M0CUXKwdu8E55poWtQ2s/BShXev1LYioGRLuXdfZqQQdvvVds8s4O1mG4nSi5Ae/gNzCFe8uxFrYFWnX3gfX+OmQ0jJ5ZoAoCdl7DoZ94LgWtfXNn4nIkb16lkN0QQkzgPB05XM+wqHnnjS7jJNkGYrTha4P/w3OTiVxOaSIhAEhuPgOURISQsA3/y2Ed66Lua1kdyLt6nuhZOYaUBnRmRLuzMAJuZOuRNH9P4qOHzB7UKEsw5qVjdI//CNuQQCIrnDGIECUnCRJguuS66EUlMTcVgT98M56ARq3Qac4SdgzAyfUbVyLvX/7PbRgwLQ1CJxdu6Hzzx6GNZNr2BNRbLSAD/X/ewpaTXnMbeX0bKRddTfkNC5KRMZK+DAAAOHqKpS98iyqF82PnimIRyiQZUgWKwpuuQO5U6ZBUjj/l4haRq2tRP3//gPh98bcVs7IRtqVDARkrKQIAyfUb1yHA08/htDRw9FLB0aU3hA2PENHocNd34E1m9fsiKj1IscOoP7D5wA1HHNbOSMHaVd9i8sWk2GSKgwAgBYOoWLuLFTM+QjBsoOArESX5W2thnEJ6f0HIe+Ka5Def1Dr+yQiOkVo72b45rwGIPZfuwwEZKSkCwMnCCHg37UdlfPnoGrh59ExBZIU/WSvNiMcKErj82zt8pF92eVI794V6r5NcI+/AbLDZfBXQESpKLhhCfzLPm5RW9mTg7QrGQhIf0kbBk6lhYLw7dwO/77dCOzbA9+uHQge2g8RiZzxXMXlhqNzV7g6l8JR3BnOkq5wdCqBJEkIH9mP2rcfjy4rOvFmWDuWmvDVEFFb51v6IUIbY9/lEABkT25DIMjQuSpKZW0iDJyN0FRogQC0cBhQI9Hd9qxWyHbHObcbjhw/hJoZjzb8S4Jj4Fi4hk/hLn1EpCuhafB99jrCezfH1K6i3of1+4+iVrKhy5W3YfSlE5u1fTrRhbTZMNASkcqjqHn9703uU3ILkTbpVliy25tUFRG1RSIShnfua4gc2H7B5368djt+PXMe9pZXN7n/kT//CT/82S8MqpBSScIuOmQG6SxLDKvlZaiZ8SgCG5ZyRzEi0o1kscI98TZYirpf8Lm/f38BSvoMwBtvvIEdO3aguroakyZNwvx33oDmq4tDtdTWMQyc4px7iasReL94D3UfvQDNVx/fooiozWoMBB27nfd59YEwOnXqhOrqajzxxBPweDywWCxAOIj6j55jIKBWYxg41QU2Hwrv24LqNx5BaN/WOBVERG2dZLHCPen28waCSX274uWXX8a9996LF198scljWvVxBgJqNYaBUzRnoKDw16Puw/+i/vO3oYUCcaiKiNq6xkDQ4ewzmP5+y2Ss+9N9+NW0sWd9XKs+jvqP/8tAQC3GMHCqGJYcDm5egZrXH0Fo/zYDCyKiVCFZrHBP/tpZA4EsS+iU44Hdeu4PLFrVMdS9/x+oVceMLJPaKIaBU0iyAkjN/5Zo9dWo++A5niUgIl1EA8HtsHTo2qL2or4a9R88jcjhPTpXRm0dw8DpWrAhEc8SEJFeJIsteoagsEuL2ougH/UfP4/QznU6V0ZtGcPAaVq6wNDJswQzeZaAiFpFstjgnvL1xkCgaQILt+7Fuv1HmjzvYGUtPl67Hf7QaZsfaSp8n89AYN1CTommZmEYON0FZhRcSHDzSp4lIKJWi54h+DosBZ3x6KfLcPU/38A7q5quWLh2/xHc/p93cNez75+1j8CK2fAv+QAiHtu+U1JjGDiNbHO0uo8TZwm8iz5gKieiFpOsNrin3IEvy6oxdepU+P1+HD16FADw/vvvw+/34/e//z1W7T50zj5Cm1fAO+dViHAoXmVTEuKi+6ez2nXoRIK912A4Lx7HdcOJqFUkqw3dR1yC5194EcOGDTvj8WPHjqFzXtZ5+4js34r6j56De/LXILvSjSqVkhjDwGlkmx3N2AD5nCz5xXCPuRqW9kW61UREqe3Xv/ktcnNysX/FfAhvbZPHXAUluH1Uvwv2oR4/iPr/PQX35XdCycwzqlRKUtyo6DR1n7yE0O6NLWrrHHIZnEMn8WwAERlCRMLwzX8L4T2bWtyHZHdGZyvkl+hXGCU9jhk4jdSKywTh/dsBMFsRkTEkixWuy26Bve+oFvfROPVw9wYdK6NkxzBwGqkVAwgjR/cjuPVLHashImpKkmQ4R1wB54grALTwLKQage+zNxBYv4iDnAkAw8AZJFvrBhD6ln0CLejXqRoiorOz9x0F18RbgBaujQIAgeWz4F/8Pwg1omNllIwYBk7T2jAgfPXwr/pMp2qIiM7N1rkP0q78FiSHq8V9hLasRP0HT0Otq9KxMko2DAOnac1lghMC6xcjUnlUh2qIiM7P0r4T0q6+F3JGTov7UI8fQv07jyO8b4uOlVEyYRg4zekDCK1dLkL61DuAWGYIaBp8i/7Ha3FEFBeKJwdpV38bSruWT2kWoQC8n74C/4rZEFprJlhTMmIYOM2JywRKdj4yrr4HGVPvhK1LH9j7jIipn/CBHS2eokhEFCvZmYa0K78Ja0nvVvUTXLcQ9R//F5qv9sJPpjaD6wycJnL0ACLHDsB+0bDolsYNtIAP1a/+BSLga3ZfcnomMm/9CSSrzYhSiYjOIDQN/uUfI7RxWav6kZxpcE24CdbClm2nTMmFYSAGgY3L4F3wbkxtHAMvgXvUlQZVRER0doH1ixFYPgutWvtEkuAYdBnsAy+BJPFEclvG/90Y2HsPg5LXIaY2gbWLEDl+7k1EiIiM4Og3Gq7Lbm7V1EMIgcDqufDOfhlaDGdFKfkwDMRAkmW4x14dWyOhoX7+O9xClIjiztalL9Ku+CYke8unHgJA5MB21L37BCLHDuhUGSUahoEYWQs6w9bj4pjaqMcOILBhqUEVERGdmyW/GGnX3Q8lr2Or+hH11aj/4BkENy7lTKk2iGGgBdwjpsa81bF/+Wyo9dXGFEREdB5KehbSpt0DW+/hretIU+Ff+hF8896ACAX0KY4SAsNAC8hpHriGTY6pjQgH4Vv4P4MqIiI6P0mxwDV6GlwTbgZaOcMpvHsj6t55ApGy3TpVR2bjbIIWEpqGmpmPQz1+MKZ26VPvgK1LH4OqIiK6MLX6GLxzX4dWdazVfdl6D4dz2ORW7fhK5mMYaIXIsYOomfkvIIZvoZzmQeatP9Zl2WMiopYS4RB8i/+H8I41re5LTs+Cc+x1sHbgmgTJimGglbyLPkBg3aKY2jj6j4F7zDSDKiIiah4hBEJbV8O/9ENAh50Lbb2Gwjns8lZv+EbxxzDQSiIURPXrf4cWy+BASYJn+oOwtGvd6F4iIj1Eysvg++x1aLWVre5LSsuEa+y1sHbspkNlFC8MAzoI7dmMuo9fiKmNktcBnukPNFnymIjILFrQD/8X7yC8d7Mu/dl6DoFz+OW8JJokOJtAB7bOvWMeFKgeP4TA+iUGVUREFBvZ7oRr4m1wDJ8K6LD0cGjrKtTOfAzhA9t1qI6MxjMDOlHra1Dz2t8gwsHmN7LakHnrj6GkZxlXGBFRjCJH9sE77w0Irz47F9q6D4JjxFTIdqcu/ZH+GAZ05F+/BL6F78fUxlrSG+lX3AlJkowpioioBTR/PXyfv4XIoZ269Ce5MuAaew2snXrq0h/pi2FAR0LTUPvOE4gcjW397rSJt8LeY6BBVRERtYzQNAQ3LkFg1VxdZhsAgLXbQDhHXAHZ0br9EkhfDAM6i5SXoWbGY4Bo/sZEkt2JzFt+BDnNY2BlREQto1aXw/fFO1CP7tOlP8nhgmPwRNh6DoEkc+haImAYMIB3yUcIrPkipjbW4p5Iv/IuXi4gooQkNA3BTcsQWDkHUMO69Cln58M54gouVpQAGAYMIMKh6NoDdVUxtXOPvwGOi4YZVBURUeupNRXRswRH9urWp6W4F5zDp0Lx5OjWJ8WGYcAgoX1bUffhf2NrZLUj85YfQsnINqYoIiIdCKEhtGkF/CtnAxF9zhJAVmDvMxKOi8dzbQITMAwYqG72qwjtXBdTG0thF2Rc+21IOszzJSIyklpbCf8X7yByeI9ufUoONxxDJsLWY7Bp4wlEJIJg2QGEjh+DCIeghcOQLAokixWWDA8cRZ2huNrWAEiGAQNpvjpUv/53iIAvpnau0dPgHDDGoKqIiPQjhIbQlpXwr5gNhEO69Stn58M58gpYC40fTxAqP4ba1csQ2LsLvl07EDx8EFDV87axZOfC1aUbHMVdkNZvIFzdeiX1mC+GAYMFd65H/exXYmukWJB58w+gZLUzpigiIp2pdVXwL3wXkUO7dO3XWtIbjuGXQ8nQdzyBFgqh9stlqPz8U3g3rgUkKbryonb+ENCEJEX/aBps7QuQfekUZI6ZAGtW8l3qZRiIg7pPX0Nox9qY2ijtiuC54X7uXUBESSO6C+Iq+JfPAmJZjfVCdBxPoAb8OP7em6iY+xE0vx+QZUBr/lTw82o4M5B+8VAU3PZN2AuSZzM6hoE40AI+VL/+CIQvtqU9ncOnwDV4gkFVEREZQ6uvhm/he4gc3KFrv5LTDcfgSbD1GNSi8QS1q5fh0H+fRKSmCjDyrU+WAUlCu2tuQt60GyHbbMYdSycMA3ES2rsFdR89H1sjWYFn+gOw5HUwpigiIoMIIRDa/hUCK2dD+L269i1ntYNj0ARYO1/UrMHWofJjKHvh36j7amX003u83vYkCdbcdujwrQeQ3u/i+ByzhRgG4qj+87cR3LwipjZKTj48N34PkmIxqCoiIuOIUACBNQsQ3LAktuvxzSBn58Mx+DJYi889eM+7ZQP2/u1haMGg7sdvlobLEO2nfw15196csIMMGQbiSIQCqH7jHzEvRuS4eDzcI6caVBURkfHU2goEls9GeO8m3ftWcjvAMfgyWIq6N3mzrV62EAee/BugiZiWiDdK1rhJ6HD3Awk5FoxhIM7Ch3ah9r2nYmskSci47j5YC0oMqYmIKF7CZbvgX/YJtIrDuvettCuCY/BEWDp0RfWSBTj477/H75JAM3lGXoKi+34MSUmsQMAwYALvog8QWLcopjayJxeZN32PK3MRUdITmobQti8RWDUHIqDveAJAgtTnMux//G8696uf7IlXoMNd95tdRhNc5s4ErhGXQ87Mi6mNVlOO+gXvgtmNiJKdJMuw9xqCjJt/BHu/MYCOp82lgi449MJTjdP8ElHl3I9Rs2qp2WU0wTBgAsliRdrEm2P+YQ1tX4PgltUGVUVEFF+SzQHn8MuRPv37sJb0bnV/QghUfLkFqs+bcJcHmpJw8D//QLii3OxCGjEMmMTavhOcgy6NuZ134XuIVB41oCIiInMonhy4J90O9xXfhJyd3+J+fF4Z3m2b9VtEyDACWjCA/Y//BcKMGQ5nwTBgIueQy6DkFsTWKBJG/exXIfTaKYyIKEFYO3RF+nXfhXPMNZAc7pjaqqEwqr5ab1BlBtA0+LZtQvWSBWZXAoBhwFSSYkHaZTfHfL1MrTwC76L/GVQVEZF5ouMJhjaMJxjd7N+PvnpAaIl8aeAsJAnHP3g7IcaCMQyYzJJbCNewSTG3C25agWCM+x0QESWL6HiCqci4+Uew9Rp63lCgqRpqt+9JiLUEYiIEggf3wbsptq3ujcAwkAAcA8fB0rE05nbez9+GWpM4A1CIiPQmp2XCNeYapN/0Q9h6DIruLHiaQMgKzR/bVvEJQ5Zx/KN3zK6CYSARSLKM9Im3QHLGdo1MhIOo+/Q1CDViUGVERIlBSc+C65LrkX7jD2DtNrDJbKz6A0cBJO5UwvPSNNSv+xKhiuOmlsEwkCBkdwbSLrsl5nbqsYPwLf3EgIqIiBKP4smBe/x0pN/wPVi79IXcvgTBskMAzL/u3hq+7VtMPT7DQAKxFfeA4+LxMbcLrFuE0J7NBlRERJSYlKx2cF92C+TSYbqtKfDWzv0Y/vYcRE6ZmugLR3DxjNm447PlTZ775bFK9HtzFvbW6rCCoqLAv3Nb6/tpBYaBBOMaNhmW/OKY29V/NgNqXbX+BRERJTD/7h26rTY4pF02fBEVmyprGu/78ngVchx2bKqsgT9yck2A1ccq0c5pR0lGbJd3z0pVo+sjmIhhIMFIioK0SbdBsjtjaieCPtTPeT1hFrAgIooH346tuoWBzhlpaOe0Y/Wxysb7Vh+rwPiO7VCU5sK68pM7zq46Vokh7XJ0OS4ABPbtgoiYN/6LYSABKRlZSJtwY8ztIof3wL9yrgEVERElpnDFcV1XHBzcLhurTgkDq45VYnC7bAxql42VDfeHVQ3rK6owpF22bscVkQgi9XW69RcrhoEEZevSB45+o2Ju51/9OUL7thpQERFR4tGCQV37G9wuB2vKqxDRNHjDEWytqsWgvGwMbpeN1ccqAADrKqoRUDUMba/fmQEAEOGQrv3FgmEggblGXQklr0OMrQTqP30NarW501SIiOJB70ujQ9tlw98wbuCr45UoTncjx2HH4LxsbKysgS8SwepjFShwOdAxzaXrsYVq3mVehoEEJikWpE++DbDaY2onQgHUffISRChgUGVERIlBtsX2+/FCOqW70d7pwMqjlVh5rBKDGi4F5Drt6OB2Ye3xKqw6Vqn7WQEAkG023fts9rFNOzI1i5KZh7Rx18fcTq08ivrPZkAk2/KcREQxUNw6jOY/zZD20UsCq49VNhkXMDgvG0uPlGN9RbWugwdPkB36nmmI6dimHZmazd5jIOy9h8bcLrR7I/yrPzegIiKixOAsKQWU2DZ7u5ChDeMGtlXVYvCpYaBdFt7ZdQBBVcNQHQcPAoA1JxeKi2GALsA95moo2e1jbudfMYcLEhFRm+Xq1hPQ+Vr7kHbZCKgaitJdyHGcvAwxqF02vBEVRWku5Ltjm/59XrIMV48++vXXApJIhL0TqVkiFUdQM/NfQCQcUzvJ5oBn+gNQstoZVBkRkTlC5cew7YE7zS6jdSQJBV+/B7lTrjatBJ4ZSCKWnHykjY99/MCJAYUaBxQSURtjzcmDkp5hdhmtIwRcpT1NLYFhIMnYewyCo/+YmNupVcdQP/cNDigkojZFkiR4ho0G5OR9O7NkZsFZ0tXUGpL3u5fCXKOugKVD7D844T2b4V/1mQEVERGZJ3fqNbquQhhXkoTcK66DZLGYWgbDQBKSZAXpU26HnJ4Vc1v/yrkI7dlkQFVEROawF3RE+sVDk/LsgGS1IvvSKWaXwTCQrGRnGtKn3gFYrDG3rZ/zBtSqYwZURURkjtwrrk++swOyjOwJU6G49F8rIeZSzC6AWs6S1wFp46fH3E6Eg6j9+EVoQb8BVRERxZ+7Vx+4e/UFZH3XHDCSZLUh94przS4DAMNA0rP3GAjHgLExt9Oqj6N+zhsQyZakiYjOQpIkFN3/E8h2u25bGhut490PwpaTZ3YZABgG2gTXyKmwdiyNuV143xb4Fn0ALjVBRG2BNScXHe/9IZDov9NkGZljJiBz1DizK2nEMNAGSLKCtMktG1AY2LAEgXWLDKiKiCj+PENGInvC1MQ9OyDLsObkofAb95pdSRMMA22E7HQj/Yo7WzSg0Lf4IwR3rte/KCIiExR8/W64e/ZJvEAgy5CdLpT85CEoTvP2ITgbhoE2xJJbiLRLb2xBS4H6uW8gfGSf7jUREcWbbLOj5GcPw927b+IEAlmG4nKj60N/haOoxOxqzsAw0MbYuw+AY+AlsTdUI6j76AWoNeX6F0VEFGey3YGSn/0enpEt+H2oezEybHnt0fUPjyZkEAC4UVGbJDQNdR8+h/CBHTG3lTPz4Ln+fshO8+e9EhG1lhACx//3Fo6+/Wp0YGE8Z1BJEiAE0gYMQdH9P4YlLT1+x44Rw0AbpQV8qHnrMWi1lTG3tRR0RsbVd0NqwfgDIqJEFCw7iEPPPQ7vlg2Nb9KGkiRYPJkovOt+ZAweASlRLlecA8NAG6ZWHUPN209AtGBxIVu3/kibdCskiVeSiKhtEEKgeskCHH7pKaj1dcaEAlkGhEDu1GvR7obboDic+vZvEIaBNi5cthu17z8DaGrMbR0Xj4d75FQDqiIiMo/q96Fm+SJUzpsN/65t0Tfw1lw+kBVAU2HJzEL2pVOQNfYy2NoX6FdwHDAMpIDg9jWon/N6i9q6x10PR5/hOldERJQYAocOoOqLuahZ+gXCFcejd0pSNCCoZ/kQJcmAhMbwIDtdSO8/CFnjJyOtT39ISbQc8qkYBlKEf/Xn8C2fFXtDSUb6ld+Arbin/kURESUQ1edFYP8e+PftQWDfboSOHoYWCkGEQ5AsFshWGxRPJpzFXeAo7gJncRdYsnMSfjxAczAMpAghBLzz30Fw84rYG1vt8Fx3Lyx5HfQvjIiITMfRYSlCkiS4x10La6cesTcOB1H74fNQWzAzgYiIEh/DQAqRZAXpU26Hkhv7wBbhq0Xt/56B5q01oDIiIjITw0CKkWwOpF/5TchpnpjbajUV0UDg9xpQGRERmYVhIAUpaR6kX3kXJKs95rZq5VHUfvhfaKGAAZUREZEZGAZSlCW3EGmXfy06TSZG6rEDqPvoBYhI2IDKiIgo3hgGUpitUw+4x1/foraRst2om/UyhBrRuSoiIoo3hoEU5+g9FM7BE1rUNrxvK+rnvgkRz40/iIhIdwwDBOewybB1H9iitqGd6+Bd8A64XAURUfJiGCBIkoS0CTfC2sJVBoObV8K3+EMGAiKiJMUwQAAASbEgfcrXYCns0qL2gXWL4F81V+eqiIgoHhgGqJFktSH9ym9AadexRe39K+fCv3ahzlUREZHRGAaoCdnmQMZV34KS3b5F7X2LP0Rg80qdqyIiIiMxDNAZZKcbGVffAzkju0XtvZ+/jeCOtfoWRUREhmEYoLOS3RnIuObbkN2xL1sMCNTPeYOBgIgoSTAM0DkpGdlIv/puSA537I2Fhvo5ryO47Uv9CyMiIl0xDNB5WbLbI2PatyDZHLE3FgL1c2cgsHmV/oUREZFuGAbogiztOiL9yrsAi7UFrQW8n7+FwMblutdFRET6YBigZrEWdkb65XcAstKi9t4F7yCwfonOVRERkR4YBqjZbMU9kDbpVkCSWtTeu/B9+Ncu0rkqIiJqLYYBiom9tB/cl97Y4va+xR/A/9UC/QoiIqJWYxigmDl6DYZr7DUtbu9b+jF8q+fpVxAREbWKJLi7DLVQYMNSeL94r8XtnUMnwjlkIqQWXnYgIiJ9MAxQqwQ2rYB3/jsAWvZj5Bw8Ac5hkxkIiIhMxDBArRbYsgreeTPR0kDgGHgJXCOvYCAgIjIJwwDpIrjtS9R/NgNo4Y+To/9ouEZfBUniMBYionhjGCDdBHesRf2cNwChtai9rcfFSLv0RkhKy9YyICKilmEYIF0Fd65H/ZzXAK1lgcDaqTvSp3wdks2uc2VERHQuDAOku9Dujaib/Sqgqed9XjAcQTCiwmWzwqKcvDygtCtCxlV3QXamGV0qERGBYYAMEtq7BXWzXgbUSJP71x84imcWfIW1B45g+5FKaEKgXboLb957PfoVtW98nuzJRcbVd0PJyI536UREKYejtcgQtpJeSL/iTkCxNN4nhMBtz7yHr6rDGHf1dDz19NN46623YM/Mwbtfbm3SXqspR83bTyBSXhbnyomIUg/DABnG1qkHMq76ZuNuh0IAh6vr8dOf/hQPPvggOnXqhOnTpyMjIwNh9cwxBsJXh9p3/4PwwV3xLp2IKKUwDJChrB1LkXHVtwCrDZIEFOd4cM8996B379742c9+dsH2IhRA7QfPIrhzfRyqJSJKTQwDZDhrhy7ImPYtyHYn3vnudPztxgm4rHfn5negqaif/SoCG5YaVyQRUQpjGKC4sBZ0RsZ196JzpyLcMao/SnIzY+xBwPvFe/Atnw2OeSUi0hfDAMWNJbcQnhu+C9mT2+I+/KvnwTv/bYgLTFskIqLmYxiguFIysuG54X5IrVhDILh5JepmvQwRDulYGRFR6mIYoLjzqUCkoEuT+/zhMOqDzX9zD+/ZjNr3n4LmrdW7PCKilMMwQHH1n//8B9nZ2XjhxZea3P/ykvXo/vMn8fKS5s8aiBw9gJqZ/0Lk+CG9yyQiSilcgZDiavDgwcjPz8c999wDj8eDSy65BAsWLEBtbS3+85//oHzrOsz+0W2xdWqxIu2ym2Ev7WdM0UREbZzlwk8h0o/b7UZZWRkWLVoEAPjoo48aHzt8+DAybNbYO42EUT/7FajDJsM5eAIkSdKrXCKilMAzAxRX8+fPxy9/+UtUVVWd8ViW045fjrsII7t2aHH/tm4DkDbhRkiWFoQKIqIU1abCgBYJI3joIAL7dyOwfy8itTUQ4RCEGoFktUG22mDNawdnpy5wFHeGNbcdP0UmmNC+baib/TLQipkCSrsiZFxxJ2R3ho6VERG1XUkfBgKH9qNqwVzUrV2FYNmhk9vmKkp0MXwhAAFAlgBJit5ueI7scMJR0gWZI8bCM3IcLGnppn0ddFLk6AHUfvhfiIC3xX3Ibg/Sr7gTlnYddayMiKhtSsowoPp8qFm+EJWfz4Z/13ZAlgHtzI1umuXEmQFZhmfoKGSNm4S0PgMgyZxoYSa16jhqP3gWWt2ZlxOajQMLiYiaJanCgFBVVMz5EEdmvAQRDDZ80texfFkBNBW2gg7oePeDcPfqq1/fFDPNW4vaj16Aevxgq/pxDpsE5+DLeEmIiOgckiYM+HZuw8FnHkPwwF7jD9ZwpiFz7GUouO2bsGR4jD8mnZUIh1A/bwZCrdy1kAMLiYjOLeHDgBYK4vCrz6Fy7setuxzQErIM2e5A4TfuQ9aYS+N3XGpCCAH/qrnwr5zbqn6UdkXImHoH5DSGOyKiUyV0GIjU1mDvXx+Cf/cOfS8HtEDetOlof9MdHEtgouCOdaj/7E1AjbS4D8mVjvTJt8HaoauOlRERJbeEDQPhinLsevgnCFccj+/ZgPPIHD0eHe/9ISRZMbuUlBU5egC1n7wI0Zo9CSQJruGXw3HxJZAkhjsiooQMA6HyY9j98E8QrqxImCBwgmfkJSi678eQFAYCs6j1Naj75EWox1o3sNDauTfSJtwE2eHSqTIiouSUcGFAC4ex69ffR+DgvoQLAie0u+5WtJ9+u9llpLTowMK3ENq5rlX9yBnZSJ/yNa5HQEQpLeHOkR6d8RICB/YmbBAAgGPvvQHv1o1ml5HSJKsNaZNvg3PoxFb1o9VWouadJxHYtAIJlouJiOImocJA3fqvUP7xu6YPFrwgScL+x/4Mtb7O7EpSmiRJcA2dhLQptwOtmTKoRuCd/za8n82AaMUyyEREySphwkCktgYHHv/ryRUBE5mmIVJbjYPPPW52JQTAXtofnmvvhdTKvQiC275EzczHoVYd16kyIqLkkDBhoOLTD6B66xP/rMAJmobaFYvh37vL7EoIgKV9ETKnPwilldf+1cojqHnrMQRbucgREVEySYgwoAUDKJ/9ASASd5zAWckKjn/0rtlVUAM5zQPPtffC1m1Aq/oR4SDqZ78C76IPIFqxpgERUbJIiDBQtXAeNF/Ld6gzjaaiZtkXCFeUm10JNZCsNqRNuhXusddE95pohcC6Rah97ymo9dW61EZElKhMDwNC03D8o3fMLqNVyj/9wOwS6BSSJMHRbxQyrr8Pcnpmq/qKHNmHmjcfRWjPZn2KIyJKQKaHgcC+PQgfO2J2GS2naaheMt/sKugsrO07wXPj92Ht1KNV/YiAF3Ufv4D6Be9wtgERtUkWswvw7dwKQAKg38DBVUcr8M35K8/5+JB22fjvpcN0O16ksgLh6ipYM7N065P0ITvdSL/qLvhXz4N/xVy05ucsuHE5wgd3IX3SrVykiIjalAQIA9sadiNUdetzQG4WPr/6zF0GFxw6it+v3oSbSjvpdqwT/Du3wTp4uO79UutJkgzXkImw5Bej/tPXIQItH5+iVR9HzduPwzVsMhwDx3HjKiJqE0z/TebbtknXIAAAVkVGrtPe5E9tKIx/rNuGb/XuikmdCnQ9HhQFvl3b9O2TdGcr6g7Pzd+HJb+4dR1pGnzLZqH2/aeh1lbpUxwRkYlMDQNqwI/Q0cOGH6c2FMb3Fn+FQXnZ+G7fbvofQFWjZzgo4Slpmci49l44+o9pdV+Rst2oefMfCG5bo0NlRETmMTUMaD6f8ccQAj9ftg6KBPy/Ef0gGbTCoeqtN6Rf0p+kKHCPmYa0KV+DZLW3qi8RCqB+7uuom/M6tKBfpwqJiOLL3DAQh5HZ/1q/HevKq/DYmEFIs7Zi/foLEMGgYX2TMeyl/eC58XtQcvJb3Vdo+xrUvPkPhA/t1qEyIqL4MjUMGL0Lwez9h/HS1j3468gBKE53G3uwZNhTgc6gZOXBc8MDsPcc1Oq+tLpq1L73FLxLP+HKhUSUVMwNA7bWnaI9n61Vtfjtig34Xv/uGFWQZ9hxTpDtxn0tZCzJaoN7wk1wT7gRaOVlA0Ag8NV81Lz9BNSqY7rUR0RkNFPDgOJOi04r1FlVMITvL/oKQ9pl48riDij3B5v8qQzofEpfkmDJzNa3T4orSZLg6DUEmXrMNgCgHj+E6hmPwr92IYSWZHtuEFHKMXWdAdlmg6NjJwT279W134Vlx1Dm86PM58el//v8jMcLXU7MnjZOvwNKElylrVvljhKD4slFxnX3RhcpWjWvdZtnRcLwLf4QoR3r4L50Oiw6jE0gIjKCJIS5ewYfev5JVH4+G1D1XWsg3jr/6k9I6zPA7DJIR+Ej+1A/53VotZWt70xW4Bw8Ac5B4yEppq/1RUTUhOmLDrm69Uz6IAAAzi7dzS6BdGbNL0bmzT+AvdeQ1nemqfCvnIOaGY8hcvRA6/sjItJRAoSBXmaX0Gr2wo5QXC6zyyADSDYH0ibciLTLvw7J3vr/Y7XyCGrefhzexR9y0yMiShimhwF7fiGcpT0MGUgYF5KErEunmF0FGczetS88t/wQ1iIdVrAUAoG1C1H9xiMIH9zZ+v6IiFopId6B86ZNB5J0xLVksyN7PMNAKlDSPEif9i24Rk8DZKXV/Wm1lah9/2nUz3+bqxcSkakSIgxkDBoGa247s8uInSwj57KpvESQQiRJhnPAmOjKhdn6zA4IblqB6tf/jtCezbr0R0QUq4QIA5KsIO+q680uI3ZCIGfKNLOrIBNYcgvgufFBXTY8AgDhrUXdxy+g7tPXoPm5zwURxVdChAEAyBo3GfaOnZJn7IAkIe+qG2BLxjMapAvJYoV7zDSkX3035PQsXfoM7ViL6tf+huDW1TB51i8RpRDT1xk4VeDgfuz8xQMQkbDZpZyfLMNR3AWlv/sHJAvnjBMgQkH4ls9GYP0SAPq8pCwFneG+5BpYcgt16Y+I6FwSKgwAQMVnn6Dsv0+YXcZ5STY7Ot12KyR/JSS78+QfmxOS3QFJsQIWKySLNXrbGv1bslgBi6XJ41Ashm2rTPEXPrwX3s9n6rcvgSTB0WcknMMmQXZwbAoRGSPhwoAQAvv/8XvUfrmydUvBGqjjfT+CZ9BQ1M74J0TAp0OPUsMWjlLj7ofuS6fD1m2ADn1TvIlIOLqc8VfzdZslIzndcI2YCnuvwZCkJLmURkRJI+HCAABogQD2/vW38G7dBCRYefm3fCM6FRJAaOc6eOe+ofsx5Mw8ZNz0A0jJMn6Czipy/BDqP58J9fgh3fq0tO8E99hrYGlfpFufREQJGQYAQAsGsO+R36N+49qECQQFX7sbuVOvbfy3EALeOa8jvHuDrsdxT7wFttL+uvZJ5hCaisDahfCtmAOoEZ16lWC/aChcwy+H7HTr1CcRpbKEDQMAICIRHHr+SVTN/9S8ImQZkGQU3f9jZI4Ye8bDmq++4XKBV5fDKdn5SL/xQZ4KbmPUquOon/82ImW7detTsrvgGjEF9t7DeBaJiFolocMAEP30XbVgDg6/8iy0YCDuKxU6irug47e/D2fn0nM+J7RrPbxzXtfleO7Jt8PWpY8ufVFiEUJDcNMK+JZ8DBEO6tavktcB7rHXwFpQolufRJRaEj4MnBCprcHh1/6L6oWfRT+tGxkKZBmS1Yb8W76BnIlTITVj6dn6ua8jvHN9qw+t5BTAMXgCrJ178+xAG6XWVcO74B2E923VtV97ryFwjZgK2ZWma79E1PYlTRg4wbt1I8pe+A8C+/dE14fXdNz+uGEkv2fEJSi4/VuwZmU3u6nm90YvF+i0epyc3R7OQZfC2qUvTwG3QUIIhLavgXfR/3SakRIl2RxwDp0IR9+RkBSugUFEzZN0YeAE/55dqFowB1WL5kHz+1oeDBQFUFXY8guRPeFyZI4eD2tm80PAqUK7N8L76astansucmYeHIMuha20X7POUFBy0fxe+JbPQnDTSui1WBEAyBnZcA2fAlu3/jzDREQXlLRh4AQtFELtl8tQv2EN/Lt3InBw/8lR25J08o8QTS4tyC43nCVd4excCs/w0XB27aHL4j/ez95EaMfaVvdzOtmTC8fF42HrPoChoA2KHD0A78L3ETm6X9d+lbyOcI+6AtaO5x7zQkSU9GHgdEJVETx8CIF9uxGpq4UIhyBUFZLVCtlqhTUvH87izrBk5Riy8p8W8EUvF/jqdO8biH7ii4aCgTwN3MYIoSG4ZTV8Sz/RbXbKCdbinnCNmApLboGu/RJR29DmwkAiCB/cifoP/ws9T/ueTk7LhL3PCNh6DeEytW2MFvDBv2IOAhuX6rzGhgR7z0FwDpsMJT1Tx36JKNkxDBjEt3wWgmu+MP5AFits3QbC0XcklJx8449HcRMpL4P3i/cRObxH344VCxz9x8A5aDxku1PfvokoKTEMGESoEdS99xTU4wfjdkxLYRfY+46EtaQXxxW0EdFZB1/Bu+Rj3S89SXYXnIMvhaPfKF5yIkpxDAMGUmvKUfvWv4BIKK7HPXkJYTBkB5erbQu0UAD+lXMRWLdY9w285PSs6MyD7gM484AoRTEMGCy49Uv45s88+4NGL56kWGDrPhD2viNhyeHAsbYgUnEkOuvg0C7d+1byOsA1ciqsHbtxW22iFMMwYDAhBLyfvYnwznVN7rd26QvniMsRWLMAoa1f6rt40llYCjvD3ncULyG0AUIIhHaug2/xR9C8Nbr3bynsAtfQibB06MpQQJQiGAbiQAQDqJ35GLS6qoZ7JGTc9H0o2e0BAFpdNQJrFiC4ZZXhoUBK88DROAuBlxCSmQiH4F/7BfxffQHouNfBCZbCznANmQhLx1KGAqI2jmEgTiJH9qHu/acBocHWbQDcl918xnO0+hoE1n6B4OaVOm53ew6KBbZuA6KXEHILjT0WGUrz1cG3ai6Cm1YYctnJUtAZzqGXJczlAyEEwhXliNRWQ4ROriMiWa2w5bWHJS3d7BKJkg7DQBz5V89DYPU8ZNz8QyiZued8nuatRWDdwugv90jY8LoshZ1h7zMyujkSLyEkLbXqOHzLZyG0a4Mh/VsKSuAcMhHWoviGglD58egKo/t2w79nF/x7d0Hz+89dZ2YWnF1K4SwphbOkC9L7XwzFybU4iM6HYSCOhKYhtHU17L2HNuv5mq8egXWLENy4LC4zEqQ0D+w9BsFW2r/xEgYln/DhvfAt/UT/9QkaWPKL4Rw6Edai7oaFAi0UQs3qZaic9ynqN6yJ3tmwj0izSFJ0gK6qQrLakDnqEmSPnwR3z4sS4uwGUaJhGEgCmt+L4OYVCG5aDuGtjcsxlZx8WEv7R4NBRss2biLzCCEQ3rMJvmWzoFYdM+QYlvad4Bw6CdZO+oWCSF0tjr7zBirnz2nYgEynGTcNG5nZ2rVH7hXXInfSlZAUngUjOoFhIIkIVUV4zyYENiyBemRf3I6rtCuCrVt/2Lr2g+zOiNtxqfWEpiK4eRV8K+cYtl9GNBRMhLVTyzf7EkKg6ovPUPbSM1D9PmOn3AJwFBWj47e/B3f3XoYehyhZMAwkqcjxQwhuWBrdIdHgGQgnSbAUdoatW39Yu/ThbIQkYvTMAwCwtC+Kjiko7hlTKAgc3IcDT/8Lvm2bDanrrBrOOGRfdjkKbv0GBx1SymMYSHKarx7BLSvjegkBACDLsHTsBlu3AbCV9IZks8fv2NRimq++YebBcsM+fSs5BXBePA62bv0vOCC1avF87H/ykTO2GI8bWYbFk4kuv/oDnJ06x//4RAmCYaCNMOsSAgBAscBa3Ct6xqBTD0gWa3yPTzFTq4/Dt2w2QrvWG3YMOT0LjgFj4eg9FJLV1uQxIQSOvTcDR958ybDjN5ssQ7Ja0fknDyG930CzqyEyBcNAG9R4CWHnOuPXKzid1Q5b54tgK+0fXayGg7QSWqS8DP5V8wwNBZLDBUe/UXD0HQXZ6YYQAkdmvIxj775p2DFjJkmQZAUlP3sIGQMGm10NUdwxDLRhmr8ewc2rENy0LL6XEBpIDhesXfrCVtoPlvwSBoMEFik/DP/qzxDauQGAQb8SLFa4R12J2l0Hcfj1F4w5Rms0TEfs+tCfkdazj9nVEMUVw0AKEKqK8N5NCK5fisiRveYUYbXDWtgFlo6lsBZ1g5yZx/neCShScQT+VZ8htHM9jAgFSt9Lse/fj0fHCCSihjEEPR55ioMKKaUwDKQYUy8hnEJyZ8DaoTQaDjqWcspigolUHIF/9TyEdqyDXqFASs/BkWWbEK6uNGewYHPJMjxDRqD4h79iYKWUwTCQok5cQghtXQWtttLsciBntYe1Y0M4KOzC2QkJIlJ5NHqmoJWhQAiB2kqgbsuWxA4Cp+j4ne8j59LJZpdBFBcMAylOCAH12EGEdq5DaNd6U8YWnEGWobQrgrVjKawdu0FpV8TxBiaLVB6NninYvhYtCQUBbwTlX27VvS4jSTYbej/1Ki8XUEpgGKBGQtMQObIXoR3rEN69ASLgM7ukKKvt5HiDjt0gZ7Xj6VuTqFXH4Fv1WXSxqxh+dVTsqYb/UFnSnBUAAEgS8m++A+2vvcnsSogMxzBAZyVUFZGDOxHauRahPZsNW7WuJSRXevSSQodSWNp3guzJgSTLZpeVUtSqY/CtnofQ9jUXDAUhfxjHVm2LU2X6UjI86P3UK5C5dga1cQwDdEEiEkZ431aEdq5HeN8WUwcenpXFBiUnH5bcQii5hVByC6Bk53PxozhQaysRWLMQgS0rz7nddvXRIOp37EquswKnKLr/R8i+5DKzyyAyFMMAxUSEAgjt3YLQjrWIHNyRuL/gJRlyZh4seYVQcgoaQkIhZAf3tTeC5q9HYP0SBNYvhQievLykRVSULd+WuD8nFyJJcHbuiu5/ftzsSogMxTBALab5vQjv2YjQjnWIlO2BYYvV6EhOy4yeOWg8i1AIOS2TYxB0IkJBBLasRGDNQmj11YjYc3Fk7gKzy2odSULfl9+FbHeYXQmRYRgGSBeatxahnesR2rkO6rEDcT/+wcpavPflFizdcQCHquuQ5XLgoo7t8J3xg9Epx3PetpLd2eTsgSW3MLooEmcwtJhQVYR2rEXFshU4/uknuu6s+c0FK9AjMwM/HdB0++HPDx3FD5euwdrpU3Q71gldH/4b0npxVUJquyxmF0Btg+zOgKP/aDj6j4ZaW4Hwrg0IH9iByOG9hm+xvHL3IVzz2JuQrTaMGTMGY8d2xfHjx/HewoV4fuEa/Ou2y3HjsIvO2V4E/YiU7UakbPfJOyUJkisDcnom5DQP5LRT/47elhxunlE4B0lRYO85CP6ZbyfvJYITJBm+HVsZBqhNYxgg3SkZOVAGjoNj4DiIcAiRI3sRPrgTkYM7oZaX6X68zzfvQWZOLnbu3Amv14uNGzeiU6dOKCwsxH333YfvvfYqxvUqQbsMd/M7FQLCWwPVW4NzRhnFclpIaBoW5LTMlF48SWgafDu2IRkuH52XBHi3bzG7CiJDMQyQoSSrDdai7rAWdQcQHWgWObQb4YM7EDm4A1pddauPYVFkhEIh3Hrrrfjoo4+gaRokScITTzyBRx99FDNnzsRbKzfhu5cNbfWxmlAj0GrKodWUn/Mpks0RDQfpmZDcDWHBlQbJYgOsVkgWGySrreHftsZ/w2KBJCXOdEmhaYAagQgHIfxeaAEvRMAL4fedvB1ouO33QQS8UIUMLeA3u/TW0zSEjh42uwoiQzEMUFzJzjTYSvvBVtoPQghotZWIHNwZPXNwaCdEMPY3j6sv7oE3l2/Enq+W45GbJ2JUt0647+WP8frrr+O+++5DcXExyqrrDPhqLkyEAlArj0CtPBJ7Y8uJsGAFTgkN0bAQvf+MEKFYolM/VRVCjUTfwLXT/q2qDX+feFxt2kY7/TkqIGI/1a9FkvyMwCm0YOKss0FkBIYBMo0kSVA8OVA8ObBfNAxC06CWl50MB0f2NmtNg27tc7D64Xsa/731cDm2lB3H/dNvR21tLfbs2YOvXTTKwK/EIJEwRCQMETC7kJYR51h3IBmJRFtbg0hnDAOUMCRZhqVdR1jadYTj4nEQkTAih08fb3D+T5v7K2ow/Ym30LVHL/z2t7/FL37xC0hqBNcM6hmfL4IaSbIxgyvTLBbUh898c64Lh5FmMeZXmmy1GdIvUaJgGKCEJVmssBZ1g7WoG4DougaRsl2IHNqNSHkZ1IrDTVa9O1hZi2mPvgFHdjvMnj0bL774Ih5//HH89aaJyPekmfVlpCxJMWbMQ0lGGpYcPn7G/Zsqa1GcHsMg0RjITqch/RIlCoYBShqy0w1b136wde0HIDqoTasph1pehn2bN+Dq3/0ISkY25s+fj1mzZuGBBx7AfROG4JtjB5pceWqSFQUWjweRmhpd+72xaxFm7NyHP321Gdd36QiHomDZ0XK8v+cg/jC0n67HAgAoCpydS/XvlyiBcNEhSnrl5eUYOXIkQqEQvvjiCyxatAh33HEHNE3DVSMHo2OGA98fPwB5Bn1qpHOrOhpG3datuq81sLmqBk9s2IGt1bUIqRo6pbvw9e6dMaVTga7HOaHjd76PnEsnG9I3USLgmQFKes8++ywqKiqwevVqBINBzJgxA5MmTQIAhAG8uWIFPH1H4He33wO1/DDU8jKoFWVQK48ZviBSqnO0y0XdFv0/b/TO8uDfYwfr3u+5uLtzzAm1bQwDlPTKysrQvn17CCFgsVjw2GOPNXn85ptvRtnRo7AWdoG1sEvj/UKNQK06Fg0HDX8iFYeBEKeR6cWelXHBLY4TnWx3wF5YZHYZRIZiGKCkN2nSJDz55JPo2rXrOZ/zgx/84Iz7JMUCS8NeBCcIISCCfmj11dDqa6DVV0M0/N34x1ub/EvsxonVZYOSngG1rtbsUlpGVpA+cAgkOXEWgCIyAscMUJuwZ88e7Nmz56yPFRUVoVu3brodS2gahK8uGha81dDqTgaHxgDhr9fteMlMyc6H39oeR2a8krRnCEr/+E+4u/EyAbVtDANEBhCRMDRvzSkhIRoUhK8OIhyGiISAcAgiEoJo+BvhMJJiHX9ZgeR0Q3a4o5s1OV0Nt12QHA33OxtuO9OgacDmb9+efIsQyTJcXbuj2x//aXYlRIbjZQIiA0gWKxRPLhRPbrPbCCEa1v8PnREWEAk33h/9d+iUf4cb/w1NBRQLJMUCKAogn7htiW7JfMpjkmKJvrE3Pn56mzMfkxRrdJnkGHZrlAFkXzoJFZ/NSq7LK5qGvGk3mF0FUVwwDBAlCEmSGvYjsAJoW9Mg8668DpWffxrd8CgZyDLs+R3gGTLc7EqI4oKjYojIcPb8QhTe+R2zy2g2SZJR/MNfQJIVs0shiguGASKKi5yJU5ExeDiQBCPzC++4B85Onc0ugyhuEv9VSURtgiRJKLr3B7CkewApQX/1yDLSLx6KnMlXml0JUVwl6CuSiNoiS3oGSn7yG0hWa+IFAlmGvX0BOt33w5gGSBK1BQn2aiSits7dvRe6/uZPkGzWxLlkIMuwF3RA19/9HZYMj9nVEMUd1xkgIlP49uzE7j/+Gmp9nblTDiUJru690Pln/wdLWrp5dRCZiGGAiEwTKj+OvX//Hfy7d8b/4LIMaBqyxk9Cx2/dD9lqi38NRAmCYYCITCU0FRVzZ+Hwq/+FFg7F5yyBJMHWLh8dv/0g0vsMMP54RAmOYYCIEkK4uhJlLz2D6iVfNH5q150sQ5JltL/hVuRddT3PBhA1YBggooTi3b4FFfNmo3rJAohQCJCk1m1yJCuApsKSmYXsS6cgZ8Jk2PLa61cwURvAMEBECUkN+FGzfDEqPvsEvu1bTz6gKICqnrvhKY9LFgsyhoxAzqWTkdZ3AFcUJDoHhgEiSnhqIIDA/j0I7NsD/95d8O3eiUhNNUQkDKGqkCwWyFYrbO0K4OxSCmdxZzhLusJe0AGShVuwEF0IwwAREVGKS5AVP4iIiMgsDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFKcxewCTmUbeBdkiw2SrECSFSjWk7clWT75mKJAttggNz6mnPGYJCuQZQmSLEFRZEin3ZZlCbIiNT7nvI9JEhSLDEWWoMgSbA23LY3/Vk4+ppx8nuWU5ypnuy1JkCUJigRYFbnxtkWRoUiI/luWYJWls9yOPm6V5cbbiiRBkgBZAiQJDf0DEgBFliAD0a9FRuNtWQIU6dTb0T4kIQChQdIiQJPbWvSPdu7HJKEBqnrythYBNBVC04BICEJVAU2L3hcJQ2hq9HY4DJy4feK5J54XDp1so6nQwhEIVYPQNGihCDQ12kaoGrRwBJp68rZouK2GIxCnPE8NRU65rUJoApoqGv7d0F4T0cdUAaEKaKoGNaw19CmghtWGNifbaUJAFQIhTUAVOO326f+O3tYQva0KNDx28vZTYq+pr0u98PXN1zdf34n7+uaZASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiolQn2qhAICAeeughEQgEzC7lDIlcmxCsrzUSuba2JJG/z4lcmxCsrzUSubbWkoQQwuxAYoTa2lp4PB7U1NQgIyPD7HKaSOTaANbXGolcW1uSyN/nRK4NYH2tkci1tRYvExAREaU4hgEiIqIUxzBARESU4tpsGLDb7XjooYdgt9vNLuUMiVwbwPpaI5Fra0sS+fucyLUBrK81Erm21mqzAwiJiIioedrsmQEiIiJqHoYBIiKiFMcwQERElOLaXBj48Y9/jDFjxuC2225DKBRq8pjf78eVV16JSy65BBMnTkRlZWVC1XfC//t//w+DBw82vaZIJII777wTY8aMwfe+97241dPc+k6I9/frVOeqLRF+1toivr71q4mv7wtLpdd3mwoDa9aswZEjR7Bo0SL07t0bb7/9dpPHZ82ahT59+uCLL77AjTfeiFdeeSWh6gOAuro6bNy4MSFq+vDDD9GxY0csWrQIPp8PS5cujVtdzakPiP/3q7m1mf2z1hbx9a1vTXx9t7w2s3/WjNCmwsCyZcswadIkAMCUKVPO+OHu1q0bfD4fAKC6uhp5eXkJVR8APPbYY7j//vsToqbm1GtmfUD8v1+nOl9tZv+stUV8fetbE1/f55dqr2+L2QXoqbq6GoWFhQAAj8dzxqmbrl27YuPGjejTpw8kScKKFSsSqr6amhps2LABv/71rxOipurq6sb1t89Wr9n1mfH9am5tZv+stUV8fetbE1/fLa/N7J81IyTlmYEjR45g9OjRZ/wRQqC2thZA9D8yOzu7SbuXXnoJ48aNw8aNG/Hwww/jd7/7XULV9+ijj+K73/2uITWdS1ZW1jlrOt9jiVCfGd+vU52vtnj9rLVFfH3rh6/vlku113dShoH8/HwsXrz4jD9Tp07FnDlzAACffvopRo0adUbbE/+hmZmZqK6uTqj6du7ciT/+8Y+YMmUKduzYgT//+c+G1Heq4cOHn7Om8z0WL+erwYzvV3NrA+Lzs9YW8fWtH76+jakNaIOvb/N2TzbGj370IzF69Ghx6623imAwKIQQ4p577hFCCFFTUyOmTp0qLrnkEjFq1Cixbdu2hKrvVIMGDTKtphP1hMNh8fWvf12MHj1aPPDAA3Grp7n1nSqe369Tnau2RPhZa4v4+m59TXx9N18qvb65HDEREVGKS8rLBERERKQfhgEiIqIUxzBARESU4hgGiIiIUhzDQAp48cUXkZmZqUtfe/fuhSRJsFgsOHToUJPHDh8+DIvFAkmSsHfv3iaPvfPOOxg3bhw8Hg/S0tLQr18//O53v2tcyEPPGomo9UpKSiBJEt58880zHrvooosgSRJefPHFJvevWbMG06dPR/v27eFwONC9e3fcfffd2L59O4CTvz/Wrl0bh6+AYsEwQC1SWFiIl19+ucl9L730Ejp06HDGc3/1q1/hpptuwpAhQzBr1ixs3LgRjzzyCNatW9cm1vQmMlo4HDbluEVFRXjhhRea3Ld8+XIcOXIEbre7yf0fffQRhg8fjmAwiNdeew1btmzBK6+8Ao/Hg9/85jfxLJtawuy5jXRhs2bNEqNGjRIej0dkZ2eLK664QuzcuVMIIcT8+fMFAFFVVdX4/DVr1ggAYs+ePY2Pn/rnoYceEkIIUVlZKb72ta+JzMxM4XQ6xZQpU8T27dvPW8uePXsEAPHrX/9adOvWrcljPXr0EL/5zW8ajy2EECtWrBAAxKOPPnrW/k7U/cILLwiPxxPz94YoWamqKv785z+Lrl27CpvNJoqKisQf/vCHxtfYjBkzxCWXXCLsdrt4/vnnhaqq4uGHHxYdOnQQNptN9O/fX8yaNauxv2AwKO6//36Rn58v7Ha7KC4uFn/6058aH3/ooYdEUVGRsNlsoqCg4IJrCxQXF4uf//znwm63i/379zfef/fdd4sHHnhAeDwe8cILLwghhPB6vSI3N1dcc801Z+3rxOv8xNe2Zs2aln3TyDA8M5AEvF4vfvjDH2LVqlWYN28eZFnGtddeC03TLth25MiRePTRR5GRkYHDhw/j8OHD+PGPfwwAuPPOO7F69Wp88MEHWLZsGYQQmDp1arM+hUybNg1VVVVYvHgxAGDx4sWorKzEVVdd1eR5r732GtLS0nDfffedtR9eGqBU9Ytf/AJ/+ctf8Jvf/AabN2/G66+/jvbt2zc+/rOf/QwPPvggtmzZgsmTJ+Oxxx7DI488gr///e9Yv349Jk+ejGnTpmHHjh0AgH/961/44IMP8NZbb2Hbtm149dVXUVJSAgB4++238c9//hNPP/00duzYgffffx99+/a9YI3t27fH5MmT8dJLLwEAfD4fZsyYgbvuuqvJ8z799FOUl5fjpz/96Vn74es8CZidRih2x44dEwDEhg0bLnhmQIizf+revn27ACCWLFnSeF95eblwOp3irbfeOuexT0323//+98U3vvENIYQQ3/jGN8QPfvCDM459+eWXi379+l3wa+KZAUoltbW1wm63i2efffaMx068xk4/m1ZYWCj++Mc/NrlvyJAh4r777hNCCPHAAw+ISy+9VGiadkafjzzyiOjevbsIhULNrrG4uFj885//FO+//77o2rWr0DRNvPTSS2LgwIFCCNHkzMBf/vIXAUBUVlaet0+eGUhcPDOQBHbt2oVbb70VXbp0QUZGBjp37gwA2L9/f4v73LJlCywWC4YNG9Z4X05ODnr06IEtW7YAAC6//HKkpaUhLS0NF1100Rl9fPOb38TMmTNx5MgRzJw584xPCwAghIAkSS2uk6gt2rJlC4LBICZMmHDO5wwePLjxdm1tLcrKys5YH3/UqFGNr9c777wTa9euRY8ePfDggw82rqsPANOnT4ff70eXLl1w991347333kMkEgEA/OlPf2p8naelpZ3xe+WKK65AfX09Fi5ciOeff/6cr3NKbgwDSeCqq65CRUUFnn32WaxYsaJxu8xQKARZjv4XnvpibM5p/nO9eE99837uueewdu1arF27Fp988skZz+3Tpw969uyJW265Bb169UKfPn3OeE737t2xa9cu0wZAESUip9N5weecPkAPwBnB+tTX68UXX4w9e/bg97//Pfx+P2688UbccMMNAKIDAbdt24Ynn3wSTqcT9913H8aOHYtwOIzvfOc7ja/ztWvXNm7be4LFYsHXvvY1PPTQQ1ixYgVuu+22M+rq3r07AGDr1q3N+wZQwmEYSHAVFRXYsmULfv3rX2PChAno1asXqqqqGh/Py8sDEJ3Wd8Lp03ZsNhtUVW1yX+/evRGJRJrsw11RUYHt27ejV69eAIAOHTqgtLQUpaWlKC4uPmt9d911FxYsWHDWTwsAcOutt6K+vh7//ve/z/p4m9jtiyhG3bp1g9PpxLx585r1/IyMDBQWFjaO0Tlh6dKlja/XE8+76aab8Oyzz2LGjBl45513GqfvOp1OTJs2Df/617+wYMECLFu2DBs2bEB2dnbj67y0tBQWi+WM499111344osvcPXVVyMrK+uMxydNmoTc3Fz89a9/PWv9fJ0nvjP/1ymhZGVlIScnB8888wwKCgqwf/9+/PznP298vLS0FEVFRfi///s//OEPf8COHTvwyCOPNOmjpKQE9fX1mDdvHvr37w+Xy4Vu3brh6quvxt13342nn34a6enp+PnPf44OHTrg6quvbnZ9d999N6ZPn37OAULDhg3DT3/6U/zoRz/CoUOHcO2116KwsBA7d+7EU089hdGjR+N73/tei743RMnK4XDgZz/7GX7605/CZrNh1KhROH78ODZt2nTOSwc/+clP8NBDD6Fr164YMGAAXnjhBaxduxavvfYaAOCf//wnCgoKMGDAAMiyjJkzZyI/Px+ZmZl48cUXoaoqhg0bBpfLhVdeeQVOp/OcIf90vXr1Qnl5OVwu11kfd7vdeO655zB9+nRMmzYNDz74IEpLS1FeXo633noL+/fvP+t6BZRAzBywQM0zd+5c0atXL2G320W/fv3EggULBADx3nvvCSGEWLx4sejbt69wOBxizJgxYubMmU0G8QkhxHe+8x2Rk5Nz1qmFHo9HOJ1OMXny5GZPLTzXAKDTBxCeMGPGDDF27FiRnp4u3G636Nevn/jd737HqYWUslRVFX/4wx9EcXGxsFqtolOnTuJPf/rTOV9jp04ttFqtZ0wtfOaZZ8SAAQOE2+0WGRkZYsKECeKrr74SQgjx3nvviWHDhomMjAzhdrvF8OHDxWeffXbe+k4MIDyXUwcQnrBq1Spx3XXXiby8PGG320Vpaam45557xI4dO4QQHECYyLiFMRERUYrjmAEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhS3P8H8X6qx1vMXtYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABk2ElEQVR4nO3dd3wUdf4/8NfMbM0m2VRIAiEhoUuVXgWRIipW7J6ed3qnnl7vxa9X/F3zTu/0zt4bYjsbSJGONKX33gIE0rN9Zz6/PzYEQs0mMzu72dfz8eDBsrufz7wTstnXznyKJIQQICIioqQlm10AERERmYthgIiIKMkxDBARESU5hgEiIqIkxzBARESU5BgGiIiIkhzDABERUZJjGCAiIkpyDANERERJjmGAiIgoyTEMEBERJTmGASIioiTHMEBERJTkGAaIiIiSHMMAERFRkmMYICIiSnIMA0REREmOYYCIiCjJMQwQERElOYYBIiKiJMcwQERElOQYBoiIiJIcwwAREVGSYxggIiJKchazCyAiai6hqQgcLoN/3x6Ea6uhBYMQqgrZaoVktcGW2w7O4hJYMrMhSZLZ5RIlDIYBIopbWiiI2q9WoG7t1/Dt3gH/wf0Q4VDkQUk6+UcIQBMABABATnHBWVyClJKucA8diZRuPRkOiM5DEkIIs4sgIjqVb+9uVC6YjcoFc6F5PYCiAKoafUcN7Wzt85F92eXIHDMe1sws/QsmSnAMA0QUNzzbt+DQC/+Bb89OQJYBTdOv84YzA+5ho9HhzntgzcrRr2+iBMcwQESmC9fX4fAbL6Jy3iz9Q8DpZBmSxYr8W+5EzuSpkBTFuGMRJQiGASIyjRACVYu/QNlLT0P1eY0NAWfhKCxG4X0/QEqX7jE9LlG8YRggIlMIVcWhl59BxecfnxwEGGuyDEgSOj3wY2SOGhf74xPFCYYBIoo5LRjE3n/8CXVfrzS7lEb5t92NdldPM7sMIlMwDBBRTGnBIPb89RHUb1hjztmA88i76Rtof/0tZpdBFHNcgZCIYkYIgQP//UdcBgEAODL9VVR88bnZZRDFHMMAEcVM1cK5qF66MC6DwAmHXngK/rKDZpdBFFMMA0QUE4HDh3DwuSfNLuOChKpi3z/+BC0UNLsUophhGCAiw2nhEPb+8/9BqGGzS7kwTYP/wD4ceesVsyshihmGASIyXNXCefDv3RXzdQRaTAgc++R9BI6UmV0JUUwwDBCRoYSmofx/MwAk2EZBsoxjn31odhVEMcEwQESGqlu7GsEjZTixo2DC0DRUzpuFcH2d2ZUQGY5hgIgMVf7Re5GV/hKQCIdRMXem2WUQGS4xX6FElBCCx4/Bs3l94owVOJ0QqGQYoCTAMEBEhvFu32J2Ca0WLD+CcF2t2WUQGYphgIgM49mxFdB5i2AhBL6zcBXuW7TqjMem79yPUR/MxWGvT9djendu07U/onjDMEBEhvFu2wyoqq59SpKERwb3xobKGry7a3/j/Yc8XjyxYRt+OqAH8lOc+h1QVuDdsVW//ojiEMMAERlCqCp8e3YZ0ndeihM/698T/1i/DYc8Xggh8H+rNmJIu2xcXdxR34NpGjzbGQaobbOYXQARtU2qz2voioNTizvgi0NH8btVG3BZhzzsrK3HexNHGnAkgXB1pQH9EsUPnhkgIkOIYMDwY/xu4EXYXevB39ZuwW8HXoQsh92Q42gB478WIjMxDBCRIUQMdibMcthxfUlHdE5PxaUd2ht3oDjeZZFIDwwDRGQI2WqLyXEUSYIiGbvUsWSLzddCZBaGASIyhOx0Aga/SceKJS3d7BKIDMUwQESGkK022AsKzS6j9RQFKaXdzK6CyFAMA0RkGFfPi3RfdCjmVBUpXXuYXQWRoRgGiMgwKV26677o0Onuu6gr3jFkSuFJDAPU1jEMEJFhXN0S/01USXfDmp1jdhlEhmIYICLD2Dt0gr2gY+IOJJRlZI4aCylR6ydqJoYBIjKMJEloN2lS4s7TFwI5U64xuwoiwzEMEJEh1JoKeGa/DvnA10jtlG92OdGTFbiHjIS9XZ7ZlRAZjnsTEJGuRNAP/9fzEdi4DNAigwezehTCc6gcwuDBhLrSVORedZ3ZVRDFBMMAEelCaBqC21bDv2oOhN/T5DFJCyGjeydUbdkHCM2kCqMgy0jrPwiubj3NroQoJhgGiKjVQmW74Fv2KbTKI+d8TnqHLNTtOYSwLxjDylpAkqCkpqHT/T8yuxKimJFELHYTIaI2Sa2tgH/5TIT2bm7e8xUXDn6+xOCqWq/kN48ire8As8sgihmeGSCiqGl+DwJrFzUZF9AciuqBu3cP1GzeEVW7mJEk5F51PYMAJR2GASJqNs3vRWD9EgQ2LQNCLTvdn1maB9+xagSPHYuvQCBJcA8ejvyb7zS7EqKY42UCIrogLeBDYMMSBDYsA0KBVvdnvWgk9k9/H8HyI4AWHwMK3cNHo+jBn0Gy8DMSJR+GASI6JxH0I7BhKfwblgJBv34dK1akXHkP9j35T3i3bzF9UaLcK69D/u13Q5ITfFMlohZiGCCiM4hgAIGNyxDYsAQi4NO9f2txLzhHXAnYU3D4tRdwfNZHgCzH9iyBLEO22VBw13eRfemk2B2XKA4xDBBRIxEKILBpOQLrFhkSAuSsPDiHXwFrh9Im93t3bceBp5+Af99u3Y95BkkGhIaMUWNR8I17YM3IMv6YRHGOYYCIIEJBBDY3hAC/V/f+JYcLjsETYOs+CJJ89lXQhaaiYvZnOPzGi9AC/sjmRnr+emo482Brn4eO9z6EtD6cMUB0AsMAURIT4SACm1cisG4hhM9z4QbRkhXYe4+A4+JxkGyOZjVRfV5Uf7kYlfNmwbtja+svH0hSw0yBEcjs3RVp46+BbLG1vD+iNohhgCgJiXAIwa2r4F+zEMJXZ8gxLEU94Rw2BYo7u8V9+MsOovKLz1G3ZhX8ZQeBE3sbKErkrMGJP5J8cpvkhumKst0BR3EJMoaPQeaosbCku1E7/R+QrHakjL0BSlb71n6JRG0GwwBREhFq+GQI8NYacozIuIApsHboomu/IhyGv+wAfHt3w793N8K1NdBCIUANQ7JYIdlssOW0g7O4BI7iEthy20M6ERAa1H3wH6jHDgKyAsegy2DvO4ozCIjAMECUFIQaRnDbV/CvWQDhqTHkGFJqBhwXXwpbtwFx+wZb/+mLCB/a2fhvJbcjUsZeDyWTZwkouTEMELVhmt+D4NbVCGxablwIcLnhuHgcbN0uhqTE94I9ntlvILR3U9M7ZQX2vqMj4xosVnMKIzJZfL9yiahFwscOIrhpOYK71gNq2JBjSK50OPqPha3HoLgPASecdRCjpiKwdgFCu9bDOWoqrIXdYl8YkckS4xVMRBck1DBCuzcgsGk51PIDhh1HcqbBMeAS2HoMTrhP0pL93DMatLpKeGa+DGtJHzhHXAE5JT2GlRGZi2GAKMFp9dUIbFmJ4JZVEH4Dpgc2kJypsPe/BPaeQxIuBJwgOVMv+JzQ7g0IHdgO55CJsPUces51EYjaEoYBogQkhED48G4ENy1HaO8WQBi3jK/kcMHefwzsvYZCSvD5+c0JAwCAUAC+pR8juH0NnKOvgSWnwNjCiEzGAYRECUSEAgjuWIPApuXQqsoNPZZkT4G93xjYLxoGyZrYIeCE0P6t8Mx6NbpGkhRZOGnQZZCsdmMKIzJZmz4zIISACIcgVBWy1QZJic/pTkQXolYfQ2DzcgS3fa3LFsLnI9mdsPcdDftFwyHZ2tabX7PPDJxKCAQ2LEVw9wY4h0yCtUs/SBIvHVDb0ibODAhVhf/gfvj2RRYj8e7ZCf/e3VA99U2fKMmwZmfDWdIVzuISOItL4SwuhS0n15zCic5DaBrCB7YhsGk5wgd3GH48yeaAve8o2HuPaPbSwYlGq69G7Zt/bVUfSm5HOIdfAUtekU5VEZkvocNAoOwgKhfMQcUXn0OtbZhDrSgnlyw9l4a1yk+sd+7sXIqs8Zcjc+QlUFwt+ORApCPN70Vw62oEt6yAVldl/AGtdtj7jIS9z0jIdqfxxzORUMOoeeF3uvRlLe0L55BJkNMydemPyEwJFwaEpqJq8XxUzPkU3u06bGICNO6OJlkscA8bhZzLr4araw99CiZqBhEOIXRgO0K71iO0b4thawM0YbXB3nsk7H1HtfkQcKrql38PBP2t7keyOeAcNRW2Lv1bXxSRyRIqDHh3bceBZ/4F/95d+m9veoKsAJqKzHETUXD7t2BJ41xjMoZQwwgf3IngiQBg8FiAEyRXOuw9h8DWaxhkR0pMjhlPaqf/A1rN8Vb1YenUAymjr4Hs4u8HahsSIgyoXg8Ov/0KKmZ9rM+ZgOaQZcgOJzrceS8yx044Y8MTopYQmorwoV2RMwB7N0Po8Am1uSz5nWG7aDisxT3jdu+AWKj76FmoR/a2qK1kd8I58ipYS/vxdwK1KXEfBrw7t2H3nx+GWldn6Fzq80nt3Q/FP/4NxxNQiwhNRfjwHoR2bUBozyaIgDd2B7fYYOvaH/aLhkHJyovdceOYZ86bCO3Z2KK2jkGXwXHxpTpXRGS+uA4DNSuXYd/jf4bQ1NicDTgXWYa9fT5KfvMn2HK5uxldmBAa1CP7IpcA9myE8Bm3MuDZyO5s2C8aHtk8qI3ODGgp75KPENy8vGWNFQvSrnuAuxxSmxO3YaBqyXzs//ffjBkX0BKyDIs7A10e+RvseVyNjM4khAb16AEEd69HaPdGCG9djCuQYOnUHfbew2HpUMq58Ofg/2oe/F/Na3F7JacDUq/5blJfaqG2Jy7DQPWyRdj3xJ/jJwicIMuwpKWj6/97AracdmZXQ3FACAH12CGEdq9HcNcGw7YJPh/J7oSt+yDYeg2Fkp4V8+MnmsDW1fAter9VfTgGjodj4HidKiIyX9ytQBg4Uob9/3ks/oIAAGgawnW12Pf4n9Hl93/jJ4MkJdQw1PIDDVMBN0CrqzSlDiW7ALbew2Er7ZuwGweZQU51t7oP/9fzYenUA5bcDjpURGS+uAoDWjiEvf94FCJ8gUWDzKRp8G7fgqPvv428G24zuxqKAaFpUCvKED60C+Gy3Qgf3guoIXOKkRVYS3rDftFwKO0KOaK9BeRUHRYJEhq8C2Yg7doHGMSoTYirMHBk+mvw79sdn2cFTnN0xhtI690frh4XmV0K6UwIAa26/OSbf9numE4BPJvGtQF6DIackmZqLYnubGcGbD0GIXxod1RnebSqcvhXz4Vz2OV6lkdkirgJA96d23DsfzPMLqP5JAn7nvgLev77RUiWuPk2UgupdVUNb/67ED60G8IX68F/ZyHJsHQoha3HIFiLe/GylE4kixWS0wXh80BKzUDKmOtg7dgF4cN7UP/x8wCa/2EksH4JrEU9YMnvbFzBRDEQN+9i5R++E7sFhfSgaQhVHEP18sXIHDXO7GooSpq3ruFT/66oPxEaSpJgye8Ma0kfWDtfBLklu+zRBcmpmVA694Fz6KTGbYkt+Z1h7zsSgfVLouhJwDNvOtKu/x7/ryihxcVsgsDRw9j60LcS4vJAE5IER2Exuv3tKV67jXMi6Ee4bA9CZbsQPrQLWtVRs0s6hQQlrwi20j6wdu7NywAxoNXXnPVygQiHUPfBU9CqyqPqz9KxK1yX38npnJSw4uLMwPFPPzRurwEjCQH//j3wbN6A1Iv6ml0NNRDhENSqcqgVh6FWHoZ69ADU44fO+PnSNIFZ63fgy50HsXbfYRyr8yDNYccvrhqN8ReVGF6n0q4Q1tK+sJX0huxq/Qh3ar5zzSiQLFakjJ2G+g//G9WKp+GDOxBYs4CrE1LCMj0MqD4vKubNSpzLA6eTZRz75H2GARMIISC8dQ1v+kcif1cchlZT0axf5H/9dAn+8skSFBcXY9CgIRjSqROWLFmCP3y40LAwoOR2gLWkIQBw69u4ZMntAMfF46JemMj/1Two7Ytg7VBqUGVExjE9DHh3bIUIBc0uo+U0DXUb10Joqq4DvIQQCB/cgeCOtXBdeqNu/SYqoYahVpVDqzwCteJI5BN/xWEIf8vX+f9672Fce+21eP/991FRUYH09HT87ne/w9vPP61j5YCcnQ9bSR9YS/tASc/WtW8yhn3AWIT2bY2cUWouIeD9omH8QAp3M6TEYn4Y2L5V94GDqhD45vwVyHXY8diIAY3314VCuOHzpbiquADf691Nt+OJQACBQwfhKCxqfV+aitDujQisWwS14jDkJHzz0Hz1DZ/yjzR+6teqynXfqCor1Yl5ixejuLgY+/btw759+3TrW85s1xAA+kLJyNWtX4oNSVaQMu4G1L3/FKCGm91O+OrhmTcdqVfczdkflFBMDwOeHVt0HyugSBL+MLgPbpqzDJ/uK8MVRZG9BP6yZgvcNiu+06uLrscDAM+Ora0KAyIURHD71wisX9J0ZHsbXNBEaBqErx6apwaapwbCUwutvhpq5VGoFUdiNq3vV1PHwDFzGY7VeqBHDpDdObCW9oGtpC+ULG5kk+iUzPZwDpsC39KPomqnHt4D/1fz4Bw80aDKiPRnahgQQsCzTf8wAABFaS481Kcr/rJmCwa3y8KmyhrM2n8Yr182HFZZ5xG/igLvjq3IvnRS1E3V2koENy9HcOvqsy5sIymm57WoCDUM4a2D5qk9+WZff/K25qmNbOBj0nbUp+qU7cbjt1+OLzbvxmfrdkTfgcUKS14xLAWlsBZ2hZyVx1klbYyt19DI9tO7N0TVLrBmASzti2Dt1N2gyoj0Zeo7jVpXC81r3Naut3QpwheHyvHblRuwo6YO3+nVBT0yDLiWp6rwH9jb7KcLIRAu243AxmUI79uK8y5yEicLGglNA8IhaA2f6EXDG7tWf8qne08thK8e0SzaklBkBUq7QlgKSmDtUBpZDjjBwhpFR5IkpIy5FnUVZZGBqVHwzp8RGT+QmmFMcUQ6MvU3mRYMGNq/JEn49cW9cO3nS9DVnYpv9jBulTDNf+GvRYSCCO5Yg8CmL5s9j1n4vQhuXwPIEiDJgCxDkpTIOAtZBiQZUsPfkGUAEqCGINQwEA5BNPxBOAShhk7e13g7DISDkU/04SAQDjd5/onb0OJ4vwjDSFBy8mEpKIWlQyksecWQrDazi6IYk2wOuC67FXUf/je68QMBLzzz3kbqVfdw/ADFPXMvE4Sb/8JqqQ/3HoJDUXDI48NRnx8dXCmGHEeEzr1xjVpXheCm5QhuXRX1GvdaVTm8CxJomeY2QLI5kDLhVljySyA7jPl5ocSiZOfDOXJq1Fsfq0f3w7/ycziHTTGoMiJ9mLpcltFr+q+rqMIb2/fi8ZED0Dc7A4+s3gijFlyUrE0H+gmhIXRgOzyzX0fd239HYP1i0ze7oaaO1tTjpv+8j/tf+7zJ/fuPHkOfydfj7/960qTKKB7Zug+EteuACz/xNIH1SxDau9mAioj0Y+qZAdlm3ClXv6ritys34PqSQgxrn4OiNBdu+HwJ3t19ANNKO+l+PNkRWd9cq69BcPtXCGxdDVFfrftxqHUkR0rjaf8P3/0My/ccxgMPPAAAcLvdGDduHCRJwq5du/CrX/0K3/nOd+B2c3VAahg/MOpq1B0/FPVyxd4F7yL1uu9BSc8yqDqi1jE1DCip6ZAdTmh+n+59P7F+O4QAftA3sp5AfooTP+rXA4+t24oReTn6Xi5QFDgL8lE/61WED2xLvGWV2yjJkQIlOx9KVj6U7DwoOQWQM9s1rh8fELNgs9kwcOBAAMDcuXMBAAMHDoQkSVBVFaHzXP6h5CNZbZHxAx88FRlL00wi6Id33ltInfodDjqluGT6RkW7/vgr1G9Yq+sb6OpjlfjOwlV4fuwQDMhpuuTrfYtWQRUCz4wZrOs0sI73PIDUvEz4Vs8FQsYOjKTTSDLkjBwoWXmRN//sfChZeZBS0s77f7x582ZMmDABZWVlZ3381ltvxRtvvGFU1ZTAgjvWwDs/+rE81i79kDLuRk5Bpbhjehg48s7rOPr+W4m7N0GDbn/7D5xFnaF56+BbMQuhHWvMLqlNkuxOKFl5kLPzGj7x50PJbAephYszhcNh1NWduciRoihIT+eSsnRu3kUfILh1VdTt7APGckEiijumn69K6do94YOAZLXBURgZhyCnpME1bhrCPYfAu/QjaBWHTa4uUUmQ3dmR0/sn3vSz8yC53Lp+qrJYLMjM5IZBFD3niCsRPnYw6td4YM0CyGlZsPcYZFBlRNEzPQy4uvWEpFgi8+ITkSzD1av3GfOILXlFSLv2fgS3rIR/1RzOJDgbxQLZ5YbsSofkckNOdUNOy2z4tN+ec/oprkkWK1yX3RLZvyDKS4O+xR9CTnXD2rGrQdURRcf0ywQAcOCZJ1A5f3bCniHo/Ks/IL3/uVO+5quHf+XnCG77KoZVmcxqh+xKb3izd0NKPXn7xJu/ZHfy2iklvODuDfDOfSv6hlY70qbeCyU7X/+iiKIUF2HAf+gAtv3wXrPLiJ4kwZ7fAd3/+Wyz3tTCR/fDt/QjqMfPPmAtUUh2Z+STfMMbu5zqbvh3+sk3e5vD7DKJYsa79GMEN30ZdTvJ5UbaNd+F7OL0VTJXXIQBANj96G9Rt/7rhDs70PG7P4hqgyKhaQhu/xr+1XMiG/ZcgJzZDrIzNbI3gNAi3x9NgxBaZInghvuaPG6xQlIskUF1FmvkbyXy99nuO/l8G2Bp+rekWACLLbJAlGKFZLVxahTRaYQaRv1Hz0I9djDqtnJ2PtKuuheSzW5AZUTNEzdhoH7zBuz6v5+ZXUbzSRIs6W70/M8rkFtwbVuEggisXwz/usVAOHjO56VcdgtsJX1aUykRxYDmqUHdh09DeGqibmsp7AbXpDu4hwGZxtTliE+V2qsPsideASTKNWQh0OnBn7YoCAANMxAGjkf6zT+Grcfgc37dktKyKXNEFFuyy43Uyd8ArNF/wg8f2A7fko8MWy6d6ELiJgwAQME37oG9oGPD7ntxTJKQO/UGpPW9uNVdySlpSBlzLdJueAiWTj3OfEKcbGFMRBemZOfDNeHWyC6iUQpuXYXAukUGVEV0YXH1rivb7Cj64a8iW/LGK1mBo6gEeTd/Q9dulcz2SJ38Dbiu/BaUnILG+3lmgCixWDt2hXP0NS1q61/5OYK71utbEFEzxN27rrNTMTp8+3tml3F2sgzF6UTxD38JuYUr3l2ItaAUqdfej5Rx0yClZvDMAFECsvcYBPuAsS1q650/A+Eje/Ush+iC4mYA4emOz/4Eh55/yuwyTpJlKM4UlD7yNzg7FcfkkCIcAoTg4jtECUgIAe/8dxDauS7qtpLdidSr74OSkWNAZURnirszAyfkTLwShQ/8ODJ+wOxBhbIMa2YWuvzxHzELAkBkhTMGAaLEJEkSUi65Hkp+cdRtRcAHz8yXoHEbdIqRuD0zcELdxrXY+7c/QAv4TVuDwFnaFZ1//gisGVzDnoiio/m9qP/f09BqjkfdVk7LQupV90BO5aJEZKy4DwMAEKquQtlrz6F68fzImYJYhAJZhmSxIv+WO5EzeSokhfN/iahl1NpK1P/vvxA+T9Rt5fQspF7JQEDGSogwcEL9xnU48MwTCB49HLl0YETpDWHDPWQkOtz9XVizeM2OiFovXH4A9R8/D6ihqNvK6dlIverbXLaYDJNQYQAAtFAQFXNmomL2JwiUHQRkJbIsb2tJEiBJSOs7ALlXXIu0fgNb3ycR0SmCezfDO/sNANH/2mUgICMlXBg4QQgB367tqJw/G1WLvoiMKZCkyCd7tRnhQFEan2drl4esyy5HeveuCO/dANe4GyA7Ugz+CogoGQU2LIXvy09b1FZ2ZyP1SgYC0l/ChoFTacEAvDu3w7dvN/z79sC7awcCh/ZDhMNnPFdJccHRuRQpnbvAUdQZzuJSODoVQ5IkhI7sR+27/44sKzrhZlg7djHhqyGits677GMEN0a/yyEAyO6chkCQrnNVlMzaRBg4G6Gp0Px+aKEQoIYju+1ZrZDtjnNuNxw+dgg10x9v+JcEx4AxSBk2mbv0EZGuhKbBO/dNhPZujqpdRb0X6/cfRa1kQ8mVt2HUpROatX060YW02TDQEuHKo6h58+9N7lNyCpA68VZYstqbVBURtUUiHIJnzhsIH9h+wed+unY7fjNjHvYer25y/2N/fhQ/+vkvDaqQkkncLjpkBuksSwyrx8tQM/1x+Dcs445iRKQbyWKFa8JtsBR2u+Bz//DhAhT37o+33noLO3bsQHV1NSZOnIj5770FzVsXg2qprWMYOMU59xJXw/As/AB1n7wEzVsf26KIqM1qDAQdu573efX+EDp16oTq6mo8+eSTcLvdsFgsQCiA+k+eZyCgVmMYONUFNh8K7duC6rceQ3Df1hgVRERtnWSxwjXx9vMGgol9SvHqq6/ivvvuw8svv9zkMa36GAMBtRrDwCmaM1BQ+OpR9/ELqP/iXWhBfwyqIqK2rjEQdDj7DKa/3zIJ6x69H7+eOuasj2vVx1D/6QsMBNRiDAOnimLJ4cDmFah58zEE928zsCAiShaSxQrXpDvOGghkWUKnbDfs1nN/YNGqylH34X+hVpUbWSa1UQwDp5BkBZCa/y3R6qtR99HzPEtARLqIBILbYelQ2qL2or4a9R89g/DhPTpXRm0dw8DpWrAhEc8SEJFeJIstcoagoKRF7UXAh/pPX0Rw5zqdK6O2jGHgNC1dYOjkWYIZPEtARK0iWWxwTf5GYyDQNIFFW/di3f4jTZ53sLIWn67dDl/wtM2PNBXeL6bDv24Rp0RTszAMnO4CMwouJLB5Jc8SEFGrRc4QfAOW/M54/PMvcfU/38J7q5quWLh2/xHc/t/3cPdzH561D/+KWfAt/QgiFtu+U0JjGDiNbHO0uo8TZwk8iz9iKieiFpOsNrgm34mvyqoxZcoU+Hw+HD16FADw4Ycfwufz4Q9/+ANW7T50zj6Cm1fAM/t1iFAwVmVTAuKi+6ez2nXoRIK95yA4Lx7LdcOJqFUkqw3dhl+CF196GUOHDj3j8fLycnTOzTxvH+H9W1H/yfNwTboDckqaUaVSAmMYOI1ss6MZGyCfkyWvCK7RV8PSvlC3mogouf3mt79DTnYO9q+YD+GpbfJYSn4xbh/Z94J9qMcOov5/T8N1+V1QMnKNKpUSFDcqOk3dZ68guHtji9o6B18G55CJPBtARIYQ4RC8899BaM+mFvch2Z2R2Qp5xfoVRgmPYwZOI7XiMkFo/3YAzFZEZAzJYkXKZbfA3mdki/tonHq4e4OOlVGiYxg4jdSKAYTho/sR2PqVjtUQETUlSTKcw6+Ac/gVAFp4FlINwzv3LfjXL+YgZwLAMHAGyda6AYTeLz+DFvDpVA0R0dnZ+4xEyoRbgBaujQIA/uUz4VvyPwg1rGNllIgYBk7T2jAgvPXwrZqrUzVEROdm69wbqVd+G5IjpcV9BLesRP1Hz0Ctq9KxMko0DAOnac1lghP865cgXHlUh2qIiM7P0r4TUq++D3J6dov7UI8dQv17/0Zo3xYdK6NEwjBwmtMHEFpLLkLalDuBaGYIaBq8i//Ha3FEFBOKOxupV38HSruWT2kWQT88n78G34pZEFprJlhTImIYOM2JywRKVh7Sr74X6VPugq2kN+y9h0fVT+jAjhZPUSQiipbsTEXqld+CtbhXq/oJrFuE+k9fgOatvfCTqc3gOgOnCR89gHD5AdgvGhrZ0riB5vei+vW/QPi9ze5LTstAxq0/hWS1GVEqEdEZhKbBt/xTBDd+2ap+JGcqUsbfBGtBy7ZTpsTCMBAF/8Yv4VnwflRtHAMugWvklQZVRER0dv71S+BfPhOtWvtEkuAYeBnsAy6BJPFEclvG/90o2HsNhZLbIao2/rWLET527k1EiIiM4Og7CimX3dyqqYcQAv7Vc+CZ9Sq0KM6KUuJhGIiCJMtwjbk6ukZCQ/3897iFKBHFnK2kD1Kv+BYke8unHgJA+MB21L3/JMLlB3SqjOINw0CUrPmdYet+cVRt1PID8G9YZlBFRETnZskrQup1D0DJ7diqfkR9Neo/ehaBjcs4U6oNYhhoAdfwKVFvdexbPgtqfbUxBRERnYeSlonUqffC1mtY6zrSVPiWfQLvvLcggn59iqO4wDDQAnKqGylDJ0XVRoQC8C76n0EVERGdn6RYkDJqKlLG3wy0coZTaPdG1L33JMJlu3WqjszG2QQtJDQNNTP+DfXYwajapU25E7aS3gZVRUR0YWp1OTxz3oRWVd7qvmy9hsE5dFKrdnwl8zEMtEK4/CBqZvwLiOJbKKe6kXHrT3RZ9piIqKVEKAjvkv8htGNNq/uS0zLhHHMdrB24JkGiYhhoJc/ij+BftziqNo5+o+EaPdWgioiImkcIgeDW1fAt+xjQYedCW88hcA69vNUbvlHsMQy0kggGUP3m36FFMzhQkuCe9hAs7Vo3upeISA/h42Xwzn0TWm1lq/uSUjOQMuZaWDt21aEyihWGAR0E92xG3acvRdVGye0A97QHmyx5TERkFi3gg2/hewjt3axLf7Yeg+EcdjkviSYIzibQga1zr6gHBarHDsG/fqlBFRERRUe2O5Ey4TY4hk0BdFh6OLh1FWpnPIHQge06VEdG45kBnaj1Nah5428QoUDzG1ltyLj1J1DSMo0rjIgoSuEj++CZ9xaER5+dC23dBsIxfApku1OX/kh/DAM68q1fCu+iD6NqYy3uhbQr7oIkScYURUTUApqvHt4v3kH40E5d+pNS0pEy5hpYO/XQpT/SF8OAjoSmofa9JxE+Gt363akTboW9+wCDqiIiahmhaQhsXAr/qjm6zDYAAGvXAXAOvwKyo3X7JZC+GAZ0Fj5ehprpTwCi+RsTSXYnMm75MeRUt4GVERG1jFp9HN6F70E9uk+X/iRHChyDJsDWYzAkmUPX4gHDgAE8Sz+Bf83CqNpYi3og7cq7ebmAiOKS0DQENn0J/8rZgBrSpU85Kw/O4VdwsaI4wDBgABEKRtYeqKuKqp1r3A1wXDTUoKqIiFpPramInCU4sle3Pi1FPeEcNgWKO1u3Pik6DAMGCe7birqPX4iukdWOjFt+BCU9y5iiiIh0IISG4KYV8K2cBYT1OUsAWYG99wg4Lh7HtQlMwDBgoLpZryO4c11UbSwFJUi/9juQdJjnS0RkJLW2Er6F7yF8eI9ufUoOFxyDJ8DWfZBp4wlEOIxA2QEEj5VDhILQQiFIFgWSxQpLuhuOws5QUtrWAEiGAQNp3jpUv/l3CL83qnYpo6bC2X+0QVUREelHCA3BLSvhWzELCAV161fOyoNzxBWwFhg/niB4vBy1q7+Ef+8ueHftQODwQUBVz9vGkpWDlJKucBSVILXvAKR07ZnQY74YBgwW2Lke9bNei66RYkHGzT+EktnOmKKIiHSm1lXBt+h9hA/t0rVfa3EvOIZdDiVd3/EEWjCI2q++ROUXn8OzcS0gSZGVF7Xzh4AmJCnyR9Nga5+PrEsnI2P0eFgzE+9SL8NADNR9/gaCO9ZG1UZpVwj3DQ9w7wIiShiRXRBXwbd8JhDNaqwXouN4AtXvw7EP3kbFnE+g+XyALANa86eCn1fDmYG0i4cg/7ZvwZ6fOJvRMQzEgOb3ovrNxyC80S3t6Rw2GSmDxhtUFRGRMbT6angXfYDwwR269is5XXAMmghb94EtGk9Qu/pLHHrhKYRrqgAj3/pkGZAktLvmJuROvRGyzWbcsXTCMBAjwb1bUPfJi9E1khW4pz0IS24HY4oiIjKIEALB7V/Dv3IWhM+ja99yZjs4Bo6HtfNFzRpsHTxejrKX/oO6r1dGPr3H6m1PkmDNaYcO334QaX0vjs0xW4hhIIbqv3gXgc0romqjZOfBfeP3ISkWg6oiIjKOCPrhX7MAgQ1Lo7se3wxyVh4cgy6Dtejcg/c8WzZg798egRYI6H78Zmm4DNF+2h3IvfbmuB1kyDAQQyLoR/Vb/4h6MSLHxePgGjHFoKqIiIyn1lbAv3wWQns36d63ktMBjkGXwVLYrcmbbfWXi3Dgqb8BmohqiXijZI6diA73PBiXY8EYBmIsdGgXaj94OrpGkoT06+6HNb/YkJqIiGIlVLYLvi8/g1ZxWPe+lXaFcAyaAEuHUlQvXYCD//l77C4JNJN7xCUovP8nkJT4CgQMAybwLP4I/nWLo2oju3OQcdP3uTIXESU8oWkIbvsK/lWzIfz6jicAJMh9J2LfE3/RuV/9ZE24Ah3ufsDsMprgMncmSBl+OeSM3KjaaDXHUb/gfTC7EVGik2QZ9p6DkX7zj2HvOxrQ8bS50rEbDr7wn8ZpfvGocs6nqFm1zOwymmAYMIFksSJ1ws1R/7AGt69BYMtqg6oiIootyeaAc9jlSJv2A1iLe+nSZ9WGbVC9nri7PNCUhIP//QdCFcfNLqQRw4BJrO07wTnw0qjbeRZ9gHDlUQMqIiIyh+LOhmvi7XBd8S3IWXkt7kdzZKBm7Vr9FhEyjIAW8GP/v/8CYcYMh7NgGDCRc/BlUHLyo2sUDqF+1usQeu0URkQUJ6wdSpF23ffgHH0NJIcr6vbHliXQmVNNg3fbJlQvXWB2JQAYBkwlKRakXnZz1NfL1Moj8Cz+n0FVERGZJzKeYEjDeIJRzf79qFpTEayNblM400kSjn30blyMBWMYMJklpwApQydG3S6waQUCUe53QESUKCLjCaYg/eYfw9ZzyAVDQcXaLXGxlkBUhEDg4D54NkW31b0RGAbigGPAWFg6dom6neeLd6HWxM8AFCIivcmpGUgZfQ3SbvoRbN0HRnYWPI1wZiJQXmFCdTqQZRz75D2zq2AYiAeSLCNtwi2QnNFdIxOhAOo+fwNCDRtUGRFRfFDSMpFyyfVIu/GHsHYd0GQ2VvXOgwDidyrheWka6td9hWDFMVPLYBiIE7IrHamX3RJ1O7X8ILzLPjOgIiKi+KO4s+EaNw1pN3wf1pI+UPI7o37HTgDmX3dvDe/2LaYen2EgjtiKusNx8bio2/nXLUZwz2YDKiIiik9KZju4LrsFUukQ3dYUeGfnfgx7dzbCp0xN9IbCuHj6LNw5d3mT535VXom+b8/E3lodVlBUFPh2bmt9P63AMBBnUoZOgiWvKOp29XOnQ62r1r8gIqI45tu1Q7fVBge3y4I3rGJTZU3jfV8dq0K2w45NlTXwhU+uCbC6vBLtnHYUp0c/BfIMqgrPNnM/0DEMxBlJUZA68TZIdmdU7UTAi/rZb8bNAhZERLHg3bFVtzDQOT0V7Zx2rC6vbLxvdXkFxnVsh8LUFKw7fnLH2VXllRjcLluX4wKAf98uiLB5478YBuKQkp6J1PE3Rt0ufHgPfCvnGFAREVF8ClUc03XFwUHtsrDqlDCwqrwSg9plYWC7LKxsuD+kalhfUYXB7bJ0O64IhxGur9Otv2gxDMQpW0lvOPqOjLqdb/UXCO7bakBFRETxRwsEdO1vULtsrDlehbCmwRMKY2tVLQbmZmFQuyysbpi+uK6iGn5Vw5D2+p0ZAAARCuraXzQYBuJYysgroeR2iLKVQP3nb0CtNneaChFRLOh9aXRIuyz4GsYNfH2sEkVpLmQ77BiUm4WNlTXwhsNYXV6B/BQHOqam6HpsoZp3mZdhII5JigVpk24DrPao2omgH3WfvQIR9BtUGRFRfJBt0f1+vJBOaS60dzqw8mglVpZXYmDDpYAcpx0dXClYe6wKq8ordT8rAACyzaZ7n80+tmlHpmZRMnKROvb6qNuplUdRP3c6RKItz0lEFAXFpcNo/tMMbh+5JLC6vLLJuIBBuVlYduQ41ldU6zp48ATZoe+ZhqiObdqRqdns3QfA3mtI1O2CuzfCt/oLAyoiIooPzuIugBLdZm8XMqRh3MC2qloMOjUMtMvEe7sOIKBqGKLj4EEAsGbnQElhGKALcI2+GkpW+6jb+VbM5oJERNRmpXTtAeh8rX1wuyz4VQ2FaSnIdpy8DDGwXRY8YRWFqSnIc0U3/fu8ZBkp3Xvr118LSCIe9k6kZglXHEHNjH8B4VBU7SSbA+5pD0LJbGdQZURE5ggeL8e2B+8yu4zWkSTkf+Ne5Ey+2rQSeGYggViy85A6LvrxAycGFGocUEhEbYw1OxdKWrrZZbSOEEjp0sPUEhgGEoy9+0A4+o2Oup1aVY76OW9xQCERtSmSJME9dBQgJ+7bmSUjE87iUlNrSNzvXhJLGXkFLB2i/8EJ7dkM36q5BlRERGSenCnX6LoKYUxJEnKuuA6SxWJqGQwDCUiSFaRNvh1yWmbUbX0r5yC4Z5MBVRERmcOe3xFpFw9JyLMDktWKrEsnm10Gw0Cikp2pSJtyJ2CxRt22fvZbUKvKDaiKiMgcOVdcn3hnB2QZWeOnQEnRf62EqEsxuwBqOUtuB6SOmxZ1OxEKoPbTl6EFfAZURUQUe66eveHq2QeQ9V1zwEiS1YacK641uwwADAMJz959ABz9x0TdTqs+hvrZb0EkWpImIjoLSZJQ+MBPIdvtum1pbLSO9zwEW3au2WUAYBhoE1JGTIG1Y5eo24X2bYF38UfgUhNE1BZYs3PQ8b4fAfH+O02WkTF6PDJGjjW7kkYMA22AJCtIndSyAYX+DUvhX7fYgKqIiGLPPXgEssZPid+zA7IMa3YuCr55n9mVNMEw0EbIThfSrrirRQMKvUs+QWDnev2LIiIyQf437oGrR+/4CwSyDNmZguKfPgzFad4+BGfDMNCGWHIKkHrpjS1oKVA/5y2EjuzTvSYioliTbXYU//wRuHr1iZ9AIMtQUlwoffivcBQWm13NGRgG2hh7t/5wDLgk+oZqGHWfvAS15rj+RRERxZhsd6D453+Ae0QLfh/qXowMW257lP7x8bgMAgA3KmqThKah7uPnETqwI+q2ckYu3Nc/ANlp/rxXIqLWEkLg2P/ewdF3X48MLIzlDCpJAoRAav/BKHzgJ7CkpsXu2FFiGGijNL8XNe88Aa22Muq2lvzOSL/6HkgtGH9ARBSPAmUHcej5f8OzZUPjm7ShJAkWdwYK7n4A6YOGQ4qXyxXnwDDQhqlV5ah590mIFiwuZOvaD6kTb4Uk8UoSEbUNQghUL12Aw688DbW+zphQIMuAEMiZci3a3XAbFIdT3/4NwjDQxoXKdqP2w2cBTY26rePicXCNmGJAVURE5lF9XtQsX4zKebPg27Ut8gbemssHsgJoKiwZmci6dDIyx1wGW/t8/QqOAYaBJBDYvgb1s99sUVvX2Ovh6D1M54qIiOKD/9ABVC2cg5plCxGqOBa5U5IiAUE9y4coSQYkNIYH2ZmCtH4DkTluElJ794OUQMshn4phIEn4Vn8B7/KZ0TeUZKRd+U3YinroXxQRURxRvR749++Bb98e+PftRvDoYWjBIEQoCMligWy1QXFnwFlUAkdRCZxFJbBkZcf9eIDmYBhIEkIIeOa/h8DmFdE3ttrhvu4+WHI76F8YERGZjqPDkoQkSXCNvRbWTt2jbxwKoPbjF6G2YGYCERHFP4aBJCLJCtIm3w4lJ/qBLcJbi9r/PQvNU2tAZUREZCaGgSQj2RxIu/JbkFPdUbfVaioigcDnMaAyIiIyC8NAElJS3Ui78m5IVnvUbdXKo6j9+AVoQb8BlRERkRkYBpKUJacAqZffEZkmEyW1/ADqPnkJIhwyoDIiIoo1hoEkZuvUHa5x17eobbhsN+pmvgqhhnWuioiIYo1hIMk5eg2Bc9D4FrUN7duK+jlvQ8Ry4w8iItIdwwDBOXQSbN0GtKhtcOc6eBa8By5XQUSUuBgGCJIkIXX8jbC2cJXBwOaV8C75mIGAiChBMQwQAEBSLEibfAcsBSUtau9ftxi+VXN0roqIiGKBYYAaSVYb0q78JpR2HVvU3rdyDnxrF+lcFRERGY1hgJqQbQ6kX/VtKFntW9Teu+Rj+Dev1LkqIiIyEsMAnUF2upB+9b2Q07Na1N7zxbsI7Firb1FERGQYhgE6K9mVjvRrvgPZFf2yxYBA/ey3GAiIiBIEwwCdk5KehbSr74HkcEXfWGion/0mAtu+0r8wIiLSFcMAnZclqz3Sp34bks0RfWMhUD9nOvybV+lfGBER6YZhgC7I0q4j0q68G7BYW9BawPPFO/BvXK57XUREpA+GAWoWa0FnpF1+JyArLWrvWfAe/OuX6lwVERHpgWGAms1W1B2pE28FJKlF7T2LPoRv7WKdqyIiotZiGKCo2Lv0hevSG1vc3rvkI/i+XqBfQURE1GoMAxQ1R89BSBlzTYvbe5d9Cu/qefoVRERErSIJ7i5DLeTfsAyehR+0uL1zyAQ4B0+A1MLLDkREpA+GAWoV/6YV8Mx/D0DLfoycg8bDOXQSAwERkYkYBqjV/FtWwTNvBloaCBwDLkHKiCsYCIiITMIwQLoIbPsK9XOnAy38cXL0G4WUUVdBkjiMhYgo1hgGSDeBHWtRP/stQGgtam/rfjFSL70RktKytQyIiKhlGAZIV4Gd61E/+w1Aa1kgsHbqhrTJ34Bks+tcGRERnQvDAOkuuHsj6ma9DmjqeZ8XCIURCKtIsVlhUU5eHlDaFSL9qrshO1ONLpWIiMAwQAYJ7t2CupmvAmq4yf3rDxzFswu+xtoDR7D9SCU0IdAuLQVv33c9+ha2b3ye7M5B+tX3QEnPinXpRERJh6O1yBC24p5Iu+IuQLE03ieEwG3PfoCvq0MYe/U0PP3MM3jnnXdgz8jG+19tbdJeqzmOmnefRPh4WYwrJyJKPgwDZBhbp+5Iv+pbjbsdCgEcrq7Hz372Mzz00EPo1KkTpk2bhvT0dITUM8cYCG8dat//L0IHd8W6dCKipMIwQIayduyC9Ku+DVhtkCSgKNuNe++9F7169cLPf/7zC7YXQT9qP3oOgZ3rY1AtEVFyYhggw1k7lCB96rch251473vT8Lcbx+OyXp2b34Gmon7W6/BvWGZckURESYxhgGLCmt8Z6dfdh86dCnHnyH4ozsmIsgcBz8IP4F0+CxzzSkSkL4YBihlLTgHcN3wPsjunxX34Vs+DZ/67EBeYtkhERM3HMEAxpaRnwX3DA5BasYZAYPNK1M18FSIU1LEyIqLkxTBAMedVgXB+SZP7fKEQ6gPNf3MP7dmM2g+fhuap1bs8IqKkwzBAMfXf//4XWVlZeOnlV5rc/+rS9ej2i6fw6tLmzxoIHz2Amhn/QvjYIb3LJCJKKlyBkGJq0KBByMvLw7333gu3241LLrkECxYsQG1tLf773//i+NZ1mPXj26Lr1GJF6mU3w96lrzFFExG1cZYLP4VIPy6XC2VlZVi8eDEA4JNPPml87PDhw0i3WaPvNBxC/azXoA6dBOeg8ZAkSa9yiYiSAs8MUEzNnz8fv/rVr1BVVXXGY5lOO3419iKMKO3Q4v5tXfsjdfyNkCwtCBVEREmqTYUBLRxC4NBB+Pfvhn//XoRrayBCQQg1DMlqg2y1wZrbDs5OJXAUdYY1px0/RcaZ4L5tqJv1KtCKmQJKu0KkX3EXZFe6jpUREbVdCR8G/If2o2rBHNStXYVA2aGT2+YqSmQxfCEAAUCWAEmK3G54juxwwlFcgozhY+AeMRaW1DTTvg46KXz0AGo/fgHC72lxH7LLjbQr7oKlXUcdKyMiapsSMgyoXi9qli9C5Rez4Nu1HZBlQDtzo5tmOXFmQJbhHjISmWMnIrV3f0gyJ1qYSa06htqPnoNWd+blhGbjwEIiomZJqDAgVBUVsz/GkemvQAQCDZ/0dSxfVgBNhS2/Azre8xBcPfvo1zdFTfPUovaTl6AeO9iqfpxDJ8I56DJeEiIiOoeECQPendtw8NknEDiw1/iDNZxpyBhzGfJv+xYs6W7jj0lnJUJB1M+bjmArdy3kwEIionOL+zCgBQM4/PrzqJzzaesuB7SELEO2O1DwzfuROfrS2B2XmhBCwLdqDnwr57SqH6VdIdKn3Ak5leGOiOhUcR0GwrU12PvXh+HbvUPfywEtkDt1GtrfdCfHEpgosGMd6ue+DajhFvchpaQhbdJtsHYo1bEyIqLEFrdhIFRxHLse+SlCFcdiezbgPDJGjUPH+34ESVbMLiVphY8eQO1nL0O0Zk8CSULKsMvhuPgSSBLDHRFRXIaB4PFy7H7kpwhVVsRNEDjBPeISFN7/E0gKA4FZ1Poa1H32MtTy1g0stHbuhdTxN0F2pOhUGRFRYoq7MKCFQtj1mx/Af3Bf3AWBE9pddyvaT7vd7DKSWmRg4TsI7lzXqn7k9CykTb6D6xEQUVKLu3OkR6e/Av+BvXEbBACg/IO34Nm60ewykppktSF10m1wDpnQqn602krUvPcU/JtWIM5yMRFRzMRVGKhb/zWOf/q+6YMFL0iSsP+JP0OtrzO7kqQmSRJShkxE6uTbgdZMGVTD8Mx/F5650yFasQwyEVGiipswEK6twYF///XkioDxTNMQrq3Gwef/bXYlBMDepR/c194HqZV7EQS2fYWaGf+GWnVMp8qIiBJD3ISBis8/guqpj/+zAidoGmpXLIFv7y6zKyEAlvaFyJj2EJRWXvtXK4+g5p0nEGjlIkdERIkkLsKAFvDj+KyPABG/4wTOSlZw7JP3za6CGsipbrivvQ+2rv1b1Y8IBVA/6zV4Fn8E0Yo1DYiIEkVchIGqRfOgeVu+Q51pNBU1Xy5EqOK42ZVQA8lqQ+rEW+Eac01kr4lW8K9bjNoPnoZaX61LbURE8cr0MCA0Dcc+ec/sMlrl+OcfmV0CnUKSJDj6jkT69fdDTstoVV/hI/tQ8/bjCO7ZrE9xRERxyPQw4N+3B6HyI2aX0XKahuql882ugs7C2r4T3Df+ANZO3VvVj/B7UPfpS6hf8B5nGxBRm2QxuwDvzq0AJAD6DRxcdbQC35q/8pyPD26XhRcuHarb8cKVFQhVV8Gakalbn6QP2elC2lV3w7d6Hnwr5qA1P2eBjcsROrgLaRNv5SJFRNSmxEEY2NawG6GqW5/9czLxxdVn7jK44NBR/GH1JtzUpZNuxzrBt3MbrIOG6d4vtZ4kyUgZPAGWvCLUf/4mhL/l41O06mOoefffSBk6CY4BY7lxFRG1Cab/JvNu26RrEAAAqyIjx2lv8qc2GMI/1m3Dt3uVYmKnfF2PB0WBd9c2ffsk3dkKu8F98w9gyStqXUeaBu+XM1H74TNQa6v0KY6IyESmhgHV70Pw6GHDj1MbDOH7S77GwNwsfK9PV/0PoKqRMxwU95TUDKRfex8c/Ua3uq9w2W7UvP0PBLat0aEyIiLzmBoGNK/X+GMIgV98uQ6KBPy/4X0hGbTCoeqpN6Rf0p+kKHCNnorUyXdAstpb1ZcI+lE/503UzX4TWsCnU4VERLFlbhiIwcjsf63fjnXHq/DE6IFItbZi/foLEIGAYX2TMexd+sJ94/ehZOe1uq/g9jWoefsfCB3arUNlRESxZWoYMHoXgln7D+OVrXvw1xH9UZTmMvZgibCnAp1BycyF+4YHYe8xsNV9aXXVqP3gaXiWfcaVC4kooZgbBmytO0V7PluravG7FRvw/X7dMDI/17DjnCDbjftayFiS1QbX+JvgGn8j0MrLBoCA/+v5qHn3SahV5brUR0RkNFPDgOJKjUwr1FlVIIgfLP4ag9tl4cqiDjjuCzT5U+nX+ZS+JMGSkaVvnxRTkiTB0XMwMvSYbQBAPXYI1dMfh2/tIggtwfbcIKKkY+o6A7LNBkfHTvDv36trv4vKylHm9aHM68Ol//vijMcLUpyYNXWsfgeUJKR0ad0qdxQfFHcO0q+7L7JI0ap5rds8KxyCd8nHCO5YB9el02DRYWwCEZERJCHM3TP40ItPofKLWYCq71oDsdb5148itXd/s8sgHYWO7EP97Deh1Va2vjNZgXPQeDgHjoOkmL7WFxFRE6YvOpTStUfCBwEAcJZ0M7sE0pk1rwgZN/8Q9p6DW9+ZpsK3cjZqpj+B8NEDre+PiEhHcRAGeppdQqvZCzpCSUkxuwwygGRzIHX8jUi9/BuQ7K3/P1Yrj6Dm3X/Ds+RjbnpERHHD9DBgzyuAs0t3QwYSxoQkIfPSyWZXQQazl/aB+5YfwVqowwqWQsC/dhGq33oMoYM7W98fEVErxcU7cO7UaUCCjriWbHZkjWMYSAZKqhtpU7+NlFFTAVlpdX9abSVqP3wG9fPf5eqFRGSquAgD6QOHwprTzuwyoifLyL5sCi8RJBFJkuHsPzqycmGWPrMDAptWoPrNvyO4Z7Mu/RERRSsuwoAkK8i96nqzy4ieEMiePNXsKsgElpx8uG98SJcNjwBAeGpR9+lLqPv8DWg+7nNBRLEVF2EAADLHToK9Y6fEGTsgSci96gbYEvGMBulCsljhGj0VaVffAzktU5c+gzvWovqNvyGwdTVMnvVLREnE9HUGTuU/uB87f/kgRDhkdinnJ8twFJWgy+//AcnCOeMEiGAA3uWz4F+/FIA+LylLfme4LrkGlpwCXfojIjqXuAoDAFAx9zOUvfCk2WWcl2Szo+iuO4DaY5DszpN/bE5IdgckxQpYrJAs1shta+RvyWIFLJYmj0OxGLatMsVe6PBeeL6Yod++BJIER+8RcA6dCNnBsSlEZIy4CwNCCOz/xx9Q+9XK1i0Fa6CO9/8Y7oFDUDv9nxB+rw49Sg1bOEqNux+6Lp0GW9f+OvRNsSbCochyxl/P122WjOR0IWX4FNh7DoIkJcilNCJKGHEXBgBA8/ux96+/g2frJiDOysu75ZuRqZAAgjvXwTPnLd2PIWfkIv2mH0JKlPETdFbhY4dQ/8UMqMcO6danpX0nuMZcA0v7Qt36JCKKyzAAAFrAj32P/QH1G9fGTSDIv+Me5Ey5tvHfQgh4Zr+J0O4Nuh7HNeEW2Lr007VPMofQVPjXLoJ3xWxADevUqwT7RUOQMuxyyE6XTn0SUTKL2zAAACIcxqEXn0LV/M/NK0KWAUlG4QM/QcbwMWc8rHnrGy4XeHQ5nJKVh7QbH+Kp4DZGrTqG+vnvIly2W7c+JXsKUoZPhr3XUJ5FIqJWieswAEQ+fVctmI3Drz0HLeCP+UqFjqISdPzOD+Ds3OWczwnuWg/P7Dd1OZ5r0u2wlfTWpS+KL0JoCGxaAe/STyFCAd36VXI7wDXmGljzi3Xrk4iSS9yHgRPCtTU4/MYLqF40N/Jp3chQIMuQrDbk3fJNZE+YAqkZS8/Wz3kToZ3rW31oJTsfjkHjYe3ci2cH2ii1rhqeBe8htG+rrv3aew5GyvApkFNSde2XiNq+hAkDJ3i2bkTZS/+Ff/+eyPrwmo7bHzeM5HcPvwT5t38b1sysZjfVfJ7I5QKdVo+Ts9rDOfBSWEv68BRwGySEQHD7GngW/0+nGSkRks0B55AJcPQZAUnhGhhE1DwJFwZO8O3ZhaoFs1G1eB40n7flwUBRAFWFLa8AWeMvR8aocbBmND8EnCq4eyM8n7/eorbnImfkwjHwUti69G3WGQpKLJrPA+/ymQhsWgm9FisCADk9CynDJsPWtR/PMBHRBSVsGDhBCwZR+9WXqN+wBr7dO+E/uP/kqG1JOvlHiCaXFuQUF5zFpXB27gL3sFFwlnbXZfEfz9y3EdyxttX9nE5258Bx8TjYuvVnKGiDwkcPwLPoQ4SP7te1XyW3I1wjr4C147nHvBARJXwYOJ1QVQQOH4J/326E62ohQkEIVYVktUK2WmHNzYOzqDMsmdmGrPyn+b2RywXeOt37BiKf+CKhYABPA7cxQmgIbFkN77LPdJudcoK1qAdShk+BJSdf136JqG1oc2EgHoQO7kT9xy9Az9O+p5NTM2DvPRy2noO5TG0bo/m98K2YDf/GZTqvsSHB3mMgnEMnQUnL0LFfIkp0DAMG8S6ficCahcYfyGKFresAOPqMgJKdZ/zxKGbCx8vgWfghwof36NuxYoGj32g4B46DbHfq2zcRJSSGAYMINYy6D56GeuxgzI5pKSiBvc8IWIt7clxBGxGZdfA1PEs/1f3Sk2RPgXPQpXD0HclLTkRJjmHAQGrNcdS+8y8gHIzpcU9eQhgE2cHlatsCLeiHb+Uc+Nct0X0DLzktMzLzoFt/zjwgSlIMAwYLbP0K3vkzzv6g0YsnKRbYug2Avc8IWLI5cKwtCFccicw6OLRL976V3A5IGTEF1o5dua02UZJhGDCYEAKeuW8jtHNdk/utJX3gHH45/GsWILj1K30XTzoLS0Fn2PuM5CWENkAIgeDOdfAu+QSap0b3/i0FJUgZMgGWDqUMBURJgmEgBkTAj9oZT0Crq2q4R0L6TT+AktUeAKDVVcO/ZgECW1YZHgqkVDccjbMQeAkhkYlQEL61C+H7eiGg414HJ1gKOiNl8ARYOnZhKCBq4xgGYiR8ZB/qPnwGEBpsXfvDddnNZzxHq6+Bf+1CBDav1HG723NQLLB17R+5hJBTYOyxyFCatw7eVXMQ2LTCkMtOlvzOcA65LG4uHwghEKo4jnBtNUTw5DoiktUKW257WFLTzC6RKOEwDMSQb/U8+FfPQ/rNP4KSkXPO52meWvjXLYr8cg+HDK/LUtAZ9t4jIpsj8RJCwlKrjsG7fCaCuzYY0r8lvxjOwRNgLYxtKAgePxZZYXTfbvj27IJv7y5oPt+568zIhLOkC5zFXeAsLkFav4uhOLkWB9H5MAzEkNA0BLeuhr3XkGY9X/PWw79uMQIbv4zJjAQp1Q1794GwdenXeAmDEk/o8F54l32m//oEDSx5RXAOmQBrYTfDQoEWDKJm9ZeonPc56jesidzZsI9Is0hSZICuqkKy2pAx8hJkjZsIV4+L4uLsBlG8YRhIAJrPg8DmFQhsWg7hqY3JMZXsPFi79IsEg/SWbdxE5hFCILRnE7xfzoRaVW7IMSztO8E5ZCKsnfQLBeG6Whx97y1Uzp/dsAGZTjNuGjYys7Vrj5wrrkXOxCshKTwLRnQCw0ACEaqK0J5N8G9YCvXIvpgdV2lXCFvXfrCV9oXsSo/Zcan1hKYisHkVvCtnG7ZfRiQUTIC1U8s3+xJCoGrhXJS98ixUn9fYKbcAHIVF6Pid78PVraehxyFKFAwDCSp87BACG5ZFdkg0eAbCSRIsBZ1h69oP1pLenI2QQIyeeQAAlvaFkTEFRT2iCgX+g/tw4Jl/wbttsyF1nVXDGYesyy5H/q3f5KBDSnoMAwlO89YjsGVlTC8hAABkGZaOXWHr2h+24l6QbPbYHZtaTPPWN8w8WG7Yp28lOx/Oi8fC1rXfBQekVi2Zj/1PPXbGFuMxI8uwuDNQ8us/wtmpc+yPTxQnGAbaCLMuIQAAFAusRT0jZww6dYdkscb2+BQ1tfoYvF/OQnDXesOOIadlwtF/DBy9hkCy2po8JoRA+QfTceTtVww7frPJMiSrFZ1/+jDS+g4wuxoiUzAMtEGNlxB2rjN+vYLTWe2wdb4Iti79IovVcJBWXAsfL4Nv1TxDQ4HkSIGj70g4+oyE7HRBCIEj019F+ftvG3bMqEkSJFlB8c8fRnr/QWZXQxRzDANtmOarR2DzKgQ2fRnbSwgNJEcKrCV9YOvSF5a8YgaDOBY+fhi+1XMR3LkBgEG/EixWuEZeidpdB3H4zZeMOUZrNExHLH34z0jt0dvsaohiimEgCQhVRWjvJgTWL0P4yF5zirDaYS0ogaVjF1gLu0LOyOV87zgUrjgC36q5CO5cDyNCgXXABOz51+ORMQLxqGEMQffHnuagQkoqDANJxtRLCKeQXOmwdugSCQcdu3DKYpwJVxyBb/U8BHesg16hQM7IxeGlGxCqqjRnsGBzyTLcg4ej6Ee/ZmClpMEwkKROXEIIbl0FrbbS7HIgZ7aHtWNDOCgo4eyEOBGuPBo5U6BDKPCFXahYviq+g8ApOn73B8i+dJLZZRDFBMNAkhNCQC0/iODOdQjuWm/K2IIzyDKUdoWwduwCa8euUNoVcryBycKVRyNnCravRYtCgdWBg198Fb+XB85CstnQ6+nXebmAkgLDADUSmobwkb0I7liH0O4NEH6v2SVFWG0nxxt07Ao5sx1P35pErSqHd9XcyGJXUfzq8HmAijWbE+asAABAkpB3851of+1NZldCZDiGAToroaoIH9yJ4M61CO7ZbNiqdS0hpaRFLil06AJL+06Q3dmQZNnsspKKWlUO7+p5CG5fc+FQoFhwaPEGiHCsVsrUj5LuRq+nX4PMtTOojWMYoAsS4RBC+7YiuHM9Qvu2mDrw8KwsNijZebDkFEDJKYCSkw8lK4+LH8WAWlsJ/5pF8G9Zec7ttoPCifKlXyXWWYFTFD7wY2RdcpnZZRAZimGAoiKCfgT3bkFwx1qED+6I31/wkgw5IxeW3AIo2fkNIaEAsoP72htB89XDv34p/OuXQQROubwkSTi8cjtUX/ycWYqKJMHZuRTd/vxvsyshMhTDALWY5vMgtGcjgjvWIVy2B4YtVqMjOTUjcuag8SxCAeTUDI5B0IkIBuDfshL+NYug1VdDyu6IAx/MMrus1pEk9Hn1fch2h9mVEBmGYYB0oXlqEdy5HsGd66CWH4j58Q9W1uKDr7Zg2Y4DOFRdh8wUBy7q2A7fHTcInbLd520r2Z1Nzh5YcgoiiyJxBkOLCVVFcMdaVH31FY5+/JGuO2t+a8EKdM9Ix8/6N91++ItDR/GjZWuwdtpk3Y51Qukjf0NqT65KSG2XxewCqG2QXelw9BsFR79RUGsrENq1AaEDOxA+vNfwLZZX7j6Ea554G7LVhtGjR2PMmFIcO3YMHyxahBcXrcG/brscNw696JztRcCHcNluhMt2n7xTkiClpENOy4Cc6oaceurfkduSw8UzCucgKQrsPQbCM+Pd+L2U1FySDO+OrQwD1KYxDJDulPRsKAPGwjFgLEQoiPCRvQgd3InwwZ1Qj5fpfrwvNu9BRnYOdu7cCY/Hg40bN6JTp04oKCjA/fffj++/8TrG9ixGu3RX8zsVAsJTA9VTg3NGGcVyWkhoGhbk1IykXjxJaBq8O7YhES4fnZcEeLZvMbsKIkMxDJChJKsN1sJusBZ2AxAZaBY+tBuhgzsQPrgDWl11q49hUWQEg0Hceuut+OSTT6BpGiRJwpNPPonHH38cM2bMwDsrN+F7lw1p9bGaUMPQao5Dqzl+zqdINkckHKRlQHI1hIWUVEgWG2C1QrLYIFltDf+2Nf4bFgskKX6mSwpNA9QwRCgA4fNA83sg/B4In/fkbX/DbZ8Xwu8BLFZofp/ZpbeepiF49LDZVRAZimGAYkp2psLWpS9sXfpCCAGtthLhgzsjZw4O7YQIRP/mcfXF3fH28o3Y8/VyPHbzBIzs2gn3v/op3nzzTdx///0oKipCWXWdAV/NhYmgH2rlEaiVR6JvbDkRFqzAKaEhEhYi958RIhRLZOqnqkKo4cgbuHbav1W14e8Tj6tN22inP0cFRAtO9Stt59eLFkjQ2RBEzdR2Xq2UcCRJguLOhuLOhv2ioRCaBvV42clwcGRvs9Y06No+G6sfubfx31sPH8eWsmN4YNrtqK2txZ49e3DHRSMN/EoMEg5BhEMQfrMLaSE1DEmRIdQEHzMAREIRURvGMEBxQ5JlWNp1hKVdRzguHgsRDiF8+PTxBue//ry/ogbTnnwHpd174ne/+x1++ctfQlLDuGZgj9h8EdSEYrMirPMaA6kWC+pDZ74514VCSLUY8ytNttoM6ZcoXjAMUNySLFZYC7vCWtgVQGRdg3DZLoQP7Ub4eBnUisNNVr07WFmLqY+/BUdWO8yaNQsvv/wy/v3vf+OvN01AnjvVrC8jqSl2i+5hoDg9FUsPHzvj/k2VtShKi2KQaBRkp9OQfoniBcMAJQzZ6YKttC9spX0BRAa1aTXHoR4vw77NG3D1738MJT0L8+fPx8yZM/Hggw/i/vGD8a0xA0yuPHnZsrIQqPbo2ueNpYWYvnMfHv16M64v6QiHouDLo8fx4Z6D+OOQvroeCwCgKHB27qJ/v0RxhIsOUcI7fvw4RowYgWAwiIULF2Lx4sW48847oWkarhoxCB3THfjBuP7INehTI52bP+xA+dJVuq81sLmqBk9u2IGt1bUIqho6paXgG906Y3KnfF2Pc0LH7/4A2ZdOMqRvonjAMwOU8J577jlUVFRg9erVCAQCmD59OiZOnAgACAF4e8UKuPsMx+9vvxfq8cNQj5dBrSiDWllu+IJIyc6WlRXVVsfN1SvTjf+MGaR7v+fi6sYxJ9S2MQxQwisrK0P79u0hhIDFYsETTzzR5PGbb74ZZUePwlpQAmtBSeP9Qg1DrSqPhIOGP+GKw0CQ08j0YnE5DQkDsSTbHbAXFJpdBpGhGAYo4U2cOBFPPfUUSktLz/mcH/7wh2fcJykWWBr2IjhBCAER8EGrr4ZWXwOtvhqi4e/GP57axF9iN0ZkWYKSlg61rtbsUlpGVpA2YDAkOX4WgCIyAscMUJuwZ88e7Nmz56yPFRYWomvXrrodS2gahLcuEhY81dDqTgaHxgDhq9fteIlMycqDz9oeR6a/lrBnCLr86Z9wdeVlAmrbGAaIDCDCIWiemlNCQiQoCG8dRCgEEQ4CoSBEOAjR8DdCISTEOv6yAsnpguxwRTZrcqY03E6B5Gi439lw25kKTQM2f+d2iFOmgSYEWUZKaTd0/dM/za6EyHC8TEBkAMliheLOgeLOaXYbIUTD+v/BM8ICwqHG+yP/Dp7y71Djv6GpgGKBpFgARQHkE7ctkS2ZT3lMUiyRN/bGx09vc+ZjkmKNLJMcxW6NMoCsSyeiYu7MxLq8omnInXqD2VUQxQTDAFGckCSpYT8CK4C2NQ0y98rrUPnF55ENjxKBLMOe1wHuwcPMroQoJjgqhogMZ88rQMFd3zW7jGaTJBlFP/olJFkxuxSimGAYIKKYyJ4wBemDhgEJMDK/4M574ezU2ewyiGIm/l+VRNQmSJKEwvt+CEuaG5Di9FePLCPt4iHInnSl2ZUQxVScviKJqC2ypKWj+Ke/hWS1xl8gkGXY2+ej0/0/imqAJFFbEGevRiJq61zdeqL0t49Cslnj55KBLMOe3wGlv/87LOlus6shijmuM0BEpvDu2Yndf/oN1Po6c6ccShJSuvVE55//HyypaebVQWQihgEiMk3w+DHs/fvv4du9M/YHl2VA05A5biI6fvsByFZb7GsgihMMA0RkKqGpqJgzE4dffwFaKBibswSSBFu7PHT8zkNI693f+OMRxTmGASKKC6HqSpS98iyqly5s/NSuO1mGJMtof8OtyL3qep4NIGrAMEBEccWzfQsq5s1C9dIFEMEgIEmt2+RIVgBNhSUjE1mXTkb2+Emw5bbXr2CiNoBhgIjikur3oWb5ElTM/Qze7VtPPqAogKqeu+Epj0sWC9IHD0f2pZOQ2qc/VxQkOgeGASKKe6rfD//+PfDv2wPf3l3w7t6JcE01RDgEoaqQLBbIVits7fLhLOkCZ1FnOItLYc/vAMnCLViILoRhgIiIKMnFyYofREREZBaGASIioiTHMEBERJTkGAaIiIiSHMMAERFRkmMYICIiSnIMA0REREmOYYCIiCjJMQwQERElOYYBIiKiJMcwQERElOQYBoiIiJIcwwAREVGSYxggIiJKcgwDRERESc5idgGnsg24G7LFBklWIMkKFOvJ25Isn3xMUSBbbJAbH1POeEySFciyBEmWoCgypNNuy7IEWZEan3PexyQJikWGIktQZAm2htuWxn8rJx9TTj7PcspzlbPdliTIkgRFAqyK3HjboshQJET+LUuwytJZbkcet8py421FkiBJgCwBkoSG/gEJgCJLkIHI1yKj8bYsAYp06u1IH5IQgNAgaWGgyW0t8kc792OS0ABVPXlbCwOaCqFpQDgIoaqApkXuC4cgNDVyOxQCTtw+8dwTzwsFT7bRVGihMISqQWgatGAYmhppI1QNWigMTT15WzTcVkNhiFOepwbDp9xWITQBTRUN/25or4nIY6qAUAU0VYMa0hr6FFBDakObk+00IaAKgaAmoAqcdvv0f0dua4jcVgUaHjt5+2mx19TXpV74+ubrm6/v+H1988wAERFRkmMYICIiSnIMA0REREmOYYCIiCjJMQwQERElOYYBIiKiJMcwQERElOQYBoiIiJIcwwAREVGSYxggIiJKcgwDRERESY5hgIiIKMkxDBARESU5hgEiIqIkxzBARESU5BgGiIiIkhzDABERUZJjGCAiIkpyDANERERJjmGAiIgoyTEMEBERJTmGASIioiTHMEBERJTkGAaIiIiSHMMAERFRshNtlN/vFw8//LDw+/1ml3KGeK5NCNbXGvFcW1sSz9/neK5NCNbXGvFcW2tJQghhdiAxQm1tLdxuN2pqapCenm52OU3Ec20A62uNeK6tLYnn73M81wawvtaI59pai5cJiIiIkhzDABERUZJjGCAiIkpybTYM2O12PPzww7Db7WaXcoZ4rg1gfa0Rz7W1JfH8fY7n2gDW1xrxXFtrtdkBhERERNQ8bfbMABERETUPwwAREVGSYxggIiJKcm0uDPzkJz/B6NGjcdtttyEYDDZ5zOfz4corr8Qll1yCCRMmoLKyMq7qO+H//b//h0GDBpleUzgcxl133YXRo0fj+9//fszqaW59J8T6+3Wqc9UWDz9rbRFf3/rVxNf3hSXT67tNhYE1a9bgyJEjWLx4MXr16oV33323yeMzZ85E7969sXDhQtx444147bXX4qo+AKirq8PGjRvjoqaPP/4YHTt2xOLFi+H1erFs2bKY1dWc+oDYf7+aW5vZP2ttEV/f+tbE13fLazP7Z80IbSoMfPnll5g4cSIAYPLkyWf8cHft2hVerxcAUF1djdzc3LiqDwCeeOIJPPDAA3FRU3PqNbM+IPbfr1Odrzazf9baIr6+9a2Jr+/zS7bXt8XsAvRUXV2NgoICAIDb7T7j1E1paSk2btyI3r17Q5IkrFixIq7qq6mpwYYNG/Cb3/wmLmqqrq5uXH/7bPWaXZ8Z36/m1mb2z1pbxNe3vjXx9d3y2sz+WTNCQp4ZOHLkCEaNGnXGHyEEamtrAUT+I7Oyspq0e+WVVzB27Fhs3LgRjzzyCH7/+9/HVX2PP/44vve97xlS07lkZmaes6bzPRYP9Znx/TrV+WqL1c9aW8TXt374+m65ZHt9J2QYyMvLw5IlS874M2XKFMyePRsA8Pnnn2PkyJFntD3xH5qRkYHq6uq4qm/nzp3405/+hMmTJ2PHjh3485//bEh9pxo2bNg5azrfY7FyvhrM+H41tzYgNj9rbRFf3/rh69uY2oA2+Po2b/dkY/z4xz8Wo0aNErfeeqsIBAJCCCHuvfdeIYQQNTU1YsqUKeKSSy4RI0eOFNu2bYur+k41cOBA02o6UU8oFBLf+MY3xKhRo8SDDz4Ys3qaW9+pYvn9OtW5aouHn7W2iK/v1tfE13fzJdPrm8sRExERJbmEvExARERE+mEYICIiSnIMA0REREmOYYCIiCjJMQwkgZdffhkZGRm69LV3715IkgSLxYJDhw41eezw4cOwWCyQJAl79+5t8th7772HsWPHwu12IzU1FX379sXvf//7xoU89KyRiFqvuLgYkiTh7bffPuOxiy66CJIk4eWXX25y/5o1azBt2jS0b98eDocD3bp1wz333IPt27cDOPn7Y+3atTH4CigaDAPUIgUFBXj11Veb3PfKK6+gQ4cOZzz317/+NW666SYMHjwYM2fOxMaNG/HYY49h3bp1bWJNbyKjhUIhU45bWFiIl156qcl9y5cvx5EjR+ByuZrc/8knn2DYsGEIBAJ44403sGXLFrz22mtwu9347W9/G8uyqSXMnttIFzZz5kwxcuRI4Xa7RVZWlrjiiivEzp07hRBCzJ8/XwAQVVVVjc9fs2aNACD27NnT+Pipfx5++GEhhBCVlZXijjvuEBkZGcLpdIrJkyeL7du3n7eWPXv2CADiN7/5jejatWuTx7p37y5++9vfNh5bCCFWrFghAIjHH3/8rP2dqPull14Sbrc76u8NUaJSVVX8+c9/FqWlpcJms4nCwkLxxz/+sfE1Nn36dHHJJZcIu90uXnzxRaGqqnjkkUdEhw4dhM1mE/369RMzZ85s7C8QCIgHHnhA5OXlCbvdLoqKisSjjz7a+PjDDz8sCgsLhc1mE/n5+RdcW6CoqEj84he/EHa7Xezfv7/x/nvuuUc8+OCDwu12i5deekkIIYTH4xE5OTnimmuuOWtfJ17nJ762NWvWtOybRobhmYEE4PF48KMf/QirVq3CvHnzIMsyrr32WmiadsG2I0aMwOOPP4709HQcPnwYhw8fxk9+8hMAwF133YXVq1fjo48+wpdffgkhBKZMmdKsTyFTp05FVVUVlixZAgBYsmQJKisrcdVVVzV53htvvIHU1FTcf//9Z+2HlwYoWf3yl7/EX/7yF/z2t7/F5s2b8eabb6J9+/aNj//85z/HQw89hC1btmDSpEl44okn8Nhjj+Hvf/871q9fj0mTJmHq1KnYsWMHAOBf//oXPvroI7zzzjvYtm0bXn/9dRQXFwMA3n33Xfzzn//EM888gx07duDDDz9Enz59Llhj+/btMWnSJLzyyisAAK/Xi+nTp+Puu+9u8rzPP/8cx48fx89+9rOz9sPXeQIwO41Q9MrLywUAsWHDhgueGRDi7J+6t2/fLgCIpUuXNt53/Phx4XQ6xTvvvHPOY5+a7H/wgx+Ib37zm0IIIb75zW+KH/7wh2cc+/LLLxd9+/a94NfEMwOUTGpra4XdbhfPPffcGY+deI2dfjatoKBA/OlPf2py3+DBg8X9998vhBDiwQcfFJdeeqnQNO2MPh977DHRrVs3EQwGm11jUVGR+Oc//yk+/PBDUVpaKjRNE6+88ooYMGCAEEI0OTPwl7/8RQAQlZWV5+2TZwbiF88MJIBdu3bh1ltvRUlJCdLT09G5c2cAwP79+1vc55YtW2CxWDB06NDG+7Kzs9G9e3ds2bIFAHD55ZcjNTUVqampuOiii87o41vf+hZmzJiBI0eOYMaMGWd8WgAAIQQkSWpxnURt0ZYtWxAIBDB+/PhzPmfQoEGNt2tra1FWVnbG+vgjR45sfL3eddddWLt2Lbp3746HHnqocV19AJg2bRp8Ph9KSkpwzz334IMPPkA4HAYAPProo42v89TU1DN+r1xxxRWor6/HokWL8OKLL57zdU6JjWEgAVx11VWoqKjAc889hxUrVjRulxkMBiHLkf/CU1+MzTnNf64X76lv3s8//zzWrl2LtWvX4rPPPjvjub1790aPHj1wyy23oGfPnujdu/cZz+nWrRt27dpl2gAoonjkdDov+JzTB+gBOCNYn/p6vfjii7Fnzx784Q9/gM/nw4033ogbbrgBQGQg4LZt2/DUU0/B6XTi/vvvx5gxYxAKhfDd73638XW+du3axm17T7BYLLjjjjvw8MMPY8WKFbjtttvOqKtbt24AgK1btzbvG0Bxh2EgzlVUVGDLli34zW9+g/Hjx6Nnz56oqqpqfDw3NxdAZFrfCadP27HZbFBVtcl9vXr1QjgcbrIPd0VFBbZv346ePXsCADp06IAuXbqgS5cuKCoqOmt9d999NxYsWHDWTwsAcOutt6K+vh7/+c9/zvp4m9jtiyhKXbt2hdPpxLx585r1/PT0dBQUFDSO0Tlh2bJlja/XE8+76aab8Nxzz2H69Ol47733GqfvOp1OTJ06Ff/617+wYMECfPnll9iwYQOysrIaX+ddunSBxWI54/h33303Fi5ciKuvvhqZmZlnPD5x4kTk5OTgr3/961nr5+s8/p35v05xJTMzE9nZ2Xj22WeRn5+P/fv34xe/+EXj4126dEFhYSH+7//+D3/84x+xY8cOPPbYY036KC4uRn19PebNm4d+/fohJSUFXbt2xdVXX4177rkHzzzzDNLS0vCLX/wCHTp0wNVXX93s+u655x5MmzbtnAOEhg4dip/97Gf48Y9/jEOHDuHaa69FQUEBdu7ciaeffhqjRo3C97///RZ9b4gSlcPhwM9//nP87Gc/g81mw8iRI3Hs2DFs2rTpnJcOfvrTn+Lhhx9GaWkp+vfvj5deeglr167FG2+8AQD45z//ifz8fPTv3x+yLGPGjBnIy8tDRkYGXn75ZaiqiqFDhyIlJQWvvfYanE7nOUP+6Xr27Injx48jJSXlrI+7XC48//zzmDZtGqZOnYqHHnoIXbp0wfHjx/HOO+9g//79Z12vgOKImQMWqHnmzJkjevbsKex2u+jbt69YsGCBACA++OADIYQQS5YsEX369BEOh0OMHj1azJgxo8kgPiGE+O53vyuys7PPOrXQ7XYLp9MpJk2a1OyphecaAHT6AMITpk+fLsaMGSPS0tKEy+USffv2Fb///e85tZCSlqqq4o9//KMoKioSVqtVdOrUSTz66KPnfI2dOrXQarWeMbXw2WefFf379xcul0ukp6eL8ePHi6+//loIIcQHH3wghg4dKtLT04XL5RLDhg0Tc+fOPW99JwYQnsupAwhPWLVqlbjuuutEbm6usNvtokuXLuLee+8VO3bsEEJwAGE84xbGRERESY5jBoiIiJIcwwAREVGSYxggIiJKcgwDRERESY5hgIiIKMkxDBARESU5hgEiIqIkxzBARESU5BgGiIiIkhzDABERUZJjGCAiIkpy/x+RCpSPQrnRCQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -687,7 +686,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACKZ0lEQVR4nOzdd3gc1fU38O+dme0radW7i9y7wb1hTDU2YDAhEEgIECBAAuRHC+ElAUIgJECABAi9hGoIYEIxYIoB425j4yJ3y7Jlyepl+5T7/rGSbFmStWVWu6s9n+fhQdbu3LmStpy9c+45jHPOQQghhJCkJcR6AoQQQgiJLQoGCCGEkCRHwQAhhBCS5CgYIIQQQpIcBQOEEEJIkqNggBBCCElyFAwQQgghSY6CAUIIISTJUTBACCGEJDkKBgghhJAkR8EAIYQQkuQoGCCEEEKSHAUDhBBCSJKjYIAQQghJchQMEEIIIUmOggFCCCEkyVEwQAghhCQ5CgYIIYSQJEfBACGEEJLkKBgghBBCkhwFA4QQQkiSo2CAEEIISXIUDBBCCCFJjoIBQgghJMlJsZ4AIaR3cUWBt+IAPPv3QnU6wWU/AIAZjBDtdlj6l8BcWAwm0csDIcmCnu2E9HFc0+DcugmNK7+De/cO+A6Ug6tK4EYmAIy13pEDXAt8W5RgKu4H6+BhcEybBfuocWACLSQS0lcxzjmP9SQIIfqTmxrRsGwpaj//GHLNYUAUAVUNbZDWYwzZucg6Yz7STz4dhjRHVOZLCIkdCgYI6WM0nxdV77yOmo/ea/20r9NTnDGAMWSfvRB5F14KwWTWZ1xCSMxRMEBIH+Lcsgnl//4H5Noa/YKAYzEGQ1Y2+l13M+yjx0XnHISQXkXBACF9gOb3o+Klf6P+y08DeQCt1/6jpvUcGafOReEV10EwGqN7PkJIVFEwQEiCU11O7P3bPXDv2Ba91YDuMAbrsJEoueNeiFZb756bEKIbCgYISWCqy4nd99wO74H9gBbl1YDuCALMxf0x+J6/Q7TZYzMHQkhEaK8QIQlK9Xqw5747YxsIAICmwXtgP/bcdydUryd28yCEhI2CAUIS1KFXnoWnbE9sA4E2mgZP2R4ceuW5WM+EEBIGCgYISUDN61cHkgXjIRBoo2mo/3IJmjesifVMCCEhomCAkASjNDei/Kl/HKkcGE8YQ/mTj0Bpbor1TAghIaBggJAEU/Hys1Bdzt7fORAMzqG6nKh45ZlYz4QQEgIKBghJIP66GjR+vyy+Lg8cS9PQuHwZ/HU1sZ4JISRIFAwQkkDqPv84Pi8PHIsx1C39JNazIIQEiYIBQhKE5vcHgoF4XhVoo2mo++wjaH5/rGdCCAkCBQOEJIimNd8HcgUShOpyomnNilhPgxASBAoGCEkQrtItgZbCiUIU4dq+JdazIIQEgYIBQhKEa2cpoKq6jMU5x6+/WYvrvl3b6bZFu8sx8/0vUOmOsJqgqgbmTAiJexQMEJIANNkP74Fy3cZjjOHeSaOxub4J/91zZNwKlxuPb96B204YjnyrJeLzeMv3Q5Mpb4CQeEfBACEJwLt/H6DpsyrQJs9qwe3jR+AfP+5AhcsNzjnuWbsFk3MysWBAkT4n0dTA3AkhcU2K9QQIIT2TG+qjMu65AwrxVcVh/GntZpxWmIfdzU68e8YMXc8hNzboOh4hRH+0MkBIAtD8vqiN/acJo7C32YWHNpbijxNGIcNs0nV8TtsLCYl7FAwQkgiiWHo4w2zCBSVFGJhqxymFubqPzxOhLgIhSY6CAUISADMYozq+yBjEKFU2FIzRnTshJHIUDBCSACR7SqynEDbRZo/1FAghPaBggJAEYBlQEusphC2R505IsqBggJAEINrsMGTrfz0/2ow5ubQyQEgCoGCAkARhGzYCEKLzlL1u1BC8rfOWQggCrENH6jsmISQqKBggJEFYhwyP6q4C3XEO65BhsZ4FISQIFAwQkiAc02dHbWUgGpggIH3G7FhPgxAShMR5ZSEkyRnSHEifcTIgJEDnQkGEY+YcSKmOWM+EEBIECgYISSBZ8xbo3qMgKjQVWWedG+tZEEKCRMEAIQnEWjIkkDsQz5cLBAHWIcNhLRkS65kQQoIUx68ohJCuFF3921hPoUdFV98Q6ykQQkJAwQAhCcYyYBDyLros1tPoVt7Fv6RCQ4QkGAoGCElAOQt+AuvgYfF1uaD18kDOuRfEeiaEkBDF0SsJISRYTBDR78bbIVqs8REQCAJEixX9brwdLBF2OxBCOoiDVxFCSDhMeQUYeNudEIym2AYEggDBZMagu/8GU25+7OZBCAkbBQOEJCiu+CEc2ICiUydDtFhiExAIAkSbHYPu+RvlCRCSwCgYICRB+X/4Ary5DiargKKTxsCY7gAY670JMAZTbj6GPPAYrAMH9955CSG6Y5wnUrFzQggAKGVb4F/7SYfvaaqGxv31qPtha+s3tOicvHUFIuf8i5C78GIIBmN0zkMI6TW0MkBIgtGaa+HfsLTT9wVRQEZJFvrNnQZzfuu1ez0vHbSOZe5fgoI7/gyrg0GrrdBvfEJIzNDKACEJhCt+eL98Fby57vj34xwe2YamPQfh3LIp8EYe7kpB67GW0eNhOukMYPSJYIII06YvYNq1BlLhYJgnnQ4ppzi88QkhMUfBACEJxLd2CdSyzUHfn9nTwQZPRcP6DWj47mvINYdbb2AAEzr3ORBEgGvtrZKlrByYp5wEYdrJELNyO9xVbKyC7YsX2/8t9RsO84RTIWUXhvfDEUJihoIBQhJEV3kCwZBGTINx9CwAgOp2wVO2F56yPfCU7YXqdELzeQAwCCYzRJsNYvEA8IL+UPP7gVmsxx3b/vG/IHhaOp6vaAjM42dDzB8I1psJjYSQsFEwQEgC0Jrr4P3iP4Aqh3SckFUE0+yLwYLMHfDICmpavEGPb9q4FKbda7u8TcztB/MJJ0MqHkZBASFxjhIICYlzXJHhW/lByIEAjBYYp54TdCAAAGZJhBDC+7ZSPKLb29TD5XB9+h+0vPsv+HdvAo/W7gZCSMQoGCAkjnHO4V//GXhzbcjHmqacDcGSEtIxjDFYjFLQ91czi6D1cA6tvgrurxah5e1H4StdC64qIc2JEBJ9FAwQEseU7auhlm8L+Thp+FSIeQPDOqfVEHwwAABy4fCg7qc118Hz3ftofvNheH9cDi77wpkeISQKKGeAkDilVOyEf8XikI8LNU/gWJxzVDS6oAX5yiBWl8H27Rshn4cZzTCOmAzTqKkQ7I6QjyeE6Ce0jwCEkF6hNR6Gf/XHoR9otMA4JbQ8gWMxxmAxSHD5g1vOV7P6gRvMYHLwiYcAwP1e+DZ9C9+Py2EYOAqmMTMg5hRTsiEhMUCXCQiJM9zrhG/5e6EnDAIwTZkPwRpankBXrCHkDUAQoORF0KSIa5D3bobzg6fh37Yq/HEIIWGjYICQOMJVBb7vF4Mfs3c/GNLwKRAjeVM+itkghtTzSM4fEtkJmQDL9LNhHDk1snEIIWGhywSExAnOOfzrPoVWfyjkY4XMQhhGzdJtLm2XCtxBXipQ8gaBMwGMh759kBnNsJ52CQxF1PmQkFihlQFC4oSyI7ydA8xih2nagojyBLpiMYjB39lohpoVem8CITUT9vOvp0CAkBijYICQOKBU7IK8+dvQDxQlmGYsBLPYdZ+TJcQthkpB6JcKuN8b6JFACIkpehYSEmNaYzX8qz8K61jj5PkQ0vN0nlGAIDCYpOBXB+T8IQh1nzL3uuD69JXW/giEkFihYICQGOJeF3zfh7dzwDBqJqSiYVGY1REWY/DBALenQ0vNCvkcWmMN3F+8AX5sB0VCSK+hYICQGOGqAt+KxeDu5pCPFYuHQxoxLQqz6ijkSwVh7ipQKvbAs/wDUA00QmKDggFCYqCt54BWVxHysUJ6HoyTzuqV4jwGUYAUQueicPIG2vi3r4Pvx+/CPp4QEj4KBgiJAWXHGqj7t4Z8HLPYYZxxPphoiMKsuhZKASI1oxCayRr2ubyrP4N/35awjyeEhIeCAUJ6mXJoF+TN34R+YOvOgVA7EUYqpEsFjEHJi2SbIIf7q3eg1ByMYAxCSKgoGCCkF2lNNeHvHJg0L2o7B457XklACFcKApcKJCNsZ/wcxpFTQj+hKsP16avQnI2hH0sICQt1LSSkl3CvC94vXw0rYdAwcgYMo2ZEYVbBqXN6g25cBEVGgeSDlJEHrqlwffofKAd3hXxOISMPKedeA2Y0h3wsISQ0tDJASC+IaOdA0TBII6dHYVbBs4TSuEgyQEnJBgAwQYTttJ9BSM8N+ZxafRWcn70KrvhDPpYQEhoKBgiJMs41+NcuiWDnwLyYt/U1h1KaGIBXPrKKwIxm2OdeBmaxhXxetXIfXEvfAFeDXJUghISFggFCoqhtC6F6oDTkY5m5deeA1Hs7B7ojMAZzCNUIfUrHAkJCSjpsZ14GiKH3RlMO7IT7q0VUlIiQKKJggJAo4ZxD3vgl1H2bQz9YlGCccX6v7xw4nlBWB3yKBu2YdCQppxjWOReGdW5531a4v30fPIyuiISQnlEwQEgUcM4hb/4Gyu4NYR1vnDQPYka+zrOKTKiXCnxy50/yxpIxME86I6zzyzs3wPP9R1SlkJAooGCAkChQSldA2bEmrGOlkdMhFQ/XeUaRM4ihbTH0dhEMAIBp/GwYh54Y1hz821bBu/bzsI4lhHSPggFCdCbvWA156/dhHSsWDYNhZOy2EB4PY6F1MfQqXQcDjDFYZp0HKX9gWPPwbfwG3h+WhXUsIaRrFAwQoiN59wbIP4ZRXRCAkJ4bFzsHjsccQjVCWdWgal1f42eiBOsZP4eQEV4RJe/az+HbsiKsYwkhnVEwQIhOlH0/Qv7hi7CODewcWBgXOweOJ/Qtht3vABBMFtjnXQEhLfS2xwDgWfERfNvXhXUsIaQjCgYI0YFSvg3+dZ+Gd7DJCtPsi+Jq50B3JIFBDCFx4HjBAAAI1hTY518JZneENR/Pd+/Dv+fHsI4lhBxBwQAhEVIqdsK/5uPwDjaYYT7ppxBSM/WdVJSwEOsNeBW1x+x/we6Aff6vwMIJhjiH+6u3IZdvD/1YQkg7CgYIiYBatRf+lf8DwtnuJhlhOulCCI4c/ScWRaFcKlA1DkXr+XcjpmXCPv8KMJMl9AlxDa6lb0A+tCf0YwkhACgYICRsanU5fN8vBsIphCMaYJr1k7irJRAMPfMGjiZm5ME27wrAYAp9UqoC16evQjlcHvqxhBAKBggJh1pXAd/ydwEtjJr5ggjTjIUQs4r0n1gvEAUBBjH4l46j+xT0RMougn3uZYAYRiKl4odryctQag+FfiwhSY6CAUJCpDVUwfftO4Aqh34wE2Cafh7E3P76T6wXhdanQAupaqCUPxC2M38OCKGtQAAA93vh+uQlqI3VIR9LSDKjYICQEGhNNfB++zYQVltdBuPUcyDmD9J9Xr0tlEsFGudQg8gbOJqhaAisp/0MYKG/RHGvC86PX4Ta0hDysYQkKwoGCAmS1lIH7zdvA35vWMcbJ8+DVDRM51nFhinUPgXdVCM8HuOAkbCe/BMAoRdh4q5muD56AZqzKeRjCUlGFAwQEgTN1QjfN4sAnyus440TzoTUf5TOs4odgbGQ8gZ8SnjdBo1DxsMya0FYx2ot9Wj54Gm6ZEBIECgYIKQHWlMtfF+/Ce5xhnW8YfypkErG6Tyr2DNJoQQDoa8MtJ9nxGSYp54V1rHc1QTnB89CqT4Q9vkJSQYUDBByHGrtQXi/fh3c0xLW8YYxJ8EwZILOs4oPxhCSCGVVgxZB62Hz2FkwnXhKWMdynxvOj16AfHBX2OcnpK+jYICQbigVu+D75m1A9oV1vDRiGgzDp+o8q/gRSgdDAPBHsDoAAOYJp8I0JsyOjoofriWvwL97U0RzIKSvomCAkC4oezfCv2JxeHUEAEhDJ8Ewaqa+k4ozksAQQpuCsPMG2jDGYJ46D8bhk8IbgGtwf7WIuh0S0gUKBgg5Cucc8tbv4V//OYDwlrWlQeNhGHtyXLci1gNjLKTVgUjyBo4+p2XmAhgGh5+D4VnxETxrPg+p9gEhfR0FA4S04lyDvOFzyNu+D3sMsf9oGE44vc8HAm1CyRvwB9G0KBhMEGA9+SeQ+o8IewzfxmXwfPc+uBZ5gEJIX0DBACEAuCrDv+IDKHvDv6YsFg+HcdLcpAkEgNDyBjSOoJoWBYMJImynXgypaEjYY/i3r4P7izfBlTAqSRLSx1AwQJIe93vh+/YdqIfCzzYXCwbDOHk+WBgV8xKZMYTthYA+lwraMMkA25m/gKFkTNhjyGXb4FzyEjSfR7d5EZKIkuuVi5BjaO4WeL9+A1rtwbDHEIuHwzj1XLAwauknOoExGEMqPqTvsjwTJVhPvQjGUeHv2lAry+D88Dlo7mYdZ0ZIYqFggCQtrbkWvq9eA2+uDXsMacgEGKecAyZKOs4ssYSWNxDZjoKuMCbAMv0cmCeeFvYYWn0VnB88A7WpTseZEZI4KBggSUmtPQjvV2+EXUwIAAxjZ8Mw7pSkyhHoSiiVCCMtPtQdxhjMJ54Cy8wFQJh/D62lAc7/PQ2ltkLn2RES/ygYIElHOdRWTCi8hkNgAoyT58MwbErSBwJA6MWH5CisDrQxjZwS6HYY5iUb7nHB+eHzkCv26DwzQuIbBQMkqSh7N8H//eKwiwlBNMA0c2GfajoUKVFgEEIIivxq9IIBADAOHA3bvMsBgym8AWQfXEtehn/vZl3nRUg8o2CAJAXOOeRtK+Bf/xnCLSYEowWmky+GmFei69wSHWMspF0Fshr9vf2GgkGwn3M1mMUW3gCaCvcXb8G3bbW+EyMkTjFOZbhIHxcoJvQFlL0bwx6D2dJgmnUhhJQM/SbWhzS6fWj2Brdf3ygKyEuzRnlGAWpTHVyfvAStpT7sMUxjZ8I8+cyk3C1CkgcFA6RP47IP/jUfQz20O+wxmCMH5lk/ATPbdZxZ3+LyyahzBdfQiQEoSrf1Wr6F5m6Bc8nL0Ooqwx5Dyh8I62k/g2ChxwDpmygYIH2W1lQD34rF4M6GsMcQcvrBNP18sHCvPycJWdVQ2eQO+v75aVYYQqhPECnu98L52atQK/eFPQazpcJ22iWQcvvpODNC4gMFA6RPUvZvDeQHqGEmCqKtvPC8pK4hECzOOQ42uILOxsi0mWAzGaI6p2NxRYb7q0WQy7aFP4ggwjL9bBhHTKadJKRPoWCA9ClcVSBv+grKno0RjSMNmUA1BEJU1eQOeqdAqtkAh7X3V1u4psKz/AP4t6+LaBzj0BNhmbkATOrdgIaQaKFggPQZmrsZ/pUfQKsP/9owABjGzIY0jD75harO5YXLF9xKjNkgIifFEuUZdY1zDu+6pfD9sCyiccSsAlhPvxRiSro+EyMkhigYIH2CergMvlUfAv4IGs4wBuPEsyANGK3fxJJIi1dGgzu4JEKRMRSmh7ntTye+LSvgWfFRRGMwkwXWUy6CoXioTrMiJDYoGCAJjXMOZfsqyFu+i2wg0QDTtAUQ86mGQLh8sorDLcEHY4UOG0Qhtqsv/t2b4F72X0CLpPYBg3niaTCdMDvpulaSvoOCAZKwuN8L35qPoFXujWwgowWmWT+BmJGvz8SSlNaaRBisnBQzzIbYJ2fKB3fBtfQNQA5uVaM7Uv8RsM25EMxo1mlmhPQeCgZIQtIaDsO3cjG4qymicZg1DaaTqJiQXg41uqBowb2kOCxGpFqMUZ5RcNTGWriWvgatoTqicYTUTNjOuBRiRp5OMyOkd1AwQOJGS0sL1q1bh/Xr12P//v0wmUy47LLLMHbs2A73U/b9CP+GpYCmoqy6Hh+s3oJ1u8pR53SjMCMN04YPwKWzJ8DUw6dOIXcAWgZNxeP/fhZNTU3IyMjANddcg8LCwmj+mH1aTYsHHjm4JXerUUKWPX4+RXPZB/c370GOtCeBZID1pIUwDh6nz8QI6QUUDJC4sHLlSsydOxfNzc2w2WwoKSlBY2MjJEnCnj17wBgDVxX4f/gC6r4fAQCvfLUWv3nmXZjNZkyZMgW5ubkoLy/HmjVrMCDbgff+cCUG52d1eT5p5HSIw6dizpxTsGXLFhQXF6OiogJz5szBO++805s/ep/S5PGjyeMP6r69WZY4WJxz+DZ/D+/qTwEeXkMlzjnKahuxjTvgzOqPvPx8zJs3DwYDbUMk8Sv2F+wIAfDuu+8iIyMDK1euxPDhwyEIAl588UX86le/Aucc3N0E34oPwBsPtx/z1nc/4IwzzsB7770Hr9eLAwcOYPDgwSgvL8fChQtx9ROL8NVfru+4RdBghmnKfIj5g/Dkk09i+fLl+PrrrzF79mxcf/31WLVqVQx++r4jlKqCsqaBcx5XWzgZYzCPnQkpqwCuL98E9wSfAwEAi9eX4tY3PkOdM5BIKQgCNE3DnXfeifvvvz8aUyZEF5T6SuKCKIrweDx44oknMG3aNHz33ZHdAWrlHniX/qdDIAAAjAGNjY04//zzkZWVhfHjx6N///5QFAUPP/ww1uwqx+b9R2oOMEcuzKdfBjF/EMrKyvDb3/4W1157LRRFQUtLS6/9rH1ZKMEA50CQ6QW9TiooQcrC30LMKQ7puEc+WYHxU6ZjyZIlqKmpgaqquOCCC7BuxfIozZQQfVAwQOLCZZddhuzsbHz66adYs2YN/P4jS82+5e8CsrfTMZecNAE/rF+Hmt1b8eSvL8DSP18LV3MTFi1ahMmTJwMA9lcH+hKIA8fCfMqlEGwOcM5x9dVXo3///rjnnntwzTXXgK6W6UMKcaugEmTFwlgQbGmwn3M1jCOnBH2MT1aQkpKCjRs34qabbmr/vlpzEN6N34BHtIWRkOihywQkLowaNQqbN2/Gvn37UFIS3F7/n588AT876QSIQiCm/XjdNnhlBePHj8f27dsBAAVZ6TBOnAtp4JEkxBdffBFffPEFPvvsMzz00EPYuzfCrYmkHWMMksCC3lEgaxpMiN/WwEyUYJ25AFJOMdzfLe6x18X5E0fg74sX44MPFsNgMOL1118P3MA5vGs+g7xvK6wn/wRiek70J09ICGhlgMSVUD+htwUCq3aU4fLH38D555+P888/H3fddReGFuVi6q9u7xAIVFRU4MYbb8QVV1yBrKwsPProo7rOnwBSCJcK4nll4GjGoSfCvuBaCD2UHv7DuSeh/PGb8eBPT+/ydrXmIFreewLeTd+Ca4nxs5PkQMEAiRuaqwn+NR+HfNy63Qdw3gMvYtLU6Xjttddwww034LvvvsMzL70KQ1ZBh/veeuutSEtLw9///ndcddVVGDx4MAThyNPghx9+wHnnnQeNXqjDJgkhJBEmSDAAAFJWAezn/wZSD6WHU8ym4ydFqgq8qz+F88NnoTbW6DxLQsJDlwlIzHHOoezdCHnTMmh1h49737oWFw43tiAvPRUZdis27DmIc//yPMaeOBEfffQR/vjHP+Lf//43nn/+eZx8WuDTmcfjwd69e5GWloZly5bh17/+NTweD6666qr2cS0WCy6++GLk5ubinnvuwdq1azFlSvDXiskRBjH4vIFgLyfEC8Fshe3My+Dd8CV8G76OaCz1cDla3v0XzJPOgGn0dLAQgihC9EbBAIkpzdkI/7olUKvL8Z+v1+GrH3d1us9Nz7+P08cPgyQIuOSR1yCrKkwGCX++ZC7++t8vMWLseCxZsgQPPPAA/vGPfwAA1qxZA8455s2bh7Fjx6Kurq59vDVr1iA1NbXDOTjnUBSlPXExnra7JZpQVgYUNf62F/aECQIsE0+HlF0E19fvAP7Oya1BUxV4V30CuWwrrLN/AjEtU7+JEhICKjpEYoJzDmX3BsibvwVUGd+X7sMZdz+NiRMngjGGp556CpWVlbjvvvvg8/mwefNmnDSqBA2CDc888wwuv/xy7NixA+PGjcO3336Lr776Cg888ECHc6xduxaXX345Xn75ZSxfvhxPPvkk3nzzTeTn58PpdAIAZFmG1+tFU1MT7rjjDvz73//GRRddhDfeeKPD5QMSPEXVcKjJHfT9CxzWkAKIeKI21cG19HVo9VUAAFlV8dmPu/HfNduwZMte+Hw+/OQnP8Hm75fhN6dPxtnjhyLD3k2hJdEAy5QzYRw1lRoekV5HKwOk12nOBvjXLoFWe7D9e2XV9QCAJUuWtFdqGzJkCJYuXYq9e/fixBNPxPrdBzDz5FMwadIkuFyBYjBTp04F5xxz5szBnDlzOpzH4XBg1apVsFqtmDFjBp588klMnDgRa9eubb/P22+/jYsuugjNzc3w+/044YQT8NZbb0X7V9CnhdqJUFG1hA0GxLRMpCy4Fu7v3oe8exOeXLoG933wLUwmE6zWwJu+yWTCgSY3bn3rC7yxYjM+vf0XXQ+myvCs+Aj+fVsCqwSp1C+D9J7EfAaShMS5BnnnWng/f6lDIAAAU4b2h8AYsrOz4XA4Ovx34oknwmyQ4PT6MWvWLLz66qs4ePAgpgwbgGeeeabT/dv+Y4zB5/NhxowZ2L17N9555x1ceumlHc87ZQpEUURxcTFeeOEFzJw5szd/JX1S2/bCYMlqYi9OMoMR1jk/hWX62dh8sBpz5syB2+1GQ0OgxsXrr78Ot9uNhx56CJsPHD8nBgDUyjK0/Pef8G1dCR5mSWRCQkWXCUiv0Frq4F/7KbS6im7vU1Zdjw17Dnb6PmNAv6x0nHTnE/j1r3+Nzz77DOMLM/D2/z7GNxu2tL/oHmvChAk47bTTUFJSAsYYtm3bhj179sBs7tgcp7y8HKtXr0ZGRgZOPvlkiGL87ntPFKE0LEoxG5BuNUV5Rr3jnttvwYP/fBLZ2dmdbnM6nRiYZsZXd14R9HhSQQkssy+A2MOWRkIiRcEAiSrONSg710HeshzQjl+w5XhUTcPVT7yNJeu3oX9hPhZ/vAQlQ4f3eNyjjz6Kv/71rzCZTHj66acxf/78sOdAgtfg9qHFKwd1X4tBRHaKJcoz6h1utxuv/ecVlK35Dmr1AQBHXl7NRgMumDQS/TLTQhvUYIRlylkwjpicUImWJLFQMECiRmuug3/tJ9DqK3u+cxCY2Q7jhDMgFgzWZTwSPU6vjHq3L6j7GkQB+XHWvVAPSuU+uL95F1pzvS7jSYWDYZ29EILdoct4hByNggGiO65pUHauhbx1OaBTLXZxwGgYx50CZjT3fGcSc15ZQXVLcFvuGAOK0+1RnlFscNkPz5rP4N+6Up8BDSZYps2DcdhEWiUguqJggOhKa6oJ7BRoqNJlPGaxwzhhLsT84PoVkPggqxoqQ9heWJRug9CH39zkQ3vh+eZdaC1d57eESsztD8u0+ZByinQZjxAKBoguuM8Dedv3UPZsBHTKgBYHjoVx3BwwQ99ILksmGuc42OAK+v75adaQ2h8nIi774Fn9KfzbVus2pmHICbBMPgOCLcQ8BEKOQcEAiQhXlUDxoNKVgBzcNeKeMGsqjBPOhJg3UJfxSGwcbHAi2GrDOSlmmA3JUfZErtgN9zfvgTsb9RlQMsA87iSYxs0Ck4z6jEmSDgUDJCycc6gVOyH/+A24q1G3caWS8TCMnU2rAX1AZZM76EZEmTYTbCZDlGcUP7jfC8+qJfBvX9vznYPEbGmwTD4ThsFjqYIhCRkFAyRkan0l5E1fdyocFAlmTYNx4lyIuf11G5PEVnWLB94gaw2kWYxIsyTfp1r54K7AKoGrSbcxxewiWKafDSm3n25jkr6PggESNM3dDHnzN1DLS3UdVxp0QmA1gJY4+5Q6lxcuX3C1JewmAzJsybkaxP1eeFZ+DP+O9bqOaxg0FpbJZ0KggkUkCBQMkB5x2Qd5+2ooO9dFVDjoWMzmCKwG5NAnmL6o0e1DcxIWHgqXXL4D7m/fB3c36zeoKME0dibM4+nSGzk+CgZIt7imQS37Ef4tywFf8NvEgiENngDDGEp46stCKTxkFAXk9cHCQ6HSfB54Vn4MeecGXcdl1hSYJ50B49ATKJ+AdImCAdIltWof/Ju+Bm+u1XVcZnfAOPEsiNnFuo5L4o/Hr6DGGVzhIYExFKXbojyjxCHv3x5YJfC06DqumFUQqE+QTzt1SEcUDJAOtKZa+H/8GlrVPt3HloZOhGHULDApebLGk5lfUVHV7An6/sXpNqqqdxTN64Z3zWfwb1+Ho3sc6MEwcBTMU86iNsmkHQUDBADAvS7IW5dD2fsj9H7hYY5cGE84DWJWoa7jkvimahwVjcEXHipIs0Lq44WHwqHWVcKz8mMoh/bqO7AgwjRmBswnnExlvgkFA8mOqzKUneshb18FKH5dx2YWOwyjT4LYfxR94ktCvLUKYbAvMLkpFpgM1D66K5xzKPtL4Vm1BFpzna5jM4sNpnGzYRoxiZIMkxgFA0mKK34o+zZD2bFG9+uSEA0wDJ8CaegkuiSQ5A41uqAEWYYwy26G1ZgcVQjDxVUFvq2r4N3wFeAPLh8jWMxkgWn0dBhHTYNgpmTOZEPBQJLhfk+gfPCuDYA/+Ou5wRIHjoFx1CwwS9/sQkdCc7jZDZ8SXBXCdKsJKWYKHoOheZzwrv8S/tI1gN4v4QYjTCOmwDR2BgRrqr5jk7hFwUCS0NwtUHauhbJ3E6AGt/c7FEJOfxjHzYHgyNF9bJK4alo88FAVwqhR66vgWbUEysFd+g8uSjAOmwDT2FmUaJgEKBjo47TmOsg71kDdv1W3boJHYykZgSAgr4TyAkgnoVQhTDEbkG6la9ah4pxDObATnpUfQ2vSdyswAIAJMAwaC/P42RAzcvUfn8QFCgb6KLW+Esr21VArdkbnBEYLDKNmQioZCyZQ0hfpWoPbh5YgqxDaTBIybZTVHi6uqfBvWw3v+i/BffpfAgQAw4CRMI0/GVJOUVTGJ7FDwUAfwjmHVr0f8vZV0KrLo3MSQYQ0ZAIMI6ZR5jHpUZPHjyZPcLtUqCSxPjSvG94NX8K/dXVUVgMBQCocDNMJsyHl04pgX0HBQB/AuQb14E7I21eDNx6O2nnE4uEwjDkJgs0RtXOQvqXFK6MhyJLEJklEbioFA3pRG6sD+QTlO6J2DjGnGOYTTobUbxiVOU5wFAwkMK4qUPdvhbxjNbizMWrnETIKYBg/B2ImFQ0ioXH7FdQGWZLYIArIp/4EupMP7grkEzRUR+0cQkYezONPgqFkDF02TFAUDCQgLvug7N0IZec6cG/wFd5CxaypMIydDbFoOC0FkrB4ZQXVLcEFA6LAUOig/gTRwDUV/u1r4V37BbjOTceOJqRkwDT+JBiHnggmUs2IRELBQAxwVYFauQdS0bDQjvO6IO9aD2XPD4Ac3NJrWCQjDCOmQRoygZ7QJCKh9CdgAIozqD5FNGk+D/xbV8G35Xtwb/SCAmZNhWnEJBiHTYBgd0TtPEQ/fSoYUJxOuHbthr+uFprPD65pEIxGiFYLrCUlMBcUxPwTLucc/lX/g1pzAJazr+txSY1zDq2uAsreTVAPbAe04PZsh8VohmHwBEiDTwQz0bVbEjlF1XCoKfg3HWpW1Du47A+sFPz4HbirOYpnYpCKh8A4fBIM/Ycn3CUEzjnk6ip4D+yH5vNA88tgggBmNMDgyIC5fwlEa99YzUroYMBXXYOazz9H87ZtcG4rhe/w8ZPnBIsF9mFDkTJ8ONKnT4djwolgQu8lvXDOIW/8Csru9QAA4/TzIBUO7fq+sg/K/q1Q9mzUvY3wsZglBdKwSZAGjgWTqOgL0Y+mcRwMoVlRocMKsRefk8mOqwr8uzbCt+kbaE369jw4FrPYYBw6AcbhEyGmZUX1XOHimgbXth/R/MMaePbsgrdsDzTf8S9zGTKzYRk0FNbBw+CYcTIMGfH5s/Uk4YIBrqpoWL0ale8tRv2KFUDbpwgt+C00TBTBVRWm/DwULFyInHnzYMxIj9KMj5C3r4K8+dv2fwv5JTDP/EmH+2gNVZD3bIRaXhqVSoFHYymZMAyfArHfiISL2Eli4JzjQEPwwUB+mhUG6lzY67imQd63Bd6N30Crq4z6+cT8gTANnwjDwNFx0b9EaWpEwzdLUffFJ5BrDgOiCKghrMIKQntZ6JQTJiHjtPlIGXdiQr2uJlQwULvsG+x59FH4q2tC/2N1hzFAEJC/4FwMuP46SLboLPkoZZvhX7vk2JPDfPa1YAYT1PJSKHs3QWuoisr5jyZk5EMaPhViwWBakiVRd7DBiSB7FVHnwhhrq2bo/eFrqIejVKvkKMxohmHIeJiGT4KYmR/18x1LdbtQ9eZLqP/q08CbuR5vh4IAaBoMGVnIv/xapE2aHvmYvSAhggF/XR12P/QI6r75JvDmHY0pCwIMDgeG3PF7ZM6aqevQyoHt8K/6EOiimauQkR9oSapz++CuCHkDYRg+BUJWMQUBpNeE0rkw226GhToXxhznHGpVGbw/LItO34MuiNmFMA6fBOOgsWDG6FeibF63ChXP/xNKS3NIK8tBa32vSp00HQVXXg+DI777O8R9MHB4yafY8/AjUH0+fVYCjqf1j5d1yikY/PvbYEiNvGOXemg3fCsWR60SWM8YxOJhgSDAQXXFSe+ranLDrwb3+M+0mWAzxX7ZmByh1FTAt3EZ5H3b0NUHGt1JBhgHjYVx+CSIOfp/cFGdLah44Qk0rfoueh8ujyYIEIwmFFx5PdJnnRrdc0UgboMBzjnKn38B5S++1PsnFwRYiosx5p+Pw5STHfYw6uEy+Ja/G90dAN0RREgDxkAaNgmCPfr5EIR0J5Q2xhk2E+wUDMQltbEavo3fwr9rY699uBHScwKrBUPGQzBHfglXrq/Fvvv/H3xVFdFZDehBzgWXIOeCS+NyZTYugwHOOfY+9jgOvf1O7CYhijBmZGDcs0/DnJcX8uFq7UH4vn0n6kmAnUhGSINPgGHIBDAz7dkm+nO5XKioqEB6ejqysrJ6fGGrbvGgyenG4cpD4Jwjr6AQJlPXfS3SrSakmCkYiGdaSwO8P34H//Z1gBpcR8qICSIMA0bCOHwSpIKSsHaB+WsOY889t0JpbIzNB7RWmXMXIP+ya+IuIIjLtN2yp/4d20AAAFQV/vp6/Hjdb+CrqQnt0PpK+L77b+8GAiYbDGNmw3L2dTCOmU2BANGVpml45plnMHXqVKSkpGDYsGHIyclBfn4+HnroIfj9Xee8fPbZZ5h78iyM7JeHWRPG4qSJ4zC8KAdXXnIhtm/b2un+/JhlaJ/Ph3POOQcGgwGSJGH27NnweDoXMfL5fDjttNMgSVKn/zIzM/Gf//xHn18EgZCSDuuMc5H6s9tgGj8b6I2GZZoKee9muD55Ec2v/w3u7/8HpXIfeJCf7uX6Ouz98++hNDbENBAAgLpPP8Dht16O6Ry6EncrAzVffoXtd/0x1tM4QhSROmYMxj75r6CiUa2xGt5lbwFycCVYI8VsDkjDJkMaMJqqBZKoefPNN/Hzn/8cCxYswLx58zB06FDU1tZi6dKleOGFFzB//ny89957nT7tDBgwAEVFRfj5z3+OIUOGgDGG7du341//+hf2l5dj8WdfYfjIUe33d1iMSLUcqXXxpz/9CQ8++CD+/ve/gzGG3/3ud/jf//6Hc845p8N5Pv/8c5x55pl4+OGHYbd3DITfe+89VFZW4scff4zCb4ZoPg/8pWvgL10LraW+V8/NLCkwlIyCsWQMxNz+Xb5Gc03D3vvugHtnacwDgaP1+92dSJuib7J6JOJqZcBfW4tdf33wSO2AeKCqaN64MaiVCq25Dt5v3+6VQEDI6Q/jtAUwz70KhkHjKRAgUVVWVobMzEy88MILUFUVb7zxBrZu3YoHH3wQb775JhYvXoxvv/2203H19fWYNGkSVFXFu+++i/feew8jR47Ehg0bUFxUhEf/9kCH+x/9yWTTpk247777cOedd+JXv/oVrrjiCgCA19v5+dX2vcsuuwxFRUVwu93t/8myDIEKGUWNYLLAPH42Ui6+Gbb5v4Jh0Figl/bXc08L/FtXwfnhc92uGNR9+gHc27fEVSAAMBx89nHIDb0bPB1P3LyDcM6x8/4HoHo90c/uDMO+J5+CY8pk2AYO7PJ2zdkA3zeLgCg2AYHRAmnAaEgl4yCkxPc2FdK35ObmorGxEf3790dLSwvGjRuHzZs3o7S0FG+88QYGDBiA//3vf5g9e3aH404++WQ89thjMBgMGDx0GA5VVODZZ5/F/v378Ytf/AKP/OMfHe7ftlApyzKuuOIKjBkzBr/+9a/xyCOP4Oabbw5qrq+88greeedI8F5UVISHH344wt8A6QljAgyFg2AoHATN64a86wf4tq+NarfEo7UFBv6tq9pXDFj+cFS+EYMk9B5xaF4PDj7zGAb8/t64yB+Im2Cg+pMlaFi1OtbT6BbnHDvuvhcnvPJSpz+c5mqC75tF4F5nVM4tZBVBKhkHsWgYrQCQmLj44ouxf/9+GI1GXHXVVcjNzcXZZ5+NPXv2AADsdjt8vs7Ns9555x18+OlSPPGvf6LiQDm8Xg8YYxAEAbW1tbCndNy+2/Y54OGHH8aPP/6I1atX4/bbb0dqCNt8rVYrhg4diqqqKjQ3N2P48OE45ZRTwv/hScgEsxWmMTNgHD0davUB+Levg3/Pj71STwVoDQx2bULNh5/HcFt3DzQNzk3r0PjdV0g/KfZbDuPinYVzjvJXXumdPZ/hUlW4du1C0/oNcEyc0P5tzdkI3zdvgbt1bvZhMEHqPwpSyXgIcVrHmyQPq9WKe++9t/3f//nPf/Dxxx/jhRdewK5du7Bt2zbceuutnY4zmUzYuWM71q9eiauvvhp2ux3z58/HunXr8Pzzz+PCS37R4f4cQGlpKe688078/ve/R21tLV577TVcf/31Qc/15ZdfBhBYXfjoo49w3XXXYeHChfj222/j4hNYMmGMQcrtBym3HyzT5sO/50f4t6+FWnMw6udWJAe8+1dG/TyRYahe/BYcs06J+WMzLi6kNa5dB++Bg/EbCLQRRVQsWtT+T83ZAN+yN3UNBFhKBowT5wZ2BZxwGgUCJO689957+OUvf4mrrroKl156KS6//HL069cPF110UZf3d7tdMJlMmDlzJk466SQMHjwYhw4Fthk6Wzo+dxRVwZVXXonhw4fjtttuw7XXXouBx1yaW7x4cafdC7bWMuK//OUvkZ6eDrPZjLlz52LChAl45ZVXsHz5cnz//fc6/hZIqJjRBNOISUg5/3qkXHADjKOmRbXSYMue/b2WuxA+Dn9lBVxbN8V6IvERDFQsejvQayDeqSrqv18B76FD0Frq4Pv6TXBPi66nYDYHdQ8kcevDDz/EhRdeiIsvvhhPPPEELr74YmzYsAFvvvkmzOauX9gXnHc+JIMRF1xwAU4//XSMGjUKc+fOxT333IPF/30bLueRy2vLvvoKq1atwvPPP4+//OUvKCsrw759+zqM98Ybb3RahZg5cyYuuugiOJ1O3HLLLfjrX/+KjRs34rbbbsOZZ56JgoICfPLJJ/r/QkhYxMx8WGecg9Sf/wHWU34KKb/rXKxwKTKHc/u2OEsa7IYgonbJ4ljPIvaXCbxVVWhYsSLW0wgeYzj09lvIG2QCvMF3YwuWVrUPmrsFgjVF97EJicQnn3yChQsXYuHChXj55Zdx2WWXYfHixfjwww8xZcoUAMCKFSuwqHX17MILL4SmaSjduRuffbcSjDHs2rkDP5l3Bj7//HPMmDEDiqJg1YrlWL96FZqbm7F31w4AwNSpUzFjxgw8+uijHebAOcdVV12Fr7/+Gg8//DD27duH/v3747LLLsMZZ5yBkSNHYsqUKWCM4fPPP0d5eaDZTlZWFlpa9A3cSeSYZIBx8HgYB4+H2lQL/4718O9YD+6JLP/K3SS3NwyKe5qKlg1r4K+thjErJ2bTiHmdgepPP8OOe/8cyymEzD58OMY/9Tg0ZwO4qxGasxHc2QDubITmbADkzolUoTCMngXDiGk6zZaQyG3ZsgUTJkzA/Pnz8eabb+Kqq67Ca6+91n57Xl4eXn75ZVx88cXIzMwEYwy7d+8GAAiCAMYY+g8YiOrDh+HzebF27Vps2rQJv/zlLzF63HhUVx5CQUEBNm7cCAAYNGhQh/P//Oc/x6233orx48ejpqYGzc3NsFqtGDZsGHbu3AmXywVBEKBpGnJycmA0GnHw4EE89NBDuPLKK1FYWIgHH3wQN910U6/9zkh4uKZCLt8B//a1UA7sDOvycfWOavgOHYrC7KKn6De3IX3mnJidP+YrAy2lpWCSBK5EXtZS5Ry/3boFmUYD/jJ0ePv3nYqCX/64EXOzc3B1cb+Iz+PasxvcYIaYXQxkF3e6nfs9nQIE7m4G9zgDEW8PlQmVfZshDZ8a84QSQtq89dZbyM7OxqJFi1BZWYlTTz0Vp556JAP6kUcewUMPPYTGxka8/vrrEEURc+fOBQAsW7YMW7ZswZ49e5CWloZzzz0XJSUl+PnPf47Zp5yG8v37cNlll+H++++HyWTCeeedh2HDhrWP/eKLL6KmpgaapmHPnj2YNGkSioqKcODAAaxduxbTp0/HypUr8ZOf/ARXX301li9fDp/Ph+nTp+Occ87BzTffDFVV8bOf/azXf28kdEwQYRwwEsYBI6E5m+DfvRHy3s1Qa4N7c+cc8B0+HNEc3t5djn9s3I7lC0+D1Fqjwi0rmPneFxiT6cArp01tv+/66npc8dVq/G/eSRiQGmb/BFGEZ8/O5A4Gmrds0SUQAACRMdw5aDB+tXkTPq+twRlZgSZDj5ftQ6ok4fLCIl3Ow2UF7j17YR82tMvbmdECMcMCZHTuz805BxQ/uKelNThoaQ8Sjv6eVnswEGwQEgckSYLP5+t2v77P50NpaSkAoKSkBM8//3z7bQ899BDmzp2LOXPmwO/34/XXX8dbb72FpqZm3PvQo7jgrNNRUlKCpUuXAgDuuOOO9ssOALB8+XJs2LAB/2itSXDPPffgvvvuQ0lJCaqrq9srC65cuRKjRo3CmDFjYLFYsHv3bsycORPff/89HnvsMeTkxG4JloRHsKfBPH42zONnQ22ug7x3S4+BgWbJjLjD7aScDLgVFVvrmzAuK9DobX1NAzLNJmytb4JHUWGRAnlu66rrkWMxhR8IAICqwr17e0RzjlRMgwGuKHDt2q3rmMUWC64p7o/H9+3DialpKHU68WVdLZ4ZPRYGHauQtWzb1m0wcDyMMcBgAjOYgFTaKUASwy9/+UssXbq0/Q35WIWFhRgwYAA450hLS8NTTz2FP/3pTygpKcETTz2Fm266CUpr0J+dm4tTTj8Tv/2/W1G2by8AYM6cObj00ksxdcZMTJ48ucPYf/jDH3DzzTfjySefxHnnnYdp06Zh9erVuPzyy/Hggw9CFEWsW7cODzzwAB577DE0NDQAAAwGA0499VR88sknOOuss6L42yG9QUzNhBhEYKDADIAhknbLA1PtyLGYsK66vj0YWFddhzlFOVh7uB6bahswNS/w+r22uh6TcjLDPlcbb9lecFUFi1EyfUyDAbmpCVzWv5nPBXl5+K6hDvfv3oW9Hjd+WViEIbbI21+2YZIEX3XvVNUiJB4MHDiwx615d955J5YvX44TTjgBPp8P//d//weHw4ELLr4EhxudqK+thcFoQHpGZvslsLZg4KyzzkJZWRkWL1na6fLY/PnzMX/+/PZ/Nzc3w2g04r777kN1dTX+9Kc/YcKECXj33XfBOUdDQwO8Xi8yMzO77Y5IEluHwKCpDvK+LZD3bIZadwgaMwCiEPHqwMScDKytrsevRgbyV9ZW1+PyEQOhcWBNdT2m5mVBVjX8WNeAO04cGfHPxBUZSkszDI7YtJyPaTCgdVGxTA+MMdw8sAS/2LQRJVYrLtXp8sDRojV3QhLVH/7wB2RmZqKxsREXXnghHA5H4AYe+JSem9/5stmsk0/Bo089i53bSzFp2nRMnT6jx/OkpqZi6dKlWLJkCYqKivDrX/+6/TbGGDIyqFR3MhHTjgQGmrMR7vffRmBlIDITczLx0A+lUDQNPlXD9oZmTMjOgMaBN3aWAQA21TXCq2qYnBv5ygAAcLl3KjR2JbaXCdTobfv4pLoaZkFApdeLGp8P+d3sgQ4XjzDqJKSvSUlJwS233BLSMYwxLLzoSGJfsC/hs2bNwqxZs0I6F+n7BLtDt+2Ek3My4GnNG2j2y+ifYkOm2YSJ2Rm4c9UmuBUF66rrkG81o8hu1eWcsXxfiWnRIcEUncI6W1pa8HZVJR4YNhyjUlLwt717oPcOSsFohLxjFdTqMvBeqrdNSCIK6ZlHG2hIhJhBn/eVfik25FrMWHO4Hmuq6zEhJ7DilGUxodBmxcaaBqytrtdtVQAIvK/ESkyDAVHH6/htfJqKB/bswrk5uZiY5sDvSwZju8uJ/1VHttXkaJxziCLA6yug7lkPed1HkEu/h1q9nwIDQjqJ8zLjpE8RrTbdmhNNys3Auuo6rKuux6ScI5efJmZnYEVVLX6sa9QlebCNYNFnhSGsc8fszAAkmw3GXH23+zxdXg7OgWv79QcA5JpM+E2/AXhqfxkqu+iDHhZVhSX3qC5qnIM3VkHds44CA0IiQAsDJFKWASU6XirIxA+1DdjR0IyJRwcDOel4d88B+FQNk3P0yVExZGZDTNZgAABSR48JlI3UwcbmJiyuqsQfBg2G5ajtGefk5mJ0Sqqulwus6d1kKVNgQEgHtC5AepOlJPQt392ZlJMBr6qhOMWKTPOR1/wJORlwKSqK7Vbk2SyRn0gQYB06IvJxIhDzcsQH33gT+558KjFqSLcyZmXihDt/GdpBTICQkQ8hZyBYWg5VFyRJo9njR6MnuGDYYhCRnaLDiytJaqXX/wJKQ12spxE8xpB36a+QPX9hzKYQ8wqEKSNHJFQgAEFAypABoR/HNWh1FdDqKgCTFWLOAAjZ/cFMsVsWIiTeUJBM9GAdOhLNa79PnPcWzmEdNKzn+0VR7C8TjBkDY052rKcRPE1D5rjBkY3hc0M9sA3yhiWQS7+HVl8BnigPWkJCRJcJSG9LnzkncQIBAIaMLFiP6qcTCzFfGWCiiMKf/jRwqSC2Vyw6EaxmDLh4AdJPHA3RZILq86GpdDccA/XLHuWNVVAaqwCDCUJ2f4g5A8Esdt3GJ4SQZJNy4iQYMrMg19XGeio9YwyZZ50HJsSmDHH7NGKdMwAAcnMzVp+zANwfP0l2xRfOR9F5c8EYAJMNTDIGkgB9LnAg0KrY2RiVc7PUbAg5AyBkFsb8AUJIpJo8fjQFmTNgM0rItOtbIIwkp5qP3kPVGy/E3YfMYzGDASOeeg2iPSWm84j5ZQIAMKSmInfeWUCMGjQcq/jC+Sg+fy6YNQ1C0UiIBcMg5AwM/L9oJJglDaI9HUjVb4XgaLy5BurutZDXfQxl30ZorqaonIeQ3hAHnzdIEso4+XQwyRDraRyfICB99ukxDwSAOAkGAKD/1VdBslqBGCcQCVYzis6bC1jSIOSWgBk6fkphBjOE3JLA7dZUMEsU/4iqDK1qD5Qfv4C8+Suoh/eBq/o3diIkmqgCIYkF0Z6CvEuuiPU0uscYRIsVORdcGuuZAIijYMCYkYEhd/4h5ks6Ay5eAMYQWKLvJjBhjEHIKAQDIKRlQXDkACy6v0rubIC6d0NgtWDPemgtdfSJiySEUB6nAu0mIDrKPOMc2EaO1a2Wja44R+GvfxezLoXHiqvfUNbJs5Ez98yY/uHSTxwdyBEwHP+6JTOaAVOgnDIz2yBkFQLGXrjWqanQqsugbFkGZdMXUCt3gcvUQZHELy2EmJVCAaInJggouv6WmNb875IgwDHrVKRNmh7rmbSLq2AAAAbdcjNMubkxyx8QTSYwKbgHztHXo5goQczIh5BdHPVVgjbc0wy17EfI6z+Bsm8juM/VK+clJBS0MkBiyZiZjcJrbor1NI4QBBgys1Fw+bWxnkkHcRcMSHY7xj71BIwZGTEJCFSfL+jSwVzpfP2eiRLE4uEQB00AS8/Te3rdTESDVrUH8g+fQdm9DtzT3DvnJSQIoVzNoqJDJBoc02Yj75dx8OYrCDA4MlBy998DDZXiSNwFAwBgzsvDuGf+DVNuDiD27hQbNmwJbB+Uj9/UiPu9QHefxP0ewN0IsXA4pBPOglg8CuiNSoOcQ6vZD3njUsg7VgW2PxISY1pIKwNRnAhJWqqmAdNPRfql18RuEq0rAiX3PARjZvwV2ouLOgPd8Tc0YOstt8JZur3XzinYbZjyzIOBbYW5JV1+UuGcQzu8F/D0vOWP2dLBsvoBTABvroF2eB+0+kO6tdjs8fyOXIiFwyGkZvXK+Qg5VmWTG7Ia3OM9y26G1RjzWmikD+Gco9HlbX8M+jasRNNL/wJXNUBTe20elpIhGPD7P0NKTeu1c4YiroMBAOCKgoq3FqHs2WfBNQ6oUfrjMQZwjrQJJ2L4bb+FqLkC2wczCzskE3K/F1p9RVCBQDvJCCF7AJg5UFmQyz5oteXQDu8D97To/ZN0iaVkQiwcDubIpaVY0qsqGl1Qg8wizEkxw2ygYIDox+n1w+3reElXqTkM1+vPwLt9c3RPLohgAkPuTy9D1rzzweKklk5X4j4YaOM5cBA7H3gAzRs3BXYb6Fl3WhAgWswo+d3vkDFjIiRbGrizDmg6HLjdZAOTDIEcgQiS9JgjH8yR1/5mzDkHd9ZDO1wGre5Ar0SpzJoGoXD4cbdOEqKngw3OoHcU5KZaYJLi9wWTJBafrKDJ3fVuK845/Ku+QfOiF6H5fPqu1ra+R9mGj0bhr38HU16BfmNHScIEA0Dgj1f37XeofPc9NK5dG1lQIIqAqsKYlYX8889D3nnnwZiRDrmhClxVwCQjBIsNaKkFXI36vVGb7BByBnTascAVGVrdAWiHy8BdvXCt32yHWDgMQlY/sHjcg0v6jPJ6Z9D3zU+zwtDLeUKkb1I1DfVOT48JrFpzE9RVX6H5qyVQGhsie19pPdY+5gRknD4fqROnJcyHroQKBo7mPXQIVf/7EFUffgS5vj7wzbY3tS7+kEySwBWl/ev0KVOQv/A8pE+Z0mHpRmmpg+bzHDnOYIJoTQUTRGi1+wG3DqWBBTHwJmzrutiE5mqEVl0GraYciHbFQaMFYsHQQIAi0vIs0RfnHAcagl9NK3BYIVFwSiJ0bJ5AMIwiwHZuRcOXn6Bl0wZADbxftH1w7ISxwH+t7zdSWjrS55yBjDlnwpjTSzvJdJSwwcDR/LW1cO7cCefOXXBu3wFfTTU0nw9cVSGYzJBsNtgGD4J96FDYhw2DZUB/CFLXb3yquxmqu/PWPGYwQbCkAJ4WoOGgLpUSmT0TLLOo22ZEXFWh1VdAq94H3hzl7luSEWL+EAh5JUHXWSCkJ6rGUdEYfDBQ5LBBoC0FJEJd5QkEI9VigtkY+ODorTgAb9keeMr2wFu+D6rHDe7zAaIIwWiEISMLloGDYR4wCJYBg2BIz4jCT9J7+kQwoCfN74VynDdeJhkhGEzgjYfA/J5u7xc0gwlC9kCwHrYeck8L1OoyaDX7gWhWHBQlCHmDIOYP7rEKIyE9UVQNh5rcQd+/ON2WMMuqJD75ZRWN7uNvDe+K2SAh1WqKwowSAwUDx+CaCrm+suc7ihIEVQZaanQoocrAMgrAUnN6fCHkmgat7iC0ih3RLS7EhEBQUDScVgpI2PyKiqrm4IJmBqA4wx7dCZE+Ldg8gWOJAkOG3ZLUgSgFA13w14VQB4AxMK8TzO+KPCiwpELI6h9U203OOXhDJdSK7eDRLC4kGSEWj4SQOxCsl8osk77DK6uobgkuGBAYQ1F6fFVlI4kjnDyBNhl2C6QkT1ylYKALclNN6M1/OAfzOcFkL1hoTVs7EiQI2f3BrMEVpuCcgzfXBIKCpprwz9sDZkmFOGAsBEdu1M5B+h63X0GtM7glW4MoID+tFyp1kj6Hc44Wjx9eWQn52BSLERZjzx/A+joKBrqguBqheYLfDtUB18BkD5jfAxbBvlWWmg2WXhjStj+tpT4QFDQEcZkj3Hk58iANGANmSY3aOUjf0eL1o8EdXK8PkyQiN9US5RmRvsjtk+H0Bvc4O1qy5wkcjYKBLqheN1RnfWSDcA4oPgiyB1Dl8C4hGC2ByoXG0F4gNXcTtIod0GoPhHPWnjEGIbcEYtFIMAPlE5DuNbp9aPYGl9VtNUrIslPSKgnN8QoLHQ/lCXREwUAXNEWG0nhYt/GY3wPmawkvIGAMLKMILCUr5Act9zqhHtoJrXp/dHohiIbWfIISKlxEulTv8sLpC27p1m4yIMNGn9JI8BRVQ4PTE9aFWcoT6IiCgS5wziHXVegzmOKH4GmKLI8AAKxpgeTCMAoDcb8H6qFdgeZK0Sh5bEmB1H9Mh1LLhABATYsHHjm4x1yaxYg0C600keBoGke90xNSV8w2lCfQGQUD3ZAbDwd6EURAsKRAMJrBa/cD3jBzEI4mGgKXDSwpYR3OZT+0qt1QK3dHpbIhS8sNJBlaKZ+ABFQ1u+FXgluVyrCZYDfRCzTpWSQ7B8wGCSkWI31wOQYFA91QnA3QvOE3JRJTMiC2FhLinIM3VoE36pPYx9JywdILwn4wc1WGdngf1EO7ADn04hw9zA5C7kCIxSPBDLTkm+wONbqgBNmliNoXk2BEsnNAEgSk280UCHSBgoFuRJpEKKVlQzjmzZB7ndBqygAl9KzXTkzWQOXCCN5wuaZCq9kPtWJnRN0YuyQaIBYNh5A3mPIJktiBemfQF8ioYyEJRrg7BwTGkG43Q6TXoy5RMNANriqQG6rCH4AJMDhyOl3j55oKXluuT2dCJoBlFUOwZ0Y0DOcatOoyqOXbAEXnUsdmG6T+Y8HS8ykaTzIa5zgYSpOiNCsldJHjCnfnAACk28wwULDZLQoGusE5D5QljqRWgChBSsvp9MmYcw7urAevO6BLlj+zpYNl9eu24VGwuCJDrdgOrXK37rsPWGo2xAHjINiCK6ZEEl+ofQmK0m0QKGAk3Yhk50BbAyLSPQoGjkNurgX3R3ZNnRlMkFK73hbIZS+06jLAH/wLZrckY+CygTnycq7c64Syfwt4vU47Ko4iFAwN5BNEGLiQ+OdTVBymvgREB5rGUe/yQAsy/+RoVpMBdjPtUukJBQPH0V0741AJZhtEm6PrgIBr4A2V4E361DVg6flgafps8dOaaqDu/xHc1Rj5xI5mSYE0eCJgdaChoQGiKMLhcPR4mKqq2LVrFw4fPoz8/HwMHDgQBgNln8erUEoRSwJDgYP6EpDOItk5YJJEpFpNdIkyCHSB7jj06taneV3QutlayJgAIaMQQt5gQIz8jY03VEKr2gWuQ5KikJYNacwpEAdNAHRqZ+zzy3j4uVdx6uzZyEh3ICsrC+np6bj00ku7Paa+vh7XXXcdcnNzMWLECJx88skYNmwYCgoK8Pjjj0NVo1A7gUQslE9xgkAv1qSztp0D4QQCkiBQIBACWhk4Dq5pkOsP6TaelJIJwdR9aWGuKtBq9wPupshPJogQsvqB2dIjHwuB7YhqxU5oh3ZGlE/wn4+/xvV/fxZnn302Jk6ciOHDh2P9+vV44IEHUFdXh4yMjE7H3HDDDXjjjTdw7bXX4rTTTkNhYSEqKirw1ltv4YUXXsCNN96If/zjH5H8eCQKQilFbDGIyE6hvgSkI9o50Hsoo+I4mCCAiQbwowr0CGY7mCBCDeMNW2mphyRmQ+hmxYGJEoScEvCWWvD6gwi5KffRNBVa9T6wlJZAOeMInxRMNEDqNwo8dwDU/Vug1R0Ma5yK6sAb/nPPPYf169dj0KBBkKTAw1D2d/2kr6ysxOTJk7Fw4UK88cYb2L17N8aNG4fHH38cJSUluOuuu3DLLbegsLAw7J+P6E8NYWWAXrTJsXyyElYgAABpVhM9pkJEv60eHN2IR7SnQ7I7IFjsEMJK1ONQmmvB1e6LZTDGIKRmQygYrsvSPG+phXaoFNynQ5IiAGayQRo6BdKo2WGtOgztX4DDhw8jKysLZ555JtatW9d+m1L6HbQu8hOKi4uxbNkyTJw4Ea+99hp8Ph/uu+8+PPTQQ7juuuugKAq++uqrSH4sEgWKFvwKkkSXCchRFFVDc5hbCFMtJtpCGAZaGegBk4wA80BKzWwvIsQYg2hzgKsKuBziA1bToDTXQkrLPm5GPTNaIBQMB2+oAG+uieRHAGQftEM7wDIKA62RdbiGJqRmgY2ZA632ANTyLYA/uKzxhXOm4f2H/oCahiZc88BTHW7j7hYom7+CWDgcQuHw9tWMu+++G7m5uRgyZAjOO+88yLKMgQMHoqampn1VQQvhjYf0jmArDwKg+gKknaZxNLm9YW0htJoMtIUwTPQM7IFgMMPgyOlUTZAxBiklM7zGQaoCpakWvIc3MCYIEDKLIeQOAoRIH+AcvP4gtMN7Olz2iARjDGJ2PxjGnwGhaAQQxHZBxhjmzZiAhXOmdTNNDvVgKZQtX0NzBS7FOBwO3HHHHbjgggvAGMPVV1+NxsZGXHfddVi0aBEAYPr06br8TEQfnPOQLhPQygABAo+bJrc3pMdOG6Mkwka9LcJGwUAPmCh2+4bPBAFSahbAQv81clUOXDIIIhmPWdMgFI4AzOE1KOrA0wytohRcjyTFVkyUIBWPDAQFWf10GZO7GqFs/hLqwe3tvyPOOX7729/ijTfewCuvvAKj0YhbbrkFl1xyCYYMGaLLeYk+QlkVAChngLQFAj7aORAj9AyMEBMlSKnhlQPmih9Kcx2C2dDBJEOgzn9GIQIlWiKgKtAO74FWdzCoYCRYzGSFNGQSpNFzwKw6VBrkHOqBrVA2L4PqasJNN92Ep59+Gs899xymTZuGU089FTk5OXjiiSciPxfRlRrCZRsGgBYGkltbIOBXQt8mzBiQZjNR9coI0cUVHQgGE8SUDKgtoTc24rIPSktd4JJDDw9mxhhYWi64OQVa9b6I+wjw5mpwb0ugcqFRnzoCACCkZICNOQVaxXaoFds77YrQNA2Hajv/rqrqGpDlSEGL24O//+d97D5YiYKsDNx+2UL846+P4YlFH+Hpp5/G3LlzMXv2bFRWVuLbb7+FzUbFauKNooaWL0Cf6JIX5xzNnvACAQBwWGkLoR6ozoCOIqlYKJgsEO0ZQb8ock0FrzsI7qwL63wdMAaWUQwWREASKs3VCHX3WvDW34vH58PUK36P7WWBrYlvvfUWLBYLFixYAAAYVJSHS+fOxiNvfoRZs2Zh7dq18LpdcHm8ePLJJ3HBBRdg9uzZ2LFjR/s5cnJysHz5crpUEEeoxgAJRiTtiAEgxWKExUh5AnqgYEBHnHOozgZoYW7jE0w2iPauyxZ3R3M2gNeVA5oOVfisjkChojCSIo+HaxrUg6XQKnbgizUbMf939+G1115DRkYGTjjhBAiCgPXr18PpdOKnP/0pBhbkwpSajtLSUpxxxhlYunQpFixYgMWLF6O0tBRlZWUdxr/44ovxpz/9Cbfccouu8ybhq3V64fYH9wKfYjIg3RZ+K26SmDjncHr98AT5ODkW9RzQF10m0BFjDKI9PfCpPdQthwA0nwtgDKItLeiAQLCng5us0GrKAF/w7WK75G6EVuGCkD0AzKJDsmIrJgiQ+o2CllGAlJ0HAADLli2DzWbDZ5991n4/ny/wO9t36DDOmzwN1dXVWLFiBQBg+/bt+N3vftfl+H6/H3Y7NbmJJ6HUGBBFukSQbCINBGjngP5oZSAKONcCWwfD7A8gWFIghdjql3MO3lgF3lgZ1jmPxRx5YI58/S8bqAp+d80V+PLrb7q8ferooXjlk6/x6KOPYd++fXjxuWfw5v234u+vvIfqhi52QDCGMSdMwNPPvxhUsyPSOw42uKAF+dKSZTfDSnvDk4rT64fbF94WZ0kQ4LCbKWFQZxQMRAnXNChNNWHv6RetaRCtoX86515nYJVAh0ZFMNkCqwQG/ZdwtZZ6KHvWAZ6WDt+XFQX9zr4KHlmFz+fDvddcjNsvW3j8wRiD2H8shLxBlIgWBzTOcbAh+FWqvFQLjFQxLmm4fH64gswnOZYoMDhslDAYDRQMRBHX1NaAILylMNHmgGgJffmbqwp43QFwV0NY5+2ACWBZ/SDYOzcQihTXVKgHtgWaHx1lx/4KLF29EbkZDlxwyjQIQT7xhaxiiCUn6p7zQEIjqxoqm4LPmylKt9GnvCQRbuMhgJoPRRsFA1HGVRVyU3XYCX6iPR1iGH0QOOfgznrwugMRdRlsw+wZYJnFxy2hHC6tpQ7K7nVAN22eQ8GsaZCGTQUzUw5BrHj8Cmqc3qDuKzCgKJ3+VsnA45fR4qFAIF5RMNALuKpAbqoJOyDoqfXxcc8te6FVlwF+HRoVSSYIOQPATPrv6+eqCvXAVmiVuyIfTDRAGjIJQnp+5GORkDV7/GgM8kXfKArIS7NGeUYk1rx+Bc2e8OqiMAak2yzUvyLKKBjoJVyRAwFBmJ/SpdQsCGEWBuJcA284BN5UHdbxx2LpBWBpuVG5Pq8110LZs16XVQKhaATEohGUR9DL6pxeuILMErcaJWTZ9St4ReKPV1bC7kBIgUDvoWCgF2mKH0pTTaeKfMFhkNKyOjVMCgX3NEOr2Q/o0ajIbA8kF0r67/PlqtK6SrA74rGYIxfS4MkdWlGT6KpqcsMfZH35NIsRaRb62/RVPllBU7iBAACHzUztiHsJBQO9TJN9UJpqgXAadDIGKTUbQgRvbFyVodWWA3o0KhJECFn9wWyOyMfqgtZcA2X3+sjrJ5iskIZNgxCleZIjeOtOgmAf3bStsO/yKyoaXcHljhyLAoHeR8FADGh+L5Tm2vAOZgKktGwIUvgFNzjn4C214PUHw1ylOGZKKVlgGUVgUUju4aoCde8PgQAmEkyAOOhEiNn99ZkY6ZKiajgUwk6C/DQrDLQE3OdEEggAgUCAtpv2LgoGYkTze6A0h9lXgLFADkGE+/+53xNoeCSH/6RtZzAHkguN+ieDcc6hVe2Buv/HiIMXIbcE4oBxUQlcSGg7CRgC2wopp6NvkVsDgXCfqWlWE0wGWi3qbRQMxJDqc4fV6TCAQUrNgGCMrMEL1zTw+grwlpqIxglMiYGlF4KlZkcvuXDn6oiDF5aSCWnoFLAIf3eks1B2EhhEAfm0k6BP8SsqmiIIBFKtJpgpEIgJCgZiTPW6oDrDLw4Ubh2CY3FXI7Ta/fo0PLKkQsjuDybqXzuc+71Qdq4GbwnzMksbgwnS0CkQUrP1mRgBEFqDItpJ0LdEkiwIAKkWE8yUPxIzFAzEAdXjhOpqDPv4cEsXH4sr/sBuA29Lz3fucVIShKwBYNbUyMc6Btc0qPs3Q6uKdLcBgzhgDIS8wbRUrRPaSZCcPD4ZLWFWFgSoFXE8oGAgTqjuZqju5rCPFyx2iNbgux12h3MO3nQYvOFQROO0Yak5YBkFYEz/a/Rq7QGoe9ZHvJohZBZBHDSByhhHiHYSJB/OOVw+OeymQwBgNxthpQ6EMUfBQJzgnEN1N0PzhP+pXDBZIdrTdfmUy32uQOVCJfxlv3ZGC4TsgWBhFk06Hs3VBGXnSsAb2fZDZs+ANHwG1SOIAO0kSC6cc7R4/fCG2YYYAGxmA2wmes7FAwoG4gjnHKqrEVoEb2zMYIaUmqHLJ3GuqYGGR85wkxyPnpgAllkEZs/UfUmeK34ou9eBN0TWvplZUiCNmAlmoqS2cNBOguTBOUeT2we/Ev6qnNVkgN1MgUC8oGAgznDOoToboPnC7yXAJCOk1Czdts9pznrw2nJ9Gh7ZHGCZ/XRfkuecQ6vYDvXAtsgGMlpgGDkTzKJ/rkNfRzsJkoOmcTS5vZCDzA3pitVogM1soGAwjlAwEIcCKwRN0CKoz89ECVJqNpioT+EOLvug1ZRFXg0QAERjoCZBFDoLag1VUHatiazksmSENHwGhBT92zb3ZbSToO9TNQ2NLi9ULfy3DYtRgt1spEAgzlAwEKc459A8LRElFUIQYUjNAougWuGxc+KNleCNVbqMxxx5YI58/S8beF1Qdq4Cj2CHBgQR0rCpEBx5us2rrzvU6IIS5JsE7SRIPIoaCAS0CN4yKBCIXxQMxLlI6xCACa3VCvV74eVeZ6ByoR4Nj0y2QMOjCKspHourKtR9PwS2SoaLMYiDJkLM7qffxPooTeM42Bj8qlG23QwL7SRIGH5FRZPbG1EBUNo1EN8oGEgAms8DpSXM0sUAAtUKM8NugdwVrirgdeWRffpuwwSwrH4Q7Pouy3POoR3eB7VsY0RljMUBYyHmD9FvYn2QV1ZQ3RJ8ZchChxUilYROCJEWEwKojkAioGAgQWiyL9DcKJI3tZQMiDpmynPOwZ114HUH9UkutGeAZRaDCfo2KNFa6gJljP2esMcQCodBLB5Fy5vdCCV5UBQYCh2RV80k0efxy2gJ8u/aFYZAiWHqNRD/KBhIIJriD7Q/juCNV7Q5IFr0Tdzjfi+0mn0Rvdm2k0yB5EKTvm8W3O+Fsn0FuCv8Sy5CzgCIJSdEpYBSoqtp8cAjB7fNzGIQkZ1CfSHiGeccbp8MVwTFhBgDHFZqQ5woKBhIMFxVIDfVAlr4hT4ESwpEa6qun3I518DrD4E3V+syHksvAEvL1XeOqgxlxyrwpvDnyNILIA2ZrNsujb6iotEVdIY5JQ/GN845nF4/PBEUExIYg8NmhkRFpRIGBQMJiGsqlKZa8AgS+PSsVng07m6GVlsGqOG/kLQzpwQaHkk6Jj9qGtTda6HVHQx7DJaSBWn4NF3nlchUjaMihOTBnBQzdaaLU5xzNLt98EVQTEgSBKTZTJQTkmAoGEhQXNOgtNSBy+En9jDRACk1U/8CQKocyOL3RLAtso0gBgICqyPysVpxzqGWbYJWtSfsMZg1DdKIGdQGGaFVHgSAIocNgkC5F/FGj2JCBlFAms0MgXJrEg4FAwmMcw6lpR48kmv1jEFK0XenAdCaXNhcA95QEVHSYxuWkg2WUahbVUVdKhaarDCMmAlmibxjZCJr8vjRFGSSmSQwFFDyYNzxKyqa3b6IagiYDCJSLSZKsk1QFAwkOD36GQCAaE2FYEnR/7KB3x1oeCQH/8mxWwYzhJyBun4aVw/vhbr3h/AHkEyQRsyAYE/XbU6JprrFA2+QyYNUeTC+cM7h8StwRtB+GKBiQn0BBQN9gC7VCgEwoxmSPUO3T99tuKaB1x8Eb6mNfDDGwDKKwFKydHvh0eoqAiWMw92lIUqQhk2DkJajy3wSCeccFY3uoD9ROqxGpFJzmrigcY4Wjw++IAO57tjMBliN1Gcg0VEw0IeoHifUSIsACVKgQJFOJYyPxl2N0Gr3A1pkLz4AAGsahKz+uuU7aE3VUHasDD/xkQmQhkyCkFmky3wShaJpONQYfFOtnBQLzAbaiRFriqqhyR1ZjwGAign1JRQM9DGazw2lJdKWwwxiSrquBYracMUfaHgUQROmdqIhkFyoU4dBzdUIpXQ5EHZSJoM0bAqEjEJd5pMI3H4FtaEkD6bbKLksxrx+BS0eHyJ54adiQn0PBQN9kOb3BsoXR/inFcx2iLY0/fMIOAdvOgzecEiX8VhaLlh6vi7FgLjXCXnb8vC7MzIB0vDpEBy5Ec8lETS6fWj2BrfFldoWx5Ye9QMAKibUV1Ew0EfpUa0QAJhkDGw/1LlEMABwnyvQ8EiJLHkJAGC0BioXGiJPTuN+L5TS5eDupvAGEERII2ZCSM2KeC7xrqrZDb8S3GPMZpSQScmDMaFqGprdvoi2DQJUTKgvo2CgD+OqGqhFEOmbrSAEth/q3FkQCBRQ4nUHwJ2RXtpAoOFRZnGgx0GEqxlckaHsWAneXBPeAKIEaeRJfXqXgcY5DjYEv4KSbjUhxUzXl3ubHh0HASom1NdRMNDH6bX1EAj0NRDMtqhkDWvOevDacn0aHtnSA0FBhMmFXFOh7FoDXh/m5QzJCGnUbAhWfXIa4k2onQrzUi0w0tJyVG3cuBGffPIJNE0D5xyyqsGvqDCbzTj3vIUoKi4+7vGqqmLRG6+jqqoSFrMF556/EIVFRTAZRKRYTJTv0YdRMJAkVK8LqjP8Jj1tAmWMHVFp1sNlX6DhkS/47PRuSUYI2QPAzJE1ZeKcQ937Q+ByRjgMZhhGz454HvEolHwBgQGFjugEkiSgqakJBQUFsFgsMBg6rsC43W4U9+uPr5avPO4Y9/7x/+HZfz+JrKwsuN1uDCwZhBWrVsNilOhv18fRek+SEM02SI4cIMJr/5rPDaWxBlyP3gPHYAYThPxhYGl5kQ+m+KFV7oTWUIlI4l3GGMSSEyAUDg9vANkLedt34HoEOHEmlPr1JkmkN5MoKy8vh9vtxscff4zKysoO/z344IPYsb30uMevW7sGT/3rcdx///2orKzE/fffjx3bS2E1UQ2BZEDBQBIRJCMMjtyIk+y4KkNuPAxNj5bFx2CMQcgogJA3BBAjv77MGyuhVe6MKG+CMQap3yiIA8aFN4DPHQgI/DpUYYwTnHP4gkwcBAKlaknvueeee5CWltb+380334xRo8d0e3+fz4f/++11mDRpEn72s59h+/btvThbEg8oGEgyTBACRYUirafPOZTmOiiupog+eXeHWVIgFI4A9GhQ5HNBqygFd0V2mUTMHxx+QOB1BnYoyDrsnIgDoQQCAGCmXIGo4pzDdVRJYa/Xi+bm5vb/ps2YidcW/bfb4x996G8o27cPL774Im688UY0NYW5k4YkLAoGkhBjDJItDVJqZmDTcAQ0TwuUxsPQovAmx0Qp0Isgs1/E84SmQqveB61mP3gEFRDF/MEQi0eFdSx3N0HZvjyi1tPxIpRLBIwFagyQ6FBUDQ0uL7zykUt38+bNw+uvv47HHnsMs2bNwtdffoFXXny+y+M3b9qERx/+O/7f//t/2LFjBxYvXtxLMyfxhJ6hSUwwWgKXDSJcjueqAqWpOiqrBIwxCKlZEAqGAzo0KOLOOmiHtkd0DV8oHAahYGiY52+Asn0luKpDSeYYCrYxEUD5AtHCOYfbJ6Pe6YFyVP2AsrIybN26Ffv27cOQIUPw7bff4i9/+Qse/ttfO+UNyLKM3/32OowbNw7XXXcdbrjhht7+MUicoGAgyTFRguTIhqBD6eHAKkE1ND2KCB2DGS0QCoaBperQDEj2QTu0A1rT4bCCF8YYxH6jIeSWhHV63lwDZecqcC3ybZSxwDmHP4SVAbpEoL+21YCjuw327z8A9pQUXHzxxbjpppvwj3/8A/Pnz8dtt92G22+/HTk5OXjr9dc6jPPCM09je+k2vPjii7jzzjshyzLS0tLab/d6vViwYAFaWlp67WcjsUHBAAFjAkR7OkSbI+KxuCpDaYzWKoEAIbMIQu4gQIi0JjoHr6+AVrUbXAl92Z4xBnHgeAjZ/cI7e2MV1N1rwHWoq9Db/IoWUl17Sh7UD+ccLp+/02oAANjsdnz53Qq8+d/3saPsIEr3luNnP78Mr732GgwGA6ZOnYqdO3eAc466ulo0NzVh2ZdLce6552Lo0KEoKirC9ddfj5tuuglFRUWYPHky/vSnP+Gjjz7CBx98EKOfmPQW6jJBALS+uVnsYJIBSnNdUMV/DlVVYcOmzdhffhAGg4Sz556OgrzAtkDN0wLu90JMSYcg6duyllnTIBSNgFazH/BE1rYZ3hZoFaWBhkfWtJ7vf/Q8GIM4aAK4qoLXV4R8aq2uAhA2QBw0IaGW0b2h5AsAMFK+gC4UVUOzx9cpCGiz8YcNuPZXVyAnNwdnn3seHI50rFuzCrm5gT4ZjY2NSHWk49yzzsCaVUfqDUyfPh2LFy/GoEGD2r9nNpvhcDgwZMgQMMbg84XbvIskCio6RDrhmgqlufsyxrv27MOFv7wKpTt2AgAsFgs0TUO/okJsXrms0xubaE2FYEmJTsOj5prWN+LIH8YsNRssvRAsxHKrXNOg7FgB3ng4rPMKeYMgDhiXMAFBdYsn6JwBsyQiJzXyXI9k1pYb4PIdfwXrD7fdgqWffoKRI0fi66+/ht/vx5AhQ/DKK6+goKAAJSUl+OWVv8JLzz+Hf/7zn9i5cyeeeOIJpKWlddo9sGrVKqxduxY33HBD+3g5OTpcoiNxi0J20gkTREhp2RC6qZq36L3FqKmrx/vvv99e6OTFF1/Erj174fF03kuvupuhNFVDC2M5/rjzZAxCWg6EgmGADn0TeHNNILkwxPoJTBAgDZ0KlhJeYyKtag/UA1vDOra3cc7hCyV5kC4RRERRNTQ4vT0GAgAgy344HA689957cLvdcLlc2LlzJ0RRxIIFC5Cbl4dTTz0NQGC3QXFxMcxmM2pra+HxeODxeLB27dpO427ZsoUCgSRAlwlIlxhjkOwOqJKxtYzxkU/efr8fkiRh//79eO+993Ddddf1OB5XZCiNh6OySsBMVggFw8HrK8BbaiMbTPZCO7QdLKMILCUr6HkyUYI0fDqUbd+FVc9Aq9gBVZQghlvpsJf4Qs0XoOTBsAS7GnC0U08/E6//5xWkpaVh8ODBSE1NRUVFBSoqKjB4yBB89NHHePe/7yA3NxeFhYX417/+hQsuuACSJEGSAm8FI0aMQGpqKmbNmgXOOaZPn54wK1YkMnSZgPRIU2SoLfXt++PXbvgBZ11wCbw+H2RZxkcffYSmpiZceumlaNi/E1br8ZeFmWSAZM8Ak/TvYMddDdBqy4EIagm0s6ZByOofUsMjLvuhbPsG3B1eLoNYciLE3IFhHdsbQulHwAAUpVM/glDJqooWtx9KGLtNyvbtxTdff4Xdu3bB5XIhIzMTp5x6Ks46/VSYjEacc845OHjwIGbOnIknnngCO3bswNChHbfJ7t27F5999hlMJhMWLFiAzMxMvX40EscoGCBB4ZxDdTdD8wS2GKmqisrD1Rg0bnLIwUAb0ZoGwWLXP5dA8UOrKQO8zsgHEw2BhkchVGzkfi/krd+EeX4GacQMCI7cMI6NvqomN/zdJLAdyySJyKV8gaAFdgrIcIewGtATi1GC3Wxsf469/PLLuP766yHLMu666y7cfffdup2LJDbKGSBBaa9a6MgBEw0QRRGSGNkSsOpugtJUE9bWvuNhkhFC3hCw9PzIB1NlaFW7oNVXBL1VkhnNMIycBRjDqd3AoexcHfbKQjSpGg86EAAAC+ULBE1WVdQ7PboFAoLA4LCZkWIxdQi2L7/8cjQ3N8PtdlMgQDqgYICERJCMkBw5kfc2aMUVP+TGw1A9LbrWJWCMQXDkQ8gfCuiwtZE3HYZ2aAe4HNwWK2aywjByZniJjaoMefv34HJ8NTYKpQQxAJgpGOgR5xxOrx8NTi9UTZ/Hv8UoIdNugbGbfA1Jkjq1OCaEggESsiO9DcLLnu+K6moK7DgI8s02WMxsh1A4AsyWHvlgfje0ilJoLXVBBS7MkgJp5KzwghGfO1C2WI/chxApqoaqJjca3T74FLX9Z/XIwbetFhijfgQ9kBV9VwPEblYDCAkGPVtJWL7//ns8/Vznxif/euZ5rN+4KawxuSJDaaoJ1DhQg3/j6QkTxEDDo6z+AIvwIc818Nr94DVlQb1RC9Y0SCNmAiEkIbafylkPdfe64wYe0Uj5EQUGWdXQ7JVxuNmDikYXap1eePwhlCA2UD+C7mgaR7PHhwaXvqsBGcdZDSCkJ5RASEJWWlqKkSNHIj098Gl70aJFaG5uxtVXXw1N09DS0oKdG1aiuLAgovMIlhSIlpSQiwAdD5d90Gr2ARE0KmonGSFkDwQz23q8q9ZcC6V0eVi7HITC4ZD6de6UqNYeAGQfxPzBIY/Zk6pmN/whtik+WobNBLuJlqKP1rZd0O2TdSiRFSAKDKkWEwwUBJAI0coACdmWLVsABLqj1dfX4/TTT8cFF1yA+vp6bN68GZqmtVcnjITmaYHcUAXV69LtEzAzmCDkDwNL0yFbX/FDq9wBraGyx/kJqVmQhk0NqxWzVrEdas3+9n9zzqGUb4G6aw20puqQxwtGpCWEKXnwCM45vH4FdS0euHQMBKxGAzLsFgoEiC6o6BAJ2ahRgU+pJSUlnZaCNU2DIAgYPlyn4jlcg+psgOZxQrSlQTCaIx6SMQaWUQhuSQ1sQVQju2bLGyvBvS2BLYjHyQ8QHHkQB54Ade+GkM+h7lkPZrKC2RxQdq0Fb6gMnNtZD8657kvyBlEEEN6lGoEBssohMP3nlWj8igqn199tP4Fw0GoAiQa6TEDC8u233+L777/v8rY5c+ZgypTJUF3N0PTY638UZjRDsjlCKgR0PFxVoNXuB9xNPd+5J4IIIatfj8mKyv7N0A6FsXIiGcEMZvBjmjMZTpgb1KWKUPgUFYebQyvLfCzGAr0JLEYJZoMIScfLPfFOUTW4vP6Qd2D0xGoywGYyJH2QRfRHwQCJKk32QWmp16ci4FEEix2iJVWXfALOOXhLLXj9QUCHpwNLyQyUMxa6/uTGOYeycxV4/aGIzwUA4pDJELOKdRmrjcY5Dja4dBvPLInITjH3+TcxjXO4vH54/PolwAK0GkCij4IBEnWca1FZJQATAr0OzPqUvOV+D7TqfYAe+/sNpkByoanrwkNcVaBs/TasPgbHEvIGQRo4PuJxjnWo0QVFh2x3oyggJ9UCoQ8HApxzePwKXD6/HvFkB7QaQHoDBQOk12h+LxRng+6rBEyUINocuuQTcE0Db6gAb67RY2ZgGQVgqTldvpBzvwfy5q+BELskdjqLPR2GMadENEZXap1euCP8hGsQBeSkWCAKffONjHPenheg1zbBNpIgIMVqbM3fICS6KBggvSpqqwQAmMEMyZamSwMk7m6CVrMf0HRY7rWkQsjuDyZ2npfmaoKydRkQSV0FxmCYvKDbyxLhavL40eTxh328KDDkplr6bK6ArKpwevyQdUwObGMzGWCl1QDSiygYIDHBFRmKqykqJXcFsx2iNfJ8Aq7IrQ2PWnSYlBQICKxpnW7SGqqgbO86GTNY0uiTIaTo213O41dQ4wzv7yOwQCDQF6sQqpoGl1eGN4SKjMGSRAEpFloNIL2PggESU5rfC9XVqGvFQQAAYxAtrfkEEQQFnHPw5urWZD8dkgtTcwKXDo6phKhW7YG6b2PY44r9x0AsGNrzHUOgaBoONYZenIkxIDel71XD044qGqQ3gTHYzUaYqHIjiREKBkjMcc6heV1Q3c0A13nJlbHASoHFHtEyOve5A5UL9eidYLQEahIYj7T35ZxD2bIM3Fkf1pBCZiGkoVMjn9tROOc42OgKKSGOAchOsfSpJkVaa9Egt0+GpvPLJQNgNRtgNdIlARJbFAyQuME1Dao7OvkEAINgtgXKG4e5BMs1FbzuILizTofpMLCMYrCUTEDToO5dD632QPjjGS0wTpgX+byOUdXkDqltcbbdDIuxb9Qy0zQOt1+Gxy/rvkMACPQTsJmMEPpociVJLBQMkLjD1dZ8An90WvgKJhtEa0rYhYs0ZwN4Xbk+uyLMKdBqDoK7wlsROJphwrwOqw16CGVHQabNBFsf6EegahrcPln3WgFtjJIIu9kIqQ/mU5DE1TdCeNKnMNEAQ2pWaz5BE3iE5YKPpflc0HwuCCYLBEsKhBBbDAv2dHCTNZBc6IuwMI+3BcxqA5fdQITBD3c16R4MBJsAmG5N/EBAUQNBQDQSA4HAVkG7xdjncilI30ArAySucc6h+VxQXVHIJ2jFjGaIlhQIBlPIc+ONVeCNlRHPgXMO7moCd4ZfhEjsNxpi4bCI53I0l09Gnev4eRLpViNSzKEFVPFEVlS4fDL8OpcObiMwBpvZALNBorwAErdoZYDENcYYRLMdgtEK1dMCzaPDNr9jcL8Xit8LZjAFcgoMpqBetBljYOn54JaUwCqBEv6efMYYmN0BbjRDa6oJq+4AdzWGff7u9LQy4EjQQKCtWJDbJ0elTkAba2u9gL5cfZH0DbQyQBIKV5XWfILIqvYdD5MMgb4HxuBr6XNVAa87oEt5Yc418KZacG+IlyAsKTCOPyPi8x/teD0KHBYjUi2JFQhwzuGTA0GAokUvCDAbJNjMBoh9tOAS6XsoGCAJSZN9UJ2NuucTdCBKgcsHJmtQQQHnPNBSuO6ALpc0uN8HraEypOZJhsnnhb1bojsVDS6ox8whzWJEWgIFArx1e6DLL0PTuWzw0QxiIC+AigaRREPBAElYgXwCN1RXU9TyCQAAghgICoJsiMRlL7TqMsAfesGers6tOZuC7pUgjZkDwZ4R+XmPcrjZ06EVbyIFAhrn8LTuDNC7RsDRRCFQNMgoUdEgkpgoGCAJj3MNmscJ1eOMblDABIgWe2CloIdtiZxr4A2V4E2H9Tm3JQ1a/SHwpurj3k0sORFi7kB9ztmq3uWF0xfIYUg1G+CwhpZoGQlN41A1LeTWvaqmweNX4PHJOtSN7B5jgM1khMVIyYEksVEwQPqM9kqGnhbdOyMeixnMEM22HvMKuKc50PBIj8sZZjtgTYdWtbu1PHJnwbYz1vx+uPftg9zSAu4LJD4ykxGGlBRYBw6EYDzyyb/Z40ejx49UswFpFmOvvelxztHo8oIxBoet546UnHMoaiAIiNb2wDaMAVajARZKDiR9BAUDpM9pv3zgaYmsG2AwmBCobGi2dtmVEAgUUdJqywF3U+TnE0QIWf0BJkA9tANaTXnH6aRkwjD65E6H+WpqULvsGzi370DL1m1w798PdJdAJwiw9u+PlFEjYR8+DLYZM8Ed6XD0ciDQ5Pa1b/fLSrF2W6mvrVywxy/r3kb4WAJjsJoMtBJA+hwKBkifxTkH93uhupujm2jYiklGCGY7BJOl0xsF5xy8pRa8/mBICYHdnislCyyjCPC5oB4sPVLKWJRgmHQuGGPgqoqG1Wtw6L33Uf/9CoBzMEEAV4NbNWGiCK5pAGPImDEdBQvPR/qUybonKB6Lc44Wj7/Dp3ub2QCbqWOegqyq8PgU+GQlqpcCgEBOgM1EjYRI30XBAOnzOOfgsi8QFERQCyBojEEwWSGYbZ2qG3K/B1r1PkCP1s0Gc6DhkckKzd0E9UApeH0FpPFnoubr77DvyX/DX1sLiCIQZADQrdYxjFlZGPib65Bz1tyovSk6vf5OnQFFgSHDHqiu6JUVePwKlCjWB2hjEAVYTQZKDCR9HgUDJKlosg+quwVcjzfjIDDJEAgKjNb2Vspc08DrK8Bbgtsh0COjFcgdBFEywL1nB3Y/8k80rv8hcGFb76d365iOyZMw9A93wFyQr+vwbp8Mp7frgM1kEOGX1aivAgCB/gFtQQAhyYCCAZKUNMUPzd0CLYrFizpigV4IZhuYFLj2zl2N0Gr3h5fsaAqMwxV/e38EZ0UdNv/hfmiqGvlKQE9EEYIkYuBvf4OCC3+iy6dmj09GSzeBQG8xGUTYTNREiCQfCgZIUuOqDNXdAs2nQ02AIDFRCqwWmKyApgZ2G3iDLLNsSYOQWQhmOJJdz2UvtLoKwNOEA+99ivK3P4rSzLuWd+45GPL728Ck8Kube/wyWjyxCwQsRglWE1UMJMmLggFCECgnrHqc0LwuoFcWogMEowXMbAVcjUBPDY8saRByS7r8FM45h3Z4L7i7Cat+dSs0d+9cBgEAMIbMk2ZhxAN/gRBGQOD1K2j2HL8ZUjQwABaTAVajodudCoQkCwqDCUHg07pkd8CQkQfBkhK4Nt4LNL8HanMdVA7wjGJwo7XbUETILOx2OZ4xBiGjEIwBAy5eEL0Jd4Vz1H37HXbcfW/QOxXa+OTeDwQEFqgWmJlqhd1spECAEFAwQEgHTBAh2dJgSM+HaE0DhF5KINNUaLIPmskOzZ4NzWQHF6QjgYHJ1uHSQFeY0QyYbMiYOCbq0+2Ec9R88SUOvPpa0If4ZRVN7t4LBESBIcViRGaKhToJEnIMCgYI6QITBIjWFBjS8yClZkEwWnrx5AzcaIVmy4BmywQHA5OC6wXAJANEU+z6BpQ98xycO3b0eD+/oqKxly5lGEQBqVYTMuwWWIwG2iJISBcoGCDkOBhjEIxmSKmZMGTkQ7Sl9diXQFeCGAgOgqyPwBUZqi+GGfmMofSuu6H5uv/ELysqmlzRDQTaygVn2C1It1tgNlDFQEKOh4IBQoLEWrsXSo5cSGnZgd0AiP4bDJeMgM/VY20E7vcCPhfq122O+py6parwHDiA/c+/0OXNsqqi0eWNWoqmQRSQajEhK8UKu4W2CBISLHqmEBIixhgEgwlSSkZgtcDuAJO67kugB260gwPQ6irQ3eYfzjm0+gpwDpS99UHU5hIUzlHx1ttQnM4O345WIMAQ2BrYvgpAfQMICRkFA4REgAkCRLMdBkcuJEcOBLNN/50IggDNaAU8TYHtg8esEHC/F9rhva11Bpb07rbCbmiyjKoPP27/t6yoaHR6dS2IKAkCUixGZKVakWIx0SoAIRGgOgOE6Kyta6LmdenbC8HTAkH2BGINkw1MMoArcuASAgcOvLcEB975uMdhegVjMOXkYPL7/4XCEZUVga6aFxFCwtOLmVCEJAfGGESzDaLZFqhw6HVB87oBHlljnYate7Drb//AgIsXIGPiGIgmI1SfH/XrNqPsrQ/iYkWgHefwHT6M6u9XQhh3QlRyBLx+BVbaHUCILmhlgJBe0N5O2dtzImB39r/4BqoWfxhyYZ9YYZKI/AsvRP/f/gaqxqFqGhRNa/9aj1ceh81MzYQI0QGtDBDSCxhjYCYLBJMFXFUClxF8HnBV7vngVs7tO3ULBH5obsLvtm/r9vbxKal4fMSoiM7BFRXOLVthkER0lV6p8UBQoGocqnokSAh8P7hIwetXKBggRAcUDBDSy5goQbSmQrSmgisyNL+nx8CAaxqcu3brNofR9hS8N35Cp+9/39iAf5TtxXm5ebqcx7ljB7iqgomd37AFxiCIIgwicGy0wDkP7KA4KkDQNN4eKLT92ycr0LiRqgkSEiEKBgiJISYZIEqGHgMDb2UNuF+/ZESDICDT2DH5rszjxtMH9uPnBYWYk5Gpy3k0vx/usjLYBg0K6TjGGBgAQWTH3SVAVzkJ0QftxSEkTrDWoMCQnguDIxeiNRVMDHxk9tU2RPXcLYqCu3btwLiUVPyqsFjXsb2HeujGGAHGGCUQEqIDWhkgJA4du2IArTRq59I4x317dkEAw12DBuv+5nq80sSEkPhAwQAhcY5JBiDIhLpwPHewHFudLXhm1BjYotB3QVMU3cckhOiLggFCEgAzRKfc8Vd1tVhUeQgPDh2BInN0OjOKJlNUxiWE6IdyBghJAKLVqvuYu1wu/G3fHlxT3B+THQ7dx28TjbkTQvRFKwOEJAD7kMG6jtcoy7hr1w6MT0nF6ZlZqDtmp4LIGBw6rUbYBus7d0KI/igYICQBGDMzYcjIgFxfr8t4qxobUOX3ocrvw8KN6zvdnmc0YdH4EyM+jyEzE8bMjIjHIYREFwUDhCSI1DGjUffdckCLrMcBAMzNzsHc7BwdZnUcgoDUMaOjew5CiC4oZ4CQBJEycmSspxCylJEjYj0FQkgQKBggJEFkn3qKLqsCvUbTAnMmhMQ9CgYISRCW4iKkT5sKdFHnP+6IItKnT4OlqCjWMyGEBIGCAUISSOHFPwUSoYWxqqLwop/GehaEkCBRMEBIAkmfPBnmokIgnuvxMwZzUSHSJ0+K9UwIIUGiYICQBMIEAYNvuRmI5259nGPwrbeACfTyQkiioGcrIQkmY/o05J2/AIjHN1tBQN755yFj2tRYz4QQEoI4fDUhhPRk0I03wJSTE18BgSDAlJuLQTfdEOuZEEJCFEevJISQYIlWK0b85d5Au+F4yB9gDIwxjLjvXoiW6DQ8IoREDwUDhCSo1DFjMPLBBwLBQCwDgtbzj/zbX6niICEJioIBQhJY5kmzMPKv94OJYmwuGQgCmChi5IP3I3PWzN4/PyFEF4zzeE5LJoQEo3HDD9h6y21Qfb7eq0MgihBNJoz6x0NwnHBC75yTEBIVFAwQ0kf4amqw628Pof675YGl+2g9tVvHzjxpFgbffitM2dnROQ8hpNdQMEBIH8I5R+1XX2PX3x6C0tKify8DQYCUkoIhd9yO7FPm6Ds2ISRmKBggpA+Sm5px6L/vovLd9+Cvqwv0Mwj38kHrscbMTORfsBAFF14AQ2qqvhMmhMQUBQOE9GFcVVG/chUq31+M+u9XBC4dMAYmCODdBAdMFME1rf2+GTOmo2Dh+UifOiWQqEgI6XMoGCAkSageD1y7d8O5YyecO3aipXQ7lOYmaD4/AEAwGSGlpiFlxHDYhw2FfdhQ2AYPproBhCQBCgYIIYSQJEd1BgghhJAkR8EAIYQQkuQoGCCEEEKSHAUDhBBCSJKjYIAQQghJchQMEEIIIUmOggFCCCEkyVEwQAghhCQ5CgYIIYSQJEfBACGEEJLkKBgghBBCkhwFA4QQQkiSo2CAEEIISXIUDBBCCCFJjoIBQgghJMlJsZ7A0YwnXAlBMoIJIpggQjQc+ZoJwpHbRBGCZITQfpvY6TYmiBAEBiYwiKIAdszXgsAgiKz9Pse9jTGIkgBRYBAFBmPr11L7v8Ujt4lH7icddV+xq68Zg8AYRAYYRKH9a0kUIDIE/i0wGATWxdeB2w2C0P61yBgYAwQGMIbW8QEGQBQYBCDwswho/1pggMiO/jowBuMc4BqYpgAdvtYC/2nd38a4Bqjqka81BdBUcE0DFD+4qgKaFvieIoNrauBrWQbavm67b9v9ZP+RYzQVmqyAqxq4pkHzK9DUwDFc1aDJCjT1yNe89WtVVsCPup/qV476WgXXODSVt/679XiNB25TObjKoakaVFlrHZNDldXWY44cp3EOlXP4NQ6V45ivj/134GsNga9Vjtbbjnz9NC+L6fNSL/T8puc3Pb/j9/lNKwOEEEJIkqNggBBCCElyFAwQQgghSY6CAUIIISTJUTBACCGEJDkKBgghhJAkR8EAIYQQkuQoGCCEEEKSHAUDhBBCSJKjYIAQQghJchQMEEIIIUmOggFCCCEkyVEwQAghhCQ5CgYIIYSQJEfBACGEEJLkKBgghBBCkhwFA4QQQkiSo2CAEEIISXIUDBBCCCFJjoIBQgghJMlRMEAIIYQkOQoGCCGEkCRHwQAhhBCS5CgYIIQQQpIcBQOEEEJIsuN9lNfr5XfffTf3er2xnkon8Tw3zml+kYjnufUl8fx7jue5cU7zi0Q8zy1SjHPOYx2QRENzczPS0tLQ1NSE1NTUWE+ng3ieG0Dzi0Q8z60vieffczzPDaD5RSKe5xYpukxACCGEJDkKBgghhJAkR8EAIYQQkuT6bDBgMplw9913w2QyxXoqncTz3ACaXyTieW59STz/nuN5bgDNLxLxPLdI9dkEQkIIIYQEp8+uDBBCCCEkOBQMEEIIIUmOggFCCCEkyfW5YODWW2/FrFmzcOmll8Lv93e4zePx4Oyzz8bs2bNx+umno76+Pq7m1+avf/0rJk6cGPM5KYqCyy+/HLNmzcJNN93Ua/MJdn5tevv3dbTu5hYPj7W+iJ7f+s2Jnt89S6bnd58KBn744QdUVVXhu+++w8iRI/Hf//63w+1LlizB6NGj8c033+CnP/0pXn311biaHwC0tLRgy5YtcTGnDz/8EEVFRfjuu+/gdruxYsWKXptXMPMDev/3FezcYv1Y64vo+a3vnOj5Hf7cYv1Yi4Y+FQysXLkSZ5xxBgBg7ty5nR7cQ4YMgdvtBgA0NjYiOzs7ruYHAI8//jh+85vfxMWcgplvLOcH9P7v62jHm1usH2t9ET2/9Z0TPb+PL9me31KsJ6CnxsZGFBQUAADS0tI6Ld0MGjQIW7ZswejRo8EYw+rVq+Nqfk1NTdi8eTPuuuuuuJhTY2Nje/3truYb6/nF4vcV7Nxi/Vjri+j5re+c6Pkd/txi/ViLhoRcGaiqqsLMmTM7/cc5R3NzM4DAHzIjI6PDca+88gpOPvlkbNmyBffeey/+/Oc/x9X8HnvsMfz2t7+Nypy6k56e3u2cjndbPMwvFr+vox1vbr31WOuL6PmtH3p+hy/Znt8JGQzk5eVh+fLlnf6bN28ePv/8cwDAZ599hhkzZnQ6tu0P6nA40NjYGFfz2717N+6//37MnTsXu3btwoMPPhiV+R1t6tSp3c7peLf1luPNIRa/r2DnBvTOY60voue3fuj5HZ25AX3w+R277snRccstt/CZM2fySy65hPt8Ps4559dccw3nnPOmpiY+b948Pnv2bD5jxgy+Y8eOuJrf0SZMmBCzObXNR5Zlftlll/GZM2fyG264odfmE+z8jtabv6+jdTe3eHis9UX0/I58TvT8Dl4yPb+pHDEhhBCS5BLyMgEhhBBC9EPBACGEEJLkKBgghBBCkhwFA4QQQkiSo2AgCbz88stwOBy6jFVWVgbGGCRJQkVFRYfbKisrIUkSGGMoKyvrcNu7776Lk08+GWlpabDb7Rg7diz+/Oc/txfy0HOOhJDIDRgwAIwxvPXWW51uGzVqFBhjePnllzt8/4cffsCFF16I3NxcmM1mDB06FFdffTV27twJ4Mjrx8aNG3vhJyChoGCAhKWgoAD/+c9/OnzvlVdeQWFhYaf7/r//9/9w0UUXYdKkSViyZAm2bNmCRx55BJs2beoTNb0JiTZZlmNy3uLiYrz00ksdvrdq1SpUVVXBZrN1+P5HH32EqVOnwufz4fXXX0dpaSleffVVpKWl4Y9//GNvTpuEI9Z7G0nPlixZwmfMmMHT0tJ4RkYGnz9/Pt+9ezfnnPOvv/6aA+ANDQ3t9//hhx84AL5v377224/+7+677+acc15fX89/8YtfcIfDwS0WC587dy7fuXPnceeyb98+DoDfddddfMiQIR1uGzZsGP/jH//Yfm7OOV+9ejUHwB977LEux2ub90svvcTT0tJC/t0QkqhUVeUPPvggHzRoEDcajby4uJj/5S9/aX+OLVq0iM+ePZubTCb+4osvclVV+b333ssLCwu50Wjk48aN40uWLGkfz+fz8d/85jc8Ly+Pm0wm3r9/f/7AAw+033733Xfz4uJibjQaeX5+fo+1Bfr378/vuOMObjKZeHl5efv3r776an7DDTfwtLQ0/tJLL3HOOXe5XDwrK4ufd955XY7V9jxv+9l++OGH8H5pJGpoZSABuFwu3HzzzVi7di2+/PJLCIKA888/H5qm9Xjs9OnT8dhjjyE1NRWVlZWorKzErbfeCgC4/PLLsW7dOvzvf//DypUrwTnHvHnzgvoUcu6556KhoQHLly8HACxfvhz19fU455xzOtzv9ddfh91ux/XXX9/lOHRpgCSrP/zhD/jb3/6GP/7xj9i2bRveeOMN5Obmtt/++9//HjfeeCNKS0tx5pln4vHHH8cjjzyChx9+GD/++CPOPPNMnHvuudi1axcA4J///Cf+97//4e2338aOHTvw2muvYcCAAQCA//73v3j00UfxzDPPYNeuXVi8eDHGjBnT4xxzc3Nx5pln4pVXXgEAuN1uLFq0CFdeeWWH+3322Weora3F7bff3uU49DxPALGORkjoqqurOQC+efPmHlcGOO/6U/fOnTs5AP7999+3f6+2tpZbLBb+9ttvd3vuoyP73/3ud/yKK67gnHN+xRVX8P/7v//rdO6zzjqLjx07tsefiVYGSDJpbm7mJpOJP/fcc51ua3uOHbuaVlBQwO+///4O35s0aRK//vrrOeec33DDDfyUU07hmqZ1GvORRx7hQ4cO5X6/P+g59u/fnz/66KN88eLFfNCgQVzTNP7KK6/wE044gXPOO6wM/O1vf+MAeH19/XHHpJWB+EUrAwlgz549uOSSS1BSUoLU1FQMHDgQAFBeXh72mKWlpZAkCVOmTGn/XmZmJoYNG4bS0lIAwFlnnQW73Q673Y5Ro0Z1GuNXv/oV3nnnHVRVVeGdd97p9GkBADjnYIyFPU9C+qLS0lL4fD6ceuqp3d5n4sSJ7V83Nzfj0KFDnerjz5gxo/35evnll2Pjxo0YNmwYbrzxxva6+gBw4YUXwuPxoKSkBFdffTXef/99KIoCAHjggQfan+d2u73T68r8+fPhdDrx7bff4sUXX+z2eU4SGwUDCeCcc85BXV0dnnvuOaxevbq9Xabf74cgBP6ERz8Zg1nm7+7Je/Sb9/PPP4+NGzdi48aN+OSTTzrdd/To0Rg+fDh+9rOfYcSIERg9enSn+wwdOhR79uyJWQIUIfHIYrH0eJ9jE/QAdAqsj36+nnjiidi3bx/uu+8+eDwe/PSnP8VPfvITAIFEwB07duDJJ5+ExWLB9ddfj5NOOgmyLOPaa69tf55v3LixvW1vG0mS8Itf/AJ33303Vq9ejUsvvbTTvIYOHQoA2L59e3C/ABJ3KBiIc3V1dSgtLcVdd92FU089FSNGjEBDQ0P77dnZ2QAC2/raHLttx2g0QlXVDt8bOXIkFEXp0Ie7rq4OO3fuxIgRIwAAhYWFGDx4MAYPHoz+/ft3Ob8rr7wSy5Yt6/LTAgBccsklcDqdeOqpp7q8vU90+yIkREOGDIHFYsGXX34Z1P1TU1NRUFDQnqPTZsWKFe3P17b7XXTRRXjuueewaNEivPvuu+3bdy0WC84991z885//xLJly7By5Ups3rwZGRkZ7c/zwYMHQ5KkTue/8sor8c0332DBggVIT0/vdPsZZ5yBrKws/P3vf+9y/vQ8j3+d/+okrqSnpyMzMxPPPvss8vPzUV5ejjvuuKP99sGDB6O4uBj33HMP/vKXv2DXrl145JFHOowxYMAAOJ1OfPnllxg3bhysViuGDBmCBQsW4Oqrr8YzzzyDlJQU3HHHHSgsLMSCBQuCnt/VV1+NCy+8sNsEoSlTpuD222/HLbfcgoqKCpx//vkoKCjA7t278fTTT2PmzJm46aabwvrdEJKozGYzfv/73+P222+H0WjEjBkzUFNTg61bt3Z76eC2227D3XffjUGDBmH8+PF46aWXsHHjRrz++usAgEcffRT5+fkYP348BEHAO++8g7y8PDgcDrz88stQVRVTpkyB1WrFq6++CovF0m2Qf6wRI0agtrYWVqu1y9ttNhuef/55XHjhhTj33HNx4403YvDgwaitrcXbb7+N8vLyLusVkDgSy4QFEpylS5fyESNGcJPJxMeOHcuXLVvGAfD333+fc8758uXL+ZgxY7jZbOazZs3i77zzTockPs45v/baa3lmZmaXWwvT0tK4xWLhZ555ZtBbC7tLADo2gbDNokWL+EknncRTUlK4zWbjY8eO5X/+859payFJWqqq8r/85S+8f//+3GAw8H79+vEHHnig2+fY0VsLDQZDp62Fzz77LB8/fjy32Ww8NTWVn3rqqXzDhg2cc87ff/99PmXKFJ6amsptNhufOnUq/+KLL447v7YEwu4cnUDYZu3atXzhwoU8Ozubm0wmPnjwYH7NNdfwXbt2cc4pgTCeUQtjQgghJMlRzgAh5P+3WwcCAAAAAIL8rQe5KALmZAAA5mQAAOZkAADmZAAA5mQAAOZkAADmZAAA5mQAAOZkAADmZAAA5gLa1GK+L0MTawAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACKYklEQVR4nOzdd3gc1dUH4N+dme0radW7i9y7wRUXjKnGBgwmBAIJAQIJkAAJEEL4SCAhEBIgQAKEXkI1BDChGDDFYONu4y53ybJlyepl+5T7/bGWbFmStWVWu6s97/PwIGt37lxJW87eOfccxjnnIIQQQkjSEmI9AUIIIYTEFgUDhBBCSJKjYIAQQghJchQMEEIIIUmOggFCCCEkyVEwQAghhCQ5CgYIIYSQJEfBACGEEJLkKBgghBBCkhwFA4QQQkiSo2CAEEIISXIUDBBCCCFJjoIBQgghJMlRMEAIIYQkOQoGCCGEkCRHwQAhhBCS5CgYIIQQQpIcBQOEEEJIkqNggBBCCElyFAwQQgghSY6CAUIIISTJUTBACCGEJDkKBgghhJAkR8EAIYQQkuSkWE+AENK7uKLAW3kAnv37oDqd4LIfAMAMRoh2Oyz9S2AuLAaT6OWBkGRBz3ZC+jiuaXBu24Smlcvg3rMTvgMV4KoSuJEJAGNH7sgBrgW+LUowFfeDdfAwOE6ZCfuocWACLSQS0lcxzjmP9SQIIfqTm5vQuHQJ6j7/GHLtYUAUAVUNbZAjxxiyc5F19jykn3YWDGmOqMyXEBI7FAwQ0sdoPi+q33kdtR+9d+TTvk5PccYAxpB93gLkXXIFBJNZn3EJITFHwQAhfYhz6yZU/PsfkOtq9QsCjscYDFnZ6HfDrbCPHhedcxBCehUFA4T0AZrfj8qX/o2GLz8N5AEcufYfNUfOkXHGHBRefQMEozG65yOERBUFA4QkONXlxL6/3Qv3zu3RWw3oDmOwDhuJkjv/BNFq691zE0J0Q8EAIQlMdTmx59474D2wH9CivBrQHUGAubg/Bt/7d4g2e2zmQAiJCO0VIiRBqV4P9t53V2wDAQDQNHgP7Mfe++6C6vXEbh6EkLBRMEBIgjr0yrPwlO+NbSDQRtPgKd+LQ688F+uZEELCQMEAIQmoZf3qQLJgPAQCbTQNDV8uRsuGNbGeCSEkRBQMEJJglJYmVDz1j6OVA+MJY6h48hEoLc2xngkhJAQUDBCSYCpffhaqy9n7OweCwTlUlxOVrzwT65kQQkJAwQAhCcRfX4um75bG1+WB42kampYvhb++NtYzIYQEiYIBQhJI/ecfx+flgeMxhvoln8R6FoSQIFEwQEiC0Pz+QDAQz6sCbTQN9Z99BM3vj/VMCCFBoGCAkATRvOa7QK5AglBdTjSvWRHraRBCgkDBACEJwlW6NdBSOFGIIlw7tsZ6FoSQIFAwQEiCcO0qBVRVl7E45/jFN2txw7drO922cE8FZrz/BarcEVYTVNXAnAkhcY+CAUISgCb74T1Qodt4jDH8adJobGloxn/3Hh230uXG41t24rcnDUe+1RLxebwV+6HJlDdASLyjYICQBODdXwZo+qwKtMmzWnDH+BH4x+adqHS5wTnHvWu3YnJOJuYPKNLnJJoamDshJK5JsZ4AIaRncmNDVMa9YEAhvqo8jD+u3YIzC/Owp8WJd8+erus55KZGXccjhOiPVgYISQCa3xe1sf84YRT2tbjw0MZS/GHCKGSYTbqOz2l7ISFxj4IBQhJBFEsPZ5hNuLikCANT7Ti9MFf38Xki1EUgJMlRMEBIAmAGY1THFxmDGKXKhoIxunMnhESOggFCEoBkT4n1FMIm2uyxngIhpAcUDBCSACwDSmI9hbAl8twJSRYUDBCSAESbHYZs/a/nR5sxJ5dWBghJABQMEJIgbMNGAEJ0nrI3jBqCt3XeUghBgHXoSH3HJIREBQUDhCQI65DhUd1VoDvOYR0yLNazIIQEgYIBQhKEY9qsqK0MRAMTBKRPnxXraRBCgpA4ryyEJDlDmgPp008DhAToXCiIcMyYDSnVEeuZEEKCQMEAIQkka+583XsURIWmIuvcC2I9C0JIkCgYICSBWEuGBHIH4vlygSDAOmQ4rCVDYj0TQkiQ4vgVhRDSlaLrfhXrKfSo6LqbYj0FQkgIKBggJMFYBgxC3qVXxnoa3cq77KdUaIiQBEPBACEJKGf+D2AdPCy+LhccuTyQc8HFsZ4JISREcfRKQggJFhNE9Lv5DogWa3wEBIIA0WJFv5vvAEuE3Q6EkA7i4FWEEBIOU14BSn53NyRbjAMCQYBgMmPQPX+DKTc/dvMghISNggFCEhRX/GD712Hg+afCVpQXm4BAECDa7Bh0798oT4CQBMY4T6T6poSQNr61n0At33rkXwzNFXWoWbsV0LTemQBjMOUVYOBd99GKACEJjoIBQhKQUr4V/rWfdP4+N+DAp8uguH3RCwoEARAYci+4BDkX/wiCwRid8xBCeg1dJiAkwWgtdfBvWNLlbRKTMfC8mcgYPyrwDT0vHRwZyzJqLArvexSWdAFaXaV+4xNCYoZWBghJIFzxw/vlq+At9T3eV7PloGbDLrRu/j7wRh7uSoEggFmssJ93CUxTZkK1pgAATJu+gGn3GkiFg2GedBaknOLwxieExBwFA4QkEN/axVDLtwR9f2ZPBxs6DY1r16Fx2deQaw8fuYEBTOjc50AQAa4FWiWbrbDMPAOWU88Gz8oNHHMMsakati9ebP+31G84zBPOgJRdGPbPRwiJDQoGCEkQ3eUJ9EQacQqMo2cCAFS3C57yffCU74WnfB9UpxOazwOAQTCZIaY5YBg/CSgugWy29Ti2/eN/QfC0djxf0RCYx8+CmD8Q7LgAghASnygYICQBaC318H7xH0CVQzpOyCqCadZlYEHmDnhkBbWt3qDHN21cAtOetV3eJub2g/mk0yAVD6OggJA4RwmEhMQ5rsjwrfwg5EAARguMU88POhAAALMkQgjhfVspHtHtberhCrg+/Q9a3/0X/Hs2gffWlkdCSMgoGCAkjnHO4V//GXhLXcjHmqacB8GSEtIxjDFYjFLQ91czi6D1cA6toRrurxai9e1H4StdC64qIc2JEBJ9FAwQEseUHauhVmwP+Thp+FSIeQPDOqfVEHwwAABy4fCg7qe11MOz7H20vPkwvJuXg8u+cKZHCIkCyhkgJE4plbvgX7Eo5ONCzRM4HucclU0uaEG+Mog15bB9+0bI52FGM4wjJsM0aioEuyPk4wkh+gntIwAhpFdoTYfhX/1x6AcaLTBOCS1P4HiMMVgMElz+4Jbz1ax+4AYzmBx84iEAcL8Xvk3fwrd5OQwDR8E0ZjrEnGJKNiQkBugyASFxhnud8C1/L/SEQQCmKfMgWEPLE+iKNYS8AQgClLwImhRxDfK+LXB+8DT821eFPw4hJGwUDBASR7iqwPfdIvDj9u4HQxo+BWIkb8rHMBvE42sMnZCcPySyEzIBlmnnwThyamTjEELCQpcJCIkTnHP4130KreFQyMcKmYUwjJqp21zaLhW4g7xUoOQNAmcCGA99+yAzmmE983IYigaHfCwhRB+0MkBInFB2hrdzgFnsMJ0yP6I8ga5YDGLwdzaaoWaF3ptASM2E/aIbKRAgJMYoGCAkDiiVuyFv+Tb0A0UJpukLwCx23edkCXGLoVIQ+qUC7vcGeiQQQmKKnoWExJjWVAP/6o/COtY4eR6E9DydZxQgCAwmKfjVATl/CELdp8y9Lrg+feVIfwRCSKxQMEBIDHGvC77vwts5YBg1A1LRsCjM6iiLMfhggNvToaVmhXwOrakW7i/eAD++gyIhpNdQMEBIjHBVgW/FInB3S8jHisXDIY04JQqz6ijkSwVh7ipQKvfCs/wDUA00QmKDggFCYqCt54BWXxnysUJ6HoyTzu2V4jwGUYAUQueicPIG2vh3rINv87KwjyeEhI+CAUJiQNm5Bur+bSEfxyx2GKdfBCYaojCrroVSgEjNKIRmsoZ9Lu/qz+Av2xr28YSQ8FAwQEgvUw7thrzlm9APPLJzINROhJEK6VIBY1DyItkmyOH+6h0otQcjGIMQEioKBgjpRVpzbfg7BybNjdrOgROeVxIQwpWCwKUCyQjb2T+GceSU0E+oynB9+io0Z1PoxxJCwkJdCwnpJdzrgvfLV8NKGDSMnA7DqOlRmFVw6p3eoBsXQZFRIPkgZeSBaypcn/4HysHdIZ9TyMhDygU/BzOaQz6WEBIaWhkgpBdEtHOgaBikkdOiMKvgWUJpXCQZoKRkAwCYIMJ25o8gpOeGfE6toRrOz14FV/whH0sICQ0FA4REGeca/GsXR7BzYG7M2/qaQylNDMArH11FYEYz7HOuBLPYQj6vWlUG15I3wNUgVyUIIWGhYICQKGrbQqgeKA35WGY+snNA6r2dA90RGIM5hGqEPqVjASEhJR22c64ExNB7oykHdsH91UIqSkRIFFEwQEiUcM4hb/wSatmW0A8WJRinX9TrOwdOJJTVAZ+iQTsuHUnKKYZ19iVhnVsu2wb3t++Dh9EVkRDSMwoGCIkCzjnkLd9A2bMhrOONk+ZCzMjXeVaRCfVSgU/u/EneWDIG5klnh3V+edcGeL77iKoUEhIFFAwQEgVK6QooO9eEdaw0chqk4uE6zyhyBjG0LYbeLoIBADCNnwXj0JPDmoN/+yp4134e1rGEkO5RMECIzuSdqyFv+y6sY8WiYTCMjN0WwhNhLLQuhl6l62CAMQbLzAsh5Q8Max6+jd/A+/3SsI4lhHSNggFCdCTv2QB5cxjVBQEI6blxsXPgRMwhVCOUVQ2q1vU1fiZKsJ79YwgZ4RVR8q79HL6tK8I6lhDSGQUDhOhEKdsM+fsvwjo2sHNgQVzsHDiR0LcYdr8DQDBZYJ97NYS00NseA4BnxUfw7VgX1rGEkI4oGCBEB0rFdvjXfRrewSYrTLMujaudA92RBAYxhMSBEwUDACBYU2Cfdw2Y3RHWfDzL3od/7+awjiWEHEXBACERUip3wb/m4/AONphhPvWHEFIz9Z1UlLAQ6w14FbXH7H/B7oB93s/AwgmGOIf7q7chV+wI/VhCSDsKBgiJgFq9D/6V/wPC2e4mGWE69RIIjhz9JxZFoVwqUDUORev5dyOmZcI+72owkyX0CXENriVvQD60N/RjCSEAKBggJGxqTQV83y0CwimEIxpgmvmDuKslEAw98waOJWbkwTb3asBgCn1SqgLXp69COVwR+rGEEAoGCAmHWl8J3/J3AS2MmvmCCNP0BRCzivSfWC8QBQEGMfiXjmP7FPREyi6Cfc6VgBhGIqXih2vxy1DqDoV+LCFJjoIBQkKkNVbD9+07gCqHfjATYJp2IcTc/vpPrBeF1qdAC6lqoJQ/ELZzfgwIoa1AAAD3e+H65CWoTTUhH0tIMqNggJAQaM218H77NhBWW10G49TzIeYP0n1evS2USwUa51CDyBs4lqFoCKxn/ghgob9Eca8Lzo9fhNraGPKxhCQrCgYICZLWWg/vN28Dfm9Yxxsnz4VUNEznWcWGKdQ+Bd1UIzwR44CRsJ72AwChF2Hirha4PnoBmrM55GMJSUYUDBASBM3VBN83CwGfK6zjjRPOgdR/lM6zih2BsZDyBnxKeN0GjUPGwzJzfljHaq0NaP3gabpkQEgQKBggpAdacx18X78J7nGGdbxh/BmQSsbpPKvYM0mhBAOhrwy0n2fEZJinnhvWsdzVDOcHz0KpORD2+QlJBhQMEHICat1BeL9+HdzTGtbxhjGnwjBkgs6zig/GEJIIZVWDFkHrYfPYmTCdfHpYx3KfG86PXoB8cHfY5yekr6NggJBuKJW74fvmbUD2hXW8NOIUGIZP1XlW8SOUDoYA4I9gdQAAzBPOgGlMmB0dFT9ci1+Bf8+miOZASF9FwQAhXVD2bYR/xaLw6ggAkIZOgmHUDH0nFWckgSGENgVh5w20YYzBPHUujMMnhTcA1+D+aiF1OySkCxQMEHIMzjnkbd/Bv/5zAOEta0uDxsMw9rS4bkWsB8ZYSKsDkeQNHHtOy4z5MAwOPwfDs+IjeNZ8HlLtA0L6OgoGCDmCcw3yhs8hb/8u7DHE/qNhOOmsPh8ItAklb8AfRNOiYDBBgPW0H0DqPyLsMXwbl8Kz7H1wLfIAhZC+gIIBQgBwVYZ/xQdQ9oV/TVksHg7jpDlJEwgAoeUNaBxBNS0KBhNE2M64DFLRkLDH8O9YB/cXb4IrYVSSJKSPoWCAJD3u98L37TtQD4WfbS4WDIZx8jywMCrmJTJjCNsLAX0uFbRhkgG2c34CQ8mYsMeQy7fDufglaD6PbvMiJBEl1ysXIcfR3K3wfv0GtLqDYY8hFg+HceoFYGHU0k90AmMwhlR8SN9leSZKsJ5xKYyjwt+1oVaVw/nhc9DcLTrOjJDEQsEASVpaSx18X70G3lIX9hjSkAkwTjkfTJR0nFliCS1vILIdBV1hTIBl2vkwTzwz7DG0hmo4P3gGanO9jjMjJHFQMECSklp3EN6v3gi7mBAAGMbOgmHc6UmVI9CVUCoRRlp8qDuMMZhPPh2WGfOBMP8eWmsjnP97Gkpdpc6zIyT+UTBAko5yqK2YUHgNh8AEGCfPg2HYlKQPBIDQiw/JUVgdaGMaOSXQ7TDMSzbc44Lzw+chV+7VeWaExDcKBkhSUfZtgv+7RWEXE4JogGnGgj7VdChSosAghBAU+dXoBQMAYBw4Gra5VwEGU3gDyD64Fr8M/74tus6LkHhGwQBJCpxzyNtXwL/+M4RbTAhGC0ynXQYxr0TXuSU6xlhIuwpkNfp7+w0Fg2A//zowiy28ATQV7i/egm/7an0nRkicYpzKcJE+LlBM6Aso+zaGPQazpcE08xIIKRn6TawPaXL70OINbr++URSQl2aN8owC1OZ6uD55CVprQ9hjmMbOgHnyOUm5W4QkDwoGSJ/GZR/8az6GemhP2GMwRw7MM38AZrbrOLO+xeWTUe8KrqETA1CUbuu1fAvN3Qrn4peh1VeFPYaUPxDWM38EwUKPAdI3UTBA+iytuRa+FYvAnY1hjyHk9INp2kVg4V5/ThKyqqGq2R30/fPTrDCEUJ8gUtzvhfOzV6FWlYU9BrOlwnbm5ZBy++k4M0LiAwUDpE9S9m8L5AeoYSYKoq288NykriEQLM45Dja6gs7GyLSZYDMZojqn43FFhvurhZDLt4c/iCDCMu08GEdMpp0kpE+hYID0KVxVIG/6CsrejRGNIw2ZQDUEQlTd7A56p0Cq2QCHtfdXW7imwrP8A/h3rItoHOPQk2GZMR9M6t2AhpBooWCA9BmauwX+lR9Aawj/2jAAGMbMgjSMPvmFqt7lhcsX3EqM2SAiJ8US5Rl1jXMO77ol8H2/NKJxxKwCWM+6AmJKuj4TIySGKBggfYJ6uBy+VR8C/ggazjAG48RzIQ0Yrd/EkkirV0ajO7gkQpExFKaHue1PJ76tK+BZ8VFEYzCTBdbTL4WheKhOsyIkNigYIAmNcw5lxyrIW5dFNpBogOmU+RDzqYZAuHyyisOtwQdjhQ4bRCG2qy/+PZvgXvpfQIuk9gGDeeKZMJ00K+m6VpK+g4IBkrC43wvfmo+gVe2LbCCjBaaZP4CYka/PxJKUdiSJMFg5KWaYDbFPzpQP7oZryRuAHNyqRnek/iNgm30JmNGs08wI6T0UDJCEpDUehm/lInBXc0TjMGsaTKdSMSG9HGpyQdGCe0lxWIxItRijPKPgqE11cC15DVpjTUTjCKmZsJ19BcSMPJ1mRkjvoGCAxI3W1lasW7cO69evx/79+2EymXDllVdi7NixHe6nlG2Gf8MSQFNRXtOAD1ZvxbrdFah3ulGYkYZThg/AFbMmwNTDp04hdwBaB03F4/9+Fs3NzcjIyMDPf/5zFBYWRvPH7NNqWz3wyMEtuVuNErLs8fMpmss+uL95D3KkPQkkA6ynLoBx8Dh9JkZIL6BggMSFlStXYs6cOWhpaYHNZkNJSQmampogSRL27t0Lxhi4qsD//RdQyzYDAF75ai1++cy7MJvNmDJlCnJzc1FRUYE1a9ZgQLYD7/3+GgzOz+ryfNLIaRCHT8Xs2adj69atKC4uRmVlJWbPno133nmnN3/0PqXZ40ezxx/UfXuzLHGwOOfwbfkO3tWfAjy8hkqcc5TXNWE7d8CZ1R95+fmYO3cuDAbahkjiV+wv2BEC4N1330VGRgZWrlyJ4cOHQxAEvPjii/jZz34Gzjm4uxm+FR+ANx1uP+atZd/j7LPPxnvvvQev14sDBw5g8ODBqKiowIIFC3DdEwvx1V9u7LhF0GCGaco8iPmD8OSTT2L58uX4+uuvMWvWLNx4441YtWpVDH76viOUqoKypoFzHldbOBljMI+dASmrAK4v3wT3BJ8DAQCL1pfi9jc+Q70zkEgpCAI0TcNdd92F+++/PxpTJkQXlPpK4oIoivB4PHjiiSdwyimnYNmyo7sD1Kq98C75T4dAAAAYA5qamnDRRRchKysL48ePR//+/aEoCh5++GGs2V2BLfuP1hxgjlyYz7oSYv4glJeX41e/+hWuv/56KIqC1tbWXvtZ+7JQggHOgSDTC3qdVFCClAW/gphTHNJxj3yyAuOnTMPixYtRW1sLVVVx8cUXY92K5VGaKSH6oGCAxIUrr7wS2dnZ+PTTT7FmzRr4/UeXmn3L3wVkb6djLj91Ar5fvw61e7bhyV9cjCV/vh6ulmYsXLgQkydPBgDsrwn0JRAHjoX59Csg2BzgnOO6665D//79ce+99+LnP/856GqZPqQQtwoqQVYsjAXBlgb7+dfBOHJK0Mf4ZAUpKSnYuHEjbrnllvbvq7UH4d34DXhEWxgJiR66TEDiwqhRo7BlyxaUlZWhpCS4vf4/Pm0CfnTqSRCFQEz78brt8MoKxo8fjx07dgAACrLSYZw4B9LAo0mIL774Ir744gt89tlneOihh7BvX4RbE0k7xhgkgQW9o0DWNJgQv62BmSjBOmM+pJxiuJct6rHXxUUTR+Dvixbhgw8WwWAw4vXXXw/cwDm8az6DXLYN1tN+ADE9J/qTJyQEtDJA4kqon9DbAoFVO8tx1eNv4KKLLsJFF12Eu+++G0OLcjH1Z3d0CAQqKytx88034+qrr0ZWVhYeffRRXedPACmESwXxvDJwLOPQk2Gffz2EHkoP//6CU1Hx+K148IdndXm7WnsQre89Ae+mb8G1xPjZSXKgYIDEDc3VDP+aj0M+bt2eA7jwgRcxaeo0vPbaa7jpppuwbNkyPPPSqzBkFXS47+233460tDT8/e9/x7XXXovBgwdDEI4+Db7//ntceOGF0OiFOmySEEISYYIEAwAgZRXAftEvIfVQejjFbDpxUqSqwLv6Uzg/fBZqU63OsyQkPHSZgMQc5xzKvo2QNy2FVn/4hPetb3XhcFMr8tJTkWG3YsPeg7jgL89j7MkT8dFHH+EPf/gD/v3vf+P555/HaWcGPp15PB7s27cPaWlpWLp0KX7xi1/A4/Hg2muvbR/XYrHgsssuQ25uLu69916sXbsWU6YEf62YHGUQg88bCPZyQrwQzFbYzrkS3g1fwrfh64jGUg9XoPXdf8E86WyYRk8DCyGIIkRvFAyQmNKcTfCvWwy1pgL/+Xodvtq8u9N9bnn+fZw1fhgkQcDlj7wGWVVhMkj48+Vz8Nf/fokRY8dj8eLFeOCBB/CPf/wDALBmzRpwzjF37lyMHTsW9fX17eOtWbMGqampHc7BOYeiKO2Ji/G03S3RhLIyoKjxt72wJ0wQYJl4FqTsIri+fgfwd05uDZqqwLvqE8jl22Cd9QOIaZn6TZSQEFDRIRITnHMoezZA3vItoMr4rrQMZ9/zNCZOnAjGGJ566ilUVVXhvvvug8/nw5YtW3DqqBI0CjY888wzuOqqq7Bz506MGzcO3377Lb766is88MADHc6xdu1aXHXVVXj55ZexfPlyPPnkk3jzzTeRn58Pp9MJAJBlGV6vF83Nzbjzzjvx73//G5deeineeOONDpcPSPAUVcOhZnfQ9y9wWEMKIOKJ2lwP15LXoTVUAwBkVcVnm/fgv2u2Y/HWffD5fPjBD36ALd8txS/Pmozzxg9Fhr2bQkuiAZYp58A4aio1PCK9jlYGSK/TnI3wr10Mre5g+/fKaxoAAIsXL26v1DZkyBAsWbIE+/btw8knn4z1ew5gxmmnY9KkSXC5AsVgpk6dCs45Zs+ejdmzZ3c4j8PhwKpVq2C1WjF9+nQ8+eSTmDhxItauXdt+n7fffhuXXnopWlpa4Pf7cdJJJ+Gtt96K9q+gTwu1E6GiagkbDIhpmUiZfz3cy96HvGcTnlyyBvd98C1MJhOs1sCbvslkwoFmN25/6wu8sWILPr3jJ10PpsrwrPgI/rKtgVWCVOqXQXpPYj4DSULiXIO8ay28n7/UIRAAgClD+0NgDNnZ2XA4HB3+O/nkk2E2SHB6/Zg5cyZeffVVHDx4EFOGDcAzzzzT6f5t/zHG4PP5MH36dOzZswfvvPMOrrjiio7nnTIFoiiiuLgYL7zwAmbMmNGbv5I+qW17YbBkNbEXJ5nBCOvsH8Iy7TxsOViD2bNnw+12o7ExUOPi9ddfh9vtxkMPPYQtB06cEwMAalU5Wv/7T/i2rQQPsyQyIaGiywSkV2it9fCv/RRafWW39ymvacCGvQc7fZ8xoF9WOk696wn84he/wGeffYbxhRl4+38f45sNW9tfdI83YcIEnHnmmSgpKQFjDNu3b8fevXthNndsjlNRUYHVq1cjIyMDp512GkQxfve9J4pQGhalmA1It5qiPKPece8dt+HBfz6J7OzsTrc5nU4MTDPjq7uuDno8qaAEllkXQ+xhSyMhkaJggEQV5xqUXesgb10OaCcu2HIiqqbhuifexuL129G/MB+LPl6MkqHDezzu0UcfxV//+leYTCY8/fTTmDdvXthzIMFrdPvQ6pWDuq/FICI7xRLlGfUOt9uN1/7zCsrXLINacwDA0ZdXs9GAiyeNRL/MtNAGNRhhmXIujCMmJ1SiJUksFAyQqNFa6uFf+wm0hqqe7xwEZrbDOOFsiAWDdRmPRI/TK6PB7QvqvgZRQH6cdS/Ug1JVBvc370JradBlPKlwMKyzFkCwO3QZj5BjUTBAdMc1DcqutZC3LQd0qsUuDhgN47jTwYzmnu9MYs4rK6hpDW7LHWNAcbo9yjOKDS774VnzGfzbVuozoMEEyylzYRw2kVYJiK4oGCC60pprAzsFGqt1GY9Z7DBOmAMxP7h+BSQ+yKqGqhC2Fxal2yD04Tc3+dA+eL55F1pr1/ktoRJz+8NyyjxIOUW6jEcIBQNEF9zngbz9Oyh7NwI6ZUCLA8fCOG42mKFvJJclE41zHGx0BX3//DRrSO2PExGXffCs/hT+7at1G9Mw5CRYJp8NwRZiHgIhx6FggESEq0qgeFDpSkAO7hpxT5g1FcYJ50DMG6jLeCQ2DjY6EWy14ZwUM8yG5Ch7Ilfugfub98CdTfoMKBlgHncqTONmgklGfcYkSYeCARIWzjnUyl2QN38D7mrSbVypZDwMY2fRakAfUNXsDroRUabNBJvJEOUZxQ/u98KzajH8O9b2fOcgMVsaLJPPgWHwWKpgSEJGwQAJmdpQBXnT150KB0WCWdNgnDgHYm5/3cYksVXT6oE3yFoDaRYj0izJ96lWPrg7sErgatZtTDG7CJZp50HK7afbmKTvo2CABE1zt0De8g3UilJdx5UGnRRYDaAlzj6l3uWFyxdcbQm7yYAMW3KuBnG/F56VH8O/c72u4xoGjYVl8jkQqGARCQIFA6RHXPZB3rEayq51ERUOOh6zOQKrATn0CaYvanL70JKEhYfCJVfshPvb98HdLfoNKkowjZ0B83i69EZOjIIB0i2uaVDLN8O/dTngC36bWDCkwRNgGEMJT31ZKIWHjKKAvD5YeChUms8Dz8qPIe/aoOu4zJoC86SzYRx6EuUTkC5RMEC6pFaXwb/pa/CWOl3HZXYHjBPPhZhdrOu4JP54/ApqncEVHhIYQ1G6LcozShzy/h2BVQJPq67jilkFgfoE+bRTh3REwQDpQGuug3/z19Cqy3QfWxo6EYZRM8Gk5MkaT2Z+RUV1iyfo+xen26iq3jE0rxveNZ/Bv2Mdju1xoAfDwFEwTzmX2iSTdhQMEAAA97ogb1sOZd9m6P3Cwxy5MJ50JsSsQl3HJfFN1Tgqm4IvPFSQZoXUxwsPhUOtr4Jn5cdQDu3Td2BBhGnMdJhPOo3KfBMKBpIdV2Uou9ZD3rEKUPy6js0sdhhGnwqx/yj6xJeE+JEqhMG+wOSmWGAyUPvornDOoewvhWfVYmgt9bqOzSw2mMbNgmnEJEoyTGIUDCQprvihlG2BsnON7tclIRpgGD4F0tBJdEkgyR1qckEJsgxhlt0MqzE5qhCGi6sKfNtWwbvhK8AfXD5GsJjJAtPoaTCOOgWCmZI5kw0FA0mG+z2B8sG7NwD+4K/nBkscOAbGUTPBLH2zCx0JzeEWN3xKcFUI060mpJgpeAyG5nHCu/5L+EvXAHq/hBuMMI2YAtPY6RCsqfqOTeIWBQNJQnO3Qtm1Fsq+TYAa3N7vUAg5/WEcNxuCI0f3sUniqm31wENVCKNGbaiGZ9ViKAd36z+4KME4bAJMY2dSomESoGCgj9Na6iHvXAN1/zbdugkei6VkBIKAvBLKCyCdhFKFMMVsQLqVrlmHinMO5cAueFZ+DK1Z363AAAAmwDBoLMzjZ0HMyNV/fBIXKBjoo9SGKig7VkOt3BWdExgtMIyaAalkLJhASV+ka41uH1qDrEJoM0nItFFWe7i4psK/fTW8678E9+l/CRAADANGwjT+NEg5RVEZn8QOBQN9COccWs1+yDtWQaupiM5JBBHSkAkwjDiFMo9Jj5o9fjR7gtulQiWJ9aF53fBu+BL+baujshoIAFLhYJhOmgUpn1YE+woKBvoAzjWoB3dB3rEavOlw1M4jFg+HYcypEGyOqJ2D9C2tXhmNQZYkNkkiclMpGNCL2lQTyCeo2Bm1c4g5xTCfdBqkfsOozHGCo2AggXFVgbp/G+Sdq8GdTVE7j5BRAMP42RAzqWgQCY3br6AuyJLEBlFAPvUn0J18cHcgn6CxJmrnEDLyYB5/KgwlY+iyYYKiYCABcdkHZd9GKLvWgXuDr/AWKmZNhWHsLIhFw2kpkITFKyuoaQ0uGBAFhkIH9SeIBq6p8O9YC+/aL8B1bjp2LCElA6bxp8I49GQwkWpGJBIKBmKAqwrUqr2QioaFdpzXBXn3eih7vwfk4JZewyIZYRhxCqQhE+gJTSISSn8CBqA4g+pTRJPm88C/bRV8W78D90YvKGDWVJhGTIJx2AQIdkfUzkP006eCAcXphGv3Hvjr66D5/OCaBsFohGi1wFpSAnNBQcw/4XLO4V/1P6i1B2A574Yel9Q459DqK6Hs2wT1wA5AC27PdliMZhgGT4A0+GQwE127JZFTVA2HmoN/06FmRb2Dy/7ASsHmZeCuliieiUEqHgLj8Ekw9B+ecJcQOOeQa6rhPbAfms8DzS+DCQKY0QCDIwPm/iUQrX1jNSuhgwFfTS1qP/8cLdu3w7m9FL7DJ06eEywW2IcNRcrw4UifNg2OCSeDCb2X9MI5h7zxKyh71gMAjNMuhFQ4tOv7yj4o+7dB2btR9zbCx2OWFEjDJkEaOBZMoqIvRD+axnEwhGZFhQ4rxF58TiY7rirw794I36ZvoDXr2/PgeMxig3HoBBiHT4SYlhXVc4WLaxpc2zej5fs18OzdDW/5Xmi+E1/mMmRmwzJoKKyDh8Ex/TQYMuLzZ+tJwgUDXFXRuHo1qt5bhIYVK4C2TxFa8FtomCiCqypM+XkoWLAAOXPnwpiRHqUZHyXvWAV5y7ft/xbyS2Ce8YMO99EaqyHv3Qi1ojQqlQKPxVIyYRg+BWK/EQkXsZPEwDnHgcbgg4H8NCsM1Lmw13FNg1y2Fd6N30Crr4r6+cT8gTANnwjDwNFx0b9EaW5C4zdLUP/FJ5BrDwOiCKghrMIKQntZ6JSTJiHjzHlIGXdyQr2uJlQwULf0G+x99FH4a2pD/2N1hzFAEJA//wIMuPEGSLboLPko5VvgX7v4+JPDfN71YAYT1IpSKPs2QWusjsr5jyVk5EMaPhViwWBakiVRd7DRiSB7FVHnwhhrq2bo/f5rqIejVKvkGMxohmHIeJiGT4KYmR/18x1PdbtQ/eZLaPjq08CbuR5vh4IAaBoMGVnIv+p6pE2aFvmYvSAhggF/fT32PPQI6r/5JvDmHY0pCwIMDgeG3Pk7ZM6coevQyoEd8K/6EOiimauQkR9oSapz++CuCHkDYRg+BUJWMQUBpNeE0rkw226GhToXxhznHGp1ObzfL41O34MuiNmFMA6fBOOgsWDG6FeibFm3CpXP/xNKa0tIK8tBO/JelTppGgquuREGR3z3d4j7YODw4k+x9+FHoPp8+qwEnMiRP17W6adj8O9+C0Nq5B271EN74FuxKGqVwHrGIBYPCwQBDqorTnpfdbMbfjW4x3+mzQSbKfbLxuQopbYSvo1LIZdtR1cfaHQnGWAcNBbG4ZMg5uj/wUV1tqLyhSfQvGpZ9D5cHksQIBhNKLjmRqTPPCO654pA3AYDnHNUPP8CKl58qfdPLgiwFBdjzD8fhyknO+xh1MPl8C1/N7o7ALojiJAGjIE0bBIEe/TzIQjpTihtjDNsJtgpGIhLalMNfBu/hX/3xl77cCOk5wRWC4aMh2CO/BKu3FCHsvv/D77qyuisBvQg5+LLkXPxFXG5MhuXwQDnHPseexyH3n4ndpMQRRgzMjDu2adhzssL+XC17iB8374T9STATiQjpMEnwTBkApiZ9mwT/blcLlRWViI9PR1ZWVk9vrDVtHrQ7HTjcNUhcM6RV1AIk6nrvhbpVhNSzBQMxDOttRHezcvg37EOUIPrSBkxQYRhwEgYh0+CVFAS1i4wf+1h7L33dihNTbH5gHZE5pz5yL/y53EXEMRl2m75U/+ObSAAAKoKf0MDNt/wS/hqa0M7tKEKvmX/7d1AwGSDYcwsWM67AcYxsygQILrSNA3PPPMMpk6dipSUFAwbNgw5OTnIz8/HQw89BL+/65yXzz77DHNOm4mR/fIwc8JYnDpxHIYX5eCayy/Bju3bOt2fH7cM7fP5cP7558NgMECSJMyaNQseT+ciRj6fD2eeeSYkSer0X2ZmJv7zn//o84sgEFLSYZ1+AVJ/9FuYxs8CeqNhmaZC3rcFrk9eRMvrf4P7u/9BqSoDD/LTvdxQj31//h2UpsaYBgIAUP/pBzj81ssxnUNX4m5loPbLr7Dj7j/EehpHiSJSx4zB2Cf/FVQ0qjXVwLv0LUAOrgRrpJjNAWnYZEgDRlO1QBI1b775Jn784x9j/vz5mDt3LoYOHYq6ujosWbIEL7zwAubNm4f33nuv06edAQMGoKioCD/+8Y8xZMgQMMawY8cO/Otf/8L+igos+uwrDB85qv3+DosRqZajtS7++Mc/4sEHH8Tf//53MMbw61//Gv/73/9w/vnndzjP559/jnPOOQcPP/ww7PaOgfB7772HqqoqbN68OQq/GaL5PPCXroG/dC201oZePTezpMBQMgrGkjEQc/t3+RrNNQ377rsT7l2lMQ8EjtXv13chbYq+yeqRiKuVAX9dHXb/9cGjtQPigaqiZePGoFYqtJZ6eL99u1cCASGnP4ynzId5zrUwDBpPgQCJqvLycmRmZuKFF16Aqqp44403sG3bNjz44IN48803sWjRInz77bedjmtoaMCkSZOgqireffddvPfeexg5ciQ2bNiA4qIiPPq3Bzrc/9hPJps2bcJ9992Hu+66Cz/72c9w9dVXAwC83s7Pr7bvXXnllSgqKoLb7W7/T5ZlCFTIKGoEkwXm8bOQctmtsM37GQyDxgK9tL+ee1rh37YKzg+f63bFoP7TD+DesTWuAgGA4eCzj0Nu7N3g6UTi5h2Ec45d9z8A1euJfnZnGMqefAqOKZNhGziwy9s1ZyN83ywEotgEBEYLpAGjIZWMg5AS39tUSN+Sm5uLpqYm9O/fH62trRg3bhy2bNmC0tJSvPHGGxgwYAD+97//YdasWR2OO+200/DYY4/BYDBg8NBhOFRZiWeffRb79+/HT37yEzzyj390uH/bQqUsy7j66qsxZswY/OIXv8AjjzyCW2+9Nai5vvLKK3jnnaPBe1FRER5++OEIfwOkJ4wJMBQOgqFwEDSvG/Lu7+HbsTaq3RKP1RYY+Letal8xYPnDUfVGDJLQe8SheT04+MxjGPC7P8VF/kDcBAM1nyxG46rVsZ5Gtzjn2HnPn3DSKy91+sNprmb4vlkI7nVG5dxCVhGkknEQi4bRCgCJicsuuwz79++H0WjEtddei9zcXJx33nnYu3cvAMBut8Pn69w865133sGHny7BE//6JyoPVMDr9YAxBkEQUFdXB3tKx+27bZ8DHn74YWzevBmrV6/GHXfcgdQQtvlarVYMHToU1dXVaGlpwfDhw3H66aeH/8OTkAlmK0xjpsM4ehrUmgPw71gH/97NvVJPBQgEBvKezaj58PMYbuvugabBuWkdmpZ9hfRTY7/lMC7eWTjnqHjlld7Z8xkuVYVr9240r98Ax8QJ7d/WnE3wffMWuFvnZh8GE6T+oyCVjIcQp3W8SfKwWq3405/+1P7v//znP/j444/xwgsvYPfu3di+fTtuv/32TseZTCbs2rkD61evxHXXXQe73Y558+Zh3bp1eP7553HJ5T/pcH8OoLS0FHfddRd+97vfoa6uDq+99hpuvPHGoOf68ssvAwisLnz00Ue44YYbsGDBAnz77bdx8QksmTDGIOX2g5TbD5ZT5sG/dzP8O9ZCrT0Y/ZOn5cC7f0X0zxMRhppFb8Ex8/SYPzbj4kJa09p18B44GL+BQBtRROXChe3/1JyN8C19U9dAgKVkwDhxTmBXwElnUiBA4s57772Hn/70p7j22mtxxRVX4KqrrkK/fv1w6aWXdnl/t9sFk8mEGTNm4NRTT8XgwYNx6FBgm6GzteNzR1EVXHPNNRg+fDh++9vf4vrrr8fA4y7NLVq0qNPuBduRMuI//elPkZ6eDrPZjDlz5mDChAl45ZVXsHz5cnz33Xc6/hZIqJjRBNOISUi56EakXHwTjKNOiWqlwdayg72WuxA+Dn9VJVzbNsV6IvERDFQufDvQayDeqSoavlsB76FD0Frr4fv6TXBPq66nYDYHdQ8kcevDDz/EJZdcgssuuwxPPPEELrvsMmzYsAFvvvkmzOauX9jnX3gRJIMRF198Mc466yyMGjUKc+bMwb333otF/30bLufRy2tLv/oKq1atwvPPP4+//OUvKC8vR1lZWYfx3njjjU6rEDNmzMCll14Kp9OJ2267DX/961+xceNG/Pa3v8U555yDgoICfPLJJ/r/QkhYxMx8WKefj9Qf/x7W038IKb/rXKzwT2BA07r1cZY02A1BRN3iRbGeRewvE3irq9G4It6Xco7BGGo+fA9ZBQzwBt+NLVhadRk0dysEa4ruYxMSiU8++QQLFizAggUL8PLLL+PKK6/EokWL8OGHH2LKlCkAgBUrVmDhkdWzSy65BJqmoXTXHny2bCUYY9i9ayd+MPdsfP7555g+fToURcGqFcuxfvUqtLS0YN/unQCAqVOnYvr06Xj00Uc7zIFzjmuvvRZff/01Hn74YZSVlaF///648sorcfbZZ2PkyJGYMmUKGGP4/PPPUVERaLaTlZWF1lZ9A3cSOSYZYBw8HsbB46E218G/cz38O9eDeyLLv1KZCRwMvVI+OVKaitYNa+Cvq4ExKydm04h5nYGaTz/Dzj/9OZZTCJl9+HCMf+pxaM5GcFcTNGcTuLMR3NkEzdkIyJ0TqUJhGD0ThhGn6DRbQiK3detWTJgwAfPmzcObb76Ja6+9Fq+99lr77Xl5eXj55Zdx2WWXITMzE4wx7NmzBwAgCAIYY+g/YCBqDh+Gz+fF2rVrsWnTJvz0pz/F6HHjUVN1CAUFBdi4cSMAYNCgQR3O/+Mf/xi33347xo8fj9raWrS0tMBqtWLYsGHYtWsXXC4XBEGApmnIycmB0WjEwYMH8dBDD+Gaa65BYWEhHnzwQdxyyy299jsj4eGaCrliJ/w71kI5sCusy8cttV40b90RhdlFT9Evf4v0GbNjdv6Yrwy0lpaCSRK4EnlZS5Vz/GrbVmQaDfjL0OHt33cqCn66eSPmZOfguuJ+EZ/HtXcPuMEMMbsYyC7udDv3ezoFCNzdAu5xBiLeHioTKmVbIA2fGvOEEkLavPXWW8jOzsbChQtRVVWFM844A2eccTQD+pFHHsFDDz2EpqYmvP766xBFEXPmzAEALF26FFu3bsXevXuRlpaGCy64ACUlJfjxj3+MWaefiYr9Zbjyyitx//33w2Qy4cILL8SwYcPax37xxRdRW1sLTdOwd+9eTJo0CUVFRThw4ADWrl2LadOmYeXKlfjBD36A6667DsuXL4fP58O0adNw/vnn49Zbb4WqqvjRj37U6783EjomiDAOGAnjgJHQnM3w79kIed8WqHWHgh0ALbv3RTSHt/dU4B8bd2D5gjMhHalR4ZYVzHjvC4zJdOCVM6e233d9TQOu/mo1/jf3VAxIDbN/gijCs3dXcgcDLVu36hIIAIDIGO4aNBg/27IJn9fV4uysQJOhx8vLkCpJuKqwSJfzcFmBe+8+2IcN7fJ2ZrRAzLAAGZ37c3POAcUP7mk9Ehy0tgcJx35PqzsYCDYIiQOSJMHn83W7X9/n86G0tBQAUFJSgueff779toceeghz5szB7Nmz4ff78frrr+Ott95Cc3ML/vTQo7j43LNQUlKCJUuWAADuvPPO9ssOALB8+XJs2LAB/zhSk+Dee+/Ffffdh5KSEtTU1LRXFly5ciVGjRqFMWPGwGKxYM+ePZgxYwa+++47PPbYY8jJid0SLAmPYE+DefwsmMfPgtpSD3nf1h4DA5aeB+7bENF5J+VkwK2o2NbQjHFZgUZv62sbkWk2YVtDMzyKCosUyHNbV9OAHIsp/EAAAFQV7j2xXcmIaTDAFQWu3Xt0HbPYYsHPi/vj8bIynJyahlKnE1/W1+GZ0WNh0LEKWev27d0GAyfCGAMMJjCDCUilnQIkMfz0pz/FkiVL2t+Qj1dYWIgBAwaAc460tDQ89dRT+OMf/4iSkhI88dRTuOWWW6AcCfqzc3Nx+lnn4Fe/uR3lZYFPcLNnz8YVV1yBqdNnYPLkyR3G/v3vf49bb70VTz75JC688EKccsopWL16Na666io8+OCDEEUR69atwwMPPIDHHnsMjY2NAACDwYAzzjgDn3zyCc4999wo/nZIbxBTMyEGERiozAJEmC8wMNWOHIsJ62oa2oOBdTX1mF2Ug7WHG7CprhFT8wKv32trGjApJzPsc7Xxlu8DV1WwGCXTxzQYkJubwWX9m/lcnJeHZY31uH/PbuzzuPHTwiIMsUXe/rINkyT4anqnqhYh8WDgwIE9bs276667sHz5cpx00knw+Xz4zW9+A4fDgYsvuxyHm5xoqKuDwWhAekZm+yWwtmDg3HPPRXl5ORYtXtLp8ti8efMwb9689n+3tLTAaDTivvvuQ01NDf74xz9iwoQJePfdd8E5R2NjI7xeLzIzM7vtjkgSW4fAoLkectlWyHu3QK0/BL+fA6IAqJHtJJiYk4G1NQ342chA/sramgZcNWIgNA6sqWnA1LwsyKqGzfWNuPPkkRH/TFyRobS2wOCITcv5mAYDWhcVy/TAGMOtA0vwk00bUWK14gqdLg8cK1pzJyRR/f73v0dmZiaamppwySWXwOFwBG7ggU/pufmdL5vNPO10PPrUs9i1oxSTTpmGqdOm93ie1NRULFmyBIsXL0ZRURF+8YtftN/GGENGBpXqTiZi2tHAQHM2wf3+2wisDERmYk4mHvq+FIqmwadq2NHYggnZGdA48MaucgDApvomeFUNk3MjXxkAAC73ToXGrsT2MoEavTKRn9TUwCwIqPJ6UevzIb+bPdDh4hFGnYT0NSkpKbjttttCOoYxhgWXHk3sC/YlfObMmZg5c2ZI5yJ9n2B3AEG2Ne7J5JwMeI7kDbT4ZfRPsSHTbMLE7AzctWoT3IqCdTX1yLeaUWS36nLOWL6vxLTokGCKTmGdra2teLu6Cg8MG45RKSn427690HsHpWA2Qd65CmpNOXgv1dsmJBGF9MyjDTQkQsygz/tKvxQbci1mrDncgDU1DZiQE1hxyrKYUGizYmNtI9bWNOi2KgAAgjF2xeZiGgyIOl7Hb+PTVDywdzcuyMnFxDQHflcyGDtcTvyv5rBu5+Ccw5qVCt5QCXXvesjrPoJc+h3Umv0UGBDSSQIUfiF9hmi16dacaFJuBtbV1GNdTQMm5Ry9/DQxOwMrquuwub5Jl+TBNoJFnxWGsM4dszMDkGw2GHP13e7zdEUFOAeu79cfAJBrMuGX/Qbgqf3lqOqiD3pYVBX2omOuS3IO3lQNde86CgwIiQAtDJBIWQaU6HipIBPf1zViZ2MLJh4bDOSk4929B+BTNUzO0SdHxZCZDTFZgwEASB09BtBpy9/GlmYsqq7C7wcNhuWY7Rnn5+ZidEqqfpcLGGAQu6mNQIEBIR3QugDpTZaS0Ld8d2dSTga8qobiFCsyzUd3pkzIyYBLUVFstyLPZon8RIIA69ARkY8TgZiXIz74xpsoe/Ip3SK53pB+0kgM/cmc0A5iAoSMfAg5A8HScqi6IEkaLR4/mjzBBcMWg4jsFB1eXElSK73xJ1Aa62M9jeAxhrwrfobseQtiNoWYVyBMGTkioQIBCAKyp50c+nFcg1ZfCa2+EjBZIeYMgJDdH8wUu2UhQuINBclED9ahI9Gy9rvEeW/hHNZBw3q+XxTF/jLBmDEw5mTHehrB0zSklXTeLx0Snxvqge2QNyyGXPodtIZK8ER50BISIrpMQHpb+ozZiRMIADBkZMF6TD+dWIj5ygATRRT+8IeBSwWxvWLRiWA1Y8Bl85F+8miIJhNUnw+usgMQmH7z5E3VUJqqAYMJQnZ/iDkDwSx23cYnhJBkk3LyJBgysyDX18V6Kj1jDJnnXggmxKYMcfs0Yp0zAABySwtWnz8f3B8/SXbFl8xD0YVzwBgAkw1MMgaSAH0ucCDQqtjZFJVzs9RsCDkDIGQWxvwBQkikmj1+NAeZM2AzSsi061sgjCSn2o/eQ/UbL8Tdh8zjMYMBI556DaI9JabziPllAgAwpKYid+65QIwaNByv+JJ5KL5oDpg1DULRSIgFwyDkDAz8v2gkmCUNoj0dSNVvf+mxeEst1D1rIa/7GErZRmiu5qich5DeEAefN0gSyjjtLDDJEOtpnJggIH3WWTEPBIA4CQYAoP9110KyWoEYJxAJVjOKLpwDWNIg5JaAGTp+SmEGM4TcksDt1lQwSxT/iKoMrXovlM1fQN7yFdTDZeCq/o2dCIkmqkBIYkG0pyDv8qtjPY3uMQbRYkXOxVfEeiYA4igYMGZkYMhdv4/5ks6Ay+aDMQSW6LsJTBhjEDIKwQAIaVkQHDkAi+6vkjsboe7bEFgt2LseWms9feIiCSGUx6lAuwmIjjLPPh+2kWN1q2WjK85R+Itfx6xL4fHi6jeUddos5Mw5J6Z/uPSTRwdyBAwnvm7JjGbAFCinzMw2CFmFgLEXrnVqKrSacihbl0LZ9AXUqt3gMnVQJPFLCyFmpVCA6IkJAopuvC2mNf+7JAhwzDwDaZOmxXom7eIqGACAQbfdClNubszyB0STCUwK7oFz7PUoJkoQM/IhZBdHfZWgDfe0QC3fDHn9J1DKNoL7XL1yXkJCQSsDJJaMmdko/PktsZ7GUYIAQ2Y2Cq66PtYz6SDuggHJbsfYp56AMSMjJgGB6vMFXTqYK52v3zNRglg8HOKgCWDpeXpPr5uJaNCq90L+/jMoe9aBe1p657yEBCGUq1lUdIhEg+OUWci//jexnkYgEHBkoOSevwcaKsWRuAsGAMCcl4dxz/wbptwcQOzdKTZu2BrYPiifuKkR93uB7j6J+z2Auwli4XBIJ50LsXgU0BuVBjmHVrsf8sYlkHeuCmx/JCTGtJBWBqI4EZK0VE0DP2kach98GiwlNTaTOLIiUHLvQzBmxl+hvbioM9Adf2Mjtt12O5ylO3rtnILdhinPPBjYVphb0uUnFc45tMP7AE/PW/6YLR0sqx/ABPCWWmiHy6A1HNKtxWaP53fkQiwcDiE1q1fOR8jxqprdkNXgHu9ZdjOsxpjXQiN9COccTS7v0cegIqPpmYfh27YJ0NRem4elZAgG/O7PkFLTeu2coYjrYAAAuKKg8q2FKH/2WXCNA2qU/nhH3vTTTj4Zw3/7S4iaK7B9MLOwQzIh93uhNVQGFQi0k4wQsgeAmQOVBbnsg1ZXAe1wGbinVdcfozssJRNi4XAwRy4txZJeVdnkghpkFmFOihlmAwUDRD9Orx9uX+dLuv4NK9H4wj8BtZsOtHoQRDCBIfeHVyJr7kVgcVJLpytxHwy08Rw4iF0PPICWjZsCuw30rDstCBAtZgy69TfImDYRojUVvLUOaKkJ3G6ygUmGQI5ABEl6zJEP5shrfzPmnIM7G6AdLodWf6BXolRmTYNQOPyEWycJ0dPBRmfQOwpyUy0wSfH7gkkSi09W0Ow+wW4rtxMNj/4Z8sH9+q7WHnmPsg0fjcJf/BqmvAL9xo6ShAkGgMCbZ/23y1D17ntoWrs2sqBAFAFVhTErC/kXXYi8Cy+EMSMdcmM1uKqASUYIZjvgrAVcTfq9UZvsEHIGdNqxwBUZWv0BaIfLwV29cK3fbIdYOAxCVj+weNyDS/qMigZn0PfNT7PC0Mt5QqRvUjUNDU5PEAmsHHz7RjT852koTQ2Rva8cOdY+5iRknDUPqRNPSZgPXQkVDBzLe+gQqv/3Iao//AhyQ0Pgm21val38IZkkgStK+9fpU6Ygf8GFSJ8ypcPSjdJaD83nOXqcwQTRmgomiNDq9gNuHUoDC2LgTdjWdbEJzdUEraYcWm0FEO2Kg0YLxIKhgQBFpOVZoi/OOQ40Br+aVuCwQqLglESoU55AEEySAOzZjsbPP0Trpg1HLx8c+eDYCWOB/46830hp6UiffTYyZp8DY04v7STTUcIGA8fy19XBuWsXnLt2w7ljJ3y1NdB8PnBVhWAyQ7LZYBs8CPahQ2EfNgyWAf0hSF2/8anuFqjuzlvzmMEEwZICeFqBxoO6VEpk9kywzKJumxFxVYXWUAmtpgy8JcrdtyQjxPwhEPJKgq6zQEhPVI2jsin4YKDIYYNAWwpIhLrLE+hJqsUEszHwwdFbeQDe8r3wlO+Ft6IMqscN7vMBogjBaIQhIwuWgYNhHjAIlgGDYEjPiMJP0nv6RDCgJ83vhXKCN14mGSEYTOBNh8D8nm7vFzSDCUL2QLAeth5yTyvUmnJotfuBaFYcFCUIeYMg5g/usQojIT1RVA2Hmt1B37843ZYwy6okPvllFU3uE28N74rZICHVaorCjBIDBQPH4ZoKuaGq5zuKEgRVBlprdSihysAyCsBSc3p8IeSaBq3+ILTKndEtLsSEQFBQNJxWCkjY/IqK6pbggmYGoDjDHt0JkT4t+DyBjkSBIcNuSepAlIKBLvjrQ6gDwBiY1wnmd0UeFFhSIWT1D6rtJuccvLEKauUO8GgWF5KMEItHQsgdCNZLZZZJ3+GVVdS0BhcMCIyhKD2+qrKRxBFOnkCbDLsFUpInrlIw0AW5uTb05j+cg/mcYLIXLLSmrR0JEoTs/mDW4ApTcM7BW2oDQUFzbfjn7QGzpEIcMBaCIzdq5yB9j9uvoM4Z3JKtQRSQn9YLlTpJn8M5R6vHD68ces2AFIsRFmPPH8D6OgoGuqC4mqB5gt8O1QHXwGQPmN8DFsG+VZaaDZZeGNK2P621IRAUNAZxmSPceTnyIA0YA2aJUUlPklBavX40uoPr9WGSROSmWqI8I9IXuX0ynN7gHmfHSvY8gWNRMNAF1euG6myIbBDOAcUHQfYAqhzeJQSjJVC50BjaC6TmboZWuRNa3YFwztozxiDklkAsGglmoHwC0r0mtw8t3uCyuq1GCVl2SloloemxsFA3KE+gIwoGuqApMpSmw7qNx/weMF9reAEBY2AZRWApWSE/aLnXCfXQLmg1OlfXaiMajuQTlFDhItKlBpcXTl9wS7d2kwEZNvqURoKnqBoanZ6wLsxSnkBHFAx0gXMOub5Sn8EUPwRPc2R5BABgTQskF4ZRGIj7PVAP7Q40V4pGyWNLCqT+YzqUWiYEAGpbPfDIwT3m0ixGpFlopYkER9M4GpyekLpitqE8gc4oGOiG3HQ40IsgAoIlBYLRDF63H/CGmYNwLNEQuGxgSQnrcC77oVXvgVq1JyqVDVlabiDJ0Er5BCSgusUNvxLcqlSGzQS7iV6gSc8i2TlgNkhIsRjpg8txKBjohuJshOYNvymRmJIB8UghIc45eFM1eJM+iX0sLRcsvSDsBzNXZWiHy6Ae2g3IoRfn6GF2EHIHQiweCWagJd9kd6jJBSXILkXUvpgEI5KdA5IgIN1upkCgCxQMdCPSJEIpLRvCcW+G3OuEVlsOKKFnvXZisgYqF0bwhss1FVrtfqiVuyLqxtgl0QCxaDiEvMGUT5DEDjQ4g75ARh0LSTDC3TkgMIZ0uxkivR51iYKBbnBVgdxYHf4ATIDBkdPpGj/XVPC6Cn06EzIBLKsYgj0zomE416DVlEOt2A4oOpc6Ntsg9R8Llp5P0XiS0TjHwVCaFKVZKaGLnFC4OwcAIN1mhoGCzW5RMNANznmgLHEktQJECVJaTqdPxpxzcGcDeP0BXbL8mS0dLKtftw2PgsUVGWrlDmhVe3TffcBSsyEOGAfBFlwxJZL4Qu1LUJRug0ABI+lGJDsH2hoQke5RMHACcksduD+ya+rMYIKU2vW2QC57odWUA/7gXzC7JRkDlw3MkZdz5V4nlP1bwRt02lFxDKFgaCCfIMLAhcQ/n6LiMPUlIDrQNI4GlwdakPknx7KaDLCbaZdKTygYOIHu2hmHSjDbINocXQcEXANvrAJv1qeuAUvPB0vTZ4uf1lwLdf9mcFdT5BM7liUF0uCJgNWBxsZGiKIIh8PR42GqqmL37t04fPgw8vPzMXDgQBgMlH0er0IpRSwJDAUO6ktAOotk54BJEpFqNdElyiDQBboT0Ktbn+Z1QetmayFjAoSMQgh5gwEx8jc23lgFrXo3uA5JikJaNqQxp0McNAHQqZ2xzy/j4edexRmzZiEj3YGsrCykp6fjiiuu6PaYhoYG3HDDDcjNzcWIESNw2mmnYdiwYSgoKMDjjz8OVY1C7QQSsVA+xQkCvViTztp2DoQTCEiCQIFACGhl4AS4pkFuOKTbeFJKJgRT96WFuapAq9sPuJsjP5kgQsjqB2ZLj3wsBLYjqpW7oB3aFVE+wX8+/ho3/v1ZnHfeeZg4cSKGDx+O9evX44EHHkB9fT0yMjI6HXPTTTfhjTfewPXXX48zzzwThYWFqKysxFtvvYUXXngBN998M/7xj39E8uORKAilFLHFICI7hfoSkI5o50DvoYyKE2CCACYawI8p0COY7WCCCDWMN2yltQGSmA2hmxUHJkoQckrAW+vAGw4i5Kbcx9JUaDVlYCmtgXLGET4pmGiA1G8UeO4AqPu3Qqs/GNY4lTWBN/znnnsO69evx6BBgyBJgYeh7O/6SV9VVYXJkydjwYIFeOONN7Bnzx6MGzcOjz/+OEpKSnD33XfjtttuQ2FhYdg/H9GfGsLKAL1ok+P5ZCWsQAAA0qwmekyFiH5bPTi2EY9oT4dkd0Cw2CGElajHobTUgavdF8tgjEFIzYZQMFyXpXneWgftUCm4T4ckRQDMZIM0dAqkUbPCWnUY2r8Ahw8fRlZWFs455xysW7eu/TaldBm0LvITiouLsXTpUkycOBGvvfYafD4f7rvvPjz00EO44YYboCgKvvrqq0h+LBIFihb8CpJElwnIMRRVQ0uYWwhTLSbaQhgGWhnoAZOMAPNASs1sLyLEGINoc4CrCrgc4gNW06C01EFKyz5hRj0zWiAUDAdvrARvqY3kRwBkH7RDO8EyCgOtkXW4hiakZoGNmQ2t7gDUiq2AP7is8QWzT8H7D/0etY3N+PkDT3W4jbtboWz5CmLhcAiFw9tXM+655x7k5uZiyJAhuPDCCyHLMgYOHIja2tr2VQUthDce0juCrTwIgOoLkHaaxtHs9oa1hdBqMtAWwjDRM7AHgsEMgyOnUzVBxhiklMzwGgepCpTmOvAe3sCYIEDILIaQOwgQIn2Ac/CGg9AO7+1w2SMSjDGI2f1gGH82hKIRQBDbBRljmDt9AhbMPqWbaXKoB0uhbP0amitwKcbhcODOO+/ExRdfDMYYrrvuOjQ1NeGGG27AwoULAQDTpk3T5Wci+uCch3SZgFYGCBB43DS7vSE9dtoYJRE26m0RNgoGesBEsds3fCYIkFKzABb6r5GrcuCSQRDJeMyaBqFwBGAOr0FRB54WaJWl4HokKR7BRAlS8chAUJDVT5cxuasJypYvoR7c0f474pzjV7/6Fd544w288sorMBqNuO2223D55ZdjyJAhupyX6COUVQGAcgZIWyDgo50DMULPwAgxUYKUGl45YK74obTUI5gNHUwyBOr8ZxQiUKIlAqoC7fBeaPUHgwpGgsVMVkhDJkEaPRvMqkOlQc6hHtgGZctSqK5m3HLLLXj66afx3HPP4ZRTTsEZZ5yBnJwcPPHEE5Gfi+hKDeGyDQNACwPJrS0Q8CuhbxNmDEizmah6ZYTo4ooOBIMJYkoG1NbQGxtx2QeltT5wyaGHBzNjDCwtF9ycAq2mLOI+ArylBtzbGqhcaNSnjgAACCkZYGNOh1a5A2rljk67IjRNw6G6zr+r6vpGZDlS0Or24O//eR97DlahICsDd1y5AP/462N4YuFHePrppzFnzhzMmjULVVVV+Pbbb2GzUbGaeKOooeUL0Ce65MU5R4snvEAAABxW2kKoB6ozoKNIKhYKJgtEe0bQL4pcU8HrD4I768M6XweMgWUUgwURkIRKczVB3bMW/MjvxePzYerVv8OO8sDWxLfeegsWiwXz588HAAwqysMVc2bhkTc/wsyZM7F27Vp43S64PF48+eSTuPjiizFr1izs3Lmz/Rw5OTlYvnw5XSqII1RjgAQjknbEAJBiMcJipDwBPVAwoCPOOVRnI7Qwt/EJJhtEe9dli7ujORvB6ysATYcqfFZHoFBRGEmRJ8I1DerBUmiVO/HFmo2Y9+v78NprryEjIwMnnXQSBEHA+vXr4XQ68cMf/hADC3JhSk1HaWkpzj77bCxZsgTz58/HokWLUFpaivLy8g7jX3bZZfjjH/+I2267Tdd5k/DVOb1w+4N7gU8xGZBuC78VN0lMnHM4vX54gnycHI96DuiLLhPoiDEG0Z4e+NQe6pZDAJrPBTAG0ZYWdEAg2NPBTVZoteWAL/h2sV1yN0GrdEHIHgBm0SFZ8QgmCJD6jYKWUYCUXQcAAEuXLoXNZsNnn33Wfj+fL/A7Kzt0GBdOPgU1NTVYsWIFAGDHjh349a9/3eX4fr8fdjs1uYknodQYEEW6RJBsIg0EaOeA/mhlIAo41wJbB8PsDyBYUiCF2OqXcw7eVA3eVBXWOY/HHHlgjnz9LxuoCn7986vx5dffdHn71NFD8conX+PRRx9DWVkZXnzuGbx5/+34+yvvoaaxix0QjGHMSRPw9PMvBtXsiPSOg40uaEG+tGTZzbDS3vCk4vT64faFt8VZEgQ47GZKGNQZBQNRwjUNSnNt2Hv6RWsaRGvon8651xlYJdChURFMtsAqgUH/JVyttQHK3nWAp7XD92VFQb/zroVHVuHz+fCnn1+GO65ccOLBGIPYfyyEvEGUiBYHNM5xsDH4Vaq8VAuMVDEuabh8friCzCc5nigwOGyUMBgNFAxEEdfUIwFBeEthos0B0RL68jdXFfD6A+CuxrDO2wETwLL6QbB3biAUKa6pUA9sDzQ/OsbO/ZVYsnojcjMcuPj0UyAE+cQXsoohlpyse84DCY2saqhqDj5vpijdRp/ykkS4jYcAaj4UbRQMRBlXVcjNNWEn+In2dIhh9EHgnIM7G8DrD0TUZbANs2eAZRafsIRyuLTWeih71gHdtHkOBbOmQRo2FcxMOQSx4vErqHV6g7qvwICidPpbJQOPX0arhwKBeEXBQC/gqgK5uTbsgKCn1scnPLfshVZTDvh1aFQkmSDkDAAz6b+vn6sq1APboFXtjnww0QBpyCQI6fmRj0VC1uLxoynIF32jKCAvzRrlGZFY8/oVtHjCq4vCGJBus1D/iiijYKCXcEUOBARhfkqXUrMghFkYiHMNvPEQeHNNWMcfj6UXgKXlRuX6vNZSB2Xvel1WCYSiERCLRlAeQS+rd3rhCjJL3GqUkGXXr+AViT9eWQm7AyEFAr2HgoFepCl+KM21nSryBYdBSsvq1DApFNzTAq12P6BHoyKzPZBcKOm/z5erypFVgj0Rj8UcuZAGT+7QippEV3WzG/4g68unWYxIs9Dfpq/yyQqaww0EADhsZmpH3EsoGOhlmuyD0lwHhNOgkzFIqdkQInhj46oMra4C0KNRkSBCyOoPZnNEPlYXtJZaKHvWR14/wWSFNOwUCFGaJzmKH9lJEOyjm7YV9l1+RUWTK7jckeNRIND7KBiIAc3vhdJSF97BTICUlg1BCr/gBuccvLUOvOFgmKsUx00pJQssowgsCsk9XFWg7vs+EMBEggkQB50MMbu/PhMjXVJUDYdC2EmQn2aFgZaA+5xIAgEgEAjQdtPeRcFAjGh+D5SWMPsKMBbIIYhw/z/3ewINj+Twn7TtDOZAcqFR/2Qwzjm06r1Q92+OOHgRcksgDhgXlcCFhLaTgCGwrZByOvoW+UggEO4zNc1qgslAq0W9jYKBGFJ97rA6HQYwSKkZEIyRNXjhmgbeUAneWhvROIEpMbD0QrDU7OglF+5aHXHwwlIyIQ2dAhbh7450FspOAoMoIJ92EvQpfkVFcwSBQKrVBDMFAjFBwUCMqV4XVGf4xYHCrUNwPO5qgla3X5+GR5ZUCNn9wUT9a4dzvxfKrtXgrWFeZmljMEEaOgVCarY+EyMAQmtQRDsJ+pZIkgUBINVigpnyR2KGgoE4oHqcUF1NYR8fbuni43HFH9ht4G3t+c49TkqCkDUAzJoa+VjH4ZoGdf8WaNWR7jZgEAeMgZA3mJaqdUI7CZKTxyejNczKggC1Io4HFAzECdXdAtXdEvbxgsUO0Rp8t8PucM7Bmw+DNx6KaJw2LDUHLKMAjOl/jV6tOwB17/qIVzOEzCKIgyZQGeMI0U6C5MM5h8snh910CADsZiOs1IEw5igYiBOcc6juFmie8D+VCyYrRHu6Lp9yuc8VqFyohL/s185ogZA9ECzMokknormaoexaCXgj237I7BmQhk+negQRoJ0EyYVzjlavH94w2xADgM1sgM1Ez7l4QMFAHOGcQ3U1QYvgjY0ZzJBSM3T5JM41NdDwyBlukuOxExPAMovA7Jm6L8lzxQ9lzzrwxsjaNzNLCqQRM8BMlNQWDtpJkDw452h2++BXwl+Vs5oMsJspEIgXFAzEGc45VGcjNF/4vQSYZISUmqXb9jnN2QBeV6FPwyObAyyzn+5L8pxzaJU7oB7YHtlARgsMI2eAWfTPdejraCdBctA0jma3F3KQuSFdsRoNsJkNFAzGEQoG4lBghaAZWgT1+ZkoQUrNBhP1KdzBZR+02vLIqwECgGgM1CSIQmdBrbEayu41kZVcloyQhk+HkKJ/2+a+jHYS9H2qpqHJ5YWqhf+2YTFKsJuNFAjEGQoG4hTnHJqnNaKkQggiDKlZYBFUKzx+TrypCrypWpfxmCMPzJGv/2UDrwvKrlXgEezQgCBCGjYVgiNPt3n1dYeaXFCCfJOgnQSJR1EDgYAWwVsGBQLxi4KBOBdpHQIw4Ui1Qv1eeLnXGahcqEfDI5Mt0PAowmqKx+OqCrXs+8BWyXAxBnHQRIjZ/fSbWB+laRwHm4JfNcq2m2GhnQQJw6+oaHZ7IyoASrsG4hsFAwlA83mgtIZZuhhAoFphZtgtkLvCVQW8viKyT99tmACW1Q+CXd9lec45tMNlUMs3RlTGWBwwFmL+EP0m1gd5ZQU1rcFXhix0WCFSSeiEEGkxIYDqCCQCCgYShCb7As2NInlTS8mAqGOmPOcc3FkPXn9Qn+RCewZYZjGYoG+DEq21PlDG2O8JewyhcBjE4lG0vNmNUJIHRYGh0BF51UwSfR6/jNYg/65dYQiUGKZeA/GPgoEEoin+QPvjCN54RZsDokXfxD3u90KrLYvozbadZAokF5r0fbPgfi+UHSvAXeFfchFyBkAsOSkqBZQSXW2rBx45uG1mFoOI7BTqCxHPOOdw+2S4IigmxBjgsFIb4kRBwUCC4aoCubkO0MIv9CFYUiBaU3X9lMu5Bt5wCLylRpfxWHoBWFquvnNUZSg7V4E3hz9Hll4Aachk3XZp9BWVTa6gM8wpeTC+cc7h9PrhiaCYkMAYHDYzJCoqlTAoGEhAXFOhNNeBR5DAp2e1wmNxdwu0unJADf+FpJ05JdDwSNIx+VHToO5ZC63+YNhjsJQsSMNP0XVeiUzVOCpDSB7MSTFTZ7o4xTlHi9sHXwTFhCRBQJrNRDkhCYaCgQTFNQ1Kaz24HH5iDxMNkFIz9S8ApMqBLH5PBNsi2whiICCwOiIf6wjOOdTyTdCq94Y9BrOmQRoxndogI7TKgwBQ5LBBECj3It7oUUzIIApIs5khUG5NwqFgIIFxzqG0NoBHcq2eMUgp+u40AI4kF7bUgjdWRpT02IalZINlFOpWVVGXioUmKwwjZoBZIu8YmciaPX40B5lkJgkMBZQ8GHf8iooWty+iGgImg4hUi4mSbBMUBQMJTo9+BgAgWlMhWFL0v2zgdwcaHsnBf3LslsEMIWegrp/G1cP7oO77PvwBJBOkEdMh2NN1m1OiqWn1wBtk8iBVHowvnHN4/AqcEbQfBqiYUF9AwUAfoEu1QgDMaIZkz9Dt03cbrmngDQfBW+siH4wxsIwisJQs3V54tPrKQAnjcHdpiBKkYadASMvRZT6JhHOOyiZ30J8oHVYjUqk5TVzQOEerxwdfkIFcd2xmA6xG6jOQ6CgY6ENUjxNqpEWABClQoEinEsbH4q4maHX7AS2yFx8AgDUNQlZ/3fIdtOYaKDtXhp/4yARIQyZByCzSZT6JQtE0HGoKvqlWTooFZgPtxIg1RdXQ7I6sxwBAxYT6EgoG+hjN54bSGmnLYQYxJV3XAkVtuOIPNDyKoAlTO9EQSC7UqcOg5mqCUrocCDspk0EaNgVCRqEu80kEbr+CulCSB9NtlFwWY16/glaPD5G88FMxob6HgoE+SPN7A+WLI/zTCmY7RFua/nkEnIM3HwZvPKTLeCwtFyw9X5diQNzrhLx9efjdGZkAafg0CI7ciOeSCJrcPrR4g9viSm2LY0uP+gEAFRPqqygY6KP0qFYIAEwyBrYf6lwiGAC4zxVoeKRElrwEADBaA5ULDZEnp3G/F0rpcnB3c3gDCCKkETMgpGZFPJd4V93ihl8J7jFmM0rIpOTBmFA1DS1uX0TbBgEqJtSXUTDQh3FVDdQiiPTNVhAC2w917iwIBAoo8foD4M5IL20g0PAoszjQ4yDC1QyuyFB2rgRvqQ1vAFGCNPLUPr3LQOMcBxuDX0FJt5qQYqbry71Nj46DABUT6usoGOjj9Np6CAT6GghmW1SyhjVnA3hdhT4Nj2zpgaAgwuRCrqlQdq8BbwjzcoZkhDRqFgSrPjkN8SbUToV5qRYYaWk5qjZu3IhPPvkEmqaBcw5Z1eBXVJjNZlxw4QIUFRef8HhVVbHwjddRXV0Fi9mCCy5agMKiIpgMIlIsJsr36MMoGEgSqtcF1Rl+k542gTLGjqg06+GyL9DwyBd8dnq3JCOE7AFg5siaMnHOoe77PnA5IxwGMwyjZ0U8j3gUSr6AwIBCR3QCSRLQ3NyMgoICWCwWGAwdV2DcbjeK+/XHV8tXnnCMP/3h//Dsv59EVlYW3G43BpYMwopVq2ExSvS36+NovSdJiGYbJEcOEOG1f83nhtJUC65H74HjMIMJQv4wsLS8yAdT/NCqdkFrrEIk8S5jDGLJSRAKh4c3gOyFvH0ZuB4BTpwJpX69SRLpzSTKKioq4Ha78fHHH6OqqqrDfw8++CB27ig94fHr1q7BU/96HPfffz+qqqpw//33Y+eOUlhNVEMgGVAwkEQEyQiDIzfiJDuuypCbDkPTo2XxcRhjEDIKIOQNAcTIry/zpipoVbsiyptgjEHqNwrigHHhDeBzBwICvw5VGOME5xy+IBMHgUCpWtJ77r33XqSlpbX/d+utt2LU6DHd3t/n8+E3v7oBkyZNwo9+9CPs2LGjF2dL4gEFA0mGCUKgqFCk9fQ5h9JSD8XVHNEn7+4wSwqEwhGAHg2KfC5olaXgrsguk4j5g8MPCLzOwA4FWYedE3EglEAAAMyUKxBVnHO4jikp7PV60dLS0v7fKdNn4LWF/+32+Ecf+hvKy8rw4osv4uabb0Zzc5g7aUjComAgCTHGINnSIKVmBjYNR0DztEJpOgwtCm9yTJQCvQgy+0U8T2gqtJoyaLX7wSOogCjmD4ZYPCqsY7m7GcqO5RG1no4XoVwiYCxQY4BEh6JqaHR54ZWPXrqbO3cuXn/9dTz22GOYOXMmvv7yC7zy4vNdHr9l0yY8+vDf8X//93/YuXMnFi1a1EszJ/GEnqFJTDBaApcNIlyO56oCpbkmKqsEjDEIqVkQCoYDOjQo4s56aId2RHQNXygcBqFgaJjnb4SyYyW4qkNJ5hgKtjERQPkC0cI5h9sno8HpgXJM/YDy8nJs27YNZWVlGDJkCL799lv85S9/wcN/+2unvAFZlvHrX92AcePG4YYbbsBNN93U2z8GiRMUDCQ5JkqQHNkQdCg9HFglqIGmRxGh4zCjBULBMLBUHZoByT5oh3ZCaz4cVvDCGIPYbzSE3JKwTs9baqHsWgWuRb6NMhY45/CHsDJAlwj017YacGy3wf79B8CekoLLLrsMt9xyC/7xj39g3rx5+O1vf4s77rgDOTk5eOv11zqM88IzT2NH6Xa8+OKLuOuuuyDLMtLS0tpv93q9mD9/PlpbW3vtZyOxQcEAAWMCRHs6RJsj4rG4KkNpitYqgQAhswhC7iBAiLQmOgdvqIRWvQdcCX3ZnjEGceB4CNn9wjt7UzXUPWvAdair0Nv8ihZSXXtKHtQP5xwun7/TagAA2Ox2fLlsBd787/vYWX4Qpfsq8KMfX4nXXnsNBoMBU6dOxa5dO8E5R319HVqam7H0yyW44IILMHToUBQVFeHGG2/ELbfcgqKiIkyePBl//OMf8dFHH+GDDz6I0U9Megt1mSAAjry5WexgkgFKS31QxX8OVVdjw6Yt2F9xEAaDhPPmnIWCvMC2QM3TCu73QkxJhyDp27KWWdMgFI2AVrsf8ETWthneVmiVpYGGR9a0nu9/7DwYgzhoAriqgjdUhnxqrb4SEDZAHDQhoZbRvaHkCwAwUr6ALhRVQ4vH1ykIaLPx+w24/mdXIyc3B+ddcCEcjnSsW7MKubmBPhlNTU1IdaTjgnPPxppVR+sNTJs2DYsWLcKgQYPav2c2m+FwODBkyBAwxuDzhdu8iyQKKjpEOuGaCqWl+zLGu/eW4ZKfXovSnbsAABaLBZqmoV9RIbasXNrpjU20pkKwpESn4VFL7ZE34sgfxiw1Gyy9ECzEcqtc06DsXAHedDis8wp5gyAOGJcwAUFNqyfonAGzJCInNfJcj2TWlhvg8p14Bev3v70NSz79BCNHjsTXX38Nv9+PIUOG4JVXXkFBQQFKSkrw02t+hpeefw7//Oc/sWvXLjzxxBNIS0vrtHtg1apVWLt2LW666ab28XJydLhER+IWheykEyaIkNKyIXRTNW/he4tQW9+A999/v73QyYsvvojde/fB4+m8l151t0BproEWxnL8CefJGIS0HAgFwwAd+ibwltpAcmGI9ROYIEAaOhUsJbzGRFr1XqgHtoV1bG/jnMMXSvIgXSKIiKJqaHR6ewwEAECW/XA4HHjvvffgdrvhcrmwa9cuiKKI+fPnIzcvD2eccSaAwG6D4uJimM1m1NXVwePxwOPxYO3atZ3G3bp1KwUCSYAuE5AuMcYg2R1QJeORMsZHP3n7/X5IkoT9+/fjvffeww033NDjeFyRoTQdjsoqATNZIRQMB2+oBG+ti2ww2Qvt0A6wjCKwlKyg58lECdLwaVC2LwurnoFWuROqKEEMt9JhL/GFmi9AyYNhCXY14FhnnHUOXv/PK0hLS8PgwYORmpqKyspKVFZWYvCQIfjoo4/x7n/fQW5uLgoLC/Gvf/0LF198MSRJgiQF3gpGjBiB1NRUzJw5E5xzTJs2LWFWrEhk6DIB6ZGmyFBbG9r3x6/d8D3OvfhyeH0+yLKMjz76CM3NzbjiiivQuH8XrNYTLwszyQDJngEm6d/BjrsaodVVABHUEmhnTYOQ1T+khkdc9kPZ/g24O7xcBrHkZIi5A8M6tjeE0o+AAShKp34EoZJVFa1uP5QwdpuUl+3DN19/hT27d8PlciEjMxOnn3EGzj3rDJiMRpx//vk4ePAgZsyYgSeeeAI7d+7E0KEdt8nu27cPn332GUwmE+bPn4/MzEy9fjQSxygYIEHhnEN1t0DzBLYYqaqKqsM1GDRucsjBQBvRmgbBYtc/l0DxQ6stB7zOyAcTDYGGRyFUbOR+L+Rt34R5fgZpxHQIjtwwjo2+6mY3/N0ksB3PJInIpXyBoAV2Cshwh7Aa0BOLUYLdbGx/jr388su48cYbIcsy7r77btxzzz26nYskNsoZIEFpr1royAETDRBFEZIY2RKw6m6G0lwb1ta+E2GSEULeELD0/MgHU2Vo1buhNVQGvVWSGc0wjJwJGMOp3cCh7Fod9spCNKkaDzoQAAAL5QsETVZVNDg9ugUCgsDgsJmRYjF1CLavuuoqtLS0wO12UyBAOqBggIREkIyQHDmR9zY4git+yE2HoXpada1LwBiD4MiHkD8U0GFrI28+DO3QTnA5uC1WzGSFYeSM8BIbVRnyju/A5fhqbBRKCWIAMFMw0CPOOZxePxqdXqiaPo9/i1FCpt0CYzf5GpIkdWpxTAgFAyRkR3sbhJc93xXV1RzYcRDkm22wmNkOoXAEmC098sH8bmiVpdBa64MKXJglBdLImeEFIz53oGyxHrkPIVJUDdXNbjS5ffApavvP6pGDb1stMEb9CHogK/quBojdrAYQEgx6tpKwfPfdd3j6uc6NT/71zPNYv3FTWGNyRYbSXBuocaAG/8bTEyaIgYZHWf0BFuFDnmvgdfvBa8uDeqMWrGmQRswAQkhCbD+VswHqnnUnDDyikfIjCgyyqqHFK+NwiweVTS7UOb3w+EMoQWygfgTd0TSOFo8PjS59VwMyTrAaQEhPKIGQhKy0tBQjR45Eenrg0/bChQvR0tKC6667DpqmobW1Fbs2rERxYUFE5xEsKRAtKSEXAToRLvug1ZYBETQqaicZIWQPBDPberyr1lIHpXR5WLschMLhkPp17pSo1h0AZB/E/MEhj9mT6hY3/CG2KT5Whs0Eu4mWoo/Vtl3Q7ZN1KJEVIAoMqRYTDBQEkAjRygAJ2datWwEEuqM1NDTgrLPOwsUXX4yGhgZs2bIFmqa1VyeMhOZphdxYDdXr0u0TMDOYIOQPA0vTIVtf8UOr2gmtsarH+QmpWZCGTQ2rFbNWuQNq7f72f3POoVRshbp7DbTmmpDHC0akJYQpefAozjm8fgX1rR64dAwErEYDMuwWCgSILqjoEAnZqFGBT6klJSWdloI1TYMgCBg+XKfiOVyD6myE5nFCtKVBMJojHpIxBpZRCG5JDWxBVCO7ZsubqsC9rYEtiCfIDxAceRAHngR134aQz6HuXQ9msoLZHFB2rwVvrAqc29kAzrnuS/IGUQQQ3qUagQGyyiEw/eeVaPyKCqfX320/gXDQagCJBrpMQMLy7bff4rvvvuvyttmzZ2PKlMlQXS3Q9NjrfwxmNEOyOUIqBHQiXFWg1e0H3M0937knggghq1+PyYrK/i3QDoWxciIZwQxm8OOaMxlOmhPUpYpQ+BQVh1tCK8t8PMYCvQksRglmgwhJx8s98U5RNbi8/pB3YPTEajLAZjIkfZBF9EfBAIkqTfZBaW3QpyLgMQSLHaIlVZd8As45eGsdeMNBQIenA0vJDJQzFrr+5MY5h7JrFXjDoYjPBQDikMkQs4p1GauNxjkONrp0G88sichOMff5NzGNc7i8fnj8+iXAArQaQKKPggESdZxrUVklABMCvQ7M+pS85X4PtJoyQI/9/QZTILnQ1HXhIa4qULZ9G1Yfg+MJeYMgDRwf8TjHO9TkgqJDtrtRFJCTaoHQhwMBzjk8fgUun1+PeLIDWg0gvYGCAdJrNL8XirNR91UCJkoQbQ5d8gm4poE3VoK31OoxM7CMArDUnC5fyLnfA3nL10CIXRI7ncWeDsOY0yMaoyt1Ti/cEX7CNYgCclIsEIW++UbGOW/PC9Brm2AbSRCQYjUeyd8gJLooGCC9KmqrBACYwQzJlqZLAyTuboZWux/QdFjutaRCyO4PJnael+ZqhrJtKRBJXQXGYJg8v9vLEuFq9vjR7PGHfbwoMOSmWvpsroCsqnB6/JB1TA5sYzMZYKXVANKLKBggMcEVGYqrOSoldwWzHaI18nwCrshHGh616jApKRAQWNM63aQ1VkPZ0XUyZrCk0adBSNG3u5zHr6DWGd7fR2CBQKAvViFUNQ0urwxvCBUZgyWJAlIstBpAeh8FAySmNL8XqqtJ14qDAADGIFqO5BNEEBRwzsFbao4k++mQXJiaE7h0cFwlRLV6L9SyjWGPK/YfA7FgaM93DIGiaTjUFHpxJsaA3JS+Vw1PO6ZokN4ExmA3G2Giyo0kRigYIDHHOYfmdUF1twBc5yVXxgIrBRZ7RMvo3OcOVC7Uo3eC0RKoSWA82t6Xcw5l61JwZ0NYQwqZhZCGTo18bsfgnONgkyukhDgGIDvF0qeaFGlHiga5fTI0nV8uGQCr2QCrkS4JkNiiYIDEDa5pUN3RyScAGASzLVDeOMwlWK6p4PUHwZ31OkyHgWUUg6VkApoGdd96aHUHwh/PaIFxwtzI53Wc6mZ3SG2Ls+1mWIx9o5aZpnG4/TI8fln3HQJAoJ+AzWSE0EeTK0lioWCAxB2uHskn8Eenha9gskG0poRduEhzNoLXV+izK8KcAq32ILgrvBWBYxkmzO2w2qCHUHYUZNpMsPWBfgSqpsHtk3WvFdDGKImwm42Q+mA+BUlcfSOEJ30KEw0wpGYdySdoBo+wXPDxNJ8Lms8FwWSBYEmBEGKLYcGeDm6yBpILfREW5vG2gllt4LIbiDD44a5m3YOBYBMA062JHwgoaiAIiEZiIBDYKmi3GPtcLgXpG2hlgMQ1zjk0nwuqKwr5BEcwoxmiJQWCwRTy3HhTNXhTVcRz4JyDu5rBneEXIRL7jYZYOCziuRzL5ZNR7zpxnkS61YgUc2gBVTyRFRUunwy/zqWD2wiMwWY2wGyQKC+AxC1aGSBxjTEG0WyHYLRC9bRC8+iwze843O+F4veCGUyBnAKDKagXbcYYWHo+uCUlsEqghL8nnzEGZneAG83QmmvDqjvAXU1hn787Pa0MOBI0EGgrFuT2yVGpE9DGeqReQF+uvkj6BloZIAmFq8qRfILIqvadCJMMgb4HxuBr6XNVAa8/oEt5Yc418OY6cG+IlyAsKTCOPzvi8x/rRD0KHBYjUi2JFQhwzuGTA0GAokUvCDAbJNjMBoh9tOAS6XsoGCAJSZN9UJ1NuucTdCBKgcsHJmtQQQHnPNBSuP6ALpc0uN8HrbEqpOZJhskXhr1bojuVjS6ox80hzWJEWgIFAvzI9kCXX4amc9ngYxnEQF4AFQ0iiYaCAZKwAvkEbqiu5qjlEwAABDEQFATZEInLXmg15YA/9II9XZ1bczYH3StBGjMbgj0j8vMe43CLp0Mr3kQKBDTO4TmyM0DvGgHHEoVA0SCjREWDSGKiYIAkPM41aB4nVI8zukEBEyBa7IGVgh62JXKugTdWgTcf1ufcljRoDYfAm2tOeDex5GSIuQP1OecRDS4vnL5ADkOq2QCHNbREy0hoGoeqaSG37lU1DR6/Ao9P1qFuZPcYA2wmIyxGSg4kiY2CAdJntFcy9LTq3hnxeMxghmi29ZhXwD0tgYZHelzOMNsBazq06j1HyiN3Fmw7Y83vh7usDHJrK7gvkPjITEYYUlJgHTgQgvHoJ/8Wjx9NHj9SzQakWYy99qbHOUeTywvGGBy2njtScs6hqIEgIFrbA9swBliNBlgoOZD0ERQMkD6n/fKBpzWyboDBYEKgsqHZ2mVXQiBQREmrqwDczZGfTxAhZPUHmAD10E5otRUdp5OSCcPo0zod5qutRd3Sb+DcsROt27bDvX8/0F0CnSDA2r8/UkaNhH34MKScNhuqzQ5HLwcCzW5f+3a/rBRrt5X62soFe/yy7m2EjycwBqvJQCsBpM+hYID0WZxzcL8XqrsluomGRzDJCMFsh2CydHqj4JyDt9aBNxwMKSGw23OlZIFlFAE+F9SDpUdLGYsSDJMuAGMMXFXRuHoNDr33Phq+WwFwDiYI4GpwqyZMFME1DcxkQvrkSSi46EKkT5mse4Li8TjnaPX4O3y6t5kNsJk65inIqgqPT4FPVqJ6KQAI5ATYTNRIiPRdFAyQPo9zDi77AkFBBLUAgsYYBJMVgtnWqboh93ug1ZQBerRuNpgDDY9MVmjuZqgHSsEbKiGNPwe1Xy9D2ZP/hr+uDhBFIMgAoFtHxjBmZWHgL29Azrlzovam6PT6O3UGFAWGDHuguqJXVuDxK1CiWB+gjUEUYDUZKDGQ9HkUDJCkosk+qO5WcD3ejIPAJEMgKDBa21spc00Db6gEbw1uh0CPjFYgdxBEyQBv+W6UPfM8ar9aFriwrffT+8iYjsmTMPT3d8JckK/r8G6fDKe364DNZBDhl9WorwIAgf4BbUEAIcmAggGSlDTFD83dCi2KxYs6YoFeCGYbmBS49s5dTdDq9oeX7GgKjMMVf3t/BGdlPbb8/n5oqhr5SkBPRBGCJGLgr36Jgkt+oMunZo9PRms3gUBvMRlE2EzURIgkHwoGSFLjqgzV3QrNp0NNgCAxUQqsFpisgKYGdht4gyyzbEmDkFkIZjiaXc9lL7T6SsDTjAPvfYqKtz+K0sy7lnfB+Rjyu9+CSeFXN/f4ZbR6YhcIWIwSrCaqGEiSFwUDhCBQTlj1OKF5XUCvLEQHCEYLmNkKuJqAnhoeWdIg5JZ0+Smccw7t8D5wdzNW/ex2aO7euQwCAGAMmafOxIgH/gIhjIDA61fQ4jlxM6RoYAAsJgOsRkO3OxUISRYUBhOCwKd1ye6AISMPgiUlcG28F2h+D9SWeqgc4BnF4EZrt6GIkFnY7XI8YwxCRiEYAwZcNj96E+4K56j/dhl23vOnoHcqtPHJvR8ICCxQLTAz1Qq72UiBACGgYICQDpggQrKlwZCeD9GaBgi9lECmqdBkHzSTHZo9G5rJDi5IRwMDk63DpYGuMKMZMNmQMXFM1KfbCeeo/eJLHHj1taAP8csqmt29FwiIAkOKxYjMFAt1EiTkOBQMENIFJggQrSkwpOdBSs2CYLT04skZuNEKzZYBzZYJzWQHJBOCuaLHJANEU+z6BpQ/8xycO3f2eD+/oqKply5lGEQBqVYTMuwWWIwG2iJISBcoGCDkBBhjEIxmSKmZMGTkQ7Sl9diXQFeCCG60QhUkyI3VUJxN4CeoqsgVGaovhhn5jKH07nug+br/xC8rKppd0Q0E2soFZ9gtSLdbYDZQxUBCToSCAUKCxI50L5QcuZDSsgO7AdCLbzCaCs3r7HaFgPu9gM+FhnVbem9Ox1NVeA4cwP7nX+jyZllV0eTyRi1F0yAKSLWYkJVihd1CWwQJCRY9UwgJEWMMgsEEKSUjsFpgd4BJXfcl0J0gdrkywTmH1lAJzoHytz7onbl0h3NUvvU2FKezw7ejFQgwBLYGtq8CUN8AQkJGwQAhEWCCANFsh8GRC8mRA8Fsi+pOBKb4AKXjEjz3e6Ed3nekzsDi3t1W2A1NllH94cft/5YVFU1Or64FESVBQIrFiKxUK1IsJloFICQCVGeAEJ21dU3UvC7deyEwVwMETTlSgdAArsiAzwXOgQPvLcaBdz7ueZDewBhMOTmY/P5/oXBEZUWgq+ZFhJDw9GImFCHJgTEG0WyDaLYFKhx6XdC8boBH1lhHU1Ssu/o3GHDpBciYOAaiyQjV50fDui0of+uDuFgRaMc5fIcPo2HzVmglg6OSI+D1K7DS7gBCdEErA4T0gvZ2yl5X2E2SnLv3Ydtt/xdyYZ9YYZKIgp/8GP2uvRaqxqFqGhRNa/9aj1ceh81MzYQI0QGtDBDSCxhjYCYLBJMFXFUClxF8HnBV7vngI+qXrdItEPi+pRm/3rG929vHp6Ti8RGjIjoHV1S0rtsAw/Uiukqv1HggKFA1DlU9GiQEvh9cpOD1KxQMEKIDCgYI6WVMlCBaUyFaU8EVGZrfE0RgwHB48ee6zWG0PQXvjZ/Q6fvfNTXiH+X7cGFuni7nce7cCa6qYGLnN2yBMQiiCIMIHB8tcM7BAWjHBAiaxtsDhbZ/+2QFGjdSNUFCIkTBACExxCQDRMnQY2Cg+RVobv06KxoEAZnGjsl35R43nj6wHz8uKMTsjExdzqP5/XCXl8M2aFBIxzHGwAAIIjvhLgG6ykmIPmgvDiFxgh0JCgzpuTA4ciFaU8HEwEdmX019VM/dqii4e/dOjEtJxc8Ki3Ud23uoh26MEWCMUQIhITqglQFC4tDxKwbNm3dF7Vwa57hv724IYLh70GDd31xPVJqYEBIfKBggJM4xyQAud9+PIFLPHazANmcrnhk1BrYo9F3QlOjNnRCiDwoGCEkAzBCdcsdf1ddhYdUhPDh0BIrM0enMKJpMURmXEKIfyhkgJAGIVqvuY+52ufC3sr34eXF/THY4dB+/TTTmTgjRF60MEJIA7EMG6zpekyzj7t07MT4lFWdlZqHe37FsssgYHDqtRtgG6zt3Qoj+KBggJAEYMzNhyMiA3NCgy3irmhpR7feh2u/Dgo3rO92eZzRh4fiTIz6PITMTxsyMiMchhEQXBQOEJIjUMaNRv2w5oEXW4wAA5mTnYE52jg6zOgFBQOqY0dE9ByFEF5QzQEiCSBk5MtZTCFnKyBGxngIhJAgUDBCSILLPOF2XVYFeo2mBORNC4h4FA4QkCEtxEdJPmQp0Uec/7ogi0qedAktRUaxnQggJAgUDhCSQwst+CCRCC2NVReGlP4z1LAghQaJggJAEkj55MsxFhUA81+NnDOaiQqRPnhTrmRBCgkTBACEJhAkCBt92KxDP3fo4x+DbbwMT6OWFkERBz1ZCEkzGtFOQd9F8IB7fbAUBeRddiIxTpsZ6JoSQEMThqwkhpCeDbr4Jppyc+AoIBAGm3FwMuuWmWM+EEBKiOHolIYQES7RaMeIvfwq0G46H/AHGwBjDiPv+BNESnYZHhJDooWCAkASVOmYMRj74QCAYiGVAcOT8I//2V6o4SEiComCAkASWeepMjPzr/WCiGJtLBoIAJooY+eD9yJw5o/fPTwjRBeM8ntOSCSHBaNrwPbbd9luoPl/v1SEQRYgmE0b94yE4Tjqpd85JCIkKCgYI6SN8tbXY/beH0LBseWDpPlpP7SNjZ546E4PvuB2m7OzonIcQ0msoGCCkD+Gco+6rr7H7bw9BaW3Vv5eBIEBKScGQO+9A9umz9R2bEBIzFAwQ0gfJzS049N93UfXue/DX1wf6GYR7+eDIscbMTORfvAAFl1wMQ2qqvhMmhMQUBQOE9GFcVdGwchWq3l+Ehu9WBC4dMAYmCODdBAdMFME1rf2+GdOnoWDBRUifOiWQqEgI6XMoGCAkSageD1x79sC5cxecO3ehtXQHlJZmaD4/AEAwGSGlpiFlxHDYhw2FfdhQ2AYPproBhCQBCgYIIYSQJEd1BgghhJAkR8EAIYQQkuQoGCCEEEKSHAUDhBBCSJKjYIAQQghJchQMEEIIIUmOggFCCCEkyVEwQAghhCQ5CgYIIYSQJEfBACGEEJLkKBgghBBCkhwFA4QQQkiSo2CAEEIISXIUDBBCCCFJjoIBQgghJMlJsZ7AsYwnXQNBMoIJIpggQjQc/ZoJwtHbRBGCZITQfpvY6TYmiBAEBiYwiKIAdtzXgsAgiKz9Pie8jTGIkgBRYBAFBuORr6X2f4tHbxOP3k865r5iV18zBoExiAwwiEL715IoQGQI/FtgMAisi68DtxsEof1rkTEwBggMYAxHxgcYAFFgEIDAzyKg/WuBASI79uvAGIxzgGtgmgJ0+FoL/Kd1fxvjGqCqR7/WFEBTwTUNUPzgqgpoWuB7igyuqYGvZRlo+7rtvm33k/1Hj9FUaLICrmrgmgbNr0BTA8dwVYMmK9DUo1/zI1+rsgJ+zP1Uv3LM1yq4xqGp/Mi/jxyv8cBtKgdXOTRVgyprR8bkUGX1yDFHj9M4h8o5/BqHynHc18f/O/C1hsDXKseR245+/TQvj+nzUi/0/KbnNz2/4/f5TSsDhBBCSJKjYIAQQghJchQMEEIIIUmOggFCCCEkyVEwQAghhCQ5CgYIIYSQJEfBACGEEJLkKBgghBBCkhwFA4QQQkiSo2CAEEIISXIUDBBCCCFJjoIBQgghJMlRMEAIIYQkOQoGCCGEkCRHwQAhhBCS5CgYIIQQQpIcBQOEEEJIkqNggBBCCElyFAwQQgghSY6CAUIIISTJUTBACCGEJDkKBgghhJAkR8EAIYQQkuQoGCCEEEKSHAUDhBBCSLLjfZTX6+X33HMP93q9sZ5KJ/E8N85pfpGI57n1JfH8e47nuXFO84tEPM8tUoxzzmMdkERDS0sL0tLS0NzcjNTU1FhPp4N4nhtA84tEPM+tL4nn33M8zw2g+UUinucWKbpMQAghhCQ5CgYIIYSQJEfBACGEEJLk+mwwYDKZcM8998BkMsV6Kp3E89wAml8k4nlufUk8/57jeW4AzS8S8Ty3SPXZBEJCCCGEBKfPrgwQQgghJDgUDBBCCCFJjoIBQgghJMn1uWDg9ttvx8yZM3HFFVfA7/d3uM3j8eC8887DrFmzcNZZZ6GhoSGu5tfmr3/9KyZOnBjzOSmKgquuugozZ87ELbfc0mvzCXZ+bXr793Ws7uYWD4+1voie3/rNiZ7fPUum53efCga+//57VFdXY9myZRg5ciT++9//drh98eLFGD16NL755hv88Ic/xKuvvhpX8wOA1tZWbN26NS7m9OGHH6KoqAjLli2D2+3GihUrem1ewcwP6P3fV7Bzi/VjrS+i57e+c6Lnd/hzi/VjLRr6VDCwcuVKnH322QCAOXPmdHpwDxkyBG63GwDQ1NSE7OzsuJofADz++OP45S9/GRdzCma+sZwf0Pu/r2OdaG6xfqz1RfT81ndO9Pw+sWR7fkuxnoCempqaUFBQAABIS0vrtHQzaNAgbN26FaNHjwZjDKtXr46r+TU3N2PLli24++6742JOTU1N7fW3u5pvrOcXi99XsHOL9WOtL6Lnt75zoud3+HOL9WMtGhJyZaC6uhozZszo9B/nHC0tLQACf8iMjIwOx73yyis47bTTsHXrVvzpT3/Cn//857ia32OPPYZf/epXUZlTd9LT07ud04lui4f5xeL3dawTza23Hmt9ET2/9UPP7/Al2/M7IYOBvLw8LF++vNN/c+fOxeeffw4A+OyzzzB9+vROx7b9QR0OB5qamuJqfnv27MH999+POXPmYPfu3XjwwQejMr9jTZ06tds5nei23nKiOcTi9xXs3IDeeaz1RfT81g89v6MzN6APPr9j1z05Om677TY+Y8YMfvnll3Ofz8c55/znP/8555zz5uZmPnfuXD5r1iw+ffp0vnPnzria37EmTJgQszm1zUeWZX7llVfyGTNm8JtuuqnX5hPs/I7Vm7+vY3U3t3h4rPVF9PyOfE70/A5eMj2/qRwxIYQQkuQS8jIBIYQQQvRDwQAhhBCS5CgYIIQQQpIcBQOEEEJIkqNgIAm8/PLLcDgcuoxVXl4OxhgkSUJlZWWH26qqqiBJEhhjKC8v73Dbu+++i9NOOw1paWmw2+0YO3Ys/vznP7cX8tBzjoSQyA0YMACMMbz11ludbhs1ahQYY3j55Zc7fP/777/HJZdcgtzcXJjNZgwdOhTXXXcddu3aBeDo68fGjRt74ScgoaBggISloKAA//nPfzp875VXXkFhYWGn+/7f//0fLr30UkyaNAmLFy/G1q1b8cgjj2DTpk19oqY3IdEmy3JMzltcXIyXXnqpw/dWrVqF6upq2Gy2Dt//6KOPMHXqVPh8Prz++usoLS3Fq6++irS0NPzhD3/ozWmTcMR6byPp2eLFi/n06dN5Wloaz8jI4PPmzeN79uzhnHP+9ddfcwC8sbGx/f7ff/89B8DLysrabz/2v3vuuYdzznlDQwP/yU9+wh0OB7dYLHzOnDl8165dJ5xLWVkZB8DvvvtuPmTIkA63DRs2jP/hD39oPzfnnK9evZoD4I899liX47XN+6WXXuJpaWkh/24ISVSqqvIHH3yQDxo0iBuNRl5cXMz/8pe/tD/HFi5cyGfNmsVNJhN/8cUXuaqq/E9/+hMvLCzkRqORjxs3ji9evLh9PJ/Px3/5y1/yvLw8bjKZeP/+/fkDDzzQfvs999zDi4uLudFo5Pn5+T3WFujfvz+/8847uclk4hUVFe3fv+666/hNN93E09LS+EsvvcQ559zlcvGsrCx+4YUXdjlW2/O87Wf7/vvvw/ulkaihlYEE4HK5cOutt2Lt2rX48ssvIQgCLrroImia1uOx06ZNw2OPPYbU1FRUVVWhqqoKt99+OwDgqquuwrp16/C///0PK1euBOccc+fODepTyAUXXIDGxkYsX74cALB8+XI0NDTg/PPP73C/119/HXa7HTfeeGOX49ClAZKsfv/73+Nvf/sb/vCHP2D79u144403kJub23777373O9x8880oLS3FOeecg8cffxyPPPIIHn74YWzevBnnnHMOLrjgAuzevRsA8M9//hP/+9//8Pbbb2Pnzp147bXXMGDAAADAf//7Xzz66KN45plnsHv3bixatAhjxozpcY65ubk455xz8MorrwAA3G43Fi5ciGuuuabD/T777DPU1dXhjjvu6HIcep4ngFhHIyR0NTU1HADfsmVLjysDnHf9qXvXrl0cAP/uu+/av1dXV8ctFgt/++23uz33sZH9r3/9a3711Vdzzjm/+uqr+W9+85tO5z733HP52LFje/yZaGWAJJOWlhZuMpn4c8891+m2tufY8atpBQUF/P777+/wvUmTJvEbb7yRc875TTfdxE8//XSuaVqnMR955BE+dOhQ7vf7g55j//79+aOPPsoXLVrEBw0axDVN46+88go/6aSTOOe8w8rA3/72Nw6ANzQ0nHBMWhmIX7QykAD27t2Lyy+/HCUlJUhNTcXAgQMBABUVFWGPWVpaCkmSMGXKlPbvZWZmYtiwYSgtLQUAnHvuubDb7bDb7Rg1alSnMX72s5/hnXfeQXV1Nd55551OnxYAgHMOxljY8ySkLyotLYXP58MZZ5zR7X0mTpzY/nVLSwsOHTrUqT7+9OnT25+vV111FTZu3Ihhw4bh5ptvbq+rDwCXXHIJPB4PSkpKcN111+H999+HoigAgAceeKD9eW632zu9rsybNw9OpxPffvstXnzxxW6f5ySxUTCQAM4//3zU19fjueeew+rVq9vbZfr9fghC4E947JMxmGX+7p68x755P//889i4cSM2btyITz75pNN9R48ejeHDh+NHP/oRRowYgdGjR3e6z9ChQ7F3796YJUAREo8sFkuP9zk+QQ9Ap8D62OfrySefjLKyMtx3333weDz44Q9/iB/84AcAAomAO3fuxJNPPgmLxYIbb7wRp556KmRZxvXXX9/+PN+4cWN72942kiThJz/5Ce655x6sXr0aV1xxRad5DR06FACwY8eO4H4BJO5QMBDn6uvrUVpairvvvhtnnHEGRowYgcbGxvbbs7OzAQS29bU5ftuO0WiEqqodvjdy5EgoitKhD3d9fT127dqFESNGAAAKCwsxePBgDB48GP379+9yftdccw2WLl3a5acFALj88svhdDrx1FNPdXl7n+j2RUiIhgwZAovFgi+//DKo+6empqKgoKA9R6fNihUr2p+vbfe79NJL8dxzz2HhwoV4991327fvWiwWXHDBBfjnP/+JpUuXYuXKldiyZQsyMjLan+eDBw+GJEmdzn/NNdfgm2++wfz585Gent7p9rPPPhtZWVn4+9//3uX86Xke/zr/1UlcSU9PR2ZmJp599lnk5+ejoqICd955Z/vtgwcPRnFxMe6991785S9/we7du/HII490GGPAgAFwOp348ssvMW7cOFitVgwZMgTz58/Hddddh2eeeQYpKSm48847UVhYiPnz5wc9v+uuuw6XXHJJtwlCU6ZMwR133IHbbrsNlZWVuOiii1BQUIA9e/bg6aefxowZM3DLLbeE9bshJFGZzWb87ne/wx133AGj0Yjp06ejtrYW27Zt6/bSwW9/+1vcc889GDRoEMaPH4+XXnoJGzduxOuvvw4AePTRR5Gfn4/x48dDEAS88847yMvLg8PhwMsvvwxVVTFlyhRYrVa8+uqrsFgs3Qb5xxsxYgTq6upgtVq7vN1ms+H555/HJZdcggsuuAA333wzBg8ejLq6Orz99tuoqKjosl4BiSOxTFggwVmyZAkfMWIEN5lMfOzYsXzp0qUcAH///fc555wvX76cjxkzhpvNZj5z5kz+zjvvdEji45zz66+/nmdmZna5tTAtLY1bLBZ+zjnnBL21sLsEoOMTCNssXLiQn3rqqTwlJYXbbDY+duxY/uc//5m2FpKkpaoq/8tf/sL79+/PDQYD79evH3/ggQe6fY4du7XQYDB02lr47LPP8vHjx3ObzcZTU1P5GWecwTds2MA55/z999/nU6ZM4ampqdxms/GpU6fyL7744oTza0sg7M6xCYRt1q5dyxcsWMCzs7O5yWTigwcP5j//+c/57t27OeeUQBjPqIUxIYQQkuQoZ4AQQghJchQMEEIIIf/fbh0IAAAAAAjytx7komhOBgBgTgYAYE4GAGBOBgBgTgYAYE4GAGBOBgBgTgYAYE4GAGAusTdbkl+Ei5oAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -738,7 +737,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAHWCAYAAAACQD99AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUxdfHv5veSOhFQHoX/SFFQAKIIkVRAQFRmjSxIQoWioJSggIiCCJVEERAERVEUFB6ExCVLiC9tyQkpO6+f+Q9l7mzc+/etiQh83keHpLN7uzce2fOfOfMmTMuj8fjgUQikUgkEonkjiYguysgkUgkEolEIvE/UvRJJBKJRCKR5AGk6JNIJBKJRCLJA0jRJ5FIJBKJRJIHkKJPIpFIJBKJJA8gRZ9EIpFIJBJJHkCKPolEIpFIJJI8gBR9EolEIpFIJHmAPC36PB4PEhISIPNTSyQSiUQiudPJ06IvMTERMTExSExMzO6qSCQSiUQikfiVPC36JBKJRCKRSPIKUvRJJBKJRCKR5AGk6JNIJBKJRJIrSU9Px08//ZTd1cg1SNEnkUgkEokkV/Lhhx/i8ccfx4EDB7K7KrkCKfokEonEBxs2bMC///6b3dWQSCQcly9fBgDEx8dnc01yB0HZXQGJRCLJ6TRp0gQAZHoniSSHERwcDCBrmVfiG+npk0gkEolEkisJCsryXUnRZwwp+iQSiUQikeRKpKfPHFL0SSR3IJUrV8a8efOyuxrZwu7du5GcnJzd1ZBIJLeBkJAQAFL0GUWKPonkDuTff//F888/n93VuO3cuHEDtWvXxuDBg7O7KhINPB4P1q9fn93VkNwhSE+fOe4Y0Xf8+HEUKVIETZs2RdOmTXHp0qXsrpIkG3G73Zg9ezYyMzOzuyrZRm7adLBo0SKcOHHCdjn//PMPACAhIcF2Wf5k06ZNSElJye5qZAtff/01mjZtKoWfxBFkTJ857hjRB2TtsFu3bh3WrVuHIkWKZHd1JNnIkiVL0Lt3byxevDi7qyIxQOfOnfHoo4/aLofEXnR0tO2y/EVycjJiY2Px+uuvZ3dVsoXz58+r/pdI7EDLu3l1EmWWO0r0bd68GbGxsRgyZIjQy5GamoqEhATVP8mdCcV0JSUlZXNNbj9utzu7q2CK+fPnA3DGO0ee3Zzs4U1LSwMA7N27N5trkj3I5TiJkwQGBgIATp8+7Uh5P/30E3bt2uVIWTmRO0b0lShRAkeOHMGGDRtw8eJFLFu2zOs9cXFxiImJUf6VLl06G2oquR24XC4AuWuJ0ykyMjKyuwqm6NWrF4BbxtsOdO05WfiS6Lt582Y21yR7kKIv93Djxg289957Odqm0ATvyJEjjpT3+OOPo06dOqrXrl27dseMJXeM6AsNDUVkZCRcLhfat2+PPXv2eL1n8ODBiI+PV/6dOnXq9ldUclu5UzqqGXKygRZBAs0J0edvT99XX31lu4zU1FQAWZttDh8+bLu83EZeFH3z5s3LlStLkyZNwsiRI7F27drsroomZO/8dX8TEhJQsGBBTJ061XZZS5cuhcvlytZx6Y4RfYmJicrPGzZsQMWKFb3eExoaiujoaNU/yZ2J9PTlHkig5QZPX1xcnO0yyNOXkJCAKlWq2C4vt5HXRN/FixfRo0ePXBXDuX//frhcLuzbtw9AzrajZD+oXzkNHe+2YcMG22VNmDABgPN1TUhIgMvlwubNm32+944RfZs2bULt2rURGxuLM2fO4Nlnn83uKkmykbws+nJyPJseTtSbysgNy7t5FXpGeUX0EVeuXMnuKhjml19+AQD88ccfAG7Z05yIv0UfjSFO3IOAgCzJ5fSmk4sXLwKAIW/kHXP2bqtWrdCqVavsroYkh5CXRV9u8/QRToiA3BDTR8u7uQ26pzRwWYUG57wi+sgW5aZ+SRvgKE7O7jP3J3Rfc4Poo9UMp20AlXvu3Dmf7825T1KSJ7hy5YpfhFlOnpn6m9w0uLA4Kfrmzp2rzH6tMmbMGGzcuFHVPp1oq7nV09e4cWOEh4fbLoeec15JsUGeqNzUL1evXp3dVTCMvz19Tk122DKcbvvUtoyISSn6splffvkl1wRzp6SkYNOmTY6Vl5ycjMKFCytxDk4iPX25DydEH7tETLuCrTJ06FA0btxYVWZeFn2bN292pO5UhhR9wMKFC+FyuXKU1/PGjRvYuHGj6jUnnru/vO+5aXmXPHJOtv09e/agcuXKAIDx48f7fL8UfdlMixYtck0wd5cuXRAbG+tY5xo0aBAA4LfffnOkPBE5VfStX78eXbt2xbFjx/DII484mkw8L4s+9tqdOpXH6RjJmTNnOlbWzp07sW7dOsfKux34S/SlpaXhnnvuwbfffutouXbRE31O5qh0ClE97S5HHjx4EIGBgdi6dautckTkJtHnD08fK9DpdBLdOjj2zZI7np9++gmAeqe0HaZNmwbAPzPAnO7pa9q0KRYsWIAKFSpg7dq1uHz5smNl5wYRwBq9+++/HwDQqFEj2+WyAm379u2OBM+zg6AT7enLL7+0XQZRt25dPPTQQ46Vdzvwl+jr2LEj9u3bh+7duzta7qlTp7Bq1SrLn9cTfbSTmXaI5gT8Ifo6dOgAAPjvv/9slSPC3zF9ND7lVNHH2iQp+iSO8fXXXysN1SnRR/hD9FFHyKmiz19cuHABPXv29Ot3rFmzxpY38dSpUwgPD8eKFSsAAKVKlQIAFCtWzHbd+HqdPXvW8TIl1jl+/LjfRN8PP/wA4NZpPE7RtGlTW5sE9UQfHSGWk0SfyONuV/TRkXsFCxa0VY4If3v6qHwros/j8eDw4cPKsyfR56/NXFL0SRyDTYFz48YNR8v2h+ijjprXRN/BgwdVvzt9/QcPHkTz5s3x8ccfWy7j0KFDAIBt27YBuDXIOCGu+DJu3rxp+x7k1hQ4OY2tW7eiXLly+PnnnwHknpi+M2fO2Pp8bvP0+UP00YTOTh/fsWOHME6X7u/Ro0cRHh7u+Ek3dkTf6tWrUaVKFSXkwF8bOQhqT3pI0WeQzMxMuFwuR+NxcmtAd0729A0dOhRDhw5VjIsToic9PT1XDPwzZ85E06ZNVa85XW8S/FZPs9m0aROuXr0KAIiKikJiYqIiApwQffz1PvDAAxg2bJitMp1e3s3tPPXUU5Y+R2ej0mlJuUX0kffE6rPnRd8vv/yC2rVrIzk5WfH0denSxYGaOoM/RB/Z+IyMDJw9exbvv/++6fvZtWtXzJkzR/XaF198oRqTU1JSvCa+Vpk1axZ69OihPD8ru3cp3u7SpUtwu91+2cjBIj19DkKNngJvnYByIeU2crLoGzNmDMaMGePocVwhISFo0aKF7XJ88fXXX1v63MGDB5GamirMxm5nYpGZmYmhQ4eqvBB2YiUvXLiA2NhYDBw4EAAQGRmJoUOHKn/3h6cPAL7//ntbZfr7jNzcMKFgoWVUs1C6F+rvuUX00UBttS/xom/mzJnYvXs3tm/frnhm7HoTnYQVfa+++iqio6NtOyhY0ffiiy9ixIgRpuNtRZ62nj17eq08HThwwHpFGfr06YN58+bZ8vRReEn//v3x+OOPK6/LmL5cgD+8crlF9PGDkr9E34kTJxwbAMnAOpUK4XacPWnlFJnLly+jWrVq6Nevn/Dvdq5/27ZtGDNmDMaOHQsg6x48/fTTAKwJdYq1Io9PVFSUymD7w9MHAHfffbetMtn27g9PX05K1+FPwsLCVL/bEdPXrl1D9+7dhWU4cZyfqDyrsYK86GPFn5OCf/ny5ahWrRouX75sa7mYbY+TJ09GaGiobU8f9ZuMjAzboTesgBRhdRVCCzui79q1a8rPP//8M3788UcA0tOXK/BH4KXTAcf+gm9INPA7BXWqsmXL4qGHHnLkvpBByIneBCc9m//88w+ArBQw8+bN8/q7k3nVZsyYgePHjwNwRvwEBQUhNDRU+d1fnr6IiAhbZTo5yREN8v4K6t6xY4ehszhvF+yzBuz1zRkzZuDLL79UjgsDsjYEBQcHo0CBApbLZUlKSkJGRoYycDsl+ui6v/76a0cm/v369cOkSZMwZMgQHDx4EEWKFEH16tVNl3Pjxg2MGTPG67nYFX2pqalKLtqMjAxFPJmd7PAnm9DkkUfrdavQ99kVfSxO9nm2XlL0OQgNfE7O9NkO/8svv+C9997D0qVLAWTlbTIrDhYsWACXy4XExERVjrKEhAT06tUrx3oW3W630rE2btyI5s2b2y7ztddeAwC8//77OHnypO3ynMTJ2T0ZaN67MWPGDAD2vEhkTKgdst9hpR/wn+nWrZsy8wX8J/rsen5Yz4Hd/i96Hk4I8/vvvx9169bFO++8g2PHjgHIimd0Ig2OU/D3buvWrZg8ebKlsuiZ0vPu0aMHTp8+jYIFCzpi5/bs2YOoqCi8+OKLymtWy+VDTdg24MSEYvr06RgwYIASHwhY27U+Z84cDB06VAmHeOONNwDYF33sMx49erSya99qmfTM9+/fr7wWGRmp/Oy0M8UpTx+LXN7NBVAD3bRpk1cwqVVYI9KiRQuMHDkSTz/9NDweD2JiYjBy5EhT5X333XcAgNdffx1FixbFypUrAQBfffUV5syZg2+++caRejuN2+1WdYItW7Y4Wr5TedFSUlIcSaLqZAoQLeNx1113AbAnKKjNk1GJiopS/mZF/IgmMezg5MTsVySo7Yq+Tp06KT/bFX2i5+HEdf/555/YuXMnPvzwQ8sbLURkZGQ41l5Fz/+dd96xVBYNbhkZGbh48aLi5S5QoABu3rxp25tOMXa//vqr8hrtNjcL7+lj7T4r+qzc588++0z5effu3ZbqR+TPnx/Ard31ffr0AWBf9F2/fl35md1kYbZMEl0nTpxAYmIiHnvsMeVv+fLlU362015F7caO6NMKYZDLu7kA1lj36tXLctLX06dPIygoCMePH9ecOZKwYA2OEWhAopkUdQoa9Jz0MG3fvt1W5vuyZcsqP2dkZPg1WL58+fKOlBMeHo6YmBjb5Tj5HMhw8gaJBJodTx89E6ovO5u2MqhqXfddd92Fnj17GhoE/v77b6xfv17z7yKDn5MOixc9j99++83RFYSjR4/aLiMlJQXbtm1DhQoVULx4cQdqJX7+JUuWtFQWa9PYQ+Zp8E9LS4Pb7cYLL7xg6X6QvWdjTq1utmBF388//6yIx4IFC+L48ePKaTxGbeCqVaswevRonDx5Ei+//LKlOomgPk31oE0mdkWfVr+3OiGtXr26l4eUtct2RJ+ornZ272rVxUnRx24ANJKyxbcslOD48eMYM2aM6rXChQtjz549uO+++0yVtWbNGmRmZmL16tWaR2+RS9hsLBINHKzxOH/+vNJYnRQb9evXV32nUU6ePIl58+bhxIkTymuRkZF+jb2zOqAePnxYeERe7969MWvWLMv10TNK169fV2bcRtAyxrTUY8fTR8skbrcb8fHxqvto5Z5qXffZs2cRFhZmqA1Qf9P6flEAuxVPn1b5R44cgcvlwtGjRy1NJv7880+v17p3746jR4/i/fffN1WWVn9OTk5Gu3btlN89Ho9pL0VcXBw++OADU5/xhai+RjwTIlhPH9uuoqOjAWTd06lTp2LGjBk4deqUsuphFBLnrLgwO4FKS0tDWlqaSvSxR05S6iLi5s2bKo+VFpQo+t9//9V934EDB1CtWjXD9SUnBN0rp0Sf1gTRqqcP8LYlbNuyM87piT4rnj6tujg13u3btw/bt29XfpeePod4+umn8dVXX3m9bmUGSY01MDBQM/bAqugjWNFXokQJxXBdu3bNtIeGDItWbND+/fvRuXNnw+XOmzcP7733nuq1ggUL+tXTl5iYiDZt2piOc9FaLpk9e7aSdsQKeqKvZcuWpsoi48HffzLYdjx91D737NmD/Pnzq3YwWxFSenUxKvp8IfLAOyH6+M0By5cvN10mAM14VXZDglH0+syyZcuUn614Zf0R/ysaAD0eDy5cuGC6LBrcMjMzVf2JRNOSJUuUCY+ViQ+1VfazZD8OHz6MZs2a+Sy3RYsWyJcvn3Ldly9fVo6yFGG2/VMKHC2aNGliqjz+mfvb02enTHo+S5cuRfHixbF48WK8+uqraNiwoWlP3+HDh5V7L/qslY0cGRkZSE5O9run75577lH9LkWfQ2jFcdlR/oGBgZoHwtMM0Kqnjw3oBYCLFy8CyIqfYeMgfLFs2TJUrlwZANC6dWvhewYMGIBFixYZHiREjdKp5V3eiFDC082bN2PFihWmg8b1jgyijRJW0DNKZuNy6Jr5AchJTx/tEN67d6/lsgD96w4PD7dtCDMyMpS4VhYryzL8QMXGMwJZIs2st5NfHty0aZPys5VTboz2GSuej0KFCpn+jJV6HDp0yNLyMbuRQ+TpA255fa30AdFnpk+fjs2bNyMuLg6///67smFGCzoDm71uUQ45cijwnj9f+BJ9Zq+bb4NUvhMpW0SYrZ/I01ekSBGcO3cO999/PyZPnoz8+fObbu9VqlRR4hdFn+WPUNPio48+Up75M888g8jISF1vvB2uXLmCokWLer0uRZ9DaA1GVkQf6+nTGuBJZPryUBw5ckS1+5Fm9HxqBHYp1czB4ewSEQ16Dz74oOo99J1GOxovSIGse+LEzKd9+/aq30eMGIHAwEBVjigz6HUgO4HievWgcr/66ivs3LnTZ1l033ij7ISnj0SFyEBZiZthY694nPD0UZB4gwYNlFM+APOevuvXr3tdMy/6Vq5caXqDEJ0xDGQJCFZYaU0A9fCn6BPdM2pTVmNknQwv0RJ9rEeW0paYESzLly/HH3/8oeo37JnQ8+bNw++//26qrr6um0IWzMYM+hJ9Zts9P3GnODkSfXv27LFkT7QmR1a95cAtu8bHsAUFBZmyTSS0d+zYoSqXRStumuftt9/GQw89BABKFg6tutg9yvSjjz7yshlGJ7dS9BnASdFHBiAoKAg7d+4ULpsa3cb/v//9D08++aTX67ywciJvUWBgIFJSUvDpp5+qXqcObXTWJjIAmZmZtmY+N27cQN++fb2WTooWLYqgoCDlO80OOnrXZCdYWO+zVMcuXbqgbt26Pssig8QPbFY9fRkZGYohpGcium9WjP8TTzyh+TcnRB95Xr755hvVMrnZflqgQAE0aNBA9Rov+oBbA4UR+CXMvn37qvqplY1hopATEVbaquiZu91uuFwu05uZ3n33XQQGBqp2FTdr1kz1u1mvKZvomL0+frkLMNcHnnjiCdSrV0/VvllhMXPmTGUSbbTOonvJruKUL18eAQEBpsNP+GTXPGY93Lzoo34TGhqKpKQk1KpVC88//7ypMoGs+89u3CM++eQT02UR9Hz4iXlmZiZWrFhhOE0X9XOabIvGIZpc2XHy8J+/ceMGLl68aOk4OkAs+NmNdnpI0WcArZmi2U7l8XiU/HHLli3DwYMHce+993q9j2YBvhoD30m1PFrslnmrBAQEIDQ01CvQmAKTjRpWkVhghYYV9u7dKzwTOSoqCsHBwUpHNjv46Qkbp0Sfndku4C365syZgwMHDiiDitkUMz169FA8UHpC3Mm0M9OnT3dE9FEYQ4kSJVSvmxH7ixcvBuC9DCcyqCKvNY/H48HgwYOFS5h8YurHHnvMlFeKj43Vwsz1JycnY9GiRcJnkZmZidDQUNOCf9SoUV6e8bCwMFSqVEn53WyZ1P6++uorZcVk4MCBqFWrltd77S7v2j0xRXT/K1SooPwcHh6OqKgo033V1/hj1tPHep9GjRql/BwaGqo4IoxONFjS0tKES5EAMGXKFHTt2tVQOaxo0vL00cS/TJkyhlZjKGm0nui7fPmy1/cbhX327Nh548YN9O7dGyNGjLDk5RfZoxdeeMHQZ6XoM4DW4Pfee++hWrVqyqHKvmANOqU7EcWNWU3YSaKPN9h2juQhyICIPB6A8SUULdFHHcsKWgLE5XIhKChIuZ9OevrsLO+y9WDPYyREcWla8Mu7ZcqUQdWqVVG8eHEULFgQu3fvNjWYsEZd1O6bNm2KRx991PRAqNWHvvzyS/Tt2xdhYWFITU21lEsyPT0drVq1wu7duxEWFuY1GM6ePduwV+6tt94Svs7m6iN8La8BWUKUjrHjoUGAdvGvXLnS1Lmh/fv3N/Q+MwK9T58+6Ny5syokBLhlW8LCwhw5Ni4wMFAlms3GjFEdtm/frjwzrc1VRstmPdHsNWp93o6nLzw8XCX6IyMjTa92+LJB1A8SEhJ0vYg9evTA6NGjVU4EVqCQp88qaWlpqmfNTlZeffVVLFiwwHSZWqKPxcw4SvdSdJ2vv/46AGsbK7U8xjdu3FD6upWxRCT6PvroI0OfdVT0Xb9+HYsXL8bHH3+MiRMnYtGiRZoZqXMTWkZzz549OHjwIN59911D5Yg6vyg9BzVWq8KCF31OJBT2JfqsePrWrVuH5557DpmZmV6i74UXXjA8WIneR0YrODjYL6JPtFxhFF/Xxccm6sEnUKbn5HK58Mgjj+Cjjz5CTEwMfvvtN9SoUQOLFi0yVO4rr7wiXH5Zt26d6bgZQPtc4TJlygC4tVTVsWNHU+UCWSmVVq1ahWnTpml6P5577jlDZYkmSAMHDkS/fv28+pWR9qQnkKKjo3H69GnLy1xGVxrMtHvKgch73mvUqAEgSwA44eUNDAxUDYJmRZ+oDkFBQUKbefToUZ/xj8eOHVN53dnnpuWBNnpfRc/X7XZj4cKFyqQvIiLCtOjzZXPJFjzwwAO6+RDnzZuHYcOGqTx97LJpSEiIrRg0XvRZTR4u2sihJ/rMjHsZGRn4448/NM8wB6xlAUhLS1P6DlufxMRE5Z5amUSJBKhRT6Rjom/27NmoV68etm3bBrfbjczMTGzbtg3169fH7NmznfqaHInRGBezos/ssoTe8q7VfFgENXit2Y4V0VeyZElEREQgIyPDawl6xowZ2LNnj+kyyWtC9zUoKEjpXE4u78bGxpoqCwA2bNiAzZs369ajYsWKqt8zMzPRqFEjbN26Vfh+frBkDdPdd9+tDFh79uzB/v37NT1ZPFOnTtX8W3BwsClD5fF48MMPPwj/Ru3SV3ySHuzEkh04hw4dqvxsZxcz7Xjnl3ON3ANfA3nJkiUNLROLMHpNZkQfiT1e9JFXwsryrginPH0sQUFBmrZYz5akpaWpllvpNULLo2f0PmzYsMHrtfbt26Ndu3aK0IyIiDDtTfMVDkG2gD0Fg4fdkc9+PztehIaGqkSfy+XCmjVrDNczLS0NwcHB6NmzJwBjCYRFGFneZTGzwnX69GnUq1dPd/Oc2+1GkSJF8MorrxguF4ASd9+0aVMAWbHm//33n3INVvqTVZsBOCj6PvroI+zevRsTJ07EoEGDMGjQIHzyySfK0UC5FSMG00hCTUAsOkSHg1sVKXrLDWZ33P3333+q38mAaHkX/ve//xkqlzWmoaGhitdINDganV2y94niI1jRR2c0mr2feoOqlY7apEkTNGrUyGsGevbsWSQmJqJDhw4oV66c6m83btzA5s2blZQCPLzhZ0Ufa7hp6cvIkqQvjHr6evXqhY8//lj3Pjoh+s6fPy98fdSoUShdujSArKTgvjzya9asEc7mCxcuDMB7Jm2kDYgGcn73JztwLVu2zHDi79TUVNSuXRsANGOmAHPtnjximzdvFv49KirKVHqlOnXqCF/nPX1GJyOElqePUkzx6HlFRXYmPT1dEZBaY4BVj2flypXx9ttvq16z4ukbP3687t+NeKamTZum/MwKffbZhIaGeq3YmXHkkKeP+o/II2Vkqdys6HNihYvF7Xbj8uXLuhNiEeXKlYPH41E8fvfffz+SkpKUzVvshMNXwm2Cwi8efvhhU3UBHBR9LpdL2Hlu3LhhKQAyp2BEeIiy7IsQGQ/R2jx5+pwUfaJdvnrwIpE1IFpLdUZgB8qwsDBFQIgGEqODi+g+keizs4SkN6ib9Ryxz546O51xWaJECURFRQnzYdHnjh8/LixXz9MnMoiHDx+2fS6pUU/fnDlzMHDgQN37bkf0bd++HS6XS3XwOg9739ngdJ5Lly6hefPmwg1FWt4jJzx9gPo5ffDBB5oCn4cG08OHDyu5FEUY9fQZ2T0aHR1taqlv165dwtePHz+uuu6FCxcaLhPQFn1a1K9fXzNeUvSMVq5cqWxo0rLDVj2e4eHhXmNiZGSkIwmxe/TooWxm4YWuaHxgNz0dOnRIuYfsvfzrr7+8PmfGe8wv74rqYcSest+ptXuXxYlYdq3vt/I5ss38RjPi77//RuXKlbFkyRKfZQ4ZMgSAOi+lURwTfePHj0eTJk3Qvn179O/fH/3790e7du3QtGlTTJgwwamvue3wwaA//fQTPv/8c9VreoMOi8h4hIWFYceOHapYObOiz+Px4NixY5qir3z58l65+3yVx6PlQWIxkliYF33nz5/HP//8gyNHjni9V0vo6JVJUOoGtq5mjSoZK35WDmRttuDTeujBDpQUgM8L65CQEJVACgsLU9qA1gCj5+nTmgVb3ShEBAUFmRrw/CX6aNMJm+SYhzfUWoZb6/W+ffvi7rvvFv7NyD2gc7BZ+P6j9ZxE7XXPnj04c+YMunbtii+++AIhISGoVKmSrqfP6GDFp41h89MR0dHRuHnzpu2cezt27LC1RKW1vKvHxx9/LHxdJGL/+usvHDt2DG+//bbqJBoWq54+0XUb9fT5cjCEhIQo9+bIkSMYOXKk8jfRcjCbOxKAstLA3kvRJjszE0fe0yfCiG0W7fb2h6dP61QkmhAaXdkjqK7UZ2jlgIcmXWY2c5G9NxMn6Zjoe/zxx7F//34MGjQITZo0QePGjfHmm29i//79wh2KuQW+4bRu3drw1mi3263qaCIjERoairp166qCfc0GeM6cORMVKlTw2nFHpKenm4rpEw3SRkRf7dq1faZeYa8pNDRUSRYt2gH90ksv6ZZ17do1/P7776r7WrduXbz11lvKWcn8jikzpKenIywsTNMI0MHpRmC/+9SpUwC872NQUJDq3j/22GOqfGQizHr6AHMzYNpowRIcHGxqwNObxdNAYEX0scdb+XoPodWntCZM/KaaRx55xGdZLPzO3d69e3slOBc9p5MnTyIqKkp1nBoA1KpVC9WrV1d2PBoRTkafFT/wiuJ3yeuZnJyMtLQ0vPPOO5Y9VFZjuwDxM6e2ryXutJ6Xnl0YO3YsmjVrhgcffNBL/H/22Wean/v777+9XiPxKLpuI6IvMTHRZzwZK/oA9U5Z0WSP7x/kOWJtk6j9GBX9Ho8Hly5dQkhIiJKaRTSJMiJ42XqQTXEqpo9Fa3yj8szaKqo3fU7rpCfyzJrJ20f208xmMEd37wYGBqJBgwZo3749nn76aTRo0MDSjpechNns6yz9+/dXxVCJOgo1BLahkdA0aqxJfGjNbNLT000tsbNGvGHDhgDU8RR6ef98bb7gt7CzHki9Y89EtGnTBs2aNVOl0/j999/x4YcfqmL6iHXr1hnevQrcmqFSAK4IozNe3uCK4ssoATbBJp51u914/vnnvZbgrIg+M3kbR44ciYULF6qWEZz09FE5bDswavTo3uiJDr7PiQTo6dOnNfOP8Utkv/76KzweDx566CFD96BNmzbKz0888QRmzpzp1RdFz4lO+xDF1rH93Ijo8zVAX79+HS6XyytnpCj0hNrBtGnTsGLFCnz44YdeKx9GYev+zDPPmPosP8ENCAhQnhWdisCj9byMiNZNmzbhxIkTGDZsmPKa3jKcyBaTLRI9b1/Lu8nJyYiOjsaWLVt068mLPpb09HQcO3ZMZbP499LzZesoythgVPQFBARg79698Hg8aNy4MTwej3BJUstGdOzYEUOHDsW+fftU7ZPuld4KltMxfUZP5tCK/aVJlNbn6XUr4Tdmxne/5OmjI0juBLRmVryLV/Sgvv76a9XvWp4+QC1OaJZoVPSRUNCaoZiNP2NnXWT42brwM6jBgwcrP/saCNm6uFwuleF/7LHH8MADDxiuJ7+jdf78+V4DFb9xYfbs2bj//vvRo0cPn+UnJyf7zHJudDbJv6958+Ze7wkMDFTdH/4w+blz53rFpRndyGGlzkBWbGTnzp1VRsWsp8+I6GOFnlFBSQMPK6gp/yXB15PvC/3790fp0qXx5ptvKq+xA57WpNXoZha2/fTq1Uv4HpEIECUbF6GV/4xFNECz95sE1BdffKF6j8jTRwP222+/raR3scIDDzygum6zOdAuXLiAli1bKhtAWPurNdnRel5mxIHRVSv+WVSuXFnpj1aWd40mLtcTfWfPnkWFChVUZ5Dz94Q8uazt4McxwHx8m6/4bK0x6ptvvsGYMWO8NgqeOnUKBQoU8LqXrJ2y6unTeg6iUA0j0POgcCB2mZrweDzKpIXXEjVr1sQHH3yg/O6rP/vCL6Lv2WefxcSJE3XfY+XokdsNLcMBWdfEznh4I6Un6Oiha8X0AeLdZUYHVmqkWh3LrKePbfS0u5g1JHy9BgwYoPk3Hj7gnO3sUVFRXgkmL1y4AJfLJVz+5TuHaIMJiT56diEhIfjzzz8xb9483XrOnDkT69ev18xLSBg9SYT3JIniQgIDA1UCiRd99B6W1NRUVR2NePrMDHLUhtn2Y9XTN3v2bC9PBcWiiXbm+UIk+tjzbNn3EPzgwh8rCKjvm9auT6ObWdj3aIlwreVdI7Cejvfff1+YP5JvQ6+//rrquuje82cji4QYu9xP4sHsyUQlS5bEhg0bVAO22U0RqampqFSpkjAonr2fbLoUvi0kJydj9OjRhu81oJ2nlK8bu0K0d+9e7NixQ6mX1vKunqfPl12ldn/kyBFNAUXXyaZw4csV7VSnHfAsZr1Rvlb8fG2yo3pSvU6ePIm77rrL632srrAq+nx5fi9evOg1udSD6v7II4/g8uXLwh3tmZmZyrXx2mjv3r0YPny48jsbcjJw4ECUKFFCeOKPFn4RfT/++CNGjBiB/v37e11AZmYm5s6di2rVqjn+vYMGDUJsbCyee+45W3m5gKwM/BR78Pzzz+Orr75SDS78DOPll1+Gy+VSbUggg6yXHJjeI0qlsWPHDkPimHKgaQXo8wbVV5ms6KMlV9Y48OWxQeRaxvu///5DXFyc16YXdtZTtWpV1RJvpUqVlPNU+dgmEaLBhwwsiVe95bAff/xRWT7t27cvNm3aJDTy7dq1U342cj4u4G1IRPVgY/rIm8YbZV44JCcnq+4/75ETYcZLxxv3GjVqIDQ01FTaDrqmOnXqKJ7ccuXK4eLFi0rg+D333KPcS7P551jhzQ8uRmP6WNj7pifU/Cn6CF99lW+fonuXmZmJM2fOKM+Mlo7pvmlNCEU2qXLlyl65RY2KPirv9OnTCAkJUV33+fPnTTkCKPRC1A6pb919992oX7++8jrfNqZNm4Zhw4apUuT0799fNx2JEY8kHwNco0YNxMTE+FzetXLsYa1atdCzZ09lE86VK1c0+w+lXfF4PFi5ciUA7/5Aot7XZNbIM2efJ3/N/HnwV69eNSSk6HsvXLgg3BBBu1rLli2LhIQE/Pnnn1i9erXPcgGgRYsWALJiPHfv3o0dO3Zg3Lhxwvd26NDBUJmA+h4XKlRIuCSdnp6u6eljSUhIUOU8feCBB3D27FlTGzX9IvpatGiBDRs2YNmyZWjXrh1u3ryJtLQ0TJs2DRUrVsQbb7whPNbIDn/++SfOnz+PjRs3onr16qaUuAj2PLz77rvP6+/8TSbDUalSJXz//fcAbnnx+N24lECYfY9o1gJAN0M4j9ZsiTcCvmYyrHgkEabn6QNunXvKzkhYypcvr3RIFtZlXr58eZWnhtKYAObTrRBkbGig0hJ9Fy5cwJNPPom2bduqAu35QdXtduPFF19Ufr927ZqhY/jmz5+PRo0aKb/zHilA7ekLDQ015OlLTk5WpRRhRY6WyDDjVaHvJ4P0+++/o3DhwsoJBqdPn/Y566eBOTQ0FAEBAXj77bexdOlSVT9wuVxKvJSRI9O0vpPPJ0Y7UCnkxMg5l2wb4ZP2ElZEn5a3w+guVtE116tXT/W7lugrVaqU4gknW+PrTFHR6y6XS5mIEUZF3/Lly1VhFWxs16+//opWrVqphEJaWprmJp309HSEhIQoy57spJD6fGBgoKoPaO3kZld0ypcvryQRFmEkiH/dunXC1+0s72otp+7atUslUgMDAzFlyhThZJRs9IwZM/DYY4/B7XZ72ReahPlaDTASq8+2RbavA94i8JVXXkGHDh2UOmpB9+Hnn38WPovRo0fD4/GgWrVqiI+Px/3336+5EY8XnjTWpaWloVatWqhbt66lJPw8fO5IkUBLTU3V9PSxHD161HZ9/Hb27n333Ydt27bh2LFjqF+/PsqVK4fhw4ejT58+OHHiBN5//31Hv2/r1q149NFHAWTNtEQBr6mpqUhISFD904I1FqKZmZ6hJiVOD5e+hwwY64ql92gNLjNmzND8HqO43W4MGDAAXbp0AaAdW0SwqRuMLO8Ct2bxol1rerCevbCwMBQqVEhp/HTAO2Bd9JFg95WUmDbD7NixQ9V2eNHncrm8Om3jxo01y12yZAkWLlyI9PR0VWoRUTqMwMBARXDTcVdGRB87eLKDg9Y9M+PpoxNCSLDny5dPMebDhw9H6dKlleTrM2fOVA2gBHkN6L6NHTtWySXGQkmWu3btirfeeku3npmZmSqxERYWhl69eql21wLApEmTEB4ertzvhg0b+jwaku3bWssmVkSf1sBtdBer6Hnyyd2XLl2Kvn37ql6j3akkpun7SGRoiT6RyExNTfVq/wEBAShTpoxXTCDPww8/rHpPkyZNMH/+fOX7V69erdoR36NHDy+xQPX677//VJ4+9j6woo+9Nl5U0ftYe+dL1LF2RGuiroWep8/q8i7/7JKSkvDss88KJ0785peDBw96eUo7duyI4cOH4/nnn9esC6C/gQLIshfsGeJsTBrgPX5S3bQmc3SdbPiCXh1iYmJ0x/c9e/Z4LVuTHTUSHwr49sL37NkThw4dUsZdgq6dHVtYR4LeJForEb0Z/Cb64uPjMWfOHJw5cwb//vsvrl+/jrVr12LIkCGm89wY4fr168pDi4mJEbqn4+LiEBMTo/wTxSoQvvIUUWMQnelJxoUGaOpYNCCJRF+hQoVMPVA6BNoIU6ZMQb58+ZTNA5s2bVIdv8PDXq9oeVdkgMymXxDFW4SEhCAkJAQJCQl49dVXkZGRgV9++QWA8UBmnnfffRdTp05VRIbWQK2Va1G0vGvGld6pUyeljQwePBjTp0/X9GSxgi40NBQbNmxAkyZNVO8RLe+y/YkVFlqeg4yMDCXO88cff9Ss++rVq1G1alUAWbEjKSkpCAsLU0IzqG1s374dQNaSuCjQnbxrvu4b7bq8dOkSxo0bp7tTkRdQUVFRmDVrltfy21NPPYXk5GRlME9PT/e5S9xIW7Yi+rSW3YwOLKKlTP6zjRs3xvTp01Wv0WSY7A4v+rQGL5FITUtLE4q+kydPCvNZEm+88YbXay6XC126dFF9P9sHKJ0TT1xcnFIXsuHsJIoVfSx8fxB5wunaBg4cKNydy4q+s2fP4qeffhLWUQ+t5d309HTNNuVrojZ//nwA6nATSutD8Kcs1ahRQ5XHj+o2YsQIn8vYvtp+XFycKsaa3xDH3wN6NmybY8UPtRF2zNazJ9HR0boxfeyyP/sZvg56R6yyz0TUh9q1a4fKlSt7CXOqN3se8pIlS5Tv1RN9eumpjOIX0Td48GCUKVMGc+fOxZgxY3Dp0iV06NABjzzyCP744w9/fCUKFCigKPvr168LDfvgwYMRHx+v/BN5JQjWIIh28JLLllfxgPcMmp+hswaK/R6R90cLo3l5fvnlF7z88ssAbg06Z8+eRc2aNTUz8FPDeuKJJ5SBgjV2ZrPh84SHhwu37bMzIDo+jQYLq6IvLCwML730kpLzT+s4Oj6InTAq+lq2bKmZdJNo164d+vbtqxkHyJ93CXjnEGMHshUrVuDmzZuqHc/sTJgf5CgRa3p6uvK3zz77DIsWLfISFPXq1VPEAl+n9u3bIywsTFkyZ+skCoqnEAVfy5iVKlVCkSJFFO+OVt5JIKstp6enK6LU125CM5sNjCy33i7Rx6IXv6YHDUi0A5K+j8rj+zPluRNNitPS0rzEFD+oeTweHDhwQCWIjKbu4pOTU3lnzpzB3LlzAdzyymdmZuLll1/G9u3blXbAXp9ogsQisllUz/Hjxwvjtvj7TZNSLdidsvT8tZZ3gaxlbhGi9s0mh+/SpQtOnjypOpqNT7ysZeOsYCZERDSx1Gq3bLkixw0rrux4+kRec5Hoq1ChAv744w/hbnp2TPJ12glLYGAgWrRogZkzZyqhYAEBAUo/1PMg5ljR9/3332Py5Mk4fPgw+vbti8jISMydOxd9+/bFQw89pHn4uh3q16+vdMDVq1d7JUAFshpJdHS06p8W1PnfeustoYCcPXs21qxZI2y8vOhLSUlRGXy9nTYrVqzAf//9J1z+sgI72PEdVcsTdOPGDZQtWxY//PADWrVqhblz56picUQzEV+DKjswGIlt4suzKvqIe++9F+XKldM0NlqxXuRFW7x4sZK6QGRsVq9e7XWiAY+v9C9sLKWWQZs8ebJyLynIOC0tDR6PBx6PRzUz5Z8v9Ql22Xjfvn3o3Lmz14zfF5UrV1bi5AICApQ2oZcD0IiHNDQ0VHnW3bp1g8vlEsZIJSYmIi0tTWioRfBLZ5mZmZoz6tzs6dODjylLTk7G6tWrvWzN66+/jj179qBVq1ZeZYgGSz6p7Jdffonq1aurvL5GRTfbz6m93Lx5E926dcPzzz+P9PR05XsyMjIQEBDgFdfIe/quXLmCV155BX/88YcqJkq0rO2rHfGfEXn62H7OOgzovouWhUn0PfbYY1i2bBlcLpdyLyZPniw8j5kXB6VLl1a1B36p2q4NZTGzUVJk94ykF6MVEXaJ3+PxKOJfbyLBe/qM9FUtW1KnTh307t1bOeWJYO+nqN3onZKzatUqxMbGKmW4XC5Dnj6j2SL08Ivo279/P7p16+b1UEaOHIlPPvkEnTp1wpQpUxz9zlq1aqF48eKIjY3F/v37vTLpm4UapdZAnS9fPjz88MPCxssfLJ2amqpKayIK4icee+wxr7QLZna18fmhWGPLd1StctklHJfLhe7du6uu8/vvv8fo0aNx5MgRnDlzRnkfsWbNGq8y2baglU+MFQV82/FlsMgQ6MGnGmGvX0v00fPv2LGjkkDWzPIui690D6wwMXKaBtVNy3tZs2ZNr9dIrNDgTUbE7GklfJoY1uhpDZxGRR+/C130bBMSEpCamqqIXF+DNZ8bKykpSVmW5jGSgyw4OBh//vknDh8+rPu+jIwMtG7dGtHR0V5L9WxZhF4icFEf8OXpo2U/wPsUg+TkZK+lYOK+++4T2jY90UewaVIIvQF67dq1SlyoyNN3+fJl/PbbbwCgCvTXWvLkPX0FCxZURNULL7yACxcu4Nq1a8JrMXu0Gv9MPB4PkpOTMXnyZOzdu1dlF6tVq4alS5cKN7Sxy6m0LEs26bXXXhMeZeprXODjmLV23FvJpGHG0yd6L90XXgCz7yVPHbtb3OPxGNpMw3v6jBw9KYrpY+H7A/vs2c/ce++9qFKliqE0KvRMAgICFLuj91yNnFziC7+IPr2ccL1798ayZcuEDd8u48ePx8aNG/HVV1/ZOtcR8C36+PexkIEjY5iSkqJKJOyrTEBtfPjYJtpuLyI4OBjvvPOOsjSnJ/q0Aq9TU1N171+VKlUwZMgQVKhQQThrFe3gZeuhFY+o5+m7du0arl27htmzZws7hZGlcd47w/6sZRREg5VV0WemLRkR+jExMahcuTK6d+8u/Dt/yoHH41GSClNbICMSFhZmKkEyK/pYg8WWyWMkBEB0b0UirHr16jh58qTiifUl1IoVK6akZACy2pNWsHrv3r1Rrlw5zfAH4JawqFKliu73pqeno2LFioiPj9dc7mFF32+//aZ5ooSV5V125yKbDgjIek56tlr0vPglfxaPx4OzZ88K+4yep69Zs2bo06ePqo7ArbYwevRo5bULFy6oPH0iAgIC8NZbb6lyY9J1hoaGonjx4rjnnnuEItqs6BOtSHg8HhQsWBA1atTwen+7du2Ez4xtA2Qn7J6RbdTTZ8ZbvGHDBrRu3dqU6NOLrXv33XdV58ayY5ToO1jRp2cjo6OjVddrJDepr1UDo6Lv3XffxcGDBw3ZO7qG0NBQ5ex6LdG5aNEirwMJrOC3jRx6tGrVSnNbe06BDJevgVrUQOhhs54+tgEYyfXEGh92FxSgf+ZrSEgI4uLilPgdveXduLg4ZGRkYOHChV6pEuyI5suXL3sJU3YgMLK8y7/n4sWLWLBgAXr37i30/BjpYMHBwapB5Z133lF+1jJiIoNl9PQAPrWFL0+fr6U8FrfbjbS0NJQrV85wyg0Sfenp6V5GMDQ0VHVvfH0/+6yioqJU7VVrF6KRBOG+RB9bxl9//aVsSDLinWPLXrt2LQ4dOiR8X5kyZXDs2DFNkQaoB0q99FPp6ek+B1X27y6XS+h9S0hIEC7taJW9fPly7Ny5E4UKFULPnj1RqlQpZUCldnbz5k1Tos/j8QizDNAgdeXKFZQsWVKYLstXTB89GxpI69ati7/++guAOo7piy++UPqknkD78MMPVXF+lLGgdu3aALLimkWePtFuYZ62bdsqP/Oij+JQ9VZzRLD2h8YcX7vMfWFU9JmJx46NjUXJkiVNiT6tU0w8Hg/69eunSrfDij7RErLH41Haip7o4zdg6Im+xx57DMAt+2xX9JkR0bTJ78knn1ScJVqir3PnzrlX9AHA/fffn11fbQi68b5En2hw5D19qampKqPHHmWkBWvQKPUNodfYqcGRwWPjCkSdaM6cOXjuuedUh4eLduiZ4fDhw3jsscdUg5ToBAAePU/fpUuXlLQMouBpI4HiwcHBKkEyceJEpKen4/z580hLS8Nrr73m9RmRJ8foji52gLz77rt9CmnW2PgSXZmZmYYEBYvH41GSPvObSUaNGqVs+AF8L6ezhmnmzJmqAPKkpCRL50cCYtHHHgPFpyih5VWzoo/CEgg2vteIJ56970uWLNGMZTTyjPi2yy4LUV+PiYkR5hvTKvvxxx9H7dq14XK5MHv2bFSoUAFLly6Fx+NR2mhycrJXP2OFsNGwEl4AiMSKUdFHQmznzp3K39hJ75QpU5TziM145SpVqoTo6GhVvxK1cTbxuhbfffed8oz461q6dCmioqI0l/L16kdQ+/MVI+zr+fCiT8umBAUFYfr06coSuy+Cg4MNx/QFBgaaOmJPtBLDPme3221oeZcOViD0RB8tg/vy9LFjJOCM6AsJCUGTJk1UExB6rh6PR7MuBw8e1Nzd7otsE305HXqgvgYAUeOnGQE1hEuXLqnih2gpUs9osbE9W7ZsUS356AkCEhY9evTAgQMHVKKlc+fOXoMmNbZXXnlFuWZfy7tGYTuwkUBudlDm35+amqp0AJFotCL6gKz8SCVKlBB6N48ePYrevXt7leNyudCwYUMMHToUzZo1U/1NKzaO3Z6vBdsefO0EprQrZlPlkKdPawJA+BJ9/EDP5t1MTk42fTYn4WuyoZVv0YjIZMtmdzK+/fbbmDp1KoCse6CVzJWFv+9aqTusPCPeI6y1oxMwvkGCzsmdPHmy8uxEoo9NJMsLYxY2a4GRHJq+6kmJlM3k4xSdYerrO9jJiei7jB5XSe2Nv659+/ahTp06PvOC8pQuXRrvvPMOKlSooMSw+UrEazamT2/jUt++fZVzjEXs2LEDixcvVt5v1NNntH1SHKjI08fHYdN166V+u/fee1XPUk/00ZhAY6PWfapVq5ZK+LFhLOxnzHhOgawxm50oUVkvvviiZllVqlRRhauYQYo+Dcgg+JqltGjRAkOHDlW9RgKEBj4+xo3EhV7HmTp1Ks6cOaMsN7BiQiT6aECjsl0ul2p5A8hqKPwSEdtx6ExGu8u7BGuUjHR+veVdqhdfrt77eW7cuOG1VE6bTkRCt3z58pqDwObNmzFq1Cgv0acVh2PEa8IKJb2AfsCa6GM9fb7w5WmkMkSToqSkJNOxUYSW6Dt69CiaN28ujBccOHCgrjASlU2ir2rVqhg7dqySL+755583NPDz911rkE9NTTXkmWBxuVxKv/R4PLpxdGbPvR0wYICup49F74hBdpXCiFAz0j9DQ0MxYcIEn0megSxv6JtvvunzfVp1YE/zsAL154CAAJVNTUhI0F0J0CMsLAwpKSnKuPDvv/8K38efT65XnhGMiJS6deuiY8eOALLuHT92rVixQtg3jYpo2rwo8vTxoo8m0N26ddMsLygoSDV2P/bYY16eOoIXfXoT1n79+uHnn38GoLb1Vj19QFa7Z1cKqG35Oh/eKlL0aUCGzJenLzg4GKNGjVK9Rg2AjCtvFKlR6A2MwcHBuOuuu5SOy3YekbGikyfMNjg2mH3Hjh1YtGiR7eVdwqynT295F7i1c080EzMyqPzzzz9er5HBS05ORnBwMC5cuADAuMHkB3stT58Rzxd7XaLkoXx5ZsU5G9PnC4pz0YLKEMVAJSUlWfb0ifpbvnz5MHr0aKxZs8Zr6bBmzZoYP36810kcInjRV7BgQc2k3L7gB0otkZySkmKpL9GObF+TBaOij31OrKdPb1C+7777NL+f/V4nRd/Ro0d1j0EjmjRpYjj3n6gOJLDuueceZbnYDNRXDx8+jEKFCuHAgQMAskSfXiowPcLCwnDmzBnl9IqrV68K7z8tLfs65MCox8msZ4pd3qWct23atFFiW9k6GxV9ZMdEnj72NY/Hg8qVK8Ptdqvyk+qVSWgtX5PoIw8rm56Mx+VyKScwsd5D1t5ZEX1s7Ljb7Vb++QMp+jQwurwrgoyqaOAbPny40smMDL4kPq5cuYKePXvC4/Hgzz//VP5OAwq9z6whZHnhhRfQuXNnxzx97A5ts94T0XXoBXBbvW76zvj4eISEhCiG1NemC4L3BH/33XdKwk0WIyKIfU/nzp1132vF09euXTtl964eV69e9ZkCR3SONBEXFydMZmoEUZqDxMRETe+Pr+S4LGxf3r59O6Kjow0PSjx8e9MTfWY9fcAt0ccLKn6gM1p/VtzSs7t586ZpTyHBXr8Ty7uA8YkWoB9XqwW/mSw1NRWFCxdGw4YNTZfFizGKubYr+lji4+O9chACWcfZzZ49W7U7WYTL5cKjjz6KV199Vfd9VkRfeno63G438ufPj8GDBwO4FULA2jGj7YvsmGj3rijNlpF2z79Hq33FxcXh/vvvVzyYvtLJhYeHIzAwUCX62ATUVpZ3WU+f2+3GRx99pBk3acbmiZCiTwOjnj6CTV2SkZGBzZs3CwfX0NBQU6KPdfF/8cUXWL16tUr0kTihBu3E7GDVqlXYt2+f6c/xB0svWLAAHo8Hr732mqGkkmwnFRkLmpGdPHkSU6ZMUcUnWhF9RYsWVT2LkJAQxfgYfe686Bs2bBjatm3r5VU0K/oA713b/HvNiD6Px4PnnnvO0PJugQIFfJarJ/rWrl3rdezW8uXLDdXTSG4rFjODPy/kzexA5OGflWhp6+TJk5a95iS6+XJLly6Nw4cPY/369YiMjNQ9SpKFjRGlTRK8p2/s2LGG6+cPT59eag/+7Fa7ou/atWv46quvLK9o8HaWxEhiYqLlY0Z5UXL9+nXVhhYg6+zVu+66Cz179jTUV1avXu1173isiJT09HQlefKiRYsA3LLPbN+oU6eOoTKpDqxt0orps8rhw4eFR+s1b94cu3btUurhS1BSIuVff/1VcQ6xDg6znr7g4GAvr6HeyWX8OGsWKfo0oAZndPA/c+aM0nDXrl2LRo0aCZeOBgwYYGh5VwtKUkqQgSGDYXRZTS/NBHArvs8M7KHRREpKiuooIqMGUTRIUAzFzp078eqrr6qW+owMKqxAe/XVV5GSkuIV50O/66XrYNHy8Nx7772q3408F2oP9IxFs3z2vVY2CejFMjVp0gSTJk0yVI7e8i7LqVOnsGjRIs20DTxmU12Y8Q7xfdnMrkIeXjCK2gHFZVrx9EVHR6Nly5ZeG48iIyNRqVIlNG7cGDdu3LB1DYmJiaoB7oUXXjD8WbOePiP9UyvVD+A9kLIJe40iqoPed+rBiw/6/fLly16b5YwiEn08Via3vkSdmc0zwC1PHx0DR/Xkw5ratWuHFStWGCqTj4MHbvUxfnnXKCLx5mvcM8N3332nnNLBroyZFdFBQUEqm5yenq7br63YExYp+jQw6+kDsuKEmjZtqrudPTw8HOXKlcOjjz6KYcOG+SyTHwR57w81DpqxGhGSHo/HZ7C0XhC3Fv3790fXrl1Vr/FpB4waa5GnT+/UCCPGsFy5csrPxYoVQ2JiosojFxISApfLhVmzZilHjPnCqBE2IvrIcNCOa9Z40JIRpS+ZO3eu4p00Q7FixXDhwgXNxLH9+/c3VI6ep4+4++67UapUKVOG1qznxczyLO/pM7vDkoU/x1SUm44/4F6PkiVLKstkRGRkpJenz2jYgRH4mDEzgsKsp8/s5MTX543k0+Oh62P7ldUNRyJP3/Xr15GQkIAyZcpYKpNvj6JNYVZiZX09V7OnPPApW9g2dOTIEcXOdurUyfBSNz2ToUOHKitZoo17dkWfU1B6L9phzefaNAPfttPT03V1h93QKyn6NLAS01e4cGFDyy3BwcFYvXq1z2z+ALx2qB09ehS1a9dG3759AdyK/aGNHEaNgq/ZgtEdYiwBAQFo1KiR6jU+7YPoHGMRoqU3vVm5kQGLdl0BWcvxHo9HZbypM/Xq1Ut40oiI559/Xje3F+0wM/JcJk2ahHHjxileRnZwOnXqFK5evarkXRw2bBhOnDhhejC96667cPbsWaG3z0wsEj0fvdQyVpbgnIgl1YLvy3a+i7820TIcYWSX6OnTpzFmzBjVa5GRkV5t3o5Q5Te78CEoZkSfWU+fldhoFv5Z6Z1rqgXVmZ14mjlDloU/l/jmzZs4ffo0ABhecucx4ukzaj9ZnBZ9ISEhmp9ZuHChcnyclfZ0/Phx5d6KxgA+U4Ye/hR9pUqVUv1uR/Sxdv6uu+7CwYMHhZ6+9u3bY9OmTZY9yYQUfRqQITM7MJh17fpC5PEKDw9XOsQ777yDf//9V0lGaVT0+WqYVl3I/PItGULCaIOlXbQsdj19rDEW1cOKCAgMDNRNr2IkDQBRqFAhDBo0SHk2vKevQIECqtfS0tIsiz7RvTQj+ii5up7nyUpskz9FH19XOzvUhw0bpsqdyR8DyIYHmF0+I0Siz879YU+SINhzcs1s6mDfa0TUmlmG5kMjAGc8fSRwWcFOou/zzz/3uTGCZf78+XjppZeU35955hlld6hTGzn4Z//RRx9Z8pj6+owVT58WrCi1OolISUlBZmam1yrRggUL0KFDB8Nlao1x7ERnxowZhstjYa/T4/Gokppb9fS5XC5cuXIFf//9Nz755BOv9wUGBuLBBx+0VF8WKfo0sLohws7uWRGiBhQWFqYyYBUrVkTFihUBQHhMkhWcEn2nTp1S/e4rFQkhum67nj4AmD59OkaNGiX0PFi9Zr3vJtFnZRlJZFzZ78rIyPApAjZu3KhKDE6iTxQ07ys3IMvs2bOxf/9+XaFgxbvjT9HHeyXtfFdYWJjiOStatKhK1PCxvFaXEIsVK4YjR46oXrNTZ9Zz8sQTTwBQp53Qa//897LtULS0zWNmMixq9/xrVtoWiW/W00dLsS+88AKeffZZw2WFhIR4baRYsGABAOuxor7sj9WxhbWlevlPjaIn+tiJlZlnztYxPj4e/fv3VzaIWCmPL5Nl/fr1yjXw55MbhW1DVnfAE3Rd0dHRShsVLWNbtSM8UvRpsGbNGnz88cemP2d1Vq+FlqePGgAZigYNGuDo0aNeyw5WseoF4UUfu8z10EMPYeTIkYbKEd1Hu54+AOjbty+GDh0q9FBZWTLy9d00I7QSiyMycvxrvmbxjRo1Um0IKVGiBNLT05GSkuL1WTNLRxEREahWrZrue6yIaCfyQ2rBe+PsCkwaVIoVK6YaOFmRDUB4qosRatas6RXXZafOrJfk4YcfBpDVp0qVKqW7c3bNmjVKHjrC7EBnd6ktODgYmzdvVgZbK+1EJPqsphYCtPu9E6JP9JydWK4UPTezok+vDbJCzY4DRJRI2SnRl5ycjPDwcIwfP97yTmu9Z2w2BIPssK9wGCn6/EzNmjXx+uuvm/6c1okMVvEl+tgOSPF9RtEblJ3y9FF8B5B12LnRjisyRE6IPuJ2iT4zy7s8onvFf5eV5V3CSnyQGay0IX96+vjna1dg0mpAWFiYyovGJhfu3r275Xg20fOxc3/uuusu5R6Q19Pj8eD+++/XXZJ8+OGHvWyL2f5mRiSKvBzBwcFo2LCh4l2zch940desWTPDu/RFaG3UcUL08RvinEIkhMymLtJ79qtXrzb0PqOwfdSp0KknnngCCQkJtsrTesYrVqwwvdpG9fDVbqwmvOeRos9heGFSrFgx9OvXz3J5ImPJ5lqzsyuO3RnMd1Croo//3OXLlzW/Qw9fnj4+/5NZAyMaiH2dd6uFkSVOKx1WVK5ZTx8PK/rsBgQD+rvprGw6MDKY0+7ACRMmmCo7JiYGK1euNPVdevTu3RutW7dGy5YtcfHiRRw6dMir3Ypic4wiun9260yTKb2+bwSznj4ju44PHTqEv//+W1P0Abe8HXY8feRR4YPxzaLlIbO62YZsZ8uWLQ2dMGOG0aNHA7i1rM9iVvSxbZzNiMDjhEhj62bW1pHA3b59u/CUDX+IPl8nGYmg6/JVHyn6cigkHGjX5ltvvaUc5m5FoIlmZh6PR/keO94K1jg5Jfr4mRmbV9DMQEGGhTpCWFiYKqavW7duKFmypBLYanbgEt03qwHYet9N99ipZUs+1tSsCGDjkNiAeaNJVHn0liTsePr0TiTZsmULtmzZ4pUA2ghs+AO/09wsxYoVw08//aSI56pVq3odE2clnxzB9s/nnnsOgP12REIlJiZG6VtWBj+tvkybW1hvx/z589GkSROfZVauXBk1a9YUij5qF9T+rdwHunZ6Jna8fID28qHViTg976CgIOH12VneHTJkCDwej9ALZUf0kT0R2QEnPH2svTO7eYfuV926dTF79myvv9sRfXZ20fMYFX1yeTeHMn36dEyZMkXJgxYUFKQYSCvLaSLj6na78fHHH2PZsmW2luhY48QbWquNmhUhGRkZKu+c1i6/3bt3q3YRAt55EnnPXM2aNXH69GnFcJs1XEaCxY2iJ2bDw8Mxc+ZMrFmzxlLZPPxmFivnPBK0ZBcREYFNmzZZqk/nzp0xf/584d+stCEyfPwg8uyzz2LZsmX45JNPULx4cSUxrB2M5iT0BfsMjJw8YxT2/tHxa3Y9fWy/YkWGWUQ5727cuIFVq1bh2rVrKo9qly5dTAkW1hbRxKRkyZIAbnk77IhfEn1208g4nRKETbAvuj47p1EQTsT0saKP7mGDBg288kxaXTnRgo/J9QV5NV0ul6FVEzPYSYquVY/g4GCvI/PeeOMNxabYTcpMSNHnMNHR0Xj55ZcV48zOdtgt/kYRNVaXy4WoqCg89dRTlusJqAcQXjRZbWB6g5KWcalVqxZiY2NVr1EOQzLQvICg7yEPiFmPit1ksSy+RF/v3r1tH51D8GLIznXQZ5OTky0PogEBAejSpQtSU1Px+eefq/5mZVCk9BFsbGj//v0xZ84cPPXUU0pSVCdwatBmZ+DscUx2Ydt82bJlVf9bhUQTK/rsLO+SGKMyQ0JCkD9/fkUMWLnHrLihdkC7bEWxzGYhW2F3+VGU4YGWUa1AfVBL9DmB6Fnb8fSR+AkJCVGFixQoUMDnRi8jdOrUSVmGNxtz/emnn6rCi/glXjvP38nnw3r6Jk+ejFmzZgEAxo0bhwkTJqBAgQL49NNPbW06YpGiz0/woi8zMxPvvvuu6XJEbnO7M1TCSeFD6HUGM8unH3zwAfbs2aMsF/Gij77nqaeegsfjMX1SgZPXrifonJwRAlmeD/a0EKvXERoa6liMCJDV3vljvETnXPqCZvMPPvggOnXqhDp16mDSpEmOGtl58+YhLi7OsfLYQfCHH35QfqawDquwbb5NmzbYs2ePqbQ6ekRGRiqCykobIrsWEhKCq1evYs+ePaq/04BqV/R9+umn+P777xWvEbVZO6KPbIXd5UfRclv37t0tl0fP+8knn3R8eZfgr/mRRx5Rznk2CpuMnsaikJAQ5edixYrh6tWrtlOZAFljxvHjx3HixAnTjoigoCBV7Cp/CpWdMcBJe8R6+lhYEf3KK6+YPpdcCyn6/AQ9SOpkAQEBljotm0eIBlGnjmJiG9nw4cMtHb3GwxpjPtDeTExGcHAw7rvvPkybNg1///23l+gzOzsVle8UdevWVZ080rFjR+VnJ2M/iP/973/Kz1YGv6tXr+L8+fOOij4RVhKfVq1aFefPn8eTTz6JRYsW6R48bpVu3brhnXfecaw8rTRNdgUa33bo1B0niIyMVJKVW5lE0oAeHByMAgUKeNWNTThrFhJ9w4YNQ61atfDkk08qf6M2a0cA0YBtV/TxNuiLL75QeT7NQmfavvjii37bxc4LsV9//dW0UGU3b5AQCwkJwcMPP4zOnTtj165d9iv6/8TExCAwMFA5fMBJjJ66JKJQoUKmknnrQe3QSJJzJ5Ciz084laSZ7aTU2ZxwmwNq4TNixAjs2LHDdpmssWID7ceOHYsXX3zRdHlhYWGoWbOmYlyaNGmCwYMHKydCWIW99kmTJmHAgAG2ymMNSPXq1ZWf/SH62LpbEa8FChRA/vz5UbNmTQDwisVxihYtWlj6nNnYnexGS/TZXT50KoZHREREhCL6rHijWU+fCGqXVrw9JPqef/55r785MVERnXhjBd7Tx/Z7qwQFBcHlcvnd0zdr1izs27fPdnl0D0NCQlClShUsXLjQlvDlcVrssZk07Ig+AKaSeeuxe/duAFDGX5osGtn8ZAVnzwyTKJCxs3qyh4g6depg8+bNjgSxA/7JiaZlSN9++21b5dIAWL9+fa8zSq3ADkZOBfQT7GBgV/Q1btwYXbp0Ub3G3mM7Hstnn30WBQoUcCyhN4/TRxLmVLRm6HavPyAgAP369XPslB2+bFretSL6SIBopRZxYnlXdP9ef/11S2EyLNQ/nV7eZZcS7eLvjRyFChVyRKT6Ev92seIo0KN169b4/PPPUbZsWVSqVMnRsq2K8gEDBqji9SpUqODIs9Yib1jlbICW+5zewdSwYUPHyho5cqRju0r9DRlBJ2eRTnPgwAFERUWpYrnsir7169d7veaU6HO5XGjdurXlz+thd/k9N6GV1d8Jb/+0adNsl8EyYsQI5TxsGqittFGXy4Vz585phmzYaZc04InKGDZsGIYNG2ap3I8//hgJCQmKt9Dp5V1/iz4noGt2yhnhD9EXGhqK1NRU7Nmzx28Tx169ejm++9pqeU6LT19I0ecnSJw1btw4m2uijdY5uE4EjDp9BjEZWCsHrd8uqlatCiDrqLexY8cC8I/xZgdDf8flmWX+/PnYvXt3nvHyAcA777yDSZMm4fr166rXc+I9GD58uPIzDdRWNxvp2Qk2ltkseqLPDnTC0vfffw/Avi2ZPHmyahOXr2O0zCCyGy1btrRd7ksvvYRz585ZSiIsgp6zk8+Ksjz4I47PaVavXq2EsVgVfbfbTsiYPj/RrFkzeDyeHC1SRCxfvtzr7FAr0PZ6qwmPeSjfn9Wj0m4n5cqVw8svvwzA+VxegNpI8Hn7spsuXbpYOrM6NxMWFiaMP3N64uM0VD+nd5gDt9q9neVdf2QXALJ2x/74449o3769rXJYD82RI0cc7eu86PN4PMqk0g5RUVGYOHGiY5NRf3j66Pk7laWChZ6REzuLAeDRRx9VfrYq3vwxRughRV8eJyoqShUw/vjjj9ueYS1ZskRJ9nvw4EGvdA5WoLgpOycc3E4++eQT1bnDTsIa7Jwm+vIqokEvJ3r6WMhL7A/RR+RE0edyudCmTRvHBtvIyEjH4y79tbzrNP6M6fNHmS1atMDAgQO9kiA7QU7v70TuqGUeZ9++fUrSWqc5ceIEEhMTHS2zQ4cOys8lSpSwfdwRcCtoWit+KqcRFBTkeDwnwQ6GbM4sSfZBz4TikYCcPwhQn/Kn6MtJy7v+4MCBA36ZiOYW0UdhN3bPMb5dBAcHY/z48Y6WeebMGZQsWTJXtFdAir5cgRO7rLQoWLCgraPcbhc0QDmVozC3k5iYiKCgIL+m9ZAYhwx+uXLlcPDgQQA5f3n3dog+K0t0ert3cxpOLLmKyA3XDgAnT54E4FwasdwIhTDllmeWO2rpg+PHj6Nu3brKebfffPNNroulk+gjRZ8aeR9yFiT62CWpnD4I0PKuP3JJAlm54Bo1amT6cyT6bnesU04it1w7xVqzp0dYZenSpShevDj27NmDVatW2S7vdiE6hzonkztqaYAmTZrg22+/ze5qSPyEP7wSL730knKQvURiBxJOuUn0UZ/yl+jr1auXpc898cQTmDhxosO1yX3s3LkTLpcL165dy+6qeFGzZk1cv34dN2/eBODMJJRCVRo2bGjpnPrswgnR99tvv9lOFm2UnG2VTLB582bExsYiNjYWo0ePzjUzJYkxyJPi5JKZ3bNRJRKC4lZTUlJQtmxZHD9+PNcs7/orsa5Vxo0bhxEjRmR3NbKd2rVrZ3cVNPn7778BZB0YAOTtlQcn0tbQGfO3gzti926JEiVw5MgRbNiwARcvXsSyZcuE70tNTUVCQoLqnyR3sHLlSnzyySfZXQ2JRAh5oPv06YOVK1di4MCBjqWF8Bck+nKaRzIwMNCxVE8S/+Kkpy+3Qv08p0/yiJzV231w/vx5PP30016v//jjj8pmhPbt22Pr1q3CXY1xcXF4//33/V5PifNUrVrVb0HTEoldWrZsibi4OPTt2xdhYWGO7xD0B5RmRAosiVVI9OWW3cb+wKmznG8XLo8/D3m7TSQmJiqpPAYPHoxq1aqhW7duXu9LTU1VHY6ekJCA0qVLIz4+Xho+iUSSp8jIyMCff/6JunXrZndVJLmU4cOH44MPPvDrWbG5gerVq+PDDz9EmzZtsrsqPrkjRN/PP/+MYcOGISIiAuXKlcOcOXMMqe6EhATExMRI0SeRSCQSiQU8Ho+Moc9F3BGizypS9EkkEolEIskr5OxIY4lEIpFIJBKJI0jRJ5FIJBKJRJIHkKJPIpFIJBKJJA+Qp2P6PB6PsvNXBqJKJBKJRCK5k8nTok8ikUgkEokkryCXdyUSiUQikUjyAFL0SSQSiUQikeQBpOiTSCQSiUQiyQNI0SeRSCQSiUSSB5CiTyKRSCQSiSQPIEWfRCKRSCQSSR5Aij6JRCKRSCSSPIAUfRKJRCKRSCR5ACn6JBKJRCKRSPIAUvRJJBKJRCKR5AGk6JNIJBKJRCLJA0jRJ5FIJBKJRJIHyNOiz+PxICEhAR6PJ7urIpFIJBKJROJXco3oO378OIoUKYKmTZuiadOmuHTpkvK3jIwM9OjRA7GxsXjttdcMl5mYmIiYmBgkJib6o8oSiUQikUgkOYZcI/oAoEmTJli3bh3WrVuHIkWKKK8vX74cpUqVwsaNG5GcnIwtW7ZkYy0lEolEIpFIch65SvRt3rwZsbGxGDJkiGpJduvWrXj00UcBAC1btpSiTyKRSCQSiYQj14i+EiVK4MiRI9iwYQMuXryIZcuWKX+7fv06oqOjAQAxMTG4evWqsIzU1FQkJCSo/kkkkuzlwoULMq5WIpFIbgO5RvSFhoYiMjISLpcL7du3x549e5S/FShQQBFw169fR8GCBYVlxMXFISYmRvlXunTp21F1iUSiwY0bN1C8eHFMmDAhu6sikUgkdzy5RvSxmy02bNiAihUrKr/Xr18fv/zyCwBg9erVePDBB4VlDB48GPHx8cq/U6dO+bfSEolEl5s3bwLI6tMSiUQi8S+5RvRt2rQJtWvXRmxsLM6cOYNnn30WL7zwAgCgTZs2OHXqFGJjYxEeHo4GDRoIywgNDUV0dLTqn0QiyT4CArJMkNvtzuaaSCQSyZ2Py5OHg2kSEhIQExOD+Ph4KQAlkmzg4sWLKFasGFq1aoWVK1dmd3UkEonkjibXePokEsmdR2Zmpup/iUQiuVN54YUX8Mwzz2RrHaTok0juMNxuN37++edcsSOWxJ5c3pVIJNlNYmIiXC4Xli9f7pfyZ8yYgcWLF/ulbKNI0SeR3GF89dVXaN26NX7//ffsropPpOiTSHIm8+fPx2effZbd1bitnDt3DgDw7bffZnNN/IcUfRLJHcbly5cBQHVUoRM88MADyuYpp8jIyAAgRZ9EktPo1q0bXn755eyuhk/WrFmDTz/91JGyaBIaGBjoSHk5ESn6JJI7jKCgIAC3BJVT7NixAzNmzHC0zLwY03fixAm0bdsWKSkp2V0ViQGuXr2qygsryVk0b94c/fv3d6QsKfokEkmugwyW06LPH+TF5d3PPvsM33//PTZt2pTdVbmj2bZtmyNxra1atUKtWrUcqJEkpyNFn0QiyXWQwUpPT8/mmvgmL4q+ChUqAAD++++/bK7JncumTZvQoEEDfP3117bL2r9/vwM1yl1QiEheg+wR5Q+9E7lzr0yS67h06RJcLhf++ecf22V98803jp2tfPnyZSQlJTlSltPMmTMHLVu2VL1GYi+n1pklL8b00fK7XN51DrfbjTNnzii/nz9/HgBw+vRp22WHhoYCQK7YDe8UTZs2ze4q+OTatWs4ePCgo2WS7ZSePkmuxePxKAYwp7N7924A9ndOJSQkoGPHjnj11VedqBaKFCmCunXrOlKW0/Tq1QurV69WvUZHm6WlpWVHlUyRF2P6UlNTAdx6TnmNa9euYe/evY6WOXnyZJQqVQpXr14FcEugOeGxIdGX0/tTWloaXnvtNcTHx9sua9++fQ7UyL889NBDqFatmqNlUt+Uok/iFzweDw4fPuzXGeSnn36KEiVKKMYwJzFr1iy/BEiTB8XJaz5w4IBjZfmb5ORkALlreTcni74ff/wRLpfLsTrSwHLjxg1HysttNG/eHDVr1nS0zD///BPArR3r/hB9Od1zvmbNGkyePBmTJ0/O7qrcFv766y/HyyRhL0WfxC8sWLAAVapUwdq1a/32HZSrLScuJfXp00cVIO1yuQDYX0aha6VltJzM5s2bsX79esufDwkJ8XqNPEi5SfTlZC/KxIkTATg36JPoS0xMdKQ8EQkJCXjllVeU78pJ7Nq1C4CzQj8yMhLArWdE4QJkU+xAoo8mUzkVspt2r5lv53lpWdtfnj63243jx487WqZVpOjLRq5fvw4ga+D3FyQAnDB+POPGjfOLsLJrZMg45wbR16hRI1vxM6Klp9zk6aOYvpwoTghqj2PGjHGkvNvh6ZsyZQqmTp2KVatW+e07rEIDar9+/RQbaBcSfXRPc5Knb9++fWjZsqVwN/3ly5fhcrnwww8/2Koj4Jzoe/fdd1W/51Sx6w9vnL88fXFxcShXrpyjZVpFir5shIy/U4ZPBHm9/JG+Y/To0Y7O1p0SpmSk/OWiv3jxouNlulwuXLt2zfTnRANSbvT05UTR53K58Morryheow8//NCRcula/TmYOil6nIb6+axZs7BgwQJHyuRFn5OePvKmW31eb7/9NlavXi1Mln7q1CkAwC+//GK9gv+PU6KPjwm0YpdYUlJScOXKFVtliOBXOZwYi6hvOt1vNm7c6Gh5dsh5FkGDXbt2ITY2Fk2aNEHHjh1VA9q6detQunRpNG3aFA8//HA21tIcNKvwZzwTCQB/iL7g4GDbZYiEmVOePidEH1+Xbdu2oVixYraWZLU4evSo6c/oib7clKcvJ4UfHDlyRHnuU6dOdXx5iwYWp55PQEAA2rZtq3rNSdHjFKmpqXjzzTdV112qVClHyg4PDwfgvKevU6dO+OOPPwBY9/RRFgHRxh26F/6wVVbh20zz5s1tldeyZUsULlwYKSkpOHnypK2yWPiVHCdCRMgOOTG2seQkb2muEX0lS5bE6tWrsX79elSsWBHff/+96u+dOnXCunXr/Bof5zRk/Gng++OPP3D48GFHv8NJAXDp0iWcPXtW+Z06hp3Oxho7p4wWdbDExETMmzfPVlmsB8rj8SgbOpxOFWAVUbxRTlje9Xg8mD59us+4tZzm6Tt+/DgqVaqkOnnE6XQydK1OPR+Px+NlD3Oip2/p0qUYP3686jWnRCnZEbJF9MysXn9mZiZ+/fVXLFmyRHnN6sBNfUC0nE922YlQFKc8ffw9s2vraIIcHh6OMmXK+C22zYn+RM+YvYe0kcuOcPO3V9/M2JlzLIIPihcvjoiICABZYoPvJEuXLkVsbCwmTZrkl+/fsWOHKg+UE/Cir169eqhSpYqj38GKPrsNr3jx4ihZsqTyO4m+7t27my6LGikr+pzyfNA1L1++HD169LCVr4+9Z8ePH3fUSPNYEb1knNh75+/lXSMeyWPHjqFfv3545513dN+X02L6qK3QZgOXy+U3T58/RblTAsBJROLZSW8ncEv0UblWr3/06NF49NFHVa/ZtZ+8p3DTpk2KEHTSnli55vT0dHTv3h2nT59W7mXDhg0BOO/1cmrCzPdLJzx99IzZ1bcvvvgCgL0wLH+KvldeecXU5CbXiD7i5MmTWLNmDR5//HHltTp16uDQoUNYu3YtVq1apRhsntTUVCQkJKj+GeWBBx7Avffea7v+fH2A27O8O2nSJERGRppaRitZsiQGDBig/M4bbTJUS5cuNV0vPgmmx+NR8vTZhe/8dlK3sGW9+eabfj2mx47oYwWEvz19rVu39vkeuk+++pjTnj6PxwOXy4WvvvrK0mdppYD6SWBgoKrdO+H140XfjRs3LJV76tQp5M+fX/mdjcWitpSTkl6LBianRB9db69evTB37lzl3loV7KIj8qwu79J1s56+GzduIDY2VjkzNrs9fQcPHsSXX36JESNGKPUtUKAAateujWeeecZ23VjY1SIncVL0se3SyvickZGBL7/8UnkmTos+1rv32WefmfpsrhJ9CQkJ6Nq1K7744gvV7CMqKgohISEICQnBE088oZm/Jy4uDjExMcq/0qVLm/r+q1ev4tNPP4XL5fLa4WSWjIwMzJkzB0BWQLO/tsWT6Js+fToA4Ny5c4Y/e/bsWV3PKXUyK0aGPkvGbv78+co9tXsveLFjR6yzHX7p0qXK7/7w9NkRabfT02fEuBpNv+P0hIeM68cffwyPx4ONGzcabk8LFizAG2+8oSonICBA9XknxD4f05cvXz4MHjzYdDmrV69WCb3169cjNTUVZ8+eVcReTtrMI7ITTok+th0NHTpUaaNWr190DJnVgVsk+uj5kNfrdoi+X3/9FQEBAcL+S6toycnJqs+npaVh/vz5uHnzJpYtW2Z61eTEiRNer/lr17qToi8uLk55jdqombY0ffp0dO/eHWvWrAHgfMxyx44dLYcu5BrRl5mZieeeew7vvfceKleurPob2xA3btyIihUrCssYPHgw4uPjlX+0c8oMNDMbNWqU6c+yfPnll6p6a3kn7cI3NidnWTTztSP6aBD9+++/HasX3/nt5EPjB6VXXnkFQFa9PR6Po4NqamoqMjMz8fXXXxsSKufPn1cCo2+n6DMyQOl5WpYtW4aFCxcCUNfbiYkP7RIMCAjAkiVL0LhxY6xbt87QZ9m+QX0zMDDQcWHKevpo8Gdjx4zCP4ebN2/irbfeQsmSJZU+kJPyH4oGPqv31u12q9oL30/5ZV4nsLpiQPVkvdn8ddsVffPnz0fHjh0BaNtjmgjpeSyTkpJUYoKOxPz111/Rrl07dO3a1VS9RDbotddeM1WGFry9cMLesZtt3G43MjMzLeUSJWFLYw//2R07dtha2aJTq6yMvblG9C1ZsgRbtmzByJEj0bRpUyxevBgvvPCC8rd69eqhYcOGKFmyJBo3biwsIzQ0FNHR0ap/2QVvAP21e5HfMXbhwgXHynZC9F25cgWZmZmOXr9TYichIUFTjAYEBGDcuHEICQmxJFYOHz6M5557TvVaWloa5s2bh2effdZQfrUSJUoIPRpOL++++eabGDp0qPK7kRgfqpfo3rRr1w7PPfccPB4POnTooLzuxBJvmTJlAGS1yZ07dwIwftwZe7/IgxYYGOg1SFrZLPboo4/ixx9/BHDrOjdu3KicDcu3/6tXr+K7777TLZMXCsnJycokgJYnc4roW7VqFXr27On1ulVRFhgYqByNOGXKFFX7BGDb0yeyaZToHsjy0BndiUp1YOvCt0m7cXPdunXzeS/1+gEJm6SkJKXPsn2X2iydfGIUOxuJPB6PKtWLy+XC7NmzNd9//Phx/Pvvv5a/D1B7c9u2bYugoCDlvprpS9Q3tT77wAMPoHbt2l6TFzsYLSfnZ6/9fzp37ozOnTurXuvUqRMAoHfv3ujdu3d2VMsy5E4n2Jnf5s2b0ahRI5w7dw7Fixe39T18Q7CScyk9PV1llNLS0nD48GG0a9cOixYtQrt27UyXyXaCUaNGOebx6dy5s2Pxdo899pgwtgfIGnRotpWWlqbsojXKiBEj8PXXX6teS01NVYKFzS6j0P37/fffcezYMdVrduF3XBrxStAgofcsDx06pPo9OTkZYWFhFmrojcvlUtrBH3/8gQIFCgAAGjRooPkZkbc0MDDQaznqkUcewdmzZ1GiRAnD9fn111/x66+/KkuwQNa9oRRTvOjr2rUrVq5cqXv/eKGQnJyMatWq4fvvv1cSvueUDTL87mLCThvdtWsX9u7dK1x1sbtZRnTf2RUDOvPViK2iOrDX+sADD6je4+SGG62yqE3zcZ7Dhw9XJjZJSUlK/rvu3btj5cqVAG7dT1GuQT3sTDynTZuGl19+GVevXlViVydOnIhevXoB8L73tPHGzvjB9kOapFnx9JHt8RWzHBYWhjp16mDLli2W6suSmZlpyDbnGk/fnQbfMRctWqT8TI2NHxSdwIroCwkJUXYwAVnn0NasWVOp88KFC0277NkO9Pfff6tEk1Wvn8fjwaJFi0wH8Xs8HsXjwrJ9+3bNz7jdbqVjG/UksbC7oInU1FTLxp+MK8Vusq+ZJT4+HvPnz9f8uxHDoufpI8hTQ9g95ozNnZiYmIgpU6YAyBLYDRs2VHYjasHeL3ajkSgGyWq+sUmTJuG3335Tfj9y5AgA70GBPPJ6GzH455CZmen1zHv37u3IgOIv7E5MDhw4IGxj/ljetdLPgVv2jJ7Nv//+62Vv7HrlWSeCL9HHLy1/8MEHmDBhAoBbfbBatWrKcjFw636anUTYuS6Kh0tOTlbKYevujwmNqL044enTaofp6enYunWr4XK3bNmi+XyN1k+KvmyCDwr+/PPPvd7jj80dRred84MNuzTzv//9z+v9Zg/5psEOyPJYsJ3Cytb433//XXe5Xi94eOLEiShdurSXINaLN5o5c6byDI0GeC9evFgZzEXLOazoM/vs6f5FRUUpr1lNVdOvXz9069ZNc4Lw559/+gwTYHemJyQkKBsMWPhnYmeH2969e1XH2R04cMCQiFy2bJkwUJvNzC9qO77SN3388cfKoMW2I62JhJaQ1hN9vHBwu93CgdDKEV9utxtxcXGqOLbPP//ccuytVnu2K8pE13v27FllADx//ryt8lmsiL7Dhw/jv//+A3DrWmvUqOH1Pruij+33gwYNErZZLdHHkpSUhLS0NK/TLoxM4kRoXZeRWE62D9LPtPElPT3dL1kvRO1RtDzvC3II/PXXX7ZX61j0Yn+l6HMQf4iv5ORkTZFi1Nuzd+9eoYfq66+/hsvlEjaC0aNHY/Xq1T7LduqcUS3279+v/BwSEoK0tDTUq1cPLVu2tOSN/Prrr4WGjjL164kU8rzwHka9AXfNmjXKAGhkMPB4PHjmmWeUEAXRNXbr1k1J/mzFuB46dEi1PMoKazPQs9F7Dr6OFaK29+233yImJgZ9+vQRejdZrHr6rl27hpo1ayq/G92tvWvXLrRr107ZoS6aeAQEBCAjI8MrZMCX6Bs4cKBykgErTPjBlNBa1tZqgzdu3FClUwKyBlKRCLLiPf7nn38wZMgQvP3228qy5osvvqi7PK6HVns2MnCnpKRoLiumpKQIy6YJz4wZMxwTflZWINi8q3ri4bPPPsM333xjuW50DB0hsnc0qdKza0lJSUhJSfEKV7EaGyoanwBjAoo9QpT/fqteV1+IRB/1KTPHb5K9mDVrlqNx9HorDM2aNTNUhhR9BiDDxMfh8ezduxcvv/yyoQE7KSnJq6MSRr09NWvWRNmyZb1ep9MEtBrp22+/7bN+RoShHVgvVEhICBISEhASEoICBQpY8vRpCYqYmBgA+gabxIbV5QIjHip6D3lO6GgnHgoWNyv6xo0bh6pVq6oMzLlz5yxNWKi96+1WZDdgiODvJW1+0EuTZNXTx4t9o6KPRC39zxp8eo3i9mjTGKE1mIlg74XWYKUVE6qV0Fh0rzIzM4X91oroo3Y0a9Ys1eQ0OTnZ0U1XGRkZ2Lp1K0qUKKHZ/x566CEULVpU+LfU1FThPWK9ykOHDtWcBLNs2LBBEYiie3b8+HFlUkaYOTpxwIABqjAelitXrqiWU7XgJ0aDBg2Cy+XyGktEKwnUn315+pKTk73Ks/rMn3jiCeHrRkQkK/rYtpGRkWFoU4oZ/vvvPyQmJuqKvvbt2/ss5/Dhw5g1a5biuTcb6+0LvbHR6CYbKfoMQLOSli1b6r7vgQcewGeffWZoFpOamqo56zdjpEUNnBqaVkygr/IXL16Mbdu2Ga6DFVjRd/36dSxZsgSbNm1C/vz5LYk+rc0btOxBHXfXrl349ddfVe+hAdSq6DMy6yRvicvlQu3atbFr1y6h259NVm0G2nBCg+PIkSMBWFs+o8mN2aBtFi2jrieW9Hbm6cELoEqVKhn6HPVTGiBF/ZZeK1asmOp1M/ku2QFTa8ldyxbw/dvj8SA4OBjvv/++13uTk5OFedHMir6EhAR8+OGHmn9/6623TJWnx9q1a9GuXTucP39ec5KhZ4u0jllkRR/lQ/XVnps0aYISJUrg008/1ex/7733nup3s2lcnn/+eVPvZ9mwYQOioqJUS+wUt8ou7wLicYHaoRHRxzs4zObWCwwMxKBBgzT/TmL9gw8+0EyppeXpu3nzpq7NZXf8GuHy5csoX7483nvvPaENMDIuXLlyBVWqVEGVKlXQp08fxY47LfqcSPIsRZ8Bpk6dCsA77qZ3794qb5qZVBlGdtpYXVampSJ+dyjhaxv9M88842gANEubNm3QsGFD1eDHdtKwsDCcO3fOVHAroH2vyBiS0ahTpw4effRR1fmP1KnJyGzfvl1J92EEI6KPjGZaWpqSn4nfyAB47/oyy2effYYCBQqgXLlyALx3pBpZQqWdrhSTRtCORSNYEdDsSQpm4AcNX8vIBC/6RG2eJiCUCoYws9zF3gsto80PDlonalCdRVn4te65GdF34cIFxMTEqDabsPUB1KEZhC9PEJvuhGX16tWKd82Kvfvjjz98evqICxcuYM2aNT7Pfu3fv7/m8/32229VgthsP/V1n/SWXimXK3uMGT1bXvTp2W+97/B4PFi3bp1t0ed2u5XNISLS0tKwZcsWDB8+XHOCwSYxZ59HSkqKrs01MyEDbnm1V69erevp0+Pnn3/G4cOHld/pHmtN5qxid7MbIEWfId58800A3h1p9uzZKFasmFejMCr6tLxTduMVSPRpzaCy8xD2FStWYOvWraqBg12KCA0NxYULF3zutOTR6pi0TMEbcfZMWBLfZJDr168vFGRaGHleIu9lnTp1vF7jzxC1QnBwsHJPP/jgA7jdbjRq1AgRERFeg4MIGnz5OrOhBHfddZduGXz9jQoPK6KPH5CMXCP7XUOHDsX27duF300TkvLly6teNzPYiwZ63gsSGhqK9PR0rxxp/ACtJRpLliypGc5hRvRp7cJn7w3vrdy6dSvCw8N1l5eMxJdabfOi2FNRHNWFCxfQvHlz3H///cprly5dwpIlS7wE5759+zS/j7Ud/JhgN++anlgTPUd6jZ806PUjX203Pj5eV/RZOdqP0qsRaWlpwqTVLPQ9/PKuL9HnK96Wh93gYtXZwU8yrJziYQRfos/Is5GizwRabmM+szbfcOLj470a6aFDhzSN8SeffALA2sx3woQJSmLfK1euqM7mzEmwnjwnNsrs3btX+DoZL35AYb+TBJJWULgvjHTssWPHen0vDT6s+HPiLNqAgABFyI4dOxZ79uxR8rYZgZ1ha90PX9dstP5ff/21ynPhhKcvKSkJ9913n8/Psd/VunVr4VIhXQd/CpCZwUF0L9555x3Vvd2zZw9CQkKUVQWCN+Jag11gYKCyjMljRvRpLYGy18CXR8demk3cy7Nq1Sr89NNPqtfsHHLPQwMmKxI7duyITp06+WyvWjGsvIAKDAzEyy+/jPj4eBQqVMh0HY20K1Gf5D+nV05mZiaOHz+ORo0aaU4ieNHHig0r8X2ijSG+VjVY0cd7+vSW6vk2s3v3bnz88cea76d7kJKSokr7pFWeCP6e9O3bF4A4nIVWUszSpUsXZSc4zz333APAmP2Uos8EjRs3Fh42zxtB/sbnz59f2fWWlpaGXr16Yfny5T7z8Flx0Q8aNEg5TeDw4cPIly+f13vseJGMBLNqoRX0zN4vqzMtrbQU5PXUM+ok+saOHWvpXEgj95M8jmxsWLFixTBz5kwlyTNw6/qNeA+1jEdKSoqX99QMZMC+/PJLlVeYbee+npPRNlamTBnhDkct9u/fj/j4eGRkZOC1117DlStXvJ5ZvXr1sGzZMq/P8jtk2e/yFZtVuHBhDBs2TPndrqdP65n8/PPPqt/579EapPVCRZwWffySFf3Ob3IgjMYhvfjii3j88ce9XnMK0XOgROa+nn9oaKgqJRAhagczZ87Ejh07LB3btm/fPlWuTRY9Tx9/bdS2O3bsiCeffFL1N7fbjalTp2Lz5s2ax3/qefq0wob04Pseax+0+hKJW5Gnj4+vZ5dWeW9YvXr1MHDgQM26ka3V2hnLtl+tumr1MdE4/eCDD2rWRQ+9/LOUpcKI3ZWizwTPPPOMkt6BpUGDBqpTC0QD119//YX09HSEhoZqzsh5ROXs27cPNWvWVBmUKVOmCN2+p06dEsYUGBVWfPA6IM7RZxStHENGOpUeei5tGlyNePpWrVqlubtODyMdjerBGs+wsDD07t1bFS9mZOcsUaxYMTRp0kR4Biv7mtkjnozEhvFt0+PxoHr16sruUb4MLaNIdatfv76wXJ4aNWrgkUcewR9//IHJkydjzJgxXp6+e+65R9juw8LCVB5ms3m3HnvsMeV3u54+rVifyMhIVV+mtn3hwgV4PB5NAaWXlsSM6KMJIw87CeHrTm2bP7mFMBtY7+uzVs/ApWtg+wP1x8uXL+t+VpS7DhDbK7fbrZwOYZZHHnkE/fr1030Pa7vo2fLtYuzYsUhPT8c333yjJPtn60zPTKuv0woRnTXO2q3evXub9sCS6CPv3tWrV5Xv1rLfWsu7w4cPV35+8skn0bNnT1SqVEnJEMDfC19LnloTbDotB7i1idOJ5Vp/hFdprWgJv9+pL9WaMeR2KB/ZjBkzUL16dc0HRnF/gPaA4Muw8IjKmThxIvbu3ataznz11VcxatQo4c7A4OBgfPDBB6rXjDZcUcyhr7Q1emgtC7CDthXRp+edI2PDdwbWELACyYoX1MhnyLDwqWp46F6I2sqAAQOUFDRA1nOsX7++6jUgy5CzA5uZHV/p6em6om/ixIkoVKgQbty4oXqeFy9exIEDB5T8jkbvI90D2o0qapv169dXecB27typtM309HTh8xd50q5fv46GDRsq3h2jdaT7y/YHo+30/PnzyqH1LFpCPDMzE1FRUcpSqdvtRnx8PIoXL46PP/5Y81nqPeOxY8caOkHkxo0byvuqVKmiiu9jcwJqiT4tqG5WzpcV2VuttD++NsaRoGXrT/3Sl22+//77hfZQZKOtxLwR1K6MtK+LFy8qEwT++X/77beak2xW9GkJHorfJScH38fM7gine169enWEh4fj999/V/qFL09fenq66vmwXvx58+Ypu/6bNWuGIkWKeDlAfIXsaPUdNk0QLdVr2Qyjk8D77rvPVvvQQsu5IcIx0de2bVunispRNG7cGMCtm+orgB3Q3qlmNkmjaACkBsx3lCNHjngN/kBWZ3v33Xd9litCZERJ9BnJKcXDijvWaNDrgwcPVnUIo/F1Iu8EGRkt0cfCDkZam1/04Ms+ePCgV1A9CSR2GUIk+uhzokFo0qRJKtGYnp6OoKAgYdwm++xq1arl9Xe32+0VB/ndd98hJCREUyC4XC4MGDBASQdDXgAAykHnpUqVAuDtQdDy9tAzpmcg8shu377da3mG2klmZqZQ9OntmqP24stQV69eHcAtkcG+36iRL1GihOo+Ud2o/fOxlny7cbvdyvVt2bLF0iavtLQ0dO/e3ef7unXrpvwcGRmpsifLly9Xfuafra8dil9++SWArAn0hg0bsHTpUp/1JUTiQmuQ5uMueagNsiKV6q6XeLdNmzZ48803vZbeAeu77LUge7V48WKf3vKqVasqP+/btw/BwcGGQhDcbrdy3VoT5ooVKwLIEt2iU2nMCJcnnnhCCW8JCwtDuXLl8P777yuTCiMxfWfPnlWWMFn4TVsRERFYuXKlpteZZ9WqVXjuueeEf2OXpAsWLAgg62Qq0TjuS2x9+umnALLsAX/vjMQf+7I3ZO8dF30dO3YU/uvQoYNll3tOhtJeALcMRVhYGBYsWKD7ud69ewtfNyv6fAXjsmjtWKLBlA2ydsLTp5VYWg9WUBUpUkT5mQay0aNHq67L7Xbj5MmTcLlc2LBhg7DMH3/8EXfffbfX6xTLSMYtNTVVJXJIbHz77beq4HEjS1G8GOY7WrVq1byOWhIN1noeEiPiMyMjA8HBwUKx78urMm7cONSsWVO164wmK1qDKg069IzYHY4kRrVEtpZYoYGN6ssPLtQH+HtOdczIyFDdKxIYeveWjK6vfkDxbXR/jcQhseVrwT6bhg0bKhNL4Fa+Ra3vMTMpYb3yRiZQbP8IDAxU3UM2lpkXI77aGnl/Q0JCEBsbi3bt2qnO8ub56KOPlJ/NLIV16NBBN+6JxiiyCaNHj1YmAKI0H9TeK1SooFmPzMxMxMfHo0yZMsrExw4kbJ577jnVMiYLPUt+13K/fv3Qq1cv5Xc9b7Io3ISldu3ays9BQUFe7zMqdkNDQ/Hoo48qY0lQUJBXSqVvv/0WTZo08fosG9N39uxZL4fL1KlTvcaoK1euYPPmzXjzzTcNCVO2rYnqTtB4tXTpUowePdrrvXox41u2bMGzzz4LICu+kL93rJifN2+eMP7Q12RPa9IswpToW7NmDbp3746XX37Z658VEZDTYfM5sarfyjIFYGxHIztr1hN9/N+0ck9ReWwsnlEvhUj0UXlWlnlZw8HOrG/evKl4P9iOmpGRoZxcoZWgVcvIk3gLCgpCcHAwUlNTVSEIZFBef/111eeMxKrwgbiijsZ76kSdVs9DQs/owoULmuku0tPTVaKvRYsWyt98LXVRyhxfy80AlPQ5fO6/bdu2KUaTllTIgPlq6127dgVwy4tGfYr3StJ90xN9bLtq1aqVqjwAXkeHkdE1OnuOjY0FYHzDka8Bkf+73uDEpgDxeDymRF+7du2UnzMyMkzliHO5XCqh6PF40LhxY/Tt29fr2Rr1yLPtq0ePHprvY5fn2AHR1/cEBgbi2WefxZUrV9C/f3+vv5NIoufKesVExwqSR1srtRaQ9Sz/+OMPnDx5EvPnz9etnxYjRoxQfma9WfxE3tdJTfXr11e1ez3Rp+fpe+mll7zKserpy8zMREBAgHIPg4ODvZLSX716FRs2bMDGjRtVqbxY0XfmzBkv0Se6PraefFok0X3TSyXEjvlsSIForPW1klSwYEH8888/eO+997zuHWsPevToIdxp7Kvv0qTE8d27TZs2RVRUFJo0aaL617RpU+ESktMMGjQIsbGxeO6551Q3OSMjAz169EBsbKxmnim7sKrf14CqhWgw4JOgstd148YN1bIKoL28q5WQUjSQp6enG/I6iq6TXitYsKDXbHTatGl46aWXNMvTGrBu3rypdODChQsrr2dkZCjeFtYzyOKrkYeFhaFgwYK4fPmycKDml0xo5q93XBg/6zdzpBCLnjeK6lquXDnNEyYyMjIQFBSkiD52qcPXxES0bKZVn3fffRd9+/ZVnjV7zykWj0QYxdeI7gkbI9OmTRt4PB7lmDOt+tJ94//OniPKtita6maf0a+//qq6h1R/X6KvaNGi2Lt3L0aNGgUga+IUFBSEBx54QOl/y5Yt8zoz1Ve5/OCjJ2bcbreqr2ud6CGC3QW6efNm4fIY/10EL/p+/PFH5M+fH6GhoUhNTcWRI0eEx3rpXZvRXeRaHkpfYpqERcGCBYUb7thTcfjlXNFub7pfeqIvIyNDuW96Xkk2BIO9vn///VdlQ9md7FrtQuv1ggULqmw2W2+2z7rdbuVZiGwyfx12PH2Uj5bKDAoK0nQQNW7cWLVCwi/v8qJPNLaxYn/ixImqv/FjhdvtxqlTp5Tf+VycrOijsBUgK9SBTTMF6I8B9EzuueceBAYG6oo+nt27dyvnIYug3e1kDx339H333XdCNywAJTecv/jzzz9x/vx5bNy4EdWrV1eluVi+fDlKlSqFjRs3Ijk5GVu2bHH8+/0l+h566CHN9w8bNgxPPPGEMDeP0TxoorxDV69eRfHixX0eIK03eEVERGDBggWqc05feuklTJs2TfMzvIFhl5OoA7/77rtKIk9aOgGgOWBp1ZGNxbz77rtx/Phx1bI7GU7ewNH3sV4zHl4wGelooiVT1mhpJVcVeQi/+uorDBkyRPH00b1hRZ9ooGrYsKEivEReA5ER/fnnn9GyZUtMnz5dSRHD3nOatfPB06L2ybY3/rtYUdemTRvMmjULgG/R53K5VAOSqG9GRkYq4pIt09eEISQkBDVq1FDuZeHChZGeno57771XuQft2rXzim/1Jfp4o68n+jIzM3UTI+sRERHhlSqD58SJE8JE0C6Xy+sUkhIlSiA0NBQpKSmoVKmSMhawdo2/p2y8rdHTCag9Hzp0SGX7jHpmtWDbiVYKD4plY+vhy9OnJ/qeeuopAOr2y26woHtPR0Oy16DVLlJTU4VjSXBwsOamNPYM3M8//1zJB0n9lj9bmi83LS1Nlf7L6NnsHo9H5ekLCgryOfkgRwjr6bt06ZLX+cuiiaIo1Ifg2w+/GsOnFGNtMh83zcc9G40ZB7z7v167rl27Nnr06KEp+mhMY0988kWuSdmydetWZRt8y5YtVcJO728sqampSEhIUP0zihPLu2aDfmkmTcsSiYmJSuC3lQ0HPKtWrfLazs8icn3T8iftZjJzL/iGy87qqJzQ0FAlEWpGRobSIUQi4tixY16eUOLVV18FkPXc7rrrLtV5lcCtjscLuGvXriEoKEgx4CNHjsQzzzyjeo/I09ewYUMlnoz9jr59++LYsWPClBrsvZs7d67qbxkZGcLjroCsJJ1xcXHKRg5qm2xsn6it5c+fX7mfItEn8sRoeYoJuhfsBhVAbXzYkzy0ymXvxYoVK9CnTx8At9pMUFCQyljyMX3FihXzWqpnYQ1rSkoKTpw44RUzZTREJTAwEP/++69wVy7/XVqfZ/Hl6WPLM9Lvp0yZongf9XZZpqamomzZsmjTpg2mTp3qJfq6dOmCcePGKa917NgRYWFhyr2nSRv7Ob1YYz3Rx6bDCQsLw0cffYSqVauqcv/xy6e8J4e/r2zKDUA9URDdl5o1a6ri8qhN+hJ9dM2iMsmWUVlt2rTx8igB4rhRvl1Q+b169UKbNm28Tg2iUBaCtZmsU2bBggVKjDe955lnnsH3338v/F4qMzo6WnnNzBnCgYGBKtHna2mYxj3W00fnAbOCUTT26HmT+QmJSCBNmjRJOV+ZjemvUKGC6n38eCQqS2sVw6inj9538OBBTdFHQvi2pGzxtQPLaa5fv640upiYGNXGEb2/scTFxSEmJkb5p7eExyPy9Jk9V0+rsX/xxRdYtGgRjh8/LjQc9erVAwA8++yzyuDas2dPU98tonv37qrEnVeuXNHcMLFlyxYsWrRImR2R6DPj9czMzNTc5MLeSyozMzNT6Vwi0UcnAfAUK1ZMMVyhoaEICQnxmsVpGeo//vhD9azvu+8+r2Sk/GcSEhKwdetWVVoLICsb+8yZM/H666/j/PnzGDJkiOrvrHjkjynKyMjwGV9IGznIELKiTyQ8oqKiHBd96enpOH36tNdyGvu8WENN5emJPhbW08deE3kobt68iRs3bqBNmza6Wff5M4jfeOMNr/foDe4sQUFBiI+PV3m5ibS0NJUXQOT9YZfwAN8xfez91mrzLA8//DCefvppAN5JcVno3v7000945ZVXVEtdJIzYlYgiRYogJiZG2fxDAw47aPHtjk32rGcv2SXP33//HW+//bbXe+iUAyIyMlKVLJ5vv7/++qsqJyrrbWcFDEG5IglqD/Q/WyfKiMAu7/JiafPmzUo/I5vWrVs3VKtWDYcPH8aIESMUzyL9feXKlcrn09PT8eabbyp2gC1ftJM4KCjIdPopek9ISIjSB/nroDKNnjDCt2c+ps/oiR6sp+/mzZsIDw9XxXaL2hPfBuh0K8Bb9IlsZP/+/TFixAjs27cPjRo1Ul7nE+Hz91Y0PrFL2iz871qTRHaTm2jF55lnnkGpUqWwcOFCZXLmV9H37LPPes20eJw4XosoUKCA4pm7fv26soXa199YBg8ejPj4eOUfa+R81Z1tqPTQ2CUjnrS0NK8lLy1F36NHD3Tq1AllypQRiqjMzExcu3bNUi5ELZElYsCAAZrL95UrV0anTp2UQeCBBx4AYE70ud1uzfeLRF9GRoZyD0WdSqt9nT9/XnleZMz4tC7UiUQiOykpySuViN6xP7SLlY85IU8pud5FGf0Jth7Nmzf3MlBsOAORmZmJ4OBgxdAZEX2iuBZCJLxEr7Flp6WleU0UPB4P0tLSlB2AFBAPQPHI8wZbJHyOHz+u8vSx38senZSYmOjzvF32urViZIzaKz1x2LlzZ9WmKbfbrRL048aN8zo9hv/eoUOHqj7PXjfvURXBCk29pTQj57yyny9VqpTKttLftERfQkKCSjTqeWFY0acnCtjVh8DAQJX3j7zD/DUQrOgTeXV520T3kf5n85126dIFgHp5l3+OERERSh2ee+45NGzYEI888ggAoFKlShg+fLiXKGT59ttvMX78eGW3KD9+8PeJlk4prs1ICBBrJ+n58N9DNsCq6OM9fb52onbo0AG1a9dW4tRZ0ccuMRvx9LHef972aYV3uFwuVK9eXXeSwofriMQWK3RZeH1CfYZP30TP5s8//xSu+pAzonPnzj7zCLJYFn0//vgjRowYgf79+3s19szMTMydOxfVqlWzWrwX9evXxy+//AIgK56A3UGp9zeW0NBQREdHq/5pwTZ8l8ulmtXTQ9QSMEFBQWjUqJHXQGRkeVdrOeapp57S3KzBwi6TAPBamhQxdOhQvPXWW7oJXsnwPfDAA/B4PMq2e617cPLkSVSoUAFXrlxRlkAyMzO93k8dgO0Y1FnYnZlmz6KlwP1atWoJOy/dZ63ga170sRtM+GfELx0Ta9asAXArDksv3oQlIiJCMXSElmc9KChIqQ8r+v73v/95LSNFRkYqho4+ww7SIuElunfsZqn09HSvPFdHjx7F8uXLlbN727dvj+3bt+Ovv/5SvoMvV3RcYLly5VSnKLB1pR2P165dw5kzZ3yeZ8l+9p9//hG227S0NMyaNcvnqSx6E50VK1Z4vfb444/j6NGjePvttzFw4ECvWDnefrIDF38IvK8D1wH1c+Q9fexOUSO7+MmGhYeHo0CBAqr7fOLECfTv319T9PHL33qDKCsu9ewQuyEnICAAYWFhKFy4MFasWCEUley9ZfuTaJmcf668p4+1UdHR0XC5XCrRx9uo8PBwpZ8VK1YMmzdv1jwLXa9NsWdhs4hEn8vlwqRJkxAVFWXIZpLnODg4WDmBiV8pM+vp48e5gIAA5dkHBgYayjXJnmfPij5RjkUWvTZmVPQReqFL/MYWO6Lv+vXriI+P91oyZ5/vzJkzdetK/cfIvbUs+lq0aIENGzZg2bJlaNeuHW7evIm0tDRMmzYNFStWxBtvvOG1ZGWHWrVqoXjx4oiNjcX+/fvRvn17Jfi0TZs2OHXqFGJjYxEeHu6VosEKbAf766+/VAKOGh4lrcyfP78iHqpWrapKNWJm9xmgvdSjFd/Fw89gjaRWGTNmDMaNG6cb/6Pl3dAylIsXL8axY8ewfv16FC1aFDVq1FB2crFQyg+2HHZ5V8/Tp3c/69evj0uXLqFRo0a6nZeuWSQ6AHHHZ+9TaGio4gXk60jB2dQRS5curSzt8fF/LCT62E6vZcCDg4OVNkOiz+VyISIiwmvmGBkZqQgxgm3nIiMoMqJsygXR4Llu3ToA6qXIevXq4d5779UUfcWLF8fYsWO9yqKgd170EZs3b0ZCQoKmh5pgl59PnDghfK6pqano1auX1zIfj56nT6u/lS9fHmPHjhX2MV70sfeGX941crqKnuij3daAvugje0aTO2rD/ID16aefqvrhqlWrFC8Yv1FMT9iwos/o+deBgYFwuVy4dOmS12SXYO8te+9E8dy+RJ/L5VJ+joqKQmBgoEr0xcXFqT7Pevp8eZH1vKAkKPjnlZCQgBEjRiiTSbb+oaGhymYoPUhchYSEKM+af24nTpwAoH2+OQ9vlwMDA5Xn63a7VRNoI6SmpiI1NRURERGqvmE3po/NkCDSKnoC8q+//lKOfQPEok9reXfUqFF4+eWXld+TkpKQP39+r5haduXI1wkopE+M9B1bGznuu+8+bNu2DceOHUP9+vVRrlw5DB8+HH369MGJEydUBsYJxo8fj40bN+Krr75CSEiIkpIgKCgI8+bNw8aNGzF58mRHvovtYPzsjISVx+NBZGQkXnrpJeWB8eKB7QB2RJ/RvEj8co6vnVIsevXT8ojxAyB59MjAJiYm4urVqzh06JBQ9FEnZY0ivefKlSuKARKJHn7X5LRp05Q8bcAt75zIOCQnJyMpKUkpn43faN26tVIf0UDFdkDW85GamqpabiKhfurUKRQqVAgRERGK95tNyMsj8vRpzeCCg4MVY8Z7rvm6kwBISEgQevpEIkAvhAEQPxc9UURxtKJYM9FZz5999hmArGvRSkAOiGO0WNhlRjZFkAi6b1oDtZ54ES0b+vIo8H2bF328p49NnOsLvUmfqL/TfaT2ERgYiDJlyiibXkQeVbb+3bp1U3JnssmD77vvPt2Bi62nGdHnC5HoI6HIo7W8y34PTdoiIiIQGBioiunjCQ8PVzYxaaVdIthNAzzTp0+Hx+Px6p8XLlxAmTJlVEunxJUrV1SbYHwREhKiOC/4tFvUx/l2zCeHJkQxffR809PT8dFHH+HHH3/EoEGDNCfbLDSxDA8P9yn69LybVP+VK1fC5XIp8elLly4Vevf1RN/06dOVpXrAW/S5XC6l/fD1LFy4MKZMmeJVpt7EwJfoCwkJEabWEWFL9MXHx2POnDk4c+YM/v33X1y/fh1r167FkCFDDD3MnIye6KMGTI2bHcB4o8jnRwoICFA8ISK0DIjR4FfeyJtJomxF9IleT01NVZaR2CSsBw8e9DLUdO9EZ+G2bdtWiWM0slTRr18/VSA0ITIOSUlJiI2NVWL93G63smGmZMmSXsu7LHqijz3KigaZhIQERexMmDABnTp18spKzxIeHo709HTVM+cTmhLsjj06zkcrTojelz9/fqHoY9vquHHjMHz4cM34WD30BuNPPvkE8+fP99rMAPjeGCXaOGH0s8Ctg9p9iT5fO9LNevp8iT5qa9u2bcP+/fs1RR9tbBLlwlywYAGmTp2K8ePHq8Jq9ES7SOSzXi3i+PHjSn8WiT5fZ6cCwI4dOzTrAagnp0bPRDYr+tifL1686HWSDf/cn3zySfTr10+VzuTdd99FoUKFEBAQgKCgIJWnjyciIgL16tXD0aNHNT2RhMvlwtatWzX/fuzYMWFS4AoVKij93GoqMSDr2mm5WuuITT7EhH5//fXXVfHKep6+9PR0REVFoU2bNhg3bpzXEaEiWNHH9i+Rt1Zvd/t7770Hj8ejCDzacKXV36kfGjkVRiT6tJZ3tbAj+lwuF6Kiovwr+gYPHowyZcpg7ty5GDNmDC5duoQOHTrgkUceUZY2czNkEPv27eslYFlPH6AWfXzcA+t5JE+Xr6UoEXpr9ewOXN6zJwpw11oq1mswWg1f1Bj1BCp1hDp16gC45ekTGc5Tp04p8SVmY/pYtEQfezSd2+1WpfAwKvrYgUdvuYySS5cvXx6LFi3SNdC0y5aeebly5TSfTXBwMN5//31s2LBBEYasl4aFFZq+PH1t2rRRxX+ZwZco6tKli7A96RlHkUFk04mIRF/Dhg1VZ86OGDECPXv29LlE6stIi54dtV/R8pJR0Ve3bl1Uq1ZNdS1XrlxRPk+hDiJv4nPPPYeXXnoJAwcOVLVPOk1EhKi90nPRGmREkwCR6OPFkK97ytot/lnTpjGtuuohajcejwcXL1702njF34+wsDBMmzZN5UV+5plnFA8Rv7zLQ+OCKEWL3vtFHDx40CuLQFhYGB588EGhp88sRoRJy5YtVb+fPn0aQNZEjs0HKxJ9WilFjKRNo/5K3qybN29i5MiRaNasmdd79ZxN33zzDVJTU5W2TTF0WvctODgYgYGBhpbJReck+3ou33zzjapt640fohNjeKKiogzF/FoWfd9//z0mT56Mw4cPo2/fvoiMjMTcuXPRt29fPPTQQ4bX/3Mq9ADYpJaEnujjPTjsWZqi5U2j6M0CtI7xAeCV0BLQboR09irBuqCNePreeustAPpxR4GBgarUMCLRJzIEdkQfLwjef/99rzqyO4vZAU9kDNnnzeZv0uu0vnaXshQoUEARfaGhoYiIiPDafczWLzo6WjW4856+OnXqwOPxCJdA09PTlbLZ+puNu2Gx2sb1Bh7RvWWPWRKJvs2bN3vlPzx37hy2bdvmlVHfaD0A8fXRYCbqW0bPuqa+xF5LixYtcOzYMQC3+pUZ771WEmJAe4c3oC36RN8tEn0ZGRmq6/blqWD7FF+vUqVK4fPPP/f6jJGQF9Hk7eTJkzh79qxXfzB7di4t72oto5o5N5ivI89XX33lZbOKFSvmlQ7FKkZ2rkdERKg8tloeWdHyLuvpYzFiK9gd/EBWWxk2bJiwz3fq1AkrV65UZa1gz3lmRR+hdd9cLhcyMjK8NliIVl3S0tLw1FNPKUmr9ZZ3iaefflqVBsjIJgw9IiMj/evp279/P7p16+b10EaOHIlPPvkEnTp1Eq5b5xYobYLIiJOBoo7CdkZe9LFxSnQOoR58QlEjsHXkRR/7N5oZGTEODRo0QL9+/ZTftTonXc9LL72ENm3aANCfvaWlpaFgwYJKPUUxfaJB8vPPPze9KYbgrzcyMtJrRuTxeITZ8EWD1bRp0zB27Fi43W7V8XB6dTJzNnVQUBDS09Nx9epVFCxYEBEREZr3VG92T89MZHzousaPH4/8+fMjJSVFdd+1dhnqQcuvRs925tFbouUnJDxGBzwqR281wpfHROTNS0tL01xaEiWnZlmyZIkq/pm/DxRIz3r6tm/fbihXakBAgJd3buPGjXC5XMKUVVSmlkhzuVxYtGiRctIEAOFyc3p6uql2wNpFXkyEhIQI28b999/vs1w2XycPL2CpDb3xxhvKZhQ9aHmXTUlkB732L1raJa+WXU9fmTJlfMbuEqw412ojvK1iPX28bX/zzTd9fidN+I0IRJfLhVatWqkmCZ07d1Z+Fgkrs2JZa+d/tWrVlFU8l8ulhDbpTXjY8Zo/IUQEvzmP5cknn0TNmjV9lmFZ9OldSO/evbFs2TKvZLS5CfJEiR4wGSiKS2IDzLVEX9GiRb08fbTEyaJ3QoYWbB2pczVu3NhrU8vKlStx7do1Q438vffeU9XVl6fP7XYrMTJaXinA26CLRB+JRx42BYRR7wmg7tQNGzZERESEl+hzu93CeCYRRYsWxdtvv+2V2V9vkDMi+h5++GHMmzdP2al64cIFFC9eHGFhYaoj67SujSDDTO2CPBqi99IO4w0bNqiWS81664oWLaoIF6teWb126StRtdFE6eQ10Jt8+eofoiWk1NRUREdHY8+eParXo6KiVAJJRKVKlZRTAADva6H7SW2WYsXatWuH4cOHeyUt5uHDLX766ScA3ilVWrZsqSxF6vWBTp06qU7TEWFW9LHfJ2o//DMZP368z80RbLmiZ8qLPnrvhAkTvE7/EBEYGGjqVCdf6LW7a9eueS3/klfWruh76623fNo8wpfTwuPxeJ1eERAQoMSC8t5KI3bRjOgj2Peygj8lJcXrWs3eNy3RFxoaqnqGb7zxhk8PqpmNlpMnT0bDhg01//7hhx+qwlm08NsxbK1atdLdsJDTIcOr1SC2bNmCxYsXA4Aq7xa/A5EEocvlUgmLmzdvCo+Li4iIwLp16wwFuAJZnguRp69p06bKUWREaGgo8ufPb6iR841RyyiYFX2861+0vBsYGCg06GxHNhrsDdwyphUrVsTmzZsRGRnp5ZVLS0sz7OljcVL0rVmzBt26dVMSEZ87dw7FihWDy+XSjNXgB4rp06crWesDAgIwc+ZMLFiwwOu9fF31zho2Cj0fMtJ0FJhRfJ0TS/Tp08crvsmo6KOAerfbjSZNmqBdu3Ze76HrYHd0s4iW6rXao97mEy34a6FTBaiPsG1pxIgRShYDLVjRFxYWptgt3usREhJieOLjKy0We4SiEfQ8fZcuXfK6J7yw0KJbt2544403hMKbt3FmJpLAreP4nEJP9F29ehURERH46KOPFAFFkw+9jRx6CeEJM6JHzwZnZGQIRXBgYCBKlSqFN954Ax9++KHh7wKy2iRt5rMaNgJAySVKO8tZ7Hj6aLxPS0tDSEiIz5hYHl9ZB1h85SI1il/P3jXifs+p+ErA3KBBA2UJjD1+i98RRsGuV65cwdWrV5WGGxYWptnYmjRpopvYmg1Avu+++1SdwcjMgf9e0dKH0RkINW5W9LFpU3h40ccvlROiDs7W24roo+sUCbCLFy/6FH1vvPEG7rnnHtXn2L87tbwbEhKCjIwMrFq1ClWrVtX08gHe7bNv374qL0zv3r0Vw8TeP734EaOHqbPQwerArWdjVkgajVWbMmWKV9Jxo6KPPZarePHimqLs9OnTKs8ni5anT4SVOCutz9DysZm2BHjn7aOlQpHoo/bsa9DytfxvxNP3+OOPKz+z/Z+/l9euXfOyB0YFQHh4OCZMmKDagUvw7c2s6EtPT8d3331n6jN6+PJ0R0RE4M0338SYMWMAGFvenTp1quqEGBG+RN+AAQOUUB/2vouek+gIVLILEyZMUE7kYdHzhIeFhSkxk1ZEH90jOplj2LBhXjvJ7Yi+ixcvwu12IzU1VWWDjIo+M5NCM3HhevhV9OVm2AzivmDfwyt3OqcyIyMDY8eONRzcywox9lgmQP3w+Vg0I94SvpOLBkyjoo+uhzYK+IpfMuLpA27dU/boI3pPQkKCKpbOF3R91atXByAeNK9du6a6L2SI2KDdCRMmeC2JGe3cZgZqmp2npqbinnvuUd2bUaNGqfK0GfWOAWrjtnDhQs33iQwzT3R0tNdkgff0mTWmRkWfqL0a/S7+GKfBgwcrCaBZSpYsacoDojUJMXs+N5A1QRRBHnQzGzl4WE+MSPTRNftaOvVVhw8//NCniPrhhx+UWDK9fKZpaWm2l+RE9eXFu1nRp3c0oxW02kpkZCTS0tKUa6C2TjZFz9NXvXp13Tgwrc+xTJw4EdOmTQOg9sjyy67nzp0Tij5fY6hebl22X5t95leuXFHSsrB2km/3Zsvlx/DLly8rnj7C6LgQGBiom6qHxexkTwsp+jTw5enTgkQfZfXng7uNzlbYtC6jRo0S1g3IEoBsHelvRpLPEnZEX6VKldC4cWMlLoRNgivCrOhj65aRkYHk5GSvuClfUBodOtxcNACsXr1a5Zpv27YtPB6PT4+Gr85NQfRmOiyb4iEmJkblBXn22WdVOzJ5z7IedlI68Jw5c8Yr8JjuHw0GZr/PTHwLj9F+xQrV4OBghISEoEOHDqa+SyS09ZJnm4UmJzwkSuwYf7af8Tv9QkJCEB4eji1btmDChAm65fgSfZMnT1Z2HWvBxnrpecnT0tK8BlqzXh9RffkNLmZWDwDjA7tRtNoKPW9e9FE7pPAirXsSEREhTG9CWF3enTFjBpKSkhT7evbsWWECdV+ODr22xHoTzT7zggULKvabtS18fLDZiRkfI3v27FmkpKSorsNM29A7RYSF2sG+fftMj4EsUvRpQGLNjEcJuDV7TE9PR0BAgFcsltGGq3fOITXkfPnyqWbngDiNDE9ERAQ2bdqkpNUR1cnoABwaGor169ejcuXKALLSK+hhVvSxHSItLQ2RkZGm8xyScde7N2ZOOWChzq1lOOi+mBmoWYORL18+r8TVrAg0I/rspHTgiYqK8vI40zOjwdOJgRkwfuanEdgBiG3jBw8eNDzjbt68udeyntbOXSv3vFatWrqnj5gVx1rLQryninb+NWjQwKcH2Yi3kVY59Fi5ciXmzp2ru0KQmprqJRycmFCQ4KQ+2rNnT1NlGj0lySh8W6FVBjo1iAZ6sjVkGz///HP8/PPPKlv58MMPq0StXl800095MfPBBx8o7Wv27NnCVG2+ytdrS6zAshPTx7Zn9iQRUbyoFv369UOnTp28RB89H7LFr776qrJZyghGRR9dQ/Xq1ZVE/FaQok8DWmLhE3j6IiQkBG3btsXUqVMRHBxsWfQBWXl8+AFv5MiRytIczd5YA0geB18Dw4MPPqh0NtFMzMyyIYuvwFQt0acV08d2CP5sS6M0aNAAjRo1UuJ6+E5GyTeNbt5gofeKzo0Fbg0sZr0zdP358uVT3ZugoCDV2ZhmTr6hQcXItn4rsJ4+OvzdDFrG34ywNQN5foGsnfi+ztwlXC6XV6JarSOprHovtcRiRESEacEze/Zs1KhRw+tzlKGAYGOTfWFG9OndgzJlyqB79+54/PHHsXfvXqG9FeVWc2JCQWKlSJEi8Hg8SrC/WcwM8Hrwz9zXeeBko6Oiorza45o1a1SeeL02Y6Y98fb7o48+UuzTt99+q4qZJXx5+vTGGjYu1I7o02qDZvKRTps2DYsWLVJ2INOSN91nslOTJ0/2ueLF4uRk3AhS9GkQFxeHypUrW3og3333HR544AGEhIR4LRmYabjffPON0qDI6D3yyCO4++67cebMGeU4GbbT0izEyOxBb6ee1YFWy4DQ60ZF386dOwFkLfsMHjwYQJZR0UIvbiVfvnzYuHGj4k3gjUyvXr00P+sLuncio8Kel2lW9FEdeU9fcHAw+vTpo/xuJgEsu/TPZtC3A7tDnOoyfvx4S0vJWoaZAtedxlf8qR789WkFo1vdcad1/8zs9iM6duyIvXv3qo5EBLyFqpm2ZET07d+/H0FBQfjvv/8MlVmjRg3FJtWoUUOpX1RUlJeNMrsUK2pb9JqvE1p8wZ6bayR3ohbsNb7zzjvK5gMefmOakfJE7alq1aqafzODr7QkvsY8M/FvVuFtfufOnTFx4kRLZdHyMKVn40WfWYx6jH2tohlFij4NunXrhkOHDtkqQ+Q2NpulnaAOTh30rrvu8srHBtwSfUY8dXqdyKoh0PocBevyDZwMmFbDv3DhgqHcQ3r5i3hYY8keYWckKz1P3bp1AQB333238O9W47D0PH1WY7roXpcoUQKNGze2VAYPm4KBbU9W2o+oPRYuXFi1G5lPQ2QFStZq1ZsNGB+ArJ5BrjXZtHOmudYz6d+/P1555RVTZRm9dzVq1PBKY6UH3dfo6Gjkz58fixYtwi+//OJlN33lbeQhW8y2JSrTV85BX7D2pF27dihYsKDKrlghLi4OL774otAm0YYerfO4RYjOPKfrN9NX2SMDCV8C3EzezosXL2puJLMj+niB3LFjR1OebRF0nvq5c+cAWEtoD2SFF4wZMwZdu3bF4cOHldf5pN+i07WskCtE365duxAbG4smTZqgY8eOXrus1q1bh9KlS6Np06aWTrRwgr///ttrRisSfVYbLi/6WNjX2rZtiypVqni5+0XwJzY4gZYBofQ9vLijWZ6W4Lp69aqjGxAAtQEQiU0zy5Jdu3bF6dOnlVkzj1XRR8sOd999t1dMn1XoukRJwYnZs2ebKpPqw6ZsAewvWZAX2+PxqAQGn8G/Y8eO6Natm6myqW5WdtYSRvuM1TQL/HMmkW7F00do2Z6RI0fi008/NVWWy+VS8v3pYXVnJH2uU6dOKFu2rO3duy6XC+vXr8eKFSuU1zIyMrB//37MmDHDVFk8vAC+cuUKvv/+e1tl6tG6dWu89tprqqPGfMELrxo1angd12gEsp1sKITWJiZq+0Z2OdMu7qioKCxfvhyLFi3ympjasX18f9U6AMAMFHo1duxYFCxY0HDuSB6Xy4XBgwfjyy+/VO2aHzZsmPKznRg+nlwh+kqWLInVq1dj/fr1qFixorBDderUCevWrcPatWtvfwWRFSfFLxdlh+grWbIkDh48aChWQSuRJDuLMwvbuSgw+v3331c2xGh59LSWi1577TW/ij5WbFarVg1Vq1Y15fVwuVwoWbKk5tIkxXSaXeb79ddf8dtvvyEgIEC1m9POvShTpgzWrFmjMiY8ZoPZ2fZsNl+kHmTwPR6PavmMF5OLFy/GvHnzTJVNbdBoALUdzG4EI9jrrFChgtIGnBB9/OBktU3pPWNa6jJbtlbOOX5HsxVPWuPGjVUnJmVkZKBatWq226odj7EVChUqhE8++cTU9/LHuKWkpPg8gEBEyZIlsXLlSlUMs9by+PHjx/Hqq6/q5m0lzp49i4yMDISHhyMkJASdOnXyCkGx4+lj2bJli62yJk2ahNGjR6v6aPHixR2rn4iNGzc6VlauEH3FixdXbVcXNdKlS5ciNjYWkyZN0iwnNTUVCQkJqn/+RCT6rB6qrNdBraYOEMX07d27Vzmayy70zDIyMlQnd/DMmTNHU6xXrlz5tnn6IiIicODAAd3E2FrwopXOfqSlGLODf/ny5ZVg4F9++QVvvfUWAPsetIcffljzfrZv3950eazIZ3+2u+OWljHZXcGAM0HPt1P0WV06ZO8lm8jdieXd3r17q8S91f6l5Z33eDx45JFHLJWtJfrKlCmj+j6rqxPBwcFKKhkzwfZ63G7RZ4UvvvgC/fr1U/p4jx49hOFBRmjVqpVKKGst3xYsWBCTJ082LKp9iSanRJWv02R80b9/fwwZMkRli/zdBuz0e55cIfqIkydPYs2aNapM7kDWctWhQ4ewdu1arFq1Sjm2hScuLg4xMTHKP1qT9xeiAUp0cLYRaIBycjYhWt6tUaOGKiA1X758XucJ68EKSOrsmZmZuqLv+eefV+2k5Lldnj478IaNYitpYmHHQ1O4cGF8+OGHXgLIaT7++GPLn+XrZlf00f3kn48Too9ywjkl+rSC97/77jvExsZaKpPtR2FhYV7nKFuBnk9ERASmTp2qvO606AP0T7/R4+DBgwBubeTyB+XKlfPyINvhdkwe7PLAAw9g2rRp+Prrr3Ht2jUMGjRIESpWbIoRR4MTeQzZMvxp+6zA2qLc0AaIHCX6zp8/j0aNGnn9u3r1KhISEtC1a1d88cUXXoY/KioKISEhCAkJwRNPPIG//vpLWP7gwYMRHx+v/Dt16pRfr4e8c06odNohZCYo2hfs8u7ChQvx559/Cr/XV5JVFpHoy8jIsBU/yA5KnTp1Uv2tefPmwjQBRstzKtcW3yZJ9L333nsoWLCg44lcd+3apQyQdqF8XnbbKfts//77b0tlkPin9uIP0ee0p489e5vo168f2rZt60j5I0eOVK7bjuij5xMeHq7yTFj1mhkRfVbzX2qlwMmJ+FuMOFl+cHCwsuGANmA4daYry5QpUxwph924lZNFn5OevgMHDlh2DhnBWReKTYoXL45NmzZ5vZ6ZmYmnnnoK7733npJIkyUhIUExhhs3blTOCeQJDQ29rYqcRF94eLhm8lajtG3bFnPnztU0+lu3bjXd8NjlXdrRyGM22J0VNxSH06xZM9x1110YNWoU+vbta6o8QN25SJhUqFAB7733nukgfr36OlkOib7+/fujf//+jnwHixPnWpctWxbHjx9X6uqk6NM7T1OP9evXq5b6+XbppOizs5GDhZ1EvPDCCxg2bJhj6RWArOU0sot2nhGlD7Ibw0bwou/FF19UwhrOnz8PwP5SmiRr3LKbVkYErUKYzUVrhJdfftmRcj755BNs2bIFO3futC36Pv74Y1SpUsWRegH+8/RpbQp0ihzl6dNiyZIl2LJlC0aOHImmTZsqu8Yo2e6SJUtQr149NGzYECVLlnQsHYVdaDBo1KiR7bJmzZql2/Hr16/v82BtHn/s3mXFT7ly5eB2u9GiRQu4XC4MHTrUUmA7O6hS7FyDBg1sCT5KIeOvWAyrsZu3k40bN2L58uWK6HMyX5eV+EAgawDq2rUrgKx7yC5DAs7M9p0WfWydpk2b5qjgI5yI6aOd5HbO7tXjs88+U+4tiT6rg+zvv//uWL1yO06HtxAUb2o11cjtwOVyWUotI+L1119H69atnagWAHW/99c4sn79evz222+OlpmjPH1adO7cWeiJmj59OoCswGQz29dvF9QoOnbsiH///Rf//PMPFixYYLksp2bohNbuXacIDg52pGy2s1vZcSaCjnJz+p4S/o4XdYJSpUqhVKlSjixx16lTR3U8kRP3VWRInWhPFNPn1HIR2xb91Zeo3ds5d5eEo788fSx0rq/V2E4nJsq3kwkTJmDbtm1+KdvJSTnLrFmzMGzYMMfbbNOmTR0tj/ppTlveZe+bv1YQ/eHAyhWiL7fCnqpAy7JO7RhzAr0TOazCluWP5TMq064BYOObnGbnzp2oVauW4+X6i+bNm9vasb1//36ULl1atYEqJwc2U8oSp2bn/vLEsND9tHNfre7WtAKJPqtepNtRRyd54403/FY22SqnxV9kZKTtxNREoUKF8OCDD2LhwoWOHytG153TRB9LbtjBTeSunpXLIEERHR2txNPkpMHQH8u7LE51frZ+Tnn6zJxcYharwevZxY8//uh1RrQZKMUNu8nodp8naYa4uDh06NDBsWWt2yFQ6Dvs2A+yR/yB8VbR8/TVqlUL586dy9EDdW7BX/bZSc6dO+e3Pp9TPX0sOWlc90XOb025mK5duyIiIgLlypVTlpRy0ozAH94u1tPnDyNAZdodaCkNDZ/+xw69e/fG6NGjHSvvdhEWFmY7xQqQFYD8xBNPAMjZnprQ0FBHNxjcjmulfmVncKEUJXZ2ALM0a9ZMM4548eLFju0uz0tMnz4dS5YsUb2WU0Ufe+qTPyd5lLEhJ9sUq+fuZgc5szXdITz99NNISkpCyZIlc7Snz1+B3XYMQfPmzZWjeVicWt4tUaIEPB6PoWzxRpk5cyaGDBniWHm5EVrWdjKZaE7HX4NRUFAQOnTooHrNjgDo3Lkzfv/9dyWe1S4FChQQpnkCstJoOblTkti1axcOHDjgeLk5hb59+3o9c0rM7q94Uav8/PPPt+V76AzinCj64uLiAGifvZ4TyXl38Q6lQoUK2LNnT45quCSc7ASH8ziVTPOXX34Rvu6Up0/iH4YMGYJ69erpJtu+0/BXW/R1kL1ZXC6X40H2ALB27Vol16O/cSJVkVP8/fffSuyiPxk4cCCCgoIsJ/rO7eQ0scty/fp1APDLjn1/IUfO28QXX3yB119/PburIcRfos8fyxJOefok/iEkJMTRtAg5mQkTJqBChQqK6HPaYy4a7Jw6QcZJmjVr5lhZwcHBSmqZnE7NmjVv23e99tprt+27JMah/LtOhMfcLqTou03ky5cPDz74YHZXQwUtORcvXtyxMtmD0f2xlE2ePin6JNkN7dgkb48/43pyotjzB/v378d///2X3dWQSAxBos8fp5r4CxnTl4cpU6YMZsyYgXHjxjlWZp06dXDx4kVs377dL0k/ydOXVwZBSRZWkz3fDpw4F1eSRcWKFdG8efPsroZEYgia8OUm0Sc9fXmcPn36OF5mkSJFLJ28YQQSfbQbWpI3+Pbbb7O7CpqQ6HPyXGwemkBJYSmR5BxyY7+Uok+Sq6DlXSdOkZBInCAoKAgTJ05Ex44d/fYdXbt2RUhICB577DG/fYdEYgV/ZX/IDXzyySd48sknc1W2Ain6JLkK8vRJ0SfJSQwYMMCv5QcEBAiPorTDf//9h6tXrzpapiRvcfXq1RybR/B2EB0djSeffDK7q2EKKfokuQrp6ZNInKFs2bIoW7ZsdldDkovJTbFskizyrkSX5EpoA4eTaWYkEolEIskL5ArRd/z4cRQpUgRNmzZF06ZNcenSJdXfMzIy0KNHD8TGxsp8Rnc4Fy5cAADpoZBIJBKJxCS5QvQBQJMmTbBu3TqsW7fOa2fo8uXLUapUKWzcuBHJycnYsmVLNtVS4m+efvppDBgwAF27ds3uqkgkEolEkqvINaJv8+bNiI2NxZAhQ7xytG3duhWPPvoogKxDoKXou3OJiorCxIkTER4ent1VkUgkEokkV5ErRF+JEiVw5MgRbNiwARcvXsSyZctUf79+/bqSJycmJkZzR1pqaioSEhJU/yQSiUQikUjyAjlK9J0/fx6NGjXy+peUlITIyEi4XC60b98ee/bsUX2uQIECioC7fv265uHfcXFxiImJUf6VLl3a35ckkUgkEolEkiPIUSlbihcvjk2bNnm9TufbAcCGDRtQrVo11d/r16+PX375BY0bN8bq1avRs2dPYfmDBw9WzssEgISEBCn8cglnzpxRTj6QSCQSiURinhzl6dNi06ZNqF27NmJjY3HmzBk8++yzAIAXXngBANCmTRucOnUKsbGxCA8PR4MGDYTlhIaGIjo6WvVPkju46667ULRo0eyuhkQikUgkuRaXJw+fXJ+QkICYmBjEx8dLASiRSCQSieSOJld4+iQSiUQikUgk9pCiTyKRSCQSiSQPkKeXdz0eDxITE5EvXz64XK7sro5EIpFIJBKJ38jTok8ikUgkEokkryCXdyUSiUQikUjyAFL0SSQSiUQikeQBpOiTSCQSiUQiyQNI0SeRSCQSiUSSB5CiTyKRSCQSiSQPIEWfRCKRSCQSSR5Aij6JRCKRSCSSPIAUfRKJRCKRSCR5ACn6JBKJRCKRSPIAUvRJJBKJRCKR5AGk6JNIJBKJRCLJA0jRJ5FIJBKJRJIHyNOiz+PxICEhAR6PJ7urIpFIJBKJROJX8rToS0xMRExMDBITE7O7KhKJRCKRSCR+JU+LPolEIpFIJJK8ghR9EolEIpFIJHkAKfokEolEIpFI8gBS9EkkEokk1zNq1CjExMRkdzUkkhyNy5OHt64mJCQgJiYG8fHxiI6Ozu7qSCQSicQiLpcLAGQ2BolEB+npk0gkEkmuJzAwMLurcEfx6quv4rfffsvuakgcRnr6pKdPIpFIcj2hoaFIS0uTnj6HcLlcCAgIQGZmZnZXReIg0tMnkUgkklxPQIAczpzG7XZndxUkDiN7iUQikUhyPbS8K4WKfaR3785Fij6JRCKR5HpI9KWlpWVzTXI/N2/ezO4qSPyEFH0SieS2k56ent1VkNxhSNHnHLlN9J0/fx5XrlzJ7mrkCqTok0gkt5Xz588jJCQE33//fXZXRXIHQTF9UvTZJzeJvtTUVJQoUQK9evVyrMxFixbh7NmzjpWXk5CiL5v55ZdfMG7cuOyuhkRy26AZ+Q8//JDNNZFkJ2fPnkVSUpJj5UlPn3Owoi+nx/ft27cPALBx40bHyuzcuTPatm3rWHk5CSn6spkWLVrgrbfeyu5qSCS3DUqie+3atWyuiSQ7KVmyJGrVquVYef4UfampqUhJSXG83JwKK/oSEhKysSa+OXXqFACgVKlSjpRHIjc32Ke0tDTTYveOEX3Hjx9HkSJF0LRpUzRt2hSXLl3K7ipJJNlGenq6o4NfUlISXC4XvvnmG9tlpaamAgCuX79uuyyJf7l8+bJfy//3338dK4tEH7UvJ6lSpQoKFy7seLk5FVb0Od1PExISHG1XVFen8jMmJycDyB3Jvj/44AM0btzY1FL0HSP6AKBJkyZYt24d1q1bhyJFimR3dSSSbKNatWqO9YEffvgB1atXBwB07NgRx48ft1UeidHcMJPOy/z8888oUqQI9u7d63jZ/kirkj9/fgC3PD9OcuLECUeXov3FqlWrcOzYMdvl+Ev0ud1uxMTEODo+kwf2n3/+wcGDB22XR6IvN+R9PHPmDAAgPj7e8Gdy/lWZYPPmzYiNjcWQIUNkVnZJjiQtLQ0ulwuzZs3y6/ccPXrUsWWZF154ASdPnlR+/+WXX2yVR54YKfpyNv/88w8AZ71xRIsWLRwvs1KlSgCAv/76y/GycwutWrXC/fffb7scf4k+f2zeYuu6Y8cO2+WR6AsKCrJdlr8JCwsDAFOhB3eM6CtRogSOHDmCDRs24OLFi1i2bJnXe1JTU5GQkKD6J8lZJCUl3dFL82SglixZks01MU5GRobq96tXr9oqT4q+3EFwcDAA52Pkbty4gTVr1jhaJnDLe5jX0wGZ8fpowYqIhQsX2i6PIEHlJKzoK1iwoO3yctPybmhoKIA8KvpCQ0MRGRkJl8uF9u3bY8+ePV7viYuLQ0xMjPKvdOnSt7+iEk0+/vhjREVFoWjRotldFb9BQcK5YemA4Hfv2RVrJCJI/MXHx/tlCVFiDxJ9Touopk2bKj876U2hyQk/SbFDZmamakBdsWKFY2XnNJKSknDu3DkAaiE1a9YsHDlyxJHvoDblJOzzCQkJsV0eLePnBhtNoq9hw4Y4evSooc/k/KsySGJiovLzhg0bULFiRa/3DB48GPHx8co/f8R+SKwzcODA7K6C3yHBQztY/Y0TAzY/iNpN4UBij+rWunVr1KxZ01aZEuehAdRp0bdr1y7l54yMDMdEGrVLJ0Vfu3btEB4ervy+evVqx8p2GvJ0WhU+zZo1w1133QXAO0+fU22ArZsTu6E7d+6MoUOHKr87Uc/c5Omj5V3gVjiGL+4Y0bdp0ybUrl0bsbGxOHPmDJ599lmv94SGhiI6Olr1TyK5nfhb9Hk8HlXA+bZt22yXyYs8u/Gy7O5Kj8eDrVu32ipP4h/84ekTbYZwKhWKPzx9P/74o+r3nCwE6D5a9aax8XA3b95UCQqn7inr2XVil/WiRYsAQNlZ7UQoQm4SfeTpA2D4RJI7RvS1atUKu3btwsaNG/Hll1/miiBMFqcSYK5cuVKYTd3tduPChQuOfEdu4NNPP82RcXNklPy1dDB58mRERUUpM2q7RxNt3brVqz3Z2Xm5bds21VJuWlqaIiLl5it7HDx4EBUrVnQk8P7ChQvKUp+TMX2PPPKI8nOBAgUAOHf6gz88fXyaFjtCwOPx+CWHoMfjwZgxY5S0HU4scd68eVPl4bR7Tz0eD77//nuV0LNyLy5duiRsLzExMZbL5Mktu3c9Ho/KZp4/f97Q53L2VeUhnJhNnzp1Co899hjef/99r7+NGTMGxYsX90sOq5xGSkoK+vfvj06dOuW4zQL+FH1///03BgwYoPoeu4HT7FIcYWcAaNCgAcaMGaP8zoZl5KXkt/5g+fLlOHr0KJYvX267rJIlSyrLZk56+ljP8+DBgwE4I/r27t3rF08fL/qsOhOuXr2KgIAAhIaG4ttvv8WJEydUf8/IyDA8aPPs3bsXQ4cOxaBBgwA4K/q++OILpX522L17N9q2bYuPPvpIec1KuypatCjatGnj9bo/PH1OOY48Hg++++47x9MUvffeexg2bJjyu9ENPFL05RCcMKy061W0K3nz5s2af7vTYFOKdOrUyXZ5f//9N1wulyptiVVIdPtD9O3cudPrteTkZDz00EOYM2eOpTJF7dLJicPff/+t/Jwb8qDlRN566y0EBgYqA58Tu9/ZlQcnRR/trmzXrh3q1KnjSPn79u1DzZo1lZMJnBR9vGfPrKdv8uTJCA0Nxf79+5XXOnTogLJly2L79u3Ka2+88QZKlChhqY50vbSrnl2WtQqJvrp16yrf8fHHHyveX7NQOAsbd2ZVoK1du9brNcr750RbJTvklEhbsWIF2rdvj8WLFztSHhEXF6f63aiHX4q+HMKaNWssdyhi7ty5AG65ulnIEBQtWtTyjNJJ0tLSlMSSRFRUlCNls8LWiUOzN2zYACCrky1dutRyOatWrVJihMgIulwuzJw503YdAbERTU5Oxrp16ywfRn7x4kVERkaqXnPCIxcdHY3AwEDV+btS9Flj3LhxcLvd6NmzJwDnN144WV6+fPkAZD1/uxtFzp07B5fL5bWj1o7oW7VqFXbv3q38zrd1s6Jv0KBBSEtLE06U6tevr/xMKWyshDiQOKFVDZH99wW/qZFEH3m7bty4gYEDByptzGod2fvpZLsqUKAAAgMDHfX0OTW5pfHWafvGh4RJ0ecQhw8fVsXCbd++HT/99BMOHTqEL7/80rHZQLt27fDggw/aKuPTTz8FkDWb/vTTT/H7778rf2Nnf3aylj/yyCNeMwwrvPzyy15nJbIba+zEd7Gd6+6777ZcDpB1DNWrr74KAPj888/x9NNPWy6rVatWGDFiBIAssUdth13ysIOW6LNDQkICKlasiPfee095zQnRFxoaipCQEEyePFl5zQmj6PF4cODAAdvlAFlLUitXrsSMGTPgcrkcPdCdiI+Px5gxYxw91N7puDEnl93JI/Pwww8ros9qfQ8dOgQAXkcD2hF9rVq1Qu3atQFktSV+gmxW9JGw8SUgyBZYqTt9lmJlSVib4eLFi8rPc+bMwdatW1Wij+pvdSledP1OttOYmBiEhIQ4Kvqcavd0z9gYSX/AO1G0kKLPB1WqVEHZsmWV3+vXr4/HH38cVatWRffu3TF9+nTHvuu///6z9fmOHTsCyNq91b9/fzRr1kz5G7vLx07Mx9q1azFkyBDrlfx/6EQKVjQ7FTjMCp3//e9/lso4deoUtmzZgiZNmliuhx4BAQGKMThy5Ajeffdd22WKDKtd0Ucz/vfffx/jx48HYN0Yvvbaa8rPoaGhXjuYnTCyc+bMQfXq1XH48GFLn3/ppZcUYV+7dm089thjeOeddwAAjRs3tl0/nueffx5Dhw61JVQjIiJUvzu1McLp8jIyMrBz5060adMGXbp0cSz5Mz9ZcMKDlJKSgqtXrzrmndELq4mPj1cErJV7wU8YrKyYsH2xV69e2Llzp0r0URuw6uQQ2Sazz0nvu0n0OfHsKc7YKU8f3TuXy4XExESUKlVK5ZCxS/ny5fHpp59i27Zthq5fij4D0GDEzoYIO0KtVq1alj8rggwGuXkpbiwjI0M5lxLI/uNl2M7EDvSsN9LOQJCUlISiRYuifPnylo3U3XffjQcffFAVi+NE3QiXy4V+/fopv48aNcp2mbzAq1ChgmXRd/36ddy8eVO1i2/gwIHo1KkTbty4YalM1qsXGhrqVTcn7usff/wBwLrXcNq0aV5L+P7cYELL23YGGN775PQyklOij47goo0mdj19BN8enRj4R4wY4RXDW7ZsWcvPqXPnzpp/++STT5SfrdTdCXEispMi0Wd1BUbUh8w+d71+mD9/fkc8fdeuXVMmYE6JPhLlSUlJOHToEM6cOYNmzZpZDufav3+/ainX7XajePHicLvdhvq+FH0m6N69u9drdrbwi04NsQM1Ulq+LV68OICsAXbSpEnK+5xIjXH9+nVMmDDBdFnJycn46quvlN+1znG10+GSk5MRGRmJoKAgR5fNCLvHkAHAt99+iwULFjhQm1uwu7dq166N6OhoywKtQIECaNiwIVJSUlQe2Lvvvttr56EVWM8z4YSRJY+KkxMbp3MqnjlzBvXq1cOePXuUwdaOR5b37NgVfXyfpgH/xo0btjzw/IBsN6aP6snfu/nz58Pj8eCHH35QvNNmuXDhglc7Dw8Pt91GfW3gsiJa1q9fr/rdKeHIij4SXE54+qzmf9SbfMTExCBfvny20xVVrVpViRE9fvy4sgHSDnTtSUlJqhjzDz/80FJ5NWrUUFb1CLIBRuy9FH0mEDW67PaasWiJPr6jGu1sZ8+eRbdu3ZTdgKzBf+uttzBo0CDTns7+/furNhW0bdtW+ZkVaHY9fREREQgMDHR0Jx/hjzKdgDV4ZcuWRUREBC5fvmy5vD179nglaS1fvjyOHz9uO5ZVFGLw77//2k6xQ0szTsYLsc87PT0dLpcLX375peXyVqxYgT/++EPZIATYE318CIJoRcIMvACguuXLlw/PP/+85XL5CbLd5V16LiKRm56ejqeeegpvvvmmpbJjYmJUtgnIun6759qK4rrYSYXZe5GRkYHhw4d7vWYW0djmpKePbVM1atQAYN3TR/eL7TMxMTG4++67bZ+yxfedRo0a2SoPuHXvkpKSVHF3fEy7EWjsZsWoy+VSRB+bAksLKfpMINpS73TW7meeecayd4Y61l9//QVAO6DXaGfbuXMn5s+fr+wuZRsUiQmzXhA9kehUmoiUlBSEhYUhMDDQL56+nC76nn/+eUybNg0RERG2dhsD3klaY2Ji4Ha7bS/5sZ4+SifTp08f1KtXz1a51G7Wr1+PgIAAJCYm4vfffzc9wLCilv1sly5dAMDWjmualLH9yY7oS09PV3mQ7K4g8PaHfdbffvut5XJ5LxcJf4pnMwuJACfixXhEdr1YsWK2j2HjJzt9+vRRiTaz7XTLli1er1m5dtHSqb88fZS2x6qnj9oR285jYmJQqlQpnD592lL99LA7waV7l5KSgjNnzqBUqVIoVKiQpbFJNKkNCAhQxnqKP9ZDij4T8KkrgKwNCWZnP7t370b16tWFf1u8eLHlQ71546c1MI8cOdJQeWT8yQBSDEJERIQySJkd/PU2kWRkZKBQoULKz1ZJS0tDSEiI5eVdX4bXX6LP7kB1/fp1PPPMM5gzZw6KFCniFeBvVFiw79u7d6/K00cC0IroYzfVsKLvqaeeUn62e7A79cU5c+bA4/GgX79+aNasmWnxK1oWLF68uHLKi50lVAoPYBOrWhV9GzduxPfff6+a4Nnx7gLeoo+1K3YmudS+SUiQLXj11VexcuVK0+XpxXjxXjqzsF7zn376CVu2bMFvv/2GM2fO2MrXyR+RRhvaCLOiT7Rj05+ePidEH3ml6Fr3799vqN/zoo/NSxoTE4P8+fPb9sQSbDiUXc851ZsVfaGhoZZihSl8hX3GLpdLsctGnr0UfTqwYk4rSPLMmTPCUwv0GDlypGNpJVhEyzJsI6AZ1rp16wwJVV70USJddoOA2cGfN3qs9zQzM1MRw3YEUHp6OoKDgy0v7/oa0J30HrIZ/9euXavKW2eW69evqzbs8KLPaLwL64G6evWqKrEzlWlFpNBh7oD6+TpxgkBKSooqvQaJoIULFwIwnwz77bffVv1eoEAB1XO3KvquXLkiXIKyKvoaN26MzMxMVVzfzZs34Xa70a1bN7Rr1850mbzoW716NaZMmQLAXjgLXSMta7G24OjRo6bLY+0dv+Lw66+/Kj9bsQHU5t944w20bt1adZKMXVGth1nRJ8pDauV6RQIkLCzML54+aqtkA2rUqIFKlSoZriP1Zfba8+fPj3z58tk+fKBw4cIYM2YMKlSooLxmZMlURFpaGo4dO6bySF+5cgWFCxdGWFiYLdHHEhAQgLvuugtRUVGqiaQWUvTpwDbUv/76S1k25THbyVjDyR/zA4iPvvJFYmKiKts5kDUwsYMTu4PMSEAyGX8yRD/99BOArHx6NACaFX38oHHu3DllyTAjI0PxKtkVfXY8fVrL67TN3q6nr3z58srPrBetVatWKq+XWa5du6acZwp4e6aNGhn+feySgR1PH3vftm7dqvws2tRhlqefflo1gWCP+wKycizaoXDhwirRbFX4Fy5cWJiuITk5Ge3bt1fdFzPwoRw3b97E/PnzsWzZMtNliQQt5arkJ21moDazbt06AGqxb7bctLQ01VIe5f8TYWbQ5idKrVu39vrZqjfphRde8Ok1Miv6rl+/rspF2qhRI9O28/r16+jWrZvX607F9G3cuFGVnYD39BmFTX0CqMeImJgYREdHWxZoRHp6OoKCglQi1OqE7M0330SFChWU/pSSkoKEhARER0cjLCzMsPOFRTRxd7vdiIqKQmJiIho0aOCzDCn6/q+9746SoujefmY2zOYEu+wKiEQBEQXJkiQJiKgomFBRxMiLiuEHioIiooI5ou9rwoAJBVERUZAgKEoUkCA5LrA5p/7+2O821T0dqrp7CG4953CY0FtTXV1166kbLcCGVLdt29ZUOyeiRcjKytKU32G1HwQnEWdsm4SioiLNBl63bl31NY+mQk/6iIyWlpaqC0908zciHnl5eZgzZw4qKytVEuTWvEuavq1btwqXpTITzESi3JI+doPyomQSwU7Tx/us9M+I3RDcaPrYcWP75tYvVlEU9UBiJkSJaDhFUlKSpxUEmjRponmfk5OD2bNnY9CgQY7a05M+N+ZnK59iN8/qr7/+QoMGDdCgQQMAWtInqkEcOnSoWrsXOL6m2PlP4CUXVVVVQfOaXZ+UPF5/uOZFq1at1Ndt27ZVX/fp00e4rzt27EBZWZkatEbo0KGDsHwy809lfUXdaPq6d++ukal6TR8v9OZddqwoetcL0hcREYGGDRuqnznN9UqVXYhHlJaWIj8/H/Hx8di0aRNWrlypyWTBA6M0L6JrXZI+C/Bm4C8sLMT777/Pde2gQYM05h0v0qcAweRhwIABKCoq0mj0WM0Pz6ZNwp/aoH67IX0k8PWoqKjQkD6vzLtLly5Vo8V4YUbuacNzS/pYrQZLxAmHDh2Cz+cTShdQVVWF3Nxczaan16DxEjU96WMrpYhq+liBxI5bfHw8Vq9erdY1dgMqYQVozXpeQj+WbgNZWNKXmJiomm2cpgPSa3XZyGBR0Lpft24d7rzzTs13Ts278+fPx1tvvaXxZWYPy6LtUjlDQosWLfD6669j5syZQdfyEqnnnnsu6DNWrlJ5MzbJuAgiIyMRFRWFzp07a57XggULsGPHDgB8WsSSkhI0btwYjz32mJqeihARESEsO82I0t69e+Hz+RAWFqbOdy9cW9xq+mjesPcZHR2N+Ph4lJWVqeb3oqIi7nVKriG0d7jRaBPouVDqn5KSEpX0Ef755x+hwCsjH05RoitJnwV4N8nbb78dI0aMwLFjx2yv1Sf7NVugIjVjFUVBt27dNJ+de+65KCws1Ex6NgqT53Sgz0xeUlKC2NhYbNiwQTVDuQnkYLUaUVFRjs27r776qmbsWfMuIF6A3qycDbXnlvSxc+DTTz8N8h8jEiOincrPz4eiKBrSR2M9ePBgAN6QPhFN3/LlyxEXF4dVq1YF+ZdGRkaiTZs2OPfcc7n6ZAW2TGKooD9UGblliID1C0tPT3fti6QnzkOHDlVfi2oCiPQ1adIkqAyZ082QSJpZSh63m2xcXBzuvPNOQzMvryxZs2aN5fdO3BBYX8vS0lJkZ2djyZIlmvXj8/nQoEEDJCcnc7n2UDLnpUuXBmn6wsPDUVFRgY0bNxpaf4xgRhpIDiQkJKhrzMlhR++zGx0dDb/fL0xO9T595eXl6NChA4qLi+Hz+VQylZqaigULFiAuLo6rDOeWLVuQkZEBn8+nkj7guA+7UxDpI+3cqlWrsG3bNiQkJKj38OWXX6JNmzbcFTqM9jLWpYcHkvRZwGiCN2vWLOizbdu2AeAjA/qTktnEb9euHU8XARifmFJSUlBVVaXZTNjFJ6LpKysrw+bNm1FRUYG0tDQAcOzTx/aVFfS5ubnIyckRNu9Sbdy77rpL8xuk6SNcf/313H3Un7b/+usv7N+/XyV9Tk+7pNVjM/DXqVNHU5kDAG644QYAxqZ/M5CvhxHpI6HA+6zY63w+n0aTUKdOHQBA3759bbVSdHDp0KGDelgIBXhNTk606rTRU1Q5APTr1891fk42TUdMTAw36VMUBZ07dw7aJKxIk2iC2YKCAjUiUL8WnN43rUWz+qNux5PIldE48GqUjEidXj5TSiERX0la32eccYYaHKEfB7/fj9TUVC5NH6X8+fXXX/Hhhx+q+w9wnPS1atUKnTp14uqf2fiQ/GjVqpWaRN+J24DezYTqbnvh0xcIBNQ9g9WgLV++HIqicAXd6A/5NIfY8qtOZL5e+07pypKSklStMZWL5E14r5cTc+fODUrObQdPSV9xcbGhlmTjxo1e/swJg9EmSQmPjcAzifVkhiUALERKtJiRPkB7smYFoohPX2lpKdq3bw/g+KZPECV9rLmZ3ayJ6Dg177KnVda8S/j444+5hUxubq5GY3DOOefgjDPOcK3pq6iowOTJk3HddddpPtcLRbvPCT6fD1OmTAFgTProeRPpc6LpS0hI0GiR2M2K3WyMQIKNkJ+fHzR/CBdddJH6WpSc8T4PJ9UUHnnkEbz33nuaDPipqamuzbv9+/dXX69Zs0ZNBWOHiy++GCtXrkSvXr1Mn4seolGC+/btQ1xcHHw+XxAZc+rTR5oNs78Xja7WwywnKcAvS4zG8IILLtC8pzXEaz4vLy/HOeecg6ysLE0k9ZgxY4KuJcJmB71cYLWxTsy7NPb6pOOUtuS8885TP3Piy6sf18jISLWfIj5tehMzq5UDtBYJkYwAZknD2XF2IjvM1mRKSor6m/SseJ+Zft5deumlGv9DHnhG+r744gs0a9YMAwcOROvWrTWqZdrQTzcUFxcHCSNFUTBx4kTDnH08pEJ/YmBNnLz58/QwmjBE+lizJ7tAePpKpG/nzp0qSWQ1HoAzTR+lmTAy9YiSPhKSFRUV2L9/P1auXKnm6dMvVN5qD7m5uYZaNi9IX3h4eNCcMppLAN8YTJgwAYcPH7bU9NFnTkiflebBimgAxuNEZEdP7Nj3ohoA3rlid/9GZDM6Oho33XST5l6dkj6afzfddJOlZsuK9Jr5LFodEETHc+nSpWjdujWA4LF1GnhEm5z+3miOuk2AS5o+o3Z4779+/foAtO4Ces0hveeVJURMkpOTNSSdNb+zbfPIFqP5vnnzZnz99dfcxJGgKIqajicQCGjkHll1WD9ML0gfq+m75ZZbuNuhYJCCggIsX748iPSxxF+EpJmRvrCwMDz77LMAxNfQzz//jLfeekt9zz77xMRE9T3NV55nlp2djb/++kt97/Sg5Bnpe/LJJ7F69WqsW7cO77zzDm655RY1R5ZXwQonGsXFxUEkp1+/fpg0aZJhhJsT0gdUT7KMjAxMmDABx44dQ69evbhCr41+lyYCaXfYIvfsRsP+jc/nw/PPPx/ULt3jTz/9pH6mJwFOoncDgQD8fr+heVA0QpYEYGVlJdq2bYvOnTurwkDfNxHSRxsAWyrHK9Kn97+KiYkxXMC8ZOa+++5Tnwsr+GhDJY2bk+TMVrBb1w899FDQZ2Zkhw1oKS0txZYtW7iT4PI+j1q1aln6ORmtXxpDduNKSUlxtPkRkSLia0b2nZiSWM3GtGnTNN+Jaimys7PViEX9HFy3bh2aNWuGTz/9VKhNmvP6OUNJs0XWlJHstSJ9vOuotLQUdevWVcmOEejZ8Mr6qqoqbn9FXsKmv58PP/wQzZs3x2WXXYaIiAihYCDWohQIBNCrV6+ga1j/1fLy8qCE0nYwMu+Spk/EH431c6fUNOzYsmtUZM7rx5xts3nz5sLtAUDv3r017ymdVCAQwMCBA4P2AJ41r9fYn3TSV15erprE2rVrhyVLlmDGjBl44oknPC9YfqJQUlKimfBLlizBww8/bHo9jyBghRKd9vLy8lR7f0pKCs4991yhXFDs75JQJVU3m68sIiICH374oWFf33jjDc371NTUoFxnwPGgAIIo6SsuLlaFQJcuXYK+J9LCK6jpuoqKCvUkSMJAv5h5SV9RURHi4uKwfv16jTpdH71LCXA///xz2zY/++wz5ObmGpIen89nKPys5hM7jz755BN1XrKaGCICUVFRiImJ4XpWe/bs4fZ/tBOERm4dZsLtjTfewKhRowBUr7vmzZubRnrrIWLOsnKYNrof8vMizTlQ7eJw9OhR4dM/5ZUjgrJnzx4cOnQoyLTrJHKd1VbotUi8/SwrK8Mnn3yCo0ePqvLDqC/btm3DNddc46h/+nyJF198MQAx0nffffcFfUZjauS4v2HDBowfP972kELlGwHg66+/NvRBpX7SOFmBxi7UpK9FixaaNkTAzo1bbrnFcK+mMSEFyKhRo4QOPXpNX1JSkqrpEwng0QcV6Ukf65IjQtL017Jtkgx1W8ubNKijRo0yJGs8z13fT6OysDzwjPSlpaVpol1q1aqFH3/8EZs3b3YdBXOyUFxcrGpJmjZtim7dulmyaxFh/dxzz6nCPioqSuNEnJSUxF09gf3dZ599VhVsRuae8PBw1ZxMf0PX6wWimUBr1KiRGsxipE2zA1vL9bXXXsOqVas0J2unpI8lE2Te1bfBS/qoj+eee67GX4LV9BUVFWHFihWYOXMmVxH6q6++WtOGHnqNMmA9BvpTHxEslvTRMw0EAoiOjuYS1DxOwRRx60QQmgnj+Ph4XHnllZbX6PHSSy9hxIgRQoTByvfLStNHz6dWrVpo2rQpqqqqsGvXLu7fZUEEJSUlBXXq1AnKLeeE9D3yyCPqaz1Z5h3PZ599Ftddd51Go+JVbsLCwkKcd955QZUXnKRB0m/+wPExTU9PD5rDt912G55++mnbKG+W9F122WWavHoENv2Tna96KEkfG2TAynpRKwTr222WH5bIBTuveNKEvPbaa/j555+DSF9ycrKq6RMhfXqZV1paqvn72NhYKIqCNm3aeE76SktL8ffffzuuxkJjSPNdT6551hn1kxJd63N98sIz0jdz5swgtXhkZCQ++eQT4eiSUwHz5s3DO++8g8LCQkyYMAGzZ8+2/RuRTdBK+ylK+uh3WZOwkemIzT9Ef0NkiSV9rODQa6Cqqqo02sT9+/cLbQxFRUWqkAoPD0e7du00QsGpeZc1BZaWlromfUa+S2z07qBBg9C1a1cAYhFtrBmODXQgTRKb4kGE9BHYwwMR8ujoaE29ZCvoSenjjz8edA1FLvLOd7akUWlpKeLj4zXRq/q+8wjsiooK3HvvvXj//feDNqBnn33WlNxZOXjT7950001BfSLSl5CQoMo5nhRNJSUl8Pl8qqsLEGyW0W+KokRr8uTJmiov+rZ5nxObn5LSCr366qvo16+fUH+MoM8nR/D7/fD7/cjPz+e+b1Z2kjxj140+gIhgR9JZ0mcGtiShnftBKElf8+bN1bnJjqteLvz888+WbbGmcjOFRrt27bB48WJNlgE7mVdcXIzRo0dj1KhRQfO7UaNGiIyMxK5du9Rnct5556GiogIPPvigKZkuKyvTPOesrCzDsQ0EAkJ7sT66nW2TxjgzMxMtWrTQJNUWAZE+s0O/iKaPtIZGigIeeEb66tWrZxrZeuGFF3r1MycMl156KYBq08DkyZMNT316eEX6kpOTUVRUxE386HcjIyNVLZyZY7deXU2TjSV9rPZOn6LmsssuU18nJCTg008/xVVXXWXZv507d+Ldd99V29YLAfY9veYdSxKsbMLrPXv2IDo6OsiUKKrp04MW7GeffRZkJuTdsEhAv/POOxr/MiJ97O86IX2s4CaSFxMTw23e1Ts1n3322UHX0MbI+4weffRR9XXt2rWRl5eHW2+91bRdu2jTGTNmaPyK9H56MTEx2L59u2pKZCse3HfffWoiXD1IqA4fPlz9jDWRDxo0CO+88476jHhING2ObEohI59OFqKkj41a1CMQCHBrPVgtBmlzO3fujB9++ME06poXhYWFpj6MVVVVuO+++9CzZ0/Tv//nn38M6/OOHDkSgJb4mJE+cqExg9m6ZxEXF6eWJXz66adNS3MCzkgfz7MnDdndd98NQPv89c9a71umB29i3x49emgIsR3pI9mwa9cu1RVl3bp1yM7OxhlnnIGIiAh8+umn6r5TUVGBVatWYfr06UGuRmybLMc4cuSIKeljx8HKJQuAGqxBZUpZYkbrnziMUd1sHuhJnxOXN7onvd++KEKSp4+cc09nEMOnmpNG0Kfe8Ir0EREzcoTXY8qUKappJzIyEkuWLMHy5csNSV9JSQnCwsLUJJRAsJkXsCZ9rKaEtClz58613Fiuuuoq3HLLLSgvL9f49BH0zsQ+n487zYSZkIyOjtYIhJSUFG4SbUf6Zs2aFfSdkcnJCLQ53XzzzRpCRac2dmys5hPP+DjR9OlJn9HJVNTPhT2dP/PMM6bX8Wr67rjjDk2liB9++EFjZYiOjkZaWprqhM2isLDQ9BBKv8tubuwJ/JtvvkHPnj3VZ8RDoungQT66KSkpQb8voukzOt1fcsklAKorRXz99dea70TyobHrQ79R6lNIsQFOPGA1/Gb49ddfTb9r0qSJas6iTY8lIuw8NSPBdpq+/Px8zVw1w1NPPQWgWhvat29f0+vsSN8ff/yh5twD+DR9VVVVKtmZNm0a1q5dqyG5+rVjl1DaquSeHqzstyN9rDKhvLwc1157LVq3bq26Muj7VVFRofbdzJ+9rKxME/BlRvr0mRumTp1q2VcC7XVmuW3dgO7bTNPHE8hB99SiRQvExsYGVcvhRUhI33XXXYcXXnjB8ppQRPQ+8MAD6NatG66//nrXjpckWKw2Kf2JxOw3FUXB77//bti+EcicYpUTkDBhwgS17mhERATq1KmDLl26GJIWMjVFRERwa/qsItnYe7ASHrSZ7N69G0VFRUF9Yxe53+/nJiiANeljN++0tDTXmj6rHGW8EXNm2g7aqNjfLSoq0hSVZ8FD+mgzqFWrFrdPn/4ejaLIRUkf3XP37t0Na6MSeDV9RggEAqr5icyu7KmaiBFgTtApx2hkZKSqmTOa1yJVSfTzc+LEiUFrX080ysvLTUszGZECmjMvvviiRhMPHNd6UKopK782VgbozZz6Q6rZPDbDt99+a6tF48G+ffswZ84ctU+0WbJjakb6zCrtEAoKCix9PglUmgywlgl2pO+CCy7QHPx4SN+TTz6J33//HWFhYfD7/ZocekAw6WPzDFZWVmL48OEaTbfRWuvRo4fhbzslfZS1gAU7fwKBALZs2aLm6jQbA72mr6yszPDwIaLdZjFgwAAA2qT4dgcVM6Snp2PSpEnqe/3hRL+ejO752LFjuOOOO9R7of9TU1NRUFCANm3aOOpbSEjf3LlzMWnSJIwZMyaI3FVWVuK9997TRBx5gTVr1uDQoUNYunQpWrZsiS+++MJVe/RQrHw89BOZjSSdMGGCujA+/vhjdOzYUWOGstL01a9fH6mpqcI5sdhFaUQq6TfZ07+dps/qRM9OVJ4T46FDhww1ffo+RkdH4/fff8ell15qewIyExDR0dGa02RycjI36SspKTHcoKxOzbxaRLOTIwlB9nenTZuG+vXrGxI/Hi3Tvffei9mzZ6Nt27bc5l12TiuKYpivkO5h8eLFeOKJJyzNi4C5uU0PEZ8+PYqKitSEtxTFR5utoiiYN2+erTlk9OjRAKo3cipraDSvRcy7etJnNK/02rtPPvkEbdq0MYyeN1oPVuspMjISkydPxoABA/DEE08YRr4awc78xH6/e/duNXLeCOQraKQhFwVLWCIiItSEx6xTOzuHWdO+3WFCXxfVCvQcrGRCKHz66IBvpjTRrx32MHrgwAF89NFHmrKPtA98//336mc//fSTZVATwE/6gGotsX4M2L1NP3+N5vjBgwdx9OhR1K1bVyVngDapO8GI9L388ssarSpQvbb9fj98Ph+uv/56dOzYEYWFhRqizKP5NUJubi4SExNVrT7NE3puPKTvsccew4wZM9QDIN2TW+1jSEjfxRdfjCVLluCrr77CkCFDUFxcjLKyMrzxxhto0qQJxo4dq0YzeoUVK1aoGrL+/fsbmgpKS0uRl5en+WcGWhhWwk9P+mih/Pjjj5gyZYqaI49OmKw/gF2OnaioKBQVFQlpRK0mwyuvvKJqAdggByNNH21mn332GW688Ub1c/IhIbCL04r00W+UlZXZ+s2Qpm/WrFmYN28ecnNzsWrVKtMNw0rTp4+Idqvp8/l8hkXZAX5/QTMSS6SPFTI0bka+SKzQ/eGHHwzbjIiIwBVXXAEA3NpTHl8TmmevvfYaJk6caOsXxEv63Gj6CgoK0KJFC2zcuFENxKAx1fvCAAgygwLHUwide+656N27N9LS0oI0Z0D1uIaHh3tG+vSfURCFUZ1No83BiPTNnDkTl19+uUrIaY64TYJMYNs566yzLKsCiPzmsWPHsGXLFtPvWatAREQEevbsCUVRDGvuAtr5bHeY4DXvsiAZM27cuCAnfyek79tvvw0qy8iC5IeZHGE1fzExMYbBRuw40GtKnQNUH3qM+szud3ZrlJ2n//zzT1B77F7FQ/rOOOMMHDx4EIFAADNmzFA/11dMAYxJ3z333KPx1QWqzf2KokBRFFVW6PsiqtHetGkTtm7dqmb+WLhwIbKzs4PKi9K8JF9Zo3VNvIHGg+7JSQ1oFiGrvXveeedh5cqV2LFjBzp16oSGDRti4sSJGDVqFHbv3m0YFegGOTk5qoBLTEw0NLdNnToViYmJ6j9KwGuExx57zJZw6VX7RPpIyNHDYs1B9LDt8lxFR0djypQpQUTLClbRPKNHj1b7y5p3jTR9tKBbtmypEYKUuZ11viVYkT6655KSElvS17NnT833iqKgQ4cOqpOtHlak74EHHlDf82r6KioqUFFRYdpHGo+bb75Zk7uNl/TZlVy75ZZb8OCDD2pSWxgJQZb0USJdu9/lISk8viWipbhoXdqtJx5Nn9l39HnLli3V+UZEgIgCSwAoPQwLv9+Pjh07IjIyEqmpqTh8+LApmeHVnOo1Jkbaez3RpudktPFWVFRoSsKZXTd8+HB89dVXQWSIfqusrAwPPfSQkE8XaUKpH0Z9NgJdy6Nl7N27d5AvJqtFZ0kfT046lujbkb68vDxuTR+B5uwzzzyDNWvWaL4TJX10HUtq9NDvLXrcdttt6sG0WbNmyMrKUted3kwIHE9vxXPYY2WtCOkDghUSVqTPStsZGRmpWUNmFhmjZ613LWHv2UxhImrePeecc1STfUJCAqKiopCUlKTOE/1zW7VqleHnwPG5RcqpU5705ebm4p133sH+/fuxbds25OTk4KeffsLDDz8svLB4kJycrA5OTk6OZkMmjB8/Hrm5ueo/p5E4BL/fr0lHsWPHDsPIQFqoubm5iIyMxCuvvGLYPxYkAN5++20A1U6/Pp/P8PQPVPte6U+pZo7LrHmXTTRMYKOBeVJcAHykjwS2fiFRGoQRI0YgIiJC871dNNt7771n+Hl0dDQGDhyIPXv2YNGiRUhJSeHyu2ODH4xAhKdjx45CJ9+YmBh069YNHTt2NPyeTpQ+nw/PPvus5veNhCA73pGRkZqTuhF4ffp4U+VQdQmCFaEjTR8v6bOaSyIkhdYYzTs77bqIpoc08ffccw/+/PNP0+v089fKp5FAc9CI1FRUVGhMloC1dlbvk0vXzp8/H9OmTcPrr79u2x/CK6+8or4WiTAmeTJixAjbaykalp2HbLobvabPDjykr3PnzhgzZgz27t2rycPHA6/Nu3aw0/T5fD6MHj0akydPxtixY1FZWalq4un+WVlFpI8HRhpCM+jliH7ts+PGo+kj6Emf0dw3S9mi19qxv2M2BmFhYY59Udk2zTR99evXR8uWLS19dYnX0EHfqZ8hISSkb/z48WjQoAHee+89PPXUUzhy5AiGDh2KPn36qMzWa3Tq1AkLFiwAUG3KMIrQCwQCSEhI0PxzA5/Ppyk6P2nSJDRu3Dio5BAJqsLCQpSWlnJNIiIotEkQ+TPLDWU0ERo0aGDo7Mmad400fTQBzYTVBx98gOHDh2s0HTyaLsrXqL//Dh06ADi+EMzKxRnBrFA9aT3r16+Pnj17ok6dOlwRtnRPZv6UpFVr3bq1ZnzsSJ+iKBg6dKjpBk0EhZ4Dq00zEoIs+YmIiMC3335ruRHzaqbo2RulamGhF/oVFRUoKCgwLZF1xRVXqAXczUBjbkXO9b87aNAgnHXWWYb9pXlEjul2m6qITxcdnF5++WW0a9cO27dvN7yOnglFBnbq1MnwOrZ0GpFzvVmU3otUXTAjfTTP2Lkl4kpidThQFAUPPfQQdu/eDUB7iDSCkRafjRZm08WwrgQ840D36/f7TYnKypUrVUJrN+/1sPK7FiV9PNo2Hk18ZGQkJkyYoKYJoVQ8JKP05I1XcyRC+vSySN9vEU0fOy/1pM8IpOmzI7OsPLS6Vi83edcJ+9z1pI+FmS8n9Yn21sLCQkRFRQlbWvQICen7+uuv8fLLL2Pr1q247bbbEBsbi/feew+33XYbLrroIjX6yku0adMG6enp6NatGzZt2mRovgkFfD5f0AlWL1hJUNHi4/EToCi73NxcHD58WBNZSGA3BTP2v2LFiqCN2C56lxYsK1TZvGqdO3fGzJkzNWVghg4dinXr1mHu3LlBBIjGg8wW+r7Sb9OpnF0AdhF3N9xwg+Hn+qi2jIwMHDlyxFZDYafpu+CCC5CXl4fOnTtrxmfr1q246667TIWyUQQbi6uuugovvPCCWgKNvdZIILDm3ZiYGISFhVm2z2vepd9i6y0bgc07B1RvKMnJyWqwBDuffD6fGlBihfDwcPj9fsukx/q5NWPGDOzcuTPISZtw+PBh9cBE+bjMUFBQwK3pi4yM1DwDtig9C5pvs2fPDkouy2Ls2LFqPVt6TkbEGtDODbv5bGbeNaqFy0Mo2rdvD6CalD3xxBOG12RnZ2PatGmqbxqNk9nGauTzxx726B7j4uI0n1tZS/bs2YN9+/ap9xkXF8cVICTqJK8nTOzzECV9PKU36RnxBPlREB5ZtOj+6Znv2LEDzz77LPch4pJLLlEtCnaHXH2UuJ5Ms+OsV75YuQ5ERkba9pdIX3R0tKHPH1Ddf9ZtwKpN/Vhb+ZyyMEryTPfGaqDDw8M1a2/kyJGYOHGi+tkdd9yBqqoqy1yXIggJ6du0aRNuvPHGIEY6efJkvPjii7j66qtV/zAvMX36dCxduhQfffSRZ/l1ePDuu+9qzDZ6rRcRCdI08Ti2kyAsLy9Henq6GrXFCj32tdlkCAQCQd8ZafqMhCxN2oqKCrz11ltBbc+fP18TRHD++efjsssus9Vk6r9v0KABfD6fSixZwWmX9d5IE9iqVaugRUzaArsyOnakDzien5CtBvDmm2/ijTfewNatWw3/xo70hYWF4d5771XbtNP0sUFIPBoCUdJn5hhPGDNmjMa3rLS0VPWHNOszD6KioixJn1XJJCOkpaWpsuD6669X1yZFfbLIzMzU1Nq2QmRkpOYZmJEv+jwyMtKyr36/X9V40xy0In2XX345atWqZbsBmmn6CGaVeMywcOFC1R954sSJhtUT6J59Ph8WLVqkEgUzmWykXWX7wpq72XG2SqdVv3591K1bV91cY2NjuUifqL+U/vqHH35YlUl02OclfSSbrHyzaV3xWIsaNmwIn8+nJrXWBzTNmDED2dnZtuXpCImJiZg/fz5SU1Mtx3Lt2rVBLgj6fLfsXNAn/tbLdFa7GxsbayvviPRVVlaaFlUYMmQI+vfvr763mvv333+/5n2LFi1slRGAsaaPnt/333+v5nsMCwvT/P4777yDJ554QjMOhw8fPrVJn9VDufXWW/HVV1/ZZsk+3cBOYtLWkEClUxGZLHhI34oVKwx9kNiJwC48Eb8DI58+9tSjJ32U0FmPjIwM9OvXTxNCbwS7CMb4+HhUVVWppi/2epaklZeXB5Gq8vLyoHEyUn/TxmLnE8ZD+gi04bKblpHGh0rXiZjl2HswEkhUH5VNtWCF6Oho9d4aN26Mb775JuiaN998U9Va8/SV1VrpT/7UZztfQz0CgYAQ6RM93CUlJaFTp06Grh0HDhzQJH+1QlhYGP73v//ZXkfrjGfjp2to/puRvrCwMHz11VdcdUDNSJ9e68O2b4WEhATNc9f7MGdlZam51Px+P5YuXap+Z/aspk+fHhS8YUT6KisrNbKBN6cewE/6ROeT/rlOnz4dn3zyCYDjlWh43YiI7KWkpGDhwoXYsGFD0DV00OCRT4FAALVr11b3HVqjfr8fR44ccXwwCwQCplVtAGD16tVBn+llNDvO+hKCelnCPnOe3LWRkZHYu3evZd5Fvdy0ciMy0ijzZBgwquFL87ply5YYP348AHPzLnvfK1aswJQpU7iLAFghZIEcVhgwYAAWL158Mn46ZDASFiRQnWj6OnXqhLlz5wZ9bqbpE6n/GhERgRkzZiAzM1OdWKyJRdQsYWZKP3r0KDIzM4MWlF2+NDPS99hjj+Hss89WtTXZ2dkoLy/XBEGYga7xkvQZ1f0EggUInaSdkj4j4bxv3z4MGDBAc1q1Amn6qqqqsGPHDgwePDhIcN15551QFAU+n8826AHQEgozQc3jvM8iKipKfeZGa0r/OyIF2wlGjt6FhYXIz883zEtoBLP6oHqIrCWaH2akj+aByDwy09iS1leU9AFaM6ReS8SmF/L5fFwRkomJiUFpStg5T2syPz8fR44c4fbPBaDR9GVmZtrWohUlfUZjRr+RnZ2NW2+9lbtGKgW01a9fH3379g0KlgKOa4ysStaxSE1NVYP/aD7t3bsXaWlphvsLD/bt24d33nnHNIBJf2gz8ndlx1kfPKP3oWP3A571yebDZUmfFcm1OkDRfjVw4EDDPpmBXfO0Zo3mS1hYmCHpZD+jPdZt0QngJJE+AI4LF5+qsBLqTkgfYOy3Yabp420TgJpa4LnnnjOcvHaBHHoYnWQpd1adOnU0fa5Xr54mHYkR2IXBLkbKvVhUVITPP/8cKSkp2L59u+ojaNVfIn125JhIhYimjw3mAapJBfmtsgmOeQIpCKyPmpGgOHLkiK0JlkVMTAxKSko0c0ZfJYbASyoaNGigvtYLTSP/Mx7k5eWp/oRG85/6T8/TiRuHUWky0qCIrCMeUGUiEU0fRd3z+PTZQa/pIxLE+g0uXLgQCQkJ3PkRWasA9ZWeA3uf+kOYyLMy0vQB1cSI5AoPqA/x8fHYt2+fphbtL7/8EuQLKjqfjDbhDz74ALm5uSgsLAzSYlmhdu3auPbaay039uTkZAwbNiyoBKgZ0tLS1MTZ9HzpvV5uiYLySRLy8/ORl5enIX21a9fWZLggkFn89ddfx5AhQzQp3MwOkNOnT+eqQsG6XbDmULP5fdFFF+G2224zbY80feyctNPMAdq1QId4o79btmwZPvroIzRt2lRDgI3mAStzneKkkb5/G3g0fRSVyBtybUQ8jDR9gwYNwvTp07n7SpM/Ly9P4+dF/RXV9Bmp0NkFwPaZzZxvBvZvWQFCi7myshLLly8HUO3zR6STFpSR9ou0cVakr7CwUN0UeEjfRx99hAcffNDwOzrt//jjj+pnvLn8AGgqHOzfvz/I2b2kpEQodJ/uh9XSsAFVbBQ0L6lgTaHLli3TfCdi1mTBPh8jjTARITp1O4lki4iIwGeffabxFaLf9cJnhsXChQsB8GX214+VlXmXF2aBHLTus7Ky8OabbyI/P587hRVb0m7KlCkAjs8vdu1amfTsQFqZAwcOBB2WROaUPgku23bPnj2DKkOJkj4zywFFs4vOp/Dw8KC1xKKoqAhnnnkmd3spKSmq3KH5rr9HpzVc9bL01ltvRWJiouZzs2wdlAj9oosugt/vx7hx49TvzFxF6G/scNZZZ6mvWQWDEekLCwvDzz//bFqPGzh+ENSTPj2B0wd48Gr6CNu3b9cQaSOFjN6/0Akk6fMIIiHfvP53dqSPNoVx48Y5Sj9z7NgxDemjCUmTjcfEB8BQCJmZoXn6yU52dmMmIkROugSKIq6qqkJWVpa6EbGwM+9mZWVh5syZ6nue6LgWLVqYRoQa1eYUIX0sHnzwwaBKIHZJrvUggsiSvueff159/fTTT6uveUkf6+uir24jojE1gxG5oXZffPFF7N+/nyuIRY/vvvsOgJbo0rzwmvS1bNkSI0eO5CLoVqSvcePGuPzyywGIEZO4uDjNeqDxoo356NGj3CZtwpgxY9QAM4JRSgq2Ni4gRlYrKiqwcuVK1K1bF999953G50+E9BHZY+WOlW+fKOnbuHGjYQqP4uJilJSUCM8nuzEqLCwUPuyx5nEg2MwpkquRxa+//qrxDab1xB4mzWRJ3759kZubqz7XyMhIVYtlZt5ln/vzzz+vIYos2CDR3r17q1pRI0sLzx5HSg12X3r//fcRERGh0XrrNadsf+vWrYvGjRtj7Nixtr9HKCsrC9LoWpVF5YUkfR7BSljoTxi8EWK85l2nkcp5eXmaUxkb0RsREcG9oRrVUWb7WVFRoWqFeJyvWX8VlvSR/xBFigLV2kk2dUxycrKh4IyLi0NYWBh++ukn5OfnY8yYMZrncvHFF2tOvCJkhc2xRqA+sEKF7acofv31V6xatUrV+DklfWY1gtmNhJf0sZo4VqBOmjRJFYCi9aNZGPngsAm+RcmKHuyGTOvAaa1NM2RnZ3NrZqxI344dO1RzvKj29J577lFf6zV9R48eFU6W7/P5EB4ervFVM9L0RUZGavLtWckTfQBUZWWl6jKwdu1aREdHo2vXrgDE7v+WW24BoK1a88wzz5jmWhMd27y8PEMyQVYd0flkR/pEtYdsUnbWUuIFZs6cicGDB6vvaR9iNcZWskSvAFixYgWuuOIKU/Mu+2zuu+8+TJ061bBddj6npKTg/fffx8iRIw01fSKkjz3QzJ49G4BWnuoPvvqULdu3b1dTHvGA9uF27doBqN4X6eDnBpL0eQQr8y472SIjI7k1aLzmXadlWbKzszWavvLycvz9998YPXq0UMZ9I2Gu90cgUsEjsGbOnKk6Cefn56smKrYGIS3AiooKVf1uFdkVGRmJ22+/HbNmzcLbb7+NV155BfPmzVO/10fKiYypviwWUO1/snHjRnUcvv76a00ZK1Hs3LkTHTp0UH3EiouLhQgVjb+ZuYUlfbxkkvV/Y+fR448/rjrmu9H0GZlCFi9ejPr167tOrA5Uz3dao4sWLQLgvaavpKSEey7pN3wzjZQoMWGvf+edd5CTk6M+r9zc3KD1++GHH3K1y5I+mot60kcBL2aVcwh9+/bV1EatqKjQyMno6Gj1N0Tuv127dlAUBZ07d1Y/e+KJJ3Do0CFDQsIrm9etW6dqx42eE7mluNX0seQ0KysLubm5QuZdI00fTxSzExgRXBH/04yMDFx88cUoLi62zRvLCzqgpKamOtb0nXnmmYiPj9eUEaRUYuzzys/P1/AAJ0FmLKhaCtVP7927tyPLhh6S9HkEyrHFQu8jB4hpPng1fW5IH6vpq6iosPQnsYJ+MpqRPp6+RkVFqc6/dLJlFzxL+srKyhAREYGFCxdi/fr1lu326NED2dnZqraIJRV6YSuyuMzu6corr1THoVOnTq4yqVOfd+zYAUVRkJmZKUSo6Fp9viwCK2R5Nyo2p51eoFJuMLeavsOHD+OPP/5QPzty5AjOP/987s3ZCJs3bwZQ7cvk9/uRkZGhptdwQvruv/9+teKGHqWlpY7HwGxzdptW5Ndff1VJX3l5uebZPffcc2rKKTuwuUl9Ph8++OADjWa+uLgYhw4dwkMPPYSbbrrJtr23335b1aC8/PLLGuf6w4cPOyJ9BH3wmFU6Dx60bt1a1U4aPSfy6TVL2m0GPbFhx5N8xowsK2aIiYlRte56TZTXMIpSFp2rUVFRqKqqUs3Gc+bMUQ9kbkhUdHS0Y01fVFQU8vLyDLNUsFpTfUUft6Rv69atqFevnjrv3RygWUjS5xGsIlIrKirUU5DIBmB0sjHS9Dk172ZlZWk0NBs3bsSoUaMctaX3VzMjfbx9pQWTn5+PQCCgIVYlJSUawhYREYHevXvbRrOSzwhVErAifSIwI31sBRC3AoAtz/bFF19AURSuWsIEOz8gtqYzr89QIBCAoijo3bu3aeJnUcJDvz1p0iSUl5eje/fuGpNITk4OV/1aK1B1ADrwsOk/eKN3qU8///wz0tLSDBPcKoqC4uJix4eyRYsWqaXMWIjOJf0BJikpSRPIwfp2imhT2E1+8+bNuOmmmzB58mQA1eNTUlKC7Oxs2xRNhKioKNWU9dVXX2kS4P7zzz/qODpZS/o5061bN6E0V0ag/hhFWe7btw8RERFC0btAsBzKyspCQUEB9u7dq84xETeRnTt3orS0FD6fD++++65QX8xgRjqNNPOi65+IzWWXXQYAuPzyyzFhwgQAYs/9119/1aydqKgoQ02fiNz3+/2W+ST1pM+JZpJFbm4uunbtKknfqQoSKmwGcDYwgkifqFDVJ4b0UtN37NgxPPbYY+p7fQi+CPSbpRtNH3CcHB48eBBbtmzRkEVW0wfwCwP9WFIbs2fP1pyoRWF2T1lZWa6JuR5hYWGqKdqs9JgR7IhcZmYm6tevz3WtHqwJSQ9Rof/XX3/hjTfeQGpqKrKysoKScXtB+qy0uLzrc+XKlaioqMBFF12EOnXqIDc3V6NJyM3Nxc033wxFURxr+lavXh20yQDu51JFRYVK+vSVBUTNcXrQ4S8+Ph5FRUXIycnhJn12v09amXXr1nG3Z4bDhw8HySiq0cwLWvdGmj69qY8XehJy7Ngx9O/fH2eeeaZq5uPN+wdo8yZ65cu3ZMkS3HzzzUGfFxYWBmlPRQm61VoRmZudO3fWmMFJ05edna3JhCBqLtWXp6Q9JC8vD1OnTtWkruK9902bNhmuc6A6EpnmhNN9Xg9J+jwCaXRYuz+dJFlNn0iuNp/PF1SurqysDMeOHcP//vc/fPnllwDEN4FFixZp8lURRDd7K7glfXrhx/6dU9KnF0hE9NiqAU5gdU+UssPtRk2n1rCwMDWCyyx6zQhWz/bgwYM4fPiwalIXFdR+v9800aso4WnYsCHuuOMOpKSkaEzOtG5ycnI8z6XnBH6/X52jFCHKRkF26dIF77//PgB3Wt6SkpKg6gdutcalpaUazS4LkY2VtDEsaEzi4+OxaNEiVFVVCT0vq9+nhP48JbCcQFQzQ2vaS9JHfaAUIllZWUEkV0Q75faAZITatWsbJocuKioKysknSqpYeaEnqW7mfVRUFEpKSpCSkqJWwgDELTz6PtC+Ty4obHYIXtnXokWLoFrxhLp166rBIl49S0n6PMLQoUNx33334ZprrlHr1BKpYDV9omk7WMERHh6Od999F7Vr18att96qZnAXPQH07NnT0MeGiFrdunUdnQpfeeUV/Pe//wUQnBpFlPTphYUV6bMqvM5C72hMpNxtGLyVXwiV6nK7URPCwsJQXl6OyMhIQz9SM1iZBjZv3oyqqir1ICDaVzMC4aQtgv6Z0oZfXFzsebAFQdT/ikCkj82hZZdvywy9evUK+oySqRPcHiD69euHX3/9VW2nWbNm6iYusgl26NDBNL8ZG2gzaNAg7jatfp8iF/UVHLxAnTp1NGmLeEAyychXrKCgwJWmj+bU2rVrNRornjynLOjgQdDLKnJ1EYWegCiKgsLCQu7a1WZg5ZQ+04AbGcrORyqTB8A0itsM+oMB7UNG8lWkv2Z7CFuWUkTDa/lbnrQigdjYWDz//POIiYnBqFGj0LdvX5X4sKXCbr31VqF22YmTlpamOqGzcKL2ZRNYEogELViwwJGj/OjRo1XBrPdxokXhVEVt5dNndC9G0Gu7ioqKsGvXLk0i5FDBi6grAHj22Wdx4MABYf8Os+u/+uorlZSQJtSpH44RnGrl9JUkKBkzRbSFAmaJtu1gVx1CJFryp59+CtLsvfnmm5r3Tje/c889V/Oe/M3YQClRbdeyZcs0/SM/U1arLpK2xOz3161bhxkzZiAnJ0cT2OMVfv75Z9WfkBc0D9myXwS3pC85ORnh4eF46KGHNAeISy+9VKg9vQleP75mgV12YElfZWUlSktLoSiKa2LCyh42pyjgzkeOdTEQ8YXWQ98Hsra5LY9mtUaGDh0KAKbaQFFI0hcixMfHq5o+1rwrSnpIwN94442mm6uTTaBbt25Bn5GfjxvzGQkrPekjwuVk4Y4dO1ajAdBr+njztbFENi4uDkVFRWjYsGFQgmVKi3Kq4rfffhM2xZtpUIYMGaKOJQXCiBJKs9Py3Xff7ZjsGtUdBUJL+kQ0cizsAohEU2Q0bNhQ855cBAhO7n/nzp1BdWep37Gxser8cLI+WU05yTynkbFmv9+8eXP4fD4kJiY69pHMzc0NIhIEJ2NKspxSMb333ntq++vXr+eucMKCnkNERIThGnc799lkyjt37nRsMmT3sfLycnXv4C2PZwZW9nhRZ5vAWg7YAB63mj5KfE73z1sTWQ8r60X79u2hKIqQb6wVJOkLEeLi4gw1faI+BLTIFUUxXfBeaZG8MEX6/X7Url07yO+GBLWTKNnnnntOo+HUkz4nCXXr1KljGHHaoEED3HvvvcLtAe7Sk4igoqLCdSTXU089pb6mjYqS315zzTWu2ia4GQ8jTfPy5ctRWlp6ypG+iIgIjBw5UjU76lM76EkcD8zqItPvieKss84KMpmTKc6Npg/Q5sekSFGnJngz+eDFM09ISDDN7+iG9BHCwsJcO9uzz8GoT06e/SuvvKK+7tevn/rajVaOJfplZWUqkTKqsysCdi/TlzVzMwe8Ikxm40+Kgy+++MJRu7fffjvq1auHCy64wHHfeCFJX4gQHx+vkr6KigpVGIgKVZpkVqTPK1BuNbe/Ex8fryEVgHFZMqfQm3edbDBpaWmmaUac4Mcff1QTSnsJI9P10aNHHZE+SigKaM2nlJctISEBiqIY5qOygtmhw6sUA4S5c+eekHXgBHXq1FE3Pso1RxA1yQHVp/uVK1cafuf0/vVEmrQ8bjV9+kNXRESE44Oj0e+zjvehgpMx1R9qjh496npuspo+r0gfaSL1JM/N4b5u3boqwSkpKVGTsbslfazmcciQIerrsWPHujLvmvl9ix7IjCJpi4qKVJ/juLg4R2bY5s2bY+/evZp65qGCJH0hQlxcnCaQgzZG0YlLkyyUmx2bBBVwH3RgZNohU5ITrYcepaWlGq2ME00fmXf1YMP5RdCnTx9V4MXGxgaRXqfQm/aA6vQqTiKtWXJslFfSq2ATglvSt2zZMnz99dfqe6/T3wDHtdsADNNQ8CI+Ph5ZWVn49ddfvegWAKBjx46Gn3v1nEgmxcXFudL06ddfWVmZ48OdnpieeeaZnq0lKziZU6mpqZrybo0aNXJtdWGVA6zpkZ6L02e/fft2rF27VvOZ2zxy9NwPHDig1rNOT09H27ZtHbdZt27doMAlAGjTpo3jNgFjl6Xx48fj+++/F2rH5/Nh9OjRGo0e64MbGRmJVatWGQb38ICV63fffbejNuwgSV+IQJq+qqoqVFVVqcJMVBiSI+6IESNCRvr0Pm1uf8eIhA0fPhyrV69G3759HbXJnqpnzJiB5cuXq++daPqio6MNk7M6JX3A8XFLSUkx9UnjxciRIxEeHm54cj5y5IgjQsUKlM6dOwe14XYT0Cd/5Y2qNsOFF16oSQsSCtJHPki1atVyRVLj4uKQl5dnGs3qBd5//3389NNPrp8TUL0J0vMZOHCgp6QP4C9npgeVzbr22msd/b1TODHL+nw+rF69GkC1PGHr0DoFrfejR49qggPoIO2U9DVu3DgoS4Fbqwu1x5Ke6Oho1xYPo3Kabte80XwcNGiQIx/EV155RWOGJS0fUD0nIiIiHJv5b7jhBvU1JZH3GpL0hQik6Zs2bRqA46H2l1xyiVA7jRo1QkVFBfr06RMy0qc/BXl1AmSRkZHh6rTGCqh9+/ZpvnOyWWdkZBjm+3JD+uiUX1VV5Vob89///tfSx8zJPbOCKCIiQk2vw37mBnry7TZ9A4G0xKEgfeTj5dbU70TbLIrGjRsbpnQRAR1G9uzZox4o27Vr58q8q3/uV199tStCUV5ejpEjRzr+eydwOqd8Ph9yc3M1VV3cgNIGbdu2TUP6aJ56qY13q5WkCkesO4gX/TPyBfbaCgG4y0vLrhOKJmdTwTjFwIEDVfcQuwAxp5CkL0SIj49HcXExPv74YwDVm7SiKI40ASRA3dQbNcKSJUswZ86coM/dCgPWvHvdddcFZTEXAW0oVn1yMi4tWrQwrGjhBaG49tprNUKKPQk6AR0Yateurfq8OBFY+jG8+uqrNe/dzi/934tGxpmB8pR5TfqaNm2qElORpOlGMCJ9jRo1wq5du1y1y8KLjPw0b6KiojBmzBj8/vvvaNy4sStNn/5vrrjiCtdziQ1gOxFwc9C1ChARBWn6srOzNYc+kqknajx4EBcXF0TuWbnndB/x2hc4FL/D3md2djbOP/98zwLgLr/8csyaNQvDhg3zpD093NsJJAxBmwCdAEWTMhuBtFDjx4/H1KlTcdVVV6l58ZyATduSlJQUlAzTKVhh1bx5c8faiW3btqnCzmgTWbp0qWXNYyO89tpr2L17N+rXr2+YSmP+/PmO+kooLS1FRESExvwsWt5Jj23btsHn80FRFMTFxSEnJ8cTwRgWFoaePXu6JqUEEvK33HIL/v77b1x00UWetusl6cvKykIgEHBdf5VgRPoaNGigakOc4r333sOIESMAeEP6PvroI7z77ruIiIiAz+dTawgT6XGqoWvWrJlaMi8yMtK16fBEBeu88MIL6vryGmPGjBH+m/DwcLz11lvo2rWrJq8imeLdHk68hlnVjE8//dSxi4vRs/eqhBwLN5o+lvTl5OR4mrnB5/MFHci9hCR9IQJtAlStwI3ZkEBtdOjQAZWVlZ5q/hYvXqxxSnYDNrLWjfBns8+TUH7//ffVaiKUYkQEd911FwBoSBnho48+Mq2ByAsSWKEwRzRr1kwl5l6WzPMKFHnWr18/TYCEW9C8J5LuBSGgFA5ekQsj0ufFRsUSZy82lkaNGmHy5MlBn7vR9AHV6TWGDBmCr776CpGRkapsMsoHyoMTpenr2LGj4xRNdrj44osd/d2oUaMAaOcPaaS9UB6EEiT33GipjAi4F/snISwsDJWVla7y0cbGxmLKlCl45JFHkJOT41m1jBMBad4NEcgsGR4eDp/PhwkTJrhukyZ+VFSU56ZeMk94XeLKK6FN9zt06FAMGzYMTz75pKv2WGdhn8+H77//Htddd52rNlnQ5umVqWLZFZlz7QAAa+VJREFUsmWYN2+eqvn0ql0vNBz//e9/8X//93/o0KED/vnnH89PqTSHKG+Xl/VEvQiKAIwj1r0gfSy596rguhHc+PQRaC6xpI+0lKJgU1V5jVWrVgX9TijgpXaK5PPpQvrc4oMPPtC893IsZ86cibvuusu1SZ6CzA4ePHjCcrR6gX+Fpm/Xrl1o3769mhz1888/D5kTJC/o5F9eXo5XX33VcYZ6FiQAQzHBqE2n9UfN4NVipQ0lIiICn376qev22Kitl19+Gf3793fdJgsSfl48d+B4AXaaVyfK74UHDRs2VOuWUmkvL0HzftOmTUhNTQ1J7VW3MNL0sRpvpzhRpI/InpvDJBHHyMhIDBs2DHPnzsUVV1zhqK1QmnfZcmuhJH1eaqdatWoFAJ7LKa/h1XgOHz4cN954o/rei33k888/x5IlS3Dttdd6Eh1ev359AM6zKZws/Gs0fT169MDixYuxePHik074AK3GjA3DdgNW0+c1qE2vNB8ErwSf05Q3ZmA3aTIXewnaoL0WBkQinZJJfQ6tUPgyeQ1W25OUlHRK9jlU5l12rZ8ITZ+b9Ur9i4yMRHJyMr799lvHlRCI9Hlt0dAjFKSPXBvcpiwaMGAAgOpqDXfddZejxOknGl7nkASq82c6PTywuOqqq/Dyyy+7bofAagqlpu8kYPny5ejWrRu6deuGKVOmGG4MpaWlGuf9vLy8kPWH3QS8iuwKJelzWjHEDl71lZ6n1xt+enq6Z9o4FuTAr69B7BY0r5z6oyxbtkxNGg6cHqSvd+/eWLduHYDQEh83CBXp8/v9iI6ORnFx8QnR9LnRTrKkzy2ojVCnwgmFRvHmm29G48aNHfszEubOnYtdu3ZpfJu9wNy5cx0nD7aDlyR63Lhx6Nu3r+s0RaHEiBEj8N5770lN34lGRkYGtm/fjiVLliAzMxNfffWV4XVTp05FYmKi+o/Us6GA175xQOg1fe3bt/c8+71X4xCKE/+ff/4ZktJpQPV43nTTTZ6YolnQJuWU9EVHR2tKsJ0OYJOHexVt6zWMhL5Xrg1k4j0Rmj43ffayf6EmfSRPQqHp8/l8riP2gWoi7jXhA6rLAg4dOtTzdgFv5fTUqVNPacIHHK+acyqWhjTDaaXpO3ToEK666qqgz+fOnauq0q+88kqsWLFCU7ePMH78eIwdO1Z9n5eXFzLi55V2j0UoSZ/f77cs8i4C1hznFen78MMPg5IJu4WbckE8eO+99zxvk8bW6/n16quvetqelwgLC8OPP/6Ivn37hmSTnjp1quvgEKPNzkvSl5eXF1JTJxFLN4ETJJeMUiGJgp5zqEhfZGQkSkpKQurTJ/HvBx2+T6X8iXY4rUhfeno6li1bFvQ5a65asmQJWrRoYfj3gUDghJmHvPI9YxFK0hcqeJVapE+fPujTp48nbZ3OILOMU18pPXr06IGffvrphFdAEAWRMq/dD4BqM5KXCAQCKC0t1QQMuEFMTEzI5dYDDzwAv9/vyiTZs2dPPP/882qlDzcgzeno0aNdt2WEqKgoSfokXON0MusSTivSZ4Zly5ZhwoQJiImJQcOGDQ3zUJ0MrFy50lN/sdOF9F1wwQX45ptvALhPTCyhBWlR2MStbvDII49g1KhRp/ycIuEaCtLnFQ4dOoSCggIkJydj586daiURtzgRpC82NhaPPvqoqzYuvfRS5OXleSLzIiMjQ6o9SUtLQ05OjiR9LjF48GDExcWpladqGiTpO0kYMGCAGul0KoHs/V7hdCF9EyZMwHXXXSdcLUPCHq+++iqGDBniOjKQ4Pf7DQucn2ogjfGpTPrq1KmjpgLy6vkAJ4b0eYVQBEWFAi1btsTWrVsl6XMJKuMpSd/pg1NXgkoEgUjfqb4BhIWFScIXIpxxxhkYPnz4ye7GCQcJ15q4SZ9OpO90wbvvvosrrrgiJAF3NRFz5szBF198cbK7ccJBcul08un7V0Tv1hRQrqLTIc2GhISXIOEaCl/ZUx2S9HmPpKQkTfJfCXcYPHhwUBWNmoDTKWqXIEnfaYRJkyahqKjoZHdDQuKEg8y7VJmgJiEmJuaUd+mQkKiJIAXM6aTpk+bd0wiUqFVCoqYhIiICv/32G1q3bn2yu3LCkZGRgWPHjp3sbkhISOhA7iahSNEWKviU04mieoy8vDwkJiYiNzf3tHpoEhISNQdFRUUoKytznUtQQkLCWyiKgrfffhvXX3/9aeMfKkmfJH0SEhISEhISNQDSp09CQkJCQkJCogZAkj4JCQkJCQkJiRoASfokJCQkJCQkJGoAarRPn6IoyM/PR3x8vMx9JyEhISEhIfGvRo0mfRISEhISEhISNQXSvCshISEhISEhUQMgSZ+EhISEhISERA2AJH0SEhISEhISEjUAkvRJSEhISEhISNQASNInISEhISEhIVEDIEmfhISEhISEhEQNgCR9EhISEhISEhI1AJL0SUhISEhISEjUAEjSJyEhISEhISFRAyBJn4SEhISEhIREDYAkfRISEhISEhISNQCS9ElISEhISEhI1ABI0ichISEhISEhUQNQo0mfoijIy8uDoignuysSEhISEhISEiFFjSZ9+fn5SExMRH5+/snuioSEhISEhIRESFGjSZ+EhISEhISERE2BJH0SEhISEhISEjUAkvQJYty4cVi8ePHJ7oaEhISEhISEhBB8Sg2OYsjLy0NiYiJyc3ORkJDA9Tc+nw8+nw9VVVUh7p2EhISEhISEhHeQmj4HqME8WUJCQkJCwhHKyspw5MiRk92NGg1J+iT+dVi+fDk++uijk92Nk4KtW7fKaHQJCYlTEiNGjEBaWtrJ7kaNhiR9Ev86dO3aFcOHDz/Z3TgpOPvss3HJJZec7G6cFKxdu1YSXolTGocOHcLatWtPdjdOGr7++mtP23vuuecwbdo0T9vcu3cvmjdvjqysLE/bPVUgSZ8AKisrT3YXTiry8/Px/fffn+xuSNhg6dKlJ7sLtlAUBVu2bPG0zTZt2mDIkCGetikh4SXatWuHNm3anOxu2CIrKyskB6iysjJP23vggQfw0EMPedrmrFmzsGXLFixatMjTdk8VSNLHiaqqKrRq1crzdnNycnDVVVfh0Ucf9bxtL7F//34MGzYMAwcO9Hzh1lQoioLNmzef7G6cFLzzzjto3rw5tm7d6mm7CxcuRHFxsadthgIlJSXYv3//ye7GvwZjx45F7969T3Y3bEHPfNu2bZ61qSgKioqKPGsPAOrVq4f09HRP2wROD8VJeHg4AGDNmjUnuSehgSR9nCguLsbff//tebvjxo3Dl19+iSeffNKTBXHkyBH06NHDc9V0vXr1MH/+fABAaWmpp217iVD1bc+ePZ6S3XXr1sHv96Nly5Y477zzPGs3VFi+fLmnAUzr168HAM/maUVFhfq6e/funrQZKqxbtw7XXHMN6tWr51mbu3btwq5duzxrj+Dz+fDiiy962uY333wDn8+HnTt3um6rqqoKPp8PL7zwAn7++WcPenccR44cwU8//YRjx4552i4ANGvWzLO2XnzxRcTGxqK8vNyzNouLi1FUVBSyoMVTmfwR6ZsyZQpuu+02T9qsqqrCc889F5K5JIp/DenLz89Hx44dERcXh7/++svz9kOlPWCJ5NGjR123N3v2bCxZssRz3wkWJSUlnrSjKAruvfdeT4Q/gV2kXpE0RVHQoEEDDB8+HP/8848nbZ5//vnq6/Xr13siBNm+eSmsf/nlF3Tt2hWfffaZZ23S/YaFhXnSHrs+//jjD0/aHDp0KJKSkqAoCt5++20UFha6bnPevHk4//zzMWfOHA96eBwNGzZEw4YNPW2T8MILL3ja3uDBgwEAmzZtct2W/pl4Ne8rKyuRlpaGPn36oEuXLp60+fDDD3vSDovNmzercykU5ticnBzP2wS8N/N6CSJ9APD222970ubq1avxwAMPoHbt2p7IEQD4+eef0apVK3Tu3FnsD5V/CcrLy5XMzEzlpptuUjZs2MD1N7m5uQoAJTc31/ba3bt3KwDUf16hYcOGaptr1qxx3d5nn33meR8LCws1975nzx5P2s3KylIAKN27d/ekPUVRlNTUVLWfx44d86TNgoICT599cXGxpj0ASkFBget22fZuv/121+0RaE6NGzfOdVuZmZnK77//rvTo0UMBoFx77bUe9FBRDh8+7Pn61D+jhx56yPM2vQK1d84553jS3j///KPp55YtWzxpt7y8XG1zwYIFrtv78ccfNf3kkeU8eP7550M+n9yC9i/6t3PnTved/P+gNpOSkpTKykrP283JyXHdVlVVldreRRddpPz222+u2/zmm29CskY//vhjtb233nrLkzbZPs6aNYv77/41mr7w8HCkpqZaXlNaWoq8vDzNP16EQtNXVVWlMcnk5ua6bpPVnLz//vs4ePCg6zZ3796tee+Vpq+goAAAsGTJEs9O6OwYeqVK91olb+Qm4NWYEmbMmOHJmC5evBjDhg0DADz99NOu20tLS0OHDh3wyy+/AAA++eQT120CwOHDhz1pxwpu/aZYEzTB6yTvGzdu9KSdDz74QPPeK3/miIgI9bUXGo++fftq3h84cMB1m6tXr8bYsWNdt8PijDPO8LQ9IFiz55Wm7/fff1df5+TkuH5OR44cwYgRIzT980LT99tvv6mvFy1a5ElAx1tvveW6DT0+//xzXHfdder7UPjyfvjhh9zX/mtIHw+mTp2KxMRE9V/9+vW5/9ZrR1kAmDBhgmZj9oJYsm2MGDECN954o+s2X3nlFdPfcIMzzzxTfe33+3HDDTe4am/v3r0aYeJVEtCBAwd60g7BiNyH4lDx008/uW7Dy0hgs+fhNkquWbNmaN26tas29DA6LLGExQmMiP2OHTtctQkEz6fMzEzXbQYCAc17L/3FCF7OrebNmwMA9u3b57otI59QOqA6hReHbz1CRfr05my3BO3777/H+++/j8svv9yzNoHgw7jP53Pdpt/vPSWiQzPh8ccf92SNshBZnzWK9I0fPx65ubnqv71793L/7S233KJ575YEPvXUU5g6darmMy82fn2/Dh065Kq95cuX44033tB85oVWykgLJXJaMcLFF1+see8F6du2bVuQ9mT58uWu2mSF89VXXw3A/bM3Gk8vtEirVq3SvJ83b57jtsw2zv79+ztuEzCOhHQbHWlESNz6thmtm6ZNm7p+TitXrtS8d/OMCF74F+uh13Q+//zznjn0v//++4iLi8M333zjui2jtXQq5n/U9+nCCy8Msso4gf6ZuA2OI0LCBtosWbLEVZv169fHs88+q/nMLWHLzs5WLRChxrvvvutpez/88AN3IFONIn2BQAAJCQmaf7zQJ9R86qmnXPXlkUceCfps8uTJ+Oqrrxy3qSgKxo8fH/SZGxgJfy9IXygchIlUEPlzS/oqKysNtWVdu3Z11S718+jRo7jvvvsAuCd9RiaYyMhIV20eO3YsaBO99NJLHbdnRm7s3DKcoFmzZpg9e7bjvw9FFLjZunETdbphw4YgmZGdne24PaB6Xj7//POu2jCCkUbXrQaNNJJNmjRBz549PUkBlJKSAqCaRBG8dL8IBAKeRO8auSeNGjXKVZvr1q0L+sztWjDSarHmTifYt29fEHF0q+l77rnnQha4ogdr5RJFWVmZYVTxzTffzPX3/yrSN3DgQCxYsACjRo3Ce++9F9LfEvEH5MWaNWtcJZddsWKFRuX9n//8Bxs3bnR1emEjmQheCMBQRBefd9556NixI+bPn49atWq5VqHfdddduPPOOw2/c0Om6YSenJyM6OhoAO7H9J577gn6zG2bIppwHpiRvv3794fEfOhG22e20bnxuzV7Hm58Rlu3bo0ZM2ZoPnNL+qZMmeLq783Qr18/9fXEiRMBuNegtW3bFjfffDNSUlKwadMmzJ8/33WEfUpKCvr164e7775b/czNWtJrODMyMjw5VBiRaLfriA6hLNz6N7LzkeRdKOD2ABGKChxGchlwboVZu3YtAoGAYVQx7xz9V5G+7777DgcOHMCKFSswYsQIT9vW+/NkZGR41va4ceNMf4cXq1ev1pxMgerTLwD06tXLcd+MnM/dCurS0tIgc7lbfPvtt5g3b57q25Oamupa0/fxxx+rr7dv364xP7sx7xcUFCA2NhZ+vx9RUVEA3Gv63nnnHfU1+ZC4bXPy5Mnqa3YsnLZrNJcIXvm4sOPgJh0MEQe9ychNP0kov/zyy3jppZfUz71w62DlkVvSZnTQ8xJr1qxRAzDcHp7z8/MRFxcHAIiPjwfg/rBSWFiINm3aaJ69m2ek1x41a9bME9Jn9JxJ/jmBoiiGRNLtAZ3m/ZIlSzRBIk5hduBmAzucgOZRVFQUFEXBc889BwD44osvHLf58ssvG37u9BCxbNkyzfurrrpK3UN48a8ifaHCZ599pjlBnXnmmZ7l2gG0kzgmJsZRG3ptwaJFi9TC1m58huj0dPbZZ5v+lij27Nmjvj58+DC+/fZbV+0BwKBBgwAALVq0AFBN+l588UVXiWWJNLRt2xaNGzfWmA/cbFb5+fnqBkWmJK98qG666Sa8+eabANyTCTKP1q1bF9dee636uVMyzTpv68nT4sWLHbWpB2t6d0NePv30UwDVa4d1mXCj8aG/7datGzp06OBJm4RzzjnHdRsEkm2s472XaNasmepa45b0FRQUqJs15asbPXq0K20nHcrY9e7mAMn6Vf/999+46KKLcOjQIVfWAr0MjomJQe/evV1pq/Tywq2vLaGkpATt27dHt27dcM4556B79+5o1KiR4/aMDo80B9yA9njyFbzgggsAVOfrdAKr5+t0zdO+QWATaPPOJ0n6bFBcXKw62wPVKScSExM9Ne+ypEyUtRv93YoVK9CzZ0/VnEKEyAmI9C1fvlz1w7j99ttd+Y6wKUvS0tKCJrIbXH/99QCO+4kZmSt4QaSPNqjevXurm7Wb5798+XLVF6lWrVqIjY11naDa5/MhLS0N7777LhITEwG4I32sANFrTrZv3+6oTVa7oddoDx8+3FGbrNP5kCFDXPnKEKqqqtTnERYWpvHf9YL0RUVFacxcTp8TexCtW7eu5js3UcG5ubno0aOHpkasl2s0JiYGycnJANxreFnSR2OwceNGVUsjiqKiImRlZSEuLk5D+twQIDZyt2HDhuoBj91XRMGm/UhNTcW0adOQkpLi6kDOKjIURfEsKXdJSYm6P/l8PvTq1cuVppP927/++gt///03nn32WdeJ3ktKStC2bVv85z//AeCeSFophpzev34dDhgwQOUPvModSfpsMGDAAPX1nDlzsHPnTmRkZGDp0qVB0bdOceutt6pZtZ2SPppEr776Kjp16gSgWot04YUXonbt2o77RpG7tWrVwkcffYSmTZsCAP773/86blMfGen0nlm0bt0aDRs2VEtbiQTpmIGECGlf69Spo/pPOfXtmjBhAhYsWKBG2fl8PjRs2NA16YuIiMCjjz4Kn88Hv9+PQCCAGTNmBEXf8oIIxfjx44McpHv37u0o6pLV9BHpc5sGhSU+X375JQKBgGo6dWqCp7XUo0cPtboHlSB0Q/rILSI2NlYl5m7aZMni4MGDMWnSJPXQ07hxY8f9zM3NRUJCAkaPHo0+ffqgUaNGqKysxIoVKxxrp+gQRjXG69ati4yMDFx22WUa1wERHDp0CEePHlU3Z1az69RiQuXMkpOTg+a9lXuCFVjLRkREhOra8vnnnztqD9DKn8zMTNx1112oVasWfv31V8daTj1Jcbs2CSzpA6rlvZsDKUuYzjnnHJx99tkIBAKorKx0FQ1+7NgxTaoit6SP1Q7369dP9WMFnK95do7PmTMHd999t0r2eMdUkj4bsEEQ/fv3R0xMDFq2bIm1a9fi4Ycfdp1yYObMmWjWrJmaM9At6dMHglRWVjoOaqmsrAyK5mJP/06Qk5ODadOmaT7zQrgoiqLRaLJtOjXzEeljtTJ16tQB4DwZsJEfjlvSV1VVhbKyMk0/09PTsWrVKo0ZUQQklNhycUbfi8CI9LkVrEYpKsaMGYO2bdti7ty5jkgK3dvo0aPV+ydfKTekb//+/fD5fEhPT0dSUpL6udOIfSK1LVu2xOWXX46JEyfikksucdw/oHrNr1y5EhkZGUhJScGPP/6Ihx9+GEVFRejSpQu+//574TYrKipU7RbNUZ/Pp2plnR4gKQep0fomTaJTJCcnY+DAgZpDv9Moczai2OfzuSLkBCNLQ1VVFYqLi3H//fc7alN/SGIPVG5SwaxZs0ZDpqKiolytIyMtGe2bTjVoBw8exOeff44VK1aon7mVTaxMDwsLw6RJk1R59MgjjzhKJM4ePAYPHgyfz6f2s6ioiEvbJ0mfBfQJJCkFBptd3a1DLjkLk+ByepJmTUcsKIeXkyzgRicHt/U9Wd+1J554AoD7UPvp06djw4YNmkXKPiOnxJyeCas1SEtLg9/v9zTZ6llnneVKqNIGwD77WrVqueoTzWt9kl6CEy2aEekjEu0URMb0WvcHH3wQv/32myPzId27XjsBuCd9aWlpiIiI0JhpVq1a5UgjS8/glVdeUeWIW615SUkJjh07pklQzMokJ/fPVh1igxqImDnVypGvnFFgWWxsrKM2CcnJyYiJidHkPHSazkO/ubNryqm8J00fqyWlZ+NUi6bX9LFpZc466yxHbR48eBDbt2/XjGNUVJTGF00UtD5ZtwsaU6fFCH744Yegz9ySvm3btsHv9+Ppp582PNg4cZMxis5esWKFetjjmaOS9FmAdeB+7LHH1Nes6dBtZnHSJlFerPT0dEftUAi32SbthJwaCY//+7//A+Dcx4clYGTqYUmfE0EwYcKEoD7dd999qqnXKWiBsQQqLCwMtWvX9jSjelpamqtADkorw/q0sIEXTkAbiNl8crKxsGvF5/Ph9ddfd5WXksW5556reU8uDU76aXTvXpE+8jvT+x85Cbaie2M1vGbPixf0jNg22bF10s8tW7aor1n/UApickpUaQyNkvK6dT+gvnlRoSEvLw9hYWG44447gr5zquGnNq+55hr1s+nTpwOARossAiJ9RFD8fr/rFCtG+w7JOqdl06hNNmiL5v2XX37pqM2//vor6DP24OAkFc7atWvRokUL/N///Z9hGT4na8moHy1atFDHkifgSJI+C7ABB+RzB2iJiRMyxT44Elx16tTBTTfdhCVLljgKkqCTipnQd5JmhTYVNr9WcnIy3nzzTRQWFjqatCRY2YS0rGBxsriINLIns8TERNfZ1alf+jJsMTExjsgE69uzYMEC9XXt2rVx7Ngxx1HWNJas9pF8u5xq0ijlkZekT79W7rzzTjRv3hwdOnRwXUZN7yJA2iMnGklKzeOlpq+qqgpvv/22ZjzZVBBOXBBok2Y1ZW4TctMzYtvp2LGjui6dyBGW2HTs2FF9TevKqUaFtE/keA8cjzh3chhnNV3sgZElVk6Qn5+PoUOHaiobEbHSp+DgxbFjx4L8DlNTU9GlSxfHc5TunzVps+vcLZEmUFT49OnTHWm4qU12Lbl1ETKKeg4PD1e1iU58uHfu3GmZhNvJczLbH8n1gEcZIUmfBdhTHrshsw/LCenr3bu3+rp9+/bqa5q4boIkzCKY3JA+0qQRkpKSUFVV5SgZJo0X63PTtGlTNZJNX1qHB+TnoCcoTrWmhPPOOw9t2rQJKuru1CeF1b6xwqB27dqorKx0nMOKiM1FF12kfpaRkYEhQ4Y49sEkIumledeMKHbp0sWxkzxBL/SJsDshp6SBZkkfkSCnOfBI28US/yuvvFLNpelEjtBGxAaFsPfrZExpQ9WTx/DwcERFRTmSI9nZ2ahTpw5yc3MxZswY9fPrr78etWrVchRotnbtWnz99de46667NM/piiuuQGRkpKPDIzterLaMzf3oBGyKJsLIkSMBVOdXdYLMzEzDA50bfzla02amcSdpyqgvdAgFtOmFnOwh69evBwA1JRmgJZdOyGlBQQGaNGkS5AZFyh4nwTHZ2dmWbjZO1hLNa33ieSJ9UtPnEuwpip2obgtHU/Tq//73PzRo0ED9PBRJUSkHnpPFZWQ+Ao4TNicLwWxTIW3i//73P+E2SVjrCa9b00RZWZmhL4tTwUrPoEuXLprnTpte586dhX37FEVBYWEhnnrqqaCgi+joaNc1os20j07IlFlf3Dp2A8HziZ49q60XBUt4SRY4TdVDRJKigAlU5s4r0sc+LyebtNn6pN9xuvklJycjISEhyH+3Xr16juZS27ZtAWgP0ITIyEhHcpnkiF6zx8oRJ873eXl5pu4wbJJuXiiKgpdfftlQqxMIBBz7mdN8MSN9oiQlJydHNWk/+OCDhtc48ed+5ZVXAEAjQ9l7dpKrsKCgAK1atQoyw9Je56TNrKws1U3ACE60h+Xl5YiMjFQPi4SUlBT4/X5J+tyCNH2dOnXSTLCzzjoLy5cvB+BMWJMGSp+gkjX5OTmtGPmwUZUOJ5uVGemjU/Ann3wi3KZZgAAtKjc+SXoB4jZAZMOGDYZE3ClJ6dKlCwAERVOzmg7RagLFxcVQFEUzPwlOzdAszIiDaLs5OTmmJe1iYmKQl5cn7M+5YcMG9bVeWJPJ02n+PyB4DY4ZM8ZxVOjGjRsBBCdRpg3WCUmhTYP1MR40aBAGDx4MwJlTO5lHjUjfueeeiz///FO4TSJ9RoiOjnY0R2muGPkDRkREuNL0GVVzIs28E218bm6uhpjrIdpXkpVGa/7QoUP46quvhLW8ZWVlavUIVuaxbjiiioPLL79cjYbVPydKou/kYFJaWoorr7xSI99ZGerkYFJYWGhIzKnSjZPAPTPSR76ITg7k5eXlhqZsv9+P2rVrS9LnFjSpjEymRE6cCOuWLVtiyJAh6Nmzp+Zz1vdFlEwmJydj9OjRQZ8nJCQgOjraUfQu+RzpSR85o1PlBxGQOUO/qZC5Q19KTgReOF0TCgoKsG/fPtP0AE5IX1xcHJo1a6bmOiSwAkt0PlmdzmNiYhxr+kjzalbCT7RdNieZfj21adMGR48eFa6Z2q1bN/W1/sDjRY1PvWkmPz8fmzZtchR1l52djYkTJwYdREiOONX0xcXFacYzLCwMDzzwAABg7ty5Qu399ttvaqCWEelr3LixI03X0aNHTUlfVFRUUFooHtDGx7o0ENxq+owOeiS3RAlqRUUFMjMzLct2sildeEDR0KyPIGHNmjWaa3jx4IMPqn/L4qKLLlIjuUVJH+uvpz/ML1myBIAz0kemWBY9e/ZUgxmdavqMfEtr166NyMhI7Nu3T6i9wsJCZGVlGT73H3/8EX6/3zHpM7MIpqamSp8+tyASYZRSwI2wLioqMhSCLIMXbbewsNBw0vp8Ppx11lnCQgA4fmKiHIKEunXronv37jjvvPOE26QNSS8EkpOT0aNHD0dkijZSPZliIRokQWZW1geJEBUVhS+++EK4r0VFRYZkhCUXos+dBLER6UtJSXEcFez3+zFkyBDNnFy/fr26QYtufrfddpv6Wq/N7N69O8LCwjRaBR7QHIqPjw86/bpJ2dG3b1/07ds3qLpHjx49AACbNm0SbjM7O9vQd43IlROSsmnTJkNtj9PIenY+G5G+2NhYR5v0X3/9pWp29Khfv76qBeXFnj17VO2Y0Xpyqumj52q0qTr1ET18+DAURbEkfa1atRJqk2ST0bMniM4nI8JHIJ9G0chYdj4ZyXvAGenLy8szTL5PAShONH3Hjh0zXDd+vx916tTRlNLjAR1gjfakqKgo1K1b1xHpq6ioMA1aee+99zB27FjbNiTpswCRPiPBQkLRCekrLCw0JJKssBFpt6KiAmVlZaYbXf369YVPKtRu165dDSdZ8+bNXRU2N9pUUlJSHNW47NKlC3r27GmoJXz//fcBiJtQyNRhFH119OhRlJWVqX5aPNi2bRtef/11Q6IYERGhkiknZB8wJjl16tTBkSNHhF0FysrK8MsvvwS1ee6556qbtxtfQf0GmJCQgKZNmwqTKepLnz59gr6LiYlBu3bt1PqZvCguLsaKFSsMN2mKNhU1Q5eVlaGsrMxwU3FzeNy4caMmEIzAPjeRwx4r54zWZ0xMDP7++2/hjXrfvn2mtVb79OmD0tJSofu3O2w51fRRcncjyw5VuRGd9xR0YJSyw2nA3vbt2xETE2N4iKADsJMgATPQsxPVoLGWF715NywsDIFAwJGvuRnpI1OqaD8zMzOxe/duU1kRHx8vPJ5kDdBrJAlOrTBZWVmmpK9du3Zc+RQl6bMACSIrTZ+TxVVUVGTYJvvARISgnQNu3bp1MXv2bE0yS952zdps0aIFNm/eLEQo2M3SyHevSZMmjkxnxcXFOPvssw2/owUi6uPy1ltvAQgmKCxE/DwoiSqbs4wFPXvRzYpO/UZa3vT0dFRVVQkT6XvvvRfFxcWGWo2IiAiEhYW59hXUo3HjxsLPnjTQd999t+H3TtJXPP/88ygoKDB8Dk61PbSxGT0jN5q+goICw82P3RScluQyIn2kNWZzltqhoqICFRUVpuZ28nUTcWq3G6sdO3bgmWee4W5PDzPzmRP/QzooGMmRkSNH4o033kBYWJiQHJ0zZw6aNm1q6LNMh0fRgDDab2644Yag73w+H/r06SNc15cNeDSS907cZOiAYDTvo6OjERkZKayVI5JoRMwB56QvISHBNDLdCenLy8vD9OnTXRcGkKTPAmR2MzLxUTDDpZdeKtxufn6+IelbuHCh6qPiJemjwJHXXnuNu01FUTB79mzTYIjGjRujpKREKEmxnfno3HPPxa5du4QndXFxsemmQhugE3MPYLwBOImytvsbp5pj0k4YPfuWLVsCOF75hBfkK8TmZ2ThJkDkp59+Mvw8LS1N+IReUVGBXr16GUZwAtUkS1QrRePP5iojkLbi1VdfFWqTNgwjTR9plZxErZu5dDRo0AC33347ALFcYCyZMvKPpbZExtSougkLJ6TP7ved+HOyB1KztRoRESHkLsG2yaYXYZGcnIzKykqhMT1w4IDp2iRySSmweGHlIwlU74Wi67O8vBznnHMO/u///s/wmVRVVeGhhx4SskJRyiO9yxGhrKxMdSHiBWnDzXJcxsfHC2skjxw5gjp16pjun5WVlapfIy+cVoTRQ5I+C4SFhaFjx46axMwEp1U5jh07hszMTEOzYUZGhqqN85L00eciiVspQ7k+xQSB7l/kBEREYeLEiYYmlAsvvBCKohhmR7dr10zQkwCfMWMGd3skrM3GiwSkiJmP7tfM38qNxgcwfvZkWhD1mSLceuuthp+7SQVjVss3Li4OK1asEIoyLysrs0zKGhcXh127dgkFH5SWlqJJkyaGka80lyhynxdWmj6CE4uBmfO5z+dTU2SIkHP2YGR0KKW5KeIvSUTRbH3S4VkkmMOOID311FPCpd1YcmxG+o4cOSKUR5SI7Pnnn2+aP5XGUoT0FRUVmUYDW0UJWyEuLg7t27c3jFwGqrVga9asEdqXioqK0LJlSzz99NOG5IfmvIgyYseOHQDclwNlQQc8K9Inuj6trGRAtdl/48aNQnsI9cHMqsULSfosUFJSYppChJ3EIr5ttGEY+eIAzjZ/O9JH9yAiWOzMoUReRFTptAGxWflZkMASXWBWpI/MJiKmbdoAzLQvTkgfbSRmQtnv9yM8PNxxji2jZ+/z+TBs2DBHVRpGjRplekp1o+kz6wslG9XX0LUC5awyAxEiI62dGY4dO2aZW8sJrDR9AHDdddcJp4JZtmwZjhw5YrrmaT040fT98ccfhpqpDh06ABALFDGrCU4499xzUadOHSxevJi7TTs5lpycjKKiIiEZyh42zAiaKEgzRuXRjOCE9Jn5hAPVsunmm29Gu3btuNurqqrCDz/8gNatW5uu+e7duyM7O1tI02nmxqSHyHiTq4pZpSGzgCEeWJE+0ZRndqRv0qRJAMS0d+SfzmZCcIITSvrKysqwb98+7NmzR/PvVIVVfikWIr4O69evR+3atdG4cWPD7504dttpEjp16gTAOI+fGeiUOnHiRMPvSfBTRCMPSDtkRtCoTVFVuhXpc5IAk37fbHMjAvfJJ59w+6GRYLMyPVVUVDh27jYTrk58RyIjI001ckD1RuW09rCZYCUCLUKk7TR9NCYi6Yp417wI7NZnIBDAL7/8IuSCQOlqzNokkuVE00cpmfQgNxeRWrn0+2Z/ExYWhs6dOwdVGLACESQioXqQ9lBkQ2U3dTNN35gxY4RKxhHpszpEiJYLVBQFRUVFloRC1FXiu+++A1CdSsQM9Hsic9SO+BBE3GWys7MRCARM5ej9998PwFldWzMFzxlnnCGc8szu3sklRcSVadq0aQCcR+cTTgjp27ZtG7p164bo6Gg0aNAADRs2RMOGDXHWWWd5qqb1GnYZtSmvngjpy8nJsWzTDekzm2Rdu3ZF+/btLesA6kF58+666y7D740cae1Ap0QzghIZGYmIiAhPNX0k+J2o0c0EPOucy5tjizSOV111leV1a9asweHDh7naZLWxZjkKY2NjhUifoigoKyuz1KANHjwYs2bNcmSSNCNpND4i/lh2mj7SWoispZycHMcF681AhMJMWK9duxbA8YhxEZg5ijvR9NGGbvaMfD4f6tWrJ9SmnaYPqCaZIhYDIn1mZnbyaxPxFWPnshkJqV+/vpBWioiX1SFCVNNXUlICRVEsCUVKSooQ6aP7tUpm78Q3mpf0icDuUEa/5yQq2EyWnHXWWdi3b59QMKDdvVNEtJMyfG7H9ISQvhEjRsDv92PevHn4888/sXr1aqxevRpr1qxxXHsw1Fi5ciVWrlxpKaxIxcxL+hRFwYEDByz9Loj0iQjWXbt2ITw83LLWbHp6utDmT74TZuTOCemjihRWG7uo/0RmZqZplnIA6N+/P4BqMxIvyJfNTLhQGSCAv4JIcXEx4uLi8OSTT9pey0tSeARbTEwM1q5dy016SbBZadAGDhyIgoICRwm/zTaW8ePHAxCryGKn6aN7FjHz2ZE+OjiJRFteeeWVAMwPEdRPJzkVmzdvbvi5E02fnUM7tSvSJg/pS05OFooyLiwsRFRUlCk5I58nkRJ8PJq+QCAgJJeJyFlpZkRJ3yWXXKL5OyOkpKQgJyeHe47SdVZ5+GhOhIL0iZhOX3vtNUsZQXuLWdk3K5jN+4YNG6KyslLoEGF372eccQZatWolZNlp3bo1gOCk8aI4IaRv7dq1mDFjBgYMGIDzzz8f5513nubfqYg5c+YAsE74Gx0djejoaG5h/fPPP+OTTz6x9AEkMiWyELZu3YqGDRtaboCxsbFCpx/SRpoJ6+joaFx11VWm+bf0YIW6HekT6SeZJswEa8uWLTFs2DAhx+5FixYBOF7EWg9WU8tbBaS4uBipqalc1/NuAB988IHtNStXrgQAfP/991xtWtVeJdBYO61Da4RevXqhfv36QgcTO00fmXi8JH2TJ08GwB8YZJemCDi+HpyYpMzcRHw+HwKBgBBBo8SudkRaJB0IkSSrjTopKUnIFHvPPfdYkq/ExERkZGQIkb558+apr820eVFRUSgtLeU+QNFctpI9ouZdO9kEHCcFvGNKv202lwDnmj4eucvbz8rKSmRmZlqSKdJwfvrpp1xtsrDS9AFiOS95CO8ll1zCHQ9QXFyM9evXY+DAga4rT50Q0teyZUvHlQFOFsLDwxEXF2eYroVF7dq1uTV99ICt8qYlJCQgPDxcyGS8f/9+0xB2QmpqqlC+tmbNmuGWW26xvKZ79+7Yu3cvlymB9a2zEgRxcXGOzIZDhw41/S4pKclRvjIrwUrgPflbmaD14CW999xzDwDg66+/Nr2G1h2vbyMP6RON3KZKG/oKF3rExcUJyQk7TR8bLMWr9cjNzbUkfaRNN8sNqAdLJsy0nEQiRElf165dLc2NKSkp3HKEHR+rMf3nn3+ENlSKnLayQiQnJyM/P184l6YVmjdvLkT6nnvuOfW1maaPDsC8h4jCwkL4fD5LLaeTQA7guNbHCHQoNTP962FWY51FKM27vKTvoYceAgBcf/31pteQjzlZlURgRfri4uLwwgsvcLfFc+8iaXBmzZoF4LiSww1OCOl75pln8NBDD2Hx4sU4duwY8vLyNP9ORZSVlSE9Pd3WhyMmJobbRE1Czapouc/nExLWQLUzqFUSYaDaFM3rKwbwRV51794d5eXlXE7Y7HP2yryblZWFm2++GYC1M3BycjIOHDggfPCwEtakFTlZpI/VNlhpW4kQ8vaTNmke0se7dv/44w8A9ib2jh07qpoMO2RlZWHNmjWW/WSDUXhIr6Iotpo+s6h7M5CbhFWpLZILvKSPrqO5b4aDBw/i8ccf59JMsfPDSubdeeedXH0k/PPPP0hOTrb0wyJ3Fy/3AlHSx8Ls/klbyavxIRlq5StHMpaX9HXv3h3nnHOOpcnYLCegGYqLi+Hz+SzXEpE+XsJbVlaGiooKS+JzzTXXAOAnfV999RUAa9nUqFEjDBw40FHGAjNtdGRkJDp37iyUV4+H9JEZnuewQ2tDJIjKDCeE9PXp0wcrV65E7969kZaWpgqBpKQkzyPlvEJpaSnXxNmyZQu+++47LsFaUFCA2NhYW5N2rVq1hEmf1UkaqCZ9R48e5dZ48JA+2vx5SAq76VqRn+3bt+Pdd9/lMnfw5ktLSkrCwYMHuTR3QLXDtl2JNUp4zGs+85r0sb9rtQE0a9YMCQkJ3CdKqiBgpe2h3+PVHpLGgdWmGOHMM8/k1nJSgmSzLPp68PS1sLAQlZWVlj630dHReOCBB0zLK+lRWVmJ+Ph4bNiwwfIagJ+Y82hjWfCQKd55fN5558Hv93ObOLdv325pNgTEKp3wyq+mTZuqhFsUZiSNtFxmuez04JGhfr8fUVFRQm4Nbdq0sfyepxQXYcuWLbjjjjsQHh7uaSCHXRoxoDr7wZ133slthaHftpt7olYtgtVh58orr0R+fj7XvM/Ly8O+fftsSR/tRzx95cn1yYsTQvoWLVqERYsW4eeff9b8o89ORZSWlnI5lZNjPo/PlFkyVT1E1L779+/H9u3bbTV9ycnJUBSF+zTNI7DoXng2albLZjWudB2P0ywviRJJVQNUmy3tnhOduE6Wpo/VhtqF8IscIiiFkpXWKTIyErGxsdxzlBzv7ZKKipRlIr8WngLjAB/pI7OYXfSuiEsHTzQwaexef/11rkTaFOhjJ5/o4MITGUvj/u2331peFx8fj6qqKm6Ssn37dku/aOC4touH9PHOj4SEBJXE84DVQpvNfdqceYkPb5662NhYbk2fVdAaQSQCnvYvu3sKBekDxPw56bDDQ/qcpJSyIr1JSUmorKzkks3kFmUXkNegQQMAfCXzqC3ROupGOCGkr0ePHpb/vMIDDzyAbt264frrr3dc2YBgl7aCQEkwKarKCjxkAhDzxbEz8RBETXKFhYW2wkOE9C1cuFB9bbW4CDzC3U74Eax8QPQ4duyYrV8XUH0qjIiI4N6EPv/8c1tXATJHiZI+uyz8ou4C+vaNkJ6ezp1mIz8/nyu3VHR0NPd45uTk4Oyzz7adA1RRhof00YZm9+wTEhKQl5fHdernIX3/+c9/8M477wAwL1PHglfTd9111wEAl1sHES47kkLPkdcF46+//rLViopo+ohsWvmxAsdlEy85LS8vx9ChQ3HfffeZJv6lzbxr165cbfIGMsTExHCTPt59aeLEiVxacF6CSOuM12RO4+4l6aMxsnODSEtL49b0kTvL//3f/1leR2uYRyv5+++/A7Dfa8nHmSeYg8bTaTlRFieE9C1ZssTynxdYs2YNDh06hKVLl6Jly5b44osvXLXHq+kjvyEyi1nhwIEDXNn+RTQzJADsyLMI6Tty5Ahyc3NtHe+joqLg8/mENX1WIP80nk2FN7WJz+fDpEmTbLWhALBq1SooioJevXrZXpucnMz1nDZv3gzAvKQd4eyzz0ZcXJwQ6Vu1apVtclNezTFLuOwixNLT07kjz3g13CLpQLKysrhcQ2h9iviL2bkBJCYmorKykquvOTk5XKWxbr75ZiQlJXGRXl5NH40PD+HlceYHxEjfnDlzkJWVZZuLlX6Th6Dx9lPkQAocL7/3/PPPmx5KExIS0L59e26ClpeXx5Xaau/evZgyZQpXm7ykj7dqDq+PGJG+//znP1zX0xjZkd6kpCTk5ubaEjlFUdQ27Q5b9erVQ25uLhdBIz9BOw23SI1oWp92a5kIMc9zIvklWl7QCCeE9PXs2TPo30UXXaT+8wIrVqxQi1D3798fv/76a9A1paWl3EEkvIurTp06OOecc2xNGED1Bk3VMaxQv359bNmyhWsDUBQFl112mW3ZHRI+PJOWAk3snNZ9Ph93tC0JX6tKD8DxlARe+iEB1Rskj/aXBAtPLqSkpCTLLPYESuLNA17SZ1c1hAWvpo/IKXA8t5wZjhw5glmzZnEd2kRIX2VlJZdj8969e001Mvo2AbG8l3Y+aCIHKJFkz4mJiVxt0qZiJ59EiI9djVyCCOmjQ4FVZD37mzzrmeQXr+sJb5Adr7xPTEzk9mXNy8tzXAvXDLz95K2PzUv6RAMjRMy7iqLYzic2ctaO9LVt2xbA8QAyK1DQi1kRAgKNE4+igdp87LHHLK8TCY6hOeeFkuyEkL7s7GzNv8zMTMyfPx/t27fHggULPPmNnJwcVRgnJiYaajamTp2KxMRE9Z9VmhNeTR9QvSB4HxxPMEHPnj2Rk5PDZes/evQoV5skfHhU6WvWrEFiYiJXDr46depwmfkKCgpwww03YM2aNZbXkXaCZ/OjjYonoCMQCHAtWN4TKv3+0qVLbYUQmRB4iI+opo+H9CUlJWHRokW2UYckLGfNmmWr6SMiy7Op8pI+3ioShw8fxsKFC03LcLEQqXBTu3ZtjB492tb9IFSkLyEhgYtQzJw5E4B5uTRCdHQ0tyaeDnq8pG/dunW2bZaWliI+Pt722dNa45F3dCi0s0LQcx80aJBtm0BoSF9ubi6Xpu/JJ5/kjri1y01JiI6ORmlpqa0GTdS8ywte0kdz+LbbbrO8jnUPsrunpk2bIiEhgYv00doYNWqU5XU05jxyJCsrC4899pjtM6WIaR7ukJeXhyFDhtj6RfPghJA+lmglJiaidu3a6Nu3L5599lk1945bJCcnq0LYrNTZ+PHjkZubq/6zMk/xCgGAn/Tx5i0SIT5Hjx7lysdEE9Aq6zohOzsbaWlpXL53TZo04UrZwuvPSOPDswEQOeBJoxEZGclN+sLCwriePc1dOw0FCcC//vrLtk1ezakI6aN59Mgjj9heC1jnACPQ+PBsGrw+fbxVJMiVgUfTJyKsS0tLbYkUcHx92rksVFZWYunSpdy1RXkIhaIoePzxxwHAdgOgKFueKjCk6bDTTNFztMvhCVTPexGyzxMVe/ToUZxxxhm2pI/mhp3WlsCbrUFU08dD+qKiopCZmcmljbbLTUmg/c/uQM5L5kRJH5lW7e7/ggsuAAB89tlnltexChg7+eT3+3HmmWdy1bUtKCiwrO6i/30eOSKi4eXdl3gPEDw4IaTPDKmpqdiyZYsnbXXq1EnVGv7www+48MILg64JBAJISEjQ/DOD15o+RVHUlC12oAnDo8k4cuQIlymSJvV7771ney1v1BlQXeeSN+ScZwMgDZOdYy0A1YTPs6kGAgGUl5fbauWImPMQXiIIdj4+BQUFSEtLU6O1rFCvXj2uVBNE+njmE42pncaJNkq79D/A8U2Ah/SJmHcBe9JHMoN3PoWHh9sK1g8++AD5+flchzcKTLAz7VMkLm/QQ1xcnO1ccuLITRHZPLDzORYp9s4r71jfTKogY4aioiKu596wYUN06dIFHTt2tO8oqskUj7wXIX3Z2dlcmz/97h133GF7La8ygvaOVatWWV7H6xcdCATUCGce94uNGzciPT3dVuZERUVh6NCh6N69u+V1NI/S09MxePBgrv7y3BuvMoKX9JHvIW9qFRFN32lF+tavX6/5t27dOsyfPx933nmnZ2XY2rRpg/T0dHTr1g2bNm2y9Umyw6WXXqr6CNqB58HxFMomsILCyi8jJycH+fn5ttU4CDzm2gMHDuC1117j9vWIi4vDunXrbAMFeCPZRPDWW28B4IsGpkVr9ZwqKyvx4IMPcvsK0rO0853hJT1AdYLiH374wVZ7ScKKpyQPETO78e/Tpw969OjBFSBBbfIQbt77F3GWZvtgBx5/Tkq5xPPb9LuTJk2yJGmkCaScjnbgieIU8WN1ArvnKVLsnXfzY9evXaRxUVERdx9SUlKwbNkyrmu9Nu/m5eVh69atQumiKOrTDFVVVSgoKODqJx3c7LTRvKQPOD6P7QIkevTogSeffFKtU22H2rVr2x6MSH5ffPHFXG3y+nDn5ORwHWTo9x944AHL64qLi6EoSkhIn1f+oSeE9J1//vlo06YNzj//fPX1wIEDUVZWhv/973+e/c706dOxdOlSfPTRR44ycrO47777uNOhREZG2p7ASZjzTAaW0VsJQTKB8ibjvPPOO20nDpksRVJ8FBUVYfTo0ZbX8J6kRdCyZUuuKFvguJnPaoGtXbsWAL82hTebvgjpoxO6nT/KkSNHuCLBgWpfVsDeHFpeXs5tiqRyQHYC69VXX8WyZcu47p9cEHhzbPEmCOY59VM6HdFyWFYkjA5CvAmkY2NjbQ8QIgEpwPGqB16B54BF4NX0sbDTcoscHufNm4c9e/bYkpTy8nJUVVV5SvrGjx8PgE/ek+bMToP2+++/o6ioyLK6CyE8PBxJSUm2clyE9JG8sTvgU7CBnZaRwFOFqaKiAgkJCXjjjTe42uTV9P3555+2lYKoPQDYtGmT5XUi+zxQbX6ndE1m8Pl82Lt37+ml6du5cyd27NiBnTt3YufOndi9ezeKiorw66+/onnz5ieiCyFFRESE7ebH69gKVC9YinK18smgxcdj3gWqSYrdpkJmO16NAgWGGEVLsxDxkSTYCcGioiKuaGjg+GZJIfpGENnQAP66mSKbH69D944dO7g0t0D1/KhTp46tEORJ/Eo477zz4PP58NJLL1luLJTigSfYiK6ZPn06F/HmLVvGuwGItEmwImFZWVnw+/3cwppH08czj1n0798fALiSPpOvoB2eeuopLj9iXn9jFnbJtkU0feScb3WIKCoqUi06PBqfxMREFBUV2c5PMmvyWJyoLbs9hALWeGVeSkqKLUGjdcFTXICX9BF49xDKe2mFsrIytGvXTki7b7fms7Oz8csvv3BpD3kVFhQYInLY4S3rd1qQvt9++w3ff/89GjRooP775Zdf0L17d5x55pm47bbbhE4apyp4VLSik2HOnDkArIM5eNMsEGJiYlBeXm5Jpqh/vKVxaJOy0yCKkL7OnTsDsNdqZGdnc5fxI3Pp1q1bua7nAa95V8Qfg3d+7N2719aZnQVPtYuKigpu0ufz+aAoCtauXYtx48aZXkcbxZAhQ2zbpNPx/PnzLfNsUpqnvn37cvU1EAjg2LFjlgcT6idpRXlh9ez37NmDjIwMLhM8wKfpo42Ul0zROn744YdNr6Es/7ymSN4I80OHDnH5h4r89hdffMGdcPnee+8FYG3iXLhwIRYvXgyAn/QB9vKxsLAQLVu25DqQkzy220PItMgbDc6TnzM7Oxu9evVSDwd27QH8ViAeIgnwVSQROZACfKRv7dq1qKys5Eobx7t3ifhai4InwI4HISV9kyZNwvr169X3GzZswMiRI9GnTx+MGzcO33zzjbCQPRXBQ/pENH3sdVaLQZT00XVW2kPaeHnbJHOg3fUipI9MzFYkpbKyErm5udykr2XLlkhISLC8XrRAO69599ixY0LaWB6IalF4SJ+oYCVYmYSbN2+OESNGcAksVtNqNlfKy8uxaNEiNGrUiNuEEggE8PLLLxsGdxFyc3PRpUsX7udEsNJmbN68GS1atOBuS0TTx+tze8MNNwCwDgoTlSNxcXEoKSmx1cQfOHCAm/TxlOMk0s5b95iHpLDkTYT0XXXVVZbXZWVlcbtf8Gr6CLwWCZ78nIcPH+aKggeOB9zwavp45350dLTqC2cERVHw5ZdfCgUx8UTFknsUT4Q375hThgaevL0seJ59y5Ythdo0Q0hJ39q1a9G7d2/1/axZs9CxY0e8/fbbGDt2LF5++WXbUO3TATykj6LIeDcqHtJHGw7vBkAn+jvvvNP0GjrBL126lKvNl19+GYD1hlFZWYmqqipuFTlPQl0yK/OSPsB+UxUp1wbwa/pENgDeQ8GxY8eESJ+iKJakdvfu3di+fbsj0me1sYvUHGZhpkkiUx1PhDOBnXdmGwtP6T0jWJG+Y8eOcZvrAT73C1HSV6tWLdSvX99yA6SsB7wHDpJhVmtpz549OHTokG0ydgIPOaQUW8899xxXm7TmrDR9bGSzSBSnnXwUOehR5Kqd5r5WrVp46qmnuNqk6+1In4g2NioqCjExMdykj1eWRUdHo6qqypTUrVixAgDfwYBw6NAhLFy40HIPKS4uRnh4uLDbkVWb27ZtQ3p6uvDhkSfCn5c72CGkpC87O1tzivjll180auT27dtzl3I6lWGX/Zz1E+JdCIFAAGFhYVyaPl4yRddZmZsKCgrQpUsX7lNanTp1MHLkSMvNj7dWKIGH9JHg4SVTQLUgmDhxIvf1duDV9HlN+iorK5GdnS0kWLZu3Yp58+aZft+qVSvHpM+qzyUlJdwEBTiuNTRza+BJF6FHly5d1NdmG0tubq6j6Dirdc+bl5PAY+YSPegB9rkfKViMN1sBT6WPffv2AeDXePDIMLoHXnJOc9lKsbB9+3autgiUKcEueC4rK4t7ffbs2RPXXnutpaZRURTk5OQIHXJ///13/PLLL5Y+jSKaPqD6vu2CGQi8hwi7iiyizwg4TsqtcqMWFRUJHUhfe+01ANam/fXr1wvJEfI75SF9vG4itu140ooJ6tSpo2buLysrw+rVq1V/LaD6Rp1sMqca7IpGsxsD7ybg8/lsN4GSkhJERESokYd2IL8qqzQ5paWlQhsKUL1of/vtN9ONmrdsFIE2AKsIVlp4IkLQa0RGRiI8PNx2oxbx6WPXg5n2+KuvvkJVVRV34lkAuOyyyyy/pw1cZD0eO3YMKSkptqdpEcF65MgRREZGms4lJylLWG2T0ZiWl5dj+/btjkifVX9ESV9MTAxKSkosg0koJ6aIltcuOrKsrAzR0dFC5l3AmvSJRjGy886MpFFAlOjm98MPP5h+R5qwiy++mMt81qBBA/Tu3du27CWtDV7UrVtXrdxjhCNHjqCyslKoTVrz+/fvN/y+sLAQOTk5QqSvc+fOavUWO/DuI3akj9eH0whWhPf555/nzqEJHN83zUhfaWkpZs+eLZR7eOTIkQDMD7m8GQpEEFLS179/f4wbNw5Lly7F+PHjERMTg27duqnfr1+/XmjjOlVhR/pYUiCSqy42NtZyUj788MNCfg4+nw9nn322JUlxEmVL92SW4kZU00cmMatE0mSyEVWj82D69Onc19qZ5ChZpxPHXrNNddasWQD4kncTLrroIq65Ry4APEhJSUF8fLwl6RPV9CUlJaF+/fqm8542hldeeYW7TTaPpRHpe/TRR7Fv3z4hckqJma0CrZxo+gBYVtB48803EQgEhAhqfHw8vv/+e1NfXtFnRETu888/N71GNHCN9ZkyK6uYnZ3tONen2eZZWlqKYcOGYf78+dzpivx+P7744gtTM+ecOXOwbds2IdlUt25dbN++3bS83TfffANAq7W2AxEKM3lPgSEic6l+/fqW5JQFLzkPBem74oorAACXXHKJ4feKonDfB4E0zGakjze/KAsKYDJLoM7r5ymCkJK+J598EmFhYejRowfefvttvP3225qN/5133uE2KZzKSE5ORk5OjmlOvdmzZ6uvebVyQLXDslWNSyeTzE57KFKJhEDC0sxUTwKLl/Q1btwY7dq1szR37Nq1CxEREcjIyBDqK2BPbOzSRrCwG8+5c+eiqqpKaPOfP38+AGNhXVVVhZUrV+K+++4Tqo4QCARQVFRkm/xWVMjYBYiIEgrguGO3WXsAuCLuCKx2xOj+yD9QhET37t0bERERlqYeJ5o+AJg4caJhP9etW4dFixahtLRUKL1QIBDAgQMH0LVrV8PvnZK+Rx991PQa0cA1FmYy8oknnuCq/sOCKvuYzVEn8o4I/9dff234/eWXXw5AzPWEqvuY+UDeeuutAPhSHxHsfC/pmbOKGDvUrVsXhw8ftpQTsbGxan95YFeJx4l2/+OPP7b8/sYbbxRukzSiZgSNp2yqHhkZGQgEAqY+yjTOIooIO4SU9KWmpmLp0qXIzs5Gdna2yr4Jn3/+uac+VicLZGoxc4ilupaiiajbt2/P7T/Bi40bN2LGjBmm3zvR9NGJzugUXlFRoQoAkXYbNmyIL774wpT0LlmyBI0aNRIi0ZTY08ypPTk5GU8//bTQhnrw4EFMmjTJVDDRBiCq4QWMhfXOnTuxf/9+7nQlBBKsAwcOtLxOtMyXFekTKT3Iwor00eciWjnWxGi0WdWrVw8NGjQQSmTs8/ls86Dl5+cL3TurGTHSdP7zzz/cbbGgdWf296Kkjye9CgUciLRL+ee88l0CoEZsz5071/B7J6SPkunaVbsQIX282jYR9wuae2YWg6ioKDRs2FDIVaBVq1ZQFMVULufn56OwsFAoepXWsplGjz6ngA4esPPOaM1/+OGH3G0RateujaZNm+K3334z/J6UMLxBkED1XG/YsKEp6aO9ijcnK9dvetaSBRITEw0355SUFNeVM04F8GoIeOtAEs444wzTotHk73bPPfcItUmTyMwh3okQJJJkpEFjNy+RZ00F3c1yPa1Zs0aY+JDZ2IikKIqC/Px8Ie0ZcLzovZEfB0ugnJj5jIQ1PT9R/zMae7uoVyeaPrPNb/v27aioqBA2wUdFRdmSPieaKcCY1Obn5wtF2RKsSN+qVatQVlbGXSIR0M5Lo/snTbooKbJbd3v37hU6PEVHR+OJJ55AWlqaqdl08+bNAMQSntOcNru/WrVqWeYbNAI9bzNC70TekRuLUX1w9kApMqZUFcKu/KLIs7fT9DlxOznnnHMAmAdXfPDBBwCOWyt4cNZZZ8Hn85kqOIqLi9GiRQvupNQE0p4aJTJ3Wv41PT3dNCKaNH280dCERo0amR7IRF2jeHBCSN+/HbwmRtHUFRkZGcjPzzfc/Ek4iBLJCRMmADBWRR89ehSHDx8WnmB0qjMiImzfRU5//fv3R4MGDSyDQ0SJj1XR7Hnz5qmlfkRAaQQo5xMLp76cJKyNCC+RdV7/IwIRciPSwx4ARO+/SZMmpvVNKTefKOnz+/2mzvyiOeUALeE2IrVOyD5QPd/NfHnJX8jMpGqEBg0aqK8HDBgQ9D2Z5olQ8cKuysiHH34oHCEZCASQmZkpvBFbgQikGVlSFEV4zVPKMDaAkIUT0mcFlkyIzKmMjAx07NjRMJ+lk4h14HigmZl/rBPSFxcXB5/PZ9omBdYNHz6cu82UlBS0bt1a9VXWQzTKlkDPwkjjWl5ejmbNmglr/JKTk01dOmivEp2jjRs3Nj2MUyk7L+vWS9LnAdjTl5V5TJRM0WZp5TfEW9SaQL5QRm2mpqZiy5YtwkKQFrhRDUNWOIhEiQHVeavM/CecCGsr0jd48GAAYoIaqBbWPp/P0FeO/R0RswyNE/kOsXBK+mheGm0grLlfNLCqXbt2psSHCJqIxgOoTu1UVlZmePJ/5plnAIg9JzvzrlPSFxsba1rlw4kZukOHDmolEqNUE4cPH0bHjh2F17xT0mAFWku///570HeKoiAyMlLN4ckLIqdm86W0tFRYhiYmJmL06NGmJMUp6SMrg55Qk8b/vPPO0+So5YFZDXcnPm0Eq1x9Tkifz+dDQkKCqT85+a+PGDFCqN3evXvj+++/N2y3uLjYEemhYC+jQ09ZWRkuv/xy4dys27dvx7fffmuoiCHSJ3pwbtSoEXbs2GH47H/++WckJiZaJpYXhSR9HsNqgYoKLJo8VgEbompqikCyijYW7afP50OzZs0MJ61ohBSLM88801CDVlJSgkOHDjkmfVbjKWo68/l8piV/iPT079/f1mzDIiEhAf369TN02qYxFk11RH9XWlqqqZIDaA8AVCieFxS9bGTmoxO2mZbFDkYmczr5ipBeO/8ep6Rv8eLF2LJlCxYtWhT0nWgSZYJVtQnRnGoEq4OoaK1hgtX8y87ORllZmbCZi7TRRqSPouCdmLnq1aun5g3UwynpI1JjJu9vuukm4VreWVlZ+OCDD4JIupuUJbVr11bXjB4idYxZ5Obm4ssvvzT8jj4XlaOk2TZSRjjV9NG9Ga15p8+dzLBGyoi8vDxERkYKt9utWzeUlJSo5QBZbNu2DT169JDm3VMZVgvUySkVCDbF0gb71ltvCWt8SP3uJekDqjcBo83l2muvFW6LUK9ePcMcUyQARO+dNuDzzz/f9Dk5OVWXlJQEZYvftm2bmsD1oYceEu5ramqqoa+cU00fS8r0UYe0ybZv316YpMTGxkJRFEM/yfLyckybNk24TYJ+AxBJJ8PC5/PhiSeeAACsXLky6HunpI8Ik1GKEcr2L/qcrDa3w4cPO/I9tCJ9pOF+/fXXhdq08v2kAvJ2CYz1oOdrRJbo+TmRTenp6cjJyQk6mBUWFuLAgQOONn87fzknbW7cuBFA8Bx9//33hdti25w3b57h2snKynKUmxIAfvvtN9uyjiIgZYSRzHOq6aO54iXp+/bbbwEYk9Pc3FxhLR9w3FpnpJEVTcLPA0n6PEKrVq0AeEv6zDR9JLycnH7scg0B4E6+ycKM9LVt21a4LUJsbKwlCXMSaUrQm2PJn8osr5Mdvv76a41wIQEOONsAatWq5SnpY1MU6IMLRM2vLEgY6+d9cXEx8vPzHWmm7rvvPgDBATe0Dj799FPhNsmMM2bMmKB28/PzHQlrItJGG39xcbEjsmv1N041fVYyiTYx0XatNnzSgrA+ijyg8mpGpG/mzJmm39nBjKBRujAn69OuTKbTgw4QXBvdKGCEFxToZ5Sjcf/+/VyR2HpcfPHFAKoPtizcJBIm8mnkA+tU00f7rX6f+Oabb5CZmelIg0rBIUb9FEnCz8IqcC87O9vzAgSS9HkESseid4hmzSeiJjlaCHqtHAkaJ4KFJqWRpo9OFHfffbdwu2b+KEQyR48eLdymkdmUFSyikaasNkefqT06Ohpjx451ZO4gsOZItp9ONQlGG4pT8y57Utabj2gjFSWSbLv6vhKpdkJSnn/+ecP7p0hZkVxlBPa0rN8AnWr6CE8//XTQZ08++aRlxQozsGYx/XMSqefKwq5iDCB+gGQPY/pUGnSgFElZAlT7hzZo0MBQjtBnTpLVmhE08sd0Q/qs0qE4BXsgr6qqcqyNA45nQdC7yVRVVTkmfUTO9X6SNCf+85//CLdJ+4SRm4xTTR/JSL2bCAXIOXE9stof8vLyHD0rWvOjRo0KKpUpSd8pjLZt2yI+Pj7If4IVYKKbalxcHGJiYoI2Kcqr5OT0ExYWhsTERFPfiRdffFEt1yYCM01fQUEBLr/8cqEKCgQj0scKWVFNH7sg9aTPiyg+tk2W7DsxScXGxhqeRMmB3AlBIydrfbv03ix6zgokBPVtuiF9QPVzfuihhzSfkabPiWBlT+Cs5vzPP/9EZmampbuDGb777jv1NWs+Kysrs9SkW6Fu3bpqbse///5b035RUZEjTQKRHas5I0pSWE2fEemLi4tzNEcjIyMNiR195iXpIzhZ90RC2HFgIzDdkL7bbrtNfV1SUuIoCT/h7LPPRmxsbJALwpEjR1BeXu6I9NEc1JM+WkP9+/cXbpMOcj169Aj6zqmmj0jfpEmTNJ/TAc8sX6sVzEjf2rVrsWTJEkfrk8WYMWPU14qiIDs7m7vWNC8k6fMI4eHhSEtLC1oI7MQSNU34fD7UrVtX49fG2v2dLATAuGxcVVUViouLHWu6qqqqsGDBAs3mf+TIEXz33XfC5IygJ3169blXmr6XXnoJO3fudOzUTjCLEHS6qeiJFNs/JxsqJUe/9957NZ9nZ2ejRYsWOPPMM4XbJG2OnkST47xT0kdgTdw0Hk7mKLv22E2UnKcp/5gIBgwYoBZhZ5+9WW5NHvh8PkyZMgWA1pdXtJYtC9pQKyoqNAdIdv2IaiUffPBB9TWrdVYUBS+++KKjfhKmTZsWlOCWDUQSBc0XSqqshxszPKvx/OWXX9TXbuc9VR5x6zcXCARw1llnafaQ/fv3q1pOMleKgOSo3teccvM5JSnDhg0ztGA41fSZ7bd2Zd+sYNaPNm3aYOPGja5J386dO9XXRUVFKC8vl5q+Uxnx8fFBC8FN5BVQHXjx3HPPqQL68ccfV7/zkvTRgnVqSlixYgUOHjyoyS9GTufkNySKQCCAyspKjBs3DkCwk6+oLxpLlG699VZ1o6aToBNzHAt242fNu040fUT6du7cqfaL3fCckD4z7N+/35HwB6pTvPj9fo0JZffu3bjqqqsAQCjbvxFYIUjEx2nOKtr0WdKXnZ2N9PR04RQTBIq2ZduktUrBB6KgjWPPnj2qWY7mlhMz9OzZs9XkxGztVjYNRMuWLYXarF27thqowRLARYsWYe/evaZ1fu1AfmLdu3fXfO6FeXfatGmG3zs5lBHpY0kZa44XjVzWg9yEiJj06tVLowEUgf4AWa9ePdWa4+SgR3Nw2LBhms+p1q9T0mdU0rKyshLFxcWO9zojUP+c+ErazRU37kF6kLVAkr5TGPHx8UHaHidBESwoDxYVN2dPL05NCIFAIChajwIY3E6wJUuWBH1GQS6ioAX2zDPPoLS0VKPpSktLU8mgU1DELW0kbvOZsc+e7atTTZ+iKGjUqJFKpNkNRtSnTw+2f/v27cMZZ5zhqJ1AIICGDRtqSB+rVXBLTtlDFG2ETgXr1VdfHdTmsWPHHN87YBxhTyRINE8bgUjftddeqxIrKp/nhPSlpaWpf89aCqiqz1tvvSWcnxE47otUWloKRVGwaNEix/dshZ07d6rja2T+swOrdTQKNnByKLMjfU7IFJsuiQ7lRPomTJhgWT7TClTWcPPmzUGmYifR4Oxhm2QnO65OSV9MTIyG9FEE/L59+1xr0FgXhMrKSsTHxztKLO7z+fDaa68hPDzccC45cZEBoNnLqF1y85Ck7xTG2rVr8eGHH6qFyBVFwaBBgzxpe/jw4aisrNQIKKenHyKSRrmrnC7Yhg0bqq/1JhgndQ4BLanNzc3VnPJnz57taANkFyoRJ+qvUzM02yej33GTDgSAWvGC3WCckikSdLSpVFRUYP369Y7Mm4SUlBQ899xzWLhwIQC+wAFekKkTOO4g7pT00XohwVxWVoY333zTVfJb2oxY0jdnzhwAzksnGZlGKbei04CTq666Cn6/X428ZOFUc8qS5VmzZhmmrhEFu4ZojtK9//LLL+jWrZtwmyyxMbK8OIkINiJ9JD+SkpIcHcqeeuopNbKeyJmTCjR6REdHo6ioCC1bttT4a1MJSSegNDKFhYX48ccfNQc9p9ai2NhY5ObmqpkP2DZFS27qceedd6qvX3nlFVNXHB4kJiaioqLCUG6IasyNQIcHUhg5CVyzgiR9HoI2uyeffBKFhYWmCSydYv78+Z6QPkJRURHefvttzYJyuqGypbj0lRSctslqyH788UeNacqNozSBiJNViTIeUAqRn376CatXr9a0CTjzwzLSDnpB+ijybt++fdiwYQMeeOABFBUVoU2bNo7aA45vpO+++67mvRcluijxsVtzOXB8c6cIOWpbtKwZC31aJbcBPEC1Bs1szjgl59HR0RgwYIChedTpJk3VQ4BqP0Y3fnyEXr16qa+Tk5Nx6NAh9Tmx618ELAEjFxG3Wn0rTZ9oYmIWu3fvRlhYWJCmz42sj4mJUUkOO9dZIiQKIiJz585Fv3791Aj24cOHOz5ExMfHY/fu3WjVqhUqKys1pM+NNh7Q+lgaJfwXAa2X3NzcIOJnVOeXB2xqsw4dOqi+0j179rRM2O4EkvR5CDKXANV1R4cOHaq+d2uOA4BBgwZpqik4JT608e/evRu33XabqqEBqkvCOAG7KCsqKvDII4+o750KLJb4DB8+XGOa8MJ3Qr9gnW4Ew4YNw3XXXQcAePjhh6EoCt58801XfRs6dGjQ5uEF6aNEoFu3bkX37t3x0ksvAQjO3ScCMul9/PHHWLp0qUr62HklClZb/OGHH2r8sZxoZoxgVPFDFLQBrF+/Hj6fT+Nz6yaLvt6cFRUVhYkTJ7qSI2xkrBfmOHYjdetqQdBrMjt37oyXXnoJ0dHRrlwF9DXH165dq37nZD5FRETA5/NpZAgdGp0mEae+sDWdKeehm0NucXGxWtKRDTJyYzYk+UsEigKannjiCcfrk03xU1RUpOmr0zm6bds2DBs2TPWPe/jhhx21w4LW/JVXXomYmBiN2d2pD/PQoUPxwgsvAKiem9RfN4dxM0jS5yFYZ3g2fL9p06aOHJCBYLLIOrY7JVOXXnopgOPJSQlff/21J8XHf//9dzz11FPqe6cnPytnaNFs/ywoYWlRUZFaPQBwb94FgB9++AGPPPJIUPShKPx+P3r27Kn5jK3F6zShMuV5+/LLLzUk12kgBwBMnz5dff3QQw+pGm832gmWMN1www2q07U+/YJTVFZWaqItnSI2NhY+n0+NhmSDN9wQNJb0nXnmmSgpKRFOdqxHIBBAdnY2/vjjD82Bwo2/1Ntvvw2geu2wOcY++eQTR+35/X5NgACtT7eHPKoMRLnZ3BxIgGpypigK7rjjDnWu0rx3Q/qA6nyU48ePx9ixY9WAKDdracGCBYafu0kFQs+DlZ+Au36yOSi//fZbTTUnp4S/SZMmaNq0Kfbt2wdFUTB16lTH/SPQwYT8BO+44w71OzdriXWRIridS4ZQajByc3MVAEpubq4n7RUVFSkANP8SEhKU7du3O24zJiYmqE36V1ZW5qjNgwcPGra3aNEix/1UFMW0nyUlJZ636QaVlZUKAOXRRx9VGjZsqLa5adMmx21ec801nvf1iiuuUNtYvny5Z/dPbcTHxysAlMjISFftsW0CUAYMGKBER0e7bnPw4MGadtu3b69UVVV50s8lS5YoF198sSfjmZiYqPTv3z/oue/Zs8dxmx06dAhqb86cOa762aRJEwWA0rlzZ027f//9t6t2qZ2+fft6Mp5PP/100L336tXLVZt79+5V2/r555+VoUOHqu+/+eYbR22y/SOZAsD13DeSIRUVFY7bu/XWWz2Xyxs3bjRsMycnx3Gbn376qdpOv3791Ncffvih4zYVRVHmzJmjAFB27NjhiQxln7WX+9K3334b1N5dd93lqk0j/Cs0ffn5+ejYsSPi4uLw119/nbR+GKngb731VkeRcQSjYu4Ep6cfs9OI2zQDZpF1XhaL9gJ+vx/R0dGYPHmyqjl97bXX0KJFC8dtus3xZ4THHntM9eFiS4/R6d8tyM/HqRbaDN9//70nCUUVXXTc/fff79q0S2b37t27qw7jboOtEhMTDVOUuJn3RgEbGRkZjtsDjkc/s5GMrVu3dqU1Z/Hjjz8iPT0dGzZscNWOkdnRTVUKQDuen3zyCT7//HPcdddduOOOO1wHCQBazbvT1CpmeOutt1yVSiRtLIu0tDRXVh2zuehG09enTx/VvYhNKUYlFJ2C5jfruuSmTTOfTafabYKRvHDre2qEfwXpi46Oxrx58zzbDJ3CaENyay7t0KGD4aI1+z0exMTEBJV7AdwnFP3xxx+DUjZkZmZ65oPlJfQloi677DJX7bmJhDPD+eefr5qhPvvsM/Xz9957z/Pf8hpsvkan0Js2vIhiYwnOvn370L59e8fO14S0tDSNjxjBjXnXiDS7XZ9GJdzWrVvniUsHoby83HGKJsL111+v8YcG3MtRNsiE5Gn//v3xxhtvOG5bn6eO8OKLLzpqzwxe5OTUR5UaRXGLwMwf0M2cT0lJUSPfKcOEFzByDTj//PNdtcm6tFj9jgiMxs6rAxmLfwXpCw8P59oQSktLkZeXp/kXangRZXrrrbdq3j/11FOu26W8XSzcamciIiKCyvq4Tc7LpnDwEvoN1I1PGwA8+uijahoDFk4TUxPq1KmjRjESvEwAChwP7PESffr0cd2Gnog7ySmmh5Emwu2mapbyxY2mzyj1g5OSWSxC4h+kA5sH0CliY2M1hxzAvbUgLCwsKFr1ggsucNXma6+9FpTv1AtQ5RyCF7kPKScpwUyRIIJXX3016DO3B3yvZRtgnD2hadOmrtocPHhw0Gdu+64fuy5dugSVovQC/wrSx4upU6ciMTFR/ecmYvFkYvz48a5yiwHBE2zixImeaOT0GjS3beoFoFdwS0b1iIiIwI033hj0uRG5FoHP51MjbgG4chUg6ANrvMh2rye8XozvqFGjNO+90PTp79UL84lZRKAbomL0nN2kAgHcl/Q6maDE2m6gJ2hu04DUrl0bd955pxrEA0CzVp2C0p8QnCR61kN/yPVCu3v33Xe7bkOPUJA+fZubN292bdkx6qfbvusPZTfccIMrs74ZTivSd+jQIXTt2jXoX1ZWFtffjx8/Hrm5ueq/vXv3et5HCrsmeHHyDRXmzp0LoDoXkFdRkXrSFwrcfPPNrtsIxWJisXnzZmzdutWTtsh/ZuzYsapflhvo573T/Gcs9ITXi3mgPzAYmSdFoe+XFxHb1113nVpNQVEU3HLLLQDcaRC9LDtF0PthuSWRJwqKorg+POnhBYkkdOzYUX3t1p8R8OZgd6Lgtb92KEif/pDrhSsOtTls2DD0798fgPv1xJK+hx9+OOjQ6xVOj1X//5Geno5ly5YF/ePdYAKBABISEjT/vAalAyHoy944hVszoRHo/p0UMTcDm1zVK3To0EF9fcMNN5gWThdBqE1dzZs3d21CIBw+fBiAd4Q6JSVF49h+3nnnedKu/je8QIcOHXDLLbdgwYIFnvg26bU7XpA+oLpyCAXzvPrqq0FpUUThhVuIHr/88osmaMFpKqUThU8++cS175kZvJR57HP2ggSFhYV5ot07Ebj//vvV115YZUJx2NGvQy8sWklJSXj33XcxY8YMNTen25RKtCdNnDgRU6ZMCZli4rQifVYYOHAgFixYgFGjRp1UR3efz4fJkydj8eLFALRRSG7g9UkXCA3pa968uWdtERYvXqw6R3tV2zMUUVGhAp38b7/9ds/apBO13nfKK7iNNCX89ttv+N///udJhCUQvKl07tzZk3Z9Pp+6mURHR7v2F9OTvmuuucZVe0B1Am42wMZtRCzhiSee0CTP9grXXHMN5s+f72mbR44cAeAd2Q8VSFmwcuVKz9t++eWXPWtrypQpquXACzLFErQ333xTrXDkFkaBF24xYsQIJCUloUOHDlAUxbXPcYcOHZCRkYHhw4d71EMTeJ4E5jSC13n6WFRWViojR45Utm3b5lmb8CAXEItt27YpAJQePXp41qY+h5GX+OOPP1znaSP06NFDzQH1119/edKmonj/jBRFUQoLC5WdO3d62marVq0UAMrevXs9a3P48OEKACUsLMyzNkOB9evXK5999pkyd+5cV7nKQolly5apc+n8889XysvLPWl39+7darstW7b0pE2C3+9XrrnmGk/b9BpVVVXK2LFjlX/++cfTdr1e96GQI6FoU1EUZd++fQoA5corr/SkvVD185tvvlHGjRvnebunGyTpCxHpCwUmT56sPP744561d/jwYQWAMnHiRM/aVBQlZKTPS3Tt2tVz0qMooRNYXuP7779XfD6fUlRU5FmbCxcuVAAoL730kmdt1lRUVlYq06ZNU0aOHKls3rzZ8/YvvvhiZcmSJZ63W1MBQKlVq5Zn7c2cOVO55JJLPGtPUUInmyorK5Xbb79d2bVrlyftnS4y9HSFT1F0GVBrEPLy8pCYmIjc3NyQ+PedDvjjjz/Qpk0bT/0Hdu7ciY8++gjNmjUzzWV1stGlSxesWLHC82f/xRdfID8/35Ngk9MNiqLgv//9L2666aZTLiG3hEQo8euvv6J+/fqndEYIMr+e6lu+z+fDwIEDQ+LHLgFI0lfDSV9NxYMPPojp06ejsrLytIlilJCQkHCK04X0lZWVISwsLOQZFmoqJOmTpK9GoqKiAgcPHjylT+YSEhISXuF0IX0SoYX7HAgSEqchwsPDJeGTkJCoMZg5c2ZIctNKnF6Qmj6p6ZOQkJCQkJCoAZDOTBISEhISEhISNQCS9ElISEhISEhI1ABI0ichISEhISEhUQNQo336FEVBfn4+4uPjPSkhIyEhISEhISFxqqJGkz4JCQkJCQkJiZoCad6VkJCQkJCQkKgBkKRPQkJCQkJCQqIGQJI+CQkJCQkJCYkaAFmRwwQU5CEhISEhISEhcTrALjBVkj4THD16FGlpaSe7GxISEhISEhISXLCrMCZJnwkiIyMBAHv37pUl2hjk5eWhfv36clwYyDExhhwXY8hxCYYcE2PIcTGGHBdzxMfHW34vSZ8JSD2akJAgJ5UB5LgEQ46JMeS4GEOOSzDkmBhDjosx5LiIQwZySEhISEhISEjUAEjSJyEhISEhISFRAyBJnwkCgQAmTpyIQCBwsrtySkGOSzDkmBhDjosx5LgEQ46JMeS4GEOOi3PIMmwSEhISEhISEjUAUtMnISEhISEhIVEDIEmfhISEhISEhEQNgCR9EhISEhISEhI1AJL0meCBBx5At27dcP3116OsrOxkd+eE4s8//0S3bt3Qo0cPDBs2DOXl5WjatCl69uyJnj174scffwQAbNq0CV27dkXnzp2xcOHCk9zr0GPXrl1ITU1Vx+HIkSP49NNP0blzZ/Tq1Qt79+4FUPPG5ffff1fH5Oyzz8Z9991XY+dLfn4+OnbsiLi4OPz1118AwD1HCgoKcNlll6Fr1654+umnT9o9hAL6cSksLES/fv3QvXt3XHTRRdi1axcAYMSIEWjfvj169uyJadOmAfj3jovRXOFdN//WMQGCx6WsrEwdk44dO6JNmzYAatZc8RSKRBBWr16tXH/99YqiKMqTTz6pfPTRRye5RycWBw8eVAoLCxVFUZTx48crn332mXLBBRcEXXfZZZcpW7duVXJzc5XOnTuf6G6ecOzcuVO58sor1fdlZWVKhw4dlNLSUmXZsmXKqFGjFEWpeePCYuTIkcrixYtr7HwpLy9XMjMzlZtuuknZsGGD0Bx5/vnnlbfffltRFEW5+OKLlb179560+/Aa+nEpKSlR9u3bpyiKovzwww/KXXfdpSiKon7P4t86LvoxURSFe938W8dEUYzHhTBz5kxl0qRJiqLUrLniJaSmzwArVqxAv379AAD9+/fHr7/+epJ7dGKRnp6OmJgYAEBERATCw8NRUFCAHj164LrrrkNWVhYA4ODBg2jatCkSEhJQq1YtHD169GR2+4Rg+fLl6NatGx5++GFs3boV55xzDiIjI3HhhRdiw4YNAGrmuABARUUFVq5ciW7dutXY+RIeHo7U1FT1/bZt27jnCCt3+vbti5UrV56UewgF9OMSCARQt25dAMdlDFBdCWnUqFHo27cv1q1bBwD/2nHRjwkA7nXzbx0TwHhcCJ9//jmGDh0KoGbNFS8hSZ8BcnJy1NIuiYmJ6uKradizZw8WLlyIQYMGYfny5fjll1/Qv39/TJo0CQCgMNl+asI4ZWRkYPv27ViyZAkyMzMxZ84cTQmgyspKADVvXAg///wzevToAb/fL+fL/wcrSwDrOVIT5U55eTmeeOIJjBkzBgAwffp0rFixAq+88gpuv/12ADVLHvOum5o0JoT8/Hzs3bsXLVu2BCDnilNI0meA5ORk5OXlAaieRCkpKSe5RyceeXl5uOGGG/Duu+8iIiICtWrVAgAMHToUa9euBQD4/cenT00Yp0AggNjYWPh8Plx55ZVYs2aNOk8AICwsDEDNGxcCewqX86UarCwBrOdITZQ7t912G+644w40btwYwPF507x5cwDVJLkmjQvvuqlJY0KYO3cuBg8erL6v6XPFKSTpM0CnTp2wYMECAMAPP/yACy+88CT36MSisrIS119/PR577DE0a9YMZWVlKC0tBQAsWbIETZo0AVBtBt62bRvy8vKQlZWF2rVrn8xuhxz5+fnq6yVLlmDQoEHYtGkTysrKsHz5crRu3RpAzRsXoNq0u2LFCnTv3l3OFwZNmjThniOs3Fm4cCE6d+58Mrsecjz55JNo2LAhrr76avUz2rAzMzNRWlqKsLCwGjMuIuumpowJC/ZQCdTsueIKJ9Wj8BTG/fffr3Tt2lW57rrrlNLS0pPdnROKjz/+WElJSVF69Oih9OjRQ5k1a5bStm1bpVu3bkqfPn2UPXv2KIqiKBs3blQuvPBCpVOnTsqCBQtOcq9Dj++++05p27at0rVrV+WGG25QysvLlU8++UTp1KmT0rNnzxo7LoqiKAsWLFDuvPNORVEU5dChQzV6vgwYMEDJyMhQOnXqpLz77rvccyQvL08ZPHiw0qVLF2Xq1Kkn8xZCAnZcpkyZooSHh6syZty4cYqiKMqll16qjstPP/2kKMq/e1zYMXn66ae5182/eUwUJXgN5eXlKW3atNFcU9PmileQZdgkJCQkJCQkJGoApHlXQkJCQkJCQqIGQJI+CQkJCQkJCYkaAEn6JCQkJCQkJCRqACTpk5CQkJCQkJCoAZCkT0JCQkJCQkKiBkCSPgkJCQkJCQmJGgBJ+iQkJCQkJCQkagAk6ZOQkJCQkJCQqAGQpE9CQkJCQkJCogZAkj4JCQkJCQkJiRoASfokJCQkJCQkJGoA/h+CFSSSDwZCoAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAHVCAYAAACE1E3TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUxdfHv5uySUgDFKVKkSaoiEgTI6iAooAIKAKiiBQpoiKKgFIVFP2JBcVCVwRFQFCxUKR3kN5BupQAKZCe7PtH3nOZO3fu3duWJGQ+z8NDts3O3jvlO2fOOePx+Xw+SCQSiUQikUiua4LyugISiUQikUgkksAjRZ9EIpFIJBJJIUCKPolEIpFIJJJCgBR9EolEIpFIJIUAKfokEolEIpFICgFS9EkkEolEIpEUAqTok0gkEolEIikEFGrR5/P5kJSUBJmqUCKRSCQSyfVOoRZ9ycnJiI2NRXJycl5XRSKRSCQSiSSgFGrRJ5FIJBKJRFJYkKJPIpFIJBKJpBAgRZ9EIpFIJJICSUZGBubPn5/X1SgwSNEnkUgkEomkQPLee++hbdu22L17d15XpUAgRZ9EIpFIJJICycWLFwFABmSaRIo+iUQikUgkBZLQ0FAAQGZmZh7XpGAgRZ9EIpH4ISEhAampqXldDYlEwiFFnzWk6JNIJBI/FCtWDA0bNszrakgkEg4p+qwhRZ9Ech0SHx+P7OzsvK7GdcX27dvzugoSiYRDij5rSNEnkVyHlChRAt26dcvrakgkEklAkaLPGlL0SSTXKTNmzMjrKlxzsrOzERwcjJ9//jmvqyKRSK4BJPoyMjLyuCYFAyn6JBJJnvPSSy9hzZo1jsvZvXs3cnJy8P3337tQq8CRkpICn8+X19WQSAo8Xq8XAHD58uU8rknB4LoRfUePHkWJEiXQpEkTNGnSBOfPn8/rKknyEJ/Ph59//rlQTqwF8TdPmDABTzzxhONyzpw5AwAoU6aM47ICRXp6OiIjI/HJJ5/kdVXyBJ/Ph2XLluV1NSTXGcePHw9Y2bNmzbpuROV1I/oAoHHjxli+fDmWL1+OEiVK5HV1JHnIzz//jCeeeAJz587N66pcc3JycvK6CrYIDg52XEZWVhaA/C1809LSAADz5s3L45rkDTNnzsRDDz2EFStW5HVVJNcBFLD277//BqT8s2fPolOnTnjttdcCUv615roSfWvWrEFcXByGDBkiHPTT09ORlJSk+ie5Prl06RKAq9naCxMkfAoKo0ePBuCO6KMJID+LPvI9OnLkCI4dO5bHtbn2kDX23LlzeVwTiT8yMjIwadKkfN2faLy7cuWKK+X99ttv2LJli/KY+ivNKQWd60b0lSpVCocOHcLKlStx7tw54QHMY8eORWxsrPKvXLlyeVBTybXA4/EAyN+Tf6AoaKJv+PDhAAqPpS89PR0AcOrUKVSoUCFvK5MH0H2WKYXyP59//jl69OiB5cuX53VVdKF25FYgR8uWLXHPPfcoj2ksoTnFCQsWLECRIkXydHy6bkRfWFgYIiMj4fF40K5dO2zbtk3znsGDByMxMVH5d+LEiWtfUck1wY0OWlApaKKPBkA3RV+gtrjPnj3ruIzCHmVYGEXf9OnTC+TOUmJiIoCrLgn5EerztJhyGzdF3/vvv4/U1NQ8TS9z3Yg+9rDllStXonLlypr3hIWFISYmRvVPcn0iLX0Fj6Ag58NRoC19Tz75pOMypOgrXKLv3Llz6Nq1K1599dW8roppcnJy8OOPP2LkyJF5XRW/uG3p46EFpBuij8a4vBTR143oW716NerUqYO4uDicOnUKnTp1yusqSfyQmZmJ6OhoLF261PWyqYMW1KAGJxRU0efGoE2/fe7cuQERFRcuXHBcRqAsEoFm+PDh6Ny5s+NyCpvoI9xoO9eKadOmoUOHDnldDVNQnw+U6KMFpBuLUin6XKRFixbYsmULVq1ahRkzZiAkJCSvqyTxQ1JSEi5fvozx48e7Xra09BU83Bi0SUicPXs2IO3KDQqqpW/UqFGu5D+kiS8Q7XTjxo35dhu1oPTLrKwsvPDCC6rn8vM4Sn2+IGzvUtt3s66pqakYNGiQ6XHluhF9BZXRo0fjt99+y+tq5AlkNQiENU6KvoKHG34u7G9nI/DsMGzYMCxbtsz19umm6EtKSipwEep0n1NTU10vu379+nj44YddL9cJJEoKimVTlI/O6ZiSkpKCl156KSARsIG29OX37d0pU6Zg3LhxiIiIwNGjR/3XwbVvlthi2LBhaNmyZV5XwxTnz5/H5MmTXSvvzz//BBAYYZbfRV9KSooyCezfv9/VLe6CIPpYH1zCze1dwHm6ntGjR+Ohhx5STdZutCc3V/nlypXDDTfc4Fp51wL6/W6LPpqc169f72q5TqH2UxD6JSBehDttsx9//DEmTJiAxYsXOypHRKB9+qj8/Cr66H7l5OTg9ddf918H175Zct3TuXNndO/ePV9HchH5XfRFRkaiR48e8Pl8qF69Opo2bepa2fl9cjl+/DhiYmLw008/AQBiY2MBAGXLlnVcNvvb3Yrgdvt6PvTQQ66VlV+3Mo0gAZGSkuJquUeOHHG1PLcwsvSdO3cOn3/++bWukiEii7vTMX/RokUArvZ1Nwn09m4gRF+g6nrgwAH/dQjIN0uuO1q2bKms0tw+jiaQwiy/ij4AmDp1KmrXrq08dmsCP336tCvlBAo6LoksMo0bNwYA1K1b13HZrED7888/Xbn/+V1EFzTIIuO2pe/22293tTzil19+wTPPPGP780aWvp49e6Jfv3756oivQIg+GtsC0ZeozJSUFGzdujVg5edXSx9Lr169/NchIN8sue5g/Q7dHqAC4dNHk31+Fn0AsH37duVvp+fFJiYmYtmyZXjwwQeV5/KbH9GJEyeUSYWCreixGxMC/3tXr17t2FeQrVd+b0/5ncTEROV+uG3pC5T1pF27dpg5c6btz1P7EbXvhIQEAO5fCyeI+ovTa0v9JhCij+aj8+fPo06dOq5HSbth6Ttz5gzS0tICbum76667/L5Hij4L/PDDD646ouZlgkYn5GdL33vvvYf33nvP1Xxts2fPviZ+Qnauq8/nQ58+fbB582b07t1bs3Xopp9LVlaW0BfPLBcvXsQtt9yCcePGAchN3eHz+ZRtOTcEKj+p3H///ejfv79rZQZC9BUWIbl161YULVoUy5YtA5C/hI4RTpOG89u7Pp8P3333HbKyspTnzp8/76ySLhIISx8t7J308aNHj2q2wn0+n2aHZN++fba/gyUnJwfZ2dmuiL5SpUqhbdu2Abf0mclaIkWfSTIyMvD000+je/furpUZiOi1a0F+Fn2DBw/G4MGDXT2ZoWPHjmjYsKHjcgLBv//+i4kTJ6JHjx7477//NK87WVikpKTggQceUM6H7d+/P2JiYuDxeGxFnFN2fxLQISEhmDBhAvbv3w/AHSuAqIxNmzY5KjPQefUKWgqXv/76y9bnSNyvW7cOQMEZ/0j02R1L+O3dRYsWoUuXLggNDVVec3Nr+oEHHkDPnj1tf54dM44ePYoSJUo4Eil79+7Fnj17AOReg++++w4ej8dymY8//jj69euneq5+/fqYO3eu6jkaT5zyxBNPICQkRLlHdvL07dixQ/Fj/P3337F7924A7oo+VoyGhob6fb8UfSahgdnNFVlBWenyfPrpp66WR6KvTp066NOnjysO2TTA5rftTcBdkUsh+mlpacLzMZ0Iiq1bt2L58uWYMGECgNytUsLOxE+/m+5JcHCwSpAFSvQ5PWObxCoQGKucG6IvPT39miV9tpsSJTIyUvXY7fGPTmEKCwtztVwSfXbry1v62PHNjfFp6dKl+P3335GWloaDBw9i+fLl+Oabb2yXx4q+8uXLIyIiwlHb+vbbb5W/s7KyMHv2bADWjQf89c/KylLGj6ioKOV5tyx9CxcuBABHou/XX39VWSJpvA5UX5WWPhcJxE1iG/GQIUPwxBNPuP4dbvDhhx+qHs+aNcvV8tPT0+Hz+bB161ZMnDgRd955p+MyAx3R5QQ3hSitGPWsEE4EBX9yglPxRIKJ6sqffR0o0Wdm9WsEK/qcIrpPboi+smXLau5PcnKyq3V3Ci/6nFj6NmzYAI/HoxJQ6enpKF26NNLT0x33sRMnTqBRo0bYtGmTa6KP2ibb7p3W89ixY2jatCkeffRR9OvXD1WrVrVd1vnz59GtWzfFhaNjx44AgPDwcEeWKVZEnjx5UnGRsrsLQX2IjVRl/aHzk0/fuXPnhM/L7d0CAA3MbjaoK1euKH+PHTsWP//8MxYtWgSfzwePx6NYWMxy5swZDBs2zHVrhJncP07IzMxUTXzsdbHL4cOHAeTmQTSTsPJa4qYvp56oHTx4sOPv4v1w2NW0nQGQd+aeNGmSxgrgFNEk6tQn6/nnn1f+zsjIwKpVq2z3MdH9cEP0xcfHa3YhKlSogKJFizoqd+/evcqWlFP4CcmJpW/FihUArgZCrVixAidOnFDOU8/MzITP58O7776LM2fOWC5/586dWLt2LRYsWKCIlAULFlgq4/Dhw1ixYoVm1+HgwYOW66NHs2bNlL+3bdvmqKyvvvoKU6dOVVw33nrrLQDORR/bvgcNGoS1a9cCsL8gp+u4a9cu5blixYppXncLJ9G7enohUMYIub3rItRw9+zZI9xGs4No0HvssceU560eefTyyy9j9OjR2LlzJwYNGqRY5Hbu3AmPx6P4VeQHfD6fsvIvXbq06yufjz76SPn7q6++slVGfHw86tevrzx2Kw+YmxFsNHjwAxJNBk4EBbVDkeizA4lIvQHP7RM5CKeij7UoHD16FPfffz/++OMPW2WJ/C5nz57t2kKtUaNGWLFiBbKzsx0lp05ISMC3336LGjVquOZvxk/Ga9assbywJdjIb5/PhyZNmgCAIvrS09Nx4cIFvPXWW+jTp4/l8qkt0hYfAIwZM8ZSGVWrVkWTJk00lj52W9PpqTFseqb4+HhHZVGSbyqTBERYWJgjkaLXr62WSX2Ecv6R8AfUfdzJ+CqyxDux9OkFfgbKp09a+lyEbaD//PMP3n33XVuN68yZMyhTpgxOnjypu9KlMP7w8HBLZVN9unbtinHjxqFTp04Arjqys53EKSNGjEC7du0sfy4jIwN9+vRBt27dFIteSEhIQBM+293y+OOPP7Bx40bl8a233mpbQLK4aenTu27k1+Tku+j+0EDIb89Zxai/NGvWzJRAHTRoENq0aaP7OvUdFjcOSucxkwRVRMWKFTXPDRgwAH///bflskRCce3atWjSpAkiIiJs1Y8YOnQonn32WUdl8IgsMK+88oqtskiQZGVlqSyc0dHRAHLHa2r7dsYW+ixrJXzuuecA5C6GzLi48JZy+l/URgHrYsXn86l2RSjgyi4kGKh+Xq8XgLvbuyx2y2zTpg2Sk5PxxRdfKM+1bdsW9evXR40aNRyJPtFn87voY5GWPpf49ttvUa1aNeXxlClT8NZbb+HXX3+1XNYff/yB06dP47fffvMr+uwO3P/++6/qMYlHO1G3ek6xI0eOxLx58yyX9/vvv2PixImYNm2a8lxWVlZARR8NXlYRbY29+OKLDmtjPLhbtfjQYoSfUOk3u2Hpy8rKwvTp0x2fdmH0uytVqmSqDYwbN85wm00UaOXU0gcAN998s+qxnd9vtO1kJzjKyFLCTrR2rIiBEMqi33/LLbfYKou19LHCjERf69atNZZqM5w5c0aVS5BNUUTtd9iwYejUqZNpyz9r6Vu4cCE2b94sfJ/ZMXDt2rX4+uuvVa4RIn7++WdT5REkICm6mgSEU9Gn11fsWvoA7TGOYWFhWL9+PcqVK2dZ9M2bN0/xvXMi+vbu3auxrusJfLe2d8+cOYNRo0Ypj6WlzyXGjh2reky+BHZWFPSZ4OBgXdFHztd2RR/bIf777z+lM1vtuD6fD7fddhsAuBJcAeQ68vIEWvRdunQJd911l+XtWT1La8mSJR3Vx8j6xqck8AcNHvwgQgO2G5a+BQsWoGvXrpgyZYrymh3RY1QXpxMLce7cOU2SazuijxdKTq2cQK6VUg+r/mKA+UAIO6lGSpQoYfkzduphdTeDoMktKytLNQ6T6NuwYQP69u0LwJroK1WqFO68805lscS2SWq/5KdldkHFBnA8/vjjmtfpFAWz97NRo0bo1auXIs70IMukWWjeoG1idnvXSd/U639W/ePZPkn34n//+x+A3ChjAKoUK2Zp166dsmsl+qxZ0VejRg00aNBA9ZyeuHM61vl8Ppw8eRKlSpVSBYtI0ecSbgoSNl0Fu3XIQqLPqoWKGiXbcEuXLq2YmK06Tn/22WfK3y1bthS+x+fzWbo+oo6TnZ3tyjXW82nZsGEDtm/fji+//NJSeXqD+tmzZx0ddWa0WGC3LMygJ/rctPTRoMJ+hx0hYfS73RJ9R44cUQVeAPasVrzo4/0Z7VxXmqAI1u/UjjA1KxLsOLa7YR01U4+TJ09i4sSJlstit3fZdkU+fUDuMXyA9bZ6/PhxzQKlZMmSmD17NlJTUy2f6+3v+j/wwAMArB/DyP5WEVbvIb8TRD5+YWFhjsYRvev06KOP2i6T7k/t2rXx33//KfNTSEiIJWMM/a6zZ88CcL69S0E6//zzD7755hvde+80R+X3338vzKYgt3ddwk3Rx676pk6dKnyPk1MPAG1nJ+vae++9p5l4jHj55ZeVv/VW/hMmTEBERITlVS//nJNrHB8fD4/Ho6lj165dAVztrFatXka/iT/5wgpmBqVu3brptg8Wum58Xd209ImwY+U2EspuiL4DBw7gzJkzuPvuu1XPW5n8Ll68iKpVq2qO3eItfU776IIFC1QLqezsbIwcOdLSVqzZnKF2RJ8b54wSM2fOxPTp04X1SE5OthVoQUI+MzNT1RZFVng7v5/tNyVKlMCZM2dw/Phx5fxxK4i+n3IKAlDaq9UAQX+R2WasPix8m6ZrTIEcn3zyCX7//XdLZQK519KpjykgtvSFhoaq7vnWrVvx66+/4r333jNVZuvWrQFcXRiIDCN6wXJG3H333ejZs6fuOOl0/NALypSWPpfQM9Ha8ZWhAWD48OG4cOECOnfurHmP2QbxxRdf4L777tM8z1sI2W3NgQMHWqmuqszixYtjxIgRqufpiCuzPgoiIeVU9OmlQBg3bhzCw8OVDm1VABn9JidpYMzUY+rUqejWrZvf9+lZ+mjbzGr6m6NHjypR40aWYTtism3btprnatasiV9//dUV0bdq1SoAwCOPPKJKJG3F0tOuXTscPHhQE8TAi75Ro0bZ8uklWrdurUkiPGLECFUaCn/QosYfdgQ630/Za3jTTTdZKuuZZ55B165dVeKnUaNGGnFuBSpr1KhRSoqRe++9F4888ojmvWZ3ONjrxLZvdgt6y5YtynhjdvwX9RXWR7RKlSqIiYmxfMSnv50gJ5Y+VjSFhYUhOTkZr7zyiqkxiScjIwP16tWz/DkekejjrwHlQBw8eLCpMYq3BovGS1pc2XHxYNsUK8iSk5OxZMkSFCtWzJZ/X5EiRYTPS9HnEnqmWJ/Ph2bNmmHDhg2myvH5fCrrGaDOL0SYFX19+/bFmjVrNM/znZ1M104IDg7GhQsXdKPtzIoAkejLzs52dNKJXpqOEiVKICQkROnIblr6nOSC8jcJW0l+TUKJb6OlSpVCWFgYdu3ahT59+iA5ORkpKSl+BVBcXBw6d+6MzMxMw3boVgTyhAkT8NhjjyE8PBwXLlzQJGy2QkpKCsLDwxEREYFGjRopz1u5V3pnLFepUkXzHJvOwx/sVi4hmrStWBOKFy9u6n122io/Ef34448Acq1LN954o+XyAKj82WJiYpRtTTt1pPZ3/vx5JZXKt99+KxQ6ZgLYZs+erYp+Zds36x4watQoZUFhts4i0ZmTk4Phw4crjyMiIixv+fkTnVZFH9vfWfHg9XqVa2gn52FGRobutqPTfJdG25lWEpPTvRSJPhqP7biJiPxNgdyt/FdeeQUJCQmWt/UBsb9/xYoV5fauW+h1xjVr1mDJkiVKIlx/iBS9yERPnc9qh6AJg7eYODUlA1cHAb1cbWZXK+xgunr1ajz11FPIysrS5C+zsqIUCZDSpUsDyK03/f78Ivr49D88lGrHDPy9/uGHH3D06FEEBwejevXqeO+99zBx4kR8/fXXiIyM9GvpJVcAr9crjCitVq0a7r//fkvX0ufz6Vp1qF2R1ctuNOdXX32F/v37C62FK1euNG3tEg2aI0aM0ETvAuZEl8/nw+uvv47XXntN81qJEiXw6KOPqiygVkTfPffcY+p9Vtrq+fPn8fHHH2v6M3s6gxuCPyQkRHWtrfqMie6nnj/Xvn37DMen1NRUdOzYUbXlyv5GvbZj9jroib4RI0YoY7wd0eevTVPfGjFihKmzw1lxzIq+sLAw1WuvvfaaMN+kHhkZGaoFDmtFf+ONN5QtVn/obe/qoRc5K4IWwz/99JPmNQqYsePHzPY9du5MTk42jBj2h8jSd+TIEVPjh6uiLyEhAT/88AM++ugjjB8/HrNnz7Zssi5I0KRIDq/+EA2+dBgzC4kUu/mG+M+5Ifpo1ai3ejQ7aLPvq1ixIqKjo5Gdna0ZRKZOnWo62lZ0nUhEhIaGKgOW1etpNFHYPXwdUPti3XXXXarXSKyahRc5pUqVUiLZatSooRn4rFinROzfvx8hISGWJv709HShuAXUaSHscuLECWEqnbJlywLI3f6vWrWqqS0m0Wq+YsWKeO211/D2229brtu5c+c0xxjeeuutAHL70m+//YbevXsrr1m5rk78aPV4/PHH8eqrr2rSPhFW/HeNCA4OVgkBq1tcousUEhKim5PTKDG9SGyxv1Hvnpi9rqLxl1/Q2xF9/owNNFaPHDlS14J94sQJ3HPPPdi/f7+upS8sLExlAfvoo48suQmR6KOoevaEpw8//BC//PKL6bIIty19OTk5OHLkiGEC7pycHNx6662WTqhi2wgr+i5cuKC8ZmeXS2971wyuib7JkyejXr16WL9+PXJycpCdnY3169ejQYMGmDx5sltfc80xY20zu90hEn0iSx+Ze93aQrOTn4+OyiFYsffUU09p3m9H9Hm9XmV1LhoYzUbIivxv6P+QkBBbv5+vqxts27YN27Zt091ub9euHe644w5LZfITBXufWAFJAyC7xWCX0NBQy6LPqCzAmejTO3mCfPyA3NyVlKTcCNE9L168OKKiolT5sABz/VP0Hn485H3G2HobYVYoWbH0HTp0CID+RFSkSBFLvpd67w2E6AsNDRUuogHjviyyxLHl602w/u4/tW2RSwy/aLQj+vxhZnt3+PDh2LJlC6pXr66b+sPr9WoWj1baVGZmJrxeLx5++GEA7gQJ0f10y9J3+vRpZTGmBwlDfhFnBDuvUTu78847ceDAAcUgVqtWLdPlEXRv7Rw84JroGzduHLZu3Yrx48dj4MCBGDhwID7++GNs3rwZ77//vltfc80x0xHNij7RyjAQlj4eOz4DrE8UoB5ARB3NjugLCwtDcHAwsrKyhL4UZoMQ2MGXJhmaSENDQ22fHZqeno5ixYoJU0qIghL8Ubt2bdSuXVtX9OkFM8ydO1fXWsu/X+8+0QB4/Phxq9XWYFb0zZgxA8uXLzec0GlycSL69ARKhQoVFKsn4c9CKzpyTM+Sb+YaiNow3+fZgI7u3bvj/vvv91uuz+dDenq66phAPaxM0FRfka8wkLtosBIcpBe1GRwcrGqfegmL9dDb3tXD6F6Jfg+7y6AnJI3KzMnJMXydF2SBEH389RD1Q9ZFgbXusvdGtONipU2RT5/VVDc8gdzeNYPd3Z0PP/wQb7zxhhKtT7lvnUABX3bKck30eTweoUXl8uXLrob/X2vMCKZ33nnHVFmigcrIp8/NM1r5hLVGiDqlW6KPHQjJ0pednS1sO3TGoj9E94gmUnbgs+qHl56ejrCwMKEfY1JSku7E6A9e9H3++edYvXo1wsLCNFaHK1euoH379mjVqpWwLLOij874vHjxomMLZmhoqKm2+dxzz+GBBx4wFH00NtgRfTk5OdiyZYthoBJ/z40m4k2bNgnrKgq2Asy1eV5QDBw4ULOlz0fxmqF58+aYMmUKvF4v+vfvr0qczWPmXl25cgWJiYl+I11jYmKQkpLi+KzgH3/8UWXp08sDqofe9q4eVi1933//PSpVqoQGDRpg0KBBQvFqdF39BffxwVpmRd/+/fsNX+/atStq1qwJINdVgRUqIlcrfv4hgcteS1F2BKuiz+6pSCzsfXJ7e5dFFAEOXN0xs9pfo6Ki8P777yvX1KoLjwiKrraTT9M10ffhhx+icePGaNeuHfr374/+/fujbdu2aNKkiaXccPkNXlBYScqblZWlWm2IBomYmBjccsstePrpp5Xn3BZ9wcHB6NChg+n3sxMfOdazg4Coo/3222+mjv1hB9/Q0FCcO3cOu3btwuHDhzWDtr+jqRISErBixQph5nkapNm6Wk0JkpKSgiJFiggtAUuWLBGmy9GDvZcUyUmitk+fPmjUqBFCQkI0ooOul172fbOij92utzIYis5fdXN7l36fHdE3YcIE3HPPPYbim+9DevW+cOEC6tWrhx07dmheYy19ixYtwqFDh1C/fn1T14DSiRCic4NFk8h///0Hj8ejyQvXu3dvTJs2DUuWLFE++8knn+D555/XXdj5m6DPnj2rTEwsotQsMTExyMnJUe7pzp07bQtAM5GGehhZ+kTnGA8bNkzXv1zPcnn69GmsW7cOHTt2xKlTpzQpeoz8Y40MHQ0bNtScwWxW9PkLcPN6vUqf2r17t2o8EF0zPrcptXV2LBaNm2ZFX2pqKtatWwev14vatWsD0F9E+UMU+BMIS5+/E0T0ghn9QSlf9ALAMjMz8corr1gan/NU9LVs2RJ79uzBwIED0bhxY9x///14/fXXsWfPHsuruPwEfwOs5Orp3r27qoGLOl14eDiOHTumukbkV2NW9G3evBlhYWG6jaVkyZKWVifs4MNvjwHiFfXbb7+NJ554Qjd/3YEDB7Bx40aV6AsKClLyJG3dulVjAfFHixYt0KRJE9Vzr776KgCxWLUr+txYmYnuTYsWLVSPedF3//33K23A7KHl7CCgt7q2Mhg2a9YMPp9P5ddkJ5BDDyeib+fOnQDU21J8JKBZS5/e85MmTVJNjC1atMCtt94Kr9dr6hoMGzZM9VjkNyTqm7SlRv2D+PLLL1UnjrD3eOfOncLxyd8ETWk4eFEjKot8Qnft2oX3338fd955p60zuAH7Z2IDYus+9XWRWF2zZg2GDh0qLEvPusn2rWLFiqFp06aq19kTi/TqwkK+YCKh4k/0ZWZmolKlShpfax6v16vb30TzCS/YRaLvmWeeMVWWCAo2yc7ORp8+fXD48GHh4sRMeTVq1FD+pmvFX0tWbNu19OlB7cGf0OKTbNNvq1atGgB90bt06VJ88skn+Pjjj03XiX7vypUrTX/G1ejd4OBgNGzYEO3atUP79u3RsGHDgBzncy3h8xLFxMRg1apVGiEgWu3y52nqiT5AHTVIaTPMTqwTJ05ERkYG9u3bJ3w9MzPTUnZ2dvChVQ1bF6MtIBKsPNWqVUP9+vU1h4SzYuLuu+82dQoFIYpI69mzJwAoEyP7uxctWqTKxeUPEn1Gixazfji80BLlbQsJCdFMNNRmfD4fPB4P/vrrL833s23H3za8qC5GUPtkB1M3LH3VqlXDiy++qKQdYUWfWSsCXSvWgkPJwgl/lr79+/dj8eLFqv7LthnRUUeA9WsA5Ob6E6V+EfXNadOmAfDv/8QKxmLFigkXKPw1OHHihEo80L3l+7XIokFHf9WtWxdvvvkmAPuJylnRZ3Vhde7cOdxxxx2qZPHU9tl2/8MPPyh/64kAvUAgHisLZ5FQorZuR/QlJyfrRlQDVxfnRkemZWZmYujQoao5jW/DZIVi2+Qbb7yhKctsH/3kk08A5LYxj8eDSpUqCd+n99s7deqE4cOHIy0tTeW7q7fVyvaXhIQEfPLJJ8qcYBY90Uxzmz93NTb/JHC1/3Xp0gWLFy8WnuaUk5OjjOP++rzodSuprgKSp2/u3LmBKPaa8/rrrwtzCN13332aiK7s7GxNw6XOTR3EKLWIaIA1u5qiyU+vsWRlZVnyq2R/B61K2MHBKMTc6pY0H23KW0JSUlLQqFEjUxNLjRo1ULVqVfh8PmXrlY9W7dGjBy5duuTXGb1+/fqYPHkyihQpYnjtzE4Y/IRz5513at4THBysGnCys7M115PfUkpLS1NZNgqK6IuOjsbEiROVOrL1Nls2tVPW6sNPAv5EX/Xq1dG8eXPVgom9bnoJWUNDQ0359LEBPx988IGwLYlE39KlSwH4nwB4a5ne2aE//PCD4pvVunVrNGrUSDNxHz58WPVYZOkTBTVY9dm+4YYbMGPGDNV1tnoO69mzZ1G9enXVEVx0r+iaVKhQAY899pjyOm8VP3/+PNq0aaP53bToFsGe9GIE63sXHR2Nnj17KvfZjujzJ7KaNWsGwNjSt3fvXowZM0aVeohvL2TpY+sour9W7zlv3eL9BPV2YWbNmoVRo0ahRYsW2Llzp9K///33X9xwww2a/k6Lh6ioKCQkJOCVV17BN998Y6muenWhe2o10pyuscfjQdOmTYWLh8zMTOWa8gEjycnJyljj8/kwevRoS9/PExDR16lTJ4wfP97wPU4dgQPNjz/+qJjjReZYfqBeuXKlIhDI34YGHxIYRpY+kUXBrICiwUJv0LAq+tgVP6382LoYTXZWrR+s+KpcubJqUrn77rvxzz//YO3atZgwYYLfsnbv3q2ZpHnLSnBwMIoXLy6M0mTZuHEjAP/5kP744w+/9QK0DtiiCZW19FFUM98GeMt5Wlqa7hmcelZ2K9vc1IbdEH1sFDVfB3Y8MBtoIhJ9fB+gyZLSZuj1qQcffFD5m53w9K6h2WvAtkc9a7tIBJBVx984yYswPdH39NNPKxYG6nMUya03Noh+O5vAmLB6UkF8fDy6dOmiSdnyxx9/mJ4XLl68iGLFiummbgH8p4WZPHkyFixY4PecZRaydBrBL8wSEhLw5ZdfKvWyI/qM5oIiRYpg0qRJAIDt27fjjz/+EObwI580dkzjrx8tIP3dU6s7eLybAy98rly5YhikQlum9LnDhw8LXY/WrVuHP//8E40bN7a9vetvfExISFDl1vQHf+9Eoi85OVm55rzoi4mJURYv//zzj+okF/Jnt3JKTkBE38KFCzFixAj0799f04mzs7Mxbdo0V8KWeQYOHKgcI+U0QpFN09GvXz/NSpQfwFmT7YwZMwBc7dxkiqYExHziSyDXSsWnSTEr+sgqoBdpzK4izMAOPiT62MGBHzzZbVarlj7Wklq8eHHVJJadna2IYjvnEwJXLai8FUDPcrh69WrVtfIn+rp37+53kMjOztacsiEqNyQkRLHChYWFCS19fLtLS0tTWTPZAUOvD2RlZSEjIwMejwezZ882rDuVR9ePjvrZtm0btm/fjgEDBihb5h6PR9mWZKF7FxUVpbRRfoJjhatZQUn3KTk5WWk3/DYHXb+4uDjTZbNCQW/yM+vTp3f2JouR64U/EcQHE4nqROMP3UsKcqLFnZUULJGRkZpgArOij2/zrPj59ttv0aJFC9M5CjMyMhAeHi50NaH7FxISorq2vFChsZdNDN+jRw/dRRSg3jnQc/tgj5sDcq+Px+NxZOnTG1dPnjypSsOUlZWFevXqCZMMx8fHA7gajCMql4wP/gSTP3/MtWvXqsYWXkjz1+Ctt95C9erV/R7mQP61c+fOFQZE3HLLLWjevDmKFi3qd0eDRDBBwoq9DyJ3DCDXt9Ys/DUWXbuOHTsq7VOUGoYMSXQPiUcffRQ+n89SrEFARN/DDz+MlStXYv78+Wjbti1SU1ORkZGBiRMnonLlyhgwYIClaFIz/PPPPzhz5gxWrVqFGjVqCI9TSU9PR1JSkuqfHny06i+//KK6eUZRQ1QuL/rIEZiNBiRR4/V6NQPejh07sHXrVt3v4b/PbOZ4fxMJe12ormzZvJioU6eO8rcocs6Ir7/+Wvnb6/WqRF9OTo4yMFsNwiBI9NFKSG+w8vl8CAsL04h7fqIaOHCgZgu6cePGut/fsGFDYZSvaLXHLwbMWPpSU1NV1gczoi8zM1OZ6KdPn65bd+CqpYwE1po1a5S20L59e4wfP17lRyeabEj0hYWFKZMm72dTvnx5JXr077//9tuOWB+Y5ORkJeiFnKUJak8i31Q92L6t18/Nbu+y36dXlhPRx7dPkTg4deoUAO3WXWpqKpYvX27qiC4iLS1Nk7fSrOjj+55o4WO2rIyMDISFhQmFEmvpYxdw/MKX6sOKA4ow1UNvgaUHTdZsvdzc3i1TpoxqPjFq3+TLN3nyZAQHB6u2DQkSOby44PFnRGjUqJFydJ8I/hpQBD47zova/r333qv8bRT8FRsbq7qvouvSr18/1WOycmZlZeGXX37B3LlzTWWk8IcZS9/y5ct1t3dZ7B40wBKws3dr1aqF9evX48iRI2jQoAEqVqyI4cOHo0ePHjh27BhGjhzp6vetW7cOzZs3B5CbZ0cU5TR27FjExsYq//SctAH1QHzlyhUEBQWpJlzyyRL9DlolURn8Spo1xbINQNSR+Og9O2RlZalymf377794+eWXdQcS9r1mtndDQkKwbds2AMYRbSxfffWV8lnC6/UiJiYGzZs3VyxdNAk4tfSxx7KJOHPmDDIyMjRJkPmJ6YMPPtAEm9BWsIj169cLA05EAxY74IWFheHvv/9WTRpArh8Su4JOS0tTWYjNWvro3vt8PixYsMDv9aXrEBYWptwz1nJBA7SoHPpddA98Pp/QOZzcKJ588kk8+OCDhteVdVnw+Xw4d+6ccMtp2rRpqFSpkiKMzSSKZ9tk9erVhe8xu71rxtJntIBkJz7RZMB/9qOPPtLsotAxV3xkZmpqKubPn68pU3TiDpGenq75zqCgIJQrV06VK3DFihVKJD0AvPjiixo/1saNG+PHH39U5cBj7+GhQ4eUrdeMjAzFOn/8+HEcPHgQoaGhiqWP9SMnMce3B75tiiZff1HkrOgzs6tRt25d5W+3LX1kvQauZi1gRQHvwkIWTfo/JiZGM39REAL5COrh9LQo/hrQHMm2d5HVT3T6koiiRYuqrJUiqx9vJaZ5OTs7Gy1btkTbtm2V+efxxx/XpLdh62q0ONMTfazbmMfj0d3eZcnXoi8xMRFTpkzBqVOncPDgQSQkJGDp0qUYMmSIK0dB8SQkJCgDe2xsrNDBfvDgwUhMTFT+nThxQrc8doAWXeiJEydi48aNwkPPeTGVkZGhuvGlSpVS/va3suWPfiIoI7cZfD4fXn75ZWXivvXWW/Hpp58Kk24CUI7j+e677xQrHjt4icSEle36sLAwYUSV1+tV0rj069dPOc4PsC/6KC0KHVejJ3T1zoYVWSPsnh7Rvn171K1bF23bthX6o7ADEw0MfDTqtGnTlBW0z+dDWloaypYtqzhnmznairZ3gdzD6Nu0aaOx0N15550YMWKEcnTSX3/9hWeffRaxsbGKZZPdRqOBSjRxkVXfX/Rju3btAEBxzjc6bYJdENDvEPHoo4/i8OHDyndPnz5dEwHNw05Iejm1zG7vsu/REwlmLX2ifsdbz7p06aI5Z/b7778HIBZ9osTWY8eOBQBNihIgt03xi9OgoCCcPHlSieZdsWIFmjRpoko9ERsbi4ULF6pO3vB6vXjyySdVbYb9jQ899JASBTtgwABUrFgROTk5ij/VlStXlO18SkgMqC19LGa2sel6T5o0SZj/kb3eq1atMlyYAOo2T31EJPqKFCmC5ORk3S1JfwKTxD4r4vj8uGZyzJYuXRo+n8/veG7FfUoUrcpfAwoOZPsLpSFhXTauXLmi+N8abTHz27v8dd25c6fG95IVfQS1zfvvv18j+thrIBJqNKbSGeAE/XZ2B8jj8Shtz0j0WXHF0CMgom/w4MEoX748pk2bhjFjxuD8+fN48skn0bRpU1PnX9qhWLFiyrZkQkKCcLAOCwtDTEyM6p8e7EAsOqg9IiICdevWFQ7YNNjQTczIyFAd0iya8Ik+ffqoHutta1o5o3XkyJGoVq2aZltGz8Jw8eJFlCtXDp07d8Ztt92GzMxMlVmdb8SA8cQFqK2YfMJagh0gg4KCcPDgQcU64G97Vy9XWOPGjZGTk6P4IekdqSRKyguIRZ9IvHTr1k0ljEWMHz8eGzdu1I1uN7OtyEIDQHh4ON566y3MmzdPZZniRR/5T2ZmZioDFvm18INiREQEhg8frtzXmjVrYvr06QgODka7du1w0003KQMinZ8MGEd2+xN9xYsXR8mSJVWD7syZM4V+W2lpaZrgEiNYAUBCVg8z196spc9MqiOjhR8r+kQi3kqCY1pss9u7ot2FSpUqwefzabbKAa0PIaCtP/k0swQHByM2NlblCiKCnUhZMUhiMSEhQRUN2bt3b2zevFlVV7rXZLHcsGEDOnTooJkwRdeTJtwXXnhBNeaJSE1N9XsMHitMjE6RoHtTv359bNy4EXfccYdK6JnJsbdnzx5V7k9+cWp0co1VrFj6Xn75Zc1zeoJNdP9ZH8vs7Gx0797d73fGxsaq3JR4q6ForBaJvri4OEyePBn9+/cX+lMTIqH26KOPYs2aNejRo4fqeY/Hgy1btuC7775TPUf3uEBa+n7++Wd8+umnOHDgAHr27InIyEhMmzYNPXv2xAMPPKDJX+cGDRo0UFbwf/75pyYowip0g7t06YIuXbr4fZ/oOVb0sQkbRaKJ4BP2OmXJkiVK5BS/OtNbPZK/DMH/xu+//x5LlizB9u3bldxF/iyW7OSid2/YgSA4OFjV+fxZ+vTO+KTv7tSpE4oWLaob5aSXv49EX/fu3dG1a1cAYkvf1KlT/Z4f6i/yz+x2AZA7MIwbNw5Arkj3er144oknVO/hz3CNiopCUFAQsrKylOtJQoS/fv6+v3z58oqlmI7S8/dZM/5a4eHhKiv9M888o4n8A3J3EjIzM5UFlD9LiGiFrGfpNiv6tmzZ4ve4LbZe/o44A7QndvgTfVYSHFNd6PelpKQY+mbx/d7n8wmj3vn7Ktpmt+KrR1A/y8zMVETRuXPnlN+RlZWFoKAgjZD0eDxIT09XLI/16tVDmTJlsHXrVuzatQvdu3fH6NGjHZ00oQdN2OPHj8eaNWtU15e280S7Q+SGcuDAAYwbNw67du1SBZiI6uWvj/J9Wk8w+MtkIMJpyiZqI3wd2fsv+o6cnBzDsZ4oWrSoSjzxi1pRnciSx17roKAgdOvWDSEhIYbuAiKhVrJkSdx7773Ctn/33XcjJiZGscJHR0cr32sk+uj9TgiI6NuzZw+effZZzUUaPXo0Pv74Y3To0MFUCg4r1K5dGyVLlkRcXBz27NmjbBXZhepesmRJw4FRNEGIRB87gOpZm4Bc0ffZZ5+pUiPQdith1NkHDBigesw2OL4TvfTSS8Iy/J2VWLx4cTz00EO48847hScMbN68WZP7yoxVxihq0l8+PDMpBEqUKKG6Bux1JGd3HhK/33zzjeLLZ3Z7l/wWgdxB3d/xPexg489JPDs7W7kmbC4yFj660OfzKRYqSp9C3+Pz+XS32USw0WKRkZGWBLoR4eHhmglOdO8vXbqEjIwMxeLtT/Tx/ruZmZm6icTNOOhTW23QoIEqFQ1PZmYmWrZsierVq6vSwujB+mmx/Pvvv8KFiZFAjY6OVm330T1lt3eNxJjZtBxURkZGBmbOnCks06ispUuXKluRIp+tpUuXKr6tgwYNUn6HkUDzer2qMYeEQq9evTB58mQMGzZMKPrM+On5fD5l3OOvP5V50003aSyF5cuXx7///iu0VLH9iRaH5JMWHx8vtKD7E338OKW36LCSuH/Dhg1o3bq1ayfy8Athkehjf2d2drZyL41+P38qi7+oYOCqpc+sG4aepW/69OmYNm2abuQvC7m+PProo35F33///af4zjshIKLPSCR1794d8+fPx5AhQ1z/3g8//BCrVq3CzJkzHR/wTDfY3wQvGszoOboOGRkZqvdRBxdtHwQHB6Nfv34qS1v79u1VEzJ/zAtLiRIl8M033yhbG+wAzE/kixcvRlpaGj7++GNVQ8vMzHR0/erWrYvKlSurzOtsmzBKg0Hw1/XMmTNYsmQJPB6PMJ2AmQmK35L76aeflHNE9bYlRROLWdH34osvKn/ffvvtfq0dVkQfnescFxcnzJ0mIicnR9mK5RdF48aNU/ms+LNK8deAHSj5YBgrmL22b7zxBlJSUhQLkD8LTdmyZVUi+Ny5c5roPYIsMitWrNAtj53sjSwlWVlZKF++PPbu3Wsql9arr76qBF4AVye2SpUqCd1M9Prp4cOHcfjwYVW+Nur/rP+lUZu0IgaAXJHyzDPPCMcno/754IMPKkKI6rh//35lUv3xxx+V9y5cuFBJkGzFKkfXkQ3wE/mf+tv6J+ga8gt4mpT1ThipUKGCcH5k7wMJIXK9KFGihDCwwt8YwfclvUCR0NBQNGvWTHXMmR716tVDqVKlLIk+kU8fkCvA58+fr5s3kP5mn8vJyTE1RjRo0EB1nc0kpBdt77KYtfSVKFFCeB68iKCgIDzwwAPIyMhQdvn07qvVdGi63+lKKRZp0aKFoXDJD9CA588PSdRAqHHQ/6mpqaptIBoo+HNjWdiGvmrVKlX4u1GqGa/Xi+7duyvbXv5OOvj666/x6quvqrZTMzIyHB2GTrArIXZQ01sUGFn6/vvvPyWNhygrvh3R99RTT2Hw4MEIDw/XtWyx6RAIowPD9VafZoKX2Lbkb1ClLVorQSU+n0/lf8fDboH6E33sgHfy5EmVZffy5cu2k6+Lfg/rLE8LpiVLlmD16tVKSiMzAyK7LfT+++8r59vy9O/fHz///LNme5xFL/qQx+oRiB6PR+WX6e866pVdqVIllChRAqGhoYiPj0fLli01k6jIp48NcjESFbNmzVL+5q+9yCLpr3/S9aR+WL16dSXQTq8tmrHIEqKxVmTps7KAArS/a+rUqahYsaKuxdZfecBV0aeXNoWNgjfCrOgLCQnBX3/9ZWixHjNmDB555BEA1pKzh4WFqU5NYfnyyy/RsGFDla8hOw7T33zABLUVox2z8PBwlZg0En3kl0m+g3qij9+dZNsP+xmrcyefekivXTdo0MBSuXrkiegDcve08zM0mPqbrEUdiQQL/U++VwSZno06Dr9Nyx6obOQsT8KpW7duKFu2rCpNgr+OSp3e3/auWdjGa8anx8jSl5WVhSpVqgCA0I/KzMTKpngg6GzOzMxMdO7cWfXali1bhP6cRp1az2/GzEDADhwih3n+vVYtsuz2rj/8nSnMvr5w4UKVY3RycrJt3yiR6Nu9ezfS0tLw3XffafojZfG3Kvr45Nzs93o8Hk2CXR7+uovyglK9rE4C7ELD5/MZHgtmZrFDx1XR5EnXSmTpYy1KRhZb1irEb9+JxJS/etL1FC2+2PNzWay0sWbNmmnalt3cn8DVse3s2bMICwtTxuRLly6hatWqlk+sID+/iIgIpZ3qiT6zx3CZXRCaaZ+DBw/G77//rrzfbPSumXE/KipKOaNXtL3Lu+TUrl0br7/+Ot577z3DctnfZbS9S/2BxLZeu6pTp44q64Te9q4d0ceKUj3Rx0Zff/fdd5qgT7PkmejL79Aqyp/zvWhypEZDDZ6PDKWVmtHk26tXL9VjtvMYJc6kwZNWymz9Rd/HrobIcdjp9i7BTsRmTgTxdxICf3wUi1lLHy/6SCympKRofDDuvvtuwwjny5cva6x+elZYM4Mfe714nxTRe62Kc3Z71x96B6MT1JZEVs++ffvq+sv5Q8+yPnz4cHTp0kV1WDyLme0UVvSRn+yzzz6LjRs3YuDAgcprtWrV8lsW3y70/DWtWvoAaBKUG0X7WzlpZ9myZUqdAP+BHEY7Cmx7NuPDaeZYr6CgIGRmZvpdcBD+IoF52LEuODgYaWlpqFWrlm7kvhGsMMjIyFCCuC5fvmzpdASiWLFieP3111G2bFmlf+qN87TwsWrp08Nq+2QXjpcuXUJOTg5GjRqFAwcO2C6bgtBEoo+39EVERGDcuHGGlj5A3Tc2btyoazFu1aoVgKtjj9FiglIIAdC1ztkRfawopbJ+/PFHPPnkk8LPdO7cGZ9//rml7yGk6NOBGoi/htW0aVNNxB0vrvhGRI3C3+Tr8/kU3xC2AbPWJBpgyFHdSASItqvYcPJdu3Zh3759rln62Oz2Ti19wNWM8qKVkBnRl52drfIPAq4OSomJiZZ+c7FixRAZGankNCP0JkozVgkrllESfVYGGDoKyp+lb/369Vi0aJHhe+j3iLa/V69erUQ6E3pbPDx6fm96gTb16tVDeno6Jk+e7LdsdhKMj49HkyZNMH36dNStWxcjRozAjh074PP5lJyORvDXXW9CyczMtDwJ8MFXRtuYZqNi586di6ysLCxevFhl6TMSfUa7HGx/M2MxM9M/vV4vxo4d6/foQyDX986qpYOtQ1hYGNLS0lCsWDFL6a8IvXty5coVW6IPyF2U/Pfff4ov3/nz5zVBfMDVgwGs+vTpYWXhAFwVfTk5OShevDheffVVDB8+XDkcga2XKF2LCBp7RT59/vLh6cH+rr///ltzfCDx9ttvq9wz+FOZWOLi4hTjCDvWOxF9oaGhKj91Kqtz5866OwhOkKJPBxrE/Vn6IiMjMX/+fNWNpkFVNNG3atVKERpmttnIpBsfH49BgwYhMTER7777rvI6DZD8EUsimjRpYrg6HDhwIG677TbXfPrYlaqZgcXfQffUMUVi2cykIkqkyos+SvJrJi0AoM3jN2fOHOEpB2YGK2ovq1ev9vt7srKyLFlkhw4dik8++QShoaF+Fxv169f3G3RAv0cveTG/Ba8n2nhE0eDh4eG61p/FixcrSb39wd7Tw4cPa9qblcnfrOiz4nfJ5pqjBZO/McLshE0nWzRv3lxJVZOamqpql3z/eOaZZ3RPBLJq6TMr+vRSJ/FUr17dslhh65CSkoKZM2faHuf4/kzjqlPRd/nyZWWrMz4+XrP7sGHDBiUAkN8N4jFrZbN6Tj2JPrrvtP1OYojGsQ8++ED3cAEeGsfYtuSm6AOA7du3C98XFBSkjOPnz59X5c8TQb5/eluybog+0RGchFMhKEWfDiQw/Ik+gp2U0tPT8fXXXwsnqjfffFNpFFaPshk3bhw++ugj1XPUWGlCM7vyN8ItSx+QOxiader3F+FLFs5Zs2apjiIDzKeX4KHPkUWmYsWKAMwFXgBaMTN8+HC0bdtW8z4zlr6+ffsiLCwM99xzj9+UQ1a3d9955x2ULl1asfSJzlutWrUq3nrrLVPl0e/RE33EU089ha5du5pul6I0B2lpabo59ayc7sMLeSdHSfFtWk/0paammhJ9Bw4cwLp165THlMqBF1SNGzfGtm3bsHz5chQtWlR1WoER7FnnNFmlpqaq2iUfhRwUFKRYb3jY/uaW6DPaTuYT3No51cloIWkVPdF3+fJlv6mZ9ODbiWh7l7b6fT6f3yTFHo8HjRo18ns0ptV+QKfRkIWX2hPvM+ov3RkL3Rt+25yvnxXRx7Nv3z506tTJ8D033nij3zGV7lOXLl2USHv20Amrc3BoaKjGamh0TK2Vs7JFSNGng9ntXYIdUFatWoVevXoJowPvvfde26IP0IoMWlVSQ3QjrHvv3r22VsB0PBJLSkoKgoKCLGcSFw3QbBn8Yd5mVrVsZ+zevTsiIiI0Z//S7zY7qbA+Hix8+gMzg1WTJk2QlpaGsLAwNGrUSLi1Q5Ofne1d4OrpGaKJ+vnnnzftJO7P0kdMmzZNc1axEXq/Z+fOncLnrVh7eNHnLzLfCF7Es0eOEZT70Izoq1Kliso/8o033sCjjz6qEZMlS5ZErVq10LhxY1y6dMm0RVpP8LDjhZWFk1XRZ7aeepQpU0b12C3RZ3e8FPXnCRMmKGcC24G/RiLRZ9X/bvXq1cIjL1nsWvrIwsfe/zNnzihBUFbqSu8VZTBwy9IHqKPO3YBOOXr++edtl8EeYwnkXgOjSGqnu3BS9Olg1dIHmDe70okcZpzP6UxVYtWqVarHJPrI4mdGSHbv3h2TJk3Sff3YsWO6EXNGiPy22KzygHkRLRqMjVblZiYsdqIoU6aMxqeJTejKWxb0KFu2LL744gvN83v37gVwNe+XnWhW0aBJbWb9+vW2LLIxMTFISEgQ+mEZpaLhMSP6br75ZsuTvVsWZhG8+LI6gbKQ3xXBBxfNnj1bOf3EzlnNHo8HMTExmt0Cu1YkESdOnFD6WcuWLS1de6vbu2b89IzgJzo7ok9kgaG6nzx5UjdISATfn1NSUpRk9w888IDlugFa0Sda9NlJheSvndsVfaJF/oQJE7B48WIA9hYR7LivdyKHWaxu/1uBPRoOUC8g7fhIsmRlZQn7C/VPu+4DhBR9OpDAMCtSgNwD4/35WQC5N83n8+kmrWThBzdeRFEDoAHDjOj75ptvNI72bjB48GDNEUN8ugl+xa4H/zsB43MHzQww7DYH1WPLli3Kc9T5cnJy8MYbb5iqJ2BszichZceiwA4G69atw5IlS1THA547d87vRD1//nwl1QKQmxz22LFjwolaFJShBw2+RkLRzuAUSNHHT6p2XQIA7RnZPKwl2onlhxd9Tgd8lk2bNmHLli145JFHVAmhRfDCwWoghxXxLxpz3RB9VGf2s9SOy5QpY+oEBf5zBBt9SamlrGLmrFwzCb55/G032hF9eu4M7KLErugjYZufRR+/I8KnfLIC37YzMzOFoq9jx47w+XyOF1BS9OnAHmZvBTcCIFj4Dku5s2ilQfncSMSYFRf+OqQ/Z1YRoaGhKt8hQCv67rrrLsvlEk5FH5tzT3T+MQkOj8djqeMaDaqUesXO0WTsRNugQQM89NBDqufMRBy3adNGSaoKALfccguOHz8uHLTNnkYAXJ18jETI9Sz6ypQpo1g6GjRooEqrwqerses7GBERoblPdqyGIm677TYAudY+f9fhzz//VCzXBNvmWX8mPayMi+RXy3/+2WefVR7bsXjS72QXKna35b7++mvVY3axb9caa3QOLQC89tprtsr1hx3Rpwfb561Y0unevPDCC4pfsahebog+Nt+d6KQTM7A7HJcuXVL1eSuGIkB7nebOnYtvvvlG8z4n/owsUvTpQM6SVlW7WzeGEAmKZs2aKRN5x44dER8fr4Sju5X02l+eNj3Yo7wAteirVKmS6jxaI0QiyanoA3KjaxctWiS0FNgV7GZEn51EsEbnOgO518hqnW+66SacO3dOeC2tWE/mzp2LOXPmGFpw7Ig+txdNLHxdnQY9vfTSSyhdujTq1aunmqD4a2v3LOKiRYtqcsi5JYrJz8tMHsHmzZtrTqpg+9uePXv8fp+VcVT0G0NDQzF9+nTlZA07lj7akqUF880334xXXnnFcjkA8PTTT6Nv377C1+xaY/0Jeqd+kYD4PtgJ5NCD9Tm3sqhi6/XFF19gzpw5mDJliuZ97Gk1VspkYdvr008/bbo8Frb9sanJnn32Wc053/6gMc/fLpjdhPc8UvTpMHPmTE3WfjMYRaDZQTQxRUREKOLS6/XihhtuwJ133on09HTHkT2EXROykejr0qWL6VWwSCQZ+fSZXVW2b98eLVq0EE4adifUQIk+Ubn8c1brXKJECSQnJyM5OdlRIEOpUqXQvn1706t+swTS0sfXx4mlD8i1lp06dQqlSpVSiT5+crYr+kTntzq5Z+wJG+w2oR3fRjeyBPBUrVpVt81QHWm72441jfogWfoqVqzoaAtQdAY4YN8a60/UObn31E9F/oZuWvref/995W+7/evy5ct4/fXXNc+/8cYbhr7oPHr3ll3o8DtTZmHnRzbNkMi/2x9UF39tukCfvVsQiIiIMMyEr4ebPjeAeHANDw9XVD87SVqdMI0GJ7urSl70sX4pVszegbL0ESLRZ9UsTxhNgDS52hF9okGLn2jsiD6Cd0Z2GzsTcyBFHx+U5ZZwCQ0NxYULF7Bt2zYA2nbK+7maRbTyd3J9oqKilHvOtgM7k7PVz5gRV7t27cLFixeFr/EJ7e2MT7zos2MtZNFrP3aFJPubRGOzEyt4RkYGfD6fcCfITdHHYlf0ZWVlCfM1NmzY0NL8SveBz/TwySefICsrCx9//LGjnIoinOxu+Luu0tKXT6FtV4qyrFevnia3nhX0RB9Z+pxEIBo5BdsVfWyjDw8PV50TbGXQItFH9QgODlZNpuPGjUPPnj2VRKVWBxjRqtmqWZ4wEg+0InQr6pLf3nAi+qxE69rByQBo5ig09jxqM/CiT2RJswPdA9rmYUXekSNH/J6jrAcrysmfy4m1B7g6wUdHRyv1DrSl77XXXkPTpk39vi80NBRer1cYocqLPjvWNBpT6Lr6O+rQHyJxZ/doLED9m4YNG6Z53clYT4jum1XRx/5u8o1mE4sTbtTXSXnUH6dPn46///5beZ4Sjjupnxtb7YQUfQWcNm3a4NKlS0oEV6dOnRS/ETsrS9HAEhISojQAJ1tUgbD0sZNSTEyMKteUnUbLpqRhrX+1a9fGV199hZo1awKw7ksp6mBmI4t5jCbAiIgIzJ49G3/88YetsnluvPFGYcSxWVjRxzoji/xnnOJke1fkzN+oUSPs3btXmbTj4uIslc33P/ZkGyfwx6axiH6HWdjrR2LfqSWUJvjIyEhlQeK2pW/x4sVYsWKF8vjDDz+01E7NiD474pe39FmJVhchqmfjxo1tl0djbuvWrdGgQQPN625Eo7oh+tiIcmrfFSpU0GQ8cOo+wWNmIcgya9YsbN26FaGhocIjSJ2IPqcRtKJ6+KuPFH35mKJFiyqDc3BwsNJZzZzpySPKg5adna1sRTox+Rt91q5lihd9bJJJvQPS27Rpo+nQn332Gd577z3F+saLULq+48ePx8yZMy2lWwDEv92u5ctoMI6IiECHDh1suQrowdbdiaWP9f+0G8XITnwffvih6jXRAez+oN/Gbz137NgRf/75J6pXr47Nmzfj559/tlw236bdioRlt+7Z7Xc6yN0urOhzInZYqJzIyEilT9m5DiQeWJeIKVOmYNWqVWjatKkm8MMKogWcG6KPPuvW9q5oEqaoaDvQ/cjOzhb+PjdEn0iIWa0zK/pI/Hi9Xo0QMnvethGtWrXCqFGjsHDhQss7MdHR0Yq1TyR2nYjSQFn6du/erUn5U7duXQDSpy/fQzeSGtasWbPw66+/Wi7nqaee0jyXk5ODzz77DN9++63fExGMMBIMdidEdrA6fPiw8veVK1d0t7nmz5+v+EMRN998MwYNGoSffvoJ77zzjqY+dH0jIyP9Hq0jQiT67Pp4BWKb3Agnoo8VEm5MItT+5s2bp0kpwScSNwNNKLzoa9SokVL3W2+9Vcn6b4WiRYu6FujEwoo+Nl+b2XNH9WDvFW1N8z6zdilSpIjSbu20URrXbrjhBkXgPf/880ofpzZqp42xCwmatN3Y3iWobTmNFOetul999ZUjP1H2VKVA+bby9duyZYtq69MMeqKPt+w7sXIToaGhePvttx0voABgxIgRqsdOLH1uZhlg+0qNGjUwaNAg5bXnn38ev/32GwBp6cv30I2khvX000/bWvmwnZQGwIiICMTGxuoeAWYWdmAZM2aM5e0yEazoYwdvu+bwSpUqYejQobqizy5udtpmzZqpEiCzBEL08UfH2cUNAfHUU0/hxx9/RJs2bTSvsZF8ZiEhwm6Tvfnmm3jhhRds15EICgrC2rVr0bt3b9v5uUSwkyB7ZqZTnyZ2En366acxf/58tGzZ0lGZbNlkfXZi6fN6vdi7d68mwIj6lx0RxI4b9Hk6Y9gNiydZfJ2OAbzlxU7iZBa6D+XLl79mou/uu++2XG+2b1Ib9Xq9qpySy5YtC2j6JTsMHz5c9dhJ/3TzZBxy11mzZo3q+a+//hpTpkxR2roUffkcWgm76ddAJ0q45U/ADiyDBw+27Bgvwun2kx75WfR5PB5VAmTWt8Wp6Hv//fexevVq1XNs3Z38Dn9ncpohKCgITz75pNCiM3DgQMvlVatWDWfPnkWbNm2wefNmLFu2DGPHjnVtKxbITavw119/uVYea+mbOXOm8rfTvs+KvqCgILRp08a1UwYiIyNRqlQpAM4sfV6vFyEhIZogGZpQnVj6oqOjlcXErbfeCuCqdc2N9CVuW/qc+ghGRETg77//xvjx44V1C5RPn1XYBPt0H7xeLx588EEAuTs3do+i4wnEoplwEsgTHR2tOXjALrzxhkQ4/U9jnxPXARZ3w2skCoHIY0VluhV1GIiVGHuqxTvvvIOhQ4e6Ui41/CeeeAKA/eTRBHt/li9frsrS7hR2Feh00BIdB+dke5eIiIhA0aJFkZyc7JqvCMuJEydsf5YGYz0f0PyG3ikzTkVfeHg42rVrJ7SiOiUkJESZsO20UX9jkRvbuxs3bkSVKlXQrVs3xf+O2qqT8ZU+m98sfQCU5NOifm3n3F0e+u3ffvutKzs7rPi/7777XKkjixt+gSzPPvssZsyYAcB+tgbCbuAfT/369VWPW7dujd9++w0tWrQAkHttt23bZikxtRHS0hcgKCLKzbD1Bg0aYPr06bazyPO41YhYaJAPCgrCkCFDXCuXRF+jRo0wb948x07YLI0bN9bkcrJDz5498e6776omg/zm0wcACQkJyuHybO42NxEdc3e90rlzZ2UxwuK073s8Hvz000+O3ThYyLoHXG07dtqox+PBnDlzVJZNFje2d0NCQhAcHKwSlm4sUMhC51T08X5mTi19LIHa3iWRFhUV5UpwGSv6AoGoXzmhXbt2AHKDedye/+xaYvlr5/F48Oijj6rKq1Wrlmu7aFL0BQiyHLGDrFM8Hg+effZZ1yx048ePd6UcEW5bOqnBuyn23Oarr77CkCFDVBNTILa7WTFhZ6CJjY3VbMe5Rdu2bQN60Hl+xOPxCFf9bqescIO9e/cqCZCpHdldmLRv3143kIz6v522QNG7onFu2LBhjgXG7bffDsB+0mzixRdfVD0OtOhzo1/RNXXLIhdI0Xfu3Dk0atTI1TLpGr722muuj1N2y7vW46Xc3g0QFLkkSlqZXxD5SZUsWRIDBgxwXLabYhe46sSan0UfwQqAQHRodjJknafzA3Pnzs3rKuQJ/s5Jzi+wKVZo4g+k35ST7V3RNX355Zfx8ssv26rL3r17AeTucKSkpDj+3exvGzNmTEAiOt2md+/eOHfuHB577DFXyguk6AvEWO/29jNLfuzvIgpGLQsg3bt3R9OmTZWoMyesWLHC9TN9WdhEoP/995/j8hYsWKDk3ZszZ47m0Hg70HZ5oCxUbvLiiy+ievXqqFGjRkDKZycro6PpJNcO0SSdHy19LLSQcjNIhsfJ9q7bwofdznNL6O7cuRPFixd3zc+aCNR2aWRkJMaNG+daedTGAyFSAxUU6CZLlixRTpuRoq+Q4/F4XMlTBECYTdwt0tLSXN+Kbd26tfJ3+/bt0b59e8dlkh9OQbD0BQUFKZFsgSA4OBgzZ85E586dXXHGljinIIo+J+fYmsVtS19+g7aK3SZQ27tuQ4vxQPjwBuL3Uj3tHJQg4qGHHlL+LgjtFZA+fYWesLCwAtFY2TNDJbnH+/l8PldP+pDYp6Bs77KQpS+Qoo9dAJqFDeQorIjaE39SQ37g2LFjAIA77rgjj2tijrvvvhv79+/Hk08+6VqZS5cuBVBw2mvBqKWk0EOWvoKwvSspfNAkXalSJRw5cgRA/rf0BVr0XbhwwdYirSBZ+gIFb+U6fPiw4zRVgYByVLo5Lg8fPhzz5s1zrTwet6x8BJ3y40T0jRo16poJZyn6JAWCQG3vBtLKISk8UDti/ZAKiugLlE+f3SMijaJ3CyNVqlTJl4IPuCr6+CPY7FKtWjWMGDFCc2RafobEnpP2+vbbb7tVHb9cF6Lv6NGjqFu3LmrWrAkgN3jArTMqJfmDQGzvbty40fUoY0nhhCK2KUIUyP/bPST68pu4IktfIBLcFySys7Ph8XjypS/fm2++iStXrmD9+vUA3BF9SUlJ+b7PiKDFXUGpe8GopQkaN26Mn376yfA96enpSE9PVx4HMiJW4i5k6XPTKlG3bl3XypIUbtgjnYKDg5GdnV1gLH35bbIKZFqNgkR+Fr1jx44FANx5550A3BF9BdVf260TXq4V+bdVWWTNmjWIi4vDkCFDdAeNsWPHIjY2Vvnn9BgWybWjb9++APJnBJtEEhcXh5deegmrVq3C448/DiD/b+/SJJXfRN+8efNsndssufbQ9q50k0FATjYKBB7fdbCsSk9PR1ZWFooUKYIePXrg0UcfRdu2bYXv4y195cqVQ2JiogwQkEgkrpCamop//vkH9957b15XxZCLFy/im2++wRtvvCEXUxJb1KlTB1u3bi301tlJkybhkUceKRDHTxYo0XfmzBlhzreFCxcqTsO///471q1bh1GjRvktLykpCbGxsVL0SSQSiURikZMnT2Lt2rV46qmn8roqEpPkL7u+H0qWLInVq1drnk9OTlb+XrlyJW677bZrWS2JRCKRSAodZcuWlYKvgHFd+PStXr0aderUQVxcHE6dOoVOnTrldZUkEolEIpFI8hUFanvXbeT2rkQikUgkksLCdWHpk0gkEolEIpEYU6gtfT6fD8nJyYiOjpbRaxKJRCKRSK5rCrXok0gkEolEIiksyO1diUQikUgkkkKAFH0SiUQikUgkhQAp+iQSiUQikUgKAVL0SSQSiUQikRQCpOiTSCQSiUQiKQRI0SeRSCQSiURSCJCiTyKRSCQSiaQQIEWfRCKRSCQSSSFAij6JRCKRSCSSQoAUfRKJRCKRSCSFACn6JBKJRCKRSAoBUvRJJBKJRCKRFAKk6JNIJBKJRCIpBBRq0efz+ZCUlASfz5fXVZFIJBKJRCIJKIVa9CUnJyM2NhbJycl5XRWJRCKRSCSSgFJgRN/Ro0dRokQJNGnSBE2aNMH58+eV17KystC1a1fExcXh5ZdfzsNaSiQSiUQikeRPCozoA4DGjRtj+fLlWL58OUqUKKE8/8svv6Bs2bJYtWoVUlJSsHbtWuHn09PTkZSUpPonkUgkEolEUhgoUKJvzZo1iIuLw5AhQ1R+eOvWrUPz5s0BAI888oiu6Bs7dixiY2OVf+XKlbsm9ZZIJBKJRCLJawqM6CtVqhQOHTqElStX4ty5c5g/f77yWkJCAmJiYgAAsbGxuHjxorCMwYMHIzExUfl34sSJa1J3iUQiJjU1FR6PB7NmzcrrqkgkEsl1T4ERfWFhYYiMjITH40G7du2wbds25bVixYopW7UJCQkoXry4bhkxMTGqfxKJJO+4cuUKAEjRJ5FIJNeAAiP62AjblStXonLlysrjBg0a4K+//gIA/Pnnn2jUqNE1r59EIrFOUFDuEJSZmZnHNZFIJJLrnwIj+lavXo06deogLi4Op06dQqdOndCrVy8AQKtWrXDixAnExcUhIiICDRs2zOPaSiQSM2RnZwPIjcCXSCQSSWDx+ApxZuKkpCTExsYiMTFRbvVKrhuOHTuG+++/H1u2bMGNN96Y19Ux5L///kPp0qXxwAMPYNmyZXldHYlE8v+MHj0a586dw2effZbXVTHk5MmTOH/+PGrXru24rOzsbLz00ksYOnQoypQp40Lt1MycORMpKSno0aOH62WbRYo+Kfok1xkffvghXn/9dcyZMwft27fP6+oYcvLkSZQrVw5xcXFYuXJlXldHIpH8Px6PBwDy/YlVERERSEtLc6WeBw8eRNWqVdGlSxfMmDHDhdqpyQ/XtMBs70okEnOEhIQAKBhbpnJ7VyKROCEtLc21smgcojH0ekSKPonkOiNQou+5557DmDFjXC2zMIq+jIwMLF26NK+rIZFIOGg8Cg4OzuOaBA4p+iSS6wwasGgAc4sZM2Zg6NChrpZJYq8wib4JEyagadOm2LlzZ15X5brl0qVLqFWrFk6ePOm4rMzMTCQkJDivlCTfQ+OQFH0SyTXA5/Nh0qRJyMjIyOuqFGgKUhqUwmjpI3+eHTt25HFNrl/+/vtv7NixA99//73jsp577jkUK1bMhVpJ8js0HsntXYnkGrBq1Sr06NEDn3zySV5XpcCwc+dOfPvtt6rnSOxR4uP8TGEUfTfccAMASOuRiyQlJakc73NycgBcXQA54ZdffnFcxrXA5/Nh+vTpriz2EhMTXahRwYOunbT0SSTXAHLIZRNx2+XYsWOubW/OnDkTa9ascaUst6lTpw6effZZ1XOpqakAUCAspiT23N6Kzs/QfaH7JHHOoEGD8NxzzynbuST6KFrSCeHh4QDyfxTrihUr0LVrV3zxxReOy2ratKnyd3793T/99JNm7HNKeno6AGnpkxRgjh07hm7duuXLSfWnn37C/v37Nc87HWRSU1NRoUIFjB492lE5xDPPPIP77rvPlbLcRrSqL0iij9plft6KPn36NMaNG+daeXRf3FjcSHJJSUkBcNW67aalLyIiAkD+F+l0DdxoV5s3b1b+zq/jyJNPPqnZ5XAK/dZAWPryy3WUoi+P2bp1K06fPh2w8t944w1MnTrVFYdmt3nyySdx9913u14uDc4bNmxwvez8hsgKQRbT/CykiIKwvdujRw8MGjRIdd63E8iaEEjRl5GRgS+++EIRP/mJESNGoGjRoq6WyQsz6g9uiD7qY/ldpLtlkeP7Yn4Vu3Rf3IT6ptuib9KkSQgLC3O1TLtI0ZeHpKSkoE6dOnj00UcD9h3UiL1er+tl79ixAx9//LGjMmh1CrizFQNcXVG5MeAHmqysLEeChwY+NlcVDdIFQfQVhOhdurZuZPwHrvbJQPpNTZw4EX379lXOJM9PjBw50vXfTqKPxpNAWPouX75s6/P79u1DmzZt8nUbZ3n//fdVjw8ePOiovE8++QT333+/ozJEREdHu15moLZ3582b52p5Tsj/s+J1DEWWBVKcUCMOxIr/wQcfxKuvvupaeW5lK6ffXBBEX5UqVRAaGorQ0FBbE6FoQipIoo8sffnR/SA9PR3Z2dmuLUYIWpS4mVSWh6xS+WVLScSBAwdcK0tP9Lnp02dX9A0aNAgLFizAuXPnHNfFCBo3nf7mQ4cOqR7Xq1fPUXmvvPIKVq1a5agMEXTP3UTP0ue0H+Una2n+nxWvY8j/5N577w3Yd1BjDcSk6saAKlpRORV9NJm6Ub9AC6ejR48CyLV0ifwb/UEDH7v1VBBFX360goSHh6NLly6ul0sTSyDvj5vbm4GiWrVq2Ldvnytl8Ysft37/hQsXcP78eVXZVqFxPj+2cRFuL3KInJycgKYpcsOwQWMnuzM2ZcoUhIWFOdrel6JPAuCqOKHG+sknn7huBqYJJhADDnUMJ4KSFX1uWSPdFH3XMu2JnetIK1K6z0D+8en777///Ar4/Cb6MjIy0KlTJ5w6dQoAMGvWLNcnQbf75LBhw/Djjz+qnnPL6uMmiYmJeOyxx1TP0aLHKTQWJSYmIicnR2lXdkXfsWPH0Lp1a5QrVw7//vsvAOeij3VlYdmxY4crY19+vOfs72rTpg1q1aqlsSTahR9b3OhPvKUYuJqyR4q+a8yWLVsQFxeHxo0b46mnnlJNaMuXL0e5cuXQpEkTPPTQQ3lYS2vQ5EwD1CuvvIJ27dq5+h00wQTC0kcD7e+//275s6IkmG6JFPrNCxcuhMfjcWSaZ7fgMjMzsW/fPng8noCcpmDnHtEAzw54+cHSd+7cOZQuXRoTJ040fF9+8+nbtWsXZs2ahXfeeSdg3+G2pW/06NHo0KGD6rn8aOn75ZdfsGjRItVzbt13+p1du3bFwIEDlWtrd9dg5MiR+OWXX1STtV3RR2MIW1ZGRgY8Hg/Gjx+PWrVq4dNPP7VVtltkZmaic+fOOHHihKvlsrsXJJ7c2tbn760b/YnuETsWUxt1sgMlRZ8NypQpgz///BMrVqxA5cqV8fPPP6te79ChA5YvX254pmV6ejqSkpJU/8yyf/9+XLx40W71hfCiLxA4sSpcunRJJXqSk5Nx6dIl5XFoaCgAoHXr1rbrxfpOOB2oCd5XyskKnR20Tp8+jXXr1gGA8r+bOGkH7IAXaNG3d+9ev++hvuIvgjoQlr6VK1faXpWLAmNYy8natWudVQ5XXS6c3p+UlBT0799f+JqbPm1uIXLlcOu+s79z9uzZjq2p//33n+Y5u22KxjPW0kfti9JKuWH98mfp8/l8iI+PF762b98+fP/99xg5cqSrbUZ0z0XX1g3ctPSJRJ8T40EgRd/YsWNRvnx50+8vMKKvZMmSKFKkCIBcscE3prlz5yIuLs7wNIexY8ciNjZW+VeuXDnT31+9enXUrVvXXuV1EK0q3Ia+4+zZs5ajsIoXL44HH3xQeXzrrbeiePHiymPqBHYig+mzdB99Pp8iJtwWfXb9SNq0aYMmTZoojytUqBDQsxmdDCrsgBfo7V03o83dztMXHx+Pxo0bo3v37gBg2U+SJjzqN7ylrFGjRo634tza3v3+++/x2WefCV+jPpSfAmRokcjilujjf6dTYS1a4NvdiqZ7wU781IbI8CC6Nm4zfvx4lChRQrgIprmVFaZsxK3dMVk0Tuptc1slENu7dI9Yd5n8KvouX76MFi1aYMiQITh+/LjpzxUY0UccP34cS5YsQcuWLZXn7rnnHuzfvx9Lly7FH3/8gS1btgg/O3jwYCQmJir/rJqyjxw5gpycHCxYsADr16939Du2bNmiCFS3fBxEUGN74IEHULVqVctWL9aiRQ7NBEWb2hmwqFMlJSXB5/Phhx9+wJAhQyyXY1Q28cADD9gqZ+XKlZrnaAAIRMZ2uleHDx82/RkSKYG09O3fvx9HjhzRfKcRRlaHK1euKFYTN7ZOWEqUKAEgdwtp0aJFqF69OtauXYvFixdj8eLFhp+9ePEi2rZtC+DqxBQUFKQZ7CMjIx1dW35799NPP1VdX7Pw/W7Hjh3YuXMnevXqhd27d6u+Iz8QSEufnuizW75I2K9evdpWWQQrdui+UL2dir7evXvj8ccfB6DfP5csWQLAWLxcuXJF+XxUVJTy/NKlS9GjRw9s2rTJUr1E15/8Zf1x8eJFvP/++7pjQyC2d+kescnY6Tfw84oRGzduhMfjURYKvOg7dOiQI3/W5cuXo0ePHvjjjz8sf7ZAib6kpCR06dIFU6dOVXWSqKgoeL1eeL1etG7dGtu3bxd+PiwsDDExMap/Vtm2bRvatGmDhg0b2v4dAFSdZ/Xq1ZYmeivwgQhuJmm+7bbbAOSKbquwK/GPP/4Y//zzj/Ka25Y+u4isJH369AGQO4Ht27cPb7zxhivfBeQOOL/++isqV65sOrH0tfDpq169Om699VblsRnBa/TdZcuWRUxMDOLj4xWRBbh73JPP51MWLBcvXkTz5s3RvHlzw89MnjxZiSYlURocHKxpT2lpaTh27Jil+mRnZ+P1119HfHy8MnmsXLkSf/zxB15++WVlwrYCb2Hfu3cvfvnlF3z99ddKQFh+Stki2h4NlOgLRIS0lUmfhQQk244aN26seo9T0ffll1/6fQ+1BZEopOuXkpKi/M32x6SkJEyaNAkNGjSwVC/R9efzAOrx6quv4s0339Sds/jxolSpUqhYsaKl+vGIrJB0Paz0JXIzo4TuvOirUqWKrbomJCSgV69eeOCBBzB79mzLnwcKkOjLzs5G586dMWzYMFStWlX1Guubt2rVKlSuXDlg9ahfv74r5RQrVkz1+MyZM8rfO3bsQHBwsCs+hHwjtmIGJnbt2qV6TJ3t9ttvBwDccccdlstkB9BVq1apBn+n22eBFH1EcHAwnnnmGXzwwQeuRR2npqYq25FmRMXPP/+siBR2cA309q6ZCcooV2JCQgIArUXTzS0Qn88ndKA3gm03tFgKCgoS5k9k+6uIrKwsVbt48MEH8eGHH+Ktt95STR4tWrQAAI2v1bp16/Dwww8bfgef4T8pKUkzMeUXS98PP/wgTH/jxOfu7NmzAHLvFR9Y5ZbfpKhMAHj88cfx0ksvWfocWxfeL9bN7V09Sx9vXWShcefKlSvKYqJ3797K63bzvToR9dTv9BaZokWi02hw9h5PmjQJ3bp1U66bFdFH29oiAc2yb98+S3Pyp59+iq+//lr4mtl7U2BE348//oi1a9di9OjRaNKkCX744Qf06tVLea1evXq49957UaZMmYBk/ybcWpnygxHbEWfNmoWcnBxdi6UV+Iaq58hrxB133IFly5Ypj6tVqwbg6rWwM7DSgA3kWiz4VaVdjh07ZjtwwwohISFKne1YANatW6dZnKSmplpyon7iiSeUv+lezJ07V9kqtGuZSElJUSLtRJiZoIysCsSFCxdUj52mx2G/6+zZs4iMjARg/kQBkR9PUFCQKniJ8Cf6QkND0aZNG+UxuQqkpaUJo915Ydq/f3/89ddfhtZP3tInEn1uWvrOnj1ru039/fffwuftjqelS5dGyZIlsXfvXjz99NOYM2eO8tp///3neHtXBHstFy5ciAkTJpj6HI2PRuOkU9HHJip+8803hQJAT7j99ddfSjAeWfrq16+PVq1aaT5rFTfcIKgPdO3aVbVDFggrNtteevTogalTp9ry6SPR56/93XbbbZaCMIzmRrP3qMCIvo4dO+LChQtYvnw5li9fjg4dOuCrr74CAHTv3h0bN27E2rVr8cEHH+RZHdPT0037PLC+E4C6cdDzgThFQzSBieAnITYVzsGDB+HxeEz5iOjBJmX1er2qMszWUUSFChWULVgWt6/ljBkzFHFpx7L40UcfGVq6rG510uDKTn52rLoA8PLLL6N169aKRY6Ht/yKoAEoIyND13WBz9nmplg/e/ascl+GDh1q6jPsoEnXMygoSHgdzEQgioSznvjRCwzSawc5OTma9E6i9ETdunWzlfQbANasWaOatEuWLImnnnrKVll6OBVlO3fuFI65NDm+++67rln+7YoMuob0W0Xb3HYDwxISErBz505lgUOIFjp6ifonT56s/J2SkoL09HSNFdnuNXRyf9mAJ5/Ph+nTp6Nr167K627tDKSkpKBp06Y4fvy4sL50vawIX7JOuh1IZST6zN6jAiP6CgK9e/dGvXr1TDX0lJQUVUdlRRVtibnp40SYFVSvvPKK3/dQIMzSpUstTyysxdHr9SI9PR1169ZF+/btbYm+jIwMfPTRR7qvG1mR/vvvPwwePNjS9f7ll1+UfFN2VsFsFDTx0Ucf2R4kqM1RFB4AW8EBwFVRp+dekJ2d7XfApQnmu+++Q+XKlU1dWyeijxaAABTfPX++Q6mpqWjTpg1Onz4NQD1osqt70f31Z+ljYRccepGL/KTtL/r24sWLGhGil5NyypQpputK7NmzB/fddx+8Xq9K6NnJyUl1E+FU9KWkpAjbFnvk2caNG02Xt3r1at1TQuyIvs2bNys+afPnz8eZM2dQtmxZzfvs9vsWLVrgzjvvVPV7QJxRQU/0sYm99USf25Y+M7+XTWlG79+zZw8AtfuGU7Zt24alS5fif//7n7A92rH0kehzO/+o0VGd152lLy8xKwYoh5cZk/aVK1c0Az1Bos+fdergwYOqbVKCThEQ1WPhwoWm8k1ZOR7p2LFjqF69uun3A2oR5vV6lXOIixUrZkv0TZs2Da+99pru60YrpD59+uC9994TXkszmB18/ve//ylCTCT6Tp8+jenTp9uqQ2JiIjZv3qxs84SEhCAjI8OWhZOECb/9yuIvIIgfgBYvXoxOnToZfsbu9u7Zs2fx4osvKo8rVKhg6nPr16/HggULlG06ts40wOsNpFZyjbGThZ744SdZQu/+icRjVlaWcGKymqD52LFjGDhwoPKYtR67neyZJkWjPtSvXz+NDzQRHx/vV/TRiRpmiIuLUwLUeOjaWsm2wKb5WrRoEZo1ayYci8zMGcePH0eZMmVUWRQoAI4XfaL7RPU3GhNSUlKQlpam5KskrIq+Nm3aYPr06Rg1apTwdTO/l7X08d+fmZlpOqrXHzRmxsfHC+tFbdRKPlqy3C5ZssTVvIdGC+OxY8eaKkOKPhOYXYXRJGlG3Ys6FmFW9FWtWlUT1AIA33zzDQCxNWLTpk3o1q2b3/oFOm8U23iPHz+OlJQUbNq0CUWKFLFlttcTdSSu6PtmzZqFDz/8UPUemiDsWlbNiL6srCwMHDgQHTp0QMOGDfHee+8J30cDs9W6PP/886hbt67SBp3kv6MJ5LvvvlM9zx68zm/N8vCDdIcOHTBr1izD32XX0scLnZtvvtnU56iOZBVhy+HTOb399tuqx1baqChAhEcvhYNo7HnwwQeFfkDZ2dlC0Wd10mnevLnGoheoI76ysrIwefJkRERE6C5GP//8c11Xg9dff134PLuA4yPb9cbnn376SflbdGrE8ePHcfDgQVSpUkV5zmo/1TuNYuTIkX6jOefOnYvTp09j+fLlynM0V/CiT/QbaYw0ms+uXLkitPRZXZAtWLAAXbt2VVyAeDIyMnD27Fl4PB7dhOesXybbrrOysgzHXKsWQOrLly5dEl43Mwsd+i0TJ05E//79FdHHHyLhFCPxbfZUFyn6TEDpM+Li4lTPp6am4osvvlA6Pg1MZibarKws3agks6IPEIsdWrnoWWP8ObYfOnTI0MrjhPHjx2PixImqCZ7tVGFhYdi9e7flyUXvWkVHRwO42lk6deqkmSjot9rdwjDzOWobV65cMczxSIOFXf8hMv8/8sgjAOxtL5BQ5hcN7CLFXxvi60+LCKOIVP6ILrPwExLl6vMH3Tea4NhrRX2YrPF8mVa249j2YZSYlhJKs/DtOisrS9cvcPHixZg6darmeat9SRTsRdcjLS3N1bRPe/bswf/+9z8A9pP2ioQX69rQvXt3ZeejSJEiePrpp4XlPPnkk8rfeovIt956S/VYz1/V5/Ph888/1zxv1K/NRp6yv5furRnRR0LYaF7JyMgQGiSc+tuy15a+h3aTFi5cKPwM1ZMXfenp6YaLLqvBimy2A9F1MzMW05jep08ffPbZZ8rc7nY+V6O5RrR7JEKKPhNQWgX+oo4dOxZ9+/ZVkkFbOUc0Oztb13mXOr9dyxOJvlWrVglf97dyqVKlipJfyE1WrlyJAQMGoE+fPqqJml1V2jndA9Bf3fGiTwSfh+nSpUu6lgUr381CW9bsINCsWTPN++je2PVX+eOPP1CkSBHFmhsVFYX//vsPOTk5iI+PV2176UHXg59IrIgH/nrT7zZKkDx+/Hhb29H8hBQbG2vqc1THxMRE5OTkCL+b2ilvhbEipkVtr1atWprn2CMkqe/zdTKa7NgIexYrW7I+n0/oy8m2x759+6peo/OojXxI9fLITZ06VUlfsmjRIsyfP990XQmzkzyJnrlz5yrPzZgxw1IQBd9/9MaJTZs2oV+/fqbLJYzGfOp/7Hv0LH1Ghgd/CxaRpY+1wtrpo7yIpLOHAf3fTM/zoi8tLc3Q8mjF3xa42qeysrKE/drMYkSvX7q9Y2Y0j5UuXdpUGVL0mYAaPL/9QOcm8g2F73C7du3SZCHPzs7WXQXQat1uxCkNAHoJfgNxhJgZyAkXUK+k2U6v59vkj+HDhwufp6zyfGdht3LoetB7ihcvjho1apj+bjOWPhJ97ATMr34Be5FiPNHR0aq2derUKZQqVQolSpQwtfVJE/y0adMwadIk5Xkr4oFfHeu19fLly6t88OxYOPkJQE+c8nWg73r//fcxdOhQw8mQT69j19JHzJ0711TwE/89dqxhVsQ6Wd14WNHH7wKQ5VF0go0VunXrpkrW7TYiP8yhQ4ciJyfH9CKL3VoF9NuB04AsEaL7qLcrZFROdnY2kpKSMHr0aOEcs2HDBs04zC6s7IxNfHmZmZl+s1SwwUy86OP7waJFi5TjNvn7fPDgQcVnXAQJtk2bNmHFihWa181sbfOijxbdbs61J06cMPR3N7sFL0WfBeLi4nDDDTdonuc7I9/h7rjjDlSqVEl5nJSUhPHjx6tEkAg7/ljLli1TthzOnTsnFFFmJ2+ykrkFm0uK3eJkB0i3Q9xJ9PGDOiv6SAywgQ9WHPXNTBj0e4sWLao8R8EvjRo1Up6jtmPG0qhnFfV4PCqB4/V6TVn4CPb39OjRQ1UuwW935uTkwOPxYNasWQDMTwxz5sxROdr7a/O33347vvjiC9VzvKVP77fygVNsHb/88ktVFCOL1+vVnNPtVPQVL15c6I/Lb5tTe0xOTobP59MVfez4wmNFrOsd68RONnwdyJqhd+8CkXrKDiILED3HHzFpFr4dfPfddzhw4ADWrFljqzwzFmTR9i4vOqicv//+W+NXl5OTg/fffx/Dhg1THbPJwlvmWINHp06dLN9TkaXP3xGMepa+IUOGaK5vixYtlP7Ej50NGjRA586ddetG452eaEpMTMSdd95pWFcrPr7kemOVW265RTeIKDo62vQWvBR9FggJCRGuBGbPnq2KdhUJBmq0GzZsML39JLJ6/PXXX/B4PLqD1EMPPaQ4xv7777+6UW9m0Isutgs7ULBbMuwkYsfSYyQwSGjy72E7L2vps+PLaEbg0JY9OwGTOZ5NskyC3Yx/T9WqVVGlShWVmAZyJ192W0G0xZCTk6PrVK73e9i68xM81XvmzJkAtPdRTyTRomTAgAHCz/Hs3r0bffv2hc/nw9dffy3c6snKyhLm6+TbM/tdRiLb5/NpPutU9OlZtOk6EDk5OUhOTkZMTAy++OKLgFv6KH0ND7tVyVsvqH3pLX6c5N10et4tC7UTtv4kPPwtih588EHh87z46dKlCxo0aKAbYOKP7777DnXq1DH9frq3fLuoW7cutm/fjgcffFDjRsK2XT2xYuTT9/PPPxumDhEhSiROQtKfGxMfvTtjxgxVtD4RFhYGr9er8cf01/78CTafz6cs1vVEuV7bF/VXtyPgASAmJkZa+tyCGmR0dDT69esn3Kb6+OOPcffddyuP9c7lTU1NtXR2oWgCJGuEaGuIf/+pU6eEk4tZC6LIND1+/HhTnxWh5xxNHePRRx+1HHiwc+dO3RQLgDnRR/d03LhxtpzUzVj6aGBhB8uwsDDk5OQIU82IDiV/9dVXVQuGzMxMtGrVSiPsMzIyVO30+eef15T18ccfo1q1asIFit7vYQerhIQEVfJnEqm33HILAO311ruvNAE1adJE+U1m+Oeff9CrVy+MGTNGs8J9+eWXhSt7fiIzK9xuuukmAFBZRcy208uXLwuFlJ6VNiIiAr1791auJ23FAbk+f3oDu1EaJiuiz8xpOPy4QL+lf//+wvc7EX0jR47UPKdnnRLtwojqwS6C6Nr4s/SVKVNG6IMrakNWBRFLv379sHXrVk1ibLauoudE4kLPLzsnJ0eZF/QWeNTmKWKfb19WhQu/aLrnnnuU86atWvpYoqOjVe4hMTExSE5OVr3fn6jkj8QjyJcfuHpsql499K4j3xYaNGgQkPy7sbGxSElJMWWBlaLPgF9++UUxjX/22WcoWrSobmM3Y97Vi/TSw2gCZCedRx99FIcOHRIKPK/XqwSaEGa33kQClzove8SUWfyJvi+//FL1m8004DFjxhjm4fIn+o4fP46tW7cCyE0zQJYqK5i5niSk2GsQFhbm95xMlo8//lj1ebLo8U7cvOgT+XbSEX/8oCTKiUV4PB5s27ZNEVTPPPOM8hrdQ3arnEXPkkICwt8WIQ/dv/Pnz2uEUHh4uLAvHDlyBLfddpvSV/2JPqoT+UGydTP6LNtu77zzTmF+Lz1fnzlz5uDLL79UginYsjwej66lz0i0DB8+XEnj5A8qv1y5cqrUTuzEygtWf87q7Fbc33//7ffUIvY3i8bbe++9V/i5nj176p5LClxNNk5tdNeuXUo70hOSRFpamlCoi9qBk+1sWpjcd999eOedd4TvEQVyiO6/3sIiOztb6R96C7xSpUoBuBpcxIs+swumyMhIjB8/XrnmonyuTkTf8ePHVQFE0dHRGDJkCGJiYkyJqy+//FLXkMHuoNBie9q0acJrZnZOjY2NtdU+/P0WqquZ8dM10ccLi+uB1q1bK9n9qTM6ccy0eiyWqKGLMvX//vvvqmSqLF6vV2WFBMxHhop+K4k+O/5+etYImmjCwsJUYjY7OxtZWVn48ssvdSc7vc5AnUBP9BF8vjk7ecj46/nrr79qjiqj97A+GUZBK2YGVV70USLYjIwMvxOxKHJu/vz5CA0N1bRTWuUGBQWhVq1ayvaTaJuID4rRo3Xr1njnnXcUXxmqryji/Pvvv9dYy6hvpKWlqSx9ZCHVu7b79u1T/Ob8WesoYlc0oBrdH7ZcvQUJXf8ffvjBsA45OTmqe2QmsTrBWjb5nIsivvzyS8UaVq5cOVUfZ/3h+AWuv4h7Ojpr8+bNaNKkCe655x7D97M+m1b6Y1hYmMoHlYdcN6it3XHHHcprekmEiQEDBgjHzezsbPh8Pnz22WeunBDBtlu9aGhqD5cuXVJ+08WLF1G/fn1VXji9PsCKPj0/MGr7UVFRCA8P17zPrOjLyclBUFCQMi4UK1YM9913n+o9SUlJShAGCzvX6dUzJiZG1Uaov6Wnp5uq47fffqv7Gtt/aHu3X79+whyr/sY7cme6++67DUXfE088IRy7/Yk5+owZ9yjXRB/rl3Q9Qp0kJibGdhlmVDhrBhfdQGowfIOmzOw8ogHZ7KpEJPqoI9gRff4sfV6vVzOxfvnll+jdu7dukk+9DkQBHF6vFx6PB+np6aqtTBpQeEuXmYH7xhtvVD3mr2erVq1UEwogtgSzgzJvVTWzfUiij9oMDUw+n89vfijRZEopP/i2df/996s+Q6+z7YN+H1ke2Gsi8itt27at6kxcGrRE27KdO3fWRDqTdS81NVVl6aMtPvba6kXJ+uuPtLqnsljxZTShWAnAeuqppwx9uLKzs1Vt3EoqITYCXW+Hgm1n7LF1fDDQyZMn8fjjj+OVV17BlStX8NJLLymuJmYXwmbTMbGJsdl6+7N20Hs7dOggzJFHlr7g4GBdf1Y2CTfl8xs5ciQaNGigSqlD5OTkYNWqVejfvz8+/vhjzesi1woe1orKCg3+9/J9tnbt2qrH9erVUwlqvTGA3d4VLSKioqJU5YSGhmreZ9ZaRanJqI2EhIRotuGnTJkiTGHEWvoOHz6sEUNTpkzRtGs2OIrfWRO1H5EbDcFa+th0bSKrqr859YYbbsCmTZswatQozbUjlxgg119SNPb7Kz9gou+pp54S/nvyySd1z+m8XqDOeOONN/o901MPUUfhRSTbsM1a+gB9KyKV16VLF+W5U6dOwePx+HX8NBIONCE68ReiSE/W0semxsjOztZ1LCf0JgISpV6vF5GRkbhy5YoqR5zeCQMkAul6iUQ+f8yXnlBMT0+Hx+PBokWLhO9hJ0F+QszKykJ2djbGjx+vWz5v6SOhC+jfOz7XJHv99E6IobIaN26s1A3ItcrR1giJvmnTpgFQt11RXcxuEZKA4icdars+n09lBaDJjP3OqlWrKsKVxZ+wJrFIg3+TJk0wbNgwdOjQQel/J06cwLFjxyyVa4WcnBxVlKMZf7EyZcoAUCe7Fgkzaj81atSAx+NRXUePx6O6J9u2bcNdd92l9KUJEyagQ4cOSh31EN0bwFi8su4KbP/0JzRIAMyePRt9+vTRvE7XLigoCG+++aawDPZ58hU2GuOys7OV/inqp/6CMjp27KhalOj1QbYe1Gf5dtegQQNVuzc695a+RyT6nnnmGdVvFok+s0EDvKUvJCREN5CRTgPhycrKwoEDBzRpk0SLCDbBOb+VLLoeRhGvbDtk/cZFAVVGomzcuHEAcv0YQ0JCNO2Yd88R4c8YQW3fddG3ZMkSPPfcc+jbt6/mn9uRniIGDhyIuLg4dO7cWXMsS9euXREXF4eXX345IN/NdkajwAEjRNYB3omUfCkA4xto1lpHHWPGjBma1/ylJRE5uJIIq1atGhYtWqTyoVm2bJnq4HseXvQ9/fTTqFWrlsrS98orr2DQoEEAcu8rdRC936sn+ujaeb1e3HzzzTh79qxwMtYTfTThffbZZ5pjgniBolc3WhFOnjxZ2GnZ7+aPhsvOzsa6deswYMAAzWs//vgjRo4cqRF9rEVNJLTi4uIUASOayEQTTlxcHKZNm4bFixcrLgRsO548eTKAq6KPFn/sNREN8mZFH5UbGhqqGixp0gkKClIGbqPzn0XiwZ9F7pZbbsHAgQOV7cbg4GCMHDkSMTExSlu65ZZbNIuAQIk+wFyQwJQpU3Dq1CncfPPNSjtYunSpJu0MXVvq52zZvKUPyN0OjYyMtLTVx/pysvfcKIMBa2Fh7xs/Hn7yySeqx7zV59Zbb1U9pt/n8XhUqZNY2AmYRKo/0Ue/X2RNpT6lNz+OGjVKdV1YS5XVs2VvuOEG1T1jrxcbZDN8+HAMGTIEwFXRM3HiRMXVgofKZO8L7zKkB2/pCw0N1Z3XoqKiVEc9spa+AwcOaFIciUSfkcsM3y/5bA18KhV2POQTH/M+oEbzMb/gtJJT0ePxYNKkSbrl0yKF5hfXRV+TJk0QFRWFxo0bq/41adJEY2p2m3/++QdnzpzBqlWrUKNGDVWetV9++QVly5bFqlWrkJKSonuWX3p6OpKSklT/zMI2JrtZtkWDI9uYfD6fqiFnZmZizJgxypl6Pp9PKcOs/4hRyoPNmzfjt99+M1UOQR2vQYMGaNGihcoS9tBDDwlD6QnR9Q4JCUFKSooyMAQHBysdn93aEjV6n8+HefPmCb+L8sh5vV6ULFkSp06dwgsvvKD6LCAWfaGhocoAHhUVpYnG5q0maWlpSEhI0IgIukfh4eF+A33YupUuXRpZWVnKoMOf+9qhQweMGDECWVlZwu1dj8cjbGtRUVFKHUWJUUWib+jQoYiKikLTpk2Va8IOUsHBwYiPj9f4lLKDj6hcI9HXpEkTfPbZZwDUW//s97LC49KlS3jkkUd0o/B4MjIysHPnTo3TP1+nqKgofPDBB6rtFyD3N6elpekOxP5EHx+IYLRtSX6thJl8ciVKlFDGFbZsPjLdX1J5XqjExsYiKipKEfZkWTbKs6kn+oxghRfbPnkRx/dD/vG2bdtUW66sdUYU6cvnnqQ2KRJ99evXB6Aeo0Sij8pg+8Bbb72F9u3bY9CgQcpvouTB7G/QaxddunRBp06dVAYCIHcsZUUf2z6pPwG5CwDy0aT3VK5cGSNGjBB+L/0GdpfAaPHBft7n82m2d40WCTt27FDKZkXfyZMnNf3QjOhjjRB8++ajyn///XeMHz9ecTFh7xlvjePnXyPRx+sFs6KPfr/Rbg+51dH84rromzdvnrLFw6OX1NMt1q1bpwRVPPLIIyphZ/Qay9ixYxEbG6v841e+Rhj5X5nFaHuC/MTYhM1z587F0KFDFevlmDFjFIdsJyc2EB07dkTLli1NvZcOkW7evDmSkpJQrVo1AMbXwowJnAKA2OtLAwRtcep9dtmyZboDI+XJCgsLw4033qgRBHQv+AE9ISFB1dlFAp8f3FNTU1GsWDFNygoSJuHh4Th79qwqCTMPO9jXrl3bMIqWIEsfrcBZ64VoIImMjNSIPvZ9olWy6Pezn0lLSxNGpbN179WrF26++Wbcd999yokL/IDNPl6xYoVyLVlLH/u9ZOlLS0vDhQsX/J47ydYnPT0dbdq00STr5eukZ+EJDg7Grl27dLfijETf3r17NcelGYm+nJwc1T2jSHMjRClJrNbT4/HgpZdeUrZwgVzRxwpBmgjZSZwvU++4RR42GwC15woVKuD3339Xnv/vv//w7rvvKo+Dg4NVkcC86IuKilJZv2k88vl8wnvHn8lrJPooDyQr+vgF9LJly5Sxgv2+kSNHYs6cOXjvvfeUsqtUqQJAfQ7trFmz4PF4hEGSs2bN0ojg0NBQ1TWwklXA6/XqGjPoebNnWvPzHL+96y/A4q+//gKgdmVKSUlBkSJFVNdHJPr451gjBC/6RJb+V155RTlfmdU6vDWfv7YisUWinL+u/Pyh1w/p+ZCQEN17SRbzgIm+vCQhIUGxKsXGxqp8CI1eYxk8eDASExOVf6zDMI/RmZd0E/XM4YB4a1SvsScnJyv+GWwDYSNAT548ienTpyuP2cHPLY4ePSrcBgZytwSoEbJBHHqi7++//0ZkZKRKxGZnZ+s6NrOdlcpk/WVEjV5vtfnLL78oHYsSdvL+L3Qv+AF9+/bt8Hq9yoBD94NNJs1/ZvPmzQCgWWzQAHX27FkcO3YMr7zyivIaP3mzA0FkZKTqt+tdYxJ99Fmnok80iIomArYdp6enaxZ8SUlJKkt8v379cPr0aaxcuVK5rma2d4cOHapr6WMDOS5evOhX9LEr5fT0dGFwSXBwsMZKIcJf4AJFXYr8QStWrOj3qME33nhD+Zv36aPzY43g25Ie/kRfZGSksssA5P4etrykpCQkJCQYij5WtBlZ+titw8zMTDz00EOaPgtAmZCB3N/JCh+RpY29h+wiVOSTxvczekx9hd16JCsne2Yze8oQkCv0qE533XUXgNyxwsgiKIKsgP6O5AsJCVGJSzMCgM469nq9yv3Rs/TxAWx68PUMDg5W2nxwcLBf38wZM2agX79+Sq7KrKwspKamIiIiQuUjaXV7V0/0lSlTBs8++6zyfPXq1eHz+VC+fHnlOX68MGPpo/vM31v+Op48eVJzEg/7HV6vV2jp++677xTrJ0XIB1T0sYdWXwuKFSumbA8mJCSoBnmj11jCwsIQExOj+qcHO3gVK1ZME83E/s9CUUg1atTQ+Bfqib6oqChl1azX+R9++GFVoxU1ErtkZGQgPT0dL730Ep577jnhe/Si//QECQkh1kmZdSDm0bP00cBmxbLZsmVL5f00mPEnbfDRpiyixM3sdhD/GTqPk/9tdB7wypUrERwcjIcfflh5jZ+MWSFZpEgRlaUvKytL17wfGhqq1JcNrrnrrrtw++23q97Lij6CfSwSOaL2yP6OtLQ0ZVuImDNnjqbMoKAgeDweXdEnmgjGjBmja+kjK2pKSgpOnz6tJJPVg+2L6enpQjFE7Y5W6Hqiz5+lnyJD+e0ovc/y38MKIH5718yJHGx5bHAPj5HFhdoje11vvvlm1XVLS0tDsWLFVPeOreuBAwdUZ/kaTcjs9tnixYs11lARwcHBqmvVrl07zXuciD7e0sdG79LCl/Xp44mIiFA+27x5c5w8eVI3sMOoTdFEzgtq0XF4ISEh8Pl8iImJMTVmko82zY2icqluTix9NDb6fD6/ou/XX39VRV+zoo9tQ26JvlmzZqkMKoSRxZxvP6JrzecgJXgLLZDrNsUvnmjM37x5s9Cto3PnzoiIiIDP50OrVq0ABFj0derUye/pDG5mnm7QoIFi9v3zzz9VW2VGr9mFvQGzZs1SNSbWl4U/yJm1tnz66aeqa2AmzJ3t/Ox3nj592tQNbd++veqxKM0AT+XKlVGqVCnD1aaedYMfrOh9JIzoOv7zzz/Ytm2bppyJEycCEG+fk1kfEPswGiWcpZX1vffea7hFK9q6uXjxosbSJ/osoLbm6AUGJCcno0KFCqYspEBu++KFHgW38LABDmzbi4iI0BwO78/SJ6q/6Pez2x6i+2KUrZ9eM7uVOmbMGOX9ovQi+/btw4ULF/zmfqOVMJA7MIomDCqfjfIWYWTpW7NmjZKKhiz1zz77LAYMGKD4N/Hw4yRbNz6QIyUlxbQTPWAs+swGnOzevRvnz59H0aJFhWJZz9LH5yg0Gl/Ycs2eY0oWpCeffBKbN28Wimw3RR9bR3YO0BvXIyIilPbu8/mUqGoRRtvweqJv3759GDZsmGKR4s/bHj16tG6ZPF6vVxH4fGQ1PfaXVJsQWfpI9LHBeWZhRZ9RxgPRd7PoiT69dmlkme7Zs6cqzYwVS9+IESPw5Zdfat7PHsEYGhqqeuwvYwjVNaCib+HChRgxYgT69++vGbSys7Mxbdo021GuImrXro2SJUsiLi4Oe/bsQbt27dCrVy8AuXnRTpw4oUQn6h2DZgW2g5UtW1b1Gk2umZmZmqN5+Kg0Iydnf7ANKTMz02/6EkDrcGo06BMnTpzApUuXDDujWUsfvY8G7qVLl8Lj8SgTFT/p0WDAlk/vGTVqlBJhLOpU/LYiGyV15513wufzoXbt2rpnz7KwHdifOGPrylpCMjMz8eeff2reD1y1+tBnjURf0aJFkZ2drfrNenkYQ0NDlS0/8guiCYT/jsjISNV2FKAv+kiE+wtaYg8jJ4xEH018/OBUpUoVoX8pbT+FhoaqzrcmaAVsdusJyLW8in4X1Yn6jJ3t3SZNmmi2YJs3b66yePmDnWxElj5WwBKbN29WgunYevNRqqxDv0j0UQAIK0Jq1KihXF/R7gg7rvXv319pD/wpLEbChh23rIg+j8eDH3/8UdeCxrZ1En0ej0d4NJy/7V2Px6OczsJa+vTGzfDwcKWd+Tu2jN1K5KExRTR/1K5dW2hRio+PtxSo6PV6FUsef21oDKbk7zznz59XnRXO15O19GVlZSnjFPnh+4N2oiIiIhAVFaW0RZHl0SgFC41v8fHxGDZsmNLf7Yg+AKqE0lZEX0REhKJdWNgUS4A6obo/7XBNRN/DDz+MlStXYv78+Wjbti1SU1ORkZGBiRMnonLlyhgwYIDKCdgNPvzwQ6xatQozZ86E1+tVInNCQkIwffp0rFq1SuWD4gR2QOQDPkjYZWZm4sYbb1Rtb/GDIrsNm52dDY/HgwceeED3e/UGELMJX9ntDsBcDiDCKPeS3qDFN+jMzExkZ2crEaf8ioafMEWJb2mwnTp1qjLRm9mq+OOPP0wfR3TlyhX8888/yv1hB5AOHToYWvr4rVgiKytLE/ZPkJWAEuYaCYeQkBCNpc/o+tN5znweK34So2tdrVo1v5Y+Eulm2g+fTd9ogqPIOH4hBeTmATVCL4gM0B+4RfX/+OOPhe9nXQKMMLLWiZKW+xuw+c/oWfpycnKQlpam6eNAbj44EoPswpO3frHBRv58+kSIfCHZ3/f9999j586dALSLViPY3+TkxCAedlyhOuTk5ODSpUuarUD+N4sCOSh7AX2WX0SxREREoHXr1hgxYoThSSGAse/lsWPHcP78eVUyc6JVq1aqIAm7eL1eRVBREBwPv7NCPpeVK1dWTvAAtHMYuw2fmZmJsWPHYu3atfjzzz9N+abTvBQeHg6Px4Nz587h0qVLqFSpkua9Rm2H8uUNGjQIo0ePxu7duwHYF30sVrZ39TDqj/4WDVRXM/Oko0COWrVqYf369Thy5AgaNGiAihUrYvjw4ejRoweOHTsmPCy7oEA3YNSoURohR4M0DSKsLxf/XtZ5PycnB8HBwYb+KnoThJGCp0hawJzoe/XVV4Xl6J16Aeg3OtHAa9TwgoKCcP/99ytbD6yvB8FeA/LFM9OYIyIihBYfUae7fPmyapssJydHERXsIO/P0sf+fqOJje5DXFycpgwekejTKzs0NBRDhw7FhQsXNJOUnuhjj4I7e/YsJk2apPmOGTNmYPHixUL/E38Y/bb69etrnKTZ36KHaGJl3ThEnz19+rQqafmRI0cQFBSERx55RDigGwl9FlGboGsnEn3+Vt8//PADJk+ejJMnT+Ls2bO6oo8sYHpC/KWXXsKePXtUi1Q28IHHKG+lnugT5bcTjVk+n0/Vp/0JNDuWPn8TIdWD5/z581i3bp3GD5REAEHtgK37jz/+iDlz5qjcV/TG7PDwcISEhGD48OGGSZcJI3cVkStVxYoVERwcrLRHu6nEgKsnF50/fx6PP/648D28MP37778BaFNx+bP0hYWFKbtxZixTlBiazTGql2fxueeeUwVlAFfdLKZOnYr09HSlr1K9/UUtm1lcGFn69MT4yJEjVe3CqN37a+s07hhZOpWy/L7DgMTERCUR6MGDB5GQkIClS5diyJAhto7pyk/QgCjyn6EbQLnJWKFF5n+CvQ6UqNIIO2e/TpkyRfmbnxD4+gBA7969TZXLpiDQa3Si540E2pUrV7BixQplMhKJPjb7O032fCJpK1vl/AQ/aNAgTefw+XwqvzmzPn3sxGE0gNF9+eijj/DDDz9ocmyxBAcHIzs7WzUIiPKKUf2Cg4OFwUs02NSsWROzZ89WWX3oN7z44ovo0aOHJs9g6dKl0bRpU1vt0c5nAONJSzR5s5ZB0WdLlSqlum4VK1ZEp06d/J4m4G/yFPVh2joUjXv+rFylS5dGt27dUKZMGdx0002627v0HXqiz+PxaFxq7rzzTs1C8PLly3j33XdNTbg8oqTKor6YmZmpEpX+2gR7zXlrTYsWLWyfgsQGEvHwC0S6r23btkXVqlXRsmVLDBo0SJX2o2TJkmjfvr1K9OmdLiKyyBpBFnsRojOcSYS5Yekzy8qVK5W/+eA4QmTpY0Ufi5k2SP3VX9Q7kHtNpk+frhovWENMWlqa0hb79esHwL+lT3S6C096ejr69eunZATxeDx+LX3Dhg1TnZVsRvS98847wtejoqLg8XhMJW+3LfoGDx6M8uXLY9q0aRgzZgzOnz+PJ598Ek2bNjXt8Jmfof10vY7k8/mUxsD6QPAmZ3aQzM7OVm7ee++9p5xdyWLGB8/oM/xAI9o2MDs4sBZEPbHKDqYULWoUYchP3qLtXdFqZfbs2apzEq2cb8p3upiYGM135OTkqK4L1Uf0u2mLLCUlRZW/ycg8T/clPDzc7zYmWfri4+NRoUIF1KxZU/eaiu4lDWpBQUEICQnBqFGj0KFDB2E0Gg2oiYmJqmtqxS2Ax46YAIzFlmhA7Nu3r6nPsly4cAGrVq1SWTv16mHFp4/uj53D0nlY0ffVV18pn2ctfR999JHGoqEH//3vvfce3nrrLaxatUrzXoreN8pRyMPeByIjI8PSySTsOMK3H6/XK1wkmbH0kQARWdp4gU7lzZ07F/v27UNoaCjee+893b4QHByMrKwsRTzwWBVhRm342LFjCAoKUqW84kWfXUtfnTp1DBehLOzikl886R0Rylv6WMyMFWREsPv7WNEnGkf0yg0KCsLJkyeFZyqL6hgbG6u4CQUFBen69LGw87WRDyYFZNJJKqK6RkdHB1b0/fzzz/j0009x4MAB9OzZE5GRkZg2bRp69uyJBx54AAsWLLBbdL6AokrNdFw2LyDv80LbWFFRUcr2LpBrbeIPkaf3WYWtIzWiBx98UDfnnpnf9MMPP6i29vQmAXq+S5cuyjUzm60dEFv6HnroIeFn2ZWlFWHBd7qoqCjNgJWdnW0ooFgefvhh+Hw+VUoGwNz2rhloMjl//jxuvPFGREZG6l5TI59Dj8eDzMxMJSGy0eBz/vx5w7yVZqBgBbuJw43qJwqQYQWI2QmBXBi2bduG+vXrawKxgKuiS0/0iQRESkoKxo8fj+3bt2tes5rFgBV906dPx9ixYwFcnWSLFCmCV199FdOnT8f8+fNVln4R/ERLORR5i1q7du2UY52MLHM+n09zBBqPVdFndNxaaGio5v42bNhQ13+WrysgthLxfZL9XjPW6uDgYI3zPYtVi7dRG05MTER4eDimTJmiCD+3LH3+/A1Z2D7H/760tDT4fD6NxTI4OFjZjuV9rs1cI8r1amabVQQ7p7KWPsLoupcpU0azuOATNQO5bScsLEzlYmNG9PlLNcVjdL1iY2MDK/r27NmDZ599VnMjRo8ejY8//hgdOnTAhAkT7Baf54gObvf3XkA7kJB1Kjw83NT2LjXQ9957z3Rd2TrS99etWxddunRRvW/Xrl346aefTE2Q/pycCWrY0dHRyipQz2cQ0Jr+RZa+m266SWVlJNh6WxF97CT6v//9D1FRUZoVX3JysiZazwzse43EjpmtnooVK+Kjjz5SstafP38eJUqUwIULF5S8hzyie0npaozey//GunXrqvLrWaVUqVJKVB5dBz6dkT+c+CSZ/SwrzMuXL69yQCeoj4ocxQGxgE9JSVHSsvBYmVQBrTvCxo0bAVztI+z3t2nTRjfhuR6UO5PvQ+wxXnQv9RAF4rBkZmZasnAa9SPROcCvvfaaYZ5VomPHjmjbtq3mtA1Auwti1UKdkZFh+RhLI4zacHJysrLYoGAwqr+RT9/ChQsNI4MB/2Kqb9++6N69OwBji2xCQgKSkpI0SbWDg4NRtmxZREREaPqCnuWKZcWKFQCsi9rNmzdj+/btqt/Xpk0bzWLHSsAGXw8KykxPT0dYWJgqFRi5CxnNJ6J5zi6xsbGmIrZtiz6jH9K9e3fMnz/f1A3Nr7AZxP0xbNgw5W9+ICIn0vj4eJw9e9bvlsRXX32FJ554QjXhGOUN+/PPP1WdncSFaPKpWbMm2rVrZ6rzGEWTsbBnuNJWNuVMFGHG0geIrzv7nB1LX9WqVTFgwAChNfXs2bNC0edPALKvG/mKmbH0HTlyBK+++qqyvbt//35UqlRJdczZb7/9pgr35wf6HTt26KaNYd9L19uMg7kZWB8WmrTZo7XMYNYHauTIkarTEQDzou/DDz9U/mZzk7F4PB6sXLkSkydPFpYh6ht6/jj33nuv5a1yvUmI2pdVXzE9eFEWEhKCiIgIrFu3zm+KGX8noPz222+WLH0svOg7c+aMph+atfoULVoUc+fOFVp0jSx9eYFRG758+bLSV6l90DhmZOlr0qQJjh49qkpnxeNvPpgwYYISZMJed77NJyQkCNOK0ZyXkpKiWJIJUTQ4C3tNrIq+OnXqKOmDSIts374d69at0/0OM7D1WL58OXJychTRR3g8HnTq1Mmvld/j8WhOctGDP9+cZ/LkyZqjQEUE7Bi2Fi1aaJLDFiSsWPpYEUGij3IasZ3gww8/9DtY1alTB/PmzVO9j++w7Cq8bt26wu1do8bG/yZRsIfZiYo6dE5Ojm5EFQtv6dMTHaLrRL4iOTk5SkoYM1CnpgleJPoqV64s9Olj0bP8EKIIU5oc7Wzv7tu3DzVr1lR9tlKlSqo8lHy5d9xxh+59YAc3SlUjSnFgNtCHh9qCv/xXepi9RsOGDcOGDRtUz5n9rp49e6o+M3ToUEybNk3zvri4OF1XCz1Lnwg71ks90UereCf+liwiSx+QG1DgbzHgb1H4wgsv+HUXYK8723d40ZeUlKRZLFvd6qP8gyx8P/FnvQw0em3F4/Hg8uXLmtyZvKVPNFfxW8AirIgpthx+7EhISNAE3Pn7bkCdj46HXZjY3d4FrqaKArS+oE59L+Pj4zWplMz4mxJmAlQA+PW7rFevnqlsCwE9e9dK5vj8hhVLHwtZu6gB8NYfs42BfZ/R4fQ+n0/VaM1Ybvg6iAYbO6IvMjJSd1uIBlQzgRzA1evOrgTJcrB161a/fkwsdE1atGgBQDxhLVy4UGXpGzRoEOrWrava/tu6dStOnjyp+hxZIPSsWnQ9rFhn2ESzsbGxmhyG7P2z4gPK3mej9DxffPGF37ImTpyoOiqJPW2CJm2rfceJmDErrtj7EB4ejvDwcN2jB/UQTRJ6qRKsbh0B+rnG3BZ9/NhkZfIz0+7YwCsRzz33nJJehvomoBWjmZmZti19hOialSxZUvnb6/WqElfnBXptOCIiApmZmRpLH/0mOmJQ1NZorDC6XlauJXsfPv/8c5U/uz9Lnx56Ptw8TqKT2X7PLtBq165temzWC/A6dOiQaqcL8G8gYDEr+kSR83YIqOgryJBDpMgKZgTdmLS0NISGhmoGVrMdTLQyJdiUJkWKFFF1BmqYRg3JjL+e2e1d9pghQF/oU/Z1PUsf/zxNfGzia/bgeR7+nFkWiqii7+A7+aeffqrZZqhRowY2btyoulaxsbGao5To2tWvX1/43XYsfXSyguhzoaGhKmdos/eJPusWL774oiqVgc/nU9pCeno6QkJCLDuyXwvRx/YVNoVN6dKldU8c4BGJstatWwvfa0f0NW7cWGWZ4HFL9PFC1cgXl8dMu/vll1/8vofGucqVK8Pn8wlPWcjMzHRs6RPVl8b2++67D+np6bavq54bgFX02gob+c++j/5v166d5oi/5557TjUWu2Xp48dp9lSkRx99FFOnTtV8xt+9Miu6nFj6WGMIe1LMpk2bTBtizp07h/j4eGVR27FjR1V5tMu3bNkyU2dHE2a/n8pv27at6dNMhN9n+5PXOXQjjM5LFBEWFoaqVatixIgR8Hq9mm0fsw2X91kiWrdurTjIly9fXkkAStBAbuQrERYWhitXrii+gqLJ2ewAWLlyZdSoUUNZbeo5DVN6BD2fPh46iYN1TE1LS8OWLVuE9d2yZYtuHelaNm3aFIBW9JJlzc5Z0VQX0fVKSEhQtqStWPqCgoIUEVOkSBGNpY8VfXYtfYGAtfTZWZXrtTnWIuPvu63Air5jx46pcpAZYUXM2rkO0dHRhicLWfXp0xMTdMj8a6+9htdeew01a9Y0XaadLAMiFi5cqIqAFU2AgbL00SRqJuLRCDZJOJ0SZQe+f9JWHd1vGrfofhr152nTpqnGRKN26MSCdubMGdVjkdjxJ2rMzjVuWfpYrLSjokWL4oYbblBEHwXMUVYJMvg88MADloxFVi19c+fO1fXbNoMUfTrMmzcP33//va3JZP/+/WjRooWhud0ugwYNQqNGjTBv3jzFZ5Lt/JQz0J9/XZEiRZTfJprEzFoowsPDsXv3btxxxx0A9M9ApQHW7PYuceXKFeVYoL59++Kee+4RWmSM6lu2bFlVKgG+k4kiOM3y/PPPw+v1qqxzRGxsrOKTYtWKQO8XiT52+9eKJYltJ6y12A1YS98nn3ziquhjj3P0F1VqBTboKiQkxHRQS9u2bTFmzBhT77UbKKM3oUdHR1seQ/zV9a233lIFuJjBioXZKCr8pptuUm3t0pgUFBSkWAoDZenLzs7GSy+9pJvayizsPWZ9Rq3C/6bPP/8cd999t9IW9P43g1GbsXIt+XH6tddeM/1ZPexY6a3iVvATcNV9heZYEn1moslFVKhQQXengMWtAy+k6NOhYsWKivnWDAcPHtT4sIgUvF0TNU3u1PCfeOIJJV8Q2xmaN2+OIkWKmMphZST6rBxgz6LXgWmVwg8aVHcj0UfpAv755x9bdeJh70urVq0UB1mqgxVLTu3atZGenq67HU9b0lYHHZpIRNu77du3Vx5bqSvdm3r16ulaatggEavYyZvHIhJIJUqUwAsvvKA8pvQlTnjmmWcA2Nt6BXLbrN75pDx2B2p+gqN2YGdiee211wwj6u2MSV6vV1fQRkZGKj5Nd911l6q9+oPESZ06ddCyZUsAgbP0ZWZm4tNPP9VNcWQW/jrs3LlTdfyfHXbu3ImHH34YW7ZsUU7joGTa5F5gRXiLrJlk2bUipug6mklDRC4K/k7A4bn33nuF2/xOtnft9nURtNNCOwXkxyiqs1kowTmdny3CrRNXpOhzicqVK2smflFDs9Jwd+3apWTiNoomZp+rWLEirly5YugTyNdFJBzsHqWl9/tI9PE+IfQ9eqKvTJkyrh8vxA7SoohbO79dT0SR6LNq6aM6RkZGaix9dqFyjLbxjNIDiWAnN9aaYGVCItjrTltTvAXOjbZA99zstooIs/3Y7jYoL5rpFBe7ztzNmjXTnajtXFOPxyM8UQhQn2ttVfyL0o8ULVpUc72NTv3RK/fWW29VBWtYPSlFD74d3X777arzj+1g5KNM30c54szA+rERNCZZuf8lS5bE2rVrhWcB85DhwIroW7ZsGX799Vfh4tNJ3+fH9DZt2qBWrVq2yqLxg3aIDh06hPDwcMuJllmaN2+O5ORklU8kf2621fgCPQqE6NuyZQvi4uLQuHFjPPXUU5rOunz5cpQrVw5NmjQxHQl0LXC6vVuzZk08+OCDAK6KAH+izwoi0Xf//fcLnXHNwpbF+hXSyl9P3OlZmAYOHOi66GMHaVb03XHHHejQoQMGDx5suUw9UUeRiFZFEJ2hyp+56+RaVKxYEWPGjMFHH30kfH3lypWW60kDHe9I7mTVC1wNgMnJyVFtv7vRFoxOaTCL2YWBXUsfey1vu+025Xfb3UICrl67l156SSUq7F5To2vA70yYhRd9c+bMweLFi/HQQw/hjTfeUN5nxw/v0KFDqgCZxx9/3HIZItzKdWmWtm3bYu/evaYDjwCtZa5+/fq2M1Q0bNjQ1M6F6OQKPebNm4fDhw/jgQceQLFixTBz5kzNzo4TSx/LjTfeiHnz5mHbtm22Pr9o0SI888wzSt/++++/Ubp0aduGEoJfII4ePVr1mPVBdkKBEH1lypTBn3/+iRUrVqBy5cqqQ4qJDh06YPny5YplLD8gEn12zf58jiY3YLOHEytWrDA0MZstE4AiWEeMGKE4JYssawcPHsQPP/wgLC84OPiaiT6v14vZs2fbytelNwjSKtdfElKezz77DL/99htuvPFGJbM7oB74zAQ4sHg8HgwePFjj70nC0kqaAb4+rE8f4HwrnurEpyTi28KUKVOUgASzuGHpY9FLmhoREaE5FccsbJ9kj3dy4tdD96p8+fJYs2aN5nmrGAU+2RV9lAKELOTt27fHLbfcgpCQELz//vvK++z6aBUtWhSjR4/GyZMnNQsqu7jVjszi8XhQvXp1S5+h02JoMcWe8GFnfDVjvOjVqxe++eYbU+KaP5AgKipKs+3u1jxw+PBhRwKtRYsW+Pbbb5U+mZKSYmtnwwpGZ4Vbxd3ZNECwk1toaKjw5s+dOxcbNmxA+/btlUhSnvT0dFXiTzNHljhBJPr0cnD5w0qyaLOYGexHjhxpaVBjOxMNqlFRUYbbuJUrVzYs81qJPifwdSSrhF3RV7lyZeW6jBo1Cr1798asWbOUuickJLh2XexaIwG16HNjJd6gQQOsX79eqQt/f/jvsHoEGVumW5N1x44dhYEQVrcg9ahUqZJyr51MLnTtihQporIY2g0uMxJ9Bw4cAHD1RCKzJCQkAIDm1ASeVq1aWSqX8Hg8mm0zpzi18FxLtmzZgooVK6JZs2aKkHDLgsYTHh6u+GO7gVvjnRNrOQtbHzeF/wcffKDZKjaTdNksBcLSRxw/fhxLlixRHHyJe+65B/v378fSpUvxxx9/6KbvGDt2LGJjY5V/Tv0u/OGm8yj5ZLi1rw+ot3f79+8vjLIbNmyYytLkD3YAJP+jK1euqJI4W4XtXGykn13Y8iilitvQIECiz+kWUKlSpTBgwADlcWxsrOPV5ahRo1C8eHFF9NnJU8beb1Y8zJo1y1adli1bhi1btihl8ffHjQmW2qBb/dPtRQnPlClTlO9wEoUoOrvXCUaij8Sbk2hWIwqS0MpPVKhQAQkJCfjf//6njE3+jtSzixv3iE1674Y4davtA+pdNze3+AcOHIhnn33WtfJ48pXoO3PmDO677z7Nv4sXLyIpKQldunTB1KlTNVucUVFR8Hq98Hq9aN26NbZv3y4sf/DgwUhMTFT++TsmyCk0qbApNuwyZswY3H777bqrlOPHjwuPwDGC3d795JNPLEXZ6cF2dAomKVKkCEqWLIlmzZqpki2bhZ1U6ffff//92Lx5s7PKwj1LHw9tT1FuwPw4Sb399tu4cOGC4iPr1HWAFQF2ffoiIiJUSWUDcX/ctvSJRJ+/s2utEBsbq3yHk0nLibgXwYu+pUuXKulh6LusJHyWXBtiY2MRHBys7DrZcevwh52cpyJmz56tWLmcLq62b9+uHD/pBlZPwsov5Kvt3ZIlS2L16tWa57Ozs9GmTRsMGzYMVatW1byelJSkiIFVq1bhxRdfFJYfFhZ2Tf0vyP+mY8eOSEtLw+7duw2PvzKiX79+6Nevn+7rdqyWRtG7dmHLuu+++zBr1iy0bdsWISEhhmkjjGA7F13TW265BXXq1PF7eoEeX375JV588UVXV34sJKRmzJiR58c7+YNEkJN24PP5VMdnuZUX67HHHnOlHBb6vW75x7Lt85tvvsFTTz3l2hYSwSbrtgu5triZs4zlwQcfVPx46bvs+iA6SXKcF1SvXl1JKF9QmDFjBn7//fd8LVjCwsJw88034/Dhw44tfXfeeadLtcqFHT+utV+nE/KV6NPjxx9/xNq1a5GcnIzRo0ejd+/e6NChA3r16oWvvvoKP/74I77++muEhISgUaNGuP/++/O6ygCuWqViYmIUn65q1arlZZVUBFr0hYaG4umnn3ZcJjup0oRFz1GCaqtQG3F7cibI0hcWFuYolL8gwfrLurF1Gh8fH5D744bIZWEnIzd9mFjc2N4NtKWPhaxIduvL5mYsCGzevNk1H85rRZUqVVxNdg7kGm7atm3rapmiND75AdadJVDCef369a7vduSvq6hDx44dhYmSaTXYvXv3gA22TqCVQGxsrO0kvYFEFL3rVplAYHym7EYF8pBACYSo6Nmzp620L3nFww8/7OhYHyBXALD+d27437gVXckzYsQInDt3zrXyr8VkRO3eiWCje+LWGGQk+m644QacP3/e9Xyf+ZXIyMiAR3DmZ/bu3Yvo6GjLx5aagdp+fnORYesTKNGnd6a7EwqE6CuokABiRV9+MqUHYgXFW/rcgBWSbkUx03Y4nc7gJgVta2rBggWOrBSDBg3CE088ocoblp8n7bvvvhvr1693rbxrIfr0TmixAm1vsdvwTjASfX/99ZdrJ+gUdrxer2v3LFBYTSFjhalTp2L69On5au7kyc9145GiL4BQIENQUJDi45Wf9v7ZFA5uwYo+N6OX+TKdTrQ33HCDa87GxIcffmjqJJT8hlNf1/fee0/5e+rUqXj++ecLzZY2EDiB+/bbbysH2tOk4sRK179/f8TGxiIuLs6V+j322GPo3r07Jk2apHmtXLlyAc+OUFgIhBuOG2zZssWVIEV/lCtXzvU0O24jRZ8EADBkyBCkp6ejUaNGeOSRR7B9+/Z85ZcQaNHn5Ldu3bpVmHWfRJ+bSardwo3Dxws6zz33HFq1ahWwrdn8SKD69KhRo5S/qb07EX2hoaGuusGEh4fjm2++EYq+QHHgwIF8M8Hu3bvXdT++HTt2aH4fjdN28ykGCjbKvrBTkMa7/NWKrjOio6Px0UcfoUiRInj33Xdx6dKlvK6SChpEAiX6nKxMa9eujSZNmmied8vSJwkMHo+nQA2ATildurTSFgM5KZNVOr9N/NeaKlWq5BsLYvXq1V0XPnfccYcmuILal9s7ExLnkO+2m/lzA42cOa8RwcHBmuOv8hqKCnIzuEQvWa9bSNEnyS+cOnUKRYoUUSwxlIw8ELgdcSwpOMixLv9CFviC5M4iW1MhhkSZm2lkWrZsiYiICJQpUyYgFh8p+iT5BfLfTE1NBYCALupI9OVHS9+4ceNcs77NnTtXdS6wJDe6fubMmbj99tvzuioSDtq9k6JPUiAoU6YMli1bhvvuu8+1MosXLx7QfFX5NXxfElhGjhyJv//+O6+rIYQsfVbPV7ZCfhZ9r7/+umtltW3b1vU8bwWdKVOmoGPHjmjQoEFeV0XCcfHiRQAFS/TlvxFEck154IEH8mVQhB4k+gJ1fJokfzJs2LB8K/pCQ0PRoEEDjB8/PmDfQWIvP6fCkQQGr9eLxx57rFD5yhYUyMBRkO6NtPRJChRS9EnyGx6PB+vWrQvodzz//PM4duyYq1awAwcOID4+3rXyJIUPr9dboKxcbvPxxx/jjjvuwI033pjXVTGNFH2SAkUgcv9JJPmdIkWKYNy4ca6WGYhjuCSFi8TExELtanPLLbdg5MiReV0NS0jRJylQkIUvKioqj2sikUgkhZv8kjNRYh7p0ycpUCQlJQEIzJm5EolEIpFcz0jRJylQXIv0GBKJRCKRXI8UiO3do0ePom7duqhZsyYAYM6cOShRooTyelZWFrp3747Dhw/j7rvvxieffJJXVZUEmC5duuDIkSNo3759XldFIpFIJJICRYGx9DVu3BjLly/H8uXLVYIPAH755ReULVsWq1atQkpKCtauXZtHtZQEmsjISIwbNw5hYWF5XRWJRCKRSAoUBUb0rVmzBnFxcRgyZIjmDMJ169ahefPmAIBHHnlEV/Slp6cjKSlJ9U8ikUgkEomkMFAgRF+pUqVw6NAhrFy5EufOncP8+fNVryckJCiO/bGxsUqWbJ6xY8ciNjZW+ZdfDu6WSCQSiUQiCTT5yqfvzJkzQl+thQsXonjx4gCAdu3aYd26daokpcWKFVOsdgkJCcp7eQYPHowBAwYoj5OSkqTwKyA0a9ZMs60vkUgkEonEPPlK9JUsWRKrV6/WPJ+cnKz8vXLlStx2222q1xs0aIC//voL999/P/78809069ZNWH5YWJj0BSug/PXXX3ldBYlEIpFICjQFYnt39erVqFOnDuLi4nDq1Cl06tQJANCrVy8AQKtWrXDixAnExcUhIiICDRs2zMvqSiQSiUQikeQ7PD4+KqIQkZSUhNjYWCQmJspkvxKJRCKRSK5rCoSlTyKRSCQSiUTiDCn6JBKJRCKRSAoBhXp71+fzITk5GdHR0fB4PHldHYlEIpFIJJKAUahFn0QikUgkEklhQW7vSiQSiUQikRQCpOiTSCQSiUQiKQRI0SeRSCQSiURSCJCiTyKRSCQSiaQQIEWfRCKRSCQSSSFAij6JRCKRSCSSQoAUfRKJRCKRSCSFACn6JBKJRCKRSAoBUvRJJBKJRCKRFAKk6JNIJBKJRCIpBEjRJ5FIJBKJRFIIkKJPIpFIJBKJpBAgRZ9EIpFIJBJJIaBQiz6fz4ekpCT4fL68ropEIpFIJBJJQCnUoi85ORmxsbFITk7O66pIJBKJRCKRBJRCLfokEolEIpFICgtS9EkkEolEIpEUAqTok0gkEkmBZ/fu3ZgyZUpeV0Miydd4fIU4iiEpKQmxsbFITExETExMXldHIpFIJDaJjIxESkqKDMyTSAyQlj6JRCKRFHjS09PzugrXFYcPH0ZqampeV0PiMlL0SSQSiaTAExwcnNdVuK6oXLkyWrRokdfVkLiMFH0SiUQiKfCEhITkdRWuO1asWJHXVZC4jBR9EolEIinwkKUvOzs7j2tS8JF+kdcvUvRJJJJrztmzZ/O6CpLrDLL0Sd8+56SlpeV1FUyTlZWFW265BUOHDs3rqhQIpOiTSCTXlBMnTqBkyZKYMWNGXldFch1Blj4p+pxTkAI4Tpw4gRMnTuDTTz/N66oUCKTok0gk1xQ69vDvv//O45pIriek6HOPlJQU5e/MzMw8rIl/jhw5AgC48cYb87gmBQMp+vKYy5cv48yZM3ldDYnkmuHxeAAACQkJeVsRyXUFbe9mZGS4XvbFixdx7tw518vNr7CWvkuXLuVhTfyTmJgIAAgLC8vjmhQMpOjLYxo2bIhSpUrldTUk1xnnzp1zbTGxY8cOjBo1ChMnTnRFqNGknN8nE0lg2bZtm6u+nYG09JUoUQI333yz6+XmVwqS6KO67t+/H7t27XKlzA8++AD79+93paxAkpycjKlTp1r6jBR9eYxbjVQiYbn55ptdW0w0b94cw4cPR58+ffDqq686Lo9En7T0FW5q166NkiVLulbeDTfcAADYt2+fa2USOTk5rpcZCDIyMlypK7u9W1BEH5C7kHCKz+fDG2+8gTZt2jguK9C8+eab6NatG44dO2b6M9eN6Dt69ChKlCiBJk2aoEmTJjh//nxeV0kiuS7IyspS/p42bZriQ2MXKfoKBpcvX8Ybb7yR7326iCpVqgAIjOgrKISFheGZZ55xXE4gLX1vvvkmnnzySdfKY+tKwt8JND4VhNQ/JM5Zke6P60b0AUDjxo2xfPlyLF++HCVKlNC8np6ejqSkJNU/Sf5i9uzZ13XofXZ2NipUqIDly5fndVVMww9+ixcvdlSeFH0Fgy+++AIffPABfv/9d9fLDkQeOFqcsIuUwsisWbMcl8EKKTd9zg8ePIj3338fP/30k2tlsoKH/IWdcPnyZQBAUFD+l0fkx2glxU7+/1UWWLNmDeLi4jBkyBDhoDJ27FjExsYq/8qVK5cHtZQY0bFjR4wZMyavqxEwrly5gmPHjuHdd9/N66qYhp9EL1y44Kg8En3kgC3JnwTSR27Dhg2ul0mLk0BaJgtL0mJWSFndPjRi48aNrpTDkpqaqrRVN4J4CpLoCw8PBwC0atVKyYrgj/z/q0xSqlQpHDp0CCtXrsS5c+cwf/58zXsGDx6MxMRE5d+JEyfyoKYSPTp16pTXVQg4NDFdqwHlypUrjsvgRZ9TscYOzIVlEi2IeL1eAO5Hw3700Udo2LChq2UCgbP0sSJy+vTprpbtJuTLR/fNKgMGDFC2R/k8fW5Z5QMRYZuamoqiRYsCcKet0phZEEQfXc9Tp07h119/NfWZ/P+rTBIWFobIyEh4PB60a9dO6NAZFhaGmJgY1T9J/sGNbYn8Dk0gbmxDGEHlb9682VE52dnZrmfnZyfRxMREfP3117j99ttd/Q6Jc2hCcdty9tprr6keuyX8aUHlpuj76aef8PbbbyuPt2zZ4lrZbkPWObvCavz48bh48SKAXCHFjlFuCSBWkLoh0Dp37oxx48YhNjYWgDtW6YJk6WPvtdk5Jf//KpOwps2VK1eicuXKeVgbiUQMDXSBFn208nXqhL1s2TLNc04naXawP3fuHPr06YPdu3c7KlOSe13/+usvV8rasWMHNm3aBMDd7V1Rrju3LIkk9twUqU8++STef/995TFtI+ZHyELlhjUtJSUFERER6NmzJwDnQtrn82HOnDmqscONxeT3338P4GoAh5vbu/n5XhOsiDY71l83om/16tWoU6cO4uLicOrUqQK3VejGajcnJwdvvPEGTp8+7UKNCjb//vsv/vvvv7yuhoZAW/p27dqFxx9/XHns9DilU6dOaZ5zmhKCF31UntzqdcZXX32Fhx9+GFu3bnVcVq1atTBp0iQA7m7vPv/885rn3DryKxCWPh4n1p8lS5Zg3bp1rrfzy5cvIyIiQgkOc0P0paamokiRIujTpw8A59d006ZNeOqpp/DBBx8oz9lpVz169MDcuXM1zxctWhTBwcGuir5AL8zdgK0jWWn9cd2IvhYtWmDLli1YtWoVZsyYoWRnLyi4sTo9fPgwPvjgAwwZMkT4emGaVCtVqoRatWq58pv/+OMPHD161HmlcHWgC8TWwYEDB3DHHXdg4cKFit9damoqUlNTbacfiI+P1zznxPIzdepUle/JuXPnlHskj89yBlkm/vnnH1fLdVP0rVq1SvOcW6LPDZ++1atXY+/evcrjiIgI1etWrT9paWnYt28fLl26hGbNmuHee++1nEzXHwcPHkRaWho+++wzAO6JvoiICGUezcrKwr///utY/LHX1k67mjRpEtq3b695Pjo6Gl6v19XtXbu+kdeKKVOm4K233lIem81Gct2IvoKOG6KPbnpkZKTmta+++gpBQUH5OudW8eLFXSnn33//BQCcP38eb775pqOyjh49ihYtWqBixYpYu3at47oF0tK3evVq5W+ynqWkpKBIkSJ47rnnbJUZHx+vmeicbMt069YNc+bMQWhoKDweD7p166a8RoOtxBqnT5/GDTfcgL59+wJwJ3iHxU3RR75XAJRtU7sTtc/nw/Tp05Geno4ePXoogtLJGBcXF4caNWooCxGKjiSsLtZatmyJ2267TSV2Dh48iOHDh6vOnj59+rTtIBHq6ySe7Yi+48ePqx7T9i6JvtTUVFSqVEklMqxA94S1RrnZrkj05dftXbeMBixkhSUKXfTutebbb7/F119/7Vp5bogxSsopClChaOb8kptw0qRJGuETHR2t/O3EQsc6W8+ZM8d2OQDw+eefK3/PnTvXdMcSMWHCBPzvf/8DEBjRJ5o8aSKYOXOmrTKTk5Nx++23q+6NG7444eHhCA8PV0UC51fRt3TpUrz44osBsZQfPHgQt912m6OI6Pr166smU7cXdm5OziSimjRpggYNGgCwX99Nmzaha9eu6NGjh7IVDbizvasnSK2KvqVLl2rKSU9Px6hRo/Dggw8qz7Vv3x5du3a1VVde9PFC1Qy8RZ+2d1nRBwDr16+3VUdR8mA321VUVBTCwsJctfS51Y82bNiAihUr4o8//nClPIL/rdLS5xK7du0S+jU9++yz6NWrl2sNt2bNmhg3bpyjMigTPTnxs9Dqb+XKlY6+wy1oUGUnUnYrxcl1ZRt/6dKlbZezdu1afPjhh8rjjz76yFHE90svvYRp06YBuCr6nnnmGaxZs8Z2mSyia0aDrV2RmZaWhoiICJWlwq7oW7RokfJ3WFiYZlvPDdF34MAB1KxZ07Y4HzNmDAYMGAAgdyI8evQomjVrhq+++iogOcY+/fRT7Nu3T3V9rXLy5EnVY7e3yd2M3r7pppsA5KbPcpoShtoPf0IMWfqdsH79emRkZGjEil3rD3tPxo8fr3mdUqLY8Zcl1w1qQ3Ysfez48M0332DNmjUaSx9gfzEuEn1uLk6io6MRExPjSu5PGofcmtvJyrdnzx4AuQYYt9MgAdLS5xp33HEHypYtq/v6Rx99ZLvsTz/9VPn79OnTGDRokO2yACi+DqGhoWjfvr3KukOrv7Zt22Lnzp22v6Nfv36YMWOGo3oCVzsUO6Gwg5Vboq9atWq2yvj9998DmkB54cKFyMzMxMyZM3Hfffep2oJd+Mn+pptuUgZrqxaKP//8E9u3b1d8e8qUKYMvv/wSgH0R8Nhjjyl/iyYmN8TFZ599hj179tgWUUOHDlUm5dtuuw0VK1ZUXmvQoAF8Ph/Gjh0rXAjagSYCJ35YvBCxciSTGai8nJwcx9ZOr9eLTp06oXnz5o5FHwkVfrGwbNky5OTkYMKECejVq5etskuXLi1MQm7XF9ffPaHrauda8BYeO22J9fnt2bMntm/fLhR9dn2D3bD0GX13dHQ0SpQo4crxqyQc3RJm1D+zs7OxZ88etG3b1tUDCDweD1q0aCH0vxYhRZ8FMjIysG/fPlV0rJOklS+//LILtboKTfonT57E3Llz0bt3b+U11uTvpM6ff/65bf8w4vLly4oPCRtpyK5ynVgr2BUPWRas8uijj6osU4GATSDuRltgf3eFChVw00032c459cgjj+Cuu+5CWlqa0nZ69eqFTp06ubKaFk1MblioqG5FihRxXBYNoqyoOnHiBIYMGYIXXnjBUdlHjhxBVlaWYnl38tv57bxAib7g4GC89NJLtss5evQoli9frlji3Er+LLIQZ2Zm4qWXXrLtghMdHY2zZ8+qnouKirIdud6uXTtT77N6LXw+Hx5++GHVc3askaIFl2h71+7vF/mZWv2tRn3ELdH39NNPK4YctyzmNPZmZ2crB0KMHDnStvHlueeew4oVK5THZcuWxV133WV6ISpFnwUGDhyI2267DWXKlFGeCw0NzcMaqaFGSubkkiVLAsh18Gcddc3Wed++fShatKjQjyM9Pd10BnCWX3/9VeUfdt999yl/s744Tkz/SUlJqFKlCipXrhyQQ7Pd2paYOHGiK+UQ7IBXrFgxFClSRBkI7G7vpqamqkRFhQoVXHFKDpToowWNm1tHrGAuX7686nvssGHDBtx6662YM2eO0uad/HZ+QnUayMFPxqyInDJliu1yKRBq3bp1AK6OQ3ZFH10zPdHnBJ/Ph9q1a6ueK126tOvbcuvXr8fmzZsV1xyr5Yv8xOz4NIpEn8jSZ1f0seVXqlQJgPXfyteRrUt0dDRuuOEGx0dE/vDDD8rfbt1rqjcr+gDgt99+s1xWdnY2ZsyYgSeffFL1fJkyZXDq1ClT90eKPgvs2LFD85zbou/WW2+1vVqhQZAskTRZx8XFKTmcAPMrwb179yIxMVFxRmYZOnQoWrVqZXmbS+TPQrACzcmgffnyZURGRiIkJCQgos+tI4nYe+IGrHm/WLFiiIiIwM8//wzAmujjE6iyvpbly5fHyZMnHV9XUTqEHTt2CJP3WoEGWKcDNjtxispykmaE+hPbd5yIPt6FwWmwFu8bxIo+J2ks+DRabvn0iXyZnN5/kXD2er2OXRD4zAoNGzbE4sWLlcdW24EoIa+dsdOspc9uv2fvB7lLORV9bLaC6OhoREdHuxoMdvLkSdVpLHah/pOZmYmLFy+iaNGiSrSxVShgix3PPR4PihcvjqysLFNWfin6LHDLLbdonhs+fLhlEZCdnY0DBw4IXzty5IjwFAQz0IBBh5nrRXGZXQlSByJhy4qB/fv3A7A+wBhtu2VlZaFevXqW6igiIyMDXq8XwcHBtgYpf58JhBOuG5w/fx516tQBANSoUUN1ra1MJqyg4S19UVFR8Pl8tkQKKx5ZSx+teF999VXccccdlstlYVPVUL46O9YJ9h6zaUYIJ6KPtjfZKHO7om/NmjWahRdZ0uzCiyg2z6MT0ccvkN0SfaKJjk0FZGUsoUAt1oWhWrVqiI2NxY033mjab0oP0ZjM5lW1ei1Eos/O2Clqz25Z+jZt2oQJEyYoj6OiogA4F33sjkN0dDSioqJczwDwzjvvOC6DFhAZGRm4dOkSihUrhvDwcFsLCGp/7O5DUFCQspgwY+WXos8kPp9Pk6iTINO8Wd5//33DAAO7ztJmJw6zPll8B2LLZ5P/WoG/hsWKFVO2nrOyspRB0YmlLzMzE6GhoQgODrY1APpbLQUq4/8TTzzhKNr4/PnzuO+++7BgwQJ88MEHmmttdnHCTvobNmxQtW+6P3ZECpuighV97Ba/XUtfVlYWkpKSlEnpgw8+wN13341nn30WwcHBykLILKw7RGJiIrxeL26++WZbdWOZN2+eEmA1e/Zs5Xm7ou++++7D5cuXVVHldA0vXrxoS6TwlsITJ04oAtWJ6OOtzVTWG2+8YUtEG31mwYIFyt9WIrlJiLDCedOmTTh48CBuvvlmZbFrF3/Xz6oQio+P1yyk3bL0RUREKEKdXrcj+urVq6eKqCb3Hqeij41ad0v0lShRAkOGDFFl0nB6lCUJsbS0NCQkJKBo0aKIiIiw1eZF/dnj8ShCWoo+h7DiKyMjQ/eCWvWX8pcxn6IkrZCRkaEpV6++LVq0MFUmH7pOkYbAVWFkteHyA9KlS5cUP6ns7GxFVDgRVqzos2Pp8zdwBEr0/fzzz46OjouPj0eJEiXQunVrhIeHayYDs75e/ODKXkMSa3ZWqfyW6c8//4xFixa5coJAly5dEBsbq/TZ33//HUBuPk32f7PcdtttqsfFixdXCTO7C7N27doJ+0xaWhratm1rOwE46ydLlrkbb7wRJUqUsFwWL5L27NmD+vXrA3Am+vjfTWXt2rULkydPtlwem5uQXFbIX4zFirig8YnSwMyaNUsJEggPD8fWrVs1AR5W8OcOZFUIpaamolSpUqrn7IxPhw4d0my/uxnIwUICha513759TW2j8gsj1njhRPQlJiaicuXKOHToEDIzM1G0aFGljoBzdx5W9JGlLywsDDNnzrQ8P9Fv5v3fydJnZpEnRZ8B7OqkdOnSug3KamSkv4GTjcwxi8g/LDk5WXdyMtN56fdSZ/vzzz8B5PpkkNC1GilYtWpV4fP//PMPsrKyFAHghqXPrk+fnk8UJb92KvpYMebWKSQ5OTm4cOECbrzxRuU53tJn9l7xkzOboodEuVPRt2HDBjz++ONo0aKFK36xZDVjt0xZ2CTbdrjppptUk4zTCFnetys5ORnz589Hq1atbJXH54+8cuWKbWFq5BPohuhbuHChpiyrC+eUlBRVEAMJH9FvNiukcnJyNOMFm66rY8eOAMTnUZuFP/mCx6rFl3e/6N27t+Wxc8mSJRg1apRmXIuIiEBQUBA8Ho8jnz5+8clv737xxRemtlH5MYf9nST60tLSlN9Rp04dNG3a1G+5mzZtwuHDhzF16lRkZWUhJCREdd/93TN/iETfwYMH8e+//1qOLqe+yYq71NRU5Zp2797dbxlS9BkwcuRI5e+LFy+qtgxYrAxYY8aMwffff688vv322+1XkIFdmRCXL19WTeCsb5IZCx0v+jZv3gwAuPnmmxWha9XSpyc2Dxw4EBBLX0JCgmWBwqbkYXHr8HHWiiTycZwwYQLi4uIsfU9qaipycnJUkz9ftlmhwl8v1lpkR/SdOXMGu3fvVk0YxYoVU/528xxiJyemGBEREaESFBUqVHBUHm+Ror5m9tB0HtbSB0CVrskqdA2nTp2qiWB1IvrS0tIQGhqqCFu2LKvC/7HHHlMFQNBugSinqlnRJwqgYxdOlStXBmB/u48WjUaYreuaNWuU8Z2tY0xMjOXxadOmTcLnjx07BiA3AIeEix03BH5ucsunj/18VFSUUu7DDz+MEydOYOvWrcIgRB4af3JycpS5o27dusrrTZo0sVRPYt26dWjVqpXq2tH2LnHo0CGMGDHC9LUQuWalpKQofalmzZp+y5CizwCzgmzz5s2oWbOmqRvHnvAAuBcUwJ/q0K5dO1y+fFnVUViHYTMCgN/epZxiW7ZsUU4n+L/2rjs+iuJ9P5fL5dJDQigCoUgVkCZVCaAUpSh+FWwIFkTEgg0LFhRFmtgVsYIFCxZEFJUqTRSUIoIKSIt0SG+XS25/f+T3bmb3tszsbihmn8+HD5e7y2R2yjvPvFWU9OkJjdjYWJSWlsoCTOS2umLFCsVzsqTvs88+Q48ePYT6qL7JB4NB5OfnK4qP2wFLxrRI31133YU1a9YImflpPtn21GZTK6QvIiJCcVkQ8enLycnBXXfdhYYNG6J169aKcdOqD20VdBmpTLAEpXnz5rZTgmzbtk1+nZCQYNuEpCZ97MVSFKRNIJM5C6ukb/ny5bjjjjsU48ZmEVCbFs2gtmw0bdoU33//vVzphwWvjJ06dWrYe+yFni4qIi4Y7DN27twZH374IZ577jmZpKrBQ/oLCgrQvXt3JCQk4Pjx4wrS5/P5EAwGMXPmTO46uXpuH7QmGzdujI8//hiAtQAm9V6PjY2Fx+OxTPpoTrQ0fUD5WnvllVe426U5mj17NgKBACIjI+V0Z3Zw11134ZtvvpEvCWvXrsX69evlzApAedquiRMncpcL1dLC16pVC2effTbGjRuHl156ybQNl/QZgFcD8cgjj2D79u1cN0A1YWjXrp3m99hwdDOUlZXhwQcfVLx33nnnIRgMKhYJSwhESB8d8Lm5uWGHgB3SN2DAAPk1BV2Iavqys7Nx0UUXYdy4cfJ7rHkX0L/J6kHtsxMZGSmngBHpG0/7RuY8EWKhRfrogL7pppsA8Pv0sXMaFxen2Acimr7ly5fj1VdfleecHTcnaw+zBMoIdqpJkJYHKDf12k3dwWq88/LyhDL0z58/H0ePHsWWLVvk94xIk6h2Ji8vD3FxcfB6vbppVkTx+eefG35u18QfHx+Piy++WDPYjncfpaWlGf4uyb7hw4dzm3hjY2NlTVF2djaGDRuG++67T/aRBMr9T7ds2YKaNWtyySrWt3r+/PmKteTz+VBaWoo77riDu6KQnlygue/YsaP8nhW3BvWa8fv9iIqKsq3pY+cmKipKoVFUX4KMQLKI5DKtRbslS2n86JJAmlMK5AAqZC2vPFFr+r799lusXLkSXq8Xzz77LFcxApf0GYCX0BDZ4/F3UH9n9uzZmt9LT0/n+tuA9k22evXqAJS2f1HSR2aeQCCAWbNmoaSkRJGYmrcdFuwBxPZt+PDhyM/PF47epfH8559/5PdYTR/h0Ucf5e6jntbFLumj2+PgwYPl96ZNm6arqTK7bb7wwgty7khaq1ppUUhDYUXTpz5EqU3K/2cEteD9+eefZR8bNQHr3bs3V9+0wJt30ipRmzFjhqLqgVXSxz6zaMQ/YdeuXbjiiitQq1YtxYXRaAy0kqsbYffu3fI+V691q6SPDlY9uSaq6VODtEla7iO85ILIyIcffii/pzfGvPIkGAzK7hzsgf3WW2/Jry+55BK0adMGycnJXHt04cKFip9ZK09kZKSwFlpPnr344osAlO4opwPpYzV9PXr0kPcVS/pEZLR6zRDpY02lVnwZqR21ZjgxMTHs0svT35KSEkyZMkXx3oABAzRTyRnBJX0GKCoqEtJI8Cxi9eSyRIw3qlYNrU2uRfpYc5+oeZd8hNQmQyuavtatW+OPP/5QaLzIrCGq6aNnZ8egtLQ0jPRNnjyZWxjm5OSEkVvAPumLiIjAI488ojBBeb1etGjRwlJ79913Hy688EIAxpo+In1WonfVKVTocJ02bZpmsnIWWuPE+vKxYAmR6Pjyft/KgTVx4kTcf//9ioOLrWksAjK5jhw50nJN6KZNm2q+z5rQrrrqKsVnon6OW7duRYcOHQCEH3Z2SZ8eubNL+ujA1zqceckFlRwcNmyY/J5a3tG88Zp4g8Eg2rRpg1dffVXhXqMOvAHKx4BnLWtdSjdu3Ij3338fPp9POLk/afJ9Pp/i2UlrxPpJBgIB4fJh6jUTFRUlkz4RNwQ2bcy6detQUlKi0BCzpE9Eu61eH7QW2QuvFTcsakftIz5ixIiw7/KcTXZzRBJc0meAoqIiRTQkAEP/MJ6FwQol9cafP38+nnjiCcFeav9d6jdblobdICwB8Hg8mikTiPSxUcxqHzTRw6+4uBhpaWlo1aoVbrzxxjCzDh1eVkjfq6++in79+smaPrU2htdvKjs7W7493XrrrfL7dklfaWkp4uLiwi4SsbGxmmlLeNZTZmYmatWqJfs4afn0iWr6jMghq300E6xa46RnYmXfDwQCWLx4MbeGipfM33vvvYbf1eobjaGa9FkhkOTIf9lllwEArrjiClxwwQVh37OSFoON4GTJBSB+YGVmZsrBO+o59Pl8+O2334S1h2aXZzumd6BCbmilqBElfUagfi5evNg0p6QkSSgrK0NkZCTuuOMO00h9XtKnfp6zzjoL7du3x/Dhw4XJc1FREV5++WUA5Wv86quvDvuOOhCjTZs2XPN10003YdasWbqavmAwqCCZZmDl+fnnn49gMKgbDGSH9FE77FoQ3UOHDh2SLThsX0aPHo2kpKSw/cAjw+zuEYKjpK+oqEjT14HX5+Z0Q2FhoawxI9SpUwe//PJLWEAGIEb6br/9duzcuVN+PzIyEn6/Xy5orv67RtBaMHTQs7cDViCo+6p2gPZ4PLJ/CZs77M4771R8T/TwKygokAX0E088oVnxAeA/yOl7paWluOuuu7BkyRKZ9KkJKS/py8nJQUpKCgoLCxWOsVqk7+uvvzbVeBFKS0s1zXBURgdQmpCMxoDtw9GjR3H//fcDUJI+ais2NhbR0dFcc1VUVIThw4frfs4KKzOtj5a/ot4zse0GAgFcfPHF6Natm1l3AfCT8A8++ABffPGFUDv0jOyz1qlTB9nZ2ZZLUpHZ+4svvsCaNWtkMxrBSpAIu7fVl0lRn77s7GzZf009JosWLULHjh2554ag5x89atQoAGLms40bN4a9R3KjYcOGmDNnjuKzLVu2cOVvY2VRv3798Pzzzxt+38z/jmQsbx5Kq6Rv/vz58mtR30iWuEZFRaFNmzZh36H+swoQM1kaCAQwZ84cjBkzJkxOJCUlWTLvqkk2yXlC7dq15dQ9bNubN282bFdP0+fxeGQ3FtG+dunSRXPN6ZFynj3vVNCnY6Tv888/R7NmzTBgwAC0adNGkQHf6BA5nVFYWKi4nU2fPh1vvPEGOnfuLB+yLEQmpXHjxrL6/MSJE7JKvnr16njggQd0zWBa0FowdLCsXr1afo/dIPQ7dHvQu0VoOXKzPh6imr7CwkKZmHg8Hni9XoUanYS3qKZPK3pXKxE0DwoKChAfH4+YmBgFIVWTPkmSMHjwYLRt29a0zeTkZGRmZupueiL5rJnOaD3pjTs7lnTYx8XFITY2lsu8yxtFBlgjJ9Qn9Xp75513ZJMir7/cpEmTMGTIECHNq9GhqDXedGCx81KjRg2EQiHL6VXUa4D1FwSsjSsrY9XpZHhJX2ZmJoYMGYKMjAw5rYRT2gUi9WrTFmmZROZQyxrCaqPUpfzuueceLhcKts70Dz/8gHvvvdfw+6wVRQu0nnhN4rykj3zZCEalLc3AypEPPvhAM6q4cePGACCXeATMXUXYNafecykpKZZIX0ZGhuLnnJwcRdvR0dE4ePAgOnfurPj76rRDalx55ZWKn9k2ae6WLl2K2bNnh2XJ4O0rgfa++hIkQvpob1qt3uQY6Zs0aRI2btyILVu24N1338XNN98s2+udEhwnE6Wlpfjggw/kw3jy5Ml44IEHNH0xCCKLmNVspKSkKHL3JCcnC6VwoAVz/vnny++REGQ1G1qaPjIlsXPEvlb7EKnTblghfeoQfi3Sx3vw0XOwt38ifWoByjum6txXBJb07dixQ5Hw12yN09/WI310uWBJptEY6GnttOrtUnUOHk2fun/PPvus7nd51zt7SOsRpYYNG8p/i5f0Pf744/jiiy/CxonNr6mG0RjQ87CR8KTlILNhfHy8fFmzWjJObdpRyxRR0vfss8/Kvp1a7fPO0/Tp02V5QfLo448/xoQJE4T6o4Xi4mJ06NABN954o+J9OmBFSJ+WqZiVKawsJRw4cMB0/fOYd1mY9Zn2n5Gmj30WEU0fSyTZZ1fLYzMNKhtcMnDgQM3vtGjRAgcPHlSYfs38RLWeg4h38+bNERUVhV27dhm2oYY6q8KhQ4c0CbXf77eUT5C011qk77rrrsPNN9+sKBkpApojVovIgocj0T4mK6PVOuWOkb5gMCgLxo4dO2LVqlV444038NRTTzmanuFkgeps/vTTT5AkCePHjzf9HRHSZ5QOplq1ajh+/Di3Azb9XdZEq5Ws2efzyVop+h3anKwfESso1Elkq1WrJi/QxMREvPjii1i0aJFh/1asWIH+/fujsLAQBQUFYTdTVtCK5unT+t6hQ4c0SR+vpo+H9F1wwQWyKR7QTuyqBdZ8yybQpcsFrx+J3gHG9pvIk9/vR1xcnCXSpxXQQs7svIKVjdikeplamnI6HHnaZcdGfdAZpS0w2lPUZteuXeX3SOhTm0lJSTKpMKpcwWLDhg0IBoOoXr06YmJiFJczIDzKWZT0sVofNhUIIHYAshHFlJy2SZMmmDhxou0KJKQ9V4Pk4OTJkw21zIWFhZp9oN9n29YifYCyVqsWeEjfp59+KpMfu6Rv7969ioAQ3lrhRPqISBhlZTBLCM1bh/2ss85SECyRUpXBYBCXXXaZnKC9Vq1a8Pl8+PLLL+XvqMseaiEQCCjS6hw+fFhTc2+V9BGhY2W0nWTkLOhSbydgiZ6JZLyICxgLx0hfzZo1Fb5N1atXx5IlS/Dnn39y+zydTiCBrvYPYaEuoWJV06cGLQyqAGGE7du3yzV3fT6fbJLQEl6RkZGyAzb1VW3mZT8Dwklf3759FaQPQNjtXY05c+bg+++/x8aNGzU1fVTnEhCv7ap1QObm5iI6OjrsM6c0fSUlJWGRVLyRVSSgS0pK8Oqrr8rvO6XpYy8T7KHDa95V+xxq+SBSXVve9c7mdrzuuusgSZKm6Yw3B2CDBg0UWfIPHjyocOCPiIjAli1b8NBDDwEALrroIhQWFiI6OtrwsKLx0gqGobV+0003yZ/zjGdubi46d+6M8ePHw+Px4LHHHgu78Kn3g9G4ahFaWjsZGRlYunSp4jO/3889TywpUqeB0NoPImB9eVmQHNy1a1dY1DGLmjVryhdxVnYSyWWJFas5ZdeFWTmt/Px8TWLKol27dvjkk0/g8/kwefJkQ38xM/NugwYN5GcCxMy7Pp8PH374Ic4//3yFC5J673z66aeGbYlEdlslfaWlpUhOTkZERIS89tXryev14sSJExg0aJBukFBJSYnC/Jyfn+8o6aN1w14inSJ9FAFN8lR9/vP4tNJ6IjnJQ5S14Bjp++CDD8IEUlRUFD7++GNLtWRPNWhyWLOJGupIJ72FtmnTJng8HoVQNSJ9tNB4TKetWrWSI6B8Ph+ef/55SJKk2X5ZWZm8SdSaPnX0JEF9QLHtEikx03IRgQ4EAgqfPi2Qj9/8+fPh8XhMtR56n8fExCi0lwkJCY5p+rQOJ17/LtLq+Hw+xdjSrY39uwUFBXJ+RDV4NC+UVLVhw4aWNX1aN1M6vHkFKz1zp06dDM3FvNU+9u/fj3Xr1sk/k2/PvHnzAJSvtzZt2mDQoEHyd2JiYlCjRg0uTR9LIFhzTH5+PiZOnCg/Pw/po/313HPPhVVPIIj492gdDrSf6tWrF0ZaRA5Adr+YBR+wyap5sGXLFltVWAoKCmSiQbV769atK2sk2TFk1yzrb2sWUJibm8ud1DcyMhL79u0zrO3KY95Vt2lG+ubOnYtvv/0WPp8Pl19+OdauXasgJuozQ61V/ueffxTzrLU2Ro4ciUaNGoW9z/4dEfMupdBiwa5Tr9eLHTt2yM/29ttva7ZZUlISdhnROku01rzRRbJbt2646aabZNLHavCdIn20DvXMuyIBPG3btsU333yDhx9+2FJfHCN99erV000mq5WWoDIwbtw4pKenY9iwYbYjXdjIRz2oD0T6m4cOHYLH45Ez5lNhcDbay4j0kUqedZzlgdkCLSwshNfrhdfr5db0qYUG+12WRBgRCjbruJZ5V43Y2FhZm2R2o9Sb5+joaMUBW7NmTcc0fVoQJX1q0G2dPSAmT56MMWPGaFZn4SFwQ4cOxfHjx9GwYUPLPn1sDUqCiBkWqCCJZkmURbW8hG3btiEyMlIOfiJyrxawCQkJmDdvniIFEQtWM0MmU63qJLR+ecZTTeB4NGa5ubmYOHGi5kGg9Z7RfoqKipLn6ejRo9z+1WayhDchNgDs3LkTu3fvNq3KwQN2n9WvX18eT73+sv3csWOHYdt5eXmGPtssiGTS383Pzw/z8aRxdzKQ47nnngOg7wOm/n3WAnHixAk0adJEcfHS2sNvv/22wvpCYGWTmUKC7ccvv/wSJlfYfRAXF4eSkhLcfffdAPRleklJCRITExUaWwoyUfdT/Vy///67bp/JXE6JuNm8hCI+niwSEhJw0UUXhfVT79zXmveysjIsXLhQnmtWPg0cONCyqbhS8vQZpUWoLGzatAmHDx/G6tWr0bJlS00BEwgEkJubq/inh8cffxwAnxmWoA4qoMzpJJTZRWfUrtfrRVpamnCQhFm4PrXHRk5pafros++//x79+vWT36eoQK2IXyOtBx2OWVlZCAQChjd+j8ejOMRCoRB+++03WYujhp5WJDo6Osy5266mz0h485I+s+jdkSNHokuXLmHmSq0+ElasWKH796hdXvMuC0mSNEtT0TisXLkSGzZsMHSBoL8NmJc1FCnxxmLz5s2IjIyUzR1k8qM5pDVOGgW1ywKB/HajoqLk0nValw7WvLtp0ybDcbVC+l5++WU8+eST8mWRhZGmjwWtH7/fj6eeegojRoxArVq1uGuSapE6tb8gL+yWrGPBEjefz4fHHnsMM2bMkCO/1WDXnFk/RDR91Bat2fT0dIWpFrCWssXMzEeyVC+X48SJE2UH/4SEBAURpXVKddPZPvJobvWsQVowKkIAKGWp+jOtMYiJicFvv/0Gn8+nIGKs/y1Bi/R16dJFPtPZZ+jTpw+2b98On8+HHj16YN++fejZs6f8HT3/UD00a9YMvXv3RmFhIYYMGSK/T2uDno3OfyKYWqTv+eefx2WXXSYrj0SjwfVQKaTvuuuuwwsvvGD4HacjetetWycTlEsuuUSRW44wZcoUJCUlyf+0DjTCww8/bNpHPdJHoN+nRcoe1Ga+IzExMcjPzxcaJzPSR6HrLOkz0vSRLxiBfDO1+mSkkaO/QWkljDQTTZs2VXxeUlKCjh07aiYNZdtWQ036RCKiCwsLNQ9nr9eLe+65R/N3eAm63nySpq9hw4b4+eefFa4SWkKQ1TI1btwYffv2Nfy7vOZdHt8SEjqvvfYaOnfuLBMko78NwDQ5LY+mT++zQCCAunXrori4WE5+TH+PLnfsQfnbb7+FtUFmw0AgIJNlrctZRESEnPewQ4cOhimpeEnfLbfcIr8m53qtv11aWhqWI1Rr32/YsAGLFy+W5cwHH3wAoCLn5vHjx1G7dm1NjY4eWF8r9pBavXo1/vjjD93fo3Hn0aI9/fTTmtobAntxo3qr999/v+4lWsvHVQtHjhzB77//bhrsQaB9QmtWy7fPiqZv4cKFYcm1WZCc0ZMj1atXx9q1a3H99dfjiSeeQFZWlizPtWpg02c8fvfs+eYk6VMrAbQIEO37qKgoBYnWs0RoaQvVPp1///03li1bhqKiIrk/avOxSOo0oFyrvXz5cpSVlSnOeHp+ejZar2T903pmSntHY31ak76vv/4aTz75JMaOHRu2OMvKyjBnzhzLToh6yM7OloVKUlKSpuZl/PjxyMnJkf/p5dLhRUREhEKIFxYWapIQEnpk2mzZsqVpVFV0dDReeOEFOcIzIyMDPXv2NCRXRjdKSZLk9Cu8mr6oqCjFgUK3YPIVYwmCkbZDfSvV0/TdfPPNaNSokWJMzXz69LS1MTEx8s3unnvu4db0BYNBlJWV6R7OrCMxe7Pn1Wa0bt1a83119C6radESCCyBi4qKwnfffWcoiHk1fTykT8S0B5Svy3feeQfvvvuu4ffo2Y38hfTWPyWFZ/cAjakW6WNv8wQKSOratSsGDhyImTNn6hLauLg4ud3NmzfrHsLq9atnLpo8ebLsH0YHu5ZWuKysLOwA1SI8DRo0QN++fcP8rOm7a9euxZEjR0wd/fXArskePXqEpY9Yvny5/BwkT3744QfTdidMmIDdu3cr5oq9UKlJnx4eeughTJw4MSzptxauvfZaPP300wAgnHTaSOZa8ekDEFZflYWZpg8ol9MffPCBHGVPJl76XXbuAoEAkpKSuDTQIqRPve7VP7Pnino9G5m41aRPy3pAmj41YVPLLVbW6SlMoqOjLZtR2XOO+qwmfbVr10abNm005S59h+QhS3ztoFJI38UXX4xVq1Zh/vz5uOKKK1BUVISSkhK8/vrraNKkCe677z5dzY1VJCcny0I4OztbU6vg9/uRmJio+GcXbO6g2267DdWqVZMnS+37RuNw5513mh6cNLGzZ8/G7t278eGHH2LVqlWaFU8I6mSNejdGM9LH3lC1DpR3330X27dv5yZ96g2v3uSU8kVrTMx8M/WSZUZHR6N3796QJAkvvPACqlWrxqXpowNGTwjS7e2NN95QCB8zIRgTE4OXX35ZzhivRqNGjRAVFSXPITsWZpq+qKgoeL1eQ2HAq+mj9WCWmFbPRKqHm2++WbNEFgsiREamcpGoPPXtmj0otQ6WYDCInj17wuv1IiIiQrOaAMHv98vrac+ePbjuuus0v6de+1rJb4FycyxVf6F50jpsSktLhQ4htcmR9jMdluyYiFgV9u3bp2l+BsqJee/evWWtOM2ZiKmMrVfKunawa8PIsjF16lRMmDBBQQr0ZMknn3wi59zUy1WnBzWJHzt2rCxDSFbznjM88ypSuUSdT5L6xa7JwsJCbhKhlQNUD+r9NW7cOMXPRuZdM9Jn1l8ifWVlZYaZJdiLutFaUs+LiF/s1q1b8c0334TVlOfJz0i/Q7yGzli7kfSVVnu3bdu2+Pnnn7F792507doVjRo1whNPPIFRo0Zh3759hglUraBr165YvHgxgPIb5ckKHlH7gBQWFso5yGhx0GTl5uaitLSUyzmUbrQpKSlo3LixTOD0BNeFF14YRtCeeeYZze/ymnf1NldMTAzOOecchQAy0kCqTZ9qTR/rOMv2CTBPs6JHZNRjnJyczKXpMyN9RMZCoZD82uv1oqioyNBH1Oywrl+/PrKzs2XfGlFNnxl4Aznob02aNMnwe2waFiBc82DFfSMyMhIej8ew0oFoKobXXntNDgpioXV45uXlmbpdEKKiohRr85NPPtH8Hq1l0iCR9kULdPBoHc5A+RhLkqRYG2aXIrWmj0gQS/oCgYChtpIF6zvXv39/ze9Q/0lj9+233wLQX6daCW/ZeWbJIqsF5ln3bIoQnrUjqkUhOUNz98orr8hrYd68eTj//PPD6rfrQaTmMs8ZQnNP2RXUmr633noLTzzxBPeeGjBgAObNm4fq1asb/k4oFMLMmTMV76nHwMi8q96b7N/SU0SwINJXWlpquJ/ZtWQkm9UZPHiDRH0+H1q3bo2BAwfK80XPxo6HOj/j8OHDMX78eFmpQP0kS6GZb7QZKo305eTk4N1338WBAwewc+dOZGdnY9myZXjkkUe4nWVF0L59e9SuXRvp6enYvn17WGmVykRJSYlCMLFJToEK0kf+Ima+TUDFTeDw4cOK99mDgN0cIqV4fD5fmKZPy8+DFt0rr7wiF49mwRL3vLw8FBQUaOarU5s+1Zu8SZMmaNmypRy9xfbFLOJOz/yr9td0StNHmzUlJUUWFAkJCXj11VeRlJSkKD9IkCQJwWDQ9CbP/k0z0scSWJ4DIC4uztS8u2fPHllzatZXNrEqUL5m2rdvL/uNihxgBI/Hg+joaENNn3otLV68GP3799f1A7v99ttlV5JZs2bJ7+uRPl7Z5PP5uNYT7aXXX389rM60VptAxeGsPlipz5GRkVi0aBFef/11Uz9ePU0ftRUKhTB+/Hi0b9+eK2fbihUrMGDAAPnnv//+W/G5JEn48MMP5b8xe/ZsTJ06FYC+mVMrAbjaBAmUPzd74PKkgKHnjYuLq1TSxxIR6teff/4pVMGBLjs89XN5TMakWVdr+mhvk48mb5Jxj8eDoUOHIjo62nAsFy1aZOrKwY5zy5YtFZ+p5Z0o0ff7/di/fz9KSkoUpI+91Jx99tmK8odG2kU2JyhQnqiap5azukQcUHFeffPNN7JrhVrT9+GHH8p7BoDseqCX61IUlUL6xo8fjwYNGmDOnDmYPHkyjh07hqFDh6JPnz6mRartYMaMGVi9ejXmzp3rWH4dHvh8PsNNSEKcHEnNzFyAsog2C1bosa/1SEq/fv3CbgZamj42155a03fnnXdqpo+55557UFpaioiICBw5cgTx8fGoUaMGXn/9dcX3WE2f3+9Hs2bNFJ/HxMRg27ZtaNWqFQDlBmQz1msRvGAwGGYWPvfcc8N8RknTZ6bNMCN9gwYNwoIFCzB06FD570ZERMhERSua7J9//gEglo3dzLy7fft2ze/qgUfTd/bZZ8tmLrO+NmzYELfeeqv8c3FxMTZv3iw7tFupHwuUrw8R8+55552HRYsWcZV06tWrF9577z0A2prInJwcblOcWtOnBxoHddShFuiQIGKrflY2Crl///647bbbTP++mvQRaJ2HQiHs3LkTAF9ZucTEREWb6hyd69evx3333Se3zV5a9WSy1lywa576Wlpaqgg4UAe0aIGt2FEZpI/kPvsMdHEoLCzk1hwDFeNfs2ZNbN68WTOZtIgzf1xcHOLi4uR21W4D6qAFXpjlflSXS9MC9b9p06ZyqhSCWt6xFz2e56Z8jKWlpQqSxF5E1WmbjJ6HzmsKlsvKysK+fftM+8H2lV7THq5Tp46c77WoqAjffPNN2O+T7Pjnn39QUFBwepO+r776Ci+//DJ27NiBW2+9FXFxcZgzZw5uvfVWXHjhhViwYEFl/NlTCq3FqDbvipC+1q1bawZ76DnT6pGUH374IewWo+XTx0Ik6szr9SIUCikOIKokIkkSJElSbNr69eub3lL1SN+uXbswbtw4hEIhrFu3Dh6PB4cOHQrbCFrq72rVqqGsrMxU22VG+jweDy677DJ4PB5ZeJqla6HNLVLKykzTd/DgQbRu3RrLli3jao9IH48Jz+PxcJkQWLO8HkGZO3cuV/8IrKZPy4yj/juihzRpXrTcP44dO8a1N4Hyg4Vn7FnSZwZ1HVojTR8v1KSP5pU19ZGVgEd7of6e+vBTX1bYdaQ3V88//3zYe+yaZy+NrIaZpwwV9UdL07dmzZowS4LoetK6kA0YMAClpaXChzRpvOrWrYv27dtr+n+S/OLNH1ezZs0w0hcKhXDNNdeYVijRw+7duzFt2jTdixarOfzxxx/DtMFAxTjPnDkzbG+otfnsBZJHw8leNNj9bBRsp/aHZ0FtsOtHaz+r22e/w5bwVGPz5s04duxYmBsUe9bv27fv9CZ927dvx4gRI8I0EE8//TRefPFFXH311YoSVP8FGAkL2my0GNX+UHrQSnatp+kzShmiPjwPHDiAWbNmYdeuXZoaGadCw1u3bo20tDQUFxfLAprHmZvtE7uBb7nlFjz33HM4dOiQXKfzzz//5NoI6sS9ejAjfSz0NGytWrWSTfxlZWVymTyRkkdmpK+oqAjdu3dXJAA1QlxcnEzAe/XqhVtuuUXRH5YM8pIKytsIhBMUmkMr5jKK8tQS8Or6kzxkisXZZ5+NHj16hFUckCRJiPTxwgrpIy2EkaaPF3rmXZJJubm5Qq4hgDJoS53yhX1OsgIQjMy7aq2dlqaPEB0dLecuMwNL+vbs2SOnrgHKc+upfSxF1yvJSvVlKjc317T6kBovvPACWrRoYahtJjcGnlrwgJL00Thu3LgRn376qakJ1gyUj5bw/PPPY+zYsYp6vmeffXaYZQeoWCclJSVhUbZq8sSeczyaeNZFg61LrUf6Vq9erbBaqEH9Y9ehlkz+8ccfFT9rkT6jQJwlS5YofmbPwX///Re///678F7VQqWQPiNHy1tuuQXz5883zEV0JoJH00eClveWplUNQ0/Tx1s4G6hQv8+cOVNxK6MFKZpUVKscjCRJ2L59Ow4cOKBIyMxD+tgNxfaPJWzsd9TkWEubRX/XzCQnQvr0nPK3b98uC9Tly5fL74uQPlZ7qCUo9BJI64HV5qxcuRLvvPOOQoCS3wjAT/r0UtasWrVKXo+ih+jevXvl11r+dbTmyQ9MlPTR73z44YeK+SgsLERxcTG30z0vSMsrQvoI7Jjeeuutsp+PE9G7JIuOHTtmmfR5vV7ZdUFtvqK/xe5Fo7Wg1izrafoAoEWLFmjTpg1XXymYISoqCllZWRgxYoTh90XXq94lsqCgAGVlZUKamVq1aqFDhw6G/mXkg6nlB6mFGjVqhAVyqP1t1f65vFBfSu6//3688sorChmrt1Zvu+02DBkyBL169cKgQYMU/rbq+WbJj1btaTXYMm6NGjWS82hqKUYSExPRvXt3wz3AS/rUZwu7n+nyYeT2MnjwYEVwFHvW79q1Cz/++CM6d+6s+/u8qLRADiP0798/jBWf6eAhfQReMqV1q9HT9Fmpw7dnzx6F0KIFKarp08rmrt4URFBESR9rSiIiFAwGFalm1NG/6p8BPk3fkSNHZL8NHkL1zjvvYOXKlXjiiSfCPiNtLkvwRUjf1q1b5dd6mj4R0keHjx7pffPNN+XXvKSCDUhiNbI9e/bE2LFjAdhLL6AliOmg+fzzz/Huu+9aimSjCibk3wdUzA2vFp4XNN5WSB97qL711luYNm0aADHSp5enjwjA8ePHhYnz1KlTcdFFF6FBgwbyGKqrnwDlRI5d80Zzpdawshed4uJipKWlyeZPkf5q1ZDVS/Mk2jZQru0KBoNhF02SVaLmOK/Xa3g2BgIBodJg8fHxsgylOVdfIv/3v/8J9ZGg5yrDan/11mqNGjXw2WefITY2Fh6PB6NHj5Y/0zPvjho1SrZsPPDAA7ppktg1Hx0djdmzZ+P666/X1PTxyA/yfbz22mvl97744gt4PB6FUkLtvsOuJTIfs0nYtcCmQWLP9zvuuAMAuC87RjglpA+AbtmcMxVGvlLqxcBLprQEhhbpW7NmDbeZj0VBQYEh6eMVgFoHpTqsnQQVj3r+ww8/lJPnsqSPottKSkpkwVVaWir//YYNG+K7776TowdZ8Gj6WGHFQ1bi4+PRo0cPTe0B9Y/GdODAgXj00UdN2ySw62nSpElhztFWNX16pJcViLzmQ9Ysoz5IKTjADunT0nBSIFj9+vVNK4HogTQdbP9pnYk43ouAZxyMSB8LEfOuz+eT5wIIJ327d++W8wPyomvXrli2bJmCqNH6YjUZcXFx3Anwr7vuOoWPXmlpKfLz8zFmzBgcP34cMTExsnZLRBt32223YcqUKYoDu3v37sjMzNSUb7xjS/k2Q6EQioqKwuQ/ySorpM8IxcXF3EoDQBnAxQbEOIFHH31UcXGi8aTyo+x7ItDzbbvrrrvk9Tt9+nRuf2Gv14vq1atravp4sgzEx8dDkiRZaw8A77//PgClRaawsFBByNlnj4mJgSRJ6N27N1efgfK9pPY9Fpl7PZwy0vdfg9athwQBe6D6/X7TPEMErQNIy7xr1fcuJydHsWhJg7Zt2zZ4vV5uAahF5NQHFh16PLfU/v3746uvvgJQfhiTRol1cKfDpbi4GD6fDxs2bMDmzZtxySWXaJbOSU5ORmRkJJYtW4Zdu3YhLi5OoZ3KyspSRJaLkBWtjfjLL7+gpKRE7ufrr7+uG0lphn379mHUqFHo0KGD7CsoSvrou3qklzWl8rbLkn21FpPm32rBckD7cKLndyLt0/r167FmzRoA9kmfXtLtpk2bYuTIkVz9VWsd9Eif6H5ntV1EAIkIqKMYRcCSPi1NXyAQwJ49e9C0aVOsW7fOsC1Khk0oKyvD/PnzMWvWLLzxxhuIjo6W95nI8/v9fjz88MNhGs/c3Fyu1Fl6OHjwoCyjAoFAGOkjszevGZZgJHMPHDiAzMxMw/KhasTFxSE/Px+bNm2Sg1ZEc13qITMzU5H8WMsfVoSkkIuJnqbPCoEkREdHWyZ9BFYualXNUftw2ukvUH7Wq5PgOzF3LulzCFTBgI24JUFQWloqLxiRTcCr6bPK/rOzsxVkNRgM4pNPPsFzzz0nlPldS+Vsh/QBFYI9Pz8/jMRR4k167fP50LFjR0PTXFRUFO677z68+eabWLBgAQoLC7Fq1Sr584svvljOEwiIbVit8V+0aBHuuecex4JitmzZgk2bNuGVV15BVlYW8vLyhOadxv+VV17R/NwK6UtNTcXs2bNRt27dsEsPkQk7mj49v5mhQ4daLo3E4uWXX0Z6ejoSEhIsk77IyEi89tprOH78uGZ/8/LydKtwmOHw4cOaJinRtcQSidWrV2P9+vWGkeTqkmp6YF011GWm+vTpg+LiYhw5cgSDBw/WTGWkxuOPPy4nci4tLZUvk6FQCDExMWGJkEWg9tVs1KgRV2oRI9Azax3EdDlhg514oF7X7GWKomC7dOnC3V5sbCy2bduGDh064PPPPwdgPZ0SQW+PaMl2kbX62GOP4aWXXkJmZqbCxC1qeQLKs1asX79e/jkmJkZzL4mcc+zFjtaOuiqVFdKnlzonGAwiKipKzoYBwJHytS7pcwgkANkksbS5gsGgTOBETDNaBya7Ye1q+rKzsxW3nwMHDhgWj9eDWZQxUCEQeIkKbZj8/Hz4/f6wkmfsActLADp27Iji4mKZoLBjqS44zquNBfSfacWKFXLOQru3PkJERATeeustADAscq8GrSWtfFCAMhBIhKjdeOONmqSPIKrpo8vTDTfcgIKCAowaNUoxF8ePH7cdbKHOFZqfny+TPlFz3P79+9GoUSMEg0FFeiEAcrS0VW3nm2++qVn1wu4F4tixYwrSV7duXTlo7J577sHq1au52mGfizQmtC/j4+NRXFyMEydOcKVWAcqfi2pTf/vtt3jjjTfkz2JiYmRNqEjQGoHHF0r0ImFE+o4dOwafzyd8iVCfD2w5OtLSa1ky9MAb5SyC3377TbOGuNZFQrRON60pqoKRlJQkm0RFZGi/fv3QqVMnRbt2NX0RERGyXy1BXdLOCun766+/FO4HhD179iApKUm2EN12221IT0/n7q8eXNLnEGiCY2NjFck5AWWSSJ5SYAQz865dTd/Ro0cVqXN++uknS+1owa6mjwRwVlYWtm/fHkb6eIplq0E3NXUC4dLSUltqc71D+K+//pJLgNk9qElr7PV6ZaEvErxjRORycnKwf/9+ObWCqHbOqNqHaFvPP/88JElCjx49UFRUpIjEA8pJHy+J0EPHjh3D5oPIFe8h/dVXX+HNN9/EWWedJfeHNU9ec801iIiIsEX6gPA0EID9C0RMTIzigI6Pj5f3V7NmzbiDWViCfOzYMXg8HpkwJiQkyOZIETMq7fsXXnhBUT4vOjpaNqdqVb0xA08fWJ8tHrCkT23ezcvLs7Tn1SSJdcegspoiwUY8CbdF0axZM82AhIKCArRo0cJW22p5wQZK2JGhepo+0cpB6uARuuQcOXIEM2bMUOR95O1vTEyMpovU0aNHMWDAAFl+iLoK6MElfQ6BNn1aWprsyEraA1bTJ4L4+HjFzcLj8Tjq06cGbzUCLTz22GOKn/VIH++Bpda0GWn6eNskDRFVO6E+aiWHFQHP+NudIzqkvV6vXCNWxHRkRL5+++03ABVR2KKkIhAI6NaetUp49HzgioqKHElQqlc/k/dAHTx4MEaNGgWgglCQaRKAXGLJLunTghP7nSUTsbGx8v4S0Xbdeeed8mvyDSbH/vj4eLkko0hKGD3N0Pfffy9MykQwfvx44dyxNGZaF3mrpI/Gn+QfaTUlSZLz4oloz8xMwSKBBSzU2kZJklBQUKAZLS0Cdq+o3SXsXHZiYmJQVFSECRMmKJJFi5h3gfD9QX1kg6UIIvOvFwjatGlTeUzsuMqwcEmfQ7jyyivxxhtv4KqrrkLPnj3Rt29f26QPgHxz8nq9SE1Nxfr16/H1118DsK7p2717t5xSgwXdhMaMGaPwh+ABm+eNbYtAC9aqLxa7gaySPjWppfk5cOCApT4ReEzBdrUzFA1YXFyM3NxcYYKuJzB2794tjyVFTIvOkZGW1KqgUj8f68NZmSUWraSAMTO3iexPrX2nrvxh9/l79+6t8GeNi4uT51xk7ps0aaJbW5bVmIqQNaO///7772PZsmXyJcVJXHfddUJmU6BiXmkMZs6cKX9mV9NHmudly5bhggsu0MzZyoMXXnjB8HM2VZMI1Km3AoEAQqGQbkATL1jSp650ZEeG0np8+umncdlll8nvi7jxaPWBrEVae1xk3+utlTp16shj4tTl0SV9DiEyMhK33nqrvGnZ/EiseVcrh5wRaDEMGzYMUVFRmDdvHgYPHgyPxyPnV7ISzde+ffuw98lE98ADDyj8IXjx7rvvyiYYdU1OWrCiPh4EI00fT8JOIJxIFBYW4qabbsLLL79sqU8iEBUuepg5cyY2b94sTPr0BGbjxo1lbQJpZERJnx6xGzJkiGXSp9b0kZmnpKTkpNbV5oFZ7kkRbUKnTp3CzJd9+vRR/Gzl+b/99lt8/PHHivco2jI2Nlbel6Jzv2LFCsX+oXXOkj6R/hrJB4/Hg4suuqhS0n1ZcZFR/05CQoKs8bZL+lJSUuDxeDB9+nT89NNP+Pnnn9GkSRNFsJmVPrKplQYPHiwUCcyCXfOk5QO0/btFwMoLdUYAO/ueJfSsyVv0kqfeH7Sn6OLLynkRma/3bJGRkfKasHp2quGSvkpCfHy8ImCASN/QoUOF2qHDuqysTHdhWBFY7G2HQCZEqzeqm266CQMHDkRERASWLl2q+Iz6zlP7VY0bbrjB0KePJzIQCHfSLywsxJw5c4T7c6qxfft2Yc2xkQAiTQwd1E7dKK0WdAfCq53UqFEDkiRVKukTyaPIwuv1YuzYsZrO7YC+KVkPZln3rezPAQMGYODAgYr36AIaFxdnmfRFRkYqLrLkLG819Y3e33/ggQcstccLK2tKLXe9Xq8sV//880/uHIUs6PmjoqLCzOK7du2ybTFgNYZvvvmm5fbY8SopKZHPDic1fWprkZ0cdSzpY10b7JK+Z599FkDFulcHifHCqPYvKVCcqhbkkr5KAuVHAso1fbSYRRcZba5QKKQrmKxsXC3HZvLLs3OoRkZGombNmmFmhXbt2gEwLnqthzlz5iiKg6s1fbxaL5b4+P1+3bQVVklP27ZtLf2eKEpKSixp0NhkxlqmrIsuugjp6enCJRL1CKUdHxR1sEYoFEJpaSkkSXIkQakWRNNrsDAKZrESJGTka2V1f6rXNTmG2yF9gDI/G2lnrPZRT5sxbtw4S+2x2Lt3L/bt26f5mZU1pSa2ommUtEDP7/P5NNuyIuu/+OILtGvXDtOnT1e8byftEUv0A4FApWj62PJwb7/9ti1riZ7p3i7pI/Tr1w8ALGtOx44di08++UQzOpf2bdOmTS21rYZL+ioJrHk3GAzKm9kq6QP0N7wVPyQj2L1Napm7OnTogPnz52v6EvKAPVDZ5MyANa1CkyZNdEnfrl27hNvLyMjADz/8IPx7VnDixAlLxPTxxx+XX2vdSFNSUrBq1SpdPy09VAbp08IXX3wBwLnAJTVEnbpZsPtd7dpgpUj60qVLMWzYMM3PrD6/+sAiMtq1a1dbpI+9dJWUlMDj8Vg2Ren9fTtBZoQGDRroap+tjGlKSgreeecd+eecnBxERETYMsOx86Alh63I5iuuuAKbNm0K05bakfP16tWTTZsFBQVy/ji7pI+VaxMmTJBf293zeloy0bnSWp9sCiGrCgOfz4err75aU1bccccdWLJkiWNKBZf0VRJY825paalMzEQXWfPmzZGWloahQ4dW2mGnLqFl9+9oRUD6fD5cfvnljpS5Umv6rLSZmpqqSfoaNmxoKTS+Xr16tjL860FLyOTn51sSLuw4paamhkUr2iX7bNF0gN/XUg9qv9OVK1cCcJb03XDDDfJrO+WpWE2f+rmtlovTKicIWJ8nNTmn/F8tW7a0RfrU+y8yMtKyVkZPPjodAa2GVQ3dzTffLL9u1aoVAHuXB3YetNpxKt8n/Q07ICLFmrHtykC9PWh3zzul6aP5YV2K2Ko2MTEx+Oqrr8JkIS/Yi/KQIUMAlM+52q/XDlzSV0mgm39paSlCoZC8WUWFS7Vq1bB//37873//qzTSp44MsytYtG7ldttkn33x4sWKnIJWSF9cXJwm6bPic0ggIVqnTh0sWLDAcjss9LSHVg5BVqD4/f4w3zG7h4B6HswCHMywfv16Rak8p1MUAeVaEIIdzWR8fDwKCws1D2qnHLAJTjz/0aNHZa1CcnKyLdKn9i+1Y3nQ+t2RI0dabo8Xdsb0nXfewQsvvIABAwbY7gcbTKVVOeN0In3kd8sG8vh8Pls5T/Wq19h9bq1LiN/vx+zZs4Xb+uWXXxQXsu3bt8uvfT4fBg8ejNGjR1vqJ6vp69Gjh6U2zOCSvkoC+fRNnDgRANCtWzdMnDjRlm/KyYpatLvBtDR9VkxcLFgBtXjxYsVnVsYlKSlJziPGQjRZJwtWsLAHoWjENgCMHj0asbGxuOiiizQ/t0v6oqKi0KlTJ3Ts2FF+z+phTc9N64Y0dHaTiUZGRipu6HaTkWuBnacRI0bYbseJ8nB6WLp0KZYvX27rb1BlipiYGFmTcPbZZztK+gKBgC3/q/fee08OsKpbt25Ygu7KgJ0xvfnmm3HPPfc40g/Kc3fixAkF6aNodidJn93LSL169eDxeDB37lz5PZ/PZ+ucqlatmmbeQyefm7B69WrFpY8XnTt3Vig2KH/iSy+9ZLtPrPuTHR9jI1SehKriiI+PRygUkjU+eXl5Ch8FK3B64S9cuFAmPtHR0XKQhd30Imw/e/fujYEDB8qmJBEsWLBAjmrS6tOQIUMspZYByk0xbMZ/gh3SB5TnVZwwYYJiDNhkoLyYNWuWoYnACvFhhTwRPJYIWp13+j36v1+/fvj6668tkV011PkZ1e9Zxfr165GSkqLI+G/n4NfSNtetW1e37B0vIiMjZZNX9erV5YAoq2jZsiV+//13REdHo2/fvopKL/T3RGH3QqfGiBEjwnITVhY+/fRTFBYWOpZSyS6ojOe+ffsUUd/JycnIy8tz9Ayw6wvu8Xjg8/kU/aT+tW3bVtcn1QxaGne7clkLdtYtOw/79+9HixYtLPurs+jSpQtCoRDWrVtnOTejGVzSV0mgQ4CcutkwcatwOmBj0KBB8uu1a9fivPPOc6RdtsZhenq6XE9VFGxaGa1nnzdvnrCwvuqqq7B582Y0b95cc07sCpc///wTALBu3ToA2qkXrCI1NRU1atTAn3/+6ZiPk5OHHbWlTuNhF3Xr1sWBAwccJX10WWCjwu1AK4VOhw4dbJO07du3y+XxnNBwvvXWWxg1alQYubND+tR785lnnsEFF1wAwHoKi5Nl1UhLS0O3bt0qpW3RCh9AhaZv//79Cv+25ORk7N+/v1LIjx2o0xERGaJSl1agNfd2/G31YEcusxfo7OxsR4PWPB5PpRE+wDXvVhroECBNGkX22QFt+Dlz5mDs2LFISkrC4MGDbbcLiBXxFoEdHzkWWqTPCmH59NNP8ffff+tG8TllprHqw6kFiiaWJEk285xOpI/aILMuJQ13ChQRuHXrVgDWzOV6sFvHl6Cl6dPyyRIFezA5sZbi4+M1XQbskD4AmDhxolzGr0WLFmjdujUkSVK4D4igMsx5BDZtS2X+HSslyWgdXXnllYr3KUBCLy3Q6QInxtPj8YT5A1cG6bND1BISEvDQQw8BKK8cUtmBRk7CJX2VBNq89L+6Nq0VEOlLTk7GSy+9hOzsbLkChl3QonUiASRL9Jy6mTptfmGJw6uvvorPPvsMK1euxIMPPuhI+06SPjL5XH311bIviRNR0E7h/vvvR2RkJBo2bAhJkhzTGBNoPe3duxe1atWylfRZDae0sFqavtOR9OnBakopwoQJE2StphP9rExNH7t+KpP0WZV9paWliprrQEVwnBMWo8qEUz6tbFQ9YC8iWg2KsrabXYD6ePjwYcfTU1UmXNJXSaBDOTs7G6NHj7a9wIAKIVIZtwpatOpKCHbhFOmjwygzMxMLFy6U6w9bBavhiY2NxZAhQxyNlqJDy6mDuqCgAC+//LK8ruzmwyI4QaYHDhyoyEXpNNg1pC7PZhdOXSa0SLgT2omTTfqcOFyd6GdlkjEWlUEuybfL6lhq7SO6jGsFOZxOcGrennnmGcXPdt0kAGDq1Kno2LEjFi9ejD/++MO2uxQlJT9w4ICr6TvZ2Lt3L2rUqIFevXqhV69eYclRTwXYQ4CKZ9sFCZHKWGBOF3UmOGXepcM5KSkJgwYNwqWXXmqrPfZg0sqCbhdkjrFSgUQLVB+VtEdWAmO0cLo4sPPidNJwstDS9DlB+qKiouTD6XQnfdS/013Tx6IyyCVFXdq9BFFkaWRkpOwX3aVLF1ttVjacGk+67MTExECSJLRs2dJ2mw899BA2bNiAOnXqyNo+O2Bdos4kTd9/JpCjZ8+e+Pzzzw2/EwgEFDmE2Mg9p8EeAk753VWmps/v92PSpEkYPny4o+1qpW+xAiInTgezAJB9kZwE3QKdXmOUW9Cqpm///v2KZKpnAuljLw5O+MZWBirLp8/j8SA2Nhb5+flVivSdLE1fZfydMWPGIBAI2L7sf/rppygqKpK129nZ2Y5UJpkzZ45uNSK7cErbT3LJqUtzZYB9VlfTdwqwdu1auW6onnZpypQpSEpKkv9ZrZPHA6fNUEDlkj6Px4NHH33UEX8pdvztJuglVAY5eeONN7BmzRrH2wUqyOnFF1/saLt2SV9aWpoiMoxe2y2UXplg+1YZpN8JVGbEIWk9KpMIOUH6SC45cfDTeFa2BqUyxjQ6OhoPP/yw7XGIjIxUnCNJSUmOyMEb/rvmiAAAapdJREFUbrgBY8aMsd3OycD9999/qrtgiClTpgA4szR9p6cEFcRZZ52FXbt2YdWqVTh69Cjmz5+v+b3x48cjJydH/sdqPJxGZSyCyiR9lQWnzJBO+xoCwK233iqnlqgMHDlyBJ999pmjbVL0nlPj+uSTT2Lfvn04ePCgI+1VBubOnSuXu6rM5Md2oHUYO6HpA8pJn9/vr1St7C233IJzzjnHct5LoEIu2anIQCAyVlnmfNJGniyN4n8dlbE2JUnCs88+63i7ToIupJXlz1wZOKNI3+HDh9G9e/ewfwUFBYiLi4PH48GVV16pmyPI7/cjMTFR8a8y8cknn2DJkiWOtXemkD4SpE899ZRt3zvCggULsHr1akfaOlmoWbOm43P1zDPPoHnz5o5FnXq9XkejYSsDKSkpuOuuuwBUjnD95ptvsHz5ckfbvOCCC8Kc0a0iJiamUk27QHlVju3bt9uSid27dwfgzIWENH1avpJOgAIjXNLnDJzy3T7TQHL4THr+0/ParIPatWtrmuPy8vLk16tWrcI555xzMruli6uvvtrR9s4U0vfqq6+ibdu2eOyxxxy7AaakpMiHSlXGZZddpkhaXVVAmvPK0PQNHDjQkXYkSZLXu5NuA6TpO93xv//9D8ePH3ck9yHNc2W5HXTp0gVffvnlSQsY+a/i7rvvRmxsrGzmrGo4k8y6hDOK9OlhzZo1eOyxxxAbG4tGjRrh6aefPtVdqhScKaSvdu3aePzxx091N1z8h1CZpM9J/PLLL44nOj9TSB/gXLLrhIQEvPnmm3J9YKcxZ84cXHPNNY6XkKtqePHFFwGUa8speXpVgkv6ThH69+/vWFqU0xlnCulz4cJpkHA93X1nOnfu7HibZxLpcxKjRo2qtLYTEhIwdOjQSmu/qmHFihWKSidVBWfiWfyfIH1VBUT6XD8UF1UNJFxPd01fZaCqkj4XZw6qV6/umJb3TMKZqOk7owI5qjpefPFFpKennxG51Vy4cBJkhnO6ru+ZAJf0uXBxeuJMvISeeT2uwujduzd69+59qrvhwsVJh9frRVFRUZUkP61btz7tzdouXFRluNG7Lly4cOEwzkT/GSfw8MMPn+ouuHDhQgOUPJtK750JcEmfCxcuXLhw4cKFIBo1aoSVK1cqqhyd7vBIZ5Je0mHk5uYiKSkJOTk5lZ6o2YULFy5cuHDh4lTCDeRw4cKFCxcuXLioAnBJnwsXLly4cOHCRRWAS/pcuHDhwoULFy6qAKq0T58kScjLy0NCQoKb+86FCxcuXLhw8Z9GlSZ9Lly4cOHChQsXVQWuedeFCxcuXLhw4aIKwCV9Lly4cOHChQsXVQAu6XPhwoULFy5cuKgCcEmfCxcuXLhw4cJFFYBL+ly4cOHChQsXLqoAXNLnwoULFy5cuHBRBeCSPhcuXLhw4cKFiyoAl/S5cOHChQsXLlxUAbikz4ULFy5cuHDhogrAJX0uXLhw4cKFCxdVAC7pc+HChQsXLly4qAJwSZ8LFy5cuHDhwkUVgEv6XLhw4cKFCxcuqgCqNOmTJAm5ubmQJOlUd8WFCxcuXLhw4aJSUaVJX15eHpKSkpCXl3equ+LChQsXLly4cFGpqNKkz4ULFy5cuHDhoqrAJX0uXLhw4cKFCxdVAC7pc+HChQsXLly4OIMQDAZx7Ngx4d9zSZ+L/xx69OiBV1999VR34z8BSZLwxx9/nOpuuDCBx+PByy+/fKq7ccrw448/4pNPPjnV3XDh4qTh9ttvR82aNYV/zyNV4dDV3NxcJCUlIScnB4mJiae6O1UOxcXFCAaDSEhIcLRdj8cDAG5UtgOYNWsWxowZg507d6JJkyanujuGoHlftWoV0tPTT3FvTh5CoRC8Xi/atGmDLVu2nOrunBK4e95FVUNaWhr+/fdf4TXvavpOE4RCoSonsDp16uSS7UrAkiVLEAgEHGnrzz//BABkZmY60t7JwHvvvXequ3BSUVxcDADwer2Otx0KhRxv04ULF/ZBfEF0j7qk7zSB1+vF7bfffqq7cVLhmg2dx6FDh9CvXz88/vjjp7oruvj444/h8XgcveSUlpbKrwsKChxr948//sDrr7/uWHuVgcLCQgDApk2bHNX0SZIEr9eL6dOnO9bmmQJJkhAMBk91N04pPB4PnnzyyVPdDRc6IPkpuk5d0ncagLQos2bNOsU90cemTZsUB6uT+PLLLx0jAFVNW8pi2bJl8lrat2+fI22S2cxJjQ+RKCfJGREf9Wu76Ny5s+OXMY/HA4/Hgzlz5jjSXlFRkfz6iy++cKRNADh69CiA8v1Z1TBixAhERUWd6m6YYvz48ZgxY4bj7ZIcfe211xxp78svv6yS6+hkQNSq45K+UwxJklC9enXH23399dexcuVKR9rKyspChw4d8MgjjzjSnhpXXnklZs+e7UhbTh2kLIqKijB9+nSUlZU50t4jjzyC5557DpmZmVi2bBmuuuoq223m5eWhT58+aN26NQDnzXKBQAB79uxxpK3o6GgAwMUXX6wgLHbAEsj8/HxH2gTgWP+08PXXXzvSDttHIulOYO/evQBgyVlcDzt27HA8GT576N19992OtPnhhx8CAEpKShxp79ChQ2jXrh1OnDjhSHuEqVOn4oEHHnC0TaDc3x0Ajh8/ju+++852e1deeSWuvPJK2+2oEQqF8OKLL8Lj8Zy2gTwZGRnweDwYM2aM4/MPiJM+SP8R5ObmSp07d5bi4uKkrVu3cv1OTk6OBEDKycnh/ju7d++WtmzZYrWbYZg3b54EQP5nF3l5edI///zjWHuSJEm//fabBEBq3769tGXLFungwYOOtMs+txN9DYVCjrZHaNGihQRA+v777x1pT/3cAKRQKGSrzW3btinaa9WqlaN9vfDCC4X3ih4GDRokt3vDDTfY76QkSffcc4/cZqNGjRxfo8Fg0JH22DaHDx/uSHubNm2S23z88ccdabOwsFD6/PPPJQBSYmKiVFpa6ki7AKQePXpIGzZskH766SdH2ly7dq1i7TuxRuPj4yUAUrdu3aRjx47Zbu+FF16QAEgff/yx9PXXX0udOnWy3aYkVaylrVu3SgcOHHCkzW3btkm//vqr3PbIkSNtt0lt/fzzz9KoUaOkkpIS221OmjRJMe9dunSx3WZeXp4kSZK0cuVKaceOHbbbkyRJeu+99+Q+XnvttY60KUmSVKdOHQmA9MQTT0hZWVncv/efIX3BYFA6evSodMMNN1Qa6duyZYujhGLz5s2OE5/09HTHic/8+fNlYQ1Aio2NdaRdp5+9pKTE8WcvKyuT26tZs6YjbWqRPruk4ocffnCcSGr19fDhw7bbHDx4sNxehw4dbLcnSdpjahfsJSItLU165JFHbLcZCAQcX6M//fST46SvcePGin6++eabtttUX8qcen712l+3bp3tNmNiYuT2nnrqKdvtvfjiixIA6ZlnnpESExMd2Z8bN25UPHe1atVs91OSwvfSqFGjbLWXnZ0tt9WwYUMJgPTLL7843s+2bdvaak89nlFRUbb7KEmS9NZbb8ltduvWzZE2JamC9IleIP8z5t3IyEjUqFHD8DuBQAC5ubmKfyIYOnSonS6GwUmfJsLq1asdb5PMMRER5cvFCZ8pp0ylLCiKkeCEDyLrz3X06NFK8xm021ctk+aBAwdstakFJ6KC/X6//NopM3S9evUcaYdQWlqKe++9V/45IyMDkydPtt2u2rT50EMP2V5TlWGC/ueffxQ/O2HmrCxTeVZWluJnJ/xZ2b6KnhNGePTRR+X27I4pRdYTsrOzbbUHhMtQwH5UeK9eveTX5DKg9Xfswm6bO3fuVPxcUlLiyLpnAy0iIyNtt6cFEbPxf4b08WDKlClISkqS/6WlpQn9/o4dO+TXDz30kO3orsogPpWBESNGACgP5nAKhw8fDnvP7gZTExK7PmiBQABvv/224r3Kiuiz2+6RI0fC3rNL+rR8r5wQ1nXr1pVfb9682REiXb9+fdttsFi8eDFeeuklR9sEgOuvv17x8/Tp05GTk2OrTfYS9vTTT1dKAEJKSortNpwgJWpMmjQJ11xzjeI9u+v+4MGDip+d8EHU8rW0e+l3MmCJ8O+//4a9R5d9q9i8eXPYe3Yvj1r9tHuBJF9jFitXrrQ9/+y55pQ/67XXXqtYp4sWLeL+3SpF+saPH4+cnBz5X0ZGBvfvbtu2TfHz9OnTbTm47t27F59//rnl3z8VsHs4sfjf//4X9p5dIagWJHaFf3R0dBgxf/rpp221qYcXXnjB1u9rRZjaza2nlUPRCU2f+lnp9m8VgUAAP/30k6021NA6QJKTk221mZmZie+//z7sfbtEWq1Bq4yLiRNtVoYTu1ZqIrtkSE0onND0aZE+u/3U+v3Ro0fbalPrWZ3M/9imTRsA9nNpspaN888/H0C4xlcUrAWC0K9fP9SpU8dWu2xfN2/eDI/HY5ug2glaqVKkz+/3IzExUfGPF2+99VbYe3ZUtRdccMFJKZtkpTZfZUOSJGzYsCHsfTuk74cffggz8alv7E5g0qRJjrY3btw4AMATTzzhaLuAvUNWT/tml6CwfUpKSgIArFu3zlablbGPtA66mJgYW22qTaYEuxpprcPfjhVh6dKlip89Hg+2bNmCmTNnWm4TCL84Own2MmZnjc6YMSMsLyPlldy+fbvldrWwfv16W7+vJS/ffPNNW5pzrTbtavpY/P777wCAuXPn2iLT7CXk5ptvxjvvvIPjx4/bshY99thjmu/bzQagpeG2o/HTUxDwrvv/FOkbMGAAFi9ejFGjRjmeukNLa6J1M+DFoUOHNN+3umGLi4tx3333hb3P+lNYQWXk5tNr89dff7XcplYC3cowJzmNhg0b2m5Dfehv2bIF0dHRtkifnmbHLunr0qWL/Do7OxtpaWm2k3RX9holX2Et848I9u/fDyD8IkaaCqvQ8pWzo0Xq27ev4mdJkvD888/jjjvusNwmEE5unUhV1aJFCwDAmDFj5Pfs+A4+8MADumfHb7/9ZrldLdhNYaI3x3b2KJG+/fv3o2PHjgCAl156yTH/czb9jx35zPbH7/fjrLPOAqDt5sIL9fnDuqEQWbUC0kBSOi3AnhVG65wH+J/9P0X6Fi1ahIMHD2LdunW48cYbHW1b61Zi50ZFfjd+vx/NmzeX33/zzTcttbdgwQLNG4Dd22llBJuwJkJWQGuZfHlRq1Ytxc/R0dH48ccf8eOPP1puUw90eDuBBg0a2G7j1ltvVfxcu3ZtVK9e3ZZgYeelX79+8mu7pE+t7UpNTbVtlvF6vYiLi8PgwYNttcOCXfc0R3ZJ38GDB+H3+x3Ly5mTk4PBgwdjxYoVmp/ZxRdffBEm4+xoEAsLCxW+l3YuzYRmzZph0KBBqF69Og4fPoxGjRo5FiSgJuNW5X1ZWRnGjh3rRJcU0CN9dmQ2abXi4+MVlqw1a9ZYbpMFS56cIn1RUVGoXbs2AG1fcasgIgmUl7a0iuzsbPTr1w9r1qyRibRdmaeF48ePc33vP0X6KgszZszAr7/+imuvvVbxvh3hQsRHUpX7+fnnny21x2ombrjhBgDAnXfeCcCeoGa1MHPnzpVfL1++3HKbo0aNAgDMnz/f9kFKUDvy165dG5999hkuvPBCR9pnsXXrVkfaGTVqFOLi4my3oy69Vb16dVSvXt2Wpo8lfS+++KJsKh8/frzlNlnMnz8fQDkRmjVrlq3LSU5ODlJTU/Huu+/i/fffd6R/dKhMnDhRJid2ycSBAwdQp04deDwe236MQHn05tdff4158+aFfWbXtwsoP/jVsEMoioqKEBMTg/POOw+A/cCtvXv34uuvv5YDzGrVqoVatWo5Rvq++eYbrFq1Sv7Zqh8Wm4S7RYsWjvlcsqSPtXTYmSP63bi4OPh8Pvl9O0m/zzrrLDRr1gxlZWWKy7nVi8nu3bvRp08f+We/34+EhAQAziZmJy0yYE/Bk52djeTkZCQlJcl7lZegmYEl5rwmY5f0mWDixIl44IEHcODAAdkHiWDVqZ31NSspKVEIAbqxiIIVSKmpqZAkSb6pdu3a1VKbANC9e3cA5Vq46667Dh9//DEAoHfv3pbbJCdUpwgfoFSXn3feeahWrZpjbathxzeJFR41atRQCFatiDQesIS/efPm8Hq9SElJcUzTl5CQIJNTp0xc5CdEJgmrlx2g3DcqMTERKSkpGD58OJ599lkkJSXZPvyio6MxYcIEPPzwwwDKD5tdu3ZZbvPAgQOyycgJDS8rf/x+v6KqjUg0HwuWQGqRJzuHamFhIWJjY7F48WLccMMNOH78uC2f40aNGgFQBmxFR0c7khrmt99+Q3JyMtLT0+X3rJK+K664Qn69ZMkSREZGysRX7T/Ji2nTpmHWrFno3r07NmzYgNtuu03+zM66p4t9VFSUQjbZ8esrKCjAqFGjwtqwqulTX+S7desmyyenLFOXXHIJevToIf9sJ/AiKytLPo/S0tIQHR0dlm7HKr777jusXbsWAH/AkUv6TMAWnK5WrZocfQRYv/mrb7hknuvUqZPlGwA74RMmTABQ4Xhu1VeOJRMkDJyM5FKbd+yk3Xj++ecBlBPKDRs2VCrp00pBwAvWX6hDhw6Km5pVh372kPvrr78AlBNKqp1qt00KeiKSbjUqmiUMpH3u1q0bAHvC+vfff1eYYqpVq4acnBzEx8db1nYeO3ZMTlMyaNAg+X2rZq5AIIAFCxYoIgHZmqlWIvlZ0hcfH48bb7xR1v6orRK8YNMy0R6aNWsWpkyZAsCeA3phYSFiYmKQkpIiz/9dd91luT0txMTEWJbLrEWEdbkh2E0ttGzZMjnYjIiL1fKTdBGJjY2VTYYEO3spMzNTPuNY3zGr1qK8vDzk5uaGKUwA66SPvSiEQiHUrFnTUdLXrVs3zJgxQ6GVtDr3a9aswZYtW+TI/8jISDRp0iQsJyAv1LK3a9euaN++PQCX9FUK6tWrh06dOsk/W81bp76JPvbYY5AkCXFxcZYdsEkYT5s2TY5KthttyPaT2rLjKAtAEbWrpemzsrnY37n66qvh8XgUmhS7wvqDDz6QC9knJiZi8eLFltukxLG1atXCFVdcoTCbWDX5aR1y9evXx8aNGxW5JUXAzj0JVDqgrJJeNjqOBNWyZcsQFRVlmUyEQiGcOHFC4Q/arl07+bWV9RoKhTBp0iTN6O+bbrrJUj/Hjh2LvLw8Rb47NvmzlcTvLOmj/RkTE4MBAwZYliN00DVt2lTWdIwePRoXX3wxAOuavr1792LFihWIjY0FANn/0iop19t/0dHRlp+dfTbqJwu7ZlnWlYMuz3Yvp+wlhLRHdrSxe/bswdVXXw0AGDhwoPz+JZdcYqk92vOsKZe00FZJn1atabukj53bn376Ca1atVIUe7Aq79PT01FWVqaY52rVqlmWd6zWeO3atYiPj0d0dDQiIyNd825loH79+nj++edlbc1zzz1nqR1WKLGan5iYGMumiUAggDp16uDBBx+U39MSXCKgfrI+KcOHD5dfW0lf8sorr8ivScslSRK+/PJL7N+/H7t37xZuU+u23LRpU/m1lZs/u8l79+6NK664At988w3mzp2LEydOWNbKkfl+xYoVYfmarGp5tchzo0aNkJWVpamx4AGN2RtvvCEfUFdddRX8fr9u6hEz0Hq67bbb5KjlmJgY1K1b17IQzMnJQVlZGVJTU+X32NQ9VkiF3fyGWtAKKLKbCoMlfewaSE5OtvwMRErV+QTJv8/KPIVCITRq1Aj79++XyemQIUNw3333Wa6ewcrJzz77TH6dlJSEH374QSgHK4ElJpWRV4+9hD/66KMAgLPPPttWmywoMtbq3AeDQWRmZiq05nZBsoMlK/3790ft2rUdza7g9Xrh9/stkz6tSlZswJXdvHos6UtMTLQcyMGeZaSA8ng8SEhIcDV9lYFevXohMTFRDpSwChIeo0ePVrQVHR1t2TRRXFwcdvjb1fRRP1nymJSUJPuPaCVGNUOzZs3k16zJgA5qK4fKyJEjw967//775ddWNhjd/ObMmSMLwYEDB8pkxarGs6ioCPHx8TjnnHMAKIWJVUHQrFkzxMTEKA4t8ncCrDnM06HKRu5GREQgOTnZsgM2rUe1L2x8fLxl0kdBNSzpY5MoW/EZowhAdm/azaNIa93JahnsOLLms/j4eMuHH7l0qFMJ2XGUZwkvO8/169fHzp07LaXDYIkN6+NFGkkrPo1mJMRuYnJWPickJKBWrVqWL/kkk1kZSsRiyJAhltqkfe2ka0xmZia6du0aRm7JBcMOaE0S4uPjLWs5SU589NFH8nusTLFrLWJ99X/99VcsXLjQkmWHdQ9hfS5FFEYu6ePEt99+q1hkt956Kzp06GCpLSJTdNsj/PHHH/juu+9kvywRaJE+u5GhtIjUGkM7qRbYPrK3aeqrU6WFoqOj5cPAyo2SBJI6gTc9u1WClp+fr5gXlvRZvaHn5eXhmmuuUfSVJX16OSGNQHOvvjjExcVZFqwUxKDWECcmJlpOKrtu3Tr4fD7ZNxBQrk8rc0+Enr3UsKTPin8TRQLqJYC1ApaE3H333fJrO6QvGAwiIiIiTAtpR9PHrmt2vV9wwQUAgK+++kq4TXb/sfvpmmuuQd26dS2lVaI2yTGeQPn01FHyolDvJauWnVAoJCsH2AsdO2esdYYXtFf0SJ+VdZ+RkaFZ7rRatWq2NX3kx01ISUnBI488YkmOkky76qqrFH0kWJFNrE88qzUkX2st7aIZqB02tgAoP6Nd0ucw1JMuMshqUP1NNZki504rvoKBQCCMjLEmTisHNQlOtbCyQ/rYjdC5c2f5tdPRVwDw2muvASg3UYqCzILsbQ+oeHbW30UEBQUFilQY7IFllUjm5eWF3XpZjaoV4UprW32RsEMoAoEAatWqFVbW6Ndff0UwGMTGjRuF2ywoKEDt2rV116QVkkJmElZ7xl5QrOTSLCsrwxVXXKHwE7KLQCAAr9eLQCCgcLuIi4uzRfpYDQIhNjYWHo/HkhzRM7F37NgRiYmJliwS7MGunvu6detaytdG+6RJkyaK9ynI5tNPP7Wl7VObjGNiYixdck+cOCGT58aNG2t+h2SfCLQ0fWyQiJWcpxkZGWGVkoDyvWWX9KnPT9q3bPAlLwoKChATE6MIVIyIiJD7boXwsrKHdbOh4CUr5JQsBay5HCgfC9615JI+TtCtlGDH/442l1ZEE2DtVqGl6YuMjMTEiRMBWNMw9O/fH0A46bNjoqKbaY0aNRRCkDawFZW3njmD/JOslOmig0qdSNduQtkDBw4oCFqHDh3w1Vdf4dJLL7Wl6VOTPq/XKzt2WzGjVIamr7i4WPOAp/JeViprFBQUaGq0N2/ejMjISEulnkhYq8eUtIlWUuuUlJRo7hu9Q5sHgUAA0dHRYe3GxcXh33//tZReRo/0RUREIC4uzhKJZsdLTXwSEhIsEVQyx/3xxx9hbVrNUUkkRE8uA/bq8KoTyO/atQsvvvgi/v77b6F2SFP07LPPKvIIAlCkbhGFlqZvw4YNCAaD8Hq9liJOjxw5oukjWK1aNWRlZVk661q1agWv1ysHnBDIR9xKedT8/HzNvJTUPyvknPbKd999p7jsvfzyy6hZs6YlORoIBNC9e3c5QwdB5ALhkj4TVKtWDdOnTw9Tefv9fuzdu9eSwBo0aBAGDBgQtjjplmHlVkEHgBq08OzkrlI/u51EnUT61KYSOrjV1SV4UFpaik6dOoWFs9eqVQsej8dSKToiYGy0JWCP9EmShG+//VYm04TBgwejZs2ajpI+oMK3zQrpKy4uRkRERBgBsKPpy8jI0Ez5Q7kgrWhR1OZyQtu2bdGwYUNLJCUvLw8+n093rq3sTz3S9+yzzwq3RdDS7gMVhzer6eeFHukDygmalYOKDapQyw6rl4hjx44hMjJS9o1lYbUaTXZ2NmJiYgz3uBXtVNOmTTFu3LiwcSW/YVENN7kfXH755WGEijSAojJ65cqVcsJjNemNjIxEWlqa8IVckiTk5+dryqb4+HgsX75ckbaIB3/++Se2bduG2267LUyWDBs2DIC18n5///235pgR6bNC9okka2n3rfoxl5SUyFp3Fn6/H++++y5XgKFL+kygpUEDKtJWqDWAvG1qCRZaxFYWWGZmpmablM+JNffxokePHrj00kvDbqh2IpkCgQCaNWsWJqxYDZCoxqegoAANGjQIMxsC5cW4rZAUthwRCztazt9//x1ZWVmaJDQ5ORnr16/H22+/LdTmiRMnkJ2drfnsJLxFD6qsrCzcdtttCIVCYcLFqrDasWMHPvjgA83IX9pfVoKY9DR9QDlJsUr6tA4qqvZhJf9hMBjUXDt6BIsH2dnZYT6ngPU8ioAx6bM690ePHsXgwYMxevRozJo1K6xNK/vz6NGjSE1N1YyATk1NtWzeNQtiEN1LwWAQBw4cMCSSoknq//nnH0RERGjmNSWSIqpBmzZtmvxaa00lJSUJz31xcTFCoZCmBo3GY+rUqUJtEknUWuPUlpWo+Pfff19zX1Ngh5XAPSLRbL1hgtULVCAQ0JQjJFd5Ukq5pM8AkiTpatBowqw49+oRSUrfIrq5SktL8f3334elWQDKbz1Wo8SOHTummVKANpUVjZ+exoPVyIkeWrm5uZqHNGDd1KNn3mSFt6jGZ9myZYiJidEkfaRRpBJ1vNiyZQskSUKXLl3CPouOjobX6xU+VH/55Rfdz5KTky35Hqq1myxoTK1o+oxIX3JysqW537t3r+Z6atKkCYYMGWIpHYjeumcJlmgeuIMHD2qSfSs+TWwf9MxjVg+qvLw8JCUlYdasWWEphOxo+vT8I9u1a4ddu3YJa7h5SJ/o2h8/fjwKCwvDLAYsRBPe7969G2lpaZrriS7kohcoVjumNf9WImPp+1p7ico5tm3bVqhNOnP0zhAAeOSRR4TaJLCl3Qg9e/YEUF420mqQoRbps3KBysnJwcKFCzUvECQHeJK8u6TPAMFgEJIkaQ7yAw88YKnNnJwcrFixQnMDURb98ePHCxEKuqGoNXKE2NhYS7fpgoICzQ1LUZiit8nvvvsOL7/8sq62jJyPRQ9VPWdhwDrpKywshN/vDxPI7M+it9SDBw+iXr16ms9vtUYwaR70TBpWKhQYmXFSU1Mt5RMkQqdlzqT99fLLLwsLVj1fHKC85JFoFOf+/fvxxhtv6OaPO+ussyxpkUpKSjQ1aKzgF332gwcPavpLsZHbojDT9O3evVvYEqGnOQXKZZYVH8ljx45pHqZAuZ+kJEnCUeuZmZmmpE9UjpLvodalh1ICWVnzen6HlOTbyC9RC2ZlwaxoZPWsJUB5iq4RI0YIX3TsuBbpgczrWqSPhSjp9Xg8ukFmiYmJeP/994WsWmPHjgWgrRT68MMPsXDhwrDAQy24pM8ApHHSmjQ2f5kIvvnmGwDAwoULDb8nEs5Nwu3bb7/V/NxqNF9BQYFmgmeKXNXSMhhhwIABAPQ3LpkVRG5AwWAQhw4d0i3hVr16deTk5AibjKk4vBFE6yfu379fd8zUpZR4oZdahmClFqkR6S4sLMTu3bst5VYDtBOG0/5aunSpsJYqKytLkZePRf369YUuEIFAAGPGjDH8TmJiomVfHC2yz2poRecpJyfHUIMEiF/M/v33X929kpCQgMWLF2tqlY1gRPrat29vKVuBkabPqlvDv//+K19o9SBK0NLS0lC/fn1N30Ny5RBtU89SBJTnKezfv79wMAPV1NbLvWpFI0v7RO9S5vf7hbX7dHZYCfrSA9VB1jPBP/XUUwDEtKehUAgRERFhARcE8rdlK1SZgUzMWudns2bNFOUijeCSPgMQMdMrjj5r1ixEREQICVbeQAARMwJp+vRuvjExMXjvvfeED4DCwkJN01m9evXQsWNHHDx4UOigIrMwCRg1iBCICMH8/HxIkqR7+JEGTNSxm4rDO4nvv/9ekaaGRWRkpKJ8GA9CoZAcraennbGS8NuIKFFuyp9//lmoTQrg0VqD7J4QNZ8Zkb7ExEShy857771nmtQ3MTHRks+tHulLS0vD0qVLAYgf/lRf2Agih6MkSXj//fd13Svob4nkEc3IyMDu3bt1Ta0NGzZETk6OMKE4cuSIrrwjbZ0o6cvIyDCt/22FoOldHiMjI+H3+y21aXSOiJpiWR9tIjhabYoqDsi/TM8CFRUVJZw4ngiPnoaQfBOtRAXrWdfIxCsiR48dO4aysjLd6iaktRMZU3pmu4miXdKng9LSUjz55JNITU1F165dNb8THx+vSJTJA94bmEibRLz0fJs2bNiA3NxcIe1hKBRCUVGRLvH59ddfAYQnMrUD+lsiRFIvnxyBSJ+oiXfVqlWmGh0RU0NJSQny8vLQunVr3e8MHz5cVyOihX///ddUaObl5eHLL7/kbhMwJn1kkho9erTQPNGNXktgsY7Xon6SJ06c0CV9ooSXZ29ScIiI4A2FQrqkD7B22fnss8+wY8cOXU3Jxx9/DEBMjpiZwq0EcNHlQG9e6VAUNcUeOXJEUeWABWn6RH36MjMzTc1jogStqKjIMFBDJL8a4aOPPjL0AxQlffT39bRS1KboZYfMpnpE2oqmj9agXrAGaWqt+LDrXZCIYIvsJVrPepYdukCJ9JNkvZWUNCxc0qeDb7/9FllZWYb+S1YSCtMk62kPCSILjL6rJ1zOP/98AGKRgmZEkpz9+/bty90mbVg2UoyF3++Hx+MREoKTJ08GoF9yzgrpW7JkCZYvX65L+i699FIAYo735LdkpJkRzf1I42SUmiMnJwd//PEHd5tABel75513wj5jie7Bgwe526QDw4wsiRCLjRs3Iicnx5D0BQIBboLGU8EmMTERpaWl3PuzsLAQXq8Xhw4dMiV9InO/ePFiAPraLCvBMdTWzTffrPk5zY1IpR8iJ3oapKZNm8Lj8YTlmzNCMBjEiRMndDVI8fHxiIiIENb0GQUFkfuFiGzavXs3lixZYugmIup6s337doRCIcNEyaKkj+Qc1XLVQo0aNYRLGnq9XvTp00eXoFnR9NEeotyeatD8WQkO0pPndK6K7CUqD6mXh9NKxgLqn0v6Kgk8Zli6FYocfrTB16xZY/g9K6RPr890eIssWsqXp6fp0zNT8kBPWHs8HuGbLwV/OKnp++mnnwDoB+sQ0RRJtUCJfY00ebGxsSgtLeUmkySs582bx90PHmRmZmLq1Km6hz+BV2CLrDsRTd+2bdsAVDivq0GHLe9eYte6XjAE+U7yaj1Y4qE399RPkcOffkePJJMssKLxuffeezU/J/IskquSnkkvsKBevXpo06aNbDnggVngWkREBBITE4U0fWVlZSguLtaVdxs2bED9+vWFZNM555yDnTt3GpI+UXnHY663SvqMZFPt2rVx9OhR7kuZJEnweDz43//+p/sdK5q+wsJCnH/++boaNDuVnfTG1gpB2759Oxo0aKAbYGelTVK0iEZ7q+GSPh3QwaunlQIqws1F0rYcOHAAcXFxutGmBFHS5/P5dBcDbQSRNik/kZ5gtQOjRWvF3AHoa/rI108k4jQ3NxctWrTA9OnTNT9v3bo1+vbti88++4z79ksHlZGWhEwTvGZ4o5QIaoho0PQSHhOIaPOSPvYAuuyyyzS/07JlSwD8pC8UCuGOO+4AAENNH8C/7tkbtB4JobHmDeZgCbxekAAdYCKRxqS11xsv+ruUGoMHJMfMNHmipC8iIsLwdxo1asSVVJZADu165l1AvLarmWUDEM+CQPvDaP2JyjueA1+U9PHIkVq1aqGsrIz78pyfn4/S0lLDQCOfz4cDBw4IPb+ZrzUF9/AGcLFyUS+tlBWCVlhYaDieUVFR8Hg83G2yZ8IZpekrKSnBv//+i/379yv+nY6gzX377bfrfichIQFxcXFCWqQVK1bI0UJaINOhKOkz0jpZUU8TjPr66quvAhB3LDVKnmmV9Ok9v8/nQ7NmzYT8GTMzM02jIhMTE1FYWKirZdKDEamhRN+8eQrNouNY8GoPg8EggsGg4eFHFTR4SR9bq1bPrYFIAS/p27lzpynxEhXW9Le//fZb3fkX1fSxe06PnMbHxyMtLU0oQIIOvhdeeEHz81atWnG3RaDIZb1Dlfa5SILyMWPGaCb5ZnHWWWcJJb+llDlGF1JR0kfy3mjdp6WlaSYXN8O6det0P7NKJI0g6ibCI0dorHnnyShdC4GsXa+//jpXm4CxCR4Azj33XCQmJnL7mlM/P/30U92odKukz0jD6/F4hHyO2bVsZIbnwUkhfTt37kR6ejpiYmLQoEEDNGrUCI0aNULDhg1t5ZSqTNBiMIvgFInm+/fff7Fy5UrD9Bxff/016tWrJ7TAnnnmGcMD0Mqi7datG2666SZDP0Ay2fCSSTr0jBat06QPKDdFiwjrzMxM3QNa/fd4NX1EntXJabXa5J0nHrPMW2+9BYCfoJHvoZFgpUOft02eZKnUpoimD6ggoFqg8Zw9ezZXm2TeMXJdECV97OGbnp6u+73k5GQhR/kTJ07gnHPO0dUeNmnSBK1bt9ZNa6IGO+56Ms8shZFVJCUlcZtiQ6EQnn/+eQD62QqoTRHSR/vYSN63bdtW2D8WAB566CHdz8rKyvDee+9x+zTyXF5F0zTxmncBcOeoJCJrNJ405rya4yNHjuDbb781rAHs9Xpx7rnncs+TVr1hNUiOiAYYmnGHoqIiuSCDGVh5fP/993P3QwsnhfTdeOONiIiIwDfffIPffvsNGzduxMaNG7Fp0ybhuoMnC5Sjzqyki0ipJ4rcNBPE5IDOC7N0JFZI365du0yFvGi7jRs3xsiRIw0DD0RvqQSjeapevTrWrFnDPaZmt0kWvH595557Lrp162Z4UNHtj/f58/PzERERYThPpLHiJWgXX3wxAGNhLUr6CHpaKaCCDPOSPlpzL774oul3Hn30Ua42ifQZmU9EzbvsXBqtUVGH/iVLlug6iROoqD0P2LnUW0801lZqmxpBhPQtWrQIy5YtA2CscWzatKlQ/j/KmWd0+NeoUcNSTV/aU1og4vPuu+9ytXX33XcDAO666y7d78TExKCsrAzjxo3japOH9Ilq+ujibiRHR4wYAUA/x6galBt0+/btht9r3LixbnJ1NXhIH2krRfJzmmn6CLz8h/Znq1atLJWZY3FSSN/mzZvxxhtvoH///mjXrh3atm2r+Hc6wijTPwsRTR8JNh7SZ7XkixboENNz0FZjyZIlOHbsmOltSYT0HT58GL/++isaNmxo+D2rmj4jUw+ljaDaqWYwyq1FIA0o7y1Vr/aqGiKkNy8vD/Hx8YamM+ofL0GjW7TRHNBziLoLXHTRRbqfzZw5E/Hx8dxmaPrbRqSbrAi8+Q+JcBr5TdnR9BlBhPSVlpZi9+7dpslYRUrmsXOpR3pr1KiBu+66SyhqvWbNmqYJtynowm7+MRYdOnTAzp07udukdUR5KLWQkpKC7OxsrosJqxEzIhTUlugF6r777tP9jJ7lueee42orPz9fDqLTQ1xcHOLi4rhJH5FZI9J31113ISIigltpwDuXNWvW5LbAEOkzqmDi9XqRkJAg7CPKm+eVR9tHY0TFHezgpJC+li1bWirddCrBS/qAcp8lEZ8UsyAOqwlg9UCkgPcAoDJcO3bsMPyeCOmjfFxm5nxR0te4cWM89NBDhuSLImd559MstxZQEbkt4ivHkzJHhPTl5+ebBnEQQfv666+52qT2mjRpYtom70FF5lIjP7O4uDhcdtll3MTHLE0RUC53Bg4caLrfCDyaPqpnfCpJ319//YVQKGSa9ik5OZn7oOKdS9E0G8XFxab7LikpCWVlZVzPz7uHqU1eWVJQUIA2bdqYWgwAvqTPlDQ9KSkJ7du31/0e5bATJbxGF0iR1FxA+eUxLi7OVINUu3ZtbvMulTQzIn2i2Rro/DLLHFGzZk05cM4MtD/NCJqIj6gkSfj+++9N9wlpOnnyqJK84ymzZoaTQvqmTZuGBx98ED/++CNOnDiB3Nxcxb/TEbwmPory++CDD7jbNjOPkJ8HbzZ9n88nB1U4AfJnM9PkWAkQMfOVEyV9PJUzKMUKL0Hj0fQNGTIEgDmBJ+jVXlVDVNPHS/roEDJDy5Ytcf311xtqPES1hzExMRg2bJhp5KEI8TFLU0Ro3bo1Vq9ezaWdIRObEenzeDxCpdhESN8vv/zCNabTp0+H3++XA3/0YFXTZwRR0sdTzpCil3kCmGgPG5lMgQrtGm+pxJycHFMzI7lK8KSXoYs2yQk9zJ07FwCf6ZCNNDVa96L1bHnkCFBuTRFRbgDmZEpE3pNpffny5Ybfq1evHrKzs7lM8bQ/zdZoRkYGJk2axNVPClChSjt6IJLNk1mB55LLi5NC+vr06YOff/4ZvXv3Rs2aNZGcnIzk5GRUq1bNlAScKvBq+kQm4ZJLLgFgbEIAKvLx8KSCKSsrQzAYNF20lG2d50ZJAov8R/RgxVfQbEwrg/TFxMQgMjKSm1DwHFRdunRB+/btdcvsqFEZ5t3c3FzT8WT/Js9hUFRUZFqsndrk9cPiLWknUt+TVwh27twZOTk5XH2lw8SMnIpo4nkvYz6fDydOnNDNDcni33//xaBBg0wPahGfPl7SJ2LmopyTZnN/9tlnAwBX2hYinGY+cETgqISWESRJwgcffGBKEIn0XXLJJaZylObGrKxbWloagPKI8b///tvwu+z+NZIllUX6UlJSuNcT1Vk3S/klIu9PnDiBmjVrmipj6HzdvHmzaZtOkilCjx49AABfffWV4fdoDfFcSIuKiuD1em2nawFOEulbsWIFVqxYgeXLlyv+0XtOYdy4cUhPT8ewYcOEfSTUMMtVRiDhwlOSKzY2Fpdccgm3IyYPSeC9qVDBbx7iQwfAgw8+aPi9M4X00d/lJRQ85l1ATOtRGebdlStXygemUR8JPMSHR8tJbd5yyy0cvRQjfbzEfOLEiQDMhTURWBF/HLP9WVRUhGeeeYYrKbtR5QQWJD/06lKzKC4u5jqkk5OTkZmZyXXRo3VsZjJu3LgxsrKyuLQotI/N1hNdnCgpuhF4fDmBijXKs5d45Q2bxsdMllDQnlHkrhpmmk6WzBlp+lhiwCOfeNxEALGAGwC4/PLLTb+Tk5ODZ555huvSwZNKC6iwpPH01ayMJ2HmzJnwer1CZnijaH2ggvTxavqcIqYnhfT17NnT8J8T2LRpEw4fPozVq1ejZcuW+Pzzz8O+EwgEuE3LBQUFXJo+kUSlwWCQi6kPHjxY7q8ZeH0SRKIOeU1nVmoSmgmXhg0bYvv27VxtUk45HkKRnZ1tSmIJPMQHECN9IuZdnmeXJAl79+6Vb5VGfSTwtMtDeEUzwlPAiRl4SZ8kSfItnpf0idZhNQL5C33xxReOtUmkj+fWz7s+W7VqhUAggIEDB5p+l2SN2TORr+euXbtM21yxYgUAcyJJa/Tpp582bZP2m9mFmNJCSZJkKvNozWmVHWTBEg4zH/VgMIgaNWoInQ9m+4olfUayZOjQobJc4JH3vPtThPStX7+ea42S5pAnRyUv6SNljZl5FSjfS5GRkabnsoiPaP/+/dGjRw/uQA4eIknZRJzASSF9q1atMvznBNatW4d+/foBKFe/a90ap0yZgqSkJPkfqda1IBLIAZjfqMrKyrBw4UIuIjd16lQAfIc0Tz4koIJs8ZilqMKHmcaDV9NH5mrAXFj36tUL+fn5coUGI/ASXhGsX78e2dnZlaLpc9K8m5+fj2AwaOofyo6N2Txt3LgRGRkZXOahSZMmcafuyMrK4nLjiI+P5yJ9rODlEdaAs6SPIHLZMYMo6eNZn3Sh/u6770y/S3LJbI2KkD4ix3pJb62A9psZmWItL2YyjycxM1C+N2nNm0WHlpaWCgdUmK1l2pdfffWVoWUpMjISjz32GABzjWRBQQE++ugjRzV9GzduxPHjx03NmyyM0jkRjh8/zkX6aG/o1edlwePKA4hF7RcXF+vmz2RBZG/JkiWm383JyTF1u+HFSSF9vXr1Cvt34YUXyv+cQHZ2tjwxSUlJmuaH8ePHy/49OTk5hqVaPv/8czkJqBE+++wzAOY3KnLu5JlgEbMpJR02S4UiqunjOVR4+zls2DD5tVm6Gso9xuPfQ4c/D+l7/PHHuYIu6IDiISl+v99x8250dLSch8wIzz77LADzfrLO6WbzRKkDeMa+du3aOHHihClJKS0tRV5eHtd4xsXFobi42LQuNfWPJ31BzZo14fV6sX79etPv8oLm0Uo+ST1UBunz+Xx45JFHTGUDwE+mEhMTkZyczFVJqbi4GH6/n8v1hWCm9SByKuLbZDamPNUjCBTEYXb48+53FmaXbNKc8lwe6VnMSB9ZP3jOBV7SR2PDsz+oWsl7771n+t3du3dzFXPgXW+SJGHatGlcMpwCgyh5vRF4iaSIqTg3N/fMIn1ZWVmKf0ePHsX333+PTp06YfHixY78DTajfXZ2tuaNwO/3IzExUfFPDzVq1ODKZt+lSxe0adPGdNOIJFQUIX0UGm+2GURI3/3338/1Pd5+0oE/duxYU4JGjr9GKUMIIqRP1FfQKIkyISoqiktzu2/fPqxfv57rEPjxxx+RnZ1tSmjmz58PAKY3X/YGbzZPpOngiRqnv2vm2E2+dDykj/7ujTfeaPg9itzkSeqalJSEbt26CdXHNgOZ4cwONXYczWqBknzg0bKK+PfwrlE6zHk0PtWrV+fy6eM1Q7MwG9OSkhK5bikvzA51yt/J48NNssZMlvC68rAw23fXXHMNAL6ULET6zDTnlIKFxwxNpM+MrIicdbwlxQ4fPoydO3caVjQSxcGDB3H06FGu/XHeeechLi6O60LO6xMuQvrOOE0fa1JNSkpCamoq+vbti+nTp3P7WZmha9euMoH84YcfTNMZOImEhATTm5/IrY8WzCeffGL4PdYB1EzA0E2FN/qKB7ykjwS0mW8PfXfMmDFct24iFDyHf2xsrJBmxqiYO9vmokWLTA9A0rTwOOzSWFFCaT1QYl4zockKc7N5ogOaR7gQ6TMLVCDfJx5TMNWwNiM+dJDxEoq6deua5hfjrQQCVJA+My0Ke5iYaZlp3nmCjXg1CQC/Nvqyyy4DYK6JB8pNu88++6zpocV7+AEV9Vd5xlTET45+xwgzZswAwLeeeEmfFfMur9VAhPSZjScRTR4/3aSkJIRCIdO9RPuTTMxG8Hq9GDlypKkLwJYtW1BaWmqaqkcNI5krEuUcExODevXqcSV9FtmfBLO9lJuby125xAwnhfTpoUaNGqZh6rxo3749ateujfT0dGzfvh1XXnmlI+3ygCdvlxVNH+Vw0gNtaDNyCJQf0j6fD4cOHTL9bs2aNXHPPfeYfi8yMpIrozrVR7399ttN2wT4zQhUV5bHf4JIn9nmuuqqq5CUlIQ2bdqYtrl7924A5XnTeMCzBoh8GJH4zMxMTJ06FS1atDBtj9WImM0T9Y/Hv4ZI3OjRow2/RxGJPHNEAQdmWt6bbroJAAxrWLPgSSorciGgA5JIqh5EfP4otYfTkXy8mj6CiHbKaI8WFRXh008/5f7bVJrRTDNFmj4ekJuAGZkiIseTfokOcx5Nnyjp4yUhPBoi0tiaydFt27YB4JNNdBmkC4IeaA6Nqoaw4MmsQPtTNMWbUbu0NslqYobU1FRT0vfPP/9gx44dXJYFivBm+6KHM07T9/vvvyv+bdmyBd9//z3GjBnjaBm2GTNmYPXq1Zg7dy63YHACPJo+3kTLgFI7M2XKFN1NThuaZzFERETgrLPO4kozkZeXx+UHRLVizQ63srIytGrVivugSk5OxvHjx02F26xZswDwmWJJWJv1tbi42DTUnsCjnWEPnMcff9y0Tdr8Ruar2bNnA+CLeAMqDjOzZ8/Ly0Pjxo251hPVgDTLOUlmTUrAa4Q2bdrg8ssvN70ll5aW4txzzzVtj0Dls4xgRuBYfPzxxwDMIzhpvOn7RnjooYfQsGFD07xmoVBIyGzKo+kTSWcDVBB9IyJ97bXXYvv27dyWBbJEmI2pCOkjzYjR80uShNTUVIwbN47LvOv1euH3+x0lfUR4RUsQGqF69eqIjo42dCtYv3697BPOo+mj/pklp+apu8uCh/Txpv8hLFy4EIAx6aVx5JFNQLmSymx9UulSHt/DBx98UI5YN7t0nnE+fe3atUP79u3Rrl07+fWAAQNQUlJiGiZ/JoBH0yeS3sHj8chC8JFHHpE3phqvvPIKAD7SB5QvbjPSFwgEUFRUxH2jiomJ4bqdi5hkmjdvjry8PMPoL9KIpKencwksus2bESURLQolrzYip3QZ+PLLL7k0CRS1bCTYeUguC0o6a3ZQ8ebrAsrX6N13321a2Pz3339Ho0aNuIV1dHQ0vv32W8O6z6JaFJ5kylRpgKc+84ABA3DrrbdiyZIlhocAzSHPfEVGRuLyyy83lSOU7YB3nijC3GiNEunjCTIDyn1+ARhaDRYsWMDVFqFFixbweDz4/fffDb/30UcfcWtQSeYY1aA9ePAg9u/fj/PPP5+7rzyphUpLS7m1ppSrVqRikBk8Hg8aNGhgGJTFzh+Pj2TXrl0BVCRe1kNBQQG8Xi/3Ho2Pjzdd9yS7eGUzZeYwWqOiiZlr1Khhqumj85XcFYwQEREhWyvMZDNPxRhenBTSt2fPHuzevRt79uzBnj17sG/fPhQWFuKnn37iMlGd7uDR9PFEArNgVeh6ApsiOHlTltStWxe7du0yvFXQAWBUJJxF06ZNZROBHkT9cOjme8UVV+h+h26w48eP52qT6l9StJgeRLQoV199Nbp162a4YWld8BJzOniNSJ9oxn0iCGYXLN7M/ITGjRtjz549hlrsFStWCB2otE6MfHdEtD1AOenLz8839NsjrRUFRpmBDpM77rhD9ztECHnH1Ozw27Nnj5ztgLdNGk+jNcObsoRApn09X1beEnUs4uLi0KBBA+zcuVP3O5mZmfj777+5tYe0RijDghZIEyRykYqJiTGt3iFyMSHZYKaRpUOfN5ihUaNGch11LbD9a9asmWl7tWrVQrdu3Uw1jSRHeINteHKTkn8or5sU+dBu2rRJ9zv0HLxnE495NzMzU84YwANeH9Ezxrz7yy+/4LvvvkODBg3kfytXrkSPHj1Qv3593HrrrUL+JqcrEhISuAWdkQBiQeH5gP4tjOqp8vifAeWavjVr1hiakEig8mr6WrRoIfu26SEQCAgd0jwCmCoXtGrViqvNhg0bokaNGoYHxtKlS7Fq1Soh/8uEhARD0wSRPt5bWmpqKtq0aWO4L0T3DD2PWaQ8b5JWQr169VBaWqp7+EuShK1btwqRPiJKRuNlRdPHtq2FFStWoHbt2qbmVTXmzZun+9n69esRFRXFvT/NKmiw2iURTR9gvGZ4c30SaDz1zMIswRSZ+wYNGhiSFJ40MSx4DnPeikYsDhw4gPfee89wPb333ntYu3YtV3u0lo2IeXFxsSxLeBUljRo1MtT0scSEt67sunXrsGzZMkNNpyhB8fv9pjItOztbKB8rBZoZ1RwXJX08mj7Ryhl0gTJa26FQCHl5eWeGpu/JJ59UqOu3bt2KkSNHok+fPnj44YexcOFCTJkypTK7cFIQHx+PAwcO6JbRYYV4r169uNpkSaSehqKkpARdu3blvlGR74IRQRUlfdWqVTN1FhY17/Ik4Fy7di0aNmxoWttS3a6R79bbb78NQCzoxswfRZT0AeZC0MmkwCxEzLtAhWZI7wDIy8tDWVkZdxJn6gNgvAZESR99l0q3aeHbb7/F5Zdfzj33ZiYuoFx7WLt2be6137BhQxQWFuqSCdZcKKrpMyIopF3m1fRFRkYa1uBlNVY333wzV5tAue8pJXTWgpEWUAvsRVNvP1khfQQ97YxIKg6gYn2OGDFC9zskt9q1a8fdbs2aNbncDwC+3H8sjGT+5MmTTd0+WPj9fpSVlemec0ePHsWECRO40gQReM7ERx55RP77PGjRogUKCwsNa/qKkr6WLVuievXqhheE/Px8SJJ0Zmj6Nm/ejN69e8s/f/LJJ+jSpQveeust3HfffXj55ZcNb8pnCoj90yJSw8rmYlPZ6N0ACwsLhYQVTwSlqHk3ISEBf/75p+wTpQVR8y7PwZubmyvs22aWX4zStLz44ovcbZ5K0iciBF566SUAxgeSqHnXjPSJ5OgjEGEwutWL1uumi5bRHGRlZQldIMyiloHyg1qE8FLwlJ5GlpUDvPNE8uGDDz7Q/DwjI0NOrcFL+oBy+aCnNbda9zw6Otpw3fNqzgisrNUjn1Su0wrp07t8ERnkDRBgNW56z08XdfLj5oFZblLqv2hZRUCf9IkELBLobNB7dqOLAA+0zs+DBw9iw4YNir9vBnIR0guOKSsrQ25urhDp83g8aNSokSFJFnURMkOlkr6srCyFuWTlypW45JJL5J87depkmrT0TAAJF710C6wPHa+GYtSoUfJrPdJXVFQkpPLmyT0nqukj7aZRihdR8y4AjBs3Dqmpqbqfi5bJA8q1R0ak79ChQ7jooouECFp8fLxhm5VF+nw+H1flDALNp96BHAwG8dtvvwmNqRnpo7XEe4Fg+6d3CO/duxfHjh0TIn5JSUlo3ry5qflMVFib4fjx44ZrWA367vXXX695qLJzxxMUBFT4KOrJHbb2uYgsMUqrZNVlx2zdi5K+hIQE2bSuV+6TLkMipG/IkCEA9EkfETTKLiACPc3cOeecA4Cf7APl+9OI9NG5JJK4nPJy6vmwb9++nbstglkN948++ki4TQB46qmnAGhHxlLJVvbvm8HMP/biiy/Gm2++KZyUu0GDBobmXdpnZ4R5t1atWvLBVFJSgo0bN6Jbt27y53l5ecK5jE5HUDCB3k2ZXcy85IcdF72DWjQJJM+BnpWVBZ/Px30A0O3DKEqqsLBQSIsAlJsmjA5pK6SvevXqhubdo0ePCvt0derUCdu3b9d9/pycHHi9XqF5ys3Nxbx583RLhwUCAdSvX19Ig0bzqUfQXnnlFZSWlnLnvgPMSR9pf0WID611vZsvT81XLSQnJxumJqGSYVagp90QJX0sOdY6qFg5wLs/IyMj0aRJE7z99tual1J2nEX2qFGdZDukz8h1gSfHqBr9+/cHYB6hKbI/J0yYAEA/zQaRPiuHtJnPmEibsbGxCAQCumbToqIiREREcNU5J5A2Wo/wUwo2Xh9BoIJM6fmGW3UBo75orSmWZPHuJTqT9c5jqtaxceNGoX7Wr1/fkPRRoOQZoem75JJL8PDDD2P16tUYP348YmNjFTnQfv/9d7nW6pmMuLg4XHjhhbobga3Xx6tKZ0mfU+Zdnu9mZ2ejWrVq3H6CTz/9NJo2bWpIpqwQNL/fj5ycHF0hWBmaviNHjgibjClfnN6BRJnURcpGUcTZDz/8oPn5tGnTdNP46MEsSozScLB1ks1gRvq2bt0qR2Xygg6g33//XVMQmiVZ1kO1atV0SV9ZWRlKS0uFNH1AxcGmd/iLmndZLY4WcaLDhjRNvNi1axd2796Nr7/+OuwzIoJvvfWWkIbCKG0JeyiKHFRm5l2zNClaoGdykvSZVSKiPJqi8gkwzxcpoumjPa9n2ielgYhsovk0y1Zx3nnncbdJpI+3JBsvaE619icR4ffee4/7+UlhY9V9QQ+k6dNzvbn66qsBnCGkb9KkSfB6vejZsyfeeustvPXWWwpN17vvvqtQs57JMBKCnTt3BiAWycaOk5GmT8QkY/ZdSZLw+eefC5nj4uLicOONNxr69In6igEVueWmTp2q+blVTZ+RY7MVTR+RRC2/k5ycHEyePFn42SklA485nhdE0LRIHx20o0ePFjoAjNoEyi879evXF/IZYtPKaAVGiVTOYGFE+uj5RUkfZdTX65Oopo8de602qZ9GeeeMYKTJFPXrMpJ3LHETqYxkpumzQvpI5pmV2ROxOBmRCaCihCJPgl4CaYnMkhSLXCIIVMFGjWnTpgkHhfFW+hAh0ZVl7aP9bET6RIL2zDR9VtGwYUMUFxcbnqGAeH5WPVQq6atRowZWr16NrKwsZGVl4X//+5/i888++wxPPPFEZXbhpIEnYefLL7/M3R4rhPU0fRkZGULqfrONuGHDBmzevFk4Si4lJQXHjh3TzYFnhaBRrj49k1NOTo4wmapXrx6OHz+uSVKCwSBOnDghvLGoVqmWRvLRRx9Fbm4uV71GFqTh03IFCIVC8Hg8mDlzplCbNP5akdv0HutvywMzk3F2drZw2SR2vrUOFjukTy/wgMZb1LxrdPhLkiSs6WNhZN4V9Y8lh3Uj4iNC9oHy9fTrr78aaiRF2zXy6SspKZHloMi+pznSIym1atXCww8/zN0eYKzpKyoqQmJiItLT07myEBDI7cmI9F1zzTVC42lEzEpLS3HkyBGhmtNA+bkUHx9vqukT2UvsWheNfDYCzb1WOVNyyeApe0igsWf97Z3A2WefDUDfvE1wqsrYSUnOnJSUpHmTTElJOanl0ioTcXFxWL58uWFZKpHbD7u5tW4WU6ZMwdGjR4VuSaymT2tzkcC9/vrrudtkccMNN2i+b4X0UbULPSF34sQJruLwLGhzaQVAkAZQVNMXHR2N6OhoTS0SHQqia7xu3brwer2ah0p2djYkSRJ+djqAtIgPmZNFfZC8Xi+io6MNSZ+I1lgNLa0sjYko6TXS9F133XUAxDUORqQvPz8fJSUlQpo+Fk6SPqplbJUwayEqKgpHjhzBAw88oHh/3759cnCEUYocLRiZd2mNzZo1Syj4b/jw4QCAvn376rYrupeM6u+2adMGCxYsECb70dHR8Hq9uum0IiIiuNN9EUiOa0Wl21kLPBVuRMAST6N2zYoAqEGyR8u/kMieCOnjhVFuQC2QRUfLWlQZ/TsppK8qgDQURhnAraQFALRJH2kNzTJ56/19rc1FgnXy5MlC/SNCp6Uly8/PR0FBgfDh7/V60aZNG82DnxICiwpW6p+W3wyp1kUPAKD8UqM1nnQ4W5n36OhoTcFMB54oOSXSp+XTSC4WoppTwFjDnZWVZYv0aWk9ioqKUKdOHYwZM0aoLaNADponM9OaGnqkLxQK4a677gIgFsTCwknSx1N3WlTTR3Ouzll2+eWXywXsedLasPD5fMjNzdVcT/RegwYNhHybUlNT0a5dO02LQSgUQkFBgfC6j42Nhc/n07xAUaCR6Lx7PB7d9E+hUAihUEj4UhIbG4spU6aEtSlJkqXIYoJR5DZBRIPYv39/mdAa+XRSlQ1eNGnSBBdffLFmne5LL70UADBo0CChNgnq52fH+Pbbbxdqy+jySD7Mn3zyiWgXdeGSPofAE/lmNeTaaCOIkD7WZ0kr8IAEq6hWjjQlFC3FgiJQu3TpItQm9UPr+aguq6hgNQo8IBOsFb+JxMRETSFIJg4rUaHR0dGahzQlZxVxlAbKCZ3X6zV0FLdCTmNjY7Fy5UpNQmVX06c191SOSRSpqanIzs7WvEDR/Fglfep5+uuvv/Dee+8BsOaDBQAvvPBC2Hu0xkRJX1RUFDwej6F2R2vvGoGIl9piwO4t0Yh9Mm9pBR5s3boVgLbWygyRkZGaEdZFRUWQJElY3nk8HqSmphr6B4vuT0C/DB+Zta34vpGGm52njRs3ynlgrZA/I00frU3SLvPA6/XioYceAmDsL2dFjrZu3Vrz/ExKSkL37t0tX8rY4EygPB0dQeTZAWPSN27cOADipTeN4JI+h6BH6Fj1rBVNCqBdooUOPpEM7REREbIw+uWXXxSfbdu2TS6BJCqsIyIi0KNHD03iQ2TACpnSIj4HDx6Uk2Qa1WfVAgl3LdJHAtyKENATgiSkRccT0K5Hyd6eRQJ4gPKDqlq1arj99tvDTAY33ngjgIrABBFkZGTg+++/l2/OLKz49LHQmieR2sgsGjRoAEmSNE2DVOeaLi+8oD1o5Jcsup5mzJgBoLxCiBo//PADWrVqJXz4ezwexMTEhB0qdJA8/fTTQnIEqDDdGiUgFl33lPpKi+xv3LgR1atXl/PVicDn82kemkTyrUTZVqtWDU8//bRuuh6RiHVCKBTCU089FbY/7ZC+5ORkhEIhxYWGJZa8ZSxZGGn62rZtixtvvFHYEmEUGXv22Wejb9++lkifnp9odna2rQAStRxh14GofPJ6vfD5fJqkj0y/eu4JVuCSPoegt8hZAWbVf/Hvv/8Oe8/n8+Hqq68W9h/49ddf0bJlS/z666+K91u3bi3fKqz0U68c29KlSwGIkxRAm/R9+umn8mvRzUWHkJZG5/jx4/D7/ZYOgKSkJE1TD6nmrWi7tMy7IlpdLVAglXo9FRcXKyrnWIFWbiq7mj416cvOzsZLL71kmtZCC5RfTKu2aygUQrdu3YTnntbfkiVLFIcVu2ZFNX33338/rrjiCs0LzebNm3HJJZcIm2IB7fX0+uuvAzAu0aaHOnXq4PLLL9f1QRNNBQKUy9BzzjkHO3bsCPssIyMD9evXt/Tsepo+skJY2fN//vknysrKZFO2GlbaJOuL+vntavoA5QXZDkEByi+5n3/+OVavXq14PzMzExs2bOCuL8/CqEa0JElC+UNZaJG+Q4cOYeHChYr69qJQkz67mjitSxlQToLbtGkjTKKN4JI+h8Cm16B0I4C9g5q0Y1qh3JmZmWjbtq0lIVinTh3T8HBRJCUlaZr46GCxYpLTOqhEQuzV8Pl8iIqK0jXvpqamWhrPRo0aaUZekZlq4MCBwm3GxsaG9dNKygoWlP5G7RAtmu9RC+obellZGXJyciyRPsonp35eig63ojVOS0uDx+PRJH1Wn5/9HZb0s2vWymUnOTlZ8xJx9OhRrlKKWtDyvaTDkAixKFJTU3UJuBXtNlBeIUSresa2bduEUqCwyMvL0zQZk4bXCkEj0Bjm5eUpZKqdNtWy2QnSx2ZWYAmKVZcOAGHp1ijFElvlhRekxdPS9JWUlFhWmPj9/rA29bJMiECdL9RK+TkWeqTPTgYAPbikzyGwdvzXXntNfq2XGJMHR44cwS233BJ2Ew+FQsjKyhJKCcCiZs2atusZqqGl6WPNkVbIlJaJ00o7LPScpUVzqrFo0aIF/vrrL910A2S2EkFSUhIOHjyoeM8u6UtJSUFkZKTiULn99tvx9ddfWyInQEWd4tLSUlx11VXy+1ZKsBEuvfRSdO3aNex5BwwYAAD4/vvvhduMiopC3bp1NSO3RfNdEtgDkw2QsRslm5ycrBlwEwgELF2eAO39ScRk7NixltpMTU3F+vXr5WTELKyup9q1a4f1U5Ik/Pzzz5bIBFARbPL7779rfm7FbPjhhx8CqAgK69Kli+Lib4X0UaosdX5KO6RPy6WIJUFWSB8R3eLiYoXMo7HQ8kc1g555d//+/Thw4IDl3Hhamj7R3IQsqJ96xNwq9EifnXNJDy7pcwjNmjWTX7OZ7clkakXlDZRHk6rzvK1ZswahUMiyv5RRZQq9Yu9m0PLzsKtN1DLv2tH0AeWmiSeeeAJ33nmnQpAcP37cUuQuUE768vPzFcKaFYZWiOpPP/2E+fPnKwqs2zXvejwe1KxZUzEvpIm1ekiz88GucQq2seKDBZRrimbPno0WLVoAUI6n1ZtvWlpamAN2UVGRZdLLkgVW40XCWy+FkRlSUlLCNH1UNcRqqTitPIWFhYVITEy0vKdoHm6++eawz6xq+rQuZbm5uSgtLbWdrJx1a5g3bx6A8shRqs8rgmHDhqFRo0b49NNPMWPGDIV1B7C2nxo3boyoqKgw2UyEQrSmK1C+/9RBJaxWKi0tTbhNltCy8vnZZ58FYG1/6pl3yTfSqk+b06QvEAigb9++YWeb3YteTEyMpu++q+k7zUHO7F6vFz///LPioKJkw6JITU3F3r17FWRs8ODBAKxnMmc1aGvWrFH4kFjdXFp50IzqCfIgKioKv/zyi+IWRQeUFQEIlPt0BQIBvPbaa1iyZIn8Ppl3rYDy/7GmQ9FIUDVISzp27FjZ14c0X2+//bbldqtXr65J+K2ad/XG7MILLwQAmbSJgkgDHdS//fab/JlVU0+9evXCfHHIJ9ZK3jGWzLNjSnuL8tWJgtLLsPKDLo9WSZ9Wyppx48bZyrdmtF/skj722YmsWrVsELKzszF37lwEg0G5tJVoQnIWderUwbp168JyFQLWnt/j8aCkpAR33XWXIpG/HU2fx+PBnXfeqWiHladW5Oi0adPk11999RWA8kvZokWLAFjT7puVOCN5Igq/34/S0lJFcAyRQKtrNCUlBQsWLFBcIO3K+44dO4b5SAKupu+0B2lifv31V3Tr1k2RCdyqJoUEHeuIe8EFFwCoKNclClaVnJ6ebrkdFikpKcjNzVVsWpEkqlog07jWIW/VZ+bee++VX7OmMjubiyK3J02aJB9WRvkaRUG5v8hp3k7QBRH+5cuXKy4SVtMJXX311YpcV5IkKTSeouW9CGqBTHU5n3zySUvtAeWBAsuXL1dccr755hsAxmmRjED7SMu8a8cUW1ZWpig0T2Z0q6QvJSVF4dLhRAoIdr+oXRvskL5QKIRHH31Ulqc0tnYiwQFg0aJFuP766xXuN3ZcJvQil6+//npbAUxAeXJ6spx88cUXAKxf8mlvf/755wDsaboApSbvuuuuw59//qm4PFjZ87Su2Qh68j226n7AtvvXX3/J79Fe1/Lv5UFSUhKCwaAiWbZd0nfeeefh6NGjin00f/58ZGRkGEbIW4FL+hwE1cQkJ899+/bJn1klfVoZuZs3b44WLVrIxelFERMTg3///TfM3GNVMwFUBLK8++678nvki0gmRFGwN2gqlUWk0qqp5/nnn5dfe71ezJw5EwcPHrRl3iW/mR9++EHWylk15xMoshCoOKDJhGhH3U8m8969eysuElZJX0REBEaOHCn/XFBQIAe1sM8gCi1nfqDiwmMFtJdIywNUaOusHtJE7Nj6ptnZ2fD7/ZY1knSAvPnmmwCUFWSskr6OHTti/fr1uOWWW8LatArWLKw+9KwWh6fL3JQpU2TXBiJ9djV9pJViL3522tSbC6taKTXIDEumRKvyvmvXrgAqCJVexLUIqGIS9UvPX5IXWr5ylELK6uUJqJBrbGqa4uJipKSkWL7k01nOXm7tkr4aNWqguLgYixYtwjPPPIM5c+bgqaeeAlCRUsspuKTPQbRt2xbnnXeerElgfSeskj71Rj9w4AAyMzNtbQTqF3tYA/YizoiEjRkzBjt37kRpaSmKiooQHx8vnFaGMGHCBDmpM5lhSItCJNAKyM/s+PHjuOOOO3Duuefi8OHDlskUO25aSa+toFOnTvKlgeaLNHN25kkv6bOdNllncTaKUTRJKQu9g8mqBokFaaDXrFmDEydOoGnTprYqFKhx9913IxAIWA46otQ6V1xxBQAoUktY9b9r3LgxAOCdd95BIBCQtceiuS5ZsLn9KCKSTMjk8iAK9uJFWji7pE+P4A4aNMhWHVU907idSHhWVtIFt7i4GO3atbOs6WQ1RWVlZfjxxx8t948wYsQIxc+s77EVsOej2v3E6kUHqLCKsNrH8ePH6/q084C0cexFmUifaNUQwllnnQWgfE0+9thjuOmmm1BUVIS7777bdmYFNVzS5zBYZ2EnSF/Xrl1x6623AijXVNSrVw9z5syxtRDIbKLOMWWnDjLrsH/kyBH4fD68//77thcstUu3ssLCQqSlpVnKzE9YtmwZgIrDgASAleTEgFKgXHfddQgGg46QPzLnkKaPoiTtRDDr1Te1c/tnhV9BQYE8/3ZMXHqC3uo+AiqE9YkTJ/DVV18hPT0dAHDHHXdYSgNDYP0WnSgYX716daSlpWHp0qXo06ePYi1ZTQ3BEqadO3di165d8Pv9sh+WFdSpUwffffcdgArySJfUCRMmWGqzW7du8msiPeQmY1Ub3bBhQ9knkkXXrl1tBYbp1cK1cyG/55575Nf0/CdOnHDMrysvLw9ffvml7XbU+5AuqI8++qil9uLj43HNNdcAgLwvCXaCJGJjYzFx4kRH/eLIUkBFApYvX47XX38dfr8fGzZssNRm9+7dw94rKSmxJe/04JI+h8GqeanQ87x582zdVmjzO+WLoreJ7GQoZwUdBXBs2bLFlgAEIKctoSizEydO2PaXod9nc+u1b9/eckoIFjt27MCdd96JHTt2YNSoUZZ9xYAKJ+tgMGjbP5IQHR0t+7GxsEP4WcG0ZMkS3HnnnYiNjbVFTvv06SO/ZqvH2E3ZQyBtGmCPSALlUbqkJSat3OOPP26rzYyMDGzduhXLli3DY489Jr9v1RePJX1XXnkl5s6di8aNG9uOhlfLtWAwiBtuuMGyVoqdX3pWyttoZ+5Z8zvBrmy65557ZBnPJs+1s+ebN28uE2fSFn/22WdCtWyNYEfDxUK9Z9avX4+0tDR5PKyAtNHbt29XvG83a0F8fLx8XrIuV1bRrVs3DBgwQLY2kTaxc+fOlt2OfD5fmEvQnj17bO9PLbikz2FoLXq7Dsi06Nni5nai7vQ2kR3Sx2LYsGHya7uavqFDhwIo9xF6/fXX8frrr8t1OK2ChD1r9hGtPaoG+QsBwEcffYQ///wT7dq1s0WmaD5KS0tlUzzVqLQKvYOO9dGx0yYJQjvO10C5VvPuu++G1+uVfZIAe/6Melo4uybjmJgYFBQU4P3335cPACu1V3lgNTCGlUE7duzA+vXrLZtgWbCk76677sJPP/1ky1WARVFRkWNkR2vdW80AQPB4PLLplPVFs5tP85133gFQkaUBsJ8ShGDX15igdVFi05ZZAXv+sHvV7rPHxcUhPz8fhw8ftpyIXA3KFfrTTz/J79kNuBgyZEgYabSan9AI/wnSl5eXhy5duiA+Pl7OD3aqoKXetnujJAd0NkjCjmB5+OGHNd/Xq6doB1qBKCK45ZZbMGLECPz444+4/fbbHekT1SL9559/5Pes+h0SBg8eLGtT8vPzUVpainPPPddWm3QoTZ8+Xdae2h1PrXXTtGlTW+S0cePGcv3ZBQsWoHHjxrITslX4/X7Ur19fcejPnTvXckUKQJ/02dX0xcbGori4WJGXz2k/HAJVkRBF9erVw0ovOpH/i103r776KgB7/qEsDh06JGtm7JihAW0Z7ITWmH3+yy+/HE2aNEH//v0daZONOLV7IX/mmWcA6Mt+UWjtGasVUwgsCWfTCzlB+oAKvzmgYq1aBVlL2MCya6+91labQHhktVOXHhb/CdIXExODb775BkOGDDnVXdGE3RItdkPs1WjUqJGmYHa6NBtQkW7EDtQ3crskGig3d7F9o4ARO2DNOj6fT7iIvRok6Dds2CD7itpdSz///HPYe3bbBCqCDgDrOSnVUJsOO3ToYKs9PdJnx58P0CYPdkx8RrCq6QPCx89qhC0LLbcVJ4JtgHJNPNV0tjv3WiTcCdMZS/rq16+PnTt32tb4aI2pXV9RLfO2HWjJYLtymSW2rDuCXSuM1nq0q0BQl6AD7GuOgfCz3gnZrMZ/gvRFRkZypdsIBALIzc1V/KsMqDcY65xsBeo8em3atMH7779vq02tNCqUzsEqnLpFqqG+7ah9PqyAvfU5BVYV36lTJ80SSCLQut3bFQJPPvkk2rVrpzAdOXGbZPtq1eFeDbX2sTLmbNKkSbb3p7rKB2Bf61EZUJNTJ+ZJi6A4cSkDyn2Cly9fjpSUFNsF5ytL08eScDvachZsO5deeimGDh1qOzrWCYLPQosw2zVrs6mUCFOnTsWDDz5oq1313C9dutT23Gtdviiwww5c0ucwpkyZgqSkJPmflRI0PGDNsLm5ubaCOABg8uTJ8uvhw4djy5YttjLJA+UJRD/++GP553nz5tmOcGJJ30cffWSrLRZsmaQbbrjBVuQuwY6ZUA+sL6OV0k5qaAlWuwTtlltuwaZNmxQC1mnSZycNCAu1YLVLUrTm/Oabb7Z9AGjtRauR4AStqitOHCpsX50gAlpExy75efLJJ+VAntdff90RzXFlkT5WceCUTGHPi+bNm2PevHm2rQZamk67lx017LpJNGjQACUlJYpo+Nq1a9vWyKrNw05dSqdPny6/3rVrl+NJlAFnkqircUaRvsOHD6N79+5h/3gjksaPH4+cnBz5n1MRkUawq+0ByoUokSgnbfys5sQJwUqCZeTIkbj22mtx4MABR1KXsGkM5syZY8vERTj//PNtt6HG22+/Lft12amaYQSt27AVsHPvNOlzypTEJlT95ptvbB/S48ePD0tX4YRWqmvXro6kamExcuRIPPfcc4qqKWwUs1Wwc11Zmj6t9BMieOKJJ7BkyRLZf9FOvkeCx+PB5ZdfrrAIOUH62LPHbiADgZVvTlxwgfBnPXbsGJYvX+5I25IkYfbs2QrlhFX4fD588skn8s9shQ6roPKoBCfOZAAYPXq0/NopIqmGU/PPwr4R+iSidu3aWLNmjeXf9/v9trVuvFi9erUj5IRAi8pJ/z72UHVCsFKtXPLBcOrmUxlh65REs2vXrpg4caIjbXq9Xnl+nIiMVOOWW25Bjx49HGmLCpkDzpK+Bg0aOJZWpUuXLrjooouwfPlyR4IDfD6fwqwN2Ev8qkZqaqpchcYJ3HfffYqfnYiuZ81FToypem9+/vnnjkUu79y5EwAci7icP38+rrnmGnz66acAnCF9VKt8wYIFtq0vBDbS2ilTOVC+nqgikVN56yhXoZNVI1gfPifWvM/nQ1ZWFj777DPs2bPHkbMOUBI9p4gk297MmTPl3IVO4ozS9BlhwIABWLx4MUaNGoU5c+ac6u6ge/fujqrPyRTjpIN4amqqfCt3KuKuc+fOJ41Y2wE974ABAzSdcq2CkhzbDQ7Qgt0yVCwaNGggp39xkvQ5TdApGp4lqXag7p+Ta5VIyukMdq6deHa1huPKK6+03SbhzjvvBGA94a8W2Iu4E6Tv3HPPhSRJuOyyyxxb+7GxsZg5cyYA5/wEgYp0YnZy6bHIycmRU5c4jYULF9qquqRGtWrVMGrUKEyePNmRgAtCMBjEX3/95Sg5B8rdBq6//npH+0o4ozR9RrAb0n+6ozJIH1Ce+JQtxH664pxzznGUSNGB57SjLN0irdbxNYITEcaEiIgITJ06FdOmTZMPVzuoLNJ30UUXIRgMVorwA+xFw6phN2m4EVitvB2wJMKJgyomJgaSJDmm3WVx++23O5amicCuI6cPaidBQWFOkj6aK6dQWSZNoLwc2ZmAyMjIsEDL0x3/GdL3XweRPqfTtyQnJ9tOHn0y4ETELgu22oWTmDZtGm666SbHtZ0//vijY6ZdFk4dAjSelWGKd5rwvfvuu7j55psdbZPw448/OpL/jsWvv/7qmKZz9uzZaNKkCQKBwBmhkXcaZDq87777HPEXqyxUBulzcfpj+vTpjvjuGsEjOe2BfAYhNzcXSUlJyMnJqdRbixPIyclBtWrV0LFjR8v1/VxUYNWqVejZsyceeOABRRTW6QaPx4P09HSsWrXqVHfFEIFAANHR0WjevLkiqezpCtJMVUXxt2zZMvTp0wcZGRmWC8SrcaaMZygUwl9//SWXOjtd8ccff+Dcc891dI5cuABcTd8ZA6cdRas6qM7jhRdeeIp7YoyMjIwzQhNbWebdykJMTIxjpa3ONPTu3dtxcvbee+/ZrpF6MhAREXHaEz6gPOXP6U6gXZyZcEnfGYKIiAjMmDEDl19++anuyn8CdevWRWlpqaM+XZWBM+WWT2TvTCF9mzdvPuUlG/9LGDFixKnuggsXLjjgmnfPEPOuCxenO4YOHYp77723UnIgunDhwoUL+3BJn0v6XLhw4cKFCxdVAGeGLcaFCxcuXLhw4cKFLbikz4ULFy5cuHDhogrAJX0uXLhw4cKFCxdVAFXap0+SJOTl5SEhIaFSMsq7cOHChQsXLlycLqjSpM+FCxcuXLhw4aKqwDXvunDhwoULFy5cVAG4pM+FCxcuXLhw4aIKwCV9Lly4cOHChQsXVQBuGTYdUJCHCxcuXLhw4cLFmQCzwFSX9Ong+PHjqFmz5qnuhgsXLly4cOHCBRfMKoy5pE8HUVFRAICMjAy3RBuD3NxcpKWluePCwB0Tbbjjog13XMLhjok23HHRhjsu+khISDD83CV9OiD1aGJioruoNOCOSzjcMdGGOy7acMclHO6YaMMdF2244yION5DDhQsXLly4cOGiCsAlfS5cuHDhwoULF1UALunTgd/vxxNPPAG/33+qu3JawR2XcLhjog13XLThjks43DHRhjsu2nDHxTrcMmwuXLhw4cKFCxdVAK6mz4ULFy5cuHDhogrAJX0uXLhw4cKFCxdVAC7pc+HChQsXLly4qAJwSZ8LFy5cuHDhwkUVgEv6dDBu3Dikp6dj2LBhKCkpOdXdOan47bffkJ6ejp49e+Kqq65CMBhE06ZN0atXL/Tq1QtLliwBAGzfvh3du3dHt27dsHTp0lPc68rH3r17UaNGDXkcjh07hk8//RTdunXDRRddhIyMDABVb1zWr18vj0nz5s1x7733Vtn1kpeXhy5duiA+Ph5//PEHAHCvkfz8fAwePBjdu3fH1KlTT9kzVAbU41JQUIB+/fqhR48euPDCC7F3714AwI033ohOnTqhV69eePbZZwH8d8dFa63w7pv/6pgA4eNSUlIij0mXLl3Qvn17AFVrrTgKyUUYNm7cKA0bNkySJEmaNGmSNHfu3FPco5OLQ4cOSQUFBZIkSdL48eOlefPmSeedd17Y9wYPHizt2LFDysnJkbp163ayu3nSsWfPHunKK6+Ufy4pKZE6d+4sBQIBac2aNdKoUaMkSap648Ji5MiR0o8//lhl10swGJSOHj0q3XDDDdLWrVuF1sjzzz8vvfXWW5IkSdLFF18sZWRknLLncBrqcSkuLpb+/fdfSZIk6YcffpBuv/12SZIk+XMW/9VxUY+JJEnc++a/OiaSpD0uhA8++EB68sknJUmqWmvFSbiaPg2sW7cO/fr1AwBccskl+Omnn05xj04uateujdjYWACAz+dDZGQk8vPz0bNnT1x33XXIzMwEABw6dAhNmzZFYmIiqlevjuPHj5/Kbp8UrF27Funp6XjkkUewY8cOtGrVClFRUbjggguwdetWAFVzXACgtLQUP//8M9LT06vseomMjESNGjXkn3fu3Mm9Rli507dvX/z888+n5BkqA+px8fv9qFu3LoAKGQOUl78cNWoU+vbtiy1btgDAf3Zc1GMCgHvf/FfHBNAeF8Jnn32GoUOHAqhaa8VJuKRPA9nZ2XI9v6SkJHnzVTXs378fS5cuxaBBg7B27VqsXLkSl1xyCZ588kkAgMSkeKwK43TWWWdh165dWLVqFY4ePYoFCxYo6j6WlZUBqHrjQli+fDl69uyJiIgId738P1hZAhivkaood4LBIJ566imMHTsWADBjxgysW7cOr7zyCkaPHg2gaslj3n1TlcaEkJeXh4yMDLRs2RKAu1aswiV9GkhOTkZubi6A8kWUkpJyint08pGbm4vhw4dj9uzZ8Pl8qF69OgBg6NCh2Lx5MwAgIqJi+VSFcfL7/YiLi4PH48GVV16JTZs2yesEALxeL4CqNy4E9hburpdysLIEMF4jVVHu3HrrrbjtttvQuHFjABXrpkWLFgDKSXJVGhfefVOVxoTw9ddf47LLLpN/ruprxSpc0qeBrl27YvHixQCAH374ARdccMEp7tHJRVlZGYYNG4YJEyagWbNmKCkpQSAQAACsWrUKTZo0AVBuBt65cydyc3ORmZmJ1NTUU9ntSkdeXp78etWqVRg0aBC2b9+OkpISrF27Fm3atAFQ9cYFKDftrlu3Dj169HDXC4MmTZpwrxFW7ixduhTdunU7lV2vdEyaNAmNGjXC1VdfLb9HB/bRo0cRCATg9XqrzLiI7JuqMiYs2EslULXXii2cUo/C0xj333+/1L17d+m6666TAoHAqe7OScVHH30kpaSkSD179pR69uwpffLJJ1KHDh2k9PR0qU+fPtL+/fslSZKkbdu2SRdccIHUtWtXafHixae415WPRYsWSR06dJC6d+8uDR8+XAoGg9LHH38sde3aVerVq1eVHRdJkqTFixdLY8aMkSRJkg4fPlyl10v//v2ls846S+ratas0e/Zs7jWSm5srXXbZZdL5558vTZky5VQ+QqWAHZdnnnlGioyMlGXMww8/LEmSJF166aXyuCxbtkySpP/2uLBjMnXqVO59818eE0kK30O5ublS+/btFd+pamvFKbi1d124cOHChQsXLqoAXPOuCxcuXLhw4cJFFYBL+ly4cOHChQsXLqoAXNLnwoULFy5cuHBRBeCSPhcuXLhw4cKFiyoAl/S5cOHChQsXLlxUAbikz4ULFy5cuHDhogrAJX0uXLhw4cKFCxdVAC7pc+HChQsXLly4qAJwSZ8LFy5cuHDhwkUVgEv6XLhw4cKFCxcuqgD+D2ejZm8x/rxwAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -778,7 +777,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTpklEQVR4nO39ebQkZ33fj7+fp6r39W4zd+bOjGa0bwghCTFaMGAwYMT+NfmeY0Ls4BOffCOEk5gcDL/YjnOObMeH5DgkTr72gSSEc34iP2wENljIxjIYkITQLqGRkJh9uXP323t3VT2f3x/V3XPv7arq5VZXb5/XMdaou7rr0XQ/1e/6LO+PICICwzAMwzCMD8hBL4BhGIZhmPGBhQXDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYhmEYxjdYWDAMwzAM4xssLBiGYRiG8Q0WFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmEYhmEY3xh7YWFZFu6///6eX1+pVPDBD34QV199NW6++Wa8+93vxsmTJ/1bIMOMALvdRwDwyU9+EocPH4YQAi+++KJPK2OY8cKPvTZoxl5YvPDCC/jzP//zXb3Hr//6r+OVV17Bs88+i/e+97349V//dZ9WxzCjgR/76Jd+6Zfwgx/8AJdddplPq2KY8cOPvTZoxlpYvPTSS7jnnntw7tw53Hzzzfjd3/3drt8jGo3iPe95D4QQAICjR4/i+PHjfi+VYYYWP/YRAPzcz/0cDhw44PPqGGZ88GuvDRp90AvoJ9dffz0+9KEP4dprr8UnPvEJX97z85//PN73vvf58l4MMwr0Yx8xDNPKuOy1sY5YAMCTTz6J2267reXxN7/5zZidnXX835kzZxzf6/d///fx6quvjnz+i2G6xc99xDCMO257bZQQRESDXkS/ME0TU1NTWF5eRjQa3dV7fe5zn8NXvvIVfOc730E2m/VngQwzAvi5jwDg8OHD+OY3v4kbb7zRh9UxzPjg914bFGOdCjl79ixSqdSuP6D/9J/+Ex544AEWFcxE4tc+YhjGm3HZa2OdCjlw4ABuuukmXHPNNfjsZz/b03ucPXsWv/mbv4mNjQ287W1vw80334w3velNPq+UYYYXP/YRANx77704cOAAzp49i3e84x248sorfVwlw4w+fu21QTPWqRCGYRiGYYJlrCMWDMMwDMMECwsLhmEYhmF8g4UFwzAMwzC+wcKCYRiGYRjfYGHBMAzDMIxvsLBgGIZhGMY3WFgwDMMwDOMbLCwYhmEYhvENFhYMwzAMw/gGCwuGYRiGYXyDhQXDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYhmEYxjdYWDAMwzAM4xssLBiGYRiG8Q190AsYFEQEwzBQqVRQq9VARBBCQEqJWCyGSCQCKVl3MYwXRIRarYZyuQzTNJv7SNO05j4SQgx6mQwz1CilUK1WUalUYFlWcx+FQiHEYjGEQqGR2kcTJSyICOVyGaurq8jn81BKeR4fjUYxPT2NTCYDTdMCWiXDDDdEhHw+j7W1NRSLRRCR67FCCMTjcUxPTyOVSrFYZ5g6Silsbm5ibW0N5XLZ81gpJZLJJKanp5FIJIZeZAjyuiqMEfl8HouLi6hWq12/VgiB6elp7NmzhwUGM7EQEdbX17G0tATTNLt+vaZpmJubw8zMzNBfGBmmXyilsLy8jNXV1bY3t06EQiHMz88jnU4P7T4ae2FhmiYuXLiAzc3NXb+Xrus4cOAAksmkDytjmNGhWq3i3LlzKJVKu36vaDSKAwcOIBqN+rAyhhkdSqUSzp49i1qttuv3SqVS2L9/P0KhkA8r85exFhaVSgUnT57s6e7Ki7m5OezZs2do1SLD+Ek+n8fp06c9Ux69cODAAWSzWV/fk2GGlZWVFSwuLvr6nlJKHD58GPF43Nf33S1jKyzK5TJOnDjRU6ipE2ZmZjA/P8/ighlrcrkcTp8+3bf3X1hYwNTUVN/en2GGgaWlJSwtLfXlvYUQOHz4MBKJRF/evxfGspLKMAycPHmyb6ICAFZXV7GystK392eYQVMqlfoqKgDg3LlzyOfzfT0HwwySRl1SvyAinDx5sqf6wX4xdsKCiHD27FlYltX3c128eLFtNS/DjCJKKZw5cyaQc509e9b3dCXDDAO1Wg3nz5/v+3mICGfOnPE9XdkrYycs1tfXUSwWAzvf2bNn+xoZYZhBcOHCBRiGEci5LMsK5OLLMEHSuMkN6se+UqlgeXk5kHO1o6/C4pvf/CauueYaXHXVVfjCF77Qz1MBsO+y/C6OaUe1WvWl44RhhoVarYb19fVAz5nL5Tj6x4wV+Xzely6qblheXg4kWt+OvgkL0zTxr//1v8YjjzyCp59+Gv/hP/wHrK2t9et0AIDNzc2BRA9WVlaGJgTFMDsh6m5PrK6u9mklw3lehumEUdhHDa+ZQdM3YfHEE0/ghhtuwMLCAlKpFN7znvfg4Ycf7tfpAAzuwlStVvluixlaKo9+A9UXfwAy2hd3KaUGdmHa2NjgWgtmaCn/7f+G8dozINU+IlCtVgNNyW9ldXV14De6XQsLpRSuvfZafPrTn972+MMPP4xwOIyvfvWrAIDz589jYWGh+fyBAwdw7ty5XS7XHdM0UalU+vb+7eDKdmZYoUoJtae/g+LX/ritwCiVSgOtGRrUxZhh2qFya6g8+g0Uv/Ff2wqMQqEQ4Mq2YxiGLwZcu6HrWSFSSnzmM5/Bfffdh9/6rd/C1NQUnnvuOXzkIx/B7//+7+MjH/kIADgqpn56PgxSVABAqViEefanA10DwzhBFfvHmqpl1J7+Doyf/BChG+5C+Jo3QoQi244d+D7KbyKRvzjQNTCMI5YdTaP8OiqPfgPihX9A5HU/B/3ymyDk9lEPg45gl8tlRCKR9gf2iZ6GkH30ox/F7/3e7+Hzn/88fu3Xfg333HMPPvaxj+FTn/pU85iFhYVtEYqzZ8/iTW960+5X7ELQRTI7KZfLKP/gqwNdA8N0gpfAGPQ+KuVzKP/4zwe6BobpBC+BMeh9VC6XB+pq27Pz5p/+6Z/is5/9LBYWFnD48GE8+OCD2wZ0maaJ6667Dt/97neRTqdxyy234PHHH8fMzIxvi9/K+fPn+14c2o5DT/8FBLiIkxktRCTWFBjHT58d6N1WSAD7n2JhwYweIjXVFBjHXn5loCnFTCaDgwcPDuz8PRdvfvSjH0WpVAIR4YEHHmiZ+qnrOv7jf/yPeNvb3oY3vOEN+Df/5t/0TVQAzqmXoCEeCc2MII0IRumhL4IG3Ko2+F3MML3RiGCU//4rA/89GrS3Uk+pEAD4xCc+AcButXQbJf7+978f73//+3s9RVcMw8wOwUZZzAgiogmEb7wboatvhTgVjNum61oGenaG6R2ZnkH4prdAP3wjxMsvD1RcyAHf5PZ09t/+7d/Gt771LTz++OMwTRNf/OIX/V5X1wx6dKyUgtMgzEghoglEbnsXEh/+DYSvvwNCDw98H+kc9GNGDJmeQfTuDyP+/nsRuvwmCCmh6z3fs/vCoM/fdY3FF77wBXzyk5/EI488gqNHj+L+++/Hn/3Zn+G1114b6EWpUCjg5MmTAzt/IhHHwQgLC2b4qD77CNTKpULqbREKPbzt2H6Mdu6GmWwGc3KwrXIM40TlB38BqlwqytwWodgRITh79iw2NjYCXuElDhw4MNDiza5kzUMPPYR7770XDzzwAI4ePQoAuO+++/C5z30OX/7yl/Hxj3+8L4vshFgsNrBzA0A8noC+d+9A18AwTtSOPQ7AW1A0GPg+SqWhZzIDXQPDOCLtn0svQdEgFosNVFgMeh93LCyeeuopfOQjH8Ef/dEf4cMf/nDz8XQ6jfvuuw9/+Id/iF/5lV9xrbfoN5qmIRaLDayiPZVKDeS8DNMOGUtCv+1dnoKiQSwWg5RyYMVfiURiIOdlmHbIzCxCt7zDU1A0SCaTAa2qlVAohHDYe5/3m57bTYeRjY0NnD17NvDzRqNRXHHFFUNRQMowOyGirr6bi4uLWFlZ6eOKnMlmszhw4EDg52WYTuh2H504cWIgTrLz8/OYnZ0N/LxbGatSqXQ6PZCIyczMDIsKZmjp9rs5PT3dp5V40892dIbZLd3uo0H8uAshMDU1Ffh5dzJWwkJKib0B1zlEIhFkOCfMjBHhcDjwH/lMJjPwvDDD+EkymUQ8Hg/0nHv27BlYOcJWxkpYAMDU1FSg+a2DBw8OvGeYYfyCiEBmDbPpOEKhYFrWNE3Dvn37AjkXwwQBkQLMGvbPTAUWzY7FYgNPgTQYbLNrHxBCYGFhAa+99hqsPrsIzs/PIxqN9vUcDNMPiAgwa1BGDVQtgqpFwLJAUkIIASoXsC8Sxmmj/2s5cODAwPvuGaYXSCmQWbP/V86DamVAqeY+EqsXsG/6MM6vbvR1HVJKHDhwYGhS8mO5m0OhEI4cOYLjx4/3rbp9dnaWc8LMSGHlVqBKOcAymxe+bWha0/lSLZ1G6vb34lA+j9OnT/dtTQsLC9xRxYwMRARrY9GeGKwUsDPtIERzHxERUC1jet8BqFC0b/4wQggcPnx4oNNMdzJWXSE7qVQqOHnyJEzT7Pq1s6kYsskopBBQRNgoVLCSt1tZ9+zZg7m5uaFRhwzTCebSSSjLbPu9Vfl1yOQUQvuuAGCbz506daoni2KvfXTw4EGuT2JGDuPUi0CkfT2QdfEkwlfeCpnIAgBWV1dx4cKFns7pto80TcPhw4eHrj5prIUFAFiWhQsXLnialcym48gmY80PrVqtIRYJQehhyFAUyqiAzBo2ilXEp+YG2qPMMLuhdvw5iLj399c6+RIib3rvNgFSq9Vw7tw5z/a5TvdRrmwgNTs/VHdYDNMpSimYJ56DSKRdjyGlQBdPIfKGd2x7vFQq4dy5c6hWq46v27mHNgplgAjTqVjLPipULaTn9g1lGnHshUWDQqGAxcVFVCqVbY/PpuOYTsXrH1oEyqiCjAqEHoaesttIiQhmfhVkGghPc5EZM5pYlSKstfOe5j5qYxna1D7oey9reY6IsLGxgaWlJRjG9uIL3kfMJEBEUMUNWPkVCOG+j6zzryF83Z2QsdY0n1IKKysrWFlZ2Zaqd9xDZg2kFGRotPbR8EmdPpFMJnHllVeiXC5jdXUV+XwelmUhm7SVoJ60q3dlJA5j/QJkKNq8YxNCQIaisEyeYcCMHnZe+CJUpdDWMZA2l6Ffe9TxuUaPfDabRbFYxNraGgqFApRSvI+YsYeUgrV6FmQZnqKCLBNSCzuKCsAutNyzZw9mZ2eRy+WwtraGcrnsuIfMwjpgVEZuH02MsGgQi8Wa7n61Wg0orkGGIts+NABQRgUymmgqRGVUXN+TYYYVskyYS6cA0d7gR60tInTlrW3fUwiBZDKJZDIJIkK1UoKs5HkfMWOLMqqwlk8Bsr1HhLpwApHX/Vzb46SUyGazyGazICIYGxdb9pAMRWAZlZHbRxMnLLYSCukwYH9pZCTe/NAgNZBZg5lf3ZbTAgBSFkQHXy6GGTRWuQBr7RyE1tk2p+ImtJn9XZ1DCIFwKASz0uU+6tIemWEGhZVfhZVf6+i6T5ZpC4BId8ZYl4T49j2kDLsWw3EfDbF/0kQLiwZk1mAW1pt5LRABQoLMWku4SdUq0KI8KIkZXogI1tp5qFrZU1So5TNALAWZzEKtnkf4qtt2d17HfSQc9xGZNYgQF28ywwuRsqN9pDxTiNa51yDnDkCEo1AXjiNy09t6Op/QQy17iMwaRDgOMsqt+0ipob3RHV7JEzBk1mCV87YS1HSE0s4OZqpWCnhlDNM5pCyY51+1CyddIgKkFKyTP4E2dxn0mQN2gVilCJnds/vzb9lHQg9DTzjPLVC1wUwhZphOULUKjHM/BcjdB4mMGqzjzyN81a0QWghk1CATGYhwb6aJMmS/bttvEQA9loQWde7kUrXhTIlwxMIBGYpAaDqEHm5+uA3INECW2XF4mWGCQpXyMNfOQegh12OoUoRaOo3IG97RDNeq9YsIX/VG39ejReJ2VEIIO3qxda21CijO6RBm+DA3l6AKG577SOVWgVIBkTe9D0LTIdOzqB17DKFdRv3ckOEYrHK+dR218lBG0PnX0QMZjjlW3qpaGZpLxS/DDAJz+QyUUfG+GK6ehwzFEHnjPdt+0EOX39S3dQkhIMMxqOqOSB8pkFHt+e6OYfyGiGBeeA2QEsJjkJd1/mfQ9h5B6Orbtz0evu6Ovq1NaLodFbG2t3mTWRvKG11OhXggXS56HMZlhgWlFIxTL4KsmmsemJSCdfan0PZdhdDVtwUeJZBhZ1dA3kfMsKCMKoxTL3gWRJJZg3XmFYSvvQOhhasCXJ2NdHH7HMZ9NFwyZ8gQUoMIRUDGdpc0ssyhVInMZKFKOZiLxyHi7tEzqpRAm0uI3Px2CD0c4OouIfQwIGRLvlrVKtwdwgwca/0irNwShEdKQeXXIUwDkVvf3dYLpl/IcAxWKdfyuKpVhi6CzhGLNvDdFjOMmIs/g7l82lNUqPWLEFJD5PWDExVAPR3ieLdFLaKdYYKCiGCcfAFWacOzPdRaOg0tuxfh6+4YmKgA6je6DvuYLAPU50ne3cLCog2NSt2dDGs1LjPekLJQe+VHUJYF4TEISS2dhn7gOoQOXR/g6tyRIReBPuRGP8x4oqpl1I49CkTjrpFnUpZd6HztHdDnDga8Qmdcb3SN4brR5Vh+G4SUEHoEZO5MhxhD20PMjCdWfg3mqRchZxdcjyHLBPLrCN/4c0P13RR6yD0dwt0hTICYS6dhrZ2DnJ53PYaqZQilEHrdW4fquynDUVilzZbHbX+l4RmOycKiA2Q4CstsDdmyWRYTFMbJF6GqBW9RUSlCRpOusz4Gid0dEnXuDmGzLCYASCkYP30CCEc8PVuosAFt9iA0H3xd/MZOh4RApkN3iPI28gqS4VjFkMPdIcygIKOG6tN/C4KCzMy5H1fchL73cujzlwe4uu5w30ecDmH6iyrlUH3yISCZhYh7jDsvbEI/fNNQiooGo5BW5IhFBwipufcQD5FKZMYLa20RtZcfg3bZ9d4dSNUy9CM3Qw7591DoLmZZRgVE6aEKOTPjg3HuVVjnfgrt0LWux5BSEASEr7wlwJX1hgxHYZVdukO6nFHSL1hYdIj9YRotjytjeD5MZjwgIpg//TGs/Ap0D/MqsizISBz6/BUBrq53GuOeWyJ9yrLbtz3MvRimW8gyUXvu74Fw2FtUGDVomT3Q0jMBrq53bLMs3a6n2gIZFRApz5HuQTH4FYwI7m2nwxN+YkYfqhRR/eFfQCkD2oFr3I8za9Bn9kOfPRDg6nYPpxWZIFC5FVS+938gMrOQHnuEjBr0+StGRlQ0EC7disPSvs0Riw5xV4nVoVGJzGhjLZ5A9fm/h37VrRAxjwpvZSG0/+qh6vroFLciTTIqANxz3wzTCUQE8/hzME48D/3aN3r7twiJ0IFrRzIFJ8MxqEqh5XFVq7jeBAcJC4suEKEoyNr5YVJ95sHgP0xmNCFlwXjhe7BWzkK/4S7PegoRikCbXhjJiyEACCHZzZbpC1SroPrjvwYJgdCNd7kfRwQtkYVMzYzuPtJ0QGqA2m6MZdcrDb59m2+zu4Cr2hm/UYV1VL7zv2GVNj1FBZGCTM1Cnzkw8IvGbuG0IuM31spZlB/+IpDMetYlQSno0/uhpWdHeh816pVaIGrxXBoEfHvQBUILDbVKZEYL89RPUH3yIWiXvx7aPu820dDsobHxepChCJwMiJVRhuaVAmKYHRARjJcehXHsUeg33u3pTwEhoe+9bGyiYrYvTLHlcVWruDpGB8V4/A0HRLOqfeeHScQmP0zHkFlD7amHYZ76iX0xnN7nfrAWgj69f2wuhsClmQdk1rY9Tia72TKdo0p5VB//BtTmMkJveDtEIuN6rIgkoGX3jFUtnOdwvwG72Y7P1Sog3FViGZKFBdMGa30R1R8+CKqVoN/yDsjklOuxIpYe+ZCtG7abba3lcXazZTrBPPcqqj/6K4hwFKFb3wnhkqYGEWR6FjKeGbt95O1ma0CEBjd4kIVFlwyzSmSGl4Y3Re3Zv4OIpRC65Z0QUXf/Ey09B+nhEDjqyFAUFhxMfgwWFow7ZJmoPfsIzJ8+ATGzv02xs4A2vQ9yjH2G7Ah6qeVxZZQhWViMDnY6JNLad08KZBkDHU/NDCdULaH6+F/BOv8qxNQ89Bvv9jCDEtCm9kJGxvvH1W7fdnCzNarsZss4onKrqP7wa1AbFyH3Xwnt6lvdUxtSgz61b+zT0/Z/nwCww822VgHFBudmy8KiB2Q45mjoo2oVSBYWzBasiydRfewboHIecv4ItGtud//RnJCLYQN3N9sqNI+R8MxkQUQwTzyH2pMPA5ZhFztfdr37C/SwvY/GqC7JDTsdEmntqFIWoExAG4yb7fj/zfcBN5U4LK5nzOAhZcF48R9g/OSHAADt8I3QjrzO/QV6qH4xnBxba1tY5FseJ6MKsLBgUPemePIhWKd+AkgJ7fo7oe29zPV4EY5By85PVMRLhGKAQ6u2MqrQWFiMDkIIiFDYweTH4DAuA1XYQPWxr0OtnAWEhHbN7dD2HXE9XoSj9YvhhHVDSBeTH7PK7dsMrJVzqD76IKi4YUchXvdmz3ZSEUtBS89N3PfGvX27Ci06mPZtFhY9IkMRWA4RCg7jTjbm6ZdQfeJbgFG1W0Vfdzfk1Lzr8SKahJbZM3EXQ2BLvdLO4rMBh3GZwUJEMI49BuP579pF8tEEQje9FSLhXswsk9OQiexk7iMpXeqVagMT6CwsesStqp1MDuNOImTWUHv6b2D+7Fn7gUgc+k1vgUxmXV8jE1OQyamJvBg2cBQWGGwYlxkcqpxH9bG/hLp4AgAgUtPQb3qLezspAC2zBzKWCmqJQ4kIRVqEBTA4fyUWFr0iNRcXTg7jThrW+kVUH/0aKLcKABDJrH0x9GhzG/d20k4RuvNFb5BhXGYwmOdfQ/XxvwTqQlPMLEC/4U73IkwhoWXnIflGzhboTkPJjOpA/JVYWPSIEAJSj0DVnMK4FjABFcmTDhHBfPVJ1J75TlNgiul56Dd4tJMKUb8Yjm9vfTcMYxiXCRayTNSe+3uYr/yo+ZhcuAraVbd4tJPq9Q4q7sID6v5KQ9RQwL9+u0CEIsBOYYFGGJf/ascZqpZQ/dE3YZ37afMxue9yaFe/kdtJu2TYwrhMcKjcKqqPPgi1vth8TLviZmiHrnN/0QS1k3bKsDUU8CezC2Qo7FGNO94GR5PMVm+KBvKy66Ff/nr3F/HF0JVhC+My/cf2pngetae+DZh1USkEtGuPQps/7Po6EYlDy+zlzjsH3BoKyKxCuEwU7hd8ldsFQmru7oEcxh07SKm6N8UPtj3ezrDH7q3fO3ntpB0ybGFcpr+QUUX1xw/BOvXipQeFhH7DnZBzB11fJ2NpyDGdneMHXm2nkoXFaMFh3MlAFTdQfbTuTbEF7apboR242vV1IpqClpm83vpuGLYwLtM/rNW6N0Vh49KDUrM9Kjym/E5yO2nHSB2QElA75lgN4EaXhcUu4TDu+GOePlb3ptjqbiegXXs7tH2Xu76O20k7Z5jCuIz/tHhTNNB0uy3bw/iK20k741JDwY5xEwNoKGBhsUtcw7gmh3FHHTKNujfFM9ufEBLa9XdA23PI9bXcTtodwxTGZfxFlQuoPv4NqMUT25/Qw9Bf/1bI9IzzC7mDqmtEKAo4zbEKuKGAhcUucQ3jmhzGHWXUxhIqP/waKLey/QmpQb/hLsjZBdfX8h1WD0gdEHL73SzsCyIzupjnf1b3pihufyIchf76t7kbyAkJbWofpIcxFtPKsDQUsLDwAQ7jjg9EBPO1p1B7+m9bzM+g6dBf93OQU3tdX69l5yG5I6hrmvbeDmFcskzuphkxyLJQe/7vYb78eOuTkThCN78Nwi2iJyT06f1co9YDrg0FAc/f4d3qA17ugRzGHR2cvCma6CE7F5yZc3m1gDbFYdvdYPvCDD6My+wOlV+zvSnWLrQ+GUsidPPPQ7iJb6nZokJn46tecWwoIAKZRmCGYrxbfUBoHMYddaylU6g+9nVQqXWMN0IRO2ybmnJ+sRD1sC2LyN3gPaWRo0CjgHHiedSe/DZg1lqeE/E09Jt/HsLNglvToU/td3etZTrCraGAzCrAwmJ04DDu6EJKwfjJ921vCqLWA8IxO2ybyDi/gZDQpvdBhjgXvFvsMK4OssxtjwcdxmW6h4wqqk8+BOvki47Pi+QU9Ne/DSLskt7QQnakgq+Vu8atoUAZVWgB1X7xp+gTrmFcs8Zh3CFFFTdRfezrUMtnnA+IJmxR4bYZ2aLbd+ww7nZhASJboPOd7FBirZ6ve1OsOz4vMrP2UD639Aa70vqKe0NBcPN3+JP0CbcwLpk1gPPuQ4d55hiqP9rpTbGFWAqhN7zdPWwrdejT+zgX7DNSj0Ch2PI4mTWAhcVQQUQwX/4Ras8/0mLK1EBM7YX+urdAaM6usyIUgTa1j11pfUbqYZeGgmDqLFhY+IRwGaNODrlGZnCQaaD2zN/CfO1p12NEIgv9lre7iwZNr4dt+YfOb9z+zu19xHUWwwKVC6g+/pewFo+7HiNmFqC/7m7XCaUiHIWW3cct+X3Acx+xsBgtpB6Cqu0QFpYJIuU+/pcJDLWxhMqjD4I2l12PEelZ6G94u/vFTg/ZBWYctu0LQkrb00JtT4coFuhDg3nhZ6g+5uBNsQW57wro17wRcAm7i3Ac2tRevi72Cbe0oTJrCCI2xFdHHxF6GKi1htbt8BPn4QeF7U3xNGrP/C2wM3+/BTl/BPp1R93fSA/bkQoO2/YVGQpDVXd8TsoCKYv/7gcIWRaM578L4+XHPI9rOz8nkrCH8nExbt8QQrr4WQRTZ8HCwke8w08sLAYBVcuoPvFNWGdf8TxOu/qN0Bauws5K6gYiFIU2Nc8/bAEg9DBQLbU8TmaNDecGhKc3xRZCt74Tws2iG4CIJqFl9rCoCAChhx38LFQgc0NYWPiInXN3aPMJKPzEbMdaOo3qYw86e1M00EMIv/EeIBZ3bjdFY+z5POeCA0LqIWc/C7PGXiEDwDz5Aqo/fsjRm6KBiKUQPvo+kIswB3jsedDYAr01XRVEpyILCx8RQkDooZaCzSDbfJiGN8UPYPzk+65iAQDk1DzCR98PVS22mJs1EJF4PWzLoiIwpG7n5mnnYD/D5QVMPyCjitqT34Z58gXP47SFqxB6wy9AFZ3bTQFAJrKQyWm+BgaI1J3nhgTRqcjCwmeEHm7tBOE+/MBo601RR7/mTQjdcDeszUV3URFNQMtwLjhobIE+2D78Scdau2B7U+TX3A+SGsJveAfkoeuhNhbdD0tOQSam+HMLGKFpgJQtrcBBCHQWFj4j9TCcfqa4D7//mGdeRvWJbzoW0DaJxBE5+n5oey6DuXbOvf8+wqJikLj24VsGe4f0ESKC+cqPUHvO3ZsCAER6BpE7PwwRT8Nad6+7kIkstOR0P5bKdIDUw1A7rodkGX3vVGRh4TNuUQnuw+8ftjfFd2C+9pTncXLvEUTueD9EOApz9Xzr9NI6l9IfLCoGhWchNAuLvkCVou1NceFnnsfpV9yM8C3vBCmrLiqc040ynoFkUTFQBtWpyMLCZ9yMsrgPvz+ozWVUfvg1T28KCInQTW9F6Lo7AGXVIxXObad2oSaLikHj2odv1KDxWBbfsS4cR/Xxb4Aq7t4UCEUQuf0e6IeuhzIqsNYXXWuYZDwNmZrhfTRgBtWpyMKiD9jhJ4eBZNyH7xtEBPNnT6P2tLc3hUhkEbnzQ9BmF0CWCXPtvOvxIhS1uz+4UHPgDLoPf1IgVfemOObtTSFnFhC580OQySzIqMJau+BemxRLQaa4+2MYcHMH7nenIguLPmCHn1oHkpFpQIRZWOwWqpVRfeJbsM687HmcdtkNiNz2ixDhKEhZMNcvADv7uutcmlnAomJYEHqrsAiqD38SUIV125ti9bzncaHr70LodT8HITWQWYO5ft6j4DkJLT3HomJIaBZCB9ypyLuzD7iFn+w+fI7j7gZr+TSqj34dVMq5H6SFEL7t3dCP3AQhhC0q1s679+HrYRYVQ4ibUZYyDZ4YvEvMky+i+uO/buNNkUTk6AegzR8BYN8YmWvn2xQ8s/nVsOHWqQhlAn2ad8S7sw8Iza0Pn+sseoWUgvHSD2C82MabIrsXkbs+DFl3/yOl7AIzV1ERYpvuIcW7D5+NsnqBjBpqT30b5onnPY/T9l+FyNH3QdT9DshqiAoueB41pB5y7FS0jbJYWIwM7n34BueHe0CVcqg++nWo5dOex+lX347wzT/fHBBGZIuKnZ9DE60+UIxFxXAiNUDIlrA7C/TesNYWUX30a+29KW5+O/Sr39i8TjVrk7jgeSRxLeA0DKBP9ZssLPqEcx8+G2V1i3n2FVR/9E3HmpUmkTgib3of9IWrmg/ZomIRZLh4WjRHn/MWGFYuCXSnPnwW6J1ie1M8UfemcI44AIBIzSBy14egTc1fei0XPI88bp2KZPVPoPNVtU+4VeOSZbBRVgeQaaD27N/BfPVJz+Pk3sOIHP0AZDx16bVEsDYugtzEiNR49PmIIPUQLAdxyAK9M6hSRPVHfwXr/Guex+mXvx7hW9+17e6WC57HB6dORbLMvgl0vrL2CVejLJdNylzC9qZ4ELS55H6QELY3xbV3bLuwERGszYsgh6I/ALaomN7PP0ojAgv03rEWT6D62DdAlYL7QaEIIm98D/TLbtj2MBc8jxduN1H9EugsLPqFkC75YXfPhUnH9qZ4BrWn/6aNN0Wm7k1xoOX1KrfibvIjpB2pYOfGkYEFeveQsmC88D0YLz3qeZztTfFByOTU9tcT2eZXHqKCC55Hi6AFOguLPiGEgND01v5hviA6YntT/DWsM8c8j9MOXY/IG98D4dC2q4obUGWXNlQh7YthiEXFSMECvStsb4qvQ62e8zwudP2dCL3uLS3iwI74LXnUJoWgT+1jUTFiBC3QWVj0EaG1jlAHKXbg3IG1fMaepNjOm+LWd0G//PWOOUFVzkMVXKrdhbDDtn20sGX6Awv0zjFP/cT2pnDrgkKrN8VOVGHNPXXCBc+jS8ACnb8hfUToIcBhj5NlsrBAw5vihzBe/IcOvCk+BJmedXxeVUuwXOsxbFHBxmSjCwt0b8isofbkwzBPPOd5nLb/SkTe9D6IqPMwRKu4CVXccH4xFzyPNEELdP6W9BHXghnT6OsAmFFAlXKoPvYNqKVTnsfpV78R4Zvf7v53aVRhbSy6vl7L7oUMs5nSKMMC3R1rfRHVHz4Iyq+6HyQlwq9/O/RrbnftAFCVAlR+xfn1QtrpDy6WHWmCFOgsLPqIZ8HMBGOe/SmqP/orb2+KcAyRo++DvnC16yFkGXY7nNuExdQspMvdGTM6sEBvhYhg/vTHqD37d228KabtQufpfa7HqFoF1oZ7B5aW3ctpxDEgSIHOwqKPCCEAqbc41k2qsCDLRO2Z77T3pthzGSJ3fAAynnZ/r0aPvctFVSay0BKZXa2XGQ5YoG+nY2+KIzchfOu7PQuWyazZlvdwFudaZg9k3dabGW2CFOgsLPqM1HWo2k5h0T9jkmFFba6g+ujXoDzujCAEQq97C0LX3enZH3+pHc7FuCeahExO73bJzJDAAv0S1uIJVB//Bqjs4U2hh21visM3er4XWWY94uc8VEwmpyFjKcfnmNEjSIHOwqLP2B/m5DoHEhHM48+i9tTfuDr4AXVvijs+CG3uYNv382qHE+EYT1gcQyZdoNveFP8A46Ufeh4nZ/YjcueHWrwpWt/Ptrx384uR8TRkItvrcpkhJEiBzsKiz0yycyDVKqj++K9hnX7J8zjt4HWI3H6PozfFTlR+1b0dTg/zMKQxZZIFesfeFNfdidBNrd4UO2la3pvObakiEodMzfI+GkOCEugsLPqMl5XqOGOtnLW9KYqb7gdpet2b4uaOvtRWcQOq5PJ+UmPjnjFmUgW6efolVJ/4lrc3RTSJyNH3Q9t3edv3IyJYuWVQzdnyXoQiLM7HmKAEOguLfiM1QIiWzoVxzQ+TUjCOPQrjhe+18abYg8idH4bMOHtT7MRuh3NpqWu0w3GP/djiLizGU6CTWUPt6b+B+bNnPY/T9l2ByNH3u3pT7EQV10HlvMubhWwjOZ5UOrYEJdD5StxnbGOS1v5hcik8HGU69qa46jaE3/COjoWAqpW5HW7SkXJiBLq1fhHVR78Gyu3Om2InqpSDKqy7vh9H/MafoAQ6C4sAcDcmUWMzHdA89yqqj/9le2+KN70P+gF3b4qd2O1wi+B2uMlmEgQ6EcF89UnUnvmOtzdFcgqRuz7s6U2xE1Utwcotu7xh3fJ+jFNKTJ2ABDoLiwBwr7MwIORo32mTZaL27N/B/OmPPY+Tew4hcscHPb0pnN6b2+GYBuMs0Klasr0pzr3qeZztTfGuriJ0bd1pM3shQ2x5Pwm4CnQWFqOHa/hJmQBGV1io3AqqP3wQauOi+0FCIHTjzyF0/V1dXfyJuB2O2Y6rQFcmhBzdqbXWxZOoPvYN99oHoO5N8YvQD7+uq/du506rpefYnXbCcJoZAqV87QxhYREAQnPOW5LlHu4cZmxviudQe+phb2+KeNq2E27jTeH0/tbmMrfDMdvw3EcjeCUjpWC8+A8wfvIDz+Pk9H5E7vwgZKo70zciBXN90cOddqqrCCIzHgjpslmUCbjcBHfLCG7HEURIAAItdQJq9CraO/emuLbuTdH9ADBV3HD1quB2uMnF84I4YqjCBqqPfR1q5azncaFr70Dopre6iio3GuIcO+9M69jutN4mWsx44iXQ3aLr3cLCIgDsvJbWUnk7ahGLjr0pbnkn9Cve0NOPv6oWoQprLu/N7XATjUvHwqjto868KRIIH30/9H1X9HQOVdp0F+fsTjvZuAh08lGgs7AICqm31Av4+UH2EyKC8dKjMF74rqc3hcjsQfSuD0Fm5no7j1lzbysVEvrUPLfDTTC2JbHWEtofmX1kGnVvimc8j9PmL7e9KWLJns6jqiV3zxctBC07z6JiggkiNc/CIiCEpoF2liMQDX1FuyrlUX38G1AXT3oep191K8I3v6PnljVS9XywSweIlt0LoY9ugR7jD0LqoBZhMfwRC7V+EZVHHwTlVtwPkhLhm34e+rVv6vmHn0wDllsxdVOcD+/1huk/Qkg7Pb/jWssRixHELT88zBXt5vnXbG+KqrP9LwAgHK17U1zT83nsfPBF10JQmZpmrwoGQF2g77z+KWtoh5HZ3hRPofbM37b3prjzQ9Bm9vd+LqVgbri3Z7M4ZxrY+2iHsOCIxegxShXtZJmoPfcIzFee8DxOzh1C5I4PQCYyuzqfKqyDXMSLiCYh49ldvT8zPgRR0e4XtjfFN2Gd+6nncfrh1yF827t35R7bmPoLF8MwmWRxzlxCSB2EHd8V5d8wsiH7SRtfRqWiXeVWUf3h1/riTeF4vkoBquhiM6yHoWXmhvJOlBkMQVS0+4G1dArVR7/e1psifNu7ETpy067Pp4rroGrR8TkRTbLnC7Mdt1o1UoDYfR0bC4ugcKtoH5L8MBHBPPE8ak992/WuB2h4U3wQ2tyh3Z/TqNp3WY4nqueDuQOE2UoAFe27oXNvin2I3Pmhrr0pnFCVovsMED0MLc3inNmO19RtPwrkWVgEhGtF+xBMZySjantTnPqJ53Hagbo3RaR7b4qWcyoL5saiuyPg1PxQ3YEyw8Ewm82p4gaqj3biTXEUoZve1rU3hRNk1uz6JCeEhJ7lYk2mFfeaP3/2EQuLABFSG7qKdmvlXN2bYsP9IE1H+JZfgH7FLb7c+RCRXbnuZtedmoXswViLGX+CqGjvBfPMMVR/9C3AqLgfFEkgckfv3hQ7IWXVO6lcxHl2ngeLMY64C3R/9hELiwBx9mgfTEU7EcE49hiM57/rWkUOACIzh+hdH+7Zm8IJlV8FuUxBFbEU2wwzngipgawd39kBCfROvSnk/BFEjn4AskdvipbzNsW5WyfVDKQPkUVmTHF1g+aIxcjhmrtSFuCS8+oHqpxH9bG/hLp4wvM4/cpbEX5D794UbudWJWfnThGKcD6YaYvQ9JZpjGT5V9HeKWpjyfam2HQZRw4AQiL0+rchdO1RX9emCmttxPnuOrWY8cbdDZojFiOHZ8FMQMKiY2+K298L/eC1vp7bLtZ0uQhLjR0Bmc7oc0V7O4gI5mtP294UHhdiP7wpnFDlApRL6tIW5zygj+mAPrpBs7AIkj4XzHhhe1P8PcxXfuR5nJw7iMgdH9y1N4XT+c31RbSE3upo2fnAxBUz2vS7ot0LqpZRfeKbsM6+4nmcdtmNiLzxF3flTeF4fq9OqqY452JNpj39dIPmK3mAuF30+t0ZonKrqD76INT6ovtBQiB0w5sRuuFu36vIm/lgFzWspecgw1Ffz8mML677qM8C3Vo6hepjXweVvLwpQgjf9ou+eFPspFmsyeKc8YF+ukHztzBAhJSAEK1V3NSfCyIRwTz5AmpPPtTGmyKFyB0fhLbnsr6sQxXWQC7V8jKe5mJNpitcfzz7JCxIKRg/+b7tTeExhE9OzdveFOkZ/9fQcNZkcc74hHvNn3sxf6ewsAgaoWHnsAPy4YPcie1N8RCsUy96HqcduAaR29/rizeFE6pacs8Hh6OQqdm+nJcZY1xC/f3YR6q4iepjX4daPuN5nH7NmxB+/dv6FjFQpU1X23sZY3HO9IBLZNqPyB8Li4ARUrZ0d/p9QbRWz6P66NdAhQ33g6SG8C3vhH6lP94UTpBleuSDdS7WZHpCCBFI5M888zKqT3wTqHl5U8QROfp+6Puv9PXcW1FGxXUMughFIdMszpnucY1YeNgPdAoLi4ARUmvNkPp0QSQiGC8/DuO5v/f2pkjP2t4U2T2+nNdtLXbo1vm/zR7f3P8KfmY8sb0s+hP5I9NA7ZnvwHztKc/j5N4jiNzxfshYypfzOq5FWe5j0KVmTyxlcc70Qh8jfywsgsbpwyTadQ++KhdQffwbUIvtvCluQfgNv9B3Rz5V3HDts5epGd+r5ZkJw2Ef+XFB7Nib4qa3InTdHX39USciWLkV15ZWLbOHizWZnrEjf60utn7c6PK3MmBcOy520YNvnv9Z3ZvCebohACAUReRN90A/eF1P5+gGVStDFdYcnxOROJv3MLvG78hf594U2bo3xULP5+p4TeU8qFJwfE4msjwGndk1QsoWF1uOWIwiHq1y3aYGyLJQe/7vYb78uPcpZw/Y1eo+e1M4rklZsDY8+uwzezh0y+weHyN/tjfFt2CdfdnzOO2yGxB543sCibaRUbOjFQ6IUBQyufupqAzTr8gfC4uAcTWv6fLDVPk125ti7YLXyRC64W6EbnhzIBMO7bqKZfeWuOxerqtgfMH1+6wU0MXUUGvpdN2bIud+kB5C+NZ3Qz9yUyCimEjB3HTxqxASWpbFOeMP/ar5Y2ERNG4tPl1U4honnkftyW8DOweabUHEUojc2T9vCidUKQdyScfI5BRPLGX8wy3yRxYE2gsLUgrGSz+A8eL3B+ZN4YaVW3H1nbHrKnhiKeMTfar5Y2ERMMKtjqKD3mEyqqg++RCsk228KRauRuRN74UIMAdLRhUq7xK6DUchE1OBrYUZf3YT+bO9Kb4BtXza8zj9mtsRfv3PB1ogqcoFUNnZ2VPGM5DRRGBrYcafftT8ASwsgsfVlMT7gmh7UzwIKqx7vLeG8Bt+AfpVtwYaKiWlYLq2xEloGW6JY3ymx8ifefYVVH/0TcClYwmA7U3xpvdBX7hqNyvsGjINWDmX+iQ9DJniugrGZ3ys+dsKC4uAcTf3cb4gEhHMl3+E2vOPeN6NifQsond+CHJqr5/L7QgrtwxYbqHbvdwSx/iOux2xc+SPTAO1Z78D89V23hSHEbnjA331pnCiOU/HKS0jBPTsXh4uxviOXzV/O+Er/iBwtPVuvSBSuYDq438Ja/G459vpV7wB4Vve2XdvCidUOcctcUzwdGHuozaXUfnhgyA3F1jALnS+6a0IXXfnQKJrKr8KMquOz2npOQh9d0OhGMYRH2r+nGBhMQCcbL13PmBe+Blqj/8lqOLlTRFB5PZ7oB+63v9FdgCZXi1xEW6JY/pGJ5E/IoL5s2dQe/pvvL0pEhnbm2L2QL+W64mqFKFKm47PiWgq8OgJMzl0G/nrFBYWA0BI2dLi04hYkGXBeP67MF5+zPM9bG+KD0Imsv1ZZBuI6nUVjqFbrqtgAsAj8ke1MqpP/DWsM8c830I7dL3tTTGgyaCe83S0EDSeA8L0kz7ZerOwGARO1bZEsHKrqD32dW9vCsD2prjx5wLxpnBD5Vdd2121zNxA0jLMZOE20M9aPmMXOnt5U2ghhG97F/Qjrx+YAL5UV+F0Ea/XVQxwjzPjT7c1f53CwmIAOF0s1PmfwTj2WHtvijs+AG3v4T6urj126Nb5oi1jachoMuAVMZPIzsgfkYJ69UkYP3vG25siuxeRuz408KmgqrgOMpwnp8o0z9NhAqLDmr9uYGExCLaEn8g0YB17DHT+Nc+XaAtXIfKm9wXqTeEEKcu7JS5AIyFmwtkS+aNKEdbz3wOtL3q+RL/6doRvDtabwgkyqlAureMikoCMpQNeETOpdFLz1y0sLAZBXVjQ5grM578LeIVspYbwG94B/arbhqJmwcotu7QicUscEzD1/aCWTsF68QeA4dxVAQAIxxA5+v7AvSmcICKYbnUVUrdTiUOw15kJweG7Rh4Rv05gYTEgrJMvQv30SU9lKNIziNz5YWgD8KZwQlUKrl0qWnqWW+KYYFEWrGOPQZ32LtCUey5D5I4PQsaHo7tCFdbd65N4ng4TMEIIh3khLCxGCqoU7QLNxROex+lX3Fz3phiOH2u7en3Z8TkRiUNwSxwTIGpzBbUf/DnIpd0ZgO1N8bq32N4UQ1IESUYVquicApGJLOSAulOYCcZlXshuYGERINaF46g+/o2h9qZwgohsvwqn6IqQtoEPh26ZACAimMefRe2ph4fam8IJOwXiYn2vh9n3hRkQTtfu3Q0iY2ERAKTq3hTHvL0pxNQ+RO/+vyCT2WAW1iFUKbpOLdXSswMvhGMmA6pVUH3iW+29KQ5cYxc6D9ndvyqsuU4t1TM8Cp0ZEK7fO4Kz6GgP/yL0GVVYR/XRB6FWz3seJy+/CaEb3wKZyAS0ss4gy7QLNh0QkTgEt5YyAWAtn0H1sa+Dis4OlQAAqUG77g6Ern3T8IkKowJV3HB8TiamuLWUGRiugpaoV13BwqKfmCdfRPXHf+3pTYFIDNrr3gI5s39o8sANOAXC7AarWtp1zQApBePYozBe+J533jc5Bf31b4NIZnu9FvYNIuXurqmHIZNTwS6IYbbiJSx6hIWFA8qoArsoRiSjhtpT34Z54nnP48TcQWg3vrl5d7XbwS9+Q5UCp0CYrhB6GDIUgTKqILMGs5SDHu/Nk0GVcqg+9g2opVOex8lD10NefVvz+7jbVjm/sbtAOAXCeKPqZmk795BVKUDv5+gGl+8fEfUs0vmXoY5fF0RrbRHVR78Gyq+5HyQ1yKtvgzx0/faLyhBdEO0UiMuAsUiCUyBMC0IPQ09OQQgBGYnDLKxDVctAD/vIPPdTVB//K6BWdj8oHIN2w12Qew5tf3yI9pGqeaRAkpwCYS5BpuG8h2pVINHPM7tEyjli0R1EhEqlgnK5jAQAGWr9MK1qCQjHoeud/RUREcxXnkDtuUc8J8OJ1Awid30IFsjBn304Loh2CmTZIwUyy3dZDJRSqFQqKJWKSGuADEWa3wshBGQoAsuswbIsaFpn3gxkmag9+3cwf/pjz+PknssQvv19sIySw5sMyz5qkwJJcAqEASzLQrlcRhjue6hUKiEajUL2IV3ufi1nYdERhmFgfX0da2trME27Ve3qhVnHD5PMGl5++WWkUinMzMwgkUi4fgBUKaL6o7+C1caWW7/89Qjf+i4IPQxrfRE7P7hhCeHaKRCHCzZg11VwCmSiqVQqWFtbw8bGBlTdhTW5fwbCqEJG4rbhDhGUUYUiwqsvv4xsNovp6WnEYjHX91W5FVR/+CDUhktLJrDNmwIArA2n7+lw7COVXwMsToEwrRARSqUS1tbWsLlpFyRf6bGHjh8/Dk3TMDU1henpaYTDPvobudZY9J6an4hfCKUULl68iNXV1dbniFw/TADI5/PI5/OIRCJYWFhAPL59Voe1eALVx74BqhTcFxCKIPLG90C/7IZLjwnZ+sENgbDwTIFEE5AxToFMKoZh4Pz588jn8y3PbRTKmE4JmIX1bSnFjUIZRIT19XWsr68jkUhgYWFh24XxkjfF37j+EAN1b4o7Pght7mDzdU4MQ62SqlWgSs4dLDI5zSmQCaZSqeDcuXMol7en+bz2EGBHNlZWVrCysoJsNot9+/Z1HAn0xKPGolfGXlgUCgWcO3cOhuF8wWr3YTaoVqs4fvw4ZmdnsWfPHggQjOe/B+PYo57nlzMLiNz5wZbKb0cb1QHfaXmmQKTdBcJMJuvr67hw4UIzQrGTlZwdOcgmCWTWoIiwUSg3H29QLBbx6quvYn5+HtPT04BRRfXHfw3r9Eue59cOXofI7fdsayP1bJMbIO1TINlA18MMB0SE5eVlLC05fzc63UMAsLGxgXw+j4WFBaTTuxtY1499JGhY4u99YH19HefOnWt73Gw6jmwyBimE54fZIB6PY++ZHwPnX/V839D1dyL0urc4ev8buRXQjjZUoekIZfa0XW+/UOWcq223lt3L49AnECLCxYsXsbLiYZ3dI9lMGlPP/hXgMuUTAKDpCN/yTuhXvMHxAlhbv9ByAZThGPQBtnBauRXXaIU+c4CjFROIUgqnT59GoeAR2e6R+fl5zM7O9vx6siwYDo6wWiwNrccI9dhGLDoVFYCtFL2ExE5KpRIu7LkBexePQzoUaopYEpGjH4A2f8T9TfowUW432CmQ1lQRAIhokkXFBEJEWFxcdEwh+sHGZg7W4aOYefEhx7Y2kdmD6F0fgsx4RcoEhqlWSdXKnAJhtqGUwqlTp1Aseoxy2AWLi4sgIszN9RhR7kPx5nA5MvlEsVjsWFT0SsUCVq/5+ZbHtf1XIvbuf+YtKuASfhrQBZGI7EiFYwpEg5buXQ0zo8v6+nrfREWDvIggd/iNLY/rV92G2Ls+3kZUwHmA0oBSinYKxMWlVo9wCmRCWVxc7JuoaHDx4kXkcrneXuxaY8HFm00sy8LZs2cDOVdBTyC+7zokLhwDpET49W+Hfs3tHVZ7D5GwqBRBNbcukFke4zyB1Go1XLhwIZBzraUWEE2dRCS/DIRjiLzpvdAPXNPRa/sx8rlXVGHdtfhUy3IXyCRSKBSwtubhaeQj586dQzzeuUVCg37UWIydsLh48aJroWY/WJm7FrFqDvE3vhva9L7OXzgkFxlSClberQuEUyCTCBHh7NmzgaYUVi6/CwcuPI3oHR+E7NGpc5CQWfMwwpqG0H1sD2RGgiBvchvnO3/+PA4dOtT+4D7T11TIhz70IUxNTeGXfumX+nmaJqZpBqYOGygilG5+T3eiYohQhTVnQy9OgUwspVIJpVLnNUd+UFOAcdsHRlNUNGbqOCBCnAKZVDY2Npp+SUGRy+VQrVYDPacTfRUWn/zkJ/G///f/7ucpthG0qNh6Xrc2vGGGjKproZmWmuEUyJhg5brbF/2uqxi28+4WO5XobD3Og/rGh272EREN7Ps8qN/BrfRVWLztbW9DKtX7MK9uIKKB/YValuVoGjTMeN5lhaM8C2SMyH/nq1j///1X1M7+rO2xpmn2XgS2S0ql0lDcbXWDVypRxjPcBTJGrH/lv2Dzm1+CubrY9thSqYRazWOqdR8ZhhvdroWFUgrXXnstPv3pT297/OGHH0Y4HMZXv/pV3xbXDYZhBB522krQoePdQuU8qD5Nbyd8lzV+GKdfxcZXPt9WYAz6ezzo83eLVyqRx6GPGaRQfflprP3PP2wrMPrdBeIFEQ1coHddvCmlxGc+8xncd999+K3f+i1MTU3hueeew0c+8hH8/u//Pj7ykY/0Y51t2WmPGjTFfA7G6iudv4AIoj6IjKjxT6B2+qV60RzZ/1d/rvnnlsft19X/36U/O7ymidQQufJaCIfqYXPlIiovPbebvwpmyDBXLl0AjdOvYuP0qwgdugqJO38R4QNXbDt24PtobQX6M3/f8fGqVgbt+GEXUoMMu88k8QsRiSJ8+dXOxl2nj6Py4tN9XwMTHFRp7A1C9eWnUX35GUSufQMSd7wL+sz8tmMHvY/K5bLnXJ5+01NXyEc/+lH83u/9Hj7/+c/j137t13DPPffgYx/7GD71qU/5vb6OqVSc776DolozIDRtWJo9HCHLhKrVgOS0o6hQlRIqz/0AVC5DGTVQrQYyBhPOY/rLJYFxNRJ3vrspMAZ+QaxUEH76ewNdQ6ek3vlLjqLCWDyD4ne/MYAVMcHiLjAGvo8GfP6ehIWu6/j0pz+Nz372s/iLv/gL3HLLLfj85z/v99q6wrLcR5UHQT0u4OggOCwITYdMxkAuIVrNqiB96x3bHiMiUF1kNMSGqlUvPVar2UWgtUtCRNWqwAgWs04ixumfYuP0T5sCY8DbCNaIDBgIX34d9D37Wx4ny0Lpie8GvyBmgGwRGNfdgsTRdw3892jQ5+/Zx+KjH/0o/uW//JcgIjzwwAOOU9be9a534emnn0axWMSBAwfw4IMP4o1vbHXZ84MxHnniGwSAYhlnDw2jYv9vB0IIiHAECEfQTY+IqlWhyiWocglWuQRVLm/7d6oONsLEbMc4/VOUIzHQdXcPeilDjwhHELvF+e+pcuwZqJzH7BNmjCFUf/osZDQOzF832JUM+PewZ2HxiU98AgCwsrLiOrr14Ycf7vXtu0bKwbuTD3O0AgAQjgNORj1EEOVNX9cvwxHIcATIOEdHSClbaFTKW8RHaZv4GPjt84QQuer1SNz5LuhzC1g9fhwYUDU7MAJ7CEDs5jsho635a6uQQ+WFJwawImbgaBpir7sD8dvfAS09BfHSSwP9cR/072FPwuK3f/u38a1vfQuPP/443vGOd+CLX/wi7r33Xr/X1hXh8GCd7XQpUVs8i8alsTUoIJz/VQjbL0JqEJqs/1ODkBLQNIj6v+8WEhIUczYfEpU8hFNlex8RUkJLJKEl3NtaVa22I+qx5X+VEtSA62pGna2CovlYJDLQzoywGO7IozazF+GrbnR8rvzkPwDW4DrTmAGwQ1A0iEQiA61ziEQG2+bc9dj0L3zhC/jkJz+JRx55BEePHsX999+PP/uzP8Nrr72GUCjUr3W2pVQq4fjx4wM7fyaTwcGDBzs+3ixuQFV3XsAFwg4Onpc6QCz7n0q5/plI2cPESNWfs/+nLMt5NJNlQuSXRuJOsRUBhKNAOA4RiW/5Z4zNvbaw8bU/Re34S81/dxIUDdbW1nD+/Pkgl7eNvXv3djWl0dhcBu2YzyH0MEJ9cI0lIpirZwGzNaIjInFo2Xlu0x5jVv70d6HyG/a/uAiKBufPnx+oUdVll13WlYdUba11z8tIHHqPrrFdRSweeugh3HvvvXjggQdw9OhRAMB9992Hz33uc/jyl7+Mj3/84z0twg+i0ejAzg2gr609Qoh6CKR9eMvpsqZqZZDDFwcA5MwByPkr7OFJlglYBqj+T2z5J239d2U69+4HDgG1MlArgwqrjUdsQlFbYGwTHHEIbezG43SMl6BoMMgWtWE4vxeqnHMUFYCAlpplUTEJtBEUDQb9PR70+Tu+yj711FP4yEc+gj/6oz/Chz/84ebj6XQa9913H/7wD/8Qv/Irv+Jab9FvpJRIp9MDcw1Mp4dzxoHtsOkyyjmSgBZN2P+y5Qe3k8sjkdomPLYJEtPuFIFZBYyq68THvlIvRqWiXUjXFBx62BYY4RgQiUOE40AkDmihsf1hCB++Dsk3v9dTUDSIRqMIh8MDcQ3UNA3xeDzw83YCWSZU3vkOVCazEPrgorVMMMRuuhPRG273FBQNUqmUPXl3AHUWvUw49ZuuUyHDTLFYxIkTJwI/byqVwmWXXdbVa7pJhewGq7gBlXfwrBcC+uyhQO7gSVn2nZ5R2SY4tokPGnB7qtS3CY2G8IAeGVvB4cbq6mpgI9O3Mjc3h71793b1mqBSIebGRVCl0PqEFoI+ewBCDL54nBkuzp07h/X14DuEDh48iEwm09VrBpoKGXbi8TgikUjgdqZT6SSIaOh+gMgybcthB2RyOrC0gJAaEI7ZqQmH54moHunYIjiMKqghOoxK/6MeygTKOVDZjng11baQQCRhz06Jpex/huND91n7STabxcWLFwOfN5BNDWe0QtXKzqICgJaeZVHBODIzMxO4sNB1fSii52MlLIQQWFhYCLSIM5WII0pVmPk16Mls50WDAcSJrPxK3ep7B3oIMt6dou0nQgg7RaGHgWjKWXwodUl4mHWxUauAaiWgWupfxIMUUMmDKnlg44L9sUkNiCQhYkl7vdEUEBqfyIamadi3bx/OnTsX2DlnsymISh4mWdDi6aH5sfYc1hdJQEaGUwwxgycajWJmZibQKacLCwtDcR0aK2EB2FGLubk5LC871xX4iaZp2JOy21zJrMLYXIaeyEKGOykkdfjB9/ELoWoVUMV5EM4oDhkTUrpGPYjIFh3VUl1olC8JDtWH9j9lAeVNUNkeOU+AXaMStSMaIpqyoxtOniEjAJFCJhHHZiKOQrH/rafRSARTMftSpKolKKMGPTkF2VHdQn8VOpXzzgWbQkDrQ+cJMz6QUpibziKfy6Fm9L/ObGpqqqdp4u7VEL3/RoydsADsXG2xWOx7P/6+qQS0rUYkpGAW1iCjCWixtOePt+OH6dOPPRE511UAENFkIAOagkQIYXeBhKIQmG4+3kyxNAVH/Z+1skt1/y6wTKC4DiqubykUjQDRJEQjhRJNDVVXCpECTLvjh0yj+c+GGFvYN4/jp87A6ONFUdMk5jPR7XtFmTBzy9DiGciId9rJeR/5E+0gpWANQSqRGW5IKbvOZ8seIsuwb0CExIEDB3Di5Mm+FnJGIhHMz8+3P9ARl3Xt4vdoLHeGlBKXXXYZTp482TeTkoW5KcRDzn/xqlIE1e+6XC8+DqF7v6IIVC05j0QXAlpqxpdzjAJbUyxiRxESWSZQK4GqpS3/LDvamveMWQUKVVBh9dLWDccuiYxoCogmAvPcUEYVVC23CAgnRCQOPRrHkSNHcPz4cZim/5EfTdNwYDaNsOb8vbdKm1BGFXoia0esnHC4WPu1j1Rpw7mtWhuuVCITLKpaBhmV7QLCBRlPIR5P4PDhwzjZJ3ERiURw5MiR3jsyXda0m300Vl0hO1FK4cyZM8jn8769p6ZpOHToEGJhHWZxvc2wLQEtkYHmkId1rGbXQghlOjcHcoKIYK6ccSx2lMlpaC4DyBgbUpbti9EUHEWgUvA/wrGVSAIilgJiGYhEtm8pFLJMmOuLHdWj6FP7mi2UhmHg1KlTvk4QDofDuOyyy6DDglXchGdKQ0g7NRJqdROsrV1oee1uqtkbkGXCXDnteNHVsvOQjTZtZuJQRhXWxsX2BwoJfWZ/s16oXC7j1KlTvor0RCKBQ4cO7crmgSwTxuZSy+NaPHPJjqBLxlpYAPYPbS6Xw/nz510nvs2mYsgmo5BCQBFho1DBSr410pHNZjE/P9/sESalYBY3nKMDW5DhGLREZltBmrG5ZN81b8GPNjmrtAnlVGwmNbu9dAhmqowiZFTrRZwFO+9eKfSnfgOwoxrxDBDPQsQzvgoNVS27+po0ENEE9B2RLSLCysoKlpaWXO+6Ot1Hc3NzmJuba84zIMuEWVhvEdo7kdEktFiqeSdFRDDWW9tiZSQBPbG7iIK1uWwbYu1AhKLQpvePXI0S4y9WcROqtOl5jExkocW3d2hYloWLFy+6unJ2uoeEENi3bx+mpqZ2/V1UpgHT4ZqgJbKON8WdMJapkK0IIZDJZJBIJLCysoL19fVtAmM2FcN0KgahhyFDUQijgumU/UE1PtBkMonZ2Vkkk9vnWghp30mpagmWx5dM1cpQZqMgrV7s2YcaC1IKquDc3qQlp1lU7AIRitidHylb+BGR7ctRyQPlgv3PSsGf7pRaGVQrAxuL9r14JA5RFxmIZyC03syYSFlQ5fbRO80hzC+EwNzcHNLpNFZWVrCxsbHtO9xuHwkhkE6nMTc31+KSKzQdenoWVjkH5VJwDACqUgCZNTs1ounoR24YAMisOYoKAJCpGRYVEw6ZNQcPoh1IDTLWWkipaRr279+PbDaLlZWVbYaOnfwWSSkxNTWF2dlZ/0ZouFyzOBXSBUop5PN55PN5lEolHJpJQAtFoNcvGEQEM78Ky6ghZ+nIZrMdDThTpgGruN4ShdiJFktDRhMwNi62fKAyHIO+i1SFlV+DKjoICz0EfeYgXxD7DBHZBaKVvB3dKBeAahG+dy5EEjuERvv7A1Urw8qtthU+MpqElpr2PAaw77w2NzdRKBRQLpdx2WzSdR8VEUEmk+nIDVDVKjCLG97rFMIWF3rY3kc70GIpaA4X9U4x1y/YqbCdp40moGd7LZBjRh0iAlWKsArraLenZXKqo++gYRjY2NhAqVTC3qTuuoeWSxaSySQymYzvk0uVUYHp4CqrJ6c77HBsZeKExVaIFIz1RWixNLTYpWiEVS7AKucQnt7f9ftZpVxbNSv0iO3FsIPd5IY9c8JT85ARzgkPAlIKqBZsg6Vy3Q+j5nNBcTS5XWhsKQYlIqjiRkeRCkBAn97XdbeDMqow86v+7SNlwSxsOO6RrchwFKrWmobcTW5Y1cqwXObq6LOH2Lp7QiGlYOVX7UhiO6Ru76Mub+Rqa+d920PdoGplmA6Rbj0141jX1AljnwrpBGVUIKOJpkpURgW99PAKIaEnslChSP2uy1mzuV8we48oWIU15wr5cNS2qWYGgpASiKUhYmmgHowiywQqdbFRydtun7spDq2/F62dBSCAmC00EE3BMmodu5bKWHJXLZS+7SOpQU9NQ1WKsFxSEgAcRYX9Br3tI682bRnPsKiYUJRRtU3SOhy8aNfT9fYd9GsPdYNrbIHbTXcHmTWY+VXIUBTKqIDM2q6qvmU4hpAWsgs7u/nB6PWCaNTsgkIHeOri8CE0HUhkmy2wzXqN0gZQ2gQVN3ZhYU5AOQ9lKTub4BU2lRqEptuFqUJAxndnBeznPhJCQIslIUJh+26qi2m6vX7fqVq0/y5a3lBCcjfVxEFEUKVc2yJN6CE7M2IZgKbbk5R7QOhh5z3U7xtD13bT3lMuLCzqkFmD1RABWgj6LvvUhaZDT83AKuehXOYMtLymxwuiVXA3wxI9hrKY4BBC2J0g4RiQ3WcLjVr5ktAobXYsNAgClJgGoknP44SUkOlZCC0Ec/2CfZfkg5/G1n0kQpFd7yOphxHKzNlV+B2nkLrfR0QEyy1akejCqp8ZC8gy7dSHk9DcgoylIBNZoN7KrSWyPV/HZTgGy6xt/y0CtqVG+gJHLIKh17zSToQQ0ONpOzVSWG9bOKcsA91evlS17FhoBtidIMzoIYSwO0EicWBqf11olEDFDVtklDYdW11JC4NSs4BX1wgRRGndTsGsnATFM5CJ6b54Z/TaqrYTUfexsKqR9p4XQNsCaidUadN2T92J1CF32brKjBaqWoKVX2tTQCyhpWYgI3UXYz0ELTM3kjdy5PrfycJiqJGhCEKZPW09L6hWgVlYb/G8cD2ec8ITgS00EhCRBDC9UO8+KYJKG6BifWZJOA6KT3nfZZgGRGEZohH9IAKKG0Bxw47kRhIQyWmI5IxdEDpkKTQtEofUw209L6xyDkRqm+eFF6Qs9zbt1PTQDERj+gsRQRXW20aYRSgCLTXTUo/UawfF4OGIxciyG88LN6hScC4E5ZzwWCOEsH/4o0lQdh+s3GpbkzZU8hDFdQivu/1q0a4zWD1Tt0GfhkhN20ZdQ5IK6N3zwh3l1t6qh237dWbsIdOAmVtpm3KUiQxkmzlQI0cfLL1ZWASIEMJugyPyrHaHsmDmVpqeF04fMBF5DEiaGpofAqZ/qFoFVn7F21aeCKK4ClF1/xF2xKyBNhdBm4v2UK9EFiI5Y0c0Bjy11U4xZmAq5Vl3QWYNRq4xcdh58B5ZJlTRWehrbIY19nTsTSE1aOlZ39LkQ0UfzBpZWAwA0aGvu1XOQZmNIUzbX+OZE95ldT8z3NjeFJuu7pANhB62R3vPHrTHvOdXQYU1ezhaVydUQGENVFizL73RlC0wUjPAIFuZOxHPRDAL65CRKrR4axuglV+D0w+KCMcgfaoRYYaTxvRatxq1BiISH2vn4n5MCGZhMQC68SQjowpjcxl6MgsZsnN4nBOeXMgyYeVW2rYxy3jarrNp/JAmpiASU5fqMwproMKqbUPeLRXb6ItWTgGhCJCas0fEB07n+0hVSyCzBi0xBVmvPSKjahuWOTBJU4Ankc68KQS05BSES9R4bHD8PeKIxejR7TwJUjDza80hTJwTnkxUpehqhNZEana1uksh2db6DMwesn9ci2ug/BpQ2uj+u2lUQfkVYGqhu9f5gedk4VbIMmHmlqHFM5CRuGt7qYimRrK6n2lPx94UWgh6enYyCuAd9vxuhRQLiwFALhdEGU20L0irlQGXYzgnPJ4QKViFdZDHdwOwXVa11ExX9TUiFIHI7rP9M5Rld4gU6imTnk26bNTGoj20rU8dJo5tckJChiKetRdWadOu/Hc8RnQ0K4UZPTr3pkhCJnY/NXRUIKeozS5r9FhYDALH8JuwizVDUU/PC6pVHCv7RTjOOeExhIwazPyKcz3NFmRyCnKXP+BCakBqBiI1Y6dMKvlLKZN20xydKK5DrZ0FQjGI9BxEZs5fe3kHgS6kZpsUhbw9L6hacgz2ykRnQ92Y0aJzb4rpibqOEpFzxGKX9SS8gwaA452WlBBCQIQiCGXm6p4X1Z0vdDRGAsB3WWMGEUGV83bay4t6+6XfnRpCiEszTuYOg2qVS5GMUnuTqm0YZdDqadDqaTt6kd4DkZrddbrB7U5LCOHteaEsCLdoR49DAJnhxC50Xocq9+ZNMfa4um6ysBg9nO60tnyQQmrQk9NQ1SKs0pbKf8t0LqkJxzgnPEaQsuqTFL29KUQ0YReXBVCsK8JRiOkF26DLMkHFdaCwCnIpInalMTBt6bjtj5Ges0VGlxf0Tu60mp4XpRzU1nZbl+iPjKW5TXuM6NibIp6BjI+ZN0WnkHPx6m73AQuLAdBJTsv2vEhC6HU7cMtwjVaQUrAqBcjImFcvTwC2N8Wqd7W6ENCS07salLcbhKZDpOeA9ByIlN2h1CZv7Uhpw3YPvfgakJiGzOwBEh229XV4pyWEgJ7IXJo4bJmO0QoCYJlViFrZ1fOCGQ3Ym6Jz3Or9OBUyYnSb05J6CKHMLMz1Ref3ExKQ0r4rM5w9L5jhp1tvimEJ2Qoh7Q6TXoRFAyKgsApVWLVTGalZW7jEPQY6dXmnJcNRhPQ5mKtnnd9P2n+fXp4XzPDD3hTd4SYsOBUyavSS0yJyv3BvGTh1yfNiaqJV+KjRsTdFLG0XF47KD97UAlBYAdrdOW5FWaDNi6DNi3b7dMou+kRke2FqT3dalumYBiEA2CLUnDwvmOGHvSl6gFMhY0IPH6QqbTpGORrRiu0PKpj51abnBW+e4cYPb4phRcbTkNm9IMsA5VZAuSWgTURmG2YNtH4OtH7OriNKz0Fk9kKEoj3daVlu9SBSb7Ewtj0vVqDF05CROO+jIcYudM65WrM3mSRvig7hiMWY0O2dFinLfcN4jMdWlQLIqEJPTg1N2Jy5RD+9KYYNoYUgpvYBU/tARgWUWwblloFu5pfUyqCV06CV00BiGkhk7VDDjh98t78nMqogt/O57g+yPS+aKcbJDpsPIx17U0ST9gwlFojbcRUWbJA1UnSrEFUp51yTEY5BS814e15YBozNZWiJDLQJ6s0edsis1avV23hTJLKQYxZ1EqEoxMxBYOagPUk1twzaXOpufklxDSiuQUodFEuDoqlL4sBlH1lF52iFaLhwenleGJVLw8w4xTg0qGrZLnRmb4qeIacIer1lezewsAiaLlIhpJSrj4FMTkN6eV5cehdY9ee1RIbniAwQO2RbgHL5kWui6dBTsxChwU4R7TcikoCYS4BmLwPKOVtk5JfbCq7m65UJUVwDFdeASAIqlraDGDuOI6PmEhkStpmWptc9L9ZAbudWFsz8KrRYatdGZMzusAudN6DKznNeGkysN0U3tLE+6BX+Gw+YbiIWbrUVIhxr5ttdPS92vletDGUadmEn5xgDZxi9KYYFIQQQz0DEM6C9l9u24rklULu70cbrAaBahFYtgorrUNl9EJk9TdMwt2iFjKebPzq258Vcq+fFDqxy3k6NJKdGOj01qpBp2E60JntT+IGbWeNuYWERNG4VyzuLxzyjFVM7XrrV82LN/RyqMYQpzZ4XATIK3hTDghASSE5DJKdByrJHveeWgHZRngZGBbR8ArRy0p5TkpoDOU5wFS0umy2eF24pRrMGY3PJTo2w50UgEBGoWoSVZ28KvyAix2uSH4KZhUXAOCvE1pyWKrvVVkRdL2a258UcrGIOqubex82eF8FgT1LctOtkPBg2b4phQUgNIrMHyOyxiy83F0Ebi0CbtlwAABEotwxlGoDDfJKt0YqW5xqeF4V19xZgorrnRQ0a3xn3lY69Kep1Z1xk2yF9svMGWFgETwc5LSKPaEXCeyaIEBJ6MgurGoZV2nT98rDnRX8ZW2+KASFCEYjZy0Azh0CFVajlU0DNeZBYA5IaEHIW4SKe8T6f1KCnZqAqBVgeuXxVLYLMRvcVpxj9hr0p+ohrvR8Li5HDuQp3+wepSjnnEFUoCtGhl4HnEKbmYtjzoh905k0h694UHErvBiEEkJiGMmqAZUCUcxDlPITDvqJIyrltrloEnXkBamqfPRDNJWonhLD3hR6BWVx3/XEjy4SxyZ4XftKdN8WM70P4JgH3ej9OhYwUdk7LedTzpWO8ayu6uWg1hzCV81COeWYb9rzwh469KUJRaOnR9qYYJM1ZO1oIlJwBJaYhqkXIWhGof89JaoCTaCOCqBQAskCLr4GWTtjGW9l9tjW5AzIURig9B6u0AeVafGt7XpBZhRZnz4vdQFa90NnwLnS2vSmyE1Xo7CeOM6vAEYvRw/WDvPQDo0p5l2hFBKKHu1shBPR42i5Ia+d5kVuGFs9Ci/BddLdMsjdF4OwcxicEKJqEmD0EQQq0sQhVLTlHK2ql7dENZYE26rUbsRTk9AEgOdPy+QgpoSWmIEIlWMUc3AoIVa0CZS5DT0xBjnm7cD9gb4oA6eD3qFdYWAQIuUwnbQxAsvuzXVrjduka15HnBRGs4nr9rivNdwIdQERQlYI94dOLCfGmCAKyXC6ImgahRYHZg8DyaYcXEkTVPXKHch7q3DEgFIOYWYBI790+hl0IaJHElhSjl+fFCntedAF7UwSP6/eXhcVo4XVBBGC3xblGK3avzjv2vKiWoIwae160wfamWAPVyp7HiUjdm4LD477QTqC75uWNCoRnEWDjuLKdJlk+BTG1H2Jq37bCTKGF2PPCR9ibYjA4pkJ8cN0EWFgEitsFUUgdRLZDphMy4Z/H/SXPC/uuiz0veoO9KQaH4wVRSAghbP8Xl7tebf5KoLQB2rjQrMXwxDJAK6dAq2cgsvMQ0wsQoboxXVeeF3U78BEbItdvuvKmGMEhfMOOU8TCr0gQC4sAcYxYCGHniI2Kc3++HoLoQy5R6uG658UmlMcdN3tebKc7b4oZbkHsA14XRFf/l2jS/mEKzwPZeVA5b9dW5Jbau3uSAq2fB62ftws9pw80Cz0787xQMAtrkJEEe17U6c6bYpqvPT5DpJz3iWRhMXo4RCyE1CGEqA9BakWLZ/t2IbI9L6ZgVSNthjCx5wXQjTdFCjLRv89tkvFyC2yIPifkDt8KEUtBxFKgPUdAmxdBa+c6GoTWnMyayNqFnvEse150ie1Nsep4PbyEgExmuUalT7RLy+8WFhYBQUSOH6bQNJBpOI90FhIi5twC5yfsedEeVS3Vq9U9QrZCQkuzN0Vfcatk13T77tcpmhGKuobRhaZDTC+ApvaD8sug1bOdjXMvbtht4ZEExMwBiNRcd54XiTRkeLI8L2xvirxrO30T9qboP64dIRyxGC1IwTEiIHXPu6ygOjO68rwwq9ATk+F5QaSgChuefycAe1MEhVvvPaTm3lGV8HbZBOyaCZHeA0rNAaUNqNWzQGmj/YKqRdD5V0ChkxBTCxDZ+c48L4qb9sThCfG8IGXByrE3xbDgXgDNEYuRwvWCKISdF3ZAxtN9XJHTUhqeF2GYhQ2PgjTb82LchzCxN8Xw4doiR8p5cqzUISKdF8/azp5T0BJToEoBtHbWTn20w6iClo6DVk5DTO2DzO6D0CP17qvJ9rxQtbKd+vD0phB2gSZ7UwSC2z7iVMiI4XpBNKqO4XURTQ4sIiBD0Y48L+whTOPnedGNN4WWmpnoupOgcRPozhNMsas5LCKahNh/LWjuMGjtnG2i1a7QU5mg1TPA2jmIzB7o2X2wqqWJ9Lzo2JtCj9QLnfnnKCjcO6v8uY7zJxkUTh8kkesFUdsx0jlomp4XlSIsl4gKMH6eF517U8ShJacnIow9TLj9QDvaqAsBGUvt+pwiFIXYewVo9hBo/QJo/TzgVovUXJDtAIqNRYjUDERyDsrjNePmeUGmYdtytyt0jqfrKd/xEVSjQD9bTQEWFoHheEEk5T5sbAjugu0hTEmIUKeeF5mRHsLE3hQjgNN+cfm8ZCzt64+00EIQs4dA0wdAuYug1XOA4S1AAUDkV4H8KmR6D1TUXeiMi+dFZ0P42JtiUHh1VvkFC4uAcAw9udx9yQFHK3bSuefF5hbPi9G5k+/KmyI1AzEGkZlRhIhai86IXB0bd7aY+oWQEiK7D5SZBwqrdqFnxTvcDwAitwRZWIWaOgC43R2OsOcFe1OMCB6dVX7BwiIgWiIWSkE45Ws1vS+GWLulc8+LCozNpZHxvLC9KVZBbTwM2JtiCCBqvQtWFpy+iyIS77sAFEIAqVnI5AxQzkGtnQUKa96vURbk6ilQfAqUmHIelIatnhfTI1F70Jk3hT3zaNxqSUYNr84qvxj+b+wYQEStRV8uG3DY843j5HnB3hSjhWO0wnUfZfu/oDpCCCCegRbPgKpFu9Bzcwlu4lsAEKV1kFGGSu8BXMyybM+LZWiJDGQ4NpT7iL0pRg/3jhCOWIwWjhdE56pcGQu2xbQXLnle5KCciubqDKvnBXtTjCYtBnOkIJxEoR6GGFDuXkQSEPuuBs1eZtuAb1xwDz0bFci1s1CpOSDqZoRnzxCyPS8yQ5ViZG+K0cQtYsE1FiNGi0K0TDjde8hYaqguHF7YnhcZKL3dEKbh8rywvSlW21b1szfFELJToLvceWlDEPUToQjEniOgmQN2BGP9vHPBHCnI3EVQrQRKzQIuP76qVoYyG91Xg7/rZ2+K0cU5YiFcv3u9wMIiALZ9kJ7h2/4Um/WT5hCmIfe8uORNsQHvSYq6nfoYgfqQSUNtLdIklxolqUH40GLqF0ILQcwdti3D186C1i+0/BgLAKKSBxkVqMxeQHf57ikLZm6wnhfsTTH6OKWwhab7+n3iTz0Atl0QleUYrRCRxMh2G3TjeUFmDVoiWM8L9qYYD7ZdEN06qoa0k0LoYYg9l9utqiunbY+LHQJXWAbk2jlQcgbkcZMxKM8Lsox6oTN7U4wq5GZx4PP1mIVFADQviEQeLaajF63YSqeeF2QF63nRkTcFBLTUlC3u+GI4lGy7ILrVKEEMfY2S0MMQ81faKZKVM6DNxe3PgyAKK6BaGSo951qpH7TnBXtTjAdBFG4CLCz6zvYLooJwao3TIxCh8diMw+J50ak3BfQQ9NTsyEaLJoVtF0TlXKMkYoOzwe8WEYpC7LuqLjBOg3JL25+vFSHXKlDpvYBbbVIAnhe2N8W68/Tlretlb4qRgFw8X4RLZ1KvcMy3z2y7IHpEK8bpTrnheWHbkrv/d5FRgZFbgnKrzegRskxYm0ttRYWMpaBn51lUjADNCyIRsLM7pI42gjVKIhyD3H8N5JFbIFKz259TFuTGeYg2kQJVLcLMrbjPI+kRMmowNxbbigqZnIKWnmVRMQK4WQT4LSxGQ96PMNsuiG7FZq6tZqNNR54Xyl/PC9ubYq1NtbqsV6sPvkuF6YxL6USXqF84NhQ2+L0iIgmIhetAlQLUyqmm0VbnnheGb54XnXtT2G3n7E0xOjiKTyl9jxqzsOgzzQuiS/h2WIvN/KI7z4uanRrpIZzdlTdFasa38cBMMDQviG5zQUYwWuGEiCahHbgBVM5DrZwE6j/uXXteJDI9dV916k0hogloySn2phghiMilI8T/iC0Liz5DlukZvh32YjM/6NzzotaT5wV7U4w3zQuiW9Gm1IbSBn83iFgK2sHXgUqbUMsngXJui+dFGZSa8d3zomNvCh7CN5ooyzGlxsJixLh0QXQJ30biI1Ns5gdNz4vChvtsjm2eF961J517U2jQ0rPsTTGqNC6ILq3a4ywWRTwDeegmoLQBtXwKopKHqOS2eF64CIcuPC8696YI27UUE3TNGifcO0JYWIwWWy6ITsghMvIJCiE16Knde16wN8Xk0Iz6uRnLjfk+EkIAiSl7/klxzRYY1SLk2tlde16wN8Xk4FbnJnX/ZQALiz5y6YLoFr6dzHDibj0vlFGpT1Jkb4pJoJEGcZoLIkLRiSkeFEIAyRnIxDSQX7EFRmHFLuxMtfG82LgIPTm9zWOCvSkmC9cCesnCYqQgy5jI8G2ndOt5ocUzdtV8adP7jdmbYqyw95G70+akIYQA0nOQqRl7BsnKabuwM73H3fMCsD0vQlHIRAaqsMHeFBOGMlv3kNBCffkdYmHRR5RZm9jwbacIIaElshChCKziJtxqJahWhlktOk+z3IKMpSAT2YkXbeOEMgzXacBigosIhZAQ0wdA6T2glVPAxnlQYgoUnwJcvv+qVoaqFDzcZWxkcmpg80gY/7GNGp2ERX8kACee+wgZtYkP33aCEAJaJI5QZs65kKjuXuopKoSElp6rt8DxxXBcIFKAWXWJ+iW53RF2UaWcvwra4VsgSUFunG814yMClHKNoDbRdOhT8754yjDDg2vhZp+iuhyx6BONC6ITMs7RCieanhelHFS12DQVaxelEKFI3ZuCv87jBlmmR/Hz5KVBvBDRBOTB19nmWssnoWIpIJJsigqnzrSdr2dvivEkKMfNBnwl7hN2GsR5UJKIjKfTph8IIaAnMrCkBquw7nkxJMCek5Ca5rurMUXVSs7j0bXQSDtt9gshBJCagZaYglg/D1XaAEWSnlEKIoK0DGjRPSwqxhRyqK8AOBUyclAp7zIePc6tjx7YdsIFqA5EBaQGZVZhlTZBbaIazGhCZecCQ65RaoMQdrSinagAAE2HCsdgXngV1vJJkGe3FTOKOEYshOxbYS7/wvUJqpYcHx8X6+F+QErByq3YLXBeokIIu7Wu0X5aLcHMLUO5TO5jRhMiAhwG1BEmsxukU8gyYW1chPLwiSHs2EdCgJIzsEwT1omnoTYvslgfE4jI0aekn11znArpA+TSDUJCQnA/uCPKqMLKrXh6UxBg2xjXL4TbnrNM22kwnt7mecGMLvbcF4fiZz3MLZAudOJNYUf7pLMleCQOFQoDq2cg1s9D7r0SgqNDI427MVb/Ggg4YtEHLBefBRGK8g/eDogIVnET1sZFb8MrLQQ9u9eeUeD6d0iwSpv2NFXlMe+AGQnc/EomucXUDSJ7SrCVX/UUFSIchZbZA3glSKQOld0PpUVgnXoW6uLPfB/JzgSHm6tqPzsTOWLhM0QEKrdO2CQAckzHo/cKWSas/CrIIdy9la3eFEIPt/e8MCqXhplxgd9IQqbhkgYRkBPqWOuGPYRvpbXFdAdbh/DJ6f2wihtQ1ZKrUKdEFhSOArmLEPlVyL1XQKRm+vGfwPQRd2HBqZCRgapF5+mAUmNb3C2oaglWfq3NJEUJLTUNuWVyZcPzQuphmIU19zspZcHMr3Y0hIkZPlwHYmlaX0O4o0Sz0Lm47n2gpttOtKFLf29CCOjJKahIHKZX6iQUhZo6CJFfBs69BKRmbYHBn8HIoJzqKzS9rx1ALCx8RpXcLog6+yygfjEsrNfz5+6086awPS/mLnleuNBuCBMzfNg/mK2FhwTbZppFYmMI3yqoVvE8rp03hQxFEMrshVlcd48cSgnK7IUqxyEKy1DFdYi5IxDZef4shhyyLNsYbQf9Fob8S+cjZJmgWms3CEFwfQXs8LYdsvXu3pDxDGQ83fbvq+F5oUIRmMUN1+gHmTUYm0t2asRjlgIzHFCt7G7hzaktqFrFrqXwqkkSAlpy2q5JaoOQEnpy2o4ieszhoVgKFIpA5i4CF18D5ZYg56+c2GGKo4BTtALov7Dg4k0f8QzfTvAFsRGyNdcXvUWF1KBl90JLdDeeWYajth2412YhgllYh1lkz4thx30f6ROdBrELnTdgbS55igqhh6FP7etIVDRfIwS0aAJ6es572qUehpo6ABXLgMo5qBPPQC2f4mLpIcWtvqLf+4gjFj7iFN63W7v0ic1JklKwCmuuvh4NRCQOLTnds3mYkBr01AxUpQDL7YcJgKoWQWY9NdInO1umd4iU49TNRqvxxO4jy4SVW3H9oWggY2nILoX5ttfrIYQyDVt9lz0rBCg1CwrHIXNLwOppUH7Zjl7Esz2dl+kPjt8XIW3/kj7CEQufILMGuH2IQkzkCG9lVGGuX2gjKuyQrZaa2bUjqRACWiwFPT3ruXHIMmFsrsCqFDl6MWRQteRcSCh1u05pAutkVKVo7yMvUSEltMweaMndT/YVQkJPZKEl3KekArA9L6YPgEIxoFaGOv0C1IVXXX0TmGAhUo6fhdDDfU/Lc8TCJ1yLEaXW9wrcYYOIoEo5Vx+CJloIenrWd9El9TBC6TlYpQ0o1+I22/OCzCq0eJZt1ocE5dCqDcDuqpqwaAWRglVYB1Xci5OBujdFasZ30aVFYpB6yC7sdHO11XSoqf0QxXWI4hqwuQgqrELsvQIiNTvxdWWDxO0zC2If8dXUBxo1BC2PA7awmKALIlkmrM2ltqJCxpLQp+b7FskRUkJLTEFLZOFlBqRqtueFMrxDzEz/IaUco1sEUY/6TdA+Mmsw1xfbigqZyEJLz/UtkiPqrartPHgoMQU1tQDSdMAyQOdfhjr7E5Dh3bXC9I9B+Fc0YGHhB2bNuSixmQaZjAuiqpbti6GX4ZWQ0NKzdj1Fn+9mGp4Xocysd6uvsmDmV2CV85waGSB2bYVTGkSbmH1ERLDK+Xqhs4fhlaZDz85D66B7arcIIaDH09BTM8424A3qnheqMb25uA51/CmotbO8rwbAoDpCABYWvuCVBgGCCT0NEiKCVViDlVv2NLwSoQj0qflthldBILQQ9PRcW8dGq5yHmV/l6Y4DwnsfibH3gSFlwcqtQBW8Da9EJGFH+0LBXldsz4s575bfhudFas4eckYKtHQC6uSzoDbeNYx/2IPHHOortFAg6SkWFruEiDy6QbRAKnAHCZkGzI1F99x4HRnPQMvsGdiPQ8PzQk9Oe9512Z4Xyx61GUw/IGU5p0GEAKSE0IO5IA4KVavY0b5a2f0gIaClZqCnZwZWsyWkBj05Da3NdFmKpaGmDoAaN1XVAtTJZ6CWjrNwDwJlOd7kBSVGx/sWIADIrDqHLLekQcbxgkhEoEoRVmEdXiPOITVo6dmh8fGQ4ShC+pw9qMytyp4UzMIaZCQRSKiZgXstQV2Uj2saxC503oQquY84B+z/fi09MxQt0rbnRRJCj8AsrDtOcgbQ9LwQhVWI8iYEAFo7B8qtQO67CiIxFei6Jwm3NEhQ0XOOWOwSp4FjAID6nbkcwzZTUgpWftUez+whKkQ4Zhv1DImoaNDwvNDajINW1SLM3DK3zwXAJKYTyTJhbVxsKypkLAUtu3coRMVWGp4XnqnNuueFysyDRD1ya1ahzrxoT03l6EVfGMRE061wxGIX2GkQdzMfYPzutJRRhZVb8bYThrDnE0QTQ3u33/C8EHoEZnHd9b+n4XmhJdKQ4fjQ/veMMrYVfmsKgIQY331ULbUdcW4XOs8MtQ19w/PC0iOwShvu/z2RBNR0BDK3BGHYnzWtnwcV1yH3XwMR9Rb5TOcQEZRTAb3UAvOB4YjFLiCj4hwGrFexA+NTyU5k+z5YGxe9RYUWsgs0Y6MxUVSGbM8L78mzBKu4Cau4ztbFfcB1iFwjDaKFxsZnhEjBzK/a4txDVIhQFPr0vqEWFVvRIjGE0nPeURVNh8rug0pMX4pz1spQJ5+DWjnNnSN+oSzHa7TUg4scj8duHRCuVc6NC2JoPOormt4UxTbeFNEk9Km9I+cy2vS8iGfAnhfB45pObO6j4Uql9UpX3hSZ/nlT9At74nAbzwshLnleNGeSEGjlFNSp57yLV5mOcIxWINh9xMKiRzpJgwxbbUEvdOVNkZoeWYfRxhAm9rwIFrJMRxOlrWmQUd9H3XhTaNm9I10w3JXnxfQWzwsAqOShTjwNtX6B99YucBMWMsD25NH8FRgCXEc7N9Mgo31BtL0p1ofWm6JfsOdFsLgXbTbE3WinE7vypsjOj/Q1Yys9eV4Atu/Fxdds1842A9eYVmz/ilZhYacTg4uAsbDokXZV7LZ/xWjWxl7ypnCfEgoM3puiX2z3vHC/c2TPi93jlE5sesBgtNOJXXtTjEkdSYOePS8A27XzxFOg/EqfVzlekFlzrN0JOp04Xt/kgGh4OLQ8DmwL347aBbFh9mWuLwJuQ4cA25siuwfaLsYzjwIyHEUos8f7jrnueWEWNzl82yVkGs4ptroHDDCaUT8iglXcgLW55FnoLPSwHe2LekfHRpmG54WenvM2Cqx7XqhY5lJhp2VCnTsGdf4VkFcKiWningYJdh+N161mQFCt5Jwe2JIGGbWCM1IKVmGtzYhz25vCjxHno0LD80JVCrA8IjiqWgSZVejJ6bGL4PSLtlE/ACLASnY/IMuElVt1DEdvRcZSkIndjzgfFWzPizlYxRxUzeUaU/e8oHDMbkutX2MptwQqbULuvxoing1u0SOI8/cu+HTiZPw6+Iwqe7fHAaN1p6WMKsz1C21EhYBMTkFLz06MqGjQ8LzQUzOed12258UyrGqJoxcd4GmFDwBCjpRIU9WSvY+8RIWQ0DJzts/LhIiKBkJI6Mls24nDtufFQVBoS6utWYU6/ULdEpxbvp0gpZzngwwgnTg6u3ZIIFL1KYw7Hgcumflo+ki0itnj3vNQxQ3vA7WQnQMe4SI6P5ChCELpOZjFDY9x0HYYnIwqtHhm4kRYp5BZs6cC72RHGmQUfnyJFFRhwz0CU0eEorYt9whcG/qJFolD6mHbVt/N1bbueSFKGxDFtaYMobVztqnWvmsg2oxynzTcBG2Q/hXNcwZ+xhGHquUO0iBeZkvDAVkWrM3ltqLikjfFZIuKBkJK6MlOPC/KtucFV7Y74tSqDWB7GmQEon62N8XFtqJiVL0p+kXvnhcAqiWok89CrZ7hyOAWhsG/ogELiy5p5xIIDH8axPamuOBx142x8KboF115XuTY88IJ16jfiOyjS94UFwGvWTJy9L0p+kV3nhcHoLa1gBNo+STU6edB3JUFwEVYDCidyL8YXUBEzqOdgW0bY1jv7ifVm6JfXPK88P57Ys+L7dimWN7dIMOcTtzuTeFhyx2J2/toiAXSMNCZ54UGyszbnhdbI4XlHNTJp6E2FidavJNlOtt4DyidyMKiG8xaW1MsoQ9nXnjSvSn6he15kYWenGLPiw5xLRIegTRIR94UaHhTTF6hc6905XkxvcPzQlmgxVehzh2b2EnEw5QGAVhYdMUopkG68qbIjL83Rb+Q4RhCafa86ATlKiwuXY6GcR914k0BPTT23hT94pLnxWz3nhcAUFiFOvEMqOw9hn4cGRb/iuZ5B3LWEaWjNMgQXRBJKVj5VVj5NXiGbMMx+2LoOeGTaYfQbM8LLeY9AlpVizBzKxNp+kNEtg/Mzse3zAYBhsu/ojmEr+T9gyVjKejZ+ZEbwjdsSD2MUGbOe7Jr3fNCZeZBW+szzCrUqeeh1s5NjHh3t/EeXDqRhUWHdJIXHqa+e9ubYrELb4rhzGePGp17XhgT6XlBtbLzuHCx1RRreGy8bW+KTobwTaY3Rb+wPS+muvC82HpTRKCl41Dnj02EeCfLGAob762wsOiQTvLCw9B3T0SwSjlYGxcB5TVJMQR9ai+0WGrgax5HGp4X3q3H9fB6cQPkUUw7Trjvo+FKgxApWPk1WLmVNoXOUejT+yAjHnfXTM9okbhd2Kl5RIE0HSq7HyoxvT0um1+FOvmM4zyaccKtbmsQ/hXNcw/szCNGJ3nhQadBSLE3xTCx3fPCHVUr24WdY+55QUSOdUqt6cTBpuTYm2K42JXnhVGBOvUs1Mb4jmJ3FhaCIxbDTqd5YTnAC6KqlWGutfOmEOxNETANzws9PceeF5YBOIWmt3RVQWoDSyeyN8XwcsnzYrojzwva6nlBBFp8DXThlbFr+SbLcIxMiwFHz/nXpQM6yguHIgNpLWt6U2y28abQI9Cn9rE3xYCQOnteuEb9torzcHQgF0T2phgNZCjakeeFcvC8oNyynRpx6+4bQVzTIAMuxGdh0QGuX0Q52GgFmQasjYsdeFOkoWXZm2LQTLrnBTnYeLe6bQZfq9C5N8X0RE32HVaanhexDj0vtC0p31rZtgPfvNjnVQaDq7AYcDqRf2naYOeF27eZBq0QVaUIq7DmHElpIDVoqZmBq1dmOzIcQ0gL2cPM3Ooq6p4XMpqAFhv9kDspyzlNt7OrKsBWTSKCKuWgSpveB+oh6KlZbiMdIuzuqyREyB5m5uotooehphcgCqsQ5ZwdvyAFuvBTqFIOYu/lI1sjQ8pyNAQT+mCi51thYdEOs31eWOihwL6cpBSswlqbNlLbm0JLTY/sphl3hKZDT81AVQqwPCJOqlIEGTXoyamRjjh11A0SYBqELBNWftW7jRS2N4VMZEde2I0rDc8Lq7gJ5RZxEhKUmgOF45C5JYh6ypg2F0GVPOTCtRDh0UsRD2saBOBUSFs6c9sMJnyrjCrMjXbeFGBvihFhu+eF+1bc6nkxqrh3VW3ZRwFdENmbYrzYledFtQh18llQbrnfy/QdNyHFwmIE6MRts98f5DZvCi/DF02HPjXP3hQjhu15sacjzwuzsD5ynhfuw/u2dFUJ0Xe3zc69KRqFzuxNMUp053kxdalEV1lQ51+GWnwNpEZjb5FSjmlUoQUXPfdidGOrAdBJXlhoel9D1Ha1+qp3GylsbwqZzHIb6YjS8LxQ1RIsj5y/qpWhTDs1IkfEh4SMivMP+Y7i536KYTINmLkV7zZSADKRgRyDmpZJpeF5YZVzUA7FwvZBApSYBoVidmqk3q5JGxfs1Mj+6yCG4K7fC+XyezAM0QqAIxaedDaFsX8fJHtTTBbde14URsLzoiPX2j5dEIkIqlwfwufpTaHVvSl4CN+oY3teZKAn23hehGOtnheVgt2Sml/t/0J3gXt9xXBE2fiXyIOOpjD24YPs3JsizN4UY4jteTHbgedFDmZ+beg9Lzpz2/Q/DUJKwcqt2N1Tbb0p9rE3xZghw3XPC68UW9PzYvaS54Uyoc69BLV0YijTjkTK8Waz39HzbmBh4UJHeeE+uASS1Y03xd6h+SIx/iKE7NDzojrUnhdkGnZn1U62dlWFIr5H2+whfBfYm2LCEVKDnurE8yLT4nlBa2ehTr/QtnMoaNzWM2gr/K3wbnLBPS+8tRvE37ywqhTtanWvmRFSg5bZA41b4CYCGY7Zw8y86inqnhdmaXPoUiOduW36F/UjIljFzfoQPo9Ijh6yHTSjSd5HY07D80JPz3pOHG54XqhY+lJ8q5yzUyPlXBBL7YhhbjNtwMLChU777n05FymYuVVY+VVPwysRjtkXwyH6AjH9p+F54TmECXVhmlsZqlHRTq61rW6b/qQgyDJhbS61NbySsRT07DwbXk0YDc8LTyFb97xQmb2ghvi1DKjTz0NtLAazUA+IyLlwU2re3TABw8LChbZum0L6Mh2UjJodpWjjX8/eFJPNpSFMM54FacPkeUFELl1VYou5XNiX7zR7UzCd0LnnRXK75wURaPFVuyV1gHUXZFYdbz773VXVLZygd4CUApzSEVvaTHfrEmhXq+fbjjhHvX2KR5wzQN3zIrPHtgN37RayPS/IqEJLZAbXLWTW2g7v2230jYigCuttR5yLUMSupeCaJAa254XUbTtwJ1ts+yDb80KU1iGK6xCot6RWS7Zb5wCuyaOQBgE4YuGM2xdtR31Fr9jeFMttRYWIJqBPzbOoYLbR8LzQ4hnP41StbBd2etXs9BHX6IFPw/vINGCuL7YVFTKRgZbhIXzMdhqeFzKa8DjI9rxQ2f0gWf/+lDdtt8423zu/ISJnYeFT9NxPWFg44XYhbl4QRc/tcfYkxQsgryp+IaClZqCnZtibgnFkq+cF5HB6XjgJi63pRKGFevqxZ28Kxi969rwwq1CnnoPKLQWzUNT3k0MaZtjSIAALC2cchIXd49x7GsT2ptiAtbkEeNjGNr0pvFQ0w9SRegihTIeeF4UAPS+InH/0t6YTe7DMJqVg5VfZm4Lxla48L5J1zwtSoPOv1P0u7O8i1cpQK6f6skbX2SBDaD3PscGdkHK3H+7xgkiWCSu34t1GCtubQvLdFdMlDc8LFYrALG64dhaRYXte6MnsthQEWaZdVe7n986twG2b22Z3+0gZVXvOh6c4EnZxZjTB+4jpiobnRbuJwxTPgMIxyM2LEFYNtHYWVC1C7DkCOvcyYFRAUwu+pt5GKQ0CcMSiFbdowrZukM7vgmxvigvsTcH0nUueFx5tZ6Rg5tdglnJ21wYRzMK6u99Er7j9+DfSIF10g3TsTaHVvSli7E3B9EZz4nCnnhdR2/OCSjmYuVW7Y4QUyOfWVLtQ26EbJBwbyu86Ryx2oukgouZgmib1L1mnHySRglVYB7kNwqkjwtG68x+3kTK7x/a8mIVVznsWNapKAWRUIfSQ7fZazkNGYv7V9OhhkGls20d2fUUjndhZtIIsE1Z+ta37oYwlIRPcRsr4Q8PzwipuuqYgICQoPQcKx2zBrOlQiWnIjfPA+nnQ9IJv30erOjppEICFRROhhyFDUSijYitQSwJa6499JxdEMmow8yveI85he1Ow8x/jNw3PCxWKwCysu6YlyDIutdqRgqoUocVSuzu3j/tIVct10zgP3wAhoaWmeV4O4ztCSDuKHIrAKm7CtaZnq3FdOGb/r1YG5Vcg0nMdn68hYLbtIbNmRxdHwBRrK5wKQb1gMjVj276mZuyclaZB6GFosfSWHJbwDDMTEaxSDubGoreo0HToU/PQYikWFUzfsD0v5jruYLIqhV2Z/3S8j6TmOZvDLnReg5VrM4QvFLFTHywqmD4hhIAWidv7qMMfcZWYtkX12rmuzkVmzXEPNURFyz4Scmh/PyYyYlGpVJDP51EulzGf1Le16wghIENRWGat3u4pIKMJmPlV+4N3+SBJWXbIts0wKBFN1J3/WNMx/UdIDXpyGqpagtXG6hpEHUctiAilUgmFQgHlchn70+Gu9pHr+5qGHe1zGly2BRnPQMbTQ3thZcaLhueFVco5TuvdRigKhBNAJQ8q5yE89hMRIZ/Po1QqYToM1z3UEBzb95H3HhkkEyMsiAgbGxtYW1tDuXwpX7UnMQVhVCDrVeRbvdidPmAnVK1ih2y9CsuEgJac5jZSJnAanhei7jSInfVDW7DKBchIwjWiYFkW1tfXsba2hlrt0n5Qqd3tIyICVYqwCuvwaiOF1KClZ7mNlAkcIQT0RKbefbXuOddJJach14qg9fMQsWtanjcMA2tra1hbW4Nl2b8b2X3ue8hNcAwrEyEsyuUyzp49i2q1tQBso1DBdErAzK9uy2tBSLuIc8sHTEDzMdT/rIqbUG0m3wk9bM/5YOc/ZoBIPQQ9kYGZX/U4imBVCtDjrWOmc7kczp8/D9NsFSa72kdKwSqsuQ/+qyMicWjJaR5xzgwUGY5ClgSUl+GcHgZFkqDcMmjPkWb6goiwtraGxcXFFsM6tz2kiBwFx3DNMd6OoGGbs+wjRISlpSUsLy97HjebiiGbjEIK+8tSrZmIRUItRTRr+TLyNYVDhw4hrGvsTcGMFEQKxuZyGx8IABAIZfc0O5WUUjh37hw2N71TKd3sowppOHjwIIQy2ZuCGSnIMu191O6n3axBrp2BnD0EOXsZDMPA6dOnt0XMd7JzD20U7IjFdCrmuI9UKIZ9+/YN3b4YW2FBRDh79mzbi6EbTh/wSt7+QmiahoMzaUSEx8VQatBSM0M3HIaZXJRRhVUp2p0gbcSFjCSgJzKwLAsnT570vBh64bWPwuEwDmai0L0CEFqoPoRvOKvfmcnDqpagamXbWK7NPhL5ZchaGcbBm3Hy5EnHaF8neO2jZDKJQ4cOQQ5RJG8shcVuRUUnSClxaCqOiMNVkb0pmGGHiECWWW85NZt/3nqh1FKzOHn6TM+iohPCoRAOZaPQZOsdl4wmIXnEOTPEEKlt+6fx5+Y+EhIkdZw4vwzT6p+dfjKZxGWXXTY0e2UshcXa2hrOnz/f9/OEQyFcNmWryAYykYXkNlJmRNkqOC4srWBj07t+yA9SsSj2pUKX9gx7UzAjTkNwKNPAqXMXUC57dwv6wZ49e7Bnz56+n6cThid24hPVahUXLlwI5Fw1w8Bqpd5nr+nQs/PQuAWOGWGEEJB6CKWaFYioAIB8uYJ8zb6/YW8KZhwQQkLqYWwUyoGICgBYWlrqa3SxG8ZOWJw/fz7Q8dBruSJqWhT61DxEaPiGwTBMtzSKNYPkYq4EiqagZfZw9xQzFtRqNSwu+jszpB1nz54N9PfPjb4JizNnzuCtb30rrr/+etx000346le/2q9TNalUKigW25iX9IH1Uo0Nr5ixIZfL9Vxk1itKKeSqFkf7mLFhbW0t8HNWq9WB/AbupG+/hrqu44//+I/x0ksv4Tvf+Q7+1b/6V33/D15d9erP7x+bm5uBX4gZplPyzz4Bq+g+Bnong9pHq6urQ3G3xTBO5J74PpTRmSmVUmogwgIY3P7dSt+Exb59+3DzzTcDsItKpqen+/oX3XDWHAREhFwumHw0w3TL5vf/Fsc/88+x8o3/b1uBUa1WB5anNQxjaHLEDLOT5b/4Mk78f/4F1h/567YCI5/PQ6ne5+7shnw+33TzHBRdCwulFK699lp8+tOf3vb4ww8/jHA47JjyePLJJ6GUwsGDB3tfaRuq1epA73ZKJW/XQIYZJKpSxuq3/hzHP/P/YOUbD7gKjEH/sPM+YoYZc2MNS1/5gi0w/v4hV4Ex6H006PP31G76pS99Cffddx9OnTqFqakpPPfcc3jzm9+M3/md38GnPvWpbceurq7izW9+M77whS/gzjvv9G3hO1lfXw+84GwrYU1D6Cv/78DOzzBuGGvLoOr2ynQZjWPq7fdg6h3vhZa4NCTpwoULAw2lJqCAr35xYOdnGDdqF8+3GGLp2WlM/+L/hczdb4fcUrx//PjxgYrkvXv3Ym6u85HtftOTsDBNE1dffTV+5Vd+Bb/2a7+Go0eP4gMf+AD+5E/+ZNtx1WoVv/ALv4B/9s/+GT72sY/5tmgnBn1BBAD9878LMdQO7gyznZ0C48SJEwMt/gopC/ivvzew8zNML+wUGMeOHRtoOiKbzeLAgQMDO3/PBll/+qd/is9+9rNYWFjA4cOH8eCDD0LTLjlNEhF++Zd/Gddccw3+3b/7d36t15Vz585hfX297+fxQv+Tfw9hcREnM3o0BMbGdbeiUhvc1ESNFOR/+XcDOz/D7IaGwDi/59BAU/PpdBqHDh0a2Pl7Lt786Ec/ilKpBCLCAw88sE1UAMAPf/hD/J//83/w9a9/HTfffDNuvvlmvPDCC7teMMMw/iPjcehTM8AQzRtgmFFDS2XsfTTh9OxE84lPfAIAsLKy0iIqAODuu+8OtCrWaQ2Bw9EKZsTQp2cx855fQubOt0HoIayfODHQ9UhuN2VGkMjBI5h53/+N5OvfaLvXDjgVMuiBZD0Ji9/+7d/Gt771LTz++ON4xzvegS9+8Yu49957/V5bV0Sjg50iGtF1RK+/eaBrYBgnqqePwypsb4feKSgaxGKxgdZYRHQdGu8jZggp//QnINPY9thOQdEgGo0OdB8N+vew6xqLL3zhC/jkJz+JRx55BEePHsX999+PP/uzP8Nrr72GUGhwo42r1SpeffXVgZ1/amoKCwsLAzs/w7hx9r/cj+ILTwFwFxQNNjc3cebMmaCX2GTfvn2YmeFQMjN8/OzTvw5zfQWAu6BocPHiRSwvLwe9xCZHjhxBIpEY2Pm7ilg89NBDuPfee/HAAw/g6NGjAID77rsPn/vc5/DlL38ZH//4x/uyyE4Ih8OQUg7MlCQe56FJzPDSTlA0iMViAa6qFd5HzDDTTlA0GPQ+GpmIxVNPPYW3vOUtuP/++/Ebv/Eb2577nd/5HXzlK1/BsWPHBlrrMKiWUyEErr322uGo82CYHZReO4bY4Ss9BcVWBtVyGolEcOWVV/K8EGYoKb3yImJX39DR95OI8Morrwxk1EMmk+mrGWUn9NxuOowMKh0yMzODffv2BX5ehukHuVwOp0+fDvy8CwsLmJqaCvy8DNMPlpaWsLS0FPh5r7jiioFHTMaqtywSiSCVSrU/0Gemp6cDPyfD9ItUKoVwONz+QB/RdR2ZTCbQczJMP5meng48+haPxwcuKoAxExYAsH///kBbbebn5xGJRAI7H8P0GyFE4K59CwsLA2+RYxg/0XUd+/fvD+x8QoihaSAYu50cCoUC+8uNxWJcwc6MJfF4PLBZA1NTUwOJNDJMv8lms0gmk4Gca5hucsdOWAB28crs7GxfzxEKhXDo0CEuNGPGlj179vT9ohiLxbg+iRlbGtG/fv/gZ7PZoUrJj6WwAOzpbv0SF6FQCEeOHBmobwfD9BshBA4dOtS3aEI8Hsfhw4c5BcKMNbqu48iRI30TF9lsFgsLC0N1kztWXSFOrK2t4cKFC74NhEkmkzhw4AB0vWc3dIYZKYgIFy9exMrKim/vOTU1hX379rGoYCYGy7Jw/vx5bG5u+vaejRvoYRIVwAQICwCo1Wo4d+7crnrzpZTYv38/MpnM0H2IDBME5XIZZ8+eRbVa7fk9QqEQDhw4MFBXQIYZJLlcDufOndvVLJFYLBZIiqVXJkJYAPZdV7FYxNraGnK5XPsX1AmHw5iZmUE2m2UDLGbiISLkcjmsra11JdQbhc7pdJqjFMzEY1kWNjc3sbq62pVQT6VSmJ6eRjKZHOob3IkRFlsxTROFQgHlchnlchm1Wg1EZE+lkxLxeBzRaLTZEzzMHyDDDIpqtYpisYhKpYJSqQTTNJv7SNd1xGIxxGKx5n5iGGY7RNTcP43fI8uymvsoFAo1908ymRyZur6JFBYMwzAMw/QHjkkyDMMwDOMbLCwYhmEYhvENFhYMwzAMw/gGCwuGYRiGYXyDhQXDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYhmEYxjdYWDAMwzAM4xssLBiGYRiG8Q0WFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmEYhmEY32BhwTAMwzCMb+iDXgDDMEw3hN/wcQipQUgNUg9DaBpk899Dl54LhS/9uXGsw3OarkNIASEEpBSQuoQUAkIKaLqEkHB/TggICfs5TUJK+7mwLqFJ0fxfpPnv8tJzwj5O33Lc1tdtew8hEJL2Grb+WQoBTQAhTe74M6AJ+/mQJrb9WQhAQkCTaP5ZCEATsP/bmq9tPA9oUkAA9vs2/2wfK5QFQQogBWz9MynAMp2fU/XHlQKIIJTZfA2ZBqAsQFkgywJMA6QsQCmQWbP/adWf33ps/c/2c/axpBTIUlCGCbLsP1uG0fwzKQWrZjb/rGomVP01ZFnN16nmexCUpUCKYNWs+r8TLMO69JxVf07Zz6maBWVR/Vz19VgEsgiGUrAIsIhQU9T8s0XY9u9b/6zQeG7rcfaf/186OdC92YAjFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmEYhmEY32BhwTAMwzCMb7CwYBiGYRjGN1hYMAzDMAzjGywsGIZhGIbxDRYWDMMwDMP4BgsLhmEYhmF8g4UFwzAMwzC+wcKCYRiGYRjfYGHBMAzDMIxvsLBgGIZhGMY3WFgwDMMwDOMbLCwYhmEYhvENFhYMwzAMw/gGCwuGYRiGYXyDhQXDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYhmEYxjdYWDAMwzAM4xssLBiGYRiG8Q0WFgzDMAzD+IYgIhr0IhiGYQZBtVrFH/zBH+Azn/kMIpHIoJfTAq+vd4Z5bcDwr283sLBgGGZiyeVyyGQy2NzcRDqdHvRyWuD19c4wrw0Y/vXtBk6FMAzDMAzjGywsGIZhGIbxDRYWDMMwDMP4BgsLhmEmlkgkgt/93d8d2uI5Xl/vDPPagOFf327g4k2GYRiGYXyDIxYMwzAMw/gGCwuGYRiGYXyDhQXDMAzDML7BwoJhmInkU5/6FN785jfjox/9KGq12rbnyuUy3vve9+Itb3kLfuEXfgFra2tDtb4Gf/AHf4DbbrttoOsxTRO/+qu/ije/+c34jd/4jUDW0s36GgT5d+WE2/qG4bvmNywsGIaZOJ555hksLi7i+9//Pq6//nr8+Z//+bbnH3roIdx444343ve+h3/0j/4RvvzlLw/V+gAgn8/jxRdfHPh6/uqv/goHDhzA97//fZRKJTz66KOBrKnT9QHB/l054bW+QX/X+gELC4ZhJo7HHnsM73znOwEA7373u1t+DK+66iqUSiUAwMbGBubm5oZqfQDwn//zf8a999478PV0stZBrg8I9u/KCa/1Dfq71g/0QS+AYRgmaDY2NrB//34AQCaTaQk/X3HFFXjxxRdx4403QgiBH/3oR0O1vs3NTbzwwgv4t//23w58PRsbG81ZF05rHfT6gv67csJrfYP+rvUDjlgwDDO2LC4u4u677275HxEhl8sBsC/609PT2173pS99CW9961vx4osv4vd+7/fw7//9vx+q9f3xH/8xPvGJT/RlTU5MTU25rsfruWFYX9B/V054rS+o71qQsLBgGGZsmZ+fxw9+8IOW/73nPe/B3/zN3wAAHn74Ydx1110tr21c/LPZLDY2NoZqfa+99hruv/9+vPvd78arr76KP/zDP+zL+hocPXrUdT1ezwWF1xqC/rvqdn1AMN+1QCGGYZgJ5Dd/8zfp7rvvpl/+5V+marVKRES//uu/TkREm5ub9J73vIfe8pa30F133UWvvPLKUK1vK7feeutA1tNYi2EY9E/+yT+hu+++m+67775A1tLN+rYS1N+VE27rG4bvmt+wpTfDMAzDML7BqRCGYRiGYXyDhQXDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYhmGa/Oqv/iqEEPjn//yftzz3L/7Fv4AQAr/6q7/afGxxcRH33XcfLr/8ckQiERw8eBDve9/78Hd/93fNYw4fPow//uM/DmD1zDDAwoJhGIbZxsGDB/GVr3wF5XK5+VilUsEDDzyAQ4cONR87efIkbr31VjzyyCP4oz/6I7zwwgv49re/jbe97W0DtdBmBgtbejMMwzDbuOWWW3D8+HF87Wtfw0c/+lEAwNe+9jUcPHgQl19+efO4RgTjiSeeQCKRaD5+ww034OMf/3jg62aGA45YMAzDMC3803/6T/E//+f/bP77//gf/2ObWFhbW8O3v/1t3HvvvdtERYNsNhvEMpkhhIUFwzAM08LHPvYx/OAHP8DJkydx6tQp/PCHP8Q//sf/uPn8a6+9BiLCtddeO8BVMsMIp0IYhmGYFmZnZ3HPPffgS1/6EogI99xzD2ZnZ5vPN0ybhRCDWiIzpHDEgmEYhnHk4x//OP7X//pf+NKXvtRSM3HVVVdBCIFjx44NaHXMsMLCgmEYhnHk3e9+N2q1Gmq1Gt71rndte256ehrvete78Cd/8icoFostrx2LKZ1MT7CwYBiGYRzRNA3Hjh3DsWPHoGlay/P/7b/9N1iWhdtvvx1/8Rd/gVdffRXHjh3D5z//edxxxx0DWDEzDHCNBcMwDONKOp12fe7IkSN4+umncf/99+M3f/M3ceHCBczNzeHWW2/Ff//v/z3AVTLDBI9NZxiGYRjGNzgVwjAMwzCMb7CwYBiGYRjGN1hYMAzDMAzjGywsGIZhGIbxDRYWDMMwDMP4BgsLhmEYhmF8g4UFwzAMwzC+wcKCYRiGYRjfYGHBMAzDMIxvsLBgGIZhGMY3WFgwDMMwDOMb/390Lf1go1YYvgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACVQklEQVR4nO39eZAsZ3nnj37fN7P2pau3s/XZtK8ILUg6EsIggwEj9p+ZG2GGsQfHOOaOEJ4ZM4Hhju3xRMhmHMyEh9/PM9cOmBnMvT8x1zYCGyxkY4ENSEJIQkJCu86+9DndXV1de1Vmvs/9I6vq9JKZVdWdlVnL84k4cfpUZVXm6ao385vP8n0EEREYhmEYhmF8QIZ9AAzDMAzDjA8sLBiGYRiG8Q0WFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmEYhmEY32BhwTAMwzCMb7CwYBiGYRjGN1hYMAzDMAzjGywsGIZhGIbxDRYWDMMwDMP4xtgLC8uycP/992/79fV6HR/84Adx5ZVX4sYbb8S73/1uHD9+3L8DZJgRYKfrCAA++clP4vDhwxBC4Pnnn/fpyBhmvPBjrYXN2AuL5557Dn/xF3+xo/f49V//dbz88st45pln8N73vhe//uu/7tPRMcxo4Mc6+qVf+iX84Ac/wKFDh3w6KoYZP/xYa2Ez1sLihRdewD333IMzZ87gxhtvxO/+7u/2/R7xeBzvec97IIQAABw5cgRHjx71+1AZZmjxYx0BwM/93M9h//79Ph8dw4wPfq21sNHDPoBBcu211+JDH/oQrr76anziE5/w5T2/8IUv4H3ve58v78Uwo8Ag1hHDMFsZl7U21hELAHjyySfxpje9acvjb3nLWzA3N+f459SpU47v9fu///t49dVXRz7/xTD94uc6YhjGHbe1NkoIIqKwD2JQmKaJ6elpLC0tIR6P7+i9Pv/5z+OrX/0qvvOd7yCXy/lzgAwzAvi5jgDg8OHD+OY3v4nrr7/eh6NjmPHB77UWFmOdCjl9+jQymcyOP6D/8l/+Cx544AEWFcxE4tc6YhjGm3FZa2OdCtm/fz9uuOEGXHXVVfjsZz+7rfc4ffo0fvM3fxOFQgF33303brzxRtx+++0+HynDDC9+rCMAuPfee7F//36cPn0a73jHO3D55Zf7eJQMM/r4tdbCZqxTIQzDMAzDBMtYRywYhmEYhgkWFhYMwzAMw/gGCwuGYRiGYXyDhQXDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYhmEYxjdYWDAMwzAM4xssLBiGYRiG8Q0WFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmEYhmEY32BhwTAMwzCMb7CwYBiGYRjGN1hYMAzDMAzjG3rYBxAWRATDMFCv19FsNkFEEEJASolEIoFYLAYpWXcxjBdEhGaziVqtBtM0O+tI07TOOhJChH2YDDPUKKXQaDRQr9dhWVZnHUUiESQSCUQikZFaRxMlLIgItVoNKysrKJVKUEp5bh+PxzEzM4OpqSlomhbQUTLMcENEKJVKyOfzqFQqICLXbYUQSCaTmJmZQSaTYbHOMC2UUlhbW0M+n0etVvPcVkqJdDqNmZkZpFKpoRcZgrzOCmNEqVTC4uIiGo1G368VQmBmZga7du1igcFMLESE1dVVXLhwAaZp9v16TdMwPz+P2dnZoT8xMsygUEphaWkJKysrXW9unYhEItizZw+y2ezQrqOxFxamaeLcuXNYW1vb8Xvpuo79+/cjnU77cGQMMzo0Gg2cOXMG1Wp1x+8Vj8exf/9+xONxH46MYUaHarWK06dPo9ls7vi9MpkM9u3bh0gk4sOR+ctYC4t6vY7jx49v6+7Ki/n5eezatWto1SLD+EmpVMLJkyc9Ux7bYf/+/cjlcr6+J8MMK8vLy1hcXPT1PaWUOHz4MJLJpK/vu1PGVljUajUcO3ZsW6GmXpidncWePXtYXDBjTbFYxMmTJwf2/gsLC5ienh7Y+zPMMHDhwgVcuHBhIO8thMDhw4eRSqUG8v7bYSwrqQzDwPHjxwcmKgBgZWUFy8vLA3t/hgmbarU6UFEBAGfOnEGpVBroPhgmTNp1SYOCiHD8+PFt1Q8OirETFkSE06dPw7Ksge/r/PnzXat5GWYUUUrh1KlTgezr9OnTvqcrGWYYaDabOHv27MD3Q0Q4deqU7+nK7TJ2wmJ1dRWVSiWw/Z0+fXqgkRGGCYNz587BMIxA9mVZViAnX4YJkvZNblAX+3q9jqWlpUD21Y2BCotvfvObuOqqq3DFFVfgi1/84iB3BcC+y/K7OKYbjUbDl44ThhkWms0mVldXA91nsVjk6B8zVpRKJV+6qPphaWkpkGh9NwYmLEzTxL/9t/8WjzzyCJ5++mn8p//0n5DP5we1OwDA2tpaKNGD5eXloQlBMcxmiPpbEysrKwM6kuHcL8P0wiiso7bXTNgMTFg88cQTuO6667CwsIBMJoP3vOc9ePjhhwe1OwDhnZgajQbfbTFDS/3Rb6Dx/A9ARvfiLqVUaCemQqHAtRbM0FL7uz+D8dpPQKp7RKDRaASakl/PyspK6De6fQsLpRSuvvpqfPrTn97w+MMPP4xoNIo///M/BwCcPXsWCwsLnef379+PM2fO7PBw3TFNE/V6fWDv3w2ubGeGFapX0Xz6O6h87Y+6CoxqtRpqzVBYJ2OG6YYq5lF/9BuofOP/6iowyuVygEe2EcMwfDHg2gl9zwqRUuIzn/kM7rvvPvzWb/0Wpqen8eyzz+IjH/kIfv/3fx8f+chHAMBRMQ3S8yFMUQEAtXIRpsG1FszwQXX7Yk2NGppPfwfGz36IyHVvRvSqWyEisQ3bhr2O6oUVpErnQz0GhnHEsqNpVFpF/dFvQDz3j4i94eegX3oDhNw46iHsCHatVkMsFuu+4YDY1hCyj370o/i93/s9fOELX8Cv/dqv4Z577sHHPvYxfOpTn+pss7CwsCFCcfr0adx+++07P2IXgi6S2UxzLY/a8w+FegwM0wteAiPsdWReOInai98L9RgYphe8BEbY66hWq4Xqartt580/+ZM/wWc/+1ksLCzg8OHDePDBBzcM6DJNE9dccw2+973vIZvN4uabb8bjjz+O2dlZ3w5+PWfPnh14cagXer2EhRcGW0PCMINAxBIdgXH05OlQ77aypUVMv/qD0PbPMNtFZKY7AuPFl14ONaU4NTWFAwcOhLb/bRdvfvSjH0W1WgUR4YEHHtgy9VPXdfzn//yfcffdd+Omm27Cv/t3/25gogJwTr0wDNOddgSj+tCXgEa4IVzF65gZUdoRjNp3vwqywi1CDttbaVupEAD4xCc+AcButXQbJf7+978f73//+7e7i77gmR0Msz1EPIXo9XchcuUtwIlTQIgRC8nrmBlRZHYW0RveCv3w9RAvvQQK8eIuZbjel9va+2//9m/jW9/6Fh5//HGYpokvfelLfh9X34Q9OjbsD5Jh+kXEU4i96V1Iffg3EL32Dgg9Gvo60vRt3+swTCjI7Czid30Yyfffi8ilN0BICT3k73HY+++7xuKLX/wiPvnJT+KRRx7BkSNHcP/99+NP//RP8dprr4V6UiqXyzh+/Hho+08n4tif4LstZvhoPPMI1PLFQur1EQqhRzdsO4jRzv0wl0liLsLpEGb4qP/gL0H1i0WZGyIUm24sT58+jUKhEPARXmT//v2hFm/2JWseeugh3HvvvXjggQdw5MgRAMB9992Hz3/+8/jKV76Cj3/84wM5yF5IJBKh7RsAEukM9N27Qz0GhnGi+eLjALwFRZvQ11FuFvrUVKjHwDCOSPty6SUo2iQSiVCFRdjruGdh8dRTT+EjH/kI/vAP/xAf/vCHO49ns1ncd999+NznPodf+ZVfca23GDSapiGRSIRW0Z7JZELZL8N0QybS0N/0Lk9B0SaRSEBKGVrxVyqVCmW/DNMNOTWHyM3v8BQUbdLpdEBHtZVIJIJo1HudD5ptt5sOI4VCAadPnw58v/F4HJdddhkXkDJDCRH19d1cXFzE8vLyAI/ImVwuh/379we+X4bphX7X0bFjx0Jxkt2zZw/m5uYC3+96xqriMJvNhhIxmZ2dZVHBDC39fjdnZmYGdCTeDLIdnWF2Sr/rKIyLuxAC09PTge93M2MlLKSU2B1wnUMsFsMU54SZMSIajQZ+kZ+amgo9L8wwfpJOp5FMJgPd565du0IrR1jPWAkLAJieng40v3XgwAFuNWXGBiICmU3MT6UQ14P5Xmuahr179wayL4YJAiIFmE0szE9D63Pc+nZJJBKhp0DajF3TuBACCwsLeO2112BZ3cfb7oQ9e/YgHo8PdB8MMwiICDCbUEYT1KiAGhXAskBSQggBqpWxNyJwzBy8uNi/f3/offcMsx1IKZDZtP/USqBmDVCqs46wcg57phdwpjDYWgspJfbv3z80KfmxXM2RSASXXHIJjh49OrDq9rm5Oc4JMyOFVVyGqhYBy7x44luPpqH9iLpwEsnb3ouDpRJOnjw5sGNaWFjgjipmZCAiWIVFe2KwUsDmtIMQnXVERECjhun9l8CKD84fRgiBw4cPhzrNdDNj1RWymXq9juPHj8M0+/dtn8smkUsnIIWAIkKhXMNy0TZH2bVrF+bn54dGHTJML5gXjkNZZtfvrSqtQqanEdl7GQDbfO7EiRPbmsfjtY4OHDjA9UnMyGGceB6Ida8Hss4fR/TyWyBTOQDAysoKzp07t619uq0jTdNw+PDhoatPGmthAQCWZeHcuXOeZiVz2RRymWTnQ2s0mkjEIhB6FDISgzIaILOJQqWOZG4u1B5lhtkJzaPPQiS9v7/W8RcQu/29GwRIs9nEmTNnPNvnel1HxVoTmdndQ3WHxTC9opSCeexZiFTWdRtSCnT+BGI3vWPD49VqFWfOnEGj0XB83eY1VChVARBmMskt66jcMJGd2zOUacSxFxZtyuUyFhcXUa/XNzw+l01hJpuC0COQegzKbICMBoQehZ6etvPNRDDLqyDTQHSa3TWZ0cSqV2Dlz3qa+6jCErTpvdB3H9ryHBGhUCjgwoULMAxjw3O8jphJgIigKgVYpWUI4b6OrLOvIXrNnZCJrWk+pRSWl5exvLy8IVXvuIZMA6QUZGS01tHwSZ0BkU6ncfnll6NWq2FlZQWlUgmWZSGXSULoEeipHIQQkJSAUTgPGYl17tiEEJCRGCyzGfL/gmH6x84Ln4eql7s6BtLaEvSrjzg+1+6Rz+VyqFQqyOfzKJfLUErxOmLGHlIK1sppkGV4igqyTEgt6igqALvQcteuXZibm0OxWEQ+n0etVnNcQ2alABiNkVtHEyMs2iQSiY67X7PZBKoFSH3jhwYAymhAxpIdhagM59AVwwwzZJkwL5wARHeDH5VfROTyW7q+pxAC6XQa6XQaRASjUQfqJV5HzNiijAaspROA7O4Roc4dQ+wNP9d1OyklcrkccrmcvY7WlrasIanHYBmNkVtHEycs1hOJ6DAAKLMBSYnOhwYpQWYTZnl1Q04LAEhZED18uRgmbKxaGVb+DITW2zKnyhq02X197UMIAV3XYMJhHQmPddSnPTLDhIVVWoFVyvd03ifLhIynIGL9GWN1hPimNaRMW0A4riOPqEnYTLSwaEOmAbNS6OS1QOicFDeHm1SzDi3Og5KY4YWIYOXPQjVrnqJCLZ0CEhnIdA5q5SyiV7xpZ/vdvI4AAMJxHZFpQETCHZTEMF4QKTvaR8ozhWideQ1yfj9ENA517ihiN9y9rf0JPbJlDdnrJAEy6lvXESmQ8j62sBi+IwoJMg1Y9TLINACpI5JxnpegmnXHxxlmGCBlwTz7Ksiou0YESClYx38Gbf4Q9Nn9trlPvQKZ27Xz/a9bR0KPQk85t5OqZjhTiBmmF1SzDuPMK4CHayYZTVhHf4roFbdAaBGQ0YRMTUFEt2eaKCN2l9SGaxEAPZFyvZlVxnBejzhi4YCMRCE03f6yWBur38kyQJbZc3iZYYJCVUsw82cg9IjrNlSvQF04idhN7+iEa9XqeUSvuNX349GicYhIzDYN2tR8pow6iLKcDmGGDnPtAlS54LmOVHEFqJYRu/19EJoOmZ1D88XHENlh1M8NGY3Dqpe3HkezBq3PtEsQ8NXRAxmNw6oZWx5XRh2axl4WzPBgLp2CMureJ8OVs5CRBGK33rPhgh659IaBHZddwR7fGqFozSQREfayYIYDIoJ57jVASgiPQV7W2deh7b4EkStv2/B49Jo7BnZsrje6pjGUdX+cCvFAuoS0VGM4w0/M5KGUgnHieZDVdM21klKwTr8Cbe8ViFz5psCjBDLq7ArI6RBmWFBGA8aJ5wCPegUym7BOvYzo1XcgsnBFgEdn43o9GsJ1xBELD4TUIPRop5K9DSmT0yFM6KhqEebiUYik+6wNqldBaxcQu/HtEHo4xZJCj9gV7Jvy1arZACW5O4QJF2v1PKziBQiPonxVWoUwDcRueXdoxZJ2BL205XG7oWC4IugcseiC693WkBbNMJOBufg6zKWTnqJCrZ6HkBpibwxPVACtdIjj3RZtEe0MExREBOP4c7CqBc/2UOvCSWi53Yhec0eoHRjtG93NkGWC1GAnefcLC4suSJccsGoOt0EJM56QstB8+UdQlgXhMQhJXTgJff81iBy8NsCjc8c9jMsCnQke1aih+eKjQDzpGnkmZdmFzlffAX3+QMBH6MyorCOO5XdBSOmcDrGGs2iGGV+sUh7miech5xZctyHLBEqriF7/c0P13RSaSzrEaLBZFhMo5oWTsPJnIGf2uG5DjRqEUoi84W1D9d2UkRicYhPKaAyVvxILix6Q0bijLzubZTFBYRx/HqpR9hYV9QpkPO066yNM2vMNtnaHKDbLYgKBlILxyhNANObp2ULlArS5A9B88HXxGyE1l+6Q5lCZZQ3HUQw5rumQIfdrZ0YfMppoPP13ICjIqXn37Spr0HdfCn3PpQEeXX+4hnG5XokZMKpaROPJh4B0DiLpMe68vAb98A1DKSrajMI64ohFD4yKSmTGCyu/iOZLj0E7dK13B1KjBv2SGyGH/Hso9KiLWRanQ5jBYZx5FdaZV6AdvNp1G1IKgoDo5TcHeGTbQ0Zizt0hRmNozLJYWPSIjMZczLIa0DyK6BimX4gI5is/hlVahu5hXkWWBRlLQt9zWYBHt30upkM23Vkpy27f9jD3Yph+IctE89nvAtGot6gwmtCmdkHLzgZ4dNtHaDqE1EHK3PA4GQ0QKc+R7kER/hGMCDIy/OEnZvShegWNH/4llDKg7b/KfTuzCX12H/S5/QEe3c7hdcQEgSouo/4P/xtiag7SY42Q0YS+57KRERVtRNQ5PU/GcLRvc8SiR7xVIodxmZ1jLR5D46ffhX7FLRAJD8MbZSGy78qh6vroFbciTTIaQMLdk4NheoGIYB59Fsaxn0K/+lZv/xYhEdl/9Uieu2UkDlWvbHlcGXXXGowgYWHRByIaA9XNLY+T0dj2RDuGIWXBeO4fYC2fhn7dmz3rKUQkBm1mYSRPhgAghISIxGwhsQ6y2M2W2RnUrKPx478BCYHI9W92344IWioHmZkd3XWk6bb9uBrO9m1OhfQBh3EZv1HlVdS/82ewqmueooJIQWbmoM/uD/2ksVO4y4rxG2v5NGoPfwlI5zzrkqAU9Jl90LJzI72O2sP9tkDD4WbLtwd9MOwqkRktzBM/Q+PJh6Bd+kZoe73bRCNzB8dmEqiMxGGhuOVx9oVh+oWIYLzwKIwXH4V+/V2e/hQQEvruQ2MTFZOROFSjuuVx1ay7ivegGI/fcEB0RkBv/jB5BDTTB2Q20XzqYZgnfmafDGf2um+sRaDP7BubkyHAbraMP6hqCY3HvwG1toTITW+HSE25bitiKWi5XUPRMeEXrsP9huBGd3zOVgEhIzFnlWg0QleJzPBjrS6i8cMHQc0q9JvfAZmedt1WJLIjH7J1Q0Zizm62Q9SLzwwv5plX0fjRX0NE44jc8k73GjciyOwcZHJq7NaRp5utZYQ6eJCFRZ+4mvw066BEZuy+vIw/tL0pms/8PUQig8jN74SIu19Atew8pIdD4KjjOQKahQXjAlkmms88AvOVJyBm93UpdhbQZvZCjvH3SUYdhAXsIZmShcXo0EmHDKFKZIYTalTRePyvYZ19FWJ6D/Tr7/IwgxLQpndDxsa71sB2s9XtoWnrILM5NCY/zHChiito/PBrUIXzkPsuh3blLe7fE6lBn9479ulpoccACACb3WzrIEqHdqPLwmIbOIaf0EqHsLBg1mGdP47GY98A1UqQey6BdtVt7hbwE3IybCMjcVhWecvjymhAi7KbLWNDRDCPPYvmkw8DlmEXOx+61v0FetReR2NUl+RGJx2yuTNRWfafkH4H4/+bHwD2iX+rSmSTH6YNKQvG8/8I42c/BABoh6+Hdskb3F+gR1onw8mxtZbROKz6VmFBRhNgYcGg5U3x5EOwTvwMkBLatXdC233IdXsRTUDL7Zmo+U0iGgMcLA+U0YDGwmJ0EEJARKLOJj88lGziUeUCGo99HWr5NCAktKtug7b3EtftRTTeOhlOWDeE1Lh9m3HFWj6DxqMPgioFOwrxhrd4tpOKRAZadn7ivjdSj8FyeFyZTWgIJ6XKwmKbSD0Ky8HQR5kcxp1kzJMvoPHEtwCjYbeKvuEuyOk9rtuLeBra1K6JOxkCrTCu7lzVHmYYlwkXIoLx4mMwfvo9+7sQTyFyw9sgUu7FzDI9A5nKTeY6ktJ5+rbRDE2g88rdJm6jazmMO5mQ2UTz6b+F+foz9gOxJPQb3gqZzrm+RqamIdPTE3kybONVrxRWGJcJD1UrofHYX0GdPwYAEJkZ6De81XNkgja1C3LCU9AiEt0iLAACmYbrfJ5Bwit3u0jN2ZzE5DDupGGtnkfj0a+BiisAAJHO2SdDjza3cW8n7RW3Lqoww7hMOJhnX0Pj8b8CWj5BYnYB+nV3uhdhCgkttwcyxjdyUo9BwWEomdmAZGExOriakygO404KRATz1SfR/Ml37M8cgJjZA/06j3ZSIVonw/Htre8HO4zr0HYaYhiXCRayTDSf/S7Ml3/UeUwuXAHtips92kn1VgcVd+EBLRdOx4aCJhCC7uKr3w4QkSjAYdyJhBpVNH70TVhnXuk8JvdeCu3KW7mdtE9EJLZFWIQZxmWCQxVX0Hj0QajVxc5j2mU3Qjt4jfuLJqidtFfcGwqMUBoK+JPZAcNYjcsMnvXeFG3koWuhX/pG9xfxydAVqUeHKozLDB7bm+KnaD71bcBs1QYIAe3qI9D2HHZ9nYgloU3t5s47B9waCshsetaoDAI+y+0ADuNOFqRUy5viBxse72bYY/fW7568dtIesesshieMywwWMhpo/PghWCeev/igkNCvuxNy/oDr62QiCzmms3P8wK2hQBkNSBYWo4VrGJftvccKVSmg8WjLm2Id2hW3QNt/pevrRDwDbWryeuv7QQjRmnY6HGFcZnBYKy1vinLh4oNSsz0qPKb8TnI7ac+4NhQEf6PLwmKHuIZx2d57bDBPvtjypljvbiegXX0btL2Xur6O20l7R0aisMzhCOMy/rPFm6KNpttt2R7GV9xO2hvuDQXB23uzsNghblEJDuOOPmQaLW+Kn2x8Qkho194BbddB19dyO2l/DFMYl/EXVSuj8fg3oBaPbXxCj0J/49sgs7POL+QOqr5xbyhoBtpQwMJih1wM4zY3PM5h3NFGFS6g/sOvgYrLG5+QGvTr3gw5t+D6Wr7D2gYeYVxmdDHPvt7yptgU1Y3Gob/xbncDOSGhTe9lUdkn7g0FDWgITqCxsPABGYnBcjgBchh39CAimK89hebTf9fxpuig6dDf8HOQ07tdX6/l9kDGuSOoX7zCuGSZ3E0zYpBlofnT78J86fGtT8aSiNx4N4RbRE9I6DP7uC17GwxLQwGvVh8QkSiwNfpkt8uxsBgZnLwpOugROxc8Ne/yagFtmsO2O8E1jGsGG8ZldoYq5W1vivy5rU8m0ojc+PMQbuJbarao4Pq0bSP08BsKeLX6gJC6cxjX4DDuqGBdOIHGY18HVbfm+RGJ2WHbzLTzi4VohW25qGYnSD3qHMY1GtBYsI0ExrGfovnktwGHCK5IZqHf+PMQbhbcmg59ep+7ay3TEzIShdqcekKr7o+Fxehgh3GjUM36xic4jDv0kFIwfvZ925uCaOsG0YQdtk1NOb+BkNBm9kJGODK1U4TUnMO4IbTLMf1BRgONJx+Cdfx5x+dFehr6G++GiLqkN7SIHangc+WOcZ2/YzSgJdKBHAN/ij4h9BiwWVgAUKbBYdwhRVXW0Hjs61BLp5w3iKdsUeFWiMkW3b7jGMYlsgU638kOJdbK2ZY3xarj82Jqzh7K53a3zK60vuLZUBCQQOdP0idkxDmMS2YT4Ol7Q4d56kU0frTZm2IdiQwiN73dPWwrdegzezkX7DOuYVzLAFhYDBVEBPOlH6H500fs4YsOiOnd0N/wVgjN2XVWRGLQpveyK63P2L4wDg0FAdVZsLDwCeHSLkeWEdIRMU6QaaD5k7+D+drTrtuIVA76zW93X4Ca3grb8oXOb9x+p7ZA5zqLYYFqZTQe/ytYi0ddtxGzC9DfcJfrhFIRjUPL7eWW/AEgNBd/JdMIpM6ChYWPSD0KtekOmCwTRMp9/C8TGKpwAfVHHwStLbluI7Jz0G96u/vJTo/YBWYcth0IQkrb02JTq68yWaAPC+a519F4zMGbYh1y72XQr7oVcAm7i2gS2vRuPi8OCLe0YVADMvns6CNCjziG1u3xz5yHDwvbm+JpNH/yd8CWNqyLyD2XQL/miPsb6VE7UsFh24Ei9aizn4Wy+HcfImRZMH76PRgvPea5Xdf5ObGUPZSPi3EHhhACQotsiZiTGUydBQsLH3G19zYNgIVFKFCjhsYT34R1+mXP7bQrb4W2cAU2T9hsIyJxaNN7+MIWAEKPOPpZkGlARPn3Hwae3hTriNzyTgg3i24AIp6GNrWLRUUACH2rsACpQOaGsLDwEbfwuB1+YoLGunASjccedPamaKNHEL31HiCRdG43RXvs+R7OBQeEq5+FabDhXAiYx59D48cPOXpTtBGJDKJH3gdyEeYAjz0PGqFHgK1z/QLpVGRh4SN2m0/EjlCsI8g2H6btTfEDGD/7vqtYAAA5vQfRI++3uxDIpao9lmyFbVlUBIbU7Nz8ps9uc/scM1jIaKD55LdhHn/Ocztt4QpEbvoFqIpzuykAyFQOMj3D58AAcRPodhRjsJ2KLCx8xu4f3hx+IpAyuYsgALp6U7TQr7odkevugrW26C4q4iloU5wLDho7PxwFbRqjzgI9OKz8OdubopR330hqiN70DsiD10IVFt03S09Dpqb5cwsY107FAAQ6CwufkVoETpcpMg2AhcVAMU+9hMYT33Q0KusQSyJ25P3Qdh2CmT/j3n8fY1ERJlKPwDK3xnGDnHcwiRARzJd/hOaz7t4UACCys4jd+WGIZBbWqnvdhUzloKVnBnGoTA+E1anIwsJnPAs4uX5zINjeFN+B+dpTntvJ3Zcgdsf7IaJxmCtnt04vbXEx/cGiIizc2uWC6sOfRKhesb0pzr3uuZ1+2Y2I3vxOkLJaosI53SiTU5AsKkIlrE5FFhY+496Hz/nhQaDWllD/4dc8vSkgJCI3vA2Ra+4AlNWKVDi3ndqFmiwqwibsPvxJwzp3FI3HvwGqu3tTIBJD7LZ7oB+8Fsqow1pddK1hksksZGaW11HIeAp0FhajhdQjUM1Nd8PKAinFnQU+QUQwX38azae9vSlEKofYnR+CNrcAskyY+bOu24tI3O7+4ELN0BFCugwk4zoLPyHV8qZ40dubQs4uIHbnhyDTOZDRgJU/516blMhAZrj7Yxhwq+sbdKciC4sBIPSoY56fzCYEt8vtGGrW0HjiW7BOveS5nXboOsTe9IsQ0ThIWTBXzwEuFusXZxawqBgWhB51GEim7Ny/y+wJpndUedX2plg567ld5No3I/KGn4OQGshswlw961HwnIaWnWdRMSSE1anIwmIAuIZxLQMSLCx2grV0Eo1Hvw6qFt030iKIvund0C+5AUIIW1Tkz7r34etRFhVDiGsfvtWEpvFgv51gHn8ejR//TRdvijRiRz4Abc8lAOxokZk/26Xgmc2vhg27w2prp+IgjbJYWAwAIXUAApuLmrgPf/uQUjBe+AGM57t4U+R2I/bmD0O23P9IKbvAzFVURNime0iRWsRlYrABRFlYbAcymmg+9W2Yx37quZ227wrEjrwPojX4jay2qOCC51FD6hEoR6Os5sCMslhYDICL4aeNFzPOD28PVS2i8ejXoZZOem6nX3kbojf+fMcBlcgWFWQ4rCoA0FoDxVhUDCch9uGPI1Z+EY1Hv9bdm+LGt0O/8tbOeapTm8QFzyOJZwHngOo3WVgMCKlHYTmcAMkyXT9oZivm6ZfR+NE3HWdHdIglEbv9fdAXrug8ZIuKRZBDqxWAdaPPeQkMKx2Bbmw2yjJZoPeB7U3xRMubwjniAAAiM4vYmz8EbXrPxddywfPII6Tm2Km4ZY6Ij/BZdUC4qkTLBFhYdIVMA81n/h7mq096bid3H0bsyAcgk5mLryWCVTgPchMjUuPR5yOC1COwHCJOLNB7g+oVNH7017DOvua5nX7pGxG95V0bfHi44Hl8kFoEaouwGJxA5zPrgHC7aAXh0z7q2N4UD4LWLrhvJITtTXH1HRtObEQEa+08qFF1fp3U7EgFX5RGArd2ORbo3bEWj6Hx2DdA9bL7RpEYYre+B/qh6zY8zAXP44XQdcBBHw5KoLOwGBRCOg9S8vBcmHRsb4qfoPn033bxpphqeVPs3/J6VVx2N/kR0o5UsHPjyMACvX9IWTCe+wcYLzzquZ3tTfFByPT0xtcT2eZXHqKCC55Hi6AFOguLAWEPUnIo4GRh4YjtTfE3sE696LmddvBaxG59j6MfiKoUoGoubahC2ifDCIuKkYIFel/Y3hRfh1o547ld5No7EXnDW7eIAzvid8GjNikCfXovi4oRI2iBzsJigAhN31rBTgqkLF6Y67CWTtmTFLt5U9zyLuiXvtExJ6hqJaiyS7W7EHbYdoAWtsxgYIHeO+aJn9neFG5dUNjqTbEZVc67p0644Hl0CVig8zdkgLirRJOFBdreFD+E8fw/9uBN8SHI7Jzj86pRheVaj2GLCsmOpyMLC3RvyGyi+eTDMI8967mdtu9yxG5/H0TcedaKVVmDqhScX8wFzyNN0AKdvyUDxDOvNeF3z6paROOxb0BdOOG5nX7lrYje+HZ3kWY0YBUWXV+v5XZDspnSSMMC3R1rdRGNHz4IKq24byQlom98O/SrbnPtAFD1MlRp2fn1QtrpDy6WHWmCFOgsLAaId15rcjFPv4LGj/7a25simkDsyPugL1zpuglZht0O5zZhMTMH6XJ3xowOLNC3QkQwX/kxms/8fRdvihm70Hlmr+s2qlmHVXDvwNJyuzmNOAYEKdBZWAwQIYSLMclk5ofJMtH8yXe6e1PsOoTYHR+ATGbd36vdY+9yUpWpHLTU1I6OlxkOWKBvpGdviktuQPSWd3sWLJPZtC3v4SzOtaldkC1bb2a0CVKgs7AYMEEbkwwram0ZjUe/BuVxZwQhEHnDWxG55k7P/viL7XAuxj3xNGR6ZqeHzAwJLNAvYi0eQ+Pxb4BqHt4UetT2pjh8ved7kWW2In7OQ8VkegYykXF8jhk9ghToLCwGjNBcjEmU6aogxwkignn0GTSf+ltXBz+g5U1xxwehzR/o+n5e7XAimuAJi2PIpAt025viH2G88EPP7eTsPsTu/NAWb4qt72db3rv5xchkFjKV2+7hMkNIkAKdhcWA8cprYcyFBTXraPz4b2CdfMFzO+3ANYjddo+jN8VmVGnFvR1Oj/IwpDFlkgV6z94U19yJyA1bvSk207G8N53bUkUsCZmZ43U0hgQl0FlYDBj3yXImMMZeTdbyaduborLmvpGmt7wpbuzpS21VClBVl/eTGhv3jDGTKtDNky+g8cS3vL0p4mnEjrwf2t5Lu74fEcEqLoGazpb3IhJjcT7GBCXQWVgMGldjkvEsPCOlYLz4KIzn/qGLN8UuxO78MOSUszfFZux2OJeWunY7HPfYjy2TJtDJbKL59N/CfP0Zz+20vZchduT9rt4Um1GVVVCt5PJmEdtIjieVji1BCXQ+Ew8Y25hEB20qNBzHwrOevSmueBOiN72jZyGgmjVuh5t0JkigW6vn0Xj0a6DizrwpNqOqRajyquv7ccRv/AlKoLOwCADb8WzTCZAUSKmxmQ5onnkVjcf/qrs3xe3vg77f3ZtiM3Y73CK4HW6ymQSBTkQwX30SzZ98x9ubIj2N2Js/7OlNsRnVqMIqLrm8Ycvyng2wxp+ABDoLiwDwNiYZ7TguWSaaz/w9zFd+7Lmd3HUQsTs+6OlN4fTe3A7HtBlngU6Nqu1NceZVz+1sb4p39RWh6+pOO7UbMsKW95NAUAKdhUUAuAoLZWKUE8SquIzGDx+EKpx330gIRK7/OUSufXNfJ38ibodjNuK+jqyRFhbW+eNoPPYN99oHoOVN8YvQD7+hr/fu5k6rZefZnXbCcBIWIOVrZwgLiwBwy1uSR7hzmLG9KZ5F86mHvb0pklnbTriLN4XT+1trS9wOx2zAfR2ZAEYvjE9KwXj+H2H87Aee28mZfYjd+UHITH+mb0QK5uqihzvtdF8RRGY8ENLlsq8swKcCeBYWQSAkAIEtdQLW6AmL3r0prm55U/Q/AExVCq5eFdwON7m4FhaO4DpS5QIaj30davm053aRq+9A5Ia3QWj9FVW2xTk2D51qYbvTeptoMeOJq0C3TN8661hYBICd19K25LHsO63RoWdvipvfCf2ym7Z18VeNClQ57/Le3A430YxJ5K83b4oUokfeD33vZdvah6quuYtzdqedbFxEqp/riIVFUEhtS73AqJwQiQjGC4/CeO57nt4UYmoX4m/+EOTU/Pb2Yzbd20qFhD69h9vhJhhXS+JRWUem0fKm+InndtqeS21vikR6W/tRjaq754sWgZbbw6JiggkiNc/CIiCE1LY2TBINfUW7qpbQePwbUOePe26nX3ELoje+Y9sta6Ra+WCXDhAttxtCH91CV8YfhNS2nABHoeVUrZ5H/dEHQcVl942kRPSGn4d+9e3bvvCTacByK6buiPPhPd8wg0cIaafnN51rWViMIKNY0W6efc32pmg42/8CAKLxljfFVdvej50PPu9aCCozM+xVwQBwE+j+VrT7ie1N8RSaP/m77t4Ud34I2uy+7e9LKZgF9/ZsFudMGyE1kLVJWPgo0FlYBMQoVbSTZaL57CMwX37Cczs5fxCxOz4AmZra0f5UeRXkIl5EPA2ZzO3o/ZnxwbW4zMeKdr+wvSm+CevMK57b6YffgOib3r0j99j21F9sbiNsIdMszpmL2DV/m74ryvJNoA/XShxjXGsDhiw/rIoraPzwawPxpnDcX70MVXGxGdaj0Kbmh/JOlAkHr/zwMM2KsS6cQOPRr3f1poi+6d2IXHLDjvenKqugRsXxORFPs+cLsxG36xEpQOy8jm14VuK449riMxzCgohgHvspmk992/WuB2h7U3wQ2vzBne/TaNh3WY47auWDuQOEWY9HqxyGYF5M794UexG780N9e1M4oeoV9xkgehRalsU5sxE3LwuyLF8K5FlYBMQwV7ST0bC9KU78zHM7bX/LmyLWvzfFln0qC2Zh0d0RcHqPr2N8mfHAzc9hGNaRqhTQeLQXb4ojiNxwd9/eFE6Q2bTrk5wQEnqOizWZrbivI3/coFlYBIhjRXvIXhbW8pmWN0XBfSNNR/TmX4B+2c2+3PkQkV257mbXnZmD3IaxFjP+BFHRvh3MUy+i8aNvAUbdfaNYCrE7tu9NsRlSVquTykWc5/bwYDHGkUG3nLKwCBDHinYVTkU7EcF48TEYP/2eaxU5AIipecTf/OFte1M4oUorIJcpqCKRYZthxhOnivaw3Dd79aaQey5B7MgHILfpTbFlvx1x7tZJNQvpQ2SRGVMG7AbNwiJAXEOfAVe0q1oJjcf+Cur8Mc/t9MtvQfSm7XtTuO1bVZ2dO0UkxvlgpitOFe2kzMAFuipcsL0p1lzGkQOAkIi88W5Erj7i67Gpcr6LON9ZpxYz3ri7QbOwGDlcC2YCrGjv2ZvitvdCP3C1r/u2izVdTsJSY0dApjcGXNHeDSKC+drTtjeFR++/H94UTqhaGcoldWmLcx7Qx/SAoxu0P6l5FhZBEmJFu+1N8V2YL//Iczs5fwCxOz64Y28Kp/2bq4vYEnproeX2DFW7IDO8DLqi3Qtq1NB44puwTr/suZ126HrEbv3FHXlTOO7fq5OqI865WJPpziDdoPlMHiBhVbSr4goajz4ItbrovpEQiFz3FkSuu8v3KvJOPthFDWvZecho3Nd9MuPLoCva3bAunEDjsa+Dql7eFBFE3/SLvnhTbKZTrMninPEBzwg6C4vRwa5oF1uruJV78eROICKYx59D88mHunhTZBC744PQdh0ayHGoch7kUi0vk1ku1mT6wt1sbkDrSCkYP/u+7U3hMYRPTu+xvSmys/4fQ9tZk8U54xOeNX87dINmYRE0QgK0qeWU/I9Y2N4UD8E68bzndtr+qxC77b2+eFM4oRpV93xwNA6ZmRvIfpkxxiXUTx7dTdtFVdbQeOzrUEunPLfTr7od0TfePbCIgaquudreywSLc2YbDHAdsbAIGGcvC39PiNbKWTQe/RqoXHDfSGqI3vxO6Jf7403hBFmmRz5Y52JNZlsIIQKJ/JmnXkLjiW8CTS9viiRiR94Pfd/lvu57Pcqou45BF5E4ZJbFOdM/rukOH9YRC4uAEUI6Tmf0AyKC8dLjMJ79rrc3RXbO9qbI7fJlv27HYodunaMx9vjmwVfwM+OJEBqINlW0+xT5I9NA8yffgfnaU57byd2XIHbH+yETGV/263gsynIfgy41e2Ipi3NmO3DEYoxwUolEO+7BV7UyGo9/A2qxmzfFzYje9AsDd+RTlYJrn73MzPpeLc9MGFICm85/fkT+evamuOFtiFxzx0Av6kQEq7js2tKqTe3iYk1m2wwy8sffyoBxbQXbQQ++efb1ljeF83RDAEAkjtjt90A/cM229tEPqlmDKucdnxOxJJv3MDvG78hf794UuZY3xcK299XzMdVKoHrZ8TmZyvEYdGbHDCryx8IiaFzyWnbvcH/CgiwLzZ9+F+ZLj3vvcm6/Xa3uszeF4zEpC1bBo89+aheHbpmd42Pkz/am+Bas0y95bqcdug6xW98TSLSNjKYdrXBAROKQ6Z1PRWWYQUX+WFgEjGvBDPXX4qNKedubIn/OY2cCkevuQuS6twQy4dCuq1hyb4nL7ea6CsYX/Ir8WRdOtrwpiu4b6RFEb3k39EtuCEQUEymYay5+FUJCy7E4Z/xhUDV/LCyCxuWk149KNI79FM0nvw2YTffdJDKI3Tk4bwonVLUIcknHyPQ0Tyxl/GOHkT9SCsYLP4Dx/PdD86Zwwyouu/rO2HUVPLGU8YkB1fyxsAiYnbT4kNFA48mHYB3v4k2xcCVit78XIsAcLBkNqJJL6DYah0xNB3YszPizk8if7U3xDailk57b6Vfdhugbfz7QAklVK4Nqzs6eMjkFGU8FdizM+DOImj+AhUXwbLPFx/ameBBUXnXfSGqI3vQL0K+4JdBQKSkF07UlTkKb4pY4xme2GfkzT7+Mxo++Cbh0LAGwvSlufx/0hSt2coR9Q6YBq+hSn6RHITNcV8H4jI81f+thYREw/bb4EBHMl36E5k8f8YxqiOwc4nd+CHJ6t5+H2xNWcQmw3EK3u7kljvGdfiN/ZBpoPvMdmK9286Y4jNgdHxioN4UTnXk6TmkZIaDndvNwMcZ3XMXDDuss+IwfBo623ls/SKqV0Xj8r2AtHvV8O/2ymxC9+Z0D96ZwQtWK3BLHBE8fkT+1toT6Dx8EubnAAnah8w1vQ+SaO0OJrqnSCshsOD6nZech9MENV2MmGLd1tMPBmCwsQkBIufWD23SnZZ57Hc3H/wpU9/KmiCF22z3QD147gKPsDpleLXExboljBkYvkT8igvn6T9B8+m+9vSlSU7Y3xdz+QR2uJ6pegaquOT4n4pnAoyfM5DAoW28WFiEghAbCxtRB25SELAvGT78H46XHPN/D9qb4IGQqN6jD9ISoVVfhGLrlugomADwif9SsofHE38A69aLnW2gHr7W9KUKaDOo5T0eLQOM5IMwgGZCtNwuLMHBp8bGKK2g+9nVvbwrA9qa4/ucC8aZwQ5VWXNtdtan5UNIyzGThFPkjZcFaOmUXOnt5U2gRRN/0LuiXvDE0AXyxrsLpJN6qqwhxjTPjz6BsvVlYhIBTEZY6+xqMFx7t7k1xxweg7T48wKPrjh26dT5py0QWMp4O+IiYSWRz5I9IQb36ExivPe3tTZHbjdibPxT6VFBVWQUZzpNTZZbn6TAB0WPNXz+wsAiDdXchZDZhvfAY6Oyrni/RFq5A7Pb3BepN4QQpy7slLkAjIWbCWb+O6hVYz34XtLro+RL9ytsQvTFYbwonyGhAubSOi1gKMpEN+IiYScWx5o+FxQjSCr3S2jLMZx8BvEK2UkP0pndAv+JNQ1GzYBWXXMJk3BLHBExrPajzJ2A9/4+A4dxVAQCIJhA78v7AvSmcICKYbnUVUrdTiUOw1pkJweGcTR4Rv15gYREGBFjHnoN65ceeylBkZxG788PQQvCmcELVy65dKlp2jlvimGCxLFgvPAp18gXPzeSuQ4jd8UHI5HB0V6jyqnt9Es/TYQJGQDjMC2FhMVJQvWIXaC4e89xOv+zGljfFcFys7er1JcfnRCwJwS1xTICotWU0f/AXIJd2ZwC2N8Ub3mp7UwxJESQZDaiKcwpEpnKQIXWnMBOMU3SMhcXoYJ07isbj3xhqbwoniMj2q3CKrghpG/hw6JYJACKCefQZNJ96eKi9KZywUyAu1vd6lH1fmHBwPHfvbBAZC4sAINXypnjR25tCzOxF/M3/B2Q6F8yB9QjVK65TS7XsXOiFcMxkQM06Gk98q7s3xf6r7ELnIbv7V+W869RSfYpHoTMh4fq9IwAsLIYSVV5F49EHoVbOem4nL30jIm94K2RyuKrByTLtgk0HRCwJwa2lTABYS6fQeOzroIqzQyUAQGrQrr0TkatuHz5RYdShKgXH52RqmltLmdAQbuKBaLu6goXFIDGPP4/Gj//G05sCsSS0G94GObtv6DoqOAXC7ASrWd9xzQApBePFR2E89w/eed/MDPQ33g2Rnt7uuXBgECl3d009CpmeDvaAGGY9bufwHdRZsLBwQBlNILH915PRRPOpb8M89lPP7cT8AWhveGvn7mqnLT5+Q/Uyp0CYvhB6BFKPQZkNkNmEWS1B32Y3hqoW0XjsG1AXTnhuJw9eC3nVbZ3v47CtI7sLhFMgjDeq1S69cQ0ZsOpV6KkBRrJdvn8E2rZI5ytDi80f5nZPiFZ+EY1HvwYq5d03khrklbdCHrpu00llZ6YkfmKnQFwGjMVSnAJhtiD0CPRUDkIISErArBSgmnVgG+vIPPMKGo//NdCsuW8UTUC7/i7IXYc2PTE8wkI1PVIgaU6BMBch03BeQ0YdQPDCgiMWfUJEqNfrqNWqSElAOnyYVrMGRBPQ9d5+RUQE8+Un0Hz2EcBj5KzIzCL25g/BcvJnH5I7LTsFsuSRApnjuywGSinU63XUa1WkNUDqsc73QggBqcdgmQYsy4Km9ebNQJaJ5jN/D/OVH3tuJ3cdQvT298FyssQemnXUJQWS4hQIA1iWhVqthijc11C1WkU8HoccQNu067mchUVvGIaB1dVV5PN5mKbdqnbl/l2OHyaZBl566SVkMhnMzs4ilUq5fgBUr6Dxo7+GdfY1z/3rl74R0VveBaFHYRUuYPOd1bCEcO0USNXxOS07zymQCaderyOfz6NQKEC1XFgvX5iHMBuQlIAQAkQEZTagFOHVl15CLpfDzMwMEgn3HKMqLqPxwwehCi4tmcAGbwoAsNaGV1ioUh6wOAXCbIWIUK1Wkc/nsbZmFyR7raGjR49C0zRMT09jZmYG0aif/kYsLLaFUgrnz5/HysrK1ueIXD9MACiVSiiVSojFYlhYWEAyuXFWh7V4DI3HvgGql90PIBJD7Nb3QD903cXHhNgasR2CE6JnCiSegkxwCmRSMQwDZ8+eRalU2vJcoVTFTFbArBQ2pBQL5SqICKurq1hdXUUqlcLCwsKGE+NFb4q/db0QAy1vijs+CG3+QOd1TgyDQFfNOlTVuYNFpmc4BTLB1Ot1nDlzBrXaxjSf1xoC7MjG8vIylpeXkcvlsHfv3p4jgZ64jk5nYeFKuVzGmTNnYBjOJ6xuH2abRqOBo0ePYm5uDrt27YIAwfjpP8B48VHP/cvZBcTu/OCWym8h/LdR3SmeKRBpd4Ewk8nq6irOnTvXiVBsZrloF/nm0kmQaUApQqFc7TzeplKp4NVXX8WePXswMzMDGA00fvw3sLrYcmsHrkHstns2tJG63/GHvY66pUBygR4PMxwQEZaWlnDhgvN3o9c1BACFQgGlUgkLCwvIZndWfzGIdSRoGOT9gFhdXcWZM2e6bjeXTSGXTkJK4flhtkkmk9h74nGoxaOe7xu59k5E3vBWR+9/o7QC2lQpLjQdkRBHOata0dW2W8vt5nHoEwgR4fz581he9rDO3ia5TBozP/0WyGXKJwBA0xG9+Z3QL7vJ8QTYLJzfIshlNA49xIu3VVx2jVbos/s5WjGBKKVw8uRJlMseke1tsmfPHszNbf+6QcqC4XDe1xIZaPHUtt5zbCMWvYoKwFaKXkJiM9VqFSvpfZiGs7AQiTRiRz4Abc8lHu+y9SQZpsazUyBbU0UAIOJpFhUTCBFhcXHRMYXoB4VSGfHpg0i4jQ+f2oX4mz8EOeUVKRMYplol1axxCoTZgFIKJ06cQKXS+zWmHxYXF0FEmJ/fbkSZayx6olKp9CwqtkshMYfEnisRX3xlw+PavsttO+EuSk8IOTSpECKyIxWOKRANWohRFCY8VldXByYq2ixOHcLB0nlohcUNj+tXvAnRm97RvVB4iGqV7BSIi0utHuMUyISyuLg4MFHR5vz584jFYttLi7g1JbCwuIhlWTh9+nQg+1qcvQqHyssQ5TwgJaJvfDv0q27rrdp7ABPltgvVK6CmWxfIHI9xnkCazSbOnTs3+B0JiTO7b8DBSgEw6kA0gdjt74W+/6reXu5UqxRSjYUqr7oWn2o57gKZRMrlMvJ5D08jHzlz5gySyWTPFgltBlFjMXbC4vz5866Fmn5DUsO5fTdh4fxziB15H7SZvYHs109IKVglty4QToFMIkSE06dPB5ZSsKJJ5A/egrniKbvQua95OU4C3bdD6xkymx5GWDMQup/tgcwoEORNbnt/Z8+excGDB316x+0vpIEOp/jQhz6E6elp/NIv/dIgd9PBNM3A1GGbRiyD8i0fGElRAbQmLjoZenEKZGKpVquoVp0jWINiLTkP49YPDN0Qvl7ozNRxQEQ4BTKpFAqFjl9SUBSLRTQajUD36cRAhcUnP/lJ/Nmf/dkgd7GBoEVFm5V83rUNb5gho+FaaKZlZjkFMiZYxf7WxaDrKtxYDmm/O8VOJTpbj/OgvvGhn3VERKGto7Cug+sZqLC4++67kclsbwBRvxBRaL9Qy7IcTYOGGc+7rGicZ4GMEaXv/DlW/3//F5qnX++6rWmaKBaLARzVVqrV6lDcbfWDVypRJqe4C2SMWP3q/4m1b34Z5spi122r1SqaTY+p1gMkPwQ3un0LC6UUrr76anz605/e8PjDDz+MaDSKP//zP/ft4PrBMIzAw07rCTp0vFOoVgI5zVkA32WNI8bJV1H46he6Coywv8dh779fvFKJPA59zCCFxktPI/8/P9dVYAy6C8QLIgpdoPddvCmlxGc+8xncd999+K3f+i1MT0/j2WefxUc+8hH8/u//Pj7ykY8M4ji7stkeNWiM1fMwlje5B3rVvhChXc9ORAARiIDmcWE3hxABZI+uRevfnWK61rZovw7rtl+3zYbt1iM1xC6/GsKhethcPo/6C8/2/f9nhhdz+eIJ0Dj5KgonX0Xk4BVI3fmLiO6/bMO2Ya+j2tkT0H/y3Z63V806iDZe2IXQINc5dA4KEYsjeumVzsZdJ4+i/vzTAz8GJjio3l4bhMZLT6Px0k8Qu/ompO54F/TZPRu2DX0d1Wqec3kGzba6Qj760Y/i937v9/CFL3wBv/Zrv4Z77rkHH/vYx/CpT33K7+PrmXrd+e47KMxqGTI53DUJZJlQzSaQmXMUFapeRf2Z74PqNSjDADWbICOccB4zWC4KjCuRuvPdHYER9gmxubyI2tP/EOox9Ermnb/kKCqMxVOofO8bIRwREyzuAiPsdRT2/rclLHRdx6c//Wl89rOfxV/+5V/i5ptvxhe+8AW/j60vLMt9VHkQjIIxutB0yHQSlJlxfF4zqsjefPuGx4gIZBggownVEhrtv6nZgDKaoGaz83f7eYxgMeskYpx8BYWTr3QERsjLKPTccK9EL70G+q59Wx4ny0L1ie8Ff0BMiKwTGNfcjNSRd4V+PQp7/9v2sfjoRz+Kf/2v/zWICA888IDjlLV3vetdePrpp1GpVLB//348+OCDuPXWW3d0wG6EPfJkFIQFAaDUtLM5V7MGGFtVrhACIhoFolFofdjGq2YDqlaDqlVh1e2/Va0GVa/CqtVAjXAjTMxGjJOvoBZLAJe/CQOu6faEQh4g1gsiGkPi5rscn6u/+BOoosfsE2aMITReeQYyngTmrwRkiOso5AvStoXFJz7xCQDA8vKy6+jWhx9+eLtv3zcyxA9xZIilASejHlIQ1VU3x/htIaMxyGgMmMo5Pk9KQa0THFa92hEiql6DVasi9NvnCSF2xRuRuvNd0OcXsHL0KBBiAaV0GeE8TCRuvBMyvjV/bZWLqD/3RAhHxISOpiHxhjuQvO0d0LLTEC+8AAox+hb29XBbwuK3f/u38a1vfQuPP/443vGOd+BLX/oS7r33Xr+PrS+i0XCd7aSmo7F4Am0nwC0XabcuCyFsvwhNtv7WIKTc8JhwEW79QEKCElPOh1ArQThVtg8QISW0ZApa0j0MoppNqJbgsNZFPDoChKMeO2K9oOg8FouF2pmhR4bbDFib3Y3oFdc7Pld78h8BK7zONCYENgmKNrFYLNQ6h1gs3Dbnvsemf/GLX8QnP/lJPPLIIzhy5Ajuv/9+/Omf/ilee+01RCKRQR1nV6rVKo4e9R5jPkimpqZw4MCBnrc3K2tQW0x1BKLTu7dsa3eNKPuPUlt/XvcYKctxW6UUyCkmYRkQa4u+RiuCQwDRBBBLQsSSQCwFEU3a/2Zzrw6Fr/0Jmkcvdiw5CYo2+XweZ8+eDfLwNrB79+6+pjQaxRXQpvkcQosgkp31+9BARDBXTgPm1oJmEUtCy+3hNu0xZvlPfheqVLD/4SIo2pw9ezZUo6pDhw715SHVXN3aOitjCehJ55vRbvR1e/DQQw/h3nvvxQMPPIAjR44AAO677z58/vOfx1e+8hV8/OMf39ZB+EE8Pvj2Mi8G2dojhACEBkADulwvnU5rqlkD5Z0vFnL2AOSey+3hSa0/ZJmAaax7zLRP3uv+7di7HzgENKtAswoqdR6xicRbgiMFRNcJj27TMscYL0HRJswWtWHYvxeqVnQUFYCAlpljUTEJdBEUbcL+Hoe9/57Psk899RQ+8pGP4A//8A/x4Q9/uPN4NpvFfffdh8997nP4lV/5Fdd6i0EjpUQ2mw3NNXBb42oDwHbYdBnlHEtBa49313QA9pexl9MjkbJFhmmuEyQt0WE2QEYDMBr2xEqXiY8DxagDRh1Utu8aOoJDj9qCI5raEOmAFhnbC0P08DVIv+W9noKiTTweRzQaDcU1UNM0JJPJwPfbC2SZUCXnO1CZzkHo4UVrmWBI3HAn4tfd5iko2mQyGXvybghFlNuZcOo3fadChplKpYJjx44Fvt9MJoNDhw719Zp+UiE7waoUoEoOnvVCQJ87GMgdPCmrJTIaILPeERzUFh5Gw07ZhImmtyIbmwSHHhtbweHGyspKMCPTNzE/P4/du/v7/geVCjEL50H18tYntAj0uf0QI1B0ygTLmTNnsLoafIfQgQMHMDXVXwoj1FTIsJNMJhGLxQK3M53PZUBEQ3cBIsu0LYcdkOmZwNICQmpArFX74PA8EdlRjU2CoyM8zIZLCNpHLBOoFUE1O+LVUdtC2imURAZIZO2/o8mh+6z9JJfL4fz584F6SmhSYDrTRz9zgKhmzVlUANCycywqGEdmZ2cDFxa6rg9F9HyshIUQAgsLC4EWcS7M56BbdZilPPR0bqiKBq3SsrPBhh6B3KYSHQRCCDtFoUeBRMZZfChlC4z1gqNZAzUqQKM6uIgHKaBeAtVLwOpZW3BIDYinIRJZIJ6xxUYkPjZiQ9M07N27F2fOnAlsnwd3zwD1IkwyoSWzfVysBxtw9RzWF0tBxoYzdcOETzwex+zsbKBTThcWFobiPDRWwgKwoxbz8/NYWnKuK/CTTDKOVMQ+AZLZgLG2BD2V63FOgcMJ0cfvg2rWQXXnQTijOGRMSGl3gEQTW35NRGRHO5oVUKMKNKoXBYcaQPufsoDqGqg1cp4AQIt0RIYd3chA6KM52ZJIYSqVQCWTRqHkfKfuJ7tyGUSEvR5UowplNKGnpyF7qVtw0hU+frepVnKOlgkBLTvn236Y8YOUhV0zOVTLJdQag69Zmp6e3tY0cfdqiO2vo7ETFoCdq61UKgPtx9ekwJ5cChvObKRglvOQ8RS0RNbz4u34Yfp0QiQi57oKACKehowOb+X9dhBCANE4EI1DpC/m1jsplsYmwdGs+p9asQygkgdV8usKRWO2wEhkIOJZ++ch6kohUoBpgEwDZDXtv02jI8Z2796NSr0Bwxhc8W0yFkUuuUlAKBNmcQlacgoy5p12cnTq9GsdKQVrCFKJzHBDSoGs5sW1ZDbtuh9lAUJi38ICjh47PtBCzlgshj179nTf0BGX49rBOhrLlSGlxKFDh3D8+PGBmZRcsncOgpxbLlW9AmrddbmefBy+ZMInK2VqVJ1HogsBLeN/f/+wsj7FIlIbK7nJMlpCo2oLj6YtPOAySn5bmA2g1ACVli8u3WjCjmjEW/Ua8XRg6TNlNOzvhtncICCcELEU9HgCl1xyCY4ePQrT9D/yo2saFuayrmksq7oGZTSgp3J2xMoJx3Xkj7BQ1YJzW7U2XKlEJlhUowpq1jcKCBdkMotEMoXDhw/j+PHBiItYLIZLLrlk+x2ZLse0k6j2WHWFbEYphVOnTqFUKvn2npqm4eDBg0hEdZiV1S7DtgS01BQ0hzzsoKrZiQjm8inHFk+ZnoGW7t4qNcmQsmzB0WwJjnoFqLuEw/0ilrLrNVI5iGQOIjKYFApZJsz82Z7qUfSZhU4LpWEYOHHihK8ThKPRKA4dOgQdFqzKGjxrJYS0UyMOvxfHavZoAnpqZxd+skyYyycdT7pabg9kfDgLTZnBo4w6LIfv3RaE3NAxVKvVcOLECV9FeiqVwsGDB3dk80CWCcOhjkhLZC7aEfTJWAsLwL7QFotFnD171nXi21wmgVw6DikEFBEK5TqWS1sjHblcDnv27On0CJNSMCsF5+jAOmQ0AS01taEgzVhbBm26YxR6FBGXyaO9YlXXoJyKzaRmt5fyTJVtQUbD7hqpl+y8e600mPoNwI5qpKaBZA4ilYNwmu+yTVSjCmvtguc2Ip6Gvql+gIiwvLyMCxcuuN519bqO5ufnMT8/35lnQJYJs7y6RWhvRsbT0BKZzp0UEcEonN+6XSwJPbmzynhrbck2xNqEiMShzewbuRolxl+sSgGqUvDcRqZnoG36HlqWhfPnz7u6cva6hoQQ2Lt3L6anp3f8XVSmAdMhda4ls443xb0wlqmQ9QghMDU1hVQqheXlZayurm4QGHOZBGYyCQg9ChmJQxh1zGTsD6r9gabTaczNzSGdTm98b2nfSalGFVarkM8J1axBme2CNPsiMYjcMCkFVXZub9LSMywqdoCIxIDIPETWtpu2C0ZrHZFBtZId2fCjO6VZAzVrF7tQYilbYCRzdlRD254ZEykLqtY9eqc53O0LITA/P49sNovl5WUUCoUNAqPbOhJCIJvNYn5+fotLrtB06Nk5WLUilEvBMQCoehlkNu3UiKZjELlhACCz6SgqAEBmZllUTDhkNj2/pwAAqUEm0lse1jQN+/btQy6Xw/Ly8gZDx16uRVJKTE9PY25uzscRGm6pkO1fL8Y+YrEZpRRKpRJKpRKq1SoOzqagRWLQWycMIoJZWoFlNFG0dORyuZ4GnCnTgFVZte2wPdASWch4Csba0paLkIzEoadz2/6/WaU8VMVBWOgR6LMH+IQ4YIiUnUZpiQyqFYF6Bb63RMbTdsoklbOjGj0UEapGDVZpqUvqDpCJTE91OJZlYW1tDeVyGbVaDYfm0q7rqIIYpqamenIDVM06zErBW6AJYYsLPWqvo01oiTS0+NaTeq+Yq+fs2pvNu42noOe2WyDHjDpEBKqXYZXy6LamZWYWWqJ7h4ZhGCgUCqhWq9id1l3X0FLVQjqdxtTUlO+TS5XRgOlwQ+qWfuyFiRMW6yFSMFYXoSWy0NapS6tWhlUrIjqzr+/3s6pFKIeT0nqEHgOZzS13VjvJDXvmhKf3QMY4JxwGpCygXgHVixcjG02fu5XiGTuikcoBySkIefECTkRQlVWoai9W9wL67ELf3Q7KaMAsrfi3jpQFs1wAmd5GdzIah2o2tqyjneSGVbMGy2Wujj53kK27JxRSFqzSiqPg3ILU7XXU541cM3/WtzXUDx0xvwk9PQMZ2V4aduxTIb2gjDpkPNVRicqoYzs9vEJI6KkcVCTWuuty1mydEyZh40lxBxEFq5x3rpCPxu2Jn0woCKkBySzEulwrWWYrotGKbFSLdgfJdmkZeNHKKQDCbmtN5YB4FpbZ7LnwVCZ31g7r2zqSGvTMDFS9AsslJQHYJ0QAvq0jrzZtmZxiUTGhqGbdnrfU4+BFLZXbdnTYrzXUD66xBW433RlkNmGWViAjcSjDbiPaSdW3jCYQ0SJ2YafnSZ1aYkDYH+J2T4hG075IOcBTF4cPoelAarrTAtup16gUgEoBVC3soAuFgFoRSll2NsErbCo1CC1iFx8LseMWSj/XkRACWiINEYnaYVrPkzpdjEwLse3cMDUqdpHuloORkNxNNXEQEVR1rWuRJvQoALInQmsRiO1+5/Wo8xoa+I2h/+2mLCxakNm07+4Ae7DQDk+yQtOhZ2Zh1UpQLnMG1u0doO1/kFbZ3QxrUK2LjH/YBl9JO7I0vc8WGs2qLTSqBfvvHifEEgQoPQt0qTEQUoOc2gWhRWDmz9p3ST74aaxfRyIS2/E6knoUkal5WI5D+zbs+eJf21hHRATLLVqRGi6rfmbwkGXCKi45C811yEQGMj0DWCbM1bM7ilbIaAKW2dx4LQI2pEYGAkcsgmG7BSubEUJAT2bt1Eh5tUvHAEGZBvo9falGzTXvp6V31rrKhIMQwu4EiaWAmQVbaDQqoHY0o1JwbHUlLQrKztv24m4QQVTydvpk6SgombNdJAcgQLfbqrYZ0fKxsBqx7p4XIJBpAn3+f1R1zR5EtxmpQ+7QE4MZLVSjas+H8SwgltCycxdnxegRaFO7ICK9jHMYLsj1/8nCYqiRkRgiU7u6el5QswazjC2eF67bc054IhBC2J0g8TQwu98WGvUyqBXNoGoBiKZAqWnvuwyzCVFagmhHP4iAyipQWQWdfx1WLAWRmYPIzNoFoUOWQtNiSUg92tXzwqqtgcja4HnhBSnLvU07M8PTSycEIrtdv1tLtojE7am2m+qRRnZUAkcsRpedeF64QfWyc+U854THGiFEZwYJTe+zQ7bNLq6Y9RJEOQ/hdbffqNh1BssnbBv09KwtMlLTQ5MK2L7nhTvKrb1Vj9pijhl7yGzCXFvqmnKUqZx90zZkontHDMDSm4VFgAghOm1wXuICyoJZXO54Xjh9wETkMSBpeC4EzOBQzZodsvUqbCSCKK9ANPqcUmo2QYVzoMI5QEhbXLSiGX46gW4HO8U4BZPIs7WbzCaMYnvisPPdJFkmVMV5LWpshjX29OxNITVoU/OQI5jq6I7/Zo0sLELAvugLdDNZsWpFKLM9hGmjUPDMCe/QzpgZbnr1phB6DNrUHDB/0B7zXloGlVb6b20lBZRXQOUV0DnY0ZJ0K2USpj9KL+uICGZ5FTLWgOZwp+l2QRHRxMX8OTOW9OpNIWJJW2SO6c3aICZts7AIASJqfXCiFYZyPzGS0YCxtgQ9neuoZc4JTy5kGbDWlrq0Mds1NnJ9hXp6BiI9A9rTKgRti4z6Ngb0tYy+aOkYEIkD2XkgEkJ+ub2OOsvHfR2p1lRXLTUN2ao9IqMBcvn/T9IU4ElEGXVYa928KYR9Po2nxzty5ZgKYWExeqzP53ZOjF53XQpmKd8ZwsQ54clE1ct2S6SXWa7U7Gp1l9D/hkLQ+cP2xbW8Aiot290m/c46Meqg4hIwe7C/1/lB+/fQPul3WUdkmTCLS9CSU5CxpGt7qYhnuE17TOndmyICPTsfetovEBzW/E5vTllYhABtntfQEhcynuxekNasteZPbIVzwuMJKQWrnAd18UMR0YRdrd5HyFZEYhDT+2z/DGXZHSLtaEaP3hluqNVzENm5gXWY0Oa7TSHswmU96ul5YVXXbG8Zx23su1Rm/LC9KZa7T6NOZOw6tQmJ/G65HgHexno9wMIiDJzuCoWwizUjcU/PC2rWHSv7RTTJOeExhIwGzOKScz3NOmR6BrLH9ko3hNSAzBxEZs5O19WKrWjGCtDoMs3RiXIeauWkPQY+uwtiajeEn99RpzstqdsmRRFvzwtqVB2DvTI1tSNbc2Y42ZY3xQRARByxGBe23GkBtr2yEBCRGCJT8y3Pi01FdkSOxkgA+C5rzCAiqFrRtZamg6bbIVufQ/dCCHugWXIK2HUpqFkDlVZA5WWgq0nVJpo10PIJu401noGY2mULjR0es9udlhDC2/NCWRCO4l5CpnI7OiZmuNipN8XY45ZW5YjFCNJFIQqpQU/PQDUqsNZX/lumc0lNNME54TGClGWHbD0trG3L9qCKdUU0ATG73zboskxQOQ+Ulu2/+6E9MO3860AqB5HdDZGd7/uE3sudVsfzolqEWh9xcYn+yER2bCv/JxEym3a0z5xAb4pecYngcMRiBOklp2V7XqQh9JYduGW4RitIKVj1MmTM2fOCGR168qYQAlpmFjKkQl2h6RBTu4CpXa07wjxgbGNoWqXlHLr4CpCehZzabXev9HJx7/FOSwgBPTV1ceKwZTpGKwiAZTYgmrXRdVBkALA3RT84Rs+BHQtsFhYB029OS+oRRKbmYK4uOr+fkICU9l2Z4ex5wQw/tjdFwfYn8UDoUWhT8xBe80ACRAgJEc8AhnOHRU8QAaVlqNKynRLMzkNkd9sRDTeh3OedlozGEdHnYa6cdn4/aZ8KvTwvmOGHlIJVWp54b4pecZ0TwhGLEWM7OS0iwG3K3roLzEXPi2nfBqkxg2fb3hTDzux+oLgElLvcOa5HWaDCIqiwaLdPt4o+sclLYFt3WpbpmAYhAFiXinHyvGCGH9ubYtk1smszId4UveIUPYc9gmInsLAImm3ktFR1zfF17WjF5vc3SysdzwtePMONqldglZZ35E0xrMjkFGRuD8g0QKUl0Np5oEtEZgNmE5Q/DcqftuuIpnZD5PZAROLbutOy3Aphpb7FadD2vFiGlsxCxpK8joaYnr0ptAj0qQnxpugR13XEwmK06PdOi5TlOsvAazy2qpdBRgN6enryKp1HACIFqzQYb4phQ+iRi14ZRh20dsEWGf20sDZroKXjoKXjQHoWSM8AkFsEgdudFhkNkNv+XNcH2Z4XnRTjZPgajBLsTbFDXCIW7Lw5YvR7p6WqReeajGgCWmbW2/PCMmCsLUFLTUGboN7sYSdIb4phQ0TiEHMHgbmD9nTetQug4nn3VJ8T5RWgvAKp6aBEDpTMXRQHLhd/q+IcrRBtF04vzwujfnGYGacYhwb2ptg5jtejVsv2TmBhETR95LRIKdfwnkzPQHp5Xlx8F1it57XUFCv2ELG9KUp2F4UXA/KmGDZEy1qcdl1im3GtnQcVL3QVXJ3XWyZEedn21ohnoJK5zviQ9ZDRBDm61QrbTEvTW54XeZDbvpUFs7QCLZGB5Px8qBARVDnfgzdFDNo2WpknCocIuhA7j47ybzxg+slpudVWiGgCMmq3SLl6Xmx+r2YNyjTswk4uSAucvrwp0jMTFXZfb8ZFey4Hyqu2yCh1uRttvx4A6iVo9RKovAyV22vXYrRy6W7RCpnMdi46oiXmtnhebMKqlezUSHp6pNNTowqZRsubokuh8yR7U/TBIOy8ARYWwdNjTss7WjG98ZUbPC/y7h4Iqj2EKcueFwEyCt4Uw4IQEsjMQmRmQcqy55asnW91lvRAswa6cBS0dAwiMw9kd7vUsYgtLptbPC/cUoxmE8baBTs1MmIFtaNKX94U2fnOjRfjzqDsvAEWFoHjZUO8HlVzq62Iu57MbM+LeViVIlTTvY+bPS+CYVS9KYYFITW71XRqt130WVgErZ7tercKACACFS9AWSYQS215en20Ystzbc+L8qp7CzBRy/OiCS2ZZZE+QGxvihX34tsW7E3RJwOy8wZYWAQPdc9pEXlEK1LeM0GEkNDTOViNKKzqmuuXhz0vBovtTbEMMr2LEmUyC5ma5gtTF0QkDjF/GDR3EFRagVo6DjQqnrXrJHUg6ly0J5JT3vuTGvTMrD2q3iOXrxoVkNnuvmJh6DfKaMBaW2JvikEwIDtvgIVF4PSS01LVonNRTSQO0WOIz3MI08WDYc+LATDO3hRhI4QE0rNQlgWYTYjqGkStAOGwXiiR3VrJCdjzSk4+CzW9zx6IJp1Pg0IIe13oMZiVVddUFlkmjDX2vPAT9qYYPI7XIoAjFqNGLzktz2hFur87284QploJysMvgT0v/GGSvCnCpOMFo0dB2XlQZg6iXoKsl4C6HV0gqTlHK4gg6iXb4fPcK6Dzr9vGW9P7IFzqW2Qkikh2Hla1ANV080uwPS/IbEBLsufFTmBvimBw9VTirpARowdzLFUtuUQrYhDbuLsVQkBPZu2CtG6eF8UlaMkctBjfRfcLGa1Jim7RoRYyPW1P0eS72u2zeX0IAUpkIeYOQpACrZ6FatScoxWNysbohrJAq2ft2o1EFnL2AJCZ2/L5CCmhpaYhIlVYlSLcCghVsw5lLkFPTUNG+C66X3r3ppiFdKidYfrA7XqksbAYKdwUIlofpF3s59Ia12e0Ysvre/G8IIJVWW3ddWX5TqAH2JsieFzvtDTdjrjNHwKWTjq8kCDq7i3ZqBWhTv/Mtg+fPWBHMtaJfiEEtFhqXYrRy/NimT0v+sD2pli1i9Y9YG8K/yC3uhWusRgt3O287Y+B6mWPaMXOneN69rxoVKGMJntedKF3b4oUtPQsh8d9wvWE2BIBrhb4zapjLcbW7Wp2muTCMYiZ/RAz+zYUZgotwp4XPsLeFOFAlsNakJovv18WFgHi+EHCvuAT2Q6ZTvjZNXDR88K+62LPi+3B3hTh4biOhN2yTUq5OjJqe68AKqt22qNLHQwAwDJAS8dAyycgpvdCzBzoFE/353nRsgNnb4UN2N4UFVjllR4Kndmbwm+cbnT9EsAsLALE8U5LCDtHbNSdFbsegRiAz73Uoy3PizUojztu9rzYSF/eFNl5CI74+I7jCbGVTnT1f4mn7Q6caMIehlYrglbP2eZb3dw9SYHyZ0D5M/YY97kDEPEMgF49LxTMch4ylmLPixbsTREuro0EPqWYWFgEiYtCFEK0hiBtRUvmBnYisj0vpmE1Yl2GMLHnBdCuVl/ymMtiw94Ug4OIXNaR3mlRdEJu8q0QiSxEIgvafZltvJU/1dMgNCpesOeZpKbtQs/UNHte9Emv3hQyMw0Z5zb4QeCWTuSIxYhBRI4hXCF1kGk4K3chIRKDD6Oz50V3evOmkNAy85DcVTM4PDqrqFF1HGAmInHXMLrQdIjZ/aCZfaDiEmjlVG9pksqqXWgdT9uFntn5/jwvUlnI6GR5XtjCr+haoN6BvSkGj0da3g9YWAQFERwjAlLzvMsKqjOjL88LswE9NRmeF0QKqpT3/J0AttW6lp3nkO2A8eqscuvMkSlvl03Ajt6Jqd2g7C5bNKycArpdAAGgXgadefFioef03t48Lypr9sThCfG8YG+K4aJbh+JOGf8rw5DgXskuXFusZDI7wCPaykXPiyjMcsGjIM32vBj3IUxkNmGusTfFMOF6QlQWyOlCLnWIPvwOhBBAegZaegZUL4GWT9mpj24YddD510DLxyGmFyCn90HosVb31WR7XvTsTZGZhYyzN0UQdOtQ3CksLALC9YTYrDuG10U8HVpEQEbiPXle2EOYxs/zoh9vCi07P9F1J0Hj1llFdeciQJnafnuiiGcg9l8Lal4Kyp8CrZ7rXuhpmaDlE8DKKYjcHujTe2E1ahPpecHeFMOL4/dRbB2GuV34kwwKpxNiaxSwE9qmkc5B0/G8qFdgeZwYxs3zgr0phhvHyB+RS42SgExkdrxPEY1D7LkCNH8YlD8Lyp/uGsVCywEUq2chMnMQ2d1QHq8ZN88LMg270LmbN0VyCjI1uAJ1xhmvzio/YGEREI4nRGW5DxsbgrtgewhTGiLSq+fF1EgPYVLNOqziUndvivQsZABFtYwDTuvF5fOSiayvF2mhRSDmD4Fm94PWztuFnl0EKACI0jJQWoac2gOVcE9vjovnhaqV2ZtiiHHvrGJhMXI4pkJc6i5kyNGKzfTuebG2zvNidO7k2ZtiNHDsrCICLOe74s0tpn4hpAYxvQ+U2wuUlqFWTgIebaad160tQpaWoWYPAG7tpiPsedGzNwUP4QsXt3HpPtVXACwsAmPLCVFZzndamj4QQ6yd0rvnRR3G2oWR8bxgb4oRwqmzSpnONUqx5MAFoBACyM5DZuaA6prdSVJe8X6NMiGXjoFSM6D0rPOgNKz3vJgZidoDZTTsaJ9bLUkLmZ6BnMB29WHCtd6HIxajhaPLmUu+ddi98MfJ88L2pljpYZIie1MMA1vSiUQe6yg3+ANqIYQAUjloqRyoUQGtnAIVzsNNfAsAopIHNatQub2u0Qvb82IJWmoKMpoYynVkFzoXocrsTTEquA/x809YjE68epTZ/EGScs7jCwnpkYMdFtqeF91aw1S9DLO07K6QQ4JIwSou23dYHqJCROLQZ/axqBgStpwQSUE45fH1aGemR9CIWApy39WQVxyBmD3geRcojDrk8gmg7pVGsWcIWZUCSHXpSAkYUhastfNdRYWMp6HP7GVRMSQMutUU4IhFIGy5sFomnO49ZCIzMrUJtufFFJTebQjTcHle9OxNkZqGHLEc99izOZ3o8hlqQxD1E5EYxO7LQHMHQSun7U4Sp4I5UpCFc6BEFZSddx1ZrZo1KLPdfRX+BVo1al2FOXtTDCfON3rCNS23HVhYBMCGD9IzfDuYYrNB0hnCNOSeFxe9KVbhFqIGwN4UQ8yGdk2lnGuUpAbhQ4upXwgtArHrEtDMgp0iyZ/ZcjEWAERtDWTUoKb2Am7fPWXBLIbreWEXOq9CVdmbYlRxEhZC82dcehv+1ANg4wnROVohYqmR7Tbox/OCzCa0VLCeF6SsVrV61XM7EUu1JimORtRo0thwQnQV58MZZRJ61I5gzOwHLZ+0PS42CVxhNiFXToIy8yCPzrCwPC/Ym2L0IZc0vN9D8VhYBEDnhOgVrehhnsEw06vnBVnBel70400h4ik+GQ4pG06IRC6t2mLoa5REJAax9wrQ7AHQ8glQ4dzG50EQpQt2YefUbtcajaA9L1S93Cp07uZNMTcUKU/GGbd6N78jSywsBszGE6LlWGwm9BhEZDyMYobF86JXbwroUejsTTH0bI5WOEb9EuHZ4PeLiMYh9l0FmjsAWjoBWju/8flGGXK5DpXbA0Rd2s8D8LwgpWCVV1wt0zvHy94UI0FQwoJjvgNm4wnRzRAr/GIzP2l7Xti25O7/LzLqMIoXoLp4SPQLWSaswmJXUSETWejTe1lUjAAbo37O60gbwRolEU1CLlwDedmtENn5jc8pEzJ/2nbu9IgUqEYFZtH/7isyGjBXz3YVFTI9A21qF4uKEcBdWHAqZKS4eEJ0aTGVGkR8PO2he/K8UP56XqhGBVaxF2+KOcghNCJjnFm/joRD8a2IJobCBn+7iFgKYv91oHoJ6sLxjtHWRc+Lmh29cPW8MHzzvOjLmyI7DzHGk1nHDcfzsJC+R41ZWAyYzgnRrcV0SIvN/KLteWHVilAedz6qXgaZTTs1so2wHJFqTVL0tlYWkbgdsh2RkDlj0zkhjlFHlRMinoF28A2gWhHqwjGgYl/chVGDXD5h113E3bpebM8LMhrQUlPb6r7qfQhfGlpmZqymGo87tiW+U0eI/xFbPrsOGLIMz/DtsBeb+UHvnhfNbXlesDfFeENEILNl3e0W9Ruz6JNIZKEdeiOoUoBaOgZU1wbueaGaLW8KLyMuIaBlupvjMUOIUs7297r/MoCFxQC5eEJ0Cd/GkhN159zxvCgXQGYvnhfetSdEBFUvQ5Xy8PSmkDq0KfamGFmUAkDexnJjKhZFKgeZvBGorEJdOAZRL/nuedGzN4UegzY1N5A7XGbwuKWjB3ENmpyrWhh0Togu4dshMvIJCiE16Jmde16wN8Xk0In6qclcR0IIID0DmZoGyiu2wGhUbM+L7DzIYy5KN88L9qaYHNwKNyWnQkaLiydEt/DtZIYTd+p50bs3xQxESA6FjH+QZbrOBRGR+MTMoBBCAJk5yPQsUFqyBUbxAqjRg+dF4Tz09MwGzwv2ppgsgphq2oaFxQAhy3R12hzn8G2v9Ot5oSWn7Kr5SsH7jdmbYqwgy3SvUUqOf43SZuxx7bsgM3O2RfjScbuw08vzArA9LyIxyFQOqrwKqpe998PeFGOFcoicC00fyHWIhcUAUabBaZAuCCGhpXIQkRisyhrcaiWoWYNZL0N4tZHCLoaV6emJF23jhDKbzk6bQkJMcBGhEBJi9gBoajdo6TiQPw1Kz4JSM64DpVSzBlUrebjL2Mj0DN/8jBHkEjkfVL0MJ54HCJmNiQ/f9oIQAlosicjUvPMXXSnbbbGbN8XUrlYLHJ8MxwUiAsyGS9Qvze2OsOeQyL1XQrv0TZDKgsyf3npD076wuBTAdtB06NN7B+bkyYRDUI6bbThiMSCICHBxlJRJjlY40fG8qBahGpXOybBblIK9KcYXzzTIBLRq94OIpyEPvdE21zp/FCqZA+LpzmwVp5ucza9nb4rxJMiOEICFxcBwDd9CQMTG02nTD4QQ0FNTsKQGq7Ti2KbbhgDbsTMzy3dXY4pqVp2FpRYZaafNQdEu8NRSMxD501CVPCiW9oxSEABpNaHFOQI0rgRl5d2Gv0UDglzymCKW5NZHD2w74RJUD6ICmg5lNmFV1+wIETN2uM2p4GhFF4SwHTq7igoBaBGoaArmuVdgXTgGcrwhYkaZoKy82/AVbkBQw+WEOCbWw4PAthNeslvgvESFkPbMhNbdlWpUYRaX7GJZZmwgIqBZ3/o4OJ3oBVkGrNVznkP4CO11pNsiRAhQZg6WZcJ6/SmowiKL9THBNmp07ggZFJwKGQBkNh3zwiQkRHQ8xqP7jTLqsNa8vSkIsHuuhdxS9W57XixDS2Y3eF4wo4uql+EkMIUe5RZIF3rxprDXkQ443a3GUlB6DFg+CZE/A7n3CgiODo00rsZYA2wg4IjFALBcrHHFDqcOjiNE9uAka3XR2/BKj0DP7YWMp11b6QCCVV2zp6l6zTtgRgK3O+5xnQa8E4gUzOIyrKL3iHURTUDL7fFYQ7BTjDP7oSIxWMeehlp81feR7ExwuLmqDtLnhyMWPkNEIIcJm+1CQ+YiZJn2JEVja7h7PTKRaXlTSIhItLvnhVG/OMyMC/xGEjINx64qEoLH3W+CjAbM4pJr90yb9d4UcmYfrEoBqlF1FRmUmgFFk0DhHERx2Y5eZOYG8V9gBohTGgRgYTFSUKPiPL1TapBRvsi1UY1q6+6qizdFdm7DhaTteSH1KMxy3v1OSlkwSys9DWFihg/lIM4BAFIfaAh3lOgUOpfz3htquu1Eu05kCyGgp6ehYkmYXkP8InGo2UMQxfPAqeeBzDzknsu5I2eEUA4RC9txc3AJCxYWPqOqLidELQIh+ddNpKDKq+4XjhbdvClE62TZ8bxwodsQJmb4sC+YW9OJBE4ntrELnZdBHlb4QMubIj3jWv0vIzFEcrthVlZBLr47kBKU2wtVS0IUL0C9nofYfRlEbi9/FkMOKcvx5m3Q4w74SucjZJmg5tZpmwRhu21O+CIks2mHbLt0b8hUDrLLyHTgoueFisRgVgqu0Q8ymzDWLtipER6mNPRQs+Y+uC/Cxc+qWbOjfd2G8GVme0q/Cimhp2fsKKJXJ0liChRJQBbOAedeARUWIfddNbHDFEcBp2gFAAhtsFE/Lt70Ede7cE2f6Fx/O2Rr5s95iwqpQZveY88O6UOEyWjctgP3CpETwSyvwqyw58Ww450GmdzBckQEq7wKq3DeU1QIPQp9Zl9fNV1CCGjxFPTsvN0x4oYehZo9CJWcBtWKUK8/CXXhmH1nzAwdbvUVg15HHLHwEeUwLbBt5DSpkzZJWbBKK6DG1kjOekQsaTtobjNdIaQGPTNrt9t5pFlUowIyW6mRAbnOMduHSDl6wBCEHbGY1HVkGbDWlkGmS7qihUxOQfYpzDe8Xo8gMtW21XdZs0KAsvOgWBJybRFYPgEqXoDcexVEKret/TKDwVFYCDmQUenr4YiFT5DZBJzCTsL2XZjEE6Iy6jDzZ7uICjtkq2Xnd1wDIYSAlshAz855LhyyTBhry7DqFY5eDBnUqDq3S2q6LdAnsE5G1Sv2OvISFVKDltsNzYfJvkJI6KkctNS0d1tqLAU1e8juHGnWoE48A3X2Zde5FEywEJHjZyH0yMDT8hyx8AmnaAUAQNMGXoE7bBARVHUNqlLw3lCP2NXqPlf5Sz2KSHYeVrUA5eDc2DpK2wrcbEBL5thmfUhQNZd1JLWJS4MQKVilPMjt3NJCRBN2obPPokuLJSD1iF3Y6ZbCbHleiHIeorwMFM6BSssQe66AyM5PfF1ZmLinQQbfVcVnUx+wawhc0iBSn6iQO1kmrML5rqJCJjLQp/cObHy8kBJaahpaKgd4TEtQTdvzQhnORU5McJBSjtEtgmhF/SanzZSMJsz8ua6iQqanoU3tGlgkR2g69Mxc13oNSs9AzRwEaRHAMkBnXoA69RzIVdgzg4as4I2x2rCw8AOzCTiF/6QGCDExJ0TVqNohWy/DKyGhTe1qTSQd7Nev7XkRmeoyUl1ZMEvLsGolTo2EiF1b4ZIGEWIiBDoRwaoWYa6edT6ntNF06NN7ofXQPbVThBDQk1nomdnOfB5HonG7sDPemuNSzkO9/gTUyimQl18NMxDcZicFsY5YWPiAaxqkVV097iFcO2S7AmvtgqfhlYjE7Wr1gJ0ThWanXGSXtjirVoJZWuEK95DwXkdioEOThgFSFqy1C10Nr0Q8BX16X+AmVTISs7uvvPYrNdvzYmo3SAiAFOj861DHnnZ0JGYGgz14zMkYa/D1FQALix1DRO7dIO2BWWNccEZmE+bqYlfDK5nKQcvtDu3i0Pa80NMznnddtufFkkdtBjMISFnOaRAhACkDKTgLE9Ws2dE+L8MrIaBl5+y6pJBqgoTUoKdnoCW9B5NRYsou7NRbIqRehjr2FNTiayzcg0BZjkXQQTURjPctQACQ2XD26O+kQcbzhEhEoHoZlpcdMGBXq2fnIYdkqquMxhHR5+1BZS7mMSAFs5yHjKWgJbNj+fkNG1R3cU9tRf3GtauKiKAqBc8R54DtTaFl54fi92B7XqQh9BjM8iqgXGz1W54XorQEUS1AAKD8aVBpyW5NTc8EetyThFsaJCg7fI5Y7BByrWIf3zQIKQWruGSPZ/YQFSKWtFMfQyIq2rQ9L7RExnM71ajALC5x+1wAdE8njl+dElkGrNXFrqJCJrPQpvcOhahYT9vzwjO1KQQouwsqtw/UjtwaDaiTP7WnpnL0YiCEMdF0PRyx2AF2GsTJzAed9Me4FW4qow5rbdn9LgWA7U0xAzHEw7/anhdCj8GsrLo6GbY9L7RUFjKaHNr/zyhjW+FvTQGQkEAr5D9uhZuqXoFV8h5xDimhZeYhY8NrQ9/2vLD0GKxqwf3/E09DReKQa4sQrbEHlD8DKq9CLlwD0UXkM71DRFBOnidSBuYDwxGLHUBG3fkC20qD2AVn43FCJCJYlQKs1UVvUaFFoM/s7YxnHnZkxPa88I6qEKzKGqzKKkhxdbvfuA6Ra4tzTR8bnxEiBbO4DKu45CkqRDQBfWZhqEXFerRYApHsvPf5TtOhpheg0nMX45zNKtSxp6GWjnPniF8oC3A4T0k9uGLf8VitIeHaY97OC0eiI3Fx7UZf3hQzg/OmGBQdz4vkFNjzInhc04laex2Nx5wdMofDm2JQ2BOHu3heCNHyvDhge14AAAi0dBzq+DNdrf+Z7iiXKbUiEtx5mYXFNuklDTIOeeFh86YYFO0hTOx5ESxkmY7fLRKy070z6uuo402R7+5NoQXkTTEoeve8SGz0vACAWhHq6JNQq2d5be0At4mmHLEYAdxHO+sdf/1RnmhKRLBK+R68KWKheFMMCva8CJZuRZvAaBvM9etNMcrnjPX05XmRbXleALbvxblXbNdOlztvxh0iAjlEVINOJ7Kw2CZes0EAjLR/BZkGzNVzULWi53a2N8WesTMu2uh54X7nyJ4XO8cpLWBPBG4XP49uu7Zq1kfCm2JQ9Ox5kdzkeQHYrp1HfwwqLg34KMcLu4PNyb8iYDO1QPc2JtgeDi5pENFKg0RiI3dCtGeelGw7YTePB6A1SXEPtB2MZx4FZDSOyNQu7zvmlueFWVnj8G2fkGk435WuT4OM4B08EcEqr8IqLLp2GwF2x5g+va/rHI5Rpu15oWfnvW+09CjU7AGoZO7iZdEyoU7/DOrMiyAnryBmC271FTLA+gqA2023BTWrzumBdWmQIAtl/ICUbctNbhX6LUQsaddSjGg0pl/anheqXobl4S6qGhWQ2YCenhm7CM6gcI/6Xfz9jdw6skxYxaWuYXyZzEKmdj7ifFSwPS/mYVWKUE2XAk0hQdldoGgScu08BNmijNbOg6oFyH3XQKRywR30COKUBgGCtz3giMU2UDWXi++6E+IoFZwpo2GHbD1FhYDMzNrufxMiKtq0PS/0zKznXZftebEEq1Hl6EUPuFvht9aRkBBydESaqldahc4eokJIaFO7oaVnJkZUtBFCQk/nuk4cRjwNNXcIFF3Xams0oE48A3X+da5rcoFIOZr5CT347sTRWbVDApFyvAC3RzsD7UKZ4b/4EhFUtQhVWfXeUItAn5of6SI6P5CRGCLZeZiVgkeXjO33QUbDru4fs7y5X5DZdE63CQ0Xi59Ho12bSEGV8u4RmBYiGp9IYb4ZLZaE1KO2rb5bl4ymQ03vh6jkIcorHRlCK6dA5bxtqjXGKaTt4BatCCOdyGe9PqFGzTkNol08IQZdKLMdLnpTeIuKUfWmGBRCSujpXjwvarbnhVetygTj1KoN4GLxM0ZkHbW8KbqJCtubYvfEi4o2vXtezLY8L9bdAzcqUEefglo+yZHBdTi6bSKcdCILiz5xdwlclwYZ8rxw794U8yPtTTEo+vK8KLLnhRPOUT+MzDq66E1xbuy9KQZFf54Xh6A2iBACXThqm2p5dd1MEI7GfSGlE/mK0QdE5DzaeV0aBBje+SD9e1N4ezlMOhc9L7w9PNjzYiO2KZZTN8i6qN8QpxNJWbCKSy1vCq8hfOPlTTEoeve82LfR8wIAamu2qVbh3ESLd7JMxw6ksNKJLCz6wWy6mGKtT4MMZ1540r0pBoXteZGDnp5mz4secbVt3pAGGU5x3vGm8LKeFgJaZs6uS+Iam57YkeeFskBnX4Y6/TOQy7jwccct5RpWOpGvHn3QbVgSMHx9923PDau80mWSogat6zAuxg0ZTSCiRWFWVl1HFrc9L2QsBS2ZHUoBGgTK7aI85OtIVQpdR5xDj9pmV0M24nwUaHteiFZhp6sHSMvzQpSWIaqFi5VOpWWoegly4TqILgJl3BgW/4rOfkPZ64jinAbBhhPiMN1pkVKwistdxzOLWNJOfbCo2BFCsz0vtC4joFWjArO4PJGmP0Rk+8BsflwMbzrRLnRe7CoqZCILfXovi4odIvUoIlPzkFGPya4tzwuV22fPlWljNKCO/wRq5fTEpEaIyPFmJsx0IguLHnHNC69Lg0DIoUkhKKMBc7UXb4oZboHzkd49L4yJ9LygZs1Z5K4rMBumdKJq9OpNsQtaZvK8KQaF7Xkx3aPnxeGNnhcg0PnX7NTIBIh3sgzHNRWmOGdh0SOuOdUN4dvwT4hEBKuyBmv1HOC1qLQI9Jm90BKTG5IfJG3PCxHxigLZnhdWpQDyKKYdJ3pdR2FDZDvRWmtLXQqd42M1hG/Y0GJJu7BT84gCtTwvVHp2YyltaRnq6JMgD8fcccA9DRJeOpGFRY/0khf2rGoOALJMWGs9eFPE0+xNEQAbPS/cUc2aXdg55p4XRORYp2TP2FmXBgl7HbW9KbpckGRqGlpu99BEKceVHXleGHWo40+P9Sh254LwcKcCs7DoAfe8sNxwQgxTIapGrTVJsYs3RXYeWnaOvSkCou15oWfn2fPCMpyjaOvTiVILzcabiOzW4G7eFLLlTZFib4qguOh5MdOT5wXF1okQItC5V0BnXwSp8UqNuLWZipCj53x16QH3vPDGos0wLtb2JMU8rLXzvXlTxNmbIgykzp4X7lG/9aZY8VBOiB1vitIKunpTzLA3RVjISLwnzws13fK8WFefQWsXoI4+7TiZelRxa1+XninYwcPCogdcCyDX54VD6Kgg04C1eg6q2sWbIjnF3hRDwKR7Xjid0Dd3Vclo8BfsfrwptOwce1OETMfzItGD58XcQdD6lECzCnXsKajC4oCPMhiGsb4CYB+Lrth5YZc20xDTIKpWZm+KEcX2vIjYw8y6eV7EU2NRYEvKcraQF3JTV1VwrZr2EL41qErBe0P2phg67O6rNESkm+dFDGr2IERpCaK6ZscvSIHOvgRVXYPYc/nIdsSRstynmYYsfllYdMN0ywvr6+yHI4F9OUkpWOWVruE8EU207q5Gc9GMO0LToWdmoeplWB5FgqpeARlN6OnpkY44uXeDrE+DxAITUGSZsIpL3m2ksL0pZHp65IXduNL2vLAqa1BuM0OEBGV3g6IpyLVFiFbKmArnQLUi5P7rIEawq8c1DTIEN5Ic0+tCT26bAX2QHW+KLqJCpmegTe1iUTHkbPS8cF+K6z0vRpWe3DaDWkfsTTFW9Od5cWij50WjAnXsKVDxwqAP03eGNQ0CsLDoSi9um4P+IO1Jir16U+ybaLvoUcT2vNjVk+eFWV4dOc8L1+F9QlwUVGLw7XHsTTHe9OZ5EdnqeaEsqNMvQJ17FaRGY22RUi5um8FFz70Y3dhqAPSSFxaaPtAQtV2tvtx1NLCMpyEzM9xGOqK0PS9UowrLwzpaNWtQpp0akSPiQ0JG3flCvkmcD1IMk9mEubbk3UYKewif5BHnI0vb88KqFaHcIrstzwuKJiEL5yBaLai0eqaVGrkWwstOfAhwjVaEUPzsBF+FPOglLzxIMx/bm+KMt6hgb4qxoX/Pi/JIeF70Vl8xmDQIEUH17E2xB1oqx6JixLE9L6agp3vwvJjb5HlRL0EdfQpUWh78ge4A5XTDi/DbTNvwlcgD17ywtv5Oy/8PcoM3hUdojr0pxhPb82KuB8+LIsxSfug9L3pz2/Q/+tL2prB69qYYjpMy4w8y2vK88Bod3vG82HXR80KZUKeehzr/+lCmHYmUY32QkIONnvcDCwsXPPPC7ROi9H/oGHtTMECrIK0nz4vGUHtekGnYnVWbWee2KSIx36NtyujBmwICWmaWvSnGGCE16JlePC9yULMbPS9o5RTU8We6dg4FDRnOLepiSNIgAAsLV3rLC/vrEqjqZbvrw2tmhNSg5XZD4xa4iUBGE/YwM696ipbnhVldG7rUSE/dID6mE+0hfAVYq4vu3gaA7U0xsw8ykeF1NOa0PS/07JznxGFEbM8LlZi6GN+qFe2uEY+6p6AZ9jQIwMLClSDzwqQUzOISrOKyp+GViCbsk+GQFxYx/tL2vPAcwgTb88IsLg/VqGgn11q7q2oA68gyYRXOdzW8kokM9Om9bHg1YbQ9LzzPn0KCpnZD5fbZs6AAwGxCnXgGavVcMAfqARE5F24OIHq+E1hYuNDVbVNIX05MxN4UTA9cHMI061mQNkyeF0TUvavKJ5dA1ai2vCm6DOGb2gUtM8tRigmlb8+LSEuEEIHOvQx17pVQ6y7IbDrefIY1Y8eN4ZE4QwQpBTilI9blhXfaHmdXqxehyt4jzqHZw6sGUdzGjB4yEkNkapdtB+56EbXTAWQ0WhM4Q7p/cDkJ+pkGIVJQ5dWuI85FJG7XUgzRXR0THlosCanbduBOttj2RhGomf0QlTxEeQUCAK2eBTUqtltnCO3e7mmQ4amvADhi4YzbF82nYUmkLFhrF7qKChFPQ5/Zy6KC2UDb80JLTnlup5o1u7DTq2ZngLgWvfnktklmE+bqua6iQqZy0HK7WVQwG2h7Xnh21bU8L9TMflA7fVdds+suunzv/IaIoJoOayoAc7l+YWHhhNuJWLRPiMK7hckD1azZIVtPbwoBLTsPnb0pGBfWe16sr1fYQoieF07CYn06UWj6tlJ7G7wpnDpO2rA3BdOF3j0vkhs9L4wG1PGfQK2dD+ZA0U6DbE3DDFsaBGBh4YyDsCCIi2mQaP8fZMebonDes1pd6OxNwfSO1COITPXoeVEO0POCyDnytz6duI0i5N69KZLQZ/YOVaU8M7xsy/OCFOjMiy2/C/u7SM0a1NLxgRyj25C1YRg6thmODW6GlHub6Tph0ddbWgastSXvNlLY3hSS766YPml7XqhIDGal4NpZRIbteaGncxsuuGSZgNT8/d65FbiJ7adBlFG353x4iiNhDw6Lp3kdMX3R9rzoNnGYkjlQJAG5dg7CbIJWToHqFYg9l4FO/wxo1kEzC94zS/rEPQ0ihy4NAnDEYituTpftkG2fH6Sql+3UB3tTMAPmoueFxwmNFMxSHma1aHdtEMEsr7r7TWwXt4t/ax3Z3SC9pUF696aI2FEK9qZgtkln4nCfnhdUW4NZXAEpsiMZPrem2mlFh26QbUTPg4AjFptxu9NqtcT1+kGSUrDKeVC97LmdiCZazn/cRsrsHNvzYg5WrQTl8d1T9TLIaEDoETuiVitBxhL+1fQ4CHS7vqK/qB9Zpj2Ez6uNFLY3hUxPc00S4wttzwursuaagmh7XlAsaddnaDpUZhYyfxpYPQOa3e/b99EaoTQIwBGLDkKPQsYzEE4nxHU23r18kBe9KbxFBXtTMIOgH8+LTqSClPs0yH72rUchYykIp/qHDe3a3ddR/94UfDpj/EMICS2V68HzIgPEWjVx0aT9x2iAiv0NMmsLGKFHoSWynci4WSs6d1hJzdd0i5/wSoT9QeqZWWiRKJzCTUJrpz6E5wdJRLCqazBXzwFe7oeaDn16L7RkdijDWMx4YHtezPc8gdeql3dk/tNeR9LF8KpTGCelpykWkYJVWoG1dsE9ggjbm0Kf2de1cJVhtosQAlosaa+jHi/iKjNnp0fyp/vaF5nNi9eiRBp6ZhZCj4Jac4BswZG5mIoXYmivHxOZCqnX6yiVSqjVatiT1jvtOqRHoc8dgFUpQDWqtkZVFmQ6B2U07Q/e5YO0q9WXvdtIYXtTaJkZvrtiAkFIDXp6BqpRhdVt3gERVL0CLZHp+r5EhGq1inK5jEa9jj2ZyMW2t3gauh5dt44IIIKWtVM0XvVGZDZhFpfdW75byFQOMjk1tCdWZrxoe15Y1aLjtN4NROJALA3UiqBaEcJjABoRoVQqoVqtYia6sXVUCAEZicNqC45WDZ6MJW1jL69W65CZGGFBRCgUCsjn86jVLl78d6WmIYw6ZDxliwstYnvE61Ho03vtljlNByBguZzsVLNmz/nwKiwT9iTFbvMeGMZv2p4XouU0COUeTbNqZTuV4RJRsCwLq6uryOfzaDYvrodd6U3rSI+CpAZEYvY6Mpt2PUck5riOiAhUL8Mq5eHVRgqpQZua5zZSJnCEENBTU63uq1XPuU4qPQvZKIPyZyAWtgoLwzCQz+eRz+dhWfZ1I7d30xoi6jhtrnd6tgWH8zoaFiZCWNRqNZw+fRqNxtY8VaFcx0xGwCytQEbiUEbdvqNaV73eHvxCsE+A7Q+YiKAqBagud4JCj0GbmhvafBgzGUg9Aj01BbO04rEVwaqXoSe3ngyLxSLOnj0L09wqTLquo0jMfR0pBau03GXEue1NoWVmuSaJCRUZjUNWBJSXAI7EQPEMaO0CaPelnTQgESGfz2NxcXGLYZ3bGlIAhNGAjCXXCY6G195DR9CwzVn2ESLChQsXsLS05LndXCaBXDoOKQQUERpNE4l4zC5Ei8TsD9FsIl+qotSwcPDgQUR1CWttGWS62Ba3YG8KZlggUjC6+kAAgEAkd7GoWCmFM2fOYG3NW0D3s47qSuLAgQMQyoC1tuwZRWFvCmaYIMu011G3S7vZhFw+Djl/GHL+MAzDwMmTJzdEzDezeQ0VynVACMxkko7rSOlx7N27d+jWxdgKCyLC6dOnu54M3ZjLJpFLJ9Z9wDUsF+07Kk3TcNmuLITbTBHADtlm53jEOTM0KKMBq16xhy51ERcyloKemoJlWTh+/LjnydALr3UUj8VwKBfzLNCE3hrCN4QmQMxkYjWqUM2abSzXZR2JtfOQzSrMQzfj2PETjtG+XvBaR+l0GgcPHnQtmg6DsRQWOxUVvRCPaDg4nXBsQmJvCmbYISKQZYIso/W3uUVwaNl5HD/hfYe1U3LJGHannVOE7E3BDDtEasP6af/cWUdCAkLDiXMX0LAGd6lNp9M4dOjQ0EQuxlJY5PN5nD17duD7mU3HMZfcWKYi0zPs/MeMLOsFx3J+FUsr3hN4/WD/TBqp9ctISDvax22kzIjSERymgdPnzqNU8dnZ1oFdu3Zh165dA99PL4zdrUCj0cC5c/7aqbqxUq6jQa1fIXtTMGOAEAJSj6DatAIRFQBwJl+G1Z54GomxNwUz8gghIfUoVsu1QEQFAFy4cGGg0cV+GDthcfbs2UDHQ59cLkJFk9Cn9/VsRMQww0y7WDMoCMCpfAUiMQUttwdCm4hmNWbMaTabWFxcDHSfp0+fDvT658bAhMWpU6fwtre9Dddeey1uuOEG/Pmf//mgdtWhXq+jUtm5LXE/KAKWyk1PJ0GGGSWKxeK2i8y2S8OwUGhYHO1jxoZ8Ph/4PhuNRuDXQCcGdjXUdR1/9Ed/hBdeeAHf+c538G/+zb8Z+H94ZcWrP39wrK2tBX4iZpheKT3zBKyK+xjozYS1jlZWVobibothnCg+8X0oozdTKqVUKMICCG/9rmdgwmLv3r248cYbAdhFJTMzMwP9RbedNcOAiFAsFkPZN8N0Y+37f4ejn/mXWP7G/91VYDQajdDytIZhDE2OmGE2s/SXX8Gx/9e/wuojf9NVYJRKJSiHgZZBUCqVOm6eYdG3sFBK4eqrr8anP/3pDY8//PDDiEajjimPJ598EkopHDhwYPtH2oVGoxHq3U61GkyBDsNsB1WvYeVbf4Gjn/l/YvkbD7gKjLAv7LyOmGHGLORx4atftAXGdx9yFRhhr6Ow97+tdtMvf/nLuO+++3DixAlMT0/j2WefxVve8hb8zu/8Dj71qU9t2HZlZQVvectb8MUvfhF33nmnbwe+mdXV1UALzjYTqVUQ/eb/Hdr+GcYNI78EamwcPS7jSUy//R5Mv+O90FIXh46dO3cu1FBqevkc6LvfDG3/DONG8/zZLYZYem4GM7/4f2DqrrdDRi6auB09ejRUkbx7927Mz8+Htv9tCQvTNHHllVfiV37lV/Brv/ZrOHLkCD7wgQ/gj//4jzds12g08Au/8Av4F//iX+BjH/uYbwftRNgnRBRWEPmz/xre/hlmG2wWGMeOHQu1+Ct6/BXQX/1/Qts/w2yHzQLjxRdfDDUdkcvlsH///tD2v22DrD/5kz/BZz/7WSwsLODw4cN48MEHoWkXnSaJCL/8y7+Mq666Cv/hP/wHv47XlTNnzmB1NZi+e0dYWDAjTFtgrF52PRqOfrLBEDn2MvDX/9/Q9s8wO6EtMM7O7rOn+4ZENpvFwYMHQ9v/tos3P/rRj6JarYKI8MADD2wQFQDwwx/+EP/7f/9vfP3rX8eNN96IG2+8Ec8999yOD5hhGP+RyST06VmIKM/kYJjtomWmoE/Pdqb6TirbdqL5xCc+AQBYXl7eIioA4K677gq0KtbpGBiG8UafmcPse34JU3feDaFHsHrsGND0GK43YIQQQz0OmmGciB24BLPv+38g/cZbbffakFMhYQ8k25aw+O3f/m1861vfwuOPP453vOMd+NKXvoR7773X72Pri3g8Hur+Y6k04tfeGOoxMIwTjZNHYZU3tkNvFhRtEolEqDUWsZlZSF5HzBBSe+VnIHOj6N4sKNrE4/FQ11HY18O+ayy++MUv4pOf/CQeeeQRHDlyBPfffz/+9E//FK+99hoiEecphUHQaDTw6quvhrb/6elpLCwshLZ/hnHj9P95PyrPPQXAXVC0WVtbw6lTp4I+xA579+7F7OxsaPtnGDde//Svw1xdBuAuKNqcP38eS0tLQR9ih0suuQSpVCq0/fcVsXjooYdw77334oEHHsCRI0cAAPfddx8+//nP4ytf+Qo+/vGPD+QgeyEajUJKGZopSTLJQ5OY4aWboGiTSCQCPKqt8DpihplugqJN2OtoZCIWTz31FN761rfi/vvvx2/8xm9seO53fud38NWvfhUvvvhiqLUOYbWcCiFw9dVXc50HM5RUX3sRicOXewqK9YTVchqLxXD55ZfzvBBmKKm+/DwSV17X0/eTiPDyyy+HMuphampqoGaUvbDtdtNhJKx0yOzsLPbu3Rv4fhlmEBSLRZw8eTLw/S4sLGB6ejrw/TLMILhw4QIuXLgQ+H4vu+yy0CMmYzWSMxaLIZPJdN/QZ2ZmZgLfJ8MMikwmg2jAbae6rmNqairQfTLMIJmZmQk8+pZMJkMXFcCYCQsA2LdvX6CtNnv27EEsFgtsfwwzaIQQgbv2LSwshN4ixzB+ous69u3bF9j+hBBD00Awdis5EokE9stNJBJcwc6MJclkMrBZA9PT06FEGhlm0ORyOaTT6UD2NUw3uWMnLAC7eGVubm6g+4hEIjh48CAXmjFjy65duwZ+UkwkElyfxIwt7ejfoC/4uVxuqFLyYyksAHu626DERSQSwSWXXBKqbwfDDBohBA4ePDiwaEIymcThw4c5BcKMNbqu45JLLhmYuMjlclhYWBiqm9yx6gpxIp/P49y5c/Drv5lOp7F//37o+rbd0BlmpCAinD9/HsvLy7695/T0NPbu3cuigpkYLMvC2bNnsba25tt7tm+gh0lUABMgLACg2WzizJkzO+rNl1Ji3759mJqaGroPkWGCoFar4fTp02g0Gtt+j0gkgv3794fqCsgwYVIsFnHmzJkdzRJJJBKBpFi2y0QIC8C+66pUKsjn8ygWi91f0CIajWJ2dha5XI4NsJiJh4hQLBaRz+f7EurtQudsNstRCmbisSwLa2trWFlZ6UuoZzIZzMzMIJ1OD/UN7sQIi/WYpolyuYxarYZarYZmswkisqfSSYlkMol4PN7pCR7mD5BhwqLRaKBSqaBer6NarcI0zc460nUdiUQCiUSis54YhtkIEXXWT/t6ZFlWZx1FIpHO+kmn0yNT1zeRwoJhGIZhmMHAMUmGYRiGYXyDhQXDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYhmEYxjdYWDAMwzAM4xssLBiGYRiG8Q0WFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmEYhmEY32BhwTAMwzCMb7CwYBiGYRjGN1hYMAzDMAzjGywsGIZhGIbxDT3sA2AYhumH6E0fh5AahNQg9SiEpkF2/h25+FwkevHn9rYOz2m6DiEFhBCQUkDqElIICCmg6RJCwv05ISAk7Oc0CSnt56K6hCZF50+s82958Tlhb6ev22796za8hxCISPsY1v8shYAmgIgmN/0MaMJ+PqKJDT8LAUgIaBKdn4UANAH7/9Z5bft5QJMCArDft/Ozva1QFgQpgBSw/mdSgGU6P6dajysFEEEos/MaMg1AWYCyQJYFmAZIWYBSILNp/221nl+/betn+zl7W1IKZCkowwRZ9s+WYXR+JqVgNc3Oz6ppQrVeQ5bVeZ3qvAdBWQqkCFbTav2bYBnWxees1nPKfk41LSiLWvtqHY9FIItgKAWLAIsITUWdny3Chn+v/1mh/dz67eyf/990PNS12YYjFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmEYhmEY32BhwTAMwzCMb7CwYBiGYRjGN1hYMAzDMAzjGywsGIZhGIbxDRYWDMMwDMP4BgsLhmEYhmF8g4UFwzAMwzC+wcKCYRiGYRjfYGHBMAzDMIxvsLBgGIZhGMY3WFgwDMMwDOMbLCwYhmEYhvENFhYMwzAMw/gGCwuGYRiGYXyDhQXDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYhmEYxjdYWDAMwzAM4xssLBiGYRiG8Q0WFgzDMAzD+IYgIgr7IBiGYcKg0WjgD/7gD/CZz3wGsVgs7MPZAh/f9hnmYwOG//h2AgsLhmEmlmKxiKmpKaytrSGbzYZ9OFvg49s+w3xswPAf307gVAjDMAzDML7BwoJhGIZhGN9gYcEwDMMwjG+wsGAYZmKJxWL43d/93aEtnuPj2z7DfGzA8B/fTuDiTYZhGIZhfIMjFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmGYieRTn/oU3vKWt+CjH/0oms3mhudqtRre+9734q1vfSt+4Rd+Afl8fqiOr80f/MEf4E1velOox2OaJn71V38Vb3nLW/Abv/EbgRxLP8fXJsjflRNuxzcM3zW/YWHBMMzE8ZOf/ASLi4v4/ve/j2uvvRZ/8Rd/seH5hx56CNdffz3+4R/+Af/kn/wTfOUrXxmq4wOAUqmE559/PvTj+eu//mvs378f3//+91GtVvHoo48Gcky9Hh8Q7O/KCa/jC/u7NghYWDAMM3E89thjeOc73wkAePe7373lYnjFFVegWq0CAAqFAubn54fq+ADgv/7X/4p777039OPp5VjDPD4g2N+VE17HF/Z3bRDoYR8AwzBM0BQKBezbtw8AMDU1tSX8fNlll+H555/H9ddfDyEEfvSjHw3V8a2treG5557Dv//3/z704ykUCp1ZF07HGvbxBf27csLr+ML+rg0CjlgwDDO2LC4u4q677tryh4hQLBYB2Cf9mZmZDa/78pe/jLe97W14/vnn8Xu/93v4j//xPw7V8f3RH/0RPvGJTwzkmJyYnp52PR6v54bh+IL+XTnhdXxBfdeChIUFwzBjy549e/CDH/xgy5/3vOc9+Nu//VsAwMMPP4w3v/nNW17bPvnncjkUCoWhOr7XXnsN999/P9797nfj1Vdfxec+97mBHF+bI0eOuB6P13NB4XUMQf+u+j0+IJjvWqAQwzDMBPKbv/mbdNddd9Ev//IvU6PRICKiX//1XyciorW1NXrPe95Db33rW+nNb34zvfzyy0N1fOu55ZZbQjme9rEYhkH/7J/9M7rrrrvovvvuC+RY+jm+9QT1u3LC7fiG4bvmN2zpzTAMwzCMb3AqhGEYhmEY32BhwTAMwzCMb7CwYBiGYRjGN1hYMAzDMAzjGywsGIZhmA6/+qu/CiEE/uW//JdbnvtX/+pfQQiBX/3VX+08tri4iPvuuw+XXnopYrEYDhw4gPe97334+7//+842hw8fxh/90R8FcPTMMMDCgmEYhtnAgQMH8NWvfhW1Wq3zWL1exwMPPICDBw92Hjt+/DhuueUWPPLII/jDP/xDPPfcc/j2t7+Nu+++O1QLbSZc2NKbYRiG2cDNN9+Mo0eP4mtf+xo++tGPAgC+9rWv4cCBA7j00ks727UjGE888QRSqVTn8euuuw4f//jHAz9uZjjgiAXDMAyzhX/+z/85/uf//J+df/+P//E/NoiFfD6Pb3/727j33ns3iIo2uVwuiMNkhhAWFgzDMMwWPvaxj+EHP/gBjh8/jhMnTuCHP/wh/uk//aed51977TUQEa6++uoQj5IZRjgVwjAMw2xhbm4O99xzD7785S+DiHDPPfdgbm6u83zbtFkIEdYhMkMKRywYhmEYRz7+8Y/jf/2v/4Uvf/nLW2omrrjiCggh8OKLL4Z0dMywwsKCYRiGceTd7343ms0mms0m3vWud214bmZmBu9617vwx3/8x6hUKlteOxZTOpltwcKCYRiGcUTTNLz44ot48cUXoWnaluf/23/7b7AsC7fddhv+8i//Eq+++ipefPFFfOELX8Add9wRwhEzwwDXWDAMwzCuZLNZ1+cuueQSPP3007j//vvxm7/5mzh37hzm5+dxyy234L//9/8e4FEywwSPTWcYhmEYxjc4FcIwDMMwjG+wsGAYhmEYxjdYWDAMwzAM4xssLBiGYRiG8Q0WFgzDMAzD+AYLC4ZhGIZhfIOFBcMwDMMwvsHCgmEYhmEY32BhwTAMwzCMb7CwYBiGYRjGN1hYMAzDMAzjG/9/BIABL9I9P1cAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -820,7 +819,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAHNCAYAAABRgXJWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACMy0lEQVR4nO39eZAk13Uf/n7vzay1u6urq/d979n3ATAgAYEQSZFBSqIlGX7PgmnSUIhWGAQtW3RQpLU8+QUlEiHaMn9PdliPkoWgHJCf1rDFH0WZhECRBEEAM8Bg9ultet+rq7daM+99f2R3Ty+Z1dXVVZm1nE8EYno6qyovpruyTp577zlMSilBCCGEEGID7vQACCGEEFI+KPAghBBCiG0o8CCEEEKIbSjwIIQQQohtKPAghBBCiG0o8CCEEEKIbSjwIIQQQohtKPAghBBCiG0o8CCEEEKIbSjwIIQQQohtKPAghBBCiG3KOvDQdR1f/OIXs35+PB7HP/pH/wgDAwM4f/48PvzhD+PBgwe5GyAhReCo7yMA+MxnPoOuri4wxnDz5s0cjYyQ0pOL95vTyjrwuHHjBv78z//8SK/xqU99Cvfu3cM777yDn/zJn8SnPvWpHI2OkOKQi/fRP/7H/xjf//730dnZmaNREVKacvF+c1rZBh63b9/GRz/6UUxNTeH8+fP4zd/8zUO/htfrxUc+8hEwxgAAV65cwcjISK6HSkjBysX7CAB+7Md+DG1tbTkeHSGlJVfvN6epTg/AKSdPnsTP/MzP4Pjx4/j0pz+dk9f86le/ip/6qZ/KyWsRUgzy8T4ihJgrlfdb2WY8AOCtt97C5cuX933/ySefRF1dnel/ExMTpq/127/92xgcHCz6uTdCDiuX7yNCSHpW77diwqSU0ulBOEHTNNTU1GBhYQFer/dIr/W7v/u7+NM//VN8+9vfRjAYzM0ACSkCuXwfAUBXVxf+5m/+BqdPn87B6AgpLbl+vzmlbKdaJicnUVVVdeQf3n/8j/8RL7/8MgUdpCzl6n1ECDlYqbzfynaqpa2tDWfPnsWxY8fwhS98IavXmJycxK/8yq8gEong6aefxvnz5/HYY4/leKSEFK5cvI8A4Pnnn0dbWxsmJyfxgQ98AH19fTkcJSGlIVfvN6eV7VQLIYQQQuxXthkPQgghhNiPAg9CCCGE2IYCD0IIIYTYhgIPQgghhNiGAg9CCCGE2IYCD0IIIYTYhgIPQgghhNiGAg9CCCGE2IYCD0IIIYTYhgIPQgghhNiGAg9CCCGE2IYCD0IIIYTYhgIPQgghhNiGAg9CCCGE2IYCD0IIIYTYhgIPQgghhNhGdXoAhUpKiUQigVgsBl3XIaUEYwwulwterxdutxuMMaeHSUhBE0IgHo8jHo9D13UAAGMMbrcbPp8PqqrS+4iQA+i6vv0+EkIAADjn8Hg88Hq9UNXi+igvrtHmmRACq6urCIfDiMVikFJaPpYxhsrKSoRCIVRWVtLFk5BNuq4jEolgeXkZ8Xg87WM55wgEAgiFQvD5fPQ+ImRTKpXC8vIylpeXkUql0j5WVVUEg0HU1NTA4/HYNMLsMZnu07VMSCmxuLiIhYWF7WjyMFRVRWNjI4LBIF04SdnSdR3z8/MIh8Npg3YrHo8Hzc3NqKyszMPoCCkOyWQSs7OzWF1dzer5FRUVaG5uhtfrzfHIcqfsA49YLIbJyUkkEokjv1ZFRQVaW1vhdrtzMDJCisfa2hqmpqagadqRXysYDKK5uRmKouRgZIQUBykllpeXMTMzk1XgvldDQwPq6urAeeEt5SzrwGN5eRlTU1M5fU3GGDo7O+mujZQFKSXm5uawuLiY09dVVRXd3d1FkTYm5KiEEJiYmMDa2lpOX9fn86Gzs7Pg1oCUbeCxtLSEmZmZvL1+Z2cnqqqq8vb6hDhNSonp6WksLy/n5fU55+jp6SnolDEhRyWEwNjYGDY2NvLy+m63Gz09PQUVfBReDsYGq6ureQ06AGBsbAyxWCyv5yDESQsLC3kLOgDjgjw6OpqT6RtCCpGUEhMTE3kLOgBjzciDBw+yWr+YL2UXeGiahsnJSVvONTExUVA/bEJyJRqNYn5+Pu/n0XUdU1NTOZnzJqTQRCKRnE+vmInH41hYWMj7eTJVVoGHlBJTU1O2BQPJZBJzc3O2nIsQuwghbAveAWPhaiQSse18hNghmUxienratvMtLCwgGo3adr50HA08/uZv/gbHjh1Df38/vva1r+X9fNFo1JbocqelpaUD92ATUkyWl5eRTCZtPefc3BxlPUhJWVhYsP13ulBuhB0LPDRNw7/9t/8Wr7zyCq5du4Yvf/nLCIfDeT3n0tJSXl/fSr7/vwg5isNc/KSUjryPNE3Luq4BIfl22ABiq8ie3TY2NnJSOuKoHAs83njjDZw6dQqtra2oqqrCRz7yEXzrW9/K2/lSqZRjF65wOExrPUjBSvz9/4A+PZjRxXNjY8P2bMcWp24cCDmIXF1C4gd/AX0ps/IMy8vLjmXwCuF9lPPAQwiB48eP43Of+9yu73/rW9+C2+3Gn/3ZnwEApqen0draun28ra0t5zU1dsrnquGDbNXZJ6QQydUFJN/4GyT+/k8ODEDW19dtHNlu0Wh0u98LIYVGLIwj+b3/X0YBiN1T/oVy7i0539jLOcfnP/95vPDCC/jVX/1V1NTU4Pr163jmmWfw27/923jmmWcAmKem8llu3OmtrdGVMDyrhTG/RogZubqI5Bt/Axaog+v4FfDmvn3vSacXp0WXZuEXzmRcCLEiow+z6WJhHMmFcfD6DqjHr0Cpbd39WCkd/TxKpVLQdd3RysB5qSjy7LPP4rd+67fw1a9+Fb/wC7+Aj370o/j4xz+Oz372s9uPaW1t3ZXhmJycxGOPPZaP4QAogAvm8hIq7r/i6BgIyYRVAOL0BRMAotMPoD54w9ExEJIJqwAklUo5PvUei8Ucra6dt8ql/+2//Td84QtfQGtrK7q6uvBXf/VXuyIsTdNw4sQJvPrqqwgEArh48SJef/111NbW5mM4uHv3rqOFiPxMoHnwO46dn5BsbQUgsqEbd+/edXQsNfo6QqM/dHQMhGRjKwCJe4MYHR11dCytra2oqalx7Px5W1z67LPPIhqNQkqJl19+eV9aR1VVfOUrX8HTTz+NCxcu4N/9u3+Xt6ADOPyq45yf39GzE5K9rQxI6sarTg+F3kekaG2tAdEm7zs9FMc/D/NWvP3Tn/40AGBxcdFyLumnf/qn8dM//dP5GsIuTrerd/bshGSPBRvgOv44ZF0H4HDGg95HpFjxxm64jl+BcFcBDmc8nP48zEvG49d//dfxjW98A6+//jo0TcMf/uEf5uM0h+JyuZw9P6d7NVJcWLAB7isfg+epn4fS1ANFURxvsa1K2tVCigtv7IbnqX8Kz+P/CLymyfHPIsD5z8OcZzy+9rWv4Stf+QpeeeUVnDt3Dr/8y7+MF198EZ/61Kcc/Z/1+/2OLozzBevgfs/POnZ+QqwkX/vLXX/fynDwxu5dd0aMMXi9XkcXale09MDd0ubY+QkxI6MrSL2zew3fVoaD1zTt+r7L5QLn3NEFpj6fz7FzAzkOPL75zW/i+eefx8svv4wrV64AAF544QX87u/+Lr7+9a/jueeey+XpDsXpf2h/dQ0Uv9/RMRCSjlXAsZPf73c08PDXNTqedSFkL7GyuP21VcCxhTEGn8/nWG0pl8vl6FZaIIeBx9WrV/HMM8/gxRdfxM/+7MM7+0AggBdeeAFf+tKX8IlPfMKx/+GKigpHzgsAiqLA6/U6dn5C0mHBRuNCmSbg2FJZWYnFxcW0j8kXv99PQQcpWAcFHDsFAgHHAo9AIODIeXfK23baQjQxMYGVlRXbz1tfX4/Gxkbbz0tIJqSUGS82k1JicHDQkbLp7e3tqK6utv28hBzkMO8hwKhmfffuXUd2l/T398Pj8dh+3p3ytqulENXW1joSeIRCIdvPSUimxNwD6FP3AcYAxjf/ZLv+znZ8HfLWYtbmuENV1YK4UyPEDGMM2ui7EOGZjN9H1b56RKL2NmyrqKhwPOgAyizw8Pl8qKqqsrVWfV1dneMriAlJhwcbkHzr/wZEBjtGXF4En/x/IpyatTXr0dTU5PgWQELSYYE66DdezeyxVbVouHIeq6MPbF1k2tR08DSQHcpqwpQxhtbWVtvWmXg8HjQ0NNhyLkKyxbwVUNqPZ/RY14X3g0NHa5U7z6N6KBAI0BQLKXhKbQtYTQZT6qoLrgsfhJqKornavg0HDQ0Njm+y2FJWazy2rK6uYnx8PK/nYIyhp6enYH7QhJgR68vQBt+CPnkX2HkpYAxQXWCqC0x1A4oK7q0ApHF3xhu6Ea5swdxcfhsfqqqKvr4+qGpZJWdJkdHDM9Duvwkx/2D3AcbBVNeO95ILzFuxnV1knWcxnVSxurq6/0VzyOfzoaenp2CyhmX5bg4EAmhpacH09HTeztHR0UFBBylYYnUJ2uCb0KcGYRQiZ+CVwYcXSMXk0rAZdIAr4K3HUOfyQNM0LC0t5WWMiqKgu7ubgg5SkKSUEEuTRsCxOGl8kyvgFYGH7yNukl3fmtL0VEBp6EIbgLGxsbztcvF4POjs7CyYoAMo08ADMBZ8cs4xOTmZ09dljKGzs9PRzn+EWBGReaTuvwkxO7zniJHt4J6Dg2Xe2APmNraHNzU1gXOOhYWFnI7T5XKhq6urIBbCEbKTlBJiYcwIOMIzuw8K3cgOug8un6C0nQDjHAxAZ2cnJicnc5758Pl86Orqcrxux15lOdWyUzwex+TkJOLx+JFfq7KyEi0tLXC77Zv/JiQTlqngPZRQE5grze+v4oJ6/oPG9MsO6+vrmJyczEkH6JqaGjQ1NRXcxZKUNyklxOwIUvffhFyZt34g41DqWsDS1ZzxB6CefnpXFkJKiUgkgpmZmZwsOG1sbERdXV1BZTq2lH3gARg/8KWlJSwsLEDXD98LwuVyobGxEdXV1QX5QyblyTQVnAarCIBXpP8d5m0nobQOmB7TdR0LCwtYWlrKqj6B1+tFc3Ozo8X+CNlLSgF9egja/Tch1w6aVmTggRpwX/qMtzJgXWgslUphdnY269IPlZWVaG5uLuhsIQUeO0gpsba2hnA4jI2NjbQXT845KisrEQqFUFFRQQEHKRhpU8FmGAcP1h2cHlY9RrbDbP3HDrquY2VlBcvLywf2R1IUBYFAAKFQiNZEkYIihQ598j60wTchNyIHP0FRoQTrjcWkabDKEJSTTx74maFpGpaXl7G8vHzg1nWXy4VgMIiampqiyLhT4GFBSolkMolYLAZd17cr06mqCp/PB5fLRcEGKSgZp4J38vih1NSDZXAZ4B2noTT3HXpM8Xgc8Xh8O5vIGIPb7YbP56OFo6TgSF2DPnEX2tBbkNHM1lywimoolUFsrZVKRzn+XvDq+kONSQix/T7amobhnMPj8cDr9RbdtCQFHoQUucOlgjcpLqgtfUAyikwulnB5jWyH2Sp9QkqA1FLQx28hNXQViGe4w8RTAbWpE4ivZ/RwVlUL5cQTZX/TSrcbhBSpQ6eCAcDlgdp1FgwCcjXdThQG3twLMTcKCB28ZYCCDlKSpJaE9uAGtKFrQDL91OAW5quC0nUWiK0AsTRZEa6CN3ZDzAwaf207UfZBB0CBByFFx0gF34E2dDXjVDDcXqi9F6HUt0EfvQ6Z7gLr8kLpuwweqAPzBaBP3gFv6MzN4AkpEDKVgDZyHdrIO0Aqs12NrKIaav9lMH8AYvQ6INLs4vJXQ+1/BMxbCUBCbqyAB+pyMvZiR1MthBSJbFPBrr6L4B2nIJcmIMZv7q5QugerboDSewnM9XBFvIyugvmpQRspDTIRgzbyDrTR64CWWb8hVhWC2v8IeFMv5ORtiLmRtI/nDV3gnWe2s4RSCCARBTtgt0u5oMCDkAIntSS00RvQhg+XClb7LkHpOAkwBn30HcjFibTP4W0njCkVSgWTEiTjG9CGr0F7cAPQM6s3w6rr4ep/BLy5F9CS0AffSL+OiitQus+D17XnaNSliaZaCClQ2aeCH4HSdgyMK5CJqHGxTLcGxOWB0nv50CvtCSkGIroGbfgq9LFbmXVgBsBqGuEaeBS8oQuMMciNCLT7P0of+PsCxtSKrypHIy9dFHgQUmCMVPDb0EbfPXQqWGnp366YKFYXoQ++CWgJ6+cF6qD0Xt4ugU5IqRAbEWiDV6FP3HnYZ+gAvLYV6sCj4HVt25k/sTAOffSdtK/B6jugdJ49sMYNMdC/EiEF4qip4K0LpZQSYn4UYuxG2vUcvPUYeOtxmlohJUWshY0GiJP3kdFWcQC8vgPqwCNQalu3vyelgBi/ZdLXaOcTFShd58DrO4446vJCgQchDhPRNWhDV6GPZ58K3iKFDv3Bu5ALY9ZPVlRjasWiZDMhxUisLBgBx/RQxs/hTd1w9T8KXtO46/sylYA+9Cbk6qL1kz1+qP2PglUEsxxx+aLAgxCH5CoVvEUmY8Z6jvVl6xfwVkIdeIzmoUnJEMuzRsfludGMn6O09EPtN1/XlMl6Dhaog9L3yK7dXyRzFHgQYrNcpYJ3v+YS9ME3gFSa9RzBJmOr7AG9JAgpBvrSlNGPaGE8sycwBqX1mBFwVIVMHyIWJ6GPvp0288ibesE7ToGxNN1nSVoUeBBik+xSwT3GGo49qeBdrzv/APqD67Seg5Q8owHiBLTBNyCWpjN7EuNQOk5A7bsEbjEtIqWEmLgFMZPmvck4lJ4LtFU2ByjwICTPsk8FPwJebV3pUAoBMfYuxPwD6xfiKpTei+ChlkOMmJDCIqWEmHuA1OAbkMtzmT2JK1A6T0PtuwieZmpRaknog2+mbyHg9hlTlLSeIyco8CAkT/KRCt4ik/HN9Rxh6wd5K6D2P0ZVR0nRklJCzAwZHZfTLfTcSXFB7ToDtfcCmLci/etHV4z1HImo5WNYVS2U/kdpPUcOUeBBSA4dLRV8Gbyi+sCHi/Vl6Pd/lLaoGAs2bq7ncGc6dEIKhhQC+vR9o+NyusXSO6luqD3noHafB/P4Dny4WJqCPnIt/XqOxh7wjtPbtXFIblDgQUgO5DMVvJNYGIM+ej3tLhjeMkBdMElRkkKHPnEX2uBbkNGVzJ7k8kLtPQ+1+1xGWQkpJcTkHYjp+9YPYhxK9znwemqOmA8UeBByBPlOBW+fRwiI8Rvp14lwBUrPRXCLnS+EFCqpa9DHbxkdl2PrmT3J44faexFq1+mMM3tSS0Ifugq5kubmwOWFMvAYeGVNZuMgh0aBByFZkEJAn7oPbTB/qeDtc2kpYz1HusVvHj/UgSu0noMUFamloI3dgDZ0Le06i52Yt9JogNh56lAlymV8A9q9HwJx68CGVdUa9TmohUBeUeBByCHYkQredb5EzLhYxlYtH8OqG6D0Xab1HKRoyFQC2ui70EbeBpIZNkD0B6D2X4bSdvzQPVHE+jL0e6+n7VvEG7o3W9nTeo58o8CDkAzYlQredc6NFSPoSLOIlDf3g7efpPUcpCjIZBzayDvQRq+nLXa3E6usMQKO1gEwrhz6nGJ5BvrQW9aLSBkz+q00dB36tUl2KPAgJI2sU8H9l6B0HC4VvJOIzBuVSIVFsziuGMWMatuyen1C7CQTUWjDmx2X9VRGz2FVtUa13pa+rKuE6nMjEA/etX6Aywul/9EDt6+T3KLAgxATR0oFt5/I6s5si5gfM9pwW5VTd3mhHrtCxYxIwZOxdaSGr0Efu5l5x+Vgg9EAsbE760xeRpVI/dXG+8id+XorkhsUeBCyw9FSwceOND8spYSYugsxdc/6Qb4qqMceB/P4sz4PIfkmoqvQBt+CPnEbEBk2QAw1Gw0Q6zuONHUohQ59+BpkeMryMay6AUr/I2AK9S1yAgUehMC5VPD2+YWAPvo25OKE9fkCdUYFRVpESgqUWF82Ao7Ju2l7B+3E69qhDjwCXtt65LVKMpWEPvgjyLUly8ew+k4o3eeoyZuDKPAgZc2pVPCuMWgp42KZpg4Iq2uH0n2BVtyTgiRWl4wGiFODyLjjcmMX1P5HoISaczKGTLbL8raT4C39tBjbYRR4kLLkZCp4J5mIQrv3etrtstRZlhQqEZk3GiDODmf8HN7cC9fAI+DVDbkbx/oy9Hs/BLSk+QMYM4rrUWfZgkCBBykrTqeCd5IbESPosNouyxiUrvPgDVS2mRQWPTwD7f4bEPNjGT6DQWkdMBogBmpzOhYRnoE+nGa7rOKCMvAoeKA+p+cl2aPAg5SFQkgF7xpPZA764Jtptsuqxja/YO7uCgk5CiklxNKk0XF5cTKzJzEOpe24EXBUBnM+Jn12BGIszXZZt89YjE0VfQsKBR6kpBVKKnjXmOYfGI3eaLssKQJSSoj5MSPgWJ7J7EmcQ+k4BbXvEngePvSllBDjtyBmD9ou+ziVPy9AFHiQklRIqeAtGXXF9AWMoIO2yxKHSSkhZkeMBogr85k9SVGhdJ6Gq+8imLcyP+MSOvThq5DhacvHsGCj0XMlywJ+JL/op0JKRtap4PbjUPvykwreHltG22XrN7fLUm0B4hwpBfTpIWj330y7LXUXxQW1+6zRcTmPQbNMJaHffx1yPWz5GN7QBd51lrbLFjAKPEjRK8RU8K7x6Rr0+z9K212WtssSp0mhQ5/c7Li8EcnsSS4P1J7NBoh5ntKQiRi0uz9Iv122/RR4cx/tACtwFHiQolWoqeCdpJYy7tDS3Dny1uPgrcfoYkkcIXUN+sQdowFi1Hpb9y5u72YDxDOH7ricDRnfMIIOq35JjG9ul6XeRcWAAg9SdLJKBasuqN3noPact239hEwlod97zfrukTEo3efB62m7LLGf1FLQx28hNXQViG9k9iRPBVx9F6F0nrZtSlDG1qDd+YH1tnPFBWXgMfBAnS3jIUdHgQcpGoWeCt5JJuPQ7r5mXRiMq0ZtgTztnCHEitSS0EZvQBu+BiRjGT2H+aqg9l2C0nHS1gWbciNivI+sCoN5/MbOFV+VbWMiR0eBByl42aWCfVB7L9iWCt5JJqLGHVrC4i5SdUM9/h7aLktsJZNxaKPXoY28k3kDxIpqo5ZN27EjdVzOhlgLG9VIrXon+QLG+4i2yxYdCjxIwSqWVPBOMr5uBB1Wd5IuL9QT76U7NGIbmYhudlx+1zpzsAerChkBR0u/IwuexcoC9PuvW1YjZRVBKMfeA+aihonFiAIPUnCyTgX3X4bSfsKxvfsyumosgLO6m/T4oR5/L5i3wt6BkbIk4xvQhq5BG7uReQPE6nq4+h8Bb+51bLGziMxCv/8GIM17KLGqWigDV2jbeRGjwIMUDJlKGHdmRZIK3sloUvUaoFmkhb2VRqbD7bN3YKTsiOgatKGr0MdvWfcv2YPVNBkdlxs6Hd1dJZamjL4rFn2UWHWDUeuGCoMVNfrpEccVYyp4J7G2BP3uD637rvirjblom9eakPIi1iPQht6CPnHXMluwF69tNRog1rU7vp1bLIxDH7lmeZzVNEPpu+zoDQbJDQo8iGOKNRW8k1iZh37/R9Zz0ZU1UI49DqbSXDTJD7EWNhogTt5Hxg0QGzqNwL22Jb+Dy5A+NwLxwLrZG6ttg9Jz0fGbDJIbFHgQ2xVzKngnEZ6BPvSm9Vx0oM6Yi6a0MMkDsbJgNECcSdMobQ/e1GME7jWNeRzZ4ejT9yEmblseZ/WdULrPF8z7nhwdXRGJbcRGBNpgNqngR8Hr2grqwiMWJ6EPX4XVHSYLNhpz0ZQWJjkmlmeNgGNuNOPnKC39UPsfAa8unCJbmTRN5E294B2nC+q9T46OAg+Sd6WQCt7JaGv/juVxFmqB0nuZ0sIkp/SlKaPj8oJ1o8FdGIPSeszouFwVyu/gDsloa38TYnbY8jG89Rh463EKOkoQBR4kb7JOBQ88Ah4snFTwTvrMEMT4TcvjrK4dSs8F6oxJckJKCbEwYQQcadrA78I4lI6TRgPEiur8DjALUkroo+9ALoxZPoZ3nILS3G/jqIidKPAgOVcqqeC99Kl7EJN3LI/zxm7wzrN0h0aOTEoJMTdqNECMzGX2JK5A6TwNte8ieIEWqJNSQB++Brk0afkY3nUOSmO3jaMidqPAg+RMKaWC99Kn76cPOpr7wdtPUtBBjkRKCTEzZAQcq4uZPUlxQe06A7X3QkEXp5NSHhh0KD0Xwes7bBwVcQIFHuRISjEVvJc+M5R21T1vOwGl9ZiNIyKlRgoBfWqzAeL6cmZPUt1GA8SecwVfmG57esUq6GAMSt9l8FCrvQMjjqDAg2TlKKlgV9/FoulVos+Npl3TwTvPQGnqtXFEpJRIoUOfuAtt8C3I6EpmT3J7ofZcgNp9tiiK0kkpIcbetV7TwbjR1r5A13WR3KPAgxxKKaeC9xIL4xAPrlseV7rPgzd02TcgUjKkrkEfv2V0XI6tZ/Ykjx9q70WoXaeLpiCdlBJi4pb1ei+uQDl2BTxQb+/AiKMo8CAZKfVU8F5iaTJt+WbedY6CDnJoUktBG7sBbegakIhm9BzmrYTafwlKx6miK0Ynpu5a72pjHMoABR3lqLh+i4ntyiEVvJcIT0Mfump5nHecplX35FBkKgFt9F1oI28DyXhGz2H+wMOOy0VYiE6fug8xdc/8IGPG9Eo1BR3liAIPYqpcUsF7icicUQbdotAZbzsJpbnP3kGRoiWT8c0GiNcz77hcWWMEHK3HirYInT4zBDFptSCbQekr3Fo9JP8o8CC7lFsqeCexsmA0fLNoyc1bj0FpHbB5VKQYyXgU2sjbRsdlPZXRc1igziie19xb1AXoDlqQrfRdAg8VXkViYp/i/ZQgOVWOqeCdxNoS9PuvW/aQ4c194K3HbR4VKTYytobU0DXoYzczb4AYbDQCjsbuoq8Dc+CC7J6L4LVtNo6IFCIKPMqcTMagjVyHNvIOoCUzeo6RCn4ESutA0aaCdxLry9Dv/tDyg4I3doO3nyr6DwWSP2Jjxei4PHEbEBk2QAy1QB14BLy+oyR+tzJakE3FwQgo8Chb5ZwK3klurEC/+xogNNPjrL6TyqATS2J92ei4PHnXcopuL17XDnXgESh1pXPnTwuyyWFQ4FFmyj0VvJOMrkK7+wPLwIvVtkHpPl9S/88kN8TqohFwTFm3dN+LN3bB1f8IeKg5jyOzHy3IJodFgUeZoFTwbjK+bgQdFtNLrKYFSu/Fkvv/JkcjIvNI3X8DYnYk4+fw5l4jcK9uyOPInEELskk2KPAocVmlguvboQ48CqW2NPsmyMQGtDs/sNzeyIKNUPoul8x0Ejk6PTxj9COat27lvhuD0jpgNEAM1OZ1bE6hBdkkWxR4lChKBZuTyZgRdCRjpsdZoB5K/6MlsWiWHI2UEmJxEtrgmxCL1h1Vd2EcSvtxqH2XwSuDeR2fk2hBNjkKCjxKTHap4D64Bi6XZCp4J6klod19zbI+CauqhTLwWNFvDSZHI6WEmB+Ddv9NiOWZzJ7ElYcdl/2B/A7QYTK2Dv3eD2lBNskaBR4lIutU8MBl8KrSTAXvJIUO/f4bQGzN9DirrIFy7EpRF0AjRyOlhJgdQer+G5ArC5k9SVEfdlz2VuZ3gAVApuLQ7r1mvTaKFmSTDNBVtohRKjgzUkroI9cg1yy66fqroRx7HExx2TswUhCkFNCnh6DdfxNybSmzJ6kuqN3noPacB/P48zvAAiF1Dfq9160zhrQgm2SIAo8iRKngwxETtyGXpswP+qqgHn9P0faWIdmTQoc+ec9ogLgRyexJLo/Rcbn7HJjbm9fxFRIpBfShNy3/nWhBNjkMCjyKSLapYLXzDNS+C2WRCt5Lnx2BmBk0P+jyQj32eFF20CXZk7oGfeKO0QAxuprZk9w+qL0XoHadKbvfFykl9NHrkJE50+OsogZK3yO0IJtkjAKPIkCp4OyI8DTE2LvmB7kK9fjjZftvU46kloI+fgupoatAfCOzJ3kr4OrbbIColudUnJi+D7lgsXbMU0Fro8ih0W9LAaNUcPbEWhj60FvmBxkzdq/4q+0dFHGE1JLQRm9AG75muY16L+aretgAsYw/VMXCOMTkHfODqtsI3sssA0SOrnzfUQUs+1TwRajdZ8p+vYKMractbKT0XASvrrd5VMRuMhmHNrrZANGiWNxerCJoBBxtx8p+W7WIzEMffdv8IFeMTEcZTt+So6PAw4SUEolEAvF4HLFYDLquQ0oJxhhcLhe8Xi98Ph9cLldOV3BTKvjoDtrux9tPgte12zyq8iSEQCKRQCwWQzweh64bxaYYY3C73fD5fPB6vXC5cvt7KxNRaCPvGA0QM+24XBXa7LjcTwskAciNCPTBNyyrHSt9l8ErQzaPqjzpuo54PL79n9hsecE5h8fj2f48UpTiCZQp8NghmUwiHA5jeXl5+yKZjsvlQigUQk1NDVQ1+3/KrFLB/gDUvktlnwre6aDtfryhG7y53+ZRlZ9YLIZwOIxIJAKZQZl+r9eLUCiE6urqI108ZXwD2tA1aGM3AN28uNVerLoeroFHwZt6aBvoJpmIQrv3umWBMN51DrymdKsbFwIpJTY2NhAOh7G6mlnWu6KiAqFQCIFAoOB/l5nM5MpQ4jRNw8zMDFZWVrJ+jdraWjQ2NoIfYmU3pYJzR0oB/f6PrFfeB5uMdR0F/oYsZolEAlNTU4hGzQO/gzDG0NjYiNra2kP9nER0zWiAOH4r847LNU1GwNHQSb8TO0gtCe3W94C4eaE93jIApf2kzaMqLxsbG5iamkIymVm2bi9VVdHc3Izq6sJdw1bWgYeUEisrK5ient5OXx2Fqqpoa2tDZWX6ec+sU8EDj0Jp6aNU8B7Gdr93LFfes4oaKCfeS5mhPJFSYnFxEXNz5kHfYXm9XrS1tcHrTb84WqxHoA29BX3iruV6nr14XRvU/kfA69oo4NhDCh363dcsd86x2jYovZfo3y1PdF3H7OwslpeXc/J6VVVVaGlpyflUZi6UbeAhpcTs7CyWljLcnnoIzc3NqK3dX4acUsH5oU/ds15576mAeurHaOV9ngghMD4+jvX19Zy+LmMMHR0dqKqq2n/OtaXNjsv3AWTYcbmh01jDUduS03GWCikl9KG3IMPmhfZYoN6o7ku1OvIilUrhwYMHSCQyy3xnSlVVdHV1HRjE260sAw8pJWZmZhAOh/N2jqamJtTV1QHILhXMa5qgUir4QGJhHPrINfODqtsIOmjlfV4IITA2NoaNjQwXQmehs7NzO/gQKwtI3X8TYmYo4+fzph64Bh4BDzbma4glQR+7CTFr8e/qD0A98SQtXs+TVCqFkZERpFKpvLw+5xw9PT0FFXyUZeCxuLiI2dnZvJ+nvakRvsnrlArOE7Eyb3TJNPsV5gqUE0+AV9bYP7AyMTk5iUgkktdzMMbQ01wHPvgGxNxoxs9TWgeg9l8GD9TlcXSlQZ8dhhi7YX7Q7TOCd7fP3kGVCSklhoeHEY/H83oeVVXR399fMDtfym7SOx6P2xJ0AMD0/ALaZx9AySDocDIVLKU0AiOh7/pPbn8tjBXuQuz5vtlj9e3H7XsNANgZTG1/zQC2+Wea77Md35dCs+w0CwCoDEEuTUKPzAJcBRTVWOOx+fXuvyuAktut0aVudXU170EHYPxuTi0so2XuAQ786TAGpe24EXBQwJkRo7qvRdChqEZLAQo68mZhYSHvQQdgbKCYnp5Ge3thlBIoq4yHXdHlTpVIoXHke5bHjVTwo+DBhpycT0oBaCkglYDUksbiVS0JmUoYf2pJILX5Pc34XqbrTUoeV4z/tgKTHUHKrr+7PGAu764/oahlE7homobBwcGMtpznSm1yGcFJi2JWjD9sgFhRuCv5C42MrkC79Q/m07+MQzn+OHiACu3lSywWw/DwsK3n7OjoQCDgfJNQRzMeP/MzP4NXX30V73//+/Hnf/7neT/f2tqarUEHAKzDhaA3AE98917sTFLBUkpATwGpHUFCajN40BL7g4hU0ng8yc5WdmZzp9HeiDxthM6V/QGJe0dg4vIaC1xd3qJfoBcOh20NOgAg7KlBgCngcsd5uQKl8zRcfRfBfPsXoRJrMpWEdv9HlmvOlJ6LFHTk2cJCho0+c2hubg5VVVWO3yQ5Gnh85jOfwXPPPYeXXnrJlvPlYwdLJtZazsAz8oNdqWDmDwDJOMTqIpCMQSZjQDK++WcMMhkHUvYGSeQIhA4kopCbxcvSBimqa3cgsvNPt9cIVjx+27b/ikQM3JNZOl1K6cj7SEpgvfkEAtM3AcUFtfss1J4LYF5q8ndYWy3uLQvttZ8Cr2uzeVTFTaaSAOcZv2eTyWTGhcFyKZFIIBqNoqKiwvZz7+Ro4PH000/j1VdfteVciUQir6vv01llXtS39kPxVQJ6ylgQmWH9DlKCtBSgpSA316hYBikuL5i3AvBWgHkqwLyVxt89FTndYbD6J1+G5+x74Tn7xIEByOrqqu3Zji0rFU0IDfih9pyjdQdHIMZvQa6a322z+k7w5j6bR1T8xGoYa9/47/BdfBruE5cPDEByVasjG+FwuPQCDyEETp48iY997GP48pe/vP39b33rW/ipn/op/I//8T/wzDPP5Pq0B3Iq6AA2e7+4q+BfW3RsDPnFHq6P4Hz7a7b9vc3vA5ufspsftdvLi/b8fef3Nx8v9RRg1TCPMcBbaYxDaMaaFV3LeCdRwUrFIVNxYG1pf3CiusE8m0HJZmBifF1pHDtEKlUm44i/9R0k3v3BgQGIk++jpC7Ajl8GO0J7gnInFsYhZs3XFbDKEJSuc46n4YuV3FhB9Ht/jdi1vz8wAHHyfZTrmjvZyPk7mHOOz3/+83jhhRfwq7/6q6ipqcH169fxzDPP4Ld/+7cdCToAYyGPk+JwoRCSwsYHGN/cOcIgwba/3t5VsmM3idz6u9mOk33f2zyBvvkfxOZ/R1x3IgW4tma6q0ECEEoFoG1tE3MDzG38ZkuJh/kEuePv0nitHX/Hjr+zre9tB0k7nlMothYKbyxbrEVRAMYhGTf+BAeYAmz/vPfLJADJthx6rqyP3Yd3Zd7RMRQtoYHr6xbvIwY9rkF75x9sH1YpENGHO+wOCkCklI5+Hum6jlQq5WhF07zcOjz77LP4rd/6LXz1q1/FL/zCL+CjH/0oPv7xj+Ozn/1sPk6XEacDj5jI/ceW1HVITYPUU8afmgap7f4aO7+na5bdJgsWY/D1nwSrNF88mHgwBC1sYyZJUcBcLnDVDeZyGf/t+nrHnw7dORpn1QGpg+35cUshIBJxiHgMIrYBEY2CudzGHPXWYywCECml7Yuz99pYnIW89neOjqEYMdUF3/HTYO79FXylEIjdvwURde4uvBRZBSCJRCKj5on5FI/HSy/wUFUVn/vc5/CFL3wBf/EXf4GLFy/iq1/9aj5OlTFNc3bLqM4yK9wiUknIVBIymYRMpTaDBvPAouinEjLgae+CYhF0JOem7Q06AEDXIXUdOg7+AN4OQlzuHV8bf+c7/25jDxnGORSfH4rPD9Q8LOsvtRT0aNQIRmJR4794bFcAop56j23jtJLp+4jswBi8Pf3gJkEHACTGRyjoyKO9AYjW6XyTPac/D/N2xXv22Wfxy7/8y5BS4uWXXzatmPahD30I165dw8bGBtra2vBXf/VXeOSRR/IyHqcjTAkGkUxsBhRJiM0/935ddBmJPFLrGuGqMy91ra1GkJwat3lEh7MVNCJ2wPQE4zuCEhe42wvu8YB5vOAeL5jbk/fsCVNdUAPVQOBhHQwpxGZmJAp9/Db0VAIIdOV1HAcrqAmvouBp64JSaV67ITk/Y3/wXqbkxgqir//fxrSnwxPvTn8e5i3w+PSnPw3AKE9uVab1W9/6Vr5Ovw/n3LHV+IBRdTN606IAEtmHV1bB095pekwk4oiPDto8ojySAjKZgEwaDaL2/ZYyBub2gHs8RiCyGZBsByV5qgvCOIfir4DiN1bAi/0jsx2z3gNETKi1DXDVWwXvK0hOmnd0JjnmcsN7+j3wnHsSccmAkRFHh8MdriWUl8Dj13/91/GNb3wDr7/+Oj7wgQ/gD//wD/H888/n41QZc7vdeWvCk9H5y2BaJFeYyw1v9wAY2//mkLqO+PA9wMEg0nZSQibi0BNx6FjZd5i53HsCkh3Zkhz2ZmCQ4FKHcHC6Q9VpG3qmeEUlPO1dpsdKLngvVDsCDu4zAni3w9McgPF56KScl0z/2te+hs985jN45ZVXcOXKFXzxi1/EH/zBH2BoaMjRxSxzc3OOVIrb0tLUiKCfag8cRAodYvgtIG7eh4V3nAWrzk15+VInpTTqxSRjkMkokIxtFjnbAOIbyLSl/E6TnmZsKH7LnTH51tPRBi9tpz2QTMUhht4wrxfEOHjvI1TtNYf05Tms/6//78NvmAQcO929e9fRdRYnT550NOuR03fwN7/5TTz//PN4+eWXceXKFQDACy+8gN/93d/F17/+dTz33HO5PN2h+HzOfuj7K6vAC6gtcSGSUkIMX7UOOloGoDT32Dyq0iSFAGJrkNEVxH74DXB/BZTKg0spe0XcCDwc4q0MOJ4mLnRS6BAjb1kWKVR6L4HXNts8qtImY5u1MQ4IOLb4fD6sraVpcplHHo/H8fdQzgKPq1ev4plnnsGLL76In/3Zn93+fiAQwAsvvIAvfelL+MQnPuFYW96KigowxhxZVONyueDxmK8oJw+J2SHIpUnTYyzYBN52wuYRlS7GOVBRDVZRDVTVw33pafCqkJEdia5CRle2/zOyI4YqbQNL7to0r5w/gQAFHQeRUkIffQdyI2J6nLcMgNe22juocqCo8F5434EBx5bq6mrHAo/qaucbKZZVd9rp6WmEw2Hbz9vc3IzaWmcu1sVCROah33vN/KC3Euqpp3JaJpw8pE/fA5JxY/qEcWwXGWN8u+KsTBmNCZGMYUzzIwaX7dMt3d3djpd6LnT6zBDE+E3TYyzYCGXgClUmzQMpBMTETWNXItss0LhVmJHzh+8lpoBxDgmG+wvr0IX9a/+OHTvm6LIHwOFeLXarra21PfBgjCEYDNp6zmIj4xtG0yozigp14AoFHfmkuiGm7mX2WF8V6tq6MTE1ld8x7SLh5gzeeATSrRrN9Mg+YmUBYvyW+UFvJZTeSxR05AnjHJASYiGzXUIs2IRQbaft6w6rq6sdDzqAMgs8PB4Pamtrbe2u2dTU5Nj0UjGQQoc2+Aagm+84Uvoug/kqbR5VeeF1HUbgcVDjQsUFte9RBDx+VEQi9vWbkEDjxiTE0BAEAHgrwQN1YNWNYNV1YIrzF1KnyWQc+tBbMF0wzFWoA4+Bqc7uZCh1vKkvs8DDWwWl5yLqwBCJRGzbbck5R2Oj+dZqu5VV4AEAjY2NWFtbQzKZ/215FRUVCIVCeT9PMRMTt4Ho/i2iAMDbToIHm2weUXkRq4sQ0/cz6pas9F4yuuMCaG1txdDQEES+U8VSokaLwC92VIqNr0PE14H5B0aNk8pasGADeHUj4A+U3V29lBL68FVjKsyE0neJdrDkkZQScnka+vT9gx+sqFD7HwFTVCgA2traMDo6mvcxAsaUv9PbaLeU1RqPLbFYDCMjI3ldaKooCvr6+goirVWoxPIM9Ps/Mj3GQq1GtqPMPkTsYgQc9yDXMsv+8bYTUJr7d31vZWUFExMT+RieQUp4RAId8SnwTLf+ujxg1Y3gwQawQAOYqzAutPmkT92DmLxjeoy3nYDSeszmEZUHKSVkeDPgsNiJt5fS/xh4cHfWwY5SD9XV1WhrayuY62nZZTwAYytTZ2cnxsbG8hJ8KIqC7u5uCjrSkIkY9JFr5ge9VVB6LhTMm6RUSCkh15YOFXAAAKtpAW/q2/f96upq6LqO6enpXA7TICXcIon2+HTmQQcApBKQi+PQF41y+qyyBqy6wZiWqawpud8psbYEMXnX9BgLNoK3DNg8otJnBBxTmwFH5i3meevxfUEHADQ0NEAIkbclAFVVVQUVdABlmvHYEo1GMTY2ltNS6m63G11dXQWT0ipEUgrod35g/uHHONTTT4H5nd/yVUrE6iLE1F3I9UMurvZWQj35Y2kb2a2srGBycjKnQbzf40KbT4JvLBu/J3oOii2pLrBAg5ENqW4Ecxd3XR2pJaHd+HujMNxeLi/UMz9eFhkfuzzMcNw7VMABAKy6EUr/o5Yf/lJKLCwsYH5+PhdD3VZTU4OWlpaCCjqAMg88AEDXdczMzCASiRz5terq6tDQ0EC1Bg6gT96x3EXBu85Baey2eUSlS0ZXoE/egVzJ9ILGsL1AkStG0JHB+oBkMompqakjLzhljKG5uRk1NQ+zE1JKILYGsbYEubYEubJguZ7hUPwB8OpGsGCDsU6kiN63Ukrog29ALs+YHldOPAEeqLN5VKVJSgm5ugB98o7lerT9dryP3H6op34so8W90WgUk5OTR16DqKoqWltbUVVVmGt7yj7w2LK+vo6FhYWsLpyBQAD19fWOV0ctBmJlAfrdH5geY6EWKH2PFFx0XoxkfAP61F3IcIbbXlU3eFMveKgV2s2/B4QOpecieG1b5ueUEpFIBIuLi0gkDhcYbG07r6+vPzBbKKUEoisQkXnIlTnItTCyKf++C1fBAnXG9ER1w/Yi2kKlz45AjL1reoy3HYfSetzmEZUmsb4MMXk786lJjx9K8wDgq4R+5/tGBvfEE2AVwczPuTntsrS0dOiy6pxzhEIh1NfXF/RuSgo89kgkElheXsbGxgbi8bhp+phzDq/Xi8rKStTU1NBajgzJVMJIDafi+w96/FBPv4+2/B2RTMUhpu8b2/oyeWtvBRwN3dvTKfrEbSPw6DyT3RikRCwWQ2Rzy61VEKIoCnw+H6qqqhAMBrO+UEotBbm6ALkyDxGZM596OCx/NXioBby2FcxbWNu55UYE2q1/AEwaT7JAHZTj76Xg/YhkbM0I3C0ySvt4/FBaBsBCbduZM+3+6+A1zeD15l22DxyDlFhfX0ckEkE0GrXcdquqKnw+H4LBIKqqqooi406BRxpSSiQSCei6DiklGGNQVRVut5ve2IckpYR+73XIlbn9BxmDcuJJo2Q3yYrUUxAzwxBzw4DIYM2SScCx/Vpa0sgA5OgCJoTYfh8BRnbD7XbnJWCXUhrbbSNzkCvzkKuLph/Qh+IPgIdawUMtjm9LlXoK2s1Xd5Wx36a6oZ55GsxNmddsyWQM+tQ9yM3FyQfyVBgBR23rvm7aMhUHVE/OPit0XUcikdjews45h9vthlqETRMp8CC20GcGLasq8vZTUFr6TY+R9KTQIeYfQMwMZlSLA4oLvLkfvKEr7YLRUiF1bXNdyBxEZP7QiwL38VU9DEL8gdwM8hC04auQi+ZbmJVjj5vumiAHk1oSYmYQYm40s0DV44fScsw04CAHo8CD5J1YD0O//T3T1D+rboBy7HHKIB2SlBJyaQL61L3Mpha4At7YA97UV9bl52V8A2Jlc23IyiIgjrBbxlsFXtsCHmoBfPkvXCYWxi23oPPmPigdp/N6/lIkdQ1ibhRidjCznVOqG7zlGHh9Z1EtRi40FHiQvJJa0kgNJ6L7D7o8m1v+qPdGpqSUkJE56FN3gFgGRYsYA6/rBG8ZKPrto7kmhYBcX4KMzEOszB9ix4IJb6WxJiTUmpfqqTK2ZryPTKbRWEUNlJNP0gfhIUghIBbHIabvAakMFkJzFby5F7yxtywyhflGgQfJGykl9KE3IcPmBaaU4+8Fr663eVTFS6wvQ0zcyrgWBwu1QGk9XnCLIwuVTMYhI7MQ4Wljy262O2W8FdvTMfBXHzkIkUKHduu7QHR1/0FFhXr66YLfhVMopJSQK3PQJ26Zr5PZi3Hwhi7w5n66QcohCjxI3oj5B9BH3zE9xlsGoLSftHdARUqmEkYtjgwXvLFAPZS2E4fawkd2k6kk5PK0EYSsLmS2Q8iMxw8eagULtYBVBLMKQvQH1421ByaUvkfAa1uzG1uZkbF16BM3M65pw2rbobQeA/P48zyy8kOBB8kLGV2BdvO75lv+qmqhnHgvLco6gBQCYn7USAdnMP/MKoLgbSfAA5RFyiWpJSGXZzYzIfNHDEJawGvbMg4KRXga+uAbpsd4QxeU7vPZjaWMSD1lbDGfG8noZ8eCjVBaTziyeLhcUOBBck7qmhF0mDVOUlzGlj+6i0hLrC5AH7uZWfMpb4VxoaxppkW6eWYEIbM7gpAst+r6A+D1neC17ZZlzWViA9qNVwHdpH6DL2C0FuCFWyTKacYC7Enok7czWsfBKkNG4F5Va8PoyhsFHiTntJG3IRfGTI8pA4+B1zTbPKLiIRNR6BO3Mitc5PIaqeC6dsoeOUBqqc01IVOQkSyDEMbANotMseqGXWXi9dvfM1/PwxWop56iO/I05EYE+tgNyI3lgx/sqzKmJqsbKXC3CQUeJKdEZA76vR+aHuONPVC6zto8ouIghQ4xM2TU4zjoA4wr4E194E20wr5QSD0FuTy3GYTMZReEuLzgde3g9Z0QyzMQE+Z1b5Tu8+ANXUcbcImSqYRRcdTixmcX1W0EHHUdFHDYjAIPkjNSS0J79xXzkuj+aqNREqWGd5FSQi7PGKvsM6jHwWpaoLSfpKmqAiZ17eHumMhcZpVkM8RqW6H0XqYPyj2kFEYhvam7GayHYuCN3eAtx8q6po2T6HaJ5Iw+dtM86OAK1P5HKOjYQ8ZWoY/fNMp6H8RXBaXjDHUcLQJMUcFq28Br2zaDkLnNIGT2aEGIxw+l6zwFHXuI1QXo4zczqmvDAnVQOs44Xvq+3FHGg+SEWJ6Ffv9102PU6n43qacgpu5tbpE84O2nuMBbjxklzmkdR1GTegpyaRpiYSzjWiy7uLzGnXpdB5iH+rHIZMwI3DNZD+X2QWk/RQuwCwQFHuTI0k2xsEA9lOPvoTf7JhGZg/7gunlmaA9e3wneepwKF5UgGVs3KmcujGf0u7AXq24wFqTWNJVdJlFKCbHwAGLizsEl7xk3ehM195Xdv1Mho8CDHJll4yquQj3747QeAZuL3sZvQoanDnwsq6iB0nmGCoCVASkF5MoC9PkHQKYt2HdSXOB1bUbr9RxUSS10MrYO/cE7GWWMWE2zkeWg60/BocCDHIlYnoF+/0emx2j1/Y5aAhO3Du4e6/JAaTsJVttW8h8gZDd96h7E5J2jvYg/AF7fBV7fDqaU1qJJKQTE7BDE9P2Ddwz5qqB0nKZCegWMAg+SNWOK5TumxXloimWzJseD60bJ7XQYMzrHthyj7bFlyKjy+6p5VU3GD781V1GNabrGnpLo4SI2IkbrhZhJr5qdFBW89Th4fRc1zCtwdJUjWdMfvGteEZCrUHoulG3QIaU0Sp1P3jlwFwOrqoPSeRbMR43cypEUAtrwNfOgw1sJ5dSPASsLEAvjkCtzmb2orkHMDkPMDoMFm4x6L4G6ons/Sl3bXIQ9fOBjWW2bMa1C66GKAgUeJCsiPA25NGl6TOk8XbbzqjK2Cn30+sEVExXVuFBS8aKyJqbvA9EV02NKz0Vw1Q3UtoLXtkImYxALExALY0Aig86qAGRkFnpkFvAFoDT1GNN4RZBVE6sLxiLsRDT9A90+KF3nwKsb7BkYyQmaaiGHJlMJYxeLZjLFUt0A5djjZfdhKoWAmBmEmLl/YCMqFmwyshxur02jI4VIbkSMdvcmvy+8uR9Kxynz50kJuR42tuUuTR2uNojqMtaBNHYX5M2B1JLQJ25n1ImZN/YYu76KIJAiu1HgQQ5NG3rTuODtpahQz7y/7GoMiPWwcXd2UAEjl8coAhZqsWdgpGBJIaDdehWImqxb8FZBPfO+jLZ/Sl2DDE9BzD+AXM+gL8k2BhZqNqZhKkMFcaMgwtPQx28c3NDNV2VkOSpD9gyM5BwFHuRQRHgK+uCbpseUngvGtr4yIYUOMXnHaLd9AFbXYZQ6V807kZLyok/egZi6Z3pMOfUUeGXNoV9TrC9DzA4bW7YPc1n3V0Np6gWrbXWk1oVMJaCPvXtwITDGwJsHwJv7afFokaPAg2TMmGL5jum2UBZshDJwpSDunOwgoyvQRq4dnOXw+I27M9raRzbJjQi0m9+FWdVa3jIApf3k0V4/GTcWN889MJ0OtaR6wBu7wBu6bZsGFCvz0EffPjDLwSpqoHSfA/NRR95SQIEHyZg2+KZ5ASzFZRQKc5f+FIuUEmJuxNixcsA2R97US1tkyS5S6EbQYbY11FcF9XRmUyyZnksuTUGfHbZcwGqKMbBQq/H7m0XmJdOxiYnbEPOj6R/IFfC2E0YwVCY3NeWAAg+SEbE0BX3IaorlInh9h80jsp9MxqCPvA25dkBTN1/AKJ5GlUfJHvrEbWMnyz4Myqkfy8sH/fZi1NlhyPAMDuwPtHNUlSHwph6wmpacTW/IjRVoI1eB+Hr6c1c3GIuwC3ARLDkauhUjB5KphLF40gQLNoHVtds8IvuJ8LTxb6CnrB/EOHjLAHhTH81Bk33kRgRietD0GG/pz1t2gTEGVlULXlULmYhCzI1CzD9I/7u8Sa6HoQ+FjQZ1Tb3gjV1ZV0WVUhrVR6fupl+DorqNreZUwbdkUcaDHMiyF4vignr2/SW9LVTqKehjNyxrlmzzBaD2XqQ5aGJKSmlUJzWb8vAFNqdY7AtWpa4ZpfxnhzNqJ79NdW0GID2HWigtE1Hoo29Dri2lfRyrboDSfR7MVbrXFEKBBzmAWF2Efuf7pseU3kvgJZztEGtL0EfeBpLpixjxpl6jngB1vyQW9NkRiLF39x9gDOqppxxrCCilhFxdNKZhIrOZP1FRjToaTb0HVgsVS1PQx64DeppOsoyDd5wyyp1TlqPkUeBBLEkhoN38e9M7IlbTBKX/sZK8SEghIKbvG8XA0nF5jfUtgTp7BkaKkkzFoV3/tukHL289BqXthAOj2k/GN4yF0wtj6YOEnbgC3tBttJ3fk/mUWsrYJntQR2Z/NdSei2C+qixHTooNBR7Ekj4zCDF+a/8BrkA9+4GSLBQm4+vQR65BbkTSPo6FWo3W9VSXgxzAcqrSWwH1zI8XXKZM6imjNPvcMBDPrDQ7GAdv6DRqbHj8m9nCa0AylvZpvLnf2PlFa6LKCgUexJRMxKC9+23Tcsy84xSU5n4HRpU/UkrIxXHo4zfTl6BWVGOlfai1JLM9JLfSTlUef09B9xiRUkKuzEFMDx64NmMbY4A/cPC6EbfPyBZW1R59oKTo0K4WYkofv2H+AeyrAm/stX9AeSR1zUgJH7CAlFWGoPRcpO19JCNSCOvdYKGWgg46gM3dMMEm8GATxOoixPR9yJX5g594QNDBatugdJwBU7PbHUOKHwUeZB8RmYcMT5seU7rOlVRaVMbXoQ29mf5iyRh463FjmyxlOUiGhNWOEa5C6Txj/4COgAfqwAN1EOthiKn75gtRGTP+s6KoUDrPgde25m+gpChQ4EF2kUK3vkuray+phZQiPA199B1ApFlI5600Fr5RMTByCDIRNepVmOBtx4q2yi+vDIEfuwK5EYE+ff/hDcpBQYeUgK8aoGwhAQUeZA8xMwgkTBaUKaplm+5iI4WAmLx9YHM33tAF3naSSp6TQ9PHLNYK+QIlMVXJKoJQui9A17X0lXylfFgsbHUB+q3vQlQ3GIX2SugmhhwOXVHJNhnfgJgy30LK206WRFEfmYxBH74KuR62fpCiQum+AF7TbN/ASMkQkTnIZaupyrMlMVUpoyvGFGUiTY2bnUHHzm+vzENfmYeoqgVvPQYWqKcpzDJDgQcBYKxg18feNW985q8Gb+y2f1A5JlYXoA9fNe2uu80XgNr3CJi3wr6BkZJhTFWaFApD6UxVioVx62vFFon0ZdEByLUl6HdfA6usAW87CV5NHZzLBQUeBAAgl2chI3Omx5Tu80V9RyKlhJgZtJxz38Lq2o2tsgVWV4EUDzFtNVXpgtJx2v4B5ZAUutE+YHE87eN463Gw2nbI2WGj+2y67ekA5Poy9Ls/gKhuMHq0VFTnctikAFHgQba3k5rhDV15a15lB6kljY6yK+ZBFQCAcSidZ8DrO+0bGCk5Mr5h0XkW4O0nDywtXshkfAPa8JtAdNX6QarbaKMQ2MxcdJ4Gb+mHmB021lMdUA1VrsxDW5k3ttu2nwDzUNaxVFEBMWLdqlt1Qz33gaKtzik3ItCG30o/D+3xQ+19hO6yyJFIKaHff900a8gqglBOPVW0WUOxPAN99O20gQOrrIHSe9lyt47UkkY59tlhQDu4Ky4YB2/sBm8ZKOqAjZijwKPMydgatBuvmM7HKj0XijYLIBbHjbn2NPPQLNgEpfsCFTIiRybC09AH3zA9ppx6qiizhlJKiKm7xk63NHhjj7H4PINFs1JPQcw9gJgZArTEwYNQVKOselMv7S4rIRR4lDEpJfS7P4Bc3b8djlWGoJx8suju0qSUEJN3IGaH0j6Ot52ggmAkJ6SuQXv3O6Z9SXhDF5Tu8/YP6oikrhk9i9J1rOWKsfsr1JLV64v5B0amNd1i7y0uj1HEr6ETjBX/rqByR4FHGROLk9CH3zI5wqCeeR+Yv7imHzK6WKpuKL2XS2J3ASkM+vgt86xAkU5VymQM2uAbQHTF+kG+KmOK0ld5tHNpKWPh9+zwgYtQAQDeSijtJ8FqmummoYhR4FGmpJ6Cdv07QCq+7xhv6i26ks4yEYM2+CMgZr34jVWGNuehi78eCSkMpTZVKTYi0Ad/BKSsp0FYbZux+yuHUx8yGYOYugcxPwZjL256rKIGvOMU3UAUKQo8ypQ+eQdi6t7+Ay4v1LPvL6p1D2J9GfrQG2kvloeZhyYkU9q9100zbKyqFsqJJ4rqrtxoIfC2deaBMfCO0+D1XXn7/5KxNegTtyGXZzJ6PAs2GhmQIsvOljtarVOGZDJmLO4yoXSeLq6gIzwFfeRt60WkjEHpOgde12HvwEjJE6uLFtN6zKhQWiRBR0Z1bhQXlL5H8p5hYL4qqAOPQayFISZuQa4tpX28jMxBi8wZNXjaTlDn6CJBgUcZ0ifvmt7VsKpasFBxdI6UUkJM34eYNsnabFHdxsWyqta+gZGyIKWEGL9leow3dhfNHbgUOvTRdyDDU9YP8lZC7X/M1mq+vCoEduIJyMgc9InbaadQAUAuTkBbmjIymy0DYK7iWldTbijwKDMyugq5MGZ6TOk8UxR3aYV6sSTlQ4anITeW9x9QVPDW4/YPKAsyFYc++Kb5/8cmFqg31kU5kAVljIHVNIEFGyEXJ6BP3jHdObRNCojZIYiFB0YTuqZeqkJcoCjwKDP6hPldGqttK4rW74V+sSSlTwph+T4qlrttGV01FmOn+SDnDV3gHacd377KGAOr7wCrbTWKkE3dB/Q0Rch0DWLiNsTsiLH+o669KG6oygkFHmVErC6Y92NhHErbCfsHdEgyumJs80t7sewG7zjl+MWSlC4xP2peDdftA28q/Jb3IjJnbKNPs32Vd5yBUmCNIRlXoDT3g9d3QkxvbsFN16guFYc+cg1s/oGx5qYIbqzKBe1qKRNSSui3vgu5Edl3rBi2zx58sTRW3BfaxZKUFqkloV3/tmnRK6XnInh9YS9i1mdHICZuWj9AUY06N9UN9g0qSzIRgz5113LqeC/e0A3efqLo6qqUIsp4lAkZnjINOqC4wFuP2T6ewxCL49BHr8Nyf38RXSxJcRPTg+aVNv0BsLp2+weUoYwq+nr8xrooX5V9AzsC5vFB7bkA2dQLffI25HKawoEwMlUiPGVMv9R30vSLgyjwKANS6MbKcBO8daCg7wD0mSGISfOxAyi6iyUpXjIRNdL7JpSO0wX7QSalgP7g3bTt7FllCErfI0XZkI35A1AHrkCsLUGM34JcD1s/WEtCH30HbP4BeNe5ouyhUwpoqqUM6DNDEOMm6VW3zyjpXIArvzO5QyvmiyUpPtrwVcjFiX3fZ9UNUI+/x4ERHUwKHfrw1bRtBFhtu7EGogCvA4clpYRcnoE+fjN9V+pNrL7TyIDQNcRWlPEocVJLmlcoBYw3XAFebDK6QyuhiyUpfHJjxTToAACl/ZTNo8mM1FLQh95IW4Sr1JolMsbAQi1gwcbNOj+DaRegyoUxaOFp49+hsYsWpduEAo8SJ6Yttp75q8Fq2+wf0AEyuUPjzf3grcdL5mJJCp/lNvS6drCKwisWJlNxaPdfB6IWhbcYMzrLFuA1IBcYV6C0nQCv64A+diN940g9BTH2LsTCA6PKMRUczDsK70qYMSc9YnqsEOekpZaCft+898UW3n7aKI1cYGMnpUuszEOuzO8/UKDb0GV8A9qd71sHHVyB0vdoyQYdOzFvBdRjV6AcuwJ4DigmGF2Ffvt70Ibegkzub55JcocyHiVMn7htmmZk1Y3g1fUOjMhaRndoXefBC3jnACk9UkpjvYAJ3tRbcL1BZHTFeB9ZNUxUXFD6HwOvCtk7MIfxYBPY2XqImWGjzUKaGiZyaRLa8ix42zHwxl5qLJkHFHiUKLkRgVyaND2mdBTWnLSMb0C7/0PrxWBcMbbLBhvtHRgpe3JxwjwYVt3gLQP2DygNsbZktLTXNfMHuLxQB66A+QP2DqxAMK5AaR0Ar2uDPn4TMjxt/WChQYzfgpgfh9J1tuBu1IodBR4lyLhLs5iTru8oqAsP3aGRQiWFbvQHMcFbjxVUSX4RmYU+9Jb1QkpPBdRjjxdchsYJzOOH2v8oxMoC9AfvAvE16wfH16Df/QFEqMWYnqZ/v5ygwKMEyZV5yNWF/Qc2F1wVCrpDI4VMzI6Yl+f3+MEbCqdCrlicgD76DiwL7PmrjfcRbRndhVfXg515GmJuGGLyHiAsrkMwmgJqkTmj+VxzH+2mOyIKPEpMumwHb+oFc/tsHpE5sTIPffANukMjBUmmksZaABNK+6mCmffX50bMa/RsYlV1UPofAVMKJztTSBjnRv+X2nZj+sViehoAIHSjttDCuLH7JUiVkrNVGO8ekjMyPAXELOakm/vtH5CJA4MOfzXUE09Q0EEcI2aHTDNxrKIGLNTiwIj202cPCDpqmqEMPEZBRwaY2wu17zKUE08AB2VYExvQ771m7H6xmiImaVHgUUKklNAtioXx1uMFMSd9UNDBquqgHn8PpYWJY6SWtNyGbnQ+dn4r90HN3nh9J5TeyzQlcEg8UAf19PvAO88CSvoJAbk0Ce3d70AsjIMKgB8OBR4lRIangZjJQilPBXhDl+3j2evAoIPu0EgBELPDpvP9LNgIHqhzYES7HRh0NPeDd54tiACpGDHGoTT1QD33QbCDug1rSegj16Df+yFkfMOeAZYACjxKhJQSutWcdOuA43PSBwYddR10h0YcZ2Q7zBvB8dbjNo9mP312OH3Q0X6SCuzlCHN5oPZchHLqx8AqgmkfK1fmod14BfrMIGSaEu3EQIFHiZDLM+b1Bjx+sFpni26JyNzBQUfXObpYEseJ2RHztR3BRsc7mRpBh/nCcQDg7aegNPXZOKLywCtDUE49Bd51Lv30i9Ahxm9Bu/ldyI3I7kOLk5BpipaVGwo8SkC6tR1Ki7PZDhGZgz70JgUdpOBJLWWd7Wg5ZvNodsss6Oi1cUTlhTEGpbEb6tn3g9U0p39wdAXaze8au2R0DTK2Dn3kmuXvVjmi7bQlQEbmgOjK/gNuH1jdAXOUeURBBykmYm7EtKEiq25wtIAdBR2Fg7l9UAcegwhPG8XHUlY9XSTEzBBEeBpQXIAUEFP3wOvaC6akgZMo41HkpJQQU3dNj3EHsx0UdJBiIvWUsYXWBG91LttBQUdh4qEWqGfff/Ci/UT04U2h0I3+WYQyHmZSqRQ2NjYQj8cRi8WgaRqklGCMweVywefzwefzwe/3Q1Wd/SeUK/P75hMBAC4v+EErsvOEgg4CAIlEAtFoFLFYDLFYDLpuzHEzxuDxeOD1euHz+VBRUQHu9OLnuQeAZpLtCNQ51iadgo7CxlQXlO7zYHXt0EfeBuLrBz5HLk5ANHRnnEGTUm6/f7Y+j4Qwrqucc3g8nl2fR8VyTWWSNiADMH7Aa2trCIfDWF8/+BdoS3V1NUKhkCM/dCkl9Nv/ALm+vO8Y7zzjyEWJgo7yJoTAysoKlpaWEI9n1lqcMYaamhqEQiF4vd48j3A/qWvQ3vk7QEvuO6aceMKRLbQUdBQXKXSI6fsQ0/eBAz5SWUUQyqmn0l4DNU1DJBLB0tISUqn9AbEZRVEQCoVQU1MDt9t9qPHbjQIPALFYDJOTk0gksq9C5/f70draCo/HvsJXYmUe+t3X9h9weaCe/wnbt6ZmtGWWgo6Stbq6iqmpqe3MRjaqq6vR3NxsayZRnxkyrQDKqmqhnnzStnFsj+egOh0UdBQsGV2FPvoO5Ho47eOUnoumGWkpJcLhMGZnZ49UlKy+vh719fWOZxKtlHXgIaXE3NwcFhcXc/J6jDE0NjaitrY27x+uUkrod74Puba07xjvOA2l2d5tdWItDP3+DwGLLWMUdJQuXdcxNTWF1VWT7dxZUBQFra2tCATy3xxQ6hq06//HtDuycvy9trdDF4vjmw3fzFHQUfhkMgbtnf9j3RICMBpgnvsA2I7tuYlEApOTk4jFTBoTZsHtdqO9vR0+X+EtZi3McMgGQgiMjY3lLOgAjGBgdnYW09PTeS+hK1cXTYMOqB7bq5TK6KrRZZaCjrKTSqUwPDycs6ADMAKZ8fHxnL43rYiFMdOgg1WGwGyeYhGRWeij1y2PU9BRHPQH76YPOgAgFYeYGdz+aywWw/DwcM6CDgBIJpMYGRnB2ppJNWuHlWXgsRV0HGYtx2EsLy9jamoqr8GHsOrJ0ty3K4rON5mIQrv/uuk2RICCjlKWSqUwMjKCZHL/2ohcmJ2dzWvwYczLD5oe463Hbf2dFWtL0IfeglVrewo6ioNMxgBFNYJWTwXArD9ixfQgZMJYfD06Orq9aDSn45ESY2NjBRd8lOWultnZWWxs5LeufiQSgdfrRV1d7u+axOoi5JrJBVl1gzd25/x8VmQqAe3eDy33srO6dgo6SpSUEhMTExkvfMvW7OwsvF4vKisrc/7aYn7M9HeXVdSA2TjFIqMrRsbQ4i6Zgo7iwdw+qL2Xtv8upQS0BGQiBiSikIno9p8ysYHk5F2Mpfx5CTp2Gh8fR39/f8EsOi27wGN9fR3hcPqFP7kyNzeHqqqqnC84tcx2NNmX7ZB6ysh0JMwDOBZsoqCjhC0tLSEajdpyrsnJSfT390NRcrdYWgp9V6p7J952zLbfWxnfgHbvddMy7YDR8I2CjuLFGANcXjCXFzApuT85OQktFsn7OKSUmJycRHd3d0Fck8tqqkUIgcnJSdvOt/XDzuWUi1hbglxd2H9AcdmW7ZBCN3avmFVLhbEbQOm9BJYmzUiKVzKZxNzcnG3n0zQNs7OzOX1NsTAOJPfPp7OKIFh1Y07PZUUm49Du/xDQzHfT8frOgmhMR/JjbW0NkUjEtvNFo1HbbroP4tgnw8TEBN73vvfh5MmTOHv2LP7sz/4s7+eMRCLQNPM7i3yJxWI5vTNMu7ZDzX87eSkF9OGr5gtbAcAfgNL3KHWZLWFLS0t5Xzy91/Lycs7eu1IIo96CCd5qT7ZDalsZQ/NrA6tpptb2JW5hweQG0oZzFsJGVscCD1VV8Xu/93u4ffs2vv3tb+Pf/Jt/k9d1F1JKLC1ZfFjmWa7OK9aXIVfm9x9QVPDGnpycIx0pJfQH70JGLO4+PRVQB67YEgCR3ElOj2f8WF3XHbtrytV55aJ5tgP+arBgU07Okfb8QjfWdMTMdwKxQB2UnosUdBQRPboObTnzhdDxeNy2qcqdNE0riIWmjgUezc3NOH/+PACgoaEBoVAorxe0eDx+pAJhR7G6upqTuzUxY9FLoqnXlg97MXnHuGibcXmgHnvcmMskRWX2//P/wsLX/6+MApDV1VXH7pjC4fCRzy2lhD5j3iVUsSHbYWQM37IsMMX8QcoYFiF9dRnTX/lVhP/qpYwCkOXl/dWm7VII0y05DzyEEDh+/Dg+97nP7fr+t771LbjdbtMplbfeegtCCLS3t+d6ONuciC53Our+bJmIQoan9x/gKrgNi8/02WHLJlpQXFAHHgfz+PM+DpIHUiJ2+xpm/6/fPDAAyfdusHQ0TTtyAC9X5oG4yR2fL3Bwu/MjklJCH71udJM2462EMvCYrdvhSQ7pOtbfeDWjAMTJ91E0GnV8uiUvlUtfeuklvPDCCxgbG0NNTQ2uX7+OJ598Er/xG7+Bz372s7seu7S0hCeffBJf+9rX8J73vCfXQ9k2MTGBlRXzxZB2qOECnusm5c0z5A1VwhPcv6UwEVlHPJyfeiRbXFU++Bv3r8gGjPnyjekl6PH8bqsk+RN990f7vuc7eRHV7/8Y3C27yzrfv38/b3U7MlEfX4EyeCPr5/ubauDy799lFp2PILWeWW+ZbHlrA/DUmG8LFpqO9clFSC37cvPEOSIeRfz+nt9LRUHlpScReN9HodY8LKsghMDt2852qR0YGHB0a21eAg9N0zAwMIBPfOIT+IVf+AVcuXIFH/vYx/D7v//7ux6XSCTwwQ9+EL/4i7+Ij3/847kexi5OXzB9yRhcf/ZfsnouUxQ0fOgnwPf8okghMP9/vg2Rw2p3e3kaG1Dz+ONgJjX/pRBY/uHrSNi4w4HYa2cAIqXErVvWjcvsULk4Cf6t/5nVc9WqKtS//8f3fV+PxTD/d//nwOZeR1HR14fA2TOmx0QiiaV/+AdoBTD3TvJgTwCyVaXUSe3t7aiurnbs/HnJ6amqis997nP4whe+gL/4i7/AxYsX8dWvfnXXY6SU+OQnP4kf//Efz3vQASDvBVoOPP8Rtpb6Ojr2BR0AEJ+eyWvQoVZVIfjoo6ZBBwBErl6loKPExW5fQ+z2NfhOXkTl0z/t9HAgj7D2wd9jvgB7Y3Q0r0GHp7kJVWdOmx4Tmobwa69R0FHKNqdg1q9+D5WXnoT6+AedHpHjn4d5W1z67LPPbs8lvfzyy/uK//zgBz/A//yf/xN//dd/jfPnz+P8+fO4cSP7FOpBnJ7TkkdYs1bRa3HBzGPUzN1u1LzncXCX+aLVlevvIj5hX00U4qzkxAgS4xZrfGwkkd0bibnd8HfsX0MmdR3R0QdHHJU1tTqA4COPmC5alUJg+fUfIeXgQkNiI11H/MF9pBZzW5MmG05/HuZtFdOnP/1pAMDi4qJpxcEnnnjC1qiLc36kdt1HPn+WP2hPYyNUk3LRyXA4fxcszlHz+BWoFRWmh9fu3kXU4VQhsYdSFUTgqY+g4tGnAEUFHJ6bZgc137Lg7+oEM7kORccnIPNU9p17PAg9/ji4uv8yK6VE5K23kJw32R5PSo7a0ILq9/80/KcfQSweB0ZGHB0Pt8hi2yUvgcev//qv4xvf+AZef/11fOADH8Af/uEf4vnnn8/HqTLm9Xrz3lciHTcEeNXh59Qqjh0z/X50aiar18tE4NRJuGtrTY/FpmcRnZjO27mJ/cTa/kXXOwMO7no4zaeqqu1F+HZyCx3ysL97jKGi13znV2xuPj+/y5wjdPkCFL/5Tq/1wWEkV9bpfVQqdB0iun+R/86AY2vKOtctNLLh9Bhyvrj0a1/7Gj7zmc/glVdewZUrV/DFL34Rf/AHf4ChoSG4LNL2dpifn8e8g3cX2SzmkdEVaDf+fv8Btw/q+Q/mpSS5Pn0fYuqu6TFWGYJy7HGqMVBixj//L7a/tgo4th87Po7VVfPCV3bo6+uD13u4WjFicQL68NV932fVDVCP534nnZQS+shV8+3voI7NpSg5O4HZ//wb2383Czh2unfvnmM3wowxnDx50tHfv5x+cn3zm9/E888/jz/5kz/BlStXAAAvvPACVldX8fWvfz2Xpzo0n89XdOfXZ82nM3hjT16CDhGetgw64PZD6XuEgo4SpVQFUfOTP4/mf/dlVL33g6ZBBwD4Le7g7cAYO/SdmpQSwup9lKf6N2L6nnXQUVULhUqhlyy1oQW1//SX0Pyv/9+oOPuY5cL8CotpbDt4vV7Hf/9yNtVy9epVPPPMM3jxxRfxsz/7s9vfDwQCeOGFF/ClL30Jn/jEJ3LaYfIwKisroSiKI+s8fD7fofdMy1QCctFk8SZXwBs6czSyh8RGBPro2+YHuQp14FEwl/MpQpJ7NT/585YZjr0CgUDOG7ZlKhgMHvqCKdfDkBuR/Qe8VWDVDbkZ2A5iadKyDww8W8E7NU8sNdzrR+0//SXLDMde1dXVtjaI2ykYDDpy3p3yUsejUDk13dLW1nboH7Y+edc0+8AbuqF0n8vRyAwyGYN2+x+AlHlJeWXgCngeLtKkMEgpALCMP9Sdmm7JZppFu/8jyOWZfd9Xus+DN3TlaGQGsR6Gfvc1wGwBrKJCPfEkmK8qp+ckheMw7yMpJe7fv2/7dAtjDMePH3csAbClrGrz1tTU2N6dT1VVBAKBQz1HCh1ibtT0WK7Tw1LXoA2+YRl08I7TFHSUODE9iNT1V4y/MA4w9vA/sH3fC3ZewGqW21qzVVFRceigQ8Y3TIMOqC6w2rYcjWzzXIko9ME3zIMOMCi9j1DQUeK0u69DH71u/CXt+8j4M9T7HszZHHiEQiHHgw7AwSZxTnC5XGhqyn/3yZ1aW1sPvXVJLk0C2v5AgAUbwXzmJZezYSyCuwZEzUvJ8/ou8IbunJ2PFCbe3P/wQ1EKQOiArgFaCtCSQCpudHNNRMH91ajqPmVrupYxhpaWlkM/T8yZb1nkDd057YdiBO8/Mv6tzM7XeQa8uj5n5yOFSe05D2ytgUv7PtqA0tCJuo4eW9ceqqqKhobCuIksq8ADMCI+uxbIBYNBVFUd7i5HSmm9qLSpLxfD2iYm71i2uGeBOvCO044vQiI20DWwQN3Bj/P44brwQTDO0dzcDNWkPkU+NDU1HX5RqZaCmB/bf4Ax8MbcBdNSSmPHTMy88ihv6IaS4ykdUqCkBKsIHvgwVt0A9cR7wRhDW1ubbdfYtra2gsh2AGU21QIYd0/t7e0YHh7Oaz0Cr9eL5ubDd7uUq4tA1GT+3BfI7MMhQ2JxwrrbrLfSSA3TIriSJpNxaA9uQH/wruXd+jbG4L7wwe0OxIqioKOjA6Ojo3mdugwEAgiFQod+nlgcB8T+9zcLtYK5c3eXKSZvQ66Ytw1g1Q3gHadydi5SmGRsDdrw29An7wAHFcV0eeC++BPbxew8Hg9aW1sxOZnfKtANDQ2oNClE6ZSyCzwAY8qlu7sbo6OjeQk+PB4Purq6soourbb+KU29OYuMZXQF+oPr5gcVF9T+R8FU52qukPySiSi00Xehj9800sAZUI89Bh7aPd3h9/vR2dmJsbGxvAQfVVVVWd0RpttCqzTnLmsowtOW54GvCkrvpbxseyeFQWxEoA+/DX3qvsXanv1c5z+wb61PMBiEEALT0+ZbsI+qvr4e9fWFNdVXloEHYAQHvb29GB8fRyyHjda2LpbZBB0yvm4+9aG6wepysxhOailoQ2+av1EYM7b7eQsnMia5I+Pr0EauQx+/bZoNsMIbu6F0nzc9VllZiZ6eHoyPj+d0hX5tbS2ampqyCrbl8gyQiO77PquqzSgVntE5YuvW289VtxG8KxS8lyKxFoY2fA1ieghA5gG30ncJSn2H6bFQKARVVTE5OZmzViKMMTQ1NaHWogq1k8o28ACMzEdPTw+WlpYwNzd3pLs2zjlaW1sRCASyzkxYFjpq7M5J4S4ppXGxNLkoA4DSeQ48h9M5pDCI6Cr0kXcySwXvwfwBuM4+nfZ32ufzob+/H3Nzc1haWjrSWN1uN1pbW49UYCnfBcOkrkEbftNYPLgX40bw7nGuQBTJD7GyAG3oquWOw3R4XTvU/stpHxMIBNDf34+ZmZkjb1f3+/1obW11vDS6lbIOPAAjKqyrq0MgEMDS0hKWl5cPFXGqqopQKLQdsWZL6hrEwoTJAHnOFsOJ2SHLxaS8oRvcIhonxSmbVDCvbYVYXTJW4HMFrosfyqhwHN9ccBoMBrG0tISVlZVDBfJutxu1tbWoqak5UgMrGV2FXDMJfjx+sJrDr7na9/pSGtOUFotJlc4z4FWFd4dJsieWZ6ENXYNYMFmsbIqBN3Y9DFC8FXCdf39G024ulwsdHR1YW1vD0tIS1tf3939Jx+/3o7a29kg3wHYo+8Bji9vtRnNzMxobG7G6uopoNIpoNIp4PL7rcYwxeL1e+P1+VFRUoKqqKic/YLk0Zb4YrrYNzHW4+gVmxOoixOQd02Osoga8nRbBlYpsUsG8vgNq3yXwmiZoQ1eh3X8D6qkfO3QGzOfzoa2tDc3NzVhZWdl+HyWTuxevcs7h8/ng8/lQVVUFv9+fk/eRWHhg+n2jzUBuXl+Gp0yPsbp28PrcVxUm9pNSQoSnoQ9dhVgy/3nvwxiUlgEovRfBK4NIvv13ELOjcF/4iUMvaK6qqkJVVRWSySRWVlYQi8UQi8X2TWeqqrr9PgoEAoeudeMUCjz24JwjGAxu1ymQUkIIASklGGPgnOclkrSKppWmniO/tkzGTZtkAQBUN5S+y7SDpQRkkwrmjd1GwLGjzoTSeRoylYDafjzrsSiKsp0JBLD9Hsrn+0gKHWLRJGvIlZwEBGJ9GWL8pvlBXwBK59kjn4M4S0oJsTgBbegq5HKGrQE4h9J2HErPBXD/w2KRau8liJpm8Jrsa0e53e5dC0OFENsZec654+3ts0WBxwEYY3nf+yyjq5Dr4f0H/NVHXgwnhYA+/JZpQTIAUHou5XR7IbFfVqng5l6ofRdNpwWYywPXidx2bbXjAimXZ0x36bBQy5F3aclUwngfmU0fKSpUaqBY1KSUEPMPjIBjZSGzJ3EFSsdJqN3nTQs78kAteCC3027FHGzsRIFHAbD6wMjJXdrkHfOgBgBvPU4VFYtULlLBpca0YBhw5J4s2xV+k+a735Tui2BeWkxajKQUELMj0Iauma8NMqO4oHSehtp9druuDTkcCjwcJoUwTw8zDn7ELbQiPA0xZ77Cn1U3gjf3H+n1if1ymQouJTK+AblqcqfqrQSrPHwBsp3E9D3z14ZRTfgoqXTiDCkExPQgtOFr5t2LzahuKF1noHadBXMXx1qKQkWBh8OM9PD+qpFGevjgNuWWrxtfhz76jvlBtx9Kz4WCXvVMdssuFawaqeCecyVfm0Usjpt+n9d3Hun3XKzMW7a5Z1V14G3Zr4Mh9pO6Dn3qHvTha5AWO5P2cXuhdp2D0nkqox1e5GAUeDjMcprlCOlhqWtGkTCzIlGMQ+27fKSghtiHUsEHM4Iyi74s9e3Zv24iar0o2+WB0nuRKpMWCalr0CfuQBt5G4hvZPYkjx9q93koHSepknOOUeDhIJmIQq7M7z/gqQDLshaAlBL62Ltp6wzkqnojyZ/sU8FnoXadKatUsFyZM+qO7MGCTVlvRZdChz70FqCbVGNlDErv5Zxscyf5JbUU9PFb0EbesVyjs4+3EmrvBShtx3PaxZg8RP+qDrLOdmSfHpaL45BL5g2HWF07WB0VCStklAo+POtFpdkvzhYTtyGjEfPXbTtJRcIKnEwloI/dhDZ6HUiZ7+jbi/kDUHovQmkdoB1KeUaBh0OklBALZvPSDDzL4EDG143GX2Z8ASgdZ2hdR4HKOhXccx5Ke/mmgmUqbl6N1+UFq27M6jXFyjzEvHktFFbTAt549No6JD9kMrbZcfnGwR2XN7HKGqi9F8Gb+6iekU0o8HCIXJk3Tf2xYGNWaXIphLHlz6x/hKIa6zoobVhwKBV8NGJhwrS2RrZZQ5lKQB+xaP7mrYTSfY6C9wIkE1FoI+9AH78F6Jk1QGSBOiPgaMpNVVuSufK+ajko3TRLVq83fd9yLYDSfaHkdzUUG0oFH52RNbSqgXP4rOF2HxazYnuMQ+29TB1nC4yMrRsBx8Rt85suEyzYALX30pGmtMnRUODhAJlKGNto93J5wYKHTw+LtSWIGfMtf7y+EzwHzbFIblAqOHfk2hIQ399EiwXqs+oOKxfGrJsodpwCK9EaKMVIRFehD1+DPnkv4waILNQMte8yeG0rBRwOo8DDAWLRIj1c33Ho7XlSS6VJDVdQ87cCQang3Mtl1lDG16FP3DI9xqobweu7Dv2aJPfE+vJmA8RB8/L1Jnhdu9EeINSS59GRTFHgYTPLmgPIrkS6Pn4DSEb3H2DM6MNS5msAnGakgt+GPnHncKngvsubgSgFHGakloIMT+8/oLrADpnhM/oZWayPUt20rqMAiNUlaMNXIWbMKzGb4Q1dRsCRRRaZ5Bd9KtlMroeB+P5tkixQd+h+DyI8Zbl1lrccA6d6HY7JLhXcYnSKpVTwgcTSpGmgwOs6Dr3+RUzfs9w6q3Sfp3odDhKReaPj8vyDjJ/DmzYbIAbq8jcwciQUeNgsVw3hZCIG/cG7psdYZYj6sDiEUsH2kDl6HxnrowYtXqsLPEh9WJwgwjNGwGHWx8oMY+At/cbUZGVNfgdHjowCDxtJLQVp1klUcYEd4kNHSgl99G3zqoqKCqXnIt0x24xSwfaRGxHTHVysouZQC0CN9VHXzA96K8HbT2Y5QpINKSXE0pTRj8hsGs0M41DajhkNECuq8ztAkjMUeNhIhqcs0sNth0oPi9lhyLVF02NKZ3n05ygUWaWCm3uNOzNKBWclV4tKjfVRJrVTGIPac5HWR9lkq5iiNnQVMjKX2ZO4AqX9BNSe82C+qvwOkOQcvbNsZJU2PMyKebmxAjF1x/QYC7WC17ZlMzRySJQKdoYUAsIsa8gVsNrWjF9HLKVZH9V6nPoZ2UBKaTRAHL4GuWp+I7WPokLpOAW1+9yh18SRwkGBh01kImbaXZRVBMEyTBFKXYM2ctV87YDbB6Xz7FGHSdKgVLDz5OqCaf0TVtuacXEvmYhCH7tueoxV1YI39R1pjCQ9KQTEzJARcKwvZ/Yk1f2w47Lbl98BkryjwMMmImxylwajcVvGrzF5x7RgErBZnbRM+3XkW/ap4JObqWCqGpsrwipLkeH7yFgf9Y55LRVFNd5HtD4qL6TQoU/dhz78NmR0JbMnuTxQu89B6Txdlg0QSxUFHjYxXVQKZLyTQawtWTau4k19tF4gD46UCu45T2ttckwK3brib1Vmv/9yYSzN+qhz9DPLA6lr0CfvQht+2/LGaR+3D2rPOSgdp+mGqgRR4GEDGd+A3NifUmRVtRmlDaXQjR4SZvzV4K3HjzpEskPWqeCuM1C7zlAqOE9kZN40U8FDLRllKWQyBn3ytukxVtsGfog1IuRgUktBn7htNEBMmBQ5NOOtgNpzAUr7CVrcW8LoJ2sDy2mWDBeCiulB8zsFxo3V99S/IycoFVzYjvI+klJCH3vXfIrF7YPSceaowyObZCoJfXyzAWIyntFzmK9qswHiMTCFGiCWOgo8bGA+L80ymmaR0RWIWYsCR63HaCtZDmSfCj4PpeMUpYJtIHXNfJrF7QPLYJeQDE9brs9Rus7RzzAHZDK+2QDx3cwbIFYEjZ1eLX3UcbmMUOCRZzK2BkRX932fVdcfeIcspYA+et18F4u/GrypN1fDLEuUCi4eMjJnXgMng/LyUksaNTtMsNo28OqGnIyxXMlEFNrou9DHbpoXNTTBqkJGe4CmnkM3xiTFj66ceWZacwDIaD5ZzI5Y9JBgULvP0xs2S5QKLj6Wu1kymGbRx2+a34Grbigdp486tLIl4+vQRq5DH78NiAw7LlfXGwFHQxftHipjFHjkkVH3weSCydiBHTRlfB1i+p7pMd7cB+anmhCHRang4iS1lPk0iacCOOB9IFbmLQuFKR1nwFR3LoZYVkR0FfrI29An7wIiwwaINU1GwFHXTgEHocAjr2KrpmsGWHVj2guelNL4cDRr0+2tAG8ZyOUoS952Knj8JqBRKrjYyMisaYffg6ZZpK5Z7gZjwcZD9UcigNiIQB9+G/rU/Yw7LvPaVih9lzLeeUTKAwUeeZTtNItcHLeuNdB1nu68M0Sp4NKQ7TSLmLxj3otFUY2eRvTzzYhYCxvtAWaGAWTYcbm+02iAWEPdfcl+FHjkifU0CwdL82aUyRj0iVumx3hDF3hVba6GWLKMVPA70CfvUCq4yEktCbkyv/+AryptJ9q0BffaTlKtlQyIlQUj4Jgz/3c0wxu7jfdRdX0eR0aKHQUeeSI3IqY7JVhNk2VPCaPWwA3zWgMuL3jbiRyPsrRkmwpW+y6DhZop4ChAMjxtuqsrXdYwXcE9VlULXn+4LrblRizPGgHHwniGz2DgLX3GWqiqUF7HRkoDBR55YlkiPd0Fc3nGmM82oXSdy7gJVrmhVHDpspyuDFlPs6QruKd0naMA04SUEiI8DX3oquW/+T6MQ2kdMBogVgbzOj5SWijwyAPjTWzWulsFC5p/0EktaVRWNMFCreDBxlwOsSRklQpu6jHuzCgVXPBkKm50o93LX23ZeO/Agnteati3k5QSYnHCaIC4bH7Tsw/nUNpOQOk5D55muosQKxR45IFcD5suamM1TZYLQ/XJO1RrIEOUCi4PIjxt+n2rRaXbu8Go4N6BpJQQ8w+MgGPFJLgzw1UoHZsdl70V+R0gKWkUeOSBVd0Aq2kWsRGBXBgzPaZ0UA8Q4Iip4N4L4BXBvI6P5J71dKX5Nli5NGHajJEK7j0kpYCYGYE2fBVyLZzZkxQXlM7TULvPUvdekhMUeOTY1gfkPooLzKQ0s5QSYsyinHN1I1iovDtmHiUVrPZeoF42RUomYpBrS/u+zyprwDz777a3yt+boYJ7xoJbMb3ZcXkjktmTVDfU7rNQOs+Aub15HR8pLxR45JhcXQRSiX3fZ6Fm02kWy7s0xo03fJkuhKNUcHk7bCdaMX3PfKrS7S/rgntS16FP3YM+fM3oG5UJt9fouNxxGsxFlV1J7lHgkWPS4oJptgo//V1af1mmNbNKBaubqeAuSgWXCmm1vsOk2qiMrVnW7FA6TpVlwT2pa9An7kAbeRuIb2T2JI/f6LjcfpK69ZK8osAjh6SUEGbTAaobrLpu37fT3qU19+VhhIWLUsFki0wljAXae7Cq2n2Fv6SURudZkwWlLFBvuYusVBmdeG9BG7luXrXVjLcSau8FKG3HqeMysQX9luVSdAVI7e92ymqa9y1sk7FVy22g5XSXln0q+Lzx70Sp4JJj2hAOMO2tIpdnjOnNfQ9mRhO4MpmqlKkE9Ac3oD1413Sq1wzzV292XO4vm+sNKQwUeOSQsLhg8j13XUaF0pswK3ZVLndplAomVoRFEb197yNds24v0NhjWeujlMhkzGiAOHYz847LlTXG1vLmPjBOO32I/SjwyCHTXReMg+0pViWXZ8ybwJXBXVpWqWBfFdSeC1DajlEquMRJISAjFr1Z9iwYFrND5r9DLg94y7E8jbAwyEQU2sg70MdvmbdYMMECdUYflcbukr7GkMJHV/Eckam46e4UFqjb9WFZrndplAommZBrS6adhPdlO+IbEDNDpq+htJ0s2QBVxtahjbwNfeIOIPSMnsOCjUbAUd9BAQcpCKX57nSA5bz0ngummCmvu7SsU8F9l8CbeikVXGasehWxPS0D9Ilbpo0AWWXIcsttMRPRVejD16BP3su8AWKoBUrfJfDaVgo4SEGhwCNHTHezAOA1Dy+YMr5hpIdNKO2nSuoujVLB5LAsd4UpLrAdpe7Fyrx1M8USq30j1pehDV8zGt+ZlYI3wevajfdRqDnPoyMkO6XzSecgKXTzIle+wK4qi2nv0kqkQimlgknW4utAYv9CYxZs3N4VJoUwts+a4PVdJVOhVKwuGf2IZoczfg5v7ILaewk8uL9CMiGFhAKPHLCel36Y7Sj1uzRKBZOjstzNUvNwulLMDZvvglJc4G3H8zU024jIHLShaxDzDzJ+Dm/uNQKOQG3+BkZIDlHgkQNWPUTY5gVTSgF9/KbpY3hDcd+lZZUKrm83LpSUCiY7yGWzdVJsu8eRTMUhpu+bPpe3nQBTi7emiwjPGBmOxYnMnsAYeEu/sS22sia/gyMkxyjwOCIppfmdmuoCqzTmpeXihJFG3vcYN3hrcd6lUSqY5JLUkuZN4apC2wGFmB40n77zV4PXd+Z7iDknpYRYmjL6EVmUiN+HcShtx6D0XgT3B/I7QELyhAKPo4qvA4novm+z6kYwxozts1N3TZ/KW48X3V1adqngPuPOjFLBxIJcmYdpQb2trGF8A2Lhgelzi632jdEAcczoR2RWs8QMV6C0bzZALNEt96R8UOBxRNa7WYwLppgbNa9b4asqqrs0SgWTfLJ8H21uR9en7pr3Ywm1gO/Y8VLIpJQQsyNGPyKzMu9mFBVKxykj4KAGiKREUOBxRKYLRpkxLy21JMTsoOnzlLYTBX+Xln0q+DiU3guUCiYZkVJArpis7/BUAN5KyI2IeddnxqAUwVSlFAJiZrMB4vr+IoOmVDeUrjNQu87sa4xHSLGjwOMIjHlpiy6aqttYUGpSw4JVhsCqG/d9v1BQKpjYSa4vA1pq3/d5jTFdqU3eNn0er+8E8xbu75oUOvSp+9CH34aMrmT2JJd3s+PyaTCXJ78DJMQhFHgcgVGt1CT9G2yCTEQt10HwtpMFme3IOhXceRpq9zlKBZOsWO4KCzYZ29DNfhe5At4ykOeRZUfqGvTJu9CG3zZfVG7G7TMaIHacogaIpORR4HEE6brR6lPm9SxYsKng5qSPlgo+C+b25neApKSZ7grjKlBZC/3u902fw5t6wVyF9XsntRT0idvQRt4xXXBuylthNEBsP1FSlYsJSYd+07MkpTDvz+KtAKSAXDJfhKm0ncjzyDJHqWDiNBnfAGJr+77Pgg1AZBYw+71U3eBNvTaMLjMylYQ+dhPag+tAMp7Rc5ivymiA2HaMGiCSskOBR5bkWhjQTealg03QJ++YPofVdYD5qvI9tANRKpgUCqusIatugD5l/j7iLQNgivO/gzIZh/bgBvQH72beALEiCLXvInhzPzVAJGWLAo8sWZU/h9sHOT+6//uMQ2l1tvsspYJJobF8H2lJ899Rjx+8viuvYzqITEQfdlw2ufkww6pCmx2Xe7b7zhBSruiTJEumd2pcgVg233bKG3sc2xaXVSrYH4DSewFKK6WCSX5IXTNfOFoRhJgbMX2O0nrcsUyBjK9DG7kOffy2aW8mM6y63gg4GroKckE5IU6gwCMLMhk3nZeGvxrYiOz/vuICb+7L+7j2olQwKWRyLWzeUFBxAbHV/d/3Bxzp4iyiq9BH3oY+eRcQmTVAZDVNRsBR104BByF7UOCRBbm6YH4gGTP9Nm/ut7U0enap4NrNVHA3pYKJLeSqRY2YaMT024rN29DFRgT60DXo04OZd1yubYPadwks1EwBByEWKPDIglixuGBqJqXR3T7wxu78DmiTkQp+B/r4HUoFk4InVkwCeK6YNoJjgTqwQL0NowLE2pLRj2hmGGZ1eszw+k4jU7jZKoEQYo0Cj0OSUloWNDK7SCkt+V8jkX0q+DJ4XRsFHMR2MpUw3ypr8UFvR9E9sbJg9COaM1kcboE39Rj9iKrtCYoIKQUUeBxWfN1iSsXkgumrAqtrz9tQxHoE+nB2qWBe25K3cRFyENPg3SKwYDUt4BXBvI1FLM8aAcfCeIbPYOAtmx2XC6wYICHFgAKPQzJND1tcMJXW43m5S8sqFdzQaVwoKRVMCoDlOql9GJS23DeCk1JChKehD12FWDJpQGc6FA6ldcBogJjHQIiQUkeBxyGZXjDNggt/NVgwtx/ylAompWLfOinGTN9HrK4tp43gpJQQixNGx2WLHjH7cA6l7QTU3gsFUQCQkGJHgcchGOs79gQeltmOYznLdlAqmJQSGd/IsIAdg9Kcm0ZwRsflB0bAYZa1NMNVKB2bHZe9FTkZByGEAo9DkRuR/W3uze7S/NVHbntPqWBSqkyDd8tsx9E+8KUUEDMj0IavGnVDMqG4Njsun6WOy4TkAQUeGZDSWEdhmh42wY+Q7aBUMClV2++jjNZ3HC3bIYUOMT1odFzeyLABourebIB4hjouk4K19T4q5t2IFHjsIaXE+vo6NjY2EIvFEI/HoesP6wooVQPwcQmPtgF/Yhk+kcDOHz/zB7PKdkgpIeY2U8GZLryjVDApUEIIrK2tIRqNbr+PxPZWbx9cgQF4mYAnuYbKxDI82J1JzDbbIXUd+tQ96MPXIM2qC5txe6F2n4PScRrMZV+hP0IOomkaVldXEYvFEIvFkEgktgMPAPB4PPD5fPD5fAgEAnC5nG+emAkmd/5flDFN0xAOhxEOh6FpmRXfAgA3ZwiKNVTHFsAhofQ/Bh7MPPDIKhWsbqaCuygVTApLIpFAOBzG8vLyjkDjYD4FCKaWUZVYBgODeubHDxV4SD0FfeKO0QAxvpHZkzx+o+Ny+0nquEwKSjQaRTgcxsrKCg7zEV1VVYVQKITKysqCzoiUfeAhpUQkEsHMzMyhLpR7qZyjyZVCdd/ZjH7gWaWCXR6oXWegdJ0Fc3myHishuSalxMLCAubnLar6ZsijcrT4GCo6T2R2Xi0JffwWtJHrli0L9vFVGR2X245Rx2VSUHRdx8zMDCKRyJFep7KyEq2trQWbASnrwEPTNExMTGBjI8M7pAwEg0G0tLSAWzRYyz4VfB5KxylKBZOCk0gkMD4+jkTCpGVAlhoaGlBfX28ZxMtUAvqDG9AevAukMjsv81dD6b0IpbWfOi6TgrO+vo6JiYldU/tHwTlHS0sLgsFgTl4vl8o28EilUhgdHUUymVnX1sPw+/3o7OyEojy8uGWXCq6A2nMOSsdJMKUwI1dS3mKxGEZHR4+ULbQSDAbR2tq6K/iQydjDBoiZdlyurNlsgNhLHZdJQVpZWcHExEReXrupqQl1dXV5ee1slWXgoWkaRkZG8hJ0bPH7/ejq6gITGqWCSUmKx+MYGRnJS9CxpaamBi0tLUAiCm30OvTxW/u3tFtggToj4GjsLuj5blLeVldXMT6eaY2m7DQ3N6O2tjav5ziMsgs8pJQYGxvD+vp63s8VClQidO8VSgWTkiOEwNDQUF6D9y3NVV5U3HnFtGutGRZsNAKO+g4KOEhBSyaTGBwcPNQC0mz19PTA7y+MzQhldzsdiURsCToAILy6Dl9FPXyRybSP204FN/eCMUoFk8I3NzdnS9ABALPrCXS4vHAl0k9R8lALlL5L4LWtFHCQgielxOTkpC1BBwBMTk6ir6/Pcv2hncoq8NA0DdPT07aecy7Yjc7IJMwug5QKJsUoFothaWnJtvNJKbHYdBbNYz80Pc7r26H2XgIPNds2JkKOKhKJIBrNpHVAbiSTSSwsLKCx8WhVtXOhrAKP5eVl26LLLZoAojXtqFh+uHCIUsGkmC0umrS0z7MNqSLpqYQ78TBbyRu7jIAj2GD7eAg5CimlI++jpaUl1NfXO571KJvAQ0pp613aTivBLlQsT1AqmBS9VCqFlZUM687k2FrTSdSOvQHevNkAMVA4i+UIOYxoNJrT7eeZEkJgZWUFNTU1tp97p0OHPfPz8/iX//JfoqOjAx6PB01NTfjQhz6EH/7QPA1aKDY2Ng5VkTSXojrAHvlpuK98DEpdGwUdpGg5FXQAwArzwvXk/wPuCx+koIMUteXl5bI895ZDZzx+7ud+DqlUCi+99BJ6enowNzeH73znOwiHMyz37ZBYLMOtrHkSd1eCao2SYmfnnPReQkho7grQfi9S7Jx8H8ViMUgpHb0BPlTGIxKJ4Pvf/z6+/OUv4+mnn0ZnZyceffRRfP7zn8dHP/pRPHjwAIwxvPPOO7uewxjDq6++CgB49dVXwRjDd77zHVy+fBl+vx/vec97cO/evVz+f+3jdODh9PkJyQWnf4+dPj8hR6Xrum07wsxIKR2Z5tnpUIFHZWUlKisr8dd//ddHHvi///f/Hl/5ylfw1ltvQVVVPPfcc0d6vYM4fcGKx+OOnp+QoxJCIJVKOToGeh+RYudk0LGlqAIPVVXxx3/8x3jppZcQDAbx3ve+F1/4whfw7rvvHvrEX/ziF/HUU0/h5MmT+NVf/VW89tpreb2o5LO6YjGcn5CjKoRag4UwBkKOIle9WI7C6c+jQy8u/bmf+zlMT0/jf/2v/4UPfehDePXVV3Hx4kX88R//8aFe5+zZs9tfNzcb+++P2tkyHVrQSQghxGn0WZRF4AEAXq8XH/zgB/Ebv/EbeO211/DJT34Sv/mbv7m9N3jnXYlVanZnu96tH0Q+ozCn9y3vbBhHSDEqhAum0+9jQo6qEH6HnR5DTs5+8uRJbGxsoL6+HgAwMzOzfWznQlMn+Xw+R8/v9XodPT8hR8U5h9vtdnQM9D4ixc7jcX5/o9Pvo0Ntp11aWsIzzzyD5557DmfPnkVVVRXeeustvPjii/jYxz4Gn8+HK1eu4Etf+hK6urqwuLiIX/u1X8vX2A/F5/M5WoPA6cCHkFzw+/2OLo6j9xEpdpxzeDwexxZ4FsINxKECj8rKSjz22GP4T//pP2F4eBipVArt7e34xV/8RXzhC18AAPzRH/0RnnvuOVy+fBnHjh3Diy++iJ/4iZ/Iy+APw+mufHTBJKXA7/cjEok4cm5FUXZN0RJSrCoqKhwLPHw+n+PTpkyWyTJxKSUGBwcduVurrKxEV1eX7eclJNd0Xcfdu3cd2V1SX19fEA2uCDmqWCyG4eFhR87d3t6O6upqR869xflVLjZhjKG21pkyy06dl5BcUxQFwWDQkXOHQiFHzktIrvl8Pkey4IqiIBAI2H7evcom8ACAYDBo++4Sj8eDyspKW89JSD45EUhXV1fTNAspKXV1dbafs76+3vFpFqDMAg9FUdDa2mrrOdvaqCkcKS1erxcNDfa1olcUZbvWDyGlIhAI2Jp98Hq9BZN9L6vAAzB+2HalihsaGmhRKSlJ9fX1tm3Ja21thaoeup8lIQWNMYaWlhZbsvCMMbS3txfMTXDZBR6AUSk13wFBIBDYrmtCSKlhjKGjoyPvAUF9fX1BzEkTkg+qqqKjoyPvAUFbW1tB1A/ZUpaBh6Io6OrqylvwEQgEaIqFlDy3243u7u68BR/19fW2TukQ4oSKigp0dXXl7fOira3N8V0se5XNdlozQgjMzMxgeXk5Z6+5dbGkoIOUi1QqhcnJSWxsbOTk9bZS0DU1NTl5PUKKQTwex8TERM7qe6iqira2toLc3FDWgceW9fV1TE1NHanlt8fjQVtbG63pIGVJSolIJIKZmZkj9VyqrKxEa2sr7WAhZUkIgcXFxSM3TA2FQmhsbCzYHmEUeGwSQmBlZQXhcBixWCzj51VUVKC2thZVVVWU5SBlT9M0RCIRLC0tHSqQr66uRigUgt/vp/cRKXvJZBLLy8sIh8PQdT2j53DOEQwGEQqFHO/FchAKPEzE43FsbGwgHo8jGo1C13VIKcEYg8vl2i7+UlFR4XjNe0IKkZQSsVgM0WgUsVgMsVhs+wLKGIPb7Ybf74fX60VlZSXtWiHEhJQS6+vr2++heDy+nVHc6vmy9XlUWVnpeNfZTFHgQQghhBDbFEd4RAghhJCSQIEHIYQQQmxDgQchhBBCbEOBByGEEEJsQ4EHIYQQQmxDgQchhBBCbEOBByGEEEJsQ4EHIYQQQmxDgQchhBBCbEOBByGEEEJsQ4EHIYQQQmxDgQchhBBCbEOBByGEEEJsQ4EHIYQQQmxDgQchhBBCbKM6PQBCCMkl94XnwLgCrrrBuAKmKFC2vub84TFFAeM7jyn7jnHVDc4ZGGdgjEFRORhn4IyBq3zzGKyPMQZFffh8zhlUlUPhDApncKsc6ubXxt+Vh18rxuPUHY9VTL5WOIOLcygM4Pu+NsajbP7p4ltfw3gch3GcMbgU4zGMAQozHsMYwMGgcIBh67HG/+/W8e3HAtuvvfU1kxKQAkwKQOg7vtYAKQBhfYxtHofQja+lAPQU5Ob3IHTIVMr4U+iQWmrz+wIyldz8vvHYh8f2PEcIiKQGKQSkLqAnU9tfS11AT2nbX4vNr4XY+nvK5HESekqH0OXDvyd1CCG3v5a6hNAFpNj5d+N5cvN5QpfQNQFdSugSSAq5/bUuJZICpsdScu/jHn79++KBs2/MHSjjQQghhBDbUOBBCCGEENtQ4EEIIYQQ21DgQQghhBDbUOBBCCGEENtQ4EEIIYQQ21DgQQghhBDbUOBBCCGEENtQ4EEIIYQQ21DgQQghhBDbUOBBCCGEENtQ4EEIIYQQ21DgQQghhBDbUOBBCCGEENtQ4EEIIYQQ21DgQQghhBDbUOBBCCGEENtQ4EEIIYQQ21DgQQghhBDbUOBBCCGEENtQ4EEIIYQQ21DgQQghhBDbUOBBCCGEENtQ4EEIIYQQ21DgQQghhBDbMCmldHoQhBBSiBKJBH7nd34Hn//85+HxeJwezj6FPL5CHhtA43MSBR6EEGJhdXUV1dXVWFlZQSAQcHo4+xTy+Ap5bACNz0k01UIIIYQQ21DgQQghhBDbUOBBCCGEENtQ4EEIIRY8Hg9+8zd/s2AX9xXy+Ap5bACNz0m0uJQQQgghtqGMByGEEEJsQ4EHIYQQQmxDgQchhBBCbEOBByGEmPjsZz+LJ598Es8++yySyeSuY7FYDD/5kz+Jp556Ch/84AcRDocLZmxbfud3fgeXL192fEyapuGTn/wknnzySfzrf/2vbRtPpuPbYve/115W43P6dy0fKPAghJA93n77bczOzuJ73/seTp48iT//8z/fdfyb3/wmTp8+je9+97v4J//kn+DrX/96wYwNANbW1nDz5s2CGNP//t//G21tbfje976HaDSK1157zbZxZTI+wP5/r73Sjc/J37V8ocCDEEL2+OEPf4if+ImfAAB8+MMf3vdh2d/fj2g0CgCIRCKor68vmLEBwH/+z/8Zzz//fEGMKZPxOjk+wP5/r73Sjc/J37V8UZ0eACGEFJpIJIKWlhYAQHV19b70dm9vL27evInTp0+DMYYf/ehHBTO2lZUV3LhxA7/2a79WEGOKRCLbvUbMxuv0+Jz499or3fic/F3LF8p4EELK1uzsLJ544ol9/0kpsbq6CsD4UAiFQrue99JLL+F973sfbt68id/6rd/Cf/gP/6FgxvZ7v/d7+PSnP53z8aRTU1NjOaZ0xwphfE78e+2Vbnx2/K7ZjQIPQkjZampqwve///19/33kIx/B3/3d3wEAvvWtb+G9733vvudufTgEg0FEIpGCGdvQ0BC++MUv4sMf/jAGBwfxpS99Kedj2+vKlSuWY0p3zC7pxuDEv9dhxgfk/3fNdpIQQsg+v/IrvyKfeOIJ+fM///MykUhIKaX81Kc+JaWUcmVlRX7kIx+RTz31lHzve98r7927VzBj2+nSpUuOjWlrPKlUSv7zf/7P5RNPPCFfeOEF28aT6fh2svPfay+r8Tn9u5YPVDKdEEIIIbahqRZCCCGE2IYCD0IIIYTYhgIPQgghhNiGAg9CCCGE2IYCD0IIIRn75Cc/CcYYfumXfmnfsX/1r/4VGGP45Cc/uf292dlZvPDCC+jp6YHH40F7ezt+6qd+Ct/5zne2H9PV1YXf+73fs2H0pBBQ4EEIIeRQ2tvb8ad/+qeIxWLb34vH43j55ZfR0dGx/b0HDx7g0qVLeOWVV/Diiy/ixo0b+Nu//Vs8/fTTjpYoJ86ikumEEEIO5eLFixgZGcFf/uVf4tlnnwUA/OVf/iXa29vR09Oz/bitDMgbb7yBioqK7e+fOnUKzz33nO3jJoWBMh6EEEIO7V/8i3+B//7f//v23//oj/5oVzARDofxt3/7t3j++ed3BR1bgsGgHcMkBYgCD0IIIYf28Y9/HN///vfx4MEDjI2N4Qc/+AH+2T/7Z9vHh4aGIKXE8ePHHRwlKUQ01UIIIeTQ6urq8NGPfhQvvfQSpJT46Ec/irq6uu3jW0WxGWNODZEUKMp4EEIIycpzzz2HP/7jP8ZLL720b81Gf38/GGO4c+eOQ6MjhYoCD0IIIVn58Ic/jGQyiWQyiQ996EO7joVCIXzoQx/C7//+72NjY2Pfc0uiyyrJCgUehBBCsqIoCu7cuYM7d+5AUZR9x//Lf/kv0HUdjz76KP7iL/4Cg4ODuHPnDr761a/i8ccfd2DEpBDQGg9CCCFZCwQClse6u7tx7do1fPGLX8Sv/MqvYGZmBvX19bh06RL+63/9rzaOkhQSJrdWABFCCCGE5BlNtRBCCCHENhR4EEIIIcQ2FHgQQgghxDYUeBBCCCHENhR4EEIIIcQ2FHgQQgghxDYUeBBCCCHENhR4EEIIIcQ2FHgQQgghxDYUeBBCCCHENhR4EEIIIcQ2/3/LscNQuIPO5AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAHNCAYAAABRgXJWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACRHElEQVR4nO39eXQk13kffn/vreod3Wjs+zrA7PsMh8OdFEmJESVRi5m8saJIoY+VnFBUFitHluLldd4jW+KxE0e/18mJX9kxXzmv7J8sWbFFS1REihT34cxwOPuCwQz2HWhsvVbd+/5RAAZLdaPR6K7q5fmcwzOYru6uy0EvTz333udhUkoJQgghhBALcLsHQAghhJDSQYEHIYQQQixDgQchhBBCLEOBByGEEEIsQ4EHIYQQQixDgQchhBBCLEOBByGEEEIsQ4EHIYQQQixDgQchhBBCLEOBByGEEEIsQ4EHIYQQQixT0oGHruv4xje+kfHjo9EoPvnJT2Lnzp04fPgwnnjiCdy+fTt7AySkAGz3fQQAX/7yl9He3g7GGC5evJilkRFSfLLxfrNbSQceFy5cwN/8zd9s6zm++MUv4tq1azh37hw+9rGP4Ytf/GKWRkdIYcjG++hXfuVX8MYbb6CtrS1LoyKkOGXj/Wa3kg08Ll++jCeffBJDQ0M4fPgwfvd3f3fLz+F2u/HRj34UjDEAwMmTJ9Hb25vtoRKSt7LxPgKABx98EM3NzVkeHSHFJVvvN7updg/ALnv37sWnPvUp7N69G1/60pey8pzf/va38fGPfzwrz0VIIcjF+4gQYq5Y3m8lm/EAgNOnT+P48eMbbn/ggQdQXV1t+t/AwIDpc/3+7/8+bty4UfBzb4RsVTbfR4SQ1JK93woJk1JKuwdhB03TUFFRgYmJCbjd7m091x/+4R/ir/7qr/Dzn/8cwWAwOwMkpABk830EAO3t7fjxj3+M/fv3Z2F0hBSXbL/f7FKyUy2Dg4Pw+/3b/uX95//8n/G9732Pgg5SkrL1PiKEbK5Y3m8lO9XS3NyMgwcPYteuXfj617+e0XMMDg7iN37jNxAKhfDII4/g8OHDuPvuu7M8UkLyVzbeRwDw7LPPorm5GYODg3jsscfQ1dWVxVESUhyy9X6zW8lOtRBCCCHEeiWb8SCEEEKI9SjwIIQQQohlKPAghBBCiGUo8CCEEEKIZSjwIIQQQohlKPAghBBCiGUo8CCEEEKIZSjwIIQQQohlKPAghBBCiGUo8CCEEEKIZSjwIIQQQohlKPAghBBCiGUo8CCEEEKIZSjwIIQQQohlKPAghBBCiGUo8CCEEEKIZVS7B5CvpJSIxWKIRCLQdR1SSjDG4HA44Ha74XQ6wRize5iE5DUhBKLRKKLRKHRdBwAwxuB0OuHxeKCqKr2PCNmErusr7yMhBACAcw6XywW32w1VLayv8sIabY4JITA3N4fp6WlEIhFIKZPelzGGsrIyVFZWoqysjD48CVmi6zpCoRBmZmYQjUZT3pdzjkAggMrKSng8HnofEbIkkUhgZmYGMzMzSCQSKe+rqiqCwSAqKirgcrksGmHmmEz17VoipJSYnJzExMTESjS5Faqqoq6uDsFgkD44ScnSdR3j4+OYnp5OGbQn43K50NDQgLKyshyMjpDCEI/HMTo6irm5uYwe7/P50NDQALfbneWRZU/JBx6RSASDg4OIxWLbfi6fz4empiY4nc4sjIyQwjE/P4+hoSFomrbt5woGg2hoaICiKFkYGSGFQUqJmZkZjIyMZBS4r1dbW4vq6mpwnn9LOUs68JiZmcHQ0FBWn5Mxhra2NrpqIyVBSomxsTFMTk5m9XlVVUVHR0dBpI0J2S4hBAYGBjA/P5/V5/V4PGhra8u7NSAlG3hMTU1hZGQkZ8/f1tYGv9+fs+cnxG5SSgwPD2NmZiYnz885R2dnZ16njAnZLiEE+vr6sLi4mJPndzqd6OzszKvgI/9yMBaYm5vLadABAH19fYhEIjk9ByF2mpiYyFnQARgfyLdu3crK9A0h+UhKiYGBgZwFHYCxZuT27dsZrV/MlZILPDRNw+DgoCXnGhgYyKtfNiHZEg6HMT4+nvPz6LqOoaGhrMx5E5JvQqFQ1qdXzESjUUxMTOT8POkqqcBDSomhoSHLgoF4PI6xsTFLzkWIVYQQlgXvgLFwNRQKWXY+QqwQj8cxPDxs2fkmJiYQDoctO18qtgYeP/7xj7Fr1y50d3fjO9/5Ts7PFw6HLYkuV5uamtp0DzYhhWRmZgbxeNzSc46NjVHWgxSViYkJy1/T+XIhbFvgoWka/v2///d45ZVXcPbsWXzrW9/C9PR0Ts85NTWV0+dPJtf/X4Rsx1Y+/KSUtryPNE3LuK4BIbm21QBiucie1RYXF7NSOmK7bAs8Tp06hX379qGpqQl+vx8f/ehH8dJLL+XsfIlEwrYPrunpaVrrQfJW7Bf/C/rwjbQ+PBcXFy3Pdiyz68KBkM3IuSnE3vwB9Kn0yjPMzMzYlsHLh/dR1gMPIQR2796Nr371q2tuf+mll+B0OvH9738fADA8PIympqaV483NzVmvqbFaLlcNb2a5zj4h+UjOTSB+6seI/eIvNw1AFhYWLBzZWuFweKXfCyH5Rkz0I/76/51WAGL1lH++nHtZ1jf2cs7xta99Dc899xx+8zd/ExUVFfjggw/w9NNP4/d///fx9NNPAzBPTeWy3LjdW1ujM+NwzdEcNclfcm4S8VM/BgtUw7H7JHhD14b3pN2L06ITQ3CDgg+SX2T4TjZdTPQjPtEPXtMKdfdJKFVNa+8rpa3fR4lEArqu21oZOCcVRT772c/i937v9/Dtb38bv/Zrv4Ynn3wSn/vc5/CVr3xl5T5NTU1rMhyDg4O4++67czEcAPZ/YIrRXsQHPrB1DISkI1kAYvcHJgDovecQH79p6xgISUeyACSRSNg+9R6JRGytrp2zyqX/43/8D3z9619HU1MT2tvb8bd/+7drIixN07Bnzx68+uqrCAQCOHr0KN555x1UVVXlYji4evWqrYWIasIjCAxftO38hGRqOQCRtR24evWqrWNpnu2Ba+KWrWMgJBPLAUjUHcStW/a+hpuamlBRUWHb+XO2uPSzn/0swuEwpJT43ve+tyGto6oq/uiP/giPPPIIjhw5gv/wH/5DzoIOYOurjrN/fltPT0jGljMg2gcv2/9CpvcRKVDLa0Bw+7zdQ7H9+zBnxdu/9KUvAQAmJyeTziV94hOfwCc+8YlcDWENu9vV23x6QjLGgrVw7L4HsroVsDnjQe8jUqh4XQccu08i4vQDNmc87P4+zEnG47d/+7fx4osv4p133oGmafizP/uzXJxmSxwOh63npxbfpNCwYC2cJ5+C66FfhVLfCUVRbG+xzVhJFVsmRYDXdcD10D+F655PglfU2/5dBNj/fZj1jMd3vvMd/NEf/RFeeeUVHDp0CP/23/5bPP/88/jiF79o6/+s1+u1dWEcr98BZ8sO285PSDLxt3645u/LGQ5e17HmyogxBrfbbetCbWXHUTi7Dtl2fkLMyPAsEudeXnPbcoaDV9Svud3hcIBzbusCU4/HY9u5gSwHHj/5yU/w7LPP4nvf+x5OnjwJAHjuuefwh3/4h/jud7+LZ555Jpun2xK7/6HdFTVQvF5bx0BIKskCjtW8Xq+tgYenptH2rAsh64nZyZWfkwUcyxhj8Hg8ttWWcjgctmfgsxZ4nDlzBk8//TSef/55fPrTn165PRAI4LnnnsM3v/lNfP7zn7ftf9jn89lyXsCYZnG73badn5BUWLDO+KBMEXAsKysrw+TkZMr75IrX66Wgg+StzQKO1QKBgG2BRyAQsOW8q+VsO20+GhgYwOzsrOXnrampQV1dneXnJSQdUsq0F5tJKXHjxg1byqa3tLSgvLzc8vMSspmtvIcAo5r11atXbdld0t3dDZfLZfl5V8vZrpZ8VFVVZUvgUVlZafk5CUmXGLsNfei6sWWE8aU/2Zq/s1U/1ypeDFr80aGqal5cqRFihjEG7dZ5iOmRtN9H1Y4yTMStzeD5fD7bgw6gxAIPj8cDv99vaa366upq21cQE5IKD9YifvofAJFGKXKHG/4H/wmcQ2OWZj3q6+tt3wJISCosUA39wqvp3ddfhYp7PoWp3tuWLjKtr998GsgKJTVhyhhDU1OTZetMXC4XamtrLTkXIZlibh+Ult1p3ddx5FEwKdDqVy0rJhYIBGiKheQ9paoRrCKNKXXVAceRx6EmImgJWJd9qK2ttX2TxbKSWuOxbG5uDv39/Tk9B2MMnZ2defOLJsSMWJiBduM09MGrawMJxgDVCaY6wBxOQHWAu32ANK7OeG07pr0NGBsby+n4VFVFV1cXVLWkkrOkwOjTI9CuvwcxfnvtAc7BVOP9w5bfTx7fSnaRtx3AUFTB3NzcxifNIo/Hg87OzrzJGpbkuzkQCKCxsRHDw8M5O0draysFHSRvibkpaDfegz50A0YdcgburzA+IB1OMMXko2Ep6ABXwBt2otrhgqZpmJqayskYFUVBR0cHBR0kL0kpIaYGjYBjctC4kSvgZeV3Ag2z7PrylKbLB17dhmYAfX19Odvl4nK50NbWljdBB1CigQdgLPjknGNwcDCrz8sYQ1tbm62d/whJRoTGkbj+HsTo+g6vRraDuzevNcNrO8Ccxvbw+vp6cM4xMTGR1XE6HA60t7fnxUI4QlaTUkJM9BkBx/TI2oNCBxQV3LX5RafStAuMczAAbW1tGBwczHrmw+PxoL293fa6HeuV5FTLatFoFIODg4hGo9t+rrKyMjQ2NsLpdGZhZIRkT9JU8DpKdaMxtZL0Dg6oBx810serLCwsYHBwMCsdoCsqKlBfX593H5aktEkpIUZ7kbj+HuTsePI7cg6lpgmMp3j9egJQ9z20JgshpUQoFMLIyEhWFpzW1dWhuro6rzIdy0o+8ACMX/jU1BQmJiag62ms7F/H4XCgrq4O5eXleflLJqXJNBWcAisrBy8LpnwN86Y9UBq7TY/puo6JiQlMTU1lVJ/A7XajoaHB1mJ/hKwnpYA+3APt+nuQ85tNKzLw8kpwrz/lvZTuu8GD5gtRE4kERkdHMy79UFZWhoaGhrzOFlLgsYqUEvPz85iensbi4mLKD0/OOcrKylBZWQmfz0cBB8kbKVPBZjgHD9Zsnh5WnVAPPma+/mMVXdcxOzuLmZmZTfsjKYqCQCCAyspKWhNF8ooUOvTB69BuvAe5GNr8AYoDSmUtmJq6fALzVUDZc/+m3xmapmFmZgYzMzObbl13OBwIBoOoqKgoiIw7BR5JSCkRj8cRiUSg6/pKZTpVVeHxeOBwOCjYIHkl7VTwam4vlIo6MGz+McBb9kGp31qjQyklotEootHoSjaRMQan0wmPx0MLR0nekboGfeAqtJ7TkOH01lywsiAUfwWQxvtI2XUPeKBmS2MSQqy8j5anYTjncLlccLvdBTctSYEHIQVua6ngJYoDalM3kIggnQ9LOFxGtiPVvDUhBUxqCej9l5DoOQNE09xh4vJBbWgHYundn/mroOy6t+QvWulyg5ACteVUMGAEEO0HwZiEnE/V7I2B13cai1GFDt6wk4IOUpSkFod2+wK0nrNAPPXU4DLm8UPpOAhE54FIiqwIV8Fr2yFGe4y/Nu0u+aADoMCDkIJjpIKvQOs5k3YqGE431B1HodS0QO87D5nqA9bhhrLjGLi/CswTgD50FbymNTuDJyRPyEQMWu8H0HrPAYn0djUyXznU7uNgvnKI2+cBkWIXlzcAdcdxMHcZAAkZngX3V2Vl7IWOploIKRCZpoIdXUfBW/dBTg9CDFxKWeqcBWqgdB4Fc9xZES/Dc2BeatBGioOMRaD1noN26wNAS6/fEPNXQu2+C7xhB+TgFYjxWynvz2vawFv3r2QJpRBAPLwUhBAKPAjJc1KLQ7t1AdrNraWC1a5jUFr3AoxBv30ecmog5WN4027whm5KBZOiJKOL0G6ehXb7AqCnV2+GldfAsRRwQItDv3k69ToqrkBpPwRe1ZylURcnmmohJE9lngq+C0rzLjCuQMYi0HvegwyHkj/I4YLSeQw8UJ2VcROST0R4HtrNM9D7LqXXgRkAq6iDY+cJ8Np2MMYgF0PQet5LHfh7/MbUiid1DQ9CgQchecdIBb8P7db5LaeClcZuMG40nRbzU9B73kv5HMxfDWXHUTCHOytjJyRfiMUQtBtnoA9cudNnaBO8qgnqzhPg1c0rmT8xOQD99gcpn4NVt0Jp3b9pjRtioH8lQvLEdlPByx+URgGx2xD9F1Ou5+CNO8Ebd9HUCikqYn7aaIA4eB1pbRUHwGtaoe68C0pV08ptUgqIgcsQY70pHqhAaTsAXk2Lr7eCAg9CbCbC89B6zkDvzzwVvEwKHXrfBcjJ/uQPVlQonUfBg/XbHToheUPMThgBx3BP2o/h9R1wdJ8Ar1hbvlwmYtBvnkm95dzphdp9F5i3PNMhlywKPAixSbZSwctkPGqs51icSf4E7jKoXSfAPLS6nhQHMTNqdFweS73TZDWlsRtq93Hw8o0VRGV4FtqNUynXcxhTlMfW7P4i6aPAgxCLZSsVvP459ZvvAYlY0udgwXoonUfAlNS9JAgpBPrUkNGPaCJFdm81xqA07TICDn+l6V3E1KCxniNF5pHXdYK37AVjPJNhE1DgQYhlMksFdxprOCrMO1kCgJjog953ntZzkKJnrF8agHbjFMTUcHoPYhxK6x6oXcfAfcHkzzt4GWL0ZurnaT8EXt2y9YGTNSjwICTHMk8F3wVennyLqxQCov8CxERf8ifiirGeo6JhK0MmJK9IKSHGbiNx4xTkzFh6D+IKlLb9ULuOgqfY4iq1uLGeY24i+XM5PVC77gJLEriQraHAg5AcyUUqeJlMRKH3nIZcmE5+J5cPavcJqitACpaUEmKkx+i4PJeqt9AqigNq+wGoO46AuX2pnz88B63nFBALJ70P81dB2XGc1nNkEQUehGTR9lLBx8F9m6+QFwszRn2OFEXFWHktlM5jYCqt5yCFRwoBffi60XF5IcVi6dVUJ9TOQ1A7DoO5PJveXUwPQ7/1fur1HLUd4C37VmrjkOygwIOQLMhlKng1MdG/tJ4j+S4Y3tBNXTBJQZJChz5wFdqN05Dh2fQe5HBD3XEYasehtLISUkqIoasQIzeS34lxKO0HqT5HjlDgQcg25DoVvHIeISAGLqVuTsUVKB1HwCsb0xsHIXlC6hr0/ktGx+XIQnoPcnmh7jgKtX0/mOpM7zxaAnrvGcjZ8eR3crihdN0FXlaR3jjIllHgQUgGpBDQh65Du5G7VPDKubQE9JubBDYur1Gfg7rIkgIitQS0vgvQes6mXGexGnOXGQ0Q2/ZtqUS5jC1Cu/4uEE0e2LCySihdx6mFQI5R4EHIFliRCl5zvngE2vV3gMh80vuwQI1RzCjNqz5C7CYTMWi3zkPrfR+Ip9kA0RuA2n0cSvPuLfdEEYsh6NffSdm3iNe0L7Wyp/UcuUaBByFpsCoVvOac4VnjCi3FIlJe3wXevIfWc5CCIONRaL3noN36IGWxu9VYWYURcDTtBOPKls8pQqPQb55JvoiUMShtB8Fr2rb83CQzFHgQkkLGqeDuY1Bat5YKXk3MjkPvOQ2IJM3iuAKl/TB4kkqmhOQTGQtDu7nUcVlPpPUY5q8yqvU2dmVcJVQfvwXRdyH5HRyupfUcqbevk+yiwIMQE9tKBbfsyejKbJmY6DfKNicrp+5wQe0+CZbG1ltC7CQjC0jcPAu972L6HZeDtUYDxLqOjDN5aVUi9ZYbdW6c6a+3ItlBgQchq2wvFbxrW/PDUkqI4WsQw9eT38njh9p9N5jLm/F5CMk1EZ6DduM09IHLgEizAWJlg9EAsaZ1W1OHUujQe9+HnEleR4eV1xpFwTLMSJLtoX91QmBfKnjl/EJAv30OcmowxfmqoXTdRUXBSN4SCzNGwDF4NWXvoNV4dQvUnXeBVzVte62S1OLQb5xKWdGX1bRBaTtATd5sRIEHKWl2pYLXjEFLGO3s55Nvl2VVzVDaD9OKe5KXxNyU0QBx6AbS7rhc1w61+y4oldnpIySji9BuvANEF5Ofs2kPeEMXLca2GQUepCTZmQpeTcYixodliu2y1FmW5CsRGjcaIKZaS7EOb9gBx867wMtrszeOhRnoN95Nvl2WMaO4XlVz1s5JMkeBBykpdqeCV9t0uyxjUNoOgddQ2WaSX/TpEWjXT0GMp+iMvAaD0rTTaIAYqMrqWMTMCPTes8m3yyoOY+dKIHmnZ2ItCjxISciHVPCa8cyOG43ekn1YcsX4sMziVSEh2yGlhJgaNDouTyZfi7QG41CadxsBR1kw62PSx25B9KfYLuv0QN15kjo05xkKPEhRy5dU8JoxTfRBv30eybfLuqHuvBvMS9tlif2klBDjfUbAMTOS3oM4h9K6D2rXMfAclPGXUkIMXIYY22S77M67qfx5HqLAgxSlfEoFLzO6Yl6DGNlsu+zJLfVyISQXpJQQo71GA8RUTdVWU1Qobfvh6DoK5i7LzbjS2i5bZ7QRoO2yeYl+K6RoZJwKbtkNtSs3qeCVsaWzXTZQDWUHbZcl9pJSQB/ugXb9Pcj5qfQepDigdhw0Oi7nsMZMOttleU0bOG2XzWsUeJCCl4+p4DXj0zVju+zcRNL7sKoWKO2HaLsssY0UOvTBpY7Li6H0HuRwQe1caoDozO2UhoxHoF17O2V3Wd68B7yetsvmOwo8SMHK11TwalJLQL/xbuortMZd4I076cOS2ELqGvSBK0YDxPBceg9yupcaIB7YcsflTMjoohF0xJP0S2IcSsdh2i5bICjwIAUno1Sw6oDacQhq52HLyo1LLQ792tuQ4VnzOzAGpf0QeDVtlyXWk1oCev8lJHrOpCy6tYbLB0fXUSht+y2bEpSReSPoSLbtXHFA6T4B7s/N2iySfRR4kIKR76ng1WQianxYJisMxlUoXcdpuyyxnNTi0G5dgHbzLBCPpPUY5vFD7ToGpXWvpQs2ZXjWeB8lKwzm9Bo7V2i7bEGhwIPkvcxSwR6oO45YlgpeTcbCxodlLMlVpOqEuuse2i5LLCXjUWi3PoDWey79Boi+cqOWTfOubXVczoRYmIZ+/d3kvZM8fuN9RNtlCw4FHiRvFUoqeDUZXViai05yJelwGx+WdIVGLCJj4aWOy+eTZw7WYf5KI+Bo7LZlwbOYmzRKoCcpsMe8QSi7ToKpTotHRrKBAg+SdzJOBXcfh9Kyx7a9+zI8t5QWTnI16fIaQYfLZ+3ASEmS0UVoPWeh9V1IvwFieQ0c3XeBN+ywbbGzCI0ZVX2leQ8lVlYJZefdYAptOy9UFHiQvCETMePKrEBSwauJxRD0a28nTwu7y4ygw0mFwUhuifA8tJ4z0PsvJS/Jvw6rqDc6Lte22bq7SkwPQ+89k7SPEgvUQOm6iwqDFTj67RHbFWIqeDUxP2XMRYskV5XeANSd91i+1oSUFrEQgtZzGvrA1aTZgvV4VZPRALG6xfbt3GKyH/qtc0mPs2C9UY3UxgsMkh0UeBDbFGoqeLXNmr0xXwWUnSepGinJGTE/bTRAHLyOtBsg1rYZgXtVY24HlyZ9/BZEX/Jmb6yyCUrHEdsvMkh2UOBBLFfIqeDVxMwI9Jtnks9F+6uhdJ+gtDDJCTE7YTRAHOlJ+zG8vtMI3CvqcjiyrdFHbkAMXkl6nNW0QWk7mDfve7J99IlILCMWQ9BuZJIKPgFe3ZxXHzxiahB67/tIdoXJyuugdB2ntDDJOjEzagQcY7fSfozS2A21+y7w8uocjmxr0mmayOs6wVv25dV7n2wfBR4k54ohFbya0db+g6THWUUjlM6jlBYmWaVPDRkdlycG0nsAY1Cadhkdl/2VuR3cFhlt7S9BjPUmvQ9v3AneuIuCjiJEgQfJmYxTwTvvAg/mTyp4NX30JsTApaTHWVULlI5D1BmTZIWUEmJiwAg4ppO3gV+DcSite40GiL78K1InpYR++wPIyf6k9+HNe6E0dFk4KmIlCjxI1hVLKng9ffg6xNDVpMd5bTt46wG6QiPbJqWEGLtlNEAMjaX3IK5AadsPtesoeJ4WqJNSQO99H3J6KOl9eNsBKLUdFo6KWI0CD5I1xZQKXk8fuZE66KjvAm/eQ0EH2RYpJcRIjxFwzE2m9yDFAbX9ANQdR8Dc+VucTkq5adChdBwBr26xcFTEDhR4kG0pxlTwevrozZSr7nnTbiiNOy0cESk2UgjoQ0sNEBdm0nuQ6jQaIHYeyvvCdCvTK8mCDsagdB4Dr8y/NV0k+yjwIBnZTirY0XW0YHqV6OO3U67p4C37odR3WjgiUkyk0KEPXIV24zRkeDa9BzndUDuPQO04WBBF6aSUEP0Xkq/pYBxKV/6u6yLZR4EH2ZJiTgWvJyb7IfrOJz2utB8Cr2mzcESkWEhdg95/yei4HFlI70EuL9QdR6G27y+Y5mhSSojByxDjt83vwBUo3XeDB/J3bRfJPgo8SFqKPRW8npgaSlm+mbcdpKCDbJnUEtD6LkDrOQvEwmk9hrnLoHYfg9K6r+CK0YnhaxCjN80PMg6l+wQFHSWosF7FxHKlkApeT8yMQO89m/Q4b9kHpbbdugGRgicTMWi3zkPrfR+IR9N6DPMG7nRcLsBCdPrwDYjhJMXBGFsKOmqsHRTJCxR4EFOlkgpeT8yOQ795GskKnfGmPVDqd1g7KFKwZDy61ADxg/Q7LpdVGAFH066CLUKnj96EGEq2IJtB2XEcvLzW0jGR/EGBB1mj1FLBq4m5Ceg3TiVtyc0bd0Jp7LZ4VKQQyWgYWu/7RsdlPZHWY1ig2iie17CjoAvQbbYgW+k8Cl7RYOGISL4p3G8JklWlmApeTcxPLQUd5j1keP0O8MZdFo+KFBoZmUei5yz0vovpN0AM1hkBR11HwdeB2XRBdsdh8KomC0dE8hEFHiVOxiPQej+A1nsO0OJpPcZIBd8FpWlnwaaCVxMLM9Cvv5v0i4LXdoA37y34LwWSO2Jx1ui4PHAZEGk2QKxshLrzLvCa1qJ4baW1ILu61boBkbxFgUeJKuVU8GoyPAv9+juA0EyPs+pW8Nb9RfHFQLJPLMwYHZcHryadoluPV7dA3XkXlOrmHI/OOrQgm2wFBR4lptRTwavJyDy0a28nDbxYZROU9kNF9f9MskPMTRoBx1Dylu7r8bp2OLrvAq8srvUNIjRGC7LJllDgUSIoFbyWjC5Au/ZW0uklVtEApfNI0f1/k+0RoXEkrp+CGE3ezn093rDDCNyLcBeHmJuA3vMeLcgmW0KBR5HLKBVc0wJ15wkoRboITMbCRqYjyfZGVl4HpfNY0Uwnke3Tp0eMfkTjfWk+gkFp2mk0QAxU5XRsdqEF2SRTFHgUKUoFm5PxiJHpiEdMj7NADZSu40WxaJZsj5QSYnIQ2o33ICYH03sQ41BadkPtOg5eFszp+OxEC7LJdlDgUWQySwV3wbGz+Av6SC0B7fo7SeuTMH8VlK67Cn5rMNkeKSXEeB+06+9BzIyk9yCu3Om47A3kdoA2k9EF6DfepQXZJGMUeBSJjFPBO4+D+4szFbyaFDr0nlNAZN70OPNVQOm+u6ALoJHtkVJCjPYicf0U5OxEeg9S1Dsdl91luR1gHpCJqBG8J1sbRQuySRroU7aAUSo4PVJK6LfOQc5Pmd/BWw5l50kKOkqUlAL6cA+06+8lf42spzqgdhyC2nkYzOXN7QDzhNQ16NdPJc8Y0oJskib6pC1AlAreGjF4BXJ6yPyg2w9150kw1WHtoIjtpNChD14zGiAuhtJ7kMNldFzuOATmdOd0fPlESgH95hnIcMj0OCuvpQXZJG0UeBSQTFPBatsBqF1HSiIVvJ4+dgtitMf8oMNtBB0F2EGXZE7qGvSBK0YDxPBceg9yeqDuOAK1/UDJvV6klND7LkDOjpkeZ74glB20IJukjwKPAkCp4MyImRGI/gvmB7kKdefdYC6PtYMitpFaAnr/JSR6zgDRxfQe5PbB0bXUALFEs2Ji5AbkRJK1Yy4vrY0iW0avljxGqeDMiYVp6DfPmB9kDEr3XWDecmsHRWwhtTi0Wxeg3TybdBv1eszjv9MAsYS/VMVkP8TQVfODqpMyhiQjpfuOymOZp4KPQu04AKY6czvAPGds90te2EjpOAIeqLF4VMRqMh6FdmupAWKSYnHrMV/QCDiad5X8tmoxOw799gfmB7liZDpKcPqWbB8FHiaklIjFYohGo4hEItB1HVJKMMbgcDjgdrvh8XjgcDiyuoKbUsHbt9l2P968B7yqeJpz5TMhBGKxGCKRCKLRKHTdKDbFGIPT6YTH44Hb7YbDkd3XrYyFofWeMxogpttx2V+51HG5mxZIYql5YopS6ErnMfCyCotHVZp0XUc0Gl35Tyy1vOCcw+VyrXwfKUrhBMoUeKwSj8cxPT2NmZmZlQ/JVBwOByorK1FRUQFVzfyfMqNUsDcAtetYyaeCV9tsux+vaQev77J4VKUnEolgenoaoVAIMo0y/W63G5WVlSgvL9/Wh6eMLkLrOQut7wKgmxe3Wo+V18Cx8wR4fSdtA10iY2EjeE9WlbTtIHhFvcWjKi1SSiwuLmJ6ehpzc+llvX0+HyorKxEIBPL+tcxkOp8MRU7TNIyMjGB2djbj56iqqkJdXR34FlZ2Uyo4e6QU0G+8l3zlfbDeqEqa52/IQhaLxTA0NIRw2Dzw2wxjDHV1daiqqtrS70mE540GiP2X0u+4XFFvBBy1bfSaWEVqcWhX3gCiC6bHeUM3lOY9Fo+qtCwuLmJoaAjxeHrZuvVUVUVDQwPKy/N3DVtJBx5SSszOzmJ4eHglfbUdqqqiubkZZWWp5z0zTgXvPAGlsYtSwesY2/3OJ115z3wVUHbdQ5mhHJFSYnJyEmNj5kHfVrndbjQ3N8PtTr04WiyEoPWchj5wNel6nvV4dTPU7rvAq5sp4FhHCh369XeS7pxjVc1QOqhAWK7ouo7R0VHMzMxk5fn8fj8aGxuzPpWZDSUbeEgpMTo6iqmpNLenbkFDQwOqqjaWIadUcG7ow9eTr7x3+aDuuZ9W3ueIEAL9/f1YWDC/Qs4UYwytra3w+/0bzzk/tdRx+TqANDsu17YZaziqGrM6zmIhpTQKhM0Mmx5ngWoo3SepVkeOJBIJ3L59G7FYepnvdKmqivb29k2DeKuVZOAhpcTIyAimp6dzdo76+npUV1cDyCwVzCvqoVIqeFNish/6rXPmB1WnEXTQyvucEEKgr68Pi4tpLoTOQFtb20rwIWYnkLj+HsRIkoJwJnh9Jxw77wIP1uVqiEVB778EMXbT/KAnAHX3fbR4PUcSiQR6e3uRSCRy8vycc3R2duZV8FGSgcfk5CRGR0dzfp7W+hq4By9QKjhHxOy40SXT7CXMFSi77qWV9zk0ODiIUCiU03MwxtBZVwl+8zTE2K20H6c07YTafRw8UJ3D0RUHfbQXYuCi+UGHG+reB8CcVGgvF6SUuHnzJqLRaE7Po6oquru782bnS8lNekejUUuCDgAYGR1D63BPWkGHnalgKaUxRqGv+U+u/CyMFthCrLvd7L76yv02PAcArA6mVn5mAFv6M8XtbNXtUupJF8ABAHwVkFOD0EOjAFcBRTXWeCz9vPbvCqBkd2t0sZubm8t50AEYr83x0RHUphN0MAalebcRcFDAmRYxM5I86FBUo0AYBR05MzExkfOgAzA2UAwPD6OlpSXn50pHSQUeUkoMDqbZxTULEuBYrGqHb+x60vsYqeAT4MHarJxTSgFoCSARg9TixuJVLQ6ZiBl/anEgsXSbZtyW7noTu63JazC2NohZTQhgdhxidnxrJ+CK8d9yYLIqSFnzd4cLzOFe8ycUtWQCF03TMDSUpOleDszDicqKRqhJ1h+A8TsNEH35u5I/38jwHPTes+YHGYfSdQKsxBpKWikSiWB8fIufUdswOzuL8vJyBAL2/05tDTw+9alP4dVXX8Wjjz6Kv/mbv8n5+ebn5y2JLlcbd9eig/caGYNV0kkFSykBPQEkVgUJiaXgQYttDCISceP+xS5V0LGdmcPl7MzSTqP1z5TymbmyMSBxrgpMHG5jgavDXfAL9Kanp9Oqc5NNY95GNK0PPLgCpW0/HF1HwTwbF6GS5KQWh9ZzKumaM6XjME1T5djERJqNPrNobGwMfr/f9oskWwOPL3/5y3jmmWfwwgsvWHK+XOxg2YxQnIjWdMA9dmNNKph5A0A8CjE3CcQjkPEIEI8u/RmBjEeBhLVBUkHYLOiwa8mS0IFYGHKpeFnKUaiOtYHI6j+dbiNYcXkt2/4rYhHwNJvlSSlteR9FXQHowXoooVFAcUDtOAi18wiYuzQbIG6H0eL+dPJCe817qbrvFslEHOA87fdsPB5PuzBYNsViMYTDYfh8PsvPvZqtgccjjzyCV1991ZJzxWKxnK6+T2XMXYfORgnm9QN6Avq1t9Ou30HWycegY6u0BKAlICPzAFIEKQ43mNsHuH1gLh+Yu8z4u8uX1R0Gc3/5LbgO3gfXwfs3DUDm5uYsz3Ysmwy0oam2FWrnIVp3sA1i4DLk3KTpMVbTBl6/w+IRFT4xN435F/8nPEcfgXPP8U0DkGzV6sjE9PR08QUeQgjs3bsXTz31FL71rW+t3P7SSy/h4x//OP7X//pfePrpp7N92k3ZFXQAgKY4IeECS7elfcFhd9ZHcL7yM1u5bel2YOlbdumrdiVQWPf31bcv3V/qGhCdT35+t8/4U2jGmhVdS3snUd5KRCETUWB+amNwojrBXEtByVJgYvxcZhzbQipVxqOInn4ZsfNvbhqA2Pk+WlB9YF27wbbRnqDUickBiLFe02OsrAJK6wHb0/CFSi7OIvz6jxA5+4tNAxBb30dZrrmTiay/gznn+NrXvobnnnsOv/mbv4mKigp88MEHePrpp/H7v//7tgQdgLGQx06aLpAPPWONLzC+lDlgkGArP6/sKlm1m0Qu/91sx8mG25ZOoC/9B7H03zbXnUgBLhZh9nEoAQjuBbTlbWJOgDmNV7aUuJNPkKv+Lo3nWvV3rPo7W75tJUha9Zh8sbxQeHEmyVoUBWAcknHjT3CAKQCST1WlE4BkWg49WxZvnIcrYn2KuihIPcX7iEEPJ6Cd+6XlwyoGInznomizAERKaev3ka7rSCQStlY0zcmlw2c/+1n83u/9Hr797W/j137t1/Dkk0/ic5/7HL7yla/k4nRpsTvw0CPhrP9rS12H1DRIPWH8qWmQ2tqfsfo2XSuc6YhljMGzax9YmflK7FjvdWjT5mnjnFAUMIcDXHWCORzGf2t+XvWnTVeOxll1QOpg637dUgiIWBQiGoGILEKEw2AOpzFHvXyfJAGIlNLyxdnrabcuQfRdsnUMhYipDnj2HgRzbqzgK4VA5OpFiLD9V8LFJFkAEovF0mqemEvRaLT4Ag9VVfHVr34VX//61/GDH/wAR48exbe//e1cnCptmmbvllFdpPdCE4k4ZCIOGY9DJhJLQYN5YFHwUwlpcLV2QEkSdMRHh60NOgBA1yF1HTo2/wJeCUIczlU/G3/nq/9uYQ8ZxjkUjxeKxwtU3CnrL7UE9HDYCEYiYeO/aGRNAOLYd49l40xGSInC3hNkA8bg3rEL3CToAIBY300KOnJofQCitdrfZM/u78OcVS5dWFhATU0Nurq68M4775guZvnIRz6Cs2fPYnFxEZWVlfjbv/1b3HXXXbkYDq5cuWLbojgAqJvqQYDHlgKKOMTSn+t/LriMRA6pNXVwt5kvdNNmQ4jeuGzxiHKE8VVBiQPc6QZ3ucBcbnCXG8zpsiV7IoVYyowYgQir70CfvxWC27fGoq7vLNT+Ivm9W8TV2glHrXkb+/jYMOIDt60dUClzOMGPfAgDLnu3Kjc2NqKystK28+fsE+RLX/oSAKM8ebIyrS+99FKuTr8B59zWwCMhGMKX37ft/IWGlwXgaukwPSaiUUR7kxdlKzhSQMZjkHGjQdSGVyljYE4XuMtlBCJLAclKUJKjuiCMcyheHxTv8kWDQHfkNhJMRYw7EeUuxLgLMe5EgjmS7zjK5phyfobiolbXJQ06tLkQBR1WcTjh3n8vXIceQFQyoNd8ga9VuM21hHISePz2b/82XnzxRbzzzjt47LHH8Gd/9md49tlnc3GqtDmdzpw14UmHQivx08acTrh37DL9QpW6jmjP1YKptpoVUkLGotBjUeiY3XCYOZzrApJV2ZIc9GZwSA0OXUOZfmehqQBDjLsQ5c6lP92IcWfWgxGeJ70mCgEv88PVmiR4jxVZ8J6vVgUc3GME8E6bpzkA4/vQTlmfavnOd76DL3/5y3jllVdw8uRJfOMb38Cf/umfoqenx9bFLGNjY7ZUilvWVFeLch8VO9qMFDrErbNJt87ylv1ggeyUly92UkqjXkw8AhkPA/HIUpGzRSC6iHRbymdKgCHC3YgoHkQUNyLcbeyy2YbOlma4HRTEb0YmohC9p83rBTEO3nkMzE3VXrNFnxnDwt/9f+7cYBJwrHb16lVb11ns3bvX1qxHVt/BP/nJT/Dss8/ie9/7Hk6ePAkAeO655/CHf/iH+O53v4tnnnkmm6fbEo/H3oJDHn8API/aEucjKSVEb4qgo2EnlPpOi0dVnKQQQGQeMjyLyNsvgnt9UMqyW0qZQ8InIvCJCJAwwpwYdyHC3QgrHkS4G/oW14u4/QHb08T5biV4T1KkUOk8Al7ZYPGoipuMLC3O3STgWObxeDA/n6wuUW65XC7b30NZCzzOnDmDp59+Gs8//zw+/elPr9weCATw3HPP4Zvf/CY+//nP29aW1+fzgTFmyzYmh8MBl8t8RTm5Q4zdhJw2bz7GgnXgTbssHlHxYpwDvnIwXzngr4Hz2CPg/kojOxKegwzPrvxnZEeycE4AbhGDW8RQoRlTRnGmIsKXMiKKG3GWfHomEKCgYzNSSui3P4AMh0yP84Zu8MomawdVChQV7iMPbxpwLCsvL7ct8Cgvt7+RYs52teSj4eFhTE9PW37ehoYGVFVVbX7HEiZmx6Fff8f8oLsM6t4HwBT7puqKWeLyW0b5dsaNCrNLRcfAORhXjOkRPbHUpDCGuK7DwQR4DqZqdPCVaZmI4kGUu1amZzo6Omwv9Zzv9NGbEAPmdU5YeS2U7rupMmkOSKEjce4VY1ciXyrQuOr9xBR1pfM14wokV9A7ryPBrL8Q37Vrl63LHgCbe7VYraqqyvLAgzGGYDBo6TkLjYwuQr95xvygokLtPkFBRy45PdAuvZHWXVl5DfRjH8ft4RE4ZAJuEYNLxOESMbhEDA65vZ1jCgTK9LCxcHVpeibKXYg7y+COVUI6VaOZHtlAzE1ADCTZauz2Qek8RkFHjjCuAFJA6/0grfsrTd0Idt6DiUlr6xCVl5fbHnQAJRZ4uFwuVFVVWdpds76+3rbppUIghQ7t5mnjitqE0nnM6D9CckbtOIDE5TeTditd4XDDde+n4PaVwzc3j8XFRSS4E6sTxorU4daj8IgoPHoEbhHbVmaEAfCIGDzRGMSNKQgAcJeBB6rByuvAyqspKIWxmNQI3k3+rbkKtetEVhsLko3UXSfSCjxYoArOuz6Kaq4iNDtr2W5Lzjnq6uosOddmSirwAIC6ujrMz88jHs99d1ifz2drkZZCIAavAOGNW0QBgDftAQ/mxxulWOkT/UhcemvzoAMMrpMfBy8LAgCamprQ09MDIdZWz9WZgkXVh0UsTYlICbeIwSMi8OhGMKJimxV3owsQ0QVg/LZR46SsCixYC15eB3gDJXdVL6WE3ptiMemOo2Ae2sGSK1JK6IPXkLj81uZ3drjguvdTYA4XFADNzc24detWzscIGFP+dm+jXVZSazyWRSIR9Pb25nShqaIo6Orqyou0Vr4SoVHoN06ZHmMVjVB2UGo4V/TxfiQuvwkxMZDW/R0HHoJj991rbpudncXAQHqPXyElHDJhBCEiAq8ehVNm8YrP4QIrrwMP1oIFasEc+fFBm0v68HWIoaumx3jTbiiNOy0eUWmQUqwEHHIuvSy66/7PQGlYW43ZilIP5eXlaG5uzpvP05IMPACjpHtfX19Ogg9FUdDR0QE3bZ9NSsYj0C6+aj7F4i6DuvdBS3uYlAIpJcREPxKX3oSYHEz7cUrzLjhPfsL0Q2t6ehrDw8PbGpcitaVA5M70TLY+HllZBVh5rTEtU1aRNx+82SLmp6BffQtmUyysvA5K94mi+3+2m5QC+sBVJC6/DTmf/rS9Y9/9cOy91+T5JEZHR3O2BMDv96O1tTWvXgclG3gARovvvr6+rJZSdzqdaG9vz5uUVj6SUkC/+hbkgslCX8aNoMNr3hiOZEaf6Efi4htbCjgAgPkr4X70cykXdM7OzmJwcDBrQTyTAkEnQ53PASzOGB/u2ahUqzrAArVGNqS8DsxZ2BcGUotDu/SaURhuPYcb6v6HwVT6HMoWKeVSwPEm5PzWNinwhk647vtM0i9/KSUmJiYwPj6ejaGuqKioQGNjY14FHUCJBx4AoOs6RkZGEAqFtv1c1dXVqK2tpVoDm9CHrkIMm5dr5m0HodS2WzugIiZCY4hf+CXEaJrzyIzdaVSoOOB+7HPggc0bWsXjcQwNDWFxcXs1PxhjaGhoQEXFneyElBKIzEPMT0HOT0HOTgBabFvnAQB4A+DldWDBWmOdSAG9b6WU0HvegwyNmh5Xdt8H7qct/NkgpYQYu434hdcgQ2kGBqveR8xbDvfj/xzMuXkRy3A4jMHBwW2vQVRVFU1NTfD783NtT8kHHssWFhYwMTGR0QdnIBBATU2N7dVRC4GYm4R+zXwRFqtogLLjeN5F54VILMwgcfEN6ANX0nuA0wPHrrugtOxB9Gd/DmgJOO/+GNTWvWmfU0qJUCiEyclJxGJbCwyWt53X1NRsmi2UUgLhWYjQOOTs2NLV5zY/xrgKFqg2CtWV14K587teiD52C6L/gukx3rQLSiMV28sGfWoYiQuvpb0WivmCcOy5ByxQhdgrfwlwBe4PfRa8wrxRnxkhBKampjA1NbXlsuqcc1RWVqKmpiavd1NS4LFOLBbDzMwMFhcXEY1GTdPHnHO43W6UlZWhoqKCFpCmSSZi0C69CiRMvpScXqj7HqItf9skowtIXH7b2NYn09g94vTAsesE1K4jK2n5+PlXAV2D88hjmY1BSkQiEYRCISwuLiYNQhRFgcfjgd/vRzAYzPiDUmoJyLkJyNlxiNCY+dTDVnnLwSsbwaua8m47t1ychXblddPfL/NXQ9l1DwXv2yTmppC4+Dr0ofQa6TFfEI6990Bp3WvU9AAQff37UJt2Qu08lNEYpJRYWFhAKBRCOBxOuu1WVVV4PB4Eg0H4/f6CyLhT4JGClBKxWAy6rkNKCcYYVFWF0+mkN/YWSSmh33gXctYkVcmYkRouo63HmZKJGBLXTkG7nrwmyhomAcfKc8UjgOpc+QDdLiHEyvsIMLIbTqczJwG7lNLYbhsag5wdh5ybTC8AS8UbAK9sAq9stH1bqtQ1Y11HzCQzqzqh7nu44Neu2EmE55G4/Cb0WxeQThaNlQXh2HPvUsCx9gtfRhcAly9r3xW6riMWi61sYeecw+l0Qi3AzucUeBBL6CM9EIPmVRV58x4oDd0Wj6g4SF2DdvN9JK68k96VvtMNx+67oe7YGHAUI6lrS+tCxiBC40B0YXtP6PHfCUJsWACt9Z6FnDJfIKx03011bzIk4xEkrr4L7cZZQGw+vWFkOMwDDrI5CjxIzomFGehX37izaHEVFqiBsvMkZZC2SEoBve8SEpfehAzPbf4AxQF153E4dp0o6ZLjMroIMbu0NmR2Mq0vmaTcfvCqRvDKRsCT+8JlYrIf+q1zpsd4/Q4oLftyev5iJLUEtBtnkLj2rvkU8HouLxx774XaeShrGcFSRIEHySmpJZa2/JlUxnS4jNRwCX8RbpWUEvpIDxIXXjemETbDONTOg3DsuRfMk19rFewmhYBcmIIMjUPMjietoJsWd5mxJqSyKSfVU2VkAdrl1wCxces/8wWh7L6frry3QAod2q0L0C6/CZlO92XVaUxN7jxeEpnCXKPAg+SMlBL6zTOQM+YFppRd94AHaiweVeHSp0eQOPcKxNRQWvdXWnbDsf8B8LKKHI+sOMh4FDI0CjE9bGzZzXSnjNu3Mh0Db/m2gxApdGiXXwciJpktRYW696G834WTL4zA/SYSH/wCcmFm8wdwBeqOw8ZOFZc39wMsERR4kJwR47eh9503PcYbdkJp3m3xiAqTjC4ifvGXSwveNsfr2uE88OCWtvCRtWQiDjkzbAQhcxOm04RpcXnBK5vAKhvBfMGMghC97zzE+G3TY8qO40aAQzYl5qcQP/dK2jVtlLb9cOy7D9xXnuORlR4KPEhOyPActMu/NN/yV1YJZfe9YIxSw6lIoUPred/oHJvG/DOvqIfj4ENQatssGF3pkFoccmZkKRMyvs0gpBG8qhnMF0zrIWJ6GPrN06bHeE0blPbMtmqWEpmIIXH5LWg3zqS1w0lp2AHHgQfByykbmysUeJCsk7pmBB1mOwgUh7Guw0XF1lLRx/oQP/fztJpPsbIKOA48CKVpJy3SzTEjCBldFYRkuFXXGwCvaQOvaknayE7Gwsb6KLPt0R6/0VqAFjgmJaWE3ncJ8QuvAWms4+BVTUbgXt1swehKGwUeJOu02x9ATvSZHlO6TtAUQApicRaJD36RVuEi5i6DY999UNoP0MJCG0gtsbQmZMgopZ1JEMIYWEUDeE2b0cxuVZl4/eob5usQuGIEHdTqPikxM4r4+z+HmNq8gSELVBuBe8MOCtwtQoEHySoRGoN+413TY7y2A0rbAYtHVBiknoB29RQSV9/dfIunohq1OHaeoEqveULqCciZsaUgZCyzIMThBq9uAa9pgwiNQAyal7tX2g+B19B0mhkZCyN+4ZfQb5mvLVvD5YXzwINQ2vfTtK/FKPAgWSO1BLSLvwAS0Y0HveVQ99xPqeF1pJTQh64bq+zTqMehNO+C4+DDtOAtj0ldu7M7JjRmugV2U0kyWKyyCUrnUboyX0cKYRTSu/TG5uuhGIPadRSOvfdRlVebFF6tVZK39IGL5kEHV6DuOEZBxzpidhLxcy9DjJtPS63GAtVwHnmUFo4WAKaoYFXN4FXNS0HI2FIQMppeEJIsqHB5obQfpKBjHX28D/H3X06rrg2vbYPzyKNpdVwmuUMZD5IVKadYqNX9GjIRQ+LSG9B6zm6+Q8LhgmPf/UaJc1rHUdCknoCcGoaY6INcmE5+R7Pfs5SA6gKv6wCvbqXF2Vjqq/LBK9AHr216X+YNwHHoQ1CauilwywMUeJBtk1p8aYplY4qTBaqh7KRumcv0kZuIn/kZZGR+0/uqnYfg2P8AFS4qQjKyADHZDzHRvzZLyJh5xkPKNUEqK681FqRW1JdcJlFKCa33HBLnXwO0eOo7cxWOPXdD3XUCTKH1UPmCAg+ybUkbV3EF6v5H6IsTS0XAzr0MfeDqpvflVY1wHnmMdv+UACkF5OwE9PHbQGg0raBjDcUBXt1sLDbNQpXUfCfmpxA//RLEpHmjvNVoPVT+osCDbIuYGYXec8r0mNJ2ELzEp1iklND7LyN+7pVNu8cytw+Ogw8bHS+L/AuErKUPX4cYMglKUwUd63kD4DXt4DUtRXd1L4UO7dopJC6/tek6GVoPlf8o8CAZSz3FQl1nxeIs4md+BjG2SYlmxo3OsXvuoYZ5JUiGZ5eq/Jp9FLOt74pRVKM4WV1nUfRw0adHED/906X+OSmsrIc6XHLTT4WGdrWQjOl9F8y3rnEVSvuhkg06pBRGqfMLvzSvOrkKr2mF89jj4P4qi0ZH8okUAtqtc+ZBh7sMyp77gdkJiIl+yNmx9J5U1yBGb0KM3gQL1oPX7wALVBfc+1FqCWMR9vXT2Kxhn9K2D86DDxdFoFUKKPAgGREzI5DT5l1SldZ9JbuuQ8xOIn76pxDTm1RMdLjgPPgwlA7aHlnKxMgNIDxrekzpOAyuOoGqJvCqJsh4BGJiAGKiD4il0codgAyNQg+NAp4AlPpOsKpmMCX/P/b1sT7Ez7wEuRhKeT/mDcB57CNQ6jusGRjJCppqIVsmEzFjisVkRTkrr4XSfXfJfZlKoUO78g4SV97etGql0tQNx5HHwKnkdUlLNcXC67ugtOw1f5yUkAvTxrbcqaGtTcWoDmMdSF1HXl4cyHgU8Q9+Af325p2Y1e5jxq4v1bzXDclfFHiQLdNunjHPdiiqsYvFWVo1BvSpYWMOerMCRm4fnEceg9q8y5qBkbwlhTCCjohJtVp3GdR9D6W1TkHqGuT0EMT4bfO+LkkxsMoGYxqmrDIvLhS0wWuIv//zTRu6sUA1nMefgFLVaNHISLZR4EG2JFWbbqXjMHh1q8Ujso/UNSQu/BLaDfN/j9WUjgNwHnyESjQTAIA+dBVi2LwRoLLnAfCyii0/p1iYgRi9aVwUbOVj3VsOpX4HWFWTLYsyZSyM+Jmfbd4YkXE49twDdc9JWjxa4CjwIGlLPcVSB6X7RF5cOVlBhMYRe/fHm2Y5mC8I5/GP0NY+skIuhqBdfh1mCyZ5QzeU5j3be/54FGL8FsTYbUDbpG/JaqoLvK4dvLbDsgBZH+1F7L2fbJrl4JWNcB5/ArycSp0XAwo8SNq0ntOQMyaLJhUH1P0Pl8QUi5QS2o3Txo6VlHPrzNgiu+9+6iBLVkihL02xmFSu9fiNdvdZupqXQoecGoI+ejPpAlZTjIFVNoHX78go85LW2PQEEudfM9oGpKI44DjwINSuI9RBtohQ4EHSknqK5Qh4dYvFI7KeCM8j/t6LEOP9Ke/HymuMOejKBotGRgqFPnjF2MmyAYOy9wFwXzDr51xZjDp6E3J6BJttTV0zqrJK8PpOsIrGrPUKEjNjRrZwfirl/Xh9B5xHP0yVR4tQ/u+rIraTiRj0vvOmx1iwDqyq2eIRWU8buIr4mZ+Zd99dxhU49t5r9IWgOWiyjlwMQYz0mB7jDd05CToAgDEG5q8C91dBxsIQY7cgxm9vWmMGAOTCNPSeacDhNjIgde0ZV0WVUkC79h4SF19PvfPL6YHz8Ieogm8Ro4wH2VTSXiyKY2kXS/EumJSJGOLv/xx636WU92PltXDd/TGagyampJTGFIvZlIfHD3XvQ5Z2H5a6Bjk1aEzDpNGwcIXqWApAOre0jVWE5xA/9SLExEDK+/H6TrjuegLMXZb+mEjBocCDpCTmp6BffdP0mNJ5FLyIsx365CDi774Iucn8uLrrhLGWowAKMxF76GO3IPpNalMwBnXPA2A5ynZsRkoJOTdpTMOERtN/oKKC13Ua23E3KfOv9V9B/OzPzKscL+MqHIceMcqdU5aj6FHgQZIyag28ZnpFxIL1ULruKsoPCSl0JC6/Be3KO0g1H848fjhPfJR2rJCUZCIK7cIrgK5tOMYbd0Jp2m3DqDaS0UWIsV6jMqrJWE1xBby2A7yha0PmUyZiiJ/9P9D7L6d8ChasM7KFAWobUCoo8CBJ6aM9EAMmHxpcgXrgQ0W5i0XMTyP+7o8hZlJf/Sktu+E8+uGinmYi2ZF0qtLlM3aD5dl6IKknjNLsYzc33ea6gnHw2jbwhm4wlxf6xADip16EDJsUSFtF3X0Sjn335d2/AcktCjyIKRmPGFdpJltGefNeKA1dNowqd6SU0G+dN9rXp1p0pzrhPPo4LXwjaRFzk9CvvWV6TNl5Ery81uIRpU9KCTk7BjF8Y9MdKCuPASDicYjR2ynvx7wBOE88CaWm+HfDkY1oUpqY0vsvmdep8PjB6zqtH1AOSS1uVE7cJCXMq5vhPPEkbe8jaZFCGB2cTbCKxrwOOoCl3TDBevBgPcTcJMTwdcjZ8aT3l7oGfXIEMhZJ+bxK6144jz6+6doQUrwo8CAbiNlx80JhAJS2g5auvs81MT+N2Fs/Sl2BlHE49t9vbJOlIkYkTWKsF4ia7BjhCpTWfdYPaBt4oBo8UA2xMA0xdH3DQlQRDUOfHEldVM/hgvPoh6G2bq8yKyl8FHiQNaTQk1+lVTWD+4tnAZg2eA3x935iWgJ+GfNXGgvfKuotHBkpdDIWgRi+ZnqMN+0q2PVRvKwSfNdJyMUQ9OHrEFNDEPMzEKFNWge4PFA7DoBX0vuIUOBB1hGjPUDMZEGZoiZt011opNCNcs2bNHdTdxyB4+DDVPKcbJk+cDH5VGVt4U9VMl8QSttBaCO3Nw06eLAa3F8BhEPQL70GUV4L3rgTPEA1b0oVBR5khYwuQgyblXMGeNMeMEfh7+AQkXnE3/47iKmh5HdyuOC866NQm7qtGxgpGsZU5YjpsWKZqhShMcTe+t+Qi6Hkd1JUqDWNG7fZzo5Dnx2H8FcZ2Z9ADS3ULjEUeBAAS7s6+i+alzL2loPXtls+pmzTx/sQe+fvgVg46X1YeS1c9z6Vs+ZYpLgZU5VJ2gtUtRTFVKV26zziZ38OiOS1PpjHB6WyHkxJvk1Wzk9Bv/oWWFkFePNe8PKaXAyX5CEKPAgAQIZGIWfHTI8pbQcL+opESgnt6jtIXHwDqQqCKe0H4Dz6WMa9KAgRIz3mga3iKPipSqknED/7c+i3zdeAGRgc+++H0nkYcvQmxPitTbo4A3JhBvrVNyHKa6G07AOjXWNFjwIPYmyD679oeozXtBX01b+MRxE79SLEyM3kd+IKnEcfh9px0LqBkaIjo4tJOs8CvHl3QW8fFQsziL39vyFDybfTwuWF6+6PQ6lbquTbth+8sRti9Kaxw2eTaqhydhza7DhYVTOUlj1gLl8W/w9IPqECYiR5q27VaVQo3UIzqHwiZkaND8vF5L1WmC8I1z1PgVfUWTgyUmyklNBvvGta54J5g1D2PlCwWUNt6Abi7/1Dyl4rvKoJzns+Ae7xmx6XWtwoxz56E9A274oLxsHrOsAbdxZ0wEbMUeBR4mRkHtqlVwGTl4HSfhi8ptX6QWWBdvuC0cY+RZpXaeyC866PUtlzsm1iZgR6z3umx5Q9DxRk1lBKicTF16FdfSfl/dTu43AcfCitsudST0CM3TampLQUTeOWKSp4Q7fRjI6aMBYNCjxKmJQS+rW3Iec3bodjZRVQdt9fcFdpUkokLrwG7dqpFPdicBx4cKkgWGH9/5H8I3UN2sVfAPGNFTt5TRuU9kM2jGp7pBZH/NSL0IfMp44AAKoDzuP/CGrL1pvcSV2DGL8NMXw9ZR2dFQ4XeNNu8No2KuJXBCjwKGFiahB671mTIwzqvgfBvIW1yEtqccTf/TH04Z7kd3J54Tr5ceooS7JGH7hs1L9Zr0CnKkV4HrE3f5ByPQcLVBu7v7a5S0dqCYiRG8YUzCaLUAEA7jIoLXvBKhrooqGAUeBRoqSuQbvwsum8La/rhNK634ZRZU6E5xB744cpe0nw6mY4T3486Tw0IVuVcqqy4zB4dWFNVerTI4i/+UPIFF1plda9cB77cFYDKhmPQAxdgxjvQ6qdZ8uYrwK8dR8VIStQFHiUKH3oqpHmXM/hMq7SCmhLqT49gtibP0zZwlvdeRyOA+nNQxOSLu3GqQ19SwCAlVVC2X1fQV2Va4PXED/1YvLdJ4zDceRRqJ2Hc/b/JSPz0AcuJy3AtmFIwTojA1Jg2dlSR6t1SpCMR43UpgmlZX9BBR3awFXET/1D8mJGjMN5/CNQ2w9YOzBS9MT8lGnQAbCCqn0jpYR25W0kLr2R/E5ON1z3fhJKjhebM48f6s67IeanIQYuQc5Ppby/DI1BC42BVbdAad4D5vLmdHwkOyjwKEH68DXT+VTmrwKrbLRhRFtnfFi+hcSlN5PfyelZ+rBssW5gpCRIKSEGLpke47XtYN6AxSPKjNQ1xE//FHr/5aT3Yf5KuO7/jKU7c7i/EmzP/ZChMegDl4HIXMr7y8kBaFND4HWdS1twC2tdTamhwKPEyMgc5ESf6TGlZV9BXKVJPYH4ez+FPnAl6X2Yv2rpwzJo3cBIyZAzw+Z9ShQVvGmX5ePJhIwuIvbW30JMDSe9D69rh+vkJ2zZcs4YA6uoBwvWQU4OQB+8YrpzaIUUEKM9EBO3jSZ09TtoajVPUeBRYpJ9WbPKJjBf0NrBZEBGFxB7828hppPPAfO6drjueYoKD5GckEIYX4ImeEN3QexiEbMTiL3xA8hw8kyCuuMIHIcftb2pHWMMrKYVrKrJKEI2dB3QUxQh0zWIgcsQo73G+o/qloK4oColFHiUEDE3ad6PhXEozVvfi281ERo3Piwj80nvo3YdhePQh2z/sCTFS0zcNu/H4vSA1+V/y3t95CZi7/xdigqiDI4jj8LRddTScW2GcQVKQzd4TRvE8NIWXLOmlssSUei9Z8HGb0NpP1gQF1algna1lAgpJfTLr0OGQxuOFcL22U0/LBmD43D+fViS4iK1hLEN3aToldJxBLw6v9cTJW6cRuLcL5B0y6rqhOueT0Cpz/8ASsYi0IeuJp06Xo/XdoC37CmIjFSxo4xHiZDTw6ZBBxQHeONOy8ezFdrti4if/olprQQASx+WT0Gp77B2YKTkiJEb5pU2PQGwqmbrB5Qmo6LvL6FdezfpfZiv3FgXVSC1MZjLA7XzCGT9DuiDlyFnzHYY3SHGb0FMDxnTLzVtNP1iI8p4lAApdGgXfgHEN6aHefNeKA1dNowqPYlrp5A4/2rS48wXXPqw3F4FRUI2I2MRI9thkt5Xdp4EL6+1YVSbk0IgfuallO3seXUzXPd+sqC3o4r5KYj+S5AL05vel/mC4O2HCrKHTjGgwKME6KM3zbf+OT1GsbA8XPmdTs+VYviwJIVD630fcmpgw+0sUAN11z02jGhzUtcQf+fvoQ8n77mitO03KpEWQRM2KSXkzAj0/ovm63DWYTVtRgaEFqJbqvBfaSQlqcXNK5QCRsGdfAw60rhCK6YPS5L/ZHjWNOgAAKVlr8WjSY9MxBB784cQE+bjBrDULPHuopl2YIyBVTaCBesghq9DDN9IuQBVTvRBmx4Gb94DXtdODegsQp/aRU6M3DDfeuYtB6tssn5Am5B6YukKLXmjN3XPPXDsK7zOuaRw6QPmBbZYVUteluuW0UVEX/9+8kZvjMN51z+C2rbP2oFZhHEFSvMe8OpW6H0XklSYXaInIPrOQ0zchtJ+aNuN78jmaKqliMlYGNqFV8znpHfdAx6osWFUyclEDLE3fgAxOZj0Po7DH4Kj+7iFoyKlTsyOQ7/+zsYDjEM98CiYy2P9oFIQCyHEfvl/mxc4AwBFheueT0JpyP+dK9kiQqNGBjWWvJ/TMlbVDKV1vy1F00oFZTyKmD501TToYOW1+Rd0lPgVGslPUsqk2Q5e15l/QUdoHNHXv5+8YaLDBdf9vwKlOv+ynbnEg/VgB2sgRm5CJGkZsUxODUKbGQVv3gVet4NqAuUABR5FSi7OQk6ZZw6U5vyak07vCu0pKA07LB0XIXJq0LxPiOoEb+i2fkAp6JODiL3xAyARMz3O3GVwPfg0eHl+XXRYhXEFStNO8Opm6P0XIaeTl4qH0CD6L0GM90NpP1iy/2a5QoFHEZJSQh80b2DFqlvzqoEVXaGRfCWFbmQNTfCGnWBq/nRx1od7EHv775J2aWZlFXA9+I/Bffm3HsVqzOWF2n0CYnYC+u3zQDR5JWRE56FffROistGYfqEddFlBgUcRknMTkHOTGw9wBUoeNbDSJwYQe/OHdIVG8pIY6zVvSubygte2Wz6eZDYrsMeCdXA/8Ctgbp/FI8tvvLwG7MAjEGM3IQavJQ3aAKMAoxYaM5rPNXTl5W7AQkKBR5Ex5qSTtOuu6wRz5sectD7ai9ibP6IrNJKXpBY3doSZMLah58e8f+LGGSTOvZz0OK9theveT1GdiiQY50b/l6oWY/olyfQ0AEDoEINXICb6jd0vwfwsGFcI8uPdQ7JGTg8DZk3UVCd4nlQoNYKOv00edATr4H7kVynoILYRozcBfePrk/mCYBWNNoxoI6PvSvKgQ2naCdf9v0JBRxqY0w216ziUPfcDm01FxxahX3sLWs9pyCTZWpIaBR5FREoJPUmxMN64C0yxf076TtBhvqqc17bC/fD/g9LCxDZSixvTLCZ4y768qB9jBB2vJD2udh6C855PUIG9LeKBaqj7HwZvOwhs8m8npwahnX8ZYqIfVJVia+hVWUTkzIj5QimXF7ymzfoBrbNZ0KE07YTz7o/RhyWxlRjrNX2NsvK6vCgutWnQQQX2toUxDqW+E7yqCfrAJciJ/uR31uLQe8+CTQ1CaT9EF0xpooxHkUiV7VAadto+J71p0NF+gK7QiO2klkie7ciDhdmJ66mDDsfBh+Hc/wAFHVnAHC6onUeh7HsQzBdMeV85Ow7twivQR25ApijRTgwUeBQJGRo1rzfg9Nrerlsf2STo6DgA5/EnqE8CsZ0Y6zVf21FeC77Jl0+uJa6fRuKDFEHHoQ/BseuEhSMqDbysEsq+h8DbD6WefhE6RP8laBdf21CTSEwOQqYoWlZq6JO+CKTMdjR225rt0Ed6EXtrk6Dj2BN0hUZsJ/UU2Y7GnRaPZq20go6d1EogVxhjUOo6oB58FKyiIfWdw7PQLr5m7JLRNcjIAvTes8aCZQKA1ngUBTk7BoRnNx5wesCqWqwf0BIKOkghEWO3TBsqskANeFmlDSMyJK6/h8QHv0h6nIIO6zCnB+rOuyGmh43iY4lokntKiJEeiOlhQHEAUkAMXQOvbsmbkgZ2ooxHgZNSJm17bxS6sedXTEEHKSRS15JekdqZ7aCgIz/xykaoBx/dvJBcLHznolDoSfv+lBrKeJhIJBJYXFxENBpFJBKBpmmQUoIxBofDAY/HA4/HA6/XC1W1959Qzk2Y9zhxuMGrWy0fD0BBBzHEYjGEw2FEIhFEIhHouvF6YIzB5XLB7XbD4/HA5/OB27z4WYwnyXb4q23byUJBR35jqgNKx2Gw6hbove8D0YVNHyMnByBqO8D96WXQpJQr75/l7yMhjMWrnHO4XK4130eF8pnKJG1ABmD8gufn5zE9PY2Fhc1fQMvKy8tRWVlpyy9dSgn9yhuQizMbjvHW/VDqrG97TUFHaRNCYHZ2FlNTU4hGk6Wh12KMoaKiApWVlXC7rW9FLnUN2vmfA1p8wzFl9322BB4UdBQWKXSI4etG9nmTr1TmC0LZ91DKz0BN0xAKhTA1NYVEYmNAbEZRFFRWVqKiogJOp3NL47caBR4AIpEIBgcHEYtlXoXO6/WiqakJLpd1VQLF7AT0629vPOBwQT34mOX9BDbdMktBR1Gbm5vD0NDQSmYjE+Xl5WhoaLA0k6iP3oQwaTPA/FVQd99n2TiWbVang4KO/CXDc9BvnYNcmE55P6XzKHjNxoy0lBLT09MYHR3dVlGympoa1NTU2J5JTKakAw8pJcbGxjA5adJQLQOMMdTV1aGqqirnX65SSuhX3zR9gfOWfVDqrW0hr08OIfbLvzbdighQ0FHMdF3H0NAQ5uZMtnNnQFEUNDU1IRDIfRdlI9vxMqBtvOhQdt0DHrC2QaF2+yLi7/1D0uMUdOQ/GY9AO/d/gFT1PBxuqIceW1O3KBaLYXBwEJGISWPCDDidTrS0tMDjyb/FrPkZDllACIG+vr6sBR2AEQyMjo5ieHg45yV05fyUeVStOi2vUipmJxB7428o6ChBiUQCN2/ezFrQARiBTH9/f1bfm8mIiX7ToIOVVYL5q3N+/tW04R6jy2wSFHQUBv32+dRBBwAkomuaEEYiEdy8eTNrQQcAxONx9Pb2Yn7epJq1zUoy8FgOOraylmMrZmZmMDQ0lNPgQwxfM72d13dZWv1TLM4i9svvJ21tT0FH8UokEujt7UU8vnFtRDaMjo7mNPiQQocYNe9Ayxt3Wvqa1ScGEH/775KuD6CgozDIeARQVLBANeDyASmKIorhG5AxY/H1rVu3VhaNZnU8UqKvry/vgo+S3NUyOjqKxcXFnJ4jFArB7Xajujr7V01ifgpyfmrjAdW5+fauLJLRRcR++deQSVZzK+37KegoUlJKDAwMpL3wLVOjo6Nwu90oKyvL+nOLiX7TgJn5KsAsnGIRoXHE3vhB0m7NjkOPUNBRIJjTA3XHsZW/SykBLQYZiwCxMGQsvPKnjC1CG7yCvoQvJ0HHav39/eju7s6bRaclF3gsLCxgejr1wp9sGRsbg9/vz/qC06TZjrodlmU7ZCKG6Ovfh1wImR5XGrsp6ChiU1NTCIfDlpxrcHAQ3d3dUJTsLZaWQl+T6l7NymyHWJhB9JffN91RAwDq7pNw7LzLkrGQ7GOMAQ43mMMNlFVsOD44MAAtYlL8McuklBgcHERHR0defCaX1FSLEAKDg4OWnW/5l53NKRcxPw05Z5J+Vhzgde1ZO08qUtcQe/OHkKFx0+O8pgXOkx+3vTEdyY14PI6xsTHLzqdpGkZHR7P6nGJywLTqJPOWg5XXZvVcycjIgjFNGTPPvqqdh+DY/4AlYyHWm5+fR2g290HHsnA4bNlF92Zs+2YYGBjAww8/jL179+LgwYP4/ve/n/NzhkIhaJp5OjNXIpFIVq8MxUiSKqX1O8AUR9bOk4wUAvF3/x5iYsD0OAvWwnXfp6nLbBGbmprK+eLp9WZmZrL23pVCpMh27LLkilDGo0bG0Kz4HwClaSccRx/Pi6tTkhsTExO2nDMfNrLaFnioqoo//uM/xuXLl/Hzn/8c/+7f/bucrruQUmJqymRdhAWydV6xMAM5a5JlUFTw2o6snCMVKSXiZ1+CPmT+oc3KgnA/8DSYw7paJmT74sP9ad9X13XbrpqydV45NQDETXYPeANgwbqsnCPl+fWEkTGcNf/i4bVtcN79MerWXED08AK0mfQXQkejUcumKlfTNC0vFpra9spuaGjA4cOHAQC1tbWorKzM6QdaNBrdVoGw7Zibm8vK1VrSXhJ1nWBq7rMdiYu/hH7rgukx5vbB9eA/AXP7cj4Okl2j/+//Jya++3+lFYDMzc3ZdsU0PT297XNLKaEneR8pFmQ7pBCIv/13EJPmU768oh6uez9JGcMCo8/NYPiPfhPTf/tCWgHIzMzGatNWyYfplqwHHkII7N69G1/96lfX3P7SSy/B6XSaTqmcPn0aQgi0tOSuk6od0eVq292fLWNhyJmRjQe4Cm5BafTE9fegXX3X/KDDBdeD/xjcV57zcZAckBKRy2cx+n/97qYBSK53g6Wiadq2A3g5N2HeU8PjBwvWb+u5Nz23lIif/in0EfPAh/kr4XrgVyhjWKh0HQunXk0rALHzfRQOh22fbslJ5dIXXngBzz33HPr6+lBRUYEPPvgADzzwAH7nd34HX/nKV9bcd2pqCg888AC+853v4N577832UFYMDAxg1sKFPOtVLU7D0Zt5Z0J3VQCuio1bCmMzC4hOZa94kxmFxeFSzPtuSAnEdC9E6W2QKhrh8xsDSs/eoyh/9Ck4G9eWdb5+/XrO6nako26yH2wk/amh9bwNlXD4NvaDCY/OILGQveJNG0k4eAwObv5vJyRDTPdBltZ6/6IhomFEr6/LBisKyo49gMDDT0KtuFNWQQiBy5ft7VK7c+dOW7fW5iTw0DQNO3fuxOc//3n82q/9Gk6ePImnnnoKf/Inf7LmfrFYDI8//jh+/dd/HZ/73OeyPYw17P7A9N+6CPbWSxk9likKav/RE+DrXihSCIy/9DOILFa7W88R8CGwo8U0BS2lxNzNASTm7IveSW6tDkCklLh0aWNPEysF338V4vKZjB6r+v2oefyxDbfrkQjGf/rSps29tsNdW4myZvP1I0LTMHu9D3rUvs8nkkPrApDlKqV2amlpQXm5fRnqnFymqqqKr371q/j617+OH/zgBzh69Ci+/e1vr7mPlBJf+MIX8KEPfSjnQQeAnBdo2fz8EplWIfC0tW4IOgAgOjyc06BDcTvh72hKOu+9cHuYgo4iF7l8FpHLZ+HZexRlj3zM7uFgO6GBt8u8f9Fib29Ogw5neRl8TeZbdKUuMNczQEFHMVuaglk48zrKjj0A9cSH7B6R7d+HOcvrffazn12ZS/re9763ofjPm2++ib/+67/Gj370Ixw+fBiHDx/GhQvmCxezwe45re3w7egyvX3xRk/OzslUBYEdLeBJijYtDIwiNpPbKR6SP+IDvYjfvpHTL+hcYk4nvK0m3UB1HeFbt3N2XsXjgr/dPHiXQmKudxBa2HwakxQZXUf09nVoI312j8T278OcTcx/6UtfAgBMTk6aVhy8//77LY26OOfbate9XZmulnfV10P1b1zbEZ+eRiJXK6MZQ6CzGYrLfA4wPDKJ6IR9q7KJdRR/EIGHPgrfiYcARQVsnptmyCzr4e1oBzP5HAr390PmaAp2OXhnysbrOykl5vuGkZinjGEpUGsbUf7oJ+Ddfxci0SjQ22vreLjNxR1zEnj89m//Nl588UW88847eOyxx/Bnf/ZnePbZZ3NxqrS53e6c95VIxeHxQPq3Pqfm27XL9Pbw4DB4Bs+X1jnrgnCUeU2PxebCiC7Ec3ZuYj0xv3HR9eqAgzvuBKCqqlpehG/NuDw+YKuvPcbg6zLPGkZGxnLzWmZAoLkaitN8m3tkcg6axuh9VCx0HSK8cbfU6oBjuZJztltoZMLuMWR9cel3vvMdfPnLX8Yrr7yCkydP4hvf+Ab+9E//FD09PXA4cl9rIpnx8XGMj5uX+LZCJot5ZHgW2qXXNh5weqAefDQnBYYSV95G4uLrpsd4VRNcD/0TqjFQZPq/9i9Wfk4WcKzct78fc3P2TbF1dXXB7d64KyUVMTUIvffshttZoAbqrnuyNbQVUkrE3/176ANXTY8r7QfgPE59jIpJfHQAo//1d1b+bhZwrHbt2jXbLoQZY9i7d6+tr7+sfnP95Cc/wbPPPou//Mu/xMmTJwEAzz33HObm5vDd7343m6faMo/HU3Dn18fM03G8tj0nQYc2eC1p0MG85XDd9ykKOoqU4g+i4mO/iob/8C3473vcNOgAAK/XPBNmBcbYlq/UpJTJC+/Vmy823a7E5TeTBh28pgXOYx+moKNIqbWNqPqn/woN/+b/Bd/Bu5P2q/L57Cu06Ha7bX/9Ze1b5MyZM3j66afx/PPP49Of/vTK7YFAAM899xy++c1v4vOf/3xWO0xuRVlZGRRFsWWdh8fj2fKeaZmIQU4NbTzAFfCatiyN7A59egTxUy+aH1SdcN3/GTCXfV86JHcqPvarSTMc6wUCgaw3bEtXMBjc8gemXJiGDJvU73GXgQVqsjSyO7T+y9Auv2V6jPmCcN3zSTBuz2cgyR3u9qLqn/6rpBmO9crLyxEKhXI/MBPBYNCW866Wkzoe+cqu6Zbm5uYt/7L1oWsQw9c23M5r26G0HczSyAwiPI/Yy/9fyKjZQjcG1wOfgVKf++qoxB5SCgAs7S91u6ZbMplm0XreM634q7QdBK9tz9LIDPrUMGKvfg8QJhc3DhfcH/pn4IGqrJ6T5I+tvI+klLh+/brl0y2MMezevdu2BMCyksqbV1RUWN6dT1VVBAKBLT1GCh1i/JbpsWyXR5daHLE3f5Ak6AAchz9EQUeRE8M9SFx41fgLYwDjxp9gS39fdRtjqG7agzlYW/XQ5/NtOeiQsUXzNgOKA6yqOUsjM4jFWcTe/KF50MEYXPc8RUFHkdOunYJ++7zxlzTeR7WtRzBk8TKPyspK24MOwMYmcXZwOByor89tP4b1mpqatrx1SU4PAdrGLX6svA7MvXFrbaaMRXAvQobMs0DqjsNQu45m7XwkP/GGLjCP3/iLlMaXp64BesJ4HSZiRjfXWBjcG4Bnx2FL07WMMTQ2Nm75cWIsSfBe257VtUoyETOCjph5PyjHkceg1LVn7XwkP6kdB4HlabRN3kdKbRuCHXssXXuoqipqa80L2VmtpAIPwIj4rFogFwwG4ff7t/QYo3tmkkWlWc48JC78EvqweYt7XtsGx+FHbV+ERCwgNLB0rsZdXjgOPQrGORoaGqCq1iRM6+vrt76oVE9ATJj0dGEsq1MsUgrE3v37pC3u1a5jcOw4krXzkTwmJZgvuOndWHkN1N33gDGG5uZmyz5jm5ub8yLbAZRg4MEYQ0tLS84/NN1uNxoaGrb8ODk/BURM5s89fjB/9cbbM6Tdvgjtmnm3WeavhOuep2gRXJGT8SgSN04j9ur/D2Lsduo7MwbnoUdXFhgrioLW1tacf2gGAgFUVlZu+XFiYgAQG+uNsIpGMGf2rjIT51+DGEl+oeA49EjWzkXyk4zMI3HpDcRe+57x+Z2KwwXn4cdWPltdLheamppyPsba2lqUlWUvW75dJbXGY5nD4UBHRwdu3bqVk2JILpcL7e3tGUWXYsx8659StyNrH/IiNI74mZ+ZH3S6jR0szq3Np5PCIWMRaLcvQO+/ZKSB06DuPAFeuTaQ9nq9aGtrQ19fX07WTfn9/oyuCKWUEOPmwYCSxS202uA1aNffMz3GAtVwnfx4WjscSGESi7PQe983ssZpvv4dBz90Z1pzSTAYhBACw8PDuRgmampqUFOT/R1c21GSgQdgBAc7duxAf38/IllstLb8YZlJ0CGjC5ChsY0HVCdYVXaiYhmPIvbWj0yvBsE4XPd+ErysIivnIvlFRheh3foA+sAV80WQSfDadijt5jupysrK0NnZif7+/qyu0K+qqkJ9fX1GwbYMjZqut2BllWmlwtMh5qcQf+8fzA+6vHDd/2kwh/0VKkn2iflpaL3nIEZuYisF/JUdR6HUtJgeq6yshKqqGBwczForEcYY6uvrUVWVf4uaSzbwAIzMR2dnJ6ampjA2NratqzbOOZqamhAIBDLOTKRcDJeFaQ8pJeLv/QPkYsj0uPPYR6DUbGykRQqbCM9Dv/UB9MGrgNzahxrzBuA48FDK17TH40F3dzfGxsYwNbVJqnkTTqcTTU1N2yqwJJIV3svSjjCpxRF7638DmkmgxRUjeM9SgEPyh5idhNZ7dvNpSRO8qnnThfqBQADd3d0YGRnZ9nZ1r9eLpqYm20ujJ1PSgQdgRIXV1dUIBAKYmprCzMzMliJOVVVRWVm5ErFmSuoaxKTZYjietcVw2rVT0IfNO9qqXUehdhzIynlIfsgkFcwrGyHmp4wV+FyB4/DjaV2586UFp8FgEFNTU5idnd1SIO90OlFVVYWKioptNbCS4TnzeXanF6xi62uuNjy/lIifeQlybtL0uPPIY1Cqs7tVl9hLhMag3XzffLGyKQZe2wYxftv4q9sHx6EPpVVt2uFwoLW1FfPz85iamsLCwsb+L6l4vV5UVVVt6wLYCiUfeCxzOp1oaGhAXV0d5ubmEA6HEQ6HEY2ubVnNGIPb7YbX64XP54Pf78/KL1hOD5umv1lVE5hj++st9PF+JC780vQYr2qkRXBFJJNUMK9pgdp5BLyiHtrNs9BunIa69/4t157weDxobm5GQ0MDZmdnV95H8XUdYDnn8Hg88Hg88Pv98Hq9WXkfmQbvAHhdR1aeX7t5Dnr/FdNjSvsBqJ2Htn0OYj8pJcT0CPTe9yHMKkibYQxKYzeUzsPgviDi534OMXbLWEy6xTVzfr8ffr8f8Xgcs7OziEQiiEQiG6YzVVVdeR8FAoEt17qxCwUe63DOEQwGV+oUSCkhhICUEowxcM5zEkmKyT7T25Xaju0/d2QesXf+HqZfQk4PnCdpB0sxyCQVzOvajYCj/M7iM6V1P2QiDrXZvDNyOhRFWckEAlh5D+XyfSSFDjE5sPEAV8Crtz+FqE+PIHHuZdNjrLwWzqOPbfscxF5SSojJQWi970POpNkagHEozbugdBwC994pFqnuOAJRUQ8erMt4PE6nc83CUCHESkaec257e/tMUeCxCcZYzvc+y8g85MLMxgPe8m0vhpNCR/ydvwdi5pVJXSc/Du7dWq0Rkl/EzBi03i2mghs6jYDDv3GrKnM44dh9MqtjtOIDUs6Mmu7SYRWNYOr2OmPLWBjxt35kvkbG4YLr3qfAFPu6b5PtMXZC9UG7+T7knHlNlg24AqVlD9SOg6aFHbm/Ctyf3YWdhRxsrEaBRx4QE+bZjmxcpSUu/BJictD0mGP/A1RRsUBlIxVcbJJlDfk2F0wbRcJ+DBmZNz3uPPFR2glWoKQUEKO3jAzH/HR6D1IcUFr3Qm0/QI0zM0SBh82kEBBTJoEB4+Db3EKbqs4Ab+iEmuWrWpJ720sFHy7a7JaMLZov+HSXgZVtvQDZaonLbyWdvlJ33w21sXtbz0+sJ4WAGOkx3keLJt2LzahOKG37obbtpzpH20SBh81kaNS8L0tlI5iaeSMuMT+N+Hs/MT3GvOVwnXgyr1c9k7W2lwo+BObOfHtqITBd2wEja7id17k+2pu0zT2vaYVj3wMZPzexnhQ69KHr0HvPJc1gbeBwQ20/AKV1H5jD2uaIxYoCD5vlYprFqDPwI9OAxqgz8FRWy0aT3KFU8OaklMn7smxja6tYnEXs3R+bHmNuH1UmLSBS16APXoV26wMgSSfuDVweqO2HoLTs2fYaIbIWBR42krGw+dWryweW4aIko87Az1LWGeAV1nboJVtHqeD0ydlxIBHdcDsL1me8FV3qGuJv/28gvvF5wTic9zxV9FmkYiC1BPSBy9BunTc6w6bD7YPaeRhK066sdjEmd9C/qo2S1hyoyTw9rN++AL3/sukxpX0/lA7z0tckP1AqeOtykTVMnH8NIskaGsfBh6lIWJ6TiRj0/kvQbl8wiuGlgXkDUDoPQ2nspvICOUaBh02MRYJm89IMvMq8nv9mxPw04u8nqzNQA+eRx2ldR57KLBXshdpxEEpz6aaCZSIKOWvS38jhBiuvzeg59dFeaD1nTI8pzbugdh/L6HlJ7sl4FFrfBeh9F81L2ptgviDUHUfA63fQ1JlFKPCwiZybME39sWBdRmlyKXTE3/2xebdR1QnXvZ8s2S+nfJZZKrgMauchSgUDxlZxk9LsmWYNZSyM2Kkki7L9lXAef4KC9zwkY2Fot85DH7gM6Ol1HGf+KiPgyFJVW5K+0v7UslHS9HCGNQcSl99KmhqmOgP5h1LB22dkDbM3zSKlRPz0T82L7XEVrnueoo6zeUZGFoyOy4NX0+64zMprjYBjG1PaZHso8LCBTMSMbbTrOVwZpYf1yUFoV94xPaZ2HoLatHPLz0lyg1LB2SMXpk2npVigJqPdPPqtD5I2UXQcemRNWXliLxGeg957DvrQ9bQ7LrOKBuN9VNVEAYfNKPCwgZhKkh6ubk2rg+FqMhFD/N0XYdaHhZVVUPO3PEGp4OxLViI+k2yHmJ9G/NwvzJ+voRPqjsNbfk6SfWIhZLQHGOlJv+NyVbPxPqrcfndikh0UeFjMqDmQvfRw/P2fQ4ZNtlsyDufdH9tWETKyfZmngo+C17RQwJGE1BKQM8MbDygOsC1uF0+5Psrlhev4P6Lfg83E/JTRmn60N+3H8No2ox9RMLNFxiR3KPCwmFyYAaILG25n/uot1wXQBq5C77tkesyx7z4oFOHbhlLBuSWmh0wDOV7dsuX1L6nWR7mOP0H1OmwkZseNgGPc/GLNDK9faoAYyG6DNpI9FHhYLFuNrER4DvEzL5k/V3Uz1N13b3lsZPsySgVXNxsflBQopk1mKWuYcn3UjsNQGru2PDayfWJmFNrNs0kbXG7AGHhDF9TOw7SQvgBQ4GEhqScgp5Olh9P/0pFSIn7qH8x3Q6hOOE88ueW1ImR7KBVsHRmeNZ1eZL4KMG8g/edJxIwpFrP1Uf5KOA7S+igrSSkhpoaMfkQzI+k9iHEoTTuNjstb+N0Te1HgYSE5PWyeHq5q3lJ6WLt+KunCOufRx8F95RmPkWwNpYKtl3RR6RazhvGz/wcyPLfxAONw3f0xqntjEWPd2wC0m2eN8vfp4AqU5t1GA0RPWW4HSLKOAg8LJe2guYUPTDEzhsSF102PKS17oLbty2hsZGsyTwUfAS8L5nRsxUwKYazvWI8rYJVNaT+P1n8laWsBx/4HqJ+RBaSUEGO3jAzH/FR6D1JUKC17obYfBHMXfwPEYkWBh0VkPGLUHViHecvBvOllKKSWMLplmixWZN4AnEcf3/Y4SXKUCrafnJ807brMKpvSruIqwnOIn/2Z6TFe0wJ1113bGiNJTQoBMdprNEBcmEnvQaoDSut+o+NyCTVALFYUeFhEmK3tAMC20JclceGXSa8MnCc+Sm/IHKFUcP4QUybZDhjTlelIuT7K4aL1UTkkhYA+vNQA0WyKy4zDtaoBIlWNLRYUeFhEmqWHAfDKxrQer08OJm1cpe6+G0qGpdZJcttKBXcczKh6JklOCh0yZJJpcrjA/Omtl9FvfZBifdSHKSuVA1LXoA9dh9Z7zrSUgCmnx2iA2LKX1toUIQo8LCCji5CLoQ23M39VWlkKqWtGDwkTLFgHx777tztEskrGqeC2/VDbKBWcK3J23LTqK69oTKvuiYjMI/7Bq6bHlNa9UFv3bHeIZBWpJaAPXjEaIMbC6T3I5TMaIDbvLvkGiMWMfrMWEGYVFoG0F8MlrrwNOb9xfQi4aqy+p4ZhWUGp4PyWfLpy8/eRlBKJMz8zXx9C66OySmpx6P2Xod0+D8SjaT2GefxGA8SmnfR5VgIo8LCA+bw0A0+jdocIjUO7+q7pMce++2hLZhZQKjj/SV0zb6zo9ID5Ni8YpQ9ehT5y0/SY89iHKWjMAqMB4sWlBogbAzwzzFdu7PRq6KIGiCWEAo8ck5F5ILLx6pkFqjf9sJNCGFMsZrtYgnVQd9Lq++3IKBXs9kHtoFSw1eTsmHkNnMrNp1lkLIL4+y+bHlPa9kGp78zKGEuVjEWg3T5vbE8263djgpVVLnVc7qDFvCWIPjlzLFl6mKcxzaLdOG3eQ4IxuO56gq4QMkSp4MKznfdR/INXzANLlxfOQx/a7tBKlowuGg0QB66k3wAxUGMEHLVt1I+ohFHgkUNSSvNiR4xt2kFTLMwgcekN02PqrrvBg3XZGGJJoVRwYZJ6AjI0tvGAywdsUgNHH+1N2kjReeRRMJcnG0MsKSI8D/3WOeiD19JvgBisMzouVzdTwEEo8MipyJx5J9ry2pTt6qWUiJ9+yXQFPyurgGPvvVkdZrEzUsEXoPdfolRwAZIzo6ZfcLwydRdfmYghfsa8UJjSsANK8+6sjbEUiMVZ6L3vQx++kX4DxKomKEsNECngIMso8MihTNPD+q3zyWsNHH+C1hakKeNUcNcR8BpKBeeL5O+j1DVwEhdfN9+dpDrhOPph+v2mScxPL3Vc7oVZQz0zvKbVyBRWUGaWbETfYDmSfJqFgwWTT7MYtQZ+YXpM3XEESk36lU5LlZEK/gD64FVKBRc4qcUh50yqxXr8KTvRGgX3zpoecxx8GNzrz9YQi5aYnYTWexZi7Hbaj+F17VA7j4KXV+duYKTgUeCRI3IxZLqgjQXrkmYspJRInP0/5rUGPH44DjyY7WEWlUxTweqOI2AVlArOR3JmxPR3mSrbkargHq9pgdp5KGvjK0ZiZswIOCbMm1puxMAbdkDtPAzur8zp2EhxoMAjR2QG0yz64DXowz2mx6jWQHKUCi5epllDpH4fpSq45zz2EQowTRgZ2hHove8n7YezAWNQGruNBoi+YE7HR4oLBR45kHSahStgSXajGLUGfm56TGndC6VhRzaHWBQySwV3GItGA5QKzncyEYWcm9x4wFsO5jZvvLdpwT26Il9DSgkxOWg0QDTbOWSGcSjNu6F0HKIpK5IRCjxyQC5MA4mN9SFYsD5pDYj4hdfMaw04PXAeploDq4nQGLSblAoudmLGpCEckk+zSCmNXSxUcG9TUkqI8T6jAeLcRHoP4sqdBohuX24HSIoaBR45kHSaJUlPCX16BPqt86bHjFoD1OU081TwzqVUcOp6DyT/yCS/52TTLHrfRfMdMFRwb4WUAmJ0qePygsl0lBnFAaV1H9T2A1T3hGQFBR5ZZnxBmnz4KQ6wQI3p/RNJplh4QyeUltLumLmdVLDaeQjMQ6ngQiTjEdMvRuarMA3EZSKG+PnXTJ+LCu4tdVwe6TE6Li/Opvcg1XmnASJ1XCZZRIFHlsn5SUCLbbidVTSYTrMYV2kmKWWuwnnk8ZJdCEep4NKWtBNtkmxH4tKb5rvIvOVw7L0nq2MrJFLo0IeWOi5H5tN7kMNtNEBs3Zuy0CEhmaLAI8uS72bZOC+d6irNsefukpweyDgV3LYPahulgovFVt5HYm4yec2Owx8CU0qve7DUNeiDV6Hd+gCILqb3IJf3TgNE6rhMcogCjyySUkKYTQeoTjCTXRSprtLUXSdyMcS8RalgskwmYpCLMxtuZ/6qDb9nKaXRedaspHpdO5TGrpyNMx9JLQ59YKnjcjyS3oPcZVCXGyBSVWRiAXqVZVNkLvlulnX9PsTsJLSeM6ZPU0pXaRmlgp1uqO2UCi5WctZ8LQ+raNhwmz50HWK8z+TO3FiYXSJTlTIRg953CVrfBSCxcarXDPMGoHQegdLYTQtviaUo8Mgi02wHsGFhm5QS8XM/N6/IWNdREldplAomySR9H5Wvex9pCSSStRfYeRzcX5X1seUbGY8uNUC8CGjpNkCsMIrn1XdSwEFsQYFHFpnuumB8w24W4yrNpAkc43Ae+VBRX6VRKpikIoWAnDVZTOz2b1gwnLj6jmkTOOb2wbGnuBeUylgY2q3z0Acum3axNsMCVUYflbr2ov6MIfmPPsWzRCai5vPSgeo1X5ZSSyBx7hXT5yjmqzRKBZN0yIUpQGz8Il2fNRQLIWjXTpk+h+Pgw0XbXkBGFoyOy4NX0++4XF4LtesoeHULBRwkL1DgkSUyZNJBEwBblx5OXH3HdC1DsV6lUSqYbEWyWi3rWw0kPnjF9IuXVzdDad2bk7HZSYTnoPeegz50Pe2Oy7yyAcqOo+CVjRRwkLxCgUeWiCQL4lZfqZXSVRqlgslWGbvCRjceUBxgZRUrf9VHe5M0U2RFt6BULMxA6z0HMdKTfsfl6maoO46CV9TneHSEZIYCjyyQQoecNcl4ePxrqiyWwlUapYJJxqKL5tvLy2tXdoVJoRvbZ02oOw4VTYVSMT8F7eb7EKO9aT+G17YZDRDLa3M4MkK2jwKPLJDzU+YBxapplmK/SqNUMNkuMWuS7QDAg3eu3LXrpyEXNq6lgtMNx74HcjU0y4jQOLTe9823CCfB6zuNgKNI14eR4kOBRxZsNi8thUA82YLSHYcL+iots1Rwi/FBSalgsor5+4iBlRu7wmR0EYkrb5k+1rH/wYKuWitmRqH1nIWYGkzvAYyBN3QZa6HKgjkdGyHZRoHHNkkpzdd3KA6wMqMFu377AuS8SflvpweO/ffneIS5Qalgkk1Si5u+R5i/cqVIXOLK26YLlFmwDmrnwZyPMduklBBTQ0Z7gBmTfk1mGIfStNRx2RvI7QAJyREKPLYrumA+Lx2sA2PM2D576Q3Thzr2PwDmLKyrNEoFk1wwandszJgt7woTCzPQbp4zfazzyGMbKgPnMyklxES/EXCYrQ0zwxWj43LHITBPWW4HSEiOUeCxTZtVWdRunIE0qczJAtUFdZVGqWCSS6a7WXBnV1ji4uuma4eUlt1Qqs071uYbKSXE2FIDxPmp9B6kqHc6Lq9aqE5IIaPAY5tM+0owBlZeCxmLIHH1HdPHOQ88mPdXaZQKJlaQUphf+bu8gLsMYmYU+sDVjccZh2N//i8olUJAjN6E1nvOfGGsGdUBpW2/0XGZGiCSIkOBxzYknZcuqwJTHYhfeh3Q4huO8+pm8IYdVgwxI5QKJlaSCzOAvnHtBg/WgzGG2PnXTB+ndh4CX1XfI99IoUMfvmE0QDQp7W7K4brTcbmI6voQshoFHttgfCmbzEsH6yAWZ6H1vG/6OMeBh/Jy+2jGqeDWvVDbKRVMMpN0V1h5HfSx2+briRQHHHvzs9Kv1DXoQ9eg9X5grAFLh9MDteMglJa91ACRFD0KPLYhVTfa+Plfmtb2UBq7825OOrNUsHMpFbyfUsFkW0x3hXEVKKtE/NQ/mD5G3XUXmDu/MmtSS0AfXGqAaLLg3JTbd6fjMjVAJCWCXukZSj4v7YOMRaD3XTR5FIPjwIM5H1u6KBVM7CZji4BZ76LyGoih6+bZEJcXjp13WTC69EgtbjRAvH0BSETTegzz+KEsd1zmSo5HSEh+ocAjQ8nnpesQv2A+J610HAAP2L+lNPNU8CEoLXsoFUyyRiRrrhioRvz0/zE95thzT14EvTIehdZ30bjIMFnLZYb5yo2dXg1d1ACRlCwKPDIkk2z/k0JCjJgU1eIqHPvuy/GoUqNUMMk3yd5HYmYCcjG04XbmK4e643BuB7UJGYtAu30eev9l04sPM6ys0qhlU9+R97vZCMk1+ibJkDCZZpFcSVrkSO0+Bu7x53hU5jJPBR+B0tRNqWCSE1LXzBcxuwNIJOvivP8B216PMrpoNEAcuJJ+A8RADdSuI+A1bXm5oJwQO1DgkQEZj5rOS0MyyGmTehcONxy77879wNYPh1LBJI/JhWnTomBicTZJNeBaKC17rBja2vGE56HfOgd98FraDRBZsM5oTV/dTAEHIetQ4JEBOTex8TYpoY+ZlxF37Dlp6c6PjFLB/krjg7KunVLBxBKm7yNdgz5s/j5yWrwNXSzOQu99H/rwjfQbIFY1Qd1xBKyigQIOQpKgwCMDYm5yw21yYRbSbHW+xw+166gVw6JUMCkoZu8jMZtk0XZtG3hduwWjAsT8tNGPaKQXZnV6zPCaViNTWFG4naYJsQoFHlskpdxwpSalgD5rXnDLse/+nC/KzCgVXFFvZDiqmijgIJaTiRgQnl17m5aAMOviDMBx4MGcv07F7CS03rMQY7fTfgyv6zAWjQaqczcwQooMBR5bFV3csEBTzM+at+sOVENp35ezoYjFEPTecxmlgnllY87GRchm5LxJtiM0Zfo6Vpp3QalsyNlYxMyYEXBMDKT5CAbesANq52Fwf2XOxkVIsaLAY4uESbZDJMt27H8gJ+slMk4F7ziy0u2TEDvJddMsUktALIQ23pGxnDSCk1JCTI9Av3kWYno4vQcxBqVxqQGirzzrYyKkVFDgsUXrp1nE/Cygaxvux4J1UBq7snpuMTthBByUCiYFbn0AL0LmwbvSti+rWQUpJcTkILSbZ5P2iNmAcaMBYuchMJu2xBNSTCjw2AIp5ZoUccpsx777sjYnTalgUkxkdHHNdtmU2Y492WkEJ6WEGO8zGiCa7KYxxRUoLXuhdhwEc/uyMg5CCAUeWyIXQ2uyG8myHbyiDso2295TKpgUq/XrO5JnO/Zvu+29lAJidKnj8oL5wtWNJ3ZAad0Htf0AmMuzrfMTQjaiwCMNcmnB2+orJSlSZDv2Zp7tyDgV3LIbagelgkn+Wn4frd5GmzrbcTLzcwkBMdJjBBzrds8kpTrvNECkjsskTy2/jwp5NyIFHutIKbGwsIDFxUVEIhFEo1Hour58ED5vCwIsAU9kBuDKhowHr6gHzyDbcScVfHbDwrukKBVM8pQQAvPz8wiHwyvvIyGMrd5MOuD3NsPPEnDNjgCKuuF9lGm2Qwod+tB1o+OyWXVhMw431I6DUFr3gqnOLZ+TkFzRNA1zc3OIRCKIRCKIxWIrgQcAuFwueDweeDweBAIBOByF0cCTSZnmPswip2kapqenMT09DU3bOH1iSghUhkcRmOkHX0rjuu7/zJamWTJOBbftg9pGqWCSX2KxGKanpzEzM7MSaGyG6wlUh0fhm+wFiy4CjMH9xK+DlwXTPq/UNegDV6Hd+gCILab3IJf3TgNE6rhM8kg4HMb09DRmZ2exla9ov9+PyspKlJWV5XVGpOQDDyklQqEQRkZG0v6gNHkS+CNTqNLm4Lvn42n9wjNKBTtcUNv2Q2nbnxdtwQlZJqXExMQExsfN29yn9yQClYtjCLpVeA8/kt5DtDj0gaWOy/FIeudxl0HtPAylaSd1XCZ5Rdd1jIyMIBQKbet5ysrK0NTUlLcZkJIOPDRNw8DAABYX07xCSkMwGERjYyN4kgZrGaWCnW6o7ZQKJvkpFouhv78fsVgsa89ZW1uLmpqapEG8TMSMjst9F4BEeudl3oDRcbmxmxogkryzsLCAgYGBO1P728Q5R2NjI4LBYFaeL5tKNvBIJBK4desW4vH0urZuhdfrRVtbGxTlTvvubaWCW/bQlRnJS5FIBLdu3co8W5hCMBhEU9Pakv4yHoV2+wL0/oum1YLNsLIKo49KfScFHCQvzc7OYmAg3XIJW1NfX4/q6vyq41SSgYemaejt7c1J0LHM6/Wivb0dTGiUCiZFKRqNore3NydBx7KKigo0NjYCyx2XBy6bbmE3wwJVUDuXOy7n73w3KW1zc3Po7+/P6TkaGhpQVVWV03NsRckFHlJK9PX1YWFhIefnqilzofzmW5QKJkVHCIGenp6cBu/LWnwcrhtvp99xubwWatdR8OoWCjhIXovH47hx48aWFpBmqrOzE16vN+fnSUfJXU6HQiFLgg4AmJiPIuBwg20SeKykghs6c9LbhZBsGxsbsyToAIDhhQQ6GAeQOvDglQ1QdhwFr2ykgIPkPSklBgcHLQk6AGBwcBBdXV1J1x9aqaQCD03TMDycZhXQbGAMk75G1CTZtUKpYFKIIpEIpqbMi+flgs4ULASbUTZ1y/Q4r24x+hFV1Fs2JkK2KxQKIRwOb37HLInH45iYmEBdnf2NQksq8JiZmbEsulw26wyiyu0Hj97ZwUKpYFLIJifTLHCXRePOapTxAUDcWd/Ba9uMgKO81vLxELIdUkpb3kdTU1OoqamxPetRMoGHlNLSq7QVjGG2vAUV0cuUCiYFL5FIYHY2zbozWSQUB6JVrXBP9ILXdxoBhz9/FssRshXhcDir28/TJYTA7OwsKiq21wNpu7Yc9oyPj+Nf/st/idbWVrhcLtTX1+MjH/kI3n777VyML2sWFxfTr0iaZVNqAOzYR+E88XEoVU0UdJCCZUfQsWzUWQ3HfU/DefgxCjpIQZuZmSnJcy/bcsbjM5/5DBKJBF544QV0dnZibGwML7/8Mqan0yz3bZNIJM2trLnAOKJOP6jWKCl0Vs5Jr6cxFZrTC2XzuxKS1+x8H0UiEUgpbb0A3lLGIxQK4Y033sC3vvUtPPLII2hra8OJEyfwta99DU8++SRu374NxhjOnTu35jGMMbz66qsAgFdffRWMMbz88ss4fvw4vF4v7r33Xly7di2b/18b2Bp45MH5CckGu1/Hdp+fkO3Sdd2yHWFmpJS2TPOstqXAo6ysDGVlZfjRj3607YH/x//4H/FHf/RHOH36NFRVxTPPPLOt59uM3R9Y0WjU1vMTsl1CCCQS6VULzRV6H5FCZ2fQsaygAg9VVfEXf/EXeOGFFxAMBnHffffh61//Os6fP7/lE3/jG9/AQw89hL179+I3f/M38dZbb+X0QyWX1RUL4fyEbFc+1BrMhzEQsh3Z6sWyHXZ/H215celnPvMZDA8P4+/+7u/wkY98BK+++iqOHj2Kv/iLv9jS8xw8eHDl54aGBgDYXmfLTdCCTkIIIXaj76IMAg8AcLvdePzxx/E7v/M7eOutt/CFL3wBv/u7v7uyN3j1VUmy1Ozqdr3Lv4hcRmF271te3TCOkEKUDx+Ydr+PCdmufHgN2z2GrJx97969WFxcRE1NDQBgZGRk5djqhaZ28ng8tp7f7Xbben5CtotzDqfTaesY6H1ECp3LZf/+RrvfR1vaTjs1NYWnn34azzzzDA4ePAi/34/Tp0/j+eefx1NPPQWPx4OTJ0/im9/8Jtrb2zE5OYnf+q3fytXYt8Tj8dhag8DuwIeQbPB6vbYujqP3ESl0nHO4XC7bFnjmwwXElgKPsrIy3H333fgv/+W/4ObNm0gkEmhpacGv//qv4+tf/zoA4M///M/xzDPP4Pjx49i1axeef/55fPjDH87J4LfC7q589IFJioHX60UoFLLl3IqirJmiJaRQ+Xw+2wIPj8dj+7QpkyWyTFxKiRs3bthytVZWVob29nbLz0tItum6jqtXr9qyu6SmpiYvGlwRsl2RSAQ3b9605dwtLS0oLy+35dzL7F/lYhHGGKqq7CmzbNd5Cck2RVEQDAZtOXdlZaUt5yUk2zwejy1ZcEVREAgELD/veiUTeABAMBi0fHeJy+VCWVmZpeckJJfsCKTLy8tpmoUUlerqasvPWVNTY/s0C1BigYeiKGhqarL0nM3NzXnxiyYkW9xuN2prrWtFryjKSq0fQopFIBCwNPvgdrvzJvteUoEHYPyyrUoV19bW0qJSUpRqamos25LX1NQEVd1yP0tC8hpjDI2NjZZk4RljaGlpyZuL4JILPACjUmquA4JAILBS14SQYsMYQ2tra84DgpqamryYkyYkF1RVRWtra84Dgubm5ryoH7KsJAMPRVHQ3t6es+AjEAjQFAspek6nEx0dHTkLPmpqaiyd0iHEDj6fD+3t7Tn7vmhubrZ9F8t6JbOd1owQAiMjI5iZmcnacy5/WFLQQUpFIpHA4OAgFhcXs/J8yynoioqKrDwfIYUgGo1iYGAga/U9VFVFc3NzXm5uKOnAY9nCwgKGhoa21fLb5XKhubmZ1nSQkiSlRCgUwsjIyLZ6LpWVlaGpqYl2sJCSJITA5OTkthumVlZWoq6uLm97hFHgsUQIgdnZWUxPTyMSiaT9OJ/Ph6qqKvj9fspykJKnaRpCoRCmpqa2FMiXl5ejsrISXq+X3kek5MXjcczMzGB6ehq6rqf1GM45gsEgKisrbe/FshkKPExEo1EsLi4iGo0iHA5D13VIKcEYg8PhWCn+4vP5bK95T0g+klIiEokgHA4jEokgEomsfIAyxuB0OuH1euF2u1FWVka7VggxIaXEwsLCynsoGo2uZBSXe74sfx+VlZXZ3nU2XRR4EEIIIcQyhREeEUIIIaQoUOBBCCGEEMtQ4EEIIYQQy1DgQQghhBDLUOBBCCGEEMtQ4EEIIYQQy1DgQQghhBDLUOBBCCGEEMtQ4EEIIYQQy1DgQQghhBDLUOBBCCGEEMtQ4EEIIYQQy1DgQQghhBDLUOBBCCGEEMtQ4EEIIYQQy6h2D4AQQrLJeeQZMK6Aq04wroApCpTlnzm/c0xRwPjqY8qGY1x1gnMGxhkYY1BUDsYZOGPgKl86huTHGIOi3nk85wyqyqFwBoUzOFUOdeln4+/KnZ8V437qqvsqJj8rnMHBORQG8A0/G+NRlv508OWfYdyPwzjOGByKcR/GAIUZ92EM4GBQOMCwfF/j/3f5+Mp9gZXnXv6ZSQlIASYFIPRVP2uAFIBIfowtHYfQjZ+lAPQE5NJtEDpkImH8KXRILbF0u4BMxJduN+5759i6xwgBEdcghYDUBfR4YuVnqQvoCW3lZ7H0sxDLf0+Y3E9CT+gQurzz97gOIeTKz1KXELqAFKv/bjxOLj1O6BK6JqBLCV0CcSFXftalRFzA9FhCrr/fnZ//RNy29425CmU8CCGEEGIZCjwIIYQQYhkKPAghhBBiGQo8CCGEEGIZCjwIIYQQYhkKPAghhBBiGQo8CCGEEGIZCjwIIYQQYhkKPAghhBBiGQo8CCGEEGIZCjwIIYQQYhkKPAghhBBiGQo8CCGEEGIZCjwIIYQQYhkKPAghhBBiGQo8CCGEEGIZCjwIIYQQYhkKPAghhBBiGQo8CCGEEGIZCjwIIYQQYhkKPAghhBBiGQo8CCGEEGIZCjwIIYQQYhkKPAghhBBiGQo8CCGEEGIZJqWUdg+CEELyUSwWwx/8wR/ga1/7Glwul93D2SCfx5fPYwNofHaiwIMQQpKYm5tDeXk5ZmdnEQgE7B7OBvk8vnweG0DjsxNNtRBCCCHEMhR4EEIIIcQyFHgQQgghxDIUeBBCSBIulwu/+7u/m7eL+/J5fPk8NoDGZydaXEoIIYQQy1DGgxBCCCGWocCDEEIIIZahwIMQQgghlqHAgxBCTHzlK1/BAw88gM9+9rOIx+NrjkUiEXzsYx/DQw89hMcffxzT09N5M7Zlf/AHf4Djx4/bPiZN0/CFL3wBDzzwAP7Nv/k3lo0n3fEts/rfa71k47P7tZYLFHgQQsg677//PkZHR/H6669j7969+Ju/+Zs1x3/yk59g//79eO211/CP//E/xne/+928GRsAzM/P4+LFi3kxpr//+79Hc3MzXn/9dYTDYbz11luWjSud8QHW/3utl2p8dr7WcoUCD0IIWeftt9/Ghz/8YQDAE088seHLsru7G+FwGAAQCoVQU1OTN2MDgP/6X/8rnn322bwYUzrjtXN8gPX/XuulGp+dr7VcUe0eACGE5JtQKITGxkYAQHl5+Yb09o4dO3Dx4kXs378fjDG8++67eTO22dlZXLhwAb/1W7+VF2MKhUIrvUbMxmv3+Oz491ov1fjsfK3lCmU8CCEla3R0FPfff/+G/6SUmJubA2B8KVRWVq553AsvvICHH34YFy9exO/93u/hP/2n/5Q3Y/vjP/5jfOlLX8r6eFKpqKhIOqZUx/JhfHb8e62XanxWvNasRoEHIaRk1dfX44033tjw30c/+lH87Gc/AwC89NJLuO+++zY8dvnLIRgMIhQK5c3Yenp68I1vfANPPPEEbty4gW9+85tZH9t6J0+eTDqmVMeskmoMdvx7bWV8QO5fa5aThBBCNviN3/gNef/998tf/dVflbFYTEop5Re/+EUppZSzs7Pyox/9qHzooYfkfffdJ69du5Y3Y1vt2LFjto1peTyJREL+83/+z+X9998vn3vuOcvGk+74VrPy32u9ZOOz+7WWC1QynRBCCCGWoakWQgghhFiGAg9CCCGEWIYCD0IIIYRYhgIPQgghhFiGAg9CCCFp+8IXvgDGGP7Vv/pXG47963/9r8EYwxe+8IWV20ZHR/Hcc8+hs7MTLpcLLS0t+PjHP46XX3555T7t7e344z/+YwtGT/IBBR6EEEK2pKWlBX/1V3+FSCSycls0GsX3vvc9tLa2rtx2+/ZtHDt2DK+88gqef/55XLhwAT/96U/xyCOP2FqinNiLSqYTQgjZkqNHj6K3txc//OEP8dnPfhYA8MMf/hAtLS3o7Oxcud9yBuTUqVPw+Xwrt+/btw/PPPOM5eMm+YEyHoQQQrbsX/yLf4H/+T//58rf//zP/3xNMDE9PY2f/vSnePbZZ9cEHcuCwaAVwyR5iAIPQgghW/a5z30Ob7zxBm7fvo2+vj68+eab+Gf/7J+tHO/p6YGUErt377ZxlCQf0VQLIYSQLauursaTTz6JF154AVJKPPnkk6iurl45vlwUmzFm1xBJnqKMByGEkIw888wz+Iu/+Au88MILG9ZsdHd3gzGGK1eu2DQ6kq8o8CCEEJKRJ554AvF4HPF4HB/5yEfWHKusrMRHPvIR/Mmf/AkWFxc3PLYouqySjFDgQQghJCOKouDKlSu4cuUKFEXZcPy//bf/Bl3XceLECfzgBz/AjRs3cOXKFXz729/GPffcY8OIST6gNR6EEEIyFggEkh7r6OjA2bNn8Y1vfAO/8Ru/gZGREdTU1ODYsWP47//9v1s4SpJPmFxeAUQIIYQQkmM01UIIIYQQy1DgQQghhBDLUOBBCCGEEMtQ4EEIIYQQy1DgQQghhBDLUOBBCCGEEMtQ4EEIIYQQy1DgQQghhBDLUOBBCCGEEMtQ4EEIIYQQy1DgQQghhBDL/P8BqH7q88ArsM4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -877,7 +876,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdeZxO1f9/PzPPrMxMxk6SLVJZKmuWiFJKkiUl38oSLaKoUFJERWlXSSqkKKRVESohe0mhlH1fZsaM2Z/fH/P7XOee55x7z73Pnf28Xy8v8zzPXc499yzv8/4sxxcIBALQ0NDQ0NDQ0NAo1ggr7AJoaGhoaGhoaGiEDk3qNDQ0NDQ0NDRKADSp09DQ0NDQ0NAoAdCkTkNDQ0NDQ0OjBECTOg0NDQ0NDQ2NEgBN6jQ0NDQ0NDQ0SgA0qdPQ0NDQ0NDQKAHQpE5DQ0NDQ0NDowSgRJO6QCCA5ORk6PzKGhoaGhoaGiUdJZrUpaSkICEhASkpKYVdFA0NDQ0NDQ2NfEWJJnUaGhoaGhoaGqUFxY7UzZs3DxUrVizsYmhoaGhoaGhoFCkUK1KXm5uLTz/9FDVq1CjsomhoaGhoaGhoFCkUK1L30UcfoWfPnggLK1bF1tDQ0NDQ0NDIdxQbdpSTk4P58+ejT58+0mMyMjKQnJxs+leccOTIEdxxxx3IzMws7KJoaGhoaGhoFDMUG1I3Z84c9O7d21Klmzx5MhISEox/xc1MO2XKFHz00UdYv359YRdFQ0NDQ8Nj+Hw+zJw5s7CLoVEM0LNnT5QvX97xecWG1G3fvh0ffvghunTpgl27dmHEiBFBx4wePRpJSUnGv3379hVCSUOHz+cr7CJoaGhoaOQDpk6dWthF0CgG+Oyzz3Dy5EnH5/nzoSz5gueff974+8orr8S0adOCjomKikJUVFRBFktDQ0NDQ0MZetGukZ8oNkodiw0bNhR2ETQ0NDQ0NBxD73CkkZ8olqSupEJ3dg0NDQ0NDQ230KSuCIFInZbnNTQ0NEoW9PiuURDQpE5DQ0NDQyOfkZubW9hF0CgF0KSuCEKv5DQ0NEoCvvnmG7Rq1aqwi1EkQKROj+8a+YliE/1aGqB96jQ0NEoSHnroIezatauwi1EkoJU6jYKAVuo0NDQ0NPIF7EJ1x44d2LRpk+Nr5ObmYsqUKUhPT/eyaAUOvWjXKAhopa4IQTvSamholCSwRGbSpEnYu3cvVqxY4egaP/zwAx599FEEAgE8+uijXhdRiJSUFPh8PpQtW9aza2qlTqMgoJU6DQ0NDQ+RkpKCd999t7CLUaQQCASQmZnpSm2jvbAzMjK8LpYU8fHxqFixoqfX1D51GgUBTeqKIHSn1yiNeOONN3Dq1KnCLkbIePTRRzFo0CDs3bu3sItS6CClLjc3F7m5ucjOznZ9rYIeF70292qlTqMgoEldEQINgNr3QqO04cCBA3jggQcwfPjwwi5KyEhKSgIA5OTkFHJJig5ycnKQm5uLrKyswi5KoUErdRoFAU3qiiA0qSs9GDlypCvn8ZIGIkBnz551dX5ubm6R6zd68j43luXk5CAnJ8exUrd161YcOHAgP4pW4NBKnUZBQJO6IgTWVKFROvDiiy+iV69ehV2MQkcoQUKBQADh4eF4+eWXPS6VOxQ1clmY4M2vTpW6Jk2aYPDgwflRtAKHbhcabuCUD2hSVwShSV3pAA3yfv+5IPQlS5bgzjvvLKwiFRpCmfBI5fvss8+8Kk5I0FHswdDmVz2ua7iDUzcOTeqKELRSV7pAnZUldd27d8ecOXMKq0iFhlCIUFHzXdOKzDmEan5lUdxJsh7XNdxAk7oSAD0plA5QqgaW1JXWd+8FqStqk76exM+BN78uX74cPp8PJ06cKOSSFRx0oIQYZ8+exbvvvltqxz47OF0IaVJXBKEng9IBInXh4eGFXJLCRygTXlEjdaw6VdrB1gWb0oRM5f/9919hFa3Aocd1MSZPnoxBgwZhy5YthV2UIon169cbEfUq0KSuCEJ3/tIBTerOIRRiVlTJk+7HZpeSnJwcQ6mj9+xEnSkqpN0tVJ513bp1pU6xSklJAVCwyaXd4o8//kCvXr1C6tvp6elITU1VPr5jx47o1q2b8vGa1BUhaJ+60LBz585iNSDSBMeaX0srSMEpTUpdbm4u1q5dWxBFyhd8/vnn2LNnj9KxvFIXFpY39RSn/hoq7Mb1H3/8ES1btsT8+fMLqETeY9y4cY5zTVJbKA7z3siRI/Hpp58aRNQJ0tPT8eWXX6Jx48aOt5/77bfflI/VpK4IQZM69/j7779Rv379YrM9008//YQFCxYA0KQOCE1tK2qkjvDrr79a/v7SSy+hVatW2L17dwGVyB3S0tKEZtLu3bujTZs2Stfgo1/pXZWmsc7OxeDIkSMAgP379xdYmbzGhAkT8Morrzg6pziRulAwb9483HTTTdi5c6fjc50sfvRsUgRRnFevp06dQmRkJMqUKVOg9z1+/DgAYNu2bQV6X7do166d8bfP58OKFSvQoUOHQixR4aIkmV+p/951112oXr06OnXqJDyOVt9eb0flNfr27YslS5YIxyXqdzJ4aX4tzli8eDHWr19veUxpqQsexYnUhbLrk1N1TnRfFWilrgiiODRuGRITE3HppZcW+H2LwySRk5ODkydPBn3/008/oWPHjti+fbtn9zp48GCxckL3gtQVNaUOgOX+r2fOnAHgfheNggKZiEV9y67O+UCJQCCA3NzcAumvv/76K/766698u74TzJ8/H7NmzbI8prTmNyxOpvhQrGmhzOua1BUjjBkzBr1798aOHTuQlpYGoHiSumPHjhmTa2GQieJA6h577DGUL19emsaBJnknWLVqFf7444+g76tXr45atWo5vl5hoST61AGwTLZLztJOnKYLA6QwiBRFmpDtQKQOyKsTNxO50/fbokULXHzxxY7O4eHVeBIIBJQDAYpKOy4oUFsoaMX90KFDiI+PV/YLZfHzzz87PodPTeIkVUmJJHUbN25E27Zt0b59e/Tu3bvEZCafPHkyFixYgAYNGuD9998HUDRJ3aRJk7Bw4ULhb4FAAJUqVcK4ceMKuFTnUBwGwi+//BIAsG/fPuHvbp7h6quvLhRl1GuURPMrcC7CWQQi8cWF1InSKqgqdWR+BfIms+LiU+dV28rNzTVInazOivKCND9RWG1h2bJlSElJwRdffOH43Jtvvhnr1q1zdA5P4pKTky2PZ9tJiSR11atXx9KlS7Fq1SrUrVsXixcvLuwi5RuK4kA3duxY3HrrrcLfqLEuX768IIskRFEeGGkhYjXRl1YUhPn1008/xcCBA50XLgSEotR9+umnrtRbr0Gk7vTp08Z3NEa5VercTOSFsXDzqq+ypM4OxWGB6iUKy6fO7T7ThGPHjjk6lyd1bH8SocSTuipVqiA2NhYAEBERUaIjBosiqbNCfqmmWVlZ+PDDDy0b9IYNG9CwYUOjwxQHUierLy8G8/feew+///57yNcpaISyfZQqqevVqxdmzpzp+j6qUDW/kruFiLidOnUKvXr1wkMPPeR9AR1CpNTRc4VK6kJ57wUBL0ldKC4GLMaOHYvHHnvMi2IZSElJKbQobMrTWZBj9xdffIEdO3YU6H151deO1LF9ywknKHbMaO/evVi2bBmeeOKJoN8yMjJMqyE7ebOooigTExFosLIbALdt24bff/8dffv2DfrtxIkTiI2NRUxMjPHdtGnT8Nhjj6FevXpo1aqV8JrPPfcc/vzzT2PVVJTrjupJtmL3gtQNGDAA0dHRIV+noFGSzK8srEgdtQeRUkfPdPTo0fwpmAOEQupk5lc6z8mCsDAULK8WrF4u1CdNmgQAeP755z275vXXX4/Vq1dLx8+5c+ciOzsb//vf/zy7J6EwzK9sMl+3c4bT85wqdeHh4a7EimKj1AF5JO3OO+/ErFmzEBEREfT75MmTkZCQYPyrUaNGIZQydBQ3pY4aniwhY3p6Oh599FFcdtlluP3224XHVKhQAZdccgnKly+PZcuWYeHChUZAgRVZpMmhOCl1+UnqgKJNcmTID/PrN998Yztw5gdUlTr6TUTqilLgD6UnEpE6n8+HQCCADz/8UNiu+ehXOpfvtyLw46CTuvBqlxavlDqVssuO+fXXX6X+zF5h9erVwu8rVaqEt956C/369cNdd92VL/curEAJQkH1Mb6t2239VeLNrzk5Objjjjswbtw4XHTRRcJjRo8ejaSkJOOfzCE9P5GRkYFvvvlG6VhZIy5upI4GeJn/z5w5czBlyhTb6/z77784efIkOnfujFtvvdWoHys1gBo+lcFJ4+/YsSNeeukl5eNDhR2pY997KANNZGSk7THr16/HwYMHHV97xYoVSEhI8Nzk7tQMd+LECbz22msA5KTu5ptvxieffBJ0bkESJRVSJ+o39ExFgdSR2wsbJcjuDLFx40b873//w4svvii9Bkvq2EAJq/fuZpJfvHgxRo8e7dkYevz4cfz5558hXycU38EWLVpI/ZnzG8eOHcPYsWONz/kR1FOcSF0o/dFp9Cs775VIUjd//nz88ssvmDBhAq6++mrhYB0VFYX4+HjTv4LGmDFjcMMNNyhNmDIVwemANGbMGKxatcrROV7CTqlzO8BSJ7dadVPDd7Oi3rdvn2UeMa9hR+rYQc1NndH5KqSuefPmaN++veN7vPLKK0hOTpamZXELp0rd/fffj2HDhuH48ePSySArK8s0CVE7cqu+nDx50jbXGKAe/Wql1BW28jx16lRjcUplGDVqVJBfqM/nM9xcROOZyPyq6lPHv1eVurjlllvw3HPP2R6nimuvvRYNGzZ0de7u3bvx+uuvA1Drz0U1T11ubi4qVKgAAJb+um7bqopqm58oLPMr+zkzMxP16tUzJahm570SSer69u2LEydOYOXKlVi5ciX69OlT2EUSgkiCSgM9deqU8HunE/qsWbOwbNkyR+fwyMzMNBy3nYL3DeIHJbedhupBhdQRUXJyL3bbooIA3Uu2gwDbZtyQOqoDO1JHyW4PHDjg+B7kr+d2xZ6YmIiWLVsGfS8idYFAABMnTsQ777wDIK/e+vTpg6NHjxr3Z8mCyFzBEmgKrnKb7Pe+++7DPffcg507dyqrnCtWrJBum6RC6vJDtQ8EAli5cqVlXxk1ahRuuOEGAGZyRfXJkjoic1b9VKbUWfU/ntQVhAXjgw8+MLWjUHwau3btigcffBCAuezFLaVJbm6u4Vdp1e/djqXFldQdOXLEUcJ4K1J39OhR/P3333jhhReM70q8+bW4QIWIEGQkymkjcxIuL0OrVq1cb+3Fd+aoqCjTZ7edRkW9oQGBJuriQOryS6mjOrAjdf/++y+AvDRBPL744gssXbpUei6ROrdBSKdOnRLmdxJFBqalpeHJJ5/EvffeCyBv54358+fj9ddfN6VBYOtt7969+Prrr41N0VkCHSqpo2euX7++sO4IbBvctGmTdINzt+bX3bt325Lql19+Wdpvvv32W3To0EHJT2vcuHGmd03KIxsoQXuWihTTUHzq+N9CNc8dP34cY8eOtexb7733Xkj3+Pvvv+Hz+XDgwAFTvRX11C1WYMtu9Q5mzJgR9F0gELAdk90EzWRmZoYsFoSKwYMH45JLLlE+nq87at9JSUm4/vrrg8pW4s2vRQWnTp2SKmyAM18Yr3zqcnJyQiZ1mzZtcn0uP/jypCJUUmc1kFDDHzZsmON75eTkFMrqUPaunCp1/DGqpO6ff/4BICZ13bp1Q5cuXaTnEqmzc/J1ChGBtzJd0nG1atXCoUOHAADfffcdatasia5du+K2224DEDqpY9uT6mSr2gatSL7M/BoIBFCnTh1bp3UyE4vqkPZrpXqzwoQJE7BgwQLjs4jUkZrFb4E3e/Zso669ML+GSuoee+wxTJo0Cbt27ZIewy9IneKrr74CkLfjANWVCrEBioYvtagMbL2zfy9btsy0AHzggQeCzu3Tpw8eeOAB+Hw+TJo0CXFxcRgzZozpGJ7gr1q1Cpdddpm0zrKyshAVFWWYtp2C7xOF5VNHdfn1118be5az9V/iza8FhVdffdVysEtMTERiYiKAvMlBNvCoDEBekjq3fkLlypUTdkYn4FdYvEoZKqmzMhPyQRReKHXJyclo3bq1q0ACFagodSrPwZedJlCrienrr782lLrzzjvP9h48KOVMYZM6Qnp6uol0iH4nOCV133//PcLCwhwHXKlGOlqNFbLFIREomgREmD17Nn777TcAwUQLMEfWvvbaa46UId6nLjs7G+PHjwcAk5/lH3/8gf79+xt+tl4ESuTm5mLhwoWutnUCzimtVs/rltSJlCOqo9zc3KAxPS0tLWgcYNXqrKwsS/KZXxCNhzKlrnPnzpYLQCDPKrBmzRoAefn1zpw5g8mTJ5uO4dvCU089hW3btkktWfQ97dDjFHy9F6VACdkiUpM6l0hOTsZDDz2EunXrKh3fokULw9+HUFikzq1Sd/r0abzxxhuuziXwjdMr8wFN6r169cLnn38uvK8bUpecnIzdu3dLSd3KlSuxZs0afPDBB8LzV69ejdq1a7tW+bwyv8pInUyp27NnD7p27YrRo0cDcBcwEKr5VQZRX7Ayx7Bt7O+//5YeR3WdkpJiEAwRqVu3bl0Qefvuu+8AnIv6DKVdyyZ8QDy4y5Q62qC+Zs2a0nv179/f+FtE6ljTNSl6duMVEWJqM1Q+Mr0C5xRAILiN8+ZXNmedDKIF86233orOnTtbllUGeu9WpF7Wd/j3kJ2dbQQN5ObmIioqClOnTjUdR3WQnZ0d5FNXpkyZoH1pWSJPWR5k/rf5hejo6KBnlSl1KkhLS7PtNyzZB84Ra5mLAb0/UVozHosWLUKDBg1M34VC6kKBCqmTmV+dQJM6BjRgqQYMHD58OEhFopdi1fizs7NNK3UeTkmdFz51hJycHGzcuNGROsE3Tqf5pWTPyz4Tr0ykp6cjIiIiyAdGpYN27NgRderUQU5OjpA4kNIoK9ekSZPw77//uiY2XplfeVJmR+rovtS+3fqWAd4rdSKfOv7dsL+xf1spGjQp1q5d26gv0XO3bNkyaJKl+qJJJhTzK/8sdqROptQRqatatapSWVj17LbbbsMvv/xiInUs0bICkXne/Epo166diUDydcUnH2ZNsTLIrCBu+x21e6vxXabU8WUZO3YsGjVqhNTUVOO3Rx99FCNGjDCOYQmwqD+TYk6gdpCTk2O858JIy8W/k9zcXON9OiV1Z8+etR1n+DZI45csRRa9P5VdpUaOHGnsHEHwaq4kqM7XTkmd21yLmtQxcKpcZGdnB52jsgKNiIjAuHHjioRSxyMlJQVXXnmlrQPo77//jq5duyInJydoUuUHBTuiJRvY2VUqP0nwHdUJNm7cCEBsfn388ccNJ3u796O6kpo1a5YpqsmNUhcIBIJSRshInWxi4svrRgWge+aX+VWWDuS7777DH3/8YRzDtgerSZ6ekVWRZJMMrwzQ/WmSCUWp44mEW6WOnkNVJWaJ1ieffIIBAwYYz7F161Zs3boVgP3YR7nqZKSuWrVqpmvwdeVGqeN/ozp0u2MKvXc3pI4vC5kUMzMzhePE2bNnTQt8lehX1spDLj7k/1qQEJE6guhZX3rpJSGJB/LqwS6oh28LdkodvT8VpY76j0hB5Y9RgehY1m/0ySefFKb2SU5Oxg8//GD6TrSQtVLqbr75ZqUyalLHwGkkpBWps1vRzJs3T0renMrBXpI6miBTUlKwefNm6XGjRo3C119/jc2bN+OOO+4w/cbW46lTp6QpHUTHs2CfiW/gslBypz51/GD9/PPP48MPPwRgT+pUyfc999xj2qtRRqasSN2LL76IcuXKmQgJ3/boujKljh943Sh19E68NL8GAgHDP4atA7ZdXHfdddIoUiuI6pp97nXr1kmJBdUvrZhDIXV8XdOzRUdHO/Kpo7LSxBYIBNC6dWv8/PPP2L9/f9B1+HyCrMsC615gN/aRL6Vs/+LY2FjTd1akjlWunJhfabJktxJ0AnoHViRD1nf456VrZGZmCp/h7rvvNv4my4wdWKWuXLlyAICdO3fanuc1rBK5i9rqtGnTTJ8rVKiA8PBwvPXWW0hLS7MldXxb8FKpo/Ky46nX5ld6vt9//x0TJ07Ek08+GXRMjx49sGXLFtN3TpW6JUuWKJVHkzoGTkkdG6BAEU4q5lc6XnbME088gR49ergqB4vx48fj2WefVboGDcKsAkMO0CJQQxYFMbBOw7fddpulzxMdL4KVUkeqDQ+n0a9W71xG2lQmJCvICDjt6QgA/fr1w1tvvWV8Xr58OYBzdbJ06VKT+gTYm1/551FR6o4dO4ZBgwYZ7yg/lLqvvvoKX3zxRVAZZe9m4sSJytsmieqa6uno0aNo2bIlnnnmGctznSZGFrVBmVIXExPjSKmj8+gZsrOzsWbNGrRt2xY1atQIUgl4nzqRHypgr9TZmV9jY2NN1xC5ZLAmVzc+ddTmnCp1rGoEWCt1MqLAl5MIh0yp489VWQCKlDrW7cTuPvfdd59BBkOBU1LHjjeXXXaZMS599913OHv2rK07k1NSR3OPilInci9wK4CcOnVKWCdUHkoJJvJjpfGbhTa/FgBCMb/edtttCAsLsx2s6KVZkbrjx49j0aJFyuWQ+dQ9/fTTeOKJJ4yyZGdn46effhJeg1a/7KRgNXFTR5U9Jz0bOZtbwY1SJ9uNw8s8dXakzm2KBdmgQmZhIG/f0qFDhxqf2bD/rKwsdOnSBVdccYXpfDvzK/+uVEjds88+i3fffddIeUNlZ1ffO3bskO4mAgBTpkxBs2bNpG2FJf1snXqx76boGb/88kv4fD4jyl1myqdnpfftpVJHdSEjdTKljtor9T8+6TjfLyj9El2HjTxlEar5tUyZMpYmZZn59fPPP5f2Wa9IHZ/024pkyMYD/nlYpc4pqZM9L6vUxcXFATDv4GAnOkyfPt2TvY7ZqF0C+f/ZkToqN5Dnx5qVlWVrEeD9K71U6qiurUidypyRkZGBxMRErFy5Mug3Pum+6juwI3Wud+hwdVYJBfviVfPM0SDH+2HJOjq7Ag817xJwrhFYrT5I1ZoyZQratWuH3bt3Bx1DpI5N50ImNhG5oY4lG2hUJuRAIIAJEyZIU4ewz8SvWrwwXdspdXbmV7fvLz093ZgkVUEDhszcA5wjDitWrBD+zp+nYn6lFBq05R69V3bAbdCgAdq0aSO9xqOPPooNGzZI2yhrIlRR6pxAROrmzp0L4JzKbGd+zU+lTmZ+tVPq0tLSsHXrVmPXBwKvEvA7rbCJf0XXlUHF/Mr2ef533vxKz7xu3TqEhYXhs88+C7qnzPy6du1a/Pzzz5blZUHl4gOFRJC1Uf55QlHq7HaUycnJMd4Xq9R5scjhsW3btiCfaLqPXc46AkuuWFKnaiaXRb/akTonSh3bx/l3vH79elsXIav5ld3dBlC3YtiROrd5CzWpY2DnvMyCSBn/su0mfPYeXpA6uoao0dHgTSrKf//9B0DcWagjsQSLSJ2onNSQZY3dagCiAevkyZMYN24cvv32W+FxVuZXWd2F6lPH/y6Ck7Q1Ihw6dMgwr6iC3Q7NjtTJBhW+vCpKHZE6mmjonJSUFLzzzjvGZ8qLZgVZW2HNyDKfOreweka798iTOlVYOVMTVM2vfBtkSZ3oPfN1zKuNMlLn1PzKl5n3qRM524vMrwSyTLC+mvw92DbWtm1by/KyoDKrKHWyerAyv9rNFTypk5EVtj3S8eyx+bH7zWWXXYaLLrrI9J1IqePLyNYT+y5ZUqdKbmTuLE6UOrt91LOystCtWzdcdNFFQX1k4cKFtv66VvMKzYVUD16ROq3UuURERISxvYnVoMRD1LgBe38r9nsvSZ1oMKJGr7JPJ5Wb3S2DTRzKgzqWrOOpKGBUFzLTnZX51Uqp++STT4yUAFawM7+qKnXr16/Htm3bcNtttym901WrViEtLQ2BQAA33XST5bEUnUjPb6UMiNoAq9Dwg5kTUvfCCy8gLCwMixcvBgD88ssvuPfee00+m3bEQHY/mVLnhTKRkZFha+6S9VU7nzrZda2UbYIdqbMLlDh79qySGZVX6mTPamelIGV5zZo12LBhQ1C/iYmJsRw/ZUodISIiAp9++ikSEhKMNB5Ox0fZOMKnsrEaD1VJHTvu2pWTj36VjZlsexRds6C2NMzKysLp06eFgTcff/wx2rdvb2rPbN2Qog+4J3VW2+ddccUVQbup/PPPPyhXrpwwlylL6r744gvs2rVL2adu9+7dRpuxesd2Sp3sXFEQh1bqQkQgEEB2djaee+45ABCaDzIzM/H666/j2LFjpnNlZKoomV95UmdlPqKysKRORamTDVBWEzLfiWXXsCJ1Vh3ltttuw5VXXim9P3tsqKQuNzcXzZs3x2WXXYZPPvlEaesl4JyZzM4ZtkmTJgDUlDrRs9AzxMTEoGXLlqbfVCYkInVz5swxfU+DHRudZ7V9HqBG6vJDqZNN4qy5i7Bo0aKgPiUjdSoLN0JaWhqWLVtm7HsbaqCETG2yU+qSk5OFYwXbX0WTCZnSnn32WTRr1iwo0jU6OtoU5anqU0eIiIgw/JVYdVgVy5cvNxEK/tlYVxlZ3W3ZskUagGPlZqJifmXfI413vHlSpNQBQPny5aVlmDVrltICVgTZM2VlZaF+/fqoV69e0G/Lly/Hjz/+aKpD9jpulDrep47+F/VbdjtLep+UCYH1PySomF9lqFOnDvr27Wsqowi8Urdv3z6DU7Dl5CFaVGpSFyLo5RL5YRvn7bffjkAggGeeeQYPPvigsacfgV5EKKTOi73+rMyvMqXOKqqJnZjT09OFA/D8+fONCdoNqVNV6liTlar5la6pqk6GGv0a6m4aqrnuWJ86u2dnYdceZQMcvVdRJBcLlsTK2gJ/L76O2AkiP3zq7BQctm569OiB2bNnC3/ny62Sb5Bw9uxZdO7cGS1btsS6devw66+/AnCe0oQldaK2ZkfqAKB3795B51lFrlI5ReUA8ggZ+TfJfO5kyYfZa/B5AZ2Quu+//176W2ZmpmlBwZO6I0eO4Pjx43j33Xel17Dyu3RqfqXn5P1q2UUGe/wFF1wAILhOMzMzcc899wjfpwrIp5T3TcvKyjKItQwypc4L8yvVD5+OhwfVB5leRZG/oUa/UiCS1Tum8YV9Z6NHj8ahQ4dw6tQp16ROm19dgLfNsy/+66+/RkZGhjFp8R1KRup401xWVpbJTy1U82tOTo4wWtCqodJzOlXqgLwGy5eTdVKWTZgiMkjgO7HsGuzAoWp+lXWg4cOHB+X5IaVWBtavha1f9h3zz+iUqKuSOhWlzorUySBTz2hwtiNWe/fuNf62ioAF5Nv7sOTda6UuIyPDdtHA1xsp1KzD+IQJE/Dpp58GXVsE9hkoGz+7yGjZsqUR2RyKUueW1IlA1929e7dwL11eVeJJHRGx3bt3Iy0tzdL8KlPqqKw7d+7EL7/8Ytt2WXMbn96HRWZmpqmN8aSuSpUqqFSpkuXOJKEqdVbqJ0Gm1BGp48c2Uqic+ucSqO9Wr17d9L2K2wPbp9jnZ8vC+7nVqFFDeC161szMTIwaNcqItJ07d66SqZzuk5CQgH///Rf/+9//gkybTpU6Ol/F/EpzJv+Oq1WrZtrJhgdvbuavoZU6F6AGQyYwvvIzMzONChftZUjHsAMvScD0woYPH27qNKGaX5999lnUq1cvyDTKlo+P9uI7hqix8KseQnJyclA5jx8/buynx6szlKuHVD4ReLldhdTt2LHDlLdNVneypLivvPKKMCO3lS8R3SMuLg5XX3218b0VqXNKRFRIXSAQUPKpsyIHMoSyVRhgXo3bKXWsc/l5550nLMPixYsNk65XKU1k5aL78u+MFnms+fX5558POl9WPvb9+Hw+1KlTRxpI4jalSXZ2tnByckvq6Fk6dOiAO++8M+j3yMhIU1tl68zv9xtE/eKLL8aNN97o2Pzq9/uNsvbs2RNXXXWVsF5YNaZ79+4A8rZOmzlzpvTZ+K2qRAuZQCBgmU9TthjPyMiQ9sfLL7/cOFdU/3w+SVapY68pU+ooOTy/t6kqiIwkJCSYvlcZw1gVja1bVtHllTo2sIHa9bfffmvsH3zw4EFMnToVq1evRoUKFXDq1CnLnYOonPQcfr8fa9euxYcffogPPvgAn3zyiVCpk80RbO5TaiMqOUnJmiFqB6dPn3ak1LH9XZM6FyCyI1LqgLyBjidIBHoRGRkZwkmDXjBtDcKbHPft2xeUYVoFFOLOrw5YyToqKgqzZ8+WkjqRCiBKVQGISd2hQ4dw4YUXCo8nAnvs2DHpikjVp47Fq6++iqFDhxpllg2kdn5dPOycuwlr164N+r6gSF1qaqpJqZM9u5VPnQyhqmHsImD//v2IiYmRtmt2MGUHfF456dSpkydlA/IGZ5kaSZMR304zMzPx33//mcyvogFW1fzasWNHYfJRQGx+PXz4sDD69ZtvvjFNEKKIv1CVOpkyEh4ebiIhMqUOyEupI7Ns0N9W5leCqO3SopHFq6++KiwzIS0tzWgDUVFR0gmasgOIIFN6rBZZZF6VkTqZj6aq+ZUCSmR5KVn89ddfuOqqq0x9gf4WmV/tcPjwYeNvti+z4xlP6tj70L2vv/56w1+XHQfIn4+1BPDghYjs7GzjugMGDMBtt91m1GOjRo2M82Sq7qWXXmqczxLVM2fOWI6jROpkfcwu96FswaDNry6gQuqoA8tIXWZmpjDPGr0cauSiZL3sfqCqoEGNiBCv1JFfCEVNAnJSxzZCNqqORXJyctAgeOjQIdSqVctUDkLNmjUB5K267JQMO/OrCHYdyGnyTStSx5f/iSeeMN1bROqcqksqWcOPHTtmUupkofBOzK804bDPLFKjnGD16tVIT0838sAB5oFJtkLm2xwNul6QutzcXFuljid9I0aMQK1atYxy5OTkCAdYVVLXuHFjqQpEAQaEGTNmoGrVqkbkId133bp1uOGGG7BkyRLDbCfyd+SfxalSx/pEsQgPDzdNyuyzsz51BP7d8f3MSqkjiNpu2bJlTZ99Pp/QQZ5Famqq8a7Lli0rJXVWdcSWn63jvXv34rLLLhOeQ2O1rP0AeWlaMjMzcejQIVvzK1+ntIBVMSdOnToVv/zyi2FipsAuwB2pY3cSomcbOnSolNSFhYWZfhNZCNjxoVq1aoiOjsaePXukZeDNryyp48vGgg96ZEE5XNnrXH/99UrmV9kxVkrdkSNHTOlU6L2npKQI26MK0XNM6k6fPo1PPvkEL730EqZNm4aPP/7YsTpSVMCTOpH5VabUseZXUbJXGjisSJ0b0KDGpxuhSV0UfckrIbIcWKJjRT51hw4dMsgbP2EmJCSgXLlyOHjwYJCvBsHKp85OuaLJzk6pU/VV4xUEFnx7oPQdLKnjz+EHREpKLYNKOY8ePWqr1InKAuQRLVG0H79DAAA8/vjjpmOckioiQawJhh28VUkdffYq2arMYZvqRZZhnl04iQZTFfMrIA+GAILNr2+//TaAcxMVXxbgnN+SiNSFan6VRZD6/X6TGsfem/8NCO5LfA5QvjxsdCr7HQ+RUmeXiJgldfHx8a4WC+zzsBM+72fJwk6pO3bsGBo3boxy5cqhWrVqpvaWm5uLypUr49133zVI45YtW0xtmcY6kV/3M888g1mzZhnfscJFIBDAtm3bpFstqtQPn+7krrvuwhtvvGFapLLvLzw83KRMnj17Nuj9ss8WFRWFCy64QEmpYxeBPKkTtSEr/0tafLFj0s8//6xkfnXq552dnY2JEyeavsvNzcW6desQHx8v5FUqaagckbqZM2eiefPmWLt2rRHNtHbtWrRs2dLSp6Eo4pNPPsGUKVMA5L0UkXNvRkaGlNRRvq7MzEzDxMqCV+qIQIZK6mhQe+655/DKK68E+XfQ9dmGy6c0yc7OxuTJk4WOqzwB4M2vJ0+eRHJyMmrWrAm/3x+kskVGRqJatWrYs2ePpU/d/fffbyhf7ITF+3fwoBWirAMRcWAHEKs6t1LqRCvg3NxcU9oGO/Nrnz59pPcG1EjdyZMnbZW67OxsYX13794dLVq0CPpepNTxcOpvRytgltSx71Zk2gsEAtIUE17l5WJVaxYy8yuP5cuXCyeHo0ePYsOGDTh06BCaNWsmXbFbbWsVExOD9PR0XHvttdi+fbuxVRyVjdo5204oxYUoOjBU86uVUscSN3Z8cavUde3a1fSdilKnuksBi7S0NKM+4+LiXI3BbPnZfsG6ZfCgsVpG6misovZP7ZTGlZiYGAwYMMCo9yFDhuD66683zpeRupycHHz88cfGvMRmWkhKSjKIAZEovp5ffvll6TMRFixYYIrejYqKgs/nk45n/KLowIEDQe+bJTGRkZGoWbOmJamj5yazuUipk5FpGUjJZN9x7dq1802p4+srOzvbMvLYbh9dwCGpe+GFF7Bp0yZMmzYNI0eOxMiRI/Hyyy9jw4YNIZtuChpLly7Fl19+CSDPCb9Dhw6OfOqGDRtmHLN161bUr1/f9PvEiRPxwAMPGOTCa6Xu888/x6JFi0wN6aOPPsL7778PwJ7UjRkzxnBQZcFP5KdPnzZNxhs2bACQ5wQcFRUVpNQRqbNyOs7NzcWbb76JpUuXAjArdawDvQh2Sh3BTuonsO+cXxllZGQEDQr79u2z9KlTVZcoRY4qqaN3J1PqsrKypG2L3WqIIFLqeIgGkOjoaBw8eBBDhw4NSpxMfmMsiWEHWRGpsyJUXpE6NkEyC2p/du/s1VdfFdZtly5d0KxZM3z88cfYsGGDkVbDKalLSUnB999/jwkTJhjf85G5rJN5fpA6p+ZX9t5OSd1rr72G3bt3m56JdXUhiOpcZWsoHqxSFxcXJ21XZH0QQabUWZnD7JQ6HhRMQ0odjQ3sM69Zs8b4m9Rcvv2SxYa+f/rpp40E+6dPnzb6tSwPqWybQRb83EF+faqb0Ldo0SLoPnybqlKlisl3jwepjmQyFSl1ovdjlSpl9erV8Pl8RsohIC9qNz+UupycnKDx3yprBKC20HZE6nw+n9A/5cyZMyFtdl0Y4J1Lf/31V0vz6y+//CLcmub06dPYtWtX0Obq27ZtwxtvvGHUC5GsUEkdu1I9deqUqSENHjzYmDjpfmXLlpX61InAN5ohQ4aYfEZ+/fVXnHfeeahbty6ioqKkSp1VegC+0bKDuZ1Sd/z4caxevVq4sTILtj1aSdY0wAcCgaDtcjIyMoLq4++//1aOfrUa8GnPThVSd+rUKZO5X6bUOWlbKkqdaD/Odu3aoWrVqnjzzTfx5JNPCs9jSQz7bkWkzs2WTV6Bomyd5K1iQfVNky69A34isnJkZ+uKnRD5yFz2NyJ1IvMrb1KzI3Vz585FWFiYcR8r8ytLLr744gvTb3bmV/Zzamoqtm3bZnomdqwliCYw/j5239P9aAywUupUSN3ff/9tmROPhZ1SJ4MVqWMhU+pSUlJw+vRp492/8847xm8sqZNFf6uC7btU/6pKHZC3E4/smMjISFSuXNnoS/v27cNTTz1lOj4zMxPHjh0zWcFUlDqZGwhwLrCR0uW0b98e6enpISl1VoESfH2J+oFq2QmOSN3UqVPRvn173HrrrRg2bBiGDRuGHj164Oqrr8aLL77o5FKuMHLkSLRt2xZ33HFHyAO+aBDgK58Nhf/111+Fvhtnz55FIBAwwtd50Evr0KEDVq9e7WjitXOUPH36tLQh0WokMTExiIjzm4A7wY4dO3DxxRcjLCzMUqmzks2tBjjeEZpHdnY22rRpY7rvrbfeankOOzn8+OOPpt/INCHyX8jIyAgiHcePHzeROpEicezYMfzxxx9KHVBlZXvq1ClTah3RO3dL6qz60QMPPGB5DRkBiIiIwJNPPomlS5eaCJNoQUjvhtJTsPB6W6QjR46gdevWQd+7JXUE1l9pwoQJQW3JTqnjrwOYlTpSAgmU1kNE6vgcc1abs9P9IyMjjeNkZeV9olg4VerYa7K/8+/hkUceCTpHRt6sxg0r8ytbLj4ZMAs67qKLLsKIESOkx7FglTonkYxE6qh+nJI6iooVZTQ4depU0Jim4qdlB1q4OCF1VveNiIhA5cqVDUVw0KBBeOaZZ0zHZGVl4Z9//jF9ViF1VkmRqa7oOpUrVxZmgCCQsJGbmyvtYzK/6uzs7KDxn02jxmL8+PEAzr1bKzgidTfeeCO2b9+OkSNHon379mjXrh1GjRqF7du348Ybb3RyKcfYvHkzDh8+jJ9++gkNGza0dFBVgWj1zFdm27Ztpf44PCpXrgwAOP/8803fswPh9OnTHU28W7duxZkzZ3DJJZcYahnbuFgFhwcpdRdccIHQzOoW+/btQ7Vq1QBASOqysrJQrVo1S+Jm9ZvIEZqF6HnZyZDAphpgO3r79u2Djs3KyhJGWR04cCAosnn48OGGaXnPnj1BW+lkZmaicePGuPTSS22zsgPqSh0bbe3Ep04GFaXODiypu/fee01lmThxIrp06YIBAwYY31uRuuHDh6NVq1bG96tWrfKc1FWqVEk4QYY6qbGkThQJb0Xq2PKwAzxNvFlZWejbty8eeugh47fIyEjExcXZZtwH7JW6+Ph4UzoRWZ2Hh4dLryFS6uwiyemalL5GpFCI6tINqbMyv/I51gKBgHDRK0sGbQXqY7KUODKoKnX0/mWkjt492+/eeecdw5ec4Lb99+vXz/ib3otskeokepyuU7lyZaSkpAiDKs477zxkZmbizz//hM/nQ9myZZW3abRKocXPGZUqVUJKSop03k5MTEQgELBMe/L6668Lv8/Ozg5aKMlI3YgRIxAWFmYZDUxwHP0aHh6OVq1a4dZbb0XPnj3RqlUrZTt6KFizZg2uvfZaAHm+LL/88kvQMRkZGUhOTjb9k0E0OISi/hEZ8fv9pomaTbGhsqUMi8svvxzdunXD9u3bDb8o9vyUlBRpmem+tWrVwsGDB3H8+HHhhsdOsW/fPlStWhVAXh3ynXXDhg0G6ZPBSsp2Q+pk7Y9keTs/BBmpO3HiRBAJZE1rIhNzVlaWMbB4RepOnjxZKEqdHVhSx/qtsYMS65tiZX7lo0Bff/11ZGZmKkcxq0K0AHCTBFyErKws1K1bN+h7mfn11KlTprYrUupEE19ERATi4uJst3Bjz5eRiri4OERGRpqSGovg9/ulxMlOqStXrpzwuuHh4fj+++/RsWNHpZ0ZAHl/sSN169evR3x8vJGn7ttvv0V6erppbCDVVDSeiCZaK5Mv4NynjkBuHXakThYlzit17Bi9Y8eOoKBGuo7V4kOE2bNnG2W0M7+KYOV6cfLkSVSpUgVAXoJiIj/x8fFo2bIlBg8ejKysLPz555+48MILUaZMGWzevFm4G4ob8KRO1jZJNU9OTnacLFhmfhW1taioKFsLGMH1iCnyt8lPnD592phEEhIShAPa5MmTkZCQYPyTbUsCyJU6pw2bQINKWFiYaVBgJ3anpA4IdlrlG5fdwH7hhRciKSkJN910kym3kAj8djOiCZAldWwdklLbtGnTAid1onIC5yY0t6Ru3LhxllK96F2yHdLKyZegqtTRdQvCp45VhVSuAZjbgkztsVLqYmJijPM6deqEDRs2ICsry2SedBP5yMONo70d+GjoChUqmH6XjSkxMTGmtitS6kQqe0REBOLj4wtcqeODmMaNG2eUx8qnjn23/DUBGKRSRQWTHcOSuvj4eNSuXdv4nJqaipkzZ2LEiBHw+/3YvHkzrr/+esycOdNELOg9ifokPQ+rrNi1pfz2qQOAihUrWpI6lTZCBGbevHlSlwoZqP3KzK/0jp3mizt8+LAxj/To0cNoP2fOnEHz5s0RFRWFzMxMbNu2DRdffLFnCzMC1UnFihWRkpIi7RfUJ9yQOpnLj0zVvuCCC/JHqSPcfvvtmDZtmuUxbjMii1CuXDlDeTt9+rRwv7vRo0cjKSnJ+Gdlf5aROiu/CitQBw4PDzcNzmwggRtSx4M/367T0s4PvFMqjwYNGhgO2ARRJFxWVpZB6mgQrFevHr744gucPHkSb775pi2psyJZ7OAsGsxkK34RqCPamReysrKE9WgXiSsaSNgOaRUBTOAHwYcffjjoGNb8WhBKnZ1fI4Gd4FRIHUWbEr7++mu0bNnSKA+Vv3Xr1vjvv/9w5MiRoMCgUaNGKZVNBtkCIBSweRdzcnKC2qOM1EVGRprKI1LqRIiIiEDZsmWVfAGJUFgpdceOHcNTTz1lacLnt3br2bOnMQ7wQRSAuQ2Eh4cL2xmr8ojGxvLly2P69OmmhbFsTmEXg/PmzTP5OB89ehTZ2dmoX7++qZx+v1+o1IlI3dq1a+Hz+Uz3t+tvoSh1rE+dlSWsUqVKluZX3odYBHZnCaeLHmqzMvNrpUqVpOeKSB2NPYcPH0bDhg0NPzoKjKN6iYiIwL59+/Ddd9+hc+fOrrfUkuHs2bOIiopCQkKCZQJz4iFJSUm2xHLdunWmDQe2bNmC5557znSMTKkLDw9Hhw4djPncCq5J3ZIlSzB+/HgMGzZMuGfm+++/j4svvtjt5YPQsmVLfPfddwDyJoerrroq6JioqCjEx8eb/snAryx9Ph8yMzNDJnW8UsciP0idVSJFAMbOD3YNrkmTJkHlltUfyeL0zDQQlCtXzghFZ3Hs2DF06dLF+GxlFmcJBbvPI8GJUkeDnZ1SJxt07VatdkodRVdaga9z1geNkJycbKvUnTlzxjOfOp7UqZA89h2olmPkyJHG39HR0cZ5FIW4c+dO06QQFRUlTbmhivwgdazKJSJ1MvOrz+ezVepE8Pv9SltDEUSpeQjx8fFGn9q3b590fEpLSzP1x6ioKJMjv4zUXXDBBfD7/VL1gc4X+dTVqlULQ4YMQcWKFY3vZM9htRgk37yEhARTfbO+doC1+XXRokVB39kRCbeBEjQeEbm0UvMrV64cRO7JRJeZmYk1a9YYO1LIQO+KfY925xB4UseX9dJLLzX+5v3HRKSOFgpXXXUVfD5fUEJ0ugctlKKionD//fc7VursLHLp6emIiYkxxhvZBgtOzK+XX355kHDCIxAICOcrn8+HiRMnmtIeyeCa1F133XX48ccfsWjRIvTo0QNnz55FZmYmpk+fjrp16+Lhhx+2TbzqBE2bNkWVKlXQtm1bbN++3Tbi0Q78oOj3+z1T6qxIRqikjm+8dkqdbFcHHpUqVQoqN9shWdCzUoPnB9HIyEjTQEwRdgTRtmDlypXDuHHjTGljRGlLnPjUOVHqRNe1S68iepfsAGuV1oXAD4Ii80VWVpbpWURl3bJliylC0g40qNkpdY8//rgSqfP5fDh8+LDRj1TAtgOW1NH9/vjjDzRs2NB0jhMyI0J+kDo2NYQTpQ4wt10+4z4Lttwic6cVrEhdmTJlcMkllwCQqwRAHgFilbrIyEiTksSXJyMjA02aNMGePXtQoUIFoSsCb37l26LIFcMpqStbtqzh48qTuuTkZFM9W+VaE/W5d955R+hDSYiOjobP5wvZp84KlStXtjS/7tmzB3Xr1sWVV15pey2W1NnNg0Rm6HhZ3bEWNZ7YikhdVFQUjh8/jpdeegmAuL+Gh4cbglFsbCwiIiIckzo7N5+MjAzExMQYx8ksBFQPu3fvNvnPN2/e3HBPYMutApW90K0Qkhdy48aNsXbtWuzevRstW7ZErVq18NRTT2HQoEHYs2cPnn766ZAKx2Pq1Kn46aefMHfuXEeDmgiiaK3k5GTbly2DzPzKoqDMryyhoqhcOyQmJgaVu3///sJjqe5oIBW9C9YEy5uZaANnFuXLl8fTTz9tXKtfv35CpVdFqaPJUVWpmzZtWpAMDgSTOrtcXIA5OSglxbSCHamLjY017RRy9uxZ4X0HDBhgUm1vu+02y/umpqaazGKsjyw7QXbt2tWSCA0ePNj4u3LlyqhZs6ZBbO184NhBkN0Dle6fmZkZ1AZEBEllwiLkJ6mTmV+tiChbHrZty7b2A5yTuhMnThikgichYWFhxnZS6enplkpdhw4djM9RUVFG2X0+X9DCLjk52fiuWrVqQdtKAWZSJyKUIhcbFZ+6iIgIYwyIi4sz/BITEhJM5UxKSjKNDVQeEZkSkbK77rrLcuFGdRRq9KsVrEhdRkYG9u3bhxo1amD9+vWmaFURWDO6Vd8dNGgQVq9ebZwDyJU6q+uI/MH9fj/Kly9vlMPn8wW19bCwMCMvLPUTp6TOjrSmpaUhKirKGG9kFjFa6Nx333245557TGXk1U7VXL6igDInCInUJSUl4b333sOBAwewa9cunD59GsuXL8eYMWNCNpPkN0QD7ezZs4WThkrwhBWpe+655zB06FCsW7dOSpRU8Ndffykpdaw6p6pssKSuR48eeOedd9CrV68gPyjg3OpMptQBZlLn9/tNk9fHH38cdDzvkyEbvFWUOrqWqlL3yiuvCL/nza8NGjQwfRZNgLNnzzb+PnjwoNCEbAURqWMnvLS0tKA64B3zAUjzJhJOnz6NiIgI47o9e/Y0fmMnyOjoaEs/mzfffNMUTBIREWEMtHZjALsijYqKClLqAASROlF7Xr9+Pa6++mrLexFUSZ2TZOps+hEVpW7kyJHGNoNseVgiZ2V+VSV1VI/79+83SIXI/EPlS09Plyp1aWlpuPnmm42dUFjza1hYWFAbmTdvnkE2qlevLvRvtjK/Tp48GdOnTw86RzYuxMbGGu+MLQvbBkVKHesKYmXu5OtFRbCgxWyogRJWSExMFKrt0dHRyMzMxN69e42AQbt5jG1XVqTnvvvuM/qlXaBETEwMvvrqK+GYL3seUblYhIWFGWZayqXpVCxRJXV28ydFovMIBAJo3ry5ozIRCo3UjR49GjVr1sT777+PSZMm4dixY+jVqxc6depk65RfFCB7WaIJTCXqjpWf+YmDNT+GkkLi4osvNva5I4hWECyhUnV8ZUldfHw8Bg0aBJ/PF2T+As6RJlVSx/sOiUDXsDtORamja6kqdTLwSh2ROvJTtHuXgUDA1vzND0b8oFimTBkTqRMpdbwPI2BP5k+dOmVKOsuCJ3Vs/fJBMOHh4SbyKyJ1Km2QJj/+/qzqTOURQXWlrkrqnCh6bPoREaljn//aa6/F6NGjcfPNNwfdhx3M09PTpaRYlBdOBGp7Bw4cMEiFqF1Qnf76668mpZkFlY1V50mlYPcmZkE5PtnN6lnwSh3brh9//HGTlWHIkCGoU6eOlNRFR0cLk/XypI5X6lgTIB+YwI5zbPnvvPPOINOaCKTUhRooYXcPUR+uXLkyUlNTcejQIUekjo6xmvPYticLlKAx4Y8//sANN9xgcsWaMWNG0LaadF/RooNv63SPrKwsY3tSp4ESKm5WkZGRtuNoWFiYtJ9edtllroJFC43ULV68GK+++ip27tyJwYMHo0yZMnj//fcxePBgdOjQwZOcaPkJaigtWrQw5SITDZYqnYsGizp16ghX6qGaiwm8ciZS6tjB0MoczCIxMTGogwLizk3PSgO8aNK++eabMWjQIHz99dcA7IMOeFIn6gyUY4qHbBKlwc4tkebLTAMR+RqqJO10mt6FV4h48+tXX30VlHhb9H5lgxENQKxSxw+IrAsCq9R16tQJr732muXzREREGOY8qr+oqCgsW7bM8jzgnBrCtjl+8OWf69tvvwXgPalzknuTSCz5O/Lnsu906dKlJjXCKjhCpFoAzpS6uLg49O/f39gFQXQe1amVEzYpoUQQ2rVrh6ZNmwI4t2cpvwii8UHWB1jyZDeRTZ8+HX///bd0kkxISLAkdZSgllfq2EUxr9TRdfgE46oLZVapk5VbNL7ygRIylClTxiDE/MK1UqVKSE1NRW5urpHeRUTq2PYXERFhlIftd/z2mGwflJlfKTCOotuBc/2gX79+Qe4hNOaokDq6h9/vN67J9n8VlV3FzYo1v8oQHh4uPCaUzB+F5lO3fft29O/fP2gAmzBhAl5++WX06dNHmkm5KIAaZvny5dG7d2/je1GHVZHBw8LCsHLlSsycOTOoTvhAgVDAEonw8HCsW7cu6Bh6NiJ3KibYiy++OGiFCohXNLxSJ5p8brrpJrzzzju4/vrrAQRHsj744IPCa1qRuujoaEdKHRsxyn6vCv7ZL7zwQgwcOBBTpkxBeHi46V3IzKx2pI7KOGXKFOzevdtWqQOCt4IaNWpU0MAiG4xI+WInBN60xE40rFLXvXt326AJ9r1R+1AxYwDmKDwC/w7Y54qPj8d1110HwHtS5ySJKk2olPneCSFky8P7GMkCdZz41FWvXh05OTlYvnw5APNY8MknnwA4V6e84/pvv/2Go0eP4syZM7j//vsB5KnUKSkpuPHGG422TQEvGzZsMKXkoZxabdq0EZaNnj0iIkJZneDHhebNm+OLL77A/fffb7oegdprfHw8wsLCTPX9119/GUoPEEzqqI75PaFVxxEVpY5XeXw+n2HGt2uDsbGxiIyMxJkzZ4L6CY394eHhaNGihVEeHmzwi8z8KnNvoXPYa7OEKz09Xeir7Pf7g9o2jaVOlDoZ+F2dROeqKHUq41Z4eLij4C0inI8++mjQbzTuFppSZ8WGBw4ciEWLFmHMmDFuL5/vYFcWbIeLiIgI2q1CdZBu37590GoQ8FapA851HFlj8vv9+Oabb7B27VoA9pnPf/jhB1x44YVCUiciB7xSZ9WJCHwn5ld/dE3ep47dskdG6lSUuipVqpj2CVQB38ajoqIM0wFP6mTbyYlMoyxIgbvkkktQq1YtW586Ee644w689dZbpu+scqMtXrwYc+bMMZQ6q2uzpE5lMmNVUZqwIiMjlfxSRaSOP49t8+wELyN1bCAHkL/mV1ap69Spk0GEVO/z008/mX6z2mtVdTzhVSY6r169esZiVvZuqlWrhooVK6JMmTKmsrDEfsaMGcYG93Xr1sVjjz1m/EaLvXr16gm35yMlV0Wp48tPqFq1Km688UbEx8eblDp2BwJA7Aqwb98+kyrCm1/pWLekjiKEnZC6xMREI1rZjtRZzStE6ho3bmzcQ/Se2fEpIiLCaI+qpE5mfvX5fIiKihK2Yd5lA8izcAEwdo1iIfKpswJdiwVZV2hbOhWlTsX8KlPq2MwRovQwdevWRbt27YzP559/PlatWgWgkAMlrHD99dcLU1IUFbArC7ZjR0ZGmvagpGOcID+VOiAvOeumTZukg77f70eXLl2MRIWie7OO5bQ6onKzDVl0D57UiRz1efCkju8sMqWOHLMBa1K3bNkyY6sqKl9aWhoGDhyI//77D1FRUZY7jPCgaxw/fhxPPvmk6Tu6J0vqZCTAzuxMREbmaExJee1MyPzKU+YT4/f7cfPNN6NSpUqGUsdfmzVxR0dHm1bfdmCvRc8eERGhtJqlY9h65s06TknduHHj8PnnnxtJWK2eYciQIcbfTtQ2UqRYUvf9998HWSpEkehW5XnjjTfw008/Yfjw4abvExISlMeTGTNmmD6LUk/ISJ3K+x44cKAxUQLy4BjRxEZjghNS99Zbb5lUfrZ/WZlf2W0cZaA2xkfBUt5EQn4qdeXKlcPRo0fx22+/KZE6UXoo4FzSX9ZSIHrPbJtkU5qw44cTUmcVbEL91efzBc0HDRs2RGZmponoiO4nKg8PntStWrUKmzdvRiAQQKNGjQDkr1K3efNmvPHGG8bnTZs2Gdt8UvR53bp1jee65ZZbsGvXLuMzy0fGjBljupYK8o3UAfYReIUJehE+n89UiaIO63TrFDufuri4OIMouIHf70fTpk2lA6FVJyS8/fbbQceLfOpEoN8pdYXdzgtAcB3yHUHFp05G6qKjo3HNNdcYEZx0rTVr1mDmzJl47733lCdBv9+PU6dOGb42bHg9n42eN4WLYOffQQRKlhKAJiO7jap5EmdF6giy/GAs+WXfk8pkxubpYycsFVK3Zs0avPfee0JSR/XLTkwqpC4sLAzdunUzlGGrSX3y5MnG305I3aZNmwAAy5cvx+nTp4XnrlmzBps3bw763uo+9evXR5s2bYxIP0L58uWNeqldu7bh4iBC5cqVMXr0aOOzqJ2xypZq2WSQEUSeGAHnxg0necYqV66MV1991dhTmG1jVuZXmsT5aE0WPKkD8vovTwDc+NRZ5QlkUa5cORw7dgx//PGHbf1HRUVJ3SGIrLHkyYlS55TU8YtSUXt6+umnDfcPntSJIqhF92PvIQOfticuLs4oJ6nHIlIn8t8V1dmiRYsMUURE6po0aWI6r3z58kYuyLZt22LPnj3o0KGDcV5CQoKJI/zxxx/GuY0aNcJ9991n+bw88pXUFWWwgxv5HADnOuxff/2FI0eO4M0331TeC5Ngp9RFREQYPlhOUifw15dtXsxfU0Ro2O9kUV8yUB0RIbHaCobAEz9VpY6FjNTRAET/07VYHyEVUteiRQtkZWXhvPPOM5FQKouVUicbgO0GIDtSxw40FDEpAk/iZJMr7xjNK3ULFy40RezKtrGSQWR+DQQCSubXSy65BHfffbclqWPbDTtRWpE6q88sZLs7iPDee+8Zq2/C6dOnsXLlSuG5LVu2DCJn/D150BjB9xWW1FWvXh2XXXaZZVnZtiHazsnn8wnfj5ucfrLxjHwfWbBKnVMQaWGva6XUUT+i39j+TalTOnbsCMCsNkVFRQWRDSdKnd2+tjyRYMtlN3ZERUXhnnvuwZ9//hn0m4jUid6nTKnzwvzKo1evXsaWbyJSJ0OoSh37vqgPiq7BE+zIyMigd12jRg10797d2NHKqU8dcE61pvPof1E/cGolBEoxqWNXFjfddBPuvfdeAOcqtn79+qhUqRKGDh3qOOeeVUoTIG8iF6k/Tq/P5hZjwQ8gosbCExT2f/54Pq0E/f6///0PU6dOtSQbBDvzK+9TJ4IdqaOJia71/vvvB5XZCrIORPXJls1rUmdlfgXy3gFNOiJ4pdSJts8juFXqAoGAo4HPa6VOVj4AaNasmfG3E1IXFxcnJGkypU4Gqy3zREQWMJM6Vl2RwY7Uie4hOiYUtGnTBikpKejevbvxXSik7oILLkBqaiq6detmfCfyqeNJHdUVkaeGDRtiyJAhCAQCaNKkCQCz2hQZGRlUPlWyS6QgMzNTWaljyRTbdkUkidK48OlBgHOLaHYxLboGq9SxyYetSB2/uwmgptSx4C03Vm3NqVLXqVMn3HnnncLy0vOKzNYiH2r+O9qCjX1eN8QLOPdcPLmzKpMKSi2p45URGmBEExdf2VOnTrW0yduZX7Oysoz7uBnQnK6gRY3FSqnjCQG7Rydg7siPPPKIUnn4KFC35ldRShNeqRO9Q5V6tpvE2A4mInW8OTw8PDxkpU7kZyaCqomIH5B5pc6qDkJR6uzaIAu27OyuBIC53dx+++3G36qkjn9HrMnVCakLCwsTlj8jI8MRGbriiivQpk0bSxcGvu4SExOVSB31IbY/yxYPLFm+4YYb0L9/f8933yhbtiwWLFhgBE1Yjbkq4Ns8S+ro2e2UOtE4w74/kVrjxPwqSxskewYZqSM88cQThrLIuhDxZaL0OHZbHbpR6thxUKbU2Y17TpQ6J4ESAwcORLly5fDhhx+a+giBFmK0mLr88sule3RbLUSttpRThYpS5walltRRw+TD11UIwXXXXWfZsUXmV/Z4ltS5Yfl2DcmtUseWl8WoUaNM+fDclLlWrVqmTbH50PVQzK80IdH/otUNdZwZM2ZIzel2z2VF6vx+f9AAHRkZaXtNCpSwI3V2e6ry70w2IdspdfT7Sy+9ZPjWOZl82WtRmSpXriw074mULv4+FK37ww8/ADj3jjt16oR33nnHOM4pqatVqxYeeughKZGze2/h4eFB9UH+TU4G+vj4ePz000+WLgx8/2WjX2NiYmzfNVv3snbGHlO/fn188MEHrlQCAqleojJR/RCRZZ/vpptuEqbBUIGKTx3dm11w8GBNiG5Jnd/vN4h/Zmam1PzKK3UU3MaWg8oC5NUPbYvHvjO+f9EuLyx5Yt/nZZddhtq1a5usUKo+dfxzAsHtyq7tVKlSBdOmTTMWZl6ZX9nAINGCmJQ62qIwKirKIPgipU4G1rLktp/Q9UX9gOA0qTJQikkddQJKzGhlDuVfbmpqqrJvDt2LH2jcrk5F1weASZMmmSRnFqo+daLkr0BeY1cJhrADG1XMp0GRpTRhYWd+9fv9eOKJJ4R7y9LzDhw4UJpkVTZYyAZ+O/NrZGSkcqCETEFhFxtWW+Hw70z2LHy6kNTUVNMkSueNGDHCMDVQeL7K4MUSz0svvRQ1atTAzJkzhW1QRmR4JeDmm2822gs7ULPP6JTUffnll3j55ZdN9cGTdiuIHLtpgnSzeueDVVgHeCuVk026y2LKlClGHjqRUse3aZYUhLLrDZCX4kWUP5P9HRCbX5999llTWhQnYC0O/JZh5MdEz20V/DZy5EjceeedaNWqlWtSx7ZTq/okslmvXj3s2bPHtC2eaI5hSTHbLtj35/f7DTWUkgDzuPXWW/HPP/8EKfei6FeVuY5vo3Zjhc/nw/Dhww2S5YTUqYoKvDsOcC5TQ9WqVREREYGwsDATiWe38bRSzui5QyF1dH3ynRXdz+metkApJnVVqlTBypUrjT38qEJFFUsNlraHql27Nlq3bi29Nt/AY2JiTINoYmJiSKRONIiPGDFCuom76F7sd9RJZKSOPSYU8D5pLKjerTpIVFSUJakD8pJf87m52OuL7k1w8owq0a8qSh1vfpWtFvkIQf6d8iqh7L7seQkJCdi0aZMx+cueo3HjxgDy9rJ1gho1amDv3r1o0qSJsDyiRKM8ZEE/PMF1SuqIUKgomiKITOtekbrdu3fj8OHDxmd2PKGgLqqH+Ph4YVlHjhxpqD4inzpeAWBJgZUirAK7vJykTolyx4VigiL1lG0zF110ET766COMHz8ewLl2YmV+rVSpEj788EMjua8bUsfOJ+THKUoVRe8mEAjgggsuUEqhIfIvZd9xzZo1Ubt2bQQCAVPUMVsvvI8hYF6osG3bqi/wSh3Vp+pYypIjGejaTpVwkVIXFhaG1atXY8aMGcbCkMrg8/nwwQcfoF+/fqbzRaBr5ubmuiZ11M80qfMQ7du3D1LorJS6Zs2aIRAIoGLFivjkk0/w119/Ca/LN4bo6GjTIFquXDnPlTqROYhgtwsDdRKaWFQiFd1AxW+COohosPX7/cJVr9U+hRTeHgqpY/Mrsddgyyg6NyoqKuRACdb8euONN0qvw9eBKqkjNY4galu33347HnnkEfTq1Ut6f7t7idChQwdH1wPOPSebGw04t7E3DztSJyujilLHwytSV65cOZNZjm27fELxuLg4W3IsUupEpI6uGSqps8Ps2bMxe/ZsYWBWqOOiyP+qb9++xphGz60S/EaRjaEqdbT4Y+cFnnDQGM0eI9r6il1MsMey73jmzJnCMolIHd9WqTzs2GZHbti9val+nZI6lbmBiLjoWHY7MoJIqQPy8rzGx8cHKXUEPoDBqtyh9BXyeyRSJxo3NKkLASqkjp3wypQpI4w6AsRZ8NmXo0rqZMEYopfPrjh4QsTvC3jgwAGhqclKqfMCfLlfeeUVI+M/r1TJSB0fvQhYl5fehQqpcxooIfuN4KVPXUREBBo1aoT58+cDCK4fkclcBJ7U8RDVQVRUFKZOnWrrdG11Lx6DBw/GqFGjHF0PyKun06dPB5372GOPCdsMX58NGzYEYJ+M1q4tiH5341NHYNs1X2+iyYW+i42NFSrTLFSVOgpGCdX8aocqVaoYaghbJv5vpxAtbPl3oaLUEaKjo4WJ490qdex12EVc9erVDZcQWcoe9nn4hOXssd98841w9w4gz+RKc5ZIqQPOqfKsa8SoUaMwduxY4TX9fr/JzUS0ALaCCqlTUepWrFgRtM2eXZAZkTpWqQPOWRCs2iJdMysry7VSR6SOXJtE19E+dSFAxfyqGg0m8i9gX05iYqLBzvnNe7/44gskJSXhlltuwYoVK3D06FHs27cPlStXNgZvUTmskjfyEX98JCqv1OUXqeM77rBhwzB16lQAwbtUsDtesOVkTZ4EK2XRCamTDSyU3JUIgdU1WERFRQUlwuRhF/3KB/DwigNb9rVr1xopI7wkdU7AbstlNSjWqVPH9WCYkJCgfC5fn2+88Qa2bdsW5HPFo2/fvo6uC3in1KmQCLY98NtY8RCZ6XiFoW3btujatSsAd+pAKPCS1PETNP+eeFJnNWmOGjUKb775ZshKnShJO9vf9+/fjzvuuMN0Hl82VqkTmXMHDRqEq6++WrrPLpAnJlDAkUypu/vuu7Fz5040aNDA+C4hIQETJ04UXpNIHcEtqXNifhX1vejo6KD9t2VKHXtv1pxNID8/FfOrlZ+zHXilTgSt1IUAPqUGC9W0Evy1WNDLCQ8Px0svvWQkeOUHlcTERMTHx2PhwoVo3rw5KlasiPPPPx+HDx82HNbtSAm/+qTGA4j3aS1opY4tP1+3ZcuWxcmTJzFs2DDh+U7NryJSJxtwZPXasmVLBAIBU1JelYm7bt266Ny5szRkHgDefPNN9OzZU5oKgF9Q0POIFIYWLVoYdeGW1IWaxuLtt982nJGt+gtbPi+CcGQQRXlSdndA/rzDhg2znPBF798rUseXSVSP1Fejo6ONtBTsc7Fg+4dsMfnMM8/gtddew9ixY/HSSy85Ln8oEKWwcQOZ+ZWFE/PrhRdeiCuuuMKW1IksKuxijEjYww8/bASzybbTUlHq6HosWR81ahRWrFgh3WGCkJiYiMsvv9xoK3xb8/l8qFevXpCvHQAMHz48KNG13+8XltlL82uoPnWyPi5T6ojUWZlWvVTqWFJ34sQJ7N69G9OmTQOgSV1IsFohOlXqRMdRiP/atWtRvXr1ILVMpRx82g/APMDIGhc1ni+++ALr168P+r2glTp+EKfUAYRy5cpJty3ywvxqVz4V2A0sS5cuxezZswEEb6rO4oorrjDtDMKXgZQ+XqmTmY3sTAf5rdQB4vcM5LVDqhN6v2vXrsXvv/8e8j3tyiKDlfnVarCm61LqCCA0UvfFF19g4MCBCAQCQfcVER1SrGNiYuDz+bBkyRJ8+eWXwmuz/YO2SRIlPfb5fJg4caI01Ux+IT/MrzKljgIHSIkSLXJ52JG6HTt2GH9/++23qF69uin3GI1ZiYmJhqoqK5/Mp47g9/vRokUL9O7dGyNGjLAtO4/o6Ghs3LjRViAQkbpp06bht99+CzqOfWdE6pwqdVYkm65PLhNOol/9fr/lApdNHsyTulOnTtmWOzs72zWpo/fLLmoTExNRq1Yto5+6Mb96m12yGMNqhegFqWvatCkyMzODJmcn5RBlg6dcYyz4CZ/Mr9dcc42QABUUqaP7sPXj8/mEzsiy870mdZQclC2fCuzawrXXXqt8LRbsgLVnz56gCEG+3fADynPPPYerrrrKpCqyYOtZlNbBC1LHJoFlwfonUbnZLfryA3YTgNtACVEEYig+dV27djXMnyplJD9Zuv9NN90kvTbbP4j0W+1kUdDwKlCCJXWyKMyrr74af/31F+rXr4+vvvoKzZs3t72uHak7//zzUa1aNRw8eBDXXXcdmjdvbuzVzAZK+Hy+IIWObysqgRLR0dGmiPVQoBL9bRfEwL4/WsDKMjHwoLqxclPhXXOcKHVW7YlPi0R1TJYG8tH77bff0KhRI2GZQgmU+OCDDzB//nxhGanONakLASryr+qAQx3iueeewxVXXGF878TB1uo3t0odTwhos+mCMr/KFJxRo0ahc+fOtufLSJ2KT53MPyIqKsp4bidKnVfZv3mw77BSpUrGwE5KLz1PuXLlhCvJMmXKWA6obNsRmY282EVAJQFpKIltncDuPm4DJURt2Yss8yJYJSXlk9eKwLZ9UgCKEvLT/CpStClY4IYbbnBcPtFnHhQ1C5iVurCwMKM9qih1MvOrl1AhdVZ9iDe/JiYmWgaf8Pjvv/8AWFszIiMjER4eLvU7lkGF1ImuRUodWdNEeyt7YX6tXbs2Hn/8ceFvVC435ldN6jiIGqSVUrdu3bqggZKOu+iii4JSL7C45557kJuba9qjVEWpY8vRtGlTrFixwvYZgODOmZiYiKNHjwaRuvxOacLX4zPPPKN0viz6VVZn5cqVs1XqoqKiDP8iJ6Quv+qIj7CNjo7G1q1bjaSkVHfdunVzlfWfV3mtfneLhIQEHDhwIOTrFAREeblEn3mwCUsJIiXdC4ja9+DBg5GUlCRV92Tnq5DAgoaKv6sKROZXL+CU1NWvX9/YL5v1qWNNfU596lilzkuouGlY9YV69eo5zl/JYv/+/cZ1ZIiMjERsbKy0zmTgk/7z4Ekd7dRRqVIl/Prrr0YkMABDiSXQnJ+YmIhu3brh888/VyqTKug9l1hSt3HjRgwfPhxhYWGoXLky5s6dG9KKTgSrQcBKqRPJ9zTx2qkeM2fOxKlTpxyTOrZjL1q0CLt27bK8zwsvvIAPP/ww6Pvy5cvj6NGjRsPO7zx1dhGHdpBFv4pw5MgRREZGGqkvrEgde31VyOpoypQpJj+rUEDth5X+69evj8mTJ+O+++7DBx984Pia7CDWrl07fP311ybFwotJ46uvvsL3338v/M3JKr4gIOurdqRANLEUJKmLjY3FU089FfT96tWrg/oIe77XZfMCXqneopQmXrQ3vnwiP7wnn3zSCO5iI0UjIyON9yHy35JFuwMFQ+poRyUebDmsSNRDDz0k3XZRBS+//DLefvttSwW5Ro0auPDCC6UmaxmcKHXbt283JWpu1qyZ6dg//vjDlEWiWbNm+Pzzz3HDDTfA7/ejf//+nnISesYSm9KkevXqWLp0KVatWoW6deti8eLFnt/DqvNTuhCnPnUqja9cuXLYv3+/YX50GrCRkJBgrDDInMYnIx01apTQGX3hwoUm+ZdInRe7R1jBrYkvPDzctHIZMmSIdIVUqVIlnHfeeUpKHcHJ6l5G6kaOHCndhswpROUJCwvD448/Lt2v0A68DwmlaxH97hYXXnghBg0aJPzNacqD/IZV1LsVZPn8ZL+FAieTRevWrdGxY0fp+fndt93Aq8lQZH71Avw12XQfhCFDhggj83mljto9KaZW+S7tksZ7AZmrDVuO/GwzF198MV5++WXL8eCee+7Bpk2bPFfq2C3XLr74YmleWCAvmIH3U+7WrZuygOMUJd78SjZuAI7IlZeIiopyTOpUj69evbrByJ0qdSwaNWqETz75xMhVZocGDRpg8uTJxuf8ziRPcKoETp06Fb/++mvQc1etWhXdunVTupesXu225bG7bnGD22hQr1DUSJ1oE3gWPp9PuOATDbYFqdS5Pb8okrr8VOq8ANsn/vzzT0fnsqTO5/MZ7Z6UKb6tkJM+UDA+dSoo7DZDO1Y4VSvd+tQVBVx33XXo0aMH7rnnHsfnFs0nkmDv3r1YtmyZdLukjIwMJCcnm/6pwm6SOe+885RyGwHnBgEnExdNEk596nj07t3b9SB51VVXWf4+adIkaRJKVbzwwgvS1AsyPPLII/jkk0+COrOKaYWiUI8ePSr83S05KyqkLhSljrBo0SLL371EUSV1sj4lG0NEvp1FQakTgVddxowZg1dffTXUYnmG/CB1XrYv9loilc4KkZGRJgtISkoKgHPmPX5XooiICMOqUlCk7s8//zS2nxOhqBAfp0rdFVdcYTmn3XHHHejRo4cnZfMaZcqUwWeffWYi+aooUkrd4cOH0bNnz6DvlyxZAr/fjzvvvBOzZs2SDnKTJ0/G008/nS9l++6775RyGgHmHDaq4HcWEOGCCy5Qvp4bfP755zh27Jj099GjR4d8DzdbQxHckLpOnTph+vTpQQ7lMTExOHv2bIEpdTLFJ1Q4nbxEA2L37t3RtGlTbN68ucCUgKJC6qgcMlInS+YqMrXxm5p7BS8jrcPCwvDss896dj0v4JW6Fhsba1gbHnnkEaxdu1Z5zM4v8Coppcm46aabMHz4cJMfF3+OLKWJ17AjqkWN1KnWQf/+/dG/f3/p7zIXkeKOIkXqqlSpgp9//jno+5ycHHTv3h3jxo2z3BJn9OjRePjhh43PycnJqFGjhtK9qSPJBhiKPlQBTRBO7OEqSl3//v2RkJAg3LzYC5QpU6ZIRscR3JA6n8+HIUOGBH0fFxeHs2fPup4wnZK67du3Y/v27bj11ltd3U8GL5Q69jpFxfx6/PjxAiV+Tp/bSqnzepstL02KRWWCZsHnLnSLZ5991lgcX3755fjnn39CLluo4AMOTpw4ASDPzCoidMC5910QgRIqKCptxqlSV1pRpEidDPPnz8cvv/yClJQUTJgwAUOHDkWfPn2CjouKinKtvNx4442YNGkS7r333lCL60qpe+eddzBt2jTLTuvz+ZT95Uoi+Ik3FEWEyKsXSp3KQNugQQNHphsV0vjcc88FOcXbQTYgFuakIQIf7JOf8Pv9ePLJJ22PO3HiBDIzMzFq1CjT3sSxsbFo3769MYGHsh+kCF5OYkVxQrRLyK6KCy+80IPSeAs+jygpdVZmNStRoDDeX1FpM06VutKKYkHq+vbta7vBdqjw+/2emBcBd5v9XnrppZg5c6Yn9y+pcKPUyXDJJZfg33//NQ26Tq5HE9D48eOFqSVCxRNPPGF7zGOPPeb4unZKXUH51BUl2AUIrV69Gnv37jWc22mrMwKlOiBfUa+VOi9RVCZoFlSmouKn6iVkSp3VokWk1BEKw22hqLlKFMU2XJRQLEhdcQNNjF6v2Es7vCR1c+fOxfr16/Haa6+5Op8moPwwV+cn8bFT6oqK+bUooXXr1mjdurXtcfml1HmJolzvJZHU8T51M2bMwJtvvmlpIaA+6CZHWX6gqLQZbX5Vg66dfAA55dtFk2o4A7+naCjkJz4+Htdcc41rfyWagKxyGxVFyJS4gjJtFEdSpwqaqIsyqSuq+N///od58+YVdjE8B0W7Anl9rHHjxnj77bctz7EKlCjN0OZXNWhSlw+oW7cuAoGAcpCGhhqoM9P2LV4oWm5JHQ0wTpW6Dz74AJs2bXJ1T6cQrWhlq9xJkyahYcOG+b4KLsmkrjgodUUV77//Ptq3b1/YxfAchw8fNv5W7Vsipa4k9hen0EqdGnTtaBQbEKmjXRB69+4d8jXdkjqVaGUR+vfvj6ZNm7q6p1P8+eefQTkBZavcjh074o8//iiIYgEomZMUkbqi7FOnUbCgPWAB9TYvUuo0zpG5ouiXW5SgSZ1GscGZM2cA5AWVBAIBNGnSJORruiV1tIouyqvGiy66KCg/X2GbLkrygKzNryUXq1atwo4dOxyf99BDDxnpsFTHCqtAidIMIsW6XqxRdGckDQ0OtCtE5cqVPbtmqEpdYZMkpyjKJLS4Qyt1JRft2rWzzJEqQ3h4ONq2bQtAve/RcSx5GT9+fIkMJHGCoq7UXX/99UoBVfkNPcJrFBscOXIEgLekjk054GSwoIm7uJGkwiah5cqVA1CweegKClqp0xCBgqmcKkzs8SNHjsTZs2c9LVdxQ1FX6r7++musXr26sIuhSZ1G8UGLFi0AwNOtf9wqdVSGKlWqeFaWgkBhk9Bu3bph8eLF6NWrV6GWIz+glToNESiYKi0tzdF5uh2ZIVIwNYKhSZ1GscF9992HpKQk6X6cbuCW1N1+++34+eefi13amsJW6nw+H26++eYSGSihlToNEYjUUZJqVVxzzTX5UZxiC03q1KCTD2sUG/h8PsTHx3t6Tbckx+fzFTtCB1hvT1SSEBUVJdyfNT+hlToNEdyQukOHDhk7mGjkQZM6NWhSp1GqUdjKVUHiyy+/xA033FDYxSgQ/PXXX9izZ4/j8+bOnYvdu3e7uqdW6jRE6NmzJ1555RV06tRJ+Zzi5tZRECjqgRJFBZrUaZRqFLaPWUGCT29SUtG0aVNceOGFrjZ4v/32213fl5LG9uvXz/U1NEoeqlWrhn/++aewi+EYPp+vSBGoBx54ADt37kS7du0KuyhFGprUaZRqlBaljnJllXRkZGQUGlEvapOghkYoaNu2LX788cfCLoaBChUq4KOPPirsYhR5aFKnUarBkrqSOiFv37691Jhz2BQ1JQlbt24tkcElGkUXX375pWmbM43iAU3qNEo1SoNSV1pUupKMRo0aFXYRNEoZ4uLiEBcXV9jF0HCI0uNQpKEhQGnyqdPQ0NDQKNnQM5pGqYYmdRoaGhoaJQV6RtMo1SgN5lcNDQ0NjdIBTeo0SjU0qdMoDahevXphF0FDQ6MAoAMlNEo1NKnTKA3YsGEDDhw4UNjF0NDQyGdoUqdRqsH61JXUlCYaGlWqVCk1aW00NEoztPlVo1RDB0poaGhoaJQUFKsZbd68eahYsWJhF0OjBEGbXzU0NDQ0SgqKDanLzc3Fp59+iho1ahR2UTRKELRSp6GhoaFRUlBsZrSPPvoIPXv21JOwhqfQSp2GhoaGRklBsWBIOTk5mD9/Pvr06WN5XEZGBpKTk03/NDSsEBERUdhF0NDQ0NDQ8ARFKvr18OHD6NmzZ9D3gwYNQu/evW1VusmTJ+Ppp5/Or+JplED06NEDo0ePxvHjxzFu3LjCLo6GhoaGhoZr+ALFII/DY489hs2bNyMsLAxr1qzBPffcg2nTpgUdl5GRgYyMDONzcnIyatSogaSkJMTHxxdkkTU0NDQ0NDQ0ChTFgtSxuPLKK7FhwwalY5OTk5GQkKBJnYaGhoaGhkaJR7HwqWOhSug0NDQ0NDQ0NEoTih2p09DQ0NDQ0NDQCIYmdRoaGhoaGhoaJQCa1GloaGhoaGholAAUu0AJJwgEAkhJSUFcXBx8Pl9hF0dDQ0NDQ0NDI99QokmdhoaGhoaGhkZpgTa/amhoaGhoaGiUAGhSp6GhoaGhoaFRAqBJnYaGhoaGhoZGCYAmdRoaGhoaGhoaJQCa1GloaGhoaGholABoUqehoaGhoaGhUQKgSZ2GhoaGhoaGRgmAJnUaGhoaGhoaGiUAmtRpaGhoaGhoaJQAaFKnoaGhoaGhoVECoEmdhoaGhoaGhkYJgCZ1GhoaGhoaGholACWa1AUCASQnJyMQCBR2UTQ0NDQ0NDQ08hUlmtSlpKQgISEBKSkphV0UDQ0NDQ0NDY18RYkmdRoaGhoaGhoapQWa1GloaGhoaGholABoUqehoaGhoaGhUQKgSZ2GhoaGhoaGRglAsSN18+bNQ8WKFQu7GBoaGhoaRRB16tTBN998U9jF0NAoFBQrUpebm4tPP/0UNWrUKOyiaGhoaGgUMeTm5mL37t3Yu3dvYRdFQ6NQUKxI3UcffYSePXsiLKxYFVtDQ0NDowCQk5MDII/caWiURhQbdpSTk4P58+ejT58+0mMyMjKQnJxs+qehoaGhUTqgSZ1GaUexIXVz5sxB7969LVW6yZMnIyEhwfinzbQaGhoapQfZ2dkANKnTKL0oNqRu+/bt+PDDD9GlSxfs2rULI0aMCDpm9OjRSEpKMv7t27evEEqqoaFR0Fi1ahX69+9f2MXQKGRopU6jtMMXKIYbo1555ZXYsGGD7XHJyclISEhAUlIS4uPjC6BkGhoahYFq1arh0KFDxW6f58zMTIwbNw5PPfUUYmJiCrs4xR4nT55E+fLl8dJLLwkX/hoaJR3FRqljoULoNDQ0Sg+KG5kjLFy4EM8//zzee++9wi5KiQCZX0mx09AobSiWpK6o44cffsDmzZsLuxgaGqUGxZXUEQnR8Aba/KpR2uEv7AKURFxzzTUAiu9Eo6FR3FBcJ3EaI3w+XyGXpGRAkzqN0g6t1GloaBR7hLqAyszMxEcffeRRadShSZ230KROo7RDkzoNDY1ij1BJ3XPPPYc77rijwN0mNKnzFjqliUZphyZ1GhoaxR6hTuKnTp0CAKSnp3tRHGVQufUuOd5AK3UapR16JNHQ0Cj2IMXLrWJXWP6vWqnzFprUaZR2aFKnoaFR7EHkKNTJvKDJlSZ13kKbXzVKOzSp0ygxOHHiBHbs2FHYxdAoBNAkXtwmc03qvIVW6jRKOzSp0zDw2WefITU1tbCL4RpNmzZFgwYNCrsYGoUAr5S6gjbDap86b6FJnUZphx5JNAAAx48fR8+ePfHwww8XdlFMqFevHho2bKh0rN7rt/TCK1JX0NBKnbfQ5leN0g5N6jRMOHjwYGEXwYS///4bf/75p/C3VatWYcCAAQVcIo2iCO1TF4yvvvoKu3fv9vy6RRlaqdMo7dCkTgPAOfNPVlZWIZdEHb169SpRe2aeOnWqyJHq4gLtUxeMG2+8EU2bNvX8ukUZmtRpFGUcPXrUSJ9kh+zsbDRo0ABr1651dA9N6jQAnBsMMzMzC7kk6ihpA3e9evVQvXr1wi5GsYRXSt306dMLdGFD5c0vhTA5OTlfrltUUZCkbtmyZfj999/z/T4aJQeVK1dG1apVlY49deoUduzYgUmTJjm6hyZ1GgDODYKa1BUeTpw4UdhFKLbwitR9+OGHePvtt70okhKo3DpQwhsUpE9d586d0ahRo3y/D4/MzEzcc889OH78eIHfWyN0ZGRkKB1HCz2nwVt6JNEAcG4QLE7m15JG6koq9u/fj9WrV+frPUI1v7ID5+nTp70okqP76kAJb1AazK8//fQTZs2ahZdeeqmwi6KRj+DHhKeffhpPP/207Xma1GkA0KROI//QuHFjtGnTJl/v4WX0q+pK2gtoUuctijqp++WXX3DrrbeGdA1SdQtrFxQRTpw4UaysPMUJ9J5//fVXbNmyxfZ4Teo0ABRP82tRGtQ05Dh58mS+XDctLc1or16SuoLsA0WVfOQXTpw4ka/9tqinNBk8eDAWLlwY0jWI1BWlZ6xQoQJ69+5d2MUoUeC3PszKykJERITteZrUaQAonqRONqhpslc6UKZMGbRq1QqAt9GvBdkHimt+PTc4evQoKlSokK8R67xSl18LCrdwMjbFx8fjjjvuCPqeVN2i1maWLFlS2EUoUaD3q0mdhiuUJPNrURvsiiIOHz6MwYMHG8pGccWmTZvwww8/GJ+Lq/m1qLbZ1NRUz4gRXSc//StZUvfzzz+jfPny+PXXX/Ptfk7h5D2npKTgo48+CvrerQN9fqOolae4Q5O6Yo7Nmzejd+/ehdYxSpJSV5yIqQiPP/441q9fn6/3eOaZZzBjxgxs27YtX+9TELjmmmuMv7VS5y2uvPJKlC9f3pNrFYTCxJpft2/fDgD4448/8u1+TsGb1NygKPrU8Zg9ezaOHDlS2MUo1tCkrpjjvvvuw4IFC/D222/j/fffL/D7lyRSV9zVp+effx7dunXL13vkd360wkJxU+qKetLkv/76y7NrFYTCxCp14eHhpu+KAujZQylTUfSpYxEIBNC/f3+h6VhDHTypy8zM1KSuOGLo0KG4++67C/y+NMh4rXL98ssvpl0SVqxY4VnKCL7RE4o7qQPyP29ZSd1IXit13sFLQgd4o1LZgSV1fr8fQNEaD7x430WN1PHvk96B6s4JXqNp06a46667CuXehNTU1JDbHU/8s7KyEBkZaXteyRrRNVwjv5S6q666Ck2aNDE+d+zY0bMoKdkAWdzNr0D+K2ia1JnBTkwFSeryKwWH6HrJycn46aeflK9x8cUXe1mkAolMLepKnRfKbFHzqRORD6DwSOeWLVvwwQcfFMq9CWXLlkXfvn2lv6vMUSXe/Lpx40a0bdsW7du3R+/evUvExF2UkJ/m12PHjpk+//vvv8LjnO57Klv5F6WVuVvkN6krqfnRior59fDhw/juu++wcuVKy+Pyi9SJiEy/fv3Qrl07T+9jhWeffRaNGzc2PlO/DIWMZGZmYuPGjdLfWeJYUpW6glA8nYCfiwub1OU32rdvj8cff9z2uE8//VT6W1pamu35JZ7UVa9eHUuXLsWqVatQt25dLF68uLCLVGSxZMkSXHnllY7OoQYkmgx8Pp9SI1aFaDCaM2cOqlevjv/++8/x9fjBoygN4m7hlmylpqYKI+Z4WL1vL3D06FGMGTOmwAf2omJ+rVq1Kq677jp06NABl156qfS4/FKvRO91586dnt7DDk888QR+++0343MopO7pp59Gly5d8Nhjj+HKK6/EmTNnhMeVBqWuqPlhykhdUSGdXuPHH3/E888/H9I1nJA6QokjdVWqVEFsbCwAICIiwliFlRR4qZjs3LnTcVSj3QDx5ptvhlIkW6xZswaAu/1Pi7P5NTc3V+h74rY9PPbYY7jjjjuwf/9+2/sC+TfhPf7445g8eTL+/vvvfLm+DEVFqWNhFX1ZkEpdKO9aNEEfOHAAY8eOVZ683Uz2gUAAf/75J8aPH4+lS5cafn4y4l0afOqKOqkr6gmgiwLOnj1re0yJV+oIe/fuxbJly3DjjTcG/ZaRkYHk5GTTv9KIrKwsxwOZXQfkJ4RAIOB4JWZlNqBBOioqytE1RdcrSoO4DIFAANOnT8fw4cORmJgY9LtbUke5wOyILdVZftUV+eoVNMGWtePU1FTEx8cr5SwrTj51/fr1E7YVEYELhQyI2snAgQMxadIkZYd4N0rdnDlz0LBhQ+OznT8Z3ePMmTOeRJp6DTeLKb4P0blFRQlTMb9u3boVc+fOLdBy5TfmzJnj+lxtfv1/JCcn484778SsWbOEDzd58mQkJCQY/2rUqJGv5VmzZg0uvPDCkCauw4cP459//vGwVHmTUk5OjqNO75TUhYWFYdiwYabv5s2bhz///NP4zN7/zJkzlpMKqSNkMnGCwlbqsrOzHSuMJ06cwH333YfXXnsNQPAA7ZbUiSa9tWvX4tChQ6bj8lupKyyVRNaO//33X6SkpODtt9+2vUZxInWyidJKqXNzr/T09KDvyFdWtQ258bXasWOH8HvZNagsX331Ffr06eOofKEiKysLa9eutTzGjVKXkpJi+iyL+i8sqJhfmzRpgn79+hVoufIbd955p/Kxc+fORUxMjPHZiVJHKHGkLicnB3fccQfGjRuHiy66SHjM6NGjkZSUZPzbt29fvpbphRdewJ49e1yZDAl16tRB3bp1PSzVuUnJycDhlNQBwPTp002fb7/9dtOqmj0nLS3NcjCiMrsZgL3wqdu4caNrAjJkyBBUqFDB0Tn8So1/bi9JXatWrdCyZUvTcVRn+UW6aPApKkodQaVeCzJPXUH61IVC5EWTEKnCqiTYjVIne1+vv/668Drss9H9CorUjR8/Hq1atcLRo0elx7ghdfyOHkXd/OpFoEQgEPBc7ChMTJ482bQwchL9unLlShw/frzkkbr58+fjl19+wYQJE3D11Vfjk08+CTomKioK8fHxpn/5CS/yBdHk7qVPHQ2yTiZsu4HPjY8OO9hnZ2dbkjqaSN2QjFDNrydOnMCVV16Jp59+2vG9AeCbb75xfA6vfPBtyG2qEVnW/r179wrvV9RJ3R9//OGojPkdKHH69GnbVbYTElEYPnWiex09etRycSpS6gqT1D3zzDNYvny59B5238ngxq2EsHv3bgCQBnEA7ghZvXr1TDvMFHVS58VCZe7cuahbt67J8pMfuP322y0DmbwCHwOg0mfY99yhQ4eSR+r69u2LEydOYOXKlVi5cqUhrRcmilq+IIIbUmfXAZ08I6UmYRvuiRMnjBWslVLnhmTk5uaaJjGnRIImabfJVt0Qcn6S9Fqp498nP6jkt/lVROpEvoNWSE1NxaWXXoonnnhC+RxZO3bSfq3aT7ly5dC0aVPL81NTU6X3T0pKgs/nw1dffQUgdFJH5J9/j06VunvvvRejRo2S3kdE6pKSkgCoK5tOFJy0tDQEAgHLfiC6b6gBImFhYRg7dqzy8SxUXA6cKHVsn92zZ4/xd34tBGTYsmULfD6fUIE8duxYUFCe1XtW7YcUXMS7jXiNefPm5ds2cmzb5ZMGOyF1ALBt2zbk5OSULFJXFEEvzQu1w0s/nvwgdVY4duyYiRDNnj3bVA4AaNSoES644AIA6kqd6gAwcOBAPPfcc6Zrbd261fKciIgII0FlqHtSulHVeLWHv7dbUscHKNB1+QCU/A6UEJE6pxnm6dzNmzcH/SZrG27Nr05In8zPi8AqNZUrVwZw7llokqIcVuxOLirO0zwoIwBPJJ0qdceOHTNImggiUkfwWqk7ePAgypQpgwULFgT1Lfb9qQaIOG3j7777rqPjCUTCRGUgMn/48GHpMTzYeipTpozxd0H71FFb/f3334N+a9SoEXr27Gn6zirKWXUBUNR2zXADtn3yZMwpqZNdRwRN6kKAFxF+xOB5v4lQUNCkrlGjRqbs8z///LOpHDxUSZ3qCvuzzz4zqTnPPPMMmjRpIvVtOXv2LLKzszFt2jQAoQ8gXih1XpE6fqFB9+FJXUEpdazCALhTzETtSPau7L5XqddQJ0uW1MXFxQEInsyoHFT/Y8eONU3cqiDna97k51SpO3v2rGVb8ILUqaY0+fjjjwHkEWCn/cALUud2PKcgL9H9+AWNyliTk5NjLITZOi6sQAnRuyCSysLqPasuXEoaqQvF/MpCkzoX+Pnnn/Hkk08qHUsvLRRSV65cOQDA8ePHbY/duXMnZsyYYXucV6SO9YNjwXdWtmNXqFDBUDJCJXVuVSTKOC9bFRLZo7qnAcTtIOnGDM8rdV6bX6lN0iAaHR1tOi6/fepoEBswYIDwviqg9pOSkqIcDGMXFTljxgzMnDlTuQwyWCkOIlJHz6Li/1m3bl3b5OGLFi3C+vXrDaXOitTxCp2ojs6ePWv5bgpSqduyZQuAPHM93w/slLpQfOqonlSeR/QMVuZX3vxm1w/o9+HDhweVqaj41PFRuQQrnzqnpK44pKfiwabSoWBNrdQVIjp06ICJEycqHSsidU6JwXnnnQcASjn1rr76agwePNj2OCeRpPv370ePHj2CSMauXbsQERGBFStWBJ1jNZhcdtll2L17N7KysgpMqeNBzyJLUE2kjny8Qt12h1ddVMBPkvzCwCuljsxybsyvCxYsgM/nc/UeZIOPk0Ga6mTjxo3G5EaQlUnWNtn6ffjhhy3vq9IOrCLrWYJFwVp2yXJZ/PPPP5ZbYQFAjx490Lx5cyWljjfFi+6Znp5u+Z6tgkNUTWqqpI4tp1U/8Pl8WLZsmenZRc+guuimd6RyvOg+NN6I6oNvl6rZBuj9smUqaJ862fsSRfx3797d2IqOLR+pmE5JnRuXhMIG+9yktKoode+99x7atm0rvA6BXxyIoEkdByeTqYjUOe1oCQkJyseqNnAnSt3WrVuxaNEi0yQVCASwfft2AMDq1auDzrG67qWXXoqcnBz8999/0sFeJVAiLS3NtZ+hTBUhHDlyBMA5pS7Ula8bUsdPkjLznNuyqCp1VmWmlDVuUnx4SeqAPIKpch3ZO2SP9yIpeWZmJhYtWoT27dsH/cb63PHmV758bgjz6dOnAeTVsYpSxy/yZEpdQZlfrYj3ggULLEkd+3nPnj3o3LkzhgwZYnwnegaq+xUrVgS5A4ieI1RSp+Iu4JTUFbT5NTc3F3fccYdpa7kXXnjBNG6JnvPzzz83/mbL55TUOT2eLbcKzpw5g1deecXRtUMpgyxQYvny5UbqlgEDBhiuS4C4jWmlzmM8+OCDeOedd4zPbkndQw89hA0bNgBwl2zXDlQelQmUGg470eXm5loOHOx1e/fubfqtWrVqAPImnlCUujJlymDo0KG25WfBRyXKJilS6kglDXWQ9EKp4z/zk1lYWBimTJmiXBaWHAOhmV/dkF0vSB3bfvjyh0Lq7KDSDnJycjBw4ED8+OOPQb+xQTu8+ZX6pps2QyCH9YsvvtgRqQvFp85KqXNqfhWRpqSkJLz44ovo3bs31q1bZ5TTKgiJyBybrkf0nql8HTt2xOWXXy69npNFpKidWSl1fN2qkrrIyEj4fL4CJ3VHjx7FRx99hEcffdS4z9KlS40xSBThzSMUpY6ePy0tDQcPHlROG6Wqyo4bNy5I/XdSLqfH8OMhtZFOnToJU6ocPXpU6BOuSZ0LWCkkq1atMm0zRMeKOpwVXn311aCIIRWodmJe9frtt9+MzPOffPIJvv76a+NYEamzyynHDpy8gkLql5XSppp8WJSL0ApE0gh2pI5PL5Cbm4tHHnnEcNRWhRdKHfkR8dckBAIBJbcAfqEhM7/aKXUHDhwwTO90zNy5cw2VSLUcPNwqdXz5nZI6J36vKv0sOztbes2MjAzD7Er/0yAuy+kl+ywCqU0XXHCBEqnjk/C68amjNEUiOFXqRMefd955GD16NADzThVOA1uslDrAOiDNCakT3YeIi4pSJ+t3e/fuxe+//278Hh4ejsjIyALxqfP5fMaChK7Nk2rq/yrpn9jyOTWn0iI3NTUV48aNww033GCb0QBQH1+scgmGen0rFZfAvk+RCl65cmXceuutQd9rUucxsrKyTC8gFJ86mtSdbm6tcg5P6ho3bmxs0XLbbbeha9euxrHUANl0Bjk5OcqkjgcRKytSJxqMqByhOMby0YOyQY8ILK9gBAIBvPTSS+jbt6+j+3qh1PXq1cv0WaRQqKRO4R2MZUqdnU9d48aNjb9zcnKQmpqKfv36mUxdVvBCMWP7FV9+pz51/H1DVTmsSF1ubq5RXmqTMtMe/xwqxIKOCQ8PN+6jQupkRD4nJ8fYWpDA188jjzyC9957z/SMqmXeu3cvUlNThUqdKHqSnsUNaRG1i08//TRo3P7vv/+CjguV1NHEnZqaGvSeVc2vNWvWRKNGjQqF1AHAm2++CeDc8/FjDo0n//77r+21REqdncL33nvvoVmzZsb7SktLQ/ny5QEAzz//PHw+n+E+I4Lq+OK27txaNvj+5Na1SJM6F7BaGfKkTpTSRFVWP3r0KG6++WZX/kp293DiU0fH8Eqd1aRnRV4o+CA1NdWy4Z48eRJNmjQxfPlYs6HbAAlSLezKyeYGA0I3Z7iJ1LLyUQLM7ZDKpaJayMyvvNJlR6LZ3QWWLVuGlStXAsh7b3ZlB5yTuoyMjKBVfH6aX/lJ1+m7tyN11Cao3vk+uXr1anTp0sUVqROljLAii/SbTKmj9ykigixon2L+d7sxrGbNmujVq5dxDj3j2rVrUbVq1aBgLDZ6UGXyZetB1i4+++wz02fWV4wgqvtDhw6Zrp+bm4vWrVvjl19+CTqWSF2fPn2CfKXd+tSJSB395qTNvvnmmyYrEw9+jKHyhYeHm+5DYoTKFpzHjh0zlD1V8+uDDz6IDRs2mEgd3Z8sKL/99pv0fFVFPj9JnWje4duWJnX5AEoGydvqrdJTZGVlmQYwO1InuwZhyZIlwoSOdhA1rN69exublatGv0ZFRRk+giypy8nJsRw4rBq2qvn1119/xdatW40ys2TESV4yFk5JHa/Uuenox44dMyaIUMyvPFjTPrUzFaVO1fxqtS8m/8779OmDG2+8EQDw/fffIyYmRprOgOCU1F1xxRVBSquVUhcqqQt1f1d28SEyrdG7Igdp3vy6Y8cOLF26NKhcKht90zWysrKkaTicKHV0T9muLERWatasGXRN0b1F2LRpU5D5lcY+CsrikZOTE1Q/dgsbWR/k2w//mS0XIS0tDdWqVTP5SKanp2PNmjWGqZgFa2KzSy4+ceLEoL2zWagodU5I3f33348WLVpIf+d9PVnzK3sfImX8toMykNVDldSRuwKNW2lpaUbfoXJYEZv8VOrWr1+vtNuIJnWFBPIJYP3LWIheuor51Y7UufGh4a/Hr0a2b9+OBQsWYNiwYQDUlbrMzExjlcwrdXxHUi1z2bJlER4ebkvqqPPSfol2pE6FMEVFRZkCT+wmeF6pc9PRL7nkEkdlJKgqdaL2pnJednY2Pv/8c2OlzPt0WAXT2BE2QKx0sHBK6kRb9XhB6nw+H4YNGxbUZ6xIHbX5rVu3Ss09ojxwbBmoHfJKnWzzc4LKrhts/6bntVLq+Lri60hE6thzXnzxRfTr18/kV8feT2WCqlOnTlC/o/vK2nVOTo5jRVXWB/nriMosInVA3kKGh6j9WS26+HLNnz8f9913n+3xROo+++yzILO03Xi1du1a/PDDD5bHEKg/8NvO8YF8VCcypY5fPB44cADAufoXmb1Z0LxAfS41NTWor8pSVQH5S+quueYavPHGG7bHqaTVyczMlLZlqzauSZ0FyJejSpUqpu+ttv5ySupCyZlkBb5stOLt0KEDADVSx5MKXqmj30XltbpuVFQUYmNjbUkdXV9E6lTyPIkQERFh6vCqSp2T/Rh5kFO31f2APEfzNWvWGJ9VlTqRszF7zKRJk4TnbdmyBd27dzeCK2RmPlnOMjvYOUrL6rJRo0bo1q2b7fUB8yTLD2ayuhblW5s+fbojpY7K/sUXXwCA0GzFJ8keM2aMsagSmV8zMjJQtWpVXH/99ZblUCF1IqWO7adr1qwxqUB2fnzUFtl3RufccMMNGDp0KOrUqWOayJ0qdRdeeGGQ+VWF1NkRUsA+UAIIVohUSB29G9YPTBQ1rpIeyOnYwpKq9PR0/Pbbb6b2pXLNVq1a4ZprrjHqxyrTAj0rP//JfOqIrPHg79GwYUPT9alPyUDR4rSdHqvUEWSkLjc313KrOxZuXG1Ut4MUmdr5tvXCCy9g6dKlAILbv9V71aTOAvv37wdwzlxIsCN1bAOzI3UytS9UyNQ+up8KqeOj2XiljgZcEflgr8uvzCIjI5VIHdUjrchYx33Vjbp5REZGmhq9U586t758KmVs3LgxWrdujc2bN+PIkSNBxIkfqETtkO38VOaXX35ZeB7VK/nG8WWzUupUSJ3MZMaXj0daWprtwE6wUoNkbbtHjx7o1KmTcS8gr4/zx/PXExEDUg1Eee14Ujd58mS89tpriI2NNSl1ZH7NzMwUBgWwiwLATOo++OADNG/ePOgc9t2JlLrWrVsb0e58WQFnPnVDhgxBREQEzj//fBw+fFjYblRN2XzuRBpbZCY5VVLHQtYueAd90TjMtons7GxTBCZ/f1GSdFHZypUrhyeeeCIkUkdlJZOn0+TDVL85OTmmPGgs6NlFpI7tG1QXZ8+eDZo72fOAvJylpEilp6ejUaNG2Lp1KyZNmiQlVdTniNSdPXs2qK/KFgEjR44UpgcRwc0CXpXU8WOtbC6khRc/9lvN2wVK6uwyoBc1kAzMrhrZyYzPyA+cU+oCgQDKlCmDhQsXGt8T7FaNoUR3yiIW6T68AmV1L36lJVPq7EgdJcckkFJnFSiRm5trXJ+PHFUxv+bk5Ai3couMjDR1EFnHlfnU8Sos5cs6ePAgOnXqZBu5ZUXqaBu4yy+/HFdccYWwXllTrojUHTlyxCAGdD2KDCNQG6H3SaSCLduTTz5ppFBxS+oWLlxoudr1IjKP7Vd8mazaNgV1EGEqV66crfmVd4b/8MMP8dBDDwEQm6N5UkegfG+y6Fcef/75p+kzS+qGDh2K9evXB53DmnJFSh0PVaVO5FNHkwg5/hNBcKrUpaenG+dQfdJ9ZepKbm6udKxjoaLU8dHBdkrdmTNnlEmdlX/q6dOn8eyzz0r7A0/qCbVq1QKQR+p4071TdxG2/bI7FrDgza90L5lPXVZWlkHAWLB1eMkllyApKQnLli0DcK4NjR07VpqehK5J4xsvpNA9/H4/vvzyS9P3NB+roCBJnWwupPfCq5tWfZkXUUTwjNTdcsstXl2qQEANhTpu2bJlUbt2beP37Oxs/P777yhbtizmzJmDTz/91GhgWVlZSEtLMwbgjz/+GHPmzAFQMEqdbJBmzTL0DDLw6gOv1IlI3aWXXopLLrnEltSVKVNG2fzKb9ysYn79+eefhTnbeFLnVKnjFQMKonn77bexfPlyYcSb6Lp2OHDggJCksFnHZYpx/fr1AZxTWitUqIB169YZK3A+RQ1NyvT9yZMnMXHiRFOEIQ9V8+vvv/+O33//HZMnTw763QtSR+2nb9++QW3Cqm1T3bF7/NqZX3liwO6xrKLUscjNzcXdd9+NiRMnGo7iqrursKRONonIlLrt27cLfZ3c+NTRPag/URCSiNSNHz8ehw4dgs/nkzr/p6enG9c8c+YMAoGAcS0ZqRMpdXZ9TPR7WFhY0ILMjtSlpKSYIjD564uUOquyyX6rVKmSMOiCYEXqVAUClZxsTs2vMlLHIj4+Hj/88AOuvfZaAOdMq4A8tQl/TRGpS05ORk5ODqZNm2b63sq8nJWVhSlTpkh3NWnTpo3lswDuSd2ZM2csSZ0TpU6F1Mk9DgXgdw8gBAIBy6SORRGvvvoqPvvsM9P2PYcOHTJW1tnZ2Vi+fDkA4M477zTOE/nsfPfdd/juu+/Qr18/W586kpVDgcz8ykeXWQ0yfKdiP7Okjp3gyZmdvT/vwM6aX5OTkxETEyNUpWSOuapKnQgq5tfXX3/d2NCdV+r4cqpkTZeV0Q6iOmE7rCxNChEMltS1bNkSQF4/pOOJHPCkjg9IoONPnjyJZcuWoXfv3rakrmnTpti8eTNef/11g/zwExPVably5ZT8xESg9hwXF4eMjAycOnXKMPlY1fWFF14IwBmp4/stS7ZECZftAhFiYmIwcuRIBAIB+Hw+SxNlWFiYcX8aR/1+vxKpYxcorNIrOp5w3XXXYf/+/cYiQuRTR89E7ceK1AHnFMfZs2cLd4LJyMgwzgkEAkhNTTXashWps0vWTNez+t3v94dE6twqdbz6K8Nzzz2HyZMnCxf8XpA6lcAnusfOnTvx/vvvG4tHvg1SXWRlZQUle+fBkjggTzgh8Avo3NxczJ49W7jxPb/woXN5M6wVqZszZw4effRRnH/++ejbt2/Q+xBth8lDhdStXLkySDE8ffq08N0S2XZC6lT2fnVE6pYtW4bZs2ebXg6Q13hF2+UUdURHR0u3Z8rOzsauXbuCzrHb+NpKqTt27BhatWrlurx25leaOFTMr1art8zMTHz11VcA7M2vfINkSd2JEydQpUqVoESVrFLH+7Pl5OTY+tTJzH4q5le289opdU5Jnai+d+7caQyQLEQpAVhSZ+XbCZwjdbxfC9UTmS/4+uVT6ND3d955J77++mv06tXLltSdf/75OH78uEnNysjIMJU/NzcX1atXR0JCQsikrkyZMtiyZQsSExOxc+dO1KtXz7Jt0yba7HZwMp+6LVu24LLLLgvqt+xnNmcfwU6pownA5/MZ/UGGqlWrGu4QNAFHREQYk1ROTo5pwlJJaSIrK5A3Dr311ls4//zz0aNHDyXzqx2p4xdpPFjzKz0nkWXZXrxeBUqISN0999yDNm3aoF69esZ3bkmdTKlzun2kaExm3ztPHq36AOs7p0Lq2DH37rvvxqpVq4LuT/c8cOAAzpw5g+rVq1tek1fd2M/8+/j+++9x1113BV0jKysraLyneuLbmhWpozZml8D/+eefR9myZXH//fcH/SZr28OGDUP16tXx+OOPo0uXLvj2229Nv//333/C/snn8CMUKKm7+uqrUbZsWeEm1vy+m8UBdqTu77//DjonIyNDmdTxxzlRM19//XX07ds3yGcKkJtfnZA6K8Ly5ptvGoqOHanjiS9NYvv378fu3btRuXJlIanjy8oOlnZ56qxIHa/ULVq0CCtWrMCrr74KwKw82il1/ETsJp0CkWMeohQeKuZXAvni8ISJJ3X0nul7nkzS9YlUsP6OMpQtWxaXXnqpydSXnJyMihUrGp+J2NiZC4YPHy41fWRmZiIiIsKkBu/bt8+W1BEBYcmCyKfu+PHjaNq0KcaPH2+p1FFdslAldUCeYmE1sbJ1xE5YNNhnZGQYz7RmzRrjuaxSmsjKSiB/wb59+xqKikh9pEUSuVmkpqZi9uzZQQ7pixcvBiCfWFnzK5BHNKhOnJhfZc955MgR9OnTRzh2RERECMe7cePGYd68ecZnntTxWzlFR0cLCRUfqEZgxw8VUidqIyIyrxLYxfrOOSV1gDxQIhAI4PzzzweQF8lOuOGGG4LSg/GkjlXu+DLx2yQS2IULgSd1pIZbpTqhd0ljrOh9ZGRk4PHHHwcAR6SOTcpN/rws/v33X2G7JP/oQg2UWLhwoZDQAQhip8UBUVFRUrNIdna2cENdK6UuKSnJ9JsoZ5YqHnzwQWPgJciUOvqckZFhci52q9SxZNaK1MmcbsuUKYMff/wRa9euRaVKlYJ+Z5U6Ptt9qNGvvE9djx49TJ2OvbadUqe6T6FVGa3IM98eWFJnZ2KhshE5pOem4+l33hQvG7zpuD179hgTtAxxcXGoVq2a6btt27YhOjoaO3bsMMpvReqoLb/yyitBW6QRsrKyEBkZaboGld+qbfOm66ysLKGyRO9/8+bNQUodO5GJBmQrUpeTk+OI1LHvXUbqgLxFYevWrfH+++8bzyUKlOAniX/++Ud673nz5hkJyFWUukWLFqF///7GlmE0+dE1ZKSOzK/k3pKSkmLcw0mghGhsCAQC+OCDD7Bq1SpT2iCC3+8XjndWCWHvvfdePPLII8bnmJgYZGZmOlLqRL54VhApllakzkvzqyqpY4+j3YNuu+02zJ49O+iaVqSOd2kQBQQBYp86epc+nw+rV69GWFgYpk2bhm3btgmvAQSPgyJSJ1OMCSrmV9GCePfu3ZZK+pEjR0ypqVTGNiuU2pQmgL1SJ1oVZmRkCNUzIM/Mw2Yfv+GGG0wqlVPncSvCSTh+/LjxmV8Nu1XqWHOTiNTNmjULgDgrO2COyOR3CQDy6sFKqXNrfuXz1MlWYwR+kJQlH1WFaOC2Is/8oMdO7lZRjT6fz1gR0rsilwi74BC+bnnzXZ06dSwz3dO9WFUOyDP3ZGRk4PnnnwdgT+pU6paUOvYapHarTJJWpK5r167GtdLT04NytFHkM3svme+WzDmf4Eap8/l8xjX4nI5sGURKHb+af+CBB6SpLFiI8tTxgRJUL1RmPu+elfk1KyvLcBdISUkx6tCJT52T/aQJfr9f2N74vsB+3r17d1AuxjNnzjjyqXOi1K1fv16oVrGkjkhHqIESTz/9dNAxfL1SvcuSDwN5efA+/fRTzJ4927QtWr169XDttdcGLS5Yty2e1IlcHKgcfNnYPkIk/uGHHxaeT2BzDt54442GeZmFiNStXLnSWKiqBkrwsCN1AEw7VYSSIQMIgdTxe+kVR0RFRWHnzp2YMmWK8R2bYsNNpCorv27cuNHEwJ1uDSKzn7Nyf8WKFfHEE08AyGu47D127twpzG0GWJMNdjATkTpSCmQTNpvQWeRkbqfUud0mTCVQgh24eULJg4ivqsLqVKnjHY3Z+rTzm6FJmiZE1v/KqmyyfG9O2mZcXFwQqSPSsnbtWgDnSJ2sDauoB1lZWUHmVxr8rQY+vu5kCzQyRZ89e9ayfYmUGNreTlYWdjIM1fy6YcMGHDx4MMjVQabUiUw0e/bskd6fIDK/8kod7btJfYJftFmZX7Ozs02kzk6pE5lfRfkRA4GAJckX+dQBwaQuMzMTsbGxUjNeSkqKpfk1FFLXvHlzU0Aega1PPp+gap/lCe348eODjpEpdQcOHMCLL74ovG5ERARuvfVW+P1+hIeHG23lsccew9KlS9GzZ0988MEHxvFWSp3oWaKjo22VOis/OhbUxk6cOIGvvvpKOC+JSF2HDh3QoEEDAO5J3f79+03987nnnkPnzp2lxxcaqbv99tuDQop5uN0gvaAQHR2N1atX49FHHw36TTYR2IEkaYKIRKiCOklGRgbuvvtug2DxUa7U2XlSx/s4sIOOFdk4e/YsmjVrhvj4eMudD2RKHUvqRE7yLKnjZXEVpU42QIaHh9umNGGVWapHWTtduXJlkD+gFXJycvDxxx8bSiZgXc/8pt8ipc6ug9NxqqROptQ52Qs1JibGMKuT+Y38Q9gAGCulLiUlxXZ8IFInUuqckDqRUkdlBNRJHXsMay4SXdut+ZVtL/ROu3XrhurVqwdtzSZT6kSkxMrfiEDPuXnzZqOeeVJH/ZkmVn6/ZdnEt3//fixYsMAYH1mlzkmghF3ZRZD51GVmZmLAgAEG8cjMzERUVFRQ1CaBVer4aPx9+/ZZKv1uU/ywpOX06dOYO3euca1du3YpzSkqdSgjdZ9++qn0HL5NUVuh/8uUKWOk9AHMpI6fF0TPERcXZ0nqwsLClNo1ez+RnzyB76N80mVR27YbwxISEnDgwAHTM9xwww2WW8QVGqlbsmQJxo8fj2HDhgU9WE5ODt5//31cfPHFIRUuvyEiJXZ7kNqBj0ZkX6bTTcSpc6xYscJQx6hs7P/s9dkyW2Xht4vsvP3229GpUydLp3nZhF25cmXjb34bK7asgNhPhMq9fft2Izw8JycHhw8fxnPPPScl27yzrJ351U6pA8zRsiqBEn379sU999xjfGeliIai1PGgwV92vKpPnQoiIyONyZlMKm5InV1/yMzMRGRkpEkpdaPUyUgdmwTXqVIHAO3atZOWhSd1Vu2AnbjpOD7iFQhWWGTRryKlzgmpu/zyy3HzzTebzouIiDA9E5WTV+rs1Iz4+HiEhYWZlDpZO1AldSpKnaj+MzIy8N577xlRl9TeZKQuJSVF2E5OnjyJCy64wPAzJDj1qROBbwP9+vUzuQ289tprtnno7NxwRLs2qAgafDvjSR1gbndsvZ45cwb//vuvMaaKxp/4+PiQlLo1a9YY9a5C6ngTLks8d+zYIWzbdu+1Ro0aOH36tOm48PDwoAU9i1Bz2bomdddddx1+/PFHLFq0yAiLz8zMxPTp01G3bl08/PDD6NOnT0iFy2+IJpxQSZ1s/0DRb3bgc4wR2MmKv7fIZ0x0fztSV7VqVURGRloqdXz9UXlZFYf2o2XBpzTJzs4WbhPWoEEDw8yXm5uLAQMGYPTo0dIoYp/P58j8KktEyWLv3r0mPzEriAbP/DK/8nCr1LkldaQukYmVSB1NZETqZGouJfDmceWVV5qOiYiIQOfOnTFs2DA0a9ZMyacuPT3dlBdNRupocjh79qwlYZc5V9OiNVSljj2WjuODLURglTq2nbkldaL2TdeiqHaCTKmzM4dFRESgSpUq2L9/v5IKrTrBeWF+TU1NRWxsrKVSJ7rP5s2bhce7UepE9blq1SpTgGJqaioSExNRq1YtjBw50hifZLCqw7vuugvDhg1zlNybwLczevfs9+yCjK3XPXv2oHbt2pg6dapQ5aTjRT518+fPN65t1d5at25tbKNIEexWpI7fFYvddem///4T9ke7eqL0SizsSF2hKXVA3n6Wa9euxe7du9GyZUvUqlULTz31FAYNGoQ9e/YIHTJDwciRI9G2bVvccccdrggXD9mEA7gndbwpITMzE2fOnMHMmTMdK3WiLZ6A4J0jWLCrNn4iYe9vR+qqVKkCv9+v7AvEfiayIop8BcwpTQCzSZTqnRQalqxQ3creC9/JQ/Gpow48duxYo3yqplAWTkidk+hXHlY7RLDf2wVKqCAyMtJIZ3DLLbcgISHBIHUUAU6kjp+k2PuKSB07sBKpq1OnDl555RXUqFHDUOqsFORffvkF8fHxJlIn6iuhKnWUfzBUnzp2smDzwNkRJFapY8cdEanr3r275bUAeY43gojU8feyU7P9fj8uuugi7Ny505awff/99zh48CBuueUWy/yeGzZswLPPPmt5TxVSd/z4cVSoUMGxUrdhwwbh8S+99JLxtyqp40lAeHg42rVrh4EDBxrfJScnIyoqCps3b0aNGjWEEb8srMaQw4cP4++///aE1FFbkfnRsvVKe1M/+uijuOCCC4RzY1xcXJBQwWLJkiUYMmSIZRmJxJH/rCg/qAy0PzyQR+pEbdtuTq9Ro4bxN/WfIk3qkpKS8N577+HAgQPYtWsXTp8+jeXLl2PMmDHSjuEWmzdvxuHDh/HTTz+hYcOGlrZ+VVjl0MrOzrZUqWQQkbr7778fAwcODIpeswN1Gn5AkCl1AHDZZZcZf/P7CrIN0E6yr1q1qm15RbtJADDez2OPPSY8j8+FxpO6jIwMkxIEmJMSy94LH9AgGkhFPnXscaxPpJP8QVRGHlb1zCfxZgfDXbt2YeHChcod3G5rOKtAiZdfftnRQBIZGYlKlSohEAigWbNmKFOmjCl6LSkpySB1ouhnuq/dwoLIPaF8+fLGfUS54/hzvTK/yvbapChvL5U6dvN1kTLARkyzSh17fVU/Ix6pqalBfYiduEWkjr+X3SQXERGBevXqYdeuXbZt7t9//8Uff/yBsmXLGoqLG8h86viFwbFjx1CxYsWgfklgfeoINWvWxKZNm4THr1ixwvhbdUHPkgDg3OKAnauSkpIQFhaGhIQEDBo0CBs3brQk01b1nJGRgaNHjwaVT0UhtfOp48FyAn4MF43pMvOrE+Tm5iIzM9PVTk5EPKOjo/HII48Y+8Wz+Pjjjy2vUbVqVeNvmltUSJ1qAIgIrknd6NGjUbNmTbz//vuYNGkSjh07hl69eqFTp07SnDOhYM2aNcYecl26dBHuw5mRkYHk5GTTPyvwk3BYWJgxqPH+aaoQqWM//PADAPuJiAe/2T1BJQ8dEBz15FSpe/PNNy2P4UkxOwHfeuutljnKZErdjBkz8MgjjxjnUuNm06BYkTp20O3Zs2fQMXZKXevWrY2/QyF1AwYMwG+//WZZz/zgx69wb731VmWyJYvA48vGD5C7du3CiBEjlO5B4MsdHR1tqsNTp065VupYpKenm9pQYmIiTp48iX///VcakcdC1fzKpzQRlZX9n0CTf36ROtHAzvqr5ubmGpMve32VBKUiiCZy9lrsPs/Urvk+kp6ejv3790tTVPj9foPUsffjfZH5MoQyyfn9fiHp4ecHkVLHm8b5NkCmZDvQ++E3oechI3Xs2JCcnGx8X79+fZw+fRoHDx6UtjGrMSQzMxNHjx4NmusGDx5sWU4guJ2R5UHW/liyzNd9ampq0HwRFxdn2zftkJOTgwMHDiAQCDjuF2lpaYiIiEDXrl0BiK0Zdkoha42hNk6EXIbs7GzXCzMgBFK3ePFivPrqq9i5cycGDx6MMmXK4P3338fgwYPRoUMHfP75564LJcLp06eNVWpCQoLQr2ry5MlISEgw/vEdhAelXyBER0cbREplE2QR+MaakZFhdHpRMmMryHy+rMyvVmDJk93zxcXFoXHjxpbHkFI3aNAgAGqbDQPnfOpIxRGZ0nhSp6rU2e08wZIa8uVjz6lQoQKAvDrnBwE7gsW++/feew/Dhw+XpmsAggc/Uf3RPUVbjbHgU8PwkJE6N3s28+STV2xZUmel1MlIXW5urrEVETvBklJ32223mfxdZGD7iRfmV/4YVVJnt02Yk1QJdE8iWDTReEHqRHBqfk1PT0eNGjWMXQcAc/uIiIjAeeedhzNnzpjeiSwBNZUhVFInAks8c3NzcezYMVSoUMEo7/nnn4+LLrrIOEZkfk1ISAiyiIhA4wC/EwcPkfkVCCZ11Gaof51//vnG/Chz1xEhIyMDJ06ccLwlIhD87mnslLU/th3wY/6ZM2eCFoCk1IWC3NxcI52PVeCmqMxnz55FTEwMZs+ebSx8e/ToYQQRqYBtt0TqsrOzLftooZG67du3o3///kGdbcKECXj55ZfRp08fvP76664LxqNcuXLGpHn69Omg1CFAnnqYlJRk/GO3MRLhtttuM32uUKGCQepU8miJwJM6ljypdH4Wb7zxBnw+nzSK1WmDlwVKiAZMldxsNNBQZ1QldUBeh6FBSETqaPJyYn4F5L4ru3fvRlJSknENeuasrCzTOeygKlLq5s2bhxYtWgjvwb/fGjVqWJI60b65POhdszI+gR0YsrKycOjQIfz000/Ce4lIXVxcnLBNTpkyxWTG5yEjdTRosaSOVXf48rBt8JZbbjH+7tSpE84//3zs3r3bROoSExORlJSkPOBRLipeqXvllVcAmPuqG6WOymZH6tjtpUSQkTrRooTvc/Q+2fHKyc41dnBqfqW+zPbp+Ph49O/f3zieTdU0YsQI7Nq1y/Kd5hepYzFo0CDs3LkTFStWNI5/4YUX8N133xnH7NmzJ6i/8AnEZaC2aFeWevXqYcmSJcY4JCJ1ZH4FIOxf/LxgZ34NBALC/H924IkJBbXJCIvVvqWBQCCI1HnhwpWTk2NYyGrXri09jr031TmRupiYGGOP4FatWqFZs2bK92f7NkvqgLy6Z3ctIRSa+dVq4Bg4cCAWLVqEMWPGuL18EFq2bGl0sKVLl+Kqq64KOiYqKgrx8fGmf1Z44oknTIM5S0rckjp+IGYThrpV6vhVlFtSJzO/ul0V0Hm0WlTZbJhw9uxZQ4IWkTTq0NS4k5KSDJ8GmerRtGlT6eRcp04dtGzZ0ng/RER4Usequ/zglJWVhcGDB+PXX38FkOeoy4If8KtXr26p0PDt00qpE038rMkqKysryNwsytnHEvty5coJzWQjRowwJdflwb9nKjf5mJHyZRX9yit1bF2QL9K+fftMJhu6vpXpggX50Zw9e9ZEMh544AEA5gWXHal78skng4i1FaljB2Unix0WTkgdW36qV6tIP1Wwz2FH6oYOHSpcoLGphlhSl5aWhgsuuAB169a1HIPi4+NDmuRUlEtKR0ImNyBvYcm2v+nTp+O6664LKpsKKD2GXVkqVaqEm266KWj8E/nUAcHRsj6fz5QnExCbDV955RX8888/RvvhIz9VwD8L9U/Zu7KbH/KD1LFR9nzCdNm9acwiUgecmxdEeVetwNYF5aajcSQyMlJYV4Wm1Nnh+uuvF25u6xZNmzZFlSpV0LZtW2zfvh233nqrJ9dlyWlOTk7ISh0PdsB3SuoIvPon8qlr0qSJ0KTapUsX42+W1LETaqikjjqEE1KXlpZmTM5WSh01ejZ6T0QC//zzT9StW9fSYZjdKYM662OPPWaqR9ZsJDK/ssfyMjz/nmSErm3btnj55ZdN+ewA8Xug+4kWUay/Rk5OTpAplVWzadIX7d3Ig93NQASZUkfXu/nmm/Hpp586InUionbixIkgpY5/BisQqTt06BAWLFhgfE9pWNg+zitpDRs2NP1Ge5uycKLUEUaMGBHkryRT8USLNhmpY3HmzBk8+OCDqFOnjvC6IqgQH3bioz7IttkKFSoI+3JYWJjJiZ4NALNzrgfyFkf5rdTReNCrVy/jXqTSWMGO1NH7ckLq2DLb+dSJfFbZHZIAcRsZPnw4unbtatrz2Sn4eiXzq8yX3e7Z+bpm+75VpgoetAMEkDePnz17FmFhYZZ+m2w90twjInUUPKEKdhy49tprEQgETG1G1DazsrIKR6lTweWXX+7p9aZOnYqffvoJc+fOdUQg7HDw4EEMHz7cROrsgiycgF6sG4lbVBYyI7KDfiAQMPkvjRs3DqtWrcKFF15ofCdLA+HEB+eSSy4x/mYHPwDCbW5kEJlfWZJCnYzqjlUWRaSOOoeqUy0NEm+88YZpn0+WXIjMr1bqKF+/Mr+vV199FQ899FBQlF2FChXw0ksvmSZ9IgzVqlULug4/SPHlFeW9Ywd42R7Gdvmf7MyvQJ6vnhWp482voskxJydHqNRR4JHdHrVWi6ioqCgTqePfHUtEcnJyhKqBKqlj30OTJk2CdoaQkTrRZEzXov4hi7h2ulBTUZxEBIcnrzKljuqSVeroM/u/CNWqVTP9Xr16dcty8m1XpS7Onj2LBx98EJdddplxfExMjK3KaldvNKYRqbMrC5kIrUhdVlaWpfmV2iO5F8ncVU6dOhVSZCk/b3Tr1g0ApIsJO99RK6XOjlwTrrvuOkyePNn4nJSUhLS0NMTGxkr9ewFzEm2qa5bUUZuLiYlxtFOW3TPLlDr2PNHYb3lPR0eXUFStWtWU1wpwFyghM0mrNkgZeL+sESNGoHXr1iaCwZOZ4cOHo127dqZJVdaBnZC6bdu2oWbNmgDM2eZzc3Px0EMPKV+HNb/SREArPeBcY69atWpQPjcvSB07WLOkmX1XfL0cOXJE6jTPPgdBRurouvyE4ff7MWLECNPglp2dDZ/Ph9dffx1XX3216XielPETBr+VEaCm1AHWSWRF0a9AsNpmtaMEr9TJBlx2YGcdnS+66CIMGTLEcoC1Mn1HR0eb+jjv4hAWFobMzEw8+uijQeSSQG3FiVIXHh6O+++/3xSEJFsosO1pzJgxOHHiRJBSBwS3o9TUVMekrmnTprbH8OOY3+83jXllypQRWjhYguz3+00Ehf1eBl6ps8pRCORtWM+2C/7a5B/Fg/oTO67Z+SfakTrqEyo+dR988IHRznhSx79jmfkVODd3Ud9JT0/HVVddheHDh5uOS0tL85TUNW/eHIFAwNJ3zQr8GMDWLd/2ZEQnEAiY2gqRupiYGGmqGsBcjzRWsqSuQoUK+PLLL02EUQVhYWFo2bKl9HfROPv333+brC4qQWGmezo6ugQjPDzcNAlSkIUTGVSUPRoIPRpNpBpu2rTJktTRwKlC6pw6Vq9YsQIffvihaRXp8/kcXUdE6kQ+D/Hx8Xj33XdN34kma6ekjjdnENjOzQ/AzzzzjPG3aCKeO3eu6bMs1YFsIqPPfC49v9+P+Pj4oAhBGamjwbFt27bGb16SOplSxw+8dkod+x5lyjs7EIeFhWHkyJEA1NQX/h1ddtllmDNnjlFmloDwizhqyzQuiCYEeo9OfOr8fj969uxp2n5OtLk4YG4HFSpUQGJiolFP7ITH17EsHYoVRD7KPGTJZgmNGjWSml9ZoiRS6qzGyGrVqpmeZ8CAAZbl5J+dv/bcuXNN6jyBJ3UqW3vZkTq/34+4uDglUsf+ZqXUAdakjlRB+i09PV2YFiYtLc3kb8dvc2YHL6OsgeCAO7bP8WOLrH3zpC45ORlnz561Ver4hTRgJnUA0LVrV0tiKEJYWBiWLVuGgwcPSn/nMXbs2JCifjWp+3/4/X6T+XXx4sVo0aKFISU/+eST+Prrr03nDB48GFdccYXxWZZCRdT43333XSOKxk6ilZmCnZK6RYsWmcpDg5jTPEC1atXCnXfeadSV3QQ7adIkzJgxw3ScyKeOVepY3HLLLRg3bpzx2QulTkbqYmJi0L59e9x0002Wg5bI+Zi/t4zUsfXA7rrBRl0RWKdZWQoB/rpVq1ZFIBAwpUERBUp4TepESp2VTx2rjqlkoQfUlB0ZrrjiCtxxxx0A8iYOlsjxpI76JJE6kfnVar9dK6WOLz+tynlzOkuQ6Dy6LttuRGqoSv1QXbZs2dKUukMGKoPoGYC8+hUt7KzMr/z77NixI2bNmmWKvq5SpYpxz0suucR2Wyw6duDAgXj22WeFiycRGaLxkPoNtec///wTbdq0Ed7LjtSFhYUhPj7eIFpW/Yot5wsvvICWLVtKd2ngXV9EoGf87bffhBHE/HjVrVs3pZx7hPwidXfeeScCgYDpmfn3JRsvZEqdHalj++vRo0exfft2Q+ELBZTWSZS9gMoLBO8uFNI9PbtSMQcN3qxs37ZtW6Phnnfeebj++utN54wZM8a0fQ3rZM8iMjIyiKkPGDDA2BfVzm9DlhaDnfz5Dsr6hRAo+zV1EJoY+BWp6iqf6sqOlI4ePRoDBw4M2peV96ljV0Hs5BAWFmbacs6K1Kn6O7ADKKuUxMbGYuXKlViyZInlxKiykgoEAsJ3y9bDH3/8EVQmfocNGamjrboI9B6ovbCDGG3dxRIQr0kdPzA5Uepkefj4lbGKD5YM7LvwQqkj30MRwZf51InKTxM+Dfx0PNvGeMLPjjWiyUqlfmgcWLRokdLx/P7C/JgTHx8vHANlgRJsOdk2ftdddxn1/8MPP5hUJjqX38Xhyy+/NEgxXWvGjBkYM2ZM0LPJkmITqRs8eDA2bNhgBMs0aNBAOulaOd/TvRISEox3LCK9ojbRunVrrFmzxjheptRZzR009h84cAB+v992nC5fvjyqV6+u7EYTSoSmCFReGsPZZ+bJ1TfffIOxY8cGXSM3NzdIqSNyZkXq+PdyySWXBCl1BC996qgP0WJThvnz5xtZF2zvqVa0kg8avFmCEx0dbbmfXXh4uGmAku11GhERIWTq1GDszJYypY6NCOUHWLqmaFKl+1J2ep7UyXYB4EGNW9XsypMSXqljyyq65qpVqwB4o9SxAxK70wf77E6VOhFE6i17XdaESoMRS+pOnTolbYMdO3Y0fSaSRO2FDTZh8/wRCpPUkU/dFVdcgUAgIF3Jeknq2HJHRUWZ2oqdUiczu/j9fqFbg51Sx+9UAJzrj1YBCfSO2QAoOo9VE52QOpUJny07TY60sfqPP/6IZcuWmX7jy66q1PHEkeqCVwd5H8AmTZoYzux2gRI+n09YTlK+fT6fyQLDlpNFXFyc1LpAIKXuzJkzUhcVah9W70zmU2c19rLtyC7Xn4ho20FVqVu1apXtThpA8Lwj280EyPOLpBQhLHiljvLU2Sl1IqSkpAj7oizATAQ7gYTmULt21KtXL+X8eJrU/T9EpC4mJkbq00DnsB3g/vvvF16bb/yk2lEjtiMIKpG4MjJjReqIhPLmI9V0MXTPUEkdkTQ7xZIIkojUsduJOS0Lm6tNNAGL4BWpY+tOpNRNnDhRaropV64cpk2bZqysiRw88cQTAM5NsNS2efJhlQfKSaAElZtXLcLCwtC4cWPceOONQdeg6FfqAyr7RbLHhUrq+H7BK6+8UiebEPx+v9SPjCBS6kR9hu4hmkjofZDJmoKVgDzzJN2HN5Fage6jug0XPdOHH36IvXv3GtsntW3bFtdcc41xLR68+ZV9D7wKzZM6/ntZO0lISAg6lsCf4/P5hAtX2cICEI//1atXtx2z2F1VZHVM17Bq0zKlzgr8AlV2zpIlS0yLGlWypnpcu3btjLbywAMPmHyTReUloiNLfC26P6lYgUDAeE7ycT98+LBjpY6uKeqL9957Lx5//HHptVjYvSd6Vpk/vhtoUvf/kCl1MvmbzqHfZ82aJfVLocZHkx4NHtTI7LafstqVgOCE1FmZX48fP44ZM2bY3o+9p+o2R/wgQErRY489BgDo3LmzcS3RgEGDnojUsbmvnJaFVerYzm11LVVHVlFnlQ2G9HxNmjQR/s6TsjJlymD48OHGbgwpKSn43//+Z5A6Nu1Fbm5uEPmwSgvkRKkTpaQBzuW7mzZtWtA1hg4dimXLlpnUIhFUlDoiOLfccotlGiW23CpmM0DslsEiPDxcSOrY+lNdKFC7cEvqsrOzjYUS1Y9sD1YAJkKtQuromMTERKn/sGx3GlmgBE/SecWd3pnMj49QpkwZ41hZABJbHlEdyywtbDlZVKtWDbVr10bHjh3x2muvCc+bM2eO8f5l4yS/JaIIfJ9TWUjzQV+y68fGxgqJth3c+NS99tprGDp0qLQcgJjUid4XW2aKhs3NzTUWwZR+6/Dhw4iNjbW0QPl8PgwYMCBIDRM9Y3h4OHr37i29FgtV86vqHsJK9/TkKiUA4eHhyM7ODiJ1RLhEK7Lw8HDjpVl1BGoY//33n4lAqDphskqdrCM5IXV0DRGpK1++vHKnDpXUlS9f3jQ4Va1aFdnZ2Rg3bhxeffXVoPPzi9TJCJpV9JvVVmUs2MlXdG8WNOhOmDABU6dODfpdlHaDvV5ycrKpTdGigeqEXxxcd911+OSTT4T+Ql6ROvZ/HocPHzbKyLc5eiYVpW7Tpk3YtWsXFi5caOmbwpab3yKQB6/UydpCcnKyUHmQmV9Voh9VSF2VKlWM5yFSl5WVZbwDupaVid2pUqeihouez4n5ld0WkP3dapytXLmySQ1UyVNH31155ZVBzyeCjNTFxMRg+fLlQeZaIG+R0bBhQ1tSJyOjVs8gW+izbU3V/MrPbV4rdTxkbZL3qRO1E9n9RUEVpB4fOnQIsbGxlvXr8/nw7rvvGvuYE2Rbjar6nauSuoiICFSvXh1333230nUt7xnyFUoIaPBmVbOYmBihEz97jgqpowYQHx9vssdT3jE7W7lKPi+vSJ0TqAZK8Pcl8B0tLCwMPp8PTz/9tDAPkRWpc2p+VSGuVvWydu1apfuI9lC1U+oiIiJMSZ4JsrxrdL309HTT++ZXpvxEEBkZid69ewtX/QVB6tgysu+jTJkyxgCvotQlJiaibt26wnLfeeedRhAGO3m1a9dOWia2zOHh4UhOTpbuqWt3Pn9fUb3u2LED69atc6TUxcXFGYSXdaPgSZ0MbASoU586q34hej52hxKe1FE5KWiK+jav1NE5fLAakLc4YO8tI3VXXXUVxo4dawRAfPPNN/j222+lz8JCRuoIIhWI6lRVqXPiUiBTYGX9PywszPb+BNVyuN1jWFYOvg7ZZ1EldYFAAJ07d8aWLVuMbRMpUEKFhNKzX3vttQDkW+15TerovjNnzjTtiOEGmtT9P8LDw5Gbmxuk1NmROj6th5MQ6Nq1ayMQCODSSy9VPkcmIcvIDD8Bf/TRR0ZGe1qlOonmEd3TrU9dbGys6d52HcWK1BFUn0XUwXnzptXkxa/oZGAjVPmtz3jITHYEWVJPdhAWKXUEivKlzO804IjqzIlqIesjTkgde0x8fLwx0fBKnV2gBF/uuLg4YzN5ti9QcIHsWqxSB5h3g5k5c6aRZ062IGOfx84J/aKLLkLz5s2VSB35Jvl8PqO+6ficnJwg86sMR44cMRZVdjuIEMiZ22rLJpn5lR0nRQoMmcPJKsErdVFRUUhKSjLyFIogW2DTNSpXroyJEycax3Xp0kXZ6V3kqsC2IdG4zAereUnqWIvPxx9/bIxHMlJnlbvQrVLnZOsuFfDmV3aRKKo7tr5YUufz+dC4cWNTiqXY2FjUr18fL774Itq3bx90Lb6/V6pUCXXq1BFG2LLH2UHVp46u5/P5bHdMsb1nSGeXIFAD4QMlnJI6pxE2dB1V0PX5vElEsF5++WVjlQGIs/9TmWW+W6pwq9RR542JiTGRUbvrqAx6opW8VVmsru9WwWTBbplDAQMyEszeX2Tuv+WWW/DPP/9g0aJFGD9+vPG9zPdEptS9/vrrppW+aEFg1Sb53+gZRXnqAGvSz5uIgTwiJto5AQg2x/EQ+VNRXbITs1XQBFtmUT20bt0arVu3BgBphnn2PPb5VfKUycYaIG9rNPIZYhcJzz77LH788UdjIrQbUxITE03qhcoYdP/992POnDnSnG3sM7BjEP+uRP5bZJKjYB/qe+yx8fHxlm2JVVdZ0PuXkZUFCxbYRmeKzmWTpauQulACJQikPrELsT59+hj7ULPjBtuOcnJyPFPq2rdvj6SkpJBzuPGgBZyI1IkWnmxboHbCzr/8NmM+nw8PP/ywZX9nF41///231E3Da1LHHueEDwjvGdLZJQiiihQpdQ888IDpHH4gUU0HYnfv1q1bm7YSItD1eb8EmhQfeughLF261PieH4yioqKwbt06rF+/PuTG40apCw8Px6pVq9CpUydUqVLFlVJnhZdfftnSOZwtCw/+OUQBLKo5nIYOHYrTp0+bnmnWrFn466+/pOewx8qCGGrXro3u3bvjqaeeMr6TkTqZUpeQkGBqP3ak7q233pKWGchLzL1x48agHUF4pS4xMRHPPvus6Rhqz2wSV1LqypYtGzQo2rUBkelNROpYiNqCjCDw38miH1VJp6gcPDlmr+f3+43JjsaksLAwI2emqvkVyKt7J6TO7/fjjjvusOzvdJ2HH34Y1113nansQN4kZqXU0cKD9TVShcz8Sv1Adq2ePXsaCqgMonPZNBRW5ldqI6EqdampqZg3b57wN1GyeXYs8FKp8/l8SnsFW+G1114L2raM3Ah49Yr9Tobw8HDMmDEDH3zwgek78jel/wFx5gKe1Nn1B9W50+440RyqSZ1HEFVkTEyMYeqjAZSNcmKVOj6HU6j3rl+/PrZs2RLUeWjw4KP3ZOZXfqCIjo7GRRddZHIQdgs3gRJhYWG48sor8f333yMqKspzUuf3+y2dw2XXEuWQEil1Mn8Hdl/Shx9+GBMmTAianKOjo6VJdvky2aVKkJ1npdQREeTbqBWpq1SpEu69917b+4uiTkWkbsyYMaZjqIxxcXE4cuSI8TeROh52E46I1FmlJZJd00qpkwVByI6xKh9fVkC8XZ7oPJE5n0/AawWnSp0K2Gcgf7WKFSsa9cmTOl6p482vVhHaw4cPN3wpgeBtvgh2pE4Fbkid1+ZXK2d/Ealjj83Ozpa+Y5mLA4F8EAmq470VHnjgAUybNs1kTrcy59I88dZbb0n3Qh04cKDJJA6cey/s+EykTpbRgv1fBiuzPbtHt1bqChEypY4agJ35leAVqaOOJVtFqZI6kVLnFciZv1atWkrHW+VKArwxv6qCv5bo3iJSxw8aBLaeX3zxRUcJKkVlYgecxYsXW57HEjl2EcC3xUOHDgEIbm9OfepUwZM6kcLDtmPqY6TUifLoUR3JVu78PchnjC0HgdJyhKLUOSV1KkqdKF+aqBy0aGDv5Vap82KiZu9L7XfBggXGTjYEkVJHz0LmVxWlbtq0adi1a5fxmSLNZUpdKG1a1HZZUiciCPnpUye7hozUicyvAwYMwPTp04PGKr7OWasA4D5AQoQpU6YYf1v1bWoPNWrUEAbRyUDXYhfjVnO6qlLHL9jHjx+PefPm4bXXXsNXX32Fe+65B4B6oARbp6HWr3ezZDGHTKkjiMgaq+5Q4xEdZycdW4Xc8x2MGolbpU5G6v7++2+lfHgsunbtir1790pzVvGwI3V2HYkcunNycjBkyBCMGTPGddJGvhyqpE6m1IWiAhBkZr1OnTpZnscSTXanAVVXACc+dXZtuWzZskYiU7tAiRdeeMG0OTtNjKTUWW2pJANfPqs29ddffyErK0voW1pQSh17Ppn7VUmdyH+OJhsVf9C4uDhbwuEUVBZqv+QDxkKk1NF5lF6ID5RQAZE63v1CNcm7FURtkVVURb/z0a9e+NTJwAaUENj7icyvEydONJklCXZ5/qzy+YUCK1JH3zmto65du+L11183zRMNGjTA+vXrTfO7yKfOCZ588skgNwNAXanzktRppe7/wZpoaOJmB1yZGYAndV751FGj4nOoOSV1fMSkbBKqU6eOZeJWGVQJHRA6qQPM5h2rDPB24AcOVVLHrhIXLlxo/G1lJlIFOyCzf9tdm603Ni9eeHg4OnbsaFoNi6BC6l577TUMHjzY8joAsG3bNoNs2JG6Pn36mJ6N7kmkTqTU0eQlI5f89+zgzP8WGxtr2omARag+dTJnfbY8K1asMEXVEulgVQA++S4LGgNESp3KAm3o0KGYM2cOAPsE6KqQmbrZcZJ9Fhlpo77nhGzSgoYUaQIttEMhdSLYWWXyK6XJt99+i6+//tr0HbVt0SKB/ubvL6t72Y4xQJ7yOn36dKVyOoUKqXOqtr700ks4cOBAkI/wxo0bhURKVanjwdetU1LHHqdJnUegl9i5c2fL7Xp48GkhRHu4qTh58qDGxWerpxcuC5TgkZCQgGPHjhmfnZpfvVrBA2JS17lzZ0f3onqJjY0NqfG7JXUiEgJ4o9TJzDlOVo28aWL58uW46aabLM8RtR2+XT/wwAN4++23be9fs2ZNI2WAnflVNPFHRkaaAiV42NUF/yys+VXWD52SOplS98033wiPAc69W/Z6V199tcl1gVLqsGSBCJ6VUsfWKxE9CoqxQrVq1XDVVVeZ7h0qZEqHrK+ydT979mxjuyc3keedOnXCqFGjgvYEpfpU3QVGBZMnTw56ppdeesmkTPLmV1kdqOwoweK6664LivKnds+O7yyJFfnU2eXLFH3u2bOnMJDHC4ien9xJ3Cp1ERERQWNibGxskIDBK/Mq72LixIm2x9jNaS1atABgVudDnXM1qft/sCtM+lslDw81BupUr7zyinA3AJV7s6DGK9pPU/S9VdJdKx+gK664wrJxeuVADYiTnLL+Yk6UutjYWFeNn57fDalr27atiYiw53jh7ycLlFAhr0TyReWwi1SzSxfgFLyfluxaIgUyIiICcXFxuPvuu3HXXXdJr+1GqbMrLws3PnXsO+Pbk8yJnwVNwiyps0pRQr+RHxpwrh1Y5XLs3r170HdekTo7X1L+/bDH9+vXz8j7p5pEnIXf78cLL7wQtODND6WOtjZkMWLECFPeQl6pk5FKlR0l7EACBGs5adiwIXr16gVA7FPnRqnLL/Tq1Uuo1P3999/4559/XJM6K4iUOupnKvcZO3asbXu3m6Nuv/12HD9+HOeff76wXG6gfer+H6yDL71YJ0odDULlypXDI488Ypkkk4cVqbv22mvx7rvvBt2PXaUHAgFlUscrdRs2bLAtm1crXNF2RLGxsYiLi0NKSooSSaNj3Cp1UVFRSE9Pd0Tq6tati+uuuw6vv/667Tlewak5d8uWLTh48KDwN5bUifYXdDOBWoHarp35VfSMI0aMwPXXXy91BXDqU8cqdTI4jX6V9ScVUme1cBGROvpbVIc0BrCqXKtWrfD0009LU++cOHFCqLR4RXimTJmCZs2aKSdQlbVzL3JEErzwqeMha1MioiAiddWrVzeiOL3wqbvsssuwaNEiNGvWDG+++SaAvLb2+uuvY8GCBUKfOlnd2/nUeQ0af/79918A5j5csWJFVKxY0bX51W1ZVO9jN7aoXIcnhnTNhx9+WJgo2Q5aqft/UOVHREQYkmh0dDSmT59uuXuAnWlHBaLORR3pxRdfxDPPPINjx45hz549Rnh57dq10aZNG2P7IrdKnR2mTJliDNChRs7KfOqc+DGQn4gb30Wre4g6J91r165dQYSOv1Yo718EpwNpjRo1jHbLg62rULOVq4BX6lTNr0DevrdWvp1uSJ1qeVmoBkqw57LqOX8eDdxWvmsi86tVOUSm1rCwMIwbN05qIouNjRVe6+qrr0ajRo1Cbh/x8fEYOHBg0PdkAlP1g5Vl8neD/PKpE8GK1NH9t23bhq1bt+Ktt97C2LFjPSF1QJ4CywsRdG2RT51sLBQpdZ999pnJh9hLUMAhlccq+lWUtYBNdO30vvzftJhQJXVvv/22ZTJuNwt/KkuLFi2M3X+cQCt1/w+W1L3wwgsYMmQI/H4/hgwZYnkeRQKFkoxRRJao8cbHx+PJJ580vn/uuefQt29fVKlSxbQfpVulzg4PPPAAHnjgAWzbtk0p/5sVvCB1NDC6JXWyrbFUferszvEKXqYN8NL3UAUypY4vhxs/RDfm1y5duiAyMlIaRRyK+ZV9JjYqkG8bjz/+ONauXStNiQOIlTorUkck3snALyMO5cqVw9atW3H69Gns379fuGdxKOjatStWr15t7MRhh3HjxmHcuHGe3LuwSB1vfqX7Uyooyv9IBNYLRYxfKNG9c3JylMcBUa7HHj16hFw2O1iVT2Z+DUXRFQkctOhSfRc9evQQ1o3T3ZZYyFIwqUIrdf8P1qcuIiLCMkksi//9739YsmQJrrnmGukxdhOjqHHJCE5kZKRwv0krUsc2DrdRmpdeeqmj/EAiyEgdPatKIyYThuoWNfyG3US+69ati6eeesrYm1V0bz7pJgs2qS0QmlLXqlWroFxQBYlZs2ZZrjadQqbU8XBDNu3y1PHflylTBhdccAEyMjKkkdosqSN/M1WljgW7sOOPueKKK7Bv3z7LdktKHRsgYlWOChUqIBAICHeekcFu4XTeeefh0ksvxZVXXumpWubz+ZQJndfIj0AJFViZX1l4pdQBwQsUGu9zc3OVxyg3areX8DL61QpspgBeqfPqmUMhdW4X41qp+3/YZZ2XISwszDa60A4i9cyJLf3xxx9Hly5dpL/LlIWChhdKHZFXFaUuMTExKBr5xIkT+PXXX3H55ZcbOe9+++03Ybm+/fZb7N69O+j7Zs2aYejQoZ4NML/88osn13GLu+66C/369RMqVo888ojj66n61LmBU6XOShnjr/nOO+/gpptuwuLFiy2VOtm92YnAzTPXqVMHK1euRGxsLL777jvs2bPH2KLNq7am2v/Xr1/vyf1kKF++PG6//fZ8vQchv/LU2R3HkzoZ8pPU+Xw+TJgwAX369MGaNWuUriGKIC8IWLky5UegBJvT06351Q6FodQVC1K3ceNGDB8+HGFhYahcuTLmzp3rSQoJEbzINwYAx44dw9GjR3HJJZfYrpB4UudU9ZFtKk7ITzOhE3ih1BHsSN2xY8cQERFhON8CQKNGjTB06FCT0ml178TERKHJmdIusNvVeO1TV9BwQl7soOpT5wZOU5o4SZQaGRmJChUqoE2bNhg/fjwAc7to3bo1rrjiCmGqFUBsenOCV199FYMGDYLf7zdS/VAamfx2EC9oHD9+vMDuFRYWhqZNm9qOk15AROpE+RZZeEnqRO3uiSeeAIAiT+qsIk9lPnWhQLQTEql3ZMFxi8I0vxYLUle9enUsXboUsbGxGDNmDBYvXmyEansFksa9InUVKlRQNhE6DV5wisJU51h4odQR7EgdKXTs/d5++220bNlSeG83Hah69erYv38/zj///CJP6r7//ntLv08v2whfp/lxbVWlToXU0TlRUVHw+/0mX1W2TdaqVQuvvvqqUjndkLDY2NigYJf8UDtLIzZt2hTS+W76N70zu7xuTvPUuYXqMxQWqatatSomTZokDLTJD/Nrjx49jL2oaYxq2rQpDhw4ELKrEUH71ElQpUoVYxKPiIiQNrKMjAwkJyeb/qmCpHkvFUDVa3m5H6sV3EYJeYWoqCjL9C1OOmydOnWUjmM7hpXTu+sOVEwm206dOqF58+YFci/VQAk3sOtTbkgdTWJWG3yLrm0Fr9qFlU+dRsHh9ttvVyI3ojyWdqTuhhtuwAsvvFBkFt988EF+WcV4+Hw+jB492rT9GiE/zK/169fHP//8Y9yb4BWhA9z121Kh1BH27t2LZcuWGXIyj8mTJ+Ppp592de3CJHX5rdQBwNq1a3HppZfm+32scM8996BVq1ZB3zshVl26dEGVKlWUFVW2U1mphG47kFUYfmmFLPlwQZhfBwwYgJ07dxq5ulTaCb07O1InQ0xMTFC79prsa1JXuGjQoAEyMzNt3+uAAQOwf/9+/P7773j00UcB2Ad11axZE6NGjfKsrDJQO586dSpuu+026XG8WbKgAyVEyA9SB+SPNQHQ5lcDhw8fFm4AvWTJEvj9ftx5552YNWuWlCyNHj0aDz/8sPE5OTnZ0d6kgP1+fk5AL8cqMhYoGKVOlsOsIFGvXj3Uq1cv6HsnSh27FZMK7JQ6urfbTs1fUxSZXNoQKlG2gl2gRNmyZfHGG29gz549+Oqrr5SuaUXqRJt080hNTbU8LxR4odRt377dMpJbQw0qY0R0dHSQ715RUeAIZcqUscxH2KhRIxw9ehTNmzfHf//9V6RIndeLGy8XnCKUelJXpUoV/Pzzz0Hf5+TkoHv37hg3bhwuuugi6flRUVGuCdL111+PZ599FkOHDnV1vgxHjhyxze9WUObXoor8JAEFZX4NBALIyMgoNubY/ASv1HkJ1Qlm4cKFyltfsT51PFhTlIzUiSYEr6NVQ7nexRdf7ElZNIoHLr/8ctxzzz0hXYPdxaEokTqvy5LfhLvUkzoZ5s+fj19++QUpKSmYMGEChg4dij59+nh6D7/fbzhN2mHRokX47bfflI5V8ekpCPNrUUabNm2wadOmfCEB7GRopdSFan4FvAuyKe6Q1engwYM9u7aduTsyMlL5fVgpdSypc7Kdmja/ahQWNm7cKPzeqYuI1znbQoHT7buKCtyQxlJB6vr27Yu+ffsWdjEMdO/eXbgptluUdqVu6tSpGDFiRL6smgpSqdPIAyl17Pv0qn7yY1C3CpRgiZwOlNAoCVAdZ/MjjYhbhOKjpnLdomQiDzXivfDflkapJ3URERGmRJBeQlWp8+L6XmPfvn3F0pzboEEDADAiy3jMmjULBw8edHVtel9e7mGrqtQVJqkrju1Ao2jB6cKqKJE6iogtLqQulEVsqVDqSjpY8+uuXbsKsSQlD6pKndtOmJ+T7fnnn59v185PtG3bFgDw+++/C3+/6667XF87JiYG33zzjafbmuUHqfNqkvBKqYuKilL2MdTwHjfffLMpWXlhojgqdW+++SZuueUWaeJvt8hvUheK+VVvE1aMQUpd8+bNUbdu3UIuTfEDvxUYC9Xo1/wkdUuWLMHJkyddXb84omzZspg2bRquuuqqfLm+1ZZ4bmAVKMFGwxeGid0rUvf7779j586dXhRJwwUWL15c2EVwjKJE6hISEoSZMUIF5b/Nr3lX+9SVUtht+Kwhx4IFC9C0aVPp76rmVydO8KLr33LLLdJjQt0buDhi+PDhhV0EZVgpdW3atMG4cePwzDPPKJG66OhopKene1Y2r0idLJ2QRumBW/NrSfbnrFy5MtasWYMrr7yysItiQJO6EgBSCELZcLq0wm71xnYMq31nQ1HqMjMzi8RqVsMdrEidz+dDnz59lEldVFSUp6SOUJInVo2ChVPza0n35+S3jixsaFJXAkDRgprUeQ9V8yu/NY4TFNQ2Ohr5A6voV8CZid7roCcd/arhFcjXlf63g1vrhUZoKBV7v5Z00EvUpM572Jlf6Ts9gJVeWPnUAfa7WLC4++67vSsYNKnT8A4XXXQRAoGAEZ1uB52myT0KM/pVk7oigqpVq+KZZ54p7GKUOOR3oIRG8Qc5S8sUVydtZPLkyZ76xub3NkYazvDMM894HqhTVKEXuu4xYcIE9OzZExdccIHjc3X0awmB27xdGtZQJXV6ACu9mDNnDhYvXixdGTshdT6fz1P/yltvvRUrVqzQJv4igieffLKwi1Bg0GOie9SuXRsLFixwdW6oCzit1GmUaKiaX7VSV3pRrVo13HfffdLfC1PNve+++5Cdna0DcTQKHDVq1CjsIpRKEKlzO97okUKjRKMgAiVKCmrXru3p9nclBYVJ/H0+n/an0ygUrFixAtu3by/sYpQ6aFKnoWEB1R0lypUrV2BlKqqQbetV2hHqIKuhURxRrVo1VKtWrbCLUeoQ6nijza8aJRqqyYf14KUhA/mzFddt2zQ0NIoPSIjQSp2GhgCs06nIAZWIXtWqVQusTBrFC2XLlsV3332Xb9ueaWhoaBC0+VVDIwRQ9n+t1GlYoXPnzoVdBA0NjVIAInVuo481qdMo8ShXrpzU2Zykbqv9YzU0NDQ0NAoCWqnT0LDB8ePHkZ2dLfztqquuwo8//og2bdoUcKk0NDQ0NDTM0KROQ8MGYWFh0n09AfW9EDU0NDQ0NPITlB8wPj7e1fm+QAmO009OTkZCQgKSkpJcV5CGhoaGhoaGRkEgJycHq1atQseOHV2dr0mdhoaGhoaGhkYJgM5Tp6GhoaGhoaFRAqBJnYaGhoaGhoZGCYAmdRoaGhoaGhoaJQCa1GloaGhoaGholABoUqehoaGhoaGhUQJQoqNfA4EAUlJSEBcXJ9z3U0NDQ0NDQ0OjpKBEkzoNDQ0NDQ0NjdICbX7V0NDQ0NDQ0CgB0KROQ0NDQ0NDQ6MEQJM6DQ0NDQ0NDY0SAE3qNDQ0NDQ0NDT+r70zD4+i2Nr4O5mZrCRhC4vIIqKCCwIXFQQUFRW8biCLyod49YJXBcQFEOEC4u51ARVFroq7wEVRVGRxARUQBBGRRRAFFRAMIQshZJ3vjzynqa6pqq6eJZNJ6vc8PJqZ6e7qru3tc06dqgEYUWcwGAwGg8FQAzCizmAwGAwGg6EGYESdwWAwGAwGQw3AiDqDwWAwGAyGGoARdQaDwWAwGAw1ACPqDAaDwWAwGGoARtQZDAaDwWAw1ABqtKgLBALIz8+H2d7WYDAYDAZDTadGi7qCggJkZmaioKAg1kUxGAwGg8FgiCo1WtQZDAaDwWAw1BaMqDMYDAaDwWCoARhRZzAYDAaDwVADMKLOYDAYDAaDoQYQd6LunXfeQVZWVqyLYTCETCAQwBdffGFWZRsMBoMhosSVqKuoqMD8+fPRvHnzWBfFYAiZJUuW4MILL8SCBQtiXRSDwZE5c+YgLy8v1sUwGAwaxJWoe/vtt9G/f38kJIiLXVxcjPz8fNs/g6G6ceDAAdt/DYbqSm5uLq677jqMGDEi1kUxGAwaxI2oKy8vx7x58zBo0CDpbx555BFkZmZa/4xFz1AdMW5XQ7xQXl4OAMjJyYlxSQyG2sMff/wBj8eDH374wfWxcSPq3nzzTQwcOFBqpQOA8ePHIy8vz/r3+++/V2EJDQaDwWAwGMJj/fr1AIBFixa5PjZuRN2WLVvw+uuvo3fv3tixYwfuvPPOoN8kJSUhIyPD9s9gqK54PJ5YF8FgUGKsygZD1UNzQ0VFhetjfZEuTLR47LHHrP/v3Lkznn766RiWxmAIHTNRGuKFUCYVg8EQO+LGUseybt26WBfBYAgZEnXGUmeo7lBMncFgqDoozCwUA0BcijqDIZ4xos4QL5ClzliXDYaqg+YGI+oMhjjCiDpDdcdY6gyGqseIOoMhjjBWD0O8QKLOvIAYDFVHOAsljKgzGAwGgxBjqTPEI3/99VesixAWxlJnMMQRJqbOEC+YmDpDvPH555+jUaNGcb2g0oi6GsKVV16JadOmxboYhihjRF3s+OmnnzB58uRYFyNuMJY6Q7yxadMmAMD27dtjXJLQMaKuhvDhhx8KkyobaiZG1FU9/fv3x9SpU2NdjLjBiDpDvBFOOpDqghF1BkMcEc+DTbxTEwb8qsQslDDEG+EsMqgumDx1BoPBoAEN+LXBAhUIBHDw4MGwzmFi6gzxRjhWruqCsdQZ4pI///wTv/zyS6yLUeWYmLrYQW/AtUHUzZo1Cw0bNkR2dnbI59B5TvE8eRpqHjVpXDWizhBXNGvWDCeeeGKsi1HlUEc1k2HVQwN+WVlZjEsSfVauXAkAyMnJCfkcTqJu1apVSEhIwE8//RTyNQyGSFLdLXU6Y4+x1BnikniOeQgH6qi1wVpU3agq92vLli1xxRVXRPUaTkQitsjpOa1evRrAsRWHBkOsqc4xdb///jvS09Oxa9curd8bUWcwxAE0URpRV/VUlaXut99+w0cffRTVazgRiUUhNDHKXFperxdA7bB8GuSsXLkS6enpOHLkSKyLUq0tdfv378fRo0exb98+5e/CiWU1os5gqGJIzFXHN8maTm2KqYukpU42ufh8PtvvagLfffcdPB5P2ItMahOvvfYaDh8+jK1bt8a6KNVa1NHLT0lJifJ3VHazTZjBEAfQBPif//wHp5xySoxLEx+UlpbizTffDHugrk0xdZGw1DmJtZpoqZs7dy4AYPPmzTEtR05ODkaMGCEUAKtWrcLrr78eg1KJadGiBQBg9+7dMS5J9RZ11J+cRJ2x1BkMcQR17F9//TWus55XJTNnzsSQIUOwYsWKsM5TGy11kXC/yiBRVxueZ1Xz9NNPY8aMGcI2361bNwwdOjQGpRJTr149AMDOnTtjXJLqLercWuqMqDPEJdWx80UTMwG65/DhwwCAvLw84Xf79+/XOk9tstRVxUIJcr9Wp+d56NAhfPnll7EuRtgkJSUBAI4ePRrjkjhTXFwMANUiRZVbUffSSy8hPz8/mkWyoH4ybtw4NGjQQPo76rMHDx7E2rVrXV3DiDpDzHF6a6lpVKcJMF7w+/0AKt2wPN26dUOTJk20zlObkg9Hwiqp636tTs/zrbfewpVXXhny8dXF0pOcnAzgmGCqzlAZi4qKYlwSd/X322+/YdiwYRg7dmy0iwXgWD/ZvHmzMtUQlf21117DOeec4+oaRtQZYg6tmJoxYwZeeeWVGJcm+lSnCbC6kJubq1wRRqJO9ALwww8/aF+nNlrqwrlXXUtddWrTR44ciQsh5EQ8WeqojNWhX7mJJaWXxMLCQtfXWbp0qet2r/t8wrGuG1FniDn0djdixAjcfPPNWsdMnz4dAwcOjGaxokZ1mgCrCyeffDKOO+446feJiYkAxJY6N9SmmDq613AmWt3JpTpM5kRpaWmNqF+y1MWDqCMRXR3agRtLnVPKHhkbNmzApZdeihkzZrg6Trdd8mX3eDzaz9bnqkQGQxQIxWQ/evToyBekiqgJE06k+euvv5Tfk6gLx1VfVlZWKy110XS/Vseci+GKuurifiVLXTxYHcMRdTt37kT9+vWtxRbh4qb+Qt2ykWLw9u7d6+q4cCx1xcXFlmVchbHUGWwUFhZW+QBdHeIwqpJoP99Dhw7hmmuuQUFBQVSvU5Wo3K86ZGdnw+/3WysJdepg7dq1EU3RkJ+fj379+iE3Nzdi51QRCUudrqirDiK5oKAAeXl5KC0trVE5IOPJUldaWoonn3zSWtikQ5s2bXDWWWdFvExuRB31FV1CFf66/UR0Xt1rxY2oW79+PXr06IHzzz8fAwcODNsNYxBTp04d3HHHHa6OmTVrFq677jrX16KOUR2ykFcl0RZ1mzdvxnvvvVct0gtEChp0Q+33Bw4csP2tM7iec845Ed2b+P3338eCBQvw9ttvR+ycKqoips5J1Hk8HkybNi3k67uhWbNmqFu3rtVGQhV21WVDeHqm8SDqqIxr167FPffcg6lTp7o6PpJjlZt0IKG6X2k8ctvGdMd+0Xl1rxU3oq5Zs2ZYsmQJVqxYgTZt2uD999+PdZEixgcffIAbb7wx1sWwWLBggavf33LLLZgzZ47r65BLrbZZ6qJt1aABNtLisbS0FIcOHZJ+P2HCBHg8HjRr1sz6bN++fRGxdukm7ZTBv4nrPptIPsOqDnyPhKhzmkjo3CIXIbuC76+//kKnTp2CxPXKlSsdJ9+9e/c6bqsEwLJMk6iLhUv47rvvlsZZ7dixAx9//LH2uejZxsP4SPVP/ZNfeLB48WKMGjWqSsriJnEv/datpS5UUReO+1W3PcdNTB2bssDv9wt9y8XFxbbBpapyz4TKBx98gNTUVFx99dWxLooNtw08VPx+P4qLi+Ni0Iok0Z5sorUS7aabblLu6vDwww8DsMeZ0OKHcOOTdJN2yuDfxGPhLuRTVOTl5SE5OdkSe5Emkpa6Tz75BBMmTMBDDz0k/F4k6lgryK5du7Bhwwb88ssvaNSoEQDg888/x0UXXYT58+fjmmuukZaBXhJ021C4ljoilDb71FNPAQBuv/32oO/OOOMMFBcXa5+X6s2NK7OqqaiosNLaAMeeGT/GXXXVVSgpKcGTTz5phVJEs0xsWXR+69ZSF6r7NdSFEm6OjRtLHfHbb7/h008/xeWXXx703SOPPILMzEzrX/PmzWNQQn2uvvpqXHLJJbEuhkWoDTxUqHOHI+oWL16M33//3dUxP/30U0xjbvjOGemA7GhZ6hYuXBjR87lBxxXVt29fqcWYr+9wns3VV18d0kIdfjVj3bp1heMYlS9SK31Foi4QCODRRx9V5sqichDPPfdc0PcqsU3feTwe6zxsX6dr79q1S1kGt8gsdX/++adWqEe0xj+3Cx7oPpYtW4YdO3ZEo0hhw9c73SPf30499VQAwJYtW6JeJjeLd0JdKKFjqcvJyUGfPn1sMbRVYamLK1GXn5+PIUOGYPbs2UK1P378eOTl5Vn/3E72tR0aRKrKUkcdKZzJq0+fPujevbv27/ft24e2bdtab9RVyfz583HgwIGgzhlpgRktURfLWCMaDKdPny6dHL/88kvpfp38YBqq9erAgQP44IMPMH36dNfHilJUfPrpp8LfTp48GX379g2pjITKUrd9+3aMHz8eEydODPruhx9+wLXXXotAIGBrQ6L2pLLUsdelNs6KukisaBYhE3VNmzatVi/RTtDz27JlC4YMGRLj0ojhx24Szfyzb9u2LQDg+++/j3qZqK25EXWhLpRQjd1z5szB4sWL8cEHH1ifhbNQosaJuvLycgwePBiTJk3CySefLPxNUlISMjIybP8M+tDgWlWijhpuuKJmz5492r8ll/ymTZvCumYoDBgwAAMGDKgyURdpF6NM1F111VXWJujhIrNa0jM7fPiwdCPzw4cPS++Zn3xCFbxbt24FABx//PEhHQ/oxdT9/vvvrtMl8KgsddQPWNcZcfvtt2Pu3LlBq0hF7VQVUyey1LH3LhN1paWlyMjIwBdffKG4Ozkq9+vKlSu1zxPrFbRsvVXXxWSyF/I9e/bgf//7n/U3GWGcUhfpUFhYqDwP1ZvO+BdqTJ3OYgzqW3SNo0ePBrV1UT66J554onZY6ubNm4dVq1bhgQceQM+ePSM2iRiOEa6ocysiVG9U3377LS688MKID6yxyj1F1z148GDQ/UbaolbVlrqFCxeGtPpZREJCgtLNB1S6LVevXh00sJeUlEjvmZ98QhW8buJ1eETCRkZxcXHY9aey1FEge1pamvS4SFrqRO5XmagrKChAQUEBnnjiCdFtORKphRKxzr1XVlaGRo0aYeTIkdL2FutcejIr65IlS2zJ4el3kUizdPbZZ1txmSLcWOroN27nPDpONT/xLtqUlJSgxSKi45955pnaYam77rrrcPDgQSxfvhzLly/HoEGDYl2kGofM/VpSUoINGzY4Hu82Nk5lqRs3bhy++OILrTiUUAa2qnYlss+Wn2SjJeqitRgglBxKP//8s1WX7G/XrFmDP/74w/bbRx55BECli/Crr74CYL8Xv9+Pc889F7169Qq6TrQtdW6sAID9XunY4uJiR5fj0aNHoyrqKPi+Tp060uPLy8tDFnXff/+9VXcej8dmrSBonOGfBZWbF7//+te/pGVlcRJ1uuNFVVvqdu7caVspXlZWBp/PB6/XK70X9vMVK1ZUuRB1Cp3hLbkffvghfvvtt7Cu6RSXF4qo050PsrOzUVJSYl3DjahTXZ8/TmUVdyJuRJ0hunzzzTdWx+NF3ZgxY9CpUydHF4COBWLBggVIT09HIBCQrpQCjpmudeJt3Ii6aL/ZLl++HIsWLQr6nO6DdUURzz33HL7++musW7cuIuWLtqUulMnupJNOwq233oo//vgDaWlpVnB8ly5drCBq/jp9+vTBeeedF2S1ome5ffv2oOtE21KnarMiRKLo6NGjlqWMrFU8kbDUicpAkKhTWep4UVdRUYFAIIB58+ahrKwM+/btw7///W+rvCwdO3a0YgJlCyVkaWpkFs0XX3xRq+2RNUj224SEBKxfv156fCR24giFNm3aoFWrVgAqjRiLFy+Gz+eTTvKAPe6uZ8+eeOaZZ6qquACcx2dq59Q+NmzYgPbt20e1TG4WSri11GVlZeHGG2+0jlON1zpbEvL9C6hsf7XCUmeIHitWrEDXrl2tpKh8A6c3I9lESOlldETdc889h8OHD+PgwYNKSx2dM1pb5ETLUnfBBRfg73//e9DnrGub75z33nsvevTogbPOOgvz5s0LuwzRFnWhCqI1a9Zg//79KCoqssVB8i4Zuk7dunUBAJ999hnKysq0hL5spSefe1FmdXJ6Zm6sAIBdTLLWKprsZOkdVJa6pUuXWvF2M2bMwIABA5RlpWdSUVFhvZjl5eUBOLZ4g4UVNWzfDAQCWLNmDQYNGoTp06fbXElOVnqRqJOtnBVZ9QidJLV0b6o6Wr16tfS7WIk6ljlz5uCbb77RttTRPfNW72jjVtQBx8qqori4GLNnzw7pJdeNNd2tpQ6ozLig437lY+pU1wfs3pxaEVNniB6UEJQGTL6BOzV4N6lJKMB89+7dygmSOoRI1PFWl1Asdfv378drr72mfVy4qCx1LNu2bQv7WlQP0Voo8ccff6BHjx7Izc11PfGpYrD465DV4sCBAygrK0Pjxo0dj+XLs3fvXjRt2hTPPvus7XPRs2nUqJG1Sk+GzoTBDsgyUUeWMpmoKy4ulgrUSy+91LKCjRgxAvPnz9cq6/33329Z5mhiFU0eMksdlR2odEOxqFKjyNyvbi11ALBx40bpdQgdUcdfk0+WC8RuoQT7AuIk6qhuYxVb5+R+pXbu9uV85syZuOmmm6xt/dwQTfcrUNln3bpfddznrKgzlroo8tdff9Wo7ZZE8DEsMlO0bOAgAaZjqaPcgbt27bIGJLeiLhLJij/55BPceOONVTZwqyx1LKLJxS3RttS9+eab+Prrr7Fo0SJX6SjYwHtVW+EtguSKTExMhN/vV16Tv+f77rsP+/fvd/wdUClMfv75Z6ussnuQHS86NzvpsYLWyf0qs9TR4hCdPkDH03P85JNPrHNT7izRNVSijnUpsQngnUSdG0udSvjrJOIlUffYY49JVymy9fLDDz+gTp06+PLLL4XlqGr69etn/T+JOif3a6xg607Ulqmd83XsNFdQOwsl/i5aCyXoWft8PtfuV9n9isaKn3/+GTfddJPytyqMqHPgpJNOQps2bVwdU1paiqeffjooT9Orr75apW9/OTk56N27t+MG4tT4aBAVpTkA5I2KBnfZRJOdnW2lUKhXrx6ASksd6xbicSvqdLde4q9F7qjRo0dHdfEE+xam6pyRSF0Qqqjr2rUrHnjgAen3vFs0Ozvb1Rt4IBCwLRZwug7dB1mtvF4vEhMTrWOPHj0aVO/8JCerU6fJUPbsdCYMUfwfe2w4MXW//vorAKBFixaq4tuuR/dKiyLy8/Mt4SN6DipRR/2SF3UHDx5UlkUVU8e3BZXwV9UblZvubcaMGfjll1+Ex7H1QtZxirMLJ3Y00vj9fuWYodvHi4uLo7K1JiuORfGZIvcrEGzp5aF5gt9WTgddUdekSRNrsZXO2E/tMTEx0bX7VTY37t69G/369UNJSYnjC7IRdRFCx//P8/bbb+Ouu+6y5en53//+h3/84x9Vmopl7ty5WLJkiS35oQgSdTJLndMgRy4kOv7ZZ5+1VjBWVFQgKyvLijOjc+zbty9k96uog3Ts2NE6l6rO+HugQSeUZLI6HDp0CJdffrllLfJ4PMqJiY013Ldvn9DK5ESoq1+/+eYbTJo0Sfo9tYOUlBSrrNG01FHdk6jz+XxITEy0XZPPWcm3Jdlg7TRAyp6djvvVyVLHi7qffvoJa9assZ1DZqkjkaKzWw5vqaNJNz8/33rJchJ1fH+RibqCggJpWxC5X9977z388MMPANxZ6srKyjBu3Di8+uqrQd9RfCA7PtDz592E7N/00stbXSK5UOWVV16x/j5w4ID2y5uT+7Vx48YYO3as9fdTTz0ljBecMmUK+vbta70URAq27tyIOqf7p3YZyvinu1CCPbeOpY7abijuV5moW7duHRYsWIADBw44urKNqIshNDiwe8/S/1dlEkndxIr8JOp2IqTBfc2aNTjrrLMwatQo3HfffSgpKcGbb74J4NhkJHpjd7tQQlQOetseNWqUZUnSuYdIuDtVvPfee/j4449ti1BUnXPOnDlWrN9xxx1n2/NYF11LXV5entCdNWPGDKHo4i1ooVjq3MTU8ZY6n8+HpKQk20TC7xrDixRZ23cSvLLvddyvTjF1ZWVltoUSbdu2RZcuXWznkFnqaMLmJ1DRhMALUFbUqeIu2Zc4lfuVjweUuWBF7tdrrrkGU6ZMASAXdaKJsKysDI8//jj+8Y9/BH0n2kP3559/xk8//RT0fOiab7zxBm655RYAlfd78OBBa8yKlKibN28ebr75Zuvvxo0ba+9s4STqAGD27Nm2v0W7Nuzbtw9A9HbvACIn6ubMmWPVbygJuJ1evN544w3XceOAXdTpuF/ZfiS7X/q8rKzMiLrqjGg7IDf7qn777bcRCXzV3QKFzyUk+73srYQE2OTJk7Fu3Trr89tuuw1Dhw4FALRr1852DlHANIvKUqd6O3r++eel34muFe3NsmmiIVHvJOoAYNWqVWFdU9dSV7duXaHFZ8SIEcKUD9R2aSCqSksdWYZY96uISFjq0tLSpLsZ6Ljk2HPfdttt1j6xrMvGaaGEyFJXUlKCl156CUCwiBO9nPCWOtb9qrOYRuR+Za0grKUOqIx/+vHHH6XnovvicbP6VVVe0bO84oor0LZtW6mljt2mraKiAgMGDLCsWZFyv4rEqe7OFk4xdQBQv35929+qMTPSLmW27kQ5Dz/99FNs3rw5qEyql2l2DCdR17VrV/znP//RKpOT+1V0Hp15meqRFXWi59mvXz/bHF5eXi611NFYWlpaatyv0eTaa68V7slYVlaGOXPmOAoukaijYyZOnIj09HTl8WeffbZ0Y3I3yCx1/fv3xymnnILdu3fjiSeesE2eot8TTpY6fsBlxQnrtgGCLXX8M1WJOp3GLRv8ZZY63Xi6nJwcfPPNN1q/BY61BVbUOYktWuUpY/PmzVi8eLH0ezcxdbJ4S9FbIy/qcnJyohJTR4hi6pKSkpTH0rP9/vvvMWfOnJAsdUeOHMHLL78s/M6tqFu6dKnl2mcnVqeFDiJL3d69e4PEGPUT1epNt5Y69j74MrCLm3hRd8kll+CMM84IOg9rqVu8eDGmTp1q+15mqRO1X52YOhEySx2bTqeiosK2ujZSljr+Obk91ulFkOLPCOof7Ep6lVAOlSlTpuD++++3/haJuhdeeAGTJ09GSUkJHnzwQetlUWWpY/ssWRi/+eYbjB07VsvYIRN1P/74o3TsjpT7taysDAsWLMDIkSNtwk/W39l+aCx1EWDmzJm4/vrrgz6fO3eucAPlmTNn4rrrrsNXX30VtIUOi8pSt2/fPi3rECVnDQeZqHv33Xexfft2jB49GmPGjLE6DjWwXbt22VwpTnmbZKKOfXPm92PkLXWy2J3CwsKgxq4zscom/nBF3dChQ9G1a1ftDkaB8CTqPB6P44TeoEED5fenn346+vTpI/3eSdS1b9/eMc5SNXlS+cvLy5Vvl6LUMzqWOn7hzssvv4zt27dbljrVsYWFhZg2bRo6duyI6667LuSYOpnb262oI9h7r6iokK78JI4ePRpUB5SDLDU11fqO2pdoklTF1Om4X0X9kupEJOp0Ylnz8vIwefJk23cyUSciUqKO/uZFHTvulZeXIzs7O2yviZOoe/jhh6W7JOi4X+vXr2+rp5KSEnz88cdo164dvv76awDHjAqisaeoqAj5+fkoLCy0rQD+z3/+ozRA3H///Vi7dq31t8j9ClSG3hQXFyMlJcXyDKhEHbtQj+YmQkeUykTdGWecga5duwqPiZT7lV1sqCPqWPersdSFSSAQwK233op33nkHANC3b1/ccMMNViWJOiKt8CoqKsL48eNtvwkEAvB4PHj55ZeDFh7Q927LFy5OLl+KPaO3UxI4Bw4cwJlnnhn0+507d1qxce+++y48Ho+yc7Ir+9jJAAheBccO1h6Px8rVdM0116Bly5bC++Jhn1k4oq5Tp07o0aOH8HgSZ/QcnKDJg4S8jqgL10Lg5H7dtGkT7rnnHuU5VJM96zKQPeeKioqglZ2hxtTl5OTg888/t0Sd6vktWbIEd955Z9C5eJyspbxLi70HJ0T1d+TIEavdbt++3UrcKxrIqT/w56GEza1atQoSdSpLHZ2HXrLciDpeDFHdi0QdIdqkXNWm3Wzhxpb38ccft73chGKpY1+w+XHl8OHDyMrKwpNPPik9rw4yFzsxYcIEYcJyQF/Usc+luLgYP/30EwCgR48e+PDDD617E/Wds846C5mZmZg7dy4uuugi67eTJk2SGiBE/Ve25dyvv/6K4uJiJCUlWcJvxIgR0n7MGiFIbBJsHTm9sLlZKObWUidzv9Jv2DrTcb8aS10EYDcDr6iowPvvv4833ngjyK3Bwlq+SAwGAgFkZ2dbD3zmzJlCa0QsRZ2scVNaBAqsZd9aRZnJL7roIpx44okAYK3spcSwItjBjAYBkaVOFJDNugX5tzWd5f06eYEAsajbsGGD9Ya7f/9+2wbzlJxWFjvEQ/fNul+dFsuEu4uGjvtVFitF6Ig61R6mIuHNul/dxNQR5H6NRJ5CpwFS577cpJnIyckRPhOR+5t/ASL27NmDtLQ02yROfYwXdQ888IC1jRqfOigvL88mznjo+e/cuRNPPPGE7Tu6jmihBCFKK6N63rKUJkRWVhYmTZqEZs2a2c49btw4WxiCamLWcb/yYy7VzZIlS6TnVfHggw9i586dSkudalcdQC+mrk6dOrZnxvfLJUuWKPvd5s2bAVSu1GfFhex5bty4UbjCVmapy83NRWlpKZKSkiwv1h9//CENZeLnXnb81xE2bnd9AY61+TVr1gj3Od+9e7cVB6lyv1Jb9vl8tt/Ixnzjfo0g7GDKug2o0Ys6Ij1Uj8eD1NRUAMBHH32ErKwsywzNChSR+1WXcEXd+vXrrRw/TiJh69atAIK3ayJEb0TUgQsKCqSNkbXU0CCjY6lzQvYs2XJEyv16yy23YOTIkdazIdcovQk7QffNijqVKElNTdUWdbI2ohJ1sngl/poLFy7EDTfcYPuMF3Wq3EpOLkgdNwpfJh1LHY/M0uDU3mTXkK1sZZGJOtHnIlEnq789e/agWbNm8Pv9QZa67t27Wy8fgUAAkyZNsiZePsm3rqVOFAIis9Sx/YdvE19//bXNesojWyhBlJeXIyUlBT6fL+oxdSxUN7K2WlZWhtdff13YDw8fPox///vfuPXWW5WizmkVpU5MXVlZWZCljn2m7LZTqr5DfYWeFYkrSh/zyiuvYPTo0ejQoQMuuOCCoONloo5ISkqyCUWfzye8b15MsgYG0XO46aabrB1WgPBEXZcuXdCpU6eg71u1aoXx48cDULtfRZY6HferzkKJPn36aIVu1VpRxwo5No5CJepYSx01YAq83LRpk/UbkXDhK98ppilUUbdmzRq8/PLL6Ny5s7XKRxW3Axwb2N1MlmRqz83NlQ60KvcrL3gjLepCtdTxz52eHf2XXynsBP2OJggnS11aWpr2uWX1pXK/ynbx4K/53//+F2+88YbtM5GlTlc8A/ruV1H4AnBM1LlZscymFXIqH4vs2bLtg9pbTk6OzVLmxlIngrVqs9c7fPgwMjIy4PP5rGuzfWzkyJHC6/N1/ueff1qhJPRdYWEhrr32Whw6dMiqZ9G4wYpBdoyk3IWy42QvjOz9EiIrstfrdRR1KmQxdWxb4stBfVbWVl944QUMHTpUuJUVpdpp0KCB0oJI55aN936/39H9yrvqeVHHWvpUYzwlBOYtdf/4xz9QVFSEm2++WZnPU0fUsbAWLxbeUsf2Yf45BAIBzJ4925ZY2UnUieYGHfcrW24n9ysrxMvKyiKyUAKA5UFSEfqynDiHfUNmRR1rPuURiTr6PeuW0LHUXX311cryhSrq+HxXgLOoc4J/A87Ly7NE3fr16/Hnn38GHXPcccdpu19Fq+xUyH4bCVHH1xPdA5WfX/DhBB1HndfJUudG1BUUFFgWYxZ2IQOPrPyya1KsKBAZ96uOpY4SNPPl9/l8KCkpwdKlS6XH8siC9yNpqWvQoAFat25tbSfoxlIngh83aJIrKSlBYmKiTdyIdqTgJwde1LGJe+m7jz76CHPnzkWXLl2sehZZEam/FBUV2XKIpaSk2Cy4btARdT6fTyrqtm/fHpSEmkfHUse/LDiJOtrCSnS/JOqOO+445VjBvzTy6MTUlZaWOlrqVP3O7/ejtLTUSuXCW+oAWKl0VNCcwCcIJ/i2ysaZsvACS/XCJGoPTmFHTjssOcGKUdnLMet+LS0tlY53bhZK0O+ccG2pKyoqsgJ2WcgvHy/IRJ3KUkdCi3W/0u9pQIiU+zWSyAalUJe3//HHH5aolblV/H6/TdSp3K+RstQ1bNjQ+v9Q3a87duywfc/vlqHar5Zl3759+PDDD4PKEQgElM89LS3Ntjenim3btuHWW2/Fd999Z/ucLev+/fttz1bXUkewVkVe1P3yyy/SN0fZ82FTmqheXETl8Xq9jtsL8UTaUidzv7ILZ0TnPnjwoOsXAf5cIlHHTrz8nrl8OUXXp9+y+1ry222xUN1/+OGHmDlzpvW5k6VOxf79+20xWqKJmyx1ImvGKaecAkA9xspEHXstmaiT9VcShKK+SqKucePG0ra2cuXKoHRSPCTqAKBbt27W/r0s/AsQHxbBegfYdj1gwAD897//tRYFURsWxdTRwh4VNCfIVu+feuqptr8LCgq0RB1bL3zbErU1Ouf777+P9u3bB31/6NChoM/cGFFYkc33NZH7VUfUHT161MpnqSLiom7+/Pk4+eSTcdlll6F9+/a2rW1EKUCqM+yAxVYyNXqVpa68vNxqwCQKnERdJBY+AMC5554b5BZzIlxLHc9nn32Gp556Svhd586dMWTIEJSVlUXNUqczObLn/+qrr6zJ3clCRUmSCboHPgbJqby33HILrrzyyqAs+06uw9TUVMycOTMo9xQLtc33338fM2fOtCXTZEVjaWkpmjRpgokTJ1rf04CtK+qWLFliDfa8qAMgXRmoY6mT1aPH47EJBsLn80VM1Dm5OkSibuPGjbYJXHaOhQsX2v7OzMwM2VLHDuIiUceWgeqHL5cqxlIl6uhely1bZiUVl4UOsBbjUHYtOPfcc63/Z8tJbYZEnWzMqqiocCXq6D7YcZl3EdMcIbsmubCzs7Px119/2RZUkKhT5aXs3r27tW2kylJHImfVqlXW9ossIvcr25+9Xq9Q1H333Xf48ccfrbFGZanTgSx1MlHHW1Nloo5/FuyYyfdL2epxYtOmTVLLNYub+XnTpk1WnJ9M1LHWUVWWALqft956SyujQsRF3YMPPojvvvsOGzduxCuvvIKbbrrJ2v4oUqKlqsjNzUVGRgb8fr9tM2r6fydRR4MYraKlAWHr1q1WvJzTVlgq6Hnu3bvXNjGtXr0aw4YNc3WucC11vPv1jjvukG7g3a1bN5x88skoKysTphihhs5Ojm4tdTqTI3tv5513nvXSIVv1KQuy5i11MlEkg092SXUpij/xeDw2i4cMcmOQxZwVjqWlpdZzp70N2d0h3FrqrrnmGmvFMz0jlfuYUkyIns/vv/9uTRyybbCAygFRlHLF5/O53gtS5n51Etci8dKhQwfccccd1t8yUTdu3Djb340aNXKMqWPbH1sXmzdvtsrqJOoIvi+xoSGy39J3Xq/XFgeamZmJXr16WW2OXw1LhGOp42HL+dJLL6G0tNQSdTJRWVhY6CptCj0TdoziXwDoZV/W3km4ZWdno2/fvujdu7f1HfVJpxdWmsh1LHUAhHnWnNyvXq/X5jYnysrKcPToUWss4sc4N3FmwDFhz4u6Dz74QLhDDS/qZHF/rPtVJerKysrw22+/BYlz8r6oFqxUVFRot9tt27bhwQcftK7JwrpfdUQdtedFixZpXTvioq60tBRZWVkAKi0yX375JV588UVMnTpVO3lrdSE3Nxd169ZFenq6rdHQilG+AbDpGMrKyqyOQJMMO7HSbhBsBYSa0qRZs2bo0KGD7Ts3Vi2gsuGL3F2RSA3BU6dOHXi93qAYAd5SR3/Xq1cvYqtfWfhOtHXrVixZssS1qKPJTOV+FdUt5dbjg6hp4sjIyAg6hlJ2OEFlopgmarNsOYFjq8bYHSrcxtSJ0MlNKKujSZMmWeV0+6ITSqC8TLyJXDAs7D22atVK+BZdUlKCwYMHO5ahfv36jqKOnbjZOjz77LNx3XXXWddLTEy0rX7VEXX0DETjxocffoi//vrLOs/w4cOxbNkyAJVjJCWfdWqXkRR17HMaPnw4AFiiTjZmyaw+xLRp02x/i9oF70alv2XXpDH/r7/+CgpJYlcJq8Zr+p1TShNCtvhJtVCCdb/ef//9tjiuo0ePBs11oYo6gs/xePrpp9tWlK5fvx7JyclBdUb3xhsb2Lrixx523MrLy0PLli3x+uuv235DixhV+QIDgYByMY8MmVWcXZzCizpK6wIca1u6cX46iylc1VqjRo3www8/WH83aNAAy5Ytw9atW22fxwN5eXmoW7cuUlNTbW/zJNJ403N5eblN1FFHoAmVzXvHHkOEk9KErBui8+pQUlKC5ORk25YugHpFWqjUqVPHmnzZhlxWVhaUj87j8VgxJ073xD4PN5Y6Om7Hjh3o3bu3lbuLP5dsAJNZ6qg+A4EAEhISgiYN/voEPfOmTZsGXYs2rHeCF3Ws9Uok6ho1amR95tb9yiJyv8rK5lRHKkud7HOv1ytMN6BCZo2WbT5PsBP57t27hdv2lZaWWp4KFSTqVM+EHW/4uiDXp46lbsmSJVKrlGgMKigoQN++fYVigRV1ogUZLJEQdexemTy8qONfwvLz85XPl49FEyVr5oU+zQtFRUXCFzeaiLOzs4MEA/VzXVEngxd1on4qstTx7lf2b3rRJFHH31uooo5dOARUxtDdcccdQcnjO3XqhLPOOitI1NHxVMcNGjQIWu3OPy+2rcmEES1oURmeKioqpKEaKkKJqWNDFZzqn0fHu+aq1t544w3bBAFUdvZ33nlHuKy7OkOuhdTUVJsrUWap40UdVRj9XhTr42TNUSH6PSsk3ECd5L333rN97tSInXakEJGenm7Fvhw6dAinnHKK5bIpKSmxPRPqtDruV7bzuomp4wdU3m3sZKmjdtCrVy/s3r07yFJH5eIXjMgsRPTMjzvuOOG1dEQdDbbsC4UoVpHcQ40aNbLaDJ+IlnCaiO+9917rniIh6kQb1hOlpaVo0aIF7r33XmvXE6Cy3avGGXahjBNOljreOiN6y+f3MAXEfTMcSx1wrA2yoo4mQFbAVVRUoHfv3kH7VqssdUBlkmHRd4cOHapSUaeK/eNFXb9+/WzfO1nqeHQsdazIFG15R6Lv0KFDQc+HRN0LL7yAb7/9VloOJ29JWlqaTVyJJnXRQglWtPJxfdSnSNSJFtZ8//33rkUdlY1EXePGjTFt2jRhbF56errSUnfJJZfgxx9/RFJSkq2u+DoqKSmxRJJM1NFLr2reZEUd3fewYcMcU4joijpWVLNjiVtRp/N7V7V2/PHHS/dE7Natm5tTxZzZs2dj0aJFSE1Ntb2102DPJ0YkSxP9P78YQiTq2IEgEqIu1MGSBhg3ezUC7hsccMxSV1xcjG+//RZdu3a19vsrLi62deLGjRtbjV9HBBBu3K/8b/lBVHWuQCBgG6yXLl0qFXU8MlFH1xOJOl33K7UrGrjLysrw5ptvWoM0QYPcggULkJCQgJycnJAtdY899pg1OPK/Zd27VH6nOuLbAn9/hw8fRmZmpu03P//8s3QrolGjRlluSh0iIepoVxUW0aSrY6lj+6Yo6TKgH1PH91tRTF1CQgL+9re/WdeTWeooTKAq3K+qVDyU0oTujY/bcrLU8RQWFkp3kFCVjbjvvvtsuSt5UUcCYd++fXj22We1z8uTmZkZkqWOF3Xss9m/fz8CgYA1XvBt6Ouvv0bHjh2xe/duZdl4KN7vwgsvBKAeA0SijrXUnXXWWWjSpEmQpY5PiF1SUmK1UZn1XTZusbAivU6dOqioqMBLL73kGF7BPzs276DM/UohbHSvboi4qGN59913Qz00ZO655x706NEDgwcPDjtuw+fzoU6dOkGWOqpYfvl8eXm5NQgMHTo0KGBb5Mp0a11iCQQCQbmBVI3ylltuEa6MAo4NMDt27MB5550X9LkM2hNWZsVq2bIlXnvtNdtnJOqIpKQka0LgLXWNGze2sp27yRvmxv3K/5a/Z5WlrrS01DaZ79y5M0gUsXXMJ4pVrWAVvRz5fD5bvIWIIUOG2NorvaUOHToUjzzyiFBU0G4nbKJo9rmsX78+rK3J2E2/I2GpKysrQ2FhIerUqYPly5dbcXh86haWDh06OC4yefHFF63/j4SoEyETdU4pTVSWOrq2rqjjyyoSdYsWLbKel0zUHT58WMtSN23aNNvzCnVsnjlzJtauXatlqeM3mi8oKHAl6gKBQJALVhWvxC96e/TRRwFUxsaWlpZKRZ0TTpN0RkaGUNSx45Uopo69/vr165Gbm2uN/X379sXLL78sFXXkrnTDwIEDceaZZyIQCOC0004DoB4D0tPTsW/fPiu3I1DZ3tLS0rB7925rHExKSrLVEx+KVFJSYr1UyspNW1mq+h9rqUtLS7MEPuspEMEbc9jYa7r/tWvX2ur5oosuUp5TRVRF3fXXX4+nn35a+ZtIrojdsGED/vzzT3z11Vc49dRTMX/+/IicVybqEhISbFtBsY2iqKgoaEcIkWUmHEtddnZ20CpX1cQ7a9Ys3HfffcLvqLEePnwYX331VdDnMrp3727L1M0TCASCRAgtlCD8fr814PHWmYYNG8Lr9eLFF1+0rAYy3K4klu2fyU/mKlFXXFxsE6jbtm1TWurY+iksLMTxxx8vLJvH4xF+p3K/rlixAmeccQbefPNN2+esONywYYNt02mexMREoaWuc+fOrkUde36v14vMzEzrGoCepU426BcVFaG4uBh16tRBx44drVjQ888/X3o+NjBZtAgFsAdwHzp0SFnGUEWd6M27Xr16jpY61tUVrqVu1qxZtr/ZdEtEnTp1rOscOXIkaMUuQRYxWbts06YN7rjjDtvqxlBF3YQJE3DOOedoiTpewOfn57t+cXYS9sCxZ3/kyBHk5eWhXbt21h6gQOUYxqdvAvTjlZ0mad5SR/2bHa9KS0uDRB1rdXz//fdx9OhRdOzY0fpsxYoVUver7mIkuudevXpZqVmAYwsBnCx1W7dutSXL37lzp/U8WFHHzq38gqWSkhKrjnjBR+zfv99xfAsEAjZRRzHyTqLujz/+EC5UY+tk7969ePfdd9G0aVP4/X70799feU4VOpa9kEXdwoULMWXKFIwaNSpIsJSXl+PVV18NyvkVDqtXr8Yll1wCAOjduzdWrVoV9Bt6Q2H/OSETdWVlZbbEhXv27HFtKmUHN7eLGz777DPl+dwgew46E7kqd05FRUXQ4Mpb6srLy60JgZ/I09PTteM23Io6maWON9GrRN2mTZts2ffz8/ODFkqwdcIO0IcPH5bGeP3rX/8KCh4G1O7XO+64Az/++GPQ56zrc8GCBdYAI3JTqiyibkUdaylJSEiwBj83ljq+Hl944QWMGjXKmmzZezh06BA++ugj6fl0RB1NQpQRXjXx8mIpHFFHCaVVkyX7LHhLHfURVtT98ccfOHTokPBlkd+QnCxxbJ2kpKRojSckhGX3T9dnc5BFcvUrwac0oXFnwoQJ8Pv9GDp0qNbKQBadFYd0/0VFRVizZg22bduGyZMnW99nZWUp3a9O0CIYGRkZGUGCf8+ePUGxaLz7VRRaw47VlHFAZKkTLSIRQZ4Ifg7QCcHgLa2AfbEhuzsFK+q2bNliex6fffaZ1a5Zqx/LgQMHHMc31lKXmJhoE3X//Oc/lceuW7cOe/bsQU5OjnWdFStWBMXcdu3aFSUlJcJFcgBw+eWXK68DRNlSd+mll+LLL7/EggUL0K9fPxQVFaGkpAQvvPAC2rRpg7vuuguDBg0K9fRBsPEdlMyT55FHHkFmZqb1j2K5VKSmpto2DGZFHUv79u2Dlko7wbtv3fDzzz8HfRaqiyyUVT1ESkqK1P2qI+qOHDlic7+yHT0tLU07wSWfrFiFz+cTWicAuaVORLdu3WypCgoLC5WWOnYwPHz4sFSgnXrqqcJBTWWpk7kW+IVLDz30EAAItw9T7S/odiLmRR07CAPOwpt1v9Jm3ImJiWjVqpUlFFhRV7duXaVrmhV1ZDXkIWFCbZbayAknnOC4ilV3sRCf3PXPP/+0rscPyOw5Kyoq8PHHH6N58+ZBoo7aFSvqcnNzrZ0UdODzuHm9Xq06J0ud7P6prhYuXGjtKuSmLYn6v8pSR8+GXHw9evSQinig8kWBOOOMM2zf6VjqSLgUFRVZZWXFQ8OGDYV9Kpwxl4V3v65bt85m5T/77LOFljqRqGP7D3meRKLulVde0SpbOKJOVGfstnPU93n36+7duzFw4EDr7ylTpljinM9sQOTk5DiuGq2oqLCeWXl5uU3UvfzykEM/zQAAOP9JREFUy8pj9+zZg+OPPx4nn3yydR1RHld6LrJQhvvuuw9333238lpRFXUAcOaZZ+Kbb77BL7/8gi5duuCEE07A5MmTMWzYMOzevTsohUY41KtXz+ooubm5QblwAGD8+PHIy8uz/tHqPxX85CcTdaHAJ0YMF1bUUS4pHUQCURfVRFpRUYETTjgBQGU+PUAs6lj3Kzv48Cu7VLix1B133HFWpwzH/crjRtQVFhZKO2/Dhg2Fg5pK1MkmIF7Usa52HlU+QLftkxVcIlHnJLzz8vIslx17DNt2ZIsiWEh0sMk+ZaKOrkNtjiazXbt2YezYscrr6L5Qse00KysLjRs3tiY93gLC9q2KigqMHTs2yJ0DHKtTNk8dIE6jJIMXdQ0bNtS6J9E4y0Kirm7dupa17vrrr9cul6i967hf27Rpg5KSElx66aVSywcAtG3bFkBlzCUfkynqU/x4R/d/5MgRq92wL1jkfuUttJEY74Fg9ytrzHj++efRs2dPbN261bYfsszVz4ovqnsnC7IKCv3gnxn14SuvvFJ6rOilln2BZkUdP5bx7ku6F5moKykpwfTp06VlAezuV1bUicrJkpycbBNyfDtgvS9Ooo6fO0VEXdTl5eXhlVdewZ49e7Bjxw7k5ubis88+w3333ef4MNzSpUsXq+EuWbJEuNo2KSkJGRkZtn9O8G8Z1NEj0SnZN6BIi0Ra8u0En7g4nGvyVFRU4MQTT8S+ffusHRtUoi4cSx3b4cMRdfyE6ZSnjqWwsDAoJo2dGPnNwZOSkjBq1ChL+BJZWVnWdnssXq9XaGFTwS7GaNasmbU6TDRhi1IzsN+5gY3PSUhIsJJx64o6ALjqqqsAHLOglZeX29x8OqKOVpJ5PB5t9yu1zy+++MKKjXWyLoUi6qht85ZBghU0FRUV1tjDJ7LNy8tDIBCwWerccvjwYVRUVOCyyy7Db7/9hmbNmmndk2zLJ4J1/+r05RdffNG2m4rIrasSdTSpseJWJuLZ8zdr1izouYlEHb/TC+t+Ze+vUaNGWLp0KerXr4/S0tKoJHIHgi11LAkJCdY9saJONj6ycx0JEZGlThca1/g51OPxoKioSBrjDeiLOt79CgSLyKNHjyIrK0v4IpuamopAIIDHH3/cOp8I1v1Ke2YDYosbXxZRxgEiISHBGtOpv2dlZWHkyJFB59KZD3XmqZBF3fjx49GyZUu8+uqrePjhh/HXX39hwIAB6NWrlzIvT6h07NgRTZo0QY8ePbBlyxZcc801ETkvDSDvvPMO0tLSLEtdaWmpNNBdF3aiYDvOP/7xD/Ts2dP1+fhBWEcoinJpsTittjxy5IjS/QpUvrFRgxWJOhpYeTeBG1FHrh3AWTCoRJ3sHnQsdYcPH1Za6liXS0lJCZKSkjB9+nSMGTPGdp6GDRvC7/cH5Q30+XxCUacadFkBc9JJJ1n1Jcs8L2szbkXdLbfcYv2/SNS5CVpnhSA7yYu2UuMhUccGyjuJOmpzN910E66++moA7kSdrM0GAgHbYg5e1PGWOlbUlZeXW1YYNhyEvqNN2kMVdWSp83q9thRDQPCenCy6ljpArw8NHz7cFnzO34vf71emNGF/R6hWPVPbEj0zkajj+x/rfmUn1KysLFx88cXW7h7RFHWyidzr9WrHegL2sZ611OmKOt7zRn1P9PyTk5OV7SEcS51I1LVp00brOrJnyVvqaJGkzPrHloWtez5Mpry8PEjUJSQk2PbrJlJTUx37tigJOk/Iou7999/HM888g+3bt2P48OFIS0vDq6++iuHDh+OCCy4IWh0aCZ544gl89dVXeOuttxyTYepCFckKE+BYWgWd4EUZMvfr3/72N9eWTH6HBkAvuzSbE0cEdR5ZY1IFzbITd2JiorV3KTvpsaKOTzvgxv26ZcsW4XVFsKLO6be67teEhASbpU60UIKPo6H2xA+8tICCFwc+n08oZETxo/Tc2AG1devWACoHMmpv7AQaSUsdXxZe1LmxTLOijnUns4tAZFD7ZpP7OsXUiUSZ08TG9j2Zi5w/B/0ts9SxkxNt5QcEW+qAY8IuMTExpO2bDh8+bIk69pqAOseoG0udLmwZ+P6ZlJQkXSjB3jfbp0T7ofK/E41vooUyMkvdkSNHbH2EHTerg6VOB7bdhuJ+Pfvss21/d+/eHYDazSpDNP+x4ydrqePbGN//VKKO+h6NCRdccIHwd6ylrry83DIiOO2UlZKSYpuHP//886Dzkqhj+7uoTtPS0kJ6YeMJWdRt2bIFN9xwQ1DhHnjgAUybNg2DBg3Cc889F3YBow1VZNOmTYWiTmXad4K2xdq9e7ftrdDv97uuvCNHjgRZE9iJRiZKnCxx1Hmo4fXs2dMWCMz78Nk3WbazNWjQAFlZWUEDze23324NrH369LFl6OZF3e233y4so9frdSXqmjVrJrTUUXwNi0jMUF43onPnzpg1a5a1GIg9TiXqSKzoijqv1ysUdWwAMVCZCLhFixZB56YVteyAyVpaVDF1bkTdbbfdZhtEvV6v7c0acBcs36dPH3To0AEDBgyw7guQW9xYKJ6KtQI7iTqRKHIj6mQvlHxCaRLUOpY6tk3v2bMnqM2UlpZaoi6UBVNkqROlTlGlbXAa/1Si7qWXXhKmKmLHB37cSkpKkrpf2cmTrYPJkycLV5MD9hXPPCJ3Hd//WEsd20aovUfTUrds2TIkJSUFjRNUX24tdaIE1+zLhJvjgcrQnkAgIBVKKkSijp1r+PGEhZ/TAoGAdFEk2+fvuusu6UsKm3y4pKQE27ZtA+D8csq7X0XwljpALOrcht7ICFnUqSwb//znP7FgwQKlT726ILPUHT161JatWoWqMkpLS9GqVSu888471meJiYnabkfiyJEjSkudbPB1SsjKi7rk5GS0bt3aygOYl5dnsxSNHTvWigdgJ6KhQ4dizZo1AI51/ssuuwxDhgyxDTxszEFKSop1jldffVX6EtC+fXts3749SFDJaNq0KQoKCoIS3IqSAfOWusTERHTu3Nn23AKBgDXYs29zgJ6ljp5Hu3btcOedd1qf831IZqnj9ztNSUmxzskOtGTZYs/BTn7s6tdTTz3Vdk528JLtGgNUrq597rnn0KRJE8ui5PF4rGvSPbmJ08nKysKGDRvQtGlTm6jT4YILLsD06dMxatQopfu1devWQQslWETlZZ/tgw8+KPychY2/KS0ttZ6JzFLHl6NBgwZW+hO+HVBfT0xMtOUqW7lypdb2aBRTJ7LUqdzcTuOHStSlpaVJXalEWVmZLTY4MTFRKurYSZ/Pk8jGeLK4tdTxY3lqaiqSkpJQVFRk6yP0zCJtqWNTdZFY4ucKWpRGidt1YZ8BO3foWlt566hOdgkZonhZXVEn+kwmbqnPHz58GImJidK5mrXUZWdna3nBgNBFncfjCRr/+TYeKmEtlFDRp08fLF++PFqnjxhTp05Fx44dkZGRYXvopNp1LHXsoMi/gcgyvocj6hYsWADAbj3g314SEhLw8MMPK+Nl2PJSw6NyXXPNNTj77LPx/PPP26xrbdu2xVNPPQXALuqSk5PRqlUrAMcGD5q0ZB2OfStXbUPUvn17lJWVWat4RQMZG3NHbsj33nsP33zzjfW5jqijzsaKi4qKCquOSZS6EXV0/6effrr17ETIRB1PcnKyVU/sQE2uSH47KPZeaWLir3PkyBE0bNgQ+/fvV7YZv99vPSs2RoTOx1oAdGHL6JTsk8fn82HUqFFITU212gXfB6+44gps3rxZ6X4VIZu0dGLH2HqhvuWU/ys9Pd2qQ37yIdGQmJho/f8XX3yBc889V6s8L774IpYtW2a7dyqj6qWUFXWUeoaFFwS8BddJ1OXn51vpSYDKFb0i97NK1PHnZKHr89+LAvCB4H6RnJyMlJQUHDlyRGipo0TQ4Yi6m2++2fp/tpzUL3jxTxZhr9fr6rqqreh0YJ/5Y4895mpPcNW5CJGoE1nFRd4n/hnRvdLxtDuQ7CXl22+/xffff28JZrYMKviYOhEiUScqM6CfI1BF1EQdEGxhqI6cf/75+O677+DxeGwPnSZvHUsdW/kUZ0CIJrdQgp3ZmLpzzjkHgDp3W1ZWFsaPH+/Y8XhLHTvoiwZ7NmBZ9pZI39O5VG9RJDJUMZKUBJpcsKLrshP5mWeeCQAYPHiwbe8+XVEHwObOCQQC1nOigUcUU8e/+fOizqkunEQdm0KAzsU+W7LYsAM2L+poYuLrtrCwEF6vF40aNVK2TbZ90ODKijoa4ELNVUb3pbuQSBSfxQ/6GRkZSE5OVlptRPB5zQi3MW2spY4dY3hBlJCQYL1EikQ3YLfUUZt3ald+vx+ffvopAPvzWrduHV5++WVlm2OfJb+wR8Rbb71l/b/P5xP2VVHKk86dOwOoHOdE2x2yAmbcuHFBZZYJdRpf+DFIFIAPiEVdcnIyiouLpe5XPt6OvYYOtFgHELum+XsjUZeQkFCloo49PtzYr1atWgV5ZlhRx6cBYRGJOv4ZieKZExMTpaJuw4YNOOGEEzBq1CjrMxpPVS7ulJSUkEWdqM3I9gx3Q1RFXbzBu18B95Y6vnH9+eefQb8PxVJXVlZmTZQkNNmOyTcQ3YmHJgZq7GxnFQ327PcyUUf3FilR17hxYyQnJ1tv8KLOwN5vRkYGTjrppKDfiOI4ZKKOrI6A3VLHH0d1kp6e7hhT5zT5ymLqCJpIkpOTLUHA1gcNQkePHrWSf7PtjCx1CQkJQYPbkSNHhNY/URkJGlx79uyJQYMGISMjA+eeey6A8BLQ5ubmYvHixa6PpfbItyW+Her2PZlLz6lvffHFF7a/2Zg61UTPurF1RJ2OVZf/HVv29u3b46abblK6WJ2eFS9M2bYjs9Tdd999Qe1j0aJFtphEUbwpPYNbb7016JyyNnvqqadi5MiReOCBB2yfJyUlCd2vvGBITk5GYmIiSkpKpJY6mftNtfczC9teRc+b/4zCLAKBQMiiji/zww8/7LifO+/yDgePxxMUQ822Cd4bwCKaK/jysOE07HGqPnP99dfb6p+s5irvQXJyctC4z8duk1BjrYAyjKiLMKIG5NZSxzeu008/Pej3ocTUFRcX48YbbwRwTPlTx8zNzZVuLeSEW0sd27HDtdQlJSVZok412fl8PjRu3NjKHSS6Li+YRM9dNHnJUprwgde8KZ4XdfXr17esu3TffEydSNR9+umn1vJ2mahr1KgRZsyYYYlSVtSxz5YGoeLiYjz55JOYM2eOrR1QTJ3P5wsaGFlRp2qb7Hderxd79+7F/fffjxNPPBF5eXm2hQu68G01MzNT28qhI+ro+bsVdaywZ3ES5/z1aaIoLCxUvvWzFk/+ZZIVdbL9T0XccMMNyvEJgHD3AV2cRN20adOCvBcejwd+vx8XX3yxtb91VlaWzQ0pCoanZyB6OZPVqdfrxTPPPBO0klpmqePPk5ycjKSkJHz00Ue27ddYS50M3VACtr2IxClbpqZNm1riwG0sH3se3lLXtm1b9OvXT3l8JEWdLqLFZnRtNvaXLw+1Fd5Sp3Kp0l7khK6oY/vPZZddFrSTFqU54cWe6BkaURdhaCJhH7aOpY7Pru9EKKtfd+zYYf0/uYpJyNWrVy8owDJUUcdOWDL3K12TDR4X/UYWU0cWpRNOOEHLUufz+dCkSRNL1Ine/vnjTzzxxKDfiCbBr7/+Gp999pl131Rm3v3KtwNW1NGG9iTq6P503K8XXXSR9XvWUsPSsWNH3HbbbdbgIrPUkWVAllONLHV+vz9INLGiTiVa+IGoadOmts/o+T366KPSczid0w28exmQizr63Ol6d955JzZu3Cjto059i3+2Ho/H5qomeEHE1j8/kdAWhSkpKVbMI7VJWX2VlpZi9uzZSk8CoLdJuAz+HvjJ99JLL8VXX30lPHbp0qWYNWuW9Tf73PhnyMatybbYc4NM1PH3k5KSgsTERHz//fd47LHHrM+dUkEB+qsZnVZFUpvp1KkT9u7da523uLhYWXd8bKLK/aqzipYX7NHg9ttvt1lQ6dmwz5LKoXpuohc8J1Hn9Xpt56FxWWXY4UVdVlZWUJsgUcenXRG1HVWqM50YP8CIOhvUSNgJ3ClPE6B2v4pQ+fZl8LtHUJwHC7sXpKwcor1agWOdhh3UKDaNhRpiTk4O7rnnHuE1eEsdPwleeeWVCAQCaNSokXShxOHDh3HbbbdZ52ncuLHlyuYtdZ999lnQCkDR25UsvUuvXr2UMXUVFRVB23Gxoi4xMREZGRlW2hoKdqVjnNyvoqB6Fj5zPnsfojgX9nmLYupElrr//e9/jrGS/PVEUJ3zm8rrHKML+xzZYydOnIju3btb+bQofxZNfKqUJiz16tVD+/btlfnBVIheUKjfqQSzylK3dOlSnHLKKejatSumTJmCjRs3Wr+R5ejy+Xy2LdwA8bMeNWpUkHtSFydLnRtEedSIsrIyofUlnGuJ3K88ZKnjEVnqQlk4cMIJJ2hb6qjdsTv0iMZo4rjjjrO1VfbcvCVdR9RVhaUuNTXV1l5Foo73hKjKw1vqVO5XNl48LS3Nes5Oq8NZUSdKM0O7LcleNllmzpxpZZ4AKmP+N2zYgM2bN9sMOyqMqGPgRV1aWprWsm2nQZPH7/dj6tSpuOKKK7TLtmnTJgDAhRdeaJX1oYcesiV+HDlyJF577TUA9omHDUjlGyiVXSQyR48ejTvuuCOo7E6IxAUL7xIEghs8m4iRt9TxooOeCYsoP5ZTzj5AvlDC7/fbcr5RGYqLi5GYmIj09HRL1I0cORL/+te/rD0KnUQd22ZE9UDHiyx1fr8ff//73y0X14wZM7By5UrhucvKyvD222+jrKxMGZei2lPUyT0QSmJct8fIRN3pp5+Or776Cq1atUJubi7uuusuAMe2htPN6cVbbVXXFyESASJRp2Opoz6Qm5uLc889F36/H36/31o8BAAffPCBMhUM2+dFZc/MzMTEiROV9yRDJepCsZ4R/CrA8vLyoJ1ZWEIRddSWv/jiC2sbKf5+0tPThX2FLCoiSzmhk27kl19+0Y6p4+PESkpKMGbMmKDtBlnY+1HVh05dVYWo4/sO3Wuooi5US116err14q46hrfU8TufAJX5Gp1SJhH16tWz7Za1fPlydOjQAaeeeqoy1RSLEXUM1GjJ3HrKKadoNXaRqFPFBCUmJiIzMzNo2xUVO3bsQIcOHfDZZ58BqGxMubm5+PDDD23X7tWrl60cQKVJmwLYZaJO5H71eDxBWcR1ngdNhqo4F0LlfmVXf7ExdTqJcnv37o2BAwfaPlNZR+ncdM1mzZpZq4xpcGbjclauXInRo0fbLHWUz+/qq6/GCy+8ELTwQLXdD11b9Bt6NvSyUVZWZnO/fvTRR5aL67bbbrOtOmfPt3fvXmzYsAGFhYVW2hdROchdIMp/xqaOUd0L8eijjwqvxSZUjpSljiUzM9OK76O6ZfeY1UHHUidapStqy9TP2rZtG/SiRIhEHbXZgoIC6eTSoEEDq3+LYI8LZ+cQEZG01KnKlpaWhjFjxkhzqoXjfu3atSvOOussAPb7WbVqFc4++2zhWE5xbazQ0Y2h418u3Frq2ATfCQkJwkVhhK6oozKpdoKqCvcr/6xV7le277Hlady4sVWfbix1rKirU6eONP0TS3Jyss3i6/V6g/qpx+NR1uuYMWPw8ccfS6/hFiPqGHi3WTiiTmUVcptaAajM5yQyS7N4vV6pgKDOzTdQPk+dapDWLTOJIB1Rx7tfn3vuuaDNjn0+H+rUqWPVj+wNmBegrDsaUNcJvUmxVprp06cDOPZMqF3Qs50+fTomTpyIv/76C+np6UELJQhd9yvVwZNPPik8ngaq9PR04UIJEWw7YBM/33vvvejTp4/tt7yljrX+NGvWDA0aNLBcCTrXA4AuXbo4xo6EI+pUVj4SdWSpo+OchI3OlnGE6PmL+iYJZJ/PhyeeeML6/JdffsG0adOs8/LbGrGTmSre5rrrrpN+x/Z5N9u3iTj11FPRtm1b7Nq1C4BzTJ0bRCumJ02ahEWLFlkpT2SI2pgqdCYpKcm6nt/vt8YG9n66du2KhIQEYX3SvuB0XUp9AgCnnXYarr32Wtu52HOoRJ0qpo6PUSYXte48oiPqVFt+VRdLXWJiIn7//Xc89NBDtvLQ/W3evNnaI5VNS+RkqePdrzqijjcU+Hw+x/2S2TIDlam3VNZWt4SXbKaGcdddd1kdedmyZdIJiYcmv7/97W+2PTllq8p0fPU8+fn5tgYkEig+n08aN0QDDB+zReeUBfXyA5COC8tJ1Kncr+wyd9ZS5/f7g/Zd5Vm+fLnNbcOXVSeOUTRh07Oj+szIyLAJJPqMyse3GV33K71xDxs2DHfffXfQ8ddffz06deqEdu3aCRdKqM4N2Lc/8/l86N27Nz755BPhb9nrApX1w28073Q9+ltURrYuIuV+5SERRKIOqBR6U6ZMCbLiipClqmCvL7LKiUQAvRCw1oBAIIATTjjBcvV7PB6rXqnsbdq0sSyNqgmJ4lTr1q0bNO6wY0W4oo4stdQWImmp4+Po3Owry7exxYsXB73UAZUvJ23atLHqLSkpCQkJCUJRR4jqmEQdG+9K7WLGjBk4//zz0aFDB+v3zZs3t5Kn889FZKkTGQqon5BFUGcFLouqPpxCU959992YiDr6mx+7jz/+eFtbpn5FC8Fat26NjRs3ok2bNlZogY6ljrWG6rpfWXw+n3YqG34BV6QwljqGCy+8EBMmTLAGlyuvvFKr8aalpaG4uBjLly93TOMBBLvTdCgoKLAJL1kCRidLHd9AqZy6ok5H5FJncHI3AnruVxKrJJpklpaUlBSby5Avu5uYOroucOzZDR48GC1bthRm1ldZnpzaEC0AoUlIZelr166d7Tun+mDrgJLH0g4hsnJ+/PHHePbZZ0OKjxOd0ymwPRruV6JXr1546aWXrL/37t2LAQMGaJ1ftrKQfS6i64vaMqVHSEhICBL3dD5W1DVr1gyffPIJnn32Wet3Oqvffv/996DP+D2tIwHfN/jPgchY6nThr3XppZcKU9L88ccfWL58ufVMKDRAJepE7ZfP65mRkRFkUWPPddxxx1nWTb5fiSx1bCw3L+q6deuGt956y/Jo6Io61VghW+HZqVMnFBQUoF+/fjEVdTpjCJ+6qH379rbz6cTUsUJLR9SRuGfP4dZSp5u+SRcj6gSMGTMGK1asQKtWrbREDK0mrFOnjrSx33PPPVZwM7+aUYeKigrb24rM/SrLxSVzvzqJulDcr5REtHfv3sLvRZY60f2wk53f70dJSQmys7ODkj3KCEXUiY4ny+A999yDXbt2BXXyKVOm2AZF/lnSs5eJJKpXcjGp3uT5czoN6KL2SBMGXx767WWXXYYRI0aEtJpPtF0PtZmdO3dql1GFG1G3bNkyDB061PGcrCin88v2YWTvceLEiWjZsqUtZMDJUkd069bNdj6Px2O1tdTUVPTu3dtWLh1RJ3LRRkPUsdZGFrY9uo1zC2WXg1CvRc+ErOP0t0jUqSyGdN3MzEylqPN6vZYFR9W/6Tt2b2Ze1Hk8Hlx//fVBYTxt2rTB3LlzHcsqQibqTjvtNKFFsKrdryL4MAyRQYUtp87qV/o9mxhfdMy6deuwc+dOXHvttUHncGupM6KuCkhLS8N5550HQM9lJ3o7bdeunRUrAwCPP/641dioobLHiToVP0DzcQU87JuGrqjj47l4QnG/Nm7cGOXl5bbtb/hyErLcYoC90/r9fgQCAWRlZQm3ERIRivtVZakj2PLfcMMNmDx5sq2u+GdMx8tE0v/93/9h/fr11g4G/OCrEnVOk5nomlQ+miREgkPnPCJkljqPxyNcMMGWQxc3ok4X0cAtE3Xs9c866yzs2rULzzzzjPWZqE74eMxdu3bhxRdftH2WkJAQ9ALA3p9unio+iWy8WOqGDx8u3ZrNCXbVog68qBMJMYL/TBTiwbpfRe2Zdbvz37P1k5mZiRdffNFmXZbtAcuXoWvXrsqwglBEnSx+1K2I1oUf6+jZyMYfNkRHNvex59Zd/comxheljTn55JPRunVrJCUlBY1Hbi11xv1axfCN6cwzzwzqAKI3A6/XizvuuAMXX3wxxo0bB4/Ho3TN8oNRixYtsGjRInz55ZfWZ6woEb3Vso2Sz6DOx9Sdd9556Nq1Kxo3boykpCThSkcguPPqDpqqiVonpQlw7NlTShG3iCx1bHCtCF5I0vVZ2EGDXzENBAtk0ZY1LAkJCdIVq6L7YMsUynOhgc3J/B8JSx0Ntqr2EK2FEm5gy+CU0sTpmqLnRu5XEgQtW7a0njtrgeEncLb/6Yq6+fPn20IUommp42HL69YC0aZNG/zwww8hlYeu+/bbb2ulEqHnS6KOrPiirZz4/i9aialjqZNlBeD78PDhw20radnV8SKoDE4vrSohJqsrtq1H42XKqRxOoo59pk7PKTExUdkmefcr9ZUOHTpYISvnnHMOPv74Y9s8yMZu+nw+7TkyWu5Xs1DCJS+//DL27t1rWyUkejul/y5dutT6jk8eycI3hN27dwOw5wVjB5M+ffrY8pFROTweD959912cf/75tu94S93NN9+MG264AUBlTNf3338vvF9+wNFtsCpEok4kTlSiLiEhwXHwFlnq7rvvPuzZswfPP/+88Bi3ljqqS/a58KKubdu2mDp1KkaMGKEsr6gMovtgcXpjVgV+86vpRHnTVOcRwQ/2FA+pmgSqg6WOfY50/lGjRiEpKQl33nmn7behCEkSC/v27Qv6jhUD9957L4DKVcN8uXT7nsfjkS7mcCPqVHk0dfoGLzJ03VKhQNctLy/XehmhlDq0O0fjxo3xySefoGfPnvjb3/5mfQ6o2z5rqVNZ1FSWOqc2LDuOL4OTqAulr+jERUcSN+5XKkd5ebl0QRZ/Lo/HgzfeeEO4ip99+UxMTLRewFJSUmy5a/mVqrfeequVpogV706YhRIxhN1cPDk5WbiMmVDlaFNZ6kTJcvlzs9edMGEC1qxZIzx/v379pMv56W2fDUquW7eutEOEG5cmgr02WRRUA7FI1LlNlglAuFUTj8jdwItH9jfUIVlLHV/3Ho8H//73v0Oe1ESucV33q2hC4i1ROqLu119/1SprVVvqIjW5iHYGSElJwejRo5XX14Vcz/SyxsJaGOrWrYtHH33Ulnib0LXU8YRiqWvbtq0yZ5kspo6FbbfZ2dnWQoFowIo6HSgXI5vjrXfv3khOTsbgwYOt9EGAfkwd3690LXVO0PjjRtSddtpp0rK6IdqiTuWKZv/WsdQ988wzthXHPDRW/9///Z/we979Sm0pJSVFaQUcNWqU9eJHz1i2hSZ/PbZckcKIOg0uvfRSKz7MSdTxljoWlaj773//i9WrVwd9zp6bn9z5v1UdjV3BOWTIkKBNh3XcKUBoExoPmypCNcmwg2MosX0yUUf3KhrkdCx1IlEXCQumiPvvv1+YrFbX/aqakHjLMS9eQ6lrWUydqm1WB1EnstTJCMVSR4uHRHF6rPtVVS43KZBY2InSTfJh1XOQ9Q0Wdnxq0KCBcg9NFj7fpA7kmWAXGKggUUf1oiJUS12kRB2NW7IYZd79umHDBqxYsUL4uxEjRrh6OYi2qOPPIxN1Mthn2r9/f+X2hKx42r59O958882gsrCLF4YNGwag8vk7CWKy5NH9TJgwAQCEK7CJWbNmoW/fvhELISGM+1UTNkkuL+pkMXU8CQkJtlU6LCkpKZbLhUXlznAj6mjCrlu3rrU5uOhY1Wq2SMGmilCJOif3qxOyhRKsmOGvL4qp48UO+7copi6STJo0Sfl9KJY6gn/JkFnq5syZoz0R8EJAZanz+XwoKysLy/0a6oB4xRVXYMuWLdi5cyf8fr8rK0akt0JzctsRuhvE87ATo2i7IhFO7nbVwgIiVKv+ypUrteLiWLp06eIqr90nn3yCRYsWadVlqKtfWVhR57b9JCcno6SkxNGbQqJFZq3y+Xx49tlncf311yt3IGGpClHHtkmZ+1XHUieDdiNiRd1JJ52ELVu22H7Hu1+vu+46K6m3U7yeyFCQl5enHFe6dOlipZmKJEbUaUKDjEjUubHU8abWt99+W5nUlRZYlJeXBw3q/Ju7jqVOJtJ03a+RgLXUqQZv2qarRYsWQa4binfQ2bmD4C11ontjkx/LrBGstSPaljoZkbTUyUTdvffei40bN6J///6uBvGioiL07dsXixcvtlKaiI5PTU1Ffn5+TCx1CxcuxKpVq9CtWzekpKS4stSpArFVudauvPJKYUJcXUtdqCJJN6Zu27Zt+P7774N2QxDBvnDJCFVwR2tlJcuFF14o3DNahGqMUq1+5S11ov/XRSeu1um5hZJCI54sdTI6deqETz75JOg3fF/wer3SRW26cY/s76L1ou+EEXWaUMf2+Xwhi7qEhISgzqna3oc9f3l5uaOlTtWpnUSA7E0kGgMsa6l76aWX8Nprrwl/d9VVVyEnJwf16tXDnj17bN9RfbgRdbyljq+jBx980DKbs8dXZ1HnVD+qCclJ1PXu3RuHDh1yXbbk5GRbvkS/3y+cHGIp6oBj9827V5zEk2yi27ZtmzD5LyGLUVNZcCIh6nTdr6eccoplkdW1lLmxjsUrkcpTR0Tc3cYl3ZUhWm3ZunVr5UbxsRZ1OgslnMoze/ZsTJs2LSgjBG+1Zq2GfDl0VyBXxQuJE3ERU7d+/Xr06NED559/PgYOHKjtQogkzz33HEaMGIG6deuGtVAilKBIWS45N+5XwknUVYX7lbXU3Xzzzba0LTy0uEBWDtWbnGyPRVkHFSXOBYKfCfuGR9eI9LJ0J0JdKMFuIeXkfg0HPqeVaHLg8+Xp4rSjgy5sLBKVd8CAARg+fLj0evQ3m/GfOOGEE6z8lm5QTRiRFnVOCyXcPs/aLurq16+PlJQUtG7dWinqqB6HDRsWFMtFsCtu3UB1GoqlbufOnUFZFL799ltcddVVAOTtIRqphPiysX87iSkn9+sjjzwSVGZRzlZKFRYJS12siAtR16xZMyxZsgQrVqxAmzZt8P7771d5GVq3bo1nn30WHo9Hy1InSw4cjqjjrysKSpfhJAKq0v0q235Jhawcupa6k08+2RoYaEJm08UAwQMV/Z63WogsdVVNqO5X1iXA50KL5ARNz6W0tNS2UGLJkiXWJEKC3e0EweYSC2fhDmupo/LdddddQXXKr/z1eDzYuHGj9opgJ1Tu10gI2FBEnW5bqO2irl69ejh06BA6duyodL9SHtBZs2bhrLPOwsKFC/H5559b3//6669B2Qx0UaWFYtF1v3bu3NnKxhBpq6KsTLKcbU6ijoRZKH3j8ssvx5w5c3DiiSda53ASdW5i6mJFXIi6Jk2aWFYpVVBzcXEx8vPzbf+iQWpqKtLS0qxOJFooIcoZJHK/6kDndAqUDiemrirdr7KN0lWEK+rYoNhLLrkEQHACZ9kApuN+rWrCSWlCOLlfw2Hw4MEAKlc9spa6Sy65xArSfvfdd/Hkk0+6PvfSpUsj8kZMz451v4raQIsWLWx/JyQkoF69esqVbW4INYBeF3ai/Oc//6n8rRF1wVx++eUAKncB4cNAgGPPV1WPlHyauOKKK3DBBRdYf7dq1cqWcNgNupY6KpeOxZfGhGiLOt5bIHN7yqCwl1DK6fF4bFkgvF6vbZs+N+Vw+7toEheijvjtt9/w6aefWp2M55FHHkFmZqb1T+QiiQQ+nw9bt261EhCLLHUiURdpS53o/DJ0LXUq9ysbb+aWc845x4rXiaSlTvVM2GPYTn/iiSfirrvuCtpOSfb8VJa6aFgydaB6chpEdCZd2SrfcLj88ssRCASQnp4uTWnSokUL3HXXXa7P3bRpU/Tp0yfsMrL5vZwmMfZlJxJpfVhUlrpIQGPO6NGjMWrUKOVvjagLZuTIkSgqKkLLli2VKVBU7lfaJi4aUDiSaGxfsGBB0Ge8CBWhesmJJE6ijsRVz549hceTqAtHTLHx8r1798a///1v3HbbbcJyOmEsdRx//vknunfvHvQvJycH+fn5GDJkCGbPni2dSMePH4+8vDzrnypoOVyaN28uNLmqrGo6lrq1a9fiu+++s30WiW1gKEjUyXzMQ+Vt1aqVVkJFGatXr7Ysp7J8SyrCtdTx9/3kk08G7TOpGxQss9TddtttePrpp6XliQZOQkA16fLW22hN0E7Jh0OB+kKk3K9Ok1gou2voUlWWOh3R7lbU0a40NRmPx6Nl3VKJOt5SF0lUlrqrr74aCxYssMXrUXtw2twekIekRAodUXfgwAHcfffdwuP5LQ9DgX1B9vv9mDp1atBcq/viVR0sdbGXlQxNmjSx9lhjoc3hJ02apAwmTUpKqtKAdZH1iyo/VEsdm8mckC2UAOxpFFQNau7cuUEBsSyyCYWu7SZpqQjqDMXFxRHZxxWofMbjx493dQyLaqcIYvr06ejVq5ftMzYuia3PGTNmKK8XSSJhSalKURfpwe7555/HueeeG9Zkyb4sOQVcs9vShdsXeJzidcJFllxaVRadtlBcXFwtLBPVBdWewbK9tSOBk/v16quvtr1IU3tQhfPILNdJSUkhhc/I4EWdaMxW9fFIWupU56C6dUoAHm3Lpg5x0SPnzZuHVatWoaCgAA888ABuvfXWoB0RYgE1Bt2YOnoTcIvKUnfjjTdi1qxZtmuLaNiwobWiyQ2Rds2FGoMmem6i7PxOx7DoiDqRu6o6uV8j8bto30P9+vWtjOuRomHDhsItvEKBtcLoWOoi6aZmrxktUUfnj7Soi1U8aXVFZakT5SeMFMOGDcPPP/9s249cBbUzkQGBkFnq/v73v+Pdd98NsaTBsKIuKSnJdR+ItPtVdZ0XXngB/fv3F35PdR2pPrx06dKQx+W4EHVsZufqCNugqFJl7tdIpjQBKi0WP/74I1atWhVWw3bK2B3picwtkbLusfD3pPv8WFEXrYn4wQcfDHIPs0ycOFErHk3HUheN1a8sd955J26++eaonDscqD9deOGFVlodmahjP490SqVou1+jJeoMdmT1WFFREbVxAqhc0f7CCy+4Ombt2rVo27at9HvZ2PnWW2/hmWeecXUtFbyoU3HSSSfhoosusn1G7lfdPY1F6FjqAOBf//pXyNdwy8UXXxzysXEh6qorNPCJBnyRVa19+/aoX7++6+uoLHVer9daNRVNf36kXU5uCUXUOQloHUudiKoQdU6LUu644w7hnrA8OqKOnlO0JvK0tLSQ9y2NJnXr1sWBAwfQsGFDa99lHUtdOBOIiKqy1OnUr5vfyti2bVu1rO9ow7tfzz33XOzcuTOqgi5UVFY64Nicw4+RSUlJWvvl6uJG1G3fvj3oM7LUFRQUhFwG3UVnOueoDhhRFwYikyvFt4kE2Lhx40K6DsUkyYQNXT+cRkk5wwYOHCj8Ph4tdbqijrZhC0XUVXeqg6irzlC8Dk1isgm4KkRdtCx1OglaCZ3tv5yIpquxOsOL8//+97+4//77Y1mkkJGJukjjRtSJ6NixI4Bj81co6Lhf44macRcxQiTqKPeZ00pVN3i9XqSkpDhOOOE0ytTUVOVAHo+izinvE4mzxMREFBUVaU+qkZ7Uo4mbhRKxruNY4rQgKJ4tdaeddhoeeOAB277GTtRGgR8uokUFJ5xwQoxKEx40JkT7BbZJkybYtGkTvF5vSKJuwIAB2Lp1q9KV7ISu+1WH6mCVjf1SjTjm3nvvxYknnogGDRpYn5Goi+QqXJ/Pp1yppLOpcbiMHTs2aufWIRRR51QH/EIXXVEny5NYHVEJtaqKqYsH6BnI4uWmTJli/X+kRV20V796PB5MnDgxLGuGwRnZDjTxSFVZ6t5++23MmzcvZFEHICxBB0TG/VqdMKIuDM455xz8/PPPNsFB7tdIizqV5S8S7lcVgUAgZNdxpIjGvfGiTvca//znPzF16tSIl6eqqaqUJvEATWIywTZmzBisXbtW+ZtQibalLhRqc1sIlUjEI1YXqspS17BhQwwYMCAsURcukbDURXr1azgY92uEke0dFw66ljqDO8hykZ6ejoMHD2o/R4/HY626ilVKE11osHn22Wdx6qmnCn9jRJ19T1wZ7H62kSTaMXWhUBuSCkcayqFaE1K9VJWljvB6vTGzlJmYOoMSstRFWtSpLHXVJe1IVdG6dWsrQDYcxo8fj7Zt22LOnDnYtWuXq0n1tttuQ0VFBXr37h12OaIJCbUBAwZYu4rw3xn3a2WKmMaNG1sbmYugPh1pS50qaS0ALFu2DM2aNYvoNVWUl5dXC4tDvDF16lRcddVVUd09oqqIVNJ5Xbxeb8xElXG/GpTEIqaOLDCxMl9XNfPnz8f8+fPDPk9SUhKuvfZaqzO7EXVJSUm4++67q/1AoNrz17hfj5GWlobRo0crxUy0RZ3s2r169UK7du0iek0VCQkJRtSFgN/vR5cuXWJdjIhQ1Yun4t39SlSHfmNEXYShIPomTZpE7JxOlrpJkybhu+++sy3YqMlE2uV54oknRvR81QmdAcusftWDnlOkRV11iscxGIDYuF9jLerCCX+oTi/Exv0aYQYOHCjN9RYqxx13nHLA9/l8EXFHxgtuzPRPPPEEFi5cqPzNQw89hObNm4eVxbu6orLUUZvp3r277bcGMdGy1NGkYkSdobpQ1S96ycnJMUtYHcn+Vx36sBF1ccDMmTNjXYRqhRtL3d133427777b8XwjR44Mt1jVElW8SLt27WxCzog6NdESdaKdaQyGWFLVlronn3wyZovOInGPN9xwAxYvXlwtDANG1MUBNWVVTrgkJSWhuLjYPA8XqCx1st8axJCoi3TweJMmTdCmTRuMGTMmouc1GEKlqhdKyFbmVwWREHVZWVlYtmxZBEoTPmZ2NMQN6enpRtS5RHdl18CBA6t0w+p4JFqWhMTEROzYsSMq5zYYQqE2xdnWtJdZMzsa4oY6deogOzu72ueGq07ouvbmzp1bFcWJa0y7M9QWqtpSF0tqmqgzQRyGuCE9PR2AcUe7oaYNWLHExLwZagtk2a8Nlrqado9mlDLEDSTqjMVEn86dO8e6CAaDIc6oTQnta9qLrxF1hriBdm8wok6fl156Cdu2bYt1MQwGQxxBoq42uF9rGkbUGeKGCRMmYO/evUhOTo51UeKG5ORknHLKKbEuhsFgiCNqk/t17NixsS5CRDGizhA3JCQkoGnTprEuhsFgMNRoapOl7rHHHqtRLlgj6gwGg8FgMFg0bNgQLVu2rHFWrNqAWUZoMBgMBoPBwu/3Y9euXbEuhiEEjKXOYDAYDAaDoQYQV6LunXfeQVZWVqyLYTAYailerxdXXnllrIthMBgMQuLG/VpRUYH58+ejefPmsS6KwWCopZSVlcW6CAaDwSAlbix1b7/9Nvr376/M6l5cXIz8/HzbP4PBYDAYDIbaQFyIuvLycsybNw+DBg1S/u6RRx5BZmam9c9Y9QwGg8FgMNQWPIFqlKDlzz//RP/+/YM+HzZsGLxeL/7v//4PnTt3xrp164THFxcXo7i42Po7Pz8fzZs3R15eHjIyMqJWboPBYDAYDIZYU61EnYxx48Zhw4YNSEhIwOrVq3HTTTfh6aefdjwuPz8fmZmZRtQZDAaDwWCo8cSFqGNRWep4jKgzGAwGg8FQW4g7UeeGQCCAgoICpKenw+PxxLo4BoPBYDAYDFGjRos6g8FgMBgMhtpCXKx+NRgMBoPBYDCoMaLOYDAYDAaDoQZgRJ3BYDAYDAZDDSButgmLNLSIwmAwGAwGgyEecFr4WWtFXXZ2Nho1ahTrYhgMBoPBYDBo4ZSirdaKusTERADA77//bnLYxSG0W4ipv/jD1F18Y+ovfjF1F/+kp6crv6+1oo7MlxkZGaZxxzGm/uIXU3fxjam/+MXUXc3FLJQwGAwGg8FgqAEYUWcwGAwGg8FQA6i1oi4pKQmTJ09GUlJSrItiCAFTf/GLqbv4xtRf/GLqruZjtgkzGAwGg8FgqAHUWkudwWAwGAwGQ03CiDqDwWAwGAyGGoARdQaDwWAwGAw1gFor6u655x706NEDgwcPRklJSayLYxCwfv169OjRA+effz4GDhyI0tJSzJ07F127dsWFF16I33//HQCwZcsWdO/eHV27dsWnn34a41IbeN555x1kZWUBgKm/OGL58uW46KKLcP755+ODDz4wdRdHVFRUYOjQoejRowfOO+887Ny509RfbSFQC/nuu+8CgwcPDgQCgcCDDz4YeOutt2JcIoOIffv2BQoLCwOBQCAwfvz4wLx58wJnn312oLi4OPD1118Hhg0bFggEAoGrrroqsH379kBeXl6ga9eusSyygaO8vDzQr1+/QMeOHQMlJSWm/uKEoqKiwOWXXx4oLi4OBAIBU3dxxvr16wODBg0KBAKBwNKlSwOjR4829VdLqJWWutWrV+OSSy4BAPTu3RurVq2KcYkMIpo0aYLU1FQAgN/vx/bt23HaaachMTER3bp1w6ZNmwAA+/btw0knnYSMjAw0aNAA2dnZsSy2geHtt99G//79kZCQgB07dpj6ixNWrVqFlJQUXHHFFejbty++/fZbU3dxxPHHHw8ACAQCyM3NRVZWlqm/WkKtFHW5ubnWFimZmZnIycmJcYkMKn777Td8+umn6N69u21rm/LycgCVAxdh6rP6UF5ejnnz5mHQoEEA7P2OvgdM/VVH9u/fj19//RUffvghhg8fjilTppi6iyMaNmyIhIQEtGvXDmPHjkXPnj1N/dUSaqWoq1evHvLz8wFUTjT169ePcYkMMvLz8zFkyBDMnj0bjRo1suoNALxeLwAgIeFYMzb1WX148803MXDgQKt+2H4HmPqrztStWxfdu3dHYmIiLrzwQmzYsMHUXRyxZMkSpKSkYNu2bXj33Xcxffp0U3+1hFop6rp06YKlS5cCqGz83bp1i3GJDCLKy8sxePBgTJo0CSeffDLatGmDLVu2oKSkBCtXrkT79u0BVLppd+zYgfz8fOTk5KBhw4YxLrkBqAzCfv3119G7d2/s2LEDs2bNMvUXJ5x99tnYsmULAGDDhg245JJLTN3FGfXq1QNQKdCzs7NN/dUSau2OEvfccw/WrFmDFi1aYPbs2UhMTIx1kQwc77zzDkaMGIEzzjgDAHDrrbciEAhg+vTpSE5Oxuuvv47mzZtjy5YtGD58OMrLyzF16lRcfPHFMS65gadz585Yt24d5syZY+ovTpgxYwbmzp2LhIQEvPLKK1i7dq2puzihvLwcQ4YMwZ49e1BcXIynnnoKv/32m6m/WkCtFXUGg8FgMBgMNYla6X41GAwGg8FgqGkYUWcwGAwGg8FQAzCizmAwGAwGg6EGYESdwWAwGAwGQw3AiDqDwWAwGAyGGoARdQaDwWAwGAw1ACPqDAaDwWAwGGoARtQZDAaDwWAw1ACMqDMYDAaDwWCoARhRZzAYDAaDwVADMKLOYDAYDAaDoQbw/8dDFFGyhax6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdeZxO1f9/PzPPrMxMxk6SLVJZKmuWiFJKkiUl38oSLaKoUFJERWlXSSqkKKRVESohe0mhlH1fZsaM2Z/fH/P7XOee55x7z73Pnf28Xy8v8zzPXc499yzv8/4sxxcIBALQ0NDQ0NDQ0NAo1ggr7AJoaGhoaGhoaGiEDk3qNDQ0NDQ0NDRKADSp09DQ0NDQ0NAoAdCkTkNDQ0NDQ0OjBECTOg0NDQ0NDQ2NEgBN6jQ0NDQ0NDQ0SgA0qdPQ0NDQ0NDQKAHQpE5DQ0NDQ0NDowSgRJO6QCCA5ORk6PzKGhoaGhoaGiUdJZrUpaSkICEhASkpKYVdFA0NDQ0NDQ2NfEWJJnUaGhoaGhoaGqUFxY7UzZs3DxUrVizsYmhoaGhoaGhoFCkUK1KXm5uLTz/9FDVq1CjsomhoaGhoaGhoFCkUK1L30UcfoWfPnggLK1bF1tDQ0NDQ0NDIdxQbdpSTk4P58+ejT58+0mMyMjKQnJxs+leccOTIEdxxxx3IzMws7KJoaGhoaGhoFDMUG1I3Z84c9O7d21Klmzx5MhISEox/xc1MO2XKFHz00UdYv359YRdFQ0NDQ8Nj+Hw+zJw5s7CLoVEM0LNnT5QvX97xecWG1G3fvh0ffvghunTpgl27dmHEiBFBx4wePRpJSUnGv3379hVCSUOHz+cr7CJoaGhoaOQDpk6dWthF0CgG+Oyzz3Dy5EnH5/nzoSz5gueff974+8orr8S0adOCjomKikJUVFRBFktDQ0NDQ0MZetGukZ8oNkodiw0bNhR2ETQ0NDQ0NBxD73CkkZ8olqSupEJ3dg0NDQ0NDQ230KSuCIFInZbnNTQ0NEoW9PiuURDQpE5DQ0NDQyOfkZubW9hF0CgF0KSuCEKv5DQ0NEoCvvnmG7Rq1aqwi1EkQKROj+8a+YliE/1aGqB96jQ0NEoSHnroIezatauwi1EkoJU6jYKAVuo0NDQ0NPIF7EJ1x44d2LRpk+Nr5ObmYsqUKUhPT/eyaAUOvWjXKAhopa4IQTvSamholCSwRGbSpEnYu3cvVqxY4egaP/zwAx599FEEAgE8+uijXhdRiJSUFPh8PpQtW9aza2qlTqMgoJU6DQ0NDQ+RkpKCd999t7CLUaQQCASQmZnpSm2jvbAzMjK8LpYU8fHxqFixoqfX1D51GgUBTeqKIHSn1yiNeOONN3Dq1KnCLkbIePTRRzFo0CDs3bu3sItS6CClLjc3F7m5ucjOznZ9rYIeF70292qlTqMgoEldEQINgNr3QqO04cCBA3jggQcwfPjwwi5KyEhKSgIA5OTkFHJJig5ycnKQm5uLrKyswi5KoUErdRoFAU3qiiA0qSs9GDlypCvn8ZIGIkBnz551dX5ubm6R6zd68j43luXk5CAnJ8exUrd161YcOHAgP4pW4NBKnUZBQJO6IgTWVKFROvDiiy+iV69ehV2MQkcoQUKBQADh4eF4+eWXPS6VOxQ1clmY4M2vTpW6Jk2aYPDgwflRtAKHbhcabuCUD2hSVwShSV3pAA3yfv+5IPQlS5bgzjvvLKwiFRpCmfBI5fvss8+8Kk5I0FHswdDmVz2ua7iDUzcOTeqKELRSV7pAnZUldd27d8ecOXMKq0iFhlCIUFHzXdOKzDmEan5lUdxJsh7XNdxAk7oSAD0plA5QqgaW1JXWd+8FqStqk76exM+BN78uX74cPp8PJ06cKOSSFRx0oIQYZ8+exbvvvltqxz47OF0IaVJXBKEng9IBInXh4eGFXJLCRygTXlEjdaw6VdrB1gWb0oRM5f/9919hFa3Aocd1MSZPnoxBgwZhy5YthV2UIon169cbEfUq0KSuCEJ3/tIBTerOIRRiVlTJk+7HZpeSnJwcQ6mj9+xEnSkqpN0tVJ513bp1pU6xSklJAVCwyaXd4o8//kCvXr1C6tvp6elITU1VPr5jx47o1q2b8vGa1BUhaJ+60LBz585iNSDSBMeaX0srSMEpTUpdbm4u1q5dWxBFyhd8/vnn2LNnj9KxvFIXFpY39RSn/hoq7Mb1H3/8ES1btsT8+fMLqETeY9y4cY5zTVJbKA7z3siRI/Hpp58aRNQJ0tPT8eWXX6Jx48aOt5/77bfflI/VpK4IQZM69/j7779Rv379YrM9008//YQFCxYA0KQOCE1tK2qkjvDrr79a/v7SSy+hVatW2L17dwGVyB3S0tKEZtLu3bujTZs2Stfgo1/pXZWmsc7OxeDIkSMAgP379xdYmbzGhAkT8Morrzg6pziRulAwb9483HTTTdi5c6fjc50sfvRsUgRRnFevp06dQmRkJMqUKVOg9z1+/DgAYNu2bQV6X7do166d8bfP58OKFSvQoUOHQixR4aIkmV+p/951112oXr06OnXqJDyOVt9eb0flNfr27YslS5YIxyXqdzJ4aX4tzli8eDHWr19veUxpqQsexYnUhbLrk1N1TnRfFWilrgiiODRuGRITE3HppZcW+H2LwySRk5ODkydPBn3/008/oWPHjti+fbtn9zp48GCxckL3gtQVNaUOgOX+r2fOnAHgfheNggKZiEV9y67O+UCJQCCA3NzcAumvv/76K/766698u74TzJ8/H7NmzbI8prTmNyxOpvhQrGmhzOua1BUjjBkzBr1798aOHTuQlpYGoHiSumPHjhmTa2GQieJA6h577DGUL19emsaBJnknWLVqFf7444+g76tXr45atWo5vl5hoST61AGwTLZLztJOnKYLA6QwiBRFmpDtQKQOyKsTNxO50/fbokULXHzxxY7O4eHVeBIIBJQDAYpKOy4oUFsoaMX90KFDiI+PV/YLZfHzzz87PodPTeIkVUmJJHUbN25E27Zt0b59e/Tu3bvEZCafPHkyFixYgAYNGuD9998HUDRJ3aRJk7Bw4ULhb4FAAJUqVcK4ceMKuFTnUBwGwi+//BIAsG/fPuHvbp7h6quvLhRl1GuURPMrcC7CWQQi8cWF1InSKqgqdWR+BfIms+LiU+dV28rNzTVInazOivKCND9RWG1h2bJlSElJwRdffOH43Jtvvhnr1q1zdA5P4pKTky2PZ9tJiSR11atXx9KlS7Fq1SrUrVsXixcvLuwi5RuK4kA3duxY3HrrrcLfqLEuX768IIskRFEeGGkhYjXRl1YUhPn1008/xcCBA50XLgSEotR9+umnrtRbr0Gk7vTp08Z3NEa5VercTOSFsXDzqq+ypM4OxWGB6iUKy6fO7T7ThGPHjjk6lyd1bH8SocSTuipVqiA2NhYAEBERUaIjBosiqbNCfqmmWVlZ+PDDDy0b9IYNG9CwYUOjwxQHUierLy8G8/feew+///57yNcpaISyfZQqqevVqxdmzpzp+j6qUDW/kruFiLidOnUKvXr1wkMPPeR9AR1CpNTRc4VK6kJ57wUBL0ldKC4GLMaOHYvHHnvMi2IZSElJKbQobMrTWZBj9xdffIEdO3YU6H151deO1LF9ywknKHbMaO/evVi2bBmeeOKJoN8yMjJMqyE7ebOooigTExFosLIbALdt24bff/8dffv2DfrtxIkTiI2NRUxMjPHdtGnT8Nhjj6FevXpo1aqV8JrPPfcc/vzzT2PVVJTrjupJtmL3gtQNGDAA0dHRIV+noFGSzK8srEgdtQeRUkfPdPTo0fwpmAOEQupk5lc6z8mCsDAULK8WrF4u1CdNmgQAeP755z275vXXX4/Vq1dLx8+5c+ciOzsb//vf/zy7J6EwzK9sMl+3c4bT85wqdeHh4a7EimKj1AF5JO3OO+/ErFmzEBEREfT75MmTkZCQYPyrUaNGIZQydBQ3pY4aniwhY3p6Oh599FFcdtlluP3224XHVKhQAZdccgnKly+PZcuWYeHChUZAgRVZpMmhOCl1+UnqgKJNcmTID/PrN998Yztw5gdUlTr6TUTqilLgD6UnEpE6n8+HQCCADz/8UNiu+ehXOpfvtyLw46CTuvBqlxavlDqVssuO+fXXX6X+zF5h9erVwu8rVaqEt956C/369cNdd92VL/curEAJQkH1Mb6t2239VeLNrzk5Objjjjswbtw4XHTRRcJjRo8ejaSkJOOfzCE9P5GRkYFvvvlG6VhZIy5upI4GeJn/z5w5czBlyhTb6/z77784efIkOnfujFtvvdWoHys1gBo+lcFJ4+/YsSNeeukl5eNDhR2pY997KANNZGSk7THr16/HwYMHHV97xYoVSEhI8Nzk7tQMd+LECbz22msA5KTu5ptvxieffBJ0bkESJRVSJ+o39ExFgdSR2wsbJcjuDLFx40b873//w4svvii9Bkvq2EAJq/fuZpJfvHgxRo8e7dkYevz4cfz5558hXycU38EWLVpI/ZnzG8eOHcPYsWONz/kR1FOcSF0o/dFp9Cs775VIUjd//nz88ssvmDBhAq6++mrhYB0VFYX4+HjTv4LGmDFjcMMNNyhNmDIVwemANGbMGKxatcrROV7CTqlzO8BSJ7dadVPDd7Oi3rdvn2UeMa9hR+rYQc1NndH5KqSuefPmaN++veN7vPLKK0hOTpamZXELp0rd/fffj2HDhuH48ePSySArK8s0CVE7cqu+nDx50jbXGKAe/Wql1BW28jx16lRjcUplGDVqVJBfqM/nM9xcROOZyPyq6lPHv1eVurjlllvw3HPP2R6nimuvvRYNGzZ0de7u3bvx+uuvA1Drz0U1T11ubi4qVKgAAJb+um7bqopqm58oLPMr+zkzMxP16tUzJahm570SSer69u2LEydOYOXKlVi5ciX69OlT2EUSgkiCSgM9deqU8HunE/qsWbOwbNkyR+fwyMzMNBy3nYL3DeIHJbedhupBhdQRUXJyL3bbooIA3Uu2gwDbZtyQOqoDO1JHyW4PHDjg+B7kr+d2xZ6YmIiWLVsGfS8idYFAABMnTsQ777wDIK/e+vTpg6NHjxr3Z8mCyFzBEmgKrnKb7Pe+++7DPffcg507dyqrnCtWrJBum6RC6vJDtQ8EAli5cqVlXxk1ahRuuOEGAGZyRfXJkjoic1b9VKbUWfU/ntQVhAXjgw8+MLWjUHwau3btigcffBCAuezFLaVJbm6u4Vdp1e/djqXFldQdOXLEUcJ4K1J39OhR/P3333jhhReM70q8+bW4QIWIEGQkymkjcxIuL0OrVq1cb+3Fd+aoqCjTZ7edRkW9oQGBJuriQOryS6mjOrAjdf/++y+AvDRBPL744gssXbpUei6ROrdBSKdOnRLmdxJFBqalpeHJJ5/EvffeCyBv54358+fj9ddfN6VBYOtt7969+Prrr41N0VkCHSqpo2euX7++sO4IbBvctGmTdINzt+bX3bt325Lql19+Wdpvvv32W3To0EHJT2vcuHGmd03KIxsoQXuWihTTUHzq+N9CNc8dP34cY8eOtexb7733Xkj3+Pvvv+Hz+XDgwAFTvRX11C1WYMtu9Q5mzJgR9F0gELAdk90EzWRmZoYsFoSKwYMH45JLLlE+nq87at9JSUm4/vrrg8pW4s2vRQWnTp2SKmyAM18Yr3zqcnJyQiZ1mzZtcn0uP/jypCJUUmc1kFDDHzZsmON75eTkFMrqUPaunCp1/DGqpO6ff/4BICZ13bp1Q5cuXaTnEqmzc/J1ChGBtzJd0nG1atXCoUOHAADfffcdatasia5du+K2224DEDqpY9uT6mSr2gatSL7M/BoIBFCnTh1bp3UyE4vqkPZrpXqzwoQJE7BgwQLjs4jUkZrFb4E3e/Zso669ML+GSuoee+wxTJo0Cbt27ZIewy9IneKrr74CkLfjANWVCrEBioYvtagMbL2zfy9btsy0AHzggQeCzu3Tpw8eeOAB+Hw+TJo0CXFxcRgzZozpGJ7gr1q1Cpdddpm0zrKyshAVFWWYtp2C7xOF5VNHdfn1118be5az9V/iza8FhVdffdVysEtMTERiYiKAvMlBNvCoDEBekjq3fkLlypUTdkYn4FdYvEoZKqmzMhPyQRReKHXJyclo3bq1q0ACFagodSrPwZedJlCrienrr782lLrzzjvP9h48KOVMYZM6Qnp6uol0iH4nOCV133//PcLCwhwHXKlGOlqNFbLFIREomgREmD17Nn777TcAwUQLMEfWvvbaa46UId6nLjs7G+PHjwcAk5/lH3/8gf79+xt+tl4ESuTm5mLhwoWutnUCzimtVs/rltSJlCOqo9zc3KAxPS0tLWgcYNXqrKwsS/KZXxCNhzKlrnPnzpYLQCDPKrBmzRoAefn1zpw5g8mTJ5uO4dvCU089hW3btkktWfQ97dDjFHy9F6VACdkiUpM6l0hOTsZDDz2EunXrKh3fokULw9+HUFikzq1Sd/r0abzxxhuuziXwjdMr8wFN6r169cLnn38uvK8bUpecnIzdu3dLSd3KlSuxZs0afPDBB8LzV69ejdq1a7tW+bwyv8pInUyp27NnD7p27YrRo0cDcBcwEKr5VQZRX7Ayx7Bt7O+//5YeR3WdkpJiEAwRqVu3bl0Qefvuu+8AnIv6DKVdyyZ8QDy4y5Q62qC+Zs2a0nv179/f+FtE6ljTNSl6duMVEWJqM1Q+Mr0C5xRAILiN8+ZXNmedDKIF86233orOnTtbllUGeu9WpF7Wd/j3kJ2dbQQN5ObmIioqClOnTjUdR3WQnZ0d5FNXpkyZoH1pWSJPWR5k/rf5hejo6KBnlSl1KkhLS7PtNyzZB84Ra5mLAb0/UVozHosWLUKDBg1M34VC6kKBCqmTmV+dQJM6BjRgqQYMHD58OEhFopdi1fizs7NNK3UeTkmdFz51hJycHGzcuNGROsE3Tqf5pWTPyz4Tr0ykp6cjIiIiyAdGpYN27NgRderUQU5OjpA4kNIoK9ekSZPw77//uiY2XplfeVJmR+rovtS+3fqWAd4rdSKfOv7dsL+xf1spGjQp1q5d26gv0XO3bNkyaJKl+qJJJhTzK/8sdqROptQRqatatapSWVj17LbbbsMvv/xiInUs0bICkXne/Epo166diUDydcUnH2ZNsTLIrCBu+x21e6vxXabU8WUZO3YsGjVqhNTUVOO3Rx99FCNGjDCOYQmwqD+TYk6gdpCTk2O858JIy8W/k9zcXON9OiV1Z8+etR1n+DZI45csRRa9P5VdpUaOHGnsHEHwaq4kqM7XTkmd21yLmtQxcKpcZGdnB52jsgKNiIjAuHHjioRSxyMlJQVXXnmlrQPo77//jq5duyInJydoUuUHBTuiJRvY2VUqP0nwHdUJNm7cCEBsfn388ccNJ3u796O6kpo1a5YpqsmNUhcIBIJSRshInWxi4svrRgWge+aX+VWWDuS7777DH3/8YRzDtgerSZ6ekVWRZJMMrwzQ/WmSCUWp44mEW6WOnkNVJWaJ1ieffIIBAwYYz7F161Zs3boVgP3YR7nqZKSuWrVqpmvwdeVGqeN/ozp0u2MKvXc3pI4vC5kUMzMzhePE2bNnTQt8lehX1spDLj7k/1qQEJE6guhZX3rpJSGJB/LqwS6oh28LdkodvT8VpY76j0hB5Y9RgehY1m/0ySefFKb2SU5Oxg8//GD6TrSQtVLqbr75ZqUyalLHwGkkpBWps1vRzJs3T0renMrBXpI6miBTUlKwefNm6XGjRo3C119/jc2bN+OOO+4w/cbW46lTp6QpHUTHs2CfiW/gslBypz51/GD9/PPP48MPPwRgT+pUyfc999xj2qtRRqasSN2LL76IcuXKmQgJ3/boujKljh943Sh19E68NL8GAgHDP4atA7ZdXHfdddIoUiuI6pp97nXr1kmJBdUvrZhDIXV8XdOzRUdHO/Kpo7LSxBYIBNC6dWv8/PPP2L9/f9B1+HyCrMsC615gN/aRL6Vs/+LY2FjTd1akjlWunJhfabJktxJ0AnoHViRD1nf456VrZGZmCp/h7rvvNv4my4wdWKWuXLlyAICdO3fanuc1rBK5i9rqtGnTTJ8rVKiA8PBwvPXWW0hLS7MldXxb8FKpo/Ky46nX5ld6vt9//x0TJ07Ek08+GXRMjx49sGXLFtN3TpW6JUuWKJVHkzoGTkkdG6BAEU4q5lc6XnbME088gR49ergqB4vx48fj2WefVboGDcKsAkMO0CJQQxYFMbBOw7fddpulzxMdL4KVUkeqDQ+n0a9W71xG2lQmJCvICDjt6QgA/fr1w1tvvWV8Xr58OYBzdbJ06VKT+gTYm1/551FR6o4dO4ZBgwYZ7yg/lLqvvvoKX3zxRVAZZe9m4sSJytsmieqa6uno0aNo2bIlnnnmGctznSZGFrVBmVIXExPjSKmj8+gZsrOzsWbNGrRt2xY1atQIUgl4nzqRHypgr9TZmV9jY2NN1xC5ZLAmVzc+ddTmnCp1rGoEWCt1MqLAl5MIh0yp489VWQCKlDrW7cTuPvfdd59BBkOBU1LHjjeXXXaZMS599913OHv2rK07k1NSR3OPilInci9wK4CcOnVKWCdUHkoJJvJjpfGbhTa/FgBCMb/edtttCAsLsx2s6KVZkbrjx49j0aJFyuWQ+dQ9/fTTeOKJJ4yyZGdn46effhJeg1a/7KRgNXFTR5U9Jz0bOZtbwY1SJ9uNw8s8dXakzm2KBdmgQmZhIG/f0qFDhxqf2bD/rKwsdOnSBVdccYXpfDvzK/+uVEjds88+i3fffddIeUNlZ1ffO3bskO4mAgBTpkxBs2bNpG2FJf1snXqx76boGb/88kv4fD4jyl1myqdnpfftpVJHdSEjdTKljtor9T8+6TjfLyj9El2HjTxlEar5tUyZMpYmZZn59fPPP5f2Wa9IHZ/024pkyMYD/nlYpc4pqZM9L6vUxcXFATDv4GAnOkyfPt2TvY7ZqF0C+f/ZkToqN5Dnx5qVlWVrEeD9K71U6qiurUidypyRkZGBxMRErFy5Mug3Pum+6juwI3Wud+hwdVYJBfviVfPM0SDH+2HJOjq7Ag817xJwrhFYrT5I1ZoyZQratWuH3bt3Bx1DpI5N50ImNhG5oY4lG2hUJuRAIIAJEyZIU4ewz8SvWrwwXdspdXbmV7fvLz093ZgkVUEDhszcA5wjDitWrBD+zp+nYn6lFBq05R69V3bAbdCgAdq0aSO9xqOPPooNGzZI2yhrIlRR6pxAROrmzp0L4JzKbGd+zU+lTmZ+tVPq0tLSsHXrVmPXBwKvEvA7rbCJf0XXlUHF/Mr2ef533vxKz7xu3TqEhYXhs88+C7qnzPy6du1a/Pzzz5blZUHl4gOFRJC1Uf55QlHq7HaUycnJMd4Xq9R5scjhsW3btiCfaLqPXc46AkuuWFKnaiaXRb/akTonSh3bx/l3vH79elsXIav5ld3dBlC3YtiROrd5CzWpY2DnvMyCSBn/su0mfPYeXpA6uoao0dHgTSrKf//9B0DcWagjsQSLSJ2onNSQZY3dagCiAevkyZMYN24cvv32W+FxVuZXWd2F6lPH/y6Ck7Q1Ihw6dMgwr6iC3Q7NjtTJBhW+vCpKHZE6mmjonJSUFLzzzjvGZ8qLZgVZW2HNyDKfOreweka798iTOlVYOVMTVM2vfBtkSZ3oPfN1zKuNMlLn1PzKl5n3qRM524vMrwSyTLC+mvw92DbWtm1by/KyoDKrKHWyerAyv9rNFTypk5EVtj3S8eyx+bH7zWWXXYaLLrrI9J1IqePLyNYT+y5ZUqdKbmTuLE6UOrt91LOystCtWzdcdNFFQX1k4cKFtv66VvMKzYVUD16ROq3UuURERISxvYnVoMRD1LgBe38r9nsvSZ1oMKJGr7JPJ5Wb3S2DTRzKgzqWrOOpKGBUFzLTnZX51Uqp++STT4yUAFawM7+qKnXr16/Htm3bcNtttym901WrViEtLQ2BQAA33XST5bEUnUjPb6UMiNoAq9Dwg5kTUvfCCy8gLCwMixcvBgD88ssvuPfee00+m3bEQHY/mVLnhTKRkZFha+6S9VU7nzrZda2UbYIdqbMLlDh79qySGZVX6mTPamelIGV5zZo12LBhQ1C/iYmJsRw/ZUodISIiAp9++ikSEhKMNB5Ox0fZOMKnsrEaD1VJHTvu2pWTj36VjZlsexRds6C2NMzKysLp06eFgTcff/wx2rdvb2rPbN2Qog+4J3VW2+ddccUVQbup/PPPPyhXrpwwlylL6r744gvs2rVL2adu9+7dRpuxesd2Sp3sXFEQh1bqQkQgEEB2djaee+45ABCaDzIzM/H666/j2LFjpnNlZKoomV95UmdlPqKysKRORamTDVBWEzLfiWXXsCJ1Vh3ltttuw5VXXim9P3tsqKQuNzcXzZs3x2WXXYZPPvlEaesl4JyZzM4ZtkmTJgDUlDrRs9AzxMTEoGXLlqbfVCYkInVz5swxfU+DHRudZ7V9HqBG6vJDqZNN4qy5i7Bo0aKgPiUjdSoLN0JaWhqWLVtm7HsbaqCETG2yU+qSk5OFYwXbX0WTCZnSnn32WTRr1iwo0jU6OtoU5anqU0eIiIgw/JVYdVgVy5cvNxEK/tlYVxlZ3W3ZskUagGPlZqJifmXfI413vHlSpNQBQPny5aVlmDVrltICVgTZM2VlZaF+/fqoV69e0G/Lly/Hjz/+aKpD9jpulDrep47+F/VbdjtLep+UCYH1PySomF9lqFOnDvr27Wsqowi8Urdv3z6DU7Dl5CFaVGpSFyLo5RL5YRvn7bffjkAggGeeeQYPPvigsacfgV5EKKTOi73+rMyvMqXOKqqJnZjT09OFA/D8+fONCdoNqVNV6liTlar5la6pqk6GGv0a6m4aqrnuWJ86u2dnYdceZQMcvVdRJBcLlsTK2gJ/L76O2AkiP3zq7BQctm569OiB2bNnC3/ny62Sb5Bw9uxZdO7cGS1btsS6devw66+/AnCe0oQldaK2ZkfqAKB3795B51lFrlI5ReUA8ggZ+TfJfO5kyYfZa/B5AZ2Quu+//176W2ZmpmlBwZO6I0eO4Pjx43j33Xel17Dyu3RqfqXn5P1q2UUGe/wFF1wAILhOMzMzcc899wjfpwrIp5T3TcvKyjKItQwypc4L8yvVD5+OhwfVB5leRZG/oUa/UiCS1Tum8YV9Z6NHj8ahQ4dw6tQp16ROm19dgLfNsy/+66+/RkZGhjFp8R1KRup401xWVpbJTy1U82tOTo4wWtCqodJzOlXqgLwGy5eTdVKWTZgiMkjgO7HsGuzAoWp+lXWg4cOHB+X5IaVWBtavha1f9h3zz+iUqKuSOhWlzorUySBTz2hwtiNWe/fuNf62ioAF5Nv7sOTda6UuIyPDdtHA1xsp1KzD+IQJE/Dpp58GXVsE9hkoGz+7yGjZsqUR2RyKUueW1IlA1929e7dwL11eVeJJHRGx3bt3Iy0tzdL8KlPqqKw7d+7EL7/8Ytt2WXMbn96HRWZmpqmN8aSuSpUqqFSpkuXOJKEqdVbqJ0Gm1BGp48c2Uqic+ucSqO9Wr17d9L2K2wPbp9jnZ8vC+7nVqFFDeC161szMTIwaNcqItJ07d66SqZzuk5CQgH///Rf/+9//gkybTpU6Ol/F/EpzJv+Oq1WrZtrJhgdvbuavoZU6F6AGQyYwvvIzMzONChftZUjHsAMvScD0woYPH27qNKGaX5999lnUq1cvyDTKlo+P9uI7hqix8KseQnJyclA5jx8/buynx6szlKuHVD4ReLldhdTt2LHDlLdNVneypLivvPKKMCO3lS8R3SMuLg5XX3218b0VqXNKRFRIXSAQUPKpsyIHMoSyVRhgXo3bKXWsc/l5550nLMPixYsNk65XKU1k5aL78u+MFnms+fX5558POl9WPvb9+Hw+1KlTRxpI4jalSXZ2tnByckvq6Fk6dOiAO++8M+j3yMhIU1tl68zv9xtE/eKLL8aNN97o2Pzq9/uNsvbs2RNXXXWVsF5YNaZ79+4A8rZOmzlzpvTZ+K2qRAuZQCBgmU9TthjPyMiQ9sfLL7/cOFdU/3w+SVapY68pU+ooOTy/t6kqiIwkJCSYvlcZw1gVja1bVtHllTo2sIHa9bfffmvsH3zw4EFMnToVq1evRoUKFXDq1CnLnYOonPQcfr8fa9euxYcffogPPvgAn3zyiVCpk80RbO5TaiMqOUnJmiFqB6dPn3ak1LH9XZM6FyCyI1LqgLyBjidIBHoRGRkZwkmDXjBtDcKbHPft2xeUYVoFFOLOrw5YyToqKgqzZ8+WkjqRCiBKVQGISd2hQ4dw4YUXCo8nAnvs2DHpikjVp47Fq6++iqFDhxpllg2kdn5dPOycuwlr164N+r6gSF1qaqpJqZM9u5VPnQyhqmHsImD//v2IiYmRtmt2MGUHfF456dSpkydlA/IGZ5kaSZMR304zMzPx33//mcyvogFW1fzasWNHYfJRQGx+PXz4sDD69ZtvvjFNEKKIv1CVOpkyEh4ebiIhMqUOyEupI7Ns0N9W5leCqO3SopHFq6++KiwzIS0tzWgDUVFR0gmasgOIIFN6rBZZZF6VkTqZj6aq+ZUCSmR5KVn89ddfuOqqq0x9gf4WmV/tcPjwYeNvti+z4xlP6tj70L2vv/56w1+XHQfIn4+1BPDghYjs7GzjugMGDMBtt91m1GOjRo2M82Sq7qWXXmqczxLVM2fOWI6jROpkfcwu96FswaDNry6gQuqoA8tIXWZmpjDPGr0cauSiZL3sfqCqoEGNiBCv1JFfCEVNAnJSxzZCNqqORXJyctAgeOjQIdSqVctUDkLNmjUB5K267JQMO/OrCHYdyGnyTStSx5f/iSeeMN1bROqcqksqWcOPHTtmUupkofBOzK804bDPLFKjnGD16tVIT0838sAB5oFJtkLm2xwNul6QutzcXFuljid9I0aMQK1atYxy5OTkCAdYVVLXuHFjqQpEAQaEGTNmoGrVqkbkId133bp1uOGGG7BkyRLDbCfyd+SfxalSx/pEsQgPDzdNyuyzsz51BP7d8f3MSqkjiNpu2bJlTZ99Pp/QQZ5Famqq8a7Lli0rJXVWdcSWn63jvXv34rLLLhOeQ2O1rP0AeWlaMjMzcejQIVvzK1+ntIBVMSdOnToVv/zyi2FipsAuwB2pY3cSomcbOnSolNSFhYWZfhNZCNjxoVq1aoiOjsaePXukZeDNryyp48vGgg96ZEE5XNnrXH/99UrmV9kxVkrdkSNHTOlU6L2npKQI26MK0XNM6k6fPo1PPvkEL730EqZNm4aPP/7YsTpSVMCTOpH5VabUseZXUbJXGjisSJ0b0KDGpxuhSV0UfckrIbIcWKJjRT51hw4dMsgbP2EmJCSgXLlyOHjwYJCvBsHKp85OuaLJzk6pU/VV4xUEFnx7oPQdLKnjz+EHREpKLYNKOY8ePWqr1InKAuQRLVG0H79DAAA8/vjjpmOckioiQawJhh28VUkdffYq2arMYZvqRZZhnl04iQZTFfMrIA+GAILNr2+//TaAcxMVXxbgnN+SiNSFan6VRZD6/X6TGsfem/8NCO5LfA5QvjxsdCr7HQ+RUmeXiJgldfHx8a4WC+zzsBM+72fJwk6pO3bsGBo3boxy5cqhWrVqpvaWm5uLypUr49133zVI45YtW0xtmcY6kV/3M888g1mzZhnfscJFIBDAtm3bpFstqtQPn+7krrvuwhtvvGFapLLvLzw83KRMnj17Nuj9ss8WFRWFCy64QEmpYxeBPKkTtSEr/0tafLFj0s8//6xkfnXq552dnY2JEyeavsvNzcW6desQHx8v5FUqaagckbqZM2eiefPmWLt2rRHNtHbtWrRs2dLSp6Eo4pNPPsGUKVMA5L0UkXNvRkaGlNRRvq7MzEzDxMqCV+qIQIZK6mhQe+655/DKK68E+XfQ9dmGy6c0yc7OxuTJk4WOqzwB4M2vJ0+eRHJyMmrWrAm/3x+kskVGRqJatWrYs2ePpU/d/fffbyhf7ITF+3fwoBWirAMRcWAHEKs6t1LqRCvg3NxcU9oGO/Nrnz59pPcG1EjdyZMnbZW67OxsYX13794dLVq0CPpepNTxcOpvRytgltSx71Zk2gsEAtIUE17l5WJVaxYy8yuP5cuXCyeHo0ePYsOGDTh06BCaNWsmXbFbbWsVExOD9PR0XHvttdi+fbuxVRyVjdo5204oxYUoOjBU86uVUscSN3Z8cavUde3a1fSdilKnuksBi7S0NKM+4+LiXI3BbPnZfsG6ZfCgsVpG6misovZP7ZTGlZiYGAwYMMCo9yFDhuD66683zpeRupycHHz88cfGvMRmWkhKSjKIAZEovp5ffvll6TMRFixYYIrejYqKgs/nk45n/KLowIEDQe+bJTGRkZGoWbOmJamj5yazuUipk5FpGUjJZN9x7dq1802p4+srOzvbMvLYbh9dwCGpe+GFF7Bp0yZMmzYNI0eOxMiRI/Hyyy9jw4YNIZtuChpLly7Fl19+CSDPCb9Dhw6OfOqGDRtmHLN161bUr1/f9PvEiRPxwAMPGOTCa6Xu888/x6JFi0wN6aOPPsL7778PwJ7UjRkzxnBQZcFP5KdPnzZNxhs2bACQ5wQcFRUVpNQRqbNyOs7NzcWbb76JpUuXAjArdawDvQh2Sh3BTuonsO+cXxllZGQEDQr79u2z9KlTVZcoRY4qqaN3J1PqsrKypG2L3WqIIFLqeIgGkOjoaBw8eBBDhw4NSpxMfmMsiWEHWRGpsyJUXpE6NkEyC2p/du/s1VdfFdZtly5d0KxZM3z88cfYsGGDkVbDKalLSUnB999/jwkTJhjf85G5rJN5fpA6p+ZX9t5OSd1rr72G3bt3m56JdXUhiOpcZWsoHqxSFxcXJ21XZH0QQabUWZnD7JQ6HhRMQ0odjQ3sM69Zs8b4m9Rcvv2SxYa+f/rpp40E+6dPnzb6tSwPqWybQRb83EF+faqb0Ldo0SLoPnybqlKlisl3jwepjmQyFSl1ovdjlSpl9erV8Pl8RsohIC9qNz+UupycnKDx3yprBKC20HZE6nw+n9A/5cyZMyFtdl0Y4J1Lf/31V0vz6y+//CLcmub06dPYtWtX0Obq27ZtwxtvvGHUC5GsUEkdu1I9deqUqSENHjzYmDjpfmXLlpX61InAN5ohQ4aYfEZ+/fVXnHfeeahbty6ioqKkSp1VegC+0bKDuZ1Sd/z4caxevVq4sTILtj1aSdY0wAcCgaDtcjIyMoLq4++//1aOfrUa8GnPThVSd+rUKZO5X6bUOWlbKkqdaD/Odu3aoWrVqnjzzTfx5JNPCs9jSQz7bkWkzs2WTV6Bomyd5K1iQfVNky69A34isnJkZ+uKnRD5yFz2NyJ1IvMrb1KzI3Vz585FWFiYcR8r8ytLLr744gvTb3bmV/Zzamoqtm3bZnomdqwliCYw/j5239P9aAywUupUSN3ff/9tmROPhZ1SJ4MVqWMhU+pSUlJw+vRp492/8847xm8sqZNFf6uC7btU/6pKHZC3E4/smMjISFSuXNnoS/v27cNTTz1lOj4zMxPHjh0zWcFUlDqZGwhwLrCR0uW0b98e6enpISl1VoESfH2J+oFq2QmOSN3UqVPRvn173HrrrRg2bBiGDRuGHj164Oqrr8aLL77o5FKuMHLkSLRt2xZ33HFHyAO+aBDgK58Nhf/111+Fvhtnz55FIBAwwtd50Evr0KEDVq9e7WjitXOUPH36tLQh0WokMTExiIjzm4A7wY4dO3DxxRcjLCzMUqmzks2tBjjeEZpHdnY22rRpY7rvrbfeankOOzn8+OOPpt/INCHyX8jIyAgiHcePHzeROpEicezYMfzxxx9KHVBlZXvq1ClTah3RO3dL6qz60QMPPGB5DRkBiIiIwJNPPomlS5eaCJNoQUjvhtJTsPB6W6QjR46gdevWQd+7JXUE1l9pwoQJQW3JTqnjrwOYlTpSAgmU1kNE6vgcc1abs9P9IyMjjeNkZeV9olg4VerYa7K/8+/hkUceCTpHRt6sxg0r8ytbLj4ZMAs67qKLLsKIESOkx7FglTonkYxE6qh+nJI6iooVZTQ4depU0Jim4qdlB1q4OCF1VveNiIhA5cqVDUVw0KBBeOaZZ0zHZGVl4Z9//jF9ViF1VkmRqa7oOpUrVxZmgCCQsJGbmyvtYzK/6uzs7KDxn02jxmL8+PEAzr1bKzgidTfeeCO2b9+OkSNHon379mjXrh1GjRqF7du348Ybb3RyKcfYvHkzDh8+jJ9++gkNGza0dFBVgWj1zFdm27Ztpf44PCpXrgwAOP/8803fswPh9OnTHU28W7duxZkzZ3DJJZcYahnbuFgFhwcpdRdccIHQzOoW+/btQ7Vq1QBASOqysrJQrVo1S+Jm9ZvIEZqF6HnZyZDAphpgO3r79u2Djs3KyhJGWR04cCAosnn48OGGaXnPnj1BW+lkZmaicePGuPTSS22zsgPqSh0bbe3Ep04GFaXODiypu/fee01lmThxIrp06YIBAwYY31uRuuHDh6NVq1bG96tWrfKc1FWqVEk4QYY6qbGkThQJb0Xq2PKwAzxNvFlZWejbty8eeugh47fIyEjExcXZZtwH7JW6+Ph4UzoRWZ2Hh4dLryFS6uwiyemalL5GpFCI6tINqbMyv/I51gKBgHDRK0sGbQXqY7KUODKoKnX0/mWkjt492+/eeecdw5ec4Lb99+vXz/ib3otskeokepyuU7lyZaSkpAiDKs477zxkZmbizz//hM/nQ9myZZW3abRKocXPGZUqVUJKSop03k5MTEQgELBMe/L6668Lv8/Ozg5aKMlI3YgRIxAWFmYZDUxwHP0aHh6OVq1a4dZbb0XPnj3RqlUrZTt6KFizZg2uvfZaAHm+LL/88kvQMRkZGUhOTjb9k0E0OISi/hEZ8fv9pomaTbGhsqUMi8svvxzdunXD9u3bDb8o9vyUlBRpmem+tWrVwsGDB3H8+HHhhsdOsW/fPlStWhVAXh3ynXXDhg0G6ZPBSsp2Q+pk7Y9keTs/BBmpO3HiRBAJZE1rIhNzVlaWMbB4RepOnjxZKEqdHVhSx/qtsYMS65tiZX7lo0Bff/11ZGZmKkcxq0K0AHCTBFyErKws1K1bN+h7mfn11KlTprYrUupEE19ERATi4uJst3Bjz5eRiri4OERGRpqSGovg9/ulxMlOqStXrpzwuuHh4fj+++/RsWNHpZ0ZAHl/sSN169evR3x8vJGn7ttvv0V6erppbCDVVDSeiCZaK5Mv4NynjkBuHXakThYlzit17Bi9Y8eOoKBGuo7V4kOE2bNnG2W0M7+KYOV6cfLkSVSpUgVAXoJiIj/x8fFo2bIlBg8ejKysLPz555+48MILUaZMGWzevFm4G4ob8KRO1jZJNU9OTnacLFhmfhW1taioKFsLGMH1iCnyt8lPnD592phEEhIShAPa5MmTkZCQYPyTbUsCyJU6pw2bQINKWFiYaVBgJ3anpA4IdlrlG5fdwH7hhRciKSkJN910kym3kAj8djOiCZAldWwdklLbtGnTAid1onIC5yY0t6Ru3LhxllK96F2yHdLKyZegqtTRdQvCp45VhVSuAZjbgkztsVLqYmJijPM6deqEDRs2ICsry2SedBP5yMONo70d+GjoChUqmH6XjSkxMTGmtitS6kQqe0REBOLj4wtcqeODmMaNG2eUx8qnjn23/DUBGKRSRQWTHcOSuvj4eNSuXdv4nJqaipkzZ2LEiBHw+/3YvHkzrr/+esycOdNELOg9ifokPQ+rrNi1pfz2qQOAihUrWpI6lTZCBGbevHlSlwoZqP3KzK/0jp3mizt8+LAxj/To0cNoP2fOnEHz5s0RFRWFzMxMbNu2DRdffLFnCzMC1UnFihWRkpIi7RfUJ9yQOpnLj0zVvuCCC/JHqSPcfvvtmDZtmuUxbjMii1CuXDlDeTt9+rRwv7vRo0cjKSnJ+Gdlf5aROiu/CitQBw4PDzcNzmwggRtSx4M/367T0s4PvFMqjwYNGhgO2ARRJFxWVpZB6mgQrFevHr744gucPHkSb775pi2psyJZ7OAsGsxkK34RqCPamReysrKE9WgXiSsaSNgOaRUBTOAHwYcffjjoGNb8WhBKnZ1fI4Gd4FRIHUWbEr7++mu0bNnSKA+Vv3Xr1vjvv/9w5MiRoMCgUaNGKZVNBtkCIBSweRdzcnKC2qOM1EVGRprKI1LqRIiIiEDZsmWVfAGJUFgpdceOHcNTTz1lacLnt3br2bOnMQ7wQRSAuQ2Eh4cL2xmr8ojGxvLly2P69OmmhbFsTmEXg/PmzTP5OB89ehTZ2dmoX7++qZx+v1+o1IlI3dq1a+Hz+Uz3t+tvoSh1rE+dlSWsUqVKluZX3odYBHZnCaeLHmqzMvNrpUqVpOeKSB2NPYcPH0bDhg0NPzoKjKN6iYiIwL59+/Ddd9+hc+fOrrfUkuHs2bOIiopCQkKCZQJz4iFJSUm2xHLdunWmDQe2bNmC5557znSMTKkLDw9Hhw4djPncCq5J3ZIlSzB+/HgMGzZMuGfm+++/j4svvtjt5YPQsmVLfPfddwDyJoerrroq6JioqCjEx8eb/snAryx9Ph8yMzNDJnW8UsciP0idVSJFAMbOD3YNrkmTJkHlltUfyeL0zDQQlCtXzghFZ3Hs2DF06dLF+GxlFmcJBbvPI8GJUkeDnZ1SJxt07VatdkodRVdaga9z1geNkJycbKvUnTlzxjOfOp7UqZA89h2olmPkyJHG39HR0cZ5FIW4c+dO06QQFRUlTbmhivwgdazKJSJ1MvOrz+ezVepE8Pv9SltDEUSpeQjx8fFGn9q3b590fEpLSzP1x6ioKJMjv4zUXXDBBfD7/VL1gc4X+dTVqlULQ4YMQcWKFY3vZM9htRgk37yEhARTfbO+doC1+XXRokVB39kRCbeBEjQeEbm0UvMrV64cRO7JRJeZmYk1a9YYO1LIQO+KfY925xB4UseX9dJLLzX+5v3HRKSOFgpXXXUVfD5fUEJ0ugctlKKionD//fc7VursLHLp6emIiYkxxhvZBgtOzK+XX355kHDCIxAICOcrn8+HiRMnmtIeyeCa1F133XX48ccfsWjRIvTo0QNnz55FZmYmpk+fjrp16+Lhhx+2TbzqBE2bNkWVKlXQtm1bbN++3Tbi0Q78oOj3+z1T6qxIRqikjm+8dkqdbFcHHpUqVQoqN9shWdCzUoPnB9HIyEjTQEwRdgTRtmDlypXDuHHjTGljRGlLnPjUOVHqRNe1S68iepfsAGuV1oXAD4Ii80VWVpbpWURl3bJliylC0g40qNkpdY8//rgSqfP5fDh8+LDRj1TAtgOW1NH9/vjjDzRs2NB0jhMyI0J+kDo2NYQTpQ4wt10+4z4Lttwic6cVrEhdmTJlcMkllwCQqwRAHgFilbrIyEiTksSXJyMjA02aNMGePXtQoUIFoSsCb37l26LIFcMpqStbtqzh48qTuuTkZFM9W+VaE/W5d955R+hDSYiOjobP5wvZp84KlStXtjS/7tmzB3Xr1sWVV15pey2W1NnNg0Rm6HhZ3bEWNZ7YikhdVFQUjh8/jpdeegmAuL+Gh4cbglFsbCwiIiIckzo7N5+MjAzExMQYx8ksBFQPu3fvNvnPN2/e3HBPYMutApW90K0Qkhdy48aNsXbtWuzevRstW7ZErVq18NRTT2HQoEHYs2cPnn766ZAKx2Pq1Kn46aefMHfuXEeDmgiiaK3k5GTbly2DzPzKoqDMryyhoqhcOyQmJgaVu3///sJjqe5oIBW9C9YEy5uZaANnFuXLl8fTTz9tXKtfv35CpVdFqaPJUVWpmzZtWpAMDgSTOrtcXIA5OSglxbSCHamLjY017RRy9uxZ4X0HDBhgUm1vu+02y/umpqaazGKsjyw7QXbt2tWSCA0ePNj4u3LlyqhZs6ZBbO184NhBkN0Dle6fmZkZ1AZEBEllwiLkJ6mTmV+tiChbHrZty7b2A5yTuhMnThikgichYWFhxnZS6enplkpdhw4djM9RUVFG2X0+X9DCLjk52fiuWrVqQdtKAWZSJyKUIhcbFZ+6iIgIYwyIi4sz/BITEhJM5UxKSjKNDVQeEZkSkbK77rrLcuFGdRRq9KsVrEhdRkYG9u3bhxo1amD9+vWmaFURWDO6Vd8dNGgQVq9ebZwDyJU6q+uI/MH9fj/Kly9vlMPn8wW19bCwMCMvLPUTp6TOjrSmpaUhKirKGG9kFjFa6Nx333245557TGXk1U7VXL6igDInCInUJSUl4b333sOBAwewa9cunD59GsuXL8eYMWNCNpPkN0QD7ezZs4WThkrwhBWpe+655zB06FCsW7dOSpRU8Ndffykpdaw6p6pssKSuR48eeOedd9CrV68gPyjg3OpMptQBZlLn9/tNk9fHH38cdDzvkyEbvFWUOrqWqlL3yiuvCL/nza8NGjQwfRZNgLNnzzb+PnjwoNCEbAURqWMnvLS0tKA64B3zAUjzJhJOnz6NiIgI47o9e/Y0fmMnyOjoaEs/mzfffNMUTBIREWEMtHZjALsijYqKClLqAASROlF7Xr9+Pa6++mrLexFUSZ2TZOps+hEVpW7kyJHGNoNseVgiZ2V+VSV1VI/79+83SIXI/EPlS09Plyp1aWlpuPnmm42dUFjza1hYWFAbmTdvnkE2qlevLvRvtjK/Tp48GdOnTw86RzYuxMbGGu+MLQvbBkVKHesKYmXu5OtFRbCgxWyogRJWSExMFKrt0dHRyMzMxN69e42AQbt5jG1XVqTnvvvuM/qlXaBETEwMvvrqK+GYL3seUblYhIWFGWZayqXpVCxRJXV28ydFovMIBAJo3ry5ozIRCo3UjR49GjVr1sT777+PSZMm4dixY+jVqxc6depk65RfFCB7WaIJTCXqjpWf+YmDNT+GkkLi4osvNva5I4hWECyhUnV8ZUldfHw8Bg0aBJ/PF2T+As6RJlVSx/sOiUDXsDtORamja6kqdTLwSh2ROvJTtHuXgUDA1vzND0b8oFimTBkTqRMpdbwPI2BP5k+dOmVKOsuCJ3Vs/fJBMOHh4SbyKyJ1Km2QJj/+/qzqTOURQXWlrkrqnCh6bPoREaljn//aa6/F6NGjcfPNNwfdhx3M09PTpaRYlBdOBGp7Bw4cMEiFqF1Qnf76668mpZkFlY1V50mlYPcmZkE5PtnN6lnwSh3brh9//HGTlWHIkCGoU6eOlNRFR0cLk/XypI5X6lgTIB+YwI5zbPnvvPPOINOaCKTUhRooYXcPUR+uXLkyUlNTcejQIUekjo6xmvPYticLlKAx4Y8//sANN9xgcsWaMWNG0LaadF/RooNv63SPrKwsY3tSp4ESKm5WkZGRtuNoWFiYtJ9edtllroJFC43ULV68GK+++ip27tyJwYMHo0yZMnj//fcxePBgdOjQwZOcaPkJaigtWrQw5SITDZYqnYsGizp16ghX6qGaiwm8ciZS6tjB0MoczCIxMTGogwLizk3PSgO8aNK++eabMWjQIHz99dcA7IMOeFIn6gyUY4qHbBKlwc4tkebLTAMR+RqqJO10mt6FV4h48+tXX30VlHhb9H5lgxENQKxSxw+IrAsCq9R16tQJr732muXzREREGOY8qr+oqCgsW7bM8jzgnBrCtjl+8OWf69tvvwXgPalzknuTSCz5O/Lnsu906dKlJjXCKjhCpFoAzpS6uLg49O/f39gFQXQe1amVEzYpoUQQ2rVrh6ZNmwI4t2cpvwii8UHWB1jyZDeRTZ8+HX///bd0kkxISLAkdZSgllfq2EUxr9TRdfgE46oLZVapk5VbNL7ygRIylClTxiDE/MK1UqVKSE1NRW5urpHeRUTq2PYXERFhlIftd/z2mGwflJlfKTCOotuBc/2gX79+Qe4hNOaokDq6h9/vN67J9n8VlV3FzYo1v8oQHh4uPCaUzB+F5lO3fft29O/fP2gAmzBhAl5++WX06dNHmkm5KIAaZvny5dG7d2/je1GHVZHBw8LCsHLlSsycOTOoTvhAgVDAEonw8HCsW7cu6Bh6NiJ3KibYiy++OGiFCohXNLxSJ5p8brrpJrzzzju4/vrrAQRHsj744IPCa1qRuujoaEdKHRsxyn6vCv7ZL7zwQgwcOBBTpkxBeHi46V3IzKx2pI7KOGXKFOzevdtWqQOCt4IaNWpU0MAiG4xI+WInBN60xE40rFLXvXt326AJ9r1R+1AxYwDmKDwC/w7Y54qPj8d1110HwHtS5ySJKk2olPneCSFky8P7GMkCdZz41FWvXh05OTlYvnw5APNY8MknnwA4V6e84/pvv/2Go0eP4syZM7j//vsB5KnUKSkpuPHGG422TQEvGzZsMKXkoZxabdq0EZaNnj0iIkJZneDHhebNm+OLL77A/fffb7oegdprfHw8wsLCTPX9119/GUoPEEzqqI75PaFVxxEVpY5XeXw+n2HGt2uDsbGxiIyMxJkzZ4L6CY394eHhaNGihVEeHmzwi8z8KnNvoXPYa7OEKz09Xeir7Pf7g9o2jaVOlDoZ+F2dROeqKHUq41Z4eLij4C0inI8++mjQbzTuFppSZ8WGBw4ciEWLFmHMmDFuL5/vYFcWbIeLiIgI2q1CdZBu37590GoQ8FapA851HFlj8vv9+Oabb7B27VoA9pnPf/jhB1x44YVCUiciB7xSZ9WJCHwn5ld/dE3ep47dskdG6lSUuipVqpj2CVQB38ajoqIM0wFP6mTbyYlMoyxIgbvkkktQq1YtW586Ee644w689dZbpu+scqMtXrwYc+bMMZQ6q2uzpE5lMmNVUZqwIiMjlfxSRaSOP49t8+wELyN1bCAHkL/mV1ap69Spk0GEVO/z008/mX6z2mtVdTzhVSY6r169esZiVvZuqlWrhooVK6JMmTKmsrDEfsaMGcYG93Xr1sVjjz1m/EaLvXr16gm35yMlV0Wp48tPqFq1Km688UbEx8eblDp2BwJA7Aqwb98+kyrCm1/pWLekjiKEnZC6xMREI1rZjtRZzStE6ho3bmzcQ/Se2fEpIiLCaI+qpE5mfvX5fIiKihK2Yd5lA8izcAEwdo1iIfKpswJdiwVZV2hbOhWlTsX8KlPq2MwRovQwdevWRbt27YzP559/PlatWgWgkAMlrHD99dcLU1IUFbArC7ZjR0ZGmvagpGOcID+VOiAvOeumTZukg77f70eXLl2MRIWie7OO5bQ6onKzDVl0D57UiRz1efCkju8sMqWOHLMBa1K3bNkyY6sqKl9aWhoGDhyI//77D1FRUZY7jPCgaxw/fhxPPvmk6Tu6J0vqZCTAzuxMREbmaExJee1MyPzKU+YT4/f7cfPNN6NSpUqGUsdfmzVxR0dHm1bfdmCvRc8eERGhtJqlY9h65s06TknduHHj8PnnnxtJWK2eYciQIcbfTtQ2UqRYUvf9998HWSpEkehW5XnjjTfw008/Yfjw4abvExISlMeTGTNmmD6LUk/ISJ3K+x44cKAxUQLy4BjRxEZjghNS99Zbb5lUfrZ/WZlf2W0cZaA2xkfBUt5EQn4qdeXKlcPRo0fx22+/KZE6UXoo4FzSX9ZSIHrPbJtkU5qw44cTUmcVbEL91efzBc0HDRs2RGZmponoiO4nKg8PntStWrUKmzdvRiAQQKNGjQDkr1K3efNmvPHGG8bnTZs2Gdt8UvR53bp1jee65ZZbsGvXLuMzy0fGjBljupYK8o3UAfYReIUJehE+n89UiaIO63TrFDufuri4OIMouIHf70fTpk2lA6FVJyS8/fbbQceLfOpEoN8pdYXdzgtAcB3yHUHFp05G6qKjo3HNNdcYEZx0rTVr1mDmzJl47733lCdBv9+PU6dOGb42bHg9n42eN4WLYOffQQRKlhKAJiO7jap5EmdF6giy/GAs+WXfk8pkxubpYycsFVK3Zs0avPfee0JSR/XLTkwqpC4sLAzdunUzlGGrSX3y5MnG305I3aZNmwAAy5cvx+nTp4XnrlmzBps3bw763uo+9evXR5s2bYxIP0L58uWNeqldu7bh4iBC5cqVMXr0aOOzqJ2xypZq2WSQEUSeGAHnxg0necYqV66MV1991dhTmG1jVuZXmsT5aE0WPKkD8vovTwDc+NRZ5QlkUa5cORw7dgx//PGHbf1HRUVJ3SGIrLHkyYlS55TU8YtSUXt6+umnDfcPntSJIqhF92PvIQOfticuLs4oJ6nHIlIn8t8V1dmiRYsMUURE6po0aWI6r3z58kYuyLZt22LPnj3o0KGDcV5CQoKJI/zxxx/GuY0aNcJ9991n+bw88pXUFWWwgxv5HADnOuxff/2FI0eO4M0331TeC5Ngp9RFREQYPlhOUifw15dtXsxfU0Ro2O9kUV8yUB0RIbHaCobAEz9VpY6FjNTRAET/07VYHyEVUteiRQtkZWXhvPPOM5FQKouVUicbgO0GIDtSxw40FDEpAk/iZJMr7xjNK3ULFy40RezKtrGSQWR+DQQCSubXSy65BHfffbclqWPbDTtRWpE6q88sZLs7iPDee+8Zq2/C6dOnsXLlSuG5LVu2DCJn/D150BjB9xWW1FWvXh2XXXaZZVnZtiHazsnn8wnfj5ucfrLxjHwfWbBKnVMQaWGva6XUUT+i39j+TalTOnbsCMCsNkVFRQWRDSdKnd2+tjyRYMtlN3ZERUXhnnvuwZ9//hn0m4jUid6nTKnzwvzKo1evXsaWbyJSJ0OoSh37vqgPiq7BE+zIyMigd12jRg10797d2NHKqU8dcE61pvPof1E/cGolBEoxqWNXFjfddBPuvfdeAOcqtn79+qhUqRKGDh3qOOeeVUoTIG8iF6k/Tq/P5hZjwQ8gosbCExT2f/54Pq0E/f6///0PU6dOtSQbBDvzK+9TJ4IdqaOJia71/vvvB5XZCrIORPXJls1rUmdlfgXy3gFNOiJ4pdSJts8juFXqAoGAo4HPa6VOVj4AaNasmfG3E1IXFxcnJGkypU4Gqy3zREQWMJM6Vl2RwY7Uie4hOiYUtGnTBikpKejevbvxXSik7oILLkBqaiq6detmfCfyqeNJHdUVkaeGDRtiyJAhCAQCaNKkCQCz2hQZGRlUPlWyS6QgMzNTWaljyRTbdkUkidK48OlBgHOLaHYxLboGq9SxyYetSB2/uwmgptSx4C03Vm3NqVLXqVMn3HnnncLy0vOKzNYiH2r+O9qCjX1eN8QLOPdcPLmzKpMKSi2p45URGmBEExdf2VOnTrW0yduZX7Oysoz7uBnQnK6gRY3FSqnjCQG7Rydg7siPPPKIUnn4KFC35ldRShNeqRO9Q5V6tpvE2A4mInW8OTw8PDxkpU7kZyaCqomIH5B5pc6qDkJR6uzaIAu27OyuBIC53dx+++3G36qkjn9HrMnVCakLCwsTlj8jI8MRGbriiivQpk0bSxcGvu4SExOVSB31IbY/yxYPLFm+4YYb0L9/f8933yhbtiwWLFhgBE1Yjbkq4Ns8S+ro2e2UOtE4w74/kVrjxPwqSxskewYZqSM88cQThrLIuhDxZaL0OHZbHbpR6thxUKbU2Y17TpQ6J4ESAwcORLly5fDhhx+a+giBFmK0mLr88sule3RbLUSttpRThYpS5walltRRw+TD11UIwXXXXWfZsUXmV/Z4ltS5Yfl2DcmtUseWl8WoUaNM+fDclLlWrVqmTbH50PVQzK80IdH/otUNdZwZM2ZIzel2z2VF6vx+f9AAHRkZaXtNCpSwI3V2e6ry70w2IdspdfT7Sy+9ZPjWOZl82WtRmSpXriw074mULv4+FK37ww8/ADj3jjt16oR33nnHOM4pqatVqxYeeughKZGze2/h4eFB9UH+TU4G+vj4ePz000+WLgx8/2WjX2NiYmzfNVv3snbGHlO/fn188MEHrlQCAqleojJR/RCRZZ/vpptuEqbBUIGKTx3dm11w8GBNiG5Jnd/vN4h/Zmam1PzKK3UU3MaWg8oC5NUPbYvHvjO+f9EuLyx5Yt/nZZddhtq1a5usUKo+dfxzAsHtyq7tVKlSBdOmTTMWZl6ZX9nAINGCmJQ62qIwKirKIPgipU4G1rLktp/Q9UX9gOA0qTJQikkddQJKzGhlDuVfbmpqqrJvDt2LH2jcrk5F1weASZMmmSRnFqo+daLkr0BeY1cJhrADG1XMp0GRpTRhYWd+9fv9eOKJJ4R7y9LzDhw4UJpkVTZYyAZ+O/NrZGSkcqCETEFhFxtWW+Hw70z2LHy6kNTUVNMkSueNGDHCMDVQeL7K4MUSz0svvRQ1atTAzJkzhW1QRmR4JeDmm2822gs7ULPP6JTUffnll3j55ZdN9cGTdiuIHLtpgnSzeueDVVgHeCuVk026y2LKlClGHjqRUse3aZYUhLLrDZCX4kWUP5P9HRCbX5999llTWhQnYC0O/JZh5MdEz20V/DZy5EjceeedaNWqlWtSx7ZTq/okslmvXj3s2bPHtC2eaI5hSTHbLtj35/f7DTWUkgDzuPXWW/HPP/8EKfei6FeVuY5vo3Zjhc/nw/Dhww2S5YTUqYoKvDsOcC5TQ9WqVREREYGwsDATiWe38bRSzui5QyF1dH3ynRXdz+metkApJnVVqlTBypUrjT38qEJFFUsNlraHql27Nlq3bi29Nt/AY2JiTINoYmJiSKRONIiPGDFCuom76F7sd9RJZKSOPSYU8D5pLKjerTpIVFSUJakD8pJf87m52OuL7k1w8owq0a8qSh1vfpWtFvkIQf6d8iqh7L7seQkJCdi0aZMx+cueo3HjxgDy9rJ1gho1amDv3r1o0qSJsDyiRKM8ZEE/PMF1SuqIUKgomiKITOtekbrdu3fj8OHDxmd2PKGgLqqH+Ph4YVlHjhxpqD4inzpeAWBJgZUirAK7vJykTolyx4VigiL1lG0zF110ET766COMHz8ewLl2YmV+rVSpEj788EMjua8bUsfOJ+THKUoVRe8mEAjgggsuUEqhIfIvZd9xzZo1Ubt2bQQCAVPUMVsvvI8hYF6osG3bqi/wSh3Vp+pYypIjGejaTpVwkVIXFhaG1atXY8aMGcbCkMrg8/nwwQcfoF+/fqbzRaBr5ubmuiZ11M80qfMQ7du3D1LorJS6Zs2aIRAIoGLFivjkk0/w119/Ca/LN4bo6GjTIFquXDnPlTqROYhgtwsDdRKaWFQiFd1AxW+COohosPX7/cJVr9U+hRTeHgqpY/Mrsddgyyg6NyoqKuRACdb8euONN0qvw9eBKqkjNY4galu33347HnnkEfTq1Ut6f7t7idChQwdH1wPOPSebGw04t7E3DztSJyujilLHwytSV65cOZNZjm27fELxuLg4W3IsUupEpI6uGSqps8Ps2bMxe/ZsYWBWqOOiyP+qb9++xphGz60S/EaRjaEqdbT4Y+cFnnDQGM0eI9r6il1MsMey73jmzJnCMolIHd9WqTzs2GZHbti9val+nZI6lbmBiLjoWHY7MoJIqQPy8rzGx8cHKXUEPoDBqtyh9BXyeyRSJxo3NKkLASqkjp3wypQpI4w6AsRZ8NmXo0rqZMEYopfPrjh4QsTvC3jgwAGhqclKqfMCfLlfeeUVI+M/r1TJSB0fvQhYl5fehQqpcxooIfuN4KVPXUREBBo1aoT58+cDCK4fkclcBJ7U8RDVQVRUFKZOnWrrdG11Lx6DBw/GqFGjHF0PyKun06dPB5372GOPCdsMX58NGzYEYJ+M1q4tiH5341NHYNs1X2+iyYW+i42NFSrTLFSVOgpGCdX8aocqVaoYaghbJv5vpxAtbPl3oaLUEaKjo4WJ490qdex12EVc9erVDZcQWcoe9nn4hOXssd98841w9w4gz+RKc5ZIqQPOqfKsa8SoUaMwduxY4TX9fr/JzUS0ALaCCqlTUepWrFgRtM2eXZAZkTpWqQPOWRCs2iJdMysry7VSR6SOXJtE19E+dSFAxfyqGg0m8i9gX05iYqLBzvnNe7/44gskJSXhlltuwYoVK3D06FHs27cPlStXNgZvUTmskjfyEX98JCqv1OUXqeM77rBhwzB16lQAwbtUsDtesOVkTZ4EK2XRCamTDSyU3JUIgdU1WERFRQUlwuRhF/3KB/DwigNb9rVr1xopI7wkdU7AbstlNSjWqVPH9WCYkJCgfC5fn2+88Qa2bdsW5HPFo2/fvo6uC3in1KmQCLY98NtY8RCZ6XiFoW3btujatSsAd+pAKPCS1PETNP+eeFJnNWmOGjUKb775ZshKnShJO9vf9+/fjzvuuMN0Hl82VqkTmXMHDRqEq6++WrrPLpAnJlDAkUypu/vuu7Fz5040aNDA+C4hIQETJ04UXpNIHcEtqXNifhX1vejo6KD9t2VKHXtv1pxNID8/FfOrlZ+zHXilTgSt1IUAPqUGC9W0Evy1WNDLCQ8Px0svvWQkeOUHlcTERMTHx2PhwoVo3rw5KlasiPPPPx+HDx82HNbtSAm/+qTGA4j3aS1opY4tP1+3ZcuWxcmTJzFs2DDh+U7NryJSJxtwZPXasmVLBAIBU1JelYm7bt266Ny5szRkHgDefPNN9OzZU5oKgF9Q0POIFIYWLVoYdeGW1IWaxuLtt982nJGt+gtbPi+CcGQQRXlSdndA/rzDhg2znPBF798rUseXSVSP1Fejo6ONtBTsc7Fg+4dsMfnMM8/gtddew9ixY/HSSy85Ln8oEKWwcQOZ+ZWFE/PrhRdeiCuuuMKW1IksKuxijEjYww8/bASzybbTUlHq6HosWR81ahRWrFgh3WGCkJiYiMsvv9xoK3xb8/l8qFevXpCvHQAMHz48KNG13+8XltlL82uoPnWyPi5T6ojUWZlWvVTqWFJ34sQJ7N69G9OmTQOgSV1IsFohOlXqRMdRiP/atWtRvXr1ILVMpRx82g/APMDIGhc1ni+++ALr168P+r2glTp+EKfUAYRy5cpJty3ywvxqVz4V2A0sS5cuxezZswEEb6rO4oorrjDtDMKXgZQ+XqmTmY3sTAf5rdQB4vcM5LVDqhN6v2vXrsXvv/8e8j3tyiKDlfnVarCm61LqCCA0UvfFF19g4MCBCAQCQfcVER1SrGNiYuDz+bBkyRJ8+eWXwmuz/YO2SRIlPfb5fJg4caI01Ux+IT/MrzKljgIHSIkSLXJ52JG6HTt2GH9/++23qF69uin3GI1ZiYmJhqoqK5/Mp47g9/vRokUL9O7dGyNGjLAtO4/o6Ghs3LjRViAQkbpp06bht99+CzqOfWdE6pwqdVYkm65PLhNOol/9fr/lApdNHsyTulOnTtmWOzs72zWpo/fLLmoTExNRq1Yto5+6Mb96m12yGMNqhegFqWvatCkyMzODJmcn5RBlg6dcYyz4CZ/Mr9dcc42QABUUqaP7sPXj8/mEzsiy870mdZQclC2fCuzawrXXXqt8LRbsgLVnz56gCEG+3fADynPPPYerrrrKpCqyYOtZlNbBC1LHJoFlwfonUbnZLfryA3YTgNtACVEEYig+dV27djXMnyplJD9Zuv9NN90kvTbbP4j0W+1kUdDwKlCCJXWyKMyrr74af/31F+rXr4+vvvoKzZs3t72uHak7//zzUa1aNRw8eBDXXXcdmjdvbuzVzAZK+Hy+IIWObysqgRLR0dGmiPVQoBL9bRfEwL4/WsDKMjHwoLqxclPhXXOcKHVW7YlPi0R1TJYG8tH77bff0KhRI2GZQgmU+OCDDzB//nxhGanONakLASryr+qAQx3iueeewxVXXGF878TB1uo3t0odTwhos+mCMr/KFJxRo0ahc+fOtufLSJ2KT53MPyIqKsp4bidKnVfZv3mw77BSpUrGwE5KLz1PuXLlhCvJMmXKWA6obNsRmY282EVAJQFpKIltncDuPm4DJURt2Yss8yJYJSXlk9eKwLZ9UgCKEvLT/CpStClY4IYbbnBcPtFnHhQ1C5iVurCwMKM9qih1MvOrl1AhdVZ9iDe/JiYmWgaf8Pjvv/8AWFszIiMjER4eLvU7lkGF1ImuRUodWdNEeyt7YX6tXbs2Hn/8ceFvVC435ldN6jiIGqSVUrdu3bqggZKOu+iii4JSL7C45557kJuba9qjVEWpY8vRtGlTrFixwvYZgODOmZiYiKNHjwaRuvxOacLX4zPPPKN0viz6VVZn5cqVs1XqoqKiDP8iJ6Quv+qIj7CNjo7G1q1bjaSkVHfdunVzlfWfV3mtfneLhIQEHDhwIOTrFAREeblEn3mwCUsJIiXdC4ja9+DBg5GUlCRV92Tnq5DAgoaKv6sKROZXL+CU1NWvX9/YL5v1qWNNfU596lilzkuouGlY9YV69eo5zl/JYv/+/cZ1ZIiMjERsbKy0zmTgk/7z4Ekd7dRRqVIl/Prrr0YkMABDiSXQnJ+YmIhu3brh888/VyqTKug9l1hSt3HjRgwfPhxhYWGoXLky5s6dG9KKTgSrQcBKqRPJ9zTx2qkeM2fOxKlTpxyTOrZjL1q0CLt27bK8zwsvvIAPP/ww6Pvy5cvj6NGjRsPO7zx1dhGHdpBFv4pw5MgRREZGGqkvrEgde31VyOpoypQpJj+rUEDth5X+69evj8mTJ+O+++7DBx984Pia7CDWrl07fP311ybFwotJ46uvvsL3338v/M3JKr4gIOurdqRANLEUJKmLjY3FU089FfT96tWrg/oIe77XZfMCXqneopQmXrQ3vnwiP7wnn3zSCO5iI0UjIyON9yHy35JFuwMFQ+poRyUebDmsSNRDDz0k3XZRBS+//DLefvttSwW5Ro0auPDCC6UmaxmcKHXbt283JWpu1qyZ6dg//vjDlEWiWbNm+Pzzz3HDDTfA7/ejf//+nnISesYSm9KkevXqWLp0KVatWoW6deti8eLFnt/DqvNTuhCnPnUqja9cuXLYv3+/YX50GrCRkJBgrDDInMYnIx01apTQGX3hwoUm+ZdInRe7R1jBrYkvPDzctHIZMmSIdIVUqVIlnHfeeUpKHcHJ6l5G6kaOHCndhswpROUJCwvD448/Lt2v0A68DwmlaxH97hYXXnghBg0aJPzNacqD/IZV1LsVZPn8ZL+FAieTRevWrdGxY0fp+fndt93Aq8lQZH71Avw12XQfhCFDhggj83mljto9KaZW+S7tksZ7AZmrDVuO/GwzF198MV5++WXL8eCee+7Bpk2bPFfq2C3XLr74YmleWCAvmIH3U+7WrZuygOMUJd78SjZuAI7IlZeIiopyTOpUj69evbrByJ0qdSwaNWqETz75xMhVZocGDRpg8uTJxuf8ziRPcKoETp06Fb/++mvQc1etWhXdunVTupesXu225bG7bnGD22hQr1DUSJ1oE3gWPp9PuOATDbYFqdS5Pb8okrr8VOq8ANsn/vzzT0fnsqTO5/MZ7Z6UKb6tkJM+UDA+dSoo7DZDO1Y4VSvd+tQVBVx33XXo0aMH7rnnHsfnFs0nkmDv3r1YtmyZdLukjIwMJCcnm/6pwm6SOe+885RyGwHnBgEnExdNEk596nj07t3b9SB51VVXWf4+adIkaRJKVbzwwgvS1AsyPPLII/jkk0+COrOKaYWiUI8ePSr83S05KyqkLhSljrBo0SLL371EUSV1sj4lG0NEvp1FQakTgVddxowZg1dffTXUYnmG/CB1XrYv9loilc4KkZGRJgtISkoKgHPmPX5XooiICMOqUlCk7s8//zS2nxOhqBAfp0rdFVdcYTmn3XHHHejRo4cnZfMaZcqUwWeffWYi+aooUkrd4cOH0bNnz6DvlyxZAr/fjzvvvBOzZs2SDnKTJ0/G008/nS9l++6775RyGgHmHDaq4HcWEOGCCy5Qvp4bfP755zh27Jj099GjR4d8DzdbQxHckLpOnTph+vTpQQ7lMTExOHv2bIEpdTLFJ1Q4nbxEA2L37t3RtGlTbN68ucCUgKJC6qgcMlInS+YqMrXxm5p7BS8jrcPCwvDss896dj0v4JW6Fhsba1gbHnnkEaxdu1Z5zM4v8Coppcm46aabMHz4cJMfF3+OLKWJ17AjqkWN1KnWQf/+/dG/f3/p7zIXkeKOIkXqqlSpgp9//jno+5ycHHTv3h3jxo2z3BJn9OjRePjhh43PycnJqFGjhtK9qSPJBhiKPlQBTRBO7OEqSl3//v2RkJAg3LzYC5QpU6ZIRscR3JA6n8+HIUOGBH0fFxeHs2fPup4wnZK67du3Y/v27bj11ltd3U8GL5Q69jpFxfx6/PjxAiV+Tp/bSqnzepstL02KRWWCZsHnLnSLZ5991lgcX3755fjnn39CLluo4AMOTpw4ASDPzCoidMC5910QgRIqKCptxqlSV1pRpEidDPPnz8cvv/yClJQUTJgwAUOHDkWfPn2CjouKinKtvNx4442YNGkS7r333lCL60qpe+eddzBt2jTLTuvz+ZT95Uoi+Ik3FEWEyKsXSp3KQNugQQNHphsV0vjcc88FOcXbQTYgFuakIQIf7JOf8Pv9ePLJJ22PO3HiBDIzMzFq1CjT3sSxsbFo3769MYGHsh+kCF5OYkVxQrRLyK6KCy+80IPSeAs+jygpdVZmNStRoDDeX1FpM06VutKKYkHq+vbta7vBdqjw+/2emBcBd5v9XnrppZg5c6Yn9y+pcKPUyXDJJZfg33//NQ26Tq5HE9D48eOFqSVCxRNPPGF7zGOPPeb4unZKXUH51BUl2AUIrV69Gnv37jWc22mrMwKlOiBfUa+VOi9RVCZoFlSmouKn6iVkSp3VokWk1BEKw22hqLlKFMU2XJRQLEhdcQNNjF6v2Es7vCR1c+fOxfr16/Haa6+5Op8moPwwV+cn8bFT6oqK+bUooXXr1mjdurXtcfml1HmJolzvJZHU8T51M2bMwJtvvmlpIaA+6CZHWX6gqLQZbX5Vg66dfAA55dtFk2o4A7+naCjkJz4+Htdcc41rfyWagKxyGxVFyJS4gjJtFEdSpwqaqIsyqSuq+N///od58+YVdjE8B0W7Anl9rHHjxnj77bctz7EKlCjN0OZXNWhSlw+oW7cuAoGAcpCGhhqoM9P2LV4oWm5JHQ0wTpW6Dz74AJs2bXJ1T6cQrWhlq9xJkyahYcOG+b4KLsmkrjgodUUV77//Ptq3b1/YxfAchw8fNv5W7Vsipa4k9hen0EqdGnTtaBQbEKmjXRB69+4d8jXdkjqVaGUR+vfvj6ZNm7q6p1P8+eefQTkBZavcjh074o8//iiIYgEomZMUkbqi7FOnUbCgPWAB9TYvUuo0zpG5ouiXW5SgSZ1GscGZM2cA5AWVBAIBNGnSJORruiV1tIouyqvGiy66KCg/X2GbLkrygKzNryUXq1atwo4dOxyf99BDDxnpsFTHCqtAidIMIsW6XqxRdGckDQ0OtCtE5cqVPbtmqEpdYZMkpyjKJLS4Qyt1JRft2rWzzJEqQ3h4ONq2bQtAve/RcSx5GT9+fIkMJHGCoq7UXX/99UoBVfkNPcJrFBscOXIEgLekjk054GSwoIm7uJGkwiah5cqVA1CweegKClqp0xCBgqmcKkzs8SNHjsTZs2c9LVdxQ1FX6r7++musXr26sIuhSZ1G8UGLFi0AwNOtf9wqdVSGKlWqeFaWgkBhk9Bu3bph8eLF6NWrV6GWIz+glToNESiYKi0tzdF5uh2ZIVIwNYKhSZ1GscF9992HpKQk6X6cbuCW1N1+++34+eefi13amsJW6nw+H26++eYSGSihlToNEYjUUZJqVVxzzTX5UZxiC03q1KCTD2sUG/h8PsTHx3t6Tbckx+fzFTtCB1hvT1SSEBUVJdyfNT+hlToNEdyQukOHDhk7mGjkQZM6NWhSp1GqUdjKVUHiyy+/xA033FDYxSgQ/PXXX9izZ4/j8+bOnYvdu3e7uqdW6jRE6NmzJ1555RV06tRJ+Zzi5tZRECjqgRJFBZrUaZRqFLaPWUGCT29SUtG0aVNceOGFrjZ4v/32213fl5LG9uvXz/U1NEoeqlWrhn/++aewi+EYPp+vSBGoBx54ADt37kS7du0KuyhFGprUaZRqlBaljnJllXRkZGQUGlEvapOghkYoaNu2LX788cfCLoaBChUq4KOPPirsYhR5aFKnUarBkrqSOiFv37691Jhz2BQ1JQlbt24tkcElGkUXX375pWmbM43iAU3qNEo1SoNSV1pUupKMRo0aFXYRNEoZ4uLiEBcXV9jF0HCI0uNQpKEhQGnyqdPQ0NDQKNnQM5pGqYYmdRoaGhoaJQV6RtMo1SgN5lcNDQ0NjdIBTeo0SjU0qdMoDahevXphF0FDQ6MAoAMlNEo1NKnTKA3YsGEDDhw4UNjF0NDQyGdoUqdRqsH61JXUlCYaGlWqVCk1aW00NEoztPlVo1RDB0poaGhoaJQUFKsZbd68eahYsWJhF0OjBEGbXzU0NDQ0SgqKDanLzc3Fp59+iho1ahR2UTRKELRSp6GhoaFRUlBsZrSPPvoIPXv21JOwhqfQSp2GhoaGRklBsWBIOTk5mD9/Pvr06WN5XEZGBpKTk03/NDSsEBERUdhF0NDQ0NDQ8ARFKvr18OHD6NmzZ9D3gwYNQu/evW1VusmTJ+Ppp5/Or+JplED06NEDo0ePxvHjxzFu3LjCLo6GhoaGhoZr+ALFII/DY489hs2bNyMsLAxr1qzBPffcg2nTpgUdl5GRgYyMDONzcnIyatSogaSkJMTHxxdkkTU0NDQ0NDQ0ChTFgtSxuPLKK7FhwwalY5OTk5GQkKBJnYaGhoaGhkaJR7HwqWOhSug0NDQ0NDQ0NEoTih2p09DQ0NDQ0NDQCIYmdRoaGhoaGhoaJQCa1GloaGhoaGholAAUu0AJJwgEAkhJSUFcXBx8Pl9hF0dDQ0NDQ0NDI99QokmdhoaGhoaGhkZpgTa/amhoaGhoaGiUAGhSp6GhoaGhoaFRAqBJnYaGhoaGhoZGCYAmdRoaGhoaGhoaJQCa1GloaGhoaGholABoUqehoaGhoaGhUQKgSZ2GhoaGhoaGRgmAJnUaGhoaGhoaGiUAmtRpaGhoaGhoaJQAaFKnoaGhoaGhoVECoEmdhoaGhoaGhkYJgCZ1GhoaGhoaGholACWa1AUCASQnJyMQCBR2UTQ0NDQ0NDQ08hUlmtSlpKQgISEBKSkphV0UDQ0NDQ0NDY18RYkmdRoaGhoaGhoapQWa1GloaGhoaGholABoUqehoaGhoaGhUQKgSZ2GhoaGhoaGRglAsSN18+bNQ8WKFQu7GBoaGhoaRRB16tTBN998U9jF0NAoFBQrUpebm4tPP/0UNWrUKOyiaGhoaGgUMeTm5mL37t3Yu3dvYRdFQ6NQUKxI3UcffYSePXsiLKxYFVtDQ0NDowCQk5MDII/caWiURhQbdpSTk4P58+ejT58+0mMyMjKQnJxs+qehoaGhUTqgSZ1GaUexIXVz5sxB7969LVW6yZMnIyEhwfinzbQaGhoapQfZ2dkANKnTKL0oNqRu+/bt+PDDD9GlSxfs2rULI0aMCDpm9OjRSEpKMv7t27evEEqqoaFR0Fi1ahX69+9f2MXQKGRopU6jtMMXKIYbo1555ZXYsGGD7XHJyclISEhAUlIS4uPjC6BkGhoahYFq1arh0KFDxW6f58zMTIwbNw5PPfUUYmJiCrs4xR4nT55E+fLl8dJLLwkX/hoaJR3FRqljoULoNDQ0Sg+KG5kjLFy4EM8//zzee++9wi5KiQCZX0mx09AobSiWpK6o44cffsDmzZsLuxgaGqUGxZXUEQnR8Aba/KpR2uEv7AKURFxzzTUAiu9Eo6FR3FBcJ3EaI3w+XyGXpGRAkzqN0g6t1GloaBR7hLqAyszMxEcffeRRadShSZ230KROo7RDkzoNDY1ij1BJ3XPPPYc77rijwN0mNKnzFjqliUZphyZ1GhoaxR6hTuKnTp0CAKSnp3tRHGVQufUuOd5AK3UapR16JNHQ0Cj2IMXLrWJXWP6vWqnzFprUaZR2aFKnoaFR7EHkKNTJvKDJlSZ13kKbXzVKOzSp0ygxOHHiBHbs2FHYxdAoBNAkXtwmc03qvIVW6jRKOzSp0zDw2WefITU1tbCL4RpNmzZFgwYNCrsYGoUAr5S6gjbDap86b6FJnUZphx5JNAAAx48fR8+ePfHwww8XdlFMqFevHho2bKh0rN7rt/TCK1JX0NBKnbfQ5leN0g5N6jRMOHjwYGEXwYS///4bf/75p/C3VatWYcCAAQVcIo2iCO1TF4yvvvoKu3fv9vy6RRlaqdMo7dCkTgPAOfNPVlZWIZdEHb169SpRe2aeOnWqyJHq4gLtUxeMG2+8EU2bNvX8ukUZmtRpFGUcPXrUSJ9kh+zsbDRo0ABr1651dA9N6jQAnBsMMzMzC7kk6ihpA3e9evVQvXr1wi5GsYRXSt306dMLdGFD5c0vhTA5OTlfrltUUZCkbtmyZfj999/z/T4aJQeVK1dG1apVlY49deoUduzYgUmTJjm6hyZ1GgDODYKa1BUeTpw4UdhFKLbwitR9+OGHePvtt70okhKo3DpQwhsUpE9d586d0ahRo3y/D4/MzEzcc889OH78eIHfWyN0ZGRkKB1HCz2nwVt6JNEAcG4QLE7m15JG6koq9u/fj9WrV+frPUI1v7ID5+nTp70okqP76kAJb1AazK8//fQTZs2ahZdeeqmwi6KRj+DHhKeffhpPP/207Xma1GkA0KROI//QuHFjtGnTJl/v4WX0q+pK2gtoUuctijqp++WXX3DrrbeGdA1SdQtrFxQRTpw4UaysPMUJ9J5//fVXbNmyxfZ4Teo0ABRP82tRGtQ05Dh58mS+XDctLc1or16SuoLsA0WVfOQXTpw4ka/9tqinNBk8eDAWLlwY0jWI1BWlZ6xQoQJ69+5d2MUoUeC3PszKykJERITteZrUaQAonqRONqhpslc6UKZMGbRq1QqAt9GvBdkHimt+PTc4evQoKlSokK8R67xSl18LCrdwMjbFx8fjjjvuCPqeVN2i1maWLFlS2EUoUaD3q0mdhiuUJPNrURvsiiIOHz6MwYMHG8pGccWmTZvwww8/GJ+Lq/m1qLbZ1NRUz4gRXSc//StZUvfzzz+jfPny+PXXX/Ptfk7h5D2npKTgo48+CvrerQN9fqOolae4Q5O6Yo7Nmzejd+/ehdYxSpJSV5yIqQiPP/441q9fn6/3eOaZZzBjxgxs27YtX+9TELjmmmuMv7VS5y2uvPJKlC9f3pNrFYTCxJpft2/fDgD4448/8u1+TsGb1NygKPrU8Zg9ezaOHDlS2MUo1tCkrpjjvvvuw4IFC/D222/j/fffL/D7lyRSV9zVp+effx7dunXL13vkd360wkJxU+qKetLkv/76y7NrFYTCxCp14eHhpu+KAujZQylTUfSpYxEIBNC/f3+h6VhDHTypy8zM1KSuOGLo0KG4++67C/y+NMh4rXL98ssvpl0SVqxY4VnKCL7RE4o7qQPyP29ZSd1IXit13sFLQgd4o1LZgSV1fr8fQNEaD7x430WN1PHvk96B6s4JXqNp06a46667CuXehNTU1JDbHU/8s7KyEBkZaXteyRrRNVwjv5S6q666Ck2aNDE+d+zY0bMoKdkAWdzNr0D+K2ia1JnBTkwFSeryKwWH6HrJycn46aeflK9x8cUXe1mkAolMLepKnRfKbFHzqRORD6DwSOeWLVvwwQcfFMq9CWXLlkXfvn2lv6vMUSXe/Lpx40a0bdsW7du3R+/evUvExF2UkJ/m12PHjpk+//vvv8LjnO57Klv5F6WVuVvkN6krqfnRior59fDhw/juu++wcuVKy+Pyi9SJiEy/fv3Qrl07T+9jhWeffRaNGzc2PlO/DIWMZGZmYuPGjdLfWeJYUpW6glA8nYCfiwub1OU32rdvj8cff9z2uE8//VT6W1pamu35JZ7UVa9eHUuXLsWqVatQt25dLF68uLCLVGSxZMkSXHnllY7OoQYkmgx8Pp9SI1aFaDCaM2cOqlevjv/++8/x9fjBoygN4m7hlmylpqYKI+Z4WL1vL3D06FGMGTOmwAf2omJ+rVq1Kq677jp06NABl156qfS4/FKvRO91586dnt7DDk888QR+++0343MopO7pp59Gly5d8Nhjj+HKK6/EmTNnhMeVBqWuqPlhykhdUSGdXuPHH3/E888/H9I1nJA6QokjdVWqVEFsbCwAICIiwliFlRR4qZjs3LnTcVSj3QDx5ptvhlIkW6xZswaAu/1Pi7P5NTc3V+h74rY9PPbYY7jjjjuwf/9+2/sC+TfhPf7445g8eTL+/vvvfLm+DEVFqWNhFX1ZkEpdKO9aNEEfOHAAY8eOVZ683Uz2gUAAf/75J8aPH4+lS5cafn4y4l0afOqKOqkr6gmgiwLOnj1re0yJV+oIe/fuxbJly3DjjTcG/ZaRkYHk5GTTv9KIrKwsxwOZXQfkJ4RAIOB4JWZlNqBBOioqytE1RdcrSoO4DIFAANOnT8fw4cORmJgY9LtbUke5wOyILdVZftUV+eoVNMGWtePU1FTEx8cr5SwrTj51/fr1E7YVEYELhQyI2snAgQMxadIkZYd4N0rdnDlz0LBhQ+OznT8Z3ePMmTOeRJp6DTeLKb4P0blFRQlTMb9u3boVc+fOLdBy5TfmzJnj+lxtfv1/JCcn484778SsWbOEDzd58mQkJCQY/2rUqJGv5VmzZg0uvPDCkCauw4cP459//vGwVHmTUk5OjqNO75TUhYWFYdiwYabv5s2bhz///NP4zN7/zJkzlpMKqSNkMnGCwlbqsrOzHSuMJ06cwH333YfXXnsNQPAA7ZbUiSa9tWvX4tChQ6bj8lupKyyVRNaO//33X6SkpODtt9+2vUZxInWyidJKqXNzr/T09KDvyFdWtQ258bXasWOH8HvZNagsX331Ffr06eOofKEiKysLa9eutTzGjVKXkpJi+iyL+i8sqJhfmzRpgn79+hVoufIbd955p/Kxc+fORUxMjPHZiVJHKHGkLicnB3fccQfGjRuHiy66SHjM6NGjkZSUZPzbt29fvpbphRdewJ49e1yZDAl16tRB3bp1PSzVuUnJycDhlNQBwPTp002fb7/9dtOqmj0nLS3NcjCiMrsZgL3wqdu4caNrAjJkyBBUqFDB0Tn8So1/bi9JXatWrdCyZUvTcVRn+UW6aPApKkodQaVeCzJPXUH61IVC5EWTEKnCqiTYjVIne1+vv/668Drss9H9CorUjR8/Hq1atcLRo0elx7ghdfyOHkXd/OpFoEQgEPBc7ChMTJ482bQwchL9unLlShw/frzkkbr58+fjl19+wYQJE3D11Vfjk08+CTomKioK8fHxpn/5CS/yBdHk7qVPHQ2yTiZsu4HPjY8OO9hnZ2dbkjqaSN2QjFDNrydOnMCVV16Jp59+2vG9AeCbb75xfA6vfPBtyG2qEVnW/r179wrvV9RJ3R9//OGojPkdKHH69GnbVbYTElEYPnWiex09etRycSpS6gqT1D3zzDNYvny59B5238ngxq2EsHv3bgCQBnEA7ghZvXr1TDvMFHVS58VCZe7cuahbt67J8pMfuP322y0DmbwCHwOg0mfY99yhQ4eSR+r69u2LEydOYOXKlVi5cqUhrRcmilq+IIIbUmfXAZ08I6UmYRvuiRMnjBWslVLnhmTk5uaaJjGnRIImabfJVt0Qcn6S9Fqp498nP6jkt/lVROpEvoNWSE1NxaWXXoonnnhC+RxZO3bSfq3aT7ly5dC0aVPL81NTU6X3T0pKgs/nw1dffQUgdFJH5J9/j06VunvvvRejRo2S3kdE6pKSkgCoK5tOFJy0tDQEAgHLfiC6b6gBImFhYRg7dqzy8SxUXA6cKHVsn92zZ4/xd34tBGTYsmULfD6fUIE8duxYUFCe1XtW7YcUXMS7jXiNefPm5ds2cmzb5ZMGOyF1ALBt2zbk5OSULFJXFEEvzQu1w0s/nvwgdVY4duyYiRDNnj3bVA4AaNSoES644AIA6kqd6gAwcOBAPPfcc6Zrbd261fKciIgII0FlqHtSulHVeLWHv7dbUscHKNB1+QCU/A6UEJE6pxnm6dzNmzcH/SZrG27Nr05In8zPi8AqNZUrVwZw7llokqIcVuxOLirO0zwoIwBPJJ0qdceOHTNImggiUkfwWqk7ePAgypQpgwULFgT1Lfb9qQaIOG3j7777rqPjCUTCRGUgMn/48GHpMTzYeipTpozxd0H71FFb/f3334N+a9SoEXr27Gn6zirKWXUBUNR2zXADtn3yZMwpqZNdRwRN6kKAFxF+xOB5v4lQUNCkrlGjRqbs8z///LOpHDxUSZ3qCvuzzz4zqTnPPPMMmjRpIvVtOXv2LLKzszFt2jQAoQ8gXih1XpE6fqFB9+FJXUEpdazCALhTzETtSPau7L5XqddQJ0uW1MXFxQEInsyoHFT/Y8eONU3cqiDna97k51SpO3v2rGVb8ILUqaY0+fjjjwHkEWCn/cALUud2PKcgL9H9+AWNyliTk5NjLITZOi6sQAnRuyCSysLqPasuXEoaqQvF/MpCkzoX+Pnnn/Hkk08qHUsvLRRSV65cOQDA8ePHbY/duXMnZsyYYXucV6SO9YNjwXdWtmNXqFDBUDJCJXVuVSTKOC9bFRLZo7qnAcTtIOnGDM8rdV6bX6lN0iAaHR1tOi6/fepoEBswYIDwviqg9pOSkqIcDGMXFTljxgzMnDlTuQwyWCkOIlJHz6Li/1m3bl3b5OGLFi3C+vXrDaXOitTxCp2ojs6ePWv5bgpSqduyZQuAPHM93w/slLpQfOqonlSeR/QMVuZX3vxm1w/o9+HDhweVqaj41PFRuQQrnzqnpK44pKfiwabSoWBNrdQVIjp06ICJEycqHSsidU6JwXnnnQcASjn1rr76agwePNj2OCeRpPv370ePHj2CSMauXbsQERGBFStWBJ1jNZhcdtll2L17N7KysgpMqeNBzyJLUE2kjny8Qt12h1ddVMBPkvzCwCuljsxybsyvCxYsgM/nc/UeZIOPk0Ga6mTjxo3G5EaQlUnWNtn6ffjhhy3vq9IOrCLrWYJFwVp2yXJZ/PPPP5ZbYQFAjx490Lx5cyWljjfFi+6Znp5u+Z6tgkNUTWqqpI4tp1U/8Pl8WLZsmenZRc+guuimd6RyvOg+NN6I6oNvl6rZBuj9smUqaJ862fsSRfx3797d2IqOLR+pmE5JnRuXhMIG+9yktKoode+99x7atm0rvA6BXxyIoEkdByeTqYjUOe1oCQkJyseqNnAnSt3WrVuxaNEi0yQVCASwfft2AMDq1auDzrG67qWXXoqcnBz8999/0sFeJVAiLS3NtZ+hTBUhHDlyBMA5pS7Ula8bUsdPkjLznNuyqCp1VmWmlDVuUnx4SeqAPIKpch3ZO2SP9yIpeWZmJhYtWoT27dsH/cb63PHmV758bgjz6dOnAeTVsYpSxy/yZEpdQZlfrYj3ggULLEkd+3nPnj3o3LkzhgwZYnwnegaq+xUrVgS5A4ieI1RSp+Iu4JTUFbT5NTc3F3fccYdpa7kXXnjBNG6JnvPzzz83/mbL55TUOT2eLbcKzpw5g1deecXRtUMpgyxQYvny5UbqlgEDBhiuS4C4jWmlzmM8+OCDeOedd4zPbkndQw89hA0bNgBwl2zXDlQelQmUGg470eXm5loOHOx1e/fubfqtWrVqAPImnlCUujJlymDo0KG25WfBRyXKJilS6kglDXWQ9EKp4z/zk1lYWBimTJmiXBaWHAOhmV/dkF0vSB3bfvjyh0Lq7KDSDnJycjBw4ED8+OOPQb+xQTu8+ZX6pps2QyCH9YsvvtgRqQvFp85KqXNqfhWRpqSkJLz44ovo3bs31q1bZ5TTKgiJyBybrkf0nql8HTt2xOWXXy69npNFpKidWSl1fN2qkrrIyEj4fL4CJ3VHjx7FRx99hEcffdS4z9KlS40xSBThzSMUpY6ePy0tDQcPHlROG6Wqyo4bNy5I/XdSLqfH8OMhtZFOnToJU6ocPXpU6BOuSZ0LWCkkq1atMm0zRMeKOpwVXn311aCIIRWodmJe9frtt9+MzPOffPIJvv76a+NYEamzyynHDpy8gkLql5XSppp8WJSL0ApE0gh2pI5PL5Cbm4tHHnnEcNRWhRdKHfkR8dckBAIBJbcAfqEhM7/aKXUHDhwwTO90zNy5cw2VSLUcPNwqdXz5nZI6J36vKv0sOztbes2MjAzD7Er/0yAuy+kl+ywCqU0XXHCBEqnjk/C68amjNEUiOFXqRMefd955GD16NADzThVOA1uslDrAOiDNCakT3YeIi4pSJ+t3e/fuxe+//278Hh4ejsjIyALxqfP5fMaChK7Nk2rq/yrpn9jyOTWn0iI3NTUV48aNww033GCb0QBQH1+scgmGen0rFZfAvk+RCl65cmXceuutQd9rUucxsrKyTC8gFJ86mtSdbm6tcg5P6ho3bmxs0XLbbbeha9euxrHUANl0Bjk5OcqkjgcRKytSJxqMqByhOMby0YOyQY8ILK9gBAIBvPTSS+jbt6+j+3qh1PXq1cv0WaRQqKRO4R2MZUqdnU9d48aNjb9zcnKQmpqKfv36mUxdVvBCMWP7FV9+pz51/H1DVTmsSF1ubq5RXmqTMtMe/xwqxIKOCQ8PN+6jQupkRD4nJ8fYWpDA188jjzyC9957z/SMqmXeu3cvUlNThUqdKHqSnsUNaRG1i08//TRo3P7vv/+CjguV1NHEnZqaGvSeVc2vNWvWRKNGjQqF1AHAm2++CeDc8/FjDo0n//77r+21REqdncL33nvvoVmzZsb7SktLQ/ny5QEAzz//PHw+n+E+I4Lq+OK27txaNvj+5Na1SJM6F7BaGfKkTpTSRFVWP3r0KG6++WZX/kp293DiU0fH8Eqd1aRnRV4o+CA1NdWy4Z48eRJNmjQxfPlYs6HbAAlSLezKyeYGA0I3Z7iJ1LLyUQLM7ZDKpaJayMyvvNJlR6LZ3QWWLVuGlStXAsh7b3ZlB5yTuoyMjKBVfH6aX/lJ1+m7tyN11Cao3vk+uXr1anTp0sUVqROljLAii/SbTKmj9ykigixon2L+d7sxrGbNmujVq5dxDj3j2rVrUbVq1aBgLDZ6UGXyZetB1i4+++wz02fWV4wgqvtDhw6Zrp+bm4vWrVvjl19+CTqWSF2fPn2CfKXd+tSJSB395qTNvvnmmyYrEw9+jKHyhYeHm+5DYoTKFpzHjh0zlD1V8+uDDz6IDRs2mEgd3Z8sKL/99pv0fFVFPj9JnWje4duWJnX5AEoGydvqrdJTZGVlmQYwO1InuwZhyZIlwoSOdhA1rN69exublatGv0ZFRRk+giypy8nJsRw4rBq2qvn1119/xdatW40ys2TESV4yFk5JHa/Uuenox44dMyaIUMyvPFjTPrUzFaVO1fxqtS8m/8779OmDG2+8EQDw/fffIyYmRprOgOCU1F1xxRVBSquVUhcqqQt1f1d28SEyrdG7Igdp3vy6Y8cOLF26NKhcKht90zWysrKkaTicKHV0T9muLERWatasGXRN0b1F2LRpU5D5lcY+CsrikZOTE1Q/dgsbWR/k2w//mS0XIS0tDdWqVTP5SKanp2PNmjWGqZgFa2KzSy4+ceLEoL2zWagodU5I3f33348WLVpIf+d9PVnzK3sfImX8toMykNVDldSRuwKNW2lpaUbfoXJYEZv8VOrWr1+vtNuIJnWFBPIJYP3LWIheuor51Y7UufGh4a/Hr0a2b9+OBQsWYNiwYQDUlbrMzExjlcwrdXxHUi1z2bJlER4ebkvqqPPSfol2pE6FMEVFRZkCT+wmeF6pc9PRL7nkEkdlJKgqdaL2pnJednY2Pv/8c2OlzPt0WAXT2BE2QKx0sHBK6kRb9XhB6nw+H4YNGxbUZ6xIHbX5rVu3Ss09ojxwbBmoHfJKnWzzc4LKrhts/6bntVLq+Lri60hE6thzXnzxRfTr18/kV8feT2WCqlOnTlC/o/vK2nVOTo5jRVXWB/nriMosInVA3kKGh6j9WS26+HLNnz8f9913n+3xROo+++yzILO03Xi1du1a/PDDD5bHEKg/8NvO8YF8VCcypY5fPB44cADAufoXmb1Z0LxAfS41NTWor8pSVQH5S+quueYavPHGG7bHqaTVyczMlLZlqzauSZ0FyJejSpUqpu+ttv5ySupCyZlkBb5stOLt0KEDADVSx5MKXqmj30XltbpuVFQUYmNjbUkdXV9E6lTyPIkQERFh6vCqSp2T/Rh5kFO31f2APEfzNWvWGJ9VlTqRszF7zKRJk4TnbdmyBd27dzeCK2RmPlnOMjvYOUrL6rJRo0bo1q2b7fUB8yTLD2ayuhblW5s+fbojpY7K/sUXXwCA0GzFJ8keM2aMsagSmV8zMjJQtWpVXH/99ZblUCF1IqWO7adr1qwxqUB2fnzUFtl3RufccMMNGDp0KOrUqWOayJ0qdRdeeGGQ+VWF1NkRUsA+UAIIVohUSB29G9YPTBQ1rpIeyOnYwpKq9PR0/Pbbb6b2pXLNVq1a4ZprrjHqxyrTAj0rP//JfOqIrPHg79GwYUPT9alPyUDR4rSdHqvUEWSkLjc313KrOxZuXG1Ut4MUmdr5tvXCCy9g6dKlAILbv9V71aTOAvv37wdwzlxIsCN1bAOzI3UytS9UyNQ+up8KqeOj2XiljgZcEflgr8uvzCIjI5VIHdUjrchYx33Vjbp5REZGmhq9U586t758KmVs3LgxWrdujc2bN+PIkSNBxIkfqETtkO38VOaXX35ZeB7VK/nG8WWzUupUSJ3MZMaXj0daWprtwE6wUoNkbbtHjx7o1KmTcS8gr4/zx/PXExEDUg1Eee14Ujd58mS89tpriI2NNSl1ZH7NzMwUBgWwiwLATOo++OADNG/ePOgc9t2JlLrWrVsb0e58WQFnPnVDhgxBREQEzj//fBw+fFjYblRN2XzuRBpbZCY5VVLHQtYueAd90TjMtons7GxTBCZ/f1GSdFHZypUrhyeeeCIkUkdlJZOn0+TDVL85OTmmPGgs6NlFpI7tG1QXZ8+eDZo72fOAvJylpEilp6ejUaNG2Lp1KyZNmiQlVdTniNSdPXs2qK/KFgEjR44UpgcRwc0CXpXU8WOtbC6khRc/9lvN2wVK6uwyoBc1kAzMrhrZyYzPyA+cU+oCgQDKlCmDhQsXGt8T7FaNoUR3yiIW6T68AmV1L36lJVPq7EgdJcckkFJnFSiRm5trXJ+PHFUxv+bk5Ai3couMjDR1EFnHlfnU8Sos5cs6ePAgOnXqZBu5ZUXqaBu4yy+/HFdccYWwXllTrojUHTlyxCAGdD2KDCNQG6H3SaSCLduTTz5ppFBxS+oWLlxoudr1IjKP7Vd8mazaNgV1EGEqV66crfmVd4b/8MMP8dBDDwEQm6N5UkegfG+y6Fcef/75p+kzS+qGDh2K9evXB53DmnJFSh0PVaVO5FNHkwg5/hNBcKrUpaenG+dQfdJ9ZepKbm6udKxjoaLU8dHBdkrdmTNnlEmdlX/q6dOn8eyzz0r7A0/qCbVq1QKQR+p4071TdxG2/bI7FrDgza90L5lPXVZWlkHAWLB1eMkllyApKQnLli0DcK4NjR07VpqehK5J4xsvpNA9/H4/vvzyS9P3NB+roCBJnWwupPfCq5tWfZkXUUTwjNTdcsstXl2qQEANhTpu2bJlUbt2beP37Oxs/P777yhbtizmzJmDTz/91GhgWVlZSEtLMwbgjz/+GHPmzAFQMEqdbJBmzTL0DDLw6gOv1IlI3aWXXopLLrnEltSVKVNG2fzKb9ysYn79+eefhTnbeFLnVKnjFQMKonn77bexfPlyYcSb6Lp2OHDggJCksFnHZYpx/fr1AZxTWitUqIB169YZK3A+RQ1NyvT9yZMnMXHiRFOEIQ9V8+vvv/+O33//HZMnTw763QtSR+2nb9++QW3Cqm1T3bF7/NqZX3liwO6xrKLUscjNzcXdd9+NiRMnGo7iqrursKRONonIlLrt27cLfZ3c+NTRPag/URCSiNSNHz8ehw4dgs/nkzr/p6enG9c8c+YMAoGAcS0ZqRMpdXZ9TPR7WFhY0ILMjtSlpKSYIjD564uUOquyyX6rVKmSMOiCYEXqVAUClZxsTs2vMlLHIj4+Hj/88AOuvfZaAOdMq4A8tQl/TRGpS05ORk5ODqZNm2b63sq8nJWVhSlTpkh3NWnTpo3lswDuSd2ZM2csSZ0TpU6F1Mk9DgXgdw8gBAIBy6SORRGvvvoqPvvsM9P2PYcOHTJW1tnZ2Vi+fDkA4M477zTOE/nsfPfdd/juu+/Qr18/W586kpVDgcz8ykeXWQ0yfKdiP7Okjp3gyZmdvT/vwM6aX5OTkxETEyNUpWSOuapKnQgq5tfXX3/d2NCdV+r4cqpkTZeV0Q6iOmE7rCxNChEMltS1bNkSQF4/pOOJHPCkjg9IoONPnjyJZcuWoXfv3rakrmnTpti8eTNef/11g/zwExPVably5ZT8xESg9hwXF4eMjAycOnXKMPlY1fWFF14IwBmp4/stS7ZECZftAhFiYmIwcuRIBAIB+Hw+SxNlWFiYcX8aR/1+vxKpYxcorNIrOp5w3XXXYf/+/cYiQuRTR89E7ceK1AHnFMfZs2cLd4LJyMgwzgkEAkhNTTXashWps0vWTNez+t3v94dE6twqdbz6K8Nzzz2HyZMnCxf8XpA6lcAnusfOnTvx/vvvG4tHvg1SXWRlZQUle+fBkjggTzgh8Avo3NxczJ49W7jxPb/woXN5M6wVqZszZw4effRRnH/++ejbt2/Q+xBth8lDhdStXLkySDE8ffq08N0S2XZC6lT2fnVE6pYtW4bZs2ebXg6Q13hF2+UUdURHR0u3Z8rOzsauXbuCzrHb+NpKqTt27BhatWrlurx25leaOFTMr1art8zMTHz11VcA7M2vfINkSd2JEydQpUqVoESVrFLH+7Pl5OTY+tTJzH4q5le289opdU5Jnai+d+7caQyQLEQpAVhSZ+XbCZwjdbxfC9UTmS/4+uVT6ND3d955J77++mv06tXLltSdf/75OH78uEnNysjIMJU/NzcX1atXR0JCQsikrkyZMtiyZQsSExOxc+dO1KtXz7Jt0yba7HZwMp+6LVu24LLLLgvqt+xnNmcfwU6pownA5/MZ/UGGqlWrGu4QNAFHREQYk1ROTo5pwlJJaSIrK5A3Dr311ls4//zz0aNHDyXzqx2p4xdpPFjzKz0nkWXZXrxeBUqISN0999yDNm3aoF69esZ3bkmdTKlzun2kaExm3ztPHq36AOs7p0Lq2DH37rvvxqpVq4LuT/c8cOAAzpw5g+rVq1tek1fd2M/8+/j+++9x1113BV0jKysraLyneuLbmhWpozZml8D/+eefR9myZXH//fcH/SZr28OGDUP16tXx+OOPo0uXLvj2229Nv//333/C/snn8CMUKKm7+uqrUbZsWeEm1vy+m8UBdqTu77//DjonIyNDmdTxxzlRM19//XX07ds3yGcKkJtfnZA6K8Ly5ptvGoqOHanjiS9NYvv378fu3btRuXJlIanjy8oOlnZ56qxIHa/ULVq0CCtWrMCrr74KwKw82il1/ETsJp0CkWMeohQeKuZXAvni8ISJJ3X0nul7nkzS9YlUsP6OMpQtWxaXXnqpydSXnJyMihUrGp+J2NiZC4YPHy41fWRmZiIiIsKkBu/bt8+W1BEBYcmCyKfu+PHjaNq0KcaPH2+p1FFdslAldUCeYmE1sbJ1xE5YNNhnZGQYz7RmzRrjuaxSmsjKSiB/wb59+xqKikh9pEUSuVmkpqZi9uzZQQ7pixcvBiCfWFnzK5BHNKhOnJhfZc955MgR9OnTRzh2RERECMe7cePGYd68ecZnntTxWzlFR0cLCRUfqEZgxw8VUidqIyIyrxLYxfrOOSV1gDxQIhAI4PzzzweQF8lOuOGGG4LSg/GkjlXu+DLx2yQS2IULgSd1pIZbpTqhd0ljrOh9ZGRk4PHHHwcAR6SOTcpN/rws/v33X2G7JP/oQg2UWLhwoZDQAQhip8UBUVFRUrNIdna2cENdK6UuKSnJ9JsoZ5YqHnzwQWPgJciUOvqckZFhci52q9SxZNaK1MmcbsuUKYMff/wRa9euRaVKlYJ+Z5U6Ptt9qNGvvE9djx49TJ2OvbadUqe6T6FVGa3IM98eWFJnZ2KhshE5pOem4+l33hQvG7zpuD179hgTtAxxcXGoVq2a6btt27YhOjoaO3bsMMpvReqoLb/yyitBW6QRsrKyEBkZaboGld+qbfOm66ysLKGyRO9/8+bNQUodO5GJBmQrUpeTk+OI1LHvXUbqgLxFYevWrfH+++8bzyUKlOAniX/++Ud673nz5hkJyFWUukWLFqF///7GlmE0+dE1ZKSOzK/k3pKSkmLcw0mghGhsCAQC+OCDD7Bq1SpT2iCC3+8XjndWCWHvvfdePPLII8bnmJgYZGZmOlLqRL54VhApllakzkvzqyqpY4+j3YNuu+02zJ49O+iaVqSOd2kQBQQBYp86epc+nw+rV69GWFgYpk2bhm3btgmvAQSPgyJSJ1OMCSrmV9GCePfu3ZZK+pEjR0ypqVTGNiuU2pQmgL1SJ1oVZmRkCNUzIM/Mw2Yfv+GGG0wqlVPncSvCSTh+/LjxmV8Nu1XqWHOTiNTNmjULgDgrO2COyOR3CQDy6sFKqXNrfuXz1MlWYwR+kJQlH1WFaOC2Is/8oMdO7lZRjT6fz1gR0rsilwi74BC+bnnzXZ06dSwz3dO9WFUOyDP3ZGRk4PnnnwdgT+pU6paUOvYapHarTJJWpK5r167GtdLT04NytFHkM3svme+WzDmf4Eap8/l8xjX4nI5sGURKHb+af+CBB6SpLFiI8tTxgRJUL1RmPu+elfk1KyvLcBdISUkx6tCJT52T/aQJfr9f2N74vsB+3r17d1AuxjNnzjjyqXOi1K1fv16oVrGkjkhHqIESTz/9dNAxfL1SvcuSDwN5efA+/fRTzJ4927QtWr169XDttdcGLS5Yty2e1IlcHKgcfNnYPkIk/uGHHxaeT2BzDt54442GeZmFiNStXLnSWKiqBkrwsCN1AEw7VYSSIQMIgdTxe+kVR0RFRWHnzp2YMmWK8R2bYsNNpCorv27cuNHEwJ1uDSKzn7Nyf8WKFfHEE08AyGu47D127twpzG0GWJMNdjATkTpSCmQTNpvQWeRkbqfUud0mTCVQgh24eULJg4ivqsLqVKnjHY3Z+rTzm6FJmiZE1v/KqmyyfG9O2mZcXFwQqSPSsnbtWgDnSJ2sDauoB1lZWUHmVxr8rQY+vu5kCzQyRZ89e9ayfYmUGNreTlYWdjIM1fy6YcMGHDx4MMjVQabUiUw0e/bskd6fIDK/8kod7btJfYJftFmZX7Ozs02kzk6pE5lfRfkRA4GAJckX+dQBwaQuMzMTsbGxUjNeSkqKpfk1FFLXvHlzU0Aega1PPp+gap/lCe348eODjpEpdQcOHMCLL74ovG5ERARuvfVW+P1+hIeHG23lsccew9KlS9GzZ0988MEHxvFWSp3oWaKjo22VOis/OhbUxk6cOIGvvvpKOC+JSF2HDh3QoEEDAO5J3f79+03987nnnkPnzp2lxxcaqbv99tuDQop5uN0gvaAQHR2N1atX49FHHw36TTYR2IEkaYKIRKiCOklGRgbuvvtug2DxUa7U2XlSx/s4sIOOFdk4e/YsmjVrhvj4eMudD2RKHUvqRE7yLKnjZXEVpU42QIaHh9umNGGVWapHWTtduXJlkD+gFXJycvDxxx8bSiZgXc/8pt8ipc6ug9NxqqROptQ52Qs1JibGMKuT+Y38Q9gAGCulLiUlxXZ8IFInUuqckDqRUkdlBNRJHXsMay4SXdut+ZVtL/ROu3XrhurVqwdtzSZT6kSkxMrfiEDPuXnzZqOeeVJH/ZkmVn6/ZdnEt3//fixYsMAYH1mlzkmghF3ZRZD51GVmZmLAgAEG8cjMzERUVFRQ1CaBVer4aPx9+/ZZKv1uU/ywpOX06dOYO3euca1du3YpzSkqdSgjdZ9++qn0HL5NUVuh/8uUKWOk9AHMpI6fF0TPERcXZ0nqwsLClNo1ez+RnzyB76N80mVR27YbwxISEnDgwAHTM9xwww2WW8QVGqlbsmQJxo8fj2HDhgU9WE5ODt5//31cfPHFIRUuvyEiJXZ7kNqBj0ZkX6bTTcSpc6xYscJQx6hs7P/s9dkyW2Xht4vsvP3229GpUydLp3nZhF25cmXjb34bK7asgNhPhMq9fft2Izw8JycHhw8fxnPPPScl27yzrJ351U6pA8zRsiqBEn379sU999xjfGeliIai1PGgwV92vKpPnQoiIyONyZlMKm5InV1/yMzMRGRkpEkpdaPUyUgdmwTXqVIHAO3atZOWhSd1Vu2AnbjpOD7iFQhWWGTRryKlzgmpu/zyy3HzzTebzouIiDA9E5WTV+rs1Iz4+HiEhYWZlDpZO1AldSpKnaj+MzIy8N577xlRl9TeZKQuJSVF2E5OnjyJCy64wPAzJDj1qROBbwP9+vUzuQ289tprtnno7NxwRLs2qAgafDvjSR1gbndsvZ45cwb//vuvMaaKxp/4+PiQlLo1a9YY9a5C6ngTLks8d+zYIWzbdu+1Ro0aOH36tOm48PDwoAU9i1Bz2bomdddddx1+/PFHLFq0yAiLz8zMxPTp01G3bl08/PDD6NOnT0iFy2+IJpxQSZ1s/0DRb3bgc4wR2MmKv7fIZ0x0fztSV7VqVURGRloqdXz9UXlZFYf2o2XBpzTJzs4WbhPWoEEDw8yXm5uLAQMGYPTo0dIoYp/P58j8KktEyWLv3r0mPzEriAbP/DK/8nCr1LkldaQukYmVSB1NZETqZGouJfDmceWVV5qOiYiIQOfOnTFs2DA0a9ZMyacuPT3dlBdNRupocjh79qwlYZc5V9OiNVSljj2WjuODLURglTq2nbkldaL2TdeiqHaCTKmzM4dFRESgSpUq2L9/v5IKrTrBeWF+TU1NRWxsrKVSJ7rP5s2bhce7UepE9blq1SpTgGJqaioSExNRq1YtjBw50hifZLCqw7vuugvDhg1zlNybwLczevfs9+yCjK3XPXv2oHbt2pg6dapQ5aTjRT518+fPN65t1d5at25tbKNIEexWpI7fFYvddem///4T9ke7eqL0SizsSF2hKXVA3n6Wa9euxe7du9GyZUvUqlULTz31FAYNGoQ9e/YIHTJDwciRI9G2bVvccccdrggXD9mEA7gndbwpITMzE2fOnMHMmTMdK3WiLZ6A4J0jWLCrNn4iYe9vR+qqVKkCv9+v7AvEfiayIop8BcwpTQCzSZTqnRQalqxQ3creC9/JQ/Gpow48duxYo3yqplAWTkidk+hXHlY7RLDf2wVKqCAyMtJIZ3DLLbcgISHBIHUUAU6kjp+k2PuKSB07sBKpq1OnDl555RXUqFHDUOqsFORffvkF8fHxJlIn6iuhKnWUfzBUnzp2smDzwNkRJFapY8cdEanr3r275bUAeY43gojU8feyU7P9fj8uuugi7Ny505awff/99zh48CBuueUWy/yeGzZswLPPPmt5TxVSd/z4cVSoUMGxUrdhwwbh8S+99JLxtyqp40lAeHg42rVrh4EDBxrfJScnIyoqCps3b0aNGjWEEb8srMaQw4cP4++///aE1FFbkfnRsvVKe1M/+uijuOCCC4RzY1xcXJBQwWLJkiUYMmSIZRmJxJH/rCg/qAy0PzyQR+pEbdtuTq9Ro4bxN/WfIk3qkpKS8N577+HAgQPYtWsXTp8+jeXLl2PMmDHSjuEWmzdvxuHDh/HTTz+hYcOGlrZ+VVjl0MrOzrZUqWQQkbr7778fAwcODIpeswN1Gn5AkCl1AHDZZZcZf/P7CrIN0E6yr1q1qm15RbtJADDez2OPPSY8j8+FxpO6jIwMkxIEmJMSy94LH9AgGkhFPnXscaxPpJP8QVRGHlb1zCfxZgfDXbt2YeHChcod3G5rOKtAiZdfftnRQBIZGYlKlSohEAigWbNmKFOmjCl6LSkpySB1ouhnuq/dwoLIPaF8+fLGfUS54/hzvTK/yvbapChvL5U6dvN1kTLARkyzSh17fVU/Ix6pqalBfYiduEWkjr+X3SQXERGBevXqYdeuXbZt7t9//8Uff/yBsmXLGoqLG8h86viFwbFjx1CxYsWgfklgfeoINWvWxKZNm4THr1ixwvhbdUHPkgDg3OKAnauSkpIQFhaGhIQEDBo0CBs3brQk01b1nJGRgaNHjwaVT0UhtfOp48FyAn4MF43pMvOrE+Tm5iIzM9PVTk5EPKOjo/HII48Y+8Wz+Pjjjy2vUbVqVeNvmltUSJ1qAIgIrknd6NGjUbNmTbz//vuYNGkSjh07hl69eqFTp07SnDOhYM2aNcYecl26dBHuw5mRkYHk5GTTPyvwk3BYWJgxqPH+aaoQqWM//PADAPuJiAe/2T1BJQ8dEBz15FSpe/PNNy2P4UkxOwHfeuutljnKZErdjBkz8MgjjxjnUuNm06BYkTp20O3Zs2fQMXZKXevWrY2/QyF1AwYMwG+//WZZz/zgx69wb731VmWyJYvA48vGD5C7du3CiBEjlO5B4MsdHR1tqsNTp065VupYpKenm9pQYmIiTp48iX///VcakcdC1fzKpzQRlZX9n0CTf36ROtHAzvqr5ubmGpMve32VBKUiiCZy9lrsPs/Urvk+kp6ejv3790tTVPj9foPUsffjfZH5MoQyyfn9fiHp4ecHkVLHm8b5NkCmZDvQ++E3oechI3Xs2JCcnGx8X79+fZw+fRoHDx6UtjGrMSQzMxNHjx4NmusGDx5sWU4guJ2R5UHW/liyzNd9ampq0HwRFxdn2zftkJOTgwMHDiAQCDjuF2lpaYiIiEDXrl0BiK0Zdkoha42hNk6EXIbs7GzXCzMgBFK3ePFivPrqq9i5cycGDx6MMmXK4P3338fgwYPRoUMHfP75564LJcLp06eNVWpCQoLQr2ry5MlISEgw/vEdhAelXyBER0cbREplE2QR+MaakZFhdHpRMmMryHy+rMyvVmDJk93zxcXFoXHjxpbHkFI3aNAgAGqbDQPnfOpIxRGZ0nhSp6rU2e08wZIa8uVjz6lQoQKAvDrnBwE7gsW++/feew/Dhw+XpmsAggc/Uf3RPUVbjbHgU8PwkJE6N3s28+STV2xZUmel1MlIXW5urrEVETvBklJ32223mfxdZGD7iRfmV/4YVVJnt02Yk1QJdE8iWDTReEHqRHBqfk1PT0eNGjWMXQcAc/uIiIjAeeedhzNnzpjeiSwBNZUhVFInAks8c3NzcezYMVSoUMEo7/nnn4+LLrrIOEZkfk1ISAiyiIhA4wC/EwcPkfkVCCZ11Gaof51//vnG/Chz1xEhIyMDJ06ccLwlIhD87mnslLU/th3wY/6ZM2eCFoCk1IWC3NxcI52PVeCmqMxnz55FTEwMZs+ebSx8e/ToYQQRqYBtt0TqsrOzLftooZG67du3o3///kGdbcKECXj55ZfRp08fvP76664LxqNcuXLGpHn69Omg1CFAnnqYlJRk/GO3MRLhtttuM32uUKGCQepU8miJwJM6ljypdH4Wb7zxBnw+nzSK1WmDlwVKiAZMldxsNNBQZ1QldUBeh6FBSETqaPJyYn4F5L4ru3fvRlJSknENeuasrCzTOeygKlLq5s2bhxYtWgjvwb/fGjVqWJI60b65POhdszI+gR0YsrKycOjQIfz000/Ce4lIXVxcnLBNTpkyxWTG5yEjdTRosaSOVXf48rBt8JZbbjH+7tSpE84//3zs3r3bROoSExORlJSkPOBRLipeqXvllVcAmPuqG6WOymZH6tjtpUSQkTrRooTvc/Q+2fHKyc41dnBqfqW+zPbp+Ph49O/f3zieTdU0YsQI7Nq1y/Kd5hepYzFo0CDs3LkTFStWNI5/4YUX8N133xnH7NmzJ6i/8AnEZaC2aFeWevXqYcmSJcY4JCJ1ZH4FIOxf/LxgZ34NBALC/H924IkJBbXJCIvVvqWBQCCI1HnhwpWTk2NYyGrXri09jr031TmRupiYGGOP4FatWqFZs2bK92f7NkvqgLy6Z3ctIRSa+dVq4Bg4cCAWLVqEMWPGuL18EFq2bGl0sKVLl+Kqq64KOiYqKgrx8fGmf1Z44oknTIM5S0rckjp+IGYThrpV6vhVlFtSJzO/ul0V0Hm0WlTZbJhw9uxZQ4IWkTTq0NS4k5KSDJ8GmerRtGlT6eRcp04dtGzZ0ng/RER4Usequ/zglJWVhcGDB+PXX38FkOeoy4If8KtXr26p0PDt00qpE038rMkqKysryNwsytnHEvty5coJzWQjRowwJdflwb9nKjf5mJHyZRX9yit1bF2QL9K+fftMJhu6vpXpggX50Zw9e9ZEMh544AEA5gWXHal78skng4i1FaljB2Unix0WTkgdW36qV6tIP1Wwz2FH6oYOHSpcoLGphlhSl5aWhgsuuAB169a1HIPi4+NDmuRUlEtKR0ImNyBvYcm2v+nTp+O6664LKpsKKD2GXVkqVaqEm266KWj8E/nUAcHRsj6fz5QnExCbDV955RX8888/RvvhIz9VwD8L9U/Zu7KbH/KD1LFR9nzCdNm9acwiUgecmxdEeVetwNYF5aajcSQyMlJYV4Wm1Nnh+uuvF25u6xZNmzZFlSpV0LZtW2zfvh233nqrJ9dlyWlOTk7ISh0PdsB3SuoIvPon8qlr0qSJ0KTapUsX42+W1LETaqikjjqEE1KXlpZmTM5WSh01ejZ6T0QC//zzT9StW9fSYZjdKYM662OPPWaqR9ZsJDK/ssfyMjz/nmSErm3btnj55ZdN+ewA8Xug+4kWUay/Rk5OTpAplVWzadIX7d3Ig93NQASZUkfXu/nmm/Hpp586InUionbixIkgpY5/BisQqTt06BAWLFhgfE9pWNg+zitpDRs2NP1Ge5uycKLUEUaMGBHkryRT8USLNhmpY3HmzBk8+OCDqFOnjvC6IqgQH3bioz7IttkKFSoI+3JYWJjJiZ4NALNzrgfyFkf5rdTReNCrVy/jXqTSWMGO1NH7ckLq2DLb+dSJfFbZHZIAcRsZPnw4unbtatrz2Sn4eiXzq8yX3e7Z+bpm+75VpgoetAMEkDePnz17FmFhYZZ+m2w90twjInUUPKEKdhy49tprEQgETG1G1DazsrIKR6lTweWXX+7p9aZOnYqffvoJc+fOdUQg7HDw4EEMHz7cROrsgiycgF6sG4lbVBYyI7KDfiAQMPkvjRs3DqtWrcKFF15ofCdLA+HEB+eSSy4x/mYHPwDCbW5kEJlfWZJCnYzqjlUWRaSOOoeqUy0NEm+88YZpn0+WXIjMr1bqKF+/Mr+vV199FQ899FBQlF2FChXw0ksvmSZ9IgzVqlULug4/SPHlFeW9Ywd42R7Gdvmf7MyvQJ6vnhWp482voskxJydHqNRR4JHdHrVWi6ioqCgTqePfHUtEcnJyhKqBKqlj30OTJk2CdoaQkTrRZEzXov4hi7h2ulBTUZxEBIcnrzKljuqSVeroM/u/CNWqVTP9Xr16dcty8m1XpS7Onj2LBx98EJdddplxfExMjK3KaldvNKYRqbMrC5kIrUhdVlaWpfmV2iO5F8ncVU6dOhVSZCk/b3Tr1g0ApIsJO99RK6XOjlwTrrvuOkyePNn4nJSUhLS0NMTGxkr9ewFzEm2qa5bUUZuLiYlxtFOW3TPLlDr2PNHYb3lPR0eXUFStWtWU1wpwFyghM0mrNkgZeL+sESNGoHXr1iaCwZOZ4cOHo127dqZJVdaBnZC6bdu2oWbNmgDM2eZzc3Px0EMPKV+HNb/SREArPeBcY69atWpQPjcvSB07WLOkmX1XfL0cOXJE6jTPPgdBRurouvyE4ff7MWLECNPglp2dDZ/Ph9dffx1XX3216XielPETBr+VEaCm1AHWSWRF0a9AsNpmtaMEr9TJBlx2YGcdnS+66CIMGTLEcoC1Mn1HR0eb+jjv4hAWFobMzEw8+uijQeSSQG3FiVIXHh6O+++/3xSEJFsosO1pzJgxOHHiRJBSBwS3o9TUVMekrmnTprbH8OOY3+83jXllypQRWjhYguz3+00Ehf1eBl6ps8pRCORtWM+2C/7a5B/Fg/oTO67Z+SfakTrqEyo+dR988IHRznhSx79jmfkVODd3Ud9JT0/HVVddheHDh5uOS0tL85TUNW/eHIFAwNJ3zQr8GMDWLd/2ZEQnEAiY2gqRupiYGGmqGsBcjzRWsqSuQoUK+PLLL02EUQVhYWFo2bKl9HfROPv333+brC4qQWGmezo6ugQjPDzcNAlSkIUTGVSUPRoIPRpNpBpu2rTJktTRwKlC6pw6Vq9YsQIffvihaRXp8/kcXUdE6kQ+D/Hx8Xj33XdN34kma6ekjjdnENjOzQ/AzzzzjPG3aCKeO3eu6bMs1YFsIqPPfC49v9+P+Pj4oAhBGamjwbFt27bGb16SOplSxw+8dkod+x5lyjs7EIeFhWHkyJEA1NQX/h1ddtllmDNnjlFmloDwizhqyzQuiCYEeo9OfOr8fj969uxp2n5OtLk4YG4HFSpUQGJiolFP7ITH17EsHYoVRD7KPGTJZgmNGjWSml9ZoiRS6qzGyGrVqpmeZ8CAAZbl5J+dv/bcuXNN6jyBJ3UqW3vZkTq/34+4uDglUsf+ZqXUAdakjlRB+i09PV2YFiYtLc3kb8dvc2YHL6OsgeCAO7bP8WOLrH3zpC45ORlnz561Ver4hTRgJnUA0LVrV0tiKEJYWBiWLVuGgwcPSn/nMXbs2JCifjWp+3/4/X6T+XXx4sVo0aKFISU/+eST+Prrr03nDB48GFdccYXxWZZCRdT43333XSOKxk6ilZmCnZK6RYsWmcpDg5jTPEC1atXCnXfeadSV3QQ7adIkzJgxw3ScyKeOVepY3HLLLRg3bpzx2QulTkbqYmJi0L59e9x0002Wg5bI+Zi/t4zUsfXA7rrBRl0RWKdZWQoB/rpVq1ZFIBAwpUERBUp4TepESp2VTx2rjqlkoQfUlB0ZrrjiCtxxxx0A8iYOlsjxpI76JJE6kfnVar9dK6WOLz+tynlzOkuQ6Dy6LttuRGqoSv1QXbZs2dKUukMGKoPoGYC8+hUt7KzMr/z77NixI2bNmmWKvq5SpYpxz0suucR2Wyw6duDAgXj22WeFiycRGaLxkPoNtec///wTbdq0Ed7LjtSFhYUhPj7eIFpW/Yot5wsvvICWLVtKd2ngXV9EoGf87bffhBHE/HjVrVs3pZx7hPwidXfeeScCgYDpmfn3JRsvZEqdHalj++vRo0exfft2Q+ELBZTWSZS9gMoLBO8uFNI9PbtSMQcN3qxs37ZtW6Phnnfeebj++utN54wZM8a0fQ3rZM8iMjIyiKkPGDDA2BfVzm9DlhaDnfz5Dsr6hRAo+zV1EJoY+BWp6iqf6sqOlI4ePRoDBw4M2peV96ljV0Hs5BAWFmbacs6K1Kn6O7ADKKuUxMbGYuXKlViyZInlxKiykgoEAsJ3y9bDH3/8EVQmfocNGamjrboI9B6ovbCDGG3dxRIQr0kdPzA5Uepkefj4lbGKD5YM7LvwQqkj30MRwZf51InKTxM+Dfx0PNvGeMLPjjWiyUqlfmgcWLRokdLx/P7C/JgTHx8vHANlgRJsOdk2ftdddxn1/8MPP5hUJjqX38Xhyy+/NEgxXWvGjBkYM2ZM0LPJkmITqRs8eDA2bNhgBMs0aNBAOulaOd/TvRISEox3LCK9ojbRunVrrFmzxjheptRZzR009h84cAB+v992nC5fvjyqV6+u7EYTSoSmCFReGsPZZ+bJ1TfffIOxY8cGXSM3NzdIqSNyZkXq+PdyySWXBCl1BC996qgP0WJThvnz5xtZF2zvqVa0kg8avFmCEx0dbbmfXXh4uGmAku11GhERIWTq1GDszJYypY6NCOUHWLqmaFKl+1J2ep7UyXYB4EGNW9XsypMSXqljyyq65qpVqwB4o9SxAxK70wf77E6VOhFE6i17XdaESoMRS+pOnTolbYMdO3Y0fSaSRO2FDTZh8/wRCpPUkU/dFVdcgUAgIF3Jeknq2HJHRUWZ2oqdUiczu/j9fqFbg51Sx+9UAJzrj1YBCfSO2QAoOo9VE52QOpUJny07TY60sfqPP/6IZcuWmX7jy66q1PHEkeqCVwd5H8AmTZoYzux2gRI+n09YTlK+fT6fyQLDlpNFXFyc1LpAIKXuzJkzUhcVah9W70zmU2c19rLtyC7Xn4ho20FVqVu1apXtThpA8Lwj280EyPOLpBQhLHiljvLU2Sl1IqSkpAj7oizATAQ7gYTmULt21KtXL+X8eJrU/T9EpC4mJkbq00DnsB3g/vvvF16bb/yk2lEjtiMIKpG4MjJjReqIhPLmI9V0MXTPUEkdkTQ7xZIIkojUsduJOS0Lm6tNNAGL4BWpY+tOpNRNnDhRaropV64cpk2bZqysiRw88cQTAM5NsNS2efJhlQfKSaAElZtXLcLCwtC4cWPceOONQdeg6FfqAyr7RbLHhUrq+H7BK6+8UiebEPx+v9SPjCBS6kR9hu4hmkjofZDJmoKVgDzzJN2HN5Fage6jug0XPdOHH36IvXv3GtsntW3bFtdcc41xLR68+ZV9D7wKzZM6/ntZO0lISAg6lsCf4/P5hAtX2cICEI//1atXtx2z2F1VZHVM17Bq0zKlzgr8AlV2zpIlS0yLGlWypnpcu3btjLbywAMPmHyTReUloiNLfC26P6lYgUDAeE7ycT98+LBjpY6uKeqL9957Lx5//HHptVjYvSd6Vpk/vhtoUvf/kCl1MvmbzqHfZ82aJfVLocZHkx4NHtTI7LafstqVgOCE1FmZX48fP44ZM2bY3o+9p+o2R/wgQErRY489BgDo3LmzcS3RgEGDnojUsbmvnJaFVerYzm11LVVHVlFnlQ2G9HxNmjQR/s6TsjJlymD48OHGbgwpKSn43//+Z5A6Nu1Fbm5uEPmwSgvkRKkTpaQBzuW7mzZtWtA1hg4dimXLlpnUIhFUlDoiOLfccotlGiW23CpmM0DslsEiPDxcSOrY+lNdKFC7cEvqsrOzjYUS1Y9sD1YAJkKtQuromMTERKn/sGx3GlmgBE/SecWd3pnMj49QpkwZ41hZABJbHlEdyywtbDlZVKtWDbVr10bHjh3x2muvCc+bM2eO8f5l4yS/JaIIfJ9TWUjzQV+y68fGxgqJth3c+NS99tprGDp0qLQcgJjUid4XW2aKhs3NzTUWwZR+6/Dhw4iNjbW0QPl8PgwYMCBIDRM9Y3h4OHr37i29FgtV86vqHsJK9/TkKiUA4eHhyM7ODiJ1RLhEK7Lw8HDjpVl1BGoY//33n4lAqDphskqdrCM5IXV0DRGpK1++vHKnDpXUlS9f3jQ4Va1aFdnZ2Rg3bhxeffXVoPPzi9TJCJpV9JvVVmUs2MlXdG8WNOhOmDABU6dODfpdlHaDvV5ycrKpTdGigeqEXxxcd911+OSTT4T+Ql6ROvZ/HocPHzbKyLc5eiYVpW7Tpk3YtWsXFi5caOmbwpab3yKQB6/UydpCcnKyUHmQmV9Voh9VSF2VKlWM5yFSl5WVZbwDupaVid2pUqeihouez4n5ld0WkP3dapytXLmySQ1UyVNH31155ZVBzyeCjNTFxMRg+fLlQeZaIG+R0bBhQ1tSJyOjVs8gW+izbU3V/MrPbV4rdTxkbZL3qRO1E9n9RUEVpB4fOnQIsbGxlvXr8/nw7rvvGvuYE2Rbjar6nauSuoiICFSvXh1333230nUt7xnyFUoIaPBmVbOYmBihEz97jgqpowYQHx9vssdT3jE7W7lKPi+vSJ0TqAZK8Pcl8B0tLCwMPp8PTz/9tDAPkRWpc2p+VSGuVvWydu1apfuI9lC1U+oiIiJMSZ4JsrxrdL309HTT++ZXpvxEEBkZid69ewtX/QVB6tgysu+jTJkyxgCvotQlJiaibt26wnLfeeedRhAGO3m1a9dOWia2zOHh4UhOTpbuqWt3Pn9fUb3u2LED69atc6TUxcXFGYSXdaPgSZ0MbASoU586q34hej52hxKe1FE5KWiK+jav1NE5fLAakLc4YO8tI3VXXXUVxo4dawRAfPPNN/j222+lz8JCRuoIIhWI6lRVqXPiUiBTYGX9PywszPb+BNVyuN1jWFYOvg7ZZ1EldYFAAJ07d8aWLVuMbRMpUEKFhNKzX3vttQDkW+15TerovjNnzjTtiOEGmtT9P8LDw5Gbmxuk1NmROj6th5MQ6Nq1ayMQCODSSy9VPkcmIcvIDD8Bf/TRR0ZGe1qlOonmEd3TrU9dbGys6d52HcWK1BFUn0XUwXnzptXkxa/oZGAjVPmtz3jITHYEWVJPdhAWKXUEivKlzO804IjqzIlqIesjTkgde0x8fLwx0fBKnV2gBF/uuLg4YzN5ti9QcIHsWqxSB5h3g5k5c6aRZ062IGOfx84J/aKLLkLz5s2VSB35Jvl8PqO+6ficnJwg86sMR44cMRZVdjuIEMiZ22rLJpn5lR0nRQoMmcPJKsErdVFRUUhKSjLyFIogW2DTNSpXroyJEycax3Xp0kXZ6V3kqsC2IdG4zAereUnqWIvPxx9/bIxHMlJnlbvQrVLnZOsuFfDmV3aRKKo7tr5YUufz+dC4cWNTiqXY2FjUr18fL774Itq3bx90Lb6/V6pUCXXq1BFG2LLH2UHVp46u5/P5bHdMsb1nSGeXIFAD4QMlnJI6pxE2dB1V0PX5vElEsF5++WVjlQGIs/9TmWW+W6pwq9RR542JiTGRUbvrqAx6opW8VVmsru9WwWTBbplDAQMyEszeX2Tuv+WWW/DPP/9g0aJFGD9+vPG9zPdEptS9/vrrppW+aEFg1Sb53+gZRXnqAGvSz5uIgTwiJto5AQg2x/EQ+VNRXbITs1XQBFtmUT20bt0arVu3BgBphnn2PPb5VfKUycYaIG9rNPIZYhcJzz77LH788UdjIrQbUxITE03qhcoYdP/992POnDnSnG3sM7BjEP+uRP5bZJKjYB/qe+yx8fHxlm2JVVdZ0PuXkZUFCxbYRmeKzmWTpauQulACJQikPrELsT59+hj7ULPjBtuOcnJyPFPq2rdvj6SkpJBzuPGgBZyI1IkWnmxboHbCzr/8NmM+nw8PP/ywZX9nF41///231E3Da1LHHueEDwjvGdLZJQiiihQpdQ888IDpHH4gUU0HYnfv1q1bm7YSItD1eb8EmhQfeughLF261PieH4yioqKwbt06rF+/PuTG40apCw8Px6pVq9CpUydUqVLFlVJnhZdfftnSOZwtCw/+OUQBLKo5nIYOHYrTp0+bnmnWrFn466+/pOewx8qCGGrXro3u3bvjqaeeMr6TkTqZUpeQkGBqP3ak7q233pKWGchLzL1x48agHUF4pS4xMRHPPvus6Rhqz2wSV1LqypYtGzQo2rUBkelNROpYiNqCjCDw38miH1VJp6gcPDlmr+f3+43JjsaksLAwI2emqvkVyKt7J6TO7/fjjjvusOzvdJ2HH34Y1113nansQN4kZqXU0cKD9TVShcz8Sv1Adq2ePXsaCqgMonPZNBRW5ldqI6EqdampqZg3b57wN1GyeXYs8FKp8/l8SnsFW+G1114L2raM3Ah49Yr9Tobw8HDMmDEDH3zwgek78jel/wFx5gKe1Nn1B9W50+440RyqSZ1HEFVkTEyMYeqjAZSNcmKVOj6HU6j3rl+/PrZs2RLUeWjw4KP3ZOZXfqCIjo7GRRddZHIQdgs3gRJhYWG48sor8f333yMqKspzUuf3+y2dw2XXEuWQEil1Mn8Hdl/Shx9+GBMmTAianKOjo6VJdvky2aVKkJ1npdQREeTbqBWpq1SpEu69917b+4uiTkWkbsyYMaZjqIxxcXE4cuSI8TeROh52E46I1FmlJZJd00qpkwVByI6xKh9fVkC8XZ7oPJE5n0/AawWnSp0K2Gcgf7WKFSsa9cmTOl6p482vVhHaw4cPN3wpgeBtvgh2pE4Fbkid1+ZXK2d/Ealjj83Ozpa+Y5mLA4F8EAmq470VHnjgAUybNs1kTrcy59I88dZbb0n3Qh04cKDJJA6cey/s+EykTpbRgv1fBiuzPbtHt1bqChEypY4agJ35leAVqaOOJVtFqZI6kVLnFciZv1atWkrHW+VKArwxv6qCv5bo3iJSxw8aBLaeX3zxRUcJKkVlYgecxYsXW57HEjl2EcC3xUOHDgEIbm9OfepUwZM6kcLDtmPqY6TUifLoUR3JVu78PchnjC0HgdJyhKLUOSV1KkqdKF+aqBy0aGDv5Vap82KiZu9L7XfBggXGTjYEkVJHz0LmVxWlbtq0adi1a5fxmSLNZUpdKG1a1HZZUiciCPnpUye7hozUicyvAwYMwPTp04PGKr7OWasA4D5AQoQpU6YYf1v1bWoPNWrUEAbRyUDXYhfjVnO6qlLHL9jHjx+PefPm4bXXXsNXX32Fe+65B4B6oARbp6HWr3ezZDGHTKkjiMgaq+5Q4xEdZycdW4Xc8x2MGolbpU5G6v7++2+lfHgsunbtir1790pzVvGwI3V2HYkcunNycjBkyBCMGTPGddJGvhyqpE6m1IWiAhBkZr1OnTpZnscSTXanAVVXACc+dXZtuWzZskYiU7tAiRdeeMG0OTtNjKTUWW2pJANfPqs29ddffyErK0voW1pQSh17Ppn7VUmdyH+OJhsVf9C4uDhbwuEUVBZqv+QDxkKk1NF5lF6ID5RQAZE63v1CNcm7FURtkVVURb/z0a9e+NTJwAaUENj7icyvEydONJklCXZ5/qzy+YUCK1JH3zmto65du+L11183zRMNGjTA+vXrTfO7yKfOCZ588skgNwNAXanzktRppe7/wZpoaOJmB1yZGYAndV751FGj4nOoOSV1fMSkbBKqU6eOZeJWGVQJHRA6qQPM5h2rDPB24AcOVVLHrhIXLlxo/G1lJlIFOyCzf9tdm603Ni9eeHg4OnbsaFoNi6BC6l577TUMHjzY8joAsG3bNoNs2JG6Pn36mJ6N7kmkTqTU0eQlI5f89+zgzP8WGxtr2omARag+dTJnfbY8K1asMEXVEulgVQA++S4LGgNESp3KAm3o0KGYM2cOAPsE6KqQmbrZcZJ9Fhlpo77nhGzSgoYUaQIttEMhdSLYWWXyK6XJt99+i6+//tr0HbVt0SKB/ubvL6t72Y4xQJ7yOn36dKVyOoUKqXOqtr700ks4cOBAkI/wxo0bhURKVanjwdetU1LHHqdJnUegl9i5c2fL7Xp48GkhRHu4qTh58qDGxWerpxcuC5TgkZCQgGPHjhmfnZpfvVrBA2JS17lzZ0f3onqJjY0NqfG7JXUiEgJ4o9TJzDlOVo28aWL58uW46aabLM8RtR2+XT/wwAN4++23be9fs2ZNI2WAnflVNPFHRkaaAiV42NUF/yys+VXWD52SOplS98033wiPAc69W/Z6V199tcl1gVLqsGSBCJ6VUsfWKxE9CoqxQrVq1XDVVVeZ7h0qZEqHrK+ydT979mxjuyc3keedOnXCqFGjgvYEpfpU3QVGBZMnTw56ppdeesmkTPLmV1kdqOwoweK6664LivKnds+O7yyJFfnU2eXLFH3u2bOnMJDHC4ien9xJ3Cp1ERERQWNibGxskIDBK/Mq72LixIm2x9jNaS1atABgVudDnXM1qft/sCtM+lslDw81BupUr7zyinA3AJV7s6DGK9pPU/S9VdJdKx+gK664wrJxeuVADYiTnLL+Yk6UutjYWFeNn57fDalr27atiYiw53jh7ycLlFAhr0TyReWwi1SzSxfgFLyfluxaIgUyIiICcXFxuPvuu3HXXXdJr+1GqbMrLws3PnXsO+Pbk8yJnwVNwiyps0pRQr+RHxpwrh1Y5XLs3r170HdekTo7X1L+/bDH9+vXz8j7p5pEnIXf78cLL7wQtODND6WOtjZkMWLECFPeQl6pk5FKlR0l7EACBGs5adiwIXr16gVA7FPnRqnLL/Tq1Uuo1P3999/4559/XJM6K4iUOupnKvcZO3asbXu3m6Nuv/12HD9+HOeff76wXG6gfer+H6yDL71YJ0odDULlypXDI488Ypkkk4cVqbv22mvx7rvvBt2PXaUHAgFlUscrdRs2bLAtm1crXNF2RLGxsYiLi0NKSooSSaNj3Cp1UVFRSE9Pd0Tq6tati+uuuw6vv/667Tlewak5d8uWLTh48KDwN5bUifYXdDOBWoHarp35VfSMI0aMwPXXXy91BXDqU8cqdTI4jX6V9ScVUme1cBGROvpbVIc0BrCqXKtWrfD0009LU++cOHFCqLR4RXimTJmCZs2aKSdQlbVzL3JEErzwqeMha1MioiAiddWrVzeiOL3wqbvsssuwaNEiNGvWDG+++SaAvLb2+uuvY8GCBUKfOlnd2/nUeQ0af/79918A5j5csWJFVKxY0bX51W1ZVO9jN7aoXIcnhnTNhx9+WJgo2Q5aqft/UOVHREQYkmh0dDSmT59uuXuAnWlHBaLORR3pxRdfxDPPPINjx45hz549Rnh57dq10aZNG2P7IrdKnR2mTJliDNChRs7KfOqc+DGQn4gb30Wre4g6J91r165dQYSOv1Yo718EpwNpjRo1jHbLg62rULOVq4BX6lTNr0DevrdWvp1uSJ1qeVmoBkqw57LqOX8eDdxWvmsi86tVOUSm1rCwMIwbN05qIouNjRVe6+qrr0ajRo1Cbh/x8fEYOHBg0PdkAlP1g5Vl8neD/PKpE8GK1NH9t23bhq1bt+Ktt97C2LFjPSF1QJ4CywsRdG2RT51sLBQpdZ999pnJh9hLUMAhlccq+lWUtYBNdO30vvzftJhQJXVvv/22ZTJuNwt/KkuLFi2M3X+cQCt1/w+W1L3wwgsYMmQI/H4/hgwZYnkeRQKFkoxRRJao8cbHx+PJJ580vn/uuefQt29fVKlSxbQfpVulzg4PPPAAHnjgAWzbtk0p/5sVvCB1NDC6JXWyrbFUferszvEKXqYN8NL3UAUypY4vhxs/RDfm1y5duiAyMlIaRRyK+ZV9JjYqkG8bjz/+ONauXStNiQOIlTorUkck3snALyMO5cqVw9atW3H69Gns379fuGdxKOjatStWr15t7MRhh3HjxmHcuHGe3LuwSB1vfqX7Uyooyv9IBNYLRYxfKNG9c3JylMcBUa7HHj16hFw2O1iVT2Z+DUXRFQkctOhSfRc9evQQ1o3T3ZZYyFIwqUIrdf8P1qcuIiLCMkksi//9739YsmQJrrnmGukxdhOjqHHJCE5kZKRwv0krUsc2DrdRmpdeeqmj/EAiyEgdPatKIyYThuoWNfyG3US+69ati6eeesrYm1V0bz7pJgs2qS0QmlLXqlWroFxQBYlZs2ZZrjadQqbU8XBDNu3y1PHflylTBhdccAEyMjKkkdosqSN/M1WljgW7sOOPueKKK7Bv3z7LdktKHRsgYlWOChUqIBAICHeekcFu4XTeeefh0ksvxZVXXumpWubz+ZQJndfIj0AJFViZX1l4pdQBwQsUGu9zc3OVxyg3areX8DL61QpspgBeqfPqmUMhdW4X41qp+3/YZZ2XISwszDa60A4i9cyJLf3xxx9Hly5dpL/LlIWChhdKHZFXFaUuMTExKBr5xIkT+PXXX3H55ZcbOe9+++03Ybm+/fZb7N69O+j7Zs2aYejQoZ4NML/88osn13GLu+66C/369RMqVo888ojj66n61LmBU6XOShnjr/nOO+/gpptuwuLFiy2VOtm92YnAzTPXqVMHK1euRGxsLL777jvs2bPH2KLNq7am2v/Xr1/vyf1kKF++PG6//fZ8vQchv/LU2R3HkzoZ8pPU+Xw+TJgwAX369MGaNWuUriGKIC8IWLky5UegBJvT06351Q6FodQVC1K3ceNGDB8+HGFhYahcuTLmzp3rSQoJEbzINwYAx44dw9GjR3HJJZfYrpB4UudU9ZFtKk7ITzOhE3ih1BHsSN2xY8cQERFhON8CQKNGjTB06FCT0ml178TERKHJmdIusNvVeO1TV9BwQl7soOpT5wZOU5o4SZQaGRmJChUqoE2bNhg/fjwAc7to3bo1rrjiCmGqFUBsenOCV199FYMGDYLf7zdS/VAamfx2EC9oHD9+vMDuFRYWhqZNm9qOk15AROpE+RZZeEnqRO3uiSeeAIAiT+qsIk9lPnWhQLQTEql3ZMFxi8I0vxYLUle9enUsXboUsbGxGDNmDBYvXmyEansFksa9InUVKlRQNhE6DV5wisJU51h4odQR7EgdKXTs/d5++220bNlSeG83Hah69erYv38/zj///CJP6r7//ntLv08v2whfp/lxbVWlToXU0TlRUVHw+/0mX1W2TdaqVQuvvvqqUjndkLDY2NigYJf8UDtLIzZt2hTS+W76N70zu7xuTvPUuYXqMxQWqatatSomTZokDLTJD/Nrjx49jL2oaYxq2rQpDhw4ELKrEUH71ElQpUoVYxKPiIiQNrKMjAwkJyeb/qmCpHkvFUDVa3m5H6sV3EYJeYWoqCjL9C1OOmydOnWUjmM7hpXTu+sOVEwm206dOqF58+YFci/VQAk3sOtTbkgdTWJWG3yLrm0Fr9qFlU+dRsHh9ttvVyI3ojyWdqTuhhtuwAsvvFBkFt988EF+WcV4+Hw+jB492rT9GiE/zK/169fHP//8Y9yb4BWhA9z121Kh1BH27t2LZcuWGXIyj8mTJ+Ppp592de3CJHX5rdQBwNq1a3HppZfm+32scM8996BVq1ZB3zshVl26dEGVKlWUFVW2U1mphG47kFUYfmmFLPlwQZhfBwwYgJ07dxq5ulTaCb07O1InQ0xMTFC79prsa1JXuGjQoAEyMzNt3+uAAQOwf/9+/P7773j00UcB2Ad11axZE6NGjfKsrDJQO586dSpuu+026XG8WbKgAyVEyA9SB+SPNQHQ5lcDhw8fFm4AvWTJEvj9ftx5552YNWuWlCyNHj0aDz/8sPE5OTnZ0d6kgP1+fk5AL8cqMhYoGKVOlsOsIFGvXj3Uq1cv6HsnSh27FZMK7JQ6urfbTs1fUxSZXNoQKlG2gl2gRNmyZfHGG29gz549+Oqrr5SuaUXqRJt080hNTbU8LxR4odRt377dMpJbQw0qY0R0dHSQ715RUeAIZcqUscxH2KhRIxw9ehTNmzfHf//9V6RIndeLGy8XnCKUelJXpUoV/Pzzz0Hf5+TkoHv37hg3bhwuuugi6flRUVGuCdL111+PZ599FkOHDnV1vgxHjhyxze9WUObXoor8JAEFZX4NBALIyMgoNubY/ASv1HkJ1Qlm4cKFyltfsT51PFhTlIzUiSYEr6NVQ7nexRdf7ElZNIoHLr/8ctxzzz0hXYPdxaEokTqvy5LfhLvUkzoZ5s+fj19++QUpKSmYMGEChg4dij59+nh6D7/fbzhN2mHRokX47bfflI5V8ekpCPNrUUabNm2wadOmfCEB7GRopdSFan4FvAuyKe6Q1engwYM9u7aduTsyMlL5fVgpdSypc7Kdmja/ahQWNm7cKPzeqYuI1znbQoHT7buKCtyQxlJB6vr27Yu+ffsWdjEMdO/eXbgptluUdqVu6tSpGDFiRL6smgpSqdPIAyl17Pv0qn7yY1C3CpRgiZwOlNAoCVAdZ/MjjYhbhOKjpnLdomQiDzXivfDflkapJ3URERGmRJBeQlWp8+L6XmPfvn3F0pzboEEDADAiy3jMmjULBw8edHVtel9e7mGrqtQVJqkrju1Ao2jB6cKqKJE6iogtLqQulEVsqVDqSjpY8+uuXbsKsSQlD6pKndtOmJ+T7fnnn59v185PtG3bFgDw+++/C3+/6667XF87JiYG33zzjafbmuUHqfNqkvBKqYuKilL2MdTwHjfffLMpWXlhojgqdW+++SZuueUWaeJvt8hvUheK+VVvE1aMQUpd8+bNUbdu3UIuTfEDvxUYC9Xo1/wkdUuWLMHJkyddXb84omzZspg2bRquuuqqfLm+1ZZ4bmAVKMFGwxeGid0rUvf7779j586dXhRJwwUWL15c2EVwjKJE6hISEoSZMUIF5b/Nr3lX+9SVUtht+Kwhx4IFC9C0aVPp76rmVydO8KLr33LLLdJjQt0buDhi+PDhhV0EZVgpdW3atMG4cePwzDPPKJG66OhopKene1Y2r0idLJ2QRumBW/NrSfbnrFy5MtasWYMrr7yysItiQJO6EgBSCELZcLq0wm71xnYMq31nQ1HqMjMzi8RqVsMdrEidz+dDnz59lEldVFSUp6SOUJInVo2ChVPza0n35+S3jixsaFJXAkDRgprUeQ9V8yu/NY4TFNQ2Ohr5A6voV8CZid7roCcd/arhFcjXlf63g1vrhUZoKBV7v5Z00EvUpM572Jlf6Ts9gJVeWPnUAfa7WLC4++67vSsYNKnT8A4XXXQRAoGAEZ1uB52myT0KM/pVk7oigqpVq+KZZ54p7GKUOOR3oIRG8Qc5S8sUVydtZPLkyZ76xub3NkYazvDMM894HqhTVKEXuu4xYcIE9OzZExdccIHjc3X0awmB27xdGtZQJXV6ACu9mDNnDhYvXixdGTshdT6fz1P/yltvvRUrVqzQJv4igieffLKwi1Bg0GOie9SuXRsLFixwdW6oCzit1GmUaKiaX7VSV3pRrVo13HfffdLfC1PNve+++5Cdna0DcTQKHDVq1CjsIpRKEKlzO97okUKjRKMgAiVKCmrXru3p9nclBYVJ/H0+n/an0ygUrFixAtu3by/sYpQ6aFKnoWEB1R0lypUrV2BlKqqQbetV2hHqIKuhURxRrVo1VKtWrbCLUeoQ6nijza8aJRqqyYf14KUhA/mzFddt2zQ0NIoPSIjQSp2GhgCs06nIAZWIXtWqVQusTBrFC2XLlsV3332Xb9ueaWhoaBC0+VVDIwRQ9n+t1GlYoXPnzoVdBA0NjVIAInVuo481qdMo8ShXrpzU2Zykbqv9YzU0NDQ0NAoCWqnT0LDB8ePHkZ2dLfztqquuwo8//og2bdoUcKk0NDQ0NDTM0KROQ8MGYWFh0n09AfW9EDU0NDQ0NPITlB8wPj7e1fm+QAmO009OTkZCQgKSkpJcV5CGhoaGhoaGRkEgJycHq1atQseOHV2dr0mdhoaGhoaGhkYJgM5Tp6GhoaGhoaFRAqBJnYaGhoaGhoZGCYAmdRoaGhoaGhoaJQCa1GloaGhoaGholABoUqehoaGhoaGhUQJQoqNfA4EAUlJSEBcXJ9z3U0NDQ0NDQ0OjpKBEkzoNDQ0NDQ0NjdICbX7V0NDQ0NDQ0CgB0KROQ0NDQ0NDQ6MEQJM6DQ0NDQ0NDY0SAE3qNDQ0NDQ0NDT+r70zD4+i2Nr4O5mZrCRhC4vIIqKCCwIXFQQUFRW8biCLyod49YJXBcQFEOEC4u51ARVFroq7wEVRVGRxARUQBBGRRRAFFRAMIQshZJ3vjzynqa6pqq6eJZNJ6vc8PJqZ6e7qru3tc06dqgEYUWcwGAwGg8FQAzCizmAwGAwGg6EGYESdwWAwGAwGQw3AiDqDwWAwGAyGGoARdQaDwWAwGAw1ACPqDAaDwWAwGGoARtQZDAaDwWAw1ABqtKgLBALIz8+H2d7WYDAYDAZDTadGi7qCggJkZmaioKAg1kUxGAwGg8FgiCo1WtQZDAaDwWAw1BaMqDMYDAaDwWCoARhRZzAYDAaDwVADMKLOYDAYDAaDoQYQd6LunXfeQVZWVqyLYTCETCAQwBdffGFWZRsMBoMhosSVqKuoqMD8+fPRvHnzWBfFYAiZJUuW4MILL8SCBQtiXRSDwZE5c+YgLy8v1sUwGAwaxJWoe/vtt9G/f38kJIiLXVxcjPz8fNs/g6G6ceDAAdt/DYbqSm5uLq677jqMGDEi1kUxGAwaxI2oKy8vx7x58zBo0CDpbx555BFkZmZa/4xFz1AdMW5XQ7xQXl4OAMjJyYlxSQyG2sMff/wBj8eDH374wfWxcSPq3nzzTQwcOFBqpQOA8ePHIy8vz/r3+++/V2EJDQaDwWAwGMJj/fr1AIBFixa5PjZuRN2WLVvw+uuvo3fv3tixYwfuvPPOoN8kJSUhIyPD9s9gqK54PJ5YF8FgUGKsygZD1UNzQ0VFhetjfZEuTLR47LHHrP/v3Lkznn766RiWxmAIHTNRGuKFUCYVg8EQO+LGUseybt26WBfBYAgZEnXGUmeo7lBMncFgqDoozCwUA0BcijqDIZ4xos4QL5ClzliXDYaqg+YGI+oMhjjCiDpDdcdY6gyGqseIOoMhjjBWD0O8QKLOvIAYDFVHOAsljKgzGAwGgxBjqTPEI3/99VesixAWxlJnMMQRJqbOEC+YmDpDvPH555+jUaNGcb2g0oi6GsKVV16JadOmxboYhihjRF3s+OmnnzB58uRYFyNuMJY6Q7yxadMmAMD27dtjXJLQMaKuhvDhhx8KkyobaiZG1FU9/fv3x9SpU2NdjLjBiDpDvBFOOpDqghF1BkMcEc+DTbxTEwb8qsQslDDEG+EsMqgumDx1BoPBoAEN+LXBAhUIBHDw4MGwzmFi6gzxRjhWruqCsdQZ4pI///wTv/zyS6yLUeWYmLrYQW/AtUHUzZo1Cw0bNkR2dnbI59B5TvE8eRpqHjVpXDWizhBXNGvWDCeeeGKsi1HlUEc1k2HVQwN+WVlZjEsSfVauXAkAyMnJCfkcTqJu1apVSEhIwE8//RTyNQyGSFLdLXU6Y4+x1BnikniOeQgH6qi1wVpU3agq92vLli1xxRVXRPUaTkQitsjpOa1evRrAsRWHBkOsqc4xdb///jvS09Oxa9curd8bUWcwxAE0URpRV/VUlaXut99+w0cffRTVazgRiUUhNDHKXFperxdA7bB8GuSsXLkS6enpOHLkSKyLUq0tdfv378fRo0exb98+5e/CiWU1os5gqGJIzFXHN8maTm2KqYukpU42ufh8PtvvagLfffcdPB5P2ItMahOvvfYaDh8+jK1bt8a6KNVa1NHLT0lJifJ3VHazTZjBEAfQBPif//wHp5xySoxLEx+UlpbizTffDHugrk0xdZGw1DmJtZpoqZs7dy4AYPPmzTEtR05ODkaMGCEUAKtWrcLrr78eg1KJadGiBQBg9+7dMS5J9RZ11J+cRJ2x1BkMcQR17F9//TWus55XJTNnzsSQIUOwYsWKsM5TGy11kXC/yiBRVxueZ1Xz9NNPY8aMGcI2361bNwwdOjQGpRJTr149AMDOnTtjXJLqLercWuqMqDPEJdWx80UTMwG65/DhwwCAvLw84Xf79+/XOk9tstRVxUIJcr9Wp+d56NAhfPnll7EuRtgkJSUBAI4ePRrjkjhTXFwMANUiRZVbUffSSy8hPz8/mkWyoH4ybtw4NGjQQPo76rMHDx7E2rVrXV3DiDpDzHF6a6lpVKcJMF7w+/0AKt2wPN26dUOTJk20zlObkg9Hwiqp636tTs/zrbfewpVXXhny8dXF0pOcnAzgmGCqzlAZi4qKYlwSd/X322+/YdiwYRg7dmy0iwXgWD/ZvHmzMtUQlf21117DOeec4+oaRtQZYg6tmJoxYwZeeeWVGJcm+lSnCbC6kJubq1wRRqJO9ALwww8/aF+nNlrqwrlXXUtddWrTR44ciQsh5EQ8WeqojNWhX7mJJaWXxMLCQtfXWbp0qet2r/t8wrGuG1FniDn0djdixAjcfPPNWsdMnz4dAwcOjGaxokZ1mgCrCyeffDKOO+446feJiYkAxJY6N9SmmDq613AmWt3JpTpM5kRpaWmNqF+y1MWDqCMRXR3agRtLnVPKHhkbNmzApZdeihkzZrg6Trdd8mX3eDzaz9bnqkQGQxQIxWQ/evToyBekiqgJE06k+euvv5Tfk6gLx1VfVlZWKy110XS/Vseci+GKuurifiVLXTxYHcMRdTt37kT9+vWtxRbh4qb+Qt2ykWLw9u7d6+q4cCx1xcXFlmVchbHUGWwUFhZW+QBdHeIwqpJoP99Dhw7hmmuuQUFBQVSvU5Wo3K86ZGdnw+/3WysJdepg7dq1EU3RkJ+fj379+iE3Nzdi51QRCUudrqirDiK5oKAAeXl5KC0trVE5IOPJUldaWoonn3zSWtikQ5s2bXDWWWdFvExuRB31FV1CFf66/UR0Xt1rxY2oW79+PXr06IHzzz8fAwcODNsNYxBTp04d3HHHHa6OmTVrFq677jrX16KOUR2ykFcl0RZ1mzdvxnvvvVct0gtEChp0Q+33Bw4csP2tM7iec845Ed2b+P3338eCBQvw9ttvR+ycKqoips5J1Hk8HkybNi3k67uhWbNmqFu3rtVGQhV21WVDeHqm8SDqqIxr167FPffcg6lTp7o6PpJjlZt0IKG6X2k8ctvGdMd+0Xl1rxU3oq5Zs2ZYsmQJVqxYgTZt2uD999+PdZEixgcffIAbb7wx1sWwWLBggavf33LLLZgzZ47r65BLrbZZ6qJt1aABNtLisbS0FIcOHZJ+P2HCBHg8HjRr1sz6bN++fRGxdukm7ZTBv4nrPptIPsOqDnyPhKhzmkjo3CIXIbuC76+//kKnTp2CxPXKlSsdJ9+9e/c6bqsEwLJMk6iLhUv47rvvlsZZ7dixAx9//LH2uejZxsP4SPVP/ZNfeLB48WKMGjWqSsriJnEv/datpS5UUReO+1W3PcdNTB2bssDv9wt9y8XFxbbBpapyz4TKBx98gNTUVFx99dWxLooNtw08VPx+P4qLi+Ni0Iok0Z5sorUS7aabblLu6vDwww8DsMeZ0OKHcOOTdJN2yuDfxGPhLuRTVOTl5SE5OdkSe5Emkpa6Tz75BBMmTMBDDz0k/F4k6lgryK5du7Bhwwb88ssvaNSoEQDg888/x0UXXYT58+fjmmuukZaBXhJ021C4ljoilDb71FNPAQBuv/32oO/OOOMMFBcXa5+X6s2NK7OqqaiosNLaAMeeGT/GXXXVVSgpKcGTTz5phVJEs0xsWXR+69ZSF6r7NdSFEm6OjRtLHfHbb7/h008/xeWXXx703SOPPILMzEzrX/PmzWNQQn2uvvpqXHLJJbEuhkWoDTxUqHOHI+oWL16M33//3dUxP/30U0xjbvjOGemA7GhZ6hYuXBjR87lBxxXVt29fqcWYr+9wns3VV18d0kIdfjVj3bp1heMYlS9SK31Foi4QCODRRx9V5sqichDPPfdc0PcqsU3feTwe6zxsX6dr79q1S1kGt8gsdX/++adWqEe0xj+3Cx7oPpYtW4YdO3ZEo0hhw9c73SPf30499VQAwJYtW6JeJjeLd0JdKKFjqcvJyUGfPn1sMbRVYamLK1GXn5+PIUOGYPbs2UK1P378eOTl5Vn/3E72tR0aRKrKUkcdKZzJq0+fPujevbv27/ft24e2bdtab9RVyfz583HgwIGgzhlpgRktURfLWCMaDKdPny6dHL/88kvpfp38YBqq9erAgQP44IMPMH36dNfHilJUfPrpp8LfTp48GX379g2pjITKUrd9+3aMHz8eEydODPruhx9+wLXXXotAIGBrQ6L2pLLUsdelNs6KukisaBYhE3VNmzatVi/RTtDz27JlC4YMGRLj0ojhx24Szfyzb9u2LQDg+++/j3qZqK25EXWhLpRQjd1z5szB4sWL8cEHH1ifhbNQosaJuvLycgwePBiTJk3CySefLPxNUlISMjIybP8M+tDgWlWijhpuuKJmz5492r8ll/ymTZvCumYoDBgwAAMGDKgyURdpF6NM1F111VXWJujhIrNa0jM7fPiwdCPzw4cPS++Zn3xCFbxbt24FABx//PEhHQ/oxdT9/vvvrtMl8KgsddQPWNcZcfvtt2Pu3LlBq0hF7VQVUyey1LH3LhN1paWlyMjIwBdffKG4Ozkq9+vKlSu1zxPrFbRsvVXXxWSyF/I9e/bgf//7n/U3GWGcUhfpUFhYqDwP1ZvO+BdqTJ3OYgzqW3SNo0ePBrV1UT66J554onZY6ubNm4dVq1bhgQceQM+ePSM2iRiOEa6ocysiVG9U3377LS688MKID6yxyj1F1z148GDQ/UbaolbVlrqFCxeGtPpZREJCgtLNB1S6LVevXh00sJeUlEjvmZ98QhW8buJ1eETCRkZxcXHY9aey1FEge1pamvS4SFrqRO5XmagrKChAQUEBnnjiCdFtORKphRKxzr1XVlaGRo0aYeTIkdL2FutcejIr65IlS2zJ4el3kUizdPbZZ1txmSLcWOroN27nPDpONT/xLtqUlJSgxSKi45955pnaYam77rrrcPDgQSxfvhzLly/HoEGDYl2kGofM/VpSUoINGzY4Hu82Nk5lqRs3bhy++OILrTiUUAa2qnYlss+Wn2SjJeqitRgglBxKP//8s1WX7G/XrFmDP/74w/bbRx55BECli/Crr74CYL8Xv9+Pc889F7169Qq6TrQtdW6sAID9XunY4uJiR5fj0aNHoyrqKPi+Tp060uPLy8tDFnXff/+9VXcej8dmrSBonOGfBZWbF7//+te/pGVlcRJ1uuNFVVvqdu7caVspXlZWBp/PB6/XK70X9vMVK1ZUuRB1Cp3hLbkffvghfvvtt7Cu6RSXF4qo050PsrOzUVJSYl3DjahTXZ8/TmUVdyJuRJ0hunzzzTdWx+NF3ZgxY9CpUydHF4COBWLBggVIT09HIBCQrpQCjpmudeJt3Ii6aL/ZLl++HIsWLQr6nO6DdUURzz33HL7++musW7cuIuWLtqUulMnupJNOwq233oo//vgDaWlpVnB8ly5drCBq/jp9+vTBeeedF2S1ome5ffv2oOtE21KnarMiRKLo6NGjlqWMrFU8kbDUicpAkKhTWep4UVdRUYFAIIB58+ahrKwM+/btw7///W+rvCwdO3a0YgJlCyVkaWpkFs0XX3xRq+2RNUj224SEBKxfv156fCR24giFNm3aoFWrVgAqjRiLFy+Gz+eTTvKAPe6uZ8+eeOaZZ6qquACcx2dq59Q+NmzYgPbt20e1TG4WSri11GVlZeHGG2+0jlON1zpbEvL9C6hsf7XCUmeIHitWrEDXrl2tpKh8A6c3I9lESOlldETdc889h8OHD+PgwYNKSx2dM1pb5ETLUnfBBRfg73//e9DnrGub75z33nsvevTogbPOOgvz5s0LuwzRFnWhCqI1a9Zg//79KCoqssVB8i4Zuk7dunUBAJ999hnKysq0hL5spSefe1FmdXJ6Zm6sAIBdTLLWKprsZOkdVJa6pUuXWvF2M2bMwIABA5RlpWdSUVFhvZjl5eUBOLZ4g4UVNWzfDAQCWLNmDQYNGoTp06fbXElOVnqRqJOtnBVZ9QidJLV0b6o6Wr16tfS7WIk6ljlz5uCbb77RttTRPfNW72jjVtQBx8qqori4GLNnzw7pJdeNNd2tpQ6ozLig437lY+pU1wfs3pxaEVNniB6UEJQGTL6BOzV4N6lJKMB89+7dygmSOoRI1PFWl1Asdfv378drr72mfVy4qCx1LNu2bQv7WlQP0Voo8ccff6BHjx7Izc11PfGpYrD465DV4sCBAygrK0Pjxo0dj+XLs3fvXjRt2hTPPvus7XPRs2nUqJG1Sk+GzoTBDsgyUUeWMpmoKy4ulgrUSy+91LKCjRgxAvPnz9cq6/33329Z5mhiFU0eMksdlR2odEOxqFKjyNyvbi11ALBx40bpdQgdUcdfk0+WC8RuoQT7AuIk6qhuYxVb5+R+pXbu9uV85syZuOmmm6xt/dwQTfcrUNln3bpfddznrKgzlroo8tdff9Wo7ZZE8DEsMlO0bOAgAaZjqaPcgbt27bIGJLeiLhLJij/55BPceOONVTZwqyx1LKLJxS3RttS9+eab+Prrr7Fo0SJX6SjYwHtVW+EtguSKTExMhN/vV16Tv+f77rsP+/fvd/wdUClMfv75Z6ussnuQHS86NzvpsYLWyf0qs9TR4hCdPkDH03P85JNPrHNT7izRNVSijnUpsQngnUSdG0udSvjrJOIlUffYY49JVymy9fLDDz+gTp06+PLLL4XlqGr69etn/T+JOif3a6xg607Ulqmd83XsNFdQOwsl/i5aCyXoWft8PtfuV9n9isaKn3/+GTfddJPytyqMqHPgpJNOQps2bVwdU1paiqeffjooT9Orr75apW9/OTk56N27t+MG4tT4aBAVpTkA5I2KBnfZRJOdnW2lUKhXrx6ASksd6xbicSvqdLde4q9F7qjRo0dHdfEE+xam6pyRSF0Qqqjr2rUrHnjgAen3vFs0Ozvb1Rt4IBCwLRZwug7dB1mtvF4vEhMTrWOPHj0aVO/8JCerU6fJUPbsdCYMUfwfe2w4MXW//vorAKBFixaq4tuuR/dKiyLy8/Mt4SN6DipRR/2SF3UHDx5UlkUVU8e3BZXwV9UblZvubcaMGfjll1+Ex7H1QtZxirMLJ3Y00vj9fuWYodvHi4uLo7K1JiuORfGZIvcrEGzp5aF5gt9WTgddUdekSRNrsZXO2E/tMTEx0bX7VTY37t69G/369UNJSYnjC7IRdRFCx//P8/bbb+Ouu+6y5en53//+h3/84x9Vmopl7ty5WLJkiS35oQgSdTJLndMgRy4kOv7ZZ5+1VjBWVFQgKyvLijOjc+zbty9k96uog3Ts2NE6l6rO+HugQSeUZLI6HDp0CJdffrllLfJ4PMqJiY013Ldvn9DK5ESoq1+/+eYbTJo0Sfo9tYOUlBSrrNG01FHdk6jz+XxITEy0XZPPWcm3Jdlg7TRAyp6djvvVyVLHi7qffvoJa9assZ1DZqkjkaKzWw5vqaNJNz8/33rJchJ1fH+RibqCggJpWxC5X9977z388MMPANxZ6srKyjBu3Di8+uqrQd9RfCA7PtDz592E7N/00stbXSK5UOWVV16x/j5w4ID2y5uT+7Vx48YYO3as9fdTTz0ljBecMmUK+vbta70URAq27tyIOqf7p3YZyvinu1CCPbeOpY7abijuV5moW7duHRYsWIADBw44urKNqIshNDiwe8/S/1dlEkndxIr8JOp2IqTBfc2aNTjrrLMwatQo3HfffSgpKcGbb74J4NhkJHpjd7tQQlQOetseNWqUZUnSuYdIuDtVvPfee/j4449ti1BUnXPOnDlWrN9xxx1n2/NYF11LXV5entCdNWPGDKHo4i1ooVjq3MTU8ZY6n8+HpKQk20TC7xrDixRZ23cSvLLvddyvTjF1ZWVltoUSbdu2RZcuXWznkFnqaMLmJ1DRhMALUFbUqeIu2Zc4lfuVjweUuWBF7tdrrrkGU6ZMASAXdaKJsKysDI8//jj+8Y9/BH0n2kP3559/xk8//RT0fOiab7zxBm655RYAlfd78OBBa8yKlKibN28ebr75Zuvvxo0ba+9s4STqAGD27Nm2v0W7Nuzbtw9A9HbvACIn6ubMmWPVbygJuJ1evN544w3XceOAXdTpuF/ZfiS7X/q8rKzMiLrqjGg7IDf7qn777bcRCXzV3QKFzyUk+73srYQE2OTJk7Fu3Trr89tuuw1Dhw4FALRr1852DlHANIvKUqd6O3r++eel34muFe3NsmmiIVHvJOoAYNWqVWFdU9dSV7duXaHFZ8SIEcKUD9R2aSCqSksdWYZY96uISFjq0tLSpLsZ6Ljk2HPfdttt1j6xrMvGaaGEyFJXUlKCl156CUCwiBO9nPCWOtb9qrOYRuR+Za0grKUOqIx/+vHHH6XnovvicbP6VVVe0bO84oor0LZtW6mljt2mraKiAgMGDLCsWZFyv4rEqe7OFk4xdQBQv35929+qMTPSLmW27kQ5Dz/99FNs3rw5qEyql2l2DCdR17VrV/znP//RKpOT+1V0Hp15meqRFXWi59mvXz/bHF5eXi611NFYWlpaatyv0eTaa68V7slYVlaGOXPmOAoukaijYyZOnIj09HTl8WeffbZ0Y3I3yCx1/fv3xymnnILdu3fjiSeesE2eot8TTpY6fsBlxQnrtgGCLXX8M1WJOp3GLRv8ZZY63Xi6nJwcfPPNN1q/BY61BVbUOYktWuUpY/PmzVi8eLH0ezcxdbJ4S9FbIy/qcnJyohJTR4hi6pKSkpTH0rP9/vvvMWfOnJAsdUeOHMHLL78s/M6tqFu6dKnl2mcnVqeFDiJL3d69e4PEGPUT1epNt5Y69j74MrCLm3hRd8kll+CMM84IOg9rqVu8eDGmTp1q+15mqRO1X52YOhEySx2bTqeiosK2ujZSljr+Obk91ulFkOLPCOof7Ep6lVAOlSlTpuD++++3/haJuhdeeAGTJ09GSUkJHnzwQetlUWWpY/ssWRi/+eYbjB07VsvYIRN1P/74o3TsjpT7taysDAsWLMDIkSNtwk/W39l+aCx1EWDmzJm4/vrrgz6fO3eucAPlmTNn4rrrrsNXX30VtIUOi8pSt2/fPi3rECVnDQeZqHv33Xexfft2jB49GmPGjLE6DjWwXbt22VwpTnmbZKKOfXPm92PkLXWy2J3CwsKgxq4zscom/nBF3dChQ9G1a1ftDkaB8CTqPB6P44TeoEED5fenn346+vTpI/3eSdS1b9/eMc5SNXlS+cvLy5Vvl6LUMzqWOn7hzssvv4zt27dbljrVsYWFhZg2bRo6duyI6667LuSYOpnb262oI9h7r6iokK78JI4ePRpUB5SDLDU11fqO2pdoklTF1Om4X0X9kupEJOp0Ylnz8vIwefJk23cyUSciUqKO/uZFHTvulZeXIzs7O2yviZOoe/jhh6W7JOi4X+vXr2+rp5KSEnz88cdo164dvv76awDHjAqisaeoqAj5+fkoLCy0rQD+z3/+ozRA3H///Vi7dq31t8j9ClSG3hQXFyMlJcXyDKhEHbtQj+YmQkeUykTdGWecga5duwqPiZT7lV1sqCPqWPersdSFSSAQwK233op33nkHANC3b1/ccMMNViWJOiKt8CoqKsL48eNtvwkEAvB4PHj55ZeDFh7Q927LFy5OLl+KPaO3UxI4Bw4cwJlnnhn0+507d1qxce+++y48Ho+yc7Ir+9jJAAheBccO1h6Px8rVdM0116Bly5bC++Jhn1k4oq5Tp07o0aOH8HgSZ/QcnKDJg4S8jqgL10Lg5H7dtGkT7rnnHuU5VJM96zKQPeeKioqglZ2hxtTl5OTg888/t0Sd6vktWbIEd955Z9C5eJyspbxLi70HJ0T1d+TIEavdbt++3UrcKxrIqT/w56GEza1atQoSdSpLHZ2HXrLciDpeDFHdi0QdIdqkXNWm3Wzhxpb38ccft73chGKpY1+w+XHl8OHDyMrKwpNPPik9rw4yFzsxYcIEYcJyQF/Usc+luLgYP/30EwCgR48e+PDDD617E/Wds846C5mZmZg7dy4uuugi67eTJk2SGiBE/Ve25dyvv/6K4uJiJCUlWcJvxIgR0n7MGiFIbBJsHTm9sLlZKObWUidzv9Jv2DrTcb8aS10EYDcDr6iowPvvv4833ngjyK3Bwlq+SAwGAgFkZ2dbD3zmzJlCa0QsRZ2scVNaBAqsZd9aRZnJL7roIpx44okAYK3spcSwItjBjAYBkaVOFJDNugX5tzWd5f06eYEAsajbsGGD9Ya7f/9+2wbzlJxWFjvEQ/fNul+dFsuEu4uGjvtVFitF6Ig61R6mIuHNul/dxNQR5H6NRJ5CpwFS577cpJnIyckRPhOR+5t/ASL27NmDtLQ02yROfYwXdQ888IC1jRqfOigvL88mznjo+e/cuRNPPPGE7Tu6jmihBCFKK6N63rKUJkRWVhYmTZqEZs2a2c49btw4WxiCamLWcb/yYy7VzZIlS6TnVfHggw9i586dSkudalcdQC+mrk6dOrZnxvfLJUuWKPvd5s2bAVSu1GfFhex5bty4UbjCVmapy83NRWlpKZKSkiwv1h9//CENZeLnXnb81xE2bnd9AY61+TVr1gj3Od+9e7cVB6lyv1Jb9vl8tt/Ixnzjfo0g7GDKug2o0Ys6Ij1Uj8eD1NRUAMBHH32ErKwsywzNChSR+1WXcEXd+vXrrRw/TiJh69atAIK3ayJEb0TUgQsKCqSNkbXU0CCjY6lzQvYs2XJEyv16yy23YOTIkdazIdcovQk7QffNijqVKElNTdUWdbI2ohJ1sngl/poLFy7EDTfcYPuMF3Wq3EpOLkgdNwpfJh1LHY/M0uDU3mTXkK1sZZGJOtHnIlEnq789e/agWbNm8Pv9QZa67t27Wy8fgUAAkyZNsiZePsm3rqVOFAIis9Sx/YdvE19//bXNesojWyhBlJeXIyUlBT6fL+oxdSxUN7K2WlZWhtdff13YDw8fPox///vfuPXWW5WizmkVpU5MXVlZWZCljn2m7LZTqr5DfYWeFYkrSh/zyiuvYPTo0ejQoQMuuOCCoONloo5ISkqyCUWfzye8b15MsgYG0XO46aabrB1WgPBEXZcuXdCpU6eg71u1aoXx48cDULtfRZY6HferzkKJPn36aIVu1VpRxwo5No5CJepYSx01YAq83LRpk/UbkXDhK98ppilUUbdmzRq8/PLL6Ny5s7XKRxW3Axwb2N1MlmRqz83NlQ60KvcrL3gjLepCtdTxz52eHf2XXynsBP2OJggnS11aWpr2uWX1pXK/ynbx4K/53//+F2+88YbtM5GlTlc8A/ruV1H4AnBM1LlZscymFXIqH4vs2bLtg9pbTk6OzVLmxlIngrVqs9c7fPgwMjIy4PP5rGuzfWzkyJHC6/N1/ueff1qhJPRdYWEhrr32Whw6dMiqZ9G4wYpBdoyk3IWy42QvjOz9EiIrstfrdRR1KmQxdWxb4stBfVbWVl944QUMHTpUuJUVpdpp0KCB0oJI55aN936/39H9yrvqeVHHWvpUYzwlBOYtdf/4xz9QVFSEm2++WZnPU0fUsbAWLxbeUsf2Yf45BAIBzJ4925ZY2UnUieYGHfcrW24n9ysrxMvKyiKyUAKA5UFSEfqynDiHfUNmRR1rPuURiTr6PeuW0LHUXX311cryhSrq+HxXgLOoc4J/A87Ly7NE3fr16/Hnn38GHXPcccdpu19Fq+xUyH4bCVHH1xPdA5WfX/DhBB1HndfJUudG1BUUFFgWYxZ2IQOPrPyya1KsKBAZ96uOpY4SNPPl9/l8KCkpwdKlS6XH8siC9yNpqWvQoAFat25tbSfoxlIngh83aJIrKSlBYmKiTdyIdqTgJwde1LGJe+m7jz76CHPnzkWXLl2sehZZEam/FBUV2XKIpaSk2Cy4btARdT6fTyrqtm/fHpSEmkfHUse/LDiJOtrCSnS/JOqOO+445VjBvzTy6MTUlZaWOlrqVP3O7/ejtLTUSuXCW+oAWKl0VNCcwCcIJ/i2ysaZsvACS/XCJGoPTmFHTjssOcGKUdnLMet+LS0tlY53bhZK0O+ccG2pKyoqsgJ2WcgvHy/IRJ3KUkdCi3W/0u9pQIiU+zWSyAalUJe3//HHH5aolblV/H6/TdSp3K+RstQ1bNjQ+v9Q3a87duywfc/vlqHar5Zl3759+PDDD4PKEQgElM89LS3Ntjenim3btuHWW2/Fd999Z/ucLev+/fttz1bXUkewVkVe1P3yyy/SN0fZ82FTmqheXETl8Xq9jtsL8UTaUidzv7ILZ0TnPnjwoOsXAf5cIlHHTrz8nrl8OUXXp9+y+1ry222xUN1/+OGHmDlzpvW5k6VOxf79+20xWqKJmyx1ImvGKaecAkA9xspEHXstmaiT9VcShKK+SqKucePG0ra2cuXKoHRSPCTqAKBbt27W/r0s/AsQHxbBegfYdj1gwAD897//tRYFURsWxdTRwh4VNCfIVu+feuqptr8LCgq0RB1bL3zbErU1Ouf777+P9u3bB31/6NChoM/cGFFYkc33NZH7VUfUHT161MpnqSLiom7+/Pk4+eSTcdlll6F9+/a2rW1EKUCqM+yAxVYyNXqVpa68vNxqwCQKnERdJBY+AMC5554b5BZzIlxLHc9nn32Gp556Svhd586dMWTIEJSVlUXNUqczObLn/+qrr6zJ3clCRUmSCboHPgbJqby33HILrrzyyqAs+06uw9TUVMycOTMo9xQLtc33338fM2fOtCXTZEVjaWkpmjRpgokTJ1rf04CtK+qWLFliDfa8qAMgXRmoY6mT1aPH47EJBsLn80VM1Dm5OkSibuPGjbYJXHaOhQsX2v7OzMwM2VLHDuIiUceWgeqHL5cqxlIl6uhely1bZiUVl4UOsBbjUHYtOPfcc63/Z8tJbYZEnWzMqqiocCXq6D7YcZl3EdMcIbsmubCzs7Px119/2RZUkKhT5aXs3r27tW2kylJHImfVqlXW9ossIvcr25+9Xq9Q1H333Xf48ccfrbFGZanTgSx1MlHHW1Nloo5/FuyYyfdL2epxYtOmTVLLNYub+XnTpk1WnJ9M1LHWUVWWALqft956SyujQsRF3YMPPojvvvsOGzduxCuvvIKbbrrJ2v4oUqKlqsjNzUVGRgb8fr9tM2r6fydRR4MYraKlAWHr1q1WvJzTVlgq6Hnu3bvXNjGtXr0aw4YNc3WucC11vPv1jjvukG7g3a1bN5x88skoKysTphihhs5Ojm4tdTqTI3tv5513nvXSIVv1KQuy5i11MlEkg092SXUpij/xeDw2i4cMcmOQxZwVjqWlpdZzp70N2d0h3FrqrrnmGmvFMz0jlfuYUkyIns/vv/9uTRyybbCAygFRlHLF5/O53gtS5n51Etci8dKhQwfccccd1t8yUTdu3Djb340aNXKMqWPbH1sXmzdvtsrqJOoIvi+xoSGy39J3Xq/XFgeamZmJXr16WW2OXw1LhGOp42HL+dJLL6G0tNQSdTJRWVhY6CptCj0TdoziXwDoZV/W3km4ZWdno2/fvujdu7f1HfVJpxdWmsh1LHUAhHnWnNyvXq/X5jYnysrKcPToUWss4sc4N3FmwDFhz4u6Dz74QLhDDS/qZHF/rPtVJerKysrw22+/BYlz8r6oFqxUVFRot9tt27bhwQcftK7JwrpfdUQdtedFixZpXTvioq60tBRZWVkAKi0yX375JV588UVMnTpVO3lrdSE3Nxd169ZFenq6rdHQilG+AbDpGMrKyqyOQJMMO7HSbhBsBYSa0qRZs2bo0KGD7Ts3Vi2gsuGL3F2RSA3BU6dOHXi93qAYAd5SR3/Xq1cvYqtfWfhOtHXrVixZssS1qKPJTOV+FdUt5dbjg6hp4sjIyAg6hlJ2OEFlopgmarNsOYFjq8bYHSrcxtSJ0MlNKKujSZMmWeV0+6ITSqC8TLyJXDAs7D22atVK+BZdUlKCwYMHO5ahfv36jqKOnbjZOjz77LNx3XXXWddLTEy0rX7VEXX0DETjxocffoi//vrLOs/w4cOxbNkyAJVjJCWfdWqXkRR17HMaPnw4AFiiTjZmyaw+xLRp02x/i9oF70alv2XXpDH/r7/+CgpJYlcJq8Zr+p1TShNCtvhJtVCCdb/ef//9tjiuo0ePBs11oYo6gs/xePrpp9tWlK5fvx7JyclBdUb3xhsb2Lrixx523MrLy0PLli3x+uuv235DixhV+QIDgYByMY8MmVWcXZzCizpK6wIca1u6cX46iylc1VqjRo3www8/WH83aNAAy5Ytw9atW22fxwN5eXmoW7cuUlNTbW/zJNJ403N5eblN1FFHoAmVzXvHHkOEk9KErBui8+pQUlKC5ORk25YugHpFWqjUqVPHmnzZhlxWVhaUj87j8VgxJ073xD4PN5Y6Om7Hjh3o3bu3lbuLP5dsAJNZ6qg+A4EAEhISgiYN/voEPfOmTZsGXYs2rHeCF3Ws9Uok6ho1amR95tb9yiJyv8rK5lRHKkud7HOv1ytMN6BCZo2WbT5PsBP57t27hdv2lZaWWp4KFSTqVM+EHW/4uiDXp46lbsmSJVKrlGgMKigoQN++fYVigRV1ogUZLJEQdexemTy8qONfwvLz85XPl49FEyVr5oU+zQtFRUXCFzeaiLOzs4MEA/VzXVEngxd1on4qstTx7lf2b3rRJFHH31uooo5dOARUxtDdcccdQcnjO3XqhLPOOitI1NHxVMcNGjQIWu3OPy+2rcmEES1oURmeKioqpKEaKkKJqWNDFZzqn0fHu+aq1t544w3bBAFUdvZ33nlHuKy7OkOuhdTUVJsrUWap40UdVRj9XhTr42TNUSH6PSsk3ECd5L333rN97tSInXakEJGenm7Fvhw6dAinnHKK5bIpKSmxPRPqtDruV7bzuomp4wdU3m3sZKmjdtCrVy/s3r07yFJH5eIXjMgsRPTMjzvuOOG1dEQdDbbsC4UoVpHcQ40aNbLaDJ+IlnCaiO+9917rniIh6kQb1hOlpaVo0aIF7r33XmvXE6Cy3avGGXahjBNOljreOiN6y+f3MAXEfTMcSx1wrA2yoo4mQFbAVVRUoHfv3kH7VqssdUBlkmHRd4cOHapSUaeK/eNFXb9+/WzfO1nqeHQsdazIFG15R6Lv0KFDQc+HRN0LL7yAb7/9VloOJ29JWlqaTVyJJnXRQglWtPJxfdSnSNSJFtZ8//33rkUdlY1EXePGjTFt2jRhbF56errSUnfJJZfgxx9/RFJSkq2u+DoqKSmxRJJM1NFLr2reZEUd3fewYcMcU4joijpWVLNjiVtRp/N7V7V2/PHHS/dE7Natm5tTxZzZs2dj0aJFSE1Ntb2102DPJ0YkSxP9P78YQiTq2IEgEqIu1MGSBhg3ezUC7hsccMxSV1xcjG+//RZdu3a19vsrLi62deLGjRtbjV9HBBBu3K/8b/lBVHWuQCBgG6yXLl0qFXU8MlFH1xOJOl33K7UrGrjLysrw5ptvWoM0QYPcggULkJCQgJycnJAtdY899pg1OPK/Zd27VH6nOuLbAn9/hw8fRmZmpu03P//8s3QrolGjRlluSh0iIepoVxUW0aSrY6lj+6Yo6TKgH1PH91tRTF1CQgL+9re/WdeTWeooTKAq3K+qVDyU0oTujY/bcrLU8RQWFkp3kFCVjbjvvvtsuSt5UUcCYd++fXj22We1z8uTmZkZkqWOF3Xss9m/fz8CgYA1XvBt6Ouvv0bHjh2xe/duZdl4KN7vwgsvBKAeA0SijrXUnXXWWWjSpEmQpY5PiF1SUmK1UZn1XTZusbAivU6dOqioqMBLL73kGF7BPzs276DM/UohbHSvboi4qGN59913Qz00ZO655x706NEDgwcPDjtuw+fzoU6dOkGWOqpYfvl8eXm5NQgMHTo0KGBb5Mp0a11iCQQCQbmBVI3ylltuEa6MAo4NMDt27MB5550X9LkM2hNWZsVq2bIlXnvtNdtnJOqIpKQka0LgLXWNGze2sp27yRvmxv3K/5a/Z5WlrrS01DaZ79y5M0gUsXXMJ4pVrWAVvRz5fD5bvIWIIUOG2NorvaUOHToUjzzyiFBU0G4nbKJo9rmsX78+rK3J2E2/I2GpKysrQ2FhIerUqYPly5dbcXh86haWDh06OC4yefHFF63/j4SoEyETdU4pTVSWOrq2rqjjyyoSdYsWLbKel0zUHT58WMtSN23aNNvzCnVsnjlzJtauXatlqeM3mi8oKHAl6gKBQJALVhWvxC96e/TRRwFUxsaWlpZKRZ0TTpN0RkaGUNSx45Uopo69/vr165Gbm2uN/X379sXLL78sFXXkrnTDwIEDceaZZyIQCOC0004DoB4D0tPTsW/fPiu3I1DZ3tLS0rB7925rHExKSrLVEx+KVFJSYr1UyspNW1mq+h9rqUtLS7MEPuspEMEbc9jYa7r/tWvX2ur5oosuUp5TRVRF3fXXX4+nn35a+ZtIrojdsGED/vzzT3z11Vc49dRTMX/+/IicVybqEhISbFtBsY2iqKgoaEcIkWUmHEtddnZ20CpX1cQ7a9Ys3HfffcLvqLEePnwYX331VdDnMrp3727L1M0TCASCRAgtlCD8fr814PHWmYYNG8Lr9eLFF1+0rAYy3K4klu2fyU/mKlFXXFxsE6jbtm1TWurY+iksLMTxxx8vLJvH4xF+p3K/rlixAmeccQbefPNN2+esONywYYNt02mexMREoaWuc+fOrkUde36v14vMzEzrGoCepU426BcVFaG4uBh16tRBx44drVjQ888/X3o+NjBZtAgFsAdwHzp0SFnGUEWd6M27Xr16jpY61tUVrqVu1qxZtr/ZdEtEnTp1rOscOXIkaMUuQRYxWbts06YN7rjjDtvqxlBF3YQJE3DOOedoiTpewOfn57t+cXYS9sCxZ3/kyBHk5eWhXbt21h6gQOUYxqdvAvTjlZ0mad5SR/2bHa9KS0uDRB1rdXz//fdx9OhRdOzY0fpsxYoVUver7mIkuudevXpZqVmAYwsBnCx1W7dutSXL37lzp/U8WFHHzq38gqWSkhKrjnjBR+zfv99xfAsEAjZRRzHyTqLujz/+EC5UY+tk7969ePfdd9G0aVP4/X70799feU4VOpa9kEXdwoULMWXKFIwaNSpIsJSXl+PVV18NyvkVDqtXr8Yll1wCAOjduzdWrVoV9Bt6Q2H/OSETdWVlZbbEhXv27HFtKmUHN7eLGz777DPl+dwgew46E7kqd05FRUXQ4Mpb6srLy60JgZ/I09PTteM23Io6maWON9GrRN2mTZts2ffz8/ODFkqwdcIO0IcPH5bGeP3rX/8KCh4G1O7XO+64Az/++GPQ56zrc8GCBdYAI3JTqiyibkUdaylJSEiwBj83ljq+Hl944QWMGjXKmmzZezh06BA++ugj6fl0RB1NQpQRXjXx8mIpHFFHCaVVkyX7LHhLHfURVtT98ccfOHTokPBlkd+QnCxxbJ2kpKRojSckhGX3T9dnc5BFcvUrwac0oXFnwoQJ8Pv9GDp0qNbKQBadFYd0/0VFRVizZg22bduGyZMnW99nZWUp3a9O0CIYGRkZGUGCf8+ePUGxaLz7VRRaw47VlHFAZKkTLSIRQZ4Ifg7QCcHgLa2AfbEhuzsFK+q2bNliex6fffaZ1a5Zqx/LgQMHHMc31lKXmJhoE3X//Oc/lceuW7cOe/bsQU5OjnWdFStWBMXcdu3aFSUlJcJFcgBw+eWXK68DRNlSd+mll+LLL7/EggUL0K9fPxQVFaGkpAQvvPAC2rRpg7vuuguDBg0K9fRBsPEdlMyT55FHHkFmZqb1j2K5VKSmpto2DGZFHUv79u2Dlko7wbtv3fDzzz8HfRaqiyyUVT1ESkqK1P2qI+qOHDlic7+yHT0tLU07wSWfrFiFz+cTWicAuaVORLdu3WypCgoLC5WWOnYwPHz4sFSgnXrqqcJBTWWpk7kW+IVLDz30EAAItw9T7S/odiLmRR07CAPOwpt1v9Jm3ImJiWjVqpUlFFhRV7duXaVrmhV1ZDXkIWFCbZbayAknnOC4ilV3sRCf3PXPP/+0rscPyOw5Kyoq8PHHH6N58+ZBoo7aFSvqcnNzrZ0UdODzuHm9Xq06J0ud7P6prhYuXGjtKuSmLYn6v8pSR8+GXHw9evSQinig8kWBOOOMM2zf6VjqSLgUFRVZZWXFQ8OGDYV9Kpwxl4V3v65bt85m5T/77LOFljqRqGP7D3meRKLulVde0SpbOKJOVGfstnPU93n36+7duzFw4EDr7ylTpljinM9sQOTk5DiuGq2oqLCeWXl5uU3UvfzykEM/zQAAOP9JREFUy8pj9+zZg+OPPx4nn3yydR1RHld6LrJQhvvuuw9333238lpRFXUAcOaZZ+Kbb77BL7/8gi5duuCEE07A5MmTMWzYMOzevTsohUY41KtXz+ooubm5QblwAGD8+PHIy8uz/tHqPxX85CcTdaHAJ0YMF1bUUS4pHUQCURfVRFpRUYETTjgBQGU+PUAs6lj3Kzv48Cu7VLix1B133HFWpwzH/crjRtQVFhZKO2/Dhg2Fg5pK1MkmIF7Usa52HlU+QLftkxVcIlHnJLzz8vIslx17DNt2ZIsiWEh0sMk+ZaKOrkNtjiazXbt2YezYscrr6L5Qse00KysLjRs3tiY93gLC9q2KigqMHTs2yJ0DHKtTNk8dIE6jJIMXdQ0bNtS6J9E4y0Kirm7dupa17vrrr9cul6i967hf27Rpg5KSElx66aVSywcAtG3bFkBlzCUfkynqU/x4R/d/5MgRq92wL1jkfuUttJEY74Fg9ytrzHj++efRs2dPbN261bYfsszVz4ovqnsnC7IKCv3gnxn14SuvvFJ6rOilln2BZkUdP5bx7ku6F5moKykpwfTp06VlAezuV1bUicrJkpycbBNyfDtgvS9Ooo6fO0VEXdTl5eXhlVdewZ49e7Bjxw7k5ubis88+w3333ef4MNzSpUsXq+EuWbJEuNo2KSkJGRkZtn9O8G8Z1NEj0SnZN6BIi0Ra8u0En7g4nGvyVFRU4MQTT8S+ffusHRtUoi4cSx3b4cMRdfyE6ZSnjqWwsDAoJo2dGPnNwZOSkjBq1ChL+BJZWVnWdnssXq9XaGFTwS7GaNasmbU6TDRhi1IzsN+5gY3PSUhIsJJx64o6ALjqqqsAHLOglZeX29x8OqKOVpJ5PB5t9yu1zy+++MKKjXWyLoUi6qht85ZBghU0FRUV1tjDJ7LNy8tDIBCwWerccvjwYVRUVOCyyy7Db7/9hmbNmmndk2zLJ4J1/+r05RdffNG2m4rIrasSdTSpseJWJuLZ8zdr1izouYlEHb/TC+t+Ze+vUaNGWLp0KerXr4/S0tKoJHIHgi11LAkJCdY9saJONj6ycx0JEZGlThca1/g51OPxoKioSBrjDeiLOt79CgSLyKNHjyIrK0v4IpuamopAIIDHH3/cOp8I1v1Ke2YDYosbXxZRxgEiISHBGtOpv2dlZWHkyJFB59KZD3XmqZBF3fjx49GyZUu8+uqrePjhh/HXX39hwIAB6NWrlzIvT6h07NgRTZo0QY8ePbBlyxZcc801ETkvDSDvvPMO0tLSLEtdaWmpNNBdF3aiYDvOP/7xD/Ts2dP1+fhBWEcoinJpsTittjxy5IjS/QpUvrFRgxWJOhpYeTeBG1FHrh3AWTCoRJ3sHnQsdYcPH1Za6liXS0lJCZKSkjB9+nSMGTPGdp6GDRvC7/cH5Q30+XxCUacadFkBc9JJJ1n1Jcs8L2szbkXdLbfcYv2/SNS5CVpnhSA7yYu2UuMhUccGyjuJOmpzN910E66++moA7kSdrM0GAgHbYg5e1PGWOlbUlZeXW1YYNhyEvqNN2kMVdWSp83q9thRDQPCenCy6ljpArw8NHz7cFnzO34vf71emNGF/R6hWPVPbEj0zkajj+x/rfmUn1KysLFx88cXW7h7RFHWyidzr9WrHegL2sZ611OmKOt7zRn1P9PyTk5OV7SEcS51I1LVp00brOrJnyVvqaJGkzPrHloWtez5Mpry8PEjUJSQk2PbrJlJTUx37tigJOk/Iou7999/HM888g+3bt2P48OFIS0vDq6++iuHDh+OCCy4IWh0aCZ544gl89dVXeOuttxyTYepCFckKE+BYWgWd4EUZMvfr3/72N9eWTH6HBkAvuzSbE0cEdR5ZY1IFzbITd2JiorV3KTvpsaKOTzvgxv26ZcsW4XVFsKLO6be67teEhASbpU60UIKPo6H2xA+8tICCFwc+n08oZETxo/Tc2AG1devWACoHMmpv7AQaSUsdXxZe1LmxTLOijnUns4tAZFD7ZpP7OsXUiUSZ08TG9j2Zi5w/B/0ts9SxkxNt5QcEW+qAY8IuMTExpO2bDh8+bIk69pqAOseoG0udLmwZ+P6ZlJQkXSjB3jfbp0T7ofK/E41vooUyMkvdkSNHbH2EHTerg6VOB7bdhuJ+Pfvss21/d+/eHYDazSpDNP+x4ydrqePbGN//VKKO+h6NCRdccIHwd6ylrry83DIiOO2UlZKSYpuHP//886Dzkqhj+7uoTtPS0kJ6YeMJWdRt2bIFN9xwQ1DhHnjgAUybNg2DBg3Cc889F3YBow1VZNOmTYWiTmXad4K2xdq9e7ftrdDv97uuvCNHjgRZE9iJRiZKnCxx1Hmo4fXs2dMWCMz78Nk3WbazNWjQAFlZWUEDze23324NrH369LFl6OZF3e233y4so9frdSXqmjVrJrTUUXwNi0jMUF43onPnzpg1a5a1GIg9TiXqSKzoijqv1ysUdWwAMVCZCLhFixZB56YVteyAyVpaVDF1bkTdbbfdZhtEvV6v7c0acBcs36dPH3To0AEDBgyw7guQW9xYKJ6KtQI7iTqRKHIj6mQvlHxCaRLUOpY6tk3v2bMnqM2UlpZaoi6UBVNkqROlTlGlbXAa/1Si7qWXXhKmKmLHB37cSkpKkrpf2cmTrYPJkycLV5MD9hXPPCJ3Hd//WEsd20aovUfTUrds2TIkJSUFjRNUX24tdaIE1+zLhJvjgcrQnkAgIBVKKkSijp1r+PGEhZ/TAoGAdFEk2+fvuusu6UsKm3y4pKQE27ZtA+D8csq7X0XwljpALOrcht7ICFnUqSwb//znP7FgwQKlT726ILPUHT161JatWoWqMkpLS9GqVSu888471meJiYnabkfiyJEjSkudbPB1SsjKi7rk5GS0bt3aygOYl5dnsxSNHTvWigdgJ6KhQ4dizZo1AI51/ssuuwxDhgyxDTxszEFKSop1jldffVX6EtC+fXts3749SFDJaNq0KQoKCoIS3IqSAfOWusTERHTu3Nn23AKBgDXYs29zgJ6ljp5Hu3btcOedd1qf831IZqnj9ztNSUmxzskOtGTZYs/BTn7s6tdTTz3Vdk528JLtGgNUrq597rnn0KRJE8ui5PF4rGvSPbmJ08nKysKGDRvQtGlTm6jT4YILLsD06dMxatQopfu1devWQQslWETlZZ/tgw8+KPychY2/KS0ttZ6JzFLHl6NBgwZW+hO+HVBfT0xMtOUqW7lypdb2aBRTJ7LUqdzcTuOHStSlpaVJXalEWVmZLTY4MTFRKurYSZ/Pk8jGeLK4tdTxY3lqaiqSkpJQVFRk6yP0zCJtqWNTdZFY4ucKWpRGidt1YZ8BO3foWlt566hOdgkZonhZXVEn+kwmbqnPHz58GImJidK5mrXUZWdna3nBgNBFncfjCRr/+TYeKmEtlFDRp08fLF++PFqnjxhTp05Fx44dkZGRYXvopNp1LHXsoMi/gcgyvocj6hYsWADAbj3g314SEhLw8MMPK+Nl2PJSw6NyXXPNNTj77LPx/PPP26xrbdu2xVNPPQXALuqSk5PRqlUrAMcGD5q0ZB2OfStXbUPUvn17lJWVWat4RQMZG3NHbsj33nsP33zzjfW5jqijzsaKi4qKCquOSZS6EXV0/6effrr17ETIRB1PcnKyVU/sQE2uSH47KPZeaWLir3PkyBE0bNgQ+/fvV7YZv99vPSs2RoTOx1oAdGHL6JTsk8fn82HUqFFITU212gXfB6+44gps3rxZ6X4VIZu0dGLH2HqhvuWU/ys9Pd2qQ37yIdGQmJho/f8XX3yBc889V6s8L774IpYtW2a7dyqj6qWUFXWUeoaFFwS8BddJ1OXn51vpSYDKFb0i97NK1PHnZKHr89+LAvCB4H6RnJyMlJQUHDlyRGipo0TQ4Yi6m2++2fp/tpzUL3jxTxZhr9fr6rqqreh0YJ/5Y4895mpPcNW5CJGoE1nFRd4n/hnRvdLxtDuQ7CXl22+/xffff28JZrYMKviYOhEiUScqM6CfI1BF1EQdEGxhqI6cf/75+O677+DxeGwPnSZvHUsdW/kUZ0CIJrdQgp3ZmLpzzjkHgDp3W1ZWFsaPH+/Y8XhLHTvoiwZ7NmBZ9pZI39O5VG9RJDJUMZKUBJpcsKLrshP5mWeeCQAYPHiwbe8+XVEHwObOCQQC1nOigUcUU8e/+fOizqkunEQdm0KAzsU+W7LYsAM2L+poYuLrtrCwEF6vF40aNVK2TbZ90ODKijoa4ELNVUb3pbuQSBSfxQ/6GRkZSE5OVlptRPB5zQi3MW2spY4dY3hBlJCQYL1EikQ3YLfUUZt3ald+vx+ffvopAPvzWrduHV5++WVlm2OfJb+wR8Rbb71l/b/P5xP2VVHKk86dOwOoHOdE2x2yAmbcuHFBZZYJdRpf+DFIFIAPiEVdcnIyiouLpe5XPt6OvYYOtFgHELum+XsjUZeQkFCloo49PtzYr1atWgV5ZlhRx6cBYRGJOv4ZieKZExMTpaJuw4YNOOGEEzBq1CjrMxpPVS7ulJSUkEWdqM3I9gx3Q1RFXbzBu18B95Y6vnH9+eefQb8PxVJXVlZmTZQkNNmOyTcQ3YmHJgZq7GxnFQ327PcyUUf3FilR17hxYyQnJ1tv8KLOwN5vRkYGTjrppKDfiOI4ZKKOrI6A3VLHH0d1kp6e7hhT5zT5ymLqCJpIkpOTLUHA1gcNQkePHrWSf7PtjCx1CQkJQYPbkSNHhNY/URkJGlx79uyJQYMGISMjA+eeey6A8BLQ5ubmYvHixa6PpfbItyW+Her2PZlLz6lvffHFF7a/2Zg61UTPurF1RJ2OVZf/HVv29u3b46abblK6WJ2eFS9M2bYjs9Tdd999Qe1j0aJFtphEUbwpPYNbb7016JyyNnvqqadi5MiReOCBB2yfJyUlCd2vvGBITk5GYmIiSkpKpJY6mftNtfczC9teRc+b/4zCLAKBQMiiji/zww8/7LifO+/yDgePxxMUQ822Cd4bwCKaK/jysOE07HGqPnP99dfb6p+s5irvQXJyctC4z8duk1BjrYAyjKiLMKIG5NZSxzeu008/Pej3ocTUFRcX48YbbwRwTPlTx8zNzZVuLeSEW0sd27HDtdQlJSVZok412fl8PjRu3NjKHSS6Li+YRM9dNHnJUprwgde8KZ4XdfXr17esu3TffEydSNR9+umn1vJ2mahr1KgRZsyYYYlSVtSxz5YGoeLiYjz55JOYM2eOrR1QTJ3P5wsaGFlRp2qb7Hderxd79+7F/fffjxNPPBF5eXm2hQu68G01MzNT28qhI+ro+bsVdaywZ3ES5/z1aaIoLCxUvvWzFk/+ZZIVdbL9T0XccMMNyvEJgHD3AV2cRN20adOCvBcejwd+vx8XX3yxtb91VlaWzQ0pCoanZyB6OZPVqdfrxTPPPBO0klpmqePPk5ycjKSkJHz00Ue27ddYS50M3VACtr2IxClbpqZNm1riwG0sH3se3lLXtm1b9OvXT3l8JEWdLqLFZnRtNvaXLw+1Fd5Sp3Kp0l7khK6oY/vPZZddFrSTFqU54cWe6BkaURdhaCJhH7aOpY7Pru9EKKtfd+zYYf0/uYpJyNWrVy8owDJUUcdOWDL3K12TDR4X/UYWU0cWpRNOOEHLUufz+dCkSRNL1Ine/vnjTzzxxKDfiCbBr7/+Gp999pl131Rm3v3KtwNW1NGG9iTq6P503K8XXXSR9XvWUsPSsWNH3HbbbdbgIrPUkWVAllONLHV+vz9INLGiTiVa+IGoadOmts/o+T366KPSczid0w28exmQizr63Ol6d955JzZu3Cjto059i3+2Ho/H5qomeEHE1j8/kdAWhSkpKVbMI7VJWX2VlpZi9uzZSk8CoLdJuAz+HvjJ99JLL8VXX30lPHbp0qWYNWuW9Tf73PhnyMatybbYc4NM1PH3k5KSgsTERHz//fd47LHHrM+dUkEB+qsZnVZFUpvp1KkT9u7da523uLhYWXd8bKLK/aqzipYX7NHg9ttvt1lQ6dmwz5LKoXpuohc8J1Hn9Xpt56FxWWXY4UVdVlZWUJsgUcenXRG1HVWqM50YP8CIOhvUSNgJ3ClPE6B2v4pQ+fZl8LtHUJwHC7sXpKwcor1agWOdhh3UKDaNhRpiTk4O7rnnHuE1eEsdPwleeeWVCAQCaNSokXShxOHDh3HbbbdZ52ncuLHlyuYtdZ999lnQCkDR25UsvUuvXr2UMXUVFRVB23Gxoi4xMREZGRlW2hoKdqVjnNyvoqB6Fj5zPnsfojgX9nmLYupElrr//e9/jrGS/PVEUJ3zm8rrHKML+xzZYydOnIju3btb+bQofxZNfKqUJiz16tVD+/btlfnBVIheUKjfqQSzylK3dOlSnHLKKejatSumTJmCjRs3Wr+R5ejy+Xy2LdwA8bMeNWpUkHtSFydLnRtEedSIsrIyofUlnGuJ3K88ZKnjEVnqQlk4cMIJJ2hb6qjdsTv0iMZo4rjjjrO1VfbcvCVdR9RVhaUuNTXV1l5Foo73hKjKw1vqVO5XNl48LS3Nes5Oq8NZUSdKM0O7LcleNllmzpxpZZ4AKmP+N2zYgM2bN9sMOyqMqGPgRV1aWprWsm2nQZPH7/dj6tSpuOKKK7TLtmnTJgDAhRdeaJX1oYcesiV+HDlyJF577TUA9omHDUjlGyiVXSQyR48ejTvuuCOo7E6IxAUL7xIEghs8m4iRt9TxooOeCYsoP5ZTzj5AvlDC7/fbcr5RGYqLi5GYmIj09HRL1I0cORL/+te/rD0KnUQd22ZE9UDHiyx1fr8ff//73y0X14wZM7By5UrhucvKyvD222+jrKxMGZei2lPUyT0QSmJct8fIRN3pp5+Or776Cq1atUJubi7uuusuAMe2htPN6cVbbVXXFyESASJRp2Opoz6Qm5uLc889F36/H36/31o8BAAffPCBMhUM2+dFZc/MzMTEiROV9yRDJepCsZ4R/CrA8vLyoJ1ZWEIRddSWv/jiC2sbKf5+0tPThX2FLCoiSzmhk27kl19+0Y6p4+PESkpKMGbMmKDtBlnY+1HVh05dVYWo4/sO3Wuooi5US116err14q46hrfU8TufAJX5Gp1SJhH16tWz7Za1fPlydOjQAaeeeqoy1RSLEXUM1GjJ3HrKKadoNXaRqFPFBCUmJiIzMzNo2xUVO3bsQIcOHfDZZ58BqGxMubm5+PDDD23X7tWrl60cQKVJmwLYZaJO5H71eDxBWcR1ngdNhqo4F0LlfmVXf7ExdTqJcnv37o2BAwfaPlNZR+ncdM1mzZpZq4xpcGbjclauXInRo0fbLHWUz+/qq6/GCy+8ELTwQLXdD11b9Bt6NvSyUVZWZnO/fvTRR5aL67bbbrOtOmfPt3fvXmzYsAGFhYVW2hdROchdIMp/xqaOUd0L8eijjwqvxSZUjpSljiUzM9OK76O6ZfeY1UHHUidapStqy9TP2rZtG/SiRIhEHbXZgoIC6eTSoEEDq3+LYI8LZ+cQEZG01KnKlpaWhjFjxkhzqoXjfu3atSvOOussAPb7WbVqFc4++2zhWE5xbazQ0Y2h418u3Frq2ATfCQkJwkVhhK6oozKpdoKqCvcr/6xV7le277Hlady4sVWfbix1rKirU6eONP0TS3Jyss3i6/V6g/qpx+NR1uuYMWPw8ccfS6/hFiPqGHi3WTiiTmUVcptaAajM5yQyS7N4vV6pgKDOzTdQPk+dapDWLTOJIB1Rx7tfn3vuuaDNjn0+H+rUqWPVj+wNmBegrDsaUNcJvUmxVprp06cDOPZMqF3Qs50+fTomTpyIv/76C+np6UELJQhd9yvVwZNPPik8ngaq9PR04UIJEWw7YBM/33vvvejTp4/tt7yljrX+NGvWDA0aNLBcCTrXA4AuXbo4xo6EI+pUVj4SdWSpo+OchI3OlnGE6PmL+iYJZJ/PhyeeeML6/JdffsG0adOs8/LbGrGTmSre5rrrrpN+x/Z5N9u3iTj11FPRtm1b7Nq1C4BzTJ0bRCumJ02ahEWLFlkpT2SI2pgqdCYpKcm6nt/vt8YG9n66du2KhIQEYX3SvuB0XUp9AgCnnXYarr32Wtu52HOoRJ0qpo6PUSYXte48oiPqVFt+VRdLXWJiIn7//Xc89NBDtvLQ/W3evNnaI5VNS+RkqePdrzqijjcU+Hw+x/2S2TIDlam3VNZWt4SXbKaGcdddd1kdedmyZdIJiYcmv7/97W+2PTllq8p0fPU8+fn5tgYkEig+n08aN0QDDB+zReeUBfXyA5COC8tJ1Kncr+wyd9ZS5/f7g/Zd5Vm+fLnNbcOXVSeOUTRh07Oj+szIyLAJJPqMyse3GV33K71xDxs2DHfffXfQ8ddffz06deqEdu3aCRdKqM4N2Lc/8/l86N27Nz755BPhb9nrApX1w28073Q9+ltURrYuIuV+5SERRKIOqBR6U6ZMCbLiipClqmCvL7LKiUQAvRCw1oBAIIATTjjBcvV7PB6rXqnsbdq0sSyNqgmJ4lTr1q0bNO6wY0W4oo4stdQWImmp4+Po3Owry7exxYsXB73UAZUvJ23atLHqLSkpCQkJCUJRR4jqmEQdG+9K7WLGjBk4//zz0aFDB+v3zZs3t5Kn889FZKkTGQqon5BFUGcFLouqPpxCU959992YiDr6mx+7jz/+eFtbpn5FC8Fat26NjRs3ok2bNlZogY6ljrWG6rpfWXw+n3YqG34BV6QwljqGCy+8EBMmTLAGlyuvvFKr8aalpaG4uBjLly93TOMBBLvTdCgoKLAJL1kCRidLHd9AqZy6ok5H5FJncHI3AnruVxKrJJpklpaUlBSby5Avu5uYOroucOzZDR48GC1bthRm1ldZnpzaEC0AoUlIZelr166d7Tun+mDrgJLH0g4hsnJ+/PHHePbZZ0OKjxOd0ymwPRruV6JXr1546aWXrL/37t2LAQMGaJ1ftrKQfS6i64vaMqVHSEhICBL3dD5W1DVr1gyffPIJnn32Wet3Oqvffv/996DP+D2tIwHfN/jPgchY6nThr3XppZcKU9L88ccfWL58ufVMKDRAJepE7ZfP65mRkRFkUWPPddxxx1nWTb5fiSx1bCw3L+q6deuGt956y/Jo6Io61VghW+HZqVMnFBQUoF+/fjEVdTpjCJ+6qH379rbz6cTUsUJLR9SRuGfP4dZSp5u+SRcj6gSMGTMGK1asQKtWrbREDK0mrFOnjrSx33PPPVZwM7+aUYeKigrb24rM/SrLxSVzvzqJulDcr5REtHfv3sLvRZY60f2wk53f70dJSQmys7ODkj3KCEXUiY4ny+A999yDXbt2BXXyKVOm2AZF/lnSs5eJJKpXcjGp3uT5czoN6KL2SBMGXx767WWXXYYRI0aEtJpPtF0PtZmdO3dql1GFG1G3bNkyDB061PGcrCin88v2YWTvceLEiWjZsqUtZMDJUkd069bNdj6Px2O1tdTUVPTu3dtWLh1RJ3LRRkPUsdZGFrY9uo1zC2WXg1CvRc+ErOP0t0jUqSyGdN3MzEylqPN6vZYFR9W/6Tt2b2Ze1Hk8Hlx//fVBYTxt2rTB3LlzHcsqQibqTjvtNKFFsKrdryL4MAyRQYUtp87qV/o9mxhfdMy6deuwc+dOXHvttUHncGupM6KuCkhLS8N5550HQM9lJ3o7bdeunRUrAwCPP/641dioobLHiToVP0DzcQU87JuGrqjj47l4QnG/Nm7cGOXl5bbtb/hyErLcYoC90/r9fgQCAWRlZQm3ERIRivtVZakj2PLfcMMNmDx5sq2u+GdMx8tE0v/93/9h/fr11g4G/OCrEnVOk5nomlQ+miREgkPnPCJkljqPxyNcMMGWQxc3ok4X0cAtE3Xs9c866yzs2rULzzzzjPWZqE74eMxdu3bhxRdftH2WkJAQ9ALA3p9unio+iWy8WOqGDx8u3ZrNCXbVog68qBMJMYL/TBTiwbpfRe2Zdbvz37P1k5mZiRdffNFmXZbtAcuXoWvXrsqwglBEnSx+1K2I1oUf6+jZyMYfNkRHNvex59Zd/comxheljTn55JPRunVrJCUlBY1Hbi11xv1axfCN6cwzzwzqAKI3A6/XizvuuAMXX3wxxo0bB4/Ho3TN8oNRixYtsGjRInz55ZfWZ6woEb3Vso2Sz6DOx9Sdd9556Nq1Kxo3boykpCThSkcguPPqDpqqiVonpQlw7NlTShG3iCx1bHCtCF5I0vVZ2EGDXzENBAtk0ZY1LAkJCdIVq6L7YMsUynOhgc3J/B8JSx0Ntqr2EK2FEm5gy+CU0sTpmqLnRu5XEgQtW7a0njtrgeEncLb/6Yq6+fPn20IUommp42HL69YC0aZNG/zwww8hlYeu+/bbb2ulEqHnS6KOrPiirZz4/i9aialjqZNlBeD78PDhw20radnV8SKoDE4vrSohJqsrtq1H42XKqRxOoo59pk7PKTExUdkmefcr9ZUOHTpYISvnnHMOPv74Y9s8yMZu+nw+7TkyWu5Xs1DCJS+//DL27t1rWyUkejul/y5dutT6jk8eycI3hN27dwOw5wVjB5M+ffrY8pFROTweD959912cf/75tu94S93NN9+MG264AUBlTNf3338vvF9+wNFtsCpEok4kTlSiLiEhwXHwFlnq7rvvPuzZswfPP/+88Bi3ljqqS/a58KKubdu2mDp1KkaMGKEsr6gMovtgcXpjVgV+86vpRHnTVOcRwQ/2FA+pmgSqg6WOfY50/lGjRiEpKQl33nmn7behCEkSC/v27Qv6jhUD9957L4DKVcN8uXT7nsfjkS7mcCPqVHk0dfoGLzJ03VKhQNctLy/XehmhlDq0O0fjxo3xySefoGfPnvjb3/5mfQ6o2z5rqVNZ1FSWOqc2LDuOL4OTqAulr+jERUcSN+5XKkd5ebl0QRZ/Lo/HgzfeeEO4ip99+UxMTLRewFJSUmy5a/mVqrfeequVpogV706YhRIxhN1cPDk5WbiMmVDlaFNZ6kTJcvlzs9edMGEC1qxZIzx/v379pMv56W2fDUquW7eutEOEG5cmgr02WRRUA7FI1LlNlglAuFUTj8jdwItH9jfUIVlLHV/3Ho8H//73v0Oe1ESucV33q2hC4i1ROqLu119/1SprVVvqIjW5iHYGSElJwejRo5XX14Vcz/SyxsJaGOrWrYtHH33Ulnib0LXU8YRiqWvbtq0yZ5kspo6FbbfZ2dnWQoFowIo6HSgXI5vjrXfv3khOTsbgwYOt9EGAfkwd3690LXVO0PjjRtSddtpp0rK6IdqiTuWKZv/WsdQ988wzthXHPDRW/9///Z/we979Sm0pJSVFaQUcNWqU9eJHz1i2hSZ/PbZckcKIOg0uvfRSKz7MSdTxljoWlaj773//i9WrVwd9zp6bn9z5v1UdjV3BOWTIkKBNh3XcKUBoExoPmypCNcmwg2MosX0yUUf3KhrkdCx1IlEXCQumiPvvv1+YrFbX/aqakHjLMS9eQ6lrWUydqm1WB1EnstTJCMVSR4uHRHF6rPtVVS43KZBY2InSTfJh1XOQ9Q0Wdnxq0KCBcg9NFj7fpA7kmWAXGKggUUf1oiJUS12kRB2NW7IYZd79umHDBqxYsUL4uxEjRrh6OYi2qOPPIxN1Mthn2r9/f+X2hKx42r59O958882gsrCLF4YNGwag8vk7CWKy5NH9TJgwAQCEK7CJWbNmoW/fvhELISGM+1UTNkkuL+pkMXU8CQkJtlU6LCkpKZbLhUXlznAj6mjCrlu3rrU5uOhY1Wq2SMGmilCJOif3qxOyhRKsmOGvL4qp48UO+7copi6STJo0Sfl9KJY6gn/JkFnq5syZoz0R8EJAZanz+XwoKysLy/0a6oB4xRVXYMuWLdi5cyf8fr8rK0akt0JzctsRuhvE87ATo2i7IhFO7nbVwgIiVKv+ypUrteLiWLp06eIqr90nn3yCRYsWadVlqKtfWVhR57b9JCcno6SkxNGbQqJFZq3y+Xx49tlncf311yt3IGGpClHHtkmZ+1XHUieDdiNiRd1JJ52ELVu22H7Hu1+vu+46K6m3U7yeyFCQl5enHFe6dOlipZmKJEbUaUKDjEjUubHU8abWt99+W5nUlRZYlJeXBw3q/Ju7jqVOJtJ03a+RgLXUqQZv2qarRYsWQa4binfQ2bmD4C11ontjkx/LrBGstSPaljoZkbTUyUTdvffei40bN6J///6uBvGioiL07dsXixcvtlKaiI5PTU1Ffn5+TCx1CxcuxKpVq9CtWzekpKS4stSpArFVudauvPJKYUJcXUtdqCJJN6Zu27Zt+P7774N2QxDBvnDJCFVwR2tlJcuFF14o3DNahGqMUq1+5S11ov/XRSeu1um5hZJCI54sdTI6deqETz75JOg3fF/wer3SRW26cY/s76L1ou+EEXWaUMf2+Xwhi7qEhISgzqna3oc9f3l5uaOlTtWpnUSA7E0kGgMsa6l76aWX8Nprrwl/d9VVVyEnJwf16tXDnj17bN9RfbgRdbyljq+jBx980DKbs8dXZ1HnVD+qCclJ1PXu3RuHDh1yXbbk5GRbvkS/3y+cHGIp6oBj9827V5zEk2yi27ZtmzD5LyGLUVNZcCIh6nTdr6eccoplkdW1lLmxjsUrkcpTR0Tc3cYl3ZUhWm3ZunVr5UbxsRZ1OgslnMoze/ZsTJs2LSgjBG+1Zq2GfDl0VyBXxQuJE3ERU7d+/Xr06NED559/PgYOHKjtQogkzz33HEaMGIG6deuGtVAilKBIWS45N+5XwknUVYX7lbXU3Xzzzba0LTy0uEBWDtWbnGyPRVkHFSXOBYKfCfuGR9eI9LJ0J0JdKMFuIeXkfg0HPqeVaHLg8+Xp4rSjgy5sLBKVd8CAARg+fLj0evQ3m/GfOOGEE6z8lm5QTRiRFnVOCyXcPs/aLurq16+PlJQUtG7dWinqqB6HDRsWFMtFsCtu3UB1GoqlbufOnUFZFL799ltcddVVAOTtIRqphPiysX87iSkn9+sjjzwSVGZRzlZKFRYJS12siAtR16xZMyxZsgQrVqxAmzZt8P7771d5GVq3bo1nn30WHo9Hy1InSw4cjqjjrysKSpfhJAKq0v0q235Jhawcupa6k08+2RoYaEJm08UAwQMV/Z63WogsdVVNqO5X1iXA50KL5ARNz6W0tNS2UGLJkiXWJEKC3e0EweYSC2fhDmupo/LdddddQXXKr/z1eDzYuHGj9opgJ1Tu10gI2FBEnW5bqO2irl69ejh06BA6duyodL9SHtBZs2bhrLPOwsKFC/H5559b3//6669B2Qx0UaWFYtF1v3bu3NnKxhBpq6KsTLKcbU6ijoRZKH3j8ssvx5w5c3DiiSda53ASdW5i6mJFXIi6Jk2aWFYpVVBzcXEx8vPzbf+iQWpqKtLS0qxOJFooIcoZJHK/6kDndAqUDiemrirdr7KN0lWEK+rYoNhLLrkEQHACZ9kApuN+rWrCSWlCOLlfw2Hw4MEAKlc9spa6Sy65xArSfvfdd/Hkk0+6PvfSpUsj8kZMz451v4raQIsWLWx/JyQkoF69esqVbW4INYBeF3ai/Oc//6n8rRF1wVx++eUAKncB4cNAgGPPV1WPlHyauOKKK3DBBRdYf7dq1cqWcNgNupY6KpeOxZfGhGiLOt5bIHN7yqCwl1DK6fF4bFkgvF6vbZs+N+Vw+7toEheijvjtt9/w6aefWp2M55FHHkFmZqb1T+QiiQQ+nw9bt261EhCLLHUiURdpS53o/DJ0LXUq9ysbb+aWc845x4rXiaSlTvVM2GPYTn/iiSfirrvuCtpOSfb8VJa6aFgydaB6chpEdCZd2SrfcLj88ssRCASQnp4uTWnSokUL3HXXXa7P3bRpU/Tp0yfsMrL5vZwmMfZlJxJpfVhUlrpIQGPO6NGjMWrUKOVvjagLZuTIkSgqKkLLli2VKVBU7lfaJi4aUDiSaGxfsGBB0Ge8CBWhesmJJE6ijsRVz549hceTqAtHTLHx8r1798a///1v3HbbbcJyOmEsdRx//vknunfvHvQvJycH+fn5GDJkCGbPni2dSMePH4+8vDzrnypoOVyaN28uNLmqrGo6lrq1a9fiu+++s30WiW1gKEjUyXzMQ+Vt1aqVVkJFGatXr7Ysp7J8SyrCtdTx9/3kk08G7TOpGxQss9TddtttePrpp6XliQZOQkA16fLW22hN0E7Jh0OB+kKk3K9Ok1gou2voUlWWOh3R7lbU0a40NRmPx6Nl3VKJOt5SF0lUlrqrr74aCxYssMXrUXtw2twekIekRAodUXfgwAHcfffdwuP5LQ9DgX1B9vv9mDp1atBcq/viVR0sdbGXlQxNmjSx9lhjoc3hJ02apAwmTUpKqtKAdZH1iyo/VEsdm8mckC2UAOxpFFQNau7cuUEBsSyyCYWu7SZpqQjqDMXFxRHZxxWofMbjx493dQyLaqcIYvr06ejVq5ftMzYuia3PGTNmKK8XSSJhSalKURfpwe7555/HueeeG9Zkyb4sOQVcs9vShdsXeJzidcJFllxaVRadtlBcXFwtLBPVBdWewbK9tSOBk/v16quvtr1IU3tQhfPILNdJSUkhhc/I4EWdaMxW9fFIWupU56C6dUoAHm3Lpg5x0SPnzZuHVatWoaCgAA888ABuvfXWoB0RYgE1Bt2YOnoTcIvKUnfjjTdi1qxZtmuLaNiwobWiyQ2Rds2FGoMmem6i7PxOx7DoiDqRu6o6uV8j8bto30P9+vWtjOuRomHDhsItvEKBtcLoWOoi6aZmrxktUUfnj7Soi1U8aXVFZakT5SeMFMOGDcPPP/9s249cBbUzkQGBkFnq/v73v+Pdd98NsaTBsKIuKSnJdR+ItPtVdZ0XXngB/fv3F35PdR2pPrx06dKQx+W4EHVsZufqCNugqFJl7tdIpjQBKi0WP/74I1atWhVWw3bK2B3picwtkbLusfD3pPv8WFEXrYn4wQcfDHIPs0ycOFErHk3HUheN1a8sd955J26++eaonDscqD9deOGFVlodmahjP490SqVou1+jJeoMdmT1WFFREbVxAqhc0f7CCy+4Ombt2rVo27at9HvZ2PnWW2/hmWeecXUtFbyoU3HSSSfhoosusn1G7lfdPY1F6FjqAOBf//pXyNdwy8UXXxzysXEh6qorNPCJBnyRVa19+/aoX7++6+uoLHVer9daNRVNf36kXU5uCUXUOQloHUudiKoQdU6LUu644w7hnrA8OqKOnlO0JvK0tLSQ9y2NJnXr1sWBAwfQsGFDa99lHUtdOBOIiKqy1OnUr5vfyti2bVu1rO9ow7tfzz33XOzcuTOqgi5UVFY64Nicw4+RSUlJWvvl6uJG1G3fvj3oM7LUFRQUhFwG3UVnOueoDhhRFwYikyvFt4kE2Lhx40K6DsUkyYQNXT+cRkk5wwYOHCj8Ph4tdbqijrZhC0XUVXeqg6irzlC8Dk1isgm4KkRdtCx1OglaCZ3tv5yIpquxOsOL8//+97+4//77Y1mkkJGJukjjRtSJ6NixI4Bj81co6Lhf44macRcxQiTqKPeZ00pVN3i9XqSkpDhOOOE0ytTUVOVAHo+izinvE4mzxMREFBUVaU+qkZ7Uo4mbhRKxruNY4rQgKJ4tdaeddhoeeOAB277GTtRGgR8uokUFJ5xwQoxKEx40JkT7BbZJkybYtGkTvF5vSKJuwIAB2Lp1q9KV7ISu+1WH6mCVjf1SjTjm3nvvxYknnogGDRpYn5Goi+QqXJ/Pp1yppLOpcbiMHTs2aufWIRRR51QH/EIXXVEny5NYHVEJtaqKqYsH6BnI4uWmTJli/X+kRV20V796PB5MnDgxLGuGwRnZDjTxSFVZ6t5++23MmzcvZFEHICxBB0TG/VqdMKIuDM455xz8/PPPNsFB7tdIizqV5S8S7lcVgUAgZNdxpIjGvfGiTvca//znPzF16tSIl6eqqaqUJvEATWIywTZmzBisXbtW+ZtQibalLhRqc1sIlUjEI1YXqspS17BhQwwYMCAsURcukbDURXr1azgY92uEke0dFw66ljqDO8hykZ6ejoMHD2o/R4/HY626ilVKE11osHn22Wdx6qmnCn9jRJ19T1wZ7H62kSTaMXWhUBuSCkcayqFaE1K9VJWljvB6vTGzlJmYOoMSstRFWtSpLHXVJe1IVdG6dWsrQDYcxo8fj7Zt22LOnDnYtWuXq0n1tttuQ0VFBXr37h12OaIJCbUBAwZYu4rw3xn3a2WKmMaNG1sbmYugPh1pS50qaS0ALFu2DM2aNYvoNVWUl5dXC4tDvDF16lRcddVVUd09oqqIVNJ5Xbxeb8xElXG/GpTEIqaOLDCxMl9XNfPnz8f8+fPDPk9SUhKuvfZaqzO7EXVJSUm4++67q/1AoNrz17hfj5GWlobRo0crxUy0RZ3s2r169UK7du0iek0VCQkJRtSFgN/vR5cuXWJdjIhQ1Yun4t39SlSHfmNEXYShIPomTZpE7JxOlrpJkybhu+++sy3YqMlE2uV54oknRvR81QmdAcusftWDnlOkRV11iscxGIDYuF9jLerCCX+oTi/Exv0aYQYOHCjN9RYqxx13nHLA9/l8EXFHxgtuzPRPPPEEFi5cqPzNQw89hObNm4eVxbu6orLUUZvp3r277bcGMdGy1NGkYkSdobpQ1S96ycnJMUtYHcn+Vx36sBF1ccDMmTNjXYRqhRtL3d133427777b8XwjR44Mt1jVElW8SLt27WxCzog6NdESdaKdaQyGWFLVlronn3wyZovOInGPN9xwAxYvXlwtDANG1MUBNWVVTrgkJSWhuLjYPA8XqCx1st8axJCoi3TweJMmTdCmTRuMGTMmouc1GEKlqhdKyFbmVwWREHVZWVlYtmxZBEoTPmZ2NMQN6enpRtS5RHdl18CBA6t0w+p4JFqWhMTEROzYsSMq5zYYQqE2xdnWtJdZMzsa4oY6deogOzu72ueGq07ouvbmzp1bFcWJa0y7M9QWqtpSF0tqmqgzQRyGuCE9PR2AcUe7oaYNWLHExLwZagtk2a8Nlrqado9mlDLEDSTqjMVEn86dO8e6CAaDIc6oTQnta9qLrxF1hriBdm8wok6fl156Cdu2bYt1MQwGQxxBoq42uF9rGkbUGeKGCRMmYO/evUhOTo51UeKG5ORknHLKKbEuhsFgiCNqk/t17NixsS5CRDGizhA3JCQkoGnTprEuhsFgMNRoapOl7rHHHqtRLlgj6gwGg8FgMFg0bNgQLVu2rHFWrNqAWUZoMBgMBoPBwu/3Y9euXbEuhiEEjKXOYDAYDAaDoQYQV6LunXfeQVZWVqyLYTAYailerxdXXnllrIthMBgMQuLG/VpRUYH58+ejefPmsS6KwWCopZSVlcW6CAaDwSAlbix1b7/9Nvr376/M6l5cXIz8/HzbP4PBYDAYDIbaQFyIuvLycsybNw+DBg1S/u6RRx5BZmam9c9Y9QwGg8FgMNQWPIFqlKDlzz//RP/+/YM+HzZsGLxeL/7v//4PnTt3xrp164THFxcXo7i42Po7Pz8fzZs3R15eHjIyMqJWboPBYDAYDIZYU61EnYxx48Zhw4YNSEhIwOrVq3HTTTfh6aefdjwuPz8fmZmZRtQZDAaDwWCo8cSFqGNRWep4jKgzGAwGg8FQW4g7UeeGQCCAgoICpKenw+PxxLo4BoPBYDAYDFGjRos6g8FgMBgMhtpCXKx+NRgMBoPBYDCoMaLOYDAYDAaDoQZgRJ3BYDAYDAZDDSButgmLNLSIwmAwGAwGgyEecFr4WWtFXXZ2Nho1ahTrYhgMBoPBYDBo4ZSirdaKusTERADA77//bnLYxSG0W4ipv/jD1F18Y+ovfjF1F/+kp6crv6+1oo7MlxkZGaZxxzGm/uIXU3fxjam/+MXUXc3FLJQwGAwGg8FgqAEYUWcwGAwGg8FQA6i1oi4pKQmTJ09GUlJSrItiCAFTf/GLqbv4xtRf/GLqruZjtgkzGAwGg8FgqAHUWkudwWAwGAwGQ03CiDqDwWAwGAyGGoARdQaDwWAwGAw1gFor6u655x706NEDgwcPRklJSayLYxCwfv169OjRA+effz4GDhyI0tJSzJ07F127dsWFF16I33//HQCwZcsWdO/eHV27dsWnn34a41IbeN555x1kZWUBgKm/OGL58uW46KKLcP755+ODDz4wdRdHVFRUYOjQoejRowfOO+887Ny509RfbSFQC/nuu+8CgwcPDgQCgcCDDz4YeOutt2JcIoOIffv2BQoLCwOBQCAwfvz4wLx58wJnn312oLi4OPD1118Hhg0bFggEAoGrrroqsH379kBeXl6ga9eusSyygaO8vDzQr1+/QMeOHQMlJSWm/uKEoqKiwOWXXx4oLi4OBAIBU3dxxvr16wODBg0KBAKBwNKlSwOjR4829VdLqJWWutWrV+OSSy4BAPTu3RurVq2KcYkMIpo0aYLU1FQAgN/vx/bt23HaaachMTER3bp1w6ZNmwAA+/btw0knnYSMjAw0aNAA2dnZsSy2geHtt99G//79kZCQgB07dpj6ixNWrVqFlJQUXHHFFejbty++/fZbU3dxxPHHHw8ACAQCyM3NRVZWlqm/WkKtFHW5ubnWFimZmZnIycmJcYkMKn777Td8+umn6N69u21rm/LycgCVAxdh6rP6UF5ejnnz5mHQoEEA7P2OvgdM/VVH9u/fj19//RUffvghhg8fjilTppi6iyMaNmyIhIQEtGvXDmPHjkXPnj1N/dUSaqWoq1evHvLz8wFUTjT169ePcYkMMvLz8zFkyBDMnj0bjRo1suoNALxeLwAgIeFYMzb1WX148803MXDgQKt+2H4HmPqrztStWxfdu3dHYmIiLrzwQmzYsMHUXRyxZMkSpKSkYNu2bXj33Xcxffp0U3+1hFop6rp06YKlS5cCqGz83bp1i3GJDCLKy8sxePBgTJo0CSeffDLatGmDLVu2oKSkBCtXrkT79u0BVLppd+zYgfz8fOTk5KBhw4YxLrkBqAzCfv3119G7d2/s2LEDs2bNMvUXJ5x99tnYsmULAGDDhg245JJLTN3FGfXq1QNQKdCzs7NN/dUSau2OEvfccw/WrFmDFi1aYPbs2UhMTIx1kQwc77zzDkaMGIEzzjgDAHDrrbciEAhg+vTpSE5Oxuuvv47mzZtjy5YtGD58OMrLyzF16lRcfPHFMS65gadz585Yt24d5syZY+ovTpgxYwbmzp2LhIQEvPLKK1i7dq2puzihvLwcQ4YMwZ49e1BcXIynnnoKv/32m6m/WkCtFXUGg8FgMBgMNYla6X41GAwGg8FgqGkYUWcwGAwGg8FQAzCizmAwGAwGg6EGYESdwWAwGAwGQw3AiDqDwWAwGAyGGoARdQaDwWAwGAw1ACPqDAaDwWAwGGoARtQZDAaDwWAw1ACMqDMYDAaDwWCoARhRZzAYDAaDwVADMKLOYDAYDAaDoQbw/8dDFFGyhax6AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -923,7 +922,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDPklEQVR4nO3dd5wUVbYH8F9V5zTTYRIwZBAEBcSEGUwoiIISXBFFlLAqbtDVVde3+9a0+lZ3l3VXoohiIIgBFVHBiCIIgiCoZJjYM93TOXfV+6MBxa6qSd1V3T3n+/nsZ7Hunb5HnOo+fe+tcxme53kQQgghhGQAq3QAhBBCCCkclFgQQgghJGMosSCEEEJIxlBiQQghhJCMocSCEEIIIRlDiQUhhBBCMoYSC0IIIYRkDCUWhBBCCMkYSiwIIYQQkjGUWBBCCCEkYyixIIQQQkjGFHxikUwm8eijj7b55yORCMaOHYuTTjoJQ4YMwRVXXIGDBw9mLkBC8kB77yMAuOuuu9CjRw8wDIOdO3dmKDJCCksm7jWlFXxisWPHDqxcubJdrzFjxgz88MMP2LZtG6666irMmDEjQ9ERkh8ycR+NHz8en3/+Obp3756hqAgpPJm415RW0InFrl27MHr0aFRXV2PIkCH485//3OrX0Ov1GDVqFBiGAQAMGzYM+/fvz3SohOSsTNxHAHDhhReisrIyw9ERUjgyda8pTa10ANk0YMAAjBs3Dv3798edd96ZkdecM2cOxowZk5HXIiQfZOM+IoSkK5R7raBnLADg66+/xhlnnJF2/YILLkBJSYng/44cOSL4Wo899hj27NmT9+tfhLRWJu8jQog4sXstnzA8z/NKB5EtiUQCNpsNDQ0N0Ov17Xqtv//973j11Vfx4Ycfwmq1ZiZAQvJAJu8jAOjRowfefvttnHLKKRmIjpDCkel7TSkFvRRSVVUFi8XS7v9ATz/9NF555RVKKkiHlKn7iBAirVDutYJeCqmsrMSgQYPQr18/PPDAA216jaqqKtx9993weDwYMWIEhgwZgrPPPjvDkRKSuzJxHwHAHXfcgcrKSlRVVeHSSy9Fnz59MhglIfkvU/ea0gp6KYQQQggh8iroGQtCCCGEyIsSC0IIIYRkDCUWhBBCCMkYSiwIIYQQkjGUWBBCCCEkYyixIIQQQkjGUGJBCCGEkIyhxIIQQgghGUOJBSGEEEIyhhILQgghhGQMJRaEEEIIyRhKLAghhBCSMZRYEEIIISRjKLEghBBCSMZQYkEIIYSQjKHEghBCCCEZo1Y6AKXwPI94PI5IJIJYLAae58EwDFiWhcFggE6nA8tS3kWIFJ7nEYvFEA6HkUgkjt9HKpXq+H3EMIzSYRKS0ziOQzQaRSQSQTKZPH4faTQaGAwGaDSavLqPOlRiwfM8wuEwXC4X/H4/OI6T7K/X62G321FcXAyVSiVTlITkNp7n4ff74Xa7EQwGwfO8aF+GYWA0GmG322GxWChZJ+QojuPg9XrhdrsRDocl+7IsC7PZDLvdDpPJlPNJBsNLvSsUEL/fj7q6OkSj0Vb/LMMwsNvtKCsrowSDdFg8z6OpqQlOpxOJRKLVP69SqVBaWgqHw5Hzb4yEZAvHcWhoaIDL5Wr2y60QjUaDiooKFBUV5ex9VPCJRSKRQG1tLbxeb7tfS61Wo7KyEmazOQOREZI/otEoqqurEQqF2v1aer0elZWV0Ov1GYiMkPwRCoVQVVWFWCzW7teyWCzo3LkzNBpNBiLLrIJOLCKRCA4ePNimb1dSSktLUVZWlrPZIiGZ5Pf7cfjwYcklj7aorKyE1WrN6GsSkqsaGxtRV1eX0ddkWRY9evSA0WjM6Ou2V8EmFuFwGAcOHGjTVFNLOBwOVFRUUHJBCprP58Phw4ez9vpdunSBzWbL2usTkgucTiecTmdWXpthGPTo0QMmkykrr98WBbmTKh6P4+DBg1lLKgDA5XKhsbExa69PiNJCoVBWkwoAqK6uht/vz+oYhCjp2L6kbOF5HgcPHmzT/sFsKbjEgud5VFVVIZlMZn2s+vr6ZnfzEpKPOI7DkSNHZBmrqqoq48uVhOSCWCyGmpqarI/D8zyOHDmS8eXKtiq4xKKpqQnBYFC28aqqqrI6M0KIEmpraxGPx2UZK5lMyvLmS4icjn3JlevDPhKJoKGhQZaxmpPVxOLtt99Gv3790LdvXyxcuDCbQwFIfcvK9OaY5kSj0Yw8cUJIrojFYmhqapJ1TJ/PR7N/pKD4/f6MPEXVGg0NDbLM1jcna4lFIpHA73//e6xfvx5bt27FE088Abfbna3hAABer1eR2YPGxsacmYIipL1cLleHGpeQbFDi9/lYrRmlZS2x2LRpEwYOHIguXbrAYrFg1KhRWLt2bbaGA6DcG1M0GqVvW6QgcByn2BuTx+OhvRakIESjUVmX5H/O5XIp/kW31YkFx3Ho378/7rvvvhOur127FlqtFitWrAAA1NTUoEuXLsfbKysrUV1d3c5wxSUSCUQikay9fnNoZzspBKFQSNE9Q0q9GROSSYFAQLGx4/F4RgpwtUerEwuWZXH//ffj2WefPf7NZvv27ZgwYQIee+wxTJgwAQAEM6Zs1nxQMqkAQDMWpCDQfURI+yn9e6z0+G1aCpk8eTJKSkowZ84cVFVVYfTo0ZgyZQruueee4326dOlywgxFVVUVOnXq1P6IRci9SSbXxickE5T+PVb6DZGQTOjo91GbEgu1Wo377rsPc+bMwahRozB06FDMmTPnhD5nnXUWdu7cebwAzrvvvouRI0dmJGghSq/Nchyn+LoWIe0l1yOmuTo+IZmg9OeR0uO3efPm5MmTEQqFwPM8XnnllbRTP9VqNZ566imMGDECp512Gv7whz/A4XC0O2AxufChngsxENIeSv8OU00YUgg6+n2kbusP3nnnnQBSj1qKHSV+9dVX4+qrr27rEK2SC2d25EIMhLSH0r/DLFtwNftIB8QwjKLJhdL3UZtGf+ihh/DOO+9g48aNSCQSWLRoUabjajWlj45lWVbxN2VC2kvp+0jp8QnJBLW6zd/ZC2L8VicWCxcuxFNPPYXVq1dj8ODB+O1vf4snn3xS8bVRg8Gg6Pi5dmwtIW2h9O+x0vcxIZnQ0e+jViUWa9aswR133IGlS5di2LBhAIDZs2fD5/PhxRdfzEqALaX0X6TS4xOSCUr/His9PiGZoPTvsdLjtzix2LJlCyZMmIAnn3wS11577fHrRUVFmD17Nv72t78pWqNcpVIp+pdpsVgUG5uQTDEYDIquz5pMJsXGJiRTzGazYmNrNBpotVrFxgcAhld6+2oGeTweVFVVyT6uXq9H7969aY8FKQh1dXVobGyUfVyr1YrKykrZxyUkGw4cOKBIJdmKigqUlJTIPu7PFdQW7KKiItEnVLLJptdSUkEKht1uV2Rcq5Y2bpLCocSHO8MwsNlsso/7SwWVWLAsi/LyclnH1PBJBBc+Bt9na8DTM/ikAGi12qzWnBFiCPngmf8wQjs3yzouIdliNptl38RZVlamyJfrXyqoxAIAbDabrOtb+nUrwSTi8K5diYYl/0DS75VtbEIyjU8kEKuvhrmxChqZ3qBUANRrXwIfCcP16ly431gCLhaVZWxCsoGLRRGrOQy71ynbbLbBYFB8CeSYgtpjcUw8HsfevXuzvpnUtG8H1Js/POEaa7LAft2tMJx0albHJqQ9+EQc8YZaxOqqEa+vRtxZk/qfywlwSagd5bDd/hAOHDyU9VjMX62F6sCuE66pSzvBMWkmtBVdsz4+IW3FRSOIO6vT7qOExwXwPAwnD4H2mqlZPdkbSM3W9+7dGzqdLqvjtFRBJhZA6pTG/fv3Z620qcXvAvPOCxDLRS3nXY7iy64Do3ChEkKO8X/1EcJ7vku9ATbWARL3RsmvZsE85Bz4fD4cPnw4azEVHdwJZuMHwo1qNaxXTIL57BG0h4nkBJ7j4F33JqLVBxGvr0bC3SDemWHQ+TcPQ9upKxobG1FXV5eVmBiGQc+ePRWvnfFzBbcUcoxer0evXr2yUoGsrKwMxWGP5Judf8P7qJ//GOKN9Rkfn5C2UDvKEdr5NeLOGsmkQtOpG0yDzgaQ2hDdo0ePrHywV3buDFMkIN4hkYDn7ZfgevkZJEMS/QiRCcOyYI1mhHdvk04qAJiGDIO2U2rGraSkJCune6tUKvTq1SunkgqggGcsjkkmk6itrYXH42n3a2k0GnTp0uX4Ho7IgR/gXrEASV+T6M8wWh1sY26E6bRz2z0+Ie3lfudV+D5dI9mnbOrvYDx5yAnXYrEYqqurM/L4nMFgQGVl5fFp2+A3X6Bp9VLwEvsqVEU22CdMh75nv3aPT0h78DyP+ueeQuTHHeKdWBW63PM3aBxlJ1wOhUKorq5GNNr+PURFRUXo3Lmz4uW7hRR8YnFMIBBAXV0dIpFIq3+WZVnY7XaUlZWlFQ9KhgJoen0xwru3Sb6GcfAw2K6+EayOKgsSZYR/3ImGV+eCC/pF++h69EXFrAcFZyh4nofH44HT6WxTCX+1Wo3S0lLY7fa014831sO1fB7iNRJ7OhgGRcOvQtHwMWByYOc76Xh4nkdg0ydwvbUUSIjfA5ZzLoFj7E2CbRzHobGxEY2NjW1aqtdqtaioqEBRUVGrf1YuHSaxOCYcDsPlcsHv9ze7udNgMMBut6O4uFiyGmHql+0jeNYsAxIJ0X5qe1lqQ1qXHm0Nn5BW4zkOng/fgHf9W0Azt3vFzPuh79Vf+vV4HsFgEG63G4FAQPLNkWEYmEwm2O12WCwWySUVPpGA98NV8H++VnJ8bbc+cEyYDrUtN3bAk46Bi0bgev15BL/5UrIfo9agy33/B3WRdD0JjuPg8/ngdrsRDoclT0NlWRYWiwV2ux1GozHn9xx1uMTi5+LxOCKRCGKxGHieB8MwYFkWBoMBOp2u1f/xYnVVcC2fh4SzRrwTq0Lx5dfCcu7lYOiIaJJlCb8Hja/MQ2Tfrmb76vsMQMX0+1r1+jzPIx6PIxwOI5FIHL+P1Go19Ho9tNrWF48L79kJ98pF4II+0T6M3gj7uJthHHhGq16bkLaI1VWhYekziDfUNtu36PyRsI+5oVWvz/M8otEoIpEIksnk8ftIo9HAYDBArVbnfDLxcx06scgGLhaF591lCH79iWQ/fd9TYL9uGlTmYpkiIx1NeN9uNL7ybItrq1T8+k/Q9+ib5ahaJun3wrVyIaLNJESmMy+C9cpJYLW58ZgdKTz+rz+D+40XwMdjzfZlNFpU/vEpqMy5u0whB0ossiS082u431gCPhIS7cOaimAffysMfU+RMTJS6HiOg3f9ang+fF1y6cM4cCgS3ibEqg7AcNKpKL/1HhmjbB7PcfBveB/eD1YBnPiypbqsc2qJsZzOGSGZw8WicL/xAgJbPpfsZzn3UoR2bEbS70XR8NGwXzlRpghzFyUWWZRoaoRrxQLEDu+V7Gc5fySKL72Wal6QdksGfGh4dR4ie3aKd2JVsI2ahKLzL0fC3YCaOX9GxW1/gK5rL/kCbYVo1QG4l89Hwu0U7cOoNbBeOQmms4bn1ZQxyU2x+ho0vPQM4vXiha1YgxElE6bDOHAownu/g/PFZ1B575NQmeika0ossoxPJuH7aDV8n7wt+e1R06UHHBNnQOOQ96wTUjgih/aiYem/kfR5RPuorA6U3nA79N37HL8Wq6uCtiK3v+1zkTCaVi9FaPtGyX6GAUNhG3szVEbljq0m+S2wbSNcrz0n+fiztrInSiffAY299Pi1fLiP5EKJhUwi+79P1bzwe0T7MFodbFffBNOQYfIFRgqC/6uP4XrzBUDiSSfDyUNQMnF63n7o8jyP0LYvqeYFyQqe49D03gr4PnlXsp/l3MtgHz0JjJpO4xVDiYWMkkE/3K8/j8j32yT7GYecC9uYG6jmBWkWn0jAvXop/Bs/Eu/EsrCNHI+iC68siCeR4o11cC2f34KaF2NQNPwqqnlBmpUMBdDw8rOSS4iMzoCS8bfCNOhMGSPLT5RYyIzneQS++gie95qpeeEog2Mi1bwg4hJ+DxqWPoPowT2ifVRFttTSR8+TZIws+/hEHJ4PViGw4X3JfrrufWGfMANqq12myEi+idUegfOFf0mW6NZ27obSyXdCU0JL1S1BiYVCYrVHUjUvpJ6LVqlQfNl1sJx7WUF80ySZEz2yD84X/i1ZTl7f9xSUXj+zoB99C//wLdyrnpOsJsoajLCNuwXGAUNljIzkg+C3m9G4YoHk0pr57BGwj7kBrEYrY2T5jRILBXGxKDzvvILgls8k+1HNC/Jz/s2fwvXGC5IlhYtHXAXr5dd1iIQ06ffAtXJR8zUvzhqeqnlBHxAdHs9x8Ly/Ct6PVot3UqnhGHczLGdeKF9gBYISixwQ2rEZ7jeXgI+ERfuw5iI4xt8GfZ+BMkZGcgmfTMD99ivwf/GhaB9Go0XJxOkwDTpLxsiUl6p5sRbeD16nmhdEUjIcROMrcxH+4VvRPqoiK8qm3AVdt94yRlY4KLHIEYmmRriWz0fsyD7JfpYLrkDxJeOo5kUHkwz44Fz6DKIHfhDto7aXouym3xw/qrkjih7ZD9fyeUg2NYr2YdQaWEddD9OZF1HNiw4mVl+d2k/RWC/aR9e9D0qnzIbaYpUvsAJDiUUO4ZMJ+Na/Bd+n70rWvNBW9oRjwgyof3EkLylM0aoDcL4wB0mvW7SPvu9AlN5we94+SppJXCSEpreWIvTtV5L9qOZFxxL8bgsaX50PPiZ+wrVl2AjYx9xIX9zaiRKLHNSimhc6PWxXT4FpMNW8KGSBrRvgem0xeIn9FEUXjYJt5Hh6rPJneJ5H6JsNaHr7ZemaF8V2OCZMh65HYT01Q35y/HTfdW+Kd1Kp4LjmJljOHi5bXIWMEosclap5sRiR77dL9jOedi5sV00Gq9PLFBmRA59MoundZfBJHCHOaLRwjL8VZiqoJireUAfX8nmI1x4W78QwKBpxdarmRQfY7NqRcOEQGpbNQ3j3NtE+KksxSm+cnTMH8BUCSixyGM/zCGxcD897y4GkVM2L8tSGtM7dZYyOZEsy6EfDS/+VPOpcZStB2U13QUf/zZvFJ+LwvP8aAl98INlP1+Mk2CdMh7qYal4UgnhDLeqX/EvykX5t194ou2k21EU2GSMrfJRY5IFY7WG4ls1DorFOvJNKBevl42E+9zLakJbHYjWHU5vLJDYf6nufjNLJd9BhR60U/mE73K89By4UEO3DGkywjZtKNS/yXGjXN2h4dR74qPiTduYzLoRj3E1UmjsLKLHIEy2ueXHSqbBfO62giyIVqsC2jXCtXAQ+HhPtU3T+5bCNup72U7RR0u+Ba8VCRPfvluxnPnsEiq+YSDUv8gzPcfCuXw3PB6vEO7Eq2K+eDMuwi+lLWJZQYpFnQjs2wf3GC5KZOGsuPlrzYoCMkZG24nke3nVvwvPB66J9GLUGjutugXnoeTJGVph4joP/s/fgXfc6wHGi/TTllXBMmglNWWcZoyNtxSfiaFy+AMHt4k8DseYilN14Jx1Ql2WUWOShhLsBrhXzETuyX7wTw8BywZUovuQaMCp6dCpX8ckEXK8tRmDL56J9VMX21H6Kyp4yRlb4okf2wbVsPpIeiZoXGm2q5sUZF9K32xyWDAXgfGGOZJ0XbWVPlE2ZDbXVIWNkHRMlFnmKTybgXf8W/C2peTFxJtT2UhmjIy3BRcJwLv03Inu+E+2j69kPZTfeSUtbWcJFQnC/+QLCOzZL9jMMPB32sTeDNZhkioy0VNzdAOdzTyEusUnTdPr5cIy7mZa2ZEKJRZ6L7NsF18qF4Pxe0T6MzgD7NVNgHHS2jJERKQmPG/XPP4147RHRPpZzL4X9ql/RjFOW8TyP4NbP4Xn7Zcn9LapiOxwTZ0DXnR5LzBXRqgOoX/w0uIBPuAPLwn7Vr1IHOdKMk2wosSgAyaAf7lXPISJR+x4ATEPPg/WqyWC1OpkiI0JiNYdRv/hp8ZNJWRaOsTfBcvYIeQPr4OINtXAtm4d4nXiyB5ZN1by4aDTVvFBYaNc3aHj5v6LJIKMzoOym2TDQ+Uqyo8SiQPA8j8CXH8KzdqV0zYuSCjgmzqCaFwoJ/7gDzqXPgI8KlxVmtHqUTr4dxv6DZY6MAAAfj8Pz/koEvhQ/6A0AdD36wT7hNqp5oRDfl+vgfvNF0WVgVbEd5dPuhraCDptTAiUWBSZWcwiu5fMkD9mBSg3ryPEwn3MpTQ/KyL/5U7hWPS96+qbKYkXZLb+HrgslfUoLf78d7lXN17ywXzsNhpOHyBdYB8dzHJreWwHfJ++K9tF27oayW35PRa8URIlFAeKiEXjeeRnBrRsk++n7DUrVvKBCS1nF8zw8H7wueVaBprwLym+5G2ob7VjPFQlfE9wrFiJ64HvJfuZhF8M6ciIYDRVayiYuHkPj8oWSh8sZTjoVpTfeAVZnkDEy8kuUWBSw4Pav0PTWC6LT7gDAWorhGD8d+t4nyxhZx8EnEmh87TnJJE/f+2SUTpkNFT1xkHN4joP/0zXwrn9DuuZFRSUcE6nmRbYkQwE4l/wL0YM/ivYxn3lRqpImbXZWHCUWBS7hboBr+TzEqg6Id6KaF1nBhUNwvvhvyTM/TEPPRcl1t9IxzTkuengvXMvnI+lxifZhNFpYR/8KptMvoCXGDIq7nKhf/LTkmR/WkeNRPOIq+nvPEZRYdAB8MgHvujfh/2yNdM2Lrr3gmDCDal5kQMLjQv3ipxGvqxLtU3zJNbBeNo7eDPMEFz5a82JnMzUvTjkT9mtuAmswyhRZ4Yoe2Y/65/8h/jipSoWSCbfBfNq58gZGJFFi0YFE9h6teRFopubF2JtgPPUsGSMrLNGaQ3AufhpJn0e4A8vCce0tsJx5oaxxkfbjeR7BLZ/D804zNS+sjlTNi259ZIyusIR2bUXDy8+KP06qN6LsprtgoGXcnEOJRQeTDPhSNS9+3CHZz3T6BbCO/hXVvGil8A9HHyeNiT9OWnbjnTD0O1XmyEgmxZ01cC2fJzkjBZZF8cXXwHLhKKp50Uq+Lz6E+62l4o+TWh0ov+X39DhpjqLEogPiOQ6BjevgWbsCSAo/+ggcrXkxaSa0nbrJGF3+8m/6BK7Xnxfd5KcqOvo4KdUQKQh8PA7P2hUIbFwn2U/Xs3+q5gU9/tgsnuPQtGY5fJ+uEe2j7dIdZVN/D3WRVb7ASKtQYtGBxWoOwbVsHhKuZmpeXDEB5mGX0F4ACZ71q1PFyURoKipRfsvv6QCkAhTevS1V8yIcFO3DGs2pmhdU+EwUn0yiccUCBL/5UrSPof9glN5wO1idXsbISGtRYtHBcdEImt5+CaFvvpDsp+8/GPZxt1DNi1/geR6e91bA+/E7on30fQag7MbZtJmvgKVqXiyQPF0TAMznXALr5ROo5sUv8Ik4Gl7+L0LfbRXtYz5rOBxjbwKjUskYGWkLSiwIACC4bSOaVr8oWfNCZbHCPmE69L36yxhZ7uI5Du7VL8H/hXj5Z9Pp56Pk2lvocdIOgOc4+D55B76P3mqm5kVXOCbNhKa0k4zR5S4uFoXzhTmI7Nkp2sd6xQQUDx9Ns6Z5ghILclzC5YRr+XzEqqVrXhRdOApFF1/Tob858BwH18pFCGz5XLRP8aVjYb10LL0ZdjDRQ3tSNS+8btE+jEYL61U3wDT0/A79+8FFwqh//mlED4gUvlKpjz5Oeo68gZF2ocSCnIBPJOBd9zr8n70n2U/btTccE2dAbSuRKbLcwScSaHh1LkI7ROoZMAwc426m00k7MC4chPuNJQh/t0Wyn+HUozUv9B1vmSwZDKD+ub+LFu9jtDqU3fxbGPoMkDky0l6UWBBBkT074XptkXhhGgCM3gD72JthPOVMGSNTFhePoWHpMwh/v124A8uiZOIM+oZFUjUvvv4UnndfbabmRQkck2ZA17W3jNEpK+H3oH7h/4k+rsvojSifdjf03akOSD6ixIKISgZ8cL+2SHLtE+g4NS+4aATOJf9EZN9u4Q4qNUon3w7TwNPlDYzktLizBq5l8xCvb6bmxSVjYbngyoKveZFocqFu4ROiJzCzJgvKb/0DnfKbxyixIJJ4jkPgyw/gef816ZoXpZ1SNS8qusoYnXyS4SCczz2N6OG9gu2MRpuqAngSFb4i6bh4DN73ViDw1XrJfrpeJ8Mx/laoCrTmRbyxHnULnhA9c0VVZEX5bfdBW06HueUzSixIi8SqD8K1fB4SLqd4J7Ua1ismwXz2iILakJYM+FC/6P8Qqzks2M7o9Ci/5ffQ9+wnc2Qk34R3fwP3qsXN17y4bhoM/Qqr5kWsrgr1C59E0i98pIDaVoLy6fdB4yiTOTKSaZRYkBbjomE0rX4ZoW3N1bwYAvu1t0BlNMsUWfYkvO7UWrCzRrCdNZpQPu0e6Lr2kjkykq8SXneq5oXEEeAAYD7nUlhHjgejzv+aF9GqA6hf9HdwoYBgu7q0Eypuuxdqq13myEg2UGJBWi247Us0vfUi+FhUtI+qyAb7+NvyuuZF3N2A+gVPIOFuEGxnzcWouO0P0HYqzOUfkj3Ha16sf1PyxGFNp65wTJwFTWmFjNFlVuTgj6h/7mnw0bBgu6ZTV1Tcdi9U5iKZIyPZQokFaZO4qx6u5fMRrz4o3olhUHTRVSgaMSbval7EG2pRN/8JJH1Ngu2qYjsqpt+X12/4RHnRg3vgWtGSmheTYRp6Xt4tMYb3fAfnkn+KPhWj7doL5dPuLojZTfITSixIm/GJBLwfroL/87WS/bTd+sAxYXre1LyI1RxG3aL/E33UVu0oQ8X0+/Lm34fktpbWvDAOOhu2q2/Mm5oXoV1b4Vz6HyCZEGzX9+qPsqm/BaszyBwZyTZKLEi7hffshHvlInBBqZoXxqM1L86QMbLWix7eh/rn/g4uHBJs15R3Qflt99LJiiSjeJ5HcPMnqZoXibhoP5WtBI6JM3N+T09g20Y0LpsnWtrc0G8QSqfMBqvRyhwZkQMlFiQjkgEv3CsXIbL3O8l+pjMugnXUpJyseRHZ/z3qF/8DfEz4vBRtl+4ov/UPdBAbyZp4fTVcy+chXl8t3olVofjSsbCcf0VO1rzwb/4UrteeE907YjzlDJT+6td0fk4Bo8SCZAzPcfB/8T68768COImaF2Wd4Zg4E9qKShmjkxY5+CPqF/1ddEOqrkdflE/9PZ1QSrIuVfNiOQJffSTZT9d7QKrmhcUqT2AtENjyORpXLBRNKkxDz0PJ+Fvzbs8VaR1KLEjGRasOwL18PhLuZmpeXDkJ5rOUr3kRrTqAuvlPiO5a1/cZiLKbf5OTsyykcIV2bUXT64tFl+WAVJVK+3W35kRhtuD2r9DwyrOiSYVl2MWwXzMlJ2dZSGZRYkGygouE0bR6KULbN0r2M5x8Gmzjpiq2KzxWcxh18/8mWrDIMOA0lN5wO60FE0UkPK5UzYtDeyT7mc+9DNbLr1Os5kXou61wLv236J6KootGwXblRMW/RBB5UGJBsir4zRdoWr20+ZoXE6bLXrkyVl+DunmPgQv6BduNg85C6fUzwahoLZgoh08m4fvkbfg+Wi1d86JzdzgmzoCmRN5HoEM/fAvnkn+JPv1hvXQsii8dS0lFB0KJBcm6eGN9akNazSHxTgyDouFXoWi4PDUv4o31qJv7GJJ+j2C7ceDpKJ18OyUVJGdED/4I1/L5orVVgNRR47arJsN42rmyfJCH9+2G87mnRJ9kKb54DGwjx2c9DpJbKLEgsuATCXg/eA3+De9L9tN275uqeWF1ZC2WRFMjauc+JnoQkqH/YJRNuYt2rZOckwwF0PTGEoR3bZXsZxw8DLYxN4LVZ69GRHMbnosuuAK20dfTTEUHRIkFkVX4xx1wv7ZIdPkBOFrzYtxUGLNw/HjC60bd3MdEy3Tr+wxA2dTf0Z4KkrNaXvOiFI5JM6CrzHzNi+Y2PFvOuSS1UZOSig6JEgsiu6TfC9fKhYju2yXZz3TWcFivnJSxD/mk34vaeY8j0VAr2K7reRLKp91DT3+QvBCrr4Jr2TwkRA7IA5CqeXHZOFjOG5mxpzGa2/BsPuNCOK67hZ7+6MAosSCK4DkO/g3vw/tBC2peTJoJbXn7al4kgwHUzX8c8boqwXZt196ouO0PWZ06JiTTuFgUnjXLENz8iWS/VM2L26CyFLdrvFh9NermPS4642gacg5KJs2gpKKDo8SCKCpatR+uZfORbBJemgAARq2BddT1MJ15UZumVpPhIOoXPIFYtfDmUW3nbiif/keojKZWvzYhuSD03ddwv74EfESq5kUR7NdNa3PNi2Y3PJ9yBkpvuJ2KXxFKLIjyuEgYTW+9iNC3X0n2MwwYCtvYm1tV84KLhlG/8O+IHt4r2K4p64yKWQ9QmW6S9xIeF1wrFiDWTM0Ly3mXo/iy61q1OZk2PJPWoMSC5ASe5xH65gs0vf2SdM2LYjscE6ZD1+OkZl+Ti0VRv/hpRPd/L9iuLilHxawHoM6hksiEtAefTML38Wr4Pn67BTUvZkJTUt7saza/4Xlg6pRS2vBMjqLEguSUeGMdXMvmIV57WLwTw6BoxJhUzQuRtVwuHoNzyb8Q2bNTsF1tK0klFVl8rJUQpUQO/AD3igXN17wYcyNMp50r2oc2PJO2oMSC5Bw+EYfn/dcQ+OIDyX66HifBPn461Fb7L34+AefSfyO8e5vgz6mK7aiY9QA09tJMhUxIzkmGAmh6fbHofXCMcfAw2K6+EazuxI3LLdrwPP0PaT9HCCUWJGeFf/gW7lXPSda8YA1G2MbdAuOAoQBSU8ENrzyL0I7Ngv1VlmJUzHwAmlJ5yx4TogSe5xHY9BE8a5YBCeGS2wCgtpelnr7q0gNASzY8d0f5jPugMtCGZ5KOEguS05J+D1wrFiK6f7dkP9NZw1F8xUQ0rX4ZgU0fC/ZhTRZUzPhjTh3XTogcYnVHUjUvRJY0AAAqFYovuw7ms4ZL7k3SVFSiYsYfacMzEUWJBcl5PMfB//l78H74hmTNC8ZgRsLnEWxjDUaUz/gjdJ27ZydIQnIcF4vC8+4yBL8Wr3nB8zwYowVJkftIXVKBiln304ZnIokSC5I3okf2pQ5hampMa+M4DnxS+MhmRqdHxfR7oevaO9shEpLzQju/hvsN4ZoXXDIJnhP+SFDbS1Ex84G0PU2E/BIlFiSvcJEQmt58EaEdm45f4zkOnFhSodag/LY/yH4kOyG5LNHUmKp58bP6LlySA88J30eqIhsqfv0gbXgmLUKJBck7qZoXG9C0+iVwsSi4hPjyiO2KCSgecZWM0RGSH/hkEr6P3oLvk3fAJ5OiyTkYFmVTfwNj/yGyxkfyFyUWJG+F9+1G/aL/A5LCiQXDsmDVKhRdfA2KLhpN5xcQIsD3xYdwv/miaDurYsHqDbBdfRNMQ4bJGBnJV5RYkLyUDAVR9+wjiIuc7MiwDNifnVmg69EP9gm3QV1M68OEHBNvqEXtfx8GFxI+qZRRsWB/lpAbh5wL25gbqHYFkUSJBck7fCKOukV/F30cjmEYMCo27cAy1mCC/dpbYDj5NDnCJCSnJfwe1P33EdFS3QzLglWlz/KpHeVwTJxxvOYFIb9EiQXJKzzHoeGVuaIHlrFGExCLSJ6Cah52MawjJ4LRaLIVJiE5jYtGUDfvccSqDwq2s0YzEAuL30cqFayXXwfzOZfREiNJQ78RJK80rVkumlRoKirR5Q9Pwnr5dYDEm11g43rUzxVfRiGkkPHJJBpe+o9oUmEYMBRd7vs7zGdcKP4iySQ8a5aj8cV/IRnwZSdQkrdoxoLkDd+G9+F+6yXBNlWRDZ3u+J/jz9hHj+yDa9l8JD3pNS+OYTRaWEddD9MZF0rOcBBSKHieh+u1xQhsFi6SpevWG+XT7zt+qFhox2a431wCPhIWfU3WXATH+Nug7zMwKzGT/EOJBckLwZ1fo2HpM4JHQTM6Azr9+kFoO3U94ToXCcH95gsIi5wbcozhlDNgv+ZmsAZjRmMmJNd4PnwTng9WCbapS8rR6faH0kp1J5oa4Vo+D7Ej+yVf23LBFSi+dBwYlTpj8ZL8RIkFyXmRgz+ifsGT4BPx9EaVCuXT7oGhzwDBn+V5HsGtn8Pz9svg4zHRMVRWBxwTZ0DXrU+mwiYkp/i//gyuFQsF21iTBZ3ueAgaR7lgO59MwLf+Lfg+fVcwuT9GW9kTjgkzoHaUZSRmkp8osSA5rbnH4UqunwXzaec0/zrOGriWz0e87oh4J5ZF8cXXwHLhKNqQRgpK+IcdqH/+H4Jn7TAaLSpm3g9d117Nvk5k3264Vi4A5/eK9mF0etiungLTYKp50VFRYkFyVsLvQd1/HkZC4GwQALBdORHFw0e3+PX4eBye91cg8OU6yX66nv1gnzAd6iJbq+IlJBdFqw+hbu5j4GOR9EaGQdnNv4Xx5CEtfr1k0A/3qsWI/LBdsp/xtPNgu+oGsDp9KyMm+Y4SC5KTuFgUdXMfE925bjnnEtivmdKmTZfh77fBvWoxuFBAtA9rNKdqXlAZY5LHEk0u1P7nf5EUmWFwXDsVlrNHtPp1eZ5HYON6eN5bDiQTov3UjnI4Js2Elk4V7lAosSA5h+d5NLz8rOhjpYYBQ1E2ZXa7lisSvia4VyxA9MAPkv3Mwy6BdeQEqnlB8k4qOX8UsepDgu3FF18N28jr2jVGrPYwXMvmIdFYJ95JpYJ15ASYz7mUnr7qICixIDnH+/E7aFqzXLDtl4/DtQfPcfB/+i68698ERE51BABNRVc4Js2EprRTu8ckRA48z6Px1XkIbvtSsN009DyUTJyekQ96LhaF5+2XEdz6uWQ//Umnwn7drWlPnZDCQ4kFySmh77fD+fw/BHeeiz0O117Rw3vhWj4fSY9LtA+j0cI6+gaYTj+fvnWRnOf95F00vbtMsE3fdyDKp/4ejDqzj4WGvv0K7jdfBB+VqnlRDMeE26DvLfwUFykMlFiQnBFvqEPNM/8LPhJKa2MNRnS688/QlFRkZWwuHIL7zSUI7/xasp/h1DNhv/omqnlBclb4hx2oX/yUYHKuKeuMTnf8D1h9dg4RS7gb4FoxX7rmBcPAcsGVKL7kGqp5UaAosSA5gYuEUfufvwqX2WYYlN9yNwz9Ts1qDDzPI7jlM3jeeaWZmhclcEycTjUvSM6JN9aj9pm/gAunJ+eM3ojOd/4ZmtLsJOfH8MkEvOvehP+zNc3UvOgFx8QZUNtLsxoPkR8lFkRxPMfB+eIchHd9I9huGzUJxReNki2eVM2LeYjXVYl3YlkUXzIWlguupJoXJCdw0TBq//Mw4vXV6Y0Mg7Jbfg9jv0GyxRPZtwuulQubqXlhgP2aKTAOOlu2uEj2UWJBFNf0/ip4170p2GYaMgwl18+SfV8DH4/Ds3Y5AhvXS/bT9eoPx/jboKKaF0RBPMehYekzCH23RbC9tTVfMiUZ9MP92iJEftwh2c809DxYr5qckU3ZRHmUWBBFBXd+jYYX/y3Ypu3cHRW/flDRN5vw7m9SNS/CwpU/gWM1L6bB0H+wjJER8hPPh2/A88Hrgm3GQWej9IZfK7bpmOd5BL78EJ61K6VrXpRUpGpedOomY3QkGyixIIqJ1VWh9j9/BR+LprWxJgs6z/4L1LYSBSI7UcLrhnvFQkQPNlPz4pyjNS/UVPOCyCe0ayucS/4l2Kbp1A2dbv9TTswExGoOwbV8HhKN9eKdVGpYr5gA87BL6OmrPEaJBVFEMhRA7TP/i4TLmd7IqlAx/V7oe/WXPzARPMfB98k78K1/U3JDmqZTVzgmzsr6BjlCACBWX4Pa//wv+Gh6uW7WaEan2X+BJoc2R3LRCDzvvIzg1g2S/fT9BsF+7TSqeZGnKLEgsuOTSdQvfhqRPTsF2+3XTEHRuZfKHFXLRA/tSdW88LpF+zAaLaxXTYZp6Hn0rYtkTTIcTCXnQjMALIvy2+6FoffJ8gfWAsHtX6HprRcEE6JjWEsxHOOnQ5+j/w5EHCUWRHbud16F79M1gm3mMy+E47ppOf2BzIWDcL+xBGGRjXLHGE89C7ZrpoDVU80Lklk8x8G5+GmERTZF2q+ejKLzLpc5qtZJuBvgWj4PsaoD4p0YBpYLR6H44qup5kUeocSCyCrwzZdofHWuYJuuW29UzLw/L/Yo8DyP4NefwvPuq9I1L2wlcEyc2aIjqQlpqaY1y+H9+B3BNvPp58Mx4bacTs6P4ZMJeD98I1XzQoK2ay84JlDNi3xBiQWRTbT6IOr++wj4RDytTWWxotNdf8m7o8rjzhq4ls0Vrh1wDKs6WvPiCqp5QdotuP0rNLz8X8E2bddeqJh5P1iNVuao2iey9zu4Vi4CF2im5sXYm2A89SwZIyNtQYkFkUUy4EPNnD8L701QqdFp1gPQdestf2AZwMVj8L63HIGvPpLsp+t1MhwTboPKYpUnMFJwojWHUsm5wCyZylKMTrP/AnWxXYHI2i8Z8MG96rnma16cfgGso3+VE0+6EGGUWJCs45MJ1C14UvSIcsf4W2E580KZo8q80K6taHp9sWA55WNYoxn2626FQcYKiKQwJIN+1Pz7L0g2NaY3qlSomHE/9D36yh9YBvEcl6p58f5KIJkU7acu7QTHxJnQduoqY3SkpSixIFnnXrMcPpH1YMu5l8JxzRSZI8qehMcN98oFiB78UbKf+dzLYL38urzYT0KUx3McnEv+ifD32wXbHdfdAstZw+UNKotiNYfgWjYPCVdzNS8mwjzs4rzYT9KRUGJBsir84w7UL/q7YJu+V3+U3/aHgtvtzXMcfB+/Dd9HbzVT86IbHJNmZu3EVlI4vJ++h6Z3XhFsswy7GI5xN8scUfZx0TCa3n4ZoW++kOyn7z8Y9nG3UM2LHEKJBcmahN+Dmn8+BC7gS2tT2UrQ+c4/Q2UuUiAyeUQP7oFrRTM1L7Q62K66AcbTqOYFERY9sh+1zz4iuDSg63kSKm67D4y6sJLznwtu25iqeSFQofcYlcUK+4TpOVVUryOjxIJkBc9xqF/0f4js3ZXeqFKh0+0PQVfZU/7AZJYMBdD0xhKEd22V7GccdDZsV08BqzfIFBnJB1w4hJo5/4OEuyGtTWUpRuffPAyVpViByOSVcDnhWj4fsWrpmhdFF41G0YirwahU8gVH0lBiQbLCs3516tAhAfYxk1F0fm4X78kknucR3PxJquaFwKO2x6hspXBMmgFdJdW8IKnfm4aXn0Xo26/SGxkG5bf+AYa+A+UPTCF8IgHvutfh/+w9yX7arr3hmDgjJ84Z6qgosSAZFzn4I+rmPQ5wXFqb4eQhKLv5tx1y2j9WX5XakOasEe/EqlB82ThYzhtJNS86OP9XH8O1arFgW/GIMbBdMV7miHJDZM9OuF5bJLjEegyjN8A+9mYYTzlTxsjIMZRYkIxKhgKo+edDgvsKVMX21NStyaxAZLmBi8fgWbMMwU0fS/bT9R4Ax/jbOsQ0N0kXq6tC7b//IjjDpevRFxUz7u/Q0/3JgBfu154TPW/oGNMZF8I66nqqeSEzSixIxvA8j4YX5yD0ncB+AoZBxcz7oe/ZT/7AclDouy1wv/48+IhEzQuTJVXz4qRTZYyMKI2LRVH7778gLjCzxRpM6Pybh6G2ORSILLfwHAf/Fx/A+8Frzde8mDQT2gqqeSEXSixIxvi++ADuN5cKtlkvuxbWS6+ROaLclvC44FqxALFDeyT7mc+7HNbLrivonf/kJ42vPYfApk8E20pvugumgafLHFFui1UfhGv5PCRcTvFOajWsV0yC+ewRHXIZVm6UWJCMiFYfQu1//gokE2lt+t4no/y2e2nPgAA+mUzVvPh4tXTNi87d4Zg4E5qSchmjI3KTOgfEcu5lcFxzo8wR5QcuGkbT6pcQ2valZD/DyUNgG3cLVMaOuxwrB0osSLtx0TBq5vwZicb0KnmsyYLOv3047w4Xk1vkwA9wr1iApK9JtA+j1cE25kaYTjtXxsiIXOKuetT863/ARyNpbdrO3VBx+0N5d7iY3ILffIGm1Uula14U2VI1L2hZNmsosSDt1rBsHoJbhavjlU27G0Y6F6NFkqEAml5/HuHd30j2Mw4eBtvVN4LVUc2LQsEnEqh99hHEqtLrNDBaHTrf9VdoSqlCa0vEXfVwLZuHeM0h8U4Mg6KLrkLRiDEdehNstlBiQdolsOVzNC5fINhWdNEo2EdNkjmi/MbzPIKbPkbTmleBRPqy0jFqe1lqQ1qXHvIFR7LG/fYr8InUZyiZNAPmoefJHFF+4xMJeD9cBf/nayX7abv1gWPCdKp5kWGUWJA2izfUpqZuBY5w1nbthU6zHqQNh20Uq6tKbUhrrubF5dfCcu7ltH8lj4V2b4Pz+X8ItplOPx+lE6fLHFHhCO/ZCffKReCCUjUvjLCPuxnGgWfIGFlho8SCtAkXj6H2P39FvPZIWhujN6Lzb/4Kjb1UgcgKBxeLpmpebBZ+QuAYfZ+BsF93K9W8yEMJrzt1nk4okNamLu2EzrP/AlanVyCywpH0e+F+bREie7+T7Gc64yJYR02imhcZQIkFaRPXGy/A/+U6wbbSyXfANOgsmSMqXKGdX8P9xpJmal4UwT7+Vhj6niJjZKQ9eI5D3YInEN3/fXqjWoPOd/wPtJ27yR9YAeI5Dv4N78P7wSqAk6h5UdY5tcRYXiljdIWHEgvSasHvtqDhhTmCbeazR6Dk2qnyBtQBJJoaUzUvDu+V7Gc5fySKL72WlqDygOfDN+H5YJVgm33sTSg65xKZIyp80aoDcC+fj4RbvOYFo9bAeuUkmM4aTjUv2ogSC9IqyYAP1U8/AC7oT2vTVFSi051/pkfisiRV82I1fB+/LV3zoksPOCbOgMZBNS9yVbT6EGqf+V/Bb8/GU85A6Y130odalnCRMJpWL0Vo+0bJfoaTT4Nt3FSqedEGlFiQVnG+9B+Evt2Udp3RaNFp9l+gLe+iQFQdS4trXlw9BaYh58gYGWkJPpFAzTN/EdyfpLKVoPNdf4XKaFIgso6Fal5kDyUWpMWC325Cw0v/EWxzXDcNlrMukjmijitV82Ixwru3SfYzDjkXtjE3UM2LHNL0/ip4172Z3sCyqJj1IPTd+8gfVAcVb6yDa/n85mteDB+DouFXUc2LFqLEgrSI1BJIRz4KXUk8zyPw1UfwvLdMuuaFowyOiVTzIhdEqw6kSt9zXFpb8cVjYBvZMY9CVxKfiMPzwSoENrwv2U/XvS/sE6ZDbaUD4JpDiQVpFs/zaFj6DEI7v05rYw0mdP79Y1AXWeUPjAAAYnVH4Fo2D4mGWvFOKhWKL7sOlnMvo5oXCuETcdTM+TPi9dVpbZqKSnSe/Rcwao0CkREACP+4A+7XFgl+eTqGNRhhG3cLjAOGyhhZ/qHEgjRL6mCkkutnwkxnVyiOi0XhefdVBL/+VLKfvu8psF83DSrzTzUv+HgcUKtpxinLmt5bCe9Hq9MbWBad7vwzdDSjpLik3wPXykWI7tsl2c901nBYr5x0wkZ1Ph4Ho6HEEADoqwuRlPR74XrjBcE2w4ChtDkwR7BaHexjb4bj+llg9OL7KSJ7dqLumb+cUCyo6e2XENmzU44wO6zokf3wfvy2YFvxiDGUVOQIlcWK0pt/h+KR4wFWfD9FcNPHqH/2YcTqqwAAfDKBhiVPI+FukCvUnEYzFkQUz/NoePHfCH23Ja2NNR5dArFY5Q+MSGpxzYsLroCmvBLulQuh6dwd5b9+iGYtsoCLx1A758+IC5Rn13Tqis53/oXqjuSgaNV+uJbNR7JJPFlg1BpYR12PhNcN/yfvwHjaeXBcN03GKHMTJRZEVOCbL9H46lzBtpJfzYKZZityFp9MwvfRW/B98o5kzYufc/zqdhgHnp7lyDoe95rl8H38TnoDq0Kn2X+GrnN3+YMiLcJFwmh660WEvv2qZT/AMKi462FoSjtlN7AcR0shRFDC54H7zRcF24ynnAHT4GEyR0Rag1GpUHzpOJTecg9ULZxV8q57A7zA0wqk7aKH98H3ybuCbdaLx1BSkeNYvQH2CdNhv/YWMC05Q4Tn4V0v8ChxB9Mh5994nkckEkE4HEYkEkEsFgPHcWAYBiqVCnq9HgaDAQaDAeoOOEXJ8zxcqxaDCwfT2lijGY6xN9GUeZ7Q9+qP8jv/AvfrixH5frtk34SzBqFvN8E0pGVJI8dxx++jcDiMeDwOnufBMAzUavXxe0iv10PVAZ//5+IxNC5fIDhjpO3cDcUXj1EgKtJaDMPANPR8aLv2gWv5PMRrD0v2D+/YjNiFo6Ht1LVFr59MJo/fQ5FIBIlEAjzPg2VZaDSa4/eQXq8HmydPdHWopZB4PI6mpia43W4kJJ77/zmLxQKHwwGTydRhPkwDWzegcdl8wbbSG26HafDZMkdE2ovneQQ2rofnveVAUqLmhb0MFb95GIxKPKGORCJwu93weDzgWjDDwTAMrFYr7HY7DIaOU6jL/c6r8H26Jr1BpULnO/9CB4zlIT4Rh+f91xD44gPJfvr+g1F6413ir8PzCIVCcLvd8Hq9LRpbpVLBZrPBbrdDq83tYxM6xNdxjuNQX18Pl8vV6p/1+/3w+/3Q6XTo0qULjEZjFiLMHQlfE9xvLRVsM556JiUVeYphGFjOuQSask5oWPyUaL+E24ngN1/AfMaFaW3xeBw1NTXw+8Wf8xfC8zyamprQ1NQEk8mELl265PwbY3tFDu6B77P3BNusl1xDSUWeYtQa2EZdD3WxDZ41y0X7Rb7fjuiR/dB17ZXeFomguroa4XC4VWMnk0k0NjaisbERVqsVnTp1ytmZwPyYV2mHQCCAPXv2tCmp+LloNIr9+/ejrq6uRd/S8hHP83C9thhcOP14btZkgWPsTQpERTKF53n4v/iw2X6+j1aDT8RPuNbU1IQ9e/a0Oqn4pWAwePx+LNTJUi4eQ+OKhcJLIF26o3j4aAWiIpnCxaIIbJauFwMA3g9fP+GfeZ6H0+nE3r17W51U/JLH48GPP/4In8/XrtfJloJOLJqamnDw4EHE4/HmO7dQY2MjDh48iGQy/VTCfBfcugFhkXV4x7iboTIXyRwRyaTID9sRPfB9s/2SXvfxN06e51FXV4fq6uqMJdQ8z6O2thbV1dUFmVx41r6GRGNdeoNKhZKJMySXmUjuC3y1Hommxmb7RfftQuTADwBSs+aHDh2C0yl+XHtrJZNJHD58GI2Nzccit4LdY9HU1ITq6vTSuZliMBjQo0ePnJ2Kaq2E143qpx8EH0mfrTAOOhtlk29XICqSaTzHIel1I+6sRtxZe/T/a5Bw1oCPx473Y81FqPjd43C6m9o92yeluLgYlZWVBbN/KXLgR9TNe0xwtsI6cjystGGzIPDJJBLuhuP3T9xZjYSzBvHGOuBnXzq13fuiZNofcPjwYQSD6ZvhM6W8vBylpaVZe/3WKsjUORgMZjWpAIBwOIzq6mp065b/a6XHlkCEkgrWXATH2CkKREWygWFZqG0lUNtKYOg3+Pj1ExOOGsTra9C49we4+Owmzl6vFzqdDmVlZVkdRw5cLCq+BFLZE8UXjVIgKpINjEoFTWkFNKUVwM9qv6QSDmfqPqqvQbyhBjX79yEYjUm8WvvV19dDp9OhqCg3ZpULLrFIJpOoqqqSZSyfzwePxwOr1SrLeNkS+nYTwj98K9jmGHczVCaLzBERuf0y4YjFYtizZw+A7E9oOp1OWCyWvH9ixLt+NRKu+vQGlRolE6fTkdsdQCrh6JQqkDUwtcev7uBBWcaurq6G0WjMiRIJBbfHor6+PqN7KppTU1PT4kdXcxEXCcO9+mXBNtOQc2A65QyZIyJK43keVVVVsu5/kHu8TIs31ML7qXAhLNvl10Jb3kXmiIjS5PySe2y8mpr0svFKyGpiMW7cONhsNowfPz6bwxyXSCTgdrtlGesYjuNkHzOTPB+8jqTfk3adNRfDfvWN8gdEFBcKhRAKpS+LZVM0Gm33EydK4Xk+dVCfwIZubddeKLrgCgWiIkrzeDyyf+n0+XyIRqOyjikkq4nFXXfdhRdeED4ZMxuU+oB3uVx5+QhqrPYwfCKFXuxjfgWVySxzRCQXZHOzppRc3N3eEqFvNyGyV+CYbYZBybW30BJIB8TzvGL3US580c1qYjFixAhYLPKsz/M8r9hfaDKZzLtvWzzHpb5lCSRE+t4n01kgHVQikVDs2fhQKJQT37ZaQ2op0XLuZVQIq4MKhUKIxbK7YVOM2+1W/ItuqxMLjuPQv39/3HfffSdcX7t2LbRaLVasWJGx4FojHo8rutdB7qnj9gps3YDowT3pDSoV7NfQWSAdldK/x0qP31piS4kqSzFsl42TPyCSE7L5aGlzeJ5XPEFvdWLBsizuv/9+PPvss2hqagIAbN++HRMmTMBjjz2GCRMmZDzIlmhvJbP2yqc3xGQogKZ3lwm2FV9wBbTlnWWOiOQKpe8jpcdvDamlRNtVvwJrKOzy/0Sc0r/HSo/fpqWQyZMno6SkBHPmzEFVVRVGjx6NKVOm4J577sl0fC0WiUQUG/vY+Pmyq92zdiW4YPrSjcrqQPEl1ygQEckVSr8h5UuCznMcXK8voaVEIkjp+0jp8duUWKjVatx3332YM2cORo0ahaFDh2LOnDmZjq1VlC6xzfN8XiQW0SP74f/qY8E2+9WTwWp18gZEcorS95HS47dUYMvniB7am95AS4kEyv8eKz1+mzdvTp48GaFQCDzP45VXXhEsbT1y5EhMmDAB7777LiorK7F58+Z2BSslHz7UlXb8W5bA35Wh/2AYBwxVICqSS5S+j5QevyWSoQCaRE62pKVEkguUvo/aXKLrzjvvBJB6REzsvIy1a9e29eVbjWWVr/WV699S/F99hFj1wbTrjFoD+9U35nz8JPuUvo+UHr8lmt6jpUQijWEYRT/clb6P2jT6Qw89hHfeeQcbN25EIpHAokWLMh1Xq2m1WkXH12g0Of3BnPR70fTeSsG24hFXQePI/7MaSPvpdMouhSk9fnOiR/YhsOljwTZaSiTHKP17rPT4rU4sFi5ciKeeegqrV6/G4MGD8dvf/hZPPvmkrGW0hSh9zoDRmNs7wN3vLhM8ZEztKEcRHY5EjqL7SBwtJZKWUvo+Unr8ViUWa9aswR133IGlS5di2LDUrufZs2fD5/PhxRdfzEqALaXX6xUdX+n/kFIi+79HcOsGwTbHNVPAapSd7SG5Q+nfY6XHl5JaSjyUdp2WEskvKf17rPT4LU4stmzZggkTJuDJJ5/Etddee/x6UVERZs+ejb/97W+K7kRlWVbRI2Nz5bjaX+KTiVSFTQHGU8+Eod+pMkdEcpler1dsWVGlUuXsjIX0UuIYWkokJ7BYLIolmrlwwinDK719NIOCwSAOHDgg+7gWiwXdu3eXfdyW8H66Bk3vvJp2ndHq0OXuv0FttSsQFcllLpcLtbW1so9bWlqK8vJy2cdtiYZl8wVn/dSOcnT+3SM060fSVFdXHy8iKaeuXbuiuLhY9nF/Lve3YLeC0WhUZNOKqakWPJ97h5AlPG54PnhdsM166VhKKoggq9WqyK5yo6ta9jFbQnIpcSwtJRJhDodD9jHVanVOzJ4XVGLBMAy6dOki65jGkBfRNxfDtXQOkgGvrGM3x/3OK+Bj6TXjNeVdUHT+5QpERPKBSqVCp06dZB3TXLMHvhXz0LT6RXBxZQ5vEsInk3C9Kbx/zHjqmTCcREuJRJher5c9uejSpUtO7PUpqMQCSM1alJaWyjKWCoDmw9SZG9H9u+F89mFE9uyUZezmRA7tRejbTYJtjrE3gVEpuwZHcpvVaoXZbJZlLG0iCvWXqZo3oa2fo2H+Y4jXV8kydnMCX3+KeF16LIxWB/tVNygQEckn5eXlsu1Zstlssp0m3pyCSyyA1FqtHJvATF+9Bzb+04wAF/LD9fK/4V27AnxSuZNWeZ5H07vp+yoAwDT0XOh79Zc5IpJvGIZBZWUlNBpNVsdhGUC/bjkY/LTVK9FYC+eCxxHY9JGiRYa4aISWEkm7sCyLrl27Zn0WQafToaKiIqtjtEZBJhYsy6J79+5ZfeTGun87VFUCx44DCGz8EA2LnkDCVZ+18aWEdm0VPBKd0ephGzVJgYhIPlKr1ejZs2fWdpirWBZFG9dAFfCkNyYT8K55Fe5lzyIZCmRl/Ob4PnsPSX/68qamtBMtJZIWMxgM6NGjR9aSC51Oh549e4pWwFZCQSYWQGqduGfPnhmfGjr2uqWDzoSqyCbaL157GM55jyK0/cuMjt8cPplA07si5xgMHwW1xSprPCS/abVa9O7dO+N1YrRaLXr17g37GReAkahWGflhO5xzH0b04I8ZHb85Cb8H3k/eFWyzjZpIS4mkVUwmE3r16pXxJD1br9teBfW4qRCe5+Hz+VBTU9PuOhtWqxUVFRXH/yMmQwF4Vr+IyPfbJH/OMOhsWEf9Cqwu+0VLfF+ug1ugboXKYkWXe5+kksOkTXieR2NjI5xOZ7uXJ0pLS1FaWnr8yZOE2wn3awsRr0kvPvUTBpYLR8Fy0WgwbPa/mblefx7+jR+lXdf17IeKmffnxAY5kn+SySTq6+vhdrvb9ToMw6BTp06w2Ww5+btY8InFMYlEAo2NjWhqamp1gmE2m1FSUiK4mY3neQS//gTetSsAiX0VKlsp7NfdBm2XHq0NvcW4aBhVT94LLuBLa3NcNw2Wsy7K2tikY4hGo2hsbITH42lVgsEwDIqKilBaWio4+8EnE/CtewOBLz+QfB1t196wXXsr1Nbs7baPOWtQ848HAS79EfJOd/4PdF17Z21s0jGEQiE0NjbC50t/r5bCsixsNhtKSkqyvv+pPTpMYnEMx3Hw+/3w+/0IhUKIxdIfbVOpVDAYDDAajbBarS3a1Ruvr4b7tQVINEgUFmJZFF0yDuZzLgXDZH4Vqun9VfCuezPtuqa8Czr/9hEweXByJMkPyWQSXq8XgUAA4XBY8KwgtVoNg8EAs9mM4uLiFk3XRvZ+h6Y3FgueHnoMozfCNmYKDFk6m6N+yb8Q3rU17bpx0Fkom3xHVsYkHVM8HofH40EoFEIoFBL80qvVak+4j5Q+ubQlOlxi8UscxyEej4PneTAMA5ZloVar2zS9xMVj8K5dgdCWTyX76XoPgG3sVKjMmauOlvA1ofrJe8EL1AAou+X3MPYfnLGxCPmlZDKJRCJx/D5SqVRtXvdNBrxoeuN5RPftkuxnHHoBiq+YmNECVZEDP6Bu7mPpDSoVutz9ODSO3KwMSgpDIpFAMpk8fh9pNJq8SCR+qcMnFtkQ3rUFTauXCp4megxrssA29hbo+wzMyJiNrz2HwKZP0q7re5+M8un35eQ6HCFieJ5D4IsP4Fv/huCSxDHq0k6wXzcdmvL2F8bjeR61/3kYsSP70tos510Ox9WT2z0GIR1B/qVCecAw4HSUzfwTtBJrsVzQD9dLc+B9f2W7a17E6qoQ2Cw8S2IbNYmSCpJ3GIaF5byRKJ12H1Q28YJ3iYZaOBc+jsDmT9q9qTS0Y7NgUsHojbBeck27XpuQjoQSiyxRWx0omXo3LBeOBiD+wR748gM0PPckEm5nm8dqem8FIPCmahpyDnSVPdv8uoQoTdulB8pmPgjDqWeJd0rE4X33ZbiXzwUXDrZpHD6RSN1HAqwjroLKJE8VUkIKASUWWcSwKhSNuBolN/8OrET9iHjNITjnPYLQtxtbPUZ4326Ed29Lb1CpYR15Xatfj5Bcw+oMsF97K2xjbwGjkah58f22VM2LQ62veeH/aj0SrvTkXlVsh+W8y1r9eoR0ZJRYyEDXox/KZj0EfT/xDZR8LIqm1xfD/cZicNFIi16X5zg0vbtMsK3o3EuhsctzZgohcjAOHoaymQ9C06mbaJ+krwmNS56G7+PV4LmWPVbOhUPwfJj+NBUA2EZeR6eXEtJKlFjIRGU0wz7p1yi+8npAompfePtGOOc/iphksaCU4LebEKs6kHadNRhRfPGYdsVLSC5SO8pROu1emIddKt6J5+H/5G00LnkaCW/zhYi8H78NTqBsuKZTN5hOO7c94RLSIVFiISOGYWA+awTKpt8PdYn4sdRJtxMNi56A/4sPwPPCO+L5RByetSsF24pHjIHKSGvCpDAxag2KR06A44bZYI3iJftjh/fCOfdhhHen16Q4JuFxwff5+4Jt9lGTqPYLIW1Ad40CNOWVKJ1+P4xDzxfvxCXh+2AlXC8/g6RAJU3fl+uQcDekXVfZSmA5V+LbHCEFQt/3FJT9+iHoep0s2oePhOBePg+et18SrPHS9P4q8In04l76vqfAcNIpGY2XkI6CEguFsFodbGOmwDZ+OhiJM0Sie7+Dc+7DiPysWFAyFIR33VuC/WlNmHQkKnMxHDfehaJLrwUkZheCWz6Fc8HjiDurj1+L1RxGcOuG9M4MAzudAkxIm1FioTDjwDNQNutP0Fb2Eu3DBX1wLf0XvB+8Bj6ZSK0JCzxWp+3cHabBw7IZLiE556eaF/dCZSsR7ZdoqIFzweMIfp2qeeFes1z4Me2h50HbWXyDKCFEGlXezBE8l4T/47fh/2wNAPH/JOqySoSrDgKJ9KJa5dPvhSFDlTwJyUdcNAzP2y8hvHOzZD91ZW+Ef/wu7Tqj1qDLH57I6iFnhBQ6SixyTPTAD3C//hw4v0ewPRmLg0ukP0Zn6DcI5dPuznJ0hOQ+nucR2r4R3ndfAR+PCvZJRGLgBUqFFw8fDduVE7MdIiEFjZZCcoyu59GaFycNSmvjeV4wqQAA25UTsh0aIXmBYRiYhpyD0hkPQFPRNa2dS3KCSQVrMKFo+Gg5QiSkoFFikYNURjPs19+O4ismnVDzgosLnymi7zMAWomiQYR0RJqSCpTeeh9Mwy454brYfWQ+80KoDCY5QiOkoFFikaMYhoH57ItRdtsfoXaUS85WJKr3I/Dlh+0+hImQQsOoNbCOnAjHDXeCNZpFZysAIPztlwh/v03eAAkpQLTHIg9wsSjq5z2GaNXBtDZGxUKtSz1equt7CmzX3AyVqUjmCAnJfUm/FzX/+hOS/vS6MKxaBZVWAwAwnXERii8fD4Ye2yakTWjGIg/wiQRiDfWCbSrNT0sl0T07UzUv9u+WKzRC8kbC5xFMKgCA/dl9FPz6EzgXPo64s0au0AgpKJRY5AH/hvfBR8Np1xmWTSs5zAV8cL34L3g/XAU+2bJDmAjpCLzrhA8aY9UqMAxzwrWEswYNCx5DcMuntMRISCtRYpHjuHAIvg3CZxmwGo3IT/EIbFiLhsVPItGUXvabkI4mVnsYoe+2pDew7AmzFT/HJ+LwvP0S3CvmCxakI4QIo8Qix/m+/BBcOJR23XDSqSid+juw5mLRn41XH4Rz7iMI7diUzRAJyXkekRL4RRdcAds1N0vup4js3grnvEcQPbw3W+ERUlAoschhXDQM32fvCbYVXzoW+l4no2zWQ9D1PVX0NfhYBE2rFqHpzSXgYpFshUpIzorVVSG08+u064xGi+ILr4TptPNQOuNBwZoXxyS9bjQ+/3f4PnlH9KkSQkgKJRY5zPfFOnCh9ClYfZ+B0HfvAwBQmSxw/OoOFI+ceELNi18KbfsCDfMfQ6z2cNbiJSQXede/JXgmiGXYxVCZU09QHa95cfbF4i/E8/B//BYaX/gHkr6mbIVLSN6jxCJHcdGI6GyF9dJrTvhnhmFgHnYJSm+9D2pHuehrJlz1aFj0BAIb19GGNNIhxJw1CH6bvhTIqDUouvDKtGvWKybB/qs7wEoUyood+hH1cx+mmheEiKDEIkf5N64HF/SnXdf36g99z36CP6Pt1A2lMx6Acch54i+cTMC7djlcr/wHSYHXJ6SQeNevFpytMJ89HOoiq+DPGE4ahLJf/w+0PYTvMwDgw0G4lz0Lz7uvgE/EMxUuIQWBEoscxMWi8H66RrCt+NKxkj/LavWwXXMTbNfeCkanF+0X3bMDzrkPI3rg+/aESkjOijfWIbjty/QGlRrFF42S/FmVxYqSKb9F0cVjAUb8bTK4+WM4FzyOeAPVvCDkGEoscpD/q4/BBdIL+eh6nAR9r/4teg3jqWehbOafoOnSU7QPF/Ci8YV/wrvudap5QQqO2GyF5ayLoC62N/vzDMvCcsGVKLnlHqiKxY9RTzir0TD/MQS3fEZLjISAEoucw8Vj8H3yjmCb9ZJr0gr5SFHbSlF6yx9gPu8KAGI/xyPw+XtoeP7/kGhqbH3AhOSguMuJwDdfpDeoVCi+qHUnmOq69kbZrD/BMPB00T6pmhdL0bRyAbhI+uPhhHQklFjkmMDmT5D0e9Ou67r1hr7vwFa/HqNSofjScXBM+Q1Ys/gZIvGqA3DOexihnZtbPQYhucb70duAwGOh5jMuhNomPvsghtUbYbtuOqxjpkjWvAjv2gLn3EcQPbKv1WMQUigoscghfCIB70fCsxXFrZyt+KVUzYv/ga7vKeLjRyNoem0hmt56AVws2uaxCFFSosmFwJbP0xtYFYqHt2624ucYhoFp6Pkonf4A1OWVov2SXhcaF/8d/k/fpZoXpEOixCKHBLdvFHw+XlvZE4Z+g9r9+j/VvJgAsCrRfqFvNqBh/qOI1R1p95iEyM234X2AS98zZD79PGjspe1+fU1pJ5Td9keYzhoh3onn4PvoTTS++E+qeUE6HEoscgTP8/B9LnwmiPXSse2arfg5hmFhHnYpSm/7I1T2MtF+CVc9Ghb+DYGv1tOGNJI3uGgY/k2fpDewLIpHXJWxcRi1BtYrr4f9+tula14c/AHOuQ8j/MP2jI1NSK6jxCJHRA/8gFjNobTrmvIuMPQfnPHxtJ26oWzmgzAOOUe8UzIB73vL4H71v0iGAhmPgZBMC3z9meBJwKZBZ0EjUTyurQz9BqNs1kPQ9jhJtA8XDsL96n/hWfMq1bwgHQIlFjnC9/lawetF54/M2GzFL6VqXkxN1bzQite8iPz47dGaFz9kJQ5CMoHnOPg2fCDYVnT+5VkbV1VkQ8mU36FoxDXSNS82fYSGhX9DvLEua7EQkgsoscgBcVc9Qru+SbvOmiwwnSYxo5Ahx2tedO4h2ofze9D4wj/gW/8G1bwgOSm8exsSLmfadV33PtB17Z3VsRmWheXCUc3WvIjXV6Fh/qMIbv2clhhJwaLEIgf4NnwgekgSK/FoWyap7aUonfYHmM8bKdGLh/+zNWh8/u9IeKjmBckt4rN+V8gWw/GaFwMkal7EY/CsfhFNry2kmhekIFFioTAuHEJg82fpDSoVLMMkTlrMAkalRvGl18Jx42/AmsRrXsSq9sM59xGEv9siY3SEiIvWHEJkf3p5epWtBMaBQ2WNhdUbYRs/HdarbgSj1oj2C3/3NZzzqOYFKTyUWCjMv/lT8LFI2nXT4GGihyRlm773AJT9+iHo+ogX5OKjYbhXzkfTWy9SzQuiOLEnqorOvRSMSvzR6mxhGAam0y9A6YwHoC7rItov6Tla8+KzNVTzghQMSiwUxCeT8H0httlMakki+1SmIjhuuBNFl49vpubF52hY8Bji9VUyRkfITxJ+D4LbNqZdZ7Q6mM+8UIGIfqIp7Yyy6ffDdOZw8U48B9/6N+Ba+k8k/R65QiMkayixUFBo11YkBc7n0PXqD12X7gpEdCKGYWE55zKU3nqfdM2Lxjo4FzyOwKaPaEMakZ3/y/VAMpF23XzGhVBJ1JiQC6PWwDrqV7BP+jUYiXiiB36A89m/IvzjtzJGR0jmUWKhINHp2yw+GtcW2s7dUTbjQRgGDxPvlEzAu+ZVuJc9SzUviGy4eAz+jevTGxgGReddJn9AEgz9h6B81kPQdm+m5sUr/4HnvWVU84LkLUosFBKtOoDowR/TrqvtpTCefJoCEUljdXrYx94C27hbwGh1ov0iP2xP1bw4SDUvSPYFt20EF/SnXTecPASakswXxGovVZENJTf9DpbhVwMS9WmCX61Hw6InqOYFyUuUWCjE95nIo3HnXQ6Gzd3/LMZBw47WvBBfquH8HjQu+Qd8H70FXuDMBkIyIVUGX7ywXK5iWBZFF41GydR7oCq2i/aL1x1J1bz4ZgMtMZK8krufYAUs4XUj+O2mtOuMzgDzmRcoEFHrqO1lKJ12L8znSi3Z8PB/+g4an38KCY9LtthIxxHZtwvxuvRNw5pO3aDv1V+BiFpH160Pymb+CfqTxR+H5eMxeN56AU2rFoGLpJcqJyQXUWKhAP+X6wRPX7SceSFYnUGBiFqPUalRfNl1cEy+C6zJItovdmQfnPMeQXgX1bwgmSU663f+5Vkrg59prMEE+4QZsF41GZCqebFzM5zzHkGs6oCM0RHSNpRYyIyLReH/6qP0BoaBJcc2m7WEvs9AlM36H+h6DxDtw0dCcK+Yj6bVS8HFYzJGRwpVvKEO4e/TTwxlzcUwD5HYZJyDUjUvLkTZ9AegLuss2i/paUTD4ifh//w98DzVvCC5ixILmQW3fgEuFEy7bhx4OjT2UgUiaj+VuQiOybNRdNl1gMT+kNDWz47WvKiWMTpSiHwbRJ6oOudiyWqXuUxT1hllt90P0xkXiXfiOPjWvQ7Xi/9C0u+VLzhCWoESCxnxHJeXm81agmFYWM69HKXT7oPKJp4gJRpq4VzwGAKbP6YNaaRNkqEAAl8LlMFXa2Qvg59pjEYL6+gbYJ84C4zeKNoveuB7OOf+FZE9O2SMjpCWocRCRuE9OxFvqE27rq3sCV2PvgpElHnaLj1QNvNPMAw6W7xTMgHvu6/AvXwuuHD67A0hUgKbPgEvsKRmHnIOVGbxM27yieHk01A26yFou/UR7cOFAnC9/Aw8a5dTzQuSUyixkJH/y3WC1/Nps1lLsDo97OOmwTa2mZoX329L1bw4lF7PgxAhPMcJF8RC7hWWay91sR0lN98Ny/Ax0jUvNq5L1bxw1csYHSHiKLGQScLrFtxspiqywnTqWQpElH3GwcNQNuNBaDp1E+2T9DWhccnTVPOCtEhk7y4kBMrg6/sMgLZTVwUiyq5UzYurUHLz3VAV2UT7xeuOoGHeowhu+4KWGIniKLGQSWDLBkDghrecPQKMWq1ARPJQO8pReut9MJ8j8cQLf7TmxZKnkfC65QuO5B3/5k8Fr1vOvVTmSOSl694XZbMegr7/ENE+fDwKz5tL0PT6c+CiVPOCKIcSCxnwHIfA5k/SGxgG5jNyvyBWezEqNYovHw/H5NnSNS8O74Vz7sMI794qY3QkXySDfoS+S6+HorIUw9h/sAIRyYs1mGCfOAvW0TdI17zYsSlV86Kaal4QZVBiIYPI/u+RcDekXTf0GwS11aFARMrQ9zkFZbMegq7XyaJ9+EgI7uXz4Hn7JcENeqTjCmz9QvgU09PPB6Mq3Fm/n2MYBqYzLkLZ9PuhLpWoedHUiIbnnoR/w1qqeUFkR4mFDARnKwCYz7xQ5kiUpzIXw3HjXSi69FrJmhfBLZ/CueBxxJ1U84KkzgWh++gnmrIuKJ1+P0ynS/y7cxx8H66Ca+kcJANU84LIhxKLLEuGAgjuTJ++Zc1FMEqslxYyhmFhOW8kSqfdC5WtRLRfoqEGzgWPI/j1J7QhrYOLHdkvWFhN16s/NCUVCkSkPFajhfWqybBPnCld82L/bjiffRiRPTtljI50ZJRYZFnwmy8BgWfMzaefX9CbNltC26VnquaF1FMxiTg877wM94p5VPOiA/NvEp6tsHTA2YpfMpw8tAU1L/xwvfxveNeuoJoXJOsoscginufh3/SxYBu9IaawOgNs46bBes1UMBqJmhe7vzla82KPjNGRXMBFwwhu35h2ndEbYTz1TAUiyj2pmhe/h+WiqyRrXgQ2foiG555EgmpekCyixCKLYlUHBI911vU4CZrSTgpElJsYhoFpyDkonfkgNBXitQhSNS+egu/j1eA52pDWUQS3bwIfi6ZdN592DliNVoGIchPDqlA0fAxKbvq9dM2L2sNwznsUoe1fyhgd6Ugoscgi0Wfuz5I4ZKgD0xyteWEadol4J56H/5O30fgC1bzoKAIi95H5TLqPhOh6nITSmX9qtuZF0xvPw001L0gWUGKRJVwsiuC29G8EjM5A07cSGLUG1pET4bjhTrBGiZoXh/YcrXnxjYzREbnF6qoQPbw37bq2S3founRXIKL8oDKaYZ84C8WjfgVIPIob/vYrOOc9ilj1QfmCIwWPEossCX67CXw0knbdfNowsBLnZ5AUfd9TUzUvevYX7ZOqeTEXnndeppoXBYpmK9qOYRiYzxyOsukPQC2x9JpsakDDc0/A/8X7VPOCZAQlFlki/sw9vSG2lMpSDMeU36DoknHSNS++/gTOhY8j7qyRMTqSbXwijsDWDWnXGY0WpiHDFIgoP2nKu6B0+gMwNlfz4oPX4Hrp31TzgrQbJRZZEHPWIHow/ekFTadu0HbpIX9AeYxhWFjOvwKlt9wLlVWi5oWzBg0LHkNwy6dU86JAhHZ9Ay4USLtuPPUMqAwmBSLKX6xGC9tVk2GfMEO65sW+XXDOfRiRvd/JGB0pNJRYZIHY9K3lrAsL6nh0OWkrj9a8OEV8fwqfiMPz9ktwr5hPNS8KgHjtCpr1ayvDgNNRNvNP0HbtLdqHC/rhemkOvO+vBC9QQp2Q5lBikWF8IoHAls/TG9QamIacK39ABYTVG2C79lZYr7kZjMRjhpHdW1M1LwQ2/ZH8EHc3CH5rVpeUQ9eznwIRFQ611YGSqXfDcuFoABI1L778IFXzwu2ULzhSECixyLDQ7m/ABf1p102nngGVkaZv2ytV8+JclM5oQc2L5/8O3yfvUM2LPBT4+jNAYEnLcuZFNOuXAQyrQtGIq1Fy8+/AWqyi/eI1h+Cc9whC36YXKCNEDCUWGUa72OWhKalI1bw4+2LxTjwP/8dvofGFfyDpa5IvONIuPMelEotfYlmYTj9P/oAKmK5HP5TNegj6fuLHzvOxKJpeXwz3G4vBCTzpRsgvUWKRQQmPC+Efd6RdVzvKoKfp24xj1BpYr5gE+6/uAGs0i/aLHfoR9XMfRvj7bfIFR9osvGcnkgLFz4wnD4Fa4ts1aRuV0Qz7pF+j+MrrpWtebN8I5/xHEas5JGN0JB9RYpFBwW0bBadvzWdeCEbicUnSPoaTBh2teSGevPHhINzLnoXn3VfoEKYcF9z6heB1mvXLHoZhYD5rBMqm3w91iUTNC7cTDYuegP+LD6jmBRFFn3YZJHRQEhgG5tPPlz+YDkZlscJx429TNS8YiZoXmz+Gc8HjiDdQzYtcxMWiCO3amnZdVWSF4aRTFYioY9GUV6J0+v0wDpV4z+KS8H2wEq6Xn0Ey4JMvOJI3KLHIkHhDLWI1h9Ou6/sMhFriQCCSOQx7tObFtD9AZXWI9ks4q9Ew/zEEt3xGNS9yTPj77YIHjpmGnANGpVIgoo6H1epgGzMFtvHTwegMov2ie79L1bzYt0vG6Eg+oMQiQ4LbvxK8bhp8tsyREG1lL5TNfAiGgWeI9knVvFiKppULwEVCMkZHpNB9lDuMA89A2aw/QVvZS7QPF/TBtfRf8H7wGtW8IMdRYpEBPM8LvyGqVDAOPF3+gEiq5sV1t8F69U2SNS/Cu7bAOfcRRI/skzE6IoSLhhH+fnvadbWjjCrWKkRtLUHJLffAcsGVkKx58cX7aHju/5BwN8gXHMlZlFhkQLyuSvCcCsNJp1LtCgUxDAPTaeelal6UV4r2S3pdaFz8d/g/fZdqXigotOsbwY21psFnU+0KBTGsCkUXj0XJTc3VvDiYqnmxY5N8wZGcRIlFBtD0bW7TlFSg9LY/wnSWVM0LDr6P3kTji1TzQini9xEdOJYLdD2P1rw4aZBoHz4WQdOqRWh643lwMap50VFRYtFOqWWQ9KdBGLUGxgGnKRAREcKoNbBeOQn2628HK3GAVezgj3DOfRjhH9Kn5En2JENBwRowmrLO0FaIzzYReamMZtivvx3FV0ySrHkR2v4lnPMeRaw2fUM7KXyUWLRTrPqg4Lqiof9gsBI7qokyDP0Go2zWQ9D2EK95wYWDcL/6X3jWvEo1L2QS+m4LkEymXafZitzDMAzMZ1+Mstv+CLWjXLRf0u1Ew8K/IfDlh/T0VQdDiUU7BbcJ19CnN8TcpSqyoWTKb1F08TXSNS82fQTnwr8h3lArY3Qdk2ANGNByYi7TVHRF6YwHYTxNosw6l4T3/RVwvfIMkkGqedFRUGLRDjzHIfht+kYlRquHob/4OiRRHsOysFwwCiW33ANVsUTNi/oqNCx4DMGtn9O3rixJBnyI7Nuddl3buTs0pRUKRERaitXqYLv6Jtiuuw2MTi/aL7pnZ6rmxf70/86k8FBi0Q7Rw3uFzzQYcBpYrU6BiEhr6br2RtmsP8EwQPyxYD4eg2f1i2h6bSHVvMiC4I7NgMDTODRbkT+Mp5yJspkPQVPZU7QPF/DB9eK/4P1wFXiBZS9SOCixaAd6GqQwsHojbOOnwzpmChi1RrRf+Luv4ZxHNS8yTew+Mg46S+ZISHuobSUonfoHmM+XqnnBI7BhLRoWP4lEE9W8KFSUWLRRahlkc9p1Rm+E4aRTFIiItAfDMDANPR+lMx6EWqrmhedozYvPqOZFJiS8bkQP/ph2XdetNzT2UgUiIu3BqFQovmQsHFN+A9ZcLNovXn0QzrlU86JQUWLRRpH934MLeNOum045XfJbL8ltmtJOKLvtjzCdOVy8E8/Bt/5NuJb+E0m/R67QClLw282CJwLT5uf8pu91curE4b7iB8cdr3nx5hKqeVFgKLFoI9rFXrgYtQbWUb+C/frbwUjUvIge+AHOZ/+K8I/fyhhdYRFcBmEYGAedKX8wJKNUJgscv7oDxSMnSte82PYFGuY/RjUvCgglFm3AJxMI7fw67TprskDfe4ACEZFsMPQbjPJZD0Hb/STRPlw4CPcr/4FnzTKqedFKcXcDYgL7VXQ9+9GJwAWCYRiYh12C0lvvk6x5kXDVo2HREwhsXEdPXxUASizaILznO3ChYNp106ln0NHOBUZVZEPJTb+DZcTVzdS8WI+GRU8g3lgnY3T5LSTwqDYAmGjTZsHRduqG0hkPwDhEouZFMgHv2uVwvfIfJIN++YIjGUeJRRsI1a4AAOMgWgYpRAzLoujC0SiZejdUxXbRfvG6I2iY/yiC32ygb10tILgMwrIwnUrLIIWI1ephu+Ym2K69FYxWqubFDjjnPozoge9ljI5kEiUWrcTFYwjt3JJ2XWWxQt9TvEw0yX+6bn1QNvNP0J88VLQPH4/B89YLaFq1CFwkLGN0+SXeUItYzaG06/reA6AyFykQEZGL8dSzUDbrT9B06SHahwt40fjCP+Fd9zrVvMhDlFi0UmTPd+Cj6R8YxkFngmHpr7PQsQYT7BNmwHrVjdI1L3ZuhnPeI4hVHZAxuvwR3JH+qDZAm587CrWtFKW33AvzeVdAsubF5++h4fn/Q6KpUc7wSDvRJ2ErhXZ/I3idHo/rOBiGgen0C1A64wGoy7qI9kt6GtGw+En4P38PPE81L34utGtb+kWVCsaB4hVQSWFhVCoUXzruaM0L8VmqeNUBOOc9jNBO4WSU5B5KLFqB53mEd6cfp62yWKHr2kuBiIiSNKWdm695wXHwrXsdrhf/haQ/ve5JR5T0exGr2p92Xd97AFRG8cd7SWE6XvOij3hhQT4aQdNrC9H01gvgYlEZoyNtQYlFK8RqDgkWRDKcPJiWQTooRqNN1byY9GsweqNov+iB7+Gc+1dE9uyQMbrcFPrhW8GiWMaTh8gfDMkJKlMRHDfcgeKREwBW/Mm60Dcb0DD/UcTqjsgYHWkt+jRshfDubYLX6Q2RGPoPQdmsh6Dt3le0DxcKwPXyM/CsXd6ha16I3UeG/oPlDYTkFIZhYR52KUpv+yNU9jLRfglXPRoW/g2Br9bT01c5ihKLVggJvSGqNdD3GSh7LCT3qIvtKLnp97AMvxpgxDakAcGN61I1L1z1MkaXG/hEAuEfd6Zd11RU0tkgBECq5kXZzAdhHHyOeKdkAt73lsH96n+RDAXkC460CCUWLZTwewR3+Bt6n0xHpJPjGJZF0UWjUTL1HqgkqkfG646gYd6jCG77okN964oc+AG8wLkQRpqtID/DavWwjZ0K27hpkjUvIj9+e7TmxQ8yRkeaQ4lFC4W/Fz4PwkDLIESArlsflM16CPqTTxPtw8ej8Ly5BE2vPwdO4BHmQiQ46we6j4gw46CzUTbzT9B07iHah/N70PjCP+Bb/wZ4jmpe5AJKLFpIdH8FfdMiIlI1L2bCOnoyIFXzYsemVM2L6sKueZF6qir9cW3WaIKuWx8FIiL5QG0vRem0P8B87uUSvXj4P1uDxsV/R8JDNS+URolFC/CJOMJ7BNaFO3WF2laiQEQkXzAMA9MZF6Js+gNQl3YW7ZdsakTDc0/Cv2Ftwda8iDfUIuFuSLtu6EdPVRFpjEqN4suug+PG34A1ide8iFXth3PuIwh/l14dmciH7uYWiOz/HrzAs9PG/kPkD4bkJU1ZZ5RNvx+mMy4S78Rx8H24Cq6lc5AMFF7NC3qqirSXvvcAlP36IegkNszz0TDcK+ej6a0XwcVjMkZHjqHEogVoXZhkAqPRwjr6BtgnzpKuebF/N5zPPoyIwCxZPhO8j1gW+pPECyMR8kupmhd3oujy8c3UvPgcDfMfQ7y+SsboCECJRbNS68Lb0q6zJgtV2yRtYjj5tFTNC4l9BVzID9fL/4Z37YqCqHmRDAUQPbQn7bq+x0lQGajaJmkdhmFhOecylN56r3TNi8ZaOBc8jsCmjzrU01dKo8SiGfH6asEDcAz9BtG6MGkzdbEdJTf/HpaLrpKseRHY+CEannsSiTyveRH+cQfApe8doVk/0h7azj1QNuNBGKTOakom4F3zKtzLnqWaFzKhT8ZmhL9PPxsEoHVh0n4Mq0LR8DEoufn30jUvag/DOe9RhLZ/KWN0mSV0xg4AGCUexyWkJVidHvaxt8A27hYwEjWFIj9sT9W8OEg1L7KNEotmCK8Lq2DoS+vCJDN03U9K1byQ2AzMx6NoeuN5uPOw5gWfTCL8Q3odGHVJOTSlFQpERAqRcdCwozUvuov24fweNC75B3wfvUU1L7KIEgsJyaDIunDPfmAN4pvvCGkt1mCCfeIsFI+6AVCpRfuFv/0KznmPIlZ9UL7g2il6eC+4cDDtOj1VRTJNbS9D6bR7YT7nMolePPyfvoPG559CwuOSLbaOhBILCeEfhU9hNJxMRbFI5jEMA/OZFx2tedFJtF+yqQENzz2RNzUv6KkqIidGpUbx5ePhmHwXWJNFtF/syD445z2C8K6tMkbXMVBiIUH8uXtaFybZoynvgtLpD8B4+oXinY7VvHjp3zlf80LoPmJ0Buh7nCR/MKTD0PcZiLJZD0HXe4BoHz4SgnvFPDStXko1LzKIEgsRfDKR2sn+C+rSTtCUlCsQEelIWI0Wtqsmwz5hpnTNi3274Jz7MCJ7v5MxupaLu5yIO2vSrhtOOgWMWnzJh5BMUJmL4Zg8G0WXXQdIPMUX2voZGhY8hnh9tYzRFS5KLERED+0FFw6lXaezQYicDAOGpmpedO0t2ocL+uF6aQ68768En0zIGF3z6KkqojSGYWE593KUTrsPKlupaL9EQy2cCx5DYPPHVPOinSixEBESeUOkdWEiN3WxHSVT74blwtHSNS++/CBV88LtlDE6aYKJBcPA0G+Q/MGQDk3bpQfKZj4Iw6lniXdKJuB99xW4l88V3HBMWoYSCxFCU8uM3gh9j74KREM6OoZVoWjE1Si56fdgLVbRfvGaQ3DOewShbzfKF5wIPhFH5EB6zQBd115QmcUPkiIkW1idAfZrb4Vt7C1gNBI1L77flqp5cehHGaMrHJRYCEgG/YjVHE67buh9MhiJRwEJyTZdj6M1L/qJL8nxsSiaXl8M9+uLwUUjMkZ3oujhfeAFNsTpTzpVgWgI+Ylx8DCUzXwQmk7dRPskfU1oXPI01bxoA0osBET27RZ8zFTfV/xEPULkojKaYZ/0axRfeX0zNS82wjn/UcRqDskY3c/G3yO8odQgcTIlIXJRO8pReut9MA+7VLwTf7TmxZKnkfC65Qsuz1FiIUD8DVH8sSVC5MQwDMxnjUDZ9PuhLpGoeeF2omHRE/B/8YHsNS8ElxO1eui60eF9JDcwKjWKR06A44bZYI0SNS8O74Vz7sMI76aaFy1BiYUAoTdEVbEd6hIqP0xyi6a8EqUzHoBx6AXinbgkfB+shOvlZ5AM+GSJiwuHED2yP+26vlc/Wk4kOUff9xSU/foh6HqdLNqHj4TgXj4PnrdfElziIz+hxOIX4u4GJNwNadcNfQaAkdiRT4hSWI0WtjE3wj5+BhidQbRfdO93qZoX+3adcD3hcWX8aPbIge+FlxNp1o/kKJW5GI4b70LRpddK1rwIbvkUzgWPI+48seZFPM9PIM4kSix+QazQEO2vILnOMPD0FtS88MG19F/wfvAa+GQCfDIB94r5CG79PKOxhPfsErxO+ytILmMYFpbzRqJ02r1Q2UpE+yUaauBc8DiCX38CnueRDPrQ+PzfET1IT5EAAM1J/oLYG6JeoiwsIblCbXWgZOrd8H/8NvyfrQEgXOgn8MX7iB78EZryLojXHITf54bxtPPAarQZiUMoQWfNRdBUVGbk9QnJJm2Xniib+Sd43n4J4Z2bhTsl4vC88zIi+3aBj8fABXzwffQmSqbe0+Fnt2nG4md4jkubJgZSZzeoi6zyB0RIGzCsCkUXX4OSm3/XTM2Lgwh9swEAwAV8CG76KCPjJ7xu4TLefQZ2+Ddckj9YnQG2a2+F9Zqpzda8iB793Igd3ovovtwsry8nSiyO4nkesboj4IL+tDY9Td+SPKTr0S9V8+KkllW59G9YCy4abvN4PM+D53mE9+0WbKf9FSTfMAwD05BzUDrjAWgqurboZ3zr32xXSfBj91E+lxVn+HyOvo0ikQj8fj/C4TDC4TDi8Z82rjEMoE3EoHI7we/fDXbvDpTfdBedbUDyFs/zCG7+GN73VwLNnCViuegqFA0f06LXDIVCCAQCiEQiCIVCSCZ/KiLEMoA2GgbbWAt+zw6wh39E1z8+DbXN0e5/H0KUwCfi8K57HcGN65rta584C4YWnILN8zz8fj9CodDxzyOO++mxcLVaDYPBAIPBAIvFAoNBfHN2LukwiQXP8/B4PHC73QiHW/6tjGUY2KzFcJSWQavNzPozIUqI1x2B+7WFSDTWifZhtHqU/+ZRqIxmwfZkMommpia43W7EYi1/5E7NMHCUlcFms0FNp5qSPBbZswNNbywBF0qf3T5GXdoZZbMeAiPydEk8Hofb7Ybb7T4hIW+OTqeDw+GA1WoFK/HkitI6RGIRDodRVVWFaDTartcpLy9HSUkJrROTvBU9tAeNz/9dso/5vJEovvTatOs+nw81NTVIJNp+girLsujcuTOKi4vpPiJ5K7DpI3jXvCrZx3btrTD+4sAznufhdrtRV1fXrqUOjUaDyspKmEymNr9GNuVuypMBPM+jvr4e+/bta3dSAQD19fXYu3dvRl6LELlx0Qia3nqh2X7Br9YjGfD+9HMchyNHjuDw4cPtSiqOvVZVVRUOHTrUqm9qhOSKhLsBvnWvN9vP9/HqE84Yicfj2L9/P2pra9u9fyIej+PAgQOoqanJyb0YBZtY8DyPqqoqNDSkF7tqj2g0iv3797dqOYWQXBCvOQRNWWeo7GWSx6/ziTj8n70HILX0ceDAAXi9XtH+bREIBLB///4T9jcRkg9iR/ZC260PVMV2yX5JtxOhbV8CSH1u7Nu3L+OfG263G4cOHTphX0YuKMilkGNJRabfDH+OZVn06tULer0+a2MQki18Io5EYx3iDbWIO2uQaKhBvKEWyaaGVMVMlRqld/wvjri9WU2itVotevXqRfsuSF7iomEkGuoQb6hBwlmDeGMtEs4aJH1NAFJHQdhnPoT9h9o/2yfFbDaje/fuObO8WJCJhdvtRk1N+nP0mabT6dC7d++c3kRDSGvw8RjirnoknDVo1Fngi2f/m1BRURG6du2aM2+KhLRXKuGoRayhFnVGByLx7CUVx5SVlaGsrCzr47REwX0iRqNR1NbWyjaW0+mUZSxC5MBotNBWdEWy5wBZkgogtSk0m7OLhMiN1RmgreyFSNd+siQVAOB0OnNmib7gEgu5N7M0NjYiEonINh4h2cZxHKqrq5vvmEE1NTW0mZMUlFgshro68Ue7s6GqqionNnNmLbE4cuQIhg8fjgEDBmDQoEFYsWJFtoY6LhKJIBgMZn2cX2psbJR9TEKyxefzZXU9WAjHcWhqapJ1TEKyye12yz5mNBpV5DPwl7KWWKjVavzzn//Erl278OGHH+J3v/td1v+FXS5XVl9fjNfrlf2NmJBsUeo+crlcOfFti5D24jhOkcQCUO7+/bmsJRadOnXCkCFDAKQ2ldjt9qz+RR+rrKkEnufh8/kUGZuQTIpGo4qt08bj8ZxZIyakPfx+v2KPgPr9fsWXFVudWHAch/79++O+++474fratWuh1WoFlzy+/vprcByHrl1bdohLW0SjUUW/7YRCIcXGJiRTlP5gp/uIFAKl7yOlx291YsGyLO6//348++yzx9dEt2/fjgkTJuCxxx7DhAkTTujvcrlw0003Yf78+ZmJWITSf5H0hkgKgdL3kdLjE5IJSn8eKH0ftWkpZPLkySgpKcGcOXNQVVWF0aNHY8qUKbjnnntO6BeNRjFu3Djcf//9OPfcczMSsBiln8yIxWK0PkzyntL3kdLjE5IJSh/7oPT4bUos1Go17rvvPsyZMwejRo3C0KFDMWfOnBP68DyPqVOn4uKLL8aUKVMyEqyUXChpSokFyXdKr83mwn1MSHsp/Xus9Pht3rw5efJkhEIh8DyPV155BSqV6oT2DRs2YNmyZXjjjTcwZMgQDBkyBDt27Gh3wISQ7KHql4SQ9mpzgf4777wTQKqGwy+TCgA4//zzZc2ahGKQG70pk3yndHl6pccnJBNYllV09k/p+6hNoz/00EN45513sHHjRiQSCSxatCjTcbWa0oeB6fV6SixI3jMYDB16fEIyIRc+j5TU6sRi4cKFeOqpp7B69WoMHjwYv/3tb/Hkk08qfvyx0m9ISo9PSCYo/Xus9PiEZILRaFR0fKXvo1YlFmvWrMEdd9yBpUuXYtiwYQCA2bNnw+fz4cUXX8xKgC2l1WoVnf5R+heJkExQ+g2J7iNSCJS+j/JmxmLLli2YMGECnnzySVx77bXHrxcVFWH27Nn429/+puiaEsMwsNlsio1dVFSkyNiEZJJWq4XJZFJkbJ1Op/gbIiGZYLFYoFa3eQtjuxQXFyu+55DhC+gZyWg0ij179sg+rsPhQKdOnWQfl5Bs8Pl8OHz4sOzjdunSRbEvB4RkmtPphNPplH3c3r17Kz5jUlBbsHU6HSwWi+zj2u122cckJFssFgu0Wq2sY6rVahQXF8s6JiHZZLfbZd/QbzQaFU8qgAJLLACgc+fOsu61qKiogE6nk208QrKNYRhUVlbKOmaXLl0Uf0SOkExSq9Xo3LmzbOMxDIMuXbrINp6UgruTNRqNbH+5BoMBDodDlrEIkZPRaERpaaksY9lsNkVmGgnJNqvVCrPZLMtYufQlt+ASCyC1eaWkpCSrY2g0GnTr1o1qV5CCVVZWlvU3RYPBQPuTSME6NvuX7Q98q9WaU0vyBZlYAEB5eXnWkguNRoOePXtCo9Fk5fUJyQUMw6Bbt25Zm00wGo3o0aMHLYGQgqZWq9GzZ8+sJRdWqxVdunTJqS+5BfVUiBC3243a2tqMHRBmNptRWVmp2KNEhMiN53nU19ejsbExY69ps9nQqVMnSipIh5FMJlFTUwOv15ux1zz2BTqXkgqgAyQWQOpI8+rqagSDwTa/Bsuy6Ny5M4qLi3PuPyIhcgiHw6iqqmrXkcwajQaVlZWK1cogRGk+nw/V1dXtqvtkMBhkWWJpqw6RWACpb13BYBButxs+n6/FP6fVauFwOGC1WhUvOkKI0nieh8/ng9vtblWifmyjc1FREc1SkA4vmUzC6/XC5XK1KlG3WCyw2+0wm805/QW3wyQWP5dIJBAIBBAOhxEOhxGLxcDzPBiGAcuyMBqN0Ov1x58JzuX/gIQoJRqNIhgMIhKJIBQKIZFIHL+P1Go1DAYDDAbD8fuJEHIinueP3z/HPo+SyeTx+0ij0Ry/f8xmc97s6+uQiQUhhBBCsoPmJAkhhBCSMZRYEEIIISRjKLEghBBCSMZQYkEIIYSQjKHEghBCCCEZQ4kFIYQQQjKGEgtCCCGEZAwlFoQQQgjJGEosCCGEEJIxlFgQQgghJGMosSCEEEJIxlBiQQghhJCMocSCEEIIIRlDiQUhhBBCMoYSC0IIIYRkjFrpAAghpDW0p00Dw6rAsCqwai0YlQrs8X/W/NSm0f7052N9BdpUajUYlgHDMGBZBqyaBcswYFgGKjULhoV4G8OAYZFqU7Fg2VSbVs1CxTLH/6c7/s/sT21Mqp/6Z/1+/nMnvAbDQMOmYvj5n1mGgYoBNCr2F38GVEyqXaNiTvgzwwAsGKhYHP8zwwAqBql/t+M/e6wdULEMGCD1usf/nOrLcEkwPAfwHPDzP/MckEwIt3FHr3McwPNguMTxn+ETcYBLAlwSfDIJJOLguSTAceATsdT/J4+2/7zv0T+n2lJ9eY4Dn+TAxRPgk6k/J+Px43/mOQ7JWOL4n7lYAtzRn+GTyeM/xx1/DR5ckgPP8UjGkkf/mUcynvypLXm0jUu1cbEkuCR/dKyj8SR58EkecY5DkgeSPI8Yxx//c5LHCf/88z9zONb2836pP8/lDyp6bx5DMxaEEEIIyRhKLAghhBCSMZRYEEIIISRjKLEghBBCSMZQYkEIIYSQjKHEghBCCCEZQ4kFIYQQQjKGEgtCCCGEZAwlFoQQQgjJGEosCCGEEJIxlFgQQgghJGMosSCEEEJIxlBiQQghhJCMocSCEEIIIRlDiQUhhBBCMoYSC0IIIYRkDCUWhBBCCMkYSiwIIYQQkjGUWBBCCCEkYyixIIQQQkjGUGJBCCGEkIyhxIIQQgghGUOJBSGEEEIyhhILQgghhGQMJRaEEEIIyRiG53le6SAIIUQJ0WgUjz/+OO6//37odDqlw0lD8bVdLscG5H587UGJBSGkw/L5fCguLobX60VRUZHS4aSh+Noul2MDcj++9qClEEIIIYRkDCUWhBBCCMkYSiwIIYQQkjGUWBBCOiydToc///nPObt5juJru1yODcj9+NqDNm8SQgghJGNoxoIQQgghGUOJBSGEEEIyhhILQgghhGQMJRaEkA7pnnvuwQUXXIDJkycjFoud0BYOh3HVVVfhoosuwmWXXQa3251T8R3z+OOP44wzzlA0nkQigalTp+KCCy7Ab37zG1liaU18x8j5dyVELL5c+F3LNEosCCEdzjfffIO6ujp89tlnGDBgAFauXHlC+5o1a3DKKafgk08+wcSJE/Hiiy/mVHwA4Pf7sXPnTsXjWb16NSorK/HZZ58hFArhiy++kCWmlsYHyPt3JUQqPqV/17KBEgtCSIfz5Zdf4vLLLwcAXHHFFWkfhn379kUoFAIAeDwelJaW5lR8APCvf/0Ld9xxh+LxtCRWJeMD5P27EiIVn9K/a9mgVjoAQgiRm8fjQefOnQEAxcXFadPPvXv3xs6dO3HKKaeAYRh89dVXORWf1+vFjh078Kc//UnxeDwez/GzLoRiVTo+uf+uhEjFp/TvWjbQjAUhpGDV1dXh/PPPT/sfz/Pw+XwAUm/6drv9hJ9bsmQJhg8fjp07d+J///d/8de//jWn4vvnP/+JO++8MysxCbHZbKLxSLXlQnxy/10JkYpPrt81OVFiQQgpWBUVFfj888/T/jdq1Ci8//77AIC1a9fivPPOS/vZY2/+VqsVHo8np+Lbu3cvHn30UVxxxRXYs2cP/va3v2UlvmOGDRsmGo9Um1ykYpD776q18QHy/K7JiieEkA7o7rvv5s8//3z+hhtu4KPRKM/zPD9jxgye53ne6/Xyo0aN4i+66CL+vPPO43/44Yeciu/nTj/9dEXiORZLPB7nb7rpJv7888/nZ8+eLUssrYnv5+T6uxIiFl8u/K5lGpX0JoQQQkjG0FIIIYQQQjKGEgtCCCGEZAwlFoQQQgjJGEosCCGEEJIxlFgQQgg5burUqWAYBrNmzUpru/3228EwDKZOnXr8Wl1dHWbPno1evXpBp9Oha9euGDNmDNatW3e8T48ePfDPf/5ThuhJLqDEghBCyAm6du2KV199FeFw+Pi1SCSCV155Bd26dTt+7eDBgzj99NOxfv16PPnkk9ixYwfee+89jBgxQtES2kRZVNKbEELICYYOHYr9+/dj1apVmDx5MgBg1apV6Nq1K3r16nW837EZjE2bNsFkMh2/PnDgQEybNk32uEluoBkLQgghaW655RYsXrz4+D8/99xzJyQLbrcb7733Hu64444TkopjrFarHGGSHESJBSGEkDRTpkzB559/joMHD+LQoUPYsGEDbrzxxuPte/fuBc/z6N+/v4JRklxESyGEEELSlJSUYPTo0ViyZAl4nsfo0aNRUlJyvP1Y0WaGYZQKkeQomrEghBAiaNq0aXj++eexZMmStD0Tffv2BcMw2L17t0LRkVxFiQUhhBBBV1xxBWKxGGKxGEaOHHlCm91ux8iRI/Gf//wHwWAw7WcL4pRO0iaUWBBCCBGkUqmwe/du7N69GyqVKq39v//9L5LJJM466yy89tpr2LNnD3bv3o05c+bgnHPOUSBikgtojwUhhBBRRUVFom09e/bE1q1b8eijj+Luu+9GbW0tSktLcfrpp+PZZ5+VMUqSS+jYdEIIIYRkDC2FEEIIISRjKLEghBBCSMZQYkEIIYSQjKHEghBCCCEZQ4kFIYQQQjKGEgtCCCGEZAwlFoQQQgjJGEosCCGEEJIxlFgQQgghJGMosSCEEEJIxlBiQQghhJCM+X/yMtwwiRoc9gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDVUlEQVR4nO3dd5xU1dkH8N+902dndqdsZZdeBQXEhh1sKEVBKUZEAaVExSRqNLY3eWOLvtEkxESqiGKhiAUVEcWKIgiCIKh02Dq703u79/1jAMW5d7bN3Dsz+3w/n3yC95yd84h7Z56555znMDzP8yCEEEIISQNW7gAIIYQQkj8osSCEEEJI2lBiQQghhJC0ocSCEEIIIWlDiQUhhBBC0oYSC0IIIYSkDSUWhBBCCEkbSiwIIYQQkjaUWBBCCCEkbSixIIQQQkjaUGJBCCGEkLTJ+8QiHo/jsccea/PPh0IhjB07Fn369MHgwYNx5ZVX4tChQ+kLkJAc0N77CADuvPNOdOvWDQzDYNeuXWmKjJD8ko57TW55n1js3LkTq1atatdrzJw5Ez/++CO2b9+O0aNHY+bMmWmKjpDckI77aPz48fjiiy/QtWvXNEVFSP5Jx70mt7xOLHbv3o1Ro0ahpqYGgwcPxp///OdWv4ZWq8XIkSPBMAwAYOjQoThw4EC6QyUka6XjPgKAiy66CFVVVWmOjpD8ka57TW5KuQPIpP79+2PcuHHo168f7rjjjrS85ty5czFmzJi0vBYhuSAT9xEhJFm+3Gt5/cQCAL755huceeaZSdcvvPBCFBcXC/7v6NGjgq/1+OOPY+/evTk//0VIa6XzPiKEiBO713IJw/M8L3cQmRKLxWA2m9HY2AitVtuu1/r73/+O1157DR9++CFMJlN6AiQkB6TzPgKAbt264Z133sGpp56ahugIyR/pvtfkktdTIdXV1TAaje3+D/TMM8/g1VdfpaSCdEjpuo8IIanly72W11MhVVVVGDhwIPr27YsHHnigTa9RXV2Nu+++Gy6XC8OHD8fgwYNxzjnnpDlSQrJXOu4jALj99ttRVVWF6upqXHbZZejVq1caoyQk96XrXpNbXk+FEEIIIURaef3EghBCCCHSosSCEEIIIWlDiQUhhBBC0oYSC0IIIYSkDSUWhBBCCEkbSiwIIYQQkjaUWBBCCCEkbSixIIQQQkjaUGJBCCGEkLShxIIQQgghaUOJBSGEEELShhILQgghhKQNJRaEEEIISRtKLAghhBCSNpRYEEIIISRtKLEghBBCSNoo5Q5ALjzPIxqNIhQKIRKJgOd5MAwDlmWh0+mg0WjAspR3EZIKz/OIRCIIBoOIxWIn7iOFQnHiPmIYRu4wCclqHMchHA4jFAohHo+fuI9UKhV0Oh1UKlVO3UcdKrHgeR7BYBB2ux1erxccx6Xsr9VqYbFYUFRUBIVCIVGUhGQ3nufh9XrhcDjg9/vB87xoX4ZhoNfrYbFYYDQaKVkn5BiO4+B2u+FwOBAMBlP2ZVkWBoMBFosFBQUFWZ9kMHyqd4U84vV6UV9fj3A43OqfZRgGFosFpaWllGCQDovneTidTthsNsRisVb/vEKhQElJCaxWa9a/MRKSKRzHobGxEXa7vdkvt0JUKhXKy8tRWFiYtfdR3icWsVgMdXV1cLvd7X4tpVKJqqoqGAyGNERGSO4Ih8OoqalBIBBo92tptVpUVVVBq9WmITJCckcgEEB1dTUikUi7X8toNKJTp05QqVRpiCy98jqxCIVCOHToUJu+XaVSUlKC0tLSrM0WCUknr9eLI0eOpJzyaIuqqiqYTKa0viYh2aqpqQn19fVpfU2WZdGtWzfo9fq0vm575W1iEQwGcfDgwTY9amoJq9WK8vJySi5IXvN4PDhy5EjGXr+yshJmszljr09INrDZbLDZbBl5bYZh0K1bNxQUFGTk9dsiL1dSRaNRHDp0KGNJBQDY7XY0NTVl7PUJkVsgEMhoUgEANTU18Hq9GR2DEDkdX5eUKTzP49ChQ21aP5gpeZdY8DyP6upqxOPxjI/V0NDQ7GpeQnIRx3E4evSoJGNVV1enfbqSkGwQiURQW1ub8XF4nsfRo0fTPl3ZVnmXWDidTvj9fsnGq66uzuiTEULkUFdXh2g0KslY8XhckjdfQqR0/EuuVB/2oVAIjY2NkozVnIwmFu+88w769u2L3r17Y9GiRZkcCkDiW1a6F8c0JxwOp2XHCSHZIhKJwOl0Sjqmx+Ohp38kr3i93rTsomqNxsZGSZ7WNydjiUUsFsNdd92FDRs2YNu2bXjyySfhcDgyNRwAwO12y/L0oKmpKWseQRHSXna7vUONS0gmyPH7fLzWjNwyllhs3rwZAwYMQGVlJYxGI0aOHIl169ZlajgA8r0xhcNh+rZF8gLHcbK9MblcLlprQfJCOByWdEr+l+x2u+xfdFudWHAch379+uG+++476fq6deugVquxcuVKAEBtbS0qKytPtFdVVaGmpqad4YqLxWIIhUIZe/3m0Mp2kg8CgYCsa4bkejMmJJ18Pp9sY0ej0bQU4GqPVicWLMvi/vvvx3PPPXfim82OHTswYcIEPP7445gwYQIACGZMmaz5IGdSAYCeWJC8QPcRIe0n9++x3OO3aSpk8uTJKC4uxty5c1FdXY1Ro0ZhypQpuOeee070qaysPOkJRXV1NSoqKtofsQipF8lk2/iEpIPcv8dyvyESkg4d/T5qU2KhVCpx3333Ye7cuRg5ciSGDBmCuXPnntTn7LPPxq5du04UwHnvvfcwYsSItAQtRO65WY7jZJ/XIqS9pNpimq3jE5IOcn8eyT1+mxdvTp48GYFAADzP49VXX0069VOpVOLpp5/G8OHDcfrpp+OPf/wjrFZruwMWkw0f6tkQAyHtIffvMNWEIfmgo99Hyrb+4B133AEgsdVS7Cjxq6++GldffXVbh2iVbDizIxtiIKQ95P4dZtm8q9lHOiCGYWRNLuS+j9o0+sMPP4x3330XmzZtQiwWw+LFi9MdV6vJfXQsy7KyvykT0l5y30dyj09IOiiVbf7OnhfjtzqxWLRoEZ5++mmsWbMGgwYNwu9//3s89dRTss+N6nQ6WcfPtmNrCWkLuX+P5b6PCUmHjn4ftSqxWLt2LW6//XYsW7YMQ4cOBQDMmTMHHo8HL730UkYCbCm5/yLlHp+QdJD791ju8QlJB7l/j+Uev8WJxdatWzFhwgQ89dRTuPbaa09cLywsxJw5c/C3v/1N1hrlCoVC1r9Mo9Eo29iEpItOp5N1fragoEC2sQlJF4PBINvYKpUKarVatvEBgOHlXr6aRi6XC9XV1ZKPq9Vq0bNnT1pjQfJCfX09mpqaJB/XZDKhqqpK8nEJyYSDBw/KUkm2vLwcxcXFko/7S3m1BLuwsFB0h0ommRXyr6YnJF0sFov0g3JxmFR59XZEOjg5PtwZhoHZbJZ83F/LqzuZZVmUlZVJOqauZh8CS56C5/O14GkPPskDarU6ozVnhBT9tA2uhY8jsGuLpOMSkikGg0HyRZylpaWyfLn+tbxKLADAbDZLNr/Fel3QfL0e4OJwr1uFxqX/QNzrlmRsQjKBj8UQaaiBsfEoVBFpygKrbdXA9o3gQ0HYX5sHx5tLwUXCkoxNSCZwkTAitUdgsdeAiUtTBVOn08k+BXJcXq2xOC4ajWLfvn2ZXUwaj8P02WrwDSev6WALjLBcdwt0fU7L3NiEtBMfiyLaWIdIfQ2iDTWI2moT/7PbAC4OpbUM5t8+jIOHD2c0DiYUQNH6V8H7PSddV5ZUwDppFtTlnTM6PiHtwYVDiNpqku6jmMsO8Dx0pwyG+pqpGT3ZG0g8re/Zsyc0Gk1Gx2mpvEwsgMQpjQcOHMhYaVPzT1vBbftMtN14/hUouvw6MDIXKiHkOO/XHyO49/vEG2BTPZDi3ij+zWwYBp8Lj8eDI0eOZCYgnodl8/uIH/xBuF2phOnKSTCcM5zWMJGswHMc3B+9hXDNIUQbahBzNIp3Zhh0+t0jUFd0RlNTE+rr6zMSE8Mw6N69u+y1M34p76ZCjtNqtejRo0dGKpCVlpbCUGQCUrzZeTd+gIYFjyPa1JD28QlpC6W1DIFd3yBqq02ZVKgquqBg4DkAEguiu3XrlpEP9qpOFdAUpVhoFovB9c7LsL/yLOIBX9rHJ6S1GJYFqzcguGd76qQCQMHgoVBXJJ64FRcXZ+R0b4VCgR49emRVUgHk8ROL4+LxOOrq6uByudr9WiqVCpWVlSfWcIQO/gjHyoWIe5yiP8OoNTCPuREFp5/X7vEJaS/Hu6/B89nalH1Kp/4B+lMGn3QtEomgpqYmLdvndDodqqqqTjy29X/7JZxrloFPsa5CUWiGZcIMaLv3bff4hLQHz/NoeP5phH7aKd6JVaDynr9BZS096XIgEEBNTQ3C4favISosLESnTp1kL98tJO8Ti+N8Ph/q6+sRCoVa/bMsy8JisaC0tDSpeFA84IPzjSUI7tme8jX0g4bCfPWNYDVUWZDII/jTLjS+Ng+c3yvaR9OtN8pnPyj4hILnebhcLthstjaV8FcqlSgpKYHFYkl6/WhTA+wr5iNam2JNB8OgcNhoFA4bAyYLVr6Tjofnefg2fwr728uAmPg9YDz3UljH3iTYxnEcmpqa0NTU1KaperVajfLychQWFrb6Z6XSYRKL44LBIOx2O7xeb7OLO3U6HSwWC4qKilJWI0z8sn0M19rlQEx8BbDSUppYkFbZra3hE9JqPMfB9eGbcG94G2jmdi+fdT+0Pfqlfj2eh9/vh8PhgM/nS/nmyDAMCgoKYLFYYDQaU06p8LEY3B+uhveLdSnHV3fpBeuEGVCas2MFPOkYuHAI9jdegP/br1L2Y5QqVN73f1AWpq4nwXEcPB4PHA4HgsFgytNQWZaF0WiExWKBXq/P+jVHHS6x+KVoNIpQKIRIJAKe58EwDFiWhU6ng0ajafV/vEh9Newr5iNmqxXvxCpQdMW1MJ53BRg6IppkWMzrQtOr8xHav7vZvtpe/VE+475WvT7P84hGowgGg4jFYifuI6VSCa1WC7Va3er7KLh3FxyrFoP71U6RX2K0eljG3Qz9gDNb9dqEtEWkvhqNy55FtLGu2b6FF4yAZcwNrXp9nucRDocRCoUQj8dP3EcqlQo6nQ5KpTLrk4lf6tCJRSZwkTBc7y2H/5tPU/bT9j4VluumQ2Eokigy0tEE9+9B06vPtbi2SvlvH4K2W+8MR9Uyca8b9lWLEG4mISo462KYrpoEVp0d2+xI/vF+8zkcb74IPhppti+jUqPqT09DYcjeaQopUGKRIYFd38Dx5lLwoYBoH7agEJbxt0DX+1QJIyP5juc4uDesgevDN1JOfegHDEHM7USk+iB0fU5D2S33SBhl83iOg3fjB3CvXw1w4tOWytJOiSnGMjpnhKQPFwnD8eaL8G39ImU/43mXIbBzC+JeNwqHjYLlqokSRZi9KLHIoJizCfaVCxE5si9lP+MFI1B02bVU84K0W9znQeNr8xHau0u8E6uAeeQkFF5wBWKORtTO/TPKb/0jNJ17SBdoK4SrD8KxYgFiDptoH0apgumqSSg4e1hOPTIm2SnSUIvGl59FtEG8sBWr06N4wgzoBwxBcN/3sL30LKrufQqKAjrpmhKLDOPjcXg+XgPPp++k/PaoquwG68SZUFmlPeuE5I/Q4X1oXPZvxD0u0T4KkxUlN9wGbddeJ65F6quhLs/ub/tcKAjnmmUI7NiUsp+u/xCYx94MhV6+Y6tJbvNt3wT768+n3P6sruqOksm3Q2UpOXEtF+4jqVBiIZHQgR8SNS+8LtE+jFoD89U3oWDwUOkCI3nB+/UnsL/1IpBip5PulMEonjgjZz90eZ5HYPtXVPOCZATPcXC+vxKeT99L2c943uWwjJoERqmSKLLcQ4mFhOJ+LxxvvIDQD9tT9tMPPg/mMTdQzQvSLD4Wg2PNMng3fSzeiWVhHjEehRddlRc7kaJN9bCvWNCCmhdjUDhsNNW8IM2KB3xofOW5lFOIjEaH4vG3oGDgWRJGlpsosZAYz/Pwff0xXO83U/PCWgrrRKp5QcTFvC40LnsW4UN7RfsoCs2JqY/ufSSMLPP4WBSu9avh2/hByn6arr1hmTATSpNFoshIronUHYXtxX+lLNGt7tQFJZPvgKqYpqpbghILmUTqjiZqXqTaF61QoOjy62A87/K8+KZJ0id8dD9sL/47ZTl5be9TUXL9rLze+hb88Ts4Vj+fspooq9PDPG4a9P2HSBgZyQX+77agaeXClFNrhnOGwzLmBrAqtYSR5TZKLGTERcJwvfsq/Fs/T9mPal6QX/Ju+Qz2N19MWVK4aPhomK64rkMkpHGvC/ZVi5uveXH2sETNC/qA6PB4joPrg9Vwf7xGvJNCCeu4m2E86yLpAssTlFhkgcDOLXC8tRR8KCjahzUUwjr+Vmh7DZAwMpJN+HgMjndehffLD0X7MCo1iifOQMHAsyWMTH6Jmhfr4F7/BtW8ICnFg340vToPwR+/E+2jKDShdMqd0HTpKWFk+YMSiywRczbBvmIBIkf3p+xnvPBKFF06jmpedDBxnwe2Zc8ifPBH0T5KSwlKb/rdiaOaO6Lw0QOwr5iPuLNJtA+jVME08noUnHUx1bzoYCINNYn1FE0Non00XXuhZMocKI0m6QLLM5RYZBE+HoNnw9vwfPZeypoX6qrusE6YCeWvjuQl+SlcfRC2F+ci7naI9tH2HoCSG27L2a2k6cSFAnC+vQyB775O2Y9qXnQs/u+3oum1BeAj4idcG4cOh2XMjfTFrZ0oschCLap5odHCfPUUFAyimhf5zLdtI+yvLwGfYj1F4cUjYR4xnrZV/gLP8wh8uxHOd15JXfOiyALrhBnQdMuvXTPkZydO9/3oLfFOCgWs19wE4znDJIsrn1FikaUSNS+WIPTDjpT99KefB/PoyWA1WokiI1Lg43E431sOT4ojxBmVGtbxt8BABdVERRvrYV8xH9G6I+KdGAaFw69O1LzoAItdOxIuGEDj8vkI7tku2kdhLELJjXOy5gC+fECJRRbjeR6+TRvgen8FEE9V86IssSCtU1cJoyOZEvd70fjyf1Meda4wF6P0pjuhof/mzeJjUbg+eB2+L9en7Kfp1geWCTOgLKKaF/kg2liHhqX/SrmlX925J0pvmgNloVnCyPIfJRY5IFJ3BPbl8xFrqhfvpFDAdMV4GM67nBak5bBI7ZHE4rIUiw+1PU9ByeTb6bCjVgr+uAOO158HF/CJ9mF1BTCPm0o1L3JcYPe3aHxtPviw+E47w5kXwTruJirNnQGUWOSIFte86HMaLNdOz+uiSPnKt30T7KsWg49GRPsUXnAFzCOvp/UUbRT3umBfuQjhA3tS9jOcMxxFV06kmhc5huc4uDesgWv9avFOrAKWqyfDOPQS+hKWIZRY5JjAzs1wvPliykycNRQdq3nRX8LISFvxPA/3R2/Btf4N0T6MUgXrddNgGHK+hJHlJ57j4P38fbg/egPgONF+qrIqWCfNgqq0k4TRkbbiY1E0rVgI/w7x3UCsoRClN95BB9RlGCUWOSjmaIR95QJEjh4Q78QwMF54FYouvQaMgrZOZSs+HoP99SXwbf1CtI+iyJJYT1HVXcLI8l/46H7Yly9A3JWi5oVKnah5ceZF9O02i8UDPthenJuyzou6qjtKp8yB0mSVMLKOiRKLHMXHY3BveBveltS8mDgLSkuJhNGRluBCQdiW/Ruhvd+L9tF074vSG++gqa0M4UIBON56EcGdW1L20w04A5axN4PVFUgUGWmpqKMRtuefRjTFIs2CMy6AddzNNLUlEUosclxo/27YVy0C53WL9mE0OliumQL9wHMkjIykEnM50PDCM4jWHRXtYzzvMlhG/4aeOGUYz/Pwb/sCrndeSbm+RVFkgXXiTGi60rbEbBGuPoiGJc+A83mEO7AsLKN/kzjIkZ44SYYSizwQ93vhWP08Qilq3wNAwZDzYRo9GaxaI1FkREik9ggaljwjfjIpy8I69iYYzxkubWAdXLSxDvbl8xGtF0/2wLKJmhcXj6KaFzIL7P4Wja/8VzQZZDQ6lN40Bzo6X0lylFjkCZ7n4fvqQ7jWrUpd86K4HNaJM6nmhUyCP+2Ebdmz4MPCZYUZtRYlk2+Dvt8giSMjAMBHo3B9sAq+r8QPegMATbe+sEy4lWpeyMTz1UdwvPWS6DSwosiCsul3Q11Oh83JgRKLPBOpPQz7ivkpD9mBQgnTiPEwnHsZPR6UkHfLZ7CvfkH09E2F0YTSaXdBU0lJn9yCP+yAY3XzNS8s106H7pTB0gXWwfEcB+f7K+H59D3RPupOXVA67S4qeiUjSizyEBcOwfXuK/Bv25iyn7bvwETNCyq0lFE8z8O1/o2UZxWoyipRNu1uKM20Yj1bxDxOOFYuQvjgDyn7GYZeAtOIiWBUVGgpk7hoBE0rFqU8XE7X5zSU3Hg7WI1OwsjIr1Fikcf8O76G8+0XRR+7AwBrLIJ1/Axoe54iYWQdBx+Loen151Mmedqep6BkyhwoaMdB1uE5Dt7P1sK94c3UNS/Kq2CdSDUvMiUe8MG29F8IH/pJtI/hrIsTlTRpsbPsKLHIczFHI+wr5iNSfVC8E9W8yAguGIDtpX+nPPOjYMh5KL7uFjqmOcuFj+yDfcUCxF120T6MSg3TqN+g4IwLaYoxjaJ2GxqWPJPyzA/TiPEoGj6a/t6zBCUWHQAfj8H90Vvwfr42dc2Lzj1gnTCTal6kQcxlR8OSZxCtrxbtU3TpNTBdPo7eDHMEFzxW82JXMzUvTj0LlmtuAqvTSxRZ/gofPYCGF/4hvp1UoUDxhFthOP08aQMjKVFi0YGE9h2reeFrpubF2JugP+1sCSPLL+Haw7AteQZxj0u4A8vCeu00GM+6SNK4SPvxPA//1i/gereZmhcma6LmRZdeEkaXXwK7t6HxlefEt5Nq9Si96U7oaBo361Bi0cHEfZ5EzYufdqbsV3DGhTCN+g3VvGil4I/HtpNGxLeTlt54B3R9T5M4MpJOUVst7Cvmp3wiBZZF0SXXwHjRSKp50UqeLz+E4+1l4ttJTVaUTbuLtpNmKUosOiCe4+Db9BFc61YCceGtj8CxmheTZkFd0UXC6HKXd/OnsL/xgugiP0Xhse2kVEMkL/DRKFzrVsK36aOU/TTd+yVqXtD2x2bxHAfn2hXwfLZWtI+6sitKp94FZaFJusBIq1Bi0YFFag/Dvnw+YvZmal5cOQGGoZfSWoAUXBvWJIqTiVCVV6Fs2l10AFIeCu7Znqh5EfSL9mH1hkTNCyp8JoqPx9G0ciH8334l2kfXbxBKbrgNrEYrYWSktSix6OC4cAjOd15G4NsvU/bT9hsEy7hpVPPiV3ieh+v9lXB/8q5oH22v/ii9cQ4t5stjiZoXC1OergkAhnMvhemKCVTz4lf4WBSNr/wXge+3ifYxnD0M1rE3gVEoJIyMtAUlFgQA4N++Cc41L6WseaEwmmCZMAPaHv0kjCx78RwHx5qX4f1SvPxzwRkXoPjaabSdtAPgOQ6eT9+F5+O3m6l50RnWSbOgKqmQMLrsxUXCsL04F6G9u0T7mK6cgKJho+ipaY6gxIKcELPbYF+xAJGa1DUvCi8aicJLrunQ3xx4joN91WL4tn4h2qfosrEwXTaW3gw7mPDhvYmaF26HaB9GpYZp9A0oGHJBh/794EJBNLzwDMIHRQpfKZTHtpOeK21gpF0osSAn4WMxuD96A97P30/ZT925J6wTZ0JpLpYosuzBx2JofG0eAjtF6hkwDKzjbqbTSTswLuiH482lCH6/NWU/3WnHal5oO940WdzvQ8Pzfxct3seoNSi9+ffQ9eovcWSkvSixIIJCe3fB/vpi8cI0ABitDpaxN0N/6lkSRiYvLhpB47JnEfxhh3AHlkXxxJn0DYskal588xlc773WTM2LYlgnzYSmc08Jo5NXzOtCw6L/E92uy2j1KJt+N7RdqQ5ILqLEgoiK+zxwvL445dwn0HFqXnDhEGxL/4nQ/j3CHRRKlEy+DQUDzpA2MJLVorZa2JfPR7ShmZoXl46F8cKr8r7mRcxpR/2iJ0VPYGYLjCi75Y90ym8Oo8SCpMRzHHxfrYfrg9dT17woqUjUvCjvLGF00okH/bA9/wzCR/YJtjMqdaIKYB8qfEWScdEI3O+vhO/rDSn7aXqcAuv4W6DI05oX0aYG1C98UvTMFUWhCWW33gd1GR3mlssosSAtEqk5BPuK+YjZbeKdlEqYrpwEwznD82pBWtznQcPi/0Ok9ohgO6PRomzaXdB27ytxZCTXBPd8C8fqJc3XvLhuOnR986vmRaS+Gg2LnkLcK3ykgNJcjLIZ90FlLZU4MpJulFiQFuPCQTjXvILA9uZqXgyG5dppUOgNEkWWOTG3IzEXbKsVbGf1BSibfg80nXtIHBnJVTG3I1HzIsUR4ABgOPcymEaMB6PM/ZoX4eqDaFj8d3ABn2C7sqQC5bfeC6XJInFkJBMosSCt5t/+FZxvvwQ+Ehbtoyg0wzL+1pyueRF1NKJh4ZOIORoF21lDEcpv/SPUFfk5/UMy50TNiw1vpTxxWFXRGdaJs6EqKZcwuvQKHfoJDc8/Az4cFGxXVXRG+a33QmEolDgykimUWJA2idobYF+xANGaQ+KdGAaFF49G4fAxOVfzItpYh/oFTyLucQq2K4osKJ9xX06/4RP5hQ/thX1lS2peTEbBkPNzbooxuPd72Jb+U3RXjLpzD5RNvzsvnm6Sn1FiQdqMj8Xg/nA1vF+sS9lP3aUXrBNm5EzNi0jtEdQv/j/RrbZKaynKZ9yXM/8+JLu1tOaFfuA5MF99Y87UvAjs3gbbsv8A8Zhgu7ZHP5RO/T1YjU7iyEimUWJB2i24dxccqxaD86eqeaE/VvPiTAkja73wkf1oeP7v4IIBwXZVWSXKbr2XTlYkacXzPPxbPk3UvIhFRfspzMWwTpyV9Wt6fNs3oWn5fNHS5rq+A1EyZQ5YlVriyIgUKLEgaRH3ueFYtRihfd+n7Fdw5sUwjZyUlTUvQgd+QMOSf4CPCJ+Xoq7sirJb/kgHsZGMiTbUwL5iPqINNeKdWAWKLhsL4wVXZmXNC++Wz2B//XnRtSP6U89EyW9+S+fn5DFKLEja8BwH75cfwP3BaoBLUfOitBOsE2dBXV4lYXSphQ79hIbFfxddkKrp1htlU++iE0pJxiVqXqyA7+uPU/bT9OyfqHlhNEkTWAv4tn6BppWLRJOKgiHno3j8LTm35oq0DiUWJO3C1QfhWLEAMUczNS+umgTD2fLXvAhXH0T9gidFV61rew1A6c2/y8qnLCR/BXZvg/ONJaLTckCiSqXluluyojCbf8fXaHz1OdGkwjj0EliumZKVT1lIelFiQTKCCwXhXLMMgR2bUvbTnXI6zOOmyrYqPFJ7BPUL/iZasEjX/3SU3HAbzQUTWcRc9kTNi8N7U/YznHc5TFdcJ1vNi8D322Bb9m/RNRWFF4+E+aqJsn+JINKgxIJklP/bL+Fcs6z5mhcTZkheuTLSUIv6+Y+D83sF2/UDz0bJ9bPAKGgumMiHj8fh+fQdeD5ek7rmRaeusE6cCVWxtFugAz9+B9vSf4nu/jBdNhZFl42lpKIDocSCZFy0qSGxIK32sHgnhkHhsNEoHCZNzYtoUwPq5z2OuNcl2K4fcAZKJt9GSQXJGuFDP8G+YoFobRUgcdS4efRk6E8/T5IP8uD+PbA9/7ToTpaiS8bAPGJ8xuMg2YUSCyIJPhaDe/3r8G78IGU/ddfeiZoXJmvGYok5m1A373HRg5B0/QahdMqdtGqdZJ14wAfnm0sR3L0tZT/9oKEwj7kRrDZzNSKaW/BceOGVMI+6np5UdECUWBBJBX/aCcfri0WnH4BjNS/GTYU+A8ePx9wO1M97XLRMt7ZXf5RO/QOtqSBZq+U1L0pgnTQTmqr017xobsGz8dxLEws1KanokCixIJKLe92wr1qE8P7dKfsVnD0Mpqsmpe1DPu51o27+E4g11gm2a7r3Qdn0e2j3B8kJkYZq2JfPR0zkgDwAiZoXl4+D8fwRaduN0dyCZ8OZF8F63TTa/dGBUWJBZMFzHLwbP4B7fQtqXkyaBXVZ+2pexP0+1C94AtH6asF2deeeKL/1jxl9dExIunGRMFxrl8O/5dOU/RI1L26FwljUrvEiDTWon/+E6BPHgsHnonjSTEoqOjhKLIiswtUHYF++AHGn8NQEADBKFUwjr0fBWRe36dFqPOhHw8InEakRXjyq7tQFZTP+BIW+oNWvTUg2CHz/DRxvLAUfSlXzohCW66a3ueZFswueTz0TJTfcRsWvCCUWRH5cKAjn2y8h8N3XKfvp+g+BeezNrap5wYWDaFj0d4SP7BNsV5V2QvnsB6hMN8l5MZcd9pULEWmm5oXx/CtQdPl1rVqcTAueSWtQYkGyAs/zCHz7JZzvvJy65kWRBdYJM6Dp1qfZ1+QiYTQseQbhAz8ItiuLy1A++wEos6gkMiHtwcfj8HyyBp5P3mlBzYtZUBWXNfuazS94HpA4pZQWPJNjKLEgWSXaVA/78vmI1h0R78QwKBw+JlHzQmQul4tGYFv6L4T27hJsV5qLE0lFBre1EiKX0MEf4Vi5sPmaF2NuRMHp54n2oQXPpC0osSBZh49F4frgdfi+XJ+yn6ZbH1jGz4DSZPnVz8dgW/ZvBPdsF/w5RZEF5bMfgMpSkq6QCck68YAPzjeWiN4Hx+kHDYX56hvBak5euNyiBc8z/pj0c4RQYkGyVvDH7+BY/XzKmhesTg/zuGnQ9x8CIPEouPHV5xDYuUWwv8JYhPJZD0BVIm3ZY0LkwPM8fJs/hmvtciAmXHIbAJSW0sTuq8puAFqy4LkrymbeB4WOFjyTZJRYkKwW97pgX7kI4QN7UvYrOHsYiq6cCOeaV+Db/IlgH7bAiPKZf8qq49oJkUKk/mii5oXIlAYAQKFA0eXXwXD2sJRrk1TlVSif+Sda8ExEUWJBsh7PcfB+8T7cH76ZsuYFozMg5nEJtrE6Pcpm/gmaTl0zEyQhWY6LhOF6bzn834jXvOB5HozeiLjIfaQsLkf57PtpwTNJiRILkjPCR/cnDmFyNiW1cRwHPi58ZDOj0aJ8xr3QdO6Z6RAJyXqBXd/A8aZwzQsuHgfPCX8kKC0lKJ/1QNKaJkJ+jRILklO4UADOt15CYOfmE9d4jgMnllQoVSi79Y+SH8lOSDaLOZsSNS9+Ud+Fi3PgOeH7SFFoRvlvH6QFz6RFKLEgOSdR82IjnGteBhcJg4uJT4+Yr5yAouGjJYyOkNzAx+PwfPw2PJ++Cz4eF03OwbAonfo76PsNljQ+krsosSA5K7h/DxoW/x8QF04sGJYFq1Sg8JJrUHjxKDq/gBABni8/hOOtl0TbWQULVquD+eqbUDB4qISRkVxFiQXJSfGAH/XPPYqoyMmODMuA/cWZBZpufWGZcCuURTQ/TMhx0cY61P33EXAB4ZNKGQUL9hcJuX7weTCPuYFqV5CUKLEgOYePRVG/+O+i2+EYhgGjYJMOLGN1BbBcOw26U06XIkxCslrM60L9fx8VLdXNsCxYRfJTPqW1DNaJM0/UvCDk1yixIDmF5zg0vjpP9MAyVl8AREIpT0E1DL0EphETwahUmQqTkKzGhUOon/8EIjWHBNtZvQGIBMXvI4UCpiuug+Hcy2mKkSSh3wiSU5xrV4gmFaryKlT+8SmYrrgOSPFm59u0AQ3zxKdRCMlnfDyOxpf/I5pU6PoPQeV9f4fhzIvEXyQeh2vtCjS99C/EfZ7MBEpyFj2xIDnDs/EDON5+WbBNUWhGxe3/c2KPffjoftiXL0DclVzz4jhGpYZp5PUoOPOilE84CMkXPM/D/voS+LYIF8nSdOmJshn3nThULLBzCxxvLQUfCoq+JmsohHX8rdD2GpCRmEnuocSC5AT/rm/QuOxZwaOgGY0OFb99EOqKzidd50IBON56EUGRc0OO0516JizX3AxWp09rzIRkG9eHb8G1frVgm7K4DBW3PZxUqjvmbIJ9xXxEjh5I+drGC69E0WXjwCiUaYuX5CZKLEjWCx36CQ0LnwIfiyY3KhQom34PdL36C/4sz/Pwb/sCrndeAR+NiI6hMFlhnTgTmi690hU2IVnF+83nsK9cJNjGFhhRcfvDUFnLBNv5eAyeDW/D89l7gsn9ceqq7rBOmAmltTQtMZPcRIkFyWrNbYcrvn42DKef2/zr2GphX7EA0fqj4p1YFkWXXAPjRSNpQRrJK8Efd6LhhX8InrXDqNQon3U/NJ17NPs6of17YF+1EJzXLdqH0WhhvnoKCgZRzYuOihILkrViXhfq//MIYgJngwCA+aqJKBo2qsWvx0ejcH2wEr6vPkrZT9O9LywTZkBZaG5VvIRko3DNYdTPexx8JJTcyDAovfn30J8yuMWvF/d74Vi9BKEfd6Tspz/9fJhH3wBWo21lxCTXUWJBshIXCaN+3uOiK9eN514KyzVT2rToMvjDdjhWLwEX8In2YfWGRM0LKmNMcljMaUfdf/4XcZEnDNZrp8J4zvBWvy7P8/Bt2gDX+yuAeEy0n9JaBuukWVDTqcIdCiUWJOvwPI/GV54T3Vaq6z8EpVPmtGu6IuZxwrFyIcIHf0zZzzD0UphGTKCaFyTnJJLzxxCpOSzYXnTJ1TCPuK5dY0TqjsC+fD5iTfXinRQKmEZMgOHcy2j3VQdBiQXJOu5P3oVz7QrBtl9vh2sPnuPg/ew9uDe8BYic6ggAqvLOsE6aBVVJRbvHJEQKPM+j6bX58G//SrC9YMj5KJ44Iy0f9FwkDNc7r8C/7YuU/bR9ToPluluSdp2Q/EOJBckqgR92wPbCPwRXnotth2uv8JF9sK9YgLjLLtqHUalhGnUDCs64gL51kazn/vQ9ON9bLtim7T0AZVPvAqNM77bQwHdfw/HWS+DDqWpeFME64VZoewrv4iL5gRILkjWijfWoffZ/wYcCSW2sTo+KO/4MVXF5RsbmggE43lqK4K5vUvbTnXYWLFffRDUvSNYK/rgTDUueFkzOVaWdUHH7/4DVZuYQsZijEfaVC1LXvGAYGC+8CkWXXkM1L/IUJRYkK3ChIOr+81fhMtsMg7Jpd0PX97SMxsDzPPxbP4fr3VebqXlRDOvEGVTzgmSdaFMD6p79C7hgcnLOaPXodMefoSrJTHJ+HB+Pwf3RW/B+vraZmhc9YJ04E0pLSUbjIdKjxILIjuc42F6ai+DubwXbzSMnoejikZLFk6h5MR/R+mrxTiyLokvHwnjhVVTzgmQFLhxE3X8eQbShJrmRYVA67S7o+w6ULJ7Q/t2wr1rUTM0LHSzXTIF+4DmSxUUyjxILIjvnB6vh/ugtwbaCwUNRfP1sydc18NEoXOtWwLdpQ8p+mh79YB1/KxRU84LIiOc4NC57FoHvtwq2t7bmS7rE/V44Xl+M0E87U/YrGHI+TKMnp2VRNpEfJRZEVv5d36DxpX8Ltqk7dUX5bx+U9c0muOfbRM2LoHDlT+B4zYvp0PUbJGFkhPzM9eGbcK1/Q7BNP/AclNzwW9kWHfM8D99XH8K1blXqmhfF5YmaFxVdJIyOZAIlFkQ2kfpq1P3nr+Aj4aQ2tsCITnP+AqW5WIbIThZzO+BYuQjhQ83UvDj3WM0LJdW8INIJ7N4G29J/CbapKrqg4raHsuJJQKT2MOwr5iPW1CDeSaGE6coJMAy9lHZf5TBKLIgs4gEf6p79X8TstuRGVoHyGfdC26Of9IGJ4DkOnk/fhWfDWykXpKkqOsM6cXbGF8gRAgCRhlrU/ed/wYeTy3WzegMq5vwFqixaHMmFQ3C9+wr82zam7KftOxCWa6dTzYscRYkFkRwfj6NhyTMI7d0l2G65ZgoKz7tM4qhaJnx4b6Lmhdsh2odRqWEaPRkFQ86nb10kY+JBfyI5F3oCwLIou/Ve6HqeIn1gLeDf8TWcb78omBAdxxqLYB0/A9os/Xcg4iixIJJzvPsaPJ+tFWwznHURrNdNz+oPZC7oh+PNpQiKLJQ7Tn/a2TBfMwWslmpekPTiOQ62Jc8gKLIo0nL1ZBSef4XEUbVOzNEI+4r5iFQfFO/EMDBeNBJFl1xNNS9yCCUWRFK+b79C02vzBNs0XXqifNb9ObFGged5+L/5DK73Xktd88JcDOvEWS06kpqQlnKuXQH3J+8KthnOuADWCbdmdXJ+HB+Pwf3hm4maFymoO/eAdQLVvMgVlFgQyYRrDqH+v4+Cj0WT2hRGEyru/EvOHVUetdXCvnyecO2A41jFsZoXV1LNC9Ju/h1fo/GV/wq2qTv3QPms+8Gq1BJH1T6hfd/DvmoxOF8zNS/G3gT9aWdLGBlpC0osiCTiPg9q5/5ZeG2CQomK2Q9A06Wn9IGlAReNwP3+Cvi+/jhlP02PU2CdcCsURpM0gZG8E649nEjOBZ6SKYxFqJjzFyiLLDJE1n5xnweO1c83X/PijAthGvWbrNjpQoRRYkEyjo/HUL/wKdEjyq3jb4HxrIskjir9Aru3wfnGEsFyysexegMs190CnYQVEEl+iPu9qP33XxB3NiU3KhQon3k/tN16Sx9YGvEcl6h58cEqIB4X7acsqYB14iyoKzpLGB1pKUosSMY51q6AR2Q+2HjeZbBeM0XiiDIn5nLAsWohwod+StnPcN7lMF1xXU6sJyHy4zkOtqX/RPCHHYLt1uumwXj2MGmDyqBI7WHYl89HzN5czYuJMAy9JCfWk3QklFiQjAr+tBMNi/8u2Kbt0Q9lt/4x71Z78xwHzyfvwPPx283UvOgC66RZGTuxleQP92fvw/nuq4JtxqGXwDruZokjyjwuHITznVcQ+PbLlP20/QbBMm4a1bzIIpRYkIyJeV2o/efD4HyepDaFuRid7vgzFIZCGSKTRvjQXthXNlPzQq2BefQN0J9ONS+IsPDRA6h77lHBqQFN9z4ov/U+MMr8Ss5/yb99U6LmhUCF3uMURhMsE2ZkVVG9jowSC5IRPMehYfH/IbRvd3KjQoGK2x6Gpqq79IFJLB7wwfnmUgR3b0vZTz/wHJivngJWq5MoMpILuGAAtXP/BzFHY1KbwliETr97BApjkQyRSStmt8G+YgEiNalrXhRePAqFw68Go1BIFxxJQokFyQjXhjWJQ4cEWMZMRuEF2V28J514nod/y6eJmhcCW22PU5hLYJ00E5oqqnlBEr83ja88h8B3Xyc3MgzKbvkjdL0HSB+YTPhYDO6P3oD38/dT9lN37gnrxJlZcc5QR0WJBUm70KGfUD//CYDjktp0pwxG6c2/75CP/SMN1YkFabZa8U6sAkWXj4Px/BFU86KD8379Ceyrlwi2FQ0fA/OV4yWOKDuE9u6C/fXFglOsxzFaHSxjb4b+1LMkjIwcR4kFSat4wIfafz4suK5AUWRJPLotMMgQWXbgohG41i6Hf/MnKftpevaHdfytHeIxN0kWqa9G3b//IviES9OtN8pn3t+hH/fHfW44Xn9e9Lyh4wrOvAimkddTzQuJUWJB0obneTS+NBeB7wXWEzAMymfdD233vtIHloUC32+F440XwIdS1LwoMCZqXvQ5TcLIiNy4SBh1//4LogJPtlhdATr97hEozVYZIssuPMfB++V6uNe/3nzNi0mzoC6nmhdSocSCpI3ny/VwvLVMsM10+bUwXXaNxBFlt5jLDvvKhYgc3puyn+H8K2C6/Lq8XvlPftb0+vPwbf5UsK3kpjtRMOAMiSPKbpGaQ7CvmI+Y3SbeSamE6cpJMJwzvENOw0qNEguSFuGaw6j7z1+BeCypTdvzFJTdei+tGRDAx+OJmhefrEld86JTV1gnzoKquEzC6IjUUp0DYjzvclivuVHiiHIDFw7CueZlBLZ/lbKf7pTBMI+bBoW+407HSoESC9JuXDiI2rl/RqwpuUoeW2BEp98/knOHi0ktdPBHOFYuRNzjFO3DqDUwj7kRBaefJ2FkRCpRewNq//U/4MOhpDZ1py4ov+3hnDtcTGr+b7+Ec82y1DUvCs2Jmhc0LZsxlFiQdmtcPh/+bcLV8Uqn3w09nYvRIvGAD843XkBwz7cp++kHDYX56hvBaqjmRb7gYzHUPfcoItXJdRoYtQad7vwrVCVUobUlovYG2JfPR7T2sHgnhkHhxaNROHxMh14EmymUWJB28W39Ak0rFgq2FV48EpaRkySOKLfxPA//5k/gXPsaEEueVjpOaSlNLEir7CZdcCRjHO+8Co9IfYbiSTNhGHK+xBHlNj4Wg/vD1fB+sS5lP3WXXrBOmEE1L9KMEgvSZtHGusSjW4EjnNWde6Bi9oO04LCNIvXViQVpzdW8uOJaGM+7gtav5LDAnu2wvfAPwbaCMy5AycQZEkeUP4J7d8GxajE4f6qaF3pYxt0M/YAzJYwsv1FiQdqEi0ZQ95+/Ilp3NKmN0erR6Xd/hcpSIkNk+YOLhBM1L7YI7xA4TttrACzX3UI1L3JQzO1InKcT8CW1KUsq0GnOX8BqtDJElj/iXjccry9GaN/3KfsVnHkxTCMnUc2LNKDEgrSJ/c0X4f3qI8G2ksm3o2Dg2RJHlL8Cu76B482lzdS8KIRl/C3Q9T5VwshIe/Ach/qFTyJ84IfkRqUKnW7/H6g7dZE+sDzEcxy8Gz+Ae/1qgEtR86K0U2KKsaxKwujyDyUWpNX8329F44tzBdsM5wxH8bVTpQ2oA4g5mxI1L47sS9nPeMEIFF12LU1B5QDXh2/BtX61YJtl7E0oPPdSiSPKf+Hqg3CsWICYQ7zmBaNUwXTVJBScPYxqXrQRJRakVeI+D2qeeQCc35vUpiqvQsUdf6YtcRmSqHmxBp5P3kld86KyG6wTZ0JlpZoX2Spccxh1z/6v4Ldn/alnouTGO+hDLUO4UBDONcsQ2LEpZT/dKafDPG4q1bxoA0osSKvYXv4PAt9tTrrOqNSomPMXqMsqZYiqY2lxzYurp6Bg8LkSRkZago/FUPvsXwTXJynMxeh051+h0BfIEFnHQjUvMocSC9Ji/u82o/Hl/wi2Wa+bDuPZF0scUceVqHmxBME921P20w8+D+YxN1DNiyzi/GA13B+9ldzAsiif/SC0XXtJH1QHFW2qh33FguZrXgwbg8Jho6nmRQtRYkFaJNUUSEc+Cl1OPM/D9/XHcL2/PHXNC2sprBOp5kU2CFcfTJS+57iktqJLxsA8omMehS4nPhaFa/1q+DZ+kLKfpmtvWCbMgNJEB8A1hxIL0iye59G47FkEdn2T1MbqCtDprsehLDRJHxgBAETqj8K+fD5ijXXinRQKFF1+HYznXU41L2TCx6KonftnRBtqktpU5VXoNOcvYJQqGSIjABD8aSccry8W/PJ0HKvTwzxuGvT9h0gYWe6hxII0K9XBSMXXz4KBzq6QHRcJw/Xea/B/81nKftrep8Jy3XQoDD/XvOCjUUCppCdOGeZ8fxXcH69JbmBZVNzxZ2joiZLs4l4X7KsWI7x/d8p+BWcPg+mqSSctVOejUTAqSgwBgL66kJTiXjfsb74o2KbrP4QWB2YJVq2BZezNsF4/G4xWfD1FaO8u1D/7l5OKBTnfeRmhvbukCLPDCh89APcn7wi2FQ0fQ0lFllAYTSi5+Q8oGjEeYMXXU/g3f4KG5x5BpKEaAMDHY2hc+gxijkapQs1q9MSCiOJ5Ho0v/RuB77cmtbH6Y1MgRpP0gZGUWlzz4sIroSqrgmPVIqg6dUXZbx+mpxYZwEUjqJv7Z0QFyrOrKjqj0x1/obojWShcfQD25QsQd4onC4xSBdPI6xFzO+D99F3oTz8f1uumSxhldqLEgojyffsVml6bJ9hW/JvZMNDTiqzFx+PwfPw2PJ++m7LmxS9Zf3Mb9APOyHBkHY9j7Qp4Pnk3uYFVoGLOn6Hp1FX6oEiLcKEgnG+/hMB3X7fsBxgG5Xc+AlVJRWYDy3I0FUIExTwuON56SbBNf+qZKBg0VOKISGswCgWKLhuHkmn3QNHCp0ruj94EL7BbgbRd+Mh+eD59T7DNdMkYSiqyHKvVwTJhBizXTgPTkjNEeB7uDQJbiTuYDvn8jed5hEIhBINBhEIhRCIRcBwHhmGgUCig1Wqh0+mg0+mg7ICPKHmeh331EnBBf1IbqzfAOvYmemSeI7Q9+qHsjr/A8cYShH7YkbJvzFaLwHebUTC4ZUkjx3En7qNgMIhoNAqe58EwDJRK5Yl7SKvVQtEB9/9z0QiaViwUfGKk7tQFRZeMkSEq0loMw6BgyAVQd+4F+4r5iNYdSdk/uHMLIheNgrqic4tePx6Pn7iHQqEQYrEYeJ4Hy7JQqVQn7iGtVgs2R3Z0daipkGg0CqfTCYfDgViKff+/ZDQaYbVaUVBQ0GE+TH3bNqJp+QLBtpIbbkPBoHMkjoi0F8/z8G3aANf7K4B4ipoXllKU/+4RMArxhDoUCsHhcMDlcoFrwRMOhmFgMplgsVig03WcQl2Od1+D57O1yQ0KBTrd8Rc6YCwH8bEoXB+8Dt+X61P20/YbhJIb7xR/HZ5HIBCAw+GA2+1u0dgKhQJmsxkWiwVqdXYfm9Ahvo5zHIeGhgbY7fZW/6zX64XX64VGo0FlZSX0en0GIsweMY8TjreXCbbpTzuLkoocxTAMjOdeClVpBRqXPC3aL+awwf/tlzCceVFSWzQaRW1tLbxe8X3+Qnieh9PphNPpREFBASorK7P+jbG9Qof2wvP5+4JtpkuvoaQiRzFKFcwjr4eyyAzX2hWi/UI/7ED46AFoOvdIbguFUFNTg2Aw2Kqx4/E4mpqa0NTUBJPJhIqKiqx9Epgbz1XawefzYe/evW1KKn4pHA7jwIEDqK+vb9G3tFzE8zzsry8BF0w+npstMMI69iYZoiLpwvM8vF9+2Gw/z8drwMeiJ11zOp3Yu3dvq5OKX/P7/Sfux3x9WMpFI2hauUh4CqSyK4qGjZIhKpIuXCQM35bU9WIAwP3hGyf9M8/zsNls2LdvX6uTil9zuVz46aef4PF42vU6mZLXiYXT6cShQ4cQjUab79xCTU1NOHToEOLx5FMJc51/20YERebhreNuhsJQKHFEJJ1CP+5A+OAPzfaLux0n3jh5nkd9fT1qamrSllDzPI+6ujrU1NTkZXLhWvc6Yk31yQ0KBYonzkw5zUSyn+/rDYg5m5rtF96/G6GDPwJIPDU/fPgwbDbx49pbKx6P48iRI2hqaj4WqeXtGgun04mamuTSuemi0+nQrVu3rH0U1VoxtwM1zzwIPpT8tEI/8ByUTr5NhqhIuvEch7jbgaitBlFb3bH/r0XMVgs+GjnRjzUUovwPT8DmcLb7aV8qRUVFqKqqypv1S6GDP6F+/uOCTytMI8bDRAs28wIfjyPmaDxx/0RtNYjZahFtqgd+8aVT3bU3iqf/EUeOHIHfn7wYPl3KyspQUlKSsddvrbxMLPx+Pw4ePJjxcQoLC9GlS+7PlfI8D9uSZxD88bukNtZQiMq7HoeiwChDZEQqJycctYg21CLetQ9sOnPGxy4tLUVpaWnGx8k0LhJG7T8fRszekNSmruqOitseptMx81wi4bAl7qOGWkQbaxHufzacTObXFHXp0gWFhdnxVDnvnsnF43FUV1dLMpbH44HL5YLJZJJkvEwJfLdZMKkAjk2BUFKR9xiWhdJcDKW5GLq+gxCJRLB3794WF9dqD5vNBqPRmPM7Rtwb1ggmFVAoUTxxBiUVHQCjUEBVUpEokDUgscav/tAhScauqamBXq/PihIJebfGoqGhIa1rKppTW1vb4q2r2YgLBeFY84pgW8Hgc1Fw6pkSR0TkxvM8qqurJV3/IPV46RZtrIP7M+FCWOYrroW6rFLiiIjcpPySe3y82trksvFyyGhiMW7cOJjNZowfPz6Tw5wQi8XgcDgkGes4juMkHzOdXOvfQNzrSrrOGopgufpG6QMisgsEAggEktfaZFI4HG73jhO58DyfOKhPYEG3unMPFF54pQxREbm5XC7Jv3R6PB6Ew2FJxxSS0cTizjvvxIsvCp+MmQlyfcDb7fac3IIaqTsCj0ihF8uY30BRYJA4IpINMrlYM5VsXN3eEoHvNiO0T+CYbYZB8bXTaAqkA+J5Xrb7KBu+6GY0sRg+fDiMRmnm53mel+0vNB6P59y3LZ7jEt+yBBIibc9T6CyQDioWi8m2Nz4QCGTFt63WSDWVaDzvciqE1UEFAgFEIpHmO2aAw+GQ/YtuqxMLjuPQr18/3HfffSddX7duHdRqNVauXJm24FojGo3KutZB6kfH7eXbthHhQ3uTGxQKWK6hs0A6Krl/j+Uev7XEphIVxiKYLx8nfUAkK2Rya2lzeJ6XPUFvdWLBsizuv/9+PPfcc3A6nQCAHTt2YMKECXj88ccxYcKEtAfZEu2tZNZeufSGGA/44HxvuWBb0YVXQl3WSeKISLaQ+z6Se/zWSDWVaB79G7C6/C7/T8TJ/Xss9/htmgqZPHkyiouLMXfuXFRXV2PUqFGYMmUK7rnnnnTH12KhUEi2sY+Pnyur2l3rVoHzJ0/dKExWFF16jQwRkWwh9xtSriToPMfB/sZSmkokguS+j+Qev02JhVKpxH333Ye5c+di5MiRGDJkCObOnZvu2FpF7hLbPM/nRGIRPnoA3q8/EWyzXD0ZrFojbUAkq8h9H8k9fkv5tn6B8OF9yQ00lUgg/++x3OO3efHm5MmTEQgEwPM8Xn31VcHS1iNGjMCECRPw3nvvoaqqClu2bGlXsKnkwoe63E58yxL4u9L1GwR9/yEyREWyidz3kdzjt0Q84INT5GRLmkok2UDu+6jNJbruuOMOAIktYmLnZaxbt66tL99qLCt/ra9s/5bi/fpjRGoOJV1nlCpYrr4x6+MnmSf3fST3+C3hfJ+mEklqDMPI+uEu933UptEffvhhvPvuu9i0aRNisRgWL16c7rhaTa3OfC32VFQqVVZ/MMe9bjjfXyXYVjR8NFTW3D+rgbSfRiPvVJjc4zcnfHQ/fJs/EWyjqURynNy/x3KP3+rEYtGiRXj66aexZs0aDBo0CL///e/x1FNPSVpGW4jc5wzo9dm9Atzx3nLBk0uV1jIUXjxShohINqL7SBxNJZKWkvs+knv8ViUWa9euxe23345ly5Zh6NDEquc5c+bA4/HgpZdeykiALaXVamUdX+7/kKmEDvwA/7aNgm3Wa6aAVcn7tIdkD7l/j+UeP5XEVOLhpOs0lUh+Te7fY7nHb3FisXXrVkyYMAFPPfUUrr322hPXCwsLMWfOHPztb3+TdSUqy7KyHhmbLcfV/hofjyUqbArQn3YWdH1Pkzgiks20Wq1s04oKhSJrn1iknkocQ1OJ5CRGo1G2RDMbTjhleLmXj6aR3+/HwYMHJR/XaDSia9euko/bEu7P1sL57mtJ1xm1BpV3/w1Kk0WGqEg2s9vtqKurk3zckpISlJWVST5uSzQuXyD41E9pLUOnPzxKT/1IkpqamhNFJKXUuXNnFBUVST7uL2X/EuxW0Ov10i9a4eIw1u4Dz2ffIWQxlwOu9W8ItpkuG0tJBRFkMpkkX1XOhPzQ245IOmZLpZxKHEtTiUSY1WqVfEylUpkVT8/zKrFgGAaVlZWSjmnauw3BD1bAvmwu4j63pGM3x/Huq+AjyTXjVWWVKLzgChkiIrlAoVCgoqJCugF5HubvPoNn9SI417wELirP4U1C+Hgc9reE14/pTzsLuj40lUiEabVayZOLysrKrFjrk1eJBZB4alFSUiLJWJrGo2B2bQIAhA/sge25RxDau0uSsZsTOrwPge82C7ZZx94ERiHvHBzJbiaTCQaDQZKxDAd3gj+aqGIZ2PYFGhc8jmhDtSRjN8f3zWeI1ifHwqg1sIy+QYaISC4pKyuTbM2S2WyW7DTx5uRdYgEk5mozvQiMCflRsOXDk65xAS/sr/wb7nUrwcflO2mV53k430teVwEABUPOg7ZHP4kjIrmGYRhUVVVBpVJldByVuxGqHZ+fdC3WVAfbwifg2/yxrEWGuHCIphJJu7Asi86dO2f8KYJGo0F5eXlGx2iNvEwsWJZF165dM7rlxvr9RvBBn2Cbb9OHaFz8JGL2hoyNn0pg9zbBI9EZtRbmkZNkiIjkIqVSie7du2dshbmC51H4zYeCB3khHoN77WtwLH8O8YDwfZZpns/fR9ybPL2pKqmgqUTSYjqdDt26dctYcqHRaNC9e3fRCthyyMvEAkjME3fv3j3tj4aOv6754tFQFJpF+0XrjsA2/zEEdnyV1vGbw8djcL4nco7BsJFQGk2SxkNym1qtRs+ePdNeJ0atVqNHnz4oGjYGTIpqlaEfd8A27xGED/2U1vGbE/O64P70PcE288iJNJVIWqWgoAA9evRIe5Keqddtr7zabiqE53l4PB7U1ta2u86GyWRCeXn5if+I8YAPrjUvIfTD9pQ/pxt4DkwjfwNWk/miJZ6vPoJDoG6FwmhC5b1PUclh0iY8z6OpqQk2m63d0xMlJSUoKSk5sfMk5rDB8foiRGuTi0/9jIHxopEwXjwKDJv5b2b2N16Ad9PHSdc13fuifNb9WbFAjuSeeDyOhoYGOByOdr0OwzCoqKiA2WzOyt/FvE8sjovFYmhqaoLT6Wx1gmEwGFBcXCy4mI3nefi/+RTudSuBFOsqFOYSWK67FerKbq0NvcW4cBDVT90LzudJarNeNx3Gsy/O2NikYwiHw2hqaoLL5WpVgsEwDAoLC1FSUiL49IOPx+D56E34vlqf8nXUnXvCfO0tUJoyt9o+YqtF7T8eFJyiqbjjf6Dp3DNjY5OOIRAIoKmpCR5P8nt1KizLwmw2o7i4OOPrn9qjwyQWx3EcB6/XC6/Xi0AggEgkeWubQqGATqeDXq+HyWRq0areaEMNHK8vRKwxRWEhlkXhpeNgOPcyMEz6Z6GcH6yG+6O3kq6ryirR6fePgsmBkyNJbojH43C73fD5fAgGg4JnBSmVSuh0OhgMBhQVFbXocW1o3/dwvrlE8PTQ4xitHuYxU6DL0NkcDUv/heDubUnX9QPPRunk2zMyJumYotEoXC4XAoEAAoGA4JdetVp90n0k98mlLdHhEotf4zgO0WgUPM+DYRiwLAulUtmmx0tcNAL3upUIbP0sZT9Nz/4wj50KhSF91dFiHidqnroXvEANgNJpd0Hfb1DaxiLk1+LxOGKx2In7SKFQtHneN+5zw/nmCwjv352yn37IhSi6cmJaC1SFDv6I+nmPJzcoFKi8+wmorNlZGZTkh1gshng8fuI+UqlUOZFI/FqHTywyIbh7K5xrlgmeJnocW2CEeew0aHsNSMuYTa8/D9/mT5Oua3uegrIZ92XlPBwhYnieg+/L9fBseFN418gxypIKWK6bAVVZ+wvj8TyPuv88gsjR/UltxvOvgPXqye0eg5COIPdSoRyg638GSmc9BHWKuVjO74X95blwf7Cq3TUvIvXV8G0RfkpiHjmJkgqScxiGhfH8ESiZfh8UZvGCd7HGOtgWPQHflk/bvag0sHOLYFLBaPUwXXpNu16bkI6EEosMUZqsKJ56N4wXjQIg/sHu+2o9Gp9/CjGHrc1jOd9fCQi8qRYMPheaqu5tfl1C5Kau7IbSWQ9Cd9rZ4p1iUbjfewWOFfPABf1tGoePxRL3kQDT8NFQFEhThZSQfECJRQYxrAKFw69G8c1/AJuifkS09jBs8x9F4LtNrR4juH8Pgnu2JzcolDCNuK7Vr0dItmE1OliuvQXmsdPAqFLUvPhhe6LmxeHW17zwfr0BMXtycq8ossB4/uWtfj1COjJKLCSg6dYXpbMfhrav+AJKPhKG840lcLy5BFw41KLX5TkOzveWC7YVnncZVBZpzkwhRAr6QUNROutBqCq6iPaJe5xoWvoMPJ+sAc+1bFs5FwzA9WHybioAMI+4jk4vJaSVKLGQiEJvgGXSb1F01fVAiqp9wR2bYFvwGCIpiwUl+L/bjEj1waTrrE6PokvGtCteQrKR0lqGkun3wjD0MvFOPA/vp++gaekziLmbL0Tk/uQdcAJlw1UVXVBw+nntCZeQDokSCwkxDAPD2cNROuN+KIvFj6WOO2xoXPwkvF+uB88Lr4jnY1G41q0SbCsaPgYKPc0Jk/zEKFUoGjEB1hvmgNWLl+yPHNkH27xHENyTXJPiuJjLDs8XHwi2WUZOotovhLQB3TUyUJVVoWTG/dAPuUC8ExeHZ/0q2F95FnGBSpqerz5CzNGYdF1hLobxvBTf5gjJE9rep6L0tw9D0+MU0T58KADHivlwvfOyYI0X5werwceSi3tpe58KXZ9T0xovIR0FJRYyYdUamMdMgXn8DDApzhAJ7/setnmPIPSLYkHxgB/uj94W7E9zwqQjURiKYL3xThRedi2Q4umCf+tnsC18AlFbzYlrkdoj8G/bmNyZYWChU4AJaTNKLGSmH3AmSmc/BHVVD9E+nN8D+7J/wb3+dfDxWGJOWGBbnbpTVxQMGprJcAnJOj/XvLgXCnOxaL9YYy1sC5+A/5tEzQvH2hXC27SHnA91J/EFooSQ1KjyZpbguTi8n7wD7+drAYj/J1GWViFYfQiIJRfVKptxL3RpquRJSC7iwkG43nkZwV1bUvZTVvVE8Kfvk64zShUq//hkRg85IyTfUWKRZcIHf4TjjefBeV2C7fFIFFwseRudru9AlE2/O8PREZL9eJ5HYMcmuN97FXw0LNgnFoqAFygVXjRsFMxXTcx0iITkNZoKyTKa7sdqXvQZmNTG87xgUgEA5qsmZDo0QnICwzAoGHwuSmY+AFV556R2Ls4JJhWsrgCFw0ZJESIheY0Siyyk0Btguf42FF056aSaF1xU+EwRba/+UKcoGkRIR6QqLkfJLfehYOilJ10Xu48MZ10Eha5AitAIyWuUWGQphmFgOOcSlN76JyitZSmfVsRqDsD31YftPoSJkHzDKFUwjZgI6w13gNUbRJ9WAEDwu68Q/GG7tAESkodojUUO4CJhNMx/HOHqQ0ltjIKFUpPYXqrpfSrM19wMRUGhxBESkv3iXjdq//UQ4t7kujCsUgGFWgUAKDjzYhRdMR4MbdsmpE3oiUUO4GMxRBobBNsUqp+nSsJ7dyVqXhzYI1VohOSMmMclmFQAAPuL+8j/zaewLXoCUVutVKERklcoscgB3o0fgA8Hk64zLJtUcpjzeWB/6V9wf7gafLxlhzAR0hG4PxI+aIxVKsAwzEnXYrZaNC58HP6tn9EUIyGtRIlFluOCAXg2Cp9lwKpUIj/Fw7dxHRqXPIWYM7nsNyEdTaTuCALfb01uYNmTnlb8Eh+LwvXOy3CsXCBYkI4QIowSiyzn+epDcMFA0nVdn9NQMvUPYA1Foj8brTkE27xHEdi5OZMhEpL1XCIl8AsvvBLma25OuZ4itGcbbPMfRfjIvkyFR0heocQii3HhIDyfvy/YVnTZWGh7nILS2Q9D0/s00dfgIyE4Vy+G862l4CKhTIVKSNaK1FcjsOubpOuMSo2ii65Cwenno2Tmg4I1L46Lux1oeuHv8Hz6ruiuEkJIAiUWWczz5UfgAsmPYLW9BkDbtRcAQFFghPU3t6NoxMSTal78WmD7l2hc8DgidUcyFi8h2ci94W3BM0GMQy+BwpDYQXWi5sU5l4i/EM/D+8nbaHrxH4h7nJkKl5CcR4lFluLCIdGnFabLrjnpnxmGgWHopSi55T4orWWirxmzN6Bx8ZPwbfqIFqSRDiFiq4X/u+SpQEapQuFFVyVdM105CZbf3A42RaGsyOGf0DDvEap5QYgISiyylHfTBnB+b9J1bY9+0HbvK/gz6oouKJn5APSDzxd/4XgM7nUrYH/1P4gLvD4h+cS9YY3g0wrDOcOgLDQJ/oyuz0CU/vZ/oO4mfJ8BAB/0w7H8ObjeexV8LJqucAnJC5RYZCEuEob7s7WCbUWXjU35s6xaC/M1N8F87S1gNFrRfuG9O2Gb9wjCB39oT6iEZK1oUz38279KblAoUXTxyJQ/qzCaUDzl9yi8ZCzAiL9N+rd8AtvCJxBtpJoXhBxHiUUW8n79CThfciEfTbc+0Pbo16LX0J92NkpnPQRVZXfRPpzPjaYX/wn3R29QzQuSd8SeVhjPvhjKIkuzP8+wLIwXXoXiafdAUSR+jHrMVoPGBY/Dv/VzmmIkBJRYZB0uGoHn03cF20yXXpNUyCcVpbkEJdP+CMP5VwIQ+zkevi/eR+ML/4eYs6n1AROShaJ2G3zffpncoFCg6OLWnWCq6dwTpbMfgm7AGaJ9EjUvlsG5aiG4UPL2cEI6Ekossoxvy6eIe91J1zVdekLbe0CrX49RKFB02ThYp/wOrEH8DJFo9UHY5j+CwK4trR6DkGzj/vgdQGBbqOHMi6A0iz99EMNq9TBfNwOmMVNS1rwI7t4K27xHET66v9VjEJIvKLHIInwsBvfHwk8rilr5tOLXEjUv/gea3qeKjx8Owfn6IjjffhFcJNzmsQiRU8xph2/rF8kNrAJFw1r3tOKXGIZBwZALUDLjASjLqkT7xd12NC35O7yfvUc1L0iHRIlFFvHv2CS4P15d1R26vgPb/fo/17yYALAK0X6BbzeiccFjiNQfbfeYhEjNs/EDgEteM2Q443yoLCXtfn1VSQVKb/0TCs4eLt6J5+D5+C00vfRPqnlBOhxKLLIEz/PwfCF8JojpsrHtelrxSwzDwjD0MpTc+icoLKWi/WL2BjQu+ht8X2+gBWkkZ3DhILybP01uYFkUDR+dtnEYpQqmq66H5frbUte8OPQjbPMeQfDHHWkbm5BsR4lFlggf/BGR2sNJ11VlldD1G5T28dQVXVA660HoB58r3ikeg/v95XC89l/EA760x0BIuvm++VzwJOCCgWdDlaJ4XFvp+g5C6eyHoe7WR7QPF/TD8dp/4Vr7GtW8IB0CJRZZwvPFOsHrhReMSNvTil9L1LyYmqh5oRaveRH66btjNS9+zEgchKQDz3HwbFwv2FZ4wRUZG1dRaEbxlD+gcPg1qWtebP4YjYv+hmhTfcZiISQbUGKRBaL2BgR2f5t0nS0wouD0FE8U0uREzYtO3UT7cF4Xml78Bzwb3qSaFyQrBfdsR8xuS7qu6doLms49Mzo2w7IwXjSy2ZoX0YZqNC54DP5tX9AUI8lblFhkAc/G9aKHJLEptralk9JSgpLpf4Th/BEpevHwfr4WTS/8HTEX1bwg2UX8qd+VksVwouZF/xQ1L6IRuNa8BOfri6jmBclLlFjIjAsG4NvyeXKDQgHj0BQnLWYAo1Ci6LJrYb3xd2ALxGteRKoPwDbvUQS/3yphdISIC9ceRuhAcnl6hbkY+gFDJI2F1ephHj8DptE3glGqRPsFv/8GtvlU84LkH0osZObd8hn4SCjpesGgoaKHJGWatmd/lP72YWh6iRfk4sNBOFYtgPPtl6jmBZGd2I6qwvMuA6MQ31qdKQzDoOCMC1Ey8wEoSytF+8Vdx2pefL6Wal6QvEGJhYz4eByeL8UWm6Waksg8RUEhrDfcgcIrxjdT8+ILNC58HNGGagmjI+RnMa8L/u2bkq4zag0MZ10kQ0Q/U5V0QumM+1Fw1jDxTjwHz4Y3YV/2T8S9LqlCIyRjKLGQUWD3NsQFzufQ9OgHTWVXGSI6GcOwMJ57OUpuuS91zYumetgWPgHf5o9pQRqRnPerDUA8lnTdcOZFUKSoMSEVRqmCaeRvYJn0WzAp4gkf/BG25/6K4E/fSRgdIelHiYWMRB/fZnBrXFuoO3VF6cwHoRs0VLxTPAb32tfgWP4c1bwgkuGiEXg3bUhuYBgUnn+59AGloOs3GGWzH4a6azM1L179D1zvL6eaFyRnUWIhk3D1QYQP/ZR0XWkpgf6U02WIKDVWo4Vl7DSYx00Do9aI9gv9uCNR8+IQ1bwgmeffvgmc35t0XXfKYKiK018Qq70UhWYU3/QHGIddDaSoT+P/egMaFz9JNS9ITqLEQiaez0W2xp1/BRg2e/+z6AcOPVbzQnyqhvO60LT0H/B8/DZ4gTMbCEmHRBl88cJy2YphWRRePArFU++Bosgi2i9afzRR8+LbjTTFSHJK9n6C5bGY2wH/d5uTrjMaHQxnXShDRK2jtJSiZPq9MJyXasqGh/ezd9H0wtOIueySxUY6jtD+3YjWJy8aVlV0gbZHPxkiah1Nl14onfUQtKeIb4floxG43n4RztWLwYWSS5UTko0osZCB96uPBE9fNJ51EViNToaIWo9RKFF0+XWwTr4TbIFRtF/k6H7Y5j+K4G6qeUHSS/Sp3wVXZKwMfrqxugJYJsyEafRkIFXNi11bYJv/KCLVByWMjpC2ocRCYlwkDO/XHyc3MAyMWbbYrCW0vQagdPb/QNOzv2gfPhSAY+UCONcsAxeNSBgdyVfRxnoEf0g+MZQ1FMEwOMUi4yyUqHlxEUpnPABlaSfRfnFXExqXPAXvF++D56nmBclelFhIzL/tS3ABf9J1/YAzoLKUyBBR+ykMhbBOnoPCy68DUqwPCWz7/FjNixoJoyP5yLNRZEfVuZekrHaZzVSlnVB66/0oOPNi8U4cB89Hb8D+0r8Q97qlC46QVqDEQkI8x+XkYrOWYBgWxvOuQMn0+6AwiydIscY62BY+Dt+WT2hBGmmTeMAH3zcCZfCVKsnL4Kcbo1LDNOoGWCbOBqPVi/YLH/wBtnl/RWjvTgmjI6RlKLGQUHDvLkQb65Kuq6u6Q9OttwwRpZ+6shtKZz0E3cBzxDvFY3C/9yocK+aBCyY/vSEkFd/mT8ELTKkZBp8LhUH8jJtcojvldJTOfhjqLr1E+3ABH+yvPAvXuhVU84JkFUosJOT96iPB67m02KwlWI0WlnHTYR7bTM2LH7Ynal4cTq7nQYgQnuOEC2Ih+wrLtZeyyILim++GcdiY1DUvNn2UqHlhb5AwOkLEUWIhkZjbIbjYTFFoQsFpZ8sQUebpBw1F6cwHoaroIton7nGiaekzVPOCtEho327EBMrga3v1h7qiswwRZVai5sVoFN98NxSFZtF+0fqjaJz/GPzbv6QpRiI7Siwk4tu6ERC44Y3nDAejVMoQkTSU1jKU3HIfDOem2PHCH6t5sfQZxNwO6YIjOce75TPB68bzLpM4EmlpuvZG6eyHoe03WLQPHw3D9dZSON94HlyYal4Q+VBiIQGe4+Db8mlyA8PAcGb2F8RqL0ahRNEV42GdPCd1zYsj+2Cb9wiCe7ZJGB3JFXG/F4Hvk+uhKIxF0PcbJENE0mJ1BbBMnA3TqBtS17zYuTlR86KGal4QeVBiIYHQgR8QczQmXdf1HQilySpDRPLQ9joVpbMfhqbHKaJ9+FAAjhXz4XrnZcEFeqTj8m37UvgU0zMuAKPI36d+v8QwDArOvBilM+6HsiRFzQtnExqffwrejeuo5gWRHCUWEhB8WgHAcNZFEkciP4WhCNYb70ThZdemrHnh3/oZbAufQNRGNS9I4lwQuo9+piqtRMmM+1FwRop/d46D58PVsC+bi7iPal4Q6VBikWHxgA/+XcmPb1lDIfQp5kvzGcOwMJ4/AiXT74XCXCzaL9ZYC9vCJ+D/5lNakNbBRY4eECyspunRD6richkikh+rUsM0ejIsE2elrnlxYA9szz2C0N5dEkZHOjJKLDLM/+1XgMAec8MZF+T1os2WUFd2T9S8SLUrJhaF691X4Fg5n2pedGDezcJPK4wd8GnFr+lOGdKCmhde2F/5N9zrVlLNC5JxlFhkEM/z8G7+RLCN3hATWI0O5nHTYbpmKhhVipoXe749VvNir4TRkWzAhYPw79iUdJ3R6qE/7SwZIso+iZoXd8F48eiUNS98mz5E4/NPIUY1L0gGUWKRQZHqg4LHOmu69YGqpEKGiLITwzAoGHwuSmY9CFW5eC2CRM2Lp+H5ZA14jhakdRT+HZvBR8JJ1w2nnwtWpZYhouzEsAoUDhuD4pvuSl3zou4IbPMfQ2DHVxJGRzoSSiwySHTP/dkpDhnqwFTHal4UDL1UvBPPw/vpO2h6kWpedBQ+kfvIcBbdR0I03fqgZNZDzda8cL75AhxU84JkACUWGcJFwvBvT/5GwGh09Pg2BUapgmnERFhvuAOsPkXNi8N7j9W8+FbC6IjUIvXVCB/Zl3RdXdkVmsquMkSUGxR6AywTZ6No5G+AFFtxg999Ddv8xxCpOSRdcCTvUWKRIf7vNoMPh5KuG04fCjbF+RkkQdv7tETNi+79RPskal7Mg+vdV6jmRZ6ipxVtxzAMDGcNQ+mMB6BMMfUadzai8fkn4f3yA6p5QdKCEosMEd9zT2+ILaUwFsE65XcovHRc6poX33wK26InELXVShgdyTQ+FoVv28ak64xKjYLBQ2WIKDepyipRMuMB6JurebH+ddhf/jfVvCDtRolFBkRstQgfSt69oKroAnVlN+kDymEMw8J4wZUomXYvFKYUNS9stWhc+Dj8Wz+jmhd5IrD7W3ABX9J1/WlnQqErkCGi3MWq1DCPngzLhJmpa17s3w3bvEcQ2ve9hNGRfEOJRQaIPb41nn1RXh2PLiV11bGaF6eKr0/hY1G43nkZjpULqOZFHhCvXUFP/dpK1/8MlM56COrOPUX7cH4v7C/PhfuDVeAFSqgT0hxKLNKMj8Xg2/pFcoNShYLB50kfUB5htTqYr70FpmtuBpNim2Foz7ZEzQuBRX8kN0QdjYLfmpXFZdB07ytDRPlDabKieOrdMF40CkCKmhdfrU/UvHDYpAuO5AVKLNIssOdbcH5v0vWC086EQk+Pb9srUfPiPJTMbEHNixf+Ds+n71LNixzk++ZzQGBKy3jWxfTULw0YVoHC4Vej+OY/gDWaRPtFaw/DNv9RBL5LLlBGiBhKLNKMVrFLQ1Vcnqh5cc4l4p14Ht5P3kbTi/9A3OOULjjSLjzHJRKLX2NZFJxxvvQB5TFNt74onf0wtH3Fj53nI2E431gCx5tLwAnsdCPk1yixSKOYy47gTzuTriutpdDS49u0Y5QqmK6cBMtvbgerN4j2ixz+CQ3zHkHwh+3SBUfaLLh3F+ICxc/0pwyGMsW3a9I2Cr0Blkm/RdFV16euebFjE2wLHkOk9rCE0ZFcRIlFGvm3bxJ8fGs46yIwKbZLkvbR9Rl4rOaFePLGB/1wLH8OrvdepUOYspx/25eC1+mpX+YwDAPD2cNROuN+KItT1Lxw2NC4+El4v1xPNS+IKPq0SyOhg5LAMDCccYH0wXQwCqMJ1ht/n6h5waSoebHlE9gWPoFoI9W8yEZcJIzA7m1J1xWFJuj6nCZDRB2LqqwKJTPuh35IivcsLg7P+lWwv/Is4j6PdMGRnEGJRZpEG+sQqT2SdF3bawCUKQ4EIunDsMdqXkz/IxQmq2i/mK0GjQseh3/r51TzIssEf9gheOBYweBzwSgUMkTU8bBqDcxjpsA8fgYYjU60X3jf94maF/t3SxgdyQWUWKSJf8fXgtcLBp0jcSREXdUDpbMehm7AmaJ9EjUvlsG5aiG4UEDC6EgqdB9lD/2AM1E6+yGoq3qI9uH8HtiX/Qvu9a9TzQtyAiUWacDzvPAbokIB/YAzpA+IJGpeXHcrTFfflLLmRXD3VtjmPYrw0f0SRkeEcOEggj/sSLqutJZSxVqZKE3FKJ52D4wXXoWUNS++/ACNz/8fYo5G6YIjWYsSizSI1lcLnlOh63Ma1a6QEcMwKDj9/ETNi7Iq0X5xtx1NS/4O72fvUc0LGQV2fyu4sLZg0DlUu0JGDKtA4SVjUXxTczUvDiVqXuzcLF1wJCtRYpEG9Pg2u6mKy1Fy659QcHaqmhccPB+/haaXqOaFXMTvIzpwLBtouh+redFnoGgfPhKCc/ViON98AVyEal50VJRYtFNiGiR5NwijVEHf/3QZIiJCGKUKpqsmwXL9bWBTHGAVOfQTbPMeQfDH5EfyJHPiAb9gDRhVaSeoy8WfNhFpKfQGWK6/DUVXTkpZ8yKw4yvY5j+GSF3ygnaS/yixaKdIzSHBeUVdv0FgU6yoJvLQ9R2E0tkPQ91NvOYFF/TD8dp/4Vr7GtW8kEjg+61APJ50nZ5WZB+GYWA45xKU3vonKK1lov3iDhsaF/0Nvq8+pN1XHQwlFu3k3y5cQ5/eELOXotCM4im/R+El16SuebH5Y9gW/Q3RxjoJo+uYBGvAgKYTs5mqvDNKZj4I/ekpyqxzcbg/WAn7q88i7qeaFx0FJRbtwHMc/N8lL1Ri1Fro+onPQxL5MSwL44UjUTztHiiKUtS8aKhG48LH4d/2BX3rypC4z4PQ/j1J19WdukJVUi5DRKSlWLUG5qtvgvm6W8FotKL9wnt3JWpeHEj+70zyDyUW7RA+sk/4TIP+p4NVa2SIiLSWpnNPlM5+CLr+4tuC+WgErjUvwfn6Iqp5kQH+nVsAgd049LQid+hPPQulsx6Gqqq7aB/O54H9pX/B/eFq8ALTXiR/UGLRDrQbJD+wWj3M42fANGYKGKVKtF/w+29gm081L9JN7D7SDzxb4khIeyjNxSiZ+kcYLkhV84KHb+M6NC55CjEn1bzIV5RYtFFiGmRL0nVGq4euz6kyRETag2EYFAy5ACUzH4QyVc0L17GaF59TzYt0iLkdCB/6Kem6pktPqCwlMkRE2oNRKFB06VhYp/wOrKFItF+05hBs86jmRb6ixKKNQgd+AOdzJ10vOPWMlN96SXZTlVSg9NY/oeCsYeKdeA6eDW/BvuyfiHtdUoWWl/zfbRE8EZgWP+c2bY9TEicO9xY/OO5EzYu3llLNizxDiUUb0Sr2/MUoVTCN/A0s198GJkXNi/DBH2F77q8I/vSdhNHlF8FpEIaBfuBZ0gdD0kpRYIT1N7ejaMTE1DUvtn+JxgWPU82LPEKJRRvw8RgCu75Jus4WGKHt2V+GiEgm6PoOQtnsh6Hu2ke0Dxf0w/Hqf+Bau5xqXrRS1NGIiMB6FU33vnQicJ5gGAaGoZei5Jb7Uta8iNkb0Lj4Sfg2fUS7r/IAJRZtENz7PbiAP+l6wWln0tHOeUZRaEbxTX+AcfjVzdS82IDGxU8i2lQvYXS5LSCwVRsACmjRZt5RV3RBycwHoB+couZFPAb3uhWwv/ofxP1e6YIjaUeJRRsI1a4AAP1AmgbJRwzLovCiUSieejcURRbRftH6o2hc8Bj8326kb10tIDgNwrIoOI2mQfIRq9bCfM1NMF97Cxh1qpoXO2Gb9wjCB3+QMDqSTpRYtBIXjSCwa2vSdYXRBG138TLRJPdpuvRC6ayHoD1liGgfPhqB6+0X4Vy9GFwoKGF0uSXaWIdI7eGk69qe/aEwFMoQEZGK/rSzUTr7Iagqu4n24XxuNL34T7g/eoNqXuQgSixaKbT3e/Dh5A8M/cCzwLD015nvWF0BLBNmwjT6xtQ1L3ZtgW3+o4hUH5Qwutzh35m8VRugxc8dhdJcgpJp98Jw/pVIWfPii/fR+ML/IeZskjI80k70SdhKgT3fCl6n7XEdB8MwKDjjQpTMfADK0krRfnFXExqXPAXvF++D56nmxS8Fdm9PvqhQQD9AvAIqyS+MQoGiy8Ydq3kh/pQqWn0QtvmPILBLOBkl2YcSi1bgeR7BPcnHaSuMJmg695AhIiInVUmn5mtecBw8H70B+0v/QtybXPekI4p73YhUH0i6ru3ZHwq9+PZekp9O1LzoJV5YkA+H4Hx9EZxvvwguEpYwOtIWlFi0QqT2sGBBJN0pg2gapINiVOpEzYtJvwWj1Yv2Cx/8AbZ5f0Vo704Jo8tOgR+/EyyKpT9lsPTBkKygKCiE9YbbUTRiAsCK76wLfLsRjQseQ6T+qITRkdaiT8NWCO7ZLnid3hCJrt9glM5+GOquvUX7cAEf7K88C9e6FR265oXYfaTrN0jaQEhWYRgWhqGXoeTWP0FhKRXtF7M3oHHR3+D7egPtvspSlFi0QkDoDVGpgrbXAMljIdlHWWRB8U13wTjsaoARW5AG+Dd9lKh5YW+QMLrswMdiCP60K+m6qryKzgYhABI1L0pnPQj9oHPFO8VjcL+/HI7X/ot4wCddcKRFKLFooZjXJbjCX9fzFDoinZzAsCwKLx6F4qn3QJGiemS0/iga5z8G//YvO9S3rtDBH8ELnAuhp6cV5BdYtRbmsVNhHjc9Zc2L0E/fHat58aOE0ZHmUGLRQsEfhM+D0NE0CBGg6dILpbMfhvaU00X78NEwXG8thfON58EJbGHOR4JP/UD3ERGmH3gOSmc9BFWnbqJ9OK8LTS/+A54Nb4LnqOZFNqDEooVE11fQNy0iIlHzYhZMoyYDqWpe7NycqHlRk981LxK7qpK3a7P6Ami69JIhIpILlJYSlEz/IwznXZGiFw/v52vRtOTviLmo5oXcKLFoAT4WRXCvwLxwRWcozcUyRERyBcMwKDjzIpTOeADKkk6i/eLOJjQ+/xS8G9flbc2LaGMdYo7GpOu6vrSriqTGKJQouvw6WG/8HdgC8ZoXkeoDsM17FMHvk6sjE+nQ3dwCoQM/gBfYO63vN1j6YEhOUpV2QumM+1Fw5sXinTgOng9Xw75sLuK+/Kt5QbuqSHtpe/ZH6W8fhibFgnk+HIRj1QI4334JXDQiYXTkOEosWoDmhUk6MCo1TKNugGXi7NQ1Lw7sge25RxASeEqWywTvI5aFto94YSRCfi1R8+IOFF4xvpmaF1+gccHjiDZUSxgdASixaFZiXnh70nW2wEjVNkmb6E45PVHzIsW6Ai7ghf2Vf8O9bmVe1LyIB3wIH96bdF3brQ8UOqq2SVqHYVgYz70cJbfcm7rmRVMdbAufgG/zxx1q95XcKLFoRrShRvAAHF3fgTQvTNpMWWRB8c13wXjx6JQ1L3ybPkTj808hluM1L4I/7QS45LUj9NSPtIe6UzeUznwQulRnNcVjcK99DY7lz1HNC4nQJ2Mzgj8knw0C0LwwaT+GVaBw2BgU33xX6poXdUdgm/8YAju+kjC69BI6YwcA9Cm24xLSEqxGC8vYaTCPmwYmRU2h0I87EjUvDlHNi0yjxKIZwvPCCuh607wwSQ9N1z6JmhcpFgPz0TCcb74ARw7WvODjcQR/TK4Doywug6qkXIaISD7SDxx6rOZFV9E+nNeFpqX/gOfjt6nmRQZRYpFC3C8yL9y9L1id+OI7QlqL1RXAMnE2ikbeACiUov2C330N2/zHEKk5JF1w7RQ+sg9c0J90nXZVkXRTWkpRMv1eGM69PEUvHt7P3kXTC08j5rJLFltHQolFCsGfhE9h1J1CRbFI+jEMA8NZFx+reVEh2i/ubETj80/mTM0L2lVFpMQolCi6Yjysk+8EW2AU7Rc5uh+2+Y8iuHubhNF1DJRYpCC+757mhUnmqMoqUTLjAejPuEi80/GaFy//O+trXgjdR4xGB223PtIHQzoMba8BKJ39MDQ9+4v24UMBOFbOh3PNMqp5kUaUWIjg47HESvZfUZZUQFVcJkNEpCNhVWqYR0+GZcKs1DUv9u+Gbd4jCO37XsLoWi5qtyFqq026rutzKhil+JQPIemgMBTBOnkOCi+/Dkixiy+w7XM0Lnwc0YYaCaPLX5RYiAgf3gcuGEi6TmeDECnp+g9J1Lzo3FO0D+f3wv7yXLg/WAU+HpMwuubRrioiN4ZhYTzvCpRMvw8Kc4lov1hjHWwLH4dvyydU86KdKLEQERB5Q6R5YSI1ZZEFxVPvhvGiUalrXny1PlHzwmGTMLrUBBMLhoGu70DpgyEdmrqyG0pnPQjdaWeLd4rH4H7vVThWzBNccExahhILEUKPlhmtHtpuvWWIhnR0DKtA4fCrUXzTXWCNJtF+0drDsM1/FIHvNkkXnAg+FkXoYHLNAE3nHlAYxA+SIiRTWI0OlmtvgXnsNDCqFDUvftieqHlx+CcJo8sflFgIiPu9iNQeSbqu63kKmBRbAQnJNE23YzUv+opPyfGRMJxvLIHjjSXgwiEJoztZ+Mh+8AIL4rR9TpMhGkJ+ph80FKWzHoSqooton7jHiaalz1DNizagxEJAaP8ewW2m2t7iJ+oRIhWF3gDLpN+i6Krrm6l5sQm2BY8hUntYwuh+Mf5e4QWluhQnUxIiFaW1DCW33AfD0MvEO/HHal4sfQYxt0O64HIcJRYCxN8QxbctESIlhmFgOHs4SmfcD2VxipoXDhsaFz8J75frJa95ITidqNZC04UO7yPZgVEoUTRiAqw3zAGrT1Hz4sg+2OY9guAeqnnREpRYCBB6Q1QUWaAspvLDJLuoyqpQMvMB6IdcKN6Ji8OzfhXsrzyLuM8jSVxcMIDw0QNJ17U9+tJ0Isk62t6novS3D0PT4xTRPnwoAMeK+XC987LgFB/5GSUWvxJ1NCLmaEy6ruvVH0yKFfmEyIVVqWEecyMs42eC0ehE+4X3fZ+oebF/90nXYy572o9mDx38QXg6kZ76kSylMBTBeuOdKLzs2pQ1L/xbP4Nt4ROI2k6ueRHN8ROI04kSi18RKzRE6ytIttMNOKMFNS88sC/7F9zrXwcfj4GPx+BYuQD+bV+kNZbg3t2C12l9BclmDMPCeP4IlEy/FwpzsWi/WGMtbAufgP+bT8HzPOJ+D5pe+DvCh2gXCQDQM8lfEXtD1KYoC0tItlCarCieeje8n7wD7+drAQgX+vF9+QHCh36CqqwS0dpD8Hoc0J9+PliVOi1xCCXorKEQqvKqtLw+IZmkruyO0lkPwfXOywju2iLcKRaF691XENq/G3w0As7ngefjt1A89Z4O/3Sbnlj8As9xSY+JgcTZDcpCk/QBEdIGDKtA4SXXoPjmPzRT8+IQAt9uBABwPg/8mz9Oy/gxt0O4jHevAR3+DZfkDlajg/naW2C6ZmqzNS/Cxz43Ikf2Ibw/O8vrS4kSi2N4nkekvhqc35vUpqXHtyQHabr1TdS86NOyKpfejevAhYNtHo/nefA8j+D+PYLttL6C5BqGYVAw+FyUzHwAqvLOLfoZz4a32lUS/Ph9lMtlxRk+l6Nvo1AoBK/Xi2AwiGAwiGj02MI1nofC74amqQ7KhqPgaw6A93tROvUPdLYByVk8z8O/5RO4P1gFNHOWiPHi0SgcNqZFrxkIBODz+RAKhRAIBBCPx483QulugtZeB7b+CPiag+DDIVT96RkozdZ0/CsRIjk+FoX7ozfg3/RRs30tE2dD14JTsHmeh9frRSAQOPF5xHE/bwtXKpXQ6XTQ6XQwGo3Q6cQXZ2eTDpNY8DwPl8sFh8OBYLCF38p4HgqvE6bO3WAtK4danZ75Z0LkEK0/CsfrixBrqhftw6i1KPvdY1DoDYLt8XgcTqcTDocDkUgLt9xxHNQ+F8y9T4HZbIaSTjUlOSy0dyecby4FF0h+un2csqQTSmc/DEZkd0k0GoXD4YDD4fg5IW8BjUYDq9UKk8kENsXOFbl1iMQiGAyiuroa4XC4Xa9TVlaG4uJimicmOSt8eC+aXvh7yj6G80eg6LJrk657PB7U1tYiFmv7Caosy6JTp04oKiqi+4jkLN/mj+Fe+1rKPuZrb4H+Vwee8TwPh8OB+vr6dk11qFQqVFVVoaCgoM2vkUnZm/KkAc/zaGhowP79+9udVABAQ0MD9u3bl5bXIkRqXDgE59svNtvP//UGxH3un3+O43D06FEcOXKkXUnF8deqrq7G4cOHW/VNjZBsEXM0wvPRG83283yy5qQzRqLRKA4cOIC6urp2r5+IRqM4ePAgamtrs3ItRt4mFjzPo7q6Go2NycWu2iMcDuPAgQMtn04hJEtEaw9DVdoJCktpyuPX+VgU3s/fB5CY+jh48CDcbrdo/7bw+Xw4cODAz+ubCMkRkaP7oO7SC4oiS8p+cYcNge1fAUh8buzfvz/tnxsOhwOHDx8+aV1GNsjLqZDjSUW63wx/iWVZ9OjRA1qtNmNjEJIpfCyKWFM9oo11iNpqEWusRbSxDnFnY6JipkKJ0tv/F0cc7owm0Wq1Gj169KB1FyQnceEgYo31iDbWImarRbSpDjFbLeIeJ4DEURDmmQ/h4JGj7X7al4rBYEDXrl2zZnoxLxMLh8OB2trkffTpptFo0LNnz6xeRENIa/DRCKL2BsRstXBGOTg14gczpUthYSE6d+6cNW+KhLRXIuFIJO0NjAYBVeZ3c5SWlqK0tDTj47RE3n0ihsNh1NXVSTaWzWaTZCxCpMCo1FCXd0a8e39JkgogsSg0k08XCZEaq9FBXdUDwS79JEkqAMBms2XNFH3eJRZSL2ZpampCKBSSbDxCMo3jONTU1DTfMY1qa2tpMSfJK5FIBPX14lu7M6G6ujorFnNmLLE4evQohg0bhv79+2PgwIFYuXJlpoY6IRQKwe/3Z3ycX2tqapJ8TEIyxePxZHQ+WAjHcXA6nZKOSUgmORwOyccMh8OyfAb+WsYSC6VSiX/+85/YvXs3PvzwQ/zhD3/I+L+w3W7P6OuLcbvdkr8RE5Ipct1Hdrs9K75tEdJeHMfJklgA8t2/v5SxxKKiogKDBw8GkFhUYrFYMvoXfbyyphx4nofH45FlbELSKRwOyzZPG41Gs2aOmJD28Hq9sm0B9Xq9sk8rtjqx4DgO/fr1w3333XfS9XXr1kGtVgtOeXzzzTfgOA6dO7fsEJe2CIfDsn7bCQQCso1NSLrI/cFO9xHJB3LfR3KP3+rEgmVZ3H///XjuuedOzInu2LEDEyZMwOOPP44JEyac1N9ut+Omm27CggUL0hOxCLn/IukNkeQDue8juccnJB3k/jyQ+z5q01TI5MmTUVxcjLlz56K6uhqjRo3ClClTcM8995zULxwOY9y4cbj//vtx3nnnpSVgMXLvzIhEIjQ/THKe3PeR3OMTkg5yH/sg9/htSiyUSiXuu+8+zJ07FyNHjsSQIUMwd+7ck/rwPI+pU6fikksuwZQpU9ISbCrZUNKUEguS6+Sem82G+5iQ9pL791ju8du8eHPy5MkIBALgeR6vvvoqFArFSe0bN27E8uXL8eabb2Lw4MEYPHgwdu7c2e6ACSGZQ9UvCSHt1eYC/XfccQeARA2HXycVAHDBBRdImjUJxSA1elMmuU7u8vRyj09IOrAsK+vTP7nvozaN/vDDD+Pdd9/Fpk2bEIvFsHjx4nTH1WpyHwam1WopsSA5T6eTpvxwto5PSDpkw+eRnFqdWCxatAhPP/001qxZg0GDBuH3v/89nnrqKdmPP5b7DUnu8QlJB7l/j+Uen5B00Ov1so4v933UqsRi7dq1uP3227Fs2TIMHToUADBnzhx4PB689NJLGQmwpdRqtayPf+T+RSIkHeR+Q6L7iOQDue+jnHlisXXrVkyYMAFPPfUUrr322hPXCwsLMWfOHPztb3+TdU6JYRiYzWbZxi4sLJRlbELSSa1Wo6CgQJaxNRqN7G+IhKSD0WiEUtnmJYztUlRUJPuaQ4bPoz2S4XAYe/fulXxcq9WKiooKycclJBM8Hg+OHDki+biVlZWyfTkgJN1sNhtsNpvk4/bs2VP2JyZ5tQRbo9HAaDRKPq7FYpF8TEIyxWg0Qq1WSzqmUqlEUVGRpGMSkkkWi0XyBf16vV72pALIs8QCADp16iTpWovy8nJoNBrJxiMk0xiGQVVVlaRjVlZWyr5FjpB0UiqV6NSpk2TjMQyDyspKycZLJe/uZJVKJdlfrk6ng9VqlWQsQqSk1+tRUlIiyVhms1mWJ42EZJrJZILBYJBkrGz6kpt3iQWQWLxSXFyc0TFUKhW6dOlCtStI3iotLc34m6JOp6P1SSRvHX/6l+kPfJPJlFVT8nmZWABAWVlZxpILlUqF7t27Q6VSZeT1CckGDMOgS5cuGXuaoNfr0a1bN5oCIXlNqVSie/fuGUsuTCYTKisrs+pLbl7tChHicDhQV1eXtgPCDAYDqqqqZNtKRIjUeJ5HQ0MDmpqa0vaaZrMZFRUVlFSQDiMej6O2thZutzttr3n8C3Q2JRVAB0gsgMSR5jU1NfD7/W1+DZZl0alTJxQVFWXdf0RCpBAMBlFdXd2uI5lVKhWqqqpkq5VBiNw8Hg9qamraVfdJp9NJMsXSVh0isQAS37r8fj8cDgc8Hk+Lf06tVsNqtcJkMsledIQQufE8D4/HA4fD0apE/fhC58LCQnpKQTq8eDwOt9sNu93eqkTdaDTCYrHAYDBk9RfcDpNY/FIsFoPP50MwGEQwGEQkEgHP82AYBizLQq/XQ6vVntgTnM3/AQmRSzgcht/vRygUQiAQQCwWO3EfKZVK6HQ66HS6E/cTIeRkPM+fuH+Ofx7F4/ET95FKpTpx/xgMhpxZ19chEwtCCCGEZAY9kySEEEJI2lBiQQghhJC0ocSCEEIIIWlDiQUhhBBC0oYSC0IIIYSkDSUWhBBCCEkbSiwIIYQQkjaUWBBCCCEkbSixIIQQQkjaUGJBCCGEkLShxIIQQgghaUOJBSGEEELShhILQgghhKQNJRaEEEIISRtKLAghhBCSNkq5AyCEkNZQnz4dDKsAwyrAKtVgFAqwJ/5Z9XObSv3zn4/3FWhTKJVgWAYMw4BlGbBKFizDgGEZKJQsGBbibQwDhkWiTcGCZRNtaiULBcuc+J/mxD+zP7cxiX7KX/T75c+d9BoMAxWbiOGXf2YZBgoGUCnYX/0ZUDCJdpWCOenPDAOwYKBgceLPDAMoGCT+3U787PF2QMEyYIDE6574c6Ivw8XB8BzAc8Av/8xzQDwm3MYdu85xAM+D4WInfoaPRQEuDnBx8PE4EIuC5+IAx4GPRRL/Hz/W/su+x/6caEv05TkOfJwDF42Bjyf+HI9GT/yZ5zjEI7ETf+YiMXDHfoaPx0/8HHfiNXhwcQ48xyMeiR/7Zx7xaPzntvixNi7RxkXi4OL8sbGOxRPnwcd5RDkOcR6I8zwiHH/iz3EeJ/3zL//M4XjbL/sl/jyPPyTrvXkcPbEghBBCSNpQYkEIIYSQtKHEghBCCCFpQ4kFIYQQQtKGEgtCCCGEpA0lFoQQQghJG0osCCGEEJI2lFgQQgghJG0osSCEEEJI2lBiQQghhJC0ocSCEEIIIWlDiQUhhBBC0oYSC0IIIYSkDSUWhBBCCEkbSiwIIYQQkjaUWBBCCCEkbSixIIQQQkjaUGJBCCGEkLShxIIQQgghaUOJBSGEEELShhILQgghhKQNJRaEEEIISRtKLAghhBCSNpRYEEIIISRtKLEghBBCSNowPM/zcgdBCCFyCIfDeOKJJ3D//fdDo9HIHU4Siq/tsjk2IPvjaw9KLAghHZbH40FRURHcbjcKCwvlDicJxdd22RwbkP3xtQdNhRBCCCEkbSixIIQQQkjaUGJBCCGEkLShxIIQ0mFpNBr8+c9/ztrFcxRf22VzbED2x9cetHiTEEIIIWlDTywIIYQQkjaUWBBCCCEkbSixIIQQQkjaUGJBCOmQ7rnnHlx44YWYPHkyIpHISW3BYBCjR4/GxRdfjMsvvxwOhyOr4jvuiSeewJlnnilrPLFYDFOnTsWFF16I3/3ud5LE0pr4jpPy70qIWHzZ8LuWbpRYEEI6nG+//Rb19fX4/PPP0b9/f6xateqk9rVr1+LUU0/Fp59+iokTJ+Kll17KqvgAwOv1YteuXbLHs2bNGlRVVeHzzz9HIBDAl19+KUlMLY0PkPbvSkiq+OT+XcsESiwIIR3OV199hSuuuAIAcOWVVyZ9GPbu3RuBQAAA4HK5UFJSklXxAcC//vUv3H777bLH05JY5YwPkPbvSkiq+OT+XcsEpdwBEEKI1FwuFzp16gQAKCoqSnr83LNnT+zatQunnnoqGIbB119/nVXxud1u7Ny5Ew899JDs8bhcrhNnXQjFKnd8Uv9dCUkVn9y/a5lATywIIXmrvr4eF1xwQdL/eJ6Hx+MBkHjTt1gsJ/3c0qVLMWzYMOzatQv/+7//i7/+9a9ZFd8///lP3HHHHRmJSYjZbBaNJ1VbNsQn9d+VkFTxSfW7JiVKLAgheau8vBxffPFF0v9GjhyJDz74AACwbt06nH/++Uk/e/zN32QyweVyZVV8+/btw2OPPYYrr7wSe/fuxd/+9reMxHfc0KFDReNJ1SaVVDFI/XfV2vgAaX7XJMUTQkgHdPfdd/MXXHABf8MNN/DhcJjneZ6fOXMmz/M873a7+ZEjR/IXX3wxf/755/M//vhjVsX3S2eccYYs8RyPJRqN8jfddBN/wQUX8HPmzJEkltbE90tS/V0JEYsvG37X0o1KehNCCCEkbWgqhBBCCCFpQ4kFIYQQQtKGEgtCCCGEpA0lFoQQQghJG0osCCGEnDB16lQwDIPZs2cntd12221gGAZTp049ca2+vh5z5sxBjx49oNFo0LlzZ4wZMwYfffTRiT7dunXDP//5TwmiJ9mAEgtCCCEn6dy5M1577TUEg8ET10KhEF599VV06dLlxLVDhw7hjDPOwIYNG/DUU09h586deP/99zF8+HBZS2gTeVFJb0IIIScZMmQIDhw4gNWrV2Py5MkAgNWrV6Nz587o0aPHiX7Hn2Bs3rwZBQUFJ64PGDAA06dPlzxukh3oiQUhhJAk06ZNw5IlS0788/PPP39SsuBwOPD+++/j9ttvPympOM5kMkkRJslClFgQQghJMmXKFHzxxRc4dOgQDh8+jI0bN+LGG2880b5v3z7wPI9+/frJGCXJRjQVQgghJElxcTFGjRqFpUuXgud5jBo1CsXFxSfajxdtZhhGrhBJlqInFoQQQgRNnz4dL7zwApYuXZq0ZqJ3795gGAZ79uyRKTqSrSixIIQQIujKK69EJBJBJBLBiBEjTmqzWCwYMWIE/vOf/8Dv9yf9bF6c0knahBILQgghghQKBfbs2YM9e/ZAoVAktf/3v/9FPB7H2Wefjddffx179+7Fnj17MHfuXJx77rkyREyyAa2xIIQQIqqwsFC0rXv37ti2bRsee+wx3H333airq0NJSQnOOOMMPPfccxJGSbIJHZtOCCGEkLShqRBCCCGEpA0lFoQQQghJG0osCCGEEJI2lFgQQgghJG0osSCEEEJI2lBiQQghhJC0ocSCEEIIIWlDiQUhhBBC0oYSC0IIIYSkDSUWhBBCCEkbSiwIIYQQkjb/Dyxq+YjLMZwyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -956,7 +955,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLAElEQVR4nO39Z5Ak15UffP/vTVPV3ve0nenpsRjvMAYedAABGoBa6H0fQdyg9sOGQiRWKy0VDCq0sSFFLJdiPFSsECHxCQVX0or7vNwN7tKBIAguCUO48YPxGD/T0z3d095XVZp73w/Z3Zieysx2WZlZVecXweCwMrvycqaz6uS9557DpJQShBBCCCEB4FEPgBBCCCGFgwILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASm4AML27bx53/+58v++XQ6jeeeew4bN27Erl278PTTT+PmzZvBDZCQPLDS+wgA/uiP/ggdHR1gjOHcuXMBjYyQwhLEvRa1gg8szp49i7//+79f0Xv84R/+IS5duoQPP/wQn/vc5/CHf/iHAY2OkPwQxH30e7/3e3j33XexZs2agEZFSOEJ4l6LWkEHFhcuXMCzzz6Lnp4e7Nq1C3/2Z3+25PdIJpN45plnwBgDABw8eBDXr18PeqiExFYQ9xEAPPbYY2hrawt4dIQUjqDutaipUQ8gl7Zs2YLnn38emzdvxte+9rVA3vPll1/G5z//+UDei5B8kIv7iBCSrVDutYKesQCA48ePY9++fVmvP/roo6ivr3f9z+3bt13f61vf+hauXLmS9+tfhCxVkPcRIcSb172WT5iUUkY9iFyxLAs1NTUYGBhAMplc0Xv93//3/42//du/xW9+8xtUV1cHM0BC8kCQ9xEAdHR04Be/+AW2bdsWwOgIKRxB32tRKeilkO7ublRUVKz4H+i//Jf/gh/+8IcUVJCiFNR9RAjxVyj3WkEvhbS1tWHHjh3YtGkT/v2///fLeo/u7m78yZ/8CUZHR/Hkk09i165dOHDgQMAjJSS+griPAOCrX/0q2tra0N3djU996lNYv359gKMkJP8Fda9FraCXQgghhBASroKesSCEEEJIuCiwIIQQQkhgKLAghBBCSGAosCCEEEJIYCiwIIQQQkhgKLAghBBCSGAosCCEEEJIYCiwIIQQQkhgKLAghBBCSGAosCCEEEJIYCiwIIQQQkhgKLAghBBCSGAosCCEEEJIYCiwIIQQQkhgKLAghBBCSGAosCCEEEJIYNSoBxAVKSVM00Q6nYZhGJBSgjEGzjlKSkqQSCTAOcVdhPiRUsIwDKRSKViWNXcfKYoydx8xxqIeJiGxJoRAJpNBOp2Gbdtz95GmaSgpKYGmaXl1HxVVYCGlRCqVwtDQECYmJiCE8D0/mUyitrYWVVVVUBQlpFESEm9SSkxMTGB4eBhTU1OQUnqeyxhDaWkpamtrUVFRQcE6ITOEEBgbG8Pw8DBSqZTvuZxzlJeXo7a2FmVlZbEPMpj0+1QoIBMTE+jr60Mmk1nyzzLGUFtbi8bGRgowSNGSUmJkZAT9/f2wLGvJP68oChoaGlBXVxf7D0ZCckUIgYGBAQwNDS34cOtG0zQ0NTWhsrIytvdRwQcWlmWht7cXY2NjK34vVVXR1taG8vLyAEZGSP7IZDLo6enB9PT0it8rmUyira0NyWQygJERkj+mp6fR3d0NwzBW/F4VFRVoaWmBpmkBjCxYBR1YpNNp3Lx5c1lPV34aGhrQ2NgY22iRkCBNTEygq6vLd8ljOdra2lBdXR3oexISV4ODg+jr6wv0PTnn6OjoQGlpaaDvu1IFG1ikUincuHFjWVNNi1FXV4empiYKLkhBGx8fR1dXV87ev7W1FTU1NTl7f0LioL+/H/39/Tl5b8YYOjo6UFZWlpP3X46CzKQyTRM3b97MWVABAENDQxgcHMzZ+xMStenp6ZwGFQDQ09ODiYmJnF6DkCjN5iXlipQSN2/eXFb+YK4UXGAhpUR3dzds2875te7evbtgNi8h+UgIgdu3b4dyre7u7sCXKwmJA8MwcOfOnZxfR0qJ27dvB75cuVwFF1iMjIxgamoqtOt1d3fndGaEkCj09vbCNM1QrmXbdigfvoSEafYhN6wv+3Q6jYGBgVCutZCcBha/+MUvsGnTJmzYsAHf//73c3kpAM5TVtDJMQvJZDKB7DghJC4Mw8DIyEio1xwfH6fZP1JQJiYmAtlFtRQDAwOhzNYvJGeBhWVZ+Lf/9t/ijTfewMmTJ/Gf//N/xvDwcK4uBwAYGxuLZPZgcHAwNlNQhKzU0NBQUV2XkFyI4vd5ttZM1HIWWBw9ehRbt25Fa2srKioq8Mwzz+D111/P1eUARPfBlMlk6GmLFAQhRGQfTKOjo5RrQQpCJpMJdUn+XkNDQ5E/6C45sBBCYPPmzfjGN74x7/XXX38duq7jRz/6EQDgzp07aG1tnTve1taGnp6eFQ7Xm2VZSKfTOXv/hVBmOykE09PTkeYMRfVhTEiQJicnI7u2aZqBFOBaiSUHFpxzfPOb38T3vve9uSeb06dP44UXXsC3vvUtvPDCCwDgGjHlsuZDlEEFAJqxIAWB7iNCVi7q3+Oor7+spZAXX3wR9fX1ePnll9Hd3Y1nn30WX/7yl/H1r3997pzW1tZ5MxTd3d1obm5e+Yg9hJ0kE7frExKEqH+Po/5AJCQIxX4fLSuwUFUV3/jGN/Dyyy/jmWeewZ49e/Dyyy/PO2f//v04d+7cXAGcX/7yl3jqqacCGbSbqNdmhRCRr2sRslJhbTGN6/UJCULU30dRX3/ZyZsvvvgipqenIaXED3/4w6yun6qq4rvf/S6efPJJ7N69G//u3/071NXVrXjAXuLwpR6HMRCyElH/DlNNGFIIiv0+Upf7g1/72tcAOFstvVqJf+ELX8AXvvCF5V5iSeLQsyMOYyBkJaL+Hea84Gr2kSLEGIs0uIj6PlrW1f/0T/8Ur776Kg4fPgzLsvBXf/VXQY9ryaJuHcs5j/xDmZCVivo+ivr6hARBVZf9zF4Q119yYPH9738f3/3ud/HKK69g586d+OM//mN85zvfiXxttKSkJNLrx61tLSHLEfXvcdT3MSFBKPb7aEmBxWuvvYavfvWr+Ju/+RscPHgQAPDSSy9hfHwcP/jBD3IywMWK+i8y6usTEoSof4+jvj4hQYj69zjq6y86sDhx4gReeOEFfOc738GXvvSludcrKyvx0ksv4dvf/nakNcoVRYn0L7OioiKyaxMSlJKSkkjXZ8vKyiK7NiFBKS8vj+zamqZB1/XIrg8ATEadvhqg0dFRdHd3h37dZDKJdevWUY4FKQh9fX0YHBwM/brV1dVoa2sL/bqE5MKNGzciqSTb1NSE+vr60K97r4JKwa6srPTcoZJL1fYEkKECWaQw1NbWRnLdqsk+SJvqWJDCEMWXO2MMNTU1oV/3fgUVWHDOsWrVqlCvmeBA6ZUPkP7d38HuvxXqtQnJBV3Xc1pzxk05MlCvHkHmnR9BjFOXU5L/ysvLQ0/ibGxsjOTh+n4FFVgAQE1NTajrWw13ToFBAkYKxtFfwLzwLmSEuSaErISUEtLMoKGyNLStnwpjqO867lx/cgSZd38E68aZyIsMEbJcUgrAyqClrjq0JfKSkpLIl0BmFVSOxSzTNHH16tWcJ5PWT99FVf9HWa+zynroez4DXh79lBQhbpwPPhPCzADGNKSRAmwLkBJgDNI0kNHKcXMo9117m4cuoXSiL+t1vqoD+s5PgOm0U4TEkxQCsIyZ+2gK0kg79xHg3EepCUyWN6OnP7ezcJxzrFu3DolEIqfXWayCDCwAp0vj9evXc1batFaxUH3tPXjGoooKbeujUNofoKROEgv2xBBkagKwzbkAwoscH4K68QAmJibQ1dWVszE1WSMo6z7jfUKiFPruT0Gpb8/ZGAhZLCklxFg/ZGbKCSD87iEpwdJTUDt3Y3BwEH192cFzEBhjWLt2beS1M+5VcEshs5LJJDo7O3NSgayxsRFNnRuhrOrwPsm2YJ55E+bJX0OamcDHQMiSWQakZTh/9vtANFLgjR1gjKGyshIdHR05CY7b29tRu347WFWD90mZaRiHfw7z4geQgpYYSbQYY5DpCUDYvvcQAGBqFErrRgBOImcuunsrioLOzs5YBRVAAc9YzLJtG729vRgdHV3xe2mahtbW1rkcDikl7FvnYF54z/lF88BKKqDt/jSU2ty1jSdkMayeS8ACdSpmZyvuDSYMw0BPT08g2+dKSkrQ1tY2N20rhQ3ro8Owrn/o+3OsuhH67s+Al1WteAyELJcQAnbPRTDVu1aElBLMSEHt2Dnv9enpafT09CCTWfnDZmVlJVpaWiIv3+2m4AOLWZOTk+jr60M6nV7yz3LOUVtbi8bGRtfiQWJ8CMapX0NODHu/CePQHngIytodtDRCIiHSUxDDPf6zFekp8NpWKC6zCFJKjI6Oor+/f1kl/FVVRUNDA2pra13vAbu/C8bp3wCZlM+b6NB3fQpK09olX5+QlZJSQkyNQo4P+N9HE8NQO3a45gcJITA4OIjBwcFlLdXruo6mpiZUVlYu+WfDUjSBxaxUKoWhoSFMTEwsmNxZUlKC2tpaVFVVLViNUNoWzAvvwb51zvc8pXkdtJ2f8I12CQnS7LqwmB5bMKiVE0PQNh5c8P2mpqYwPDyMyclJ3w9HxhjKyspQW1uLioqKha+fmYbx4W8hBvzzOtR1e6BuOgBG3VBJSKQQEMM9kKb/w6kUAszMQO3Y4XueEALj4+MYHh5GKpXy3QXFOUdFRQVqa2tRWloa+4fTogss7mWaJtLpNAzDcKauGAPnHCUlJUgkEsv6x7P7rsM4/Qbgk1fByqqh73savCLcWgGk+Ejbgj3Y5btUN3duagJKYwd4+eILZEkpYZomUqkULMuau49UVUUymYSu60u+j6SUsG+chnnxA0B6By28rhX6ns+AJeK1vkwKjzDSEEO3F3WunBiCunY3mLb4HRpSSmQyGaTTadi2PXcfaZqGkpISqKoa+2DiXkUdWOSKTE3COPWPEMN3vE9SVGjbn4Datim8gZGispilj3vJyVFoGx7M8agWT4wNwDj5a8ipUe+TEqXQ9z4FpbYltHGR4mJPDkOMDy7qi10KASZsqO1bQhhZfFFgkSNSClhXjsO6fMz3PGXNNmhbHgGLQbU0UhiklBCjfRCpCd8PQzk1BmgJMD0JOT0OpWl97BIjpWXCPPsW7J7L3icxBnXzIaidu/LqqY7Em5QC9uBtYHYnldd5E0NAaRWYokKOD0Jdtw9MDae4XFxRYJFjdn8XjFO/9l8aqWqEvvcp8NL4JuOQ/CBtC/bATadOhdc5UkKODUBp3gCmqrDH+sFSU1DX7w1voEsgpYTddR7m+XcAn3wO3tTpFNRawhQ0IW6EmYEYuOWfoGlbwMQw1I7tEFNjEJkpMDCorTQLTYFFCERqAsaJX0GO9nufpCWg7/40lMY14Q2MFBSRnoQY6vHdTiotA0hPQe3YOfcFbN29AaWyHqykIqyhLosYvQvjxOtOkS8PrKwK+t7PgldS/hJZHnt8EGJyCIz53EeZaTAwKKu3gnFnttnqvugE60r8tn+GjQKLkEjbntk1ctb3PHXDPqgbH/T9pSbkfvZwL0R6gaWP6XGw0kooTevzdslAGmknf8lv1whXoe14HGrb5vAGRvKelBL2wC2nMq3feRPD4PXtlNfjgwKLkFk9l2GeefPjevIueH079D2fph4JZEFCCIi+a/CuLT+z9DE5AqVlI5QC6F8jpZzJXzrqe56yegu0rY/SEyRZkLAM5z7y+V2RwgamxqF2bKfP5gVQYBEBMTEE4/ivfLPdWbLcybuoaQpvYCSviMwU7P6b/hUALQPMMqGs3lZwX7D2wG0nf8nwrivAqhqg732a8peIJzExBHvsLpjinXApMykwVYfSuilvZ/vCRIFFRKRlwDz9Juzeq94nMQ5ty8NQOrbTLzOZxx6+AzE96v9hmJoEq6iH2lC4Dbyc/KXXIUfvep+kJZxqnX69fUjRkVLCvnsd0jbn8iRcz5saA2/sgFIZj5bk+YACiwhJKWHfPAPzwvu+hYCUlg3QdjxB1ToJpBCwez6CVBT/5LLpcSgtm8BLykMcXTSksGFeeB/2TZ8uqQDU9XuhbtpP+UvE2fXR8xHgU1xNSgGWnnYSNOmzd0kosIgBe6QPxolfAWnvBk+svMaZ0q1YfFVEUlhEagJ27xXf3RuzBXqU1s1FV+7aunMF5uk3FshfaoO++zNgCVojL1b2+ADEUA9YsszzHGmZYFoSyqq1NFu8DBRYxITMpGCc+jXEYLf3SYoGfc+noayiBkzFxhrogpwcXuDD0AAvr4VSU7xddMXEsLO1e3LE8xyWLIf+4DPgfu3aScGRUsLuuQQpLN9aJ9JIQ6lrAy+AROeoUGARI1IKWJePwbpy3Pc89YGHqMpgkZC2BfvWGUgt4Z+kaRpQVq0Fp74ZTv7Smbdg37nifZKiOnVjmjrDGxiJjMykYN06A5RV+eZTwDLBWzaCF1iic9gosIgh++5NGB/+xrdap9L+ALTtj/vfJCSvialRWF3nwSrrF1zW4KvWLdiBt5hIKWHfOgfz/Lu++Uvq5kNQ1+2mIL2A2cN3IAZugfkkX0opwbUElAYqUBgECixiSkyPO1O6YwOe5/DaFuj7nqY91QVGSgm77yrk+OACH4YCvLQKSjVtSfYiRvqcXSPpSc9zlLbN0LY/Qf16CowUNuxbZyGFDeaz3VgKG0pVE3h5dXiDK3AUWMSYtC2Y534H+/ZFz3NYaSX0B5+lpM4CIc0MrGsnAD3pX2JbCPC6NnCfnAvikEYKxonXnXLnHnhNM/R9n6WkzgIhU+Owrp0EKuvAtKTPiRK8cS14kTcNCxoFFjEnpYR14zSsC+95n6Tq0Pd8hvqM5Dkx1g/rxmmw2hYwzWd7G+NQGjtoGWwJpLCdIL3rguc5rKTCCdKpz0jeklJCDNyC3XcVrK7N/x5RdSj17bT9OAcosMgT9t2bME7+2qeOPYO29REqppWHpBCwuy9AjPaB1bX75lOwRBl4TTP9Gy+DlBL2jTMwL7wHwONjT9Wg7/4MFdPKQ9IyYV8/CWEZvhWLpZTgFXXg5bV0H+UIBRZ5RIwPwTj2qm93R2XNVqc/Aj3N5gWZnoJ15SikovqXb5cSrGoVlLKq8AZXoOy7N51S4JZPkL7lIShrd9IXT54QE0OwrhwFq6gHWyBXgte20u6pHKPAIs/IzDSM469BjPR5nsPrWqHvfRpM91lbJJGzB2/Dvn4SrLoJzC9HhjEodW3+a8VkScTEEIxjv4ScHvc8R1m9Bdq2xyhIjzEpJcSdS7C7L4E1rgZL+lSaVVTnPvIpg0+CQYFFHpK25ezT77nkeQ4rq4L+4Oco0zmGpG3BvnEaYrALrHGNf5KmmoBS21JwDcTiQGZSME68BjHc63kOBenxJY0UrKvHIKdGwRrX+v4bsWQ5ePUqyqcICQUWeUpKCevaSVgfHfY+SUtA3/sUlPrCbUKVb8TUKKzLRwAzA7aqw3erMCutAq9soOn4HJK2DfPsW7C7P/I8h5VWQd//LFVijBEx0gvr6nGAK8595DMLwSsbwEqr6D4KEQUWec7uvQ7jw3/07o/AGLRtj0Fdsy3cgZF5pJQQfddg3zoLqLrzYehTSZNXNYKXUj5FGKSUsK6fgnXxA++TVB363qehFHCn2Hzg1KY4B9F3FSipAGtY453szBh4TQvlU0SAAosCIMYGnPVivyJAHTugbXm46BpTxYFTm+I45EgfkCx3lj+81u0ZA69upvoUEbD7rsM4tUCQvvVRqB3bwx0YAQDI1ASsy0cgp8eAijpnW7bXLARXnSVEn54gJHcosCgQMj2FzPFfQo72e57DG1ZD3/MZutlCJMb6YV05BphpoLzG2Vvv+WGozHwY0np+VMT4IIyjr/oH6Wu2Q9v6CAXpIZmrTXHjQ0DYYDVNYFWN3j9AeUmRo8CigEjbgnn6t7DvXPU8h1XUIXHg875dMsnKObUpLkL0OGv3rHoVWPUq7x9Q9ZkPQ8pYj5oTpL8GOXrX8xy+qgP6nqfoyyvHnNoUpyCGbgOMgdW3g5VVe57PEqXg1c0U9EWMAosCI6WEdeUYrMvHPM9hpZXQ93+edozkyFxtislhAAysvhWs3Hs7KdNLnKJXtK0xNpwg/Q3fDqm8thn6vmdox0iOiIlhWFeOAJlpJ0mzscP3gYiVVIJXNVKSZgxQYFGgrDtXYH74W0DY7ifoJUgc+Dx4VUO4AytwYqjb6VFgmwDjC24nZSUV4FWr6MMwhqSUsK6egHXpiOc5rKIWiQNfoBnAADm1KS7Dvn0ekPLjZGefJUJeUQdWVkP3UUxQYFHAxOhdZI790on43aga9H3PQKlvC3dgBUjaFuybpyH6bzovKNrC20nLa6mscB6w71yF8eFvAeGe1MlKKqAf+ALNAAbAqU1xHHJsJldML1l4O2n1KvAS7+6lJHwUWBQ4kZqAceQVyMkR9xM4h77r01Ba1oc7sAIipkZhXTkKzJZa15NOwR6fjom0nTS/iJE+ZI6+6iThutGTSOz/PHi1T1Ih8SVG+pzaFFbGeaGkEqxhtc92Ug5e00zbSWOIAosiII0UMkdf9U1G07Y/TrUulmhebQopnBcXs520phk8QVPn+UZMjsA4/HPvHSOKBn3fZ6nWxRJJYcPuOgfRe0/S+ULbSRUVSg1tJ40rCiyKhLRMGCd+BTHQ5XmOuvFBqBsepKn5RXBqU5yAHLmnHPSitpO20odhHpOpSWSO/Nx7BpBxaLs/BbVlQ7gDy1MyNeEkOk+Nzr3GaprB/HK/aDtp7FFgUUSksGF++FvfTHdlzTZo2x6lmvo+xNgArKvHACP18YtVDeA1zd4/RNtJC4Y00jCOverbCFDb9hgV0vLh1Kbogn3j1LwEc1bfDuZTOp22k+YHCiyKjJQS5oV3Yd8443mO0rwO2q5Pgym0/fFeUgrYtz+uTTGLVTeB+ayt03bSwiNtE8aJ1yH6b3meo27YB3XjfpoBvI+0TNg3TkEM3r7nVebkU5R55x2x0krwStpOmg8osChCi2lgxuvboO/7rG8/i2IiM1OwrhyDnBia9zqrbQGrrPf8OdpOWriksGGeftO3y7Cyeiu07Y/RDOAMpzbFUSAz9fGLjDk1Kny2ZdN20vxCgUURs7ouwDzzFgD3XwFW1YDE/s+BFXnW9bzaFPdgdW1gFT6Fr2g7acGTUsK6+D6s6x96nsOb1kHf/amizgnIqk0xi3FnO2my3OMnGXh1I20nzTMUWBQ5u+86jJO/9iykxcqqnD36pcV3Yzu1Kc5A9N+47wgDa/AvLUzbSYuLee2kb3dUXtfqVOnUim8GUBppWFePfVybYhZXwFat9X5woe6keYsCCwJ76A6MY68CluF+QqLUqdLpM+VfaMTUmFNOeLY2xSzGnFbNPoEWFewpTtbtizDPvDn/ifwerLLe6dNTRF+UYqQP1rXjgJmZf0BRnaDCq4Ac406ys0+BORJfFFgQAE5Xx8yRV3yqdOrQH3wWSl1LuAMLmZQS4u512DfPfFybYhbjM2vBPtO2NU3gntO6pNDZd2/AOPG69wxgaaUzA+iTpFgIpBAztSlcdqApGlhTp/e2a+rym/cosCBzxPS4UwBoesz9BK44BYAa14Q7sJC41qaYxblTTdOzJwQDr6XCVwSwh+/AOPbL7Kf0WYkSJA4+B+6Tn5PP3GpTzFF1J6jwSgrnCpTatqJcMiokFFiQeWRmGpkjr0COD7qfwDn0vZ+Fsqoj1HHlmmttillcAVvVCZagaVuyOGJ8aGYGcMr9BL0EiUNfBK+oC3dgOWYP3IJ9/UP3vipawrmPvErdK6oTVPiUwif5gQILkkWaBozjv4QY6nE/oYCCCykF7O6PILovup+gqM6HoVdrbMadaprUOpvcR0yPO3163J7cASe4OPhF8Mr8Dy6kbcK+/iHEoEdlX73Eyanw2hmjaFDqWqmAXIGgwIK4krYN48N/hOi95n4C49D3PQ1l1dpwBxYgmZl2pmzvq00xR9WcoMJ3LZhKdBNvMpNC5ugvsndEzNKTzrJIHgcXYnIE1uUj3rMziVInqPAqEKfqzn1UxNtxCw0FFsSTlALmmbdg3/Z4mmcc+t6noTTlX3AhhnpgXTuRVZtijpoAa+70foLiqvOERQXEyAKkZcA4+irE8B33E7SksyySZ7uupJQQvVdgd53z3AmDZLlTp8KrQJiWcIIKqkpbUCiwIL6klDPBxQX3ExiHvvcpKE2d4Q5smaRtw751GuLu/bUp7qElwZrXeX/YKZrzYUhrwWSRpGU6/UW8lhfzLLhwalMchxzz7piMkkrwxjWAR4E4p9R9C/X9KEAUWJAFSSlhnn0LdpdPcLHnKSjN8Q4uxPQY7MtHIVPj3iclSsGb1nl+GNK0LVmuhYOLhJNz4dfZMwbE6F0n0dlr1wsAlNeB17d6HmaJUqd/DpU6L0gUWJBFkVLCPPc27Fvn3U9gHPqez0BpXhfuwBbBtzbFvSrqwOu8PwyhJpzlD5q2JcskbdNZFsnD4EIKAfv2eYg7l33PW7BDabIcvLqJSt0XMAosyKI5wcXvYN86534CY9B3fwZKy/pwB+ZDmgas6ycgvda3Z/DGDqC0Cl59U6AlnS2lFFSQFZK2CePYLyEGu91P0BJIHPgCuE/H3LDJ1ORMbYoR3/N42xZA9Z7No6Z8xYECC7IkUkqY59+BffOs+wkxCi7E+KDTSdGtNsUsroCv3QkI4TmbQWvBJGjStmaCi9vuJ8QouLAHumBfP+Vem2KWloSydhek4VG5FwArrQKvbKCgoghQYEGWzAku3nWWFtwwBm33p6G2bAh3YDOkFBDdH8H2qk0xg5VVQ+ncDTE54h1UJMrAa5poLZgETtqWUy9mwCO4UHUkDn4BvHpVuAObIW0T9o0PIQY8alPMYDXNUNoegJjwKKoHgJXVOK3PKagoChRYkGWRUsK88C7sGx7BBRi03Z+C2rox3HFlpmFdOQbp8yEHALx5A3jLBoiRXu++DrQWTHLMCS5e8/7yVnWnAWBNU6jjEpMjzmxfetL7JMahrNkOVtMEMdIHr2VEXl4LVl5L91ERocCCLJsTXLwH+8ZpjzPCDS4WrE0BAGoC6vq9YBV1sIe6vYOKRNlM1jp9GJLcilNwsajaFABQUgF1w35A1Wfqc3h0dC2vgVKRH1toSXAosCArIqWEdfF9WNc/9DiDQdv1Sahtm3I3BtuGfesMxN3rvuexqkao6/cBXIU93A3Y7mvGzla4FgoqSGikbcM48RpE/y33E1QN+oEvQMlhcCHNmdoUoz61KeAkOisdOwHbhD3c490mvqwavKKe7qMiRIEFWTEnuPgA1vVTnuc4wcXmwK8tpsdhXz7iX5uCMSjtW8FbNgLCdmYqPGY1mF4CXttCORUkdE5w8SuI/pvuJ6ga9P2fh1LbHPi1F1WbQtGgdO6BUt8GaaRnggqP3CRK1CxqFFiQQEgpYX10GNa1k57naLs/A7U1mIROKSVE/w1nGcavNkWiFOqGA+AVtZC25RtUQE9CqWml3R8kMtK2YZz8FcTdm+4nKBoSh54LbLfIomtTlNdC3bAfLFkGaWac+8grqCipBK9qpKCiiFFgQQIjpYR16TCsqx7BBePQH3wGSuOalV3HMmBdOwk57FFkaAava4fSuRtM1SBnZyosw/1kqlNBYkIKG8aJ173LzutJJB76ErhPEapFXSc9U5ticoHaFK2boLRtAePcCSqGe3wSnivAq6lORbGjwIIEygkujsC6esL9BK5CP/iFZU/nLrY2hbJ2F3jDGjDGZoKKHsDymOalipokZqSwYZz8NUSfe94QS5ZDf/hL4CUVy3p/e/A27OsnPfOMAABaEuqGB8GrnNkRaRn+Cc/JMvBqSngmFFiQHJBSwrp8FNaV4+4naAkkDj2/pFbRUsqZ2hQe/UpmsNIqqBsPgM184EohnCcsM+3+A6oOpa6NggoSO05w8Y8Qfddcj7OyaiQe+hJYomTx72lbM7UpPJJEZ9+7pgnqun1gWsL5OcukhGeyaBRYkJxYcLdIotSZzi2rWvi9Flubomk9lDXb5oIEKQXs4TvesxuK5gQV1FCMxJQUtlOh02MrKqtqQOLQc2CqvuB7ialRWJePLKo2BW9aNxckLJSbRAnP5H4UWJCccVquvwH79keux1lppfPElSzzfA8xfMepTeGVGwEAqg51/T7wmo+XV6QUEMO93iWGFXUmqKDW5yTepG3COPyKU8zNBa9rhb7/c54BspQSou+q0+PHL9E5WQ514wHwsup7rk0Jz2TpKLAgOSWFcLbQeSSisco6JA49PzflOvdzi61NUdkAdcODYPrH08FSSoiRXsjMlPsP8ZmgQqWgguQHaaSR+eCnkBNDrsf5qrXQ9z6d9QUvzcxMbYo+3/fnDR1Q1u6cF5wsLuGZggqSjQILknPStmAc/YVnq2he2wz9wOfnZg/k9DisK0cgp31qU4BBWe3Uprh3XVdKCTHaB+k13cuVmaBi4aljQuJEpqeQef/HnveF0v4AtB1Pzt0PYqwf1pVj3vlFgDNz17kHSn37/GtRwjNZAQosSCikaSBz+KeQYwOux3njGmh7n4YcvA375mnPzHMAM7Up9oNXzE/+lFJCjPd7ByRccZ6w7psdISRfiKkxZN7/MZBxX+JTO3dD3XwQdvcFiJ5Lvu91b22Key2Ym0QJz2QBFFiQ0MhMynnimhrNPsgYlPpW/9bMAHhdG5TOPa7LGGJyGMJjqhiMOx+GFFSQPCfGB5H54KfuVTK5AqWhzXumYfa0e2pT3GvBGT9KeCaLQIEFCZVITcB478fzP7hUDby8GkzxeQK6rzZF1vtOj0OMefQ4YNyZqdCTKxw9IfFgD/fCOPzzeYE405NgZZX+OQ/31abIet/xQcgpj4JZlPBMFokCCxI6MTGMzPs/Acw0WEkZWEm57/53pzbFfrCSSvf3y0zNdFh0/WlnLVhf/F5/QvKB3X8LxrFfAlKClVWAJ0t9z2fVTVDX7/OctRNToxDj7kuVlPBMloICCxIJe6AL1sX3wDT/JEretA7Kmu2e67kL9S3gNc3gyfIVj5eQODJvnIbo+ch/aYKxmdoU6z0DeJGe9NzOSsuIZKlonxAJnRi+A/vmad+gQgoBVr8G6tpd3kHFXNtmj6CisoGCClKQpJSwe69C3r3uG1RI24KyZieU5g2eQYU0UhAj3ttReU0zBRVkSSgDh4RGChv2rbOeJYrnzjMzEJNjEKOD4FUNrk3LpLCdzHWvvgVlNfMK/RBSKBZbm0KkpyGnJmCceQuJ8hrwitrs97IM5z6C+8Q1r14FnvBfYiHkfrQUQkLh1KY4Cjk95n2OlJCpScjUPYWtuAr90Beh1DTdc57/djjqsEgK1WJqU0ghIKfGIY17zkmWIfHwP5nXtMypqnnbs/8Hr6gDL88ORghZCAUWJKeklBD9NxeuTcFV2CN3AculdLBegsQjvwdeWrngdjinb0ErBRWkoEghFlWbAozDHr7req+xyjqnhL6qzzTn63bfsgonYZpXNtB9RJaFcixIzkjLgH3lqNOe2Seo4HWt0PZ+Furqbe4nGCkYx151lkgmBr332Ku6sx5MH4akgMj0FKzzby8YVPCWjVD3fQ68vs39fcaHYJz6RwhhQ4z2egcViTIKKsiK0IwFyQkxMQTrylHPCoEAnNoUHTvBGzvAGJtpWvYm7NsXXU9X1u4Er13l8V4qlHraY08Kiz3YDfv6Cc/lCgBObYr1+8CrnXtD2iaMI69ADLvv8lC3Perdal1LOtuzqVMpWQEKLEigpJQQPZdg374Ar4QwYKY2xYb9YKXza1NIIWAc/yVE/63551c3Qunc6f4URdvhSIGRtgX75mmI/pu+57HqVTO1KeYXf5NmBpn3/gFycn6xK97UCaV1vfubKRqU+nYq1U1WjAILEhiZScG6egzSq8jOjAVrU1gGMu/9eK6TIyurhrJxr+f5vLaVMtdJwRBTo85sX2rC+yTGoKzeDt7sU5tiagyZ9/4emEniZHUtUDs8lhupOR8JEAUWJBBipBfW1ePeLZYBQNWhrtsLXtuy8PulJpB590cAGNTN+z0/8Hj1KnCPipyE5BMpJUTfNdi3znrWZgEAJMugbjgAXl6z4Hvaw3dgHP4ZWHkNlPW73Zc4GINS20Yl70lgKLAgK7LY2hSssh7q+gfBljCzYA/3QowPeK4HM60EikeiGiH5RJoZWNdOQHpVv5zBG9ZAWbtzSblEVvclSAjXQlpSSiiVDYsKUghZLCqQRZZNpsZhXfavTQEwKO0PgLduXlKWuZQCUpieQYXd3wU52AP+yO8tKVghJG4WU5sCXIXSuRtKw+olvbe0TUDTwDx2ZdldFyCEhH7wC5RbQQJDMxZkyaSUEAO3YN/40L82hV7qdFKsrF/6+/vUqhCj/bCvfQgA4DVN0A9+kdo4k7wjpYB9+yJEz0e+57GyGqcJ3xLL00spYA92e7ZQt3uvQdxxZhqVts3Qdn6CtpiSQFBgQZZEWibs6ychhrp9z2O1rVDX7VlWMpiYHIaYSdzMPjYK+/LxeWvQSssGaLs/TR+KJG/I9JRTiXZy2Pc83rIRSvtW/1bobu8vJcToXci0ewKoGLoD++a5ea+pmw9BW79nSdchxA095pFFW05tiiVfIz3lGVRIIwP76qmsxDb7zhWw8hpoGx9c8vUICZsY6oZ17SRgu1SZnaUloK5/cK42xVLJqVHvoGJyFPat81mvWx99AF5WBaV53bKuScgsCizIgqSUEHcuwe5aqDZFJdQNB7JqUyz6OpYB4dVYiXEoDathJ05BTmd/IFuXj4KVVUNt3bCsaxOSa4uuTVE1U5timbs0RGYKYmLQ/aCqQ2nscAJ0l8DGOPUbJEoqwKsbl3VtQgBaCiELkMZMbYqxBWpTrOqEsmYHmLK8BDApbNhD3Z7bVXltC3iiDGJiGJn3/sH9PK4gceg58HsalhESB2JqDNaVI4uoTbEN3KfF+UKkZcAevO2+XZVxpwCWqsO+exPGsV/C9UEhUYrkIy+AlSwtp4OQWRRYEE+Lqk2haFDX7wWvbV32daSUECO9kJkp1+O8on7edji7vwvGsV8Abr+69zQsIyRqUkqIu9dh3zwTWG0Kz2sJ4XQr9QrOa1rAk2Vz/9u6fhrmhXddz2WV9Ug89DwVzCLLQoEFySKFDbvrHETvVd/zWEU91A1Lq03hxp4Y8kxiY8ly8OqmrCc46+ZZmOd+5zGuWiQe+idgGn0okugsujZF/WoonbtW1Odm4eA8uwW6lBLm2bdhd2XnWwAAX7UW+r7PUlI0WTIKLMg8MjUB6/KRBWpTAEr7liXXpnAjUpNOp0U3asJpLObREMk4947zJOiCN66B/uCz9KFIIiHGBmBdPQYYKe+TuAqlcxeUhjUrv97EEMQSg3PAeYgwjv4CYtB9l5e6bg+0Bw6teHykuFBgQQAspTZFCdQN+5dcm8L1mmbGmbp1+xXkCpS6djDV+ylOCgHj2KsQA12ux9WN+2mnCAnV4mtTVDuJzgHkMYj0JITXrIiqO/eRz3ZVr4Zls/S9T9NOEbIkFFiQmdoUpyCGbvuex2pboHbuDWSJQQrbSTLz2HKn1LYuaolFmgYy7/8D5IT705q+//NQGpdWrZCQ5ZCZKVhXjs01z/PCmzdAWb1tybUpXK9pGjPBuVey5mrf4HyWmBpD5t2/d6/+qepIPPICeHn1isdLigMFFkVOTAw72ep+tSkYh7J2J3jj2kCWFqSUEMN3IA33a/LKBvCy6kW/n5gedz4U3aadtSQSj/1T8JKKZY6WkIWJoR5Y104sojbFPvDqYHYtLRScL7Xrrz3kNCxzC1JYRR0Sj/yTFeWBkOJBgUWRcmpTXIZ9+7z7UsQMVlIJZeOBQHdZ2OMDkFOjntfjVY1LDmCcD8Wfuv5/YdWNSBz60rK3whLixalNcQai/4bveayq0WnCF1AHUSdZ8w6kxwPBUoPzWdatczDPvu16TGndBG3XJylviSxo5XNxJO9IIwXr4ruwu875BhV8VSfU7Z8INKgQqXHPoAJaEryqYVkfXEpdC9TN7klmcrTfc1sdIcslpsdgnX3TP6iYqU2hPvBIoG3JxcSQZ1DBSirASquW9b7K6q1Q2ja5HrN7LnnuICHkXlR5s8iIkb6Z2hTujYkAOLUp1u0Fr1t+bQo30kxDjPa7H+QKlJpmzx0gi6F27oIY6YPou551zL51DlZNE1SPD01CFmvRtSkSZVA37s/a5rlSIjUBOeWeaAktsawZv1mMMWjbH4cYG3TNFTHPvwNe1UiVOYkvmrEoElLYsG6ehvXRe75BBauoh7bzU8EHFbYFe7gX7iXBGZSalhV3KGWMQd/5CbAy96c18+xbEOP+iXWE+JGmAevSYWf3lE9Qwevboe34ZOBBhTQzEKN3PS6qOPfRCoJzAGCKBn3v04BbcSwhYJz4FaTh0+KdFD0KLIqATE3AOvfWggWvlLYHoG59dMUFr7KuLyXs0T5AWK7HeVVDYNPETEtA3/tZgLsEKbblfCiaPpVECfEgxgdgnvkN5Mgd75O4AmX9Pqgb9i9qN8ZSSGHDHrkDr349Sk3zioPzWby8GvrOT7qPIzUB49Q/gtLziBcKLAqYlBL2wC2YZ37rndcAOLUptj4GpX3Lip923IiJIc9CQay0CnyZ68FeeGUdtB1PuB6TU6MwzrxBH4pk0aQUsG5fgHX+d74Fr1hZNbQdnwyk4FX2GKTToM/2Cs4bwfSSQK+pNHdC7dzlekwMdMG6cjzQ65HCQYFFgZKWCfvqMdhXj/sWvGK1LdB2fAq8siEn4xCZKc/1YKaX5Oy6atsmKGu2uo+p9xrsG6dzcl1SWGRmGtb5dyC6L/qex5s3QN32BFiOtjXLqVHvZM0cBOez1M2HwGtbXI9Zl4/C9ihOR4obBRYFSEwOwzzzW4hBn4JXjENZuwvqxoM566khbct7PVhRPcsMB0Xb8ihYlXuSmXnxfdhDPlPapOiJoR6Yp38D6dWCHADUBNTND0Pt2AHGc7OdWRpp7zboejJnwTkAMM6h7/kM4LE8apz8Rwi/jq2kKFFgUUCklLB7LsE69xbg0YwIcLajqds/AaVpXc6+2Oembj1mS4JcD/bCFAX63qcALeE2QBgnX4dMe/89keIkbRvW9VOwLh/2LXjFqhqh7fwkeE0wBa9cxyJsJz/JDVegVDfnvK4ES5ZB3/MU4HYdM+3kLdk+bQBI0aHAokBII73I2hRrndoUHjsnAhvP1Aikx3o0r6wH04Lb0++Hl1ZC3/1p94OZaScJTfhsGSRFxalN8QbE3ewty3Pm1aYINq/hXlJKiLF+78qa1U05D85nLVwn5r1QxkHyAwUWBUCM9DnZ6mMeNSIApzbFxoNQO/fk/MNIGiknYdMFS5SBlVbn9Pr3UxrXQN3g3oxMDPXAunQk1PGQ+JFSwu67DuvMG5Cpce8TE2VQtz4BpXVTzmcKZGocMj3peoyV1SypXHcQ1M5d4E2drsfsW2dhdV8KdTwkvqhAVh6TQsDuOgfRe8X3PFZR52x/C+GDyNkS5zV1q4JXr4qkJLC6cR/EaB/EQHbeiXXtJHjNKigeH5qksEnTgHX9BOSwf84Nr2uH0rk78G2k7mPKQIwNuB/UkuAVdTkfw/1m68Rkxocgp8eyjptn3wKvqo9kbCReaMYiTzm1Kd5cMKjgbQ9A3fpYOEGFlE6ypke9CqWmKWcJbgthjEPf/WmwpHubauPD30L4bcklBUmMDzqzfX5BBVegrNsLZcOD4QQVUszkVbgsaTLu3EcR9etgWgL6vqe968QcpzoxhAKLvOTUpnhj4doUWx6DmqPaFG7k9BikR9IoL6/N6Xr0YjC9xKko6Pb3YRkwTv4a0mdrLikcUkrYty/COv/24mpTNHaE9mUuxgYAy/3LmVevirzDKK+s960TY577XbgDIrFDgUUekbYJ68psbQr3WQEAYDXNTjnhqtxtQ8sam5mGGHffEsf0ErCASxsvF69ZBW3rI67H5NgArMvHQh4RCZtTm+J3sLsv+J7Hm9fntDaFG5Ga8MzxYKVV4B4zbmFT2zZBWe1eJ8buuQTrjv9MKilslGORJ8TkCKwrRwC/7ZGMQ+nYAb6qM9SpUinETF6Fy9QtV3Jer2KplDXbIEb6YPdczjpmXT0J3rgaikdRIJLfxHAPrGsnPWcEAACqDnX9PvCa5vAGBkBahrMLxHVMCfDK+lDHsxBt6yMQYwOuSePm2bedLeUl8QiESLhoxiLmpJSw71yGde5N/6AihNoUXsS4z5a4qlWhbYlbLKeD4xNgZdUuRyXMU7+hdeICM1eb4tJh36CCVTU4TfjCDipm++m4NTZjbCavIl4f10xRnToxbs3KzAyMD39DpfOLVLx+U8k8Tm2K92DfOutfm6JxLbQQalO4EdPjkB6V91hZDXiyLOQRLQ5TNae+hcuHtUxNwDz/TgSjIrkgp8dhnVugNgVma1M8GkkukJgYBEz3rsO8shHM7cs7BnhpJbRtj7keE0M9sKh0flGiwCKmxOjdmdoUHiWxgZnaFAegrst9bQo30jKc2Qo3WiL22854dSPUje71Lezuj2Df8e8GS+JNSgn77nWYZ9+AnParTVEKddvjodSmcCPSU56J2KykAry0MtwBLZHSuhFKy3rXY9ZHH3jmXpHCRYFFzEghYN06C+viu55PMIBTm0Lb+UnwurYQR/cxKQXskV73mRTGQyk1HAR1/R7PaW/j7FuQKfcCRSTepGXAunwE9vVTvk34eF2b04QvoiDY6afjUfdF0cAr3XvdxAljDNq2x923cgvhVLf16MpKChMFFjEiU5Owzr0FcSc7qfBevHXzTG2K6JYZxPig95a4qsZQ9vsHgTEObfenALfxmhkYp39L68R5RowPwjz9W8jhHu+T5mpT7I/sd9U3rwLMSX7k+fERzfQktF2fdD0mJ4ZhfnQ45BGRKOXHb20RsAe6YJ75rWeLcQCAlnRqU6zeGmkil0hPulbeAwBWWgke4va8IPiuEw92w75xJuQRkeWQUsLunq1N4d5iHHC2bWo7PhFqbQo3cnLYs4aG00/HpXlejCn1bVA7d7kes2+chu1S9ZYUJgosIiZtE9bVY7CvHlu4NsXOT4Vam8KNtC2fLXF6Tls455LSuglK8zrXY+ZHH0CMu/c+IfEgM9OwLvwO9u0FalM0rYe6/UmwkmjzFqSZhpgcdj3GkmVgpeEnYgdB3XQQzGNZyfjwt5BGOuQRkShQYBEhMTkC88wbEANd3icxDqVjJ9RNh2LxBCPGBzzWrBmU6vhtiVus2S2ocNvFImxaJ44xMXzHme3zSxJUdaibH4K6dmdkZeVnOUsgHknZiups0c6D/CQ3TFGc3VZuf8eZKSdviZYWC15+fgvkufm1KXySA0sqoG5/Ekrz+lh80IjUhGe3RV7VEIvAZyWYnoTuuU48RF1QY0YKG9aND2Fd+sC/NkVlNLUpvIjJYc/xKtXR9dMJCq+sg+bRYl30XoPdQ11QCx0FFiGTZhrWR4upTdExU5uiOrzB+ZC25cxWuGCJssinloOi1LdD7dzpesy6/iHsQVonjgM5PQ7r7JsQfdd8zmJQ2rdC3RJNbQo30kw7uRUuWHlNbMa5UsraHeD17a7HzHO/g/Db/kvyHgUWIRKjd2Ge/g2k1zQoACgalA0HoK7bG5uKlVJK7yUQxp1dIDGYUQkKrRPHl1Ob4sZMbQr3BGIAH9emaNscm99Np2upx72v6uAx6acTBMaYM/vnNotpmU51W9fdMKQQUGARgkXXpiivdTop1kdTm8KLTE/6L4HEJAAKClPUmXVil9sjPQXz7Nu0ThwBaRmwrxyBff3kImpTfDJ2BdrEhN8SyKq8zU/ywpJl0Lc/4XpMjPTCunoy3AGR0BTWb3IMyfQkrPOLqU2xCerWx8FiVgLbbxcIS5SBJfNra+li+a0T271XXRuYkdwRE0Mwz/wWYmiB2hSde2ZqU8SrBLY00p5byVl5LZiWDHlE4VBa1kNp2+x6zLp8DGLUY4cZyWsUWOSQPXjbyVafXKg2xaNQV2+LXTEcKaUTVLg2Riq8JZD7KWt3gnvMHtE6cTic2hQfwTr3NpBZoDbF9k9AWbU2dr+TUgrYXqX5C2wJxI229VEwt7LkcqYqp+XewJDkr3h9kxUIaVuwrh6HfeUo4LNFkdU0zdSmiGfZXpmegMy4d1TlVY0FtwRyP8YY9J1e68QGzDNv0pJIDslMCtaFd2DfPg/AJ9G5aZ1TmyKmPTX8l0CaYhcIBY1pOrRdnwKQ/f9TTo3CpN1WBYcCi4CJqVFnynbglvdJc7UpHortFk1nCcRjF0iyzL0vQAFiJeXe68SD3bC7Pwp3QEXCqU3xG0iPnUgAnNoUmw5BXbsrtls0/ZZAeHltbO//oCm1zVA37HU9Zt84A+GX0E7yTmE/cnqQUiKdTiOVSiGdTsMwDAghwBiDoihIJpMoKSlBSUkJVHVxf0VSSoi+q7BvnfOo/T8jWQ5144HYbCN1s+ASSGVhL4HcT2lZD6X/Juzu7P335oX3oDSuAUuURjCyaAkh5u6jVCoF0zQhpQRjDKqqzt1DyWQSirK4L34pbNi3zi6wjdSpTaGufxAsEd/tmc4uEI8GY2oCrMCXQO6nbtgHu78LMitnS8I4/SYSj74Q2wAxl2zbnruH0uk0LMuClBKcc2iaNncPJZNJ8Jgtl3thsojmck3TxMjICIaHh2FZi6uiWFFRgbq6OpSVlXl+mUozA+vqcUivD5EZvKEDytqdsV9CENPjEB5rwry6Ke96gQRBmhmk3/oh4LI0pLRsgL7nMxGMKhrpdBrDw8MYHR2FEAtvGWSMobq6GrW1tSgp8Q4EZGoc1uWj/ttIwaC0bwGPqMX5UtjjA57t0JX61UUzW3EvMTGMzDt/B7j83qibD0Jb7z6rUWiklJiensbw8DDGxvx+3z+mKApqampQW1sLXY9XcvL9iiKwEELg7t27GBpafr+HRCKB1tZWlJbOfzIVY/2wrhwDTJ/aBorqZKt7FIyJE2lbsAduuc5WsGQ5lJhUL4yC3XsdxonXXI/pDz4LZVVHuAMKmWmauHPnDiYmJpb9HmVlZWhtbZ33wSilhOi/Cfvmad9tpEiUQt2wP3bbSN1IIwV7qNv1GC+vA68ortmKe5mXj8K6fCz7AFeQeOz/C15eHfqYwpROp9HT04NUyr0B3WJUV1ejubl50TOBYSv4wGJychI9PT0wzWAyj+vr69HY2AgGwL59AeKOf3laVl4LdcP+2G0jdSOlhBi5A+mWfc8V5ykr5rMtuZY5/hpE3/Ws11myHIkn/q/YbXMMysjICHp7exc1Q7EQxhiamppQW1sL2Bbs6ychPL6E536mthXquj158fcrpYA90AXYLp85agJKfXvsZ1tySdo2Mu/8netuOV7XCv3gFwvy70dKiYGBAfT3B7PFVlEUtLa2orIyfknLBR1YjIyMoKfHZ9/7MpWWlqIlfQfcawvZDN66CUrblthtI/VCSyALk+kppN/6/7lm+SsdO6BvezSCUeWOlBJ3797F4KBPg69lqq6qQsPgebC0+84jAE5A27ETPOIW50tBSyALs4d7Ybz/Y9dj2o4noa7eEvKIcksIga6uLkxO+vSGWqampibU19cH/r4rkR/feMuQq6ACAKanp9Gt1EG4bJ8CEOvaFF58e4EkyymomMGSZdAeeMj1mH3zDMSIf55NPpFSoq+vLydBBQCMjo3hbmmb50ZSVloZ29oUXqSR8gwqeEUdBRUzlNpmKGu2ux4zL74P6Rds5hkhBG7dupWToAIA+vr6MDDgs3sqAvnxrbdEU1NTOQsqZqVNG3er12W9zqrjXZvCjbML5K77LhCu5NX/lzAoq7eA17rnmhhn3oT0yxPIIyMjIyvKS1qMcRMYqcjOPeKrOqFu/0Rsa1O48e0FoiXAymrCHVDMaZsPAm5LxGYG5vl3wh9QjvT19WFqKreB0t27dzE+Hp+CfQUXWNi2je5u//XaoEzYCiZKZ750GYPSsQPq5vjWpvAi05PueRWYKYRVhFvA/DDGoO140rWXiJwYhnXtVASjCpZhGOjt7Q3lWoMoRVqd+YKZrU3RuTvvfu/ExLB7XgUYlKpVeTPrEham6dC3Pe56zO69BrvvRsgjCt7k5CSGh9272Qatp6dn0bsdc63gAou7d+8Glqi5qOuptbBLa6BuexJK84a8+/CQwvZZAqkAL5JCWEvFy2ugbnjQ9Zh15RiEXxn3mJNSoru7O9Sqon3lq4GKeqd5WG1LaNcNirQM70JYFcVTCGuplKa1UJrXux4zzr0NabpXLM0HYT7kzl7vzp07oV3PT04Di+effx41NTX4vd/7vVxeZo5lWaFFh7OElBhv2gpenp/TnGJy2H2LH1fAqxrCH1AeUdftBnPbNigEzDNv5W257+npaUxPe/flyAXDFki178rLQmNzBeXc0BLIgrStj7iXzU9PwfzocPgDCsjo6GjoMwjj4+PIZLw7aIclp4HFH/3RH+H//J//k8tLzBN2UHHvdYPYhhc2aWa8E80qG/JuKjpsjCvQdzzpekwM34HddSHkEQUj13kVcbvuSsn0JKThXpOAlkAW5psQfess7OFwluSCJKWM7Pc5qu/Be+U0sHjyySdRURHObgIpZWR/obZtr6hoUBSklLC92qHrJUXTC2SleE0TlI4drsfyMbvdsqzIksCmp6dj8bS1FL5LiaXVtASySEr7A+B1ra7HzDNvQtr5lRA9PT0Nw4hmGScOD7pLDiyEENi8eTO+8Y1vzHv99ddfh67r+NGPfhTY4JbCNM1IE1fCnjpeKZma8KwWWmy9QFZK23wArMQlELMMGOd+F/6AViDq3+Oor79UvkuJRVxdc6kYY9C2PwG4zJLKyRFY106EP6gVyPUuED9SysgD9CUHFpxzfPOb38T3vvc9jIw4yUqnT5/GCy+8gG9961t44YUXAh/kYqykPGoQ8ukDUQobYsK9NgErqwHT4l/dME6YqkPzyG4Xfddh92ZX6oyrqO+jqK+/FLSUGCxeXg11o1dC9Aln102eiPr3OOrrL2sp5MUXX0R9fT1efvlldHd349lnn8WXv/xlfP3rXw96fIuWTvv06gjp+vmSrCcmhtyfshQVvMg6LgZFWdUBpWWD6zEnuz0/pvij/kDKlwCdlhJzQ+3cBVbp0gtGCmdJJE8+Y6O+j6K+/rICC1VV8Y1vfAMvv/wynnnmGezZswcvv/xy0GNbEjviNTgpZV780ksj7dk90nnKKrgdyKHxzG7PTOdNdnvU91HU118smRqnpcQccBKiPwG4VDUWI32wu86HP6hliPr3OOrrL/tb5MUXX8T09DSklPjhD3/o2mXtqaeewgsvvIBf/vKXaGtrw7FjLh3tApIPX+pRk1LCHvd4ykqUgiXi3ygtzliiFNqWR1yP2bfOQ4znpjR2kKK+j6K+/mI4S4nuGf+0lLhyvLoRaqdHQvRHRyCNaGen80HU99GyA4uvfe1rAIDBwUHP1q2vv/46BgYGnN4a3d148EH39bMg8Bg8acf9KUVOjwGuU/KMnrICorRtAq9vczkiYZ5/N/IbfiFR30dRX38xxMQgLSXmmLrxAJhbfyIzDdOt5XrMRP1ZGvV9tKyr/+mf/ileffVVHD58GJZl4a/+6q+CHteS6Xq0TwmapkX+y+RH2pbnUxYvrwFTtZBHVJg+zm7PvrXEUI9ry/U4SSSi3R4Z9fUX4iwlum/HpaXE4DBVg7bdo9z3rbOxT+SM+vc46usv+S74/ve/j+9+97t45ZVXsHPnTvzxH/8xvvOd74RaRttNSUlJpNcvLY13xUAxMejeZEzRwPK0amhc8bIqqJ27XI+ZF96DtONRz98N3UfefBM2aSkxcErjGvDGNdkHZPxn/6K+j6K+/pICi9deew1f/epX8Td/8zc4ePAgAOCll17C+Pg4fvCDH+RkgIuVTCYjvX7U/5B+ZCbl1K1wwasawBg9ZQVNXb8XcClPLVMTsK5/GP6AFinq3+Oor+9HTo8BFi0lhknb8gjg8vkkBm9D9N8Mf0CLFPXvcdTXX/Q3yokTJ/DCCy/gO9/5Dr70pS/NvV5ZWYmXXnoJ3/72tyPNROWco7IyuhbLUV7bj2/CZrIcnJ6ycoKpOrQHDrkes66egExNhjyixUkmk5EtKyqKEtsZC1pKjAYvr4a61iOR8/x7sa3IWVFREVmgWVpaClVVI7n2LCbjPJ+0RFNTU7hxI/xWuxUVFVizxmXKLgbE5Ih7MSzGoDSsAVPoAzFXpJTIvPf3kKPZgZ3SuhH67k9HMKqFDQ0NhdYy/V4NDQ1YtWpV6NddDHu0z33WT9GgNKymWb8ckmYG6Tf/X8ClH4v6wCFo6/ZEMKqF9fT0zBWRDFN7ezuqqqpCv+69CupuKC0tjSRppa7OpaBLDEjbhJj0esqqo6Aixxhj0Lc+6nrM7rkMe6Qv5BEtTnV1dSRZ5bW18dxRQUuJ0WJaAtrmg67HrCvHY9uPJ4rvBVVVYzF7XlB3BGMMra3ujWxypaqqCuXl8ayyJ8YHAbcJKVUHK6sOfTzFiNc0QWnd5HrMPPdOLBPQFEVBc3NzqNdctWoVNC1+gS4tJcaD0r4ZrLI++4Blwrx0JPwBLUIymQw9uGhtbY1Frk9BBRaAM2vR0NAQyrVUVUVLS0so11oqaaQg0+7r+AolmoVK23wQULLXPOVYP+zuSxGMyJ+0LVRyC+Ul4cz+lZSUoL7e5UsjBmRqHLBculQyBu72RUdygjEOzWv27/ZFCJflxqhJM4OGJIMeUr5DTU1NaN3EFxJthkeONDQ0YGpqKud9B9ra2jyLg0XJecryaDJWUgGWiG/mfSFiJeVQ1++F5fJkZX70AZTmTjA1/IRJaVuQU6OQkyMQk6Nzf56d9m/Z/wXcuDuc063kiqKgvb09loGuFMInYZOWEsOm1LVAaVkP+87VrGPm+XehP/R8JL9H0jQgp0YgJkcgJ0dn/jwKZKYBVUfbg1/Eja7bOZ2dTCQSaGpqytn7L1VBBhacc6xZswY3b97MWTOWNWvWxHYJRGam3PsYMAZeQU9ZUVA7d8HuupC9Vp+ZhnX1BLTN7jtIgiTGBmD333Q+/O4JINzwpk7o1Q1YW1qF69evw7KCr72hKArWrl0beXE7L3JqxKPCpkZLiRFRH3gIdt+NrH8XMdIL+85VqK3ujQCDZA/chhjqmR9AeFDX7oBaUYmOjg7cvHkzJ8FFIpHA2rVrY/WQW3BLIbNmP7SCnhrK1fsGRUrp2ZOCl9WCuUzJk9xjigpty8Oux6zrH0JMuTeGC3QMiVLY3ZchBrp8gwowBnUm017Xdaxbty7wOjG6rqOzszPy+jNepG1BTLln9PPK+ljOsBQDXlIBdd1u12PWxfch7dwXamRaAvbtCxBDd3yDCuhJKO1bAABlZWXo7OwMfBtort53pQo2sACcmYvVq1ejvb09kGiuuroaGzZsQFlZfBO25PQY4HZzcYWesiLGmzrB61ySi4WAefH9nF+fJcugbXNfp76X0rIBvOzj7WqapmHdunVYtWpVIF+oDQ0NWL9+feRlh/2IyWH3xGe9hCpsRkxdt8e1Lb1MT8K6eirn1+fVjXOBtx917c559U1KSkqwYcOGQHY/McbQ0tKCjo6OWM1UzCrowAJw/gGqqqqwYcMG1NfXL+sfoby8HB0dHWhra4tdZHgvKYTzgeiCV9RRH4OIMcac1upuLaH7rsMevJ3T68tMCnbXRf+TGIfiUo6cMTYXENTU1Cw5wJi9D9evX49Vq1ZF3iTJj7QMJ0B3oVTQbEXUmKpB9So+d+0khN9sXADE5AjshXr+JMqgtG3OellRFLS0tKCzs3NZ20I556irq8PGjRtRW1sb29/FgiqQtRhCCExMTGBiYgLT09MwjOyMb0VRUFJSgtLSUlRXV8d2Dfh+9sQQpFtgoepQ6lfH9pew2Bhn34J963zW66yiFolH/z85CQDtwW6Y537nWmToXkr7A9AeeGjh97NtjI2NYXJyEqlUyjXBU1VVlJSUoLy8HFVVVbEOyu9lD99x8pTuw5LlUGrC3YZL3EkpYbz/E4iR7EJuSst66Hueysk17Z5LsD467J57cw/1gYehtmcHFvczTROjo6OYnp7G9PS0a/VqXdfn3UdxDspnFV1gcT8hBEzThJQSjDFwzqGqat59CUvbgj1w03X6lte0gCdp+jYuZCaF9Fv/r2sLe23bY1A7tgd3LWHDunoC9s2zC5/MFSQeeQFsGb8rtm3Dsqy5+0hRlLwJJO4ljRTsoW7XY0rDmkh27xB3YrQfmXd/5HpMP/Q8lLrgSgFIMwPzwrsQd28ueC4rqYD+8O8t6wHBsizYtj13H2malheBxP3yb8QB45wjkUggmUwikUjEvv25FzEx5BpUML0EzKUZFokOS5RA2/Cg6zHz0hFIw2VHzzKI6XEYR3+xuKACgNK+ZVlBBeDM8t17H+VlUOG3Tbu0moKKmOHVjVDaH3A9Zp4PrvicGLmLzAc/WVRQAQDqut3LnnVUVXXefZSPQQVAgUVBkGbGKeTjgjLY40np2Obert7MBNL91O69CuODn0J6fFECABKl4LUzT3WK5tnsqVjI9KTHNm0OXhHPcuPFTtt0AHBpACfHB2H3Zte7WAopBaxrp2AcexXwKRvOKmrByp3fD1ZWDd68bkXXLQQUWBQAryI+LFkBpsVzO1+xY1xxWkK7sG6chvTbxuZDWiaMs2/DPPu2++6gGbxhNRKHnoe285NgJRVQ1mwF04v3d0VK6d+9lMcv8544O53UDftcj1mXjkIKsaz3lekpGMdfg3XtJADvmQ9l9VboB74AbeeTgKI6O1aod0xhFsgqJiIz7ZpoBjDwing2RyMOpXE1eMNqiIGu+QdsC+bVk9C3ugceXsT4IMwzb0JOu89eAQC4AnXjfijtD8zNZGk7ngQrjb5xUZS8t2mrtE075tSOnbBvnsuqzSKnRmH3XILqsVzixe6/BfP8O645UHO0BLRtj0FpWA3AmanQdn0avJaSewGaschrzlOWx5pwWdW8PdQknrRNB1xft2+dg0y593q5n5QS1q1zMI684htUsLIq6Ac+D3X1lnnLY7yqAUyLb02JXJPC9p6tqKijJ9CYY4oCdaN7zpJ1+Riky04LN9K2YF78AOaHv/ENKnhNMxKHnp8LKmYpdS207DyD7pg85qwJu9wAjIOX05pwPuDVjeBNndkHhA3zyrEFf15mUjBP/drpQyK9p32V1o3QD3yRZrFciMkR9787VQcriWeFXTKf0rrJdWZJpiZg376w4M+LyVEYR37ufy5jUNfvg7bv6WUnORcLCizylJTCc7aCl9fSmnAe0Tbtd33dvv0RxNSo58/ZQz1Otvqg+/ZIAICqQ9vxJLStj9IMlgtpm5Aef8eU+Jw/GOdQPe4j88pxz1LfUkpY3ZdgHP4p5KR7CXcAQLIc+oPPQu3cSTNYi0B/Q3lKTo0BtktjKEUFu6ccM4k/XlEHpXVj9gEpYF3OnrWQQsC8fAzmiV/5FrxiVQ3QDz0HxW1GhACYTXx226ZdCk6lu/OK0rwerNJlRi4zDetG9pZraWZgnnkT1oV3fQte8VVrkTj0HHj1qiCHW9AosMhDUtj+pbspos476sb9gMu/m91zGWL84/X/j2tTnPF9P2XtTugPfg6cpvI9Odu03cs/80rqApxvGGPQNh10PWZdOwl5z7KxGL2LzAc/hbh7w/sNuQp1yyNOcnMR5yAtB30D5SHvNeEEWJK+SPIRL6vyLvZz+SgAwO69NlObYsD7jRKl0PZ+FtqGfdQbZgGeic8lFfRFkqd44xrwmqbsA2YG1vXTTm2K6x/O1KbwTo5m5bXQD34RatsmWg5bhqIv6Z1vpG3B7r8Jt+lbXtsKTlU285ZMTSL95t+4TssqLRsgFmhSxuvboW17rKjrUSyWd+luBqVxDZhC+Sj5yh7shnH4Z9kHVA28tgVy9K7vzyurt0Dd8CCYQtUYloseafKMmBqB65pwopSCijzHSsqhrNl234sM0HT/oIJxqJsPQtv9aQoqFklMuC8lsrJqCirynFLfBl7fNv9FxgHG/YMKLQFt16ehbT5EQcUK0d9eHpG25dnOmVfQmnAh0Nbvhd11wSnWxBUnGddnKpaVVkHb8SS4W9IacSWNFKThUtmUcXC3Musk72ibDiAzu1tKURcMFHhNM7Ttj9M20oBQYJFHxNSoe6OxZDmtCRcIliiBsmYr7K7zC24ZVlo3Qt10kLaRLpFn4nNZNW3TLhC8pgmsvg1ytN8/14gxqOv2QFm7g5LeA0SBRZ6QwoacHnU9RsWwCoc9dAei/5b/F5yqQXvgYSjU7GjJpJF278PCOJXuLhBSStg9l4HJEf+gIlkOfccTtI00ByiwyBOesxWJMpqtKABSCFjXTsK+cdr/RMahH3wOvMh7eyyX12wFo9mKgiBNA+bFdyH6fLaRAkCiFIlDz9FnZ45QYJEHpLC9qwNSO+e8J6YnYJ59E3LMexuplNLZLWJbznkUWCyZNNPuDfsYB6fZirwnRvudJnw+20illE5hQWMEMjNNgUWO0KJSHpBTo651K1iilNqi5zm77zqMwz9ZOKiwzLlKq+alI5A+fUGIO8+dIKVVNFuRx5zaFKdhHPuFf1AhBGAaM9u5pdNfh+QEzVjEnBS2Z78IXk47AfKVtExYlw47a8G+GGCm5//s5AjsnitQ2zblboAFRpoZj9kKRjtB8phMT8E89zbEcK//ecJ2gvN72L3XIMYGwKsacjnEokQzFjEnp8a8ZyuoZkFeEuNDMA7/zD+oYBzqpgNQPNqqW5eP0azFEnjmVpRSbkW+sge6nLLcfkGFloC261NQ2ja7HjZdevGQlaMZixiTQswUxMpGO0Hyj5QSdtcFWJeP+rY4d2pTPAFeWQ8pbNjXTmXVL5HTYxC916G0rM/1sPOeNDMeU+SMcivykBQ2rMvHYHed9z2P1TRB3/4EWLIMvLIedtdFQMxv3Cju3oCYHKFZq4DRjEWMyelR99kKvQRMLwl/QGTZpJGGeeofYV067BtUKC0boB/84lwTLMYV73bQ106BKvIvzHsnSBVVWMwzYmoUxpGfLxBUOLUp9H2fnSt4xZJlUNfucD3bunYqByMtbhRYxJQzWzHqeoxXUG5FPrGH7iDzwU/8y3IrGrTtTzi9Pu4reKU0rwdz2QUix/ohhnqCHm5BkZbhM1tBT6n5QkoJq+cyjA9+BumRhAsASJZBf/BZqOt2ZxW8Ujt3OtVs72N3X4JMeSd9kqWjwCKm5PSYazMqmq3IH1IImFeOwzzxGuBWlGkGq2yAfug5z4JXjHOonbtdj1lXTwYy1kLlnVtBsxX5QpoGzLNvwTr/TtZSxr14YwcSh54Hr3EveMUSpVDaXXItpIC1UP0YsiQUWMSQlN65FYxyK/KCSE3AOPbqggWvlI4d0Pd/bsGCV0r7ZsAloBSDtyF8tqoWM2kZkKkJlyO0EyRfiNF+GId/CtF33fskrkDd8jC0nZ9YsC6FE6Bn996xbp2HNNLZP0CWhQKLGPKarYCWpNmKPGD3XYfxwU8hx/q9T9JLoO19GtrGB/3LDs9giuqzRkyzFm68ZysqabYi5qSUsG7M1KZwDQ4drLwG+sEvQm3b7NusbxYvq3KfGbRNWLfOrWTI5B4UWMSMlAJi0mMnSEXtom4eEg1pmTDPvwPzzJuAZXiex+vakDj0PJS61iW9v7pmG+DS0tu+cw1iyr3rbbGSlun5hUSzFfEmM9MwT/wK1pXjrm0MZintD0A/8IUl/3uq6/e4vm7dOANpey+1kMWjwCJm5PS4z2xFafgDIosiJoZgHFlcbQptz2fAEkufeWJ6EuqarS5HJKzrlNl+L//ZCuoGG1f2wG1k3v8JxPAd75NUHdrOT0J74KFlzTzxqgbw+vbsA0YK9u2Plvx+JBsFFjEipfSerSin2Yo4klLC6roA48grTjEzD6y0EvqBz0Nds21F/47q2p2AS3tn+/ZH7l07i5C0TcjUuOsxXkY5SnEkhQ3z0mGYp36dVWn2Xqx6FRIPPQ9lVceKrqeu90iGvn7KKf1NVoQCixiRqQn3rGctAZag2Yq4kUYa5oe/gfXRB+6zTDP4fbUpVoKVlENxK+UtbMpsn+G1TZuVVGZt5SXRE1NjMI68AvvWQrUpdkN/8BmwZPmKr8nr2sCqGrNel9PjsPuurfj9ix0FFjEhpfTpCUKzFXFjD/c6tSkGurxPUjRo2x+Hvu0xMFUP7NrqOo+nrZvnIE3v3I5iIIVwlhNdUG5FvEgpYfdcgXH4p5ATQ94nJsugP/gM1HV7smpTLBdjDJrXfXT1JBWeWyFKjY4LIwVYmezXVR0sURb+eIgrKQSs66dgX//Q9zxWWQ9tx5MLbiNdDl5eA75qLcTdG/MPWAasrvOeH5jFQKbG3avVJssDDe7IykjLgHnhfYgFZgd44xpoWx/NSXtz3twJVlaVtYQpxwchBm9DaVgd+DWLBc1YxITnbEVZNc1WxIRMTcA4/uqCQYXSsX1RtSlWQvPKbL/+IaTtvSxTyHxn/ajKZmyIsQEYH/zUP6jgCtQHHoK285M5CSoAgDEqPJcrNGMRA9Iy3Fs6cwWspCL8AZEsdt8NmBfe9d1GCr0E2rbHoNS35Xw8vKYJvLYlO3s+Mw275xLU1VtyPoa4kZkpwDazD2hJ6gQcA1JK2DfPwrrqv42UlVU7s30VuU+0Vdo2wbx8NKsyrhjqgRi9C17tXsWT+KMZixjwqkHASqsCW1MkyyNtC+aFd2GeeWOB2hStTm2KEIKKWZ778a+dKsqW6tJn1o9ES2amYZ78Fawrx/xrU7RtdhKdQwgqgNnCcztdj5lXaQv3ctGMRcSksCFT7oEFL60KeTTkXmJiGOaZNz2/sAA4tSk27IOywm2ky8EbVoNV1GUlvsmpUYi+G569RwqRNDOQRir7gKIGsouALJ892A3z7Nu+20ih6tC2PrribaTLoa7ZCuvqiawHB9F3DWJyFLy8OvQx5Tt6HI6YnB53jeBZSQWVHY7Ix7Upfu4bVLDSSuj7Pwe1Y3skeTCMMc9ZC/NacWW2e/XW4aWUoxQVpzbFEZgnX1+4NsWhldemWC6mJZyqti6o8NzyUGARISklxPSo6zGavo3GomtTNK93pmyrGkIcXTaleb1rHo4c7YcY8qleWECkbbm3vWbMtd08yT0xNQbj6C9g+/bfYFA6d0Pf9wxYSbSzSuraHYBLzx67+yPItEv+G/FFgUWEZHoScKtNr5eAaZRsFjYx3IvMBz9duDbFtsegb388FtsXnZbqu1yPFcvTlpgeA+A261cJxpXwB1Tk7DtXYBz+GeT4oPdJiTLo+z4Lbf2eRTXhyzWWLIPS5tJSXQhYN8+GP6A8F/2/aBHz22JKwiOFgHn1JIzjrwFuu3NmsMp66Ae/CKVlQ4ijW5iy+gHAZdeD6L8F4VEsqlBIKZxuwC7oPgqXtAwYZ9+Cee537rtzZvCG1Ugceg68tjm8wS2C59bTrgtFu4V7uSiwiIg00u7rjopGBbFCJFOTMI7/Evb1U3B76p2lrJmpTVEWv4RapmhQO7a7HvMvk5z/nDL42R/6LFEWixmlYjFXm6J3gdoUmw9B2/WpWG7/5eXV4E2d2QeMFJX5XiIKLCLiPVtRRclmIbHv3kDmg59Ajt71PklPQtvzFLRN+2M9ra6u3uranMy6faFgW0H7FcRiNFsRCiklrJtnYRx9xbNNPeD8e+gHvgB19ZZYf755B+h+uSLkfrTtIALStiDTLjch42Al8XsiLjTStmBdOgK7279FMq9rgbbt8bxoAMeSZVCaOmH3Xp1/wEjD7r0G1a1xWZ6TRsq9toiqg+lLb0tPlkZmUjDPvQ0x1ON7ntK2GeqmA3mxy43XtYKV10De12VaDPdCjA8G0kiwGNCMRQQ8n7JKK2ORyFTIxMQwjMM/8w8qGIO64UFoe57Oi6BiltLhvmWuUJ+2pNcW07KaWD8VFwJ7sBuZD37sH1SoOrQdn4C25eG8CCqAmS3cXltPbxbmfZQL9C0WMt9ks9LqcAdTRKSUsG5fXLg2RUkF9P2fh7p2R959OfHaFjCXioVipA9ibCCCEeWOUwZ/OvsAVyLfuljInNoUR53aFMZCtSmeg9K0NsTRBUNp2wS4BEJ2zyVI06VRJMlCgUXI5PSET/dFLYIRFT5pZmCe/i2si+8vUJtiHfRDz0Vem2K5iulpyzNHicrg54yYHp+pTeG//VLp3DVTmyI/+xwxLQGldWP2AduC3X0p/AHlIboDQ+Qkm3lN31aHO5giIYZ7kXn/JxD9t7xPUlRo2x5z8inyfCeB0roJULIDVLvncsE8bTll8N220TIwKoOfE3bvVRgf/HSB2hSl0PY9A2393rxf0vVK4rRunSuqirbLlR8LXwVCZqY9ui8mACqIFSgpBKzrH860OPfppFhR53RSjOE20uVgmg6lbVN2XoWwYN/+CGqne8OlfCKnx6gMfkikZcC8+AHE/UnB9+ENq6FtfTSW20iXg1fWg9c0Q4z0zntdTo5ADN2BUt8a0cjyA92FIfIr5JNv6/lxJtOTMM685b+NFICyZhvUDftivY10OdQ121wTNq1b56DkYe7IvZwy+FQQKwxifNBpwudXZI0rUDfuh9L+QF7/XrlROrZlBRYAYN06S4HFAiiwCIm0LUi3qo5cAUvm51pkHNl3b8I8/45vi3NoSWjbHoPS0B7ewELEK+vAa5shhu972poahRjqhlKfv/+/pTHtWgaf6SVgWiKCERUeKSXsW+dgXTnumg82i5VVObN9FXUhji48StM6mPq7wH1dc0Xfdcj0FFiSChl6ye+FsDziviY8m2xWWJF+FKRtwbzwHszTv/UNKnhtCxIPPV+wQcUsxWuNOM+TOL2enqkgVjBkJgXz5K9hXT7qG1QorRuhH/hiwQYVAMAUBerqB7IPSAmrq7Ar2q4UzViEwJm+9fhApO6LKyYmR2CefsN3GykYg7p+L5SO/F4KWCylqRNmogTI3Pe0dfcGZGoyL7dkSmG7d5rkCpXBD4A91APz7NtZT+jzqDq0LQ9DcSt9XYCU1VthXT2Z9bp16wLU9XsLbhk1KDRjEQJppFyTNlmiFMwlg58sjlOb4iOnk+JCtSke/BzUtTuLIqgAAMYVp8z3/fL4acuZ9fPoYlok/665IIWAefkozBO/8g0qWFUj9EPPFU1QAQC8tBJ8VUf2gcwUxN2bYQ8nb1BgEQKvpE0q3718Tm2KN2BdfM+/NkVTJ/SDz4FXN4Y4unhQVm8BkP2Fa3VdgPT5O4sjv1k/TrN+yzZXm2KB1uDK2p3QH3wWPE9rU6yEd20YaqfuhZZCcsx3+paSf5ZFjPTBOPsW4Pb3OktRoW4+BKVlQ9E+zfKSCvBVHRB3b8w/kJmG3Xcdaszav/syM+65M3pJ3tceiYrdew3mhfd8W5wjUQpt++NQalvCG1jM8IbVYKWVWfk9YqgHYmIY3KXabbGjGYscczr+0fRtEKQUsK6dgnHsl75BBauog37wi1BbNxb937Fnt8Y8S+L03GJaQrMVSyUtE+a538E8+5ZvUMEbViNx6PmiDioAp6Kt4jVrUaB9eFaKZixyyHfPPU3fLolMT8E4+xbkSJ/vecrqrVA3PkhJVTN4fRtYWXVWDooYvgMxMZQXWf1SCJ9uwPmXhBqlRdWmYBzqpv1Q2uPd4jxMavsDsC4dyVp2tbsvQW4+SLNm96EZi1zymr7VkvSLuAR2/01kPviJf1ChJaHt/jS0zQcpqLhHIfQPkekJ70qb1BdkUaSUsG6dg3HkFd+ggpVWQT/wBairt1JQcQ+mJ6G4LR1aBuyey+EPKOborswhkfKaraCkzcWQtgXz4vswP/ytE6R54LXNTifFhtUhji5/KG2bAO7SrfHOFUiXYlNxQ0mbKyMzKZinfu08cS9Um+LgF8Er4z+LFQW1wyNAv/1RyCOJP1oKyREpBGRqMvsA42BJmr5diJgccaZsJ92btgG4pzbFdnpy9cH0JJTWDbBvX5x/wMxA3L0JpWV9NANbBGlmANOlPbeaAKP+Oguyh+44uRS+tSk0aFseKaptpMvBq1eBVTVCjvXPe12O3oWYHAEvr4loZPFDn8Y5ItOT7u3RSyryvvNfLkkpYXXP1KbwCSpYsvye2hT097kQpd2lgiAAqyfebaCFZ8Vamq3wI4WAeeUYzBOvLVCbogH6wecpqFgk1eM+ouWQ+WjGIkcoaXPppJmBeeHdBQvP8Ka10B54BEyjPJXF4jVN7lvm+rsgMymwRElEI/MmpfDIB2BgRVhPYbHE9ATMs29Cjg34nqes3Ql13R560FkCpWW904vovodGu/sS1I37KS9lBv1G5YC0DI/pWx1QqVGSGzF6F5kPfuIfVHAV6tZHoW1/koKKJWKMQWnbnH1ACth3roQ/oEWQ6SmPWb9yStD1YPdeg3H4J/5BRaIU2t7PQtuwj4KKJWJ60rUSp0xNQAzfCX9AMUW/VTngPVtBDcfuJ6WAdf0UjGOvLlCbohb6IapNsRJK60bX163ueC6HeO1e4FSxNsu82hSWT22K+nYn0bmuuGtTrITatsn1dTum91EUaCkkYFLKmaJY96Pp2/vJ9BTMs29DjPT6nqes3gp1wz4whX5dV4KXVbm3Ux/rj10FQWmZTov0+ykaoFPS5r3E+NBMbQr3BxoATm2KjQ9CoW2kK8Yb1wBaImunmt17FXLbY/Q5BZqxCJxMT7r2rmBJmr69l91/y1n68AsqtAS0XTO1KehmDYTS6vG0FbMkTr+kTfpidDi1Kc7DOPJz36DCqU3xeahrttHfXQAYV6C0uMz+WSbsvhvZrxchCiwCJj0+EKk9usOpTfEBzA9/41+boqbZKSfcSLUpgqS0rAdcAly7+zKkSxGqKEgpPZdBGJXwBuB0TDZP/SOsS4f9a1O0bJipTVEf4ugKn+dySMwC9KjQY2CApG1CZtynb5kev6z7sInJ0ZnaFMPeJzEGdd0eKGt30DbSHGBaAsqqDti91+a9LtOTEEM9UOrbIhrZPWPJTAMiu3AXS5TRzBVmalOcextw+6yZpWjQtjwMpXldeAMrIqy60b1U/kAXZGYaLFEazcBigj65A+SeW0HTt05tiksztSl8gopkOfQHn4XauYuCihxy3R2C+Dxted1HrMgr1jq1KY47tSl8ggpW2QD90HMUVOSQs8vKZdZCStg98dxlFSb69A6QcKu0ieKevpVmBuaZN2FdeNf1KXQWX7UWiUPPgVevCnF0xYk3tAMuM2j2nWuQfi20QyClgMy43EdcKeqnQDE9AePYL2DfOO17nrJ2B/T9n6N6OSHw3mVFJb5pXjEg0jIAKztngOmlRTt9K0bvwjjzFpB2D7gAAFyBuvkQFNpGGhon+WwD7Jtn5h+wneQz1eMDMwxO7QqvhmPF+fth912HeeFd322k0EugbX8cSl1reAMrcry0EryuFWKoZ97rcnwQYnyoqHuu0IxFQDynb4uwrbNTm+LDmdoU3kEFK6+FfvA5qG2bivZLIypx3YsvPX5feBFu1ZaWCfP8OzDPvLlAbYo2J9GZgorQec1axGVZMSoUWARASgnh8YFYbA3HZHoK5vFfwbp6wvXJc5ayegv0A58HL68Ob3BkDqtqAHNpmiQGbjuzBhGQQrhfW9GKrmKtmBiCceRn/j0oGIe66QC03Z+JZUn2YqA0u++ysrovQ/rs1il0FFgEwTKc/9yHJcqKqnaFPdC1yNoUn4K2+VDRLhHFgWfyGSSsiBoqObkVbssg5UUzoyWlhNV1Hsbhn0NO+dWmqKTaFDHANN29gVtmCmKwJ/v1IkGBRQBEkS+DSNuC+dEHME/94yJrU6wJcXTES9ymcaVH8jNPFscyiDTSMD/8DayP/GtT8JYN0A8+R7UpYsI9QI9+WTFK9Mi4QlJKj3VhBpYo/MBCTM3UpphYqDbFbijU4jxWeEmFR/LZEMT4YKhfXFLYkBmXZRBVB9MKfxnEHr4D8+xialM85Ey/k9jg9e1AogTIzG9Pb/ddg7QeA1OLr2EifcqvlJkBXLbosWRZQXcOlNKZMjc++Jl/UJEsg77vWaiduymoiCHPmhYhP215Jm0WeI6SFALm1RMwjy9Um6J+pjYFBRVxwzh330llW7D7roc/oBigT/oVEmmPZZAC/kCUpgHz7Juwzr+zQG2KDiQOPQ9eQ7Up4kpp7gRccl2snsuQIrzkM69lkEJu3CdSEzCOvQr7+oe+5ykd26k2RczFJUCPC1oKWQGnk6nLByJjYMmy8AcUAjHa7yx9LFib4iCUVtpGGndMdZLPsnYfZKYhhnuh1Od+C6O0LfdOpmqiYKeR7b4bM7UpspO+5+gl0LY9Fosy68Qfr6wHq6iDnBia97oY7CnKEt80Y7ESZtqjp0F5wU37SylhXT8N49gvfIMKVl4D/eAXobZtpqAiT3h2PO275vp60LxrVxTerJ+0LZjn34V55g3foILXzdSmoKAibyhtbsnQEvbdm2EPJXKF9e0XsmLZDSLTUzBP/ArW1eP+tSnaH4B+4AvgLvURSHzx+lbAJUHS7rseSsdT7xowhbUMIiaGYRz+mf+uG8ahbtwPbQ/Vpsg3Xvkv9zf8Kwa0FLJMnrtBGC+oaS974DbMc79zZme8aAloWx+lbaR5inEFyqq1sO/vcZCeghztB8thjoy0LcBIZR/QkmCqlrPrhklKCfv2RViXjwLC9jyPlVZC2/4EeFVDiKMjQeGllWBVDZBjA/NeF4PdkGamKHY3zaLAYpmkkXL9kGDJwlgGkcKGdfkY7K7zvuexmibo258o2JySYqE0d2YHFnBmLXKZfCs9kp8LZRlEGmmY59+BGOjyPY83r4f2wKGCzSkpFkpTJ6z7AgtIAbv/VqQ9eMKW/9+AESnk3iBiagzGkVcWCCoY1HV7oO/7LAUVBYDXt7vuDrF7r+V0OcSzI3ABLIOI4V6nEq1fUKFo0LY9Dn374xRUFADXKpwA7N7i2nZKMxbL4LkMwhUwPX+XQaSUsO9cgfXRB4DtvY0UyTLo258Ar2kKb3Akp5iiQmnsgN17dd7rcnoMcmIYLAedGqVlui+x6SV5Xe5dCqcJn7ON1DsoY5X10HY8SdtICwivqAUrr4GcHJn3uhi4BWmbYEphLO8tJH/v3gjJzLRryV1nGSQ/d0JIy4B54T2IBQq68MYOaFsfKar1wmLBmzqzAgtgZjkkF4GF1zJIHteAkakJGGffhhy963uesmY71A17i6qXULFQmtbCujo/sIBtQQzc9pzRKDQUWCyD1wdivhbFEqP9MM++5bm8A8CpTbHpIBRqcV6wlMY1MDkH7iuMZfddh7bxwcCv570Mkp/3kX33BszzC9WmSELb9jhtIy1gStM6WFdPZr1u912nwIK4k9KjtTNXwPT82h4mpYR988yCLc5ZeY0zZUvbSAsa03Tw+naI/lvzXpfjgxBTY+BlVYFdS1oGYGU3rGN6ad4tg0jbgnXp8IJVFnldK7Rtj9M20gLHqhrAkuVZy+X23ZuQwi6KWSpK3lwi72WQirx6kpeZaac2xRWqTUE+5pl8FnDPA+8S3vk1WzFXm8IvqGBspjbFUxRUFAHGGHizy31kZiCG7oQ/oAhQYLFErrMVyK/tcfbAbWTe/wnEsM8vuapD2/lJaA88lHdPkGT5lKa1ALID5IVyb5ZKuHUyRf4sg0gpYd2+COPIzyGnRj3PYyUV0Pd/HmrH9rx68CArozStc309rGq2UaNvjCWQUrq3duYKoCXDH9ASSWHDunIM9q0FalNUr3JqU+RRsESCwfQS8LqWrFbqYqQPMj0VyNZiaVuuu0FYojQvpomlmXFqU9y3ZHQ/3rzOCcxpG2nR4bVNgF6SVfzN7rsOue2xgqh15IcCi6WwMu5FsRJlsX8aEVNjTvOw+5rkzMegrtsFZe2ugm75TvwpTZ1ZgQXgNM5SO7at+P2lR3twloh/PRQx3Avj7NuAx4wLAEBRoT3wEJSWDeENjMQKYxxK01rYXRfmH8ikIEbuQqltjmZgIaFvjyXwWgaJc4Go2doUxuGf+gcViTLoDz4Ddd0eCiqKnHeeRTDTuK6zfoh3YCGFgHn1JIzjr/kGFayiDvrB5yioIJ73kSiC5RCasVgC93VhFtuiWNIyYF58H2KBJji8cQ20rY9SbQoCwEmgZNWNkKP9814XQz2QRhpMX/6yn+dyoqrHtjeITE/COPPWImpTbIO6YV9eLOeQ3ON1bYCqZ20/tnuvQ33g4djPcq8EBRaL5KwLu2yPS5TE8glfjA04Sx8L1qY4AIVanJP7KE3rYN0XWEBK2P03obZtXvb7SiPlugsprrMV9t2bMM+/41+bQktC2/YYlIb28AZGYo8pCpTGNbDvXJn3ukxNQI4PghVws7n4fSPGVL5M30opYd04A+PoK75BBSurhn7gC1DbH6CggmTJVc8Dz11VMVtOlLYF88J7ME//1jeo4HUtSDz0PAUVxJXS7LU7pLB7h9CMxSJ55lfEKLCQmWmY537nmnh3L6VtM9RNB2gbKfHEy6vBKmohJ4bnvS4GuiAtY1k7HTyXQRiP1a4qMTkC8/QbvttIwRjU9fug0DZS4oM3rHZ2Dd6X9G/3XYe26UBEo8o9+mZZBCkFpOGSyR6jdWF7sBvmubcBw6Wp0yxVh7b1ESir1oY3MJK3lKZOWPcFFhA2RH8XlJb1S39D23T+cx+WjMeuKikl7O5LsC4ddt39NYuVVDiVaAt4KpsEg6kaeMNqiLs35r0uJ4YhJkcKtvAgLYUsQpzXhaWwYV46CvPk675BBatehcSh5ymoIIsWdBXOOM/6STMD8/QbsC6+5xtU8KZO6Ieeo6CCLJriVoUThb0cQjMWixDXdWExNeY0Dxsf9DmLQencBbWTalOQpWGV9WCllZDT4/Netwe6IIVY8u+TZ7XNRLS7qsRIH4yzbwEe9zkApzbF5ofAW9bHYnaF5A+lsQMm41mtIET/LWD93ohGlVsUWCwgrtU27TtXYF78wHVqeU6iFPr2J8ALvBgLyQ3GGPiqtbBvnJ5/wMxAjC6tyI8UdlYVQsCp9BnV9kwpBezrp2FdOwXApwlfRZ2z9BFgEzZSPJieBK9tdq9ma2YKcps/BRYLsQzAtrJeZonSSJ5cnNoUH0D0XvU9jzesdmpTrKDmACFK45rswAJOEueSAouYVduU6SkYZ9+CHOnzPU9ZsxXqhgepNgVZEd64JjupXkqIgdvLy1eKOZobX0CctpmKsQEYh3/mH1RwBermQ9B2fYqCCrJivLYFcNk9ZC/QJ+N+capaa/ffROaDn/gHFVoS2u7PQNt0kIIKsmJK4xrX15d6H+ULmrFYgPBMOAtvXVhKCfvWuZkW59kt2+fGVFbtTNlW1IY2NlLYmKKA17dB3L0573U5NrDopmSey4mKFmqDLmlbsC4fhX37ou95vLYF2vbHI8/9IIWDldeAlVRk1RayB7ogpSy4vB0KLHxIYbt3YQxxXVhmUjO1Kbp9z1PaNkHddJBqU5DAKQ1rsgILALAHbkNtX0QVTjPtGhCHOVshJkecSrSTI94nMQZ1/V4oHTsK7oOeRIsxBt64OruzdGa6IKtw0reQj6iXQZzaFL9zTXqbo+rQtjwCpYm2kZLc4I2rXV8X/beARQQW3rN+ub+PpJSwey7B+mgRtSm2PwFe3ZjzMZHipDSsyQ4s4CyHFNr2ZQosfES1LiyFDevqCdg3z/qex6oboW9/AqykIqfjIcWNl1aClddkPe3bg7cXte3Uq9om00uCHGb2dc0MzAvvus623Is3dUJ74GEwLbxlGVJ8eH0rwDkg7t922gVs2BfRqHKDAgsPzrqwSyZ7jteFxfS4M2XrW5sCM7UpdlNtChIKpXE1rPuXERax7VRapmuvjVzvqhKjd2GcedO/NgVXoT5wCErLBlr6IDnHVB28tgVicP6ythjpW3HX4LihwMKLkQp9XdjuvQrzwvsL1qbQtj+xpK1+hKwUb1wDXHfZdtp/C7ysCvbAbfDKevDKunnHw15OlFLAvjFTm8KlWu7c9StqZ2pTVOdkHIS4URrXZAUWgIQ9eBu8epWzjbt5Xc5n83KNAgsPIsR999IyYV58n2pTkNjiNTPbTu+r6WJd/xDW1RMAgMTj/1fWz3kHFsHvuJDpKZhn34YY6fU9T1m9FepGqk1Bwscb1wAX3st63fzwDUBYAFegtG+JYGTBosDCg+sySA7WhcX4oLP0cV/Z5Hm4AnXjfijU4pxEQEoJmZpwynu7NCUDACgqWHn1fT8nnD4799OSge9esvtvwTz/DmBmvE/SktC2PQqlwT0ZlZBcklIClgkoWvastHACdlZZXxDL2xRYuJDCBqzsDyimlwT2xS6lhN11HtblYwvUpqiaqU1R53kOIbkijRQy7//Ef5smAF7VAMbu+0A00h7N+4KbrXBqUxyDffuC//hqmp3aFBH39yHFSYwPInP45/47/ICC2R1CgYUL7/LDwXwgykwK5vnfuay1zae0bnRqU8SkNTspPkwvgbbpAIwTv/I/z+UDUXh8iPKA7iMxOTpTm2LY+yTGoK7bC2Xt9uzAh5CQ8Mp6qB3bYV0+6n8eBRaFSxq5CyzsoR6YZ99eRG2Khz3bVhMSJqV5HbRtjzk1VTzwquz6D+7LiWzFzfuc2hSXYX30gX9timS5M9tHtSlIDKgb9kGmp2B3ZdeymFUov6sUWLiQGZcvfa46a2PLfU8hZmpTnPE9j1U1OB+GVJuCxIjasR0yPTWXqHm/+5+0fKvWrmA50alN8R7E3Ru+5/FVa6FtebggO0eS/MQYg7b9McjMtPvvL1fAymvCH1gOUGBxH2mZrts9WWL5H4hObYq3IMcHfM9T1u6Eum5PQSTvkMKjbjoAmZnO7rWhalkfiK5JmwCYvvxZP6c2xVtAetL7JK5C3XwQSutGSnQmscMYh77nMzCO/BxieP7uJV7VUDA7lSiwuE/QyyB27zWYF95bRG2Kx6HUtizrGoSEwXniehwyPQUx0DX3Oq9qzPoSDzJPyalNcQbWtZML16bY/iT4fbtTCIkTpqjQ9z2DzHv/ADk1+vHr1auiG1TA6NH4Pp4fiEt80pKWCfPc72Cefcs3qOD17Ugcep6CCpIXGFeg730KrLJ+7jXu8oHoOmPBFWCJVWtlegrm8V85SzA+QYWyegv0/Z+noILkBaYnoe//HHBP+YJCya8AKLCYR0rp/oGo6kvady/GB2Ec/hnsO1e8T2Ic6uaD0HZ/mgpekbzCVB2J/Z8DS5YDyA4spG25l/HWl1bG2x7oQuaDn/gXvNIS0HZ9GtrmQ9TZl+QVXlaFxP5nnfw9uAfo+YruxBlSSkgz45plvtjZikXXpiidqU1RSbUpSH5iyTLo+z+HzPs/nnvSkjMzCt7dTBdXXE7aFqwrx2B3UW0KUth49Son5+LMm2CllQA+vo8A5G2eEJPSZ36xQKXTaUxMTCCVSiGVSsE0P16q4IwhmdCQVDmSXKBcBdTaFvCZpzMv0kjBPPcOxOBt3/OoNgUpBFJKTE9PY2KwDxmomJ6ehm1/HJQrnCOpa0iqDKVcoFQF1FVrwRbYWSWmZmpT3F/h816MQV23B8raHVSbguQ1KSUmJiYwNTyAtORIpVIQ93Q/VVUVJSUlKCkpQUVFBUpK8qOHSNEEFlJKjI6OYnh4GKmUf/Wze3HOUVNTg7q6Oui6+/qwPXQH5rm3AY/8DACAqkF74GEozeuWOnRCYsO2bYyMjGB4eBiGkb3c4UVVVdTV1aGmpgaqmj1RKqWEfecKrIsfzJU3dpUsh77jiYKaNibFxzRNDA8PY3h4eF5AvpBEIoG6ujpUV1eDx3j3YFEEFqlUCt3d3chkfPoILMKqVatQX18/Nz0lhYB17STsG9ldH+/FqhqcbPVSqk1B8tf4+Dju3LkDy/L54l8A5xwtLS2oqqr6+D4yDZgX34Xoo9oUpLBJKTE8PIy+vj6s5KtX0zS0tbWhrCyey4AFHVhIKdHf34+BAf/6EUuRSCSwevVqaLYB8+ybkGNUm4IUNiEEenp6MDY2Fth7lpeXo729HWxiyFn68K1NoUDdfIhqU5C8Zpomurq6ljRjvpDa2lo0NzfH7r4o2MBCSonu7u5APwxnKYqC1sku6CM+vT4SpdC2PQ6ljraRkvxl2zZu3rwZ6IfhLF3X0dL7IdTMhOc5rLzWSXSmbaQkj2UyGdy4cWNFs31eysvLsXr16lgtjRRkYJHLoGIW5wxtd89CN7Mz4Hl9G7RtjwXeYp2QMAkhcOPGjZwEFbN0haG1+xgUmb3OrLRvgbrxQdpGSvKaYRi4fv16ToKKWeXl5VizZk1sZi7iE+IEaGRkJKdBBQAIIdG3ahsk7vmHZBzqpgPQdn+GggqS93p7e3MaVACAYUsMNO/EvKcbLQFt16egPUC1KUh+k1Li9u3bOQ0qAGBycjLQJf+VKrjAIpPJoLfXp6BOgAwBDDdtBeDUptAPfB7qmm2xiRoJWa6JiQmMjIyEcq1JaJisXgMAYDVNTiXaxjWhXJuQXBoaGsp5cD6rv78/tGstpOCWQm7cuIGpKfcCPbmyRk2hfP0uqk1BCoIQApcvX875U9a9OGNYlzShd1JtClIYDMPA5cuXQ71mIpHA+vXrI3+4zdkdfPv2bTzxxBPYsmULduzYgR/96Ee5utScdDodelABAGPlzRRUkIIxPj4ealABAEJKTFS1UVBBCsbwsE+RtxzJZDKRfAfeL2d3saqq+Mu//EtcuHABv/nNb/Bv/s2/yfn/4aGhoZy+v5exsbHQP4gJyZWo7qOhoaEV7e0nJC6EEJEEFkB09++9chZYNDc3Y9euXQCAxsZG1NbW5vQverayZhSklBgfH4/k2oQEKZPJRLZOa5pmbNaICVmJiYmJeaW5w772Uqp55sKSAwshBDZv3oxvfOMb815//fXXoeu665LH8ePHIYRAe3v78ke6gEwmE+nTzvS0TzlvQvJE1F/sdB+RQhD1fRT19ZccWHDO8c1vfhPf+9735rLGT58+jRdeeAHf+ta38MILL8w7f2hoCL//+7+P//E//kcwI/YQ9V8kfSCSQhD1fRT19QkJQtTfB1HfR8taCnnxxRdRX1+Pl19+Gd3d3Xj22Wfx5S9/GV//+tfnnZfJZPD888/jm9/8Jh566KFABuwlnU7n9P0XYhgGrQ+TvBf1fRT19QkJwkr7UuX79ZcVWKiqim984xt4+eWX8cwzz2DPnj14+eWX550jpcRXvvIVfOITn8CXv/zlQAbrJ6r1rHtRYEHyXdRrs3G4jwlZqah/j6O+/rKTN1988UVMT09DSokf/vCHUBRl3vH33nsPf/d3f4ef/vSn2LVrF3bt2oWzZ8+ueMCEkNyJev87IST/Lbte7te+9jUAwODgYFZQAQCPPPJIqFGT2xjCRh/KJN9F3cgo6usTEgTOeaSzf1HfR8u6+p/+6Z/i1VdfxeHDh2FZFv7qr/4q6HEtWTKZjPz6FFiQfFdSEm2Pm6ivT0gQ4vB9FKUlBxbf//738d3vfhevvPIKdu7ciT/+4z/Gd77zHZimmYvxLVrUH0hRX5+QIET9exz19QkJQmlpaaTXj/o+WlJg8dprr+GrX/0q/uZv/gYHDx4EALz00ksYHx/HD37wg5wMcLF0XY90+ifqXyRCghD1BxLdR6QQRH0f5c2MxYkTJ/DCCy/gO9/5Dr70pS/NvV5ZWYmXXnoJ3/72tyNdU2KMoaamJrJrV1ZWRnJtQoKk6zrKysoiuXYikYj8A5GQIFRUVEBVl53CuCJVVVWR5xwWVHfTTCaDK1euhH7duro6NDc3h35dQnJhfHwcXV1doV+3tbU1socDQoLW39+P/v7+0K+7bt26yGdMCioFO5FIoKKiIvTr1tbWhn5NQnKloqICuq6Hek1VVVFVVRXqNQnJpdra2tAT+ktLSyMPKoACCywAoKWlJdRci6amJiQSidCuR0iuMcbQ1tYW6jVbW1sj3yJHSJBUVUVLS0to12OMobW1NbTr+Sm4O1nTtND+cktKSlBXVxfKtQgJU2lpKRoaGkK5Vk1NTSQzjYTkWnV1NcrLy0O5VpwecgsusACc5JX6+vqcXkPTNKxevZpqV5CC1djYmPMPxZKSEspPIgVrdvYv11/41dXVsVqSL8jAAgBWrVqVs+BC0zSsXbsWmqbl5P0JiQPGGFavXp2z2YTS0lJ0dHTQEggpaKqqYu3atTkLLqqrq9Ha2hqrh9yC2hXiZnh4GL29vYE1CCsvL0dbW1tkW4kICZuUEnfv3sXg4GBg71lTU4Pm5mYKKkjRsG0bd+7cwdjYWGDvOfsAHaegAiiCwAJwWpr39PRgampq2e/BOUdLSwuqqqpi949ISBhSqRS6u7tX1JJZ0zS0tbVFViuDkKiNj4+jp6dnRXWfSkpKQlliWa6iCCwA56lramoKw8PDGB8fX/TP6bqOuro6VFdXR150hJCoSSkxPj6O4eHhJQXqs4nOlZWVNEtBip5t2xgbG8PQ0NCSAvWKigrU1taivLw81g+4RRNY3MuyLExOTiKVSiGVSsEwDEgpwRgD5xylpaVIJpNze4Lj/A9ISFQymQympqaQTqcxPT0Ny7Lm7iNVVVFSUoKSkpK5+4kQMp+Ucu7+mf0+sm177j7SNG3u/ikvL8+bvL6iDCwIIYQQkhs0J0kIIYSQwFBgQQghhJDAUGBBCCGEkMBQYEEIIYSQwFBgQQghhJDAUGBBCCGEkMBQYEEIIYSQwFBgQQghhJDAUGBBCCGEkMBQYEEIIYSQwFBgQQghhJDAUGBBCCGEkMBQYEEIIYSQwFBgQQghhJDAUGBBCCGEkMCoUQ+AEEKWQt/9B2BcAeMKuKqDKQr43P/WPj6m6R//efZcl2OKqoJxBsYYOGfgKgdnDIwzKCoH4/A+xhgYh3NM4eDcOaarHApnc/9JzP1v/vEx5pyn3nPevT837z0Yg8adMdz7Z84YFAZoCr/vz4DCnOOawub9mTGAg0HhmPszY4DC4Px/m/vZ2eOAwhkY4Lzv3J+dc5mwwaQApADu/bMUgG25HxMzrwsBSAkmrLmfkZYJCBsQNqRtA5YJKWxACEjLcP7bnjl+77kzf3aOOedKISBtAWFakLbzZ9s05/4shYBtWHN/FoYFMfMz0rbnfk7MvYeEsAWkkLANe+Z/S9im/fExe+aYcI4Jw4aw5cy1ZsZjS0hbwhQCtgRsKWEIOfdnW2Le/773zwKzx+49z/nz/yNvRnpvzqIZC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhkkpZdSDIISQKGQyGfzFX/wFvvnNbyKRSEQ9nCw0vuWL89iA+I9vJSiwIIQUrfHxcVRVVWFsbAyVlZVRDycLjW/54jw2IP7jWwlaCiGEEEJIYCiwIIQQQkhgKLAghBBCSGAosCCEFK1EIoE/+7M/i23yHI1v+eI8NiD+41sJSt4khBBCSGBoxoIQQgghgaHAghBCCCGBocCCEEIIIYGhwIIQUpS+/vWv49FHH8WLL74IwzDmHUulUvjc5z6Hxx9/HJ/+9KcxPDwcq/HN+ou/+Avs27cv0vFYloWvfOUrePTRR/Gv//W/DmUsSxnfrDD/rtx4jS8Ov2tBo8CCEFJ0Tp06hb6+PrzzzjvYsmUL/v7v/37e8ddeew3btm3D22+/jX/6T/8pfvCDH8RqfAAwMTGBc+fORT6eV155BW1tbXjnnXcwPT2N999/P5QxLXZ8QLh/V278xhf171ouUGBBCCk6H3zwAT7zmc8AAJ5++umsL8MNGzZgenoaADA6OoqGhoZYjQ8A/ut//a/46le/Gvl4FjPWKMcHhPt35cZvfFH/ruWCGvUACCEkbKOjo2hpaQEAVFVVZU0/r1u3DufOncO2bdvAGMORI0diNb6xsTGcPXsW/+E//IfIxzM6OjrX68JtrFGPL+y/Kzd+44v6dy0XaMaCEFKw+vr68Mgjj2T9R0qJ8fFxAM6Hfm1t7byf++u//ms88cQTOHfuHP7jf/yP+E//6T/Fanx/+Zd/ia997Ws5GZObmpoaz/H4HYvD+ML+u3LjN76wftfCRIEFIaRgNTU14d133836zzPPPINf//rXAIDXX38dDz/8cNbPzn74V1dXY3R0NFbju3r1Kv78z/8cTz/9NK5cuYJvf/vbORnfrIMHD3qOx+9YWPzGEPbf1VLHB4TzuxYqSQghRehP/uRP5COPPCL/2T/7ZzKTyUgppfzDP/xDKaWUY2Nj8plnnpGPP/64fPjhh+WlS5diNb577d27N5LxzI7FNE35+7//+/KRRx6RL730UihjWcr47hXW35Ubr/HF4XctaFTSmxBCCCGBoaUQQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCFzvvKVr4Axhn/5L/9l1rF/9a/+FRhj+MpXvjL3Wl9fH1566SV0dnYikUigvb0dn//85/Hb3/527pyOjg785V/+ZQijJ3FAgQUhhJB52tvb8bd/+7dIpVJzr6XTafzwhz/E6tWr5167efMm9u7dizfeeAPf+c53cPbsWfzqV7/Ck08+GWkJbRItKulNCCFknj179uD69ev48Y9/jBdffBEA8OMf/xjt7e3o7OycO292BuPo0aMoKyube33r1q34gz/4g9DHTeKBZiwIIYRk+Rf/4l/gf/2v/zX3v//n//yf84KF4eFh/OpXv8JXv/rVeUHFrOrq6jCGSWKIAgtCCCFZvvzlL+Pdd9/FzZs3cevWLbz33nv45//8n88dv3r1KqSU2Lx5c4SjJHFESyGEEEKy1NfX49lnn8Vf//VfQ0qJZ599FvX19XPHZ4s2M8aiGiKJKZqxIIQQ4uoP/uAP8L//9//GX//1X2flTGzYsAGMMVy8eDGi0ZG4osCCEEKIq6effhqGYcAwDDz11FPzjtXW1uKpp57Cf/tv/w1TU1NZP1sQXTrJslBgQQghxJWiKLh48SIuXrwIRVGyjv/3//7fYds29u/fj3/4h3/AlStXcPHiRbz88ss4dOhQBCMmcUA5FoQQQjxVVlZ6Hlu7di1OnjyJP//zP8ef/MmfoLe3Fw0NDdi7dy++973vhThKEifUNp0QQgghgaGlEEIIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhASGAgtCCCGEBIYCC0IIIYQEhgILQgghhATm/w/DHKgJNWnaPAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLE0lEQVR4nO39aZAc15UffP/vzcxaet/RK9BorMS+EQt3aiNFihQpD/2+j2lNyPNhwmGJ47FHDoUcnpiwI0YjMx45xoyw9YRDY3useV7NhGa0URRJjcRF3LCD2ImtATS60Y3e96rK5d73Q3Y30ajM7C0rM6vq/CIUA1ZmV94BOqtO3nvuOUxKKUEIIYQQ4gMe9gAIIYQQUjgosCCEEEKIbyiwIIQQQohvKLAghBBCiG8osCCEEEKIbyiwIIQQQohvKLAghBBCiG8osCCEEEKIbyiwIIQQQohvKLAghBBCiG8osCCEEEKIbwo+sLAsC3/+53++7J9Pp9N47rnnsHHjRuzatQtPPvkkbty44d8ACckDK72PAOCP/uiP0N7eDsYYzp0759PICCksftxrYSv4wOLs2bP4+7//+xW9xx/+4R/i0qVL+Pjjj/GlL30Jf/iHf+jT6AjJD37cR7/3e7+H999/H2vWrPFpVIQUHj/utbAVdGBx4cIFPP300+jp6cGuXbvwZ3/2Z0t+j0QigaeeegqMMQDAwYMH0dnZ6fdQCYksP+4jAHjkkUfQ2trq8+gIKRx+3WthU8MeQC5t2bIFzz//PDZv3oxvfOMbvrznK6+8gmeeecaX9yIkH+TiPiKEZCuUe62gZywA4Pjx49i3b1/W6w8//DDq6uoc/3fr1i3H9/rOd76DK1eu5P36FyFL5ed9RAhx53av5RMmpZRhDyJXTNNEdXU1BgYGkEgkVvRe//f//X/jb//2b/Gb3/wGVVVV/gyQkDzg530EAO3t7fjlL3+Jbdu2+TA6QgqH3/daWAp6KaS7uxvl5eUr/gf6L//lv+BHP/oRBRWkKPl1HxFCvBXKvVbQSyGtra3YsWMHNm3ahH//7//9st6ju7sbf/Inf4LR0VE8/vjj2LVrFw4cOODzSAmJLj/uIwD4+te/jtbWVnR3d+Nzn/sc1q9f7+MoCcl/ft1rYSvopRBCCCGEBKugZywIIYQQEiwKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hsKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hsKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hsKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hsKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hs17AGERUoJwzCQTqeh6zqklGCMgXOOZDKJeDwOzinuIsSLlBK6riOVSsE0zbn7SFGUufuIMRb2MAmJNCEEMpkM0uk0LMuau480TUMymYSmaXl1HxVVYCGlRCqVwtDQECYmJiCE8Dw/kUigpqYGlZWVUBQloFESEm1SSkxMTGB4eBhTU1OQUrqeyxhDSUkJampqUF5eTsE6ITOEEBgbG8Pw8DBSqZTnuZxzlJWVoaamBqWlpZEPMpj0+lQoIBMTE+jr60Mmk1nyzzLGUFNTg4aGBgowSNGSUmJkZAT9/f0wTXPJP68oCurr61FbWxv5D0ZCckUIgYGBAQwNDS34cOtE0zQ0NjaioqIisvdRwQcWpmmit7cXY2NjK34vVVXR2tqKsrIyH0ZGSP7IZDLo6enB9PT0it8rkUigtbUViUTCh5ERkj+mp6fR3d0NXddX/F7l5eVobm6Gpmk+jMxfBR1YpNNp3LhxY1lPV17q6+vR0NAQ2WiRED9NTEygq6vLc8ljOVpbW1FVVeXrexISVYODg+jr6/P1PTnnaG9vR0lJia/vu1IFG1ikUilcv359WVNNi1FbW4vGxkYKLkhBGx8fR1dXV87ev6WlBdXV1Tl7f0KioL+/H/39/Tl5b8YY2tvbUVpampP3X46CzKQyDAM3btzIWVABAENDQxgcHMzZ+xMStunp6ZwGFQDQ09ODiYmJnF6DkDDN5iXlipQSN27cWFb+YK4UXGAhpUR3dzcsy8r5te7cubNgNi8h+UgIgVu3bgVyre7ubt+XKwmJAl3Xcfv27ZxfR0qJW7du+b5cuVwFF1iMjIxgamoqsOt1d3fndGaEkDD09vbCMIxArmVZViAfvoQEafYhN6gv+3Q6jYGBgUCutZCcBha//OUvsWnTJmzYsAE/+MEPcnkpAPZTlt/JMQvJZDK+7DghJCp0XcfIyEig1xwfH6fZP1JQJiYmfNlFtRQDAwOBzNYvJGeBhWma+Lf/9t/irbfewsmTJ/Gf//N/xvDwcK4uBwAYGxsLZfZgcHAwMlNQhKzU0NBQUV2XkFwI4/d5ttZM2HIWWBw9ehRbt25FS0sLysvL8dRTT+HNN9/M1eUAhPfBlMlk6GmLFAQhRGgfTKOjo5RrQQpCJpMJdEn+bkNDQ6E/6C45sBBCYPPmzfjWt7417/U333wTsVgMP/7xjwEAt2/fRktLy9zx1tZW9PT0rHC47kzTRDqdztn7L4Qy20khmJ6eDjVnKKwPY0L8NDk5Gdq1DcPwpQDXSiw5sOCc49vf/ja+//3vzz3ZnD59Gi+88AK+853v4IUXXgAAx4gplzUfwgwqANCMBSkIdB8RsnJh/x6Hff1lLYW8+OKLqKurwyuvvILu7m48/fTT+OpXv4pvfvObc+e0tLTMm6Ho7u5GU1PTykfsIugkmahdnxA/hP17HPYHIiF+KPb7aFmBhaqq+Na3voVXXnkFTz31FPbs2YNXXnll3jn79+/HuXPn5grg/OpXv8ITTzzhy6CdhL02K4QIfV2LkJUKaotpVK9PiB/C/j4K+/rLTt588cUXMT09DSklfvSjH2V1/VRVFd/73vfw+OOPY/fu3fh3/+7foba2dsUDdhOFL/UojIGQlQj7d5hqwpBCUOz3kbrcH/zGN74BwN5q6dZK/Nlnn8Wzzz673EssSRR6dkRhDISsRNi/w5wXXM0+UoQYY6EGF2HfR8u6+p/+6Z/itddew+HDh2GaJv7qr/7K73EtWditYznnoX8oE7JSYd9HYV+fED+o6rKf2Qvi+ksOLH7wgx/ge9/7Hl599VXs3LkTf/zHf4yXX3459LXRZDIZ6vWj1raWkOUI+/c47PuYED8U+320pMDi9ddfx9e//nX8zd/8DQ4ePAgAeOmllzA+Po4f/vCHORngYoX9Fxn29QnxQ9i/x2FfnxA/hP17HPb1Fx1YnDhxAi+88AJefvllfOUrX5l7vaKiAi+99BK++93vhlqjXFGUUP8yy8vLQ7s2IX5JJpOhrs+WlpaGdm1C/FJWVhbatTVNQywWC+36AMBk2OmrPhodHUV3d3fg100kEli3bh3lWJCC0NfXh8HBwcCvW1VVhdbW1sCvS0guXL9+PZRKso2Njairqwv8uncrqBTsiooK1x0qOSMlGlJ9QIYKZJHCUFNTE/g1mbBQO9YFaVEdC1IYwvhyZ4yhuro68Oveq6ACC845Vq1aFeg1q9OD0G6eRvp3fwer/2ag1yYkF2KxWE5rzjhpmu4Brp9C5r0fQ4xTl1OS/8rKygJP4mxoaAj+4dpBQQUWAFBdXR3Y+pZmTKNm4LL9H3oK+tFfwrjwPmSIuSaErISUEtLIoL6iBEktmA+osswokoPX7etPjiDz/o9hXj8TepEhQpZLSgGYGbTWVUFBML/HyWQy9CWQWQWVYzHLMAxcvXo1t8mkUqB98DyUqeGsQ6yiDrE9XwAvC39KihAn9gefAWFkAH0aUk8BlglICTAGaegwtSSuDeV2iY9bOtr7ToEZ2c3P+Kp2xHZ+BixGO0VINEkhAFOfuY+mIPW0fR8B9n2UmsBU6Sp0D4zkdBycc6xbtw7xeDyn11msggwsALtLY2dnZ85Km7YYg0j0nHc/QVGhbX0YStt9lNRJIsGaGIJMTQCWMRdAuJHjQ1A3HsDExAS6urpyNqb2yRtQBj2WEOMliO3+HJS6tpyNgZDFklJCjPVDZqbsAMLrHpISLD0FtWM3BgcH0dfXl5MxMcawdu3a0Gtn3K3glkJmJRIJdHR05KQCWUNDAyq37Adf1e5+kmXCOPM2jJO/hjQyvo+BkCUzdUhTt//s9YGop8Ab2sEYQ0VFBdrb23MSHLe1taFk20NglfXuJ2WmoR/+BYyLH0EKWmIk4WKMQaYnAGF53kMAgKlRKC0bAdiJnLno7q0oCjo6OiIVVAAFPGMxy7Is9Pb2YnR0dMXvpWkaWlpa5nI4pJSwbp6DceED+xfNBUuWQ9v9eSg1uWsbT8himD2XgAXqVMzOVtwdTOi6jp6eHl+2zyWTSbS2ts5N20phwfzkMMzOjz1/jlU1ILb7C+CllSseAyHLJYSA1XMRTHWvFSGlBNNTUNt3znt9enoaPT09yGRW/rBZUVGB5ubm0Mt3Oyn4wGLW5OQk+vr6kE5nr+UuhHOOmpoaNDQ0OBYPEuND0E/9GnIiO99iDuPQ7nsAytodtDRCQiHSUxDDPd6zFekp8JoWKA6zCFJKjI6Oor+/f1kl/FVVRX19PWpqahzvAau/C/rp3wCZlMebxBDb9TkojWuXfH1CVkpKCTE1Cjk+4H0fTQxDbd/hmB8khMDg4CAGBweXtVQfi8XQ2NiIioqKJf9sUIomsJiVSqUwNDSEiYmJBZM7k8kkampqUFlZuWA1QmmZMC58AOvmOc/zlKZ10HZ+xjPaJcRPs+vCYnpswaBWTgxB23hwwfebmprC8PAwJicnPT8cGWMoLS1FTU0NysvLF75+Zhr6x7+FGPDO61DX7YG66QAYdUMlAZFCQAz3QDokGt97HjMyUNt3eJ4nhMD4+DiGh4eRSqU8d0FxzlFeXo6amhqUlJRE/uG06AKLuxmGgXQ6DV3X7akrxsA5RzKZRDweX9Y/ntXXCf30W4BHXgUrrUJs35Pg5cHWCiDFR1omrMEuz6W6uXNTE1Aa2sHLFl8gS0oJwzCQSqVgmubcfaSqKhKJBGKx2JLvIyklrOunYVz8CJDuQQuvbUFszxfA4tFaXyaFR+hpiKFbizpXTgxBXbsbTFv8Dg0pJTKZDNLpNCzLmruPNE1DMpmEqqqRDybuVtSBRa7I1CT0U/8IMXzb/SRFhbb9Maitm4IbGCkqi1n6uJucHIW24f4cj2rxxNgA9JO/hpwadT8pXoLY3ieg1DQHNi5SXKzJYYjxwUV9sUshwIQFtW1LACOLLgosckRKAfPKcZiXj3mep6zZBm3LQ2ARqJZGCoOUEmK0DyI14flhKKfGAC0OFktATo9DaVwfucRIaRowzr4Dq+ey+0mMQd18CGrHrrx6qiPRJqWANXgLmN1J5XbexBBQUgmmqJDjg1DX7QNTtYBGGU0UWOSY1d8F/dSvvZdGKhsQ2/sEeEl0k3FIfpCWCWvghl2nwu0cKSHHBqA0bQBTVVhj/WCpKajr9wY30CWQUsLqOg/j/HuARz4Hb+ywC2otYQqaECfCyEAM3PRO0LRMYGIYavt2iKkxiMwUGBjUFpqFpsAiACI1Af3EG5Cj/e4naXHEdn8eSsOa4AZGCopIT0IM9XhuJ5WmDqSnoLbvnPsCNu9ch1JRB5YsD2qoyyJG70A/8aZd5MsFK61EbO8XwSsof4ksjzU+CDE5BMY87qPMNBgYlNVbwbg922x2X7SDdSV62z+DRoFFQKRlzewaOet5nrphH9SN93v+UhNyL2u4FyK9wNLH9DhYSQWUxvV5u2Qg9bSdv+S1a4Sr0HY8CrV1c3ADI3lPSglr4KZdmdbrvIlh8Lo2yuvxQIFFwMyeyzDOvP1pPXkHvK4NsT2fpx4JZEFCCIi+a4BHnCClhJwcgdK8EUoB9K+RUs7kLx31PE9ZvQXa1ofpCZIsSJi6fR95/K5IYQFT41Dbt9Nn8wIosAiBmBiCfvwNz2x3liiz8y6qG4MbGMkrIjMFq/+GdwVAUwczDSirtxXcF6w1cMvOX9Ld6wqwynrE9j5J+UvElZgYgjV2B0xxT7iUmRSYGoPSsilvZ/uCRIFFSKSpwzj9Nqzeq+4nMQ5ty4NQ2rfTLzOZxxq+DTE96v1hmJoEK6+DWl+4Dbzs/KU3IUfvuJ+kxe1qnV69fUjRkVLCutMJaRlzeRKO502NgTe0Q6mIRkvyfECBRYiklLBunIFx4UPPQkBK8wZoOx6jap0EUghYPZ9AKop3ctn0OJTmTeDJsgBHFw4pLBgXPoR144zneer6vVA37af8JWLv+uj5BPAorialAEtP2wma9Nm7JBRYRIA10gf9xBtA2r3BEyurtqd0yxdfFZEUFpGagNV7xXP3xmyBHqVlc9GVuzZvX4Fx+q0F8pdaEdv9BbA4rZEXK2t8AGKoByxR6nqONA0wLQFl1VqaLV4GCiwiQmZS0E/9GmKw2/0kRUNsz+ehrKIGTMXGHOiCnBxe4MNQBy+rgVJdvF10xcSwvbV7csT1HJYoQ+z+p8C92rWTgiOlhNVzCVKYnrVOpJ6GUtsKXgCJzmGhwCJCpBQwLx+DeeW453nqfQ9QlcEiIS0T1s0zkFrcO0nT0KGsWgtOfTPs/KUz78C6fcX9JEW168Y0dgQ3MBIamUnBvHkGKK30zKeAaYA3bwQvsETnoFFgEUHWnRvQP/6NZ7VOpe0+aNsf9b5JSF4TU6Mwu86DVdQtuKzBV61bsANvMZFSwrp5Dsb59z3zl9TNh6Cu201BegGzhm9DDNwE80i+lFKCa3Eo9VSg0A8UWESUmB63p3THBlzP4TXNiO17kvZUFxgpJay+q5Djgwt8GArwkkooVbQl2Y0Y6bN3jaQnXc9RWjdD2/4Y9espMFJYsG6ehRQWmMd2YyksKJWN4GVVwQ2uwFFgEWHSMmGc+x2sWxddz2ElFYjd/zQldRYIaWRgXjsBxBLeJbaFAK9tBffIuSA2qaegn3jTLnfuglc3Ibbvi5TUWSBkahzmtZNARS2YlvA4UYI3rAUv8qZhfqPAIuKklDCvn4Z54QP3k9QYYnu+QH1G8pwY64d5/TRYTTOY5rG9jXEoDe20DLYEUlh2kN51wfUcliy3g3TqM5K3pJQQAzdh9V0Fq231vkfUGJS6Ntp+nAMUWOQJ684N6Cd/7VHHnkHb+hAV08pDUghY3RcgRvvAats88ylYvBS8uon+jZdBSgnr+hkYFz4A4PKxp2qI7f4CFdPKQ9I0YHWehDB1z4rFUkrw8lrwshq6j3KEAos8IsaHoB97zbO7o7Jmq90fgZ5m84JMT8G8chRSUb3Lt0sJVrkKSmllcIMrUNadG3YpcNMjSN/yAJS1O+mLJ0+IiSGYV46CldeBLZArwWtaaPdUjlFgkWdkZhr68dchRvpcz+G1LYjtfRIs5rG2SEJnDd6C1XkSrKoRzCtHhjEota3ea8VkScTEEPRjv4KcHnc9R1m9Bdq2RyhIjzApJcTtS7C6L4E1rAZLeFSaVVT7PvIog0/8QYFFHpKWae/T77nkeg4rrUTs/i9RpnMEScuEdf00xGAXWMMa7yRNNQ6lprngGohFgcykoJ94HWK41/UcCtKjS+opmFePQU6NgjWs9fw3Yoky8KpVlE8REAos8pSUEua1kzA/Oex+khZHbO8TUOoKtwlVvhFTozAvHwGMDNiqds+twqykEryinqbjc0haFoyz78Dq/sT1HFZSidj+p6kSY4SIkV6YV48DXLHvI49ZCF5RD1ZSSfdRgCiwyHNWbyf0j//RvT8CY9C2PQJ1zbZgB0bmkVJC9F2DdfMsoMbsD0OPSpq8sgG8hPIpgiClhNl5CubFj9xPUmOI7X0SSgF3is0Hdm2KcxB9V4FkOVj9GvdkZ8bAq5spnyIEFFgUADE2YK8XexUBat8BbcuDRdeYKgrs2hTHIUf6gESZvfzhtm7PGHhVE9WnCIHV1wn91AJB+taHobZvD3ZgBAAgUxMwLx+BnB4DymvtbdlusxBctZcQPXqCkNyhwKJAyPQUMsd/BTna73oOr1+N2J4v0M0WIDHWD/PKMcBIA2XV9t561w9DZebDkNbzwyLGB6Effc07SF+zHdrWhyhID8hcbYrrHwPCAqtuBKtscP8ByksKHQUWBURaJozTv4V1+6rrOay8FvEDz3h2ySQrZ9emuAjRY6/ds6pVYFWr3H9Ajc18GFLGetjsIP11yNE7rufwVe2I7XmCvrxyzK5NcQpi6BbAGFhdG1hplev5LF4CXtVEQV/IKLAoMFJKmFeOwbx8zPUcVlKB2P5naMdIjszVppgcBsDA6lrAyty3k7JY0i56RdsaI8MO0t/y7JDKa5oQ2/cU7RjJETExDPPKESAzbSdpNrR7PhCxZAV4ZQMlaUYABRYFyrx9BcbHvwWE5XxCLIn4gWfAK+uDHViBE0Pddo8CywAYX3A7KUuWg1euog/DCJJSwrx6AualI67nsPIaxA88SzOAPrJrU1yGdes8IOWnyc4eS4S8vBastJruo4igwKKAidE7yBz7lR3xO1E1xPY9BaWuNdiBFSBpmbBunIbov2G/oGgLbyctq6GywnnAun0V+se/BYRzUidLliN24FmaAfSBXZviOOTYTK5YLLnwdtKqVeBJ9+6lJHgUWBQ4kZqAfuRVyMkR5xM4R2zX56E0rw92YAVETI3CvHIUmC21HkvYBXs8OibSdtL8Ikb6kDn6mp2E6ySWQHz/M+BVHkmFxJMY6bNrU5gZ+4VkBVj9ao/tpBy8uom2k0YQBRZFQOopZI6+5pmMpm1/lGpdLNG82hRS2C8uZjtpdRN4nKbO842YHIF++BfuO0YUDbF9X6RaF0skhQWr6xxE711J5wttJ1VUKNW0nTSqKLAoEtI0oJ94A2Kgy/UcdeP9UDfcT1Pzi2DXpjgBOXJXOehFbSdtoQ/DPCZTk8gc+YX7DCDj0HZ/DmrzhmAHlqdkasJOdJ4anXuNVTeBeeV+0XbSyKPAoohIYcH4+Leeme7Kmm3Qtj1MNfU9iLEBmFePAXrq0xcr68Grm9x/iLaTFgypp6Efe82zEaC27REqpOXBrk3RBev6qXkJ5qyuDcyjdDptJ80PFFgUGSkljAvvw7p+xvUcpWkdtF2fB1No++PdpBSwbn1am2IWq2oE81hbp+2khUdaBvQTb0L033Q9R92wD+rG/TQDeA9pGrCun4IYvHXXq8zOpyh1zztiJRXgFbSdNB9QYFGEFtPAjNe1Irbvi579LIqJzEzBvHIMcmJo3uusphmsos7152g7aeGSwoJx+m3PLsPK6q3Qtj9CM4Az7NoUR4HM1KcvMmbXqPDYlk3bSfMLBRZFzOy6AOPMOwCcfwVYZT3i+78EVuRZ1/NqU9yF1baClXsUvqLtpAVPSgnz4ocwOz92PYc3rkNs9+eKOicgqzbFLMbt7aSJMpefZOBVDbSdNM9QYFHkrL5O6Cd/7VpIi5VW2nv0S4rvxrZrU5yB6L9+zxEGVu9dWpi2kxYX49pJz+6ovLbFrtKpFd8MoNTTMK8e+7Q2xSyugK1a6/7gQt1J8xYFFgTW0G3ox14DTN35hHiJXaXTY8q/0IipMbuc8GxtilmM2a2aPQItKthTnMxbF2GceXv+E/ldWEWd3aeniL4oxUgfzGvHASMz/4Ci2kGFWwE5xu1kZ48CcyS6KLAgAOyujpkjr3pU6Ywhdv/TUGqbgx1YwKSUEHc6Yd0482ltilmMz6wFe0zbVjeCu07rkkJn3bkO/cSb7jOAJRX2DKBHkmIhkELM1KZw2IGmaGCNHe7brqnLb96jwILMEdPjdgGg6THnE7hiFwBqWBPswALiWJtiFud2NU3XnhAMvIYKXxHAGr4N/divsp/SZ8WTiB98DtwjPyefOdWmmKPG7KDCLSmcK1BqWotyyaiQUGBB5pGZaWSOvAo5Puh8AueI7f0ilFXtgY4r1xxrU8ziCtiqDrA4TduSxRHjQzMzgFPOJ8SSiB/6Mnh5bbADyzFr4Caszo+d+6pocfs+cit1r6h2UOFRCp/kBwosSBZp6NCP/wpiqMf5hAIKLqQUsLo/gei+6HyCotofhm6tsRm3q2lS62xyDzE9bvfpcXpyB+zg4uCXwSvyP7iQlgGr82OIQZfKvrGknVPhtjNG0aDUtlABuQJBgQVxJC0L+sf/CNF7zfkExhHb9ySUVWuDHZiPZGbanrK9pzbFHFWzgwrPtWAq0U3cyUwKmaO/zN4RMSuWsJdF8ji4EJMjMC8fcZ+diZfYQYVbgTg1Zt9HRbwdt9BQYEFcSSlgnHkH1i2Xp3nGEdv7JJTG/AsuxFAPzGsnsmpTzFHjYE0d7k9QXLWfsKiAGFmANHXoR1+DGL7tfIKWsJdF8mzXlZQSovcKrK5zrjthkCiz61S4FQjT4nZQQVVpCwoFFsSTlHImuLjgfALjiO19AkpjR7ADWyZpWbBunoa4c29tirtoCbCmde4fdopmfxjSWjBZJGkadn8Rt+XFPAsu7NoUxyHH3DsmI1kB3rAGcCkQZ5e6b6a+HwWIAguyICkljLPvwOryCC72PAGlKdrBhZgeg3X5KGRq3P2keAl44zrXD0OatiXLtXBwEbdzLrw6e0aAGL1jJzq77XoBgLJa8LoW18MsXmL3z6FS5wWJAguyKFJKGOfehXXzvPMJjCO25wtQmtYFO7BF8KxNcbfyWvBa9w9DqHF7+YOmbckyScuwl0XyMLiQQsC6dR7i9mXP8xbsUJooA69qpFL3BYwCC7JodnDxO1g3zzmfwBhiu78ApXl9sAPzIA0dZucJSLf17Rm8oR0oqYRb3xRoCXtLKQUVZIWkZUA/9iuIwW7nE7Q44geeBffomBs0mZqcqU0x4nkeb90CqO6zedSUrzhQYEGWREoJ4/x7sG6cdT4hQsGFGB+0Oyk61aaYxRXwtTsBIVxnM2gtmPhNWuZMcHHL+YQIBRfWQBeszlPOtSlmaQkoa3dB6i6VewGwkkrwinoKKooABRZkyezg4n17acEJY9B2fx5q84ZgBzZDSgHR/Qkst9oUM1hpFZSO3RCTI+5BRbwUvLqR1oKJ76Rl2vViBlyCCzWG+MFnwatWBTuwGdIyYF3/GGLApTbFDFbdBKX1PogJl6J6AFhptd36nIKKokCBBVkWKSWMC+/Duu4SXIBB2/05qC0bgx1XZhrmlWOQHh9yAMCbNoA3b4AY6XXv60BrwSTH7ODidfcvbzVmNwCsbgx0XGJyxJ7tS0+6n8Q4lDXbwaobIUb64LaMyMtqwMpq6D4qIhRYkGWzg4sPYF0/7XJGsMHFgrUpAECNQ12/F6y8FtZQt3tQES+dyVqnD0OSW1EKLhZVmwIAkuVQN+wH1NhMfQ6Xjq5l1VDK82MLLfEPBRZkRaSUMC9+CLPzY5czGLRdn4Xauil3Y7AsWDfPQNzp9DyPVTZAXb8P4Cqs4W7Acl4ztrfCNVNQQQIjLQv6idch+m86n6BqiB14FkoOgwtpzNSmGPWoTQE70Vlp3wlYBqzhHvc28aVV4OV1dB8VIQosyIrZwcVHMDtPuZ5jBxebfb+2mB6HdfmId20KxqC0bQVv3ggIy56pcJnVYLEkeE0z5VSQwNnBxRsQ/TecT1A1xPY/A6WmyfdrL6o2haJB6dgDpa4VUk/PBBUuuUmUqFnUKLAgvpBSwvzkMMxrJ13P0XZ/AWqLPwmdUkqI/uv2MoxXbYp4CdQNB8DLayAt0zOoQCwBpbqFdn+Q0EjLgn7yDYg7N5xPUDTEDz3n226RRdemKKuBumE/WKIU0sjY95FbUJGsAK9soKCiiFFgQXwjpYR56TDMqy7BBeOI3f8UlIY1K7uOqcO8dhJy2KXI0Axe2walYzeYqkHOzlSYuvPJVKeCRIQUFvQTb7qXnY8lEH/gK+AeRagWdZ30TG2KyQVqU7RsgtK6BYxzO6gY7vFIeC4Hr6I6FcWOAgviKzu4OALz6gnnE7iK2MFnlz2du9jaFMraXeD1a8AYmwkqegDTZZqXKmqSiJHCgn7y1xB9znlDLFGG2INfAU+WL+v9rcFbsDpPuuYZAQC0BNQN94NX2rMj0tS9E54TpeBVlPBMKLAgOSClhHn5KMwrx51P0OKIH3p+Sa2ipZQztSlc+pXMYCWVUDceAJv5wJVC2E9YRtr5B9QYlNpWCipI5NjBxT9C9F1zPM5KqxB/4Ctg8eTi39MyZ2pTuCSJzr53dSPUdfvAtLj9c6ZBCc9k0SiwIDmx4G6ReIk9nVtaufB7LbY2ReN6KGu2zQUJUgpYw7fdZzcUzQ4qqKEYiSgpLLtCp8tWVFZZj/ih58DU2ILvJaZGYV4+sqjaFLxx3VyQsFBuEiU8k3tRYEFyxm65/hasW584HmclFfYTV6LU9T3E8G27NoVbbgQAqDGo6/eBV3+6vCKlgBjudS8xrKgzQQW1PifRJi0D+uFX7WJuDnhtC2L7v+QaIEspIfqu2j1+vBKdE2VQNx4AL62669qU8EyWjgILklNSCHsLnUsiGquoRfzQ83NTrnM/t9jaFBX1UDfcDxb7dDpYSgkx0guZmXL+IT4TVKgUVJD8IPU0Mh/9DHJiyPE4X7UWsb1PZn3BSyMzU5uiz/P9eX07lLU75wUni0t4pqCCZKPAguSctEzoR3/p2iqa1zQhduCZudkDOT0O88oRyGmP2hRgUFbbtSnuXteVUkKM9kG6TfdyZSaoWHjqmJAokekpZD78iet9obTdB23H43P3gxjrh3nlmHt+EWDP3HXsgVLXNv9alPBMVoACCxIIaejIHP4Z5NiA43HesAba3ichB2/BunHaNfMcwExtiv3g5fOTP6WUEOP97gEJV+wnrHtmRwjJF2JqDJkPfwJknJf41I7dUDcfhNV9AaLnkud73V2b4m4L5iZRwjNZAAUWJDAyk7KfuKZGsw8yBqWuxbs1MwBe2wqlY4/jMoaYHIZwmSoG4/aHIQUVJM+J8UFkPvqZc5VMrkCpb3WfaZg97a7aFHdbcMaPEp7JIlBgQQIlUhPQP/jJ/A8uVQMvqwJTPJ6A7qlNkfW+0+MQYy49Dhi3ZypiiRWOnpBosIZ7oR/+xbxAnMUSYKUV3jkP99SmyHrf8UHIKZeCWZTwTBaJAgsSODExjMyHPwWMNFiyFCxZ5rn/3a5NsR8sWeH8fpmpmQ6Ljj9trwXHFr/Xn5B8YPXfhH7sV4CUYKXl4IkSz/NZVSPU9ftcZ+3E1CjEuPNSJSU8k6WgwIKEwhrognnxAzDNO4mSN66Dsma763ruQn0LeHUTeKJsxeMlJIqM66chej7xXppgbKY2xXrXAF6kJ123s9IyIlkq2idEAieGb8O6cdozqJBCgNWtgbp2l3tQMde22SWoqKinoIIUJCklrN6rkHc6PYMKaZlQ1uyE0rTBNaiQegpixH07Kq9uoqCCLAll4JDASGHBunnWtUTx3HlGBmJyDGJ0ELyy3rFpmRSWnbnu1regtHpeoR9CCsVia1OI9DTk1AT0M+8gXlYNXl6T/V6mbt9HcJ645lWrwOPeSyyE3IuWQkgg7NoURyGnx9zPkRIyNQmZuquwFVcRO/RlKNWNd53nvR2OOiySQrWY2hRSCMipcUj9rnMSpYg/+E/mNS2zq2recu3/wctrwcuygxFCFkKBBckpKSVE/42Fa1NwFdbIHcB0KB0cSyL+0O+Bl1QsuB3O7lvQQkEFKShSiEXVpgDjsIbvON5rrKLWLqGvxmaa83U7b1mFnTDNK+rpPiLLQjkWJGekqcO6ctRuz+wRVPDaFmh7vwh19TbnE/QU9GOv2UskE4Pue+zVmL0eTB+GpIDI9BTM8+8uGFTw5o1Q930JvK7V+X3Gh6Cf+kcIYUGM9roHFfFSCirIitCMBckJMTEE88pR1wqBAOzaFO07wRvawRibaVr2NqxbFx1PV9buBK9Z5fJeKpQ62mNPCos12A2r84TrcgUAuzbF+n3gVfa9IS0D+pFXIYadd3mo2x52b7WuJezt2dSplKwABRbEV1JKiJ5LsG5dgFtCGDBTm2LDfrCS+bUppBDQj/8Kov/m/POrGqB07HR+iqLtcKTASMuEdeM0RP8Nz/NY1aqZ2hTzi79JI4PMB/8AOTm/2BVv7IDSst75zRQNSl0bleomK0aBBfGNzKRgXj0G6VZkZ8aCtSlMHZkPfjLXyZGVVkHZuNf1fF7TQpnrpGCIqVF7ti814X4SY1BWbwdv8qhNMTWGzAd/D8wkcbLaZqjtLsuN1JyP+IgCC+ILMdIL8+px9xbLAKDGoK7bC17TvPD7pSaQef/HABjUzftdP/B41Spwl4qchOQTKSVE3zVYN8+61mYBACRKoW44AF5WveB7WsO3oR/+OVhZNZT1u52XOBiDUtNKJe+JbyiwICuy2NoUrKIO6vr7wZYws2AN90KMD7iuBzMtCcUlUY2QfCKNDMxrJyDdql/O4PVroKzduaRcIrP7EiSEYyEtKSWUivpFBSmELBYVyCLLJlPjMC9716YAGJS2+8BbNi8py1xKASkM16DC6u+CHOwBf+j3lhSsEBI1i6lNAa5C6dgNpX71kt5bWgagaWAuu7KsrgsQQiJ28FnKrSC+oRkLsmRSSoiBm7Cuf+xdmyJWYndSrKhb+vt71KoQo/2wrn0MAODVjYgd/DK1cSZ5R0oB69ZFiJ5PPM9jpdV2E74llqeXUsAa7HZtoW71XoO4bc80Kq2boe38DG0xJb6gwIIsiTQNWJ0nIYa6Pc9jNS1Q1+1ZVjKYmByGmEnczD42Cuvy8Xlr0ErzBmi7P08fiiRvyPSUXYl2ctjzPN68EUrbVu9W6E7vLyXE6B3ItHMCqBi6DevGuXmvqZsPQVu/Z0nXIcQJPeaRRVtObYolXyM95RpUSD0D6+qprMQ26/YVsLJqaBvvX/L1CAmaGOqGee0kYDlUmZ2lxaGuv3+uNsVSyalR96BichTWzfNZr5uffAReWgmlad2yrknILAosyIKklBC3L8HqWqg2RQXUDQeyalMs+jqmDuHWWIlxKPWrYcVPQU5nfyCbl4+ClVZBbdmwrGsTkmuLrk1ROVObYpm7NERmCmJi0PmgGoPS0G4H6A6BjX7qN4gny8GrGpZ1bUIAWgohC5D6TG2KsQVqU6zqgLJmB5iyvAQwKSxYQ92u21V5TTN4vBRiYhiZD/7B+TyuIH7oOfC7GpYREgViagzmlSOLqE2xDdyjxflCpKnDGrzlvF2VcbsAlhqDdecG9GO/guODQrwEiYdeAEsuLaeDkFkUWBBXi6pNoWhQ1+8Fr2lZ9nWklBAjvZCZKcfjvLxu3nY4q78L+rFfAk6/unc1LCMkbFJKiDudsG6c8a02heu1hLC7lboF59XN4InSuf82O0/DuPC+47msog7xB56ngllkWSiwIFmksGB1nYPovep5Hiuvg7phabUpnFgTQ65JbCxRBl7VmPUEZ944C+Pc71zGVYP4A/8ETKMPRRKeRdemqFsNpWPXivrcLBycZ7dAl1LCOPsurK7sfAsA4KvWIrbvi5QUTZaMAgsyj0xNwLx8ZIHaFIDStmXJtSmciNSk3WnRiRq3G4u5NETSz71nPwk64A1rELv/afpQJKEQYwMwrx4D9JT7SVyF0rELSv2alV9vYghiicE5YD9E6Ed/CTHovMtLXbcH2n2HVjw+UlwosCAAllKbIgl1w/4l16ZwvKaRsadunX4FuQKltg1MdX+Kk0JAP/YaxECX43F1437aKUICtfjaFFV2orMPeQwiPQnhNiuixuz7yGO7qlvDslmxvU/SThGyJBRYkJnaFKcghm55nsdqmqF27PVliUEKy04yc9lyp9S0LGqJRRo6Mh/+A+SE89NabP8zUBqWVq2QkOWQmSmYV47NNc9zw5s2QFm9bcm1KRyvaegzwblbsuZqz+B8lpgaQ+b9v3eu/qnGEH/oBfCyqhWPlxQHCiyKnJgYtrPVvWpTMA5l7U7whrW+LC1IKSGGb0PqztfkFfXgpVWLfj8xPW5/KDpNO2sJxB/5p+DJ8mWOlpCFiaEemNdOLKI2xT7wKn92LS0UnC+16681ZDcscwpSWHkt4g/9kxXlgZDiQYFFkbJrU1yGdeu881LEDJasgLLxgK+7LKzxAcipUdfr8cqGJQcw9ofizxz/f2FVDYgf+sqyt8IS4sauTXEGov+653msssFuwudTB1E7WfM2pMsDwVKD81nmzXMwzr7reExp2QRt12cpb4ksaOVzcSTvSD0F8+L7sLrOeQYVfFUH1O2f8TWoEKlx16ACWgK8sn5ZH1xKbTPUzc5JZnK033VbHSHLJabHYJ592zuomKlNod73kK9tycXEkGtQwZLlYCWVy3pfZfVWKK2bHI9ZPZdcd5AQcjeqvFlkxEjfTG0K58ZEAOzaFOv2gtcuvzaFE2mkIUb7nQ9yBUp1k+sOkMVQO3ZBjPRB9HVmHbNunoNZ3QjV5UOTkMVadG2KeCnUjfuztnmulEhNQE45J1pCiy9rxm8WYwza9kchxgYdc0WM8++BVzZQZU7iiWYsioQUFswbp2F+8oFnUMHK66Dt/Jz/QYVlwhruhXNJcAalunnFHUoZY4jt/AxYqfPTmnH2HYhx78Q6QrxIQ4d56bC9e8ojqOB1bdB2fNb3oEIaGYjROy4XVez7aAXBOQAwRUNs75OAU3EsIaCfeANS92jxTooeBRZFQKYmYJ57Z8GCV0rrfVC3PrzigldZ15cS1mgfIEzH47yy3rdpYqbFEdv7RYA7BCmWaX8oGh6VRAlxIcYHYJz5DeTIbfeTuAJl/T6oG/YvajfGUkhhwRq5Dbd+PUp104qD81m8rAqxnZ91HkdqAvqpfwSl5xE3FFgUMCklrIGbMM781j2vAbBrU2x9BErblhU/7TgRE0OuhYJYSSX4MteD3fCKWmg7HnM8JqdGoZ95iz4UyaJJKWDeugDz/O88C16x0ipoOz7rS8Gr7DFIu0Gf5RacN4DFkr5eU2nqgNqxy/GYGOiCeeW4r9cjhYMCiwIlTQPW1WOwrh73LHjFapqh7fgceEV9TsYhMlOu68EslszZddXWTVDWbHUeU+81WNdP5+S6pLDIzDTM8+9BdF/0PI83bYC67TGwHG1rllOj7smaOQjOZ6mbD4HXNDseMy8fheVSnI4UNwosCpCYHIZx5rcQgx4FrxiHsnYX1I0Hc9ZTQ1qm+3qworqWGfaLtuVhsErnJDPj4oewhjymtEnRE0M9ME7/BtKtBTkAqHGomx+E2r4DjOdmO7PU0+5t0GOJnAXnAMA4R2zPFwCX5VH95D9CeHVsJUWJAosCIqWE1XMJ5rl3AJdmRIC9HU3d/hkojety9sU+N3XrMlvi53qwG6YoiO19AtDiTgOEfvJNyLT73xMpTtKyYHaegnn5sGfBK1bZAG3nZ8Gr/Sl45TgWYdn5SU64AqWqKed1JViiFLE9TwBO1zHSdt6S5dEGgBQdCiwKhNTTi6xNsdauTeGyc8K38UyNQLqsR/OKOjDNvz39XnhJBWK7P+98MDNtJ6EJjy2DpKjYtSnegriTvWV5zrzaFP7mNdxNSgkx1u9eWbOqMefB+ayF68R8EMg4SH6gwKIAiJE+O1t9zKVGBGDXpth4EGrHnpx/GEk9ZSdsOmDxUrCSqpxe/15KwxqoG5ybkYmhHpiXjgQ6HhI9UkpYfZ0wz7wFmRp3PzFeCnXrY1BaNuV8pkCmxiHTk47HWGn1ksp1+0Ht2AXe2OF4zLp5Fmb3pUDHQ6KLCmTlMSkErK5zEL1XPM9j5bX29rcAPojsLXFuU7cqeNWqUEoCqxv3QYz2QQxk552Y106CV6+C4vKhSQqbNHSYnScgh71zbnhtG5SO3b5vI3UeUwZibMD5oJYAL6/N+RjuNVsnJjM+BDk9lnXcOPsOeGVdKGMj0UIzFnnKrk3x9oJBBW+9D+rWR4IJKqS0kzVd6lUo1Y05S3BbCGMcsd2fB0s4t6nWP/4thNeWXFKQxPigPdvnFVRwBcq6vVA23B9MUCHFTF6Fw5Im4/Z9FFK/DqbFEdv3pHudmONUJ4ZQYJGX7NoUby1cm2LLI1BzVJvCiZweg3RJGuVlNTldj14MFkvaFQWd/j5MHfrJX0N6bM0lhUNKCevWRZjn311cbYqG9sC+zMXYAGA6fznzqlWhdxjlFXWedWKMc78LdkAkciiwyCPSMmBema1N4TwrAACsuskuJ1yZu21oWWMz0hDjzlviWCwJ5nNp4+Xi1augbX3I8ZgcG4B5+VjAIyJBs2tT/A5W9wXP83jT+pzWpnAiUhOuOR6spBLcZcYtaGrrJiirnevEWD2XYN72nkklhY1yLPKEmByBeeUI4LU9knEo7TvAV3UEOlUqhZjJq3CYuuVKzutVLJWyZhvESB+snstZx8yrJ8EbVkNxKQpE8psY7oF57aTrjAAAQI1BXb8PvLopuIEBkKZu7wJxHFMcvKIu0PEsRNv6EMTYgGPSuHH2XXtLeTIagRAJFs1YRJyUEtbtyzDPve0dVARQm8KNGPfYEle5KrAtcYtld3B8DKy0yuGohHHqN7ROXGDmalNcOuwZVLDKersJX9BBxWw/HafGZozN5FVE6+OaKapdJ8apWZmRgf7xb6h0fpGK1m8qmceuTfEBrJtnvWtTNKyFFkBtCidiehzSpfIeK60GT5QGPKLFYapm17dw+LCWqQkY598LYVQkF+T0OMxzC9SmwGxtiodDyQUSE4OA4dx1mFc0gDl9eUcAL6mAtu0Rx2NiqAcmlc4vShRYRJQYvTNTm8KlJDYwU5viANR1ua9N4USauj1b4USLR37bGa9qgLrRub6F1f0JrNve3WBJtEkpYd3phHH2Lchpr9oUJVC3PRpIbQonIj3lmojNkuXgJRXBDmiJlJaNUJrXOx4zP/nINfeKFC4KLCJGCgHz5lmYF993fYIB7NoU2s7Pgte2Bji6T0kpYI30Os+kMB5IqWE/qOv3uE5762ffgUw5Fygi0SZNHeblI7A6T3k24eO1rXYTvpCCYLufjkvdF0UDr3DudRMljDFo2x513sothF3d1qUrKylMFFhEiExNwjz3DsTt7KTCu/GWzTO1KcJbZhDjg+5b4iobAtnv7wfGOLTdnwOcxmtkoJ/+La0T5xkxPgjj9G8hh3vcT5qrTbE/tN9Vz7wKMDv5kefHRzSLJaDt+qzjMTkxDOOTwwGPiIQpP35ri4A10AXjzG9dW4wDALSEXZti9dZQE7lEetKx8h4AsJIK8AC35/nBc514sBvW9TMBj4gsh5QSVvdsbQrnFuOAvW1T2/GZQGtTOJGTw641NOx+Og7N8yJMqWuF2rHL8Zh1/TQsh6q3pDBRYBEyaRkwrx6DdfXYwrUpdn4u0NoUTqRlemyJi+W0hXMuKS2boDStczxmfPIRxLhz7xMSDTIzDfPC72DdWqA2ReN6qNsfB0uGm7cgjTTE5LDjMZYoBSsJPhHbD+qmg2Auy0r6x7+F1NMBj4iEgQKLEInJERhn3oIY6HI/iXEo7TuhbjoUiScYMT7gsmbNoFRFb0vcYs1uQYXTLhZh0TpxhInh2/Zsn1eSoBqDuvkBqGt3hlZWfpa9BOKSlK2o9hbtPMhPcsIUxd5t5fR3nJmy85ZoabHg5ee3QJ6bX5vCIzkwWQ51++NQmtZH4oNGpCZcuy3yyvpIBD4rwWIJxFzXiYeoC2rESGHBvP4xzEsfedemqAinNoUbMTnsOl6lKrx+On7hFbXQXFqsi95rsHqoC2qho8AiYNJIw/xkMbUp2mdqU1QFNzgP0jLt2QoHLF4a+tSyX5S6NqgdOx2PmZ0fwxqkdeIokNPjMM++DdF3zeMsBqVtK9Qt4dSmcCKNtJ1b4YCVVUdmnCulrN0BXtfmeMw49zsIr+2/JO9RYBEgMXoHxunfQLpNgwKAokHZcADqur2RqVgppXRfAmHc3gUSgRkVv9A6cXTZtSmuz9SmcE4gBvBpbYrWzZH53bS7lrrc+2oMPCL9dPzAGLNn/5xmMU3Drm7ruBuGFAIKLAKw6NoUZTV2J8W6cGpTuJHpSe8lkIgEQH5hijqzTuxwe6SnYJx9l9aJQyBNHdaVI7A6Ty6iNsVnI1egTUx4LYGsytv8JDcsUYrY9sccj4mRXphXTwY7IBKYwvpNjiCZnoR5fjG1KTZB3fooWMRKYHvtAmHxUrBEfm0tXSyvdWKr96pjAzOSO2JiCMaZ30IMLVCbomPPTG2KaJXAlnradSs5K6sB0xIBjygYSvN6KK2bHY+Zl49BjLrsMCN5jQKLHLIGb9nZ6pML1aZ4GOrqbZErhiOltIMKx8ZIhbcEci9l7U5wl9kjWicOhl2b4hOY594FMgvUptj+GSir1kbud1JKAcutNH+BLYE40bY+DOZUllzOVOU0nRsYkvwVrW+yAiEtE+bV47CuHAU8tiiy6saZ2hTRLNsr0xOQGeeOqryyoeCWQO7FGENsp9s6sQ7jzNu0JJJDMpOCeeE9WLfOA/BIdG5cZ9emiGhPDe8lkMbIBUJ+Y1oM2q7PAcj+/1NOjcKg3VYFhwILn4mpUXvKduCm+0lztSkeiOwWTXsJxGUXSKLUuS9AAWLJMvd14sFuWN2fBDugImHXpvgNpMtOJAB2bYpNh6Cu3RXZLZpeSyC8rCay97/flJomqBv2Oh6zrp+B8EpoJ3mnsB85XUgpkU6nkUqlkE6noes6hBBgjEFRFCQSCSSTSSSTSajq4v6KpJQQfVdh3TznUvt/RqIM6sYDkdlG6mTBJZCKwl4CuZfSvB5K/w1Y3dn7740LH0BpWAMWLwlhZOESQszdR6lUCoZhQEoJxhhUVZ27hxKJBBRlcV/8Uliwbp5dYBupXZtCXX8/WDy62zPtXSAuDcbUOFiBL4HcS92wD1Z/F2RWzpaEfvptxB9+IbIBYi5ZljV3D6XTaZimCSklOOfQNG3uHkokEuARWy53w2QRzeUahoGRkREMDw/DNBdXRbG8vBy1tbUoLS11/TKVRgbm1eOQbh8iM3h9O5S1OyO/hCCmxyFc1oR5VWPe9QLxgzQySL/zI8BhaUhp3oDYni+EMKpwpNNpDA8PY3R0FEIsvGWQMYaqqirU1NQgmXQPBGRqHOblo97bSMGgtG0BD6nF+VJY4wOu7dCVutVFM1txNzExjMx7fwc4/N6omw9CW+88q1FopJSYnp7G8PAwxsa8ft8/pSgKqqurUVNTg1gsWsnJ9yqKwEIIgTt37mBoaPn9HuLxOFpaWlBSMv/JVIz1w7xyDDA8ahsoqp2t7lIwJkqkZcIauOk4W8ESZVAiUr0wDFZvJ/QTrzsei93/NJRV7cEOKGCGYeD27duYmJhY9nuUlpaipaVl3gejlBKi/wasG6c9t5EiXgJ1w/7IbSN1IvUUrKFux2O8rBa8vLhmK+5mXD4K8/Kx7ANcQfyR/y94WVXgYwpSOp1GT08PUinnBnSLUVVVhaampkXPBAat4AOLyclJ9PT0wDD8yTyuq6tDQ0MDGADr1gWI297laVlZDdQN+yO3jdSJlBJi5DakU/Y9V+ynrIjPtuRa5vjrEH2dWa+zRBnij/1fkdvm6JeRkRH09vYuaoZiIYwxNDY2oqamBrBMWJ0nIVy+hOd+pqYF6ro9efH3K6WANdAFWA6fOWocSl1b5GdbcklaFjLv/Z3jbjle24LYwS8X5N+PlBIDAwPo7/dni62iKGhpaUFFRfSSlgs6sBgZGUFPj8e+92UqKSlBa/o24LaFbAZv2QSldUvktpG6oSWQhcn0FNLv/P8cs/yV9h2IbXs4hFHljpQSd+7cweCgR4OvZaqqqEDD0AUg7bzzCIAd0LbvBA+5xflS0BLIwqzhXugf/sTxmLbjcairtwQ8otwSQqCrqwuTkx69oZapsbERdXV1vr/vSuTHN94y5CqoAIDp6WkMSo+ksQjXpnDj2QskUUZBxQyWKIV23wOOx6wbZyBGvPNs8omUEn19fTkJKgBgdHwck5p7e3BWUhHZ2hRupJ5yDSp4eS0FFTOUmiYoa7Y7HjMufgjpFWzmGSEEbt68mZOgAgD6+vowMOCxeyoE+fGtt0RTU1M5CypmDcs4pkvrs15nVdGuTeHE3gVyx3kXCFfy6v+XICirt4DXOOea6GfehvTKE8gjIyMjK8pLWozbsgxmInsql6/qgLr9M5GtTeHEsxeIFgcrrQ52QBGnbT4IOC0RGxkY598LfkA50tfXh6mp3AZKd+7cwfh4dAr2FVxgYVkWuru912v90sOqIOIzNwZjUNp3QN0c3doUbmR60jmvAjOFsIpwC5gXxhi0HY879hKRE8Mwr50KYVT+0nUdvb29ub8QY+hS6iAVzf7v2doUHbvz7vdOTAw751WAQalclTezLkFhWgyxbY86HrN6r8Hqux7wiPw3OTmJ4WHnbrZ+6+npWfRux1wruMDizp07viVqLkQyjm6tAUhWQN32OJSmDXn34SGF5bEEUg5eJIWwloqXVUPdcL/jMfPKMQivMu4RJ6VEd3d3YFVFTa5hoKQZrLzObh5W0xzIdf0kTd29EFZ58RTCWiqlcS2UpvWOx/Rz70IazhVL80GQD7mz17t9+3Zg1/OS08Di+eefR3V1NX7v934vl5eZY5pmYNHhrDSLYbRpB3hZfk5zislh5y1+XAGvzF7qIZ9S1+0Gc9o2KASMM+/kbbnv6elpTE+79+XIhVEkkGrblZeFxuYKyjmhJZAFaVsfci6bn56C8cnh4Afkk9HR0cBnEMbHx5HJuHfQDkpOA4s/+qM/wv/5P/8nl5eYJ+igYtbQ8LAv2/CCJo2Me6JZRX3eTUUHjXEFsR2POx4Tw7dhdV0IeET+yHVehZvBkK67UjI9Cak71ySgJZCFeSZE3zwLaziAJTmfSSlDu4/C+h68W04Di8cffxzl5cHsJpBShvYXalnWiooGhUFKCcutHXosWTS9QFaKVzdCad/heCwfs9tN0wwtCWx6ejoST1tL4bmUWFJFSyCLpLTdB17b4njMOPM2pJVfCdHT09PQ9XCWcYYj8KC75MBCCIHNmzfjW9/61rzX33zzTcRiMfz4xz/2bXBLYRhGqIkrQU8dr5RMTbhWCy22XiArpW0+AJZ0CMRMHfq53wU/oBUI+/c47OsvledSYhFX11wqxhi07Y8BDrOkcnIE5rUTwQ9qBXK9C8SLlDL0AH3JgQXnHN/+9rfx/e9/HyMjdrLS6dOn8cILL+A73/kOXnjhBd8HuRgrKY/qh3z6QJTCgphwrk3ASqvBtOhXN4wSpsaguWS3i75OWL3ZlTqjKuz7KOzrLwUtJfqLl1VB3eiWEH3C3nWTJ8L+PQ77+staCnnxxRdRV1eHV155Bd3d3Xj66afx1a9+Fd/85jf9Ht+ipdMevToCun6+JOuJiSHnpyxFBS+yjot+UVa1Q2ne4HjMzm7Pjyn+sD+Q8iVAp6XE3FA7doFVOPSCkcJeEsmTz9iw76Owr7+swEJVVXzrW9/CK6+8gqeeegp79uzBK6+84vfYlsQKeQ1OSpkXv/RST7t2j7SfsgpuB3JgXLPbM9N5k90e9n0U9vUXS6bGaSkxB+yE6M8AyP77EyN9sLrOBz+oZQj79zjs6y/7W+TFF1/E9PQ0pJT40Y9+5Nhl7YknnsALL7yAX/3qV2htbcWxYw4d7XySD1/qYZNSwhp3ecqKl4DFo98oLcpYvATaloccj1k3z0OM56Y0tp/Cvo/Cvv5i2EuJzhn/tJS4cryqAWqHS0L0J0cg9XBnp/NB2PfRsgOLb3zjGwCAwcFB19atb775JgYGBjA9PY3u7m7cf7/z+pkfeASetKP+lCKnxwDHKXlGT1k+UVo3gde1OhyRMM6/H/oNv5Cw76Owr78YYmKQlhJzTN14AMypP5GRhuHUcj1iwv4sDfs+WtbV//RP/xSvvfYaDh8+DNM08Vd/9Vd+j2vJYrFwnxI0TQv9l8mLtEzXpyxeVg2magGPqDB9mt2efWuJoR7HlutREo+Huz0y7OsvxF5KdN6OS0uJ/mGqBm27S7nvm2cjn8gZ9u9x2Ndf8l3wgx/8AN/73vfw6quvYufOnfjjP/5jvPzyy4GV0XaTTHp0Gw1ASUm0KwaKiUHnJmOKBpanVUOjipdWQu3Y5XjMuPABpBWNev5O6D5y55mwSUuJvlMa1oA3rMk+IKM/+xf2fRT29ZcUWLz++uv4+te/jr/5m7/BwYMHAQAvvfQSxsfH8cMf/jAnA1ysRCIR6vXD/of0IjMpu26FA15ZD8boKctv6vq9gEN5apmagNn5cfADWqSwf4/Dvr4XOT0GmLSUGCRty0OAw+eTGLwF0X8j+AEtUti/x2Fff9HfKCdOnMALL7yAl19+GV/5ylfmXq+oqMBLL72E7373u6FmonLOUVERXovlMK/txTNhM1EGTk9ZOcHUGLT7DjkeM6+egExNBjyixUkkEqEtKyqKEtkZC1pKDAcvq4K61iWR8/wHka3IWV5eHlqgWVJSAlVVQ7n2LCajPJ+0RFNTU7h+PfhWu+Xl5VizxmHKLgLE5IhzMSzGoNSvAVPoAzFXpJTIfPD3kKPZgZ3SshGx3Z8PYVQLGxoaCqZl+j3q6+uxatWqwK+7GNZon/Osn6JBqV9Ns345JI0M0m//v4BDPxb1vkPQ1u0JYVQL6+npmSsiGaS2tjZUVlYGft27FdTdUFJSEkrSSm2tQ0GXCJCWATHp9pRVS0FFjjHGENv6sOMxq+cyrJG+gEe0OFVVVaFkldfURHNHBS0lhotpcWibDzoeM68cj2w/njC+F1RVjcTseUHdEYwxtLQ4N7LJlcrKSpSVRbPKnhgfBJwmpNQYWGlV4OMpRry6EUrLJsdjxrn3IpmApigKmpqaAr3mqlWroGnRC3RpKTEalLbNYBV12QdMA8alI8EPaBESiUTgwUVLS0skcn0KKrAA7FmL+vr6QK6lqiqam5sDudZSST0FmXZex1co0SxQ2uaDgJK95inH+mF1XwphRN6kZaKCm6gK6Hs+mUyirs7hSyMCZGocMB26VDIG7vRFR3KCMQ7Nbfbv1kUIh+XGsEkjg/o4kOTBdBqtrq4OrJv4QsLN8MiR+vp6TE1N5bzvQGtrq2txsDDZT1kuTcaS5WDx6GbeFyKWLIO6fi9Mhycr45OPoDR1gKnBJ0xKy4ScGoWcHIGYHJ378+y0/6r9z2LqznBOt5IrioK2trZIBrpSCI+ETVpKDJpS2wyleT2s21ezjhnn30fsgedD+T2Shg45NQIxOQI5OTrz51EgMw2oMTTf/yw6u7pzOjsZj8fR2NiYs/dfqoIMLDjnWLNmDW7cuJGzZixr1qyJ7BKIzEw59zFgDLycnrLCoHbsgtV1IXutPjMN8+oJaJudd5D4SYwNwOq/YX/43RVAOOGNHdCq6rG2pBKdnZ0wTf9rbyiKgrVr14Ze3M6NnBpxqbCp0VJiSNT7HoDVdz3r30WM9MK6fRVqi3MjQD9ZA7cghnrmBxAu1LU7oJZXor1dxY0bN3ISXMTjcaxduzZSD7kFtxQya/ZDy++poVy9r1+klK49KXhpDZjDlDzJPaao0LY86HjM7PwYYsq5MZyvY4iXwOq+DDHQ5RlUgDGoM5n2sVgM69at871OTCwWQ0dHR+j1Z9xIy4SYcs7o5xV1kZxhKQY8WQ513W7HY+bFDyGt3BdqZFoc1q0LEEO3PYMKxBJQ2rYAAEpLS9HR0eH7NtBcve9KFWxgAdgzF6tXr0ZbW5sv0VxVVRU2bNiA0tLoJmzJ6THA6ebiCj1lhYw3doDXOiQXCwHj4oc5vz5LlELb5rxOfTeleQN46afb1TRNw7p167Bq1SpfvlDr6+uxfv360MsOexGTw86Jz7EkVdgMmbpuj2NbepmehHn1VM6vz6sa5gJvL+ranfPqmySTSWzYsMGX3U+MMTQ3N6O9vT1SMxWzCjqwAOx/gMrKSmzYsAF1dXXL+kcoKytDe3s7WltbIxcZ3k0KYX8gOuDltdTHIGSMMbu1ulNL6L5OWIO3cnp9mUnB6rrofRLjUBzKkTPG5gKC6urqJQcYs/fh+vXrsWrVqtCbJHmRpm4H6A6UcpqtCBtTNahuxeeunYTwmo3zgZgcgbVQz594KZTWzVkvK4qC5uZmdHR0LGtbKOcctbW12LhxI2pqaiL7u1hQBbIWQwiBiYkJTExMYHp6GrqenfGtKAqSySRKSkpQVVUV2TXge1kTQ5BOgYUag1K3OrK/hMVGP/sOrJvns15n5TWIP/z/yUkAaA12wzj3O8ciQ3dT2u6Ddt8DC7+fZWFsbAyTk5NIpVKOCZ6qqiKZTKKsrAyVlZWRDsrvZg3ftvOU7sESZVCqg92GS5xJKaF/+FOIkexCbkrzesT2PJGTa1o9l2B+ctg59+Yu6n0PQm3LDizuZRgGRkdHMT09jenpacfq1bFYbN59FOWgfFbRBRb3EkLAMAxIKcEYA+ccqqrm3ZewtExYAzccp295dTN4gqZvo0JmUki/8/86trDXtj0CtX27f9cSFsyrJ2DdOLvwyVxB/KEXwJbxu2JZFkzTnLuPFEXJm0DiblJPwRrqdjym1K8JZfcOcSZG+5F5/8eOx2KHnodS618pAGlkYFx4H+LOjQXPZclyxB78vWU9IJimCcuy5u4jTdPyIpC4V/6N2Gecc8TjcSQSCcTj8ci3P3cjJoYcgwoWS4I5NMMi4WHxJLQN9zseMy4dgdQddvQsg5geh370l4sLKgAobVuWFVQA9izf3fdRXgYVXtu0S6ooqIgYXtUApe0+x2PGef+Kz4mRO8h89NNFBRUAoK7bvexZR1VV591H+RhUABRYFARpZOxCPg4ogz2alPZtzu3qjYwv3U+t3qvQP/oZpMsXJQAgXgJeM/NUp2iuzZ6KhUxPumzT5uDl0Sw3Xuy0TQcAhwZwcnwQVm92vYulkFLAvHYK+rHXAI+y4ay8BqzM/v1gpVXgTetWdN1CQIFFAXAr4sMS5WBaNLfzFTvGFbsltAPz+mlIr21sHqRpQD/7Loyz7zrvDprB61cjfuh5aDs/C5Ysh7JmK1iseH9XpJTe3Ut59DLvib3TSd2wz/GYeekopFhe1UuZnoJ+/HWY104CcJ/5UFZvRezAs9B2Pg4oqr1jhXrHFGaBrGIiMtOOiWYAAy+PZnM0YlMaVoPXr4YY6Jp/wDJhXD2J2FbnwMONGB+EceZtyGnn2SsAAFegbtwPpe2+uZksbcfjYCXhNy4Kk/s2bZW2aUec2r4T1o1zWbVZ5NQorJ5LUF2WS9xY/TdhnH/PMQdqjhaHtu0RKPWrAdgzFdquz4PXUHIvQDMWec1+ynJZEy6tnLeHmkSTtumA4+vWzXOQKedeL/eSUsK8eQ76kVc9gwpWWonYgWegrt4yb3mMV9aDadGtKZFrUljusxXltfQEGnFMUaBudM5ZMi8fg3TYaeFEWiaMix/B+Pg3nkEFr25C/NDzc0HFLKW2mZadZ9Adk8fsNWGHG4Bx8DJaE84HvKoBvLEj+4CwYFw5tuDPy0wKxqlf231IpPu0r9KyEbEDX6ZZLAdicsT5706NgSWjWWGXzKe0bHKcWZKpCVi3Liz482JyFPqRX3ifyxjU9fug7Xty2UnOxYICizwlpXCdreBlNbQmnEe0TfsdX7dufQIxNer6c9ZQj52tPui8PRIAoMag7Xgc2taHaQbLgbQMSJe/Y0p8zh+Mc6gu95Fx5bhrqW8pJczuS9AP/wxy0rmEOwAgUYbY/U9D7dhJM1iLQH9DeUpOjQGWQ2MoRQW7qxwziT5eXgulZWP2ASlgXs6etZBCwLh8DMaJNzwLXrHKesQOPQfFaUaEAJhNfHbapl0CTqW784rStB6swmFGLjMN83r2lmtpZGCceRvmhfc9C17xVWsRP/QceNUqP4db0CiwyENSWN6luymizjvqxv2Aw7+b1XMZYvzT9f9Pa1Oc8Xw/Ze1OxO7/EjhN5buyt2k7l3/mFdQFON8wxqBtOuh4zLx2EvKuZWMxegeZj34Gcee6+xtyFeqWh+zk5iLOQVoO+gbKQ+5rwnGwBH2R5CNeWule7OfyUQCA1XttpjbFgPsbxUug7f0itA37qDfMAlwTn5Pl9EWSp3jDGvDqxuwDRgZm52m7NkXnxzO1KdyTo1lZDWIHvwy1dRMthy1D0Zf0zjfSMmH134DT9C2vaQGnKpt5S6YmkX77bxynZZXmDRALNCnjdW3Qtj1S1PUoFsu9dDeD0rAGTKF8lHxlDXZDP/zz7AOqBl7TDDl6x/PnldVboG64H0yhagzLRY80eUZMjcBxTTheQkFFnmPJMihrtt3zIgO0mHdQwTjUzQeh7f48BRWLJCaclxJZaRUFFXlOqWsFr2ud/yLjAOPeQYUWh7br89A2H6KgYoXoby+PSMt0befMy2lNuBBo6/fC6rpgF2viip2M6zEVy0oqoe14HNwpaY04knoKUneobMo4uFOZdZJ3tE0HkJndLaWoCwYKvLoJ2vZHaRupTyiwyCNiatS50ViijNaECwSLJ6Gs2Qqr6/yCW4aVlo1QNx2kbaRL5Jr4XFpF27QLBK9uBKtrhRzt9841Ygzquj1Q1u6gpHcfUWCRJ6SwIKdHHY9RMazCYQ3dhui/6f0Fp2rQ7nsQCjU7WjKpp537sDBOpbsLhJQSVs9lYHLEO6hIlCG24zHaRpoDFFjkCdfZingpzVYUACkEzGsnYV0/7X0i44gdfA68yHt7LJfbbAWj2YqCIA0dxsX3Ifo8tpECQLwE8UPP0WdnjlBgkQeksNyrA1I757wnpidgnH0bcsx9G6mU0t4tYpn2eRRYLJk00s4N+xgHp9mKvCdG++0mfB7bSKWUdmFBfQQyM02BRY7QolIekFOjjnUrWLyE2qLnOauvE/rhny4cVJjGXKVV49IRSI++IMSZ606Qkkqarchjdm2K09CP/dI7qBACMPSZ7dzS7q9DcoJmLCJOCsu1XwQvo50A+UqaBsxLh+21YE8MMNLzf3ZyBFbPFaitm3I3wAIjjYzLbAWjnSB5TKanYJx7F2K41/s8YdnB+V2s3msQYwPglfW5HGJRohmLiJNTY+6zFVSzIC+J8SHoh3/uHVQwDnXTASgubdXNy8do1mIJXHMrSii3Il9ZA112WW6voEKLQ9v1OSitmx0PGw69eMjK0YxFhEkhZgpiZaOdIPlHSgmr6wLMy0c9W5zbtSkeA6+ogxQWrGunsuqXyOkxiN5OKM3rcz3svCeNjMsUOaPcijwkhQXz8jFYXec9z2PVjYhtfwwsUQpeUQer6yIg5jduFHeuQ0yO0KyVz2jGIsLk9KjzbEUsCRZLBj8gsmxST8M49Y8wLx32DCqU5g2IHfzyXBMsxhX3dtDXToEq8i/MfSdIJVVYzDNiahT6kV8sEFTYtSli+744V/CKJUqhrt3heLZ57VQORlrcKLCIKHu2YtTxGC+n3Ip8Yg3dRuajn3qX5VY0aNsfs3t93FPwSmlaD+awC0SO9UMM9fg93IIiTd1jtoKeUvOFlBJmz2XoH/0c0iUJFwCQKEXs/qehrtudVfBK7dhpV7O9h9V9CTLlnvRJlo4Ci4iS02OOzahotiJ/SCFgXDkO48TrgFNRphmsoh6xQ8+5FrxinEPt2O14zLx60pexFir33AqarcgX0tBhnH0H5vn3spYy7sYb2hE/9Dx4tXPBKxYvgdLmkGshBcyF6seQJaHAIoKkdM+tYJRbkRdEagL6sdcWLHiltO9AbP+XFix4pbRtBhwCSjF4C8Jjq2oxk6YOmZpwOEI7QfKFGO2HfvhnEH2d7idxBeqWB6Ht/MyCdSnsAD2794558zykns7+AbIsFFhEkNtsBbQEzVbkAauvE/pHP4Mc63c/KZaEtvdJaBvv9y47PIMpqscaMc1aOHGfraig2YqIk1LCvD5Tm8IxOLSxsmrEDn4Zautmz2Z9s3hppfPMoGXAvHluJUMmd6HAImKkFBCTLjtBymsWdfOQcEjTgHH+PRhn3gZM3fU8XtuK+KHnodS2LOn91TXbAIeW3tbtaxBTzl1vi5U0DdcvJJqtiDaZmYZx4g2YV447tjGYpbTdh9iBZ5f876mu3+P4unn9DKTlvtRCFo8Ci4iR0+MesxUlwQ+ILIqYGIJ+ZHG1KbQ9XwCLL33micUSUNdsdTgiYXZSZvvdvGcrqBtsVFkDt5D58KcQw7fdT1Jj0HZ+Ftp9Dyxr5olX1oPXtWUf0FOwbn2y5Pcj2SiwiBAppftsRRnNVkSRlBJm1wXoR161i5m5YCUViB14BuqabSv6d1TX7gQc2jtbtz5x7tpZhKRlQKbGHY/xUspRiiIpLBiXDsM49eusSrN3Y1WrEH/geSir2ld0PXW9SzJ05ym79DdZEQosIkSmJpyznrU4WJxmK6JG6mkYH/8G5icfOc8yzeD31KZYCZYsg+JUyltYlNk+w22bNktWZG3lJeETU2PQj7wK6+ZCtSl2I3b/U2CJshVfk9e2glU2ZL0up8dh9V1b8fsXOwosIkJK6dEThGYrosYa7rVrUwx0uZ+kaNC2P4rYtkfA1Jhv11bXuTxt3TgHabjndhQDKYS9nOiAciuiRUoJq+cK9MM/g5wYcj8xUYrY/U9BXbcnqzbFcjHGoLndR1dPUuG5FaLU6KjQU4CZyX5djYHFS4MfD3EkhYDZeQpW58ee57GKOmg7Hl9wG+ly8LJq8FVrIe5cn3/A1GF2nXf9wCwGMjXuXK02UeZrcEdWRpo6jAsfQiwwO8Ab1kDb+nBO2pvzpg6w0sqsJUw5PggxeAtK/Wrfr1ksaMYiIlxnK0qraLYiImRqAvrx1xYMKpT27YuqTbESmltme+fHkJb7skwh85z1oyqbkSHGBqB/9DPvoIIrUO97ANrOz+YkqAAAxqjwXK7QjEUESFN3bunMFbBkefADIlmsvuswLrzvuY0UsSS0bY9AqWvN+Xh4dSN4TXN29nxmGlbPJairt+R8DFEjM1OAZWQf0BLUCTgCpJSwbpyFedV7GykrrbJn+8pzn2irtG6CcfloVmVcMdQDMXoHvMq5iifxRjMWEeBWg4CVVPq2pkiWR1omjAvvwzjz1gK1KVrs2hQBBBWzXPfjXztVlC3VpcesHwmXzEzDOPkGzCvHvGtTtG62E50DCCqA2cJzOx2PGVdpC/dy0YxFyKSwIFPOgQUvqQx4NORuYmIYxpm3Xb+wANi1KTbsg7LCbaTLwetXg5XXZiW+yalRiL7rrr1HCpE0MpB6KvuAovqyi4AsnzXYDePsu57bSKHGoG19eMXbSJdDXbMV5tUTWQ8Oou8axOQoeFlV4GPKd/Q4HDI5Pe4YwbNkOZUdDsmntSl+4RlUsJIKxPZ/CWr79lDyYBhjrrMWxrXiymx3663DSyhHKSx2bYojME6+uXBtikMrr02xXEyL21VtHVDhueWhwCJEUkqI6VHHYzR9G45F16ZoWm9P2VbWBzi6bErTesc8HDnaDzHkUb2wgEjLdG57zZhju3mSe2JqDPrRX8Ly7L/BoHTsRmzfU2DJcGeV1LU7AIeePVb3J5Bph/w34okCixDJ9CTgVJs+lgTTKNksaGK4F5mPfrZwbYptjyC2/dFIbF+0W6rvcjxWLE9bYnoMgNOsXwUYV4IfUJGzbl+BfvjnkOOD7ifFSxHb90Vo6/csqglfrrFEKZRWh5bqQsC8cTb4AeW58P9Fi5jXFlMSHCkEjKsnoR9/HXDanTODVdQhdvDLUJo3BDi6hSmr7wMcdj2I/psQLsWiCoWUwu4G7IDuo2BJU4d+9h0Y537nvDtnBq9fjfih58BrmoIb3CK4bj3tulC0W7iXiwKLkEg97bzuqGhUECtAMjUJ/fivYHWegtNT7yxlzUxtitLoJdQyRYPavt3xmHeZ5Pxnl8HP/tBn8dJIzCgVi7naFL0L1KbYfAjars9FcvsvL6sCb+zIPqCnqMz3ElFgERL32YpKSjYLiHXnOjIf/RRy9I77SbEEtD1PQNu0P9LT6urqrY7NycxbFwq2FbRXQSxGsxWBkFLCvHEW+tFXXdvUA/a/R+zAs1BXb4n055t7gO6VK0LuRdsOQiAtEzLtcBMyDpaM3hNxoZGWCfPSEVjd3i2SeW0ztG2P5kUDOJYohdLYAav36vwDehpW7zWoTo3L8pzUU861RdQYWGzpbenJ0shMCsa5dyGGejzPU1o3Q910IC92ufHaFrCyash7ukyL4V6I8UFfGgkWA5qxCIHrU1ZJRSQSmQqZmBiGfvjn3kEFY1A33A9tz5N5EVTMUtqdt8wV6tOWdNtiWlod6afiQmANdiPz0U+8gwo1Bm3HZ6BteTAvggpgZgu329bTG4V5H+UCfYsFzDPZrKQq2MEUESklzFsXF65NkSxHbP8zUNfuyLsvJ17TDOZQsVCM9EGMDYQwotyxy+BPZx/gSuhbFwuZXZviqF2bQl+oNsVzUBrXBjg6fyitmwCHQMjquQRpODSKJFkosAiYnJ7w6L6ohTCiwieNDIzTv4V58cMFalOsQ+zQc6HXpliuYnracs1RojL4OSOmx2dqU3hvv1Q6ds3UpsjPPkdMi0Np2Zh9wDJhdV8KfkB5iO7AANnJZm7Tt1XBDqZIiOFeZD78KUT/TfeTFBXatkfsfIo830mgtGwClOwA1eq5XDBPW3YZfKdttAyMyuDnhNV7FfpHP1ugNkUJtH1PQVu/N++XdN2SOM2b54qqou1y5cfCV4GQmWmX7otxgApi+UoKAbPz45kW5x6dFMtr7U6KEdxGuhxMi0Fp3ZSdVyFMWLc+gdrh3HApn8jpMSqDHxBp6jAufgRxb1LwPXj9amhbH47kNtLl4BV14NVNECO9816XkyMQQ7eh1LWENLL8QHdhgLwK+eTben6UyfQk9DPveG8jBaCs2QZ1w75IbyNdDnXNNseETfPmOSh5mDtyN7sMPhXECoIYH7Sb8HkVWeMK1I37obTdl9e/V06U9m1ZgQUAmDfPUmCxAAosAiItE9KpqiNXwBL5uRYZRdadGzDOv+fZ4hxaAtq2R6DUtwU3sADxilrwmiaI4XuetqZGIYa6odTl7//fUp92LIPPYkkwLR7CiAqPlBLWzXMwrxx3zAebxUor7dm+8toARxccpXEdjNj7wD1dc0VfJ2R6CixBhQzd5PdCWB5xXhOeTTYrrEg/DNIyYVz4AMbp33oGFbymGfEHni/YoGKW4rZGnOdJnG5Pz1QQyx8yk4Jx8tcwLx/1DCqUlo2IHfhywQYVAMAUBerq+7IPSAmzq7Ar2q4UzVgEwJ6+dflApO6LKyYmR2CcfstzGykYg7p+L5T2/F4KWCylsQNGPAlk7nnaunMdMjWZl1sypbCcO01yhcrg+8Aa6oFx9t2sJ/R51Bi0LQ9CcSp9XYCU1VthXj2Z9bp58wLU9XsLbhnVLzRjEQCppxyTNlm8BMwhg58sjl2b4hO7k+JCtSnu/xLUtTuLIqgAAMYVu8z3vfL4acue9XPpYlok/665IIWAcfkojBNveAYVrLIBsUPPFU1QAQC8pAJ8VXv2gcwUxJ0bQQ8nb1BgEQC3pE0q3718dm2Kt2Be/MC7NkVjB2IHnwOvaghwdNGgrN4CIPsL1+y6AOnxdxZFXrN+nGb9lm2uNsUCrcGVtTsRu/9p8DytTbES7rVhqJ26G1oKyTHP6VtK/lkWMdIH/ew7gNPf6yxFhbr5EJTmDUX7NMuT5eCr2iHuXJ9/IDMNq68TasTav3syMs65M7Fk3tceCYvVew3GhQ88W5wjXgJt+6NQapqDG1jE8PrVYCUVWfk9YqgHYmIY3KHabbGjGYscszv+0fStH6QUMK+dgn7sV55BBSuvRezgl6G2bCz6v2PXbo15lsTpusU0SbMVSyVNA8a538E4+45nUMHrVyN+6PmiDioAu6Kt4jZrUaB9eFaKZixyyHPPPU3fLolMT0E/+w7kSJ/necrqrVA33k9JVTN4XStYaVVWDooYvg0xMZQXWf1SCI9uwPmXhBqmRdWmYBzqpv1Q2qLd4jxIatt9MC8dyVp2tbovQW4+SLNm96AZi1xym77VEvSLuARW/w1kPvqpd1ChJaDt/jy0zQcpqLhLIfQPkekJ90qb1BdkUaSUMG+eg37kVc+ggpVUInbgWairt1JQcRcWS0BxWjo0dVg9l4MfUMTRXZlDIuU2W0FJm4shLRPGxQ9hfPxbO0hzwWua7E6K9asDHF3+UFo3AdyhW+PtK5AOxaaihpI2V0ZmUjBO/dp+4l6oNsXBL4NXRH8WKwxqu0uAfuuTgEcSfbQUkiNSCMjUZPYBxsESNH27EDE5Yk/ZTjo3bQNwV22K7fTk6oHFElBaNsC6dXH+ASMDcecGlOb14QxsEaSRAQyH9txqHIz66yzIGrpt51J41qbQoG15qKi2kS4Hr1oFVtkAOdY/73U5egdicgS8rDqkkUUPfRrniExPOrdHT5bnfee/XJJSwuyeqU3hEVSwRNldtSno73MhSptDBUEAZk+020AL14q1NFvhRQoB48oxGCdeX6A2RT1iB5+noGKRVJf7iJZD5qMZixyhpM2lk0YGxoX3Fyw8wxvXQrvvITCN8lQWi1c3Om+Z6++CzKTA4smQRuZOSuGSD8DAirCewmKJ6QkYZ9+GHBvwPE9ZuxPquj30oLMESvN6uxfRPQ+NVvclqBv3U17KDPqNygFp6i7TtzFApUZJTsToHWQ++ql3UMFVqFsfhrb9cQoqlogxBqV1c/YBKWDdvhL8gBZBpqdcZv3KKEHXhdV7Dfrhn3oHFfESaHu/CG3DPgoqlojFEo6VOGVqAmL4dvADiij6rcoB99kKajh2LykFzM5T0I+9tkBtihrEDlFtipVQWjY6vm52R3M5xG33AqeKtVnm1aYwPWpT1LXZic61xV2bYiXU1k2Or1sRvY/CQEshPpNSzhTFuhdN395LpqdgnH0XYqTX8zxl9VaoG/aBKfTruhK8tNK5nfpYf+QqCErTsFuk30vRgBglbd5NjA/N1KZwfqABYNem2Hg/FNpGumK8YQ2gxbN2qlm9VyG3PUKfU6AZC9/J9KRj7wqWoOnbu1n9N+2lD6+gQotD2zVTm4JuVl8oLS5PWxFL4vRK2qQvRptdm+I89CO/8Awq7NoUz0Bds43+7nzAuAKl2WH2zzRg9V3Pfr0IUWDhM+nygUjt0W12bYqPYHz8G+/aFNVNdjnhBqpN4SeleT3gEOBa3ZchHYpQhUFK6boMwqiENwC7Y7Jx6h9hXjrsXZuiecNMbYq6AEdX+FyXQyIWoIeFHgN9JC0DMuM8fcti0cu6D5qYHJ2pTTHsfhJjUNftgbJ2B20jzQGmxaGsaofVe23e6zI9CTHUA6WuNaSR3TWWzDQgsgt3sXgpzVxhpjbFuXcBp8+aWYoGbcuDUJrWBTewIsKqGpxL5Q90QWamweIl4QwsIuiT20fOuRU0fWvXprg0U5vCI6hIlCF2/9NQO3ZRUJFDjrtDEJ2nLbf7iBV5xVq7NsVxuzaFR1DBKuoRO/QcBRU5ZO+ycpi1kBJWTzR3WQWJPr19JJwqbaK4p2+lkYFx5m2YF953fAqdxVetRfzQc+BVqwIcXXHi9W2AwwyadfsapFcL7QBIKSAzDvcRV4r6KVBMT0A/9ktY1097nqes3YHY/i9RvZwAuO+yohLfNK/oE2nqgJmdM8BiJUU7fStG70A/8w6Qdg64AABcgbr5EBTaRhoYO/lsA6wbZ+YfsOzkM9XlAzMIdu0Kt4Zjxfn7YfV1wrjwvuc2UsSS0LY/CqW2JbiBFTleUgFe2wIx1DPvdTk+CDE+VNQ9V2jGwieu07dF2NbZrk3x8UxtCveggpXVIHbwOaitm4r2SyMsUd2LL11+X3gRbtWWpgHj/Hswzry9QG2KVjvRmYKKwLnNWkRlWTEsFFj4QEoJ4fKBWGwNx2R6CsbxN2BePeH45DlLWb0FsQPPgJdVBTc4ModV1oM5NE0SA7fsWYMQSCGcr61oRVexVkwMQT/yc+8eFIxD3XQA2u4vRLIkezFQmpx3WZndlyE9dusUOgos/GDq9v/uweKlRVW7whroWmRtis9B23yoaJeIosA1+QwSZkgNlezcCqdlkLKimdGSUsLsOg/98C8gp7xqU1RQbYoIYFrMuYFbZgpisCf79SJBgYUPRJEvg0jLhPHJRzBO/eMia1OsCXB0xE3UpnGlS/IzTxTHMojU0zA+/g3MT7xrU/DmDYgdfI5qU0SEc4Ae/rJimOiRcYWklC7rwgwsXviBhZiaqU0xsVBtit1QqMV5pPBkuUvy2RDE+GCgX1xSWJAZh2UQNQamFf4yiDV8G8bZxdSmeMCefieRwevagHgSyMxvT2/1XYM0HwFTi69hIn3Kr5SRARy26LFEaUF3DpTSnjLXP/q5d1CRKEVs39NQO3ZTUBFBrjUtAn7ack3aLPAcJSkEjKsnYBxfqDZF3UxtCgoqooZx7ryTyjJh9XUGP6AIoE/6FRJpl2WQAv5AlIYO4+zbMM+/t0BtinbEDz0PXk21KaJKaeoAHHJdzJ7LkCK45DO3ZZBCbtwnUhPQj70Gq/Njz/OU9u1UmyLiohKgRwUthayA3cnU4QORMbBEafADCoAY7beXPhasTXEQSgttI406ptrJZ1m7DzLTEMO9UOpyv4VRWqZzJ1M1XrDTyFbf9ZnaFNlJ33NiSWjbHolEmXXijVfUgZXXQk4MzXtdDPYUZYlvmrFYCSPt0tOgrOCm/aWUMDtPQz/2S8+ggpVVI3bwy1BbN1NQkSdcO572XXN83W/utSsKb9ZPWiaM8+/DOPOWZ1DBa2dqU1BQkTeUVqdkaAnrzo2ghxK6wvr2C1ix7AaR6SkYJ96AefW4d22KtvsQO/AsuEN9BBJdvK4FcEiQtPo6A+l46l4DprCWQcTEMPTDP/fedcM41I37oe2h2hT5xi3/5d6Gf8WAlkKWyXU3COMFNe1lDdyCce539uyMGy0ObevDtI00TzGuQFm1Fta9PQ7SU5Cj/WA5zJGRlgnoqewDWgJM1XJ23SBJKWHdugjz8lFAWK7nsZIKaNsfA6+sD3B0xC+8pAKssh5ybGDe62KwG9LIFMXuplkUWCyT1FOOHxIsURjLIFJYMC8fg9V13vM8Vt2I2PbHCjanpFgoTR3ZgQXsWYtcJt9Kl+TnQlkGkXoaxvn3IAa6PM/jTeuh3XeoYHNKioXS2AHznsACUsDqvxlqD56g5f83YEgKuTeImBqDfuTVBYIKBnXdHsT2fZGCigLA69ocd4dYvddyuhzi2hG4AJZBxHCvXYnWK6hQNGjbHkVs+6MUVBQAxyqcAKze4tp2SjMWy+C6DMIVsFj+LoNIKWHdvgLzk48Ay30bKRKliG1/DLy6MbjBkZxiigqloR1W79V5r8vpMciJYbAcdGqUpuG8xBZL5nW5dynsJnz2NlL3oIxV1EHb8ThtIy0gvLwGrKwacnJk3uti4CakZYAphbG8t5D8vXtDJDPTjiV37WWQ/NwJIU0dxoUPIBYo6MIb2qFtfaio1guLBW/syAosgJnlkFwEFm7LIHlcA0amJqCffRdy9I7necqa7VA37C2qXkLFQmlcC/Pq/MAClgkxcMt1RqPQUGCxDG4fiPlaFEuM9sM4+47r8g4AuzbFpoNQqMV5wVIa1sDgHLinMJbV1wlt4/2+X899GSQ/7yPrznUY5xeqTZGAtu1R2kZawJTGdTCvnsx63errpMCCOJPSpbUzV8Bi+bU9TEoJ68aZBVucs7Jqe8qWtpEWNKbFwOvaIPpvzntdjg9CTI2Bl1b6di1p6oCZ3bCOxUrybhlEWibMS4cXrLLIa1ugbXuUtpEWOFZZD5Yoy1out+7cgBRWUcxSUfLmErkvg5Tn1ZO8zEzbtSmuUG0K8inX5DOfex64l/DOr9mKudoUXkEFYzO1KZ6goKIIMMbAmxzuIyMDMXQ7+AGFgAKLJXKcrUB+bY+zBm4h8+FPIYY9fsnVGLSdn4V23wN59wRJlk9pXAsgO0BeKPdmqYRTJ1PkzzKIlBLmrYvQj/wCcmrU9TyWLEds/zNQ27fn1YMHWRmlcZ3j60FVsw0bfWMsgZTSubUzVwAtEfyAlkgKC+aVY7BuLlCbomqVXZsij4Il4g8WS4LXNme1UhcjfZDpKV+2FkvLdNwNwuIleTFNLI2MXZviniWje/GmdXZgTttIiw6vaQRiyazib1ZfJ+S2Rwqi1pEXCiyWwsw4F8WKl0b+aURMjdnNw+5pkjMfg7puF5S1uwq65TvxpjR2ZAUWgN04S23ftuL3ly7twVk8+vVQxHAv9LPvAi4zLgAARYV23wNQmjcENzASKYxxKI1rYXVdmH8gk4IYuQOlpimcgQWEvj2WwG0ZJMoFomZrU+iHf+YdVMRLEbv/Kajr9lBQUeTc8yz8mcZ1nPVDtAMLKQSMqyehH3/dM6hg5bWIHXyOggrieh+JIlgOoRmLJXBeF2aRLYolTR3GxQ8hFmiCwxvWQNv6MNWmIADsBEpW1QA52j/vdTHUA6mnwWLLX/ZzXU5UY5HtDSLTk9DPvLOI2hTboG7YlxfLOST3eG0roMayth9bvZ1Q73sw8rPcK0GBxSLZ68IO2+PiyUg+4YuxAXvpY8HaFAegUItzcg+lcR3MewILSAmr/wbU1s3Lfl+ppxx3IUV1tsK6cwPG+fe8a1NoCWjbHoFS3xbcwEjkMUWB0rAG1u0r816XqQnI8UGwAm42F71vxIjKl+lbKSXM62egH33VM6hgpVWIHXgWatt9FFSQLLnqeeC6qypiy4nSMmFc+ADG6d96BhW8thnxB56noII4UprcdocUdu8QmrFYJNf8iggFFjIzDePc7xwT7+6mtG6GuukAbSMlrnhZFVh5DeTE8LzXxUAXpKkva6eD6zII45HaVSUmR2CcfstzGykYg7p+HxTaRko88PrV9q7Be5L+rb5OaJsOhDSq3KNvlkWQUkDqDpnsEVoXtga7YZx7F9AdmjrNUmPQtj4EZdXa4AZG8pbS2AHznsACwoLo74LSvH7pb2gZ9v/uwRLR2FUlpYTVfQnmpcOOu79msWS5XYm2gKeyiT+YqoHXr4a4c33e63JiGGJypGALD9JSyCJEeV1YCgvGpaMwTr7pGVSwqlWIH3qeggqyaH5X4YzyrJ80MjBOvwXz4geeQQVv7EDs0HMUVJBFU5yqcKKwl0NoxmIRorouLKbG7OZh44MeZzEoHbugdlBtCrI0rKIOrKQCcnp83uvWQBekEEv+fXKtthkPd1eVGOmDfvYdwOU+B2DXptj8AHjz+kjMrpD8oTS0w2A8qxWE6L8JrN8b0qhyiwKLBUS12qZ1+wqMix85Ti3PiZcgtv0x8AIvxkJygzEGvmotrOun5x8wMhCjSyvyI4WVVYUQsCt9hrU9U0oBq/M0zGunAHg04SuvtZc+fGzCRooHiyXAa5qcq9kamYLc5k+BxUJMHbDMrJdZvCSUJxe7NsVHEL1XPc/j9avt2hQrqDlAiNKwJjuwgJ3EuaTAImLVNmV6CvrZdyBH+jzPU9ZshbrhfqpNQVaEN6zJTqqXEmLg1vLylSKO5sYXEKVtpmJsAPrhn3sHFVyBuvkQtF2fo6CCrBivaQYcdg9ZC/TJuFeUqtZa/TeQ+ein3kGFloC2+wvQNh2koIKsmNKwxvH1pd5H+YJmLBYgXBPOglsXllLCunlupsV5dsv2uTGVVtlTtuU1gY2NFDamKOB1rRB3bsx7XY4NLLopmetyoqIF2qBLWibMy0dh3broeR6vaYa2/dHQcz9I4WBl1WDJ8qzaQtZAF6SUBZe3Q4GFByks5y6MAa4Ly0xqpjZFt+d5SusmqJsOUm0K4julfk1WYAEA1sAtqG2LqMJppB0D4iBnK8TkiF2JdnLE/STGoK7fC6V9R8F90JNwMcbAG1Znd5bOTBdkFU76FvIQ9jKIXZvid45Jb3PUGLQtD0FppG2kJDd4w2rH10X/TWARgYX7rF/u7yMpJayeSzA/WURtiu2PgVc15HxMpDgp9WuyAwvYyyGFtn2ZAgsPYa0LS2HBvHoC1o2znuexqgbEtj8GlizP6XhIceMlFWBl1VlP+9bgrUVtO3WrtsliST+HmX1dIwPjwvuOsy13440d0O57EEwLblmGFB9e1wJwDoh7t512ARv2hTSq3KDAwoW9LuyQyZ7jdWExPW5P2XrWpsBMbYrdVJuCBEJpWA3z3mWERWw7labh2Gsj17uqxOgd6Gfe9q5NwVWo9x2C0ryBlj5IzjE1Bl7TDDE4f1lbjPStuGtw1FBg4UZPBb4ubPVehXHhwwVrU2jbH1vSVj9CVoo3rAE6Hbad9t8EL62ENXALvKIOvKJ23vGglxOlFLCuz9SmcKiWO3f98pqZ2hRVORkHIU6UhjVZgQUgYQ3eAq9aZW/jblqX89m8XKPAwoUIcN+9NA0YFz+k2hQksnj1zLbTe2q6mJ0fw7x6AgAQf/T/yvo598DC/x0XMj0F4+y7ECO9nucpq7dC3Ui1KUjweMMa4MIHWa8bH78FCBPgCpS2LSGMzF8UWLhwXAbJwbqwGB+0lz7uKZs8D1egbtwPhVqckxBIKSFTE3Z5b4emZAAARQUrq7rn54TdZ+deWsL33UtW/00Y598DjIz7SVoC2raHodQ7J6MSkktSSsA0AEXLnpUWdsDOKuoKYnmbAgsHUliAmf0BxWJJ377YpZSwus7DvHxsgdoUlTO1KWpdzyEkV6SeQubDn3pv0wTAK+vB2D0fiHrapXmff7MVdm2KY7BuXfAeX3WTXZsi5P4+pDiJ8UFkDv/Ce4cfUDC7QyiwcOBeftifD0SZScE4/zuHtbb5lJaNdm2KiLRmJ8WHxZLQNh2AfuIN7/McPhCFy4co9+k+EpOjM7Upht1PYgzqur1Q1m7PDnwICQivqIPavh3m5aPe51FgUbiknrvAwhrqgXH23UXUpnjQtW01IUFSmtZB2/aIXVPFBa/Mrv/gvJzIVty8z65NcRnmJx9516ZIlNmzfVSbgkSAumEfZHoKVld2LYtZhfK7SoGFA5lx+NLnqr02ttz3FGKmNsUZz/NYZb39YUi1KUiEqO3bIdNTc4ma97r3Scuzau0KlhPt2hQfQNy57nkeX7UW2pYHC7JzJMlPjDFo2x+BzEw7//5yBaysOviB5QAFFveQpuG43ZPFl/+BaNemeAdyfMDzPGXtTqjr9hRE8g4pPOqmA5CZ6exeG6qW9YHomLQJgMWWP+tn16Z4B0hPup/EVaibD0Jp2UiJziRyGOOI7fkC9CO/gBiev3uJV9YXzE4lCizu4fcyiNV7DcaFDxZRm+JRKDXNy7oGIUGwn7gehUxPQQx0zb3OKxuyvsT9zFOya1OcgXnt5MK1KbY/Dn7P7hRCooQpKmL7nkLmg3+AnBr99PWqVeENymf0aHwP1w/EJT5pSdOAce53MM6+4xlU8Lo2xA89T0EFyQuMK4jtfQKsom7uNe7wgeg4Y8EVYIlVa2V6CsbxN+wlGI+gQlm9BbH9z1BQQfICiyUQ2/8l4K7yBYWSXwFQYDGPlNL5A1GNLWnfvRgfhH7457BuX3E/iXGomw9C2/15KnhF8gpTY4jv/xJYogxAdmAhLdO5jHdsaWW8rYEuZD76qXfBKy0ObdfnoW0+RJ19SV7hpZWI73/azt+Dc4Cer+hOnCGlhDQyjlnmi52tWHRtipKZ2hQVVJuC5CeWKEVs/5eQ+fAnc09acmZGwb1q7eKKy0nLhHnlGKwuqk1BChuvWmXnXJx5G6ykAsCn9xGAvM0TYlJ6zC8WqHQ6jYmJCaRSKaRSKRjGp0sVcZWjIhlDaUxBDAIcAry6CXzm6cyN1FMwzr0HMXjL8zyqTUEKgZQS09PTSPXdxJRaiunpaVjWp0F5SUxBRTKGEpVDgwUGCaWhHWyBnVViaqY2xb0VPu/GGNR1e6Cs3UG1KUhek1JiYmICmf5uTCpJpFIpiLu6n6qqimQyiWQyifLyciST+dFDpGgCCyklRkdHMTw8jFTKu/rZ3RIqR1llNWpqaxGLOa8PW0O3YZx7F3B5UgMAqBq0+x6E0rRuqUMnJDIsy8LIyAiGh4eh69nLHW5K4xrKqmpQXV0NVc2eKJVSwrp9BebFj+bKGztKlCG247GCmjYmxccwDAwPD2N4eHheQL6QeDyO2tpaVFVVgUd492BRBBapVArd3d3IZDz6CCzCqlWrUFdXNzc9JYWAee0krOvZXR/vxirr7Wz1EqpNQfLX+Pg4bt++DdP0+OJfAOcczc3NqKys/PQ+MnQYF9+H6KPaFKSwSSkxPDyMvr4+rOSrV9M0tLa2orQ0msuABR1YSCnR39+PgQHv+hFLEY/HsXr1amiWDuPs25BjVJuCFDYhBHp6ejA2Nubbe5aVlaGtrQ1sYshe+vCsTaFA3XyIalOQvGYYBrq6upY0Y76QmpoaNDU1Re6+KNjAQkqJ7u5uXz8MZymKgvaxK2BeBa/iJdC2PQqllraRkvxlWRZu3Ljh64fhrISmorX3hN2szAUrq7ETnWkbKcljmUwG169fX9Fsn5uysjKsXr06UksjBRlY5DKomBW30mgbOOe4i4TXtULb9ojvLdYJCZIQAtevX89JUDGr0pxAfb/z7g+lbQvUjffTNlKS13RdR2dnZ06CilllZWVYs2ZNZGYuohPi+GhkZCSnQQUAZJQEhqvvaRLGONRNB6Dt/gIFFSTv9fb25jSoAIAxtRzTVW3zX9Ti0HZ9Dtp9VJuC5DcpJW7dupXToAIAJicnfV3yX6mCCywymQx6ez0K6vhoOFYNvbIJgF2bInbgGahrtkUmaiRkuSYmJjAyMhLItXqTjRDJSgAAq260K9E2rAnk2oTk0tDQUM6D81n9/f2BXWshBbcUcv36dUxNTQV2PS5MdKjTiG+8n2pTkIIghMDly5dz/pR1t7iVxppSDm3dLqpNQQqCruu4fPlyoNeMx+NYv3596A+3ObuDb926hcceewxbtmzBjh078OMf/zhXl5qTTqcDDSoAQHAVgxWrKaggBWN8fDzQoAKwlxbHq1ZTUEEKxvCwR5G3HMlkMoF/BzrJ2V2sqir+8i//EhcuXMBvfvMb/Jt/829y/v/w0NBQTt/fzdjYWOAfxITkSlj30dDQ0Ir29hMSFUKIUAILILz79245Cyyampqwa9cuAEBDQwNqampy+hc9W1kzDFJKjI+Ph3JtQvyUyWRCW6c1DCMya8SErMTExMS80txBX3sp1TxzYcmBhRACmzdvxre+9a15r7/55puIxWKOSx7Hjx+HEAJtbW1Zx/ySyWRCfdqZnvYo501Ingj7i53uI1IIwr6Pwr7+kgMLzjm+/e1v4/vf//5c1vjp06fxwgsv4Dvf+Q5eeOGFeecPDQ3h93//9/E//sf/8GfELsL+i6QPRFIIwr6Pwr4+IX4I+/sg7PtoWUshL774Iurq6vDKK6+gu7sbTz/9NL761a/im9/85rzzMpkMnn/+eXz729/GAw884MuA3aTT7tX7gqDrOq0Pk7wX9n0U9vUJ8cNK+1Ll+/WXFVioqopvfetbeOWVV/DUU09hz549eOWVV+adI6XE1772NXzmM5/BV7/6VV8G6yWs9ay7UWBB8l3Ya7NRuI8JWamwf4/Dvv6ykzdffPFFTE9PQ0qJH/3oR1AUZd7xDz74AH/3d3+Hn/3sZ9i1axd27dqFs2fPrnjAhJDcCXv/OyEk/y27Xu43vvENAMDg4GBWUAEADz30UKBRk9MYgkYfyiTfhd3IKOzrE+IHznmos39h30fLuvqf/umf4rXXXsPhw4dhmib+6q/+yu9xLVkikQj9+hRYkHyXTIbb4ybs6xPihyh8H4VpyYHFD37wA3zve9/Dq6++ip07d+KP//iP8fLLL8MwjFyMb9HC/kAK+/qE+CHs3+Owr0+IH0pKSkK9ftj30ZICi9dffx1f//rX8Td/8zc4ePAgAOCll17C+Pg4fvjDH+ZkgIsVi8VCnf4J+xeJED+E/YFE9xEpBGHfR3kzY3HixAm88MILePnll/GVr3xl7vWKigq89NJL+O53vxvqmhJjDNXV1aFdu6KiIpRrE+KnWCyG0tLSUK4dj8dD/0AkxA/l5eVQ1WWnMK5IZWVl6DmHBdXdNJPJ4MqVK4Fft7a2Fk1NTYFfl5BcGB8fR1dXV+DXbWlpCe3hgBC/9ff3o7+/P/Drrlu3LvQZk4JKwY7H4ygvLw/8ujU1NYFfk5BcKS8vRywWC/SaqqqisrIy0GsSkks1NTWBJ/SXlJSEHlQABRZYAEBzc3OguRaNjY2Ix+OBXY+QXGOMobW1NdBrtrS0hL5FjhA/qaqK5ubmwK7HGENLS0tg1/NScHeypmmB/eUmk0nU1tYGci1CglRSUoL6+vpArlVdXR3KTCMhuVZVVYWysrJArhWlh9yCCywAO3mlrq4up9fQNA2rV6+m2hWkYDU0NOT8QzGZTFJ+EilYs7N/uf7Cr6qqitSSfEEGFgCwatWqnAUXmqZh7dq10DQtJ+9PSBQwxrB69eqczSaUlJSgvb2dlkBIQVNVFWvXrs1ZcFFVVYWWlpZIPeQW1K4QJ8PDw+jt7fWtQVhZWRlaW1tD20pESNCklLhz5w4GBwd9e8/q6mo0NTVRUEGKhmVZuH37NsbGxnx7z9kH6CgFFUARBBaA3dK8p6cHU1NTy34Pzjmam5tRWVkZuX9EQoKQSqXQ3d29opbMmqahtbU1tFoZhIRtfHwcPT09K6r7lEwmA1liWa6iCCwA+6lramoKw8PDGB8fX/TPxWIx1NbWoqqqKvSiI4SETUqJ8fFxDA8PLylQn010rqiooFkKUvQsy8LY2BiGhoaWFKiXl5ejpqYGZWVlkX7ALZrA4m6maWJychKpVAqpVAq6rkNKCcYYOOcoKSlBIpGY2xMc5X9AQsKSyWQwNTWFdDqN6elpmKY5dx+pqopkMolkMjl3PxFC5pNSzt0/s99HlmXN3Ueaps3dP2VlZXmT11eUgQUhhBBCcoPmJAkhhBDiGwosCCGEEOIbCiwIIYQQ4hsKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hsKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hsKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hsKLAghhBDiGwosCCGEEOIbCiwIIYQQ4hs17AEQQshSxHb/ARhXwLgCrsbAFAV87r+1T49psU//PHuuwzFFVcE4A2MMnDNwlYMzBsYZFJWDcbgfYwyMwz6mcHBuH4upHApnc/+Lz/03//QYs89T7zrv7p+b9x6MQeP2GO7+M2cMCgM0hd/zZ0Bh9nFNYfP+zBjAwaBwzP2ZMUBhsP9/m/vZ2eOAwhkYYL/v3J/tc5mwwKQApADu/rMUgGU6HxMzrwsBSAkmzLmfkaYBCAsQFqRlAaYBKSxACEhTt/+vNXP87nNn/mwfs8+VQkBaAsIwIS37z5ZhzP1ZCgFLN+f+LHQTYuZnpGXN/ZyYew8JYQlIIWHp1sx/S1iG9ekxa+aYsI8J3YKw5My1ZsZjSUhLwhAClgQsKaELOfdnS2Lef9/9Z4HZY3efZ//5/5E3Qr03Z9GMBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8w6SUMuxBEEJIGDKZDP7iL/4C3/72txGPx8MeThYa3/JFeWxA9Me3EhRYEEKK1vj4OCorKzE2NoaKioqwh5OFxrd8UR4bEP3xrQQthRBCCCHENxRYEEIIIcQ3FFgQQgghxDcUWBBCilY8Hsef/dmfRTZ5jsa3fFEeGxD98a0EJW8SQgghxDc0Y0EIIYQQ31BgQQghhBDfUGBBCCGEEN9QYEEIKUrf/OY38fDDD+PFF1+EruvzjqVSKXzpS1/Co48+is9//vMYHh6O1Phm/cVf/AX27dsX6nhM08TXvvY1PPzww/jX//pfBzKWpYxvVpB/V07cxheF3zW/UWBBCCk6p06dQl9fH9577z1s2bIFf//3fz/v+Ouvv45t27bh3XffxT/9p/8UP/zhDyM1PgCYmJjAuXPnQh/Pq6++itbWVrz33nuYnp7Ghx9+GMiYFjs+INi/Kyde4wv7dy0XKLAghBSdjz76CF/4whcAAE8++WTWl+GGDRswPT0NABgdHUV9fX2kxgcA//W//ld8/etfD308ixlrmOMDgv27cuI1vrB/13JBDXsAhBAStNHRUTQ3NwMAKisrs6af161bh3PnzmHbtm1gjOHIkSORGt/Y2BjOnj2L//Af/kPo4xkdHZ3rdeE01rDHF/TflROv8YX9u5YLNGNBCClYfX19eOihh7L+J6XE+Pg4APtDv6amZt7P/fVf/zUee+wxnDt3Dv/xP/5H/Kf/9J8iNb6//Mu/xDe+8Y2cjMlJdXW163i8jkVhfEH/XTnxGl9Qv2tBosCCEFKwGhsb8f7772f976mnnsKvf/1rAMCbb76JBx98MOtnZz/8q6qqMDo6GqnxXb16FX/+53+OJ598EleuXMF3v/vdnIxv1sGDB13H43UsKF5jCPrvaqnjA4L5XQuUJISQIvQnf/In8qGHHpL/7J/9M5nJZKSUUv7hH/6hlFLKsbEx+dRTT8lHH31UPvjgg/LSpUuRGt/d9u7dG8p4ZsdiGIb8/d//ffnQQw/Jl156KZCxLGV8dwvq78qJ2/ii8LvmNyrpTQghhBDf0FIIIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhJA5X/va18AYw7/8l/8y69i/+lf/CowxfO1rX5t7ra+vDy+99BI6OjoQj8fR1taGZ555Br/97W/nzmlvb8df/uVfBjB6EgUUWBBCCJmnra0Nf/u3f4tUKjX3Wjqdxo9+9COsXr167rUbN25g7969eOutt/Dyyy/j7NmzeOONN/D444+HWkKbhItKehNCCJlnz5496OzsxE9+8hO8+OKLAICf/OQnaGtrQ0dHx9x5szMYR48eRWlp6dzrW7duxR/8wR8EPm4SDTRjQQghJMu/+Bf/Av/rf/2vuf/+n//zf84LFoaHh/HGG2/g61//+rygYlZVVVUQwyQRRIEFIYSQLF/96lfx/vvv48aNG7h58yY++OAD/PN//s/njl+9ehVSSmzevDnEUZIooqUQQgghWerq6vD000/jr//6ryGlxNNPP426urq547NFmxljYQ2RRBTNWBBCCHH0B3/wB/jf//t/46//+q+zciY2bNgAxhguXrwY0uhIVFFgQQghxNGTTz4JXdeh6zqeeOKJecdqamrwxBNP4L/9t/+GqamprJ8tiC6dZFkosCCEEOJIURRcvHgRFy9ehKIoWcf/+3//77AsC/v378c//MM/4MqVK7h48SJeeeUVHDp0KIQRkyigHAtCCCGuKioqXI+tXbsWJ0+exJ//+Z/jT/7kT9Db24v6+nrs3bsX3//+9wMcJYkSaptOCCGEEN/QUgghhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ8Q4EFIYQQQnxDgQUhhBBCfEOBBSGEEEJ88/8H1xSw96J/sWwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1002,7 +1001,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjaUlEQVR4nOydd3gVxdfHvzekUBOKINJFmiJNkCJgAAUEEUFBelEBfypNBTSItEjvxQbSmyAIIiJVCC0oXTA0lY50UmghJPv+wTvr3r2zffe2nM/z5IF77+7M2d3ZmTNnzjnjEgRBAEEQBEEQBBHQhPhaAIIgCIIgCMI6pNQRBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAZlOqRMEAcnJyaCcywRBEARBBBMBo9QdOXIEtWvXRnR0NF5++WXcunULS5cuRa1atdCgQQOcO3dOVzkpKSmIiopCSkqKwxITBEEQBEF4D1egbBOWlpaGsLAwAMCwYcNQsmRJTJ8+Hdu3b8eePXswb948zJgxQ7Oc5ORkREVFISkpCZGRkU6LTRAEQRAE4RUCxlLHFDoAuHPnDooVK4by5csjPDwctWvXxuHDh7nnpaamIjk52e2PIAiCIAgi2AgYpQ4ANm7ciCpVqmDLli0ICwtzs7Slp6dzzxk1ahSioqLEv6JFi3pLXIIgCIIgCK8RMMuvUsaOHYv09HScPHkSs2fPBgDUqlUL8fHxHsempqYiNTVV/JycnIyiRYvS8itBEARBEEFFwFjqpIpZVFQUcubMiYSEBNy/fx87d+5ExYoVuedFREQgMjLS7Y8gMgt//PEH3n33XV+LQRAEQXiBUF8LoJeNGzdi3LhxCAkJQf78+TF37lzkz58f0dHRyJo1K+bPn+9rEQnC7+jcuTMOHTqEr776yteiEARBEA4TkMuvVqDoVyIzUblyZRw6dIjyMhIEQWQCAmb5lSAIgiAIglCGlDqCCGLIQkcQBJF5IKWOIIIYUuoIgiAyD6TUEQRBEARBBAGk1BFEJoAsdgRBEMEPKXUEEcSQMkcQBJF5IKWOIDIBpNwRBEEEP6TUEUSA89133+Hw4cPc35gyR0odQRBE8BMwO0oQBMGnXbt2APiKGylzBEEQmQey1BFEJoCUO4IgiOCHlDqCyARkFqUuIyMDMTExuHnzpi3lCYKACxcu2FIWQRCE05BSRxBBTGbzqTt06BBGjx6NwYMH21Le7NmzUaRIEZw9e9aW8giCIJyElDqCCGLu3LkDAEhPT/exJN7B5XIBAB48eGBLeYcOHQIAXLp0yZbyCIIgnCRglLp9+/ahbt26iI6OxhtvvIG0tDQsXboUtWrVQoMGDXDu3Dlfi0gQfseZM2cAAOvXr/exJN4hS5YsAB4uw9pBWFgYACAtLc2W8giCIJwkYJS6woULY/369YiLi0OpUqWwatUqTJw4EXFxcYiNjUVsbKyvRfQLjh49mmmW2ghCTkjIwy7NLsvk9evXbS2PIAjCSQJGqStYsCCyZ88O4OHs+cSJEyhfvjzCw8NRu3ZtxTxdqampSE5OdvsLVvbs2YOnnnoKy5cv97UoAc24cePw2Wef+VoMW2EWrGCHXaddSti8efNsKYcgAgGXy4UZM2b4WgzCAgGj1DHOnj2LTZs2oU6dOoiMjBS/V+rER40ahaioKPGvaNGi3hLV61y8eBEAcPLkSR9LEtgMGDAAn3/+ua/FsJXMotQxnzqyVhMEnw8++AAul0vRRWH69Olelsh5BEGwxYUiISEBXbp08ev+JaCUuuTkZHTq1Alz5sxBgQIF3KxuSoNWTEwMkpKSxL9g9r1jA5q/k5aWFnQW0/Pnz/taBFXy5cun+FvZsmWxcuVKL0rjHHYHSjD8uRMnCCNMnjwZgLIhxC5/VH/iyy+/RHh4OFJTUy2V8/7772P+/Pm4d++eTZLZT8Aodenp6ejQoQMGDx6MMmXKoFSpUkhISMD9+/exc+dOVKxYkXteREQEIiMj3f4I39KxY0dERUX5Wgzb+PPPP1G0aFHdy95paWn44osvvNJ5NmjQAABU2/2JEyfwySefOC6LN2BK3aJFi3wsCUEoc+3aNWzatMnXYnDxlwnM9u3bbcs3uWbNGgDwa2XMLgJGqVu2bBl27dqF2NhY1KtXDz/88AP69u2L6OhoDBo0CIMGDfK1iG5MmDAhqK2CVli2bJmvRbAV9pyV/DrlzJo1Cz179sTq1audFMsQgWLlNcq0adPQpk0by+XoGehSU1Nx5coVy3URwc+rr76Khg0b+loMLv5iqXv++efRokULzeN++OEHW1IOjRkzBpUrV1Y9xl8UXjUCZu/Xdu3aiXtcSmnbtq0PpFFHEAT069cPq1atwvbt271Wb6D5E128eBGFChXytRi2oVcxYrnj7t+/76Q4bmi1CStK3f3793Hv3j2/sILLr6N3794AgKVLlzped4cOHbBixYqAef8I3+GPyaz9MVH5qVOnNI95/fXXUbNmTcTHxyseo+eagmW1ImAsdYEEm+lQbit1ePfnzp07AXvfWMfRpk0bvPXWW5rHecM69uuvvwIA9u/fr3qcFVlatmxpaDn9+vXr6Nmzp6Lf26lTp9ClSxe/TCNy5swZDBkyhDtI/PLLLz6QiAhE/MEyLm/D7LO/WOoA/feJpR5SIrPk6QRIqXOEESNGAPDujOfff/9Fr169vFafGtu2bUOnTp00j+Pdnxw5coh+YP7AvXv38NFHH+Hu3buKxzCL21dffQXg4fLynDlzFI/3plLHYM7RTrB27VpDx48cORJffPEFdu/ezf39k08+wfz58x0LPlm8eDFcLpehYB32zLp164bhw4eL1lYp/jBQO8XRo0cxcOBAX4tBOAhT5oyOW/Pnz8eoUaOcEEk3V69e9Wp9Rt713bt3e1UXIKWOw71793Dw4EHT5w8ZMsQ+YXQycOBAcfcAX5vP27dvj4ULF+Kjjz7Ct99+q3ic0oxwx44dtspz5MgRLF682NS5y5Ytw8SJEzF//nzu78nJyViwYAEA6x1Lzpw5vb4EYLeCmZaWhhMnTqgeY4ebwN9//40ffvhBsWw1fvzxRwDAjRs3DNfLls28uXTuD7Rp0wajRo3yed/iT7DJgVTBv3Dhgi5nfH/wt1ay1Bl9xl26dNGt8KenpxuywLNk4lokJibqLtObbN68GbVq1cKqVau8VicpdRx69eqFKlWqWDZDe7MDlNblLx3vxIkT0b17d8XfvSVnhQoV0KFDB1Pnasn40UcfGU72rKRI3b59G2PGjFE8b8qUKViyZImhuuR1Sjl37hySkpK4sphlwIABKFu2rGpKETuUuueeew6vv/666fONwmRlCqs/LVEpIQgCRo4cqbk0pYeIiAgAgeNS8s8//yAlJUX1mNWrV6ta4LX4/vvvAbgrFEWKFEHHjh1Nl+lNpO/fpEmTkDVrVgD/te1ly5ahVatWpso+ffo0t62Eh4ejWrVqusux2/ptV3l6+65///0XwH85ZL0BKXUc/vzzTwDWO24zg1a9evXgcrlw+fJlS3UHAmasoZ06dVJVFL2N1sDBw6x1rG/fvmjfvr3h+qR1SilWrBhq1KiheE5GRgZu3bplqJ59+/Yp1sewQ6lTWjo1ck+tdPCsb8jIyMD8+fORkZHh+PJrRkYGNmzYoPv4s2fP4tNPP8WHH35ouW52bYGgzALAE088gUaNGin+fvnyZbz66qsYMGCA6TqUnveWLVtUz/OXSbeUoUOHeiy/tmnTBitWrDBV3uOPP85tdxkZGab6/bi4OBQpUsT2/JM81Nw+jD475obkTdcMUuo4/PXXXwBgebsUMy9vXFwcgP8c3M3U5etOQ15/RkYG2rVrJyrLDCMDFGPhwoWqS7oAkJSUhE6dOnH9nuzGTN4jnlI3evRoU/Xr7eQOHDjgcf+B/yxPvE5n2LBhyJUrlyF5eEs433zzDRISEsTPepU66e9paWlwuVyipdKOTpJXf3p6Oj788ENcu3ZN9Vw2AK5cuRJdunRxy4snV3xOnz5ti7WsVKlSaNy4Mfbs2YODBw9qpnFi12eHdc0fIyO12L17N9LT08V2s2/fPo/lcyuTZ6V2rNU2/eUeSuWQymyX4q4WjaoXJteIESNw4cIF3L5923KZWhQtWlQz3ZTRZ0hKnY9hvlFHjx71sSTBQUpKCr777jt88MEHbt871bnNnj0bCxcuxE8//eRI+Yzz58+L/llG4F13TEyMKRnYEpAedu3apfjbkSNH0L9/fwAP5evVq5elNCDSa/zf//6H5557TvyspdTxOkA2CNuxhZFaB3vw4EFMmjQJQ4cOdfteLuvvv/8OAKIlU2rR7NmzJ4CHg+NXX32Fxx9/HKVKlTIs57///utmNWDpHfbu3YtXXnlFDMhSginSe/bsMVy3Ev6ikOiFtZsZM2agWrVqKF68OAB7B1l2T1iuNKbAC4LAVRr95R4qKXX+Ih/wcBndF/AmwFJy5MiBzZs36y6PlDo/wZ8atxb+5OtidOZqBxkZGWjVqpWbRUjv8/vss89MzSq1Ir6+/PJLbtAHk+vMmTNikIVZjGx7o3U/xo8fD+ChX9z06dNx/Phxw/IopUWQBhaYWX7VaymaMmWK+H8zWwIxx2ytepo3b654HFO0V61ahffeew+AOUfuQoUKcfeqfu+993TdO6aUs5UHPVy/fh2NGzcWfS3lmLHiHD16VJR34sSJyJ8/v/jbggUL/CZq3yjyfk2uwE2cOBEFCxb0cBWw4scn59ChQzh27Jht5QGBs8RuBrPLyTyk1rxnnnlG1R+alDo/IZACJaQO9CkpKaJj5tWrVzFp0iQIguAzJdUbSZGTkpKwYsUK9O/f360+PWkxPv/8c7z44ou2y/T++++jbt26ir9/8MEH6Ny5s2Y59+7ds+T7YxT5LJX33C5fvowjR44olmG3T53c30fpXGmUmVbE2ezZsz2+Y0qd0Xdf2mmz/8sHbyNWVS0uXLigeYxSxLYaS5YswYYNG8RtleQYfYcTEhLw1FNPibLExMS4LW137tzZKxvIb926lfu9lT5J3o7l/qdsQnfr1i189tlnYnYCva4WN27c0HQDqFy5Mp588knNsrZs2YKZM2e61a1lqTOriJi9p61bt9YMorCqHKnlD5WidA3Sbcukxxw4cEA1cwGvP0lMTERCQgLGjRuHmTNn6pJLD6TUaZCRkYFXXnlFdO68f/++Ygchx1dK1Pjx41G4cGEAwDvvvIMPP/wQpUuX9tp+q0qWOjtngFKLnBxW39WrV7mWDqtMmzYNLpfL9PM1et6SJUswbtw4U3WZqVee6oN33tNPP40KFSq4fZc/f37s3LkTgPqztmKp02pDSikQhg8f7jEgfP31126fr169Km4TZKatsvJdLhdu3LjhYSF744033D43a9YMU6dONVyPnWzatElXigmjPnXvvvsucufOLVqvtNLceBs7LCfydiwf1NnvhQsXxueffy4qFHqttvny5XOzalqhQYMG6NGjh5ubx8CBA5GYmIgHDx5wlRWj98hq/758+XLNQCulNCzAw5UPvTL8+++/cLlchtul3q0g5TCLvZSGDRuifPnyGDBgAHr06OH2W8eOHdGkSRNTdZFSp4IgCLh79y7WrFkj+htFRESgfv36Yqiy1vlK3Lp1C9u2bVP8/dy5c7Y4V69cuRLAw7xeZiI17UBpENey5qgt/73wwgvi/1NTU7mzTiNLXkYUjO+++073sVbr0jpeTbk1y2+//aZZP8+CIP1OTWbmj8aOmTdvHpYvX47Ro0ejSpUq3PbCOmv5uYy7d+9iwoQJinVKlWIlBUXawcsHB72DDKNy5coefnlyfv75Z/Tp00f1GCc5dOgQGjZsiGnTponf8QbyW7du6YpqlvL1118jKSlJ1RVDrSwrfZU0X6SRYBz2efTo0WjdurXh3GJaTvyCIGDz5s1uKZCMRpcrsXLlSrhcLkOTv6lTpyI2NtZjKy6zSh2bHNhhzFBSzuSTO2ldJUqU0J3nk1lRrey/zbtOIyti7J3isWjRIqxbtw7Aw2utV6+e2PdpQUqdDOnm32oPx0zU4/bt29G6dWsADy1o0dHRinV8/PHHeOSRRwIiS70gCJgzZ46iX5/Z5VelJSApaWlpyJo1KyZNmuRRn7xjOHTokKKMd+/eRVxcnK5lLadh1i7g4exVzV/SSCduNkGn/LnpGXDVZsybNm1yK7dr165o3bo1YmJiFNMdSN+35cuXe1iXJk+ejH79+uH06dPc8/VE99WpU0eX/FrlX7lyxVBy2b///lu3n5ydMF8vrRxaUj9FszLy+jGldr1jxw5ERkYaClRLTU0Vn5lWonFBEBT71YMHDyImJgbLly9Hy5YtVcsxGvCTkZGBF1980c33rnbt2qp16OW1114DAMydO9fQeWlpaciSJYvbd5cuXeLeoy+++AIbN25ULMtMupGLFy9yFVslA0CbNm1w/PhxZMmSBTt27PB4T/XstS510dGDIAi688w1atRId8Lk0NBQXcfdu3cPcXFx+Pjjj3UdT0qdjGXLlon/l2asZwOREeQNs1u3bli+fDnOnTsnbq0UEhKiOBAFCtu2bcNbb70lLiWxKDCGE+kQ2EvJHPCZAuhyuRQ728qVK4uZz3kdUL169TysVHZw9epVnDx5UvysZbEcOXIkgIdRjq1bt7Ztiy+zyyPyPU31JFe1W0F59913xf+3bt1afH7Mmq13kuVyuURLiVIwADvOKHrOYZZzKT179sRXX33ls6z469evF1OySJ/b2rVrMW3aNLd2w/LxyRWemzdvclMImWkHLJ2Tns3cGVmzZkXbtm0BaD8H6QrJihUr3BQVI++IvB6tenll//HHH7rrc4L09HQPpQ54qCRLr2fdunXo2bOnau4/I9uMscwEhQsX9vA7PnPmjNs4LGXDhg2isr9z505TQXlSX1o9ss6aNQuFCxfW5Z9tRE8ICwtz+6w1OdDbNgNGqUtJSUGNGjWQM2dO0UF76dKlqFWrFho0aODItivybZ+kg4CexiA/hmnmxYoVc+vADx06ZFpGQRBw5coV0+drMX/+fM0XhXXmSksJrJOOi4tTjEhct26dx36xenL1ffHFFwD+S2T8888/q86gly9fjilTpiAsLEzRfG43ZcuWRZkyZRTrkH9mCgtztOctwxcrVsywI7zZa2vevDn+/fdf0R9HqqAquSHIO6C7d++iT58+hlInSH3SlGbgann2pPCsi8xSdPnyZY8ldflsW0tWvUogs6gYRSkdzf379zFw4EBTKweMP/74w0NRd7lcePnll9G7d2+379l9kC9N5s2bF88++6xH2ez4CRMmiH5MgOfyvR3vnd5AlPv377s9L6miYiZ5tdJgKy9LyXeR9WF2wLuPatG2Dx484Cp1gLslSc/4auQZsuhxwDMJfYkSJVR3AJIGM5lpN1Ir5Llz57jRw9Jnx1IC2eEOJSU8PNztMy9wC/jvvurdXi1glLps2bJhzZo14rYlaWlpmDhxIuLi4hAbG4vY2FgfS/hQqZEqNuxl/+uvv3Dr1i3d5lYjzJ07F48++qjt5TKY9U2tQbHrHDp0qJvywpC+wMOGDeOW8cYbb2DhwoVu36ltFM+UCZ5JmnUSvOjM06dPi5FGVpU6vcdKnZB558k/M2WGdV68e3/u3DmvbrBeqFAhjB492sPhV2nJhXdv5EEBSvePKSjSwVbpWNb2eIOx3k74jTfeQLt27dy+0zO4C4LgNUvL+vXrud9///33GDVqFObNmyd+V79+fa5j9ooVK7Bo0SJLg5P0OQwePBj37t3D3r17Aaj7d967dw/dunUTn+1rr73mVpb0XWVLiGZdT/w1+a9SvXYEQSmRnp6O7NmzK/6utBPK0qVL3ZRBPVYidgyb5Dt1n1m/ePPmTY82Fx8fLyZMP3XqlKKhgV3ztGnTdEUP87B6ffL7rpSTT2+QGCNglLrQ0FC3SKCTJ0+ifPnyCA8PR+3atRWjUlJTU5GcnOz2Zwe8xpIrVy7kzZtX/MweQunSpdGiRQvFtfYrV64gIyNDcbZ948YN0QFzzpw5bi/b7t27rVyGJsxErJbzSzrrllpxeCiZsPV04Hp9NtiOE7ylLuA/Gb2l1El58OABhgwZoloOu9daPju+yCf11Vdfufk6KU1UMjIy8O+//+rycZHDc1BXmlSoPQO9y5k8JUfeHpWsvtKlcSNKiFo6GHl9Dx48cPMZlSLdroyxdetWfPXVVx7HtmrVCh07dhQj49WQWmCl751UrtjYWMyYMUN15x3p8VIfuu3btyv+ZmTZ1QxKiowgCNy6BeHhHrryqHAGz2J38+ZNjzarZNUWBAFbt241nGuU17+dOnUKbdu2FZ+ZVp+pdC+6du3qIaMWgiDg559/RmRkpOaxRpHKyIKLxo0bhypVqngcy8bmkiVLomnTpqplMeSR/HrGBjP9/5dffikaHfQuHfPecTUCRqmTk5iY6NZ4lDr9UaNGISoqSvxTS3FhJOLqyy+/5H4vfTGlD0EtuW2PHj3wzjvvIFu2bNzf8+XLh9mzZ+PPP//EW2+9hc8//1y3nGr8+uuvcLlcutJ+ZGRkYM6cOR5Wpz179nh0AGpIl7n0vhTLli1D7ty5Peo2m3CZ+eHxXhJ52gm7Z5vyJX2eHOyzdEbKQ97mtXwzpdeipHxLneL1oNQRCYKAQoUK4fnnn9cljxLMP1NpMsbulTS5MUPvcgVPDj3OztJlm5kzZ6r66MmRDyJS7t+/7+aztmzZMsW+yUz7VJqgvfnmm2J50gnm8OHDFevTe48BfYoyD0EQNDP8K9VjZOI2efJk7gb2J06cwKeffqroqM5bHsubN6/H5ETp/Tx79izq169vuF/nWWPv3buHpUuXinVpRXfqVRT0PKsbN26I21wCD+/HrFmzdJ1rJEG2kV0meJPKGzdu4PXXX3f7Tm2SpbQsqoZSv/j++++LiqhepS5oLXVy8uTJ49bRK/kFxMTEICkpSfxT8w0YO3as7vr1Ls8w0tLSVB+KVsTWzp07RYVDaiU0uj+ty+USlznZkpOS9Wzbtm2iJTAlJQVvvfUW3nnnHbdjqlevbqh+6WA5a9YsN7mUiI2N5Q6Ycp8EoxgZEKXpLtSskUrWQYaShYD3WalNM+TtSUup+OGHH8RAEqVgh759+6qWIUfJj8kuK+Jjjz2maCGR1sOCS8xgVqkbPHiw+H+2BGkHgwcPdtt+Ti05L3vmdkTJSyMnld4NeRCUnLt377rJIp3w8aJB1epjx3/33Xd4+umnVVNAMKR+ewB/f2mla5Pu38uTU2r1evDggVsKE0EQTOcwY1hJryGHXePPP/+sehxTvLTK0vM+lyxZ0m0p+dChQ+jWrZuYmkON0qVLq/5utH3bNRlPTU01FdXLQ2+aJKXzgs6nTk6pUqWQkJCA+/fvY+fOnahYsSL3uIiICERGRrr9KWHk4RkNlEhLS7Pkf+NyucRlL63BXgulpRwGcySNjo52+w7g5yczgtLLqaSQSGdJdqd3MfLiT5w4Ufw/z9rGMOMIL5eDDZxaCrOeJMFS9u/fL/7frnuptK+omUAiJdQcydUGGyOWIDlmrUp2ILfoqFn51RReKyjd10qVKrl9lifhlm+VJU0FoXZPefe3SZMmEARBnEQpKZTSSWmhQoXcfuO9j7wlxwsXLnCVRql7i1TGDh06iBGcgiDgo48+4spmBKV0PmbQa93ZvXu32+SEx927dz2eT+/evfHII4/oksXObdH0Ytf7Ki1Hqc/Uyk/IaNasmervSpbaoLbUNW3aFBs2bED37t2xaNEi9O3bF9HR0Rg0aBAGDRrkSJ05c+YU/1+wYEHx/3oHLaXQbDm8dABKWB2QzTgS82YLembOcngWEDXL19tvvy2axu1W6qxak4wsGQAPl9F4G3ybzY0nl19quZ45cyaee+45U+UaQcsPxA7U3g2199CKDN7MD2lkCVMOc0HQkpfnA6x2jt5798knn+iWX0tRvnDhgqo1z+Vy4cKFCx4rKvKled5+y2r1Asr+l+fOnRNlmjdvnjgxkvfrWtYub8Pum1ZUtB4XlrVr13os2U+bNk13wI1VBevmzZte392CoUf2mjVr6ipLnhqKR61atTzqZMYcvUahgFLq1q5di4sXLyI+Ph5du3ZF27ZtER8fjy1btjiyHZQc6Quip5FlZGS4RaVZ4ezZs4bqZpQsWdLju3379mHo0KFu5dy+fRsFCxbEgQMHuA2Z13Fr7dPHg6fU8fyheNhtLbFa3ubNmw0d36ZNG3EbKil2WVukSx89evRQtfDYhTQ7vhQ7LXVqe2WqlaGn/C+//JKb0sBoShMj1KtXz+2zPKGrkfdb7+oCiwjUgl2n3utNTU11W7ZUk13LUsdbvpRf35tvvomPP/7Yzfojl1Vrx5ehQ4fq9meSf6+0V7PehLNmuHv3Lvr16+dh8VJbCmfXp5XmRc+qT0hICPr16yd+1muZsou8efMqRn8rIVXqzGTGYH2pmjU5IyMDuXLlUvTH4/UrUnh+wrt37/ZoS2wCEZSWOqexW2nIyMiw7WU3k/xYDXlqkb/++guXL1/G119/zb0PUgdYK/A6T72DmBPPRw2Xy6XLH8QJOdTuiVJ0YFpamm557UqyrGRF0/OsmjVrZilHo1Y9emR4//33ud8r3X/58qMZ1N6lw4cPKyrKdmP13jGkkzK1wVd+T6WWh7S0NK418cGDB6IsLpdLVPKk8hlZ5QDc3RCUZGNs2bLFLd0N711l7ip2wFMQsmfPjgkTJmDBggW6y9H7/MzIbXSyqCSLk2nI5Kl3jMIst2r3MT09XXWbtxdffNFwvTyMWh1JqTOJniiwU6dOObKM47R/D68R2bXxuBUl1+4UHnruo3RXEacwuvym5Py8fv16NGnSxFanfbPofVby3IRGUbt3Vt4TufWYlaVnz2ezCIKAihUrmvLtNdPP8BQINpiZfdfkgVRS5DJKdxJo0KCBuIWiFOm9cLlc4oQmR44c4l6YRoO1AP2Rh9IUFICyq4Rd/XyFChUULXD//vsvXn31VV2Wfb1tX09/LN+DW/rO6dm6iskid7Mxo2zpxY6xIikpSTVXqlYdamnAjIwrpNT5CKUlIuZM6wsOHjyo2rCksE5pxowZ3A5BanKvXLmy6SzovE5Eb4eoFJ1mFj0dn9m0KXbLIUVt/0VAOf2HN7ESpGCEJk2aKP5mpWPnpSw6f/68o7u3eDMYAwC++eYbj+9YDkUncsWp7eWs1E9Jdw1ITU11CyKxa/UAgO4EtLxJhN3PTZ5WiTF06FCsXr0a69at08xPqlcmaVS/EvK0INJ7YCRjhHRvZaexY2LbuXNnxWcBaN9jtcmZPKWKGtKxVk//Q0qdSW7duiX6brhcLscCNdTQalRVqlTR7YQvXVbiOQ1LlbpDhw6hV69e+oSUoZRzTQ9sJwi7+OabbxSjN72JXSHz/oQvEiPLsTrYyreps3ubIDl6owl5mLEUqS19a6VY8hbXr18Xl7hatGjh9tuAAQNMl2u2bSgtv9qJVmqiXr16oVatWqrHfPPNN7bJJVeejb7bTA6nIrV5bN261XIZWj7TWvfBiX6dlDoHWbx4Mdq1a4e///7b63UzzV1vgIESvEhMwD3Kl8EaKJvZeduqAFiLEuQxYMAA9O/f39YyzWD05TeSz6p8+fJGxbEFve1Dmo/NVzIo8cILL7h9dtIZnuBTunRpTJgwQfF3I35mUsy2DW9Y6rT6dT3K0fTp08XlaasY9VmUIwgC4uPjvTp5teOZyANC5JZmLaXOjlUeuRKntUoDkFJnmVKlSnm9ztTUVJw5c0ZzqyE7YQ1UK/moGfRaGZyw/nhz9qiE3cqqFF8pInqfldG0MDyUOnA7/d+aNm3ql0ods8QbDTgxsvzjzyhFo2qhtAe1FkqWOjsVO62oSb3Y8W7ZwaJFi7ySXslp5IEdWv22HUqdfF/3M2fOaJ7jf70UoYsSJUqYSiliFqdmWdWrV9et1EnTutiFkwqVr2SQ7mrhC4sq8N/+jN5AaccFu9IJMfR0qN6G+Zka9XH1RgCQP2PWlYP3PtWtW9eSW4lT7Nq1y5FyV6xYYeh4X/iVy/fXtgO5BVVr4uqEEULPWElKHaELp5Q6Iz5tTgQteDPJrBJ231upkuNNa64UPYk27UK+x6ZTvPzyy16pxywul0t1qZKwDs8qp7bDjC+x6p6jhHQ7ucyML/yG9awWhBotNDExEevXrxezfz/22GNo3Lgx8uTJY0pIIjBw0h/CaGJJOzGi1AmC4MhyrdU9bDM7oaGGu7GgRZoklrAfQRAwbdo0x+vp3r275TK+/fZbGyQhlPBWPkkp0h2ulDBkqZs1axaqV6+O3bt3IyMjA+np6di9ezdq1qzpd9ukEPaitd2MFXibbnsLI5asjIyMoPFFCiZIqSO8hSAIXnEtIIXM//GF687w4cM1jzHUG44dOxb79+/30BZjY2NRtWpVvP3228YkJAgETkqP69ev25obi2FmD13iPwKl/RAEQTiNIUudy+Xibotx69Ytv/BNsoqvnMozO4EyKMuTcNrFp59+6ki5mQVfWnoJgiD8CUOWuvHjxyM6OhpPP/00ChcuDOBhlvU///zTZw66/fr1w2+//YZixYphzpw55J8UgASKUucPCXUJgiAIQglDSl2zZs3QpEkT/P7777h48SIEQUDhwoVRvXp1ZMmSxSkZFTlw4AAuXbqE7du3Y8SIEVi+fDnat2/vdTkIa1y8eNHXIuiCLLkEQRCEP2M4pUmWLFlQq1YtvP7662jVqhVq1arlE4UOAOLj49GoUSMAwEsvvWQ5Lw8N2r5BvtGzv+IPOe0IgiCIwMHbq5im89QZTUDoBImJiYiMjAQAREVFcdNNpKamIjk52e2PIMzg5GbuBEEQRPDh7Z1oTNfWvn17TJo0SfUYpy1fefLkEZW0xMRE5M2b1+OYUaNGISoqSvwrWrSoozIRwUvfvn19LQJBEARhgi5duvik3oBR6lavXo2hQ4eid+/eHspbeno65s6diyeffNKygGrUrFlTjHxbv349ateu7XFMTEwMkpKSxL9z5845KhNBEARBEP7FCy+84JN6vZ0ZxHTWzsaNG2Pbtm1o1qwZzp07h8WLFyNLliyYNWsWxo4di6SkJPTq1ctOWT2oUqUKChYsiLp166JYsWLo37+/xzERERGIiIjQVR751BEEQRBE8OFti5mvsJSKvVKlSti9ezeaNm2KmjVr4tq1a0hLS0Pfvn3Rq1cv5MqVyy45FRk/frzjdRAEQRAEEbhkFqXO0lUmJSVh9uzZuHDhAk6ePInExERs3rwZAwcO9IpCZzdkqSMCkRdffFH193HjxnlJEoIgCP/EV0qdt5dfTV9lTEwMihcvjrlz52LkyJG4evUqWrdujRdffBF79uyxU0avQUqdJzw/xUBk+vTpvhbBMR599FHV38PCwrwkCUEQhLNkzZrV1Hm+2vUqYJS6VatWYerUqThx4gR69OiBHDlyYO7cuejRowfq16+PH3/80U45vUJCQoKvRfA7gmWHjmDYxk6JChUqqP4ezNdOEETmokmTJr4WwRABo9QlJCSgc+fOHomHY2NjMXnyZLRp0ybgrCN37961rayoqCjbyvIlZL30f3gBQlLUOpVhw4apntupUydTMhEEQThBZp6k1qtXT/MY00qd2o3t1q0bVq5ciYEDB5otPuAZMWKEr0WwBTNK3fDhwx2QxBpaHUGgzf6kaPmKqF27Wtqhc+fO4dtvvzUtl69wOupeD88884yvRfAKvkoTQWRezCp1GzdutFkSfdjlyzdx4kRdk2zHPAebNGmCrVu3OlW83+MLp8zSpUvbXqYZpU7PbMLbaHUEzz33nJck8T5mO8EiRYoE5PK7LxX0Z599FgsXLsSWLVt8JoM32bRpk69FIDIZZvuzq1ev2iyJd/nggw/w1ltvaR7nqOYRyLPVnj17WjrfFyZiJ5ZKjZZZokQJ1KlTx3Y5rPLII4+o/h7M4e7Zs2f3tQhexZfLM6+88go6dOggbl9I+A9W+3QisMnIyPC1CF4heEcyE0gHg3bt2lkqS0sZqlKliqXyecyYMQM5c+a0vVwj9O7d2y99Hl5//XWsWbNG8fdgVupCQ42no8yTJ48DkngHI+3vmWeeMez7+/TTTxsVifAygiBg586dbt/FxsaaKqt48eJ2iOSG1fHFCaxsPO9N31uz40v79u01j+nRo4epstXwtl968I5kJpA2TKcfxO+//25reQ8ePED9+vWxdu1aW8s1eh+kx7/zzju2ymIFl8uFl19+WfH306dPi/8vVqyYFyTypEiRIo6V/dhjj3G/V+ogpda9uXPnOiGSYxhR0HPlyqV4b5Twx0mLEqVKlfJZ3WaVKLuoWLGi+P8iRYogd+7cpsqxu68eMGAAWrZsaWuZdvDhhx+aPjcQJoHlypXTPEbv7lPe5o033tB9LCl1EqT5vJ544glLZWkpQ2asJ2qwKGS7Bxw9LwKPjIwMfP3117bKYpT8+fPrPjYxMVH8/5kzZwzVU758eUPHK/HPP//YUo6c1NRU1KxZ09A50nbUuXNnANpL2HZgh+O91jtgtk0b5X//+5/4f7vfd70UL14cy5Yt80ndZcqU8Um9DGk76Nixo+lycuTIYYc4Ip999hmqVatma5m+xpvWKCcnVf46YVu6dKnuY0mpkyCd4RcsWNCHkphHzUph1Om9X79+mDZtmuox8+fPd/vMXm5fvhydO3fG6tWr8dtvv+k+x4q/hV3XamYJWE9uxRs3bmDmzJnc36SyS9vH+fPnPY41a+kA9CusdtxLrft49OhRt89GByQ1GaVl8RRjqdXHWzt9tG7d2tbytJJd+wt2vZdWlDqepTRnzpx4/PHHcfHiRSti6WbAgAGO1+EPSl3Dhg1Vz1NKMya11L/22mvmBVMgW7ZstpepBil1EuzqBEaMGOGz/G5qA5rRNCvjxo0znL1b73VXqlRJ9ffnn3/eUL1SvvzyS7zyyit4/PHHub/znrNdz6t+/fqmzzWq1BUsWNAjJckrr7zicdyDBw90BUvMnj2b+70d74XSs5Bjh2+jHnmZFdfJ95Qnh9TnVWt7Nztw4vru3bun6ziXy4X333/f9vr14g9WFzUXFDvkkytszz77rMcxgeYvrJTFgSlcSn2ZWiDMvn37FPsgqc+kHRZUuRL33HPPYd68eZbL1UtgPe0AoV27dtzO9KWXXnKkvsaNG4v/V+so7F5GADwHDb2DCG856siRI9izZw8EQUBcXJzi9lYjR45ULVt+D6Qv7a5du7hWI61dGfRixZrlcrkwadIk3cf/+++/Ht/xHJYfPHig2C6aN28u/l9LgffGIOlyubB7927LZchp0KCB22dmxRUEAUWLFrVUn5YcSilWrLQVvTih1OlVEkJDQzF9+nSvT3C//PJLAP6h1DkdcZsvXz63z0OHDvU4JtCUut9++w1///23x/evv/46AOXnqva81TJx3L9/X/y/HWOk3O3A5XKJlnpvEBBPOyUlBTVq1EDOnDlx5MgR8fulS5eiVq1aaNCgAc6dO2e5HrVGMXjwYN3lCILA7ciciKz58ccfsW7dOvGzEw6rTz31lOJv6enpbp/1duC848qXL+82U1q9ejX3XKmvkh6kz7VWrVooUaKExzFWgiOkSoHVgUQrca6WryevA09LS1Ps2P1tX9iWLVuiRo0atpcrj3CVphzhWTcYVpYue/TogXz58hnyh7Ebbyh1Sjvx+CoSv2vXrj6pV86SJUuQNWtWRdcOO56Nnkm1t5W60qVLe1j9u3Xrpvv8PHnyoGTJknaLpYhR1xujk7GA2SbMm2TLlg1r1qxBq1atxO/S0tIwceJExMXFITY21pZIK7tuvlypY1sxOfFw5b5/ZcqUQXx8vKJccmrXrm2p/gcPHmjWwUNtJwPGSy+9hOXLl3t8r6W4mrnPVnLrLV682KNus4qJluxa/hm88+/fv6+rY9eq2+h9NWJ1BB5anO2Y+MiXZ77//nuP9ia9Hy6XC4UKFeKWxUvzoNenrmLFirh27Rpy5cqlS241jPpFlS1b1nKdSsjbkpKF12zql5SUFFPnMdg7In1OVpeBzaT7aNu2rYccUpxQ6nh4W6kIDQ31mHx+8cUXpgPBGjVqBMA5V4n33ntP97HffPONYh914sQJ7vdMbnlKFb2Kq1GlPCCUutDQUI9IxpMnT6J8+fIIDw9H7dq1cfjwYcv1qN08XoNauXIl91j5frhOZuXnvbBGIh2tvihmlTq9ucG0QszlTu88ePeoevXqbp/Z7MvMACydubG6mLld+uyttIPOnTvjmWee0XSu51ne0tPTbfNV04rivH79uvh/JUVJrXy1AWjUqFG6ypE/W+lkkCG/H7wl0p49e9q2NMv8hMxar8aMGWPoeJaTkb2Pn332ma6JlB54bUmu2AmCYDhVDMMuJYSVU6FCBcvpgpzITWi3Uvfzzz9bttSZdUORBwjJfaLDw8Px+OOPm3oOMTExaNSokRi1bmb5VQ0t/24pav2Bki8gswSaDb40ujNXQCh1PBITE92WUOTLgIzU1FQkJye7/Smht1EwPwapP5KUEiVKcF8uefl2KHt6B51PP/1U/L/0xZIrZUZJS0tz+6y3o8qdOzc+/vhjzePUnsnjjz+OcuXKYdKkSYpLtcDD7VXkOLXLApP3lVdegSAIbvW8/fbbus+XU7t2bezbt0/TL7Np06bcMqUDnJxNmzbhs88+c6ubtyOCnvcjb9684v+NKpJabeeTTz4xVJ4abOIlr1PqZsHaTd26dTXL+/zzzwEoW6369++PvXv3ur2vTi6LsefArm/48OGKk1CjOB3gYfa+zJ8/H4cOHRI/s/ZqJJ0MS9uTlJRkSgYj2KHUSZcOmzZtalmp+/3331XHSCWsuN1o8cQTT2D9+vWO5pDbtm0b5syZo+vYd999V/V3+TWyZyQ39ui9F0aXh/1Kqbt06RLq1Knj8Xfjxg2PY/PkyePW+OQ3jDFq1ChERUWJf3bMvKtWrQqAP8jxZqdKaT7efPNNy7KY0f6lSSblyvDUqVM9jldrfPIQcLUGKJ+96VES2DG85VEmV9++ffHKK68gOjqaewzPT026ZGpUJjXY+bxnbnap5Nq1a+jevbuu+pXeA7XreuGFFzB8+HC37+ywTMgHE6Yk1ahRw82ix/CmQz2TTV5nmzZt0KZNGwD/3bMpU6ZolhcTE4MJEyagT58+3N+zZMki9hvXr1/H+PHjHQvQAPgDuZm9oXkKHC//o51LfGbL6tSpk1vCYVaOlt+oNGJ83rx5yJo1q4dF1VdBF1quJnYvv2bNmtUWdwEp3377raXzrU5+lFKZSKlbt66qLyZ7d4GHRhu1nJ1yVwklpU6KWiBFQCt1BQsWxI4dOzz+pLN/RqlSpZCQkID79+9j586dbi+zlJiYGCQlJYl/agEV8sajtD3M5MmTcezYMdXUGOzfr776yu33p59+WvQ1+uKLLzBo0CBFeX788UfT0aVypLJKr1Ou1BlNzFqkSBFdFigApvIyMVnttg6YXRpiyJf0fv/9d/z6668eSp1e1KwJ+fLls9XfUw8FChTw+E5reVSO/H0aMmQIgIcRZrx3+rnnntMs0679pOWyMet7RESEaEFnx+ixEISEhODDDz/UlQIob968+Oijj+ByuRxLOM1TWo0Ojv/73/88UvTcuXPHccd7pTamlh+Pt9TPypEqaDwnd6lTf9OmTXH37l2EhITg2LFjokIvj562AzsUMjbusah3rTLLlCmjywp57Ngxj1yVNWrU0OUny2ReunQp9u/fr3t8AMCdvOrtc5SOe+utt3TXz+O3334TV+W0ZBEEAR06dHD7jq1mySdV0mf1zTffKLoSKa1CKuFXSp0aTZs2xYYNG9C9e3fMnTsXYWFh6Nu3L6KjozFo0CBF5SgiIgKRkZFuf0rIH5iSohgeHq7oiCxX6vLmzetmtTl8+DD69u0L4KHmrhZCLU1VwuP7779X/V0J6XXOmzdP04lYqyF/++23WLJkCQD1TsXMYMDO4c1W5HX5MoXBs88+i/r166sqdWr3Rr6M7QSlSpXCyJEj0bt3b+7vegcQQN8WUPLnzcrn1XPhwgXuO3zhwgW3z/v27RPfHzW0EuTKZRs2bBiWLl2KJ554ApMmTcKYMWPEiGi5UsdTSM2iN3+fUZSsAkZ880JDQz0s8dmyZeO6jei1iulBqR2qWVKk7iWMLFmyYMqUKViwYIH4ndwiDSi/l2XLlhXfFTUri13ExMR4fMe7F/v37wfwcHxo3rw5BEHwSAKvBBsPGUpWrLJly6Jw4cLi50uXLiEuLk7RZYh3D9944w3NPc7lk1np9bJkwmzCpdZ/vvDCC4iOjsaYMWMwf/58CIKAHTt2qNathxUrVqB69eqWxhpm2X7zzTcVrZZZs2ZVNKgErVK3du1aXLx4EfHx8eLL3bZtW8THx2PLli22LGXIH5TU4Vr6UI1sPyU916jSodaRFChQgOsArgZLfSJt7BUrVjS8oTkPlopEzdoiHxyl91QpqlNpmYz3HYsmsmJJsKoYMh86KwmOlXw1rXLy5ElucmI9HDp0yM2ioWZhZii1X97zKVSoEPf4QoUKYfPmzdi4caP4nZ5nJB3IecjLyJo1q7i/Yr58+TBgwADxGKlc3333Hb777jvN+s2gtDzarFkzt8/y9BC8AAil98ZIFG2lSpW4A83AgQMBuOf0cmr5lSXvjY6O1mXJldO7d283Kx6v7ZndTebnn382dR5D/mx4vpssgpYHL72R0RUCXq5LHo8++igiIiLcnk3lypW5x+qNDgf+a9vR0dEYPHiwWzDUhg0bIAiCx7jBK3/Tpk3ImTMnBgwY4JGr04nJvrxMXn5ABlOOXS4X3nzzTTFNUqbwqfM18gfFOi85atY+uaVOj7lWCTXlxExDZUs9vC2g9KDWwZQqVQoPHjxQXKY4c+aMqLjxBiFm6ZPDcuTxAgTk927atGmIi4sz5VBr14s/YcIETJw4UbTyyH3qsmfPrplGxqosM2bM0FW+PD+bWr0VK1ZE9uzZFY+ZNm2a6KfIfNLkShrrnIxeX4MGDbjL72qO/1r3mMmmZ1lfeh1t2rRBgQIF3M6zY49Tl8vlITOz1LPovP3792P79u0eCWfl0b6A/olN//79AfAtNkrLVsznivccjT7bffv2KZYRFRUl5pT84IMP0Lx5c9y8eROAOf9A4GFaiVdeeUVMkwGYd2nhBSUZQU+9U6dO9cgDqHYeL/MBL9fiq6++ismTJxvewkrJR1hvpLtcEWUKz4gRIzBs2DBbreDe3C1G7oeo5E4TEhIi7uwktYSqEbSWOm8gf1DyXFZmy1RT8OQNr1KlSuKAYWVwL126NOrVqyfuNfnyyy+L5bLM3HphloElS5aozpZ5lhY2ABUrVsyts5bz6quvcsssVKgQBEHQNUvPnj276e3FjHQAly5dEo9fsWKF22+5c+fGBx98IF7rzJkzRWdnQRBw+/Zt7NixA5MmTeLm4AP+a3c8vzY9aG11oycAQEmB592nPn36oGfPnmjXrh0A4Ouvv8ann37qoeDL34Ply5ejRIkSuHTpkqq8Skjvz86dO91+04puDgkJwc2bN3UlFecpSL/88gvu3LmDmzdv4sCBAzolVq9Dfm/79esH4L/7VqVKFdSpUwe9evXCyy+/LB7He+/ULNzSAYf9zhs4tBRDqQXBbF/F85FUK4v1HWbry5MnD1avXu02MfdGgE6XLl08vtObOFjJT5N3D3huB+XKlXPbNQEAVq1apRjUo4a0TUjl1Zv0Xq78sDL0TMTt8Cc3itKyq7xM+Wc1331Wpt48dUYtdfpjvTM5RkO2pccbaYwHDx5ERkYG7t69q9oYtQIapIkQWf1Vq1bFc889hxYtWogDhhzebgsffPABNy2IHniO2mYtNv6CtOPkWUmkvPbaayhdurSHf6aaXxi7T2vXrsWVK1c8fh8wYIDqDFvL/0NPMAeztmlRpEgRTJ482e273Llziyk+eHKx+l9//XXVCYYRiytPifvnn3/cfPJ+/vlnN9cDvZnheUpTaGgoQkNDbdus2+Vy4cUXX3TbI1LpORUuXBhr1qwRf+cpX2pK3dKlSz3uu1yp0xNtzVMEv/nmG3GbLrOoWQDVrtkIzCf60UcfxSOPPIJRo0Zh165dlspUo27duh77f5pVUsycZzaASw5vQiD/v9ZKAQ8jY4E3xw2l+6Wl1OnJSqH3Omj51QJsucOM8/LMmTMBGF9+5RESEqIaQLF7926sWrXKcLlhYWF44403VH31SpcujVy5clnaNksLdm+s5opzYobtZJoJvfKyASt//vzcpLhjxoxR9eHQgkVnyScGetqqNLRf7zkMdv16BuTTp08rznZ5AxSvLT3++ONuqXCaNm2quW8wD29ss+RyudCxY0c3X0CtgfjKlSu4fv06dyLGZJZH4vF4//33sWbNGrdof97ALPe95VnqunbtKq4OmEWqwCld+wsvvGCpjqFDh2Lv3r24dOkSwsLC8Mknn6jmupRjNIkuz//M6jZqdilCx48fx5YtW3SVo6TUSdNz1apVS/F8+fNkllq1FCFm0epv2YRMfhxvwl2vXj0A/7laqK3qWZVLjtF8tqTUSWBmbj1JceWwsG01K4lZ5/mvv/4awH8vQI0aNSxtBq7VAK9fv46//vqL+5uVWZL8XD1RjGroSQprhA0bNmDTpk1u3129etXt89y5cw2Xa/Seff7553j11VcN7ciwcOFCLFy4EIB2m6patSoEQTDlv7Ju3Tq3/ZeNdFAsMlLPzgbFixc3FJDk5K4t3oh8ZG2EF3ygdI/z58+PvHnzevRXderUERUi3hZIcgvL9OnT0aBBA0UfYuDhspk8St6O5VeG9PlplXX58mWMHj3aUn2hoaEeExS9bNiwAb/99puhc6pWrermxwc8fH7Hjx8XPxtdDbJLqStTpoyotOitG3B//mpGCDXeeustnD17VjF9mB3wrv27775T9BmdNGmSuC0cu97o6GgIgiAafLQsdXrlOn/+vKb7CW9irwYpdTIEQRAjrqQo3VjmbC5/qMxnI3v27IZ86niw2bZevwUttBpgWFiYYmoCozNUafZt+ZKQlSSXZ86c0Z0BXC8NGzb08EmRziAFQeD6xmjBlhH1JMEEHnayq1atMpQJv0OHDmI7sWrB5CVrZkRFRaF8+fKmyo2MjMTevXt1b/elhPT6mBO4k9Y0byp1Svkk1WDtpGzZsrh9+zZ+/fVXS7LMmjXL4zut6PPt27er7o+qN+WGHgoUKKCaCsNpGjZsaHgLPODh8v/t27fdvpMG2eidqBvJn8hw4v4Y6Z+UcLlcplZH5s+fjw0bNpiut02bNprZJQDlZ8LuJ5ugGtmCT/reFC5cmOsHKT3G6LMjpU4nSo76mzdvdksgyh7G22+/jXnz5mnmmtODlaVcNcx0TDNmzDCk2Hz++ece8ptNIXDq1CmcPn0awMPACye3jbGT0qVLY/78+bpyu9mBWaWO+YHUqFFD9zlG22TVqlVtyWXG8IZ/ptMKQ5cuXbiRvHXq1EH//v11bY8WHh6OgQMHInv27Jr3V+l61NoN7zfpe1yxYkW3nWrk8CIw9cjEllnlPqny4/2lL1i2bJnib6GhoaouJ7Vr18a6des8fFSljBs3DlWqVMHo0aN1BfkwzPrUqSluZpQ6KxNO6bmdOnUS89gpwSKk5SmBGO+++y6eeOIJ7iS1Q4cO+PnnnxWj41l73LdvH86dO2cqOb5T/QoFSlgkV65cosVp7NixohKXJUsWcesPNaVMzxKTE75j69evN7XBd2RkJF566SUPp18jSK9nw4YNui0LPN8huzD6ghl9JvLcSVKM5j10iurVq2Pv3r227drgFLy0CiEhIcifP7/Hcrnd9TmBdElfWleWLFkwduxYXWWkpqbqrk8riEvvioKaRVeOnp02ePASvwL/yVijRg20adNG9f3yJiwAxcgm8VIaN26Mxo0bK7qmsAA3My5CZlDbG/y9997zyJmoBXuWuXPnRmJioqFzmbsIb/9qHgULFvRoO/ny5RO3KCxXrpyqm5FayprvvvsOf//9N7Jly2Z49crpaGuy1NlI//79ubtQ1P//rXZ4Eavdu3fHTz/9pFou68DsirQDgEaNGpkOCjDrz8cbLBo2bGh5Oc6XWB3wz58/7+ZXYwes01BKDqpG1apV/T4qmQU/FClSxM1Sd/DgQcO+TpmRpk2bijnxpH2SETcRQRC4+0Sr8ffff+P27duKA6kZQkND8cEHH9hq/bWCmXfn448/NuWrq4TZBOM81K7HyPZfcvbv32+4HRQtWhQnTpxAz549Tdd76NAhxMfHmz6fkStXLlP9K+DcyhuDLHVe4Pnnn1fUzkNCQhTNw4xcuXJhypQpqsl/rZIlSxbdSQ7ZkohWOg857du3x7Zt2xS3X/MnypYtq+pI/d577+GHH37wSARrFL0JKI3AnM6ZX6e/K2lGadmyJW7duoUcOXK4WeoKFixoyqVAC7NO4GbQm7vKCtmyZcOOHTtw9OhRN6WO+RjxfI3ssC6wa+PthJAjRw5D1ka7UnQYoU+fPpqJ25XymKlhNehDzurVq2175/ft2+cWzSy/30ePHsXZs2d1l8fOz5cvn2oSfyXMJp1mFC5c2JE+1whqWQB4AUlGIaVOg2XLlvm8EQBQ3K/TLlauXIlFixbpOtZMxwX8tyRhV8CHkxw7dsztc6lSpdw+v/DCC14dUIxQqVIlzJ49G4UKFcK2bdt8LY4jMEWLWeoCPVCCoXdpyQ7k7hedO3fG+fPnPXIUNm7c2PKm6GrMmzcPNWrUwK1bt9yUJrX+xRcTFSVft7Fjx2Ly5Mm4ePGi+J2/TqSM9llVqlRx27+VnS9Ni8QmBqVLl8bJkydVywv0HKV2oNZnJScnWy6flDoNpA6+P//8s2MKyTvvvONTX6ZXXnlFt9neyu4agHdn13qoXbu26pLyvXv3vJKrzC5crod7DLLlDV/7yGlt2WWF8ePHIzIy0pE8V5mNiIgIDBs2zON7tme0nVy8eFFUlpnvMeCZB1EJf1EKWF/2/vvvG97OKRBhCkl0dLTHb3379tVtZbLr+f36669+45OsF9ZOnBpTSKkzgNW9/tRgueiCGX/piOVIdxng4S+RdUYpVaoULl26xA2Z9xbXr1+3nGRajTJlyoj5+ZwkT548unZZIPTx2GOP+VoEW7G7jefJk0fc59YK8ojkp59+2lJ5alam9957j5sXUYqRBOR6YP7qgQS7h06tAASEUrdv3z707dsXISEhePTRR7Fo0SKEhYVh6dKl4qbE8+bNc3Q3AOI/rCpn/mapC2acVui02oKdG3T7khs3bvhaBEKCv04QAeB///ufW35OM/z+++84ePCgZVmkuQMPHjxo2SfN6vJpZlp+LVeuHNfn2mmXkYBQ6goXLoz169cje/bsGDhwIFatWoUWLVpg4sSJ2L59O/bs2YPY2FhTe84R5jH6Yvrr8ithHnqWhC/wZ6Xgq6++slxGqVKlPPx4rWI2zYoUqwoJi1L25+dnF0ePHuV+//TTT6NBgwb46KOPVM9v3769uEexEQJCqZNujhsWFobQ0FCcPHkS5cuXR3h4OGrXrq24QX1qaqpbVJUdjoiZnWDzqSMIwv/QUhzKlSuH4cOHe0kaAvhvv1qzuwHNmTMHixYtMp23MBjImjUrNm/erHmc3sBFOQGh1DHOnj2LTZs2YdCgQdizZ49bSLSSk+qoUaO4zr+EdYwud2eG2Vlmg54p4RRqSp3L5VK0hBDO0b59ewiCgJYtW5o6v1ChQujfv7/NUhFS/Eqpu3TpElq1auXx/erVqxEaGopOnTphzpw5CAsLQ548edysbkpOhzExMW7OosnJyeR7ZxGXy4UNGzYY2k5KClnqgodq1ar5WoSgY968eT6PWPYHaMLgf0h3SiL8E79S6goWLMiNRExPT0eLFi0wePBgcQPkUqVKISEhAffv38eePXsUE9pGREQEbPSiP6O17x4PteSmvqBJkyZezQsWbBw7dowmSA5Ag+ZDAimNEEH4C36l1CmxbNky7Nq1CykpKYiNjcW7776LNm3aoG/fvoiOjkbWrFkxf/58X4tJaFCpUiUMGzYMffr08bUoAIC1a9f6WoSAxowTL0HoRZr0ljDGgQMHEBoaEMM7YTMuIZOthSUnJyMqKgpJSUmmtikhCIIgnOXw4cN4/PHHRcf8zA4FmRF6IVWeIAiC8CvILYIgzEFOCwRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQUBAKHVHjhxB7dq1ER0djZdffhm3bt0CACxduhS1atVCgwYNcO7cOR9LSRAEQRD2s2vXLvzyyy++FoMIAFyCIAi+FkKLtLQ0hIWFAQCGDRuGkiVLom3btqhTpw62b9+OPXv2YN68eZgxY4ZmWcnJyYiKikJSUhIiIyOdFp0gCIIgCMIrBISljil0AHDnzh2UK1cOJ0+eRPny5REeHo7atWvj8OHD3HNTU1ORnJzs9kcQBEEQBBFsBIRSBwAbN25ElSpVsGXLFjzxxBNITEx0s7Slp6dzzxs1ahSioqLEv6JFi3pLZIIgCIIgCK/hV8uvly5dQqtWrTy+X716NfLmzQsAGDt2LDIyMvDqq69i3LhxmD17NgCgVq1aiI+P9zg3NTUVqamp4ufk5GQULVqUll8JgiAIgggqQn0tgJSCBQtix44dHt9LlbKoqCjcv38fpUqVQkJCAu7fv489e/agYsWK3DIjIiIQERHhmMwEQRAEQRD+gF8pdUps3LgR48aNQ0hICPLnz4+5c+ciLCwMffv2RXR0NLJmzYr58+f7WkyCIAiCIAif4VfLr95AEASkpKQgV65ccLlcvhaHIAiCIAjCFjKdUkcQBEEQBBGMBEz0K0EQBEEQBKEMKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQUCmU+oEQUBycjIEQfC1KARBEARBELYRMErdkSNHULt2bURHR+Pll1/GrVu3sHTpUtSqVQsNGjTAuXPndJWTkpKCqKgopKSkOCwxQRAEQRCE93AJAWKySktLQ1hYGABg2LBhKFmyJKZPn47t27djz549mDdvHmbMmKFZTnJyMqKiopCUlITIyEinxSYIgiAIgvAKAWOpYwodANy5cwfFihVD+fLlER4ejtq1a+Pw4cPc81JTU5GcnOz2RxAEQRAEEWwEjFIHABs3bkSVKlWwZcsWhIWFuVna0tPTueeMGjUKUVFR4l/RokW9JS5BEARBEITXCJjlVyljx45Feno6Tp48idmzZwMAatWqhfj4eI9jU1NTkZqaKn5OTk5G0aJFafmVIAiCIIigItTXAuglNTUVERERAICoqCjcv38fCQkJuH//Pvbs2YOKFStyz4uIiBDPIwiCIAiC8BeqVauGQoUKYfXq1baUFzBK3caNGzFu3DiEhIQgf/78mDt3LvLnz4/o6GhkzZoV8+fP97WIBEEQBEEQutm3bx/27dtnW3kBufxqBYp+JQiCIAjCH3C5XABgW+7cgAqUIAiCIAiCIPiQUkcQBEEQBBEEkFJHEARBEAQRBJBSRxAEQRAEEQSQUkcQBEEQBBEEkFJHEARBEAQRBJBSRxAEQRAEEQSQUkcQBEEQBBEEkFJHEARBEAQRBJBSRxAEQRAEEQSQUkcQBEEQBBEEkFJHEARBEAQRBJBSRxAEQRBBzN27d3Hr1i1fi0F4AVLqCIIgCCKIKVOmDHLlyuVrMQgvQEodQRAEQQQx58+f97UIhJcIGKVu3759qFu3LqKjo/HGG28gLS0NS5cuRa1atdCgQQOcO3fO1yISBEEQBEH4jIBR6goXLoz169cjLi4OpUqVwqpVqzBx4kTExcUhNjYWsbGxvhaRIAiCIAjCZwSMUlewYEFkz54dABAWFoYTJ06gfPnyCA8PR+3atXH48GHueampqUhOTnb7IwiCIAiCCDYCRqljnD17Fps2bUKdOnUQGRkpfp+ens49ftSoUYiKihL/ihYt6i1RCYIgCIIgvEZAKXXJycno1KkT5syZgwIFCrhZ3bJkycI9JyYmBklJSeIf+d4RBEEQBBGMhPpaAL2kp6ejQ4cOGDx4MMqUKYO0tDQkJCTg/v372LNnDypWrMg9LyIiAhEREV6WliD8h4MHDyIlJQV169b1tSiEAcqUKYP8+fNj586dvhaFIIgAwSUIguBrIfSwZMkS9OzZExUqVAAAvPvuuxAEAVOmTEHWrFkxf/58XUurycnJiIqKQlJSktvybaCzcOFC1KpVC0888YSvRSH8DJfLBQAIkFed+H8yy3MbO3Yszp49i+nTp/talKAls7SlQMTuZxMwSp1dBKtS53K5ULhwYcpHRHig1mmkp6cjNDQU8+fPR6dOnbwtGqFCZhmIM8t1+hK6x/6L3c8moHzqCHVSUlIsnb9x40ZkZGSYPr9FixZo3bq1JRmCneTkZGTJkgV79+71tSgAgPv37wMA5syZ42NJCOLh+7F7925fi0H4GYIgIC0tTfO4EydO4P3333dUeb1y5Qq+/fZbx8q3Cil1fkJaWhpu3Ljhs/p37dqFRo0aWWqsP/74I5YvX655nMvlwsyZM03X4wuWLVuGr776ynI5x48fR0ZGBubNm2eDVNZRmyWePn0aCxcu9LZIPuXYsWO4fPmyr8XItLRt2xa1atXytRiEnzF8+HCEh4drHve///0PX375Je7cueOYLF27dkX37t11KZm+gJQ6P6FTp07Ily+fz+q/efMmAHhtQJsxY4ap827fvo3vvvvOZmkesnz5chw9epT7W5s2bfDee+85Uq8d3Lt3z9L5PKWuYcOGmW5J9sknn0S5cuV8LYYi69atw6VLl3wthmMcP37c1yIokpGRgY0bN/pajEzJsmXLdB0XGvow9lMpxZkdsBUxf13KJqXOD9i2bRuWLl1q6txvvvlGtLaoJVaeNWsWXC6X38wuzL4Qn3zyCdq1a+eI72Dr1q3x9NNPWypjxYoViIuLw/Hjx3Ht2jVb5Nq/fz+2bNmi+PvGjRuRLVs2nDhxwuM3rfvMfuctuyclJRmUNDhITEz0tQiKNGnSBI0bNzZ0jsvlwkcffeSQRPbC+jJ/ZMaMGWjUqBF+//13t+8vXLiAP/74w0dS+T8hISF45513vFIXS2324MEDW8q7cOECDh486PadU230yJEjtpRDSp0fEB0dbfrcL7/8UvOYmzdvolu3bgCAu3fvqh7r9OzDavnXr18H8J8vmN1Y8SlMTExEq1atUK9ePZQrVw6VKlWyRaaqVauiQYMGir/Hx8cDAP766y+P37SW09nzkD+XDRs2eFj/Ll26hLNnz+qS2Z/5999/8cUXX3h8b0aJffDgAebPn+/VWfvFixfdPk+dOhXVq1dXPUdPP0E85Nq1a1z3iCtXrgCAh5tMqVKlbHvX/Z0PP/wQNWrUMHSOIAimV2akZeiBKXV2WerKlSuHKlWqWJJJLyyzh1VIqfMxds0o1JAOAk6apfVg9UXw55l8njx53D7LB1+nUPOL279/v+q5PKXu6tWraNy4sUfgzWOPPYbixYtbFdfndOzYET179vR4FwoWLGi4rK+//hpdunTB5s2b7RLPMH369MGePXtU362QEO919f379ze98uAPdO3aFV27dvXom5WsQFZdH6Skpqbin3/+sa08OUpt5LPPPkOXLl00z580aZKHpdKfYO1cfp2nTp3CxIkTDZd369YtAHzrPS2/ElzkCWHv379vaycBuHfovlbq7MJfXqi0tDSsW7fOpzIw65mZe/Lzzz97nJuamqr7/JkzZ1pStAVBwMiRIx0PEvrrr7+wdu1aAFB0ojbz3rHOXssC7g169+6t+JudSt2RI0fwww8/KP4+fvx4tG3b1rb69JKSkgKXy2U5elbJjYXdQyvWfC26devmaK5Rpef2+eefY/78+Y7VaxWrk/kWLVpYckGoWbOmx3f+MgbJIaXOx8g7oFKlSiFbtmy21iHt0L1hGVRDablPL0Zf7vT0dBQpUsSQJeXq1au6jx09ejSaNGmCkydP6jqeXfeePXt016EFW2Ll3VOt+9ymTRsA5jtN3jKmEf755x98+umn6N+/v6HzmjZtirx58+o+/umnn8bLL78MwB5rsT+mNFBLS2OnhbtChQp4/fXXbStPihU5//77bwCwLbL8/fffd/vsjVWCXbt2OVq+P/uLOonVcY8XwGO1Hxk1ahTat29vqQwepNRZZPjw4aozw9GjR+tK88GwujctbxbpqyXLPn36eEQt2TW70VvOvXv3cOHCBYwcOVJ32YcPH9Z9LFtiNRpC/9tvvxk6Xg9aSt24ceMUzzXbRg4dOmT4nMTERLhcLuzdu1eUj+cjKQiC4nP+5ZdfxIhtPTDr47hx49wmFsuXL8e2bduMXgK+/vpr7vcZGRke1vCFCxdi9erVhuvQIiMjQ3fgk9U+YMWKFShcuLDmcXavMhiBPVe7+jslPzCrfdiRI0dQq1YtxTbvL2RkZPjcCGAUpfvnxH2VlzllyhT88ssvmudlyZIFbdu2xcCBA7FkyRLb5SKlzgQZGRmi8jVkyBDUr18fwMOBQ750FRMT40hC3uvXr+PChQse3/OWgaSdnDc7jalTp4qWILvqN5p92+7rTUtLQ1JSEpYsWYJ9+/YZPt+XPoEDBgzQdZz8ngmCoBltzM7Zu3ev6FCuBJv1Lly4UPV+xMTE2O4LNmDAALfra926talAJaV21aBBAzGtAqNTp0549dVXucfv2LEDZ86cMVw/8ND3Sy1318WLF8X7q6fdbdq0SVGR+eyzzzx8RM+cOeMW4b1w4ULuKsOtW7fgcrmwY8cOj9+UljITExPx448/asrMw8w7lpGRodlX2JX5f9SoUdi9ezd3Au90/2zk3rz11lsICwtzTBZBEDBs2DDcvHkTgiDg559/9iulVgu5rH379kXTpk01z8vIyNDtc5qRkQGXy2VI+SOlzgTDhw9HsWLFPPyA8uXLh8cee8wrMpQoUQJFihTx+J43CPo6uIA5m+rlypUritZPs9fy66+/mjpPTseOHZE7d260b98e1apVM3y+k52WlbLVFP8DBw6gcuXK4ufDhw973E92zrPPPquYPPb48eO4efMm9xmuWLHC7XO9evUwZswYAA9dErZu3ar7WrRgS99q9+vUqVOqZSidGxcXZ0iWunXr4sknnzR0Drt/CxYsUJVJmoqB1y/cvn3bTalq2LChYuoJ3vWWKFHCLXBGKYcbmxBIl6wzMjIQHx8vPmM5b775Jlq0aGGoTVtp/7ly5cIzzzwDQLmPsasfZYoSz8rqpL+eUfQsY589e1Y1ldaHH36o+FujRo0wdOhQ5M2bFz/++COaNWuGVatWcY+VWtdPnTql6IOr9Iz0to0//vgDLpcLx44dUzzGm1uusTaitDLAg5Q6g/z5558YNmwYAE9l5fbt24aWhKygpCjxGrW0Q1dqiHYqfvLUGrdv3/aoX+2FeP755zWzyvPO/+2339zqAuxXaOXKh5o8dnPz5k28/PLLiqk3jAwI48aN031vBEEQU8kAQMWKFfHCCy+4dazSunnRe3FxcShXrhzq1Knj9j2TQWphFgTBTTn6+++/MXz4cF2yGkH6zOTO6UrJTtnyovxeW0nZ4FSQhfS95z3rnDlzqg66UpTalh63A94gOH36dDz33HOYNWsW99h///3X4xy9mHnn79y545GPTAmr77pa2g27+pHhw4ebciswSvHixRX76n379mHSpEmK527atEn8P+tfpH1Kenq6xzUIgoCSJUuiYsWKuuT77rvvFO9DWlqax/1m1mQ9Eb5Kzyo9Pd22lFtm2gMpdQZhzrh2IFdA7IDXCLxtqVPLZcbku3z5shh5KUct6EDtWmrWrInOnTvrlNI3KMl/+/Zt3L59G0lJSYo7BixZsgRr16415J+l1ClMnjxZ8Ry9HVLVqlXF/6splC+++CLq1asHAEhISNAs1xdLMHJFVEkG5koh/33NmjWG6svIyHDcKiNta0rtjvn7qr1XgiBwE1sbRXrP2JKzUn/K7o23LHVStPpLPW1YqdypU6eK1ihePXZdw5AhQ7huBZcvX0b//v1tbXtK98PM7iDS6588eTKio6PdrGbsd57rEY927dq53QeXy4VmzZpBEASEh4dj7NixbsfriXDWstS99tpriIiI0CWfXoyM4aTUGUTqY6BmdTp16pSHcjJ79mwULFhQ9KUwkxdLC6tKnZFO5e2330ZkZKTH92ovBCv/4sWLaNasGfcYPfJK5fznn3/Ez2qZ3W/evIkDBw4YKtvIb0aR3qc8efIgT548qFKliuISPrMSWVli2LBhA/d7aZl6dyw4ffq0rrqVIo8TExO5kcZG7rGVXIBq9aSnp2Py5MkeS2Tr1693O9dseyhQoIDhZVetyEW5LFqWOkBfiiM9qS5SUlK4x506dUpUmAVBwM2bNzFhwgTNd1xriXzhwoUeeRSNBkps375dc5n91q1bHqsvgwYN0lX+7t27RZnYPRgzZoxojXJSqVNi4MCBGD9+vC258JwIopD6aDLFX/qc7fCllhoT5L5tWgrbvXv3RCue0jjHJt2+2mWElDqDMNM5oJ7Pq2TJkihTpozbd++//z4uX76MYsWKATDua6YHaWO8efOm6GjJ+90It2/fxtChQ8VBYPfu3Zg9e7ZHx6pUx5UrV3TPDtWc4+Ud4eXLl/HEE0+IZn6ekz/jpZdeEv1mzCK/BubrsGjRIl3nS+WR/j8tLQ1paWmqg4xWniXefZcumwLwCFzhYabDNzPznzdvHjf/E2//YaV2a2XpkrcDB+PHH3/EBx98oJi6RBAE1K5dG6NGjRK/M2LNun79umHrlx4nbCl6LHWXLl3CZ5995vZdbGys233Vszqh1G5Lliwpyi0IAvr164d+/fq5TQjUyMjIwN69e/H999+L312+fBmdOnVC3759uee4XC4MGTJE0V+P8fzzz3v00YD7dk1ly5YVU+cYmRxv374dtWrVwvfff4+4uDhxeV86CZGWN2rUKLhcLq+tqtihPEr9nt977z0PFwkzdcTExHh8p3Vfrly5wh2H1GRhLizyMVzLUte3b1/x3dC6vkqVKnlYKx999FHVc+SwOowEUwWMUpeSkoIaNWogZ86c4ku3dOlS1KpVCw0aNLCcCsQMZcuWNXS8N5aVWB3p6enImzcvYmNjDZ2vtP/c+PHjMWzYMNFhXc3nTf5C3Lt3D48++ihGjhyp6x7oiXhk5TAnXabwsHN///13uFwuNx8NNsPSSlli5jmNHz+e+73L5VK0JpldAjFiqZP7CTFridzqY3UwMXItaolrAWgmrn333XfF/1vZy3jq1KmKvzGraGpqKrZt2+YRqCEIAnbt2uWm/Ej7gzlz5nCVUyuw9DFKeRTV2q3aO/X555+7fR48eLDbtmKLFy/WlE3PO5ORkSEOokYsLs8++yzeeOMN8TtmIZJb0KRlDh8+HJ988olm+XJr09y5c90mQmYtwezZnzt3TnGSJLXUjh492lQ9cnbt2qUrgKtMmTKW9wGXRnl/9dVXGDJkiNvvVsc7nuLPK/PRRx9F+fLlVY+TK1cFChTgHqel1ElzQeq5vmvXruH8+fNiP6GVGUAOq+P06dO6jUABo9Rly5YNa9asQatWrQA87MwnTpyIuLg4xMbGGlZezKJn8JOnNGB4Y1mJ1cEa5caNGxWtQ1LYC6mUU8+I46e8DtaRx8XFKdb/xhtvIFeuXADU77H8N/lgxZa8Fy5cCIAfwaUVzHL06FHV340idbqVym92dw8ry68pKSnImzevobx6ehI3yzvBNWvWKEZsTZs2jfs9k5/nU7h161bxe2m5VgYOpfdUTnR0tJi2iN17LSX2rbfeQocOHUzLxsOu6GY9SNtmiRIlTNcrRRAEzQmbXM527dp5HKOUC49Z89SWqWfNmgWXy6XYn7355pvc7x88eGBouVG6jGd1wnTt2jXdz/7TTz/VnWpJK02RFtJVKx5ymdUsvrzr++mnnwA8vJfs9wkTJrgdw5KfGzXqMIVWSalTut/SdqPn/n366acoWrQoXnvtNUPyMaRy6M0BGTBKXWhoKPLnzy9+PnnyJMqXL4/w8HDUrl3bUMJYM/zxxx+6Xyw7tuIyu6zEZGTKzZ07d9zkHjx4MFdh3Lt3r2q5bBAz6u8GuL8oSvfw+++/F/NZ6Wm8Wv4zzJoxePBgj9+0OiOlsHo7kF4/u6c8J/uffvpJsw0MGjTIzRKn11rCQy0Vx8cff6xZrrzuV155Be+++y53iVFJodRyjuf5GvKOXbt2raavFKDeDrT6Ez3Lh1pLQjxu3LhhOiGpHkvdP//8A5fLhfj4eNWypMqXdIlSqQ49bW/fvn2aPkvy93nlypUex/Tp0weAp5WN+TKp7QjTrVs3AMCWLVs05ZVSokQJDBw4UPfxRpU6JbeRpKQk5M+fX3EipFSvHvr06eOxI8zYsWN1W92NTjJKlSql+Ju8TqWUJVLjzbFjx9CzZ09Lssnr1TtpA6C5vA/816+aTaklvQ69AToBo9TJSUxMdHPSV1KkUlNTkZyc7PZnlCNHjqBSpUqYN2+e6VlXaGioIWuXtFH1798fLpcLZ8+ehcvlUh2AWSNgncCRI0fcGsacOXPclq/0wmZZSp2hdKlJnlyRXYvViCtBEERLIlsOU3oe3333nWI5Wkrdr7/+auseuUoKArsfnTp18vitefPmismC2TWPGDHCLaktryPzViSp0rM14qIgtzKbrffll192i8y1EyajnkmX/N4XLFhQ00LarVs3tG/f3tD+u3pgbYY5b2stqRqxBm/ZskVXOytQoIChQVMJNmGVv6NMBrsTVgP6oy2BhxYV1h8aff/kAThszOAptzzkz+2XX35RfJY//fSTh1L08ccfY9u2bZr9X3p6uua1Gbl2+dgo9ZeUyi+1rkuDKgBzWy/KA+ykyni+fPk0z71586auLBZm9QbpPYyOjta1whKwSl2ePHncFDSlgXrUqFGIiooS/4oWLaq7juTkZMyaNUu0hgwdOpR7XGpqqqbCZlRJkD7Mb775BgDEyE2WHkLtPNZp8nLxGGXVqlXiLFgp5480kvf7779384uSWmDkskRERChaPTp16uQWQbR161bRr+C9994DwO/AZ8+erXo9W7du1UxBobcT1cPgwYPF4Bjpy61l/bx8+TI3otDIgOstx+uMjAzLKXrMtFOlc1iQkFXkwQZW/JAuX76suUewfKCSYnQQlX6WW8imT5+uWpaRNtagQQPdz05PyggtWF8vtdQNGTJEtApLZa9SpQp3IHQynUyrVq3E/sns8qtcubt3756Y3PnmzZuqQT5SjAbXAA99N3muCVJ/sLS0NM17aOR9lgfrKE1q1Cbk1atXF5eejfhsbt68GZUqVUJsbKzbe6JkLZSemzdvXpQvX9707id65JOixzAUsEpdqVKlkJCQgPv372Pnzp2KyQhjYmKQlJQk/ulZe2c+GX369EG3bt1ES4paBIoZC6AaGRkZOHLkCLZv3656nLzDkHcGAH8Z6O7du+jQoYNiIlspLVu2FF8yPcqp3I9NqmjyGqmSgrVw4UK3TbV5jqL9+vXz+O7tt99WlS8mJgavvPKK6jHSl8eOfVpZu+Mtv6otRUmj/pSOYbAIOl+QkZFhed9PXtvVew5DOtBrvTtOLrMrUblyZV2JTXlIr5W3rK1231i70LskrBQ5a3WCqGWp09N+2cC+YcMGdOzYEQDcIi+lec0OHjyIP//8E4C7s7yTFmyW9gZ4mETZDqVu9+7daNSoEU6dOoVq1aqhdOnS3PPseP+l8gP/TTRYQmgml533UC1wS/pOa6XpMeqLLt3yc/DgwaruAbwVFeChXqCVuNroc2H318w9DiilrmnTptiwYQO6d++ORYsWoW/fvoiOjsagQYMUcwdFREQgMjLS7U+NrVu3Ik+ePPjpp5/cGrHdaFk1MjIyUKFCBTz//POqg53S7Fz6fZUqVTzOW7lyJRYvXozcuXMrynD8+HGPGf3OnTsNNzSmCEodXnky8+BZGxg5cuRQDOwwilwpZ/X+8MMP3LQbdqA103W5XFznbKUOglk19+zZg8cffxypqamGtq2zsuSsxwleCzMJZ+X3cN26deL/mQ+UUnl6JnhWBi6lc2vUqKF5Lq9tSMvjJXZNS0tTjYw9f/48unTpolk3oKzIGfGpM5OnS217JmZxk0bo81IJ8Rzy4+PjUa5cOfGzk0qd9N5NmTJF1zlM2WbLvEp9/t27d8VoWl6mAjuUOvmm9NI8gww9Cofa70Z2uxg6dCh3aX3t2rWqdet5xvJj1JQ6FnzHO1craMJoTr+QkBB88sknwa/UrV27FhcvXkR8fDy6du2Ktm3bIj4+Hlu2bDG0rKoGSxvQvHlzjxkLYN9yllbYufRhGslnp8faIf9NyXLw4osvolevXh7fG7VcWTHTqzmHGong1EL+0jGZXn/9ddvqkKPl+OpyubjLIG3bthWX8XjW43HjxuH06dO4dOkSmjdvrlsetWV9LXr27Cnm8zKLGUudvG1JO312b3y1n+bt27fRv39/U+dqWeKUniuLGJQff/78eUN9pJKCbkSpq1SpkmL5ZgYrK36G8nOdaBPp6eno3bu3xxK92pjxySefqEaFqm38rmeVxS5u3LjhZhzgrbrIUfudt9sF48CBA2737Pjx41xXFbUdK06fPq1rkioIgltgkpF9XaVtSCmfJePBgweG2/y3334b/EqdNzCrtBk1+6rNSJXkMDLzMNJpKTnyK80ujC6zSTt33jWoOZ3fvHlT7PSU0g3YgbcCCqT3tGfPnhAEQTEFw19//aU4uKrlemPX4nK5kDVrVt2ysX0PzaC0V6oRmNXFyvKrdMcXO5zyrXD06FHF/IVKsOupXLmyx296rsOJ5Xcz0ZtKx1h5JoIgKG6hpwZvcmRXm5BGWR85coQbpSpPAC5lzJgxXOspu5/yqEnps+D5lznR1n/88UeP8c1soITaFpKMZ555xiP1E+s39STUBh4GWugZp06fPu22y44Rpc7omBEVFaV5zKZNm9yCZEipswGtDuzFF1/kfq82K7ULPS+EIAi4f/++hwldit6OX+k4KwMHr5FqJQllkWRqTuR245SSJ93g+tChQ6qpCq5evap4r9V2fWBL0tu3b3ckEtApunfvDsDYvZ8xY4bbZ57Pja+UOiPcuXMHr7zyimrCYj33xYnnreXLZwRmMeM9E61+RRAEri8s85kzgtXodnZP9CyrGd3eTfqdWtvlTcbNps5QY+TIkR7f6VHqeJjJ1/bgwQPxeUnfD62dh2bNmmW4Lq08dVLkCcm10OPP2rBhQ9HHnKfU6eoDDEmVCfCVo7kelLbFkSIIArJnz646oxUEQTUPF/PLcUKpMxM9aDXzuRbnz5/HI4884mgdDHmkr9oSgtr2OHJlhocZJ227Ey+bwahSJ/Ujk8/k161bZ0mp85YFNy4uDmvWrFGNjjVqqXNC9goVKnC/11sX80syI1tSUhI3n+bTTz9tuCyr94Z3vlKqqerVqxsui30nVz6lz7dHjx7i/+/du6dqEbQKLyBJqT2eOHECt2/fNrwqowZPedaawJhJrmxkIujU/Wb9GVnqbMJflDqznY4gCLpmodJtaeSh28w/wAmlzkyqkLFjx7o5wNsNz+HYiQHx2LFjHoOS0+3NaPnPP/+8Q5LoR61D5XXU0uOlHf3Zs2fRpEkT08l8AeDDDz80fa4R1J7TypUrdftPOaHU2bX8KsWMos32TzWDXD6r1tulS5eibNmybveGJUWWo8cCqfSdUi4+OS+88ILpiamegEB5vWPHjuXKcu3aNZQtWxY5c+YUEz2bQXrPLly4wM0TqHZf9+zZYygvrLxMb733PKTZG3yq1OndmsTfsTPprBXMzD4BfY1A6kwNwCPJLRsY9Sp14eHhuuUzs1Sydu1aNGnSxPB5WgwcONDRQAg50r0eGVpbollV+oyebzXXnNNIl68ZahHSgPH9Fn2B2tLMa6+9phqlLkWq1NoVSGSXcrhr1y5byjGD/BqUdiLQS79+/SwvRTPUlDqpv5cS+/bts3RvzaTjmjBhAldu5kJhFT1tTmvcMRpxCgBt2rQxfI6T+FSpa9mypV1F+RSl2Za/Ik8boLXdlx7YwKhXqTOyPKq2ibq3GTVqlGLAgbeW3dQsBnb4RxlV6pxe6taDkchtKW3atOFG8HrrWVpBumG9FaRtRro85zRG77E3n4kTij4LHOAlB9dTvxQjaZ5435uZKBuFVy+v79LK/ai3P9JjXddS6gLhvddCbgjQc036drT+f5Q6HkHQzr5MeAetpLp6MGqpC3SM5s6zky+//FLxN1/cZ394tmr3Xk0JVorADYbOXS/S52fF58flcuHbb79Fx44dHVl+dcKhXw21JUYr+UgnT55s+lwG2ylIit77uXz5cs1tD7Xo2rWr5jE8eaRbFOrFTgVUq6xgeO/N6FWGlLpNmzZhwYIFyJkzp9v3giAYSibor3gz748/079/f/Tr10/RUuQPA7/TCILg86jJv/76S/d2QDz0JuD0N9Rk1pvMVYpapHCwcf78eeTJk0f35t9K7N27F/Pnz8fRo0dVJx4MM/5L3kS6baGcQoUKmS5Xz/ullfCZZx1XKjdbtmxun1u3bq1Zvxa7d+/WPIYnj9nlfa1dcvSiteQciH2fFnrGXkNKXb169ZAzZ05u4kDergWBxpgxY3wtgl+htCerWaXOX/wV9SLNQRWIHDt2zLDfjz90hHbLYCa1QaCyZs0aJCYmYvPmzZbKYTm+Jk6cqOt4K4mrAxk9ieHV0tQooZShwFfvp531fv7557aVpYavJ+VOYPvyq1rCUyejE71FMDYCJzCrnFlJbuskvGzg0kSpgcrs2bMNn+Prd+DMmTN+7Z/l7zDr+ty5cy2VY8bJ3F8JxPdYEATufubBoNR5i0CUWQvblTqCAIA6der4WgRbUZqsBOJgYBVfK3UlSpQwdZ6v5fYXWIJurQ3GtVCbwBPOI99nlOErRcXOACpv9atmonr9HUeTD69YscLsqQTh94wYMQIlS5b0tRiETrT2XswssCU7JxPRBhp2pR7xJkopV3yl1FnZd9dX2LF1YSBiWqlr3749N2eUlGA0f2YW1HacyAxkJuf6YMCM3xKRObC6FO1PBINSlxlXQOxCz44cppW61atXY+jQoejdu7dHQ0tPT8fcuXO5yVb9GVJC/4Pnz0EQ/khcXJzfR18SviOY2oavxigWOEP4Fj1R7aZ96ho3boxt27ahWbNmOHfuHBYvXowsWbJg1qxZGDt2LJKSktCrVy+zxRMEQeiiXbt2vhaB8GO2bNniaxFsw1dK3fjx431SL+FO4cKFNY+xFChRqVIl7N69G02bNkXNmjVx7do1pKWloW/fvujVqxdy5cplpXivQ5Y6giAIwl/x1Ri1fft228oKpshqb6MnYMWSUpeUlITZs2fjwoULuHPnDlwuF3bv3o0KFSpYKdYQ/fr1w2+//YZixYphzpw5hvYhJYjMQK5cuVT3FiWCj9KlS+PkyZO+FoOwGX8wPFSuXNlSdPWRI0fsEyaToSedmGmfupiYGBQvXhxz587FyJEjcfXqVbRu3Rovvvgi9uzZY7ZYQxw4cACXLl3C9u3b8dRTT2H58uVeqZcgAglS6DIfpNAFJ3q29CKCF0eVulWrVmHq1Kk4ceIEevTogRw5cmDu3Lno0aMH6tevjx9//NFs0bqJj49Ho0aNAAAvvfQSd9uQ1NRUJCcnu/0p4Q+zIIIgCILg4S2DiRpWcyAS5nFUqUtISEDnzp09NhOOjY3F5MmT0aZNG0yfPt1s8bpITExEZGQkACAqKoq7+e2oUaMQFRUl/hUtWtRRmQiCIIjgpFmzZr4WgcjE6EmyblqpU8s1061bN6xcuRIDBw40W7wu8uTJI1reEhMTkTdvXo9jYmJikJSUJP6dO3fOUZkIwh/Zt2+fr0UgiICnYcOGvhaByMQ4aqnTokmTJti6datTxQMAatasiQ0bNgAA1q9fj9q1a3scExERgcjISLc/gshsZM2a1dciEETA88gjj/haBCIT41OlDgCeeeYZJ4tHlSpVULBgQdStWxcJCQl4/fXXHa2PIAiCIAjCF+hZfrWU0sQfsDMpIgVKEMEKtW2CsM6dO3d8LQKRifG5pS7QMDrwkWWQCFY6derkaxEIwq94//33MX/+fF+LEVRQP2MMUuocZvDgwXj11Vd9LQZB2M5zzz3naxF8wj///ONrEQg/Rp7tgbBGMO3L6w307ChBSp0FKlasiEGDBvlaDIJAVFSUreVl1sGrRIkSvhaB8FMyMjIy7XvhFBTAZQw9q4Ok1FlELbULQXiLxx57TPV3o64F/tauH330Ua/U42/XTfgP5JdqP9myZfO1CAEFLb96AScGgXLlypk6z+loY8J/sWJB4CmEoaH+FUPFdo7xd2bOnOlrEUzjVLqn/PnzO1Kut9ETeUjwiYiI4H6fPXt2L0sS/JBSJ8FfZmKFCxc2dd7mzZst1fvgwQNL5wMP/QwJd5we6KtVq4ZPPvnE1jJDQqhr0EuXLl18LYItqG2haIVgCSgTBMFvxohAolixYoruIXXr1vWyNMEP9dwO8dRTT5k+t0qVKqbOy507t+k6AXusjnp8kpRmbQCCMrrM6YFgz549qFChgq1l+tsy5JkzZ3wtgiLSJSQa9D15//33fS2CLQiCgJdfftnXYgQcZ86cUVxJeOGFF7wsTWCSJ08e3ceSUifBzg65Vq1aps+tXLmy4XM+/fRT0/Ux7BjIy5cvr3mMmhUoGJc4vDHQaz07ozLYrUT9/vvvliLd1CYCvkZ6b8PCwlSPHTZsmNPi+B1OBBf4wsIjCAKef/55r9cbDCj1P4EQeLJy5Upfi4CLFy/qPpaUOosoDaZGlq/kyxM5c+Y0LAfb97ZDhw6Gz2XYodRVr15d/H+hQoUM18Pbv9csv/zyi21lWWHdunWO16HV3owu6SckJOg+Njw8XPOYLFmyaCo8auiZLDC8nSaBDViffvopHn/8cdVjK1Wq5A2R/Aq1tml2wjNixAjNY6ZPn26qbCXCwsJQpkwZW8v0BqVKldJ9rNlVIi0CWanzB4zcJ1LqJGh1yEYwotQtXrzY7bMZaxVzbO/Tp4/hc72NWlb2Zs2a2VaP2YATqzz99NNun72xdKilkKspy7xzjSj4hw8f1n2sErGxsaq/jx49WndZvvIHbN26NS2/cnDieehRrho0aGBrneXKlQvIvcON3P9nn33WERmU3gs9E0JfU7VqVV+LQEqdWerVq2f4HKXBT++g2K9fP7eG3bRpU1MDg1PRik695Eq4XC7VjrNXr17o2rWrrrK8McCmpqZ6fCdXcryxpGxl4LRqoS1durTjdRhZfvW2UsfamdY11q9fH8WLF/eGSF5Dz4Bn5dlv3bqVu/z16KOPomjRoobrjYuLMx2N629+pnoxIrdT745SH+hyufzeWpcvXz5Dxzvxjht5LqTUaaC1DGVVqZMf165dO01l5PLlyx7fmVFIpcTExAAAjh07ZqkcvRw5ckTxt6SkJI/vXn31VVy4cAFTp071CEJhfkpFihRx+95ppS4mJkbXTFOPHH/99ZclWVg7atu2raVyGCEhIRgxYgQmTJggfvfDDz94HPfTTz/pauta98DOZ+Xk4FunTh2PTpspFzlz5lSdkLhcLlSuXNlSguPGjRubPtcJ9Lg4aD0PpRWSYsWKITo6Gi1atDBVLm8gfP7559GvXz/V87yBkWj1P/74A1u2bDFdlxGFQOue6smTxkPt/fZ367ZRRddMmpYrV64YPkcJUupUqFatGp588knVY6QvgbRD16utyweBtm3balp2eC+elWhbABg5cqRi2UZhSpZaWVo+UgsXLnT73K1bN9FHT1ruyZMnMWjQICxevBhxcXF49913NeWza/eF//3vfwDUX/ro6GhdljozA3327Nnx2muvAfjvntjVQQqCgIEDB6J3794AgAoVKnCXxgsWLGhbfb4kS5YsumTYvn27Rz7ImJgYbNmyBSVLlkSVKlXwxhtvcM9lz0g++TBCgQIFTJ/LYJYveXCVmQAtntVL3k60+pTatWtz5dN6HtL3Ljo62uN3pXo/+OADt8/ffvut2+fq1atjypQpusszA5tE66FChQqGfWKluSfV5Ja3RS2LuFlLnr8rdWrRpUafu9Y94q3u2JnLkZQ6CfLBV+3hrFq1yu2Y0NBQt85e3nEw5JnxW7du7fY5NDQU9evXV5XTrs7llVdeEetUKtvMC2dHrjq9PmClSpVCSEgI2rVrh5IlS2Lq1Knib0qy252kmddOmGLbokULRaVuzJgxluq9cuUKVqxYoSiDFdi9Y+UKgiAuk0iXW/W2D/bMGjZsqFqfGrt379ZVlxZPPPGEx3fS99BoaqDQ0FDRUu5yubB06VLucU2aNAFgfhCrW7cuvvjiC8Pn5ciRw+0zm0jK74PSs7GKVtuU3w8ly5wcaT8wdOhQ3QEBclcVuWLTrFkzw9kLjPrvGu3DjR4vVf7Vzm3fvr34/5EjR3ps2zVp0iRD9SrhD4obAPTo0YP7vdwCKR2/jfatWsc77UdISp2Ef//91+3zI488onjsq6++CuC/B9ilSxe0a9dO/F2vn0DZsmU9vlOr1wkuXLgg/t9I58GTXQ8VK1YE4BlQILWKvvTSS/jxxx8Nly3tsJVmX3b7uEmjlQcMGADA/d4o1SdNy6B136tVq4aJEye6fSftPNj5LpcLly5d0im5NqzcjIwMsT4ryWSVBgk9nb6RKD41eEvd0vyI586dUz1fKutPP/2kq84JEybgww8/1Ckhn23btiFXrlyGz5Pniatfvz5++ukndOnSxc3Cz7N2mUVqffOGL1rlypWxe/du/Pnnn5b3E3W5XNz2qHQdBQoUQHx8vNt3Gzdu1KzDqExGkFqD5OdKVyqk1xkTE4M2bdq4HWtXHjl/UeqULGJqy8pqShpP+ZdmgFCie/fumseYJSCUupSUFNSoUQM5c+Z088VaunQpatWqhQYNGmh2xHqQ54LRsy8de+AZGRluswClhtC5c2fx/2b3s7S7k5S+cEYsdXKlTI0FCxaI/9cz83G5XGjevLnoiF2yZElFGZVQsvYpKVlKyvRzzz2nqz4eLpdLsb5ixYrpLmfPnj0e1l/pfZRa1Iy2K7XoV/my7o0bN/D555/rWuaWThaMMmnSJA/lSypn06ZNVc+fO3euofqk6Vb0phTaunWr7mjt7Nmz+8zR/qWXXhL/nzt3brhcLjRr1gwhISFuEyc7N1eXTmqNWur0Ir2fuXPnRr58+fDUU0+Jlj6leuXPgX2WWvCNyFShQgUP665aMvAcOXK4yeCEwiPdHUjuCiTNlSjvmypXriyuQgH8e8hcPoygdo3eDJRQegdv375t+BwAHsE6iYmJmn0TYO6ZL1++HKdPn9Y8LiCUumzZsmHNmjVo1aqV+F1aWhomTpyIuLg4xMbGaqZE0IPcwVFPJ1yyZEk0aNBAdHz93//+h8cee0zx3AoVKuD69euGZZO+mGpyVapUifvS8QZhtmQg9aOwsvyqNsDpUQB51/X777/j7NmzbhYFs4NjsWLFkJSUpOjMrpQmQeke8ORg95Ld2ypVqhg6XwtpJyI932mFgV1Dnjx5kCVLFl0dsTRPIbMOKN0LuQXqkUce8VgelCrpWoqrHVt3yQc0eZlGHKKl1+1tq4WettGpUydbU4CoTRTVjtXzPUNLWdSrLLDlsObNm6NPnz7o3bs3dyKmdB1Gjt28eTOSk5MNv6+8e6HmppOeno5ff/0VMTExWLhwoeimAbivZvDKZatQAP8eL1iwwLCP39q1axV/sxIEYhTpfZcuPav5ErJz2H1jEwjAc2tNM/7aetvC66+/rstXPyCUutDQUA+z6cmTJ1G+fHmEh4ejdu3airmyUlNTkZyc7PanBJuhSx+2FuHh4di8ebOoEHz11Vea2Z/N+D9J/WLUGkF4eLjbC8yQJpWMi4uDIAgYMWIE9uzZ4zbLVFPq5DOQqlWrus1u5UtRWo1V/jsv2CMkJMRjNmRWgcmRIwciIyMxe/ZsRXnU8l/Jl1TYvWG+icB/kXyVKlVCSkoKnn/+eV1Knd5r2r9/v6jc8JZfrcCWjnlYVUSkllYevXr1wqxZs8TPZiIb7SQkJATjxo3j1in3N+TxzjvvuH2WKqFaW7o5qaDLlWG58mV1D+FatWp5BBnIr0eeIqJbt26m6jLavygt/UdHR2PKlCn4+OOPMXnyZERGRnIjcpXq470balbCkJAQj7KWLVvGPV6tjuHDhysen56ejvr162PkyJHInTu3m7+k1H9UyxWFdx3Zs2fH+fPnVc+T89xzzykG+RhJLK6GnrRHUqVIugIjv/9Sa73L5cLhw4dFK1lISIi4ymI2WTN7nlu3bjVl5FEjIJQ6HomJiW4WF6U18VGjRiEqKkr8U8ttxCwD8mgsu5EvbenB6qAqXcNnW92EhYWhWrVqXNkYTJkcN26cm1keePhy79u3z7AsvOvPmjWr4SUzNSVEjQIFCmDHjh0e34eEhOC3337zsFgwpVdu4WPLVbNmzcKoUaM8ymMdA/MhlGNm8H7kkUdE30M7lLp69erpao/S2bsVWDuWL3GGh4fjrbfe8jhOCaVBkwUjWCU9PV3TB07tfo0fPx5LlixBRkYGfv31V7Rs2VL8bcqUKThw4ICpcs0gLW/z5s2qx44YMQJr1qxx+076XLTYtWuXhwIfHh7u9g5cvnwZiYmJOHnyJAD3SE0pWm3AqAXw7bffViynd+/ebsvPBQsW9NgBxYhSZ1ThbN26NWbMmKF4PK+O5557TlGxk1uQpOdLJ/FaSp0eH069u8/YuWLBkPqxMz9CpZWYbdu2ubVlpfxzBQoUQExMDL744gvx/jz99NMoXLgwnnzySUyaNEn07+WtCKitSjFfa3Yv8ufPz/X9tjLe+5VSd+nSJdSpU8fj78aNGx7H5smTx83qpmRqj4mJQVJSkvin5nv31FNPITk5GY0aNVKV04qjvSAIphqx9CEb3QfTSLSNXLZ58+YBAFq2bGlpmye1OhYsWIB//vnHI0pPC6MpGKT18upyuVzInTu3Rz624cOHo2bNmqhatSrWr18vfs9mnmFhYaoh8czKLFcWzS6ffvTRR3C5XKrnay097d27FwB0LWvfunXLQ2m1O4WKnLS0NNXflWQ1kyxbKSJOq241S13OnDnRtm1buFwu1K9f303eiIgID2tdyZIl8ccffwAwd0/1pjRSWjaTXpPcIi+9zsGDB3tE7PNg1/D9998jf/78iIuLE3/LkiULoqKiPAJfKlSogK1bt3LLkwexSWV2Cr3bzSktv/KW4tQSVRvd0SgkJASfffYZ9ze5kUPapqR9g1ZbK1SoEH7++WcAyuOIVau5kefYrVs3t/bJCzg4dOgQ99y6devqqmv79u3Ili0b3nvvPY/jExIS0LlzZ4wePRrt2rXjboWpttqj5M9pJ36l1BUsWBA7duzw+OM5vJcqVQoJCQm4f/8+du7cqWgNiYiIQGRkpNufGtKZiZJZ1OqDsKrUmUluqBe5bCVLloQgCNw0EFodglaAAaurXbt2irN1uyhYsKCbgzBTCKUvJZNH3hlXq1YN8fHxyJIli6bCz4PdJ7uiN1u2bImMjAxuO2J1/f3336plsJl8aGio5q4AOXLkUOy4jSogWrsvMKVDy1qudL7RnVVy5syJb775xtA5WjKYLYtZGrTu6enTpzFnzhy376TRu7yylWB9qzTyVW3gKVKkiMdSFc8xnF0D+03tuZQtWxYffPABNm7cqBiBywteUfKrZO+ZGR9pNdj5cvcWJUsdO06eD1BJFrVIU3kdapOXmjVreux7K7VCSt9lPQYKFs2ppbx17drVI9jmzTff1Cxf7blI0wM1aNAAM2fOFJVMgD8513NNapNwPX1ayZIlsXjxYl1+m4IgeLj88OqQW1fN4ldKnRpNmzbFhg0b0L17d8ydOxdhYWHo27cvoqOjMWjQIAwaNMi2uljUnhMOnGYtdWpblZjJXaWEXUvCp06dEq18SnWYWYbmlaOHf//91y3QhiG1Plrp9Fu2bImKFStyg0WUFBknLQ1a1lkmU3h4OObPn48///zTTR4t5cis7KxepcGbDchmtoACoLlkKlfYjURwy+u0269PvpNKvnz5RH8zaZLn4sWL64rMZ6g9q3z58iEpKclj8OUlSFUq6+eff8bAgQO50eNyP0QeISEhmDhxoqq/X86cOfH999+7/S6NqJcyZMgQ7N6928OHy0yb5VnP5NZOJUsd79rVJjVq8snvnzRqedKkSW6W0Pj4eI++LiIiQny3WD1Vq1bFkCFDFOtksOswc//0WHXVyn399ddVgyB5yq10JUspf6D83XU6eIm9X/IVDum1Z8mSBdu3b3dTWs0QMErd2rVrcfHiRcTHx4t7f7Zt2xbx8fHYsmWL5iDgLzz77LOmXg7eFk3Aw+WN9957T/Xcjh076q7HLqWuRIkSbrM2qZJhl1KnxLx58zxmqkrUq1fPQy4zFChQAIcOHeLmQWI+cPLZoVZHorS0oobee/rss88iJiYGgwYNQq5cufDUU0+5naM3rYccPdtGAeAuW0jRUph4vw8ZMsRt5i4NvAAeboF3/Phxt++0ksby8lDpWX7VgneuXDmIiIjAzJkz8eDBA03HdCttNzIy0uN86fuqp28dMWIErl69aqtc8kg/uaKiNNENDQ1FjRo1dNWxaNEi1d+lPpryCYA0nZUcqVKnFh2rdycBeV8hXdno27cvnn/+eYwZM4Y7cWVIrUrHjh3D5s2bddVvpJ+WKlmCIFj2cc2SJYsYvMPL4OByucR+ld0Tdt8bNWqEo0ePepxTvnx5TJ482e2eWklIHx0djaZNm3LdxKRUqlRJDL5SCraqU6eOh+V7+fLlhuRxZhf4AMcpC8oXX3yBp556Cnfu3DF8rtJSg5ZicO/ePUO+cE5du9p2a3bXKc0FqMb58+eRP39+0aLoVERl79690bBhQ+zfv9/te619FAcNGmQ4VQ8bQHj3NFu2bLh79y6Ah50l2xqOIT2nZ8+eqvWwZTv5cos0JxoPoztQKKHHgfutt97Chx9+KFrAzCTL3rVrlyjL0KFDDcmohsvlws2bNxEeHi7mLZPfGxaxyFviiY6ORtasWREdHe3m56lUlxmGDx+OwYMHuyl1ei2EckuEUUvIli1bbI8S5h2vt2/ctGkT6tSp4/Zdhw4dsGDBAsXlV6YYSy1H8mO1clX26dNHl3yAduBYv379RB80rXehZMmSaN68OQBjSt2aNWvwyy+/cFNvsGu/ePGi6qSuePHiOHPmjGhVDw0N1b3jjDSPG1t+P3DggJtizXLdLlmyBMBDS6cVo5CSH6icgwcPiv9X66flGE32TkodB6cUGzaLUiqfF2G4ZcsW1QzVWo3dyaAKqTVHybdg5syZuHDhgts1s8GxevXqqlGASthlKpcvo+h97nXr1jWU2T8kJATly5dHuXLl8ODBAzECS0upM3Kd7Dkz526ng3FiYmJQpkwZVKpUyVQdeiMJ//77b66lY/DgwR7brBmJQixWrBjOnj2rS2aGvOO3OgmQJ6yVyn/58mVVv5+CBQvi7t27upJAm+3PBg0ahJIlS6Jt27bo1KkTZsyYgbZt2xoqQ15348aNdZ0ntaDrLZtHgwYN8Ouvv+o+XgmeX7eawhoSEoKaNWti0qRJ6NGjh5s/r/RctTZ05swZUemzo8/r1q2b7vQxUp9cI5bpyMhIj10p5Mj9p5XcUowG5hUrVgzFihXzCKoxs6ex0+hJi2SWgFl+9SbyG33s2DExWtAKTPHhzXxu377NNbPWq1dPNTDCbl+A/PnzY/HixZrHvfzyy27h4UqWnW7dunn4bTBT99SpU8W0BmawW/nWG327bds2U34PWbJkEX0rqlWrpukYa8TpP1++fChQoAD69u0LgH9vrKaIkBIeHu6WTkAvUqWOXd9XX32lKEvJkiXdAkxKlCgB4OEsXI8/kBJsmdhMG7Jj+VXKU089hbFjx7o9nwIFCuga1JgrCi8Ihy1Bmo3Wd7lc6NChg5hs+t133zWc/d+JKGmmXLOya9asqXjs5s2bTecSA7R9AZWOYdHpffv2Rfbs2dG7d2+3Y422IV9us2XFp84MRt1yzMrFVr/Y5J6l+rKDEydOqP7O3klS6ryEvJGULVtWM0JQD8z6wWuE2bNnNxy55xTt2rXDkSNHuFY0NlCsWrVKlFcQBEyePFl3+ez6w8PDTUWEtmnTBk8++SRefPFFw+fyYMrJzJkzbSlPi8TERGzfvl3T5G9kAA0NDcXly5dFCwevjWlt2O5kVLUcl8slRqxLU4qw9qXUUR8+fFj03Ro6dKjme+nkQGRX2X/++acY0WyUGjVqQBAEblT/smXLIAiCZnoYJ5BbInLlyoXXX38d48ePt1Tu7t278fvvvwMwPvjbvR2VWr3y3+TPh/2uFtjjL/ulat1ntpTaoUMH1XL0tm82ruh9rnKf8YIFC2LAgAGaftUNGjTArl27xBU0oyll1ChdurTq70aWX41CSh0HJ7Tn3Llzi8uVdj5Ip1788uXLc83Wa9aswfr1632qgBYqVAgJCQmqEcFGmDt3Lq5cueLmNHzz5k1byuYRFRWFrFmzIjQ0lLt8uX//fqxbt85SHbw2vGzZMpw+fdojypIhXVJmFjG74W0fJZV15MiROH36tGL7ypkzp+IevTxYHUp7Jlp5F+3uJ+x+l5l8eoMG7IRnkVq+fLmhaGMeNWrUcIsEltahJYv0eX3++eeW5JDWq+e58aIeBUHAG2+84XacPMKX8eSTT+paajdDfHw8Fi5cqPi7llUxV65cEARBc5ItVerUdpgxOrZMnjzZLaegy+XCmDFjdG1lVqtWLccC9tTQckOxAil1HJy40V9//bX4fzsGA7bljVKHopWPzyyPPPKIqVxtUrz58ughPDzcIwpM7u/kTapUqaLb90gJXiRr1qxZUbx4ccW2IT3H6WekVH5oaKiu/Q0ZehUheZlWOlWnBgE7lbqZM2eiSJEiAP5zKzAb0WwGprz5k6VU2u/KA3zMoLX8agbpkru03JCQEIwdOxYAuDlDrVCzZk1VK5td7V3qQ3z48GFx4pwjRw63+lkqGiPLr3Ykxmd9vjcMFmyi5cQ4TUqdCrx0BmYQBMHNedSOl0Rrlnjq1Ckx315m5urVq7hy5Yqpczds2ID+/fvbLJEyBw4cUN342gjStqVXQbTSHt9//32MGDFC8zipMvXRRx+Zrk8vegMyzGC3pc5O66jcIb5gwYLcreycYtq0aW7Rfk6gtx+1Q4GXwiJHO3XqZLg8O9qd3FLpNHb51EktddmzZxeVKJfLhYULF4rRrlr74DrFiBEjMHfuXNuVZh59+/bFhQsXVIOhzOIfTlx+BnvxnFq2MOs8fOLECdHvSSt6hhet5S9401fEyFKdnIYNG2r6oVlFmgy3cuXKtkVqedPqBkB3XkDps2/Xrp2pYAsjxMbGIiYmRlUOs9it1FldmlSDt82Wk2TNmtVwZLRR7EhpokW7du3w5Zdfuvlb5c6dG4IgqO4AIq/LDn8+XywTSuuz2t43b97ssa+wFHYfmaVOK6WN3WTPnp27l6sTuFwuzVydZiGlTgWnXh6z5UqdL510tHQaf3EA9geWLl2qmWfMDGaUOr37h2px4sQJnDp1CsDD3Vmkyy7MD7J8+fK21KXVlt59911VXyR/Wn4lzKFl7eA9JxYxq9UO69SpY2ojevlvH374Ie7cuaO6FRigr2+0O+BDC7vae40aNVQNJdJr379/v1csZsEIKXUcnFY67BwMjJSVkJCgGWrtDcymWAhGChYs6Mjs0Ewbq1+/PiZOnOiRZNUopUuXFicg8tloyZIlcezYMdVNr82itbOKFbQGY8L7hIaGYtGiRZruBcuXL3fbQxR4uLdwWlqaJf8ppXxqP/zwg0eex1y5cnnkVdRCPg6xz068O2rYncJHD1bS0GR2SKnjwKJm7PKpU8KKcmfGT+TJJ59U3dnBW5ClzhhmHNzNtq0PPvjA1HlGMLOzgxLStqS064raeXruU1JSki2O9cFEgQIFTPuq2kn79u01j3niiScwcOBAj++tOsSztiOPwm/ZsqXpMtXcPXLmzIlNmzbhueeeM12+Gcgy7Rvmz59vaomWlDoOxYoVQ2Jiosfm396WQS3jfSAvv5KlTj///POPZaUuENuIXj788EPd28KZxalIciW0clz5A7/99pu43VJmJTQ0FPPmzRP36mzRooXodmCWHDlyoFOnTliwYAH3d19YjL2dfJh4iJlAHICUOkV8qdABDyMh1XKldevWDQcOHPDY/DcQIKVOP2YTYnpzqcSXdOrUyZRS52RGdyscPHhQV34tNawqFnooUaKEY7kMAwlp21u5cqUtZU6aNAnlypXzm/vrreVXWsGxB1LqHCR37tyq5lO1mU/evHlVI1jz5Mmjazsvf0Rrz1PCOpnFUgeYGwzYLgtW8ls5MQjZETHqL8oAYY58+fJxl4t9hdLya5YsWSz730oJRqXOF8EepNQZYMKECYZ80q5fv+6gNIGL1mbxhHWCXZGzCltSLVeunOFz6d4SmRG5pU5r72onady4sW3bRDpFUlKST3ZeCgilbt++fejbty9CQkLw6KOPYtGiRQgLC8PSpUsxefJkZMuWDfPmzdPcS9Mqavv08fC3pR1/gWW6J5wjM1nqzFC2bFns37/ftryABBHsON2PGLHUWd1G0Rt42xeXERBaR+HChbF+/XrExcWhVKlSWLVqFdLS0jBx4kTExcUhNjYWsbGxvhaT0ICUXO9Bipw2VapUMXWfWI4zb267RRC+xuk+xaz/MOFOQIyyBQsWFHdSCAsLQ2hoKE6ePIny5csjPDwctWvXxuHDh30sJaEFKXXegyx1zvHBBx/g/Pnzfr1rC0HYjdP9yObNm7FlyxZH68gMBNQoe/bsWWzatAnNmjVDYmKim3lTyfk+NTUVycnJbn+EbyDlgggGXC6X5QhVggg0nJ6UP/roo6hXr56jdWQG/Mqn7tKlS2jVqpXH96tXr0ZoaCg6deqEOXPmICwsDHny5HFT0JS2Thk1ahSGDRvmmMyEfshS5z2yZMmCfPny4fr166RMEwRhGbZaRvg3fqXUFSxYEDt27PD4Pj09HS1atMDgwYPFLVJKlSqFhIQE3L9/H3v27EHFihW5ZcbExLgFOCQnJzseUKGXzDbYzps3D7Nnz/a1GJkCl8uF3377DaVKlfK1KARBBDhfffUVmjRp4msxCB24hABIDrNkyRL07NkTFSpUAPBwk+42bdrgu+++w5QpU5A1a1bMnz9fl7KWnJyMqKgoJCUl+Sw6BXg46Hbp0gVz5871mQxEcJORkYFevXohJiaGIo4zAeHh4UhLSwvKfF8EQegjIJQ6O/EXpe7SpUvImzcvwsPDfSYDQRDBQ9asWZGamkpKHUFkYsjJyUcULFiQFDqCIGyjRo0avhaBIAgf41c+dQRBEIQ51qxZg/Pnz/taDIIgfAhZ6giCIIKAXLlyGdrGkCCI4IOUOoIgCIIgiCCAlDqCIAiCIIgggJQ6giAIgiCIIICUOoIgCIIgiCCAlDqCIAiCIIggINMlHxYEASkpKciVK1em26aLIAiCIIjgJdMpdQRBEARBEMEILb8SBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAaTUEQRBEARBBAGZTqkTBAHJycmgLW8JgiAIgggmMp1Sl5KSgqioKKSkpPhaFIIgCIIgCNvIdEodQRAEQRBEMEJKHUEQBEEQRBBASh1BEARBEEQQQEodQRAEQRBEEEBKHZFpEAQBf/31l6/FIAiCIAhHIKWOyDQsXLgQpUuXRkJCgq9FIQiCIAjbIaWOyDQwZe7y5cs+loQgCIIg7IeUOkKT27dvIyoqCrNmzYLL5cKxY8d8LZIpKOE0QRAEEcyQUkdocvr0aSQnJ6Nbt24AgN9//93HElnD5XL5WgSCIAiCsB1S6gjCC8ycORNFixb1tRgEQRBEEBMwSt2+fftQt25dREdH44033kBaWhqWLl2KWrVqoUGDBjh37pyvRcw0BOoypi/l/uyzz3D+/Hmf1c+YMmUKhgwZ4msxCIIgAoakpCRs2bLF12LoImCUusKFC2P9+vWIi4tDqVKlsGrVKkycOBFxcXGIjY1FbGysr0UMWuTKkJZydOvWLSxatMhJkSzhi+XXkBD/eNX69u2L4cOHc3+j/ZAJgiA8ad++PRo0aOBrMXThHyONDgoWLIjs2bMDAMLCwnDixAmUL18e4eHhqF27Ng4fPsw9LzU1FcnJyW5/hLP069cPHTt2xMWLF71W59GjR3H37l2v1RdsXL58GZGRkVi4cKHhc8+ePYv79+87IBVBEITv+eeff3wtgm4CRqljnD17Fps2bUKdOnUQGRkpfp+ens49ftSoUYiKihL/yK/JOlqWups3bwJQfiZO8NRTT6F79+5eqy/YYGletm/fbvjc4sWL47333rNbpEzBt99+SxZSgvBzAsnlKKCUuuTkZHTq1Alz5sxBgQIF3KxuWbJk4Z4TExODpKQk8Y987wKftLQ07vcHDhwwVZ4gCFiyZAkePHhgRayAhnVaZpeJ4+Pj7RQnU3Du3Dl0794d/fr187UoBEEocPnyZRw/fpz7myAImDBhAu7cueNlqZQJGKUuPT0dHTp0wODBg1GmTBmUKlUKCQkJuH//Pnbu3ImKFStyz4uIiEBkZKTbH2ENvbMWJ2Y3x44dQ3h4OLZt22ZbmTt27ED79u0xbdo028oMNDIyMgAY9zdkzzg0NNSyDPfu3QuoGbFVmCWbLHW+Z+fOnViwYIGvxSD8kJkzZyr+tmvXLvTr1w9jx471okTqBIxSt2zZMuzatQuxsbGoV68efvjhB/Tt2xfR0dEYNGgQBg0a5GsRCS/AdoX47bffPH4zGwBx+/ZtAA8jnKySlpbG9S/zd2WFyWf0HjLrppKl3AjZsmXLlJG5/t42Ap0//vgDa9asUT2mTp066Ny5s5ckIoIF1v+lpqb6WJL/CBilrl27drh+/Tq2bt2KrVu3ok2bNmjbti3i4+OxZcsW8pXzIlqDkL8m91VSXMwqNDyefPJJ5MqVy3I53sbsPWBL4XZY6gBg5cqVtpSjl4yMDBQtWhSbN2/2ar2A/74nwUalSpXwyiuv6DrW5XJZcsPYv38/mjVrRoo64TMCRqkj/Adfdli8gdCqPHZez99//x0QkaByHxF/Ueq8zb1793D+/HmMHDnSlvL+/fdfVKhQAdeuXdM8lt1rUgD8i3v37pk+96OPPsLPP/8cEH0AoQ873s+MjAyv+WyTUucHpKWliRGjgYBaI09NTXU0tQivbrP+YPIytc63Y3nWCdLT0w13PM8884zbZ3YPjQZKMKUuLCzM0Hn+gp1WWgBYvnw5jhw5gvXr12se689KXUZGBlauXOkh2/79+30kkfdg7wJByFGarGm9ww0bNvRaH0lKncMkJCSgfPnyqorO22+/jbx583pRKud44oknsHr1agDeG6z0dsJaA7jawH758mXkzp0b8+fPNy6gBuPHj1cM9NFDaGgohg4daugcebTW4sWLAQBHjhzhHn/r1i3u94mJiQDs8akDvK/gmFVmlfCnKDgrzJ8/H6+99ho2bNggfrdmzRpUrVoVGzdutKWOW7duOR4ksmnTJsPn+KOSbReCIGDp0qVeTTflDxw7dgzPPvusJSssAHzyySemzvv1118t1WsEUuocZsqUKUhISFAMiQYgKkGBglqnd+HCBUfr5ileVmfWSsreiRMnsGfPHgDAlStXADyMlDXKzp07cenSJcXf+/fvr5g8Wy/fffedpfNZ++TJ+fvvvyNXrlzYvXu32/cPHjxA6dKlAQTu8qvdljoznb4/KhHXr18H4G6dPnv2LADYllT80UcfdTwbAXt/jRDMlrpff/0Vbdu2xYwZMxyt59q1a7Yp/3YwYcIE7N27F3///bfhc6Xvp1rbOHPmjJjv05eQUucwegYLbzpMT5gwIaBTdzC/hD///FP8zurArHR+2bJlUb16dbffzAzAn3/+uSm5vInadTGFU654Smf7vlDqMjIyLFsc7FbqjODPy69qstl1r/zVqmmHUufNZ8pypelxD2EW9+vXrztqrWvevDkaNWrkWPn+gvRdKFGiBAoWLOhDaR5CSp0O7HR6rVSpEj7++GO377w5oPTr1w+9e/fWdey1a9fQt29fj5ffl4MQs5jNmzdP/E6vdVAr+lUNtWeUL18+tG3bVvF36dLekCFDgjLq0RdKXenSpVGgQAFLZbC2rbX8unv3bkMWqnXr1mkeY0Sp++mnn/Dkk09yf+vfvz8OHjyoWzY9yNvo8ePHsWrVKlvrUOLUqVO2+e6Zedf0PI8PP/wQhQsXNnWuGU6ePKkYzPPXX3+hX79+HuOKGp999hnKlCkD4KF1+aeffrJFToa/Jfm367kY3QfdF5BSp8GyZcsQERFhyKyanp6O+fPncx/4H3/84ZGoUN7xfP7555p5lbzBkCFDMGXKFNMDhhMNntdJy53+7SxbDu+abty4gaVLlyqeI1UYRowYYU44E3I5jfR+2eVTZ4R//vkHN27csFSG3iCbWrVqoXLlym7f3bt3DyNGjOBaPBYuXKj53hhROD755BMcO3aM+9v48ePRunVr3WUZgbWrp59+WlxOc3pSUrJkSVStWtXROhi3bt1ys/oD6pa6X375BcuWLcOkSZNUlXw738eUlBSUKVMGn376Kfd3Ji/PX0wQBLd0PdJnx/YzHTNmDJo3b25Yrp9++kn0qZXy4MEDnD9/XvXcNm3aoFu3bobrJLQhpU4D9kK88847ip2qnLlz56JLly5Yu3atruPlneRnn32mO68S4/fff8fp06cNnWMWpQ5r1KhRXqlfDtsujidXenq65mbMepbg5FaVGTNm4I8//tAln7Rcp/x17BpEzA7YdlnqlK7jxo0biI2NtV15NfI8rl696vb566+/xqBBgxQnYLwBj4eea9I6xuh9OXXqlGrEvby9m0nHkJaWpiu1C/DQV9Xlcol+e96iVatWePrpp3Uf37RpU7Rp00bzODvbaceOHVV/V3tno6Oj8eKLL5ra01kNQRDQvHlzvPnmmx6/DRw4UPP8ZcuWYdasWZbl6NWrl64ctWb7tfPnz7slRCdLXRDx448/4vXXX9d1LPNt8KbPSI0aNfD44497pS6lhjx79mxdx9nJokWLxP/zIjeHDx+OJ554QjF6EzDnV/XOO++gWrVquo71xnLrX3/9ZfrcPXv2YO/evQAe+oUwUlNTMWDAAF0papxefv30008xePBgHD16VNfxGRkZ3F1H5DArm8vlwoYNGxT3FebBFB0l9wwtRciXPnVa1jA72myPHj2QP39+XceyKFW2Ywxj+fLl+OWXXyzLosS+fft0H6snUteJZyq/J0rw6mTKnFWLtlJdvMAqb+4DPX36dE2rIGD+ecijVuXldO3a1VS5wENjhJH2pxdS6jSw0rn5k+9UQkKCOHBL6dixo5t/mh70viBq1y8IgqEBVAmtWSy7Zuk2LmZ86njotV5I6/PHmV316tXFaMf69euL369YsQLjxo1zU9bXrVuH4cOHe5ThtFLHlC9mWdOaME2fPh01a9bUtK6z8k6fPo3GjRsbCmphS86sDPngYqcjupl2s2PHDmzZskXx91OnTjlSL0OPXyGDvSNyy2nr1q3RtGlT04OnVh9sJJm53FKrhp3vuZ2TAyNj0uzZsxWPV6vLH/s4xtNPP20pCbD02q5cuYIzZ86YLqtVq1a6DQNGIKXOAaQPXs8LZ/UlWL58ueYx5cuXx7PPPuvx/aJFizQ7TDuUODmzZ89GeHi4qgWN8eDBA+TNm9dUzik9mFl+NYI/KfdaSGWVWrEYTZo08cn+rMwvkQ36X3/9terxbMldKyJQriQaCYZgMrH79Oqrr7r9rnfwYG3q1q1btiqCdevWRYMGDUyda4fFyUi759UnXb42OvG0Au+ar127hho1apg6FwDWr19vOuDOjm0ZzfRBX375paZMgdK3SeU0sk+r/JlJn4V02d7MeyL35bQLUuo0WLBggfh/vQ24X79+4vFSZ2meVp+WlmbZNO6Uk7QSSg3YiL8B8zdk/nBqpKSk4ObNmxg/frzltCVq6FHq9B6vh4YNG2LixImWytDDoUOHdB/LsyrquU49z9EKUgXqt99+U31nTp8+jSlTpgDQlt3KbiTMUtehQwcAngmatZQ6eZvMlSsX3nnnHVy4cMHjfnrb+mH0XeBhZGcZ9nyl1/nCCy8oHq+0JPntt9+6yadlJdd7LStXrlT1D2zQoIFbXjZpXWfPnsVLL72EoUOH4sGDB/j6668N+XLqffZqVqPbt2/rrk8OzzfcSntUOveXX37xis+xlX5bKp8Ry62WTHZCSp0GVvziLl265JawVeqvxPBVcIEVrLx4jRs3RpkyZRRfrO3bt3sk0rUr67+WMmrmZZfuBKF0X5RSQWzatAkfffSR4TqN8Ouvv6Jy5cqGoqlTU1MxatQoUSnxhrVZev68efPgcrnc7idToNLT01GzZk3VKGKeb+mnn36KyZMnY82aNW51yVOa6LmOtm3bomvXrh7tUd5+9Cp10jq///57FClSxLCF7cqVK9i/fz/u3r0Ll8uFZcuWGTq/Y8eOWLhwoaFztNAbKALwl1+V0pr89NNPKF++PDdiU60/1dtGzbTlLVu2oFevXtwyWFTquXPnsGDBArz77rv44YcfDNehxbZt2xR/a9++PQBzfdzLL7/s8Z2VPpN3f3fv3o2mTZtqWuDNYtZ3TS7r4sWLucE8Vu6Dy+XCihUrTMnHg5Q6Axh9cFpLiy1btvTJUhbwcDBTyn7/119/qTrn3rt3D4Ig4OOPP3Zz0JdbT3gv74YNG3Dy5EnFsp9//nm0a9fO7TupUmfFh0EJsx2Uy+VyS8hrV2oVO2E5/Izct2+//RYDBw7EypUrFY+ZNm2a24SHl7NLiVWrVqkGdnz77bcA4BaYpPZs9ARPjBw5Eh988AFeeeUV/PTTT4iPj8e+fftMWeqWLl2KefPmuSl1UVFRHrvGGF1+lf5faRBSUjhSUlJQtWpVcbl5yZIluupm/pGLFi1Cp06dPH7nTVSU/NCWL1+O9PR0fPHFF4YHUSPLvcwX0GhuNb2WOjsSLvPKWLhwoTgmGNmuyo7lV7uxotTxFBgWhMICLwRBcHOFePDgAZYvX65ocbx37x5CQkIUM0Co7eikBu/enz171iMPn9VJbatWrZA7d25LZTBIqXMQaafPM2HLLTjefDnj4+MxZswY7m+lS5dG+fLlFc/NyMhAQkICxo4dK24TBTgX7i1V6pRk1iI5OVnTh8Fonjq5/5ORZU5p7ignkVpA9CYEZX4kLJCFd1969+7tFlSgN8oReDiZqVKlCvc3QRBEqxzPwslrU2rBELz7fOPGDTz33HOoVq2ah1Jn5B2U5ubjLT+bSUOiFGGpN7UIO04atae2VK2UVoIpyl999ZUuP8MdO3agdevW6Nq1K3r27KnoAD5gwABuvjW5z6QaWgFYVpGWcfz4cUPLyLwyzLo08Mpi9O7dW3Qx8AVymY4fP47nnntOl7/aG2+84fGd/PmPHDkShQsXFq29Y8aMQevWrcWEyXI++OADCIKAl156ifu79BkqtZEHDx54bIXIo27duihWrJjmccBDA4neCY6eHUH0QEqdAfS8iNLGI1XqBg0a5IhM3kB+3dOmTdOV28mO/FuAteVXJnvz5s2xfv16t+/kMnhTqe7SpYvHd9euXTPsKM8bcK5fvy5ek3RZke3GoQZvAFK672r72fLIyMgQlZJbt24hKSlJjBhldR09epSbyFjNkqPWhng5s6QTLHkwiBGlQKs96u2kjdQZFRWl6zipkqm2xK/U5pm/0OnTpzFs2DDN+pgFSmkJ99y5c7h79y7GjRvH3RlBKfpVTkpKiu4dcaTlAuaWX8uVK4fs2bOrHs/ShkjPu3btGtd1x66+Ztq0aejbty+3rB9//BEul0tXChazyK9jzJgxiI+PN51aSa7UsfGSWTSZdVZpgsHaqx7fQaV2MHr0aNSqVcvybhjSlajSpUs7EuGqBil1NiP1I/GXyCArIdw8jG7LxcPIvWEvupVZuJqVTk9Ha7fix0sBkj9/fvTv3193GcePH/cYcFJSUvDII49g0qRJANwHS7PBIkr53qQ5AtXuS4UKFTBhwgQ0aNAAYWFh4vfVqlXjJg6VKkurV692K5+nxBptF99//734f9a22PKMllIhVYy1dtH43//+p/o7z6dO69i7d+8a3q7r/v37SE9P5y5XKj03puxmyZLFlujKYsWKcS008vO17v/8+fM1ZWHIrSR6l1WNLI2mpqbi+eef9yi/dOnSqF27tsfxWhMlHtJy5bk4eSl4WHAfL7DDaFJ7uQzR0dFwuVxo0aIF9zgzLizjxo1zU+o2bNgg/s76Sa12wZvEKp2j9L6xiHmpYjh58mQdVwG3ZV9pWig5TD+4ffu2oUmxIAi6/fsDRqlLSUlBjRo1kDNnTrFhL126FLVq1UKDBg0c2WtOPis4fPgwpk6dirS0NNGvTI5S5JUdXL16VVcKEDnyBIpG0bvkYyT/m9buF8uXL4fL5cJrr70mPgenooWMDKp6n6nW3pVKCoG0Q9OCl3eQ5ZuLi4sD4D4Dlndy3bt39/BfNCuL0n3ZsGEDjhw5gn79+okyMaSzeqXlqldffVW8JoBv/bLSLuT3ZM6cORAEQbHDffTRR8X/q+3IoAcjSp2Uli1bapYpxeVy4euvv0bz5s2xa9cu1bLPnDmDnDlz4rHHHgPAj0A1GwmuFqyjx1J6+fJlQ/eqdOnSbtv38c7lTRKmT5+uu45s2bIpls/bJu6DDz4AYH75defOnW6/ffbZZx5lMZ81O/tL1hewYAz22eVyQRAEt/solfHff//VLPvjjz8WXSgyMjLQuHFj8Te91yB3o3jkkUcU+9jdu3er+gtL69Sb7FwamKRnUmDEVQd42CZz5Mihq+yAUeqyZcuGNWvWoFWrVgAe+vtMnDgRcXFxiI2NRWxsrO11vvfeex7f9enTB+Hh4ciWLZvmNidmlgulPgmJiYluA0eBAgW4ueZ4pKSkiA3A7MvN8hRpReiyF0qucO7btw/PPvssVylkComSbCxNy8qVK/Huu+8CsM/iaCb5MDtm9uzZmDFjhubxWrn/1Dr1c+fOISkpCVu2bPFYjv3jjz/Qvn17CILgUcb69evFpSmeP5xcgfn22289Io3NonQP9+zZo3nuY489hqlTpyr+Lk1SbXT5VQvecvfUqVPx2GOPib5oSsvWH374oel6pdjlpgAoWzTY8pRcKZaX+/PPP+P27dvipEu+3y3w8J0sXLgwihYtKkYCqiU51gNrp2qT89dee417HzIyMlCvXj1dbU0QBLflMd4kgZdPzkwSXjXMKnW8hO0lS5Y0JYORetX8CocNGyb2I/Lr0hNAJQiCaNU+ceKE229GV2lY/Wp+pI0aNcJrr72meC7w8JqYrmEUtWe7detWAMYzSDDXIT3LywGj1IWGhro5Y588eRLly5dHeHg4ateu7RaFKCU1NRXJycluf3rRakjsRkuxaqmrWbOm+P98+fIhb968br8fO3YMf//9t2Y5kZGRqFSpkuLvRmTTqo8NjPLOcOjQodi7d6+bpcUMbAlFul1Qrly5LJfJtrNhz1nN8Vj6Er7zzjua5Wu9tEqdpCAIKFasGHLnzo0GDRpg2rRpbr/37NkTS5YswaRJkzwsRSNGjBCX2HgzQbPLr3qwolhdunRJMRKbla1lyVmwYAE6duxoKLEowH9OzJrFfJKk1jk7ccLyrDTpk94/ab3y62eJzNkEiifj8uXLcfHiRZw/fx4rVqzAnTt3TAcwyWE5PnkoWepu376NuLg4vP3226plC4KA7777DmXKlOFuKcjgTcatKN525ri0Mzm1XUitXnJLIrsnS5cu1dVv/vjjj26fWfuUttNLly7h448/5kaN27E6JggChg4daijNyBNPPCH+X02Gli1bYtmyZYbffbYMrcewETBKnZzExERERkaKn5Ua+6hRoxAVFSX+6dn8l6HVQHbt2oVOnTph48aNiImJwfjx49GzZ0/d5/OQmuyVFAPe7Jlx7tw50bIgn/U4hVHfBaPH8OjcubOuDO9KVKtWDc8995zbd2ppP4x2plovn5LDr9xyID+O3euPPvpIdJRmSDftZucxPww1HxMpffr0MZTTjmFkQDPKhg0bNAMlOnfujEWLFiFr1qyGynYq2SmPqKgo1KpVy+N7Ld/TIUOG6L6PSsvGSr5G8rqZxU1qEdKq2w5FQ8/1paenq96rw4cPq/4uCAJGjx4NQN39w2w+TF7dSsuPSvnYxo4dK75/o0ePRv369R1zO7ED+XPr3r0797i2bdvqWuGQw3s/e/XqhbFjx7pZde14j630VUaMOZ9//rlppU7PuxawSl2ePHncrG5K6+cxMTFISkoS/+z0vbt48SIWLlyIRo0aYfTo0ejfv7/bll1ajtRmUfOr27hxo+i3wXC6U1BqaE4qdZcuXcLvv//u8X1iYiLq1KmDsWPHIjIykvuCSTuXtLQ0rgxy3wWjnYbZgU4ehCKXXzoT1lIcb968iTfffFP8rPdem/HBlJc9b948FCpUyPT5Uu7cueNY0JHac7X7vUlOTnZLmcDK/+WXX7gJTRlqiZb14HK53JRipZ0PpLD2q3UPeG4ARrl27Rp27NiheZyRiQOvbzh58iT++OMP8bOSTySv3zYTOQs8TPXCk0/pHfv444/FYIaYmBhs3bqVa5HSg9R6ZJXbt2/7RLnktUO2IhQeHi5+x1YorCaol9dlBqOpsaTcunUL169fh8vlcnNpYHpLUFvqSpUqhYSEBNy/fx87d+50y+wvJSIiApGRkW5/3sKOBgY87PTkZm01zCgU9+/fh8vlMhxZBzz0M+Mpy3YpdTzlQOnFadWqFXbu3ImPP/4YKSkp3PLnzp0r/r9du3bcgV0aNff3338bVursjDhevnw5du/ebXhwl/uVOGmVkt/ngQMH6nKSVjpfDmvTvGuw26fO6aj1cuXKAXCXu3jx4o7Wya7p/v37aNKkifj9hQsXuGlIpMuvUguwXUjfwbJly+rud+TP+qWXXuI+L54VXxqos2TJEg/XFsbkyZM9loF79OhhWDbg4Rig1J54/nFa5XpTsZLW1atXL93Rw3aSkZGBLVu2uLlXsbbJyyBgRJ533nkHBw8eFK22Vq7l8uXLbjKcPHnSbfIkRRAExQlF//79xShc6a4jbJKiZ1zxvCt+TNOmTXHw4EEcP34c77zzDvr27Yvo6GhkzZrVUKi7XvwlJUnTpk11OQEDDzV6ecQXL02G/NqY/5AZE3nv3r3dOmlp3VroUTR4S5VKz0aebFZLhpUrV2r6TgwdOtRtCyA9nD59Gu+//z6++OILQ+fJcblctuztq3f5VQ01nxh2nxMSEtwSV+vd2UCNGTNmiG4JdgdKeHP5lWE2u72UCxcu6N7FIz09Xcz7Jd2lg8HLoSmNkrUjabccqQVZ797XLNJSyvr1691WLtSWVaXpdBYvXqxa14QJEzB+/HhdcjGSk5M97oXUSionPj5eTIeihpH2rZZu6sCBA7rKcLlcmDdvntt3N2/e5Mpx7NgxN4VGC7WoUx4ZGRkeW+ap+c/dunVLd3ucMWOGON5Jr81oZCrgnjT80qVLqFatmqL//q1btxQj2L/++mu89dZbivUEnVLH25Whbdu2jtXHEh6axa5ZlZ7ACMbQoUPdPt+5c0fVKZjBtgsyi9kNo1evXo3GjRsjNDSUuzeuEnqtoFrPQK+p3Mzg/+WXX6Jz586Gz3MKJ2f5rGy5Uq2n7UnP5yH1M7X7GtSe6++//+7hymAnRiL65O308OHDuHDhAqpXr655vpZvrZrFyJ/8ueRBHow+ffroPt9ofUZQsvoqlWPm3mqdw0tzxFDKN8no06cPvvrqKwDAuHHj3JRgpbqNKHQAf1lcDaOWeaMJ0aWwd6xDhw6qx2XJkkVzNUwtINPpiWRAKXXeYPPmzTh8+DAeffRRUxq7E1jxzdO7FMtSStgZos/MyGpInf3V8m/JkVoj1dCSQY9SFx8fz01vowerSp1dzruCIJgO0fcG0nantGwBeGf5lfnsvP/++9wErnbAS5uhBM9vLSYmBgcPHlS9V9Lz1bCi1CkpWkbKMIIVxcKoHEYHX6XlSTPXX6dOHdVylVDrL1hqKCkscASAW1qhBw8e6FLqjGK0P+M9A2nwVyCi5j9rB6TUyXjxxRdtK8usIiDHSuNVirKyuy47lqqd8N0xs9R169YttyWhf/75R8zZZxSrEch2uQAkJSXpXuYyw6pVqzBq1CiPiFy7UctnZwbePTG6RGQGqwFbCQkJAKC416UUrUTYLIedWbT6DLssE2fOnOFGqLPcX1o4banjKbiDBw9WdA2SHyvdjUjqQ23Ep04rqbscpRykISEhbnWFhYWZHhusWNp5bYclQOYld7aC3r7W6bQyVvv8gA2UyExYsRYoDeR6l8X04i/+h0bhyV2hQgU0b97c7TvplljexK6AC6sRlFpIM8KbQW9nr7UjglF4PmYMJ9u0HguX2oTAW/nKBgwYoPp7v379NH3ujATMaCHP22gEOyxvajx48MAjJ+fhw4d1J4zXo6BroXcpmqG0TCh3bwkLCzP9bo8bN87UeYD6M2vYsKHpcuXYPR7awerVq7Fu3TrD/RApdQGOViZ3pZdCyend7GxM7750avjCnC5fenr33XcNz3adRLr9DJG5KFu2LICHCpzc4syUOn9IRsvLvSfFSG5QJzF6r4wqMXfu3OEquEoTs/r167utDCn5vPki+vXIkSNulrA7d+6I+zAbRRqUYlRB4e2f6wQVKlTwO8PE2bNnPVba9Dx/Uup8hF0v54QJE1R/91anr6YI6b1WX0QiyjG6XO00/jBoewMr74OZiG09ONnJayXSJezHaUudGeSBRVpy+KrNFCtWTNyBx5tIl6QzC9JnLN9hQw+k1PkIuxQYrS24/KEjM5u4kwDOnz/vaxH8Hr0+VUaxS6l78sknPfbnLFeunKEtCwnrOG2pcwp/UOqaNm1qiyuIv1nDpPiLbNIE2XLIUufH2GWBkWaod7IeKxQqVMiyM7aTdO3a1dciOIK/dFKZnWPHjnHTIzkZuEJ4YvR+W0mPYSfSgdyuhPZG2bBhA6ZPn265HH+euPvLKo1aDkU9qcNIqfMR33zzjaXzr127hscff1zzOKOOxU69dEp7Anqjbn+t12nk1iHCGEZzcBH+jVKkpxLe8ucygjzNiLfQk55KD97ajzyQUdum8YUXXtA8n1Ka+AitiDEtbt686VcO/Vro8Q2Qb2bvLfxlmYXIXATrZCJYUNrKyW62bNmiuk2atF/0lVJnF1q79xDq6BkjSanzEVY7dLXM4VbIjANNZrxmwjvQEnjg4q1+oVWrVrqXhnPlykVtilCFll99hNWIvfbt29skiTt6orGCDVLqgpeIiAhfi6AILUX5N97qF4z4+vnTtoOEf0JKnYRAWs4k7IOUuuDFl89Wa6msV69eXpKEMIPa9mkE4a+QUidh8ODBvhaB8AFq0UZEYONLpS5nzpw+q5sgiMwJKXUSfBUuThCEM/hSqfOWoz1BEATDsBZz9+5dXLhwweN7q9Gc/gA5oBJEcPHgwQN6rwmCyDQYUuqWL1+OMmXKoGnTpqhYsaLbXnWdOnWyXThvQ5Y6bazs4yjdS5AIPlJSUnwtAkEQRKbGkBbz+eefY//+/Th06BBmz56Nt956S/RHCgZn8ytXrvhaBL9HugG1UapUqWKjJIS/ERkZ6WsRCIIgMjWG8tSlpaUhf/78AIBq1aph27ZteO211/DXX3/5bImjX79++O2331CsWDHMmTMH4eHhpsuKioqyUbLgxOpzzp8/v19vGUYQBEEED8FgcDKCIUtdgQIF3DabzZcvHzZu3IijR4+qbkLrFAcOHMClS5ewfft2PPXUU1i+fLml8sqWLWuTZARBEARB+JKzZ89y910OVLJnz655jCGlbsGCBShQoIDbd+Hh4ViyZAni4uKMSWcD8fHxaNSoEQDgpZdewq5duzyOSU1NRXJystufEuRQrY3VWU9mmzURBEEQvqF48eJ44oknfC2GVzGk1BUpUgQFCxbk/uaLzY8TExNFP56oqChuZu5Ro0YhKipK/LPi6E8AP/zwg6Xzr127ZpMkBEEQBEFIMR3u6Q8b8+bJk0e0vCUmJiJv3rwex8TExCApKUn8O3funLfFDCr0bChMEARBEIS96FnpMq3UtW/fHpMmTbIsgBVq1qyJDRs2AADWr1/PtRZGREQgMjLS7U8JWn7VJkuWLL4WgSAcoWvXrr4WgSAIwhKmlbrVq1dj6NCh6N27t4fylp6ejrlz5+LJJ5+0LKAaVapUQcGCBVG3bl0kJCTg9ddfd7Q+AsiRI4evRSAIR6BJHUEQgY6hlCZSGjdujG3btqFZs2Y4d+4cFi9ejCxZsmDWrFkYO3YskpKSvLJh9fjx420ry+lOPSIiAqmpqY7WQRAEQRBE8HH37l3NYyxtoVCpUiXs3r0b//zzD2rWrInHH38cQ4YMQffu3XHmzBkMGzbMSvFex2mlbuTIkY6WTxBE5iQiIsLXIhAE4QeYttQBD53mZ8+ejQsXLuDOnTtwuVzYvXs3KlSoYJd8QQXbfYMgCMJOqlatyk3pRBBE5sK0pS4mJgbFixfH3LlzMXLkSFy9ehWtW7fGiy++iD179tgpo9dw2lKXnp7uaPnegPLMmUdP4kjCdwSyT93169d9LYJthIWF+VoER6lataqvRSCCGNNK3apVqzB16lScOHECPXr0QI4cOTB37lz06NED9evXx48//minnF6hQYMGHt/ZmX9PEAR07tzZtvK8Ta1atXwtQkATGmrJMK6Ila3xiP9o1qyZr0UwzfHjx30tgm2EhFjyCvJ7aI9kwklMvz0JCQno3LmzR4qL2NhYTJ48GW3atMH06dMtC+hNSpQo4fGdnUvJgiDg448/tq08b7Nr1y5Na0blypW9I0wA4pRSp8d5ltCmWLFips776KOPbJYkcxPIFlM9eDstFE367OH+/fu+FkEXppU6tRevW7duWLlyJQYOHGi2eJ/AuyatF/Dtt982VH4wzULr16/v8R0tzyrDS45tB04PgrydWvyd999/3/A5Zu7jokWLULp0acPnEcrwnkONGjV8IIkzeHsMqFOnjlfrC1aU3AKcmqybxbHW1aRJE2zdutWp4h2B97JpdfTffvut5Tr8GXnErlRpK1u2rMfxpNQpE6gz5jx58vhaBK9gRqlr37691ywvDRs2NH2uUxMKJ+A9h9GjR/tAEmewexKm9X4G2pjjNEpbnZrF38Y8R5/2M88842TxtsN72ex8AQVB8HjBPvroI3Ts2NG2OuymW7dubp+l94M6C3tp0aKFr0XI1Bh915mSxVPqmjdvbotMUuTvohG+//57GyVxFvlz6NixIx555BEfSfMfXbt2xRdffGG5nFy5chk+p1y5coq/5c6dW/Vc2gXIHbuVMKvlvfTSSzZJ8hAalSXwOnW7FRf5C5YnTx4sWLDA1jrsRM20TEqdcf73v/8p/la9enVTZQa7D5K/8sILLwAA2rVr5/Gbt2fv+fPn91pda9asEf+v1+l/9uzZusuXt2dBEFSVGm8RGRlpy3OdOHGi4XPU3nEtmTKDUsdzBVLC7nczIyPD0vl29980Kksws/xqBJ6lzt9h8vL8Mnidhb+Zov2N7t27K/5Gypl98O6llu+b0fvPjs+aNavHb1Y7eqO0bNlS9Xc721aBAgXE/+v116pWrZrHd1OnTuUey1PqQkND0a9fP9U6KlWqxP2+ePHiumTUYv/+/ba4ImhZ1nhYGTf8Wak7deoUhgwZYrmcihUr2iCNb7BbJwgsDcNhnF5+5ZXnzy8coD5w8Roj7zjiP9Set5W2VqhQIdPnZha07q9ZpY6HE5Mbtfp8lQPzrbfeEv//zTff6D7v8ccfR69evbguOvLrZL67WlHGBw8e1F2/Ge7du4e2bdtyfxs8eLDuclwul+G2pjbwnz59WvVcf3Pkl1KiRAlbxlijipE/GVeMjJl6JgT+c2V+AK9xmU1zwIPX0QeKUsdkl8rLk71r166OytOqVSvF38aOHeto3VLMLJWWKFFC9Xlb6Wik0YHnz59XPfbvv/82XQ+PevXq2VqeU2jdX6OKsZri5m1LnVZ9dg5i0uuW9plag7M0WGP//v0eZSmV8+mnnwIwfw0lS5Y0dZ6cUqVKKcpgZEvMiIgIw0q/Gesew58UGB5KFlYjGFEMBUHAmDFjLNfJkAbAlS9fXvd5zKWgV69eGDVqlObxmzZtwokTJzSP8++n7WV4jb9379621hFoljomX1RUFACgadOm4m+8++X0rFDN4dubnZeZpNSLFy9WvT92WYW17oNdgxzDzE4Z69ats1yvWpqLJk2aeHyndl8EQTDsjK/2vLyd00rLUufU0r7ecgVBcFN8mJLCU1bkz4n1QWauIS4uDitWrDB8Hg+7rKFmdsx4/PHHTdfn724dLVq0wIULFyyVYbTv590TI9kJihQpIv6fteuiRYsa6kOY60LWrFnxySefaB5funRpXb6zpNRJ8EaghLwOefn+9gJmz54dCxYswMyZMwG4y+u0D6JRvKkg65lp79271+1zVFSUY8uvUnm8PTM3U9/jjz+O9957z1K9Ss+gVatWbpMPhjfvy5UrV8T/6+mw9eCPy69GLHXPP/+8x3f58uVTLVPP91Lklvznn3/eww8uPT0djz32mGZZctg93rVrF2bM+L/2zjy8iur84997k5uQnSAiEFksIcgSrRsSSAxFWQQCLsjaiGgReFQMiEtAhIfVpyhIbYsPhh2jpE9bBMGSJyotEGxZXCgBCYiARfixCGGREOP5/YFnnDt3zsyZuXNzl7yf5+Hh5t6ZOWfmnJnzzrsutry/moKCAkvbm2mARFG5LVq0EF63YLrK9O7dGydPnlT+9td9xAmhrkWLFtL7Hzt2TPnMo5ndbrela8oFwNjYWKntZdcHEupUiCZGu3btMGrUKL+PL2NqcKIdp/ntb3+rmE7U5xBqKWv0BKZ33303IG1px1JPc6dX49Ho4WNFqIuJiRHmHqtL4eXWW2/FbbfdZnk/O35FsohMkXV5XURCllXN/5IlS2y3pw5OCLamDtB3Zpd5Jsq0ZeT7C1wzcXHszgN+jbOysgwDnmRYsGCBpZcasyAR0bE2bdokvG6i0nJ1EXSwZMkSr4Abf1GfY3p6uuG2jDHdlz6rbikrV670+tvtdmP58uXS+0+ePBmrV6+WrsJEQp0NRBdt//79lpyA7bTBCXX/B/VD+L777vP5PZiaurrQtHK0gsPChQul9jPS1FnRtjzzzDNe56sel0BoLEVRjoWFhbbGnJvz/SEqKgoffvihz/ciDV5dzk11H2pqapTPDRo0sKSluemmmzBkyBDT7bTzkTHmVctae+7NmjWztABpj82RXZhFY+KUUGeW49GJwJUff/zR72OosTIf7T7H2rdvL2yH+4ur/cbnz5+Pf/7zn7baskJaWppjxxoxYgQmTpyo/C3zHHUyRQ6fW263Wzqx8bRp05CYmIgRI0ZItyM7B0JbgqhjZN4E1dgpAO50BJ4/TJ8+3fI+IifpYFJYWOj195NPPql8DlQftYuEqJ1HH30UwC9CkdGNmZiYKN3+tGnThG3aFeoef/xxYbCJyFxlJyCgsrISTZo08Rk3qzDGdBN3GvUpKyvL8JgiM1DXrl0t942zZs0a5XPbtm3x9NNPWzpWcXExqqurDeey+pxlnfadEHQyMzMtaZzat29v2gfRomx077z22muG7ToRuOJ08Ivss0k2F6CIu+66y+vvbt264b///a9uPzIyMiwHZeiVAzV6cRk4cKCl45uxevVqNGnSRDFRL1u2zLFjP/vssz7f8WIB2iBCbobNy8sznY/Tp093NNpeTVgIdRcuXMDdd9+NxMREr8m4Zs0aZGVloUePHl42brtYNY2tX78ewLVFygj+IOP5ltRo7elWQuP9pV27dpg1a5bwdz2hNRSFutmzZ6O6ulr5W+27o3Ywli28rq7nK7o5tTe76FrwKCtuKjUKlHj44Yel+teyZUskJSXhypUryndO+NS1b99emMRTtLD89NNPlucBN48Yva3LLCxWtD/8e7OoN5ETu95CYSQUqX9Ta3hGjhyJNm3aGPZBexy3223qxK0WhLp06QLA3N9NNG5mC5Lav8vlcinmd8YYXnzxRcN9t2/fjq+//tpwm++//173e6N5ZjVAy45AGwy/xUceecTvaHVuKuam6S5duviMoV2effZZzJw50+d7o/makJBgqy3ZKNnc3NyAlZWrra1VzK7q67ZkyRKsW7cOALBu3TrptcYKESXUxcXF4YMPPvBygq2pqVFUxTNnztSdWFaxqqnjpKenG044tUSvNVeoBYibbrrJK6om2HChVY06useu8GD3phbhcrmED5E777wTb775JjZu3IjXXnsNf/7zn03TkahV6KKbU+u3IauBFWm8vvjiC2lTFvcHUfs0qqMt7Y7LxIkTLS92gUo2bSdCkCO6h1JTU02vDa8SocWf66L+rCd8qCs02EVPi2T0AsYYE85ZLmxrNTzANXNrYmKil+Cofr6ZaUJTUlL8iuQUoXcuak2wdvzi4uIstyES6pzOj8dfAIcNG4bFixfrRlTKBHrw5xi/NnzuG2kcrQp4b7zxBtxuNyZOnOh1z9pdS42wsp/ROfK5oFcJxgy3263bj8cff9xSoIUdIsr8Gh0d7RPKW1lZiY4dOyImJgbdunXDnj17dPetrq5GVVWV1z8R/jixf/7550InXaN9+Y1w6dIl7Nu3z7ANp7Fzc6nfgOwma65rDd/TTz+tpLgYN24ccnNzhds+//zzfgkUWriwybUzLpcLp0+ftnQMrUmQm+/Wr1+vaInVGjY7KUauu+4605QfVr73F5kHmKhtkaZJJjhDpCHUa0vPx+rgwYPYu3ev16Jipt02qlIge31ra2t9tGTqPui1KzLTDxkyBGVlZboVH7S+lbIBL07MH6Nt9ebLQw89JNzXTnCPSKizm2dNdN14TeE5c+b4lZ+OP/N4O/x/rcDjb9AHALz++uvSL5ZOPv+3bNmi+73MvCouLvYJ9tMqHGR8/6w+A82qv4iIKE2dHufOnfMyCYluuLlz5yIlJUX5ZyRNW3m7sOJfobW96xEfHy8V2rx161bTbV599VXdIAZRv6ygFhiCZX5V+8zZwWjsfv/73+P555+XOo7IjLZo0SIvs+vmzZsxZ84c6x39GT5vuJaHX/fk5GRFY6iOjtOOi0zBaN5G69atDX/XUltbGxDtsszcEkWKG2lh7Pq06p3/+++/7/NdmzZt0KFDB6GmjtOvXz/Dfujta9T3O+64Q3kZ0Vu89fbVi87m29577726/Zb1JZVFNK/0TLRG9y0XItSCnEzftG47vXv39tlm165dpu07yezZszFo0CDD+0rvRWD27Nlef2uFOX6N1GslYwyTJ0/GjBkzLPezU6dOwt+M1h8n1w31S4bZPaf3mzbSV6uY4X3lgrbeb1b529/+Zmu/sBTqTpw4gezsbJ9/Z8+e9dk2NTXVS+smeussLCzE+fPnlX9O+N4B1gaUq895stRNmzbZblcmD86LL74o9DFRRx1aSbaoR12o0YFrfd6wYQPeeecdAObmW7M3J7OABFlN16pVq5TP/JxGjx6NsWPH4oUXXlB+y83N9RLYjUxlemYxs78B8ZvxRx99ZPjw1XL99deDMeYjsBpVVnniiSek3z652c4MM03dlStXMGbMGMNtRCWdrLbbpk0bywu62RzMyMhQPvu7yO3Zs8fLF5e3bWaCuvnmm6UXPxEul0u5Zi6Xy+u8ZBC1YdVEy6/hgw8+qJQuE0WHq39Tf5+VlYWioiKfbXmybqd96vTSagDX5ttf/vIXQz/Bl156CStWrPD6ThuwIBLqnDK/Gj2HjTShduf7hAkTpLc1mrvq579MsOCFCxewYcMGy21Zee46SUgJdU2bNsXWrVt9/unl40pPT0dFRQWuXr2Kbdu2CXPrxMbGIjk52etfoNCT5oFfkhryElq9evWy3YasXV000W6//XZ89dVXmD9/PvLy8vwyNapvznnz5vn8PnjwYNvHVnPu3Dn07dsXw4cP92lX1B8jnEoGq37oah+gRlhV14vMJnpoNW09evTAnDlz8MUXX+i+EHCtJL+2HK2f0JQpU3RfArj5zcikrcbspYSbls3meWxsrOm1tpIug/PII48Y/q6udapmy5YtXj6o6rb1tCr+mK21JqFOnTrpXi8zTZ0ZMpGpLpcLw4YNw0svvYT8/Hy0b98eFy9e9KsNEaK8jID5fJFpp7y8XFc7xu9zmZQmRlVOAO+AIxkNuojY2Fglst4sSERb4tHM/9IJjMbDrs+vXqJqESI3q5UrV+KTTz5R/m7VqpXudiUlJQCuze/ExETddZILtSLhtry83Kdko0yZL38JKaHOiL59+6K0tBSjR4/G8uXL4fF4UFBQgNzcXLz88st4+eWX66QfHTt2xA8//KD7W0lJCY4fP47KykpUVFQo3/MQaFnJXeQfCIhviJkzZ3otmDfccIPudowxZGRkYMKECYiKisIzzzyDGTNmoG3btlJ9U6NeKPTyjqlTOYj2s4OZk7PZ8Z3KpK5uhy/cHTp0MN3P7AEq0szxh7HR+elpGT0ej/Clhy8yWrOTVpvp8Xh0KwI4bYLnwSJWjivrdyTy/8rPz1c+33XXXV555YBr48XHTBRRmp2d7RUtzrdv2bKlrZJy2uOo2zNzyObbqX0xja7n5cuXDaPg1fvrCXWxsbGYO3eucl+pFzn+XAmU76W2f8AvLyTqcbTbfnJysiIMac+9b9++ivUAuFZz+aOPPsJXX32F8vJyW+3JYqSF1NsG+EUosqpNFWF0TY3mm12hzkpd1UWLFul+n5+fb1gm0cpzJy8vD0VFRUI3kKSkJK8XsJKSElvrrFXCRqjbuHEjjh8/ju3btysar6FDh2L79u345JNPAh55wsnMzBQKBQ0aNECzZs2Qnp7ulY8pMzPTUm1JtfA3YMAA9O7dG5mZmQDEN8TLL7/sZeJ7/fXXAfjewHpRYFOnTrVk7ujfvz+GDRsWNJ86s+sY6AWEoz7/Fi1aYN++fVIVA8w0blrnXxnzq7/IXDPug6XWSDndF35ttAuokenr448/1v1edh5oIwn1NB9caFc7VssElvTv3980ebDRNZTxaxMxadIk5Tlk1EZcXBymTJli2A4X8rVz1+i4jRs3FlovOLLZ9M1Qj8Xu3bsBwKueqPaa8YWYCzqiMfrVr36lzAftHNywYYOXhjstLQ0JCQnIyMgwjQL2FzsBaa1atcKXX36pm3vN6Ljq+2H8+PG6vqQc/mx2u93CIvV2tcYif189rOSQtasxdbvdeOKJJ0zzgurl8ZOB572zStgIdaHArl27pMv2OMX777+Pf/zjH0rJH6OFpLy8HG+99RaAX96W9VIZ6PHee++hrKxMqk/r169HcXGx7ttiIMyPIoYPH+7l4Ktue9KkSX4HVJihHYubb77ZkfPXJrqtKyHVjFmzZuHgwYO2km7Lws/1+PHjXt8bzXuRCUUPvfExS23g8XiQlpaGb775BuPGjVO+P3jwoHAffh56EaSA/ANbzxwoG0kaFRWlREW7XC7U1NQoZiSZOaXepmHDhhg9erRP5RTRfF+xYgV27NiBCRMmoGvXrj5JhznTpk0Tlquygt780DOXcvNov379wBhDfHw8amtrheUEo6KiDM2W/mI3Ubj6fK0ISZmZmbrXSjQf0tLSvJQFCxcuxIABA4TH55HALpdL6OYSKGWA+hzU/s5mLFiwQPmsjuB1Cm7FsppL0e51IqHOArfffrutdBFOTOIxY8YgISHB0GG9Q4cOPs7j2htYdPOmpqYKc3SJsCJsqLU7Rg9HbqqWaTcvLw9Tp07V3WbevHmOlXYT4e+4ys4lK9fZSp9kIzA50dHRPgEUTj+g7Qiw/vbBSFuUkZGhOEm3atXKq61Tp04J91P7Men1b/LkyYobgVH/1eZ8vt3999+PkSNHCvcRpRqKjo5WfpMJWGnXrp3y2e12Y/HixT7mI1HfH330UbRu3Rrp6enYtm2b0LoRFRXliDlQrx/aKE8AKCoq8tlOlHuM/6YXNWqHnj17YunSpV7f2T139XPdzPzK/7eSH1TtkiB6XutZJWRe7kW//etf/0JOTo7P9+pcroBvwn49rAhQvGRYamqqorXLy8vD2LFjHUn3wueNVQHeroWGhLo6wAlNy913342LFy963ZhGjsMix30ntT5WFlO1dsdIqDPL+A9cq/OYlJSE7t27S7fvJFz7Ytc3pFmzZpg1a5aXw64RTgl1paWlSmBETU0N1q1b57dAJJOuxwitBkdvblhxkFajF/GoNZmb8dRTT/kIsnw/o8XF7Ho0aNAAv/vd75R+WSEuLk66bqso6lOkmVI78quTYfsbnGSXvLw8qe307kU9oc5qf9ULsT++uIWFhSgtLfWpGmMnCTIg9+zh5xofH4/FixfrCrQi1MXqRS4AenVL+bZ28tTl5OTo3pPqOXn8+HEvs7qTuN1urFq1CqdOnUKDBg2waNEiRwIr+RzWS+YdCEioCxKHDx82LS/mD2qhTjYy0Sp2U6KIFrySkhIps9RNN92EqqoqYfFkGQFj6NChhmHqRjzzzDMAfrnG2jdJM1wuF6ZMmWLoG2hkBjBamMaOHSv8LScnR6ntGh0dDbfb7ZiQL2ua0ra3c+dOnDt3Tvj7+PHjTZM1W1mo1dvu27dPWJLKCL64G/mLFRcXK9GJVpPTOnlfaYUZ/reelvirr74SPpO013jevHno2rVrQIW6mpoarF27VmpbvX6oza92hTqebL2oqMh2fjEAfuWp1EMUsCNi9OjR0j7dnI4dO2L+/PmWzM6TJ09Gs2bNDOew1TFQb9+sWTPbL3lm8HJ8Vq+TGZ06dQJjTKoKiLY/amQDwqwZeQlb6E1iK06fIvr164dVq1bphtGrcxOVlZXh/PnzaNy4cUj4ZxUWFuKNN97wWVDN0kmYYeVhIdJU6LF8+XKcOHHCx0eE33R2r6nRTe7xeBAfH4/Lly9Lp50Jxtjya26WykGEVrjg5xATE4OrV696RZYlJycbVoQBgM2bN/scS6+/gLE5aty4cVi0aJHui4OMgHDPPfco0cJGkeja41RVVcHlciEpKcln3LWC2bZt20yr0Lzyyiu4cuWKEmhlhJEpUHuu2dnZ2LZtm+kx/cGqDxInMzMTe/bs0Y1Gtgp/Ibb64iaLXQHFiqZOhjFjxuDf//63V4Q7r7P+7LPP4sSJE1LHue+++3z8YbUYJVUWuQ7I4O/zz67lJVBoz1vWfBtaZ0GYopdGxKhmKPel4dqFQGVFt3JD9e/fXzehdDCQuVFGjhypW6jcSv44PdSmF70w+2+//Rbt27f3qhbhNE5pWrTldkSYzRN+LfmbvjrHmyhxuPoczLTSstGW3OSqNz/saH30NGM8Qau6BGJSUhISExOxdOlSJYpTRNeuXb2EDb3+NGvWDMuWLVMExDlz5hi6bYgIVqS7LGoNP58zgcxJ6hTFxcW29rMT/WpE06ZNsXHjRt15arcMmhr1fcmzVxih1hjbFbYGDhzo9beRHyrgfzJ+J7lw4YLtfUmoM0CvZIwVeG6wQD0QtWWj1Kg1dYHsA+eRRx7Bvffea7uunZqWLVsKw+Gd5vDhw9i5c6etff31J+N4PB5ds3NqaioqKiocy6unB0+ELcpjZwa/BnFxcTh16pRStkxUf9UMLtTxBLbqYASri7TeuHAhzUyw4X4wTqWm0Lv/Ro0ahSNHjuhq7UeNGmU5I73MPHzuuedw5swZS8cFjM36oYaR0B1qwqna1NeyZUvpxPQiQefWW29VAt6cOlcnjrN582bFEiMbec3PgyckN2PVqlWGLzlmfqhmqYfqksTERIp+DQTqCCA7GCU5dAJesFnvBucTQiv4yQog2sLdZjRq1AhlZWVITU1F27ZtDRdgsz4cOXLEVtWH/Px8PPHEEz7OyEa0aNHCq26mFfw1v3L88THxl7vuuguMMUtpQUR9kfFFMbtW1dXVXn9zIVG2D3pwLauV65aRkQHGmFcCX6dxuVyG0ewiRNeQR+7xaD4nCaS2mGMns4ARoSbAmXHkyBHpEpIioe7zzz9X/GZDDZnnJZ+7CQkJynaymuU777zTUjCImosXL0oF6dUlJNQ5xIwZMxRpPxQfCuo+8ZQDRpocrpmQqfunRia1iIh9+/YZmlcD5fuVmJiIoqIiW4vDN998o/iQANdMn0eOHDHcx1/zK8csyzhP/MrfJI3M7cHGbGxFixH3ydPmdZMxiZjdp3oZ3/25t+063fuLWXs5OTlgjBn6LIUqpaWlfgUiqBH5MIYyMiZGdU5O9faDBg3y2i5Y89MMmedlYWEhdu3ahebNmysveIG0VHASEhJC1qfu5ptvFiZY1yO0ziIEmDp1qmNm00A7rjdv3hy/+c1vvIp5c/gE5c7PgdIGFRYWYuLEiV7fqRN2hgvNmzf3KkOTlpZmqkVxQlNXXl5umtpk8ODBKCoqQnFxMRhjuiXZQgWeMkWEaF589NFH+N///ueT3V3vQSuTp0pNKCxuDz30kN/HCIUgp0DRs2dPW75+ehQVFWHt2rW2Ay2CgUxf1ZYjPqerqqqEiXZDYd6rkXleRkVFKf65PJLW7jiG2vlbZejQoQCu1e/mScRlIKFOB6ffdAI1uTweDz7++GPdbO1utxtbtmxRKkxYNb/K9nnOnDlKSTJZZPuwZcsWS28odQ2PjDSrSGBEVlaWl6O8HrwcTai9SQK+82TMmDGG4ys6h4SEBDRv3lyJCOaCq5FrgRl1WW/UjKVLl3qlbvGHSBXurMzvP/3pT8LfUlJSfJzkOaF47bp06YLFixebbte6dWul5BS/VklJST5CTyieI2DdstG3b1/TSNpIQutXPXjwYADWkkYDlNJEF5kEilaOY4cvv/wSX3/9tV/tq/3iAiXUmTFixAjs378fwDWt4YEDBwLm1xdo+vXr52WSTUxMDNkHaKixatUq5Ofnm95T/Hoa3YN256ZTc9rOmEdHR/utYQ2G5mHPnj04f/58nbRl5fys5hILZa3N9u3bpbflucqMXExCSSnh8XgU9wenAssiFZ7OSIvV60VCnQ7333+/UrMwWGRmZhrmlrJa0suqqdAprdDq1auVz3369LEk1IUaH3zwQbC7EHLIPvAffvhh5Ofnm85b7dywItTdd999hseSOYYMOTk5OHz4sCMm1VDHagSuP8iMydSpU5GWlub1XTiZWf2loKAAaWlp6Ny5s3Ab7nJjlsKjLlAnUXcqsEyWnJwc/P3vf6+TtkKJ0LPnhADt2rULaYfjVatWWc5vJPuWxP3zAvFmS29q4cXevXv9rnqyYMEC7Ny5E3FxcThz5oypzx2HR447kZYiISEBaWlpKCwstH0MNTxQJdDR7Vq48GInUjsckA0W0Jr4ZSKUQzV4wCoejwfDhw83PI+UlBQwxnDHHXfUYc/M4RH2dRH4AFwTgE+ePFknbYUS9ecVJwj07NkT69ats2wTN8NOZKqsQMUfkIH039L2oXXr1l4lfYjQQF1M3i433nijsrjIOMLzufH222/j8uXLjmSYj4qKwrfffivb5aDQuXNn/Oc//zHcpnfv3pgzZ4503q5wg4+ruhKEGb1797aUxoJeKK3jlCA8depUdO/eXarmshO4XK6QzhQQKEhTF0CeeuopVFVVOS7U+YNsRv+61NQdOnTINH0IEZqI5snYsWNRUFCAAQMGWDoenxtJSUleJYtk2tTCcyWGQyT2li1blITLIqKiolBYWGi7CHyooy5AL0uvXr2kLCrhrqELJqL70Coejwc9evRw5FiEGBLqAgiv4RhKyAp1gdDUiXwq3G53SEZ2EvZJSEjAggULLJfekTGTyS7Qf/jDH1BUVGQaXWwVLlQ56csVExMTUi9/wYCPq9MlsOzwf//3fzh9+nRA2wgXZF0m6hq79aYjnbAwv+7atQsFBQVwu9244YYb8M4778Dj8WDNmjV44403EBcXhxUrVtSZWjecMRPq+EIViDp45FMXeTi9uDop1KWkpOgWYm/YsKFXIlerFBYWonHjxobO6oR1rJQ0DLSPnNMvAuFMKL5wHzx4MGJNqzytk13CQqhLS0vDpk2bEB8fj8mTJ2Pt2rV44IEHMH/+fGzZsgU7duzAzJkzpXL91Gdyc3Mxbdo0w21GjRqFM2fOBCSyj4S6uqVfv34Bb8Npp2eZueHvQv7999/7tX9cXBzGjx/v1zEIX6xo6rjQxXNFykLPnsigTZs2we5CQDh8+LDlGtdawkKoU9+4Ho8H0dHRqKysRMeOHRETE4Nu3boJaxNWV1d71ZOsqqoKeH9Dlc2bN5tuExMToyS4dBqtULd8+XJ8+umnAWmrvlNTU1Mnb9h9+/Z19HgyGphQ1BwQ/mNFqOvRowc2b97smL9XIKmPEZiEPVq3bq18rhe1X48ePYqysjL0798f586d85Joa2trdfeZO3cuUlJSlH9kog0eWqFu5MiRWLRoUTC7FLFER0fXifDjdBsvvfQSbrvtNsMSbdqHHfdxI+1ZeMPnkuycys3NDVj5QyeJVDNhuDBv3jzLAVuhgF2tckhp6k6cOOFTnBgA1q1bh+joaOTn52PZsmXweDxITU310rqJIty0tUmrqqpIsAsyZAIhRGRmZmL37t2G22ijHaOjo2lORQBWNHV2qct58uGHH3pZiYjgMGnSJKElLxIJKaGuadOm2Lp1q8/3tbW1eOCBB/DKK68o2bLT09NRUVGBq1evYseOHbjlllt0jxkbG2u5ADgRGMinjvCX0tJS4b1OhDeBDH4IhoauT58+dd5moHjsscfQs2fPYHejXmF3zoaUUCeipKQE5eXluHDhAmbOnIlx48ZhyJAhKCgoQG5uLho0aICVK1cGu5uECfn5+XjzzTfx61//OthdIcIUWlgil0ip+hCJLFu2LNhdICQJC6Fu2LBhGDZsmM/3Q4cOxdChQ4PQI8IOHTt2xKVLl4LdDYIgQpBACnUNGzYEELkl1ojIo3PnzhgzZgxefPFFS/uFhVBHEERo0b17d6loaoKQJZDVbGbOnInMzEzFfYcgQh2Px4O33nrL8n4k1BEEYZkNGzbgzJkzwe4GEYEEQqiLj4/HY4895vhxCSLUIKGOIAjLxMfHW6rRSRBmkE8dQfhPWOWpIwiCICKTQNadJoj6At09BEEQRMhAmjqCsA8JdQRBEETQIfMrQfgPCXUEQRBE0GnevDkA5+sJE0R9ggIlCIIgiKDTuHFjqjZDEH5CmjqCIAiCIIgIgIQ6giAIgiCICICEOoIgCIIgiAiAhDqCIAiCIIgIgIQ6giAIgiCICMDF6lm4EWMMFy5cQFJSEuVDIgiCIAgiYqh3Qh1BEARBEEQkQuZXgiAIgiCICICEOoIgCIIgiAiAhDqCIAiCIIgIgMqEqeBBFARBEARBEKGGWZAnCXUqTp8+jSZNmgS7GwRBEARBED6cP38eycnJwt9JqFMRExMDADh27JjhRSNCj6qqKrRo0YLGLsygcQtPaNzCFxq78CYpKcnwdxLqVHCVZnJyMk32MIXGLjyhcQtPaNzCFxq7yIQCJQiCIAiCICIAEuoIgiAIgiAiABLqVMTGxmLatGmIjY0NdlcIi9DYhSc0buEJjVv4QmMX2VCZMIIgCIIgiAiANHUEQRAEQRARAAl1BEEQBEEQEQAJdQRBEARBEBEACXUqJk2ahJycHIwYMQJXr14NdneIn9m1axdycnKQm5uLwYMHo6amBmvWrEFWVhZ69OiBY8eOAQAqKiqQnZ2NrKwslJWVAQAuXryIgQMHIjs7G6+++mowT6Pe8u677+L6668HABq3MGHz5s249957kZubi/fff5/GLUz46aefMHLkSOTk5OCee+7BoUOHaOzqG4xgjDG2e/duNmLECMYYY7NmzWLvvPNOkHtEcL777jt26dIlxhhjhYWFrKSkhHXu3JlVV1ezrVu3stGjRzPGGBs4cCA7cOAAO3/+PMvKymKMMTZ//nz29ttvM8YY6927Nzt27FhwTqKeUltbyx566CF22223satXr9K4hQE//PAD69+/P6uurmaMMRq3MGLXrl1syJAhjDHGSktLWUFBAY1dPYM0dT+zfft29OrVCwDQp08flJeXB7lHBKdp06aIj48HAHg8Hhw4cAAdO3ZETEwMunXrhj179gAAvvvuO7Rt2xbJycm47rrrcPr0aa9x7dmzJz799NOgnUd9pLi4GIMGDYLb7UZlZSWNWxhQXl6OuLg45OXl4cEHH8SOHTto3MKEG2+8EQDAGMO5c+dw/fXX09jVM0io+5lz584pJVNSUlJw9uzZIPeI0HL06FGUlZUhOzvbq7xNbW0tgGsPMg4fQxrX4FFbW4uSkhIMGTIEgPc9xn8HaNxCjZMnT+Lw4cNYv349nnzySUyfPp3GLUxo3Lgx3G432rdvjxdeeAHdu3ensatnkFD3M6mpqaiqqgJwbfFp1KhRkHtEqKmqqkJ+fj6WLVuGJk2aKGMFAFFRUQAAt/uX6czHkMY1eKxevRqDBw9WxkU9FgCNW6jSsGFDZGdnIyYmBj169MBnn31G4xYmbNq0CXFxcdi/fz/++te/YuHChTR29QwS6n6mS5cuKC0tBXDtxujWrVuQe0RwamtrMWLECLzyyivIyMhAeno6KioqcPXqVWzbtg233HILgGtm2srKSlRVVeHs2bNo3Lix17iWlZUhKysrmKdSr6ioqMDKlSvRp08fVFZWYvHixTRuYUDnzp1RUVEBAPjss8/Qq1cvGrcwIjU1FcA14fz06dM0dvWNoHr0hRjPPfccy87OZsOHD1echIngU1xczBo1asRyc3NZbm4ue++999i7777LunTpwrp3786OHj3KGGNs7969rFu3bqxLly6stLSUMcZYVVUVGzBgAOvatSubO3duME+jXnPHHXcwxhiNW5jwxz/+keXk5LDc3Fx26NAhGrcw4ccff2TDhg1j99xzD7v77rvZtm3baOzqGVQmjCAIgiAIIgIg8ytBEARBEEQEQEIdQRAEQRBEBEBCHUEQBEEQRARAQh1BEARBEEQEQEIdQRAEQRBEBEBCHUEQBEEQRARAQh1BEARBEEQEQEIdQRAEQRBEBEBCHUEQBEEQRARAQh1BEARBEEQEQEIdQRAEQRBEBPD/GCb0kb8vnrIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjaUlEQVR4nOydd3gVxdfHvzekUBOKINJFmiJNkCJgAAUEEUFBelEBfypNBTSItEjvxQbSmyAIIiJVCC0oXTA0lY50UmghJPv+wTvr3r2zffe2nM/z5IF77+7M2d3ZmTNnzjnjEgRBAEEQBEEQBBHQhPhaAIIgCIIgCMI6pNQRBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAZlOqRMEAcnJyaCcywRBEARBBBMBo9QdOXIEtWvXRnR0NF5++WXcunULS5cuRa1atdCgQQOcO3dOVzkpKSmIiopCSkqKwxITBEEQBEF4D1egbBOWlpaGsLAwAMCwYcNQsmRJTJ8+Hdu3b8eePXswb948zJgxQ7Oc5ORkREVFISkpCZGRkU6LTRAEQRAE4RUCxlLHFDoAuHPnDooVK4by5csjPDwctWvXxuHDh7nnpaamIjk52e2PIAiCIAgi2AgYpQ4ANm7ciCpVqmDLli0ICwtzs7Slp6dzzxk1ahSioqLEv6JFi3pLXIIgCIIgCK8RMMuvUsaOHYv09HScPHkSs2fPBgDUqlUL8fHxHsempqYiNTVV/JycnIyiRYvS8itBEARBEEFFwFjqpIpZVFQUcubMiYSEBNy/fx87d+5ExYoVuedFREQgMjLS7Y8gMgt//PEH3n33XV+LQRAEQXiBUF8LoJeNGzdi3LhxCAkJQf78+TF37lzkz58f0dHRyJo1K+bPn+9rEQnC7+jcuTMOHTqEr776yteiEARBEA4TkMuvVqDoVyIzUblyZRw6dIjyMhIEQWQCAmb5lSAIgiAIglCGlDqCCGLIQkcQBJF5IKWOIIIYUuoIgiAyD6TUEQRBEARBBAGk1BFEJoAsdgRBEMEPKXUEEcSQMkcQBJF5IKWOIDIBpNwRBEEEP6TUEUSA89133+Hw4cPc35gyR0odQRBE8BMwO0oQBMGnXbt2APiKGylzBEEQmQey1BFEJoCUO4IgiOCHlDqCyARkFqUuIyMDMTExuHnzpi3lCYKACxcu2FIWQRCE05BSRxBBTGbzqTt06BBGjx6NwYMH21Le7NmzUaRIEZw9e9aW8giCIJyElDqCCGLu3LkDAEhPT/exJN7B5XIBAB48eGBLeYcOHQIAXLp0yZbyCIIgnCRglLp9+/ahbt26iI6OxhtvvIG0tDQsXboUtWrVQoMGDXDu3Dlfi0gQfseZM2cAAOvXr/exJN4hS5YsAB4uw9pBWFgYACAtLc2W8giCIJwkYJS6woULY/369YiLi0OpUqWwatUqTJw4EXFxcYiNjUVsbKyvRfQLjh49mmmW2ghCTkjIwy7NLsvk9evXbS2PIAjCSQJGqStYsCCyZ88O4OHs+cSJEyhfvjzCw8NRu3ZtxTxdqampSE5OdvsLVvbs2YOnnnoKy5cv97UoAc24cePw2Wef+VoMW2EWrGCHXaddSti8efNsKYcgAgGXy4UZM2b4WgzCAgGj1DHOnj2LTZs2oU6dOoiMjBS/V+rER40ahaioKPGvaNGi3hLV61y8eBEAcPLkSR9LEtgMGDAAn3/+ua/FsJXMotQxnzqyVhMEnw8++AAul0vRRWH69Olelsh5BEGwxYUiISEBXbp08ev+JaCUuuTkZHTq1Alz5sxBgQIF3KxuSoNWTEwMkpKSxL9g9r1jA5q/k5aWFnQW0/Pnz/taBFXy5cun+FvZsmWxcuVKL0rjHHYHSjD8uRMnCCNMnjwZgLIhxC5/VH/iyy+/RHh4OFJTUy2V8/7772P+/Pm4d++eTZLZT8Aodenp6ejQoQMGDx6MMmXKoFSpUkhISMD9+/exc+dOVKxYkXteREQEIiMj3f4I39KxY0dERUX5Wgzb+PPPP1G0aFHdy95paWn44osvvNJ5NmjQAABU2/2JEyfwySefOC6LN2BK3aJFi3wsCUEoc+3aNWzatMnXYnDxlwnM9u3bbcs3uWbNGgDwa2XMLgJGqVu2bBl27dqF2NhY1KtXDz/88AP69u2L6OhoDBo0CIMGDfK1iG5MmDAhqK2CVli2bJmvRbAV9pyV/DrlzJo1Cz179sTq1audFMsQgWLlNcq0adPQpk0by+XoGehSU1Nx5coVy3URwc+rr76Khg0b+loMLv5iqXv++efRokULzeN++OEHW1IOjRkzBpUrV1Y9xl8UXjUCZu/Xdu3aiXtcSmnbtq0PpFFHEAT069cPq1atwvbt271Wb6D5E128eBGFChXytRi2oVcxYrnj7t+/76Q4bmi1CStK3f3793Hv3j2/sILLr6N3794AgKVLlzped4cOHbBixYqAef8I3+GPyaz9MVH5qVOnNI95/fXXUbNmTcTHxyseo+eagmW1ImAsdYEEm+lQbit1ePfnzp07AXvfWMfRpk0bvPXWW5rHecM69uuvvwIA9u/fr3qcFVlatmxpaDn9+vXr6Nmzp6Lf26lTp9ClSxe/TCNy5swZDBkyhDtI/PLLLz6QiAhE/MEyLm/D7LO/WOoA/feJpR5SIrPk6QRIqXOEESNGAPDujOfff/9Fr169vFafGtu2bUOnTp00j+Pdnxw5coh+YP7AvXv38NFHH+Hu3buKxzCL21dffQXg4fLynDlzFI/3plLHYM7RTrB27VpDx48cORJffPEFdu/ezf39k08+wfz58x0LPlm8eDFcLpehYB32zLp164bhw4eL1lYp/jBQO8XRo0cxcOBAX4tBOAhT5oyOW/Pnz8eoUaOcEEk3V69e9Wp9Rt713bt3e1UXIKWOw71793Dw4EHT5w8ZMsQ+YXQycOBAcfcAX5vP27dvj4ULF+Kjjz7Ct99+q3ic0oxwx44dtspz5MgRLF682NS5y5Ytw8SJEzF//nzu78nJyViwYAEA6x1Lzpw5vb4EYLeCmZaWhhMnTqgeY4ebwN9//40ffvhBsWw1fvzxRwDAjRs3DNfLls28uXTuD7Rp0wajRo3yed/iT7DJgVTBv3Dhgi5nfH/wt1ay1Bl9xl26dNGt8KenpxuywLNk4lokJibqLtObbN68GbVq1cKqVau8VicpdRx69eqFKlWqWDZDe7MDlNblLx3vxIkT0b17d8XfvSVnhQoV0KFDB1Pnasn40UcfGU72rKRI3b59G2PGjFE8b8qUKViyZImhuuR1Sjl37hySkpK4sphlwIABKFu2rGpKETuUuueeew6vv/666fONwmRlCqs/LVEpIQgCRo4cqbk0pYeIiAgAgeNS8s8//yAlJUX1mNWrV6ta4LX4/vvvAbgrFEWKFEHHjh1Nl+lNpO/fpEmTkDVrVgD/te1ly5ahVatWpso+ffo0t62Eh4ejWrVqusux2/ptV3l6+65///0XwH85ZL0BKXUc/vzzTwDWO24zg1a9evXgcrlw+fJlS3UHAmasoZ06dVJVFL2N1sDBw6x1rG/fvmjfvr3h+qR1SilWrBhq1KiheE5GRgZu3bplqJ59+/Yp1sewQ6lTWjo1ck+tdPCsb8jIyMD8+fORkZHh+PJrRkYGNmzYoPv4s2fP4tNPP8WHH35ouW52bYGgzALAE088gUaNGin+fvnyZbz66qsYMGCA6TqUnveWLVtUz/OXSbeUoUOHeiy/tmnTBitWrDBV3uOPP85tdxkZGab6/bi4OBQpUsT2/JM81Nw+jD475obkTdcMUuo4/PXXXwBgebsUMy9vXFwcgP8c3M3U5etOQ15/RkYG2rVrJyrLDCMDFGPhwoWqS7oAkJSUhE6dOnH9nuzGTN4jnlI3evRoU/Xr7eQOHDjgcf+B/yxPvE5n2LBhyJUrlyF5eEs433zzDRISEsTPepU66e9paWlwuVyipdKOTpJXf3p6Oj788ENcu3ZN9Vw2AK5cuRJdunRxy4snV3xOnz5ti7WsVKlSaNy4Mfbs2YODBw9qpnFi12eHdc0fIyO12L17N9LT08V2s2/fPo/lcyuTZ6V2rNU2/eUeSuWQymyX4q4WjaoXJteIESNw4cIF3L5923KZWhQtWlQz3ZTRZ0hKnY9hvlFHjx71sSTBQUpKCr777jt88MEHbt871bnNnj0bCxcuxE8//eRI+Yzz58+L/llG4F13TEyMKRnYEpAedu3apfjbkSNH0L9/fwAP5evVq5elNCDSa/zf//6H5557TvyspdTxOkA2CNuxhZFaB3vw4EFMmjQJQ4cOdfteLuvvv/8OAKIlU2rR7NmzJ4CHg+NXX32Fxx9/HKVKlTIs57///utmNWDpHfbu3YtXXnlFDMhSginSe/bsMVy3Ev6ikOiFtZsZM2agWrVqKF68OAB7B1l2T1iuNKbAC4LAVRr95R4qKXX+Ih/wcBndF/AmwFJy5MiBzZs36y6PlDo/wZ8atxb+5OtidOZqBxkZGWjVqpWbRUjv8/vss89MzSq1Ir6+/PJLbtAHk+vMmTNikIVZjGx7o3U/xo8fD+ChX9z06dNx/Phxw/IopUWQBhaYWX7VaymaMmWK+H8zWwIxx2ytepo3b654HFO0V61ahffeew+AOUfuQoUKcfeqfu+993TdO6aUs5UHPVy/fh2NGzcWfS3lmLHiHD16VJR34sSJyJ8/v/jbggUL/CZq3yjyfk2uwE2cOBEFCxb0cBWw4scn59ChQzh27Jht5QGBs8RuBrPLyTyk1rxnnnlG1R+alDo/IZACJaQO9CkpKaJj5tWrVzFp0iQIguAzJdUbSZGTkpKwYsUK9O/f360+PWkxPv/8c7z44ou2y/T++++jbt26ir9/8MEH6Ny5s2Y59+7ds+T7YxT5LJX33C5fvowjR44olmG3T53c30fpXGmUmVbE2ezZsz2+Y0qd0Xdf2mmz/8sHbyNWVS0uXLigeYxSxLYaS5YswYYNG8RtleQYfYcTEhLw1FNPibLExMS4LW137tzZKxvIb926lfu9lT5J3o7l/qdsQnfr1i189tlnYnYCva4WN27c0HQDqFy5Mp588knNsrZs2YKZM2e61a1lqTOriJi9p61bt9YMorCqHKnlD5WidA3Sbcukxxw4cEA1cwGvP0lMTERCQgLGjRuHmTNn6pJLD6TUaZCRkYFXXnlFdO68f/++Ygchx1dK1Pjx41G4cGEAwDvvvIMPP/wQpUuX9tp+q0qWOjtngFKLnBxW39WrV7mWDqtMmzYNLpfL9PM1et6SJUswbtw4U3WZqVee6oN33tNPP40KFSq4fZc/f37s3LkTgPqztmKp02pDSikQhg8f7jEgfP31126fr169Km4TZKatsvJdLhdu3LjhYSF744033D43a9YMU6dONVyPnWzatElXigmjPnXvvvsucufOLVqvtNLceBs7LCfydiwf1NnvhQsXxueffy4qFHqttvny5XOzalqhQYMG6NGjh5ubx8CBA5GYmIgHDx5wlRWj98hq/758+XLNQCulNCzAw5UPvTL8+++/cLlchtul3q0g5TCLvZSGDRuifPnyGDBgAHr06OH2W8eOHdGkSRNTdZFSp4IgCLh79y7WrFkj+htFRESgfv36Yqiy1vlK3Lp1C9u2bVP8/dy5c7Y4V69cuRLAw7xeZiI17UBpENey5qgt/73wwgvi/1NTU7mzTiNLXkYUjO+++073sVbr0jpeTbk1y2+//aZZP8+CIP1OTWbmj8aOmTdvHpYvX47Ro0ejSpUq3PbCOmv5uYy7d+9iwoQJinVKlWIlBUXawcsHB72DDKNy5coefnlyfv75Z/Tp00f1GCc5dOgQGjZsiGnTponf8QbyW7du6YpqlvL1118jKSlJ1RVDrSwrfZU0X6SRYBz2efTo0WjdurXh3GJaTvyCIGDz5s1uKZCMRpcrsXLlSrhcLkOTv6lTpyI2NtZjKy6zSh2bHNhhzFBSzuSTO2ldJUqU0J3nk1lRrey/zbtOIyti7J3isWjRIqxbtw7Aw2utV6+e2PdpQUqdDOnm32oPx0zU4/bt29G6dWsADy1o0dHRinV8/PHHeOSRRwIiS70gCJgzZ46iX5/Z5VelJSApaWlpyJo1KyZNmuRRn7xjOHTokKKMd+/eRVxcnK5lLadh1i7g4exVzV/SSCduNkGn/LnpGXDVZsybNm1yK7dr165o3bo1YmJiFNMdSN+35cuXe1iXJk+ejH79+uH06dPc8/VE99WpU0eX/FrlX7lyxVBy2b///lu3n5ydMF8vrRxaUj9FszLy+jGldr1jxw5ERkYaClRLTU0Vn5lWonFBEBT71YMHDyImJgbLly9Hy5YtVcsxGvCTkZGBF1980c33rnbt2qp16OW1114DAMydO9fQeWlpaciSJYvbd5cuXeLeoy+++AIbN25ULMtMupGLFy9yFVslA0CbNm1w/PhxZMmSBTt27PB4T/XstS510dGDIAi688w1atRId8Lk0NBQXcfdu3cPcXFx+Pjjj3UdT0qdjGXLlon/l2asZwOREeQNs1u3bli+fDnOnTsnbq0UEhKiOBAFCtu2bcNbb70lLiWxKDCGE+kQ2EvJHPCZAuhyuRQ728qVK4uZz3kdUL169TysVHZw9epVnDx5UvysZbEcOXIkgIdRjq1bt7Ztiy+zyyPyPU31JFe1W0F59913xf+3bt1afH7Mmq13kuVyuURLiVIwADvOKHrOYZZzKT179sRXX33ls6z469evF1OySJ/b2rVrMW3aNLd2w/LxyRWemzdvclMImWkHLJ2Tns3cGVmzZkXbtm0BaD8H6QrJihUr3BQVI++IvB6tenll//HHH7rrc4L09HQPpQ54qCRLr2fdunXo2bOnau4/I9uMscwEhQsX9vA7PnPmjNs4LGXDhg2isr9z505TQXlSX1o9ss6aNQuFCxfW5Z9tRE8ICwtz+6w1OdDbNgNGqUtJSUGNGjWQM2dO0UF76dKlqFWrFho0aODItivybZ+kg4CexiA/hmnmxYoVc+vADx06ZFpGQRBw5coV0+drMX/+fM0XhXXmSksJrJOOi4tTjEhct26dx36xenL1ffHFFwD+S2T8888/q86gly9fjilTpiAsLEzRfG43ZcuWRZkyZRTrkH9mCgtztOctwxcrVsywI7zZa2vevDn+/fdf0R9HqqAquSHIO6C7d++iT58+hlInSH3SlGbgann2pPCsi8xSdPnyZY8ldflsW0tWvUogs6gYRSkdzf379zFw4EBTKweMP/74w0NRd7lcePnll9G7d2+379l9kC9N5s2bF88++6xH2ez4CRMmiH5MgOfyvR3vnd5AlPv377s9L6miYiZ5tdJgKy9LyXeR9WF2wLuPatG2Dx484Cp1gLslSc/4auQZsuhxwDMJfYkSJVR3AJIGM5lpN1Ir5Llz57jRw9Jnx1IC2eEOJSU8PNztMy9wC/jvvurdXi1glLps2bJhzZo14rYlaWlpmDhxIuLi4hAbG4vY2FgfS/hQqZEqNuxl/+uvv3Dr1i3d5lYjzJ07F48++qjt5TKY9U2tQbHrHDp0qJvywpC+wMOGDeOW8cYbb2DhwoVu36ltFM+UCZ5JmnUSvOjM06dPi5FGVpU6vcdKnZB558k/M2WGdV68e3/u3DmvbrBeqFAhjB492sPhV2nJhXdv5EEBSvePKSjSwVbpWNb2eIOx3k74jTfeQLt27dy+0zO4C4LgNUvL+vXrud9///33GDVqFObNmyd+V79+fa5j9ooVK7Bo0SJLg5P0OQwePBj37t3D3r17Aaj7d967dw/dunUTn+1rr73mVpb0XWVLiGZdT/w1+a9SvXYEQSmRnp6O7NmzK/6utBPK0qVL3ZRBPVYidgyb5Dt1n1m/ePPmTY82Fx8fLyZMP3XqlKKhgV3ztGnTdEUP87B6ffL7rpSTT2+QGCNglLrQ0FC3SKCTJ0+ifPnyCA8PR+3atRWjUlJTU5GcnOz2Zwe8xpIrVy7kzZtX/MweQunSpdGiRQvFtfYrV64gIyNDcbZ948YN0QFzzpw5bi/b7t27rVyGJsxErJbzSzrrllpxeCiZsPV04Hp9NtiOE7ylLuA/Gb2l1El58OABhgwZoloOu9daPju+yCf11Vdfufk6KU1UMjIy8O+//+rycZHDc1BXmlSoPQO9y5k8JUfeHpWsvtKlcSNKiFo6GHl9Dx48cPMZlSLdroyxdetWfPXVVx7HtmrVCh07dhQj49WQWmCl751UrtjYWMyYMUN15x3p8VIfuu3btyv+ZmTZ1QxKiowgCNy6BeHhHrryqHAGz2J38+ZNjzarZNUWBAFbt241nGuU17+dOnUKbdu2FZ+ZVp+pdC+6du3qIaMWgiDg559/RmRkpOaxRpHKyIKLxo0bhypVqngcy8bmkiVLomnTpqplMeSR/HrGBjP9/5dffikaHfQuHfPecTUCRqmTk5iY6NZ4lDr9UaNGISoqSvxTS3FhJOLqyy+/5H4vfTGlD0EtuW2PHj3wzjvvIFu2bNzf8+XLh9mzZ+PPP//EW2+9hc8//1y3nGr8+uuvcLlcutJ+ZGRkYM6cOR5Wpz179nh0AGpIl7n0vhTLli1D7ty5Peo2m3CZ+eHxXhJ52gm7Z5vyJX2eHOyzdEbKQ97mtXwzpdeipHxLneL1oNQRCYKAQoUK4fnnn9cljxLMP1NpMsbulTS5MUPvcgVPDj3OztJlm5kzZ6r66MmRDyJS7t+/7+aztmzZMsW+yUz7VJqgvfnmm2J50gnm8OHDFevTe48BfYoyD0EQNDP8K9VjZOI2efJk7gb2J06cwKeffqroqM5bHsubN6/H5ETp/Tx79izq169vuF/nWWPv3buHpUuXinVpRXfqVRT0PKsbN26I21wCD+/HrFmzdJ1rJEG2kV0meJPKGzdu4PXXX3f7Tm2SpbQsqoZSv/j++++LiqhepS5oLXVy8uTJ49bRK/kFxMTEICkpSfxT8w0YO3as7vr1Ls8w0tLSVB+KVsTWzp07RYVDaiU0uj+ty+USlznZkpOS9Wzbtm2iJTAlJQVvvfUW3nnnHbdjqlevbqh+6WA5a9YsN7mUiI2N5Q6Ycp8EoxgZEKXpLtSskUrWQYaShYD3WalNM+TtSUup+OGHH8RAEqVgh759+6qWIUfJj8kuK+Jjjz2maCGR1sOCS8xgVqkbPHiw+H+2BGkHgwcPdtt+Ti05L3vmdkTJSyMnld4NeRCUnLt377rJIp3w8aJB1epjx3/33Xd4+umnVVNAMKR+ewB/f2mla5Pu38uTU2r1evDggVsKE0EQTOcwY1hJryGHXePPP/+sehxTvLTK0vM+lyxZ0m0p+dChQ+jWrZuYmkON0qVLq/5utH3bNRlPTU01FdXLQ2+aJKXzgs6nTk6pUqWQkJCA+/fvY+fOnahYsSL3uIiICERGRrr9KWHk4RkNlEhLS7Pkf+NyucRlL63BXgulpRwGcySNjo52+w7g5yczgtLLqaSQSGdJdqd3MfLiT5w4Ufw/z9rGMOMIL5eDDZxaCrOeJMFS9u/fL/7frnuptK+omUAiJdQcydUGGyOWIDlmrUp2ILfoqFn51RReKyjd10qVKrl9lifhlm+VJU0FoXZPefe3SZMmEARBnEQpKZTSSWmhQoXcfuO9j7wlxwsXLnCVRql7i1TGDh06iBGcgiDgo48+4spmBKV0PmbQa93ZvXu32+SEx927dz2eT+/evfHII4/oksXObdH0Ytf7Ki1Hqc/Uyk/IaNasmervSpbaoLbUNW3aFBs2bED37t2xaNEi9O3bF9HR0Rg0aBAGDRrkSJ05c+YU/1+wYEHx/3oHLaXQbDm8dABKWB2QzTgS82YLembOcngWEDXL19tvvy2axu1W6qxak4wsGQAPl9F4G3ybzY0nl19quZ45cyaee+45U+UaQcsPxA7U3g2199CKDN7MD2lkCVMOc0HQkpfnA6x2jt5798knn+iWX0tRvnDhgqo1z+Vy4cKFCx4rKvKled5+y2r1Asr+l+fOnRNlmjdvnjgxkvfrWtYub8Pum1ZUtB4XlrVr13os2U+bNk13wI1VBevmzZte392CoUf2mjVr6ipLnhqKR61atTzqZMYcvUahgFLq1q5di4sXLyI+Ph5du3ZF27ZtER8fjy1btjiyHZQc6Quip5FlZGS4RaVZ4ezZs4bqZpQsWdLju3379mHo0KFu5dy+fRsFCxbEgQMHuA2Z13Fr7dPHg6fU8fyheNhtLbFa3ubNmw0d36ZNG3EbKil2WVukSx89evRQtfDYhTQ7vhQ7LXVqe2WqlaGn/C+//JKb0sBoShMj1KtXz+2zPKGrkfdb7+oCiwjUgl2n3utNTU11W7ZUk13LUsdbvpRf35tvvomPP/7Yzfojl1Vrx5ehQ4fq9meSf6+0V7PehLNmuHv3Lvr16+dh8VJbCmfXp5XmRc+qT0hICPr16yd+1muZsou8efMqRn8rIVXqzGTGYH2pmjU5IyMDuXLlUvTH4/UrUnh+wrt37/ZoS2wCEZSWOqexW2nIyMiw7WU3k/xYDXlqkb/++guXL1/G119/zb0PUgdYK/A6T72DmBPPRw2Xy6XLH8QJOdTuiVJ0YFpamm557UqyrGRF0/OsmjVrZilHo1Y9emR4//33ud8r3X/58qMZ1N6lw4cPKyrKdmP13jGkkzK1wVd+T6WWh7S0NK418cGDB6IsLpdLVPKk8hlZ5QDc3RCUZGNs2bLFLd0N711l7ip2wFMQsmfPjgkTJmDBggW6y9H7/MzIbXSyqCSLk2nI5Kl3jMIst2r3MT09XXWbtxdffNFwvTyMWh1JqTOJniiwU6dOObKM47R/D68R2bXxuBUl1+4UHnruo3RXEacwuvym5Py8fv16NGnSxFanfbPofVby3IRGUbt3Vt4TufWYlaVnz2ezCIKAihUrmvLtNdPP8BQINpiZfdfkgVRS5DJKdxJo0KCBuIWiFOm9cLlc4oQmR44c4l6YRoO1AP2Rh9IUFICyq4Rd/XyFChUULXD//vsvXn31VV2Wfb1tX09/LN+DW/rO6dm6iskid7Mxo2zpxY6xIikpSTVXqlYdamnAjIwrpNT5CKUlIuZM6wsOHjyo2rCksE5pxowZ3A5BanKvXLmy6SzovE5Eb4eoFJ1mFj0dn9m0KXbLIUVt/0VAOf2HN7ESpGCEJk2aKP5mpWPnpSw6f/68o7u3eDMYAwC++eYbj+9YDkUncsWp7eWs1E9Jdw1ITU11CyKxa/UAgO4EtLxJhN3PTZ5WiTF06FCsXr0a69at08xPqlcmaVS/EvK0INJ7YCRjhHRvZaexY2LbuXNnxWcBaN9jtcmZPKWKGtKxVk//Q0qdSW7duiX6brhcLscCNdTQalRVqlTR7YQvXVbiOQ1LlbpDhw6hV69e+oSUoZRzTQ9sJwi7+OabbxSjN72JXSHz/oQvEiPLsTrYyreps3ubIDl6owl5mLEUqS19a6VY8hbXr18Xl7hatGjh9tuAAQNMl2u2bSgtv9qJVmqiXr16oVatWqrHfPPNN7bJJVeejb7bTA6nIrV5bN261XIZWj7TWvfBiX6dlDoHWbx4Mdq1a4e///7b63UzzV1vgIESvEhMwD3Kl8EaKJvZeduqAFiLEuQxYMAA9O/f39YyzWD05TeSz6p8+fJGxbEFve1Dmo/NVzIo8cILL7h9dtIZnuBTunRpTJgwQfF3I35mUsy2DW9Y6rT6dT3K0fTp08XlaasY9VmUIwgC4uPjvTp5teOZyANC5JZmLaXOjlUeuRKntUoDkFJnmVKlSnm9ztTUVJw5c0ZzqyE7YQ1UK/moGfRaGZyw/nhz9qiE3cqqFF8pInqfldG0MDyUOnA7/d+aNm3ql0ods8QbDTgxsvzjzyhFo2qhtAe1FkqWOjsVO62oSb3Y8W7ZwaJFi7ySXslp5IEdWv22HUqdfF/3M2fOaJ7jf70UoYsSJUqYSiliFqdmWdWrV9et1EnTutiFkwqVr2SQ7mrhC4sq8N/+jN5AaccFu9IJMfR0qN6G+Zka9XH1RgCQP2PWlYP3PtWtW9eSW4lT7Nq1y5FyV6xYYeh4X/iVy/fXtgO5BVVr4uqEEULPWElKHaELp5Q6Iz5tTgQteDPJrBJ231upkuNNa64UPYk27UK+x6ZTvPzyy16pxywul0t1qZKwDs8qp7bDjC+x6p6jhHQ7ucyML/yG9awWhBotNDExEevXrxezfz/22GNo3Lgx8uTJY0pIIjBw0h/CaGJJOzGi1AmC4MhyrdU9bDM7oaGGu7GgRZoklrAfQRAwbdo0x+vp3r275TK+/fZbGyQhlPBWPkkp0h2ulDBkqZs1axaqV6+O3bt3IyMjA+np6di9ezdq1qzpd9ukEPaitd2MFXibbnsLI5asjIyMoPFFCiZIqSO8hSAIXnEtIIXM//GF687w4cM1jzHUG44dOxb79+/30BZjY2NRtWpVvP3228YkJAgETkqP69ev25obi2FmD13iPwKl/RAEQTiNIUudy+Xibotx69Ytv/BNsoqvnMozO4EyKMuTcNrFp59+6ki5mQVfWnoJgiD8CUOWuvHjxyM6OhpPP/00ChcuDOBhlvU///zTZw66/fr1w2+//YZixYphzpw55J8UgASKUucPCXUJgiAIQglDSl2zZs3QpEkT/P7777h48SIEQUDhwoVRvXp1ZMmSxSkZFTlw4AAuXbqE7du3Y8SIEVi+fDnat2/vdTkIa1y8eNHXIuiCLLkEQRCEP2M4pUmWLFlQq1YtvP7662jVqhVq1arlE4UOAOLj49GoUSMAwEsvvWQ5Lw8N2r5BvtGzv+IPOe0IgiCIwMHbq5im89QZTUDoBImJiYiMjAQAREVFcdNNpKamIjk52e2PIMzg5GbuBEEQRPDh7Z1oTNfWvn17TJo0SfUYpy1fefLkEZW0xMRE5M2b1+OYUaNGISoqSvwrWrSoozIRwUvfvn19LQJBEARhgi5duvik3oBR6lavXo2hQ4eid+/eHspbeno65s6diyeffNKygGrUrFlTjHxbv349ateu7XFMTEwMkpKSxL9z5845KhNBEARBEP7FCy+84JN6vZ0ZxHTWzsaNG2Pbtm1o1qwZzp07h8WLFyNLliyYNWsWxo4di6SkJPTq1ctOWT2oUqUKChYsiLp166JYsWLo37+/xzERERGIiIjQVR751BEEQRBE8OFti5mvsJSKvVKlSti9ezeaNm2KmjVr4tq1a0hLS0Pfvn3Rq1cv5MqVyy45FRk/frzjdRAEQRAEEbhkFqXO0lUmJSVh9uzZuHDhAk6ePInExERs3rwZAwcO9IpCZzdkqSMCkRdffFH193HjxnlJEoIgCP/EV0qdt5dfTV9lTEwMihcvjrlz52LkyJG4evUqWrdujRdffBF79uyxU0avQUqdJzw/xUBk+vTpvhbBMR599FHV38PCwrwkCUEQhLNkzZrV1Hm+2vUqYJS6VatWYerUqThx4gR69OiBHDlyYO7cuejRowfq16+PH3/80U45vUJCQoKvRfA7gmWHjmDYxk6JChUqqP4ezNdOEETmokmTJr4WwRABo9QlJCSgc+fOHomHY2NjMXnyZLRp0ybgrCN37961rayoqCjbyvIlZL30f3gBQlLUOpVhw4apntupUydTMhEEQThBZp6k1qtXT/MY00qd2o3t1q0bVq5ciYEDB5otPuAZMWKEr0WwBTNK3fDhwx2QxBpaHUGgzf6kaPmKqF27Wtqhc+fO4dtvvzUtl69wOupeD88884yvRfAKvkoTQWRezCp1GzdutFkSfdjlyzdx4kRdk2zHPAebNGmCrVu3OlW83+MLp8zSpUvbXqYZpU7PbMLbaHUEzz33nJck8T5mO8EiRYoE5PK7LxX0Z599FgsXLsSWLVt8JoM32bRpk69FIDIZZvuzq1ev2iyJd/nggw/w1ltvaR7nqOYRyLPVnj17WjrfFyZiJ5ZKjZZZokQJ1KlTx3Y5rPLII4+o/h7M4e7Zs2f3tQhexZfLM6+88go6dOggbl9I+A9W+3QisMnIyPC1CF4heEcyE0gHg3bt2lkqS0sZqlKliqXyecyYMQM5c+a0vVwj9O7d2y99Hl5//XWsWbNG8fdgVupCQ42no8yTJ48DkngHI+3vmWeeMez7+/TTTxsVifAygiBg586dbt/FxsaaKqt48eJ2iOSG1fHFCaxsPO9N31uz40v79u01j+nRo4epstXwtl968I5kJpA2TKcfxO+//25reQ8ePED9+vWxdu1aW8s1eh+kx7/zzju2ymIFl8uFl19+WfH306dPi/8vVqyYFyTypEiRIo6V/dhjj3G/V+ogpda9uXPnOiGSYxhR0HPlyqV4b5Twx0mLEqVKlfJZ3WaVKLuoWLGi+P8iRYogd+7cpsqxu68eMGAAWrZsaWuZdvDhhx+aPjcQJoHlypXTPEbv7lPe5o033tB9LCl1EqT5vJ544glLZWkpQ2asJ2qwKGS7Bxw9LwKPjIwMfP3117bKYpT8+fPrPjYxMVH8/5kzZwzVU758eUPHK/HPP//YUo6c1NRU1KxZ09A50nbUuXNnANpL2HZgh+O91jtgtk0b5X//+5/4f7vfd70UL14cy5Yt80ndZcqU8Um9DGk76Nixo+lycuTIYYc4Ip999hmqVatma5m+xpvWKCcnVf46YVu6dKnuY0mpkyCd4RcsWNCHkphHzUph1Om9X79+mDZtmuox8+fPd/vMXm5fvhydO3fG6tWr8dtvv+k+x4q/hV3XamYJWE9uxRs3bmDmzJnc36SyS9vH+fPnPY41a+kA9CusdtxLrft49OhRt89GByQ1GaVl8RRjqdXHWzt9tG7d2tbytJJd+wt2vZdWlDqepTRnzpx4/PHHcfHiRSti6WbAgAGO1+EPSl3Dhg1Vz1NKMya11L/22mvmBVMgW7ZstpepBil1EuzqBEaMGOGz/G5qA5rRNCvjxo0znL1b73VXqlRJ9ffnn3/eUL1SvvzyS7zyyit4/PHHub/znrNdz6t+/fqmzzWq1BUsWNAjJckrr7zicdyDBw90BUvMnj2b+70d74XSs5Bjh2+jHnmZFdfJ95Qnh9TnVWt7Nztw4vru3bun6ziXy4X333/f9vr14g9WFzUXFDvkkytszz77rMcxgeYvrJTFgSlcSn2ZWiDMvn37FPsgqc+kHRZUuRL33HPPYd68eZbL1UtgPe0AoV27dtzO9KWXXnKkvsaNG4v/V+so7F5GADwHDb2DCG856siRI9izZw8EQUBcXJzi9lYjR45ULVt+D6Qv7a5du7hWI61dGfRixZrlcrkwadIk3cf/+++/Ht/xHJYfPHig2C6aN28u/l9LgffGIOlyubB7927LZchp0KCB22dmxRUEAUWLFrVUn5YcSilWrLQVvTih1OlVEkJDQzF9+nSvT3C//PJLAP6h1DkdcZsvXz63z0OHDvU4JtCUut9++w1///23x/evv/46AOXnqva81TJx3L9/X/y/HWOk3O3A5XKJlnpvEBBPOyUlBTVq1EDOnDlx5MgR8fulS5eiVq1aaNCgAc6dO2e5HrVGMXjwYN3lCILA7ciciKz58ccfsW7dOvGzEw6rTz31lOJv6enpbp/1duC848qXL+82U1q9ejX3XKmvkh6kz7VWrVooUaKExzFWgiOkSoHVgUQrca6WryevA09LS1Ps2P1tX9iWLVuiRo0atpcrj3CVphzhWTcYVpYue/TogXz58hnyh7Ebbyh1Sjvx+CoSv2vXrj6pV86SJUuQNWtWRdcOO56Nnkm1t5W60qVLe1j9u3Xrpvv8PHnyoGTJknaLpYhR1xujk7GA2SbMm2TLlg1r1qxBq1atxO/S0tIwceJExMXFITY21pZIK7tuvlypY1sxOfFw5b5/ZcqUQXx8vKJccmrXrm2p/gcPHmjWwUNtJwPGSy+9hOXLl3t8r6W4mrnPVnLrLV682KNus4qJluxa/hm88+/fv6+rY9eq2+h9NWJ1BB5anO2Y+MiXZ77//nuP9ia9Hy6XC4UKFeKWxUvzoNenrmLFirh27Rpy5cqlS241jPpFlS1b1nKdSsjbkpKF12zql5SUFFPnMdg7In1OVpeBzaT7aNu2rYccUpxQ6nh4W6kIDQ31mHx+8cUXpgPBGjVqBMA5V4n33ntP97HffPONYh914sQJ7vdMbnlKFb2Kq1GlPCCUutDQUI9IxpMnT6J8+fIIDw9H7dq1cfjwYcv1qN08XoNauXIl91j5frhOZuXnvbBGIh2tvihmlTq9ucG0QszlTu88ePeoevXqbp/Z7MvMACydubG6mLld+uyttIPOnTvjmWee0XSu51ne0tPTbfNV04rivH79uvh/JUVJrXy1AWjUqFG6ypE/W+lkkCG/H7wl0p49e9q2NMv8hMxar8aMGWPoeJaTkb2Pn332ma6JlB54bUmu2AmCYDhVDMMuJYSVU6FCBcvpgpzITWi3Uvfzzz9bttSZdUORBwjJfaLDw8Px+OOPm3oOMTExaNSokRi1bmb5VQ0t/24pav2Bki8gswSaDb40ujNXQCh1PBITE92WUOTLgIzU1FQkJye7/Smht1EwPwapP5KUEiVKcF8uefl2KHt6B51PP/1U/L/0xZIrZUZJS0tz+6y3o8qdOzc+/vhjzePUnsnjjz+OcuXKYdKkSYpLtcDD7VXkOLXLApP3lVdegSAIbvW8/fbbus+XU7t2bezbt0/TL7Np06bcMqUDnJxNmzbhs88+c6ubtyOCnvcjb9684v+NKpJabeeTTz4xVJ4abOIlr1PqZsHaTd26dTXL+/zzzwEoW6369++PvXv3ur2vTi6LsefArm/48OGKk1CjOB3gYfa+zJ8/H4cOHRI/s/ZqJJ0MS9uTlJRkSgYj2KHUSZcOmzZtalmp+/3331XHSCWsuN1o8cQTT2D9+vWO5pDbtm0b5syZo+vYd999V/V3+TWyZyQ39ui9F0aXh/1Kqbt06RLq1Knj8Xfjxg2PY/PkyePW+OQ3jDFq1ChERUWJf3bMvKtWrQqAP8jxZqdKaT7efPNNy7KY0f6lSSblyvDUqVM9jldrfPIQcLUGKJ+96VES2DG85VEmV9++ffHKK68gOjqaewzPT026ZGpUJjXY+bxnbnap5Nq1a+jevbuu+pXeA7XreuGFFzB8+HC37+ywTMgHE6Yk1ahRw82ix/CmQz2TTV5nmzZt0KZNGwD/3bMpU6ZolhcTE4MJEyagT58+3N+zZMki9hvXr1/H+PHjHQvQAPgDuZm9oXkKHC//o51LfGbL6tSpk1vCYVaOlt+oNGJ83rx5yJo1q4dF1VdBF1quJnYvv2bNmtUWdwEp3377raXzrU5+lFKZSKlbt66qLyZ7d4GHRhu1nJ1yVwklpU6KWiBFQCt1BQsWxI4dOzz+pLN/RqlSpZCQkID79+9j586dbi+zlJiYGCQlJYl/agEV8sajtD3M5MmTcezYMdXUGOzfr776yu33p59+WvQ1+uKLLzBo0CBFeX788UfT0aVypLJKr1Ou1BlNzFqkSBFdFigApvIyMVnttg6YXRpiyJf0fv/9d/z6668eSp1e1KwJ+fLls9XfUw8FChTw+E5reVSO/H0aMmQIgIcRZrx3+rnnntMs0679pOWyMet7RESEaEFnx+ixEISEhODDDz/UlQIob968+Oijj+ByuRxLOM1TWo0Ojv/73/88UvTcuXPHccd7pTamlh+Pt9TPypEqaDwnd6lTf9OmTXH37l2EhITg2LFjokIvj562AzsUMjbusah3rTLLlCmjywp57Ngxj1yVNWrU0OUny2ReunQp9u/fr3t8AMCdvOrtc5SOe+utt3TXz+O3334TV+W0ZBEEAR06dHD7jq1mySdV0mf1zTffKLoSKa1CKuFXSp0aTZs2xYYNG9C9e3fMnTsXYWFh6Nu3L6KjozFo0CBF5SgiIgKRkZFuf0rIH5iSohgeHq7oiCxX6vLmzetmtTl8+DD69u0L4KHmrhZCLU1VwuP7779X/V0J6XXOmzdP04lYqyF/++23WLJkCQD1TsXMYMDO4c1W5HX5MoXBs88+i/r166sqdWr3Rr6M7QSlSpXCyJEj0bt3b+7vegcQQN8WUPLnzcrn1XPhwgXuO3zhwgW3z/v27RPfHzW0EuTKZRs2bBiWLl2KJ554ApMmTcKYMWPEiGi5UsdTSM2iN3+fUZSsAkZ880JDQz0s8dmyZeO6jei1iulBqR2qWVKk7iWMLFmyYMqUKViwYIH4ndwiDSi/l2XLlhXfFTUri13ExMR4fMe7F/v37wfwcHxo3rw5BEHwSAKvBBsPGUpWrLJly6Jw4cLi50uXLiEuLk7RZYh3D9944w3NPc7lk1np9bJkwmzCpdZ/vvDCC4iOjsaYMWMwf/58CIKAHTt2qNathxUrVqB69eqWxhpm2X7zzTcVrZZZs2ZVNKgErVK3du1aXLx4EfHx8eLL3bZtW8THx2PLli22LGXIH5TU4Vr6UI1sPyU916jSodaRFChQgOsArgZLfSJt7BUrVjS8oTkPlopEzdoiHxyl91QpqlNpmYz3HYsmsmJJsKoYMh86KwmOlXw1rXLy5ElucmI9HDp0yM2ioWZhZii1X97zKVSoEPf4QoUKYfPmzdi4caP4nZ5nJB3IecjLyJo1q7i/Yr58+TBgwADxGKlc3333Hb777jvN+s2gtDzarFkzt8/y9BC8AAil98ZIFG2lSpW4A83AgQMBuOf0cmr5lSXvjY6O1mXJldO7d283Kx6v7ZndTebnn382dR5D/mx4vpssgpYHL72R0RUCXq5LHo8++igiIiLcnk3lypW5x+qNDgf+a9vR0dEYPHiwWzDUhg0bIAiCx7jBK3/Tpk3ImTMnBgwY4JGr04nJvrxMXn5ABlOOXS4X3nzzTTFNUqbwqfM18gfFOi85atY+uaVOj7lWCTXlxExDZUs9vC2g9KDWwZQqVQoPHjxQXKY4c+aMqLjxBiFm6ZPDcuTxAgTk927atGmIi4sz5VBr14s/YcIETJw4UbTyyH3qsmfPrplGxqosM2bM0FW+PD+bWr0VK1ZE9uzZFY+ZNm2a6KfIfNLkShrrnIxeX4MGDbjL72qO/1r3mMmmZ1lfeh1t2rRBgQIF3M6zY49Tl8vlITOz1LPovP3792P79u0eCWfl0b6A/olN//79AfAtNkrLVsznivccjT7bffv2KZYRFRUl5pT84IMP0Lx5c9y8eROAOf9A4GFaiVdeeUVMkwGYd2nhBSUZQU+9U6dO9cgDqHYeL/MBL9fiq6++ismTJxvewkrJR1hvpLtcEWUKz4gRIzBs2DBbreDe3C1G7oeo5E4TEhIi7uwktYSqEbSWOm8gf1DyXFZmy1RT8OQNr1KlSuKAYWVwL126NOrVqyfuNfnyyy+L5bLM3HphloElS5aozpZ5lhY2ABUrVsyts5bz6quvcsssVKgQBEHQNUvPnj276e3FjHQAly5dEo9fsWKF22+5c+fGBx98IF7rzJkzRWdnQRBw+/Zt7NixA5MmTeLm4AP+a3c8vzY9aG11oycAQEmB592nPn36oGfPnmjXrh0A4Ouvv8ann37qoeDL34Ply5ejRIkSuHTpkqq8Skjvz86dO91+04puDgkJwc2bN3UlFecpSL/88gvu3LmDmzdv4sCBAzolVq9Dfm/79esH4L/7VqVKFdSpUwe9evXCyy+/LB7He+/ULNzSAYf9zhs4tBRDqQXBbF/F85FUK4v1HWbry5MnD1avXu02MfdGgE6XLl08vtObOFjJT5N3D3huB+XKlXPbNQEAVq1apRjUo4a0TUjl1Zv0Xq78sDL0TMTt8Cc3itKyq7xM+Wc1331Wpt48dUYtdfpjvTM5RkO2pccbaYwHDx5ERkYG7t69q9oYtQIapIkQWf1Vq1bFc889hxYtWogDhhzebgsffPABNy2IHniO2mYtNv6CtOPkWUmkvPbaayhdurSHf6aaXxi7T2vXrsWVK1c8fh8wYIDqDFvL/0NPMAeztmlRpEgRTJ482e273Llziyk+eHKx+l9//XXVCYYRiytPifvnn3/cfPJ+/vlnN9cDvZnheUpTaGgoQkNDbdus2+Vy4cUXX3TbI1LpORUuXBhr1qwRf+cpX2pK3dKlSz3uu1yp0xNtzVMEv/nmG3GbLrOoWQDVrtkIzCf60UcfxSOPPIJRo0Zh165dlspUo27duh77f5pVUsycZzaASw5vQiD/v9ZKAQ8jY4E3xw2l+6Wl1OnJSqH3Omj51QJsucOM8/LMmTMBGF9+5RESEqIaQLF7926sWrXKcLlhYWF44403VH31SpcujVy5clnaNksLdm+s5opzYobtZJoJvfKyASt//vzcpLhjxoxR9eHQgkVnyScGetqqNLRf7zkMdv16BuTTp08rznZ5AxSvLT3++ONuqXCaNm2quW8wD29ss+RyudCxY0c3X0CtgfjKlSu4fv06dyLGZJZH4vF4//33sWbNGrdof97ALPe95VnqunbtKq4OmEWqwCld+wsvvGCpjqFDh2Lv3r24dOkSwsLC8Mknn6jmupRjNIkuz//M6jZqdilCx48fx5YtW3SVo6TUSdNz1apVS/F8+fNkllq1FCFm0epv2YRMfhxvwl2vXj0A/7laqK3qWZVLjtF8tqTUSWBmbj1JceWwsG01K4lZ5/mvv/4awH8vQI0aNSxtBq7VAK9fv46//vqL+5uVWZL8XD1RjGroSQprhA0bNmDTpk1u3129etXt89y5cw2Xa/Seff7553j11VcN7ciwcOFCLFy4EIB2m6patSoEQTDlv7Ju3Tq3/ZeNdFAsMlLPzgbFixc3FJDk5K4t3oh8ZG2EF3ygdI/z58+PvHnzevRXderUERUi3hZIcgvL9OnT0aBBA0UfYuDhspk8St6O5VeG9PlplXX58mWMHj3aUn2hoaEeExS9bNiwAb/99puhc6pWrermxwc8fH7Hjx8XPxtdDbJLqStTpoyotOitG3B//mpGCDXeeustnD17VjF9mB3wrv27775T9BmdNGmSuC0cu97o6GgIgiAafLQsdXrlOn/+vKb7CW9irwYpdTIEQRAjrqQo3VjmbC5/qMxnI3v27IZ86niw2bZevwUttBpgWFiYYmoCozNUafZt+ZKQlSSXZ86c0Z0BXC8NGzb08EmRziAFQeD6xmjBlhH1JMEEHnayq1atMpQJv0OHDmI7sWrB5CVrZkRFRaF8+fKmyo2MjMTevXt1b/elhPT6mBO4k9Y0byp1Svkk1WDtpGzZsrh9+zZ+/fVXS7LMmjXL4zut6PPt27er7o+qN+WGHgoUKKCaCsNpGjZsaHgLPODh8v/t27fdvpMG2eidqBvJn8hw4v4Y6Z+UcLlcplZH5s+fjw0bNpiut02bNprZJQDlZ8LuJ5ugGtmCT/reFC5cmOsHKT3G6LMjpU4nSo76mzdvdksgyh7G22+/jXnz5mnmmtODlaVcNcx0TDNmzDCk2Hz++ece8ptNIXDq1CmcPn0awMPACye3jbGT0qVLY/78+bpyu9mBWaWO+YHUqFFD9zlG22TVqlVtyWXG8IZ/ptMKQ5cuXbiRvHXq1EH//v11bY8WHh6OgQMHInv27Jr3V+l61NoN7zfpe1yxYkW3nWrk8CIw9cjEllnlPqny4/2lL1i2bJnib6GhoaouJ7Vr18a6des8fFSljBs3DlWqVMHo0aN1BfkwzPrUqSluZpQ6KxNO6bmdOnUS89gpwSKk5SmBGO+++y6eeOIJ7iS1Q4cO+PnnnxWj41l73LdvH86dO2cqOb5T/QoFSlgkV65cosVp7NixohKXJUsWcesPNaVMzxKTE75j69evN7XBd2RkJF566SUPp18jSK9nw4YNui0LPN8huzD6ghl9JvLcSVKM5j10iurVq2Pv3r227drgFLy0CiEhIcifP7/Hcrnd9TmBdElfWleWLFkwduxYXWWkpqbqrk8riEvvioKaRVeOnp02ePASvwL/yVijRg20adNG9f3yJiwAxcgm8VIaN26Mxo0bK7qmsAA3My5CZlDbG/y9997zyJmoBXuWuXPnRmJioqFzmbsIb/9qHgULFvRoO/ny5RO3KCxXrpyqm5FayprvvvsOf//9N7Jly2Z49crpaGuy1NlI//79ubtQ1P//rXZ4Eavdu3fHTz/9pFou68DsirQDgEaNGpkOCjDrz8cbLBo2bGh5Oc6XWB3wz58/7+ZXYwes01BKDqpG1apV/T4qmQU/FClSxM1Sd/DgQcO+TpmRpk2bijnxpH2SETcRQRC4+0Sr8ffff+P27duKA6kZQkND8cEHH9hq/bWCmXfn448/NuWrq4TZBOM81K7HyPZfcvbv32+4HRQtWhQnTpxAz549Tdd76NAhxMfHmz6fkStXLlP9K+DcyhuDLHVe4Pnnn1fUzkNCQhTNw4xcuXJhypQpqsl/rZIlSxbdSQ7ZkohWOg857du3x7Zt2xS3X/MnypYtq+pI/d577+GHH37wSARrFL0JKI3AnM6ZX6e/K2lGadmyJW7duoUcOXK4WeoKFixoyqVAC7NO4GbQm7vKCtmyZcOOHTtw9OhRN6WO+RjxfI3ssC6wa+PthJAjRw5D1ka7UnQYoU+fPpqJ25XymKlhNehDzurVq2175/ft2+cWzSy/30ePHsXZs2d1l8fOz5cvn2oSfyXMJp1mFC5c2JE+1whqWQB4AUlGIaVOg2XLlvm8EQBQ3K/TLlauXIlFixbpOtZMxwX8tyRhV8CHkxw7dsztc6lSpdw+v/DCC14dUIxQqVIlzJ49G4UKFcK2bdt8LY4jMEWLWeoCPVCCoXdpyQ7k7hedO3fG+fPnPXIUNm7c2PKm6GrMmzcPNWrUwK1bt9yUJrX+xRcTFSVft7Fjx2Ly5Mm4ePGi+J2/TqSM9llVqlRx27+VnS9Ni8QmBqVLl8bJkydVywv0HKV2oNZnJScnWy6flDoNpA6+P//8s2MKyTvvvONTX6ZXXnlFt9neyu4agHdn13qoXbu26pLyvXv3vJKrzC5crod7DLLlDV/7yGlt2WWF8ePHIzIy0pE8V5mNiIgIDBs2zON7tme0nVy8eFFUlpnvMeCZB1EJf1EKWF/2/vvvG97OKRBhCkl0dLTHb3379tVtZbLr+f36669+45OsF9ZOnBpTSKkzgNW9/tRgueiCGX/piOVIdxng4S+RdUYpVaoULl26xA2Z9xbXr1+3nGRajTJlyoj5+ZwkT548unZZIPTx2GOP+VoEW7G7jefJk0fc59YK8ojkp59+2lJ5alam9957j5sXUYqRBOR6YP7qgQS7h06tAASEUrdv3z707dsXISEhePTRR7Fo0SKEhYVh6dKl4qbE8+bNc3Q3AOI/rCpn/mapC2acVui02oKdG3T7khs3bvhaBEKCv04QAeB///ufW35OM/z+++84ePCgZVmkuQMPHjxo2SfN6vJpZlp+LVeuHNfn2mmXkYBQ6goXLoz169cje/bsGDhwIFatWoUWLVpg4sSJ2L59O/bs2YPY2FhTe84R5jH6Yvrr8ithHnqWhC/wZ6Xgq6++slxGqVKlPPx4rWI2zYoUqwoJi1L25+dnF0ePHuV+//TTT6NBgwb46KOPVM9v3769uEexEQJCqZNujhsWFobQ0FCcPHkS5cuXR3h4OGrXrq24QX1qaqpbVJUdjoiZnWDzqSMIwv/QUhzKlSuH4cOHe0kaAvhvv1qzuwHNmTMHixYtMp23MBjImjUrNm/erHmc3sBFOQGh1DHOnj2LTZs2YdCgQdizZ49bSLSSk+qoUaO4zr+EdYwud2eG2Vlmg54p4RRqSp3L5VK0hBDO0b59ewiCgJYtW5o6v1ChQujfv7/NUhFS/Eqpu3TpElq1auXx/erVqxEaGopOnTphzpw5CAsLQ548edysbkpOhzExMW7OosnJyeR7ZxGXy4UNGzYY2k5KClnqgodq1ar5WoSgY968eT6PWPYHaMLgf0h3SiL8E79S6goWLMiNRExPT0eLFi0wePBgcQPkUqVKISEhAffv38eePXsUE9pGREQEbPSiP6O17x4PteSmvqBJkyZezQsWbBw7dowmSA5Ag+ZDAimNEEH4C36l1CmxbNky7Nq1CykpKYiNjcW7776LNm3aoG/fvoiOjkbWrFkxf/58X4tJaFCpUiUMGzYMffr08bUoAIC1a9f6WoSAxowTL0HoRZr0ljDGgQMHEBoaEMM7YTMuIZOthSUnJyMqKgpJSUmmtikhCIIgnOXw4cN4/PHHRcf8zA4FmRF6IVWeIAiC8CvILYIgzEFOCwRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQUBAKHVHjhxB7dq1ER0djZdffhm3bt0CACxduhS1atVCgwYNcO7cOR9LSRAEQRD2s2vXLvzyyy++FoMIAFyCIAi+FkKLtLQ0hIWFAQCGDRuGkiVLom3btqhTpw62b9+OPXv2YN68eZgxY4ZmWcnJyYiKikJSUhIiIyOdFp0gCIIgCMIrBISljil0AHDnzh2UK1cOJ0+eRPny5REeHo7atWvj8OHD3HNTU1ORnJzs9kcQBEEQBBFsBIRSBwAbN25ElSpVsGXLFjzxxBNITEx0s7Slp6dzzxs1ahSioqLEv6JFi3pLZIIgCIIgCK/hV8uvly5dQqtWrTy+X716NfLmzQsAGDt2LDIyMvDqq69i3LhxmD17NgCgVq1aiI+P9zg3NTUVqamp4ufk5GQULVqUll8JgiAIgggqQn0tgJSCBQtix44dHt9LlbKoqCjcv38fpUqVQkJCAu7fv489e/agYsWK3DIjIiIQERHhmMwEQRAEQRD+gF8pdUps3LgR48aNQ0hICPLnz4+5c+ciLCwMffv2RXR0NLJmzYr58+f7WkyCIAiCIAif4VfLr95AEASkpKQgV65ccLlcvhaHIAiCIAjCFjKdUkcQBEEQBBGMBEz0K0EQBEEQBKEMKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQQApdQRBEARBEEEAKXUEQRAEQRBBACl1BEEQBEEQQUCmU+oEQUBycjIEQfC1KARBEARBELYRMErdkSNHULt2bURHR+Pll1/GrVu3sHTpUtSqVQsNGjTAuXPndJWTkpKCqKgopKSkOCwxQRAEQRCE93AJAWKySktLQ1hYGABg2LBhKFmyJKZPn47t27djz549mDdvHmbMmKFZTnJyMqKiopCUlITIyEinxSYIgiAIgvAKAWOpYwodANy5cwfFihVD+fLlER4ejtq1a+Pw4cPc81JTU5GcnOz2RxAEQRAEEWwEjFIHABs3bkSVKlWwZcsWhIWFuVna0tPTueeMGjUKUVFR4l/RokW9JS5BEARBEITXCJjlVyljx45Feno6Tp48idmzZwMAatWqhfj4eI9jU1NTkZqaKn5OTk5G0aJFafmVIAiCIIigItTXAuglNTUVERERAICoqCjcv38fCQkJuH//Pvbs2YOKFStyz4uIiBDPIwiCIAiC8BeqVauGQoUKYfXq1baUFzBK3caNGzFu3DiEhIQgf/78mDt3LvLnz4/o6GhkzZoV8+fP97WIBEEQBEEQutm3bx/27dtnW3kBufxqBYp+JQiCIAjCH3C5XABgW+7cgAqUIAiCIAiCIPiQUkcQBEEQBBEEkFJHEARBEAQRBJBSRxAEQRAEEQSQUkcQBEEQBBEEkFJHEARBEAQRBJBSRxAEQRAEEQSQUkcQBEEQBBEEkFJHEARBEAQRBJBSRxAEQRAEEQSQUkcQBEEQBBEEkFJHEARBEAQRBJBSRxAEQRBBzN27d3Hr1i1fi0F4AVLqCIIgCCKIKVOmDHLlyuVrMQgvQEodQRAEQQQx58+f97UIhJcIGKVu3759qFu3LqKjo/HGG28gLS0NS5cuRa1atdCgQQOcO3fO1yISBEEQBEH4jIBR6goXLoz169cjLi4OpUqVwqpVqzBx4kTExcUhNjYWsbGxvhaRIAiCIAjCZwSMUlewYEFkz54dABAWFoYTJ06gfPnyCA8PR+3atXH48GHueampqUhOTnb7IwiCIAiCCDYCRqljnD17Fps2bUKdOnUQGRkpfp+ens49ftSoUYiKihL/ihYt6i1RCYIgCIIgvEZAKXXJycno1KkT5syZgwIFCrhZ3bJkycI9JyYmBklJSeIf+d4RBEEQBBGMhPpaAL2kp6ejQ4cOGDx4MMqUKYO0tDQkJCTg/v372LNnDypWrMg9LyIiAhEREV6WliD8h4MHDyIlJQV169b1tSiEAcqUKYP8+fNj586dvhaFIIgAwSUIguBrIfSwZMkS9OzZExUqVAAAvPvuuxAEAVOmTEHWrFkxf/58XUurycnJiIqKQlJSktvybaCzcOFC1KpVC0888YSvRSH8DJfLBQAIkFed+H8yy3MbO3Yszp49i+nTp/talKAls7SlQMTuZxMwSp1dBKtS53K5ULhwYcpHRHig1mmkp6cjNDQU8+fPR6dOnbwtGqFCZhmIM8t1+hK6x/6L3c8moHzqCHVSUlIsnb9x40ZkZGSYPr9FixZo3bq1JRmCneTkZGTJkgV79+71tSgAgPv37wMA5syZ42NJCOLh+7F7925fi0H4GYIgIC0tTfO4EydO4P3333dUeb1y5Qq+/fZbx8q3Cil1fkJaWhpu3Ljhs/p37dqFRo0aWWqsP/74I5YvX655nMvlwsyZM03X4wuWLVuGr776ynI5x48fR0ZGBubNm2eDVNZRmyWePn0aCxcu9LZIPuXYsWO4fPmyr8XItLRt2xa1atXytRiEnzF8+HCEh4drHve///0PX375Je7cueOYLF27dkX37t11KZm+gJQ6P6FTp07Ily+fz+q/efMmAHhtQJsxY4ap827fvo3vvvvOZmkesnz5chw9epT7W5s2bfDee+85Uq8d3Lt3z9L5PKWuYcOGmW5J9sknn0S5cuV8LYYi69atw6VLl3wthmMcP37c1yIokpGRgY0bN/pajEzJsmXLdB0XGvow9lMpxZkdsBUxf13KJqXOD9i2bRuWLl1q6txvvvlGtLaoJVaeNWsWXC6X38wuzL4Qn3zyCdq1a+eI72Dr1q3x9NNPWypjxYoViIuLw/Hjx3Ht2jVb5Nq/fz+2bNmi+PvGjRuRLVs2nDhxwuM3rfvMfuctuyclJRmUNDhITEz0tQiKNGnSBI0bNzZ0jsvlwkcffeSQRPbC+jJ/ZMaMGWjUqBF+//13t+8vXLiAP/74w0dS+T8hISF45513vFIXS2324MEDW8q7cOECDh486PadU230yJEjtpRDSp0fEB0dbfrcL7/8UvOYmzdvolu3bgCAu3fvqh7r9OzDavnXr18H8J8vmN1Y8SlMTExEq1atUK9ePZQrVw6VKlWyRaaqVauiQYMGir/Hx8cDAP766y+P37SW09nzkD+XDRs2eFj/Ll26hLNnz+qS2Z/5999/8cUXX3h8b0aJffDgAebPn+/VWfvFixfdPk+dOhXVq1dXPUdPP0E85Nq1a1z3iCtXrgCAh5tMqVKlbHvX/Z0PP/wQNWrUMHSOIAimV2akZeiBKXV2WerKlSuHKlWqWJJJLyyzh1VIqfMxds0o1JAOAk6apfVg9UXw55l8njx53D7LB1+nUPOL279/v+q5PKXu6tWraNy4sUfgzWOPPYbixYtbFdfndOzYET179vR4FwoWLGi4rK+//hpdunTB5s2b7RLPMH369MGePXtU362QEO919f379ze98uAPdO3aFV27dvXom5WsQFZdH6Skpqbin3/+sa08OUpt5LPPPkOXLl00z580aZKHpdKfYO1cfp2nTp3CxIkTDZd369YtAHzrPS2/ElzkCWHv379vaycBuHfovlbq7MJfXqi0tDSsW7fOpzIw65mZe/Lzzz97nJuamqr7/JkzZ1pStAVBwMiRIx0PEvrrr7+wdu1aAFB0ojbz3rHOXssC7g169+6t+JudSt2RI0fwww8/KP4+fvx4tG3b1rb69JKSkgKXy2U5elbJjYXdQyvWfC26devmaK5Rpef2+eefY/78+Y7VaxWrk/kWLVpYckGoWbOmx3f+MgbJIaXOx8g7oFKlSiFbtmy21iHt0L1hGVRDablPL0Zf7vT0dBQpUsSQJeXq1au6jx09ejSaNGmCkydP6jqeXfeePXt016EFW2Ll3VOt+9ymTRsA5jtN3jKmEf755x98+umn6N+/v6HzmjZtirx58+o+/umnn8bLL78MwB5rsT+mNFBLS2OnhbtChQp4/fXXbStPihU5//77bwCwLbL8/fffd/vsjVWCXbt2OVq+P/uLOonVcY8XwGO1Hxk1ahTat29vqQwepNRZZPjw4aozw9GjR+tK88GwujctbxbpqyXLPn36eEQt2TW70VvOvXv3cOHCBYwcOVJ32YcPH9Z9LFtiNRpC/9tvvxk6Xg9aSt24ceMUzzXbRg4dOmT4nMTERLhcLuzdu1eUj+cjKQiC4nP+5ZdfxIhtPTDr47hx49wmFsuXL8e2bduMXgK+/vpr7vcZGRke1vCFCxdi9erVhuvQIiMjQ3fgk9U+YMWKFShcuLDmcXavMhiBPVe7+jslPzCrfdiRI0dQq1YtxTbvL2RkZPjcCGAUpfvnxH2VlzllyhT88ssvmudlyZIFbdu2xcCBA7FkyRLb5SKlzgQZGRmi8jVkyBDUr18fwMOBQ750FRMT40hC3uvXr+PChQse3/OWgaSdnDc7jalTp4qWILvqN5p92+7rTUtLQ1JSEpYsWYJ9+/YZPt+XPoEDBgzQdZz8ngmCoBltzM7Zu3ev6FCuBJv1Lly4UPV+xMTE2O4LNmDAALfra926talAJaV21aBBAzGtAqNTp0549dVXucfv2LEDZ86cMVw/8ND3Sy1318WLF8X7q6fdbdq0SVGR+eyzzzx8RM+cOeMW4b1w4ULuKsOtW7fgcrmwY8cOj9+UljITExPx448/asrMw8w7lpGRodlX2JX5f9SoUdi9ezd3Au90/2zk3rz11lsICwtzTBZBEDBs2DDcvHkTgiDg559/9iulVgu5rH379kXTpk01z8vIyNDtc5qRkQGXy2VI+SOlzgTDhw9HsWLFPPyA8uXLh8cee8wrMpQoUQJFihTx+J43CPo6uIA5m+rlypUritZPs9fy66+/mjpPTseOHZE7d260b98e1apVM3y+k52WlbLVFP8DBw6gcuXK4ufDhw973E92zrPPPquYPPb48eO4efMm9xmuWLHC7XO9evUwZswYAA9dErZu3ar7WrRgS99q9+vUqVOqZSidGxcXZ0iWunXr4sknnzR0Drt/CxYsUJVJmoqB1y/cvn3bTalq2LChYuoJ3vWWKFHCLXBGKYcbmxBIl6wzMjIQHx8vPmM5b775Jlq0aGGoTVtp/7ly5cIzzzwDQLmPsasfZYoSz8rqpL+eUfQsY589e1Y1ldaHH36o+FujRo0wdOhQ5M2bFz/++COaNWuGVatWcY+VWtdPnTql6IOr9Iz0to0//vgDLpcLx44dUzzGm1uusTaitDLAg5Q6g/z5558YNmwYAE9l5fbt24aWhKygpCjxGrW0Q1dqiHYqfvLUGrdv3/aoX+2FeP755zWzyvPO/+2339zqAuxXaOXKh5o8dnPz5k28/PLLiqk3jAwI48aN031vBEEQU8kAQMWKFfHCCy+4dazSunnRe3FxcShXrhzq1Knj9j2TQWphFgTBTTn6+++/MXz4cF2yGkH6zOTO6UrJTtnyovxeW0nZ4FSQhfS95z3rnDlzqg66UpTalh63A94gOH36dDz33HOYNWsW99h///3X4xy9mHnn79y545GPTAmr77pa2g27+pHhw4ebciswSvHixRX76n379mHSpEmK527atEn8P+tfpH1Kenq6xzUIgoCSJUuiYsWKuuT77rvvFO9DWlqax/1m1mQ9Eb5Kzyo9Pd22lFtm2gMpdQZhzrh2IFdA7IDXCLxtqVPLZcbku3z5shh5KUct6EDtWmrWrInOnTvrlNI3KMl/+/Zt3L59G0lJSYo7BixZsgRr16415J+l1ClMnjxZ8Ry9HVLVqlXF/6splC+++CLq1asHAEhISNAs1xdLMHJFVEkG5koh/33NmjWG6svIyHDcKiNta0rtjvn7qr1XgiBwE1sbRXrP2JKzUn/K7o23LHVStPpLPW1YqdypU6eK1ihePXZdw5AhQ7huBZcvX0b//v1tbXtK98PM7iDS6588eTKio6PdrGbsd57rEY927dq53QeXy4VmzZpBEASEh4dj7NixbsfriXDWstS99tpriIiI0CWfXoyM4aTUGUTqY6BmdTp16pSHcjJ79mwULFhQ9KUwkxdLC6tKnZFO5e2330ZkZKTH92ovBCv/4sWLaNasGfcYPfJK5fznn3/Ez2qZ3W/evIkDBw4YKtvIb0aR3qc8efIgT548qFKliuISPrMSWVli2LBhA/d7aZl6dyw4ffq0rrqVIo8TExO5kcZG7rGVXIBq9aSnp2Py5MkeS2Tr1693O9dseyhQoIDhZVetyEW5LFqWOkBfiiM9qS5SUlK4x506dUpUmAVBwM2bNzFhwgTNd1xriXzhwoUeeRSNBkps375dc5n91q1bHqsvgwYN0lX+7t27RZnYPRgzZoxojXJSqVNi4MCBGD9+vC258JwIopD6aDLFX/qc7fCllhoT5L5tWgrbvXv3RCue0jjHJt2+2mWElDqDMNM5oJ7Pq2TJkihTpozbd++//z4uX76MYsWKATDua6YHaWO8efOm6GjJ+90It2/fxtChQ8VBYPfu3Zg9e7ZHx6pUx5UrV3TPDtWc4+Ud4eXLl/HEE0+IZn6ekz/jpZdeEv1mzCK/BubrsGjRIl3nS+WR/j8tLQ1paWmqg4xWniXefZcumwLwCFzhYabDNzPznzdvHjf/E2//YaV2a2XpkrcDB+PHH3/EBx98oJi6RBAE1K5dG6NGjRK/M2LNun79umHrlx4nbCl6LHWXLl3CZ5995vZdbGys233Vszqh1G5Lliwpyi0IAvr164d+/fq5TQjUyMjIwN69e/H999+L312+fBmdOnVC3759uee4XC4MGTJE0V+P8fzzz3v00YD7dk1ly5YVU+cYmRxv374dtWrVwvfff4+4uDhxeV86CZGWN2rUKLhcLq+tqtihPEr9nt977z0PFwkzdcTExHh8p3Vfrly5wh2H1GRhLizyMVzLUte3b1/x3dC6vkqVKnlYKx999FHVc+SwOowEUwWMUpeSkoIaNWogZ86c4ku3dOlS1KpVCw0aNLCcCsQMZcuWNXS8N5aVWB3p6enImzcvYmNjDZ2vtP/c+PHjMWzYMNFhXc3nTf5C3Lt3D48++ihGjhyp6x7oiXhk5TAnXabwsHN///13uFwuNx8NNsPSSlli5jmNHz+e+73L5VK0JpldAjFiqZP7CTFridzqY3UwMXItaolrAWgmrn333XfF/1vZy3jq1KmKvzGraGpqKrZt2+YRqCEIAnbt2uWm/Ej7gzlz5nCVUyuw9DFKeRTV2q3aO/X555+7fR48eLDbtmKLFy/WlE3PO5ORkSEOokYsLs8++yzeeOMN8TtmIZJb0KRlDh8+HJ988olm+XJr09y5c90mQmYtwezZnzt3TnGSJLXUjh492lQ9cnbt2qUrgKtMmTKW9wGXRnl/9dVXGDJkiNvvVsc7nuLPK/PRRx9F+fLlVY+TK1cFChTgHqel1ElzQeq5vmvXruH8+fNiP6GVGUAOq+P06dO6jUABo9Rly5YNa9asQatWrQA87MwnTpyIuLg4xMbGGlZezKJn8JOnNGB4Y1mJ1cEa5caNGxWtQ1LYC6mUU8+I46e8DtaRx8XFKdb/xhtvIFeuXADU77H8N/lgxZa8Fy5cCIAfwaUVzHL06FHV340idbqVym92dw8ry68pKSnImzevobx6ehI3yzvBNWvWKEZsTZs2jfs9k5/nU7h161bxe2m5VgYOpfdUTnR0tJi2iN17LSX2rbfeQocOHUzLxsOu6GY9SNtmiRIlTNcrRRAEzQmbXM527dp5HKOUC49Z89SWqWfNmgWXy6XYn7355pvc7x88eGBouVG6jGd1wnTt2jXdz/7TTz/VnWpJK02RFtJVKx5ymdUsvrzr++mnnwA8vJfs9wkTJrgdw5KfGzXqMIVWSalTut/SdqPn/n366acoWrQoXnvtNUPyMaRy6M0BGTBKXWhoKPLnzy9+PnnyJMqXL4/w8HDUrl3bUMJYM/zxxx+6Xyw7tuIyu6zEZGTKzZ07d9zkHjx4MFdh3Lt3r2q5bBAz6u8GuL8oSvfw+++/F/NZ6Wm8Wv4zzJoxePBgj9+0OiOlsHo7kF4/u6c8J/uffvpJsw0MGjTIzRKn11rCQy0Vx8cff6xZrrzuV155Be+++y53iVFJodRyjuf5GvKOXbt2raavFKDeDrT6Ez3Lh1pLQjxu3LhhOiGpHkvdP//8A5fLhfj4eNWypMqXdIlSqQ49bW/fvn2aPkvy93nlypUex/Tp0weAp5WN+TKp7QjTrVs3AMCWLVs05ZVSokQJDBw4UPfxRpU6JbeRpKQk5M+fX3EipFSvHvr06eOxI8zYsWN1W92NTjJKlSql+Ju8TqWUJVLjzbFjx9CzZ09Lssnr1TtpA6C5vA/816+aTaklvQ69AToBo9TJSUxMdHPSV1KkUlNTkZyc7PZnlCNHjqBSpUqYN2+e6VlXaGioIWuXtFH1798fLpcLZ8+ehcvlUh2AWSNgncCRI0fcGsacOXPclq/0wmZZSp2hdKlJnlyRXYvViCtBEERLIlsOU3oe3333nWI5Wkrdr7/+auseuUoKArsfnTp18vitefPmismC2TWPGDHCLaktryPzViSp0rM14qIgtzKbrffll192i8y1EyajnkmX/N4XLFhQ00LarVs3tG/f3tD+u3pgbYY5b2stqRqxBm/ZskVXOytQoIChQVMJNmGVv6NMBrsTVgP6oy2BhxYV1h8aff/kAThszOAptzzkz+2XX35RfJY//fSTh1L08ccfY9u2bZr9X3p6uua1Gbl2+dgo9ZeUyi+1rkuDKgBzWy/KA+ykyni+fPk0z71586auLBZm9QbpPYyOjta1whKwSl2ePHncFDSlgXrUqFGIiooS/4oWLaq7juTkZMyaNUu0hgwdOpR7XGpqqqbCZlRJkD7Mb775BgDEyE2WHkLtPNZp8nLxGGXVqlXiLFgp5480kvf7779384uSWmDkskRERChaPTp16uQWQbR161bRr+C9994DwO/AZ8+erXo9W7du1UxBobcT1cPgwYPF4Bjpy61l/bx8+TI3otDIgOstx+uMjAzLKXrMtFOlc1iQkFXkwQZW/JAuX76suUewfKCSYnQQlX6WW8imT5+uWpaRNtagQQPdz05PyggtWF8vtdQNGTJEtApLZa9SpQp3IHQynUyrVq3E/sns8qtcubt3756Y3PnmzZuqQT5SjAbXAA99N3muCVJ/sLS0NM17aOR9lgfrKE1q1Cbk1atXF5eejfhsbt68GZUqVUJsbKzbe6JkLZSemzdvXpQvX9707id65JOixzAUsEpdqVKlkJCQgPv372Pnzp2KyQhjYmKQlJQk/ulZe2c+GX369EG3bt1ES4paBIoZC6AaGRkZOHLkCLZv3656nLzDkHcGAH8Z6O7du+jQoYNiIlspLVu2FF8yPcqp3I9NqmjyGqmSgrVw4UK3TbV5jqL9+vXz+O7tt99WlS8mJgavvPKK6jHSl8eOfVpZu+Mtv6otRUmj/pSOYbAIOl+QkZFhed9PXtvVew5DOtBrvTtOLrMrUblyZV2JTXlIr5W3rK1231i70LskrBQ5a3WCqGWp09N+2cC+YcMGdOzYEQDcIi+lec0OHjyIP//8E4C7s7yTFmyW9gZ4mETZDqVu9+7daNSoEU6dOoVq1aqhdOnS3PPseP+l8gP/TTRYQmgml533UC1wS/pOa6XpMeqLLt3yc/DgwaruAbwVFeChXqCVuNroc2H318w9DiilrmnTptiwYQO6d++ORYsWoW/fvoiOjsagQYMUcwdFREQgMjLS7U+NrVu3Ik+ePPjpp5/cGrHdaFk1MjIyUKFCBTz//POqg53S7Fz6fZUqVTzOW7lyJRYvXozcuXMrynD8+HGPGf3OnTsNNzSmCEodXnky8+BZGxg5cuRQDOwwilwpZ/X+8MMP3LQbdqA103W5XFznbKUOglk19+zZg8cffxypqamGtq2zsuSsxwleCzMJZ+X3cN26deL/mQ+UUnl6JnhWBi6lc2vUqKF5Lq9tSMvjJXZNS0tTjYw9f/48unTpolk3oKzIGfGpM5OnS217JmZxk0bo81IJ8Rzy4+PjUa5cOfGzk0qd9N5NmTJF1zlM2WbLvEp9/t27d8VoWl6mAjuUOvmm9NI8gww9Cofa70Z2uxg6dCh3aX3t2rWqdet5xvJj1JQ6FnzHO1craMJoTr+QkBB88sknwa/UrV27FhcvXkR8fDy6du2Ktm3bIj4+Hlu2bDG0rKoGSxvQvHlzjxkLYN9yllbYufRhGslnp8faIf9NyXLw4osvolevXh7fG7VcWTHTqzmHGong1EL+0jGZXn/9ddvqkKPl+OpyubjLIG3bthWX8XjW43HjxuH06dO4dOkSmjdvrlsetWV9LXr27Cnm8zKLGUudvG1JO312b3y1n+bt27fRv39/U+dqWeKUniuLGJQff/78eUN9pJKCbkSpq1SpkmL5ZgYrK36G8nOdaBPp6eno3bu3xxK92pjxySefqEaFqm38rmeVxS5u3LjhZhzgrbrIUfudt9sF48CBA2737Pjx41xXFbUdK06fPq1rkioIgltgkpF9XaVtSCmfJePBgweG2/y3334b/EqdNzCrtBk1+6rNSJXkMDLzMNJpKTnyK80ujC6zSTt33jWoOZ3fvHlT7PSU0g3YgbcCCqT3tGfPnhAEQTEFw19//aU4uKrlemPX4nK5kDVrVt2ysX0PzaC0V6oRmNXFyvKrdMcXO5zyrXD06FHF/IVKsOupXLmyx296rsOJ5Xcz0ZtKx1h5JoIgKG6hpwZvcmRXm5BGWR85coQbpSpPAC5lzJgxXOspu5/yqEnps+D5lznR1n/88UeP8c1soITaFpKMZ555xiP1E+s39STUBh4GWugZp06fPu22y44Rpc7omBEVFaV5zKZNm9yCZEipswGtDuzFF1/kfq82K7ULPS+EIAi4f/++hwldit6OX+k4KwMHr5FqJQllkWRqTuR245SSJ93g+tChQ6qpCq5evap4r9V2fWBL0tu3b3ckEtApunfvDsDYvZ8xY4bbZ57Pja+UOiPcuXMHr7zyimrCYj33xYnnreXLZwRmMeM9E61+RRAEri8s85kzgtXodnZP9CyrGd3eTfqdWtvlTcbNps5QY+TIkR7f6VHqeJjJ1/bgwQPxeUnfD62dh2bNmmW4Lq08dVLkCcm10OPP2rBhQ9HHnKfU6eoDDEmVCfCVo7kelLbFkSIIArJnz646oxUEQTUPF/PLcUKpMxM9aDXzuRbnz5/HI4884mgdDHmkr9oSgtr2OHJlhocZJ227Ey+bwahSJ/Ujk8/k161bZ0mp85YFNy4uDmvWrFGNjjVqqXNC9goVKnC/11sX80syI1tSUhI3n+bTTz9tuCyr94Z3vlKqqerVqxsui30nVz6lz7dHjx7i/+/du6dqEbQKLyBJqT2eOHECt2/fNrwqowZPedaawJhJrmxkIujU/Wb9GVnqbMJflDqznY4gCLpmodJtaeSh28w/wAmlzkyqkLFjx7o5wNsNz+HYiQHx2LFjHoOS0+3NaPnPP/+8Q5LoR61D5XXU0uOlHf3Zs2fRpEkT08l8AeDDDz80fa4R1J7TypUrdftPOaHU2bX8KsWMos32TzWDXD6r1tulS5eibNmybveGJUWWo8cCqfSdUi4+OS+88ILpiamegEB5vWPHjuXKcu3aNZQtWxY5c+YUEz2bQXrPLly4wM0TqHZf9+zZYygvrLxMb733PKTZG3yq1OndmsTfsTPprBXMzD4BfY1A6kwNwCPJLRsY9Sp14eHhuuUzs1Sydu1aNGnSxPB5WgwcONDRQAg50r0eGVpbollV+oyebzXXnNNIl68ZahHSgPH9Fn2B2tLMa6+9phqlLkWq1NoVSGSXcrhr1y5byjGD/BqUdiLQS79+/SwvRTPUlDqpv5cS+/bts3RvzaTjmjBhAldu5kJhFT1tTmvcMRpxCgBt2rQxfI6T+FSpa9mypV1F+RSl2Za/Ik8boLXdlx7YwKhXqTOyPKq2ibq3GTVqlGLAgbeW3dQsBnb4RxlV6pxe6taDkchtKW3atOFG8HrrWVpBumG9FaRtRro85zRG77E3n4kTij4LHOAlB9dTvxQjaZ5435uZKBuFVy+v79LK/ai3P9JjXddS6gLhvddCbgjQc036drT+f5Q6HkHQzr5MeAetpLp6MGqpC3SM5s6zky+//FLxN1/cZ394tmr3Xk0JVorADYbOXS/S52fF58flcuHbb79Fx44dHVl+dcKhXw21JUYr+UgnT55s+lwG2ylIit77uXz5cs1tD7Xo2rWr5jE8eaRbFOrFTgVUq6xgeO/N6FWGlLpNmzZhwYIFyJkzp9v3giAYSibor3gz748/079/f/Tr10/RUuQPA7/TCILg86jJv/76S/d2QDz0JuD0N9Rk1pvMVYpapHCwcf78eeTJk0f35t9K7N27F/Pnz8fRo0dVJx4MM/5L3kS6baGcQoUKmS5Xz/ullfCZZx1XKjdbtmxun1u3bq1Zvxa7d+/WPIYnj9nlfa1dcvSiteQciH2fFnrGXkNKXb169ZAzZ05u4kDergWBxpgxY3wtgl+htCerWaXOX/wV9SLNQRWIHDt2zLDfjz90hHbLYCa1QaCyZs0aJCYmYvPmzZbKYTm+Jk6cqOt4K4mrAxk9ieHV0tQooZShwFfvp531fv7557aVpYavJ+VOYPvyq1rCUyejE71FMDYCJzCrnFlJbuskvGzg0kSpgcrs2bMNn+Prd+DMmTN+7Z/l7zDr+ty5cy2VY8bJ3F8JxPdYEATufubBoNR5i0CUWQvblTqCAIA6der4WgRbUZqsBOJgYBVfK3UlSpQwdZ6v5fYXWIJurQ3GtVCbwBPOI99nlOErRcXOACpv9atmonr9HUeTD69YscLsqQTh94wYMQIlS5b0tRiETrT2XswssCU7JxPRBhp2pR7xJkopV3yl1FnZd9dX2LF1YSBiWqlr3749N2eUlGA0f2YW1HacyAxkJuf6YMCM3xKRObC6FO1PBINSlxlXQOxCz44cppW61atXY+jQoejdu7dHQ0tPT8fcuXO5yVb9GVJC/4Pnz0EQ/khcXJzfR18SviOY2oavxigWOEP4Fj1R7aZ96ho3boxt27ahWbNmOHfuHBYvXowsWbJg1qxZGDt2LJKSktCrVy+zxRMEQeiiXbt2vhaB8GO2bNniaxFsw1dK3fjx431SL+FO4cKFNY+xFChRqVIl7N69G02bNkXNmjVx7do1pKWloW/fvujVqxdy5cplpXivQ5Y6giAIwl/x1Ri1fft228oKpshqb6MnYMWSUpeUlITZs2fjwoULuHPnDlwuF3bv3o0KFSpYKdYQ/fr1w2+//YZixYphzpw5hvYhJYjMQK5cuVT3FiWCj9KlS+PkyZO+FoOwGX8wPFSuXNlSdPWRI0fsEyaToSedmGmfupiYGBQvXhxz587FyJEjcfXqVbRu3Rovvvgi9uzZY7ZYQxw4cACXLl3C9u3b8dRTT2H58uVeqZcgAglS6DIfpNAFJ3q29CKCF0eVulWrVmHq1Kk4ceIEevTogRw5cmDu3Lno0aMH6tevjx9//NFs0bqJj49Ho0aNAAAvvfQSd9uQ1NRUJCcnu/0p4Q+zIIIgCILg4S2DiRpWcyAS5nFUqUtISEDnzp09NhOOjY3F5MmT0aZNG0yfPt1s8bpITExEZGQkACAqKoq7+e2oUaMQFRUl/hUtWtRRmQiCIIjgpFmzZr4WgcjE6EmyblqpU8s1061bN6xcuRIDBw40W7wu8uTJI1reEhMTkTdvXo9jYmJikJSUJP6dO3fOUZkIwh/Zt2+fr0UgiICnYcOGvhaByMQ4aqnTokmTJti6datTxQMAatasiQ0bNgAA1q9fj9q1a3scExERgcjISLc/gshsZM2a1dciEETA88gjj/haBCIT41OlDgCeeeYZJ4tHlSpVULBgQdStWxcJCQl4/fXXHa2PIAiCIAjCF+hZfrWU0sQfsDMpIgVKEMEKtW2CsM6dO3d8LQKRifG5pS7QMDrwkWWQCFY6derkaxEIwq94//33MX/+fF+LEVRQP2MMUuocZvDgwXj11Vd9LQZB2M5zzz3naxF8wj///ONrEQg/Rp7tgbBGMO3L6w307ChBSp0FKlasiEGDBvlaDIJAVFSUreVl1sGrRIkSvhaB8FMyMjIy7XvhFBTAZQw9q4Ok1FlELbULQXiLxx57TPV3o64F/tauH330Ua/U42/XTfgP5JdqP9myZfO1CAEFLb96AScGgXLlypk6z+loY8J/sWJB4CmEoaH+FUPFdo7xd2bOnOlrEUzjVLqn/PnzO1Kut9ETeUjwiYiI4H6fPXt2L0sS/JBSJ8FfZmKFCxc2dd7mzZst1fvgwQNL5wMP/QwJd5we6KtVq4ZPPvnE1jJDQqhr0EuXLl18LYItqG2haIVgCSgTBMFvxohAolixYoruIXXr1vWyNMEP9dwO8dRTT5k+t0qVKqbOy507t+k6AXusjnp8kpRmbQCCMrrM6YFgz549qFChgq1l+tsy5JkzZ3wtgiLSJSQa9D15//33fS2CLQiCgJdfftnXYgQcZ86cUVxJeOGFF7wsTWCSJ08e3ceSUifBzg65Vq1aps+tXLmy4XM+/fRT0/Ux7BjIy5cvr3mMmhUoGJc4vDHQaz07ozLYrUT9/vvvliLd1CYCvkZ6b8PCwlSPHTZsmNPi+B1OBBf4wsIjCAKef/55r9cbDCj1P4EQeLJy5Upfi4CLFy/qPpaUOosoDaZGlq/kyxM5c+Y0LAfb97ZDhw6Gz2XYodRVr15d/H+hQoUM18Pbv9csv/zyi21lWWHdunWO16HV3owu6SckJOg+Njw8XPOYLFmyaCo8auiZLDC8nSaBDViffvopHn/8cdVjK1Wq5A2R/Aq1tml2wjNixAjNY6ZPn26qbCXCwsJQpkwZW8v0BqVKldJ9rNlVIi0CWanzB4zcJ1LqJGh1yEYwotQtXrzY7bMZaxVzbO/Tp4/hc72NWlb2Zs2a2VaP2YATqzz99NNun72xdKilkKspy7xzjSj4hw8f1n2sErGxsaq/jx49WndZvvIHbN26NS2/cnDieehRrho0aGBrneXKlQvIvcON3P9nn33WERmU3gs9E0JfU7VqVV+LQEqdWerVq2f4HKXBT++g2K9fP7eG3bRpU1MDg1PRik695Eq4XC7VjrNXr17o2rWrrrK8McCmpqZ6fCdXcryxpGxl4LRqoS1durTjdRhZfvW2UsfamdY11q9fH8WLF/eGSF5Dz4Bn5dlv3bqVu/z16KOPomjRoobrjYuLMx2N629+pnoxIrdT745SH+hyufzeWpcvXz5Dxzvxjht5LqTUaaC1DGVVqZMf165dO01l5PLlyx7fmVFIpcTExAAAjh07ZqkcvRw5ckTxt6SkJI/vXn31VVy4cAFTp071CEJhfkpFihRx+95ppS4mJkbXTFOPHH/99ZclWVg7atu2raVyGCEhIRgxYgQmTJggfvfDDz94HPfTTz/pauta98DOZ+Xk4FunTh2PTpspFzlz5lSdkLhcLlSuXNlSguPGjRubPtcJ9Lg4aD0PpRWSYsWKITo6Gi1atDBVLm8gfP7559GvXz/V87yBkWj1P/74A1u2bDFdlxGFQOue6smTxkPt/fZ367ZRRddMmpYrV64YPkcJUupUqFatGp588knVY6QvgbRD16utyweBtm3balp2eC+elWhbABg5cqRi2UZhSpZaWVo+UgsXLnT73K1bN9FHT1ruyZMnMWjQICxevBhxcXF49913NeWza/eF//3vfwDUX/ro6GhdljozA3327Nnx2muvAfjvntjVQQqCgIEDB6J3794AgAoVKnCXxgsWLGhbfb4kS5YsumTYvn27Rz7ImJgYbNmyBSVLlkSVKlXwxhtvcM9lz0g++TBCgQIFTJ/LYJYveXCVmQAtntVL3k60+pTatWtz5dN6HtL3Ljo62uN3pXo/+OADt8/ffvut2+fq1atjypQpusszA5tE66FChQqGfWKluSfV5Ja3RS2LuFlLnr8rdWrRpUafu9Y94q3u2JnLkZQ6CfLBV+3hrFq1yu2Y0NBQt85e3nEw5JnxW7du7fY5NDQU9evXV5XTrs7llVdeEetUKtvMC2dHrjq9PmClSpVCSEgI2rVrh5IlS2Lq1Knib0qy252kmddOmGLbokULRaVuzJgxluq9cuUKVqxYoSiDFdi9Y+UKgiAuk0iXW/W2D/bMGjZsqFqfGrt379ZVlxZPPPGEx3fS99BoaqDQ0FDRUu5yubB06VLucU2aNAFgfhCrW7cuvvjiC8Pn5ciRw+0zm0jK74PSs7GKVtuU3w8ly5wcaT8wdOhQ3QEBclcVuWLTrFkzw9kLjPrvGu3DjR4vVf7Vzm3fvr34/5EjR3ps2zVp0iRD9SrhD4obAPTo0YP7vdwCKR2/jfatWsc77UdISp2Ef//91+3zI488onjsq6++CuC/B9ilSxe0a9dO/F2vn0DZsmU9vlOr1wkuXLgg/t9I58GTXQ8VK1YE4BlQILWKvvTSS/jxxx8Nly3tsJVmX3b7uEmjlQcMGADA/d4o1SdNy6B136tVq4aJEye6fSftPNj5LpcLly5d0im5NqzcjIwMsT4ryWSVBgk9nb6RKD41eEvd0vyI586dUz1fKutPP/2kq84JEybgww8/1Ckhn23btiFXrlyGz5Pniatfvz5++ukndOnSxc3Cz7N2mUVqffOGL1rlypWxe/du/Pnnn5b3E3W5XNz2qHQdBQoUQHx8vNt3Gzdu1KzDqExGkFqD5OdKVyqk1xkTE4M2bdq4HWtXHjl/UeqULGJqy8pqShpP+ZdmgFCie/fumseYJSCUupSUFNSoUQM5c+Z088VaunQpatWqhQYNGmh2xHqQ54LRsy8de+AZGRluswClhtC5c2fx/2b3s7S7k5S+cEYsdXKlTI0FCxaI/9cz83G5XGjevLnoiF2yZElFGZVQsvYpKVlKyvRzzz2nqz4eLpdLsb5ixYrpLmfPnj0e1l/pfZRa1Iy2K7XoV/my7o0bN/D555/rWuaWThaMMmnSJA/lSypn06ZNVc+fO3euofqk6Vb0phTaunWr7mjt7Nmz+8zR/qWXXhL/nzt3brhcLjRr1gwhISFuEyc7N1eXTmqNWur0Ir2fuXPnRr58+fDUU0+Jlj6leuXPgX2WWvCNyFShQgUP665aMvAcOXK4yeCEwiPdHUjuCiTNlSjvmypXriyuQgH8e8hcPoygdo3eDJRQegdv375t+BwAHsE6iYmJmn0TYO6ZL1++HKdPn9Y8LiCUumzZsmHNmjVo1aqV+F1aWhomTpyIuLg4xMbGaqZE0IPcwVFPJ1yyZEk0aNBAdHz93//+h8cee0zx3AoVKuD69euGZZO+mGpyVapUifvS8QZhtmQg9aOwsvyqNsDpUQB51/X777/j7NmzbhYFs4NjsWLFkJSUpOjMrpQmQeke8ORg95Ld2ypVqhg6XwtpJyI932mFgV1Dnjx5kCVLFl0dsTRPIbMOKN0LuQXqkUce8VgelCrpWoqrHVt3yQc0eZlGHKKl1+1tq4WettGpUydbU4CoTRTVjtXzPUNLWdSrLLDlsObNm6NPnz7o3bs3dyKmdB1Gjt28eTOSk5MNv6+8e6HmppOeno5ff/0VMTExWLhwoeimAbivZvDKZatQAP8eL1iwwLCP39q1axV/sxIEYhTpfZcuPav5ErJz2H1jEwjAc2tNM/7aetvC66+/rstXPyCUutDQUA+z6cmTJ1G+fHmEh4ejdu3airmyUlNTkZyc7PanBJuhSx+2FuHh4di8ebOoEHz11Vea2Z/N+D9J/WLUGkF4eLjbC8yQJpWMi4uDIAgYMWIE9uzZ4zbLVFPq5DOQqlWrus1u5UtRWo1V/jsv2CMkJMRjNmRWgcmRIwciIyMxe/ZsRXnU8l/Jl1TYvWG+icB/kXyVKlVCSkoKnn/+eV1Knd5r2r9/v6jc8JZfrcCWjnlYVUSkllYevXr1wqxZs8TPZiIb7SQkJATjxo3j1in3N+TxzjvvuH2WKqFaW7o5qaDLlWG58mV1D+FatWp5BBnIr0eeIqJbt26m6jLavygt/UdHR2PKlCn4+OOPMXnyZERGRnIjcpXq470balbCkJAQj7KWLVvGPV6tjuHDhysen56ejvr162PkyJHInTu3m7+k1H9UyxWFdx3Zs2fH+fPnVc+T89xzzykG+RhJLK6GnrRHUqVIugIjv/9Sa73L5cLhw4dFK1lISIi4ymI2WTN7nlu3bjVl5FEjIJQ6HomJiW4WF6U18VGjRiEqKkr8U8ttxCwD8mgsu5EvbenB6qAqXcNnW92EhYWhWrVqXNkYTJkcN26cm1keePhy79u3z7AsvOvPmjWr4SUzNSVEjQIFCmDHjh0e34eEhOC3337zsFgwpVdu4WPLVbNmzcKoUaM8ymMdA/MhlGNm8H7kkUdE30M7lLp69erpao/S2bsVWDuWL3GGh4fjrbfe8jhOCaVBkwUjWCU9PV3TB07tfo0fPx5LlixBRkYGfv31V7Rs2VL8bcqUKThw4ICpcs0gLW/z5s2qx44YMQJr1qxx+076XLTYtWuXhwIfHh7u9g5cvnwZiYmJOHnyJAD3SE0pWm3AqAXw7bffViynd+/ebsvPBQsW9NgBxYhSZ1ThbN26NWbMmKF4PK+O5557TlGxk1uQpOdLJ/FaSp0eH069u8/YuWLBkPqxMz9CpZWYbdu2ubVlpfxzBQoUQExMDL744gvx/jz99NMoXLgwnnzySUyaNEn07+WtCKitSjFfa3Yv8ufPz/X9tjLe+5VSd+nSJdSpU8fj78aNGx7H5smTx83qpmRqj4mJQVJSkvin5nv31FNPITk5GY0aNVKV04qjvSAIphqx9CEb3QfTSLSNXLZ58+YBAFq2bGlpmye1OhYsWIB//vnHI0pPC6MpGKT18upyuVzInTu3Rz624cOHo2bNmqhatSrWr18vfs9mnmFhYaoh8czKLFcWzS6ffvTRR3C5XKrnay097d27FwB0LWvfunXLQ2m1O4WKnLS0NNXflWQ1kyxbKSJOq241S13OnDnRtm1buFwu1K9f303eiIgID2tdyZIl8ccffwAwd0/1pjRSWjaTXpPcIi+9zsGDB3tE7PNg1/D9998jf/78iIuLE3/LkiULoqKiPAJfKlSogK1bt3LLkwexSWV2Cr3bzSktv/KW4tQSVRvd0SgkJASfffYZ9ze5kUPapqR9g1ZbK1SoEH7++WcAyuOIVau5kefYrVs3t/bJCzg4dOgQ99y6devqqmv79u3Ili0b3nvvPY/jExIS0LlzZ4wePRrt2rXjboWpttqj5M9pJ36l1BUsWBA7duzw+OM5vJcqVQoJCQm4f/8+du7cqWgNiYiIQGRkpNufGtKZiZJZ1OqDsKrUmUluqBe5bCVLloQgCNw0EFodglaAAaurXbt2irN1uyhYsKCbgzBTCKUvJZNH3hlXq1YN8fHxyJIli6bCz4PdJ7uiN1u2bImMjAxuO2J1/f3336plsJl8aGio5q4AOXLkUOy4jSogWrsvMKVDy1qudL7RnVVy5syJb775xtA5WjKYLYtZGrTu6enTpzFnzhy376TRu7yylWB9qzTyVW3gKVKkiMdSFc8xnF0D+03tuZQtWxYffPABNm7cqBiBywteUfKrZO+ZGR9pNdj5cvcWJUsdO06eD1BJFrVIU3kdapOXmjVreux7K7VCSt9lPQYKFs2ppbx17drVI9jmzTff1Cxf7blI0wM1aNAAM2fOFJVMgD8513NNapNwPX1ayZIlsXjxYl1+m4IgeLj88OqQW1fN4ldKnRpNmzbFhg0b0L17d8ydOxdhYWHo27cvoqOjMWjQIAwaNMi2uljUnhMOnGYtdWpblZjJXaWEXUvCp06dEq18SnWYWYbmlaOHf//91y3QhiG1Plrp9Fu2bImKFStyg0WUFBknLQ1a1lkmU3h4OObPn48///zTTR4t5cis7KxepcGbDchmtoACoLlkKlfYjURwy+u0269PvpNKvnz5RH8zaZLn4sWL64rMZ6g9q3z58iEpKclj8OUlSFUq6+eff8bAgQO50eNyP0QeISEhmDhxoqq/X86cOfH999+7/S6NqJcyZMgQ7N6928OHy0yb5VnP5NZOJUsd79rVJjVq8snvnzRqedKkSW6W0Pj4eI++LiIiQny3WD1Vq1bFkCFDFOtksOswc//0WHXVyn399ddVgyB5yq10JUspf6D83XU6eIm9X/IVDum1Z8mSBdu3b3dTWs0QMErd2rVrcfHiRcTHx4t7f7Zt2xbx8fHYsmWL5iDgLzz77LOmXg7eFk3Aw+WN9957T/Xcjh076q7HLqWuRIkSbrM2qZJhl1KnxLx58zxmqkrUq1fPQy4zFChQAIcOHeLmQWI+cPLZoVZHorS0oobee/rss88iJiYGgwYNQq5cufDUU0+5naM3rYccPdtGAeAuW0jRUph4vw8ZMsRt5i4NvAAeboF3/Phxt++0ksby8lDpWX7VgneuXDmIiIjAzJkz8eDBA03HdCttNzIy0uN86fuqp28dMWIErl69aqtc8kg/uaKiNNENDQ1FjRo1dNWxaNEi1d+lPpryCYA0nZUcqVKnFh2rdycBeV8hXdno27cvnn/+eYwZM4Y7cWVIrUrHjh3D5s2bddVvpJ+WKlmCIFj2cc2SJYsYvMPL4OByucR+ld0Tdt8bNWqEo0ePepxTvnx5TJ482e2eWklIHx0djaZNm3LdxKRUqlRJDL5SCraqU6eOh+V7+fLlhuRxZhf4AMcpC8oXX3yBp556Cnfu3DF8rtJSg5ZicO/ePUO+cE5du9p2a3bXKc0FqMb58+eRP39+0aLoVERl79690bBhQ+zfv9/te619FAcNGmQ4VQ8bQHj3NFu2bLh79y6Ah50l2xqOIT2nZ8+eqvWwZTv5cos0JxoPoztQKKHHgfutt97Chx9+KFrAzCTL3rVrlyjL0KFDDcmohsvlws2bNxEeHi7mLZPfGxaxyFviiY6ORtasWREdHe3m56lUlxmGDx+OwYMHuyl1ei2EckuEUUvIli1bbI8S5h2vt2/ctGkT6tSp4/Zdhw4dsGDBAsXlV6YYSy1H8mO1clX26dNHl3yAduBYv379RB80rXehZMmSaN68OQBjSt2aNWvwyy+/cFNvsGu/ePGi6qSuePHiOHPmjGhVDw0N1b3jjDSPG1t+P3DggJtizXLdLlmyBMBDS6cVo5CSH6icgwcPiv9X66flGE32TkodB6cUGzaLUiqfF2G4ZcsW1QzVWo3dyaAKqTVHybdg5syZuHDhgts1s8GxevXqqlGASthlKpcvo+h97nXr1jWU2T8kJATly5dHuXLl8ODBAzECS0upM3Kd7Dkz526ng3FiYmJQpkwZVKpUyVQdeiMJ//77b66lY/DgwR7brBmJQixWrBjOnj2rS2aGvOO3OgmQJ6yVyn/58mVVv5+CBQvi7t27upJAm+3PBg0ahJIlS6Jt27bo1KkTZsyYgbZt2xoqQ15348aNdZ0ntaDrLZtHgwYN8Ouvv+o+XgmeX7eawhoSEoKaNWti0qRJ6NGjh5s/r/RctTZ05swZUemzo8/r1q2b7vQxUp9cI5bpyMhIj10p5Mj9p5XcUowG5hUrVgzFihXzCKoxs6ex0+hJi2SWgFl+9SbyG33s2DExWtAKTPHhzXxu377NNbPWq1dPNTDCbl+A/PnzY/HixZrHvfzyy27h4UqWnW7dunn4bTBT99SpU8W0BmawW/nWG327bds2U34PWbJkEX0rqlWrpukYa8TpP1++fChQoAD69u0LgH9vrKaIkBIeHu6WTkAvUqWOXd9XX32lKEvJkiXdAkxKlCgB4OEsXI8/kBJsmdhMG7Jj+VXKU089hbFjx7o9nwIFCuga1JgrCi8Ihy1Bmo3Wd7lc6NChg5hs+t133zWc/d+JKGmmXLOya9asqXjs5s2bTecSA7R9AZWOYdHpffv2Rfbs2dG7d2+3Y422IV9us2XFp84MRt1yzMrFVr/Y5J6l+rKDEydOqP7O3klS6ryEvJGULVtWM0JQD8z6wWuE2bNnNxy55xTt2rXDkSNHuFY0NlCsWrVKlFcQBEyePFl3+ez6w8PDTUWEtmnTBk8++SRefPFFw+fyYMrJzJkzbSlPi8TERGzfvl3T5G9kAA0NDcXly5dFCwevjWlt2O5kVLUcl8slRqxLU4qw9qXUUR8+fFj03Ro6dKjme+nkQGRX2X/++acY0WyUGjVqQBAEblT/smXLIAiCZnoYJ5BbInLlyoXXX38d48ePt1Tu7t278fvvvwMwPvjbvR2VWr3y3+TPh/2uFtjjL/ulat1ntpTaoUMH1XL0tm82ruh9rnKf8YIFC2LAgAGaftUNGjTArl27xBU0oyll1ChdurTq70aWX41CSh0HJ7Tn3Llzi8uVdj5Ip1788uXLc83Wa9aswfr1632qgBYqVAgJCQmqEcFGmDt3Lq5cueLmNHzz5k1byuYRFRWFrFmzIjQ0lLt8uX//fqxbt85SHbw2vGzZMpw+fdojypIhXVJmFjG74W0fJZV15MiROH36tGL7ypkzp+IevTxYHUp7Jlp5F+3uJ+x+l5l8eoMG7IRnkVq+fLmhaGMeNWrUcIsEltahJYv0eX3++eeW5JDWq+e58aIeBUHAG2+84XacPMKX8eSTT+paajdDfHw8Fi5cqPi7llUxV65cEARBc5ItVerUdpgxOrZMnjzZLaegy+XCmDFjdG1lVqtWLccC9tTQckOxAil1HJy40V9//bX4fzsGA7bljVKHopWPzyyPPPKIqVxtUrz58ughPDzcIwpM7u/kTapUqaLb90gJXiRr1qxZUbx4ccW2IT3H6WekVH5oaKiu/Q0ZehUheZlWOlWnBgE7lbqZM2eiSJEiAP5zKzAb0WwGprz5k6VU2u/KA3zMoLX8agbpkru03JCQEIwdOxYAuDlDrVCzZk1VK5td7V3qQ3z48GFx4pwjRw63+lkqGiPLr3Ykxmd9vjcMFmyi5cQ4TUqdCrx0BmYQBMHNedSOl0Rrlnjq1Ckx315m5urVq7hy5Yqpczds2ID+/fvbLJEyBw4cUN342gjStqVXQbTSHt9//32MGDFC8zipMvXRRx+Zrk8vegMyzGC3pc5O66jcIb5gwYLcreycYtq0aW7Rfk6gtx+1Q4GXwiJHO3XqZLg8O9qd3FLpNHb51EktddmzZxeVKJfLhYULF4rRrlr74DrFiBEjMHfuXNuVZh59+/bFhQsXVIOhzOIfTlx+BnvxnFq2MOs8fOLECdHvSSt6hhet5S9401fEyFKdnIYNG2r6oVlFmgy3cuXKtkVqedPqBkB3XkDps2/Xrp2pYAsjxMbGIiYmRlUOs9it1FldmlSDt82Wk2TNmtVwZLRR7EhpokW7du3w5Zdfuvlb5c6dG4IgqO4AIq/LDn8+XywTSuuz2t43b97ssa+wFHYfmaVOK6WN3WTPnp27l6sTuFwuzVydZiGlTgWnXh6z5UqdL510tHQaf3EA9geWLl2qmWfMDGaUOr37h2px4sQJnDp1CsDD3Vmkyy7MD7J8+fK21KXVlt59911VXyR/Wn4lzKFl7eA9JxYxq9UO69SpY2ojevlvH374Ie7cuaO6FRigr2+0O+BDC7vae40aNVQNJdJr379/v1csZsEIKXUcnFY67BwMjJSVkJCgGWrtDcymWAhGChYs6Mjs0Ewbq1+/PiZOnOiRZNUopUuXFicg8tloyZIlcezYMdVNr82itbOKFbQGY8L7hIaGYtGiRZruBcuXL3fbQxR4uLdwWlqaJf8ppXxqP/zwg0eex1y5cnnkVdRCPg6xz068O2rYncJHD1bS0GR2SKnjwKJm7PKpU8KKcmfGT+TJJ59U3dnBW5ClzhhmHNzNtq0PPvjA1HlGMLOzgxLStqS064raeXruU1JSki2O9cFEgQIFTPuq2kn79u01j3niiScwcOBAj++tOsSztiOPwm/ZsqXpMtXcPXLmzIlNmzbhueeeM12+Gcgy7Rvmz59vaomWlDoOxYoVQ2Jiosfm396WQS3jfSAvv5KlTj///POPZaUuENuIXj788EPd28KZxalIciW0clz5A7/99pu43VJmJTQ0FPPmzRP36mzRooXodmCWHDlyoFOnTliwYAH3d19YjL2dfJh4iJlAHICUOkV8qdABDyMh1XKldevWDQcOHPDY/DcQIKVOP2YTYnpzqcSXdOrUyZRS52RGdyscPHhQV34tNawqFnooUaKEY7kMAwlp21u5cqUtZU6aNAnlypXzm/vrreVXWsGxB1LqHCR37tyq5lO1mU/evHlVI1jz5Mmjazsvf0Rrz1PCOpnFUgeYGwzYLgtW8ls5MQjZETHqL8oAYY58+fJxl4t9hdLya5YsWSz730oJRqXOF8EepNQZYMKECYZ80q5fv+6gNIGL1mbxhHWCXZGzCltSLVeunOFz6d4SmRG5pU5r72onady4sW3bRDpFUlKST3ZeCgilbt++fejbty9CQkLw6KOPYtGiRQgLC8PSpUsxefJkZMuWDfPmzdPcS9Mqavv08fC3pR1/gWW6J5wjM1nqzFC2bFns37/ftryABBHsON2PGLHUWd1G0Rt42xeXERBaR+HChbF+/XrExcWhVKlSWLVqFdLS0jBx4kTExcUhNjYWsbGxvhaT0ICUXO9Bipw2VapUMXWfWI4zb267RRC+xuk+xaz/MOFOQIyyBQsWFHdSCAsLQ2hoKE6ePIny5csjPDwctWvXxuHDh30sJaEFKXXegyx1zvHBBx/g/Pnzfr1rC0HYjdP9yObNm7FlyxZH68gMBNQoe/bsWWzatAnNmjVDYmKim3lTyfk+NTUVycnJbn+EbyDlgggGXC6X5QhVggg0nJ6UP/roo6hXr56jdWQG/Mqn7tKlS2jVqpXH96tXr0ZoaCg6deqEOXPmICwsDHny5HFT0JS2Thk1ahSGDRvmmMyEfshS5z2yZMmCfPny4fr166RMEwRhGbZaRvg3fqXUFSxYEDt27PD4Pj09HS1atMDgwYPFLVJKlSqFhIQE3L9/H3v27EHFihW5ZcbExLgFOCQnJzseUKGXzDbYzps3D7Nnz/a1GJkCl8uF3377DaVKlfK1KARBBDhfffUVmjRp4msxCB24hABIDrNkyRL07NkTFSpUAPBwk+42bdrgu+++w5QpU5A1a1bMnz9fl7KWnJyMqKgoJCUl+Sw6BXg46Hbp0gVz5871mQxEcJORkYFevXohJiaGIo4zAeHh4UhLSwvKfF8EQegjIJQ6O/EXpe7SpUvImzcvwsPDfSYDQRDBQ9asWZGamkpKHUFkYsjJyUcULFiQFDqCIGyjRo0avhaBIAgf41c+dQRBEIQ51qxZg/Pnz/taDIIgfAhZ6giCIIKAXLlyGdrGkCCI4IOUOoIgCIIgiCCAlDqCIAiCIIgggJQ6giAIgiCIIICUOoIgCIIgiCCAlDqCIAiCIIggINMlHxYEASkpKciVK1em26aLIAiCIIjgJdMpdQRBEARBEMEILb8SBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAaTUEQRBEARBBAGk1BEEQRAEQQQBpNQRBEEQBEEEAaTUEQRBEARBBAGZTqkTBAHJycmgLW8JgiAIgggmMp1Sl5KSgqioKKSkpPhaFIIgCIIgCNvIdEodQRAEQRBEMEJKHUEQBEEQRBBASh1BEARBEEQQQEodQRAEQRBEEEBKHZFpEAQBf/31l6/FIAiCIAhHIKWOyDQsXLgQpUuXRkJCgq9FIQiCIAjbIaWOyDQwZe7y5cs+loQgCIIg7IeUOkKT27dvIyoqCrNmzYLL5cKxY8d8LZIpKOE0QRAEEcyQUkdocvr0aSQnJ6Nbt24AgN9//93HElnD5XL5WgSCIAiCsB1S6gjCC8ycORNFixb1tRgEQRBEEBMwSt2+fftQt25dREdH44033kBaWhqWLl2KWrVqoUGDBjh37pyvRcw0BOoypi/l/uyzz3D+/Hmf1c+YMmUKhgwZ4msxCIIgAoakpCRs2bLF12LoImCUusKFC2P9+vWIi4tDqVKlsGrVKkycOBFxcXGIjY1FbGysr0UMWuTKkJZydOvWLSxatMhJkSzhi+XXkBD/eNX69u2L4cOHc3+j/ZAJgiA8ad++PRo0aOBrMXThHyONDgoWLIjs2bMDAMLCwnDixAmUL18e4eHhqF27Ng4fPsw9LzU1FcnJyW5/hLP069cPHTt2xMWLF71W59GjR3H37l2v1RdsXL58GZGRkVi4cKHhc8+ePYv79+87IBVBEITv+eeff3wtgm4CRqljnD17Fps2bUKdOnUQGRkpfp+ens49ftSoUYiKihL/yK/JOlqWups3bwJQfiZO8NRTT6F79+5eqy/YYGletm/fbvjc4sWL47333rNbpEzBt99+SxZSgvBzAsnlKKCUuuTkZHTq1Alz5sxBgQIF3KxuWbJk4Z4TExODpKQk8Y987wKftLQ07vcHDhwwVZ4gCFiyZAkePHhgRayAhnVaZpeJ4+Pj7RQnU3Du3Dl0794d/fr187UoBEEocPnyZRw/fpz7myAImDBhAu7cueNlqZQJGKUuPT0dHTp0wODBg1GmTBmUKlUKCQkJuH//Pnbu3ImKFStyz4uIiEBkZKTbH2ENvbMWJ2Y3x44dQ3h4OLZt22ZbmTt27ED79u0xbdo028oMNDIyMgAY9zdkzzg0NNSyDPfu3QuoGbFVmCWbLHW+Z+fOnViwYIGvxSD8kJkzZyr+tmvXLvTr1w9jx471okTqBIxSt2zZMuzatQuxsbGoV68efvjhB/Tt2xfR0dEYNGgQBg0a5GsRCS/AdoX47bffPH4zGwBx+/ZtAA8jnKySlpbG9S/zd2WFyWf0HjLrppKl3AjZsmXLlJG5/t42Ap0//vgDa9asUT2mTp066Ny5s5ckIoIF1v+lpqb6WJL/CBilrl27drh+/Tq2bt2KrVu3ok2bNmjbti3i4+OxZcsW8pXzIlqDkL8m91VSXMwqNDyefPJJ5MqVy3I53sbsPWBL4XZY6gBg5cqVtpSjl4yMDBQtWhSbN2/2ar2A/74nwUalSpXwyiuv6DrW5XJZcsPYv38/mjVrRoo64TMCRqkj/Adfdli8gdCqPHZez99//x0QkaByHxF/Ueq8zb1793D+/HmMHDnSlvL+/fdfVKhQAdeuXdM8lt1rUgD8i3v37pk+96OPPsLPP/8cEH0AoQ873s+MjAyv+WyTUucHpKWliRGjgYBaI09NTXU0tQivbrP+YPIytc63Y3nWCdLT0w13PM8884zbZ3YPjQZKMKUuLCzM0Hn+gp1WWgBYvnw5jhw5gvXr12se689KXUZGBlauXOkh2/79+30kkfdg7wJByFGarGm9ww0bNvRaH0lKncMkJCSgfPnyqorO22+/jbx583pRKud44oknsHr1agDeG6z0dsJaA7jawH758mXkzp0b8+fPNy6gBuPHj1cM9NFDaGgohg4daugcebTW4sWLAQBHjhzhHn/r1i3u94mJiQDs8akDvK/gmFVmlfCnKDgrzJ8/H6+99ho2bNggfrdmzRpUrVoVGzdutKWOW7duOR4ksmnTJsPn+KOSbReCIGDp0qVeTTflDxw7dgzPPvusJSssAHzyySemzvv1118t1WsEUuocZsqUKUhISFAMiQYgKkGBglqnd+HCBUfr5ileVmfWSsreiRMnsGfPHgDAlStXADyMlDXKzp07cenSJcXf+/fvr5g8Wy/fffedpfNZ++TJ+fvvvyNXrlzYvXu32/cPHjxA6dKlAQTu8qvdljoznb4/KhHXr18H4G6dPnv2LADYllT80UcfdTwbAXt/jRDMlrpff/0Vbdu2xYwZMxyt59q1a7Yp/3YwYcIE7N27F3///bfhc6Xvp1rbOHPmjJjv05eQUucwegYLbzpMT5gwIaBTdzC/hD///FP8zurArHR+2bJlUb16dbffzAzAn3/+uSm5vInadTGFU654Smf7vlDqMjIyLFsc7FbqjODPy69qstl1r/zVqmmHUufNZ8pypelxD2EW9+vXrztqrWvevDkaNWrkWPn+gvRdKFGiBAoWLOhDaR5CSp0O7HR6rVSpEj7++GO377w5oPTr1w+9e/fWdey1a9fQt29fj5ffl4MQs5jNmzdP/E6vdVAr+lUNtWeUL18+tG3bVvF36dLekCFDgjLq0RdKXenSpVGgQAFLZbC2rbX8unv3bkMWqnXr1mkeY0Sp++mnn/Dkk09yf+vfvz8OHjyoWzY9yNvo8ePHsWrVKlvrUOLUqVO2+e6Zedf0PI8PP/wQhQsXNnWuGU6ePKkYzPPXX3+hX79+HuOKGp999hnKlCkD4KF1+aeffrJFToa/Jfm367kY3QfdF5BSp8GyZcsQERFhyKyanp6O+fPncx/4H3/84ZGoUN7xfP7555p5lbzBkCFDMGXKFNMDhhMNntdJy53+7SxbDu+abty4gaVLlyqeI1UYRowYYU44E3I5jfR+2eVTZ4R//vkHN27csFSG3iCbWrVqoXLlym7f3bt3DyNGjOBaPBYuXKj53hhROD755BMcO3aM+9v48ePRunVr3WUZgbWrp59+WlxOc3pSUrJkSVStWtXROhi3bt1ys/oD6pa6X375BcuWLcOkSZNUlXw738eUlBSUKVMGn376Kfd3Ji/PX0wQBLd0PdJnx/YzHTNmDJo3b25Yrp9++kn0qZXy4MEDnD9/XvXcNm3aoFu3bobrJLQhpU4D9kK88847ip2qnLlz56JLly5Yu3atruPlneRnn32mO68S4/fff8fp06cNnWMWpQ5r1KhRXqlfDtsujidXenq65mbMepbg5FaVGTNm4I8//tAln7Rcp/x17BpEzA7YdlnqlK7jxo0biI2NtV15NfI8rl696vb566+/xqBBgxQnYLwBj4eea9I6xuh9OXXqlGrEvby9m0nHkJaWpiu1C/DQV9Xlcol+e96iVatWePrpp3Uf37RpU7Rp00bzODvbaceOHVV/V3tno6Oj8eKLL5ra01kNQRDQvHlzvPnmmx6/DRw4UPP8ZcuWYdasWZbl6NWrl64ctWb7tfPnz7slRCdLXRDx448/4vXXX9d1LPNt8KbPSI0aNfD44497pS6lhjx79mxdx9nJokWLxP/zIjeHDx+OJ554QjF6EzDnV/XOO++gWrVquo71xnLrX3/9ZfrcPXv2YO/evQAe+oUwUlNTMWDAAF0papxefv30008xePBgHD16VNfxGRkZ3F1H5DArm8vlwoYNGxT3FebBFB0l9wwtRciXPnVa1jA72myPHj2QP39+XceyKFW2Ywxj+fLl+OWXXyzLosS+fft0H6snUteJZyq/J0rw6mTKnFWLtlJdvMAqb+4DPX36dE2rIGD+ecijVuXldO3a1VS5wENjhJH2pxdS6jSw0rn5k+9UQkKCOHBL6dixo5t/mh70viBq1y8IgqEBVAmtWSy7Zuk2LmZ86njotV5I6/PHmV316tXFaMf69euL369YsQLjxo1zU9bXrVuH4cOHe5ThtFLHlC9mWdOaME2fPh01a9bUtK6z8k6fPo3GjRsbCmphS86sDPngYqcjupl2s2PHDmzZskXx91OnTjlSL0OPXyGDvSNyy2nr1q3RtGlT04OnVh9sJJm53FKrhp3vuZ2TAyNj0uzZsxWPV6vLH/s4xtNPP20pCbD02q5cuYIzZ86YLqtVq1a6DQNGIKXOAaQPXs8LZ/UlWL58ueYx5cuXx7PPPuvx/aJFizQ7TDuUODmzZ89GeHi4qgWN8eDBA+TNm9dUzik9mFl+NYI/KfdaSGWVWrEYTZo08cn+rMwvkQ36X3/9terxbMldKyJQriQaCYZgMrH79Oqrr7r9rnfwYG3q1q1btiqCdevWRYMGDUyda4fFyUi759UnXb42OvG0Au+ar127hho1apg6FwDWr19vOuDOjm0ZzfRBX375paZMgdK3SeU0sk+r/JlJn4V02d7MeyL35bQLUuo0WLBggfh/vQ24X79+4vFSZ2meVp+WlmbZNO6Uk7QSSg3YiL8B8zdk/nBqpKSk4ObNmxg/frzltCVq6FHq9B6vh4YNG2LixImWytDDoUOHdB/LsyrquU49z9EKUgXqt99+U31nTp8+jSlTpgDQlt3KbiTMUtehQwcAngmatZQ6eZvMlSsX3nnnHVy4cMHjfnrb+mH0XeBhZGcZ9nyl1/nCCy8oHq+0JPntt9+6yadlJdd7LStXrlT1D2zQoIFbXjZpXWfPnsVLL72EoUOH4sGDB/j6668N+XLqffZqVqPbt2/rrk8OzzfcSntUOveXX37xis+xlX5bKp8Ry62WTHZCSp0GVvziLl265JawVeqvxPBVcIEVrLx4jRs3RpkyZRRfrO3bt3sk0rUr67+WMmrmZZfuBKF0X5RSQWzatAkfffSR4TqN8Ouvv6Jy5cqGoqlTU1MxatQoUSnxhrVZev68efPgcrnc7idToNLT01GzZk3VKGKeb+mnn36KyZMnY82aNW51yVOa6LmOtm3bomvXrh7tUd5+9Cp10jq///57FClSxLCF7cqVK9i/fz/u3r0Ll8uFZcuWGTq/Y8eOWLhwoaFztNAbKALwl1+V0pr89NNPKF++PDdiU60/1dtGzbTlLVu2oFevXtwyWFTquXPnsGDBArz77rv44YcfDNehxbZt2xR/a9++PQBzfdzLL7/s8Z2VPpN3f3fv3o2mTZtqWuDNYtZ3TS7r4sWLucE8Vu6Dy+XCihUrTMnHg5Q6Axh9cFpLiy1btvTJUhbwcDBTyn7/119/qTrn3rt3D4Ig4OOPP3Zz0JdbT3gv74YNG3Dy5EnFsp9//nm0a9fO7TupUmfFh0EJsx2Uy+VyS8hrV2oVO2E5/Izct2+//RYDBw7EypUrFY+ZNm2a24SHl7NLiVWrVqkGdnz77bcA4BaYpPZs9ARPjBw5Eh988AFeeeUV/PTTT4iPj8e+fftMWeqWLl2KefPmuSl1UVFRHrvGGF1+lf5faRBSUjhSUlJQtWpVcbl5yZIluupm/pGLFi1Cp06dPH7nTVSU/NCWL1+O9PR0fPHFF4YHUSPLvcwX0GhuNb2WOjsSLvPKWLhwoTgmGNmuyo7lV7uxotTxFBgWhMICLwRBcHOFePDgAZYvX65ocbx37x5CQkIUM0Co7eikBu/enz171iMPn9VJbatWrZA7d25LZTBIqXMQaafPM2HLLTjefDnj4+MxZswY7m+lS5dG+fLlFc/NyMhAQkICxo4dK24TBTgX7i1V6pRk1iI5OVnTh8Fonjq5/5ORZU5p7ignkVpA9CYEZX4kLJCFd1969+7tFlSgN8oReDiZqVKlCvc3QRBEqxzPwslrU2rBELz7fOPGDTz33HOoVq2ah1Jn5B2U5ubjLT+bSUOiFGGpN7UIO04atae2VK2UVoIpyl999ZUuP8MdO3agdevW6Nq1K3r27KnoAD5gwABuvjW5z6QaWgFYVpGWcfz4cUPLyLwyzLo08Mpi9O7dW3Qx8AVymY4fP47nnntOl7/aG2+84fGd/PmPHDkShQsXFq29Y8aMQevWrcWEyXI++OADCIKAl156ifu79BkqtZEHDx54bIXIo27duihWrJjmccBDA4neCY6eHUH0QEqdAfS8iNLGI1XqBg0a5IhM3kB+3dOmTdOV28mO/FuAteVXJnvz5s2xfv16t+/kMnhTqe7SpYvHd9euXTPsKM8bcK5fvy5ek3RZke3GoQZvAFK672r72fLIyMgQlZJbt24hKSlJjBhldR09epSbyFjNkqPWhng5s6QTLHkwiBGlQKs96u2kjdQZFRWl6zipkqm2xK/U5pm/0OnTpzFs2DDN+pgFSmkJ99y5c7h79y7GjRvH3RlBKfpVTkpKiu4dcaTlAuaWX8uVK4fs2bOrHs/ShkjPu3btGtd1x66+Ztq0aejbty+3rB9//BEul0tXChazyK9jzJgxiI+PN51aSa7UsfGSWTSZdVZpgsHaqx7fQaV2MHr0aNSqVcvybhjSlajSpUs7EuGqBil1NiP1I/GXyCArIdw8jG7LxcPIvWEvupVZuJqVTk9Ha7fix0sBkj9/fvTv3193GcePH/cYcFJSUvDII49g0qRJANwHS7PBIkr53qQ5AtXuS4UKFTBhwgQ0aNAAYWFh4vfVqlXjJg6VKkurV692K5+nxBptF99//734f9a22PKMllIhVYy1dtH43//+p/o7z6dO69i7d+8a3q7r/v37SE9P5y5XKj03puxmyZLFlujKYsWKcS008vO17v/8+fM1ZWHIrSR6l1WNLI2mpqbi+eef9yi/dOnSqF27tsfxWhMlHtJy5bk4eSl4WHAfL7DDaFJ7uQzR0dFwuVxo0aIF9zgzLizjxo1zU+o2bNgg/s76Sa12wZvEKp2j9L6xiHmpYjh58mQdVwG3ZV9pWig5TD+4ffu2oUmxIAi6/fsDRqlLSUlBjRo1kDNnTrFhL126FLVq1UKDBg0c2WtOPis4fPgwpk6dirS0NNGvTI5S5JUdXL16VVcKEDnyBIpG0bvkYyT/m9buF8uXL4fL5cJrr70mPgenooWMDKp6n6nW3pVKCoG0Q9OCl3eQ5ZuLi4sD4D4Dlndy3bt39/BfNCuL0n3ZsGEDjhw5gn79+okyMaSzeqXlqldffVW8JoBv/bLSLuT3ZM6cORAEQbHDffTRR8X/q+3IoAcjSp2Uli1bapYpxeVy4euvv0bz5s2xa9cu1bLPnDmDnDlz4rHHHgPAj0A1GwmuFqyjx1J6+fJlQ/eqdOnSbtv38c7lTRKmT5+uu45s2bIpls/bJu6DDz4AYH75defOnW6/ffbZZx5lMZ81O/tL1hewYAz22eVyQRAEt/solfHff//VLPvjjz8WXSgyMjLQuHFj8Te91yB3o3jkkUcU+9jdu3er+gtL69Sb7FwamKRnUmDEVQd42CZz5Mihq+yAUeqyZcuGNWvWoFWrVgAe+vtMnDgRcXFxiI2NRWxsrO11vvfeex7f9enTB+Hh4ciWLZvmNidmlgulPgmJiYluA0eBAgW4ueZ4pKSkiA3A7MvN8hRpReiyF0qucO7btw/PPvssVylkComSbCxNy8qVK/Huu+8CsM/iaCb5MDtm9uzZmDFjhubxWrn/1Dr1c+fOISkpCVu2bPFYjv3jjz/Qvn17CILgUcb69evFpSmeP5xcgfn22289Io3NonQP9+zZo3nuY489hqlTpyr+Lk1SbXT5VQvecvfUqVPx2GOPib5oSsvWH374oel6pdjlpgAoWzTY8pRcKZaX+/PPP+P27dvipEu+3y3w8J0sXLgwihYtKkYCqiU51gNrp2qT89dee417HzIyMlCvXj1dbU0QBLflMd4kgZdPzkwSXjXMKnW8hO0lS5Y0JYORetX8CocNGyb2I/Lr0hNAJQiCaNU+ceKE229GV2lY/Wp+pI0aNcJrr72meC7w8JqYrmEUtWe7detWAMYzSDDXIT3LywGj1IWGhro5Y588eRLly5dHeHg4ateu7RaFKCU1NRXJycluf3rRakjsRkuxaqmrWbOm+P98+fIhb968br8fO3YMf//9t2Y5kZGRqFSpkuLvRmTTqo8NjPLOcOjQodi7d6+bpcUMbAlFul1Qrly5LJfJtrNhz1nN8Vj6Er7zzjua5Wu9tEqdpCAIKFasGHLnzo0GDRpg2rRpbr/37NkTS5YswaRJkzwsRSNGjBCX2HgzQbPLr3qwolhdunRJMRKbla1lyVmwYAE6duxoKLEowH9OzJrFfJKk1jk7ccLyrDTpk94/ab3y62eJzNkEiifj8uXLcfHiRZw/fx4rVqzAnTt3TAcwyWE5PnkoWepu376NuLg4vP3226plC4KA7777DmXKlOFuKcjgTcatKN525ri0Mzm1XUitXnJLIrsnS5cu1dVv/vjjj26fWfuUttNLly7h448/5kaN27E6JggChg4daijNyBNPPCH+X02Gli1bYtmyZYbffbYMrcewETBKnZzExERERkaKn5Ua+6hRoxAVFSX+6dn8l6HVQHbt2oVOnTph48aNiImJwfjx49GzZ0/d5/OQmuyVFAPe7Jlx7tw50bIgn/U4hVHfBaPH8OjcubOuDO9KVKtWDc8995zbd2ppP4x2plovn5LDr9xyID+O3euPPvpIdJRmSDftZucxPww1HxMpffr0MZTTjmFkQDPKhg0bNAMlOnfujEWLFiFr1qyGynYq2SmPqKgo1KpVy+N7Ld/TIUOG6L6PSsvGSr5G8rqZxU1qEdKq2w5FQ8/1paenq96rw4cPq/4uCAJGjx4NQN39w2w+TF7dSsuPSvnYxo4dK75/o0ePRv369R1zO7ED+XPr3r0797i2bdvqWuGQw3s/e/XqhbFjx7pZde14j630VUaMOZ9//rlppU7PuxawSl2ePHncrG5K6+cxMTFISkoS/+z0vbt48SIWLlyIRo0aYfTo0ejfv7/bll1ajtRmUfOr27hxo+i3wXC6U1BqaE4qdZcuXcLvv//u8X1iYiLq1KmDsWPHIjIykvuCSTuXtLQ0rgxy3wWjnYbZgU4ehCKXXzoT1lIcb968iTfffFP8rPdem/HBlJc9b948FCpUyPT5Uu7cueNY0JHac7X7vUlOTnZLmcDK/+WXX7gJTRlqiZb14HK53JRipZ0PpLD2q3UPeG4ARrl27Rp27NiheZyRiQOvbzh58iT++OMP8bOSTySv3zYTOQs8TPXCk0/pHfv444/FYIaYmBhs3bqVa5HSg9R6ZJXbt2/7RLnktUO2IhQeHi5+x1YorCaol9dlBqOpsaTcunUL169fh8vlcnNpYHpLUFvqSpUqhYSEBNy/fx87d+50y+wvJSIiApGRkW5/3sKOBgY87PTkZm01zCgU9+/fh8vlMhxZBzz0M+Mpy3YpdTzlQOnFadWqFXbu3ImPP/4YKSkp3PLnzp0r/r9du3bcgV0aNff3338bVursjDhevnw5du/ebXhwl/uVOGmVkt/ngQMH6nKSVjpfDmvTvGuw26fO6aj1cuXKAXCXu3jx4o7Wya7p/v37aNKkifj9hQsXuGlIpMuvUguwXUjfwbJly+rud+TP+qWXXuI+L54VXxqos2TJEg/XFsbkyZM9loF79OhhWDbg4Rig1J54/nFa5XpTsZLW1atXL93Rw3aSkZGBLVu2uLlXsbbJyyBgRJ533nkHBw8eFK22Vq7l8uXLbjKcPHnSbfIkRRAExQlF//79xShc6a4jbJKiZ1zxvCt+TNOmTXHw4EEcP34c77zzDvr27Yvo6GhkzZrVUKi7XvwlJUnTpk11OQEDDzV6ecQXL02G/NqY/5AZE3nv3r3dOmlp3VroUTR4S5VKz0aebFZLhpUrV2r6TgwdOtRtCyA9nD59Gu+//z6++OILQ+fJcblctuztq3f5VQ01nxh2nxMSEtwSV+vd2UCNGTNmiG4JdgdKeHP5lWE2u72UCxcu6N7FIz09Xcz7Jd2lg8HLoSmNkrUjabccqQVZ797XLNJSyvr1691WLtSWVaXpdBYvXqxa14QJEzB+/HhdcjGSk5M97oXUSionPj5eTIeihpH2rZZu6sCBA7rKcLlcmDdvntt3N2/e5Mpx7NgxN4VGC7WoUx4ZGRkeW+ap+c/dunVLd3ucMWOGON5Jr81oZCrgnjT80qVLqFatmqL//q1btxQj2L/++mu89dZbivUEnVLH25Whbdu2jtXHEh6axa5ZlZ7ACMbQoUPdPt+5c0fVKZjBtgsyi9kNo1evXo3GjRsjNDSUuzeuEnqtoFrPQK+p3Mzg/+WXX6Jz586Gz3MKJ2f5rGy5Uq2n7UnP5yH1M7X7GtSe6++//+7hymAnRiL65O308OHDuHDhAqpXr655vpZvrZrFyJ/8ueRBHow+ffroPt9ofUZQsvoqlWPm3mqdw0tzxFDKN8no06cPvvrqKwDAuHHj3JRgpbqNKHQAf1lcDaOWeaMJ0aWwd6xDhw6qx2XJkkVzNUwtINPpiWRAKXXeYPPmzTh8+DAeffRRUxq7E1jxzdO7FMtSStgZos/MyGpInf3V8m/JkVoj1dCSQY9SFx8fz01vowerSp1dzruCIJgO0fcG0nantGwBeGf5lfnsvP/++9wErnbAS5uhBM9vLSYmBgcPHlS9V9Lz1bCi1CkpWkbKMIIVxcKoHEYHX6XlSTPXX6dOHdVylVDrL1hqKCkscASAW1qhBw8e6FLqjGK0P+M9A2nwVyCi5j9rB6TUyXjxxRdtK8usIiDHSuNVirKyuy47lqqd8N0xs9R169YttyWhf/75R8zZZxSrEch2uQAkJSXpXuYyw6pVqzBq1CiPiFy7UctnZwbePTG6RGQGqwFbCQkJAKC416UUrUTYLIedWbT6DLssE2fOnOFGqLPcX1o4banjKbiDBw9WdA2SHyvdjUjqQ23Ep04rqbscpRykISEhbnWFhYWZHhusWNp5bYclQOYld7aC3r7W6bQyVvv8gA2UyExYsRYoDeR6l8X04i/+h0bhyV2hQgU0b97c7TvplljexK6AC6sRlFpIM8KbQW9nr7UjglF4PmYMJ9u0HguX2oTAW/nKBgwYoPp7v379NH3ujATMaCHP22gEOyxvajx48MAjJ+fhw4d1J4zXo6BroXcpmqG0TCh3bwkLCzP9bo8bN87UeYD6M2vYsKHpcuXYPR7awerVq7Fu3TrD/RApdQGOViZ3pZdCyend7GxM7750avjCnC5fenr33XcNz3adRLr9DJG5KFu2LICHCpzc4syUOn9IRsvLvSfFSG5QJzF6r4wqMXfu3OEquEoTs/r167utDCn5vPki+vXIkSNulrA7d+6I+zAbRRqUYlRB4e2f6wQVKlTwO8PE2bNnPVba9Dx/Uup8hF0v54QJE1R/91anr6YI6b1WX0QiyjG6XO00/jBoewMr74OZiG09ONnJayXSJezHaUudGeSBRVpy+KrNFCtWTNyBx5tIl6QzC9JnLN9hQw+k1PkIuxQYrS24/KEjM5u4kwDOnz/vaxH8Hr0+VUaxS6l78sknPfbnLFeunKEtCwnrOG2pcwp/UOqaNm1qiyuIv1nDpPiLbNIE2XLIUufH2GWBkWaod7IeKxQqVMiyM7aTdO3a1dciOIK/dFKZnWPHjnHTIzkZuEJ4YvR+W0mPYSfSgdyuhPZG2bBhA6ZPn265HH+euPvLKo1aDkU9qcNIqfMR33zzjaXzr127hscff1zzOKOOxU69dEp7Anqjbn+t12nk1iHCGEZzcBH+jVKkpxLe8ucygjzNiLfQk55KD97ajzyQUdum8YUXXtA8n1Ka+AitiDEtbt686VcO/Vro8Q2Qb2bvLfxlmYXIXATrZCJYUNrKyW62bNmiuk2atF/0lVJnF1q79xDq6BkjSanzEVY7dLXM4VbIjANNZrxmwjvQEnjg4q1+oVWrVrqXhnPlykVtilCFll99hNWIvfbt29skiTt6orGCDVLqgpeIiAhfi6AILUX5N97qF4z4+vnTtoOEf0JKnYRAWs4k7IOUuuDFl89Wa6msV69eXpKEMIPa9mkE4a+QUidh8ODBvhaB8AFq0UZEYONLpS5nzpw+q5sgiMwJKXUSfBUuThCEM/hSqfOWoz1BEATDsBZz9+5dXLhwweN7q9Gc/gA5oBJEcPHgwQN6rwmCyDQYUuqWL1+OMmXKoGnTpqhYsaLbXnWdOnWyXThvQ5Y6bazs4yjdS5AIPlJSUnwtAkEQRKbGkBbz+eefY//+/Th06BBmz56Nt956S/RHCgZn8ytXrvhaBL9HugG1UapUqWKjJIS/ERkZ6WsRCIIgMjWG8tSlpaUhf/78AIBq1aph27ZteO211/DXX3/5bImjX79++O2331CsWDHMmTMH4eHhpsuKioqyUbLgxOpzzp8/v19vGUYQBEEED8FgcDKCIUtdgQIF3DabzZcvHzZu3IijR4+qbkLrFAcOHMClS5ewfft2PPXUU1i+fLml8sqWLWuTZARBEARB+JKzZ89y910OVLJnz655jCGlbsGCBShQoIDbd+Hh4ViyZAni4uKMSWcD8fHxaNSoEQDgpZdewq5duzyOSU1NRXJystufEuRQrY3VWU9mmzURBEEQvqF48eJ44oknfC2GVzGk1BUpUgQFCxbk/uaLzY8TExNFP56oqChuZu5Ro0YhKipK/LPi6E8AP/zwg6Xzr127ZpMkBEEQBEFIMR3u6Q8b8+bJk0e0vCUmJiJv3rwex8TExCApKUn8O3funLfFDCr0bChMEARBEIS96FnpMq3UtW/fHpMmTbIsgBVq1qyJDRs2AADWr1/PtRZGREQgMjLS7U8JWn7VJkuWLL4WgSAcoWvXrr4WgSAIwhKmlbrVq1dj6NCh6N27t4fylp6ejrlz5+LJJ5+0LKAaVapUQcGCBVG3bl0kJCTg9ddfd7Q+AsiRI4evRSAIR6BJHUEQgY6hlCZSGjdujG3btqFZs2Y4d+4cFi9ejCxZsmDWrFkYO3YskpKSvLJh9fjx420ry+lOPSIiAqmpqY7WQRAEQRBE8HH37l3NYyxtoVCpUiXs3r0b//zzD2rWrInHH38cQ4YMQffu3XHmzBkMGzbMSvFex2mlbuTIkY6WTxBE5iQiIsLXIhAE4QeYttQBD53mZ8+ejQsXLuDOnTtwuVzYvXs3KlSoYJd8QQXbfYMgCMJOqlatyk3pRBBE5sK0pS4mJgbFixfH3LlzMXLkSFy9ehWtW7fGiy++iD179tgpo9dw2lKXnp7uaPnegPLMmUdP4kjCdwSyT93169d9LYJthIWF+VoER6lataqvRSCCGNNK3apVqzB16lScOHECPXr0QI4cOTB37lz06NED9evXx48//minnF6hQYMGHt/ZmX9PEAR07tzZtvK8Ta1atXwtQkATGmrJMK6Ila3xiP9o1qyZr0UwzfHjx30tgm2EhFjyCvJ7aI9kwklMvz0JCQno3LmzR4qL2NhYTJ48GW3atMH06dMtC+hNSpQo4fGdnUvJgiDg448/tq08b7Nr1y5Na0blypW9I0wA4pRSp8d5ltCmWLFips776KOPbJYkcxPIFlM9eDstFE367OH+/fu+FkEXppU6tRevW7duWLlyJQYOHGi2eJ/AuyatF/Dtt982VH4wzULr16/v8R0tzyrDS45tB04PgrydWvyd999/3/A5Zu7jokWLULp0acPnEcrwnkONGjV8IIkzeHsMqFOnjlfrC1aU3AKcmqybxbHW1aRJE2zdutWp4h2B97JpdfTffvut5Tr8GXnErlRpK1u2rMfxpNQpE6gz5jx58vhaBK9gRqlr37691ywvDRs2NH2uUxMKJ+A9h9GjR/tAEmewexKm9X4G2pjjNEpbnZrF38Y8R5/2M88842TxtsN72ex8AQVB8HjBPvroI3Ts2NG2OuymW7dubp+l94M6C3tp0aKFr0XI1Bh915mSxVPqmjdvbotMUuTvohG+//57GyVxFvlz6NixIx555BEfSfMfXbt2xRdffGG5nFy5chk+p1y5coq/5c6dW/Vc2gXIHbuVMKvlvfTSSzZJ8hAalSXwOnW7FRf5C5YnTx4sWLDA1jrsRM20TEqdcf73v/8p/la9enVTZQa7D5K/8sILLwAA2rVr5/Gbt2fv+fPn91pda9asEf+v1+l/9uzZusuXt2dBEFSVGm8RGRlpy3OdOHGi4XPU3nEtmTKDUsdzBVLC7nczIyPD0vl29980Kksws/xqBJ6lzt9h8vL8Mnidhb+Zov2N7t27K/5Gypl98O6llu+b0fvPjs+aNavHb1Y7eqO0bNlS9Xc721aBAgXE/+v116pWrZrHd1OnTuUey1PqQkND0a9fP9U6KlWqxP2+ePHiumTUYv/+/ba4ImhZ1nhYGTf8Wak7deoUhgwZYrmcihUr2iCNb7BbJwgsDcNhnF5+5ZXnzy8coD5w8Roj7zjiP9Set5W2VqhQIdPnZha07q9ZpY6HE5Mbtfp8lQPzrbfeEv//zTff6D7v8ccfR69evbguOvLrZL67WlHGBw8e1F2/Ge7du4e2bdtyfxs8eLDuclwul+G2pjbwnz59WvVcf3Pkl1KiRAlbxlijipE/GVeMjJl6JgT+c2V+AK9xmU1zwIPX0QeKUsdkl8rLk71r166OytOqVSvF38aOHeto3VLMLJWWKFFC9Xlb6Wik0YHnz59XPfbvv/82XQ+PevXq2VqeU2jdX6OKsZri5m1LnVZ9dg5i0uuW9plag7M0WGP//v0eZSmV8+mnnwIwfw0lS5Y0dZ6cUqVKKcpgZEvMiIgIw0q/Gesew58UGB5KFlYjGFEMBUHAmDFjLNfJkAbAlS9fXvd5zKWgV69eGDVqlObxmzZtwokTJzSP8++n7WV4jb9379621hFoljomX1RUFACgadOm4m+8++X0rFDN4dubnZeZpNSLFy9WvT92WYW17oNdgxzDzE4Z69ats1yvWpqLJk2aeHyndl8EQTDsjK/2vLyd00rLUufU0r7ecgVBcFN8mJLCU1bkz4n1QWauIS4uDitWrDB8Hg+7rKFmdsx4/PHHTdfn724dLVq0wIULFyyVYbTv590TI9kJihQpIv6fteuiRYsa6kOY60LWrFnxySefaB5funRpXb6zpNRJ8EaghLwOefn+9gJmz54dCxYswMyZMwG4y+u0D6JRvKkg65lp79271+1zVFSUY8uvUnm8PTM3U9/jjz+O9957z1K9Ss+gVatWbpMPhjfvy5UrV8T/6+mw9eCPy69GLHXPP/+8x3f58uVTLVPP91Lklvznn3/eww8uPT0djz32mGZZctg93rVrF2bM+L/2zjy8iur84997k5uQnSAiEFksIcgSrRsSSAxFWQQCLsjaiGgReFQMiEtAhIfVpyhIbYsPhh2jpE9bBMGSJyotEGxZXCgBCYiARfixCGGREOP5/YFnnDt3zsyZuXNzl7yf5+Hh5t6ZOWfmnJnzzrsutry/moKCAkvbm2mARFG5LVq0EF63YLrK9O7dGydPnlT+9td9xAmhrkWLFtL7Hzt2TPnMo5ndbrela8oFwNjYWKntZdcHEupUiCZGu3btMGrUKL+PL2NqcKIdp/ntb3+rmE7U5xBqKWv0BKZ33303IG1px1JPc6dX49Ho4WNFqIuJiRHmHqtL4eXWW2/FbbfdZnk/O35FsohMkXV5XURCllXN/5IlS2y3pw5OCLamDtB3Zpd5Jsq0ZeT7C1wzcXHszgN+jbOysgwDnmRYsGCBpZcasyAR0bE2bdokvG6i0nJ1EXSwZMkSr4Abf1GfY3p6uuG2jDHdlz6rbikrV670+tvtdmP58uXS+0+ePBmrV6+WrsJEQp0NRBdt//79lpyA7bTBCXX/B/VD+L777vP5PZiaurrQtHK0gsPChQul9jPS1FnRtjzzzDNe56sel0BoLEVRjoWFhbbGnJvz/SEqKgoffvihz/ciDV5dzk11H2pqapTPDRo0sKSluemmmzBkyBDT7bTzkTHmVctae+7NmjWztABpj82RXZhFY+KUUGeW49GJwJUff/zR72OosTIf7T7H2rdvL2yH+4ur/cbnz5+Pf/7zn7baskJaWppjxxoxYgQmTpyo/C3zHHUyRQ6fW263Wzqx8bRp05CYmIgRI0ZItyM7B0JbgqhjZN4E1dgpAO50BJ4/TJ8+3fI+IifpYFJYWOj195NPPql8DlQftYuEqJ1HH30UwC9CkdGNmZiYKN3+tGnThG3aFeoef/xxYbCJyFxlJyCgsrISTZo08Rk3qzDGdBN3GvUpKyvL8JgiM1DXrl0t942zZs0a5XPbtm3x9NNPWzpWcXExqqurDeey+pxlnfadEHQyMzMtaZzat29v2gfRomx077z22muG7ToRuOJ08Ivss0k2F6CIu+66y+vvbt264b///a9uPzIyMiwHZeiVAzV6cRk4cKCl45uxevVqNGnSRDFRL1u2zLFjP/vssz7f8WIB2iBCbobNy8sznY/Tp093NNpeTVgIdRcuXMDdd9+NxMREr8m4Zs0aZGVloUePHl42brtYNY2tX78ewLVFygj+IOP5ltRo7elWQuP9pV27dpg1a5bwdz2hNRSFutmzZ6O6ulr5W+27o3Ywli28rq7nK7o5tTe76FrwKCtuKjUKlHj44Yel+teyZUskJSXhypUryndO+NS1b99emMRTtLD89NNPlucBN48Yva3LLCxWtD/8e7OoN5ETu95CYSQUqX9Ta3hGjhyJNm3aGPZBexy3223qxK0WhLp06QLA3N9NNG5mC5Lav8vlcinmd8YYXnzxRcN9t2/fjq+//tpwm++//173e6N5ZjVAy45AGwy/xUceecTvaHVuKuam6S5duviMoV2effZZzJw50+d7o/makJBgqy3ZKNnc3NyAlZWrra1VzK7q67ZkyRKsW7cOALBu3TrptcYKESXUxcXF4YMPPvBygq2pqVFUxTNnztSdWFaxqqnjpKenG044tUSvNVeoBYibbrrJK6om2HChVY06useu8GD3phbhcrmED5E777wTb775JjZu3IjXXnsNf/7zn03TkahV6KKbU+u3IauBFWm8vvjiC2lTFvcHUfs0qqMt7Y7LxIkTLS92gUo2bSdCkCO6h1JTU02vDa8SocWf66L+rCd8qCs02EVPi2T0AsYYE85ZLmxrNTzANXNrYmKil+Cofr6ZaUJTUlL8iuQUoXcuak2wdvzi4uIstyES6pzOj8dfAIcNG4bFixfrRlTKBHrw5xi/NnzuG2kcrQp4b7zxBtxuNyZOnOh1z9pdS42wsp/ROfK5oFcJxgy3263bj8cff9xSoIUdIsr8Gh0d7RPKW1lZiY4dOyImJgbdunXDnj17dPetrq5GVVWV1z8R/jixf/7550InXaN9+Y1w6dIl7Nu3z7ANp7Fzc6nfgOwma65rDd/TTz+tpLgYN24ccnNzhds+//zzfgkUWriwybUzLpcLp0+ftnQMrUmQm+/Wr1+vaInVGjY7KUauu+4605QfVr73F5kHmKhtkaZJJjhDpCHUa0vPx+rgwYPYu3ev16Jipt02qlIge31ra2t9tGTqPui1KzLTDxkyBGVlZboVH7S+lbIBL07MH6Nt9ebLQw89JNzXTnCPSKizm2dNdN14TeE5c+b4lZ+OP/N4O/x/rcDjb9AHALz++uvSL5ZOPv+3bNmi+73MvCouLvYJ9tMqHGR8/6w+A82qv4iIKE2dHufOnfMyCYluuLlz5yIlJUX5ZyRNW3m7sOJfobW96xEfHy8V2rx161bTbV599VXdIAZRv6ygFhiCZX5V+8zZwWjsfv/73+P555+XOo7IjLZo0SIvs+vmzZsxZ84c6x39GT5vuJaHX/fk5GRFY6iOjtOOi0zBaN5G69atDX/XUltbGxDtsszcEkWKG2lh7Pq06p3/+++/7/NdmzZt0KFDB6GmjtOvXz/Dfujta9T3O+64Q3kZ0Vu89fbVi87m29577726/Zb1JZVFNK/0TLRG9y0XItSCnEzftG47vXv39tlm165dpu07yezZszFo0CDD+0rvRWD27Nlef2uFOX6N1GslYwyTJ0/GjBkzLPezU6dOwt+M1h8n1w31S4bZPaf3mzbSV6uY4X3lgrbeb1b529/+Zmu/sBTqTpw4gezsbJ9/Z8+e9dk2NTXVS+smeussLCzE+fPnlX9O+N4B1gaUq895stRNmzbZblcmD86LL74o9DFRRx1aSbaoR12o0YFrfd6wYQPeeecdAObmW7M3J7OABFlN16pVq5TP/JxGjx6NsWPH4oUXXlB+y83N9RLYjUxlemYxs78B8ZvxRx99ZPjw1XL99deDMeYjsBpVVnniiSek3z652c4MM03dlStXMGbMGMNtRCWdrLbbpk0bywu62RzMyMhQPvu7yO3Zs8fLF5e3bWaCuvnmm6UXPxEul0u5Zi6Xy+u8ZBC1YdVEy6/hgw8+qJQuE0WHq39Tf5+VlYWioiKfbXmybqd96vTSagDX5ttf/vIXQz/Bl156CStWrPD6ThuwIBLqnDK/Gj2HjTShduf7hAkTpLc1mrvq579MsOCFCxewYcMGy21Zee46SUgJdU2bNsXWrVt9/unl40pPT0dFRQWuXr2Kbdu2CXPrxMbGIjk52etfoNCT5oFfkhryElq9evWy3YasXV000W6//XZ89dVXmD9/PvLy8vwyNapvznnz5vn8PnjwYNvHVnPu3Dn07dsXw4cP92lX1B8jnEoGq37oah+gRlhV14vMJnpoNW09evTAnDlz8MUXX+i+EHCtJL+2HK2f0JQpU3RfArj5zcikrcbspYSbls3meWxsrOm1tpIug/PII48Y/q6udapmy5YtXj6o6rb1tCr+mK21JqFOnTrpXi8zTZ0ZMpGpLpcLw4YNw0svvYT8/Hy0b98eFy9e9KsNEaK8jID5fJFpp7y8XFc7xu9zmZQmRlVOAO+AIxkNuojY2Fglst4sSERb4tHM/9IJjMbDrs+vXqJqESI3q5UrV+KTTz5R/m7VqpXudiUlJQCuze/ExETddZILtSLhtry83Kdko0yZL38JKaHOiL59+6K0tBSjR4/G8uXL4fF4UFBQgNzcXLz88st4+eWX66QfHTt2xA8//KD7W0lJCY4fP47KykpUVFQo3/MQaFnJXeQfCIhviJkzZ3otmDfccIPudowxZGRkYMKECYiKisIzzzyDGTNmoG3btlJ9U6NeKPTyjqlTOYj2s4OZk7PZ8Z3KpK5uhy/cHTp0MN3P7AEq0szxh7HR+elpGT0ej/Clhy8yWrOTVpvp8Xh0KwI4bYLnwSJWjivrdyTy/8rPz1c+33XXXV555YBr48XHTBRRmp2d7RUtzrdv2bKlrZJy2uOo2zNzyObbqX0xja7n5cuXDaPg1fvrCXWxsbGYO3eucl+pFzn+XAmU76W2f8AvLyTqcbTbfnJysiIMac+9b9++ivUAuFZz+aOPPsJXX32F8vJyW+3JYqSF1NsG+EUosqpNFWF0TY3mm12hzkpd1UWLFul+n5+fb1gm0cpzJy8vD0VFRUI3kKSkJK8XsJKSElvrrFXCRqjbuHEjjh8/ju3btysar6FDh2L79u345JNPAh55wsnMzBQKBQ0aNECzZs2Qnp7ulY8pMzPTUm1JtfA3YMAA9O7dG5mZmQDEN8TLL7/sZeJ7/fXXAfjewHpRYFOnTrVk7ujfvz+GDRsWNJ86s+sY6AWEoz7/Fi1aYN++fVIVA8w0blrnXxnzq7/IXDPug6XWSDndF35ttAuokenr448/1v1edh5oIwn1NB9caFc7VssElvTv3980ebDRNZTxaxMxadIk5Tlk1EZcXBymTJli2A4X8rVz1+i4jRs3FlovOLLZ9M1Qj8Xu3bsBwKueqPaa8YWYCzqiMfrVr36lzAftHNywYYOXhjstLQ0JCQnIyMgwjQL2FzsBaa1atcKXX36pm3vN6Ljq+2H8+PG6vqQc/mx2u93CIvV2tcYif189rOSQtasxdbvdeOKJJ0zzgurl8ZOB572zStgIdaHArl27pMv2OMX777+Pf/zjH0rJH6OFpLy8HG+99RaAX96W9VIZ6PHee++hrKxMqk/r169HcXGx7ttiIMyPIoYPH+7l4Ktue9KkSX4HVJihHYubb77ZkfPXJrqtKyHVjFmzZuHgwYO2km7Lws/1+PHjXt8bzXuRCUUPvfExS23g8XiQlpaGb775BuPGjVO+P3jwoHAffh56EaSA/ANbzxwoG0kaFRWlREW7XC7U1NQoZiSZOaXepmHDhhg9erRP5RTRfF+xYgV27NiBCRMmoGvXrj5JhznTpk0Tlquygt780DOXcvNov379wBhDfHw8amtrheUEo6KiDM2W/mI3Ubj6fK0ISZmZmbrXSjQf0tLSvJQFCxcuxIABA4TH55HALpdL6OYSKGWA+hzU/s5mLFiwQPmsjuB1Cm7FsppL0e51IqHOArfffrutdBFOTOIxY8YgISHB0GG9Q4cOPs7j2htYdPOmpqYKc3SJsCJsqLU7Rg9HbqqWaTcvLw9Tp07V3WbevHmOlXYT4e+4ys4lK9fZSp9kIzA50dHRPgEUTj+g7Qiw/vbBSFuUkZGhOEm3atXKq61Tp04J91P7Men1b/LkyYobgVH/1eZ8vt3999+PkSNHCvcRpRqKjo5WfpMJWGnXrp3y2e12Y/HixT7mI1HfH330UbRu3Rrp6enYtm2b0LoRFRXliDlQrx/aKE8AKCoq8tlOlHuM/6YXNWqHnj17YunSpV7f2T139XPdzPzK/7eSH1TtkiB6XutZJWRe7kW//etf/0JOTo7P9+pcroBvwn49rAhQvGRYamqqorXLy8vD2LFjHUn3wueNVQHeroWGhLo6wAlNy913342LFy963ZhGjsMix30ntT5WFlO1dsdIqDPL+A9cq/OYlJSE7t27S7fvJFz7Ytc3pFmzZpg1a5aXw64RTgl1paWlSmBETU0N1q1b57dAJJOuxwitBkdvblhxkFajF/GoNZmb8dRTT/kIsnw/o8XF7Ho0aNAAv/vd75R+WSEuLk66bqso6lOkmVI78quTYfsbnGSXvLw8qe307kU9oc5qf9ULsT++uIWFhSgtLfWpGmMnCTIg9+zh5xofH4/FixfrCrQi1MXqRS4AenVL+bZ28tTl5OTo3pPqOXn8+HEvs7qTuN1urFq1CqdOnUKDBg2waNEiRwIr+RzWS+YdCEioCxKHDx82LS/mD2qhTjYy0Sp2U6KIFrySkhIps9RNN92EqqoqYfFkGQFj6NChhmHqRjzzzDMAfrnG2jdJM1wuF6ZMmWLoG2hkBjBamMaOHSv8LScnR6ntGh0dDbfb7ZiQL2ua0ra3c+dOnDt3Tvj7+PHjTZM1W1mo1dvu27dPWJLKCL64G/mLFRcXK9GJVpPTOnlfaYUZ/reelvirr74SPpO013jevHno2rVrQIW6mpoarF27VmpbvX6oza92hTqebL2oqMh2fjEAfuWp1EMUsCNi9OjR0j7dnI4dO2L+/PmWzM6TJ09Gs2bNDOew1TFQb9+sWTPbL3lm8HJ8Vq+TGZ06dQJjTKoKiLY/amQDwqwZeQlb6E1iK06fIvr164dVq1bphtGrcxOVlZXh/PnzaNy4cUj4ZxUWFuKNN97wWVDN0kmYYeVhIdJU6LF8+XKcOHHCx0eE33R2r6nRTe7xeBAfH4/Lly9Lp50Jxtjya26WykGEVrjg5xATE4OrV696RZYlJycbVoQBgM2bN/scS6+/gLE5aty4cVi0aJHui4OMgHDPPfco0cJGkeja41RVVcHlciEpKcln3LWC2bZt20yr0Lzyyiu4cuWKEmhlhJEpUHuu2dnZ2LZtm+kx/cGqDxInMzMTe/bs0Y1Gtgp/Ibb64iaLXQHFiqZOhjFjxuDf//63V4Q7r7P+7LPP4sSJE1LHue+++3z8YbUYJVUWuQ7I4O/zz67lJVBoz1vWfBtaZ0GYopdGxKhmKPel4dqFQGVFt3JD9e/fXzehdDCQuVFGjhypW6jcSv44PdSmF70w+2+//Rbt27f3qhbhNE5pWrTldkSYzRN+LfmbvjrHmyhxuPoczLTSstGW3OSqNz/saH30NGM8Qau6BGJSUhISExOxdOlSJYpTRNeuXb2EDb3+NGvWDMuWLVMExDlz5hi6bYgIVqS7LGoNP58zgcxJ6hTFxcW29rMT/WpE06ZNsXHjRt15arcMmhr1fcmzVxih1hjbFbYGDhzo9beRHyrgfzJ+J7lw4YLtfUmoM0CvZIwVeG6wQD0QtWWj1Kg1dYHsA+eRRx7Bvffea7uunZqWLVsKw+Gd5vDhw9i5c6etff31J+N4PB5ds3NqaioqKiocy6unB0+ELcpjZwa/BnFxcTh16pRStkxUf9UMLtTxBLbqYASri7TeuHAhzUyw4X4wTqWm0Lv/Ro0ahSNHjuhq7UeNGmU5I73MPHzuuedw5swZS8cFjM36oYaR0B1qwqna1NeyZUvpxPQiQefWW29VAt6cOlcnjrN582bFEiMbec3PgyckN2PVqlWGLzlmfqhmqYfqksTERIp+DQTqCCA7GCU5dAJesFnvBucTQiv4yQog2sLdZjRq1AhlZWVITU1F27ZtDRdgsz4cOXLEVtWH/Px8PPHEEz7OyEa0aNHCq26mFfw1v3L88THxl7vuuguMMUtpQUR9kfFFMbtW1dXVXn9zIVG2D3pwLauV65aRkQHGmFcCX6dxuVyG0ewiRNeQR+7xaD4nCaS2mGMns4ARoSbAmXHkyBHpEpIioe7zzz9X/GZDDZnnJZ+7CQkJynaymuU777zTUjCImosXL0oF6dUlJNQ5xIwZMxRpPxQfCuo+8ZQDRpocrpmQqfunRia1iIh9+/YZmlcD5fuVmJiIoqIiW4vDN998o/iQANdMn0eOHDHcx1/zK8csyzhP/MrfJI3M7cHGbGxFixH3ydPmdZMxiZjdp3oZ3/25t+063fuLWXs5OTlgjBn6LIUqpaWlfgUiqBH5MIYyMiZGdU5O9faDBg3y2i5Y89MMmedlYWEhdu3ahebNmysveIG0VHASEhJC1qfu5ptvFiZY1yO0ziIEmDp1qmNm00A7rjdv3hy/+c1vvIp5c/gE5c7PgdIGFRYWYuLEiV7fqRN2hgvNmzf3KkOTlpZmqkVxQlNXXl5umtpk8ODBKCoqQnFxMRhjuiXZQgWeMkWEaF589NFH+N///ueT3V3vQSuTp0pNKCxuDz30kN/HCIUgp0DRs2dPW75+ehQVFWHt2rW2Ay2CgUxf1ZYjPqerqqqEiXZDYd6rkXleRkVFKf65PJLW7jiG2vlbZejQoQCu1e/mScRlIKFOB6ffdAI1uTweDz7++GPdbO1utxtbtmxRKkxYNb/K9nnOnDlKSTJZZPuwZcsWS28odQ2PjDSrSGBEVlaWl6O8HrwcTai9SQK+82TMmDGG4ys6h4SEBDRv3lyJCOaCq5FrgRl1WW/UjKVLl3qlbvGHSBXurMzvP/3pT8LfUlJSfJzkOaF47bp06YLFixebbte6dWul5BS/VklJST5CTyieI2DdstG3b1/TSNpIQutXPXjwYADWkkYDlNJEF5kEilaOY4cvv/wSX3/9tV/tq/3iAiXUmTFixAjs378fwDWt4YEDBwLm1xdo+vXr52WSTUxMDNkHaKixatUq5Ofnm95T/Hoa3YN256ZTc9rOmEdHR/utYQ2G5mHPnj04f/58nbRl5fys5hILZa3N9u3bpbflucqMXExCSSnh8XgU9wenAssiFZ7OSIvV60VCnQ7333+/UrMwWGRmZhrmlrJa0suqqdAprdDq1auVz3369LEk1IUaH3zwQbC7EHLIPvAffvhh5Ofnm85b7dywItTdd999hseSOYYMOTk5OHz4sCMm1VDHagSuP8iMydSpU5GWlub1XTiZWf2loKAAaWlp6Ny5s3Ab7nJjlsKjLlAnUXcqsEyWnJwc/P3vf6+TtkKJ0LPnhADt2rULaYfjVatWWc5vJPuWxP3zAvFmS29q4cXevXv9rnqyYMEC7Ny5E3FxcThz5oypzx2HR447kZYiISEBaWlpKCwstH0MNTxQJdDR7Vq48GInUjsckA0W0Jr4ZSKUQzV4wCoejwfDhw83PI+UlBQwxnDHHXfUYc/M4RH2dRH4AFwTgE+ePFknbYUS9ecVJwj07NkT69ats2wTN8NOZKqsQMUfkIH039L2oXXr1l4lfYjQQF1M3i433nijsrjIOMLzufH222/j8uXLjmSYj4qKwrfffivb5aDQuXNn/Oc//zHcpnfv3pgzZ4503q5wg4+ruhKEGb1797aUxoJeKK3jlCA8depUdO/eXarmshO4XK6QzhQQKEhTF0CeeuopVFVVOS7U+YNsRv+61NQdOnTINH0IEZqI5snYsWNRUFCAAQMGWDoenxtJSUleJYtk2tTCcyWGQyT2li1blITLIqKiolBYWGi7CHyooy5AL0uvXr2kLCrhrqELJqL70Coejwc9evRw5FiEGBLqAgiv4RhKyAp1gdDUiXwq3G53SEZ2EvZJSEjAggULLJfekTGTyS7Qf/jDH1BUVGQaXWwVLlQ56csVExMTUi9/wYCPq9MlsOzwf//3fzh9+nRA2wgXZF0m6hq79aYjnbAwv+7atQsFBQVwu9244YYb8M4778Dj8WDNmjV44403EBcXhxUrVtSZWjecMRPq+EIViDp45FMXeTi9uDop1KWkpOgWYm/YsKFXIlerFBYWonHjxobO6oR1rJQ0DLSPnNMvAuFMKL5wHzx4MGJNqzytk13CQqhLS0vDpk2bEB8fj8mTJ2Pt2rV44IEHMH/+fGzZsgU7duzAzJkzpXL91Gdyc3Mxbdo0w21GjRqFM2fOBCSyj4S6uqVfv34Bb8Npp2eZueHvQv7999/7tX9cXBzGjx/v1zEIX6xo6rjQxXNFykLPnsigTZs2we5CQDh8+LDlGtdawkKoU9+4Ho8H0dHRqKysRMeOHRETE4Nu3boJaxNWV1d71ZOsqqoKeH9Dlc2bN5tuExMToyS4dBqtULd8+XJ8+umnAWmrvlNTU1Mnb9h9+/Z19HgyGphQ1BwQ/mNFqOvRowc2b97smL9XIKmPEZiEPVq3bq18rhe1X48ePYqysjL0798f586d85Joa2trdfeZO3cuUlJSlH9kog0eWqFu5MiRWLRoUTC7FLFER0fXifDjdBsvvfQSbrvtNsMSbdqHHfdxI+1ZeMPnkuycys3NDVj5QyeJVDNhuDBv3jzLAVuhgF2tckhp6k6cOOFTnBgA1q1bh+joaOTn52PZsmXweDxITU310rqJIty0tUmrqqpIsAsyZAIhRGRmZmL37t2G22ijHaOjo2lORQBWNHV2qct58uGHH3pZiYjgMGnSJKElLxIJKaGuadOm2Lp1q8/3tbW1eOCBB/DKK68o2bLT09NRUVGBq1evYseOHbjlllt0jxkbG2u5ADgRGMinjvCX0tJS4b1OhDeBDH4IhoauT58+dd5moHjsscfQs2fPYHejXmF3zoaUUCeipKQE5eXluHDhAmbOnIlx48ZhyJAhKCgoQG5uLho0aICVK1cGu5uECfn5+XjzzTfx61//OthdIcIUWlgil0ip+hCJLFu2LNhdICQJC6Fu2LBhGDZsmM/3Q4cOxdChQ4PQI8IOHTt2xKVLl4LdDYIgQpBACnUNGzYEELkl1ojIo3PnzhgzZgxefPFFS/uFhVBHEERo0b17d6loaoKQJZDVbGbOnInMzEzFfYcgQh2Px4O33nrL8n4k1BEEYZkNGzbgzJkzwe4GEYEEQqiLj4/HY4895vhxCSLUIKGOIAjLxMfHW6rRSRBmkE8dQfhPWOWpIwiCICKTQNadJoj6At09BEEQRMhAmjqCsA8JdQRBEETQIfMrQfgPCXUEQRBE0GnevDkA5+sJE0R9ggIlCIIgiKDTuHFjqjZDEH5CmjqCIAiCIIgIgIQ6giAIgiCICICEOoIgCIIgiAiAhDqCIAiCIIgIgIQ6giAIgiCICMDF6lm4EWMMFy5cQFJSEuVDIgiCIAgiYqh3Qh1BEARBEEQkQuZXgiAIgiCICICEOoIgCIIgiAiAhDqCIAiCIIgIgMqEqeBBFARBEARBEKGGWZAnCXUqTp8+jSZNmgS7GwRBEARBED6cP38eycnJwt9JqFMRExMDADh27JjhRSNCj6qqKrRo0YLGLsygcQtPaNzCFxq78CYpKcnwdxLqVHCVZnJyMk32MIXGLjyhcQtPaNzCFxq7yIQCJQiCIAiCICIAEuoIgiAIgiAiABLqVMTGxmLatGmIjY0NdlcIi9DYhSc0buEJjVv4QmMX2VCZMIIgCIIgiAiANHUEQRAEQRARAAl1BEEQBEEQEQAJdQRBEARBEBEACXUqJk2ahJycHIwYMQJXr14NdneIn9m1axdycnKQm5uLwYMHo6amBmvWrEFWVhZ69OiBY8eOAQAqKiqQnZ2NrKwslJWVAQAuXryIgQMHIjs7G6+++mowT6Pe8u677+L6668HABq3MGHz5s249957kZubi/fff5/GLUz46aefMHLkSOTk5OCee+7BoUOHaOzqG4xgjDG2e/duNmLECMYYY7NmzWLvvPNOkHtEcL777jt26dIlxhhjhYWFrKSkhHXu3JlVV1ezrVu3stGjRzPGGBs4cCA7cOAAO3/+PMvKymKMMTZ//nz29ttvM8YY6927Nzt27FhwTqKeUltbyx566CF22223satXr9K4hQE//PAD69+/P6uurmaMMRq3MGLXrl1syJAhjDHGSktLWUFBAY1dPYM0dT+zfft29OrVCwDQp08flJeXB7lHBKdp06aIj48HAHg8Hhw4cAAdO3ZETEwMunXrhj179gAAvvvuO7Rt2xbJycm47rrrcPr0aa9x7dmzJz799NOgnUd9pLi4GIMGDYLb7UZlZSWNWxhQXl6OuLg45OXl4cEHH8SOHTto3MKEG2+8EQDAGMO5c+dw/fXX09jVM0io+5lz584pJVNSUlJw9uzZIPeI0HL06FGUlZUhOzvbq7xNbW0tgGsPMg4fQxrX4FFbW4uSkhIMGTIEgPc9xn8HaNxCjZMnT+Lw4cNYv349nnzySUyfPp3GLUxo3Lgx3G432rdvjxdeeAHdu3ensatnkFD3M6mpqaiqqgJwbfFp1KhRkHtEqKmqqkJ+fj6WLVuGJk2aKGMFAFFRUQAAt/uX6czHkMY1eKxevRqDBw9WxkU9FgCNW6jSsGFDZGdnIyYmBj169MBnn31G4xYmbNq0CXFxcdi/fz/++te/YuHChTR29QwS6n6mS5cuKC0tBXDtxujWrVuQe0RwamtrMWLECLzyyivIyMhAeno6KioqcPXqVWzbtg233HILgGtm2srKSlRVVeHs2bNo3Lix17iWlZUhKysrmKdSr6ioqMDKlSvRp08fVFZWYvHixTRuYUDnzp1RUVEBAPjss8/Qq1cvGrcwIjU1FcA14fz06dM0dvWNoHr0hRjPPfccy87OZsOHD1echIngU1xczBo1asRyc3NZbm4ue++999i7777LunTpwrp3786OHj3KGGNs7969rFu3bqxLly6stLSUMcZYVVUVGzBgAOvatSubO3duME+jXnPHHXcwxhiNW5jwxz/+keXk5LDc3Fx26NAhGrcw4ccff2TDhg1j99xzD7v77rvZtm3baOzqGVQmjCAIgiAIIgIg8ytBEARBEEQEQEIdQRAEQRBEBEBCHUEQBEEQRARAQh1BEARBEEQEQEIdQRAEQRBEBEBCHUEQBEEQRARAQh1BEARBEEQEQEIdQRAEQRBEBEBCHUEQBEEQRARAQh1BEARBEEQEQEIdQRAEQRBEBPD/GCb0kb8vnrIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1166,7 +1165,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd3gU1fp+N9nNpjcSEpqIggiiggVBBcTeK/YGKpafvV0v3Gv3ir13UbErekWxXxsoKghWpEhVaujJpu1usru/P/J8J9+cOTM725JNPO/z8JBsZmfOnPqe9yvHFYlEItDQ0NDQ0NDQ0OjQyGjvAmhoaGhoaGhoaCQOTeo0NDQ0NDQ0NDoBNKnT0NDQ0NDQ0OgE0KROQ0NDQ0NDQ6MTQJM6DQ0NDQ0NDY1OAE3qNDQ0NDQ0NDQ6ATSp09DQ0NDQ0NDoBPhbk7pIJAKfzwedqk9DQ0NDQ0Ojo+NvTepqa2tRVFSE2tra9i6KhoaGhoaGhkZC+FuTOg0NDQ0NDQ2NzoJORepef/11lJeXt3cxNDQ0NDQ0NDTaHO72LkCyEA6H8fbbb6NXr16W1wQCAQQCAfG7z+dri6JpaGhoaGhoaKQcnUape+211zBmzBhkZFi/0qRJk1BUVCT+2RFADQ0NDQ0NDY2OhE5B6kKhEKZOnYpTTz3V9roJEyagpqZG/Fu9enUblVBDQ0NDQ0Pj74y6ujqsXbs2pc/oFObXV155BaeccoqtSgcAXq8XXq+3jUqloaGhoaGhodGC0aNHY968eSlNo9YplLqFCxfipZdewuGHH46lS5fi6quvbu8iaWhoaGgkGc3NzVi3bl17F0NDIy7Mmzcv5c9wRTpZ5t299trLccX5fD4UFRWhpqYGhYWFKS6ZhoaGhkYiuOKKK/Doo4/qhPEaHRIulwsAtFIXC9qCCWtoaGhotD2+/PJLAKldFGW8//77WLBgQZs9T0MjEXQKnzoNDQ0Njc6PcDgMoCU4zu1um+Xr2GOPBdC2RFJDI150OqVOQ0NDQ6NzIhQKAQCamprauSQaGukJTeo0NDQ00gTff/89ampq2rsYaQsidc3Nze1cEg2N9IQmdRoaGhppgkMOOQQvv/xyexcjbUHmV63UaWiooUmdhoaGRhogEAigvr4edXV17V2UtIVW6jQ6A2hzkgpoUqehoQEAWL58OZYuXdrexfjbgsyu/HxqjRYEg0GUlZVh1apVALRSp9GxkcpNiY5+1dDQAAD07dsXgI7yay/4fD4ALQRGw4jq6mps2bJF/N5WSh0pgxoayURTUxOysrJScm+t1GlopBleeeUVuFwubWL6m0ErddagpK2EtlLqdFtopAKp7L+a1GlopBmeeuopAO23oGzdujXm75SXl+vj+RIEKXWaSJghK2ZtteHRbaGRCqSy/2pSp9HpsWXLlg41OTc0NABo2c3dddddOP/889vkufn5+QCAP/74I+bvbt68GQ899FCSS/T3glbqrCGTOq3UaXRkaKVOQyMBjB49Go899lh7F8MxOKmbMGECnn/++TZ5bm5uLoBWxcgptA9ectDZlbp33nkHgwcPjuu7WqnT6EzQpE4jbvh8PkyePPlv7Z+1ZcsWVFVVtXcxHKO+vh5A20f4kd9SrAtZY2NjKorzt0NHV+poM2KF6667Dr/++mtcmwB5/mqrseH3+9vkORp/L2hSpxE3Tj/9dIwfP14chN1eaGhowN57790uKTOam5s7FPHgSl17IFZSEY8PnoYZHZnUjR07Fnl5ebabJ1KCadMSC7T5VcMO//jHPzBt2rT2LoZjaFKnETcoken8+fPbtRwLFy7EvHnz2sXvqqORuo6m1G3bti0VxfnboSObX1988UUA9gSfSF08x6Bp86uGHe69916ceOKJ7V0Mx1i6dGnKkoxrUtfJQaaO3377rc2eOWnSJJx55pmGz7xeL4D2MdWFQqEORepoIWkvpS7WPGmc1Okca/GjIyt1BDuylQipay/za0dui1Tg2Wefxccff9zexejwOPbYY3HMMcek5N6a1HVy0A53xYoVbfbMiRMn4rXXXjN8RpOwFblyuVy44447UlKejqbUEdraD5LaKBGlTpti40dHVuoIqSJ1WqlLD1x44YU48sgj27sY7Y4999wT//rXvxK6x+zZs5NUGiM0qWtjrFmzBps3b26z59Fk2N6khhyO7cqRqoPMm5ubO6TDc1srdaSyJULqOmI9pws6u1KXk5MDQE3q/vrrL5x00kmWfV7lU7dp06YESuoM1BZy8mON1KK5uRlr165t72JY4qeffsKdd96Z0D1oPCQbmtS1MXr16oXy8vK4vz9o0CBcdtlljq/vCKQu1SkxOpr5ldDWpI4WsESiXzsyIWlv/J2Vuttuuw3vvPMOlixZ4ui+X3zxBbp27YoffvghgdJGB7VFZmZmSp+jYcSECRPQs2fPmA++T+f0SvLGhMZDsqFJXTsh1lxghAULFuDxxx93fD11pGjpBlINInWqcqSavHRU8yuvlyeeeAJ//vlnyp4ViUTiVuq4H11HJiRtgY8++ghvvPGG8m+dXakjv1oVqaO+7narjyOXF0TyEV68eHFc5XQKmrcyMpK7VP7666+ora1N6j07E2bNmgXA2brFiV88pv22ghz1rUldJ8PKlSvb5DkdQamjhSCWXdY111yDPn364Nlnn7W9jgZ8e7+/U/BFkZO6Sy+9NKXRXfxZsZIK/l1tfrXHUUcdhdNPP135t85O6uhvqoWX/mZFnmgemz59uuH3WJWcWEFtkQip++OPP3DEEUfgm2++EZ8NHjwYp556asLlay+EQqGU+jV6PB4AzsQPvqlM13n+l19+QVFRkeEzTerSBFVVVdiwYUPM31u1apWh8yWqTjnd5aULqaPnq8oRT108+OCD+PPPP3HhhRfaXkcTT3u/v1Pwcsr1Eu9iv2XLlqiBMomobYkQwnRDKBTC119/3S7P9vl8KCwsTNs6rK2tNSlmMuwWeuonqlQO9D2ruYD+3rdvXwCtZK6tSJ3f74fL5cIvv/wS8z1mz56NTz75xHQyzK+//pqMIrYZeNscffTRgnilAvGSuljWks8++wzvv/9+7IWLA6q21qQuCn788UeMGDECo0aNwimnnJIyk163bt1QWVkZ8/f23HNPkcsJiI/I8AnVabBFKBSC1+ttd1JDCo4q5UUqza8djdRxc8N7771n+Fu8ztq77LILdtxxR9trOJFIF1IXDAZTanJW4cEHH8SoUaPiOv82EYTDYfh8PnTt2jVtSV1hYWFUf14npE413mluixYoQSZcInPnn38+li1bFqXk8UNuizlz5sR8DyKxstqXakIaL7Zs2aJsB24+/OSTTwC0BAyccMIJBitLXV1dXOSXg0idE/GCt1Esa8mhhx6KY489NvbCxQHV3K0DJaKgR48e+PTTTzFz5kz07dsX7777bnsXyYCtW7di1apV4vd4iAz3N3Fq5gqFQsjPz0dTU1PUXXYqYWd+dVIXS5Ysgcvlws8//2z4vLS01PZ79M4dxSzISd0TTzxh+Fu8pM6JshyvUnfFFVfg5ptvRlZWVszfjYbLL78cffr0Sdr9nGD58uUAkuuDGggEsGDBAttr6uvrEYlEUFZWlrakDgDefvtt27/HS+qiKXU0jt1uNzIzMw2E6KmnnrIvdJx49913TZvnaOrUVVddhTfffNPwGZE6ef5NV1JXVlaG888/3/S56iSQSy+9FO+++65hvJx55pkYMmRIXM8mRZTUcidKHR8v6Xocpsp8n6r1uNOQusrKSiFnejwepcNtIBCAz+cz/GsLhEIhhMNhwwThhMgEAgFMmjRJ2VFjJXVA6tSq+fPn4+677zZ9zictKq/K9OKkLubOnQsA+Pbbbw2fd+/e3fZ7HU2psytnsp21OeJV6h599FEAEH0smeSZnKXbMqKN+ouVw348uPLKKzFo0CBDvUYiETQ2NgpFkNq9pKQkLUkdtYFqIeKf2S2qtHEIBoNobm7GU089Jd7Vqfk1MzMTHo/H8MxUmAEbGhpwwgkn4Pbbbzd8Hu1ZDz/8ME477TTDZzKpo7pM50jNjz76yPSZitRRu3BFLRGzMinzNB5iJXVtkTEgHjKu2pCnSmjoNKSOsGrVKnz++ec4+uijTX+bNGkSioqKxL9evXq1SZloMouV1E2ePBkTJ040meEA5wtvW5C6oUOH4p///Kfpc15G6sB2E4MdrKLjoik5nNSl8yRKsFOIUknqqI+63e64SAX1sWQSEpo823L3Tf0smXnJfv/9dwAtOSoJfr8fffr0wc4774zGxkYxNouKihAKhdKur1L/UC1ofC5zqtQ9/vjjuOSSS/C///3P8D0nSp3b7U45qbM6wkn1rNWrVzu6l+wHmI5KHZVJtamh9+B/o3ZIlkDy119/GX53Yn6Nx6cuEZUsHuKomk9StXnrVKTO5/Ph7LPPxgsvvKAcfBMmTEBNTY34F20wJgvU6fik7mShogGmYvTppNRZlYUPNrqmubnZ5FfnZJDQNfIuPdrix3fHHeEIK7s2cko0ZsyYEbOvCE0w8Trqp4LUUdvGM4l+9tlnQkWMBdHIRTwgPzC+YPl8PmEWb2hoEO1eWFiY9OcDLWdjulyuuMkitasTUhcOh5X9gK4LBoPCjEtme6p3qzFK45iUOj7ntCWpk+tv0aJF2G677fDWW29FvRe9Q1tF7jrFokWL4HK5sGrVKtEPVaSONuTUn/lnnNQlokTKPrSpMr9u2bIlpnJxxLOOqOrC6Rq+fv163HnnnY7rs9OQulAohDPPPBM33XQTdtppJ+U1Xq8XhYWFhn9tAep0nNQ5mbRpYDU3N5saNJ1InRVUSh1gVuuc1AUN1gsuuMDghBttEPO/dwQTrJ1S55TU/fTTT/jggw9imlRpoiooKIhKzCKRiCnpa3Z2NjIzM9OG1B166KG44oorYv4eJ3Xnn39+UhQ7Ii48+IIrEFypozkp2RuQu+66C4A1WYkGGr9OSN0FF1yA7Oxsy+uCwaDo59RfnAZKZGZmwu12G8YJ1W8yYVVPcv+uqqoC0DLmot2L3iGeFE6pBJlav//+e1GvKqJM8zavbyJdKvIVD2mVU32lyvxK7RYPnI7NSCSCm2++Gb/++qvhO2effTaOP/54x2v4Kaecgn/961+Oj2DsNKRu6tSp+O6773D77bfjgAMOMDmrtidUSl2spE4mL8kgdcnIlccHrixpq5Q6IDFSBwB77bWX8nMVeJk6AqlLhk9dU1MTIpFITASLrnVC6l5++WXss88+mDdvnvjM5XLB6/Xik08+SVqaAOpbsZC69evX4+STT477mZzUySko4gUtgjxRLl+s/H5/ypU6WhDiWcyCwSAqKioAqM1WMql74YUXlPfh5lfqy9TX7IIo6L5Aq1LHSV1bKnXy2KCTJuzmISulLl1IHZUjIyND1KtKqaO/8XmIcg6qyFc8bhNy1DkFLtkhHqWOyh2t74RCIeE+QXBK6v73v//htttuw0MPPWRY/x566CEMGTLE8RpOvsVOTdydhtSdfvrp2LJlC2bMmIEZM2akVWLHaGk8/ve//8HlcmHdunWGa1JJ6n777TfssMMO+O9//+vsJSzAy2GXV41fJ0+YTnauqsk+Ly8vJqWuI0TAJkOpo7qKJYKT2qRLly5RSR1NvPzM10gkAq/Xi/feey9paQLiUepuuOGGqBGadkil+ZWTOp6AV6XUpcrhO54cm1xVjKbUWZ2Wwa8LBoOCDNHcaFfvW7duNfnUtSWpKy4uFj/LY0NW31Sg+pOvTRfzK40zl8tlS+ro3WWVGUgeqaOTQgjPP/98VIXKqU/drFmzxN9pLYjWdx566CHsuuuuhnNonZK6zz77DACw/fbbG/pNTk4OsrOzY7ZqOD0to9OQunRGNFJH6VfWr19vuIaTOrmzOiUo4XBYkDo+EZJKZ3XWolPwewaDQcNEJZO6goICAPEpdar3zc3NRXNzM6677jqDesfx0EMPiZ/TXan79ttv8cgjjwBoIawAcPHFF4u/J0rq7EhzdXU1AKCioiLqZKNymg+HwwZfm2QgnkAJnrU/HnDiQUjUpExK3aJFi7D77rsDMJKrVJM63k7xKHV83KiICK8rWsgA8zvwupWVOitS9+abb6JLly5ivsrMzERWVpahb6cigIiTOkp4zMtLoHJ0BqWOkzoV2eHRyzJUpC7WYIS6ujqsWLFC5G8jNyqam6zgxPy6ceNGjBgxAuPGjUMwGBR9Ohqpo6TtfG22I3U+nw+XXnop/H6/UBmbmpoMZczOzkZ2drZpTdtjjz0wdepUy3vTaSrRoEldGyAaqaOdj+wbkgxSFwqFxPEkvFNQJ0vUH4UTNLnzyse3lJWVmb5D34vlOYScnByEQiHcf//9+PHHH01/b2pqwmOPPWYoQzpj//33x5w5c4R/GgDD0TKJkjqrhWfcuHFC2S4tLY3aHvR3vnOMRCJKP6pEEI9Sl4gDNKAmF4meJ0lkd/Xq1Rg6dCiys7MNJ3z4/X4xnlPhU/fKK6+In+MhdXzsRSIRrF27FkOGDMGmTZsAWLeP3P/onXjOzGik7qWXXgLQqgpnZmaipKTEQC5TER3NfUZLSkrEz7GSumAwKOYmp4ESkUhEOZ+lCpxcOlHqVFAFSsTaLuSetPfeewNozUEabd52Yn6lvvfqq6/i4osvdkzqaP7lxNJuPnrqqafwxBNP4OOPPxZjPBgMGsrocrkEqeN1//PPP+Pyyy833I8/9+abb7b13SRoUhcnnHRYGiBOSZ08aOxIXSwpTbp164aDDjoIH3zwgen7iaorfOKWSZ2s1HXp0gVA8kgdKXVWkBf4ZJG6NWvWYPbs2Um5lwq5ubli4ufBPLH41AHm9/2///s/5fVTpkwRP8vRxSrQffmEk0qlLhZSl2jSYJVvV6Kkjm+c9tlnH/Ts2dPgK5RKpW7NmjU499xzxe8bN26M+R587IVCITz99NP45Zdf8P333wOwLqvVOA8Gg+JnmdTJcyWZ44j0ZmZminlEvm+ysHz5ckPeTbsTU6jdrMrAx5asPFuRutdeew177bWXwWc1laBy8AAWt9uNrVu34oADDhDk3W6joRojsSp19OzddtsNAMQmMdqYdqLUcfI0Y8YMS1InvyOROr6W8GtktZXq0uVyWZI6oGXdjUQipvLK9+YbCrv349CkLk5EI1UfffQR8vLysHLlyrhJHS3i77//Pu655x7D32JR6jIzM7HvvvsqJ6dElTrZ/Gql1HFSZ+VTZweV43JbkzqauPr27Yvhw4cndC87lJaWivfipM6pUkf1Lk+GkydPjvrdzMzMqJMx1aus1HFSFw6HEzYvxUrq4jk1Zf78+YZkqVTv3F8wmaRu6NCh6NWrl+FoKwqUcLlcwlUiWURFJg7xKIByP5o/fz6A1rMrnSp1nDDLJI7Gt3wvUm8aGhqQkZEBl8uVclIn11EwGMSee+4JwFqpa2xsVJI06kcnnHCCY/MrpdrigXWpBJXD7/cbSN0777yDmTNnCvcgq75TUlJiWI/iVero2TS3ko95NFLnxKeOXxMKhZRrwQcffACv12uod5rT+GaI30t+R3r3mpoa0acDgYCp3xBhpXpTRX+rOIaT+U2TujgRjVSRb08ipI4acObMmXjwwQdjej6/B0WM8XLQMxM1XSSi1B1wwAE4+uijU6bUyUf8JELqXnvtNRQXF2P9+vUx+1iFw2FHiyktkllZWeK9kml+dQK32x21T9DOnSt1kUhEmIyBFnL48MMPx/x8jljNr/GYXnfbbTcMHjxY/E7vft5554nPkmV+BVr8hHr16qVU6nJycoRykCzzq9yW8SRdlcce+bdR/0pUqQuHw2IBtyOI1L9kUudkDvv9998dma5U92tqasK8efOwyy67WJI6n8+nrNtgMIhu3boJVxEguvmVNgFtlVeTnhMIBAykjsY3BYpYlad379625/k6BT2b/KNpPkym+RVoqXe6J7+e3JO4vyvd24rUyf2B5ix+D5VSR+Ocni9HgQPq+dvJGqZJXZyIVrnc+VQl6apInUzU7AZFPKROZVKKh+gEg0GRtkJW6vhErgqUyMzMFGWfOXMmPvzwwzYzvyYS/Tpz5kwAxsHt9LD5a6+91pFpkgJJuAmUR97Fan51SurouYAzpY76q6zUyX3ptddec/R8K8RK6uIxLcpQPStRUsfJrtfrRdeuXQ3RdKTUZWdni8k+WeqTPPfYjZfGxkb07dvXdL6yVT+ycy9RfY+TOr6YbdiwIWrUsR2pc1JXu+66q1DbosHKJOb1em1JnaocgUAAWVlZhnEVzfyainOUCapn0rjlSl1GRoYgdTR3ye08ffp0TJkyBVlZWcp3j1epKy0txYcffijmDyfmV5obnSh1nNRt2rQJX331FYDWTSpfJ+hnPrf861//Mjybg+qX1L5u3bohGAya1h5yrbJyQwDU7+1kTtekLk5EIwi0IDU2Nho6VI8ePZCTk2NI40ETvFUHkZGRkeGIoEQiEYTDYQOpi0Qi2LBhg1io4iE6t99+O4499lg888wzePXVV8XnTU1NwrEZMJtfs7OzlRPjSSedFPWZPB0EoS2VOmrP119/XXzWp08fR2kJrPJ2ySDTG/fz4AtYMkhdtInWCamje8g+dXLSb6cpG3jSU9X3EyF1diZgVX9IBamT65Oi+3g5SKmjBT1ZpE6OurNr261bt2L58uWG5N6AeUNFinG8Sl1TU5NhMXOSv7OhoUEshPEodbGA5q1jjjnG8LsqDQUndapyBINBE6mLZn4lEpVsUjd//nxkZmYaIpQBNalramoykJxNmzaZ0l/tvvvuOPfcc02CASFWpY7KkZubiyOPPBLbb7+94XMrBAIBkS3AiVInm18PPPBARCIRZc49agN+/ddff236O4HalNTs7bbbzlapk0kdnzO1UtfGsCNDfr9fOBH7fD7RoWbNmoX58+cbBsGsWbOiml9lFBQUOCJj1EE4qXvwwQdRWVkpJlKnRGfGjBmiw5JCddFFF+Hll18W1zQ1NeHHH3/EoYceKt4nHA5jyZIltqSOsGzZMmHa4/jrr7+wdOlS0+e5ubkG3ycZqSB13IEaaDlrOBqcLtCc1JEqEY9PnR2pU5mgqJ9VVFQ4Mr/S/XmS4UgkgjvuuMNwnROfulAohH333ReXXXaZ6W+x+uaQMsvPdLb7LvdrI6jGVaK+mPI4lqOEKfqVm19TQeoKCwttF1qVqQkwkzPqV9FInSr6NScnx6DUBYNB4UOWmZlpq/rFq9TF6ttJ96PzrOl3O6Wuvr7eUA6KMrYjdVabHiKvyTa/kuP+7bffbvickzoyGwaDQQOpO/7440055GgDYkXq4lXqaHw4DZQIBoPIzs5GRkZGzEodYenSpeJ9+SaO2tuqLazW7JUrVyInJwddunSJyfzKwd97xowZADSpSzr4ILQjVf/+97+FT53P5xMNtvvuu6OkpMQwCL7//nvReZ2SusLCQkekjr6fkZEhJHI6QJt8WJzc57vvvsPo0aOFCmc3cOrr68WkGwwG8eijj6J///5Yvny5SLpo98xRo0aZPiPHbAKlRsnJyTEQN3nyTmaghNXCsGjRIgAt9Uk/y1BJ6yoQqTvyyCMxbtw4AEZVJxmkbp999lGa5K6//nosWLDAkVJH9+c72nA4jF133VWYqQFniyndS0XaY1Xqampq4HK5xOkHgH2d08LL0zeoJtdo7fbVV18JZ3IVYlHqku1Tx+9TWFho+y40LuWNldyPaNGLRamjSL/c3FyTT92mTZuQkZGBysrKmMyvw4cPx8CBA03fmTNnjoj0nzt3LnbZZRfLd1aB6oxSajgxv9bX1xvqtlu3bti0aRMCgQC8Xq/S/GoF+nuyk6VT2eVxyUkdbdSCwaBI+tvY2IiFCxea7mdF6uj+8fjUETkDWua7nJwcR0qd1+u1JJf0PgQVqZs7d64IbFApdVb3teoPK1euRGVlJbxeryB1e+yxhyDWsvlVlbSbl3HAgAGmpNtWMCej0bAEb1g7hYifDOHz+YScrhoES5cuxYABA/DLL7+kjNSRUhcKhcRES2TIyX1o8eO7OBWamprQ0NAgnPsDgYAhsjCaUgeokyHLySdpcidHWv58HmmYCqUOAB5++GFceeWVAFpI3RFHHIFevXopIz6bm5sNOblU+Z/4M4455hhMnDgRTU1NOOigg7DDDjuIvyfLp666uhpdu3YVv4dCIfTp0wddunSJidTJZQdakyYDzsyv1JdUhDVWnzqfz4fCwkKDj2BTU5OJRBGInPA+o+rb0RbhAw880FBeGVSft912GwCzUqcidalQ6goKCpKi1Dkldbz/1dbWIhwOo2vXrqipqTEoFE1NTfB4PCbfLPmIP9n8mpWVBY/HY2qfxx57DH/88QeOPvpojB071nKzZQXqA3IkciykDgC6du2KLl26oF+/fsjMzBTjIdr4oufzkxuSASqrPNZoXqytrcXvv/+O4uJiBINBQXL8fr8yuXAqlDp5Ts/NzXXkU5eVlWVrZYhG6rZt2yaeY6fUyWPcqj80NDSgvLwcWVlZ8Pl8CIfD2H777dGnTx8ARvOrz+cTqrDqXkDLvOqE4AJaqYsJvOP+9ttvuPjiizF37lzTdTy3TE1NjegQ1JB8ECxZsgQ77bQTvF6v40CJ4uJiZeCADJnUAa27ECKlTjoJlZUmVStSRnmO8vPzkZWVhWAwaJhArDJpc3BzI6Gmpsaw8FqROrlcXKlzu91JI3WcEBHhtCIwJ554ovg5GoGmSLmMjAx4vV6cdtpphvrjP0+fPj3qBGY1GcrH7lAwDdBST/GQOnp/p6Tur7/+QnFxMf766y8AySF1NTU1KCoqMpTB7rvUdtyHkfeh0047DSUlJQkTrFAohCFDhuDGG28EYCR1NO7r6urEuIlW7ljAFzMegamCU6WOriOTo4oIZ2dnizkqFAqJXHm9e/c2KXXNzc1wu90mciCfFy0rdR6PR0koamtrRTvKChO9/+23326prtL9qC3Gjx8PQE3qaE6Rza+ELVu2ICsrCxkZGSbzqxXkNC/JghUJl4/6IlIXLV2Laj0DElPq5Dm9rZS62tpag38kvzdgfTaxFakDWvoprYNkhidw86vVPMnvlZOT44jgAprUxQTeoD/88AOefvppnHPOOabrODEhn7qsrCyxcPHOt3z5cvTt21c5YVgNii5dujjaxTkhdU6UOior3UPuWFxKpoFJ7yOTOvrcToWUUV1dbYgCtSJ18uLClbqCgoKkkTru0xPNmZn7nTk5fssubyDV5Y8//ojjjjvOcFoGRzSljpM6mlCoDTMzMx2Zh8g0RaD6IXWDrlO9w6233or3338fNTU1+PTTTw3vxhGr+ZWUOl42u+/SjtwqDQ8RDav6WL9+veEYNytw0gwYSV1RUREaGxsFqUu2+ZW/T7S2tVPqunbtavKZvO+++5CVlaXs13l5eaL/LV68WBCo7bbbzhQoQaRu+fLluP/++wXR53OTyvzq8XiU6kxdXR2CwaByjqF586abbsIJJ5ygrAe+CY9EIrj11lsBtLSbPIfwEyWsxptV9KsVUq3UyXM+V+qAlrbjpM5qjaC+6na7HSt1zz//vOVpGY2NjXEpdcFgUJC6eAIlgJZ3p02InVJH73n++eeLvy9YsAAfffQRAKOqXVpaaknq+JpptRbKR+FppS4FoA7TvXt3EQGzePFiw5E/gHEQcFJH4KSuvr4eRUVFysiqVJA6CnKgd3HSSeRnyWZNUibJpy43N1c52XOlzkpp5KYzQnV1tSFfG03usllNXgi5Uuc0uMQKfDfFiYv8TPm9eLtHI3W047QCER+qfysXAOpbVm3LSR3vI/S/E6WuvLzc8BnVT7du3cRnKpMNALz44osm1SIZpI6UOl4GJ0odP66Ht5EVaSB89913ePrpp6OWKxqpo/HASZ2q3NXV1TFvTHj/jNa29O6yUldTU4O+ffvikEMOUX7vjz/+MLTfDTfcYFiMeT8lpY4HShCpo7JR9C0fr42NjaIO8/LyhOnVTqlTBTH5fD5HijlgTsxeWFho6tPkBwYYyQA/vcUqUCLa89uC1DU2Nor6pueR3yP1NflMcgK5gziNfl2wYAHOP/984bqiKp88p+fk5FiSOsqLys2vTpS6pqamuJU6us/OO+8MoMViMmjQIBx11FHiHQilpaXCp85KqVOROpqL6F50ZJ1W6lIAati+ffsazlCUUzlw2by6utqW1NHfnCp1H3/8MUpLSw0D/ssvv4TL5TKRLb5gWylATogOLX5EWGSzACkjslInEx6u1FmROlmpCwaDmDVrllKpk98pmlLnxGRtBT4J8IlHbjNO+AAYVKNElTpKUfPmm28CsD7iLRaljhbXWM2vFKxCJkWaiDh52bJli0HhJJKWkZERNVcXv2cspK6wsNAxqeOLsN/vRzgcNlzvdrsdRQNHg0zqeP8pLCxUKnWqcpeUlGDkyJExPZv63NixY6O2LTe/8nbbtm0bSkpKLM/2/fTTTw1/u+uuu5CXlyfGG58rS0tLTXnqiNQRqK7kfGF0DZ0qYafUBQIB/PHHH6ay+nw+A9lT1bNsfiUUFRWZ0tuQ7xRg9P3t3r27+DleUhdtvrr88svxxRdf2F4jlxUw1uvnn3+O6upq9O3bV8zrslL3zDPP2N7XqU/dJ598AgAYNGiQZflUSp3VRmb//fcXYkgs5tdAIIDGxkaD28XmzZtFn+drq5VSR+IDberI5cNKqSO/UQI3v1olCG9oaIDH4xFn4WqlLgXgpI5DHqR1dXUYPXo0xo0bhz///BNbt241Sa/cRk+kzolP3dChQ1FQUGDoeN999x0AGM525d/nSp2MeEidTE5IRfP7/SJnkJ35NRal7u6778bs2bMRCoXw3HPP4eabb8aTTz6JAw880LBQyuVqbm42TLIyESaMGzcOl156aZQaMPs3EFRmMl6OWEy10Uhdc3Mz3njjDZH3zmqRjYXUqZQ6JylNiGTTbp2Ts0mTJgFo6Q98EaS64v5F/KxEGfS3c845x5Fq4fP5UFRUZFhQnSh1gDmfJNCq1DlZKOS+yOFEqaurq0NeXp4pKk5GrOeBUp977rnnHJtfqTyEaKRu3bp1pr9xVYGTuqysLMO8RqSOz0+qJLCAsY7JX8lOqaNcYRw+n8+QNJwngSZQu8pBTdFIHf9bXl6eGBt20a9DhgzBcccdp3x+tHH42GOP4cgjj7S9Ri4rYNygrl69Gh6PB7vuuqul+RWw79+y2dMqFVG0ZO1WPnVW8xgpWJzUNTc3IxKJ4N///rfh1BZ5bNfV1RmepTpFAmjtg7JSR5t3qjPqv7xuqY9SMJCVUifXEz1DNkdrUpcCUMPuuOOOtteRKaVHjx745ZdfcM899xhUFZ4ImBi8U6XO4/GYSB2ZPyk3nvx9TupcLpchitJJJ+Gk7rvvvjMMAKBVXaNJjcyv3CEaaDW/2il1svpEUviKFStw3nnn4ZZbbsEhhxyCL774wjTp8oErR8yWlJQozYFTpkzBE088YfXqAry80Ugd+QQBRqXOikD/85//xGOPPRaV1IVCIUO7e71enHjiiXjvvfcM18VD6rhPnZPkw1w1AVp9TOh9yD3huuuuE2oC9W+u1FFZZVIXDocN40FOT/Prr7/C5XIZFmVS6vbbbz/xmYoc/etf/8I333xjyLHY2NhoGn/RfOqo7SdNmmQIzpBhR+pkpc7lcpmO9EsEwWAQHo8HGRkZjs2vgNEEu3XrVpSWllqSui1btpjMZlyp27BhA7p06YINGzYYyBsteNSfaBw6IXV77LEH+vXrpyR15FOnGu+1tbWG7ARWCag9Ho+pTxYVFYlIRoIVqeORzHZK3S+//CKOpyJQ28ttNX36dEPiW8B5gm8qK2Cs1/Xr14vUG1yp40eGAcaTbWQ4Nb8SybYaTz6fzzSO7JQ6AvnU0QZs7dq1+M9//oPrrrvOcI38LBWpKyoqUvrYWil1BKpT/hzZp473fTufOh7oxsuoza8pgB2p4wslTdA9evQQn/GfaaHgMr8VqevSpQseffRR8Znb7UZBQQHq6urEgKbByDv//PnzBQHgpM7tdhsGjpPzMmmSraurw3777YdwOIz7779fHK9CHZyu44ESMhnyer3Ct0LGiBEjTJMDpfSQSRq9CwcfUDJpLCkpSchHxUqpo10YB1cIeF1bKXUzZszA7NmzHZE6/uysrCxMmzYNJ598suG6aKSOL3ayUud2u4WZl7Bo0SKhEIXDYYTDYTEGdt99d0QiEdxyyy2GZ5AJ9LnnnhMO9jx9CU3sVhF+GzdutExvAbRuYPiCSIES3bt3F+WV2yYSieDOO+80mTFVSl008yvdOz8/31bxtiN1OTk5huhXQL1IxppAl8D9NJ2aXwFjsIRKqePWikAgEFWp69OnD7p27WrYtJWUlKCurk6QuksuuQRdu3a1JHV8vL/44ou49dZb4Xa7DemgIpGIUOpUfau5udkUgCFDXoAJRUVFiEQihvtamV/56SBE6mJNaSL3u+OOO86UxzNRUldVVSVIHc2ZeXl5CIVChnvHQuqiKXVWKvTSpUtNa6uVUiebU7lqS3lNuStPMBhEbm4u3n77bQAt5J7PpUTqyD2A35uXWVbqAAg/8UgkYknqrJQ6lfmVkzpexu7duyt9zmVoUhcDqPJ79+5t+hv5OQGtpI6bgSorK8XP1Pl4VKlVoERmZqbpu9Swso8bHyy77babUCw4qcvMzBQdsry8HH/++WfUSYZIACdKubm5QiEksxEndbQL5xMgKXUrVqwwRUBdd9116N69u2lhpYlFPtoGsCd18u6uuLjY0nEfiO6UbKfUyfflZoZgMIjhw4cDsCZ1pFZEC5SQfY+szsuUSV1GRobIpQYYFxXZp47+59cMHDhQ+HXQvQcPHozVq1fj+OOPV5aV91lKBqxS6qjeZVVEdnKXCQctMjwPYl1dneH8XP5+BLl/0TmOKqUuWqAELf7Z2dkIBoO2eeqsfOrIpGJF6pYvX46ZM2daEvSlS5fi4IMPNvnT8jLSYuLU/AoYlToVqRs2bJjhuzKp40rd0qVLRX4uvsnp2rUrtm7daujXxcXFpnOpyb1DZQIMhUL466+/RDuSv14wGERtba2pXORcT1CpQFabKyoHV+QaGxsdKXXc5cAqKpwSd1spdSpEI3WzZ88W11AfCgQCoq+SUpeVlSXaS0UceJouGdGUugsuuAC9evUSqrrq/f1+P1asWIEBAwYYPrdS6ugUEnofUuqam5vx+++/AzAHtGVnZwuiV1dXZxiHJG6UlJQ4Uupyc3PFnEUprmhNHzduHB588EGMHj3aUqmzC5SgZ8nrwQsvvIDnn3/eVBcyNKmzwEMPPYQpU6YYPuPK2saNGw0L7LfffgugJZChqqoK+fn5hp0CN3nyhqbfrZQ62R8uMzNT3JfIhEzqaMCSesgDJbhSt/POO6OpqQlr1qxBJBIxDBQOuj8nNryz0QTGza8UKMG/Q752Mi644ALcc889ol44mpubkZeXh4MPPtj0PZnU8fqTF0EynVhBjmCWYRcoYZWsdcuWLQgEAqK97PL70UIUTanj5MbKRMd3eqSscTWPT6oqnzr+uQy+EenZs6dlWfmEKvticlJHfUsmdXJf5O9dUVGB008/HYCRQFPkNZWPl1d1nz59+mDMmDEA7M2vdj51WVlZlifCEOyUuuzsbHEYvIrUDR48GAcccIDl+bP33XcfvvjiC5SXl5tOXqEy0ZiTza9z5swx9CG/3y/qj0id3+9HY2OjidTtv//+hudYKXWRSATz58/HrrvuKj4ndO3aFdu2bTOROlmpsyN1NMeR/5TsCyin3pFJnYosy6oKQSZ1kUgEDQ0NImiIfEkB5+ZXjnvvvRdAbKTODgsXLsTw4cPx5JNPAjC+K9UBV+roM55pgPqknUIULVDiueeew5o1a0z+aRxLly5FOBxWkjpVG3HLmBwoQXM5v0Yeq5TsW0Y0Uiev2UDrptXv96OpqQkVFRW46qqrhA+5Sqnj5lerjafsa+oUmtRZYPr06eJILQJf0MrLy4V6AbQ26JFHHonVq1cjPz8fo0aNEqYnPpmRT5xsflUFSsikzuVyiQFGKgdNZFZRU1bmVxpAK1aswPPPP4/ttttOSexUx6dkZ2ejb9++2HnnnXHllVciKytLTMZE3hobGw2L7oABA5Skrm/fvnC5XJakzuoUBvpcldtL3t0VFBQoSR0Rrs2bN6Ourg4///yz8lnUNr169UJmZiamT5+Oww47DMFgEA8//LDh2qamJixevBhlZWX49ttvRXtZmegoLD8cDisXk8GDBwNoqQv+XlYkgit1tDDwCUxF6rhPHf/c6t5OJptHHnkEO++8s+iP3PxKE7WdUsfLbFV3/HsNDQ2ib9P7jBgxwpBklt+nvLxcPIOCfIDWDQtX6hobG5WKKPnDAi35A++66y5TGaOZX0llowWUjwMae5zU/fnnn0Kh5Ist9xUj8I0CN78GAgEMGzYMl1xyibg2EAggPz8fubm5ol0oHUlpaamhzfv374/169cLcpeTk4NNmzaJDQ4pdevXr8fWrVstSZ3f70dtba0jUqfqc7Rwk3LLFfetW7eaFCYiddQeVkqdlfkVaG0LUlm4Kk2gdCuAc1JHZxEni9RRW9CcTonhgda6XbduHbp162aYdzipI1JsZ0Fw6lNnFwBCmwgeuQ5YBwdwUzf51AHA5MmTRWAOV695lgmCHJQBGEndH3/8IfLI0vtRf6MTUIBWpe6ee+4xbcyjKXX8xCFeVqClf9mdQGSFpJK66upqvPnmm3jggQfw4IMP4o033rA9TiudoVLO5AWNFLGSkhJxKDehV69ecLlcmDBhAm666Sbcc8894m9FRUUi1QndT/W8cDiMzMxMU8NSJ6LkszSRUflk8mJlfiWTyLp168RB73KOKqB1YeFt6fV6kZeXh0WLFmGXXXaBx+MRA438SaZOnSomlCuuuEKcQSuDFmb5mCDAGamj9+GkjkjDWWedBaCFvNXW1ppMZETq1qxZg1NOOQV77LGH8ll+vx///ve/RZqEY445BhUVFfD7/XjnnXcE8aIy811iNKWOOyWr6mfGjBk4/PDDEQqFDLtWu/xNGRkZaGhoEBMon1DslDqqUyszHX3uZLK5/PLLsf/++4v+w5W6aKSuqqrKMMHT2JLNTfQ7qZ2yUhcOh3HCCSegd+/ephxl5eXlYpInYg20EiXuU5ebm2sIwKBn8t3//vvvjwkTJpjqwYrU5efnIzs7W4w5rtRR25HCv2bNGvH9Pn36iP7GrQGqxN1WSh0tlJQ0lV/L1RGaSwoLCw1t5PV6UVlZKUh0dnY2ysrKhCmS7kEmt+233x6A0fxKCge3etDcyMtIJEP1fmQ2I1LHlbotW7aYSB25OdDnVv5aTpQ6+q6qXKTyAsbo12AwKNRhGVakLhQKmeblWM5VpnLU19cLkkY+pFVVVejVq5eB7HD/ObrezoLgNKWJXd5JqzQyVkod3+TU19cjKytL9CcKzOL+4vJYBcx5TgGjT91nn30Gj8eDsWPHCmJGuRr5WkXP/c9//mNKXRLtRAk7pU6+l1MkjdQ999xzGDp0qLDhh0IhzJ49G8OGDcNzzz2XrMfY4rrrrsOIESNw5plnJhw9piJZ8oJGA6u0tFTkviGMGDECQMsCduuttxoOGSe/kXjMr0DLLvmwww4TPhiyUif7h8mkjiZWWryi1ZVKqZN3bnxxKigoMPx95cqVQs1SqQn8pI1YlDpaKFXvQW1x3333oampCYWFhYhEIthtt90M70EkYOzYsfj4448BqFUhv9+PsrIyU6DC3LlzsWnTJhx77LGGMvOBmiipKyoqwoABA0yZ0K2CDOh9OanjdRirT518b8CZUgcYfas4qbPKeUiQTxFZs2YNNmzYYNq1y/6D1Lfl8q1atQqbN282tG3Xrl0N70vlo+fKPnVz587FXnvtJTYqNOnKpke57qxIXWVlJXJycgzzCNCy2Nx7773Yb7/9BJFQ5Vzj7wuoibhM6uTD4nm6Eb/fj+zsbMNCSu0j51+ke9L4sfKpozqlv8tKHWAkdXyxrKurg9vtdkTqZOsFYK/UURtbRb+qxiGVnb5DdaRSfLiSw5U6+Yg+Duo3sqI1YcIEw9GE/Fo78LEaiUTw559/ol+/fgBa2nrdunWIRCLYbrvtLJU6fs4uABxxxBGm58hpf6IdE6bqp1bzihOlrqamBl6vFw888ACA1j6gUupUpE4O3qE+29jYiLy8POTn56OpqcnwTI/HI67ja7vP5zO8A41pyjlHsIt+5enO2pXU3XPPPfjpp5/w4IMP4rrrrsN1112Hhx56CPPmzcPdd9+drMdY4ueff0ZVVRW++eYbDBw4UES5xAsnpI52Hl26dDEpdf3797e8N+1GnQZKqBp25MiRYkKWferslDpufqVOzQdkVVWVISUHv78c9MBRUFAgIoj4GZZlZWVilw607kY5aKKJ1/xK6sDGjRsxbdo0AK0Tb25uLtxut3jX33//HXPmzDHcX8ZFF11k2IhEIhGx4HFQeTMyMgxRaTKpy8nJgdvtdkTqrMwctCDzXStvD37vpqYmFBUVoaGhQbSt2+3G6tWrsd9++8XtU8cjtuMhdSrzq5VPXU1NDYqLi4WLw9ixY1FZWWlyLaDy0OeyUidfy8doWVmZQZmcPXs2gFZSp/Kp+/HHH4U5V2XSAczqj0zqsrKysP322+PBBx8U/TIvLw+77767KBfQkocrGqnjZfvyyy/x7LPPGv5uZX5VbVyIAPKIQ6rXaKROVj2IGNJzVKSOFsNNmzYpU+pQ8AgRM042CDQHy5kAgBbCx33qMjIyBKmjSPxYzK9c1QWMpE723eNKHSd1TlJSyEodD8IjOEmITeX0eDzYuHEjqqurhcLr9/tFMJITpc7r9WLTpk1ifuWgMRIMBg31qSojtYEMLnBwOFHqiNTxPlpYWGjKkSmTOvqZt11BQYEhX6PX6xXzPCd1WVlZos/x03XkpMY864V8fjllAaB6ohRLaeNT53K5lLvuuro6ZWLRZOP777/HoYceCgA4/PDDRUJejkAgAJ/PZ/hnBdUxV/ICyM2vPp8PZ5xxBgBg5syZtu9MCy5XZ+x86lSkprKyEps3b0YwGDSROpVSxyPgiNTxDks46qijDCQsEokI2V7OkcaRn58vSCYPiJAne0olsWzZMmzevBmLFi0SEZTxkrrtttsOAHDxxRfjxBNPNJAkej5fEPgzVBPPSy+9hAsuuMBwTTgcNpE6esf+/fsbJkJOfui9VJsEXh5qQyszB18UBg0ahP79+xvGGyc7ROq4H5jb7UbPnj2Rm5tr61NnZ34955xzhM+h08kmPz9faX6l8lqZX+nIL1KjCfIEz4NCAGulDjCTuoKCAvG+oVAIV199NYDWvmKV0uSZZ57B2rVrlQuFqowyqXO5XFi5ciWOPvpo8d19991XlJkvElQW1WYIMCpNt9xyCy688EIsXrxYfCZHv9qROq7U0X157jIOJ0rd5s2bxRxL18vRr0BLOgne/3gQTX5+vlCLVKTuzDPPBNDat2Sljo9LIh8q8sphpdRZkbqcnByR3omgInXhcDhqlH1TU5NIqkttpVL3nCh1NMY8Ho/oE0OGDAHQ0takOPfq1cvwvrzOqI2ysrJQVlam3HRSvY4YMQK5ubliXbz33nsxdepUw7Xy/MPfm+7FQW0km5s5waqvrzeRuh49epgCHrj/K90bMCaI5/M0jQdKQcbdj3g55TQsvC7lVGYcVG/Ulvy4TaqTeHzqYv+GBe677z6MGjUKgwYNEi+yZs0aLFiwAPfff3+yHmOJ6upqkUKkqKhIORAmTZokDmeOBrtkwCrzKx1MDlhn+ifQoCFzZazmV6DVoXTDhg0m8yv3g/H5fCaljvvuUMeyIqGNjY2IRCIoKyvDkiVLxOcqUheJREQmdfq7XBf33nsvbrnlFjFB8wEVL6nr3r07ysvLRX3W19eLHRNdc8ABB2DevHnYa6+9TCdPRAMtcCqlDmjJ1cbrQ1bqvF6vkrQDLX0oEAgIQkwqjepdyfxKiy4nckS86X5Uv9dffz0A4+HbfEGIRal7/fXXRfLTRJS6jIwME2mQUV1djW7dupnqPJlKHfk6AcZ+YGV+Jfz++++44oor0LNnT6X5VS6jTOo4aGHhCwM3GVL/tVLqVH1qwIABhlxh3PVCNr9ycFOtU6WOyi/XQa9evQAAJ510kuF6rtRRPTc0NNgqdaSkqMyvr7zyCn799Vcxpnl/CofDhnLT4sx9B2NR6jIzM5GRkaFU6nbddVf069cPS5cuxbhx4zBkyBADqYtEIgiFQrZCAtBCzImw8HqQ4WTe4t8jVY6C4xobG7FlyxZkZ2cjPz/fMH9x8kxrKicq48aNM2xaqV6JjFLf++2333DqqacaypSXl4eZM2fisMMOM6yZ3L+cg0giD4YAzHlLs7KyDH2re/fuWLx4MSKRCFwul5g3eT+lZ1mROsq/SO/Ozbm8PmRSx9+BB9HIGwUyW1NbUvnTxqfu6KOPxsKFC3Hddddh1KhRGDlyJK6//nosXLgQRx99dLIeYwl+YkB1dbVJDgdafBNqamrEP6sUHoC9+ZUmaG5+5VA5YHLQoKHoJB4o8d577+Hiiy8GYCZ1nHgRqauqqrIMlKBrrMyvWVlZSiLFQROD/I7yJE6TJ4/gU13HfWRkxErq6NquXbsanOoXLlyIlStXmtqBTOLRlDoZtADK96NJpnfv3ob3jEWpo2NtaIFQRdIBRvNrbm4uPB6PKQkqlTUSiYioxA8//BAAlEoIEHtKE+oHTneQeXl58Pv9Bp81l8tl8v+U24GUOnmz4VSpk00d9AxOZrKzsw1KHYErdbRgycjMzLQ0v8ZC6qjfcJ8p/s5EOlRHXtHfuRogg4+faOZX6lvc5MUT0gItaVAefPBBkc7Gyvx6wgkniFQa/D15PfBF2IlSpyJ1dG+VUgcYySgtotGUOrvUQvxMa9pEUvkownfy5MnweDziXbOzswVZjabUcbchOzXOiVLHFXKqH6rDYDBoIPFWPnXkq8j//vzzzxtOY5FdFFTBdgRqc7vMEhzUr+R2qqmpMUWTZmZmiut79uyJSCQi+lJ9fT3y8vIM8zS1j0zqKOckmV/pOfy9+LPlDY/sO2e10aS5hcpIZU8b8yvQUknDhw/HSSedhDFjxmD48OG2Z8YlE8OGDRMd5dNPPzVFqgEtDVZYWGj4ZwU+eGfNmoX6+nrTAkgTnZxtOxGl7vjjjxeHBMukjt+XFv/169ejpqbG4KtQW1uLrKwsseO3I3V2ebgAa1InL2Q0+Ol/K/OrHWIldVR/5eXlhkTPI0aMwH333WdyYKaJKValTvYLku8nmyVkpS4SiViSOvkz2SGaQIsC5VfiyUKB1sWXTlLYe++9MX78eGXKEl42eaOiIjm8HqkOYlHqgJZJmZtfqc/RxsiK1HHI7wy0pPdYsmSJSanjixC9i6zU0WJLfyNwJdvq7FcK6lEpddHMrxx0b25y5aYmHsiggt/vt53H+PiJZn4lUsed0+vq6kRiV6Dl7OmrrrpKEE8r8ytgPLhdZbbj9W+l1BUUFNjmqaN7q5Q6Xj6glXzQYm3lhG9lfpWftWrVKng8HjEXT5kyBf/73/9ExDKPpnZK6lauXInzzz8fZ599tu3cxP/m9/tx5ZVXmu5NvwcCAdFXuQmZk1f+vtxE7mS8ezwe2yTIfJNidZwe+SbLbSwHpxCqq6sNG+ALL7wQQOvYpY0O3/RRUnyCTOrITYnIIJlf6Ts8Hym/j9W6QKD1Xv5cNr/KpK7dlTqO//73v6m4rS2GDBmCyspKjBgxAgsXLhSyf7ygwRsKhTBixAhcdNFFJlL32muv4fHHHzcRl2hEhhqZK3VyoATJ9dynjnce6ohVVVWor69HWVmZwfxaUFAgBpBVShNS6lSLFpEDmiRls2C8Sp0dYo1+3WmnnQC0+CPJ+Y0Aczuo8tk1Nzcrc4txWJE6mqy4wz3dk9dpU1OTMhAGMJK6srIyy8XE7XZj/fr1mDZtGnw+H7Kyskw+dRs2bBA+i7m5uejevbtwFuZHRTnJU8ev4e9NwTCxkjo6jxNoIXVyO8t9UI5+BVoIr0yY6uvr0b9/f5NSB7QkNJWfYaXU8c9pISGfOpWaQ+MmKyvL1M9iUerIpMNJHb9269attv65jY2NSlLHza8qQs/fl/oA5fmTlTq7c23p2aoIUP6Z6v15hKidUsdzeqnAiZZMbFRnbqtSt3CQ/1W0Z61atQo9e/YUJK6goECkvKD70OeZmZmIRCJRza9NTU3YZ5990KNHD1s1jtfFu+++i0ceeQQvvPCC4Rqu1MmqMn1Gv8v1RKC+bZdCha63SlDshNRZEWl6/h133GFo25qaGkHqevXqJZ5N6w9t8qkNqB/zslCf5EqanOLITqm76KKLcPnll5vWBSu10cqnzs782u556ghnnHEGHnzwQdtr4j3L0A733XcfvvnmG7z66qu2eXWcgAIlaNAvXrzYtAD26tUL//d//2dq1GhEhjoj+TnwQAn67tq1a01KHV88PB4PiouLRfbssrIyg1JXWFhoSepkpU5lfqWoQ5qEoil1Mqmj94hHqeMTnx2p23fffdHQ0IDdd9/dEamjBMeyUhetjFakjsrJk9gC5txDNHmq1BFe91amV8C4KM6fP19J6vgClZeXZ6gT1fmf8+bNwzPPPGO4v8r8SoSjW7ducZM6nt4CMKfRkUlwQ0ODSanj/nkyZKUOaElqzfMO2vnUkRJw7bXXmpIPq9QV6qtZWVkmUhULqaPgLn4W7e2332441o1Mnbx/kArv9/uViyk/kiqa+ZX7Jcrm17q6OltSd+655+KZZ54RSgmHiuhx9OnTx9AvAaNSV1tbi/z8/Ki5E/mYrqurM2wG5Nxg3KfOSqkj/yurZ1HfXbVqlQjSUoHqOD8/X7S/6gxrGUVFRaIerBQwPj5pHpLbiZM6OVE2kRaVUsfHNs15dkocXV9bW4sTTzzR9Hf+XTtSp5pTqB2efPJJ3H777eJzrtRxVysVqdu4cSP+/PNP07MpT+sBBxyAiooK3HPPPYb6sVPqXC4XnnrqKTzyyCNxkzq32w2/3y+OuEtL8yth+vTpuOWWW3DFFVeYyFsoFMKUKVNMx4GkG2hHRpNbKBQymaoIcqNGIwkUAk9H23DzK3WqXr16mUidTKTKysrEPcrLyy2VOqClE44cORIPPfSQyafOLlDilVdeQZcuXbDzzjub6odDPk6GFuRYlDoKEy8qKsIvv/wCwJ7UAa11rVIrVBMzN6sD5t2QavGNRurKyspQVFSE5cuXY/jw4fj9999xzjnniOuI1EVT6qxMr3K5PvnkE3g8HpP5lU+eubm5lqSO+vHee+8tUrfYmV89Hg+uvPJKHH/88aIunE429Fx+PBOdkcjBf6fFSCYrTU1NlqROjnYm8HqzM7/S4j58+HCDq4Lsu0jw+Xx48803Ew6UGDRoECKRiKGtKioq8Pjjj4vfaUPF62Pbtm349NNPRS4tfgwh0NqvnJhfea4/Mr9ypU72GeIoLi7G+PHjDe4PhGikzu12iwVTDuT566+/8NVXXyE/Px+HHXYYjjvuOIwbN055H1mp41YFmazISp0VqbOaw/mzVq9eLQJCVJCVOsA5qaN6UFlRuK8YYJ1LkD73+/0xKXV8LaB6cELqABiUShV4n5A3vqo5hQcN8XHFlTouOOTl5aGoqMiQkL6iogLr1q0z9ccddtgBDQ0NOP7441FVVYXLL79c1EMwGDREvwKwPF9ZZVbloDpUXffpp5/it99+M1yXNnnqOA477DB8/fXXmDZtGk488USRvfrJJ59E3759cc0115iiYtINKlInm18JsSp1QAtpI5WNB0rwwWXnUwcYSZ2dUkfvMHPmTBxwwAFKpU6lnAYCAcyePRtjxowxBZ6o8tQBrRMLjyB0Ct7pFy5cCCA6qSOofHZURE+l1PH7q4hVNFJHE88OO+yArKwsQx48oGVwOiF1dosglTEjIwPDhg0zKXVjxowRyi/di5v0VAloOWSlTva7c7vdhj7g1CxAbUpZ1QGInFYcfPGyqm9S8FTw+XxKcsPLqSJ1LpfLEI2blZUlvuNyuSyVujfeeAOA2mE9Fp86K6hcLWQcfvjhJjWBwHf7KtOm6gxhMlHJKU3slDo7WPXnb775RkTzyuZX6p9XXHEFgBaClZ+fj3fffdfQnzlknzo5op7AAyWys7MtAyWI3EZ7llVAHiERUsdPoJARDAYN/Y76pzzXUhtzpY77FVv51FEZzjnnHNEP7UzB/Lm9evUSrjsq8L7EU4RYmV95Yl+O6upq4TdHaW2AlvWHu7Hw+ZWeTXOEx+MxkXf+PVqP6TOr85ddLpeBz8jvYWd+5XM4WQbSJqWJjN133x2zZ8/GkUceiWHDhmHz5s1oamrCVVddhcsvv9z2gOB0QCykTiYUTibwXr16ifMbaQcViUQM3w0EAsjIyBANK3fAsrIykWKCkzpS6s444wxMnjzZtItW+dSpdmKUgZ+OM+KQOy4NGLo3ER2r3GwqqJzbEyF1ql00V+rC4TAikYjh/sXFxVi/fr0oOzebynWwww47ADD6G6pILB1HFY3U2bkMUL/wer3CjCwvSFRuoGVB5Qu3KgGt6v4q8yu1ATf/OSXrnNRxpc6O1MmnEPBrrJS6TZs2KQm5nVLH1UsVqQuFQpakjqDykYpFqbOCitSp2o1UJY/HoyRqVkqdnKwaaCUzPMl1NKXODlbEiCKzAWMb8DLSgs1z7lmBj2k7UqdKacKPkiLYKXVZWVl4+OGH0adPH/h8PtsgFarj/Px8QSSi+dQBraSuublZSeoCgYBh00U5WeVreWoOInC0ntB4pPqR508in3Rvp0pdSUkJ9txzT8treZ/YunWrIOpWSp2qfsPhMHw+H7p37276HpE6rrgRuJjh9/uVz6Pvvf7669i6dSsqKysFcecpvWS88cYbmD9/PhYuXGi6L41lVUoT3h9IuU7LQAmghdU+//zzWLt2LZYuXYrq6mp88cUXmDhxYtoTOqB1oqAdIyd1shoQi4mRQH4yAJQmHKBlcomm1HG/Lp4morCwEKNHj0YkEjHt9Pv06YPc3Fx07dpVKHWqyWPz5s1iguPPvv766011QDsqOh6NlDqrg9hVSDap43XMn8FNU4BRzeGTDjdfAGZSfeONN+KXX36xVbA+/vhjXH311ZaBErzerU6ToHLza1QEkN+LzGjyvVV513i56X/aRa9ZswZr166F2+02LMaJkjo78ytdR2X+6KOPcPzxx5tIGcfGjRuVpE4OYOHmNp5mg0gMz21IPi12GxN5915SUpIyUhcOh/H222/jsMMOE3+rrq42KHU0DoPBIJYsWYIlS5bEbH4ln7qmpibMmzfP1tfT6TtYwSpQguaPp556Kuo9+IapsbHR4Ispp71wktLEzqeOLBovv/wyamtrbdcyqmOu1DnZ5EZT6mRSR1kf5Gvpd1mVo/ri5le7aF/AntTx9SVaX+FKHR87VkodNwXTWkdneBcVFZnmoZNOOgnnnHOOUqmT0+/YJZieOHEifvzxR2RnZ2PgwIGorKzEpk2bcMghhyiPugRaCWgsgRJ8HFL0bVr61E2YMAG9e/fGlClTcOedd2LTpk04+eSTcfDBB2Pu3LmpeGTSQQ3+5ZdfAmhNU0HHe3DEU/EyEaDOxNUWmdSRYyeBDyZS6tatW4fvvvvOdgdJpxF07dpVKHWqyWbSpElYtWoVsrOzDYSDiC7H8ccfLxJvAvGROk5CEiV1ubm5Br82fp18tqKVTx0pNFZKncfjEUc7EeSyHn744aJ9p0+fLvrTrFmzDERH9Q7y+wCtGwrVhMQVJTnRZqzmV/KN6dWrl+iHu+22m+HdnYCTOn7ySTAYNJ3CAQAPP/wwbrrpJkOZjzjiCOy///62pG7Dhg1RSV1TUxMWLFggfqf6sVLqnPQ9WXnJz89PuvmVlOBwOIyTTjrJENm/fv16odTR84GW+u7fv78g5PSeKvNrU1OTODmGzrqsra3FDz/8gCVLluDSSy+NqewEeeOngpVSFwgEsNNOO9mqPvwe/BQA+XxmgorUqXzqGhoaLJU6fvRWNKWO5pmcnBwDqRs2bJhlMmmghRyQos6JGs01lJXBqmzy8/1+v0H14aTOSqkj0HfsSB3Pk6jyreTg9crr3okqRT5tpCLK0fEAcNZZZ+H//u//DL6DBCKUdgnK5XmVLCOUIq24uFgZlAeoc/oB9j51fK4gH960VOooxHrJkiW48MILkZeXhylTpuDCCy/E6NGj8d5776XisUmF3MlJqbNzpI8FNBlkZWXB5XIpBxUtptnZ2Zg+fbohmSdg7EQFBQUIh8MYPHgwGhsbo6qhREztlDo6c1BW6lQdLSMjA3379hW/x2N+5c9IlNTV19eLlCcc0ZQ63r4Uwm51ooQKVmWl8h100EHYsGEDRowYAa/Xa0inYkfqaGKgelG1AffPyMnJiUmpk0md6r0yMjJw2223AYjuBE/gaWR4kuxgMGjwkSK16KqrrhJHC6nSUajMp0CL07rK54q/z+bNmw3plrhSR23MlTonPi2yUpebm5sUpY6/G5FVWlh5mbZt2ybyFgKtC9ePP/4ornGi1AWDQYTDYeTm5qKiogLNzc3iDOjevXvHVPZYYKXUyScI2MHr9cLn8+Hbb79FY2OjYZxmZWXhww8/xOzZs03Jh61SmtgpdXzuCIfDjqxOLpfLQOooX6oV8vLyRFvRuJgxY4bIKCErdQSaw8nnLppSZ5V8mCNaMnLA6PdGdc/93Dh43+Wkzsr8ykHzMY05qyT2QOv44esajR87UterVy/D5pDehwikXRBkNKVOJsY5OTmGuSIjI8Nkfk2blCYLFy7EOeecY5rIbr/9djz00EM49dRT8dhjj6Xi0UlDLKTO6qgjO8gdgD9v6NChAFpJHQAcc8wxpgmEOifP5UQd36lzs51SR5CVOie7h0SVOpq0EjG/Wl0nK3UejwdTpkzBaaedZmjftWvXAmjZufN8gXaIRuoAo7P0Bx98IH6286mjtqaJgdcV1TVX6lwul2lxo/KFQiHTCQVy9KsM+vzGG2+0Tc4qg65ramoSqhYtOnzypMWL11M0UsdVgb/++iuqUrd+/XpDQFA0nzonfU8mcKq0K/GQOm4NILIqp1Qi8Ag9GvfccdsJqeNHXpEJjQK5nBL4eKAKlCClLpYxvXLlSuy///7YtGmTqd8feeSR2GeffYRPnc/nQ35+vkGpe+6550R6EidKHdWfHTnj4KSO8h8SXnjhBcyYMUP8TiSQEzM5ctVOqfN6vTjzzDNNpC4epY7UVjulTjVGnnvuObz11luW9wPMSp3VnPLZZ5/h4IMPxi+//IK//vpLzJ92pE5lfqU2syN1ZWVlqKqqEnMq1QutvXZjga6R70v3koUT+V7kK52W5le7ZJkXXHABpk2bhokTJ6bi0UmDFalTdWDKMfX222/j9ddfd3R/mgyIWPDnUWflpE4F6hR5eXmmAeEkygqwV+oITpQ6GfR+sZA6/gz6Xjykjp8pKEMeNEDLpHTuuefi9ddfN0w6ROrIR9GuXxOckDorZ38n5leaXOnIMwAi2lZ26Of1yZWQRYsWiSAP+e+8v/GFg79XLLtHbn4lUkfvzw8L37JlC/7880/DIin3OfmYLzpOD2jZvUdT6mSneCulbvjw4QAgiIATjB49GkDLWEyG+ZWD3kul1AFQml85nJhf+XFgMqmLN/rVCWTzK5UxVlJHWLt2ra35tbq6Gg0NDaisrDRE+V5wwQVYvXq18CW0Wry5SROwJ3UTJkwwHNUItJAM7lIDtJhVyV91l112EdfzQAkKaqN72Cl1QIuVhZM6TprIWsFJnVUwTL9+/XD++ecbcsQ5gdfrxeGHH2763IrU2Sl1Bx98MN599114PB68++67YhxbnZNNzweMpE4+ucGKRLpcLtHnaY6g+olHqbvlllvwn//8x+Sqo+pjaR0oYYcjjjjCsDNJR8gTyrp16/DOO+8oJ+e+ffsiEongpJNOwmmnnebo/kTcqJNzBYE+c0rq+E6drqcksdHgVKmLldRlZGTgyCOPNJmM7cAHDC2MsZK6vn37ioSuVtdxh33A2vy6Zs0aAIjqO8MRq1JndY0MWcKncyb592TFWNVOVv1JZX7lk248ZgBATeqobYmsnHLKKcjJycHbb79teD6vD3p+XV0dRowYgQ0bNphyJ6rIBy83+eRQX+Z9+qOPPhLlHThwICKRCHbfffeo7z1r1iwALQEx27ZtS5r5lSMaqeOBEnZ1wJW6YDAoNinvvPMOZs+eDQDC/Aq0kDor15BkIRlKnbzQWs1VHo9HnPddUVEhAiX43EvzslOlzs78eueddwqneprTg8Gg8J3i5crMzMTUqVMxc+ZMAIiq1KlIXSAQMLwLJ6CyKief/WrlJ+Z2uzF58mTbfHxAi9ooK3Oq9uOKXyw+dXl5eejfvz8WLVqEzZs3w+VyGXLYyeDmV1L0zzvvPAD2Sh1/HtDal2JR6mSyWFhYiIkTJ5pEAVUfo/UY6GCkDoAh03s6QsXi582bl9DkzEEkgToPn6h5JJcTUudyuUxHtVx33XWOyuFUqYvV/Aq0HCbPM+NHA5+M4yV10U4qsVLqCFTfxcXFQqlLBqnjk5lVviMnSh0typzUUV8lpe7VV18FoFbMrcqnInWyE288UJE6qgsKFiosLERZWZk4w5ig6nO1tbUiclsuk6r+VKSOdt0qvxu5b1N5zj//fEQiEcOGYY899hAO1F6vF8XFxUkzv3KQomnlT8mVOqekjp+kcscdd+Dkk08W38/Pz0d+fj6WL1+O3NxcRwp1vFAFSsSq1MmnGKjcDgAjqausrEROTg6CwaChn8tHNsngud+A2M2vKlJHZTz55JNF8Jvb7UYkEjEEZkQzvwaDQbE54WV0EigBAJMnTxanG8SKsWPHYsyYMYbPVHMGLzeRutdee02ckmOHnXfeWZC60tJS2zElm19vueUWR4ESBLqW6tyJUmdlfrVCNKXO6dono91IXbpDdorv3bu3kM6TAZnUDR8+HA8//DAA56SOvku2eKBFBbrxxhvFMV/RQDsDO1JHiToJyaoDGclQ6ux8P+g6J4ES3bt3x9atWwEgauoCDquy8vq1UursJgPZ/KpK21BbW4vMzEycccYZMZdP5VOXDKVODpTgu2uaKEtLS5GTkwO/36/0eeP3qa2ttQxYUS0KcqAEf66qz8j3oGCB888/H0CLIkdRwKrnpYLUUZ05UeqimV9DoZA4V1pVj/Ssrl27Ys2aNQn707311lsi5YYKqkCJWJW6vn37YsGCBeJ6K/Or2+0WY4/Mr4DaqmG1ePN8eIC9Usdh51Nnp6hzX0++CaG5a9999xXf8fv9OProo8Xv9F4NDQ2WKU14/Zx//vm44447HL2PE6g2A5zUrVy5EpFIBGeeeSZ+/fXXqGRowIABWLx4MTZv3mxregWMGzZZ8XJySgaVnTae1M5249jK/GqFTmV+7QiQI75o5xTv4iZDJnVAq3PzXnvtBSA+pQ6wdyCVQUqdnfk1JycnpX41hHRQ6kiZycvLExNQMpQ6Xr/8DEEOuxQQslIHADfccIMh8rGuri7qQhgtEEKV0kX+PBZQ3ySljm829tprLzz99NOYOHEisrOz0djYaBndqiJ1slrhRKnzelsP6KZ34pO7PIn+4x//wBNPPCH87DIyMsRzVM9TRVQmSuqofZ341EVT6ug+Vmcek1M3/Z/ouB8zZozt0VEq82skEoHf74/J7Dtw4EAR7W6n1NH/JSUl4v2rqqpM94tGZolsOZ0X6NkNDQ1wu90GwhMrqeNKHY88lfOnUc4+OtGJK3UvvvgiNm3alFLTugp8zD7wwAOYMmWK+D2aUtelSxfU1NQ4InWZmZnIzMw0nKZBIBcpVUoUguz3S6TOLgo4VqVONf7SNqVJZwCPpDvuuOOUi14iIOLFJ4+KigqsXr1a5IFrampyROoA44CIhdSRUldTU4OrrrrKdMQV0HqcUqqRCKmj93dC6uyUOiJWOTk5YgBv27Yt5slbBlfq/vnPfyqvsWtrmgD4+911112or683EJ5ok3QsPnWkVALxK3VAK5H2+XyGBT4rKwsXXnihCMTx+/0GUqdSM+rq6uImdVu2bEFRURFee+01XHTRReJzfh95YenTpw8uueQS5T2dKnXxpiaQYafUxULqKOhLpdRRP1fNT6mAKlACaBn/sRIO2Q8KUJO6fv36weVyiXdTkTorywUvE6WbcgIiEFu2bDGNQVUd0zU0D1r51PH2JlVZfi4Ff1BdUC7U1atXO45iTxRTp07F8uXLTWOW562NRmBycnIQCASwYcOGqKQOUAeEAC3m+kgkEhOpo7pX+TISDj74YEycONH26DgOO6WOzvfV5tcU4d133006qaPJ85hjjjF83rNnT8NE4ZTU8cnGKQEBWpNorl69Grvttpuyo9n5ESQTvAPTZOZ0QYzF/Gqn1HGfllAohH/+85/46quvElbq7MzbBKdtzcFN705InVX5iLRbRYsmQko8Hg9qa2vR1NSEiooKZQJlSi9hFS3tRKmLZn4FWsjKXnvtZTipgN/Hyc6Y7umE1EUiEdtjp2IBKfkqpc6p+RVoTaQulyk/P19cQwteqkmdSqkDWhbVWEkdvY8VqaNnHHHEEYbrVcc/7bjjjspn/PTTT+J7TiPigVYzXmNjo6n9VOQimlKnInXz58833aeoqEhslqguyK8QcJ4KKlGUlJRghx12MI1Zbp1wQuqAlghnq/OQOWiuj0fxkkmdk3x9lZWV+M9//uO4T1iRukAggM8++wxAfAcbaFJngw8//FAk4E02qfN4PNi4cSP+/e9/m/7GJyInucvknGSxKnXLly8H0LKD3WWXXfDAAw8Y7hfPMWiJIlXmV6/XK+5NTu78/o888gieffZZdOvWDaFQSCTKdpqaxaqs8rFYKtj1LbvBnZmZiYyMjITMr6rnkA+ak+/ZISsrSwSH5Obmiv7Jn5WdnY2amhrL9lMpdXL0WzSlDlCPDTulTgU7pY7Mr99++604NSQSiSRM6urq6vD0008bnk+wUuqsCJOdUkdoK1JHPm7bb789gMSUOqpjXte8j/3+++8AgKOOOspw3YQJEwAAQ4YMwbPPPotIJCJy1skYOHCgSKwby3GXvK/K7adyu6BroplfVccaclA7+nw+wxgixEMa4gGVU05KzJWvaGOP2mvr1q2O+iVFNydC6kgRdELqYoVV9OsPP/wgjgLUpC7JOPLII3HKKacAMO92k4Hy8nLlgOad227i5aSOd5BY/GB4pyGzxNVXX21QpujeqcwsLyPePHXRlLqBAwdi4cKFqKurEwOX37+oqAgXXHCBiBQkp3jK2RUNVmVVnW4hw86nLtruj9SweM2vhJycHPz8888Akmt+pYUkKyvLcJoKf65dbkXuk0TveOCBBxpyEjpR6lSLgVU+Pis4Mb/uv//+GDFihFiUEyV1dMoAYB/9yt+P8mKplLpQKGQqE1/sifym2peWVLJBgwYBSK1SRymKaDMnH7v4/fff44ILLoj6HLp/LBYRfsKLkz5G9UDzYFZWlsFPTGVlUIFI3YIFC5T9Vc7dmCqQsjZs2DDDxo37GkcjMNS3OUGN9kwKFomVHJFlhb5H+QNpQ5AMWCl1PDuCJnUpRLKVOjvEQ+r4dbHsrulZhYWFBj9CTiLo3nPmzME333zj+N6JIF5SF02pGzVqFJqamvDGG2+Iz6wclUOhkCCy/DB7O1iV9Y477sCcOXNw2WWXWX43UWd6JxGDTuqSTE/cnJMoqSMCnZWVJQiD3M+3bdtmeQ9Z1SPwFCNOlDrVe/A+E0uCaStSxxcqSuMSD6m77777lCkmVEodLZq8nsgUS9fT73V1dZaBEoS2UuqofqjPcV+yWEmdKv8gH1Mffvgh3nrrLdFupaWlhshXp8+Tc5c5Bal1TsY5N7/yY8ZCoRAuueQSfPLJJwDMG8EbbrgBixcvFr9z0y7182nTpuHKK68EAMNZyKmElbmUTkACovc16q91dXWOyE5ZWZnwH4yVHD333HM46KCDxO+VlZWIRCKGaONEoeoHWVlZhkCreI4gTZ7s1MnRXqTOSe4ymdTFsoDQYcw9e/a0XNCoPBUVFYZoq1QiVlInRwhaYdCgQSgpKcH48ePFZ6r7Z2RkIBQKIRwOo6KiAnfeeaejcluVNSsrC0OHDsXQoUNxwgknGCYMgpO+ZZVYWXXcXCzl46D+Q/nuAGeHs1uBK3Uej0cZ+h8vqeOIl9TFimjmV4558+YBiI/UXXvttbbPJ+Tk5BhO5yAQ6ZD95Kqrq9PG/Pruu+/ihx9+MKXUSZZSx+e0IUOGYMiQIYbvqI6Wi4Z4lDqghUSuW7cuJqVuxYoVyMrKMs3NdHKRPGfccssthsAP7m5AUffHH388jjvuOHz22We4/vrrY3qHeGGVKNiqrCpYmdWtUFZWhlWrVjm+nuO8884TyYpTBdW5w/KcokldChHtwPNkP8vlciESidhOvNQBRo0aFTepo0nOKqXJc889F5OPXrIQK6lTncxhdZ08cFRtSkpdKBSKmuiSw0lZrRIyR3vGli1bLM1h9E5yf5k+fbohSENFznjQAACRHJX7ASbiSyIrdVbm10RJnRPza1uTOopITGawkUqpo80WXwTsSF1zczO8Xq/o5wcffDCuueYa8V1qb34cXSowcOBADBw4UPzO067ES+qc+K9ynHfeeQblPhriVeooWIK3X7SD71944QVl8AvN13L/ls/p5kodqVZAC9ltK5UOsJ7bOKmLRpLjIXWUzaGtonxjgcoHkpdz6tSpOP7442O+ryZ1DpEKnzorUERjIBCIGqSwatUqVFZWGnZyseyuyZfF6pgYOte2rcFJXSxEOhqpA4BHH30UzzzzDAYMGIBHH31USWg5qYvl+YmQ/mhqmF2ovNXB3HJ0tbzgWdVXbm6uwbcjUVLHfepok8CdpCmliRXSUamzylPHQealVJK6nJwcQeq4OZE2APyUFKBVqaMkuKFQCKeddpqICgWAww8/HB999BEuv/zypJXbCfi7xUrq6JSVWBW0yZMnY/LkyY6vp7aMldRR/dM72s1VfB6xO6NUZV1xQuraG3PmzMEZZ5yBP//8U3yWbKWuvLw8bvNrW+Css87CJ598gs8//1x8xst52GGHxVVuTeocoi3Nr4BzHynVmXyxLCDZ2dn473//i3322cfwOU0Wbb3DmT17Nh555BF88cUXAGLL8TVo0CDccMMNUa87+eSTcfLJJ6O+vh79+/dXqhGc1MVCBMhHKB4kYuJ0an4l4jRy5EiTKYojPz8fNTU16NevH5YuXZoQqfN4PAal7uabb0ZVVZWh7/I+O3XqVNMmoy2UOgoQiQY7pU4ee6kgdfJEn52dLdQucqegzzlo0SSljiwCqnsOHDjQsNi0FazO/nWCCy64AEOHDsWAAQNi+l6sOTjJaZ6yBjiFnJPPDk5IHSVqBoAHH3xQjGcrUkcpcdIBQ4cOxZgxY3D33XeLz6KROqu8rFYoKysTG8d0JHUVFRX47LPPsHHjRrFuOHW9soMOlHCItiZ19Lx40onEuoCceOKJhsWAo61J3T777IMhQ4YI8uH3+x2/z/z583HWWWc5flZeXh4uvfRS5aROpC5WpZDOi42Ge+65R/y8yy67oLCwEAcffLDj58iwUupkkCp51VVX4aGHHrK8jiZQmmiTpdR5PB70798fX375pWVA0D777GMKTOHXylGLBDulju5vt6D269cv2qsY7uHE/Ep+TKlU6jweD3bZZRcsWbIEp59+uiiDnLCa6uCcc87BsmXLDPdpCwuEEySi1LlcLhHxm0qzMfnDkpXDKeh9YgmUAOxJHWGXXXbBqFGjDM8BWn3Zdt11V0yaNCmm8iYDdqqpnJ8v2Uodt2ykI6kjdO3aFX379gXgPJ2ZHdJjJCeIH3/8EVdddRUyMjJQUVGBV199NemN2NakjhAPqUvmBN0evghkiqPjgtojT1685ldKmzBr1iylikq4/vrrcfzxx2OnnXZCv379RA6teBErqYvWrvTONCkn06fODuPHj1fmCOvevbv4eeedd1Z+147U5efnw+/3244NpySivZU62oQMHz4cF1xwgfidSGlBQQEaGhpsz7hcs2aNSJEBpA+pS0Sp45g1a5YYi8mG2+3G1q1blb5udki2UhcIBER0Pj9hQU7RBKQ+4MUKa9eutTQzp5rUcfN4OpM6DmprVXCMU3QKpa5Hjx749NNPMXPmTPTt2xfvvvtu0p/Rlj51HG19Nl86PD87O1sc7xIOh9vsRAuOzMxMhMPhmEndv//9b+y+++7Yd999LROYEmjSSUYdOzW/EqmLRpRpQkkWqeM+dSoQ+Tn99NOVf+fjzioC2878Kqf3UCHWYJhoSl1hYWFKSB2RtF69eikj9KhfqY6W43C73Za579oLySJ1ZWVlGDx4cBJKpEZJSUnMdRYLqePX2G2EzjvvPHz//feWrhRElK666qoYSpo85OfnW/oexkrqONFxUvecdKdL/44Gq4C3WJAe27MEUVlZKX72eDyWgyYQCChzSDlBWyt1NAG0h0oFtJ9PHdD6zuSo395KXSxE/oADDsAvv/zi6FqadJJB6mJV6qJdR/59ZMbiYyxWZGdnR1XqyExpp26+8sor+PXXXy13sKp2os/kSFAVnO6MaQ5QqR/8s+7du4tD1lPhU2fVJvSuNG6s0vzQSSRA+ih1iZhf0x3JVOrWrl2LuXPnwuVyYdiwYZb3KS4udhQ81h6QSV005ZPO6+XnXduB3y8do19VcDqP26FTKHWEVatW4fPPP8fRRx+t/PukSZNQVFQk/tktIDLamtSpci61B9pjsqd3phQX7aXUxWN+jQVEAJIx4ThV6i688EIMGjQoqopBi/2JJ56I2bNn48gjj4y7bLwPW03Gp512GoCWfIlWOPPMMw2+iE4Qi1LnFOTvqTpUnPfVoqIikf0+meOoe/fumDZtGu666y7l3ykKVKXULV26VPzcmZW6dEQspI4HTanmh+7du+O4446Lep/y8vIYSti2kEmd6gxcGdSnO7tSl0jfT4/tmUNUVVVhzJgxps+nT58Ot9uNs88+Gy+88IJlA06YMMGQi8nn8zkmdm1N6mghbO+JLV67fiKgd6djo9pTqYs1UCIWZGRkID8/PyltTPeIdq9+/fopD/5WlQ1oCSahaL94YXVsE8dxxx2XEkVBVuqSMblTv4xG6mhRScWmxC5/1ZNPPomzzz5b5ADjSl3fvn2x6667Yv78+Vqpa2PEEihBx8sBiW36Yk270pbg5tYtW7Y4SkXT2Umd0825HdJjJDtEZWUlZs2aZfo8FArh+OOPx0033WR7xqbX6427strap0515E1bYr/99sPbb7/dLs/+uyh1AJJG6ignWbIWQk7qEoUTUpcqyEdkJWP8EqlTqSBcYaFntvUYzs3NxcEHHyxOBJHJMp2iwJW6dCF1WqlrAbkrAIkRkvbYlDsFV+bscnByxELq+NzV0cyviZS3U5hfp06diu+++w633347DjjgALz55ptJf8bfzfz60ksvYdmyZe3ybFmpa29Sl8oFb9SoUSINQyJIpn8ekDpS19Y75lSYX+2UOo72InUEakPZp46fQZpu5te/g1LnpA9ydZy3TVVVFVavXp38wrUDnJhbZdBa4IT0cKUu2lhNF9B7JULG02N7liBOP/10y6i5ZOHvZn7NyckRh2y3NWSlrr0DJVLZ5rEcT2SHjqDUZWRkpKQuP//8c3z99dfKv9GCmApSZ3VIOSHZbRIr6J3lNuTkQit1bYdYSF337t0xZcoUjB071qD+ttXZ222B7OxsHHPMMbjsssscf4f8kJ1sQnj/SWczNAeRukQS0afHSO4AaMuzX4H4lLpp06bFfO5hOiKdlDo6IzPdkWyl7vTTT8fcuXOTUvex7K7jwUEHHSQSwso46qijMHnyZPzxxx8AkkvqotVNe2/MjjrqKDz33HM499xzDZ9z3y5N6toOREScLth0fTqbUBOBy+XC9OnTY/pOLObXjlhvyVDqOoX5tS3Q1j511Hljadzjjz8eJ598cqqK1GagxfC7774z/N6WaCvza7KQbFJ31VVXIRQKJWVipPZrD7+W8vJynH/++WIRULXlzz//jPfee8/xPZ999lkcdthhUa9zGrySKmRkZOC8884zbURVSp02v6YeVNdOcz4mQuo+++wzzJ07N+bvpTtiIXUdETRXJiLOpP9qlSZoa/Prddddh2+//TatQ9JThcrKSrhcLnzwwQcA2t+nrq1PEYkHyVaFrA4LjwdUtvaciO1I3eDBg2NKVEtnB1vh+eefx3bbbYcZM2YASD8nba7UpVv0K+8jmtTFP14SOXIwndHZSR2lI1q8eHHc99BKnUO0NanbZ599sG7dunbPU9ceyM/Px8SJE8Xv7a3UdQRSl4xQ+FQh3UldsjFu3DgcdNBB7W5+tQKRzHT0qeNpLdKt3hJFrKQuGaa4zoZYfOoA4KSTTmqXM2/jhV2eTqdIj5HcAdBeZ7/+XcEn9/YidYFAADNmzMDZZ5/d5s+PFTTJWZ0e0J6g9mvPzPZtSeoI7W1+tYJKqUsX5YOfyJFu9ZYo2tL82lkRq1LXXmm5EsGzzz4bNQjLDprUOYQmdW0LilbKyspKKBIoXvBnpouKYQea5Jqbm9u5JGYQqUvk/NhE0R5nNxMpSWfza7opdZzApFu9JQqq47Ywv3ZWpDroKh1wwQUXJPR9bX51CBqQyUjxoBEdTrKLpxKcvHcEIk/9Mx2jn6OdQdoW0EpdK9I5pQlHZ1OoqK6dbry0UmdGZ/epSwY0qXMImvQocadGakFKXXuodEDHI3U0yaUzqWtPpY7qpy0XAyJP7dWHrZDO5tfOjHh96jRaoUlddKTXbJPGIFIXTxZsjdhBpK69lNGORur22GMPw//pBCJ17VmPNH7bkmClgy+hCulsfu3MoLp2qlhr4mJGrIESf0fokewQJJlrUtc2IPNrOpC6jrDg7brrrggEAmm5uydyM2DAgHYrA5mw2pJgEXlKV1IHQJO6NkT//v0BAHvvvbej67X51Qyt1EWHHskOUVtbC0CbX9sKpNTxaLi2REdT6oD0NdeQuak9VcT2WBjTzZeOQASuubk57fLUdWbstNNOqKurc7xR1SlNzNCkLjq0+dUh6urqAGilrq2gSV3nweDBg3HNNdfgtttua7cytKdSl27gvl107mY6LZIjRoxo7yKkDLFYHtKpTdIFgwcPxv77768DFm2gSZ1DkFJXVFTUziX5e4BIXXuRaE3qkoesrCzcf//9abEhaktSl64+dTwK87TTTkMkEkmrPv7ZZ5+J83X/ztDmVzOGDBmCb775Jq36a7pBa+4OQaSOztjUSC3y8vJw2223YezYse3yfD1pdC5on7pWxJovra3h9XrTVuVsD2hSpxELtFLnEOTcmkimZw3ncLlcuPHGG9GrV692eT4ndem6+Gk4hza/tiLW1Boa7QPqs9rfUSMWaFLnENdccw2qqqqEWVCjc0OTus4FTepake5KnUYLunXrhltuuQWPPvpoexdFowNBbwEcIiMjAxUVFe1dDI02giZ1nQva/NqKWE820GgfuFwu3Hzzze1dDI0OBq3UaWgooEmdRqIgRSzdSJ1W6jQ0Oi80qdPQUECTOo1EQXnG0k3hLy8vBwD06NGjnUuioaGRbGjzq4aGApzUaTNVx8egQYMAtOS5aiuUlZXhnXfewaGHHtpmz3SC3XbbDd9++y2GDRvW3kXR0NBIMjSp09BQgJM6p2c1aqQvhgwZElM2/2ThhBNOaNPnOcW+++7b3kXQ0NBIATqV+fX1118XpgUNjUTAD37X5tfOAZ2FXkNDo7Oj05C6cDiMt99+u93ymml0LnDndm1+1dDQ0NDoCOg0pO61117DmDFjDAqLjEAgAJ/PZ/inoaECV+e0UqehoaGh0RHQKUhdKBTC1KlTceqpp9peN2nSJBQVFYl/WtXTsIImdRoaGhoaHQ0dKlCiqqoKY8aMMX0+fvx4nHLKKbYqHQBMmDAB11xzjfjd5/NpYqehBDe5alKnoaGhodER0KFIXWVlJWbNmmX6/IYbbsDPP/+MV155BUuXLsXVV1+NBx980HSdPihawyk4kSstLW3HkmhoaGhoaDiDK5Ju6c4TxF577YV58+Y5utbn86GoqAg1NTUoLCxMcck0OhJmzZqFESNGYL/99sPHH3+sz/zV0NDQ0Eh7dDpSFws0qdOwQiQSwVtvvYUTTzxRHKukoaGhoaGRztCkTpM6DQ0NDQ0NjU6AThH9qqGhoaGhoaHxd4cmdRoaGhoaGhoanQCa1GloaGhoaGhodAJoUqehoaGhoaGh0QmgSZ2GhoaGhoaGRifA3zr6NRKJoLa2FgUFBXC5XO1dHA0NDQ0NDQ2NuPG3JnUaGhoaGhoaGp0F2vyqoaGhoaGhodEJoEmdhoaGhoaGhkYngCZ1GhoaGhoaGhqdAJrUaWhoaGhoaGh0AmhSp6GhoaGhoaHRCaBJnYaGhoaGhoZGJ4AmdRoaGhoaGhoanQCa1GloaGhoaGhodAJoUqehoaGhoaGh0QmgSZ2GhoaGhoaGRieAJnUaGhoaGhoaGp0Af2tSF4lE4PP5oI+/1dDQ0NDQ0Ojo+FuTutraWhQVFaG2tra9i6KhoaGhoaGhkRA6FambMWMGDjroIIwaNQrvvfdeexdHQ0NDQ0NDQ6PN4G7vAiQLfr8f999/Pz7++GNkZWW1d3E0NDQ0NDQ0NNoUnYbUfffdd8jJycExxxyD3NxcPPnkk6isrDRcEwgEEAgExO8+n6+ti6mhoaGhoaGhkRJ0GvPrhg0bsHLlSrz//vu48MILccstt5iumTRpEoqKisS/Xr16tX1BNTQ0NDQ0NDRSgE5D6oqLi7H//vsjKysLBx54IBYuXGi6ZsKECaipqRH/Vq9e3Q4l1dBwjvr6erhcLnz66aftXRSNNkBtbS2+/fbb9i6GhoZGB0WnIXVDhw4VRO7nn3/GDjvsYLrG6/WisLDQ8E9DI52xYcMGAMCUKVPatyAabYI333wTBx54oE6zpKGhERc6jU9dly5dcOyxx2LkyJHIyMjA888/395F0tBIGJmZmQCAcDjcziXRaAs0NjYiGAwiEAggOzu7vYujoaHRwdBpSB0AXHrppbj00kvbuxgaGkkDKTahUKidS6LRFqB2bmxs1KROQ0MjZnQa86uGRmdEU1MTAK3U/V1ApK6hoaGdS6KhoZEKTJ8+HVu3bk3Z/TWp0+j0aG5uxuLFi9u7GHFBk7q/F5qbmwG0KHUaGhqdC+FwGMcddxwOPvjglD1DkzqNTo9XXnkFAwYMwM8//9zeRYkZmtT9vaCVOg2Nzgsa16lcizSp0+j0oIXyhRdeaOeSxA4iddqn7u8B7lOnoaHRuVBXV5fyZ2hSp/G3QSr9GFIFrdTFjwcffBBVVVXtXQwDrr76apx++umWfyfzq1bqNDQ6Hzipo7GebGhSp9HpEQwGAbQSpI4ETeriQ319Pa655hqMHz++vYtiwEMPPYQ33njD8u9aqdPQ6LzgpC5VY1yTOo1ODyJ1/NzfjgJtfo0PVG9+vz+h+3zzzTe47LLLklEkR0h3n7q6ujoxnjQ0NGIDJ3X19fUxfXfLli3Ytm1b1Os0qdPo9OgMpE4rdbEhWW09cuRIPP7440m5lxOkM6n75ZdfUFBQgDvvvLO9i6Kh0SHBiVysY3zcuHE499xzo16nSZ1Gh8Tq1asxfvx4R34JtMBrUvf3QUdsayC9U5p8//33AIAff/yxnUuiodExwZW6WEldU1MTPB5P1Os0qdPokLj55psxefJkLFmyJOq1nUGp0+bX2EBt7XK54r4HJ9LJJtVW90tnpY6I5pYtW9q5JBoaHROa1GloWKC4uBgAHPkYdAZSp5W62JCMtuZEOtlBNlb+NOkcKEFlWrt2bbuWY82aNW2SGkJDI9nQpK6TYsmSJViwYEF7F6ND4+9C6sgcp0ldbEh3Uufz+ZSfp3NKEyrTunXrlMrxkiVL8Mcff6S8HL169cIhhxyS8udoaCQbiZC6YDD49yN1r7/+OsrLy9u7GFHRv39/DBo0qL2L0aFRVFQEANi0aVPUa7VP3d8PyWhr7q+Z7IjP2tpa5ecdQalrbm5Wjrv+/ftj5513bpOyzJ49GwDw+++/4/3332+TZ2qY0djYiKeeegoul0ub5R2grq4OhYWFAGKPfv3bKXXhcBhvv/02evXq1d5F0WhDbNy4Meo1HVmpI1LXFjn2QqEQbrrpJksVqSMhHZU6Tgyt6rgj+NQB6VO+XXfdFccee2zKn1NXVxfzIvx3wBVXXIFLLrkEADB37tx2Lk36o6GhAV26dBE/x4KmpiZkZWVFva7TkLrXXnsNY8aMQUaG9SsFAgH4fD7Dv7ZGJBJp82d2RtACuWHDBsfXdmRS1xZl/+2333D77bfjxhtvjOv7CxYswIoVK5JcqviQjkodJwXRSF06K3WAff1WV1enrAztlSOva9euWjBQYP78+eJnJ1aTvzv8fj8KCwvhdru1T50dQqEQpk6dilNPPdX2ukmTJqGoqEj8a49BmsoJzwrNzc0YP3481qxZ0+bP5tiyZYuIVq2pqcG1116LefPmxXUvIjtOjv7SpM4ZvF4vgBaTVjwYNGgQdtxxx2QWKS7sueeeOOKIIwAkFv2abKXOCalLd5868mW1649OItLjhZXZOtVobGx05L/7dwMfI8ne0K1YsQIjR44UpvbOgEAggOzsbOTm5mpSZ4dXXnkFp5xyiq1KBwATJkxATU2N+Ld69eo2KmErVq1a1ebPXL58OSZPnox//vOfbf5sjpNPPhn9+/fHli1bMHv2bDzwwAO4/PLL47oXETUnikZnIHVtscjTsxYvXpzyZ6USP/30U1Luw5W6tiJ1qTS/1tTUJKR0NTY22pI6ItA1NTVxPyMa2ovUEXRqISNSSep+/vlnfPPNN7jtttuSet/2hN/vF6RO+9TZYOHChXjppZdw+OGHY+nSpbj66quV13m9XhQWFhr+tTXawy+DntmeE2IkEsHXX38NAHj33XfF8U3xHmpMi5OTxa8zBEqsX78+IdUplmetW7cu5u92RrcCvmB1BvNrcXExzjjjjLi/39jYiJKSEgDqsUR9IJXjjOawzMzMlD3DDu2xKU9n8DHixGoSC2hujybWdCQQqSsrK8PmzZtj+q5TUueOt3DphLvvvlv8vNdee+HBBx9sx9LYI14SkwhosLVnbqcVK1aICWDTpk3Iz88HEL95LB6lLhwOo7m5GW53x+n2skIUCoVStqAlokalq2kqkajhZCt13PWirc2vRLimTZsW9z2ikTpCe5C6SCQSdS654YYb8PXXX4uTMeLB+vXr0adPn7i/39nAx0iyfdTT0QUhUfj9fni9XnTv3j3mzfPfSqnjiNdHq63QHvJ9e5C6+fPnG96V8ld5vV5s2bJFKHVtRepoEUj0gPe2hkwmUqn08mfFqrzFo+61BRIhY8n2qSNS16VLlzZX6ijdREFBQdz3sPOp4/0llcEMVG/yxszJM++55564/bM66vyRavA1JdmWICJ1bRH531Ygn7pu3bppUtdZ0J6krq3UlM2bN2O33XYzHPz9xx9/ICcnB7vvvruB1MVbH7GYX4PBoFjMOpoJtr1IXawBPevXr09yaZKDRNo72dGvNP569erV5j511D6JuJzY+dQ5jYxNFFZKXarHNZkANakzgptcU6XUtVfEcypA5td4lLq/ZfLhjgC+ULSVHxINvLZKDkmDe9GiReKzJUuWYKeddkJ5ebmB1MU7Gcei1AUCAU3qYnxWrP4efHJPp4UvkfZOtlK3bds2FBYWoqSkpM2VOlpAElHquPlVbmNOQtuC1Ml+Vqnuc5rUmREOhw1KXapIXUebs+0gk7pYOIBW6tIUyXa+dgKu1Pn9/pQniaQFkO+mq6qq0KNHD3Tp0iWppO7vptSl0oTOnxVrzimu7KUy+jFWpJNSV11djeLiYhQWFra5Tx2Rury8vLjv0djYKE5ykeuVbzZSOcaoXwaDQXz44Yfi82hkK1GSTKQuHfMHthdoLnr55ZfxwAMPYNOmTRg9enTS7t8ZlLq//voLt99+uyBvROp22GEHNDU1YdmyZY7uE4lENKlLV3BS11YEg0hdJBLBSy+9hGHDhqV04aUJnvu91NbWoqCgQJC6RCNSY/Wpo8Woo+20m5qaDPWYrkod70/tkYvRCumm1JWUlNiSulSZX+l5iSyQdMRRZmamLalL5SJMuTYbGxtx9NFHi8+jjeuVK1cm9Fzy/e1o80cqQX2qrKwMpaWlAIAZM2Yk7f6dgdSdc845uOmmm+D3+zFz5kz8/vvv8Hq9GDlyJDweDz755BNH96F54W91okRHAd/9t9UE0dDQIDrDsmXLEA6HU5r9myZ4rtTV1dUhPz9fhHK3pfk1GAyKM4HTSUVygqamJmHyAtLXp45fX1VVlaQSJY5kKXXJCpQgpS7a2a9+v9+QrT9RUPnjdWZvamoSSp3X6203pc4qgbrVXOrz+fDkk08aXEHiAfUFTepaQaSusLAwIbO+FdKZ1AUCAUyZMiWq+ZTUzPr6ehxwwAEAgOzsbOTn52P33XfHL7/84uh5NH61UpeGaA+lLhgMonv37gBaJ8VU+tfZKXUVFRXYsmWL6OzJML9GG1gNDQ3o1q0bgPRSkZwgGAyKswKBtiN1sZqZqqur0b9/fwCJqyLJRLKUumQFSpSUlCA3N1f0/4ULFyI/P1+Mx1AoJCbu3XbbDUuXLk34uUDipI6+V1hYiOzsbFO9tpVP3Zo1a8QGjcOKbN166634v//7P5HKJScnJ+ZnRiKRmDaRfxfwPpGbmys+T5aLSCI+dcFgMKU+6/feey/GjRuHH3/8MWo5AOO4y87OBtDi3+q0P2lSl8bgC0Vb7foCgYAgdXSKRqyJIr/66iu8+OKLjq61U+oqKysRiUREEs946mDcuHH4+OOPARgnXLvy9OzZE0D65lOTUVNTA7/fD7/fbyB1beFTl5OTE/PiVVNTg8rKSnTr1g3jxo1Lm3MyEyHByVbqtm7dipKSEoPS9corr6C+vh6//vqreCYfN8lSluld4iV1XJVRKXU0jrOyspJK6ubNmweXyyWid9esWYNdd93VdJ3VPEILO+Wmi6cd+Xe0UtcK6hMFBQWGeSkZkfCvv/66OG4u1g1VOByG1+vFAw88kHA5rEDvHs1NgsrO64dIXW5uriZ1HQ11dXWmRYUvFG2l1AUCAaFUxavUHXjggRg7dqzp8/Xr15uOZaJ35hFqpNRVVlYCAP78809Rtlh2VKFQCFOmTAHQqgTaDYxIJIKGhgZ07doVbre7w5C64uJijBgxAn6/X6SRAFKv1LlcLuTl5cWl1BUXF4vErGvWrGmXUybk5N4NDQ1xJ/xOtk/dxo0bUVFRYSBFdF9yjwiFQjj99NPx2GOPJe25/D5+vz+u+ohG6qi/FBUVOV6EV6xYgdGjR+O3336zvOa9994D0Jr3csOGDdhll11M17300kumz9auXYt33nlHPAto6R+x9kv+PlqpawXvE0cccQRGjhwJIPGclZFIBGeccYY4gzpWUkfEm9o+FaCNV7SUXCqljvwzc3JyHPvOalKXJigrKxNkitBeSl1ubi7y8vKwYcMGAPGbX+UJsXv37thzzz0Nn6mIB1fqgFYTXSQSQXNzM5qbm0XZ7MB3PE4iBRsbGxGJRJCXl4fi4mK8/PLL7XKqRzyYN28e/H4/cnNzxfFOqSZ1Ho8npsmGUFNTg6KiIgwePFh8FmuwRTKg2ijFm2oh2dGvGzduRHl5uYEU0X1pog+FQsjJycHBBx8MIPmkDohP7aU6tPKpo7mssLDQ8Wb1tttuw4wZM2wTxlO9RCIRbN26FZFIBDvvvLP4+3HHHQcAeO6550zfPeOMM/DXX3+Z7hVrnfK210pdK7hSl5eXJ0hUoq49sotMvKQulUiE1NH4i8UiQvfRpK6dEQgETOaO9vKp83q9yM/PF50o3oHHzbachJ1++unYc889EQqFTL4QgUAATU1NKCgoQNeuXeFyuQwLbSAQwJNPPonKysqo/liqBdpuYBAJysvLw+bNmzF79my88cYbDt40PUAZyF999VV069atzUhdPEpdUVER7r//fnH2MqmxbQk+pijAJF5Sl0ylrqGhAfX19ejatauS1NHvZH4l5S4VpC4eEyyZgUmpkxdO+r24uNjxvEaKjt0izEkdBXdxUmeXTFkuB7kxxEoS+H3eeOONuEhDfX09brrppg6zoXSC2tpa5OTkCIsJmRUTXdf4upKRkZHWpM6p+ZW/E5G63NxcrdR1BvBB3VZSfiAQEKSOECupo++STx5g7NBvvPEGfvrpJ/h8PkE8aHBRJ87Pz4fH40FFRYWpfLTwPv/887blUC1IdiZVKgt/d+7Um+6gswKBlh1xshN8chCpi8XXg7BmzRp0794d2dnZuPHGGwG0T8AEn9DJjzQZSl2i5IoICSd1lHsKaJ0LQqEQ3G63mLyTFfmXLKXOzvyamZmJvLw820X9119/xW677YY33ngDa9euBWCvPnNSt3HjRgBAz549xRi2I3XyOCdSl4hSt27dOsNJOU7x1FNP4fbbbxe+wJ0BPp/PUP9E6hJd16idAaB3795irJDVJRro+al0/yDXomhjicYC3+BSf3e6eQ4EAuJ4O03q0hB8999WZ7Emg9SVlZUBMJI61eRYX18vOi11aCJiFPa+9957A4AhkSkpE9HKpVqgKehCBa7UEZwMjHQBJasEWpSnVPoExqvUbdu2DTU1NcKfrri4GJmZmTEH4yQDnFAkSur4vRIlV7RQEakjtwO6Lz82LzMzU/TRZCp1pC7Eo9T5fD5kZGQgNzfX0vyanZ0dNVDihx9+wPz58/HZZ58J/14npK6pqclAjCkvWl5eHg499FAAZlOYHOkaK6lbtGgRXn75ZWy//faGz+U5KhwO48ILL3QUqRwv4XnxxRdxyy23tIufqhVkUkf9lvryl19+GVdaHk7qBg0aJMZK79698f7771t+7/PPP8fcuXPF81NZV9Qv7fpuU1OTGGt83bzkkksAtPTPhQsXYuHChbbPGjZsGM466ywAmtSlDbiiRZM20HaRmESaEiF1RIr4Qq2aHBsaGgRZVSl1ALD//vsDMB6STYtbtAWY//2II45ATk6OwW9GBid19957r2W50xVkfgXSl9SRIrfDDjsAaJnwVGkv2gLct+u2224DEB+p27JlC0466SQALUEMVn3G5/PhzDPPxNq1a9HQ0GCZD438C8vKyoTySm4JgFGpSxWpI3N0vKSusLAQLpcLJSUlpjyXROq8Xq8tAab5o7q6WrSLvDDyIBtaPBsbG7Fp0yZ4PB4UFRUJgpaVlYWzzz5bvCOHrNTRxtQJQff7/Rg4cCDOOecc099oPBKWL1+OZ599FhMmTLC8H2/zeDB27FjceuutaZUDkoLfOLKzs8UYPOigg7DbbrvFfF9O6igoxufzYdOmTbaRtYcccgiGDh3aJuZXakc7Usffg37+/fffxTtR/1QF/nDwXHZ/K1L3448/YsSIERg1ahROOeWUtFq4uT29ublZqGZtlTON+9QRYlVRqD75Aqmq4zVr1ohINBpcslp22mmnGcqw44474u233wYQPYUDLUgLFy7Ef//7X/Tu3dsxqbvooossy51OkFMotCWpc7vdMQdKUGQhKXUAlH5XbQGabL/44gvDgmCHzZs3m1QWvunJzc21fJdFixbhtddew9FHH42zzjoLAwcOVF5HG5uCggLDAk/lpfs3NzcbzK/JJHWkbkWzEPz111945plnDJ81NjaKfrjHHntg3rx5BiWksbEROTk5ShWPg/ovV9d5ef7880/06tVLRLhzUrd582Z06dIFLpdLRIRnZWUJlV8ma4mYX+36jLzhIaXFLgEvtWeiYyKdom9lpQ4wkjrC448/HtN9eYDVgAEDALSuC07ari3Mr/QMq7EUDocNibKJ1HH1OJ6ciX8rUtejRw98+umnmDlzJvr27Yt3333XdA35bvF/bQHO2Mlnpri4uM1IXTLMr7TI812+aoAtXboUdXV16Nu3r2nBokVhu+22wyeffIKXX35ZfI92I06Vun79+iEnJwe9e/d2bH5Ntp9SqsAnRe5TV1JSklKTZrxK3bp16+D1eg359FSTe1uA+hz1dzkoR0Y4HEZ5eTl22mknw+f8OJ6ioiJLkksmv+XLlwu/FxWoPon4UFlpPLWFUkekLppSd+yxx4oNEIEnRd57772xefNmw2aKK3VOSB39n5OTY1A7SIn6+eefxXOBlvppbGwUG0MibB6Px1IFS4TU2dWRrFIuWLDAdM2CBQvwww8/iN9pLBA5Wbp0KSZOnBi1HABM5Lk9EQqFMHXqVEQiEcek7rLLLovpGY2NjaioqMD3338vyDvVm5NAk7Ywv8qChYzDDz8cw4YNAwCDss2JnFPfbq4M/62OCausrDQMdH6aAWHSpEkoKioS/1KZIJV3KD5BUHRbcXFxhzK/0qIWTamjdyoqKsIvv/yChoYGMQBo8gWAww47DLvvvrvp+9GUOp/PZ4i4KisrsyU6tJPipC7dlTo+cbeHT12sgRJbt24VCgqhvcyvPErT5XKhsLDQtk+RyiiDv0thYaHl5M3zv4XDYQDqNAcNDQ3IyMgwkRAaT6n2qWtubkZ+fj7cbndUUkdjhs9hpCACrWZ2rkT4/X7k5ORE9anj5lcAKC8vN9StbHalemlsbDT43tJcb6fUyUpILJs6VR0988wz8Hq9hk060FoP3DQ4aNAg7LPPPuJ3ekd6//PPPx+TJk1ypIjz+mnvlCrPP/88Tj31VHz55ZdK82tOTo5Imh4vAoEASkpKMGzYMNG20UhdWx+/SfOj1bzw2WefAWjpxzvssENCSh2fi+QgQxU6DakjrFq1Cp9//rnhsGfChAkTUFNTI/5x58Vkg09s1PAbN25EfX093G43SkpK2k2py8vLQ11dXUyKFXXiaEodTVperxc1NTW45pprRF3Ivihc2SFEU+pqa2sNu0PV4eiRSARvvvkmwuGwqPvc3FxkZmbC5XKlPanjkxL3qSstLU1Ln7qtW7cKFYjQXuZXGlPkP9alSxfbfHlWhI8vEnakjsZQU1OTIHMqUkPmSZfLZSB11J5U30Sekt1XqW3z8/Md+9Tx+YGfdEHjj9+HzLPRFFp6X6r3WEhdMBiMidQRySYQKXVSpyqz2qGHHopLLrnEpNRRX7FLukvkjd7faWAYYJwT21upI+Lq9/stlbrGxsaELAq0XgGt9UTj2orU8eeRyhuPUtfc3Iy77ror6oZU9he3QmlpKUpKSsRY4USOJ+e3A/XX0aNHG84Bt0KnInU+nw9nn302XnjhBaXt2ev1orCw0PAvETz++OMGFs3Bd2A0aVVUVOD2229PmVKnmiDoGC1O6kihdKrWhcNhMZlEU+po8C1fvhxAyy5WpdQBEImIOZyYX2VSJy9S77//Pk477TS89tprqK+vR3Z2tliQPB5P2pM6Wanj5te6urq4yv/000+jX79+ttfESupCoRDOPvtszJ4920TQ28v8Wl1djYyMDNHXu3btalqEOawIDlfbnCh1QCuJUL03kTrA6DRPi5Gs1AHJ7avUtvKRTnbgCxu5jQCtvmO87khRLi8vt61vmvNocS4rKzOUh4gZLXgyqaO6c0LqOAG44447cPzxxwOI3/yam5uL/Px8y1OCyHda1f6yUkfl72ikjvpENPOrFan75ptvouav5KSO/o9G6ng93nTTTaKMseLdd9/FhAkT8MILL9heF02pI+Tk5Ii5yOVyGcynTlRaivx98sknhfoXDZ2G1IVCIZx55pm46aabTP4x8cLOAR9odQC1MrcQ6uvrDdcQqUumUvfFF1+grKzMECkDtE5gXq9XTJRE6pySSj5JRVPq6J40Efl8PmGekJU61U6lpqbGdjDKkr8qdxvVa01NDerr603pTNKd1E2fPt3wO9UbpYChNpg/fz4efvhhR/e8+uqrsWzZMttrYiV1GzduxCuvvIK5c+ealLr2Mr9SEmTqW+Xl5SZzGYcTUpefn285AfO+FE2po4WcFiq/329S6tqC1DlV6vh7cPMrLVJ83JH5tbKyEhs2bLAcw/JiLyt1VA8qUsfNrzQm7Egd1d2cOXPwr3/9S9R/vOZXOrdXJm3c7w9o3dBy0DvSfWlOcnLqCleT29v8Sn2ipqYGPp/PMvrViqyOHDnSEFBl9QxZqYtmflU9T1ZqnUDleiBj6tSp4vi6aBskt9st6oiUeoKTRPLUt7xer+FMaDt0GlI3depUfPfdd7j99ttxwAEH4M0330zofjNmzMD222+Pb775xvIaGmDU0e+66y6cfPLJAIykbvbs2QZpPtFAiW+++QZz5swxfLZ48WIAMOUForJlZWWJhffiiy8G4Dy1Ab1LTk5OVKWOJu0PPvhAlPXaa68VZYiG5uZm24lLpdRZqXsulytmUhcKhZSOz22FSCSCf/zjH4bPaAGjiY4WpdGjR+Oqq65ydF+aTOyIFi38Xbt2xdq1a00k0OfziSOdmpubDcRPVuqszK+BQMBRPq94QWfQEmJR6vgiwBePvLw8R0od1YfqvRsaGkxK3ebNm03qXqpJXSzmV5nUUbkyMjKQl5enNL9WVFSgqalJuWEMBAImlxcrUhfN/EoEM5pSN2zYMAwdOhQAYvJTVNWR2+1Wblaor1BZVd+ld6QyUl9oa6WuubkZd955Z9wbLiIx33//PTZt2uRYqYtEIgaiZDfHc5cTp6RO1d/iqStqH9mqFAwGRb+ZNm2a+DwaMaMxB5h96I455hgA9gETsZwkQeg0pO7000/Hli1bMGPGDMyYMQOnnnpqQvejheePP/6wvEYmdRMmTBCpOTipe/7553HFFVeI3zMzM5UyPl171FFH2ZZt5MiRIrKGQB1HnlB4J73yyiuxdu1acVar0+hfGhwVFRWora0Vx3rJaQ+AVpVsyJAhIikoPV9lqh4+fLjpM7tFR94dFhYWwu/3GyZq7pcTK6n797//jUGDBtmWIZXRs6qdO01wsqN3LKH7pHzYBQ3Qwj9+/Hi43W5TBPkpp5wiEkePHz8eO+64o/ibSqlTTdwTJ07ETjvthOnTp9tGi8YLmdRFU+pktYnAlTqnpE5OJMyhMr9yx/rGxkbhA0pjORWkzuv1Or6nlVIHmN0eyPxKLhWqfGqLFi1CKBQSucs8Hg8KCwsNc6WdUsfNr1QWHniiInW8zImSOgDK6F4iGuRXaWd+pTJSudqa1E2bNg3/+te/RMoYFaqrq/HWW2+ZPn/nnXfw3XffAWi1UvHgO8Co1LlcLrz44oui3Jx4WZ3z7ff7sXnz5ph96lT1Ek9dcRGEY8cddxSbA640JkLqdtppJ9x4442muZOD3lcV+GmFTkPqkg2aVOwkXH62qTyQZXPNV199JX7OzMxEbm6uskP89ttv+P777x2VkU9i1HFkOZinePB4POjevbvS0dkONDi6du0Kn8+HTz/9FP/3f/+HDz/80HQtdwTmHVHe+RBmzpyJ//znP8oyq6AKlJDfJRFSR34LVhPC+vXr4fV6hfyebKj8TeQJjtqdiIcTkwwRaiuT+6ZNm7B161Z4PB7k5eUhPz/f1A6//fab+FkmfCqfOlU70vsdd9xxGD58OGbOnBm17LFg27ZtBmfiWJQ6OUk4wY7UqQi+XaAE0NqeRHyKi4vh9/uF6wFN8vGQuqqqKnz66aemz4nUud1ux+ePWvnUAWa3B25+BYCPPvrINBeRFWGPPfYA0KJQZGVlGepQHndW5leVUnf11VcbNjj0zgQrRU8FO1Ln9/sNz+F9pbGx0TAe6TqZ1NE1bW1+pfeyc9K/4oorcMopp5g2gCeddJLJEjRmzBjD7xT9unXrVhQXF4sNVm1trcFaZfUew4YNw1dffRWz+dVqzMWCFStWiDHJSd2mTZuwZs0a4drE+1Q08yu5PADqaFe7xObA31ypSzbkHGsq0N/8fr/JrCDLz3yAuN1u5OXlKf106uvrUV1drfTTk/H777+Ln2nRtiJ1vJNSJ3Oq1FHHKi0tRW1traXa43a7DdGvfKDJ/nQEyhAPtHb6WMyv9C4HHnigIB18wo2V1PHoLhWWLFkCAGLHmmyoSJ1siqCFgTYcThzfaRJ/9NFHlX/v2rUr/ve//xlUQbmeqF7D4TC22247w9+cRr/KRy4dcMABUcseC2SlrrS0FPX19ZYLuRNSZ7UBA9SqT6xKXc+ePfHmm2+KuuCkLhgMwuVy4bXXXlM+X8ahhx6Kww8/XFlOp6ROZaqXVS/ZN48CeijlwvXXX4/99tvPcN+1a9eitLRUnOxApI6fqkGbDpn8VFdXWyp1NC7mzJljaKdoSl04HLasi9raWsO8QaDxwdtdPs9bzjMJtJI6qlMiHFYuOFu3bsU+++yDNWvWwOfzITc3F3l5eQkrdTxfohWoTGvXrkVdXZ3lRvDMM89U+tQ1NjZiy5YtKC0tNQTVyMq0Cr/++isAmAIloiUfVo256urqmPzqdtxxR3GuLx//VCZyP6D59qyzzkpIqQNg2tTI0KQuiaCObCePc/Or3PEXLFhgmWGcK3Wy6ayurg6RSMSRvx03cVDHkHeYXKkjkG+Iz+fDihUr8M4779g+hzoWJWG12sV269YNNTU1cLlcyMzMNCwKVkod0DpRUuePRupk8yvQMvCuueYaw7XxKHV2pK6xsREXXHCB4bnJhiqRMk0GtHjxRQlwRupooX788cdtA4CIrNmRukAgYHLadRr9amdqSAY2bdpkeIaVaY4g+4UR4vGpIzgldeQHu/POOwNoVUKp/FlZWaJ8TgNirCIL6bSQREgdb3PZl1V1as1vv/0m+sxLL72ECRMmGPJF5uTkCOIKACeffLLwJ5VdW1asWGHwqaN7hMNhw4aVt4es1MnuC/vtt5/lCSD19fXo2bOn6XNVouNQKCTmMDlHG52eIyt1tIGwIjcfffQRfvjhB0ydOhU+nw9FRUVCBUsE3D/aCtSGc+fOxc4772w5ZlUpqbhPXZcuXWImdYRYza+BQAAejwd333234TM71ws78PmCTMVUpvr6euy5554YNGiQI1JHdaASNqKROm1+TSJIcbKTx2lRlUldKBTC/PnzMWjQIOX3SKmLRCKmQUoLtFVIOCeB3KxEk5m8wFs5fpJPzH777SfOuLQCdSzyf7EiEZSUNCsrCy6Xy9BZrZQ6/jcawPGYXwG1b5lM6qLJ3XQP1aTz0UcfieCBwsJCNDc3W571GS9qamrgdrsNARA0KciLEvU/Fcn++uuv4fF4lO/x5Zdf4vrrr8cJJ5xg+hspaarJhvd3ud86jX5NZeRxJBLBH3/8YYh+j3bmZm1trZgw7cyvTqJfCVaBEnL065dffonDDjtMkDoCV+qIOMltEQqFlGWiNpLHQnNzc9LNr7W1teI5RLhkv1lSWM4991wALXXJc83x8cjdObilxOVyYeXKlWhoaDCZX5ubmw2kzk5dlDdFs2fPxtKlS5VzfFNTk3LjxiOX+XOICMlKHUWyy6TOLqgGaN1cUr7PwsJCoYIlAvq+XdAa9dOxY8di7dq1ltfZkTqVUmflv6pCrOZXMv+PHz8eAMSJKPIG9tNPP3Xkx8jHGxHDQCCASCSCuro65Ofni3yvBJWFze12i76hUg2jiQxaqUsinJA6ghzt4/f7sXjxYstdICl1gNn3jga/Vcfjg4GTuliUOqDVJ8bJToYrdRTZxk1cBHIgpWfxa5wodU7OR5TNr/wZqgUt3pQmqjJwX61AIIDx48dj4MCBST1urra2Fv369RO5loBWUiebX+k9VST7ySefRHNzs1Bz+WTz0Ucf4b777lMepUfpblT1RPUbDAZNi4uV+bWpqcnQHqkMMlm3bh3q6uoMJCmaH1VtbS26du0KwJ7UNTc3IxgMmsZXU1OTUJwI0Xzq3G63MIcfdNBBpnyNnNTR8+R7nnPOOUrzILWRvPjF41MnExeZ1G3btg0ZGRl48sknDSoahzx/EpGjn6mfRSIRg58Xd23ZZZdd0NzcjGXLlpnMrzKpkxMm25lfaVzJaaDoGo/Hg//85z8YM2aMIGc0V8mE14rUEahvyeZXK5JG58lWVVWJOS/WpOAq8ChrK6iewccw1UE0pU4mdaqAGCvEo9R5vV6UlJSgqakJkyZNAmAkdU1NTTj88MMxbtw40/dlv1uVUhcKhVBXVydIXX5+viEqtkePHiIIiOB2u2192GnzbBXsRu+rSV0SQMqbE1InK3UNDQ2orq5WdnqgNSUA0EriZs2ahSlTpogdGpHEdevWGfz1uD+bSqmTCYZVNA8pdU58Dqhjke/bhg0bUF5ebrqOlDrqgC+++CIOOeQQALBM0gyYSV1dXR3++c9/mkzQTU1N8Pv9BvMrr2N6F26ejIXU8bpQTcz8e9dff72IIEtmQlC+CyTQpGBFUFSkjuo7HA4jHA6La7KysvDRRx9ZPp/a1Y7UBQIB0ztbmV+PPPJIdOvWTfTDVJI6Mmf2799ffOZEqSM/MDtSB7SY+AsLC/HJJ5+IvwWDQeTm5ho2cNHMry6XS2zqcnJyDEf/ZGVlGY47tFLqyMdOPlfTKgEykZTMzMy4lDqV+ZX8Sp9++mkDqeNjXZ4/VeZXuk41/vx+v2jPbdu2mZS6pqYmw4aRl1k2v9IpHVSXNJ+pToKg706cOBFvvfWWSD+h6k92Sh2hvr4excXFJvOr1QaWsi6sX78+qeZXfnKJFVSuP3wuIOKiIiJcqZPNrzytj9M5U/aps1PqaB2hlGEFBQUGUkf5UpctW4a77rrLUH7a2BFUpA4A/vnPf+K9995DXl6eaQ1vaGjAwoULDX3e5XIJ31JVJg3qz/Recp1SvWvzaxJApMpJhKiK1NHiLDsLAy0dkDoEDe4JEyZg3LhxYmEipa5Hjx4Gp3QrUkedUJ78rZQ6l8uFJ598Muq7AUalDmiRo1V+FkTq6JmVlZXCjGinZvHBCAD/+9//cPfdd+PBBx80XEdtwUkdn7S5KYj+j4XUyY7fMqwmIieZwWfPnu1og1BXV4eCggIDCafyy+YjVbkJtLDSIhOJRPDqq6/io48+Upa3S5cu2HPPPYWzvsr8yn3q5HuozK+NjY34/PPPsWHDBuHrlUrzK40ZmSRRmVXw+XzieiufOiJZ5DDNg2Ro8ecm32ikDmjt87LKV1paKtrOTqnjPpKRSARfffUVIpGIgXhzJBr9qlLqeFmcKnU8sIGrdrIvIDe/8gWXrh8zZgx23HFHHHTQQYZy2ZWZvk99kOpBZWKUCSFBZX4NhUKiPi699FK89NJLhu9EIhHU19ejpKTEZH61mlPoTOLnnnsOn332WdLNryol97LLLsOHH36Impoak0sAr9fRo0cDaFmbZPDo19LSUjF3EamjzV80ckrly8zMREZGhqPoV77GuVwulJSUGNbLlStXAmhJrTNhwgTMnDkTixcvVpJY2fzavXt3AMATTzwBAIZTa2TfeO7r7nK5UFRUhIcfflgZ7MTV448++gg9evQwbG60+TWJmD59Os4++2xL/zH5AGFufm1sbBSkbsaMGRg1ahQAiKgvnl2eWL5s+5d96i677DIsXbpUkKOePXsqlTp5MrfyqZN93OwUO+5TB7TsXFRBIGS643VGzsZ2aSVosaOOSyZhuYxEJKySNXLzINBSJ3V1dY5JHZ8AVJOn1UTkhNQNHz4cI0eOjHpdbW2tKfcTmaW4UseVpDFjxpjMKbTo19fXGyR82WRH/aW5uRmnnXaagVBYKXUjR440jQu5rbxer2GxtFPq4jnORwW6NycXTgIliNRxp2eVUqdyVaDF/x//+Idw0lYRSK4kAK3tk5OTI/JfAUbF006p4+/43//+FwceeCA+/vjjqEpdMn3qCHIQg0qpI5UvEomI6woKCsSYl+c/rtRxqwC1Z48ePbBs2TJ07drV8DxeTxQcwsH7NfVhO6VOhsr8ypW6n376SZw9yssUCoUMSp1M6mbPni3yftbV1WHDhg0YMGAAgBaFsrCwEJWVlfjuu+8M43L9+vW2Z87KoOfJY3v58uV4/PHHcfTRR6O6utpkieHvu99++2HFihXi2DUOHv3apUsXQX5qa2vR2NgoXFiikVNePr7BdKLUEeQAJ3njMHr0aAwYMEB5nirvR5s3bzYdsbhp0yaDUsf9Qc8++2zT/a644gqcfvrpps/5nL5y5UqsX7/e4HqVtubXH3/8sS0ek1QUFxdj++23t1TqeKekMxypgerr60USUZKCgdadDVePaNFdu3atwR5/1VVX4corrxS/P/7447j44osF8Rg4cKBhIqROKC8oVubX1157DQcffLD4nfxapk2bZikBk1JXVVVlIB40carMzaQy2hEf2fxKC4HsqEx1bkXq6O/xKnXR8kHRZ/Iu1gmpA+AoqII2AyrwQAkeSQaY1Tpa6BoaGgwSvlx3tHmQd7p20a/r16+PSsTk51gpyUB85uvPP/8cixcvxmeffSbKQuXlfT2aUldbWysWMF42InXfffed6D+0S1eZ+Pbaay/84x//sDSRqRYdoIXUdevWTUSgc8XTTqnjkzwtAkuXLk0KqeOKLEE2v3JS5/P54Pf7TXNMfn6+GMv0t3A4LMpeWloqPqd+OGXKFEOQjd/vN8wr0U6lkcssL4YUbUuuGUBspC6a+ZXAy0zEvLS0VHxPNr8OHz5cOPeTojR58mTRZwoLCzFhwgQsXLgQX3/9tbj3QQcdhB49ejiO8rRS6rhatXLlSpM5kr9vXl4e+vTpo3Spyc7ORkNDAwKBgOjLFFTT0NCA/Px8y3RHHDKpIzhV6qicnNTJacfswOeCuro6DBgwwPC+GzZsEPOCz+cT5nlA7aNpBU7qqE640pe25ldVlF1HgN05iXwhX7VqFd5++23sv//+AFpJCQ10anxSrXgkXENDA+bOnYtwOGw6XeGRRx4x/B4KhQTxOOigg7BgwQLRaanxnZpfe/fuLZKA0vfeeecdnHjiiYZjUACzUrdx40bDpE4JKFUmWSKCdpDNrzRByWH30cLxyQRO71xdXY36+nqT+pEIqaPTQDicnOHnFGR+VYFPAPIEJZu3uVLHJXwrUiebz+yiXwnPPfcctm7dqiR48u7XTqlzSop5OQ455BAMGDAAhx56qAj4CAaDyMjIMJAPJ0pdSUkJXC6XaaEGgH79+onxS8oj97Fpamoy1JtVKhfVokPXA61zhEzqrJQ6VVJd3haJkDqV6q86UUJ+PyoH/d+1a1cxF9K78xQk+fn54j1oDJ1wwgk499xzhcuA3+8XOdr4va3g1Pza2NgoVEN5g0R1YKfUyeZXeU6orKzEK6+8AqB1XiopKUFzczNCoRB8Ph/cbrdyQ0NpjXr37i3mgqKiIgwdOhRFRUWGk1hoo+iU1JE6KfcB2X1IVuF4vVptOgGjYk/zLil1tO45CfiIldQ5Uepimaf58+vq6lBWVmZwgyovLxf1EItSKoO71KhIXbsqdaeccory38knn2yZniPdkZ+fL/LGyeAd5Ntvv0VdXZ2IWKQBRo1OCymRusbGRoNSt++++wKAwQxD4B2aJgMAOPjggxEOh/HTTz8BiK7UqRYUvsAHg0ExAdfU1GDNmjV4/fXXAZiVumAwaBjYL774ItauXauUse0CJAg0GGnCp0lWXsiiJc6UE5fOnTsXkUgEgwcPFtckQurofEsrsmkFJ4mkCXZKHZ8AaOJ/6KGHAAAvv/wy/ve//4lryWTb0NBgyHWkInXNzc0Ih8NRlTqZ1HXp0kXZ5oCZ1NkpdbGSYjmrPTe7y5Ofk0AJ8mFUKXWUfohDzg/Jn0lKhQwrUkd9yYrU0abSjtTRnMDn2UR86vhJOQQr86uKQH/77bd44IEHkJubK8YslTcSiYif8/PzRZ/mgTxEjOmds7OzxfOsouivv/56AM7Nr9TnevbsqUymnqhS19zcLK6ldqExUVVVhebmZvTp08c0z9TX16Oqqgoulwtdu3YV9y0oKEBGRgaGDh2KH374wVQuJ7kqgVY3GHlsc6Wub9++Yk0ixEPqVEpdbm6uI99A3kd5myei1MVy3i3vR+QSQxuZs846C2+++abok3YKYLT1j1tfqC/Im0YgNqXO+ZVR8Pnnn+Pll182NXgkEjHIxR0JBQUF4iw/u4V88eLFBmdpGjhUF7QA05mrwWDQQOpyc3NRXFyMAw880PAMl8sFt9ttSFfywQcfIDc3V5y7KRMgefJX+RkRZFJHi2NGRgZGjx6NZcuW4fTTTzdFvwIwmUTIkVSFu+++W/jbqUATASXxpEVTnvCszK9TpkzBpZdeipqaGmzZskUscrNnz0ZWVpYhMtHj8ViSMPqey+WyVOpycnJiJnV8MrFyKCeofOp42ekeVVVVKCwsFCb0f//73wDM/mnRlLpt27Yp+whPCkuQ722XwFRWbZOp1Mk+SzRxqurWzvw6b948BAIBFBQUwOv1KkkdTz9EkH1Z+eJfVlam9B+1M78C1qROLg+/H4E2M1xt4X8Ph8PikPR4SZ1VoERJSYnJxLrHHntgjz32wKuvvmpy/wiHw6K9VEodneXKF7ns7GwxJqzGzrXXXot7773XsfmVSFCPHj2wfPly0/1iIXWhUMh0LR0nCLSSOmpbWg+23357kbqEsHnzZlRVVaGsrAwej8eUPmS77bYTJwlxYuR0Y0SEwU6p83q9pnrm72s37vnfqMyc1HXp0sVRFK+VUme1Iaf+zZGbm2sg7E5I3YknnoglS5aYzK/5+fnYbbfdMH/+fDzwwAMoLy8X6wUndb169YrJzOvU/NouSt0BBxyA/Px8jBo1yvDvgAMOwJAhQ5L1GFtcd911GDFiBM4888ykpE7g56n++eefhoHDF6JFixahd+/e4npZqaMJ++STTxbf4YtNfn4+LrnkEmy//faYOXOmICEej8d0XMk777wDj8djCg23CpSgTNuqHQNXIGRSR0l2+b05qZNNxXb4xz/+oXQSJcikjpedw8r8eu6552LKlCmIRCIoKysTh037/X706dPHRFY++eQTZR7AmpoaZGZmorS01DJQIjs72zTAok2ofAKLltPOzvzKSf7atWvRo0cPy5MteOoEO6UuEAgo1Vwn5lcr30bATOqSqdTJygot0LIpFLA3v+69994AWkyJWVlZpoUaaCF1fJxcdtllhvaUF//u3bubzHmhUAihUMgUnQe09mWaK3i9WSXsJsV+7NixAFpVFk4mVUdV5ebmJkTq5JQmcnlVdS/3rXA4LMYxj/Kur68XpnMiXipSZ6XUqci7Sqkj8ysndbEodSrzq8rM6/P5RFlpriGljpM6eZ7ZvHkz1q9fL3IXUr+lILuioiLR3nwOs1Pq/vvf/6K6uhqRSMSS1HGlzu12m96dv6+TRPKAUambM2cOampqoppfaTwcddRR4jOn5tdoSp2TdDB33nkncnNzDfNVU1MTCgoK8PTTT6Oqqkr44NK8wEncJ5984vj0FyDNza/vvPOOiPKUwfM6pQo///wzqqqq8M0332DgwIF4++23E74nz7HTp08fw8kLnNSFw2H06dMHubm5yMjIEPlwaCJ67rnnsHDhQgMpcrlcYiFpaGgQHWTkyJFiwreagP1+PzweDzIyMpTBARx8cpHBF+VAICAWbU4Am5ubTT51AIT/YDLASR0vq5VSp9opWpkBZYJEA/C2224zXUtBFVY7STK/yv4rVkpTdXU1Nm/e7JjU8WzlQEskHR0dRSCyRaqhFamjuuKBEh6PxzQ5NDU1WSp10cyvdjv2WHzqYiV1ch3ybP2xKHUE2fw6duxYYc7LzMw09Ek+4QNmItmtWzcTqbNzgbBT6uS+S0ST3p+c2WlB5vXC35ePm1hIHb+fnVJHUNU93Ysf60UERFbquE+eTOrkZLQyVOTdSqmTSR2PECfEqtRlZmaaykbzmmx+pTmod+/epnlm06ZNqKqqEqSOnkOkrri4WJBQbm63GkOBQABjxozBxRdfLM7Ppbrh4EqditRRkNAjjzyCbt26KZ/F3zkjI0Osd6tWrcKKFSswd+7cqOZXj8eDSZMmiQ0L4DxQIppPnROljtLsUD3xvpqXl2dIl0QqPid1O+64o+F4ufYwv3aalCbff/89Dj30UADA4YcfrjxwPRAIwOfzGf7ZgZM6wJifSh5EPXr0QGZmJvr164c5c+YAaCV1JSUlpugZoHUnK0do0nNdLpfSHysQCMDlchl2PCql7t1338XEiRMtd3GyUkcDht+DTgVwuVyGRSmZZ59aKXVOza+ANamTTZlk7lBF6gaDLedXqpzdX3/9dXz//ffIyckxOcZakbqePXuivLzcMIHZ9bmGhgaEw2HR/kOGDMGuu+5quIaUBlp0rEy19Ey+YLndblMfDAaDStKRbFJnp9Q59QciyMoKJ3Wx+tQB5on8xRdfFG0s1xlXnwDz4q8idZycyKA6LCoqQm5urjiVBTCTOroPvT8tMLQgW+VZ5KmAopG6UCgk2pkrQbJPHdWJHanjJm3y8bzsssvE/YuLiw1KHdUj9XFeb6QSRiN10QIlPB4PZsyYIfKHUkYCeVxakTqyesg5Dd1ut4m00+88UAJoITl5eXkoKytDY2OjYUxEI3VWSp0dqaP7qsgCobq6WtSxitS9/PLLAGCI8lSB+nhJSYloc54ehZQ6qzkzEAggLy/PMOaSpdQFAgH0798ft956q2X5c3JyLEmdCvn5+Ybzur1eryFnZTTQu73zzjuirdJGqeP473//m4rb2qK6uloQjaKiImVwxqRJk1BUVCT+2fl5Aa0NSQOedxrqlJSuhP4fPHiwMF3aOZTS/WpqahCJRAxE5c0338TQoUOjKhic1KkWzU8//dT2+7JPHb2TPBD4jnf//ffHiy++aHnPt956S6RncAoa/DvttFNU8yspnDKckjqaEK1IXVZWllKpO+OMMzBr1ixkZ2eLRfvRRx8FYD2h0udOlToqm9W7AK0qBj8hQAVqS1mpk2Gl1NklHyY4dZgGWttSPgEAAI4++mj861//sryXDLkO7cyv0Y4JA8wTOQc/ugowkzqZSBKp43WlIs2y+TU3Nxd//vmn2JgCZlJHY536iazUWQX6xELq+LvJ+bJ4X+vfvz/OPfdc3H///eIzO/NrU1MT/vGPf+Dss8/GRRddhHvuuQeHHXaYY6WOggPIL1kGJal1Yn7l6jf5AssbBStS53K5UFFRYSDupNRRnz/22GPx1FNPifYmMkXErKqqCqWlpcjJyUEkEjHcq66uDtXV1WIOUCl1fr8fgUDAkfmV6jAjI8NgYZD7wNatW8V6qFIdCXbHPQKt454rzm+99Zb4OTc3F7vtthvefvttAxkCWuYXVcCDXaDEl19+iVtuucWxUjdgwADceOONlgpadna2YS6gjZIdqVuzZg3cbrdI3TZo0CDHayDV83/+85/086njOOOMM0ynAchIVsJRQklJiZjsq6urlek1JkyYgJqaGvEvmkMjTaq0a+cdnSZK2lGR1Dxo0CBxjepsRg6v1yvIJ792u+22ww033GD7XQCWSp2ct8sKMqlTnTtLSh1Njt988w3OOeccAMD5559v8H0AWtKbxJPCZvbs2Xj55ZeVSt3MmTPhcrmwbNky5OTkKAekU1JHQTsq5YZInVUEI9Ay6IcNGwagRXXYYYcdojr6x0rqVOfqEsjfyGrRIVgpdTKcKnW8XxGipauprKzEfffdh8zMTMOmY+zYsbjuuusM195555229+Lw+Xw48MADMW/ePOy000625tfMzExkZmYq27tXr1444ogjsMceewgCwhWYjIwMU1+Tfe9UgRLcER+wN7/y/l5eXm54nqyGWyl11G/46Q3xml/pewUFBSZSx/uP2+3GlClTlOfs8t+52Z3+npOTg+uvv95AHrhSp/KpO/zwwwG0RGZaQQ52sTK/cpBS55TUAS0mNu5zTHVDbXnPPffgoosuEu29bt06ocQCLf03JydH/J0HyPn9foPlhupPFg9qamrEvFNSUmK5saQ6dLlc4hpVH9iwYYNIsKtS6ghOSR3fNJeUlIh+kpOTgzvvvBN+vx9fffWV4bs038jPsFPqDjroINx6662Ofeqys7PhcrmUqvmVV14pIrKdKnUUTNmjRw9DijC7fspBpzDl5uamt/l1+vTpuOWWW3DFFVeYFoJQKIQpU6aIbNnJwrBhw0RKh08//VR5PJfX60VhYaHhnx0qKyuRkZEhju6SSZ3b7TaROvqfHH5VIALi9XqFNC8TwGiEEIAhZQB1wkgkIky20XxnZPMrdWC+OLz++uuYOXOm8l0mT56MDz74IGo5nWCfffZBQUGBYfBQJyefzDlz5lg651u1pTwYR4wYgbKyMltSl5eXZ0nUcnJy8Mknn4hdpt218nsAzkidHVmSlToVGhoaDKqr3W4vGAw68qlTldsqoIOwfv16XHvttQbFhupYRVxlV4MXX3xR+KcSampq8PXXX6OoqAh77rmnYeK2iiyWF3tCU1OTCPiheuWnYKhU0GjmV5VvlxPzqwpWSh0REFLqaA5RBUcAaqUuEongxhtvNKkl9G7du3e3Nb8SuJJpZ37leew4nCp177zzTlQzvaptVOZXDlntJKhM+YS+ffsaImZlpY7mKOoL06dPR5cuXcT71dTUICcnR8xNdCQY0NLGnNQRcad6prmhurrakJUgmlLH8zDm5eWZ1ob169cLUldcXGxSqAnRSB31Z1lUoffp2rUriouLsfPOOxvy7QHWpx/xk0q2bdtmUP4IGzduNM2bNDfwZNp2vpm00VSROqu5Tg6GJFDfieZT53a7MWnSJIPLz+bNm01H2bW7UnfYYYfh66+/xrRp03DiiScKv4Enn3wSffv2xTXXXINTTz01qc8cMmQIKisrMWLECCxcuNAQ1BAvPB4PevbsKfJiyebX3Nxcg8kXaO3UtCOQsW7dOrHL40qdTFbsSN0VV1whniWTOsBo6rKDrNRRB+ZRdNdffz2mTZsWs99TvCAzA9A6IdHEvGjRIstF0GoSUu2w5MmfwEmd1ftSziwyVeTm5ipJHTcnJlOp4z51NDHNmDED55xzDrKzsxGJRJCXlyd8B2tray2VuuLiYjQ1NVkqdbxPqSIErepcVWau1GVlZSkJAq/HSCSCsWPH4thjjzVcc/7552P9+vVifFAuSX5v1fPt2puXkR8lxMt4yimn4LbbbjMRRNnkqzL32il1dnVo5VMnm1+5k7t8LaBW6urr63HHHXdgzJgxhgXeitSp/NNk2JlfyV/V6jsyqeMnPlDEebSNrmxCt0o+zMGVL454lDp6PyqnHGBDv1dXVyM7OxtHHHEEnnrqKXENLez8aMOZM2caNs5UXiJ1LpcLhYWFUZU6bprOz883rA2RSARVVVXo27cvnnjiCTz77LPKe8nvpIJKqQNa+yApo4MHD8aCBQsM11iNE57X8M8//8Qpp5yCbdu2Gd558+bNhhOSgJZ2CIVCho2FXfmp7LH61PHvEmJR1goLC8UxasXFxYhEImLsUTtZudmokLJAid133x2zZ8/GihUrMGzYMPTp0wc333wzxo8fj7/++svWWTFe3Hffffjmm2/w6quvRs087hR9+vQReYF4h6ivrzccxk2DzS7NA9Dic0O7GCvzq+p3wuDBg0XINHc45YOUOmQ0UsefQQEbgPkQbiC2BLqJgE8GNMjJ52Tz5s22ygaB56VTDcZoi7ws23PIgzU3Nxf19fW45557xJl/33//vcGcyMlKMkgdqWvU90aNGoWRI0eaziAGWkidlVJHBMXKpy6aUucUKqVONelxIk1lkoMOyN+E/udtZRex6JTUTZ8+XfydT6RvvvkmbrzxRni9XoTDYUGE5GfyFAUE1WJFp7DYgUgd3ZMrddnZ2WJDqdqAcDOySqmj+p07dy4uueQSU1m7d++Obdu2iaAG2adOBafmVw6qu7q6OkOgBNDqz2SXQoODt3MoFEJjY6NpvpD7B9WxXId2pK6srMyg7FHdyEodL3dDQ4N4LzK/ZmRk4OijjxbXdO/eHfX19Ybk9Ntvv73BxUVW6ig5thOfOiulrq6uDg0NDejWrRsuueQS0xFhHNHIisqnDmj1LyZSV1hYaCqznNOQQEob3+TU19eb5iQ5zRaND7qOm2itjjij51O9OTG/8u8SYlHWCgoK0NTUhJqaGiFq8JM/VAFudkgZqaupqcHzzz+PtWvXYunSpaiursYXX3yBiRMnRjXbpBP69OmDP/74A4BxUq6trUVhYaGY6GSlzgniMb/yziMrdbIfRrSFmL+PlVLX1uCkmAYW9320q18axG+99ZZQglX16ESpsyJ1p512muF3Mr/ecMMN4lggORs7P8s2GqnjOQhVsPKpo3qTD61WKXWffvopZsyYIUysTnzqqNx0PmUskBd3OtlABp/k6Wc5YIV8c8j8xRc0O6VOZX7l11Of+PLLL8XfrcyvAEzvw59FnxNU5teHH3446vik/kzO/FypKyoqMrSXPKfyulSROl6v/FhAeq9evXohHA6LucBOqeN1yKEi8zKszK9Aq3oWTR2Sn7ds2TJ88cUXiEQiJsVIXmyzs7ORkZGBuro67Lbbbpg8eTIAe1KXk5OD5uZmMT7INP3www9j9OjRorzyeiGbXwEY0oPk5+eLTZkViaBI0k2bNsVM6ujnnJwc/PHHH4Kw08aJXIkSgZVSx0/wAFreT55jrZQ6qiv5FBX+fbfbbeqftCZTP1IFU6jKzo8Hra2tRUZGhuX3aH2xUuqckDEa55s2bRL1Fm2jaoeUkLoJEyagd+/emDJlCu68805s2rQJJ598Mg4++GDMnTs3FY9MGXiKAT4p0cQqk7poSh1HPOZX3uHlQAmaCGhBUSXYtXoGj35tT1LHBxZNQuvXrxeLll0HpzagQ6PpZxlWpI78fmRSRyrls88+a0ggDVibXzko6qyiosLyyLxgMIjLLrtMpI+xgpVPHbUlHQYOtEzSKqXu0EMPxahRowyqH92bQOSR/kYToyq/XzRwk6VTpY5+lvNZUf+gqEu+ONj51MntHYlElEodP5dZRerkvHdWSl0082tmZmbUzS39nUgdV+qKi4vhdruF+ZbnzwKM6U1U5ldO6rgJmMpKPs/k72XlUwe0LuBWPnXhcFgZmcy/IwdKAMAXX3yBnj17Rs0iwO8VDAbRr18/HHbYYYayyc8juFwuFBQUYPHixZg/f77o33aLKfUPqldS6vbdd198+eWXYvzy9q6rqxO/19fXG/K5EXJycsScbTX/5+XlIS8vDxs2bBCkbrvttjOMew7Zp46EhE8++UQEM9J8b6fQHXTQQVF9tIHWY/XkE4aoLonAqDbOVqTuxhtvBGC0wPh8PsO8qxqrsmk9mvmV+ndRUZHYcFHeUKs52YrUxarUAWpSt3btWsf9n5ASUvfuu+/ikUcewZIlS3DhhRciLy8PU6ZMwYUXXojRo0fjvffeS8VjUwJO6niH4BMr0Nq4sSp1VuZXK3JoReqCwdbzWGlw8IldhaKiIpF7jzsmq8yvbQW+K+OZ7U8//XRceOGFYietAk0YBQUFYgKIxXHeSqkjUqTarZH5laCK6iZSN3z4cHz77bfKsqvyKqpAbW6l1PHJfbvttrP1qSPiZnWixObNm+H1erFx40YxyUWLeFVBZYZTTcIqUieTscbGRuyzzz4iwtppoISs+FGdyKQuEAiIQCaVv5us1MlkhScTJdj51NmB2ov6sqzU8XvyBTkjI8OgAjY0NAh1VEXq+IIlkzpSRO3Mr1akLisrC8uWLRNHGqren+rL7/eblLqpU6fi1FNPdWx6qqioMGU0iKbUAS0bAzK7U2R7NKUOaCV1VoSXf3baaacZ6ke1TmRnZ0cldUBLW2/cuFGQukGDBmHBggVKFxnZ/Or1ekXfIF9xJ24fXq/XkV+Xy+XC3LlzcdZZZxk+/+yzz/DMM8+ItlSROqtAid133x2hUMhgXv3111+x++67i99VY5WbqgEjqeO+26rvERG0O+EHUJvagdh86uj+oVDIROpeffXVmOMDUkLqFi5ciHPOOcfUCW6//XY89NBDOPXUU/HYY4+l4tFJByd1fJDTxEpRtrQQxErqiAQkan6tra0VHcIu0auMffbZR1xLE0Bb+c+pQOYFHuLd1NSE0tJSPP3004aBLIN25/n5+eIIKJXqGE2pk00DVr4egDn6VaXabdq0CV6vF4cffjh+++0304kUQGuqlalTp1q+H9BKIp2YX4nUWfnUkd+c6v1kU0dNTQ2ysrJiJiaAWqkj3HPPPSK6WUXqZMjnMHPTk9VCzHfeBFmdJOIZDAbFWFb5pMrRrU6UOrvoVzsMGDAAzz//vPDPXLRoEYYNGyZSZPDn8QSvXbp0MZE6qjO32204qgtQK3WlpaWoqKgwkDqrhYoWSKvEz9QnVeOHjgbjf+fXye4Odthjjz3w008/GT5zSupIkaRgIyekjurQivC6XC7U1dWhtrYWzz77rCWpu+666zB27FhkZ2eLDbUdqauoqDAodbvuuiv8fr/yDFtqT07qyOxK70cExm7DFsu4HzBggOn6XXbZBePHjxe/x6LUUfl5/5MjZ1X1L5tf+fnL1157LYCWCHt500BuMnT6iZ1SZqXUxeIDxzM3cFLX3NyMtWvXYujQoY7vBaSI1Nm90AUXXIBp06Zh4sSJqXh00sFJHSc7pNRdeOGFWLt2rfBHiNX8CrR0DKukqVbfoWdxkwxN7HZHMsmgwRIIBBydjZdqnHfeeXjiiSdw/PHHW5q4rHD33Xdj2bJl8Hg8OOCAAzBp0iSDEzhBFShx7rnnYvr06UqlzmoHCZjNr7JjP9AyAWVnZwvFRfZ7A4DffvsNBx98sMm8K4PKZmV+5ekRZFKnigTkZJ4vNPze4XAYPp9PTJL77bcfrrzySttyys+hPHeNjY2GMVJRUSHUEStS98UXX4if6ag2ghPza0lJiSlCVEXqZKVORfxVSl08gRJO4HK5MG7cOFGee+65B3PmzMHMmTOFqkL35Hkau3TpYjK/Up1TH+D9W0XqvF4vevfuLVKe2Jlfzz33XADmuc8u3xiHbHbl11klG1Zhjz32MJkho5lfAaM/YkNDg5jnnZhfw+EwIpGIZd3k5eUhPz/fdNwc78P33nsvXnjhBUfmV8BM6vbYYw9kZGRgxowZpmtVSp28ifP5fOLIKyskK/CQkJeXJ6L4CXabZ8DYHvLmWaXUEVlSmV8vvvhiLFiwAOeccw78fr8h4W9RUZE4sjEaqbNS6uh3noPQCrz/kY9lfX191PqwQrscE3bEEUcoO2A6olu3boIp8w5ISp3L5TL4D9DC6CS5shMpWIaVUldTUyNMMFwVueCCC6ImWaZFNxAIiMTC7QWPx4NLLrkEXq9XmMisFmsZbrdbmHoyMjLwz3/+U5mEWqXUvfTSSwBgIHU8vxH9TYZMAOW8agCwdOlSZGdniwErHzMGtLSfqqyq59EpEXySo0Wdk7revXujublZECRVItZgMIjGxkbT6RTyucBbtmwRpG7WrFl46KGHopaVQEqdijxSChaglcjNmDFDnDUJtByh8+uvv2Lu3LmmiEYn5tfi4uKopI7KGCupcxIoES+pI5DZlN6hubnZZH7lpK6srMyg1Pl8PrEwEfngpJm3Oy9rQUGBqFs7pW7s2LFobm42WSmoLoYMGYKsrCzLhKw86pD/D8SmeIwePdp0vRNfJ75oR8vrCBjNr0QAnZgmMzMzTSeJyGWNh9SVlpZi//33x4cffmi6lsYcP61Bns9qamrEWmaFWMi1E9D7qSwiVuOkf//+4mc5BY2q/j0eD3Jzc8WpTbJPHXfR4T6pXOGrra2Ni9QRQaczpO3AFdL9998fLpcLDQ0NtmKCHdrt7FeefTmdkZGRgTlz5mDcuHGmvF0qH4RYza+A+sgqu/IQ8vPzhUxcW1srSB1fcPr37284YNiqHLToUobr9obb7RaTazwRQHawMr8CraSOVCUgNqXOikBnZ2ejrKwMbrfboOYtWrQI27Ztg8/nc3SeLlfq+OJHKi0ndZRLj8iAPPGR+ZWbJQikngEt7z9v3jzstttuUcunAm0arM7upWz8RDROPPFEcczOqFGjsG7dOgwePBhDhw41kTrKU0cmMyulTpVclsrGy8jNr6qNmVOlTja/ut3umHJNyeDtEwwGTSmUZKXO5/NhwYIFWLJkCdauXStSSaiUOg6+sHJ/0WgpTawWVQC45JJLEAgETOcYE+gdZMUuVnTr1s2U1sKqTECLuADETuqovFzVc+JDxY84VK0T8mbFCmVlZdiyZYuBaO+6665KCwCROtqwyBHuQCups8LChQuFuTJZiIfUkasQYLaIWPVN8o+jhNtOCBLVxXbbbYdt27Y5InWqvlJaWupoU8Lbes899xTjLt7NYLuRuo4GOcUDd1bmiMf8Ggup4zuU8vJybN68WZhayATMc9c5UbhI8YsW8t2W8Hg8lrnAEoUdqeNJTrkCBKiVutzcXIOpSyZ1PI9RRkYGKisrsX79evzwww94+OGHMXDgQAwePNgxqbPyqcvJyRH5pyorK3H11VeL/rl161ZlriNufpXbne+K6+rq8MMPPyhPaXGC4uJi/P7776LvqhY0nkR4u+22E5/v8P/tnXd8FNX6/z+bTbakbSokkIh0sIEKCEogCqLYFQUF20UU27U3vl4rKnbwWlCv14KKgqBYroAChi4KUlSkSUtCKOl1s9lkf3/k9xzOzM7MzmzJ7obzfr14AZvN7OzMmXM+5/M85zndukk6cCWnrqWlhQkyPeHXefPmsbQKXtTR5/vaexfQt1Bi9+7dWL9+vc9Vd3qQXzO6t9S++BBORkYGampqcNJJJ6F3794oLi5mEzslp66wsJC1YX4g4R1rrfCrGiQofLVr6jPlTp3RzwOk6TJKe3vTsSdPnoxvv/0WgHf41YhTR32UXsFO7UCpn6XX+BqESlB75kWdWrkkvaJO6/P69u2ru9C4XpREnS9nqkOHDjj++OMBeEc71M4vJSUFVVVV7DoYEXUAsHDhQs2FEvQ9At32dOvWrfjoo48kz50QdSGGr3VFocpwOHW845CZmQmn08m2NqKOmzpovWFLEnVUnHHFihV48803dZ9TKAiXU9fS0uLV4Wg9XFS1nJCHX6mzpA47OzsbBw4cwBlnnIF77rkHALB//36/nDr5NSG3btiwYXj11VdZ51RaWqo4QNJERalIq8lkwqpVqwAAu3btgtPp1FykosUdd9yBv/76iy0GiY+P9+oEeVHHC47s7GzJVlZKCyWA1nultrVTSkqK5Lm555572D3jhQQ9N3ztMDl6F0o0NTWhe/fuGDhwYFBEnXxgob6Hvj8/mUxPT5cMekVFRV5OHV1j2qua2iIfmqO2Ron1RkWWr8KthJqo8+ea8aks8v2FAWlpDRJigYRftfZVVkLLqaNj3H///ZrjCO1z3tjYKBF1StUOtEQdnbsvpy4U0DXXu0cysWfPHpxxxhleFRq0nLrKykrF1A815M+aHqeOnhF/6du3L0t9EqKujeCdunXr1gGAZDNr/n168SXqMjIyvLY+kYs6AGzLGsrtq6mpYVXv9Yg62p6GHJu8vDzcfvvtACBZsdSW8JtO63Uc9WK1WrFnzx5JXhi5WC6Xi90P2ljZl1PHI99Lk4QaX2xUaTFFaWlpwKKOBjTqlOh7fPjhh4qLYLScOuCo00FhHXntKb3Iw8B8x0rXnQ+j8tdHfr2Uwq9A6+Cg5dTV1tay55evfack6kgAKeFvTl2gDri8bchXv/LXhO9PjjvuOBQVFak6dVR4mPoQuoYmk4m1NaNuFGFU1MkXSvgj6ui7T5s2jW2nyEOfodSGAKmoU+tz/A2/8sdUEheUrH/22WdrHoOcZH6yRk6dfLKkJeroZ+EQdVrhV199vVKRZDWnjsKvfK1GX2RnZ7PdgYC2EXU8QtS1ETQAVlVVYcyYMcjOzsaAAQO83keDlB47ljoYNVF35MgR/Pjjj5LX+DASiTraySA1NRUJCQmSFY96nToSgvzg09TUJNmbsC2h8GtzczNaWlqC6tRZLBaUlJTg3nvv9dow2eVysYRuKhGg9XDJz2vLli2S/9NgTO/r1KmToqhzuVy6OlbK4VNypag90Gf6coCpTctXlBLykhT+ijo6TwoPKaUoJCYmoqamhhUVfeaZZ7BgwQKvfNCamhpNp05N1AFHUxeURJ3dbmeDnFb41d+cukCdOnnbIKeOhBZ/Tfh+idoKuY+8qIuNjWV7cZOzxw/88fHx2LZtG2sbWtdFCWovvnYqUHPq/JnIUdtXc1upPfHCPS8vj51vXV2dz1BdIOFXEh9K4oJcfrUFJQTdhyNHjkhEHV+eiKDvQtElI6LujTfewDvvvKPrexkl2KJObUIsF3V6JlexsbGYNWsWWxyiNdmm7xHMMmAip66NoJWCf/zxB0pLSzFt2jTNPAOqmaYFuTrnn3++7vMYP348+zctjPjiiy8AtDY+2uKEBhU9YshutzMHkG9AfMV6f/JbAoHCr75CIf7Af0f58V0uF5KTk9GhQweJewEodzZ0XX788Ueceuqpqjl1JPYp/KqEXqeuublZUoGfoBVcdBxfDgm5z/KQJkHfd+/evbDb7brOTwm6RuSEaeXUkTs6dOhQXHrppV6uxcGDByUdM79yVi3MSWKXnBAlUccX79XqRHlR5/F44Ha7JfdBrfhwoE6dfNCl/9O15YUyv1hAXveM3k/7xwKtG9Tv3bsXbrdbcg3lqQU9e/Y0dM7//Oc/sWbNGkl+phJqCyX8uWbUttQG2YkTJ+Lw4cOSCMTll1+O3377DXfddRfq6+vZNVOrShATEwOLxeKXU0ciUOkZIEdbKReQR03UAd5bQ5IJoOXUFRcXK07Y7rjjDtxyyy2+v5QfqIk6com1kIu6mTNn4rvvvlN8rz9OHf+7gPduLTx0vGA7dfX19ce2qNuwYQPy8vIwfPhwjB071udG9v5AKwVp0L7ssstU33vgwAF89tlnPo/56KOP4o033vC5Yotobm6WbBQv73QyMzO9RJ3e8CuJOqWOtKqqyueWY8GGnLpQizq6TtQ50v979OiBnTt3Sl5Terguuugi/Prrrxg5cqRiOJ46W3Jus7OzFYsP8+/VgjpDpfBrr169AHgLSTX0OnX79u1Dp06dDJWX4KFr68upo7pQ9H+gtWN97LHHMGHCBMl5878HgDksWmFkpZXJdCx+oNDqROPj42E2m1FeXu61KwXQes35fFDA9/ZEepC3DfreSk6d1WrF6tWrWZ4c/3O6F2+99Ra7Vn369IHb7cYff/zhJep4+EUIejCbzbr6tmDm1NF30qq5mZmZ6dWWTz31VGRkZMDpdOLFF19k79M6Z3+cOhqolZ71//znP/jtt998LkrQI+q2bNmC3bt3s+LrvKijkHtjYyOam5uxf/9+dOnSRdf5Bwu1hRJ67jk9q71798ahQ4dw6623qlZtCETUUZ+tJero+gdT1FHq0TEt6jp37ozFixdj+fLl6NGjBxYsWBD0zyCnrqioCElJSZqhsuzsbF2zzN69e+OOO+7QfQ7yhz0uLo59zqxZs2CxWPwSdbxTp3TeycnJfrs0/iJ36oKZUycPMQPeDktWVhabsWuFBUwmEwt3kajikbtlnTp1Ug3NGxF1/DkTJCp97UVL8CVNtJy6wsJCn2VxtDDi1Cl1vk8//bSk3tO2bdvYv/U4dZ06dUJMTAwKCwu9Jnz0HfmO29f+kLTXptZOHcEOv8qvGQkh6hN4oRwTE4MzzzxTsrCF2jz//em1oUOHIi0tDXPmzEFDQ4Mk/Cr/XqGAPoeelUBEHQlPrcUualBbovFDq26k3W6XOHXBEHXJyck49dRTfR6DRN3hw4e99lSlUjb9+vVD9+7dFUXdZZddhgsvvBBOpxMlJSVwu91tLuosltatAuVOnRFR5/F4NPerBbxXvxoRdXSvtEQd3fdIEnVtG1MLEfwsm/Y4VILyCgilJeBq8E5dIANcsImLi4PT6WQPeqCiLtDBJ1iQU2ckjKwXvkOVH5/+b7PZ2L68eq+lUq4HDZy8U6fnvNTgB1r5+dCAplfU0URFzeHiBypaOOMPSk4diRFyTJKSklRFHSANj44dO5b9m89vUvsesbGx6NSpEwoLCzF16lTJz4w6dUDrdd69e7dq25SLumCEX+XOk3yHCKXBim9P9POhQ4ey1/iiv4MGDcK2bduQnJzMrgWJnEGDBuGRRx4J6Py1oPOgwTMQUZeXl4cNGzboEkdy5M+fVp9js9nw5JNPsiL6Wq4eD40/WmUyfJGUlASz2YympiYvp66oqAiXXnopey+JOnlOHdWFpHxZKhXSVvALcQgKv/qCtoDU01/S6ld/nDp6hrVEXc+ePXH77bfj0Ucf1X1cXwinjmP//v1YsmQJLrroIsWfT5s2DQ6Hg/3xlbvAwzt1kSbqAAQk6mw2G8u9iJQ6ddRZ0WAWTFHHz8DVwq82m409VHofLnr48/LyWO6j/He0ZsR6Oim+srv8mvTr1w+vvfYaHn74YfaaVpFvX+FXPkTlzyApP8/q6mrExMQgLi4O119/PR588EEm0LScOqBVDJeVlcHj8eDcc8+VfAegVchqFRfNzc3F/v37vfIZ6dzkOXWFhYXYsWOH4rG6detmyKmrq6sLeLLE5wECR0WdUviV4KMJfA00yifjz4nKGvGTVjrmBRdcgMsvvzyg89dC7oiYzWaMHDnS0K4lPKeddppfqQJGFoLQtSNR52txA0HOXiCRD5PJxBbKyEUdL+iA1pzK9PR0OJ1OL1HX2NjoVQ6rLVHaY1vPc9K5c2fs2rWL5ZJr4XA44HK5mGkRCqfuzTff9HsRmRLHlKg7ePAghg4d6vWnvLwc1dXVuO666/DBBx+oCoApU6agqqqK/fG1fRYPOXW1tbVtHoqcMWOG6sbW9FDLRZ3R1a+R5tTR9yLXKZiiju+86TrRIEC1gqxWKxOUH3/8MQDf15IefpfLxaqfy506rZCO3vDrfffdB8D7mphMJtx1112S+okbNmxQPRbV61MLvxo9NzV4py4+Ph4mkwl2ux0vvvgia29yUaeUd6d07eieUGhXbVKSnp6OiooKWCwWSQcsLw0CtF6XnJwc1YUBOTk5KC4uVn3GqK8gqqqqAn6u1Jw6cjy19r4EvHPuAO8tB51OJwoLC9lkl/oErUEtGJCDS59jMpnw448/4swzzwzp58rxR9QBrSJDawcIJQJx6oCj50rPllq/Ul1djTPOOAPl5eUoKipi5039W3l5Ocxmc5uPaYD3FotGck+7d++uy12k55sWSRkRdTTmBnqvjBIbG4vm5ubo2vvVX7KysrBq1SqvPw6HAxMmTMDjjz+umNdEWK1Wlh9mNE8sLi4OLS0tcDqdQRUYerj77rtVF17IRV1ycjKqqqoMh1+JSHHq6BqTqAtmPg/fefMFpadOncpyHKl2n9vtxpIlS3D22Wf7TGCmQcnpdDKRKO+ktBwEX6tV5Z+j1414++23FcOnNAFQc+p4Aun0yU2SlyPh8eXUaR07JiaGiTq1QYEGEKfTKRkAlXKhfLU1cjnUnLq4uDjJ88qvNPUXeb1IOt4VV1wBQLl8DX/P+M9XE3X19fUoKipioo76Ur0LufyFFseEWjz6gp8M3X333Zrv5duI1pijRrBFndbq2wsuuABAq2vH33sSdXq3swo2CQkJeOmll7B+/XoA+hdKGIGuM62qN3L8KVOmoKmpqc2vjdypa9eiTo25c+dizZo1mDp1KvLz8zFnzpygfwZd2Nra2jYXdVrIRV1OTg5+++03FoLTG35V+nc4CaVTpxR+ledjUadXVFSElpYWXTlFNCg1NDSwjsDI9dS7FQ+FCinnzxeTJ09W3CGECpaq5aLxBNIuYmJiEBMToxmGJFFXX18Ps9ls6H5bLBbm9qidJ1/Q05cj46vjJydOK/zKh26D4dRdcsklkgU21FbGjBkDj8ejuLsNH37lRTL1CXJRV1RUBKfTyURdXl4eqqur/d5JRC8kyMMt6vh24Sv0y99P2pXDCIH2Z3JRp0Xfvn1Z+1ASdUZ2NAomFIqmCWcwVonLoXZfUVEBm81mSKDRSva2hkQd1SI1ukVbuxB111xzDcrKylBQUICCggKMGzcu6J9Bir+8vDxkq8D8gUqrUAdNIaMffvgBgP46dUSkhF/pvMm5CXX4Vd6hUKdHicR6VoeR0zZy5Ej2ICpdz7Vr1+Khhx7y+/xJ1FEStL8kJSWhsbER27dv9+mMBTpbjY2NRUNDg+p9TEpKgsfjwZEjRwyFSADpbhB6nDq1UBktEPD1DFB+rdZCCZ7KysqwPFdGnToqis3nV7VF6Onxxx9H9+7d2zzMJcfIPeLfqzefLpgYEXUUoaJ/A633vqGhgTl14YCeWXp+9C6UMAK18YqKCsP9SrjgnTp/+o12IeraAqVl5JHAK6+8ItkHT54HZDT8Gq5ZmxzqrEIt6lwuFzwej6Koa2xsxL59+wBIN5nX4tChQ5gxYwa7D1RmhHdZBg8eHNDEY8SIEZg8eTJuu+02v48BSGvoqeVsBovY2Fg4nU7VQYjaXVFRkV+izpdTR0nZWq4k5ejocepcLpeqUyf//WCEX/Vw4oknSv5vt9thNpu9nE81UUcYWUAWDM477zzs2rUrLCFAf+HvcaidTCWURN3LL7+MmJgYXHvttZL3Wq1Wdq/pvMmlD6eoo2eWF3WhdOqiSdTV19fj/vvvl+yNq/v3Q3BO7RKyr+vr6yNK1MXGxkqEmD+ijh74tLS0iGn4ocypkxcfbmpqgsfj8XIznE4n/vzzT3Tq1En3dSEX7dxzz8XOnTuZwydP/A+k87JarUHZvo1EXWxsLE4++eSAj6dFXFwc6uvrVUUdFdL2V9Tpceqolh3/vXm++OILzJ492+fzTW2RJhzytikP77rd7jZx6n7++WdJ4rnJZEJycrJkJS6gHn4FWu9TuMOg0QDdz4kTJ2L48OG6fy8rK4sl7QeCkqi7//77cf/99wNo7cv//e9/s3OVizqHw4Hq6mqUlpaGxWkEjjp19B1CIeqi1anbtGmT378vnDqd8DkrkRR+lZOUlCTJn9JzrjRT05uo3xaEMqcOAD744AMAkOyXKHfqGhoasGDBAowePdqvz+jRowfi4uLw5ptvYtasWZKfRUIbInHTFi6Sr4RumpgUFhaGxKnjw69WqxWzZ8/G5s2bJe/JycnRFRane0cCSt42ldzuthB1iYmJXoLM4XB4XU9+BSRB7+ncubPhHJ72xNlnn4277rrL5/vonhtdRPLHH3+wlI5A8BV+la/mlt9zh8OB5uZmrFu3LmzRGT71BWgtSeZP0WgtqD8oLy+PKlEXCMfu02sQXtRFklOnBF9TTI946N+/PwCobl8VDuROXbCvOQk1qrQOeIs6j8eDnTt3eu0/apTbb7/dq7OKhNxFymFqi86OOiq1yvuBhl/1OHX19fVspe8111yDE044wdDn8J8HqIs6pYUY4VqAlJyc7PXZvkTdscyyZcvw2muv+Xyf2up2X6Snpwdl9wYjos5isXjl+NJ41tzcjCuvvDLg8/GHQYMGAQDKysrQ3NyMv/76yyuFIFCo7VdWVkaNqOP7SK3tSNUQok4nSUlJ7MGIdFHHr3rTI+pow22t/RLbmlDm1PHHc7lcTBDwidr8QKhUMy1Q+Pty7rnnYvLkyUH/DF/odeqCUZjUl1OXkJAAq9XqV+erN6cOaA3DBCqoqe2oiTqlZy5cIj45OdnretL58YMHvcdIrTZB+O6rUadOLkL5MaKt6wESP/74IyZNmoSSkhLMmTMHTqfTr5XEWlC7jiZRR/d01KhRbJ9eQ78f7BNqr1AV7/Ly8qgSdXrO1Ww24/nnn5fsVhBu5OHXYIcr6XhNTU2syKpSBX4gNCKe/z60Urmt0SPqamtrgxKO8yXqTCYT0tPTceDAAcOdb1xcHMrKygBoO3VAa62uQF0zX05dJIk62tBc6Vz4hQl0zcO9AjXaiHZRF46SHURycjJOP/10vPfee5gwYQKAowvLgkVcXBxMJpNXznQkQ/fE33FHOHUGIMs6EvKhtDAq6gDg4YcfxsiRI0N1SoYJZUkT4Og9dLlcbNDjQ+x8BxCK+x0J4VcSOgMGDNB8TzBmuHT/tAYRWixh1Bm1WCysHIdWTh3QmpwdLFH3999/IyYmhp03Qd+VNobXOi+jbNu2DTt37tT9fi2njhfr9J5w7CwQjdBq9mgQdRaLxUvUUV8XiiiEEeTPTjC32wJaJy707EWbU+fvuCOcOgOQWIp0p87oljWRSKgXSvDhV3LqeFHHd9ahdOrUcszaApPJhA0bNgR9dqyEnsr3OTk52LJli+EQoFK5Djn8MxHoQEz37vnnn0fXrl29BBstVuAnV8Ea/ClVQi+TJk3yypVVcuroOwinzhjRIOq0nLpwjxXyRRqh6A9pX2Mh6gRe0Kwm0kUdPcC33nprmM/Ef0K9UIKqhTc1NTGnri3Dr/TghnsQPe2009rkc/SIOqqP1rVrV0PHdrvdXp8jRy1f0h/49kATAp7bb78dGRkZGD58OCskGq7B/5xzzvF6TUnUkSMunDpjRLqoo35OLupIzPm7WChYyJ26UCCcOoEq0SLqgNZcqGhpxErwCyVMJlNIZnBURNblciE+Pl5yX0MdfqVONtirvSIVX6tfASAzMxOAcVFHq5cB9Z0v1ELr/sC3h08++cTr57GxsRg/fjyA1kHU7XZHVD4PP+ATtJDEn31Mj2XCJepo4Z4vUWc2m2EymbxEnclkwsKFC9kK1HDBi7pQtT0h6gSq0AMR6Tl1QPht9UDhnTpKdg3FZ7hcLtTX10tcOiD0Th0ALFy4UDOfrT2hx6lraWkBcHS7Lr2QqPvpp59U38NXzQ9W+BU4ulm6GjabTXPP23BAuXT8M5Wfn4+VK1firLPOCtdpRRWUUxcusU65nGqfLxfuSiVYzj///BCfpW/48Ouvv/4aks8gMXesiDqxUMIAga5KEeiHz6kL1fWmjdmrqqq8NkQPtVMHtHaqbRF+iAT0LJQ477zzABh3L0nUaYWy+Q49mE6dL+SV/CMBEiTyVc1Dhw6Nqq26wkm4F0oArQtxJk2apPgzPaIuEuCfpVCF/o81p65dibrPPvuMhXBCgRB1bUdbiDpy6iorK72culAvlDjW0OPUDRs2DB6Px/Deo3pEHXC0Uw+mU+cLGlAiKfxKjqgQcIETzqjNkCFDVMc7+XlFqqgDgH/+859YvHhxyI4fic+gFiL8+v9paWnBvHnzQroZNQ3u0RB+jXb4kiahut6UU1dcXOy140NbOHXHEnpEnb9Q0Wxfoo4WA9D+vP5iROQr7d4QbpQK0Ar8I1KFcbQ4dQDYHrWhQjh1Ucrs2bNx5ZVXahZKbWxsRHV1teSPEYRT13a0VfjV5XJh3759Xlv3tEVO3bFEKEUdOXV6wzd9+/YN6POiPfw6aNAgvPfee2zzd4Fxhg0bBiD8q9fViCZRF2qoX4gWUUeLyY7p4sPNzc2YO3cuxo0bp/m+adOmweFwsD9GXT0h6toO+UKJUGCz2fDKK69g+/btXqKO7/yEUxc4ela/+guJOr2FVANN0Yj28KvJZMJNN910TA7wweLOO+/EkSNHvHJxIwV5G6VnI5w7SIQLet6jRdQF2ldG1R0+ePCg4ubDN998M8aOHetzO6MpU6bgvvvuY/+vrq42JOyEqGs7qAp6VVUVK+YabPgVwvKNzPm2JO534ITSqXO5XAB8h8Ly8vKwatWqgD+PBkw93yUSnTpB4JhMpohe5ER9G6Um/Oc//8Enn3wSsc5iKCHhHW2izt/tGaNK1GVlZSl2yg8//DA2btyITz75BDt37sS9996L6dOne73ParUG1LkGGusW6MdkMiE5ORlVVVUhy5PknR2tFZfifgeOntWv/pKVlYWDBw/6fN+yZcvQ3Nwc8OcZ+S5C1AnCgbw/y8rKwgMPPBCmswkvVKg5nLv3GIH6FX/zNaNK1KnxwgsvsH8PGDBAUdAFA+HUtS20GXmorjfNZu+77z7NyurifgdOKJ26tWvX6toPNTY2NiifbyTnhcRcJIVfBe0fMYk4Cjl1tHNQpHNMOXV6WL9+fciOTRebSgIIQkuo99olUecrL+ZYzEMJNqEUdccffzyOP/74oB9XDZpB63FwhVMnCBfbt29nqQnHMrRfcrSs9qb+RYi6NoAGJH6vSUHoCLWoo/Crr903IrVsQTQRSlEXLmiw0EKIOkG4EFu+tXL22Wdj9erVGDJkSLhPRRdkGglR1wbQgBSMvByBb0jUhSqnjcQc7XspCB2hXP0aDn766SecfPLJPt9ns9kQFxfndwctEAgC58wzzwz3KehGiLo2hJR+Tk5OmM/k2CDUTh09NNG+T240QI5Ve3Hq8vPzdb0v0MVZAoHg2EKIujbk4osvRnl5OVtNIwgtoRZ1tH+jcOpCz7FaJ8tmswlRJxAIdBOoqBMxAYMIQdd2UCXwUIs64dSFHrrGx5qo69Kli1dha4FAIFBDiDpBu6WtnDoh6kLPsSrqJk+ejF9++SXcpyEQCKIEytkXok7Q7gj1QgkSdcea0AgHx6qoM5lM7WZxiEAgCD3k1PnbbwhRJ4hY2sqpE4QeyqkTNR4FAoFAnby8PADA8OHD/fr9Y2vaLIgqQi3q7r//fmzdulVXaQpBYJBT19jYGOYzEQgEgsilZ8+eARkOQtQJIpZQi7quXbti2bJlqj8vKCjA3r17Q/LZxxpC1AkEAkHoEaJOELGEOqfOF8OHD/fbAhdIIVEnti0SCASC0CFy6gQRS6hLmgjaDsqpE06dQCAQhA4h6gQRS6jDr4K2gwrwClEnEAgEoaPdiLqCggKMGDECw4cPx9dffx3u0xEEAeHUtR9omzAh6gQCgSB0tIucOqfTiVdeeQULFy4MW/6VIPiYzWYkJiYKUdcOEE6dQCAQhJ52IerWrFkDu92Oiy++GPHx8Zg5cyaysrK83tfY2CgZVKqrq9vyNAV+8Morr2DYsGHhPg1BgOTk5GDcuHF45plnwn0qAoFA0G4xedpBBdbPPvsMr776KlavXo2lS5fi66+/xttvv+31vieffBJPPfWU1+tVVVUs1CcQCAQCgUAQjUSVqDt48CCuvPJKr9dvu+02rF+/HtOnT0djYyPOPfdcrFixwut9Sk5dbm6uEHUCgUAgEAiinqgKv2ZlZWHVqlVer5eVlWHWrFkAgI0bN6Jbt26Kv2+1Wlluj0AgEAgEAkF7IqpEnRrp6em45JJLMGzYMMTExOD9998P9ykJBAKBQCAQtClRFX4NNtXV1XA4HCL8KhAIBAKBIOppN3XqBAKBQCAQCI5ljmmnzuPxoKamBklJSTCZTOE+HYFAIBAIBAK/OaZFnUAgEAgEAkF7QYRfBQKBQCAQCNoBQtQJBAKBQCAQtAOEqBMIBAKBQCBoBwhRJxAIBAKBQNAOEKJOIBAIBAKBoB0gRJ1AIBAIBAJBO0CIOoFAIBAIBIJ2gBB1AoFAIBAIBO0AIeoEAoFAIBAI2gFC1AkEAoFAIBC0A4SoEwgEAoFAIGgHHNOizuPxoLq6GmL7W4FAIBAIBNFO1Ii6X375Bfn5+cjPz0fv3r1x7733sp8VFBQgNzcX+fn5GDFihO5j1tTUwOFwoKamJhSnLBAIBAKBQNBmxIb7BPQyaNAgFBQUAAAmTZqEyy67TPLzcePG4eWXX277ExMIBAKBQCCIAKLGqSPcbjd+/vln5OXlSV6fP38+8vLy8Nprr6n+bmNjI6qrqyV/BAKBQCAQCNoDUSfqli1bhuHDhyMm5uipDxgwANu3b8fSpUuxaNEibNiwQfF3p02bBofDwf7k5ua21WkLBAKBQCAQhJSoE3VffPEFrrrqKslriYmJsFgssFgsuOSSS7B582bF350yZQqqqqrYn8LCwrY4ZYFAIBAIBIKQE1Wizu12Y+3atRg2bJjkdT6MunLlSvTo0UPx961WK5KTkyV/BAKBQCAQCNqKAwcOYMqUKSGpvBFVou6nn37CsGHDWOh18uTJAIC5c+di0KBBOPPMM9G5c2cv0ScQCAQCgUAQCdx55514/vnncfDgwaAf2+Q5hou0VVdXw+FwoKqqSrh2AoFAoIPNmzfDarWiT58+4T4VgSAqueCCC7Bw4UKUlJQgKysrqMeOmpImAoFAIAg//fv3BwBRtF0g8JOmpiYArRU5gk1UhV8FAoFAIBAIohkh6gQCgUAgEEQ0TU1NqKurC/dpRDwul0vydzARok4gEAgEuli2bFm4T0EQwbz00ks455xzwn0aEY/b7QYgnDqBQCAQhBFfe2vfeOON6NKlSxudjSDS+PPPP1FSUhLu04h4Qhl+FQslBAKBQBAUPvroo3CfgiCMFBcXh0SotDdI1Inwq0AgEAgiHhq0BMcWxcXFcDqd4T6NiEcslBAIBAJB1BCKoqqCyMbj8aCoqEg4dT6YPXs2duzYAUCIOoFAIBBEKJT8DbQ6NoJji4qKCjidTjQ2Nooahhq89dZb7N9C1AkEAoEgbGRmZqJbt24AgJaWFsnPDh06xP5dVFTUpuclCD/8PQ9Frlh74fjjj2f/Fjl1AoFAIAgbbrcbSUlJAOCVO8XXJwtlrTKPx4PCwsKQHV/gH7w7K0Kw6pSVlaFjx44AhFMnEAgEgjDidrvZPtn19fVePyNCOahPmzYNxx13HCoqKkL2GQJjOJ1O7N69m/1fiDp1SkpKMGbMGMTGxoqSJgKBQCAIH7xT19DQIPlZc3Mz+3coB/Vnn30WAFBeXo7U1NSQfY5AP9nZ2aisrGT/Fytg1Tlw4ACys7NhsViObadu7969yMzMRH5+PvLz83HkyBH2M7fbjRtvvBF5eXm4++67w3iWAoFA0H5pbm7W5dSFclCnz62urg7ZZwiMwQs6QDh1ang8HpSWliIzMxNWq1Xk1A0fPhwFBQUoKChAZmYme/3bb79FTk4OVq5cifr6eqxZsyaMZykQCATtE96pC1f4lRCiLvLo3r07ACHq1HC5XPB4PIiPj4fVaj22nToAWL16NfLy8vB///d/kiXTa9euxahRowAA559/vqqoa2xsRHV1teSP4NigsrISY8aMweuvvx7uUxEIopKWlha0tLSoLpRoq/ArUVNTE/LPEBjjhBNOABA8p9btduM///mPpG1FM3RdbDabEHXZ2dnYtWsXVqxYgcOHD+Orr75iP6usrGQhAYfDgfLycsVjTJs2DQ6Hg/3Jzc1tk3MXhJ/Nmzfjyy+/xCuvvBLuUxG0ERUVFVi/fn24T6PdQANrQkICAG/h1hZOHT+ZF5PyyOO4444DELz7//bbb+OWW27BkiVLgnK8cMOLumM+p85qtSIhIQEmkwljxozBpk2b2M9SU1PZA15ZWYm0tDTFY0yZMgVVVVXsj1gWf+xAD0+0zvi+//57lJWVhfs0oooLLrgAAwcODPdptBtItMXHxwNQF3V2uz1koo7ffkyIusghMTERCQkJuO222wAET9T9+uuvAACLxRKU44UbuVN3TOfU8Vb7ihUr0KNHD/b/wYMH44cffgAALF68GGeddZbiMaxWK5KTkyV/BMcG1MnwbkK0UFBQgAsvvBAzZswI96nowuPxYPLkydi4cWNYz+Pnn38G4F0kV+Af9OwkJiYC8B64acIUHx8fsoUS/IpbEX6NHNxuN5577jmkpKQACF74devWrQC88zejFboudrtdhF9XrVqF008/HXl5eSguLsb48eMxefJkAMDFF1+MwsJC5OXlwW63Y8iQIWE+W0GkQTOiaBzgv//+ewCtHUE04HK58O677+Kqq64K96kAAKqqqsJ9Cu0CefhVPnCT6EtISAiZU8eLOuHURQYtLS1wOp0s+R8InlNHoi6UxazbEmq/NpsNNpstJJOfqKlTN3r0aIwePVry2jvvvAMAiI2NxUcffRSO0xIYoLm5md2r66+/HnV1dbjzzjvx6quvhrzeVDSHX2trawFET+0nmlXv27cvzGfSSkVFhahnFgR40Qaoh19DKep4x0aIusiA+qVgi7ri4mJ2v9uLqOPDr3a73avWYzCIGqdOEP1QuOT9998HAHzzzTf48MMP8cEHH4T8s9uDqAtFBxBMZsyYAZPJhH79+gEIb6ibH/wjbeeB+vp6HDhwINynYRg+Zw5QD7+2lVMnwq+RAT1r8fHxsNlsAIIzAd2yZQv7txB1+hGiTtBmUBgsNrbVIKak57i4uJB/Ng0y0Vg/iURdpOeV3HvvvQAQEQuQfv/9d/bvSBN1ubm56Ny5c7hPwzAk6uLi4mC1WsMafu3YsaNw6iIEXtTFxsbCZDIFRdTRBgPx8fHtUtTZbDYh6gTRx2effcZmXCTqzGaz5P9t4Z5RTl1DQ0PU5dVFi1OnBL9asS3ZvHkz+7daiaNwcODAgYg6HyOQaIuNjVVM8uZFXahSBUhA8KJu+fLlET/hCQYPPPAA3nrrrXCfhhe8qDOZTEhISAjK/SgvL0d8fDzS0tLapaiz2+0heU6EqBOElPHjx7NwHG0lQ6KupKQEAFipDpfLhR9//DEk58EPQNGSm0ZEi1OnRFVVFZxOZ5s7pJs2bcIJJ5yAmJiYiHLqiouLw30KfsOLOpvNprn61df93rdvn1+OLu/U1dTUoLS0FPn5+bj11lsNHyvaeOWVV3DHHXeE+zS8oH6JwvKJiYlBEWEVFRVIS0tDQkJCuxF11H7tdrsIvwqiH7lTR6KutLQUAPDMM89g1KhR2Lt3b9A/mx9kok0cUe5QtJ030CrkO3To0OaFvjdt2oRTTz0VmZmZKCoqCuhYU6ZMYSuQA+XQoUPs39GW3yl36tTCr4mJiZqirqKiAscffzwuvPBCw+cgd+rWrl0LAFi4cKGkMHEoCKfDHy7H2xd79+7FI488AuBo/cKEhAQ2EQ2E8vJyv0XdoUOHsHjx4oDPIdjQM2O1WoWoE0Qf99xzj+T/fE7ds88+iw8//BDA0dyJgwcPSt4XTKJZ1EVD+JUGHb5+JNAq6mpqatg9bgtaWlqwZcsW9O/fH0OHDsWyZcsCOt7zzz+PCy+8MCiigdo4EH2J/iRCzWazz/Crlqij+oWHDx82fA7ynLp169YBaJ0YfvPNN4aPp5e//voLZrOZfV5bs2fPHgBgW7RFCnfeeSeLrpCoS0xMDJqoS01N9UvUPfnkkzj//POxbdu2gM8jmDidTsTGxjK3W4g6QUDU1dVJEshDSUtLC1577TXJayTW1q5di3/961/sdXLqgrlySg5fuTuSxZES0RB+JYHSrVs3yesUcm9LiouLUVdXhxNOOAEjRozAunXrgtKmgpGYzzt14Uj0nzlzpt9bLvnKqSPR52tHCXoWqfyFEejZ7dChA2pqanDgwAEMHjwYXbp0Ya5dMNm9ezcaGhqwfft2AAhZeogv/v77bwBAly5dwvL5avCL3LKysgD4FnVlZWV44403fDrVgTh1mZmZAID58+cb+r1Q43Q62TgnnLp2RFVVFUwmE6t431Zcd911OOWUU9rks5QeahJ1/MAGHBUr1Njr6uqwc+dOLF++3Ofn6HVPhFMXWujedurUSfH1ULFv3z788ccfktdIwCUkJKBPnz5obm7G/v37A/6sYLSbcIq61atX4/bbb2fhMqP4yqlzu93MxdMS0STq/Cl5U1dXB5vNBofDgerqapSVlSEtLQ0dO3YMiRvcvXt3jB07loVew5WfSXnHtGNDpOBwONi/SaT7EnUjRozAP//5T2zYsEHz2JRT50+OXkxMq7QJZV+/bds2mEwmViBZD3JRJxZKtBMol2z69Olt+rm0uXlb5IYoDeZKr8XHx3vN3KuqqtCrVy/k5+drfsaGDRsQExOj66FqbGxkD1M0iTq32w2n04m0tLSIPm81URdqp+7444/HySefLHmN2pPFYsHxxx8PAH7nafKThmCI6sOHD6Njx44AvEVdqHPCyKXv2rWrX7+vJ6cuNjYW8fHxmteKQvXk1Dz++OOS1cpa1NXVITExEcnJyfB4PCgsLERaWho6dOgQshD/8uXLmaiiqEJbQ88XiZVIgcpT8fgSdTQJ89WfHTlyBOnp6X7tvEBtLJQTYQr3GwnJO51OtqBEOHXtkN27d7fp59GgQQ/TokWLQpasrTSYK+XQ5ObmKoo6PWzatAkAdDl6jY2NbFeBSBZHcqhzzMzMjOjzJoGSnZ3NXktOTg5L+JWvf5ibmwuz2ey3qOPdpGB0wNXV1TjuuOPYvy+88EI888wzqKurQ0xMDGbPno2ZM2eGxMWnyaS/m4jrCb/GxsYiOTlZ8xnmnTqPx4OpU6fi8ssv13UOtbW1SEhIYPt279u3D2lpacjMzPQrR08PLpeLibpgOL7+QM9RpC2YoPvM7/aktVDC4/GwMUfreSJ3vUuXLoiLizP8vamthlLU7dy5E4Ax97aqqortyEJud7BNFiHqwgB1hpQn0VaQqKurq8OKFSswevRozJo1y9Ax5s2bp6savrxTb2hoUPw9h8PBHlhq3HrDUrSxuJ7Zs8vlinhRN3v2bNx9992S1+g6ZmdnR3T4VUnUJSUlhWUxAC/qYmNjkZOTwxLNjRLsUjjV1dWs8HB1dTW+//57PPbYY8xlmjVrFm6//faQ7F9Nos7f76E3/OpwOOByuVQ/hxd1FFZTcnyUIKeOFgxQ3lVmZmbInDqXy8VqCwZjAYA/RKqoq6iowIUXXoivv/6avabl1PF9u1Z/VlRUBLfbjW7duvkl6uj9oSxfRX2Kke0Qt2/fjp49ewI4WgLmkksuCWrbFaIuDFCn1tb5Gbyoo4ZoJFehubkZ11xzDWbPnu3zvXKHpqKiwqtG18CBA3H22Wez60GDhN76VXTuembojY2NLB8lUkXdmjVr8L///U/yGi/qampqAuqkli9fHrLwEV1TSlCmsEk46ktRe6Ik7q5du/rt1PHXO1hOHYWo+QGuLURDoKJOvvpVLfxKeVZqbh0NuE1NTew9eneVkTt1AAyFX2fNmsVcN19Qf+nxeNjvhKvGJV2nSBN1lZWV6Ny5s+T+aYk6fgzQep4oitW1a1dYLBbD7nJbhF/pnPSKuv3792PRokXo27cvgKOi7n//+x/efffdoJ1X1Ii6DRs2IC8vD8OHD8fYsWMljbugoAC5ubnIz8/HiBEjwniW+vA3/BEovKgjQWlkifzBgwfhdrt1DTzyDr26uhrFxcV49NFHkZGRAaB1D1g+p45E3a5du3SdDw2Keh6qaBB1TU1NkmtbXFzMruPll18Oj8eDN954w+/j5+fn4/zzzw/4PJWgzjM9PR0A0LdvX9jt9pBOXNTCFtQ3WCwWAK15d8Fw6oIl6lJSUmC32yWCl0SDmrPZ0NAQcKoEiTp/v4fe8KsvUcfv7kLtQ6+o43PqCHLqfE16amtrccMNN+DKK6/U9Vn89Q63qItUp66yspJFQIjExEQUFRUp5ojyE3atfpj69EDDr6G8X9SOfZkKzz33HBYuXIgbb7wRANC7d28AR0UdcDTqFAyiRtR17twZixcvxvLly9GjRw8sWLBA8vNx48ahoKAAS5cuDc8JajB79mzJYB0Joo7fxUEv9EDqEXVyp+7gwYOorKxE7969cdJJJwFoXcllsVi8rHK+lpcWJOr0zNAbGxtht9thtVojNozJi7r58+cjJyeHJeEOHToUPXr0CHhHgj///NPne3bv3o158+YZOm5DQwPMZjMT7Ndccw3sdjv++9//+nWeeuAFIz+AyPcUPv744/126kIRfk1OTkZCQoJkJSy532qiLj4+HpMnTw7os8mlDUb4NTs7G7t27ZJcdz78CvgWdR6Phw2IesOv5NTxk1Fy6gD1vsDlcrHUhoKCAl2fxedT0ncRok5KRUWF14rctLQ0NDY24tFHH8U//vEPPPbYY2xxxO+//474+Hif/XBtbS2sVitsNltA4de2cOp8ndujjz6KCy64gBXdHzt2LICj1R4AsDw7NZxOJ2bMmKEr/y5qRF1WVhYrbki5Mjzz589HXl6eV200nsbGRlRXV0v+hJq9e/diwoQJePzxx9lrkSDqqMq+kXAPiTq1kNrBgwfZNZV36FQEsnPnzmx3AYfDIbHWaQDVswPA0qVL8cQTTwDQl1PX2NgIq9WK+Pj4iHXqKMeopaWFXa9ffvkFQOu1Csa56xmUzj77bFx11VWGjtvQ0AC73Y6OHTuisLAQt912m6TTCgU7duxg/+a/l1zUde3aFYcOHVLt4LU6/mCGXz0eD2pqapCcnIz4+HhJO6dC3PxzU1tbK/n/p59+GtDnB5pnxIu6s88+G/v27ZMs9pKHX8ePH6/o1vCD4KpVq9gx9VBbW6vq1AHKoq68vBzPPfcc3n//fV2fQfCiLtxlhagdhGvsUMLj8aCystJL1N14443o3r07pk2bhg8//BDPPPMMW6G+adMm9OvXDwkJCT6fO+o/4uLiDH/vtlgoQe1Y69z49u9yuTBhwgTmyskrBWjx7rvv4t5779W1S0bUiDpi//79WLJkCS666CL22oABA7B9+3YsXboUixYtUq1/M23aNDgcDvanLbYuolwZvnHxjaAttwoilV9fX4/ffvsNgLGcOlr5pfQ7LS0tyM7OxhVXXAHgqNt28803A2ityA60iro33ngD8+bNQ1JSkuSB1Svq3nvvPYwcOZL9X0+OjMvlgsViiWhRx88uadAqKipCbGws7HZ7m507uQJ6SmzMmzcP5513HhN1AJCTkwOTySQJL4SCt99+m/2bb5PynDoqiiqvjwi0hiRpI3KlwtzBDL86nU643W7m1Cm1c97h7tGjh2TAVJqlL168GCaTSVe7aGpqQkxMTFBE3RlnnAEAkmvGr34FWtMolPoKvv+jiZmR8GtCQgKsVisLr/NOnVIoLD09HU899ZTkNT2OBy8+a2trYTKZwubUkSsdSU5dbW0tWlpavERdQkICHnzwQcXf2bhxI0499VSf5Tx4UcdHc/TSFgslqB1riTreOKIJHcEXatfbr+tJZ4kqUVddXY3rrrsOH3zwgVdipsVigcViwSWXXKJa82jKlCmoqqpif/zZUNooSrlr4drdgAbpb775hpUD8cepU/qd1atXAzga3tu7dy9Gjx6Nt956CwBYLblOnTohOTkZY8aMASB9YPVu+s67nkDrNfZVyJQ6iWgQdePHj8dPP/0EoDUU6nA4YDKZfNb/0sLI5IEGSz3345ZbbsEPP/yA2tpaLxEXaqeuqKiI5fDx4kHu1NH3URoYeCfs448/9vo5PyjMmzcvoK2oqIMnUacUSufFhlyEKgmRZ599VnJsLZqampCUlBSwqDObzaw/Ky0tZf0KhV/5gUvJOVMaBPWWdSCnDjjap/py6tSO4wu5U5eZmRk2UXf48GGkpKRElKijCYg8pw4AevXq5fVabW0ttm3bhv79+/vsh51OJytxFaklTfSIOn6SUV1dLdEBvIbxZa5Qm9fTbqNG1DU3N7MwprzB8B3aypUrvfafJKxWK5KTkyV/Qg3dVDVR15arA2lgf++999CnTx/06tXL0OdrhV/JiaPl2vv27cPxxx/PipH+9ddfSEpK8lqYYbFY0NLSgubmZkURoeQWKeXq+JrBRJOo++abb/DVV18BaB3YaSZM5+5PfUMj1ftJBOkpR0LlOXbs2OEl6kLt1KnVHpQvlNASdfx16d69u+JnEN999x0uvfRSxXPRI0qon0pKSvIKv2pBz63SZ1CtLD2DXqCijs6DSpoArU78008/DeBo+JUfrJScM6VBUG8/RE4dANZ/p6SkwGazITExUbeo01MLUy7qMjIy0Nzc3ObCyul0oqqqCjk5OREl6qjPVdrlgg8t0mRpxYoVaGlp0eXU8cXi/Qm/tmVOnV5RJ3fqgKPjpa8xidIT2pWomzt3LtasWYOpU6ciPz8fc+bMYYnDc+fOxaBBg3DmmWeic+fOGDZsWFA+s6WlBZ9++mlADYNuqtlshtPpxIIFC8Im6vjvcf311yMjIyNoOXU0a6Nw8969e1k1f4fDgeLiYiYAeGjAdblciqJOyWFSegAor662thYvvPCClxikSt6RLOrUhBflKMXHx2PhwoXo3r27zy125OgdDBoaGtj10eP+0D39448/vEQczbR79uzpMxHYH2inDUDbqaO/lTpf/roo/VyPW3n48GGYzWZJrS4l5E6d3nZIaQ9Koo7SHPTcX7fbjcTExKCEX2NiYmAymQAAn3zyCYCj4VcA+OKLLwAoO2fycz3uuON094Nypy4lJYUloHfo0EF3AWI9ok4efqVFQG3t1tF3ijRRR32+L1FHO5gsW7YMJpMJJ510UrsJvyYkJGiem5ZTB7SaIT179tTsCyh3EdC3Q0/UiLprrrkGZWVlKCgoQEFBAcaNG4d33nkHADBp0iT88ssvWLNmDV566aWgfeZnn32Ga6+9NqBNgemmNjQ04F//+hcuv/xySdHhthJ1JSUlkgaek5NjeE89rfArzdpKS0tRVVUlqZxPsxOlxFAacJuamtDY2Mg6TsKXw0ThMBJ1zzzzDB555BH8+uuvkvc1NDREjVMnhxd1hNGdGvR2ikOGDGHH1iPqKF9t+/btXqKOhHXHjh1DMhg1NjYqijoSZyQwtJw6X6KOnhmtzeep/MKSJUs0z5cXdfy99AVtJq+FHieDnLqmpia/cnn58Ctw9P6So0vhV6C1oCqgHn7ln/OJEyfq7ofq6+vZtUtOTmb3H2jNnVPKr3U4HHjxxRcxcOBA9pqets33PW63O2BRV1tbi8GDB7OoRmVlJaZOnerT5eVFXSQtlNAKv/LihfIdt27dCofDAZvNZkjUUfj1r7/+0r21ZluFXxMSEjTvCaU5Aa3fSe7UUSqD1pj03//+l63c1uNER42oCwc029S7MksJugkNDQ1MFPENTa/AqK6u9tq43Ah84wJaOwit7VzkuFwuHDp0COnp6YodMC/qyD2gAZ8aMj3cPHKnLicnR/JzX2KgX79+AI5eR/pbyanT05mEEyOizmi+Gj9A7d27VzX0x+ej6hn4+AFJLupIOIQqF0hN1DU1NSE2NpY5ScFw6pQGLvkxqC2rQeKHnDqC8sHkExpCaYEHIL32vq5vS0sLWlpa2GCrN3+Vx+l0wmw2M+FG8KKOF9IOh0NV1NGED2hNrNcj6jwej2Swl4u61NRUxclOfX09EhISsHz5cmzZsgWA8fArgIBF3Z49e7Bu3Trcc889AICffvoJjz/+uM8deuj+k1MX6j2C9UJ9PvVPalC/v337dna/fOUHy3Pq3G43vvzySzz22GO6zs1I+PXgwYO6VpXKcblcSExM1BR1n3/+ueRZV0r58uXa//DDD+zfQtQFCDVarQv+66+/sqKeSlCjcjqdXqs8AXWn7tChQ3j00UdZx33FFVd4bVxuhE2bNiE5ORknnHACAONOXX19PTweDzp16qQp6pqbm1meD21cTp0hDV48clEnd/Pkg5W8Q+N/n/+5fOPr9hJ+JYwOyvx17Nq1q66V33pEHT/AyUUdtd2UlBTJno/Bghd12WKnJwAAWBlJREFU/OSkqalJIrB4N1gO3yErXVP6floDF/2erxWc8vAr0OpoPPfccwDURZ1abiOlOgC+nTpqWxS69EeY0ApnEssEPU98+BVoff6V+ka6P4cOHcKOHTskou7w4cNeC0gOHTqEw4cPs/tHoq53796sPwNa25k8t7apqQlNTU2Ij4+H3W5nocCbbrrJpziStxe6P4FOCmkRFN1XtWfZ4/FgxowZksoBQNtWTNCisrKS1f5UYtq0aZg7dy6Sk5NhsViwe/duNjmy2+2a/bA8pw5oFeJ6+z2++LCv+zxy5EhWlL2urg7XX3+9rkiIHqeuuLgYw4cPZ/9XKvYfHx+vOQ7z/epll13m87yEqNOArHytCz5o0CCcdtppqj+nzrOhoYHdfP54asd+4IEH8Nxzz7HQDs0w/Z2lHTp0CLm5uXjyyScBtIq65ORk3RX/qYNLSUlRDb9SDh0VnKUZGnVGSqJOHn7l9w7lP5eQCx/5gK3U4fEz/EgWdUacukBEnV70LJTQK+oAY4s19MCH63kB6nK5JAJLT/g1JibGb6eO2pMvp666uhpxcXGsXiLQGtblBR7PhAkTvL4bD1+f0df9pZ/TZwQi6tTgw68AcMIJJyhGF6i8UIcOHdCzZ0/Y7XY0NzfD7XajY8eOXm79Oeecg44dO7K+ikTEq6++io8++oi9T8mpo3tD15j+Likp8VkKSd5eqf/y16njt0cDjk5E1J7lI0eO4N5778WDDz4Ih8PBrn2k5NUp7SbB88gjj+Cqq66CyWRiYwFNwlJSUlQdaMA7pw44WuVAj6htamqC2Wxmfb8W/G4zf/31Fz7++GPF8kY8zc3NaGlpQWJioqZ72tjYyMZFQNmp8zUm8c/ctddeq3legBB1mlAugy8RoLUDAj2wvKjjk33VRJ38waUGTudy4YUXenV+WlAuylVXXQWPx8Nmrbt379YlFHlRV1dX5/U7FRUVGDlyJPLz87FgwQKYzWb2wJNQU3IieKeNT3yXfy4hf0DlTh0JCZfLhdraWhQWFrJ7QCvkglV0+u+//8att96quxyDL0Ip6vwRVHquE38eWuFXIPiDEe0SkpSUJAmnNTU1SUSdnvCrWhiFilYrJYMTdJ30iLqkpCSYTCYmLnhRx4dpGhoaMGvWLMnx5fChGF9OHf89geCLOo/HIwm/AkD//v2xadMm1ldUV1djzpw5WLp0qeT+UN+mdk7Uv9K+yGqpB0pOHfWv9OzwLqOv1cdGwq/Nzc0+U1nk7Z/er/a9efGSkpKi6Ti3FfX19Xj11VfR3NysuJuEGiTqaEw444wzsGXLFtWJozz8ChyNBunp+9xuN7p06QIAPnfh4a8zTQq07kltbS173uh5UupfW1pa4Ha7JaJOKULCi7rffvvNy902mmojRJ0Kzc3NbCYcyGIGNVGntQ8p7SrA/z7dWOrgv//+e0NbRtXV1XklZ/fs2RN1dXWa4WOCGm1KSgpaWlq8HiyatZEr16FDBxYCpc+VCzbAO/wqt/LlD4uaqKOOjr9uI0aMwHHHHcd+x263IysrS/c2ZL746aef8M477+guTeELtc6a3BX+4W4Lp44P76nhdDpZhy3fikvu1IVC1FmtVjgcDk1Rp8epS0hIUA2/2mw2zfArDUzyXDM5tEUYfR4ASRFdXtRZrVbExMQgLi5OdeDjRZ2vaxvM8KsSdXV1XuHXk046CaWlpayWncPhwNVXX42SkhLJ+foSdVSk9ccffwSgvmhFyamj/oi/tt9//z0A36JOLfyqdJ6TJk1SDK19/fXXyMrKwt69ew2Jup9//hkrVqxg/09NTVWdnHg8HsyZM6dNwrKPPvoo7r//fmzYsEFxNwk15E7dWWedhZaWFq8FbYR8oQRgTNQ1NTWx0ma+9gbnxxhqP0oh9i1btmDy5MlISkryEnVKkyp6jXLLAXhFogBp+PX000/HKaecIvm50dJQQtSpUFZWJtlWy1+URF1dXR3sdjtsNpvXsZubm5GTk8MWaVDjohurJ8FXCUoW5qFGv2vXLp+/zzt1gPcK2IqKCqSmprKOjV8UQYOWkqMlD7/KO2xfTp28o+NFHW2xRdfQZrOhU6dOKC0tDcoqMgrf+FM3Tgm5gKUaRiSO+UG8LUSdHrHf2NiIc889F4D3daBBhoSMP+ewdu1a2O12xWdQS9Qp5dRpOXVquTH0GVolWUh0+WpTvKjjw690nfhJFzlKNptNV/jVqFPnT/vnV57KKSsr8wq/Ul/Q0NDg1V75tqwk6vhIAE18P//8c8n75aSkpKCyslKxn+HPe9SoUTCbzT4nxfLnkfLxlAb8zz77TPL//fv3Y8KECZg6dSoOHTqEjz76SFXUKT3LQ4YMwdVXX83+n5qaqjo5+eKLL3D11Vez2pahhKoN1NfXGxJ1FLomp45cNLUQrFJOHQkurb7P7XbjvvvuQ0lJCbtfvvZ95utAqu3x++eff6Jfv34stUjreZo/fz4+//xzdp78mCbPRwVaIzH8My7f9lKIuiDB15cJJAdLKaeutraWbVklH6x27twpmW0GU9TJO2Rq9L5mMoC3qKPzfumll5CXl8ecOhq0qNI/AFxwwQUAgMGDB3sd15dT50vUxcTEwGw2s/fRYKC0ETuJOkA7ZF5VVaUrGZpEHZ+TEQjy7yrPn+CFhb/hV/6++EKPE+x0OpGSkoL33nvPa1A5/fTTAQTm1M2cORNOp9Nr9xe3242WlhZFUWckp46fcauVNLFarZJ2KU89kCe8//e//8XSpUu9jsUXH6V7ya/SVRogrVarqlPHhxr15tRRH+DPvdBy6qZPn+7l1PHPtrwPVRJ1fF+4ceNGySSYJjiAulNHUYTa2lr8+eefkr1y+WfHbDajU6dOKCoqQklJieqklhd1MTExbOEXLVzgoYkXtY2pU6di9uzZrJ6k0+k0HH7l4Z06+XHWrl0LAIbK5CixbNkyvPnmm5rvoYleZWUlm8jrgc6dnKr4+HjExsaqLkjgw698Th2g3fdt2rQJ06dPx8GDB5GQkIDs7Gxd4xvQel3Vwq/yVac0PiiJuiuvvBLXXHONoqhTQiltgEe+6M8XQtSpQKIuOztb1anTY3fTjf3999/Zfqsk6uRL+RsaGtC3b1/J7/MuE+At6mjvRF8ohV9p5ZKelT5qou6hhx7CqlWr0NzcjJSUFMnWPUSfPn3g8XiYiOQxKur4B/qWW24BIK04Lg9bA0evGS/qtMoIpKSkYNCgQao/Jyg8GQpRN2vWLPTp00fy87vuugurV6+GxWJR7Ni0cnro2GTtK80Y5fgqtQAcDZPcdNNNkjpgQGuoZteuXazj90dI0P2UCxu+w/QVftWbU6d0Tckx4J0/+feQi7pJkyZJ9iYmlMKvLS0tGDVqFJ544gncf//9Xr+j5dRVV1ez51GvU0d9gD9OnZaoe+2111BSUiJ5frVEHe9GUN82c+ZM9trpp5+O//u//wPQOiG98cYbvd4vh9pZRUUF+vfvL5kUyfu+jIwMlJWVoVOnThLByEPX7Msvv0RhYSFSUlJwww034LnnnvOa9NHAS6/L+2lahcvja/Wr/LtRO16zZo1k7KHFKIGGX0eMGIE777xT8Wfjx4/HypUr2ferqKgw5NSNGzcOV111FSZOnAigtf8hZ1UJf8Kvv/76q6QPiouLw3HHHacYZr/11lvx/PPPS15rampSderkEzk6b3qOtSaMVqsV27dvVx0nUlNTUVFRoZrbbrTfFKJOBRJ1Xbt2VXXq9DyM9B5eifOijo69efNmSQ4F4cupoy16fKEWOtF6sPbs2cOEAp9TByiHpPnwq94ZnJKo27ZtG6tSr+bUbdy4kRWf5iuOK4m6U089FUDrNaSZoi/BoqcmYLCdOt4ZyM/PZ84mLbePi4vDmWeeCZvN5tX29uzZg6SkJIk7oXTs/v37A1BeWi9Hj6jjwyRyzGYzunfvHlCCN93P8vJytLS0YMiQIZg+fbqXqOOFj1zUmc1mmEwmr8+vqKhgz1N8fLxm+JUXdfIOnwZnX44LX1GenkVaXPDkk08qPjNaTl1VVRXL89KbUxcqpw5ojTLw9ef4+64V7aD289prr0le37ZtGwDvCama80GCuaamxit0Km+jdrudHV8NOsagQYPYZPBf//oXjhw5ggULFkjeS5MktZCqy+WSXHO3223IqeMXSlxzzTWsfwSO9kN68ySvvvpqnHjiiV6v03eQTyJaWlrw2Wef4bzzzmOvTZo0CVu2bNEt6kaNGoW5c+dKHFOtscef8OvKlSsl/4+NjUV2drYkjaSlpQV1dXV45513MGXKFMn7tZw6pYWBgHY6A52nxWJBr169JAsmeFJSUuB2uyUTnR49erDQtNEJmGFR19DQoBiWoY3c2wuHDx+GzWZDx44dVZ06pca1ceNGidBSc1QoT4eO3b9/fzZ433zzzey9JOqoI1MKv+pZfamUUwe0Nii1kG63bt1YXRxfOXWAVNTp3VeXHliqg2ez2dC7d28mPtREHd9J804ddcRK191msyEtLQ1ms1n3HpFqfPfdd6xjD4VTZ7PZcNxxx8Hj8Xh1wFar1ev70TP5yCOPaB77oosuAgBdK6dLSkp8rozmwyRqUEjO6ArcPn36sFylsrIy1NbW4ueff8Z9992n6dRRyQzCZDIpbgqelpaGe+65B7GxsbBarZrhV14kyjt8eoYbGxuxfPly1e9TUVHBHGx6Fnl3RUkcazl1VVVVLFfJ5XLB4/Hg0ksvxcaNG73ey+cO0vt59KyAb2hokIirf/zjH5Kfl5aWStx4LaeORytHzuPxePVdau+nvkd+vc4991yvBPX4+HhWL04peR2QbotG9OjRg217yENOHbUF+fWVizqn02k4/Mo/Z0o7qOgVdXPmzMHWrVu9Xqc+oXv37vjuu+/Y63TveHeSxpxACvP7curk4VdCTdTJ21hcXByys7Mlk9OXXnqJCTE5RkQd1Z7TI+p89Y80meMdxb///hurVq1i52UEQ6Ju3rx56NWrFy644AKccsopWLduHfvZddddZ+iDI53Dhw+jQ4cOmtWe+cbl8XiwfPlynHbaaZKQaGNjo1dMvK6uDnFxcapFB/Pz89m/6UGiDsafzezpM406dcDR2Y9a+JWHF3W+CrES8s3j6QFQEwJKoo536uieqIm6mJgYpKWleSWjGuX1119n/w7WQgn+4dXqCJREHbULtbAqHbtbt2745z//qbhSU6kmoC8hpuXUEVpOncfjURUU/PZYZWVlksFaS9Q5nU6v9mexWFRnvHFxcaohbaXwq7zD5ycS/LMrp7y8XFJRn/9d4Gib5t0wuajjr1VVVRXLkWxqakJNTQ2++eYbtmMBj6/wa7du3diCFzXq6+sl5/b+++973Tte1Ck5dVOnTsXy5csleWl8+6FEdKC1P6H+T49TR32P3NmkPcJ5+O+h5j4qiTqgdcIq74fpeaqtrcWXX36JxYsXS/JX5eFXXtTpifj06NEDp5xyClsJzE+qqT36s0sID60ULi0txT//+U8cOXIEZWVlkr7ebrejd+/e7P+B9KN6RZ38WVb7nvLcubi4OHTq1Eni1MndPL69aYVf1YSVXNTx50bPrZ6cOsB7NTZN2Oizd+zYoXkcwpCoe+aZZ/Dbb79h8+bNeP/99zFx4kTMnj0bgP9FcSMVXtSpOXX8jW9oaJB06HQ9nE6n1y4Jbrfby6nj4Te+p06NGo1SAr8e10kt/OpwOBQfLHmHRg2LZhV03nyHnJKSwhq5XlFHv0/5afIHWS2nTi7q5NdHSfxS552RkRGwqOMXAZSUlARl6zGlMg9KWK1Wr06HDyMqwd/P2NhYxU5KKbfI1yyRz31RQ+leUpt78cUXFfPP5GJSLur4DtNms7Hr8ccff+Djjz/2cquUnDr+Z76curFjx0pe46Hj+nJKeFFHzhP/Pek6yQUML1L4z6iqqoLD4WBONb1PKdzpK/y6d+9en3vXqoVfX3nlFfZvPsTEO3X0fFx77bUYNmyYJF+Ubz+0Ih+AZE9MPU4dH37lUTpn/hqr3Te6RvK+TB7uB45Opo4cOYIxY8bA4/GwhRWAPqduw4YNqoLlggsugNVqxa5du9ClSxdJ/6U3/O8L/nvGxsaiQ4cO6NChg2SMGjx4sKSI/L/+9S+/P09N1LndblRXV7OxRq+ok0dMzGYzsrOzceTIEXbtu3fvLnnPpEmT2L+1nDq1a0vjHR2fL2hNYlKvUydfDEYaoqmpCf3791fN/ZRjSNQ1NTWxGzpgwACsWLEC77zzDp5++mldidfRBC/q1BLQlVS5/Gf81lckBIDWjkmvqHv33XdZjSaXy+WVEKtX1KmFX+fPn+/lNtF3jo2NRW1tLRMNVK+Lfi4XdUZteYfDgezsbKxfvx6Ab1GntME6P2DT4LFmzRqvz6JBJj09PWBR53K5kJ2djTlz5gBozScymUz48ssv/T6m0gCvhJZTp/Z7/ABFeynK4We65C5riTqq1u6r05Lfy/feew+pqakoKyvDH3/8oVhyQN6JykUddZ4UGqVj03dQKn2j5tRZLBZVJ4+cur59+7LIhJpTN2/ePMXjA0edNK3wK/Wh5MYA8Cp7xLvy1dXVcDgc7NxpcF+7dq1XiRat8KuvnRUINVF31llnsX/z9fz4BSokzpQmHXwfwhdnbWpq8ioeDKgPkjTAyvtiJRHIfw/+fm7dupUNrkacOnpeFi5cyF7jyzppibrGxkY0NzdjwIABOO+887wMku+//565kCaTiQkVgr6vHlGnZb7wEwFaEUw5aMTAgQOZCLnmmmskNdiMoibqqJwYXT+9oo6vWAG0XhcKrVN+mlaBcH9Enfx54scVqrDgqyg5OXU///yz1/nQ33pNEsCgqOvQoQPbrgpoHRx//PFH/PXXX5LXQ8UDDzyAvLw8TJgwQdIpud1u3HjjjcjLy8Pdd98dlM9qaGhAx44dkZaWplqEVe7U8dTX18PpdEpEHS98yalTCu3yOR4NDQ2S8EFjYyP7HVp+zj/gSgNkc3MznE6nYodKHZd81RN1FGazGUlJSSy3zmq1SuqGyXPbKAyhlregxOmnn47Vq1ez49OxAH05dUpO3ffffy8Jfzz44IPs/7TyTQm9u0NQ+6AOjkKF8gRqI/DfVWuSpCXqeLG2Z88epKamYs6cORJRp+bUEX379mWLULSSdN1uN8uD1EK+6wfVG6utrcXhw4exe/dur6LQ9P0eeeQR9O7dGxUVFbpEHf2evB/gQ/Rq56hWfJjaJH1P+fv05ApSH6IVfgWAr776Ct9++y37v1zA8H1RVVUVkpOT2feXixl+MNYqaUKLgnxtzC7PqSP4QUtp9SvvHCqJQr79ZGdnM+fP6XQqikG19hYbGwu73a7LqaPX4uLiJP34iSeeyBZ7qIk6JaeORN3+/fvZa7xTpxR+5R02+p7Lly/3EhCUa01kZmYy8UA78dBxfMGLUXlfV19fj3vuuQfXX3+95HXe1EhPT2cixEgfr4RalIjEGYk6pZy6BQsWSJ4ToFVQPfrooygoKADQ2keQCUXXy1eFALXwq9q1pXZEfRs/6dLr1KWnpyM9PR0ff/wxgNZt8eh86O+QibqPP/5YMvsAWi/4Z599ppkgHAw2btyIgwcPYuXKlTjhhBMks+Jvv/0WOTk5WLlyJerr6xVdGqMsXrwY//3vf5Geno7y8nLFGQ7fucvF2bx582C329HU1MREGl/HifYhlTt1ZrNZ0oHJ4+j8rLdz586IiYlhDbawsBBdu3bFyy+/LPkdpbwUgsJUvDsIHLX05fl6VFdrzpw5+OOPP7zqvZ177rl48cUXcfvtt3t9lhqDBw/Gzp07AQTPqQOAfv36sX/zbrJW+FVPx/j888/jrbfegt1uZ9eUknH1LhCRY2TDey1Rx1+vzZs3o7KyEs8995xkgFJz6oiHH36YTUS0hBAVIpW3HTny4rI08NXX17MO/NChQ5I8RXpvXl4eevbsiZqaGslgzYfr+ftP73nxxRcl5yAPv/LXr6ysTDX8ypfZoe8hn8D5I+qUwq9A64bdvBiQCxh+MkLhV7lTR/B9izz8yn9XcmXkaSJy1Jw6ftCVT/Lo+Js2bQKgLLDkv3/fffdh4MCBaGxsZN+BjzJoRQGUXDSt8GtGRoaimPd4PLjhhhsUP0/pM6hv4ZPy+TCl3KlraGiQhF/5e/X444+zf1utVq8JHi/q1ELzamjVX62rq1M0GvhzS0xMZBNZrYLcelAzNfSIun//+99s4gm03q+ysjJkZWUxt7esrIxN5On509pIwKhTd+edd7J0AXqeeLGvV9TFxcVJ1if8+9//BtBaBs3j8YRW1OXk5KjarbwFHwrWrl2LUaNGAWidufDCTetnPI2Njaiurpb80cJkMiE9PR3Nzc348MMPvYpUykUd33nwjg11lm63mzVQtZy6xMREyUMsF1V8R5eUlCTJr6JEy2effVbyO1qhDxKA8nIKatcmLi6OCeeTTz6ZvU5ixmw248EHHzS0X92FF17I/u1roURjYyMsFotk8Qnv1PH3xGaz4YknnkCfPn0k55Oenq4astaTG0dL4XlRRyEbf0Udfc8333zTZ6kFuahraWlhkyp+4KBOJSYmxpBTZzabvdw1Jb755huceuqpbGapBj0XdG3pWp1wwglssAcg2TKIz51MSkryel5pULPZbF6ijsKpPPLwKj9j93g8PsOvwNEwyVdffSXp5JVEnfzz1Zw6X0JePiDwoo72kDbi1NH2Y/x3pVwk+bncdtttePTRR9n/5X0c4cupu+eee/D888/DYrEoCjKl4qqUJ6nVdymRlJTkVYpHy6nLzMxEc3Mz3G433nrrLfZzXizJz0/JqaNJP//Z8fHxWLJkCUaNGuXl1FVVVbHrzffpACSTcqXrxaeP8OehR9Txzph8EkApOnxZGsBb1NFzEKios9vtiv2tXNTJyy81NjaitLRU8n3r6urgcrmQnp7OJkVU7QA4+txoiTrSB4D3OCAX/larFa+//rqX8+2PqAOkuX50fR9++GG8/vrroRV1PPPnz/f3V/2isrKSDZgOh0MShtD6Gc+0adPgcDjYH6XNdeWQ0p84cSJ69uwp6fjk4Ve+8+CdICOijhpwQUEB0tLSFHP1+NkrP6CRUJF3zvJadzxXXHEF+vXr5zVjUquNFRcX57XTAQCvwrNG4B01Ladu/fr1+OKLL7wEo1L4DWh9qJ988kmvCvDJycmqNryRBQ92u511bJTLpVX/bfv27Thw4ACef/55r+vNry7mV5cpwYu6RYsW4eWXX2ZV5fnrRS5qVVWVrpw6ora2VldtubKyMuTm5vrMp5WLOrXBZ/369ZIFRvRdk5OTUVNTI3kWaILVsWNHL1GndA/kTp38/usJv1JfMGPGDDz22GPsPUrXSC7qqD+gQYaEgi+Xj9o6tTPq2zweD1wuF1uZ68up4++/PBRNoo5vk3///TfefvttPPfcc6w/0ePUKYk6tf9rQaJOb1kIIikpyWvCplYqBpDu53rHHXewn2v1A0pOHb2fX8FotVoxYsQIZGRkeDl1/EpjPr9OjlKEiC9DZVTU8e+XfyYtpnv22WdZbU8gdE4dv5E9z5EjR2Cz2Vh4V/45SqKOnq/09HQkJCRg/vz5+Pe//w2HwwGz2axL1PEROV9OHZU0oXZJP6+urobZbEZiYqLunDpi2bJluOyyyyT918aNG9tO1I0fPx7Tp0/XfE8wV8SmpqayBllZWSnZsUDrZzxTpkxBVVUV+yNfbaIEPfQE75xpOXX8jJqO0bNnT3ZzqNHKHyxqyMOHD0fPnj29Og++805KSlIUdfJGpJSHxmO3270eLjWnjgql8mRmZmLu3LmK79cDLwroHJWcohtuuAEFBQVe58a7LPz71b6vUviSMLKCjHfqSNSpbelSXV2NPn36oHPnzpgyZYrEFQDUV9opQcWHPR4PRo8ejYcfftjrOMDRmWJFRQUTD2az2adTR24XcDRsdMcdd6CkpAQVFRWSlV56th2j58LXdnt8MWBfTt0HH3yA9PR0xMfHIy4uDs3NzfB4PKqizmKxSAZ7uQDSE37ly8Dwx5ILs1tuucWrZExJSQnMZrMkJAf4vt/UhpOSkpCSksL6Fb5avR6njs6RRD3/XWmRFC9k+FWoO3fuRFNTE5qbm32KOv57y7+bVj6THBJ1dJ56B8bk5GRde2fS2ET3Q632oBIejwc7d+7Eu+++y/5PbZu/rnTOdL3VnrnDhw+zupxq58lDCww8Hg+75w6HQ1ffxbd7uVtNos5ms0kib2pOnRGRrkR8fDwaGhq8cvtKS0uRnp7OxgX5pFFJ1NFzQWPtFVdcgdTUVJhMJqSmprLJkFYbpHaTmJioKermzJnDTC0ar+m60q4x6enphpw6ADj77LPx1VdfSZ6bxsbGthN133zzDZ588kncddddXg2PwpXyLa8CYfDgwfjhhx8AtOa78Y1O62c8NOvn//hCPmgp1coCvAcsXtTZbDasWrUKs2bNkjh1qampEhsekCaf2u12RaeOXktOTpYIGrKt5bNMapBq9Zjo4eLRcurkQvfaa69VFdJG4cOvFOol1Arm8sI2UFFnxKnzeDxeok4tXPnhhx9K/i+fUBgRdSTC5ffo6quvRlNTEzZs2IBTTjkF//nPfwC0OnWNjY0sH1LJqePbYI8ePdh5rF69GtOnT8dbb72Ft99+G2lpaZgwYQIA/aLObDYjLi5O17WVJyrTM0uijl9ERIMN7yqqibpdu3bhs88+wxdffAEAXhNSm82mKDrVSrbw7d3tdkuclxNPPNFrUCguLkZ2drZE9Lz11luswKgavKhLT09n/QrvYBlx6mJjYyVOXVFREX755Rf06dNHsx6nVl6u2uBuNpsN71tJkKjjn4sFCxZISlAokZaWpiv8Su2fRJ38u2tNQCjthCoSkOCVQ9eFrndTU5PX4gKbzaa5alqJlJQUNDU1oaGhgX3X448/PiCnju4vuWL8fePfl5SUxMZNf3Yl4aG2JD9vWtWtBpUo4fsTei6U+iP+udES6zRR69ChAxYtWqRYCxBojUrRfaRUD3r2aH9nvh0aLdDMv9/lcnntZe0Lv0XdeeedhxUrVuCrr77CFVdcwTasnzlzJnr06IH77rsP48aN8/fwXpx66qnIyspCXl4etm7dijFjxrBVoRdffDEKCwuRl5cHu92OIUOGBO1z5Y1EXuSUqK+vR11dHR588EGv91mtVpx11lksqRlofZjJxubfyzdmX6JOzamrr6+XdDLy/WPlKNngak6d2Wz2EsOBzth4+FmNfCEJ1fyT79mnlVOnBL1faRZsRNS53W7ExMTAZrMxQa0mFuVOpny1uNpKOyUo/MIX1QSAM844A01NTVi+fDl+//13AK3Cn5KIqWNQcuro/r/44ou4/PLL2T2dPHkycwK7dOkCAPjiiy+wcuVK3aIOkObPaIVrKysrUVtbizPPPBPAUaeupqYGRUVFktwTev70iDpqzzNmzADQWjiXJykpCbW1tV5tQmk/YkAqbtxuN3r27MmEYnx8PHNSieLiYq8FJbfddhtOOukk1WtB50V/8yvxeVFnJKeOwq/0vHz77beIiYnBzTffjIaGBsVngq8z58upk0P3pm/fvj5Tdq655hr2b8oVpvO2WCy49NJL2URFjc6dO3vVK9MSddSXyVfDa4m6G264Af3792d9NeWpyXPReFFHTl1GRobkGX/mmWc0v4/S/eA/d8+ePUhJSUFWVlZATp08d5F/RvnFFYmJiZJVzYFAn6WU+qOWxhIbG8tC3Pz3pXugtG0ZLXYE9Ik6ck2/+uorNvnmP0suzCk9BDi6FSB/34yWe+PbBzl1RsbYgPZ+7devH37++Wfs3r0bgwcPRteuXfHEE0/g5ptvxr59+/DUU08FcngvXn75ZaxcuRKffvopLBYLW/0SGxuLjz76CCtXrmQrR4KFXBjwAkzu1NXV1XmFVwBpTgB1cuTUAdKQLt+YlUQdPyPnk6QBaUhIaZZhJPyq5NSR0yNvpHrtZS2oIfPHkq+OqqqqwmWXXSYJNwLSchV6nTpAuVPSEnVFRUWSorbyFYXyz+fhd0cAjtZNIow4dRR+kYs6agv8NaNisIcPH2bXmJw6vuOh9nLCCSeongd/3GHDhqGiokK3qOPdYCXhSh1lZWWl5Bmz2WxITk5GfX09tm/fLinASRu+8/XQtAYEQF10JyUlwe12e/1cbccMeWgzNjYW99xzDzweDxMR/EBQXFzsc3WpEjRI6XHq9uzZI3EC1UQd32f89ddf6NmzJ0suVxIG/Ip7o6KOfjZ48GBcccUVqu9raWmR7FtMKQb0POl1KnJycrxcM6X2Ru+hvlle44yuHbnScjIzM1nfTPeEr0MKSMOvmzdvxnfffQeLxSJJvaDcLDm08b3S9aY2UVlZib179+L444+XFODWorq6GvHx8TCbzRLxqyXq+H4mmKJOnmtLaD3DOTk5rC/lvy/dC6UyK3zpFCVRR6ucqU+eOXMm4uPjcf311zOhriXqaNJJ55GcnBzQtqn8tafJQJs4dUDrIPv++++juLgYO3fuRGVlJZYuXYr/+7//07VheDQit69pwQMlo8tDk4A0L0/JqeMXdvAC0G63ez2o5NQlJCSwVYrU8VVWVrJOXWmpu5Hwq5JTp9awguHU0feWizr+IaQHRum8yHnT49TRZygN8Er7GxITJ07Eaaedxv4vL+gqP+arr77KEupdLpdkcNm/fz8r48J/rtaG6YQvUcdfMxJ1R44ckTh1gDTkSqKOvovSPZVvY+PxeAw5dTRwKA2yvGvNh4atVivrSzZt2sScun/9619slbcep+6///0v0tLSJG7h2WefzX5OHbU850ZeXJlWGfPPF4k6Ql7CBWhdFemPqCNXJiEhQVXU2e121NbW4scff5TUGFPKqaPwK/UZ27ZtQ58+fSR5j/LQvC+nTmvA4SexWsgni0rhVz3wbugJJ5yAl156SfXzgKP3Xb64gtqq2u/zW9NR/33BBRdI3sM7dUBrPUDavYRQSymhNkyONQ8v6vbs2YOuXbvqFnU1NTXo2LEj8vLy8L///Y+9Ll+Qwk9U+X4qMTGRhZ/l39co/jh13bt3ZxNr/vvW1NQgMTFRcftDPl9WKafu1VdfBdAqXqniBZ/m0dLSIhH98nFFSdT5WuymlzbNqZsyZQq6dOmCDz/8EM899xyOHDmCq666CiNHjpSUJmgP8A2MdxFKSkqQnZ2N+Ph41ikkJSV55Z3wAx81OqvVyvJyeNdGLurkNDY2srg9IM0nczqdbMatJOr0OnUbN25ULAqp1rCCsZuIkqjjw8JlZWXYt2+fYq4FOXWULE/HUBtI9Io6uesmLy/jy6m7//77WXjF5XKxe5Obm4u6ujr06tWLdTJaTogcLVEHSO89hUwPHTokcQ748weOCgClbd6eeuopJCYmeok6ALpzKdXKFxAk6iorKyXvI6cOaBWR3bt3h8fjwdSpU9l79Ii6iRMn4pZbbmHPQkxMjGTrL6V9Q2mSwLejYcOGYcSIEZLBQd7pKom6uro6v4q10gDu8XgUw68WiwVpaWn47bffUF5ejiuvvFLymfw5ms1mllMpF3X8AEvHvvzyy9nvauXUaeXNyYWNXuQLJfTmJfEi6YsvvsADDzyg+L6HHnoIDz/8MCvHoybq1EqpUJ4n4FvU8W1DLurkpaQIcqSVtuHiRd2hQ4eQnZ0Nm80m2SecirkDrX0PrcQk0TF06FBs3rxZ8h7gaN/4yCOP4NJLLwUASfWAxMREZGdnw+PxYPDgwYrnrhd/RF1ubi57P7/IgsKeSigVpyfOPPNMdn9KSkqQlpYGs9ksqRW5YcMGyU5B8vGOFnLReSQnJ2PZsmXYtGmTV4TGKOvWrcMvv/zSNqJuwYIF+Pe//40dO3bglltuQUJCAj788EPccsstOPvss/H111/7e+iIY8WKFXjyySdhsVgkoo5m3/Hx8UzJJyQkeHUEfGdOIS8+/MqLOvlCCTkNDQ344YcfWAOWF96l2j5KSbB6cuqWL1+O0047zSvniD6LKC0tZfkteovmakHlZfiZFu/UZWRkoKWlRdOpo8GIhIZWTh2gHCrlB2KlUByPkqhTC++5XC52b/kFRM888wy6d+/OVl7pFXXNzc0oKiqSDGJ0f3iXlX5+4MABL8HGh0/4kD7/HqC107Lb7SguLvY6F71lDXhRp9ReyHGqrKyU3ANaKEHI85bk30drQCCh4Ha70dzcDJvNhl9++QVr1qzxEnV79uzB22+/DZfLhRNPPFFynMTERE2nTimsZHS2TdAkpqWlRdWpS0tLY24K3x54Ubd48WJWY5QmQR6PByUlJcjNzWVtuKGhgV1/2pN33LhxrGC0nvbJ46+o43Pq4uLidE8c+cFY6zNTUlLw/PPPs/YrF3U0qdUj6viVl4cOHfJy9/jzkIs6tXPMzc1VFU68qKP0gMzMTDbJe+GFFzB06FC2eOvGG29kzhM9H3zFCEA6SQBan3lywvnJrJH6o77QEnVqixj5MmR8iR2t3+FzqOXF2ZcsWcKeywMHDrCoGt+O/v77b83vkZSUhFmzZiE3NxcVFRVwOBzIzMxEv3790KtXL83f9QU9i3p3OgICEHVbt27F9ddf72V3Tp06FTNmzMC4cePwxhtv+Hv4iKJ///544oknJJY70KrsO3XqhLKyMnz00UcAWmde8kGF75D4HSWSkpJgNpt1OXXbt2/H7bffjo0bN2L16tXsAZbPQkjUGXHq+PDr7NmzAbQOvPKOlB+40tPT2SChp6K+L7766iu2TQp/XvIcCKUHlwYpug7kjPoTfpVv5cPjdDolToiv8CvR3NyMlpYWJmb4jumFF17A7t27WVhPr6gDWsOhfFujzolvoxSOOnDgAHuvUmFn6rhposEPNomJibDZbIqiTm9RWF7U8Z9LbSgmJoY5kPx1j4uLkxQ858Mi/HsA36KOzoF/HgYOHIghQ4Z4hV+7deuG22+/HdnZ2cjPz5cchxZVEHJRR22Uvw/+ijq6183NzaxoNp9mYLVaJZGA9PR0eDwe9OzZk52jx+PBN998w1wr6jMqKyvhdruRkZEhGWDp+tD3qKysZIuTjIo6veFXOXz41Ygg5Nujnt+jPkIu6kpLS1n+oRJyp45yzTp06MDaktI+2HJRpyZWtcRTfHw8c87JST7ppJOwZ88e1NTUMDFHwnTRokXsd8lJouR+Okel0jH8d7/jjjswY8aMoO7xrlbqSMl1o4iDPFxNLqRaag4gXagCtC4Gu++++3DSSSfBbrez73n48GEm6vh8Q1/7hNPnFhUVYf/+/brq3xpFvqJbC79FndbNnTRpEr766iuWyNxekFcSP3DgALKzsyUdvJKo46FBk7Z/SU1NlYTR1ERdTk6O5P8k2uThVzVRFxsbqxrC4MOvfNhVnhcg7+Co4wmGqMvOzvYqaqy0jYxaSQU+qZqusVFR97///U+SOyH/eUNDA0444QS2jy6tdPa1UIJeo3wwficOGpApsVbPoEnuTWFhocRZU3LqMjMzYbFYUFdXJ3F3AamAJbeBXE65U8eLOj5vSe8gT4KqpaVFMuukEJDJZEJKSgoqKiokDpfJZJLkointaGPUqeNr4PHfEfBeIMTXyyJ8OXV0DflcWbfbHbBTl5aWhubmZlxyySVeTh1/vkDrdaLBva6uDh6Ph1076jNIyGRmZrLB7MCBA16iDjgqdtvKqaP2YrScg3xPaD2fA3gvXCotLdWcsPBjQXl5ueQeUHuhds73I3JRx8OvDta6ziaTCb169cL27dvZDjvUp/z555/se9N9pOiQx+NhW4HRvaX7qlTkmb/uwdxXneDdYR6lZ3j9+vVsUY+c7OxsXeFX6odzc3PxyiuvsLQBSksAjpa4mTp1Kuuv6Tl5+umnMXr0aK/j859bWlrKBGgwUUp9USOghRJajB49mm2s217gZ2fAUVHHk5qaqtkJyUODnTt3xt69e9lrtOoJkD7Yap0Bv/KzoaGBdc78oNPQ0OBz5ldaWgq32y0RJXLrWC4KyaUNRvhVCaUdN5Ry/ajuHHVM9JAZEXUejweXXnqpxC2UC0qy+61WK+rq6ljOER8yV3Lq6JredNNNWL9+vWRbLXo/lSDR43zJnbpVq1Zh27Zt7P7IS+TwZTEAZaeuvLyclcgBlJ26+vp6ZGRk4JFHHmE/M+LUKSXh0z0ymUxITExEXV2dl0PKt3utRH29Tp1SOgIv6vhBRkkY+HLqSFjxZTKC4dTRv7/77jtFp85qtbLvNGTIEKxevVpSoJYGchrkyIHIzMxEly5d4HA4sGnTJkVRZ3S7LkKpPemB2oJRUce3Dz2fmZycDJPJhMLCQlgsFixbtgxA60CulVrAO12lpaWKoo7EFN+PaIk6fnWwrzBnnz59sH37drhcLlitVlYset++fV6OPZ0H9ZF8niq1DSWnjv93oLtHKGEkpy4jIwN9+vRRLQGkJ/wqDzHz0DWi8fOiiy7CJ598AuDoIrPHHnsM33//vdfvqrmKwSQiRB0AyUrB9gCfe+bxeNjuFfym9qmpqZKQ9IABAyTHoIefHuycnBxW0X3hwoWSkih8BxUbG8tmFldccQXrfPik54aGBlZFmx+YnE6n5syPBotnnnlGIur4qvJKqO3PGiwo/Mo7SmPGjPF6H+XfUDkbpQKa8vcDUleN8qx4q12+MEJNHPOLN7Ty9KxWK04//XTJ+0kc0LZXepwQGsSLioqQmJiIs846C926dVMMv/JFtuVOXefOnbFhwwYA3oWElZw6oHWw5c9f7yBPIX55W6Hv27FjRyb8jOzqwZ9rbW0t3G63plMHHB3I+HvJh1/5PZ6VBmD5VoRywZacnCzZmkjpPXqha923b1+cd9556NSpE8455xxFp45v72eddRYOHDiAffv2SXagAY5OBMmByMjIgMlkQv/+/bFx40Z2/fnraGQhDw9fbN0IiYmJaGlpQXV1tSFBaFTUxcTEIDk5GYWFhUhKSmJ9hx6njnYwOXjwoGRyT/eBnDq+L1YSdUuWLJEk4su/hxK9e/fGtm3bmFNHbfnw4cNsy0D5BJhSD/g8VbmoU3PqglmLlKDvyE/cyVFTe4aVSoYBrX2eXqdOqy3yxa35a6oVfWsLUSevzapFSEVde4MPB9bX18Pj8SApKUmSVBkXF8dE3dKlS71WAlNokIQKL+rkDw41erKHqXO+8cYbWTkG+UIJu93uVR1frSo+MXbsWMTGxmLr1q0SUSJfmSUvhKlUGiOY0PUmcbVgwQLF1a9U0+qVV14BcFRoqIlNus68q0bXkB+s+Twbj8ejKo75gpd0TP46UudKn6vWMZlMJl2dJ1/A1FdOHeVu8u/lXaWZM2cC8A4h8ROTxMRE9r3los5o+FV+T+Li4jB37ly8//77TPgZKQANHL2uQ4cOBaC+/y49A3Q/+GeCBtuamhqJsFcaALp27YqysjI2IMqdOpPJJFmpCvgv6iwWC3799VdMnz4dZrMZI0eOlKQa8E4df92oFMbq1au9nDqaCFL7pt/v3r079u/fz0QdL2rq6uokfZte/HXq6B6Wl5cbum7+CBHafo2vXHDkyBFNUce7sfKIjZZTFx8f79WmRowYwVx/wpdT169fP5SVlaGmpoYVoDaZTLjrrruwbt06AEfbOZ1HQ0ODqlOn5GKFWtSZzWY4HA7J5EdrlTXxwgsveK1qPnjwoE+nTs+Wc2eccQb7N/VtR44cMSTqeD0QDC677DLcdNNNut8vRJ0B+MR9+eyXh2ZqSiUMunXrBuDoLC4nJ4d1omqijl+2DUhFAb9QgkSHvO6cnvDrddddh/3790vEiPy7yUUd5ejIVwcGCwq/0uCoVj7DarVKhAxdNzVRpxR+5a8hiTR+cG9qakJLS4uiiFFy6vjwN50/3V+73c72beVRKuysRExMDOs4+DbGi7rTTz8dNpsNWVlZqk4dHQvQ3vJLy6nTO+DSvVS6J1dddRVSU1O9FjLw7925c6dqQU/5OWiFX4GjDqz8mejatSvWr18vcWiVBgBysGlVnFzUAdKtiTwej985dUCr20/nShMY3qmjaACfA0vhKl7U8U5dY2MjSkpKkJ6ezs5dHv7mr09dXZ1hl44+i/9bL9SujYo6Hr2/R5NXXtRpiQTgaJiutLSULZgjKL2C/ub74oyMDMW9hOX4utZ8oWPKz5aLRblT53Q6fTp1aqLO33vgi06dOklyyvW4aQ899BAuvvhiyWslJSWqJYP0hF9PPvlkvPbaa5LX+EU0WuWI5O0kmCuE/UGIOgPw4Vd5CQgeeliVfnbTTTdhzpw5rFwAn3SuJupITNEDyBczJqeupaUFjY2NsNvtXjXBfIVfgdZSEXJR1717d5SXl2POnDmKv9O1a1fs3r3b0CzCCHS95Un8cuSFN305dVqiDmi97ikpKRJRp1V8lRc5dEw+91Iu6gh5noqRZeskqJWcOrfbjfPOO485t1pOHYnI8vJyVVGXnJwsEXX+7PObmJiI2tpa5og+++yzXqUC6H47nU4vV6hHjx5stws5ekWdllMHtG5TNX/+fIlzoDS4kKijMK2SqOOdOmqHwRgYKdWAF3VUUkmew3ziiSfit99+Y9eZBh9aZbxu3TpJigwJb7XV8moOM39ucuhZNBp+5Z06f10ivSs1+V076HxLSko09x+lPvjw4cNe4deuXbvC4/GwdjJ+/HjJ72mJOkrO9yUMOnfuLNl/VOl35Dl1epy6tgy/Aq2ijl/ZqcdNA7wXV9TX16uOcXrCr1u2bMFdd90lec1fpy6YK4QB9V2K1BCizgC8qKNcKKNOHRU9pRuvVVdJ3kj5mm0EiTq+I5YXE/YVfgVa8wBKSkqYWI2NjcXo0aORmpoq6fTkdO3aNeiNmKBBRssVBbwfUupM1Sr4K+XU8Xl7FosFGRkZiqJO6TrSQGC329kxeedQTdRR+/Bn9xUaRJScOv6c+OMrOXV076qqqlSdiczMTImo07uLBA+JOhI4p556KnOtCX4hg5HZbrCcuu7du6Ourk6SI6s0AKSlpSExMRH79+9nq3m1RJ3RXRG04J06s9nMhEFmZqbXyuCsrCysW7eO7ZFN1yUzMxOHDx/G6tWrkZeXx95P90hN1N13332q57V9+3a24ItHa4cSLfwNv/oD9W/JycnsuWlubtZ06ugZ+Ouvv+B2uxVL7RAXX3wx3nvvPQCtrqCWqKOwoq9C1SaTyUswqzl1vKgjp46ur9ypk5dfIUIl6rKzs/0SdQMHDkSXLl0wb9489pqvvb71Hlt+vNLSUs37Eerds4xuxyZEnQGUnDq6ofv27WMFQOnB0LNiiJ/9yjsvuah788038fDDD0tmkNRg+a3A5OFXPaKOirru3r0bd999N1wuF+t06CFQq34eKuh6+3oY5Z3Z6NGj8csvv3hZ9IRSTh0v8OLi4pCZmSnJqdNy6ujzTSYTOyafT+XLqaOtvIxAg4iSUwdoizr+O8hD90qYzWbWfmhjeaNQaI/frkoOv1DCSKgvWE4d3Uc+HKTW5mgLPzUXjgQSEFxRxzt1vtwv+YSR3p+ZmYl9+/ahsrKSOUOAb6dOqZwE0atXL8VyM3I3SS98+DVUgoJQCr8CyjUxCRJGTz31FFsApQVNnhISEjRF3a233oqmpiZdziY9Q2pOndJCCXLqzGYz7HY7G8dcLhcsFotkgs4vvAll+JUXdVohUp60tDTs3bsX/fr1Y68FW9TxfZARpy7YCFEXQrTCr8cddxxziKjemp5tgXhRJ7f75aKwW7dueP755yUPHjl1vOiQh1/5yttqkKhraGjwerjpIeAXBLQFCQkJbIUZoN6xKA3OAwcOVHUQlcKvcqeO3AxCa/9cvpOgY/IhPKrGrybqtAYPNc4991wA0sUcvFDi287ll1+OPn364NRTTwUAyUBOHb8v4c8vlPAnZyQxMVGyBZWSqOMXSgTi1KlNpug7kIsqHzjpM3lRp7XVXGNjo6pI5cvxhMqp8zXw8yKLH3gyMzPZ4ia+PScmJqKhoYGdt/z4/op5pWP5IhxOXVJSEtsbF/D9XGZkZKCurg6jR49W3OmEh18AQNdCrW6o3i3R6H1qTh1ffJrOgd/L2G63s+fRV3sKpVOnlFOn9/P4du1L1CmFmLXgK06E06lrl+HXDRs2IC8vD8OHD8fYsWO9lGtBQQFyc3ORn5+PESNGhOw8tJw6nhtuuEGyB6kWvKiTh7X0dKJyUWez2STnCehz6vhK3fIHKlxOHQ3OJDzUOnf5dfbVIehx6nJycpgYA7SdOjqew+HAoUOH0NzcjLKyMsTExKBr166soruaqPNHJF122WUYP368pGAzf334tnThhRfir7/+wsCBAwFIrxeFImkGrwYffvUH+j0K96g5dTTwBCLq1J47OqZa+FXJqdMqi6NX1NHgGixRp9ep49uAXNTxxyPoHpWVlSEuLs7ru/sj6qiNG/3u9HsNDQ0hF3W0AwB9f3Lr9Ig6wLvfVoKv86dnoYQe5E6dvD3QGEWirqqqSvKc8/vFklOnRqhEXXp6OhoaGvDTTz9JJtJ6P4+/R1o5dS0tLey76j22yWRix9QKr/szKTeCUsFjLaJC1HXu3BmLFy/G8uXL0aNHDyxYsMDrPePGjUNBQQGWLl0asvNQ6qgDLcrI/77cWdIjomgWouXU6Rkk7XY7241C3onSwNXWTh11rvKSIHLUBmc1qHSIVk5dly5ddIu6oUOHIjY2Fv/617/gdDqxa9culJWVIS0tDSNHjsTWrVsVzz8QURcXF4dPP/1UsvKYv2++BmDKZyOBo9ZGKLxBoTx/VkACRwdM+jylgZrCr99//72h2ofyY2mFTIGj7UnNqeNz6tQwIuq6du2qeJ7+QJ/LOy5qKO1yAaiLOmqP+/fvV2w/gTh1ansiqxEbG8vuV6jDr7QAh9qmUVGnp5++5JJLYDabMXToUCbmgiXqqB3In9/a2lp89913TFCOHTtWYjbwC8zC5dTRNbzkkktQWlrKFvUYyXuj6+hrr28as418F3qvVu25UDp11dXVhnfmigpRl5WVxR60uLg4xVn+/PnzkZeX57UsmaexsRHV1dWSP0YgB8zj8WDDhg2IjY0N+MHUQo+Iki+UIFHHO3V6wq/A0YYrb/R8Tb22xF+nTs/gSWUdCLlT16VLF1RXV7PP1loo0bFjRzQ1NbF9YX///XdWIoSf4cmvK91fs9mMBQsWsH13/cWIqPvjjz/wwgsv4Pfff8eGDRsURd3BgwexevVqAK3FbAHpnohGoMGdrqda+LWyshJ//fWXV/kcLeT3Wy18Re2koqJC0Ymi719eXu5zQJeLOqUQsHx3jGCGX2tqany6pqNHj2ahdn7g4Z0lJafu7bffVnQm/HEk6JjynWH0oLSwJxSQqCssLJR8nl5Rp6ef7t27N9xutyQkzi948wdf4deamhrFvGLeqXM6nSgrK0NZWZmm2AnVPaC2SILLHzfN1w5CdCxyLo2kAlB/FS5Rl5SUpBotUCMqRB2xf/9+LFmyBBdddJHk9QEDBmD79u1YunQpFi1axKrky5k2bRocDgf7Y3Tj3fj4eLS0tODgwYN4++23g7aTwkMPPeS1mT2gbyYn38cxNTXVr4USwNEHTP5ADR06FG+//Tbuuecen8cIJiTkq6qqYDKZVK8HPaQpKSl44YUXdD20NCgTvKgjpw6AZP9M/pyUoM289+3bx0QdPzDIryvl4ZSWluLSSy/FNddc4/O8teA7Xl/ugd1ux3333Ye4uDisWbNGsY107NiRCWsK3dIekx9//DE+/fRT3eemR9TxE4933nlH97H1TqyoXWzYsEGSVyj/eU1NjWY5C3qvllNHC0P4FdTBcuoAsGK5WsTFxeGFF17w+mz+9/hrzkcNlAqo+rPKvX///gDg1ybnNIkMtVNHn/OPf/wDwNFi6sEUdXI+/fRTLFy40PDv8WgtlLjgggtQU1OjuHhFLuoyMjLw+uuvhy38yqOWz6mFXlHnj1NH/YCWqDO6dV6o0ZeR2UYcPHiQuR0833zzDWJjY3Hdddfhgw8+UFxpRlxyySXYvHmz4mqkKVOmSJblV1dXG+ps6OZt2bIFAPDUU0/p/l0tqOP1Bwojbtu2DfHx8cjJyfEr/Aqor1QzmUysLEJbwjt1WgMifbeTTz4ZDz30kK5jW61W1fBrXFwcC0XToFxaWgqTyeQzf4acFD2ijjoKfkFGIPDPgZ5QWWxsLBISElBdXQ232+1zoUR5eTnr5PhcPiPnplfUqZWjCQQaKKqqqjBu3Divn/PfPyUlhTk3asdqbGxk7UYp/FpfXy+5t8Fy6gDfZRYIeo/aIholpw4I3tZ/+fn5KCws9Mvl79q1K3777beQO3Umk0niDJOw8DUxovHAn1xjvnadv6g5dRdffDHy8vKwevVqnHjiiV7pBPxCCd5JDkf4Vd6f+iO8qI9V67/4bQSNHvuDDz7A2LFjvcov8ZhMJvz666+szEq4iShRl5WVhVWrVnm93tzcjMsuuwyPP/641ybzQKs4oxu7cuVK3HrrrYrHt1qthldh8dBDfP755wMA7r77br+PFSzIqfvrr7/Qp08fxMTE+B1+9bf8QKigwaeqqkqzY6d7aqRz9eXU0fUicXz48GFJ9X01SNTt3LkTI0eO1OXUHTp0SPd5a8EPynpzPRMSEljJFV/CP5CFMnrDr4TR53TZsmWsgr8atN2ex+ORlEJQ+sxAnTo+P40ItqjTM4AohTD5+8z/m+8j5OFSo3k9PP6mbfibizh9+nSvwtZGoNw6pTbCQ/c81Inyasi3YKN7SeVWampq4HK5cPXVV+Pzzz9nv8c7dSR0+ONofVawcTgcMJvNzB31R3gZDb8a+S6XXXaZrtWnAwYMwOrVq1mbDZQFCxZIymIZISrCr3PnzsWaNWswdepU5Ofnsx0OyD2aO3cuBg0ahDPPPBOdO3fGsGHDQnIe8nCHr46/LaB9HHfs2MG2CfI3/EqDaqSIOn6hhB6nzojokOfUyZ06uag7dOgQc++0sFqt2LNnD3bs2IHhw4dLOnz5d6DzDnSxjRJ6Q2Xx8fG6RV0gyPMjfTl1RkWdnhWIJpOJ5acoXXO5U6eFXlHHF+QNZvg1EKeOz9Hhv3OHDh3Ys0/hduLZZ5/1/6T9hAZII/mVAHDPPffg9ddfD/jzfbndFPY3en7BQs2ps9lsSExMREtLC0pKSpCbm4slS5aw3+Pfx7dPrWfOaF6XXmifZCKUoq62ttarXFcwOfPMMzVXyRrh0ksvZekARokop06Na665RjHfiPJuJk2ahEmTJoX8PJTyE0LNrbfeqrlyjCz08vJylr+SkJAgmYHpFXX0UEeKqOOFgNY5tZVTp1fULV++HACQl5eH3bt3s58pdSbff/+9ZlFXo3z//fdYu3at7ve3laijY2uV9wjEqdPbZmkAVvquRkVdVVWV5kIJQCrq9NYf04J36vQkaPsqKcJ/5/j4eDQ2NuLvv//2Kwcu2FB5qpUrV7bp586bN89rGyolqO5juK6VWkkTfseI4uJipKSkSIQT79RRwXwg8NW4/sI/9+QQBzP8Sseqq6uLmLEtlESFqIsUeFHHb/odSmbOnKn586SkJDQ3N0v2p0tNTUVlZSU8Hg9MJpPuCv3+br4dKiwWC2JjY306ddSZGSm5YLVa8eabb+K0007DmDFjJLmccXFxbEbX0NCAlpYWbN26VbJhuho2mw1bt26F3W5HVlaWJFFeCaM1iHwxevRoQ8dsK1HHd6xA8J06vS4YiTql4/Ov6Vn96nK5fDp1/GrhYDp19fX1ukQdXVO1nCCle84vIlmwYEHQ8uuM0rt3bzz99NNsstpWjBkzRtf7LrroIhQVFUn2725L1Eqa8KIOaJ2g8G2bfz+/nSGfstOW8OdGkz4jEyClnXJ4eKcukPSraEGIOgPw4Y62rtmmBp3ToUOHWONOS0uD2+1GTU0NxowZo7tCf6SJOuBomQutxHl/wq/0cN90001eKyHj4uJY4Umn04n58+dj8+bNGDx4sO7jdunSRbLcPlJJSEhAUVERgNCKupiYGMTGxrKBI9yiTum78p/pa0WbnoUSQOueqEbPUQu1hQ1qdOrUCT/88AOGDx+u+HNf1/nSSy81doJB5rHHHgvr5/siXIIOAAYPHoylS5cqOnW8e5iQkCBpN/xCCZ6nn3461KesiFzUGQ2R6g2/VldXR9TYFiqiIqdOoA4vGujflF9UVlbGcimMiLpw2fBKOBwOuFwuzQExPj4ePXv2ZOU29MA/3Pzeg/zPqOI6/fzBBx/0eVzqoGgRBDk+ocpJCZT4+Hi2pVkoRR3Qem20nLq2CL8SSt+VH0howNPaau7nn3/GtGnTAHh/H7rvfMJ+MESd0p6+vjj33HNVr0+o8osEoeepp57Czp07WZvgnbqePXvixx9/BNDa7vjniSYD/DPgdrtxwQUXtNWpS+DbJok6I/gSdfTdKysrQ97HRQLCqYty+Nk679QB0k3ljYRfjW4gHEoyMjJQWFioOSCazWbs2LHD0HH5To7PKwGODr58aZiMjAzF2mZyqNMgUUf3ZMKECYbOr62Ij49nq2/DLer4NmpUbBgVTL6+KznDp5xyiuLPqf18+eWXALy/Dzn5fOgyGKKOjxD4u2WboH1gNpvZfuMAWM4vtcWRI0dizZo1GDRoEFugBHiLIIvFEtaJvNypMzqh85VTR/1KSUmJrgVV0Y4QdQaZM2dORDlZSqKOd+oII06d0Q2EQwl9l2Avqec7jj/++EPyM7oOJOo8Ho/u7bHouFS8NS4uDps2bULfvn2DcdpBh3d+Qi3qLBaLblFnlGCLuu7du2PHjh2SQZNH7ibIP58qwbe0tPh9jkrwK+4jPbQvaFso95AKpgPAkCFDAEj7O3rO+AUT4YSPYvizmCEzMxPx8fGqeXj0/UpKSnRNzKMdIeoMMnbs2HCfggS+YyeBp+TU6XE+lDa6DzdUtT3Yoo7vAL744gv2b6vV6uXUtbS06K4aTp0nn2jvq95VOFErbxEKeKfO1+pXoxhtH77cALvdrrkqWf6MyAeUmJgYOBwOyYKqYLRhfsDj93AVCEjUKe1dzD/bNBZEoqirra01XA9z/PjxGDRokOoYR9/P5XIFVGszWojMRB+BbpScOnqNLwPDr3JS46STTgKgvlIuHKhtXRYovIPCk5iY6OXU1dfXGxZ10eKi0PZyQPjDr4GInmDk1PH4cg3l+0YrfR/5ABLsiYmeEjuCY4fU1FS88soreOutt7x+puWMh1vU8WLMn5w6m83Gxi61nxNC1AkiHiVRZzKZvCpb9+nTx+exhg0bhuLiYgwdOjS4JxkAoQq/UgXzGTNmYNeuXez1iRMnIj8/H8DRGoBGRB2trgxXlXmj0DZWTz31VMhXdFssFlayINgLR4ymRKgNZPS6L1FH1ekJLVFH1zWSRN0NN9xwTOQXHWvcd999qikDcqiNh7vMBy/qWlpagj6Bj42NZc+nEHWCiEdto+6PPvqI/Xv69Ok47bTTdB0vFHtuBkKowq/k1PXt21eSZ/Hiiy+yoqfk1DU0NOgWdZSPGC1OHQmOQLaB0gvVdouE/RHVRN1ZZ50FwLfzp8epo2s7ffp0AMEXskbqMsr58MMPfdZQFLRveBNAjUsuuSTkz6v880OxJZk/Za+iFSHq2hF8g+XzbaJFYCgRaqeOxJrS6lQ+/Ko3iZ9yraLFqfvwww+xcOHCoOx24AtyBKgSfzhRE3Xvvvsuxo4dy1YvqyHfg1qpfaampqJDhw648cYbQ7KVVCQt2BJEHzQuaFU7+PrrryW7ooQC+WQnkAVTaghRJ4gqzj//fNx7772SUCwfmgnFQ9JWhMqpI1FH1+bjjz/2yrOjOnVGwq/R5tRlZGTg/PPPb5PPIverrXcIUEIt5NStWzfMmTPHp1P30ksvsTA9oOzUde7cWXcoTCBoa2jiGe5qB3KnLhQ5fseSqBOrX9sBCxcu9HqNz4+KZlHXVk6dUgiCr1OnV9TRrDdanLq2hO5hOKvwE4GGQm02GwYOHIiCggIAyqJu6tSpuvYQNcqiRYtQXFwc9OMKji30OHVtgbzvDcV4RccUoi5C2Lt3LwYOHIgTTzwRQGsJCj686Ha7MWnSJPz999847bTT8Nprr4XrVCMGftCKZlFHTl2oVr9qXRu73Y5169YBAAYOHKjruBR+jRanri2haxMpW+wFCt92lERdUlJSSNrBeeedF/RjCto/8fHxuPjii9n/aeIZblEnwq/BJWrCr8OHD0dBQQEKCgq86jN9++23yMnJwcqVK1FfX481a9aE6SwjCwrHRrOoC5VTR6JOy4Hjr5veji/awq9tCblWfAHdYHP33XeH7NhyqH3ExMRE7DZwAgFRV1eHzz//nP2f+qhICb+q7UkbDISoi0BWr16NvLw8/N///Z9X0vHatWsxatQoAK35ZWqirrGxEdXV1ZI/7ZmsrCwA0S3qEhISYLFYQp5TpwT/M73Jwueeey6AwArptldI1Gk5dd999x0WLVrk1/E9Hg9mzJjh1+/6Aw0UbbHIRCAINpHi1JGoS0hIACBy6gIlKkRddnY2du3ahRUrVuDw4cP46quvJD+vrKxkDdThcEh2UuCZNm0aHA4H+5Obmxvycw8n7UHUmUwmZGRkBF3U0TJ9vaJOXpdMjaeeegrl5eVio3QF9Ii6Cy+8MKThxTfeeAN5eXlBORa1DyHqBNEITTwjxamj8wllTl17Sf3QIqJE3cGDBzF06FCvP3V1dUhISIDJZMKYMWOwadMmye+lpqYy162yslK1ftOUKVNQVVXF/hQWFob6K4UVEnXhLi4ZKL169Qp6/byZM2di6dKlmgMy37nwdf+0iImJOSZmg/7QFuFXX9xxxx1YsWJFUI4lRJ0gmomUiSedRyjThWw2G5KTk4+JMkAR1RtlZWVh1apVXq/zLsmKFSu8NkcfPHgwfvjhBwwbNgyLFy/GxIkTFY9vtVqjXuAYYfTo0Zg3bx6ztaOVRYsWBX3gTExMxDnnnKP5HrLsR40aJUpTBIFIEHXBRIg6QXsg3NtCtlX49ViZbEeUU6fGqlWrcPrppyMvLw/FxcUYP348AGDy5MkAgIsvvhiFhYXIy8uD3W7HkCFDwnm6EcPEiRNRXFwcESUkAsFqtYZlhiUG7eBCoq69TKyofYSiAr5A0Bb88ssvWL16dVjPgRYZkegKlVN3rIi6qBitRo8ejdGjR3u9/s477wBoHXT1hseONSJt269oIppzESORXr16YcuWLeE+jaAhRL8g2tFbqimUULoUVbUIRb970003oaSkJOjHjUREbyQQqCBEXXBZsmRJyLccakuEqBMIAmfGjBkYPnw49u3bByA0/e6wYcOCfsxIJSrCrwJBOKDOJVISiqOdzMzMiHAGgoUQdQJB4DgcDtx4442sgkUocuqOJYSoEwhUEKJOoIUQdQJB8KCFEuGumxftCFEnEKggwq8CLcRCCYEgeJCoq6+vD/OZRDdC1AkEKghRJ9BCOHUCQfCgbctoj2iBfwhRJxCoIHI7BFoIUScQBI/zzz8f999/P2655ZZwn0pUI3ojgUAFkVMn0EKIOoEgeFgsFrz88svhPo2oRzh1AoEKNFiLMKxAidjYWPZHIBAIIgHRGwkEKqSnp+PVV1/FtddeG+5TEUQoNptNLJQQCAQRgxB1AoEKJpMJ9957b7hPQxDB2O124dQJBIKIQYRfBQKBwE+EqBMIBJGEEHUCgUDgJ0LUCQSCSEKIOoFAIPATu90ucuoEAkHEEBWi7pdffkF+fj7y8/PRu3dvrzyngoIC5ObmIj8/HyNGjAjTWQoEgmMN4dQJBIJIIip6o0GDBqGgoAAAMGnSJFx22WVe7xk3bpyocSMQCNqUPn36oGPHjuE+DYFAIAAAmDwejyfcJ6EXt9uN/v37Y8uWLYiJOWoyFhQU4B//+AdycnJw5ZVX4u6771b8/cbGRskWJNXV1cjNzUVVVRWSk5NDfv4CgUAgEAgEoSIqwq/EsmXLMHz4cImgA4ABAwZg+/btWLp0KRYtWoQNGzYo/v60adPgcDjYn9zc3LY4bYFAIBAIBIKQE1FO3cGDB3HllVd6vf7NN98gLS0NN998MyZMmID8/HzVY8ycORNWqxUTJ070+plw6gQCgUAgELRXIkrUaaEWegVaxRmJsvHjx+PWW2/FsGHDfB6zuroaDodDiDqBQCAQCARRT9SEX3/66ScMGzZMIugmT54MAJg7dy4GDRqEM888E507d9Yl6AQCgUAgEAjaE1Hj1IUC4dQJBAKBQCBoLxzTos7j8aCmpgZJSUkwmUzhPh2BQCAQCAQCvzmmRZ1AIBAIBAJBeyFqcuoEAoFAIBAIBOoIUScQCAQCgUDQDhCiTiAQCAQCgaAdEBV7v4YDWkQhEAgEAoFAEAn4WtgpRJ0KpaWl6NChQ7hPQyAQCAQCgQAAfJZgE6JOBYvFAgAoLCwUNeyiCNr6Tdy36ELct+hE3LfoRNy36CUpKUnz50LUqUD2ZnJysmj0UYi4b9GJuG/Ribhv0Ym4b+0PsVBCIBAIBAKBoB0gRJ1AIBAIBAJBO0CIOhWsViueeOIJWK3WcJ+KwADivkUn4r5FJ+K+RSfivrVfxDZhAoFAIBAIBO0A4dQJBAKBQCAQtAOEqBMIBAKBQCBoBwhRJxAIBAKBQNAOEKJOIBAIBAKBoB0gRJ0KDzzwAPLy8jBhwgS4XK5wn45AxoYNG5CXl4fhw4dj7NixaGpqwpw5czBkyBCcc845KCwsBABs3boVQ4cOxZAhQ7BkyZIwn7UAAD777DNkZmYCgLhnUUJBQQFGjBiB4cOH4+uvvxb3LQpoaWnBDTfcgLy8PAwbNgx///23uG/HAh6BF7/99ptnwoQJHo/H43nmmWc8n376aZjPSCCnpKTEU1dX5/F4PJ4pU6Z45s6d6xk0aJCnsbHRs2rVKs/NN9/s8Xg8nksvvdSzY8cOT1VVlWfIkCHhPGWBx+Npbm72XHHFFZ5TTz3V43K5xD2LAhoaGjwXXXSRp7Gx0ePxeMR9ixI2bNjgGTdunMfj8Xh++OEHzz333CPu2zGAcOoUWLt2LUaNGgUAOP/887FmzZown5FATlZWFuLj4wEAcXFx2LFjB0488URYLBacddZZ+P333wEAJSUl6NmzJ5KTk5Geno7S0tJwnvYxz+zZs3HllVciJiYGO3fuFPcsClizZg3sdjsuvvhiXH755fj111/FfYsCcnJyAAAejweVlZXIzMwU9+0YQIg6BSorK9l+eA6HA+Xl5WE+I4Ea+/fvx5IlSzB06FDJHobNzc0AWjs0QtzL8NLc3Iy5c+di3LhxAKTPGf0cEPcs0jh06BD27NmDb7/9FrfccguefPJJcd+igIyMDMTExKBv37546KGHkJ+fL+7bMYAQdQqkpqaiuroaQOvAk5aWFuYzEihRXV2N6667Dh988AE6dOjA7hkAmM1mAEBMzNEmLu5lePnkk08wduxYdk/45wwQ9yxSSUlJwdChQ2GxWHDOOedg48aN4r5FAYsXL4bdbse2bdswf/58vPbaa+K+HQMIUafA4MGD8cMPPwBofTDOOuusMJ+RQE5zczMmTJiAxx9/HL169UKPHj2wdetWuFwurF69GqeccgqA1jDtzp07UV1djfLycmRkZIT5zI9dtm7dilmzZuH888/Hzp078e6774p7FgUMGjQIW7duBQBs3LgRo0aNEvctSkhNTQXQKsxLS0vFfTsGENuEqfDAAw9g3bp1OO644/DBBx/AYrGE+5QEHJ999hnuvPNOnHzyyQCA2267DR6PB6+99hpsNhtmzZqF3NxcbN26Fbfccguam5vx9NNP49xzzw3zmQsAYMCAAVi/fj0+//xzcc+igDfffBNz5sxBTEwM3n//ffzyyy/ivkU4zc3NuO6661BcXIzGxka8+uqr2L9/v7hv7Rwh6gQCgUAgEAjaASL8KhAIBAKBQNAOEKJOIBAIBAKBoB0gRJ1AIBAIBAJBO0CIOoFAIBAIBIJ2gBB1AoFAIBAIBO0AIeoEAoFAIBAI2gFC1AkEAoFAIBC0A4SoEwgEAoFAIGgHCFEnEAgEAoFA0A4Qok4gEAgEAoGgHfD/ACPc8dVcn7U/AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd3gU1fp+N9nNpjcSEpqIggiiggVBBcTeK/YGKpafvV0v3Gv3ir13UbErekWxXxsoKghWpEhVaujJpu1usru/P/J8J9+cOTM725JNPO/z8JBsZmfOnPqe9yvHFYlEItDQ0NDQ0NDQ0OjQyGjvAmhoaGhoaGhoaCQOTeo0NDQ0NDQ0NDoBNKnT0NDQ0NDQ0OgE0KROQ0NDQ0NDQ6MTQJM6DQ0NDQ0NDY1OAE3qNDQ0NDQ0NDQ6ATSp09DQ0NDQ0NDoBPhbk7pIJAKfzwedqk9DQ0NDQ0Ojo+NvTepqa2tRVFSE2tra9i6KhoaGhoaGhkZC+FuTOg0NDQ0NDQ2NzoJORepef/11lJeXt3cxNDQ0NDQ0NDTaHO72LkCyEA6H8fbbb6NXr16W1wQCAQQCAfG7z+dri6JpaGhoaGhoaKQcnUape+211zBmzBhkZFi/0qRJk1BUVCT+2RFADQ0NDQ0NDY2OhE5B6kKhEKZOnYpTTz3V9roJEyagpqZG/Fu9enUblVBDQ0NDQ0Pj74y6ujqsXbs2pc/oFObXV155BaeccoqtSgcAXq8XXq+3jUqloaGhoaGhodGC0aNHY968eSlNo9YplLqFCxfipZdewuGHH46lS5fi6quvbu8iaWhoaGgkGc3NzVi3bl17F0NDIy7Mmzcv5c9wRTpZ5t299trLccX5fD4UFRWhpqYGhYWFKS6ZhoaGhkYiuOKKK/Doo4/qhPEaHRIulwsAtFIXC9qCCWtoaGhotD2+/PJLAKldFGW8//77WLBgQZs9T0MjEXQKnzoNDQ0Njc6PcDgMoCU4zu1um+Xr2GOPBdC2RFJDI150OqVOQ0NDQ6NzIhQKAQCamprauSQaGukJTeo0NDQ00gTff/89ampq2rsYaQsidc3Nze1cEg2N9IQmdRoaGhppgkMOOQQvv/xyexcjbUHmV63UaWiooUmdhoaGRhogEAigvr4edXV17V2UtIVW6jQ6A2hzkgpoUqehoQEAWL58OZYuXdrexfjbgsyu/HxqjRYEg0GUlZVh1apVALRSp9GxkcpNiY5+1dDQAAD07dsXgI7yay/4fD4ALQRGw4jq6mps2bJF/N5WSh0pgxoayURTUxOysrJScm+t1GlopBleeeUVuFwubWL6m0ErddagpK2EtlLqdFtopAKp7L+a1GlopBmeeuopAO23oGzdujXm75SXl+vj+RIEKXWaSJghK2ZtteHRbaGRCqSy/2pSp9HpsWXLlg41OTc0NABo2c3dddddOP/889vkufn5+QCAP/74I+bvbt68GQ899FCSS/T3glbqrCGTOq3UaXRkaKVOQyMBjB49Go899lh7F8MxOKmbMGECnn/++TZ5bm5uLoBWxcgptA9ectDZlbp33nkHgwcPjuu7WqnT6EzQpE4jbvh8PkyePPlv7Z+1ZcsWVFVVtXcxHKO+vh5A20f4kd9SrAtZY2NjKorzt0NHV+poM2KF6667Dr/++mtcmwB5/mqrseH3+9vkORp/L2hSpxE3Tj/9dIwfP14chN1eaGhowN57790uKTOam5s7FPHgSl17IFZSEY8PnoYZHZnUjR07Fnl5ebabJ1KCadMSC7T5VcMO//jHPzBt2rT2LoZjaFKnETcoken8+fPbtRwLFy7EvHnz2sXvqqORuo6m1G3bti0VxfnboSObX1988UUA9gSfSF08x6Bp86uGHe69916ceOKJ7V0Mx1i6dGnKkoxrUtfJQaaO3377rc2eOWnSJJx55pmGz7xeL4D2MdWFQqEORepoIWkvpS7WPGmc1Okca/GjIyt1BDuylQipay/za0dui1Tg2Wefxccff9zexejwOPbYY3HMMcek5N6a1HVy0A53xYoVbfbMiRMn4rXXXjN8RpOwFblyuVy44447UlKejqbUEdraD5LaKBGlTpti40dHVuoIqSJ1WqlLD1x44YU48sgj27sY7Y4999wT//rXvxK6x+zZs5NUGiM0qWtjrFmzBps3b26z59Fk2N6khhyO7cqRqoPMm5ubO6TDc1srdaSyJULqOmI9pws6u1KXk5MDQE3q/vrrL5x00kmWfV7lU7dp06YESuoM1BZy8mON1KK5uRlr165t72JY4qeffsKdd96Z0D1oPCQbmtS1MXr16oXy8vK4vz9o0CBcdtlljq/vCKQu1SkxOpr5ldDWpI4WsESiXzsyIWlv/J2Vuttuuw3vvPMOlixZ4ui+X3zxBbp27YoffvghgdJGB7VFZmZmSp+jYcSECRPQs2fPmA++T+f0SvLGhMZDsqFJXTsh1lxghAULFuDxxx93fD11pGjpBlINInWqcqSavHRU8yuvlyeeeAJ//vlnyp4ViUTiVuq4H11HJiRtgY8++ghvvPGG8m+dXakjv1oVqaO+7narjyOXF0TyEV68eHFc5XQKmrcyMpK7VP7666+ora1N6j07E2bNmgXA2brFiV88pv22ghz1rUldJ8PKlSvb5DkdQamjhSCWXdY111yDPn364Nlnn7W9jgZ8e7+/U/BFkZO6Sy+9NKXRXfxZsZIK/l1tfrXHUUcdhdNPP135t85O6uhvqoWX/mZFnmgemz59uuH3WJWcWEFtkQip++OPP3DEEUfgm2++EZ8NHjwYp556asLlay+EQqGU+jV6PB4AzsQPvqlM13n+l19+QVFRkeEzTerSBFVVVdiwYUPM31u1apWh8yWqTjnd5aULqaPnq8oRT108+OCD+PPPP3HhhRfaXkcTT3u/v1Pwcsr1Eu9iv2XLlqiBMomobYkQwnRDKBTC119/3S7P9vl8KCwsTNs6rK2tNSlmMuwWeuonqlQO9D2ruYD+3rdvXwCtZK6tSJ3f74fL5cIvv/wS8z1mz56NTz75xHQyzK+//pqMIrYZeNscffTRgnilAvGSuljWks8++wzvv/9+7IWLA6q21qQuCn788UeMGDECo0aNwimnnJIyk163bt1QWVkZ8/f23HNPkcsJiI/I8AnVabBFKBSC1+ttd1JDCo4q5UUqza8djdRxc8N7771n+Fu8ztq77LILdtxxR9trOJFIF1IXDAZTanJW4cEHH8SoUaPiOv82EYTDYfh8PnTt2jVtSV1hYWFUf14npE413mluixYoQSZcInPnn38+li1bFqXk8UNuizlz5sR8DyKxstqXakIaL7Zs2aJsB24+/OSTTwC0BAyccMIJBitLXV1dXOSXg0idE/GCt1Esa8mhhx6KY489NvbCxQHV3K0DJaKgR48e+PTTTzFz5kz07dsX7777bnsXyYCtW7di1apV4vd4iAz3N3Fq5gqFQsjPz0dTU1PUXXYqYWd+dVIXS5Ysgcvlws8//2z4vLS01PZ79M4dxSzISd0TTzxh+Fu8pM6JshyvUnfFFVfg5ptvRlZWVszfjYbLL78cffr0Sdr9nGD58uUAkuuDGggEsGDBAttr6uvrEYlEUFZWlrakDgDefvtt27/HS+qiKXU0jt1uNzIzMw2E6KmnnrIvdJx49913TZvnaOrUVVddhTfffNPwGZE6ef5NV1JXVlaG888/3/S56iSQSy+9FO+++65hvJx55pkYMmRIXM8mRZTUcidKHR8v6Xocpsp8n6r1uNOQusrKSiFnejwepcNtIBCAz+cz/GsLhEIhhMNhwwThhMgEAgFMmjRJ2VFjJXVA6tSq+fPn4+677zZ9zictKq/K9OKkLubOnQsA+Pbbbw2fd+/e3fZ7HU2psytnsp21OeJV6h599FEAEH0smeSZnKXbMqKN+ouVw348uPLKKzFo0CBDvUYiETQ2NgpFkNq9pKQkLUkdtYFqIeKf2S2qtHEIBoNobm7GU089Jd7Vqfk1MzMTHo/H8MxUmAEbGhpwwgkn4Pbbbzd8Hu1ZDz/8ME477TTDZzKpo7pM50jNjz76yPSZitRRu3BFLRGzMinzNB5iJXVtkTEgHjKu2pCnSmjoNKSOsGrVKnz++ec4+uijTX+bNGkSioqKxL9evXq1SZloMouV1E2ePBkTJ040meEA5wtvW5C6oUOH4p///Kfpc15G6sB2E4MdrKLjoik5nNSl8yRKsFOIUknqqI+63e64SAX1sWQSEpo823L3Tf0smXnJfv/9dwAtOSoJfr8fffr0wc4774zGxkYxNouKihAKhdKur1L/UC1ofC5zqtQ9/vjjuOSSS/C///3P8D0nSp3b7U45qbM6wkn1rNWrVzu6l+wHmI5KHZVJtamh9+B/o3ZIlkDy119/GX53Yn6Nx6cuEZUsHuKomk9StXnrVKTO5/Ph7LPPxgsvvKAcfBMmTEBNTY34F20wJgvU6fik7mShogGmYvTppNRZlYUPNrqmubnZ5FfnZJDQNfIuPdrix3fHHeEIK7s2cko0ZsyYEbOvCE0w8Trqp4LUUdvGM4l+9tlnQkWMBdHIRTwgPzC+YPl8PmEWb2hoEO1eWFiY9OcDLWdjulyuuMkitasTUhcOh5X9gK4LBoPCjEtme6p3qzFK45iUOj7ntCWpk+tv0aJF2G677fDWW29FvRe9Q1tF7jrFokWL4HK5sGrVKtEPVaSONuTUn/lnnNQlokTKPrSpMr9u2bIlpnJxxLOOqOrC6Rq+fv163HnnnY7rs9OQulAohDPPPBM33XQTdtppJ+U1Xq8XhYWFhn9tAep0nNQ5mbRpYDU3N5saNJ1InRVUSh1gVuuc1AUN1gsuuMDghBttEPO/dwQTrJ1S55TU/fTTT/jggw9imlRpoiooKIhKzCKRiCnpa3Z2NjIzM9OG1B166KG44oorYv4eJ3Xnn39+UhQ7Ii48+IIrEFypozkp2RuQu+66C4A1WYkGGr9OSN0FF1yA7Oxsy+uCwaDo59RfnAZKZGZmwu12G8YJ1W8yYVVPcv+uqqoC0DLmot2L3iGeFE6pBJlav//+e1GvKqJM8zavbyJdKvIVD2mVU32lyvxK7RYPnI7NSCSCm2++Gb/++qvhO2effTaOP/54x2v4Kaecgn/961+Oj2DsNKRu6tSp+O6773D77bfjgAMOMDmrtidUSl2spE4mL8kgdcnIlccHrixpq5Q6IDFSBwB77bWX8nMVeJk6AqlLhk9dU1MTIpFITASLrnVC6l5++WXss88+mDdvnvjM5XLB6/Xik08+SVqaAOpbsZC69evX4+STT477mZzUySko4gUtgjxRLl+s/H5/ypU6WhDiWcyCwSAqKioAqM1WMql74YUXlPfh5lfqy9TX7IIo6L5Aq1LHSV1bKnXy2KCTJuzmISulLl1IHZUjIyND1KtKqaO/8XmIcg6qyFc8bhNy1DkFLtkhHqWOyh2t74RCIeE+QXBK6v73v//htttuw0MPPWRY/x566CEMGTLE8RpOvsVOTdydhtSdfvrp2LJlC2bMmIEZM2akVWLHaGk8/ve//8HlcmHdunWGa1JJ6n777TfssMMO+O9//+vsJSzAy2GXV41fJ0+YTnauqsk+Ly8vJqWuI0TAJkOpo7qKJYKT2qRLly5RSR1NvPzM10gkAq/Xi/feey9paQLiUepuuOGGqBGadkil+ZWTOp6AV6XUpcrhO54cm1xVjKbUWZ2Wwa8LBoOCDNHcaFfvW7duNfnUtSWpKy4uFj/LY0NW31Sg+pOvTRfzK40zl8tlS+ro3WWVGUgeqaOTQgjPP/98VIXKqU/drFmzxN9pLYjWdx566CHsuuuuhnNonZK6zz77DACw/fbbG/pNTk4OsrOzY7ZqOD0to9OQunRGNFJH6VfWr19vuIaTOrmzOiUo4XBYkDo+EZJKZ3XWolPwewaDQcNEJZO6goICAPEpdar3zc3NRXNzM6677jqDesfx0EMPiZ/TXan79ttv8cgjjwBoIawAcPHFF4u/J0rq7EhzdXU1AKCioiLqZKNymg+HwwZfm2QgnkAJnrU/HnDiQUjUpExK3aJFi7D77rsDMJKrVJM63k7xKHV83KiICK8rWsgA8zvwupWVOitS9+abb6JLly5ivsrMzERWVpahb6cigIiTOkp4zMtLoHJ0BqWOkzoV2eHRyzJUpC7WYIS6ujqsWLFC5G8jNyqam6zgxPy6ceNGjBgxAuPGjUMwGBR9Ohqpo6TtfG22I3U+nw+XXnop/H6/UBmbmpoMZczOzkZ2drZpTdtjjz0wdepUy3vTaSrRoEldGyAaqaOdj+wbkgxSFwqFxPEkvFNQJ0vUH4UTNLnzyse3lJWVmb5D34vlOYScnByEQiHcf//9+PHHH01/b2pqwmOPPWYoQzpj//33x5w5c4R/GgDD0TKJkjqrhWfcuHFC2S4tLY3aHvR3vnOMRCJKP6pEEI9Sl4gDNKAmF4meJ0lkd/Xq1Rg6dCiys7MNJ3z4/X4xnlPhU/fKK6+In+MhdXzsRSIRrF27FkOGDMGmTZsAWLeP3P/onXjOzGik7qWXXgLQqgpnZmaipKTEQC5TER3NfUZLSkrEz7GSumAwKOYmp4ESkUhEOZ+lCpxcOlHqVFAFSsTaLuSetPfeewNozUEabd52Yn6lvvfqq6/i4osvdkzqaP7lxNJuPnrqqafwxBNP4OOPPxZjPBgMGsrocrkEqeN1//PPP+Pyyy833I8/9+abb7b13SRoUhcnnHRYGiBOSZ08aOxIXSwpTbp164aDDjoIH3zwgen7iaorfOKWSZ2s1HXp0gVA8kgdKXVWkBf4ZJG6NWvWYPbs2Um5lwq5ubli4ufBPLH41AHm9/2///s/5fVTpkwRP8vRxSrQffmEk0qlLhZSl2jSYJVvV6Kkjm+c9tlnH/Ts2dPgK5RKpW7NmjU499xzxe8bN26M+R587IVCITz99NP45Zdf8P333wOwLqvVOA8Gg+JnmdTJcyWZ44j0ZmZminlEvm+ysHz5ckPeTbsTU6jdrMrAx5asPFuRutdeew177bWXwWc1laBy8AAWt9uNrVu34oADDhDk3W6joRojsSp19OzddtsNAMQmMdqYdqLUcfI0Y8YMS1InvyOROr6W8GtktZXq0uVyWZI6oGXdjUQipvLK9+YbCrv349CkLk5EI1UfffQR8vLysHLlyrhJHS3i77//Pu655x7D32JR6jIzM7HvvvsqJ6dElTrZ/Gql1HFSZ+VTZweV43JbkzqauPr27Yvhw4cndC87lJaWivfipM6pUkf1Lk+GkydPjvrdzMzMqJMx1aus1HFSFw6HEzYvxUrq4jk1Zf78+YZkqVTv3F8wmaRu6NCh6NWrl+FoKwqUcLlcwlUiWURFJg7xKIByP5o/fz6A1rMrnSp1nDDLJI7Gt3wvUm8aGhqQkZEBl8uVclIn11EwGMSee+4JwFqpa2xsVJI06kcnnHCCY/MrpdrigXWpBJXD7/cbSN0777yDmTNnCvcgq75TUlJiWI/iVero2TS3ko95NFLnxKeOXxMKhZRrwQcffACv12uod5rT+GaI30t+R3r3mpoa0acDgYCp3xBhpXpTRX+rOIaT+U2TujgRjVSRb08ipI4acObMmXjwwQdjej6/B0WM8XLQMxM1XSSi1B1wwAE4+uijU6bUyUf8JELqXnvtNRQXF2P9+vUx+1iFw2FHiyktkllZWeK9kml+dQK32x21T9DOnSt1kUhEmIyBFnL48MMPx/x8jljNr/GYXnfbbTcMHjxY/E7vft5554nPkmV+BVr8hHr16qVU6nJycoRykCzzq9yW8SRdlcce+bdR/0pUqQuHw2IBtyOI1L9kUudkDvv9998dma5U92tqasK8efOwyy67WJI6n8+nrNtgMIhu3boJVxEguvmVNgFtlVeTnhMIBAykjsY3BYpYlad379625/k6BT2b/KNpPkym+RVoqXe6J7+e3JO4vyvd24rUyf2B5ix+D5VSR+Ocni9HgQPq+dvJGqZJXZyIVrnc+VQl6apInUzU7AZFPKROZVKKh+gEg0GRtkJW6vhErgqUyMzMFGWfOXMmPvzwwzYzvyYS/Tpz5kwAxsHt9LD5a6+91pFpkgJJuAmUR97Fan51SurouYAzpY76q6zUyX3ptddec/R8K8RK6uIxLcpQPStRUsfJrtfrRdeuXQ3RdKTUZWdni8k+WeqTPPfYjZfGxkb07dvXdL6yVT+ycy9RfY+TOr6YbdiwIWrUsR2pc1JXu+66q1DbosHKJOb1em1JnaocgUAAWVlZhnEVzfyainOUCapn0rjlSl1GRoYgdTR3ye08ffp0TJkyBVlZWcp3j1epKy0txYcffijmDyfmV5obnSh1nNRt2rQJX331FYDWTSpfJ+hnPrf861//Mjybg+qX1L5u3bohGAya1h5yrbJyQwDU7+1kTtekLk5EIwi0IDU2Nho6VI8ePZCTk2NI40ETvFUHkZGRkeGIoEQiEYTDYQOpi0Qi2LBhg1io4iE6t99+O4499lg888wzePXVV8XnTU1NwrEZMJtfs7OzlRPjSSedFPWZPB0EoS2VOmrP119/XXzWp08fR2kJrPJ2ySDTG/fz4AtYMkhdtInWCamje8g+dXLSb6cpG3jSU9X3EyF1diZgVX9IBamT65Oi+3g5SKmjBT1ZpE6OurNr261bt2L58uWG5N6AeUNFinG8Sl1TU5NhMXOSv7OhoUEshPEodbGA5q1jjjnG8LsqDQUndapyBINBE6mLZn4lEpVsUjd//nxkZmYaIpQBNalramoykJxNmzaZ0l/tvvvuOPfcc02CASFWpY7KkZubiyOPPBLbb7+94XMrBAIBkS3AiVInm18PPPBARCIRZc49agN+/ddff236O4HalNTs7bbbzlapk0kdnzO1UtfGsCNDfr9fOBH7fD7RoWbNmoX58+cbBsGsWbOiml9lFBQUOCJj1EE4qXvwwQdRWVkpJlKnRGfGjBmiw5JCddFFF+Hll18W1zQ1NeHHH3/EoYceKt4nHA5jyZIltqSOsGzZMmHa4/jrr7+wdOlS0+e5ubkG3ycZqSB13IEaaDlrOBqcLtCc1JEqEY9PnR2pU5mgqJ9VVFQ4Mr/S/XmS4UgkgjvuuMNwnROfulAohH333ReXXXaZ6W+x+uaQMsvPdLb7LvdrI6jGVaK+mPI4lqOEKfqVm19TQeoKCwttF1qVqQkwkzPqV9FInSr6NScnx6DUBYNB4UOWmZlpq/rFq9TF6ttJ96PzrOl3O6Wuvr7eUA6KMrYjdVabHiKvyTa/kuP+7bffbvickzoyGwaDQQOpO/7440055GgDYkXq4lXqaHw4DZQIBoPIzs5GRkZGzEodYenSpeJ9+SaO2tuqLazW7JUrVyInJwddunSJyfzKwd97xowZADSpSzr4ILQjVf/+97+FT53P5xMNtvvuu6OkpMQwCL7//nvReZ2SusLCQkekjr6fkZEhJHI6QJt8WJzc57vvvsPo0aOFCmc3cOrr68WkGwwG8eijj6J///5Yvny5SLpo98xRo0aZPiPHbAKlRsnJyTEQN3nyTmaghNXCsGjRIgAt9Uk/y1BJ6yoQqTvyyCMxbtw4AEZVJxmkbp999lGa5K6//nosWLDAkVJH9+c72nA4jF133VWYqQFniyndS0XaY1Xqampq4HK5xOkHgH2d08LL0zeoJtdo7fbVV18JZ3IVYlHqku1Tx+9TWFho+y40LuWNldyPaNGLRamjSL/c3FyTT92mTZuQkZGBysrKmMyvw4cPx8CBA03fmTNnjoj0nzt3LnbZZRfLd1aB6oxSajgxv9bX1xvqtlu3bti0aRMCgQC8Xq/S/GoF+nuyk6VT2eVxyUkdbdSCwaBI+tvY2IiFCxea7mdF6uj+8fjUETkDWua7nJwcR0qd1+u1JJf0PgQVqZs7d64IbFApdVb3teoPK1euRGVlJbxeryB1e+yxhyDWsvlVlbSbl3HAgAGmpNtWMCej0bAEb1g7hYifDOHz+YScrhoES5cuxYABA/DLL7+kjNSRUhcKhcRES2TIyX1o8eO7OBWamprQ0NAgnPsDgYAhsjCaUgeokyHLySdpcidHWv58HmmYCqUOAB5++GFceeWVAFpI3RFHHIFevXopIz6bm5sNOblU+Z/4M4455hhMnDgRTU1NOOigg7DDDjuIvyfLp666uhpdu3YVv4dCIfTp0wddunSJidTJZQdakyYDzsyv1JdUhDVWnzqfz4fCwkKDj2BTU5OJRBGInPA+o+rb0RbhAw880FBeGVSft912GwCzUqcidalQ6goKCpKi1Dkldbz/1dbWIhwOo2vXrqipqTEoFE1NTfB4PCbfLPmIP9n8mpWVBY/HY2qfxx57DH/88QeOPvpojB071nKzZQXqA3IkciykDgC6du2KLl26oF+/fsjMzBTjIdr4oufzkxuSASqrPNZoXqytrcXvv/+O4uJiBINBQXL8fr8yuXAqlDp5Ts/NzXXkU5eVlWVrZYhG6rZt2yaeY6fUyWPcqj80NDSgvLwcWVlZ8Pl8CIfD2H777dGnTx8ARvOrz+cTqrDqXkDLvOqE4AJaqYsJvOP+9ttvuPjiizF37lzTdTy3TE1NjegQ1JB8ECxZsgQ77bQTvF6v40CJ4uJiZeCADJnUAa27ECKlTjoJlZUmVStSRnmO8vPzkZWVhWAwaJhArDJpc3BzI6Gmpsaw8FqROrlcXKlzu91JI3WcEBHhtCIwJ554ovg5GoGmSLmMjAx4vV6cdtpphvrjP0+fPj3qBGY1GcrH7lAwDdBST/GQOnp/p6Tur7/+QnFxMf766y8AySF1NTU1KCoqMpTB7rvUdtyHkfeh0047DSUlJQkTrFAohCFDhuDGG28EYCR1NO7r6urEuIlW7ljAFzMegamCU6WOriOTo4oIZ2dnizkqFAqJXHm9e/c2KXXNzc1wu90mciCfFy0rdR6PR0koamtrRTvKChO9/+23326prtL9qC3Gjx8PQE3qaE6Rza+ELVu2ICsrCxkZGSbzqxXkNC/JghUJl4/6IlIXLV2Laj0DElPq5Dm9rZS62tpag38kvzdgfTaxFakDWvoprYNkhidw86vVPMnvlZOT44jgAprUxQTeoD/88AOefvppnHPOOabrODEhn7qsrCyxcPHOt3z5cvTt21c5YVgNii5dujjaxTkhdU6UOior3UPuWFxKpoFJ7yOTOvrcToWUUV1dbYgCtSJ18uLClbqCgoKkkTru0xPNmZn7nTk5fssubyDV5Y8//ojjjjvOcFoGRzSljpM6mlCoDTMzMx2Zh8g0RaD6IXWDrlO9w6233or3338fNTU1+PTTTw3vxhGr+ZWUOl42u+/SjtwqDQ8RDav6WL9+veEYNytw0gwYSV1RUREaGxsFqUu2+ZW/T7S2tVPqunbtavKZvO+++5CVlaXs13l5eaL/LV68WBCo7bbbzhQoQaRu+fLluP/++wXR53OTyvzq8XiU6kxdXR2CwaByjqF586abbsIJJ5ygrAe+CY9EIrj11lsBtLSbPIfwEyWsxptV9KsVUq3UyXM+V+qAlrbjpM5qjaC+6na7HSt1zz//vOVpGY2NjXEpdcFgUJC6eAIlgJZ3p02InVJH73n++eeLvy9YsAAfffQRAKOqXVpaaknq+JpptRbKR+FppS4FoA7TvXt3EQGzePFiw5E/gHEQcFJH4KSuvr4eRUVFysiqVJA6CnKgd3HSSeRnyWZNUibJpy43N1c52XOlzkpp5KYzQnV1tSFfG03usllNXgi5Uuc0uMQKfDfFiYv8TPm9eLtHI3W047QCER+qfysXAOpbVm3LSR3vI/S/E6WuvLzc8BnVT7du3cRnKpMNALz44osm1SIZpI6UOl4GJ0odP66Ht5EVaSB89913ePrpp6OWKxqpo/HASZ2q3NXV1TFvTHj/jNa29O6yUldTU4O+ffvikEMOUX7vjz/+MLTfDTfcYFiMeT8lpY4HShCpo7JR9C0fr42NjaIO8/LyhOnVTqlTBTH5fD5HijlgTsxeWFho6tPkBwYYyQA/vcUqUCLa89uC1DU2Nor6pueR3yP1NflMcgK5gziNfl2wYAHOP/984bqiKp88p+fk5FiSOsqLys2vTpS6pqamuJU6us/OO+8MoMViMmjQIBx11FHiHQilpaXCp85KqVOROpqL6F50ZJ1W6lIAati+ffsazlCUUzlw2by6utqW1NHfnCp1H3/8MUpLSw0D/ssvv4TL5TKRLb5gWylATogOLX5EWGSzACkjslInEx6u1FmROlmpCwaDmDVrllKpk98pmlLnxGRtBT4J8IlHbjNO+AAYVKNElTpKUfPmm28CsD7iLRaljhbXWM2vFKxCJkWaiDh52bJli0HhJJKWkZERNVcXv2cspK6wsNAxqeOLsN/vRzgcNlzvdrsdRQNHg0zqeP8pLCxUKnWqcpeUlGDkyJExPZv63NixY6O2LTe/8nbbtm0bSkpKLM/2/fTTTw1/u+uuu5CXlyfGG58rS0tLTXnqiNQRqK7kfGF0DZ0qYafUBQIB/PHHH6ay+nw+A9lT1bNsfiUUFRWZ0tuQ7xRg9P3t3r27+DleUhdtvrr88svxxRdf2F4jlxUw1uvnn3+O6upq9O3bV8zrslL3zDPP2N7XqU/dJ598AgAYNGiQZflUSp3VRmb//fcXYkgs5tdAIIDGxkaD28XmzZtFn+drq5VSR+IDberI5cNKqSO/UQI3v1olCG9oaIDH4xFn4WqlLgXgpI5DHqR1dXUYPXo0xo0bhz///BNbt241Sa/cRk+kzolP3dChQ1FQUGDoeN999x0AGM525d/nSp2MeEidTE5IRfP7/SJnkJ35NRal7u6778bs2bMRCoXw3HPP4eabb8aTTz6JAw880LBQyuVqbm42TLIyESaMGzcOl156aZQaMPs3EFRmMl6OWEy10Uhdc3Mz3njjDZH3zmqRjYXUqZQ6JylNiGTTbp2Ts0mTJgFo6Q98EaS64v5F/KxEGfS3c845x5Fq4fP5UFRUZFhQnSh1gDmfJNCq1DlZKOS+yOFEqaurq0NeXp4pKk5GrOeBUp977rnnHJtfqTyEaKRu3bp1pr9xVYGTuqysLMO8RqSOz0+qJLCAsY7JX8lOqaNcYRw+n8+QNJwngSZQu8pBTdFIHf9bXl6eGBt20a9DhgzBcccdp3x+tHH42GOP4cgjj7S9Ri4rYNygrl69Gh6PB7vuuqul+RWw79+y2dMqFVG0ZO1WPnVW8xgpWJzUNTc3IxKJ4N///rfh1BZ5bNfV1RmepTpFAmjtg7JSR5t3qjPqv7xuqY9SMJCVUifXEz1DNkdrUpcCUMPuuOOOtteRKaVHjx745ZdfcM899xhUFZ4ImBi8U6XO4/GYSB2ZPyk3nvx9TupcLpchitJJJ+Gk7rvvvjMMAKBVXaNJjcyv3CEaaDW/2il1svpEUviKFStw3nnn4ZZbbsEhhxyCL774wjTp8oErR8yWlJQozYFTpkzBE088YfXqAry80Ugd+QQBRqXOikD/85//xGOPPRaV1IVCIUO7e71enHjiiXjvvfcM18VD6rhPnZPkw1w1AVp9TOh9yD3huuuuE2oC9W+u1FFZZVIXDocN40FOT/Prr7/C5XIZFmVS6vbbbz/xmYoc/etf/8I333xjyLHY2NhoGn/RfOqo7SdNmmQIzpBhR+pkpc7lcpmO9EsEwWAQHo8HGRkZjs2vgNEEu3XrVpSWllqSui1btpjMZlyp27BhA7p06YINGzYYyBsteNSfaBw6IXV77LEH+vXrpyR15FOnGu+1tbWG7ARWCag9Ho+pTxYVFYlIRoIVqeORzHZK3S+//CKOpyJQ28ttNX36dEPiW8B5gm8qK2Cs1/Xr14vUG1yp40eGAcaTbWQ4Nb8SybYaTz6fzzSO7JQ6AvnU0QZs7dq1+M9//oPrrrvOcI38LBWpKyoqUvrYWil1BKpT/hzZp473fTufOh7oxsuoza8pgB2p4wslTdA9evQQn/GfaaHgMr8VqevSpQseffRR8Znb7UZBQQHq6urEgKbByDv//PnzBQHgpM7tdhsGjpPzMmmSraurw3777YdwOIz7779fHK9CHZyu44ESMhnyer3Ct0LGiBEjTJMDpfSQSRq9CwcfUDJpLCkpSchHxUqpo10YB1cIeF1bKXUzZszA7NmzHZE6/uysrCxMmzYNJ598suG6aKSOL3ayUud2u4WZl7Bo0SKhEIXDYYTDYTEGdt99d0QiEdxyyy2GZ5AJ9LnnnhMO9jx9CU3sVhF+GzdutExvAbRuYPiCSIES3bt3F+WV2yYSieDOO+80mTFVSl008yvdOz8/31bxtiN1OTk5huhXQL1IxppAl8D9NJ2aXwFjsIRKqePWikAgEFWp69OnD7p27WrYtJWUlKCurk6QuksuuQRdu3a1JHV8vL/44ou49dZb4Xa7DemgIpGIUOpUfau5udkUgCFDXoAJRUVFiEQihvtamV/56SBE6mJNaSL3u+OOO86UxzNRUldVVSVIHc2ZeXl5CIVChnvHQuqiKXVWKvTSpUtNa6uVUiebU7lqS3lNuStPMBhEbm4u3n77bQAt5J7PpUTqyD2A35uXWVbqAAg/8UgkYknqrJQ6lfmVkzpexu7duyt9zmVoUhcDqPJ79+5t+hv5OQGtpI6bgSorK8XP1Pl4VKlVoERmZqbpu9Swso8bHyy77babUCw4qcvMzBQdsry8HH/++WfUSYZIACdKubm5QiEksxEndbQL5xMgKXUrVqwwRUBdd9116N69u2lhpYlFPtoGsCd18u6uuLjY0nEfiO6UbKfUyfflZoZgMIjhw4cDsCZ1pFZEC5SQfY+szsuUSV1GRobIpQYYFxXZp47+59cMHDhQ+HXQvQcPHozVq1fj+OOPV5aV91lKBqxS6qjeZVVEdnKXCQctMjwPYl1dneH8XP5+BLl/0TmOKqUuWqAELf7Z2dkIBoO2eeqsfOrIpGJF6pYvX46ZM2daEvSlS5fi4IMPNvnT8jLSYuLU/AoYlToVqRs2bJjhuzKp40rd0qVLRX4uvsnp2rUrtm7daujXxcXFpnOpyb1DZQIMhUL466+/RDuSv14wGERtba2pXORcT1CpQFabKyoHV+QaGxsdKXXc5cAqKpwSd1spdSpEI3WzZ88W11AfCgQCoq+SUpeVlSXaS0UceJouGdGUugsuuAC9evUSqrrq/f1+P1asWIEBAwYYPrdS6ugUEnofUuqam5vx+++/AzAHtGVnZwuiV1dXZxiHJG6UlJQ4Uupyc3PFnEUprmhNHzduHB588EGMHj3aUqmzC5SgZ8nrwQsvvIDnn3/eVBcyNKmzwEMPPYQpU6YYPuPK2saNGw0L7LfffgugJZChqqoK+fn5hp0CN3nyhqbfrZQ62R8uMzNT3JfIhEzqaMCSesgDJbhSt/POO6OpqQlr1qxBJBIxDBQOuj8nNryz0QTGza8UKMG/Q752Mi644ALcc889ol44mpubkZeXh4MPPtj0PZnU8fqTF0EynVhBjmCWYRcoYZWsdcuWLQgEAqK97PL70UIUTanj5MbKRMd3eqSscTWPT6oqnzr+uQy+EenZs6dlWfmEKvticlJHfUsmdXJf5O9dUVGB008/HYCRQFPkNZWPl1d1nz59+mDMmDEA7M2vdj51WVlZlifCEOyUuuzsbHEYvIrUDR48GAcccIDl+bP33XcfvvjiC5SXl5tOXqEy0ZiTza9z5swx9CG/3y/qj0id3+9HY2OjidTtv//+hudYKXWRSATz58/HrrvuKj4ndO3aFdu2bTOROlmpsyN1NMeR/5TsCyin3pFJnYosy6oKQSZ1kUgEDQ0NImiIfEkB5+ZXjnvvvRdAbKTODgsXLsTw4cPx5JNPAjC+K9UBV+roM55pgPqknUIULVDiueeew5o1a0z+aRxLly5FOBxWkjpVG3HLmBwoQXM5v0Yeq5TsW0Y0Uiev2UDrptXv96OpqQkVFRW46qqrhA+5Sqnj5lerjafsa+oUmtRZYPr06eJILQJf0MrLy4V6AbQ26JFHHonVq1cjPz8fo0aNEqYnPpmRT5xsflUFSsikzuVyiQFGKgdNZFZRU1bmVxpAK1aswPPPP4/ttttOSexUx6dkZ2ejb9++2HnnnXHllVciKytLTMZE3hobGw2L7oABA5Skrm/fvnC5XJakzuoUBvpcldtL3t0VFBQoSR0Rrs2bN6Ourg4///yz8lnUNr169UJmZiamT5+Oww47DMFgEA8//LDh2qamJixevBhlZWX49ttvRXtZmegoLD8cDisXk8GDBwNoqQv+XlYkgit1tDDwCUxF6rhPHf/c6t5OJptHHnkEO++8s+iP3PxKE7WdUsfLbFV3/HsNDQ2ib9P7jBgxwpBklt+nvLxcPIOCfIDWDQtX6hobG5WKKPnDAi35A++66y5TGaOZX0llowWUjwMae5zU/fnnn0Kh5Ist9xUj8I0CN78GAgEMGzYMl1xyibg2EAggPz8fubm5ol0oHUlpaamhzfv374/169cLcpeTk4NNmzaJDQ4pdevXr8fWrVstSZ3f70dtba0jUqfqc7Rwk3LLFfetW7eaFCYiddQeVkqdlfkVaG0LUlm4Kk2gdCuAc1JHZxEni9RRW9CcTonhgda6XbduHbp162aYdzipI1JsZ0Fw6lNnFwBCmwgeuQ5YBwdwUzf51AHA5MmTRWAOV695lgmCHJQBGEndH3/8IfLI0vtRf6MTUIBWpe6ee+4xbcyjKXX8xCFeVqClf9mdQGSFpJK66upqvPnmm3jggQfw4IMP4o033rA9TiudoVLO5AWNFLGSkhJxKDehV69ecLlcmDBhAm666Sbcc8894m9FRUUi1QndT/W8cDiMzMxMU8NSJ6LkszSRUflk8mJlfiWTyLp168RB73KOKqB1YeFt6fV6kZeXh0WLFmGXXXaBx+MRA438SaZOnSomlCuuuEKcQSuDFmb5mCDAGamj9+GkjkjDWWedBaCFvNXW1ppMZETq1qxZg1NOOQV77LGH8ll+vx///ve/RZqEY445BhUVFfD7/XjnnXcE8aIy811iNKWOOyWr6mfGjBk4/PDDEQqFDLtWu/xNGRkZaGhoEBMon1DslDqqUyszHX3uZLK5/PLLsf/++4v+w5W6aKSuqqrKMMHT2JLNTfQ7qZ2yUhcOh3HCCSegd+/ephxl5eXlYpInYg20EiXuU5ebm2sIwKBn8t3//vvvjwkTJpjqwYrU5efnIzs7W4w5rtRR25HCv2bNGvH9Pn36iP7GrQGqxN1WSh0tlJQ0lV/L1RGaSwoLCw1t5PV6UVlZKUh0dnY2ysrKhCmS7kEmt+233x6A0fxKCge3etDcyMtIJEP1fmQ2I1LHlbotW7aYSB25OdDnVv5aTpQ6+q6qXKTyAsbo12AwKNRhGVakLhQKmeblWM5VpnLU19cLkkY+pFVVVejVq5eB7HD/ObrezoLgNKWJXd5JqzQyVkod3+TU19cjKytL9CcKzOL+4vJYBcx5TgGjT91nn30Gj8eDsWPHCmJGuRr5WkXP/c9//mNKXRLtRAk7pU6+l1MkjdQ999xzGDp0qLDhh0IhzJ49G8OGDcNzzz2XrMfY4rrrrsOIESNw5plnJhw9piJZ8oJGA6u0tFTkviGMGDECQMsCduuttxoOGSe/kXjMr0DLLvmwww4TPhiyUif7h8mkjiZWWryi1ZVKqZN3bnxxKigoMPx95cqVQs1SqQn8pI1YlDpaKFXvQW1x3333oampCYWFhYhEIthtt90M70EkYOzYsfj4448BqFUhv9+PsrIyU6DC3LlzsWnTJhx77LGGMvOBmiipKyoqwoABA0yZ0K2CDOh9OanjdRirT518b8CZUgcYfas4qbPKeUiQTxFZs2YNNmzYYNq1y/6D1Lfl8q1atQqbN282tG3Xrl0N70vlo+fKPnVz587FXnvtJTYqNOnKpke57qxIXWVlJXJycgzzCNCy2Nx7773Yb7/9BJFQ5Vzj7wuoibhM6uTD4nm6Eb/fj+zsbMNCSu0j51+ke9L4sfKpozqlv8tKHWAkdXyxrKurg9vtdkTqZOsFYK/UURtbRb+qxiGVnb5DdaRSfLiSw5U6+Yg+Duo3sqI1YcIEw9GE/Fo78LEaiUTw559/ol+/fgBa2nrdunWIRCLYbrvtLJU6fs4uABxxxBGm58hpf6IdE6bqp1bzihOlrqamBl6vFw888ACA1j6gUupUpE4O3qE+29jYiLy8POTn56OpqcnwTI/HI67ja7vP5zO8A41pyjlHsIt+5enO2pXU3XPPPfjpp5/w4IMP4rrrrsN1112Hhx56CPPmzcPdd9+drMdY4ueff0ZVVRW++eYbDBw4UES5xAsnpI52Hl26dDEpdf3797e8N+1GnQZKqBp25MiRYkKWferslDpufqVOzQdkVVWVISUHv78c9MBRUFAgIoj4GZZlZWVilw607kY5aKKJ1/xK6sDGjRsxbdo0AK0Tb25uLtxut3jX33//HXPmzDHcX8ZFF11k2IhEIhGx4HFQeTMyMgxRaTKpy8nJgdvtdkTqrMwctCDzXStvD37vpqYmFBUVoaGhQbSt2+3G6tWrsd9++8XtU8cjtuMhdSrzq5VPXU1NDYqLi4WLw9ixY1FZWWlyLaDy0OeyUidfy8doWVmZQZmcPXs2gFZSp/Kp+/HHH4U5V2XSAczqj0zqsrKysP322+PBBx8U/TIvLw+77767KBfQkocrGqnjZfvyyy/x7LPPGv5uZX5VbVyIAPKIQ6rXaKROVj2IGNJzVKSOFsNNmzYpU+pQ8AgRM042CDQHy5kAgBbCx33qMjIyBKmjSPxYzK9c1QWMpE723eNKHSd1TlJSyEodD8IjOEmITeX0eDzYuHEjqqurhcLr9/tFMJITpc7r9WLTpk1ifuWgMRIMBg31qSojtYEMLnBwOFHqiNTxPlpYWGjKkSmTOvqZt11BQYEhX6PX6xXzPCd1WVlZos/x03XkpMY864V8fjllAaB6ohRLaeNT53K5lLvuuro6ZWLRZOP777/HoYceCgA4/PDDRUJejkAgAJ/PZ/hnBdUxV/ICyM2vPp8PZ5xxBgBg5syZtu9MCy5XZ+x86lSkprKyEps3b0YwGDSROpVSxyPgiNTxDks46qijDCQsEokI2V7OkcaRn58vSCYPiJAne0olsWzZMmzevBmLFi0SEZTxkrrtttsOAHDxxRfjxBNPNJAkej5fEPgzVBPPSy+9hAsuuMBwTTgcNpE6esf+/fsbJkJOfui9VJsEXh5qQyszB18UBg0ahP79+xvGGyc7ROq4H5jb7UbPnj2Rm5tr61NnZ34955xzhM+h08kmPz9faX6l8lqZX+nIL1KjCfIEz4NCAGulDjCTuoKCAvG+oVAIV199NYDWvmKV0uSZZ57B2rVrlQuFqowyqXO5XFi5ciWOPvpo8d19991XlJkvElQW1WYIMCpNt9xyCy688EIsXrxYfCZHv9qROq7U0X157jIOJ0rd5s2bxRxL18vRr0BLOgne/3gQTX5+vlCLVKTuzDPPBNDat2Sljo9LIh8q8sphpdRZkbqcnByR3omgInXhcDhqlH1TU5NIqkttpVL3nCh1NMY8Ho/oE0OGDAHQ0takOPfq1cvwvrzOqI2ysrJQVlam3HRSvY4YMQK5ubliXbz33nsxdepUw7Xy/MPfm+7FQW0km5s5waqvrzeRuh49epgCHrj/K90bMCaI5/M0jQdKQcbdj3g55TQsvC7lVGYcVG/Ulvy4TaqTeHzqYv+GBe677z6MGjUKgwYNEi+yZs0aLFiwAPfff3+yHmOJ6upqkUKkqKhIORAmTZokDmeOBrtkwCrzKx1MDlhn+ifQoCFzZazmV6DVoXTDhg0m8yv3g/H5fCaljvvuUMeyIqGNjY2IRCIoKyvDkiVLxOcqUheJREQmdfq7XBf33nsvbrnlFjFB8wEVL6nr3r07ysvLRX3W19eLHRNdc8ABB2DevHnYa6+9TCdPRAMtcCqlDmjJ1cbrQ1bqvF6vkrQDLX0oEAgIQkwqjepdyfxKiy4nckS86X5Uv9dffz0A4+HbfEGIRal7/fXXRfLTRJS6jIwME2mQUV1djW7dupnqPJlKHfk6AcZ+YGV+Jfz++++44oor0LNnT6X5VS6jTOo4aGHhCwM3GVL/tVLqVH1qwIABhlxh3PVCNr9ycFOtU6WOyi/XQa9evQAAJ510kuF6rtRRPTc0NNgqdaSkqMyvr7zyCn799Vcxpnl/CofDhnLT4sx9B2NR6jIzM5GRkaFU6nbddVf069cPS5cuxbhx4zBkyBADqYtEIgiFQrZCAtBCzImw8HqQ4WTe4t8jVY6C4xobG7FlyxZkZ2cjPz/fMH9x8kxrKicq48aNM2xaqV6JjFLf++2333DqqacaypSXl4eZM2fisMMOM6yZ3L+cg0giD4YAzHlLs7KyDH2re/fuWLx4MSKRCFwul5g3eT+lZ1mROsq/SO/Ozbm8PmRSx9+BB9HIGwUyW1NbUvnTxqfu6KOPxsKFC3Hddddh1KhRGDlyJK6//nosXLgQRx99dLIeYwl+YkB1dbVJDgdafBNqamrEP6sUHoC9+ZUmaG5+5VA5YHLQoKHoJB4o8d577+Hiiy8GYCZ1nHgRqauqqrIMlKBrrMyvWVlZSiLFQROD/I7yJE6TJ4/gU13HfWRkxErq6NquXbsanOoXLlyIlStXmtqBTOLRlDoZtADK96NJpnfv3ob3jEWpo2NtaIFQRdIBRvNrbm4uPB6PKQkqlTUSiYioxA8//BAAlEoIEHtKE+oHTneQeXl58Pv9Bp81l8tl8v+U24GUOnmz4VSpk00d9AxOZrKzsw1KHYErdbRgycjMzLQ0v8ZC6qjfcJ8p/s5EOlRHXtHfuRogg4+faOZX6lvc5MUT0gItaVAefPBBkc7Gyvx6wgkniFQa/D15PfBF2IlSpyJ1dG+VUgcYySgtotGUOrvUQvxMa9pEUvkownfy5MnweDziXbOzswVZjabUcbchOzXOiVLHFXKqH6rDYDBoIPFWPnXkq8j//vzzzxtOY5FdFFTBdgRqc7vMEhzUr+R2qqmpMUWTZmZmiut79uyJSCQi+lJ9fT3y8vIM8zS1j0zqKOckmV/pOfy9+LPlDY/sO2e10aS5hcpIZU8b8yvQUknDhw/HSSedhDFjxmD48OG2Z8YlE8OGDRMd5dNPPzVFqgEtDVZYWGj4ZwU+eGfNmoX6+nrTAkgTnZxtOxGl7vjjjxeHBMukjt+XFv/169ejpqbG4KtQW1uLrKwsseO3I3V2ebgAa1InL2Q0+Ol/K/OrHWIldVR/5eXlhkTPI0aMwH333WdyYKaJKValTvYLku8nmyVkpS4SiViSOvkz2SGaQIsC5VfiyUKB1sWXTlLYe++9MX78eGXKEl42eaOiIjm8HqkOYlHqgJZJmZtfqc/RxsiK1HHI7wy0pPdYsmSJSanjixC9i6zU0WJLfyNwJdvq7FcK6lEpddHMrxx0b25y5aYmHsiggt/vt53H+PiJZn4lUsed0+vq6kRiV6Dl7OmrrrpKEE8r8ytgPLhdZbbj9W+l1BUUFNjmqaN7q5Q6Xj6glXzQYm3lhG9lfpWftWrVKng8HjEXT5kyBf/73/9ExDKPpnZK6lauXInzzz8fZ599tu3cxP/m9/tx5ZVXmu5NvwcCAdFXuQmZk1f+vtxE7mS8ezwe2yTIfJNidZwe+SbLbSwHpxCqq6sNG+ALL7wQQOvYpY0O3/RRUnyCTOrITYnIIJlf6Ts8Hym/j9W6QKD1Xv5cNr/KpK7dlTqO//73v6m4rS2GDBmCyspKjBgxAgsXLhSyf7ygwRsKhTBixAhcdNFFJlL32muv4fHHHzcRl2hEhhqZK3VyoATJ9dynjnce6ohVVVWor69HWVmZwfxaUFAgBpBVShNS6lSLFpEDmiRls2C8Sp0dYo1+3WmnnQC0+CPJ+Y0Aczuo8tk1Nzcrc4txWJE6mqy4wz3dk9dpU1OTMhAGMJK6srIyy8XE7XZj/fr1mDZtGnw+H7Kyskw+dRs2bBA+i7m5uejevbtwFuZHRTnJU8ev4e9NwTCxkjo6jxNoIXVyO8t9UI5+BVoIr0yY6uvr0b9/f5NSB7QkNJWfYaXU8c9pISGfOpWaQ+MmKyvL1M9iUerIpMNJHb9269attv65jY2NSlLHza8qQs/fl/oA5fmTlTq7c23p2aoIUP6Z6v15hKidUsdzeqnAiZZMbFRnbqtSt3CQ/1W0Z61atQo9e/YUJK6goECkvKD70OeZmZmIRCJRza9NTU3YZ5990KNHD1s1jtfFu+++i0ceeQQvvPCC4Rqu1MmqMn1Gv8v1RKC+bZdCha63SlDshNRZEWl6/h133GFo25qaGkHqevXqJZ5N6w9t8qkNqB/zslCf5EqanOLITqm76KKLcPnll5vWBSu10cqnzs782u556ghnnHEGHnzwQdtr4j3L0A733XcfvvnmG7z66qu2eXWcgAIlaNAvXrzYtAD26tUL//d//2dq1GhEhjoj+TnwQAn67tq1a01KHV88PB4PiouLRfbssrIyg1JXWFhoSepkpU5lfqWoQ5qEoil1Mqmj94hHqeMTnx2p23fffdHQ0IDdd9/dEamjBMeyUhetjFakjsrJk9gC5txDNHmq1BFe91amV8C4KM6fP19J6vgClZeXZ6gT1fmf8+bNwzPPPGO4v8r8SoSjW7ducZM6nt4CMKfRkUlwQ0ODSanj/nkyZKUOaElqzfMO2vnUkRJw7bXXmpIPq9QV6qtZWVkmUhULqaPgLn4W7e2332441o1Mnbx/kArv9/uViyk/kiqa+ZX7Jcrm17q6OltSd+655+KZZ54RSgmHiuhx9OnTx9AvAaNSV1tbi/z8/Ki5E/mYrqurM2wG5Nxg3KfOSqkj/yurZ1HfXbVqlQjSUoHqOD8/X7S/6gxrGUVFRaIerBQwPj5pHpLbiZM6OVE2kRaVUsfHNs15dkocXV9bW4sTTzzR9Hf+XTtSp5pTqB2efPJJ3H777eJzrtRxVysVqdu4cSP+/PNP07MpT+sBBxyAiooK3HPPPYb6sVPqXC4XnnrqKTzyyCNxkzq32w2/3y+OuEtL8yth+vTpuOWWW3DFFVeYyFsoFMKUKVNMx4GkG2hHRpNbKBQymaoIcqNGIwkUAk9H23DzK3WqXr16mUidTKTKysrEPcrLyy2VOqClE44cORIPPfSQyafOLlDilVdeQZcuXbDzzjub6odDPk6GFuRYlDoKEy8qKsIvv/wCwJ7UAa11rVIrVBMzN6sD5t2QavGNRurKyspQVFSE5cuXY/jw4fj9999xzjnniOuI1EVT6qxMr3K5PvnkE3g8HpP5lU+eubm5lqSO+vHee+8tUrfYmV89Hg+uvPJKHH/88aIunE429Fx+PBOdkcjBf6fFSCYrTU1NlqROjnYm8HqzM7/S4j58+HCDq4Lsu0jw+Xx48803Ew6UGDRoECKRiKGtKioq8Pjjj4vfaUPF62Pbtm349NNPRS4tfgwh0NqvnJhfea4/Mr9ypU72GeIoLi7G+PHjDe4PhGikzu12iwVTDuT566+/8NVXXyE/Px+HHXYYjjvuOIwbN055H1mp41YFmazISp0VqbOaw/mzVq9eLQJCVJCVOsA5qaN6UFlRuK8YYJ1LkD73+/0xKXV8LaB6cELqABiUShV4n5A3vqo5hQcN8XHFlTouOOTl5aGoqMiQkL6iogLr1q0z9ccddtgBDQ0NOP7441FVVYXLL79c1EMwGDREvwKwPF9ZZVbloDpUXffpp5/it99+M1yXNnnqOA477DB8/fXXmDZtGk488USRvfrJJ59E3759cc0115iiYtINKlInm18JsSp1QAtpI5WNB0rwwWXnUwcYSZ2dUkfvMHPmTBxwwAFKpU6lnAYCAcyePRtjxowxBZ6o8tQBrRMLjyB0Ct7pFy5cCCA6qSOofHZURE+l1PH7q4hVNFJHE88OO+yArKwsQx48oGVwOiF1dosglTEjIwPDhg0zKXVjxowRyi/di5v0VAloOWSlTva7c7vdhj7g1CxAbUpZ1QGInFYcfPGyqm9S8FTw+XxKcsPLqSJ1LpfLEI2blZUlvuNyuSyVujfeeAOA2mE9Fp86K6hcLWQcfvjhJjWBwHf7KtOm6gxhMlHJKU3slDo7WPXnb775RkTzyuZX6p9XXHEFgBaClZ+fj3fffdfQnzlknzo5op7AAyWys7MtAyWI3EZ7llVAHiERUsdPoJARDAYN/Y76pzzXUhtzpY77FVv51FEZzjnnHNEP7UzB/Lm9evUSrjsq8L7EU4RYmV95Yl+O6upq4TdHaW2AlvWHu7Hw+ZWeTXOEx+MxkXf+PVqP6TOr85ddLpeBz8jvYWd+5XM4WQbSJqWJjN133x2zZ8/GkUceiWHDhmHz5s1oamrCVVddhcsvv9z2gOB0QCykTiYUTibwXr16ifMbaQcViUQM3w0EAsjIyBANK3fAsrIykWKCkzpS6s444wxMnjzZtItW+dSpdmKUgZ+OM+KQOy4NGLo3ER2r3GwqqJzbEyF1ql00V+rC4TAikYjh/sXFxVi/fr0oOzebynWwww47ADD6G6pILB1HFY3U2bkMUL/wer3CjCwvSFRuoGVB5Qu3KgGt6v4q8yu1ATf/OSXrnNRxpc6O1MmnEPBrrJS6TZs2KQm5nVLH1UsVqQuFQpakjqDykYpFqbOCitSp2o1UJY/HoyRqVkqdnKwaaCUzPMl1NKXODlbEiCKzAWMb8DLSgs1z7lmBj2k7UqdKacKPkiLYKXVZWVl4+OGH0adPH/h8PtsgFarj/Px8QSSi+dQBraSuublZSeoCgYBh00U5WeVreWoOInC0ntB4pPqR508in3Rvp0pdSUkJ9txzT8treZ/YunWrIOpWSp2qfsPhMHw+H7p37276HpE6rrgRuJjh9/uVz6Pvvf7669i6dSsqKysFcecpvWS88cYbmD9/PhYuXGi6L41lVUoT3h9IuU7LQAmghdU+//zzWLt2LZYuXYrq6mp88cUXmDhxYtoTOqB1oqAdIyd1shoQi4mRQH4yAJQmHKBlcomm1HG/Lp4morCwEKNHj0YkEjHt9Pv06YPc3Fx07dpVKHWqyWPz5s1iguPPvv766011QDsqOh6NlDqrg9hVSDap43XMn8FNU4BRzeGTDjdfAGZSfeONN+KXX36xVbA+/vhjXH311ZaBErzerU6ToHLza1QEkN+LzGjyvVV513i56X/aRa9ZswZr166F2+02LMaJkjo78ytdR2X+6KOPcPzxx5tIGcfGjRuVpE4OYOHmNp5mg0gMz21IPi12GxN5915SUpIyUhcOh/H222/jsMMOE3+rrq42KHU0DoPBIJYsWYIlS5bEbH4ln7qmpibMmzfP1tfT6TtYwSpQguaPp556Kuo9+IapsbHR4Ispp71wktLEzqeOLBovv/wyamtrbdcyqmOu1DnZ5EZT6mRSR1kf5Gvpd1mVo/ri5le7aF/AntTx9SVaX+FKHR87VkodNwXTWkdneBcVFZnmoZNOOgnnnHOOUqmT0+/YJZieOHEifvzxR2RnZ2PgwIGorKzEpk2bcMghhyiPugRaCWgsgRJ8HFL0bVr61E2YMAG9e/fGlClTcOedd2LTpk04+eSTcfDBB2Pu3LmpeGTSQQ3+5ZdfAmhNU0HHe3DEU/EyEaDOxNUWmdSRYyeBDyZS6tatW4fvvvvOdgdJpxF07dpVKHWqyWbSpElYtWoVsrOzDYSDiC7H8ccfLxJvAvGROk5CEiV1ubm5Br82fp18tqKVTx0pNFZKncfjEUc7EeSyHn744aJ9p0+fLvrTrFmzDERH9Q7y+wCtGwrVhMQVJTnRZqzmV/KN6dWrl+iHu+22m+HdnYCTOn7ySTAYNJ3CAQAPP/wwbrrpJkOZjzjiCOy///62pG7Dhg1RSV1TUxMWLFggfqf6sVLqnPQ9WXnJz89PuvmVlOBwOIyTTjrJENm/fv16odTR84GW+u7fv78g5PSeKvNrU1OTODmGzrqsra3FDz/8gCVLluDSSy+NqewEeeOngpVSFwgEsNNOO9mqPvwe/BQA+XxmgorUqXzqGhoaLJU6fvRWNKWO5pmcnBwDqRs2bJhlMmmghRyQos6JGs01lJXBqmzy8/1+v0H14aTOSqkj0HfsSB3Pk6jyreTg9crr3okqRT5tpCLK0fEAcNZZZ+H//u//DL6DBCKUdgnK5XmVLCOUIq24uFgZlAeoc/oB9j51fK4gH960VOooxHrJkiW48MILkZeXhylTpuDCCy/E6NGj8d5776XisUmF3MlJqbNzpI8FNBlkZWXB5XIpBxUtptnZ2Zg+fbohmSdg7EQFBQUIh8MYPHgwGhsbo6qhREztlDo6c1BW6lQdLSMjA3379hW/x2N+5c9IlNTV19eLlCcc0ZQ63r4Uwm51ooQKVmWl8h100EHYsGEDRowYAa/Xa0inYkfqaGKgelG1AffPyMnJiUmpk0md6r0yMjJw2223AYjuBE/gaWR4kuxgMGjwkSK16KqrrhJHC6nSUajMp0CL07rK54q/z+bNmw3plrhSR23MlTonPi2yUpebm5sUpY6/G5FVWlh5mbZt2ybyFgKtC9ePP/4ornGi1AWDQYTDYeTm5qKiogLNzc3iDOjevXvHVPZYYKXUyScI2MHr9cLn8+Hbb79FY2OjYZxmZWXhww8/xOzZs03Jh61SmtgpdXzuCIfDjqxOLpfLQOooX6oV8vLyRFvRuJgxY4bIKCErdQSaw8nnLppSZ5V8mCNaMnLA6PdGdc/93Dh43+Wkzsr8ykHzMY05qyT2QOv44esajR87UterVy/D5pDehwikXRBkNKVOJsY5OTmGuSIjI8Nkfk2blCYLFy7EOeecY5rIbr/9djz00EM49dRT8dhjj6Xi0UlDLKTO6qgjO8gdgD9v6NChAFpJHQAcc8wxpgmEOifP5UQd36lzs51SR5CVOie7h0SVOpq0EjG/Wl0nK3UejwdTpkzBaaedZmjftWvXAmjZufN8gXaIRuoAo7P0Bx98IH6286mjtqaJgdcV1TVX6lwul2lxo/KFQiHTCQVy9KsM+vzGG2+0Tc4qg65ramoSqhYtOnzypMWL11M0UsdVgb/++iuqUrd+/XpDQFA0nzonfU8mcKq0K/GQOm4NILIqp1Qi8Ag9GvfccdsJqeNHXpEJjQK5nBL4eKAKlCClLpYxvXLlSuy///7YtGmTqd8feeSR2GeffYRPnc/nQ35+vkGpe+6550R6EidKHdWfHTnj4KSO8h8SXnjhBcyYMUP8TiSQEzM5ctVOqfN6vTjzzDNNpC4epY7UVjulTjVGnnvuObz11luW9wPMSp3VnPLZZ5/h4IMPxi+//IK//vpLzJ92pE5lfqU2syN1ZWVlqKqqEnMq1QutvXZjga6R70v3koUT+V7kK52W5le7ZJkXXHABpk2bhokTJ6bi0UmDFalTdWDKMfX222/j9ddfd3R/mgyIWPDnUWflpE4F6hR5eXmmAeEkygqwV+oITpQ6GfR+sZA6/gz6Xjykjp8pKEMeNEDLpHTuuefi9ddfN0w6ROrIR9GuXxOckDorZ38n5leaXOnIMwAi2lZ26Of1yZWQRYsWiSAP+e+8v/GFg79XLLtHbn4lUkfvzw8L37JlC/7880/DIin3OfmYLzpOD2jZvUdT6mSneCulbvjw4QAgiIATjB49GkDLWEyG+ZWD3kul1AFQml85nJhf+XFgMqmLN/rVCWTzK5UxVlJHWLt2ra35tbq6Gg0NDaisrDRE+V5wwQVYvXq18CW0Wry5SROwJ3UTJkwwHNUItJAM7lIDtJhVyV91l112EdfzQAkKaqN72Cl1QIuVhZM6TprIWsFJnVUwTL9+/XD++ecbcsQ5gdfrxeGHH2763IrU2Sl1Bx98MN599114PB68++67YhxbnZNNzweMpE4+ucGKRLpcLtHnaY6g+olHqbvlllvwn//8x+Sqo+pjaR0oYYcjjjjCsDNJR8gTyrp16/DOO+8oJ+e+ffsiEongpJNOwmmnnebo/kTcqJNzBYE+c0rq+E6drqcksdHgVKmLldRlZGTgyCOPNJmM7cAHDC2MsZK6vn37ioSuVtdxh33A2vy6Zs0aAIjqO8MRq1JndY0MWcKncyb592TFWNVOVv1JZX7lk248ZgBATeqobYmsnHLKKcjJycHbb79teD6vD3p+XV0dRowYgQ0bNphyJ6rIBy83+eRQX+Z9+qOPPhLlHThwICKRCHbfffeo7z1r1iwALQEx27ZtS5r5lSMaqeOBEnZ1wJW6YDAoNinvvPMOZs+eDQDC/Aq0kDor15BkIRlKnbzQWs1VHo9HnPddUVEhAiX43EvzslOlzs78eueddwqneprTg8Gg8J3i5crMzMTUqVMxc+ZMAIiq1KlIXSAQMLwLJ6CyKief/WrlJ+Z2uzF58mTbfHxAi9ooK3Oq9uOKXyw+dXl5eejfvz8WLVqEzZs3w+VyGXLYyeDmV1L0zzvvPAD2Sh1/HtDal2JR6mSyWFhYiIkTJ5pEAVUfo/UY6GCkDoAh03s6QsXi582bl9DkzEEkgToPn6h5JJcTUudyuUxHtVx33XWOyuFUqYvV/Aq0HCbPM+NHA5+M4yV10U4qsVLqCFTfxcXFQqlLBqnjk5lVviMnSh0typzUUV8lpe7VV18FoFbMrcqnInWyE288UJE6qgsKFiosLERZWZk4w5ig6nO1tbUiclsuk6r+VKSOdt0qvxu5b1N5zj//fEQiEcOGYY899hAO1F6vF8XFxUkzv3KQomnlT8mVOqekjp+kcscdd+Dkk08W38/Pz0d+fj6WL1+O3NxcRwp1vFAFSsSq1MmnGKjcDgAjqausrEROTg6CwaChn8tHNsngud+A2M2vKlJHZTz55JNF8Jvb7UYkEjEEZkQzvwaDQbE54WV0EigBAJMnTxanG8SKsWPHYsyYMYbPVHMGLzeRutdee02ckmOHnXfeWZC60tJS2zElm19vueUWR4ESBLqW6tyJUmdlfrVCNKXO6dono91IXbpDdorv3bu3kM6TAZnUDR8+HA8//DAA56SOvku2eKBFBbrxxhvFMV/RQDsDO1JHiToJyaoDGclQ6ux8P+g6J4ES3bt3x9atWwEgauoCDquy8vq1UursJgPZ/KpK21BbW4vMzEycccYZMZdP5VOXDKVODpTgu2uaKEtLS5GTkwO/36/0eeP3qa2ttQxYUS0KcqAEf66qz8j3oGCB888/H0CLIkdRwKrnpYLUUZ05UeqimV9DoZA4V1pVj/Ssrl27Ys2aNQn707311lsi5YYKqkCJWJW6vn37YsGCBeJ6K/Or2+0WY4/Mr4DaqmG1ePN8eIC9Usdh51Nnp6hzX0++CaG5a9999xXf8fv9OProo8Xv9F4NDQ2WKU14/Zx//vm44447HL2PE6g2A5zUrVy5EpFIBGeeeSZ+/fXXqGRowIABWLx4MTZv3mxregWMGzZZ8XJySgaVnTae1M5249jK/GqFTmV+7QiQI75o5xTv4iZDJnVAq3PzXnvtBSA+pQ6wdyCVQUqdnfk1JycnpX41hHRQ6kiZycvLExNQMpQ6Xr/8DEEOuxQQslIHADfccIMh8rGuri7qQhgtEEKV0kX+PBZQ3ySljm829tprLzz99NOYOHEisrOz0djYaBndqiJ1slrhRKnzelsP6KZ34pO7PIn+4x//wBNPPCH87DIyMsRzVM9TRVQmSuqofZ341EVT6ug+Vmcek1M3/Z/ouB8zZozt0VEq82skEoHf74/J7Dtw4EAR7W6n1NH/JSUl4v2rqqpM94tGZolsOZ0X6NkNDQ1wu90GwhMrqeNKHY88lfOnUc4+OtGJK3UvvvgiNm3alFLTugp8zD7wwAOYMmWK+D2aUtelSxfU1NQ4InWZmZnIzMw0nKZBIBcpVUoUguz3S6TOLgo4VqVONf7SNqVJZwCPpDvuuOOUi14iIOLFJ4+KigqsXr1a5IFrampyROoA44CIhdSRUldTU4OrrrrKdMQV0HqcUqqRCKmj93dC6uyUOiJWOTk5YgBv27Yt5slbBlfq/vnPfyqvsWtrmgD4+911112or683EJ5ok3QsPnWkVALxK3VAK5H2+XyGBT4rKwsXXnihCMTx+/0GUqdSM+rq6uImdVu2bEFRURFee+01XHTRReJzfh95YenTpw8uueQS5T2dKnXxpiaQYafUxULqKOhLpdRRP1fNT6mAKlACaBn/sRIO2Q8KUJO6fv36weVyiXdTkTorywUvE6WbcgIiEFu2bDGNQVUd0zU0D1r51PH2JlVZfi4Ff1BdUC7U1atXO45iTxRTp07F8uXLTWOW562NRmBycnIQCASwYcOGqKQOUAeEAC3m+kgkEhOpo7pX+TISDj74YEycONH26DgOO6WOzvfV5tcU4d133006qaPJ85hjjjF83rNnT8NE4ZTU8cnGKQEBWpNorl69Grvttpuyo9n5ESQTvAPTZOZ0QYzF/Gqn1HGfllAohH/+85/46quvElbq7MzbBKdtzcFN705InVX5iLRbRYsmQko8Hg9qa2vR1NSEiooKZQJlSi9hFS3tRKmLZn4FWsjKXnvtZTipgN/Hyc6Y7umE1EUiEdtjp2IBKfkqpc6p+RVoTaQulyk/P19cQwteqkmdSqkDWhbVWEkdvY8VqaNnHHHEEYbrVcc/7bjjjspn/PTTT+J7TiPigVYzXmNjo6n9VOQimlKnInXz58833aeoqEhslqguyK8QcJ4KKlGUlJRghx12MI1Zbp1wQuqAlghnq/OQOWiuj0fxkkmdk3x9lZWV+M9//uO4T1iRukAggM8++wxAfAcbaFJngw8//FAk4E02qfN4PNi4cSP+/e9/m/7GJyInucvknGSxKnXLly8H0LKD3WWXXfDAAw8Y7hfPMWiJIlXmV6/XK+5NTu78/o888gieffZZdOvWDaFQSCTKdpqaxaqs8rFYKtj1LbvBnZmZiYyMjITMr6rnkA+ak+/ZISsrSwSH5Obmiv7Jn5WdnY2amhrL9lMpdXL0WzSlDlCPDTulTgU7pY7Mr99++604NSQSiSRM6urq6vD0008bnk+wUuqsCJOdUkdoK1JHPm7bb789gMSUOqpjXte8j/3+++8AgKOOOspw3YQJEwAAQ4YMwbPPPotIJCJy1skYOHCgSKwby3GXvK/K7adyu6BroplfVccaclA7+nw+wxgixEMa4gGVU05KzJWvaGOP2mvr1q2O+iVFNydC6kgRdELqYoVV9OsPP/wgjgLUpC7JOPLII3HKKacAMO92k4Hy8nLlgOad227i5aSOd5BY/GB4pyGzxNVXX21QpujeqcwsLyPePHXRlLqBAwdi4cKFqKurEwOX37+oqAgXXHCBiBQkp3jK2RUNVmVVnW4hw86nLtruj9SweM2vhJycHPz8888Akmt+pYUkKyvLcJoKf65dbkXuk0TveOCBBxpyEjpR6lSLgVU+Pis4Mb/uv//+GDFihFiUEyV1dMoAYB/9yt+P8mKplLpQKGQqE1/sifym2peWVLJBgwYBSK1SRymKaDMnH7v4/fff44ILLoj6HLp/LBYRfsKLkz5G9UDzYFZWlsFPTGVlUIFI3YIFC5T9Vc7dmCqQsjZs2DDDxo37GkcjMNS3OUGN9kwKFomVHJFlhb5H+QNpQ5AMWCl1PDuCJnUpRLKVOjvEQ+r4dbHsrulZhYWFBj9CTiLo3nPmzME333zj+N6JIF5SF02pGzVqFJqamvDGG2+Iz6wclUOhkCCy/DB7O1iV9Y477sCcOXNw2WWXWX43UWd6JxGDTuqSTE/cnJMoqSMCnZWVJQiD3M+3bdtmeQ9Z1SPwFCNOlDrVe/A+E0uCaStSxxcqSuMSD6m77777lCkmVEodLZq8nsgUS9fT73V1dZaBEoS2UuqofqjPcV+yWEmdKv8gH1Mffvgh3nrrLdFupaWlhshXp8+Tc5c5Bal1TsY5N7/yY8ZCoRAuueQSfPLJJwDMG8EbbrgBixcvFr9z0y7182nTpuHKK68EAMNZyKmElbmUTkACovc16q91dXWOyE5ZWZnwH4yVHD333HM46KCDxO+VlZWIRCKGaONEoeoHWVlZhkCreI4gTZ7s1MnRXqTOSe4ymdTFsoDQYcw9e/a0XNCoPBUVFYZoq1QiVlInRwhaYdCgQSgpKcH48ePFZ6r7Z2RkIBQKIRwOo6KiAnfeeaejcluVNSsrC0OHDsXQoUNxwgknGCYMgpO+ZZVYWXXcXCzl46D+Q/nuAGeHs1uBK3Uej0cZ+h8vqeOIl9TFimjmV4558+YBiI/UXXvttbbPJ+Tk5BhO5yAQ6ZD95Kqrq9PG/Pruu+/ihx9+MKXUSZZSx+e0IUOGYMiQIYbvqI6Wi4Z4lDqghUSuW7cuJqVuxYoVyMrKMs3NdHKRPGfccssthsAP7m5AUffHH388jjvuOHz22We4/vrrY3qHeGGVKNiqrCpYmdWtUFZWhlWrVjm+nuO8884TyYpTBdW5w/KcokldChHtwPNkP8vlciESidhOvNQBRo0aFTepo0nOKqXJc889F5OPXrIQK6lTncxhdZ08cFRtSkpdKBSKmuiSw0lZrRIyR3vGli1bLM1h9E5yf5k+fbohSENFznjQAACRHJX7ASbiSyIrdVbm10RJnRPza1uTOopITGawkUqpo80WXwTsSF1zczO8Xq/o5wcffDCuueYa8V1qb34cXSowcOBADBw4UPzO067ES+qc+K9ynHfeeQblPhriVeooWIK3X7SD71944QVl8AvN13L/ls/p5kodqVZAC9ltK5UOsJ7bOKmLRpLjIXWUzaGtonxjgcoHkpdz6tSpOP7442O+ryZ1DpEKnzorUERjIBCIGqSwatUqVFZWGnZyseyuyZfF6pgYOte2rcFJXSxEOhqpA4BHH30UzzzzDAYMGIBHH31USWg5qYvl+YmQ/mhqmF2ovNXB3HJ0tbzgWdVXbm6uwbcjUVLHfepok8CdpCmliRXSUamzylPHQealVJK6nJwcQeq4OZE2APyUFKBVqaMkuKFQCKeddpqICgWAww8/HB999BEuv/zypJXbCfi7xUrq6JSVWBW0yZMnY/LkyY6vp7aMldRR/dM72s1VfB6xO6NUZV1xQuraG3PmzMEZZ5yBP//8U3yWbKWuvLw8bvNrW+Css87CJ598gs8//1x8xst52GGHxVVuTeocoi3Nr4BzHynVmXyxLCDZ2dn473//i3322cfwOU0Wbb3DmT17Nh555BF88cUXAGLL8TVo0CDccMMNUa87+eSTcfLJJ6O+vh79+/dXqhGc1MVCBMhHKB4kYuJ0an4l4jRy5EiTKYojPz8fNTU16NevH5YuXZoQqfN4PAal7uabb0ZVVZWh7/I+O3XqVNMmoy2UOgoQiQY7pU4ee6kgdfJEn52dLdQucqegzzlo0SSljiwCqnsOHDjQsNi0FazO/nWCCy64AEOHDsWAAQNi+l6sOTjJaZ6yBjiFnJPPDk5IHSVqBoAHH3xQjGcrUkcpcdIBQ4cOxZgxY3D33XeLz6KROqu8rFYoKysTG8d0JHUVFRX47LPPsHHjRrFuOHW9soMOlHCItiZ19Lx40onEuoCceOKJhsWAo61J3T777IMhQ4YI8uH3+x2/z/z583HWWWc5flZeXh4uvfRS5aROpC5WpZDOi42Ge+65R/y8yy67oLCwEAcffLDj58iwUupkkCp51VVX4aGHHrK8jiZQmmiTpdR5PB70798fX375pWVA0D777GMKTOHXylGLBDulju5vt6D269cv2qsY7uHE/Ep+TKlU6jweD3bZZRcsWbIEp59+uiiDnLCa6uCcc87BsmXLDPdpCwuEEySi1LlcLhHxm0qzMfnDkpXDKeh9YgmUAOxJHWGXXXbBqFGjDM8BWn3Zdt11V0yaNCmm8iYDdqqpnJ8v2Uodt2ykI6kjdO3aFX379gXgPJ2ZHdJjJCeIH3/8EVdddRUyMjJQUVGBV199NemN2NakjhAPqUvmBN0evghkiqPjgtojT1685ldKmzBr1iylikq4/vrrcfzxx2OnnXZCv379RA6teBErqYvWrvTONCkn06fODuPHj1fmCOvevbv4eeedd1Z+147U5efnw+/3244NpySivZU62oQMHz4cF1xwgfidSGlBQQEaGhpsz7hcs2aNSJEBpA+pS0Sp45g1a5YYi8mG2+3G1q1blb5udki2UhcIBER0Pj9hQU7RBKQ+4MUKa9eutTQzp5rUcfN4OpM6DmprVXCMU3QKpa5Hjx749NNPMXPmTPTt2xfvvvtu0p/Rlj51HG19Nl86PD87O1sc7xIOh9vsRAuOzMxMhMPhmEndv//9b+y+++7Yd999LROYEmjSSUYdOzW/EqmLRpRpQkkWqeM+dSoQ+Tn99NOVf+fjzioC2878Kqf3UCHWYJhoSl1hYWFKSB2RtF69eikj9KhfqY6W43C73Za579oLySJ1ZWVlGDx4cBJKpEZJSUnMdRYLqePX2G2EzjvvPHz//feWrhRElK666qoYSpo85OfnW/oexkrqONFxUvecdKdL/44Gq4C3WJAe27MEUVlZKX72eDyWgyYQCChzSDlBWyt1NAG0h0oFtJ9PHdD6zuSo395KXSxE/oADDsAvv/zi6FqadJJB6mJV6qJdR/59ZMbiYyxWZGdnR1XqyExpp26+8sor+PXXXy13sKp2os/kSFAVnO6MaQ5QqR/8s+7du4tD1lPhU2fVJvSuNG6s0vzQSSRA+ih1iZhf0x3JVOrWrl2LuXPnwuVyYdiwYZb3KS4udhQ81h6QSV005ZPO6+XnXduB3y8do19VcDqP26FTKHWEVatW4fPPP8fRRx+t/PukSZNQVFQk/tktIDLamtSpci61B9pjsqd3phQX7aXUxWN+jQVEAJIx4ThV6i688EIMGjQoqopBi/2JJ56I2bNn48gjj4y7bLwPW03Gp512GoCWfIlWOPPMMw2+iE4Qi1LnFOTvqTpUnPfVoqIikf0+meOoe/fumDZtGu666y7l3ykKVKXULV26VPzcmZW6dEQspI4HTanmh+7du+O4446Lep/y8vIYSti2kEmd6gxcGdSnO7tSl0jfT4/tmUNUVVVhzJgxps+nT58Ot9uNs88+Gy+88IJlA06YMMGQi8nn8zkmdm1N6mghbO+JLV67fiKgd6djo9pTqYs1UCIWZGRkID8/PyltTPeIdq9+/fopD/5WlQ1oCSahaL94YXVsE8dxxx2XEkVBVuqSMblTv4xG6mhRScWmxC5/1ZNPPomzzz5b5ADjSl3fvn2x6667Yv78+Vqpa2PEEihBx8sBiW36Yk270pbg5tYtW7Y4SkXT2Umd0825HdJjJDtEZWUlZs2aZfo8FArh+OOPx0033WR7xqbX6427strap0515E1bYr/99sPbb7/dLs/+uyh1AJJG6ignWbIWQk7qEoUTUpcqyEdkJWP8EqlTqSBcYaFntvUYzs3NxcEHHyxOBJHJMp2iwJW6dCF1WqlrAbkrAIkRkvbYlDsFV+bscnByxELq+NzV0cyviZS3U5hfp06diu+++w633347DjjgALz55ptJf8bfzfz60ksvYdmyZe3ybFmpa29Sl8oFb9SoUSINQyJIpn8ekDpS19Y75lSYX+2UOo72InUEakPZp46fQZpu5te/g1LnpA9ydZy3TVVVFVavXp38wrUDnJhbZdBa4IT0cKUu2lhNF9B7JULG02N7liBOP/10y6i5ZOHvZn7NyckRh2y3NWSlrr0DJVLZ5rEcT2SHjqDUZWRkpKQuP//8c3z99dfKv9GCmApSZ3VIOSHZbRIr6J3lNuTkQit1bYdYSF337t0xZcoUjB071qD+ttXZ222B7OxsHHPMMbjsssscf4f8kJ1sQnj/SWczNAeRukQS0afHSO4AaMuzX4H4lLpp06bFfO5hOiKdlDo6IzPdkWyl7vTTT8fcuXOTUvex7K7jwUEHHSQSwso46qijMHnyZPzxxx8AkkvqotVNe2/MjjrqKDz33HM499xzDZ9z3y5N6toOREScLth0fTqbUBOBy+XC9OnTY/pOLObXjlhvyVDqOoX5tS3Q1j511Hljadzjjz8eJ598cqqK1GagxfC7774z/N6WaCvza7KQbFJ31VVXIRQKJWVipPZrD7+W8vJynH/++WIRULXlzz//jPfee8/xPZ999lkcdthhUa9zGrySKmRkZOC8884zbURVSp02v6YeVNdOcz4mQuo+++wzzJ07N+bvpTtiIXUdETRXJiLOpP9qlSZoa/Prddddh2+//TatQ9JThcrKSrhcLnzwwQcA2t+nrq1PEYkHyVaFrA4LjwdUtvaciO1I3eDBg2NKVEtnB1vh+eefx3bbbYcZM2YASD8nba7UpVv0K+8jmtTFP14SOXIwndHZSR2lI1q8eHHc99BKnUO0NanbZ599sG7dunbPU9ceyM/Px8SJE8Xv7a3UdQRSl4xQ+FQh3UldsjFu3DgcdNBB7W5+tQKRzHT0qeNpLdKt3hJFrKQuGaa4zoZYfOoA4KSTTmqXM2/jhV2eTqdIj5HcAdBeZ7/+XcEn9/YidYFAADNmzMDZZ5/d5s+PFTTJWZ0e0J6g9mvPzPZtSeoI7W1+tYJKqUsX5YOfyJFu9ZYo2tL82lkRq1LXXmm5EsGzzz4bNQjLDprUOYQmdW0LilbKyspKKBIoXvBnpouKYQea5Jqbm9u5JGYQqUvk/NhE0R5nNxMpSWfza7opdZzApFu9JQqq47Ywv3ZWpDroKh1wwQUXJPR9bX51CBqQyUjxoBEdTrKLpxKcvHcEIk/9Mx2jn6OdQdoW0EpdK9I5pQlHZ1OoqK6dbry0UmdGZ/epSwY0qXMImvQocadGakFKXXuodEDHI3U0yaUzqWtPpY7qpy0XAyJP7dWHrZDO5tfOjHh96jRaoUlddKTXbJPGIFIXTxZsjdhBpK69lNGORur22GMPw//pBCJ17VmPNH7bkmClgy+hCulsfu3MoLp2qlhr4mJGrIESf0fokewQJJlrUtc2IPNrOpC6jrDg7brrrggEAmm5uydyM2DAgHYrA5mw2pJgEXlKV1IHQJO6NkT//v0BAHvvvbej67X51Qyt1EWHHskOUVtbC0CbX9sKpNTxaLi2REdT6oD0NdeQuak9VcT2WBjTzZeOQASuubk57fLUdWbstNNOqKurc7xR1SlNzNCkLjq0+dUh6urqAGilrq2gSV3nweDBg3HNNdfgtttua7cytKdSl27gvl107mY6LZIjRoxo7yKkDLFYHtKpTdIFgwcPxv77768DFm2gSZ1DkFJXVFTUziX5e4BIXXuRaE3qkoesrCzcf//9abEhaktSl64+dTwK87TTTkMkEkmrPv7ZZ5+J83X/ztDmVzOGDBmCb775Jq36a7pBa+4OQaSOztjUSC3y8vJw2223YezYse3yfD1pdC5on7pWxJovra3h9XrTVuVsD2hSpxELtFLnEOTcmkimZw3ncLlcuPHGG9GrV692eT4ndem6+Gk4hza/tiLW1Boa7QPqs9rfUSMWaFLnENdccw2qqqqEWVCjc0OTus4FTepake5KnUYLunXrhltuuQWPPvpoexdFowNBbwEcIiMjAxUVFe1dDI02giZ1nQva/NqKWE820GgfuFwu3Hzzze1dDI0OBq3UaWgooEmdRqIgRSzdSJ1W6jQ0Oi80qdPQUECTOo1EQXnG0k3hLy8vBwD06NGjnUuioaGRbGjzq4aGApzUaTNVx8egQYMAtOS5aiuUlZXhnXfewaGHHtpmz3SC3XbbDd9++y2GDRvW3kXR0NBIMjSp09BQgJM6p2c1aqQvhgwZElM2/2ThhBNOaNPnOcW+++7b3kXQ0NBIATqV+fX1118XpgUNjUTAD37X5tfOAZ2FXkNDo7Oj05C6cDiMt99+u93ymml0LnDndm1+1dDQ0NDoCOg0pO61117DmDFjDAqLjEAgAJ/PZ/inoaECV+e0UqehoaGh0RHQKUhdKBTC1KlTceqpp9peN2nSJBQVFYl/WtXTsIImdRoaGhoaHQ0dKlCiqqoKY8aMMX0+fvx4nHLKKbYqHQBMmDAB11xzjfjd5/NpYqehBDe5alKnoaGhodER0KFIXWVlJWbNmmX6/IYbbsDPP/+MV155BUuXLsXVV1+NBx980HSdPihawyk4kSstLW3HkmhoaGhoaDiDK5Ju6c4TxF577YV58+Y5utbn86GoqAg1NTUoLCxMcck0OhJmzZqFESNGYL/99sPHH3+sz/zV0NDQ0Eh7dDpSFws0qdOwQiQSwVtvvYUTTzxRHKukoaGhoaGRztCkTpM6DQ0NDQ0NjU6AThH9qqGhoaGhoaHxd4cmdRoaGhoaGhoanQCa1GloaGhoaGhodAJoUqehoaGhoaGh0QmgSZ2GhoaGhoaGRifA3zr6NRKJoLa2FgUFBXC5XO1dHA0NDQ0NDQ2NuPG3JnUaGhoaGhoaGp0F2vyqoaGhoaGhodEJoEmdhoaGhoaGhkYngCZ1GhoaGhoaGhqdAJrUaWhoaGhoaGh0AmhSp6GhoaGhoaHRCaBJnYaGhoaGhoZGJ4AmdRoaGhoaGhoanQCa1GloaGhoaGhodAJoUqehoaGhoaGh0QmgSZ2GhoaGhoaGRieAJnUaGhoaGhoaGp0Af2tSF4lE4PP5oI+/1dDQ0NDQ0Ojo+FuTutraWhQVFaG2tra9i6KhoaGhoaGhkRA6FambMWMGDjroIIwaNQrvvfdeexdHQ0NDQ0NDQ6PN4G7vAiQLfr8f999/Pz7++GNkZWW1d3E0NDQ0NDQ0NNoUnYbUfffdd8jJycExxxyD3NxcPPnkk6isrDRcEwgEEAgExO8+n6+ti6mhoaGhoaGhkRJ0GvPrhg0bsHLlSrz//vu48MILccstt5iumTRpEoqKisS/Xr16tX1BNTQ0NDQ0NDRSgE5D6oqLi7H//vsjKysLBx54IBYuXGi6ZsKECaipqRH/Vq9e3Q4l1dBwjvr6erhcLnz66aftXRSNNkBtbS2+/fbb9i6GhoZGB0WnIXVDhw4VRO7nn3/GDjvsYLrG6/WisLDQ8E9DI52xYcMGAMCUKVPatyAabYI333wTBx54oE6zpKGhERc6jU9dly5dcOyxx2LkyJHIyMjA888/395F0tBIGJmZmQCAcDjcziXRaAs0NjYiGAwiEAggOzu7vYujoaHRwdBpSB0AXHrppbj00kvbuxgaGkkDKTahUKidS6LRFqB2bmxs1KROQ0MjZnQa86uGRmdEU1MTAK3U/V1ApK6hoaGdS6KhoZEKTJ8+HVu3bk3Z/TWp0+j0aG5uxuLFi9u7GHFBk7q/F5qbmwG0KHUaGhqdC+FwGMcddxwOPvjglD1DkzqNTo9XXnkFAwYMwM8//9zeRYkZmtT9vaCVOg2Nzgsa16lcizSp0+j0oIXyhRdeaOeSxA4iddqn7u8B7lOnoaHRuVBXV5fyZ2hSp/G3QSr9GFIFrdTFjwcffBBVVVXtXQwDrr76apx++umWfyfzq1bqNDQ6Hzipo7GebGhSp9HpEQwGAbQSpI4ETeriQ319Pa655hqMHz++vYtiwEMPPYQ33njD8u9aqdPQ6LzgpC5VY1yTOo1ODyJ1/NzfjgJtfo0PVG9+vz+h+3zzzTe47LLLklEkR0h3n7q6ujoxnjQ0NGIDJ3X19fUxfXfLli3Ytm1b1Os0qdPo9OgMpE4rdbEhWW09cuRIPP7440m5lxOkM6n75ZdfUFBQgDvvvLO9i6Kh0SHBiVysY3zcuHE499xzo16nSZ1Gh8Tq1asxfvx4R34JtMBrUvf3QUdsayC9U5p8//33AIAff/yxnUuiodExwZW6WEldU1MTPB5P1Os0qdPokLj55psxefJkLFmyJOq1nUGp0+bX2EBt7XK54r4HJ9LJJtVW90tnpY6I5pYtW9q5JBoaHROa1GloWKC4uBgAHPkYdAZSp5W62JCMtuZEOtlBNlb+NOkcKEFlWrt2bbuWY82aNW2SGkJDI9nQpK6TYsmSJViwYEF7F6ND4+9C6sgcp0ldbEh3Uufz+ZSfp3NKEyrTunXrlMrxkiVL8Mcff6S8HL169cIhhxyS8udoaCQbiZC6YDD49yN1r7/+OsrLy9u7GFHRv39/DBo0qL2L0aFRVFQEANi0aVPUa7VP3d8PyWhr7q+Z7IjP2tpa5ecdQalrbm5Wjrv+/ftj5513bpOyzJ49GwDw+++/4/3332+TZ2qY0djYiKeeegoul0ub5R2grq4OhYWFAGKPfv3bKXXhcBhvv/02evXq1d5F0WhDbNy4Meo1HVmpI1LXFjn2QqEQbrrpJksVqSMhHZU6Tgyt6rgj+NQB6VO+XXfdFccee2zKn1NXVxfzIvx3wBVXXIFLLrkEADB37tx2Lk36o6GhAV26dBE/x4KmpiZkZWVFva7TkLrXXnsNY8aMQUaG9SsFAgH4fD7Dv7ZGJBJp82d2RtACuWHDBsfXdmRS1xZl/+2333D77bfjxhtvjOv7CxYswIoVK5JcqviQjkodJwXRSF06K3WAff1WV1enrAztlSOva9euWjBQYP78+eJnJ1aTvzv8fj8KCwvhdru1T50dQqEQpk6dilNPPdX2ukmTJqGoqEj8a49BmsoJzwrNzc0YP3481qxZ0+bP5tiyZYuIVq2pqcG1116LefPmxXUvIjtOjv7SpM4ZvF4vgBaTVjwYNGgQdtxxx2QWKS7sueeeOOKIIwAkFv2abKXOCalLd5868mW1649OItLjhZXZOtVobGx05L/7dwMfI8ne0K1YsQIjR44UpvbOgEAggOzsbOTm5mpSZ4dXXnkFp5xyiq1KBwATJkxATU2N+Ld69eo2KmErVq1a1ebPXL58OSZPnox//vOfbf5sjpNPPhn9+/fHli1bMHv2bDzwwAO4/PLL47oXETUnikZnIHVtscjTsxYvXpzyZ6USP/30U1Luw5W6tiJ1qTS/1tTUJKR0NTY22pI6ItA1NTVxPyMa2ovUEXRqISNSSep+/vlnfPPNN7jtttuSet/2hN/vF6RO+9TZYOHChXjppZdw+OGHY+nSpbj66quV13m9XhQWFhr+tTXawy+DntmeE2IkEsHXX38NAHj33XfF8U3xHmpMi5OTxa8zBEqsX78+IdUplmetW7cu5u92RrcCvmB1BvNrcXExzjjjjLi/39jYiJKSEgDqsUR9IJXjjOawzMzMlD3DDu2xKU9n8DHixGoSC2hujybWdCQQqSsrK8PmzZtj+q5TUueOt3DphLvvvlv8vNdee+HBBx9sx9LYI14SkwhosLVnbqcVK1aICWDTpk3Iz88HEL95LB6lLhwOo7m5GW53x+n2skIUCoVStqAlokalq2kqkajhZCt13PWirc2vRLimTZsW9z2ikTpCe5C6SCQSdS654YYb8PXXX4uTMeLB+vXr0adPn7i/39nAx0iyfdTT0QUhUfj9fni9XnTv3j3mzfPfSqnjiNdHq63QHvJ9e5C6+fPnG96V8ld5vV5s2bJFKHVtRepoEUj0gPe2hkwmUqn08mfFqrzFo+61BRIhY8n2qSNS16VLlzZX6ijdREFBQdz3sPOp4/0llcEMVG/yxszJM++55564/bM66vyRavA1JdmWICJ1bRH531Ygn7pu3bppUtdZ0J6krq3UlM2bN2O33XYzHPz9xx9/ICcnB7vvvruB1MVbH7GYX4PBoFjMOpoJtr1IXawBPevXr09yaZKDRNo72dGvNP569erV5j511D6JuJzY+dQ5jYxNFFZKXarHNZkANakzgptcU6XUtVfEcypA5td4lLq/ZfLhjgC+ULSVHxINvLZKDkmDe9GiReKzJUuWYKeddkJ5ebmB1MU7Gcei1AUCAU3qYnxWrP4efHJPp4UvkfZOtlK3bds2FBYWoqSkpM2VOlpAElHquPlVbmNOQtuC1Ml+Vqnuc5rUmREOhw1KXapIXUebs+0gk7pYOIBW6tIUyXa+dgKu1Pn9/pQniaQFkO+mq6qq0KNHD3Tp0iWppO7vptSl0oTOnxVrzimu7KUy+jFWpJNSV11djeLiYhQWFra5Tx2Rury8vLjv0djYKE5ykeuVbzZSOcaoXwaDQXz44Yfi82hkK1GSTKQuHfMHthdoLnr55ZfxwAMPYNOmTRg9enTS7t8ZlLq//voLt99+uyBvROp22GEHNDU1YdmyZY7uE4lENKlLV3BS11YEg0hdJBLBSy+9hGHDhqV04aUJnvu91NbWoqCgQJC6RCNSY/Wpo8Woo+20m5qaDPWYrkod70/tkYvRCumm1JWUlNiSulSZX+l5iSyQdMRRZmamLalL5SJMuTYbGxtx9NFHi8+jjeuVK1cm9Fzy/e1o80cqQX2qrKwMpaWlAIAZM2Yk7f6dgdSdc845uOmmm+D3+zFz5kz8/vvv8Hq9GDlyJDweDz755BNH96F54W91okRHAd/9t9UE0dDQIDrDsmXLEA6HU5r9myZ4rtTV1dUhPz9fhHK3pfk1GAyKM4HTSUVygqamJmHyAtLXp45fX1VVlaQSJY5kKXXJCpQgpS7a2a9+v9+QrT9RUPnjdWZvamoSSp3X6203pc4qgbrVXOrz+fDkk08aXEHiAfUFTepaQaSusLAwIbO+FdKZ1AUCAUyZMiWq+ZTUzPr6ehxwwAEAgOzsbOTn52P33XfHL7/84uh5NH61UpeGaA+lLhgMonv37gBaJ8VU+tfZKXUVFRXYsmWL6OzJML9GG1gNDQ3o1q0bgPRSkZwgGAyKswKBtiN1sZqZqqur0b9/fwCJqyLJRLKUumQFSpSUlCA3N1f0/4ULFyI/P1+Mx1AoJCbu3XbbDUuXLk34uUDipI6+V1hYiOzsbFO9tpVP3Zo1a8QGjcOKbN166634v//7P5HKJScnJ+ZnRiKRmDaRfxfwPpGbmys+T5aLSCI+dcFgMKU+6/feey/GjRuHH3/8MWo5AOO4y87OBtDi3+q0P2lSl8bgC0Vb7foCgYAgdXSKRqyJIr/66iu8+OKLjq61U+oqKysRiUREEs946mDcuHH4+OOPARgnXLvy9OzZE0D65lOTUVNTA7/fD7/fbyB1beFTl5OTE/PiVVNTg8rKSnTr1g3jxo1Lm3MyEyHByVbqtm7dipKSEoPS9corr6C+vh6//vqreCYfN8lSluld4iV1XJVRKXU0jrOyspJK6ubNmweXyyWid9esWYNdd93VdJ3VPEILO+Wmi6cd+Xe0UtcK6hMFBQWGeSkZkfCvv/66OG4u1g1VOByG1+vFAw88kHA5rEDvHs1NgsrO64dIXW5uriZ1HQ11dXWmRYUvFG2l1AUCAaFUxavUHXjggRg7dqzp8/Xr15uOZaJ35hFqpNRVVlYCAP78809Rtlh2VKFQCFOmTAHQqgTaDYxIJIKGhgZ07doVbre7w5C64uJijBgxAn6/X6SRAFKv1LlcLuTl5cWl1BUXF4vErGvWrGmXUybk5N4NDQ1xJ/xOtk/dxo0bUVFRYSBFdF9yjwiFQjj99NPx2GOPJe25/D5+vz+u+ohG6qi/FBUVOV6EV6xYgdGjR+O3336zvOa9994D0Jr3csOGDdhll11M17300kumz9auXYt33nlHPAto6R+x9kv+PlqpawXvE0cccQRGjhwJIPGclZFIBGeccYY4gzpWUkfEm9o+FaCNV7SUXCqljvwzc3JyHPvOalKXJigrKxNkitBeSl1ubi7y8vKwYcMGAPGbX+UJsXv37thzzz0Nn6mIB1fqgFYTXSQSQXNzM5qbm0XZ7MB3PE4iBRsbGxGJRJCXl4fi4mK8/PLL7XKqRzyYN28e/H4/cnNzxfFOqSZ1Ho8npsmGUFNTg6KiIgwePFh8FmuwRTKg2ijFm2oh2dGvGzduRHl5uYEU0X1pog+FQsjJycHBBx8MIPmkDohP7aU6tPKpo7mssLDQ8Wb1tttuw4wZM2wTxlO9RCIRbN26FZFIBDvvvLP4+3HHHQcAeO6550zfPeOMM/DXX3+Z7hVrnfK210pdK7hSl5eXJ0hUoq49sotMvKQulUiE1NH4i8UiQvfRpK6dEQgETOaO9vKp83q9yM/PF50o3oHHzbachJ1++unYc889EQqFTL4QgUAATU1NKCgoQNeuXeFyuQwLbSAQwJNPPonKysqo/liqBdpuYBAJysvLw+bNmzF79my88cYbDt40PUAZyF999VV069atzUhdPEpdUVER7r//fnH2MqmxbQk+pijAJF5Sl0ylrqGhAfX19ejatauS1NHvZH4l5S4VpC4eEyyZgUmpkxdO+r24uNjxvEaKjt0izEkdBXdxUmeXTFkuB7kxxEoS+H3eeOONuEhDfX09brrppg6zoXSC2tpa5OTkCIsJmRUTXdf4upKRkZHWpM6p+ZW/E5G63NxcrdR1BvBB3VZSfiAQEKSOECupo++STx5g7NBvvPEGfvrpJ/h8PkE8aHBRJ87Pz4fH40FFRYWpfLTwPv/887blUC1IdiZVKgt/d+7Um+6gswKBlh1xshN8chCpi8XXg7BmzRp0794d2dnZuPHGGwG0T8AEn9DJjzQZSl2i5IoICSd1lHsKaJ0LQqEQ3G63mLyTFfmXLKXOzvyamZmJvLw820X9119/xW677YY33ngDa9euBWCvPnNSt3HjRgBAz549xRi2I3XyOCdSl4hSt27dOsNJOU7x1FNP4fbbbxe+wJ0BPp/PUP9E6hJd16idAaB3795irJDVJRro+al0/yDXomhjicYC3+BSf3e6eQ4EAuJ4O03q0hB8999WZ7Emg9SVlZUBMJI61eRYX18vOi11aCJiFPa+9957A4AhkSkpE9HKpVqgKehCBa7UEZwMjHQBJasEWpSnVPoExqvUbdu2DTU1NcKfrri4GJmZmTEH4yQDnFAkSur4vRIlV7RQEakjtwO6Lz82LzMzU/TRZCp1pC7Eo9T5fD5kZGQgNzfX0vyanZ0dNVDihx9+wPz58/HZZ58J/14npK6pqclAjCkvWl5eHg499FAAZlOYHOkaK6lbtGgRXn75ZWy//faGz+U5KhwO48ILL3QUqRwv4XnxxRdxyy23tIufqhVkUkf9lvryl19+GVdaHk7qBg0aJMZK79698f7771t+7/PPP8fcuXPF81NZV9Qv7fpuU1OTGGt83bzkkksAtPTPhQsXYuHChbbPGjZsGM466ywAmtSlDbiiRZM20HaRmESaEiF1RIr4Qq2aHBsaGgRZVSl1ALD//vsDMB6STYtbtAWY//2II45ATk6OwW9GBid19957r2W50xVkfgXSl9SRIrfDDjsAaJnwVGkv2gLct+u2224DEB+p27JlC0466SQALUEMVn3G5/PhzDPPxNq1a9HQ0GCZD438C8vKyoTySm4JgFGpSxWpI3N0vKSusLAQLpcLJSUlpjyXROq8Xq8tAab5o7q6WrSLvDDyIBtaPBsbG7Fp0yZ4PB4UFRUJgpaVlYWzzz5bvCOHrNTRxtQJQff7/Rg4cCDOOecc099oPBKWL1+OZ599FhMmTLC8H2/zeDB27FjceuutaZUDkoLfOLKzs8UYPOigg7DbbrvFfF9O6igoxufzYdOmTbaRtYcccgiGDh3aJuZXakc7Usffg37+/fffxTtR/1QF/nDwXHZ/K1L3448/YsSIERg1ahROOeWUtFq4uT29ublZqGZtlTON+9QRYlVRqD75Aqmq4zVr1ohINBpcslp22mmnGcqw44474u233wYQPYUDLUgLFy7Ef//7X/Tu3dsxqbvooossy51OkFMotCWpc7vdMQdKUGQhKXUAlH5XbQGabL/44gvDgmCHzZs3m1QWvunJzc21fJdFixbhtddew9FHH42zzjoLAwcOVF5HG5uCggLDAk/lpfs3NzcbzK/JJHWkbkWzEPz111945plnDJ81NjaKfrjHHntg3rx5BiWksbEROTk5ShWPg/ovV9d5ef7880/06tVLRLhzUrd582Z06dIFLpdLRIRnZWUJlV8ma4mYX+36jLzhIaXFLgEvtWeiYyKdom9lpQ4wkjrC448/HtN9eYDVgAEDALSuC07ari3Mr/QMq7EUDocNibKJ1HH1OJ6ciX8rUtejRw98+umnmDlzJvr27Yt3333XdA35bvF/bQHO2Mlnpri4uM1IXTLMr7TI812+aoAtXboUdXV16Nu3r2nBokVhu+22wyeffIKXX35ZfI92I06Vun79+iEnJwe9e/d2bH5Ntp9SqsAnRe5TV1JSklKTZrxK3bp16+D1eg359FSTe1uA+hz1dzkoR0Y4HEZ5eTl22mknw+f8OJ6ioiJLkksmv+XLlwu/FxWoPon4UFlpPLWFUkekLppSd+yxx4oNEIEnRd57772xefNmw2aKK3VOSB39n5OTY1A7SIn6+eefxXOBlvppbGwUG0MibB6Px1IFS4TU2dWRrFIuWLDAdM2CBQvwww8/iN9pLBA5Wbp0KSZOnBi1HABM5Lk9EQqFMHXqVEQiEcek7rLLLovpGY2NjaioqMD3338vyDvVm5NAk7Ywv8qChYzDDz8cw4YNAwCDss2JnFPfbq4M/62OCausrDQMdH6aAWHSpEkoKioS/1KZIJV3KD5BUHRbcXFxhzK/0qIWTamjdyoqKsIvv/yChoYGMQBo8gWAww47DLvvvrvp+9GUOp/PZ4i4KisrsyU6tJPipC7dlTo+cbeHT12sgRJbt24VCgqhvcyvPErT5XKhsLDQtk+RyiiDv0thYaHl5M3zv4XDYQDqNAcNDQ3IyMgwkRAaT6n2qWtubkZ+fj7cbndUUkdjhs9hpCACrWZ2rkT4/X7k5ORE9anj5lcAKC8vN9StbHalemlsbDT43tJcb6fUyUpILJs6VR0988wz8Hq9hk060FoP3DQ4aNAg7LPPPuJ3ekd6//PPPx+TJk1ypIjz+mnvlCrPP/88Tj31VHz55ZdK82tOTo5Imh4vAoEASkpKMGzYMNG20UhdWx+/SfOj1bzw2WefAWjpxzvssENCSh2fi+QgQxU6DakjrFq1Cp9//rnhsGfChAkTUFNTI/5x58Vkg09s1PAbN25EfX093G43SkpK2k2py8vLQ11dXUyKFXXiaEodTVperxc1NTW45pprRF3Ivihc2SFEU+pqa2sNu0PV4eiRSARvvvkmwuGwqPvc3FxkZmbC5XKlPanjkxL3qSstLU1Ln7qtW7cKFYjQXuZXGlPkP9alSxfbfHlWhI8vEnakjsZQU1OTIHMqUkPmSZfLZSB11J5U30Sekt1XqW3z8/Md+9Tx+YGfdEHjj9+HzLPRFFp6X6r3WEhdMBiMidQRySYQKXVSpyqz2qGHHopLLrnEpNRRX7FLukvkjd7faWAYYJwT21upI+Lq9/stlbrGxsaELAq0XgGt9UTj2orU8eeRyhuPUtfc3Iy77ror6oZU9he3QmlpKUpKSsRY4USOJ+e3A/XX0aNHG84Bt0KnInU+nw9nn302XnjhBaXt2ev1orCw0PAvETz++OMGFs3Bd2A0aVVUVOD2229PmVKnmiDoGC1O6kihdKrWhcNhMZlEU+po8C1fvhxAyy5WpdQBEImIOZyYX2VSJy9S77//Pk477TS89tprqK+vR3Z2tliQPB5P2pM6Wanj5te6urq4yv/000+jX79+ttfESupCoRDOPvtszJ4920TQ28v8Wl1djYyMDNHXu3btalqEOawIDlfbnCh1QCuJUL03kTrA6DRPi5Gs1AHJ7avUtvKRTnbgCxu5jQCtvmO87khRLi8vt61vmvNocS4rKzOUh4gZLXgyqaO6c0LqOAG44447cPzxxwOI3/yam5uL/Px8y1OCyHda1f6yUkfl72ikjvpENPOrFan75ptvouav5KSO/o9G6ng93nTTTaKMseLdd9/FhAkT8MILL9heF02pI+Tk5Ii5yOVyGcynTlRaivx98sknhfoXDZ2G1IVCIZx55pm46aabTP4x8cLOAR9odQC1MrcQ6uvrDdcQqUumUvfFF1+grKzMECkDtE5gXq9XTJRE6pySSj5JRVPq6J40Efl8PmGekJU61U6lpqbGdjDKkr8qdxvVa01NDerr603pTNKd1E2fPt3wO9UbpYChNpg/fz4efvhhR/e8+uqrsWzZMttrYiV1GzduxCuvvIK5c+ealLr2Mr9SEmTqW+Xl5SZzGYcTUpefn285AfO+FE2po4WcFiq/329S6tqC1DlV6vh7cPMrLVJ83JH5tbKyEhs2bLAcw/JiLyt1VA8qUsfNrzQm7Egd1d2cOXPwr3/9S9R/vOZXOrdXJm3c7w9o3dBy0DvSfWlOcnLqCleT29v8Sn2ipqYGPp/PMvrViqyOHDnSEFBl9QxZqYtmflU9T1ZqnUDleiBj6tSp4vi6aBskt9st6oiUeoKTRPLUt7xer+FMaDt0GlI3depUfPfdd7j99ttxwAEH4M0330zofjNmzMD222+Pb775xvIaGmDU0e+66y6cfPLJAIykbvbs2QZpPtFAiW+++QZz5swxfLZ48WIAMOUForJlZWWJhffiiy8G4Dy1Ab1LTk5OVKWOJu0PPvhAlPXaa68VZYiG5uZm24lLpdRZqXsulytmUhcKhZSOz22FSCSCf/zjH4bPaAGjiY4WpdGjR+Oqq65ydF+aTOyIFi38Xbt2xdq1a00k0OfziSOdmpubDcRPVuqszK+BQMBRPq94QWfQEmJR6vgiwBePvLw8R0od1YfqvRsaGkxK3ebNm03qXqpJXSzmV5nUUbkyMjKQl5enNL9WVFSgqalJuWEMBAImlxcrUhfN/EoEM5pSN2zYMAwdOhQAYvJTVNWR2+1Wblaor1BZVd+ld6QyUl9oa6WuubkZd955Z9wbLiIx33//PTZt2uRYqYtEIgaiZDfHc5cTp6RO1d/iqStqH9mqFAwGRb+ZNm2a+DwaMaMxB5h96I455hgA9gETsZwkQeg0pO7000/Hli1bMGPGDMyYMQOnnnpqQvejheePP/6wvEYmdRMmTBCpOTipe/7553HFFVeI3zMzM5UyPl171FFH2ZZt5MiRIrKGQB1HnlB4J73yyiuxdu1acVar0+hfGhwVFRWora0Vx3rJaQ+AVpVsyJAhIikoPV9lqh4+fLjpM7tFR94dFhYWwu/3GyZq7pcTK6n797//jUGDBtmWIZXRs6qdO01wsqN3LKH7pHzYBQ3Qwj9+/Hi43W5TBPkpp5wiEkePHz8eO+64o/ibSqlTTdwTJ07ETjvthOnTp9tGi8YLmdRFU+pktYnAlTqnpE5OJMyhMr9yx/rGxkbhA0pjORWkzuv1Or6nlVIHmN0eyPxKLhWqfGqLFi1CKBQSucs8Hg8KCwsNc6WdUsfNr1QWHniiInW8zImSOgDK6F4iGuRXaWd+pTJSudqa1E2bNg3/+te/RMoYFaqrq/HWW2+ZPn/nnXfw3XffAWi1UvHgO8Co1LlcLrz44oui3Jx4WZ3z7ff7sXnz5ph96lT1Ek9dcRGEY8cddxSbA640JkLqdtppJ9x4442muZOD3lcV+GmFTkPqkg2aVOwkXH62qTyQZXPNV199JX7OzMxEbm6uskP89ttv+P777x2VkU9i1HFkOZinePB4POjevbvS0dkONDi6du0Kn8+HTz/9FP/3f/+HDz/80HQtdwTmHVHe+RBmzpyJ//znP8oyq6AKlJDfJRFSR34LVhPC+vXr4fV6hfyebKj8TeQJjtqdiIcTkwwRaiuT+6ZNm7B161Z4PB7k5eUhPz/f1A6//fab+FkmfCqfOlU70vsdd9xxGD58OGbOnBm17LFg27ZtBmfiWJQ6OUk4wY7UqQi+XaAE0NqeRHyKi4vh9/uF6wFN8vGQuqqqKnz66aemz4nUud1ux+ePWvnUAWa3B25+BYCPPvrINBeRFWGPPfYA0KJQZGVlGepQHndW5leVUnf11VcbNjj0zgQrRU8FO1Ln9/sNz+F9pbGx0TAe6TqZ1NE1bW1+pfeyc9K/4oorcMopp5g2gCeddJLJEjRmzBjD7xT9unXrVhQXF4sNVm1trcFaZfUew4YNw1dffRWz+dVqzMWCFStWiDHJSd2mTZuwZs0a4drE+1Q08yu5PADqaFe7xObA31ypSzbkHGsq0N/8fr/JrCDLz3yAuN1u5OXlKf106uvrUV1drfTTk/H777+Ln2nRtiJ1vJNSJ3Oq1FHHKi0tRW1traXa43a7DdGvfKDJ/nQEyhAPtHb6WMyv9C4HHnigIB18wo2V1PHoLhWWLFkCAGLHmmyoSJ1siqCFgTYcThzfaRJ/9NFHlX/v2rUr/ve//xlUQbmeqF7D4TC22247w9+cRr/KRy4dcMABUcseC2SlrrS0FPX19ZYLuRNSZ7UBA9SqT6xKXc+ePfHmm2+KuuCkLhgMwuVy4bXXXlM+X8ahhx6Kww8/XFlOp6ROZaqXVS/ZN48CeijlwvXXX4/99tvPcN+1a9eitLRUnOxApI6fqkGbDpn8VFdXWyp1NC7mzJljaKdoSl04HLasi9raWsO8QaDxwdtdPs9bzjMJtJI6qlMiHFYuOFu3bsU+++yDNWvWwOfzITc3F3l5eQkrdTxfohWoTGvXrkVdXZ3lRvDMM89U+tQ1NjZiy5YtKC0tNQTVyMq0Cr/++isAmAIloiUfVo256urqmPzqdtxxR3GuLx//VCZyP6D59qyzzkpIqQNg2tTI0KQuiaCObCePc/Or3PEXLFhgmWGcK3Wy6ayurg6RSMSRvx03cVDHkHeYXKkjkG+Iz+fDihUr8M4779g+hzoWJWG12sV269YNNTU1cLlcyMzMNCwKVkod0DpRUuePRupk8yvQMvCuueYaw7XxKHV2pK6xsREXXHCB4bnJhiqRMk0GtHjxRQlwRupooX788cdtA4CIrNmRukAgYHLadRr9amdqSAY2bdpkeIaVaY4g+4UR4vGpIzgldeQHu/POOwNoVUKp/FlZWaJ8TgNirCIL6bSQREgdb3PZl1V1as1vv/0m+sxLL72ECRMmGPJF5uTkCOIKACeffLLwJ5VdW1asWGHwqaN7hMNhw4aVt4es1MnuC/vtt5/lCSD19fXo2bOn6XNVouNQKCTmMDlHG52eIyt1tIGwIjcfffQRfvjhB0ydOhU+nw9FRUVCBUsE3D/aCtSGc+fOxc4772w5ZlUpqbhPXZcuXWImdYRYza+BQAAejwd333234TM71ws78PmCTMVUpvr6euy5554YNGiQI1JHdaASNqKROm1+TSJIcbKTx2lRlUldKBTC/PnzMWjQIOX3SKmLRCKmQUoLtFVIOCeB3KxEk5m8wFs5fpJPzH777SfOuLQCdSzyf7EiEZSUNCsrCy6Xy9BZrZQ6/jcawPGYXwG1b5lM6qLJ3XQP1aTz0UcfieCBwsJCNDc3W571GS9qamrgdrsNARA0KciLEvU/Fcn++uuv4fF4lO/x5Zdf4vrrr8cJJ5xg+hspaarJhvd3ud86jX5NZeRxJBLBH3/8YYh+j3bmZm1trZgw7cyvTqJfCVaBEnL065dffonDDjtMkDoCV+qIOMltEQqFlGWiNpLHQnNzc9LNr7W1teI5RLhkv1lSWM4991wALXXJc83x8cjdObilxOVyYeXKlWhoaDCZX5ubmw2kzk5dlDdFs2fPxtKlS5VzfFNTk3LjxiOX+XOICMlKHUWyy6TOLqgGaN1cUr7PwsJCoYIlAvq+XdAa9dOxY8di7dq1ltfZkTqVUmflv6pCrOZXMv+PHz8eAMSJKPIG9tNPP3Xkx8jHGxHDQCCASCSCuro65Ofni3yvBJWFze12i76hUg2jiQxaqUsinJA6ghzt4/f7sXjxYstdICl1gNn3jga/Vcfjg4GTuliUOqDVJ8bJToYrdRTZxk1cBHIgpWfxa5wodU7OR5TNr/wZqgUt3pQmqjJwX61AIIDx48dj4MCBST1urra2Fv369RO5loBWUiebX+k9VST7ySefRHNzs1Bz+WTz0Ucf4b777lMepUfpblT1RPUbDAZNi4uV+bWpqcnQHqkMMlm3bh3q6uoMJCmaH1VtbS26du0KwJ7UNTc3IxgMmsZXU1OTUJwI0Xzq3G63MIcfdNBBpnyNnNTR8+R7nnPOOUrzILWRvPjF41MnExeZ1G3btg0ZGRl48sknDSoahzx/EpGjn6mfRSIRg58Xd23ZZZdd0NzcjGXLlpnMrzKpkxMm25lfaVzJaaDoGo/Hg//85z8YM2aMIGc0V8mE14rUEahvyeZXK5JG58lWVVWJOS/WpOAq8ChrK6iewccw1UE0pU4mdaqAGCvEo9R5vV6UlJSgqakJkyZNAmAkdU1NTTj88MMxbtw40/dlv1uVUhcKhVBXVydIXX5+viEqtkePHiIIiOB2u2192GnzbBXsRu+rSV0SQMqbE1InK3UNDQ2orq5WdnqgNSUA0EriZs2ahSlTpogdGpHEdevWGfz1uD+bSqmTCYZVNA8pdU58Dqhjke/bhg0bUF5ebrqOlDrqgC+++CIOOeQQALBM0gyYSV1dXR3++c9/mkzQTU1N8Pv9BvMrr2N6F26ejIXU8bpQTcz8e9dff72IIEtmQlC+CyTQpGBFUFSkjuo7HA4jHA6La7KysvDRRx9ZPp/a1Y7UBQIB0ztbmV+PPPJIdOvWTfTDVJI6Mmf2799ffOZEqSM/MDtSB7SY+AsLC/HJJ5+IvwWDQeTm5ho2cNHMry6XS2zqcnJyDEf/ZGVlGY47tFLqyMdOPlfTKgEykZTMzMy4lDqV+ZX8Sp9++mkDqeNjXZ4/VeZXuk41/vx+v2jPbdu2mZS6pqYmw4aRl1k2v9IpHVSXNJ+pToKg706cOBFvvfWWSD+h6k92Sh2hvr4excXFJvOr1QaWsi6sX78+qeZXfnKJFVSuP3wuIOKiIiJcqZPNrzytj9M5U/aps1PqaB2hlGEFBQUGUkf5UpctW4a77rrLUH7a2BFUpA4A/vnPf+K9995DXl6eaQ1vaGjAwoULDX3e5XIJ31JVJg3qz/Recp1SvWvzaxJApMpJhKiK1NHiLDsLAy0dkDoEDe4JEyZg3LhxYmEipa5Hjx4Gp3QrUkedUJ78rZQ6l8uFJ598Muq7AUalDmiRo1V+FkTq6JmVlZXCjGinZvHBCAD/+9//cPfdd+PBBx80XEdtwUkdn7S5KYj+j4XUyY7fMqwmIieZwWfPnu1og1BXV4eCggIDCafyy+YjVbkJtLDSIhOJRPDqq6/io48+Upa3S5cu2HPPPYWzvsr8yn3q5HuozK+NjY34/PPPsWHDBuHrlUrzK40ZmSRRmVXw+XzieiufOiJZ5DDNg2Ro8ecm32ikDmjt87LKV1paKtrOTqnjPpKRSARfffUVIpGIgXhzJBr9qlLqeFmcKnU8sIGrdrIvIDe/8gWXrh8zZgx23HFHHHTQQYZy2ZWZvk99kOpBZWKUCSFBZX4NhUKiPi699FK89NJLhu9EIhHU19ejpKTEZH61mlPoTOLnnnsOn332WdLNryol97LLLsOHH36Impoak0sAr9fRo0cDaFmbZPDo19LSUjF3EamjzV80ckrly8zMREZGhqPoV77GuVwulJSUGNbLlStXAmhJrTNhwgTMnDkTixcvVpJY2fzavXt3AMATTzwBAIZTa2TfeO7r7nK5UFRUhIcfflgZ7MTV448++gg9evQwbG60+TWJmD59Os4++2xL/zH5AGFufm1sbBSkbsaMGRg1ahQAiKgvnl2eWL5s+5d96i677DIsXbpUkKOePXsqlTp5MrfyqZN93OwUO+5TB7TsXFRBIGS643VGzsZ2aSVosaOOSyZhuYxEJKySNXLzINBSJ3V1dY5JHZ8AVJOn1UTkhNQNHz4cI0eOjHpdbW2tKfcTmaW4UseVpDFjxpjMKbTo19fXGyR82WRH/aW5uRmnnXaagVBYKXUjR440jQu5rbxer2GxtFPq4jnORwW6NycXTgIliNRxp2eVUqdyVaDF/x//+Idw0lYRSK4kAK3tk5OTI/JfAUbF006p4+/43//+FwceeCA+/vjjqEpdMn3qCHIQg0qpI5UvEomI6woKCsSYl+c/rtRxqwC1Z48ePbBs2TJ07drV8DxeTxQcwsH7NfVhO6VOhsr8ypW6n376SZw9yssUCoUMSp1M6mbPni3yftbV1WHDhg0YMGAAgBaFsrCwEJWVlfjuu+8M43L9+vW2Z87KoOfJY3v58uV4/PHHcfTRR6O6utpkieHvu99++2HFihXi2DUOHv3apUsXQX5qa2vR2NgoXFiikVNePr7BdKLUEeQAJ3njMHr0aAwYMEB5nirvR5s3bzYdsbhp0yaDUsf9Qc8++2zT/a644gqcfvrpps/5nL5y5UqsX7/e4HqVtubXH3/8sS0ek1QUFxdj++23t1TqeKekMxypgerr60USUZKCgdadDVePaNFdu3atwR5/1VVX4corrxS/P/7447j44osF8Rg4cKBhIqROKC8oVubX1157DQcffLD4nfxapk2bZikBk1JXVVVlIB40carMzaQy2hEf2fxKC4HsqEx1bkXq6O/xKnXR8kHRZ/Iu1gmpA+AoqII2AyrwQAkeSQaY1Tpa6BoaGgwSvlx3tHmQd7p20a/r16+PSsTk51gpyUB85uvPP/8cixcvxmeffSbKQuXlfT2aUldbWysWMF42InXfffed6D+0S1eZ+Pbaay/84x//sDSRqRYdoIXUdevWTUSgc8XTTqnjkzwtAkuXLk0KqeOKLEE2v3JS5/P54Pf7TXNMfn6+GMv0t3A4LMpeWloqPqd+OGXKFEOQjd/vN8wr0U6lkcssL4YUbUuuGUBspC6a+ZXAy0zEvLS0VHxPNr8OHz5cOPeTojR58mTRZwoLCzFhwgQsXLgQX3/9tbj3QQcdhB49ejiO8rRS6rhatXLlSpM5kr9vXl4e+vTpo3Spyc7ORkNDAwKBgOjLFFTT0NCA/Px8y3RHHDKpIzhV6qicnNTJacfswOeCuro6DBgwwPC+GzZsEPOCz+cT5nlA7aNpBU7qqE640pe25ldVlF1HgN05iXwhX7VqFd5++23sv//+AFpJCQ10anxSrXgkXENDA+bOnYtwOGw6XeGRRx4x/B4KhQTxOOigg7BgwQLRaanxnZpfe/fuLZKA0vfeeecdnHjiiYZjUACzUrdx40bDpE4JKFUmWSKCdpDNrzRByWH30cLxyQRO71xdXY36+nqT+pEIqaPTQDicnOHnFGR+VYFPAPIEJZu3uVLHJXwrUiebz+yiXwnPPfcctm7dqiR48u7XTqlzSop5OQ455BAMGDAAhx56qAj4CAaDyMjIMJAPJ0pdSUkJXC6XaaEGgH79+onxS8oj97Fpamoy1JtVKhfVokPXA61zhEzqrJQ6VVJd3haJkDqV6q86UUJ+PyoH/d+1a1cxF9K78xQk+fn54j1oDJ1wwgk499xzhcuA3+8XOdr4va3g1Pza2NgoVEN5g0R1YKfUyeZXeU6orKzEK6+8AqB1XiopKUFzczNCoRB8Ph/cbrdyQ0NpjXr37i3mgqKiIgwdOhRFRUWGk1hoo+iU1JE6KfcB2X1IVuF4vVptOgGjYk/zLil1tO45CfiIldQ5Uepimaf58+vq6lBWVmZwgyovLxf1EItSKoO71KhIXbsqdaeccory38knn2yZniPdkZ+fL/LGyeAd5Ntvv0VdXZ2IWKQBRo1OCymRusbGRoNSt++++wKAwQxD4B2aJgMAOPjggxEOh/HTTz8BiK7UqRYUvsAHg0ExAdfU1GDNmjV4/fXXAZiVumAwaBjYL774ItauXauUse0CJAg0GGnCp0lWXsiiJc6UE5fOnTsXkUgEgwcPFtckQurofEsrsmkFJ4mkCXZKHZ8AaOJ/6KGHAAAvv/wy/ve//4lryWTb0NBgyHWkInXNzc0Ih8NRlTqZ1HXp0kXZ5oCZ1NkpdbGSYjmrPTe7y5Ofk0AJ8mFUKXWUfohDzg/Jn0lKhQwrUkd9yYrU0abSjtTRnMDn2UR86vhJOQQr86uKQH/77bd44IEHkJubK8YslTcSiYif8/PzRZ/mgTxEjOmds7OzxfOsouivv/56AM7Nr9TnevbsqUymnqhS19zcLK6ldqExUVVVhebmZvTp08c0z9TX16Oqqgoulwtdu3YV9y0oKEBGRgaGDh2KH374wVQuJ7kqgVY3GHlsc6Wub9++Yk0ixEPqVEpdbm6uI99A3kd5myei1MVy3i3vR+QSQxuZs846C2+++abok3YKYLT1j1tfqC/Im0YgNqXO+ZVR8Pnnn+Pll182NXgkEjHIxR0JBQUF4iw/u4V88eLFBmdpGjhUF7QA05mrwWDQQOpyc3NRXFyMAw880PAMl8sFt9ttSFfywQcfIDc3V5y7KRMgefJX+RkRZFJHi2NGRgZGjx6NZcuW4fTTTzdFvwIwmUTIkVSFu+++W/jbqUATASXxpEVTnvCszK9TpkzBpZdeipqaGmzZskUscrNnz0ZWVpYhMtHj8ViSMPqey+WyVOpycnJiJnV8MrFyKCeofOp42ekeVVVVKCwsFCb0f//73wDM/mnRlLpt27Yp+whPCkuQ722XwFRWbZOp1Mk+SzRxqurWzvw6b948BAIBFBQUwOv1KkkdTz9EkH1Z+eJfVlam9B+1M78C1qROLg+/H4E2M1xt4X8Ph8PikPR4SZ1VoERJSYnJxLrHHntgjz32wKuvvmpy/wiHw6K9VEodneXKF7ns7GwxJqzGzrXXXot7773XsfmVSFCPHj2wfPly0/1iIXWhUMh0LR0nCLSSOmpbWg+23357kbqEsHnzZlRVVaGsrAwej8eUPmS77bYTJwlxYuR0Y0SEwU6p83q9pnrm72s37vnfqMyc1HXp0sVRFK+VUme1Iaf+zZGbm2sg7E5I3YknnoglS5aYzK/5+fnYbbfdMH/+fDzwwAMoLy8X6wUndb169YrJzOvU/NouSt0BBxyA/Px8jBo1yvDvgAMOwJAhQ5L1GFtcd911GDFiBM4888ykpE7g56n++eefhoHDF6JFixahd+/e4npZqaMJ++STTxbf4YtNfn4+LrnkEmy//faYOXOmICEej8d0XMk777wDj8djCg23CpSgTNuqHQNXIGRSR0l2+b05qZNNxXb4xz/+oXQSJcikjpedw8r8eu6552LKlCmIRCIoKysTh037/X706dPHRFY++eQTZR7AmpoaZGZmorS01DJQIjs72zTAok2ofAKLltPOzvzKSf7atWvRo0cPy5MteOoEO6UuEAgo1Vwn5lcr30bATOqSqdTJygot0LIpFLA3v+69994AWkyJWVlZpoUaaCF1fJxcdtllhvaUF//u3bubzHmhUAihUMgUnQe09mWaK3i9WSXsJsV+7NixAFpVFk4mVUdV5ebmJkTq5JQmcnlVdS/3rXA4LMYxj/Kur68XpnMiXipSZ6XUqci7Sqkj8ysndbEodSrzq8rM6/P5RFlpriGljpM6eZ7ZvHkz1q9fL3IXUr+lILuioiLR3nwOs1Pq/vvf/6K6uhqRSMSS1HGlzu12m96dv6+TRPKAUambM2cOampqoppfaTwcddRR4jOn5tdoSp2TdDB33nkncnNzDfNVU1MTCgoK8PTTT6Oqqkr44NK8wEncJ5984vj0FyDNza/vvPOOiPKUwfM6pQo///wzqqqq8M0332DgwIF4++23E74nz7HTp08fw8kLnNSFw2H06dMHubm5yMjIEPlwaCJ67rnnsHDhQgMpcrlcYiFpaGgQHWTkyJFiwreagP1+PzweDzIyMpTBARx8cpHBF+VAICAWbU4Am5ubTT51AIT/YDLASR0vq5VSp9opWpkBZYJEA/C2224zXUtBFVY7STK/yv4rVkpTdXU1Nm/e7JjU8WzlQEskHR0dRSCyRaqhFamjuuKBEh6PxzQ5NDU1WSp10cyvdjv2WHzqYiV1ch3ybP2xKHUE2fw6duxYYc7LzMw09Ek+4QNmItmtWzcTqbNzgbBT6uS+S0ST3p+c2WlB5vXC35ePm1hIHb+fnVJHUNU93Ysf60UERFbquE+eTOrkZLQyVOTdSqmTSR2PECfEqtRlZmaaykbzmmx+pTmod+/epnlm06ZNqKqqEqSOnkOkrri4WJBQbm63GkOBQABjxozBxRdfLM7Ppbrh4EqditRRkNAjjzyCbt26KZ/F3zkjI0Osd6tWrcKKFSswd+7cqOZXj8eDSZMmiQ0L4DxQIppPnROljtLsUD3xvpqXl2dIl0QqPid1O+64o+F4ufYwv3aalCbff/89Dj30UADA4YcfrjxwPRAIwOfzGf7ZgZM6wJifSh5EPXr0QGZmJvr164c5c+YAaCV1JSUlpugZoHUnK0do0nNdLpfSHysQCMDlchl2PCql7t1338XEiRMtd3GyUkcDht+DTgVwuVyGRSmZZ59aKXVOza+ANamTTZlk7lBF6gaDLedXqpzdX3/9dXz//ffIyckxOcZakbqePXuivLzcMIHZ9bmGhgaEw2HR/kOGDMGuu+5quIaUBlp0rEy19Ey+YLndblMfDAaDStKRbFJnp9Q59QciyMoKJ3Wx+tQB5on8xRdfFG0s1xlXnwDz4q8idZycyKA6LCoqQm5urjiVBTCTOroPvT8tMLQgW+VZ5KmAopG6UCgk2pkrQbJPHdWJHanjJm3y8bzsssvE/YuLiw1KHdUj9XFeb6QSRiN10QIlPB4PZsyYIfKHUkYCeVxakTqyesg5Dd1ut4m00+88UAJoITl5eXkoKytDY2OjYUxEI3VWSp0dqaP7qsgCobq6WtSxitS9/PLLAGCI8lSB+nhJSYloc54ehZQ6qzkzEAggLy/PMOaSpdQFAgH0798ft956q2X5c3JyLEmdCvn5+Ybzur1eryFnZTTQu73zzjuirdJGqeP473//m4rb2qK6uloQjaKiImVwxqRJk1BUVCT+2fl5Aa0NSQOedxrqlJSuhP4fPHiwMF3aOZTS/WpqahCJRAxE5c0338TQoUOjKhic1KkWzU8//dT2+7JPHb2TPBD4jnf//ffHiy++aHnPt956S6RncAoa/DvttFNU8yspnDKckjqaEK1IXVZWllKpO+OMMzBr1ixkZ2eLRfvRRx8FYD2h0udOlToqm9W7AK0qBj8hQAVqS1mpk2Gl1NklHyY4dZgGWttSPgEAAI4++mj861//sryXDLkO7cyv0Y4JA8wTOQc/ugowkzqZSBKp43WlIs2y+TU3Nxd//vmn2JgCZlJHY536iazUWQX6xELq+LvJ+bJ4X+vfvz/OPfdc3H///eIzO/NrU1MT/vGPf+Dss8/GRRddhHvuuQeHHXaYY6WOggPIL1kGJal1Yn7l6jf5AssbBStS53K5UFFRYSDupNRRnz/22GPx1FNPifYmMkXErKqqCqWlpcjJyUEkEjHcq66uDtXV1WIOUCl1fr8fgUDAkfmV6jAjI8NgYZD7wNatW8V6qFIdCXbHPQKt454rzm+99Zb4OTc3F7vtthvefvttAxkCWuYXVcCDXaDEl19+iVtuucWxUjdgwADceOONlgpadna2YS6gjZIdqVuzZg3cbrdI3TZo0CDHayDV83/+85/086njOOOMM0ynAchIVsJRQklJiZjsq6urlek1JkyYgJqaGvEvmkMjTaq0a+cdnSZK2lGR1Dxo0CBxjepsRg6v1yvIJ792u+22ww033GD7XQCWSp2ct8sKMqlTnTtLSh1Njt988w3OOeccAMD5559v8H0AWtKbxJPCZvbs2Xj55ZeVSt3MmTPhcrmwbNky5OTkKAekU1JHQTsq5YZInVUEI9Ay6IcNGwagRXXYYYcdojr6x0rqVOfqEsjfyGrRIVgpdTKcKnW8XxGipauprKzEfffdh8zMTMOmY+zYsbjuuusM195555229+Lw+Xw48MADMW/ePOy000625tfMzExkZmYq27tXr1444ogjsMceewgCwhWYjIwMU1+Tfe9UgRLcER+wN7/y/l5eXm54nqyGWyl11G/46Q3xml/pewUFBSZSx/uP2+3GlClTlOfs8t+52Z3+npOTg+uvv95AHrhSp/KpO/zwwwG0RGZaQQ52sTK/cpBS55TUAS0mNu5zTHVDbXnPPffgoosuEu29bt06ocQCLf03JydH/J0HyPn9foPlhupPFg9qamrEvFNSUmK5saQ6dLlc4hpVH9iwYYNIsKtS6ghOSR3fNJeUlIh+kpOTgzvvvBN+vx9fffWV4bs038jPsFPqDjroINx6662Ofeqys7PhcrmUqvmVV14pIrKdKnUUTNmjRw9DijC7fspBpzDl5uamt/l1+vTpuOWWW3DFFVeYFoJQKIQpU6aIbNnJwrBhw0RKh08//VR5PJfX60VhYaHhnx0qKyuRkZEhju6SSZ3b7TaROvqfHH5VIALi9XqFNC8TwGiEEIAhZQB1wkgkIky20XxnZPMrdWC+OLz++uuYOXOm8l0mT56MDz74IGo5nWCfffZBQUGBYfBQJyefzDlz5lg651u1pTwYR4wYgbKyMltSl5eXZ0nUcnJy8Mknn4hdpt218nsAzkidHVmSlToVGhoaDKqr3W4vGAw68qlTldsqoIOwfv16XHvttQbFhupYRVxlV4MXX3xR+KcSampq8PXXX6OoqAh77rmnYeK2iiyWF3tCU1OTCPiheuWnYKhU0GjmV5VvlxPzqwpWSh0REFLqaA5RBUcAaqUuEongxhtvNKkl9G7du3e3Nb8SuJJpZ37leew4nCp177zzTlQzvaptVOZXDlntJKhM+YS+ffsaImZlpY7mKOoL06dPR5cuXcT71dTUICcnR8xNdCQY0NLGnNQRcad6prmhurrakJUgmlLH8zDm5eWZ1ob169cLUldcXGxSqAnRSB31Z1lUoffp2rUriouLsfPOOxvy7QHWpx/xk0q2bdtmUP4IGzduNM2bNDfwZNp2vpm00VSROqu5Tg6GJFDfieZT53a7MWnSJIPLz+bNm01H2bW7UnfYYYfh66+/xrRp03DiiScKv4Enn3wSffv2xTXXXINTTz01qc8cMmQIKisrMWLECCxcuNAQ1BAvPB4PevbsKfJiyebX3Nxcg8kXaO3UtCOQsW7dOrHL40qdTFbsSN0VV1whniWTOsBo6rKDrNRRB+ZRdNdffz2mTZsWs99TvCAzA9A6IdHEvGjRIstF0GoSUu2w5MmfwEmd1ftSziwyVeTm5ipJHTcnJlOp4z51NDHNmDED55xzDrKzsxGJRJCXlyd8B2tray2VuuLiYjQ1NVkqdbxPqSIErepcVWau1GVlZSkJAq/HSCSCsWPH4thjjzVcc/7552P9+vVifFAuSX5v1fPt2puXkR8lxMt4yimn4LbbbjMRRNnkqzL32il1dnVo5VMnm1+5k7t8LaBW6urr63HHHXdgzJgxhgXeitSp/NNk2JlfyV/V6jsyqeMnPlDEebSNrmxCt0o+zMGVL454lDp6PyqnHGBDv1dXVyM7OxtHHHEEnnrqKXENLez8aMOZM2caNs5UXiJ1LpcLhYWFUZU6bprOz883rA2RSARVVVXo27cvnnjiCTz77LPKe8nvpIJKqQNa+yApo4MHD8aCBQsM11iNE57X8M8//8Qpp5yCbdu2Gd558+bNhhOSgJZ2CIVCho2FXfmp7LH61PHvEmJR1goLC8UxasXFxYhEImLsUTtZudmokLJAid133x2zZ8/GihUrMGzYMPTp0wc333wzxo8fj7/++svWWTFe3Hffffjmm2/w6quvRs087hR9+vQReYF4h6ivrzccxk2DzS7NA9Dic0O7GCvzq+p3wuDBg0XINHc45YOUOmQ0UsefQQEbgPkQbiC2BLqJgE8GNMjJ52Tz5s22ygaB56VTDcZoi7ws23PIgzU3Nxf19fW45557xJl/33//vcGcyMlKMkgdqWvU90aNGoWRI0eaziAGWkidlVJHBMXKpy6aUucUKqVONelxIk1lkoMOyN+E/udtZRex6JTUTZ8+XfydT6RvvvkmbrzxRni9XoTDYUGE5GfyFAUE1WJFp7DYgUgd3ZMrddnZ2WJDqdqAcDOySqmj+p07dy4uueQSU1m7d++Obdu2iaAG2adOBafmVw6qu7q6OkOgBNDqz2SXQoODt3MoFEJjY6NpvpD7B9WxXId2pK6srMyg7FHdyEodL3dDQ4N4LzK/ZmRk4OijjxbXdO/eHfX19Ybk9Ntvv73BxUVW6ig5thOfOiulrq6uDg0NDejWrRsuueQS0xFhHNHIisqnDmj1LyZSV1hYaCqznNOQQEob3+TU19eb5iQ5zRaND7qOm2itjjij51O9OTG/8u8SYlHWCgoK0NTUhJqaGiFq8JM/VAFudkgZqaupqcHzzz+PtWvXYunSpaiursYXX3yBiRMnRjXbpBP69OmDP/74A4BxUq6trUVhYaGY6GSlzgniMb/yziMrdbIfRrSFmL+PlVLX1uCkmAYW9320q18axG+99ZZQglX16ESpsyJ1p512muF3Mr/ecMMN4lggORs7P8s2GqnjOQhVsPKpo3qTD61WKXWffvopZsyYIUysTnzqqNx0PmUskBd3OtlABp/k6Wc5YIV8c8j8xRc0O6VOZX7l11Of+PLLL8XfrcyvAEzvw59FnxNU5teHH3446vik/kzO/FypKyoqMrSXPKfyulSROl6v/FhAeq9evXohHA6LucBOqeN1yKEi8zKszK9Aq3oWTR2Sn7ds2TJ88cUXiEQiJsVIXmyzs7ORkZGBuro67Lbbbpg8eTIAe1KXk5OD5uZmMT7INP3www9j9OjRorzyeiGbXwEY0oPk5+eLTZkViaBI0k2bNsVM6ujnnJwc/PHHH4Kw08aJXIkSgZVSx0/wAFreT55jrZQ6qiv5FBX+fbfbbeqftCZTP1IFU6jKzo8Hra2tRUZGhuX3aH2xUuqckDEa55s2bRL1Fm2jaoeUkLoJEyagd+/emDJlCu68805s2rQJJ598Mg4++GDMnTs3FY9MGXiKAT4p0cQqk7poSh1HPOZX3uHlQAmaCGhBUSXYtXoGj35tT1LHBxZNQuvXrxeLll0HpzagQ6PpZxlWpI78fmRSRyrls88+a0ggDVibXzko6qyiosLyyLxgMIjLLrtMpI+xgpVPHbUlHQYOtEzSKqXu0EMPxahRowyqH92bQOSR/kYToyq/XzRwk6VTpY5+lvNZUf+gqEu+ONj51MntHYlElEodP5dZRerkvHdWSl0082tmZmbUzS39nUgdV+qKi4vhdruF+ZbnzwKM6U1U5ldO6rgJmMpKPs/k72XlUwe0LuBWPnXhcFgZmcy/IwdKAMAXX3yBnj17Rs0iwO8VDAbRr18/HHbYYYayyc8juFwuFBQUYPHixZg/f77o33aLKfUPqldS6vbdd198+eWXYvzy9q6rqxO/19fXG/K5EXJycsScbTX/5+XlIS8vDxs2bBCkbrvttjOMew7Zp46EhE8++UQEM9J8b6fQHXTQQVF9tIHWY/XkE4aoLonAqDbOVqTuxhtvBGC0wPh8PsO8qxqrsmk9mvmV+ndRUZHYcFHeUKs52YrUxarUAWpSt3btWsf9n5ASUvfuu+/ikUcewZIlS3DhhRciLy8PU6ZMwYUXXojRo0fjvffeS8VjUwJO6niH4BMr0Nq4sSp1VuZXK3JoReqCwdbzWGlw8IldhaKiIpF7jzsmq8yvbQW+K+OZ7U8//XRceOGFYietAk0YBQUFYgKIxXHeSqkjUqTarZH5laCK6iZSN3z4cHz77bfKsqvyKqpAbW6l1PHJfbvttrP1qSPiZnWixObNm+H1erFx40YxyUWLeFVBZYZTTcIqUieTscbGRuyzzz4iwtppoISs+FGdyKQuEAiIQCaVv5us1MlkhScTJdj51NmB2ov6sqzU8XvyBTkjI8OgAjY0NAh1VEXq+IIlkzpSRO3Mr1akLisrC8uWLRNHGqren+rL7/eblLqpU6fi1FNPdWx6qqioMGU0iKbUAS0bAzK7U2R7NKUOaCV1VoSXf3baaacZ6ke1TmRnZ0cldUBLW2/cuFGQukGDBmHBggVKFxnZ/Or1ekXfIF9xJ24fXq/XkV+Xy+XC3LlzcdZZZxk+/+yzz/DMM8+ItlSROqtAid133x2hUMhgXv3111+x++67i99VY5WbqgEjqeO+26rvERG0O+EHUJvagdh86uj+oVDIROpeffXVmOMDUkLqFi5ciHPOOcfUCW6//XY89NBDOPXUU/HYY4+l4tFJByd1fJDTxEpRtrQQxErqiAQkan6tra0VHcIu0auMffbZR1xLE0Bb+c+pQOYFHuLd1NSE0tJSPP3004aBLIN25/n5+eIIKJXqGE2pk00DVr4egDn6VaXabdq0CV6vF4cffjh+++0304kUQGuqlalTp1q+H9BKIp2YX4nUWfnUkd+c6v1kU0dNTQ2ysrJiJiaAWqkj3HPPPSK6WUXqZMjnMHPTk9VCzHfeBFmdJOIZDAbFWFb5pMrRrU6UOrvoVzsMGDAAzz//vPDPXLRoEYYNGyZSZPDn8QSvXbp0MZE6qjO32204qgtQK3WlpaWoqKgwkDqrhYoWSKvEz9QnVeOHjgbjf+fXye4Odthjjz3w008/GT5zSupIkaRgIyekjurQivC6XC7U1dWhtrYWzz77rCWpu+666zB27FhkZ2eLDbUdqauoqDAodbvuuiv8fr/yDFtqT07qyOxK70cExm7DFsu4HzBggOn6XXbZBePHjxe/x6LUUfl5/5MjZ1X1L5tf+fnL1157LYCWCHt500BuMnT6iZ1SZqXUxeIDxzM3cFLX3NyMtWvXYujQoY7vBaSI1Nm90AUXXIBp06Zh4sSJqXh00sFJHSc7pNRdeOGFWLt2rfBHiNX8CrR0DKukqVbfoWdxkwxN7HZHMsmgwRIIBBydjZdqnHfeeXjiiSdw/PHHW5q4rHD33Xdj2bJl8Hg8OOCAAzBp0iSDEzhBFShx7rnnYvr06UqlzmoHCZjNr7JjP9AyAWVnZwvFRfZ7A4DffvsNBx98sMm8K4PKZmV+5ekRZFKnigTkZJ4vNPze4XAYPp9PTJL77bcfrrzySttyys+hPHeNjY2GMVJRUSHUEStS98UXX4if6ag2ghPza0lJiSlCVEXqZKVORfxVSl08gRJO4HK5MG7cOFGee+65B3PmzMHMmTOFqkL35Hkau3TpYjK/Up1TH+D9W0XqvF4vevfuLVKe2Jlfzz33XADmuc8u3xiHbHbl11klG1Zhjz32MJkho5lfAaM/YkNDg5jnnZhfw+EwIpGIZd3k5eUhPz/fdNwc78P33nsvXnjhBUfmV8BM6vbYYw9kZGRgxowZpmtVSp28ifP5fOLIKyskK/CQkJeXJ6L4CXabZ8DYHvLmWaXUEVlSmV8vvvhiLFiwAOeccw78fr8h4W9RUZE4sjEaqbNS6uh3noPQCrz/kY9lfX191PqwQrscE3bEEUcoO2A6olu3boIp8w5ISp3L5TL4D9DC6CS5shMpWIaVUldTUyNMMFwVueCCC6ImWaZFNxAIiMTC7QWPx4NLLrkEXq9XmMisFmsZbrdbmHoyMjLwz3/+U5mEWqXUvfTSSwBgIHU8vxH9TYZMAOW8agCwdOlSZGdniwErHzMGtLSfqqyq59EpEXySo0Wdk7revXujublZECRVItZgMIjGxkbT6RTyucBbtmwRpG7WrFl46KGHopaVQEqdijxSChaglcjNmDFDnDUJtByh8+uvv2Lu3LmmiEYn5tfi4uKopI7KGCupcxIoES+pI5DZlN6hubnZZH7lpK6srMyg1Pl8PrEwEfngpJm3Oy9rQUGBqFs7pW7s2LFobm42WSmoLoYMGYKsrCzLhKw86pD/D8SmeIwePdp0vRNfJ75oR8vrCBjNr0QAnZgmMzMzTSeJyGWNh9SVlpZi//33x4cffmi6lsYcP61Bns9qamrEWmaFWMi1E9D7qSwiVuOkf//+4mc5BY2q/j0eD3Jzc8WpTbJPHXfR4T6pXOGrra2Ni9QRQaczpO3AFdL9998fLpcLDQ0NtmKCHdrt7FeefTmdkZGRgTlz5mDcuHGmvF0qH4RYza+A+sgqu/IQ8vPzhUxcW1srSB1fcPr37284YNiqHLToUobr9obb7RaTazwRQHawMr8CraSOVCUgNqXOikBnZ2ejrKwMbrfboOYtWrQI27Ztg8/nc3SeLlfq+OJHKi0ndZRLj8iAPPGR+ZWbJQikngEt7z9v3jzstttuUcunAm0arM7upWz8RDROPPFEcczOqFGjsG7dOgwePBhDhw41kTrKU0cmMyulTpVclsrGy8jNr6qNmVOlTja/ut3umHJNyeDtEwwGTSmUZKXO5/NhwYIFWLJkCdauXStSSaiUOg6+sHJ/0WgpTawWVQC45JJLEAgETOcYE+gdZMUuVnTr1s2U1sKqTECLuADETuqovFzVc+JDxY84VK0T8mbFCmVlZdiyZYuBaO+6665KCwCROtqwyBHuQCups8LChQuFuTJZiIfUkasQYLaIWPVN8o+jhNtOCBLVxXbbbYdt27Y5InWqvlJaWupoU8Lbes899xTjLt7NYLuRuo4GOcUDd1bmiMf8Ggup4zuU8vJybN68WZhayATMc9c5UbhI8YsW8t2W8Hg8lrnAEoUdqeNJTrkCBKiVutzcXIOpSyZ1PI9RRkYGKisrsX79evzwww94+OGHMXDgQAwePNgxqbPyqcvJyRH5pyorK3H11VeL/rl161ZlriNufpXbne+K6+rq8MMPPyhPaXGC4uJi/P7776LvqhY0nkR4u+22E5/v8P/tnXd8FNX6/z+bTbakbSokkIh0sIEKCEogCqLYFQUF20UU27U3vl4rKnbwWlCv14KKgqBYroAChi4KUlSkSUtCKOl1s9lkf3/k9xzOzM7MzmzJ7obzfr14AZvN7OzMmXM+5/M85zndukk6cCWnrqWlhQkyPeHXefPmsbQKXtTR5/vaexfQt1Bi9+7dWL9+vc9Vd3qQXzO6t9S++BBORkYGampqcNJJJ6F3794oLi5mEzslp66wsJC1YX4g4R1rrfCrGiQofLVr6jPlTp3RzwOk6TJKe3vTsSdPnoxvv/0WgHf41YhTR32UXsFO7UCpn6XX+BqESlB75kWdWrkkvaJO6/P69u2ru9C4XpREnS9nqkOHDjj++OMBeEc71M4vJSUFVVVV7DoYEXUAsHDhQs2FEvQ9At32dOvWrfjoo48kz50QdSGGr3VFocpwOHW845CZmQmn08m2NqKOmzpovWFLEnVUnHHFihV48803dZ9TKAiXU9fS0uLV4Wg9XFS1nJCHX6mzpA47OzsbBw4cwBlnnIF77rkHALB//36/nDr5NSG3btiwYXj11VdZ51RaWqo4QNJERalIq8lkwqpVqwAAu3btgtPp1FykosUdd9yBv/76iy0GiY+P9+oEeVHHC47s7GzJVlZKCyWA1nultrVTSkqK5Lm555572D3jhQQ9N3ztMDl6F0o0NTWhe/fuGDhwYFBEnXxgob6Hvj8/mUxPT5cMekVFRV5OHV1j2qua2iIfmqO2Ron1RkWWr8KthJqo8+ea8aks8v2FAWlpDRJigYRftfZVVkLLqaNj3H///ZrjCO1z3tjYKBF1StUOtEQdnbsvpy4U0DXXu0cysWfPHpxxxhleFRq0nLrKykrF1A815M+aHqeOnhF/6du3L0t9EqKujeCdunXr1gGAZDNr/n168SXqMjIyvLY+kYs6AGzLGsrtq6mpYVXv9Yg62p6GHJu8vDzcfvvtACBZsdSW8JtO63Uc9WK1WrFnzx5JXhi5WC6Xi90P2ljZl1PHI99Lk4QaX2xUaTFFaWlpwKKOBjTqlOh7fPjhh4qLYLScOuCo00FhHXntKb3Iw8B8x0rXnQ+j8tdHfr2Uwq9A6+Cg5dTV1tay55evfack6kgAKeFvTl2gDri8bchXv/LXhO9PjjvuOBQVFak6dVR4mPoQuoYmk4m1NaNuFGFU1MkXSvgj6ui7T5s2jW2nyEOfodSGAKmoU+tz/A2/8sdUEheUrH/22WdrHoOcZH6yRk6dfLKkJeroZ+EQdVrhV199vVKRZDWnjsKvfK1GX2RnZ7PdgYC2EXU8QtS1ETQAVlVVYcyYMcjOzsaAAQO83keDlB47ljoYNVF35MgR/Pjjj5LX+DASiTraySA1NRUJCQmSFY96nToSgvzg09TUJNmbsC2h8GtzczNaWlqC6tRZLBaUlJTg3nvv9dow2eVysYRuKhGg9XDJz2vLli2S/9NgTO/r1KmToqhzuVy6OlbK4VNypag90Gf6coCpTctXlBLykhT+ijo6TwoPKaUoJCYmoqamhhUVfeaZZ7BgwQKvfNCamhpNp05N1AFHUxeURJ3dbmeDnFb41d+cukCdOnnbIKeOhBZ/Tfh+idoKuY+8qIuNjWV7cZOzxw/88fHx2LZtG2sbWtdFCWovvnYqUHPq/JnIUdtXc1upPfHCPS8vj51vXV2dz1BdIOFXEh9K4oJcfrUFJQTdhyNHjkhEHV+eiKDvQtElI6LujTfewDvvvKPrexkl2KJObUIsF3V6JlexsbGYNWsWWxyiNdmm7xHMMmAip66NoJWCf/zxB0pLSzFt2jTNPAOqmaYFuTrnn3++7vMYP348+zctjPjiiy8AtDY+2uKEBhU9YshutzMHkG9AfMV6f/JbAoHCr75CIf7Af0f58V0uF5KTk9GhQweJewEodzZ0XX788Ueceuqpqjl1JPYp/KqEXqeuublZUoGfoBVcdBxfDgm5z/KQJkHfd+/evbDb7brOTwm6RuSEaeXUkTs6dOhQXHrppV6uxcGDByUdM79yVi3MSWKXnBAlUccX79XqRHlR5/F44Ha7JfdBrfhwoE6dfNCl/9O15YUyv1hAXveM3k/7xwKtG9Tv3bsXbrdbcg3lqQU9e/Y0dM7//Oc/sWbNGkl+phJqCyX8uWbUttQG2YkTJ+Lw4cOSCMTll1+O3377DXfddRfq6+vZNVOrShATEwOLxeKXU0ciUOkZIEdbKReQR03UAd5bQ5IJoOXUFRcXK07Y7rjjDtxyyy2+v5QfqIk6com1kIu6mTNn4rvvvlN8rz9OHf+7gPduLTx0vGA7dfX19ce2qNuwYQPy8vIwfPhwjB071udG9v5AKwVp0L7ssstU33vgwAF89tlnPo/56KOP4o033vC5Yotobm6WbBQv73QyMzO9RJ3e8CuJOqWOtKqqyueWY8GGnLpQizq6TtQ50v979OiBnTt3Sl5Terguuugi/Prrrxg5cqRiOJ46W3Jus7OzFYsP8+/VgjpDpfBrr169AHgLSTX0OnX79u1Dp06dDJWX4KFr68upo7pQ9H+gtWN97LHHMGHCBMl5878HgDksWmFkpZXJdCx+oNDqROPj42E2m1FeXu61KwXQes35fFDA9/ZEepC3DfreSk6d1WrF6tWrWZ4c/3O6F2+99Ra7Vn369IHb7cYff/zhJep4+EUIejCbzbr6tmDm1NF30qq5mZmZ6dWWTz31VGRkZMDpdOLFF19k79M6Z3+cOhqolZ71//znP/jtt998LkrQI+q2bNmC3bt3s+LrvKijkHtjYyOam5uxf/9+dOnSRdf5Bwu1hRJ67jk9q71798ahQ4dw6623qlZtCETUUZ+tJero+gdT1FHq0TEt6jp37ozFixdj+fLl6NGjBxYsWBD0zyCnrqioCElJSZqhsuzsbF2zzN69e+OOO+7QfQ7yhz0uLo59zqxZs2CxWPwSdbxTp3TeycnJfrs0/iJ36oKZUycPMQPeDktWVhabsWuFBUwmEwt3kajikbtlnTp1Ug3NGxF1/DkTJCp97UVL8CVNtJy6wsJCn2VxtDDi1Cl1vk8//bSk3tO2bdvYv/U4dZ06dUJMTAwKCwu9Jnz0HfmO29f+kLTXptZOHcEOv8qvGQkh6hN4oRwTE4MzzzxTsrCF2jz//em1oUOHIi0tDXPmzEFDQ4Mk/Cr/XqGAPoeelUBEHQlPrcUualBbovFDq26k3W6XOHXBEHXJyck49dRTfR6DRN3hw4e99lSlUjb9+vVD9+7dFUXdZZddhgsvvBBOpxMlJSVwu91tLuosltatAuVOnRFR5/F4NPerBbxXvxoRdXSvtEQd3fdIEnVtG1MLEfwsm/Y4VILyCgilJeBq8E5dIANcsImLi4PT6WQPeqCiLtDBJ1iQU2ckjKwXvkOVH5/+b7PZ2L68eq+lUq4HDZy8U6fnvNTgB1r5+dCAplfU0URFzeHiBypaOOMPSk4diRFyTJKSklRFHSANj44dO5b9m89vUvsesbGx6NSpEwoLCzF16lTJz4w6dUDrdd69e7dq25SLumCEX+XOk3yHCKXBim9P9POhQ4ey1/iiv4MGDcK2bduQnJzMrgWJnEGDBuGRRx4J6Py1oPOgwTMQUZeXl4cNGzboEkdy5M+fVp9js9nw5JNPsiL6Wq4eD40/WmUyfJGUlASz2YympiYvp66oqAiXXnopey+JOnlOHdWFpHxZKhXSVvALcQgKv/qCtoDU01/S6ld/nDp6hrVEXc+ePXH77bfj0Ucf1X1cXwinjmP//v1YsmQJLrroIsWfT5s2DQ6Hg/3xlbvAwzt1kSbqAAQk6mw2G8u9iJQ6ddRZ0WAWTFHHz8DVwq82m409VHofLnr48/LyWO6j/He0ZsR6Oim+srv8mvTr1w+vvfYaHn74YfaaVpFvX+FXPkTlzyApP8/q6mrExMQgLi4O119/PR588EEm0LScOqBVDJeVlcHj8eDcc8+VfAegVchqFRfNzc3F/v37vfIZ6dzkOXWFhYXYsWOH4rG6detmyKmrq6sLeLLE5wECR0WdUviV4KMJfA00yifjz4nKGvGTVjrmBRdcgMsvvzyg89dC7oiYzWaMHDnS0K4lPKeddppfqQJGFoLQtSNR52txA0HOXiCRD5PJxBbKyEUdL+iA1pzK9PR0OJ1OL1HX2NjoVQ6rLVHaY1vPc9K5c2fs2rWL5ZJr4XA44HK5mGkRCqfuzTff9HsRmRLHlKg7ePAghg4d6vWnvLwc1dXVuO666/DBBx+oCoApU6agqqqK/fG1fRYPOXW1tbVtHoqcMWOG6sbW9FDLRZ3R1a+R5tTR9yLXKZiiju+86TrRIEC1gqxWKxOUH3/8MQDf15IefpfLxaqfy506rZCO3vDrfffdB8D7mphMJtx1112S+okbNmxQPRbV61MLvxo9NzV4py4+Ph4mkwl2ux0vvvgia29yUaeUd6d07eieUGhXbVKSnp6OiooKWCwWSQcsLw0CtF6XnJwc1YUBOTk5KC4uVn3GqK8gqqqqAn6u1Jw6cjy19r4EvHPuAO8tB51OJwoLC9lkl/oErUEtGJCDS59jMpnw448/4swzzwzp58rxR9QBrSJDawcIJQJx6oCj50rPllq/Ul1djTPOOAPl5eUoKipi5039W3l5Ocxmc5uPaYD3FotGck+7d++uy12k55sWSRkRdTTmBnqvjBIbG4vm5ubo2vvVX7KysrBq1SqvPw6HAxMmTMDjjz+umNdEWK1Wlh9mNE8sLi4OLS0tcDqdQRUYerj77rtVF17IRV1ycjKqqqoMh1+JSHHq6BqTqAtmPg/fefMFpadOncpyHKl2n9vtxpIlS3D22Wf7TGCmQcnpdDKRKO+ktBwEX6tV5Z+j1414++23FcOnNAFQc+p4Aun0yU2SlyPh8eXUaR07JiaGiTq1QYEGEKfTKRkAlXKhfLU1cjnUnLq4uDjJ88qvNPUXeb1IOt4VV1wBQLl8DX/P+M9XE3X19fUoKipioo76Ur0LufyFFseEWjz6gp8M3X333Zrv5duI1pijRrBFndbq2wsuuABAq2vH33sSdXq3swo2CQkJeOmll7B+/XoA+hdKGIGuM62qN3L8KVOmoKmpqc2vjdypa9eiTo25c+dizZo1mDp1KvLz8zFnzpygfwZd2Nra2jYXdVrIRV1OTg5+++03FoLTG35V+nc4CaVTpxR+ledjUadXVFSElpYWXTlFNCg1NDSwjsDI9dS7FQ+FCinnzxeTJ09W3CGECpaq5aLxBNIuYmJiEBMToxmGJFFXX18Ps9ls6H5bLBbm9qidJ1/Q05cj46vjJydOK/zKh26D4dRdcsklkgU21FbGjBkDj8ejuLsNH37lRTL1CXJRV1RUBKfTyURdXl4eqqur/d5JRC8kyMMt6vh24Sv0y99P2pXDCIH2Z3JRp0Xfvn1Z+1ASdUZ2NAomFIqmCWcwVonLoXZfUVEBm81mSKDRSva2hkQd1SI1ukVbuxB111xzDcrKylBQUICCggKMGzcu6J9Bir+8vDxkq8D8gUqrUAdNIaMffvgBgP46dUSkhF/pvMm5CXX4Vd6hUKdHicR6VoeR0zZy5Ej2ICpdz7Vr1+Khhx7y+/xJ1FEStL8kJSWhsbER27dv9+mMBTpbjY2NRUNDg+p9TEpKgsfjwZEjRwyFSADpbhB6nDq1UBktEPD1DFB+rdZCCZ7KysqwPFdGnToqis3nV7VF6Onxxx9H9+7d2zzMJcfIPeLfqzefLpgYEXUUoaJ/A633vqGhgTl14YCeWXp+9C6UMAK18YqKCsP9SrjgnTp/+o12IeraAqVl5JHAK6+8ItkHT54HZDT8Gq5ZmxzqrEIt6lwuFzwej6Koa2xsxL59+wBIN5nX4tChQ5gxYwa7D1RmhHdZBg8eHNDEY8SIEZg8eTJuu+02v48BSGvoqeVsBovY2Fg4nU7VQYjaXVFRkV+izpdTR0nZWq4k5ejocepcLpeqUyf//WCEX/Vw4oknSv5vt9thNpu9nE81UUcYWUAWDM477zzs2rUrLCFAf+HvcaidTCWURN3LL7+MmJgYXHvttZL3Wq1Wdq/pvMmlD6eoo2eWF3WhdOqiSdTV19fj/vvvl+yNq/v3Q3BO7RKyr+vr6yNK1MXGxkqEmD+ijh74tLS0iGn4ocypkxcfbmpqgsfj8XIznE4n/vzzT3Tq1En3dSEX7dxzz8XOnTuZwydP/A+k87JarUHZvo1EXWxsLE4++eSAj6dFXFwc6uvrVUUdFdL2V9Tpceqolh3/vXm++OILzJ492+fzTW2RJhzytikP77rd7jZx6n7++WdJ4rnJZEJycrJkJS6gHn4FWu9TuMOg0QDdz4kTJ2L48OG6fy8rK4sl7QeCkqi7//77cf/99wNo7cv//e9/s3OVizqHw4Hq6mqUlpaGxWkEjjp19B1CIeqi1anbtGmT378vnDqd8DkrkRR+lZOUlCTJn9JzrjRT05uo3xaEMqcOAD744AMAkOyXKHfqGhoasGDBAowePdqvz+jRowfi4uLw5ptvYtasWZKfRUIbInHTFi6Sr4RumpgUFhaGxKnjw69WqxWzZ8/G5s2bJe/JycnRFRane0cCSt42ldzuthB1iYmJXoLM4XB4XU9+BSRB7+ncubPhHJ72xNlnn4277rrL5/vonhtdRPLHH3+wlI5A8BV+la/mlt9zh8OB5uZmrFu3LmzRGT71BWgtSeZP0WgtqD8oLy+PKlEXCMfu02sQXtRFklOnBF9TTI946N+/PwCobl8VDuROXbCvOQk1qrQOeIs6j8eDnTt3eu0/apTbb7/dq7OKhNxFymFqi86OOiq1yvuBhl/1OHX19fVspe8111yDE044wdDn8J8HqIs6pYUY4VqAlJyc7PXZvkTdscyyZcvw2muv+Xyf2up2X6Snpwdl9wYjos5isXjl+NJ41tzcjCuvvDLg8/GHQYMGAQDKysrQ3NyMv/76yyuFIFCo7VdWVkaNqOP7SK3tSNUQok4nSUlJ7MGIdFHHr3rTI+pow22t/RLbmlDm1PHHc7lcTBDwidr8QKhUMy1Q+Pty7rnnYvLkyUH/DF/odeqCUZjUl1OXkJAAq9XqV+erN6cOaA3DBCqoqe2oiTqlZy5cIj45OdnretL58YMHvcdIrTZB+O6rUadOLkL5MaKt6wESP/74IyZNmoSSkhLMmTMHTqfTr5XEWlC7jiZRR/d01KhRbJ9eQ78f7BNqr1AV7/Ly8qgSdXrO1Ww24/nnn5fsVhBu5OHXYIcr6XhNTU2syKpSBX4gNCKe/z60Urmt0SPqamtrgxKO8yXqTCYT0tPTceDAAcOdb1xcHMrKygBoO3VAa62uQF0zX05dJIk62tBc6Vz4hQl0zcO9AjXaiHZRF46SHURycjJOP/10vPfee5gwYQKAowvLgkVcXBxMJpNXznQkQ/fE33FHOHUGIMs6EvKhtDAq6gDg4YcfxsiRI0N1SoYJZUkT4Og9dLlcbNDjQ+x8BxCK+x0J4VcSOgMGDNB8TzBmuHT/tAYRWixh1Bm1WCysHIdWTh3QmpwdLFH3999/IyYmhp03Qd+VNobXOi+jbNu2DTt37tT9fi2njhfr9J5w7CwQjdBq9mgQdRaLxUvUUV8XiiiEEeTPTjC32wJaJy707EWbU+fvuCOcOgOQWIp0p87oljWRSKgXSvDhV3LqeFHHd9ahdOrUcszaApPJhA0bNgR9dqyEnsr3OTk52LJli+EQoFK5Djn8MxHoQEz37vnnn0fXrl29BBstVuAnV8Ea/ClVQi+TJk3yypVVcuroOwinzhjRIOq0nLpwjxXyRRqh6A9pX2Mh6gRe0Kwm0kUdPcC33nprmM/Ef0K9UIKqhTc1NTGnri3Dr/TghnsQPe2009rkc/SIOqqP1rVrV0PHdrvdXp8jRy1f0h/49kATAp7bb78dGRkZGD58OCskGq7B/5xzzvF6TUnUkSMunDpjRLqoo35OLupIzPm7WChYyJ26UCCcOoEq0SLqgNZcqGhpxErwCyVMJlNIZnBURNblciE+Pl5yX0MdfqVONtirvSIVX6tfASAzMxOAcVFHq5cB9Z0v1ELr/sC3h08++cTr57GxsRg/fjyA1kHU7XZHVD4PP+ATtJDEn31Mj2XCJepo4Z4vUWc2m2EymbxEnclkwsKFC9kK1HDBi7pQtT0h6gSq0AMR6Tl1QPht9UDhnTpKdg3FZ7hcLtTX10tcOiD0Th0ALFy4UDOfrT2hx6lraWkBcHS7Lr2QqPvpp59U38NXzQ9W+BU4ulm6GjabTXPP23BAuXT8M5Wfn4+VK1firLPOCtdpRRWUUxcusU65nGqfLxfuSiVYzj///BCfpW/48Ouvv/4aks8gMXesiDqxUMIAga5KEeiHz6kL1fWmjdmrqqq8NkQPtVMHtHaqbRF+iAT0LJQ477zzABh3L0nUaYWy+Q49mE6dL+SV/CMBEiTyVc1Dhw6Nqq26wkm4F0oArQtxJk2apPgzPaIuEuCfpVCF/o81p65dibrPPvuMhXBCgRB1bUdbiDpy6iorK72culAvlDjW0OPUDRs2DB6Px/Deo3pEHXC0Uw+mU+cLGlAiKfxKjqgQcIETzqjNkCFDVMc7+XlFqqgDgH/+859YvHhxyI4fic+gFiL8+v9paWnBvHnzQroZNQ3u0RB+jXb4kiahut6UU1dcXOy140NbOHXHEnpEnb9Q0Wxfoo4WA9D+vP5iROQr7d4QbpQK0Ar8I1KFcbQ4dQDYHrWhQjh1Ucrs2bNx5ZVXahZKbWxsRHV1teSPEYRT13a0VfjV5XJh3759Xlv3tEVO3bFEKEUdOXV6wzd9+/YN6POiPfw6aNAgvPfee2zzd4Fxhg0bBiD8q9fViCZRF2qoX4gWUUeLyY7p4sPNzc2YO3cuxo0bp/m+adOmweFwsD9GXT0h6toO+UKJUGCz2fDKK69g+/btXqKO7/yEUxc4ela/+guJOr2FVANN0Yj28KvJZMJNN910TA7wweLOO+/EkSNHvHJxIwV5G6VnI5w7SIQLet6jRdQF2ldG1R0+ePCg4ubDN998M8aOHetzO6MpU6bgvvvuY/+vrq42JOyEqGs7qAp6VVUVK+YabPgVwvKNzPm2JO534ITSqXO5XAB8h8Ly8vKwatWqgD+PBkw93yUSnTpB4JhMpohe5ER9G6Um/Oc//8Enn3wSsc5iKCHhHW2izt/tGaNK1GVlZSl2yg8//DA2btyITz75BDt37sS9996L6dOne73ParUG1LkGGusW6MdkMiE5ORlVVVUhy5PknR2tFZfifgeOntWv/pKVlYWDBw/6fN+yZcvQ3Nwc8OcZ+S5C1AnCgbw/y8rKwgMPPBCmswkvVKg5nLv3GIH6FX/zNaNK1KnxwgsvsH8PGDBAUdAFA+HUtS20GXmorjfNZu+77z7NyurifgdOKJ26tWvX6toPNTY2NiifbyTnhcRcJIVfBe0fMYk4Cjl1tHNQpHNMOXV6WL9+fciOTRebSgIIQkuo99olUecrL+ZYzEMJNqEUdccffzyOP/74oB9XDZpB63FwhVMnCBfbt29nqQnHMrRfcrSs9qb+RYi6NoAGJH6vSUHoCLWoo/Crr903IrVsQTQRSlEXLmiw0EKIOkG4EFu+tXL22Wdj9erVGDJkSLhPRRdkGglR1wbQgBSMvByBb0jUhSqnjcQc7XspCB2hXP0aDn766SecfPLJPt9ns9kQFxfndwctEAgC58wzzwz3KehGiLo2hJR+Tk5OmM/k2CDUTh09NNG+T240QI5Ve3Hq8vPzdb0v0MVZAoHg2EKIujbk4osvRnl5OVtNIwgtoRZ1tH+jcOpCz7FaJ8tmswlRJxAIdBOoqBMxAYMIQdd2UCXwUIs64dSFHrrGx5qo69Kli1dha4FAIFBDiDpBu6WtnDoh6kLPsSrqJk+ejF9++SXcpyEQCKIEytkXok7Q7gj1QgkSdcea0AgHx6qoM5lM7WZxiEAgCD3k1PnbbwhRJ4hY2sqpE4QeyqkTNR4FAoFAnby8PADA8OHD/fr9Y2vaLIgqQi3q7r//fmzdulVXaQpBYJBT19jYGOYzEQgEgsilZ8+eARkOQtQJIpZQi7quXbti2bJlqj8vKCjA3r17Q/LZxxpC1AkEAkHoEaJOELGEOqfOF8OHD/fbAhdIIVEnti0SCASC0CFy6gQRS6hLmgjaDsqpE06dQCAQhA4h6gQRS6jDr4K2gwrwClEnEAgEoaPdiLqCggKMGDECw4cPx9dffx3u0xEEAeHUtR9omzAh6gQCgSB0tIucOqfTiVdeeQULFy4MW/6VIPiYzWYkJiYKUdcOEE6dQCAQhJ52IerWrFkDu92Oiy++GPHx8Zg5cyaysrK83tfY2CgZVKqrq9vyNAV+8Morr2DYsGHhPg1BgOTk5GDcuHF45plnwn0qAoFA0G4xedpBBdbPPvsMr776KlavXo2lS5fi66+/xttvv+31vieffBJPPfWU1+tVVVUs1CcQCAQCgUAQjUSVqDt48CCuvPJKr9dvu+02rF+/HtOnT0djYyPOPfdcrFixwut9Sk5dbm6uEHUCgUAgEAiinqgKv2ZlZWHVqlVer5eVlWHWrFkAgI0bN6Jbt26Kv2+1Wlluj0AgEAgEAkF7IqpEnRrp6em45JJLMGzYMMTExOD9998P9ykJBAKBQCAQtClRFX4NNtXV1XA4HCL8KhAIBAKBIOppN3XqBAKBQCAQCI5ljmmnzuPxoKamBklJSTCZTOE+HYFAIBAIBAK/OaZFnUAgEAgEAkF7QYRfBQKBQCAQCNoBQtQJBAKBQCAQtAOEqBMIBAKBQCBoBwhRJxAIBAKBQNAOEKJOIBAIBAKBoB0gRJ1AIBAIBAJBO0CIOoFAIBAIBIJ2gBB1AoFAIBAIBO0AIeoEAoFAIBAI2gFC1AkEAoFAIBC0A4SoEwgEAoFAIGgHHNOizuPxoLq6GmL7W4FAIBAIBNFO1Ii6X375Bfn5+cjPz0fv3r1x7733sp8VFBQgNzcX+fn5GDFihO5j1tTUwOFwoKamJhSnLBAIBAKBQNBmxIb7BPQyaNAgFBQUAAAmTZqEyy67TPLzcePG4eWXX277ExMIBAKBQCCIAKLGqSPcbjd+/vln5OXlSV6fP38+8vLy8Nprr6n+bmNjI6qrqyV/BAKBQCAQCNoDUSfqli1bhuHDhyMm5uipDxgwANu3b8fSpUuxaNEibNiwQfF3p02bBofDwf7k5ua21WkLBAKBQCAQhJSoE3VffPEFrrrqKslriYmJsFgssFgsuOSSS7B582bF350yZQqqqqrYn8LCwrY4ZYFAIBAIBIKQE1Wizu12Y+3atRg2bJjkdT6MunLlSvTo0UPx961WK5KTkyV/BAKBQCAQCNqKAwcOYMqUKSGpvBFVou6nn37CsGHDWOh18uTJAIC5c+di0KBBOPPMM9G5c2cv0ScQCAQCgUAQCdx55514/vnncfDgwaAf2+Q5hou0VVdXw+FwoKqqSrh2AoFAoIPNmzfDarWiT58+4T4VgSAqueCCC7Bw4UKUlJQgKysrqMeOmpImAoFAIAg//fv3BwBRtF0g8JOmpiYArRU5gk1UhV8FAoFAIBAIohkh6gQCgUAgEEQ0TU1NqKurC/dpRDwul0vydzARok4gEAgEuli2bFm4T0EQwbz00ks455xzwn0aEY/b7QYgnDqBQCAQhBFfe2vfeOON6NKlSxudjSDS+PPPP1FSUhLu04h4Qhl+FQslBAKBQBAUPvroo3CfgiCMFBcXh0SotDdI1Inwq0AgEAgiHhq0BMcWxcXFcDqd4T6NiEcslBAIBAJB1BCKoqqCyMbj8aCoqEg4dT6YPXs2duzYAUCIOoFAIBBEKJT8DbQ6NoJji4qKCjidTjQ2Nooahhq89dZb7N9C1AkEAoEgbGRmZqJbt24AgJaWFsnPDh06xP5dVFTUpuclCD/8PQ9Frlh74fjjj2f/Fjl1AoFAIAgbbrcbSUlJAOCVO8XXJwtlrTKPx4PCwsKQHV/gH7w7K0Kw6pSVlaFjx44AhFMnEAgEgjDidrvZPtn19fVePyNCOahPmzYNxx13HCoqKkL2GQJjOJ1O7N69m/1fiDp1SkpKMGbMGMTGxoqSJgKBQCAIH7xT19DQIPlZc3Mz+3coB/Vnn30WAFBeXo7U1NSQfY5AP9nZ2aisrGT/Fytg1Tlw4ACys7NhsViObadu7969yMzMRH5+PvLz83HkyBH2M7fbjRtvvBF5eXm4++67w3iWAoFA0H5pbm7W5dSFclCnz62urg7ZZwiMwQs6QDh1ang8HpSWliIzMxNWq1Xk1A0fPhwFBQUoKChAZmYme/3bb79FTk4OVq5cifr6eqxZsyaMZykQCATtE96pC1f4lRCiLvLo3r07ACHq1HC5XPB4PIiPj4fVaj22nToAWL16NfLy8vB///d/kiXTa9euxahRowAA559/vqqoa2xsRHV1teSP4NigsrISY8aMweuvvx7uUxEIopKWlha0tLSoLpRoq/ArUVNTE/LPEBjjhBNOABA8p9btduM///mPpG1FM3RdbDabEHXZ2dnYtWsXVqxYgcOHD+Orr75iP6usrGQhAYfDgfLycsVjTJs2DQ6Hg/3Jzc1tk3MXhJ/Nmzfjyy+/xCuvvBLuUxG0ERUVFVi/fn24T6PdQANrQkICAG/h1hZOHT+ZF5PyyOO4444DELz7//bbb+OWW27BkiVLgnK8cMOLumM+p85qtSIhIQEmkwljxozBpk2b2M9SU1PZA15ZWYm0tDTFY0yZMgVVVVXsj1gWf+xAD0+0zvi+//57lJWVhfs0oooLLrgAAwcODPdptBtItMXHxwNQF3V2uz1koo7ffkyIusghMTERCQkJuO222wAET9T9+uuvAACLxRKU44UbuVN3TOfU8Vb7ihUr0KNHD/b/wYMH44cffgAALF68GGeddZbiMaxWK5KTkyV/BMcG1MnwbkK0UFBQgAsvvBAzZswI96nowuPxYPLkydi4cWNYz+Pnn38G4F0kV+Af9OwkJiYC8B64acIUHx8fsoUS/IpbEX6NHNxuN5577jmkpKQACF74devWrQC88zejFboudrtdhF9XrVqF008/HXl5eSguLsb48eMxefJkAMDFF1+MwsJC5OXlwW63Y8iQIWE+W0GkQTOiaBzgv//+ewCtHUE04HK58O677+Kqq64K96kAAKqqqsJ9Cu0CefhVPnCT6EtISAiZU8eLOuHURQYtLS1wOp0s+R8InlNHoi6UxazbEmq/NpsNNpstJJOfqKlTN3r0aIwePVry2jvvvAMAiI2NxUcffRSO0xIYoLm5md2r66+/HnV1dbjzzjvx6quvhrzeVDSHX2trawFET+0nmlXv27cvzGfSSkVFhahnFgR40Qaoh19DKep4x0aIusiA+qVgi7ri4mJ2v9uLqOPDr3a73avWYzCIGqdOEP1QuOT9998HAHzzzTf48MMP8cEHH4T8s9uDqAtFBxBMZsyYAZPJhH79+gEIb6ibH/wjbeeB+vp6HDhwINynYRg+Zw5QD7+2lVMnwq+RAT1r8fHxsNlsAIIzAd2yZQv7txB1+hGiTtBmUBgsNrbVIKak57i4uJB/Ng0y0Vg/iURdpOeV3HvvvQAQEQuQfv/9d/bvSBN1ubm56Ny5c7hPwzAk6uLi4mC1WsMafu3YsaNw6iIEXtTFxsbCZDIFRdTRBgPx8fHtUtTZbDYh6gTRx2effcZmXCTqzGaz5P9t4Z5RTl1DQ0PU5dVFi1OnBL9asS3ZvHkz+7daiaNwcODAgYg6HyOQaIuNjVVM8uZFXahSBUhA8KJu+fLlET/hCQYPPPAA3nrrrXCfhhe8qDOZTEhISAjK/SgvL0d8fDzS0tLapaiz2+0heU6EqBOElPHjx7NwHG0lQ6KupKQEAFipDpfLhR9//DEk58EPQNGSm0ZEi1OnRFVVFZxOZ5s7pJs2bcIJJ5yAmJiYiHLqiouLw30KfsOLOpvNprn61df93rdvn1+OLu/U1dTUoLS0FPn5+bj11lsNHyvaeOWVV3DHHXeE+zS8oH6JwvKJiYlBEWEVFRVIS0tDQkJCuxF11H7tdrsIvwqiH7lTR6KutLQUAPDMM89g1KhR2Lt3b9A/mx9kok0cUe5QtJ030CrkO3To0OaFvjdt2oRTTz0VmZmZKCoqCuhYU6ZMYSuQA+XQoUPs39GW3yl36tTCr4mJiZqirqKiAscffzwuvPBCw+cgd+rWrl0LAFi4cKGkMHEoCKfDHy7H2xd79+7FI488AuBo/cKEhAQ2EQ2E8vJyv0XdoUOHsHjx4oDPIdjQM2O1WoWoE0Qf99xzj+T/fE7ds88+iw8//BDA0dyJgwcPSt4XTKJZ1EVD+JUGHb5+JNAq6mpqatg9bgtaWlqwZcsW9O/fH0OHDsWyZcsCOt7zzz+PCy+8MCiigdo4EH2J/iRCzWazz/Crlqij+oWHDx82fA7ynLp169YBaJ0YfvPNN4aPp5e//voLZrOZfV5bs2fPHgBgW7RFCnfeeSeLrpCoS0xMDJqoS01N9UvUPfnkkzj//POxbdu2gM8jmDidTsTGxjK3W4g6QUDU1dVJEshDSUtLC1577TXJayTW1q5di3/961/sdXLqgrlySg5fuTuSxZES0RB+JYHSrVs3yesUcm9LiouLUVdXhxNOOAEjRozAunXrgtKmgpGYzzt14Uj0nzlzpt9bLvnKqSPR52tHCXoWqfyFEejZ7dChA2pqanDgwAEMHjwYXbp0Ya5dMNm9ezcaGhqwfft2AAhZeogv/v77bwBAly5dwvL5avCL3LKysgD4FnVlZWV44403fDrVgTh1mZmZAID58+cb+r1Q43Q62TgnnLp2RFVVFUwmE6t431Zcd911OOWUU9rks5QeahJ1/MAGHBUr1Njr6uqwc+dOLF++3Ofn6HVPhFMXWujedurUSfH1ULFv3z788ccfktdIwCUkJKBPnz5obm7G/v37A/6sYLSbcIq61atX4/bbb2fhMqP4yqlzu93MxdMS0STq/Cl5U1dXB5vNBofDgerqapSVlSEtLQ0dO3YMiRvcvXt3jB07loVew5WfSXnHtGNDpOBwONi/SaT7EnUjRozAP//5T2zYsEHz2JRT50+OXkxMq7QJZV+/bds2mEwmViBZD3JRJxZKtBMol2z69Olt+rm0uXlb5IYoDeZKr8XHx3vN3KuqqtCrVy/k5+drfsaGDRsQExOj66FqbGxkD1M0iTq32w2n04m0tLSIPm81URdqp+7444/HySefLHmN2pPFYsHxxx8PAH7nafKThmCI6sOHD6Njx44AvEVdqHPCyKXv2rWrX7+vJ6cuNjYW8fHxmteKQvXk1Dz++OOS1cpa1NXVITExEcnJyfB4PCgsLERaWho6dOgQshD/8uXLmaiiqEJbQ88XiZVIgcpT8fgSdTQJ89WfHTlyBOnp6X7tvEBtLJQTYQr3GwnJO51OtqBEOHXtkN27d7fp59GgQQ/TokWLQpasrTSYK+XQ5ObmKoo6PWzatAkAdDl6jY2NbFeBSBZHcqhzzMzMjOjzJoGSnZ3NXktOTg5L+JWvf5ibmwuz2ey3qOPdpGB0wNXV1TjuuOPYvy+88EI888wzqKurQ0xMDGbPno2ZM2eGxMWnyaS/m4jrCb/GxsYiOTlZ8xnmnTqPx4OpU6fi8ssv13UOtbW1SEhIYPt279u3D2lpacjMzPQrR08PLpeLibpgOL7+QM9RpC2YoPvM7/aktVDC4/GwMUfreSJ3vUuXLoiLizP8vamthlLU7dy5E4Ax97aqqortyEJud7BNFiHqwgB1hpQn0VaQqKurq8OKFSswevRozJo1y9Ax5s2bp6savrxTb2hoUPw9h8PBHlhq3HrDUrSxuJ7Zs8vlinhRN3v2bNx9992S1+g6ZmdnR3T4VUnUJSUlhWUxAC/qYmNjkZOTwxLNjRLsUjjV1dWs8HB1dTW+//57PPbYY8xlmjVrFm6//faQ7F9Nos7f76E3/OpwOOByuVQ/hxd1FFZTcnyUIKeOFgxQ3lVmZmbInDqXy8VqCwZjAYA/RKqoq6iowIUXXoivv/6avabl1PF9u1Z/VlRUBLfbjW7duvkl6uj9oSxfRX2Kke0Qt2/fjp49ewI4WgLmkksuCWrbFaIuDFCn1tb5Gbyoo4ZoJFehubkZ11xzDWbPnu3zvXKHpqKiwqtG18CBA3H22Wez60GDhN76VXTuembojY2NLB8lUkXdmjVr8L///U/yGi/qampqAuqkli9fHrLwEV1TSlCmsEk46ktRe6Ik7q5du/rt1PHXO1hOHYWo+QGuLURDoKJOvvpVLfxKeVZqbh0NuE1NTew9eneVkTt1AAyFX2fNmsVcN19Qf+nxeNjvhKvGJV2nSBN1lZWV6Ny5s+T+aYk6fgzQep4oitW1a1dYLBbD7nJbhF/pnPSKuv3792PRokXo27cvgKOi7n//+x/efffdoJ1X1Ii6DRs2IC8vD8OHD8fYsWMljbugoAC5ubnIz8/HiBEjwniW+vA3/BEovKgjQWlkifzBgwfhdrt1DTzyDr26uhrFxcV49NFHkZGRAaB1D1g+p45E3a5du3SdDw2Keh6qaBB1TU1NkmtbXFzMruPll18Oj8eDN954w+/j5+fn4/zzzw/4PJWgzjM9PR0A0LdvX9jt9pBOXNTCFtQ3WCwWAK15d8Fw6oIl6lJSUmC32yWCl0SDmrPZ0NAQcKoEiTp/v4fe8KsvUcfv7kLtQ6+o43PqCHLqfE16amtrccMNN+DKK6/U9Vn89Q63qItUp66yspJFQIjExEQUFRUp5ojyE3atfpj69EDDr6G8X9SOfZkKzz33HBYuXIgbb7wRANC7d28AR0UdcDTqFAyiRtR17twZixcvxvLly9GjRw8sWLBA8vNx48ahoKAAS5cuDc8JajB79mzJYB0Joo7fxUEv9EDqEXVyp+7gwYOorKxE7969cdJJJwFoXcllsVi8rHK+lpcWJOr0zNAbGxtht9thtVojNozJi7r58+cjJyeHJeEOHToUPXr0CHhHgj///NPne3bv3o158+YZOm5DQwPMZjMT7Ndccw3sdjv++9//+nWeeuAFIz+AyPcUPv744/126kIRfk1OTkZCQoJkJSy532qiLj4+HpMnTw7os8mlDUb4NTs7G7t27ZJcdz78CvgWdR6Phw2IesOv5NTxk1Fy6gD1vsDlcrHUhoKCAl2fxedT0ncRok5KRUWF14rctLQ0NDY24tFHH8U//vEPPPbYY2xxxO+//474+Hif/XBtbS2sVitsNltA4de2cOp8ndujjz6KCy64gBXdHzt2LICj1R4AsDw7NZxOJ2bMmKEr/y5qRF1WVhYrbki5Mjzz589HXl6eV200nsbGRlRXV0v+hJq9e/diwoQJePzxx9lrkSDqqMq+kXAPiTq1kNrBgwfZNZV36FQEsnPnzmx3AYfDIbHWaQDVswPA0qVL8cQTTwDQl1PX2NgIq9WK+Pj4iHXqKMeopaWFXa9ffvkFQOu1Csa56xmUzj77bFx11VWGjtvQ0AC73Y6OHTuisLAQt912m6TTCgU7duxg/+a/l1zUde3aFYcOHVLt4LU6/mCGXz0eD2pqapCcnIz4+HhJO6dC3PxzU1tbK/n/p59+GtDnB5pnxIu6s88+G/v27ZMs9pKHX8ePH6/o1vCD4KpVq9gx9VBbW6vq1AHKoq68vBzPPfcc3n//fV2fQfCiLtxlhagdhGvsUMLj8aCystJL1N14443o3r07pk2bhg8//BDPPPMMW6G+adMm9OvXDwkJCT6fO+o/4uLiDH/vtlgoQe1Y69z49u9yuTBhwgTmyskrBWjx7rvv4t5779W1S0bUiDpi//79WLJkCS666CL22oABA7B9+3YsXboUixYtUq1/M23aNDgcDvanLbYuolwZvnHxjaAttwoilV9fX4/ffvsNgLGcOlr5pfQ7LS0tyM7OxhVXXAHgqNt28803A2ityA60iro33ngD8+bNQ1JSkuSB1Svq3nvvPYwcOZL9X0+OjMvlgsViiWhRx88uadAqKipCbGws7HZ7m507uQJ6SmzMmzcP5513HhN1AJCTkwOTySQJL4SCt99+m/2bb5PynDoqiiqvjwi0hiRpI3KlwtzBDL86nU643W7m1Cm1c97h7tGjh2TAVJqlL168GCaTSVe7aGpqQkxMTFBE3RlnnAEAkmvGr34FWtMolPoKvv+jiZmR8GtCQgKsVisLr/NOnVIoLD09HU899ZTkNT2OBy8+a2trYTKZwubUkSsdSU5dbW0tWlpavERdQkICHnzwQcXf2bhxI0499VSf5Tx4UcdHc/TSFgslqB1riTreOKIJHcEXatfbr+tJZ4kqUVddXY3rrrsOH3zwgVdipsVigcViwSWXXKJa82jKlCmoqqpif/zZUNooSrlr4drdgAbpb775hpUD8cepU/qd1atXAzga3tu7dy9Gjx6Nt956CwBYLblOnTohOTkZY8aMASB9YPVu+s67nkDrNfZVyJQ6iWgQdePHj8dPP/0EoDUU6nA4YDKZfNb/0sLI5IEGSz3345ZbbsEPP/yA2tpaLxEXaqeuqKiI5fDx4kHu1NH3URoYeCfs448/9vo5PyjMmzcvoK2oqIMnUacUSufFhlyEKgmRZ599VnJsLZqampCUlBSwqDObzaw/Ky0tZf0KhV/5gUvJOVMaBPWWdSCnDjjap/py6tSO4wu5U5eZmRk2UXf48GGkpKRElKijCYg8pw4AevXq5fVabW0ttm3bhv79+/vsh51OJytxFaklTfSIOn6SUV1dLdEBvIbxZa5Qm9fTbqNG1DU3N7MwprzB8B3aypUrvfafJKxWK5KTkyV/Qg3dVDVR15arA2lgf++999CnTx/06tXL0OdrhV/JiaPl2vv27cPxxx/PipH+9ddfSEpK8lqYYbFY0NLSgubmZkURoeQWKeXq+JrBRJOo++abb/DVV18BaB3YaSZM5+5PfUMj1ftJBOkpR0LlOXbs2OEl6kLt1KnVHpQvlNASdfx16d69u+JnEN999x0uvfRSxXPRI0qon0pKSvIKv2pBz63SZ1CtLD2DXqCijs6DSpoArU78008/DeBo+JUfrJScM6VBUG8/RE4dANZ/p6SkwGazITExUbeo01MLUy7qMjIy0Nzc3ObCyul0oqqqCjk5OREl6qjPVdrlgg8t0mRpxYoVaGlp0eXU8cXi/Qm/tmVOnV5RJ3fqgKPjpa8xidIT2pWomzt3LtasWYOpU6ciPz8fc+bMYYnDc+fOxaBBg3DmmWeic+fOGDZsWFA+s6WlBZ9++mlADYNuqtlshtPpxIIFC8Im6vjvcf311yMjIyNoOXU0a6Nw8969e1k1f4fDgeLiYiYAeGjAdblciqJOyWFSegAor662thYvvPCClxikSt6RLOrUhBflKMXHx2PhwoXo3r27zy125OgdDBoaGtj10eP+0D39448/vEQczbR79uzpMxHYH2inDUDbqaO/lTpf/roo/VyPW3n48GGYzWZJrS4l5E6d3nZIaQ9Koo7SHPTcX7fbjcTExKCEX2NiYmAymQAAn3zyCYCj4VcA+OKLLwAoO2fycz3uuON094Nypy4lJYUloHfo0EF3AWI9ok4efqVFQG3t1tF3ijRRR32+L1FHO5gsW7YMJpMJJ510UrsJvyYkJGiem5ZTB7SaIT179tTsCyh3EdC3Q0/UiLprrrkGZWVlKCgoQEFBAcaNG4d33nkHADBp0iT88ssvWLNmDV566aWgfeZnn32Ga6+9NqBNgemmNjQ04F//+hcuv/xySdHhthJ1JSUlkgaek5NjeE89rfArzdpKS0tRVVUlqZxPsxOlxFAacJuamtDY2Mg6TsKXw0ThMBJ1zzzzDB555BH8+uuvkvc1NDREjVMnhxd1hNGdGvR2ikOGDGHH1iPqKF9t+/btXqKOhHXHjh1DMhg1NjYqijoSZyQwtJw6X6KOnhmtzeep/MKSJUs0z5cXdfy99AVtJq+FHieDnLqmpia/cnn58Ctw9P6So0vhV6C1oCqgHn7ln/OJEyfq7ofq6+vZtUtOTmb3H2jNnVPKr3U4HHjxxRcxcOBA9pqets33PW63O2BRV1tbi8GDB7OoRmVlJaZOnerT5eVFXSQtlNAKv/LihfIdt27dCofDAZvNZkjUUfj1r7/+0r21ZluFXxMSEjTvCaU5Aa3fSe7UUSqD1pj03//+l63c1uNER42oCwc029S7MksJugkNDQ1MFPENTa/AqK6u9tq43Ah84wJaOwit7VzkuFwuHDp0COnp6YodMC/qyD2gAZ8aMj3cPHKnLicnR/JzX2KgX79+AI5eR/pbyanT05mEEyOizmi+Gj9A7d27VzX0x+ej6hn4+AFJLupIOIQqF0hN1DU1NSE2NpY5ScFw6pQGLvkxqC2rQeKHnDqC8sHkExpCaYEHIL32vq5vS0sLWlpa2GCrN3+Vx+l0wmw2M+FG8KKOF9IOh0NV1NGED2hNrNcj6jwej2Swl4u61NRUxclOfX09EhISsHz5cmzZsgWA8fArgIBF3Z49e7Bu3Trcc889AICffvoJjz/+uM8deuj+k1MX6j2C9UJ9PvVPalC/v337dna/fOUHy3Pq3G43vvzySzz22GO6zs1I+PXgwYO6VpXKcblcSExM1BR1n3/+ueRZV0r58uXa//DDD+zfQtQFCDVarQv+66+/sqKeSlCjcjqdXqs8AXWn7tChQ3j00UdZx33FFVd4bVxuhE2bNiE5ORknnHACAONOXX19PTweDzp16qQp6pqbm1meD21cTp0hDV48clEnd/Pkg5W8Q+N/n/+5fOPr9hJ+JYwOyvx17Nq1q66V33pEHT/AyUUdtd2UlBTJno/Bghd12WKnJwAAWBlJREFU/OSkqalJIrB4N1gO3yErXVP6floDF/2erxWc8vAr0OpoPPfccwDURZ1abiOlOgC+nTpqWxS69EeY0ApnEssEPU98+BVoff6V+ka6P4cOHcKOHTskou7w4cNeC0gOHTqEw4cPs/tHoq53796sPwNa25k8t7apqQlNTU2Ij4+H3W5nocCbbrrJpziStxe6P4FOCmkRFN1XtWfZ4/FgxowZksoBQNtWTNCisrKS1f5UYtq0aZg7dy6Sk5NhsViwe/duNjmy2+2a/bA8pw5oFeJ6+z2++LCv+zxy5EhWlL2urg7XX3+9rkiIHqeuuLgYw4cPZ/9XKvYfHx+vOQ7z/epll13m87yEqNOArHytCz5o0CCcdtppqj+nzrOhoYHdfP54asd+4IEH8Nxzz7HQDs0w/Z2lHTp0CLm5uXjyyScBtIq65ORk3RX/qYNLSUlRDb9SDh0VnKUZGnVGSqJOHn7l9w7lP5eQCx/5gK3U4fEz/EgWdUacukBEnV70LJTQK+oAY4s19MCH63kB6nK5JAJLT/g1JibGb6eO2pMvp666uhpxcXGsXiLQGtblBR7PhAkTvL4bD1+f0df9pZ/TZwQi6tTgw68AcMIJJyhGF6i8UIcOHdCzZ0/Y7XY0NzfD7XajY8eOXm79Oeecg44dO7K+ikTEq6++io8++oi9T8mpo3tD15j+Likp8VkKSd5eqf/y16njt0cDjk5E1J7lI0eO4N5778WDDz4Ih8PBrn2k5NUp7SbB88gjj+Cqq66CyWRiYwFNwlJSUlQdaMA7pw44WuVAj6htamqC2Wxmfb8W/G4zf/31Fz7++GPF8kY8zc3NaGlpQWJioqZ72tjYyMZFQNmp8zUm8c/ctddeq3legBB1mlAugy8RoLUDAj2wvKjjk33VRJ38waUGTudy4YUXenV+WlAuylVXXQWPx8Nmrbt379YlFHlRV1dX5/U7FRUVGDlyJPLz87FgwQKYzWb2wJNQU3IieKeNT3yXfy4hf0DlTh0JCZfLhdraWhQWFrJ7QCvkglV0+u+//8att96quxyDL0Ip6vwRVHquE38eWuFXIPiDEe0SkpSUJAmnNTU1SUSdnvCrWhiFilYrJYMTdJ30iLqkpCSYTCYmLnhRx4dpGhoaMGvWLMnx5fChGF9OHf89geCLOo/HIwm/AkD//v2xadMm1ldUV1djzpw5WLp0qeT+UN+mdk7Uv9K+yGqpB0pOHfWv9OzwLqOv1cdGwq/Nzc0+U1nk7Z/er/a9efGSkpKi6Ti3FfX19Xj11VfR3NysuJuEGiTqaEw444wzsGXLFtWJozz8ChyNBunp+9xuN7p06QIAPnfh4a8zTQq07kltbS173uh5UupfW1pa4Ha7JaJOKULCi7rffvvNy902mmojRJ0Kzc3NbCYcyGIGNVGntQ8p7SrA/z7dWOrgv//+e0NbRtXV1XklZ/fs2RN1dXWa4WOCGm1KSgpaWlq8HiyatZEr16FDBxYCpc+VCzbAO/wqt/LlD4uaqKOOjr9uI0aMwHHHHcd+x263IysrS/c2ZL746aef8M477+guTeELtc6a3BX+4W4Lp44P76nhdDpZhy3fikvu1IVC1FmtVjgcDk1Rp8epS0hIUA2/2mw2zfArDUzyXDM5tEUYfR4ASRFdXtRZrVbExMQgLi5OdeDjRZ2vaxvM8KsSdXV1XuHXk046CaWlpayWncPhwNVXX42SkhLJ+foSdVSk9ccffwSgvmhFyamj/oi/tt9//z0A36JOLfyqdJ6TJk1SDK19/fXXyMrKwt69ew2Jup9//hkrVqxg/09NTVWdnHg8HsyZM6dNwrKPPvoo7r//fmzYsEFxNwk15E7dWWedhZaWFq8FbYR8oQRgTNQ1NTWx0ma+9gbnxxhqP0oh9i1btmDy5MlISkryEnVKkyp6jXLLAXhFogBp+PX000/HKaecIvm50dJQQtSpUFZWJtlWy1+URF1dXR3sdjtsNpvXsZubm5GTk8MWaVDjohurJ8FXCUoW5qFGv2vXLp+/zzt1gPcK2IqKCqSmprKOjV8UQYOWkqMlD7/KO2xfTp28o+NFHW2xRdfQZrOhU6dOKC0tDcoqMgrf+FM3Tgm5gKUaRiSO+UG8LUSdHrHf2NiIc889F4D3daBBhoSMP+ewdu1a2O12xWdQS9Qp5dRpOXVquTH0GVolWUh0+WpTvKjjw690nfhJFzlKNptNV/jVqFPnT/vnV57KKSsr8wq/Ul/Q0NDg1V75tqwk6vhIAE18P//8c8n75aSkpKCyslKxn+HPe9SoUTCbzT4nxfLnkfLxlAb8zz77TPL//fv3Y8KECZg6dSoOHTqEjz76SFXUKT3LQ4YMwdVXX83+n5qaqjo5+eKLL3D11Vez2pahhKoN1NfXGxJ1FLomp45cNLUQrFJOHQkurb7P7XbjvvvuQ0lJCbtfvvZ95utAqu3x++eff6Jfv34stUjreZo/fz4+//xzdp78mCbPRwVaIzH8My7f9lKIuiDB15cJJAdLKaeutraWbVklH6x27twpmW0GU9TJO2Rq9L5mMoC3qKPzfumll5CXl8ecOhq0qNI/AFxwwQUAgMGDB3sd15dT50vUxcTEwGw2s/fRYKC0ETuJOkA7ZF5VVaUrGZpEHZ+TEQjy7yrPn+CFhb/hV/6++EKPE+x0OpGSkoL33nvPa1A5/fTTAQTm1M2cORNOp9Nr9xe3242WlhZFUWckp46fcauVNLFarZJ2KU89kCe8//e//8XSpUu9jsUXH6V7ya/SVRogrVarqlPHhxr15tRRH+DPvdBy6qZPn+7l1PHPtrwPVRJ1fF+4ceNGySSYJjiAulNHUYTa2lr8+eefkr1y+WfHbDajU6dOKCoqQklJieqklhd1MTExbOEXLVzgoYkXtY2pU6di9uzZrJ6k0+k0HH7l4Z06+XHWrl0LAIbK5CixbNkyvPnmm5rvoYleZWUlm8jrgc6dnKr4+HjExsaqLkjgw698Th2g3fdt2rQJ06dPx8GDB5GQkIDs7Gxd4xvQel3Vwq/yVac0PiiJuiuvvBLXXHONoqhTQiltgEe+6M8XQtSpQKIuOztb1anTY3fTjf3999/Zfqsk6uRL+RsaGtC3b1/J7/MuE+At6mjvRF8ohV9p5ZKelT5qou6hhx7CqlWr0NzcjJSUFMnWPUSfPn3g8XiYiOQxKur4B/qWW24BIK04Lg9bA0evGS/qtMoIpKSkYNCgQao/Jyg8GQpRN2vWLPTp00fy87vuugurV6+GxWJR7Ni0cnro2GTtK80Y5fgqtQAcDZPcdNNNkjpgQGuoZteuXazj90dI0P2UCxu+w/QVftWbU6d0Tckx4J0/+feQi7pJkyZJ9iYmlMKvLS0tGDVqFJ544gncf//9Xr+j5dRVV1ez51GvU0d9gD9OnZaoe+2111BSUiJ5frVEHe9GUN82c+ZM9trpp5+O//u//wPQOiG98cYbvd4vh9pZRUUF+vfvL5kUyfu+jIwMlJWVoVOnThLByEPX7Msvv0RhYSFSUlJwww034LnnnvOa9NHAS6/L+2lahcvja/Wr/LtRO16zZo1k7KHFKIGGX0eMGIE777xT8Wfjx4/HypUr2ferqKgw5NSNGzcOV111FSZOnAigtf8hZ1UJf8Kvv/76q6QPiouLw3HHHacYZr/11lvx/PPPS15rampSderkEzk6b3qOtSaMVqsV27dvVx0nUlNTUVFRoZrbbrTfFKJOBRJ1Xbt2VXXq9DyM9B5eifOijo69efNmSQ4F4cupoy16fKEWOtF6sPbs2cOEAp9TByiHpPnwq94ZnJKo27ZtG6tSr+bUbdy4kRWf5iuOK4m6U089FUDrNaSZoi/BoqcmYLCdOt4ZyM/PZ84mLbePi4vDmWeeCZvN5tX29uzZg6SkJIk7oXTs/v37A1BeWi9Hj6jjwyRyzGYzunfvHlCCN93P8vJytLS0YMiQIZg+fbqXqOOFj1zUmc1mmEwmr8+vqKhgz1N8fLxm+JUXdfIOnwZnX44LX1GenkVaXPDkk08qPjNaTl1VVRXL89KbUxcqpw5ojTLw9ef4+64V7aD289prr0le37ZtGwDvCama80GCuaamxit0Km+jdrudHV8NOsagQYPYZPBf//oXjhw5ggULFkjeS5MktZCqy+WSXHO3223IqeMXSlxzzTWsfwSO9kN68ySvvvpqnHjiiV6v03eQTyJaWlrw2Wef4bzzzmOvTZo0CVu2bNEt6kaNGoW5c+dKHFOtscef8OvKlSsl/4+NjUV2drYkjaSlpQV1dXV45513MGXKFMn7tZw6pYWBgHY6A52nxWJBr169JAsmeFJSUuB2uyUTnR49erDQtNEJmGFR19DQoBiWoY3c2wuHDx+GzWZDx44dVZ06pca1ceNGidBSc1QoT4eO3b9/fzZ433zzzey9JOqoI1MKv+pZfamUUwe0Nii1kG63bt1YXRxfOXWAVNTp3VeXHliqg2ez2dC7d28mPtREHd9J804ddcRK191msyEtLQ1ms1n3HpFqfPfdd6xjD4VTZ7PZcNxxx8Hj8Xh1wFar1ev70TP5yCOPaB77oosuAgBdK6dLSkp8rozmwyRqUEjO6ArcPn36sFylsrIy1NbW4ueff8Z9992n6dRRyQzCZDIpbgqelpaGe+65B7GxsbBarZrhV14kyjt8eoYbGxuxfPly1e9TUVHBHGx6Fnl3RUkcazl1VVVVLFfJ5XLB4/Hg0ksvxcaNG73ey+cO0vt59KyAb2hokIirf/zjH5Kfl5aWStx4LaeORytHzuPxePVdau+nvkd+vc4991yvBPX4+HhWL04peR2QbotG9OjRg217yENOHbUF+fWVizqn02k4/Mo/Z0o7qOgVdXPmzMHWrVu9Xqc+oXv37vjuu+/Y63TveHeSxpxACvP7curk4VdCTdTJ21hcXByys7Mlk9OXXnqJCTE5RkQd1Z7TI+p89Y80meMdxb///hurVq1i52UEQ6Ju3rx56NWrFy644AKccsopWLduHfvZddddZ+iDI53Dhw+jQ4cOmtWe+cbl8XiwfPlynHbaaZKQaGNjo1dMvK6uDnFxcapFB/Pz89m/6UGiDsafzezpM406dcDR2Y9a+JWHF3W+CrES8s3j6QFQEwJKoo536uieqIm6mJgYpKWleSWjGuX1119n/w7WQgn+4dXqCJREHbULtbAqHbtbt2745z//qbhSU6kmoC8hpuXUEVpOncfjURUU/PZYZWVlksFaS9Q5nU6v9mexWFRnvHFxcaohbaXwq7zD5ycS/LMrp7y8XFJRn/9d4Gib5t0wuajjr1VVVRXLkWxqakJNTQ2++eYbtmMBj6/wa7du3diCFzXq6+sl5/b+++973Tte1Ck5dVOnTsXy5csleWl8+6FEdKC1P6H+T49TR32P3NmkPcJ5+O+h5j4qiTqgdcIq74fpeaqtrcWXX36JxYsXS/JX5eFXXtTpifj06NEDp5xyClsJzE+qqT36s0sID60ULi0txT//+U8cOXIEZWVlkr7ebrejd+/e7P+B9KN6RZ38WVb7nvLcubi4OHTq1Eni1MndPL69aYVf1YSVXNTx50bPrZ6cOsB7NTZN2Oizd+zYoXkcwpCoe+aZZ/Dbb79h8+bNeP/99zFx4kTMnj0bgP9FcSMVXtSpOXX8jW9oaJB06HQ9nE6n1y4Jbrfby6nj4Te+p06NGo1SAr8e10kt/OpwOBQfLHmHRg2LZhV03nyHnJKSwhq5XlFHv0/5afIHWS2nTi7q5NdHSfxS552RkRGwqOMXAZSUlARl6zGlMg9KWK1Wr06HDyMqwd/P2NhYxU5KKbfI1yyRz31RQ+leUpt78cUXFfPP5GJSLur4DtNms7Hr8ccff+Djjz/2cquUnDr+Z76curFjx0pe46Hj+nJKeFFHzhP/Pek6yQUML1L4z6iqqoLD4WBONb1PKdzpK/y6d+9en3vXqoVfX3nlFfZvPsTEO3X0fFx77bUYNmyYJF+Ubz+0Ih+AZE9MPU4dH37lUTpn/hqr3Te6RvK+TB7uB45Opo4cOYIxY8bA4/GwhRWAPqduw4YNqoLlggsugNVqxa5du9ClSxdJ/6U3/O8L/nvGxsaiQ4cO6NChg2SMGjx4sKSI/L/+9S+/P09N1LndblRXV7OxRq+ok0dMzGYzsrOzceTIEXbtu3fvLnnPpEmT2L+1nDq1a0vjHR2fL2hNYlKvUydfDEYaoqmpCf3791fN/ZRjSNQ1NTWxGzpgwACsWLEC77zzDp5++mldidfRBC/q1BLQlVS5/Gf81lckBIDWjkmvqHv33XdZjSaXy+WVEKtX1KmFX+fPn+/lNtF3jo2NRW1tLRMNVK+Lfi4XdUZteYfDgezsbKxfvx6Ab1GntME6P2DT4LFmzRqvz6JBJj09PWBR53K5kJ2djTlz5gBozScymUz48ssv/T6m0gCvhJZTp/Z7/ABFeynK4We65C5riTqq1u6r05Lfy/feew+pqakoKyvDH3/8oVhyQN6JykUddZ4UGqVj03dQKn2j5tRZLBZVJ4+cur59+7LIhJpTN2/ePMXjA0edNK3wK/Wh5MYA8Cp7xLvy1dXVcDgc7NxpcF+7dq1XiRat8KuvnRUINVF31llnsX/z9fz4BSokzpQmHXwfwhdnbWpq8ioeDKgPkjTAyvtiJRHIfw/+fm7dupUNrkacOnpeFi5cyF7jyzppibrGxkY0NzdjwIABOO+887wMku+//565kCaTiQkVgr6vHlGnZb7wEwFaEUw5aMTAgQOZCLnmmmskNdiMoibqqJwYXT+9oo6vWAG0XhcKrVN+mlaBcH9Enfx54scVqrDgqyg5OXU///yz1/nQ33pNEsCgqOvQoQPbrgpoHRx//PFH/PXXX5LXQ8UDDzyAvLw8TJgwQdIpud1u3HjjjcjLy8Pdd98dlM9qaGhAx44dkZaWplqEVe7U8dTX18PpdEpEHS98yalTCu3yOR4NDQ2S8EFjYyP7HVp+zj/gSgNkc3MznE6nYodKHZd81RN1FGazGUlJSSy3zmq1SuqGyXPbKAyhlregxOmnn47Vq1ez49OxAH05dUpO3ffffy8Jfzz44IPs/7TyTQm9u0NQ+6AOjkKF8gRqI/DfVWuSpCXqeLG2Z88epKamYs6cORJRp+bUEX379mWLULSSdN1uN8uD1EK+6wfVG6utrcXhw4exe/dur6LQ9P0eeeQR9O7dGxUVFbpEHf2evB/gQ/Rq56hWfJjaJH1P+fv05ApSH6IVfgWAr776Ct9++y37v1zA8H1RVVUVkpOT2feXixl+MNYqaUKLgnxtzC7PqSP4QUtp9SvvHCqJQr79ZGdnM+fP6XQqikG19hYbGwu73a7LqaPX4uLiJP34iSeeyBZ7qIk6JaeORN3+/fvZa7xTpxR+5R02+p7Lly/3EhCUa01kZmYy8UA78dBxfMGLUXlfV19fj3vuuQfXX3+95HXe1EhPT2cixEgfr4RalIjEGYk6pZy6BQsWSJ4ToFVQPfrooygoKADQ2keQCUXXy1eFALXwq9q1pXZEfRs/6dLr1KWnpyM9PR0ff/wxgNZt8eh86O+QibqPP/5YMvsAWi/4Z599ppkgHAw2btyIgwcPYuXKlTjhhBMks+Jvv/0WOTk5WLlyJerr6xVdGqMsXrwY//3vf5Geno7y8nLFGQ7fucvF2bx582C329HU1MREGl/HifYhlTt1ZrNZ0oHJ4+j8rLdz586IiYlhDbawsBBdu3bFyy+/LPkdpbwUgsJUvDsIHLX05fl6VFdrzpw5+OOPP7zqvZ177rl48cUXcfvtt3t9lhqDBw/Gzp07AQTPqQOAfv36sX/zbrJW+FVPx/j888/jrbfegt1uZ9eUknH1LhCRY2TDey1Rx1+vzZs3o7KyEs8995xkgFJz6oiHH36YTUS0hBAVIpW3HTny4rI08NXX17MO/NChQ5I8RXpvXl4eevbsiZqaGslgzYfr+ftP73nxxRcl5yAPv/LXr6ysTDX8ypfZoe8hn8D5I+qUwq9A64bdvBiQCxh+MkLhV7lTR/B9izz8yn9XcmXkaSJy1Jw6ftCVT/Lo+Js2bQKgLLDkv3/fffdh4MCBaGxsZN+BjzJoRQGUXDSt8GtGRoaimPd4PLjhhhsUP0/pM6hv4ZPy+TCl3KlraGiQhF/5e/X444+zf1utVq8JHi/q1ELzamjVX62rq1M0GvhzS0xMZBNZrYLcelAzNfSIun//+99s4gm03q+ysjJkZWUxt7esrIxN5On509pIwKhTd+edd7J0AXqeeLGvV9TFxcVJ1if8+9//BtBaBs3j8YRW1OXk5KjarbwFHwrWrl2LUaNGAWidufDCTetnPI2Njaiurpb80cJkMiE9PR3Nzc348MMPvYpUykUd33nwjg11lm63mzVQtZy6xMREyUMsF1V8R5eUlCTJr6JEy2effVbyO1qhDxKA8nIKatcmLi6OCeeTTz6ZvU5ixmw248EHHzS0X92FF17I/u1roURjYyMsFotk8Qnv1PH3xGaz4YknnkCfPn0k55Oenq4astaTG0dL4XlRRyEbf0Udfc8333zTZ6kFuahraWlhkyp+4KBOJSYmxpBTZzabvdw1Jb755huceuqpbGapBj0XdG3pWp1wwglssAcg2TKIz51MSkryel5pULPZbF6ijsKpPPLwKj9j93g8PsOvwNEwyVdffSXp5JVEnfzz1Zw6X0JePiDwoo72kDbi1NH2Y/x3pVwk+bncdtttePTRR9n/5X0c4cupu+eee/D888/DYrEoCjKl4qqUJ6nVdymRlJTkVYpHy6nLzMxEc3Mz3G433nrrLfZzXizJz0/JqaNJP//Z8fHxWLJkCUaNGuXl1FVVVbHrzffpACSTcqXrxaeP8OehR9Txzph8EkApOnxZGsBb1NFzEKios9vtiv2tXNTJyy81NjaitLRU8n3r6urgcrmQnp7OJkVU7QA4+txoiTrSB4D3OCAX/larFa+//rqX8+2PqAOkuX50fR9++GG8/vrroRV1PPPnz/f3V/2isrKSDZgOh0MShtD6Gc+0adPgcDjYH6XNdeWQ0p84cSJ69uwp6fjk4Ve+8+CdICOijhpwQUEB0tLSFHP1+NkrP6CRUJF3zvJadzxXXHEF+vXr5zVjUquNFRcX57XTAQCvwrNG4B01Ladu/fr1+OKLL7wEo1L4DWh9qJ988kmvCvDJycmqNryRBQ92u511bJTLpVX/bfv27Thw4ACef/55r+vNry7mV5cpwYu6RYsW4eWXX2ZV5fnrRS5qVVWVrpw6ora2VldtubKyMuTm5vrMp5WLOrXBZ/369ZIFRvRdk5OTUVNTI3kWaILVsWNHL1GndA/kTp38/usJv1JfMGPGDDz22GPsPUrXSC7qqD+gQYaEgi+Xj9o6tTPq2zweD1wuF1uZ68up4++/PBRNoo5vk3///TfefvttPPfcc6w/0ePUKYk6tf9rQaJOb1kIIikpyWvCplYqBpDu53rHHXewn2v1A0pOHb2fX8FotVoxYsQIZGRkeDl1/EpjPr9OjlKEiC9DZVTU8e+XfyYtpnv22WdZbU8gdE4dv5E9z5EjR2Cz2Vh4V/45SqKOnq/09HQkJCRg/vz5+Pe//w2HwwGz2axL1PEROV9OHZU0oXZJP6+urobZbEZiYqLunDpi2bJluOyyyyT918aNG9tO1I0fPx7Tp0/XfE8wV8SmpqayBllZWSnZsUDrZzxTpkxBVVUV+yNfbaIEPfQE75xpOXX8jJqO0bNnT3ZzqNHKHyxqyMOHD0fPnj29Og++805KSlIUdfJGpJSHxmO3270eLjWnjgql8mRmZmLu3LmK79cDLwroHJWcohtuuAEFBQVe58a7LPz71b6vUviSMLKCjHfqSNSpbelSXV2NPn36oHPnzpgyZYrEFQDUV9opQcWHPR4PRo8ejYcfftjrOMDRmWJFRQUTD2az2adTR24XcDRsdMcdd6CkpAQVFRWSlV56th2j58LXdnt8MWBfTt0HH3yA9PR0xMfHIy4uDs3NzfB4PKqizmKxSAZ7uQDSE37ly8Dwx5ILs1tuucWrZExJSQnMZrMkJAf4vt/UhpOSkpCSksL6Fb5avR6njs6RRD3/XWmRFC9k+FWoO3fuRFNTE5qbm32KOv57y7+bVj6THBJ1dJ56B8bk5GRde2fS2ET3Q632oBIejwc7d+7Eu+++y/5PbZu/rnTOdL3VnrnDhw+zupxq58lDCww8Hg+75w6HQ1ffxbd7uVtNos5ms0kib2pOnRGRrkR8fDwaGhq8cvtKS0uRnp7OxgX5pFFJ1NFzQWPtFVdcgdTUVJhMJqSmprLJkFYbpHaTmJioKermzJnDTC0ar+m60q4x6enphpw6ADj77LPx1VdfSZ6bxsbGthN133zzDZ588kncddddXg2PwpXyLa8CYfDgwfjhhx8AtOa78Y1O62c8NOvn//hCPmgp1coCvAcsXtTZbDasWrUKs2bNkjh1qampEhsekCaf2u12RaeOXktOTpYIGrKt5bNMapBq9Zjo4eLRcurkQvfaa69VFdJG4cOvFOol1Arm8sI2UFFnxKnzeDxeok4tXPnhhx9K/i+fUBgRdSTC5ffo6quvRlNTEzZs2IBTTjkF//nPfwC0OnWNjY0sH1LJqePbYI8ePdh5rF69GtOnT8dbb72Ft99+G2lpaZgwYQIA/aLObDYjLi5O17WVJyrTM0uijl9ERIMN7yqqibpdu3bhs88+wxdffAEAXhNSm82mKDrVSrbw7d3tdkuclxNPPNFrUCguLkZ2drZE9Lz11luswKgavKhLT09n/QrvYBlx6mJjYyVOXVFREX755Rf06dNHsx6nVl6u2uBuNpsN71tJkKjjn4sFCxZISlAokZaWpiv8Su2fRJ38u2tNQCjthCoSkOCVQ9eFrndTU5PX4gKbzaa5alqJlJQUNDU1oaGhgX3X448/PiCnju4vuWL8fePfl5SUxMZNf3Yl4aG2JD9vWtWtBpUo4fsTei6U+iP+udES6zRR69ChAxYtWqRYCxBojUrRfaRUD3r2aH9nvh0aLdDMv9/lcnntZe0Lv0XdeeedhxUrVuCrr77CFVdcwTasnzlzJnr06IH77rsP48aN8/fwXpx66qnIyspCXl4etm7dijFjxrBVoRdffDEKCwuRl5cHu92OIUOGBO1z5Y1EXuSUqK+vR11dHR588EGv91mtVpx11lksqRlofZjJxubfyzdmX6JOzamrr6+XdDLy/WPlKNngak6d2Wz2EsOBzth4+FmNfCEJ1fyT79mnlVOnBL1faRZsRNS53W7ExMTAZrMxQa0mFuVOpny1uNpKOyUo/MIX1QSAM844A01NTVi+fDl+//13AK3Cn5KIqWNQcuro/r/44ou4/PLL2T2dPHkycwK7dOkCAPjiiy+wcuVK3aIOkObPaIVrKysrUVtbizPPPBPAUaeupqYGRUVFktwTev70iDpqzzNmzADQWjiXJykpCbW1tV5tQmk/YkAqbtxuN3r27MmEYnx8PHNSieLiYq8FJbfddhtOOukk1WtB50V/8yvxeVFnJKeOwq/0vHz77beIiYnBzTffjIaGBsVngq8z58upk0P3pm/fvj5Tdq655hr2b8oVpvO2WCy49NJL2URFjc6dO3vVK9MSddSXyVfDa4m6G264Af3792d9NeWpyXPReFFHTl1GRobkGX/mmWc0v4/S/eA/d8+ePUhJSUFWVlZATp08d5F/RvnFFYmJiZJVzYFAn6WU+qOWxhIbG8tC3Pz3pXugtG0ZLXYE9Ik6ck2/+uorNvnmP0suzCk9BDi6FSB/34yWe+PbBzl1RsbYgPZ+7devH37++Wfs3r0bgwcPRteuXfHEE0/g5ptvxr59+/DUU08FcngvXn75ZaxcuRKffvopLBYLW/0SGxuLjz76CCtXrmQrR4KFXBjwAkzu1NXV1XmFVwBpTgB1cuTUAdKQLt+YlUQdPyPnk6QBaUhIaZZhJPyq5NSR0yNvpHrtZS2oIfPHkq+OqqqqwmWXXSYJNwLSchV6nTpAuVPSEnVFRUWSorbyFYXyz+fhd0cAjtZNIow4dRR+kYs6agv8NaNisIcPH2bXmJw6vuOh9nLCCSeongd/3GHDhqGiokK3qOPdYCXhSh1lZWWl5Bmz2WxITk5GfX09tm/fLinASRu+8/XQtAYEQF10JyUlwe12e/1cbccMeWgzNjYW99xzDzweDxMR/EBQXFzsc3WpEjRI6XHq9uzZI3EC1UQd32f89ddf6NmzJ0suVxIG/Ip7o6KOfjZ48GBcccUVqu9raWmR7FtMKQb0POl1KnJycrxcM6X2Ru+hvlle44yuHbnScjIzM1nfTPeEr0MKSMOvmzdvxnfffQeLxSJJvaDcLDm08b3S9aY2UVlZib179+L444+XFODWorq6GvHx8TCbzRLxqyXq+H4mmKJOnmtLaD3DOTk5rC/lvy/dC6UyK3zpFCVRR6ucqU+eOXMm4uPjcf311zOhriXqaNJJ55GcnBzQtqn8tafJQJs4dUDrIPv++++juLgYO3fuRGVlJZYuXYr/+7//07VheDQit69pwQMlo8tDk4A0L0/JqeMXdvAC0G63ez2o5NQlJCSwVYrU8VVWVrJOXWmpu5Hwq5JTp9awguHU0feWizr+IaQHRum8yHnT49TRZygN8Er7GxITJ07Eaaedxv4vL+gqP+arr77KEupdLpdkcNm/fz8r48J/rtaG6YQvUcdfMxJ1R44ckTh1gDTkSqKOvovSPZVvY+PxeAw5dTRwKA2yvGvNh4atVivrSzZt2sScun/9619slbcep+6///0v0tLSJG7h2WefzX5OHbU850ZeXJlWGfPPF4k6Ql7CBWhdFemPqCNXJiEhQVXU2e121NbW4scff5TUGFPKqaPwK/UZ27ZtQ58+fSR5j/LQvC+nTmvA4SexWsgni0rhVz3wbugJJ5yAl156SfXzgKP3Xb64gtqq2u/zW9NR/33BBRdI3sM7dUBrPUDavYRQSymhNkyONQ8v6vbs2YOuXbvqFnU1NTXo2LEj8vLy8L///Y+9Ll+Qwk9U+X4qMTGRhZ/l39co/jh13bt3ZxNr/vvW1NQgMTFRcftDPl9WKafu1VdfBdAqXqniBZ/m0dLSIhH98nFFSdT5WuymlzbNqZsyZQq6dOmCDz/8EM899xyOHDmCq666CiNHjpSUJmgP8A2MdxFKSkqQnZ2N+Ph41ikkJSV55Z3wAx81OqvVyvJyeNdGLurkNDY2srg9IM0nczqdbMatJOr0OnUbN25ULAqp1rCCsZuIkqjjw8JlZWXYt2+fYq4FOXWULE/HUBtI9Io6uesmLy/jy6m7//77WXjF5XKxe5Obm4u6ujr06tWLdTJaTogcLVEHSO89hUwPHTokcQ748weOCgClbd6eeuopJCYmeok6ALpzKdXKFxAk6iorKyXvI6cOaBWR3bt3h8fjwdSpU9l79Ii6iRMn4pZbbmHPQkxMjGTrL6V9Q2mSwLejYcOGYcSIEZLBQd7pKom6uro6v4q10gDu8XgUw68WiwVpaWn47bffUF5ejiuvvFLymfw5ms1mllMpF3X8AEvHvvzyy9nvauXUaeXNyYWNXuQLJfTmJfEi6YsvvsADDzyg+L6HHnoIDz/8MCvHoybq1EqpUJ4n4FvU8W1DLurkpaQIcqSVtuHiRd2hQ4eQnZ0Nm80m2SecirkDrX0PrcQk0TF06FBs3rxZ8h7gaN/4yCOP4NJLLwUASfWAxMREZGdnw+PxYPDgwYrnrhd/RF1ubi57P7/IgsKeSigVpyfOPPNMdn9KSkqQlpYGs9ksqRW5YcMGyU5B8vGOFnLReSQnJ2PZsmXYtGmTV4TGKOvWrcMvv/zSNqJuwYIF+Pe//40dO3bglltuQUJCAj788EPccsstOPvss/H111/7e+iIY8WKFXjyySdhsVgkoo5m3/Hx8UzJJyQkeHUEfGdOIS8+/MqLOvlCCTkNDQ344YcfWAOWF96l2j5KSbB6cuqWL1+O0047zSvniD6LKC0tZfkteovmakHlZfiZFu/UZWRkoKWlRdOpo8GIhIZWTh2gHCrlB2KlUByPkqhTC++5XC52b/kFRM888wy6d+/OVl7pFXXNzc0oKiqSDGJ0f3iXlX5+4MABL8HGh0/4kD7/HqC107Lb7SguLvY6F71lDXhRp9ReyHGqrKyU3ANaKEHI85bk30drQCCh4Ha70dzcDJvNhl9++QVr1qzxEnV79uzB22+/DZfLhRNPPFFynMTERE2nTimsZHS2TdAkpqWlRdWpS0tLY24K3x54Ubd48WJWY5QmQR6PByUlJcjNzWVtuKGhgV1/2pN33LhxrGC0nvbJ46+o43Pq4uLidE8c+cFY6zNTUlLw/PPPs/YrF3U0qdUj6viVl4cOHfJy9/jzkIs6tXPMzc1VFU68qKP0gMzMTDbJe+GFFzB06FC2eOvGG29kzhM9H3zFCEA6SQBan3lywvnJrJH6o77QEnVqixj5MmR8iR2t3+FzqOXF2ZcsWcKeywMHDrCoGt+O/v77b83vkZSUhFmzZiE3NxcVFRVwOBzIzMxEv3790KtXL83f9QU9i3p3OgICEHVbt27F9ddf72V3Tp06FTNmzMC4cePwxhtv+Hv4iKJ///544oknJJY70KrsO3XqhLKyMnz00UcAWmde8kGF75D4HSWSkpJgNpt1OXXbt2/H7bffjo0bN2L16tXsAZbPQkjUGXHq+PDr7NmzAbQOvPKOlB+40tPT2SChp6K+L7766iu2TQp/XvIcCKUHlwYpug7kjPoTfpVv5cPjdDolToiv8CvR3NyMlpYWJmb4jumFF17A7t27WVhPr6gDWsOhfFujzolvoxSOOnDgAHuvUmFn6rhposEPNomJibDZbIqiTm9RWF7U8Z9LbSgmJoY5kPx1j4uLkxQ858Mi/HsA36KOzoF/HgYOHIghQ4Z4hV+7deuG22+/HdnZ2cjPz5cchxZVEHJRR22Uvw/+ijq6183NzaxoNp9mYLVaJZGA9PR0eDwe9OzZk52jx+PBN998w1wr6jMqKyvhdruRkZEhGWDp+tD3qKysZIuTjIo6veFXOXz41Ygg5Nujnt+jPkIu6kpLS1n+oRJyp45yzTp06MDaktI+2HJRpyZWtcRTfHw8c87JST7ppJOwZ88e1NTUMDFHwnTRokXsd8lJouR+Okel0jH8d7/jjjswY8aMoO7xrlbqSMl1o4iDPFxNLqRaag4gXagCtC4Gu++++3DSSSfBbrez73n48GEm6vh8Q1/7hNPnFhUVYf/+/brq3xpFvqJbC79FndbNnTRpEr766iuWyNxekFcSP3DgALKzsyUdvJKo46FBk7Z/SU1NlYTR1ERdTk6O5P8k2uThVzVRFxsbqxrC4MOvfNhVnhcg7+Co4wmGqMvOzvYqaqy0jYxaSQU+qZqusVFR97///U+SOyH/eUNDA0444QS2jy6tdPa1UIJeo3wwficOGpApsVbPoEnuTWFhocRZU3LqMjMzYbFYUFdXJ3F3AamAJbeBXE65U8eLOj5vSe8gT4KqpaVFMuukEJDJZEJKSgoqKiokDpfJZJLkointaGPUqeNr4PHfEfBeIMTXyyJ8OXV0DflcWbfbHbBTl5aWhubmZlxyySVeTh1/vkDrdaLBva6uDh6Ph1076jNIyGRmZrLB7MCBA16iDjgqdtvKqaP2YrScg3xPaD2fA3gvXCotLdWcsPBjQXl5ueQeUHuhds73I3JRx8OvDta6ziaTCb169cL27dvZDjvUp/z555/se9N9pOiQx+NhW4HRvaX7qlTkmb/uwdxXneDdYR6lZ3j9+vVsUY+c7OxsXeFX6odzc3PxyiuvsLQBSksAjpa4mTp1Kuuv6Tl5+umnMXr0aK/j859bWlrKBGgwUUp9USOghRJajB49mm2s217gZ2fAUVHHk5qaqtkJyUODnTt3xt69e9lrtOoJkD7Yap0Bv/KzoaGBdc78oNPQ0OBz5ldaWgq32y0RJXLrWC4KyaUNRvhVCaUdN5Ry/ajuHHVM9JAZEXUejweXXnqpxC2UC0qy+61WK+rq6ljOER8yV3Lq6JredNNNWL9+vWRbLXo/lSDR43zJnbpVq1Zh27Zt7P7IS+TwZTEAZaeuvLyclcgBlJ26+vp6ZGRk4JFHHmE/M+LUKSXh0z0ymUxITExEXV2dl0PKt3utRH29Tp1SOgIv6vhBRkkY+HLqSFjxZTKC4dTRv7/77jtFp85qtbLvNGTIEKxevVpSoJYGchrkyIHIzMxEly5d4HA4sGnTJkVRZ3S7LkKpPemB2oJRUce3Dz2fmZycDJPJhMLCQlgsFixbtgxA60CulVrAO12lpaWKoo7EFN+PaIk6fnWwrzBnnz59sH37drhcLlitVlYset++fV6OPZ0H9ZF8niq1DSWnjv93oLtHKGEkpy4jIwN9+vRRLQGkJ/wqDzHz0DWi8fOiiy7CJ598AuDoIrPHHnsM33//vdfvqrmKwSQiRB0AyUrB9gCfe+bxeNjuFfym9qmpqZKQ9IABAyTHoIefHuycnBxW0X3hwoWSkih8BxUbG8tmFldccQXrfPik54aGBlZFmx+YnE6n5syPBotnnnlGIur4qvJKqO3PGiwo/Mo7SmPGjPF6H+XfUDkbpQKa8vcDUleN8qx4q12+MEJNHPOLN7Ty9KxWK04//XTJ+0kc0LZXepwQGsSLioqQmJiIs846C926dVMMv/JFtuVOXefOnbFhwwYA3oWElZw6oHWw5c9f7yBPIX55W6Hv27FjRyb8jOzqwZ9rbW0t3G63plMHHB3I+HvJh1/5PZ6VBmD5VoRywZacnCzZmkjpPXqha923b1+cd9556NSpE8455xxFp45v72eddRYOHDiAffv2SXagAY5OBMmByMjIgMlkQv/+/bFx40Z2/fnraGQhDw9fbN0IiYmJaGlpQXV1tSFBaFTUxcTEIDk5GYWFhUhKSmJ9hx6njnYwOXjwoGRyT/eBnDq+L1YSdUuWLJEk4su/hxK9e/fGtm3bmFNHbfnw4cNsy0D5BJhSD/g8VbmoU3PqglmLlKDvyE/cyVFTe4aVSoYBrX2eXqdOqy3yxa35a6oVfWsLUSevzapFSEVde4MPB9bX18Pj8SApKUmSVBkXF8dE3dKlS71WAlNokIQKL+rkDw41erKHqXO+8cYbWTkG+UIJu93uVR1frSo+MXbsWMTGxmLr1q0SUSJfmSUvhKlUGiOY0PUmcbVgwQLF1a9U0+qVV14BcFRoqIlNus68q0bXkB+s+Twbj8ejKo75gpd0TP46UudKn6vWMZlMJl2dJ1/A1FdOHeVu8u/lXaWZM2cC8A4h8ROTxMRE9r3los5o+FV+T+Li4jB37ly8//77TPgZKQANHL2uQ4cOBaC+/y49A3Q/+GeCBtuamhqJsFcaALp27YqysjI2IMqdOpPJJFmpCvgv6iwWC3799VdMnz4dZrMZI0eOlKQa8E4df92oFMbq1au9nDqaCFL7pt/v3r079u/fz0QdL2rq6uokfZte/HXq6B6Wl5cbum7+CBHafo2vXHDkyBFNUce7sfKIjZZTFx8f79WmRowYwVx/wpdT169fP5SVlaGmpoYVoDaZTLjrrruwbt06AEfbOZ1HQ0ODqlOn5GKFWtSZzWY4HA7J5EdrlTXxwgsveK1qPnjwoE+nTs+Wc2eccQb7N/VtR44cMSTqeD0QDC677DLcdNNNut8vRJ0B+MR9+eyXh2ZqSiUMunXrBuDoLC4nJ4d1omqijl+2DUhFAb9QgkSHvO6cnvDrddddh/3790vEiPy7yUUd5ejIVwcGCwq/0uCoVj7DarVKhAxdNzVRpxR+5a8hiTR+cG9qakJLS4uiiFFy6vjwN50/3V+73c72beVRKuysRExMDOs4+DbGi7rTTz8dNpsNWVlZqk4dHQvQ3vJLy6nTO+DSvVS6J1dddRVSU1O9FjLw7925c6dqQU/5OWiFX4GjDqz8mejatSvWr18vcWiVBgBysGlVnFzUAdKtiTwej985dUCr20/nShMY3qmjaACfA0vhKl7U8U5dY2MjSkpKkJ6ezs5dHv7mr09dXZ1hl44+i/9bL9SujYo6Hr2/R5NXXtRpiQTgaJiutLSULZgjKL2C/ub74oyMDMW9hOX4utZ8oWPKz5aLRblT53Q6fTp1aqLO33vgi06dOklyyvW4aQ899BAuvvhiyWslJSWqJYP0hF9PPvlkvPbaa5LX+EU0WuWI5O0kmCuE/UGIOgPw4Vd5CQgeeliVfnbTTTdhzpw5rFwAn3SuJupITNEDyBczJqeupaUFjY2NsNvtXjXBfIVfgdZSEXJR1717d5SXl2POnDmKv9O1a1fs3r3b0CzCCHS95Un8cuSFN305dVqiDmi97ikpKRJRp1V8lRc5dEw+91Iu6gh5noqRZeskqJWcOrfbjfPOO485t1pOHYnI8vJyVVGXnJwsEXX+7PObmJiI2tpa5og+++yzXqUC6H47nU4vV6hHjx5stws5ekWdllMHtG5TNX/+fIlzoDS4kKijMK2SqOOdOmqHwRgYKdWAF3VUUkmew3ziiSfit99+Y9eZBh9aZbxu3TpJigwJb7XV8moOM39ucuhZNBp+5Z06f10ivSs1+V076HxLSko09x+lPvjw4cNe4deuXbvC4/GwdjJ+/HjJ72mJOkrO9yUMOnfuLNl/VOl35Dl1epy6tgy/Aq2ijl/ZqcdNA7wXV9TX16uOcXrCr1u2bMFdd90lec1fpy6YK4QB9V2K1BCizgC8qKNcKKNOHRU9pRuvVVdJ3kj5mm0EiTq+I5YXE/YVfgVa8wBKSkqYWI2NjcXo0aORmpoq6fTkdO3aNeiNmKBBRssVBbwfUupM1Sr4K+XU8Xl7FosFGRkZiqJO6TrSQGC329kxeedQTdRR+/Bn9xUaRJScOv6c+OMrOXV076qqqlSdiczMTImo07uLBA+JOhI4p556KnOtCX4hg5HZbrCcuu7du6Ourk6SI6s0AKSlpSExMRH79+9nq3m1RJ3RXRG04J06s9nMhEFmZqbXyuCsrCysW7eO7ZFN1yUzMxOHDx/G6tWrkZeXx95P90hN1N13332q57V9+3a24ItHa4cSLfwNv/oD9W/JycnsuWlubtZ06ugZ+Ouvv+B2uxVL7RAXX3wx3nvvPQCtrqCWqKOwoq9C1SaTyUswqzl1vKgjp46ur9ypk5dfIUIl6rKzs/0SdQMHDkSXLl0wb9489pqvvb71Hlt+vNLSUs37Eerds4xuxyZEnQGUnDq6ofv27WMFQOnB0LNiiJ/9yjsvuah788038fDDD0tmkNRg+a3A5OFXPaKOirru3r0bd999N1wuF+t06CFQq34eKuh6+3oY5Z3Z6NGj8csvv3hZ9IRSTh0v8OLi4pCZmSnJqdNy6ujzTSYTOyafT+XLqaOtvIxAg4iSUwdoizr+O8hD90qYzWbWfmhjeaNQaI/frkoOv1DCSKgvWE4d3Uc+HKTW5mgLPzUXjgQSEFxRxzt1vtwv+YSR3p+ZmYl9+/ahsrKSOUOAb6dOqZwE0atXL8VyM3I3SS98+DVUgoJQCr8CyjUxCRJGTz31FFsApQVNnhISEjRF3a233oqmpiZdziY9Q2pOndJCCXLqzGYz7HY7G8dcLhcsFotkgs4vvAll+JUXdVohUp60tDTs3bsX/fr1Y68FW9TxfZARpy7YCFEXQrTCr8cddxxziKjemp5tgXhRJ7f75aKwW7dueP755yUPHjl1vOiQh1/5yttqkKhraGjwerjpIeAXBLQFCQkJbIUZoN6xKA3OAwcOVHUQlcKvcqeO3AxCa/9cvpOgY/IhPKrGrybqtAYPNc4991wA0sUcvFDi287ll1+OPn364NRTTwUAyUBOHb8v4c8vlPAnZyQxMVGyBZWSqOMXSgTi1KlNpug7kIsqHzjpM3lRp7XVXGNjo6pI5cvxhMqp8zXw8yKLH3gyMzPZ4ia+PScmJqKhoYGdt/z4/op5pWP5IhxOXVJSEtsbF/D9XGZkZKCurg6jR49W3OmEh18AQNdCrW6o3i3R6H1qTh1ffJrOgd/L2G63s+fRV3sKpVOnlFOn9/P4du1L1CmFmLXgK06E06lrl+HXDRs2IC8vD8OHD8fYsWO9lGtBQQFyc3ORn5+PESNGhOw8tJw6nhtuuEGyB6kWvKiTh7X0dKJyUWez2STnCehz6vhK3fIHKlxOHQ3OJDzUOnf5dfbVIehx6nJycpgYA7SdOjqew+HAoUOH0NzcjLKyMsTExKBr166soruaqPNHJF122WUYP368pGAzf334tnThhRfir7/+wsCBAwFIrxeFImkGrwYffvUH+j0K96g5dTTwBCLq1J47OqZa+FXJqdMqi6NX1NHgGixRp9ep49uAXNTxxyPoHpWVlSEuLs7ru/sj6qiNG/3u9HsNDQ0hF3W0AwB9f3Lr9Ig6wLvfVoKv86dnoYQe5E6dvD3QGEWirqqqSvKc8/vFklOnRqhEXXp6OhoaGvDTTz9JJtJ6P4+/R1o5dS0tLey76j22yWRix9QKr/szKTeCUsFjLaJC1HXu3BmLFy/G8uXL0aNHDyxYsMDrPePGjUNBQQGWLl0asvNQ6qgDLcrI/77cWdIjomgWouXU6Rkk7XY7241C3onSwNXWTh11rvKSIHLUBmc1qHSIVk5dly5ddIu6oUOHIjY2Fv/617/gdDqxa9culJWVIS0tDSNHjsTWrVsVzz8QURcXF4dPP/1UsvKYv2++BmDKZyOBo9ZGKLxBoTx/VkACRwdM+jylgZrCr99//72h2ofyY2mFTIGj7UnNqeNz6tQwIuq6du2qeJ7+QJ/LOy5qKO1yAaiLOmqP+/fvV2w/gTh1ansiqxEbG8vuV6jDr7QAh9qmUVGnp5++5JJLYDabMXToUCbmgiXqqB3In9/a2lp89913TFCOHTtWYjbwC8zC5dTRNbzkkktQWlrKFvUYyXuj6+hrr28as418F3qvVu25UDp11dXVhnfmigpRl5WVxR60uLg4xVn+/PnzkZeX57UsmaexsRHV1dWSP0YgB8zj8WDDhg2IjY0N+MHUQo+Iki+UIFHHO3V6wq/A0YYrb/R8Tb22xF+nTs/gSWUdCLlT16VLF1RXV7PP1loo0bFjRzQ1NbF9YX///XdWIoSf4cmvK91fs9mMBQsWsH13/cWIqPvjjz/wwgsv4Pfff8eGDRsURd3BgwexevVqAK3FbAHpnohGoMGdrqda+LWyshJ//fWXV/kcLeT3Wy18Re2koqJC0Ymi719eXu5zQJeLOqUQsHx3jGCGX2tqany6pqNHj2ahdn7g4Z0lJafu7bffVnQm/HEk6JjynWH0oLSwJxSQqCssLJR8nl5Rp6ef7t27N9xutyQkzi948wdf4deamhrFvGLeqXM6nSgrK0NZWZmm2AnVPaC2SILLHzfN1w5CdCxyLo2kAlB/FS5Rl5SUpBotUCMqRB2xf/9+LFmyBBdddJHk9QEDBmD79u1YunQpFi1axKrky5k2bRocDgf7Y3Tj3fj4eLS0tODgwYN4++23g7aTwkMPPeS1mT2gbyYn38cxNTXVr4USwNEHTP5ADR06FG+//Tbuuecen8cIJiTkq6qqYDKZVK8HPaQpKSl44YUXdD20NCgTvKgjpw6AZP9M/pyUoM289+3bx0QdPzDIryvl4ZSWluLSSy/FNddc4/O8teA7Xl/ugd1ux3333Ye4uDisWbNGsY107NiRCWsK3dIekx9//DE+/fRT3eemR9TxE4933nlH97H1TqyoXWzYsEGSVyj/eU1NjWY5C3qvllNHC0P4FdTBcuoAsGK5WsTFxeGFF17w+mz+9/hrzkcNlAqo+rPKvX///gDg1ybnNIkMtVNHn/OPf/wDwNFi6sEUdXI+/fRTLFy40PDv8WgtlLjgggtQU1OjuHhFLuoyMjLw+uuvhy38yqOWz6mFXlHnj1NH/YCWqDO6dV6o0ZeR2UYcPHiQuR0833zzDWJjY3Hdddfhgw8+UFxpRlxyySXYvHmz4mqkKVOmSJblV1dXG+ps6OZt2bIFAPDUU0/p/l0tqOP1Bwojbtu2DfHx8cjJyfEr/Aqor1QzmUysLEJbwjt1WgMifbeTTz4ZDz30kK5jW61W1fBrXFwcC0XToFxaWgqTyeQzf4acFD2ijjoKfkFGIPDPgZ5QWWxsLBISElBdXQ232+1zoUR5eTnr5PhcPiPnplfUqZWjCQQaKKqqqjBu3Divn/PfPyUlhTk3asdqbGxk7UYp/FpfXy+5t8Fy6gDfZRYIeo/aIholpw4I3tZ/+fn5KCws9Mvl79q1K3777beQO3Umk0niDJOw8DUxovHAn1xjvnadv6g5dRdffDHy8vKwevVqnHjiiV7pBPxCCd5JDkf4Vd6f+iO8qI9V67/4bQSNHvuDDz7A2LFjvcov8ZhMJvz666+szEq4iShRl5WVhVWrVnm93tzcjMsuuwyPP/641ybzQKs4oxu7cuVK3HrrrYrHt1qthldh8dBDfP755wMA7r77br+PFSzIqfvrr7/Qp08fxMTE+B1+9bf8QKigwaeqqkqzY6d7aqRz9eXU0fUicXz48GFJ9X01SNTt3LkTI0eO1OXUHTp0SPd5a8EPynpzPRMSEljJFV/CP5CFMnrDr4TR53TZsmWsgr8atN2ex+ORlEJQ+sxAnTo+P40ItqjTM4AohTD5+8z/m+8j5OFSo3k9PP6mbfibizh9+nSvwtZGoNw6pTbCQ/c81Inyasi3YKN7SeVWampq4HK5cPXVV+Pzzz9nv8c7dSR0+ONofVawcTgcMJvNzB31R3gZDb8a+S6XXXaZrtWnAwYMwOrVq1mbDZQFCxZIymIZISrCr3PnzsWaNWswdepU5Ofnsx0OyD2aO3cuBg0ahDPPPBOdO3fGsGHDQnIe8nCHr46/LaB9HHfs2MG2CfI3/EqDaqSIOn6hhB6nzojokOfUyZ06uag7dOgQc++0sFqt2LNnD3bs2IHhw4dLOnz5d6DzDnSxjRJ6Q2Xx8fG6RV0gyPMjfTl1RkWdnhWIJpOJ5acoXXO5U6eFXlHHF+QNZvg1EKeOz9Hhv3OHDh3Ys0/hduLZZ5/1/6T9hAZII/mVAHDPPffg9ddfD/jzfbndFPY3en7BQs2ps9lsSExMREtLC0pKSpCbm4slS5aw3+Pfx7dPrWfOaF6XXmifZCKUoq62ttarXFcwOfPMMzVXyRrh0ksvZekARokop06Na665RjHfiPJuJk2ahEmTJoX8PJTyE0LNrbfeqrlyjCz08vJylr+SkJAgmYHpFXX0UEeKqOOFgNY5tZVTp1fULV++HACQl5eH3bt3s58pdSbff/+9ZlFXo3z//fdYu3at7ve3laijY2uV9wjEqdPbZmkAVvquRkVdVVWV5kIJQCrq9NYf04J36vQkaPsqKcJ/5/j4eDQ2NuLvv//2Kwcu2FB5qpUrV7bp586bN89rGyolqO5juK6VWkkTfseI4uJipKSkSIQT79RRwXwg8NW4/sI/9+QQBzP8Sseqq6uLmLEtlESFqIsUeFHHb/odSmbOnKn586SkJDQ3N0v2p0tNTUVlZSU8Hg9MJpPuCv3+br4dKiwWC2JjY306ddSZGSm5YLVa8eabb+K0007DmDFjJLmccXFxbEbX0NCAlpYWbN26VbJhuho2mw1bt26F3W5HVlaWJFFeCaM1iHwxevRoQ8dsK1HHd6xA8J06vS4YiTql4/Ov6Vn96nK5fDp1/GrhYDp19fX1ukQdXVO1nCCle84vIlmwYEHQ8uuM0rt3bzz99NNsstpWjBkzRtf7LrroIhQVFUn2725L1Eqa8KIOaJ2g8G2bfz+/nSGfstOW8OdGkz4jEyClnXJ4eKcukPSraEGIOgPw4Y62rtmmBp3ToUOHWONOS0uD2+1GTU0NxowZo7tCf6SJOuBomQutxHl/wq/0cN90001eKyHj4uJY4Umn04n58+dj8+bNGDx4sO7jdunSRbLcPlJJSEhAUVERgNCKupiYGMTGxrKBI9yiTum78p/pa0WbnoUSQOueqEbPUQu1hQ1qdOrUCT/88AOGDx+u+HNf1/nSSy81doJB5rHHHgvr5/siXIIOAAYPHoylS5cqOnW8e5iQkCBpN/xCCZ6nn3461KesiFzUGQ2R6g2/VldXR9TYFiqiIqdOoA4vGujflF9UVlbGcimMiLpw2fBKOBwOuFwuzQExPj4ePXv2ZOU29MA/3Pzeg/zPqOI6/fzBBx/0eVzqoGgRBDk+ocpJCZT4+Hi2pVkoRR3Qem20nLq2CL8SSt+VH0howNPaau7nn3/GtGnTAHh/H7rvfMJ+MESd0p6+vjj33HNVr0+o8osEoeepp57Czp07WZvgnbqePXvixx9/BNDa7vjniSYD/DPgdrtxwQUXtNWpS+DbJok6I/gSdfTdKysrQ97HRQLCqYty+Nk679QB0k3ljYRfjW4gHEoyMjJQWFioOSCazWbs2LHD0HH5To7PKwGODr58aZiMjAzF2mZyqNMgUUf3ZMKECYbOr62Ij49nq2/DLer4NmpUbBgVTL6+KznDp5xyiuLPqf18+eWXALy/Dzn5fOgyGKKOjxD4u2WboH1gNpvZfuMAWM4vtcWRI0dizZo1GDRoEFugBHiLIIvFEtaJvNypMzqh85VTR/1KSUmJrgVV0Y4QdQaZM2dORDlZSqKOd+oII06d0Q2EQwl9l2Avqec7jj/++EPyM7oOJOo8Ho/u7bHouFS8NS4uDps2bULfvn2DcdpBh3d+Qi3qLBaLblFnlGCLuu7du2PHjh2SQZNH7ibIP58qwbe0tPh9jkrwK+4jPbQvaFso95AKpgPAkCFDAEj7O3rO+AUT4YSPYvizmCEzMxPx8fGqeXj0/UpKSnRNzKMdIeoMMnbs2HCfggS+YyeBp+TU6XE+lDa6DzdUtT3Yoo7vAL744gv2b6vV6uXUtbS06K4aTp0nn2jvq95VOFErbxEKeKfO1+pXoxhtH77cALvdrrkqWf6MyAeUmJgYOBwOyYKqYLRhfsDj93AVCEjUKe1dzD/bNBZEoqirra01XA9z/PjxGDRokOoYR9/P5XIFVGszWojMRB+BbpScOnqNLwPDr3JS46STTgKgvlIuHKhtXRYovIPCk5iY6OXU1dfXGxZ10eKi0PZyQPjDr4GInmDk1PH4cg3l+0YrfR/5ABLsiYmeEjuCY4fU1FS88soreOutt7x+puWMh1vU8WLMn5w6m83Gxi61nxNC1AkiHiVRZzKZvCpb9+nTx+exhg0bhuLiYgwdOjS4JxkAoQq/UgXzGTNmYNeuXez1iRMnIj8/H8DRGoBGRB2trgxXlXmj0DZWTz31VMhXdFssFlayINgLR4ymRKgNZPS6L1FH1ekJLVFH1zWSRN0NN9xwTOQXHWvcd999qikDcqiNh7vMBy/qWlpagj6Bj42NZc+nEHWCiEdto+6PPvqI/Xv69Ok47bTTdB0vFHtuBkKowq/k1PXt21eSZ/Hiiy+yoqfk1DU0NOgWdZSPGC1OHQmOQLaB0gvVdouE/RHVRN1ZZ50FwLfzp8epo2s7ffp0AMEXskbqMsr58MMPfdZQFLRveBNAjUsuuSTkz6v880OxJZk/Za+iFSHq2hF8g+XzbaJFYCgRaqeOxJrS6lQ+/Ko3iZ9yraLFqfvwww+xcOHCoOx24AtyBKgSfzhRE3Xvvvsuxo4dy1YvqyHfg1qpfaampqJDhw648cYbQ7KVVCQt2BJEHzQuaFU7+PrrryW7ooQC+WQnkAVTaghRJ4gqzj//fNx7772SUCwfmgnFQ9JWhMqpI1FH1+bjjz/2yrOjOnVGwq/R5tRlZGTg/PPPb5PPIverrXcIUEIt5NStWzfMmTPHp1P30ksvsTA9oOzUde7cWXcoTCBoa2jiGe5qB3KnLhQ5fseSqBOrX9sBCxcu9HqNz4+KZlHXVk6dUgiCr1OnV9TRrDdanLq2hO5hOKvwE4GGQm02GwYOHIiCggIAyqJu6tSpuvYQNcqiRYtQXFwc9OMKji30OHVtgbzvDcV4RccUoi5C2Lt3LwYOHIgTTzwRQGsJCj686Ha7MWnSJPz999847bTT8Nprr4XrVCMGftCKZlFHTl2oVr9qXRu73Y5169YBAAYOHKjruBR+jRanri2haxMpW+wFCt92lERdUlJSSNrBeeedF/RjCto/8fHxuPjii9n/aeIZblEnwq/BJWrCr8OHD0dBQQEKCgq86jN9++23yMnJwcqVK1FfX481a9aE6SwjCwrHRrOoC5VTR6JOy4Hjr5veji/awq9tCblWfAHdYHP33XeH7NhyqH3ExMRE7DZwAgFRV1eHzz//nP2f+qhICb+q7UkbDISoi0BWr16NvLw8/N///Z9X0vHatWsxatQoAK35ZWqirrGxEdXV1ZI/7ZmsrCwA0S3qEhISYLFYQp5TpwT/M73Jwueeey6AwArptldI1Gk5dd999x0WLVrk1/E9Hg9mzJjh1+/6Aw0UbbHIRCAINpHi1JGoS0hIACBy6gIlKkRddnY2du3ahRUrVuDw4cP46quvJD+vrKxkDdThcEh2UuCZNm0aHA4H+5Obmxvycw8n7UHUmUwmZGRkBF3U0TJ9vaJOXpdMjaeeegrl5eVio3QF9Ii6Cy+8MKThxTfeeAN5eXlBORa1DyHqBNEITTwjxamj8wllTl17Sf3QIqJE3cGDBzF06FCvP3V1dUhISIDJZMKYMWOwadMmye+lpqYy162yslK1ftOUKVNQVVXF/hQWFob6K4UVEnXhLi4ZKL169Qp6/byZM2di6dKlmgMy37nwdf+0iImJOSZmg/7QFuFXX9xxxx1YsWJFUI4lRJ0gmomUiSedRyjThWw2G5KTk4+JMkAR1RtlZWVh1apVXq/zLsmKFSu8NkcfPHgwfvjhBwwbNgyLFy/GxIkTFY9vtVqjXuAYYfTo0Zg3bx6ztaOVRYsWBX3gTExMxDnnnKP5HrLsR40aJUpTBIFIEHXBRIg6QXsg3NtCtlX49ViZbEeUU6fGqlWrcPrppyMvLw/FxcUYP348AGDy5MkAgIsvvhiFhYXIy8uD3W7HkCFDwnm6EcPEiRNRXFwcESUkAsFqtYZlhiUG7eBCoq69TKyofYSiAr5A0Bb88ssvWL16dVjPgRYZkegKlVN3rIi6qBitRo8ejdGjR3u9/s477wBoHXT1hseONSJt269oIppzESORXr16YcuWLeE+jaAhRL8g2tFbqimUULoUVbUIRb970003oaSkJOjHjUREbyQQqCBEXXBZsmRJyLccakuEqBMIAmfGjBkYPnw49u3bByA0/e6wYcOCfsxIJSrCrwJBOKDOJVISiqOdzMzMiHAGgoUQdQJB4DgcDtx4442sgkUocuqOJYSoEwhUEKJOoIUQdQJB8KCFEuGumxftCFEnEKggwq8CLcRCCYEgeJCoq6+vD/OZRDdC1AkEKghRJ9BCOHUCQfCgbctoj2iBfwhRJxCoIHI7BFoIUScQBI/zzz8f999/P2655ZZwn0pUI3ojgUAFkVMn0EKIOoEgeFgsFrz88svhPo2oRzh1AoEKNFiLMKxAidjYWPZHIBAIIgHRGwkEKqSnp+PVV1/FtddeG+5TEUQoNptNLJQQCAQRgxB1AoEKJpMJ9957b7hPQxDB2O124dQJBIKIQYRfBQKBwE+EqBMIBJGEEHUCgUDgJ0LUCQSCSEKIOoFAIPATu90ucuoEAkHEEBWi7pdffkF+fj7y8/PRu3dvrzyngoIC5ObmIj8/HyNGjAjTWQoEgmMN4dQJBIJIIip6o0GDBqGgoAAAMGnSJFx22WVe7xk3bpyocSMQCNqUPn36oGPHjuE+DYFAIAAAmDwejyfcJ6EXt9uN/v37Y8uWLYiJOWoyFhQU4B//+AdycnJw5ZVX4u6771b8/cbGRskWJNXV1cjNzUVVVRWSk5NDfv4CgUAgEAgEoSIqwq/EsmXLMHz4cImgA4ABAwZg+/btWLp0KRYtWoQNGzYo/v60adPgcDjYn9zc3LY4bYFAIBAIBIKQE1FO3cGDB3HllVd6vf7NN98gLS0NN998MyZMmID8/HzVY8ycORNWqxUTJ070+plw6gQCgUAgELRXIkrUaaEWegVaxRmJsvHjx+PWW2/FsGHDfB6zuroaDodDiDqBQCAQCARRT9SEX3/66ScMGzZMIugmT54MAJg7dy4GDRqEM888E507d9Yl6AQCgUAgEAjaE1Hj1IUC4dQJBAKBQCBoLxzTos7j8aCmpgZJSUkwmUzhPh2BQCAQCAQCvzmmRZ1AIBAIBAJBeyFqcuoEAoFAIBAIBOoIUScQCAQCgUDQDhCiTiAQCAQCgaAdEBV7v4YDWkQhEAgEAoFAEAn4WtgpRJ0KpaWl6NChQ7hPQyAQCAQCgQAAfJZgE6JOBYvFAgAoLCwUNeyiCNr6Tdy36ELct+hE3LfoRNy36CUpKUnz50LUqUD2ZnJysmj0UYi4b9GJuG/Ribhv0Ym4b+0PsVBCIBAIBAKBoB0gRJ1AIBAIBAJBO0CIOhWsViueeOIJWK3WcJ+KwADivkUn4r5FJ+K+RSfivrVfxDZhAoFAIBAIBO0A4dQJBAKBQCAQtAOEqBMIBAKBQCBoBwhRJxAIBAKBQNAOEKJOIBAIBAKBoB0gRJ0KDzzwAPLy8jBhwgS4XK5wn45AxoYNG5CXl4fhw4dj7NixaGpqwpw5czBkyBCcc845KCwsBABs3boVQ4cOxZAhQ7BkyZIwn7UAAD777DNkZmYCgLhnUUJBQQFGjBiB4cOH4+uvvxb3LQpoaWnBDTfcgLy8PAwbNgx///23uG/HAh6BF7/99ptnwoQJHo/H43nmmWc8n376aZjPSCCnpKTEU1dX5/F4PJ4pU6Z45s6d6xk0aJCnsbHRs2rVKs/NN9/s8Xg8nksvvdSzY8cOT1VVlWfIkCHhPGWBx+Npbm72XHHFFZ5TTz3V43K5xD2LAhoaGjwXXXSRp7Gx0ePxeMR9ixI2bNjgGTdunMfj8Xh++OEHzz333CPu2zGAcOoUWLt2LUaNGgUAOP/887FmzZown5FATlZWFuLj4wEAcXFx2LFjB0488URYLBacddZZ+P333wEAJSUl6NmzJ5KTk5Geno7S0tJwnvYxz+zZs3HllVciJiYGO3fuFPcsClizZg3sdjsuvvhiXH755fj111/FfYsCcnJyAAAejweVlZXIzMwU9+0YQIg6BSorK9l+eA6HA+Xl5WE+I4Ea+/fvx5IlSzB06FDJHobNzc0AWjs0QtzL8NLc3Iy5c+di3LhxAKTPGf0cEPcs0jh06BD27NmDb7/9FrfccguefPJJcd+igIyMDMTExKBv37546KGHkJ+fL+7bMYAQdQqkpqaiuroaQOvAk5aWFuYzEihRXV2N6667Dh988AE6dOjA7hkAmM1mAEBMzNEmLu5lePnkk08wduxYdk/45wwQ9yxSSUlJwdChQ2GxWHDOOedg48aN4r5FAYsXL4bdbse2bdswf/58vPbaa+K+HQMIUafA4MGD8cMPPwBofTDOOuusMJ+RQE5zczMmTJiAxx9/HL169UKPHj2wdetWuFwurF69GqeccgqA1jDtzp07UV1djfLycmRkZIT5zI9dtm7dilmzZuH888/Hzp078e6774p7FgUMGjQIW7duBQBs3LgRo0aNEvctSkhNTQXQKsxLS0vFfTsGENuEqfDAAw9g3bp1OO644/DBBx/AYrGE+5QEHJ999hnuvPNOnHzyyQCA2267DR6PB6+99hpsNhtmzZqF3NxcbN26Fbfccguam5vx9NNP49xzzw3zmQsAYMCAAVi/fj0+//xzcc+igDfffBNz5sxBTEwM3n//ffzyyy/ivkU4zc3NuO6661BcXIzGxka8+uqr2L9/v7hv7Rwh6gQCgUAgEAjaASL8KhAIBAKBQNAOEKJOIBAIBAKBoB0gRJ1AIBAIBAJBO0CIOoFAIBAIBIJ2gBB1AoFAIBAIBO0AIeoEAoFAIBAI2gFC1AkEAoFAIBC0A4SoEwgEAoFAIGgHCFEnEAgEAoFA0A4Qok4gEAgEAoGgHfD/ACPc8dVcn7U/AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1212,7 +1211,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfjUlEQVR4nO3deZhUhZ0++vfUXtVdOzRLN7soKirihijiAoKCIEtjxl0QnBnF3Jlkbia5k8lk5jHJZDLzy+TeTAYEDe7syCKLiLuCOwFBZYfupunu2vftnPtHQctSdaqXqlNLv5/n8QnS367zlXC636469R5BkiQJRERERHmgKvYCREREVDkYLIiIiChvGCyIiIgobxgsiIiIKG8YLIiIiChvGCyIiIgobxgsiIiIKG8YLIiIiChvGCyIiIgobxgsiIiIKG8YLIiIiChvKj5YpFIpPPPMM13+/Gg0invvvRcXX3wxRo0ahcmTJ+Po0aP5W5CoDHT3PAKAp59+GoMHD4YgCNi7d2+eNiOqLPk414qt4oPFnj17sGrVqm49xoIFC/Dtt9/iq6++wtSpU7FgwYI8bUdUHvJxHs2ePRsffPABBg0alKetiCpPPs61YqvoYLFv3z5MmTIFjY2NGDVqFH7xi190+jEMBgPuvvtuCIIAABgzZgwOHz6c71WJSlY+ziMAuOWWW1BXV5fn7YgqR77OtWLTFHuBQrrsssswY8YMjBgxAk899VReHvMPf/gD7rnnnrw8FlE5KMR5REQXqpRzraKfsQCAzz77DNdee+0Fvz9u3Dj06tUr4z8nTpzI+Fi/+tWvcODAgbJ//Yuos/J5HhFRdtnOtXIiSJIkFXuJQkkmk7Db7WhtbYXBYOjWY/3ud7/Da6+9hu3bt8Nms+VnQaIykM/zCAAGDx6MjRs3YuTIkXnYjqhy5PtcK5aKfimkoaEBZrO52/8H/dd//RdeffVVhgrqkfJ1HhGRvEo51yr6pZC6ujpceeWVuOSSS/Czn/2sS4/R0NCAH/3oR/B6vbjtttswatQo3HDDDXnelKh05eM8AoAnn3wSdXV1aGhowIQJE3DRRRflcUui8pevc63YKvqlECIiIlJWRT9jQURERMpisCAiIqK8YbAgIiKivGGwICIiorxhsCAiIqK8YbAgIiKivGGwICIiorxhsCAiIqK8YbAgIiKivGGwICIiorxhsCAiIqK8YbAgIiKivGGwICIiorxhsCAiIqK8YbAgIiKivGGwICIiorzRFHuBYpEkCYlEAtFoFPF4HJIkQRAEqFQqGI1G6PV6qFTMXURyJElCPB5HJBJBMplsP4/UanX7eSQIQrHXJCppoigiFoshGo0ilUq1n0darRZGoxFarbaszqMeFSwkSUIkEoHL5UIgEIAoirLzBoMBDocDVqsVarVaoS2JSpskSQgEAnC73QiFQpAkKeusIAgwmUxwOBwwm80M60SniaIIn88Ht9uNSCQiO6tSqVBdXQ2Hw4GqqqqSDxmCJPdVoYIEAgE0NzcjFot1+nMFQYDD4UBNTQ0DBvVYkiTB4/GgpaUFyWSy05+vVqvRu3dvOJ3Okv/CSFQooiiitbUVLpcr5w+3mWi1WvTt2xcWi6Vkz6OKDxbJZBInT56Ez+fr9mNpNBrU1dWhuro6D5sRlY9YLIbGxkaEw+FuP5bBYEBdXR0MBkMeNiMqH+FwGA0NDYjH491+LLPZjP79+0Or1eZhs/yq6GARjUZx9OjRLv10Jad3796oqakp2bRIlE+BQADHjx+XfcmjK+rq6mCz2fL6mESlqq2tDc3NzXl9TJVKhcGDB8NkMuX1cburYoNFJBLBkSNHuvRUU0c4nU707duX4YIqmt/vx/Hjxwv2+LW1tbDb7QV7fKJS0NLSgpaWloI8tiAIGDx4MKqqqgry+F1RkVdSJRIJHD16tGChAgBcLhfa2toK9vhExRYOhwsaKgCgsbERgUCgoMcgKqYz1yUViiRJOHr0aJeuHyyUigsWkiShoaEBqVSq4Mc6depUzqt5icqRKIo4ceKEIsdqaGjI+8uVRKUgHo+jqamp4MeRJAknTpzI+8uVXVVxwcLj8SAUCil2vIaGhoI+M0JUDCdPnkQikVDkWKlUSpEvvkRKOvNDrlLf7KPRKFpbWxU5Vi4FDRYbN27EJZdcguHDh2PJkiWFPBSA9E9Z+b44JpdYLJaXd5wQlYp4PA6Px6PoMf1+P5/9o4oSCATy8i6qzmhtbVXk2fpcChYskskk/v7v/x47duzAF198gX//93+H2+0u1OEAAD6fryjPHrS1tZXMU1BE55M6eU64XK4CbVKaxyXqiHI4j850zRRbwYLFJ598gssvvxy1tbUwm824++67sXXr1kIdDkDxvjDFYjH+tEUlq/XV/4Vn++sQY9Gcs6IoFu0Lk9fr5bUWVLKa/ucZ+He9A6kDzwjEYjFFX5I/m8vlKvoPup0OFqIoYsSIEfjJT35yzu9v3boVOp0OK1euBAA0NTWhtra2/eN1dXVobGzs5rrZJZNJRKO5v3AWCq9sp1KVCgbg3vAqjv1yYc6AEQ6Hi3rNULG+GBPlkmxtRusr/4vjv/r7nAEjGAwquNm5EolEXgq4uqPT9wpRqVT46U9/ioULF+If//EfYbfbsXv3btTX1+NXv/oV6uvrASBjYipk50MxQwUAhEMhhL7+sqg7EGWSCvoBAGIoHTC8OzbCdvtUWMdNgkp/bvtlsc+jkM8LTcPhou5AlImYSH+zTradQusr/wvPtrWw3zkD5mvHQTjvVg/FfgY7EolAr9cX7fhdKshKJpO4+OKL8cgjj2DevHkYM2YMpk+fjj/+8Y/tMx999BH+4z/+A2vXrgUA/PCHP8QNN9yA+++/P3/bn6WQBSQdoRIE6Bf/W9GOT9RZqirzBQHj+PHj8Pv9RdtJL6agWvrroh2fqLM0vfpcEDC+++67oj5r4HQ60a9fv6Idv8vNm4sWLcLPfvYz1NbWYvDgwVi7du05N+hKJpO49NJL8c4778BisWD06NHYuXMnnE5n3pY/W1NTU8EvDs3FsOQZCLyIk8rM2QHjSENjUX/a0kgitEt+VbTjE3XV2QFj/7ffFvUlRavVigEDBhTt+F2+ePOBBx5AOByGJEl49dVXL7jrp0ajwX/+53/itttuw9VXX41/+Id/KFioADK/9KI4dY+6Cz1ViDMvkTT+n59DTBX34skSOIuJuuTMSyTNS35X9O9Hxe5W6vJ3wqeeegpA+q2W2W4lPm3aNEybNq2rh+iUkrhnR5G/KBN1hdpshe2OabDcNAFHTjQAUKYYK5MSOIuJukRb0x/2STNRPXosPN98U9RwoVIVt/uyS8Hi5z//OTZt2oSdO3diwoQJWLp0KZ588sl879Ypxb51rEoQ+DIIlZWzA4VKl77QS6vVFvWlEDXPISozZwcK4fQ3dI1GU9RrLDSa4j573ulrLJYsWYKnn34aO3bswJgxY/DMM89g8eLFOHjwYFG/uQeDQRw9erRox68ymdAnwbfKUelxb3oNsWOH2v89U6A4oxC3du4Mh8UMW6R4F48SZXPqhf8XYvD7v5uZAsUZDQ0N8Hq9Cm/4vbq6OthstqIdv1OxZvPmzXjyySfx6quvYsyYMQCAhQsX4ne/+x1efPFFzJ07tyBLdoTRaCzasQHAVFUFU5+hRd2BKBPfO28AkA8UZxT7PKqy2mAaOKioOxBlotJoIUI+UJxhNBqLGiyKfR53OFh8/vnnqK+vx29/+1vMnDmz/fctFgsWLlyI3/zmN3jkkUeyXm9RaGq1GkajsWhP45rN5qIclygXtcUG570PyQaKM4xGI1QqVdEu/qqqqirKcYly0fbpD8c9fyUbKM6orq5WaKsLabVa6HS6oh0f6MbbTUuR1+tFQ0OD4sc1GAwYNmxYaVxASnQeSZI69XezubkZbW1tBdwoM5vNhrq6OsWPS9QRnT2Pjhw5UpQm2b59+6JXr16KH/dsFXXbdIvFUpRnTOwGHUMFlazO/t10OBwF2kSeTVfcC7CJ5HT2PCrGN3dBEGC32xU/7vkqKlioVCr06dNH0WNqpRRCS34F//ubO333O6JSpNPpCto5k4kx7Id38b8hvPdTRY9LVCjV1dUwmUyKHrOmpqZolyOcraKCBQDY7XZFX98yvLUKQjIB39ZVaF32f5AK+BQ7NlGh9OnTR7F3eakBaLa+DCkageu1/4V73TKI8ZgixyYqFEEQUFdXp9iz2UajsegvgZxRccFCEATU1tYqktqqDu2Bqq2p/d9jh/ah+f/7BSLf7Sn4sYkKSaVSKVYJbNy1Faqz7rga+uw9nPrTvyHefEKR4xMVik6nQ//+/Qt+HJVKpWiIyaWiLt48WzQaxeHDhwt2dbs54IKw6YWsTYHmm+6EdeIsCEUuKiHqDr/fj+PHjxfs8S1H90LY+WbmD2o0sE2+D9U33FYyXzCJuqKQ/TCCIGDIkCGKv+wip+KesTjDYDBg6NChBWkgq6mpgTXilf1iF/hwG04t/hUSbafyfnwipVgsFgwePLgg39jr+vdHVTSYfSCZhHfjy3C98v8hFZaZIypxvXr1KsjdRtVqNYYOHVpSoQKo4GcszkilUjh58mReykq0Wi1qa2vbr+GIHvkW7pXPIuX3ZP0cQaeH/Z4HUXX12G4fn6hY4vE4Ghsb8/L2OaPRiLq6Ouj16U6N0JcfwbPhJUgy11WoLXY46ufDMOSSbh+fqFjC4TAaGxsRi3X/GiKLxYL+/fsXvb47k4oPFmcEg0E0NzcjGo3mHj6PSqWCw+FATU3NBTd3SYWD8Kx9HpH9X8k+humqMbBPexAqfXEb0Yi6SpIkeL1etLS0IJHo/I3KNBoNevfuDYfDccEzIIm2U3CtWIRE07HsDyAIsNw6FZZb74FQAle+E3WFKIpoa2tDW1tbl16q1+l06Nu3LywWSwG2y48eEyzOiEQicLlcCAQCSKVSsrNGoxEOhwNWq1X2bnGSJCH4ydvwbl4OJLPf4VTjqIHzviegqx3c1fWJik6SJIRCIbjdbgSDQdkvjoIgoKqqCg6HA2azWfYlFSmZhG/7GgQ+2Cp7fN3Ai+Csnw+NvTSugCfqClEU4ff74Xa7EYlEZO+GqlKpYDab4XA4YDKZSv6aox4XLM6WSCQQjUYRj8fbW9VUKhWMRiP0en2n/8+LNzfAtWIRki1N2YdUaljvnAnz2Dtz1sISlTpJkpBIJBCJRJBMJtvPI41GA4PBAJ2u8+VxkQN74V61FGIo+83IBIMJjhmPwHT5td39TyAqOkmSEIvFEI1GkUql2s8jrVYLo9EIjUZT8mHibD06WBSCGI/B+8ZyhD57V3bOMHwkHLPmQl1tVWgzovKRCvjgWrUEsUP7ZOeqrhsP21335bwHChEph8GiQMJ7P4N73TJI0XDWGVWVBY7Z82AcPlLBzYjKgySKCHy4Db431wBi9pctNTX90y8x9uF9RohKAYNFASU9bXCtfBbx4wdl58w3T4J1wkx2XhBlEGs4AveKxUi6W7LOCBotbHfdh6rrby2rp4yJKhGDRYFJqRT8b2+A/92NgMwftbZ2MJxzFkDrVPZeJ0TlQIxG4NnwEsK7d8rOGS8bDfu9j0BtKt5tq4l6OgYLhUQPf5PuvAh4s84IOj3s0x5G1agxyi1GVCYkSUL4q4/ZeUFU4hgsFJQKBeBe+2dEv/lKds40aizs99zPzguiDBJtzXCtWNyBzot7YLl1KjsviBTGYKEwSZIQ3PU2vFtydF44a+Ccw84LokykZALeN9cg+OE22Tn9oOFw1C+AxuZQaDMiYrAokvjJE+nOi9aT2YfUalgnzoJ57ER2XhBlEPn2L3CveQ5iKJB1RmU0wT7jMZguG63gZkQ9F4NFEYnxGLybXkXo8/dl59h5QZRdKuCFa9XS3J0X19+a7rzQ6hTajKhnYrAoAeE9n8L9+jJI0UjWGVW1Bc7Zj8Nw0eUKbkZUHtKdF1vhe3MtOy+IiozBokQkPW1wrViM+IlDsnPmcZNhvWMGOy+IMoidOAzXikVIedqyzggaLWx3/wBV141n5wVRATBYlBAplYR/x3r433tDtvNCVzcEzvoF0DhrFNyOqDyI0TA8619C+C+7ZOfYeUFUGAwWJahDnRd6A+zTHkLVVey8IDqfJEkIf/khPBtfke+8sDrgrJ8P/eCLFdyOqLIxWJSodOfF84h+s1t2znT1WNinPgCV3qDQZkTlI9HaDNeKRUicPJ59SBBguW1auvOC774i6jYGixImSRKCO3fAu2UFkJLrvOiTviCt/yAFtyMqD1IyAe+21Qh+9KbsnH7wxXDUz4fGys4Lou5gsCgD8ZPH4Vq+CMm25uxDajVsd85G9diJvCCNKIPIt7vhXv0cxHAw64zKWAX7jEfZeUHUDQwWZaLDnRcXXwHHzLlQV1sU2oyofKQCXrhWLkHs8H7ZueobboN18hx2XhB1AYNFmQnv+QTudS9Aisl1XlhPd15cpuBmROVBEkUE3t8C31trAVHMOqftUwfnfU9AW9Nfwe2Iyh+DRRlKulvhWrkY8ROHsw8JAszj7oL1jukQ1Oy8IDpf7MQhuJYvRsor03mh1aU7L669hS8xEnUQg0WZklJJ+HasR6AjnRdznoDG0VvB7YjKgxgNw/36C4js+VR2znj5NXDc+whUxiqFNiMqXwwWZS56aB9cq5ZADPiyzgh6IxzTH4LpyhsU3IyoPEiShNAXH8C78RVIiXjWObXVAeecBdAPGq7gdkTlh8GiAqRCAbjXPIfot3+RnasafRNsUx+ASqdXaDOi8pFoPQnX8kVINJ/IPqRSpTsvxk9h5wVRFgwWFUKSJAQ/3g7v1lXynRe9+sI5ZwE7L4gykBIJeLetQvDj7bJz+sGXwFH/ODsviDJgsKgw8aZjcK1YhGTbqexDag1sk2aj+sYJvCCNKIPIN7vhXpO788Ixcy6Ml45SbjGiMsBgUYHEWBTeTa8g9MWHsnOGS65Md15UmRXajKh8JP0euFcuQezIN7Jz1WNuh23SHAharUKbEZU2BosKFtq9C571L0CKRbPOqMxWOGfPh2HYpQpuRlQeJFFE4L3N8O1YJ9950bcOzjnsvCACGCwqXtLdCteKRYg3HMk+xM4LIlmx4wfhWrEYKa8r64yg1cE25a9Qdc04vsRIPRqDRQ8gpZLwvfU6Au9vlu+8GDAUzvoF7LwgykCMnO682Juj82LkdXBMfxgqo0mhzYhKC4NFDxI9eLrzIpij8+Leh2G64noFNyMqD5IkIfT5B/BuytF5YXOmOy8GXqTgdkSlgcGih0kF/enOi+/2yM5VXTMOtil/xc4LogwSLU1wrViERHND9iGVCtbbp8N8y93svKAehcGiB5JEEcGdb8G7dSWQSmWd0/TqC+d9T0DXb6CC2xGVBymRgHfrSgR3viU7px8yIt15YbErtBlRcTFY9GDxpmNwLV+EpCtH58XkelSPuYMXpBFlENn/VbrzIhLKOqMyVac7L0ZcpeBmRMXBYNHDibEoPBtfRvjLj2TnDCOugmPGY+y8IMog3XnxLGJHvpWdq77xDtjurGfnBVU0BgsCAIS+2gnPhhdlOy/UZhsc9fNhGDpCwc2IyoMkivC/uwn+t9fn6LwYAOd9T0Dbu5+C2xEph8GC2iVdLXCtWIx4o3znheWWu2G5fToEtVq55YjKROzYgXTnhc+ddUbQ6mCbej+qRt/Mlxip4jBY0DmkZBK+t9Yi8P4W2TndgGFwzlkAjb2XQpsRlQ8xEoJ73TJEvv5cds54xenOCwM7L6hyMFhQRtEDe+FavRRi0J91RjAY4bj3EZhGXqfgZkTlQZIkhD57D943XsvRedELzvsWQD9gmILbERUOgwVllQr64V69FNEDe2Xn2HlBlF2ipQmu5YuQOJWj8+KOe2Eedxc7L6jsMViQLEkUEfz4TXi3rZbvvOjdL9150XeAgtsRlQcxEYdvy0oEd+2QndMPvRTO2fOgZucFlTEGC+qQeONRuFYsQtLVkn1Io4Ft8n2ovuE2XpBGlEFk/5dwr3k+d+fFrLkwXsLOCypPDBbUYWIsAs+GVxD+KlfnxSg4Zj4Gtalaoc2IykfS5053Xhz9Tnau+sYJsE2aDUHDzgsqLwwW1Gmhrz6GZ/2LkOKxrDNqix2O2Y+z84Iog/bOix2vy95xWNtvAJxz/hra3n0V3I6oexgsqEsSrlNwrViMROPR7EOCAMv4qbDcdg87L4gyiB09ANfKjnRePICq0TfxJUYqCwwW1GVSMgnf9jUIfLBVdk438CI46+ez84Iog452XpiuvAH2aQ+y84JKHoMFdVvkwF64Vy2FGJLrvDCd7ry4VsHNiMqDJEkIffpuuvMimcg6p7b3gnPOE9APGKrgdkSdw2BBeZEK+uBetRTRg1/LzlVdOx62u+9j5wVRBolTjXCtWITEqcbsQyo1rBPuhfnmyey8oJLEYEF5I4kiAh9tg2/bGkCU6byo6Q/nnCeg61un4HZE5SHdebECwV1vy87ph12W7rww25RZjKiDGCwo72INR+BesRhJd47Oi7vuQ/X17LwgyiS87wt41j4PMRLOOqOqMsMxax6MF1+h4GZE8hgsqCDEaASeDS8hvHun7Jzx0qthn/EoOy+IMkh6XenOi2MHZOeqx06E7c5Z7LygksBgQQUV+vIjeDa8lLvzon4+DEMuUXAzovIgpVLwv7sR/rc3yHde9B8E55wF0PZi5wUVF4MFFVyi7VT6grSmY9mHBAGWW6fCcis7L4gyiR39Dq4Vi5Hye7LOCDo97FMfgOnqsXyJkYqGwYIUISWT8L25GoEPt8nO6QYNT3de2JwKbUZUPlLhIDzrliGy7wvZOdNVY2C/50GoDEaFNiP6HoMFKSry3R64Vy+FGApknREMJjhmPArT5dcouBlReeh450VvOO9bAH0dOy9IWQwWpLhUwAfXqiWIHdonO1d1/a2w3XUfVFqdQpsRlY/4qQa4li9CsqUp+5BKDevEGTDfNImdF6QYBgsqCkkUEfhwG3xvdqDz4r4noOvDzgui84nxGLyblyP06buyc+nOi8ehNlsV2ox6MgYLKqpYw2G4li9GytOadUbQaGG7+weoum48L0gjyiD89Wdwr10GKSrXeWGBY9Zcdl5QwTFYUNGJ0Qg8619E+C+7ZOeMl42G/d5H2HlBlEHS64Jr5bOI5+i8MN90J6wTZ0HQaBTajHoaBgsqCZIkIfzlR/BsfFm+88LqgLN+PvSDL1ZwO6LyIKVS8L+zAf53Nnag8+IJaHv1UXA76ikYLKikJNqa4Vq+CImTx7MPCQIst92T7rzgBWlEF4ge+Rbulc/m7ry450FUXT1Wwc2oJ2CwoJIjJRPwbluN4Edvys7pB18Mx+z50NgcCm1GVD5S4SA8a59HZP9XsnOmq8bAPu1BqPTsvKD8YLCgkhX59i9wr3lOtvNCZTTBPuMxmC4breBmROVBkiQEP3kb3s3LgWQy65zGUZN+91XtYOWWo4rFYEElLRXwwrVyCWKH98vOsfOCKLt484l050XryexDajWsE2fBPHYiX2KkbmGwoJIniSICH2yBb/s62c4LbZ/a9AVpfWqVW46oTIjxGLxvLEfoM/nOC8PwkXDMmgt1NTsvqGsYLKhsxE4cSt+EydOWdUbQ6tKdF9fews4LogzCez+De10HOi9mz4Nx+EgFN6NKwWBBZUWMhuF5/UWE93wiO2e8/Bo47n0EKmOVQpsRlY+kpy3deXH8oOyc+eZJsE6Yyc4L6hQGCyo76c6LD+HZ8DKkRDzrXLrzYgH0g4cruB1ReZBSKfjfXg//u5vkOy9qB8M5ZwG0TnZeUMcwWFDZSrQ2w7Xif5E4eSL7kCDAcvt0WMZP4QVpRBlED3+T7rwIeLPOCDo97NMeRtWoMcotRmWLwYLKmpRMwLt1FYIfb5ed0w++BI76x6GxsvOC6HypUADutc8j+s1u2TnTqLGw33M/Oy9IFoMFVYTIN7vTnRfhYNYZlbEKjpmPwXjp1QpuRlQeJElCcNcOeLeskO+8cPaBc84Cdl5QVgwWVDFSfg9cq5Ygdvgb2bnqMbfDNmkOBK1Woc2Iykf85Am4VuTuvLDdOQvVN7Lzgi7EYEEVRRJFBN7fDN9b6wBRzDqn7VMH531PQFvTX7nliMqEGI/Bu+lVhD5/X3Yu3XkxD+pqi0KbUTlgsKCKFDtxCK7li5HysvOCqKvCez6F+/VlkKKRrDOqagucsx+H4aLLFdyMShmDBVUsMRqG+/UXENnzqeycceS1cEx/BCqjSaHNiMpH0tMG14pFiJ84LDtnHjcZ1gkzIKjZedHTMVhQRZMkCaEvPoB34yvynRc2J5xzFkA/8CIFtyMqD1IqCf+O9fC/94Zs54Wubgic9QugcdYouB2VGgYL6hESLU1wrViMRLNM54VKBevt02G+5W5ekEaUQfTQfrhWPQsx4Ms6I+gNsE97CFVXsfOip2KwoB5DSiTg3bYSwY/fkp3TD7kEjvr50FjsCm1GVD5SoQDca55H9NscnRdX3wT71Puh0hsU2oxKBYMF9TiRb76Ce83z8p0Xpup058WIUcotRlQmJElCcOfpzotUjs6L+56Arv8gBbejYmOwoB4p6ffAvfJZxI58KztXPeYO2CbVs/OCKIP4yeNwLV+EZFtz9iG1GrZJ9ai+cQLffdVDMFhQjyWJIgLvvQHfjtflOy/6Dkh3XvTup+B2ROVBjMfg3fgKQl98IDtnuPiKdOdFlVmhzahYGCyox4sdPwjXisVIeV1ZZwStDrYp96Pqmpv5UxdRBuG/7IL79RchxeQ6L6xw1j8Ow7DLFNyMlMZgQQRAjIThfn0ZIns/k50zXnEdHNMeZucFUQZJdytcKxfLd14IAszj7oL1junsvKhQDBZEp0mShNDn78O76dUcnRe94Jwzn50XRBlIqSR8b72OwPubc3ReDIVzzgJoHL0V3I6UwGBBdJ5058UiJJobsg+pVLDecS/M4+5i5wVRBtFD++BatSRH54URjukPwXTlDQpuRoXGYEGUgZRIwLt1BYI7d8jO6YeOgHP241Cz84LoAqlQAO7VSxH9bo/sXNXom2Cb+gBUOr1Cm1EhMVgQyYjs/zLdeREJZZ1Jd17MhXHEVQpuRlQeJElC8OPt8G5dJd950atvuvOi30AFt6NCYLAgyiHpc8O9cgliR3N0Xtx4uvNCw84LovPFm47BtWIRkm2nsg+pNbBNrkf1mDv47qsyxmBB1AGSKML/7ib4d7wue0Gatt8AOOf8NbS9+yq4HVF5EGNReDe9gtAXH8rOGS65Eo6Zc9l5UaYYLIg6IXbsQLrzwufOOiNodbBNfQBVo2/iT11EGYR274Jn/QuQYtGsMyqzFc7Z82EYdqmCm1E+MFgQdZIYCcG9bhkiX38uO2e64nrYpz8ElYGdF0TnS7pb4VqxCPGGI9mHBAHmW+6G9fZp7LwoIwwWRF0gSRJCn70H7xuvyXde2HvBOecJ6AcMVXA7ovIgpZLwbV+X7ryQoRswFM56dl6UCwYLom5ItDTBtfx/kTjVmH1IpT7deTGZnRdEGUQPfg3XqqUQgzk6L+59GKYrrldwM+oKBguibhITcfi2rEBw19uyc/qhl8JZ/zjUZpsyixGVkVTQD/ea53J3XlwzDrYpf8XOixLGYEGUJ+F9X8Cz9nmIkXDWGZWpGo5Z82C85EoFNyMqD5Iopjsvtq0CUqmsc5re/eCc8wR0/QYouB11FIMFUR4lvW64Vz2L2NHvZOeqx06E7c5Z7LwgyiDedAyu5YuQdOXqvJiD6jG3891XJYbBgijPJFGE/52N8L+9PkfnxUA473sC2l7svCA6nxiLwLPxFYS//Eh2zjDiKjhmPMbOixLCYEFUILGjB+BamaPzQqeHfer9MF3NzguiTEJf7Ux3XsRjWWfUZhsc9fNhGDpCwc0oGwYLogJKhYPwrFuGyL4vZOdMV94A+7SHoDIYFdqMqHwkXS1wrViMeKN854Vl/BRYbpsGQa1Wbjm6AIMFUYFJkoTQp++mOy+SiaxzantvOO9bAH0dOy+Iziclk/C9tRaB97fIzukGDINzzgJo7L0U2ozOx2BBpJD4qYb0BWktTdmHVGpYJ86A+aZJ7LwgyiB6YC9cq5dCDPqzzggGIxz3PgLTyOsU3IzOYLAgUpCYiMO7eTlCn7wjO6cfdhmcsx+H2mxVZjGiMpIK+uBe/RyiB/bKzlVdewtsd/+AnRcKY7AgKoLw15/DvfbPkKIynRdV5nTnxcVXKLgZUXmQRBGBj96E783VuTsv7nsCur7svFAKgwVRkSS9LrhWPov4sQOyc9U33QnbxFkQNLwJE9H54o1H4VqxCElXS/YhjQa2yfeh+obb+O4rBTBYEBWRlEqlOy/e2SDfedF/EJxznoC2Vx8FtyMqD2IsAs+GlxH+6mPZOeOlo2Cf8RjUpmqFNuuZGCyISkD0yLdwr3wWKb8n64yg08N+z4OounqsgpsRlY/Qlx/Bs+El+c4Liz3deTHkEgU361kYLIhKRCochGftnxHZ/6XsnOmqMbBPexAqPTsviM6XcJ2Ca/kiJJqOZR8SBFjGT4XltnvYeVEADBZEJUSSJIQ+eQeeza8ByWTWOY2jJn1BWu1g5ZYjKhNSMgnf9jUIfLBVdk438CI46+ez8yLPGCyISlC8uSF9QVquzos7Z8I89k52XhBlEDmwF+5VSyGG5DovTHDMeASmy69VcLPKxmBBVKLEeCzdefHpu7Jzhosuh2PWPHZeEGWQCvjgXr0U0YNfy85VXTsetrvvY+dFHjBYEJW48N7P4F63LEfnhQWO2fNgHD5Swc2IyoMkigh8uA2+N9cAokznRU3/9EuMfeoU3K7yMFgQlYGkpy3deXH8oOyc+eZJsE6Yyc4LogxiDUfgXrEYSXf2zgtBo4XtrvtQdf2t7LzoIgYLojKR7rzYAP87G+U7L2oHwzlnAbROdl4QnU+MRuDZ8BLCu3fKzhkvvRr2GY+y86ILGCyIykyHOy+mPYSqUTcquBlR+WDnReEwWBCVoXTnxfOI7P9Kds40aizs99zPzguiDBJtzXCtWJy78+LWe2C5dSo7LzqIwYKoTEmShOCut+Hdsly+88JZA+ccdl4QZSIlE/C+uQbBD7fJzukHDYejfj40NqdCm5UvBguiMhdvPgHX8kVItp7MPqRWwzpxFsxjJ7LzgiiDyHd74F69FGIokHVGZTTBPuMxmC4breBm5YfBgqgCiPEYvG+8htBn78nOGYaPhGPWXKirv++8kBIJQKPhFfDU46UCXrhWLUXs0D7Zuarrb4Xtrvug0uraf09KJCBotYVesSwwWBBVkPDeT093XkSyzqiqLXDOfhyGiy4HALjX/hnGy6+B8eIrlFqTqGSlOy+2wvfm2g53XkipJFqf/084Zs6FxtFbwW1LE4MFUYXpcOfFuMnQ9qmDe9USaPsPQp+/+TmftSA6LdZwGK7li5HytGadETRa2O7+AZI+NwLvboLp6pvgnDVXwS1LE4MFUQWSUin4314P/7ubZDsvzub8q7+F6fJrCrwZUfkQoxF41r+I8F92dewTBAF9n/43aHv3K+xiJY5XcRFVIEGthnXCDPR+7MdQm20d+hzfW+sgiWJhFyMqIyqDEY76+XDMfAxCR+4hIknw7Xi98IuVuB75jIUkSYhGo4hEIohGo4jH4xBFEYIgQK1Ww2AwwGg0wmg0QsNqZCpzqVAA7rXPI/rN7pyzjtnzUTVqTIceVxTF9vMoEokgkUhAkiQIggCNRtN+DhkMBqj5/n8qc4nWZrhWLELi5PGcs32e/Bfo+g3o0OOmUqn2cygajSKZTEKSJKhUKmi12vZzyGAwQFUm7+jqUcEikUjA4/HA7XYjKfO+/7OZzWY4nU5UVVXx9WcqW5IkIbhzB7xbVgApmc4LRw36/vDfIKizB+poNAq32w2v1wuxA89wCIIAm80Gh8MBo5FFXVS+pGQC3m2rEfzoTdk5w4ir0PvBp7M/jiQhHA7D7XbD5/N16NhqtRp2ux0OhwM6nS73JxRRjwgWoiji1KlTcLlcXX4MvV6P2tpamEymPG5GpKzooX1off4/ZWfs9z6C6mtvueD3E4kEmpqaEAhkf59/LlVVVaitrS35L4xEcgIfboV38wrZmZon/h/oBwy94Pej0SgaGxsRiWR/51YuNpsN/fr1K9lnAsvjeZVuCAaDOHDgQLdCBQDEYjEcPnwYzc3NHfopjajUSJKEwEfbc875394AKZk45/c8Hg8OHDjQrVABAKFQqP187AE/01AFEuMxBD+V74sBAN/2tef8uyRJaGlpwcGDB7sVKgDA6/Xiu+++g9/v79bjFEpFBwuPx4OjR48ikUjkHu6gtrY2HD16FKlU9vc3E5Wi6Le7ETvyTc65lM/d/oVTkiQ0NzejsbExb4FakiScPHkSjY2NDBdUdoK7diDpacs5Fzu0D9Ej3wJIP2t+7NgxtLRkv117Z6VSKRw/fhxtbbl3UVrFvhTi8XjQ2NhYsMc3Go0YPHhwyT4VRZSJJIpI+dxItDQi0XLy9P82IdnSBCkRb59TVVvQ9+9+jRa3p9vP9smxWq2oq6vj9UtUVqRUCkl3a/v5k2hpRLKlCYm2ZuCsHzp1g4aj19x/wPHjxxEKhQq2T58+fdC7d+kUc1VksAiFQjhy5EjBj2OxWDBw4MCCH4eo0M4NHE1InGpC8tJr0SoVPjjX1NSgpqam4MchKrR04GhJn0enmpBobUJk9O3wxeK5P7mbBg4cCIvFUvDjdETFBYtUKoWDBw/m9eUPOXV1dbDZbIoci0gp8XgcBw4cUOylimHDhvEdI1RxgsEgjh49qsix1Go1hg8fXhIVCRV3jcWpU6cUCxUA0NTU1OG3rhKVA0mS0NDQoOj1D0ofj6jQUqkUGhoaFD1eU1OTYseTU9BgMWPGDNjtdsyePbuQh2mXTCbhdrsVOdYZoigqfkyiQgqHwwiHw4oeMxaLdfsdJ0SlxOv1Kv5Dp9/vRywWU/SYmRQ0WDz99NN44YUXCnmIcxTrG7zL5eJbUKlkJb2du/iykBdryinFq9uJzujMeSRJUtHOo1L4QbegweK2226D2Wwu5CHaSZJUtD/QVCrFn7aoZHk3vYzWP/8nYse+yzmbTCaL9t74cDhcEj9tEWXS+vx/wLXqWSRaT+acDYfDiMcLf8FmJm63u+g/6HY6WIiiiBEjRuAnP/nJOb+/detW6HQ6rFy5Mm/LdUYikSjqtQ5KP3VM1BmxI9+g9bn/yBkwiv33uNjHJ8pKkhDZ8wlO/fEXOQNGId9amoskSUUP6J2+fFSlUuGnP/0pFi5ciH/8x3+E3W7H7t27UV9fj1/96leor68vxJ45dbfJrLtCwQC8m98t6g5EmSRavr+gK3bkG7Qe+Qb6ISNgue0e6AddfM5ssc+joKsVws6tRd2BKBMxcjosnA4Ykb2fwjjyOljGT73gNunFPo8ikUhR32XVpfelPPDAA/jlL3+JP/zhD5g3bx6mTJmChx56CD/+8Y/zvV+HRaPRoh0bAGKxOAI73wJrfqgctAeMoZfCcuvU9oBR9C+I0SiEnW8VdQeiDpEJGEU/j4p8/C4FC41Gg5/85Cf42c9+htWrV2P06NH4wx/+kO/dOqXYFdsSAKjUgMiqbyofscP70Xp4f3vASKWK2yQrMppTuckQMIr9/ajYx+/yxZsPPPAAwuEwJEnCq6++mrHaetKkSaivr8cbb7yBuro6fPrpp91aVk5JvAeetcRUpmKH9yO48y1IMrdUV0IJnMVEXSNJiOz7AsFP3i72JkX/ftjliq6nnnoKQPotYtnul7F1q3KvlapUJdD1xRuTURkyXjYa5vH3QNe3Dr7Dh4G4cgVz51MxWlA5UmtQNfpmmMfdBY3VgZP79hX1m3uxvx92KVj8/Oc/x6ZNm7Bz505MmDABS5cuxZNPPpnv3TpFp9MV9fgatQoCvyhSGTk7UJyh1+uL+s4MLc8hKifnBYoz9Hp9Ua9z0Ov1RTs20IV7hSxZsgRPP/00duzYgTFjxuCZZ57B4sWLcfDgQWi12kLtmVM4HMbhw4eLdnyr1YoBAwYU7fhE2bS9/AdEv9vT/u+ZAsUZbre7qLXApXaXRqIzTv7XT5Dyne5KyhIozmhqaipqUdWgQYMU65DKpFPPWGzevBlPPvkkXn31VYwZMwYAsHDhQvzud7/Diy++iLlz5xZkyY4wGAxFOzYA3kCJSp5coGifKfLf42Ifn0hWjkBxRrH/Hhf7+B0OFp9//jnq6+vx29/+FjNnzmz/fYvFgoULF+I3v/kNHnnkkazXWxSaSqWCxWIpWmtgqdyuluh8hotGwnLHTNlA0T5rMECn0xWlNVCtVsNkMil+XKKOqBo9Dqarx8oGijPMZjMEQSjKdRYmk6nodzitqNumh0IhHDlyRPHjms1mDBo0SPHjEhWCy+XCyZO5a4vzrXfv3ujTp4/ixyUqhMbGRng8HsWPO2DAAFitVsWPe7YSeCtF/phMpqJctFLlPgmJNyGjCmGz2YpyVbmprVHxYxIVitPpVPyYGo2mJJ49r6hgIQgCamtrFT2mMexDdN1StL3030gFfIoem6gQ1Go1+vXrl3swj6obv4NvxZ/gWf8CxDhvREblz2AwKB4uamtrIZRAn1JFBQsg/ayFUleVqyFBu+1VAEDs0D6c+tMvETmwJ8dnEZU+m82G6upqRY6lS8ag/mgLACD0+ftoWfwM4s0NihybqJD69OmjWBWC3W4v6jtBzlZxwQJIv1arxEVgpp2boUp8/9OVGArA9dIf4N2yAlIR77RK1F2CIKCurq7gbyFXCYB++/JzOmCSrSfR8uwzCO56u+gNgkTdoVKpMGDAgII/i6DX69G3b9+CHqMzKurizbOlUikcPXq0YCUltkNfAV9kv5uptv8gOGbPh9bJi9GofMXjcRw+fBjJAgRltUqF6o82QDhxMOuMYcQo2Kc/ArVJmWdPiAohFArh6NGjBQnKer0eQ4YMKfo7Qc5WscECAERRxIkTJxAIBPL2mGq1GgMHDoSmtQHu1UuR8me/6lfQ6WGbcj+qRo3N2/GJlJZIJHDs2LG83kFYp9Nh0KBBSH7zBbwbX4Ykc12F2mKDY9bj0A++JG/HJ1JaJBLBsWPH8hrSq6qqMHDgwKLVPGRT0cECSN+Mxe/3o6mpqdt3fLPZbOjbt297MkyFg/C8vgzRb76S/TzTlWNgm3I/VAaW/1B5kiQJbW1taGlp6fZPXb1790bv3r3b33mSdLXAtWoxEk3Hsn+SIMB8yxRYxk+FUGJfRIk6KpVK4dSpU91u5RQEAf369YPdbi+JizXPV/HB4oxkMom2tjZ4PJ5OB4zq6mr06tUr48VskiQh9Ok78G5dAcgkUbWjN5yz50NXO6TTuxOVilgshra2Nni93k4FDEEQYLFY0Lt374wtuVIyCd9baxH8aJvs4+gGXgTHrMehsSn/Vj6ifAmHw2hra+t0oaNKpYLdbkevXr2KeguNXHpMsDhDFEUEAgEEAgGEw+GMDYNqtRpGoxEmkwk2m61DV/UmTjXAtXIxkq0yxUIqNawTZqD6xokQSuFurERdlEql4PP5EAwGEYlEkEhceEdUjUYDo9GI6upqWK3WDr0GHD24F+41z0EMZX/5UjCYYJ/+MEyXXdOt/waiYkskEvB6vQiHwwiHwxl/6NXpdOecR8W+c2lH9LhgcT5RFJFIJCBJEgRBgEqlgkaj6dLTS2I8Bt/WFQh99p7snH7YZXDMmAu1ubjtaET5kkqlkEwm288jtVrd5YvJUgEf3GufQ+zQPtm5qmtugXXyHKh0xb2TI1G+JJNJpFKp9vNIq9WWRZA4X48PFoUQ/vpzeNa/ACma/fbTqiozHDPnwnDRSAU3IyoPkigi+NGb8L21FhCzv3Sp6d0PzvoF0PbJfR8UIlIGg0WBJL0uuFcvQfx49rfSAUD12DthvWMGhBJ6qxBRqYg3HoFr1bNIuVuzD2m0sE2ag6rrxpfkhWxEPQ2DRQFJqRT8725E4L1NgMwfs7b/IDhnL4DGWaPgdkTlQYxG4N30MsJ/2SU7ZxgxCo7pj0JlqlJoMyLKhMFCAdEj38KzZglSfm/WGUGnh23qg6i6aoxyixGVkdDujzvQeWE/3XlxsYKbEdHZGCwUkgoH4Vn3Z0S/3S07Z7rqxnTnhf7Ct+QR9XQJ1ym4Vy5G4uTx7EOCAPP4qbDcMoWdF0RFwGChIEmSEPrkHXi3yXdeaBw1cNQvgK7/IAW3IyoPUjIB3/a1CH78puycbtBwOGbOY+cFkcIYLIog3twA96ocnRdqNax3zET1jRPYeUGUQeTAHnjWPi/feWE0wTHtERgvG63gZkQ9G4NFkYjxGHxbliP0+fuyc/qLRsIx4zGoqy0KbUZUPlIBH9xrliJ2eL/sXNW142GbPAeCVplbWBP1ZAwWRRbe+yk8G16EFM1+F1ZVtQWOmfNgGHaZgpsRlYd058U2+N5aJ995UdMfztkLoO1Tq9xyRD0Qg0UJSHra0p0XJw7JzlXfNAnW2+9l5wVRBvGG050XnhydF5PnoOpadl4QFQqDRYmQUin439mAwPtvyHde1A6Gc/Z8aBzsvCA6nxiNwLPxJUT2fCI7Z7x0NOzTHmbnBVEBMFiUmOiRb+BevRRiwJt1RtAbYJ/6IExX3qDcYkRlQpIkhHd/DO+mV+Q7L6wOOGbNg34QOy+I8onBogSlQgF4Xl+Wu/Ni1I2w3c3OC6JMEm3NcK96NmfnheXWe2C+ZQrffUWUJwwWJUqSJIR27YB32yogJdN54ayBYzY7L4gySXderEHw4+2yc7pBF8Mxax40VodCmxFVLgaLEhdvPgH3ysVItjVnH1KrYZ0wK915wQvSiC4Q+W4PPGufgxgOZp0RjCY4pj8K46VXK7gZUeVhsCgDYjwG7+bXEP7iA9k5w/ArYL/3UXZeEGWQCnjhXvNc7s6L626FbVI9Oy+IuojBooyE934Kz/oXIcXkOi+scMycy84LogwkUUTgw63w71gHiGLWOU1NLZz186GtYecFUWcxWJSZpKcV7lVLEG84nH1IEGC+aRIst0+HoGbnBdH5YicOwb16CVKetqwzglYH6+T7UHXNOL7ESNQJDBZlSEol4X97AwIfbM7ReTHkdOdFbwW3IyoPYjQMz4aXENn7qeyc8bLTnRdGdl4QdQSDRRmLHt4P95qlEAO+rDOC3gD7PQ/CdAU7L4jOJ0kSwl99lO68SMSzzqmtDjhmz4d+4EUKbkdUnhgsylwqFIBn3fOIfrdHds509U2w3fUDdl4QZZBoa4Z75WIkmk9kHxIEWG6dBvMtd7PzgkgGg0UFkCQJwZ1vwffmavnOi1594Zg9H7p+AxXcjqg8SMkEfG+uRnDnW7JzusEXwzGTnRdE2TBYVJD4yePpzgvXqexDag2sE2eheswdvCCNKIPIt7vhWfdn2c4LlbEK9nsfhXHEKOUWIyoTDBYVRoxF050XX34oO2e4+ArY730M6iqzQpsRlY+U3wv3miWIHflWdq7q+ttgu7Meglar0GZEpY/BokKF9+yCZ8PL8p0XZiscM+fBMPRSBTcjKg+SKCLwwRb4335dtvNC26cWjtkLoK3pr+B2RKWLwaKCJd2tcK9+FvGGI9mHBAHmmyfDcts0dl4QZRA7cQjuVc8i5XVlnWHnBdH3GCwqnJRKwr9jPQIfbpHtvNDVDYVj9uPQ2Nl5QXQ+MRKGZ8OLiHz9meyc8fJrYL/nYaiMJoU2Iyo9DBY9RPTQPrjXPAcxKNd5YYR92kMwjbxOwc2IyoMkSQh/8QG8m1+T77ywOeGY9Tg7L6jHYrDoQVKhADxrn0f0QI7Oi9E3pzsvdHqFNiMqH4nWk+nOi1MN2YdUqnTnxbi72HlBPQ6DRQ8jiSKCu3bA9+YqIJXKOsfOC6LspEQCvjdXIbhrh+ycfsglcMycB7XFrtBmRMXHYNFDxZuOwb1qMZKuluxDag2sd85G9Q2384I0ogw61Hlhqk53XlxylYKbERUPg0UPJsai8L7xKsJffSQ7Z7jkKtinP8LOC6IMUn4P3KuXInZUvvOi+obbYZ04m50XVPEYLAjhv+yCZ+NLkGLRrDMqsw2OWfNgGDJCwc2IyoMkigi8vxn+d9bLd170rUt3XvTup+B2RMpisCAAQNLdAteqZ5FoPJp9SBBgHncXLLfew84Logxixw/CvXpJzs4L210/gGn0zXyJkSoSgwW1k5JJ+N9+HYEPtsjO6QYMg2PW49DYeym0GVH5SHdevIDI15/LzhlHXgf71AfZeUEVh8GCLpDuvFgKMejPOiMYjLBPeximy69VcDOi8iBJEkKfvw/fluW5Oy9mz4d+wDAFtyMqLAYLyigV9MO99nnEDu6VnasaPQ7Wu+5j5wVRBomWJrhXLUbiVGP2IZUKltumw3zzZHZeUEVgsKCsJFFEcOd2+Lavyd15Uf8EdH3rFNyOqDxIiQS821Yi9MnbsnP6ISNOd17YlFmMqEAYLCineNMxuFcuRtIt03mh0cB25xxUXX8rL0gjyiDyzVfpzotIKOsMOy+oEjBYUIeIsSi8m15BePfHsnOGS66C/d5HoTZVK7QZUflI+txwr1mK+NHvZOeqx9wB68RZEDTsvKDyw2BBnRLavRPejS9BiseyzqgtNthnPg7DkEsU3IyoPEiiiMB7b6Q7L2S+/Gr7DoCjfgG0vfoquB1R9zFYUKclXS1wrVqMRNOx7EOCAPMtU2AZPxWCWq3cckRlInb8INyrnkXK5846I2h1sE25H6ZRY/kSI5UNBgvqEimZhG/HOgQ/3Co7pxswDI7Z86GxORXajKh8iJEQPOtfQGTfF7JzxpHXwX7Pg1AZ2HlBpY/BgrolenAv3GuegxgKZJ0RDKbTnRfXKLgZUXk403nh3fwakExknVPbe6U7L+qGKrgdUecxWFC3pTsvnkPs4Neyc1XX3ALr5DnsvCDKINHSCNfKZ5Fskeu8UMNy+3SYb5rEzgsqWQwWlBeSKCL48ZvwbV8LiDKdF737wVm/ANo+7LwgOp+UiMO7dSVCn74jO6cfeikcM+dCbbYpshdRZzBYUF7FG4/AtepZpNyt2Yc0GtgmzUHVdey8IMoksv8LuF9fBikSzjqjMlXDPmMujBdfoeBmRLkxWFDeibEovBtfRvgvO2XnDCNGwTH9UahMVQptRlQ+kj433KuXIH7sgOxc9Y0TYJ0wk50XVDIYLKhgQrs/hnfjyzk6L+xwzHoc+sEXK7gZUXlId15sgv+dDfKdF/0GwjF7PjsvqCQwWFBBJVyn4F71LDsviLohduw7uFcvle+80Olhu/uv2HlBRcdgQQUnJZPwvbUWwY+2yc7pBl4Ex6zH2XlBlIEYDsG9fhmi+7+UnTNecT3sUx+EymBUaDOiczFYkGKiB/bCvTZ354Vj+iMwXjZawc2IyoMkSQh99i68W1bk6LzoDefs+dDVDVFwO6I0BgtSVCrgS3deHNonO1d17XjYJs+BoNUptBlR+UicaoRr1WIkW5qyD6nUsN5xL6rH3snOC1IUgwUpThJFBD96E763cnRe1PSHc/YCaPvUKrgdUXkQ4zH4tq5E6LN3Zef0wy6DY8ZcqM1WhTajno7Bgoom3nC688Ij13mhhW3yHFRdO54XpBFlENl3uvMiKtN5UWWGfcZjMA5n5wUVHoMFFZUYjcCz8SVE9nwiO2e8dDTs0x5m5wVRBkmvK915cfyg7Fz1jRNhnTCDnRdUUAwWVHSSJCG8+2N4N70i33lhdcAxax70g9h5QXQ+KZWC/71NCLy7MXfnRf0CaJ19FNyOehIGCyoZibbmdOfFyePZhwQBlvFTYR4/lRekEWUQO/ptuvPC78k6I+j0sE25H1Wjxiq4GfUUDBZUUqRkAr7taxD8eLvsnG7QxXDMmgeN1aHQZkTlIxUOwvP6MkS/+Up2znTlGNim3M/OC8orBgsqSZHv9sCz7nn5zgvj6c6LS9l5QXQ+SZIQ+vQdeLeuAJLJrHNqx+nOi1p2XlB+MFhQyUoFvHCveQ6xw/tl56quuxW2SfXsvCDKIHGqAa6Vi5FsPZl9SKWGdcIMVN84kS8xUrcxWFBJk0QRgQ+3wr/j9RydF7Vw1s+HtoadF0TnS3derEDos/dk59h5QfnAYEFlIdZwGO5VzyLlacs6I2h1sE6+D1XXjGPnBVEG4a8/h2f9Czk7Lxwz58Jw0UgFN6NKwmBBZUOMhuHZ+HLuzovLTndeGNl5QXS+DndejL0T1jtmQNBoFNqMKgWDBZUVSZIQ/uqjdOdFIp51Lt158Tj0g4YruB1ReZBSKfjf3YjAe5vkOy/6D4Jz9gJonDUKbkfljsGCylKirRnulYuRaD6RfUgQYLl1Gsy33M0L0ogyiB75Fp41S5Dye7POCDo9bFMfRNVVY5RbjMoagwWVLSmZgO/N1QjufEt2Tjf4YjhmsvOCKJNUOAjPuj8j+u1u2TnTVTemOy/0BoU2o3LFYEFlL/LtbnjW/RliOJh1RmWsgv3eR2EcMUq5xYjKhCRJCH3yDrzb5DsvNI4aOOoXQNd/kILbUblhsKCKkPJ74V6zFLEj38jOVV1/G2x31kPQ8iZMROeLNzfAvSpH54VaDesdM1F94wS+xEgZMVhQxfi+82IdIIpZ57R9auGYvQDamv7KLUdUJsR4DL4tyxH6/H3ZOf1FI+GY8RjU1RaFNqNywWBBFSd24lC688LryjrDzgsieeG9n8Kz4UVI0UjWGVW1BY6Z82AYdpmCm1GpY7CgiiRGw/BseAmRvZ/Kzhkvvwb2ex6GymhSaDOi8pH0tKU7L04ckp2rvmkSrLffy84LAsBgQRVMkiSEv/wQ3jdele+8sDnTnRcDL1JwO6LyIKVS8L+zHoH3N8t3XtQOhnP2fGgc7Lzo6RgsqOIlWk/CvWoxEs0N2YdUqnTnxbi7eEEaUQbRI9/AvXopxIA364ygN8A+9UGYrrxBucWo5DBYUI8gJU53XuyS77zQD74EjlnzoLbYFdqMqHykQgF4Xl+Wu/Ni1I2w3c3Oi56KwYJ6lA51Xpiq050Xl1yl4GZE5UGSJIR27YB32yogJdN54ayBYzY7L3oiBgvqcVJ+z+nOi29l56pvuB3WibPZeUGUQbz5BNwrFyPZ1px9SK2GdcKsdOcF333VYzBYUI8kiSICH2yG/+31OTov6uCoXwBt734KbkdUHsR4DN7NryH8xQeyc4bhV8B+76PsvOghGCyoR4sdPwj36iU5Oy9sd/0AptE386cuogzCez+FZ/2LkGJynRdWOGbOZedFD8BgQT2eGAnDs+EFRL7+XHbOOPI62Kc+yM4LogySnla4Vy1BvOFw9iFBgPmmSbDcPh2Cmp0XlYrBgginOy+++ADeza/l7ryYPR/6AcMU3I6oPEipJPxvb0Dgg1ydF0NOd170VnA7UgqDBdFZEq0n4V65GIlTOTovbpsG883svCDKJHp4P9xrlkIM+LLOCHoD7Pc8CNMV7LyoNAwWROeREgl4t61E6JO3Zef0Q0bAMXMe1BabMosRlZFUKADPuucR/W6P7Jzp6ptgu+sH7LyoIAwWRFlEvvkq3XkRCWWdYecFUXaSJCG48y343lwt33nRqy8cs+dD12+ggttRoTBYEMlI+T1wrV6C+NHvZOeqb7gD1jtnQdCw84LofPGTx9OdF65T2YfUGlgnzkL1mDv47qsyx2BBlIMkigi8/wb872yQ77zoOyDdedGrr4LbEZUHMRZNd158+aHsnOHiK2C/9zGoq8wKbUb5xmBB1EGx4wfhXvUsUj531hlBq4Ntyv0wjRrLn7qIMgjv2QXPhpcgxaJZZ1RmKxwz58Ew9FIFN6N8YbAg6gQxEoJn/QuI7PtCds448jrY73kQKgM7L4jOl3S3wrXqWSQaj2QfEgSYb54My23T2HlRZhgsiDpJkiSEPn8fvi3L5Tsv7L3SnRd1QxXcjqg8SKkk/DvWI/DhFtnOC13dUDhmPw6NnZ0X5YLBgqiLEi1NcK9ajMSpxuxDKjUst0+H+aZJ7LwgyiB6aB/ca56DGJTrvDDCPu0hmEZep+Bm1FUMFkTdICXi8G5blbvzYuilcMycC7XZpsxiRGUkFfSnOy8O7JWdM42+Od15odMrtBl1BYMFUR5E9n8J9+t/hhQJZ51RmaphnzEXxouvUHAzovIgiSKCu3bA9+YqIJXKOsfOi9LHYEGUJ0mfG+7VSxE/lqPz4sYJsE6Yyc4LogziTcfgXrUYSVdL9iG1BtY7Z6P6htv57qsSxGBBlEeSKCLw3hvwv7Ne/iZM/QbCMXs+Oy+IMhBjUXjfeAXhrz6WnTNcchXs0x9h50WJYbAgKoDYsQNwr14i33mh08N291+x84Ioi/BfdsKz8eUcnRc2OGbNg2HICAU3IzkMFkQFIoZPd17sz9F5ccX1sE99ECqDUaHNiMpH0t1yuvPiaPYhQYB53F2w3DoNglqt2G6UGYMFUQFJkoTQZ+/Bu2U5kExknVPbe8M5ez50dUMU3I6oPEjJJHw71iH44VbZOd2AYXDMehwaey+FNqNMGCyIFJBoaYRr5WIkW5qyD6nUsN5xL6rH3snOC6IMoge/hnvtcxCD/qwzgsEI+7SHYbr8WgU3o7MxWBApRErE4d26EqFP35GdS3dezIPabFVmMaIykgr64V77PGIH5TsvqkaPg/Wu+9h5UQQMFkQKi+z/Au7Xl8l3XlSZYZ/xGIzD2XlBdD5JFBHcuR2+7WvkOy9694Nj9gLo+tYpuB0xWBAVQdLrgnvNUsSPHZCdq75xIqwTZrDzgiiDeONRuFc9i6RbpvNCo4Htzjmouv5WvvtKIQwWREUipVIIvLcJ/nc35u68qF8ArbOPgtsRlQcxFoV30ysI7+5A58W9j0JtqlZos56LwYKoyGJHv0t3Xvg9WWcEnR62KfejatRYBTcjKh+h3Tvh3fgSpHgs64zaYoN95uMwDLlEwc16HgYLohIghkNwr1+G6P4vZedMV46Bbcr97LwgyiDpaoFr1WIkmo5lHxIEmG+ZAsv4qey8KBAGC6ISIUkSQp++C+/W5UAymXVO7TjdeVHLzgui80nJJHxvrUXwo22yc7oBw+CYPR8am1OhzXoOBguiEpM41ZDuvGg9mX1IpYb1jhmoHjuRnRdEGUQP7oV7zXMQQ4GsM4LBBPv0h2G67BoFN6t8DBZEJUiMx+DbugKhz96TndMPuwyOGXPZeUGUQSrgg3vtc4gd2ic7V3XNLbBOnsPOizxhsCAqYeF9n8Pz+guQovKdF46Zc2G4aKSCmxGVB0kUEfz4Tfi2rwVE+c4LZ/0CaPuw86K7GCyISlzS64J79RLEjx+Unaseeyesd8yAoNEotBlR+Yg3HoFr1bNIuVuzD2k0sE2ag6rr2HnRHQwWRGVASqXgf3cjAu9tku+86D8IztkLoHHWKLgdUXkQoxF4N72M8F92yc4ZRoyCY/qjUJmqFNqssjBYEJWR2NFvT3deeLPOCDo9bFMfRNVVY5RbjKiMhHZ/DO/Gl3N0XtjhmPU49IMvVnCzysBgQVRmUuEgPK8vQ/Sbr2TnTFeNgW3KA1DpDcosRlRGEq5TcK9cjMTJ49mH2HnRJQwWRGVIkiSEPnkH3m0rZDsvNI4aOOoXQNd/kILbEZUHKZmEb/saBD9+U3ZON/AiOGY9zs6LDmKwICpj8eYGuFfl6LxQq2G9Yyaqb5zAzguiDCIH9sCz9nn5zgujCY5pj8B42WgFNytPDBZEZU6Mx+DbsgKhz3N0Xlw0Eo4Zj0FdbVFoM6Ly0eHOi2vHwzZ5DgStTqHNyg+DBVGFCH/9GTzrX4AUjWSdUVVb4JgxF4aLLm//vaTXBXW1hbdmpx5PEkUEP9oG31vr5DsvavrDOXsBtH1q238v0dYMba++CmxZ+hgsiCpI0uuCe9WziJ84JDtXfdMkWG+/FwDQ8ty/o+qqG1F9w+0KbEhU+uINpzsvPHKdF1rYJs9B1bXjIYYCOPWnf4Wzfj70g3nnVAYLogojpVLwv7MBgfffkO+8qB0MbZ86hL/4AKpqK/r+8BlWGhOdJkYj8Gx8CZE9n8jOGS69GlI8htihfdANvAi95/7fPb5ci8GCqEJFj6Q7L8SAt0Pz1omzYL55cmGXIiojkiQhvPtjeDe9Itt5cbZeD/4QhuE9u16fl4ifJkkSmLGokhiGXII+f/PPMFxyVYfmAx9sgShzfUYuZ84hnkdUKQRBQNWosah54p+g7TewQ5/j27GuW+dAJZxHPfIZi2g0ikAggEgkgkgkgkQi0f4xlUoFg8EAo9EIk8kEs9kMFd+iR2Us3XnxNrzbVsp2XgCA5dZ7YLltWoceMxwOIxgMIhqNIhwOI5X6/mI3tVoNo9EIo9GIqqoqVFVV9finh6m8ScnE6c6L7TlnnT/4Gxgvzf22VEmSEAgEEA6H278fiaLY/nGNRtN+HpnNZhiNxm79NyilxwQLSZLg9XrhdrsRiXT8pzKVSgWHwwGHwwGdjm8vovIVbz4B98rFSLY1Z50R9Ab0/b9+DbWpOuPHU6kUPB4P3G434vF4h4+t1WrhcDhgt9uh4U3SqIxFvtsDzzr5zgtNTX/0+ZtfZO2NSSQScLvdcLvd5wTyXPR6PZxOJ2w2W0n/wNsjgkUkEkFDQwNisY69RpZNnz590KtXL/7kRWUrduw7tD73H7Iz5psnwzpx1gW/7/f70dTUhGSOZz3kqFQq9O/fH1arlecRla3grh3wvvGq7Ixj1uMwXXnDOb8nSRLcbjeam5u79VKHVqtFXV0dqqpK8yZppRt58kCSJJw6dQqHDh3qdqgAgFOnTuHgwYN5eSwipYmxKDzrluWcC+7agVTA9/3niSJOnDiB48ePdytUnHmshoYGHDt2rFM/qRGViqS7Bb7ta3LO+d9eD+msv+OJRAKHDx/GyZMnu339RCKRwJEjR9DU1FSS12JUbLCQJAkNDQ1obZV5H3IXxGIxHD58uFMvpxCVgnjTUWhq+qdvqS7zbIGUiCPw/mYA6Zc+jhw5Ap/Pl3W+K4LBIA4fPnzO9U1E5SB2/CB0A4dDbXXIziXdLQh/9VH6c2IxHDp0KO/fN9xuN44dO3bOdRmloCJfCjkTKvL9xfBsKpUKQ4cOhcHAO0dS+ZESCSRczUi2NCHR0oREaxOSrU1IulvT3RdqDWqe+lec8PgLGqJ1Oh2GDh3K6y6oLInRCBJtJ886j04i2dqElM8NAFBbHXD+zS9w+Fj3n+2TU11djUGDBpXMy4sVGSzcbjeampoKfhy9Xo9hw4aV9EU0RJ0hJeJItDUj2dqENr0F/kThfxKyWCwYMGBAyXxRJOouMRpBojUdNJqreiGaKFyoOKOmpgY1NTUFP05HVNx3xFgshpMnZe70mOdjtbS0KHIsIiUIWh10/QYiNeRyRUIFkL4otJDPLhIpTWUwQj9gGKIDRygSKgCgpaWlZF6ir7hgofTFLG1tbYhGo4odj6jQRFFEY2OjosdsamrixZxUUeLxOJqbs7+1uxAaGhpK4mLOggWLEydO4NZbb8Vll12GK6+8EitXrizUodpFo1GEQqGCH+d8bW1tih+TqFD8fn9BXw/ORBRFeDweRY9JVEhut1vxY8ZisaJ8DzxfwYKFRqPB73//e+zbtw/bt2/H3/3d3xX8P9jlchX08bPx+XyKfyEm6qjYwT0QIx0/94p1HrlcrpL4aYsok+j+zyElO/YuJlEUixIsgOKdv2crWLDo168fRo0aBSB9UYnD4SjoH/SZZs1ikCQJfr+/KMcmyiXyl4/gevaXCH6wKWfAiMViRXudNpFIlMxrxETnC763Hq4l/4bwF+/lDBiBQKBobwENBAJFf1mx08FCFEWMGDECP/nJT875/a1bt0Kn02V8yeOzzz6DKIoYMGBA1zfNIRaLFfWnnXA4XLRjE+UixWMI79wG17P/iuAHb2QNGMX+xs7ziEqZGPQhuGN1OmB8+X7WgFHs86jYx+/S202XLVuGhQsX4tixY7Db7di9ezfGjRuHf/7nf8aPf/zjc2ZdLhfGjRuHJUuWYOzYsXlb/Hwej0fxC87OptNo4Px4bdGOT5SN6HdDSpx7Xw9BZ4Bx9HiYrhkPlfH7WuCTJ08W9alUs0ZA9cfri3Z8omxSnhbgvGchVNVWmG6YCOMVYyBotO2/f/jw4aKG5D59+qB3795FO36XgkUymcTFF1+MRx55BPPmzcOYMWMwffp0/PGPfzxnLhaLYeLEiZg/fz4eeuihvC2dSbG/IAJA7y3Pgu/Ep3JyfsA4cuRIUS/+0kKCfcuSoh2fqCvODxj79+8v6ssRNpsNdXV1RTt+lwuyFi1ahJ/97Geora3F4MGDsXbtWqjV6vaPS5KE+++/H5dccgn+5V/+JV/7ZtXY2Fj0q8p7b3sOgsi3zFH5ORMwmvtchGis43ctzTcNJDgYLKhMnQkYR3SOor40b7FYMHDgwKIdv8sXbz7wwAMIh8OQJAmvvvrqOaECAD788EMsX74c69atw6hRozBq1Cjs2bOn2wsTUf4JeiPUZhsgVFy1DZFiVKbq9HnUw3W5oP+pp54CkO5wOD9UAMDNN9+s6FWxmXZQHJ+toDKjMttRNeZOGEZeD0GtgfrIkeLuU9SjE3WNpqYWVWPvgm7YSAiCAFWRXwop9m0muhQsfv7zn2PTpk3YuXMnJkyYgKVLl+LJJ5/M926dUuybgem1WugHjyjqDkSZJE6dgHTeu0DODxRnGI3Gol5jYdBpoON5RCUofuIgkDq3r+j8QHGGwWAo7nlU5O+Hnb7GYsmSJXj66aexY8cOjBkzBs888wwWL16MgwcPQqvV5n6AAonFYjhw4EDRjm+321FbW1u04xNl412zCPHD+wBkDxRn+Hw+nDhxQukV2/Xr1w9Op7NoxyfKpm3RLyAGvACyB4ozTp06hdbWVoU3/N6QIUNQVVWVe7BAOvV8yebNm/Hkk0/ipZdewpgxYwAACxcuhN/vx4svvliQBTtKp9MV9ekfk8lUtGMT5aIy22GeeB+cj/8TjFeNzRgqgPQzFsXE84hKmaamFtZ7H4f9oX+A/qIrst6Rt9jnUbGfsejwSyGff/456uvr8dvf/hYzZ85s/32LxYKFCxfiN7/5DR555JGiXesgCALsdntR3nIqCAIsFovixyXqCNMNE6HtOzBrmDibTqdDVVVVUZ7G1ev1Rf+CSJSN5a4HoR1wUdYwcTaz2QyNRlOUWz1YrdaiX3PY5beblqJivRzidDrRr18/xY9LVAh+vx/Hjx9X/Li1tbWw2+2KH5eoEFpaWtDS0qL4cYcNG1b0Z0wq6iJsvV4Ps9ms+HEdDofixyQqFLPZDJ1Op+gxNRoNrFarosckKiSHw9GhZzfyyWQyFT1UABUWLACgf//+il5r0bdvX+j1esWOR1RogiAo3tpXW1tb9LfIEeWTRqNB//79FTueIAgl8waCijuTtVqtYn+4RqORV7BTRTKZTIrda8ButxflmUaiQrPZbKiurlbkWKX0Q27FBQsgffFKr169CnoMrVaLgQMHKv5UF5FSampqCv5F0Wg08vokqlhnnv0r9Dd8m81WUi/JV2SwANJ3dytUuNBqtRgyZEhRezuICk0QBAwcOLBgzyaYTCYMHjyYL4FQRdNoNBgyZEjBwoXNZkNtbW1J/ZBbUe8KycTtduPkyZN5uyFMdXU16urqoNF0uQ2dqKxIkoRTp06hra0tb49pt9vRr18/hgrqMVKpFJqamuDz+fL2mGd+gC6lUAH0gGABAPF4HI2Njd16b75KpUL//v1htVpL7v9EIiVEIhE0NDQgFot1+TG0Wi3q6uqK2gpIVEx+vx+NjY3dupeI0WhU5CWWruoRwQJI/9QVCoXgdrvh9/s7/Hk6nQ5OpxM2m63opSNExSZJEvx+P9xud6eC+pkLnS0WC5+loB4vlUrB5/PB5XJ1KqibzWY4HA5UV1eX9A+4PSZYnC2ZTCIYDCISiSASiSAej0OSpPRd6VQqmEwmGAyG9vcEl/L/gUTFEovFEAqFEI1GEQ6HkUwm288jjUYDo9EIo9HYfj4R0bkkSWo/f858P0qlUu3nkVarbT9/qqury+a6vh4ZLIiIiKgw+JwkERER5Q2DBREREeUNgwURERHlDYMFERER5Q2DBREREeUNgwURERHlDYMFERER5Q2DBREREeUNgwURERHlDYMFERER5Q2DBREREeUNgwURERHlDYMFERER5Q2DBREREeUNgwURERHljabYCxARdYbu6rkQVGoIKjVUGh0EtRqq9n/Xfv8xre77X5+ZzfAxtUYDQSVAEASoVAJUGhVUggBBJUCtUUFQIfvHBAGCCumPqVVQqdIf02lUUKuE9n/07f+u+v5jQnpOc9bc2Z93zmMIArSq9A5n/1olCFALgFatOu/XgFpIf1yrFs75tSAAKghQq9D+a0EA1ALS/23tn3vm44BaJUAA0o/b/uv0rCCmIEgiIInA2b+WRCCVzPwx8fTviyIgSRDEZPvnSMkEIKYAMQUplQKSCUhiChBFSMl4+n9Tpz9+9uzpX6c/lp6VRBFSSoSYSEJKpX+dSiTafy2JIlLxZPuvxXgS4unPkVKp9s8T2x9DgpgSIYkSUvHU6X+XkEqkvv9Y6vTHxPTHxHgKYko6fazT+6QkSCkJCVFESgJSkoS4KLX/OiXhnH8/+9ciznzs7Ln0r/9XOlrUc/MMPmNBREREecNgQURERHnDYEFERER5w2BBREREecNgQURERHnDYEFERER5w2BBREREecNgQURERHnDYEFERER5w2BBREREecNgQURERHnDYEFERER5w2BBREREecNgQURERHnDYEFERER5w2BBREREecNgQURERHnDYEFERER5w2BBREREecNgQURERHnDYEFERER5w2BBREREecNgQURERHnDYEFERER5w2BBREREeSNIkiQVewkiomKIxWL49a9/jZ/+9KfQ6/XFXucC3K/rSnk3oPT36w4GCyLqsfx+P6xWK3w+HywWS7HXuQD367pS3g0o/f26gy+FEBERUd4wWBAREVHeMFgQERFR3jBYEFGPpdfr8Ytf/KJkL57jfl1XyrsBpb9fd/DiTSIiIsobPmNBREREecNgQURERHnDYEFERER5w2BBRD3Sj3/8Y4wbNw4PPPAA4vH4OR+LRCKYOnUqxo8fj4kTJ8LtdpfUfmf8+te/xrXXXlvUfZLJJB599FGMGzcOP/zhDxXZpTP7naHkn1Um2fYrhb9r+cZgQUQ9zpdffonm5ma8//77uOyyy7Bq1apzPr5582aMHDkS7777LubMmYMXX3yxpPYDgEAggL179xZ9nw0bNqCurg7vv/8+wuEwPvroI0V26uh+gLJ/VpnI7Vfsv2uFwGBBRD3Oxx9/jDvvvBMAMHny5Au+GQ4fPhzhcBgA4PV60bt375LaDwD++7//G08++WTR9+nIrsXcD1D2zyoTuf2K/XetEDTFXoCISGlerxf9+/cHAFit1guefh42bBj27t2LkSNHQhAE7Nq1q6T28/l82LNnD/7pn/6p6Pt4vd72e11k2rXY+yn9Z5WJ3H7F/rtWCHzGgogqVnNzM26++eYL/pEkCX6/H0D6i77D4Tjn85YtW4Zbb70Ve/fuxS9/+Uv867/+a0nt9/vf/x5PPfVUQXbKxG63Z91H7mOlsJ/Sf1aZyO2n1N81JTFYEFHF6tu3Lz744IML/rn77ruxbds2AMDWrVtx0003XfC5Z77422w2eL3ektrv4MGDeOaZZzB58mQcOHAAv/nNbwqy3xljxozJuo/cx5Qit4PSf1ad3Q9Q5u+aoiQioh7oRz/6kXTzzTdL999/vxSLxSRJkqQFCxZIkiRJPp9Puvvuu6Xx48dLN910k/Ttt9+W1H5nu+aaa4qyz5ldEomE9PDDD0s333yztHDhQkV26cx+Z1PqzyqTbPuVwt+1fGOlNxEREeUNXwohIiKivGGwICIiorxhsCAiIqK8YbAgIiKivGGwICKido8++igEQcBf//VfX/Cxv/3bv4UgCHj00Ufbf6+5uRkLFy7E0KFDodfrMWDAANxzzz1466232mcGDx6M3//+9wpsT6WAwYKIiM4xYMAAvPbaa4hEIu2/F41G8eqrr2LgwIHtv3f06FFcc8012LFjB377299iz5492LJlC2677baiVmhTcbHSm4iIzjF69GgcPnwYa9aswQMPPAAAWLNmDQYMGIChQ4e2z515BuOTTz5BVVVV++9ffvnlmDt3ruJ7U2ngMxZERHSBxx57DM8//3z7vz/33HPnhAW3240tW7bgySefPCdUnGGz2ZRYk0oQgwUREV3goYcewgcffICjR4/i2LFj+PDDD/Hggw+2f/zgwYOQJAkjRowo4pZUivhSCBERXaBXr16YMmUKli1bBkmSMGXKFPTq1av942dKmwVBKNaKVKL4jAUREWU0d+5c/PnPf8ayZcsuuGZi+PDhEAQB+/fvL9J2VKoYLIiIKKPJkycjHo8jHo9j0qRJ53zM4XBg0qRJ+OMf/4hQKHTB51bEXTqpSxgsiIgoI7Vajf3792P//v1Qq9UXfPx//ud/kEqlcP3112P16tU4cOAA9u/fjz/84Q+48cYbi7AxlQJeY0FERFlZLJasHxsyZAi++OILPPPMM/jRj36EkydPonfv3rjmmmvwpz/9ScEtqZTwtulERESUN3wphIiIiPKGwYKIiIjyhsGCiIiI8obBgoiIiPKGwYKIiIjyhsGCiIiI8obBgoiIiPKGwYKIiIjyhsGCiIiI8obBgoiIiPKGwYKIiIjy5v8HVVMc7cZM/NUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfbklEQVR4nO3dd3hU95k+/PtMn5GmgygS3RiMsY1xw9gYFzDYFJsinHU3GLy7DtmS7JtN3s1ms3s5yXqT/WX9/rK7NDu40zHFFGPcsA3uBALGdJCEkDS9t3PePwYUysxRmzlTdH+uy1dAejTfB8KRnjnne+4jSJIkgYiIiCgHVIVugIiIiMoHBwsiIiLKGQ4WRERElDMcLIiIiChnOFgQERFRznCwICIiopzhYEFEREQ5w8GCiIiIcoaDBREREeUMBwsiIiLKGQ4WRERElDNlP1ikUik899xznf76aDSKBx98EFdeeSVGjRqFyZMn48SJE7lrkKgEdPU4AoAf/OAHGDhwIARBwP79+3PUGVF5ycWxVmhlP1js27cPq1ev7tJrLFiwAIcOHcI333yDqVOnYsGCBTnqjqg05OI4mj17Nnbt2oUBAwbkqCui8pOLY63QynqwOHDgAKZMmYL6+nqMGjUKP//5zzv8GgaDAffffz8EQQAAjBkzBseOHct1q0RFKxfHEQDccccdqKmpyXF3ROUjV8daoWkK3UA+jRgxAjNmzMDw4cPx/e9/Pyev+cILL2DatGk5eS2iUpCP44iILlcux1pZn7EAgC+++AI33njjZR8fN24cevTokfG/06dPZ3ytX/7ylzh8+HDJX/8i6qhcHkdElF22Y62UCJIkSYVuIl+SySTsdjuam5thMBi69Fq/+c1v8Oabb2LHjh2w2Wy5aZCoBOTyOAKAgQMHYtOmTRg5cmQOuiMqH7k+1gqlrC+F1NXVwWw2d/n/oP/8z//EG2+8waGCuqVcHUdEJK9cjrWyvhRSU1ODa6+9FsOGDcNPf/rTTr1GXV0dfvjDH8Lr9eKuu+7CqFGjcMstt+S4U6LilYvjCACeffZZ1NTUoK6uDhMmTMAVV1yRwy6JSl+ujrVCK+tLIURERKSssj5jQURERMriYEFEREQ5w8GCiIiIcoaDBREREeUMBwsiIiLKGQ4WRERElDMcLIiIiChnOFgQERFRznCwICIiopzhYEFEREQ5w8GCiIiIcoaDBREREeUMBwsiIiLKGQ4WRERElDMcLIiIiChnOFgQERFRzmgK3UChSJKERCKBaDSKeDwOSZIgCAJUKhWMRiP0ej1UKs5dRHIkSUI8HkckEkEymWw9jtRqdetxJAhCodskKmqiKCIWiyEajSKVSrUeR1qtFkajEVqttqSOo241WEiShEgkApfLhUAgAFEUZesNBgMcDgesVivUarVCXRIVN0mSEAgE4Ha7EQqFIElS1lpBEGAymeBwOGA2mzmsE50jiiJ8Ph/cbjcikYhsrUqlQmVlJRwOByoqKop+yBAkue8KZSQQCKCxsRGxWKzDXysIAhwOB6qqqjhgULclSRI8Hg+ampqQTCY7/PVqtRo9e/aE0+ks+m+MRPkiiiKam5vhcrnafHObiVarRe/evWGxWIr2OCr7wSKZTOLMmTPw+Xxdfi2NRoOamhpUVlbmoDOi0hGLxVBfX49wONzl1zIYDKipqYHBYMhBZ0SlIxwOo66uDvF4vMuvZTab0bdvX2i12hx0lltlPVhEo1GcOHGiU++u5PTs2RNVVVVFOy0S5VIgEMCpU6dkL3l0Rk1NDWw2W05fk6hYtbS0oLGxMaevqVKpMHDgQJhMppy+bleV7WARiURw/PjxTp1qag+n04nevXtzuKCy5vf7cerUqby9fnV1Nex2e95en6gYNDU1oampKS+vLQgCBg4ciIqKiry8fmeU5U6qRCKBEydO5G2oAACXy4WWlpa8vT5RoYXD4bwOFQBQX1+PQCCQ1zWICun8vqR8kSQJJ06c6NT+wXwpu8FCkiTU1dUhlUrlfa2zZ8+2uZuXqBSJoojTp08rslZdXV3OL1cSFYN4PI6Ghoa8ryNJEk6fPp3zy5WdVXaDhcfjQSgUUmy9urq6vJ4ZISqEM2fOIJFIKLJWKpVS5JsvkZLOv8lV6od9NBpFc3OzImu1Ja+DxaZNmzBs2DAMHToUS5cuzedSANLvsnK9OaYtsVgsJ3ecEBWLeDwOj8ej6Jp+v59n/6isBAKBnNxF1RHNzc2KnK1vS94Gi2Qyib//+7/Hzp078dVXX+Hf//3f4Xa787UcAMDn8xXk7EFLS0vRnIIiupTUwWPC5XLlqZPiXJeoPUrhODqfNVNoeRssPvvsM1x99dWorq6G2WzG/fffj23btuVrOQCF+8YUi8X4bouKVvMb/wvPjrcgxqJt1oqiWLBvTF6vl3stqGg1/Pdz8O95H1I7zgjEYjFFL8lfyOVyFfyNbocHC1EUMXz4cPz4xz++6OPbtm2DTqfDqlWrAAANDQ2orq5u/XxNTQ3q6+u72G52yWQS0Wjb3zjzhTvbqVilggG4N76Bk79Y2OaAEQ6HC7pnqFDfjInakmxuRPPr/4tTv/z7NgeMYDCoYGcXSyQSOQng6ooOPytEpVLhJz/5CRYuXIh//Md/hN1ux969e1FbW4tf/vKXqK2tBYCME1M+Mx8KOVQAQNjvQ6iFG9Co+KSCfgCAGEoPGN6dm2C7eyqs4yZBpb84/bLQx1Go+Sw0dccK2gNRJmIi/cM62XIWza//Lzzb18F+7wyYbxwH4ZJHPRT6DHYkEoFery/Y+p16CNkjjzyCX/ziF3jhhRcwb948TJkyBY899hh+9KMftdZUV1dfdIairq4Ot9xyS9c7zkLpTTKXiracReObvy9oD0TtITdgFPw4OnYIkc2vFbQHovaQGzAKfRxFIpGCptp2Onlz0aJF+OlPf4rq6moMHDgQ69atu+gBXclkEldddRXef/99WCwWjB49Grt374bT6cxZ8xdqaGjI++ZQOYLPDcPK/y7Y+kSdpaowtw4Yx+vqC/puS3f6MNRbVxRsfaLO0vTo1TpgHDx0qKCXFK1WK/r161ew9Tu9efORRx5BOByGJEl44403Lnvqp0ajwW9/+1vcdddduP766/EP//APeRsqgMyXXoiobefPYNT/n59BChV2r5Ak8jim0nT+DEbj0t9ASiqTAZNNobOVOnUpBAC+//3vA0jfapntUeLTp0/H9OnTO7tEh/CZHUSdozZbYbtnOiy3TcDx03VAAc9YCCoex1SatFV9YZ80E5Wjx8Lz7bcdvj01l1SqwmZfdmqw+NnPfobNmzdj9+7dmDBhApYtW4Znn3021711SKEfHaviN0QqMRcOFCpdeqOXVqst6KUQjVoDnrOgUnLhQCGc+4Gu0WgKemeGRtPpcwY50eE9FkuXLsUPfvAD7Ny5E2PGjMFzzz2HxYsX48iRIwX94R4MBnHixImCrV+h16GXWDwPgSE6z735TcROHm39faaB4rx8PNq5I5xGPazJwt6ZQpTJ2Zf/P4jn7rACMg8U59XV1cHr9Src4Z/V1NQUdPNmh8aaLVu24Nlnn8Ubb7yBMWPGAAAWLlyI3/zmN3jllVcwd+7cvDTZHkajsWBrA4DJYoWpV6+C9kCUie/9twHIDxTnFfw46lEFk9Va0B6IMlFptBAhP1CcZzQaCzpYFPo4bvdg8eWXX6K2thbPP/88Zs6c2fpxi8WChQsX4te//jWeeOKJrPst8k2tVsNoNBbsNK7ZbC7IukRtUVtscD74mOxAcZ7RaIRKpSrY5q+KioqCrEvUFm2vvnBM+wvZgeK8yspKhbq6nFarhU6nK9j6QBduNy1GXq8XdXV1iq9rMBgwZMgQbiCloiRJUof+bTY2NqKlpSWPHWVms9lQU1Oj+LpE7dHR4+j48eMFSZLt3bs3evToofi6Fyqrx6ZbLJaCnDGxq3lXChWvjv7bdDgceepEhpiCTVtW346ozHT0OCrED3dBEGC32xVf91JldSSrVCr0Unifg7H+CMIvPQ//R1sKensRUa7odLq8Zs5kYv3uK3iX/BLh/Z8rui5RvlRWVsJkMim6ZlVVVcG2I1yorAYLALDb7Ypd31IFvNDveQcQU/BtW43m5f8HqYBPkbWJ8qlXr16K3eWla6oDvvkYUjQC15v/C/f65RDjvMOKSpsgCKipqVHsbLbRaCz4JZDzym6wEAQB1dXV+Z/aUilYvngHUvzPt8bFjh5A4//9OSLf7cvv2kR5plKpFIkEFqJhmPZsAy5Irwh98SHO/s+/Id54Ou/rE+WTTqdD3759876OSqVSdIhpS1lt3rxQNBrFsWPH8ra73f7dlxC/+jDr58233QvrxFkQChxUQtQVfr8fp06dys+LSxIcn21F6vi3mT+v0cA2+SFU3nJX0XzDJOqMfObDCIKAQYMGKX7ZRU7ZnbE4z2AwYPDgwXlJIKuqqkKl1QbIfLMLfLwdZxf/EomWszlfn0gpFosFAwcOzMsP9pq+faC3ymw0Sybh3fQaXK//X6TCwZyvT6SUHj16oE+fPjl/XbVajcGDBxfVUAGU8RmL81KpFM6cOZOTsBKtVovq6urWPRzR44fgXrUEKb8n69cIOj3s0x5FxfVju7w+UaHE43HU19fn5PY5o9GImpoa6PXpTI3Q15/As/FVSDL7KtQWOxy182EYNKzL6xMVSjgcRn19PWKxru8hslgs6Nu3b8HjuzMp+8HivGAwiMbGRkSjHY8LVqlUcDgcqKqquuzhLqlwEJ51LyFy8BvZ1zBdNwb26Y9CpS9sIhpRZ0mSBK/Xi6amJiQSHX96o0ajQc+ePeFwOC47A5JoOQvXykVINJzM/gKCAMudU2G5cxqEItj5TtQZoiiipaUFLS0tnbpUr9Pp0Lt3b1gsljx0lxvdZrA4LxKJwOVyIRAIIJVKydYajUY4HA5YrVbZp8VJkoTgZ+/Bu2UFkExmrdM4quB86Bnoqgd2tn2igpMkCaFQCG63G8FgUPaboyAIqKiogMPhgNlslr2kIiWT8O1Yi8CubbLr6/pfAWftfGjsxbEDnqgzRFGE3++H2+1GJBKB3I9ilUoFs9kMh8MBk8lU9HuOut1gcaFEIoFoNIp4PN6aqqZSqWA0GqHX6zv8f168sQ6ulYuQbGrIXqRSw3rvTJjH3ttmLCxRsZMkCYlEApFIBMlksvU40mg0MBgM0Ol0HT6OIof3w716GcSQP2uNYDDBMeMJmK6+sat/BKKCkyQJsVgM0WgUqVSq9TjSarUwGo3QaDRFP0xcqFsPFvkgxmPwvr0CoS8+kK0zDB0Jx6y5UFfygUtEl0oFfHCtXorY0QOydRU3jYftvofafAYKESmHg0WehPd/Aff65ZCi4aw1qgoLHLPnwTh0pIKdEZUGSRQR+Hg7fO+sBcTsly01VX3Tlxh78TkjRMWAg0UeJT0tcK1agvipI7J15tsnwTphJjMviDKI1R2He+ViJN1NWWsEjRa2+x5Cxc13ltQpY6JyxMEiz6RUCv73NsL/wSZA5q9aWz0QzjkLoHUq+6wTolIgRiPwbHwV4b27ZeuMI0bD/uATUJsK99hqou6Og4VCose+TWdeBLxZawSdHvbpj6Ni1BjlGiMqEZIkIfzNp8y8ICpyHCwUlAoF4F73B0S//Ua2zjRqLOzTHmbmBVEGiZZGuFYubkfmxTRY7pzKzAsihXGwUJgkSQjueQ/erW1kXjir4JzDzAuiTKRkAt531iL48XbZOv2AoXDULoDG5lCoMyLiYFEg8TOn05kXzWeyF6nVsE6cBfPYicy8IMogcuiPcK99EWIokLVGZTTBPuMpmEaMVrAzou6Lg0UBifEYvJvfQOjLj2TrmHlBlF0q4IVr9bK2My9uvjOdeaHVKdQZUffEwaIIhPd9DvdbyyFFI1lrVJUWOGc/DcMVVyvYGVFpSGdebIPvnXXMvCAqMA4WRSLpaYFr5WLETx+VrTOPmwzrPTOYeUGUQez0MbhWLkLK05K1RtBoYbv/e6i4aTwzL4jygINFEZFSSfh3boD/w7dlMy90NYPgrF0AjbNKwe6ISoMYDcOz4VWE/7hHto6ZF0T5wcGiCLUr80JvgH36Y6i4jpkXRJeSJAnhrz+GZ9Pr8pkXVgectfOhH3ilgt0RlTcOFkUqnXnxEqLf7pWtM10/Fvapj0ClNyjUGVHpSDQ3wrVyERJnTmUvEgRY7pqezrzg3VdEXcbBoohJkoTg7p3wbl0JpOQyL3qlN6T1HaBgd0SlQUom4N2+BsFP3pGt0w+8Eo7a+dBYmXlB1BUcLEpA/MwpuFYsQrKlMXuRWg3bvbNROXYiN6QRZRA5tBfuNS9CDAez1qiMFbDPeJKZF0RdwMGiRLQ78+LKa+CYORfqSotCnRGVjlTAC9eqpYgdOyhbV3nLXbBOnsPMC6JO4GBRYsL7PoN7/cuQYnKZF9ZzmRcjFOyMqDRIoojAR1vhe3cdIIpZ67S9auB86Bloq/oq2B1R6eNgUYKS7ma4Vi1G/PSx7EWCAPO4+2C95wEIamZeEF0qdvooXCsWI+WVybzQ6tKZFzfewUuMRO3EwaJESakkfDs3INCezIs5z0Dj6Klgd0SlQYyG4X7rZUT2fS5bZ7z6BjgefAIqY4VCnRGVLg4WJS569ABcq5dCDPiy1gh6IxwPPAbTtbco2BlRaZAkCaGvdsG76XVIiXjWOrXVAeecBdAPGKpgd0Slh4NFGUiFAnCvfRHRQ3+UrasYfRtsUx+BSqdXqDOi0pFoPgPXikVINJ7OXqRSpTMvxk9h5gVRFhwsyoQkSQh+ugPebavlMy969IZzzgJmXhBlICUS8G5fjeCnO2Tr9AOHwVH7NDMviDLgYFFm4g0n4Vq5CMmWs9mL1BrYJs1G5a0TuCGNKIPIt3vhXtt25oVj5lwYrxqlXGNEJYCDRRkSY1F4N7+O0Fcfy9YZhl2bzryoMCvUGVHpSPo9cK9aitjxb2XrKsfcDdukORC0WoU6IypuHCzKWGjvHng2vAwpFs1aozJb4Zw9H4YhVynYGVFpkEQRgQ+3wLdzvXzmRe8aOOcw84II4GBR9pLuZrhWLkK87nj2ImZeEMmKnToC18rFSHldWWsErQ62KX+BihvG8RIjdWscLLoBKZWE7923EPhoi3zmRb/BcNYuYOYFUQZi5Fzmxf42Mi9G3gTHA49DZTQp1BlRceFg0Y1Ej5zLvAi2kXnx4OMwXXOzgp0RlQZJkhD6che8m9vIvLA505kX/a9QsDui4sDBoptJBf3pzIvv9snWVdwwDrYpf8HMC6IMEk0NcK1chERjXfYilQrWux+A+Y77mXlB3QoHi25IEkUEd78L77ZVQCqVtU7TozecDz0DXZ/+CnZHVBqkRALebasQ3P2ubJ1+0PB05oXFrlBnRIXFwaIbizechGvFIiRdbWReTK5F5Zh7uCGNKIPIwW/SmReRUNYalakynXkx/DoFOyMqDA4W3ZwYi8Kz6TWEv/5Ets4w/Do4ZjzFzAuiDNKZF0sQO35Itq7y1ntgu7eWmRdU1jhYEAAg9M1ueDa+Ipt5oTbb4KidD8Pg4Qp2RlQaJFGE/4PN8L+3oY3Mi35wPvQMtD37KNgdkXI4WFCrpKsJrpWLEa+Xz7yw3HE/LHc/AEGtVq45ohIRO3k4nXnhc2etEbQ62KY+jIrRt/MSI5UdDhZ0ESmZhO/ddQh8tFW2TtdvCJxzFkBj76FQZ0SlQ4yE4F6/HJE/fSlbZ7zmXOaFgZkXVD44WFBG0cP74VqzDGLQn7VGMBjhePAJmEbepGBnRKVBkiSEvvgQ3rffbCPzogecDy2Avt8QBbsjyh8OFpRVKuiHe80yRA/vl61j5gVRdommBrhWLELibBuZF/c8CPO4+5h5QSWPgwXJkkQRwU/fgXf7GvnMi5590pkXvfsp2B1RaRATcfi2rkJwz07ZOv3gq+CcPQ9qZl5QCeNgQe0Srz8B18pFSLqashdpNLBNfgiVt9zFDWlEGUQOfg332pfazryYNRfGYcy8oNLEwYLaTYxF4Nn4OsLftJV5MQqOmU9BbapUqDOi0pH0udOZFye+k62rvHUCbJNmQ9Aw84JKCwcL6rDQN5/Cs+EVSPFY1hq1xQ7H7KeZeUGUQWvmxc63ZJ84rO3TD845fwltz94KdkfUNRwsqFMSrrNwrVyMRP2J7EWCAMv4qbDcNY2ZF0QZxE4chmtVezIvHkHF6Nt4iZFKAgcL6jQpmYRvx1oEdm2TrdP1vwLO2vnMvCDKoL2ZF6Zrb4F9+qPMvKCix8GCuixyeD/cq5dBDMllXpjOZV7cqGBnRKVBkiSEPv8gnXmRTGStU9t7wDnnGej7DVawO6KO4WBBOZEK+uBevQzRI3+Srau4cTxs9z/EzAuiDBJn6+FauQiJs/XZi1RqWCc8CPPtk5l5QUWJgwXljCSKCHyyHb7tawFRJvOiqi+cc56BrneNgt0RlYZ05sVKBPe8J1unHzIinXlhtinTGFE7cbCgnIvVHYd75WIk3W1kXtz3ECpvZuYFUSbhA1/Bs+4liJFw1hpVhRmOWfNgvPIaBTsjksfBgvJCjEbg2fgqwnt3y9YZr7oe9hlPMvOCKIOk15XOvDh5WLaucuxE2O6dxcwLKgocLCivQl9/As/GV9vOvKidD8OgYQp2RlQapFQK/g82wf/eRvnMi74D4JyzANoezLygwuJgQXmXaDmb3pDWcDJ7kSDAcudUWO5k5gVRJrET38G1cjFSfk/WGkGnh33qIzBdP5aXGKlgOFiQIqRkEr531iDw8XbZOt2AoenMC5tToc6ISkcqHIRn/XJEDnwlW2e6bgzs0x6FymBUqDOiP+NgQYqKfLcP7jXLIIYCWWsEgwmOGU/CdPUNCnZGVBran3nRE86HFkBfw8wLUhYHC1JcKuCDa/VSxI4ekK2ruPlO2O57CCqtTqHOiEpH/GwdXCsWIdnUkL1IpYZ14gyYb5vEzAtSDAcLKghJFBH4eDt877Qj8+KhZ6DrxcwLokuJ8Ri8W1Yg9PkHsnXpzIunoTZbFeqMujMOFlRQsbpjcK1YjJSnOWuNoNHCdv/3UHHTeG5II8og/Kcv4F63HFJULvPCAsesucy8oLzjYEEFJ0Yj8Gx4BeE/7pGtM44YDfuDTzDzgiiDpNcF16oliLeReWG+7V5YJ86CoNEo1Bl1NxwsqChIkoTw15/As+k1+cwLqwPO2vnQD7xSwe6ISoOUSsH//kb439/UjsyLZ6Dt0UvB7qi74GBBRSXR0gjXikVInDmVvUgQYLlrWjrzghvSiC4TPX4I7lVL2s68mPYoKq4fq2Bn1B1wsKCiIyUT8G5fg+An78jW6QdeCcfs+dDYHAp1RlQ6UuEgPOteQuTgN7J1puvGwD79Uaj0zLyg3OBgQUUrcuiPcK99UTbzQmU0wT7jKZhGjFawM6LSIEkSgp+9B++WFUAymbVO46hK331VPVC55qhscbCgopYKeOFatRSxYwdl65h5QZRdvPF0OvOi+Uz2IrUa1omzYB47kZcYqUs4WFDRk0QRgV1b4duxXjbzQturOr0hrVe1cs0RlQgxHoP37RUIfSGfeWEYOhKOWXOhrmTmBXUOBwsqGbHTR9MPYfK0ZK0RtLp05sWNdzDzgiiD8P4v4F7fjsyL2fNgHDpSwc6oXHCwoJIiRsPwvPUKwvs+k60zXn0DHA8+AZWxQqHOiEpH0tOSzrw4dUS2znz7JFgnzGTmBXUIBwsqOenMi4/h2fgapEQ8a10682IB9AOHKtgdUWmQUin439sA/web5TMvqgfCOWcBtE5mXlD7cLCgkpVoboRr5f8iceZ09iJBgOXuB2AZP4Ub0ogyiB77Np15EfBmrRF0etinP46KUWOUa4xKFgcLKmlSMgHvttUIfrpDtk4/cBgctU9DY2XmBdGlUqEA3OteQvTbvbJ1plFjYZ/2MDMvSBYHCyoLkW/3pjMvwsGsNSpjBRwzn4LxqusV7IyoNEiShOCenfBuXSmfeeHsBeecBcy8oKw4WFDZSPk9cK1eitixb2XrKsfcDdukORC0WoU6Iyod8TOn4VrZduaF7d5ZqLyVmRd0OQ4WVFYkUUTgoy3wvbseEMWsddpeNXA+9Ay0VX2Va46oRIjxGLyb30Doy49k69KZF/OgrrQo1BmVAg4WVJZip4/CtWIxUl5mXhB1Vnjf53C/tRxSNJK1RlVpgXP20zBccbWCnVEx42BBZUuMhuF+62VE9n0uW2cceSMcDzwBldGkUGdEpSPpaYFr5SLETx+TrTOPmwzrhBkQ1My86O44WFBZkyQJoa92wbvpdfnMC5sTzjkLoO9/hYLdEZUGKZWEf+cG+D98WzbzQlczCM7aBdA4qxTsjooNBwvqFhJNDXCtXIxEo0zmhUoF690PwHzH/dyQRpRB9OhBuFYvgRjwZa0R9AbYpz+GiuuYedFdcbCgbkNKJODdvgrBT9+VrdMPGgZH7XxoLHaFOiMqHalQAO61LyF6qI3Mi+tvg33qw1DpDQp1RsWCgwV1O5Fvv4F77UvymRemynTmxfBRyjVGVCIkSUJw97nMi1QbmRcPPQNd3wEKdkeFxsGCuqWk3wP3qiWIHT8kW1c55h7YJtUy84Iog/iZU3CtWIRkS2P2IrUatkm1qLx1Au++6iY4WFC3JYkiAh++Dd/Ot+QzL3r3S2de9OyjYHdEpUGMx+Dd9DpCX+2SrTNceU0686LCrFBnVCgcLKjbi506AtfKxUh5XVlrBK0OtikPo+KG2/muiyiD8B/3wP3WK5BicpkXVjhrn4ZhyAgFOyOlcbAgAiBGwnC/tRyR/V/I1hmvuQmO6Y8z84Iog6S7Ga5Vi+UzLwQB5nH3wXrPA8y8KFMcLIjOkSQJoS8/gnfzG21kXvSAc858Zl4QZSClkvC9+xYCH21pI/NiMJxzFkDj6Klgd6QEDhZEl0hnXixCorEue5FKBes9D8I87j5mXhBlED16AK7VS9vIvDDC8cBjMF17i4KdUb5xsCDKQEok4N22EsHdO2Xr9IOHwzn7aaiZeUF0mVQoAPeaZYh+t0+2rmL0bbBNfQQqnV6hziifOFgQyYgc/DqdeREJZa1JZ17MhXH4dQp2RlQaJElC8NMd8G5bLZ950aN3OvOiT38Fu6N84GBB1Iakzw33qqWInWgj8+LWc5kXGmZeEF0q3nASrpWLkGw5m71IrYFtci0qx9zDu69KGAcLonaQRBH+DzbDv/Mt2Q1p2j794Jzzl9D27K1gd0SlQYxF4d38OkJffSxbZxh2LRwz5zLzokRxsCDqgNjJw+nMC587a42g1cE29RFUjL6N77qIMgjt3QPPhpchxaJZa1RmK5yz58Mw5CoFO6Nc4GBB1EFiJAT3+uWI/OlL2TrTNTfD/sBjUBmYeUF0qaS7Ga6VixCvO569SBBgvuN+WO+ezsyLEsLBgqgTJElC6IsP4X37TfnMC3sPOOc8A32/wQp2R1QapFQSvh3r05kXMnT9BsNZy8yLUsHBgqgLEk0NcK34XyTO1mcvUqnPZV5MZuYFUQbRI3+Ca/UyiME2Mi8efByma25WsDPqDA4WRF0kJuLwbV2J4J73ZOv0g6+Cs/ZpqM02ZRojKiGpoB/utS+2nXlxwzjYpvwFMy+KGAcLohwJH/gKnnUvQYyEs9aoTJVwzJoH47BrFeyMqDRIopjOvNi+GkilstZpevaBc84z0PXpp2B31F4cLIhyKOl1w716CWInvpOtqxw7EbZ7ZzHzgiiDeMNJuFYsQtLVVubFHFSOuZt3XxUZDhZEOSaJIvzvb4L/vQ1tZF70h/OhZ6DtwcwLokuJsQg8m15H+OtPZOsMw6+DY8ZTzLwoIhwsiPIkduIwXKvayLzQ6WGf+jBM1zPzgiiT0De705kX8VjWGrXZBkftfBgGD1ewM8qGgwVRHqXCQXjWL0fkwFeydaZrb4F9+mNQGYwKdUZUOpKuJrhWLka8Xj7zwjJ+Cix3TYegVivXHF2GgwVRnkmShNDnH6QzL5KJrHVqe084H1oAfQ0zL4guJSWT8L27DoGPtsrW6foNgXPOAmjsPRTqjC7FwYJIIfGzdekNaU0N2YtUalgnzoD5tknMvCDKIHp4P1xrlkEM+rPWCAYjHA8+AdPImxTsjM7jYEGkIDERh3fLCoQ+e1+2Tj9kBJyzn4babFWmMaISkgr64F7zIqKH98vWVdx4B2z3f4+ZFwrjYEFUAOE/fQn3uj9AispkXlSY05kXV16jYGdEpUESRQQ+eQe+d9a0nXnx0DPQ9WbmhVI4WBAVSNLrgmvVEsRPHpatq7ztXtgmzoKg4UOYiC4Vrz8B18pFSLqashdpNLBNfgiVt9zFu68UwMGCqICkVCqdefH+RvnMi74D4JzzDLQ9einYHVFpEGMReDa+hvA3n8rWGa8aBfuMp6A2VSrUWffEwYKoCESPH4J71RKk/J6sNYJOD/u0R1Fx/VgFOyMqHaGvP4Fn46vymRcWezrzYtAwBTvrXjhYEBWJVDgIz7o/IHLwa9k603VjYJ/+KFR6Zl4QXSrhOgvXikVINJzMXiQIsIyfCstd05h5kQccLIiKiCRJCH32Pjxb3gSSyax1GkdVekNa9UDlmiMqEVIyCd+OtQjs2iZbp+t/BZy185l5kWMcLIiKULyxLr0hra3Mi3tnwjz2XmZeEGUQObwf7tXLIIbkMi9McMx4Aqarb1Sws/LGwYKoSInxWDrz4vMPZOsMV1wNx6x5zLwgyiAV8MG9ZhmiR/4kW1dx43jY7n+ImRc5wMGCqMiF938B9/rlbWReWOCYPQ/GoSMV7IyoNEiiiMDH2+F7Zy0gymReVPVNX2LsVaNgd+WHgwVRCUh6WtKZF6eOyNaZb58E64SZzLwgyiBWdxzulYuRdGfPvBA0WtjuewgVN9/JzItO4mBBVCLSmRcb4X9/k3zmRfVAOOcsgNbJzAuiS4nRCDwbX0V4727ZOuNV18M+40lmXnQCBwuiEtPuzIvpj6Fi1K0KdkZUOph5kT8cLIhKUDrz4iVEDn4jW2caNRb2aQ8z84Iog0RLI1wrF7edeXHnNFjunMrMi3biYEFUoiRJQnDPe/BuXSGfeeGsgnMOMy+IMpGSCXjfWYvgx9tl6/QDhsJROx8am1OhzkoXBwuiEhdvPA3XikVINp/JXqRWwzpxFsxjJzLzgiiDyHf74F6zDGIokLVGZTTBPuMpmEaMVrCz0sPBgqgMiPEYvG+/idAXH8rWGYaOhGPWXKgr/5x5ISUSgEbDHfDU7aUCXrhWL0Ps6AHZuoqb74Ttvoeg0upaPyYlEhC02ny3WBI4WBCVkfD+z89lXkSy1qgqLXDOfhqGK64GALjX/QHGq2+A8cprlGqTqGilMy+2wffOunZnXkipJJpf+i0cM+dC4+ipYLfFiYMFUZlpd+bFuMnQ9qqBe/VSaPsOQK+/+hnPWhCdE6s7BteKxUh5mrPWCBotbPd/D0mfG4EPNsN0/W1wzpqrYJfFiYMFURmSUin439sA/webZTMvLuT8i7+G6eob8twZUekQoxF4NryC8B/3tO8LBAG9f/Bv0Pbsk9/Gihx3cRGVIUGthnXCDPR86kdQm23t+hrfu+shiWJ+GyMqISqDEY7a+XDMfApCe54hIknw7Xwr/40VuW55xkKSJESjUUQiEUSjUcTjcYiiCEEQoFarYTAYYDQaYTQaoWE0MpW4VCgA97qXEP12b5u1jtnzUTFqTLteVxTF1uMoEokgkUhAkiQIggCNRtN6DBkMBqh5/z+VuERzI1wrFyFx5lSbtb2e/Rfo+vRr1+umUqnWYygajSKZTEKSJKhUKmi12tZjyGAwQFUid3R1q8EikUjA4/HA7XYjKXPf/4XMZjOcTicqKip4/ZlKliRJCO7eCe/WlUBKJvPCUYXef/NvENTZB+poNAq32w2v1wuxHWc4BEGAzWaDw+GA0cigLipdUjIB7/Y1CH7yjmydYfh16PnoD7K/jiQhHA7D7XbD5/O1a221Wg273Q6HwwGdTtf2FxRQtxgsRFHE2bNn4XK5Ov0aer0e1dXVMJlMOeyMSFnRowfQ/NJvZWvsDz6ByhvvuOzjiUQCDQ0NCASy3+ffloqKClRXVxf9N0YiOYGPt8G7ZaVsTdUz/y/0/QZf9vFoNIr6+npEItnv3GqLzWZDnz59ivZMYGmcV+mCYDCIw4cPd2moAIBYLIZjx46hsbGxXe/SiIqNJEkIfLKjzTr/exshJRMXfczj8eDw4cNdGioAIBQKtR6P3eA9DZUhMR5D8HP5vBgA8O1Yd9HvJUlCU1MTjhw50qWhAgC8Xi++++47+P3+Lr1OvpT1YOHxeHDixAkkEom2i9uppaUFJ06cQCqV/f5momIUPbQXsePftlmX8rlbv3FKkoTGxkbU19fnbKCWJAlnzpxBfX09hwsqOcE9O5H0tLRZFzt6ANHjhwCkz5qfPHkSTU3ZH9feUalUCqdOnUJLS9u9KK1sL4V4PB7U19fn7fWNRiMGDhxYtKeiiDKRRBEpnxuJpnokms6c+98GJJsaICXirXWqSgt6/92v0OT2dPlsnxyr1YqamhruX6KSIqVSSLqbW4+fRFM9kk0NSLQ0Ahe86dQNGIoec/8Bp06dQigUyls/vXr1Qs+exRPMVZaDRSgUwvHjx/O+jsViQf/+/fO+DlG+XTxwNCBxtgGpAVeiyWjP+9pVVVWoqqrK+zpE+ZYeOJrSx9HZBiSaGxAbcTM8Qv73FPXv3x8WiyXv67RH2Q0WqVQKR44cyenlDzk1NTWw2WyKrEWklHg8jsOHDyt2qWLIkCG8Y4TKTjAYxIkTJxRZS61WY+jQoUURkVB2eyzOnj2r2FABAA0NDe2+dZWoFEiShLq6OkX3Pyi9HlG+pVIp1NXVKbpeQ0ODYuvJyetgMWPGDNjtdsyePTufy7RKJpNwu92KrHWeKIqKr0mUT+FwGOFwWNE1Y7FYl+84ISomXq9X8Tedfr8fsVhM0TUzyetg8YMf/AAvv/xyPpe4SKF+wLtcLt6CSkUr6e3Y5st8btaUU4y724nO68hxJElSwY6jYnijm9fB4q677oLZbM7nEq0kSSrYX2gqleK7LSpa3s2vofkPv0Xs5Hdt1iaTyYLdGx8Oh4vi3RZRJs0v/Qdcq5cg0XymzdpwOIx4PN5mXT643e6Cv9Ht8GAhiiKGDx+OH//4xxd9fNu2bdDpdFi1alXOmuuIRCJR0L0OSp86JuqI2PFv0fzif7Q5YBT633Gh1yfKSpIQ2fcZzv7+520OGPm8tbQtkiQVfEDv8PZRlUqFn/zkJ1i4cCH+8R//EXa7HXv37kVtbS1++ctfora2Nh99tqmrSWZdFXa3wPvNBwXtgSiTRNOfN3TFjn+L5uPfQj9oOCx3TYN+wJUX1Rb8OKo7DmH3toL2QJSJGDk3LJwbMCL7P4dx5E2wjJ962WPSC30cRSKRgt5l1an7Uh555BH84he/wAsvvIB58+ZhypQpeOyxx/CjH/0o1/21WzQaLdjaABAP+BDc/W5BeyBqr9YBY/BVsNw5tXXAKPQ3xFjTGUg8jqgUyAwYhT6OCr1+pwYLjUaDH//4x/jpT3+KNWvWYPTo0XjhhRdy3VuHFDpim7fKUSmKHTuI5mMHWweMVKqwSbKFvjZM1GEZBoxC/zwq9Pqd3rz5yCOPIBwOQ5IkvPHGGxmjrSdNmoTa2lq8/fbbqKmpweeff96lZuXwBztR58WOHURw97uQwsGC9iGBxzGVKElC5MBXCH72HpAqbLZRoX8edjqi6/vf/z6A9C1i2Z6XsW2bctdKVaqyy/oiUoRxxGiYx0+DrncNfMeOAQXcQKniM0OoFKk1qBh9O8zj7oPG6sCZAwcgFfDsW6F/HnZqsPjZz36GzZs3Y/fu3ZgwYQKWLVuGZ599Nte9dYhOl/8sdjkajbag6xN11IUDxXl6vb6gd2ZotDyOqIRcMlCcp9frC7rPQa/XF2xtoBPPClm6dCl+8IMfYOfOnRgzZgyee+45LF68GEeOHIG2gN8UwuEwjh07VrD1rVYr+vXrV7D1ibJpee0FRL/b1/r7TAPFeW63u6CxwMX2lEai887854+R8p3LSsoyUJzX0NBQ0KCqAQMGKJYhlUmHzlhs2bIFzz77LN544w2MGTMGALBw4UL85je/wSuvvIK5c+fmpcn2MBgMBVsbAB+gREVPbqBorSnwv+NCr08kq42B4rxC/zsu9PrtHiy+/PJL1NbW4vnnn8fMmTNbP26xWLBw4UL8+te/xhNPPJF1v0W+qVQqWCyWgqUGFsvjaokuZbhiJCz3zJQdKFprDQbodLqCpAaq1WqYTCbF1yVqj4rR42C6fqzsQHGe2WyGIAgF2URpMpkK/oTTsnpseigUwvHjxxVf12w2Y8CAAYqvS5QPLpcLZ860HVucaz179kSvXr0UX5coH+rr6+HxeBRft1+/frBarYqve6GyupXCZDIpv2lFTKGy4UhBdwAT5ZLNZlN8V7kQDcHUdFLRNYnyyel0Kr6mRqMpirPnZTVYCIKA6upqRde0fvcFIlvfRMur/4VUwKfo2kT5oFar0adPn7YLc0WSYPvmA/hWL4Fnw8sQ43wQGZU+g8Gg+HBRXV0NoQhu2S6rwQJIn7VQale5vuk0hH27AQCxowdw9n9+gcjhfW18FVHxs9lsqKysVGStymP7IJ0+DAAIffkRmhY/h3hjnSJrE+VTr169FItCsNvtBb0T5EJlN1gA6Wu1+d4EJkRDMH2+/aKPiaEAXK++AO/WlZAK+KRVoq4SBAE1NTV5v4Vc622G5pKH9yWbz6BpyXMI7nmv4AmCRF2hUqnQr1+/vJ9F0Ov16N27d17X6Iiy2rx5oVQqhRMnTuQtpKTH59uQPPFt1s9r+w6AY/Z8aJ3cjEalKx6P49ixY0jmYVBWSyKsO96A6G3JWmMYPgr2B56A2qTM2ROifAiFQjhx4kReBmW9Xo9BgwYV/E6QC5XtYAGkH2h0+vRpBAKBnL2mWq1G//79oWmug3vNMqT82Xf9Cjo9bFMeRsWosTlbn0hpiUQCJ0+ezOkThHU6HQYMGIDkt1/Bu+k1SDL7KtQWGxyznoZ+4LCcrU+ktEgkgpMnT+Z0SK+oqED//v0LFvOQTVkPFkD6YSx+vx8NDQ1dfuKbzWZD7969WyfDVDgIz1vLEf32G9mvM107BrYpD0NlYPgPlSZJktDS0oKmpqYuv+vq2bMnevbs2XrnSdLVBNfqxUg0yNwVIggw3zEFlvFTIRTZN1Gi9kqlUjh79myXUzkFQUCfPn1gt9uLYrPmpcp+sDgvmUyipaUFHo+nwwNGZWUlevTokXEzmyRJCH3+PrzbVgIyk6ja0RPO2fOhqx7U4d6JikUsFkNLSwu8Xm+HBgxBEGCxWNCzZ8+MKblSMgnfu+sQ/GR7hq/+M13/K+CY9TQ0NuVv5SPKlXA4jJaWlg4HOqpUKtjtdvTo0aOgj9BoS7cZLM4TRRGBQACBQADhcDhjwqBarYbRaITJZILNZmvXrt7E2Tq4Vi1GslkmWEilhnXCDFTeOhECn8ZKJSyVSsHn8yEYDCISiSCRSFxWo9FoYDQaUVlZCavV2q5rwNEj++Fe+yLEUPbLl4LBBPsDj8M04oYu/RmICi2RSMDr9SIcDiMcDmd806vT6S46jgr95NL26HaDxaVEUUQikYAkSRAEASqVChqNplOnl8R4DL5tKxH64kPZOv2QEXDMmAu1ubDpaES5kkqlkEwmW48jtVrd6c1kqYAP7nUvInb0gGxdxQ13wDp5DlS6wj7JkShXkskkUqlU63Gk1WpLYpC4VLcfLPIh/Kcv4dnwMqRo9sdPqyrMcMycC8MVIxXsjKg0SKKI4CfvwPfuOkDMfulS07MPnLULoO3V9nNQiEgZHCzyJOl1wb1mKeKnjsjWVY69F9Z7ZkAooluFiIpFvP44XKuXIOVuzl6k0cI2aQ4qbhpflBvZiLobDhZ5JKVS8H+wCYEPNwMyf83avgPgnL0AGmeVgt0RlQYxGoF382sI/3GPbJ1h+Cg4HngSKlOFQp0RUSYcLBQQPX4InrVLkfJ7s9YIOj1sUx9FxXVjlGuMqISE9n7ajswL+7nMiysV7IyILsTBQiGpcBCe9X9A9NBe2TrTdbemMy/0l9+SR9TdJVxn4V61GIkzp7IXCQLM46fCcscUZl4QFQAHCwVJkoTQZ+/Du10+80LjqIKjdgF0fQco2B1RaZCSCfh2rEPw03dk63QDhsIxcx4zL4gUxsGiAOKNdXCvbiPzQq2G9Z6ZqLx1AjMviDKIHN4Hz7qX5DMvjCY4pj8B44jRCnZG1L1xsCgQMR6Db+sKhL78SLZOf8VIOGY8BXWlRaHOiEpHKuCDe+0yxI4dlK2ruHE8bJPnQNAq8whrou6Mg0WBhfd/Ds/GVyBFsz+FVVVpgWPmPBiGjFCwM6LSkM682A7fu+vlMy+q+sI5ewG0vaqVa46oG+JgUQSSnpZ05sXpo7J1lbdNgvXuB5l5QZRBvO5c5oWnjcyLyXNQcSMzL4jyhYNFkZBSKfjf34jAR2/LZ15UD4Rz9nxoHMy8ILqUGI3As+lVRPZ9JltnvGo07NMfZ+YFUR5wsCgy0ePfwr1mGcSAN2uNoDfAPvVRmK69RbnGiEqEJEkI7/0U3s2vy2deWB1wzJoH/QBmXhDlEgeLIpQKBeB5a3nbmRejboXtfmZeEGWSaGmEe/WSNjMvLHdOg/mOKbz7iihHOFgUKUmSENqzE97tq4GUTOaFswqO2cy8IMoknXmxFsFPd8jW6QZcCcesedBYHQp1RlS+OFgUuXjjabhXLUaypTF7kVoN64RZ6cwLbkgjukzku33wrHsRYjiYtUYwmuB44EkYr7pewc6Iyg8HixIgxmPwbnkT4a92ydYZhl4D+4NPMvOCKINUwAv32hfbzry46U7YJtUy84KokzhYlJDw/s/h2fAKpJhc5oUVjplzmXlBlIEkigh8vA3+nesBUcxap6mqhrN2PrRVzLwg6igOFiUm6WmGe/VSxOuOZS8SBJhvmwTL3Q9AUDPzguhSsdNH4V6zFClPS9YaQauDdfJDqLhhHC8xEnUAB4sSJKWS8L+3EYFdW9rIvBh0LvOip4LdEZUGMRqGZ+OriOz/XLbOOOJc5oWRmRdE7cHBooRFjx2Ee+0yiAFf1hpBb4B92qMwXcPMC6JLSZKE8DefpDMvEvGsdWqrA47Z86Hvf4WC3RGVJg4WJS4VCsCz/iVEv9snW2e6/jbY7vseMy+IMki0NMK9ajESjaezFwkCLHdOh/mO+5l5QSSDg0UZkCQJwd3vwvfOGvnMix694Zg9H7o+/RXsjqg0SMkEfO+sQXD3u7J1uoFXwjGTmRdE2XCwKCPxM6fSmReus9mL1BpYJ85C5Zh7uCGNKIPIob3wrP+DbOaFylgB+4NPwjh8lHKNEZUIDhZlRoxF05kXX38sW2e48hrYH3wK6gqzQp0RlY6U3wv32qWIHT8kW1dx812w3VsLQatVqDOi4sfBokyF9+2BZ+Nr8pkXZiscM+fBMPgqBTsjKg2SKCKwayv8770lm3mh7VUNx+wF0Fb1VbA7ouLFwaKMJd3NcK9Zgnjd8exFggDz7ZNhuWs6My+IMoidPgr36iVIeV1Za5h5QfRnHCzKnJRKwr9zAwIfb5XNvNDVDIZj9tPQ2Jl5QXQpMRKGZ+MriPzpC9k649U3wD7tcaiMJoU6Iyo+HCy6iejRA3CvfRFiUC7zwgj79MdgGnmTgp0RlQZJkhD+ahe8W96Uz7ywOeGY9TQzL6jb4mDRjaRCAXjWvYTo4TYyL0bfns680OkV6oyodCSaz6QzL87WZS9SqdKZF+PuY+YFdTscLLoZSRQR3LMTvndWA6lU1jpmXhBlJyUS8L2zGsE9O2Xr9IOGwTFzHtQWu0KdERUeB4tuKt5wEu7Vi5F0NWUvUmtgvXc2Km+5mxvSiDJoV+aFqTKdeTHsOgU7IyocDhbdmBiLwvv2Gwh/84lsnWHYdbA/8AQzL4gySPk9cK9ZhtgJ+cyLylvuhnXibGZeUNnjYEEI/3EPPJtehRSLZq1RmW1wzJoHw6DhCnZGVBokUUTgoy3wv79BPvOid00686JnHwW7I1IWBwsCACTdTXCtXoJE/YnsRYIA87j7YLlzGjMviDKInToC95qlbWZe2O77Hkyjb+clRipLHCyolZRMwv/eWwjs2ipbp+s3BI5ZT0Nj76FQZ0SlI5158TIif/pSts448ibYpz7KzAsqOxws6DLpzItlEIP+rDWCwQj79MdhuvpGBTsjKg2SJCH05UfwbV3RdubF7PnQ9xuiYHdE+cXBgjJKBf1wr3sJsSP7ZesqRo+D9b6HmHlBlEGiqQHu1YuROFufvUilguWuB2C+fTIzL6gscLCgrCRRRHD3Dvh2rG0786L2Geh61yjYHVFpkBIJeLevQuiz92Tr9IOGn8u8sCnTGFGecLCgNsUbTsK9ajGSbpnMC40GtnvnoOLmO7khjSiDyLffpDMvIqGsNcy8oHLAwYLaRYxF4d38OsJ7P5WtMwy7DvYHn4TaVKlQZ0SlI+lzw712GeInvpOtqxxzD6wTZ0HQMPOCSg8HC+qQ0N7d8G56FVI8lrVGbbHBPvNpGAYNU7AzotIgiSICH76dzryQ+far7d0PjtoF0PborWB3RF3HwYI6LOlqgmv1YiQaTmYvEgSY75gCy/ipENRq5ZojKhGxU0fgXr0EKZ87a42g1cE25WGYRo3lJUYqGRwsqFOkZBK+nesR/HibbJ2u3xA4Zs+HxuZUqDOi0iFGQvBseBmRA1/J1hlH3gT7tEehMjDzgoofBwvqkuiR/XCvfRFiKJC1RjCYzmVe3KBgZ0Sl4XzmhXfLm0AykbVObe+RzryoGaxgd0Qdx8GCuiydefEiYkf+JFtXccMdsE6ew8wLogwSTfVwrVqCZJNc5oUalrsfgPm2Scy8oKLFwYJyQhJFBD99B74d6wBRJvOiZx84axdA24uZF0SXkhJxeLetQujz92Xr9IOvgmPmXKjNNkX6IuoIDhaUU/H643CtXoKUuzl7kUYD26Q5qLiJmRdEmUQOfgX3W8shRcJZa1SmSthnzIXxymsU7IyobRwsKOfEWBTeTa8h/MfdsnWG4aPgeOBJqEwVCnVGVDqSPjfca5YifvKwbF3lrRNgnTCTmRdUNDhYUN6E9n4K76bX2si8sMMx62noB16pYGdEpSGdebEZ/vc3ymde9OkPx+z5zLygosDBgvIq4ToL9+olzLwg6oLYye/gXrNMPvNCp4ft/r9g5gUVHAcLyjspmYTv3XUIfrJdtk7X/wo4Zj3NzAuiDMRwCO4NyxE9+LVsnfGam2Gf+ihUBqNCnRFdjIMFKSZ6eD/c69rOvHA88ASMI0Yr2BlRaZAkCaEvPoB368o2Mi96wjl7PnQ1gxTsjiiNgwUpKhXwpTMvjh6Qrau4cTxsk+dA0OoU6oyodCTO1sO1ejGSTQ3Zi1RqWO95EJVj72XmBSmKgwUpThJFBD95B75328i8qOoL5+wF0PaqVrA7otIgxmPwbVuF0BcfyNbph4yAY8ZcqM1WhTqj7o6DBRVMvO5c5oVHLvNCC9vkOai4cTw3pBFlEDlwLvMiKpN5UWGGfcZTMA5l5gXlHwcLKigxGoFn06uI7PtMts541WjYpz/OzAuiDJJeVzrz4tQR2brKWyfCOmEGMy8orzhYUMFJkoTw3k/h3fy6fOaF1QHHrHnQD2DmBdGlpFQK/g83I/DBprYzL2oXQOvspWB31J1wsKCikWhpTGdenDmVvUgQYBk/FebxU7khjSiD2IlD6cwLvydrjaDTwzblYVSMGqtgZ9RdcLCgoiIlE/DtWIvgpztk63QDroRj1jxorA6FOiMqHalwEJ63liP67TeydaZrx8A25WFmXlBOcbCgohT5bh8861+Sz7wwnsu8uIqZF0SXkiQJoc/fh3fbSiCZzFqndpzLvKhm5gXlBgcLKlqpgBfutS8iduygbF3FTXfCNqmWmRdEGSTO1sG1ajGSzWeyF6nUsE6YgcpbJ/ISI3UZBwsqapIoIvDxNvh3vtVG5kU1nLXzoa1i5gXRpdKZFysR+uJD2TpmXlAucLCgkhCrOwb36iVIeVqy1ghaHayTH0LFDeOYeUGUQfhPX8Kz4eU2My8cM+fCcMVIBTujcsLBgkqGGA3Ds+m1tjMvRpzLvDAy84LoUu3OvBh7L6z3zICg0SjUGZULDhZUUiRJQvibT9KZF4l41rp05sXT0A8YqmB3RKVBSqXg/2ATAh9uls+86DsAztkLoHFWKdgdlToOFlSSEi2NcK9ajETj6exFggDLndNhvuN+bkgjyiB6/BA8a5ci5fdmrRF0etimPoqK68Yo1xiVNA4WVLKkZAK+d9YguPtd2TrdwCvhmMnMC6JMUuEgPOv/gOihvbJ1putuTWde6A0KdUalioMFlbzIob3wrP8DxHAwa43KWAH7g0/COHyUco0RlQhJkhD67H14t8tnXmgcVXDULoCu7wAFu6NSw8GCykLK74V77TLEjn8rW1dx812w3VsLQcuHMBFdKt5YB/fqNjIv1GpY75mJylsn8BIjZcTBgsrGnzMv1gOimLVO26sajtkLoK3qq1xzRCVCjMfg27oCoS8/kq3TXzESjhlPQV1pUagzKhUcLKjsxE4fTWdeeF1Za5h5QSQvvP9zeDa+AikayVqjqrTAMXMeDENGKNgZFTsOFlSWxGgYno2vIrL/c9k649U3wD7tcaiMJoU6IyodSU9LOvPi9FHZusrbJsF694PMvCAAHCyojEmShPDXH8P79hvymRc2Zzrzov8VCnZHVBqkVAr+9zcg8NEW+cyL6oFwzp4PjYOZF90dBwsqe4nmM3CvXoxEY132IpUqnXkx7j5uSCPKIHr8W7jXLIMY8GatEfQG2Kc+CtO1tyjXGBUdDhbULUiJc5kXe+QzL/QDh8Exax7UFrtCnRGVjlQoAM9by9vOvBh1K2z3M/Oiu+JgQd1KuzIvTJXpzIth1ynYGVFpkCQJoT074d2+GkjJZF44q+CYzcyL7oiDBXU7Kb/nXObFIdm6ylvuhnXibGZeEGUQbzwN96rFSLY0Zi9Sq2GdMCudecG7r7oNDhbULUmiiMCuLfC/t6GNzIsaOGoXQNuzj4LdEZUGMR6Dd8ubCH+1S7bOMPQa2B98kpkX3QQHC+rWYqeOwL1maZuZF7b7vgfT6Nv5rosog/D+z+HZ8AqkmFzmhRWOmXOZedENcLCgbk+MhOHZ+DIif/pSts448ibYpz7KzAuiDJKeZrhXL0W87lj2IkGA+bZJsNz9AAQ1My/KFQcLIpzLvPhqF7xb3mw782L2fOj7DVGwO6LSIKWS8L+3EYFdbWVeDDqXedFTwe5IKRwsiC6QaD4D96rFSJxtI/Pirukw387MC6JMoscOwr12GcSAL2uNoDfAPu1RmK5h5kW54WBBdAkpkYB3+yqEPntPtk4/aDgcM+dBbbEp0xhRCUmFAvCsfwnR7/bJ1pmuvw22+77HzIsywsGCKIvIt9+kMy8ioaw1zLwgyk6SJAR3vwvfO2vkMy969IZj9nzo+vRXsDvKFw4WRDJSfg9ca5YifuI72brKW+6B9d5ZEDTMvCC6VPzMqXTmhets9iK1BtaJs1A55h7efVXiOFgQtUESRQQ+ehv+9zfKZ1707pfOvOjRW8HuiEqDGIumMy++/li2znDlNbA/+BTUFWaFOqNc42BB1E6xU0fgXr0EKZ87a42g1cE25WGYRo3luy6iDML79sCz8VVIsWjWGpXZCsfMeTAMvkrBzihXOFgQdYAYCcGz4WVEDnwlW2cceRPs0x6FysDMC6JLJd3NcK1egkT98exFggDz7ZNhuWs6My9KDAcLog6SJAmhLz+Cb+sK+cwLe4905kXNYAW7IyoNUioJ/84NCHy8VTbzQlczGI7ZT0NjZ+ZFqeBgQdRJiaYGuFcvRuJsffYilRqWux+A+bZJzLwgyiB69ADca1+EGJTLvDDCPv0xmEbepGBn1FkcLIi6QErE4d2+uu3Mi8FXwTFzLtRmmzKNEZWQVNCfzrw4vF+2zjT69nTmhU6vUGfUGRwsiHIgcvBruN/6A6RIOGuNylQJ+4y5MF55jYKdEZUGSRQR3LMTvndWA6lU1jpmXhQ/DhZEOZL0ueFeswzxk21kXtw6AdYJM5l5QZRBvOEk3KsXI+lqyl6k1sB672xU3nI3774qQhwsiHJIEkUEPnwb/vc3yD+EqU9/OGbPZ+YFUQZiLArv268j/M2nsnWGYdfB/sATzLwoMhwsiPIgdvIw3GuWymde6PSw3f8XzLwgyiL8x93wbHqtjcwLGxyz5sEwaLiCnZEcDhZEeSKGz2VeHGwj8+Kam2Gf+ihUBqNCnRGVjqS76VzmxYnsRYIA87j7YLlzOgS1WrHeKDMOFkR5JEkSQl98CO/WFUAykbVObe8J5+z50NUMUrA7otIgJZPw7VyP4MfbZOt0/YbAMetpaOw9FOqMMuFgQaSARFM9XKsWI9nUkL1IpYb1ngdROfZeZl4QZRA98ie4170IMejPWiMYjLBPfxymq29UsDO6EAcLIoVIiTi821Yh9Pn7snXpzIt5UJutyjRGVEJSQT/c615C7Ih85kXF6HGw3vcQMy8KgIMFkcIiB7+C+63l8pkXFWbYZzwF41BmXhBdShJFBHfvgG/HWvnMi5594Ji9ALreNQp2RxwsiAog6XXBvXYZ4icPy9ZV3joR1gkzmHlBlEG8/gTcq5cg6ZbJvNBoYLt3DipuvpN3XymEgwVRgUipFAIfbob/g01tZ17ULoDW2UvB7ohKgxiLwrv5dYT3tiPz4sEnoTZVKtRZ98XBgqjAYie+S2de+D1ZawSdHrYpD6Ni1FgFOyMqHaG9u+Hd9CqkeCxrjdpig33m0zAMGqZgZ90PBwuiIiCGQ3BvWI7owa9l60zXjoFtysPMvCDKIOlqgmv1YiQaTmYvEgSY75gCy/ipzLzIEw4WREVCkiSEPv8A3m0rgGQya53acS7zopqZF0SXkpJJ+N5dh+An22XrdP2GwDF7PjQ2p0KddR8cLIiKTOJsXTrzovlM9iKVGtZ7ZqBy7ERmXhBlED2yH+61L0IMBbLWCAYT7A88DtOIGxTsrPxxsCAqQmI8Bt+2lQh98aFsnX7ICDhmzGXmBVEGqYAP7nUvInb0gGxdxQ13wDp5DjMvcoSDBVERCx/4Ep63XoYUlc+8cMycC8MVIxXsjKg0SKKI4KfvwLdjHSDKZ144axdA24uZF13FwYKoyCW9LrjXLEX81BHZusqx98J6zwwIGo1CnRGVjnj9cbhWL0HK3Zy9SKOBbdIcVNzEzIuu4GBBVAKkVAr+DzYh8OFm+cyLvgPgnL0AGmeVgt0RlQYxGoF382sI/3GPbJ1h+Cg4HngSKlOFQp2VFw4WRCUkduLQucwLb9YaQaeHbeqjqLhujHKNEZWQ0N5P4d30WhuZF3Y4Zj0N/cArFeysPHCwICoxqXAQnreWI/rtN7J1puvGwDblEaj0BmUaIyohCddZuFctRuLMqexFzLzoFA4WRCVIkiSEPnsf3u0rZTMvNI4qOGoXQNd3gILdEZUGKZmEb8daBD99R7ZO1/8KOGY9zcyLduJgQVTC4o11cK9uI/NCrYb1npmovHUCMy+IMogc3gfPupfkMy+MJjimPwHjiNEKdlaaOFgQlTgxHoNv60qEvmwj8+KKkXDMeArqSotCnRGVjnZnXtw4HrbJcyBodQp1Vno4WBCVifCfvoBnw8uQopGsNapKCxwz5sJwxdWtH0t6XVBXWvhodur2JFFE8JPt8L27Xj7zoqovnLMXQNuruvVjiZZGaHv0VqDL4sfBgqiMJL0uuFcvQfz0Udm6ytsmwXr3gwCAphf/HRXX3YrKW+5WoEOi4hevO5d54ZHLvNDCNnkOKm4cDzEUwNn/+Vc4a+dDP5BPTuVgQVRmpFQK/vc3IvDR2/KZF9UDoe1Vg/BXu6CqtKL33zzHSGOic8RoBJ5NryKy7zPZOsNV10OKxxA7egC6/leg59z/p9uHa3GwICpT0ePpzAsx4G1XvXXiLJhvn5zfpohKiCRJCO/9FN7Nr8tmXlyox6N/A8PQ7h2vzy3i50iSBM5YVE4Mg4ah11/9MwzDrmtXfWDXVogy+zPacv4Y4nFE5UIQBFSMGouqZ/4J2j792/U1vp3ru3QMlMNx1C3PWESjUQQCAUQiEUQiESQSidbPqVQqGAwGGI1GmEwmmM1mqHiLHpWwdObFe/BuXyWbeQEAljunwXLX9Ha9ZjgcRjAYRDQaRTgcRir1581uarUaRqMRRqMRFRUVqKio6Panh6m0ScnEucyLHW3WOr/3VzBe1fZtqZIkIRAIIBwOt/48EkWx9fMajab1ODKbzTAajV36Myil2wwWkiTB6/XC7XYjEmn/uzKVSgWHwwGHwwGdjrcXUemKN56Ge9ViJFsas9YIegN6/+2voDZVZvx8KpWCx+OB2+1GPB5v99parRYOhwN2ux0aPiSNSljku33wrJfPvNBU9UWvv/p51tyYRCIBt9sNt9t90UDeFr1eD6fTCZvNVtRveLvFYBGJRFBXV4dYrH3XyLLp1asXevTowXdeVLJiJ79D84v/IVtjvn0yrBNnXfZxv9+PhoYGJNs46yFHpVKhb9++sFqtPI6oZAX37IT37Tdkaxyznobp2lsu+pgkSXC73WhsbOzSpQ6tVouamhpUVBTnQ9KKd+TJAUmScPbsWRw9erTLQwUAnD17FkeOHMnJaxEpTYxF4Vm/vM264J6dSAV8f/46UcTp06dx6tSpLg0V51+rrq4OJ0+e7NA7NaJikXQ3wbdjbZt1/vc2QLrg33gikcCxY8dw5syZLu+fSCQSOH78OBoaGopyL0bZDhaSJKGurg7NzTL3IXdCLBbDsWPHOnQ5hagYxBtOQFPVN/1IdZmzBVIijsBHWwCkL30cP34cPp8va31nBINBHDt27KL9TUSlIHbqCHT9h0JtdcjWJd1NCH/zSfprYjEcPXo05z833G43Tp48edG+jGJQlpdCzg8Vuf5meCGVSoXBgwfDYOCTI6n0SIkEEq5GJJsakGhqQKK5AcnmBiTdzensC7UGVQv/DafdvrwO0TqdDoMHD+a+CypJYjSCRMuZC46jM0g2NyDlcwMA1FYHHH/5zzh+6nSXz/bJqaysxIABA4rm8mJZDhZutxsNDQ15X0ev12PIkCFFvYmGqCOkRByJlkYkmxvgTkjw6s15X9NisaBfv35F802RqKvEaASJ5vSw0aQyIKzN/90cVVVVqKqqyvs67VF2PxFjsRjOnJF50mOO12pqalJkLSIlCFoddH36IzXoakWGCiC9KTSfZxeJlKYyGKHvNwTRAVcpMlQAQFNTU9Fcoi+7wULpzSwtLS2IRqOKrUeUb6Ioor6+XtE1GxoauJmTyko8HkdjY/Zbu/Ohrq6uKDZz5m2wOH36NO68806MGDEC1157LVatWpWvpVpFo1GEQqG8r3OplpYWxdckyhe/35/X68GZiKIIj8ej6JpE+eR2uxVfMxaLFeRn4KXyNlhoNBr87ne/w4EDB7Bjxw783d/9Xd7/wC6XK6+vn43P51P8GzFRe8WO7IMYaf+xV6jjyOVyFcW7LaJMoge/hJRs311MoigWZLAACnf8Xihvg0WfPn0watQoAOlNJQ6HI69/0eeTNQtBkiT4/f6CrE3UlsgfP4FryS8Q3LW5zQEjFosV7DptIpEommvERJcKfrgBrqX/hvBXH7Y5YAQCgYLdAhoIBAp+WbHDg4Uoihg+fDh+/OMfX/Txbdu2QafTZbzk8cUXX0AURfTr16/znbYhFosV9N1OOBwu2NpEbZHiMYR3b4dryb8iuOvtrANGoX+w8ziiYiYGfQjuXJMeML7+KOuAUejjqNDrd+p20+XLl2PhwoU4efIk7HY79u7di3HjxuGf//mf8aMf/eiiWpfLhXHjxmHp0qUYO3Zszhq/lMfjUXzD2YX0ySgcX79TsPWJshH9bkiJi5/rIegMMI4eD9MN46Ey/jkW+MyZMwU9lWqLeGDcv6tg6xNlk/I0AZechVBVWmG6ZSKM14yBoNG2fvzYsWMFHZJ79eqFnj17Fmz9Tg0WyWQSV155JZ544gnMmzcPY8aMwQMPPIDf//73F9XFYjFMnDgR8+fPx2OPPZazpjMp9DdEdcgH50crC7Y+UWdcOmAcP368oJu/KlynUfH51oKtT9QZlw4YBw8eLOjlCJvNhpqamoKt3+mArEWLFuGnP/0pqqurMXDgQKxbtw5qtbr185Ik4eGHH8awYcPwL//yL7nqN6v6+vqC7irnYEGl7PyA0egYgKhYuEuKpuZTqPxyW8HWJ+qK8wPGcY0VklC4NAeLxYL+/fsXbP1O/8kfeeQRhMNhSJKEN95446KhAgA+/vhjrFixAuvXr8eoUaMwatQo7Nu3r8sNE1HuCXoj1GYbBK227WIiykhlqoTabAMKOFQUg04H9H//+98HkM5wuHSoAIDbb79d0V2xmXogInkqsx0VY+6FYeTNENQaqI4fB2Lxtr8wTwQVY72p9GiqqlEx9j7ohoyEIAhQFfhSSKEfM9GpweJnP/sZNm/ejN27d2PChAlYtmwZnn322Vz31iGFfhiYzlQB3cDhBe2BKJPE2dOQLrkL5NKB4jyj0VjQPRY6i53HERWl+OkjQOrivKJLB4rzDAZDQY+jQv887PBgsXTpUvz2t7/Fzp07cd111+Fv//Zv8fzzz2PBggXQFvA0qtGoTB57NgZHT9hm/1VBeyDKxLt2EeLHDgDIPlCcV/DjqP9Q2K4fU9AeiDJpWfRziAEvgOwDxXkmk6mgg0Whj+MOnS/ZsmULnn32Wbz66qsYMyZ98C9cuBB+vx+vvPJKXhpsL51OV9DTPyaTqWBrE7VFZbbDPPEhOJ/+JxivG5txqAAK/w2JxxEVM01VNawPPg37Y/8A/RXXZH0ib6GPo5I5Y/Hll1+itrYWzz//PGbOnNn6cYvFgoULF+LXv/41nnjiiYLtdRAEAXa7vSC3nAqCAIvFovi6RO1humUitL37Zx0mLqTT6VBRUVGQd1t6vb7g3xCJsrHc9yi0/a7IOkxcyGw2Q6PRFORRD1arteB7Djt9u2kxisViOHz4sOLrOp1O9OnTR/F1ifLB7/fj1KlTiq9bXV0Nu92u+LpE+dDU1ISmpibF1x0yZEjBz5iU1T0xer0eZrNZ8XUdDofiaxLli9lshk6nU3RNjUYDq9Wq6JpE+eRwONp1diOXTCZTwYcKoMwGCwDo27evonstevfuDb1er9h6RPkmCILiqX3V1dUFv0WOKJc0Gg369u2r2HqCIKC6ulqx9eSU3ZGs1WoV+8s1Go1wOp2KrEWkJJPJpNizBux2e0HONBLlm81mQ2VlpSJrFdOb3LIbLID05pUePXrkdQ2tVov+/fsrfqqLSClVVVV5/6ZoNBq5P4nK1vmzf/n+gW+z2YrqknxZDhZA+ulu+RoutFotBg0aVNDcDqJ8EwQB/fv3z9vZBJPJhIEDB/ISCJU1jUaDQYMG5W24sNlsqK6uLqo3uWV1V0gmbrcbZ86cQa7+mJWVlaipqYFG0+k0dKKSIkkSzp49i5aWlpy9pt1uR58+fThUULeRSqXQ0NAAn8+Xs9c8/wa6mIYKoBsMFgAQj8dRX1/fpXvzVSoV+vbtC6vVWnT/JxIpIRKJoK6uDrFYrNOvodVqUVNTg4qKihx2RlQ6/H4/6uvru/QsEaPRqMglls7qFoMFkH7XFQqF4Ha74ff72/11Op0OTqcTNput4KEjRIUmSRL8fj/cbneHBvXzG50tFgvPUlC3l0ql4PP54HK5OjSom81mOBwOVFZWFvUb3G4zWFwomUwiGAwiEokgEokgHo9DkqT0U+lUKphMJhgMhtZ7gov5/0CiQonFYgiFQohGowiHw0gmk63HkUajgdFohNFobD2eiOhikiS1Hj/nfx6lUqnW40ir1bYeP5WVlSWzr69bDhZERESUHzwnSURERDnDwYKIiIhyhoMFERER5QwHCyIiIsoZDhZERESUMxwsiIiIKGc4WBAREVHOcLAgIiKinOFgQURERDnDwYKIiIhyhoMFERER5QwHCyIiIsoZDhZERESUMxwsiIiIKGc4WBAREVHOaArdABFRR+iunwtBpYagUkOl0UFQq6Fq/b32z5/T6v786/O1GT6n1mggqAQIggCVSoBKo4JKECCoBKg1KggqZP+cIEBQIf05tQoqVfpzOo0KapXQ+p++9feqP39OSNdpLqi78Osueg1BgFaV7uHCX6sEAWoB0KpVl/waUAvpz2vVwkW/FgRABQFqFVp/LQiAWkD6z9b6tec/D6hVAgQg/bqtv07XCmIKgiQCkghc+GtJBFLJzJ8Tz31cFAFJgiAmW79GSiYAMQWIKUipFJBMQBJTgChCSsbT/5s69/kLa8/9Ov25dK0kipBSIsREElIq/etUItH6a0kUkYonW38txpMQz32NlEq1fp3Y+hoSxJQISZSQiqfO/V5CKpH68+dS5z4npj8nxlMQU9K5tc71k5IgpSQkRBEpCUhJEuKi1PrrlISLfn/hr0Wc/9yFdelf/690oqDH5nk8Y0FEREQ5w8GCiIiIcoaDBREREeUMBwsiIiLKGQ4WRERElDMcLIiIiChnOFgQERFRznCwICIiopzhYEFEREQ5w8GCiIiIcoaDBREREeUMBwsiIiLKGQ4WRERElDMcLIiIiChnOFgQERFRznCwICIiopzhYEFEREQ5w8GCiIiIcoaDBREREeUMBwsiIiLKGQ4WRERElDMcLIiIiChnOFgQERFRznCwICIiopzhYEFEREQ5I0iSJBW6CSKiQojFYvjVr36Fn/zkJ9Dr9YVu5zLsr/OKuTeg+PvrCg4WRNRt+f1+WK1W+Hw+WCyWQrdzGfbXecXcG1D8/XUFL4UQERFRznCwICIiopzhYEFEREQ5w8GCiLotvV6Pn//850W7eY79dV4x9wYUf39dwc2bRERElDM8Y0FEREQ5w8GCiIiIcoaDBREREeUMBwsi6pZ+9KMfYdy4cXjkkUcQj8cv+lwkEsHUqVMxfvx4TJw4EW63u6j6O+9Xv/oVbrzxxoL2k0wm8eSTT2LcuHH4m7/5G0V66Uh/5yn5d5VJtv6K4d9arnGwIKJu5+uvv0ZjYyM++ugjjBgxAqtXr77o81u2bMHIkSPxwQcfYM6cOXjllVeKqj8ACAQC2L9/f8H72bhxI2pqavDRRx8hHA7jk08+UaSn9vYHKPt3lYlcf4X+t5YPHCyIqNv59NNPce+99wIAJk+efNkPw6FDhyIcDgMAvF4vevbsWVT9AcB//dd/4dlnny14P+3ptZD9Acr+XWUi11+h/63lg6bQDRARKc3r9aJv374AAKvVetnp5yFDhmD//v0YOXIkBEHAnj17iqo/n8+Hffv24Z/+6Z8K3o/X62191kWmXgvdn9J/V5nI9Vfof2v5wDMWRFS2Ghsbcfvtt1/2nyRJ8Pv9ANLf9B0Ox0Vft3z5ctx5553Yv38/fvGLX+Bf//Vfi6q/3/3ud/j+97+fl54ysdvtWfuR+1wx9Kf031Umcv0p9W9NSRwsiKhs9e7dG7t27brsv/vvvx/bt28HAGzbtg233XbbZV97/pu/zWaD1+stqv6OHDmC5557DpMnT8bhw4fx61//Oi/9nTdmzJis/ch9TilyPSj9d9XR/gBl/q0pSiIi6oZ++MMfSrfffrv08MMPS7FYTJIkSVqwYIEkSZLk8/mk+++/Xxo/frx02223SYcOHSqq/i50ww03FKSf870kEgnp8ccfl26//XZp4cKFivTSkf4upNTfVSbZ+iuGf2u5xkhvIiIiyhleCiEiIqKc4WBBREREOcPBgoiIiHKGgwURERHlDAcLIiJq9eSTT0IQBPzlX/7lZZ/767/+awiCgCeffLL1Y42NjVi4cCEGDx4MvV6Pfv36Ydq0aXj33XdbawYOHIjf/e53CnRPxYCDBRERXaRfv3548803EYlEWj8WjUbxxhtvoH///q0fO3HiBG644Qbs3LkTzz//PPbt24etW7firrvuKmiENhUWI72JiOgio0ePxrFjx7B27Vo88sgjAIC1a9eiX79+GDx4cGvd+TMYn332GSoqKlo/fvXVV2Pu3LmK903FgWcsiIjoMk899RReeuml1t+/+OKLFw0LbrcbW7duxbPPPnvRUHGezWZTok0qQhwsiIjoMo899hh27dqFEydO4OTJk/j444/x6KOPtn7+yJEjkCQJw4cPL2CXVIx4KYSIiC7To0cPTJkyBcuXL4ckSZgyZQp69OjR+vnzoc2CIBSqRSpSPGNBREQZzZ07F3/4wx+wfPnyy/ZMDB06FIIg4ODBgwXqjooVBwsiIspo8uTJiMfjiMfjmDRp0kWfczgcmDRpEn7/+98jFApd9rVl8ZRO6hQOFkRElJFarcbBgwdx8OBBqNXqyz7/3//930ilUrj55puxZs0aHD58GAcPHsQLL7yAW2+9tQAdUzHgHgsiIsrKYrFk/dygQYPw1Vdf4bnnnsMPf/hDnDlzBj179sQNN9yA//mf/1GwSyomfGw6ERER5QwvhRAREVHOcLAgIiKinOFgQURERDnDwYKIiIhyhoMFERER5QwHCyIiIsoZDhZERESUMxwsiIiIKGc4WBAREVHOcLAgIiKinOFgQURERDnz/wPlcCTowQdpNwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1257,7 +1256,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/7ElEQVR4nOydd3gc1bnG3zMz24u2qFmWbMm9UE0zvfcSICGEEFIggAlgeujk0ksowSGhJwRIgBACoRN6C72Y4m5JltWsslptLzNz7h8rue2Z1UranS06v+e5z713z9HMwbvnzDvf+c77EUopBYfD4XA4HE4OEAo9AA6Hw+FwOOUDFxYcDofD4XByBhcWHA6Hw+FwcgYXFhwOh8PhcHIGFxYcDofD4XByBhcWHA6Hw+FwcgYXFhwOh8PhcHIGFxYcDofD4XByBhcWHA6Hw+FwcgYXFhwOh8PhcHIGFxYcDofD4XByRtkLC0VRcOONN47572OxGI499ljMmjULO+ywAw477DC0trbmboAcTgkw3nkEAIsXL0ZjYyMIIfjuu+9yNDIOp7zIxVwrNGUvLL799lv861//Gtc1zjjjDKxcuRJff/01jjrqKJxxxhk5Gh2HUxrkYh796Ec/wgcffICpU6fmaFQcTvmRi7lWaMpaWCxbtgxHHnkkOjo6sMMOO+B3v/vdqK9hNptxxBFHgBACAFi4cCGam5tzPVQOp2jJxTwCgH322Qf19fU5Hh2HUz7kaq4VGqnQA8gn8+bNw3HHHYc5c+bgnHPOyck1lyxZgqOPPjon1+JwSoF8zCMOh5NOucy1so5YAMDnn3+OnXfeOe3zvffeG5WVlcz/Wb9+PfNaN910E1avXl3y+18czmjJ5TzicDjaaM21UoJQSmmhB5EvZFmG2+1Gb28vzGbzuK51++2348knn8Qbb7wBl8uVmwFyOCVALucRADQ2NuLFF1/ENttsk4PRcTjlQ67nWqEo662Q9vZ2OByOcX9Bd955J5544gkuKjgTklzNIw6Hk5lymWtlvRVSX1+P7bbbDrNnz8YVV1wxpmu0t7fjoosugt/vx/77748ddtgBu+22W45HyuEUL7mYRwBw9tlno76+Hu3t7TjooIMwY8aMHI6Swyl9cjXXCk1Zb4VwOBwOh8PRl7KOWHA4HA6Hw9EXLiw4HA6Hw+HkDC4sOBwOh8Ph5AwuLDgcDofD4eQMLiw4HA6Hw+HkDC4sOBwOh8Ph5AwuLDgcDofD4eQMLiw4HA6Hw+HkDC4sOBwOh8Ph5AwuLDgcDofD4eQMLiw4HA6Hw+HkDC4sOBwOh8Ph5AwuLDgcDofD4eQMLiw4HA6Hw+HkDC4sOBwOh8Ph5AwuLDgcDofD4eQMqdADKBSUUiSTScRiMSQSCVBKQQiBIAiwWCwwmUwQBK67OJxMUEqRSCQQjUYhy/LGeSSK4sZ5RAgp9DA5nKJGVVXE43HEYjEoirJxHhkMBlgsFhgMhpKaRxNKWFBKEY1G0d/fj2AwCFVVM/Y3m83weDyoqKiAKIo6jZLDKW4opQgGg/D5fAiHw6CUavYlhMBqtcLj8cDhcHCxzuEMoaoqBgcH4fP5EI1GM/YVBAF2ux0ejwc2m63oRQahmVaFMiIYDKK7uxvxeHzUf0sIgcfjQXV1NRcYnAkLpRQDAwPo6emBLMuj/ntRFFFVVQWv11v0CyOHky9UVUVvby/6+/tHfLllYTAYUFtbC6fTWbTzqOyFhSzL6OrqwuDg4LivJUkS6uvrYbfbczAyDqd0iMfj6OjoQCQSGfe1zGYz6uvrYTabczAyDqd0iEQiaG9vRyKRGPe1HA4H6urqYDAYcjCy3FLWwiIWi6G1tXVMb1eZqKqqQnV1ddGqRQ4nlwSDQbS1tWXc8hgL9fX1cLlcOb0mh1Os9PX1obu7O6fXFAQBjY2NsFqtOb3ueClbYRGNRtHS0jKmUFM2eL1e1NbWcnHBKWsCgQDa2trydv3JkyfD7Xbn7focTjHQ09ODnp6evFybEILGxkbYbLa8XH8slGUmVTKZRGtra95EBQD09/ejr68vb9fncApNJBLJq6gAgI6ODgSDwbzeg8MpJMN5SfmCUorW1tYx5Q/mi7ITFpRStLe3Q1GUvN9rw4YNI2bzcjiliKqqWL9+vS73am9vz/l2JYdTDCQSCXR2dub9PpRSrF+/PufblWOl7ITFwMAAwuGwbvdrb2/Pa2SEwykEXV1dSCaTutxLURRdFl8OR0+GX3L1etjHYjH09vbqcq+RyKuwePHFFzF79mzMnDkTDz30UD5vBSD1lpXr5JiRiMfjOTlxwuEUC4lEAgMDA7reMxAI8Ogfp6wIBoM5OUU1Gnp7e3WJ1o9E3oSFLMu48MIL8dZbb+HLL7/ErbfeCp/Pl6/bAQAGBwcLEj3o6+srmhAUh7M1o/1t9vf352kkxXlfDicbSmEeDXvNFJq8CYtPP/0U8+fPx+TJk+FwOHDEEUfgtddey9ftABRuYYrH4/xti1O0JJe+heSaL0Hlkc/Oq6pasIXJ7/fzXAtO0ZL4+D+Q1y8HzeLlNR6P67olvzn9/f0Ff9EdtbBQVRVz5szBpZdeusXnr732GoxGI55++mkAQGdnJyZPnryxvb6+Hh0dHeMcrjayLCMWi+Xt+iPBM9s5xQpNRCGv+AixNx8bUWBEIpGC5gwVajHmcEaChgeRXPoW4u/8fUSBEQqFdBzZliSTyZwYcI2HUdcKEQQBl19+Oc4991xcdtllcLvdWLp0KU444QTcdNNNOOGEEwCww0b59HwopKgAgEgkDGVDa0HHwOGwoPGhaFoyBnnFR5DXfgVp+o6QGrcBkYxb9C30PIoGA7DHCh/K5XC2hqqpaBqNBJBc+hbk1Z9DmrkzxMmzQbaqgVPoCHY0GoXJZCrY/cdUhOzkk0/GtddeiyVLluC0007DkUceiVNOOQUXX3zxxj6TJ0/eIkLR3t6O3Xbbbfwj1kDvJJmtiUajSHz/TkHHwOFkRQaBUeh5FAkFkVjzdkHHwOFkQyaBUeh5FI1GC+pqO2bnzfvvvx9XXHEFJk+ejMbGRjz77LNbFOiSZRlz587FO++8A6fTiQULFuDjjz+G1+vN2eA3p7OzM+/JoSMxrfVdcB9OTslhMG8UGM3r1hf0bcsgEExpfqdg9+dwxgqxOjcKjOUrVhR0S7GiogINDQ0Fu/+YkzdPPvlkRCIRUErxxBNPpFX9lCQJd9xxB/bff3/suOOOuOSSS/ImKoDRZ+zmZQyk7GxBOBOBoQhG/MNnQNXCHlWjKPw85nDGwnAEI/H5ywV/HhXaW2lMWyEAcM455wBIHbXUKiV+zDHH4JhjjhnrLUZFUdTsKAJxw+GMGpMFhukLIE6dD9KaXwvvkSA85scpUYjNBWnWLhDrZoAsX1FQcSEIhX3JHdPdr776arz00kv4+OOPIcsyHn744VyPa9QUunSsIBC0bv8jdDftiYCnCbJUuMQZDicrTBYY5u0J8wGnQJq2A4hoKPg8MghcWHBKC2JzwbDjwTDtdxKkybNAiABJGvM7e04o9P1HnWPx0EMPYfHixXjrrbewcOFC3HjjjXjggQewZs2agi5KoVAIra2tBbu/0WxB3Fa52ScUZqiwExl2QYYFCoohqMKZeCRXfgzq36wI0uYRCnHLOZuP0s6jodLtQpWRR/44xUfiq9eBxKb8oy0iFFttg7e3t8Pv9+s8wk3U19cXNHlzVLLmlVdewdlnn40nnngCCxcuBACce+65uP322/HYY4/h1FNPzcsgs8FisRTs3gBA0yIUBDGIiFERfYoJIiGwmyQ4hv5HEnk+Bkcf5JalqcyFDIJimELPI4vdAbGioqBj4HBYEEEERWZBMYzFYimosCj0PM5aWHzxxRc44YQTcNttt+H444/f+LnT6cS5556LW265Bb/4xS808y3yjSiKsFgsBctoT4rGjO0KpRiMJTEYSxV2shjEjSLDYhCLI0eEU5YQkxWGeXtmFBTDWCwWCIJQsOQvm81WkPtyOCNB7G5Ic3fPKCiGsdvtOo0qHYPBAKMx8/Mo34z5uGkx4vf70d7ervt9jSYT4rYqjHWvQyQEDrMEp9kAh0mCwEUGJ4dQSkclXLu7u9HX15fHEbFxuVyor6/X/b4cTjaMdh61tLQUxEm2trYWlZWVI3fMI2UVj3c6nQWJmFj9G+AxEZjGuL2hUAp/NIm2gQiWdQewbiCMgWgCilo2mo9TQEYbDfN4PHkaSWYsrd+CJgtrRczhaDHaeVSIhzshBG63W/f7po2jnCIWAODz+dDZ2anb/aR4BNWfPQdAgP2wnwH1sxCMJxGMywjF5XGdyicAbCYJFWYDnDwvg6MjXV1duhb1M/W1o3L5O4DJDucPfg3RW6vbvTmcfEApRUtLi64unDU1NaiqqtLtflqUnbCglGLdunW6FYGp/Ox5mGKBjf+/YfbOsO17LIgoQaUU4YSMYExGMC4joYxv39pmFOE0G+A0GWCUuMjg5A9FUbBmzRokk8m830tQFdR88gyEoeJolAKWhYfDvOM+PPeIU9LE43GsWbNGF08Li8WCadOmFcWcKTthAaSqu61ZswaKkl8XQdvKz+DqWZneYHXBecxpEN1bKse4rCAYT4mM8DijGRaDCOdQXoZZKkzCLKf0oZRCUSniioq4rCIhK4jLqf/bY6Tobs+/YZb7q//CGupJ+1yomgLHkb+AYOEJnZzihlIKWaWID82fhKwiLitIKCo8oozurvxG0QVBwPTp0wtaeGxzylJYAKkqjc3NzXnLbrd0rIW7+SNNn0AKAuveP4Bp/m5MBalSivCQyAjEk0gqY/8aTJIAp9mACrMBZkkoCsXKKT4UVUVss0VveAFUGEuAWRIw1WNDMBhEW1v+xIX9uw9RMdCi2U5FA+yH/xzGhpl5GwOHMxqSisoUEKyUuAqzAZMqLHn1hyGEoKmpCVarNS/XHwtlKyyAlLhobW2FLMuj/ttKdRAeGgEBBQWBj1jRJ6TO11dXVyP5+kugqz+BrcaV8Tpi3QzYDzsZgkn7XDGlFDFZxWA0iUAsifg4tkwMItkoMqz8GCtnMyIJGW0D2e33NrissJlSp9FDoRDWrVs3pnBupnlUP2kSBh+9H6Z4F0wV2lEJSgHT/N1h3esokAIdZ+dwhvFHEugOxrLqO73SDsNQblx/fz+6urrGdE+teSSKIhobGwvuW7E1ZS0sgNRecVdXV0azEuGD1yB+9zmQTAIGA9xHHAnP5GrA7oHgrIQa6ANCPgyITlgat9l4Rjnwzdfoe/xPqJjihpAhsZJKZjiP/hWk2qlZjTmWVBAY8ryIyWMXGZKQEhlOswSbkR9j5QB9oTj6wvGMfSwGEVPc1i1EaSKRQEdHR8bjc9nOo0FDBezTd9gYtu1/8zUE3/gXKqaMUKTQ7oXzB6dCdOavmCGHMxKUUnQORhGMZ35hdVkMqHVu+cCPRCLo6OhAPM6eg1vPIWWbneHZYyEqaThtHgVNHjhm7FBw+24WZS8shgmFQuju7kYstqXSFD54DeKXH8I6d3vYttkR4e++Qs2+u0KoqII4bScQQlL70M1fAJFBSNseuMXfy4EA1v/p97CKARgdmaISgHnXQ2DZaf9RRRESspoSGfEkIomx54wIBEMig3tlTFQopfBFEugNZRYWU9xWWI3pixWlFH6/Hz09PWlJneOdR7HOdnT86VY4q4yQTNomXhQC7If8FMbp24ziv5zDyR0qpdgQiG00O2RBkIpWsE7yqaqKvr4+9PX1bbFVz5pDkeVL0XTWmRCc3qzmUbEwYYTFMNFoFP39/QgGg1AUBYb7boR1+hzUn3/Npi/tm9ch1M2CUNW48e/U3laonasgbX9I2jUppeh98TlEP3oJzobMZ5eF6kY4j/4ViHH0STZJRUUwLmMwlkRoBLWcCUIAh0naeMJE5IWfyh5ZUdEViCI8gji1GUU0uDMnS1JKEQ6H4fP5EAqFoKpqTuaRmkyi89GHQNq/gbU6s623NHsX2Pc7FkTgWyMc/YjLCjoHo4iPEEn2WI2odpgz9lFVFYFAAD6fD9FoFNK9N6TNofa7rkXtgXtAHMU8KgaKL4aSZywWy0Z3v0Q4hJZkErZtdtwYRSCEgAJQA30glVM3fsFqoE/TWZMQguqjj0N02x3Qed/vUTHJCpHxxgcAak8rfI/chIrjF0GqnDSqsRtEAR6rER6rEYpKEYilcjKCozxhQikQiMkIxGQQROEwS3BbjHCYJJ6TUYaE4zI6A9GsDNcq7ZkXQyD1e7fb7bDb7SmR0daKjlHNI/a2oWAwoP60s+D/4lP4nnoArqkeEI3yz/LKz+Bvb0bFjxZBsDpGHDOHMx4opRiMJrEhGBtxrRUI4LGNbKktCAJcLhdcLhcopVjFmEO2bReAKsqo5lExULwj0wFREABCEP7uq42JaZRShFvbgZAPSvMXUHtbU2GnkA+gFDSpHUa2NDah6f/uRESchGh/ULOfoMQReOpuRL76YBxjJ3BbjZjqsWFejRNTXFa4zAaMNvhAkRIZ6wYiWN4TROdgFNGkosu5a05+oZSiJxjDen8kK1FhH6pbMxoIIRASsdHNI4KMvy/XTrui4fLb4O8jSIQyJMmF+zHwyM1IrGMc+eZwcoSipnIqurMQFQDgthohaQhiLQghIJKUPoe+/RKD3y1jzyOpsPVAMjHhtkI2R4lGsOa8nwEArHO2g23bBQh/+yUiK75B3QknwFJdidSjlwz9b0CYPAdC5ZQRrz3wwbvwv/AYKqZ6M0cBqqfBdeypIGJugkfDx1gDcRmBWBLyGG3BTZIAt8UIl8WwMauZUzokZBWdg5ERk39FgWwUHY0eG8yjFBYAEFm9HOt/fyUAxjz64fGw1NZg63kkTt8ZxJ7ZOpyqKjY8+xQSX78NR512X0opDHN3h32/H/CIGyenRBIyOgejGddRglQwW6WpaMX0SseYtpfb7vw/RFd8kzaHKvY6CJUL5gCKgi3nEYE4f1+QIhQYXFgMCQsIIkBVgAgwN87AlAuvgbL8/fQ/srogzdw1q+vHezakEtI8gubWCAAoxATXj8+B5MmtFSulFJGkgsGhLZOxemXYjRJcllTiJ8/HKH5SIdso81z9MJJAMKnCAkkgaO0Pw2GWUFcxtnPwmwuLzeeRbbudUPez06C2fJX2N8RbD7F+XlbXD61cgZ5H7oZrsgMkg8hVrV64TzwHgrm4jt5xSg9KKfrDiRFPUJkkAXUVFiRkFR2DUVTZTfDaxmZSNfD2K+h54sEt5hBUBU03/AkSjULtXpP2N8LkuRAqG8Z0v3zCX0WHUZVU8oGqwDZvexCjBbC60vtF/KCJ7Eqzm6pr0HTN75F0z0bMr31MT6RxDP7jdoS/+t8YB8+GEAKbUUKd04LZVQ7MqLSjymYadbG0UEJG+2AUK3oCWO+PpGqgTFw9WrSoQyHbrkBmUWE3Smj02mAzSjBJImqcZlSOcTFMH8SmeVSxcD8QuxdglGqn/g2gNLuj1PbZczD16tsRSjqRjGgv9EKkH76HrkO8LX0B5nCyJamoaBuIjCgqhreiTZIIh9mASpsJbmsOogebzaFhiItdO0f1j80XI99wYZEBwc3+MulA9g5qRBQx6eenw3bErxDsDmj2E0SC+Ef/ge/pB0Dz4BZKCIHFIKLWacasagdmVtpRZTfBIGYfgVAp4I8m0eILY2VPEN2BGGLJ/Nqmc7IjllTQ4gsjMMIRuBqHGZNdli32gF0WI4x5soUnggBSUZPeoCRBg9kXOROtNjScfyXE7Q5GpE87f0kUKULPP4DBN58bw2g5E51gLImW/jCiGdY1kRDUuyyocZi3OLZfaTfl7Rg/MVkBK+OkVDj7F1094cIiA6kFkWHHPQaV6Nx+AeouvBnBoAhVZv9oCSEgfc3o/fM1SPr6Rn2P0WA2iKh1mDG7yoEmjw1uy+gSP5MqRW84jtV9IazpC6EvHIc8ziJrnNFDKYUvHEerL4xkhn9/o5iy6HZbjbrnIWgL9NHNI0IIvAcfAc+vLkOwL6YZNRNEAeqqj9H78C1Q49k5JHImNiql6A5E0TEYhZohGms1iGj02mDP4LWSLwSNqAX158cqfDxwYZEBYjCBOBhJY7EQaEx7a0MLqaICDZfcAKV+ARJh7QXPIMrwP3Yrgp+P/dRIthBCYDdJqHdZMbfaiXqXBfYM+SAsokkFXYEYlvcE0eoLYzCazDg5OblBVlW0+6PoGcHwqsJiQKN3bImZOcHmBgzpWy000Dum6JylvgH1l92GmKEWSlw7QiMl/Oi79xrEWleP+h6ciUNcVrDOF4Y/mrmSb6XdhAa3tWDJ7NrbIRt0HsnIcGExAsTF9pqgg+nVGLO6HiGoPu4k2H9wJqJ+bXEhGUUkP3kevY//CWqeq7QOIwgEbosRTV4b5lQ7UOswwzTK8uzBuIw2fwQrNgTRMRhFOMHzMfJBOC6jpT+McELbKE0gQF2FBZOcloI6rRJC2IuiqoCGst8O2RzBYETd6RdA2uUoxAMZRLpJQOj5BzDw6jNjug+nfKGUwh9JoLU/nNHwShIIprqtqLSZCnrqiBhM7JNU0QBoorgic1xYjABxVoG5HRIYn0q0zZyL6vNvQkyxg2pk2hFBgBRcj567r0SiR19VahAFVNlNmFlpx4xKO7w2I6RR7JUoQ/bRzf1hrOoNYUMwhsQ46p5wUmTrTWE2iGj02uE06x+yZSGw8iwwdoE+jGvP/eE59QpEQtr/FqJBBFo+Q/efb4ASLb79aI7+ZOtN4TBJaPLaYRllFDdfMPOVMP55lGu4sBgBIhnYKjESAE2OTyVKFismnXMVMGN3yBlCuiYL4H/sVgz+7+1x3W8sDCd91jktmFPtwFS3FRVmg2a5eBYJRUVPKI6VvUE094fgiySyMmzibElCVrHOF4YvksjYz2szYqrbCmMx+Y9YKwCJtR3SM+6IlrGqGnUX3Yyks1EzfwkATCSE3nuuRGTVsnHdj1PaRBIyWvpDGYuIEQC1TjPqKixFdcSeVFQzP6fjfNHNNUW08hQvml9mjlSi59Bj4Tj+bMQj2ouiwWqE/MXL6Hr4D1CTmfcC8wUhqWqpU9xWzK1xYnKFBdZR7tuHEwo6ho6udg5G+amSLAlEk2j1hTIaXkkCQYPbiiq7ueiMogghIBUMnxY5CYT947++IKD65EUw7Xk8khn2yk12I8IvPYTe557gW3QTDEop+kJxtA1EMhpemSQBjV4bXBb9E51HghhMzNMhNOQHlTO/cOgJFxZZwFwQkdvwk3nKNFSfeyOSBu2S0IIkwhTvwvpbfotYZ0fO7j0WRIHAYzVieqUds6rsqLabRvWGrFKgP5LA6r4QmvtDGIwm+ULPQFUpugaj6BzBm8K2mTdFsaIl0NUcziP7gt3hOfUqJJLa/w6S2Qhh/ZdYf/vvIAe1j4BzyoekomJ9Nt4Ulk3eFMWKwJxHFDTQq/tYtODCIguIwayhEgdA5dxFDwSjEdW/vgTC3H2gZDiS6qw0oefe6+F7+42c3Xs8mCQRNQ4zZlXZMc1rg8dqHNXR1XBCSSV89gSxIRjLeGxyIhFLKqlTNiN4U1Q7TKjfypuiGCE2DyAwyrEHNuRUVEouN6rOuQ5q1UzNUyeCJMJui2P9zZcg8N03Obs3p/gIxZNo7Q8jkiE6KhCCyRUW1DjNBU10zoZSyLMo7pWoiNBTJVbsdwScx58DOan9A3fUuRD78Fmsu+uWoklIG3b6nFxhwdyhwmgOU/Zv0LJKU7kYPUG0DUQm7IkSSil8kTjW+cJIZOFN4bEWNls9W4ggDCVDb0UiBsS0Ta/GgiAI8P7oNJj3OQFKkv1vSAiBq8EN/5N/ROc//gaq0+krjj6olGJDIIZ2fxTKCN4UTV4bHEWS6DwSxGQFzPa0z2mwH1TRzhvREy4ssiTfeRZbY5w8Fd6zroVq1a4fYvE6YFE2YPWl5yCyprjO6guEpPwTPDbMrXZgktMMc5ZHVymAwVgSzf1hrOkLoT8cnzDJnhu9KYLxjNnqFeYCe1OMET22QzbHuu0ucP3qcshE27LcMdkL0vIZVl99CRJ9xRNO5oydYW+KgWjmvINKW2G9KcYKcx5RdVRutvmktP41Cwgx2QCTLe1zGuwDVfPzpiMYjPD8/EKIs3fTfHM32EyomuHBuluuxIbnninKN3xJFFBpM2FmlQPTvSmXz2zfr2Oyis5AbGOyZzxD1n+pE07IaM3Wm6KisN4UY4U4vKniSluRzzCu5HCj8vRrgMpGzT5mjx0uL8Xqy86F/6MP8zYWTn6hlMIfzc6bYorbikp7aUT7tkZw6vuiO1q4sBgF2ioxf/bbhBA4DzgO1oN/CkrZE0AwiKhZ0ITAG89gzXVXIukfyNt4xovVmHL5nFOTMuDKtlbJcLLnqt6hZM9Y+SR7UkrRG4xh/QjZ6maDiEZP8XhTjAUiSilxsTWxEGg8ksf7inD96EwYd9hfW6RbTajdrgGdD96JtnuXQI1nTvTjFBcbvSkC2XlTWIs40XlELA7AYE77eKxutrmGC4tRkC+Tn2wwz9weFSeeB8r4MQEpAVI5fwqM0Q1Ydt4iBL7+Mu9jGg+SkDLgml2V8sYYTS5GOKGgbSCClT1B9JR4smdCUbFuIIL+kbwprEPeFKN0Qi1G9N5W3HhfQmDb/VDYj/glKCNqAqREeu3OM5BY9glWXHwuom3r8jomTm6IJmS0ZuNN4Sg+b4qxkDq+zZhHqgwa9uk/oK0o/VVKTzKpxCxLQI8H0VsL108vhuBh24wDgHNqFapmeLH2+ivR8beHQeXiSObRYtgbo9Fjw+wqByptRohZhiaTKsWGEk72DMSSaO0PZfTyEAWCBpcVVY7i86YYK8wETuQvz2JrjI1zUfHj85gJcMBQsbN5DbDZFSy/8Bz0vvpSSf2uJhKUUvSH41g3EEEyG2+KAhThyxfsAwXFsR3ChcUo0FSJigwa0mf7QbDa4fzhb2CYsYNmH0ulE3W7z0b/K89ixaUXIN49+mqshcAoCZjktGBOjQP1FRZYskxM3DrZ0xdJQC3iZE+VDnlTDI7sTdHktcE2imhOKUAkI4jNnd4Q8YMm9dl+ED01qPjJ+RCrGzT7OKdUoXaHKWh/4I9ovvV6yKHcnlzhjI+komK9P4LeEYrwuSyGovemGBM2NyClb4vSwd6CC2EuLEZJocK4W4xBMsB20Imw7HaYZh+jzYy6PeZA7e/AsvMWwfee/nbgY0UgBG6rETMq7ZjutcE1ymTPjsEolhdpsmcsqaC1P7M3BQBU20vDm2KsaFsT6zePBIsdjmPPhHH2Tpp9LF4HJu8xB+GvP8XyxYsQWvadbuPjaLPRmyIxsjdFbYGL8OULQggIK4lTjgORQf0HtBnluWrlEWJzASJLJY6/5sGoxkEIzAv2g+3QnzHHAwCiQcKkXWbC5rWi5fc3ofXu26HEisPzIlusRgkN40z2bOkPI1DgZM9svSkMooBGjw2eAldSzDfFINCBVDKpdf8fwbLwcM0+hiGRLtIoVl5+Ebqe+jv3vCgQKqXYEBzZm8JSYt4UY0Xv49vZwoXFKCFEw+SnQCrROG0bOI5bBGJLdwYFACIQVG07Fd659eh/8zUsP/9sRNau0XmU42frZE/7KLYHQgkZ6wYiWN0XwkAkobvAGI03RZOn9LwpxgIxWgCLM+1zGvKBKvrWwiGEwLzjvrAddgogGZl9RIOE2p1nwlnvRefjj2DVVb/lnhc6s9GbYoRE50qbCVNK0JtiLBC7BxDS1wu9X3S3pvz/5fOApkoskFe7VDUZzh+enXG/uKKpJpXtvqEDKy5ejA3P/7vg+3BjYTjZs8ljw6wq+6iSPeOyivbBKFb2BtEXjkPV4b8/W2+KSc4hb4oSz1YfDczkM0pBA4Ux+TE2zU+JdLu2SK/cZgq88xoQ+v4bLFt8Jvyf/E/nUU48Joo3xVggggjiqExvSESAeFj/AQ3BhcUYIA4vWyUW0PVMsDnh+MEZMMzYTrOPtaoCdQtnQxAp2h+8F2uvuxrJQb9+g8wxJkncmOw5eRTJnkmFoisQw4qh46r5cPWklKI3lIU3hSSg0WNHhaW8Q7YsNLdDQoWbR1JlHZw/PAdizRTNPhWN1ahZMB1qOIS1N/wObfffAzVRPJUlywlFpegKTBBvijGiOY8K+Twq2J1LGCKIqRDU1kQDBS1dm0rqPAnmnQ/S7GNyWlG3+xxIVhMGP/8EyxeficDSr3QcZe4RSKrS6miTPZWh46oregLoCkRz5oeRUFS0DUTQH878W/BYU5UUy8GbYkyYbOzj28H+woZxrQ44jjkdxpk7aPax1bhQu+tMCJKI3hf/gxUXnYvoeu55kUuiSRmtvhACsczeFDVl4k0xVpgRC3BhUZIQO7u8OQ0V1pyEEALLLgfBdvBJgMhW7warCZN3nw2j04Kkz4fVV1+KjkeL3/MiG9KSPbNYbFQK9IUTWNkTRLs/Mq6TJMPeFNEsvCmqy8ibYiwQQtgunMkYkEcXzmwgkgHWA0+EeddDNPtYPA7U7T4bosmAaGszlp9/Nvpee7kktxiLiY3eFL4IksrI3hTuMvKmGAtEMgBWRr5SeKBgLpxcWIwR5oKIwqrEzTHO2B6OY88EsTqY7aLJgLrdZsPsdQCUovvpJ7HysgtLxvNiJIaTPWdVpzwxTFlEBSiAgWgSq3pDWDcQzigOtkalqZDtyN4UYll6U4yVYp5HhBBYdjoAtkNOZvoFAIDRYUHd7rNhsJlAE3Gsu+cutNx2I+RQSOfRlgfyRPemGCPEzohaqAoQ8es+FoALi7FjshZlGHdzpOoGOI8/G4KL7XQoGERM2nkGbLUuAEB45fKU58X77+g2xnwz7Ikxs9KOqW5r1nkYgZiMNX2po6qheGZHz43eFNFsvCmsZetNMRaYW4oobJ7F1hinbwvHMaeDmK3MdoPVhLqFs2GsSLUPfPAulp+3CKHl3+s5zJInFE+iZURvCpS1N8VYERzseaQWSKDzFW6MZAzjJgobxt0cweGC49hFmidGiCigesdpcExJKV41EkHLbTeidckdJed5kYnh0yTTvTY0eWxZH1cNJWS0+MJYO2RqtbnAoJRiIJLg3hTjgEhG7WOnOtjkZ4tUMwWOY7VPjKQigLNg8aYihImeDVh52YXc8yILRudNYS97b4oxYXWxDxQUSKBzYTEONPMsiiCMuzmCxQbHMadDapjFbCeEoGqbqXDN2FSDpP/1V1OeF82l53mRCUII7CYJTR4bZlTaUZHlIhVNpgqfre5NeWEklZTD54Zg5mz14TooE8GbYqwwBbqqAOHCugdujeiuhvO430Bws7PwBUlE7S4zYKsdsitXVXQ+/ghWX3MZEv35q4BcyiS4N0VOIIIAYmfZ5AdAZX19YQAuLMYF0Qg/FZuwAABiMMJ++M8zZrp7ZtXBO39TZCPesR4rLlqMnuefLZrtnVxiMYiY4rZiVpUdHqsxq5Mk8SFBsbYvhFCGSorD3hQTOVs9W7TyLAoVxs2EYK9IRQA1jqMSQUD1jk1wTt20/Rj85mssO/dM+D/9WK9hFj2UUgxGE2jxcW+KXKF9oED/ecSFxTgolTDuMESUYD3wxzBtu6dmn4qp1ajesSn1ZARA5STWP/hnrL3hGsiDxfUGmStMkojJFRbMrk5VV82kAwQCjOQqPpG9KcYCKbIw7kgIZiscR/8a0pTZzHZCCCrnT4F75qYIoBIMYO31V2P9A3+a8J4XKW+KGLoCMWR6X7FPYG+KsVBMx065sBgnmmHcAheB0YIQAZY9j4J5t0M1+9gneVC78wyQzcKOg59+jGWLz0Twm691GGVhMIhD1VWrnahxmNIiDSIBREIyvjlVDGWrT1hvijFABEGj2ulgQcK42UAMRtgP+zmMs3bU7OOeWYfKbbaMbPS88BxWXHwuYuvb8j3EoiSaVIa8KbS/12Fvisk82jc6TFbAYEr7mIb0P1DAV79xopXVXoxh3GEIIbAs2B/WfY8HNB6S1kon6hbOgrDZ20LS149VV/0WHY/9tawT0kSBoNpuxpxqB+qcKS8MiSBjFjqlFLJK0RdOoKMIq6oWO5rHTgvsC5MJIoqwHnACTNvvrdnHOaUK1TtOA9nsARltacbyC85G3+uvluUWI4tN3hThjN4URpF7U4wVQgh7OyQRAxL6JuJzYTFOiM0NkPR/xmLMs9ga07xdh6qjskONpgob6nafDcmyWWEmStH9z3+kPC82dOs00sIx7MaZaZFTKYVMsTGJc9gLo90fyZmbZ7mjLSyKex4RIsC6x5EZq6PaJ7lRu8tMkM2iWGo8hnVL7kDL72+CEi5cTQc9GI03RaOXe1OMB21fGH2Th7mwGCfa2biDuldpHAvGpvmwH3UqiDHdkwMAjDYz6nafDaPDssXn4RXLsPy8RRj44F09hqk7w94U/gzeFJRSKCqF1gvYQDSJlT1BdAWikAvkgFcymGyAxAjjloBABwDzjvvCuv+PmC8ZAGDxOlC322yIW+ULDLz/DpYtXoTQimU6jFJ/QvHUce2RvCnquDdFTtAWFvpG/riwyAGaSTNFHMbdHEPdNNgzuHRKZiMmLZwFs9u+xedKOIzmW2/Auj/eWTaeF9l6U0gCgUkSMZJcoNhkF74hTwXPygFNX5hEFLTA9t7ZYpqzM2yHZYoAWtMjgAASPd1YeekF6Hr6iYJZMOcaSil6gjG0+yMZf/PD3hRO7k2RE1IHCtLXcb0PFHBhkQM03QNL5G0LACTvJDiOOwtCBVvxigYJtbvOhKUy/RRM339fwYoLzkakpTnfw8wripq9N0WT145plfasvTBUCvSE4ljZE0RvSJ+S7aVGMdt7Z4uxcR4cR/9aMwJosJlRt8ccGOxbtasqOh/9S1l4Xgx7U/hG8Kbw2ozcmyIPMPMsVBmIBHQbA/9Gc4HZXtJh3GFEpyd1Rr+yjtkuiAJqd5oOS1W6uIi1r8eKi85Bz0v/KcmEtEhC3mjfrUXKm2LLSorDXhizqxzwWI2afzuMQim6gzGs7AnCF0mU5L9VvigFe+9skCY1plw6benzBAAkkwGTdpuVLi4ABJd+heWLF2Hws0/yPcy8MBhNoNUXRiwLb4oq+8QuwpcvikGgc2GRA1JhXMaiWEJh3GEEqwOOH5wBafJ0ZjsRBdQuYIsLmkxi/X33YO2Nv4Mc0E8djwdKKXpDMbQNRCBnCNmmvClsqLCwxYNRElJeGFUOuLLwr5BVio7BKFb1huCPcoEBAMRgAsyMMG7QV3L/PqK3Fo5jF0GoYG+TSkMW4CxxIQcGsea6q7D+wT9DTZaG54WiUnQORtEViGUswpfyprBxb4o8QmwuZq6PnicVubDIEZoqMezXdyA5gBjNsB/5KximbctuFwXU7jQD1mp23YTBTz5KeV58uzSfwxw3SUVF20AE/eHMi7fHahzyphg5W90oCWhwWTGz0g5nFvVIEoqK9f4o1vSlzvaX2gM017B9YWQgVnrVQkWnB47jFkGsqme3mwyoWzgLBgd726Tn+Wex4uLFiLWvz+cwx83ovSn4YyefEEFkHyiIDoKq+hyD599wjiA2jTBugcrWjhciSrAdfBKMc3ZmtwsENTtN1xQXyf4+rLryEnQ+/khRel4EYkm09IcylkYXBYJ6lxXVjtGHbM0GEVM9Nkz32mAzjixIYrKKdQMRNPeHEc6wHVPuMBdElKZABwDBYk/V6ZnUxGwXjQbULZyTdupqmGjzWiw//zfoe6P4PC9G400x1cO9KfSE+TyiFIgGdbk/FxY5ghjN7DLqJbogAqmjtNb9jodx7i7sdkJQs/MMWGvY4gKUouupv2Pl5Rci3rMhjyPNHpVSdAei6ByMZgzZWo3iqKqgal9HwjSvHU0eW1Yl2yNJBc2+MFp84Yyip1whVhfz81IV6ABAjCbYj/wVpLppzHbRIKJuz3ma4kKNx7Du7jvQcvvNReN5ISsq2kfhTcGL8OkLsbHXZL2eR1xY5BBic6V/GAuBKqX7BkqIAOu+x8E4b1d2O4DanWfCMW2y5jXCy5dh+eJFGPjwvTyNMjvi8sjeFABQZTehwWWFlMNsdbtJwnSvDVPcVpiysPsOxWWs6QuhbSAyoVw8iWRIeVpsRSkLdGDIAvyIX2qKC0EAJu+7HUwedsInAAy89zaWnbcI4ZXL8zXMrAgPeVOEuTdF8WKtABhlFfUS6FxY5BBi1VCJRVo3JFsIEWDd51gY5+3G7kApqubWoXL3nTSvoYRDaL7leqy75w9QY7E8jZTNsDdFa39mbwqDSDDVY4PXlp9KioQQVJgNmFlpR32FBYaRqpkBGIxtcvHMNPZyginQE1HQZOa342Jno7jQSoxWZUzeexs4ZrPbASCxoRsrLr0A3f96UnfPi2FvivXcm6LoIYLI9rMI+3XZUuPCIocwF0QAKPG3LWCTuDDNX8juQFU4PQIaTjoBELXDnn2vvYTlF56DaGtLnka6JcrQ6YuRvSkkNHrsWW1XjBdCCNxWI2ZVpWqRSFkUWhqIJrGqJ4jOwSjkMhcY2tshpS3QgSFxcfgvINXPYHdIxlE9dxJqjtAuEghFQcffHsbq312OpE+fTP+ErHJvihKD+TySE7rUDeHffi6xONh1Q0p4f3hzCCGw7P0DmLbZnd2BqjAEWjHrovNhmsT2wgCA2Pp1WH7h2eh56fm8queUN0UoozcFGfKmmOTUv5KiQAi8NhNmVzlQ4zBlLNcOpFw8+yMJrOwNoruMXTwLvT+cbzaJi5nMdpqIwm4MYdr550G0s91wASD49ZdYtngRBj//NF9DBQAMRpNo9YVG9KZo4N4URUUhBToXFjmEEGFob2tLaHiw6DK6xwohBJa9joFp2z3YHagK+fv3MOO8s+HZ70DN66Q8L/6I5puuhRzMrecFpRR9ofiI3hQmSUDTkDdFIRdDYWM1VSeqbCatgrMbUSnQW84uniYb0xa7XIQFkMolsR/+c0gNWuIiBtL6OWb/7v9gn88+9g0A8qAfa669Eusfui/nnhebvCkyJzrbjRIavTbYuDdFUaEVQddjHnFhkWOYX6YqA/HiyObOBYQQWPY8GqZt92R3oCqi7z+LyccchsYLfgvBzD6nDwD+jz/EssWLEPzum5yMbdiboi+ceT/ePQpvCr0QBYJapxmzqxzwWo2M1KstGXbxXNUbxGAZeWAQQthvW9FA2dTSAIbExWE/h9Qwi9lOEzHEPnwG085bjEk//Xkqw1ODnv88g5WXnI9YR3tOxhZLKmj1hbPzpnBZIHFviqIjdVKR4QitQwSd/xpyjGYCZxm9bQHD4uIomLbbi92BUoTffAqO+irMvfteWKez38wAINnXm/K8+PvfxuV5EczGm4IQ1LssqHGYizZb3SAKqKuwYFaWLp5JhaJtIIJWXwSxMjmiyhToVAWipeHomi0pcXEKpCmz2R0ScYRe/iuq998Xs266HYbKKs1rRdauxvLzz0L/m/8ds8iklMIXjqPVF0YyQy4P96YoDdgCPZj3k4pcWOSYQoaf9IYQAsseR8K0/d7sDpQi/NZTIKFezP793ag59kfaF1NVdD35OFZdcTESPT2jGsewN0VHNt4UXhvsptLIVt/CxdM8cpg5lJCxui+EzkC09PMvtOZRGSRwbs2wuDBMncPukIgj+OLDsHidmLfkPrh214gUAlBjMbT+4fdovfNWKJHRRUllNeVN0TOCN0UF96YoGTSfR3meR1xY5BgiGQGTNe3zckng3BpCCCy7HwHTDvuwO1CKyJv/RLL5G9SfdiZm/O5GSBUuzeuFln2HZYvPxMD/3s/q/vGhSoqF8KbQC7NBxFR3ysXTnsU+dn84leBZykXOiMUJ5jn8MhTowJDT7aE/0xYXyTiCL/4FCA9g2uW/w5TfLAYxahe9873zJpaddxbCq1Zkdf9wPFWELxtvikncm6Jk0DypyIVF6cEMP8UjoHJpFBQaLYQQWBYeDtOO+2r0oIi89S8kVi9Fxc67Yt4f74djhwWa11PCITTffB3W/fluqHH229Pm3hTxDNnqKW8Ka968KfTEakwVcMrGxXP4mO3a/jDCidIzaCOiBFjsaZ/rdQ6/EGwUF41z2R2SqciF0tuBqsOPxtw774F5SqPm9RLdXVjx2/PR/cxTmrkp2XpTmA0iGrk3Relh1jipmGeBzoVFHphI2yHDEEJg2e0wmHfcT6NHalsk2bYSBrcHM6+9GZN/dXpmz4tXXkx5Xqzb0vNiOFs9e2+K8spWH3bxnFxhGdEDI5pU0Nwfxnp/JOOeeTHCFOhyHEjqa7CmJ0SUYDvkZBga57E7JBMIvfRXKAM9sExtwtw7/ojKw47UvqCioOORh1KeFwO+LZpG400x1W2FsQSjfRMdIgiAlVGJOpJfgc5/KXmgXB04R4IQAvNuh8K8YH92B1VF6LXHIXevAxEE1B7/Y8y57Q8w1k7SvGasrRXLLzwHva+8AErpRm+KYCZvCgC1BfKm0AtCCDxDJluVNu2Q+DD+aBKrekvreOpEFOjAsLj4KQxN85ntNBZG8IWHoQb9EMxmTD37fEy77BqItvQIzzApz4szMfjFZwCAAPemmDAwBbqS35OKXFjkA7MdEMr7HL4WhBCYdz0E5p0OYHeQk6k3rv5uAIBt1hzMu/teuPfRECMAaCKBtnvvwepXXsvKm6LRa4OrwN4UeiEKBJOcFsystI+Yf6FSoDsYw+rezCWui4VCJZ4VA6nqwj+FYdo2zHYaHkTwxYehRlPl5N177o15S+6HfR67PwDIfj/W3Hwd1nz+NTpH8KawcW+KsqEQAp0LizxACGG7B0YGQWlphaPHAiEE5l0O1jwtQhOx1F5xIGVHLFptaLr4cjSefwnT84K4PTBf/H9Qd9Iw5Rpi2JvCVETeFHphNoho9FizClknlFSJ9lZfuLgLnBnMgMQ4hz8BBDoAEFGE7aCTNI+iqv5ehF76K2gilYdkrK7GrJtux6Sf/IzpeSE0NMFy9W2QG9iF0IBUtK/aYUI996YoGwoRQee/nDzBDD9RFYiVj1FWJoZPixjnsAuT0UgQoRf+AjUS3Njfe+AhmPuHe2GZtqmOgrjDLrD87k6Is9lhYaA0vCn0gBACp9mAmVV21DhGdvAMxmWs7g2hq0iPp2oK9GiwrIyyMkFEEfZDToZYO5XZrvR2IPTK30Dl5Mb+dSf/ArNuuA0Gb+XGftJBR8J8xc0QarWrEA97U3ispZ/ozNkEMZgAI+ukIhcWpQcjYQYAaDSo80AKByEE1n2Ph6GJnYimBvoRevEvUOObiuKYJ9djzu13o+q4H8P401/DfM5lIBnqJZihoLGEvCn0QCApi/DZVQ5UjJDFTwH0hRNY1RvEQBEeT2W/bdGycrIdiVRV1F9A9NQy2+XOZoTfeAJU3RR9cmy7PeYtuR/OfQ+EafEVMP3kVBCD9m/BaSDcm6KMIaznUSycN4HOhUWeIIyStQBAYxNHWACp8r22g06CVMcOvyr9XQi//DfQzeocJIkI5QcnwXDA4ZrXpYqCxDOPw3/BrxH69H85H3c5YBAFTHFbMc1rg1nKPNVllaJ96HhqpJiOp5o15tEEEugAIJissB91KgSnh9mebFmGyLvPbiEM4yYr8IuzIW3HjhoCAI2EEbv/TvguOwfRNatyPm5OccB+HuVPoHNhkS8kEyAy3hCGkq0mEsMFl8QqdhhW7m5F+PV/QJVl+LPwplB7NyB265VIvvIslGAAzTddi7Y/L9H0vJjo2IwSZlTaUec0QxwhxB1NKljbH0a7P1IU5dkJw8sCmHgCHQAEmxP2o08DsbLFVmLF54h+/AoopejNwptCWbsK0esuhvLZh4h3dWLlb8/HhmefnjDbTBMKs8Y8ypNA58IiTxBCmIviRFwQgVRBHPuRv4JQUclsj3e2Yn3zWnSP4E0hf/oBotddDLV59Raf977yApZfdA6i61pzN+gyggyVaJ9VbYfXOvLx1IFoEit7g+gLxwu7PcIF+haITi/sR52aKjDFILJqKVrau9GfwZuCqioSLz2D2G1XgfZtss+nsoz2vzyANddeieTAQM7HzikcekfQubDIJ6wwrpwATU7MN2vBYofj6F+nJeQlPJPRf+BpiFZo+1kQAO6wD/Q/TwDRCLNPbN2Q58WrLxVdrkCxIAmpAmczK+2wGTPvp6sU6ArEsLovhGC8MMdTuUBPR/JOgv2IXwLSloIrVj8P/QeehoTRpv23AoG7qxnqf58HNAr+Bb78HMsWn4HBLz/L5bA5hURngc6FRR7RVokT820LAASHC46jTwMxW0FBEJq9Jwb2OQWqxpEoYJM3Rc20Rsy7+z6499lPsy9NxNH2pz+g+ZbrIYcm7sNnJMwGEU0eG6a4rDCImbdH4rKKVl8k5SFSiO0RLtDTkCY1wn5I6lgpFQ0YXHAkBnc9FtTAjmQAm7wpahcswNwl98E2V8PdE0OeF7+7Au1/eQBqsvg9TziZ0Vugc2GRR4hG4hkm8NsWAIjuapiPOBUD+5yM8Px9mWfuh3FbtvSmEG02NF18BaaedzEEk/Yi6v/f+1h27pkIff9dzsdfLhBCUGExYFaVA9V2E6Pk15YMxpJY1RvCQFTf0yNcoLMxTJ0N6aCfof+AUxFr3D5j32r7lt4UpuoazL75TtSeeDIynUve8OzTWPnb8xHr7Mjp2DkFQEeBzoVFPjGzQ5J0gu4PDxOMJdFGKpCsnKLZh8QjqIl0o8aZ7k1BCEHlQYdi7h/+DMu06ZrXSPb1YuUVF6HrycdBNcK+nNTx1BqHGbOqHCOWZ1coRbs/inUDESR0il5wgZ4OpRS+SByd9nooDq9mPzHkQz2C8DCK8BFRxOSf/RKzbvw9DB7ta0TWrMLy889C/ztv5mz8HP3RU6BzYZFHiCACpnRxMdGOyg2jUoruQBQdg9GM9SoMvevgffMh4L+PILlupWY/c30D5ty+BNXHHJfhpio6//43rLrqt0j09Y5n+GWPURIw1Z2qnmoa4XhqylwriP5wHMiYbpsDNAX6xJxHsqqi3R9FTzCe8V/evG4pPG8+DPnlh6EM9Gj2G/a8qNh1oWYfNRpF6x23oOWu26BE2DlOnOJGT4HOhUWeYarEeGhCWHtvTlxWsM4Xhj+aYb9WVWH7/h243/8HxFgoVbTsv6miZVoIBiMaTv8Npl99PSSndp5G6LtvsGzxmfB/zD0vRsJukjCz0o5JTjMy1XBTKdAZiKEzENXulAO0BfrEi/yFEzJa+8MIZ/AaIck4nJ8+h4ovXoKgJEFjEQRfeAhqyK/5N1JFBaZfdR0azjw7o5GW763XsfyC3yDMPS9KDx0FOhcWeYawzg9TCsQnhuqnlMIfHdmbQpTjcL/3GOwr/wey+XuYnETolUehBHyafwsArl0XYu6S++DYbgfNPkowiLU3/g5t998DNZG5VPREhxCCSpsptT1iyrw9EkvmXyRPdIFOKUVvKIb1IxThM0b88Lz5MCzty7b8+3AAoZf/lnE/nRCC6qOOxZw7/ghzfYNmv3hnB1Zech42PPcv7nlRQugp0LmwyDda+1oTIIyrqBSdg1F0BzJ7UzhMEqZNqoRjCjtfgsbCqUUxHst4P6O3EjOvuwV1Pz81Y0Jo74v/wYqLzkG0TTsSwkkx7N45xWWFVMAS9BNZoA8XjesPZxbDHqsRjQ11sFSxrb+V/i6EX39yRDFgbZqOOXf9CZWHZHC+lWW0P3w/1lx7FZJ+7nlRKugl0LmwyDPMBRHlLyyiCRkt/SEE4xlCtgBqHWbUVVggCgSWhYfDOGdnZl91YANCr/9ji3oIzGuKIiadcBJm33oXjNXsBRYAoq0tWH7B2eh97WXueTECw6dHZlbZ4bJkX5Mlp/+uE1SgB2JJtPaHEEtq/+5FgaDBZUW1wwxBSpVbl2obmX2T65Yj+vErI95XNFsw9dwL0fTbqyDatH0xAl9+hmXnnonAV1+MeE1O4dFLoHNhkW8MZkBkhJLL9KgcpRR94TjWjRCyHfamcFmNG7PVU0XLjoNh6hzm38jrVyH64YtZjcM+Zx7mLbkP7r330x5rIo62e+5Cy603QA6V5/eRSyRBQIPLikb3yN4XQMpcK1MuwGjQSjwrV2GhUoquQBSdg1FkKjxrM4po8tpg22y7ihiMsB3xCwjuaubfxJe+j/iyT7Mah2fvfTH37vtgmz1Xs4/sH8Dqay5D+yMPgspFVGeGk45OAp0LizxDCGGeHy5H58CkomL9QAR9ocznol0WwxbeFJszXLRM9LKjDfHvPkLs2+wSMEWbDU2XXIGpiy/K6Hkx8OF7WH7eIoSWf5/VdSc6DrMBMysdI1qDJ1UVzf1hdA7moCy7wTRhBHosqaC1P4zBTInOGPamsG70ptgcwWSB/YhfgGgk7EXefw7J9jVZjcdUU4vZt9yJ2h//NLPnxTP/xIpLL0C8qzOr63L0Ry+BzoWFDjDDT8k4qFw+CYSheBKt/WFEMoRsBUIwucKCWqclzZtic4jRBPvhv9QsQBX98AUk27SPoW5xLUJQefBhmHPXPbA0sSusAkCiZwNWXnYhup76O/e8yAJRIKirsGCa1wZDhnwWAOiPJLC6L4hgbOwOjhNBoKe8KRJY5wtn9AgxiAIaPTamN8XmiE4v7IedAggM63ZVRfi1xzMeQ90cIkmYfMqvMPP6W2HwsCusAkBk1QosO+8s+N55K6vrcnRGJ4HOhYUOaBmTlMPblkopNgRiaPdHoWTYU7cYUiFbhzm7PXrB4YL98F+wJwGlCP33H1D6u7Mep6VhKubc/kdUH32sdidVRefjj2DV1Zci0d+X9bUnMjajhHq3ZcR+SYWidSCC9f4I5DGeJNAW6KVvOS2rKjr8UfSMUITPaTag0WOD2ZC5zssw0qRGWPf/EbONJmIIvfw3qLHsS2c7t98R85Y8gIpdMnleRNByx81o/cPvoUTzexSZMzr0EuhcWOiAZgJniWe0D3tTDEQzR14qbSZMcVthEEf3c5NqGmA74MfsxmQcoVf+BjWSvTgTjEY0nHE2pl99HUSHU7Nf6NulWHbumfB/+tGoxjtRISOagW/CH01idW8Ig9HkqJM7teYREqU9j4a9KUIZ8lEEAkxyWjYmOo8G06wdYd7pAGabGuhH+NXHQZXscyOkigpMv/o6NJxxNoik/aLQ/+Z/sfz8sxBZs1qzD0d/mNtjyfiIifGjgQsLPTCy3+hoojTVfLbeFJJAMMVtRaU9c8g2E8YZ28G868HMNjU4gNCrj476jdW16+6Y98f7Yd9Wu76CEgxg7fXXoO3+P3HPixwjqxRt/lRRs+RobMFNVubHNF668ygbbwqzJKDRY0fFKE7kpF1jl4NgmL4ts03uakHk3WdHJfQIIag++ljMuWMJTJMze16suGQxNvzn3/z0VZFAjOx5hBw+j7iw0APJyN7nLEFhMRpviiavHVZjZnOlbDAvOADGWTuyx7OhDZF3nhn1omX0VmLW9bei7me/HMHz4jmsuPhcxNa3jer6HIxoCx6Iy1jVG4Qvkl1RM6Ih0EsxYpFQVLRl6U0x1WODcYR/y5EgRIDtgB9DrGaLgMTKLxD/+t1RX9c6bQbm/uFP8B58mGYfKstof+herLnuKiQH/aO+ByfHaAl0LixKC0IIM2pRalsh0YSM1lF6U+QCQgis+/0QYu1UZnti9deIfTH6AklEFDHpxJMx+5Y7Yayu0ewXbWnG8gvORt9/X+FvXaOgxm5GXRa24B2DUbT4wkhkiH4BAIxmgLHtUmqRv2FvimiW3hRjjfZtDZEMsB/+cxA72/o++vGrSDSPvhqwaLagcfFFaLrkCghWjbdhAIHPP015Xiz9ctT34OQOTYGew+cRFxY6wQw/lciCSClF/5A3RXKU3hS5gogS7IedAsHBzkiPffYGEquXjuna9rnzMffu++Decx/NPmo8hnV/vBMtv7+Je15kCSEEXpsJM6scsI9gCx5OKFjVG0RfOK4p3ggRhsTFVpSIQB+VN4VnS2+KXCFYHbAf8UvAwD4qHH7zKci97WO6tmef/TFvJM+LAR9WX30ZOv72MPe8KBQ6bM1zYaEXJsaXqSRBleLOaE8qKtb7I+gdhzdFrhAsdtiP+AVgNDHbw28/Dbl7bFsWkt2OpkuvwtRzLgDRuD4ADLz/DpafdxZCK5Zp9uFsiVEU0Oi2ot5lgZhBcFKkTLXWDUQga+ResAR6KUQssvWmqBr2phhlovNokLyTYDvoJLYnhZxMnRQJDY7p2qbaSSnPixN+ou15QSm6//UkVl52AeLdXWO6D2fsEFFKbc9vDY9YlB6aCTNFnHi20ZsikcmbAll5U+QK0VMD+8EnA4Tx01VkhF59FEpwbLULCCGoPPQIzP3Dn2BpzOR50Y2Vl16Arqef4J4XWUIIgdtixKwqOypGOHIcjMtY3Rdi+16wBHoyVrTFsCilGMjSm2KqxwbvCN4UucLYOBeW3Y9kttFIEKFXHslYsCwTRJIw+eenYeb1t2T0vAivXIFl5y2C7723x3QfzjjIs0DnwkIvWAsiAFqEiWcqpdgQzNabwp61N0WuMEyZBcteRzPbaDSE0MuPgCYyFyzLhKVhKubc8UdUHfUD7U6qis5H/4LV11zGPS9GgTRU1GyqO3NRM1lN+V6ktg02/Qb1yGjPFYqqomMwig1ZelNYsvSmyBWm7faEcd5uzDalrwvhN54aV3Eq5/YLMHfJ/XDuvKtmHzUSQcvvb0Lr3bdDiRXfd1iuENbzKBHNWQ4ZFxY6USoRi43eFJH8eFPkCvM2u8O07R7MNtW3AeE3nhzXoigYjZhy5jmYfuW1EB0aBmcAgt98PeR58fGY7zURcZoNmFXlgGcEW/D+SAJr+zYrwqW5P1xcAj2SkNHSH0YoQ6Jzypsit4nOo4EQAutex0Cqn8FsT7YuQ/ST18Z1D0OFCzOuuQH1p5+V2fPijdew/PyzEWnOzmacM05Y84iqwBijVFvDhYVeaGa0F8eCuNGbwpd/b4pcYdnjSEhTZjPbkutWIPbF+G2FXQv3wLwl98O+zXaafVKeF1dj/QN/gprknhfZIgopi/fGEaIXMVnFmr4Q+sNxTWFRLAJ92JuiLWtviszCKt8QUYTtkJMhuKqY7fGv3h3TSZEt7kEIao45HnN+fzdMk+s1+8U71mPFRYvR8/zoPDU4o0c78peb5xEXFjqhmdFeBMJCUVPZ6t2BGDLNZ3sOvSlyARFE2A8+CYKHfVQ09tmbSLatGvd9jJVVmHXDbag7+RcZPS96XngOKy5ejFj7+nHfcyKRKmpmhyPDKQgKoDMQw/oI+wdaDAI9qbM3Ra5IFSz7JYiZ/bAJv/00FP/4t/usM2Zi7l1/hvegQzX7UDmJ9Q/+GWuvu5p7XuQRkmezueL4ZU8QWOeHC+0aGE3KaPWFEIhl9qaocZgxuUAh20wQozm1KDILllGE33wSatA//vuIIib95GeYffMdMFaxy1EDQLR5LZaf/xv0vfEqf+saBZIoYKrbiklOc0aD8EASkAWGAClwjkUglkRLFt4U9Tn2psgVYoUXtkM1CpYl4gi/9jhoDqJxosWCxvMuRtPFl0OwaHteDH7+CZYvPhOBpV+N+54cBnneUuTCQk9Y4acCZbRv9KbwRZBUtB+ARjHlTeHOgzdFrhAdbtgOYZ8UobEIQv/9+6hqIWTCPm8bzF1yH1x77K3ZR43HsO7uO9By+01QwtkXeJroEEJQaTNhRqU9o2tnQkiP/BXKbE6lFN1ZeFNYh7wpRvLzKCSGuiZY9zqG2ab4uhF5L3dbFJ59D8C8JffBOmuOZp+kz4fVV1+Kjkf/wj0vck2e3aC5sNARZiYuACT1fduSR+FN0ejNrzdFrjDUNcGykG0rrPSsR/TDF3N2L8nuwLTLrsaUkTwv3nsHy85bhPDK5Tm790TAbBAxo9IOr0ZiZ1Jk/JvnMKM9W+JyypvCn4U3RUOevSlyhXHerjDOWsBsS6z6Colln+bsXqbaSZhz612o+eGJ2p0oRffTT2DlZRdyz4sckm836OL/pZcTWuEnHd+2QvEkWorMmyJXmLbfG4am+cy2+PcfI74qd2FVQgiqDj0Cc+/6E8xTGzX7JTZ0Y8WlF6D76SeL1muhGBEIQV2FBVPd1rTtt4TIyFWiKmhy7EeMR8OwN0Vr/0jeFERXb4pcQAiBdZ9jIXpqme2RD56H3DM2Z07m/SQJ9b/8NWZedwskdybPi+Upz4v338nZvSc6TGtvHrEoPQp5Br/YvSlyASEEtv1PgFBRyWyPvPtvKP3dOb2nZcpUzL3jHlQdwfbVAAAoCjoefRirr7kMSV9/Tu9f7jiHEjs330JgRiwAbOgfgJxn8aaodBTeFHbdvSlyATEYYTv0Z2yHW1VB+L+PQ43ldovPueNOmLfkPjh32kWzjxqJoOW2G9G65A7ueZELWAmcOXKD5sJCT7RMsvKcwJkoEW+KXEBMZtgP/RnAOjMvJxF67fFxmWexEEwmTDlrMaZf8X8Q7Rk8L5Z+hWXnnonBzz/J6f3LHcOQJfhwYiczYgEgGY1gdW8oo3fEeEh5U2S+PimwN0WuEF2VsO1/ArNNDfoRfvOf4/KJYWFwuVOeF6ctApG0c1H6X38VKy44G5GWtTm9/0RDuxjZ+J9HpfsEKUGIaABExoTJUwiXUorBaAItJeRNkQtEby2s+xzHbFMH+xB+e/Rl1rPBtfuemLfkPtjnb6vZRw4MYs21V2H9Q/dxz4tRMJzYOb3SDmJiCwtJTUBWKVp8YXQFtnTsHA/ZelOYJAFNHlvBvSlyhXHaNjBtzy7MJ7etROyL3FtxE0FAzbE/xJzfL4GpbrJmv1j7eqy48Fz0vPAcP301VrS25nPwPOLCQm+k9PAilXP/gEl5U8TQVWLeFLnCNHuBpl1xsvlbxL/5IC/3NVZVY9aNv8ekn/48s+fFf57BiovPQ6wjd/vVEwGLQURjtZvZJqmbQrh94ZRjZ1weXy2XbL0p3Bu9KUpv6yMTloWHQprUxGyLffYGkuvH7xPDYqPnxQEHa/ahchLrH/gT1t5wDeTBsRVNm8gQxrMIAJCD5xEXFjpDWFXlciwsokllyJtCe6+smL0pcoV1r6MhVrGd/qIfvYJkZ0te7ktEEXUnnYLZN90BQyXb0RAAos1rsPz8s9D3xmv8rWsUiIIIiOlbXZsLCyDl2Lm6LwRfJDGmf99gNt4UhKDeZUGNw1xSic7ZQgQRtoNPArGytvgowm/kxieGhWi1ovGC36LxossgWDTC9gAGP/0YyxafieA3X+dlHGWLQSOyxoVFCWJgqEQ5N/7sm7wpwiN6U0z1FLc3RS4gogTboSezXeaoivDr/4AaCebt/vb522Dekvvg2n0vzT5qLIZ1d9+O1jtugRLhnhdZwxDoopoupCkFOgajQ9sY2eUEDHtTdGTjTeG1wW4qvUTn0SDYnLAdfJIuPjEsvPsdiHl33wfrTLZ9PwAkff1YddVv0fH4I7zicLawXnKRmwg6FxZ6w/oyFXncRxFH601hLsFs9bEgOtywHXQimHVaIkGEX38CVM3fQiQ5nJh2+TWY8pvzQIzae+++d9/CsvPOQnjViryNpZwgjLetrSMWmxOIy1kldpajN0UuMNRNy+wT87+X8np/06Q6zL71LtT88MfanShF91N/T3lebMjt6a9yhBCBGfnLRSGyiTErigjmVggwrvBTKC6jxTeyN0VdCXpT5ALDlNkw73wAs03ubEb00//m9f6EEFQdfhTm3nkPzFMaNfsluruw4rfno/uZp7jnxUgw9oeNVIYpw4N+OLGzJxRL2xopZ2+KXJHRJ+a7j3LqE8NCMBhQ/8vTMfPamyG52Hk2ABBesQzLz1uEgQ/ezet4ygLG84hHLEqRHCbMUErRE4yh3R+BkiFmO+xN4SxBb4pcYd7pQEgNM5lt8a/eRaLl+7yPwTK1CXPvvAdVh4/gefHIQ1j9u8uRHPDlfUwlC2NBJKqM6V7riKXYNwTjaBvYNGey96aQStabIhds8onxMtsj7/4bim9D3sfhXLAz5i25H84FO2v2UcJhNN96A9bdcxfUmD7GaaUIK/LHcyxKEY2EGTrKPIthbwrfCN4UXpux5L0pcgERBNgO/AmIvYLZHnnraSiD46/gOBKCyYQpv1mMaZdfA9HGKpyWIvj1l0OeF7mzUC4ntCJ/gpLE5AoLpritEDNEFAJxGWv7QvBHEll5U9Q6zZjkLN9E52whJnPKPEvLJ+bVx3LuE8PC4HZjxu9uRP2pZ2T0vOh77WUsv/BsRFqa8z6mkoT1opuDnL+J/bQpAJpbIaPwNBiMJtDqCyOWhTdFlb34KikWCsFig/2QnzGL79BELJVvoVPil3uPvTFvyf2wz9tGs4886Meaa6/E+ofvg5ocvxteWaEZ+UstihVmA2ZW2WEzakcXkoqKrkB0RG+KRo8NLkt5JzqPBsk7KaNPTOT9/+gyDiIIqDnuBMy+7Q8wTarT7Bdb34YVF52Dnpf+w09fbU2ecv64sNCbERbETCgqRedgFF2BWMZs9ZQ3ha3svClygVTTAMueRzHblN4OxD5/Q7exGKurMeum2zHppFMye1489wxW/vY8xDq558VGNCN/mwS6QUwZVtU40uecSFJlzDOJhWFvilIowqc3mXxiEqu+QmLNUt3GYps5G3P/cC88+x+k2Ycmk1h/3z1Ye+P/QQ4EdBtbsZOPnD+ACwv9GeMRn5Q3RXgU3hT8q9XCNH8hjDN3YLbFvnoHclerbmMhooi6n/4cs278fUbPi8ia1Vh+3lnof+t13cZWzGQb+SOEoNpuRqMntTVCAEgEGROYy92bIldY9zxK0ycm8u6zUEP6mVaJViuaLrwUjRf8NrPnxSf/S3lefKuf8Clq8mSSxZ8+OkMEgW3rrfFFbulNoR2emijeFLmAEALrvsdDcDEe5JQi/OZTuuwTb45jm+1SnhcL99Tso8ZiaL3rNrTccQuUiH4VcYuSUUb+bEYJLrMB0ghRCgCorTCXvTdFLiCSAbZDfsosVkYTMYTfyn09kZHwHnAw5v7hXlhnsBO1ASDZ34dVV16CTu55kbOcv63hwqIQZJkwIysq2rk3RV4gBiNsB57I3IJQgwOIfPC87mOSHE5Mu+J3mHLWYhCD9oPN986bWH7+WQivXqnj6IqMUUT+4kOJzoG4drSPUgpFpUiqFOt8kRGTojkpRKcH1r2PZbbJHWsR/+ZDfQcEwFw3GbNvuxs1x7GLqAEAKEXXU3/HyssvQrwn/ydZihVNW+9x1jHiwqIQsM4Ob/VFhoe8KcLcmyJvSNX1MO/MrkWQWPklEmu/0XlEQ54XRxyNuXf+CeaGqZr94l2dWHHJeej+99MT0vMim8gfpRT+IW+KTEX4KKVQKDDcgyLl1ply3uTJfiNhnLkDDDO2Y7ZFP34Vcn+XziMa8rw49QzMuPYmSC6XZr/w8u+xfPEiDHz4vn6DKyY0cyx4xKLkyFQvZNibYj33ptAF8477QqxlP8D13ifeHEtjyvOi8rAjtTspCjr++gDW/N8VE9PzgvW2NeQaOJzo3D2CNwUFIFMw+/giCTT3Z96C5AxtLe5zLIiNcZRbVRB+40lQuTCnmioW7JLyvNhxJ80+SjiE5luuw7p7/jDxPC/yZOvNhUUhYNULUZKIJ2XuTaEzKX+LE5nfCY1HEX77ad33iYcRzGZMPft8TLvs6oyeF4GvvsCyxWdi8MvPdBxdEaDhGhhJyGjpDyGYyZsCKW+K6V5bxiOp0aSCNX0jW4FPdASTFbYD2FsPqm8Dop+8pvOINmFwezDj/27C5F+dDoja33Xfay9h+UXnIrouP8UJi5HR5vxlC38yFQBWxCJo9qLVFxnRm6KBe1PknNQ+8THMNrl9DeLf/E/nEW2Je899MHfJfbDNZdspA4Ds92PN765A+18emDCeF1vPIwrAZ/QMFRwbwZvCm/KmMEoimjw2eG3abp3DVuB94Tj3QciAoX4GTNvvzWyLf/MBku2rdR7RJoggoPb4H2PObXdn9rxoa8XyC89B78svTJzvOg8mWVxYFILNFkSVCNhQMR0bXDMzhmztRgmNXhts3JsiLxhnLYBh+rbMtugnr0LpL2xRI1N1DWbffAcm/eRnGT0vNjz7NFb+9nzEOjt0HF2B2GweyYIRHZ558NkmZ/wTljcFIQR1TgsaXBZGqbpNdAViWO+PQs1kIjPBsex2KERvLbMt/NbTUGOFPc1kmzUbc//wZ3j2O1CzD00k0HbvEjTfdC3k4ATwvGBG/sb3csKFRSEYcn6MSTas926LoEXbv2CjN4XLAol7U+SN1D7xcSA2Z3qjIhd0n3gYIoqoO/kXmHXDbTB4KzX7RdaswvLzz0L/2/qZfRWEoRBuyORGW+W2iBkZ391w1yy8KVwWI6ZX2mHMsMU4GEtibX8IcXmCH1PUgIgSbAf+hBlep+EAIu8+W/BIgGi1oemiy1KeF2azZj//xx9i2eJFCH6nfxK3nhCGEzHGWfGZP6kKABUkDFhr0e6dj6SkbebCvSn0RTBbYTuAXZZZ8XXnvQpqtji23R7zltyPit320OyjRqNovfNWtNx1W9l6XlBBRK+jEd3u2VAF7SRmq0FEo9eWlTeFxSBiRqUdDpN2ZDAmq1jTF8poVjeREb21miXWk83fIrHqS51HxGaj58X0DJ4Xfb0pz4t/PFq+nhesHAsuLEoLWVXRkTSg39kIEO1//gruTVEQUvvEezHb4kvfR7J9jc4jYiM5nZh+5f+hYdE5mT0v3no95XmxZpWOo8s/cVlBG1wYtLHD7sNU2k1oGGWisygQTHVbUW3XOOMPQKXAuoFIqiLqRNmLHwWmbfeAVM9+YEfefx5KoDhOMZkn12P27/+A6mN/qN1JVdH1xGNYdeUlSPT06Dc4veARi9ImHJfR0h9GRNH+Zx/2ppjEvSkKhmXXQyF6tPaJ/wk1XhwRAEIIqo/8AebccQ/MDVM0+8W7OrHykvOw4dnS97zY3JsiAe2ogjQkDiptpjFF+wghqHGYMdVtRaaCpj2hONYNZD4aPhEhRIDtgBNATNb0xmQ85W5bJL9FwWBEw2mLMON3N0KqcGn2C33/LZadtwgDH32g3+D0QENYjEcwc2GhA9l6U5gho5F7UxQcIhlgO+gn7Cqo4QAi7z5XVG+p1qZpmHPnPag89AjNPlSW0f6XB7Dm2quQHBjYok1NJIrqv0eLbL0pHBJFk9cOSw4SnZ1mA2ZU2mGStJfKYFzGmr4QYskyDZWPEcHmhHVfdhVUpXsdYl+9q/OIMlOx866Yt+Q+OHZYoNlHCQXRfNO1aPvzEqjxLU9OqIkSdWtlCQtgXFELLizyTEJWR/amoBTuUAcaEMiYOMbRj4z7xGu/QWL11/oOaAREswVTz7kA0y69CqLNptkv8OVnWLb4TAS++mLjZ233/RGBL4rbAyMrbwqqoHpwLWoNMsRMYYZRYpJEzPDaUZFB8CcUFWv6QxiM8ryLzTFO3xbG2Wxzqtjnr0PuKa6KvQaPFzOvvRmTf/nrjJ4Xva+8gOUXnrPR84LKMlZfcxni3fq7jI4XZvImwIVFsRKIJtHqC2X0phCVBOoGlsMbWg9C+RtPMWHabk9Ik2cw2yLvP1c0+8Sb495rX8xdcj9sc+dp9pH9A1h9zWVof+RB9L/9BvpffzVVkCkXUQtBBAgBBBGDH70z7stRStEXio/oTWFMhtHQ9y2c0d68zCNBIGhwWTDJqX2KgFKgbai2TylEgPTCutfREBye9AZVTZ22GmddilxDBAG1PzwRc277A4y1kzT7bfS8eOUFdP7jUYS+/xZdTz4+/gFsNod0gQuLPLLZlxleNr6SuqpK0TUYRWcgikxbr9bYAKb0fQNrInVWmo4zYYaTWzbtEzNO7iTiiLzz76J8gKQ8L+5E7Yknp37TGmx45p9ovfNWAEBk7Wr4c7B3bJ29Dap+9AtYZ2+D8NJP0fOvR8d8raSiYv1ABH3hzGY9FeEu1Pd/B6MyZMes5sclkxCCSpsJTR4bpAwRke5gDJ0BntQ5DDGaYTvwx8zfojrYVzSnrbbGNmsO5t19L9z77K/ZhyYSaPvzEnQ//QQAoP/tNxBb3zam+wW/+gTAlnMIAPpffXZM18saLizyx+ZfZqx55ZgXxFhSQasvjMEMR9EIgMpAKyb5V0Kkmy2CeVoQOWNHsFdo7hPLHWuQWPkFs63QEFHE5J/9MuV54fFm9Tedfx/HkTpBhHXu9qg//xp4Dj4G9edfA+uc7eB/b2xWzsF4Eq39YUQy5C2IBJg0sAJVwXUQNs+6yLNAt5skzKi0w5LhxJYvkkArT+rciDSpEeYF7Ad0/NsPIfes13lE2SFabWi6+HJMPe/ijJ4XG1FVdD7x2JjuFVu7gjmHgp/lOVlU0MhF4sJidFBKEY1G4Q+FAaORvSC++ypkOfsHPaUUvnAc63xhJDIULRr2pnDF+9Jd/njEoigxTt8OxlnshK7o/16GGgnpPKLscWy3Q8rzYteFI/aNtbXC9/47WV9bVVVEIhGEzDaAUti22XHjCQxCCGzbLgCNx6GMQqyolGJDIIYOfxRKhjd+q0HEVKcBtrg/vVEHvwGDKGCa1waPVdsKPBSX0dwf4kXMhjDvdCDEqvr0BkoReeeZovWJIISg8qBDMfeuP8Myjb01ujkD77+DSMvarK+vKApCoRCoLLPnUCKBSCQCNV+naDRyScYTQZ9QwiKZTKKnpwcrV67E2rVr0bVhA5DU/jJXrFiBdevWpb70DIucrKpo90fRE4pnzFavMG/mTZGHs8Oc/GHd6ximKyeNRxD58IUCjCh7pIoKTL/qOjSccTaIlPnEUdc/HgUdQVDHYjF0dnZixYoVaG5uRs9gADAYEP7uq43zhFKK8LdfAgYDVqxYgY6ODkSj0YzXjcsK1vnCGIhm3nOvtA15U0i5f9MaDQIhmFyROe9i2Ewryk+MgIhiakuEsfYp/d2ILy3u0uXm+gbMuf1uVB9z/Ih9Ox9/JGM7pRThcBjr16/H8uXL0dramnEONTc3Y+XKleju7kYi16dP+FbI2FBVFV1dXVi5ciV6enq2jERk+DIBIBgMorW1FWvWrEGE4WA47E0RTmgvxhu9KSo286ZgfZlFqtg5ADGZYd2LXagsuWYpkutW6Dyi0UEIQfXRx2LG/92QsV+8qxP9b7L3vJPJJNatW4c1a9bA5/Nt8QalbLMzIsuXov2ua+F7/Xm033UtIiu+gbLtLqCUYmBgAGvXrkVLS0vawkgphT+a8qaIj1CEb4rbikr7kDeFxoKod65Spc2EKW6rZp0RWaVo7udOnQAguqs1t0Sin78Bxd+n84hGh2AwouH0s1B/2pkZ+w1++jHCK5cz22KxGJqbm9HS0oLBwcGNn2eaQ0AqstHX14dVq1ahvb19VJHATGifChn71nzZC4tQKITVq1ejv7+f2T7SlzlMPB5Hc3Mzuru7oapq9t4UBpHtTcHySOARi6LGOG0bGJrYFUbD7z0LmhhfRcB8QylFz39GTgTrfPJxqFtl6g8MDGD16tUIBoPMv1H3OhTKgj0RaV6J3n89ikjzSig77QV1z0O26BcOhzfOR0rpJm+KwAjeFCYJTV47rJt5UxBBAFiP8wLMowqzAdO82kmdw06d/SMkok4EzAv2g+CuTm9QZETeLc6E6M1RYlH0vvryiP06topaUErR09ODNWvWMKN32c4hAPD7/Vi1ahUCgRwUSctDxKKsS2UODAygoyNzlUd1r0MBAJHvPkdk5XeAwaD5ZQJAX18fIpEIpIpqRDK8XQGA12rc9Ha1NayEGS4sih7r3j9AoGMtaCK2xec0NIjop69pRjWKgcHPPkbw269H7Jfs60Xfqy+j+uhjQSnFhg0b0Nc38pukutehG+dTJiil6OrqQiQaRdxUkfEY6XARvgqLgT2PRBFQtnqzKlAStNUoYbrXjtYB7chLZyCGhKKi1mGesPV/iCjBtt8PEXz2PmArOSl3NiOx4nOY5u7C/uMioPel55HYMHK14+DXXyL47VI4tt0eqqqira0NoVDmfKxs5xCQimC0tbWhtrYWlZXaRQlHRCt5cxwREUKLXR6OkWxExXgwmsxQHJUgjHofkkAwyWmBLUMhI6X5S9DgVou10QppLrtOBad4iC/7BJF3WW/+BI7jz4JUo22vXWioqiLR24NY2zpE169DbF0rom3rEFvfBjW+SSxJLje2eeBv6PH7NaN9ucBssyNpcTMfsiZJQF2FZYsS51sjL3sXSG4ZBSAV1RAbd8j1ULNGUSnWDYQRTmgvzE6zhAaXdULb9kfe/w/i332U9jkxmuE86SIIVkcBRpUdVFEQ7+pEtK01NZfa1iHa1op4R/sWOUr2edtgxk23o62tDeFwOG/jqampQVWVdpXsTFA5CeX7t9M+F2qmQ6idPqZrlqWwCIfDaGlpyft9jBYbVPuWR/lsRgmTKswjljhXWpeCDm7Y8kPJCGn+fjkeJSfXUKoi9J8HIHe1prUJnho4f3QuCKtiYBGzheBoS4kNwz77w8/y8MgxRocbqnnLh4jLYkB1hhLnw8grPgC2qt1CHF6I09huj3qhUoqOwSj8GZw4LQYRjW4rpAnqtksTMQw+eSdoOD2cb5i+LeyHnFyAUY0PqiiId3ZsFBqx9W2QjvkhAqM4YThWpkyZAqczPcF8JKiqQvn2jbTPSVUjxLpZYxpL2f2iFUVBe7s+NrGJaBhCYtOiVm03od5lGVFUAOCnQkoYQgRY9/0h8ztUfRsQ+/q9AoxqfBBBgKmmFhW77IbaH56IyWefj0Ezo4BUHkgEBwA5ldMxfNKiNtsifEWaqyQQgvoKS8YKqdGkgrX9YcTlwo+3EBCjGda9j2W2Jdd+i0TLMn0HlAOIKMLcMAXuPfdG3UmnoPo35+kiKgCgo6NjVBYJw+QjV6nshMWGDRuQTOqXfS0HfTASikaPDZ7RVFKcwCHQckB0V8G884HMttjnb0IZ6NV5RLmDUor29nZdk+hIyAezJKDJa4NjVEX4GPOoSGKwwxVS6yssmidGEoqKtX1hhDPUQClnjE3zYJi+HbMt8v5zablMpYSeL7nD9+vs7BzbHzOfR0Va3fS4446D2+3Gj370o3zeZiOyLMPn07d+g6qqsNFYypuCM6Ew77APBE9NeoOqDGW3l6YxUiQSYR6tzifJZAJuSYGhDLcF3FYjGj02zfLrCqVo8YXhH8G/o1yx7nU0iDHdC4SGA4h+Mjbn1mLA7/ePKYIwHgKBAOLxwp88yussXrx4MR59dOy1AkaL3qJi8/vmzRWNU7QMZ7ez3prlrhYklhd3xVAt8pmsWYz31QO7KXVixCCy1QUFsN4fRU9w4tUYEawOWPY4ktkW/+5jyN3rdB7R+KGUFuz3XKjn4ObkVVjsv//+cDj0yeyllBbsH1RRFM3z/ZzyRqqZAtO2uzPboh+9ApWRmFbMyLKcm7PxYyASiRTF21a+MBtETPdmrjGyIRRHx2B0wokL45ydIdVNY7RQhN95BnTrI8VFTiQSyb1DZpYUw4vuqIWFqqqYM2cOLr300i0+f+2112A0GvH000/nbHCjIZlM6h522hy9Q8ec4sGy66EQ7K60z2kihsj7/9F/QOOg0L/jQt8/3wzXGHFmOIo+EE2i1TexCpgRQmDd93iAcZpKHehB7Mt39B/UOMjn0dKRoJQWXKCPWlgIgoDLL78c9957LwYGBgAAS5cuxQknnICbbroJJ5xwQs4HmQ0j1SHIN+W+IHK0IUYTrPscy2xLtnyPRPN3+g5oHBR6HhX6/nogkJQ1udeWoYBZQsba/hASI5jwlROiqxKWnQ9itsW+fBuKbwOzrRgp9O+40Pcf01bIySefjMrKSixZsgTt7e048sgjccopp+Diiy/O9fiyJhYrbPZwLDbx9kY5mzBMnQPDjO2ZbZH3/wMaL43s9kIvSBNFoBNCUOfMXMAsLqtY2z+xCpiZtt8bondSeoOqIFxCCdGFnkeFvv+YhIUkSbj00kuxZMkSHHHEEViwYAGWLFmS67GNilwVZBkrlFIuLCY41j2PBjGlez/QSBDRT14twIhGT6HnUaHvrzeVNhOmuq2ap89llWLtBCpgRkQR1v1+yDz+qHSvQ2LZpwUY1egp9O+40Pcfc/LmySefjEgkAkopnnjiCYiMmu6HHnooTjjhBLz88suor6/HZ5/lL0ueP9Q5hUaw2rWz25d9ArlvjGfMdaTQ86jQ9y8ETrMB0712zQJmdKiAmS8yMY6jStX1MG23J7Mt+ul/ocYmRlRrPBR6Ho1ZWJxzzjkAUkW5WKICSCV09vb2IhKJoL29Hbvskr/CMkI2bpd5ZqIWFeJswjh7AaT6GekNlCL64YsFn/AjUeh5VOj7FwqLQcT0SjtMkvZ/f8dgFL2h8j01szmWXQ6B4HCnfU5jEcQ+T7efLjYK/Swo9Dwa092vvvpqvPTSS/j4448hyzIefvjhXI9r1BiN2olQemAwaFRf5EwoCCGw7nMc02pa7mxGssgTOU0mbQvqiXD/QmIUBUz32mE3ap8Y6Q7GsGECeF0Qg1HT7jv+3cdFn8hZ6N9xoe8/amHx0EMP4Y477sALL7yA7bffHueffz5uu+02XW20WVgs+S+WlAmrVZ+6CpziR6zwwrz93sy26Ecvg8rFu1/O51FhEQWCRo8Vbou2rXlPKI7uCSAuDFNnwzB1TnoDVREp8uhfoedRoe8/KmHxyiuv4Oyzz8bjjz+OhQsXAgDOPfdcBAIBPPbYY3kZYLaYzdrZ1XpQ6C+SU1yYF+wPwij7rAYHEFv6fgFGlB2F/h0X+v7FABkqxJapgFlfOIHOQPmLC8seRwKMsL7cvhrJdcsLMKLsKPTvuND3z1pYfPHFFzjhhBNw22234fjjj9/4udPpxLnnnotbbrmloJmogiCMqWRsrijkvTnFBzGaYFl4GLMt9uXbUEODOo8oO8xmc8G2FUVRnPARi2GGC5hlOo7qiyTQ7i9vl07RVQXTthqJnP97qWgdOR0OR8G2xq1WKyRJeztND7IWFjvttBNCoRDOO++8tLbrrrsOq1at0kzi1Auv11uQ+zocjoLneHCKD+OsHSFWN6Q3yMmiPX5KCCnYPPJ4PAVPOis2Km0mTK7Qfvv0x5JoG4hALWNxYdnpQBCzLe1zdbAf8W8+LMCIRkaSJLhcroLcu1Dzd3PKahZbrdaCJK3YBrpKxriFox+ECLDueTSzLbHqq6ItruRyuQrygLf2d+h+z1LAYzWiwaUtLgJxGet8EahlagFOTGZYdjuU2Rb94i2okeKs01SIB7wkSUURPS8rYUEIweTJk3W9pzUyiPh//or+x5dAKdLwNqdwSLVTYJy1I7Mt8uELRSlIRVHEpEkM98M8Yu9cjcDT92PghcegJieGX8NocFmMKSMtjfZQQkaLL1y29UWMc3aGWFmX3pCMF21pdbPZrLu4mDx58hi3YHL7uykrYQGkohZVVVW63EsEYHjjKQBAvHk5eu69HrHVWR4nVBn5KKTsvg4OAMtuhwFS+laZ0tOOxMqvCjCikXG5XLDb7brcyyjHIX2UejhEvvwAvQ/chOSG9uz+mCHMSJlupzjNBjR6bJounZGkghZfGHKBK1vmAyIIsGhF/1Z8Abk3y9+LztTU1Oi2Te52u8dUTZxSmnJh25pxPI/KcgZWVVXpkgRm++RVCMlNhjVqJIj+f/wRg689PXJSEUtYMLwPOKWPYK+AecH+zLboJ6+CJorP9IgQgvr6ehgM2scec4FAAPOb/wTZ7I1J7utCz4M3I/Tp2yMnJqqMeVbG88huktDksUHDpBPRpILm/jCSSvmJC0NdEwwztmO0UEQ+eKEok1gFQUBDQ0PeEzlNJhNqa2vH9sesZxEACGNPAC1LYSEIAqZOnZrXIzeu5qUQ21cz20Ifv4Heh2+F3J/BxIULiwmFefu92E6CkSBiX75dgBGNjCRJaGpqyluGuSgIcH78CsSQP71RkTH4ypPwPXUvlEhI+yITcB7ZjBKmee0QNdRFXFbR3B8uy8qo1oVHMEurK93rkFzzTQFGNDIWiwWNjY15ExcmkwlNTU1jPzyhISzIOOZRWQoLILVP3NTUNKbQUDbXrdpuF4jO9AfFMMmuNvTcfyMiSz9itlPWl1ngUzWc/EEkAyy7H8Fsiy19H0qgX+cRZYfRaMT06dNz7hNjNBoxbfp0eHbeG8SonXAdW7kUPfddj3jrKnYH1hH3MhcWQMoCfJrHpllfJKGoaO4PIS6XV1E3weGCeYd9mW2Rj14GLdL8HJvNhmnTpuVcpOfkuloRi3E8jwgtxvhRDqGUIhAIoLOzU9tn491XIH7zKZBMAgYDlO12BfY9PK2by+VCbW3txi9RiYTgf+ExxFZ8nXEMlu12g+uIkyCYNkVQ5JX/A2JbvokRuwfi9J1H9x/IKRkopQg9/yDkzua0NkPTfNgPO6UAo8oOSin6+vrQ09OjHXLOch5VVVWhqqpq48kT2dcD3zMPIdmZ6ZQMgWOfI+DY98iNb1KUUijfvJ7es3IKxMkMx8YyJCGraPaFkFTY34kkEDR6bLAYykds0WQCg0/cARpOT5Y373wgLLscXIBRZYeiKNiwYQN8Ph+7Q5ZziBCCSZMmwe12jzsSQqNBKKvSX4CFhvkQPGM7DFG2EYthCCGoqKjAzJkzUVlZmR4uevcViJ+/D9uMuag+8ZewzZgL8fP3gXdf2djFbrejsbER9fX1WyhD0WqH58eLUHHESczw3DDRbz5Bz/03ItHRuunDCbY3zEn9Fi17HsUsCZ1s+R7J9jUFGFV2EEJQVVWFGTNmsBezEebR8DycMWMGampqtjjOKnmqUXXqb2HfPdMDgSL43kvoe+QOyP6h6E4e9oZLDaOUqi9iEtlLuaxSNPeHEEkUp5HUWCAGI6y7pz9sASD21btQg359BzQKRFFEXV0dpk2bln4sNItnkSAI8Hq9mDVrFjweT262V1jPImBcz6Oyj1hsjaqqCAaDCAaDiEQiUO64ErYZc9Fw8bUghIBSirbbr0F07Up4rrsHLpcrq6ze5IYO+J55EHJvl3YnQYDzwONg3/0gKMveBbaqGUFctRCnspKTOOVE+N1nkVj2SdrngqcGzhMWj2tvUy8URcHg4CBCoRCi0SjUO6/SnEdVN96LioqKrMK1sTXfY+C5v0INa3sTELMV7qNPgXnm/NQ82gqhdiaEmqZx/feVGrKiosUXRkwjr0IgwFS3DXZTeYguSimCz90HheEFY5ixHewH/7QAoxo9yWQSfr8fkUgEkZsuZs6hyNqVsF95B+x2OyoqKnLuMaMG+6A2f5n2udC0IwTn2E5Yln3EYmsEQUBFRQXq6+sxvaEeSCZh227BRuVHCIF9u51AEwlUV1dnfVTIUDMZVadfAetO+2h3UlUEXn8G/X//I5RwmDG44n+gcMaPZdeDQYzpOQuqbwPiyz4twIhGjyiK8Hg8mDJlChqIknEeeb3erPeAzTPmo3rR1TBNn6fZh8Yi8D19P/wvPwEqM962JmCukiQKmOa1w6qx5aFSoNUXRiBWvAXwRgMhBNa9jgYYzh7JNd8g2dmi/6DGgMFgQFVVFaZOnao5h5BIoKGhAW63Oz/GdRopAjx5czwQgvA3X27cN6aUIvTNFxDG4OApGIxwH3UyPCecAWLWPu4aX7sMvrf+i/iG7q0uMPEWxImIYLHDvMtBzLbYp69DjUd0HlEOyOE8Eu0V8J58LpwHHc8sQDVM5OuP0P/uW0gObrXXPkHnkTiUT2Ezsv/7KYC2gQgGo+UhLqSqehjn7MRsixap+VwmiCQx5xDJtw8GP26aB1QF4WVfo+32a9D/2nOp0NOypXDtz97DywbLvJ1QfeZVMDZM175tPA7/Rx8i+N03oMOGNhN0QZyImObvDsGVHmak8QjiXxdv9VNNcjyPCBHg2PNQVJ16KUS3djhWCQbhe/ctRFrWbkoqncDzaFhcODS2PCiANn8EA5HiPD0xWiy7HQoY0sWr0teJ5NoszQqLBMvMOcw55NwtQxQ8F2gKCx6xGDeRFd+h56m/IrLiO5hnzEHNj385rutJLi8qf3kRHPscCVa4buN916yG7713IIdCIBMo6WyiQ0RRs45I7JsPoWbybihiNp9H9h13G/c8Mk5uRPWZV8Ky7a7anVQVwaVfY/DTj6EmEhNaWACAQAimuq2oMGubm7UPRtEfLj5jttEiWB2w7HQAsy366X/Zx/qLFMeC3QFsOYcAoPKI4zP92fjRSt4cx5YiFxbDqErK1lRVYJ+/Q04uSQQRzv2PQeUvLoDgcGn2k/0D8L3zJiKrl+XkvpzSwDBlFqSGWekNcgKxr4rTNGtENptHFXuw3UZHi2CywHP8aXAf+ysQxtvpMPGuTvS//QYSnW05uW8pQwhBg8sCt0VbXHQGYugJxXQcVX4wbbcnc31VB/uQWFWclvkZ2WwO6YGm+OIRi+LG1Dgb1Yuuhnn29pp9qCxj8M3n4Xvur1DjpT/ZOdlh2e0Q5ufx7z+ByovabYF1+4WoPvNKGCZN0eyjRqPo/+eDCLzzQkm9reYDQggmV1jgtWnv0W8IxtETLO31hogSzDtr5Cx9/sbI5RUmOlxYlC6i1Q7PiWeh4vCfZPa8WPoxeh64EYmMZkGcckGqqoehaX56gyIj+sWb+g+oyJG8NSnPi4XsBwkAgFIE330RfX+7E/KghhHRBIEQgkkOM6rt2pGeDaE4ekOlvS1inLUjM2dJDfoRX/5ZAUZUQmgUxCS8CFlpQAiBfdf9UXnSWRAzWI0rvh70Pnwrgv97veQymzmjx7LrIWDl4SRWfA5lsE//ARU5RDKg4tAT4D7ihIx24Im2Nei573pEl6ef0Z9IEEJQ4zCj1qFty94djJV0zgURRE3HzdgXbxWt1XdRkId6O1xYFACDtwrefQ+AZWqjdidVQeD1f6H/H/dACQV0GxtHf0RPDYyzdkhvUFXEPntD9/GUCqaGRngPOAjGqmrNPjQWge+f98P/4t8n/MOlym5CnVNbXHQGYvCV8GkRw/RtIHonpX1OI0HEv2PXbOIgL/V2uLAoBKoCIklw7rgTKnbZDUTSTrCKr/kePfddj9hanthZzph3Pojp2ZBYvRRKfzfjLzhQFYhmM1x77AX7/G2YVunDhL94Dz0P3oxkT4eOAyw+vDYTJldoV33uGIzCHy1NcUGIkDp+yiD21bugPHeNDY9YlAnKJoMa8+R6ePc/EAaPR7O7Gg6g//G7Mfj6MzwRqUwRK7wwztmF0UIR/Sy90BYHGy3xCSGwzZwNzz77QbTZtLv3dqLnwZsR/vxd7UJqEwCP1YhJGSIX6/3RkjXRkqbMhliTntxL4xHEvilBfxgdoApDSGbIA8wGLiwKAE1uuZcp2mxw77Uv7HsdhkyeF6H//Re9f/k9ZF9vnkfIKQSWnQ5gTuhky/eQe9oLMKIiR95yQTS4PfAcfCQs27AE2vDfJOF/6R/wPX0/1CjDVn+CUGkzZcy5WO+PlKT9NyFEO2qx9AOosYn7nWsipwsLIo3P7ZMLi0LA+iJFCc4DjkXlzzN7XiQ7W9Fz/w2IfFsaNSU42SPYK2Cav5DZFv30vzqPpvihcnqyoWC1w338aXD94JcZPS9iy79Cz33XI75udT6HWNRU2U2ap0WG7b9D8dKLkBomT4c0eUZ6QzKO2FfpResmMpRS5vMIXFiUIKwv0mAEIQSmpiHPi1naVU5pIoaBfz+MgecegZrg+4blhHnBfoAhfVLL61ch2dms/4CKGY03LUIIbDvsjqozroChtkHzz5XAAPr+dgcC7764yVZ/glFtN6HKpi0uWgfCCJdgyXVNf5hv/wc1zJPhN6LIKTOurckgyrOBC4sCwHrTgrTpixStdnh+8htUHHZixr2uyNKP0HP/jUh0cafBckGw2GHebi9mW+yT/07o3IDNyeZNy1BZi6rTLoVt4YGZLoTgOy+g79GJ6XmROopqgtfKfkOlQ1VRIyUmLqSaKTA0zk1vUGTEvnhL/wEVK6xnEfhWSGmSxZ4WIQT23Q5A9a8vg+St0byU4utB70O3IPTRG/yhUyaYtt+bWVZd7m6FvH5VAUZUhGi9aUlbvmkRyQDXoT+G96fnQLDaNS+XWLc65Xmx4uscD7T4IYRgktOsaf+tUqDFF0Y0WVpOpmYNf5j48s+gBCaeiGRBWeIc4FshpQalFGCdp9f4Ig21Dag640pYd9xT+6KqgsH/Po3+J+6BwsN8JY9gssC0477MtuinPGoBQPtNi7GNBADmmduietE1MDXN0bwkjUXge+pe+F/6x4TzvBi2/3aNIC5iJSQuJO8kGGYwtpRVBbHPuastACCpFbHgWyGlhZJEavdyKzJ8kYLRBPcxP4f7h78GMWlncsdXf5fyvGhenoOBcgqJeds9QSzpb9hKbweSLd8XYETFxVjetERHBbynnAfngccBGeyKw5+/i56Hbkayp3O8wywpCCGor7BoVkVVVIoWXxhxuXTEhWWXg5jfdWLVl1AGegowoiJDax5pCPRs4cJCbzS+SK03rc2xbrMLqs+8Gob6Js0+aiiA/sfuxuAb/wZlOapxSgJiMMK8gF0dNFUOemImG25E800r8zwiRIBjr8NQdeolEF2Vmv3knk70PngTwl+8N6EiRMNVUR0mdm6XrFK09IeRkEvj9ye6qmCcvSC9gXJ/GIBvhZQN4/0iJXclqn55Cex7HQ5tzwuK0Ievofevt0Ee4J4XpYpp/m4g9oq0z9WBHiRWf63/gIoJzTet7EK4xvppqD7zqoyeF1ROwv/i3+F7+oEJ5XlBCMEUtxV2I1tcJFWKZl8ISaU0xIVl54OYTpLJtd9C7p3YTqzMeUQEQOAGWaVFDva0iCii4sBj4T3lPAiMB8/GW3W0ouc+7nlRqhBRgmUn9omG2BdvTuioRS7etASzJeV5cczPM0YMY8u/RM/9NyDetma0wyxZBEIw1WOFzci2dk4qFM394ZIQF4LDBdP83ZhtsYleQZj1PBo6sj0euLDQmxzuaZmnzUX1oqthmrmtZp+Nnhf/+Rv3vChBjLN3glDhTftcHeyf2LkWOXrTIoTAtuOeqDrjysyeF4M+9D1yOwLvvjRhBJ1ACKa6bbAa2OIioaho8YUhl8C/h3nB/gCjJlOyZfmEzrVgCvRxboMAXFjoTq73tESbA96TzkbFoT/O7Hnx9f/Q+8BN3POixCCiCMvOGuWgv5rANS9y/Ka10fNitwO0O1GK4DvPo+/Ru6AEBsZ0n1JDFAgaPTaYJfajIi6raOkPQ1GL+3coWB0wbbsHo4Ui9vV7uo+naGBZH4wzcRPgwkJ/WAviOPe0CCGwLzwQVaddmtHzQu7fgN6Hb0Xo4zcn7gOpBDHM2BaCI71IndLbDrljbQFGVHjy8aZFJANch50Iz0lnQ7BoFzNLrFuFDRPI80IUCJq8Npg0xEVMTkUuil1cmLfbi/nylVj1FdTQYAFGVFhSJnOZzRrHChcWeqOxII53TwsAjJOmoOqMK2DdIYPnhSJj8LV/ov+JP0EJB8d9T07+IYII8w77MNsmbO0DxoKYizctALDM2g7VZ10DY+NszT40Gk55Xrz8BKhcesW6RoskCGjy2GAS2Y+MaFLBuoEw1CJ+YRGsDhhn75TeoCqIffOB/gMqNJomczxiUXLka09rGMFohvsHP4f7+NNG8Lz4NlWEqWVFzu7NyR/GOTsxfS3k9tUTLrNd2857/G9aw4gOFypPOR/OA47N7Hnx2TvoefBmJHvL3/PCIApo8tpg1BAX4YSCdb5IUYsL8w77AIyXuPiyT6DGIwUYUQHRsj7gEYsShPmmlbsFcRjrtrui+syrYJicyfNiEH2P/gGDbz7LPS+KHCIZNPaIgdjXEyxqkcc3rc0hggDH3oej8lcXQ2Qk0A4j93Sg94GbEP7i/bLfYjSIqciFQWBHWEMJGW0DxSsuxAovDNMYye7JBOLffaL/gAqJhnvteM2xAC4sdIVSdVR23uNFcleh6leXwL7nYcjoefHBq+h95PeQB/ryMg5ObjBts5A56ZNrv4Uy2F+AERWIJPt0Uy7etFiYGqajetFVsMxnhNGHSHlePI6Bfz0INVbeb75GKRW5kDTERTAuo8MfLVqRZdawy49/++GE2NYahmrOIy4sSotEDCw7b2K05O2WRBRRcdBxQ54XTs1+yfYW9Nx/PSLffZa3sXDGh2CywjSPcR6fTqzMdpqIshtM+ZtHgtkK9w9Ph+voUzLmckSXfYGe+25AfH15J9WaJBFNHhtEDXHhjyWxIajxRlxgpKrJkOpnpn1OoyEkVnxRgBEViLjGPMrB84gLCx3RXBDzKCyGSXleXAPTzG00+9B4DAPPPISB5x+FmijORWGiY95uL6aLYGLlF1AjEyQZV2MvPJ8CHRjyvFiwF6pOvwJSTb1mP2WwH31/vR3B914ua88LsyElLjS0BXrDcfSHi3Md0YpaxJa+B6pOjG1hmmDMI0IAg3ZuXrZwYaEnWguiyarL7Td5XpzAfDgNE/nqQ/Q+cCMS3et1GRcnewR7BYyzdkxvUGTEv/lQ/wEVAOaCCOgi0AHAUDUJ1b++DLZd2bVcAABUReDt/6DvsT+UteeFZQRx0RmIIRArvu0FafJ0iFXp4lAN+JBs/q4AI9IfyopYGC05OaHIhYWOaEcs9BEWQKoIk33hQaj69WUQPdWa/eT+Deh96BaEPnmraPdKJyqpo6eMzPbvPwadCO6qrHlkMIFkEMu5hkgGuA7/CTw/+U1mz4vWlei573pEVy7VbWx6YzVKmOrW/jdoG4ggkpB1HNHIEEK0oxZfvTMx1jzGPCI5ehZxYaEnrDctQcromJkvjJOmoPrMK2HdYXftToqMwVefgu/JP0OJhPQbHCcjorsahqa5aZ/TRAzxZeVfF4b9pqWfON8cy+ztUb3oahgbZ2n2UaNh+J78M/yvPFm2yYF2k4T6CnbEiAJoHYgUXbl1Q9N8CBXpFW6Vvi7I7asLMCL9oKrCPhWSo6gfFxY6wlwQTbkJPY2FlOfFL1OeF0btfbXYqm+GPC9W6jg6TibMO+zH/Dy29H1QpbjeDnMJparGm5Y+2yAsRKcbladcAOf+P8jsefHp2+h96BYk+7p1HJ1+uK1G1DjYJ3MUlaLVF4FcREXLiCDAvMPezLayN57L87Y8FxY6QSllRixyFXoaDxs9L+oaNfuoQT/6Hr0Lgbee454XRYBUOwVSXbpHCY0EkVj1VQFGpBPJOJgnq3TKU9KCCAIc+xwxoudFckM7eh+4EeEvPyjLcHuVzQSPlX1qJqGoaC0yjwvjrAUgVkfa53LHWsg95Ztjlu+DBFxY6IWSBFjZxgV809ocyVOFqlMvgX3PQzP0ogi+/wr6Hrkdsp97XhQazajF1++V7WkEquWOWCTzaKPnxbwMnhfJBPwvPIaBZx4qO88LQgjqnGY4TOzt3WhSwfqBSNGIKiIZYN6OXQKhrKMWGsKCRyxKjQKfCMkGIkqoOOh4eH92HgSbtudFor0ZPffdgOj3E+jMdxEiTZkF0Vub9rnq70WydVkBRqQDeV4Qc4FgtsL9o9PhOupnIIxS3cNEv/8cPfeXn+cFIQRTXFZYNMqtB+IyOgOxohEXpnkLAWP6Fk6y+Xso/t4CjCj/5Fugc2GhE4X0sBgt5unzUH3W1TDNmK/Zh8aj8P3rAQw8/xj3vCgQhBDtqEWZllQv9ojFMIQQ2HbaG1VnXAGperJmP8U/5Hnx/itlFWUSBIKpbisMIjt/zBdJoC/MrlWhN8Rkhmn+QkYLRezr93Ufjy6wnkdS7k5WcWGhFxpn74vpTWtzRJsT3p+eA+chPxrB8+ID9D54E5Ib2nUcHWeYVEl1d9rnSs96yJ3NBRhRnmEtiIIEiNqRgUJiqKpD9emXw7bLftqdqIrAW8+h//E/QAn69Rpa3hmuKyJqJKd3B2PwR4tDXJi33VPbeC4cKMCI8gvTCyaHzrVcWOgE80RIjlzO8gUhAhy7H4yq0y7N7HnR142eB29G6NO3y/ItuZghggjT9uzM9vjS8nvb0loQC3WyKhuIZIDriJPgOfEskAyeF/GWlei59zpEV32j4+jyi0kSMdVj1axU1O6PIhQv/CkmwebULKke/+4j/QeUR1IHCfLnYQFwYaEbzAXRUNwL4jDGuqmoPuNKWLZnhQuHUGQMvvIkfE/dyz0vdMY0Z2cQc/oDK7luJZSArwAjyg+UUmZ9g0IeNR0Nljk7oGbR1TBOHcHz4ok/wf/qU2XjeWEzSmhwsR9aFMC6gTBiycKfNNM0nlv+WXkd4U7GmNWBczmPuLDQC9aCmMeiSblGMJnhOfZXcB/3KxBGotMwsZVLU54XrdzzQi+IwQjTNiyjM4r4sjIqBa0kAZWxwBfBke1sEZ1uVP78Ajj2OyYVsdQg/Mlb6H341rLxvKiwGDDJyY7OqhRo9YWRLLDHheiqhKFpXtrnNBoqK5tv7SJ+PGJRUmi7nJXOgjiMdbuFQ54XUzX7qEE/+v52FwJvPz9hCvoUGtO8XQEhfTonln9eNm++pXAiJBuIIMC575Go/OXFECs8mv2S3etTnhdffVgWW4yVNhMqbWyPi6RK0eoLQ1EL+99p2nYP5ufx7z7WeSR5RIciflxY6IHmglg6EYvNkTzVqDr1t7DvcUiGXhTB915C3yN3QPb36za2iYpgc8LQlF65lsbCSJTJ21apnAjJFtOUGag+8yqY5y7Q7EOTCfiffxQD/34YakzjTbOEqHWYUWFmJ9rGZBVtBfa4kOqmQXBVpX0ud7dC7u8qwIhyD49YlAk0HmY3lGDEYhgiSqg4+IfwnrwYgi3duW6YxPq16Ln/BkSXcc+LfGPahp0DUzbJZwUql55PBIsNnhPOgOuok4FMnhfffYae+29Aor1Fx9HlHkII6l0WWI3sk2ahhIyOwWjBxAUhJMM8KpOoBet5JIg5PVnFhYUeRNnJjMSknSFeKphnzEf1omtgmp6+NzkMjUXge/oBDLzwONRkcRwvK0ekSU0Q3DVpnysb2iD3dhRgRLmFxoLpHxKhZCMWw6Q8L/ZB9elXQKqu0+yn+PvQ+9fbEPzg1VTNlBJFICmPC5PEfvwMRJPoCRXOG8c0ayemyEus+go0XvrVgynreWSy5fQgARcWOqC5IJbY3rAWot0J78nnwnnwD5n7/MNEvnx/yPOi9B9yxUjGt63vS/9ti7kgmu0lcbIqGwzVdaj+9eWw7cwu5w0AUFUE3nwW/Y/dDSU4qN/gcowkCGh02yAJ7O+uJxSHL1KYlxBiMsM4a8f0BjmB+Kov9R9QDqGKzK5ZZdGOOo8FLix0gEYZwqKMFkRgyPNij0NQdeqlEN3pe5TDyL1d6HnwJoQ+e6csEtKKDdOsHQFDeoJcYvXXUFleKiWCXgtioSEGI1xH/hSeHy8CMWu/eMRbVqDnvusQW/2tjqPLLUZJQKPHBg1tgY7BKIKxwiQes504UwK9pNetmEb03GzP6W24sMgzqQWRcdS0zBbEYYyTG1F95lWwbLebdidFxuDLT8D3z/ugRjXyTzhjghjNMM1iJAPKSSRWlnCei04LYrFgmbsjqhddDeOUGZp91EgI/f+4B/7X/lmyJ38sBhFT3NoCqs0fQbQAHhdSZR3E2vSTb+pAT0k72lKNeQQesSgxJtiCCAx5Xhx3KtzHjuB5seLrlOfFulU6jq780Xzb+q5037a0FsRyFegAIFV4UPmLi+DY7+jMnhcfv5nyvOjfoOPocofDZMDkCnaezLDHRULWP6fEPJ/lDVPaSZzM6DkAYubCoqTQSyEWI9btF6L6jCthmDRFs48SGEDf3+7knhc5RPTWQprUmPa5OtgHuaM0K2lqLYjI8YJYbKQ8L45C5S8uguhMrwkzTLJ7PXrvvxHhr/9XkuLRYzWi2s5+CZFVitYB/T0uDNO3YTvatnxfsvVDmPl+BlPGKrxjgQuLPKOXQixWJG8Nqk67FPbdD9buRIc8L/52J+TB8rGgLiRsJ87SPXqq14JYrJimzkT1oqthnrODZh+ajMP/n79h4Nm/lGQ+TbXdBLeF/X3GZRXtfn09LogowTR3l/QGqiK+7FPdxpErKKXME4r5eBZxYZFnJvqCCAx5XhzyI3hPPjez50XbGvTcdz2iy0s787oYMDTNB7Gkb7clW5dDDZXWaQI9F8RiRrDY4PnxIriO/Glmz4tvP015XnSUlucFIQSTKyywmyRmeyAu634M1Th/N7Drh3wKqpRYhDUZY1vi5yF6zoVFHuEL4paYZ2yD6kVXwzRtrmYfGovA98/74X/x76Dc82LMEFFK2XxvDVVLr36IjgtisUMIgW3nfVF9+uWQqjJ4Xgz0ofcvtyH44Wsl5XlBCMEUlxVmDY+LnlAcgzqeFBEdbhimzkn7nIYDSLYu020cuUA7ep77fD8uLPIJXxDTEO0V8P5sMZwHHZ/R8yL8xXvoefBmJHu458VYMc3blZn0V2rVGvVcEEsFQ/VkVJ1+OWw77aPdSVUReOPf6H98CZQSilKJAsFUjw2ixjnUdn9E12qoZeNoq2MCNBcWeYQviGwIEeDY81BUnfpbiO5KzX5ybyd6HrwZ4c/fLcmEtEIj2F0wNKZHh2gkiGRLCb1tTcATIdkgGIxwHXUyPD8+M7PnRfNy9Nx7PWKrS6dmjFEUMFWj1LpKgXUDEd2SOaWGmRCc3rTP5c5mKAM9uowhFzCfR4TkxaiRC4t8whfEjBgnN6U8L7ZlhOyHkZPwv/QP+J6+n3tejAGT1pG570vnbYu9IJaPc+14scxdkIXnRRD9//gjBl97umQ8L2wmCXUapdYTioo2nZI5CRFgms/25SklR1tmvp/ZDkJyLwO4sMgjfEEcGcFkgfu4U+H6wS9BDBk8L5Z/NeR5sVrH0ZU+Uv10CBXpUSG5swWKrzR8D9gLoi0vC2KpkvK8uBCOfY/K6HkR+vgN9P7lNsgl4nnhsRo1T4qE4jI2BPVJ5jTO2QkQ05NK4yu/AE0Wrq5JtlBVYRbxy1e+H5+ZeYQviNlBCIFth91RdeaVMNQ2aPZLeV7cgcA7L4CqpZOQVkhSb1ulu0es94JYyhBBhHO/o1H58wsze150taHn/hsRWVr83z8hBHUVFlgN7GqoveE4/NH8J3kLZhuMM7ZPb0jEkVj1dd7vP250jp7zJ1ye4Avi6DEMeV7YFh6o3YlSBN99EX2Pcs+LbDHOWcCu1rj66+IPi/PtxFFjapyFqjOvGtHzYuC5R+ArAc8LgRBMcVs1C5a1+6O62H5rJnGu+Dzv9x4v2gZz+cn348IiX/AFcUwQyQDXoT+G96fnQLBm8LxYt3rI8+IrHUdXmggmK/NtiyZiSK5bUYARZY/eC2K5IFrt8Px4ESqOOIkZwh8m+s0n6Ln/RiQ6WvUb3BgwiAKmuq0MRwmAAlg3EIas5DeKKVU3QKyqT/tc6VkPZaA3r/ceL3pb4nNhkSf4gjg+zDO3TXleNKWfIR8m5XlxH/wv/YN7XowA00EQQKLIy0BrnqziAn1ECCGw77Ifqk+/AlLVJM1+ykAvev9yK4L/+29Re15YjRLqNGqKJBWqSzKnac7OzM8Tq4v7BYdGGRbkkglESq+EnAu4sMgTNOxnfs4XxOwRHRXwnnIenAcel9nz4vN30fPQzUj2dOo4utJCrJnCPDKXbFsJlWHiVizQiD/9wzwuiOWIoWYyqk6/AtaRPC9efwb9f/9jUXteeKxGeK3s7z6cUNAViOX1/oYZ2wFCer5HYtWXRSvKqKoCkXRhwXLmzRVcWOQJ5oJosvIFcZQQIsCx12Go+tVvIboyeF70dKL3wZsQ/uI97nnBgBAC4+wd0xtUFYk1S/UfUBZQRWY719pc+g+mxBEMRriPOhmeE87I7Hmxdhl67rsesTXf6zi60THJaYbNyE7m7I8k4IvkL3opmK1MJ0416Ifc1Zq3+46LWBBgiJ58ziMuLPIAlRPsxE2rS//BlAnG+iHPi23YIX0AoHIS/hf/Dt/TD3DPCwbGWQxhASCxqjjDuKnwbbpI5MJi7Fjm7YTqM6+CsWG6Zh81HET/35dg8L//KkqH1mHbb4PITubsHIwiksjfuI2zFzA/T6wszm1Freg58vg84sIiD2hug/AFcVwIZgvcx58G1w9+AWLQjvzEln+Z8rxoW6Pj6Iof0emFVNuY9rnS016cDoJa88haoe84ygzJ5UXlLy+CY58jwSqwNUzoo9dTnhe+4vttSKKAqW5bhmTOCJJ5SuY0TJkNwvAiSqz9tihPWWk+j/I4j7iwyAM0wt6j5Avi+El5XuyBqjOy8Lx45HYE3n2Je15sRim9bTEXRCIAFqfuYyk3iCDCuf8xqPzFBRAcLs1+yc516Ln/BkS+KT6HSYtBRL2LncwpqxRtAxGoedgWJaIE40yGp0UyXpRW+cxtebMDJMNpofHChUUeYC6IgsRPhOQQQ2VtyvNitwO0O1GK4DvPo+/Ru6AEBvQbXBFjmL4t20Fw9VdFlXxGKWUviBYnSIZEXs7oMDXORvWiq2GezXhQDkETcQw8+1f4nvsr1Hh+kyNHi8tiRKWNHb2MJBV0DkbzknNlnMUW6PEiO2VFEzGA4QxKbPl9yeUzNMdQqgKMiAWxVYBksNrljB4iGeA67ER4TjobglVbtCXWrcKG+65HdMXX+g2uSBFMFnZhstAg5M6WAoxIg3gYYOzv8+3E3CNa7fCceBYqDv9JZs+LpR+j54Ebkehcp+PoRqbWYYbdyB73QDSZl2ROsbqebZW/fjXUiIbVQAEo1LY8Fxa5JqqRgcsTN/OGZdZ2Q54XszX70GgYvqfuhf/lJ4pyH1RPtN62isnTgoY1thO5sMgLhBDYd90f1adfDqkyg+eFrwe9D9+K4P9eL5oIFyEEDW4LjCL7cdYZiCGc42TO1CkrxjyiKhKri+eUFTPqh/w/j7iwyDGaGbh8QcwrosMF78/OT3leZKjFEv7sHfQ8eDOSvRPX88LQMAvEbEv7PLH226IxGtNeEHmeUj4x1NSj6vTLYV2wl3YnVUHg9X+h/x/3QAkxjJcKgCSknDk1XL/RNhBBIsfJnNqnrIpJoPvTP5SMgJGdm5IruLDIMTxxs3AQYcjz4tRLILrSzaCGkXs60PvATQh/8f6E9LwgoqiRfJYomuQz5oJotGSsgMvJDYLRBPfRp8D9o9NBTNoPoPia71OeF2uL4zdjNoior2B7dOQjmVN0uCHVTUv7XOnrhNLfnbP7jBWqKqkI+lYQmyvv2/JcWOQY5oJotuc1A5ezJcb6aag+82pY5rPtd4Fhz4vHMfCvB6HG0j1Hyh2t0yHFkHxG5WQqx2Ir+DaIvljn74zqRVfBWJ/+8BxGDQfQ//jdGHz9maLwvKiwGFBtZ4vPaFJBR46TObWiFvFi8IaJDILpA6PDSy4XFjkklYGbnjXNF0T9EcwWuH/4a7iO+XlGz4vosi/Qc98NiK9fq+PoCo9YORmCuzrtc7l9NdRwYcPbhdoX5qQjuSpR+auL4dj7cGT0vPjff9H7l99D9hW+GFe13QSHif0i548m0R/O3XafUeOUVWL1VwU/5l7IPCUuLHIIXxCLC0IIbDvumfK8qEmvSjiMMtiPvr/ejuB7Lxd8MdALQghMrCROSpFY/bXu49liCNxgrqggggjnAcei8ucjeV60pjwvvv1Uv8ExIISgwWWFSSOZsysYQyiem+gKMZphaJqf9jkNByB3FPZlhfk8IkQXHxguLHIIXxCLE0NlLap+fRlsu2byvFARePs/6Hts4nheGGftANZbaMEtvll5SoLIfWAKjKlpyPNi1naafWgihoF/P4yB5x6Bmiic54UoEEz1aCdzrvdHclZmnSnQUdgkTkop+3lkcYIwiqjlGi4scggzcVOHDFzOyBDJANfhJ8Lzk99AsKSfiBgm0boKPfddj+jK4jkyli8EuwvSZEbyWX8X5L7CnJqhVGXOI2LlPjDFgGi1w/OT36DisBMzel5Eln6EnvtvRKKrTcfRbYlJEtHg0k7mXJ+jfAupYQazUmii+TtQhjmVLiQigJJ+rF6vl1wuLHJEKgOXUZrWmv8MXE72WGZvj+pFV8PYqO15oUbD8D35Z/hfebLsPS+0PS0KFLWIhgBVSf+cR/2KBkII7LsdgOpfXwbJW6PZT/H1oPehWxD66I2Cnb5ymv+/vTuPb6O88wf+eWZ0WLIs2fJBLjtXKWmaQpq0NJRQoAXCJtAWtqEtITRAC7Qh2wO2LC38+usRoNl2l2a35T5S2NKWowc/lqMcvy4EKAUKJBAgIQmJYyfyKdnWPfPsH7JdO5qRbXk0I9uf9+vFC1szmueJpWf01XN8HzeOqDKezNmbyqLdgvkWQlH7e/8Ok80gvXv7uK9fDPP9QaptKZ+BhVXiUcCg8ZQ6dSqNnRqsQd3abyD4yc8Uznnx4tOI3HY9Mm2tNtbOXp55iwCXO+/x9M5Xc8GyzZy+IdLouac1ov7i78L/4ePNT9I1RB+/Dx33/ic0hyYF11d6ETCZzHmwJ2nJTqimAfrbzgTo5sPy9nweMbCwiN7Tafg4b4jlSSgKqk5YiboLroAaKpDz4lAz2m69Fn2vPDspc14Ijxceo8ln8R5kW/faXh/Z22H4OPPAlCfF40XNp89HzT9+GcJbYXpeauf2XM6L3TtsrF2OEAKNIR9cJhMu9nXHoenja9uuuhlQw9PyHs+2vAs93juua4+VlBKyx6AduSsg3OavkZUYWFjE8IaoqABviGXN2zgfDZdeDd/CpabnyEwa3Q/dja4HbpuUOS/Mvm1l9rxhaz2k1CF7DQJ0XxDCoFeFyod/0UfRcMk1cM+aa3qO3htDx90/Q/SJByE1e3vDXKpiOt8io0k0R+Pj/uJgmNNCSmT22pxALB03TntQZf4FymoMLCwgsxmTjcdquBPjBKBU+FHzua+g+sy1BT/AEm+8hMjNky/nhWvmfAhv/k03vXu7vftB9EUN51fYeUOk4rlq6lC/7p8RWF4o54VE79bH0HbnJmS77M15EfC6TJNnxZLZcW9W5p7/IcPH03YH6Ea9FQBEIGxbHfipZwHDb1ngDXEiEUKgcsly1F/8XbgK5bzo7s958czkyXkhVNV4x9O+GLTIAdvqoZsNg7AdTRhCVRH61GdRu/brUALmvbWZA3sRucn+nBcNAS8qPcbLLVtjSSQyxfekqMEw1LqZeY9nm3dB2rjdvGlgwR6LicV0XJg3xAnHXT8dDV/+F1R+9CTzk6SO2FN/QMc9N0Dr6baraiXlnpc/zwIA0nvsm9VueENUFM5TmoAq5n0gt+Pwkcbf4oEhOS/+sMW2nBcDybNUg/kWErnNysYz38KwHekaMu+9VfQ1xyI3nGiQh8dXBeEyz0BsNQYWFjCeKOMFvOb5Eqh8CZcb1Su/iPAXvgZRIOdFas/biNz4AyTeed3G2pWGe9aRuZwrh8ns3m7LpFWpmQ0nhjmcOEGplVWo/eJ6hFacUzjnxavPoe2Wa23LeeFWFTSGjHMLpTUdLbFE0df2zFtkfF27AvR4FNDzV7mIgL1fctlix0mm4kA6/40oArXMXzHB+Y46Bkdceg08s99veo6e6EPnvT9H9yO/mdA5L4TLDffsBXmP69EO6J2HSl6+NFtVxV6/CU0IgcCyT6H+oisL5rzIdhxC2+0/Ru8LT9oSyFZVuFFXafwNvjuRQVeR8y3UmgYo1fV5j2f2vQ2ZsW6PEjN6GQyDAAwsxq0cxrOodNRgDerO/yaqTv70CDkvnkLb7T9Gpt357ZKLZbTsFLDn2xaHEyc3z/Qm1F/8HfgXF8h5oWURfey36Lj359D68rf7ttq0qgr43MbzLQ7EEkhmi5tvYdiOshlkmncWdb2xMAzQhQJRWVPysodiYDFOpjdEG2fgUmkJRUHwE6tQt+5yqCHz1zVzcD/abtmIvr9tnZA5L9yzj8otkT6MHctODQN0F4cTJxPFU4Gaz5yPmrMvgvAUynmxDZGbfojUntLOSxBCoKnaeD8RKYH9XXHoRbRjt8lwSGZ3aduR6XBiwP7ViQwsxkFK3ThCrKiCcBsva6KJy9v0PjRccjUqPmCc9wHoz3nxx1+i68HboSeLH6t1gvBUwN14ZN7jWnsrtJhxAG0F0+HEqjCHEych/4eORcOlV8M9c47pOXpvFO2/vAHRJ39X0pwXHpeCWSHj/BbJrI7W2Ngnlar1MyEMVsRk9r5Z0n9LbtKmQfZnB3r9GFiMRzxmPFGG3beTluKrRHj1xag+47zCOS+2/xWRm3+EdPMeG2s3fkZbQAOl/bZlPgxSV7IyyVmumnrUX/BtBI4/HQVzXjz7KNru+ldku9pLVpeQz42w33i+RWc8jWhibHOnhBDwzM3vtZDpJLItu4uq42jIHuO/kd0TNwEGFuPC+RVTkxAClUtPQP3F34GrIX/d+gCtux1td25Cz7OP2ptoahzccxYCBr0EpUzyUw4Jfch+QlUROuWs/pwXQdPzMs17ELn5h4hv/2vJ6jI9WIEKl/HHYXM0jnR2bO3XdPl2CTclM+w9d3mAivydV0uNgcU4GCb0EYptW9OSs9z1M0bOeaHriD35O3Tc/TNoPfnjn+VG8VXCNT0/LbN28D3oJdhESkppnGCuIsDhxCliMOfF+4znJgCATCXR9cBt6PrjL6Gnrd+KXBECTTXG8y10mdtPZCzzLVzT5kBU5M8Pyux5oySJ9XLDifnbDYgqZ1YnMrAoktSyuRTEh8ml8TaeaUyTj3B7cjkvPv9ViArjsVoASO15C5GbfoDkzm021q44ppPP9pRgz4N4FNA4nDjVqZVB1J67HqEVqw0nEA+I/20r2m7ZiPTB/ZbXwetSMSNonN8ikdFwqGf08y2EohgOK8pEL7RD1ufrKLfszwwsipR7Ictjogw5z7dgMRouvQae2fmTHwfo8V50/Oo/0f3Yb8s654Wdy07L7YZIzhFCQWDZKaj/8r9ADTeYnpftOIS2265H71+esnz1VY3fg2qf8dyp9r40epKjb7e2tiPT4UQGFhMK51fQ4VyhMOrO/xaqTvq04TyFAX0vPJnLedFR+sRTxVACIagNjXmPZw/stnx3V91owpkD6+6pfHimN6Hhku/Cf8xx5idpWUQf/Q06f/0LaBZvSz4j6INXNf5o3B9NIKONbijDNWs+4MkfzsvsfsPSgCg3nGjweeTgcCIDiyKY7nfv0EQZKh9CURA8cRXq1l0BNWj+4Zg5uB9tN29E36vPlWXOC4/R5DOpI/PeDsvKMB9OrOZw4hSneCpQ89l1qDnrwoI5L5LvvN6f8+Jty8pWFYHGGr/hWhVNl9jfPbot1oXqgmd2/uZ+ek8XtI5WC2rarwyHExlYFCPVZzxRhmm8qZ+36X1ouPQaVHzgw6bnyEwK3X/Ygq7f3QE9VV45L+xYdipjbeBwIhXiP/pjaLjkarhnzDE9R+/pRvsv/x2xp34PqVuTJ8LnVjE9aBzQ9KU1RHpHN4HUvB1ZNxyix4y3n3dqGARgYFEUGY0YPi6CXHdPf5fLeXEJqletAQrlvNj2Yi7nxYHyyXmhVtdDCefv7ZDZ/w5kxppZ+abtiPkraAhXuB71F/4zAh8/rcBZEj3PPIL2O3+CbLc1OS/Cfg+CFcabp0V6U+hN5fcSHM7ddJThBmxpKwP0qMGQqqJABJwbTmRgUQTd6IYoBAMLyiOEQOVHPoGGr3wHrvoZpudpXe1ou2MTerY+VjY5L4yS/EDLIrPvnXFfW+qacUIfj5/DiZRHqC6ETv1H1J73dSiV5jkv0s27EbnpR0i88fL4yxQCs0J+uFXjXuj93XFkR5hvIdweuJvyNzHUuw5B6zLuaRgLmewFUkbLTOscHU5kYDFGMp0AEvnr+UUgDKGafyulqc3dMAMNX7kKlR850fwkXUfsiQfRcc9maL3O57woZZIf2dsJGHRbi1ADhxPJVMX8hWj46jXwvs/4vQkAMpVA5/23oOuPd0Mf546iqpLbT8RIVpfYH02MON/CdDjEgqRzpr1+IfOdZO3AwGKMzF9I8+VRREB/zotV5yJ8zqWFc17s3oHIjT9EcmfpdxUtRK2dDqUqP/tldv874x7LNmtHCtsRjSCX8+IyBE/73Ag5L55F2y3XInOoeVzl+T0uTKsynm/Rm8qic4Qt1t2zPwAYbAKWeW/8m6wZ9p7D+d5zBhZjZD6/gjdEGh3fBz6cy3nR9D7Tc/R4Dzp+9R+IPnafYzkvhBBwz82f1S5TCWiR4m/WUkrImEE7cnkBf/7mTUSHE0JB1XGnov6ibxfOedHeisit16H3xafHtfqqrtKDgNd4vkVrLIlUgS3WlQq/YTbb7KF945q0LdPJsu09Z2AxBjKbhuzryj/gr2b6YRoTVyiMui99C1UnnlEw50XvC0+g7Y5NyDqU88LdtMDw8cy+cSzv6+sCDIIlEarnMAiNiWfGHDRc/F34jllmfpKWRfSRX6PzNzcWnfNCCIHGkA8ug5zfEsD+7sJDIu6mo/IflDqyzTuLqg8A4+Ac5dF7zsBiDKTJsh5231IxhKIieNKZqPvStwrnvGjdh8jNGxF/7Xkba5fjmjHXcEVL5r3iAwvj7tvyuCHSxKN4KxD+7AWoOesCCIOEVAOSb7+Wy3mxt7j3rktVMKvaPOV3oSWohoEFxteOzIfl64u+plUYWIwB51dQKXhnvz+X82LBYtNzZCaFrt/fhU6bc14I1QX3zPwhG639APR4z5ivJ6U0bkeKC6KSu5lS8fxHL+vPeTHb9By9pxvtW/4dsaf/WNQ8oSqvG7UmW6xHelOIp42XoCo1DVCqqvMez+x/p6hVYDKbhuw16j0PQbjNE4rZhYHFKEkta5xtsyIA4TWfiEc0GoqvEuFzLkVo5bmG694HJF7/CyI3b0T6wF7b6mb6bauYZaeJHiCTv5mTCNZDGExwIxoLV7gB9Rd+G4HjTi1wlkTP/zyM9rt+imy38dYMhUwLVpim/G7uThjugiqEgKsxvx3JeA+09rFn4TRLLlcuvedsyaMke9oBg8iSvRVkFSEEAh89sT/nxXTT87SuNrTd8WPbcl64DNbhA8XNs9DLeFyYJgehuhA67XOoXfNPUCqrTM9L738XkZt/hMSbr4zp+ooQpkMiKU3HwZjxLqjmAfrY21G5954zsBgl0+VxXA1CFnMfMRP1X/kO/Es/YX7SQM6L//qPkue8UINhKDX57/Nilp0atiOhMI03Wa7ifR9Ew6XXwDt/oek5MhlH5303o+uhe8aU88LvcaEhYDyfoyOeRk8qf3Kye9Z8w+WxYw0szHvPKyG8lWO6VqkwsBgFqeuQMYMsge4KwGceERMVS3F7UHPGGoRXX1I458W7byJy0w+R3GVdimAjRtkDZToJ7dD+UV9DpuJAMn9WvqiqhSgw/ENULDUQQu2aDQie+o+GuSQGxF95Bm23XovMoQOjvnZDwAuf2ziPRnN3Apo+fKhCuL25ydCH0Q7tg26QPdOM7Okw7j0POpsUaygGFqOQyxJosHscswRSifkWLsnlvGicb3qO3teDjv/ajOjj9+d2DC2BQstOR7uVuuGeBiif7luanIRQUPXx01B/4ZVQa8xXTGTbWhG59Vr0/vX/j273UiHQWO0z3AU1q0sciOZPsjZediqR3b8TMtk3YpmA+TLTcplfATCwGJWJ8ELS5OUKhVG37nJUfWJV4ZwXz/8pl/Oi0/j9Oq46TJ8DuPJnwydfewZ9j/5yVNcwXWYadH55HE1+nplz0HDJd+H70LHmJ2lZRP/7XnT+9iboiZE/6L0u811Qo8kMuhPDh1fM5ln0PX0/En99YsTypNSN0x6UWe85A4sRmC6Pc7mBSud2j6OpRSgqgid/GnXnf8tw2dqATMt7iNz8I8Rff8GysqWU0Hu6oBjl2hhlD4nMpIB4/lwQUVkDYRCwEJWC4vUhfPZFqPnsBQWTGibfejWX8+K9kVc+hf0eBDzGQ3kt0SQy/RuV9STTSCaTgNvg/T7K7Lqyt8uwzZVb7zkHNkcSjwLZ/Ek9IlheLyRNDd45uZwX3X/8JZJvv2Z4jkyn0PW7O5F8dweqV34Rirf4de16og89v78Jevf4dmIs91nsNLX4j1kGz6y56HzgNmRa9xmeo8W60L7l31B1wkpUnbjKdLdQ0b9KZGdbL7TDhlA0KdHcnUBFTwTuJ++Gmh79XAojE2U4kT0WI9C7Dxo+Xm4vJE0dqj+A8Oe/itA/fGGEnBcvIHLLRqRb3iu6LMVXCd/HVgCGI8mjJ9mOqMy4ao9A/UVXIrDsFPOTZH/Oiy3/hmy00/Q0t6pgRshko7J0Fu3eMHrnLR1XfaXUjQML1Q1RWT2ua1uNgUUBUurGN0RFhQgwSyA5RwiBwLEno+ErV8FVVyDnRWcEbbf/GD3P/anonBeeeYvgO+HTxVYVMpM03mPHF4TwGOcDILKDUF0IrViN2nM3QPEXyHmxbxciN/0QiR3mOS+qfR6EKsw3/+o56nik5xcfXMieTpM9dhogRHl9lJdXbcqM7O0yHgYJHWHaLUZkJ/cRs1B/8XfgX3KC+Um6htif7kfHr/4TWm/+boijUbHoOFQsObmo55r1Vig15gERkZ0qjlyEhq9eA++8/N18B8hkHJ2/vRnd/++/IE1yXswIVRhuVAYAEAI9H14B91yTvBojZJ417fWrnlbweU5gYFGA7DJOtSpqyu+FpKlLcXtQc+Z5CH/uYgiveQ9AatcbuZwX77457PFsd8eotmavOPY0eBZ8JP+AwSZlQ+ldZjfE8ll3T6QGQqg9758QPOXsgh/yfS//DyK3XodMZHjOi0z7QXT0pZHVzZeqpjWg8pQvwjVtTt4xJVBt+jypa8bDIC5PWfaeM7AwkXshjVaDlOcLSeT74NJR5LyIoeOenyH6pwdyGfy0LDrvuwV9rzw74vWFEPB/4iy4Gocny1KrzZeLylQfkMjvJRGBmrLYLIloKCEUVB2/AvUXfhtqTZ3pedm2FkRuvQ59L/0ZUkpofTFE7vwpOt950/Q5QG4yp664UPkP50M5rN2oBVZ7yVg7YJDlVlRPK8tFBAwsBigqIBRAUdG7/dXc3iBGSbGqp5XdeBbRAFd1bS7nxQkrUWjCZe9zj6Ptjn9F98O/QqZlL3qe+e9RpTQWqorAaWugDpnXodYM6XkY0o6iW5+CNO2t4DAIlS/PzLlouORq+BZ91PykbAbdD/8Knb+9CV2/uxOIx1D96hPwmA2F9MtoOpQKPwKr1kH4AoOPK4H+5dxD2tAA2W3ce16uw4n8hOxXueBDaPj8OlQu+BCS776FQ7+61fA8pQzHs4iGEoqK4Cc/g7ovfXOEnBd7Ef/bVgCA3htD34tPj+76Hi8CKy+AqAwBAJQh2QyHtqPeV1/EoQfuMbiAgAhxGITKm+L1oebsi1D9mXUj5rxI9Q8v6s3vojG2D9ODFTCLL9L9eS3UYC0CK780OJTYt3cPgOFtCADaH77PuPfc4wN8wWL/eSXFwEJRUblwMRqv+D5qV3wWjVd8H/6FxyD66qtAIAxlxvuBgaEPRQX8IUerSzRa3jlHoeHSa1Dx/qNHdX7P1segp/LTEBtRKoOoWnUB4PFCrWkwb0evb8tvR+4KiBHmZRCVAyEEKhcfh/qLvwP3tMZRPaf36T+g1u/BUQ1VqPXnJ8MaCCwAwNXQiMpTvghRUYnknl2GbSj2Yv8w5eHtSPWU5TAIMEUDi2Qyiba2NhyItAFSovLoJYMvkBACgaOXQmayUOcthVI/B+q8pbkXU8qyfSGJjKj+AMJf+NqIOS8AQCb60Pv8yGmFgVw2zmRFFZInr0F7Vd3Y2lEmNe5/F5Gd3HXTUH/Rlahc9qkRz8207kPyrVfhUhTMCPlwZF1gWGbOzJDAQkqJZO0sxD/xechs1rgNpTNAIJzfjlL5G/qViykTWEgp0dXVhXfffRe7du3CoUOHEOvpAdxu9L3+yuCmM1JK9L7+MoTHM+wFVoJ1hjvKEZW7wZwXX/4XuOoKD+X1Pv8EtLj5DUvTNLS3t2Pnzp3Ys2cPOuJp9MbjbEc06QmXG9UrzkHtuZcVzHkBALGn/wip597nFW4Vc8J+zK7xw6MqSGs6MpkMDh06hLfeegv79u1DZyJt3obcLijBuvx2ZDCZs1xMiZTeiUQCzc3NSKXyvylpRx+Lvpeewb6f/B8Ejl6K3tdfRvzN11Bz3Mch+3sopJTQY+2QQhl8jGiicU9rRPUZ56H9rp+YniPTSfQ+9zhCp5yddywWi6GlpQXZbP6k5rG1I5XtiCasiiM/hKoTVyH6yK9Nz8m2tSDxxkvw9294JoRAsMKNSo+Kg23teOedvXk7qJq1odDSJdBj7RB1s4e3ozLOpSTkaPaHnaCklIhEImhrG2Gfgz8/AvX1F4FMBnC74T16MZqWfzQ3phWsgx5rB3o70S4q0eNrQFNTE7xe88k8ROVITyURuWUjtBF2PxUuN474+kaogdx8Il3XceDAAUSj+ZuIDTOGdpQMzkRjYyNUtXxvjkRGsp1tiNz8Q8h04SE9NdyAI9b/38FkiplMBvv27UMiUWAe02FtSDvmY6hbfhzqZJ9hO9Lr5mL69OllF6RP2sBCSonm5uaRb4Ym6vQowjIBAR0SCjqFD+1K7karqirmzJkDn4/piGniSO15G70vPoVMpAVaV25+kZnKYz+J6n/4PDRNw969ewvfDAso1I68Xi/mzJkDt5sTOWniiL/2POLb/4psWyu0AvuHAED1mWtRuWQ5UqkU9uzZY9jbNxqF2lEgEEBTUxOUETJ32mlSBhbjDSpGQ1EUzJs3DxUVTPJDE4/MZpBtP4hMWysykRZk21qQaWv9e8ChulC//vvY3xktOqgYDY/Hg3nz5sHlmhKjsjTJ6KkEsm0HkWlrQTbSgkx7K7KRFmix3N44aiiM8CXXYPd7+4oOKkYjEAhg9uzZZdNzMSkDi87OTrS0tJS8HK/Xi/nz55dVpEg0HjKTRqbjELKRFrR7qxDLlH6iZTAYRGNjY9ncFInGKxdwtCLd1oqD/lokM6ULKgY0NDSgoaE8dguedJ+IqVQKra3GWcpKUVYkUni8mmgiEW4PPNMaoc1daEtQAeQmhZayd5HIborXB8+seUg2HmVLUAEAkUikpL2LYzHpAouWlpa82bal1N7ejmQyaVt5RKU2MFnTTi0tLdC08l0+RzRW6XQaBw8ap7QvlebmZls//8yULLDYv38/TjrpJCxcuBBHH3007rvvvlIVNSiZTKKvr6/k5Ryuvb3d9jKJSiUWi5V0PNiIruvo6uqytUyiUursLDyxsxRSqZQjn4GHK1lg4XK5cMMNN+DNN9/EE088gW9+85sl/wd3dHSU9PpmotGo7TdiolJxqh11dHSUxbctovHSdd2RwAJwrv0OVbLAYvr06Vi8eDGA3KSScDhc0j+0lBLd3d0lu/5IZcdi+VtDE000qVTKsXHaTCZTNmPEROPR09MDXXcmw2xPT4/jw4pjDix0XceCBQtw5ZVXDnv8scceg8fjMRzyeOmll6DrOhobR7eJSzFSqZSj33bi8bhjZRNZxekPdrYjmgycbkdOlz/mwEJRFFx11VW48cYbB8dEX3vtNaxevRrXXnstVq9ePez8jo4OnH/++bjlllusqbEJp/+QvCHSZOB0O3K6fCIrOP154HQ7KmooZM2aNairq8PmzZvR3NyMVatWYe3atbjiiiuGnZdKpXDWWWfhqquuwsc//nFLKmzG6ZUZ6XSa48M04Tndjpwun8gKRvtSTaXyiwosXC4XrrzySmzevBkrV67EkiVLsHnz5mHnSCmxbt06fPKTn8TatWstqWwhTo1nDcXAgiY6p8dmy6EdE42X0+9jp8svevLmmjVrEI/HIaXEvffem7eZ0NatW/Gb3/wGv//977F48WIsXrwY27ZtG3eFiah0mP2SiMar6AT9l112GYBcDgejHQqXL19ua9RUDrsk8qZME53T6emdLp/ICoqiONr753Q7Kqr0a665Bg8//DBeeOEFZLNZ3H777VbXa8yc3gysoqKCgQVNeE7v2Ot0+URWKIfPIyeNObC47bbb8NOf/hQPPfQQjjnmGHzjG9/Apk2bkMlkSlG/UXP6huR0+URWcPp97HT5RFbw+/2Olu90OxpTYPHII49g/fr1uOeee7Bs2TIAwIYNGxCLxXD33XeXpIKj5fF4HO3+cfqNRGQFp29IbEc0GTjdjiZMj8XLL7+M1atXY9OmTTj77LMHHw8Gg9iwYQOuv/56R8eUhBCoqalxrOxgMOhI2URW8ng8qKysdKRsr9fr+A2RyApVVVVwuYqewjguoVDI8TmHQk6iNZKpVAo7d+60vdza2lpMnz7d9nKJSiEWi2Hfvn22lztz5kzHvhwQWS0SiSASidhe7vz58x3vMZlUU7C9Xi+qqqpsLzccDtteJlGpVFVVwePx2Fqmy+VCKBSytUyiUgqHw7ZP6Pf7/Y4HFcAkCywAYMaMGbbOtZg2bRq8Xq9t5RGVmhACs2bNsrXMmTNnOr5EjshKLpcLM2bMsK08IQRmzpxpW3mFTLqW7Ha7bfvj+nw+1NbW2lIWkZ38fj/q6+ttKaumpsaRnkaiUquurkYgELClrHL6kjvpAgsgN3mlrq6upGW43W40NTUxdwVNWg0NDSW/Kfp8Ps5PoklroPev1B/41dXVZTUkPykDCwA44ogjShZcuN1uzJ07F263uyTXJyoHQgg0NTWVrDfB7/djzpw5HAKhSc3lcmHu3LklCy6qq6sxc+bMsvqSO6lWhRjp7OxEa2urZRuEBQIBzJo1y7GlRER2k1Li0KFDaG9vt+yaNTU1mD59OoMKmjI0TUNLSwui0ahl1xz4Al1OQQUwBQILILel+YEDB9DX11f0NRRFwYwZMxAKhcruRSSyQyKRQHNz87i2ZHa73Zg1a5ZjuTKInBaLxXDgwIFx5X3y+Xy2DLEUa0oEFkDuW1dfXx86OzsRi8VG/TyPx4Pa2lpUV1c7nnSEyGlSSsRiMXR2do4pUB+Y6BwMBtlLQVOepmmIRqPo6OgYU6BeVVWFcDiMQCBQ1l9wp0xgMVQ2m0Vvby8SiQQSiQTS6TSklBBCQFEU+P1+VFRUDK4JLucXkMgpqVQKfX19SCaTiMfjyGazg+3I5XLB5/PB5/MNticiGk5KOdh+Bj6PNE0bbEdut3uw/QQCgQkzr29KBhZERERUGuyTJCIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiy7icrgAR0Vh4PnwhhKJCKCoUlwdCVaEM/u7++zG35+8/D5xrcEx1uSAUASEEFEVAcSlQhIBQBFSXAqHA/JgQEApyx1QFipI75nEpUBUx+J938Hfl78dE7jzXkPOGPm/YNYSAW8nVYejPihBQBeBWlcN+BlSRO+5WxbCfhQAUCKgKBn8WAlAFcv+2wecOHAdURUAAuesO/pw7V+gahNQBqQNDf5Y6oGWNj+n9j+s6ICWEnh18jsxmAF0DdA1S04BsBlLXAF2HzKZz/9f6jw89t//n3LHcuVLXITUdeiYLqeV+1jKZwZ+lrkNLZwd/1tNZ6P3PkZo2+Dx98BoSuqZD6hJaWuv/XULLaH8/pvUf03PH9LQGXZP9ZfXXR5OQmkRG16FJQJMSaV0O/qxJDPt96M86Bo4NPS/3801yr6NtcwB7LIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyQkopna4EEZETUqkUrrvuOlx11VXwer1OVycP61e8cq4bUP71Gw8GFkQ0ZcViMYRCIUSjUQSDQaerk4f1K1451w0o//qNB4dCiIiIyDIMLIiIiMgyDCyIiIjIMgwsiGjK8nq9+N73vle2k+dYv+KVc92A8q/feHDyJhEREVmGPRZERERkGQYWREREZBkGFkRERGQZBhZENCVdccUVOOGEE7BmzRqk0+lhxxKJBM444wyceOKJOPXUU9HZ2VlW9Rtw3XXX4SMf+Yij9clms1i3bh1OOOEEfP3rX7elLmOp3wA7/1ZGzOpXDu81qzGwIKIp529/+xsOHjyIZ555BgsXLsT9998/7PgjjzyCRYsW4c9//jPOOecc3H333WVVPwDo6enB9u3bHa/PQw89hFmzZuGZZ55BPB7Hc889Z0udRls/wN6/lZFC9XP6vVYKDCyIaMp5/vnncdpppwEATj/99LwPwyOPPBLxeBwA0N3djfr6+rKqHwD87Gc/w/r16x2vz2jq6mT9AHv/VkYK1c/p91opuJyuABGR3bq7uzFjxgwAQCgUyut+nj9/PrZv345FixZBCIG//OUvZVW/aDSKbdu24eqrr3a8Pt3d3YN7XRjV1en62f23MlKofk6/10qBPRZENGkdPHgQy5cvz/tPSolYLAYgd9MPh8PDnrdlyxacdNJJ2L59O77//e/jBz/4QVnV74YbbsBll11WkjoZqampMa1PoWPlUD+7/1ZGCtXPrveanRhYENGkNW3aNDz77LN5/61cuRKPP/44AOCxxx7D8ccfn/fcgZt/dXU1uru7y6p+u3btwsaNG3H66adj586duP7660tSvwHLli0zrU+hY3YpVAe7/1ZjrR9gz3vNVpKIaAq6/PLL5fLly+W5554rU6mUlFLKiy++WEopZTQalStXrpQnnniiPP744+Xbb79dVvUbaunSpY7UZ6AumUxGnn/++XL58uVyw4YNttRlLPUbyq6/lRGz+pXDe81qTOlNREREluFQCBEREVmGgQURERFZhoEFERERWYaBBREREVmGgQUREQ1at24dhBC49NJL84597WtfgxAC69atG3zs4MGD2LBhA+bNmwev14vGxkaceeaZePLJJwfPmTNnDm644QYbak/lgIEFEREN09jYiF//+tdIJBKDjyWTSdx7771oamoafGzv3r1YunQpnnrqKWzatAnbtm3Do48+ipNPPtnRFNrkLKb0JiKiYZYsWYLdu3fjwQcfxJo1awAADz74IBobGzFv3rzB8wZ6MF588UVUVlYOPv7BD34QF154oe31pvLAHgsiIspzwQUX4M477xz8/Y477hgWLHR2duLRRx/F+vXrhwUVA6qrq+2oJpUhBhZERJRn7dq1ePbZZ7F3716899572Lp1K84777zB47t27YKUEgsWLHCwllSOOBRCRER56urqsGrVKmzZsgVSSqxatQp1dXWDxweSNgshnKoilSn2WBARkaELL7wQd911F7Zs2ZI3Z+LII4+EEAI7duxwqHZUrhhYEBGRodNPPx3pdBrpdBorVqwYdiwcDmPFihX4+c9/jr6+vrznTopdOqkoDCyIiMiQqqrYsWMHduzYAVVV847/4he/gKZpOPbYY/HAAw9g586d2LFjBzZv3ozjjjvOgRpTOeAcCyIiMhUMBk2PzZ07F6+88go2btyIyy+/HK2traivr8fSpUtx44032lhLKifcNp2IiIgsw6EQIiIisgwDCyIiIrIMAwsiIiKyDAMLIiIisgwDCyIiIrIMAwsiIiKyDAMLIiIisgwDCyIiIrIMAwsiIiKyDAMLIiIisgwDCyIiIrLM/wJA3E/c2VZ9swAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAHNCAYAAABCVjKiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADAJUlEQVR4nOydd3gkxbXFT3X35DyjtJJ2V9ociEvOOQcDNrYxxgEMLCYnk/EjBxPMGptsY8AGjDGYnDMmhyVsXmVptQojaXLo7np/jLRpqkcjaaYnqH7f97733nSpu9iZqj5169a5hFJKweFwOBwOh5MDhEJ3gMPhcDgcTvnAhQWHw+FwOJycwYUFh8PhcDicnMGFBYfD4XA4nJzBhQWHw+FwOJycwYUFh8PhcDicnMGFBYfD4XA4nJzBhQWHw+FwOJycwYUFh8PhcDicnMGFBYfD4XA4nJzBhQWHw+FwOJycUfbCQlEU3HDDDeP++1gshmOOOQZz5szBdttth0MPPRQtLS256yCHUwJMdBwBwDnnnIOGhgYQQvDdd9/lqGccTnmRi7FWaMpeWHz77bf497//PaF7nHbaaVi5ciW+/vprHHnkkTjttNNy1DsOpzTIxTj60Y9+hA8++ADTp0/PUa84nPIjF2Ot0JS1sFi2bBmOOOIIdHZ2YrvttsPvf//7Md/DbDbj8MMPByEEALDrrruiqakp113lcIqWXIwjANh7771RX1+f495xOOVDrsZaoZEK3YF8smDBAhx77LGYN28ezjrrrJzcc8mSJTjqqKNyci8OpxTIxzjicDjplMtYK+uIBQB8/vnn2HHHHdM+32uvvVBRUcH8n/b2dua9brzxRqxevbrk9784nLGSy3HE4XC00RprpQShlNJCdyJfyLIMj8eD3t5emM3mCd3rtttuwxNPPIE33ngDbrc7Nx3kcEqAXI4jAGhoaMALL7yArbbaKge943DKh1yPtUJR1lshHR0dcDgcE/6C7rjjDjz++ONcVHAmJbkaRxwOJzPlMtbKeiukvr4e22yzDebOnYvLL798XPfo6OjAhRdeiMHBQey3337YbrvtsMsuu+S4pxxO8ZKLcQQAZ555Jurr69HR0YEDDzwQs2bNymEvOZzSJ1djrdCU9VYIh8PhcDgcfSnriAWHw+FwOBx94cKCw+FwOBxOzuDCgsPhcDgcTs7gwoLD4XA4HE7O4MKCw+FwOBxOzuDCgsPhcDgcTs7gwoLD4XA4HE7O4MKCw+FwOBxOzuDCgsPhcDgcTs7gwoLD4XA4HE7O4MKCw+FwOBxOzuDCgsPhcDgcTs7gwoLD4XA4HE7O4MKCw+FwOBxOzuDCgsPhcDgcTs7gwoLD4XA4HE7OkArdgUJBKUUymUQsFkMikQClFIQQCIIAi8UCk8kEQeC6i8PJBKUUiUQC0WgUsixvGEeiKG4YR4SQQneTwylqVFVFPB5HLBaDoigbxpHBYIDFYoHBYCipcTSphAWlFNFoFP39/QgGg1BVNWN7s9kMr9cLl8sFURR16iWHU9xQShEMBuH3+xEOh0Ep1WxLCIHVaoXX64XD4eBincMZRlVVDA0Nwe/3IxqNZmwrCALsdju8Xi9sNlvRiwxCM80KZUQwGER3dzfi8fiY/5YQAq/Xi6qqKi4wOJMWSikGBgbQ09MDWZbH/PeiKKKyshI+n6/oJ0YOJ1+oqore3l709/ePurhlYTAYUFNTA6fTWbTjqOyFhSzLWLduHYaGhiZ8L0mSUF9fD7vdnoOecTilQzweR2dnJyKRyITvZTabUV9fD7PZnIOecTilQyQSQUdHBxKJxITv5XA4UFtbC4PBkIOe5ZayFhaxWAwtLS3jWl1lorKyElVVVUWrFjmcXBIMBtHW1pZxy2M81NfXw+125/SeHE6x0tfXh+7u7pzeUxAENDQ0wGq15vS+E6VshUU0GkVzc/O4Qk3Z4PP5UFNTw8UFp6wJBAJoa2vL2/3r6urg8Xjydn8Opxjo6elBT09PXu5NCEFDQwNsNlte7j8eyjKTKplMoqWlJW+iAgD6+/vR19eXt/tzOIUmEonkVVQAQGdnJ4LBYF6fweEUkpG8pHxBKUVLS8u48gfzRdkJC0opOjo6oChK3p+1fv36UbN5OZxSRFVVtLe36/Ksjo6OnG9XcjjFQCKRQFdXV96fQylFe3t7zrcrx0vZCYuBgQGEw2HdntfR0ZHXyAiHUwjWrVuHZDKpy7MURdFl8uVw9GRkkavXyz4Wi6G3t1eXZ41GXoXFCy+8gLlz52L27Nl48MEH8/koAKlVVq6TY0YjHo/n5MQJh1MsJBIJDAwM6PrMQCDAo3+csiIYDObkFNVY6O3t1SVaPxp5ExayLOOCCy7AW2+9hS+//BK33HIL/H5/vh4HABgaGipI9KCvr69oQlAczpaM9bfZ39+fp54U53M5nGwohXE04jVTaPImLD799FMsXLgQdXV1cDgcOPzww/Hqq6/m63EACjcxxeNxvtriFC3JpW8hueZLUHn0s/OqqhZsYhocHOS5FpyiJfHxfyG3LwfNYvEaj8d13ZLflP7+/oIvdMcsLFRVxbx583DJJZds9vmrr74Ko9GIp556CgDQ1dWFurq6Ddfr6+vR2dk5we5qI8syYrFY3u4/GjyznVOs0EQU8oqPEHvz0VEFRiQSKWjOUKEmYw5nNGh4CMmlbyH+zj9GFRihUEjHnm1OMpnMiQHXRBhzrRBBEHDZZZfh7LPPxqWXXgqPx4OlS5fi+OOPx4033ojjjz8eADtslE/Ph0KKCgCIhoNQ1vOoBaf4oPHh32UyBnnFR5DXfgVp5vaQGrYCkYybtS30OIoFBmCPFT6Uy+FsCVVT0TQaCSC59C3Iqz+HNHtHiHVzQbaogVPoCHY0GoXJZCrY88dVhOzEE0/ENddcgyVLluCUU07BEUccgZNOOgkXXXTRhjZ1dXWbRSg6Ojqwyy67TLzHGuidJLMlieAgEss+KWgfOJysyCAwCj2OFH8XEu1fFbQPHE42ZBIYhR5H0Wi0oK6243bevO+++3D55Zejrq4ODQ0NeOaZZzYr0CXLMubPn4933nkHTqcTixYtwscffwyfz5ezzm9KV1dX3pNDM2FIRjCt87OCPZ/DGTcG8waB0dTaXtDVlis+gIp13xTs+RzOeCFW5waBsXzFioJuKbpcLkydOrVgzx938uaJJ56ISCQCSikef/zxtKqfkiTh9ttvx3777Yftt98eF198cd5EBTD2jF0OhzPMcAQj/uHTIMnCboXwccwpVUYiGInPXwJVC3vks9DeSuPaCgGAs846C0DqqKVWKfGjjz4aRx999HgfMSaKoWYHBQEBnxg5JYbJAsPMRRCnLwRtaQPkwkUsimEcczjjgdjckObsBLF2FsjyFVmdHskXglBY78txPf2qq67Ciy++iI8//hiyLOOhhx7Kdb/GTMFLxxpMaN72R+hu3AMBbyNkqXCJMxxOVpgsMCzYA+b9T4I0YzsQ0VDwcSRK7EUKh1OsEJsbhu0PgmnfEyDVzQEhAiRp3Gv2nFDw54/1Dx588EHcfvvteOutt7DtttvivPPOw6233orTTjutoJOSxWIp2LMBgDgqoEomhLyNCHkbAVCYocJOZNgFGRYo4IsxTiFIrvwYdHCTIkibRCiIuPmYtVqtCAQCOvdwI6K3Fsbawu0NczhaJL56HUhsjOZtFqEgm6/RrVZrQY98Fvp9OCZh8fLLL+PMM8/E448/jl133RUAcPbZZ+O2227Do48+ipNPPjkvncyGQv9DUuOWzyeIQUSMiuhTTBAJgd0kwTH8P5JYdmVaOEWK3Lw0tUGXQVCMUOhxZHZ6ILpcBe0Dh8OCCCIoMguKESwWCwYHB3Xt35bPLyRZC4svvvgCxx9/PG699VYcd9xxGz53Op04++yzcfPNN+OXv/ylZr5FvhFFERaLpSAZ7RRAEpn/uxVKMRRLYiiWKuxkMYgbRIbFIPK9ZU7eICYrDAv2yCgoRrBYLBAEoWDJXzabrSDP5XBGg9g9kObvllFQjGC323XqVToGgwFGo3H0hnlk3MdNi5HBwUF0dHTo/lyD1YGExT3uvxcJgcMswWk2wGGSIHCRwckhlNIxCdfu7m709fXlsUds3G436uvrdX8uh5MNYx1Hzc3NBXGSrampQUVFhe7P3ZSyisc7nU79IyaUwtX6LbxGwDTO7Q2FUgxGk2gbiGBZdwCtA2EMRBNQ1LLRfJwCMtZomNfrzVNPtKGJOOwrPwFNFtaKmMPRYqzjqBAvd0IIPB6P7s9N60c5RSwAwO/3o6urS7fn2b54B+5IByiRYD/050D9HATjSQTjMkJxeUKHTwkAm0mCy2yAk+dlcHRk3bp1uhb1c7/7NGxCFDDZ4fzBbyD6anR7NoeTDyilaG5u1tWFs7q6GpWVlbo9T4uyExaUUrS2tupSBEbsakXVqnchbPLCN8zdEbZ9jgERJaiUIpyQEYzJCMZlJJSJ7VvbjCKcZgOcJgOMEhcZnPyhKApWr1kDOZnM+7NMyz5HRf+KDf8/pYBl18Ng3n5vnnvEKWni8TjWrFmji/GbxWLBjBkzimLMlJ2wAFLV3dasWQNFyZ/7GU0kUPXOP2G0MPJfrW44jz4Fomdz5RiXFQTjKZERnmA0w2IQ4RzOyzDzs/+ccUIphaJSxBUVcVlFQlYQl1P/t9dE0N3ektfnk4E+VH/5AkRj+jgSKqfBccQvIVh4QienuKGUQlYp4sPjJyGriMsKEooKj6RgfVf+KnsDKUOsmTNnFrTw2KaUpbAAUlUam5qa8pbd7nr3v7AL2qXSKQise/0ApoW7MBWkSinCwyIjEE8iqYz/azBJApxmA1xmA8ySUBSKlVN8KKqK2CaT3sgEqDCmALMkYLrXhmAwiLa2trz0h6oqfK//Axar9u+VigbYD/sFjFNn56UPHM5YSSoqU0CwUuJcZgOmuCzo6+tDd3d3XvpDCEFjYyOsVmte7j8eylZYAClx0dLSAlmWx/y3FeoQvDQCAgoKAj+xok9Ina+vqqqC/NoLUNd8Clu1O+N9xNpZsB96IgST9rliSilisoqhaBKBWBLxCWyZGESyQWRY+TFWziZEEjLaBrLb753qtsJmSkURQqEQWltbxxXOzTSO6qqrEXjsAZji62ByaUclKAVMC3eDdc8jQQp0nJ3DGWEwkkB3MLuaOjMr7DAMb5X39/dj3bp143qm1jgSRRENDQ0F963YkrIWFkBqr3jdunUZzUqED16F+N3nQDIJGAzwHH4EvHVVgN0LwVkBNdAHhPwYEJ2wNGy14Yxy4Juv0ffYn+Ga5tksz2JLqGSG86hfQ6qZnlWfY0kFgWHPi5g8fpEhCSmR4TRLsBn5MVYO0BeKoy8cz9jGYhAxzWPdTJQmEgl0dnZmPD6X7TgaMrhgn7ndhrBt/5uvIvjGv+GaNkqRQrsPzh+cDNGZv2KGHM5oUErRNRRFMJ55weq2GFDj3PyFH4lE0NnZiXicPQa3HEPKVjvCu/uuqKDhtHEUNHnhmLVdwe27WZS9sBghFAqhu7sbsdjmSlP44FWIX34I6/xtYdtqe4S/+wrV++wMwVUJccYOIISk9qGbvgAiQ5C2PmCzv5cDAbT/+Q+wigEYHZmiEoB554Nh2WG/MUURErKaEhnxJCKJ8eeMCATDIoN7ZUxWKKXwRxLoDWUWFtM8VlgZOQ+UUgwODqKnpwfJLZI6JzqOYl0d6PzzLXBWGiGZtE28KATYD/4ZjDO3GsN/OYeTO1RKsT4Q22B2yIIgFa1gneRTVRV9fX3o6+vbbKueNYYiy5ei8YzTITh9WY2jYmHSCIsRotEo+vv7EQwGoSgKDPfeAOvMeag/7+qNX9o3r0OonQOhsmHD36m9LVC7VkHa9uC0e1JK0fvCs4h+9CKcUzOfXRaqGuA86tcgxrEn2SQVFcG4jKFYEqFR1HImCAEcJmnDCRNR4CKj3JEVFesCUYRHEac2o4ipnszJkpRShMNh+P1+hEIhqKqak3GkJpPoeuRBkI5vYK3KbOstzd0J9n2PARH41ghHP+Kygq6hKOKjRJK9ViOqHOaMbVRVRSAQgN/vRzQahXTP9WljqOPOa1BzwO4QxzCOioHii6HkGYvFssHdLx4KoiWZhG2r7TdEEQhJFT5XA30gFdM3fMFqoA9aVcQIIag66lhEt94OXff+Aa4pVmaWOwCoPS3wP3wjXMcthlQxZUx9N4gCvFYjvFYjFJUiEEvlZATHeMKEUiAQkxGIySCIwmGW4LEY4TBJPCejDAnHZXQFolkZrlXYM0+GQOr3brfbYbfbUyKjZS06xzSO2NuGgsGA+lPOwOAXn8L/5P1wT/eCaJR/lld+hsGOJrh+tBiC1TFqnzmciUApxVA0ifXB2KhzrUAAr210S21BEOB2u+F2u0EpxSrGGLJtvQhQ6ZjGUTFQvD3TAUkUAUIQ/u6rDYlpqYmyAwj5oTR9AbW3JRV2CvkBSkGT2mFkS0MjGv/vDkTEKYj2a58YEZQ4Ak/ehchXH4y776JA4LEaMd1rw4JqJ6a5rXCbDRhr8IEiJTJaByJY3hNE11AU0aSiy7lrTn6hlKInGEP7YCQrUWEfrlszFgghEOQkexy1drLHEUHG35d7h50x9bJbMdhHkAhlSJIL92Pg4ZuQaF05pj5zOGNBUVM5Fd1ZiAoA8FiNkDQEsRaEEBBJSh9D336J4Oo17HEkFbYeSCYm3VbIpijRCNac+3MAgHXeNrBtvQjhb79EZMU3mPbrX8NgNSP16iXD/xsQ6uZBqJg26r0HPngXg88/Ctd0X+YoQNUMuI85GUTMTfBo5BhrIC4jEEtCHqctuEkS4LEY4bYYNmQ1c0qHhKyiaygyavKvKJANoqPBa4N5jMICACKrl6P9D1cASB9H039zCiSTEVuOI3HmjiD2zNbhVFWx/pknkfj6bThqtdtSSmGYvxvs+/6AR9w4OSWSkNE1FM04jxKkgtkqTUUrZlY4xrW93HbH/yG64pu0MeTa60BUbD8PUBRsPo4IxIX7gBShwODCYlhYQBABqgJEgLlhFqZdcDWU5e+n/5HVDWn2zlndP96zPpWQ5hU0t0YAQCEmuH98FiRvbq1YKaWIJBUMDW+ZjNcrw26U4LakEj95PkbxkwrZRpnn6keQBIIpLgskgaClPwyHWUKta3zn4DcVFpuOI9s2O6D256dAbf4q7W+Irx5i/YKs7h9auQI9D98Fd50DJIPIVa0+eH5yFgRzcR2945QelFL0hxOjnqAySQJqXRYkZBWdQ1FU2k3w2cZnUjXw9svoefyBzcYQVAWN1/8ZEo1C7V6T9jdC3XwIFVPH9bx8wpeiI6hKKvlAVWBbsC2I0QJY3entIoOgiexKs5uqqtF49R+Q9MxFbFD7mJ5I4xj6520If/W/cXaeDSEENqOEWqcFcysdmFVhR6XNNOZiaaGEjI6hKFb0BNA+GEnVQJm8erRoUYdDtusCmUWF3SihwWeDzSjBJImodppRMc7JML0TG8eRa9d9Qew+gFGqnQ6uB6XZHaW2z52H6VfdhlDSiWREe6IXIv3wP3gt4m3pEzCHky1JRUXbQGRUUTGyFW2SRDjMBlTYTPBYcxA92GQMjUDc7No56uD4fDHyDRcWGRA87C+TDmTvoEZEEVN+cSpsh/8awe6A9rNEgvhH/4X/qftB8+AWSgiBxSCixmnGnCoHZlfYUWk3wSBmH4FQKTAYTaLZH8bKniC6AzHEkvmzTedkTyypoNkfRmCUI3DVDjPq3JbN9oDdFiOMebKFJ4IA4qpOv6AkQYPZFzkTrTZMPe8KiNschEifdv6SKFKEnrsfQ28+O47eciY7wVgSzf1hRDPMayIhqHdbUO0wb3Zsv8JuytsxfmKyAlbGSalw9gtdPeHCIgOpCZFhxz0OlejcdhFqL7gJwaAIVWb/aAkhIH1N6P3L1Uj6+8b8jLFgNoiocZgxt9KBRq8NHsvYEj+TKkVvOI7VfSGs6QuhLxyHPMEia5yxQymFPxxHiz+MZIZ/f6OYsuj2WI265yFoC/SxjSNCCHwHHQ7vry9FsC+mGTUTRAHqqo/R+9DNUOPZOSRyJjcqpegORNE5FIWaIRprNYho8Nlgz+C1ki8EjagFHcyPVfhE4MIiA8RgAnEwksZiIdCY9taGFpLLhakXXw+lfhESYe0JzyDKGHz0FgQ/H/+pkWwhhMBuklDvtmJ+lRP1bgvsGfJBWESTCtYFYljeE0SLP4yhaDLj4OTkBllV0TEYRc8ohlcuiwENvvElZuYEmwcwpG+10EDvuKJzlvqpqL/0VsQMNVDi2hEaKTGIvnuuRqxl9ZifwZk8xGUFrf4wBqOZK/lW2E2Y6rEWLJldeztkvc49GR0uLEaBuNleE3SoZ3z3IwRVx54A+w9OR3RQW1xIRhHJT55D72N/hprHKq2bIggEHosRjT4b5lU5UOMwwzTG8uzBuIy2wQhWrA+icyiKcILnY+SDcFxGc38Y4YS2UZpAgFqXBVOcloI6rRJC2JOiqoCGst8O2RTBYETtqedD2ulIxAMZRLpJQOi5+zHwytPjeg6nfKGUYjCSQEt/OKPhlSQQTPdYUWEzFfTUETGY2CepogHQRHFF5riwGAXirARzOyQwMZVomz0fVefdiJhiB9XItCOCACnYjp67rkCiR19VahAFVNpNmF1hx6wKO3w2I6Qx7JUow/bRTf1hrOoNYX0whsQE6p5wUmTrTWE2iGjw2eE06x+yZSGw8iwwfoE+gnuP/eA9+XJEQtr/FqJBBJo/Q/dfrocSLb79aI7+ZOtN4TBJaPTZYRljFDdfMPOVMPFxlGu4sBgFIhnYKjESAE1OTCVKFiumnHUlMGs3yBlCuiYLMPjoLRj639sTet54GEn6rHVaMK/KgekeK1xmA0NqaZNQVPSE4ljZG0RTfwj+SCIrwybO5iRkFa3+MPyRRMZ2PpsR0z1WGIvJf8TqAiTWdkjPhCNaxsoq1F54E5LOBs38JQAwkRB6774CkVXLJvQ8TmkTScho7g9lLCJGANQ4zah1WYrqiD1xVTE/pxNc6OaaIpp5ihfNLzNHKtF7yDFwHHcm4hHtSdFgNUL+4iWse+iPUJOZ9wLzBSGpaqnTPFbMr3aizmWBdYz79uGEgs7ho6tdQ1F+qiRLAtEkWvyhjIZXkkAw1WNFpd1cdEZRhBAQF8OnRU4C4cGJ318QUHXiYpj2OA7JDHvlJrsR4RcfRO+zj/MtukkGpRR9oTjaBiIZDa9MkoAGnw1ui/6JzqNBDCbm6RAaGgSVMy849IQLiyxgTojIbfjJPG0Gqs6+AUmDdkloQRJhiq9D+82/Q6yrM2fPHg+iQOC1GjGzwo45lXZU2U1jWiGrFOiPJLC6L4Sm/hCGokk+0TNQVYp1Q1F0jeJNYdvEm6JY0RLoag7HkX3RbvCefCUSSe1/B8lshND+Jdpv+z3koPYRcE75kFRUtGfjTWHZ6E1RrAjMcURBA72690ULLiyygBjMGipxAFTOXfRAMBpR9ZuLIczfG0qGI6nOChN67rkO/rffyNmzJ4JJElHtMGNOpR0zfDZ4rcYxHV0NJ5RUwmdPEOuDsYzHJicTsaSSOmUzijdFlcOE+i28KYoRYvMCAqMce2B9TkWl5Pag8qxroVbO1jx1Ikgi7LY42m+6GIHvvsnZsznFRyieREt/GJEM0VGBENS5LKh2mgua6JwNpZBnUdwzURGhp0p07Xs4nMedBTmp/QN31LoR+/AZtN55c9EkpI04fda5LJg/XBjNYcp+BS2rNJWL0RNE20Bk0p4ooZTCH4mj1R9GIgtvCq+1sNnq2UIEYTgZegsSMSCmbXo1HgRBgO9Hp8C89/FQkux/Q0II3FM9GHziT+j6599BdTp9xdEHlVKsD8TQMRiFMoo3RaPPBkeRJDqPBjFZAbM97XMa7AdVtPNG9IQLiyzJd57FlhjrpsN3xjVQrdr1Qyw+ByzKeqy+5CxE1hTXWX2BkJR/gteG+VUOTHGaYc7y6CoFMBRLoqk/jDV9IfSH45Mm2XODN0UwnjFb3WUusDfFONFjO2RTrFvvBPevL4NMtC3LHXU+kObPsPqqi5HoK55wMmf8jHhTDEQz5x1U2ArrTTFemOOIqmNys80npfWvWUCIyQaYbGmf02AfqJqflY5gMML7iwsgzt1Fc+VusJlQOcuL1puvwPpnny7KFb4kCqiwmTC70oGZvpTLZ7br65isoisQ25DsGc+Q9V/qhBMyWrL1pnAV1ptivBCHL1VcaQvyGcaVHB5UnHo1UNGg2cbstcPto1h96dkY/OjDvPWFk18opRiMZudNMc1jRYW9NKJ9WyI49V3ojhUuLMaAtkrMn/02IQTO/Y+F9aCfgVL2ABAMIqoXNSLwxtNYc+0VSA4O5K0/E8VqTLl8zqtOGXBlW6tkJNlzVe9wsmesfJI9KaXoDcbQPkq2utkgosFbPN4U44GIUkpcbEksBBqP5PG5Itw/Oh3G7fbTFulWE2q2mYquB+5A2z1LoMYzJ/pxiosN3hSB7LwprEWc6DwqFgdgMKd9PF4321zDhcUYyJfJTzaYZ28L10/OBWX8mICUAKlYOA3G6HosO3cxAl9/mfc+TQRJSBlwza1MeWOMJRcjnFDQNhDByp4geko82TOhqGgdiKB/NG8K67A3xRidUIsRvbcVNzyXENh2OwT2w38FyoiaACmRXrPjLCSWfYIVF52NaFtrXvvEyQ3RhIyWbLwpHMXnTTEeUse3GeNIlUHDfv07tAWlP0vpSSaVmGUJ6Ikg+mrg/tlFELxsm3EAcE6vROUsH9ZedwU6//4QqFwcyTxajHhjNHhtmFvpQIXNCDHL0GRSpVhfwsmegVgSLf2hjF4eokAw1W1FpaP4vCnGCzOBE/nLs9gSY8N8uH58LjMBDhgudrZgKmx2BcsvOAu9r7xYUr+ryQSlFP3hOFoHIkhm401RgCJ8+YJ9oKA4tkO4sBgDmipRkUFD+mw/CFY7nD/8LQyzttNsY6lwona3ueh/+RmsuOR8xLvHXo21EBglAVOcFsyrdqDeZYEly8TELZM9/ZEE1CJO9lTpsDfF0OjeFI0+G2xjiOaUAkQygtg86Rcig6BJfbYfRG81XD89D2LVVM02zmmVqNluGjru/xOabrkOcii3J1c4EyOpqGgfjKB3lCJ8bouh6L0pxoXNA0jp26J0qLfgQpgLizFSqDDuZn2QDLAd+BNYdjlUs43RZkbt7vOg9ndi2bmL4X9Pfzvw8SIQAo/ViFkVdsz02eAeY7Jn51AUy4s02TOWVNDSn9mbAgCq7KXhTTFetK2J9RtHgsUOxzGnwzh3B802Fp8DdbvPQ/jrT7H8nMUILftOt/5xtNngTZEY3ZuipsBF+PIFIQSElcQpx4HIkP4d2oTynLXyCLG5AZGlEide82BM/SAE5kX7wnbIz5n9AQDRIGHKTrNh81nR/Icb0XLXbVBixeF5kS1Wo4SpE0z2bO4PI1DgZM9svSkMooAGrw3eAldSzDfFINCBVDKpdb8fwbLrYZptDMMiXaRRrLzsQqx78h/c86JAqJRifXB0bwpLiXlTjBe9j29nCxcWY4QQDZOfAqlE44yt4Dh2MYgt3RkUAIhAULn1dPjm16P/zVex/LwzEVm7RudeTpwtkz3tY9geCCVktA5EsLovhIFIQneBMRZvikZv6XlTjAditAAWZ9rnNOQHVfSthUMIgXn7fWA79CRAMjLbiAYJNTvOhrPeh67HHsaqK3/HPS90ZoM3xSiJzhU2E6aVoDfFeCB2LyCkzxd6L3S3pPz/5fOApkoskFe7VFkH5w/PzLhf7GqsTmW7r+/EiovOwfrn/lPwfbjxMJLs2ei1YU6lfUzJnnFZRcdQFCt7g+gLx6Hq8N+frTfFFOewN0WJZ6uPBWbyGaWggcKY/BgbF6ZEul1bpFdsNQ2+BVMR+v4bLDvndAx+8j+dezn5mCzeFOOBCCKIoyL9QiICxMP6d2gYLizGAXH42CqxgK5ngs0Jxw9Og2HWNpptrJUu1O46F4JI0fHAPVh77VVIDg3q18kcY5LEDcmedWNI9kwqFOsCMawYPq6aD1dPSil6Q1l4U0gCGrx2uCzlHbJlobkdEircOJIqauH84VkQq6dptnE1VKF60Uyo4RDWXv97tN13N9RE8VSWLCcUlWJdYJJ4U4wTzXFUyPdRwZ5cwhBBTIWgtiQaKGjp2lRS5wkw73igZhuT04ra3eZBspow9PknWH7O6Qgs/UrHXuYegaQqrY412VMZPq66oieAdYFozvwwEoqKtoEI+sOZfwtea6qSYjl4U4wLk419fDvYX9gwrtUBx9Gnwjh7O802tmo3anaeDUES0fvCf7HiwrMRbeeeF7kkmpTR4g8hEMvsTVFdJt4U44UZsQAXFiUJsbPLm9NQYc1JCCGw7HQgbAedAIhs9W6wmlC321wYnRYk/X6svuoSdD5S/J4X2ZCW7JnFZKNSoC+cwMqeIDoGIxM6STLiTRHNwpuiqoy8KcYDIYTtwpmMAXl04cwGIhlgPeAnMO98sGYbi9eB2t3mQjQZEG1pwvLzzkTfqy+V5BZjMbHBm8IfQVIZ3ZvCU0beFOOBSAbAyshXCg8UzIWTC4txwpwQUViVuCnGWdvCcczpIFYH87poMqB2l7kw+xwApeh+6gmsvPSCkvG8GI2RZM85VSlPDFMWUQEKYCCaxKreEFoHwhnFwZaoNBWyHd2bQixLb4rxUszjiBACyw77w3bwiUy/AAAwOiyo3W0uDDYTaCKO1rvvRPOtN0AOhXTubXkgT3ZvinFC7IyohaoAkUHd+wJwYTF+TNaiDONuilQ1Fc7jzoTgZjsdCgYRU3acBVuNGwAQXrk85Xnx/ju69THfjHhizK6wY7rHmnUeRiAmY01f6qhqKJ7Z0XODN0U0G28Ka9l6U4wH5pYiCptnsSXGmVvDcfSpIGYr87rBakLtrnNhdKWuD3zwLpafuxih5d/r2c2SJxRPonlUbwqUtTfFeBEc7HGkFkig8xlunGQM4yYKG8bdFMHhhuOYxZonRogooGr7GXBMSyleNRJB8603oGXJ7SXneZGJkdMkM302NHptWR9XDSVkNPvDWDtsarWpwKCUYiCS4N4UE4BIRu1jpzrY5GeLVD0NjmO0T4ykIoBzYPGlIoSJnvVYeekF3PMiC8bmTWEve2+KcWF1sw8UFEigc2ExATTzLIogjLspgsUGx9GnQpo6h3mdEILKrabDPWtjDZL+119JeV40lZ7nRSYIIbCbJDR6bZhVYYcry0kqmkwVPlvdm/LCSCoph8/1wczZ6iN1UCaDN8V4YQp0VQHChXUP3BLRUwXnsb+F4GFn4QuSiJqdZsFWM2xXrqroeuxhrL76UiT681cBuZRJcG+KnEAEAcTOsskPgMr6+sIAXFhMCKIRfio2YQEAxGCE/bBfZMx0986phW/hxshGvLMdKy48Bz3PPVM02zu5xGIQMc1jxZxKO7xWY1YnSeLDgmJtXwihDJUUR7wpJnO2erZo5VkUKoybCcHuSkUANY6jEkFA1faNcE7fuP0Y/OZrLDv7dAx++rFe3Sx6KKUYiibQ7OfeFLlC+0CB/uOIC4sJUCph3BGIKMF6wI9h2noPzTau6VWo2r4x9WYEQOUk2h/4C9ZefzXkoeJaQeYKkySizmXB3KpUddVMOkAgwGiu4pPZm2I8kCIL446GYLbCcdRvIE2by7xOCEHFwmnwzN4YAVSCAay97iq03//nSe95kfKmiGFdIIZM6xX7JPamGA/FdOyUC4sJohnGLXARGC0IEWDZ40iYdzlEs419ihc1O84C2STsOPTpx1h2zukIfvO1Dr0sDAZxuLpqlRPVDlNapEEkgEhIxpWTazhbfdJ6U4wDIgga1U6HChLGzQZiMMJ+6C9gnLO9ZhvP7FpUbLV5ZKPn+Wex4qKzEWtvy3cXi5JoUhn2ptD+Xke8Kep4tG9smKyAwZT2MQ3pf6CAz34TRCurvRjDuCMQQmBZtB+s+xwHaLwkrRVO1O46B8Imq4Wkvx+rrvwdOh/9W1knpIkCQZXdjHlVDtQ6U14YEkHGLHRKKWSVoi+cQGcRVlUtdjSPnRbYFyYTRBRh3f94mLbdS7ONc1olqrafAbLJCzLa3ITl55+JvtdfKcstRhYbvSnCGb0pjCL3phgvhBD2dkgiBiT0TcTnwmKCEJsHIOn/jMWYZ7ElpgU7D1dHZYcaTS4banebC8mySWEmStH9r3+mPC/Wd+vU08Ix4saZaZJTKYVMsSGJc8QLo2MwkjM3z3JHW1gU9zgiRIB19yMyVke1T/GgZqfZIJtEsdR4DK1LbkfzH26EEi5cTQc9GIs3RYOPe1NMBG1fGH2Th7mwmCDa2bhDuldpHA/GxoWwH3kyiDHdkwMAjDYzanebC6PDstnn4RXLsPzcxRj44F09uqk7I94Ugxm8KSilUFQKrQXYQDSJlT1BrAtEIRfIAa9kMNkAiRHGLQGBDgDm7feBdb8fMRcZAGDxOVC7y1yIW+QLDLz/DpadsxihFct06KX+hOKp49qjeVPUcm+KnKAtLPSN/HFhkQM0k2aKOIy7KYbaGbBncOmUzEZM2XUOzB77Zp8r4TCabrkerX+6o2w8L7L1ppAEApMkYjS5QLHRLnx9ngqelQOavjCJKGiB7b2zxTRvR9gOzRQBtKZHAAEkerqx8pLzse6pxwtmwZxrKKXoCcbQMRjJ+Jsf8aZwcm+KnJA6UJA+j+t9oIALixyg6R5YIqstAJB8U+A49gwILrbiFQ0SanaeDUtF+imYvtdexorzz0SkuSnf3cwripq9N0Wjz44ZFfasvTBUCvSE4ljZE0RvSJ+S7aVGMdt7Z4uxYQEcR/1GMwJosJlRu/s8GOxbXFdVdD3y17LwvBjxpvCP4k3hsxm5N0UeYOZZqDIQCejWB/6N5gKzvaTDuCOITm/qjH5FLfO6IAqo2WEmLJXp4iLW0Y4VF56Fnhf/W5IJaZGEvMG+W4uUN8XmlRRHvDDmVjrgtRo1/3YEhVJ0B2NY2ROEP5IoyX+rfFEK9t7ZIE1pSLl02tLHCQBIJgOm7DInXVwACC79CsvPWYyhzz7JdzfzwlA0gRZ/GLEsvCkq7ZO7CF++KAaBzoVFDkiFcRmTYgmFcUcQrA44fnAapLqZzOtEFFCziC0uaDKJ9nvvxtobfg85oJ86ngiUUvSGYmgbiEDOELJNeVPY4LKwxYNRElJeGJUOuLPwr5BVis6hKFb1hjAY5QIDAIjBBJgZYdygv+T+fURfDRzHLIbgYm+TSsMW4CxxIQeGsObaK9H+wF+gJkvD80JRKbqGolgXiGUswpfyprBxb4o8QmxuZq6PnicVubDIEZoqMTyob0dyADGaYT/i1zDM2Jp9XRRQs8MsWKvYdROGPvko5Xnx7dJ8dnPCJBUVbQMR9IczT95eq3HYm2L0bHWjJGCq24rZFXY4s6hHklBUtA9GsaYvdba/1F6guYbtCyMDsdKrFio6vXAcuxhiZT37usmA2l3nwOBgb5v0PPcMVlx0DmId7fns5oQZuzcFf+3kEyKI7AMF0SFQVZ9j8PwbzhHEphHGLVDZ2olCRAm2g06Acd6O7OsCQfUOMzXFRbK/D6uuuBhdjz1clJ4XgVgSzf2hjKXRRYGg3m1FlWPsIVuzQcR0rw0zfTbYjKMLkpisonUggqb+MMIZtmPKHeaEiNIU6AAgWOypOj1TGpnXRaMBtbvOSzt1NUK0aS2Wn/db9L1RfJ4XY/GmmO7l3hR6wnwfUQpEg7o8nwuLHEGMZnYZ9RKdEIHUUVrrvsfBOH8n9nVCUL3jLFir2eIClGLdk//AyssuQLxnfR57mj0qpegORNE1FM0YsrUaxTFVQdW+j4QZPjsavbasSrZHkgqa/GE0+8MZRU+5Qqxu5uelKtABgBhNsB/xa0i1M5jXRYOI2j0WaIoLNR5D6123o/m2m4rG80JWVHSMwZuCF+HTF2Jjz8l6vY+4sMghxOZO/zAWAlVKdwVKiADrPsfCuGBn9nUANTvOhmNGneY9wsuXYfk5izHw4Xt56mV2xOXRvSkAoNJuwlS3FVIOs9XtJgkzfTZM81hhysLuOxSXsaYvhLaByKRy8SSSIeVpsQWlLNCBYQvww3+lKS4EAajbZxuYvOyETwAYeO9tLDt3McIrl+erm1kRHvamCHNviuLF6gIYZRX1EuhcWOQQYtVQiUVaNyRbCBFg3fsYGBfswm5AKSrn16Jitx0076GEQ2i6+Tq03v1HqLFYnnrKZsSboqU/szeFQSSY7rXBZ8tPJUVCCFxmA2ZX2FHvssAwWjUzAEOxjS6emfpeTjAFeiIKmsy8Oi52NogLrcRoVUbdXlvBMZd9HQAS67ux4pLz0f3vJ3T3vBjxpmjn3hRFDxFEtp9FeFCXLTUuLHIIc0IEgBJfbQEbxYVp4a7sBlSF0ytg6gnHA6J22LPv1Rex/IKzEG1pzlNPN0cZPn0xujeFhAavPavtiolCCIHHasScylQtEimLQksD0SRW9QTRNRSFXOYCQ3s7pLQFOjAsLg77JaT6WewGyTiq5k9B9eHaRQKhKOj8+0NY/fvLkPTrk+mfkFXuTVFiMN9HckKXuiH8288lFge7bkgJ7w9vCiEElr1+ANNWu7EbUBWGQAvmXHgeTFPYXhgAEGtvxfILzkTPi8/lVT2nvClCGb0pyLA3xRSn/pUUBULgs5kwt9KBaocpY7l2IOXi2R9JYGVvEN1l7OJZ6P3hfLNRXMxmXqeJKOzGEGacdy5EO9sNFwCCX3+JZecsxtDnn+arqwCAoWgSLf7QqN4UU7k3RVFRSIHOhUUOIUQY3tvaHBoeKrqM7vFCCIFlz6Nh2np3dgOqQv7+Pcw690x49z1A8z4pz4s/oenGayAHc+t5QSlFXyg+qjeFSRLQOOxNUcjJUNhQTdWJSptJq+DsBlQK9Jazi6fJxrTFLhdhAaRySeyH/QLSVC1xEQNp+Rxzf/9/sC9kH/sGAHloEGuuuQLtD96bc8+Ljd4UmROd7UYJDT4bbNyboqjQiqDrMY64sMgxzC9TlYF4cWRz5wJCCCx7HAXT1nuwG1AV0fefQd3Rh6Lh/N9BMLPP6QPA4McfYtk5ixH87puc9G3Em6IvnHk/3jMGbwq9EAWCGqcZcysd8FmNjNSrzRlx8VzVG8RQGXlgEELYq61ooGxqaQDD4uLQX0CaOod5nSZiiH34NGacew6m/OwXqQxPDXr++zRWXnweYp0dOelbLKmgxR/OzpvCbYHEvSmKjtRJRYYjtA4RdP5ryDGaCZxltNoCRsTFkTBtsye7AaUIv/kkHPWVmH/XPbDOZK/MACDZ15vyvPjH3yfkeRHMxpuCENS7Lah2mIs2W90gCqh1WTAnSxfPpELRNhBBiz+CWJkcUWUKdKoC0dJwdM2WlLg4CdK0uewGiThCL/0NVfvtgzk33gZDRaXmvSJrV2P5eWeg/83Xxi0yKaXwh+No8YeRzJDLw70pSgO2QA/m/aQiFxY5ppDhJ70hhMCy+xEwbbsXuwGlCL/1JEioF3P/cBeqj/mR9s1UFeueeAyrLr8IiZ6eMfVjxJuiMxtvCp8NdlNpZKtv5uJpHj3MHErIWN0XQlcgWvr5F1rjqAwSOLdkRFwYps9jN0jEEXzhIVh8TixYci/cu2lECgGosRha/vgHtNxxC5TI2KKksprypugZxZvCxb0pSgbN91GexxEXFjmGSEbAZE37vFwSOLeEEALLbofDtN3e7AaUIvLmv5Bs+gb1p5yOWb+/AZLLrXm/0LLvsOyc0zHwv/ezen58uJJiIbwp9MJsEDHdk3LxtGexj90fTiV4lnKRM2JxgnkOvwwFOjDsdHvIz7XFRTKO4At/BcIDmHHZ7zHtt+eAGLWL3vnfeRPLzj0D4VUrsnp+OJ4qwpeNN8UU7k1RMmieVOTCovRghp/iEVC5NAoKjRVCCCy7HgbT9vtotKCIvPVvJFYvhWvHnbHgT/fBsd0izfsp4RCabroWrX+5C2qcvXra1JsiniFbPeVNYc2bN4WeWI2pAk7ZuHiOHLNd2x9GOFF6Bm1ElACLPe1zvc7hF4IN4qJhPrtBMhW5UHo7UXnYUZh/x90wT2vQvF+iex1W/O48dD/9pGZuSrbeFGaDiAbuTVF6mDVOKuZZoHNhkQcm03bICIQQWHY5FObt99VokdoWSbathMHjxexrbkLdr0/N7Hnx8gspz4vWzT0vRrLVs/emKK9s9REXzzqXZVQPjGhSQVN/GO2DkYx75sUIU6DLcSCpr8GanhBRgu3gE2FoWMBukEwg9OLfoAz0wDK9EfNv/xMqDj1C+4aKgs6HH0x5Xgz4N7s0Fm+K6R4rjCUY7ZvsEEEArIxK1JH8CnT+S8kD5erAORqEEJh3OQTmRfuxG6gqQq8+Brm7FUQQUHPcjzHv1j/CWDNF856xthYsv+As9L78PCilG7wpgpm8KQDUFMibQi8IIfAOm2xV2LRD4iMMRpNY1Vtax1Mno0AHRsTFz2BoXMi8TmNhBJ9/CGpwEILZjOlnnocZl14N0ZYe4Rkh5XlxOoa++AwAEODeFJMGpkBX8ntSkQuLfGC2A0J5n8PXghAC884Hw7zD/uwGcjK14urvBgDY5szDgrvugWdvDTECgCYSaLvnbqx++dWsvCkafDa4C+xNoReiQDDFacHsCvuo+RcqBbqDMazuzVziulgoVOJZMZCqLvwzGGZsxbxOw0MIvvAQ1GiqnLxnj72wYMl9sC9gtwcAeXAQa266Fms+/xpdo3hT2Lg3RdlQCIHOhUUeIISw3QMjQ6C0tMLR44EQAvNOB2meFqGJWGqvOJCyIxatNjRedBkazruY6XlBPF6YL/o/qDtomHINM+JNYSoibwq9MBtENHitWYWsE0qqRHuLP1zcBc4MZkBinMOfBAIdAIgownbgCZpHUdXBXoRe/BtoIpWHZKyqwpwbb8OUn/6c6XkhTG2E5apbIU9lF0IDUtG+KocJ9dybomwoRASd/3LyBDP8RFUgVj5GWZkYOS1inMcuTEYjQYSe/yvUSHBDe98BB2P+H++BZcbGOgridjvB8vs7IM5lh4WB0vCm0ANCCJxmA2ZX2lHtGN3BMxiXsbo3hHVFejxVU6BHg2VllJUJIoqwH3wixJrpzOtKbydCL/8dVE5uaF974i8x5/pbYfBVbGgnHXgEzJffBKFGuwrxiDeF11r6ic6cjRCDCTCyTipyYVF6MBJmAIBGgzp3pHAQQmDd5zgYGtmJaGqgH6EX/go1vrEojrmuHvNuuwuVx/4Yxp/9BuazLgXJUC/BDAUNJeRNoQcCSVmEz610wDVKFj8F0BdOYFVvEANFeDyVvdqiZeVkOxqpqqi/hOitYV6Xu5oQfuNxUHVj9Mmx9bZYsOQ+OPc5AKZzLofppyeDGLR/C04D4d4UZQxhvY9i4bwJdC4s8gRhlKwFABqbPMICSJXvtR14AqRadvhV6V+H8Et/B92kzkGSiFB+cAIM+x+meV+qKEg8/RgGz/8NQp/+L+f9LgcMooBpHitm+GwwS5mHuqxSdAwfT40U0/FUs8Y4mkQCHQAEkxX2I0+G4PQyryeblyHy7jObCcO4yQr88kxI27CjhgBAI2HE7rsD/kvPQnTNqpz3m1McsN9H+RPoXFjkC8kEiIwVwnCy1WRipOCSWMkOw8rdLQi//k+osozBLLwp1N71iN1yBZIvPwMlGEDTjdeg7S9LND0vJjs2o4RZFXbUOs0QRwlxR5MK1vaH0TEYKYry7IThZQFMPoEOAILNCftRp4BY2WIrseJzRD9+GZRS9GbhTaGsXYXotRdB+exDxNd1YeXvzsP6Z56aNNtMkwqzxjjKk0DnwiJPEEKYk+JknBCBVEEc+xG/huCqYF6Pd7WgvWktukfxppA//QDRay+C2rR6s897X34eyy88C9HWltx1uowgwyXa51TZ4bOOfjx1IJrEyt4g+sLxwm6PcIG+GaLTB/uRJ6cKTDGIrFqK5o5u9GfwpqCqisSLTyN265WgfRvt86kso+Ov92PNNVcgOTCQ875zCofeEXQuLPIJK4wrJ0CTk3NlLVjscBz1m7SEvIS3Dv0HnIKoS9vPggDwhP2g/30ciEaYbWKtw54Xr7xYdLkCxYIkpAqcza6ww2bMvJ+uUmBdIIbVfSEE44U5nsoFejqSbwrsh/8KkDYXXLH6Beg/4BQkjDbtvxUIPOuaoL72HKBR8C/w5edYds5pGPrys1x2m1NIdBboXFjkEW2VODlXWwAgONxwHHUKiNkKCoLQ3D0wsPdJUDWORAEbvSmqZzRgwV33wrP3vpptaSKOtj//EU03Xwc5NHlfPqNhNoho9NowzW2FQcy8PRKXVbT4IykPkUJsj3CBnoY0pQH2g1PHSqlowNCiIzC08zGgBnYkA9joTVGzaBHmL7kXtvka7p4Y9rz4/eXo+Ov9UJPF73nCyYzeAp0LizxCNBLPMIlXWwAgeqpgPvxkDOx9IsIL92GeuR/BY9ncm0K02dB40eWYfu5FEEzak+jg/97HsrNPR+j773Le/3KBEAKXxYA5lQ5U2U2Mkl+bMxRLYlVvCANRfU+PcIHOxjB9LqQDf47+/U9GrGHbjG2r7Jt7U5iqqjH3pjtQ85MTkelc8vpnnsLK352HWFdnTvvOKQA6CnQuLPKJmR2SpJN0f3iEYCyJNuJCsmKaZhsSj6A60o1qZ7o3BSEEFQcegvl//AssM2Zq3iPZ14uVl1+IdU88BqoR9uWkjqdWO8yYU+kYtTy7Qik6BqNoHYggoVP0ggv0dCil8Efi6LLXQ3H4NNuJIT/qEYSXUYSPiCLqfv4rzLnhDzB4te8RWbMKy887A/3vvJmz/nP0R0+BzoVFHiGCCJjSxcVkOyo3gkopugNRdA5FM9arMPS2wvfmg8BrDyPZulKznbl+KubdtgRVRx+b4aEquv7xd6y68ndI9PVOpPtlj1ESMN2Tqp5qGuV4aspcK4j+cBzImG6bAzQF+uQcR7KqomMwip5gPOO/vLl1KbxvPgT5pYegDPRothvxvHDtvKtmGzUaRcvtN6P5zluhRNg5TpziRk+BzoVFnmGqxHhoUlh7b0pcVtDqD2MwmmG/VlVh+/4deN7/J8RYKFW07LVU0TItBIMRU0/9LWZedR0kp3aeRui7b7DsnNMx+DH3vBgNu0nC7Ao7pjjNyFTDTaVAVyCGrkBUu1EO0Bboky/yF07IaOkPI5zBa4Qk43B++ixcX7wIQUmCxiIIPv8g1NCg5t9ILhdmXnktpp5+ZkYjLf9br2P5+b9FmHtelB46CnQuLPIMYZ0fphSITw7VTynFYHR0bwpRjsPz3qOwr/wfyKbrMDmJ0MuPQAn4Nf8WANw774r5S+6FY5vtNNsowSDW3vB7tN13N9RE5lLRkx1CCCpsptT2iCnz9kgsmX+RPNkFOqUUvaEY2kcpwmeMDML75kOwdCzb/O/DAYRe+nvG/XRCCKqOPAbzbv8TzPVTNdvFuzqx8uJzsf7Zf3PPixJCT4HOhUW+0drXmgRhXEWl6BqKojuQ2ZvCYZIwY0oFHNPY+RI0Fk5NivFYxucZfRWYfe3NqP3FyRkTQntf+C9WXHgWom3akRBOihH3zmluK6QClqCfzAJ9pGhcfzizGPZajWiYWgtLJdv6W+lfh/DrT4wqBqyNMzHvzj+j4uAMzreyjI6H7sOaa65EcpB7XpQKegl0LizyDHNCRPkLi2hCRnN/CMF4hpAtgBqHGbUuC0SBwLLrYTDO25HZVh1Yj9Dr/9ysHgLznqKIKcefgLm33AljFXuCBYBoSzOWn38mel99iXtejMLI6ZHZlXa4LdnXZMnpv+skFeiBWBIt/SHEktq/e1EgmOq2osphhiClyq1LNQ3MtsnW5Yh+/PKozxXNFkw/+wI0/u5KiDZtX4zAl59h2dmnI/DVF6Pek1N49BLoXFjkG4MZEBmh5DI9KkcpRV84jtZRQrYj3hRuq3FDtnqqaNmxMEyfx/wbuX0Voh++kFU/7PMWYMGSe+HZa1/tvibiaLv7TjTfcj3kUHl+H7lEEgRMdVvR4Bnd+wJImWtlygUYC1qJZ+UqLFRKsS4QRddQFJkKz9qMIhp9Ntg22a4iBiNsh/8SgqeK+Tfxpe8jvuzTrPrh3WsfzL/rXtjmztdsIw8OYPXVl6Lj4QdA5SKqM8NJRyeBzoVFniGEMM8Pl6NzYFJR0T4QQV8o87lot8WwmTfFpowULRN97GhD/LuPEPs2uwRM0WZD48WXY/o5F2b0vBj48D0sP3cxQsu/z+q+kx2H2YDZFY5RrcGTqoqm/jC6hnJQlt1gmjQCPZZU0NIfxlCmRGeMeFNYN3hTbIpgssB++C9BNBL2Iu8/i2THmqz6Y6quwdyb70DNj3+W2fPi6X9hxSXnI76uK6v7cvRHL4HOhYUOMMNPyTioXD4JhKF4Ei39YUQyhGwFQlDnsqDGaUnzptgUYjTBftivNAtQRT98Hsk27WOom92LEFQcdCjm3Xk3LI3sCqsAkOhZj5WXXoB1T/6De15kgSgQ1LosmOGzwZAhnwUA+iMJrO4LIhgbv4PjZBDoKW+KBFr94YweIQZRQIPXxvSm2BTR6YP90JMAgWHdrqoIv/pYxmOom0IkCXUn/Rqzr7sFBi+7wioARFatwLJzz4D/nbeyui9HZ3QS6FxY6ICWMUk5rLZUSrE+EEPHYBRKhj11iyEVsnWYs9ujFxxu2A/7JXsQUIrQa/+E0t+ddT8tU6dj3m1/QtVRx2g3UlV0PfYwVl11CRL9fVnfezJjM0qo91hGbZdUKFoGImgfjEAe50kCbYFe+pbTsqqiczCKnlGK8DnNBjR4bTAbMtd5GUGa0gDrfj9iXqOJGEIv/R1qLPvS2c5tt8eCJffDtVMmz4sImm+/CS1//AOUaH6PInPGhl4CnQsLHdBM4CzxjPYRb4qBaObIS4XNhGkeKwzi2H5uUvVU2Pb/MftiMo7Qy3+HGslenAlGI6aediZmXnUtRIdTs13o26VYdvbpGPz0ozH1d7JCRjUD38hgNInVvSEMRZNjTu7UGkdIlPY4GvGmCGXIRxEIMMVp2ZDoPBZMc7aHeYf9mdfUQD/CrzwGqmSfGyG5XJh51bWYetqZIJL2QqH/zdew/LwzEFmzWrMNR3+Y22PJ+KiJ8WOBCws9MLJXdDRRmmo+W28KSSCY5rGiwp45ZJsJ46xtYN75IOY1NTiA0CuPjHnF6t55Nyz4032wb61dX0EJBrD2uqvRdt+fuedFjpFVirbBVFGz5FhswU1W5sc0XrrjKBtvCrMkoMFrh2sMJ3LS7rHTgTDM3Jp5TV7XjMi7z4xJ6BFCUHXUMZh3+xKY6jJ7Xqy4+Bys/+9/+OmrIoEY2eMIOXwfcWGhB5KRvc9ZgsJiLN4UjT47rMbM5krZYF60P4xztmf3Z30bIu88PeZJy+irwJzrbkHtz381iufFs1hx0dmItbeN6f4cjGoLHojLWNUbhD+SXVEzoiHQSzFikVBUtGXpTTHda4NxlH/L0SBEgG3/H0OsYouAxMovEP/63THf1zpjFub/8c/wHXSoZhsqy+h48B6sufZKJIcGx/wMTo7REuhcWJQWhBBm1KLUtkKiCRktY/SmyAWEEFj3/SHEmunM64nVXyP2xdgLJBFRxJSfnIi5N98BY1W1ZrtocxOWn38m+l57ma+6xkC13YzaLGzBO4eiaPaHkcgQ/QIAGM0AY9ul1CJ/I94U0Sy9KcYb7dsSIhlgP+wXIHa29X3041eQaBp7NWDRbEHDORei8eLLIVg1VsMAAp9/mvK8WPrlmJ/ByR2aAj2H7yMuLHSCGX4qkQmRUor+YW+K5Bi9KXIFESXYDz0JgoOdkR777A0kVi8d173t8xdi/l33wrPH3ppt1HgMrX+6A81/uJF7XmQJIQQ+mwmzKx2wj2ILHk4oWNUbRF84rineCBGGxcUWlIhAH5M3hXdzb4pcIVgdsB/+K8DAPiocfvNJyL0d47q3d+/9sGA0z4sBP1ZfdSk6//4Q97woFDpszXNhoRcmxpepJEGV4s5oTyoq2gcj6J2AN0WuECx22A//JWA0Ma+H334Kcvf4tiwkux2Nl1yJ6WedD6JxfwAYeP8dLD/3DIRWLNNsw9kcoyigwWNFvdsCMYPgpEiZarUORCBr5F6wBHopRCyy9aaoHPGmGGOi81iQfFNgO/AEtieFnEydFAkNjeveppopKc+L43+q7XlBKbr//QRWXno+4t3rxvUczvghopTant8SHrEoPTQTZoo48WyDN0UikzcFsvKmyBWitxr2g04ECOOnq8gIvfIIlOD4ahcQQlBxyOGY/8c/w9KQyfOiGysvOR/rnnqce15kCSEEHosRcyrtcI1y5DgYl7G6L8T2vWAJ9GSsaIthUUoxkKU3xXSvDb5RvClyhbFhPiy7HcG8RiNBhF5+OGPBskwQSULdL07B7Otuzuh5EV65AsvOXQz/e2+P6zmcCZBngc6FhV6wJkQAtAgTz1RKsT6YrTeFPWtvilxhmDYHlj2PYl6j0RBCLz0MmshcsCwTlqnTMe/2P6HyyB9oN1JVdD3yV6y++lLueTEGpOGiZtM9mYuayWrK9yK1bbDxN6hHRnuuUFQVnUNRrM/Sm8KSpTdFrjBtsweMC3ZhXlP61iH8xpMTKk7l3HYR5i+5D84dd9Zso0YiaP7DjWi56zYoseL7DssVwnofJaI5yyHjwkInSiViscGbIpIfb4pcYd5qN5i23p15TfWvR/iNJyY0KQpGI6adfhZmXnENRIeGwRmA4DdfD3tefDzuZ01GnGYD5lQ64B3FFrw/ksDavk2KcGnuDxeXQI8kZDT3hxHKkOic8qbIbaLzWCCEwLrn0ZDqZzGvJ1uWIfrJqxN6hsHlxqyrr0f9qWdk9rx441UsP+9MRJqysxnnTBDWOKIqMM4o1ZZwYaEXmhntxTEhbvCm8OffmyJXWHY/AtK0ucxrydYViH0xcVth9667Y8GS+2DfahvNNinPi6vQfv+foSa550W2iELK4r1hlOhFTFaxpi+E/nBcU1gUi0Af8aZoy9qbIrOwyjdEFGE7+EQI7krm9fhX747rpMhmzyAE1Ucfh3l/uAumunrNdvHOdqy48Bz0PDc2Tw3O2NGO/OXmfcSFhU5oZrQXgbBQ1FS2encghkzj2Z5Db4pcQAQR9oNOgOBlHxWNffYmkm2rJvwcY0Ul5lx/K2pP/GVGz4ue55/FiovOQayjfcLPnEykiprZ4chwCoIC6ArE0B5h/0CLQaAndfamyBWpgmW/AjGzXzbht5+CMjjx7T7rrNmYf+df4DvwEM02VE6i/YG/YO21V3HPizxC8mw2Vxy/7EkC6/xwoV0Do0kZLf4QArHM3hTVDjPqChSyzQQxmlOTIrNgGUX4zSegBgcn/hxRxJSf/hxzb7odxkp2OWoAiDatxfLzfou+N17hq64xIIkCpnusmOI0ZzQIDyQBWWAIkALnWARiSTRn4U1Rn2NvilwhunywHaJRsCwRR/jVx0BzEI0TLRY0nHsRGi+6DIJF2/Ni6PNPsPyc0xFY+tWEn8lhkOctRS4s9IQVfipQRvsGbwp/BElF+wVoFFPeFJ48eFPkCtHhge1g9kkRGosg9No/xlQLIRP2BVth/pJ74d59L802ajyG1rtuR/NtN0IJZ1/gabJDCEGFzYRZFfaMrp0JIT3yVyizOZVSdGfhTWEd9qYYzc+jkBhqG2Hd82jmNcXfjch7udui8O6zPxYsuRfWOfM02yT9fqy+6hJ0PvJX7nmRa/LsBs2FhY4wM3EBIKnvaksegzdFgy+/3hS5wlDbCMuubFthpacd0Q9fyNmzJLsDMy69CtNG87x47x0sO3cxwiuX5+zZkwGzQcSsCjt8GomdSZHxb57DjPZsicspb4rBLLwppubZmyJXGBfsDOOcRcxriVVfIbHs05w9y1QzBfNuuRPVP/yJdiNK0f3U41h56QXc8yKH5NsNuvh/6eWEVvhJx9VWKJ5Ec5F5U+QK07Z7wdC4kHkt/v3HiK/KXViVEILKQw7H/Dv/DPP0Bs12ifXdWHHJ+eh+6omi9VooRgRCUOuyYLrHmrb9lhAZuUpUBU2O/4jxWBjxpmjpH82bgujqTZELCCGw7n0MRG8N83rkg+cg94zPmZP5PElC/a9+g9nX3gzJk8nzYnnK8+L9d3L27MkO09qbRyxKj0KewS92b4pcQAiBbb/jIbgqmNcj7/4HSn93Tp9pmTYd82+/G5WHs301AACKgs5HHsLqqy9F0t+f0+eXO87hxM5NtxCYEQsA6/sHIOdZvCkqHYM3hV13b4pcQAxG2A75OdvhVlUQfu0xqLHcbvE5t98BC5bcC+cOO2m2USMRNN96A1qW3M49L3IBK4EzR27QXFjoiZZJVp4TOBMl4k2RC4jJDPshPwdYZ+blJEKvPjYh8ywWgsmEaWecg5mX/x9EewbPi6VfYdnZp2Po809y+vxyxzBsCT6S2MmMWABIRiNY3RvK6B0xEVLeFJnvTwrsTZErRHcFbPsdz7ymBgcRfvNfE/KJYWFwe1KeF6csBpG0c1H6X38FK84/E5HmtTl9/mRDuxjZxN9HpfsGKUGIaABExoDJUwiXUoqhaALNJeRNkQtEXw2sex/LvKYO9SH89tjLrGeDe7c9sGDJvbAv3FqzjRwYwpprrkT7g/dyz4sxMJLYObPCDmJiCwtJTUBWKZr9YawLbO7YORGy9aYwSQIavbaCe1PkCuOMrWDall2YT25bidgXubfiJoKA6mN+iHl/WAJTbZ1mu1hHO1ZccDZ6nn+Wn74aL1pb8zl4H3FhoTdSeniRyrl/waS8KWJYV2LeFLnCNHeRpl1xsulbxL/5IC/PNVZWYc4Nf8CUn/0is+fFf5/GiovORawzd/vVkwGLQURDlYd5TVI3hnD7winHzrg8sVou2XpTeDZ4U5Te1kcmLLseAmlKI/Na7LM3kGyfuE8Miw2eF/sfpNmGykm03/9nrL3+ashD4yuaNpkhjHcRACAH7yMuLHSGsKrK5VhYRJPKsDeF9l5ZMXtT5ArrnkdBrGQ7/UU/ehnJrua8PJeIImpPOAlzb7wdhgq2oyEARJvWYPl5Z6DvjVf5qmsMiIIIiOlbXZsKCyDl2Lm6LwR/JDGuf99gNt4UhKDebUG1w1xSic7ZQgQRtoNOALGytvgowm/kxieGhWi1ouH836HhwkshWDTC9gCGPv0Yy845HcFvvs5LP8oWg0ZkjQuLEsTAUIlybvzZN3pThEf1ppjuLW5vilxARAm2Q05ku8xRFeHX/wk1Eszb8+0Lt8KCJffCvduemm3UWAytd92GlttvhhLhnhdZwxDoopoupCkFOoeiw9sY2eUEjHhTdGbjTeGzwW4qvUTnsSDYnLAddIIuPjEsfPsegAV33QvrbLZ9PwAk/f1YdeXv0PnYw7zicLawFrnITQSdCwu9YX2Zijzho4hj9aYwl2C2+ngQHR7YDvwJmHVaIkGEX38cVM3fRCQ5nJhx2dWY9ttzQYzae+/+d9/CsnPPQHjVirz1pZwgjNXWlhGLTQnE5awSO8vRmyIXGGpnZPaJ+d+LeX2+aUot5t5yJ6p/+GPtRpSi+8l/pDwv1uf29Fc5QojAjPzlohDZ5BgVRQRzKwSYUPgpFJfR7B/dm6K2BL0pcoFh2lyYd9yfeU3uakL009fy+nxCCCoPOxLz77gb5mkNmu0S3euw4nfnofvpJ7nnxWgw9oeNVIYpw4t+JLGzJxRL2xopZ2+KXJHRJ+a7j3LqE8NCMBhQ/6tTMfuamyC52Xk2ABBesQzLz12MgQ/ezWt/ygLG+4hHLEqRHCbMUErRE4yhYzACJUPMdsSbwlmC3hS5wrzDAZCmzmZei3/1LhLN3+e9D5bpjZh/x92oPGwUz4uHH8Tq31+G5IA/730qWRgTIlFlzPRZRy3Fvj4YR9vAxjGTvTeFVLLeFLlgo0+Mj3k98u5/oPjX570fzkU7YsGS++BctKNmGyUcRtMt16P17juhxvQxTitFWJE/nmNRimgkzNAx5lmMeFP4R/Gm8NmMJe9NkQuIIMB2wE9B7C7m9chbT0EZmngFx9EQTCZM++05mHHZ1RBtrMJpKYJffznseZE7C+VyQivyJyhJ1LksmOaxQswQUQjEZaztC2EwksjKm6LGacYUZ/kmOmcLMZlT5llaPjGvPJpznxgWBo8Hs35/A+pPPi2j50Xfqy9h+QVnItLclPc+lSSshW4Ocv4m99umAGhuhYzB02AomkCLP4xYFt4Ulfbiq6RYKASLDfaDf84svkMTsVS+hU6JX57d98KCJffBvmArzTby0CDWXHMF2h+6F2py4m54ZYVm5C81KbrMBsyutMNm1I4uJBUV6wLRUb0pGrw2uC3lneg8FiTflIw+MZH3/6tLP4ggoPrY4zH31j/CNKVWs12svQ0rLjwLPS/+l5++2pI85fxxYaE3o0yImVBUiq6hKNYFYhmz1VPeFLay86bIBVL1VFj2OJJ5TentROzzN3Tri7GqCnNuvA1TTjgps+fFs09j5e/ORayLe15sQDPyt1GgG8SUYVW1I33MiSRVxjyTWBjxpiiFInx6k8knJrHqKyTWLNWtL7bZczH/j/fAu9+Bmm1oMon2e+/G2hv+D3IgoFvfip185PwBXFjozziP+KS8KcJj8KbgX60WpoW7wjh7O+a12FfvQF7XoltfiCii9me/wJwb/pDR8yKyZjWWn3sG+t96Xbe+FTPZRv4IIaiym9HgTW2NEAASQcYE5nL3psgV1j2O1PSJibz7DNSQfqZVotWKxgsuQcP5v8vsefHJ/1KeF9/qJ3yKmjyZZPG3j84QQWDbemt8kZt7U2iHpyaLN0UuIITAus9xENyMFzmlCL/5pC77xJvi2GqblOfFrntotlFjMbTceSuab78ZSkS/irhFyRgjfzajBLfZAGmUKAUA1LjMZe9NkQuIZIDt4J8xi5XRRAzht3JfT2Q0fPsfhPl/vAfWWexEbQBI9vdh1RUXo4t7XuQs529LuLAoBFkmzMiKig7uTZEXiMEI2wE/YW5BqMEBRD54Tvc+SQ4nZlz+e0w74xwQg/aLzf/Om1h+3hkIr16pY++KjDFE/uLDic6BuHa0j1IKRaVIqhSt/sioSdGcFKLTC+texzCvyZ1rEf/mQ307BMBcW4e5t96F6mPZRdQAAJRi3ZP/wMrLLkS8J/8nWYoVTVvvCdYx4sKiELDODm/xRYaHvSnC3Jsib0hV9TDvyK5FkFj5JRJrv9G5R8OeF4cfhfl3/BnmqdM128XXdWHFxeei+z9PTUrPi2wif5RSDA57U2QqwkcphUKBkRYUKbfOlPMmT/YbDePs7WCYtQ3zWvTjVyD3r9O5R8OeFyefhlnX3AjJ7dZsF17+PZafsxgDH76vX+eKCc0cCx6xKDky1QsZ8aZo594UumDefh+INewXuN77xJtiaUh5XlQceoR2I0VB59/ux5r/u3xyel6wVlvDroEjic7do3hTUAAyBbONP5JAU3/mLUjO8Nbi3seA2BhHuVUF4TeeAJULc6rJtWinlOfF9jtotlHCITTdfC1a7/7j5PO8yJOtNxcWhYBVL0RJIp6UuTeFzqT8LX7C/E5oPIrw20/pvk88gmA2Y/qZ52HGpVdl9LwIfPUFlp1zOoa+/EzH3hUBGq6BkYSM5v4Qgpm8KZDyppjps2U8khpNKljTN7oV+GRHMFlh25+99aD61yP6yas692gjBo8Xs/7vRtT9+lRA1P6u+159EcsvPBvR1vwUJyxGxprzly38zVQAWBGLoNmHFn9kVG+KqdybIuek9omPZl6TO9Yg/s3/dO7R5nj22Bvzl9wL23y2nTIAyIODWPP7y9Hx1/snjefFluOIAvAbvcMFx0bxpvClvCmMkohGrw0+m7Zb54gVeF84zn0QMmConwXTtnsxr8W/+QDJjtU692gjRBBQc9yPMe/WuzJ7XrS1YPkFZ6H3pecnz3edB5MsLiwKwSYTokoErHfNxHr37IwhW7tRQoPPBhv3psgLxjmLYJi5NfNa9JNXoPQXtqiRqaoac2+6HVN++vOMnhfrn3kKK393HmJdnTr2rkBsMo5kwYhO7wL4bXUZ/4TlTUEIQa3TgqluC6NU3UbWBWJoH4xCzWQiM8mx7HIIRF8N81r4raegxgp7msk2Zy7m//Ev8O57gGYbmkig7Z4laLrxGsjBSeB5wYz8TWxxwoVFIRh2foxJNrT7tkbQou1fsMGbwm2BxL0p8kZqn/hYEJsz/aIiF3SfeAQiiqg98ZeYc/2tMPgqNNtF1qzC8vPOQP/b+pl9FYThEG7I5EFbxdaIGRnf3UjTLLwp3BYjZlbYYcywxTgUS2JtfwhxeZIfU9SAiBJsB/yUGV6n4QAi7z5T8EiAaLWh8cJLU54XZrNmu8GPP8SycxYj+J3+Sdx6QhhOxJhgxWf+pioAVJAwYK1Bh28hkpK2mQv3ptAXwWyFbX92WWbF3533KqjZ4th6WyxYch9cu+yu2UaNRtFyxy1ovvPWsvW8oIKIXkcDuj1zoQraScxWg4gGny0rbwqLQcSsCjscJu3IYExWsaYvlNGsbjIj+mo0S6wnm75FYtWXOveIzQbPi5kZPC/6elOeF/98pHw9L1g5FlxYlBayqqIzaUC/swEg2v/8Lu5NURBS+8R7Mq/Fl76PZMcanXvERnI6MfOK/8PUxWdl9rx46/WU58WaVTr2Lv/EZQVtcGPIxg67j1BhN2HqGBOdRYFguseKKrvGGX8AKgVaByKpiqiTZS9+DJi23h1SPfuFHXn/OSiB4jjFZK6rx9w//BFVx/xQu5GqYt3jj2LVFRcj0dOjX+f0gkcsSptwXEZzfxgRRfuffcSbYgr3pigYlp0PgejV2if+F9R4cUQACCGoOuIHmHf73TBPnabZLr6uCysvPhfrnyl9z4tNvSkS0I4qSMPioMJmGle0jxCCaocZ0z1WZCpo2hOKo3Ug89HwyQghAmz7Hw9isqZfTMZT7rZF8lsUDEZMPWUxZv3+Bkgut2a70PffYtm5izHw0Qf6dU4PNITFRAQzFxY6kK03hRkyGrg3RcEhkgG2A3/KroIaDiDy7rNFtUq1Ns7AvDvuRsUhh2u2obKMjr/ejzXXXInkwMBm19REoqj+e7TI1pvCIVE0+uyw5CDR2Wk2YFaFHSZJe6oMxmWs6QshlizTUPk4EWxOWPdhV0FVulsR++pdnXuUGdeOO2PBknvh2G6RZhslFETTjdeg7S9LoMY3PzmhJkrUrZUlLIAJRS24sMgzCVkd3ZuCUnhCnZiKQMbEMY5+ZNwnXvsNEqu/1rdDoyCaLZh+1vmYccmVEG02zXaBLz/DsnNOR+CrLzZ81nbvnxD4org9MLLypqAKqobWosYgQ8wUZhgjJknELJ8drgyCP6GoWNMfwlCU511sinHm1jDOZZtTxT5/HXJPcVXsNXh9mH3NTaj71W8yel70vvw8ll9w1gbPCyrLWH31pYh36+8yOlGYyZsAFxbFSiCaRIs/lNGbQlQSqB1YDl+oHYTyFU8xYdpmD0h1s5jXIu8/WzT7xJvi2XMfzF9yH2zzF2i2kQcHsPrqS9Hx8APof/sN9L/+SqogUy6iFoIIEAIIIoY+emfCt6OUoi8UH9WbwpgMY2rft3BGe/MyjgSBYKrbgilO7VMElAJtw7V9SiECpBfWPY+C4PCmX1DV1GmrCdalyDVEEFDzw59g3q1/hLFmima7DZ4XLz+Prn8+gtD332LdE49NvAObjCFd4MIij2zyZYaXTaykrqpSrBuKoisQRaatV2tsANP6voE1kTorTSeYMMPJLRv3iRkndxJxRN75T1G+QFKeF3eg5icnpn7TGqx/+l9oueMWAEBk7WoM5mDv2Dp3K1T+6Jewzt0K4aWfouffj4z7XklFRftABH3hzGY9rvA61Pd/B6MybMes5sclkxCCCpsJjV4bpAwRke5gDF0BntQ5AjGaYTvgx8zfojrUVzSnrbbENmceFtx1Dzx776fZhiYSaPvLEnQ/9TgAoP/tNxBrbxvX84JffQJg8zEEAP2vPDOu+2UNFxb5Y9MvM9a0ctwTYiypoMUfxlCGo2gEQEWgBVMGV0Kkm0yCeZoQOeNHsLs094nlzjVIrPyCea3QEFFE3c9/lfK88Pqy+puuf0zgSJ0gwjp/W9SfdzW8Bx2N+vOuhnXeNhh8b3xWzsF4Ei39YUQy5C2IBJgysAKVwVYIm2Zd5Fmg200SZlXYYclwYssfSaCFJ3VuQJrSAPMi9gs6/u2HkHvade5RdohWGxovugzTz70oo+fFBlQVXY8/Oq5nxdauYI6h4Gd5ThYVNHKRuLAYG5RSRKNRDAaDgMHAnhDffQWynP2LnlIKfziOVn8YiQxFi0a8KdzxvnSXPx6xKEqMM7eBcQ47oSv6v5egRkI69yh7HNtsl/K82HnXUdvG2lrgf/+drO+tqioikQhCogGgFLattt9wAoMQAtvWi0DjcShjECsqpVgfiKFzMAolw4rfahAx3WmALT6YflEHvwGDKGCGzwavVdsKPBSX0dQf4kXMhjHvcADEyvr0C5Qi8s7TResTQQhBxYGHYP6df4FlBntrdFMG3n8Hkea1Wd9fURSEQiFQWWaPoUQCkUgEar5O0Wjkkkwkgj6phEUymURPTw9WrlyJtWvXYl1PLyArml/mihUr0NramvrSM0xysqqiYzCKnlA8Y7a6y7yJN0Uezg5z8od1z6OZrpw0HkHkw+cL0KPskVwuzLzyWkw97UwQKfOJo3X/fAR0FEEdi8XQ1dWFFStWoKmpCT2RGGAwIPzdVxvGCaUU4W+/BAwGrFixAp2dnYhGoxnvG5cVtPrDGIhm3nOvsA17U0i5X2mNBYEQ1Lky512MmGlF+YkREFFMbYkw5j6lvxvxpcVdutxcPxXzbrsLVUcfN2rbrsceznidUopwOIz29nYsX74cLS0tGcdQU1MTVq5cie7ubiRyffqEb4WMD1VVsW7dOqxcuRI9PT2bRyIyfJkAEAwG0dLSgjVr1iDCcDAc8aYIJ7Qn4w3eFK5NvClYX2aRKnYOQExmWPdkFypLrlmKZOsKnXs0NgghqDrqGMz6v+sztouv60L/m+w972QyidbWVqxZswZ+v3+zFZSy1Y6ILF+Kjjuvgf/159Bx5zWIrPgGytY7gVKKgYEBrF27Fs3NzWkTI6UUg9GUN0V8lCJ80zxWVNiHvSk0JkS9c5UqbCZM81g164zIKkVTP3fqBADRU6W5JRL9/A0og30692hsCAYjpp56BupPOT1ju6FPP0Z45XLmtVgshqamJjQ3N2NoaGjD55nGEJCKbPT19WHVqlXo6OgYUyQwE9qnQsa/NV/2wiIUCmH16tXo7+9nXh/tyxwhHo+jqakJ3d3dUFU1e28Kg8j2pmB5JPCIRVFjnLEVDI3sCqPh954BTUysImC+oZSi57+jJ4J1PfEY1C0y9QcGBrB69WoEg0Hm36h7HgJl0R6INK1E778fQaRpJZQd9oS6x8GbtQuHwxvGI6V0ozdFYBRvCpOERp8d1k28KYggAKzXeQHGkctswAyfdlLniFNn/yiJqJMB86J9IXiq0i8oMiLvFmdC9KYosSh6X3lp1HadW0QtKKXo6enBmjVrmNG7bMcQAAwODmLVqlUIBHJQJC0PEYuyLpU5MDCAzs7MVR7VPQ8BAES++xyRld8BBoPmlwkAfX19iEQikNzVGRPLAMBnNW5cXW0JK2GGC4uix7rXDxDoXAuaiG32OQ0NIfrpq5pRjWJg6LOPEfz261HbJft60ffKS6g66hhQSrF+/Xr09Y2+klT3PGTDeMoEpRTr1q1DJBpFwuxCUtF+kYwU4XNZDOxxJIqAssXKqkBJ0FajhJk+O1oGtCMvXYEYEoqKGod50tb/IaIE274/RPCZe4Et5KTc1YTEis9hmr8T+4+LgN4Xn0Ni/ejVjoNff4ngt0vh2HpbqKqKtrY2hEKZ87GyHUNAKoLR1taGmpoaVFRoFyUcFa3kzQlERAgtdnk4TrIRFRPBZHdBsbiY1ySBYIrTAluGQkZK05egwS0ma6MV0nx2nQpO8RBf9gki77JW/gSO486AVK1tr11oqKoi0duDWFsrou2tiLW2INrWilh7G9T4RrEkuT3Y6oG/o2dgUDPalwss3iokRXaOgkkSUOuybFbifEvkZe8Cyc2jAMRVBbFhu1x2c0woKkXrQBjhhPbE7DRLmOq2Tmrb/sj7/0X8u4/SPidGM5wnXAjB6ihAr7KDKgri67oQbWtJjaW2VkTbWhDv7NgsR8m+YCvMuvE2tLW1IRwO560/1dXVqKzUrpKdCSonoXz/dtrnQvVMCDUzx3XPshQW4XAYzc3NeX+O2VsNWdy8UJHNKGGKyzxqiXOlZSno0PrNP5SMkBbum+NecnINpSpC/70f8rqWtGuCtxrOH50NwqoYWMRsJjjaUmJD2no7DNXU5v3Z5sp6yFvsyrotBlRlKHE+grziA2CL2i3E4YM4g+32qBcqpegcimIwgxOnxSCiwWOFNEnddmkihqEn7gANp4fzDTO3hv3gEwvQq4lBFQXxrs4NQiPW3gZxvwMRtGi74eaKadOmwelMTzAfDaqqUL59I+1zUtkAsXbOuPpSdsJCURSsWbMGyaQeiVIE5qp6yDQ1+VXZTVmXOFfavgMd6Nr8Q0GEtPUB+egoJ8coA70I/OuPzO0r884Hw7LD/vp3KockEgmsXr1an/1uQYTRVwcVqZMWU5xmOLKslyOv+giIbpH3YXNDmrVz7vs5Riil6AnF0RPSzqswigIavNaMUZlyJtG8DOFX2J5BtkN/AWOjtoNsKRAKhVInPnRAFEXMnj0bktZpqQzIS1/HlttSxDcVYv38cfWl7KTy+vXrdRIVAECRGFgPo0jQ4LXBO5ZKipM4BFoOiJ5KmHdki8DY529CGejVuUe5g1KKjo4O/ZLoVAWIDMJiENHos2UtKlIwxlGRLJVGKqTWuyyaJ0YSioq1fWGEM9RAKWeMjQtgmLkN81rk/WfTcplKCUVR0NGhXy0URVHQ1dU1ekMWzPdRkVY3PfbYY+HxePCjH/0on4/ZgCzL8Pv1rd+gJhOwKdGUNwVnUmHebm8I3ur0C6oynN1emsZIkUiEebQ6nyTCAbhFBYYy3BbwWI1o8No0y68rlKLZH8bgKP4d5Yp1z6NAjOl5NjQcQPST8Tm3FgODg4NjMlnMBYFAAPF44U8e5XUUn3POOXjkkfHXChgreouKjc/tz58rGqdoGcluZ62a5XXNSCwv7oqhWuQzWTPzc4vbw2Ai2E2pEyMGka0uKID2wSh6gpOvxohgdcCy+xHMa/HvPobc3apzjyYOpbRg46hQ78FNyauw2G+//eBw6JPZSykt2D+ooiia5/s55Y1UPQ2mrXdjXot+9DJURmJaMSPLcm7Oxo+DSCRSFKutfGE2iJjpy1xjZH0ojs6h6KQTF8Z5O0KqncG4QhF+52nQLY8UFzmRSCT3DplZsqV5XSEYs7BQVRXz5s3DJZdcstnnr776KoxGI5566qmcdW4sJJNJ3cNOm6J36JhTPFh2PgSC3Z32OU3EEHn/v/p3aAIU+ndc6Ofnm5EaI84MR9EHokm0+CdXATNCCKz7HAcwTlOpAz2IffmO/p2aAPk8WjoalNKCC/QxCwtBEHDZZZfhnnvuwcDAAABg6dKlOP7443HjjTfi+OOPz3kns2G0OgT5ptwnRI42xGiCde9jmNeSzd8j0fSdvh2aAIUeR4V+vh4IJGVN7rNlKGCWkLG2P4REBovzckN0V8Cy44HMa7Ev34biX8+8VowU+ndc6OePayvkxBNPREVFBZYsWYKOjg4cccQROOmkk3DRRRflun9ZE4sVNns4Fpt8e6OcjRimz4Nh1rbMa5H3/wsaL43s9kJPSJNFoBNCUOvMXMAsLqtY2z+5CpiZtt0Lom9K+gVVQbiEEqILPY4K/fxxCQtJknDJJZdgyZIlOPzww7Fo0SIsWbIk130bE7kqyDJeKKVcWExyrHscBWKypn1OI0FEP3mlAD0aO4UeR4V+vt5U2EyY7rFqnj6XVYq1k6iAGRFFWPf9IfP4o9LdisSyTwvQq7FT6N9xoZ8/7uTNE088EZFIBJRSPP744xAZNd0POeQQHH/88XjppZdQX1+Pzz7LX5Y8f6lzCo1gtWtnty/7BHLfOM+Y60ihx1Ghn18InGYDZvrsmgXM6HABM39kchxHlarqYdpmD+a16KevQY1NjqjWRCj0OBq3sDjrrLMApIpysUQFkEro7O3tRSQSQUdHB3baKX+FZYRRLLT1YLIWFeJsxDh3EaT6WekXKEX0wxcKPuBHo9DjqNDPLxQWg4iZFXaYJO3//s6hKHozuHiWE5adDobg8KR9TmMRxD5Pt58uNgr9Lij0OBrX06+66iq8+OKL+PjjjyHLMh566KFc92vMGI3aiVB6YDBoVF/kTCoIIbDufSyzFLHc1YRkkSdymkym0RuV8fMLiVEUMNNnh92ofWKkOxjD+kngdUEMRlj3OoZ5Lf7dx0WfyFno33Ghnz9mYfHggw/i9ttvx/PPP49tt90W5513Hm699VYdbbTZWCyWgj7fak3fW+dMTkSXD+Zt92Jei370EqhcvPvlfBwVFlEgaPBa4bFo25r3hOLongTiwjB9LgzT56VfoCoiRR79K/Q4KvTzxyQsXn75ZZx55pl47LHHsOuuuwIAzj77bAQCATz66KN56WC2mM3a2dV6UOgvklNcmBftB8Io+6wGBxBb+n4BepQdhf4dF/r5xQAhBHUuC6rs2qvOvnACXYHyFxeW3Y8AGGF9uWM1kq3LC9Cj7Cj077jQz89aWHzxxRc4/vjjceutt+K4447b8LnT6cTZZ5+Nm2++uaCZqIIgjKtkbK4o5LM5xQcxmmDZ9VDmtdiXb0MNDenco+wwm80F21YURXHSRyxGGClgluk4qj+SQMdgebt0iu5KmLbWSOT834tF68jpcDgKtjVutVrHVeE0l2QtLHbYYQeEQiGce+65adeuvfZarFq1SjOJUy98Pl9BnutwOAqe48EpPoxztodYNTX9gpws2uOnhJCCjSOv11vwpLNio8JmQp1Le/U5GEuibSACtYzFhWWHA0DMtrTP1aF+xL/5sAA9Gh1JkuB2uwvy7EKN300pq1FstVr1T1pRFTi61pSMcQtHPwgRYN3jKOa1xKqvira4ktvt1v0FT2JhWHvadH1mqeC1GjHVrS0uAnEZrf4I1DK1ACcmMyy7HMK8Fv3iLaiR4qzTVIgXvCRJRRE9LythQQhBXV2drs90r/4S0df+hf7HlkAp0vA2p3BINdNgnLM981rkw+eLUpCKoogpUxjuh/mCUni+eQ+B/zyIgecfhZqcHH4NY8FtMaaMtDSuhxIymv3hsq0vYpy3I8SK2vQLyXjRllY3m826i4u6urpxbsHk9ndTVsICSEUtKisrdXmWqbcd5LuPAQDxpuXouec6xFZneZxQZeSjkLL7OjgALLscCkjpW2VKTwcSK78qQI9Gx+12w2636/Ise/O3oO1rAACRLz9A7/03Irm+I7s/ZggzUqbbKU6zAQ1em6ZLZySpoNkfhlzgypb5gAgCLFrRvxVfQO7N8veiM9XV1bptk3s8nnFVE6eUplzYtmQC76OyHIGVlZV5TwIjsTBsn21u1KJGguj/558w9OpToycVsYQFw/uAU/oIdhfMi/ZjXot+8gpoovhMjwghqK+vh8GgfewxFxiGemHY4pSM3LcOPQ/chNCnb4+emKgyxlkZjyO7SUKj1wYNk05Ekwqa+sNIKuUnLgy1jTDM2oZxhSLywfNFmcQqCAKmTp2a90ROk8mEmpqa8f0x610EAML4E0DLUlgIgoDp06fn9ciN7/sPQaMh5rXQx2+g96FbIPdnMHHhwmJSYd52T7aTYCSI2JdvF6BHoyNJEhobG/OWYS5SCufnbwCsFbYiY+jlJ+B/8h4oEfY4AzApx5HNKGGGzw5RQ13EZRVN/eGyrIxq3fVwZml1pbsVyTXfFKBHo2OxWNDQ0JA3cWEymdDY2Dj+wxMawoJMYByVpbAAUvvEjY2N4woNZXNfzz5HQnSmvyhGSK5rQ899NyCy9CPmdcr6Mgt8qoaTP4hkgGW3w5nXYkvfhxLo17lH2WE0GjFz5syc+8QYjUbMmDMHrn2PAjFqJ1zHVi5Fz73XId6yit2AdcS9zIUFkLIAn+G1adYXSSgqmvpDiMvlVdRNcLhh3m4f5rXIRy+BFml+js1mw4wZM3Iu0nNyX62IxQTeR4QWY/woh1BKEQgE0NXVpe2z8e7LEL/5FEgmAYMByjY7A/scltbM7XajpqZmw5eoREIYfP5RxFZ8nbEPlm12gfvwEyCYNkZQ5JX/A2Kbr8SI3Qtx5o5j+w/klAyUUoSeewByV1PaNUPjQtgPPakAvcoOSin6+vrQ09OjHXLOchxVVlaisrJyw8kT2d8D/9MPItmV6ZQMgWPvw+HY54gNKylKKZRvXk9vWTENYh3DsbEMScgqmvwhJBX2dyIJBA1eGyyG8hFbNJnA0OO3g4bTk+XNOx4Ay04HFaBX2aEoCtavXw+/389ukOUYIoRgypQp8Hg8E46E0GgQyqr0BbAwdSEE7/gOQ5RtxGIEQghcLhdmz56NioqK9HDRuy9D/Px92GbNR9VPfgXbrPkQP38fePflDU3sdjsaGhpQX1+/mTIUrXZ4f7wYrsNPYIbnRoh+8wl67rsBic6WjR9Osr1hTuq3aNnjSGZJ6GTz90h2rClAr7KDEILKykrMmjWLPZmNMo5GxuGsWbNQXV292XFWyVuFypN/B/tumV4IFMH3XkTfw7dDHhyO7uRhb7jUMEqp+iImkT2VyypFU38IkURxGkmNB2Iwwrpb+ssWAGJfvQs1OKhvh8aAKIqora3FjBkz0o+FZvEuEgQBPp8Pc+bMgdfrzc32CutdBEzofVT2EYstUVUVwWAQwWAQ4XAY6h1XwjZrPqZedA0IIaCUou22qxFduxLea++G2+3OKqs3ub4T/qcfgNy7TruRIMB5wLGw73YglGXvAlvUjCDuGojTWclJnHIi/O4zSCz7JO1zwVsN5/HnTGhvUy8URcHQ0BBCoRAikQjonVdpjqPKG+6By+XKKlwbW/M9Bp79G9SwtjcBMVvhOeokmGcvTI2jLRBqZkOobpzQf1+pISsqmv1hxDTyKgQCTPfYYDeVh+iilCL47L1QGF4whlnbwH7QzwrQq7GTTCYxODiISCSCyI0XMcdQZO1K2K+4HXa7HS6XK+ceM2qwD2rTl2mfC43bQ3CO74Rl2UcstkQQBLhcLtTX12PWtKlAMgnbNos2KD9CCOzb7ACaSKCqqirro0KG6jpUnno5rDvsrd1IVRF4/Wn0/+NPUMJhRueK/4XCmTiWnQ8CMabnLKj+9Ygv+7QAPRo7oijC6/Vi2rRpmCaoGceRz+fLeg/YPGshqhZfBdPMBZptaCwC/1P3YfClx0FlxmprEuYqSaKAGT47rBpbHioFWvxhBGLFWwBvLBBCYN3zKIDh7JFc8w2SXc36d2ocGAwGVFZWYvr06ZpjCIkEpk6dCo/Hkx/jOo0UAZ68OREIQfibLzfsG1NKEfrmCwjjcPAUDEZ4jjwR3uNPAzFrH3eNr10G/1uvIb6+e4sbTL4JcTIiWOww73Qg81rs09ehxiM69ygH5HAciXYXfCeeDeeBxzELUI0Q+foj9L/7FpJDW+y1T9JxJA7nU9iM7P9+CqBtIIKhaHmIC6myHsZ5OzCvRYvUfC4TRJKYY4jk2weDHzfNA6qC8LKv0Xbb1eh/9dlU6GnZUrj3Y+/hZYNlwQ6oOv1KGKfO1H5sPI7Bjz5E8LtvQEeO203SCXEyYlq4GwR3epiRxiOIf1281U81yfE4IkSAY49DUHnyJRA92uFYJRiE/923EGleuzGpdBKPoxFx4dDY8qAA2gYjGIgU5+mJsWLZ5RDAkC5elb4uJNdmaVZYJFhmz2OOIecuGaLguUBTWPCIxYSJrPgOPU/+DZEV38E8ax6qf/yrCd1PcvtQ8asL4dj7CLDCdRueu2Y1/O+9AzkUAplESWeTHSKKmnVEYt98CDWTd0MRs+k4sm+/y4THkbGuAVWnXwHL1jtrN1JVBJd+jaFPP4aaSExqYQEAAiGY7rHCZdY2N+sYiqI/XHzGbGNFsDpg2WF/5rXop6+xj/UXKY5FuwHYfAwBQMXhx2X6s4mjlbw5gS1FLixGUJWUramqwL5wu5zckgginPsdjYpfng/B4dZsJw8OwP/Om4isXpaT53JKA8O0OZCmzkm/ICcQ+6o4TbNGZZNx5Nqd7TY6VgSTBd7jToHnmF+DMFanI8TXdaH/7TeQ6OLFzAghmOq2wGPRFhddgRh6QjEde5UfTNvswZxf1aE+JFYVp2V+RjYZQ3qgKb54xKK4MTXMRdXiq2Ceu61mGyrLGHrzOfif/RvUeOkPdk52WHY5mPl5/PtPoPKidpth3XZXVJ1+BQxTpmm2UaNR9P/rAQTeeb6kVqv5gBCCOpcFPpv2Hv36YBw9wdKeb4gowbyjRs7S52+MXl5hssOFRekiWu3w/uQMuA77aWbPi6Ufo+f+G5DIaBbEKRekynoYGhemX1BkRL94U/8OFTmSrzrlebEr+0UCAKAUwXdfQN/f74A8pGFENEkghGCKw4wqu3akZ30ojt5QaW+LGOdsz8xZUoODiC//rAA9KiE0CmISXoSsNCCEwL7zfqg44QyIGazGFX8Peh+6BcH/vV5ymc2csWPZ+WCw8nASKz6HMtSnf4eKHCIZ4DrkeHgOPz6jHXiibQ167r0O0eXpZ/QnE4QQVDvMqHFo27J3B2MlnXNBBFHTcTP2xVtFa/VdFOSh3g4XFgXA4KuEb5/9YZneoN1IVRB4/d/o/+fdUEIB3frG0R/RWw3jnO3SL6gqYltU0OVsxDS1Ab79D4SxskqzDY1F4P/XfRh84R+T/uVSaTeh1qktLroCMfhL+LSIYeZWEH1T0j6nkSDi37FrNnGQl3o7XFgUAlUBkSQ4t98Brp12AZG0E6zia75Hz73XIbaWJ3aWM+YdD2R6NiRWL4XS3834Cw5UBaLZDPfue8K+cCumVfoI4S/eQ88DNyHZ06ljB4sPn82EOpd21efOoSgGo6UpLggRUsdPGcS+eheU566x4RGLMkHZaFBjrquHb78DYPB6NZur4QD6H7sLQ68/zRORyhTR5YNx3k6MKxTRz9ILbXGwwRKfEALb7Lnw7r0vRJtNu3lvF3oeuAnhz9/VLqQ2CfBajZiSIXLRPhgtWRMtadpciNXpyb00HkHsmxL0h9EBqjCEZIY8wGzgwqIA0OTme5mizQbPnvvAvuehyOR5Efrfa+j96x8g+3vz3ENOIbDssD9zQCebv4fc01GAHhU58uYTosHjhfegI2DZiiXQRv4micEX/wn/U/dBjTJs9ScJFTZTxpyL9sFISdp/E0K0oxZLP4Aam7zfuSZyurAg0sTcPrmwKASsL1KU4Nz/GFT8IrPnRbKrBT33XY/It6VRU4KTPYLdBdPCXZnXop++pnNvih8qpycbClY7PMedAvcPfpXR8yK2/Cv03Hsd4q2r89nFoqbSbtI8LTJi/x2Kl16E1FA3E1LdrPQLyThiX6UXrZvMUEqZ7yNwYVGCsL5IgxGEEJgahz0v5mhXOaWJGAb+8xAGnn0YaoLvG5YT5kX7Aob0QS23r0Kyq0n/DhUzGistQghs2+2GytMuh6FmquafK4EB9P39dgTefWGjrf4ko8puQqVNW1y0DIQRLsGS65r+MN/+D2qYJ8NvQJFTZlxbkkGUZwMXFgWAtdKCtPGLFK12eH/6W7gO/UnGva7I0o/Qc98NSKzjToPlgmCxw7zNnsxrsU9em9S5AZuSzUrLUFGDylMugW3XAzLdCMF3nkffI5PT8yJ1FNUEn5W9QqXDVVEjJSYupOppMDTMT7+gyIh98Zb+HSpWWO8i8K2Q0iSLPS1CCOy77I+q31wKyVeteSvF34PeB29G6KM3+EunTDBtuxezrLrc3QK5fVUBelSEaK20pM1XWkQywH3Ij+H72VkQrHbN2yVaV6c8L1Z8neOOFj+EEExxmjXtv1UKNPvDiCZLy8nUrOEPE1/+GZTA5BORLChLnAN8K6TUoJQCrPP0Gl+koWYqKk+7Atbt99C+qapg6LWn0P/43VB4mK/kEUwWmLbfh3kt+imPWgDQXmkxtpEAwDx7a1Qtvhqmxnmat6SxCPxP3oPBF/856TwvRuy/3aOIi1gJiQvJNwWGWYwtZVVB7HPuagsASGpFLPhWSGmhJJHavdyCDF+kYDTBc/Qv4Pnhb0BM2pnc8dXfpTwvmpbnoKOcQmLeeg8QS/oKW+ntRLL5+wL0qLgYz0pLdLjgO+lcOA84FshgVxz+/F30PHgTkj1dE+1mSUEIQb3LolkVVVEpmv1hxOXSEReWnQ5kfteJVV9CGegpQI+KDK1xpCHQs4ULC73R+CK1VlqbYt1qJ1SdfhUM9Y2abdRQAP2P3oWhN/4DynJU45QExGCEeRG7OmiqHPTkTDbcgOZKK/M4IkSAY89DUXnyxRDdFZrt5J4u9D5wI8JfvDepIkQjVVEdJnZul6xSNPeHkZBL4/cnuithnLso/QLl/jAA3wopGyb6RUqeClT+6mLY9zwM2p4XFKEPX0Xv326FPMA9L0oV08JdQOyutM/VgR4kVn+tf4eKCc2VVnYhXGP9DFSdfmVGzwsqJzH4wj/gf+r+SeV5QQjBNI8VdiNbXCRViiZ/CEmlNMSFZccDmU6SybXfQu6d3E6szHFEBEDgBlmlRQ72tIgownXAMfCddC4Exotnw6M6W9BzL/e8KFWIKMGyA/tEQ+yLNyd11CIXKy3BbEl5Xhz9i4wRw9jyL9Fz3/WIt60ZazdLFoEQTPdaYTOyrZ2TCkVTf7gkxIXgcMO0cBfmtdhkryDMeh8NH9meCFxY6E0O97TMM+ajavFVMM3eWrPNBs+L//6de16UIMa5O0Bw+dI+V4f6J3euRY5WWoQQ2LbfA5WnXZHZ82LIj76Hb0Pg3RcnjaATCMF0jw1WA1tcJBQVzf4w5BL49zAv2g9g1GRKNi+f1LkWTIE+wW0QgAsL3cn1npZoc8B3wplwHfLjzJ4XX/8PvfffyD0vSgwiirDsqFEO+qtJXPMixyutDZ4Xu+yv3YhSBN95Dn2P3AklMDCu55QaokDQ4LXBLLFfFXFZRXN/GIpa3L9DweqAaevdGVcoYl+/p3t/igaW9cEEEzcBLiz0hzUhTnBPixAC+64HoPKUSzJ6Xsj969H70C0Iffzm5H0hlSCGWVtDcKQXqVN6OyB3ri1AjwpPPlZaRDLAfehP4D3hTAgW7WJmidZVWD+JPC9EgaDRZ4NJQ1zE5FTkotjFhXmbPZmLr8Sqr6CGhgrQo8KSMpnLbNY4Xriw0BuNCXGie1oAYJwyDZWnXQ7rdhk8LxQZQ6/+C/2P/xlKODjhZ3LyDxFEmLfbm3lt0tY+YEyIuVhpAYBlzjaoOuNqGBvmarah0XDK8+Klx0Hl0ivWNVYkQUCj1waTyH5lRJMKWgfCUIt4wSJYHTDO3SH9gqog9s0H+neo0GiazPGIRcmRrz2tEQSjGZ4f/AKe404ZxfPi21QRpuYVOXs2J38Y5+3A9LWQO1ZPusx2bTvvia+0RhAdblScdB6c+x+T2fPis3fQ88BNSPaWv+eFQRTQ6LPBqCEuwgkFrf5IUYsL83Z7A4xFXHzZJ1DjkQL0qIBoWR/wiEUJwlxp5W5CHMG69c6oOv1KGOoyeV4Moe+RP2LozWe450WRQySDxh4xEPt6kkUt8rjS2hQiCHDsdRgqfn0RREYC7QhyTyd6778R4S/eL/stRoOYilwYBHaENZSQ0TZQvOJCdPlgmMFIdk8mEP/uE/07VEg03Gsnao4FcGGhK5SqY7LzniiSpxKVv74Y9j0ORUbPiw9eQe/Df4A80JeXfnByg2mrXZmDPrn2WyhD/QXoUYFIsk835WKlxcI0dSaqFl8Jy0JGGH2YlOfFYxj49wNQY+W98jVKqciFpCEugnEZnYPRohVZZg27/Pi3H06Kba0RqOY44sKitEjEwLLzJkZL3h5JRBGuA48d9rxwarZLdjSj577rEPnus7z1hTMxBJMVpgWM8/h0cmW200SUfcGUv3EkmK3w/PBUuI86KWMuR3TZF+i593rE28s7qdYkiWj02iBqiIvBWBLrgxor4gIjVdZBqp+d9jmNhpBY8UUBelQg4hrjKAfvIy4sdERzQsyjsBgh5XlxNUyzt9JsQ+MxDDz9IAaeewRqojgnhcmOeZs9mS6CiZVfQI1MkmRcjb3wfAp0YNjzYtGeqDz1ckjV9ZrtlKF+9P3tNgTfe6msPS/MhpS40NAW6A3H0R8uznlEK2oRW/oeqDo5toVpgjGOCAEM2rl52cKFhZ5oTYgmqy6P3+h5cTzz5TRC5KsP0Xv/DUh0t+vSL072CHYXjHO2T7+gyIh/86H+HSoAzAkR0EWgA4ChcgqqfnMpbDuza7kAAKiKwNv/Rd+jfyxrzwvLKOKiKxBDIFZ82wtS3UyIleniUA34kWz6rgA90h/KilgYLTk5ociFhY5oRyz0ERZAqgiTfdcDUfmbSyF6qzTbyf3r0fvgzQh98lbR7pVOVlJHTxmZ7d9/DDoZ3FVZ48hgAskglnMNkQxwH/ZTeH/628yeFy0r0XPvdYiuXKpb3/TGapQw3aP9b9A2EEEkIevYo9EhhGhHLb56Z3LMeYxxRHL0LuLCQk9YKy1ByuiYmS+MU6ah6vQrYN1uN+1GioyhV56E/4m/QImE9OscJyOipwqGxvlpn9NEDPFl5V8Xhr3S0k+cb4pl7raoWnwVjA1zNNuo0TD8T/wFgy8/UbbJgXaThHoXO2JEAbQMRIqu3LqhcSEEV3qFW6VvHeSO1QXokX5QVWGfCslR1I8LCx1hToim3ISexkPK8+JXKc8Lo/a+WmzVN8OeFyt17B0nE+bt9mV+Hlv6PqhSXKvDXEKpqrHS0mcbhIXo9KDipPPh3O8HmT0vPn0bvQ/ejGRft4690w+P1YhqB/tkjqJStPgjkIuoaBkRBJi324t5reyN5/K8Lc+FhU5QSpkRi1yFnibCBs+L2gbNNmpwEH2P3InAW89yz4siQKqZBqk23aOERoJIrPqqAD3SiWQczJNVOuUpaUEEAY69Dx/V8yK5vgO999+A8JcflGW4vdJmgtfKPjWTUFS0FJnHhXHOIhCrI+1zuXMt5J7yzTHL90ECLiz0QkkCrGzjAq60NkXyVqLy5Ith3+OQDK0ogu+/jL6Hb4M8yD0vCo1m1OLr98r2NALVckcsknG0wfNiQQbPi2QCg88/ioGnHyw7zwtCCGqdZjhM7O3daFJB+0CkaEQVkQwwb8MugVDWUQsNYcEjFqVGgU+EZAMRJbgOPA6+n58LwabteZHoaELPvdcj+v0kOvNdhEjT5kD01aR9rg72ItmyrAA90oE8T4i5QDBb4fnRqXAf+XMQRqnuEaLff46e+8rP84IQgmluKywa5dYDcRldgVjRiAvTgl0BY/oWTrLpeyiDvQXoUf7Jt0DnwkInCulhMVbMMxeg6oyrYJq1ULMNjUfh//f9GHjuUe55USAIIdpRizItqV7sEYsRCCGw7bAXKk+7HFJVnWY7ZXDY8+L9l8sqyiQIBNM9VhhEdv6YP5JAX5hdq0JviMkM08JdGVcoYl+/r3t/dIH1PpJyd7KKCwu90Dh7X0wrrU0RbU74fnYWnAf/aBTPiw/Q+8CNSK7v0LF3nBFSJdU9aZ8rPe2Qu5oK0KM8w5oQBQkQtSMDhcRQWYuqUy+Dbad9tRtRFYG3nkX/Y3+EEhzUq2t5Z6SuiKiRnN4djGEwWhziwrz1HtrGc+FAAXqUX5heMDl0ruXCQieYJ0Jy5HKWLwgR4NjtIFSecklmz4u+bvQ8cBNCn75dlqvkYoYIIkzbsjPb40vLb7WlNSEW6mRVNhDJAPfhJ8D7kzNAMnhexJtXoueeaxFd9Y2OvcsvJknEdK9Vs1JRx2AUoXjhTzEJNqdmSfX4dx/p36E8kjpIkD8PC4ALC91gToiG4p4QRzDWTkfVaVfAsi0rXDiMImPo5Sfgf/Ie7nmhM6Z5O4KY019YydaVUAL+AvQoP1BKmfUNCnnUdCxY5m2H6sVXwTh9FM+Lx/+MwVeeLBvPC5tRwlQ3+6VFAbQOhBFLFv6kmabx3PLPyusIdzLGrA6cy3HEhYVesCbEPBZNyjWCyQzvMb+G59hfgzASnUaIrVya8rxo4Z4XekEMRpi2YhmdUcSXlVEpaCUJqIwJvgiObGeL6PSg4hfnw7Hv0amIpQbhT95C70O3lI3nhctiwBQnOzqrUqDFH0aywB4XorsChsYFaZ/TaKisbL61i/jxiEVJoe1yVjoT4gjWbXYd9ryYrtlGDQ6i7+93IvD2c5OmoE+hMS3YGRDSh3Ni+edls/IthRMh2UAEAc59jkDFry6C6PJqtkt2t6c8L776sCy2GCtsJlTY2B4XSZWixR+Gohb2v9O09e7Mz+PffaxzT/KIDkX8uLDQA80JsXQiFpsieatQefLvYN/94AytKILvvYi+h2+HPNivW98mK4LNCUNjeuVaGgsjUSarrVI5EZItpmmzUHX6lTDPX6TZhiYTGHzuEQz85yGoMY2VZglR4zDDZWYn2sZkFW0F9riQamdAcFemfS53t0DuX1eAHuUeHrEoE2g8zL5QghGLEYgowXXQD+E78RwItnTnuhES7WvRc9/1iC7jnhf5xrQVOwembJLPClQuPZ8IFhu8x58G95EnApk8L777DD33XY9ER7OOvcs9hBDUuy2wGtknzUIJGZ1D0YKJC0JIhnFUJlEL1vtIEHN6sooLCz2IspMZiUk7Q7xUMM9aiKrFV8M0M31vcgQai8D/1P0YeP4xqMniOF5WjkhTGiF4qtM+V9a3Qe7tLECPcguNBdM/JELJRixGSHle7I2qUy+HVFWr2U4Z7EPv325F8INXUjVTShSBpDwuTBL79TMQTaInVDhvHNOcHZgiL7HqK9B46VcPpqz3kcmW04MEXFjogOaEWGJ7w1qIdid8J54N50E/ZO7zjxD58v1hz4vSf8kVIxlXW9+X/mqLOSGa7SVxsiobDFW1qPrNZbDtyC7nDQBQVQTefAb9j94FJTikX+dyjCQIaPDYIAns764nFIc/UphFCDGZYZyzffoFOYH4qi/171AOoYrMrlll0Y46jwcuLHSARhnCoowmRGDY82L3g1F58iUQPel7lCPIvevQ88CNCH32TlkkpBUbpjnbA4b0BLnE6q+hsrxUSgS9JsRCQwxGuI/4Gbw/Xgxi1l54xJtXoOfeaxFb/a2OvcstRklAg9cGDW2BzqEogrHCJB6znThTAr2k562YRvTcbM/pY7iwyDOpCZFx1LTMJsQRjHUNqDr9Sli22UW7kSJj6KXH4f/XvVCjGvknnHFBjGaY5jCSAeUkEitLOM9FpwmxWLDM3x5Vi6+CcdoszTZqJIT+f96NwVf/VbInfywGEdM82gKqbTCCaAE8LqSKWog16Sff1IGekna0pRrjCDxiUWJMsgkRGPa8OPZkeI4ZxfNixdcpz4vWVTr2rvzRXG19V7qrLa0JsVwFOgBILi8qfnkhHPseldnz4uM3U54X/et17F3ucJgMqHOx82RGPC4Ssv45JeaFLG+Y0k7iZEbPARAzFxYlhV4KsRixbrsrqk67AoYp0zTbKIEB9P39Du55kUNEXw2kKQ1pn6tDfZA7S7OSptaEiBxPiMVGyvPiSFT88kKIzvSaMCMku9vRe98NCH/9v5IUj16rEVV29iJEVilaBvT3uDDM3IrtaNv8fcnWD2Hm+xlMGavwjgcuLPKMXgqxWJF81ag85RLYdztIuxEd9rz4+x2Qh8rHgrqQsJ04S/foqV4TYrFimj4bVYuvgnnedpptaDKOwf/+HQPP/LUk82mq7CZ4LOzvMy6r6BjU1+OCiBJM83dKv0BVxJd9qls/cgWllHlCMR/vIi4s8sxknxCBYc+Lg38E34lnZ/a8aFuDnnuvQ3R5aWdeFwOGxoUglvTttmTLcqih0jpNoOeEWMwIFhu8P14M9xE/y+x58e2nKc+LztLyvCCEoM5lgd0kMa8H4rLux1CNC3cBu37Ip6BKiUVYkzG2JX4eoudcWOQRPiFujnnWVqhafBVMM+ZrtqGxCPz/ug+DL/wDlHtejBsiSimb7y2haunVD9FxQix2CCGw7bgPqk69DFJlBs+LgT70/vVWBD98taQ8LwghmOa2wqzhcdETimNIx5MiosMDw/R5aZ/TcADJlmW69SMXaEfPc5/vx4VFPuETYhqi3QXfz8+B88DjMnpehL94Dz0P3IRkD/e8GC+mBTszk/5KrVqjnhNiqWCoqkPlqZfBtsPe2o1UFYE3/oP+x5ZAKaEolSgQTPfaIGqcQ+0YjOhaDbVsHG11TIDmwiKP8AmRDSECHHscgsqTfwfRU6HZTu7tQs8DNyH8+bslmZBWaAS7G4aG9OgQjQSRbC6h1dYkPBGSDYLBCPeRJ8L749Mze140LUfPPdchtrp0asYYRQHTNUqtqxRoHYjolswpTZ0NwelL+1zuaoIy0KNLH3IB831ESF6MGrmwyCd8QsyIsa4x5XmxNSNkP4KcxOCL/4T/qfu458U4MGkdmfu+dFZb7AmxfJxrJ4pl/qIsPC+C6P/nnzD06lMl43lhM0mo1Si1nlBUtOmUzEmIANNCti9PKTnaMvP9zHYQknsZwIVFHuET4ugIJgs8x54M9w9+BWLI4Hmx/Kthz4vVOvau9JHqZ0JwpUeF5K5mKP7S8D1gT4i2vEyIpUrK8+ICOPY5MqPnRejjN9D711shl4jnhddq1DwpEorLWB/UJ5nTOG8HQExPKo2v/AI0Wbi6JtlCVYVZxC9f+X58ZOYRPiFmByEEtu12Q+XpV8BQM1WzXcrz4nYE3nkeVC2dhLRCklptle4esd4TYilDBBHOfY9CxS8uyOx5sa4NPffdgMjS4v/+CSGodVlgNbCrofaG4xiM5j/JWzDbYJy1bfqFRByJVV/n/fkTRufoOX/D5Qk+IY4dw7DnhW3XA7QbUYrguy+g7xHueZEtxnmL2NUaV39d/GFxvp04ZkwNc1B5+pWjel4MPPsw/CXgeSEQgmkeq2bBso7BqC6235pJnCs+z/uzJ4q2wVx+8v24sMgXfEIcF0QywH3Ij+H72VkQrBk8L1pXD3tefKVj70oTwWRlrrZoIoZk64oC9Ch79J4QywXRaof3x4vhOvwEZgh/hOg3n6DnvhuQ6GzRr3PjwCAKmO6xMhwlAAqgdSAMWclvFFOqmgqxsj7tc6WnHcpAb16fPVH0tsTnwiJP8AlxYphnb53yvGhMP0M+Qsrz4l4MvvhP7nkxCkwHQQCJIi8DrXmyigv0USGEwL7Tvqg69XJIlVM02ykDvej96y0I/u+1ova8sBol1GrUFEkqVJdkTtO8HZmfJ1YX9wKHRhkW5JIJREqvhJwLuLDIEzQ8yPycT4jZIzpc8J10LpwHHJvZ8+Lzd9Hz4E1I9nTp2LvSQqyexjwyl2xbCZVh4lYs0Mhg+od5nBDLEUN1HSpPvRzW0TwvXn8a/f/4U1F7XnitRvis7O8+nFCwLhDL6/MNs7YBhPR8j8SqL4tWlFFVBSLpwoLlzJsruLDIE8wJ0WTlE+IYIUSAY89DUfnr30F0Z/C86OlC7wM3IvzFe9zzggEhBMa526dfUFUk1izVv0NZQBWZ7Vxrc+vfmRJHMBjhOfJEeI8/LbPnxdpl6Ln3OsTWfK9j78bGFKcZNiM7mbM/koA/kr/opWC2Mp041eAg5HUteXvuhIgFAYboyec44sIiD1A5wU7ctLr170yZYKwf9rzYih3SBwAqJzH4wj/gf+p+7nnBwDiHISwAJFYVZxg3Fb5NF4lcWIwfy4IdUHX6lTBOnanZRg0H0f+PJRh67d9F6dA6YvttENnJnF1DUUQS+eu3ce4i5ueJlcW5ragVPUce30dcWOQBzW0QPiFOCMFsgee4U+D+wS9BDNqRn9jyL1OeF21rdOxd8SM6fZBqGtI+V3o6itNBUGscWV369qPMkNw+VPzqQjj2PgKsAlsjhD56PeV54S++34YkCpjusWVI5owgmadkTsO0uSAML6LE2m+L8pSV5vsoj+OIC4s8QCPsPUo+IU6clOfF7qg8LQvPi4dvQ+DdF7nnxSaU0mqLOSESAbA4de9LuUEEEc79jkbFL8+H4HBrtkt2taLnvusR+ab4HCYtBhH1bnYyp6xStA1EoOZhW5SIEoyzGZ4WyXhRWuUzt+XNDpAMp4UmChcWeYA5IQoSPxGSQwwVNSnPi132125EKYLvPIe+R+6EEhjQr3NFjGHm1mwHwdVfFVXyGaWUPSFanCAZEnk5Y8PUMBdVi6+CeS7jRTkMTcQx8Mzf4H/2b1Dj+U2OHCtuixEVNnb0MpJU0DUUzUvOlXEOW6DHi+yUFU3EAIYzKLHld5HLR2iOoVQFGBELYnOBZLDa5YwdIhngPvQn8J5wJgSrtmhLtK7C+nuvQ3TF1/p1rkgRTBZ2YbLQEOSu5gL0SIN4GGDs7/PtxNwjWu3w/uQMuA77aWbPi6Ufo+f+G5DoatWxd6NT4zDDbmT3eyCazEsyp1hVz7bKb18NNaJhNVAACrUtz4VFrolqZODyxM28YZmzzbDnxVzNNjQahv/JezD40uNFuQ+qJ1qrrWLytKBhje1ELizyAiEE9p33Q9Wpl0GqyOB54e9B70O3IPi/14smwkUIwVSPBUaR/TrrCsQQznEyZ+qUFWMcURWJ1cVzyooZ9UP+30dcWOQYzQxcPiHmFdHhhu/n56U8LzLUYgl/9g56HrgJyd7J63lhmDoHxGxL+zyx9tuiMRrTnhB5nlI+MVTXo/LUy2BdtKd2I1VB4PV/o/+fd0MJMYyXCoAkpJw5NVy/0TYQQSLHyZzap6yKSaAPpn8oGQEjOzclV3BhkWN44mbhIMKw58XJF0N0p5tBjSD3dKL3/hsR/uL9Sel5QURRI/ksUTTJZ8wJ0WjJWAGXkxsEowmeo06C50engpi0X0DxNd+nPC/WFsdvxmwQUe9ie3TkI5lTdHgg1c5I+1zp64LS352z54wXqiqpCPoWEJs779vyXFjkGOaEaLbnNQOXsznG+hmoOv0qWBay7XeBEc+LxzDw7wegxtI9R8odrdMhxZB8RuVkKsdiC/g2iL5YF+6IqsVXwlif/vIcQQ0H0P/YXRh6/emi8LxwWQyosrPFZzSpoDPHyZxaUYt4MXjDRIbA9IHRYZHLhUUOSWXgpmdN8wlRfwSzBZ4f/gbuo3+R0fMiuuwL9Nx7PeLta3XsXeERK+ogeKrSPpc7VkMNFza8Xah9YU46krsCFb++CI69DkNGz4v/vYbev/4Bsr/wxbiq7CY4TOyF3GA0if5w7rb7jBqnrBKrvyr4MfdC5ilxYZFD+IRYXBBCYNt+j5TnRXV6VcIRlKF+9P3tNgTfe6ngk4FeEEJgYiVxUorE6q91789mXeAGc0UFEUQ49z8GFb8YzfOiJeV58e2n+nWOASEEU91WmDSSOdcFYwjFcxNdIUYzDI0L0z6n4QDkzsIuVpjvI0J08YHhwiKH8AmxODFU1KDyN5fCtnMmzwsVgbf/i75HJ4/nhXHOdmCtQgtu8c3KUxJE7gNTYEyNw54Xc7bRbEMTMQz85yEMPPsw1EThPC9EgWC6VzuZs30wkrMy60yBjsImcVJK2e8jixOEUUQt13BhkUOYiZs6ZOByRodIBrgP+wm8P/0tBEv6iYgREi2r0HPvdYiuLJ4jY/lCsLsh1TGSz/rXQe4rzKkZSlXmOCJW7gNTDIhWO7w//S1ch/4ko+dFZOlH6LnvBiTWtenYu80xSSKmurWTOdv/v707D2+ruvMG/j33arFkWbLlhWx2NihpmkKatJQllGWAMAm0hWnolBAaoA1pQ6YLvKW08M7bJUAz0xmamZZ9SWEKLUsXXoalLG8HApQCBRIIkJCExHESeZVsa7/3vH/Idu3oXtmWr+6V7e/neXiwda/uObF0rn46y+9YNN/C1Xik4U6h6V3bIA2SU9kiHQe0/GX1dn3JZWBhkdwMXIOtaf2ln4FLI+c7+lg0rL0OnlnmOS/0RC86HvgFuh5/YMLnvDDPaeFQr0WiB9C1/MfZ61c2hBAIfPp0NHzlu3DVHmF6ntYRQesdN6LnpacdW30VrHDjiCrjyZw9qSzaLJhvIRS1r/fvMNkM0ru2jfn6xTDfH6TalvIZWFglHgUMGk+pU6fS6KnBGtSt+iaCp3+ucM6LV55D5I4bkWk9YGPt7OWZswBwufMeT+94Ixcs28zpGyKNnHtKI+rXfB/+T5xkfpKuIfrUg2i//z+hOTQpuL7Si4DJZM6D3UlLdkI1DdDfcyZANx+Wt+fziIGFRfTuDsPHeUMsT0JRUHXyMtRdchXUUIGcF4ea0Xr79eh9/YUJmfNCeLzwGE0+i3cje2CP7fWRPe2GjzMPTHlSPF7UfPZi1PzDVyC8FabnpXZsy+W82LXdxtrlCCHQGPLBZTLhYm9XHJo+trbtqpsGNTwl7/FsywfQ4z1juvZoSSkhuw3akbsCwm3+GlmJgYVFDG+IigrwhljWvI1z0bD2WvjmLzY9R2bS6Hr0XnQ+fMeEzHlh9m0rs/ttW+shpQ7ZYxCg+4IQBr0qVD78Cz6Fhsuvg3vGbNNz9J4Y2u/9GaJPPwKp2dsb5lIV0/kWGU2iORof8xcHw5wWUiKzx+YEYum4cdqDKvMvUFZjYGEBmc2YbDxWw50YxwGlwo+aL3wV1eeuKvgBlnj7VURunXg5L1zT50J482+66V3b7N0PojdqOL/CzhsiFc9VU4f61f8LgSWFcl5I9Gx5Eq13b0S2096cFwGvyzR5ViyZHfNmZe65Hzd8PG13gG7UWwFABMK21YGfehYw/JYF3hDHEyEEKhctQf2a78NVKOdFV1/Oi+cnTs4LoarGO572xqBF9ttWD91sGITtaNwQqorQ330etau+ASVg3lub2b8HkVvsz3nREPCi0mO83PJALIlEpvieFDUYhlo3Pe/xbPNOSBu3mzcNLNhjMb6YjgvzhjjuuOunouEr30Xlp041P0nqiD37e7TfdxO07i67qlZS7jn58ywAIL3bvlnthjdEReE8pXGoYs5HczsOH2X8LR4YlPPi95tty3nRnzxLNZhvIZHbrGws8y0M25GuIfPhu0VfczRyw4kGeXh8VRAu8wzEVmNgYQHjiTJewGueL4HKl3C5Ub3sSwj/49chCuS8SO1+D5Gbf4jE+2/ZWLvScM84Kpdz5TCZXdtsmbQqNbPhxDCHE8cptbIKtV9ah9DSCwrnvHjjRbTedr1tOS/cqoLGkHFuobSmoyWWKPranjkLjK9rV4AejwJ6/ioXEbD3Sy5b7BjJVBxI578RRaCW+SvGOd/Rx+KItdfBM/MjpufoiV503P9zdD3+63Gd80K43HDPnJf3uB5th95xqOTlS7NVVez1G9eEEAgc/3eov+zqgjkvsu2H0HrnT9Dz8jO2BLJVFW7UVRp/g+9KZNBZ5HwLtaYBSnV93uOZve9BZqzbo8SMXgbDIAADizErh/EsKh01WIO6i7+FqtM+O0zOi2fReudPkGlzfrvkYhktOwXs+bbF4cSJzTO1CfVrvgf/wgI5L7Qsok/+Bu33/xxab/5231abUlUBn9t4vsX+WALJbHHzLQzbUTaDTPOOoq43GoYBulAgKmtKXvZgDCzGyPSGaOMMXCotoSgIfmY56lZfCTVk/rpmDu5D620b0PvXLeMy54V75tG5JdKHsWPZqWGA7uJw4kSieCpQ87mLUXP+ZRCeQjkvtiJyy4+Q2l3aeQlCCDRVG+8nIiWwrzMOvYh27DYZDsnsKm07Mh1ODNi/OpGBxRhIqRtHiBVVEG7jZU00fnmbjkTD5dei4qPGeR+AvpwXf/glOh+5E3qy+LFaJwhPBdyNR+U9rrUdgBYzDqCtYDqcWBXmcOIE5P/4cWhYey3c02eZnqP3RNH2y5sQfea3Jc154XEpmBEyzm+RzOo4EBv9pFK1fjqEwYqYzJ53SvpvyU3aNMj+7ECvHwOLsYjHjCfKsPt2wlJ8lQivWIPqcy4qnPNi218QufXHSDfvtrF2Y2e0BTRQ2m9b5sMgdSUrk5zlqqlH/SXfQeCks1Ew58ULT6D1nn9BtrOtZHUJ+dwI+43nW3TE04gmRjd3SggBz+z8XguZTiLbsquoOo6E7Db+G9k9cRNgYDEmnF8xOQkhULn4ZNSv+R5cDfnr1vtpXW1ovXsjul94wt5EU2PgnjUfMOglKGWSn3JI6EP2E6qK0Bnn9eW8CJqel2nejcitP0J8219KVpepwQpUuIw/DpujcaSzo2u/psu3S7gpmWHvucsDVOTvvFpqDCzGwDChj1Bs25qWnOWunzZ8zgtdR+yZ36L93p9B684f/yw3iq8Srqn5aZm1gx9CL8EmUlJK4wRzFQEOJ04SAzkvjjSemwAAMpVE58N3oPMPv4Setn4rckUINNUYz7fQZW4/kdHMt3BNmQVRkT8/KLP77ZIk1ssNJ+ZvNyCqnFmdyMCiSFLL5lIQHyaXxtt4pjFNPMLtyeW8+OLXICqMx2oBILX7XURu+SGSO7baWLvimE4+212CPQ/iUUDjcOJkp1YGUXvhOoSWrjCcQNwv/tctaL1tA9IH91leB69LxbSgcX6LREbDoe6Rz7cQimI4rCgTPdAOWZ+vo9yyPzOwKFLuhSyPiTLkPN+8hWhYex08M/MnP/bT4z1o/9V/ouvJ35R1zgs7l52W2w2RnCOEgsDxZ6D+K9+FGm4wPS/bfgitd9yInj8/a/nqqxq/B9U+47lTbb1pdCdH3m5tbUemw4kMLMYVzq+gw7lCYdRd/G1UnfpZw3kK/XpffiaX86K99ImniqEEQlAbGvMez+7fZfnurrrRhDMH1t1T+fBMbULD5d+H/9gTzE/Ssog+8Wt0PPALaBZvSz4t6INXNf5o3BdNIKONbCjDNWMu4MkfzsvsetvSgCg3nGjweeTgcCIDiyKY7nfv0EQZKh9CURA8ZTnqVl8FNWj+4Zg5uA+tt25A7xsvlmXOC4/R5DOpI/PhdsvKMB9OrOZw4iSneCpQ8/nVqDnv0oI5L5Lvv9WX8+I9y8pWFYHGGr/hWhVNl9jXNbIt1oXqgmdm/uZ+encntPYDFtS0TxkOJzKwKEaq13iiDNN4Ux9v05FoWHsdKj76CdNzZCaFrt9vRudv74KeKq+cF3YsO5WxVnA4kQrxH/NpNFx+LdzTZpmeo3d3oe2X/47Ys7+D1K3JE+Fzq5gaNA5oetMaIj0jm0Bq3o6sGw7RY8bbzzs1DAIwsCiKjEYMHxdBrrunv8nlvLgc1ctXAoVyXmx9JZfzYn/55LxQq+uhhPP3dsjsex8yY82sfNN2xPwVNIgrXI/6S/8XAieeVeAsie7nH0fb3f+KbJc1OS/Cfg+CFcabp0V6UuhJ5fcSHM7ddLThBmxpKwP0qMGQqqJABJwbTmRgUQTd6IYoBAMLyiOEQOUnP4OGr34PrvpppudpnW1ovWsjurc8WTY5L4yS/EDLIrP3/TFfW+qacUIfj5/DiZRHqC6EzvwH1F70DSiV5jkv0s27ELnlx0i8/drYyxQCM0J+uFXjXuh9XXFkh5lvIdweuJvyNzHUOw9B6zTuaRgNmewBUkbLTOscHU5kYDFKMp0AEvnr+UUgDKGafyulyc3dMA0NX70GlZ88xfwkXUfs6UfQft8maD3O57woZZIf2dMBGHRbi1ADhxPJVMXc+Wj42nXwHmn83gQAmUqg46Hb0PmHe6GPcUdRVcntJ2Ikq0vsiyaGnW9hOhxiQdI5016/kPlOsnZgYDFK5i+k+fIoIqAv58XyCxG+YG3hnBe7tiNy84+Q3FH6XUULUWunQqnKz36Z3ff+mMeyzdqRwnZEw8jlvLgCwbO+MEzOixfQetv1yBxqHlN5fo8LU6qM51v0pLLoGGaLdffMjwIGm4BlPhz7JmuGvedwvvecgcUomc+v4A2RRsb30U/kcl40HWl6jh7vRvuv/gPRJx90LOeFEALu2fmz2mUqAS1S/M1aSgkZM2hHLi/gz9+8iehwQiioOuFM1F/2ncI5L9oOIHL7Deh55bkxrb6qq/Qg4DWeb3EglkSqwBbrSoXfMJtt9tDeMU3alulk2faeM7AYBZlNQ/Z25h/wVzP9MI2KKxRG3Ze/japTzimY86Ln5afRetdGZB3KeeFummf4eGbvGJb39XYCBsGSCNVzGIRGxTNtFhrWfB++Y483P0nLIvr4A+j49c1F57wQQqAx5IPLIOe3BLCvq/CQiLvp6PwHpY5s846i6gPAODhHefSeM7AYBWmyrIfdt1QMoagInnou6r787cI5Lw7sReTWDYi/+ZKNtctxTZttuKIl82HxgYVx92153BBp/FG8FQh//hLUnHcJhEFCqn7J997M5bzYU9x716UqmFFtnvK70BJUw8ACY2tH5sPy9UVf0yoMLEaB8yuoFLwzP5LLeTFvoek5MpNC5+/uQYfNOS+E6oJ7ev6Qjda2H3q8e9TXk1IatyPFBVHJ3UypeP5jju/LeTHT9By9uwttm/8dsef+UNQ8oSqvG7UmW6xHelKIp42XoCo1DVCqqvMez+x7v6hVYDKbhuwx6j0PQbjNE4rZhYHFCEkta5xtsyIA4TWfiEc0EoqvEuEL1iK07ELDde/9Em/9GZFbNyC9f49tdTP9tlXMstNEN5DJ38xJBOshDCa4EY2GK9yA+ku/g8AJZxY4S6L7fx5D2z0/RbbLeGuGQqYEK0xTfjd3JQx3QRVCwNWY345kvBta2+izcJollyuX3nO25BGS3W2AQWTJ3gqyihACgU+d0pfzYqrpeVpnK1rv+oltOS9cBuvwgeLmWehlPC5ME4NQXQid9QXUrvwnKJVVpuel932AyK0/RuKd10d1fUUI0yGRlKbjYMx4F1TzAH307ajce88ZWIyQ6fI4rgYhi7mPmI76r34P/sWfMT+pP+fFf/1HyXNeqMEwlJr893kxy04N25FQmMabLFdx5MfQsPY6eOfONz1HJuPoePBWdD5636hyXvg9LjQEjOdztMfT6E7lT052z5hruDx2tIGFee95JYS3clTXKhUGFiMgdR0yZpAl0F0B+MwjYqJiKW4Pas5ZifCKywvnvPjgHURu+RGSO61LEWzEKHugTCehHdo34mvIVBxI5s/KF1W1EAWGf4iKpQZCqF25HsEz/8Ewl0S/+OvPo/X265E5tH/E124IeOFzG+fRaO5KQNOHDlUItzc3Gfow2qG90A2yZ5qR3e3GvedBZ5NiDcbAYgRyWQINdo9jlkAqMd/8RbmcF41zTc/Re7vR/l+bEH3qodyOoSVQaNnpSLdSN9zTAOXTfUsTkxAKqk48C/WXXg21xnzFRLb1ACK3X4+ev/y/ke1eKgQaq32Gu6BmdYn90fxJ1sbLTiWy+3ZAJnuHLRMwX2ZaLvMrAAYWIzIeXkiauFyhMOpWX4mqzywvnPPipT/mcl50GL9fx1SHqbMAV/5s+OSbz6P3iV+O6Bqmy0yDzi+Po4nPM30WGi7/PnwfP878JC2L6H/fj47f3AI9MfwHvddlvgtqNJlBV2Lo8IrZPIve5x5C4i9PD1uelLpx2oMy6z1nYDEM0+VxLjdQ6dzucTS5CEVF8LTPou7ibxsuW+uXafkQkVt/jPhbL1tWtpQSencnFKNcGyPsIZGZFBDPnwsiKmsgDAIWolJQvD6Ez78MNZ+/pGBSw+S7b+RyXnw4/MqnsN+DgMd4KK8lmkSmb6Oy7mQayWQScBu830eYXVf2dBq2uXLrPefA5nDiUSCbP6lHBMvrhaTJwTsrl/Oi6w+/RPK9Nw3PkekUOn97N5IfbEf1si9B8Ra/rl1P9KL7d7dA7xrbTozlPoudJhf/scfDM2M2Oh6+A5kDew3P0WKdaNv8b6g6eRmqTlluuluo6FslsqO1B9phQyialGjuSqCiOwL3M/dCTY98LoWR8TKcyB6LYehdBw0fL7cXkiYP1R9A+ItfQ+jv/3GYnBcvI3LbBqRbPiy6LMVXCd+nlwKGI8kjJ9mOqMy4ao9A/WVXI3D8GeYnyb6cF5v/Ddloh+lpblXBtJDJRmXpLNq8YfTMWTym+kqpGwcWqhuisnpM17YaA4sCpNSNb4iKChFglkByjhACgeNOQ8NXr4GrrkDOi44IWu/8Cbpf/GPROS88cxbAd/Jni60qZCZpvMeOLwjhMc4HQGQHoboQWroCtReuh+IvkPNi705EbvkREtvNc15U+zwIVZhv/tV99ElIzy0+uJDdHSZ77DRAiPL6KC+v2pQZ2dNpPAwSOsK0W4zITu4jZqB+zffgX3Sy+Um6htgfH0L7r/4TWk/+bogjUbHgBFQsOq2o55r1Vig15gERkZ0qjlqAhq9dB++c/N18+8lkHB2/uRVd//e/IE1yXkwLVRhuVAYAEALdn1gK92yTvBrDZJ417fWrnlLweU5gYFGA7DROtSpqyu+FpMlLcXtQc+5FCH9hDYTXvAcgtfPtXM6LD94Z8ni2q31EW7NXHHcWPPM+mX/AYJOywfROsxti+ay7J1IDIdRe9E8InnF+wQ/53tf+B5Hbb0AmMjTnRabtINp708jq5ktV0xpQecaX4JoyK++YEqg2fZ7UNeNhEJenLHvPGViYyL2QRqtByvOFJPJ9bPEIcl7E0H7fzxD948O5DH5aFh0P3obe118Y9vpCCPg/cx5cjUOTZanV5stFZaoXSOT3kohATVlslkQ0mBAKqk5aivpLvwO1ps70vGxrCyK334DeV/8EKSW03hgid/8UHe+/Y/ocIDeZU1dcqPz7i6Ec1m7UAqu9ZKwNMMhyK6qnlOUiAgYW/RQVEAqgqOjZ9kZubxCjpFjVU8puPIuon6u6Npfz4uRlKDThsufFp9B617+g67FfIdOyB93P//eIUhoLVUXgrJVQB83rUGsG9TwMakfRLc9CmvZWcBiEypdn+mw0XH4tfAs+ZX5SNoOux36Fjt/cgs7f3g3EY6h+42l4zIZC+mQ0HUqFH4HlqyF8gYHHlUDfcu5Bbaif7DLuPS/X4UR+QvapnPdxNHxxNSrnfRzJD97FoV/dbnieUobjWUSDCUVF8PTPoe7L3xom58UexP+6BQCg98TQ+8pzI7u+x4vAsksgKkMAAGVQNsPB7ajnjVdw6OH7DC4gIEIcBqHypnh9qDn/MlR/bvWwOS9SfcOLevMHaIztxdRgBczii3RfXgs1WIvAsi8PDCX27tkNYGgbAoC2xx407j33+ABfsNh/XkkxsFBUVM5fiMarfoDapZ9H41U/gH/+sYi+8QYQCEOZ9hGgf+hDUQF/yNHqEo2Ud9bRaFh7HSo+csyIzu/e8iT0VH4aYiNKZRBVyy8BPF6oNQ3m7eitrfntyF0BMcy8DKJyIIRA5cITUL/me3BPaRzRc3qe+z1q/R4c3VCFWn9+Mqz+wAIAXA2NqDzjSxAVlUju3mnYhmJ/7humPLwdqZ6yHAYBJmlgkUwm0draiuZDEUBKVB6zaOAFEkIgcMxiyEwW6pzFUOpnQZ2zOPdiSlm2LySREdUfQPgfvz5szgsAkIle9Lw0fFphIJeNM1lRhcyJ56HNXz26dpRJjfWfRWQrd90U1F92NSqP/7thz80c2Ivku2/ApSiYFvLhqLrAkMycmUGBhZQSydoZSH36HMhs1qQNZYBAOL8dpfI39CsXkyawkFKis7MTH3zwAXbu3IlDhw6hu6cHcLvR+9brA5vOSCnR89ZrEB7PkBdYCdYZ7ihHVO4Gcl585btw1RUeyut56WlocfMblqZpaGtrw44dO7B7925ENBd6Umm2I5rwhMuN6qUXoPbCKwrmvACA2HN/gNRz7/MKt4pZYT9m1vjhURWkNR2ZTAaHDh3Cu+++i71796JVd5u3IbcLSrAuvx0ZTOYsF5MipXcikUBzczNSqfxvStoxx6H31eex91//NwLHLEbPW68h/s6bqDnhRMi+HgopJfRYG6RQBh4jGm/cUxpRfc5FaLvnX03Pkekkel58CqEzzs87FovF0NLSgmw2f1Lz6NqRynZE41bFUR9H1SnLEX38AdNzsq0tSLz9Kvx9G54JIRCscKPSo+Jgexfef39P3g6qZm0otHgR9FgbRN3Moe2ojHMpCTmS/WHHKSklIpEIWluH2efgT49DfesVIJMB3G54j1mIpiWfyo1pBeugx9qAng60iUp0+xrQ1NQEr9d8Mg9ROdJTSURu2wBtmN1PhcuNI76xAWogN59I13Xs378f0Wj+JmJDjKIdJYPT0djYCFUt35sjkZFsRysit/4IMl14SE8NN+CIdf9nIJliJpPB3r17kUgUmMd0WBvSjv006pacgDrZa9iO9LrZmDp1atkF6RM2sJBSorm5efiboYk6PYqwTEBAh4SCDuFDm5K70aqqilmzZsHnYzpiGj9Su99DzyvPIhNpgdbZChRo+pXHnY7qv/8iNE3Dnj17Ct8MCyjUjrxeL2bNmgW3mxM5afyIv/kS4tv+gmzrAWgF9g8BgOpzV6Fy0RKkUins3r3bsLdvJAq1o0AggKamJijDZO6004QMLMYaVIyEoiiYM2cOKiqY5IfGH5nNINt2EJnWA8hEWpBtbUGm9cDfAg7VhYZ1P8DejmjRQcVIeDwezJkzBy7XpBiVpQlGTyWQbT2ITGsLspEWZNoOIBtpgRbL7Y2jhsKoWXMtdu/dV3RQMRKBQAAzZ84sm56LCRlYdHR0oKWlpeTleL1ezJ07t6wiRaKxkJk0Mu2HkI20oDOjo9NbeJKaFYLBIBobG8vmpkg0VrmAIxe0HxJexN2l791uaGhAQ0N57BY84T4RU6kUDhwwzlJWirIikcLj1UTjiXB74JnSCG32fFuCCiA3KbSUvYtEdlO8PnhmzEGiaZ4tQQUARCKRkvYujsaECyxaWlryZtuWUltbG5LJpG3lEZVa/2RNO7W0tEDTynf5HNFopdNpHDxonNK+VJqbm239/DNTssBi3759OPXUUzF//nwcc8wxePDBB0tV1IBkMone3t6Sl3O4trY228skKpVYLFbS8WAjuq6js7PT1jKJSqmjo/DEzlJIpVKOfAYermSBhcvlwk033YR33nkHTz/9NL71rW+V/B/c3t5e0uubiUajtt+IiUrFqXbU3t5eFt+2iMZK13VHAgvAufY7WMkCi6lTp2LhwoUAcpNKwuFwSf/QUkp0dXWV7PrDlR2L5W8NTTTepFIpx8ZpM5lM2YwRE41Fd3c3dN2ZDLPd3d2ODyuOOrDQdR3z5s3D1VdfPeTxJ598Eh6Px3DI49VXX4Wu62hsHNkmLsVIpVKOftuJx+OOlU1kFac/2NmOaCJwuh05Xf6oAwtFUXDNNdfg5ptvHhgTffPNN7FixQpcf/31WLFixZDz29vbcfHFF+O2226zpsYmnP5D8oZIE4HT7cjp8oms4PTngdPtqKihkJUrV6Kurg6bNm1Cc3Mzli9fjlWrVuGqq64acl4qlcJ5552Ha665BieeeKIlFTbj9MqMdDrN8WEa95xuR06XT2QFo32pJlP5RQUWLpcLV199NTZt2oRly5Zh0aJF2LRp05BzpJRYvXo1Tj/9dKxatcqSyhbi1HjWYAwsaLxzemy2HNox0Vg5/T52uvyiJ2+uXLkS8XgcUkrcf//9eZsJbdmyBb/+9a/xu9/9DgsXLsTChQuxdevWMVeYiEqH2S+JaKyKTtB/xRVXAMjlcDDaoXDJkiW2Rk3lsEsib8o03jmdnt7p8omsoCiKo71/Trejokq/7rrr8Nhjj+Hll19GNpvFnXfeaXW9Rs3pzcAqKioYWNC45/SOvU6XT2SFcvg8ctKoA4s77rgDP/3pT/Hoo4/i2GOPxTe/+U1s3LgRmUymFPUbMadvSE6XT2QFp9/HTpdPZAW/3+9o+U63o1EFFo8//jjWrVuH++67D8cffzwAYP369YjFYrj33ntLUsGR8ng8jnb/OP1GIrKC0zcktiOaCJxuR+Omx+K1117DihUrsHHjRpx//vkDjweDQaxfvx433nijo2NKQgjU1NQ4VnYwGHSkbCIreTweVFZWOlK21+t1/IZIZIWqqiq4XEVPYRyTUCjk+JxDISfQGslUKoUdO3bYXm5tbS2mTp1qe7lEpRCLxbB3717by50+fbpjXw6IrBaJRBCJRGwvd+7cuY73mEyoKdherxdVVVW2lxsOh20vk6hUqqqq4PF4bC3T5XIhFArZWiZRKYXDYdsn9Pv9fseDCmCCBRYAMG3aNFvnWkyZMgVer9e28ohKTQiBGTNm2Frm9OnTHV8iR2Qll8uFadOm2VaeEALTp0+3rbxCJlxLdrvdtv1xfT4famtrbSmLyE5+vx/19fW2lFVTU+NITyNRqVVXVyMQCNhSVjl9yZ1wgQWQm7xSV1dX0jLcbjeampqYu4ImrIaGhpLfFH0+H+cn0YTV3/tX6g/86urqshqSn5CBBQAcccQRJQsu3G43Zs+eDbfbXZLrE5UDIQSamppK1pvg9/sxa9YsDoHQhOZyuTB79uySBRfV1dWYPn16WX3JnVCrQox0dHTgwIEDlm0QFggEMGPGDMeWEhHZTUqJQ4cOoa2tzbJr1tTUYOrUqQwqaNLQNA0tLS2IRqOWXbP/C3Q5BRXAJAgsgNyW5vv370dvb2/R11AUBdOmTUMoFCq7F5HIDolEAs3NzWPaktntdmPGjBmO5cogclosFsP+/fvHlPfJ5/PZMsRSrEkRWAC5b129vb3o6OhALBYb8fM8Hg9qa2tRXV3teNIRIqdJKRGLxdDR0TGqQL1/onMwGGQvBU16mqYhGo2ivb19VIF6VVUVwuEwAoFAWX/BnTSBxWDZbBY9PT1IJBJIJBJIp9OQUkIIAUVR4Pf7UVFRMbAmuJxfQCKnpFIp9Pb2IplMIh6PI5vNDrQjl8sFn88Hn8830J6IaCgp5UD76f880jRtoB253e6B9hMIBMbNvL5JGVgQERFRabBPkoiIiCzDwIKIiIgsw8CCiIiILMPAgoiIiCzDwIKIiIgsw8CCiIiILMPAgoiIiCzDwIKIiIgsw8CCiIiILMPAgoiIiCzDwIKIiIgsw8CCiIiILMPAgoiIiCzDwIKIiIgsw8CCiIiILONyugJERKPh+cSlEIoKoahQXB4IVYUy8Lv7b8fcnr/93H+uwTHV5YJQBIQQUBQBxaVAEQJCEVBdCoQC82NCQCjIHVMVKErumMelQFXEwH/egd+Vvx0TufNcg84b/Lwh1xACbiVXh8E/K0JAFYBbVQ77GVBF7rhbFUN+FgJQIKAqGPhZCEAVyP3bBp7bfxxQFQEB5K478HPuXKFrEFIHpA4M/lnqgJY1Pqb3Pa7rgJQQenbgOTKbAXQN0DVITQOyGUhdA3QdMpvO/V/rOz743L6fc8dy50pdh9R06JkspJb7WctkBn6Wug4tnR34WU9nofc9R2rawPP0gWtI6JoOqUtoaa3vdwkto/3tmNZ3TM8d09MadE32ldVXH01CahIZXYcmAU1KpHU58LMmMeT3wT/r6D82+Lzcz7fIPY62zX7ssSAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLCCmldLoSREROSKVSuOGGG3DNNdfA6/U6XZ08rF/xyrluQPnXbywYWBDRpBWLxRAKhRCNRhEMBp2uTh7Wr3jlXDeg/Os3FhwKISIiIsswsCAiIiLLMLAgIiIiyzCwIKJJy+v14p//+Z/LdvIc61e8cq4bUP71GwtO3iQiIiLLsMeCiIiILMPAgoiIiCzDwIKIiIgsw8CCiCalq666CieffDJWrlyJdDo95FgikcA555yDU045BWeeeSY6OjrKqn79brjhBnzyk590tD7ZbBarV6/GySefjG984xu21GU09etn59/KiFn9yuG9ZjUGFkQ06fz1r3/FwYMH8fzzz2P+/Pl46KGHhhx//PHHsWDBAvzpT3/CBRdcgHvvvbes6gcA3d3d2LZtm+P1efTRRzFjxgw8//zziMfjePHFF22p00jrB9j7tzJSqH5Ov9dKgYEFEU06L730Es466ywAwNlnn533YXjUUUchHo8DALq6ulBfX19W9QOAn/3sZ1i3bp3j9RlJXZ2sH2Dv38pIofo5/V4rBZfTFSAisltXVxemTZsGAAiFQnndz3PnzsW2bduwYMECCCHw5z//uazqF41GsXXrVlx77bWO16erq2tgrwujujpdP7v/VkYK1c/p91opsMeCiCasgwcPYsmSJXn/SSkRi8UA5G764XB4yPM2b96MU089Fdu2bcMPfvAD/PCHPyyr+t1000244oorSlInIzU1Nab1KXSsHOpn99/KSKH62fVesxMDCyKasKZMmYIXXngh779ly5bhqaeeAgA8+eSTOOmkk/Ke23/zr66uRldXV1nVb+fOndiwYQPOPvts7NixAzfeeGNJ6tfv+OOPN61PoWN2KVQHu/9Wo60fYM97zVaSiGgSuvLKK+WSJUvkhRdeKFOplJRSyjVr1kgppYxGo3LZsmXylFNOkSeddJJ87733yqp+gy1evNiR+vTXJZPJyIsvvlguWbJErl+/3pa6jKZ+g9n1tzJiVr9yeK9ZjSm9iYiIyDIcCiEiIiLLMLAgIiIiyzCwICIiIsswsCAiIiLLMLAgIqIBq1evhhACa9euzTv29a9/HUIIrF69euCxgwcPYv369ZgzZw68Xi8aGxtx7rnn4plnnhk4Z9asWbjppptsqD2VAwYWREQ0RGNjIx544AEkEomBx5LJJO6//340NTUNPLZnzx4sXrwYzz77LDZu3IitW7fiiSeewGmnneZoCm1yFlN6ExHREIsWLcKuXbvwyCOPYOXKlQCARx55BI2NjZgzZ87Aef09GK+88goqKysHHv/Yxz6GSy+91PZ6U3lgjwUREeW55JJLcPfddw/8ftdddw0JFjo6OvDEE09g3bp1Q4KKftXV1XZUk8oQAwsiIsqzatUqvPDCC9izZw8+/PBDbNmyBRdddNHA8Z07d0JKiXnz5jlYSypHHAohIqI8dXV1WL58OTZv3gwpJZYvX466urqB4/1Jm4UQTlWRyhR7LIiIyNCll16Ke+65B5s3b86bM3HUUUdBCIHt27c7VDsqVwwsiIjI0Nlnn410Oo10Oo2lS5cOORYOh7F06VL8/Oc/R29vb95zJ8QunVQUBhZERGRIVVVs374d27dvh6qqecd/8YtfQNM0HHfccXj44YexY8cObN++HZs2bcIJJ5zgQI2pHHCOBRERmQoGg6bHZs+ejddffx0bNmzAlVdeiQMHDqC+vh6LFy/GzTffbGMtqZxw23QiIiKyDIdCiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgyDCyIiIjIMgwsiIiIyDIMLIiIiMgy/x8QeFk9W64XrQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] diff --git a/tutorials/causal_discovery/tigramite_tutorial_causal_discovery_overview.ipynb b/tutorials/causal_discovery/tigramite_tutorial_causal_discovery_overview.ipynb index d52c4390..791cf745 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_causal_discovery_overview.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_causal_discovery_overview.ipynb @@ -20,8 +20,7 @@ "See the following paper for theoretical background:\n", "Runge, Jakob. 2018. “Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation.” Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310.\n", "\n", - "Last, the following Nature Communications Perspective paper provides an overview of causal inference methods in general, identifies promising applications, and discusses methodological challenges (exemplified in Earth system sciences): \n", - "https://www.nature.com/articles/s41467-019-10105-3" + "Last, the following Nature Review Earth and Environment paper provides an overview of causal inference for time series in general: https://github.com/jakobrunge/tigramite/blob/master/tutorials/Runge_Causal_Inference_for_Time_Series_NREE.pdf" ] }, { @@ -76,6 +75,7 @@ "| PCMCI | Causal stationarity, no contemporaneous causal links, no hidden variables | Directed lagged links, undirected contemporaneous links (for tau_min=0) |\n", "| PCMCIplus | Causal stationarity, no hidden variables | Directed lagged links, directed and undirected contemp. links (Time series CPDAG) |\n", "| LPCMCI | Causal stationarity | Time series PAG |\n", + "| RPCMCI | No contemporaneous causal links, no hidden variables | Regime-variable and causal graphs for each regime with directed lagged links, undirected contemporaneous links (for tau_min=0) |\n", "\n", "\n", "| Conditional independence test | Assumptions |\n", @@ -102,6 +102,10 @@ "LPCMCI:\n", "Gerhardus, Andreas and Runge, Jakob (2020). High-recall causal discovery for autocorrelated time series with latent confounders. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, *Advances in Neural Information Processing Systems*, volume 33, pages 12615–12625. Curran Associates, Inc. [https://proceedings.neurips.cc/paper/2020/file/94e70705efae423efda1088614128d0b-Paper.pdf](https://proceedings.neurips.cc/paper/2020/file/94e70705efae423efda1088614128d0b-Paper.pdf).\n", "\n", + "RPCMCI: \n", + "Elena Saggioro, Jana de Wiljes, Marlene Kretschmer, Jakob Runge; Reconstructing regime-dependent causal relationships from observational time series. Chaos 1 November 2020; 30 (11): 113115. https://doi.org/10.1063/5.0020538\n", + "\n", + "\n", "References for the conditional independence tests are covered in the respective tutorial ``conditional_independence_tests``. The following steps will walk you through a typical causal analysis." ] }, @@ -166,7 +170,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHVCAYAAACaHX1gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3yT1f7HP0n3SNO9N2VT9h4ylSV4FXCA4h6A44p4FbxOVBRRcKK4EPW6UXCBkyVDNkLZ3Xs3bdKZ5PdHf9/DeZ48mU2aFp7368WLNs04ecY5n/OdCqPRaISMjIyMjIyMjEynROnuAcjIyMjIyMjIyDiOLOZkZGRkZGRkZDoxspiTkZGRkZGRkenEyGJORkZGRkZGRqYTI4s5GRkZGRkZGZlOjCzmZGRkZGRkZGQ6MbKYk5GRkZGRkZHpxMhiTkZGRkZGRkamEyOLORkZGRkZGRmZTkynEXMHDx7EmDFjMHbsWFx77bVobm7GF198gREjRmDChAnIy8tz9xBlZGRkZGRkZNodRWdp51VcXIygoCD4+/tj2bJlGDBgAFatWoWdO3di//79+Oijj7Bu3Tqr72M0GlFbWwuVSgWFQtEOI5eRkZGRkZGRcR2dxjIXHR0Nf39/AICXlxfOnDmD3r17w9vbG6NGjcI///wj+brGxkZoNBr2r6CgAGq1GrW1te05fBkZGRkZGRkZl9BpxByRm5uL3377DaNHj0ZQUBB7XK/XSz5/xYoVUKvV7F9CQkJ7DVVGRkZGRkZGxuV0KjGn0Whw00034cMPP0RkZCQ0Gg37m4eHh+Rrli5dipqaGvZPjq2TkZGRkZGRuZjwdPcAbEWv12PevHl44okn0K1bNzQ3NyMjIwNNTU3Yv38/+vbtK/k6Hx8f+Pj4tPNoZWRkHKWurg5fffUVrrzySkRERLh7ODIyMjIdnk6TAPHZZ5/h3nvvRXp6OgBgwYIFMBqNePXVV+Hr64sNGzbY5ELVaDRQq9WoqakRuGllZGQ6Brfddhs+/PBDvPjii/jPf/7j7uHIyMjIdHg6jZhzFrKYk5HpuGi1WoSFhaGxsREPP/wwVq5c6e4hycjIyHR4OlXMnIyMzMVLc3MzDh48iMbGRnh7e6OqqsrdQ5KRkZHpFMhiTkZGxu38+eef8Pb2xqeffgp/f3+MHj1aFnMyMjIyNiKLORkZGbfz0UcfAQDWr1+Pnj17IiIiQhZzFwmVlZU4fvy4u4chI3NRI4s5GRkZt5ORkQEAaGpqQkhICEJCQmQxd5EwatQolrgmIyNjO/X19aiuroYtqQ2ymJORkXE7NTU17Ge1Wi2LuYuIU6dOuXsIMjKdkq1btyIkJARlZWVWnyuLORkZGbfDt9eTxdzFSX19vbuHICPTqcjPz4e3tzfCw8OtPlcWczIyMm6ntrYWfn5+AIDg4GDExcWhpqYGR48eFTyvsrISb7/9tjuGKOMAvHuooqLCjSORkel85OfnIy4uDkqldakmizkZGRm3YjAYoNVqkZycDKDVMjd79mwkJibi3XffFTz3tttuw4IFC1BeXu6GkcrYC3+eZDF38bJ06VJcddVV7h7GRUd+fj7i4+Nteq4s5mQ6PZ9//rm8uHdidDodjEYjE3M+Pj7w9vZG//79kZmZKXju3r17AbRa6GQ6Pvx5ksXcxcsLL7yAzZs3u3sYFx2ymJO5ZPj1119xww034OGHH3b3UGQchOLl4uLiALT2YQaAlJQUZGZm4q+//mLuupKSEgDuEQZVVVXIyspq98/tzIjFXEtLixtHIyPTucjOzrapTSkgizmZTkxRURGuuOIKALAppkCmY0JiLiQkBADYgp+SkoLTp09j9OjR+P7776HRaNhr3CHmhg4ditTU1Hb/3M4ML+ZWrFgBLy8vaLVaN45IxtnwcZENDQ1uHMnFRVFREXJycjB48GCbni+vgDKdFrLSAK1B8zKdExJzffv2BQD07t0bAJCWlsaec/LkSUHhWXe4Wc+dO9fm98jKyoLBYHDCaDoHdJ5CQkJw+PBhAEBpaak7hyTjZPisc35Olmkbu3btAgCMHj3apufLYs4Kf/75J0aMGGFT0T6Z9oW3zshlLDovJOaGDRuG3NxczJo1CwAwbtw49pwjR47gxIkTUCqV8PDwcGv8VWNjo0Ov+/nnn5GamopNmzY5eUQdl6qqKvj6+gosmnK848VFTk4O+1kWc87j9OnTCA8PR0xMjE3Pl8WcFZ599lns3bsXJ0+edPdQZETQgj569Gh5gejEkJhTqVSC+JCAgACsXLkSvr6+yMjIQHFxMSIjIxEbG+tWMeeoZenTTz8FIFz8LnYqKysRGhoKX19fwWMyFw/89VxcXOzGkVxc5Ofn2xwvB8hizirUhuaPP/5w80hkxFRUVMDT0xNJSUnyAtGJIWEm5Sp/+OGHsXz5cpw/fx6VlZUICQlBWFhYu59v3hrnqPWBYv4KCwudMqbOAIk5vmBwZ7Gib9myBfn5+e4eRocnJycHPj4+CA8Px759+9w9nIsGezJZAVnMWYUy6+SWNB2PiooKhIaGumVxl3Ee2dnZiI6OFlhveLp06QKtVovTp08zMdfeljlewDlqfSAx1x4CoampyeWfYQv79+9HcnKyQMx1hnvVaDRi6tSpmDZtmruH0uHJzs5GcnIyLr/8cvz666/uHs5FgyzmnAy5gAoKCtw8EhkxFRUVCAsLQ2hoaKfZ7cuYkpWVxWrMSdGlSxcArcIgNDQUoaGh7S7m+OvLlj6JUtBc4moxt379evj4+Ljd5XXu3Dns3bsXN998MzZs2IA777wT4eHhnULMUd1KS1bUAwcOsCD1S5nc3FwkJSWhf//+OHPmjLuHc9GQl5dnl5jzdOFYLgraczctYx/l5eUICwtDREQESktLYTAY5BIlnZCsrCykpKSY/TsJvfLycoSEhCAgIMApmaX2UF1dzX7m+8jaA73OlW7W3377DbfeeiuA1tIG0dHRLvssa5A3Y/jw4YiPj8fgwYOxbdu2DrHxohIa5qzB58+fB9Aat2mOIUOGAMAlnxxXXl6OxMRExMTEoKamBvX19aw1n4xjZGdno7KyEr169bL5NZ1m5autrcWwYcMQGBjIShR88cUXGDFiBCZMmIC8vDyXfS4gi7mOyLlz55CamorY2Fi0tLTIXSA6KeSmMUdQUBACAwMBwG1uVmeIOY1GA19fX9TU1DhpVKbk5uayn+vq6lz2ObaQlZUFb29vxMbGssdCQ0M7hGWuW7dugtI3YqjziCUxJ9NKdXU11Go12zi42yLc2SgqKjIpV7R9+3YAwJgxY2x+n04j5vz8/PDDDz9g9uzZAIDm5ma88sor2L59O5YvX47ly5e75HM1Gg0UCgVKSko6TByKTOtuOCMjAz179mSdA2RXeOdiy5YtWLx4MfLz8y1a5oAL3SHc5WYlMRcfH++wSKqtrUVcXJyg+LGz4WPTHBWdziIzMxMpKSkCa3lHEXN5eXkW5wsScydPnsRXX33VXsPqlNTU1CA4OFgWcw7Q1NSE2NhYPP3004LH9+7di169eiEsLMzm9+o0Ys7T0xMRERHs97Nnz6J3797w9vbGqFGj8M8//0i+rrGxERqNRvDPVnbs2IG///4bPXv2hNFoRFFRUZu/h6upr6/HY489xgp0XqwUFRVBo9EIxNyllCV4MTB16lSsXr0aRqPRqpijWktkmdNqtQ7Xe3OEmpoa+Pn5ITQ01CGR1NLSAp1Oh7i4ODQ1Nbls7Dqdjoknd1vmSMzxhISEuN3NyrtFzZ0Hvifwtddea/J3V1pXOxvV1dWymHMQir/94YcfBI8fOXIEAwcOtOu9Oo2YE1NdXY2goCD2O2WdilmxYgXUajX7Z0/dlunTpwMAEhMTAXQOy8+7776L559/HitXrnT3UFwKxUx169YNkZGRUCqVZs/P+PHjMX/+/PYcnowN+Pj4sJ8tuVmB1s0bAAwaNIjtVtvTwkMLVmBgoEMiiV5DGw9XWc10Oh3b9LrbMnfw4EH069dP8FhHsMzxVl1zsZfnz59nGwh/f3+TFmS8O5u3hl5qGAwGaDQaBAcHIywsDB4eHp3C6NFe/PLLL4LONWJIzPFzyo8//oi9e/eif//+dn1WpxVzISEhAiubh4eH5POWLl2Kmpoa9s+e2Dq1Wg3gwi6sM8TNZWdnA8BFX++HzmNCQgI8PT0RHR0taZlrbm7Gtm3b8PHHH5sV/DLugXqxAhc2TOaYN28eAGDkyJFM+JmzxrsCEnMqlcohkUSvITHnKlerTqdDYGAg/P393SrmCgoKUFBQgKFDhwoe7whiLisrS/JnnszMTNx666145513oNPpMHXqVMHf+VI17rY0uhONRgOj0Yjg4GAolUqEh4fLscsckydPZrVqpSAxx28WNmzYAOCCMclWOq2YS0tLQ0ZGBpqamvDXX3+xvo5ifHx8EBQUJPhnDa1WC51OxywHr776KgICAjqFmKNJJisr66JuaJ2Xl8csJQAQGxtrYpm7//778d5777Hfjx492q5jlLEMibng4GB4e3tbfO6LL76IlpYWKBQK9O7dG0lJSe3aFqutljnqGkGlBlwltOrr6+Hv7w+VSuVWN+uhQ4cAXMj4JDpCGSGy8gKQ3Nzr9XoUFBQgKSmJtZQTdwDiBYu7xak7oVhSKvgtizlpWlpaJB8nMcfPB5WVlZgzZw569Ohh12d0qtIk06ZNw5EjR3D69Gncfffd+Pe//42xY8fC19eXqVln0LVrV7S0tKCqqgpvvfUWhgwZgvj4+E4j5vz9/aHT6aDRaC7abCxxq5O4uDiBZa6mpgavv/664DVHjx61Ow5BxjGqqqoQGBiI0tJSZo0SU19fj5SUFOzevdum9yTru0KhwLBhw3D69GmnjdcaVKBapVI5FJu5ceNGqNVqjB07FoBrLXMk5txpmTt16hQCAwNN6mSFhIRAp9OhoaHBbFkQV3P69GlERUXBx8dHck6vq6tj1qZu3brhnnvuMfF08ILFna3l3I0s5szD339nzpwxKTOyadMmrFmzBkDrfFBeXo7w8HBUVFRYzLQ2R6cScz/99JPJY9dff73TP4f3+VOD6Li4uE4j5rp27YqjR49Co9HY3KS3s5GXlycQc7GxsQJRwC/0VFj42LFj7TrGS5nQ0FD28y+//ILLL7/c5DmVlZV4/PHHHaqFFhIS0q615goLCzFgwAD4+vo6ZPHau3cvJk2ahMjISACuFXN+fn4OWxCdxenTp9GtWzcoFArB43RdVFVVuW1uOn36NLp3746WlhbJOZ0WYbL6BwcHC0rTAK0WFRLMnWFdcBV0XCgkSRZzrTQ2Ngo8RXl5eSZi7l//+pfg94MHD2Ly5MmsGL69dFo3a3tB2Vjx8fGdIgGCxBzgugWjI1BSUiIQAWLLHC/m4uPj0adPH5w4caJdxyjTypw5c0zcWc3NzdBoNA5NWkD7x14VFBQgNjYWgYGBDlm86urqEBwczMI8XHVv8m5Wd1rmzpw5g+7du5s8TufblgX/559/xt9//+30sZGYS0hIkHSzkghWqVQAWoWKOHu1vLwcqampiImJuaRbPYotcxEREZe8mGtpaUFcXJzAM2QpVr9v374IDw/HmjVrYDQamRfAXmQxJ0IcZ5aUlAQAncLNqtfrUV5ezky0F7OYowbeRFxcHMrKyqDT6QAIY1x8fX2RmJjY4c/fxQLVY4yKisJLL72Empoak0WZYjvDw8Md+oz2LHHR0tKCkpISxMbGIjg4GGVlZXaXFtFqtQgMDERAQACUSqWJpcdZ8G5Wd97/2dnZkuVmyJpOi9tXX32FyMhIyXM5bdo0DBs2zKnjMhgMTGimpKQISpAQJIJJzAUHB6OmpkZQ0qS8vBwRERHo0aNHu7r7OxpSlrlL2e0MtG78Kioq8PHHHwNoLXouJebIGPHkk0/i8ccfx5YtW1BWVgatVitb5pyBOB6GkiDi4+NRWFjYoTMiacKhSdTdpQlcSVVVlSAbctCgQQBa3VlAawA2ZdLl5eUhNjZWrkPXDpw4cYLtzN977z0sXrwYHh4eLAGAoEzU3r17O/Q5ISEhqKmpaZf7kVrFxcbGYsaMGdBqtfjuu+/seg+tVouAgAAoFAp06dLFZQKAxFxERITDPWTbil6vR2FhoWRfyZiYGHh6erKs+wcffBBlZWV45513zL7f999/77SxFRQUQKfToXv37ujWrRtyc3NNSouQZY7crGq1Gnq9XrDRLy0tRVhYGLp3735J9yOtqamBv78/S2AKCwtz23XXUaCyNbW1tYiJiUGPHj0kxZy/vz+WLFmCa665hiVwkpVXFnNOgBb8mJgYEzdeS0uLyaLUkaDdLZV5uFgtc0ajEVVVVQLLXO/evREWFoY//vgDRqMRBw4cwLRp0/Diiy/is88+Q2xsLGpqavD+++9Do9F0aFHeWfnnn3/Qt29fvPHGGwBaXaFKpZL1zuU5cuQIgoKCrNaXMwcJ+fYo3srPCT179kRSUpLdmdF1dXUsGalfv34uy6ymmLmYmBi31fsqLS2FXq+XFHMeHh5ITExETk4Ompub2RjF8Y9GoxGenq0h3c8++6zTxkYimsSc0WjEnDlzcODAAfYcsWVOXKJKr9fj0KFDSE9PR2xs7CVdJJeyvAm1Wo36+nqz2Zu2Mn78eDzwwANtHJ174GsQdu/eHcnJyZIlcGpqatgaRrG0FAokizknQFaFY8eOCdxyJOykxFxdXR18fX2ZVchdUAxRdHQ0vL297RZzBoMBzc3NrhiaU6mtrYVerxdY5pRKJSZPnoznnnsOgYGBqKiowMSJE/Gf//wHl112GcuovOOOO6BWq/H222+bff+KigrMmDEDOTk5Lv8uFwtHjx5F3759YTAY8NFHHwG4MCFFRkZKWub69u0raPVkDzQJtkfcHLmS6DOjoqLs3tSRZQ5oFXPHjh3DiRMncOjQIacKUoqZi46ORnFxsVuawNO8KSXmgNbQlezsbOTn58NgMEChUJgcA51Oh5aWFgwbNgxHjx51WivFrKwsKBQKJCcno1u3bgBai7TyJVTEMXMkVmiM//zzDzQaDcaMGYPIyEiUlZWZ9Na8VBCLObrG21oWa9u2bXjttdfccv22ldzcXJap3b17d3Tt2lVQDgdo3axoNBq2UaBC35Q1TYmX9iCLORGVlZVQKBQIDQ0VFCIW7854MjMz0djYiHXr1rXbOKUgyxwFWtsr5ubMmSO4MTsq9D3FQaIzZ84E0LoQPPvssxg9ejT7mzhjMiMjw+z7P/vss/jhhx/w888/O2vIFz28C5t+tiR+zAXI2woJ+faIm6N7nuYAKXFqCYPBgPr6erbQdevWDZWVlejTpw8GDRqEqVOnOm3RIjdrTEwM6uvr3WKdp6oD5krSJCcnIycnh7la+/fvbxJDSHFXU6ZMQWNjo9OSlwoLCxEVFQUvLy9Be0jgQmuv2tpaKJVK+Pn5Abgg5mjjsHPnTnh7e2Po0KGIjIyEwWC4ZGvNicUcuabbIub4e4Gukc7E8ePH0bdvX9x0002YOXMmunXrhoKCAkF2eUNDA5qbm1lCFHkxdu/ejcDAQGapswdZzImorKxESEiIicXAkpijiUicht8eGI1GlmVLC1tISAiCgoLsjpnbuHEjdDpdh2/HQhMnb5kDWnsoHjhwAEajEY899pjgbz169MDLL7+M4cOHw9fX16Jr5Pz58wBc0/GjsrLSbNX5zoxUQD+dH7H4MRqNOHPmDLOMOAJNdu3h4qJ7nibeyMhIQQcAa1BSDi10fGLArbfeij179uCNN97AG2+8YVKc1h4MBgNKSkoQERHBNi/uuJdff/11DBo0yEQsEWSZo4U6PT3d5PohDwklQPCuq7ZAWckEnRP+M2praxEYGMjmc0raoL/v2LEDQ4YMga+vL7sOO3L4TVtoaWmxuI5UV1eztRG4cDzbUhaHf21nS6YwGo3Ytm0bLrvsMmzYsAHTpk1j8xwfWyneIHp4eCA8PBxnz55FWlqaQ1pCFnMixFmShCUxRxO7wWBwevBnbm6uxV37W2+9hfj4eJSWlqKqqgpKpRIqlQrBwcF23wiUufvKK6+0acyuhhetPAqFgiVCiFEoFFi8eDH27NmDa6+91uIiR7tKVwQ2L1u2DIMHD77ogoT5DgfDhw/H9ddfz2KexK3WSktLUVtb2yYxR6EE7eEK12g08Pf3Z9/HXjcrXU9kmePF3Pvvv48bb7wRjz32GO677z707dsXGo0G//nPf+y2buTm5qKhoQHdu3d3W9Pz5uZmVFRU4N577zW7ICUnJ6OkpAQnT55EbGwsoqKiBGKupaUFN954IwCwMkvOKndRWFgosBju3r0b//3vfwGAZbbW1dUJRJ5KpUJERAQyMzNhNBqxc+dOjBkzBgAuejG3aNEiBAUFmXUjm3OzHjp0yK7WmTz83Ogui6dGo3HIdf7LL7+gsLBQUFczPT0dnp6egox+spjzQjgqKgoATOrR2YrdYq66uhpffPEFXnnlFaxevRqff/6529uzOBNzYs7X1xdeXl6SYo5u5PXr1yMyMtJpLpO8vDwkJSXh/fffN/ucrVu3Amg9L1VVVaxHXpcuXewuqtrU1ARvb2+sXr3aYnNgV2M0Gi0eQ/Guxl5iY2OxZ88eDB48mLUd4qFFVBzn0Fb27t2Ld955B5WVlXjooYec+t7upqysDImJicjNzcWePXvw2Wefsb8lJiYiLy+PnVMSybRQO4JSqURiYmK7uGFqamoE15q9blayNNBCxwc30yaDrB8tLS148MEH8dJLL2HHjh12jZMP7ueL87YntIG0VHKGNo07duxAcnKySVHeK6+8EidPnkRYWBji4+MREhLiVDHHW+bS09Px5JNPwsPDg1nMNRoNi5cjUlNT8emnn2LevHkoKSkxEXNSJU4uBih06MiRI5J/N+dmveGGG5CYmIgPPvjAbiudu1ulffXVV1Cr1XZ3lSoqKsLs2bMxceJEgZgLCAjAwIEDsXPnTvYYiTm+vehLL72Efv364amnnnJo3HaJuffffx9Dhw7F3r17YTAYoNfrsXfvXgwfPtyi4OhMiEteEAqFQlA88s8//0SfPn1gNBpNXC7Ocm3QxGip3RFd7N27d8fBgwfZ2Lt162aXZUmv16O0tBSrVq2Cn5+fZLcNV/Pee+/hyy+/xC233GJxMRBbOuyFKs8fPHhQ8sbhxZwzA3BHjBjBPv+LL77oFMkmtlJaWoqoqChJa0xiYiIaGxvZjvvs2bOsREdboNgrVyMWc0lJSdDpdDZbHmhBpOtVoVDg9ddfZzv1/v37C55PGzR755GzZ8/C29sbiYmJbIG1VM9u8+bNTj9+tBBbysajDOZ9+/YhKSmJiTnKUt+6dSuef/55lJeXw9fXF+Hh4SgtLYVCocCqVavaNL7i4mKT+FlPT0/BxqCsrMzERZyamopTp06xTcrIkSMBtC7Gw4YNw9NPP92mcbmShoYG/Pnnn3a/jjdcmNtYiLsViOfk22+/nYl3W3G3mPv6668BwO5wmNOnT6Ourg6rV682mQcHDRrEyjEBpuVvAGDy5Mk4cuSIw5tcu8TcypUrcejQIaxevRpLlizBkiVLsGbNGhw4cAAvvviiQwPoaJizzAHCSuDLli3DiRMnUFVVZSLmKOaqrZB6F9dB4uF33t988w1zIUgFXVqioqICer0eiYmJiImJsSsmyFnceeeduO6667BhwwaLN7FWq4VCoXC4tyMfeC9luairq0OfPn2g1Wqxbds2p2TS/fXXX+znyy+/HE1NTR26cvz69evx+++/2/z80tJSszFSVCpny5YtqKurw5kzZ5CUlNTm3pxkCXQ1Go1GsIMeN24clEolfvnlF4uvKysrQ0ZGBlauXAlAOHHfe++9LINSPPFTDKy93626uhohISHw8PCAp6cnAgMDLVrmrrrqKpM6f5mZmXjooYcEC4890EJsaTMWFxfHYpLJMtfS0oL6+nomqCZOnMieHx4ejm3btgEAli9f7tC4CD6DkCcqKoptNkpKSpjLi1i0aBGA1mz4LVu2MLGsUChw0003obCw0KGN39mzZ3Hw4EHBY7W1tRg+fDjuv/9+u99PijVr1mDChAlQKBR2GV34JDFzGwvqJ0rw1zhRWVlpVyJOZmYmPDw8EBwc7BYxR+fD3ixz2jhJtSeMi4sTHEOxtd4Z2CXmFAqFpDioq6tzS/C/K7BVzFGdsuLiYuZyoexXZ4k5upDFYu6TTz7BvHnzUFdXZxJ7RdYOikey1dVKVobY2FhER0fbJeby8/Px4osvOj2N3Nz76XQ6VoDVEcaNG8d+loor1Gq1zFoyYcIEi2VMbIUya6+55hq89NJLAIDDhw+3+X2l0Ov1bT4Xt956KyZNmmRzp4KKigqzCziJuZtvvhkjRozAmTNn2uRiJYKDgy0uEvn5+XjooYfaHEQttsyFhISgf//+Fi3mzc3NiIyMFIglSxO3VIkWe8WcONbLUpcMytzUarUCS8jzzz+PV155BVOnTmWJG/Zgi5jjM0mTk5OZN6GsrIyJOb7+YHh4OAuHaGlpgdFoxA033GB3dwiDwQCtVmviQqXPsCTmRo0ahfr6erz77ruYPHmy4G9BQUFoaWlBQ0ODXeMBgEcffRT33nuv4LFDhw5h3759eP31151ivedDEf73v//Z/LoTJ05AqVSiX79+JmEFer0eJSUlqK+vF5xr/hqfM2cO9uzZAwA2t2U7fPgw7r//flx++eWIiYlBZWUljEYjXnvtNSgUCuh0Orz99tsu82poNBq2ftsj5kpLS/Hggw8CkA7/iYmJQXl5OTMMtNW7JIVdYm7VqlUYO3YsZs2ahfvvvx/3338/rrnmGowbNw4vv/yy0wblTmwVcxQcWVJSgpKSEtxyyy2sJ5uzAufNibn3338f//vf/7B69WqrYs7WsRw+fBhKpRK9e/dGVFSUXWKuZ8+eePTRR51uzTO3UGu1Wvj7+zv8vj4+Pvjpp59w7bXXSu78tFotC1oF4NSevO+//z4iIyMRFxeHZ599VjJmr62MGTOGCUZH4AWArRsTygKXIjw8HE888QQUCgWOHz+OnTt3OlwsmMda/9GPP/4Yr7zyCpYtW4YHHnjA7l3+3r17MX78eHz99dcmE3S3bt0sHhtxt5FFixZZ/M67d+8WZGCrVCq7xRxlYRKWxBy/OJO1y2g04uuvv8bs2bNRUFCA3377zSYxr9VqsXTpUjQ0NKC8vBweHh5W41lprhgyZAgGDhwIoLXkx+OPPw6FQiGw8vJigbLtP//8c/z999+YNWuW1fER4vpxPHxPUSkxB8CsJZmsto503Dl27JjJdclnNDtqIeU5fvw4LrvsMtx444123QMZGRlITU1FUlKSiZhbsmQJs0Dx58fLy4v9/OWXX2Lo0KFISEjAhx9+aNNnbtiwAUajEY8++ihCQ0ORnZ0NpVLJCgg/8MADWLBggc3vZy+0XkZERNjVcm/u3LlMNFM3DB4K7aGEJLeLuSuvvBIZGRlYsmQJxo4di8suuwwPP/wwMjIycOWVVzptUO7EkpiLjIxkEziJuT/++AMlJSUsEDY9PR3Hjh1zylhoIhabuOlCePXVV01eQ2IuNDQUYWFhNou5Q4cOoWfPnvD397dbzNEk2RaTOJ85JK7rJIYvwOooU6dOxdixY1FRUSGwYhkMBuh0OoSEhKChoQGDBw92Sh/NqKgoLF++nH23hIQEnD171mz2raO0tLTgwIEDgor29sK7V2xtgWYu1pR4+umn2TVVXl4uCEJ3FEtN77VaLd566y0ArQL6tddeszve6osvvsC2bdvg4eHB4h2JLl264Pz58ygtLZWMrRELsYcfftjiZw0bNkzQ6WDAgAF2WxTtsczRuUhJSWHnu6qqCjU1Nbj22mvRvXt3vPvuuwgJCcFrr71m8XM//vhjvPDCC/j222+RnZ2N6Ohoq8Wgyaret29fREVFoV+/fli3bh1OnDiBvn37CqzulP1L1lx+Ttu4caPNySjizg48ZJnT6/UoKyuTFHPmoPezV8xptVqcP39ecI7eeOMNLFiwgAl/c4kH9nD+/HlMmDABycnJds3RJ06cYJt78TH+5ptv2M+W4iNJiH311Vc2ZWefPHkSM2fOxNixY5GQkGASu/3ee+8BABYuXOi0dZaHkt4GDx6MmpoaHDlyhG1CLWEtJIXmO1rLtVotfHx8BLVs24rd2aw0sc2aNQuzZ8/GiBEjnDogd9LY2AitVmtWzF177bXYv38/vv32W+Yie/bZZ5GZmclu/v79+zutVQ/deBkZGQL3NlmKKioqBMUF77jjDkEWjT19A8+cOcNSou1xs/JCSLz4aLVavP322zbdxGSFu/zyy/HDDz9Ivh9Bbta2EhYWhpaWFvTp04dNDGQFDQwMZHEbzsgIFGfIuao4c15eHpqbm9uUXff222+z42trEL41MQe07nYpGNoZYk6lUqGurk7Spfz222+zOoEUEmFv4dnc3FwMGDAAdXV1WLx4seBvXbp0QX5+Pq666irMnTtX8rVAa821fv36me2GIGbIkCFQqVQYOnSo3dedWMxZunbp/h45ciQLxaDjlZCQgKuuuordh4888ojZzzQYDExw1NTUYO/evawnsiX27NmDTz75hK0d6enpLNtPXKyb5qU+ffoAEAoJoHVDbQuWxFxERATOnTuHI0eOwGAwSMY9mYMsc/YWaD5x4gSMRiNL/gCAZ555BgBw4403IiIiwin9pClOMDQ01G4x16tXL8nsbX7+teRSB1oLPzc3NzOXqyVOnjyJnj17AgAGDhzIwgHISwK0ls7y8vLC6tWrnd5548yZM4iMjERSUhJqamqYSLO0ObaldRlZ5ngx50yrHNCGOnPiG+piwFxnAYKE0u23327yNxJzffv2RX5+vlMEQFVVFby9vaHX6zF8+HDs2bOH9TOkOkyUVQUA7777rmCXZE9Ga2VlJXstBQPbcpHyu1Gx+Prwww+xYMECk4XQ3OcDrTEktPCZE3POuhHoPGdkZLBsLbH5W1w2wREouJsPoqdJytnQwtwWMbdx40YsXboUMTExNi0mDQ0NaGhosCrmgNYdL+A8MUfdFcTQceCvvZ9++skul/mpU6cwatQoSfcaNcbeu3evyT3W1NSEM2fOICQkBPfeey+OHDli84Z3+/btqKqqQlRUlENijhcqISEhZhdvWpxHjBiB3NxcNDY2srhZEnNEQ0OD2SSgt956C++88w6A1mO+f/9+EyumFMOGDcO8efPY7yTy1Wq1iZAiMdfS0oKYmBjW+5ew9ZxaEnN0bw4ePBheXl6C7jHWcNQyRy7U5uZm6HQ6GI1G1NXV4ZVXXsHy5csRFxfX5hAPvV4PnU4HlUqF0NBQ1NXV2ZTQlZOTg4KCAvTu3ZsVyeY3TZbE3KeffiowaPTq1QuhoaFWxVxDQwNyc3NZghrNFUDrMbrtttsAtHoIR40ahfXr1zNLnbPIyspCamoq1Go1qqurmVvUknHDlqz28PBweHp6svlUq9VKJou0BYfF3Ny5c7F69WqLz+lsfdVo4jMn5uiGqKqqwgMPPIBvv/2W/Y3EHLk5nVH/qri4GJdddhm6d++OEydO4MMPP2T9FmfNmgW1Wo1x48YhNDQUo0aNMnl9t27dcPr0aZvOA+9ejoqKgtFotKm2E79YlJeX48yZM6xH7ebNmwFYbp0lfp+QkBAmKi2JubbEzBF8XA/tql0h5qQWEf6zn3zyyTa9Pw+JmKqqKoc2FFqtFjqdDsnJyYiNjbXJMmeuiLMUzhRzNBlKLaJ5eXmYMWMGix297bbb4O/vbyIEzNHS0oKzZ8+iR48ekn+nOC+g9drlg6Vnz56NZ555RlAc2Fb8/Pzg4eGBkJAQaDQaZlW0BbFlLiYmxuz5Ky0thVqtxoABA2AwGODr64tffvkFHh4eiI6OxrBhwwRWf3OJVLwbcO/evdDpdA4lt5CY6969u0liU1paGtLT07F06VJ8+eWX7PGXX34ZISEhNgeqWxJzaWlp7OcpU6bY1ejcHstcYWEhcx3ybsLq6mpUVlaivr6edZyIjY1ts2WOjxOk72RO4GdlZbFYtIceeggBAQEYO3YsQkJC0NjYaDbBQyxK5s6dyzY7QKtLvWvXrlY3mPRd6fuPGjUKPj4+SE9PB9Bq5f7uu+/QtWtXrFmzBkCrcOSpr69vUwHnoqIixMbGsvh4ymy1lEhoy8ZZqVQiOjq6Y1rmNm/ejKeeegr333+/iVjQ6/VYv349M5d2FqxZ5oALWVaTJk3Cv/71L/Y4TWA0gTujZROZuan5rr+/P0t4SEhIQEZGBhYuXIiysjJBQUKiW7duqK6utin2hneT0c7YFlcrLxjuvPNOdO/eHSNGjMD27duxbds2qFQqk52L0Wg0MY+TcAwNDUVAQAB8fX3N3pTOcrMOHDgQL7zwApKSkth3FaeMW4o7shVaRHjL3Nq1a7FixQoAwGeffYYVK1Y4pT7huXPnWLySI9Y5OuZRUVFISEiw6Tom95ctYu7yyy9HdHS0Q42kxdCiLJVhn5ubi8TERHYsJkyYgPnz5wuKGVsiKysLzc3NZucwhUKBv//+G2vXrmXPJ77//nsAEMTA2Yu4ubstiMVcQkICCgoKJAVhVVUVwsLCMGLECFx//fUAWrPkY2Nj4eHhAQ8PDyxcuBC33HILAPMbMipUDFwov2NPvBlBr6GFm8fLywvHjh3DiBEjBJvWxYsXIy4uzubNFt2HUhaRiRMnss43tlgWeeyxzN1zzz2YPn06ysrK8M8//zD3W1VVFZsnKfvbGWKOF7C0rpkTc5MmTcJtt92G8vJy7NmzB/fffz/i4+Mlr8WysjJ069bN5moJKSkpyMzMxODBgzFlyhTJ59D8Rxs9b29vVFVVsbXN39+fWYz79OmDd955B3/99ZdARK9cuVIQamQvRUVFiImJQWhoKCoqKlh9PksF5LOysmyqrMBvrjqUmJs8eTJ27NiBb7/9Ftdccw3q6+vR1NSEtWvXIi0tDYsXL8Z1113nzLFKsmTJEowZMwbz5s1rcz0wcz0/eZKTk+Hp6YmxY8cKHqedZXh4OPz9/ZGdnY3c3Fz07t3bYgkDc+h0Opw9exZ9+/aFWq3GsGHDUFdXJ7CCxMbGwsvLC0qlUvJiooXIWiV5vV4PjUbDvjdNrPaIOf7zPTw8sGjRIjQ3N2PRokUmC8q0adMQEBAgsPydOHEC/v7+iI+Ph0KhsGgVctaN4OnpiUceeQSpqalMxIjFHFnmDhw4gBtuuMGhMhc02fAWgejoaDz66KP46KOPcPbsWSxbtszuUgtSnD17lsUstUXMRUZGIj093aZsOrpvbOnIMWjQIBQVFTklZtCSZY7E3A033IDly5djzpw5SElJsTlmiDIKzVnmgNb4ttmzZwO4IHaMRiMCAgLw4osvYurUqXZ9Hx66F+3ZSEiJOb1eL4g3ImjzplAo8Nlnn6F///6orKxkVhGg1WL8wQcfwNvbWzAXfPvtt5gyZQqeffZZHDt2DM8//7zAS+OImBs2bBhiY2OxZMkSi88Tz3N8hQFy95vDUjYrAJbEd80119g8bgCsTJItYo7c7d9++y3LMgVaLXMUZ0nnIC4urs11FKXEnNQcptfr2XxBsXoDBgwAYNrKsr6+HiUlJVi0aJHNhb9TU1ORlZWFgwcPsqLYYki4ksAFWi3V5uaVCRMmQK/XCwwZ58+fb1MhbBJzs2fPRmpqKnr16oX77rvPomgtKytDaGgodu/ebXG+5MNWOpSYA4B+/fph7969yMzMxPDhw5GSkoInn3wSd955J3JyclxeFfvw4cMoLi7Gzp070atXL1a52VFsEXNTpkzBrbfeyiaE06dPC3blCoUCKSkp+Pzzz5GUlISMjAyHCl2eOXMGRqOR1amizD1rrmCenj174rLLLsPrr79u8Xm0s22LmCPL5H//+19MnToVJ06cQGRkJEaOHImWlhbBe23ZsgUNDQ2C3c7+/fsxcOBANtnFxsaajRdxlpuV4LN3xdZZEnMLFy7E559/bnYisoRU6xaCtwLwLa8c5dy5cxgyZAjUarVTxFxxcbHFPrL8AuYMa5s9mLPM1dTUoKamBomJiQgMDMR///tfeHt7IygoCLW1tVZdl42NjcwCwC8sUoSHhyM9PZ1dF2+++Sa0Wm2b6+g5Q8yRhQeAyXcWJ6yQ25gXc8CFzje89euzzz7D1q1b8fjjj0Oj0aBnz56C7+uoZa6goMCieCbOnDnDwlj4MIikpCSLr6+trYVSqYSfn5/k37t27Qqj0SgoKm4LCoUCKpXKJjcr1UfbtWsXysrKmJjLzs7GyZMnoVKpmGekb9++KC0tRUFBgcPzAi/mLLlZpUJqKCSCxBQd55deegkKhQITJkyweRwpKSlWY8sKCwvh6+tr80avS5cuCAsLE7j6S0pKUFNT41AduqamJpSXlyMmJgZhYWE4deoU/vnnHwwcOBAFBQVm6y5SF4wRI0YwL4UUvIGiw4m5mpoafPDBBygoKMDZs2dRXV2N33//HcuWLTO7+3Eme/bswRVXXAGgVWRJWcAaGxuh0WgE/8wxdepUbNu2TbJODHHnnXey9jxAqytTXD8qPj4e+/fvZ7/bE/dC0KJKiwll7lVVVUGhUEgKAzEKhQJDhw61GkQrFrG+vr4ICgqyqUk3LTZUYiMuLg7Dhw8H0HoD085t3759qKioECxO/PsfPnxYEIcUFxdn1sXg7BuBAnyBC7tWmvhSUlLQ0tLCzid/Xq3x5ZdfYurUqSzbTuqc8bE6QNsaihuNRmRnZyM1NRVdunTBiRMnMGfOHLt293QcwsPDWdyLpd0m7YL/+usvpwpsWzDn3hK7qwhalKx1RaFzMG/ePJvcJ5dffjl27NgBvV6P++67DwAsTuq2QAuaOTEnlcVnScyJrdxiMUdWGLGYA4TWL6DVEsE3A+/Ro4dAADl7kRLTtWtXQcIEja20tNSiVaa2thYqlcolBe6t1TwEWi2dP/74IwDgt99+A9Dq3h0/fjxefvllHD9+HH369GHjIwv7woULbbbS/frrr4JNMi/m6HxLWeZoLt63bx8effRRvP766yxkSOxmzc3NRb9+/ey6xq3Fj37xxRd4+umnERMTY/P5oXqE/Peh+cuRMlm05pKYJq8XbVQCAgKwZcsWk9eJW5qZo8O6WZcuXYqkpCSsX78ezz//PMrKyjBnzhxMmjTJrgWvLVRXV7MFUq1WS57AFStWQK1Ws39SkxURGRlp4j51BGqpRdiSFSpG3OOQLHNVVVUIDg62WseJCAsLsyoQpGIFxTeJOSorK6FWq9luPDY2lom51NRU9OzZE+np6bjmmmsQHh4uaGFFN55er0dWVhYLVqf3MSfmxItWW+HrKFVUVMDf359lMI4dO1aQzShuvWOO8+fP47rrrsOWLVtYvTOpDY544vrtt9/Q2NhoUtfoww8/tFpFXafTob6+HlFRUYiLi8M333yDr7/+WrIeoTlKS0sRFhYGT09PpKWlwdfX12I9J7KQ2Nt/0RnQvU9ik4re0jUmFnO2BqrT3xcsWGDTOGJjY1FeXs4SfzZt2tRmyxxlCPL3bmlpKSZPnozTp08jLS2NlbEALmRE8huG4OBgrF+/HoBp3TtxkWfaSEmVUJESc3wXFdo8uAOyzNmy8SQx5wqCgoKsXlf8+SoqKoKvry/S0tIwbdo0ZGZmMjFHxMXFITw8HJs3b2ZN3C0JRoPBgCuuuILNv4BQzHl6eppdJ0lkREdHY8WKFYKuFGI3a3V1tU0hFTxiMTd+/Hj2c2NjI+677z7U1NQICmfbQlhYmKSYcyQcho6B2BrPr0tSc6k9Yq60tBQtLS0oKyuzKcbYHhwWc9999x1ee+01nDlzBnfddRcCAgKwfv163HXXXRg/fjw2bdrkzHFKQhlfQOsFJuV6XLp0KXO71NTU2Nwcuy2IM/UsuanMUVFRAR8fH6beAwMDmWXOnosgLCwM1dXVFq2DUtmItuw06bWhoaHMxaZSqTBkyBAoFAqkpqZCoVAIqrQvXrwYAQEBUKlULDPX09MTzc3NggUhISEBubm5kkLY3mNgjaioKFRUVKClpcXkxvT390e/fv0AtJr1LQXC8vAB42VlZRar4hcUFLBU/rlz58LX1xfp6elMKOn1etx2221WY+r4VkpRUVHMLeDj42PTmIFWwUDC3MPDQ1CDT4xWq8Ubb7yBsLAwq+5IV6BSqXD77bfjueeeQ3NzM/bv3485c+Zgzpw5AEwnZXvFnC3WbwCs5MO3336LiIgITJ8+3d6vYkJgYCD8/f0FIuXpp5/GL7/8glmzZiErKwtPPvkkuz9ojuEzUAGwJC2xmBPfQ/3790dKSgrrF8sTHBxsIuaio6NRVVWFEydOwNvbGwqFAgcPHsTGjRvb9sXthFzAfA1Bc3OdK8WcLfOleHPRq1cveHh4ICIiAhqNBkeOHBGU41AoFMwwkJycjP3797NkOClozuHFmjiD11ytObrOpFzk9Fpys1ZXV9sd8yo2olCvXaC1blxlZSUyMjIky35ZgjdWUMFnwDEPhzkxx3cjERtqGhsbcerUKZvEXGxsLIxGIzZt2oQjR45IJvu0BYfFXEZGBubPn29SP2n58uVYs2YNrrvuOpvLADjK8OHDWbPrrVu3Spbn8PHxQVBQkOCfqxGLyhMnTrC2TTU1NXjooYegUCjw3XffAZB2+5SXlyMsLIxZbgIDA1FeXo7s7Gy7xZzRaLQYeyMl5kg8WoMWhXvuuQcfffQRxo0bh6CgILz++uuStfD27t2LlStXIi0tDSUlJQIXMO9yHDFiBOrr603aXRkMBtTU1DhVzEVGRrJSLBUVFSbnj8zuo0ePRnFxsU1FkDMyMqBSqXD55ZejpaUFoaGhZt0HsbGx6Nu3L959913B42QtlApgl0Is5gh7alWVlpYKBEHv3r0F7YV43nzzTWzduhVz58612VLsbO655x5oNBrs2bPHZAIXz01iC4M56O/2iDmgte/l1KlTnVJEXaFQmJQWofPACxdaYPlYRx6q2yaOJxaLOX9/f2RmZgruVf496HMMBgMqKioQERGB4OBggbt14MCBuPrqqx34to5DQpMKHgPmrTKutsxZE3N6vR4TJkzA0qVLAVxwxfPnjLdYARdc1k899RQACL6nGLIMA2CJILW1tfD09GQbOsrS5Kmvr8ett94KQHrj5+HhgaCgIHZfiHsV2wLf5ounqakJL7/8MhYuXGh3rCIgtMxVVFQwIe+oZU6pVArEG0GGBvFG4e6778bZs2dtOh4kEilpivp/OwuHZ2BLfu077rgD3377LZYtW+bo29vEgAEDEB0djTFjxiAjI8OuPn2uhLJqP/jgAxQVFSEsLIzVXHvooYdYCvz//vc/PPvss1CpVCYxLeLG5VTi44svvrCrOCW9h6WLu7KyEh4eHgLXpbmdZmNjo8BaRouCl5cX5s+fz66LRYsWsWDkMWPGCEz/06dPR0xMDI4fPy4oLsm76gYNGgR/f3+Tkis1NTUwGo1Ot8wBrSZ6vniyeFwUF2hLv9IzZ86gR48ebCdnrUo60HrfTJs2jf2u0WgkC+Kaw5yYs6dMjljMxcTEmHVhUYJFW0pwtJWBAwdCrVbjr7/+YhaH/fv3SxYotdcyZ+uCRddiUVGRpGXLUaKjowXHnrfw/+c//wFwwQpjTswBrd6Jb775hs1L9m6IeDdrVVUV9Hq95ILnDkjM8ZZHc1nwrrbMWbquWlpaUFRUhOuuu45tWu+++24AQsuPOIaW5tPU1FT4+/vj1ltvZXF3QGtYBpXb4cvEUJhGWVmZwCgQFhZmYpmzJfuTF/SOWOaA1vADMmAQP/74IyoqKtixsBdezPFJdo6KuaioKMnN2J49e9ClSxfk5eVhy5YteOmll6DX69m5sGWOFWfpdhgxZw1KJnA1q1atws6dO/Hpp59aTFxoT2699VbMnDkTs2bNQnR0NLp06YLc3Fxs3boV77//PnteQEAAHn/8cQAwqalGljmCdjbUtNxW6D0smZ3JVcoLdHNiztfXFzNnzhS81tqi4Ovri7/++gu9evXCtGnTkJiYiLvuugu7du3Cc889h6CgIJSUlAh2b15eXoiNjTXJqLUnm9dWaAEsLS2VjH946qmn8NhjjzGrgy03bnl5OSIjI5nL3dYipHwSgUajMduX19xn0meRNTEkJARHjx61OW6T7zMMwKSVj0ajwSOPPAKdTofCwkJMnz69Xazd5lAqlUhJSUFOTg6qqqrg6+uLwYMHCzYPhL1iztaFn78W2xorxyMWc6Wlpbj99tuxY8cOZvUWizkpkUUJWmSB12q1MBqNNp83XsyRoOwoYk6tVsNoNOLkyZPsPJjLwnenZa6oqAgGgwHx8fGYP38+srKymBWUv9/ERhLKYo2JiWFhE1deeSW0Wi0MBgOmTJmCuXPnYs+ePTh9+jTGjRsHpVKJw4cP49dff0VmZqbAvSvlZqVzaqn/aI8ePVgLS0cscwAwc+ZMXHXVVfjoo48AtBoGPvroIwwaNIhVbbAXc2LOUTeruXCRiIgIjBs3Dr///jumTp2K//znP9i/fz+z1JHl1BJ0nmNjY6HT6TpOBwhb4LMTLyUiIyOxadMmNlkmJSUhJyeHFUvcsGEDrr/+eoEoEC/SYjFHu6fNmzcL2uBYw1o3BUBakFlys/78888s6NzW+DWlUokTJ07gxx9/hEKhwFVXXYURI0Zgz5496Nevn6RFQRx4TZ8H2Fag1lZ4y1xZWZnJQhUSEoJnn32WWddsKeRKx4UmUlszPfksxZqaGpMkEEtWwZKSEvj7+8Pf3599p8WLF0Oj0VhNniD4mDkALPaOrs8PPvgAK1euxDfffIOCggKTGBJ3QPcX38VEisDAQCgUCqvnT6PRICAgwGZ3Kf+ZYstKW4iJiWEucoPBgPLycgwZMgRjxowxKQBbWlrK4uzEiEtSWOqEIAUfM9fRxBxZiI4fP85iW93hZrVmmSOhER0dDU9PT0EFBDqWUnMgJQ7wIkOpVOKzzz7D999/z8TE2LFj8f3336N///7o0aMHNm7ciCuuuAIbNmwwEXPi40PCx1JJmfHjx+Onn37Cgw8+6LBljqC5u7q6Gn///bfAG2EvFLuZnZ3NjnFcXJxDlrmTJ09anM/E1/yhQ4dQVVWFr7/+2iat4+Hhga+//trmJDp7cU+gyyVGYmKiQLhNmTIFycnJgpNKi+WqVatw8uRJk10ClWCxN2jSUTHHW+YKCwtx7NgxQZ0dGo84K84e5s+fDwAmpV0IqQwxV4g5Pz8/VsS4uLjY7KTm4+MDT09PmxNDQkJCmNvN1vIgvJjjLXPkQjFXvLK5uRmvvPIKExPDhw/HSy+9hIceeggeHh6CJIbz589LNienOktiyxxwwfJDDad37dqF8+fPO6UtV1vhxZyl60KpVEKtVlut3abRaOyyNvKf6cys3vT0dJw+fRqHDh1CdnY2DAYDW1CkxJyUGJB6rr1ijnexdTQxRxaikydPolu3bvD29jY71zk7C57HmmWO76wixs/PD0OGDJHsM/rWW2/hhx9+QEBAALZt24avv/4aw4cPx5YtW7By5UoWY0d11S6//HKMGDFCUEKDTz6QcrOWlZVBqVRavHfmzp0LAFizZg2am5sdsswR9DkUGmHuurWFWbNmISIiAm+88QZKSkoQGBiIxMREuy1zhw8fxs6dO9n3lEJ87mgutMdLRN46VyCLuXYgOTmZiblff/0VERERiI+PF1i+dDod8vLy8PDDD6NXr17IyMgQ7BKuueYaGI1GuycjLy8vBAUFWby4pRZBKoXS0tKCuLg49OvXTxBIT+KzLZmlVCHfXA2i9rLM0WdVVlayTD0pqDioPWKOarWZCwAWc++997LenDU1NSgqKoKPjw+6du2KoKAgs2IuLy8PBQUFrM+rt7c3lixZAj8/P5P+so888ggmTpzI4jiJv//+GwaDQbDLFIs5SkhZt24dampqLJb6aS9stcwBwpqCUlBvR3vEHBWhve2222xOVrGFcePGQa/XY9CgQSyTmc6Hn58ffH197RJzJHIcEXM6nQ7Nzc1s4XdmmENbIAtRS0sLIiIiTEpV8Lgzm9WSGxxovfdmzJhh8nhQUBDLjh47dixmzZqFK664Alu2bMHu3bsFIS87d+7EtGnTMHHiRMF7WLPMUQcDS5bopKQkQeKNMyxzs2bNQmNjY5uuJZVKhQEDBiArK4ttxC1dA+ZYvXo1kpOTWXKCFHQc09LSMGTIEFaCzRndbJyBLObaAf6Go8VdrPK1Wi1rwEw4y4Vl7eKmmDkeKlLMl+KgtmDPPfccamtrcebMGVRXVztcliIpKQl79uwxW1tIrVabWOYoWcPZkzJ1TDAYDBbdDXRcrFFdXY2QkBB4enrihx9+sLlUz8SJE9HS0oLIyEhmmaNCmmlpaWbFHLljpSrgi8Ucxc9t2LBB8Lw///yTNV8n6FgUFxfDYDAgKyuLtYmLjIxsl5Z91khKSoJOp8O5c+esLgxRUVF45ZVX8M4770j+/dZbb8Wbb75pdxxgQ0ODIB7WGXTt2pXVOKTNGL/R4K0s9ljmrLW1EkNWGI1GwwLq3ZW9LIa3EIWHhyM8PNzsxtWddeZKSkoQEhLilLjuBQsWsM10//798eOPP+KVV17B6NGjAUDQm/SZZ57BDTfcwH4PDQ2FTqcTtD2TCi2Rgi8d1Za6guKNeFs3BgkJCcjJyWH3QHh4uN1i7uDBg5g5c6bFzRhZ3XU6HQYNGsRiDGUxdwmRkJCAL7/8Etu2bWMTrpSYEzezdpaYs3Zxm4uZq62tFVgx7rjjDgCtOyofHx9cccUVMBqNbBJxhOHDh5ud4Ph0eKKoqAjR0dFOX0yCgoJw5swZAJZjR2yxzDU3N0Or1bKbfPr06VYroEuNhxdzACyKObKaSl0zwcHBAtciLTrinr1//PEHxo4dK9ihR0ZGIjg4GCdOnEBxcTEaGhrY5uT22293ebV/W6BJ9tChQ1YXBlq07rnnHsm/UyyovW4ke2r52YpCoRDcG/7+/oLrqFu3bqyTgDhxhcfLywsqlapNMXNA6wbF1oW/veAX0rCwMLdZ5oKDg9Hc3Gx2brAktu0lMjISzz33HIBWMTdt2jQ8+OCD7O/UYq5bt254/PHHTTYAgLCziK1j46/xtsSGRkdH44EHHmC/t1XMxcfH4+DBg/joo4+gVqttKpQvprKy0mrFAZpn6uvrWf1GwPleIkeRxVw7MWfOHEF3CV4w+Pv7Q6fToaCgAAMHDmQTjrNufmuWOanaaiqVCs3NzSYWjKVLl6J79+548cUXkZOTg4iICJf15JRysxYWFrqkQK1arWZxaZZiGmwRc85wBQcFBeGff/4RfF9zYu7s2bPYvn07AgICJC1KISEhAstcTU0NvLy8UFZWxmJtGhoasGfPHpN+i2QRfOyxx/Dmm28CaI2fWblyJauX5W5okm1qarLaF5TKc0hhNBpZopE7M3R5eDHXt29fgdBesGAB/vrrL2RlZZkkrogJDQ1FWVkZ/vrrL9x0000AYHPIBl+fr6OJOb47S3h4uNm5rrm5GfX19S47r5TFzJcH4bEkth1h2bJlFhMRDh48KNmGT+xyB1rjcO2dw20NG5FCqVRizZo17Nq2NdPfHPw5ValUdlvmjEajTSEafDcmarUm/nx3Ios5N8FPvAEBAdBqtcjPz0e/fv1w7tw5PPTQQzY1nbYFazsVqXIc9Nmff/65YEdGtQMXLFiARx55BFu3bnVJr0PA1M3a3NyMjIwMl4k5+qy2WuacIeYuu+wy7N27F7/++itLMkhLS0NeXp5J7blu3bph7dq1iIuLkzwXYstcTU0NO79kec3KykJjY6PAxUqQW/X5558H0Brj+PDDD7dL/2VbCA8PZ3Fr1hZMXtRSrTaiqqqKua86ygTNJzxNmjRJ8Dcqv3L8+HGr1pXevXvjhRdewOjRo9kGydYMa17MlZSUWBXM7Ql/vZObVWohp+/sKisK3U9z5syRLAOUlZVlNtHLUSxZj728vCQ9HmKXu9FoxJkzZ2wu2Pvxxx87rRkA3WNttczxMb7Ug7a6upqVdbGGVqtFU1OT1XEoFAps2LABv/76q+A66ighBx1jFJcg/GLh7+8PrVbLSj1ERkZi1apVTqkkD1i2zFH8hFjMDR06FAsXLgTQKm7279+PF154ge3mvb298cILL0gu/s6CXI2U4Xn//fdj9+7dLrEM0MSoUqmYMJDCFjHnjIy/J554Ag899BCAC5Md7f6pWC8gtDSZE//imLmamhom0CjWji+dIOb1119nFjtqxdaRUCgUTMhYE3PXXnst+1kcx8gXT+0oYu6rr77Czz//jNOnT+Ppp58W/C0+Ph5BQUHYt28fGhoaLH53itXlsXUTxou5goICyf6t7oTmSbLMSW1caTPjqvgmuieys7MFiQLEmTNnBD0+3YW47mhZWRlqampsHtuNN96IRYsWOWUs5KptS2Ys0JooRGETKpUKarUaer3epk49gH21S2+66SaHOlW0B7KYcxMKhQI9e/bEq6++ioCAALz44ovIz893Sd0uS2ZnelzK1E3xOZGRkRg8eDAeeeQRp4/NEhERETAajSwTjFq3iWuvOQOaUKyljdvS5sxcjz97odItJGZp8uNdrbwrhW9+zsO7WY1Go8AyN2zYMKxbt46JOSmri1qtZkVq2zrxugpLtbp47rvvPuj1ejzzzDMmJUo6opgLCwvDlClT0K1bNxMLgEKhQO/evVkRVkuZxXfddZfDY6Bz/tNPPyE/P7/DibkXXngBQOu5N7dxpevflcHqa9asAQCT/t+VlZUoLy/vEGIuNDQUsbGxLF6W4oTdMbaNGzfi448/dopli4RYYGAgu175DawlSMy11d3rbmQx50YyMjJw//33IyAggBV/pMLCzoQmOCmzsyUxR4uDLa2oXAFZE6jlF+3AKfjXmdAEYM2FZItlrqioCL6+vm0WPunp6fj888/x8MMPs7EFBAQIxBwtHO+++y7uu+8+yfcJCQlBUVERSkpK0NDQgObmZkE22q5du1BSUsL6GEtBz7envVh7QufNFmuoUqlE165dUVZWJsjG5WsBdoTEDltYtGgR69dpqYp+SkoKXn75ZYc+g9x17777LrRabYcTc0uWLEFNTQ38/f0RFhaGuro6NDY2Cp5DC7srg9Xvu+8+eHl5mbTHop66HcGio1QqMWvWLHzzzTcwGo345ZdfoFAo2pSd6igxMTFsk9hWaN5SqVRMsNtS3B1wvKvQ7t27TXoeuxNZzHUAKHZl9uzZTo+rAFqFWktLi2TqvCUxN2rUKPTt25ftONublJQUqFQqHD58GI2NjTh//jzWrVvnks4iNAFY27nbKuaio6PbHEuoUChw3XXXsYlKqjwJuUtuueUWs2n1N9xwA7y8vLBmzRpB7NCuXbuQnJwMb29vlJSUWBwzBUjbUpbFHVAVeVvjuQYPHgwA+PLLL5nlk1+EO0ocjDV4MWrt2qV55v3337fZBSVFRxNzwIXF3Fwvale7WYHWayYhIcGkQPiePXvg7++PXr16ueyz7WHatGnIz8+HUqnE8uXLYTQaBYkknRFyc5ObFbBfzNkr9EeMGNFh+sEDspjrEJAVwFWFOKUmOHJVWhJz8fHxOHr0qNt2lEqlEj179sTZs2dRWFgIg8HgErELXKjNRG4Hc9gq5lyRpAG0ulr5MVLBT0v1kZKTkzFu3Djs27ePWSjUajVGjRqFlJQUaLVai50vALAkDMp+7WgsWLAA2dnZNh/3tLQ0bN26FcCFDERbu3R0JDw9PXH99dezAtyWuPHGG7Fw4UJcd911Nic/EHyPYFfdg87AXMeb6upqKJVKl8d7JiYmCjozGAwGbNmyBcOGDWtTBqgzGTNmjLuH4HQoSc/T09NuMUfP6yihFY4ii7kOAMVpuUrMiSe43NxcxMXF4aOPPkJFRQU8PDw6bCxUaGgoqqqqmPh0VS/QHj164LHHHsNbb71l8Xm2iLnMzEyXtbnq06cPjh07xlzm5eXlNrkWhw4digMHDrAi0GRdoUxqa2JOqVRi4MCBbrPSWkOhUNjdSmvEiBFQKpX45ZdfYDAYcPLkyQ5TANQePvvsM5OC41IEBgbizTffdMiFzF8brtqoOANzYq6qqgpqtdrlFlfqErBt2zYArR1/fv/99zbFLDqbgIAA7N27F+PHj8dll11m07XT0aHzajAY7I6Z02g0CAwMdFrCobuQxVwHgCYAVwVgijOYsrOzAQDfffcdqzHnqvIibSUkJARVVVWsKK4re4E+++yzJq1wxKhUKjQ2Npq1UBUWFmLXrl02WUocoV+/fqyHLNBqmbMlpvHqq69GY2Mj7r//figUChMxV1RUZPXYHjx4UFDss7NDZQz+/e9/w8PDAydOnMDixYsBXCjHItMKzQ+WMr07AlJeiJ9//hnLly9vF6HObygaGxuRnZ0NpVIpyKLuCAwbNgx//PEHtm/f7rK5qj0hMWc0GhEQEAAPDw+bLXMajabDZeg7gizmOgC0iLoq6Fq8W6Wg+by8PMkacx0JEnOFhYXw8/NzuwWRbnpzsWP79u2D0Whk/RSdTb9+/QC0ZrGWl5fj448/tqn4a/fu3fGvf/0L2dnZiI2NZUHtvJjryBYXVyEW7//973+RmZkp2SfzUufo0aOC9n4dEbK+8eVJqP3VlVde6fLP5zOKs7OzUVpaivDw8E4Tg9lZocoLqampUCgUkgXnzaHRaDq9ixWQxVyHgASCTqdzyfv7+/vDz8/PRMwdO3YMOTk5nUbMxcbGut2CSOfKnKu1qKgInp6eTq32zpOYmAgPDw/s378fn3zyCQDb3fOjRo0CIHSTBQQEQKPRoLS09JIUcx988AGzVI8YMQIKhcLu1muXCn379nVZmIOzUCqVJs3ku3btCqVSyUqYuBJeFGRmZqKsrMxlc4HMBS677DKcOnUKkydPBgCTa8AStbW1spiTcQ5UeJcy7FwBv1PJzc1FUFAQmpub8e2333YKMWetXVF7YU3MUeyZq3binp6eCAsLw3//+188+OCD8PLywmuvvWbTa6dPn44ePXpg9uzZ7LGAgABkZ2fDYDBckmIuICAASUlJ2L17NzZv3uzu4cg4AXGtubq6Otx88812J304Ap9pX1RUhNLS0g7V/uxihk/Ui4mJwddff41Tp06xxwoLCyXb+V0sljnzKXAy7Ub37t3R0NDgkmbdBN+0PjMzE+PHj0d8fDzefPPNDu0CCA4ORm1tLUpLSzuE6CSXpiXLnKtFEV9iZtCgQTbXAezSpQureUUEBASw2nGXopgjRowY4e4hyDgJcZH09rS8dO3aFUajESEhISgrK7O5ib2Mc4mNjcXOnTvRs2dPliwWFxeHefPm4ZNPPsGxY8dYHdOLRcx13FWco7a2FsOGDUNgYCCOHz/OHv/iiy8wYsQITJgwwaTqdmfDlUIOEFrmMjIy0KtXLxbMLtW8vaNAtX8yMzNdWvDTVsxZ5p5//nkoFAoUFxdb7SLRVhoaGtjPbY2z5F9/KYs5mYsHcUsvdwS4R0REoLy8HCUlJbJlzg2IN7g0X3/66af44osv0K9fP5ZxLIu5dsTPzw8//PCDwD3U3NyMV155Bdu3b8fy5cuxfPlyN46w40NiTqPRIC8vD7169WLtodojMNhRyBp3+vRpl5VusQexmDMajdi4cSPrm3n69GmXi6InnngCqamp2Lp1K2vl5Cgk5hQKRYdwY8vItBWxm9UdMVERERHYunUrMjIyMGzYsHb9bBnTTjV8ncRPP/0UAPD3338DkLNZ2xVPT0+T3c3Zs2fRu3dveHt7Y9SoUYIelTyNjY3QaDSCf5ciJOaoJ1+fPn2gUChQX1/vkvZYzoIvEdGRxBxls+7duxezZs1isRhnz551uWXu6aefxvnz53HFFVe0OSCdxJxKpbJYeFhGprMQHh6Of/75B++88w6MRqPbLHP//PMPkpOTccMNN7TrZ8sIu5Ts3r0bP/zwA/v9+++/B9A6dwOymHM71dXVgt0W9TYVs2LFCqjVavbPUjPqixm1Wg2NRoNXX30VI0eOZCUufH19O3TMXGRkJCvd0hHEnLe3N3x9fVlBSjLV83Qmd2VHcF3LyDiTmJgYaLVa3HPPPcjLy4PBYGh3yxxl3d90002dvhhtZ+Sxxx7DI488AqA1i/+hhx4S/L1fv36sfV91dfVFMQ92qK14cXGxwJVKbN682WQhDwkJEVjZzN0wS5cuZYVAgVYVfikKOrLMVVRU4F//+pfbS3zYQ8+ePVFYWNghxBzQGkhLzc337dtn8ndXW+acCZUruVQt1jIXH926dWM/7969G0D7t2oii/l9993Xrp8r04q3tzeWLl2KyspKpKamYunSpQCAefPmwdPTE7Gxsfj000+h1+tRU1MjizlnEx0djV27dtn03LS0NGRkZKCpqQn79+9nmSlifHx8XJ5c0BkgMVdbW9upxAYAjB8/Hr///nuHEaCJiYmsj2dBQQFuv/12jBkzBq+99hoOHTrUqSxzarUaQ4YMkbM5ZS4a+BIVJOba24320ksvYdmyZXLygxtRq9VYt24dAGDy5Mk4dOgQbr/9dgDAq6++irKyMpYUKIu5dmTatGk4cuQITp8+jbvvvhu33HIL/v3vf2Ps2LHw9fXFhg0b3D3EDo1arWZBoJ0t0P3f//43CgoKWEFId5OYmMia3RcWFmLatGm4+eabcfDgQRw6dKjTiWUKBJaRuRhITk5mP1Nh7fZerP38/Dp867NLiQEDBrB6rkBrTGN9fT1rEymLuXZEqhnw9ddfj+uvv94No+l88DXaOpvYCAgIwFtvveXuYTASEhLw+++/Q6/Xo6SkhMX0paenw8vLq9MdXxmZiwlPT0/89ttv+Pvvv7Fs2TIAQterjAyVLqFN+cUg5jpu5LuMU+GtcZ3NMtfRSExMRGFhIYqKiqDX65lbdf78+dizZw98fX3dPEIZmUubiRMn4s4772S/y/ekDA+5v8lIIIs5mU4DL+Bky1HbSEhIgMFgwIIFCwCAWeZ8fHwwaNAgdw5NRkbm/yHrS58+fdw8EpmOBq2Hf/zxBwBZzMl0IngxZ2v7JxlpEhMTAQA//PADbrrpJlbmRUZGpmNRXV3N6onJyBCxsbG49tpr2e8XQ505hZEal10iaDQaltl5MbTwsJWWlhZ4eXkBAC6xU+50+IryBoOhw2TZysjIyMjYxp49ezBy5EgAF8eaKFvmLhHk6v7Og9/FyUJORkZGpvPRpUsXAK2F6S8GZDF3CfHqq6/ir7/+cvcwLgreeOMNyYLBMjIyMjIdn4iICMyfPx8//viju4fiFGQ3q4yMjIyMjIxMJ0a2zMnIyMjIyMjIdGJkMScjIyMjIyMj04mRxZyMjIyMjIyMTCfmkouZMxqNqK2thUqlkjMRZWRkZGRkZDo9l5yYk5GRkZGRkZG5mJDdrDIyMjIyMjIynRhZzMnIyMjIyMjIdGJkMScjIyMjIyMj04mRxZyMjIyMjIyMTCdGFnMyMjIyMjIyMp0YWczJyMjIyMjIyHRiZDEnIyMjIyMjI9OJkcWcjIyMjIyMjEwnRhZzMjIyMjIyMjKdGFnMycjIyMjIyMh0YmQxJyMjIyMjIyPTiZHFnIyMjIyMjIxMJ+aSE3NGoxEajQZGo9HdQ5GRkZGRkZGRaTOXnJirra2FWq1GbW2tu4ciIyMjIyMjI9NmLjkxJyMjIyMjIyNzMSGLORkZGRkZGRmZTows5mRk7MBoNKKpqcndw5CRkZGRkWHIYk5Gxg6eeuop+Pj4yIJORkZGRqbDIIs5GRk72Lt3LwBg48aNbh6JjIyMjIxMK7KYk5Gxg+TkZABAVlaWewciIyMjIyPz/8hiTkbGDnQ6HQCgsrLSzSORkZGRkZFpRRZzlwgvvvgixowZ4+5hdHpkMScjIyPTudHr9Xj00UdRVlbm7qE4DU93D0DG9Xz//fd49NFHAQAtLS3w9JRPu6PIYk5GRkamc3P48GG8+OKLaGxsxOrVq909HKcgW+YuAX799Vf2s9z5om3IYk5GRkamc1NTUwMAF5VhQxZzlwDFxcXsZ1nMtQ1ZzMnIyMh0bgoLCwEAfn5+bh6J85DF3CVAUVERUlNTAQB1dXVuHk3nRhZzMjIyMp2b/Px8ABfm84sBWcxdAhQXF6Nr164AZMtcW9HpdAgKCkJ5eTmMRqO7hyMjIyMjYyd5eXkALq5NuSzmLgE6s5jbsmULDh8+7O5hMHQ6Hbp06YKmpqaLaiKQkblYeO2111g9yJaWFvcORqbD0dzcjB9++AGALOY6DNnZ2YiIiMC4ceMwbty4iyrN2FlotVrU1dUhLS0NQOcTc1OnTsXAgQPR2Njo7qEAaBVz3bp1A3DBVA8ADQ0NKCgocNewZGRk/p+HHnoIOTk5WL16Nby8vFBRUeHuIcm4gXfeeQc///yzyeOHDx9GXl4e0tLSZDHXkRg7diy2bduGbdu2ISIiwuTvjY2N0Gg0gn8dDVe66yhrJzExEUDnE3PEbbfd5u4hwGg0CsQcL97uuusuxMfHw2AwuGt4DrFnzx5ZhMpcVHh5eQEAFi9eDAD4559/3DkcGTdxzz33YNq0aYLHFi5ciFdffRUAMHz48IvKANTpxdxff/2FMWPGYNmyZZKiaMWKFVCr1exfQkKCG0Zpnt27d0OpVOLs2bMueX8Sb2FhYfDy8up0Yi4+Ph6AMCPXXTQ1NcFgMCA1NRVKpVJgmaPyL6dOnXLX8Bxi5MiRGDZsmLuHISPjNEjMERkZGW4aiYw7CAkJwcqVK00e3759O9auXYv//e9/8PHxwahRo3D27NmLJgmiU4u5mJgYnDt3Djt27EBpaSm+/fZbk+csXboUNTU17B8FPnYUDh06BKDVQuIKSLypVCqoVKpOl83a0NAAAKivr3fzSC5kPqlUKkRHRwssWsHBwQCAvXv3umNobUK2zMlcLOj1epO5QhZzlw4GgwHV1dV45JFH2GOjR4/GAw88gDVr1rDHYmNjMWLECOj1ehw8eNANI3U+nVrM+fj4ICAgAAqFArNmzcKRI0cknxMUFCT415Eg17CrzL0k3gIDA6FSqZi4y8/P7xQXMQkorVbr5pFcEJa+vr6Ii4tjIshoNKKoqAjAhfpFnYGOEocoI+MsTp06hebmZowcORIAMH78eJSUlLh5VDLthdSc9tdff+G1117Dd999xx6Li4tD7969oVAocPLkyXYcoevo1GKOdxnu2LGDBfl3JpTK1lPgKjHHW+YCAwPZ771798bgwYPNvu62227Du+++65Ix2YrRaER9fT1CQkI6nJiLj49nbta6ujoWm9gRLIi2IgeGy1xsUNjK1q1bO9TcIdM+0Bw9depUyb+PHTsWAJCUlARPT094e3ujqamp3cbnSjq1mNu1axcGDRqEMWPGoKCgAHPnznX3kOyGLr72EHO8ZY4SQTIzMyVf9+GHH+Kuu+5yyZhspampCUajEeHh4R0iroF2fT4+PgLLHAk5oH2KUDqr3MLFlMkl41qqqqqwfv16dw/DhIqKCkG7woMHD6J3794IDAyEr68vAgIC3BJaUltbi6ysrHb/3EsdmqMXLlzI3KpXXHEFioqKUFlZiQcffBAAcPvttwOALOY6ClOnTsXBgwexc+dObNiwoVP2WaOLr7y83CXvX1dXB4VCAX9/f4GYI7p06WLyGj6RxJ0LPgmj8PDwDrG7FrtZyTJXXV3NnuNqMbdr1y54eXlh3759dr/24MGDyMnJYb/baplrbm7udIkzUhgMBtm17CB33303br311g5XDWDOnDm44oor2JyVl5fHaswBQEBAQLvNHUajEWvXrsXWrVsxceJE1nWnI7F9+3Z89NFH7h6Gy6D729fXF3fccQf++9//4vvvv0d0dDRCQkIwc+ZMnDt3DuPHjwfQmiwjizkZp+DqAP/a2loEBgZCoVBIijlLYwJad+Tugo4JiTl3d1zgLXMJCQmorq7GuXPnsGrVKgCt8Y+uFnP0WY5kzQ4ePFgQisCLOUvH9qWXXkJQUBBL1ums3HnnnfD19XX3MDoltHHpaGKOqgCQ9a2wsBBxcXHs7+0l5nr06IHLL78cCxcuxAMPPID9+/e7/DMdYdy4cbjlllug0Wjw559/2vSas2fP4sknn3TxyBznyJEjLGaZ1i6Kp1++fDm8vb3ZcxUKhcCA4e3tjebm5vYdsIuQxZybaQ8xp1KpAMBsNqterxf8zrsNNRoNdDqdW+KreDGn1+vdvoPiLXPTp09HXFwcrr/+erbTjYmJcYqYKy0txcyZMyUXIVpM33vvPVxzzTV2vzfvouWtrpZcUQcOHAAAvPXWW3Z/Xkfi448/dvcQHCI8PBzLly9v03sYDAbJBDFb2Lt3L8u25+eGjgDVdSTPRkFBgVvE3OnTp/H7778DEN5LHbUDhVqtxoQJE2yar+bPn49nnnmmw1q1BwwYgL59+wIQbrhtQbbMyTgNuvh4a5gzEYu50tJSk4tXLCR5t2FNTQ2mTJmC8PBwl4zPEryblf/dXfATRXBwMNLT0wXucWeJuffeew/ff/89Wxx4SFTv2rVLshSPPZSWlrKfLbnT6TOpBU5nhaxyDQ0NWLNmDT755BM3j8g2Kioq8MQTT7TpPd566y0MGDAA58+ft/u1s2fPZj93ZDHX2NiIsrIyxMbGsr8HBga6PGZOvBnmS/10JEumVO01W+L6PDw8ALjXS2MNmof5DbctyJY5GadBF5+rxFxdXR0CAwMBtE5sZ8+exejRowXPEQsQfsKuqanBzp07AaDdL3reMge4vzyJeKJQq9XMvA84z81Kk6d4kQBMYyttdT1LdaawVczl5eUhPDwcJSUlkmPqLNB58/Pzw4MPPoibbrrJzSNqH44cOYL77rsPABwSc7ybqiOLOSos3t6WORKLAwYMwEsvvST4G78xdjdUe+2GG25gj507d87q68jK1RETpsTzn72WOTkBQqbNvPfeeygqKmIXX3u5WQGYxHOIJzuxZY5q8zmyELSFjibmxBNFUFCQYCIICAhwqZgzGo0mYs7WiUjq2JWUlLBgcXNudIPBgPz8fPTs2ROA+62jbUFqt75582Y0NTV1uIVqxYoVuPvuu82K9fLycnz++ec2vdeiRYvYz6dPn7Z7LPzC2JHFHFnExGKuubnZpRtRsr49//zzuPnmmwV/s0XMlZaWtmvNz1GjRrGfbZnT6b7paPcIYBoe4oibVbbMyTiMTqfDnXfeiblz59psmVMoFIKq1rbCizkSCVLj4RHHzNHk2N6V1GlcVFjZlWLuwQcftDqhSlnmePz9/Z0q5sTxNnV1dSbizdp109zcDIVCgdWrV7PHmpqa4Ovri88//5yJNHMT9RdffCEowtrZOojwSIm5q666CpGRkQgLC3PDiMyzbNkyrFu3zuxCs3DhQtxwww023RP8dWpv4ozRaERBQQFCQ0MBdCwxZzQamZAqLy9nBbt5N2tAQAAA184dlFQWFBRkEo5ii5hbtWoVrrvuOlcMTZLAwEBoNBr07t3bJjHnDMvcN998g+zsbIdfbw6x69cRN6tsmZNxGJp0srKy7HKzvvLKK3Z/Fu9mFVt1tm7dCsBUzFVXV0OhUCA8PBw1NTXMzdLeOzOxZc5VQqK5uRlr1qyxWEQZuHCO6Hi4SsxRiR3xJCNVvsbadUOWGP7aqaysZDvYLl26wMPDw6xlbtOmTRg+fDgrwnmxiTnggkAxGo149dVXsXbt2vYclkXMWexJnNjSio3uf8B+MdfQ0IDa2lq8+uqrCA4O7lBirqKigt0jVVVVKCgogK+vL0JCQthzSMy58rolQalSqaBQKAR/s0XM5eTkSD7vs88+w4gRI5wxRABA3759kZSUhBtvvBEqlQpdu3a1Scw5Y/6fPXs2+vXr5/DrzSEek2yZk2lXSMzV1tba5GYlV4sjpTl4y1x0dDR7PC0tjdVBEu9aKysrERISwiZv2nm2t5tz8+bNCA8PR0pKCgDX1eKz9X0bGxvh4+PDJmxyP3t5eaGlpQV+fn5OEXPkOuKPt9FoxNGjR02ea67oM3Hs2DEAQsHOv29UVBRCQ0PNTtSlpaVISkpqFwuHq7E2wWu1Wnz99df46aef7Hpfo9EoGZPoDMwVE6drz5Ze07z14o8//sCMGTNsLmhLQkWtVkOtVncoMcd/96amJlaWhBdUJGRzc3NdNg6+MLuYL7/8EgqFwmJJqIKCAkmxuWDBAuzdu9dpcaqNjY2YPXs2s/x36dIFW7dutSrwSTC3dTPvimQQ/tp+6623BHXmbEG2zMm0CRJzdXV1AsucObFGQs+RBYMXcw888ACWLl0KABgyZAj8/f0BmFrmysrKEBERwSZvmsDbO17qxx9/xIIFCxAZGQkPDw+X9VjkxZylG7uhoUEgCMgy5+vrCw8PD6dZ5uh88xP8xo0bcfXVVwNoPS4zZswAAIwcOdLiQnH8+HEAwuQVSnzo1asXrrzySotirqysDJGRkWxR7EiWOYPBgAceeAB33303+56WsDZpf/jhhygvL7c7Genuu+82G8LQVrp27Sr5OIk5qv9miZKSEtx00014//33AbRmJf/zzz82fT4vVDqamKPvHhISgsbGRhQUFAhcrEDrZgUA7r33XpeNg3ezAq0el2PHjiE0NBRffPEFAMsdfgoKCtDY2GgSVkHzMyV2tJX6+nqByKHN/aRJkyy+jjZwjoo5fl1zthWMF3OLFi0S1JmzBdkyJ9MmSMw1NTWxG8VgMJitSUSTRVstc56enkwEzJ8/36KYCw8PZ0WGaQKnsa5evRobNmyweyw8tlh4amtrERERAaVSiaioKJeJOX6itSSMyDJHkJgjkU1irq3FjaXEHG+BmzZtmqBUhaUdL5+xSlAG7ueff47+/fsjNDTUrJu1tLQUERERHVLMnTlzBq+99hrWrVuH4cOHW32+TqfDI488gpkzZ0r+/f7770dOTo7dyUjUw7g9i1qTMH366afNbvLq6+sREBCAf/75B127dsXQoUPZ32ytf0bXVlBQkNMSfJxFfn4+PD09kZCQgKamJpMacwDQrVs3zJ8/3yYLpqPwblYASE5ORnp6Onr06MGeY+6aMhgMzFUunhNpfrZFsPNs3boVu3fvNnm8oaEBfn5+7PfLL78cAFg8pDloXI5a5fn6dM5O9BPHzDU2NsLT05P1PLeGbJmTaRP8TosvbWHuQm/LAsrHzAHAiBEjkJOTgylTpph1nZWXl7MFvKysjE38Wq0WOp0Oixcvxs0334xz5845ZC3cvn07AgMDcezYMbOFKJubm9HY2MgmyKioKKftUMXwYs6SMGpoaBDsbGknTm4QlUoFg8Hg0IJnNBoxe/ZsfPzxx0y08ueddo80wfPjsCRAq6qqkJ6eLniMrjl6r6CgIMn3MBgMKC8v77CWuTNnzrCfrS00S5Yswblz5+Dv789igKTaLdXX19tlmeOf6+qYUt7dRucrKytL0v0OtBZ7pmsxPT0dffr0EWwkbYEXc/7+/h3KzV5QUICYmBj4+fmhsbHRpPsDMW3aNJSXl7vs/NTW1sLHxwdeXl6Cx3kxZ+4eLS8vZ/e2+N4i4WWPmDMajZgyZYogY5UQz1/9+vXD3LlzbRZzjgox/h6h88Tfu22BP6f+/v4m39EactFgGZv55JNPkJCQgDNnzjALF++qKCgoYILF3CLi6AJqNBpRV1dnEsuRmJgIoPVC9vT0NOtmDQwMFARY63Q6VnMOaHUBOWKho0r0/fr1g6+vL3744QcToSaOQ4mOju5wlrlu3boBuHDeyFK3atUqu600mZmZ+OabbzB//ny88847AITnvaSkBD4+Piyhgd9hWxKgVVVV6N27N+69917WCozEHIl5c23eKisrYTAYEBkZ2SFj5sTZ1ZYWm5dffhlA64RPi665osv2iDn+mrQlGaEtiIvRTp8+HR4eHmZbR1HXBsDUCmOra4m3OnU0y1xNTQ2Cg4Ph7e1t1s0KXBBVlsqypKamYtmyZQ6No7a2lm3seChTHDB/j/Ln1Ny9ZY+YI5EkTsQATMUc0BpTaO2ebquY41/X2NiI+Ph4dO/eHfn5+W12cVZVVSEpKQmXX345UlNTTeZoa9hTNHjt2rVsM2Q0GvH99993qLqbspizkX379kGhUNi0o/jzzz9ZTMoHH3yA/Px8dO/eHbfffjuA1hubYjlKSkoElemlcFTMUT9TqcBcQirOi9ysgYGBLHDYw8MDWq3WJJC4trYWO3fuhIeHB3ufwsJC/Prrr2Y/k4QBMWPGDEyfPt3kfQEILHPtETNnj2UuPj5e8Pfg4GAAwFNPPWV3H1OpsihiMTdy5Ej2mfw4fv/9d7OfV1VVheDgYLz++uuYM2cOAFPLnDkxRy7aiIgIeHl5wdvbu0NZ5qjNGGFLZl5zczOzzHl7e0vGpNmzaPHuaVeLuX379rGfa2trERUVhT59+uDvv/+WfP6ePXvQs2dPbNu2jd1zJGRtXcD4eLCOZpkjr4OPjw/Ky8uh1WolLXMJCQkAhF4QMVlZWVixYoVD49BoNJJzLC/mzG0S+WtGfG+R1amsrAzV1dWYPHmyZNgED7lXeZc6ANYOkd8EArZ1yKBz7mhhe7GYo41uQkICHnjgAYfek6iqqkJoaCiGDBmCuro6u8WcLZa5oqIiZGZmYuHChbjyyisBAD/99BNmzpyJr776qk3jdyaymLORXbt2AYDVRVqr1WLChAno27cvjEajQLiQ9Umj0bAMTQC49dZbAbTe2FLvb8laZAm6SXk3q5jAwECT9y8vL2dijm7k5ORk6HQ6kwXL09MT69evh8FgYIvppEmTcMUVV5h8Vn5+Pj7//HPJxVJciVws5kJCQrBnzx6sW7fO4nd2hJqaGmZVsyTmpCaK7du3448//gBwQcwB9ieLiIUJICxrUFJSwjYAgFDMLVu2DIMGDZK0BlZXV7NSDfQdbRVzZLGMjIwE0D6tkWylubnZZMNATdctUVBQwDZVcXFx2LNnj0k2nz2LFu/mcaaYE9e9CwwMxN69e9nvJCCGDh0qaZkzGo3Ys2cPrr76aowdO5Y9rlQqoVQq7bLMeXp6wtfXt8NZ5rRaLQICAuDj48Oyc6UsczSHODqPWsMWy5y5z+atbvy9ZTQa2UahsrISGRkZ+OWXXwTC/cMPP8TGjRsF54Rc7uKEHHNZnvaIOWe5WXl27Njh0HsSVVVVCAkJYd9DnKRmDVssc8nJyejSpQsA4PDhwwAueJekLKDuQhZzNmLrjnbLli3s5zNnziAvLw/33HMPZs2axU68RqNhlfeBC70PR44ciUGDBpmY1R1dQC2lzBPieCmj0QitVguVSiUQgcnJydBqtSZj02q1rA4c7RpJmInj6ZKTk3HDDTdI9vgTL6DisZNQuvvuu81+F0epra1lO3pLYk6n05nsbC+77DKMHz9eMEbAfEcFc0hZ5nhLU2lpqVkxR0hldNJkB1wQ9UVFRfD29mb17KxZ5qTEnE6ns/s7/vrrr4iPj3dKGY+MjAyTc2WpNREJ1/79+2PMmDHMYh0WFobu3bsLnmuPmKNjoFQqnRqT5e3tzSypANCnTx/BvUcCYsiQIThx4oSJxSw7OxslJSWSdcrsiRMi0ahQKDqcZY7EnLe3N/MY8OWXCC8vL/j6+rqsTyqfZMaTlJTE7lNLljm6D/ljy5etqqioYNcWX3j3tttuw6xZs9CrVy989913qKurY2JOLLzMFdMNCAiwuL5QqA7QulmylJULtM4t4tAbsWWORxxnaC+VlZUIDQ1lc1N9fT27123BlntB6u+UkGaPm/iTTz5x6WZYFnN2Ym13x2dNlZaWIi8vDwkJCejSpQuziGg0GkGlcPFO4rPPPhP8zl8A9vjo6cYTVyXnCQoKEkxy/A6OFn8PDw/ExsZKWubq6upYHA59d1qs+djAwsJCNnYpCwZ/wzQ3N7OdD02SfIFeZ9f0qq2tRXR0NBQKhcUJn2J0zMH/zZo7hMdoNJoVc5R8Iv5sKTEndjPq9XrU1NQwMefh4QGVSoWioiKBxdiSmPPy8mLHnu9zOWPGDIvXlRTLly83W1PLXsTCrW/fvhYrzBuNRjz11FPMKieGyr4A9lvmPDw8kJiY6NQ+nI2NjQLxHh8fjy+//BK//PILgAsia8CAAdDr9Th58qTg9RQvJ5XlK2WNOHDggKRlV6PRMKuTJctcc3NzuweS85Y5EgxSFjLA/DUOtL1chjk3q4eHB+uJa25eKSoqYok4UtnriYmJqKysZGIuJyfH5D1ycnJw9dVXY+TIkcwVX1lZif79+7MNHh0fey1zDQ0N0Ov18PDwwKlTp9jGzhwzZ87EzTffLJijLVnmzIk5nU6HV1991WrsMW+ZowLX4g23JeheOHLkiKD24jPPPGM2sai+vp5trGy19paWluKmm26yuQWfI8hizkZoora2MykpKWEiqKCgAJWVlYiLi0NMTAwKCwtZC5qgoCDcc8892LRpk8kNIl6U+QtGfDMbjUbJMWVlZbEAcSnXAyGe5OjG8/PzY9+Dd7mKM8bq6urYDUdijn4nC9y+ffvw4IMPstdkZmZixIgRLChdzFNPPYWFCxey8QFCMefsHXZdXR2CgoKgUqksvnd1dbVFMcfvCO0Rc+fPnzep3xUZGYmWlhasW7cOxcXFgkUVMHWjKJVKwWfu3buXxc/wFfGDgoJQUlIiKebEEyclwpBFmZ/4ybX86KOP2vw9yQIhZZm1l/PnzzM3IwDExMSYjYmqr69HfX09unTpYtYtwk+y9fX1NiewVFRUIDQ0FCEhIW0Wc0ajkQkLsZijOWLy5MloaWlBTU0NQkNDWas78THds2cPunbtKim4xbW19uzZgyFDhuDLL780eS7fm9lS0/q+ffsKxmsPVVVVWLJkCbZt22bX67RaLQIDA1kMJGA+pES8aRW/T1sw52YFgJUrVyI1NZVZ2sRj0Gq1zJrIiypaA4YMGWJimfvss8+QlJRkErP7zz//oL6+HlFRUcjJycHRo0dZ2A4/r/MEBgaipaXFrBCn8fJrlLkKBIB0kXLeMie2GJoTc6tWrcK///1vQWiBFLyYA1rnLEcsc2PHjkVqaiqqq6thNBrx5JNPYuTIkZKGg/z8fHY+bF2LaG4+ceKEzWOzF5eKufZsHuxqaLK0tkgXFxejZ8+eUCgUTHgFBQUhNjYW9fX10Gg0bGFeu3YtZs6ciejoaFarCjCt6k/ttQDTY/rhhx8iMjJSkBxw4MABpKam4s4774SPj49gMRcjnuR4czzdIGq1mu3Ka2pqBLvQuro6duPSboUWQrrghw8fLlgoMjMzERwcbDaFnL+BpcScM8QAALzwwgtYu3YtamtrERgYiKCgIJMFuaqqCp9++in72dKx5IWC1HVSXFwMhUJhMkHROeUF1siRI6FUKrFo0SLExMQwwWmO8PBwwTUwYsQIXHbZZQCEYo6OIz/hqVQqtLS0CCbp4uJiPP300wKrMS/maAF68cUXzY5JjLPFXFpaGrZs2YKjR48iNjaWZZqJIVeopf6r3t7ebGHhRZU1KisrERYWhuDg4DaLuZ9++glxcXHQ6/VobGxkYu2KK64QiDL6nNDQULa5EB/TjIwM9O/fX/JzxGKO5imprEn6foDldnWnTp1y+Pt/9913ePnll81u7szBW+YAMFewFJYsc20Vc+YscwSFskydOtWkBWBDQwMCAwPh7+8v2NCdP38egYGB6N69u8Ayt23bNsydO5e5lR9//HGTz+OTemijb8nNCgB33nmn5NjpmPFi7q+//jL7XUkU8seaF3DieZHmBDH0GktxelqtFsXFxczYALR+X0csc7QGnj59WhBKItUdKC8vj52PRx991MQqLgW9T6cVc7zrorNDk6W1jMri4mLExcUhJCSE3XD+/v6IiYkB0OpuFFtZALC/AzBptVNSUoI+ffogPj7eRMxRYgZ/0fHV3cPCwiwGaYrFHG+OpxvEz88P/v7+qK2thUajYdYQPz8/FqcAXNhZ8mKOv3ipJIolMSduW0ULLD8JtjU2qaGhAdu3b8fSpUuxcOFCFvPSv39/bN++XfDc22+/HTfeeCMqKyutWuZ4pMQclUb4+uuvBY8fOHAAiYmJArExevRogYXWUlbyLbfcYjHblx8zb2UhpALEKTCZvxYpvqagoEAgLmx1r9HE7Qx3ZGFhIeLj4xESEoK+fftatMzxLakswR8TW12tZJlzhpijmCSNRoOWlhb4+PiguLgYW7duFVwbdP2HhYWxeDbxZxcUFJhYbghxnJC45zAPxSQBFyxzzi6OTC5hKYuP0WjEZ599Jimu+Zg5oHWzYW6us9UyJ2WJOXnypMWyJpYsc8AFIfnnn38CAK6//nrWMo4y5MXXb25uLpKTkxEWFiawzPHzfHV1teQcSiWTgAvzkDkxR3O8uRJTUmKOjws3B29l5O8l8T1qzjInFUco5qOPPkJjYyOuvfZa9j1KS0sdssxRkeGioiLB+iJlkOLFHACbMlo7hZi79tprJf/NmTOnXRqzL1myBGPGjMG8efNcGrNBYm7btm0WP6ekpATR0dEICwtjbkd/f3/m6szMzERLS4vJzc+7KHJycgQTJgW/d+3a1SQuiCYvvqI7Pymas1YQ5ixzfn5+bIfTq1cvDBkyBIWFhaiqqsKwYcOg1+sxYcIEgWVOvIvirVqAcMcYHBxsEivY3NyM8vJyVFRU4LnnnsOaNWsEzyfael3ddtttGDduHPudxNzMmTPx119/CUQNxe5lZmbaJOa+/PJLJCUlSS4cdN2IrRtnz55Fr169BI/NmDEDycnJrAUTYBoPtHLlSvz999/MOmvOaixlmeOFIf38yy+/4KOPPhK8lj8HgYGBLInh+PHjzPJjzdL2yy+/4I033nCqZU5czT4mJgbFxcUwGo344Ycf8Pzzz7O/0XVpbcfOiwFzFoH//e9/gvE70zJH1wxN/N7e3myR4ecDsjSGhoZCqVRKfnZhYaHZ8Ao+Zu7+++/H008/DUBawFZUVAgscwaDAU1NTWhsbJQM73Ak45EyNKVitzIzMzF37lzJUkd1dXUCy5wl65hUCIXBYEBjY6NAMEi1K+vVq5egALAYcwkQ5j77iy++wLXXXgvggpiLjY0VxBJTrGt4eDjq6uokraZ1dXVWxRydI3Mxc9Ys0DRucucD5j1u/Lk3Z5kTr0fmPp/mCrrWGxsbTeJkDx8+jL59+yIpKalNlrmmpiZ2DRUXFwvWl+XLl5u8ZufOnYL7ja/naA46D4WFhU6NreVps5j77bffcPPNN2PRokUm/8T1xJzN4cOHUVxcjJ07d6JXr14mFg9nQsVXKyoqLJ684uJiREVFISwsjFnm/Pz8mOWNlLnYSsDfLM3NzYIFv6SkBJGRkYiOjjYprkuTPX/zNDU1wdfXF1dccYXVOj7mYuZ4y9yNN96IK6+8kn0HlUoFpVLJ4ujoZtXpdAIhWVlZKbB0JSYmssVSyjJ35swZdqGPGjVKMHZnulnFxWIp/iouLg5Go1FwPOjGzsjIQF1dnUU3KwDMmTMHl112GXsPg8HAvhO9l3jBKyoqQmxsLIs/O3DgAJuQ+WxE8YLx8MMPY8iQIQAs1+Hjx0wLM2/poWvvxhtvxC233ALgguBctGgRex4FGRM0RmvnY/LkybjvvvvYteoMMScuExMTE4OmpiZUVlZixowZeOyxx9jfzFklxAQGBrJNlZSwaWpqwrx583DZZZchOjoar7zyChM7zhBzJCRo4ue/Hx8jSdcRWcyCg4MFx7S2tha1tbVmxRzvZn399dfZBpHe98iRI5g0aRLq6upMLHNAq7Vk1qxZksHwlmq5SWE0GlntTikxR4/x9S3pMYqZo+NkqQSTVJeTpUuXwtfXl8V/ApY3v+astdbcrDTH8i5FOv68mOM/m7w3VMLq4MGDkvGP4g3xnXfeKTgvdC3RtSnejPL16OieP3v2LNsY0jGjc+/n52fW1c5vJm21zO3YsQMKhQLjxo0TzMv0GbRZvf3229G1a1dmOa2vr8fZs2eZgYDOvb0JEF5eXmhsbGRzMi/mgoODWSkS4oEHHhBssIFWMWctKY+3qLrKOtdmMTdu3DgEBgZi7Nixgn/jxo3DgAEDnDFGs+zZs4fVM5syZYpkPzoKOuX/OUJ2djZrkWJuMdLr9SgtLUV0dDTCw8MFblZ/f3+o1Wr8/vvvAGBSDiEmJgbdu3dnixA/TrLM8aZ4+juJI7GY8/HxwdatWwWWFSksuVkvu+wynDlzBtOmTQNwwSROExe53XjLHF+u4s8//0RhYSFrJ0VWBEBazB0/fpx9D/HEzG8M7LXMFRQUwNfXF8ePH4fBYJCclFUqlaB488mTJ7F161b23JtvvpmN2xq8QF67di26d+8uqBslXvSLiooQExODBQsWwGg0YtCgQexvvKvMWswcvT+/21UoFILX0YLAi7n09HT07t1b8H5arVZQvgQwPSdUe8lWcUbXlrMsc/xCRt9R3BWCngtYF3PTp09nRUHNiTmg9TotKSnBH3/8YbebddeuXawThxi6D6XE3B133MHEMy0MvJjjP5tEgVQBXcB8c/HKykqcP38ew4YNw++//47vvvtOIObIfaXVavHjjz8CaBWg/ObE3lp7RUVFqK+vR+/evSXFnDged/369VCpVCguLkZjY6PAzWotbk0891NtR752mzjEhYes9DzNzc1W41lJSPIbUrGYi4uLkxRzdI/l5+ejX79+Ju/t4+Mj2HAtXrxYIGboWhJvAIjIyEgmZs+cOYPKykp069YNc+fOxTfffIMlS5YAuHDvREVFmbW+8mJObJmja9mcWN6+fbvgvqCNzdq1a3HbbbcxD09paSk2b96MoKAgbN++nYldfm6yx83q7e0tmI94MZeUlISGhgaBiJZqk1ZTU2NSq1JMeXk50tLSoFQqJecoZ9BmMbdx40ZBUUoeW3zrbaG6uprdRGq1WnKRX7FiBdRqNftH1cDtQavVIi8vD4MHDwZgPoOloqICer0e0dHRiI+PZxcJXVyxsbH45Zdf4OfnZ9IX0tvbG6dOnWLilL8ZSktLBZY5nU4HtVqNl156SVLMNTY2Ssa/SEGTHLlxxFlPvGtUPGnytX0AoZibPXs2Nm7ciIKCAvTt25e9B78A8YtVeHg4jh8/zuLlxBNzVFQUVq5cCcD+ununTp1CY2Mjli1bxmr6iampqRGIuV69emHKlCkO1UXixdymTZtQWlqKoqIidmxowdu6dStCQkKQl5cniJkUvxdhacEICQmRzLAiKypBVjhezCkUCpOsVIpH4hH/TveDreKMjokz3AxiyxzdY1KLsblMPjGrVq3CXXfdJXgNjzi8grLayDJXWVlpNZ7ssssuw8MPPyz5N1rASKzx38/X15e5Q3Nzc+Hv78+uV3EmLVlozWWXmqutVVlZiU2bNrG/bdmyBdXV1exaITHCL8gnT54UbOCshXWIIddZ//79LYo5ClkhtxfFsNnqZpUqjk5j5b0dUuVt6P5ZuXKlyXtQ6Q++QLAYmg/464+fb8kyl5+fj8OHD2PYsGHIyspCUFAQoqOj2XkeNGgQnnjiCcF7+/r64o033mDXv1qtNivm+GPFQ6J/wIAB+P777wG0XouzZ89mx5k2dZGRkWYtlLxngD+XOp0OgYGB8PT0RFFREXx9fXHu3Dk8+eSTgtfzc62UuxtovQ7WrFnDylxR6R1+brLHMifenJOYUyqVbCPNz81S1m6lUilIajMajbj33nsFoq24uBgJCQkmiWrOpFOXJgkJCWELV3V1tWTD4KVLl6Kmpob94+vA2QpNOH369IGPj49ZMUcnKTo6mgX7AxcWGro4evfubVJagqAFm8+uqaysREpKCmJiYqDRaNgule8lKGWZs4Xg4GC0tLSYtGyRsmJYs8zxhWSHDBkCvV6P5uZmJggVCgW76cSWuZSUFLz//vu47bbbBJ9BKBQKPPzww4iIiLC7LhQJ3j///NNsP87AwECrbdUAYMyYMVY/j2JkHnvsMRbrc+7cOXZs6P8pU6awRViq2KnU+5ojNDSUiSpL9d/ob2J38bx58zBlyhR23UiJOX73W1ZWhqlTpwKw3VJK16i5idoezIk5qcXYXLyQFLQQSFkfxML+6NGjKC8vR2hoKBITE9HY2IigoCCUl5ebnSNIEPFxTYQ4Zk58D9PccO7cOUFYhtjNSuM0t6hZssyVlpaiS5cumDZtGjuWNK/S/3zM1PHjxwVhJ/Za5ugz0tPTJYPdectcc3Mzy/QnkREUFCRIgDCHn5+f4L42Go0si5fEXFJSkslmgBfn3377rUn26N69e+Hp6YmBAwea/WyVSoVTp05Jxr2RmEtNTYVWq8XEiRPx999/IycnB0FBQVAqlcz6FBoaapJ1StcIufksiTmp9REA0tLSmJGD39SJQ3+A1nnDXsscVQHw8fFBYWEhwsLC0KVLF3Y9d+/eHfPmzRPcM5bE3OnTp/HYY49Bo9HgqquuAiAUc/ZY5vjvGBsbi5qaGtYCke5VXszxLuyMjAwUFhYiJiZGcN3U1tbizTffFBgOqKRXaGioy3IJnCrmvvnmG2e+nVWGDx/Oimhu3bpV0gTq4+ODoKAgwT97+eabb6BUKtG9e3eoVCoUFhZi3rx5uPLKK1lW0saNG9nkEBUVJRBzdHPRDT9s2DCznyUWc+vWrUN0dDT+9a9/sZ02xZi0tLSwG0ss5my1zNGFSu5bSwsfiTkao6+vryDegLfMkXsAACZOnIjrr78ejz/+uMCawH9GaGioIJ7CnHChgFV7oMWNdotvv/02+9sHH3yA3bt347777jMr5mjnunLlSqsZkQDYgs4H4Z8/f57dxFI3syX3LbmpLYm5kJAQNDQ0mEy0YlHBFxDmUSgUmDlzJpqbm1kXEEtiLiwsDH5+fvDx8bHZMscHM7eVxsZGwfVjSczZ6mYFLnxHKWFh7roLCwtDWloagNZrLCIiQlKsARcWj7NnzwqSlgDLMXPAhfvu6NGjgg4yKpVKYAmhcZqbAygBgqwbI0eOxF133cXEXGRkpKAvM4kAstDxYu7pp59mwfx+fn5WLXMGg0FQ+Ly2thZeXl4IDw+HTqczKYpOYu6PP/4QLI5kwY+OjrbJMufn5ye4N8rKytjvZ8+eRWBgIHr16mXiLqurqxPEQ4mvi2PHjqFnz54WrUGWxkViTir+lM43zT+hoaEmGzX67iQ6+cQ1oPX4NjQ0WBRzSqUSH374IYALwra4uBh9+vQB0LrxoGtKrVabFXMlJSUICwtDQEAAamtrMWnSJKSnpwvEHNVHBC7EA48aNQo9evQQzFXmrPckoGgtJjw8PNj3tscyxx/P2NhYaDQalJaWIiIigh1/Xszxx7Bbt26IiYlBbGysYO2i+zc/Px91dXV44okncODAASbmVq9ezcKtnIlTxdzcuXOxevVqi89xZlr7gAEDEB0djTFjxiAjIwOzZs1y2nvzrF+/HnfddRdCQ0MRFBSEl156Cf/73//w448/Yvr06cjOzsasWbOYiyYqKkrgzqWLi25YSyZ5sZg7fPgwRo8ezUQpINz9kohz1M1KZmOahO2xzPn4+KCxsdHEMqdQKAS9Z5OSkvDZZ58hMTGRva/YzSquAWZud9UWMUeI++KOGDGCtfwBLkywBC2cluqU8Ygn79jYWGRnZwti5vhFa/jw4ZgwYYLZ9/vxxx+xevVqi+eUJhmxsOJbQgEXRJxUwC5lKzY3N1sUcx4eHszamZKSIiiFI4Y/VzThOdqwm8cWyxwdY/o8W6zVdO4sZSMDrf2H6RoxGAwmYRPmXCn8zl68YJGYo9eK70G6/48dOyYQc+L6b2RFMXe9kGWOXnP//fcjIiJCIOZUKhXzYtB1HxISAoVCgYMHD8LHxwcpKSkCaxNlvFsiJSVFcK1T+yW6tsTB9fzvmzdvhq+vL4KDg1n8WlRUFDuvlpKTfH19BdcdXScKhQJGoxHp6ekYNGgQDh48KFijxPeT+N7OyckRzCdSmDMg6PV6NtekpaWZlFWh19GxoQ0w39KQrhG6/6Vq7ZWVlbHYTnOIY7hLSkrQ0tKC2bNn4++//8YjjzyCKVOmYODAgaivr8eTTz5pMl6K86Pwm99//x3Hjx9nQpKOK60jI0aMwL59+7BixQqTmEaNRsPen9olAmAJdeLx8sfJHsscL+bi4uJQW1vL+mDT8ee9Jvymm+ZScVkZsqzX1tbijz/+wPLly9HQ0IDY2Fh2L02aNMnhXrfmcKqY27x5M5566incf//9JqJNr9dj/fr1FoWMI6xatQo7d+7Ep59+arOAsRetVstu2KCgIJMdNQmpoqIiBAUFwd/fn1nm+CDyOXPmYOHChbjpppvMfha/mBiNRhw7dozFnPGdJQiaPB11s/L17wDLYk4cM0cTJG+Zq6ysREhICLtoFQqF4GagcYndrGKhxMd5iccgJebKy8vNijzx4+YmX17M8ROwVAaoJfgJf9++fVCr1aitrUVFRQWbDDZu3MieM336dIu1ABMSEvDvf//b4mfSQsYvplVVVfjkk08EzyMRIFVqgTYdPj4+ePvtt83GzPFCdMqUKfjpp5/MbtLE/Vu9vLycIubECRBSMXMk4uvr6+Hr62tTU2w6d1JuHv466tq1KyoqKvDAAw9g2rRpNi8g/LUhFgq0mNHCID7+ZJk3Go2Ca1hsdbJmmaOYObIyBQQEMPcPWSV4KyyJAA8PDwQHB+Po0aNISkoyEU/x8fFW3ay5ubnYsWMHxo0bh/z8fOh0OoGYE8fNiS1hlCxw9OhRKBQKREREsNdYcnWKjxHv3gWAfv36YdCgQSgpKRF8B/E5EsfM5ebmIikpyeJ3NmeZy8rKYmLOx8dH4M0BLog5urboPLz55pvsOXQPbN++nSUJiMsclZWVWbTMAa1ChixxQOuGID8/H6GhoVCr1UhNTcXPP//MLHPPPPOMyXuQtTwmJkaQsUmWOTqW/NwzdOhQREZGIigoCPX19WwjUldXhxkzZgAQhhNRjKJU7LsjljnezRoXFweNRsMqUtB54y1zUuFRYjHHl+zh4zFDQkIECWX8tZWfn4/ly5e3ydjlVDE3efJk7NixA99++y2uueYa1NfXo6mpCWvXrkVaWhoWL16M6667zpkf2S7QhANI35i8ZYKES1xcHBQKheDCUqlUePPNNy26en18fFhcHu2o6CajyZ1fsMm166ibVaVSMddxc3Mz7rjjDgDSYopKhdDEy4u54OBg5mal9kZAqyWCTxrgkydIPIWHh1st+UGYC94ePny42cxdsWXOXDFVc2KOT9qwBf4a6datG9upVlRUMHccuaYA00XbEej4UUzRDz/8gODgYJPrYPDgwTh37hxmzpxp8h7iSVA8LikX89ChQ1m/1YaGBqSmprIsQcA0IH78+PEusczR2HnLHH2O2NJqCW9vb7NN2fnrKCwsDP7+/lizZg073+I2fFITc319PRPUYqFAAtKSmKPFhA9jEFvm6P4wl6xDljkSQSTmqCA0uVkJXgTQz127dhVcD0OGDEF8fLyghIgltm/fjk8++cSqmBNb6hQKBaKioqDVahEREQFPT092XkaPHm3283x9fdHS0sI24tnZ2awzD9AaD02GBv48kpWF7hd+oaa4O7EIE0MC5dZbbxXcj88//7zg2iQrEa01YnFCcxIvKOi1Xbt2xdy5c9nzv/zyS5YsUVZWhtLSUouxtAqFgq1jdG1lZWWZbFJ8fX0FmznesEHf5cYbbxRsVv/880/B/M53OyLou9E6ptVqWT3TSZMm4dChQxg1ahTroiP1XUgo2WOZ46/h+Ph4aDQaViuWd7MuWbLE7Hk2Z5kDhPNf7969TTxoxMMPP4wnnnjC5vtHCqcnQPTr1w979+5FZmYmhg8fjpSUFDz55JO48847kZOTwzKyOgtUykJ8Q40fPx6bN28GIBRztHv28vJCbGysXRcWQSZnCiglgUiTO3/hkEvm7bffZpmw9rhZgQsXo7X06uuuuw5Go5EJPR8fHxgMBmg0GoSFhaGpqQmlpaUICwtDYGAglEqlSXmE119/HUuXLhVkaUVFRVmt00NIWeZoUt2/f7/ka8RiztzCzos5XtiQiDOXtCKGF3NqtRqBgYF49913ce7cOUF2MOEMMUeLLIk5S+KYFwI81sSclJjl3bv5+fnIysrCkCFDWEyIeHIKCgpyiZjjzylZvum82yPmaIzW3KxSlk2xq1Uq7ken0zEXES/m9Ho9EzK0m5cK6KdzNH36dPaYvWKOYubEljmgdfGJiooSuKykLOgDBgxg18PMmTOxc+dOpKWlITc31+YwiNjYWBMxR/PZTz/9hJycHOh0OoE1o2vXrmwMNNc+8MAD+P333yVdbwQdN7r2cnJykJSUxM5RWloam6t4y9yBAwcQEBCAb775BjfeeCM2bdrE5vvq6mrU1dVZFXMkeCZNmoSffvqJJTFQnBqNjY7zfffdB+DC/UYx1lKWNXMemDlz5uCRRx4B0HpMT58+bfH4EMXFxYJSLeI5QDxH8JZTuidvueUWE2MAiabu3btLroni0kJUQ5DeZ8CAAWwTTiJeDK0h9syn9P4qlQrR0dGor69HQUGBwM0aExODl156SdAXnU+Ei4mJYW5pQCjmsrOz0b9/f7S0tGDgwIGCeYVfl+i48t2P7MXpYq6mpgYffPABCgoKcPbsWVRXV+P333/HsmXLLAaCdlTINE8XIJ3ghIQEzJgxA9HR0ZKWOaC1SK6jYq6mpsakNpCUm5WHMiftcbMCYAUrxRW2rUGTT1VVFZtg8/PzERYWxmrKiVO5Y2Nj8fzzz0OhULAxpqWl2dwfUUrMabVatLS0mC3GyN80ltxtNJ6GhgaB4HjooYcwc+ZMQf03S/BxUQqFQrAou0rMkaWIJmJbrYg8jog5Eo1VVVUC8fLf//4XgFDMhYeHm8QuOUJLSwv0er1AZPCLx6RJkwC0Ji4pFAo88cQTNpWUIWwRc7ZkNUvFzWm1WiYaqqqqUFtbi/nz5wusQXTfS10Xf/zxB7766iuBWJdys3p4eJjdfJBlju65wMBAgVBISkpic7VYQNDv/fv3Zwt0165d4ePjg7S0NBgMBskkFMA0VtJgMKC+vh5+fn7o1asX0tLSsGLFCuzcuRPTp0/HI488Ap1Oh6SkJNx+++14+eWX8d1337Ex0Fzr5+dnMeaUngNcmM/z8/ORkJDALG1paWmsPzM/v+7atQsjRoyAp6cne+4rr7wC4ELxV3PJLsTcuXPx3HPPYc6cOZg4cSLWrVsniO+m65jmn6lTpyI3N5dtzu+44w6cOnXKZLPAv0YKqm964MAB1NfXm7hfpYiKikJoaCj7LHvEHIU+hIWFCeLcgNZ7oby8HIcOHZL8XFpXx4wZA71ej/r6epPPpmveXMkdEluWunVI8ffff7NSMECrSOfdrOJKAzqdTpDAEBsbC6PRyIwvvLHl/PnziImJYfci3+KUX5dInHYYMbd06VIkJSVh/fr1eP7551FWVoY5c+Zg0qRJZq0mHR3a8YrFHE0o3bp1MyvmEhISHBJzcXFxgv5v9FkkRAoLCwWTLC2chD1uVuCCmKMsWVsRZ6MCF8Qc0HrzmatCD7QeyzfeeAPvv/8+c7+bi5UjpMQcHaczZ85IZkryj33wwQdm39vDw4PFdOl0Otxyyy34+uuvER8fj02bNtkciyGedHkxJ7U7doaY8/T0xODBg1ltR1eIOSk3Ky/m+Pg4ikXJzc1lY4mKinKKmKPzaW4ho3ia9957jz1mT0kiW8ScOWvMW2+9hRdffBEAWMgCj06nY+7SqqoqrFq1Ch9//DFzS9E58PLykhSgQ4YMMamVSJY5cus2NzdbvP/NxcwRKSkp7JoVWwc//PBDPP7445gyZQq7/2nxpBACc5tCsaVSp9Mxy5yfnx9mzpyJc+fOsfIYlFwVGBiI9957D4sXL0ZMTAybX2wp50OIM9Xr6uqgUqnYAkznU9yJISsri4kgqnFHFphDhw7Bx8fHpOC2GB8fHyxbtkxwPtetW2cyNj6eOCEhgW06FQqFybxBz7VmcY6IiGD3gS1ijqDvJF6/rFnmaDxijwxZVM2th/zjtObaK+bo+jfneTDHkCFDEBYWZlJcfezYsViyZInJfO7n5yc4lxRTd8MNN6CxsRGbN29mG/rMzEzBdfrII49g3759AITrEm387C3tw+NUMffdd9/htddew5kzZ3DXXXchICCAZYKOHz8emzZtcubHtQtiMUc3Fan2bt26CawP/ImbP38+br/9drs/MyUlBVlZWUyk0EVMddrKysrYBXTllVcKLu7GxkYTF5Q1eMtcamqqze1GpLJReTH38ssvM5eBORYtWoSwsDAMGzYMRqPRRBSIsSTm9Hq9IDiYaGpqQlhYGPR6PW644QaL4yGxodPp0KNHD4cypBUKhWCS5RfEqKgolJeXCyYcZ7W9Gzp0KLM82BqDyCOeqMUWBykxx7tZ+fNGj+fl5bFFZOrUqe0i5sRZgPZiTszR51rK2FywYAEefvhhdO3aVfI+0ul0CAgIQHBwMHbu3In//e9/AC50OCBXkj3XhJ+fH4xGI7svrG3mxJY5S2JOLBaio6PxzDPPICAggFkgKKY3Li4OSqVSsp4acEHM/fbbb/Dz84NWqxXEI0dFRSE3Nxe7d++GQqFAbm6u4O+E2DJnC2LLHFkEV6xYgdTUVLY4x8XFCRZUytAEWhf9m266iYUyHDlyBOnp6XZZfQn+/qRjTP/bUj6LxKe1eT4iIgL19fWYMWOG2VhhKWhDJL4OaYw0x4vbdtF46Nx88cUXyM3NNVsom+DnQ95izEPHzNx5JwFqaziMGN5zSGVgXnrpJavvR2vxjh078Nprr+HcuXMs1KO4uFgwb/IdeaTEnK0eKimcKuYyMjIwf/58ky+/fPlyrFmzBtdddx3eeOMNZ36kSykuLmap0DShUPwC3fDiBY8vGTB9+nSrvVGlSE1NRWZmJiorKxEUFCTZUiksLAxHjx7FF198Ibihi4qKHLLMUYeC7t2727yD4yd6usF0Oh270a+66ipBhpQtBAUFWcy6khJzfOzRQw89ZGJhJHFrzeoHCMWcI1ZVoqCggC124tguqsVEOEvM0YRIQfz2IhZzYrey1HuS1a2yslIg5kiwVVdXIzY2FqdOncILL7zQLmKOxmlpU2AJa5Y5a/eWQqHAk08+ierqapNeylTyJTk5GZ999hmzYtEmxBExR9cpbTybmposCgwSc5RwoVKpBFl9KpWKfb4lFyJZqGi+UCqVUKvVZusO0uNRUVEICQkxEXPR0dHs2hgzZgyys7Ml70OaXyzNE2LEljkSc4sWLRK4uMU9jmtrawWLfJcuXZiYq6ystEtQ8vChHjQ2KiNkS9Y8WYusCUm6p6+77jqbsrkJuh7MuVnp71IxcwBYMd8BAwYgISFBMsZN/L7vvvsuFAoFu/fEn02JJFL1ZIHWAs5tKcgrlfRmC3xYDfWHJzFsMBhMrl86RryYo7XCXN9bW3CqmLN0sdxxxx349ttvBWnGHZ1Ro0axnpx0Qvr37w/gQgCyeLKzFrthCykpKSgtLUVeXp7JRUUXeEJCAvr27Qt/f3/MmzePjaewsNBuMRcTE4O6ujocPXrULvccv5iOHj1asu+ns7FkmSPEi4mUpZKSdMT4+vpCq9WisbGxTWIuNDSUTfR8NtvIkSMBCF0eziqpQxOIn5+fXRM3IRZzdK1bwsPDA0FBQcwyFxERgSuuuAI///wziouLmWWje/fu8PDwYIWm24KtYi47O9uhOF2KWQWAhQsX4ssvvwRwQczZYvWmxTYmJgbPPvss9Ho9jEYjEyfmrCTmLCKWkBJzlq4phUKBAwcO4I8//mB12jw8PJCTk4PffvsNgPWFE2hNulq3bp1gEeRLUIjhm70HBAQI3KyA0H02YsQIVFZWIjc318RSRcffnvvGnGVOjFqtZmLCaDSaiLnU1FTWUlGn09lVBsMcdK3ccMMNaGlpscky98EHH+DRRx+1mKEKXLgmeCODLdC6Iy7DZU3M0b03ZMgQGAwGyRhhc6jVahiNRrMJQNS665prrpF8fWBgoEMeCYIXZfa8Dy9UyWrPnxfxNULHiOaxs2fPMu9eh7HMWWPq1KnYtm1be35km+AXe5pw/P39YTQa2QXF13vq0aOHwzs1HnrPgwcPmggjmuT5xcDf35+le1dWVtrtZiVrY2Zmpl0XMW+pUavVrEm5LV0SHMWcmFMoFFi6dCkA09gcqezeYcOGSdab8/X1Za9vi5jjoYXxlltuYSLr3XfftTtQ1xokBKztgs1Bk056ejpKS0ttFkK0gFdWVrKC2RqNBv379zdZDG21zO3btw+XX365ZHkPCkC3JSv5xhtvtOk78CQlJWHXrl34+eefsXbtWhbPaatlDhDGTT7++ON477330NjYCKPRCH9/f9a2ToyjblbgglCxJuaoPMKGDRsEi3xiYiImTpwIoLXM1Msvv4x77rnH7PvEx8ebtJcStxbjocdDQkIQEBAArVYrEFX83EkL9549e0zibul+sse9ac4yJyYoKIgdn4aGBuj1ehMxB7TG0pl7D1u58847cfXVVwu+n60uwtjYWKxYscLqpo3Egb1ijtYd8bmksiRSYk5c+9HeDSWtG+T1Et8DEyZMgNFoFIguZ8KvtfZY5oDWWNLu3bszIcqLOWuWuc2bN8Pf3x+zZ8/uOJY5W7BU2LEjY25h53dRVJW8rdCEsW/fPpOdF41DXDSRT7231zKXkpLCfPz2WOb4xdTPz49N7OYCVJ2BVF/JyspKBAcHMzE3ZcoULFq0iP3dHnHr6+vLLH3OFnO8UA4MDGQhB/ZOtOYgIeBIDA9w4fvOnDlT4HYTI762SMxlZmayKupAaxxIcXGx4B6xVcz95z//wW+//QaNRoPGxkYmpPLz8/H6668DMLWQbdiwAZs2bRJcl/Hx8XjjjTcEyRDWGDBgAABg2rRp7LG6ujo2+dpyfCMjIwVC8siRI4IYtZkzZ5o0GgcuxN+0xTJnLQFi5cqV7Gdz1563tzcWL15st9XYkmWuqqoKXl5eLMtSbJnji7MOHjyY/cw/DrS68GbMmMHqqtmCWPCaC6PgXex0HUuJuczMTNa9wlHWrVsnqMfmCijGW3wMrTF16lSkp6cLsi+BC3MMzfXmLHOOQGKOzquzwk9shRef9or0W265BRMmTGCWTEuWObGYo5JVYWFhnccy11loaGgwCdg0d9PypmBnucuo32BLS4tJ1hxN2GI3DT9Z2SvmgAttvRx1s/r7+2PkyJEoLCxku3tXIGWZ4/tJEm+99Raz6thTqsXX15fFWjnDhQJcEHPiyWnixIkwGo1WXSW2QmJR3MLLVjw9PVFUVCRZ3Z04f/68oN4SfW55eTl27tyJ0aNHC/5OcZ8EL+b0ej0UCgU+/vhjk8+h+620tBQLFy6Ej48PSkpKWAwrYCrmbrrpJsycOVPw+PXXX49FixbZlYgkteHMz89nsWi2WBwUCgU++ugj9nt9fb1JMpWUKKQFzR5Bbq9lLj4+nhWtttaKyl6suVmDg4NZIpc4Zo63uMTGxrLjLLbMqdVqbN682a5wDnssc2Ixx1+/VB/z/PnzTnOzupINGzZg3759NsUL84SGhuLYsWMmRgNqyzV58mQolUomPrZv345jx47Z5RESI/boOJrA5C7E2bCEOcscX/MwOTmZ3ROOIos5CTZt2oRVq1YJHjMn5vhdmyNxSlIolUo2yYpbxSxZsgQTJ05krlHC29sbCoUCDQ0NdrtZgQvWtLZY5gD7d4D2YknMiY8/mbztOR4BAQEs7sFZ7uJ58+YBcK3FEmi9/srLy5kb0hGio6MtTvypqakmoQQhISHYvXs3NBoNRo8ejccee0zwd7GbldyNp0+fBnCheCoPL+Z++uknAMDvv/8uSEww1/qGvy6lanNZIyUlBZ988gl++OEHVk/KkVhUpVKJ7OxsjB49WlLM3XPPPezaAIA33njDoRg/exMggAtlRPjPdwbWLHO04fD392dijhdEhw4dwscffwylUsnuWUvljWyFPuPqq6+G0Wi0KOaoIoCUZU6hUCApKQm5ublttsy1B0FBQRg6dKjT35cX5AAwbtw4ALbFk5pDPN+2t2WurZhLoBBfZ56enlAqlcwyl52djaSkJBZH6iiymJOAb1dCmDMfu6ofLGUmisXcTTfdhN9++81kQaVyGI5a5ujGsUeQ8sekvSY1S2JOTGxsLH788Ue7OmIEBwezYFRbApFt4corr4TRaGyXySksLMzhmDlHCQ0NZXEuPXv2xIwZM1gld0B4HHkXw8GDBwGY1qQChGKOzndeXh6Lwfvqq6/Qr18/yfF4enpi8eLFgvqP9kJJRbRpoixxexerpKQk1uqOd7MCreeK7527aNEijBo1CnfeeaekC9YcdHwpi9uW+/+xxx7DmTNn7M42t4aUmNPr9Th8+DBKSkrYZjEgIAB1dXWorKwUWNgGDBjA3NNkYZbqw2kv/FxVWFgIg8FgVswBrVY52jiIBXZUVBRKS0s7hWXOlajVapP45La4WXlDwooVK9r0Xo7y008/4a233nLotfw8x8/1Umujj48P29RSNxLa4DiKLOY48vLy8Mknn0jG9JgTOc6yxomhCtr2BHuSC8vedl70WsC0SrslpHpjuhopMVdWVmb2ON11112ora21eREODg5mO3JXJnJcTJC1JSAggJ0HfmIWu1mB1sr6FPvGdy8g6Po9deoUi2EkMRccHIzZs2dbvPdefvllpwiVgIAAqFQqFBUVOXRfARc6NIgtc1JERERg3bp1GDt2rM3vHxERgauvvpr1JrYWM0djsCfT0FZCQ0NNSsKsWrUKAwcOxCeffCKwzOXl5UGv15u1WH/wwQf4/fffWc/UtuDh4cGSTqgLgSUxp9FocOzYMQDmxVxbEyA6O3FxcSY1Bdti3PDz82MbO2pF1t5MnToVCxYscOi1/DzHezekrhEScxQ3Gh0dLVvmnMn27dtx00034fjx4+4eCu677z68/fbbdpU68fPzg06nY83u7WHy5MmIj4+XbMBuDik3q6uxxzIHtO7Cf/rpJ7vEHCGLOdugBbpLly5MYPHHTkrMXX755awrjFTbKxJ4Bw4cANAag5Kfn2+SHdseUO9iRyzegHUx9/fff7PyJ44yevRo5OfnQ6/X4/jx4y7zGFgjLi4ONTU1+Oqrr9g8yhdVp2tFpVIhKysLgPkisJ6enpgwYYLTNsxr166Fh4cHu6asiTkqeC620EdGRjLLXEd3s7qShIQEk84qbS07lJGRgYMHD7rMSOJKzHlyLFnm+LhMf39/lkHtCLKY46BeeKtXrxY8bo/Lw1l4e3vj7rvvtstl5uvri5ycHDQ3N9vtmoiKikJeXp7VptE8/NjayyQuFnPUE4/E3NGjR/HPP/+YrU1lDRJzHh4el/REbQ+0QPPxafxCyYsvqZhMcWFd4EJleXLXpqenC9ys7UlKSgpOnTrVZjEndrMSQ4YMcThphaBakU888QQOHTokqMzfnlBi1rXXXov09HQAYDX7gAvnnw8Qd3UsKeHt7Y2kpCScPHkSgLSYo2uLXKyXX365SSB+ZGQkCgoKoNfrL2nLXGJioomYa+t1FxQU1GkrXojXHFo/LFnm+LhMmhcctc7JYo4jMjLSJLHgiSeecIuYcwQ/Pz8WN2OPKGsLU6dOBeA6d7MYsZirqalBc3MzE3N9+/ZFnz59sGPHDsHrbLWy0fOCgoI65e7QHZCo58tJ8MeOvxalEmSkLHO0KJw6dQpAa8B+WVmZW8Tc+PHjsX37dtTV1bnczeooZN36888/ATje/aKtSG0ieTFHwt8dYg5oPU5kETRXmgRoHbNCoTDpgwu0rhPl5eUA2s8j0REhy5zRaGRuRRInlyJibxhdS1LXGSWC8XGZsphzMnv27BH8rlarO82i7uvry8ScM4KGbeHHH380CYJ1Jd7e3igrK8P7778PAKxRtrguWr9+/QSFWUl0WoMsB5fyJG0vZJET16Qi+ElOyqVWW1sLg8EgeEy8w09ISEB1dbVbxNyYMWOg1Wpx8OBBh4QYL+bEfXudBd9OD3CfmJNKZuHFHAl7PumhPbMWo6KibHKzlpWVsQLPYviQjkvZep+QkID6+npUVlay7GlxCMylhLle1uYsc6tWrcLChQsBtF53tPY4eu/KYk4EtbqZP38+gM61qPv5+aG8vJz1/2wPFApFu8aW0U7mjjvuYC5WQDpR5LXXXsO3336L++67T1AA1hJ0Q5kreyFjyoQJE6DVam3q6SteuGkREIu3uro6gdsiJiYGtbW1qK6ubncxR2K0uLjYIeHBu1n9/f1dsjkkiyeJOXPlQVyNlFDlxRwVKSbLXHtnLPJWQKm53d/fH0qlkrn+pcQaHyrQmdYHZ0MGg7y8PCbin3/+eXcOya2IrxVLljkK+/n7778BtFrmqIIF3yvYHmQxJ8GgQYNYo2BbJsUhQ4Z0iJo4NDGGhIR0GmuivVBDYqA1ucGSmAsICMC//vUvvPbaa3aVJgFsb6sj04rUhPXHH39Y7YpC503sntFqtYJsVDovhYWF7S7mKGaquLjYoUKm/v7+zDLnKkuOWq1GeHg4zp4965L3twfqbAK0tmbixRzVzyQxZ6nTiCugTdoVV1xhYkkBWjenQUFBTMxJzev8JuNSt8wBrWKusbERTz75ZLu6zDs6VN9P6hoRbwJUKhViYmLg5+eHc+fOYevWrXZbOWUxZwZK2xe7f6TYu3evoJipu6AL5GKeYJ599lmWOl5dXY3S0lJ4eHi0qcEyT//+/TFr1iw8+uijTnm/S5nx48ebrQVH8NmDPHV1daywLXBBzOXl5bW7mKPPa2xsbJNlzpViTqFQYMaMGS55b3tZtGgRNm3aBKC1NZyUm5XEnLO6n9gKXWevvfaa2eLYvJizFFcHXNqWuaioKHh5eSEvL++SL9NClJSUsHItr7zyCvbt2yd5XMThJn5+flAoFEhLS8POnTsxZcoUk+Lr1mjf6qJOJDs7G0OGDEHv3r0BAF999ZVTd3np6en48ssvWfN4S9jbKsVVkGWuI1gJXUVUVBTuvfderF27FsXFxUzYOescBAcH4+uvv3bKe8lIk5mZia1bt2LBggVMKIktc2IxR658o9Ho9EK31uDvJ0fFXHNzMzQajUvvzaFDh7JuGpSx6S4mT54MoHUzrNFosGzZMiQmJrKFjcJA/v3vf7fruJ577jmEhoYKri0xQUFBzANgTczZWwLqYkKpVCIuLg65ubloaGhwS5HfjgbvIfL29jbbfUPc1YQ8acnJyaxk09GjR+367E4r5gBg7NixLl1421ouoL2hifJiFnPAhYWdinq6ovipjOtISUlhDcDJbVlbW4sBAwagpaUFBw8eRFNTk6D/MB+ndP3117freD09PZl1zVExBwDl5eUutZrTZnbAgAHo0aOHyz7HFnx8fPDQQw/hs88+g8FgQHp6uuC8eXp6uiUuNSUlReAGlsIeN2t7u4k7Gt27d8fx48dly5ydmPMkRUVFMcuevYmFHcOk5CB//fUXxowZg2XLlpmdGCj9l/93sXIpWOaACwt7ZmYmAGDjxo1uHI2MI5CI4y1zR44cwfHjx1k9Nt6dyifZuCOekcbbFjFXWlrq0ubhJCykOmq4g4iICKf3OW4PrFnmeNFyqQuYoUOHYufOnTAajbJlzg7M1T3lYw7tTWLqtGIuJiYG586dw44dO1BaWopvv/1W8nkrVqyAWq1m/9qrZIc7uBRi5oDW7+fp6cnEXHtl7so4D5rMxEVaATAxxwsfEgOW3GOuhMbpiBgjAZiTk+PSGLGOKOaIziTmfHx82DUoNZderMlljjBkyBB2717qwtYeyCDx4YcfIicnhz3Ou2nLysrses8O72YtLi6WLNy4efNmFq8wa9Ys7NmzB9dcc43J85YuXYrFixez3zUazUUr6PgemRczVA6Fin86K/lBpv2gBdHLywteXl6CmDkqUxIYGIj169dDrVbDx8cHjz/+OGvC3t6QmHPk3qLNxrlz5zBp0iSnjouHhKIs5toG1aEDLv65tK3w4kO2zNnOrbfeipqaGtx4442CTkq8Za6mpgZardbma7DDi7no6Gjs2rXL5HF+8t+xY4fZZsw+Pj42t3Lq7NBkfilMQMHBwcjKyoK/v788iXRCunTpgsTERNx3333YtGmTWTF38803s8efeeaZdh8nQfeUI/cWb41zpWWONrcdRczx37UzibnJkyfjgw8+ACALFGvwoRCyZc52fHx88Mgjj5g8Li6xVVhYaHNMeKd1s+7atQuDBg3CmDFjUFBQgLlz57p7SG6HJk9byql0dtRqNRoaGmQXayfF398fOTk5GDBgAIKCgiTFXEfalNDuuS2WOcC1Yo5iCTuK54Evv9CZxNy6devYsbTkUm3vrOqOiCzmnAsVDl6xYgUAYMOGDTa/tsNb5swxdepUm1s0XSrQQuFob7fOBMUcXMqlAS4WVCqVIGaOt8x1FMhC44ilho+7cnVdtW3btkkWw3UHfPmFjnQureHh4YGjR4/i559/Nvuc+vr6DlOSyp3wYk4Od2k7iYmJaGpqQmNjI5YuXYpnn30Ws2b9H3vnHR5F1f3x7ybZ3bTdTS8khN6kKU2QakGqKMorggqIYkPFggVsIL4iKkVBEQvyooidKgiC0kGkivTQSYH0TbLJpu3vj/zO5c7szJZkk83C/TwPD9k2c2fmlu8959xz78H111/v9LeiNl5FkAWgrrhZahIh5q4eDAaDZD9CpQUQ3ub9999H/fr1XdqyTAmy8NS0mOvduzfb2svb8OEtvrZooHXr1pg4caLq54GBgS7vKnM1w7dRIeY8g1arRWhoKPr37w8AWLp0qUu/81nLnMAeGiiKi4u9XJKah9w2Qsz5PkajESkpKew1Webq0qrsdu3a4fz581X+PaVOor1JBYKrAT54X4g5z7J27Vr06tWLpfdxhrDMXUWQZa62t8jxBmSZEzFzvo/BYJB0WLm5uQgKCrqq9sft0qUL4uPjWbJkgeBqQywW8Tz16tVzWcwJy9xVRFBQEFatWoWePXt6uyg1jnCzXj0YDAaWpBWo+eS63mDbtm1e2fHA2zz33HNITk72djEEAp8kPj7e5W29hJi7ynBlL9mrAeFmvXowGo0sTg4A3nvvPbRr186LJfI8Wq3W20XwCrNmzfJ2EQQCn8Udy5xwswp8EuFmvXrgV8QRDRo08EJJBAKBoO5Qr149mM1myWRXDWGZE/gkws169aAk5kTOKoHAN4iPj79mEvPXNh06dMAbb7yB8vJyp98VYk7gkwg369WDkpi7FlZkCwRXA/zeogLP0qpVK0ydOtWl7woxJ/BJWrVqhU6dOqlu4ybwHYxGo917TzzxhBdKIhAI3OVajQetawgxJ/BJYmNj8ffff3u7GAIPIN+x4Pfff6/RDekFAoHgakOIOYFA4FX4lasVFRU+t1uAQCAQeBuxmlUgEHgV2hZp4MCBQsgJBAJBFRCWOYFA4HWKi4slWwMJBAKBwHVE7ykQCLyOSG0gEAgEVUe4WQUCgUAgEAh8GCHmBAKBQCAQCHwYIeYEAoFAIBAIfBiNzWazebsQtYnNZkN+fj4MBoNYOScQCAQCgcDnuebEnEAgEAgEAsHVhHCzCgQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MNecmLPZbDCbzbDZbN4uikAgEAgEAkG1uebEXH5+PkwmE/Lz871dFIFAIBAIBIJq4zNiLj8/HzfeeCNCQ0Px77//AgC+//57dOvWDbfccgsuXLjg5RIKBAKBQCAQ1D4+I+aCgoKwevVqDBs2DABQWlqKWbNmYfPmzZg2bRqmTZvm5RIKBAKBQCAQ1D4+I+YCAgIQHR3NXp88eRKtW7eGTqdD9+7dcejQIcXfWa1WmM1myb9rlTNnzmDkyJEoKyvzdlEEAoFAIBB4CJ8Rc3Jyc3NhNBrZ6/LycsXvTZ8+HSaTif2rX79+bRWxzjF58mQsXboUZ86c8XZRBAKBQCAQeAifFXPh4eESK5u/v7/i9yZNmoS8vDz271qOrSsuLgYAFBYWerkkAoFAIBAIPEWAtwtQVZo2bYojR46gpKQEf//9N9q1a6f4Pb1eD71eX8ulq5tYrVYAQE5OjpdLIhAIBAKBwFP4lJgbOHAgDhw4gOPHj+Oxxx7Ds88+i969eyMwMBCLFy/2dvHqPGSZy87O9nJJBAKBQCAQeAqfEnNr1qyxe+++++7zQkl8E4vFAkCIOYFAIBAIriZ8NmZO4D6XLl0CIMScQCAQCARXE0LMXSPYbDakpaUBEGJOIBAIBIKrCSHmrhFycnLYAggh5gQCwdXOzTffjA8//NDbxRAIagUh5q4RyCoXGBh4TSdOFggEVz9msxmbNm3Cs88+6+2iCAS1ghBz1wgk5lq0aIH8/Hwvl0YgEAhqjh07dgAA/PzEECe4NhA1/RohNTUVANCsWTMUFBS49Jvy8nL88MMPsNlsNVk0gUAg8CinT58GAGg0GpSUlHi5NAJBzSPE3DVCWloawsLCEB0d7bJlbvHixRg+fDh+//33Gi6dQCAQeA6asJaXl2PDhg1eLo1AUPMIMXeNkJaWhvj4eBgMBpfF3OXLlwHAZUvetcLKlSsRFxeHiooKbxdFIBAoUFBQgMTERLRv3x6ff/65t4sjqGOUlJRg0KBBOHr0KA4ePHhVLAoUYu4agRdz7rhZARF3Imf+/Pm4dOkS3n33XezatcvbxREIBDIKCgoQGhqKcePGYdWqVSzHpuDaorCwEEOHDpU8//vuuw/33nsv1qxZg+eeew7XX389Bg0a5MVSegYxSl8jpKamol69ejAYDLh06RLWrl2Ls2fP4rvvvlP9DYk52jlCUMn1118PAHj11VfRrVs37xZGIBDYQWKub9++KC8vx5EjR7xdJIEX2LBhA5YvX44vv/ySvff9999jxYoVAIB///0XAHD8+HGvlM+TCDF3jUCWudDQUACV+9zedtttGDFihOpvaC/XvLy8WimjQCAQuEtJSYldyAOJufj4eABAenq6N4om8DKUhstoNAIA/vjjD8nnKSkpks99GSHmrhHS09MRFxcHg8HA3svMzAQA1dWqOTk5AOD1vHQffPAB3nvvPa+WgaeoqIj9HRMT48WSCAQCvV6PsWPHSt4jMRcaGorg4GAh5q5BUlJSMGrUKABAcHAwAODWW29V/K7JZKq1ctUUQsxdA9hsNhQWFsJgMECr1UreB6C6dJ/EnLctc+vXr8ePP/7o1TLwWCwWdOzYEffdd5/kfgKV8Rjz5s2r1fJkZGTU6vkEgrrG//73P8lrEnMajQZxcXFeEXNNmzbFzz//XOvnFVTyww8/sL+Li4uZp0kJYZnzMmfPnkV0dDT69OmDPn36iEFNBdrGKzAwEIWFhXaf8/EEPLTCx9uWuaKiIiQnJ3u1DDxFRUUICQlB9+7dkZGRwUTxpk2b8P333+Ppp5+u1vH3798PjUbDXACOWLlyJWJiYnDs2LFqnVMguJogMQcA8fHxtS7mrFYrTp06hUmTJtXqeQVXKCsrY3+fOnUKixYtUv2uEHN1gN69e2PTpk3YtGkToqOjvV2cOgm5BYOCgvCf//wHDRs2BAAWZzJ+/HjFdCUk4rwt5iwWC3Jzc+vM8nGLxYLg4GBER0ejpKSE3bubb77ZI8dftWoVAODgwYNOv7t7924AwMWLF51+12azCdEnuKrgvQr8RJUXc7GxsWwHnJomOzsbXbt2xaFDh2rlfFXlxIkTmDRp0lWdEP7cuXPs71mzZuGJJ55Q/a4Qc3WA7du3o2fPnpg8ebJixbRarTCbzZJ/1xq8mNPr9Xj//fcBSPPHKQmlurIAglbTnjp1yqvlIIqKihAUFMQmDxkZGQ5N+O5CM8rHHnsMWVlZqt/Ly8vDwoULAQABAQFOj7tlyxa0atUKH3/8MXuvpKQEmzdvrmaJBQLvwPdhZH2zWq1ITk5mYi4yMpKFjNQ0q1atwl9//YUFCxbUyvmqypNPPol3330XEyZMkPQHVxNnzpxBnz592CIYORqNBo0bNwYA6HS62ixajeDTYi4+Ph7JycnYsmULLl++jGXLltl9Z/r06TCZTOxf/fr1vVBSx+Tn56N3794uWVeqAi/mACAsLMzuO0qigQSKIwH83nvvsa1zagoqf10Rc2SZo04iNTXV7v5VZ9JAKWEuXryIDz/8UPV7zz//PLM48C4FNc6fPw+gcmk+sXDhQvTp0wfvvPPOVT1L57l48aJIhH2VwD9HSnI+e/ZslJaWsgE6LCwMubm5tVIeavcU2lIXef3117Fx40YAwNy5c/HUU095uUTVZ82aNdi0aZPkvUOHDqFTp06IjY1V/I1Op8O2bdsAAKWlpTVdxBrHp8WcXq9HSEgINBoN7rnnHhw4cMDuO5MmTUJeXh77d+HChdovqBN27tyJLVu21NhsjkRZVcWcmmUuIyMDL7/8crVjxJxBlrm6EjdHljmaGJw/f94u0JlWClcFEnOA406GP4cruQBJ+PEDG7mpXn31VRw9etTdovokAwcOxIwZM7xdDIEH4F2rJOZOnjwJABgzZgyA2hVzdJ6vv/66Vs5XFd5++223f/PPP/8gJiYGc+bM8XyBPMCgQYMkYS7nzp3DhQsX0KNHD4ngv+OOO9C6dWsAlWEn8fHxuP32212aDNd1fFrM8XFeW7ZsQdOmTe2+o9frYTQaJf/qGoGBgQCkKS88CR2XzlNVy9wvv/wiEcMkniMjIz1ZXDvqmpuVLHOhoaGIiIjA4cOHMWHCBMl3qmP54cWc0kpjm82GKVOmSMSt0sIWOeSG4uOH+DZ0rVirUlNT60xdElQPJctcdnY2+vfvzyZbJOZqw/IsNxbUVJ9e2/z777/IyMjA+vXrvV0Ul/j7778BADfddBOrF2vXrsVPP/2EDz74AMCVmPGAgACXLXOPPPII1q5dWwMlrj4+Lea2bduGjh07omfPnkhJScHIkSO9XaQqQZ1MTYs5ssw1btwYcXFxku+oibmwsDBmmbvnnnvQo0cP9jmJuZpceGKz2eqcm5UscwCQlJTEFiEAYDtq1KSY27hxI6ZOnSrJau+KmCMRl5mZyY6blZUFjUYDwLlraNeuXQgLC/PpHUFsNhtyc3NVVwq7ch+9wS+//IKdO3dW6xi5ubkYNmxYnVlI5An4dkZbNl26dEniWgsLC0NZWVmN19sZM2bY7QObmZmJvLw8PPzww3W2brkCWRx9xYKVlpYGvV6PqKgoZozo0aMHdDody7VK465Wq3VZzH355Ze44447aqbQ1cSnxdyAAQOwd+9ebN26FYsXL3YpCLy2KC4uxuOPP+6w47x8+TJmzJjBGnltiTk/Pz87l66SmLNarYiJiYHZbGaN+Pz58ygtLUVJSQnOnDkDoGYHQMruHhkZWS3Xpau4Mnu3WCzsXtavX5/NAgGw7b08JeaUOpk1a9YolskZaWlpLDkmDXyZmZmoV68eAOdibv78+cjLy2Oxd76IxWJBeXk5UlNT7T5bs2YNQkNDazwGtCrcc889uOmmm6p1jDVr1uDnn3+2y8nmy1DfExUV5VDMAahxV+srr7wieT1y5EgUFxdj8eLFWLhwYZ3KlSnHWb9H904p60Fd5PLly4iOjmYTVQCSVDXAlX7WVTFH96iuxhb7tJiryyxbtgwLFixwGDsxYcIEvPLKKzh79iyAmtsDVS7mAKBFixaS78hFp81mQ3FxMWJiYlBSUiLZqLhdu3Zo3rw5c9vV5Aphuifx8fE1vqp27NixCAoKcipOi4qKWEZxErsEdRjVEXP87FfJMqc0KDkr8549e7B161bcddddAK64XLOyspCQkADAuZijBMlXg4UhJSXFrlPevn07AOC3336rthWsLqLX6wFcXVtbUTtLSEhg7dAbYq68vBx+fn6SxQRDhw4FcMWdVxcyKbz55puK7ztr03Tv0tLSvJ7dwBF0HRkZGWx3nrFjx0q8R40bN0ZERASaN28OoNLN6orFkcKO5FvH1RWEmKshyHoRGRmJf/75B2PGjLEbPGiWQ1YCZ5a51NTUKjUkecwcADRq1EjxO0RpaSlsNhtrEHzOnmPHjuHcuXPYunWr5DpqAipXXFxcjXciX331FaxWK4uxUIO3zEVFRQGoXBlVUVHhETHHi3olMZeXl4frr79e8t7kyZNx6tQp1Vnj9u3bodPp8OqrrwKoHFhycnKwZs0a1tGp7QRCkOXbUbqUug7VoaKiIuTl5WH9+vWYOnWq5Dvjx4932wpWVFRUI7nF3n//fYl1oTrQhM2VZNS+ArWzmJgYFBQUwGKxoLCwUDJ414aYu3z5MioqKnD77bfbnZfSotRUP1lRUYHJkye7ZDGnHJZA5XhAgubBBx+UTNjlULs5d+4cwsLCqmSdstlsNW7Vor778uXLbOz68ssv7fr0lJQU7N+/H4Drlrm6bpUUYq6GIBekxWLB1q1b8b///c9uZkYVmxqhs9lRQkICOnbs6HZZ5KtZgUrxYbPZ8M8//6Bdu3Z2edLotZKYI8jtqTTj/Prrr6HRaKo9i+Etc4WFhbUSs+Go0y8vL0dJSQmzzJGYi4uLg0ajgU6ng1ar9ZiYU7LWms1mNGvWzO79pk2bqrpyzp8/j/r167MFQBaLheWoa9myJQDnlrmrQczxzzYlJQUTJ07ElClT8Ndff1XruI888gjatWvn8cHqiy++cPi5O/nT6LlR33Q1UFBQgKCgIJhMJhQUFLDnGxERwb5TG2KO0kolJiayhRcUm0WfObKIpqenS7afUuOVV15hSd+Jw4cPY/r06XjjjTec/j4+Ph79+/cHUNm3U5qi5cuXS1IWyZHfu7179zo9l5zAwEDcfffdbv/OGfwYc/z4cQBX3KyOykJ9eFXFXElJSZ2KHxZiroagDtNsNjORxjfmBQsWsNgnWgGVnJzsdDCoyiKAoqIi+Pv72+0jCgBt27ZFTEyMnZijgZ3cFUpijlASc7SEvapxgDabTdJYKM6hNlwVjiyAcmFMYo5EL1Dpaq2OmONFvVJZ8vLyYDKZcPHiRbvO5PDhw4rHvHDhApKSklgHZrFY2Cz79ddfB+BczFGn6ctijr+fqampbAX89u3bqzVRoHxVnq6fvDVdznfffYeIiAiXLW303GprN4SqsGTJErcGyMLCQoSEhLA2R8+X3zi9tsXcoUOHkJ6eziZO1L87Sos1YsQIDB8+3GkdnDFjhqQvttlsmD59OoArYRD5+fmq9zAvL4/1VR07dkS7du3YZyQ+lZDfu6pMCEpKSrB8+XK3f+cM/lp/+uknAFI3qzNIzGVlZTns2+RirkePHggJCalCiWsGIeZqCBJueXl5bGDnxRxZRYArjfzcuXM1kuuLX32pRGBgoN1ATqKFxNw///wj+XzIkCEAKrNoK5mf6fdqpumcnBx06dJFsiKT5+2334Zer7cTc7URr+HoHFQeuWWOnwV6UswpBeqbzWaYTCYkJCTYPVe1BJnnz59HUlIS+z6JuW7durFBx5mYo2fpy2JObpmj1xcvXqzWYE/3ztP3Rv58+cnRhg0bALg+sFLZUlNTq2RBnDt3Ln777Te3f+cqx44dwwMPPOBWHjRXxFxQUBC0Wm2Nu1k1Gg0iIyNhMpkQGxvLxBF5XhxZUUlgK1nvKioqVJ/X4cOHsXTpUgBX+gqj0YhOnTopfp8mgv/++y++/vpr+Pn5MSHqqN/Lzc1lMZf0ui5QUFAgcbXTFoi5ubmKKbiUoJi5Bg0asP5czqpVq/Doo49K3uMXvtUFhJirIXgxp2SZa9KkCfv71KlTiI6ORkBAgF0Wa6I65lxXxJyam7VVq1bo3Lkzli5dCo1GwywZXbt2xerVq/H6668rWiNo0JGLmszMTMyePRubN2/G33//jddee02xTDSDI3FLKy5rSszxM2JH55AvJiF3Dt8JVFfM8b89duyYncDPy8tTzZcoryc2mw3PPfcc/vrrLyQlJSEgIAA6nY6JuQYNGkCj0UCv1zsVc/ScfVnM5eTkICAgABEREUhNTWVxZOfPn69Wyo6aEnNyyxwf+0OuIVdXF1PZrFZrlbYv+vDDD/Hpp5+qfm6z2fDII48oJm93BQrbcGdrPIvFgpCQEISEhKiKOY1GU+3EwQUFBdBoNHbJwQkSD35+V4ZUaqMklhxZbf39/SXf5QkODsbo0aMVBR25Ox955BGcPHmSrdBUMwqQmGvdujWzKiUkJDhdYJaXlyeZsFanH27fvj3uvPNOjB49usrHAConYwaDgYn/pKQkJpj5vXmdQZY5GqeV7vP48ePrnHiTI8RcDVBWVoaMjAwA6m5WPqYDqGwc1113nWpHWJ1BoqioyKG7Rq/Xq4q5oKAgDBgwAEClu4JES3BwMAYNGiTJ4yM/J2BvmZswYQKef/55NsNXcwsmJSUBABO3tGCjpsQcL2Qcdfpyy1x4eDgAoEuXLuw7oaGh1QqW5UWFn58fW2hCkGWO+Ouvv7B7927Ex8fbiTmLxcJc3u3bt2dlLywsZGIOgFtirq7mKaM254j09HTExsYiISEBr776KpvJ//zzz8xFUxXo3nkyfc6RI0fs9s3lM/BTwDqthnfG2bNn0apVKwD2+cKKi4vRpEkT7NmzR/X3mZmZDoVafn4+vvzyS9xwww0ulUcODcR83XYGb5krLCxUFHNA9XeBoHv9yy+/KH6ek5NjZwmSL4ZyRczJXealpaWwWq34+uuvJe2OQh7279+PZs2aoU2bNrh48SKLGVODxJwco9HosHy5ubmSCYC795KPa/vnn3+wcuVKLF682K1jyKHfUyLjxMREZGdno6KiAhaLxW0xRyiFLdx4442S13UxPYkQczVAZmYme9i8ZY6PVaFdBHr27AmgMp7ghhtu8KiYq6ioYAsvHPn2HVnmAgMDmesuNjaWzTZJzBiNRlitVruVkGqWOeqwKcYoOTlZsWMgF8XmzZsREBCAxMREAMDSpUtrJG6Od1+5Y5lr1aoVdu3ahfHjx0vKXtUyajQaSZ6zpKQkSZzk2bNnYbFYJB1yly5d0LlzZwQHB9uJOX4A6Ny5MwAgJCQEaWlpyM3NlYg5pdWshw8fxrZt21BSUsIWCdS1VV1vvvkmXnrpJcTExDiM7QQq22B8fDzuvPNOh99zx3JFaXwAz1rm5IudhgwZwsQncEXEvfrqq04FXU5ODg4dOiQJQOfrytGjR3H69GnVLQVLSkqQl5eHc+fOsTb8zjvv4NixY+w7fLupymBHgsmVOCQ6vpKbVaPR2MV/hYWFITk5WZLD0R2o3SvFHQOV4oYmdgRvpQMctxtqe3IhceLECfY3f3+pvp05cwbNmzdHvXr1UFRUJElgXlJSgvz8fCakKioqkJ+fr+h+NJlMTt2sffr0kbx2h5pYKEBloLqfmJiI3NxcNua4Gs9GYo7GNNoOjke+QIJ/llWtU55GiLkagCxwjRo1UnWzFhQUoHv37hK36nXXXac6s6rKjH/Dhg0YM2YM5s6d67aYI0sDL+ZCQkKYhY8qPnWa8o5KLWaOGsXhw4fRqlUrVFRU2HWCgHQpfGRkJKKjoxEeHo4FCxbAZDJ5vAHx1+9KzBzvtr7xxhsl6SOSkpKcigpXadKkCRN3O3bsYBZKJTerMzFH+eSCg4OZG8aZZa5Nmzbo2bMnPv/8czag1YV8WYTNZsNbb72F999/HwDw+++/O/w+ibm33noLL7zwAgBg1KhR7PPp06djwYIFLFm1K5jNZiYuPCnm5G0yPj5ecu/NZjNb2ciLPB6bzYatW7fizz//hM1mw+jRo5l7i4/HpLg7Cmfgf//MM8+wyRedq6ysDK+++ioGDhzI3ufbTVXuAwkXZylydu3aBT8/P5w5cwaFhYVsa73CwkLk5ubCaDTaCanAwEAsX74c7733nsNjU3oTOXRtaonpc3JyFPsxonPnzg7bDY0N8pi5ZcuWsb95LwaV0Wq1IjAwkD033hhw8eJFGI1GvPXWWwCu1FMly5zJZFItX3FxMaxWK/r06YPy8nL06tXLbQ+JWthJdbId0DFpTKlfvz5sNhsTxK5a5ihmjoS6Ulnl49i+ffvY33WlP3RbzBUVFSmaIdXcZdciNFvt0KEDcnJyFBdA0IyS73QSExNhNpsVZ3B85+hqTAk/eyLxpYSjBRC8mKN4K+CKmCFRobRsG7BvGHxHzedkeuKJJ/Dtt98qlj0qKgoBAQGStBue3g2Cv6eOZp0kaBzdz+bNm+P48eNuWSdo0JTTuHFjZpnjV8PJ8wRSmdTEXHJyMhOcSmJOp9M5dLPu2rULAHDnnXe63XlVVFRgwoQJWLdunVu/cwX5oCJ3S8ohMafRaPDggw8CAG655Rbcc889ACrTtNDEx5nbefv27fj7778loujixYsOXZXuQK63kJAQnDp1CkajUXK9+fn5eOqppxAUFKS6CGL+/Pno1asXG9ATEhIwadIkAFIrEAkpfpLSv39/dOzYEXPnzsWtt97K3j9w4ACzzvHH4MumFPvliDNnzjBBrrQCvqioiE2QKFfiqVOnJJY5AHjppZcU+0cqjyM3cWpqKgwGg+K2kNQnqFls1cTczJkzsXnzZowfP17iwfjggw/w2GOPobS0FDk5Oezeydvv7Nmzcccdd0Cn02HJkiXsfV7M6fV6RTFHbYFcw2ouaAB2dYuH3qeYQJPJ5LZljsaBFStWSN6vjsVOPrZQInzqJ921zFH/qCbmBg8ejOXLl8NgMEiSildFzFVUVHh8xye3xNxPP/2E5s2bY+DAgWjXrp0kNxN1jILKGKbGjRvjhhtuwPnz51Utc9QBderUCb1792auRCWxzIs5V2dF/ODvrmWOBIRer2diTqvVstkL72YF1Cu0vGHw5upOnTph0KBBAIBPP/0U999/P/uM7ywiIyMBQBKL46n0CnTd1LCioqIcCkUly5yc5s2bIzc31y3BeeLECcydO1fyXkBAAJo0acKSAfOr4dq2bWt3DLmYs9ls+OyzzwBIYzSDg4Nx/vx5aLVatkrYWczcqlWrcP/996NFixZud16pqan46KOPWH4rTyK3ADkTESTmgMoYwv379+PBBx9k9aBFixbM+uxs0tSjRw906dKFibmePXvigw8+QOfOnauUh0sO1bHbbrsNjRs3hslkQnJyMmbMmIGKigoUFBTAaDSiYcOGqm5WWul49OhRBAQEICgoiFlo+X6GrL98e123bh1LrEpERUXhwIED7L7zkzN+oHZXzMlDUOTcc889zApJwrWoqIgtgOCtMEr1mH4jz9HGQ9eqNCGgPteRm1XJffn888+jV69ekknvnDlz8OKLL+Kzzz7DyZMnmVsvICDALteo2WzGgAED0KNHD8k2ftRflZSUQKfTsTp94MABtG3bFjfccAN79vSMyI2tlLLDkZuV+mK6PlfiD+XXQfVKbvmt7kIxypEJXJmY0rjnbsycMzHXrFkz3HnnnWjdurWq+9tVhgwZguDgYLfbiSPcEnNvv/029u3bh4MHD2LhwoUYO3Yss6bUxYBAT3P+/HloNBqns/89e/agS5cuaNSoEbKzsxWXndOMEqhc4rxp0yYm5pQeMD9ouSoS+FVujsSc0gIIWmVqNBqZmGvYsKGdmCM3Kz/A0+4RQGUjGDZsGNq0aQNA2tEmJSUpzoIBe8scUClI6PueEHPJyckICgrCxo0b2fXXr1/f4Q4QrljmaKWyOzkBKc0EsW/fPuTk5KBJkyYwm82SeqTT6RTdPXIxt2vXLnz33XcApLNxfhUbWYblYs5ms0lWxNECHWeB0gAwZcoUyW95q1FKSgrGjRvn1JXmKny7CA4OVkzlQmzcuBFpaWmStA3XX389/Pz88OSTTwKofHauijmCRNGECRPYe57Y8ozqGJWDBMErr7zCjm8wGJCYmIgPP/zQLtanqKgIO3bsAFA5oJtMJmg0GoSGhiIwMFDSj5AF11k8ZM+ePXH8+HHJb202G9asWcMsa4D7u0zQeSMjIxXF3Nq1a9k1Ud3Jz89n/ShZxaKiovDrr7/a/f6ll14CoLzXMUEiQC44AOcDtjM3K/WTly5dwnPPPcfeT09PZ8Kgffv2kmsvLS1FWVkZgoODERcXJ3k29D0Sc4GBgYiIiGB55Dp37szEaUlJCQ4ePMjqAiU15nHUrqkvpj4kIiIC27Ztw/z58xXb8ZIlSxAaGipZkEQCSS6wdu3a5dKCquPHj7N8evwxW7duzV7ThJXGPXfEXFlZGWtn8ra7du1aHDt2jD3DmJgYybWdO3fO7bAf6u89uRuLW2KutLSULU/u1KkTtmzZggULFuCtt97y2JYzdRkaoJy5i06dOoXmzZszV9iZM2cQHh6OjIwM9tCVlk5TJ6Im5tzdW9FVMSe3zOXl5SEzMxOffPIJgoODYTQa8fPPP+Pjjz92yc3KN4aCggL8/PPPOHz4MDZs2CCJNWjcuLFqg1OyzAGVW24BnhFzdH9uu+021qiSkpIcijlXLHMkft2xzMnDFJKSkhAaGorGjRsDqKxTqampaNOmjWo8klzM0SovQBqMLc+RB9iLuWXLluG6664DAHz//fdYuHAhxo0bZ9fp//nnn/Dz82PXWlFRgalTp0qSkfJi7uWXX8YXX3xR7R0XCP4et27dmom5d955R7KQBKjcaL5BgwbMGswzcOBA2Gw2NjACjsUcf69SU1MRHh6OO+64g73niTgaqmNUDl6QU3szGAwYM2YMAPus/JmZmaioqGB9Nv/78PBwiaWXxAoNuvIBbcWKFfj222/RoUMHJCcnS+775s2bJfc0KSnJ7aSydN7Y2FiH7qfTp09L4nFJzN1000347bffkJqaKonjI2bMmIEuXbo4FKvUHyg9d+qP1MqWlZVll6GAh/pJ2v+XSEtLw6lTpxAbG4vY2FjJfedXzsuPLXezAlfGj5iYGERHR7NnVFJSguuvvx7PPfccE31y3LHMPfPMM7jnnnvw5JNP4sMPP7T7/saNGwHYe6IAe4E1dOhQtgjQEaNGjcLkyZMlzy8/Px8GgwE///wzDhw4wO4xjQ2uulkDAgJQUlJit2hv2rRpeP7551l9IjFH3hsaC4cMGYKXX37ZpXMRFEJRHcukHLfEXExMjCR5bGRkJH7//XccPXrULqlsbTFx4kT07NkT999/v8dm+2qQmdpR0KbVakVaWhoaNGggiWtq1qwZKioqmGgoLCy0q9iBgYGIj49HcnKy3XGzsrLYLIQqK61Ostlsdp0EIE3V4E7MHCXy7datG3vv7rvvhtFoZBWYxIGSm5UXFPz7v/32m0T0JyQkKIq5srIymM1mdmxKUwJUWqWioqI8Iub4zuvLL78EUGmqd2aZ02q1qoHQwBXx6Y6Y4/dF/Pbbb9kxeCtfamoqGjVqpCqA5WJOzdVHdYHv1PnVrOvXr2cxZECl2H3ooYcQHR0No9GI4uJi9l0KrJ83bx6AK4NdWVkZ+5t3AVJ98NTqNl7Ytm7dGgUFBUhNTcWrr76Kfv36Sb6blpaGhg0bOp14uiLm+IlSdnY2IiMjodPp2PZbnkiqSs+J7iO/6IUfHEeMGAF/f3+7pLT0mkQ57waUizkqLx1XLoQbNGiAESNGoEmTJsjMzJR8Ls+/1bx5c8UVgY6gQTo6OtqubvACh5/M8GJOo9GgX79+qm5QoHIwdiTmyDLnaAGE0meFhYXIyclhnhUl6NnJvTrp6enIzMxETEwMQkJCFLfyUxJzcjcrcEXMxcbGSlypvDUyMTFRsf47WgDBx8wBlZPwn376CQkJCYr7uZJQ4dsALfRT6ruOHDmCyZMnOxTxNN7w9YoMInfffTfat2/PxBuVyR3LHN/WX3/9dZw9exZvvPEGZs+ezd6n40dHRyMjI0MiFj///HOH50hPT5fUPa+Lua+//trO367T6bB06VKnrseaYP/+/UhPT8fWrVtx3XXXVStPlCtQAK6jfFbUyTds2FBi+ejduzcAsMDJgoICxZlDu3btsG/fPvzxxx+S9zMzM5GUlASDwcBmPFOmTIHRaMTy5cvRo0cPO1cd31m7Ypkj1+jRo0eh0WhYQCkPXRN1CHRcJTEXHBzMAucBYOvWrbj55pvZa3L5yKHOmuJA5MH+UVFRHlk1yIstEnBJSUnIz8+XNO5du3ZBo9EgIyMDFovFoVUOqGwTRqPRLTHHC8jhw4ezv00mExITE7Fjxw7k5uZKrJRy5GIuNTUVt99+u2QlInDlmfHHIsvc9u3b7UQQP5DILbE0eP77778ApJ0TuXjT09PZrJY+91SuOr4ekCufxIV8UpSamqroQpPjipjjVytT3BYAjB07Flqt1iP5EGkAe+ihhwCoW+Y0Gg3Cw8Pt7im9pkkgLwbVxBwdV74zC10fJQ3nLatyq3KzZs0kMUWuUFBQAL1eD5PJZCeY1AY8Xsy5glLKoA0bNmDixIkArnhElFzkjsQciUAl9yVBbYhfxABUto28vDyEhYWx/I8E/e2qZY7ac8uWLSUJfvmJuloZjUYjmwjJ6+6lS5cQEBCg6ElSquc00eX7P7LgGQwGHDx4EN98843kN9OnT8cnn3yiWDbgSt3nsz0UFBRIUtBotVrodDq3UtzQ7+Q8/vjjdu9RG1GKqy4oKLBz4W/atAnp6ek4f/484uPjJf0q3SOvibnExETExcUpfta9e3ePFMgddu7cyVZE9u/fn8UE8FitVpjNZsm/qkIdOP1fVlaGkydPYtu2bUwI0WcNGjRAQEAAGxiaNWuGZs2ase+qdULt27fH2rVrceutt0oGjKysLERGRiI+Pp5ZpWh1Jw2kcosSxVwBV2YCSgQGBsJms7HKmJmZibCwMEXR8sorr2DBggVsMYKfn5/djJc6oVGjRmHLli3s/d27d6Nx48b4888/cejQIQDKsycSy1Th5UHLSqtvqwK5Rm644QY24yMrIC/YaQPsEydOoKioyKGVk4iKinIpiS1Qudps27Zt6NevH6ZOnWqXVmH48OH4/vvvUVBQ4PDccjGXkpKCm266ya5tUoeuJOYGDx4s+a7cHSq3xFIHR3WVH4woLKGkpITdV7UUDFUhOztbEqBPdZ3aAyCN5U1NTWUTBEdQm3VUx2jACAwMZDkjgcoJirOcXa5SVFSEV155hQ0sfBvmxRxQKRbULHOU8JTv+/gg9h07djDhS4MLtU+Cj7MEKusF/X3o0CGEh4fjiSeeQOPGjdG8eXMkJye7lXYiPz8foaGhCA4OtrPQqFlxzWaz5N47w2g02lnm+vbti5kzZwKo7D/1ej0KCwvtYsDpXikJPVfEXHR0tGIfTPkeTSaTqmUuJCSEiTkSbvKYOeBKnWjTpo1EzPHXrGY9JLGUkJCAsLAwiZdr165d6NChg12/5GwhBJ84v7i4GN988w38/f3Rrl07u34GqPSyKY3hwBVLJB+LqxSqFBoaikuXLsHf31+y/ZgjlLws1B5eeukl5qUgy2R0dDTTEtT+Kioq2DgBVPY7N998M+Lj41mZlTwlXhNzPGrbmtQmlFMIqKyMSrP96dOnw2QysX+OGpwzKB7nn3/+gc1mg1arRfPmzdGzZ0/mZqbvUEdHDcBgMKB169ZITk5GUVERSktLFQNmKUs/IH3QJObi4uKYmOPFF2Cfnyk7O5vNpB0NTHJLBMUiKBEUFIRHH31UYqqXz3ipo+F3RSAaNWqEPn36MCuKvDFarVbWCVAHJn9mSqtv3aWgoAArVqxAVFQUEhMT2cBHooMXxhTnSG5tV2Z80dHR+PHHH+2CdpWgzuKWW27BG2+8Yff5wIEDkZGRgX/++cfhwBUSEsI617KyMly6dEnREkWWTl6sk5iTD8DyZ8iLucOHD2PWrFkArog5vs7yA054eDiCgoJY2h5PiLkuXbpIssjTQMW7YnhhkJaW5pZl7vjx43YrjAmqozabzU5QVGe3gYKCAtaO5cfl992Vizm5pQ24YpmjmCR+csh/nxf7dFxeEANSFxMd66abboJer8ehQ4cQHR2NTz75hG1NSLnJ3Llug8GAoKAgWCwW/Pzzz9BoNCgqKmICih9zAgICkJWVhfLy8mpZ5ojS0lJcvnwZjRo1QkVFhV1f6swyp9FoWJ+vhEajYf0Iia9WrVrh/PnzbFcGuWVOyc1KwoOug7fM0Xdat24tEXN8m3Ym5gje4r1t2zb06NFD8TdKkxZ6j8YlEru02hRQt5rJvUsETZ74yZuSmAsJCUF6ejpzvbuCkmWOFq/1798fP/30E3bu3Mn2ZiXvVHl5Od5//33YbDa0aNFCkpKIv3+UAzI8PBzJyckoLi5m/ZInFkoRVRZzI0eOlPiTlajpFa7h4eESC4FSYOekSZOQl5fH/vHpOtyFXJ0ZGRksyJPo06cPzp07h6ysLElyXboHRqORWdWok1UqLx84TgNCcXExzp8/jwYNGiAyMpJ1wtTh0ODFxy8UFRXBarUyMedI/FBn4IqYU0I+46VOiN9/lmjWrJnktbwxZmRksIHy888/x/Tp0xXFXHUsc1lZWWjTpg127dqFEydOsOP7+fmxwf7y5ctIT0/HunXrWGeYm5uL9PR0Ves0T1RUFM6cOeM0FoRHLZ6nU6dOkhxxatxwww24dOkSzp49i/T0dNhsNsUBhhZV8AMb5ZniO0AlKxYv5viAf3JBU+dkNBrtXEE33ngjaw+eiHmUrxam8vJijq4xLy8PBQUFbom5MWPG4JlnnlFcqUZi32q1Ii8vTzI40SBXXl7udOZttVrx9ttvswHQYDCwgGu5mGvRogWmTZsmuS5nYs5kMjHLNi9QlL6fkJDAykuLtgi6Pq1Wy/qttm3bIi4uDqWlpZLwGxIr7rRR3jJnsVhYct+srCxWp/hwi4YNG7IJgatiTskyR1y6dAlZWVnsXskHWXo+27Zts8tVd+nSJURERLhsCbr++usBVPb1586dk4g5tZg5ehaFhYVo3LgxZs+eDZvNJrHMffjhh1ixYgXCwsIU048A6mJOnoSc6kZZWRkuXLggSQFCqIk5+i314zTm8rHPStawvn37SgTR/Pnz2WQtPT0dOp2OWbfKy8tRVFSkaJkrLi52OV4OcLyYjURx165dmWWVbxf0zMlNTfALgMi7cenSJTRr1gzz5s1jYy3/mwMHDkCj0VQ5h2qVxdzKlSsxZcoUPPPMM3airby8HIsWLWL7ANYUXbt2ZSv21q1bp+jq1ev1MBqNkn9VJTMzE0OGDAFQuTqKJzc3F2+//TazoBF0bwwGA+rVq4e0tDSm2pXEHB+nRo3in3/+QVlZGTp37gyDwWCX+ZriW3hrEv2WOidHHSsNCGQOroqYM5vNWLduHX799VfFzpeQ50eTN7pTp06xLYWaN2+OV155xW6GVVXL3O7du/Htt9+iV69eLLYxJCSEibPQ0FDWCV6+fBl9+/ZF//79mUUgJycHKSkpDmfgBC8anMWT0rZNw4YNU/zcaDQyUe5IzPXu3ZulzqHYTKW8WiRe+XsfGRmJy5cvs7p1ww03SFYe82UBKsUEdW4kfvbv389+HxMTY+cK4hdVeNK9cO+99+LixYuszirlgKL3mjdv7vR48n2MlQQA39YuX76saJmbMmUKDAaDQzE/a9YsvP7665JYKkqhwsfiEfQ8MzMz4e/vL1nMIvdM5OTkICIiAhqNBl9//bWkHiqJOaPRiPT0dKxatQr//POPZDLGuwip32nbti2zFvKWIBIX7ixII8tccHAw8vPz2WDI76DD992tW7d2W8wZDAZkZ2fb7UsLVI5nNpuN9VlyCxxvaaVt8QilxWxKPPPMM0hISGDioV27dkhJSUFWVhZzs6akpNitKA4ODkabNm0QFBSEYcOG4eOPP8axY8dw9OhRlJSUMEERFhbGxifeisujlAsPsLfMUd3Izs6GzWaTPF/+WI7EHHmpzp8/L5koqyHP3/bkk09i9OjR6NmzJ/Ly8jBgwABmDJGvsCWoLrhaJ5SOAVwZm5VEMf+sqa+QhxrxC4TkoSr84imlGGO13VycUWUx169fP2zZsgXLli3D3XffzfL/zJ8/H02bNsXzzz8vCeSuCW644QbExcWhZ8+eOHLkiGSwqAlo5hYeHi7Zhosg07+amIuPj8fly5eZBU1JzGm1WjYzpwq7d+9eaLVatGvXju1BCFzpLMl9wlvmqEFR5+SoIfXo0QOtW7fGxx9/DACSWABXIPdF//79MXjwYNYRKrmRSZQQfEZ1jUaDFStWsMUfamZypbx4rnDjjTfi/vvvx4kTJzBt2jQcPXoUBw4cYOUMDw9nQdiXL19mriayIuXm5rocRH/bbbexv8ePHy/JvXfs2DHJgKLX6zF69GiJi10O1RVHYi48PBxxcXE4e/YsFixYgD59+rCVjDwNGjTA0qVLMWXKFPZeZGQkzp49i/LycsydOxc7d+5UtEDyy//JYtm4cWNERETgt99+YwMQvyqRxFzXrl3ZcTwR80gdbVlZmWSQzMzMZM+ILFg0UVFa1CMnIiJCslBHacC6fPkyEzj79u2TPJeoqCicOHGC1WO1zdmBK3sUy2OF6tWrx3KM8dDgcfHiRSbUAGVxdvHiReYSeuCBByRJt8PCwuy+P3jwYBQUFDBBIG+rBA1anTt3ZnWErytVEXM0gWzbti3OnDnDrDq5ubmS2LFnn30Wn332GUwmExMLrg7ct9xyCwoKClgibd4IQXsrO7PMAZX1jb93ri7C+PDDD3Hx4kW2m0bbtm1RXl6OixcvMsscAFb3eMuc0WhEYWEhfvjhB/Tq1QtarRZ//PEHrFar4q4U8vg2Qk3MyY0cPXr0wIULF9hzUBJzajtB0KSCQioyMzMRERFhZ43jd7wxGAwsTx4ASf9IbaRDhw7s+GrlIqHljmWOvye33XYb6tWrx/YwVhqjlcQcPy4DlUYJei7yXHJ86jH+N3R/Fi9eXKVtzqq1N2v79u2xa9cunD59Gl27dkWjRo3w5ptvYty4cTh37hymTp1ancO7xAcffICtW7diyZIlbm2O7S4lJSUwm82IiopCXFyc4uzu008/xaeffqq44pDcrEDlIgJAuaIAwOrVq6HT6VhDSUlJQXx8PPR6PUJDQ1lnKl89w7uu+LQEf/75J958803Va9NqtXZL/qtimSOoI+TN1wsWLMDAgQMVzes33ngj5s2bh6SkJJZHTmlrK0LJMpebm2u3QoqH77jLysrQtGlTtGzZEk2bNmVijhpmTEwMSzHB445lbvDgwRg8eDAmT56M06dPQ6fT4bXXXkNOTg5atWoliaUrKipyukKWnoezYG9aNn/p0iWJy17OfffdZ2eZow6kWbNmqi6j4OBg+Pn5Ydy4cWz2mZ+fj86dO+PQoUOqljm9Xi9J8FndmEc6B3Al5ovfoYREbF5eHiwWC44dO4b69eu71MlrNBpMnjyZvVYasDIyMpi7GpA+lzFjxuDAgQNMoDla2UnH/uOPPxTdufLnTc8lJSVFslqet9gDld6R3377DbfccovieWnVaHl5ORo1aoQJEyawPVsJNTFHJCQkSBKKy8vorpgLDQ1lq/4J3jIXEhKC2bNnY9y4cQgLC2P9lati7sYbb0Tbtm1ZfLNSvJKSmPviiy+QkpKCt99+m+2Vyrv43VlRC1RuR5aeni7xXIWFhbExhVyNvJgDKuulRqNBcHAwunbtiqeffhqA+hZjcubMmaO6CwtZ5viJKp9PkK9r/G+UJjrp6emoX78+jh8/jvLychQXFyv2b7Nnz0ZWVhaOHz+Oo0ePSmJNlRKu02Q3JydHtVzVtcytWrUKKSkp+OSTT9iuKXL4sZHqulzMHT16FB07dmQimZ/s8Kma+N/QeL548WKsXr3a5fIT1RJzeXl5WLhwIVJSUnDy5Enk5uZi48aNmDx5sltiwBegjoPEHKDuslGzzFHj3b9/P1v1poRGo5FU7IyMDFZpqdLQilgiICBA0gBIXJlMJvTp08dpg+cbprtizmAw4LfffmOvLRYL9Ho9/P39kZiYiE6dOuHRRx9VzMwOVK6WGj9+PFq3bo3c3Fx07txZMRkloSTmHnnkETz44IOqKUvkMVr8M5JbEGNiYhQH4ClTpiA/P98lMRccHIxVq1ZJ9rRMTk5mDZmPqXBFzMl33lCDxFx2drbDjPRy+PvhKBRBo9HYfd6nTx+YTCYUFBSgsLAQfn5+iIiIYPWTLHP8NXrCMqfVanHnnXdKMupTJ05irl+/fggJCcF3332nGPejBr/wQ80yx8cU8s+lb9++EtGoFHRfWlqKgwcPIjc3Fy1btkRaWprinq7ydshb5hwlfU5OTkZGRgb69u2reH18ipmioiJERERIxCmgHPMKVGbEp7xaNJjxYq4qMXPkZk1KSpK4dHkxx99jpXg+V6hfvz6L4ZKLOa1WyyYcvJt13LhxACpjMvv06QMAWL58OTQaDU6fPu22mPPz80NsbKzkfptMJuaOp7ZosVhUd3vhrfhqEy+5p2rChAmqFrvg4GAkJiZK0oMUFBQ4tczxOSeByvqUn5+PW265BVarFefOnVPt36ifaN68OVtFW1xcjOLiYkUxR88mJyenxixz1L60Wq1qf+GKm/Xo0aNo1aoV0wr8mEGeNK1WK6mD/KKwqhimqizmJk2ahAYNGmDRokV45513kJGRgf/85z+47bbb7JJI+hLbt29XzF7OzwRoNjpv3jzFQZ/vZPkFEI0aNWKuTLJwqMG7TTIzM1mlpRl4QUGBxBTbp08fnD9/3i6LtaudTHXEnHxw52N9zp49K8k15wjKIk8mbjWUxBydQ22BizxNiDMx5wg+8N8Z/IzMYrGwusWfw5V0JyTmnD1PEnPOtheS46qYk3/er18/fP7556wzoxVmfJoFPkjbYrFg7Nixbou5SZMm2V1PYWEhmjZtKnHH032kiRO1kTNnzrgVw2s0GrFw4UIAlbGI8oH/8uXLGDhwIBN0/PPz9/eXzLiVxOCKFStw/fXX48iRIxg8eDB0Oh2LmeGRxz7R4JGSkqKYWkZ+TiWLCl0fUCk0qf4FBQVJAuRJzMknrf3798cjjzwC4IqFVZ7YG1C3zG3YsMFuYkeWOboW/joKCwsRGBgoEXl8XXA1NQmVk2KW5HFxCxcuZPeFnh9/T0NDQxEWFoaoqCg22dy3b5/bYo7g+/8bb7wREyZMQHx8PFv1WVhYqHptvOdCbeD//vvvUVJSgt69ezvM4QZUTtIuXLiAO++8k723d+9ebNy4Ef7+/oruWSobfx9p0kxxwJcvX0ZxcbFdHKoS9Exzc3PZpHzkyJGsbtEYSPteU35FnqpY5tyNo+evhcbJ0NBQnDhxgu26cvToUVx33XWs/fFijtzQ0dHREgHIi7mqbIBQZTG3fPlyfPTRRzhx4gQeffRRhISEYNGiRXj00Udx8803SzZd9hXKy8vRo0cPlruOhxYZNGjQgA3QN9xwA5o1a8ZmboSSmKMOimZUzpYk826EzMxMiWWOMo7z9O7dGzabDYMHD8bx48clrglXqK5ljufMmTNsoPH393eY445n9OjRmDRpEotfUUNJzFG8IB9cyiMPDucHQrm7mx+YgMpnd9999wGo3OLFnVkfb70pKChgYo7vpF1JROyOZe7ixYsoKiqqFTEXHR0tcf/TwMavzOPFXFBQEEJCQtx2s7777rvIzc2V/E5pgQDdHz4NAuGOZQ4Ae+YAJKvXi4qK2MpYWtEvd5F++OGH6NWrF26//XZFyxw/6UhMTMSAAQMkaVYIedyimptVHkcqT10ihxdzfP2j1eYrV65klhBaQasErcx0R8z17dvXLs8YnwCWHywpZk5e73lxUVXLnFzM0T7UGo2GxTVR3Bdw5Z4mJiYysRcQEFBlMQdUxlPOnj0bjRo1QnBwMEaNGsX6YUfHbdasGYutVrPM+fv7Q6vVYtOmTXjiiSfcLtvUqVPx6aefQqfTKRoe5NvNAVfEHB/m4KqYo2dKYi44OBhLlizBgQMHcOTIERgMBvj5+TE3a2RkpN3YUhXLnKPdfJTgJ4802SKPWdOmTXH+/HlYLBa0atWKXZNS/HFERAQzvlgsFvzzzz9s1yVXMyDwVFnMHTlyBKNGjbK7mdOmTcOcOXMwfPhwtsWPr0AWRT4errCwEIcOHcKGDRtw3XXXIS4uDl27dsUtt9zCOtPPPvuM5dsCpEHWcqHQrl07NGvWDN9++63DsnTr1g3Lly9n+6TyYg64slKIGjLlAfrjjz/w2GOPsYzqrlZUPu7NXTFHvn4StXv37lVcyeqMkJAQvPPOO07PrSTmqNNbsGCBYkocR2JOLnqo7K+99hqAyk6Rgm/VVompwQ86+fn5zM1aWFiIvn374r///S9yc3Odijl6jq6IOUrN4WivSDm8pdDZ/efFHFkuyGJ88eJFREdHq4o5wN6K5AoUy8PvTKBkuZAnt+XhY/ZcgR+AeDFHVl7aA5PKwvPMM89g8+bNDuOKiLCwMNx3332KeTLlljU+oTH/mTxdj6tiLicnB6Wlpaz+UZxc586dERERgbKyMtx7772KxwAqVxyeOnVKEmvlaswcf194yxxdY2xsLLPMyUVNVd2sSUlJyMvLkyysIEwmE3Q6HerXr8/iQSl4ffTo0Uzc831Abm5utcTc0KFD8eyzz0rKwO/G4agt0jk9HSsun1S8++67it+jOsMLDxqXyApOEzB3xFxOTo5kIWF4eDhatWoFPz8/tnAnPT1d0epMfZ47Yq468B4zoLJO02Kr6667joVSUQYB2jaSykr3buXKlUhPT2fegFoVc44S8j3yyCNYtmyZJIjYF6BZBT+DX7x4Mbp27Yq9e/cy1Tx8+HC7PHPPPfcci7PhVxBu27ZNknbAYDDgxIkTGDFihMOyjBkzBnl5eTh8+DAyMjJYpaFKSjPHn376CQ888ADL8g5UNm5Xl8sTJpMJVqsViYmJyMvLc8v0TAMHpR3Zu3evYkoMT6GUZ44E5Zo1a3Dq1CmcP38eFRUV+O677xAeHm6X9kMp/oZEIFl1aKLSo0cPjBkzBn379mUr/VyFbycFBQXM2lpYWIgNGzbgtddekwymargq5nhR5o5ljo89cSbm+DKQqCY3686dO3HjjTc6FHNVSS1DYoHfmcCRZS4hIUGy+8i5c+fQq1cvt87JPzs+dx2lJYmJiWGdtdouBWpijo/hDAsLw+DBg1kd4Lchk0/G+EGRf9Z6vR6lpaXMreyqmCOLNt235s2bQ6PRSCzrjtBoNHaxdo4sc7xHQZ4Alsr61ltvQa/XIz4+XlUs8XXbHTFDLuMTJ04oijmgcjJHYo4muHPnzmVl4MVcTk5OtcScHIqVttlsLos5V/PbucqDDz7I+sA1a9aoLkajusgLj8zMTOj1esTFxcHPzw95eXkuxQQDUsscWd7kUPjRb7/9JlkdT9BE3NWEwdVFnk8WqNzeLjg4GElJSWwMrlevHkpKSjB27FhmGODFXFZWFnQ6HVq2bImAgIAq7V1drQUQjhgwYIBi+o66zNChQzFq1Ci7nRcsFguOHz/ucF9M4ErHyVvmmjVrhpEjR7pdFpp1ZGVlISsri72mc9CM8YYbbsDXX38taSw6nU5171c1qCNLSUlBWVmZnavREVQhqaPk8zXVBEqpSXhxN2vWLDRo0ACzZ8/GiBEjFFcj8o1dq9VCr9ezyQcJG61WiyNHjuDnn39GdHQ01q9f77ZlDqi8H2+++SYKCgrYYCa35LgaM+doI3EAkoHVHTHH3w9nAzhv9SLxEBoaitzcXBw+fBjdunXzuGWOnjcJqfLyclitVrv7FhwcDL1ej4iICIlrw536zEOih08vQGWIjo5m7UZtQFXbwJwXc8HBwQgNDWWxmI7qGC/maBcV/vx0X/Pz8xEQEKBaLroushBS//HQQw/h559/dlrPHOFoAQStJAWuCMmysjJJAtiHH34YxcXFaNWqFXbv3q2YKomv2+4M3NQ3Hz9+nNVPukf0LBs3bszEHCXS5ifGvIiuCTFXXl4Oi8XispirzrNSY/r06Xj77bft9mnmUXKzUsysn58fjEajW5Y5eqbp6emSMY8nIiICe/fuxYkTJzB06FC7z6n/c3UrReKrr76yM9C4A3++DRs2oGXLlvDz82PPxmAwsL/JasnnoOR3swgKCqqSZc49Z7GbkAL1JeS5c2iGa7FYVFefEosXL8b27dtdqrjOoIp96tQpVFRU2LlZaXBRKlNVLHNyS5w7lrW3334bJpNJsgKwOtumOUNu2SkvL0d5eTneeecdTJ48GfPnzwdgn6yRUBIr/PG6deuGOXPm4JFHHvFYJ02WKzUx52zm6qzuEXw6CWeTj6ry6aefokOHDjh9+jRzEdGgY7PZMGTIEKxcuRIlJSUoKytzKub27NmDhg0bqgbrA1fc5HwyU8DexRYSEoKEhAS7Abiq5OXlYfr06fjggw/Ye6tWrUJQUBCio6Oh0+nw2WefSeLreGhnDTlKO2A8/fTTMJvNCAkJwcsvvyzZfovgxRnFqwFS92tQUBATAmpCh+6N3DIXGRmpOEi6gyPL3K+//oro6GhkZWVh3rx5+PLLL9ke03Lh0r9/fyxduhR6vd5uUZI7ExWe0NBQJCQk4NixYyxIPywsDJcuXWJ9YGxsLDNEmM1mGI1GyX3kQyeys7M9KuaonT/zzDMuizlPrAyX48xzBCi7Wfl7ERYWhpdffhkAXMo5GxISgpiYGIwdO1b1N02bNmULhZRS55CY43OuusKYMWPc+r4cPpH0pk2b8J///AfAlbGG74vmzZuHDh06oKCgAL///jsAqZhT2p/YFWpUzPkicrcIb6VzNqDWq1ePPcTqQg2F0i7QQEed2IkTJ+Dv76/YiQQEBLhtmZPjjpirX78+PvroI4mp2ZUtr6qKXMzRoOFsE3USVM5Ejp+fHyZMmFD9gnJQgCyJEXkKFWdi7q233kJiYqJiEmAeXkRXxYroCoGBgXauFxp0unTpgsjISCYOCgsLJVnq6ff88+vcuTNiY2NV92u12WzsftFEixLgyi1zUVFRrJP3VNxMYmIisrOzmbvo+++/x7PPPsuuSb4AikfNMpeeno4333wTUVFRLH1Njx49sHbtWgDqcUr8RJF3jStZ5hwJAT8/PxgMBjboueIGcxVHMXObN29G//79sW7dOpYMlibM8udFdX3//v124sKVxN1qJCUlITU1lVlIEhISJGKOTzNhNptV9y3VaDTIycmpdl/LQ1bvhQsXomfPnooLeQi6X1VxyXkCZ2KOv2+u1i9+oYVSP92mTRs2zij19zTu3H///S6dr6o0atRIIvCHDRuGc+fOoUGDBrBaraxuUZgEXz/CwsLw/PPP44MPPmDPTm6Zq1NuVl9FvkWJO2LOk8hn1NRxN2zYEEajEX/++afdjJEoLCx02zLXu3dvSXBmVfIE8mVRykvkKQIDA1FWVsYWqtAAJr9e+UIIyqzuyAJUUxgMBlRUVLAAYblwcbaPsdFoxMSJE526lAICAhAUFIQHH3zQ7TIeP36czRTdheoLzYypU01NTVW1zPHXfOnSJdV7YLFY2DOmgH2yTMvvx/vvv88CuD09wPKrIJ1NHIioqChYLBZ89dVXbDutkpISZGVloUGDBnjqqaccpiiSExoaikGDBmHdunWS96uyvzK/i4InxZwjy1xKSoqdFZb6WHl5qT0XFxfbWeY0Gg1yc3Nx/Phxt8tHi70uXboEjUaDX375BbNmzZK4xEjMKcUPT5gwAffffz8GDhzIwnA8Vdfat2+POXPmAKiM83T0DJ955hk89dRTklyWtYlSzBwv5nj3r6veKv5alMQcv4hJKV2Kn58fbDYbS51TUyQnJ9ulJUtMTGTijSYiZJlT6rd5d6on3KxCzMmgmTSlGuDzwNSmmJNDnZ+fnx86duwIs9lsV5lp0KFNxd0Rc35+fhg7diwOHDigmCLBXZzlaqsOvEuJ/18eCM03iMuXL7NtleSZ7msDehY0cMndbEquuKqSn5+PRYsWuf275s2bS7YhcwcS1mRJIMvuuXPnFBdAAPY7mKjdA3pfr9cjJyeHxV2NGzfOLo1QREQEs0i6I5IcQTtp/PXXX6ioqGCuTFcYPHgwQkNDMXbsWJZwloS8q4KQx9/fH6tXr7a7bnmbcEXMxcTEMFeuO7nanKEm5ioqKnDp0iXExcVJBmqyXMr7K778Sv2JyWRyaa9dpd/t2bMHEydOhM1mQ4MGDSSJpw0GA6xWK9v1Ry7mGjRogG+++QZJSUlITk5GRUVFtfb8lkNpW86fP++wDzeZTJg7d67HF0C4ilLMHC/m+LQursb1ff755yy/oZKYI9c4UHuLHJTw8/OzC9fx8/Nj9ZQsc2RBVhKzQUFBKC0tRXl5uUfcrELMySDBRiLOW5Y5OXyaCaoo8vLs27cPt956KxNzVZkttm/fvkpWHTk1af2ihkGdCA1g8k6NnuGKFSsQHR0Nf39/FBYW4sUXX6yxsqnBd8r16tWzyxOolNuwqvj7+3tMyLhKu3bt4Ofnx4RyQkIC/P39cfr0abv9I3krEm+NU3Mt0PsJCQnIyclhCxDeeOONGt3Cj4iKikLbtm3x559/sjrnqvgxmUx2W2qRkPdkKIK7blag0g1Pq3Q9mcohICAAfn5+sFqt+Pnnn9kimaysLJSVlSE+Pl4S8/b6668DULfMAZ6dHBqNRtV8lHw58vPzFd2sREJCAtupwJP9XZMmTVg6mLq8k5LczZqTk4Pdu3ez5/bTTz+xsCNX4/qCgoLYIhUlMccnta6LxMXFQavVMkH69NNPY9myZZKYOoK/f3LLXHp6ukQMu4IQczKo4ZI1gBdzapsU1wZ8igLqCOWdTExMDLp168aW89dWrh0l3E3E6A7kwiVXG1kA5GKO4oF4URscHOyVGV2XLl2Y5VS+OOSHH36osfi22iI+Ph7l5eWSWJHy8nKMHz8eNptNUcxZrVaJdU6+KCQjIwNPP/00E+UkgqlN1mb97tq1Kw4cOMAGLnfcknLRVh3LnBpVcbPGxsayQdbTi2V0Oh1++eUXDBs2DN999x3y8vLYIpH4+HhJmMGOHTsQGBhoFx/GP19Phm04s6LJxZza9/lV3Z6+f3fddReAqu0EUFtotVr4+fmxNjFgwAAkJyez/rZfv354/PHHAbi3FzOJf7V7OmHCBDz//PPVKXqNERcXh+bNm7PxLyAggD1LOTQhLCoqkuRZDAoKwooVK9CqVSs8/PDDLp9biDkZfK4boLJBk5Wjti1zann61MQcvWc2m93OFedLUD47yjnGW+Z49yWJPU/Fs1QH2u7lq6++smvc3hTdNQm/N6SSm5X2YSTklrmdO3di3rx5LC6KLHNqAfM1SYsWLSQ7q7gj5sjyRPcgLS0N/v7+HhUocsucIxFC0AQiMDDQo25WoPJaKUG2xWLBrFmz8McffwCoFHPz5s1j4q6goABvvfWW3QTQ39+f3WdPWuac9eP8vrWO+lHeSuRpMUeZAWgbybqIRqORLGai8AfepUhjlTtuQwpxUrunc+bMwcyZM6tU5ppm3LhxbAWvM9QsczwLFy50+d75rJg7e/YsoqOj0adPH/Tp08ftvDJqKFnmOnbsiJCQkFoPnKfdAeR7xVIDUXr4lIlfLeliTfPvv/9i/fr1NXoOk8mEBg0asM6Dj5njrSDu7k9b0wQHB2PMmDF2K/HqSvk8zU8//cSSWStZ5r766ivJrgdyMUeDBAXpN2zYEFlZWcjOzkZgYKBL1t/du3crbtrtLi1atIDFYmEJfd0Rc4mJifjqq69QUlKCkpISpKWlITY21qOu8KrGzAE1k8JGp9OxUILAwECsWbMGnTp1wpNPPonExER07twZjz76KPu+2m4ldA2edrM6grfMpaWlqbrDecucp8eGxo0bY86cOZgyZYpHj+tpAgMD8eeffwK4ct94bxaNVZ60zNVl7rrrLpfDlKgPWbBggUTMyRehuZpmxWfFHFC5AnPTpk3YtGmT6izXarXCbDZL/jlCLuby8/Nx1113ITU11SuDrslksksT4ijHUmhoKCoqKiTbodQmrVu3Rt++fWv8PE2bNmUiVx4zt379enTq1Il919NWh+oiH5g8kZewrkK5JpVWtr355puSfT/lblZ6ruSSa9myJWw2G44ePeqyVa5z5852OxRUBVqdtnz5cgDu1yk+CXh6errHU/dUJWaO3Lw1ERKh1+vZBDs/Px/79u3DQw89hI8//pgFjvOCWE3M0XOuCTdraGgodu/ebfc53bfc3Fykp6erxmnx9crTfYxGo8GECRPqfPhFdnY2VqxYgQMHDrD7yi9kIk+XJy1zVwtU/9955x3JDihPP/205HtqKZvk+LSY2759O3r27InJkyerpjWYPn06TCYT++csmS1VPt4yZzAY6pTLksQczWB4+A78am4M4eHhzBUuj5nr27cvNmzYwL5b1yxf8oHJm6uyahpyifOzSz620ZGblT4j1znF4x0+fLjWA8MbN26MoUOHYu7cuQDcT+VBzzwjIwNpaWkejZcDqhYzR2kelBIYVxfeEnvu3DlUVFTYCVgld5wcg8GAsLAwjy50ob68TZs2ioHpdN9OnjyJ8vJyVTHH1+OruQ27wtGjR9l95Q0mRqMRHTt2dMvCOHfuXIwcOdKrCw5rA34CwFvmPvroI0lf6Gr79FkxFx8fj+TkZGzZsgWXL1/GsmXLFL83adIk5OXlsX+UK0qNwMBA6HQ65ObmorS0FFartc6tKHIk5niLhTfyqdUWtIchoLyale8I6pqYk1vmajKNi7ehLar4vYObNWvG/uZdjc7EHKWhOHz4sFfiDPmtjdwVc1QfzWZzjYi5qrhZaQ/qmgiy58UXbY0ln1y6apnzdPugslHdlEM7Z2zfvh2A1J0q59FHH5XU52uVQ4cOsefJT1b9/PywZ88edO/e3eVjtWnTBkuWLLnqBTJvEZfHzAUFBeG9994DcBVZ5tLT09GjRw+7f5TPRqPR4J577sGBAwcUf6/X62E0GiX/nEG7QHhj1Zwr0MDgTMxdK5Y5tTxzdJ/qmpuVOrugoCCWNfxqJTExETabDe3bt2fvGQwGNtHgLXZqblYScyaTCbGxsW7nUPQUZBkE3BdzVActFkuNWuasVitbJexMzFF76dmzp0fLAkgnUBQOIe+PeMuco5g5T4u5vn374qOPPlJNURQQEIARI0awbcYcpcNYsGCBXfLYa4k//vgD9evXx7Fjx1BYWIhmzZp5JE/ptUCzZs1Y2ysvL7fr01588UUkJiayhUTOqPNiLi4uDtu2bbP7x8fgbNmyRXGftqpCVp///ve/AOqemKOB8M4777T77Fpxs4aFheHkyZP4+++/VVOT/PLLL7jjjjucbhxf29AgNnjw4CpvAO/rJCcnIyYmRjLrdGSZCwwMlCTl9EabJEsWUHUxV1BQwBLnepKAgACYTCakpKSw1b6ueBSys7PtdpPwBHwy3z179gCw9xTw91DNzXr33Xer7ntbVYKCgvD00087TGRLVpGbbrrpqu5Hq8vNN9+Mnj17Ijs7GwUFBRg6dKi4Xy6i0WgkyaqV+rQ+gDQtAQAAZitJREFUffrg119/del4dV7MqbFt2zZ07NgRPXv2REpKCkaOHOmxY5tMJuzYsYMtf65rbtbQ0FCUlZXhgQceUPyMuJobFcU2dunSRTVp8C233IKVK1fWdtFc4syZM9f0DNZkMqFZs2YuibmcnBw28JMg8Eab5N1H7lp76fsXLlxgiXM9TZcuXfDXX3+5JebCw8M9upUXoeTClFvfeMucWijEuHHjMH78eM8WzgUSEhJw/vx5lk5FoE54eDjL/1jXDB91HT4cSOne3XPPPTh+/DguXrzo9Fg1l9m1hhkwYAAGDBhQI8cODw9ns0mg7lnmAKham/iyemubl9qAT+CsJubqMvIVytciJpOJrXgMCQlRdbMCV8QQTVC80Sb5GB53A/JJuFCalJoQc127dsWnn37qlpirKUaOHIk+ffpI4s3k96wmRKQncbZYTlCJEHNVx5mYGzBgAC5fvuwwgwXhs5a5mqR58+aS7ZbqmmXOEddKY+ItI1arVXGvPEHdhu/IIiMjYbFYcPr0aezatQuAdKWr3DLnyVQVVcHd4Gw/Pz8EBQXVuJjLyMjAwYMHAXi/36pXrx5WrFih+nlN7hIjqD3CwsKQnZ2NwsJCr9c5X4OP4Vcau/V6vUtCDhBiTpE2bdpIXvuSQHJ1Q+OriZKSEp+yygkq4cVcREQECgsL0aRJE3Tr1g2AspijtsjHr9Um1UniGhwczFZ21kT+MFoxTElH68LAOmTIEJSWltpZXQGRzuNqITw8HIWFhbDZbD41VtYFnFnm3EGIOQV8WcwRlKz1auWOO+5Ao0aNUK9ePZjN5jqXfkTgHHKVa7VaJCYm2m1+riTmaAWzt8Tcm2++qZrT0hlkmQsPD6+RRNGRkZFo1KgRNm/eDKBuiDmg0gKnFmPYvn17LFy4sJZLJPAkvOXIF8dKb+LMMucOQswp0K1bNyxYsIC9ruuxHXL27NkjSZp7NeLv749x48ahpKQEp0+f9kiWf0HtQrPS0NBQtGrVCkePHpV8zsfMUUdHaSJ8MbdXcHAwSktLa8TFSrRq1YqJYl8YWA8cOICHHnrI28UQVAMh5qoOP6mr7uRLiDkF/P39JfsG+po7oGPHji772X2ZoKAgFBUV4dSpU2jSpIm3iyNwExJzYWFhaNmypWQPYpvNJrHMUSqPyZMnY/fu3XV+myMlyDrl6bQkPJQLLygoSMSkCWoFfjFaXbEG+yLV3eVEiDmBzxIYGIiioiIkJyd7NM+goHagQUCn09lZ2vr06aMo5rRareIWTL4AibmatMy1aNECgG+t7Bb4NsIyVz1oH/HqGo3E1M0Bq1evxpYtW7xdDIEKQUFBqKioQGpqqrDM+SBkmdNoNHY5Ebds2YJevXpBq9WitLS0Tu2NXFVqQ8xREmqlBQcCQU0gxFz12LBhA06ePFnt4wgx54BBgwZh0KBB3i6GQAU+llGIOd+DxJyfn5/EVUNYLBYEBwcjLy/P5+JWlagNMUcWzNLS0ho7h0DAYzAY4O/vr7gllcA5JpOJWeeqg3CzCnwWfoAXblbfg7fMKYm5zMxMljvwahgkyG1cG2JOIKgt+PZ7NbRTX0VY5gQ+C60ECgkJ8cmA+GsdGgA0Go2i5S0tLQ2PPvoo/Pz8MHr06FounecZOXIkjEaj4lZXnkK+/6lAUBuEhYXBYrGIxO1eRIg5gc9CAqBJkyY+t+JYILXMKT0/q9WKhIQEvPzyy7VdtBph9OjRNS5KxWAq8Abh4eEwm83eLsY1jXCzCnwWXswJfA9yyfTo0UPy/n//+1/2t3xhhMA1atKVKxDICQ8PFy5WLyPEnMBnITeriJfzTTQaDU6fPo05c+ZI3h81ahT7W4g59zlz5gz++ecfbxdDcA0RHh4ucsx5GZ8Qc/n5+bjxxhsRGhqKf//9l73//fffo1u3brjllltw4cIFL5ZQ4A2EZc73adSokV2yTH6/QiHm3Kdhw4Yidk5Qq9x00012FnZB7eITMXNBQUFYvXo1XnzxRfZeaWkpZs2aha1bt+Lvv//GtGnT8Nlnn9n91mq1SrYFEn79q4fY2Fi0aNEC3bt393ZRBB5g9erVdukNIiIivFgigUDgChMmTPB2Ea55fMIyFxAQgOjoaMl7J0+eROvWraHT6dC9e3ccOnRI8bfTp0+HyWRi/+rXr18bRRbUAiEhITh27BjatGnj7aIIPMCgQYMwZMgQyWIIYZkTCAQC5/iEmFMiNzdXkhW+vLxc8XuTJk1CXl4e+yfcsQJB3adDhw4AhGVOIBAIXKFOuVnT09MxbNgwu/dXrlxp16nLl0KrLcnX6/Vin0KBwMfYuHEjtm7dKtquQCAQuECdEnNxcXHYtm2bS99t2rQpjhw5gpKSEvz9999o165dDZdOIBDUFmFhYTWaXFcgEAiuJuqUmHPEwIEDceDAARw/fhyPPfYYxowZg2effRa9e/dGYGAgFi9e7O0iCgQCgUAgENQ6GpvNZvN2IWoTs9kMk8mEvLw8ScydQCAQCAQCgS/iswsgBAKBQCAQCATXoGXOZrMhPz8fBoNB7OcpEAgEAoHA57nmxJxAIBAIBALB1YRwswoEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DDXnJiz2Wwwm82w2WzeLopAIBAIBAJBtbnmxFx+fj5MJhPy8/O9XRSBQCAQCASCanPNiTmBQCAQCASCq4mrQswtXboU0dHR3i6GQCAQCAQCQa3j82KuoqICP/30E+rXr6/4udVqhdlslvwT+AYWiwVr1671djEEAoFAIKjT+LyY+/bbbzFs2DD4+SlfyvTp02Eymdg/NdEnqHu88MILGDhwIHJzc71dFIFAIBAI6iw+LebKy8vxww8/YPjw4arfmTRpEvLy8ti/Cxcu1GIJBdXh3LlzACqtrwKBQCAQCJQJ8HYBqsM333yDe++9V9UqBwB6vR56vb4WSyXwFOXl5QAg0sgIBAKBQOAAn7bMHTlyBIsXL0b//v1x8uRJPPfcc94uksCDkJgrKyvzckkEAoFAIKi7+LRlbsaMGezvTp06Yfbs2V4sjcDTkJij/wUCgUAgENjj05Y5nj179ni7CAIPIyxzAoFAIBA456oRc4KrDyHmBAKBQCBwjhBzgjqLEHMCgUAgEDhHiDlBnYVEnIiZEwgEAoFAHSHmBHWWumaZ27x5M3766SdvF0MgEAgEAgk+vZpVcHVT18Rcnz59AIi8dwKBQCCoWwjLnKDOQiKurog5gUAgEAjqIkLMCeosIs+cQCAQCATOEWJOUGepa25WgUAgEAjqIkLMCeosQswJBAKBQOAcIeYEdRbhZhUIBALfZsmSJbj++uu9XYyrHiHmBHUWYZkTCAR1nQsXLqCiosLbxaizPP300zh48KC3i4HvvvsOFy5c8HYxagwh5gR1FiHmfJtLly6hT58+yMvL83ZRBFchdcFiX15ejqSkJLzwwgveLkqdpa4I3REjRuDGG2/0djFqDCHmBHUWkZrEt1m8eDE2b96MDRs2eLsogquM7OxsBAQE4Mcff/RqOYqLiwEAX375pVfLUZehvJx1IT9nWlqat4tQY/i0mNu7dy969uyJ3r17495770Vpaam3iyTwIHU1Zk6IS/eoC524Jzhz5gx27Njh7WIAuHruaVXJzs4GAK/vyFJUVAQAyM/P92o5XKW8vByffPIJMjMza+2cVFdLSkpq7ZzXIj4t5hISErBu3Tps3rwZTZs2xfLly71dJIEHqQk362+//Yb//Oc/1TqG1Wr1UGmubjQaDQDvC49Lly7h8uXL1T5O06ZN0b17dw+UqHpMmzYNfn7udd0rV67EsWPHaqhEtQ+1QbPZ7NVykGUOANLT071YEtd4//33MX78eKxatapGjv/ggw9i586dkvfIzerNfpM3CBQUFHitHHJmzZqFwYMHe+RYPi3m4uLiEBwcDADQarUICLDfncxqtcJsNkv+CRyzbNkyNG3a1NvFYLNeT4q5kSNHVns2f7XMMDds2MAsHJ7g7NmzOHToEHvtCTH38ccfY8mSJXbvuzNwPv3003jqqaeqXAaitmJ/jh07Bo1GI7mXPEuXLgUApKSkuHzMO++8E61atfJI+eoCFosFQN0Sc7/88osXS+IaVKeobXoSm82Gb775BmPHjrV7H5Deq9qG77M9MbHzFC+88AJ+/fVXjxzLp8Uccf78eWzYsEFR4U6fPh0mk4n9q1+/vhdK6FucPn0ap06dqraIOnLkSJUbTkVFBTu/J92snrASXS2Wub59+1bbSsnTqFEjtGvXjr32xIDx1FNP4YEHHpC89+uvvyI+Ph7//POPS8fIzc31qVgZcuWquXQpzcNff/1VW0Wqc5CY27Fjh0TYl5WV4eabb3Zr9eTu3btx7733VqkcvECpTddlVaH7VhMT0sLCQgBAUFCQ5H3qc73Zb/LXe+nSJa+VoybxeTFnNpvx4IMP4quvvoJWq7X7fNKkScjLy2P/rualyZ6COih5HEhubi5WrFjh8nFat26N6667zuF3Jk6cqDjoU8cA1L0YtatBzNE9PXHiRI2fy9Nu1uPHjwOAy27D0tJS5OTkeLQMNQlNXtRcqREREQCA5OTkWitTXYPvH2bPns3+PnfuHDZt2oSpU6e6fKzHHnsMP/74Y5Usr7yY84WYberTa6KstGqdvGVEXXCz8tdbFTH33HPPITY21pNF8jg+LebKy8tx//3344033kDz5s0Vv6PX62E0GiX/BI6hDkruwpg2bRruuusunDt3zuVjZWVlSV4vXLhQ4j6aOXOm5HOr1YqBAwdi//797D0SHr///nu1TfWeWFnli27WH374ARqNhpWdBsOaHIBqwpUDXBksyMrgjNLSUuTm5tZIWWoCGvz8/f0VP6dB8WqYVFQV/tnHxMSwv8+ePQsACAkJcflYJJ6r0q4pFASo22LOZrNh586drE+viT6Mjn01WubmzJlTp9yzSvi0mPvhhx+wY8cOTJs2DX369MH333/v7SI5paSkBI8//rjLbp8XXnihWjOCTZs24dtvv2XnXr9+vdPfqFnmDAYDALh0DDUefvhhdOjQQfXzU6dOYe3atZK8TWVlZcjKysLtt9+Ol19+ucrnBq50LNWx9vnSIJqZmYkTJ07g448/BnDlmVIQcG0IU0/HmpGY460zjigpKfFJy5xSDDBwpX36Uj2sKjNnzsS7775r9z49e6PRKKnDJOYCAwNdPgfd76rcT3oWQUFBDsXc5cuXodFosH37drfP4QkWL16Mm266CX///TeAmhGedVnMVdcy5wv4tJgbMWIEsrKysGnTJmzatAnDhw/3dpGcsnXrVixYsIANrs6YNWtWtWYEN998M+6//34AwNSpU9GvXz+8++67Di1TapY5cmOvW7cOW7ZsqfLqYSUhRQM+day8O7y8vJz9xh2roBJ03dXpzOrKIFpRUeHUwti5c2e0aNGCWTJoEKwNyxzh6XOQ+9Edy5zFYvG4cC0sLMTw4cM9PmOnNqBm2aT6582A8tpi4sSJmDRpEoDK+/Hf//4XQOWz9/f3h8FgkNyHM2fOAIBbiaqrY5mjcxuNRof1nEICajLjwuHDh9GzZ0/FBV5yl7wr10qi57333nMppEFNzNWkm9Vms9ldS15ent2KWv47GRkZHi9HdfFEXLhPizlfhGaOCQkJtXre9PR0JpAmTZoEPz8/HD58WPG7apY5EgAbNmxA7969MXToUI+Vj85JFiN+9lRWVsY6hOpaedQsc7/88ovLgzLfMWzbtg3r1693e2D94osvoNFoFMVYQUGBSx2fv7+/01WaVN/kIq42xRzdr5iYGHz22WfVPh7dayXL3Ntvv213T+j8nna17tq1Cz/88ANmzZrl0eNS3VSrA+5a5jwds2g2m6HRaGosvYUSdA0UlmGxWBASEoLAwEDJfaDFEMnJyS73FZ6wzDkTc1R+uUD/+++/cc8991R7kgpU9mHbtm3Dn3/+afeZXPA4a/eHDh1CXFwcVq9ejZdffhl33XWX0/NXxTK3cOFCHDhwwO59q9XqUr396KOPoNfrJWLovvvuw0033ST5Hl2vn59fndyRxhMTMyHmahmaOep0OgCVMzUyfTti0aJFVTpfs2bNAFQmWJbz9ddfK/7GmZhztzGo5fXhGyBZWZS+W1ZWxjojT7nsqHGXl5fj9ttvxz333IMvvvhC9ft8WflOqWfPnujXr59dB+YMyhhfVlYGm82GmTNnss7QYDCo5jM7cuQI9uzZw+IOP//8c9VzHD16lP1Nz47ub22IOTo2PbuMjAxMmTKl2sel+68kzl5//XU7qzeVw1Ou1qeeegrbtm1j7t7Tp0975LgEPRu1Dt7dmDlPP2Oy8qxevdrl3+zdu1e1H9i1a5dTMSOvr4WFhQgODkZgYKDkPlEb2r9/P+bNm+dS2apjOaJzGwwGl+4zL+bOnDmDLl264JdffpGsTL548SI0Gg02btzoVllodbeSxVp+bc4sc/Q8du3aZVduNSh0SO7idiTmHn74Ydxwww2S98rLyxEYGOhSOiFKB8N7kajf48cKut7o6Gj8/vvvqml/nOHptkRxsXzsZVURYs6D9OjRA2vXrnX4HWoc1OCmTJmCBQsWqH6fHvZDDz3E3isuLnY58SGtfDt58qTdTIcEpRw1N2thYaHiiuGVK1fi1KlTqmWgRRDy8/Odjlom9dDQUJSXl3tMzMndrNnZ2fj9998BqN8PQNr5ecJdQNdRWlqKw4cPY+LEiRKhIxff+/fvR1paGlq3bo3OnTuzFCClpaWYNm2a4jn4lcRqbtaayJ1GwpfusdVqZX+7K3qVoPvvao48OnfLli2ZmyslJQUJCQlVSlny8ccf495772V1tqbEnFoHT+3T1dm8Up4+4syZM2jYsKHdQiVH0H2nvsUZZWVl6NSpE8aPH6/4ebdu3ZzmwKMJJLVD3jKnJOaASqu5K1R3AYRGo0FISIhLljke3t3H9ykklh3FJv/222/QaDSSPpQEipKYc9cyR+KNJkx6vd7h94uKivD0008DsL9Wd2Pm6Lp/++03PPPMM+jbt6/qdynkgp/YKeW148Vcenq6JIVSRkYG3nvvPZcsgZ4QXTw05gjLXB2ipKQE27dvx6hRo1S/k5aWhj/++APAlUpRWFjosJIrBfL26tWLLUZwBg0MSmJLSZjl5uayHE1KlrnExES739x5553o3LmzahnoWuVxAbyrk77Di1SdToeQkBCUlZWxzkcuPg4ePIgffvhB9dxy5GKO7+QcdeZ85+eJ2Cu6jrKyMpcsLR06dECPHj0UP3vjjTecno8GQ7mYA6Sdb3FxMS5evOj0eI6gjonuU0lJCXuu7og5pc51y5YtzHXsauwL/7zI+rpmzRqkpqZizZo1LpeHJyYmhl3nkSNHqnQMnvfff5+ttPe0ZU6exJVn2bJlOHfuHJvQyLHZbJI2Z7VaMXr0aACuizlKbuwoybGzQZLqL7VDi8WC4OBg6PV6yX3Iz8/HmDFjMHr0aJw/f96l8jlzazuiuLgYgYGB0Gq1brtZ+Wvmz00CxdFEizw1fDgKhdHIxdzBgwcxf/58yXvO+jAqJ1mzHU10Aam3Ru0+WK1WPPzww6qinqDJUYMGDTB37lyHezsriTlCaaUxv/KZnsmLL76Il19+2aV+z9U4XSI/P1/ybGfOnCmpAzQGCzFXh6DBylHiyIsXL7IK5KqY42dE9Ftnbtni4mLWQVG5lKwHSmLu1ltvxcmTJwEoW+bUYv0cubCUElUuXLhQ0uiV3KwhISEICAhw6Gbt3r17lRa+8FYjwlUxl5qa6vb55PCikhqyzWZTtBTRs6yOBYjKX1BQgNzcXIm45+vs2LFjq51Ym+o2L5irIuaU2kXv3r0xd+5cAHBZdPLPjo5Jk6SqdqIxMTHsOouKiqq9ldOrr77KJk/OxJw7MXPOAqvj4+MBqO+oMXr0aEmKlL/++ovVf3617apVq1Q3vSeXXXVW5dNgTe3GkZvVYDCgdevWOHLkiEvWFupTOnfu7Lagqw0x9/vvv0Oj0UjEMPXd/CRXbn0n5EKO/52cI0eOIC8vz04kORNzruTbs1qtWLhwIT755BOHxyJh6MqqU6qbSpY5fhEdb5kjqB7TtVL7mzFjBuLi4hTP565lzmg0on///uw1TSapjNSGhJu1jnD27FmXsrHzYoEXc45EBG+Zk3fMSo3GZrOhWbNmiI6ORllZGRtElRKMKjXQffv2sb+VLHPx8fEuxU/wZS0qKsKPP/7IVtUClbESSpY5/pyBgYHw9/d3KObo/rjqcnNkmXPUGfPf4+MtwsPD2d/urEji3azUec2fPx/16tWz+y6JFk+4KAsLC9GmTRu89NJL7D1eJJJrqjozRXqWvGWOnqs7KSOclcGR5YWvJ3Ix9+uvvzILelWvMzo6WtIBuxL36gi+7rhqmXOl7I7St+zduxePPPIIAKi6mymulsrHWyZ4AfLpp58qigbAsZhz1c0vjyFVc7Pm5+fDaDQiLi4O+fn5LlnR+T2g3Z0wFRcXIygoCFqtlp3r33//tbMm0XW6Iubk2+Bt2bIFgNQCLBdz9FyCgoLsrEcUN02Eh4er3pfWrVtj0KBB7DX1Tc7crPQMdDqdqhfD1bbmTMxZrVY88sgjOHTokKKYI2644QZmZKAy8QmNaUIbGhoqOe8rr7yiem6LxYKioiLMnDnTad2l57dp0yb2nnyxDT1HR/HariLEnAdo1KgRBg4cyF4vXboU27dvx86dOyWLDKhiBwUFoaioCDabzS03q7wBKs2mL1y4gIsXLyI3NxeFhYUoKChA586dceLECTurIYm548ePK67kVLLMGY1GVvkBdQEkt7rde++9dsvynblZAwMDERAQ4DBmjvaQ5YP9HSEXc65Y5kpKSrB48WIAla4lfhupqKgoNGjQAAAwZMgQu9+mpaU5TMVy6NAhSeepBLkVTSaTw++5QmFhIZvh04yUH8Do2TpyYZaVleHZZ59VFdDUaVfXMsd3/kppWMxms+piHF7EyAeUn3/+WfEc7qDT6SSDcU5ODlq0aIEZM2a49PvVq1dDo9Hg33//BXClPlCfAABfffWV4ozdFcvc+fPnodFosG7dOtXvDBgwgA38zmIHqQ7yfUhxcTH27t2Ly5cvIzMzU9UFRaJbKQmykticMmWKw51JKioqmGVO7mYlyxzVY1dii/n2KZ/g7t69GxqNRnVwV7LMPf744+jbt6+kn6DPlMRccHCw5BqoLhQUFODMmTPM/c73x1ROefhETEyM3XOQ5yuMj49XDVsBKuNz6Z4ouVlzcnLsRC9di8FgkNxP2q0FsK+vamKIrlMtjvPMmTP48ssv0b59e4eWOeBKfVUaP2jMo7riikGgqKgI8+bNw8SJE1nIlBpKHhw1MffRRx85PbczhJhzwpkzZ1zOCUeMHDkSPXr0wNChQzFq1Ci7eA+j0YiioiKUlpaivLzcZTerXGwouZl4C0FBQQGKi4vZnrX8DEFeXqXEnGRNSU9Px+HDh1FQUICQkBBJp6zWgcuFWlhYmOTzyMhIp25WEnOOYuYaNmwIAMw17CquxswdOnQIU6dOxSuvvAIAaNWqFRvY6NrIdL9mzRqJu9lisaBevXosNxYPXcftt9/utKw0GLoaJ+kI/v7GxcUhKipK0jFT5vwnn3xS1W22Y8cOfPjhhxLhoiTMq2uZkwttpYnD559/jnHjxgGQxoXyAx//u+LiYokVrLi4GKdPn3Z7tXhxcTEbyHU6HfLz83HixAlWT5xB52vbtq0kkWxZWRkbmHNycvD+++8rnpv/XwmyHtOqaSV4we7MTTxv3jykpaUhMzMTwcHBaNSoEaxWK+69917MnDkTWVlZqn0B9X9K5ZVb//Pz8zF16lQ89thjDt11SpY5m83GLHM0QPPCXQ01UXHy5EnceOONAJQ9GxUVFVi/fj0MBoNEzFEd51M/KV0LtROTyaQ4qfz888/RuHFj1g75Ok0ioHv37jh06JBDMSefEMTExKCkpATLli2Dv7+/4iRfns7nyJEjiI6Oxq5du9C5c2c0adJE8hu1FC28oHV1Ra2zbAl0H2w2G7s2KufkyZMl4yIJQqXxgwS6mpgjUUgZKIDKPp36OqWJyNKlS1n6HBqT+HAmNTHHn6+qCDHnhDvuuMOlJdJKtG7dGgBYcDFVXpPJhKKiIlYZHIk5fuApKSmRNEwl5c/PaKmRtmrVCkaj0a4zpfLk5OQomqnz8/NRXFyM+Ph4dOzYEYWFhWxBAsFX6KKiItx4440YNWqUnVCTxyAkJCQ4tcxptVqnblayLrm6ulfNMhccHKzYubRr1w7vvPMOex0eHi7pLIuLixEVFcVe79mzh/1NiSv5zoBwZxWpM7cbz+LFi6HRaFQHQv55GQwGREZGSgQodWyrV69W3XxcKf6HL5sjy1xV3azFxcWSslNc34svvshcFGSlBaQdPn8vLl++LGlTb7/9Npo0aSJZLe5q2YqKihAUFITQ0FA7UeIMvgx8gtMLFy5IrEBkleY7elcWQNCEg7eMOELJAsi/N2fOHNx+++3IzMxEZGQkE1GZmZlITU11aJlzJD7l1n9yyUZFRanGEZGYI8scf/yysjKJZe6xxx5zuoct/yz4uvLee++xvy9dumRX1vPnz2Pv3r147LHHJGKOjseXnwZ2uWVOp9MhODjYYcwZTdDz8vLY93gRsGHDBpa/MTo62k5kFBUVSWKdAwMDUVpayhaOkYih8/JijsaY8+fPIzMzE++++67iYjq1FC2HDh1CUlISIiMjHYo5/hnk5eWpxqwB0jpD7Y4E4PTp0yXflVvmxo4dC61Wi5CQEGaZo2citwRarVYsX74cjRs3Zu/RM+OPuXfvXhZCNHr0aEycOBGHDx9mMXv81nLyxTb8c6zuwjqPiLmcnBxWITIyMvDzzz8z94GvQyKnKhmaIyMjAVRWtJKSEjbDckfMFRcXs5WiJSUlktm0UmfHV3SqyKGhoYpWHX6fTqWO2Gw2swpptVqZmOvYsSP7Dv+7ffv2Yffu3fj6668lDbqoqEgSL1O/fn3odDqJmKPj8Nen0WiculnlMSPO4GPV+HsQGhrK3rt48SLOnTunKLiioqLsBCwfVMvPRHfs2AHgivVQqRyuwItuZ9DqTKVEnIBU9BoMBuh0Okn9k2+SrXQcZ2LOkWWuqm7W4uJiyTNu2LCh6t6lwJV2IHdxX7p0SVFcA+6tZiwqKkJRURECAwNhMBhcnkwQfLn4HGtNmjSRxEZFR0dDr9fjueeeY+8VFxfDz89PsbyZmZn4+OOP2aSOtyID6rN/pWPJB+2UlBRkZmYiKioKer0eRUVFyM/PR0pKCvLy8lTboKMYP7kIpvLWq1fP7ng0qJKw5xdAfPzxx2zbQnkoSLNmzSTj0a5du6DRaNj18X07/1x4QXHPPffYhTlQPW/bti20Wi2KiopQXl7O6kJWVhYqKiqwdu1aTJw4EUBlm1m/fj3S09PZZEDuKlYb1E+ePImgoCAsXbpU4jo9ePAgs5IrWebIgkxQfB8JINpqjJJA6/V61TKo9Vtqlrnz58+jcePGLLSIh7/mgIAAtsuE2WyWCCj5efkxjnRHbm6uYt1OTU3FCy+8wERet27dUFJSgubNmzMxR9cqt8wVFRXZpfWxWCxMzFH5H3vsMXz77bdYtGgRm9ifPHlS4m2islFdUxLl7q6UlVNtMffFF1+gU6dO6NixI+bPn4+hQ4di48aNuO+++zyS7d3b0IOuymoTPifSu+++y+KuTCYTLBaLS2LOarWymAl+UFT7Hf85CaOQkBCHYo4vi/xYfAXLy8tDWFgYvvvuO7ZHKv87ilvT6/V2ljm+M6lfv77EXA1cub+HDx9mVhcSc9nZ2XazXrVrcHV2I58hhYaGst/Wr18fDRs2VLS2JCYmori4GL/99hvOnDmD4uJiiZjjf0PiS6nuuGNSp3K5IhgoX1eXLl3sPouIiJB0hAaDwa7jlt8/Suh5+vRpiTiTww/UNHAqpSZR229UCf6YFy5ckNTF4OBgibVBbs3Iy8vD+PHjsWzZMrvjksiWs2TJEkyZMkVx4iYfxHjLnMFgqJZlzlHCXJqQ0XUcP34cRUVFMJlMiuLoyy+/xFNPPaW6YpDqvfwZKj1TchOSaNbpdEzMBQYGIjMzEzabjbX7qog5NctcZGSk3fGeeOIJdhzezWo2m/HUU0+xxRzR0dESMQdcye8JXMnh2LRpU2RlZala5pztGELXQzFzu3fvxsCBA1ldeOmll/Daa69J3K0ajQb9+vVDv3793BZzdJ/XrVsnEQH8gixezG3evBllZWXsPAQtUqDrozALsnBrtVq3V/XyMXPylf/x8fF2Yi4nJ8fOYkqv8/Ly7MScWi5BCkHJzc1VjPP99ttvMWvWLJZui+5bTEwMs4DT/ZZb5oqKiuwmNBaLhU1i6TmTuHvooYdY7ClN9oDKNkdlduRmdXWvaTWqLebmzp2Lw4cPY+/evXjxxRexbNkyfPLJJ9ixY4fTJci+AFXMqog5emDy1AVkmVNK2SGnuLiYCbGSkhKnyWvz8/NZfBqJieDgYEUxV1paygKuLRaL3SBmNpsl111SUoLw8HDExcWxhLR8fAN1NlarVfI7vmIDQFhYGI4cOYLrr79e8p01a9YgOTlZYvlr3bo1li5dyoL2HVnmQkNDVWPQysrKMHHiRPZ9Jcuc/DkodeaUZ2/AgAFo3LgxysvLJWJO7oKVv0e4YplbuHChpIyOUNumjKdBgwaSeJL69evbDSRKHYrNZkOTJk1YuAF9R80yR9/j7zHVk/Lycnz99deKIosnLi5OsjqyS5cukrIFBgZKUqhQuhK+PJ988glLW5OQkIDu3bvbxW7yPPzww5g6daqi5U4uFilmjtys7m4Vxrc1R+mMpk6dCgBo0aIFgMr9qOn3Su2fLKtq9YB+I3/OSsf6999/ERcXx1Zs63Q6mM1mGI1G6PV6NhhS38bXc7PZzOqtI7cwL4KHDBnCLNvl5eV27YbKIXez8gPumDFj0LVrVzsxx0+e+LCIZcuWSZ6t3CV/yy232K0GpTLwi3poUF6/fr1EbPz44492MZtApQX/zTffBABJGzx06BD+85//2J0PuHKfKyoqJFZpPtwmJiYGZWVluHjxIvr06YMNGzYwMde4cWMkJiYylzDfJoEr9ZB3swKQ9Mf8+3wdU3Kz7t27F5s3b0a9evUQHBwseZ633nqr3ZZbISEhmDNnDk6cOIGkpCTJNfLjB19n6Fy5ubmKi1Q2b94seU1hOTExMXaWOaVYQz69CVDptZHH6SllhSgqKpL0iSQU5WJOo9GwuHivizl/f38EBgYiIiICTZs2ZQOb0Wh0KYVFXccdy1xERITEP86LOb4zcdfNylvm1KwoJKDy8/NZYkQ+e7eSmMvJyUFxcTFsNhssFotkQLr55pvtLHN0jcCVCsz/hh8E+dWxtJyb4NN58N+hhRp8I3/00UdRXl7OOiy5RUsutuWNl9i/fz8LTOV/R/feYDC4JOaU0ivwg4NSugH5Pdy2bZvdaj0+FxHx8MMPA6h8zpGRkaweKKF2Lp6GDRuy2e+gQYMwZ84cl8QcdUSbN2/GI488wtKa8O2bBrZ27dqxDpNvOzSxKysrw6hRo3D33XerlhOodIf+73//k7zHX5ter0dSUhJ7/cILL0i+K29T8+bNw7Zt21xy8yqJZ/l7NEEhy5w7m3dfvHhRkt1fKeD7zjvvlLymkA265v79+zsVR0qo7WurVG9OnjzJRCRwxf2m1+sRGBhotwK+tLQUpaWlqKiogMlkwpgxY/Ddd9/hu+++k5xbrbyrVq1i3pzS0lJVMUduVrLM8Tz88MPQaDQOxRz/LI1Go2RixQuUy5cvIyYmRjJZIwIDA9GrVy/2N29h4a+poqJCckz5QpP09HRJG3SUxJomtDabTXJMXsRQWfk9mWnSceLECZw5c4aJNerf5KtH5WKOv361vkJJzHXq1AkAFMXc/v377a6vuLgYzz33HKxWK0wmE6vzgLRflVtzAXXLHAD2nHhiY2PtxFxRUZGkLmRlZUkmWsOHD8fXX3/NrsPR7hhyA0aTJk2wb98+OzdrWVkZOnToAKAOuFkDAgJYwfiB1F23Q13FHTFnMBgkWdHVLDPBwcEuiTmbzWbnZuW/a7Va8ffffyMtLQ3PPvssxowZg/z8fNb4qLIFBgbadW5A5bZEb7/9NoDKhkkxA3/++SfuvPNO5Ofn2103dajUefFxXHz8GN/B8FZIAIrWkcLCQuh0Ojz77LNsBZlGo2GdNd0rNTervIFbrVZJGeTxVWqWOb4TU0rXonQfo6OjMWPGDDRs2JBd57p16/DVV19Jyk4obU/DCxO+E6MyhoWFMbGrtOk1iSlH9TQhIYEJ7rfeegvh4eF2HbeSmCPXgUajwZdffskEIT2LS5cuMQE+ZswYVFRUsIEdqHSFkDvEkeXQUXxqixYt7MScox0I5Is3aPLhipj7559/7LaCkrdRcrNSzJwj65qcYcOGSV4r/faOO+6QTAypP9Xr9bjtttvQtWtXp25LpeTP5GKUP+fCwkKkp6dLBrPc3FxJXaT4Sr1eD71er5g+xGKxYOvWrQAqY7nIkggoizk1a4Q8pASQijmyzFH/oNFocPDgQbZLitL+oPPnz0dKSoqkHsnjpHgrWkZGBmJiYiT1TCk8grfMAdJwCPkCHKVFa/wiDkex2fRsqX0plYmeF1ngadEc5ewMCAhgljkqJ00m1Cxz/K4J/Pv8ddLCAHmeOaCyzSvFzMnhJzUhISGSujd8+HDs3r2b3Qe+bTRv3tyhmOMXRvHXJHezFhUVSVL0UP1+4IEHMG3aNHTv3h2nTp1i10HlVbPMya/3nXfesbPMlZeXs1hMr1vm/vjjD6ZM+QDRoqIih8viPcXEiRPRs2dP3H///R7ZZkkODT4tW7ZUVM633nor+zs0NFTS8HnLHE9YWBgyMjKcijm6HjXLXH5+Prp06YLhw4fj7NmzSE9Pd9kyR0H5NGu2WCxMmEVERMBgMMBisdh1qGqWOY1Gg+LiYpb0lp+BWiwWh2JOq9XiyJEjsFqtGDhwIKtPGo2GdZLUccjvFXUcfNzR6tWr8cYbbyAuLo7NZtV+R+/T3op8Z6s0WMkXCACVnflLL72EJk2asOvs378/62Tl9UYpcJ86p9tvvx2vv/665LOSkhLodDrWvsaMGSPpYIErg73FYlF1JfKdIz1/uWVOKS5PLQcZXdevv/7K6jjFuuTk5LC6SjFDUVFRqmJu3bp1CA8Px5EjR+wG/ccffxxardZOzDlLZMpD9Ujp+ckZMWIEevbsKXlP3recOHECe/bscdkyN2rUKIwZMwaAvXVGKZ9WSEgI6/jDw8PZ86Vgdr1ej4KCAruB05GYi4mJYRuTyweOrKwsxMfHS1K0kEuV4MWcWsynxWJh7Ua+xZ87Yq60tNRuwQ+JObpu3jIXFBQk2W9T7hUqKyvDk08+iZ49e0rqkfy5yd2s0dHRkjpTWFhoN3GkFEpKyK1oSmIuMDBQMrg7Q27t46F+hMRcaWmpYswcbxig66H/5WKO90Y4sszJ8+21bNkSQKUQk1vmlJCLOd7jsWPHDtZ+zGYzGjVqxD4jMZeZmQmtViv5HaCcnzM2NhZmsxnFxcXsWouLiyXxjVSPp0yZgtdee42tOqY+0tFWZ+SN4kXnrl277GK1y8rK7Lbx2759u0spdeRUW8yFhoYqulNjYmKY+bCm2L9/P9LT07F161Zcd911+Omnn+y+Y7VaYTabJf9cYdasWZIHAdhbamw2myRxoNwyp+Zmbd++PdLS0piVhH+wPLzpGpCKOZ1Ox1w1/v7+LEZFzTInF3N0TqqYvJgLDw9n35dfsyM3q9VqZWKOVpbRKi9HYs5gMLD0La1bt5YM0nQeNeFL94OPm7njjjtYJ02NQi5SeMtcQEAAAgMDUVJSIrHmKW3ULa8TwBVrT3BwML777jtmkSPkA5ZczA0aNIgdV6fT2YkUuZjT6/V2bY4sXxaLxc6y9+STT+LUqVPs2RkMBjYw8mKOT1jLo7ZtFj1TekadOnVi587KyrKzfiYlJakOQpRrTb7QQafTMRc4X7bQ0FC30pyQmHNnNS0vJpRE7tGjR1nMHFk15M/lgQcewPr16/H1118zt7F8wFYawENCQpiVLDY2lp2fBs02bdoAqHy2PPzki7f2ApUu8NOnT6OwsFBVRPG7aiiJOaqLaiur+cVUav2Z/PvkludREnPUb5A1LTg4mAktZ3WB7suZM2dQWFiI2NhYtoiDh8pcXl6OzMxMxMTESMSc2Wy2C9wPCgpSrddnz56VhHcoTYz4NuiKmJNb+3iorDSJpe0C+Xqv1WpRXFzMzil388vFHC+O+GfoTMxpNBo8++yzaNCgAYKCglRXkRP8WCK3zAFXno3ZbJZ8xlvmoqOjkZGRgfHjx7P45rCwMLz22muScYcmwxkZGRLLHL/qmSZd1FdSH02Tr7NnzyI1NVWSWgi4klC8qKhIUs7y8nKHljnq93r06IFhw4a5nXfOo3nmqqImq8POnTtZwHv//v0VV6lNnz4dJpOJ/XN138nff//dafJFPg0FcCVvF8HHMfEPhgJKyR1B8W5arVZizXQk5gwGA9t6q0WLFjCbzSgtLVUUc0qWOfkKSd7NGhERwToFuRuCGgQN4NThUsJOWs5PQohW7vL3Ti5myArYr18/1KtXz24ZPZWPvycEn06Eh47BXx/P/fffj48++ohZGuSzVeCK1ZJHybLDWwcA+43NnVnmVq9erSrmmjRpgu3bt0vEnNJAzK8olHeCOp0OjRs3ZmIuNjaWiQ4+NcnMmTMlomXChAkAruQqk8cQ0nXRYLB9+3Z2juzsbMl1+/n5oV69epJBLzs7m6UjoPohd8fw6VP444WGhtaYZY4glySgnhYmLCxMkppELkyWLFki2TuYEoU7Qy7m5Ja5Xr16YebMmfjiiy8klj1+siqP9YqNjcWGDRtgMBhUxdzUqVPZZITEHPVdvGXOFTEnt2YqeSAsFoud6KTf5uTkSMSkvE/ixZyz+Gw+ATa5aENCQuzEHPUn2dnZsNlsdmIuPz/fbvWx3LqtdC1Ebm4uQkJCJNYi+n1FRYXEMqSG1Wq1E3P+/v4oKChgZZW7WeWWOf66lcQcfz38BJava/IUTeRuprLl5+ezcSc4ONhpujI+4XZoaKidhY1f7MDfv6ZNm8JsNuPSpUuszs+bNw8jR44EUDkGTZs2TVJnScylp6dLxNzJkyfZKnl6FtS/072le3f48GF07drVTqCHh4fj3XffxZdffql6DXzMnNwyR/j5+WHevHnqN0yGR8XcyJEjMXv2bIffqW6WY57c3Fx2I0wmk+J2HJMmTUJeXh77J1+doobSTEvucnz22Wclrx1Z5ngaNmyIgIAAVlnKy8tZJ0yJHPnz0eC8ceNGSYwXDQolJSUSyxytNnNkmZOv4CHLnFarZavEAOkgZjKZJGkKAGnjps6XFyvR0dF2A7vcykHPkGLleDcrnYdmSWqJj+XQ+fg9cHkqKiowYcIEZmkgMUfHo46AZ+bMmaxj4/dQlTd2pbLYbDYm/h25WfV6veTz06dPY//+/dDpdCwYXcka7kjMUZujGSZfdj41CU0uqEOk79E2bHJ3IN1js9mMqKgo6HQ6iZgzm81soKY6xberm266iaVSoeek1+sldYXEnNwyZzAYFK0xSvExgOOYucmTJ+PChQt48cUXAVxJn8LvjKG21U+DBg0kz11JVPDi7b777nO62wIgdbPSPqOANGcYrQbnBRz/t7we0MCiZoEl3nrrLXYsXkwFBASwBRDUL/zxxx8IDQ1l9XfmzJmqYu7ChQuYMmWKZAwoLCxUjEMlyxzfn8r3YQ4JCWH3Xml1OJ/Am99zOi0tjQlBGpjfeOMNdl7gikciOjpaUmfMZrNkUqPT6eDn5+dWiE94eDhycnLw7bffYvny5UzMzZkzR9G7JCc/P5+VkyYKYWFhCAkJsXOzHjp0CDt37rSbIPPuZflOL/w+swAkdYD/HT3n0tJS/Pe//4XVanUo5tzBkWUuMzMT0dHR6NatG4DKem2z2XDhwgWJyKN7oeRmpb5tzJgxEjer2WxGfHw8gCspjJTEnEajQWFhoaKe4Ptv/hr4dn/q1Ck0adIE6enpCAkJYccDpH2U2n7HSnhUzK1cuRJTpkzBM888YyfaysvLsWjRItZ5e4Lw8HDWeeXm5ioGROv1ehiNRsk/V1AyY994442SJJxyc7s8Zo6Eh9zNqtFoEBQUJJkd0XXIl/cDVwbX9957j/2GF2fkSiYxZzAYEBQUJFk6rSbmiLKyMly+fBnh4eGShQf8IMZfG1k6+M/z8/Pt4kcSEhJw8eJFySBOgfwEPRP6X0nMkZXEarXizz//hEajQW5urqq7gcQBbYr8+eefK36PLA3UCdF9of1WiSeeeALPP/88a9B8PSZrJR8EzVNYWIjVq1ejffv22LRpk0MxJ58VEzqdDnfddRc2b96M22+/XSIawsLCWL20WCx2s0HaiaRXr1546aWXJIkweatCaWkp7rrrLjRv3hzAlQ7vxIkT6NSpk90Eh7fM0bOjOpKVlYW8vDx2rODgYLY1G8HvTkDPq6KiQtEyV1JSIkmmq2aZU9utxZGbVaPRIDExEc8//zyAK4MGH9+kZolKSkqSDJT8cyGBUVFRwYT0L7/8Ytc3zp8/H7NmzZK8FxAQwL4XGxuL9PR0aDQanDx5kp2P/pfn4Hr44YexaNEiDBgwAEBl0tyCggJJ+3Uk5jQaDWw2GxNzlJqDLNc6nY61+z59+iA2NpZ5PP73v/+pirmioiJMnToVY8eOlUwmlUIXSMzxK9/pedO5g4KC2G+VxByf+ohn0aJFKCsrk4g5WlREz57EnJJljrdkUX1yJy8bTcZGjBiBO++8E1qtFn/99ZfLeVlJzPXs2ZOtgudDPYArYo7EAD8RU4rx4iHRTvD1hp+Y0HMmoZyeng6tVouLFy/iwIEDEjHnTkgEYB8zB0jFXFRUFNauXYsDBw6w/jc9PV3SvqktKom5uLg49OrVSxIzR+FAchFJ1nZezMnjQXn4eySfqDRp0gQajQbffPMNTp8+DavVCn9/f4SEhLBJP9//uZOX06Nirl+/ftiyZQuWLVuGu+++G0VFRSgpKcH8+fPRtGlTPP/88xKXQ3Xp2rUrixtbt24dunfv7rFjq22dxA8oubm5ks5GzTKnFPgZHBwsmeHJE29evnyZxa/wlZoaJV9JaEaRm5vLfPCBgYHIyclh8VWDBw9mg5WaYLh48SIrPzU+fhDjr1XJMkdijicxMVGS1BKojBnkBzS6FrmYA+wFUnFxMXN/nj9/XiLm+EGBFxoTJ05UTVmiZpmj2Zm8jHQOCu4FrnR2jqyEdJ92795dZTGn0WjQq1cvaDQafP/99+yzsLAwiXg1mUysI3vppZdYMlWDwYAZM2awWBJAKuaok6Ty8e4vPtcUQZ05b8HR6XQIDQ1FdnY28vLymBAYNmyYnZjj4bcAk1vmqIx8DKOamFMT1I7EHHW+8t9S3BEgbQdxcXHs3PXq1ZMck3ezUn2w2WwO99V9/PHHWUJcgm8ffAB6Tk6OnVtfnrYhMjISo0ePZnWWLGd8+3Um5goLC2Gz2WA0GrFq1Sq0bNkSVquVWeZoQqbRaNC8eXPJQjA1MUcsWrSIWaDI5blx40bJdyh1hlKfQ2IqMDDQoWXO0Q4hOTk5Ejcr1V/qT8gCpRQzx4s5ehbuWObkdYF2WVHaek1pEWFeXh5KS0uZFwW4MujLxRzBH5tW/KrB77gD2Ft4CXrOfEoTfs/YiooKdq2OVrEr4cwyFxUVBZPJhPbt2zMxd/nyZUmfQH2gmiDq1auXJF8jZZhQa6u8mGvevLnq9/j2KO9vaOEW7+ULCAhgC0SUvB9Hjx516f55fG/W9u3bY9euXTh9+jS6du2KRo0a4c0338S4ceNw7tw5lgTTE9xwww2Ii4tDz549ceTIEdxzzz0eO7ZaZ0eVhbZt4bd8UYuZKyoqsnsY8odMeaUyMjKQnJyM2NhYDB06FIA09iUrK4sF7BO5ubmoqKhgwfsRERHMMkflbdq0KWbOnIlz586pBrSfO3fOTsypWeaUxJzNZrMbYHnhQMjjiug1daj8tclnkZTomM7Hdzr8bIkEAb9ABQDGjRsn6ZzlMXPUmauJOa1WC6PRiLZt27LP6HhqE4DCwkLmWj5+/LhTN6vSceT3oWfPnqzOGI1GycQhODiYdarXXXedw3giuu5ly5bh77//RlRUFHsefBZ2fkuy6dOnY+DAgRLBzM9+IyIikJqaipKSEnTr1g2LFy/GBx98oCrmKEu9/G9AGjN35MgRVr/4BRB8UldnYk5p0Kf35PeYF3PZ2dnsGPXr18e7774LoHKiJbcGyEMClBL8yhfJ8O2mb9++bOcNwD63oSPLXEFBgd3EQ8nd5EzMkVfAaDQiKioKt99+Owua1+l0WLJkCesbfvzxR8ycOROzZ89GcHCwopiTD6gUZ0Tbct1yyy3ss/DwcEXLHHkMqGx6vZ5dm7vhOzk5ORLLnFzMpaWlsbbOP9/c3FyJmKPn5sgyJ98SSi4CyHotZ+rUqWwFJw8tLuLFHD1bNXcmX9/4e81Dud9oL+yOHTsiJydHVcxRvaNxJycnh/1NbYqula9vcu+YUp5FNcschRTxn9G1X7p0SVHMqdWNgIAAiTcmNTUVv//+u6KlmMpE1x0SEsI8HnL4a5WP8zqdTlKHgcpJB01Y5fGYycnJuO6661xK9eZxMZeXl4eFCxciJSUFJ0+eRG5uLjZu3IjJkyc7nJ1WlQ8++ABbt27FkiVLnJqP3UGts6OBhh6GXMzxCW+tViuCgoJw+fJlxVxzSly4cAG9e/eWvMdX3MzMTLsgefny+vDwcLaZstxSlpSUpJgEE6i0OtKgzVvmqEKqWeb4yi8/HwWTTpgwQTExLo+Sm1VpcOYtHrxljpJUAlfEHB/31KRJE3z22Wd2mxu7Y5kDKt0K/Mbs1GkoiTCKAaNOTk1I85Y5EoojR45kHZVS3aZOymAw2Ik5GjzVxA1fPqvVypL48mKO73R5MdesWTNcd911kpg5/rsRERFs5ZrJZMKDDz6IoKAgVTG3Zs0atiNEWVmZYswciXi6Lt4yx7dBtT6A74iBSksh7XdKljlHYi4nJ4cFTQcEBGD8+PH45Zdf0LlzZ0mHXVxcjPj4eOzZs4edq6Kiwq5uyAc0XnC///77qnE3gGMxxwe70/9KrsjCwkKJwOL75oqKComYA67UE7LM6XQ6ySo/Cmfh0xnxYk4+QNK9VXKzRkZGsu2mwsLC8OeffzILlV6vZ4O/Xq93aJlzRGlpqSRdBl0n1c/vv/8e3bt3h0ajkfTVZHEmqA3yYo6Paf3mm2/s4m/l4+CCBQskK16JN954QzLxJYtaZmYmzpw5IxFzVEdIGPDcfffdksmBn58fxo8fb3e+Bg0a4N5778WBAwfw9ddfIzMzE2FhYapijvreS5cuITw8HMHBwSydB40xSmJOPsFXEk9KlrnS0lImvvkxjPrIkpISyfgzZMgQAMpeBQCsP5JbVUNCQrBlyxa77/P1wGg0shXlACRpcXg3q5pljo8bDwgIYOOP2iIRZ/044GExN2nSJDRo0ACLFi3CO++8g4yMDPznP//Bbbfdhr///tuTp6px1HLi5OfnY+3atcwtwA9yoaGhaNmypcQ0brPZcO7cOYlbDLjykJWCf+W5iPhBJisri3WmhFzMkWUOUM5OrUZqaiqzxvCWObLIKVnm5DM3+fnoezExMfjhhx9Y4kce6oipQw0ICEDDhg0xdepUxcGZOs6KigqUlJTg3nvvxdNPPy0ph9Lzo46abxgffvghu5/8LM2RmGvSpIliuZTEXGBgIMrKyiT57pTKxou5fv36ITMzE0uWLGFWGWdijk9QzVvmXBVzhFarxSeffIJHHnlEMujw9zYwMJDFeACVYo63+kRGRkrEHKEm5hYsWMD+prxYBLlZ5dfMW+b4e8NfLx8nSddC1zpx4kQmYKn+ye8V3654Mefv7w+tVouhQ4ey+Fc5R48eldTT4uJiPPDAA+xzRzFE8s/kg51czNH9mjt3LvLy8tj7dO9p4JbvA8k/G7PZzOJAz5w5w+KB+Zgn8jCo9Sn0XXkyVqVroONTfeWJjIxkFhiTyYQ+ffqwFeK8VUOn0zmMmXMG/dbPzw86nQ7+/v5stfHOnTtx3333AZAOyC+88AK++eYb9poGbhrYU1NTkZqaij179mD+/Pm4//777c4rF3OBgYGq1jmerVu3YvXq1QAqrWhKYg6wNxQoTd7nzp2Ly5cvs7yDQGX79Pf3Z5ZlshIp5a3kkwNfunSJ9VPkHaM6SNfK93lyN6+ap6JNmzaSnWLKysqYmFOyzAHS8adt27aw2WySPZx5tFotE3N82+AX1vDw74WFhUlEotI4Dihb5uR5GnnL3N9//y3JoceX1RkeFXPLly/HRx99hBMnTuDRRx9FSEgIFi1ahEcffRQ333wzVqxY4cnT1Rhz585V3OcNqAyyHDhwINs/b9y4cSyFA1VcvkKpLbigh9ynTx/89ttvdp+rJX7Nysqys8zJl9eHh4ez47sbeNqkSRPJ7zIzMx2KOQAOxdyAAQMwZMgQjBs3DgaDQTFwlDpEvlGeOXMGAwYMkDR0WqlIwoXcot27d8dHH30kOaaSYKLOSX5PaEk9Web8/PzskvKqNVYepW3K6DnwOQULCgrwzjvvSL7Hu1mBK/eUfu/I6kxuVloVza8odtYJ6HQ6iQilVbOff/65xFrE37OgoCCJO41fAAFU1hOyiMrFnFJsEf9bNcscwYs5uldqYo6va3LLXHh4OLtHVP/8/Pwk9Y2fPWdnZ7MBi7fK0v2QU1JSYudm7dOnD/vcHTEnP748Zq64uBjZ2dl45plnJO/ToHHHHXcAqNwVIzExEUFBQYrJpf/44w98+eWX0Ol0eO211wBI66V8Y3E59BzJhco/a3n7oWORm5WHLHNms1lR+PBuVvqtu27WwYMHs98GBwczL0BZWZldSii5i7ikpISJCZqcvPXWWzh8+DDi4+NhMBjQoUMHPP7444rnVvJQKfUdSvBWaOCKEHIk5uTuSqDSEhwdHS3ZjUar1UqulcSsPCyGwnyeffZZfPXVVxIxN3bsWAwYMAAnT54EcCVxNS/KaGHOhAkTMGrUKMXr1Ol0MBqNknRnvGWOvyZKog24Z7zgLXPyFDjOxJzJZJJYO9UmE0piTt5+AgICoNfrsWvXLnz88ceSEB6i1sXckSNHMGrUKDulPW3aNMyZMwfDhw93K2+Kt6BOkfj444/Z3/LEh5GRkXj55ZcBKIu5WbNmscrLQxUjJCQE/fr1s/tcLeCRxBx1XkoJK8PCwliH70rl5gdtuZu1oqKCuS/5DocXdvw55ANRZGQkVqxYoeraBa6Y652tNJ4+fTqAK4PETz/9xNykVFaCt+5ER0ejadOmLAZRfk8aNWokiZnTarUIDQ3FTz/9xKwaroQIfPLJJ3ZbddH92LRpE4DKwctqtdp1yrxljseRmJO7WbOzs1FRUYHY2FjWKTsLPeAH6fHjx7PFEsSQIUOQmJgouWck5nJycjB16lQcPHhQ0rlGREQwV5RczClt6cOLSbllzmg0Koo5cu3Jr5Hv9PhzU5/Ei7kbbrgBd9xxh2RfVzpWVFQUCgoK2PnIAm2z2ezyCCqJOavVamep5dsG/a000Loq5ng3Kx/griYUtVotJk2ahPLycjvLHFApFMaOHYs777wTBw8eBCAVc7yIUoLaCFl2HFnm6Bk7crNSmiX5tfPbKFXVzbpy5UrWh9H9pRXtZFGl61RKakzxUnR+rVaL6667zqVzOxJzavFaBN9v8GldKK0Tfz2EUh0j5G2H+o3mzZtj6dKlir+h1f9ApXiTxzbS+aOiopjIGzNmDCZOnAig0kuTlZWF2bNn2+2/TCjF+VZUVDAPh/yaaGLijvGCF3P8PVOzzPH3isQcTfp51yrvopXXX36RCEGWuV27dgEAPv30U7vPleqgHI+KOUeB1o888giWLVuGyZMne/KUtULXrl3ZBsh8ahKg8qHGxsbijTfewM033wxA2tlFRkYyKx6PPJ6FoNxzShnngSsxc7S6Tp5w02g0IiAgwKlljt8yip/VUSPhf0diVL5PI60u5IM55R29KzMKV8UcNVg+yW1FRYVicLvcunP8+HE2y6OBnZ5XgwYN2MIDCvAGKl0GJELVLHN8mcPDw+2sNvx9HDx4MMtLJI8HqYqY489RXFwsSafgjpuVeOihh+ysECtWrMCFCxfsBDt1dlOmTAEgdeXwQp+3/gQEBDjc+xVw3TJHm70D0nvD/600aNJvaMKzcuVKSRui35Nwo/LKc57xKIm548eP24UUyK2bqampki3j5APS6tWr8dJLL6mKOXomRUVFLPmy/DxyKK9gQUGBqvWftwzILcbyv3moLfD5L+XHISgNg5JlLigoCMXFxYpiLjQ0lC264uuAu2JOo9EwaxGFVFBAvCtirlOnTti4caNdjjY1jh07xiw5jsScWqolgvcYFBYWolWrVjh8+DBGjx7N3pcfQ+05A9L+gfZuBaS5KIHKOkbXKk8/VVZWJml3VF/lCwQmT56M5557Dl26dEFERISqXvjwww9Vy/vvv/8iICDArl7wu+O4Cr8Agp94qVnm5OmgdDod86rxYq5nz54s1U1iYiJ27tzJVqtTiIa8HFTuhg0b2oX4uDKGAjWwAMIRAwYMYBYKXyIwMBADBgxAs2bNFMWcn58fpk6dygZovmJTtnY5vGWOh0962qVLFzbQnDlzhs2OeTEnz4cmXxGqVrnfeustlqCYn+XwcWtEp06d8N1339mtFibfvtJSfaDSleIsMztwxRrozJVJZZNbPJQscxaLhZ07JCQEfn5+7DV1ziRAgoKCEBkZibKyMmb5JPjVk3IuXLggWWAB2Oc04u9HmzZtWDoa+U4kSoMm/3slMUduu/DwcFitVomYo7roiptVXgYllCxzPPwgQ/Wpb9++khl7QECAovs7NTWVrUgtKyuTiCB5zBxZSqOiotj7vCeAv14lUbN48WLMnz/f6apXun/8PoxqrjCl83z00Ud49NFHVb8XGBiI+Ph4yTGpE6fvDRo0CDNmzLC71/zm8iTkya0FON6yjI+FVZs88TkU6dxKW+zJ4UUKhS1QneLjixITE2GxWDBkyBCkpqbaxYtptVrWTuTCh3aUoe85W7HII19V2qtXL3z00Udsok5uVhJzdK+UxFzTpk1xyy23SBZdOaJFixZMzCn1JVQPysrKsGrVKol7sW3btpg0aRIr45tvvgngyoRVvmJd3j86atfy/pn6fXmcGT+B4y1zVGZ+vKD6RyE7/DXOmjXLae40uWeM59ChQ4iKirIrNwlWd3eFKS0tRVpammQMtNlsTpMcUz9P1yrf1YXqb2JiIrp27coWRmo0Grvr9/f3Z21KKem5qws7a1XMAajx/VprAn5Aly8dVurI+QoVHx8vSfFAqFnm6MH16NEDu3btYuKxYcOGzGTNZ2CXW+bkK9kcVW7qzHmrilIHHxkZieHDhyu6ZQDgwQcfZO/JB31XWLBgAf7880+njZyOJ4+7oo6Fb1BWq5UNyPLOkwZ/EtlDhw5ljTk1NVXR0qPUAScmJtpZ2Hr37o1WrVqxPFxKrjX6rfzawsLC7NzRjixzzz//PDIyMhAZGWkn5khou2OZc2b948skr7e8mBsxYgT++9//YuHChZLvqIm5tLQ0Npjl5ubixx9/ZAOo3DI3cOBA2Gw2BAYGKlpl+OtVqvuJiYmqsUyA1DIHVE5Inn32WaSkpKiKOVfruVpdIBYuXIhBgwapWmfVjsNv/q12bILuiXwVOg8/sCnl53NmmQMqB7u0tDQUFhZiwIABLEQCqHTNZWdnY/Xq1XjnnXcwYsQIyXF0Oh2zvqlZYLRarURkObPM5efns60fCT8/Pzz99NNMuKi5WZXuU/v27R2eTwkSWUp9LF+XBw8eLIkx++effyQxtpSuRC3jwpAhQxAUFOSw/GpQ36hkheb7QlfEnJoluzqQmJND9cJdNytQOZ6sXLmSCXPKQqEE3QMSj/Q9qn9k0aTxmfp5ul9KGRp4y5ySVqiTljlfhRdzvEtRDT6uoX79+tBoNHYpKZTSfRAXL17E2rVrodFoJDMQmqXqdDqm/OUzKCqrPK5GCToeP/tVcgGoxYv5+fnBZrNJtjXjz+coaSdPaGioJDhcDTq2fGW0Wg4xNTHH51Gz2Wy47rrrmIhKTU2VNB5HYk6JkJAQHDlyBN9//z3i4uLYFlGA9NnIOySNRoPjx4/bueQdiTmNRsMsVORm1esr9+ElMecs2aSjBM1q3+Nn6QQv5uLj4zF58mQ7wUpuDTllZWWsc6QVpOSikYs5JbHGW2X4z93Jnk7IxdyBAweY28cdN6sSzsRc165dsXr1ajurg1J6A/44mzZtwqpVq1wqD2+ZUxvklTLm87n81EQ/30b4v7t06SIpU3BwMLPmN2/e3O56tVot62eVLHPyMrz33nv466+/FMs0depUzJs3T7L6WQ01N2vfvn2xYMECnDx5kk2olYLUnUGJ4eVxtTzynIJKONqjGQA+++wzWCwWdix3xBy1GaU6RPf8+uuvl/TtamLOkXtXjcWLF9u9N2nSJERGRiIgIAAXL15UFHNVsczx19qsWTO8+uqrAMAWwSlBHhW5eCwvL0dOTg6LXSUxR9Z2undKYo5PJ6OkB4SYqwYGg0FSWelG82LKEbx5mQa9hIQEnDt3TpIsE1A2qyYkJCiKB74jo3PIB1UqqyurWWmGyB9DSYA5c5UquSVrArVj0/kfe+wxyfskJuSdGTVU/nhqljlHblZHBAcHIy0tTbIMn55FYmKi4j2NiYmxu/+uxsyVl5fjmWeeQWxsLDQaDdsNxZmgcdUyJ1+h7Ur6AzmOymIwGKDVaplFhs9T5UzM8SK+urkm5W5W2q8WUF9x6Ckxp4b8+Py9DwoKwq+//ioJ/3DFMnfhwgW3xByfR0utHfLWMrnLlScoKEgxUfN7772HJ554QvJ9uRVLadB+8cUX0aVLF8UyvfHGG8w17+yey92sfMzco48+iqZNm+LEiRP4888/3e4PgMrEvT/++KNdiAXx22+/sSB4R9A9UYurJsiD4SkxRxOxfv36SSZQpaWlHhNzvJeHeOedd5CZmcmMJI4sc1URc9Tn0q4+annpgMoJF38+3s0aFhbG6sWcOXPQtWtXVr8dTTJ5Maf0rOqsm9UXKC8vxwcffMBeywd0ElJqg5Oakk5KSmIVklblqG0MrgQNJhR4uWfPHtW8blTJlDpmgjpcdxq7EvIYwQ0bNrAVvp5ErTOme5CYmIi5c+ey98lkrSbm+HJTB5GSkiJ5PyYmBgaDoUqdNyAdeKmcvPBRMqvzuCLm+DpA8UfDhg3Dvn37nG5xp7Z4QI5SahIiISHBJZeKUnshC2JoaCgCAgIUxZya9VDJIuvqLFYNqhsk5sh1DahbmpUGPqUUPPz3XBWAgP018QJHqU24mvZELS5Iqc9QqsdK8Emd5e898MAD+P777yXXzte5F198EZ988olDMecoibYznE1s1NysPEaj0SUvghLt27fHsGHDVD/v16+fJG+pGlQP1XKhEiS+PCXmbrnlFqxatQoPPfSQRMzJLXP0WVXEnCOoTSpNHKsaMwdcafMtW7ZEXl6enTueZ8GCBVi2bJnTmLmhQ4di586ddudy5malZ8XHDQrLXBWhjW75ykwdIHVQNPA7anjXX3+9w7gKstBVVcxFRUWhY8eOdp2a3M3qSMwpWeaqgjzovEePHmy7I0+iNkjxAwdfFhIychc3dYZyIWM0GpGbmyt5/4477sDJkyerLBL4e0vlpwZ76tQp7Nmzx+HvSdzIU5nw8B0Yfy/4PEiu/NZVwQhcuYZOnTrh4sWLLrnUlQZT2gxdr9erijk1y5yScKiumKOBiAYOPnGwWuoJeq58/Or777+v+j2gehZs3uqldBxX3KwAJHtD86gtjCCLhaN7TBZnvoz0nL7++mvce++9TuPv+Lok77+qYoFxFTU3a11FKSExj6fFHO3xrdFo7CxzfJ2g++dq7jygcg9p+f7EcqhNejpmjnepyuv+oEGDJK9DQkLYSlX+GM5iNnk3q5Jlju4f9WUffvihYrJvRwgxJ6OkpAQ2m01Smelm8jFmS5Yswe+//656nH379rG97pT43//+h+eff94tIUWNQylNAL/ROeCaqdtTljm+stXElm2EWueqNJj7+/uz+DN5bAkNFvLjkXWJvx4/Pz+X4ljU4DsKeWLLxo0bu9zh8R2IHL4Dkyc7doarYk4u1vj8Wq6iJOaGDx8OAGx7IhJz1GE7EnPR0dFYsGABPvzwQ9UQiB9++EEyQ3YGDVJUFzIyMhAUFASbzaY6eaNn/PDDDwOofB5K7Y5vZ66s8laDH3B4yyHhipsVkG5XxqP2TGkVpdr2Tjx8vVdysxJKde7QoUMAKmOl5O2DBm1X8m65UjYeNTdrXaS4uFiy05ASVXGz0r1xx3JcUFAgadt0/xwZEuTMmDEDn3zyicPvUJv0tJtVrT4UFhZi+fLlDo9B7VjJPczjzDLH588kqG24aoV2P0L4KoeSWco3zwauiIbQ0FC7/fbkOOusO3ToIFnZu2HDBruVsnKoY+Pz0PCBk2az2S3LHOWjUxOU8fHxLq3a4q+1qu5IV3C27yZwpYFGRUUhODgY69evt7N+KrlZAcdpQDyBO4mciY8//hivvPKKwxx8/PHee+89t8rEX6s7CwaozrjzG6XvtmvXDp9++im6deuGvn37IisrCxqNhgkGg8EgiQ2Sd4SU/qNx48Y4ePCg3edKOR5dITAwEPXq1cOhQ4dcEtylpaXw9/fHPffcA4PBoJgqw1Or+/gJU9euXSVbMgGuu1lvvfVWp4MVzx133IHy8nKHQor6An6hi/y5OxNzHTp0wA8//ICpU6fafUYiWWnrPFeoV6+eJEk0jytu1rqCK2WripijBVPOxBxfv/Py8iTPmJ6NO4LQFRwl2q7OAgi1sdpVQ0tFRYXLceVqCyDovvPPiq5FWOaqiJKYI0io1IT16dZbb7XLLC+HBhU+t1x2djaAKznHqNJQRXU2O7rllluYq0tOamoq1q5d67TsPNW18jlCrcEoWeZo4Ozbt6/dXndKCyD41zUh5v7zn/9U6fhhYWFOV87RcR955BG3ZsP8bwH3rEXU0SntbqKGkpjTarV47LHH0K5dO2aZMxgMiIuLg8lksluFqCYeKfbQZrNh+/btdlnUXYVPSkwpM1wZlAICAqDRaNC6dWskJSVVa1WaK+civv/+e7uQBkflpdieESNGKG627gxnFjGqQ/wqavl1O4u/e+mll1BYWKh4v6hd064l7pKSkoLnn39e8bOAgAB8+eWXGDdunGrZfAly/blzHSTC3RFiZrNZUidpfPT0xJ6upybdrFXBlX7T0QKImJgYdt/5e+aumPNZy9zevXvx7LPPMjfYkiVLPNJZOhJzSqk8ahOqBHz8FK0yu++++/C///2PVQCalTmbXdDGzefPn3c5lYgj3GkYx48fV3QTOeK5557D7NmzJe/xAlIee6CEUswc4H7jcZX8/HwEBgZi8+bNkvN4CrqeqgjpqpaFcoG5E+SsJub4zwsKCpCYmIihQ4eid+/e8PPzk9RhtWcze/ZsGI1G1K9fH40aNWJJOt2F3waNNk+vSrswGAx44YUXcM8990jKEhERwSZgniAgIMBOODqaLDRs2BAdOnTA66+/Xi1XrzPkO3/wOLPMaTQa1X6LQh6creSsCklJSdi+fbtkh4mrAXees6tijrfM2Ww2yTOeMmUK2rRpY5cMurrQOT1lmZMvgKhJlNysjRs3xrBhw9CpUyfF+EZ3J/8+a5lLSEjAunXrsHnzZjRt2tQtd4EaR48exYwZMwA4tsx5q5HTbJR3ufXu3RsVFRUs+JoevLuugvr169tt4VLTNG/eXJK6wxVeeuklu/f4jt9RAC+h5mZ1N0bBVWilpjxmzlPQqraqLGRxtyz8aryIiAi3OkIlIaa0OtVoNMLf358tgnAlF16DBg2waNGiKuWW41m4cCEGDhyI1q1b221P5Q4ajQYffPABS2VA7Nu3Dxs3bnT7eDTpUkL+3B0N3kFBQdi7d69klwcldu7ciX///de9QnI8//zzzOLvSMy5W/+qE7/qDEr0TVS3LvkiVRFzgPReBQcHY9SoUR4vG1nmlEJOkpKSoNVq7bbCcoSnLHOuoBT3+9RTTzG94Qk3q8/WVt46xW8QLMdqtTJhA8Bh0t/9+/fjs88+A1BZmd966y1JFvuajAdzhSFDhmDy5Ml26SY0Gg1rhFQB6JprKv6rNtmxYwf7W0mwKAVbOzK3e8PNypfN08enfHo9e/Z0+7fulKWoqKhaVkulZ8cfj1aOytM38OLE01ZTOd26dcOvv/4K4IoF3tl+mY6QC6sGDRrYbcHnCvJVdTx0X2+++Wa3J0eAskVXLkJdhY8vvv/++3HgwAG3F0A4wp0Vku4yYsQIHDlyBP/9738BVG+RSl2gYcOGdttPOqOqYq6m2yVQuSAmOTlZMU9fw4YNkZ2d7dYYXZtijrfM8dZ/gsRcddysPmuZI86fP48NGzbYzaqI6dOnw2QysX9qCRsBaWqBoKAgvP766zhz5gx7j260txp569atYbPZHM5OKXCcYojkWfh9kW7duqFbt24AnHcyStsPySELpHwCUNNijlzfnrbMtWzZEjk5OW7FrxHulCUwMLBarngl0cB3VLQrwJ133ql6jNoYNAgSc8520fA2JObatm2Lt956y63fHj16FMnJyR4vE6WaUUJpxZ6r1GTfq9FonKbH8CX++usvHDx40K3fUB/l7uKF2rBitm/fXjG3KuGuscXZAghPQv0m72bl+zIlNytZIJ2lPSHqvGUuPT1dMdHiypUrERAQgAcffBBfffWVaic/adIkScCr2WxWFXS8mFOyItRlszutCiTz9gMPPIAOHTqwbZGuFpwN5q6IuU8++QR33323nbioqZg5ghq0K7sluEtVE3TWZsiAq23K0bV4Q8xVxzIHAG+//XaVtn+SExERwWJ6eei+urLZvBzKeu8paGDU6XTs2crd1M7y5HmT2g41qUliYmJcSlWUlpbGRJwn3Ky+Qm3GzNH94rfo5Ccy9Dl/32lRh1KbV6LOP4G4uDhs27bN7v3y8nLcddddeOONNxwGWur1epc7DL4hO7Jo1UXzu0ajkWxnRSvrrjVciZkzGAwYOnSo3fvyHH2eplu3bli4cKHTZJ+1SW264Z25WYmrTczRno/VRZ78mqD6WhUx52mob+Qtc3LLZnUsc0Blvjt38ym6Sl3s22saPmSJ6rq7z8UXxVxtulmp72vVqhVb9Mf3ZQsWLMAXX3whmeiQmHO20wfhe0/g//nhhx+wY8cO5OfnY9q0aXjiiSdYAtKqwldIpQdMrsuqxCYJagdXYubUcLQ/nifQaDR46KGHauTYVaU2OjLCVTHnKKeeJ1Zcu0pdc7OqTTLonrjqjqkNeDEnt8w5SijsClOmTKlW2QTqkJhz9lyuBstcbYq56Oho7Nu3D+3atcPTTz8NQCqY69evb5dX8ZoRcyNGjGB5oDzJt99+q7pfZqNGjWCxWGrMcuPrNGvWrNbO1bFjR7Rt2xapqamS92lAq8ozIjFX3e3NBMo4W7xC1JWBgcRcVVaz1iZkTapLljmdTsdEpiPLZm1OJlxl0aJF2Lt3r7eL4RV69eol2XtUDSHm3Ie2V6R758z6edW5WWsbZwJRCDllcnNza80FduHCBZhMJsV8f47yBDqDGpcQczVDTSaUrgl8ZYCiWF+1RWDewJGbta4zevRojB492tvF8AoTJkzAqFGjnC4mIEFiNBphNptrNfzBU9RmzBwP3Ttn9+yascwJ6hbu7jxQHRzFM9LA4chVp0ZNu1mvdYRIrhkiIyPrhFUOkMbMUZ8gJsC+g0ajcWvbOdpG0lcmPjy1bZkjXLXM0RjmqpirezZugaAa3HbbbZg2bRqLS3AHmikJ0VEz+Oqgfu+993q7CD4DiTl/f38MHjwYX3755TVr5bqaIUFCi5WEmHMdVy1zVD7hZhVck/j7++O1116r0m8p3k5Y5moGZx1+jx49UFhYWEulcY3i4mKfHKjqAn5+fk73mxb4NmQ98sU2Upt55nhctcwRrqad8r0nIBDUEBToLixz3mHr1q3eLoIddS0PmkBQFyBBQhNfXxZzddUyBwCrVq1yuvUe4XtPQCCoIZT2xxMIBK6zfv16rFixwtvFENQwV4OY8/YCCFcsc+4savK9JyAQ1BAk5oRlru6xZs0a/PXXX94uhsAJXbp0QZcuXZx+748//sCJEydqoUSCmuDDDz/EjBkzmJjzxdWs3rbMeTpnplgAIRD8P9eqm3XTpk04cOBArZzriy++UNzRxRkDBgwQyWKvIm6++WbJjjUC3+K+++7D/v37fdoyR2LKW2LO07F6vvcEBIIagixzvtgxVYfevXvX2rkefvjhWjuXQCCoWXxZzGk0Grz66qtsP/PaQog5gaCGIcucL3ZMAoFAUNv4spgDgLfffrvWz1lTYk64WQWC/4fyiSUkJHi5JAKBQFD38XUx5w2eeOIJBAUFoX79+h49rngCAsH/M2DAgDqTSV8gEAjqOkLMuU/Xrl1d3tXBHcQTEAgEtc7JkydRUFDg7WIIBIJq4MurWa82hJgTCAS1TtOmTb1dBIFAUE2EZa7u4PMxc0uXLkV0dLS3iyEQCAQCwTWFEHN1B59+AhUVFfjpp58cBhJarVZYrVb22mw210bRBAKBQCC4qunYsSNGjBiBxMREbxflmsenLXPffvsthg0b5jDp3/Tp02Eymdg/T68gEQgEAoHgWiQm5v/au4OQpvs4juOfZ9GmgTNLR4fsVEFEQSCj4ZZhJB6KMGQehgSBQtChgxRdKqJz4aFLhwQpTSEoOiUeOpRSaTsEIxwRKGHBEF1EbPHv+xzUnuVT1ANP/f259+uoG3zhs//24ffn9/9FNDAwoIqKCr9HKXt/maPb9zzPU1tbm+7du6doNKqJiYnvvu57K3P19fVaWFhQOBz+U+MCAAD8Fqv+Nuu7d+/U3t7+r793dXUpmUz+9CiOUCikUCj0u8YDAADwlbMrc+fOnVM6nVYgEND4+LhOnjypa9eu/fR9+Xxe1dXVrMwBAIA1wdkyV6qhoeGHt1lXMjN9+PBBVVVV//txGgAAAH/amihzAAAA5crp3awAAADljjIHAADgMMocAACAw1b9o0n+pOXNEQAAAKvBr2zYpMyVyOVyikQifo8BAAAgSb/0KDXKXIlgMChJmpmZ4Rl0Dlk+1YPc3EJubiI3N5Gbu6qqqn76GspcieVlzHA4zIfdQeTmJnJzE7m5idzWJjZAAAAAOIwyBwAA4DDKXIlQKKSLFy8qFAr5PQr+A3JzE7m5idzcRG5rG8d5AQAAOIyVOQAAAIdR5gAAABxGmQMAAHAYZQ4AAMBhlLkSPT09SiQSSqVSKhaLfo+DFSYnJ5VIJNTU1KRkMqnPnz9raGhIsVhMzc3NmpmZkSRlMhnF43HFYjGNjo76PDWWDQ4Oqq6uTpLIzRGPHj3SoUOH1NTUpPv375ObA758+aITJ04okUjowIEDev36NbmVA4OZmb148cJSqZSZmV25csVu377t80RYaXZ21j5+/GhmZufPn7fh4WGLRqNWKBTs8ePH1tXVZWZmx44ds6mpKVtYWLBYLObnyFjieZ4dP37c9u3bZ8Vikdwc8OnTJzty5IgVCgUzM3JzxOTkpHV0dJiZ2cjIiJ05c4bcygArc0vGx8fV0tIiSWptbdXY2JjPE2GlLVu2aMOGDZKk9evXa2pqSrt371YwGFRjY6NevnwpSZqdndWOHTsUDoe1efNm5XI5P8eGpIGBAbW3tysQCCibzZKbA8bGxlRZWamjR4+qra1Nz58/JzcHbN26VZJkZpqfn1ddXR25lQHK3JL5+fmv59VVV1drbm7O54nwI9PT0xodHVU8Hv/mjEHP8yQtfoktI0v/eZ6n4eFhdXR0SPr2Wlv+v0Ruq8379+/15s0bPXjwQN3d3bp06RK5OaC2tlaBQEC7du3S2bNndfDgQXIrA5S5JTU1Ncrn85IWf2w2bdrk80T4nnw+r87OTvX19SkSiXzNTJLWrVsnSQoE/vlYk6X/bt26pWQy+TWX0mtNIrfVauPGjYrH4woGg2publY6nSY3Bzx8+FCVlZV69eqV7t69q97eXnIrA5S5Jfv379fIyIikxYuhsbHR54mwkud5SqVSunDhgnbu3Knt27crk8moWCzqyZMn2rt3r6TF27HZbFb5fF5zc3Oqra31efLylslk1N/fr9bWVmWzWd24cYPcHBCNRpXJZCRJ6XRaLS0t5OaImpoaSYuFPJfLkVsZ4DivEj09PXr69Km2bdumvr4+BYNBv0dCicHBQZ0+fVp79uyRJJ06dUpmpt7eXlVUVKi/v1/19fXKZDLq7u6W53m6fPmyDh8+7PPkWNbQ0KCJiQnduXOH3Bxw/fp1DQ0NKRAI6ObNm3r27Bm5rXKe56mzs1Nv375VoVDQ1atXNT09TW5rHGUOAADAYdxmBQAAcBhlDgAAwGGUOQAAAIdR5gAAABxGmQMAAHAYZQ4AAMBhlDkAAACHUeYAAAAcRpkDAABwGGUOAADAYX8DhFUgEorbZSAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHVCAYAAACaHX1gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3yT1f7HP0n3SNO9N2VT9h4ylSV4FXCA4h6A44p4FbxOVBRRcKK4EPW6UXCBkyVDNkLZ3Xs3bdKZ5PdHf9/DeZ48mU2aFp7368WLNs04ecY5n/OdCqPRaISMjIyMjIyMjEynROnuAcjIyMjIyMjIyDiOLOZkZGRkZGRkZDoxspiTkZGRkZGRkenEyGJORkZGRkZGRqYTI4s5GRkZGRkZGZlOjCzmZGRkZGRkZGQ6MbKYk5GRkZGRkZHpxMhiTkZGRkZGRkamEyOLORkZGRkZGRmZTkynEXMHDx7EmDFjMHbsWFx77bVobm7GF198gREjRmDChAnIy8tz9xBlZGRkZGRkZNodRWdp51VcXIygoCD4+/tj2bJlGDBgAFatWoWdO3di//79+Oijj7Bu3Tqr72M0GlFbWwuVSgWFQtEOI5eRkZGRkZGRcR2dxjIXHR0Nf39/AICXlxfOnDmD3r17w9vbG6NGjcI///wj+brGxkZoNBr2r6CgAGq1GrW1te05fBkZGRkZGRkZl9BpxByRm5uL3377DaNHj0ZQUBB7XK/XSz5/xYoVUKvV7F9CQkJ7DVVGRkZGRkZGxuV0KjGn0Whw00034cMPP0RkZCQ0Gg37m4eHh+Rrli5dipqaGvZPjq2TkZGRkZGRuZjwdPcAbEWv12PevHl44okn0K1bNzQ3NyMjIwNNTU3Yv38/+vbtK/k6Hx8f+Pj4tPNoZWRkHKWurg5fffUVrrzySkRERLh7ODIyMjIdnk6TAPHZZ5/h3nvvRXp6OgBgwYIFMBqNePXVV+Hr64sNGzbY5ELVaDRQq9WoqakRuGllZGQ6Brfddhs+/PBDvPjii/jPf/7j7uHIyMjIdHg6jZhzFrKYk5HpuGi1WoSFhaGxsREPP/wwVq5c6e4hycjIyHR4OlXMnIyMzMVLc3MzDh48iMbGRnh7e6OqqsrdQ5KRkZHpFMhiTkZGxu38+eef8Pb2xqeffgp/f3+MHj1aFnMyMjIyNiKLORkZGbfz0UcfAQDWr1+Pnj17IiIiQhZzFwmVlZU4fvy4u4chI3NRI4s5GRkZt5ORkQEAaGpqQkhICEJCQmQxd5EwatQolrgmIyNjO/X19aiuroYtqQ2ymJORkXE7NTU17Ge1Wi2LuYuIU6dOuXsIMjKdkq1btyIkJARlZWVWnyuLORkZGbfDt9eTxdzFSX19vbuHICPTqcjPz4e3tzfCw8OtPlcWczIyMm6ntrYWfn5+AIDg4GDExcWhpqYGR48eFTyvsrISb7/9tjuGKOMAvHuooqLCjSORkel85OfnIy4uDkqldakmizkZGRm3YjAYoNVqkZycDKDVMjd79mwkJibi3XffFTz3tttuw4IFC1BeXu6GkcrYC3+eZDF38bJ06VJcddVV7h7GRUd+fj7i4+Nteq4s5mQ6PZ9//rm8uHdidDodjEYjE3M+Pj7w9vZG//79kZmZKXju3r17AbRa6GQ6Pvx5ksXcxcsLL7yAzZs3u3sYFx2ymJO5ZPj1119xww034OGHH3b3UGQchOLl4uLiALT2YQaAlJQUZGZm4q+//mLuupKSEgDuEQZVVVXIyspq98/tzIjFXEtLixtHIyPTucjOzrapTSkgizmZTkxRURGuuOIKALAppkCmY0JiLiQkBADYgp+SkoLTp09j9OjR+P7776HRaNhr3CHmhg4ditTU1Hb/3M4ML+ZWrFgBLy8vaLVaN45IxtnwcZENDQ1uHMnFRVFREXJycjB48GCbni+vgDKdFrLSAK1B8zKdExJzffv2BQD07t0bAJCWlsaec/LkSUHhWXe4Wc+dO9fm98jKyoLBYHDCaDoHdJ5CQkJw+PBhAEBpaak7hyTjZPisc35Olmkbu3btAgCMHj3apufLYs4Kf/75J0aMGGFT0T6Z9oW3zshlLDovJOaGDRuG3NxczJo1CwAwbtw49pwjR47gxIkTUCqV8PDwcGv8VWNjo0Ov+/nnn5GamopNmzY5eUQdl6qqKvj6+gosmnK848VFTk4O+1kWc87j9OnTCA8PR0xMjE3Pl8WcFZ599lns3bsXJ0+edPdQZETQgj569Gh5gejEkJhTqVSC+JCAgACsXLkSvr6+yMjIQHFxMSIjIxEbG+tWMeeoZenTTz8FIFz8LnYqKysRGhoKX19fwWMyFw/89VxcXOzGkVxc5Ofn2xwvB8hizirUhuaPP/5w80hkxFRUVMDT0xNJSUnyAtGJIWEm5Sp/+OGHsXz5cpw/fx6VlZUICQlBWFhYu59v3hrnqPWBYv4KCwudMqbOAIk5vmBwZ7Gib9myBfn5+e4eRocnJycHPj4+CA8Px759+9w9nIsGezJZAVnMWYUy6+SWNB2PiooKhIaGumVxl3Ee2dnZiI6OFlhveLp06QKtVovTp08zMdfeljlewDlqfSAx1x4CoampyeWfYQv79+9HcnKyQMx1hnvVaDRi6tSpmDZtmruH0uHJzs5GcnIyLr/8cvz666/uHs5FgyzmnAy5gAoKCtw8EhkxFRUVCAsLQ2hoaKfZ7cuYkpWVxWrMSdGlSxcArcIgNDQUoaGh7S7m+OvLlj6JUtBc4moxt379evj4+Ljd5XXu3Dns3bsXN998MzZs2IA777wT4eHhnULMUd1KS1bUAwcOsCD1S5nc3FwkJSWhf//+OHPmjLuHc9GQl5dnl5jzdOFYLgraczctYx/l5eUICwtDREQESktLYTAY5BIlnZCsrCykpKSY/TsJvfLycoSEhCAgIMApmaX2UF1dzX7m+8jaA73OlW7W3377DbfeeiuA1tIG0dHRLvssa5A3Y/jw4YiPj8fgwYOxbdu2DrHxohIa5qzB58+fB9Aat2mOIUOGAMAlnxxXXl6OxMRExMTEoKamBvX19aw1n4xjZGdno7KyEr169bL5NZ1m5autrcWwYcMQGBjIShR88cUXGDFiBCZMmIC8vDyXfS4gi7mOyLlz55CamorY2Fi0tLTIXSA6KeSmMUdQUBACAwMBwG1uVmeIOY1GA19fX9TU1DhpVKbk5uayn+vq6lz2ObaQlZUFb29vxMbGssdCQ0M7hGWuW7dugtI3YqjziCUxJ9NKdXU11Go12zi42yLc2SgqKjIpV7R9+3YAwJgxY2x+n04j5vz8/PDDDz9g9uzZAIDm5ma88sor2L59O5YvX47ly5e75HM1Gg0UCgVKSko6TByKTOtuOCMjAz179mSdA2RXeOdiy5YtWLx4MfLz8y1a5oAL3SHc5WYlMRcfH++wSKqtrUVcXJyg+LGz4WPTHBWdziIzMxMpKSkCa3lHEXN5eXkW5wsScydPnsRXX33VXsPqlNTU1CA4OFgWcw7Q1NSE2NhYPP3004LH9+7di169eiEsLMzm9+o0Ys7T0xMRERHs97Nnz6J3797w9vbGqFGj8M8//0i+rrGxERqNRvDPVnbs2IG///4bPXv2hNFoRFFRUZu/h6upr6/HY489xgp0XqwUFRVBo9EIxNyllCV4MTB16lSsXr0aRqPRqpijWktkmdNqtQ7Xe3OEmpoa+Pn5ITQ01CGR1NLSAp1Oh7i4ODQ1Nbls7Dqdjoknd1vmSMzxhISEuN3NyrtFzZ0Hvifwtddea/J3V1pXOxvV1dWymHMQir/94YcfBI8fOXIEAwcOtOu9Oo2YE1NdXY2goCD2O2WdilmxYgXUajX7Z0/dlunTpwMAEhMTAXQOy8+7776L559/HitXrnT3UFwKxUx169YNkZGRUCqVZs/P+PHjMX/+/PYcnowN+Pj4sJ8tuVmB1s0bAAwaNIjtVtvTwkMLVmBgoEMiiV5DGw9XWc10Oh3b9LrbMnfw4EH069dP8FhHsMzxVl1zsZfnz59nGwh/f3+TFmS8O5u3hl5qGAwGaDQaBAcHIywsDB4eHp3C6NFe/PLLL4LONWJIzPFzyo8//oi9e/eif//+dn1WpxVzISEhAiubh4eH5POWLl2Kmpoa9s+e2Dq1Wg3gwi6sM8TNZWdnA8BFX++HzmNCQgI8PT0RHR0taZlrbm7Gtm3b8PHHH5sV/DLugXqxAhc2TOaYN28eAGDkyJFM+JmzxrsCEnMqlcohkUSvITHnKlerTqdDYGAg/P393SrmCgoKUFBQgKFDhwoe7whiLisrS/JnnszMTNx666145513oNPpMHXqVMHf+VI17rY0uhONRgOj0Yjg4GAolUqEh4fLscsckydPZrVqpSAxx28WNmzYAOCCMclWOq2YS0tLQ0ZGBpqamvDXX3+xvo5ifHx8EBQUJPhnDa1WC51OxywHr776KgICAjqFmKNJJisr66JuaJ2Xl8csJQAQGxtrYpm7//778d5777Hfjx492q5jlLEMibng4GB4e3tbfO6LL76IlpYWKBQK9O7dG0lJSe3aFqutljnqGkGlBlwltOrr6+Hv7w+VSuVWN+uhQ4cAXMj4JDpCGSGy8gKQ3Nzr9XoUFBQgKSmJtZQTdwDiBYu7xak7oVhSKvgtizlpWlpaJB8nMcfPB5WVlZgzZw569Ohh12d0qtIk06ZNw5EjR3D69Gncfffd+Pe//42xY8fC19eXqVln0LVrV7S0tKCqqgpvvfUWhgwZgvj4+E4j5vz9/aHT6aDRaC7abCxxq5O4uDiBZa6mpgavv/664DVHjx61Ow5BxjGqqqoQGBiI0tJSZo0SU19fj5SUFOzevdum9yTru0KhwLBhw3D69GmnjdcaVKBapVI5FJu5ceNGqNVqjB07FoBrLXMk5txpmTt16hQCAwNN6mSFhIRAp9OhoaHBbFkQV3P69GlERUXBx8dHck6vq6tj1qZu3brhnnvuMfF08ILFna3l3I0s5szD339nzpwxKTOyadMmrFmzBkDrfFBeXo7w8HBUVFRYzLQ2R6cScz/99JPJY9dff73TP4f3+VOD6Li4uE4j5rp27YqjR49Co9HY3KS3s5GXlycQc7GxsQJRwC/0VFj42LFj7TrGS5nQ0FD28y+//ILLL7/c5DmVlZV4/PHHHaqFFhIS0q615goLCzFgwAD4+vo6ZPHau3cvJk2ahMjISACuFXN+fn4OWxCdxenTp9GtWzcoFArB43RdVFVVuW1uOn36NLp3746WlhbJOZ0WYbL6BwcHC0rTAK0WFRLMnWFdcBV0XCgkSRZzrTQ2Ngo8RXl5eSZi7l//+pfg94MHD2Ly5MmsGL69dFo3a3tB2Vjx8fGdIgGCxBzgugWjI1BSUiIQAWLLHC/m4uPj0adPH5w4caJdxyjTypw5c0zcWc3NzdBoNA5NWkD7x14VFBQgNjYWgYGBDlm86urqEBwczMI8XHVv8m5Wd1rmzpw5g+7du5s8TufblgX/559/xt9//+30sZGYS0hIkHSzkghWqVQAWoWKOHu1vLwcqampiImJuaRbPYotcxEREZe8mGtpaUFcXJzAM2QpVr9v374IDw/HmjVrYDQamRfAXmQxJ0IcZ5aUlAQAncLNqtfrUV5ezky0F7OYowbeRFxcHMrKyqDT6QAIY1x8fX2RmJjY4c/fxQLVY4yKisJLL72Empoak0WZYjvDw8Md+oz2LHHR0tKCkpISxMbGIjg4GGVlZXaXFtFqtQgMDERAQACUSqWJpcdZ8G5Wd97/2dnZkuVmyJpOi9tXX32FyMhIyXM5bdo0DBs2zKnjMhgMTGimpKQISpAQJIJJzAUHB6OmpkZQ0qS8vBwRERHo0aNHu7r7OxpSlrlL2e0MtG78Kioq8PHHHwNoLXouJebIGPHkk0/i8ccfx5YtW1BWVgatVitb5pyBOB6GkiDi4+NRWFjYoTMiacKhSdTdpQlcSVVVlSAbctCgQQBa3VlAawA2ZdLl5eUhNjZWrkPXDpw4cYLtzN977z0sXrwYHh4eLAGAoEzU3r17O/Q5ISEhqKmpaZf7kVrFxcbGYsaMGdBqtfjuu+/seg+tVouAgAAoFAp06dLFZQKAxFxERITDPWTbil6vR2FhoWRfyZiYGHh6erKs+wcffBBlZWV45513zL7f999/77SxFRQUQKfToXv37ujWrRtyc3NNSouQZY7crGq1Gnq9XrDRLy0tRVhYGLp3735J9yOtqamBv78/S2AKCwtz23XXUaCyNbW1tYiJiUGPHj0kxZy/vz+WLFmCa665hiVwkpVXFnNOgBb8mJgYEzdeS0uLyaLUkaDdLZV5uFgtc0ajEVVVVQLLXO/evREWFoY//vgDRqMRBw4cwLRp0/Diiy/is88+Q2xsLGpqavD+++9Do9F0aFHeWfnnn3/Qt29fvPHGGwBaXaFKpZL1zuU5cuQIgoKCrNaXMwcJ+fYo3srPCT179kRSUpLdmdF1dXUsGalfv34uy6ymmLmYmBi31fsqLS2FXq+XFHMeHh5ITExETk4Ompub2RjF8Y9GoxGenq0h3c8++6zTxkYimsSc0WjEnDlzcODAAfYcsWVOXKJKr9fj0KFDSE9PR2xs7CVdJJeyvAm1Wo36+nqz2Zu2Mn78eDzwwANtHJ174GsQdu/eHcnJyZIlcGpqatgaRrG0FAokizknQFaFY8eOCdxyJOykxFxdXR18fX2ZVchdUAxRdHQ0vL297RZzBoMBzc3NrhiaU6mtrYVerxdY5pRKJSZPnoznnnsOgYGBqKiowMSJE/Gf//wHl112GcuovOOOO6BWq/H222+bff+KigrMmDEDOTk5Lv8uFwtHjx5F3759YTAY8NFHHwG4MCFFRkZKWub69u0raPVkDzQJtkfcHLmS6DOjoqLs3tSRZQ5oFXPHjh3DiRMncOjQIacKUoqZi46ORnFxsVuawNO8KSXmgNbQlezsbOTn58NgMEChUJgcA51Oh5aWFgwbNgxHjx51WivFrKwsKBQKJCcno1u3bgBai7TyJVTEMXMkVmiM//zzDzQaDcaMGYPIyEiUlZWZ9Na8VBCLObrG21oWa9u2bXjttdfccv22ldzcXJap3b17d3Tt2lVQDgdo3axoNBq2UaBC35Q1TYmX9iCLORGVlZVQKBQIDQ0VFCIW7854MjMz0djYiHXr1rXbOKUgyxwFWtsr5ubMmSO4MTsq9D3FQaIzZ84E0LoQPPvssxg9ejT7mzhjMiMjw+z7P/vss/jhhx/w888/O2vIFz28C5t+tiR+zAXI2woJ+faIm6N7nuYAKXFqCYPBgPr6erbQdevWDZWVlejTpw8GDRqEqVOnOm3RIjdrTEwM6uvr3WKdp6oD5krSJCcnIycnh7la+/fvbxJDSHFXU6ZMQWNjo9OSlwoLCxEVFQUvLy9Be0jgQmuv2tpaKJVK+Pn5Abgg5mjjsHPnTnh7e2Po0KGIjIyEwWC4ZGvNicUcuabbIub4e4Gukc7E8ePH0bdvX9x0002YOXMmunXrhoKCAkF2eUNDA5qbm1lCFHkxdu/ejcDAQGapswdZzImorKxESEiIicXAkpijiUicht8eGI1GlmVLC1tISAiCgoLsjpnbuHEjdDpdh2/HQhMnb5kDWnsoHjhwAEajEY899pjgbz169MDLL7+M4cOHw9fX16Jr5Pz58wBc0/GjsrLSbNX5zoxUQD+dH7H4MRqNOHPmDLOMOAJNdu3h4qJ7nibeyMhIQQcAa1BSDi10fGLArbfeij179uCNN97AG2+8YVKc1h4MBgNKSkoQERHBNi/uuJdff/11DBo0yEQsEWSZo4U6PT3d5PohDwklQPCuq7ZAWckEnRP+M2praxEYGMjmc0raoL/v2LEDQ4YMga+vL7sOO3L4TVtoaWmxuI5UV1eztRG4cDzbUhaHf21nS6YwGo3Ytm0bLrvsMmzYsAHTpk1j8xwfWyneIHp4eCA8PBxnz55FWlqaQ1pCFnMixFmShCUxRxO7wWBwevBnbm6uxV37W2+9hfj4eJSWlqKqqgpKpRIqlQrBwcF23wiUufvKK6+0acyuhhetPAqFgiVCiFEoFFi8eDH27NmDa6+91uIiR7tKVwQ2L1u2DIMHD77ogoT5DgfDhw/H9ddfz2KexK3WSktLUVtb2yYxR6EE7eEK12g08Pf3Z9/HXjcrXU9kmePF3Pvvv48bb7wRjz32GO677z707dsXGo0G//nPf+y2buTm5qKhoQHdu3d3W9Pz5uZmVFRU4N577zW7ICUnJ6OkpAQnT55EbGwsoqKiBGKupaUFN954IwCwMkvOKndRWFgosBju3r0b//3vfwGAZbbW1dUJRJ5KpUJERAQyMzNhNBqxc+dOjBkzBgAuejG3aNEiBAUFmXUjm3OzHjp0yK7WmTz83Ogui6dGo3HIdf7LL7+gsLBQUFczPT0dnp6egox+spjzQjgqKgoATOrR2YrdYq66uhpffPEFXnnlFaxevRqff/6529uzOBNzYs7X1xdeXl6SYo5u5PXr1yMyMtJpLpO8vDwkJSXh/fffN/ucrVu3Amg9L1VVVaxHXpcuXewuqtrU1ARvb2+sXr3aYnNgV2M0Gi0eQ/Guxl5iY2OxZ88eDB48mLUd4qFFVBzn0Fb27t2Ld955B5WVlXjooYec+t7upqysDImJicjNzcWePXvw2Wefsb8lJiYiLy+PnVMSybRQO4JSqURiYmK7uGFqamoE15q9blayNNBCxwc30yaDrB8tLS148MEH8dJLL2HHjh12jZMP7ueL87YntIG0VHKGNo07duxAcnKySVHeK6+8EidPnkRYWBji4+MREhLiVDHHW+bS09Px5JNPwsPDg1nMNRoNi5cjUlNT8emnn2LevHkoKSkxEXNSJU4uBih06MiRI5J/N+dmveGGG5CYmIgPPvjAbiudu1ulffXVV1Cr1XZ3lSoqKsLs2bMxceJEgZgLCAjAwIEDsXPnTvYYiTm+vehLL72Efv364amnnnJo3HaJuffffx9Dhw7F3r17YTAYoNfrsXfvXgwfPtyi4OhMiEteEAqFQlA88s8//0SfPn1gNBpNXC7Ocm3QxGip3RFd7N27d8fBgwfZ2Lt162aXZUmv16O0tBSrVq2Cn5+fZLcNV/Pee+/hyy+/xC233GJxMRBbOuyFKs8fPHhQ8sbhxZwzA3BHjBjBPv+LL77oFMkmtlJaWoqoqChJa0xiYiIaGxvZjvvs2bOsREdboNgrVyMWc0lJSdDpdDZbHmhBpOtVoVDg9ddfZzv1/v37C55PGzR755GzZ8/C29sbiYmJbIG1VM9u8+bNTj9+tBBbysajDOZ9+/YhKSmJiTnKUt+6dSuef/55lJeXw9fXF+Hh4SgtLYVCocCqVavaNL7i4mKT+FlPT0/BxqCsrMzERZyamopTp06xTcrIkSMBtC7Gw4YNw9NPP92mcbmShoYG/Pnnn3a/jjdcmNtYiLsViOfk22+/nYl3W3G3mPv6668BwO5wmNOnT6Ourg6rV682mQcHDRrEyjEBpuVvAGDy5Mk4cuSIw5tcu8TcypUrcejQIaxevRpLlizBkiVLsGbNGhw4cAAvvviiQwPoaJizzAHCSuDLli3DiRMnUFVVZSLmKOaqrZB6F9dB4uF33t988w1zIUgFXVqioqICer0eiYmJiImJsSsmyFnceeeduO6667BhwwaLN7FWq4VCoXC4tyMfeC9luairq0OfPn2g1Wqxbds2p2TS/fXXX+znyy+/HE1NTR26cvz69evx+++/2/z80tJSszFSVCpny5YtqKurw5kzZ5CUlNTm3pxkCXQ1Go1GsIMeN24clEolfvnlF4uvKysrQ0ZGBlauXAlAOHHfe++9LINSPPFTDKy93626uhohISHw8PCAp6cnAgMDLVrmrrrqKpM6f5mZmXjooYcEC4890EJsaTMWFxfHYpLJMtfS0oL6+nomqCZOnMieHx4ejm3btgEAli9f7tC4CD6DkCcqKoptNkpKSpjLi1i0aBGA1mz4LVu2MLGsUChw0003obCw0KGN39mzZ3Hw4EHBY7W1tRg+fDjuv/9+u99PijVr1mDChAlQKBR2GV34JDFzGwvqJ0rw1zhRWVlpVyJOZmYmPDw8EBwc7BYxR+fD3ixz2jhJtSeMi4sTHEOxtd4Z2CXmFAqFpDioq6tzS/C/K7BVzFGdsuLiYuZyoexXZ4k5upDFYu6TTz7BvHnzUFdXZxJ7RdYOikey1dVKVobY2FhER0fbJeby8/Px4osvOj2N3Nz76XQ6VoDVEcaNG8d+loor1Gq1zFoyYcIEi2VMbIUya6+55hq89NJLAIDDhw+3+X2l0Ov1bT4Xt956KyZNmmRzp4KKigqzCziJuZtvvhkjRozAmTNn2uRiJYKDgy0uEvn5+XjooYfaHEQttsyFhISgf//+Fi3mzc3NiIyMFIglSxO3VIkWe8WcONbLUpcMytzUarUCS8jzzz+PV155BVOnTmWJG/Zgi5jjM0mTk5OZN6GsrIyJOb7+YHh4OAuHaGlpgdFoxA033GB3dwiDwQCtVmviQqXPsCTmRo0ahfr6erz77ruYPHmy4G9BQUFoaWlBQ0ODXeMBgEcffRT33nuv4LFDhw5h3759eP31151ivedDEf73v//Z/LoTJ05AqVSiX79+JmEFer0eJSUlqK+vF5xr/hqfM2cO9uzZAwA2t2U7fPgw7r//flx++eWIiYlBZWUljEYjXnvtNSgUCuh0Orz99tsu82poNBq2ftsj5kpLS/Hggw8CkA7/iYmJQXl5OTMMtNW7JIVdYm7VqlUYO3YsZs2ahfvvvx/3338/rrnmGowbNw4vv/yy0wblTmwVcxQcWVJSgpKSEtxyyy2sJ5uzAufNibn3338f//vf/7B69WqrYs7WsRw+fBhKpRK9e/dGVFSUXWKuZ8+eePTRR51uzTO3UGu1Wvj7+zv8vj4+Pvjpp59w7bXXSu78tFotC1oF4NSevO+//z4iIyMRFxeHZ599VjJmr62MGTOGCUZH4AWArRsTygKXIjw8HE888QQUCgWOHz+OnTt3OlwsmMda/9GPP/4Yr7zyCpYtW4YHHnjA7l3+3r17MX78eHz99dcmE3S3bt0sHhtxt5FFixZZ/M67d+8WZGCrVCq7xRxlYRKWxBy/OJO1y2g04uuvv8bs2bNRUFCA3377zSYxr9VqsXTpUjQ0NKC8vBweHh5W41lprhgyZAgGDhwIoLXkx+OPPw6FQiGw8vJigbLtP//8c/z999+YNWuW1fER4vpxPHxPUSkxB8CsJZmsto503Dl27JjJdclnNDtqIeU5fvw4LrvsMtx444123QMZGRlITU1FUlKSiZhbsmQJs0Dx58fLy4v9/OWXX2Lo0KFISEjAhx9+aNNnbtiwAUajEY8++ihCQ0ORnZ0NpVLJCgg/8MADWLBggc3vZy+0XkZERNjVcm/u3LlMNFM3DB4K7aGEJLeLuSuvvBIZGRlYsmQJxo4di8suuwwPP/wwMjIycOWVVzptUO7EkpiLjIxkEziJuT/++AMlJSUsEDY9PR3Hjh1zylhoIhabuOlCePXVV01eQ2IuNDQUYWFhNou5Q4cOoWfPnvD397dbzNEk2RaTOJ85JK7rJIYvwOooU6dOxdixY1FRUSGwYhkMBuh0OoSEhKChoQGDBw92Sh/NqKgoLF++nH23hIQEnD171mz2raO0tLTgwIEDgor29sK7V2xtgWYu1pR4+umn2TVVXl4uCEJ3FEtN77VaLd566y0ArQL6tddeszve6osvvsC2bdvg4eHB4h2JLl264Pz58ygtLZWMrRELsYcfftjiZw0bNkzQ6WDAgAF2WxTtsczRuUhJSWHnu6qqCjU1Nbj22mvRvXt3vPvuuwgJCcFrr71m8XM//vhjvPDCC/j222+RnZ2N6Ohoq8Wgyaret29fREVFoV+/fli3bh1OnDiBvn37CqzulP1L1lx+Ttu4caPNySjizg48ZJnT6/UoKyuTFHPmoPezV8xptVqcP39ecI7eeOMNLFiwgAl/c4kH9nD+/HlMmDABycnJds3RJ06cYJt78TH+5ptv2M+W4iNJiH311Vc2ZWefPHkSM2fOxNixY5GQkGASu/3ee+8BABYuXOi0dZaHkt4GDx6MmpoaHDlyhG1CLWEtJIXmO1rLtVotfHx8BLVs24rd2aw0sc2aNQuzZ8/GiBEjnDogd9LY2AitVmtWzF177bXYv38/vv32W+Yie/bZZ5GZmclu/v79+zutVQ/deBkZGQL3NlmKKioqBMUF77jjDkEWjT19A8+cOcNSou1xs/JCSLz4aLVavP322zbdxGSFu/zyy/HDDz9Ivh9Bbta2EhYWhpaWFvTp04dNDGQFDQwMZHEbzsgIFGfIuao4c15eHpqbm9uUXff222+z42trEL41MQe07nYpGNoZYk6lUqGurk7Spfz222+zOoEUEmFv4dnc3FwMGDAAdXV1WLx4seBvXbp0QX5+Pq666irMnTtX8rVAa821fv36me2GIGbIkCFQqVQYOnSo3dedWMxZunbp/h45ciQLxaDjlZCQgKuuuordh4888ojZzzQYDExw1NTUYO/evawnsiX27NmDTz75hK0d6enpLNtPXKyb5qU+ffoAEAoJoHVDbQuWxFxERATOnTuHI0eOwGAwSMY9mYMsc/YWaD5x4gSMRiNL/gCAZ555BgBw4403IiIiwin9pClOMDQ01G4x16tXL8nsbX7+teRSB1oLPzc3NzOXqyVOnjyJnj17AgAGDhzIwgHISwK0ls7y8vLC6tWrnd5548yZM4iMjERSUhJqamqYSLO0ObaldRlZ5ngx50yrHNCGOnPiG+piwFxnAYKE0u23327yNxJzffv2RX5+vlMEQFVVFby9vaHX6zF8+HDs2bOH9TOkOkyUVQUA7777rmCXZE9Ga2VlJXstBQPbcpHyu1Gx+Prwww+xYMECk4XQ3OcDrTEktPCZE3POuhHoPGdkZLBsLbH5W1w2wREouJsPoqdJytnQwtwWMbdx40YsXboUMTExNi0mDQ0NaGhosCrmgNYdL+A8MUfdFcTQceCvvZ9++skul/mpU6cwatQoSfcaNcbeu3evyT3W1NSEM2fOICQkBPfeey+OHDli84Z3+/btqKqqQlRUlENijhcqISEhZhdvWpxHjBiB3NxcNDY2srhZEnNEQ0OD2SSgt956C++88w6A1mO+f/9+EyumFMOGDcO8efPY7yTy1Wq1iZAiMdfS0oKYmBjW+5ew9ZxaEnN0bw4ePBheXl6C7jHWcNQyRy7U5uZm6HQ6GI1G1NXV4ZVXXsHy5csRFxfX5hAPvV4PnU4HlUqF0NBQ1NXV2ZTQlZOTg4KCAvTu3ZsVyeY3TZbE3KeffiowaPTq1QuhoaFWxVxDQwNyc3NZghrNFUDrMbrtttsAtHoIR40ahfXr1zNLnbPIyspCamoq1Go1qqurmVvUknHDlqz28PBweHp6svlUq9VKJou0BYfF3Ny5c7F69WqLz+lsfdVo4jMn5uiGqKqqwgMPPIBvv/2W/Y3EHLk5nVH/qri4GJdddhm6d++OEydO4MMPP2T9FmfNmgW1Wo1x48YhNDQUo0aNMnl9t27dcPr0aZvOA+9ejoqKgtFotKm2E79YlJeX48yZM6xH7ebNmwFYbp0lfp+QkBAmKi2JubbEzBF8XA/tql0h5qQWEf6zn3zyyTa9Pw+JmKqqKoc2FFqtFjqdDsnJyYiNjbXJMmeuiLMUzhRzNBlKLaJ5eXmYMWMGix297bbb4O/vbyIEzNHS0oKzZ8+iR48ekn+nOC+g9drlg6Vnz56NZ555RlAc2Fb8/Pzg4eGBkJAQaDQaZlW0BbFlLiYmxuz5Ky0thVqtxoABA2AwGODr64tffvkFHh4eiI6OxrBhwwRWf3OJVLwbcO/evdDpdA4lt5CY6969u0liU1paGtLT07F06VJ8+eWX7PGXX34ZISEhNgeqWxJzaWlp7OcpU6bY1ejcHstcYWEhcx3ybsLq6mpUVlaivr6edZyIjY1ts2WOjxOk72RO4GdlZbFYtIceeggBAQEYO3YsQkJC0NjYaDbBQyxK5s6dyzY7QKtLvWvXrlY3mPRd6fuPGjUKPj4+SE9PB9Bq5f7uu+/QtWtXrFmzBkCrcOSpr69vUwHnoqIixMbGsvh4ymy1lEhoy8ZZqVQiOjq6Y1rmNm/ejKeeegr333+/iVjQ6/VYv349M5d2FqxZ5oALWVaTJk3Cv/71L/Y4TWA0gTujZROZuan5rr+/P0t4SEhIQEZGBhYuXIiysjJBQUKiW7duqK6utin2hneT0c7YFlcrLxjuvPNOdO/eHSNGjMD27duxbds2qFQqk52L0Wg0MY+TcAwNDUVAQAB8fX3N3pTOcrMOHDgQL7zwApKSkth3FaeMW4o7shVaRHjL3Nq1a7FixQoAwGeffYYVK1Y4pT7huXPnWLySI9Y5OuZRUVFISEiw6Tom95ctYu7yyy9HdHS0Q42kxdCiLJVhn5ubi8TERHYsJkyYgPnz5wuKGVsiKysLzc3NZucwhUKBv//+G2vXrmXPJ77//nsAEMTA2Yu4ubstiMVcQkICCgoKJAVhVVUVwsLCMGLECFx//fUAWrPkY2Nj4eHhAQ8PDyxcuBC33HILAPMbMipUDFwov2NPvBlBr6GFm8fLywvHjh3DiBEjBJvWxYsXIy4uzubNFt2HUhaRiRMnss43tlgWeeyxzN1zzz2YPn06ysrK8M8//zD3W1VVFZsnKfvbGWKOF7C0rpkTc5MmTcJtt92G8vJy7NmzB/fffz/i4+Mlr8WysjJ069bN5moJKSkpyMzMxODBgzFlyhTJ59D8Rxs9b29vVFVVsbXN39+fWYz79OmDd955B3/99ZdARK9cuVIQamQvRUVFiImJQWhoKCoqKlh9PksF5LOysmyqrMBvrjqUmJs8eTJ27NiBb7/9Ftdccw3q6+vR1NSEtWvXIi0tDYsXL8Z1113nzLFKsmTJEowZMwbz5s1rcz0wcz0/eZKTk+Hp6YmxY8cKHqedZXh4OPz9/ZGdnY3c3Fz07t3bYgkDc+h0Opw9exZ9+/aFWq3GsGHDUFdXJ7CCxMbGwsvLC0qlUvJiooXIWiV5vV4PjUbDvjdNrPaIOf7zPTw8sGjRIjQ3N2PRokUmC8q0adMQEBAgsPydOHEC/v7+iI+Ph0KhsGgVctaN4OnpiUceeQSpqalMxIjFHFnmDhw4gBtuuMGhMhc02fAWgejoaDz66KP46KOPcPbsWSxbtszuUgtSnD17lsUstUXMRUZGIj093aZsOrpvbOnIMWjQIBQVFTklZtCSZY7E3A033IDly5djzpw5SElJsTlmiDIKzVnmgNb4ttmzZwO4IHaMRiMCAgLw4osvYurUqXZ9Hx66F+3ZSEiJOb1eL4g3ImjzplAo8Nlnn6F///6orKxkVhGg1WL8wQcfwNvbWzAXfPvtt5gyZQqeffZZHDt2DM8//7zAS+OImBs2bBhiY2OxZMkSi88Tz3N8hQFy95vDUjYrAJbEd80119g8bgCsTJItYo7c7d9++y3LMgVaLXMUZ0nnIC4urs11FKXEnNQcptfr2XxBsXoDBgwAYNrKsr6+HiUlJVi0aJHNhb9TU1ORlZWFgwcPsqLYYki4ksAFWi3V5uaVCRMmQK/XCwwZ58+fb1MhbBJzs2fPRmpqKnr16oX77rvPomgtKytDaGgodu/ebXG+5MNWOpSYA4B+/fph7969yMzMxPDhw5GSkoInn3wSd955J3JyclxeFfvw4cMoLi7Gzp070atXL1a52VFsEXNTpkzBrbfeyiaE06dPC3blCoUCKSkp+Pzzz5GUlISMjAyHCl2eOXMGRqOR1amizD1rrmCenj174rLLLsPrr79u8Xm0s22LmCPL5H//+19MnToVJ06cQGRkJEaOHImWlhbBe23ZsgUNDQ2C3c7+/fsxcOBANtnFxsaajRdxlpuV4LN3xdZZEnMLFy7E559/bnYisoRU6xaCtwLwLa8c5dy5cxgyZAjUarVTxFxxcbHFPrL8AuYMa5s9mLPM1dTUoKamBomJiQgMDMR///tfeHt7IygoCLW1tVZdl42NjcwCwC8sUoSHhyM9PZ1dF2+++Sa0Wm2b6+g5Q8yRhQeAyXcWJ6yQ25gXc8CFzje89euzzz7D1q1b8fjjj0Oj0aBnz56C7+uoZa6goMCieCbOnDnDwlj4MIikpCSLr6+trYVSqYSfn5/k37t27Qqj0SgoKm4LCoUCKpXKJjcr1UfbtWsXysrKmJjLzs7GyZMnoVKpmGekb9++KC0tRUFBgcPzAi/mLLlZpUJqKCSCxBQd55deegkKhQITJkyweRwpKSlWY8sKCwvh6+tr80avS5cuCAsLE7j6S0pKUFNT41AduqamJpSXlyMmJgZhYWE4deoU/vnnHwwcOBAFBQVm6y5SF4wRI0YwL4UUvIGiw4m5mpoafPDBBygoKMDZs2dRXV2N33//HcuWLTO7+3Eme/bswRVXXAGgVWRJWcAaGxuh0WgE/8wxdepUbNu2TbJODHHnnXey9jxAqytTXD8qPj4e+/fvZ7/bE/dC0KJKiwll7lVVVUGhUEgKAzEKhQJDhw61GkQrFrG+vr4ICgqyqUk3LTZUYiMuLg7Dhw8H0HoD085t3759qKioECxO/PsfPnxYEIcUFxdn1sXg7BuBAnyBC7tWmvhSUlLQ0tLCzid/Xq3x5ZdfYurUqSzbTuqc8bE6QNsaihuNRmRnZyM1NRVdunTBiRMnMGfOHLt293QcwsPDWdyLpd0m7YL/+usvpwpsWzDn3hK7qwhalKx1RaFzMG/ePJvcJ5dffjl27NgBvV6P++67DwAsTuq2QAuaOTEnlcVnScyJrdxiMUdWGLGYA4TWL6DVEsE3A+/Ro4dAADl7kRLTtWtXQcIEja20tNSiVaa2thYqlcolBe6t1TwEWi2dP/74IwDgt99+A9Dq3h0/fjxefvllHD9+HH369GHjIwv7woULbbbS/frrr4JNMi/m6HxLWeZoLt63bx8effRRvP766yxkSOxmzc3NRb9+/ey6xq3Fj37xxRd4+umnERMTY/P5oXqE/Peh+cuRMlm05pKYJq8XbVQCAgKwZcsWk9eJW5qZo8O6WZcuXYqkpCSsX78ezz//PMrKyjBnzhxMmjTJrgWvLVRXV7MFUq1WS57AFStWQK1Ws39SkxURGRlp4j51BGqpRdiSFSpG3OOQLHNVVVUIDg62WseJCAsLsyoQpGIFxTeJOSorK6FWq9luPDY2lom51NRU9OzZE+np6bjmmmsQHh4uaGFFN55er0dWVhYLVqf3MSfmxItWW+HrKFVUVMDf359lMI4dO1aQzShuvWOO8+fP47rrrsOWLVtYvTOpDY544vrtt9/Q2NhoUtfoww8/tFpFXafTob6+HlFRUYiLi8M333yDr7/+WrIeoTlKS0sRFhYGT09PpKWlwdfX12I9J7KQ2Nt/0RnQvU9ik4re0jUmFnO2BqrT3xcsWGDTOGJjY1FeXs4SfzZt2tRmyxxlCPL3bmlpKSZPnozTp08jLS2NlbEALmRE8huG4OBgrF+/HoBp3TtxkWfaSEmVUJESc3wXFdo8uAOyzNmy8SQx5wqCgoKsXlf8+SoqKoKvry/S0tIwbdo0ZGZmMjFHxMXFITw8HJs3b2ZN3C0JRoPBgCuuuILNv4BQzHl6eppdJ0lkREdHY8WKFYKuFGI3a3V1tU0hFTxiMTd+/Hj2c2NjI+677z7U1NQICmfbQlhYmKSYcyQcho6B2BrPr0tSc6k9Yq60tBQtLS0oKyuzKcbYHhwWc9999x1ee+01nDlzBnfddRcCAgKwfv163HXXXRg/fjw2bdrkzHFKQhlfQOsFJuV6XLp0KXO71NTU2Nwcuy2IM/UsuanMUVFRAR8fH6beAwMDmWXOnosgLCwM1dXVFq2DUtmItuw06bWhoaHMxaZSqTBkyBAoFAqkpqZCoVAIqrQvXrwYAQEBUKlULDPX09MTzc3NggUhISEBubm5kkLY3mNgjaioKFRUVKClpcXkxvT390e/fv0AtJr1LQXC8vAB42VlZRar4hcUFLBU/rlz58LX1xfp6elMKOn1etx2221WY+r4VkpRUVHMLeDj42PTmIFWwUDC3MPDQ1CDT4xWq8Ubb7yBsLAwq+5IV6BSqXD77bfjueeeQ3NzM/bv3485c+Zgzpw5AEwnZXvFnC3WbwCs5MO3336LiIgITJ8+3d6vYkJgYCD8/f0FIuXpp5/GL7/8glmzZiErKwtPPvkkuz9ojuEzUAGwJC2xmBPfQ/3790dKSgrrF8sTHBxsIuaio6NRVVWFEydOwNvbGwqFAgcPHsTGjRvb9sXthFzAfA1Bc3OdK8WcLfOleHPRq1cveHh4ICIiAhqNBkeOHBGU41AoFMwwkJycjP3797NkOClozuHFmjiD11ytObrOpFzk9Fpys1ZXV9sd8yo2olCvXaC1blxlZSUyMjIky35ZgjdWUMFnwDEPhzkxx3cjERtqGhsbcerUKZvEXGxsLIxGIzZt2oQjR45IJvu0BYfFXEZGBubPn29SP2n58uVYs2YNrrvuOpvLADjK8OHDWbPrrVu3Spbn8PHxQVBQkOCfqxGLyhMnTrC2TTU1NXjooYegUCjw3XffAZB2+5SXlyMsLIxZbgIDA1FeXo7s7Gy7xZzRaLQYeyMl5kg8WoMWhXvuuQcfffQRxo0bh6CgILz++uuStfD27t2LlStXIi0tDSUlJQIXMO9yHDFiBOrr603aXRkMBtTU1DhVzEVGRrJSLBUVFSbnj8zuo0ePRnFxsU1FkDMyMqBSqXD55ZejpaUFoaGhZt0HsbGx6Nu3L959913B42QtlApgl0Is5gh7alWVlpYKBEHv3r0F7YV43nzzTWzduhVz58612VLsbO655x5oNBrs2bPHZAIXz01iC4M56O/2iDmgte/l1KlTnVJEXaFQmJQWofPACxdaYPlYRx6q2yaOJxaLOX9/f2RmZgruVf496HMMBgMqKioQERGB4OBggbt14MCBuPrqqx34to5DQpMKHgPmrTKutsxZE3N6vR4TJkzA0qVLAVxwxfPnjLdYARdc1k899RQACL6nGLIMA2CJILW1tfD09GQbOsrS5Kmvr8ett94KQHrj5+HhgaCgIHZfiHsV2wLf5ounqakJL7/8MhYuXGh3rCIgtMxVVFQwIe+oZU6pVArEG0GGBvFG4e6778bZs2dtOh4kEilpivp/OwuHZ2BLfu077rgD3377LZYtW+bo29vEgAEDEB0djTFjxiAjI8OuPn2uhLJqP/jgAxQVFSEsLIzVXHvooYdYCvz//vc/PPvss1CpVCYxLeLG5VTi44svvrCrOCW9h6WLu7KyEh4eHgLXpbmdZmNjo8BaRouCl5cX5s+fz66LRYsWsWDkMWPGCEz/06dPR0xMDI4fPy4oLsm76gYNGgR/f3+Tkis1NTUwGo1Ot8wBrSZ6vniyeFwUF2hLv9IzZ86gR48ebCdnrUo60HrfTJs2jf2u0WgkC+Kaw5yYs6dMjljMxcTEmHVhUYJFW0pwtJWBAwdCrVbjr7/+YhaH/fv3SxYotdcyZ+uCRddiUVGRpGXLUaKjowXHnrfw/+c//wFwwQpjTswBrd6Jb775hs1L9m6IeDdrVVUV9Hq95ILnDkjM8ZZHc1nwrrbMWbquWlpaUFRUhOuuu45tWu+++24AQsuPOIaW5tPU1FT4+/vj1ltvZXF3QGtYBpXb4cvEUJhGWVmZwCgQFhZmYpmzJfuTF/SOWOaA1vADMmAQP/74IyoqKtixsBdezPFJdo6KuaioKMnN2J49e9ClSxfk5eVhy5YteOmll6DX69m5sGWOFWfpdhgxZw1KJnA1q1atws6dO/Hpp59aTFxoT2699VbMnDkTs2bNQnR0NLp06YLc3Fxs3boV77//PnteQEAAHn/8cQAwqalGljmCdjbUtNxW6D0smZ3JVcoLdHNiztfXFzNnzhS81tqi4Ovri7/++gu9evXCtGnTkJiYiLvuugu7du3Cc889h6CgIJSUlAh2b15eXoiNjTXJqLUnm9dWaAEsLS2VjH946qmn8NhjjzGrgy03bnl5OSIjI5nL3dYipHwSgUajMduX19xn0meRNTEkJARHjx61OW6T7zMMwKSVj0ajwSOPPAKdTofCwkJMnz69Xazd5lAqlUhJSUFOTg6qqqrg6+uLwYMHCzYPhL1iztaFn78W2xorxyMWc6Wlpbj99tuxY8cOZvUWizkpkUUJWmSB12q1MBqNNp83XsyRoOwoYk6tVsNoNOLkyZPsPJjLwnenZa6oqAgGgwHx8fGYP38+srKymBWUv9/ERhLKYo2JiWFhE1deeSW0Wi0MBgOmTJmCuXPnYs+ePTh9+jTGjRsHpVKJw4cP49dff0VmZqbAvSvlZqVzaqn/aI8ePVgLS0cscwAwc+ZMXHXVVfjoo48AtBoGPvroIwwaNIhVbbAXc2LOUTeruXCRiIgIjBs3Dr///jumTp2K//znP9i/fz+z1JHl1BJ0nmNjY6HT6TpOBwhb4LMTLyUiIyOxadMmNlkmJSUhJyeHFUvcsGEDrr/+eoEoEC/SYjFHu6fNmzcL2uBYw1o3BUBakFlys/78888s6NzW+DWlUokTJ07gxx9/hEKhwFVXXYURI0Zgz5496Nevn6RFQRx4TZ8H2Fag1lZ4y1xZWZnJQhUSEoJnn32WWddsKeRKx4UmUlszPfksxZqaGpMkEEtWwZKSEvj7+8Pf3599p8WLF0Oj0VhNniD4mDkALPaOrs8PPvgAK1euxDfffIOCggKTGBJ3QPcX38VEisDAQCgUCqvnT6PRICAgwGZ3Kf+ZYstKW4iJiWEucoPBgPLycgwZMgRjxowxKQBbWlrK4uzEiEtSWOqEIAUfM9fRxBxZiI4fP85iW93hZrVmmSOhER0dDU9PT0EFBDqWUnMgJQ7wIkOpVOKzzz7D999/z8TE2LFj8f3336N///7o0aMHNm7ciCuuuAIbNmwwEXPi40PCx1JJmfHjx+Onn37Cgw8+6LBljqC5u7q6Gn///bfAG2EvFLuZnZ3NjnFcXJxDlrmTJ09anM/E1/yhQ4dQVVWFr7/+2iat4+Hhga+//trmJDp7cU+gyyVGYmKiQLhNmTIFycnJgpNKi+WqVatw8uRJk10ClWCxN2jSUTHHW+YKCwtx7NgxQZ0dGo84K84e5s+fDwAmpV0IqQwxV4g5Pz8/VsS4uLjY7KTm4+MDT09PmxNDQkJCmNvN1vIgvJjjLXPkQjFXvLK5uRmvvPIKExPDhw/HSy+9hIceeggeHh6CJIbz589LNienOktiyxxwwfJDDad37dqF8+fPO6UtV1vhxZyl60KpVEKtVlut3abRaOyyNvKf6cys3vT0dJw+fRqHDh1CdnY2DAYDW1CkxJyUGJB6rr1ijnexdTQxRxaikydPolu3bvD29jY71zk7C57HmmWO76wixs/PD0OGDJHsM/rWW2/hhx9+QEBAALZt24avv/4aw4cPx5YtW7By5UoWY0d11S6//HKMGDFCUEKDTz6QcrOWlZVBqVRavHfmzp0LAFizZg2am5sdsswR9DkUGmHuurWFWbNmISIiAm+88QZKSkoQGBiIxMREuy1zhw8fxs6dO9n3lEJ87mgutMdLRN46VyCLuXYgOTmZiblff/0VERERiI+PF1i+dDod8vLy8PDDD6NXr17IyMgQ7BKuueYaGI1GuycjLy8vBAUFWby4pRZBKoXS0tKCuLg49OvXTxBIT+KzLZmlVCHfXA2i9rLM0WdVVlayTD0pqDioPWKOarWZCwAWc++997LenDU1NSgqKoKPjw+6du2KoKAgs2IuLy8PBQUFrM+rt7c3lixZAj8/P5P+so888ggmTpzI4jiJv//+GwaDQbDLFIs5SkhZt24dampqLJb6aS9stcwBwpqCUlBvR3vEHBWhve2222xOVrGFcePGQa/XY9CgQSyTmc6Hn58ffH197RJzJHIcEXM6nQ7Nzc1s4XdmmENbIAtRS0sLIiIiTEpV8Lgzm9WSGxxovfdmzJhh8nhQUBDLjh47dixmzZqFK664Alu2bMHu3bsFIS87d+7EtGnTMHHiRMF7WLPMUQcDS5bopKQkQeKNMyxzs2bNQmNjY5uuJZVKhQEDBiArK4ttxC1dA+ZYvXo1kpOTWXKCFHQc09LSMGTIEFaCzRndbJyBLObaAf6Go8VdrPK1Wi1rwEw4y4Vl7eKmmDkeKlLMl+KgtmDPPfccamtrcebMGVRXVztcliIpKQl79uwxW1tIrVabWOYoWcPZkzJ1TDAYDBbdDXRcrFFdXY2QkBB4enrihx9+sLlUz8SJE9HS0oLIyEhmmaNCmmlpaWbFHLljpSrgi8Ucxc9t2LBB8Lw///yTNV8n6FgUFxfDYDAgKyuLtYmLjIxsl5Z91khKSoJOp8O5c+esLgxRUVF45ZVX8M4770j+/dZbb8Wbb75pdxxgQ0ODIB7WGXTt2pXVOKTNGL/R4K0s9ljmrLW1EkNWGI1GwwLq3ZW9LIa3EIWHhyM8PNzsxtWddeZKSkoQEhLilLjuBQsWsM10//798eOPP+KVV17B6NGjAUDQm/SZZ57BDTfcwH4PDQ2FTqcTtD2TCi2Rgi8d1Za6guKNeFs3BgkJCcjJyWH3QHh4uN1i7uDBg5g5c6bFzRhZ3XU6HQYNGsRiDGUxdwmRkJCAL7/8Etu2bWMTrpSYEzezdpaYs3Zxm4uZq62tFVgx7rjjDgCtOyofHx9cccUVMBqNbBJxhOHDh5ud4Ph0eKKoqAjR0dFOX0yCgoJw5swZAJZjR2yxzDU3N0Or1bKbfPr06VYroEuNhxdzACyKObKaSl0zwcHBAtciLTrinr1//PEHxo4dK9ihR0ZGIjg4GCdOnEBxcTEaGhrY5uT22293ebV/W6BJ9tChQ1YXBlq07rnnHsm/UyyovW4ke2r52YpCoRDcG/7+/oLrqFu3bqyTgDhxhcfLywsqlapNMXNA6wbF1oW/veAX0rCwMLdZ5oKDg9Hc3Gx2brAktu0lMjISzz33HIBWMTdt2jQ8+OCD7O/UYq5bt254/PHHTTYAgLCziK1j46/xtsSGRkdH44EHHmC/t1XMxcfH4+DBg/joo4+gVqttKpQvprKy0mrFAZpn6uvrWf1GwPleIkeRxVw7MWfOHEF3CV4w+Pv7Q6fToaCgAAMHDmQTjrNufmuWOanaaiqVCs3NzSYWjKVLl6J79+548cUXkZOTg4iICJf15JRysxYWFrqkQK1arWZxaZZiGmwRc85wBQcFBeGff/4RfF9zYu7s2bPYvn07AgICJC1KISEhAstcTU0NvLy8UFZWxmJtGhoasGfPHpN+i2QRfOyxx/Dmm28CaI2fWblyJauX5W5okm1qarLaF5TKc0hhNBpZopE7M3R5eDHXt29fgdBesGAB/vrrL2RlZZkkrogJDQ1FWVkZ/vrrL9x0000AYHPIBl+fr6OJOb47S3h4uNm5rrm5GfX19S47r5TFzJcH4bEkth1h2bJlFhMRDh48KNmGT+xyB1rjcO2dw20NG5FCqVRizZo17Nq2NdPfHPw5ValUdlvmjEajTSEafDcmarUm/nx3Ios5N8FPvAEBAdBqtcjPz0e/fv1w7tw5PPTQQzY1nbYFazsVqXIc9Nmff/65YEdGtQMXLFiARx55BFu3bnVJr0PA1M3a3NyMjIwMl4k5+qy2WuacIeYuu+wy7N27F7/++itLMkhLS0NeXp5J7blu3bph7dq1iIuLkzwXYstcTU0NO79kec3KykJjY6PAxUqQW/X5558H0Brj+PDDD7dL/2VbCA8PZ3Fr1hZMXtRSrTaiqqqKua86ygTNJzxNmjRJ8Dcqv3L8+HGr1pXevXvjhRdewOjRo9kGydYMa17MlZSUWBXM7Ql/vZObVWohp+/sKisK3U9z5syRLAOUlZVlNtHLUSxZj728vCQ9HmKXu9FoxJkzZ2wu2Pvxxx87rRkA3WNttczxMb7Ug7a6upqVdbGGVqtFU1OT1XEoFAps2LABv/76q+A66ighBx1jFJcg/GLh7+8PrVbLSj1ERkZi1apVTqkkD1i2zFH8hFjMDR06FAsXLgTQKm7279+PF154ge3mvb298cILL0gu/s6CXI2U4Xn//fdj9+7dLrEM0MSoUqmYMJDCFjHnjIy/J554Ag899BCAC5Md7f6pWC8gtDSZE//imLmamhom0CjWji+dIOb1119nFjtqxdaRUCgUTMhYE3PXXnst+1kcx8gXT+0oYu6rr77Czz//jNOnT+Ppp58W/C0+Ph5BQUHYt28fGhoaLH53itXlsXUTxou5goICyf6t7oTmSbLMSW1caTPjqvgmuieys7MFiQLEmTNnBD0+3YW47mhZWRlqampsHtuNN96IRYsWOWUs5KptS2Ys0JooRGETKpUKarUaer3epk49gH21S2+66SaHOlW0B7KYcxMKhQI9e/bEq6++ioCAALz44ovIz893Sd0uS2ZnelzK1E3xOZGRkRg8eDAeeeQRp4/NEhERETAajSwTjFq3iWuvOQOaUKyljdvS5sxcjz97odItJGZp8uNdrbwrhW9+zsO7WY1Go8AyN2zYMKxbt46JOSmri1qtZkVq2zrxugpLtbp47rvvPuj1ejzzzDMmJUo6opgLCwvDlClT0K1bNxMLgEKhQO/evVkRVkuZxXfddZfDY6Bz/tNPPyE/P7/DibkXXngBQOu5N7dxpevflcHqa9asAQCT/t+VlZUoLy/vEGIuNDQUsbGxLF6W4oTdMbaNGzfi448/dopli4RYYGAgu175DawlSMy11d3rbmQx50YyMjJw//33IyAggBV/pMLCzoQmOCmzsyUxR4uDLa2oXAFZE6jlF+3AKfjXmdAEYM2FZItlrqioCL6+vm0WPunp6fj888/x8MMPs7EFBAQIxBwtHO+++y7uu+8+yfcJCQlBUVERSkpK0NDQgObmZkE22q5du1BSUsL6GEtBz7envVh7QufNFmuoUqlE165dUVZWJsjG5WsBdoTEDltYtGgR69dpqYp+SkoKXn75ZYc+g9x17777LrRabYcTc0uWLEFNTQ38/f0RFhaGuro6NDY2Cp5DC7srg9Xvu+8+eHl5mbTHop66HcGio1QqMWvWLHzzzTcwGo345ZdfoFAo2pSd6igxMTFsk9hWaN5SqVRMsNtS3B1wvKvQ7t27TXoeuxNZzHUAKHZl9uzZTo+rAFqFWktLi2TqvCUxN2rUKPTt25ftONublJQUqFQqHD58GI2NjTh//jzWrVvnks4iNAFY27nbKuaio6PbHEuoUChw3XXXsYlKqjwJuUtuueUWs2n1N9xwA7y8vLBmzRpB7NCuXbuQnJwMb29vlJSUWBwzBUjbUpbFHVAVeVvjuQYPHgwA+PLLL5nlk1+EO0ocjDV4MWrt2qV55v3337fZBSVFRxNzwIXF3Fwvale7WYHWayYhIcGkQPiePXvg7++PXr16ueyz7WHatGnIz8+HUqnE8uXLYTQaBYkknRFyc5ObFbBfzNkr9EeMGNFh+sEDspjrEJAVwFWFOKUmOHJVWhJz8fHxOHr0qNt2lEqlEj179sTZs2dRWFgIg8HgErELXKjNRG4Hc9gq5lyRpAG0ulr5MVLBT0v1kZKTkzFu3Djs27ePWSjUajVGjRqFlJQUaLVai50vALAkDMp+7WgsWLAA2dnZNh/3tLQ0bN26FcCFDERbu3R0JDw9PXH99dezAtyWuPHGG7Fw4UJcd911Nic/EHyPYFfdg87AXMeb6upqKJVKl8d7JiYmCjozGAwGbNmyBcOGDWtTBqgzGTNmjLuH4HQoSc/T09NuMUfP6yihFY4ii7kOAMVpuUrMiSe43NxcxMXF4aOPPkJFRQU8PDw6bCxUaGgoqqqqmPh0VS/QHj164LHHHsNbb71l8Xm2iLnMzEyXtbnq06cPjh07xlzm5eXlNrkWhw4digMHDrAi0GRdoUxqa2JOqVRi4MCBbrPSWkOhUNjdSmvEiBFQKpX45ZdfYDAYcPLkyQ5TANQePvvsM5OC41IEBgbizTffdMiFzF8brtqoOANzYq6qqgpqtdrlFlfqErBt2zYArR1/fv/99zbFLDqbgIAA7N27F+PHj8dll11m07XT0aHzajAY7I6Z02g0CAwMdFrCobuQxVwHgCYAVwVgijOYsrOzAQDfffcdqzHnqvIibSUkJARVVVWsKK4re4E+++yzJq1wxKhUKjQ2Npq1UBUWFmLXrl02WUocoV+/fqyHLNBqmbMlpvHqq69GY2Mj7r//figUChMxV1RUZPXYHjx4UFDss7NDZQz+/e9/w8PDAydOnMDixYsBXCjHItMKzQ+WMr07AlJeiJ9//hnLly9vF6HObygaGxuRnZ0NpVIpyKLuCAwbNgx//PEHtm/f7rK5qj0hMWc0GhEQEAAPDw+bLXMajabDZeg7gizmOgC0iLoq6Fq8W6Wg+by8PMkacx0JEnOFhYXw8/NzuwWRbnpzsWP79u2D0Whk/RSdTb9+/QC0ZrGWl5fj448/tqn4a/fu3fGvf/0L2dnZiI2NZUHtvJjryBYXVyEW7//973+RmZkp2SfzUufo0aOC9n4dEbK+8eVJqP3VlVde6fLP5zOKs7OzUVpaivDw8E4Tg9lZocoLqampUCgUkgXnzaHRaDq9ixWQxVyHgASCTqdzyfv7+/vDz8/PRMwdO3YMOTk5nUbMxcbGut2CSOfKnKu1qKgInp6eTq32zpOYmAgPDw/s378fn3zyCQDb3fOjRo0CIHSTBQQEQKPRoLS09JIUcx988AGzVI8YMQIKhcLu1muXCn379nVZmIOzUCqVJs3ku3btCqVSyUqYuBJeFGRmZqKsrMxlc4HMBS677DKcOnUKkydPBgCTa8AStbW1spiTcQ5UeJcy7FwBv1PJzc1FUFAQmpub8e2333YKMWetXVF7YU3MUeyZq3binp6eCAsLw3//+188+OCD8PLywmuvvWbTa6dPn44ePXpg9uzZ7LGAgABkZ2fDYDBckmIuICAASUlJ2L17NzZv3uzu4cg4AXGtubq6Otx88812J304Ap9pX1RUhNLS0g7V/uxihk/Ui4mJwddff41Tp06xxwoLCyXb+V0sljnzKXAy7Ub37t3R0NDgkmbdBN+0PjMzE+PHj0d8fDzefPPNDu0CCA4ORm1tLUpLSzuE6CSXpiXLnKtFEV9iZtCgQTbXAezSpQureUUEBASw2nGXopgjRowY4e4hyDgJcZH09rS8dO3aFUajESEhISgrK7O5ib2Mc4mNjcXOnTvRs2dPliwWFxeHefPm4ZNPPsGxY8dYHdOLRcx13FWco7a2FsOGDUNgYCCOHz/OHv/iiy8wYsQITJgwwaTqdmfDlUIOEFrmMjIy0KtXLxbMLtW8vaNAtX8yMzNdWvDTVsxZ5p5//nkoFAoUFxdb7SLRVhoaGtjPbY2z5F9/KYs5mYsHcUsvdwS4R0REoLy8HCUlJbJlzg2IN7g0X3/66af44osv0K9fP5ZxLIu5dsTPzw8//PCDwD3U3NyMV155Bdu3b8fy5cuxfPlyN46w40NiTqPRIC8vD7169WLtodojMNhRyBp3+vRpl5VusQexmDMajdi4cSPrm3n69GmXi6InnngCqamp2Lp1K2vl5Cgk5hQKRYdwY8vItBWxm9UdMVERERHYunUrMjIyMGzYsHb9bBnTTjV8ncRPP/0UAPD3338DkLNZ2xVPT0+T3c3Zs2fRu3dveHt7Y9SoUYIelTyNjY3QaDSCf5ciJOaoJ1+fPn2gUChQX1/vkvZYzoIvEdGRxBxls+7duxezZs1isRhnz551uWXu6aefxvnz53HFFVe0OSCdxJxKpbJYeFhGprMQHh6Of/75B++88w6MRqPbLHP//PMPkpOTccMNN7TrZ8sIu5Ts3r0bP/zwA/v9+++/B9A6dwOymHM71dXVgt0W9TYVs2LFCqjVavbPUjPqixm1Wg2NRoNXX30VI0eOZCUufH19O3TMXGRkJCvd0hHEnLe3N3x9fVlBSjLV83Qmd2VHcF3LyDiTmJgYaLVa3HPPPcjLy4PBYGh3yxxl3d90002dvhhtZ+Sxxx7DI488AqA1i/+hhx4S/L1fv36sfV91dfVFMQ92qK14cXGxwJVKbN682WQhDwkJEVjZzN0wS5cuZYVAgVYVfikKOrLMVVRU4F//+pfbS3zYQ8+ePVFYWNghxBzQGkhLzc337dtn8ndXW+acCZUruVQt1jIXH926dWM/7969G0D7t2oii/l9993Xrp8r04q3tzeWLl2KyspKpKamYunSpQCAefPmwdPTE7Gxsfj000+h1+tRU1MjizlnEx0djV27dtn03LS0NGRkZKCpqQn79+9nmSlifHx8XJ5c0BkgMVdbW9upxAYAjB8/Hr///nuHEaCJiYmsj2dBQQFuv/12jBkzBq+99hoOHTrUqSxzarUaQ4YMkbM5ZS4a+BIVJOba24320ksvYdmyZXLygxtRq9VYt24dAGDy5Mk4dOgQbr/9dgDAq6++irKyMpYUKIu5dmTatGk4cuQITp8+jbvvvhu33HIL/v3vf2Ps2LHw9fXFhg0b3D3EDo1arWZBoJ0t0P3f//43CgoKWEFId5OYmMia3RcWFmLatGm4+eabcfDgQRw6dKjTiWUKBJaRuRhITk5mP1Nh7fZerP38/Dp867NLiQEDBrB6rkBrTGN9fT1rEymLuXZEqhnw9ddfj+uvv94No+l88DXaOpvYCAgIwFtvveXuYTASEhLw+++/Q6/Xo6SkhMX0paenw8vLq9MdXxmZiwlPT0/89ttv+Pvvv7Fs2TIAQterjAyVLqFN+cUg5jpu5LuMU+GtcZ3NMtfRSExMRGFhIYqKiqDX65lbdf78+dizZw98fX3dPEIZmUubiRMn4s4772S/y/ekDA+5v8lIIIs5mU4DL+Bky1HbSEhIgMFgwIIFCwCAWeZ8fHwwaNAgdw5NRkbm/yHrS58+fdw8EpmOBq2Hf/zxBwBZzMl0IngxZ2v7JxlpEhMTAQA//PADbrrpJlbmRUZGpmNRXV3N6onJyBCxsbG49tpr2e8XQ505hZEal10iaDQaltl5MbTwsJWWlhZ4eXkBAC6xU+50+IryBoOhw2TZysjIyMjYxp49ezBy5EgAF8eaKFvmLhHk6v7Og9/FyUJORkZGpvPRpUsXAK2F6S8GZDF3CfHqq6/ir7/+cvcwLgreeOMNyYLBMjIyMjIdn4iICMyfPx8//viju4fiFGQ3q4yMjIyMjIxMJ0a2zMnIyMjIyMjIdGJkMScjIyMjIyMj04mRxZyMjIyMjIyMTCfmkouZMxqNqK2thUqlkjMRZWRkZGRkZDo9l5yYk5GRkZGRkZG5mJDdrDIyMjIyMjIynRhZzMnIyMjIyMjIdGJkMScjIyMjIyMj04mRxZyMjIyMjIyMTCdGFnMyMjIyMjIyMp0YWczJyMjIyMjIyHRiZDEnIyMjIyMjI9OJkcWcjIyMjIyMjEwnRhZzMjIyMjIyMjKdGFnMycjIyMjIyMh0YmQxJyMjIyMjIyPTiZHFnIyMjIyMjIxMJ+aSE3NGoxEajQZGo9HdQ5GRkZGRkZGRaTOXnJirra2FWq1GbW2tu4ciIyMjIyMjI9NmLjkxJyMjIyMjIyNzMSGLORkZGRkZGRmZTows5mRk7MBoNKKpqcndw5CRkZGRkWHIYk5Gxg6eeuop+Pj4yIJORkZGRqbDIIs5GRk72Lt3LwBg48aNbh6JjIyMjIxMK7KYk5Gxg+TkZABAVlaWewciIyMjIyPz/8hiTkbGDnQ6HQCgsrLSzSORkZGRkZFpRRZzlwgvvvgixowZ4+5hdHpkMScjIyPTudHr9Xj00UdRVlbm7qE4DU93D0DG9Xz//fd49NFHAQAtLS3w9JRPu6PIYk5GRkamc3P48GG8+OKLaGxsxOrVq909HKcgW+YuAX799Vf2s9z5om3IYk5GRkamc1NTUwMAF5VhQxZzlwDFxcXsZ1nMtQ1ZzMnIyMh0bgoLCwEAfn5+bh6J85DF3CVAUVERUlNTAQB1dXVuHk3nRhZzMjIyMp2b/Px8ABfm84sBWcxdAhQXF6Nr164AZMtcW9HpdAgKCkJ5eTmMRqO7hyMjIyMjYyd5eXkALq5NuSzmLgE6s5jbsmULDh8+7O5hMHQ6Hbp06YKmpqaLaiKQkblYeO2111g9yJaWFvcORqbD0dzcjB9++AGALOY6DNnZ2YiIiMC4ceMwbty4iyrN2FlotVrU1dUhLS0NQOcTc1OnTsXAgQPR2Njo7qEAaBVz3bp1A3DBVA8ADQ0NKCgocNewZGRk/p+HHnoIOTk5WL16Nby8vFBRUeHuIcm4gXfeeQc///yzyeOHDx9GXl4e0tLSZDHXkRg7diy2bduGbdu2ISIiwuTvjY2N0Gg0gn8dDVe66yhrJzExEUDnE3PEbbfd5u4hwGg0CsQcL97uuusuxMfHw2AwuGt4DrFnzx5ZhMpcVHh5eQEAFi9eDAD4559/3DkcGTdxzz33YNq0aYLHFi5ciFdffRUAMHz48IvKANTpxdxff/2FMWPGYNmyZZKiaMWKFVCr1exfQkKCG0Zpnt27d0OpVOLs2bMueX8Sb2FhYfDy8up0Yi4+Ph6AMCPXXTQ1NcFgMCA1NRVKpVJgmaPyL6dOnXLX8Bxi5MiRGDZsmLuHISPjNEjMERkZGW4aiYw7CAkJwcqVK00e3759O9auXYv//e9/8PHxwahRo3D27NmLJgmiU4u5mJgYnDt3Djt27EBpaSm+/fZbk+csXboUNTU17B8FPnYUDh06BKDVQuIKSLypVCqoVKpOl83a0NAAAKivr3fzSC5kPqlUKkRHRwssWsHBwQCAvXv3umNobUK2zMlcLOj1epO5QhZzlw4GgwHV1dV45JFH2GOjR4/GAw88gDVr1rDHYmNjMWLECOj1ehw8eNANI3U+nVrM+fj4ICAgAAqFArNmzcKRI0cknxMUFCT415Eg17CrzL0k3gIDA6FSqZi4y8/P7xQXMQkorVbr5pFcEJa+vr6Ii4tjIshoNKKoqAjAhfpFnYGOEocoI+MsTp06hebmZowcORIAMH78eJSUlLh5VDLthdSc9tdff+G1117Dd999xx6Li4tD7969oVAocPLkyXYcoevo1GKOdxnu2LGDBfl3JpTK1lPgKjHHW+YCAwPZ771798bgwYPNvu62227Du+++65Ix2YrRaER9fT1CQkI6nJiLj49nbta6ujoWm9gRLIi2IgeGy1xsUNjK1q1bO9TcIdM+0Bw9depUyb+PHTsWAJCUlARPT094e3ujqamp3cbnSjq1mNu1axcGDRqEMWPGoKCgAHPnznX3kOyGLr72EHO8ZY4SQTIzMyVf9+GHH+Kuu+5yyZhspampCUajEeHh4R0iroF2fT4+PgLLHAk5oH2KUDqr3MLFlMkl41qqqqqwfv16dw/DhIqKCkG7woMHD6J3794IDAyEr68vAgIC3BJaUltbi6ysrHb/3EsdmqMXLlzI3KpXXHEFioqKUFlZiQcffBAAcPvttwOALOY6ClOnTsXBgwexc+dObNiwoVP2WaOLr7y83CXvX1dXB4VCAX9/f4GYI7p06WLyGj6RxJ0LPgmj8PDwDrG7FrtZyTJXXV3NnuNqMbdr1y54eXlh3759dr/24MGDyMnJYb/baplrbm7udIkzUhgMBtm17CB33303br311g5XDWDOnDm44oor2JyVl5fHaswBQEBAQLvNHUajEWvXrsXWrVsxceJE1nWnI7F9+3Z89NFH7h6Gy6D729fXF3fccQf++9//4vvvv0d0dDRCQkIwc+ZMnDt3DuPHjwfQmiwjizkZp+DqAP/a2loEBgZCoVBIijlLYwJad+Tugo4JiTl3d1zgLXMJCQmorq7GuXPnsGrVKgCt8Y+uFnP0WY5kzQ4ePFgQisCLOUvH9qWXXkJQUBBL1ums3HnnnfD19XX3MDoltHHpaGKOqgCQ9a2wsBBxcXHs7+0l5nr06IHLL78cCxcuxAMPPID9+/e7/DMdYdy4cbjlllug0Wjw559/2vSas2fP4sknn3TxyBznyJEjLGaZ1i6Kp1++fDm8vb3ZcxUKhcCA4e3tjebm5vYdsIuQxZybaQ8xp1KpAMBsNqterxf8zrsNNRoNdDqdW+KreDGn1+vdvoPiLXPTp09HXFwcrr/+erbTjYmJcYqYKy0txcyZMyUXIVpM33vvPVxzzTV2vzfvouWtrpZcUQcOHAAAvPXWW3Z/Xkfi448/dvcQHCI8PBzLly9v03sYDAbJBDFb2Lt3L8u25+eGjgDVdSTPRkFBgVvE3OnTp/H7778DEN5LHbUDhVqtxoQJE2yar+bPn49nnnmmw1q1BwwYgL59+wIQbrhtQbbMyTgNuvh4a5gzEYu50tJSk4tXLCR5t2FNTQ2mTJmC8PBwl4zPEryblf/dXfATRXBwMNLT0wXucWeJuffeew/ff/89Wxx4SFTv2rVLshSPPZSWlrKfLbnT6TOpBU5nhaxyDQ0NWLNmDT755BM3j8g2Kioq8MQTT7TpPd566y0MGDAA58+ft/u1s2fPZj93ZDHX2NiIsrIyxMbGsr8HBga6PGZOvBnmS/10JEumVO01W+L6PDw8ALjXS2MNmof5DbctyJY5GadBF5+rxFxdXR0CAwMBtE5sZ8+exejRowXPEQsQfsKuqanBzp07AaDdL3reMge4vzyJeKJQq9XMvA84z81Kk6d4kQBMYyttdT1LdaawVczl5eUhPDwcJSUlkmPqLNB58/Pzw4MPPoibbrrJzSNqH44cOYL77rsPABwSc7ybqiOLOSos3t6WORKLAwYMwEsvvST4G78xdjdUe+2GG25gj507d87q68jK1RETpsTzn72WOTkBQqbNvPfeeygqKmIXX3u5WQGYxHOIJzuxZY5q8zmyELSFjibmxBNFUFCQYCIICAhwqZgzGo0mYs7WiUjq2JWUlLBgcXNudIPBgPz8fPTs2ROA+62jbUFqt75582Y0NTV1uIVqxYoVuPvuu82K9fLycnz++ec2vdeiRYvYz6dPn7Z7LPzC2JHFHFnExGKuubnZpRtRsr49//zzuPnmmwV/s0XMlZaWtmvNz1GjRrGfbZnT6b7paPcIYBoe4oibVbbMyTiMTqfDnXfeiblz59psmVMoFIKq1rbCizkSCVLj4RHHzNHk2N6V1GlcVFjZlWLuwQcftDqhSlnmePz9/Z0q5sTxNnV1dSbizdp109zcDIVCgdWrV7PHmpqa4Ovri88//5yJNHMT9RdffCEowtrZOojwSIm5q666CpGRkQgLC3PDiMyzbNkyrFu3zuxCs3DhQtxwww023RP8dWpv4ozRaERBQQFCQ0MBdCwxZzQamZAqLy9nBbt5N2tAQAAA184dlFQWFBRkEo5ii5hbtWoVrrvuOlcMTZLAwEBoNBr07t3bJjHnDMvcN998g+zsbIdfbw6x69cRN6tsmZNxGJp0srKy7HKzvvLKK3Z/Fu9mFVt1tm7dCsBUzFVXV0OhUCA8PBw1NTXMzdLeOzOxZc5VQqK5uRlr1qyxWEQZuHCO6Hi4SsxRiR3xJCNVvsbadUOWGP7aqaysZDvYLl26wMPDw6xlbtOmTRg+fDgrwnmxiTnggkAxGo149dVXsXbt2vYclkXMWexJnNjSio3uf8B+MdfQ0IDa2lq8+uqrCA4O7lBirqKigt0jVVVVKCgogK+vL0JCQthzSMy58rolQalSqaBQKAR/s0XM5eTkSD7vs88+w4gRI5wxRABA3759kZSUhBtvvBEqlQpdu3a1Scw5Y/6fPXs2+vXr5/DrzSEek2yZk2lXSMzV1tba5GYlV4sjpTl4y1x0dDR7PC0tjdVBEu9aKysrERISwiZv2nm2t5tz8+bNCA8PR0pKCgDX1eKz9X0bGxvh4+PDJmxyP3t5eaGlpQV+fn5OEXPkOuKPt9FoxNGjR02ea67oM3Hs2DEAQsHOv29UVBRCQ0PNTtSlpaVISkpqFwuHq7E2wWu1Wnz99df46aef7Hpfo9EoGZPoDMwVE6drz5Ze07z14o8//sCMGTNsLmhLQkWtVkOtVncoMcd/96amJlaWhBdUJGRzc3NdNg6+MLuYL7/8EgqFwmJJqIKCAkmxuWDBAuzdu9dpcaqNjY2YPXs2s/x36dIFW7dutSrwSTC3dTPvimQQ/tp+6623BHXmbEG2zMm0CRJzdXV1AsucObFGQs+RBYMXcw888ACWLl0KABgyZAj8/f0BmFrmysrKEBERwSZvmsDbO17qxx9/xIIFCxAZGQkPDw+X9VjkxZylG7uhoUEgCMgy5+vrCw8PD6dZ5uh88xP8xo0bcfXVVwNoPS4zZswAAIwcOdLiQnH8+HEAwuQVSnzo1asXrrzySotirqysDJGRkWxR7EiWOYPBgAceeAB33303+56WsDZpf/jhhygvL7c7Genuu+82G8LQVrp27Sr5OIk5qv9miZKSEtx00014//33AbRmJf/zzz82fT4vVDqamKPvHhISgsbGRhQUFAhcrEDrZgUA7r33XpeNg3ezAq0el2PHjiE0NBRffPEFAMsdfgoKCtDY2GgSVkHzMyV2tJX6+nqByKHN/aRJkyy+jjZwjoo5fl1zthWMF3OLFi0S1JmzBdkyJ9MmSMw1NTWxG8VgMJitSUSTRVstc56enkwEzJ8/36KYCw8PZ0WGaQKnsa5evRobNmyweyw8tlh4amtrERERAaVSiaioKJeJOX6itSSMyDJHkJgjkU1irq3FjaXEHG+BmzZtmqBUhaUdL5+xSlAG7ueff47+/fsjNDTUrJu1tLQUERERHVLMnTlzBq+99hrWrVuH4cOHW32+TqfDI488gpkzZ0r+/f7770dOTo7dyUjUw7g9i1qTMH366afNbvLq6+sREBCAf/75B127dsXQoUPZ32ytf0bXVlBQkNMSfJxFfn4+PD09kZCQgKamJpMacwDQrVs3zJ8/3yYLpqPwblYASE5ORnp6Onr06MGeY+6aMhgMzFUunhNpfrZFsPNs3boVu3fvNnm8oaEBfn5+7PfLL78cAFg8pDloXI5a5fn6dM5O9BPHzDU2NsLT05P1PLeGbJmTaRP8TosvbWHuQm/LAsrHzAHAiBEjkJOTgylTpph1nZWXl7MFvKysjE38Wq0WOp0Oixcvxs0334xz5845ZC3cvn07AgMDcezYMbOFKJubm9HY2MgmyKioKKftUMXwYs6SMGpoaBDsbGknTm4QlUoFg8Hg0IJnNBoxe/ZsfPzxx0y08ueddo80wfPjsCRAq6qqkJ6eLniMrjl6r6CgIMn3MBgMKC8v77CWuTNnzrCfrS00S5Yswblz5+Dv789igKTaLdXX19tlmeOf6+qYUt7dRucrKytL0v0OtBZ7pmsxPT0dffr0EWwkbYEXc/7+/h3KzV5QUICYmBj4+fmhsbHRpPsDMW3aNJSXl7vs/NTW1sLHxwdeXl6Cx3kxZ+4eLS8vZ/e2+N4i4WWPmDMajZgyZYogY5UQz1/9+vXD3LlzbRZzjgox/h6h88Tfu22BP6f+/v4m39EactFgGZv55JNPkJCQgDNnzjALF++qKCgoYILF3CLi6AJqNBpRV1dnEsuRmJgIoPVC9vT0NOtmDQwMFARY63Q6VnMOaHUBOWKho0r0/fr1g6+vL3744QcToSaOQ4mOju5wlrlu3boBuHDeyFK3atUqu600mZmZ+OabbzB//ny88847AITnvaSkBD4+Piyhgd9hWxKgVVVV6N27N+69917WCozEHIl5c23eKisrYTAYEBkZ2SFj5sTZ1ZYWm5dffhlA64RPi665osv2iDn+mrQlGaEtiIvRTp8+HR4eHmZbR1HXBsDUCmOra4m3OnU0y1xNTQ2Cg4Ph7e1t1s0KXBBVlsqypKamYtmyZQ6No7a2lm3seChTHDB/j/Ln1Ny9ZY+YI5EkTsQATMUc0BpTaO2ebquY41/X2NiI+Ph4dO/eHfn5+W12cVZVVSEpKQmXX345UlNTTeZoa9hTNHjt2rVsM2Q0GvH99993qLqbspizkX379kGhUNi0o/jzzz9ZTMoHH3yA/Px8dO/eHbfffjuA1hubYjlKSkoElemlcFTMUT9TqcBcQirOi9ysgYGBLHDYw8MDWq3WJJC4trYWO3fuhIeHB3ufwsJC/Prrr2Y/k4QBMWPGDEyfPt3kfQEILHPtETNnj2UuPj5e8Pfg4GAAwFNPPWV3H1OpsihiMTdy5Ej2mfw4fv/9d7OfV1VVheDgYLz++uuYM2cOAFPLnDkxRy7aiIgIeHl5wdvbu0NZ5qjNGGFLZl5zczOzzHl7e0vGpNmzaPHuaVeLuX379rGfa2trERUVhT59+uDvv/+WfP6ePXvQs2dPbNu2jd1zJGRtXcD4eLCOZpkjr4OPjw/Ky8uh1WolLXMJCQkAhF4QMVlZWVixYoVD49BoNJJzLC/mzG0S+WtGfG+R1amsrAzV1dWYPHmyZNgED7lXeZc6ANYOkd8EArZ1yKBz7mhhe7GYo41uQkICHnjgAYfek6iqqkJoaCiGDBmCuro6u8WcLZa5oqIiZGZmYuHChbjyyisBAD/99BNmzpyJr776qk3jdyaymLORXbt2AYDVRVqr1WLChAno27cvjEajQLiQ9Umj0bAMTQC49dZbAbTe2FLvb8laZAm6SXk3q5jAwECT9y8vL2dijm7k5ORk6HQ6kwXL09MT69evh8FgYIvppEmTcMUVV5h8Vn5+Pj7//HPJxVJciVws5kJCQrBnzx6sW7fO4nd2hJqaGmZVsyTmpCaK7du3448//gBwQcwB9ieLiIUJICxrUFJSwjYAgFDMLVu2DIMGDZK0BlZXV7NSDfQdbRVzZLGMjIwE0D6tkWylubnZZMNATdctUVBQwDZVcXFx2LNnj0k2nz2LFu/mcaaYE9e9CwwMxN69e9nvJCCGDh0qaZkzGo3Ys2cPrr76aowdO5Y9rlQqoVQq7bLMeXp6wtfXt8NZ5rRaLQICAuDj48Oyc6UsczSHODqPWsMWy5y5z+atbvy9ZTQa2UahsrISGRkZ+OWXXwTC/cMPP8TGjRsF54Rc7uKEHHNZnvaIOWe5WXl27Njh0HsSVVVVCAkJYd9DnKRmDVssc8nJyejSpQsA4PDhwwAueJekLKDuQhZzNmLrjnbLli3s5zNnziAvLw/33HMPZs2axU68RqNhlfeBC70PR44ciUGDBpmY1R1dQC2lzBPieCmj0QitVguVSiUQgcnJydBqtSZj02q1rA4c7RpJmInj6ZKTk3HDDTdI9vgTL6DisZNQuvvuu81+F0epra1lO3pLYk6n05nsbC+77DKMHz9eMEbAfEcFc0hZ5nhLU2lpqVkxR0hldNJkB1wQ9UVFRfD29mb17KxZ5qTEnE6ns/s7/vrrr4iPj3dKGY+MjAyTc2WpNREJ1/79+2PMmDHMYh0WFobu3bsLnmuPmKNjoFQqnRqT5e3tzSypANCnTx/BvUcCYsiQIThx4oSJxSw7OxslJSWSdcrsiRMi0ahQKDqcZY7EnLe3N/MY8OWXCC8vL/j6+rqsTyqfZMaTlJTE7lNLljm6D/ljy5etqqioYNcWX3j3tttuw6xZs9CrVy989913qKurY2JOLLzMFdMNCAiwuL5QqA7QulmylJULtM4t4tAbsWWORxxnaC+VlZUIDQ1lc1N9fT27123BlntB6u+UkGaPm/iTTz5x6WZYFnN2Ym13x2dNlZaWIi8vDwkJCejSpQuziGg0GkGlcPFO4rPPPhP8zl8A9vjo6cYTVyXnCQoKEkxy/A6OFn8PDw/ExsZKWubq6upYHA59d1qs+djAwsJCNnYpCwZ/wzQ3N7OdD02SfIFeZ9f0qq2tRXR0NBQKhcUJn2J0zMH/zZo7hMdoNJoVc5R8Iv5sKTEndjPq9XrU1NQwMefh4QGVSoWioiKBxdiSmPPy8mLHnu9zOWPGDIvXlRTLly83W1PLXsTCrW/fvhYrzBuNRjz11FPMKieGyr4A9lvmPDw8kJiY6NQ+nI2NjQLxHh8fjy+//BK//PILgAsia8CAAdDr9Th58qTg9RQvJ5XlK2WNOHDggKRlV6PRMKuTJctcc3NzuweS85Y5EgxSFjLA/DUOtL1chjk3q4eHB+uJa25eKSoqYok4UtnriYmJqKysZGIuJyfH5D1ycnJw9dVXY+TIkcwVX1lZif79+7MNHh0fey1zDQ0N0Ov18PDwwKlTp9jGzhwzZ87EzTffLJijLVnmzIk5nU6HV1991WrsMW+ZowLX4g23JeheOHLkiKD24jPPPGM2sai+vp5trGy19paWluKmm26yuQWfI8hizkZoora2MykpKWEiqKCgAJWVlYiLi0NMTAwKCwtZC5qgoCDcc8892LRpk8kNIl6U+QtGfDMbjUbJMWVlZbEAcSnXAyGe5OjG8/PzY9+Dd7mKM8bq6urYDUdijn4nC9y+ffvw4IMPstdkZmZixIgRLChdzFNPPYWFCxey8QFCMefsHXZdXR2CgoKgUqksvnd1dbVFMcfvCO0Rc+fPnzep3xUZGYmWlhasW7cOxcXFgkUVMHWjKJVKwWfu3buXxc/wFfGDgoJQUlIiKebEEyclwpBFmZ/4ybX86KOP2vw9yQIhZZm1l/PnzzM3IwDExMSYjYmqr69HfX09unTpYtYtwk+y9fX1NiewVFRUIDQ0FCEhIW0Wc0ajkQkLsZijOWLy5MloaWlBTU0NQkNDWas78THds2cPunbtKim4xbW19uzZgyFDhuDLL780eS7fm9lS0/q+ffsKxmsPVVVVWLJkCbZt22bX67RaLQIDA1kMJGA+pES8aRW/T1sw52YFgJUrVyI1NZVZ2sRj0Gq1zJrIiypaA4YMGWJimfvss8+QlJRkErP7zz//oL6+HlFRUcjJycHRo0dZ2A4/r/MEBgaipaXFrBCn8fJrlLkKBIB0kXLeMie2GJoTc6tWrcK///1vQWiBFLyYA1rnLEcsc2PHjkVqaiqqq6thNBrx5JNPYuTIkZKGg/z8fHY+bF2LaG4+ceKEzWOzF5eKufZsHuxqaLK0tkgXFxejZ8+eUCgUTHgFBQUhNjYW9fX10Gg0bGFeu3YtZs6ciejoaFarCjCt6k/ttQDTY/rhhx8iMjJSkBxw4MABpKam4s4774SPj49gMRcjnuR4czzdIGq1mu3Ka2pqBLvQuro6duPSboUWQrrghw8fLlgoMjMzERwcbDaFnL+BpcScM8QAALzwwgtYu3YtamtrERgYiKCgIJMFuaqqCp9++in72dKx5IWC1HVSXFwMhUJhMkHROeUF1siRI6FUKrFo0SLExMQwwWmO8PBwwTUwYsQIXHbZZQCEYo6OIz/hqVQqtLS0CCbp4uJiPP300wKrMS/maAF68cUXzY5JjLPFXFpaGrZs2YKjR48iNjaWZZqJIVeopf6r3t7ebGHhRZU1KisrERYWhuDg4DaLuZ9++glxcXHQ6/VobGxkYu2KK64QiDL6nNDQULa5EB/TjIwM9O/fX/JzxGKO5imprEn6foDldnWnTp1y+Pt/9913ePnll81u7szBW+YAMFewFJYsc20Vc+YscwSFskydOtWkBWBDQwMCAwPh7+8v2NCdP38egYGB6N69u8Ayt23bNsydO5e5lR9//HGTz+OTemijb8nNCgB33nmn5NjpmPFi7q+//jL7XUkU8seaF3DieZHmBDH0GktxelqtFsXFxczYALR+X0csc7QGnj59WhBKItUdKC8vj52PRx991MQqLgW9T6cVc7zrorNDk6W1jMri4mLExcUhJCSE3XD+/v6IiYkB0OpuFFtZALC/AzBptVNSUoI+ffogPj7eRMxRYgZ/0fHV3cPCwiwGaYrFHG+OpxvEz88P/v7+qK2thUajYdYQPz8/FqcAXNhZ8mKOv3ipJIolMSduW0ULLD8JtjU2qaGhAdu3b8fSpUuxcOFCFvPSv39/bN++XfDc22+/HTfeeCMqKyutWuZ4pMQclUb4+uuvBY8fOHAAiYmJArExevRogYXWUlbyLbfcYjHblx8zb2UhpALEKTCZvxYpvqagoEAgLmx1r9HE7Qx3ZGFhIeLj4xESEoK+fftatMzxLakswR8TW12tZJlzhpijmCSNRoOWlhb4+PiguLgYW7duFVwbdP2HhYWxeDbxZxcUFJhYbghxnJC45zAPxSQBFyxzzi6OTC5hKYuP0WjEZ599Jimu+Zg5oHWzYW6us9UyJ2WJOXnypMWyJpYsc8AFIfnnn38CAK6//nrWMo4y5MXXb25uLpKTkxEWFiawzPHzfHV1teQcSiWTgAvzkDkxR3O8uRJTUmKOjws3B29l5O8l8T1qzjInFUco5qOPPkJjYyOuvfZa9j1KS0sdssxRkeGioiLB+iJlkOLFHACbMlo7hZi79tprJf/NmTOnXRqzL1myBGPGjMG8efNcGrNBYm7btm0WP6ekpATR0dEICwtjbkd/f3/m6szMzERLS4vJzc+7KHJycgQTJgW/d+3a1SQuiCYvvqI7Pymas1YQ5ixzfn5+bIfTq1cvDBkyBIWFhaiqqsKwYcOg1+sxYcIEgWVOvIvirVqAcMcYHBxsEivY3NyM8vJyVFRU4LnnnsOaNWsEzyfael3ddtttGDduHPudxNzMmTPx119/CUQNxe5lZmbaJOa+/PJLJCUlSS4cdN2IrRtnz55Fr169BI/NmDEDycnJrAUTYBoPtHLlSvz999/MOmvOaixlmeOFIf38yy+/4KOPPhK8lj8HgYGBLInh+PHjzPJjzdL2yy+/4I033nCqZU5czT4mJgbFxcUwGo344Ycf8Pzzz7O/0XVpbcfOiwFzFoH//e9/gvE70zJH1wxN/N7e3myR4ecDsjSGhoZCqVRKfnZhYaHZ8Ao+Zu7+++/H008/DUBawFZUVAgscwaDAU1NTWhsbJQM73Ak45EyNKVitzIzMzF37lzJUkd1dXUCy5wl65hUCIXBYEBjY6NAMEi1K+vVq5egALAYcwkQ5j77iy++wLXXXgvggpiLjY0VxBJTrGt4eDjq6uokraZ1dXVWxRydI3Mxc9Ys0DRucucD5j1u/Lk3Z5kTr0fmPp/mCrrWGxsbTeJkDx8+jL59+yIpKalNlrmmpiZ2DRUXFwvWl+XLl5u8ZufOnYL7ja/naA46D4WFhU6NreVps5j77bffcPPNN2PRokUm/8T1xJzN4cOHUVxcjJ07d6JXr14mFg9nQsVXKyoqLJ684uJiREVFISwsjFnm/Pz8mOWNlLnYSsDfLM3NzYIFv6SkBJGRkYiOjjYprkuTPX/zNDU1wdfXF1dccYXVOj7mYuZ4y9yNN96IK6+8kn0HlUoFpVLJ4ujoZtXpdAIhWVlZKbB0JSYmssVSyjJ35swZdqGPGjVKMHZnulnFxWIp/iouLg5Go1FwPOjGzsjIQF1dnUU3KwDMmTMHl112GXsPg8HAvhO9l3jBKyoqQmxsLIs/O3DgAJuQ+WxE8YLx8MMPY8iQIQAs1+Hjx0wLM2/poWvvxhtvxC233ALgguBctGgRex4FGRM0RmvnY/LkybjvvvvYteoMMScuExMTE4OmpiZUVlZixowZeOyxx9jfzFklxAQGBrJNlZSwaWpqwrx583DZZZchOjoar7zyChM7zhBzJCRo4ue/Hx8jSdcRWcyCg4MFx7S2tha1tbVmxRzvZn399dfZBpHe98iRI5g0aRLq6upMLHNAq7Vk1qxZksHwlmq5SWE0GlntTikxR4/x9S3pMYqZo+NkqQSTVJeTpUuXwtfXl8V/ApY3v+astdbcrDTH8i5FOv68mOM/m7w3VMLq4MGDkvGP4g3xnXfeKTgvdC3RtSnejPL16OieP3v2LNsY0jGjc+/n52fW1c5vJm21zO3YsQMKhQLjxo0TzMv0GbRZvf3229G1a1dmOa2vr8fZs2eZgYDOvb0JEF5eXmhsbGRzMi/mgoODWSkS4oEHHhBssIFWMWctKY+3qLrKOtdmMTdu3DgEBgZi7Nixgn/jxo3DgAEDnDFGs+zZs4fVM5syZYpkPzoKOuX/OUJ2djZrkWJuMdLr9SgtLUV0dDTCw8MFblZ/f3+o1Wr8/vvvAGBSDiEmJgbdu3dnixA/TrLM8aZ4+juJI7GY8/HxwdatWwWWFSksuVkvu+wynDlzBtOmTQNwwSROExe53XjLHF+u4s8//0RhYSFrJ0VWBEBazB0/fpx9D/HEzG8M7LXMFRQUwNfXF8ePH4fBYJCclFUqlaB488mTJ7F161b23JtvvpmN2xq8QF67di26d+8uqBslXvSLiooQExODBQsWwGg0YtCgQexvvKvMWswcvT+/21UoFILX0YLAi7n09HT07t1b8H5arVZQvgQwPSdUe8lWcUbXlrMsc/xCRt9R3BWCngtYF3PTp09nRUHNiTmg9TotKSnBH3/8YbebddeuXawThxi6D6XE3B133MHEMy0MvJjjP5tEgVQBXcB8c/HKykqcP38ew4YNw++//47vvvtOIObIfaXVavHjjz8CaBWg/ObE3lp7RUVFqK+vR+/evSXFnDged/369VCpVCguLkZjY6PAzWotbk0891NtR752mzjEhYes9DzNzc1W41lJSPIbUrGYi4uLkxRzdI/l5+ejX79+Ju/t4+Mj2HAtXrxYIGboWhJvAIjIyEgmZs+cOYPKykp069YNc+fOxTfffIMlS5YAuHDvREVFmbW+8mJObJmja9mcWN6+fbvgvqCNzdq1a3HbbbcxD09paSk2b96MoKAgbN++nYldfm6yx83q7e0tmI94MZeUlISGhgaBiJZqk1ZTU2NSq1JMeXk50tLSoFQqJecoZ9BmMbdx40ZBUUoeW3zrbaG6uprdRGq1WnKRX7FiBdRqNftH1cDtQavVIi8vD4MHDwZgPoOloqICer0e0dHRiI+PZxcJXVyxsbH45Zdf4OfnZ9IX0tvbG6dOnWLilL8ZSktLBZY5nU4HtVqNl156SVLMNTY2Ssa/SEGTHLlxxFlPvGtUPGnytX0AoZibPXs2Nm7ciIKCAvTt25e9B78A8YtVeHg4jh8/zuLlxBNzVFQUVq5cCcD+ununTp1CY2Mjli1bxmr6iampqRGIuV69emHKlCkO1UXixdymTZtQWlqKoqIidmxowdu6dStCQkKQl5cniJkUvxdhacEICQmRzLAiKypBVjhezCkUCpOsVIpH4hH/TveDreKMjokz3AxiyxzdY1KLsblMPjGrVq3CXXfdJXgNjzi8grLayDJXWVlpNZ7ssssuw8MPPyz5N1rASKzx38/X15e5Q3Nzc+Hv78+uV3EmLVlozWWXmqutVVlZiU2bNrG/bdmyBdXV1exaITHCL8gnT54UbOCshXWIIddZ//79LYo5ClkhtxfFsNnqZpUqjk5j5b0dUuVt6P5ZuXKlyXtQ6Q++QLAYmg/464+fb8kyl5+fj8OHD2PYsGHIyspCUFAQoqOj2XkeNGgQnnjiCcF7+/r64o033mDXv1qtNivm+GPFQ6J/wIAB+P777wG0XouzZ89mx5k2dZGRkWYtlLxngD+XOp0OgYGB8PT0RFFREXx9fXHu3Dk8+eSTgtfzc62UuxtovQ7WrFnDylxR6R1+brLHMifenJOYUyqVbCPNz81S1m6lUilIajMajbj33nsFoq24uBgJCQkmiWrOpFOXJgkJCWELV3V1tWTD4KVLl6Kmpob94+vA2QpNOH369IGPj49ZMUcnKTo6mgX7AxcWGro4evfubVJagqAFm8+uqaysREpKCmJiYqDRaNgule8lKGWZs4Xg4GC0tLSYtGyRsmJYs8zxhWSHDBkCvV6P5uZmJggVCgW76cSWuZSUFLz//vu47bbbBJ9BKBQKPPzww4iIiLC7LhQJ3j///NNsP87AwECrbdUAYMyYMVY/j2JkHnvsMRbrc+7cOXZs6P8pU6awRViq2KnU+5ojNDSUiSpL9d/ob2J38bx58zBlyhR23UiJOX73W1ZWhqlTpwKw3VJK16i5idoezIk5qcXYXLyQFLQQSFkfxML+6NGjKC8vR2hoKBITE9HY2IigoCCUl5ebnSNIEPFxTYQ4Zk58D9PccO7cOUFYhtjNSuM0t6hZssyVlpaiS5cumDZtGjuWNK/S/3zM1PHjxwVhJ/Za5ugz0tPTJYPdectcc3Mzy/QnkREUFCRIgDCHn5+f4L42Go0si5fEXFJSkslmgBfn3377rUn26N69e+Hp6YmBAwea/WyVSoVTp05Jxr2RmEtNTYVWq8XEiRPx999/IycnB0FBQVAqlcz6FBoaapJ1StcIufksiTmp9REA0tLSmJGD39SJQ3+A1nnDXsscVQHw8fFBYWEhwsLC0KVLF3Y9d+/eHfPmzRPcM5bE3OnTp/HYY49Bo9HgqquuAiAUc/ZY5vjvGBsbi5qaGtYCke5VXszxLuyMjAwUFhYiJiZGcN3U1tbizTffFBgOqKRXaGioy3IJnCrmvvnmG2e+nVWGDx/Oimhu3bpV0gTq4+ODoKAgwT97+eabb6BUKtG9e3eoVCoUFhZi3rx5uPLKK1lW0saNG9nkEBUVJRBzdHPRDT9s2DCznyUWc+vWrUN0dDT+9a9/sZ02xZi0tLSwG0ss5my1zNGFSu5bSwsfiTkao6+vryDegLfMkXsAACZOnIjrr78ejz/+uMCawH9GaGioIJ7CnHChgFV7oMWNdotvv/02+9sHH3yA3bt347777jMr5mjnunLlSqsZkQDYgs4H4Z8/f57dxFI3syX3LbmpLYm5kJAQNDQ0mEy0YlHBFxDmUSgUmDlzJpqbm1kXEEtiLiwsDH5+fvDx8bHZMscHM7eVxsZGwfVjSczZ6mYFLnxHKWFh7roLCwtDWloagNZrLCIiQlKsARcWj7NnzwqSlgDLMXPAhfvu6NGjgg4yKpVKYAmhcZqbAygBgqwbI0eOxF133cXEXGRkpKAvM4kAstDxYu7pp59mwfx+fn5WLXMGg0FQ+Ly2thZeXl4IDw+HTqczKYpOYu6PP/4QLI5kwY+OjrbJMufn5ye4N8rKytjvZ8+eRWBgIHr16mXiLqurqxPEQ4mvi2PHjqFnz54WrUGWxkViTir+lM43zT+hoaEmGzX67iQ6+cQ1oPX4NjQ0WBRzSqUSH374IYALwra4uBh9+vQB0LrxoGtKrVabFXMlJSUICwtDQEAAamtrMWnSJKSnpwvEHNVHBC7EA48aNQo9evQQzFXmrPckoGgtJjw8PNj3tscyxx/P2NhYaDQalJaWIiIigh1/Xszxx7Bbt26IiYlBbGysYO2i+zc/Px91dXV44okncODAASbmVq9ezcKtnIlTxdzcuXOxevVqi89xZlr7gAEDEB0djTFjxiAjIwOzZs1y2nvzrF+/HnfddRdCQ0MRFBSEl156Cf/73//w448/Yvr06cjOzsasWbOYiyYqKkrgzqWLi25YSyZ5sZg7fPgwRo8ezUQpINz9kohz1M1KZmOahO2xzPn4+KCxsdHEMqdQKAS9Z5OSkvDZZ58hMTGRva/YzSquAWZud9UWMUeI++KOGDGCtfwBLkywBC2cluqU8Ygn79jYWGRnZwti5vhFa/jw4ZgwYYLZ9/vxxx+xevVqi+eUJhmxsOJbQgEXRJxUwC5lKzY3N1sUcx4eHszamZKSIiiFI4Y/VzThOdqwm8cWyxwdY/o8W6zVdO4sZSMDrf2H6RoxGAwmYRPmXCn8zl68YJGYo9eK70G6/48dOyYQc+L6b2RFMXe9kGWOXnP//fcjIiJCIOZUKhXzYtB1HxISAoVCgYMHD8LHxwcpKSkCaxNlvFsiJSVFcK1T+yW6tsTB9fzvmzdvhq+vL4KDg1n8WlRUFDuvlpKTfH19BdcdXScKhQJGoxHp6ekYNGgQDh48KFijxPeT+N7OyckRzCdSmDMg6PV6NtekpaWZlFWh19GxoQ0w39KQrhG6/6Vq7ZWVlbHYTnOIY7hLSkrQ0tKC2bNn4++//8YjjzyCKVOmYODAgaivr8eTTz5pMl6K86Pwm99//x3Hjx9nQpKOK60jI0aMwL59+7BixQqTmEaNRsPen9olAmAJdeLx8sfJHsscL+bi4uJQW1vL+mDT8ee9Jvymm+ZScVkZsqzX1tbijz/+wPLly9HQ0IDY2Fh2L02aNMnhXrfmcKqY27x5M5566incf//9JqJNr9dj/fr1FoWMI6xatQo7d+7Ep59+arOAsRetVstu2KCgIJMdNQmpoqIiBAUFwd/fn1nm+CDyOXPmYOHChbjpppvMfha/mBiNRhw7dozFnPGdJQiaPB11s/L17wDLYk4cM0cTJG+Zq6ysREhICLtoFQqF4GagcYndrGKhxMd5iccgJebKy8vNijzx4+YmX17M8ROwVAaoJfgJf9++fVCr1aitrUVFRQWbDDZu3MieM336dIu1ABMSEvDvf//b4mfSQsYvplVVVfjkk08EzyMRIFVqgTYdPj4+ePvtt83GzPFCdMqUKfjpp5/MbtLE/Vu9vLycIubECRBSMXMk4uvr6+Hr62tTU2w6d1JuHv466tq1KyoqKvDAAw9g2rRpNi8g/LUhFgq0mNHCID7+ZJk3Go2Ca1hsdbJmmaOYObIyBQQEMPcPWSV4KyyJAA8PDwQHB+Po0aNISkoyEU/x8fFW3ay5ubnYsWMHxo0bh/z8fOh0OoGYE8fNiS1hlCxw9OhRKBQKREREsNdYcnWKjxHv3gWAfv36YdCgQSgpKRF8B/E5EsfM5ebmIikpyeJ3NmeZy8rKYmLOx8dH4M0BLog5urboPLz55pvsOXQPbN++nSUJiMsclZWVWbTMAa1ChixxQOuGID8/H6GhoVCr1UhNTcXPP//MLHPPPPOMyXuQtTwmJkaQsUmWOTqW/NwzdOhQREZGIigoCPX19WwjUldXhxkzZgAQhhNRjKJU7LsjljnezRoXFweNRsMqUtB54y1zUuFRYjHHl+zh4zFDQkIECWX8tZWfn4/ly5e3ydjlVDE3efJk7NixA99++y2uueYa1NfXo6mpCWvXrkVaWhoWL16M6667zpkf2S7QhANI35i8ZYKES1xcHBQKheDCUqlUePPNNy26en18fFhcHu2o6CajyZ1fsMm166ibVaVSMddxc3Mz7rjjDgDSYopKhdDEy4u54OBg5mal9kZAqyWCTxrgkydIPIWHh1st+UGYC94ePny42cxdsWXOXDFVc2KOT9qwBf4a6datG9upVlRUMHccuaYA00XbEej4UUzRDz/8gODgYJPrYPDgwTh37hxmzpxp8h7iSVA8LikX89ChQ1m/1YaGBqSmprIsQcA0IH78+PEusczR2HnLHH2O2NJqCW9vb7NN2fnrKCwsDP7+/lizZg073+I2fFITc319PRPUYqFAAtKSmKPFhA9jEFvm6P4wl6xDljkSQSTmqCA0uVkJXgTQz127dhVcD0OGDEF8fLyghIgltm/fjk8++cSqmBNb6hQKBaKioqDVahEREQFPT092XkaPHm3283x9fdHS0sI24tnZ2awzD9AaD02GBv48kpWF7hd+oaa4O7EIE0MC5dZbbxXcj88//7zg2iQrEa01YnFCcxIvKOi1Xbt2xdy5c9nzv/zyS5YsUVZWhtLSUouxtAqFgq1jdG1lZWWZbFJ8fX0FmznesEHf5cYbbxRsVv/880/B/M53OyLou9E6ptVqWT3TSZMm4dChQxg1ahTroiP1XUgo2WOZ46/h+Ph4aDQaViuWd7MuWbLE7Hk2Z5kDhPNf7969TTxoxMMPP4wnnnjC5vtHCqcnQPTr1w979+5FZmYmhg8fjpSUFDz55JO48847kZOTwzKyOgtUykJ8Q40fPx6bN28GIBRztHv28vJCbGysXRcWQSZnCiglgUiTO3/hkEvm7bffZpmw9rhZgQsXo7X06uuuuw5Go5EJPR8fHxgMBmg0GoSFhaGpqQmlpaUICwtDYGAglEqlSXmE119/HUuXLhVkaUVFRVmt00NIWeZoUt2/f7/ka8RiztzCzos5XtiQiDOXtCKGF3NqtRqBgYF49913ce7cOUF2MOEMMUeLLIk5S+KYFwI81sSclJjl3bv5+fnIysrCkCFDWEyIeHIKCgpyiZjjzylZvum82yPmaIzW3KxSlk2xq1Uq7ken0zEXES/m9Ho9EzK0m5cK6KdzNH36dPaYvWKOYubEljmgdfGJiooSuKykLOgDBgxg18PMmTOxc+dOpKWlITc31+YwiNjYWBMxR/PZTz/9hJycHOh0OoE1o2vXrmwMNNc+8MAD+P333yVdbwQdN7r2cnJykJSUxM5RWloam6t4y9yBAwcQEBCAb775BjfeeCM2bdrE5vvq6mrU1dVZFXMkeCZNmoSffvqJJTFQnBqNjY7zfffdB+DC/UYx1lKWNXMemDlz5uCRRx4B0HpMT58+bfH4EMXFxYJSLeI5QDxH8JZTuidvueUWE2MAiabu3btLroni0kJUQ5DeZ8CAAWwTTiJeDK0h9syn9P4qlQrR0dGor69HQUGBwM0aExODl156SdAXnU+Ei4mJYW5pQCjmsrOz0b9/f7S0tGDgwIGCeYVfl+i48t2P7MXpYq6mpgYffPABCgoKcPbsWVRXV+P333/HsmXLLAaCdlTINE8XIJ3ghIQEzJgxA9HR0ZKWOaC1SK6jYq6mpsakNpCUm5WHMiftcbMCYAUrxRW2rUGTT1VVFZtg8/PzERYWxmrKiVO5Y2Nj8fzzz0OhULAxpqWl2dwfUUrMabVatLS0mC3GyN80ltxtNJ6GhgaB4HjooYcwc+ZMQf03S/BxUQqFQrAou0rMkaWIJmJbrYg8jog5Eo1VVVUC8fLf//4XgFDMhYeHm8QuOUJLSwv0er1AZPCLx6RJkwC0Ji4pFAo88cQTNpWUIWwRc7ZkNUvFzWm1WiYaqqqqUFtbi/nz5wusQXTfS10Xf/zxB7766iuBWJdys3p4eJjdfJBlju65wMBAgVBISkpic7VYQNDv/fv3Zwt0165d4ePjg7S0NBgMBskkFMA0VtJgMKC+vh5+fn7o1asX0tLSsGLFCuzcuRPTp0/HI488Ap1Oh6SkJNx+++14+eWX8d1337Ex0Fzr5+dnMeaUngNcmM/z8/ORkJDALG1paWmsPzM/v+7atQsjRoyAp6cne+4rr7wC4ELxV3PJLsTcuXPx3HPPYc6cOZg4cSLWrVsniO+m65jmn6lTpyI3N5dtzu+44w6cOnXKZLPAv0YKqm964MAB1NfXm7hfpYiKikJoaCj7LHvEHIU+hIWFCeLcgNZ7oby8HIcOHZL8XFpXx4wZA71ej/r6epPPpmveXMkdEluWunVI8ffff7NSMECrSOfdrOJKAzqdTpDAEBsbC6PRyIwvvLHl/PnziImJYfci3+KUX5dInHYYMbd06VIkJSVh/fr1eP7551FWVoY5c+Zg0qRJZq0mHR3a8YrFHE0o3bp1MyvmEhISHBJzcXFxgv5v9FkkRAoLCwWTLC2chD1uVuCCmKMsWVsRZ6MCF8Qc0HrzmatCD7QeyzfeeAPvv/8+c7+bi5UjpMQcHaczZ85IZkryj33wwQdm39vDw4PFdOl0Otxyyy34+uuvER8fj02bNtkciyGedHkxJ7U7doaY8/T0xODBg1ltR1eIOSk3Ky/m+Pg4ikXJzc1lY4mKinKKmKPzaW4ho3ia9957jz1mT0kiW8ScOWvMW2+9hRdffBEAWMgCj06nY+7SqqoqrFq1Ch9//DFzS9E58PLykhSgQ4YMMamVSJY5cus2NzdbvP/NxcwRKSkp7JoVWwc//PBDPP7445gyZQq7/2nxpBACc5tCsaVSp9Mxy5yfnx9mzpyJc+fOsfIYlFwVGBiI9957D4sXL0ZMTAybX2wp50OIM9Xr6uqgUqnYAkznU9yJISsri4kgqnFHFphDhw7Bx8fHpOC2GB8fHyxbtkxwPtetW2cyNj6eOCEhgW06FQqFybxBz7VmcY6IiGD3gS1ijqDvJF6/rFnmaDxijwxZVM2th/zjtObaK+bo+jfneTDHkCFDEBYWZlJcfezYsViyZInJfO7n5yc4lxRTd8MNN6CxsRGbN29mG/rMzEzBdfrII49g3759AITrEm387C3tw+NUMffdd9/htddew5kzZ3DXXXchICCAZYKOHz8emzZtcubHtQtiMUc3Fan2bt26CawP/ImbP38+br/9drs/MyUlBVlZWUyk0EVMddrKysrYBXTllVcKLu7GxkYTF5Q1eMtcamqqze1GpLJReTH38ssvM5eBORYtWoSwsDAMGzYMRqPRRBSIsSTm9Hq9IDiYaGpqQlhYGPR6PW644QaL4yGxodPp0KNHD4cypBUKhWCS5RfEqKgolJeXCyYcZ7W9Gzp0KLM82BqDyCOeqMUWBykxx7tZ+fNGj+fl5bFFZOrUqe0i5sRZgPZiTszR51rK2FywYAEefvhhdO3aVfI+0ul0CAgIQHBwMHbu3In//e9/AC50OCBXkj3XhJ+fH4xGI7svrG3mxJY5S2JOLBaio6PxzDPPICAggFkgKKY3Li4OSqVSsp4acEHM/fbbb/Dz84NWqxXEI0dFRSE3Nxe7d++GQqFAbm6u4O+E2DJnC2LLHFkEV6xYgdTUVLY4x8XFCRZUytAEWhf9m266iYUyHDlyBOnp6XZZfQn+/qRjTP/bUj6LxKe1eT4iIgL19fWYMWOG2VhhKWhDJL4OaYw0x4vbdtF46Nx88cUXyM3NNVsom+DnQ95izEPHzNx5JwFqaziMGN5zSGVgXnrpJavvR2vxjh078Nprr+HcuXMs1KO4uFgwb/IdeaTEnK0eKimcKuYyMjIwf/58ky+/fPlyrFmzBtdddx3eeOMNZ36kSykuLmap0DShUPwC3fDiBY8vGTB9+nSrvVGlSE1NRWZmJiorKxEUFCTZUiksLAxHjx7FF198Ibihi4qKHLLMUYeC7t2727yD4yd6usF0Oh270a+66ipBhpQtBAUFWcy6khJzfOzRQw89ZGJhJHFrzeoHCMWcI1ZVoqCggC124tguqsVEOEvM0YRIQfz2IhZzYrey1HuS1a2yslIg5kiwVVdXIzY2FqdOncILL7zQLmKOxmlpU2AJa5Y5a/eWQqHAk08+ierqapNeylTyJTk5GZ999hmzYtEmxBExR9cpbTybmposCgwSc5RwoVKpBFl9KpWKfb4lFyJZqGi+UCqVUKvVZusO0uNRUVEICQkxEXPR0dHs2hgzZgyys7Ml70OaXyzNE2LEljkSc4sWLRK4uMU9jmtrawWLfJcuXZiYq6ystEtQ8vChHjQ2KiNkS9Y8WYusCUm6p6+77jqbsrkJuh7MuVnp71IxcwBYMd8BAwYgISFBMsZN/L7vvvsuFAoFu/fEn02JJFL1ZIHWAs5tKcgrlfRmC3xYDfWHJzFsMBhMrl86RryYo7XCXN9bW3CqmLN0sdxxxx349ttvBWnGHZ1Ro0axnpx0Qvr37w/gQgCyeLKzFrthCykpKSgtLUVeXp7JRUUXeEJCAvr27Qt/f3/MmzePjaewsNBuMRcTE4O6ujocPXrULvccv5iOHj1asu+ns7FkmSPEi4mUpZKSdMT4+vpCq9WisbGxTWIuNDSUTfR8NtvIkSMBCF0eziqpQxOIn5+fXRM3IRZzdK1bwsPDA0FBQcwyFxERgSuuuAI///wziouLmWWje/fu8PDwYIWm24KtYi47O9uhOF2KWQWAhQsX4ssvvwRwQczZYvWmxTYmJgbPPvss9Ho9jEYjEyfmrCTmLCKWkBJzlq4phUKBAwcO4I8//mB12jw8PJCTk4PffvsNgPWFE2hNulq3bp1gEeRLUIjhm70HBAQI3KyA0H02YsQIVFZWIjc318RSRcffnvvGnGVOjFqtZmLCaDSaiLnU1FTWUlGn09lVBsMcdK3ccMMNaGlpscky98EHH+DRRx+1mKEKXLgmeCODLdC6Iy7DZU3M0b03ZMgQGAwGyRhhc6jVahiNRrMJQNS665prrpF8fWBgoEMeCYIXZfa8Dy9UyWrPnxfxNULHiOaxs2fPMu9eh7HMWWPq1KnYtm1be35km+AXe5pw/P39YTQa2QXF13vq0aOHwzs1HnrPgwcPmggjmuT5xcDf35+le1dWVtrtZiVrY2Zmpl0XMW+pUavVrEm5LV0SHMWcmFMoFFi6dCkA09gcqezeYcOGSdab8/X1Za9vi5jjoYXxlltuYSLr3XfftTtQ1xokBKztgs1Bk056ejpKS0ttFkK0gFdWVrKC2RqNBv379zdZDG21zO3btw+XX365ZHkPCkC3JSv5xhtvtOk78CQlJWHXrl34+eefsXbtWhbPaatlDhDGTT7++ON477330NjYCKPRCH9/f9a2ToyjblbgglCxJuaoPMKGDRsEi3xiYiImTpwIoLXM1Msvv4x77rnH7PvEx8ebtJcStxbjocdDQkIQEBAArVYrEFX83EkL9549e0zibul+sse9ac4yJyYoKIgdn4aGBuj1ehMxB7TG0pl7D1u58847cfXVVwu+n60uwtjYWKxYscLqpo3Egb1ijtYd8bmksiRSYk5c+9HeDSWtG+T1Et8DEyZMgNFoFIguZ8KvtfZY5oDWWNLu3bszIcqLOWuWuc2bN8Pf3x+zZ8/uOJY5W7BU2LEjY25h53dRVJW8rdCEsW/fPpOdF41DXDSRT7231zKXkpLCfPz2WOb4xdTPz49N7OYCVJ2BVF/JyspKBAcHMzE3ZcoULFq0iP3dHnHr6+vLLH3OFnO8UA4MDGQhB/ZOtOYgIeBIDA9w4fvOnDlT4HYTI762SMxlZmayKupAaxxIcXGx4B6xVcz95z//wW+//QaNRoPGxkYmpPLz8/H6668DMLWQbdiwAZs2bRJcl/Hx8XjjjTcEyRDWGDBgAABg2rRp7LG6ujo2+dpyfCMjIwVC8siRI4IYtZkzZ5o0GgcuxN+0xTJnLQFi5cqV7Gdz1563tzcWL15st9XYkmWuqqoKXl5eLMtSbJnji7MOHjyY/cw/DrS68GbMmMHqqtmCWPCaC6PgXex0HUuJuczMTNa9wlHWrVsnqMfmCijGW3wMrTF16lSkp6cLsi+BC3MMzfXmLHOOQGKOzquzwk9shRef9or0W265BRMmTGCWTEuWObGYo5JVYWFhnccy11loaGgwCdg0d9PypmBnucuo32BLS4tJ1hxN2GI3DT9Z2SvmgAttvRx1s/r7+2PkyJEoLCxku3tXIGWZ4/tJEm+99Raz6thTqsXX15fFWjnDhQJcEHPiyWnixIkwGo1WXSW2QmJR3MLLVjw9PVFUVCRZ3Z04f/68oN4SfW55eTl27tyJ0aNHC/5OcZ8EL+b0ej0UCgU+/vhjk8+h+620tBQLFy6Ej48PSkpKWAwrYCrmbrrpJsycOVPw+PXXX49FixbZlYgkteHMz89nsWi2WBwUCgU++ugj9nt9fb1JMpWUKKQFzR5Bbq9lLj4+nhWtttaKyl6suVmDg4NZIpc4Zo63uMTGxrLjLLbMqdVqbN682a5wDnssc2Ixx1+/VB/z/PnzTnOzupINGzZg3759NsUL84SGhuLYsWMmRgNqyzV58mQolUomPrZv345jx47Z5RESI/boOJrA5C7E2bCEOcscX/MwOTmZ3ROOIos5CTZt2oRVq1YJHjMn5vhdmyNxSlIolUo2yYpbxSxZsgQTJ05krlHC29sbCoUCDQ0NdrtZgQvWtLZY5gD7d4D2YknMiY8/mbztOR4BAQEs7sFZ7uJ58+YBcK3FEmi9/srLy5kb0hGio6MtTvypqakmoQQhISHYvXs3NBoNRo8ejccee0zwd7GbldyNp0+fBnCheCoPL+Z++uknAMDvv/8uSEww1/qGvy6lanNZIyUlBZ988gl++OEHVk/KkVhUpVKJ7OxsjB49WlLM3XPPPezaAIA33njDoRg/exMggAtlRPjPdwbWLHO04fD392dijhdEhw4dwscffwylUsnuWUvljWyFPuPqq6+G0Wi0KOaoIoCUZU6hUCApKQm5ublttsy1B0FBQRg6dKjT35cX5AAwbtw4ALbFk5pDPN+2t2WurZhLoBBfZ56enlAqlcwyl52djaSkJBZH6iiymJOAb1dCmDMfu6ofLGUmisXcTTfdhN9++81kQaVyGI5a5ujGsUeQ8sekvSY1S2JOTGxsLH788Ue7OmIEBwezYFRbApFt4corr4TRaGyXySksLMzhmDlHCQ0NZXEuPXv2xIwZM1gld0B4HHkXw8GDBwGY1qQChGKOzndeXh6Lwfvqq6/Qr18/yfF4enpi8eLFgvqP9kJJRbRpoixxexerpKQk1uqOd7MCreeK7527aNEijBo1CnfeeaekC9YcdHwpi9uW+/+xxx7DmTNn7M42t4aUmNPr9Th8+DBKSkrYZjEgIAB1dXWorKwUWNgGDBjA3NNkYZbqw2kv/FxVWFgIg8FgVswBrVY52jiIBXZUVBRKS0s7hWXOlajVapP45La4WXlDwooVK9r0Xo7y008/4a233nLotfw8x8/1Umujj48P29RSNxLa4DiKLOY48vLy8Mknn0jG9JgTOc6yxomhCtr2BHuSC8vedl70WsC0SrslpHpjuhopMVdWVmb2ON11112ora21eREODg5mO3JXJnJcTJC1JSAggJ0HfmIWu1mB1sr6FPvGdy8g6Po9deoUi2EkMRccHIzZs2dbvPdefvllpwiVgIAAqFQqFBUVOXRfARc6NIgtc1JERERg3bp1GDt2rM3vHxERgauvvpr1JrYWM0djsCfT0FZCQ0NNSsKsWrUKAwcOxCeffCKwzOXl5UGv15u1WH/wwQf4/fffWc/UtuDh4cGSTqgLgSUxp9FocOzYMQDmxVxbEyA6O3FxcSY1Bdti3PDz82MbO2pF1t5MnToVCxYscOi1/DzHezekrhEScxQ3Gh0dLVvmnMn27dtx00034fjx4+4eCu677z68/fbbdpU68fPzg06nY83u7WHy5MmIj4+XbMBuDik3q6uxxzIHtO7Cf/rpJ7vEHCGLOdugBbpLly5MYPHHTkrMXX755awrjFTbKxJ4Bw4cANAag5Kfn2+SHdseUO9iRyzegHUx9/fff7PyJ44yevRo5OfnQ6/X4/jx4y7zGFgjLi4ONTU1+Oqrr9g8yhdVp2tFpVIhKysLgPkisJ6enpgwYYLTNsxr166Fh4cHu6asiTkqeC620EdGRjLLXEd3s7qShIQEk84qbS07lJGRgYMHD7rMSOJKzHlyLFnm+LhMf39/lkHtCLKY46BeeKtXrxY8bo/Lw1l4e3vj7rvvtstl5uvri5ycHDQ3N9vtmoiKikJeXp7VptE8/NjayyQuFnPUE4/E3NGjR/HPP/+YrU1lDRJzHh4el/REbQ+0QPPxafxCyYsvqZhMcWFd4EJleXLXpqenC9ys7UlKSgpOnTrVZjEndrMSQ4YMcThphaBakU888QQOHTokqMzfnlBi1rXXXov09HQAYDX7gAvnnw8Qd3UsKeHt7Y2kpCScPHkSgLSYo2uLXKyXX365SSB+ZGQkCgoKoNfrL2nLXGJioomYa+t1FxQU1GkrXojXHFo/LFnm+LhMmhcctc7JYo4jMjLSJLHgiSeecIuYcwQ/Pz8WN2OPKGsLU6dOBeA6d7MYsZirqalBc3MzE3N9+/ZFnz59sGPHDsHrbLWy0fOCgoI65e7QHZCo58tJ8MeOvxalEmSkLHO0KJw6dQpAa8B+WVmZW8Tc+PHjsX37dtTV1bnczeooZN36888/ATje/aKtSG0ieTFHwt8dYg5oPU5kETRXmgRoHbNCoTDpgwu0rhPl5eUA2s8j0REhy5zRaGRuRRInlyJibxhdS1LXGSWC8XGZsphzMnv27BH8rlarO82i7uvry8ScM4KGbeHHH380CYJ1Jd7e3igrK8P7778PAKxRtrguWr9+/QSFWUl0WoMsB5fyJG0vZJET16Qi+ElOyqVWW1sLg8EgeEy8w09ISEB1dbVbxNyYMWOg1Wpx8OBBh4QYL+bEfXudBd9OD3CfmJNKZuHFHAl7PumhPbMWo6KibHKzlpWVsQLPYviQjkvZep+QkID6+npUVlay7GlxCMylhLle1uYsc6tWrcLChQsBtF53tPY4eu/KYk4EtbqZP38+gM61qPv5+aG8vJz1/2wPFApFu8aW0U7mjjvuYC5WQDpR5LXXXsO3336L++67T1AA1hJ0Q5kreyFjyoQJE6DVam3q6SteuGkREIu3uro6gdsiJiYGtbW1qK6ubncxR2K0uLjYIeHBu1n9/f1dsjkkiyeJOXPlQVyNlFDlxRwVKSbLXHtnLPJWQKm53d/fH0qlkrn+pcQaHyrQmdYHZ0MGg7y8PCbin3/+eXcOya2IrxVLljkK+/n7778BtFrmqIIF3yvYHmQxJ8GgQYNYo2BbJsUhQ4Z0iJo4NDGGhIR0GmuivVBDYqA1ucGSmAsICMC//vUvvPbaa3aVJgFsb6sj04rUhPXHH39Y7YpC503sntFqtYJsVDovhYWF7S7mKGaquLjYoUKm/v7+zDLnKkuOWq1GeHg4zp4965L3twfqbAK0tmbixRzVzyQxZ6nTiCugTdoVV1xhYkkBWjenQUFBTMxJzev8JuNSt8wBrWKusbERTz75ZLu6zDs6VN9P6hoRbwJUKhViYmLg5+eHc+fOYevWrXZbOWUxZwZK2xe7f6TYu3evoJipu6AL5GKeYJ599lmWOl5dXY3S0lJ4eHi0qcEyT//+/TFr1iw8+uijTnm/S5nx48ebrQVH8NmDPHV1daywLXBBzOXl5bW7mKPPa2xsbJNlzpViTqFQYMaMGS55b3tZtGgRNm3aBKC1NZyUm5XEnLO6n9gKXWevvfaa2eLYvJizFFcHXNqWuaioKHh5eSEvL++SL9NClJSUsHItr7zyCvbt2yd5XMThJn5+flAoFEhLS8POnTsxZcoUk+Lr1mjf6qJOJDs7G0OGDEHv3r0BAF999ZVTd3np6en48ssvWfN4S9jbKsVVkGWuI1gJXUVUVBTuvfderF27FsXFxUzYOescBAcH4+uvv3bKe8lIk5mZia1bt2LBggVMKIktc2IxR658o9Ho9EK31uDvJ0fFXHNzMzQajUvvzaFDh7JuGpSx6S4mT54MoHUzrNFosGzZMiQmJrKFjcJA/v3vf7fruJ577jmEhoYKri0xQUFBzANgTczZWwLqYkKpVCIuLg65ubloaGhwS5HfjgbvIfL29jbbfUPc1YQ8acnJyaxk09GjR+367E4r5gBg7NixLl1421ouoL2hifJiFnPAhYWdinq6ovipjOtISUlhDcDJbVlbW4sBAwagpaUFBw8eRFNTk6D/MB+ndP3117freD09PZl1zVExBwDl5eUutZrTZnbAgAHo0aOHyz7HFnx8fPDQQw/hs88+g8FgQHp6uuC8eXp6uiUuNSUlReAGlsIeN2t7u4k7Gt27d8fx48dly5ydmPMkRUVFMcuevYmFHcOk5CB//fUXxowZg2XLlpmdGCj9l/93sXIpWOaACwt7ZmYmAGDjxo1uHI2MI5CI4y1zR44cwfHjx1k9Nt6dyifZuCOekcbbFjFXWlrq0ubhJCykOmq4g4iICKf3OW4PrFnmeNFyqQuYoUOHYufOnTAajbJlzg7M1T3lYw7tTWLqtGIuJiYG586dw44dO1BaWopvv/1W8nkrVqyAWq1m/9qrZIc7uBRi5oDW7+fp6cnEXHtl7so4D5rMxEVaATAxxwsfEgOW3GOuhMbpiBgjAZiTk+PSGLGOKOaIziTmfHx82DUoNZderMlljjBkyBB2717qwtYeyCDx4YcfIicnhz3Ou2nLysrses8O72YtLi6WLNy4efNmFq8wa9Ys7NmzB9dcc43J85YuXYrFixez3zUazUUr6PgemRczVA6Fin86K/lBpv2gBdHLywteXl6CmDkqUxIYGIj169dDrVbDx8cHjz/+OGvC3t6QmHPk3qLNxrlz5zBp0iSnjouHhKIs5toG1aEDLv65tK3w4kO2zNnOrbfeipqaGtx4442CTkq8Za6mpgZardbma7DDi7no6Gjs2rXL5HF+8t+xY4fZZsw+Pj42t3Lq7NBkfilMQMHBwcjKyoK/v788iXRCunTpgsTERNx3333YtGmTWTF38803s8efeeaZdh8nQfeUI/cWb41zpWWONrcdRczx37UzibnJkyfjgw8+ACALFGvwoRCyZc52fHx88Mgjj5g8Li6xVVhYaHNMeKd1s+7atQuDBg3CmDFjUFBQgLlz57p7SG6HJk9byql0dtRqNRoaGmQXayfF398fOTk5GDBgAIKCgiTFXEfalNDuuS2WOcC1Yo5iCTuK54Evv9CZxNy6devYsbTkUm3vrOqOiCzmnAsVDl6xYgUAYMOGDTa/tsNb5swxdepUm1s0XSrQQuFob7fOBMUcXMqlAS4WVCqVIGaOt8x1FMhC44ilho+7cnVdtW3btkkWw3UHfPmFjnQureHh4YGjR4/i559/Nvuc+vr6DlOSyp3wYk4Od2k7iYmJaGpqQmNjI5YuXYpnn30Ws2b9H3vnHR5F1f3x7ybZ3bTdTS8khN6kKU2QakGqKMorggqIYkPFggVsIL4iKkVBEQvyooidKgiC0kGkivTQSYH0TbLJpu3vj/zO5c7szJZkk83C/TwPD9k2c2fmlu8959xz78H111/v9LeiNl5FkAWgrrhZahIh5q4eDAaDZD9CpQUQ3ub9999H/fr1XdqyTAmy8NS0mOvduzfb2svb8OEtvrZooHXr1pg4caLq54GBgS7vKnM1w7dRIeY8g1arRWhoKPr37w8AWLp0qUu/81nLnMAeGiiKi4u9XJKah9w2Qsz5PkajESkpKew1Webq0qrsdu3a4fz581X+PaVOor1JBYKrAT54X4g5z7J27Vr06tWLpfdxhrDMXUWQZa62t8jxBmSZEzFzvo/BYJB0WLm5uQgKCrqq9sft0qUL4uPjWbJkgeBqQywW8Tz16tVzWcwJy9xVRFBQEFatWoWePXt6uyg1jnCzXj0YDAaWpBWo+eS63mDbtm1e2fHA2zz33HNITk72djEEAp8kPj7e5W29hJi7ynBlL9mrAeFmvXowGo0sTg4A3nvvPbRr186LJfI8Wq3W20XwCrNmzfJ2EQQCn8Udy5xwswp8EuFmvXrgV8QRDRo08EJJBAKBoO5Qr149mM1myWRXDWGZE/gkws169aAk5kTOKoHAN4iPj79mEvPXNh06dMAbb7yB8vJyp98VYk7gkwg369WDkpi7FlZkCwRXA/zeogLP0qpVK0ydOtWl7woxJ/BJWrVqhU6dOqlu4ybwHYxGo917TzzxhBdKIhAI3OVajQetawgxJ/BJYmNj8ffff3u7GAIPIN+x4Pfff6/RDekFAoHgakOIOYFA4FX4lasVFRU+t1uAQCAQeBuxmlUgEHgV2hZp4MCBQsgJBAJBFRCWOYFA4HWKi4slWwMJBAKBwHVE7ykQCLyOSG0gEAgEVUe4WQUCgUAgEAh8GCHmBAKBQCAQCHwYIeYEAoFAIBAIfBiNzWazebsQtYnNZkN+fj4MBoNYOScQCAQCgcDnuebEnEAgEAgEAsHVhHCzCgQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MNecmLPZbDCbzbDZbN4uikAgEAgEAkG1uebEXH5+PkwmE/Lz871dFIFAIBAIBIJq4zNiLj8/HzfeeCNCQ0Px77//AgC+//57dOvWDbfccgsuXLjg5RIKBAKBQCAQ1D4+I+aCgoKwevVqDBs2DABQWlqKWbNmYfPmzZg2bRqmTZvm5RIKBAKBQCAQ1D4+I+YCAgIQHR3NXp88eRKtW7eGTqdD9+7dcejQIcXfWa1WmM1myb9rlTNnzmDkyJEoKyvzdlEEAoFAIBB4CJ8Rc3Jyc3NhNBrZ6/LycsXvTZ8+HSaTif2rX79+bRWxzjF58mQsXboUZ86c8XZRBAKBQCAQeAifFXPh4eESK5u/v7/i9yZNmoS8vDz271qOrSsuLgYAFBYWerkkAoFAIBAIPEWAtwtQVZo2bYojR46gpKQEf//9N9q1a6f4Pb1eD71eX8ulq5tYrVYAQE5OjpdLIhAIBAKBwFP4lJgbOHAgDhw4gOPHj+Oxxx7Ds88+i969eyMwMBCLFy/2dvHqPGSZy87O9nJJBAKBQCAQeAqfEnNr1qyxe+++++7zQkl8E4vFAkCIOYFAIBAIriZ8NmZO4D6XLl0CIMScQCAQCARXE0LMXSPYbDakpaUBEGJOIBAIBIKrCSHmrhFycnLYAggh5gQCwdXOzTffjA8//NDbxRAIagUh5q4RyCoXGBh4TSdOFggEVz9msxmbNm3Cs88+6+2iCAS1ghBz1wgk5lq0aIH8/Hwvl0YgEAhqjh07dgAA/PzEECe4NhA1/RohNTUVANCsWTMUFBS49Jvy8nL88MMPsNlsNVk0gUAg8CinT58GAGg0GpSUlHi5NAJBzSPE3DVCWloawsLCEB0d7bJlbvHixRg+fDh+//33Gi6dQCAQeA6asJaXl2PDhg1eLo1AUPMIMXeNkJaWhvj4eBgMBpfF3OXLlwHAZUvetcLKlSsRFxeHiooKbxdFIBAoUFBQgMTERLRv3x6ff/65t4sjqGOUlJRg0KBBOHr0KA4ePHhVLAoUYu4agRdz7rhZARF3Imf+/Pm4dOkS3n33XezatcvbxREIBDIKCgoQGhqKcePGYdWqVSzHpuDaorCwEEOHDpU8//vuuw/33nsv1qxZg+eeew7XX389Bg0a5MVSegYxSl8jpKamol69ejAYDLh06RLWrl2Ls2fP4rvvvlP9DYk52jlCUMn1118PAHj11VfRrVs37xZGIBDYQWKub9++KC8vx5EjR7xdJIEX2LBhA5YvX44vv/ySvff9999jxYoVAIB///0XAHD8+HGvlM+TCDF3jUCWudDQUACV+9zedtttGDFihOpvaC/XvLy8WimjQCAQuEtJSYldyAOJufj4eABAenq6N4om8DKUhstoNAIA/vjjD8nnKSkpks99GSHmrhHS09MRFxcHg8HA3svMzAQA1dWqOTk5AOD1vHQffPAB3nvvPa+WgaeoqIj9HRMT48WSCAQCvV6PsWPHSt4jMRcaGorg4GAh5q5BUlJSMGrUKABAcHAwAODWW29V/K7JZKq1ctUUQsxdA9hsNhQWFsJgMECr1UreB6C6dJ/EnLctc+vXr8ePP/7o1TLwWCwWdOzYEffdd5/kfgKV8Rjz5s2r1fJkZGTU6vkEgrrG//73P8lrEnMajQZxcXFeEXNNmzbFzz//XOvnFVTyww8/sL+Li4uZp0kJYZnzMmfPnkV0dDT69OmDPn36iEFNBdrGKzAwEIWFhXaf8/EEPLTCx9uWuaKiIiQnJ3u1DDxFRUUICQlB9+7dkZGRwUTxpk2b8P333+Ppp5+u1vH3798PjUbDXACOWLlyJWJiYnDs2LFqnVMguJogMQcA8fHxtS7mrFYrTp06hUmTJtXqeQVXKCsrY3+fOnUKixYtUv2uEHN1gN69e2PTpk3YtGkToqOjvV2cOgm5BYOCgvCf//wHDRs2BAAWZzJ+/HjFdCUk4rwt5iwWC3Jzc+vM8nGLxYLg4GBER0ejpKSE3bubb77ZI8dftWoVAODgwYNOv7t7924AwMWLF51+12azCdEnuKrgvQr8RJUXc7GxsWwHnJomOzsbXbt2xaFDh2rlfFXlxIkTmDRp0lWdEP7cuXPs71mzZuGJJ55Q/a4Qc3WA7du3o2fPnpg8ebJixbRarTCbzZJ/1xq8mNPr9Xj//fcBSPPHKQmlurIAglbTnjp1yqvlIIqKihAUFMQmDxkZGQ5N+O5CM8rHHnsMWVlZqt/Ly8vDwoULAQABAQFOj7tlyxa0atUKH3/8MXuvpKQEmzdvrmaJBQLvwPdhZH2zWq1ITk5mYi4yMpKFjNQ0q1atwl9//YUFCxbUyvmqypNPPol3330XEyZMkPQHVxNnzpxBnz592CIYORqNBo0bNwYA6HS62ixajeDTYi4+Ph7JycnYsmULLl++jGXLltl9Z/r06TCZTOxf/fr1vVBSx+Tn56N3794uWVeqAi/mACAsLMzuO0qigQSKIwH83nvvsa1zagoqf10Rc2SZo04iNTXV7v5VZ9JAKWEuXryIDz/8UPV7zz//PLM48C4FNc6fPw+gcmk+sXDhQvTp0wfvvPPOVT1L57l48aJIhH2VwD9HSnI+e/ZslJaWsgE6LCwMubm5tVIeavcU2lIXef3117Fx40YAwNy5c/HUU095uUTVZ82aNdi0aZPkvUOHDqFTp06IjY1V/I1Op8O2bdsAAKWlpTVdxBrHp8WcXq9HSEgINBoN7rnnHhw4cMDuO5MmTUJeXh77d+HChdovqBN27tyJLVu21NhsjkRZVcWcmmUuIyMDL7/8crVjxJxBlrm6EjdHljmaGJw/f94u0JlWClcFEnOA406GP4cruQBJ+PEDG7mpXn31VRw9etTdovokAwcOxIwZM7xdDIEH4F2rJOZOnjwJABgzZgyA2hVzdJ6vv/66Vs5XFd5++223f/PPP/8gJiYGc+bM8XyBPMCgQYMkYS7nzp3DhQsX0KNHD4ngv+OOO9C6dWsAlWEn8fHxuP32212aDNd1fFrM8XFeW7ZsQdOmTe2+o9frYTQaJf/qGoGBgQCkKS88CR2XzlNVy9wvv/wiEcMkniMjIz1ZXDvqmpuVLHOhoaGIiIjA4cOHMWHCBMl3qmP54cWc0kpjm82GKVOmSMSt0sIWOeSG4uOH+DZ0rVirUlNT60xdElQPJctcdnY2+vfvzyZbJOZqw/IsNxbUVJ9e2/z777/IyMjA+vXrvV0Ul/j7778BADfddBOrF2vXrsVPP/2EDz74AMCVmPGAgACXLXOPPPII1q5dWwMlrj4+Lea2bduGjh07omfPnkhJScHIkSO9XaQqQZ1MTYs5ssw1btwYcXFxku+oibmwsDBmmbvnnnvQo0cP9jmJuZpceGKz2eqcm5UscwCQlJTEFiEAYDtq1KSY27hxI6ZOnSrJau+KmCMRl5mZyY6blZUFjUYDwLlraNeuXQgLC/PpHUFsNhtyc3NVVwq7ch+9wS+//IKdO3dW6xi5ubkYNmxYnVlI5An4dkZbNl26dEniWgsLC0NZWVmN19sZM2bY7QObmZmJvLw8PPzww3W2brkCWRx9xYKVlpYGvV6PqKgoZozo0aMHdDody7VK465Wq3VZzH355Ze44447aqbQ1cSnxdyAAQOwd+9ebN26FYsXL3YpCLy2KC4uxuOPP+6w47x8+TJmzJjBGnltiTk/Pz87l66SmLNarYiJiYHZbGaN+Pz58ygtLUVJSQnOnDkDoGYHQMruHhkZWS3Xpau4Mnu3WCzsXtavX5/NAgGw7b08JeaUOpk1a9YolskZaWlpLDkmDXyZmZmoV68eAOdibv78+cjLy2Oxd76IxWJBeXk5UlNT7T5bs2YNQkNDazwGtCrcc889uOmmm6p1jDVr1uDnn3+2y8nmy1DfExUV5VDMAahxV+srr7wieT1y5EgUFxdj8eLFWLhwYZ3KlSnHWb9H904p60Fd5PLly4iOjmYTVQCSVDXAlX7WVTFH96iuxhb7tJiryyxbtgwLFixwGDsxYcIEvPLKKzh79iyAmtsDVS7mAKBFixaS78hFp81mQ3FxMWJiYlBSUiLZqLhdu3Zo3rw5c9vV5Aphuifx8fE1vqp27NixCAoKcipOi4qKWEZxErsEdRjVEXP87FfJMqc0KDkr8549e7B161bcddddAK64XLOyspCQkADAuZijBMlXg4UhJSXFrlPevn07AOC3336rthWsLqLX6wFcXVtbUTtLSEhg7dAbYq68vBx+fn6SxQRDhw4FcMWdVxcyKbz55puK7ztr03Tv0tLSvJ7dwBF0HRkZGWx3nrFjx0q8R40bN0ZERASaN28OoNLN6orFkcKO5FvH1RWEmKshyHoRGRmJf/75B2PGjLEbPGiWQ1YCZ5a51NTUKjUkecwcADRq1EjxO0RpaSlsNhtrEHzOnmPHjuHcuXPYunWr5DpqAipXXFxcjXciX331FaxWK4uxUIO3zEVFRQGoXBlVUVHhETHHi3olMZeXl4frr79e8t7kyZNx6tQp1Vnj9u3bodPp8OqrrwKoHFhycnKwZs0a1tGp7QRCkOXbUbqUug7VoaKiIuTl5WH9+vWYOnWq5Dvjx4932wpWVFRUI7nF3n//fYl1oTrQhM2VZNS+ArWzmJgYFBQUwGKxoLCwUDJ414aYu3z5MioqKnD77bfbnZfSotRUP1lRUYHJkye7ZDGnHJZA5XhAgubBBx+UTNjlULs5d+4cwsLCqmSdstlsNW7Vor778uXLbOz68ssv7fr0lJQU7N+/H4Drlrm6bpUUYq6GIBekxWLB1q1b8b///c9uZkYVmxqhs9lRQkICOnbs6HZZ5KtZgUrxYbPZ8M8//6Bdu3Z2edLotZKYI8jtqTTj/Prrr6HRaKo9i+Etc4WFhbUSs+Go0y8vL0dJSQmzzJGYi4uLg0ajgU6ng1ar9ZiYU7LWms1mNGvWzO79pk2bqrpyzp8/j/r167MFQBaLheWoa9myJQDnlrmrQczxzzYlJQUTJ07ElClT8Ndff1XruI888gjatWvn8cHqiy++cPi5O/nT6LlR33Q1UFBQgKCgIJhMJhQUFLDnGxERwb5TG2KO0kolJiayhRcUm0WfObKIpqenS7afUuOVV15hSd+Jw4cPY/r06XjjjTec/j4+Ph79+/cHUNm3U5qi5cuXS1IWyZHfu7179zo9l5zAwEDcfffdbv/OGfwYc/z4cQBX3KyOykJ9eFXFXElJSZ2KHxZiroagDtNsNjORxjfmBQsWsNgnWgGVnJzsdDCoyiKAoqIi+Pv72+0jCgBt27ZFTEyMnZijgZ3cFUpijlASc7SEvapxgDabTdJYKM6hNlwVjiyAcmFMYo5EL1Dpaq2OmONFvVJZ8vLyYDKZcPHiRbvO5PDhw4rHvHDhApKSklgHZrFY2Cz79ddfB+BczFGn6ctijr+fqampbAX89u3bqzVRoHxVnq6fvDVdznfffYeIiAiXLW303GprN4SqsGTJErcGyMLCQoSEhLA2R8+X3zi9tsXcoUOHkJ6eziZO1L87Sos1YsQIDB8+3GkdnDFjhqQvttlsmD59OoArYRD5+fmq9zAvL4/1VR07dkS7du3YZyQ+lZDfu6pMCEpKSrB8+XK3f+cM/lp/+uknAFI3qzNIzGVlZTns2+RirkePHggJCalCiWsGIeZqCBJueXl5bGDnxRxZRYArjfzcuXM1kuuLX32pRGBgoN1ATqKFxNw///wj+XzIkCEAKrNoK5mf6fdqpumcnBx06dJFsiKT5+2334Zer7cTc7URr+HoHFQeuWWOnwV6UswpBeqbzWaYTCYkJCTYPVe1BJnnz59HUlIS+z6JuW7durFBx5mYo2fpy2JObpmj1xcvXqzWYE/3ztP3Rv58+cnRhg0bALg+sFLZUlNTq2RBnDt3Ln777Te3f+cqx44dwwMPPOBWHjRXxFxQUBC0Wm2Nu1k1Gg0iIyNhMpkQGxvLxBF5XhxZUUlgK1nvKioqVJ/X4cOHsXTpUgBX+gqj0YhOnTopfp8mgv/++y++/vpr+Pn5MSHqqN/Lzc1lMZf0ui5QUFAgcbXTFoi5ubmKKbiUoJi5Bg0asP5czqpVq/Doo49K3uMXvtUFhJirIXgxp2SZa9KkCfv71KlTiI6ORkBAgF0Wa6I65lxXxJyam7VVq1bo3Lkzli5dCo1GwywZXbt2xerVq/H6668rWiNo0JGLmszMTMyePRubN2/G33//jddee02xTDSDI3FLKy5rSszxM2JH55AvJiF3Dt8JVFfM8b89duyYncDPy8tTzZcoryc2mw3PPfcc/vrrLyQlJSEgIAA6nY6JuQYNGkCj0UCv1zsVc/ScfVnM5eTkICAgABEREUhNTWVxZOfPn69Wyo6aEnNyyxwf+0OuIVdXF1PZrFZrlbYv+vDDD/Hpp5+qfm6z2fDII48oJm93BQrbcGdrPIvFgpCQEISEhKiKOY1GU+3EwQUFBdBoNHbJwQkSD35+V4ZUaqMklhxZbf39/SXf5QkODsbo0aMVBR25Ox955BGcPHmSrdBUMwqQmGvdujWzKiUkJDhdYJaXlyeZsFanH27fvj3uvPNOjB49usrHAConYwaDgYn/pKQkJpj5vXmdQZY5GqeV7vP48ePrnHiTI8RcDVBWVoaMjAwA6m5WPqYDqGwc1113nWpHWJ1BoqioyKG7Rq/Xq4q5oKAgDBgwAEClu4JES3BwMAYNGiTJ4yM/J2BvmZswYQKef/55NsNXcwsmJSUBABO3tGCjpsQcL2Qcdfpyy1x4eDgAoEuXLuw7oaGh1QqW5UWFn58fW2hCkGWO+Ouvv7B7927Ex8fbiTmLxcJc3u3bt2dlLywsZGIOgFtirq7mKaM254j09HTExsYiISEBr776KpvJ//zzz8xFUxXo3nkyfc6RI0fs9s3lM/BTwDqthnfG2bNn0apVKwD2+cKKi4vRpEkT7NmzR/X3mZmZDoVafn4+vvzyS9xwww0ulUcODcR83XYGb5krLCxUFHNA9XeBoHv9yy+/KH6ek5NjZwmSL4ZyRczJXealpaWwWq34+uuvJe2OQh7279+PZs2aoU2bNrh48SKLGVODxJwco9HosHy5ubmSCYC795KPa/vnn3+wcuVKLF682K1jyKHfUyLjxMREZGdno6KiAhaLxW0xRyiFLdx4442S13UxPYkQczVAZmYme9i8ZY6PVaFdBHr27AmgMp7ghhtu8KiYq6ioYAsvHPn2HVnmAgMDmesuNjaWzTZJzBiNRlitVruVkGqWOeqwKcYoOTlZsWMgF8XmzZsREBCAxMREAMDSpUtrJG6Od1+5Y5lr1aoVdu3ahfHjx0vKXtUyajQaSZ6zpKQkSZzk2bNnYbFYJB1yly5d0LlzZwQHB9uJOX4A6Ny5MwAgJCQEaWlpyM3NlYg5pdWshw8fxrZt21BSUsIWCdS1VV1vvvkmXnrpJcTExDiM7QQq22B8fDzuvPNOh99zx3JFaXwAz1rm5IudhgwZwsQncEXEvfrqq04FXU5ODg4dOiQJQOfrytGjR3H69GnVLQVLSkqQl5eHc+fOsTb8zjvv4NixY+w7fLupymBHgsmVOCQ6vpKbVaPR2MV/hYWFITk5WZLD0R2o3SvFHQOV4oYmdgRvpQMctxtqe3IhceLECfY3f3+pvp05cwbNmzdHvXr1UFRUJElgXlJSgvz8fCakKioqkJ+fr+h+NJlMTt2sffr0kbx2h5pYKEBloLqfmJiI3NxcNua4Gs9GYo7GNNoOjke+QIJ/llWtU55GiLkagCxwjRo1UnWzFhQUoHv37hK36nXXXac6s6rKjH/Dhg0YM2YM5s6d67aYI0sDL+ZCQkKYhY8qPnWa8o5KLWaOGsXhw4fRqlUrVFRU2HWCgHQpfGRkJKKjoxEeHo4FCxbAZDJ5vAHx1+9KzBzvtr7xxhsl6SOSkpKcigpXadKkCRN3O3bsYBZKJTerMzFH+eSCg4OZG8aZZa5Nmzbo2bMnPv/8czag1YV8WYTNZsNbb72F999/HwDw+++/O/w+ibm33noLL7zwAgBg1KhR7PPp06djwYIFLFm1K5jNZiYuPCnm5G0yPj5ecu/NZjNb2ciLPB6bzYatW7fizz//hM1mw+jRo5l7i4/HpLg7Cmfgf//MM8+wyRedq6ysDK+++ioGDhzI3ufbTVXuAwkXZylydu3aBT8/P5w5cwaFhYVsa73CwkLk5ubCaDTaCanAwEAsX74c7733nsNjU3oTOXRtaonpc3JyFPsxonPnzg7bDY0N8pi5ZcuWsb95LwaV0Wq1IjAwkD033hhw8eJFGI1GvPXWWwCu1FMly5zJZFItX3FxMaxWK/r06YPy8nL06tXLbQ+JWthJdbId0DFpTKlfvz5sNhsTxK5a5ihmjoS6Ulnl49i+ffvY33WlP3RbzBUVFSmaIdXcZdciNFvt0KEDcnJyFBdA0IyS73QSExNhNpsVZ3B85+hqTAk/eyLxpYSjBRC8mKN4K+CKmCFRobRsG7BvGHxHzedkeuKJJ/Dtt98qlj0qKgoBAQGStBue3g2Cv6eOZp0kaBzdz+bNm+P48eNuWSdo0JTTuHFjZpnjV8PJ8wRSmdTEXHJyMhOcSmJOp9M5dLPu2rULAHDnnXe63XlVVFRgwoQJWLdunVu/cwX5oCJ3S8ohMafRaPDggw8CAG655Rbcc889ACrTtNDEx5nbefv27fj7778loujixYsOXZXuQK63kJAQnDp1CkajUXK9+fn5eOqppxAUFKS6CGL+/Pno1asXG9ATEhIwadIkAFIrEAkpfpLSv39/dOzYEXPnzsWtt97K3j9w4ACzzvHH4MumFPvliDNnzjBBrrQCvqioiE2QKFfiqVOnJJY5AHjppZcU+0cqjyM3cWpqKgwGg+K2kNQnqFls1cTczJkzsXnzZowfP17iwfjggw/w2GOPobS0FDk5Oezeydvv7Nmzcccdd0Cn02HJkiXsfV7M6fV6RTFHbYFcw2ouaAB2dYuH3qeYQJPJ5LZljsaBFStWSN6vjsVOPrZQInzqJ921zFH/qCbmBg8ejOXLl8NgMEiSildFzFVUVHh8xye3xNxPP/2E5s2bY+DAgWjXrp0kNxN1jILKGKbGjRvjhhtuwPnz51Utc9QBderUCb1792auRCWxzIs5V2dF/ODvrmWOBIRer2diTqvVstkL72YF1Cu0vGHw5upOnTph0KBBAIBPP/0U999/P/uM7ywiIyMBQBKL46n0CnTd1LCioqIcCkUly5yc5s2bIzc31y3BeeLECcydO1fyXkBAAJo0acKSAfOr4dq2bWt3DLmYs9ls+OyzzwBIYzSDg4Nx/vx5aLVatkrYWczcqlWrcP/996NFixZud16pqan46KOPWH4rTyK3ADkTESTmgMoYwv379+PBBx9k9aBFixbM+uxs0tSjRw906dKFibmePXvigw8+QOfOnauUh0sO1bHbbrsNjRs3hslkQnJyMmbMmIGKigoUFBTAaDSiYcOGqm5WWul49OhRBAQEICgoiFlo+X6GrL98e123bh1LrEpERUXhwIED7L7zkzN+oHZXzMlDUOTcc889zApJwrWoqIgtgOCtMEr1mH4jz9HGQ9eqNCGgPteRm1XJffn888+jV69ekknvnDlz8OKLL+Kzzz7DyZMnmVsvICDALteo2WzGgAED0KNHD8k2ftRflZSUQKfTsTp94MABtG3bFjfccAN79vSMyI2tlLLDkZuV+mK6PlfiD+XXQfVKbvmt7kIxypEJXJmY0rjnbsycMzHXrFkz3HnnnWjdurWq+9tVhgwZguDgYLfbiSPcEnNvv/029u3bh4MHD2LhwoUYO3Yss6bUxYBAT3P+/HloNBqns/89e/agS5cuaNSoEbKzsxWXndOMEqhc4rxp0yYm5pQeMD9ouSoS+FVujsSc0gIIWmVqNBqZmGvYsKGdmCM3Kz/A0+4RQGUjGDZsGNq0aQNA2tEmJSUpzoIBe8scUClI6PueEHPJyckICgrCxo0b2fXXr1/f4Q4QrljmaKWyOzkBKc0EsW/fPuTk5KBJkyYwm82SeqTT6RTdPXIxt2vXLnz33XcApLNxfhUbWYblYs5ms0lWxNECHWeB0gAwZcoUyW95q1FKSgrGjRvn1JXmKny7CA4OVkzlQmzcuBFpaWmStA3XX389/Pz88OSTTwKofHauijmCRNGECRPYe57Y8ozqGJWDBMErr7zCjm8wGJCYmIgPP/zQLtanqKgIO3bsAFA5oJtMJmg0GoSGhiIwMFDSj5AF11k8ZM+ePXH8+HHJb202G9asWcMsa4D7u0zQeSMjIxXF3Nq1a9k1Ud3Jz89n/ShZxaKiovDrr7/a/f6ll14CoLzXMUEiQC44AOcDtjM3K/WTly5dwnPPPcfeT09PZ8Kgffv2kmsvLS1FWVkZgoODERcXJ3k29D0Sc4GBgYiIiGB55Dp37szEaUlJCQ4ePMjqAiU15nHUrqkvpj4kIiIC27Ztw/z58xXb8ZIlSxAaGipZkEQCSS6wdu3a5dKCquPHj7N8evwxW7duzV7ThJXGPXfEXFlZGWtn8ra7du1aHDt2jD3DmJgYybWdO3fO7bAf6u89uRuLW2KutLSULU/u1KkTtmzZggULFuCtt97y2JYzdRkaoJy5i06dOoXmzZszV9iZM2cQHh6OjIwM9tCVlk5TJ6Im5tzdW9FVMSe3zOXl5SEzMxOffPIJgoODYTQa8fPPP+Pjjz92yc3KN4aCggL8/PPPOHz4MDZs2CCJNWjcuLFqg1OyzAGVW24BnhFzdH9uu+021qiSkpIcijlXLHMkft2xzMnDFJKSkhAaGorGjRsDqKxTqampaNOmjWo8klzM0SovQBqMLc+RB9iLuWXLluG6664DAHz//fdYuHAhxo0bZ9fp//nnn/Dz82PXWlFRgalTp0qSkfJi7uWXX8YXX3xR7R0XCP4et27dmom5d955R7KQBKjcaL5BgwbMGswzcOBA2Gw2NjACjsUcf69SU1MRHh6OO+64g73niTgaqmNUDl6QU3szGAwYM2YMAPus/JmZmaioqGB9Nv/78PBwiaWXxAoNuvIBbcWKFfj222/RoUMHJCcnS+775s2bJfc0KSnJ7aSydN7Y2FiH7qfTp09L4nFJzN1000347bffkJqaKonjI2bMmIEuXbo4FKvUHyg9d+qP1MqWlZVll6GAh/pJ2v+XSEtLw6lTpxAbG4vY2FjJfedXzsuPLXezAlfGj5iYGERHR7NnVFJSguuvvx7PPfccE31y3LHMPfPMM7jnnnvw5JNP4sMPP7T7/saNGwHYe6IAe4E1dOhQtgjQEaNGjcLkyZMlzy8/Px8GgwE///wzDhw4wO4xjQ2uulkDAgJQUlJit2hv2rRpeP7551l9IjFH3hsaC4cMGYKXX37ZpXMRFEJRHcukHLfEXExMjCR5bGRkJH7//XccPXrULqlsbTFx4kT07NkT999/v8dm+2qQmdpR0KbVakVaWhoaNGggiWtq1qwZKioqmGgoLCy0q9iBgYGIj49HcnKy3XGzsrLYLIQqK61Ostlsdp0EIE3V4E7MHCXy7datG3vv7rvvhtFoZBWYxIGSm5UXFPz7v/32m0T0JyQkKIq5srIymM1mdmxKUwJUWqWioqI8Iub4zuvLL78EUGmqd2aZ02q1qoHQwBXx6Y6Y4/dF/Pbbb9kxeCtfamoqGjVqpCqA5WJOzdVHdYHv1PnVrOvXr2cxZECl2H3ooYcQHR0No9GI4uJi9l0KrJ83bx6AK4NdWVkZ+5t3AVJ98NTqNl7Ytm7dGgUFBUhNTcWrr76Kfv36Sb6blpaGhg0bOp14uiLm+IlSdnY2IiMjodPp2PZbnkiqSs+J7iO/6IUfHEeMGAF/f3+7pLT0mkQ57waUizkqLx1XLoQbNGiAESNGoEmTJsjMzJR8Ls+/1bx5c8UVgY6gQTo6OtqubvACh5/M8GJOo9GgX79+qm5QoHIwdiTmyDLnaAGE0meFhYXIyclhnhUl6NnJvTrp6enIzMxETEwMQkJCFLfyUxJzcjcrcEXMxcbGSlypvDUyMTFRsf47WgDBx8wBlZPwn376CQkJCYr7uZJQ4dsALfRT6ruOHDmCyZMnOxTxNN7w9YoMInfffTfat2/PxBuVyR3LHN/WX3/9dZw9exZvvPEGZs+ezd6n40dHRyMjI0MiFj///HOH50hPT5fUPa+Lua+//trO367T6bB06VKnrseaYP/+/UhPT8fWrVtx3XXXVStPlCtQAK6jfFbUyTds2FBi+ejduzcAsMDJgoICxZlDu3btsG/fPvzxxx+S9zMzM5GUlASDwcBmPFOmTIHRaMTy5cvRo0cPO1cd31m7Ypkj1+jRo0eh0WhYQCkPXRN1CHRcJTEXHBzMAucBYOvWrbj55pvZa3L5yKHOmuJA5MH+UVFRHlk1yIstEnBJSUnIz8+XNO5du3ZBo9EgIyMDFovFoVUOqGwTRqPRLTHHC8jhw4ezv00mExITE7Fjxw7k5uZKrJRy5GIuNTUVt99+u2QlInDlmfHHIsvc9u3b7UQQP5DILbE0eP77778ApJ0TuXjT09PZrJY+91SuOr4ekCufxIV8UpSamqroQpPjipjjVytT3BYAjB07Flqt1iP5EGkAe+ihhwCoW+Y0Gg3Cw8Pt7im9pkkgLwbVxBwdV74zC10fJQ3nLatyq3KzZs0kMUWuUFBQAL1eD5PJZCeY1AY8Xsy5glLKoA0bNmDixIkArnhElFzkjsQciUAl9yVBbYhfxABUto28vDyEhYWx/I8E/e2qZY7ac8uWLSUJfvmJuloZjUYjmwjJ6+6lS5cQEBCg6ElSquc00eX7P7LgGQwGHDx4EN98843kN9OnT8cnn3yiWDbgSt3nsz0UFBRIUtBotVrodDq3UtzQ7+Q8/vjjdu9RG1GKqy4oKLBz4W/atAnp6ek4f/484uPjJf0q3SOvibnExETExcUpfta9e3ePFMgddu7cyVZE9u/fn8UE8FitVpjNZsm/qkIdOP1fVlaGkydPYtu2bUwI0WcNGjRAQEAAGxiaNWuGZs2ase+qdULt27fH2rVrceutt0oGjKysLERGRiI+Pp5ZpWh1Jw2kcosSxVwBV2YCSgQGBsJms7HKmJmZibCwMEXR8sorr2DBggVsMYKfn5/djJc6oVGjRmHLli3s/d27d6Nx48b4888/cejQIQDKsycSy1Th5UHLSqtvqwK5Rm644QY24yMrIC/YaQPsEydOoKioyKGVk4iKinIpiS1Qudps27Zt6NevH6ZOnWqXVmH48OH4/vvvUVBQ4PDccjGXkpKCm266ya5tUoeuJOYGDx4s+a7cHSq3xFIHR3WVH4woLKGkpITdV7UUDFUhOztbEqBPdZ3aAyCN5U1NTWUTBEdQm3VUx2jACAwMZDkjgcoJirOcXa5SVFSEV155hQ0sfBvmxRxQKRbULHOU8JTv+/gg9h07djDhS4MLtU+Cj7MEKusF/X3o0CGEh4fjiSeeQOPGjdG8eXMkJye7lXYiPz8foaGhCA4OtrPQqFlxzWaz5N47w2g02lnm+vbti5kzZwKo7D/1ej0KCwvtYsDpXikJPVfEXHR0tGIfTPkeTSaTqmUuJCSEiTkSbvKYOeBKnWjTpo1EzPHXrGY9JLGUkJCAsLAwiZdr165d6NChg12/5GwhBJ84v7i4GN988w38/f3Rrl07u34GqPSyKY3hwBVLJB+LqxSqFBoaikuXLsHf31+y/ZgjlLws1B5eeukl5qUgy2R0dDTTEtT+Kioq2DgBVPY7N998M+Lj41mZlTwlXhNzPGrbmtQmlFMIqKyMSrP96dOnw2QysX+OGpwzKB7nn3/+gc1mg1arRfPmzdGzZ0/mZqbvUEdHDcBgMKB169ZITk5GUVERSktLFQNmKUs/IH3QJObi4uKYmOPFF2Cfnyk7O5vNpB0NTHJLBMUiKBEUFIRHH31UYqqXz3ipo+F3RSAaNWqEPn36MCuKvDFarVbWCVAHJn9mSqtv3aWgoAArVqxAVFQUEhMT2cBHooMXxhTnSG5tV2Z80dHR+PHHH+2CdpWgzuKWW27BG2+8Yff5wIEDkZGRgX/++cfhwBUSEsI617KyMly6dEnREkWWTl6sk5iTD8DyZ8iLucOHD2PWrFkArog5vs7yA054eDiCgoJY2h5PiLkuXbpIssjTQMW7YnhhkJaW5pZl7vjx43YrjAmqozabzU5QVGe3gYKCAtaO5cfl992Vizm5pQ24YpmjmCR+csh/nxf7dFxeEANSFxMd66abboJer8ehQ4cQHR2NTz75hG1NSLnJ3Llug8GAoKAgWCwW/Pzzz9BoNCgqKmICih9zAgICkJWVhfLy8mpZ5ojS0lJcvnwZjRo1QkVFhV1f6swyp9FoWJ+vhEajYf0Iia9WrVrh/PnzbFcGuWVOyc1KwoOug7fM0Xdat24tEXN8m3Ym5gje4r1t2zb06NFD8TdKkxZ6j8YlEru02hRQt5rJvUsETZ74yZuSmAsJCUF6ejpzvbuCkmWOFq/1798fP/30E3bu3Mn2ZiXvVHl5Od5//33YbDa0aNFCkpKIv3+UAzI8PBzJyckoLi5m/ZInFkoRVRZzI0eOlPiTlajpFa7h4eESC4FSYOekSZOQl5fH/vHpOtyFXJ0ZGRksyJPo06cPzp07h6ysLElyXboHRqORWdWok1UqLx84TgNCcXExzp8/jwYNGiAyMpJ1wtTh0ODFxy8UFRXBarUyMedI/FBn4IqYU0I+46VOiN9/lmjWrJnktbwxZmRksIHy888/x/Tp0xXFXHUsc1lZWWjTpg127dqFEydOsOP7+fmxwf7y5ctIT0/HunXrWGeYm5uL9PR0Ves0T1RUFM6cOeM0FoRHLZ6nU6dOkhxxatxwww24dOkSzp49i/T0dNhsNsUBhhZV8AMb5ZniO0AlKxYv5viAf3JBU+dkNBrtXEE33ngjaw+eiHmUrxam8vJijq4xLy8PBQUFbom5MWPG4JlnnlFcqUZi32q1Ii8vTzI40SBXXl7udOZttVrx9ttvswHQYDCwgGu5mGvRogWmTZsmuS5nYs5kMjHLNi9QlL6fkJDAykuLtgi6Pq1Wy/qttm3bIi4uDqWlpZLwGxIr7rRR3jJnsVhYct+srCxWp/hwi4YNG7IJgatiTskyR1y6dAlZWVnsXskHWXo+27Zts8tVd+nSJURERLhsCbr++usBVPb1586dk4g5tZg5ehaFhYVo3LgxZs+eDZvNJrHMffjhh1ixYgXCwsIU048A6mJOnoSc6kZZWRkuXLggSQFCqIk5+i314zTm8rHPStawvn37SgTR/Pnz2WQtPT0dOp2OWbfKy8tRVFSkaJkrLi52OV4OcLyYjURx165dmWWVbxf0zMlNTfALgMi7cenSJTRr1gzz5s1jYy3/mwMHDkCj0VQ5h2qVxdzKlSsxZcoUPPPMM3airby8HIsWLWL7ANYUXbt2ZSv21q1bp+jq1ev1MBqNkn9VJTMzE0OGDAFQuTqKJzc3F2+//TazoBF0bwwGA+rVq4e0tDSm2pXEHB+nRo3in3/+QVlZGTp37gyDwWCX+ZriW3hrEv2WOidHHSsNCGQOroqYM5vNWLduHX799VfFzpeQ50eTN7pTp06xLYWaN2+OV155xW6GVVXL3O7du/Htt9+iV69eLLYxJCSEibPQ0FDWCV6+fBl9+/ZF//79mUUgJycHKSkpDmfgBC8anMWT0rZNw4YNU/zcaDQyUe5IzPXu3ZulzqHYTKW8WiRe+XsfGRmJy5cvs7p1ww03SFYe82UBKsUEdW4kfvbv389+HxMTY+cK4hdVeNK9cO+99+LixYuszirlgKL3mjdv7vR48n2MlQQA39YuX76saJmbMmUKDAaDQzE/a9YsvP7665JYKkqhwsfiEfQ8MzMz4e/vL1nMIvdM5OTkICIiAhqNBl9//bWkHiqJOaPRiPT0dKxatQr//POPZDLGuwip32nbti2zFvKWIBIX7ixII8tccHAw8vPz2WDI76DD992tW7d2W8wZDAZkZ2fb7UsLVI5nNpuN9VlyCxxvaaVt8QilxWxKPPPMM0hISGDioV27dkhJSUFWVhZzs6akpNitKA4ODkabNm0QFBSEYcOG4eOPP8axY8dw9OhRlJSUMEERFhbGxifeisujlAsPsLfMUd3Izs6GzWaTPF/+WI7EHHmpzp8/L5koqyHP3/bkk09i9OjR6NmzJ/Ly8jBgwABmDJGvsCWoLrhaJ5SOAVwZm5VEMf+sqa+QhxrxC4TkoSr84imlGGO13VycUWUx169fP2zZsgXLli3D3XffzfL/zJ8/H02bNsXzzz8vCeSuCW644QbExcWhZ8+eOHLkiGSwqAlo5hYeHi7Zhosg07+amIuPj8fly5eZBU1JzGm1WjYzpwq7d+9eaLVatGvXju1BCFzpLMl9wlvmqEFR5+SoIfXo0QOtW7fGxx9/DACSWABXIPdF//79MXjwYNYRKrmRSZQQfEZ1jUaDFStWsMUfamZypbx4rnDjjTfi/vvvx4kTJzBt2jQcPXoUBw4cYOUMDw9nQdiXL19mriayIuXm5rocRH/bbbexv8ePHy/JvXfs2DHJgKLX6zF69GiJi10O1RVHYi48PBxxcXE4e/YsFixYgD59+rCVjDwNGjTA0qVLMWXKFPZeZGQkzp49i/LycsydOxc7d+5UtEDyy//JYtm4cWNERETgt99+YwMQvyqRxFzXrl3ZcTwR80gdbVlZmWSQzMzMZM+ILFg0UVFa1CMnIiJCslBHacC6fPkyEzj79u2TPJeoqCicOHGC1WO1zdmBK3sUy2OF6tWrx3KM8dDgcfHiRSbUAGVxdvHiReYSeuCBByRJt8PCwuy+P3jwYBQUFDBBIG+rBA1anTt3ZnWErytVEXM0gWzbti3OnDnDrDq5ubmS2LFnn30Wn332GUwmExMLrg7ct9xyCwoKClgibd4IQXsrO7PMAZX1jb93ri7C+PDDD3Hx4kW2m0bbtm1RXl6OixcvMsscAFb3eMuc0WhEYWEhfvjhB/Tq1QtarRZ//PEHrFar4q4U8vg2Qk3MyY0cPXr0wIULF9hzUBJzajtB0KSCQioyMzMRERFhZ43jd7wxGAwsTx4ASf9IbaRDhw7s+GrlIqHljmWOvye33XYb6tWrx/YwVhqjlcQcPy4DlUYJei7yXHJ86jH+N3R/Fi9eXKVtzqq1N2v79u2xa9cunD59Gl27dkWjRo3w5ptvYty4cTh37hymTp1ancO7xAcffICtW7diyZIlbm2O7S4lJSUwm82IiopCXFyc4uzu008/xaeffqq44pDcrEDlIgJAuaIAwOrVq6HT6VhDSUlJQXx8PPR6PUJDQ1lnKl89w7uu+LQEf/75J958803Va9NqtXZL/qtimSOoI+TN1wsWLMDAgQMVzes33ngj5s2bh6SkJJZHTmlrK0LJMpebm2u3QoqH77jLysrQtGlTtGzZEk2bNmVijhpmTEwMSzHB445lbvDgwRg8eDAmT56M06dPQ6fT4bXXXkNOTg5atWoliaUrKipyukKWnoezYG9aNn/p0iWJy17OfffdZ2eZow6kWbNmqi6j4OBg+Pn5Ydy4cWz2mZ+fj86dO+PQoUOqljm9Xi9J8FndmEc6B3Al5ovfoYREbF5eHiwWC44dO4b69eu71MlrNBpMnjyZvVYasDIyMpi7GpA+lzFjxuDAgQNMoDla2UnH/uOPPxTdufLnTc8lJSVFslqet9gDld6R3377DbfccovieWnVaHl5ORo1aoQJEyawPVsJNTFHJCQkSBKKy8vorpgLDQ1lq/4J3jIXEhKC2bNnY9y4cQgLC2P9lati7sYbb0Tbtm1ZfLNSvJKSmPviiy+QkpKCt99+m+2Vyrv43VlRC1RuR5aeni7xXIWFhbExhVyNvJgDKuulRqNBcHAwunbtiqeffhqA+hZjcubMmaO6CwtZ5viJKp9PkK9r/G+UJjrp6emoX78+jh8/jvLychQXFyv2b7Nnz0ZWVhaOHz+Oo0ePSmJNlRKu02Q3JydHtVzVtcytWrUKKSkp+OSTT9iuKXL4sZHqulzMHT16FB07dmQimZ/s8Kma+N/QeL548WKsXr3a5fIT1RJzeXl5WLhwIVJSUnDy5Enk5uZi48aNmDx5sltiwBegjoPEHKDuslGzzFHj3b9/P1v1poRGo5FU7IyMDFZpqdLQilgiICBA0gBIXJlMJvTp08dpg+cbprtizmAw4LfffmOvLRYL9Ho9/P39kZiYiE6dOuHRRx9VzMwOVK6WGj9+PFq3bo3c3Fx07txZMRkloSTmHnnkETz44IOqKUvkMVr8M5JbEGNiYhQH4ClTpiA/P98lMRccHIxVq1ZJ9rRMTk5mDZmPqXBFzMl33lCDxFx2drbDjPRy+PvhKBRBo9HYfd6nTx+YTCYUFBSgsLAQfn5+iIiIYPWTLHP8NXrCMqfVanHnnXdKMupTJ05irl+/fggJCcF3332nGPejBr/wQ80yx8cU8s+lb9++EtGoFHRfWlqKgwcPIjc3Fy1btkRaWprinq7ydshb5hwlfU5OTkZGRgb69u2reH18ipmioiJERERIxCmgHPMKVGbEp7xaNJjxYq4qMXPkZk1KSpK4dHkxx99jpXg+V6hfvz6L4ZKLOa1WyyYcvJt13LhxACpjMvv06QMAWL58OTQaDU6fPu22mPPz80NsbKzkfptMJuaOp7ZosVhUd3vhrfhqEy+5p2rChAmqFrvg4GAkJiZK0oMUFBQ4tczxOSeByvqUn5+PW265BVarFefOnVPt36ifaN68OVtFW1xcjOLiYkUxR88mJyenxixz1L60Wq1qf+GKm/Xo0aNo1aoV0wr8mEGeNK1WK6mD/KKwqhimqizmJk2ahAYNGmDRokV45513kJGRgf/85z+47bbb7JJI+hLbt29XzF7OzwRoNjpv3jzFQZ/vZPkFEI0aNWKuTLJwqMG7TTIzM1mlpRl4QUGBxBTbp08fnD9/3i6LtaudTHXEnHxw52N9zp49K8k15wjKIk8mbjWUxBydQ22BizxNiDMx5wg+8N8Z/IzMYrGwusWfw5V0JyTmnD1PEnPOtheS46qYk3/er18/fP7556wzoxVmfJoFPkjbYrFg7Nixbou5SZMm2V1PYWEhmjZtKnHH032kiRO1kTNnzrgVw2s0GrFw4UIAlbGI8oH/8uXLGDhwIBN0/PPz9/eXzLiVxOCKFStw/fXX48iRIxg8eDB0Oh2LmeGRxz7R4JGSkqKYWkZ+TiWLCl0fUCk0qf4FBQVJAuRJzMknrf3798cjjzwC4IqFVZ7YG1C3zG3YsMFuYkeWOboW/joKCwsRGBgoEXl8XXA1NQmVk2KW5HFxCxcuZPeFnh9/T0NDQxEWFoaoqCg22dy3b5/bYo7g+/8bb7wREyZMQHx8PFv1WVhYqHptvOdCbeD//vvvUVJSgt69ezvM4QZUTtIuXLiAO++8k723d+9ebNy4Ef7+/oruWSobfx9p0kxxwJcvX0ZxcbFdHKoS9Exzc3PZpHzkyJGsbtEYSPteU35FnqpY5tyNo+evhcbJ0NBQnDhxgu26cvToUVx33XWs/fFijtzQ0dHREgHIi7mqbIBQZTG3fPlyfPTRRzhx4gQeffRRhISEYNGiRXj00Udx8803SzZd9hXKy8vRo0cPlruOhxYZNGjQgA3QN9xwA5o1a8ZmboSSmKMOimZUzpYk826EzMxMiWWOMo7z9O7dGzabDYMHD8bx48clrglXqK5ljufMmTNsoPH393eY445n9OjRmDRpEotfUUNJzFG8IB9cyiMPDucHQrm7mx+YgMpnd9999wGo3OLFnVkfb70pKChgYo7vpF1JROyOZe7ixYsoKiqqFTEXHR0tcf/TwMavzOPFXFBQEEJCQtx2s7777rvIzc2V/E5pgQDdHz4NAuGOZQ4Ae+YAJKvXi4qK2MpYWtEvd5F++OGH6NWrF26//XZFyxw/6UhMTMSAAQMkaVYIedyimptVHkcqT10ihxdzfP2j1eYrV65klhBaQasErcx0R8z17dvXLs8YnwCWHywpZk5e73lxUVXLnFzM0T7UGo2GxTVR3Bdw5Z4mJiYysRcQEFBlMQdUxlPOnj0bjRo1QnBwMEaNGsX6YUfHbdasGYutVrPM+fv7Q6vVYtOmTXjiiSfcLtvUqVPx6aefQqfTKRoe5NvNAVfEHB/m4KqYo2dKYi44OBhLlizBgQMHcOTIERgMBvj5+TE3a2RkpN3YUhXLnKPdfJTgJ4802SKPWdOmTXH+/HlYLBa0atWKXZNS/HFERAQzvlgsFvzzzz9s1yVXMyDwVFnMHTlyBKNGjbK7mdOmTcOcOXMwfPhwtsWPr0AWRT4errCwEIcOHcKGDRtw3XXXIS4uDl27dsUtt9zCOtPPPvuM5dsCpEHWcqHQrl07NGvWDN9++63DsnTr1g3Lly9n+6TyYg64slKIGjLlAfrjjz/w2GOPsYzqrlZUPu7NXTFHvn4StXv37lVcyeqMkJAQvPPOO07PrSTmqNNbsGCBYkocR2JOLnqo7K+99hqAyk6Rgm/VVompwQ86+fn5zM1aWFiIvn374r///S9yc3Odijl6jq6IOUrN4WivSDm8pdDZ/efFHFkuyGJ88eJFREdHq4o5wN6K5AoUy8PvTKBkuZAnt+XhY/ZcgR+AeDFHVl7aA5PKwvPMM89g8+bNDuOKiLCwMNx3332KeTLlljU+oTH/mTxdj6tiLicnB6Wlpaz+UZxc586dERERgbKyMtx7772KxwAqVxyeOnVKEmvlaswcf194yxxdY2xsLLPMyUVNVd2sSUlJyMvLkyysIEwmE3Q6HerXr8/iQSl4ffTo0Uzc831Abm5utcTc0KFD8eyzz0rKwO/G4agt0jk9HSsun1S8++67it+jOsMLDxqXyApOEzB3xFxOTo5kIWF4eDhatWoFPz8/tnAnPT1d0epMfZ47Yq468B4zoLJO02Kr6667joVSUQYB2jaSykr3buXKlUhPT2fegFoVc44S8j3yyCNYtmyZJIjYF6BZBT+DX7x4Mbp27Yq9e/cy1Tx8+HC7PHPPPfcci7PhVxBu27ZNknbAYDDgxIkTGDFihMOyjBkzBnl5eTh8+DAyMjJYpaFKSjPHn376CQ888ADL8g5UNm5Xl8sTJpMJVqsViYmJyMvLc8v0TAMHpR3Zu3evYkoMT6GUZ44E5Zo1a3Dq1CmcP38eFRUV+O677xAeHm6X9kMp/oZEIFl1aKLSo0cPjBkzBn379mUr/VyFbycFBQXM2lpYWIgNGzbgtddekwymargq5nhR5o5ljo89cSbm+DKQqCY3686dO3HjjTc6FHNVSS1DYoHfmcCRZS4hIUGy+8i5c+fQq1cvt87JPzs+dx2lJYmJiWGdtdouBWpijo/hDAsLw+DBg1kd4Lchk0/G+EGRf9Z6vR6lpaXMreyqmCOLNt235s2bQ6PRSCzrjtBoNHaxdo4sc7xHQZ4Alsr61ltvQa/XIz4+XlUs8XXbHTFDLuMTJ04oijmgcjJHYo4muHPnzmVl4MVcTk5OtcScHIqVttlsLos5V/PbucqDDz7I+sA1a9aoLkajusgLj8zMTOj1esTFxcHPzw95eXkuxQQDUsscWd7kUPjRb7/9JlkdT9BE3NWEwdVFnk8WqNzeLjg4GElJSWwMrlevHkpKSjB27FhmGODFXFZWFnQ6HVq2bImAgIAq7V1drQUQjhgwYIBi+o66zNChQzFq1Ci7nRcsFguOHz/ucF9M4ErHyVvmmjVrhpEjR7pdFpp1ZGVlISsri72mc9CM8YYbbsDXX38taSw6nU5171c1qCNLSUlBWVmZnavREVQhqaPk8zXVBEqpSXhxN2vWLDRo0ACzZ8/GiBEjFFcj8o1dq9VCr9ezyQcJG61WiyNHjuDnn39GdHQ01q9f77ZlDqi8H2+++SYKCgrYYCa35LgaM+doI3EAkoHVHTHH3w9nAzhv9SLxEBoaitzcXBw+fBjdunXzuGWOnjcJqfLyclitVrv7FhwcDL1ej4iICIlrw536zEOih08vQGWIjo5m7UZtQFXbwJwXc8HBwQgNDWWxmI7qGC/maBcV/vx0X/Pz8xEQEKBaLroushBS//HQQw/h559/dlrPHOFoAQStJAWuCMmysjJJAtiHH34YxcXFaNWqFXbv3q2YKomv2+4M3NQ3Hz9+nNVPukf0LBs3bszEHCXS5ifGvIiuCTFXXl4Oi8XispirzrNSY/r06Xj77bft9mnmUXKzUsysn58fjEajW5Y5eqbp6emSMY8nIiICe/fuxYkTJzB06FC7z6n/c3UrReKrr76yM9C4A3++DRs2oGXLlvDz82PPxmAwsL/JasnnoOR3swgKCqqSZc49Z7GbkAL1JeS5c2iGa7FYVFefEosXL8b27dtdqrjOoIp96tQpVFRU2LlZaXBRKlNVLHNyS5w7lrW3334bJpNJsgKwOtumOUNu2SkvL0d5eTneeecdTJ48GfPnzwdgn6yRUBIr/PG6deuGOXPm4JFHHvFYJ02WKzUx52zm6qzuEXw6CWeTj6ry6aefokOHDjh9+jRzEdGgY7PZMGTIEKxcuRIlJSUoKytzKub27NmDhg0bqgbrA1fc5HwyU8DexRYSEoKEhAS7Abiq5OXlYfr06fjggw/Ye6tWrUJQUBCio6Oh0+nw2WefSeLreGhnDTlKO2A8/fTTMJvNCAkJwcsvvyzZfovgxRnFqwFS92tQUBATAmpCh+6N3DIXGRmpOEi6gyPL3K+//oro6GhkZWVh3rx5+PLLL9ke03Lh0r9/fyxduhR6vd5uUZI7ExWe0NBQJCQk4NixYyxIPywsDJcuXWJ9YGxsLDNEmM1mGI1GyX3kQyeys7M9KuaonT/zzDMuizlPrAyX48xzBCi7Wfl7ERYWhpdffhkAXMo5GxISgpiYGIwdO1b1N02bNmULhZRS55CY43OuusKYMWPc+r4cPpH0pk2b8J///AfAlbGG74vmzZuHDh06oKCgAL///jsAqZhT2p/YFWpUzPkicrcIb6VzNqDWq1ePPcTqQg2F0i7QQEed2IkTJ+Dv76/YiQQEBLhtmZPjjpirX78+PvroI4mp2ZUtr6qKXMzRoOFsE3USVM5Ejp+fHyZMmFD9gnJQgCyJEXkKFWdi7q233kJiYqJiEmAeXkRXxYroCoGBgXauFxp0unTpgsjISCYOCgsLJVnq6ff88+vcuTNiY2NV92u12WzsftFEixLgyi1zUVFRrJP3VNxMYmIisrOzmbvo+++/x7PPPsuuSb4AikfNMpeeno4333wTUVFRLH1Njx49sHbtWgDqcUr8RJF3jStZ5hwJAT8/PxgMBjboueIGcxVHMXObN29G//79sW7dOpYMlibM8udFdX3//v124sKVxN1qJCUlITU1lVlIEhISJGKOTzNhNptV9y3VaDTIycmpdl/LQ1bvhQsXomfPnooLeQi6X1VxyXkCZ2KOv2+u1i9+oYVSP92mTRs2zij19zTu3H///S6dr6o0atRIIvCHDRuGc+fOoUGDBrBaraxuUZgEXz/CwsLw/PPP44MPPmDPTm6Zq1NuVl9FvkWJO2LOk8hn1NRxN2zYEEajEX/++afdjJEoLCx02zLXu3dvSXBmVfIE8mVRykvkKQIDA1FWVsYWqtAAJr9e+UIIyqzuyAJUUxgMBlRUVLAAYblwcbaPsdFoxMSJE526lAICAhAUFIQHH3zQ7TIeP36czRTdheoLzYypU01NTVW1zPHXfOnSJdV7YLFY2DOmgH2yTMvvx/vvv88CuD09wPKrIJ1NHIioqChYLBZ89dVXbDutkpISZGVloUGDBnjqqaccpiiSExoaikGDBmHdunWS96uyvzK/i4InxZwjy1xKSoqdFZb6WHl5qT0XFxfbWeY0Gg1yc3Nx/Phxt8tHi70uXboEjUaDX375BbNmzZK4xEjMKcUPT5gwAffffz8GDhzIwnA8Vdfat2+POXPmAKiM83T0DJ955hk89dRTklyWtYlSzBwv5nj3r6veKv5alMQcv4hJKV2Kn58fbDYbS51TUyQnJ9ulJUtMTGTijSYiZJlT6rd5d6on3KxCzMmgmTSlGuDzwNSmmJNDnZ+fnx86duwIs9lsV5lp0KFNxd0Rc35+fhg7diwOHDigmCLBXZzlaqsOvEuJ/18eCM03iMuXL7NtleSZ7msDehY0cMndbEquuKqSn5+PRYsWuf275s2bS7YhcwcS1mRJIMvuuXPnFBdAAPY7mKjdA3pfr9cjJyeHxV2NGzfOLo1QREQEs0i6I5IcQTtp/PXXX6ioqGCuTFcYPHgwQkNDMXbsWJZwloS8q4KQx9/fH6tXr7a7bnmbcEXMxcTEMFeuO7nanKEm5ioqKnDp0iXExcVJBmqyXMr7K778Sv2JyWRyaa9dpd/t2bMHEydOhM1mQ4MGDSSJpw0GA6xWK9v1Ry7mGjRogG+++QZJSUlITk5GRUVFtfb8lkNpW86fP++wDzeZTJg7d67HF0C4ilLMHC/m+LQursb1ff755yy/oZKYI9c4UHuLHJTw8/OzC9fx8/Nj9ZQsc2RBVhKzQUFBKC0tRXl5uUfcrELMySDBRiLOW5Y5OXyaCaoo8vLs27cPt956KxNzVZkttm/fvkpWHTk1af2ihkGdCA1g8k6NnuGKFSsQHR0Nf39/FBYW4sUXX6yxsqnBd8r16tWzyxOolNuwqvj7+3tMyLhKu3bt4Ofnx4RyQkIC/P39cfr0abv9I3krEm+NU3Mt0PsJCQnIyclhCxDeeOONGt3Cj4iKikLbtm3x559/sjrnqvgxmUx2W2qRkPdkKIK7blag0g1Pq3Q9mcohICAAfn5+sFqt+Pnnn9kimaysLJSVlSE+Pl4S8/b6668DULfMAZ6dHBqNRtV8lHw58vPzFd2sREJCAtupwJP9XZMmTVg6mLq8k5LczZqTk4Pdu3ez5/bTTz+xsCNX4/qCgoLYIhUlMccnta6LxMXFQavVMkH69NNPY9myZZKYOoK/f3LLXHp6ukQMu4IQczKo4ZI1gBdzapsU1wZ8igLqCOWdTExMDLp168aW89dWrh0l3E3E6A7kwiVXG1kA5GKO4oF4URscHOyVGV2XLl2Y5VS+OOSHH36osfi22iI+Ph7l5eWSWJHy8nKMHz8eNptNUcxZrVaJdU6+KCQjIwNPP/00E+UkgqlN1mb97tq1Kw4cOMAGLnfcknLRVh3LnBpVcbPGxsayQdbTi2V0Oh1++eUXDBs2DN999x3y8vLYIpH4+HhJmMGOHTsQGBhoFx/GP19Phm04s6LJxZza9/lV3Z6+f3fddReAqu0EUFtotVr4+fmxNjFgwAAkJyez/rZfv354/PHHAbi3FzOJf7V7OmHCBDz//PPVKXqNERcXh+bNm7PxLyAggD1LOTQhLCoqkuRZDAoKwooVK9CqVSs8/PDDLp9biDkZfK4boLJBk5Wjti1zann61MQcvWc2m93OFedLUD47yjnGW+Z49yWJPU/Fs1QH2u7lq6++smvc3hTdNQm/N6SSm5X2YSTklrmdO3di3rx5LC6KLHNqAfM1SYsWLSQ7q7gj5sjyRPcgLS0N/v7+HhUocsucIxFC0AQiMDDQo25WoPJaKUG2xWLBrFmz8McffwCoFHPz5s1j4q6goABvvfWW3QTQ39+f3WdPWuac9eP8vrWO+lHeSuRpMUeZAWgbybqIRqORLGai8AfepUhjlTtuQwpxUrunc+bMwcyZM6tU5ppm3LhxbAWvM9QsczwLFy50+d75rJg7e/YsoqOj0adPH/Tp08ftvDJqKFnmOnbsiJCQkFoPnKfdAeR7xVIDUXr4lIlfLeliTfPvv/9i/fr1NXoOk8mEBg0asM6Dj5njrSDu7k9b0wQHB2PMmDF2K/HqSvk8zU8//cSSWStZ5r766ivJrgdyMUeDBAXpN2zYEFlZWcjOzkZgYKBL1t/du3crbtrtLi1atIDFYmEJfd0Rc4mJifjqq69QUlKCkpISpKWlITY21qOu8KrGzAE1k8JGp9OxUILAwECsWbMGnTp1wpNPPonExER07twZjz76KPu+2m4ldA2edrM6grfMpaWlqbrDecucp8eGxo0bY86cOZgyZYpHj+tpAgMD8eeffwK4ct94bxaNVZ60zNVl7rrrLpfDlKgPWbBggUTMyRehuZpmxWfFHFC5AnPTpk3YtGmT6izXarXCbDZL/jlCLuby8/Nx1113ITU11SuDrslksksT4ijHUmhoKCoqKiTbodQmrVu3Rt++fWv8PE2bNmUiVx4zt379enTq1Il919NWh+oiH5g8kZewrkK5JpVWtr355puSfT/lblZ6ruSSa9myJWw2G44ePeqyVa5z5852OxRUBVqdtnz5cgDu1yk+CXh6errHU/dUJWaO3Lw1ERKh1+vZBDs/Px/79u3DQw89hI8//pgFjvOCWE3M0XOuCTdraGgodu/ebfc53bfc3Fykp6erxmnx9crTfYxGo8GECRPqfPhFdnY2VqxYgQMHDrD7yi9kIk+XJy1zVwtU/9955x3JDihPP/205HtqKZvk+LSY2759O3r27InJkyerpjWYPn06TCYT++csmS1VPt4yZzAY6pTLksQczWB4+A78am4M4eHhzBUuj5nr27cvNmzYwL5b1yxf8oHJm6uyahpyifOzSz620ZGblT4j1znF4x0+fLjWA8MbN26MoUOHYu7cuQDcT+VBzzwjIwNpaWkejZcDqhYzR2kelBIYVxfeEnvu3DlUVFTYCVgld5wcg8GAsLAwjy50ob68TZs2ioHpdN9OnjyJ8vJyVTHH1+OruQ27wtGjR9l95Q0mRqMRHTt2dMvCOHfuXIwcOdKrCw5rA34CwFvmPvroI0lf6Gr79FkxFx8fj+TkZGzZsgWXL1/GsmXLFL83adIk5OXlsX+UK0qNwMBA6HQ65ObmorS0FFartc6tKHIk5niLhTfyqdUWtIchoLyale8I6pqYk1vmajKNi7ehLar4vYObNWvG/uZdjc7EHKWhOHz4sFfiDPmtjdwVc1QfzWZzjYi5qrhZaQ/qmgiy58UXbY0ln1y6apnzdPugslHdlEM7Z2zfvh2A1J0q59FHH5XU52uVQ4cOsefJT1b9/PywZ88edO/e3eVjtWnTBkuWLLnqBTJvEZfHzAUFBeG9994DcBVZ5tLT09GjRw+7f5TPRqPR4J577sGBAwcUf6/X62E0GiX/nEG7QHhj1Zwr0MDgTMxdK5Y5tTxzdJ/qmpuVOrugoCCWNfxqJTExETabDe3bt2fvGQwGNtHgLXZqblYScyaTCbGxsW7nUPQUZBkE3BdzVActFkuNWuasVitbJexMzFF76dmzp0fLAkgnUBQOIe+PeMuco5g5T4u5vn374qOPPlJNURQQEIARI0awbcYcpcNYsGCBXfLYa4k//vgD9evXx7Fjx1BYWIhmzZp5JE/ptUCzZs1Y2ysvL7fr01588UUkJiayhUTOqPNiLi4uDtu2bbP7x8fgbNmyRXGftqpCVp///ve/AOqemKOB8M4777T77Fpxs4aFheHkyZP4+++/VVOT/PLLL7jjjjucbhxf29AgNnjw4CpvAO/rJCcnIyYmRjLrdGSZCwwMlCTl9EabJEsWUHUxV1BQwBLnepKAgACYTCakpKSw1b6ueBSys7PtdpPwBHwy3z179gCw9xTw91DNzXr33Xer7ntbVYKCgvD00087TGRLVpGbbrrpqu5Hq8vNN9+Mnj17Ijs7GwUFBRg6dKi4Xy6i0WgkyaqV+rQ+gDQtAQAAZitJREFUffrg119/del4dV7MqbFt2zZ07NgRPXv2REpKCkaOHOmxY5tMJuzYsYMtf65rbtbQ0FCUlZXhgQceUPyMuJobFcU2dunSRTVp8C233IKVK1fWdtFc4syZM9f0DNZkMqFZs2YuibmcnBw28JMg8Eab5N1H7lp76fsXLlxgiXM9TZcuXfDXX3+5JebCw8M9upUXoeTClFvfeMucWijEuHHjMH78eM8WzgUSEhJw/vx5lk5FoE54eDjL/1jXDB91HT4cSOne3XPPPTh+/DguXrzo9Fg1l9m1hhkwYAAGDBhQI8cODw9ns0mg7lnmAKham/iyemubl9qAT+CsJubqMvIVytciJpOJrXgMCQlRdbMCV8QQTVC80Sb5GB53A/JJuFCalJoQc127dsWnn37qlpirKUaOHIk+ffpI4s3k96wmRKQncbZYTlCJEHNVx5mYGzBgAC5fvuwwgwXhs5a5mqR58+aS7ZbqmmXOEddKY+ItI1arVXGvPEHdhu/IIiMjYbFYcPr0aezatQuAdKWr3DLnyVQVVcHd4Gw/Pz8EBQXVuJjLyMjAwYMHAXi/36pXrx5WrFih+nlN7hIjqD3CwsKQnZ2NwsJCr9c5X4OP4Vcau/V6vUtCDhBiTpE2bdpIXvuSQHJ1Q+OriZKSEp+yygkq4cVcREQECgsL0aRJE3Tr1g2AspijtsjHr9Um1UniGhwczFZ21kT+MFoxTElH68LAOmTIEJSWltpZXQGRzuNqITw8HIWFhbDZbD41VtYFnFnm3EGIOQV8WcwRlKz1auWOO+5Ao0aNUK9ePZjN5jqXfkTgHHKVa7VaJCYm2m1+riTmaAWzt8Tcm2++qZrT0hlkmQsPD6+RRNGRkZFo1KgRNm/eDKBuiDmg0gKnFmPYvn17LFy4sJZLJPAkvOXIF8dKb+LMMucOQswp0K1bNyxYsIC9ruuxHXL27NkjSZp7NeLv749x48ahpKQEp0+f9kiWf0HtQrPS0NBQtGrVCkePHpV8zsfMUUdHaSJ8MbdXcHAwSktLa8TFSrRq1YqJYl8YWA8cOICHHnrI28UQVAMh5qoOP6mr7uRLiDkF/P39JfsG+po7oGPHji772X2ZoKAgFBUV4dSpU2jSpIm3iyNwExJzYWFhaNmypWQPYpvNJrHMUSqPyZMnY/fu3XV+myMlyDrl6bQkPJQLLygoSMSkCWoFfjFaXbEG+yLV3eVEiDmBzxIYGIiioiIkJyd7NM+goHagQUCn09lZ2vr06aMo5rRareIWTL4AibmatMy1aNECgG+t7Bb4NsIyVz1oH/HqGo3E1M0Bq1evxpYtW7xdDIEKQUFBqKioQGpqqrDM+SBkmdNoNHY5Ebds2YJevXpBq9WitLS0Tu2NXFVqQ8xREmqlBQcCQU0gxFz12LBhA06ePFnt4wgx54BBgwZh0KBB3i6GQAU+llGIOd+DxJyfn5/EVUNYLBYEBwcjLy/P5+JWlagNMUcWzNLS0ho7h0DAYzAY4O/vr7gllcA5JpOJWeeqg3CzCnwWfoAXblbfg7fMKYm5zMxMljvwahgkyG1cG2JOIKgt+PZ7NbRTX0VY5gQ+C60ECgkJ8cmA+GsdGgA0Go2i5S0tLQ2PPvoo/Pz8MHr06FounecZOXIkjEaj4lZXnkK+/6lAUBuEhYXBYrGIxO1eRIg5gc9CAqBJkyY+t+JYILXMKT0/q9WKhIQEvPzyy7VdtBph9OjRNS5KxWAq8Abh4eEwm83eLsY1jXCzCnwWXswJfA9yyfTo0UPy/n//+1/2t3xhhMA1atKVKxDICQ8PFy5WLyPEnMBnITeriJfzTTQaDU6fPo05c+ZI3h81ahT7W4g59zlz5gz++ecfbxdDcA0RHh4ucsx5GZ8Qc/n5+bjxxhsRGhqKf//9l73//fffo1u3brjllltw4cIFL5ZQ4A2EZc73adSokV2yTH6/QiHm3Kdhw4Yidk5Qq9x00012FnZB7eITMXNBQUFYvXo1XnzxRfZeaWkpZs2aha1bt+Lvv//GtGnT8Nlnn9n91mq1SrYFEn79q4fY2Fi0aNEC3bt393ZRBB5g9erVdukNIiIivFgigUDgChMmTPB2Ea55fMIyFxAQgOjoaMl7J0+eROvWraHT6dC9e3ccOnRI8bfTp0+HyWRi/+rXr18bRRbUAiEhITh27BjatGnj7aIIPMCgQYMwZMgQyWIIYZkTCAQC5/iEmFMiNzdXkhW+vLxc8XuTJk1CXl4e+yfcsQJB3adDhw4AhGVOIBAIXKFOuVnT09MxbNgwu/dXrlxp16nLl0KrLcnX6/Vin0KBwMfYuHEjtm7dKtquQCAQuECdEnNxcXHYtm2bS99t2rQpjhw5gpKSEvz9999o165dDZdOIBDUFmFhYTWaXFcgEAiuJuqUmHPEwIEDceDAARw/fhyPPfYYxowZg2effRa9e/dGYGAgFi9e7O0iCgQCgUAgENQ6GpvNZvN2IWoTs9kMk8mEvLw8ScydQCAQCAQCgS/iswsgBAKBQCAQCATXoGXOZrMhPz8fBoNB7OcpEAgEAoHA57nmxJxAIBAIBALB1YRwswoEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DBCzAkEAoFAIBD4MELMCQQCgUAgEPgwQswJBAKBQCAQ+DDXnJiz2Wwwm82w2WzeLopAIBAIBAJBtbnmxFx+fj5MJhPy8/O9XRSBQCAQCASCanPNiTmBQCAQCASCq4mrQswtXboU0dHR3i6GQCAQCAQCQa3j82KuoqICP/30E+rXr6/4udVqhdlslvwT+AYWiwVr1671djEEAoFAIKjT+LyY+/bbbzFs2DD4+SlfyvTp02Eymdg/NdEnqHu88MILGDhwIHJzc71dFIFAIBAI6iw+LebKy8vxww8/YPjw4arfmTRpEvLy8ti/Cxcu1GIJBdXh3LlzACqtrwKBQCAQCJQJ8HYBqsM333yDe++9V9UqBwB6vR56vb4WSyXwFOXl5QAg0sgIBAKBQOAAn7bMHTlyBIsXL0b//v1x8uRJPPfcc94uksCDkJgrKyvzckkEAoFAIKi7+LRlbsaMGezvTp06Yfbs2V4sjcDTkJij/wUCgUAgENjj05Y5nj179ni7CAIPIyxzAoFAIBA456oRc4KrDyHmBAKBQCBwjhBzgjqLEHMCgUAgEDhHiDlBnYVEnIiZEwgEAoFAHSHmBHWWumaZ27x5M3766SdvF0MgEAgEAgk+vZpVcHVT18Rcnz59AIi8dwKBQCCoWwjLnKDOQiKurog5gUAgEAjqIkLMCeosIs+cQCAQCATOEWJOUGepa25WgUAgEAjqIkLMCeosQswJBAKBQOAcIeYEdRbhZhUIBALfZsmSJbj++uu9XYyrHiHmBHUWYZkTCAR1nQsXLqCiosLbxaizPP300zh48KC3i4HvvvsOFy5c8HYxagwh5gR1FiHmfJtLly6hT58+yMvL83ZRBFchdcFiX15ejqSkJLzwwgveLkqdpa4I3REjRuDGG2/0djFqDCHmBHUWkZrEt1m8eDE2b96MDRs2eLsogquM7OxsBAQE4Mcff/RqOYqLiwEAX375pVfLUZehvJx1IT9nWlqat4tQY/i0mNu7dy969uyJ3r17495770Vpaam3iyTwIHU1Zk6IS/eoC524Jzhz5gx27Njh7WIAuHruaVXJzs4GAK/vyFJUVAQAyM/P92o5XKW8vByffPIJMjMza+2cVFdLSkpq7ZzXIj4t5hISErBu3Tps3rwZTZs2xfLly71dJIEHqQk362+//Yb//Oc/1TqG1Wr1UGmubjQaDQDvC49Lly7h8uXL1T5O06ZN0b17dw+UqHpMmzYNfn7udd0rV67EsWPHaqhEtQ+1QbPZ7NVykGUOANLT071YEtd4//33MX78eKxatapGjv/ggw9i586dkvfIzerNfpM3CBQUFHitHHJmzZqFwYMHe+RYPi3m4uLiEBwcDADQarUICLDfncxqtcJsNkv+CRyzbNkyNG3a1NvFYLNeT4q5kSNHVns2f7XMMDds2MAsHJ7g7NmzOHToEHvtCTH38ccfY8mSJXbvuzNwPv3003jqqaeqXAaitmJ/jh07Bo1GI7mXPEuXLgUApKSkuHzMO++8E61atfJI+eoCFosFQN0Sc7/88osXS+IaVKeobXoSm82Gb775BmPHjrV7H5Deq9qG77M9MbHzFC+88AJ+/fVXjxzLp8Uccf78eWzYsEFR4U6fPh0mk4n9q1+/vhdK6FucPn0ap06dqraIOnLkSJUbTkVFBTu/J92snrASXS2Wub59+1bbSsnTqFEjtGvXjr32xIDx1FNP4YEHHpC89+uvvyI+Ph7//POPS8fIzc31qVgZcuWquXQpzcNff/1VW0Wqc5CY27Fjh0TYl5WV4eabb3Zr9eTu3btx7733VqkcvECpTddlVaH7VhMT0sLCQgBAUFCQ5H3qc73Zb/LXe+nSJa+VoybxeTFnNpvx4IMP4quvvoJWq7X7fNKkScjLy2P/rualyZ6COih5HEhubi5WrFjh8nFat26N6667zuF3Jk6cqDjoU8cA1L0YtatBzNE9PXHiRI2fy9Nu1uPHjwOAy27D0tJS5OTkeLQMNQlNXtRcqREREQCA5OTkWitTXYPvH2bPns3+PnfuHDZt2oSpU6e6fKzHHnsMP/74Y5Usr7yY84WYberTa6KstGqdvGVEXXCz8tdbFTH33HPPITY21pNF8jg+LebKy8tx//3344033kDz5s0Vv6PX62E0GiX/BI6hDkruwpg2bRruuusunDt3zuVjZWVlSV4vXLhQ4j6aOXOm5HOr1YqBAwdi//797D0SHr///nu1TfWeWFnli27WH374ARqNhpWdBsOaHIBqwpUDXBksyMrgjNLSUuTm5tZIWWoCGvz8/f0VP6dB8WqYVFQV/tnHxMSwv8+ePQsACAkJcflYJJ6r0q4pFASo22LOZrNh586drE+viT6Mjn01WubmzJlTp9yzSvi0mPvhhx+wY8cOTJs2DX369MH333/v7SI5paSkBI8//rjLbp8XXnihWjOCTZs24dtvv2XnXr9+vdPfqFnmDAYDALh0DDUefvhhdOjQQfXzU6dOYe3atZK8TWVlZcjKysLtt9+Ol19+ucrnBq50LNWx9vnSIJqZmYkTJ07g448/BnDlmVIQcG0IU0/HmpGY460zjigpKfFJy5xSDDBwpX36Uj2sKjNnzsS7775r9z49e6PRKKnDJOYCAwNdPgfd76rcT3oWQUFBDsXc5cuXodFosH37drfP4QkWL16Mm266CX///TeAmhGedVnMVdcy5wv4tJgbMWIEsrKysGnTJmzatAnDhw/3dpGcsnXrVixYsIANrs6YNWtWtWYEN998M+6//34AwNSpU9GvXz+8++67Di1TapY5cmOvW7cOW7ZsqfLqYSUhRQM+day8O7y8vJz9xh2roBJ03dXpzOrKIFpRUeHUwti5c2e0aNGCWTJoEKwNyxzh6XOQ+9Edy5zFYvG4cC0sLMTw4cM9PmOnNqBm2aT6582A8tpi4sSJmDRpEoDK+/Hf//4XQOWz9/f3h8FgkNyHM2fOAIBbiaqrY5mjcxuNRof1nEICajLjwuHDh9GzZ0/FBV5yl7wr10qi57333nMppEFNzNWkm9Vms9ldS15ent2KWv47GRkZHi9HdfFEXLhPizlfhGaOCQkJtXre9PR0JpAmTZoEPz8/HD58WPG7apY5EgAbNmxA7969MXToUI+Vj85JFiN+9lRWVsY6hOpaedQsc7/88ovLgzLfMWzbtg3r1693e2D94osvoNFoFMVYQUGBSx2fv7+/01WaVN/kIq42xRzdr5iYGHz22WfVPh7dayXL3Ntvv213T+j8nna17tq1Cz/88ANmzZrl0eNS3VSrA+5a5jwds2g2m6HRaGosvYUSdA0UlmGxWBASEoLAwEDJfaDFEMnJyS73FZ6wzDkTc1R+uUD/+++/cc8991R7kgpU9mHbtm3Dn3/+afeZXPA4a/eHDh1CXFwcVq9ejZdffhl33XWX0/NXxTK3cOFCHDhwwO59q9XqUr396KOPoNfrJWLovvvuw0033ST5Hl2vn59fndyRxhMTMyHmahmaOep0OgCVMzUyfTti0aJFVTpfs2bNAFQmWJbz9ddfK/7GmZhztzGo5fXhGyBZWZS+W1ZWxjojT7nsqHGXl5fj9ttvxz333IMvvvhC9ft8WflOqWfPnujXr59dB+YMyhhfVlYGm82GmTNnss7QYDCo5jM7cuQI9uzZw+IOP//8c9VzHD16lP1Nz47ub22IOTo2PbuMjAxMmTKl2sel+68kzl5//XU7qzeVw1Ou1qeeegrbtm1j7t7Tp0975LgEPRu1Dt7dmDlPP2Oy8qxevdrl3+zdu1e1H9i1a5dTMSOvr4WFhQgODkZgYKDkPlEb2r9/P+bNm+dS2apjOaJzGwwGl+4zL+bOnDmDLl264JdffpGsTL548SI0Gg02btzoVllodbeSxVp+bc4sc/Q8du3aZVduNSh0SO7idiTmHn74Ydxwww2S98rLyxEYGOhSOiFKB8N7kajf48cKut7o6Gj8/vvvqml/nOHptkRxsXzsZVURYs6D9OjRA2vXrnX4HWoc1OCmTJmCBQsWqH6fHvZDDz3E3isuLnY58SGtfDt58qTdTIcEpRw1N2thYaHiiuGVK1fi1KlTqmWgRRDy8/Odjlom9dDQUJSXl3tMzMndrNnZ2fj9998BqN8PQNr5ecJdQNdRWlqKw4cPY+LEiRKhIxff+/fvR1paGlq3bo3OnTuzFCClpaWYNm2a4jn4lcRqbtaayJ1GwpfusdVqZX+7K3qVoPvvao48OnfLli2ZmyslJQUJCQlVSlny8ccf495772V1tqbEnFoHT+3T1dm8Up4+4syZM2jYsKHdQiVH0H2nvsUZZWVl6NSpE8aPH6/4ebdu3ZzmwKMJJLVD3jKnJOaASqu5K1R3AYRGo0FISIhLljke3t3H9ykklh3FJv/222/QaDSSPpQEipKYc9cyR+KNJkx6vd7h94uKivD0008DsL9Wd2Pm6Lp/++03PPPMM+jbt6/qdynkgp/YKeW148Vcenq6JIVSRkYG3nvvPZcsgZ4QXTw05gjLXB2ipKQE27dvx6hRo1S/k5aWhj/++APAlUpRWFjosJIrBfL26tWLLUZwBg0MSmJLSZjl5uayHE1KlrnExES739x5553o3LmzahnoWuVxAbyrk77Di1SdToeQkBCUlZWxzkcuPg4ePIgffvhB9dxy5GKO7+QcdeZ85+eJ2Cu6jrKyMpcsLR06dECPHj0UP3vjjTecno8GQ7mYA6Sdb3FxMS5evOj0eI6gjonuU0lJCXuu7og5pc51y5YtzHXsauwL/7zI+rpmzRqkpqZizZo1LpeHJyYmhl3nkSNHqnQMnvfff5+ttPe0ZU6exJVn2bJlOHfuHJvQyLHZbJI2Z7VaMXr0aACuizlKbuwoybGzQZLqL7VDi8WC4OBg6PV6yX3Iz8/HmDFjMHr0aJw/f96l8jlzazuiuLgYgYGB0Gq1brtZ+Wvmz00CxdFEizw1fDgKhdHIxdzBgwcxf/58yXvO+jAqJ1mzHU10Aam3Ru0+WK1WPPzww6qinqDJUYMGDTB37lyHezsriTlCaaUxv/KZnsmLL76Il19+2aV+z9U4XSI/P1/ybGfOnCmpAzQGCzFXh6DBylHiyIsXL7IK5KqY42dE9Ftnbtni4mLWQVG5lKwHSmLu1ltvxcmTJwEoW+bUYv0cubCUElUuXLhQ0uiV3KwhISEICAhw6Gbt3r17lRa+8FYjwlUxl5qa6vb55PCikhqyzWZTtBTRs6yOBYjKX1BQgNzcXIm45+vs2LFjq51Ym+o2L5irIuaU2kXv3r0xd+5cAHBZdPLPjo5Jk6SqdqIxMTHsOouKiqq9ldOrr77KJk/OxJw7MXPOAqvj4+MBqO+oMXr0aEmKlL/++ovVf3617apVq1Q3vSeXXXVW5dNgTe3GkZvVYDCgdevWOHLkiEvWFupTOnfu7Lagqw0x9/vvv0Oj0UjEMPXd/CRXbn0n5EKO/52cI0eOIC8vz04kORNzruTbs1qtWLhwIT755BOHxyJh6MqqU6qbSpY5fhEdb5kjqB7TtVL7mzFjBuLi4hTP565lzmg0on///uw1TSapjNSGhJu1jnD27FmXsrHzYoEXc45EBG+Zk3fMSo3GZrOhWbNmiI6ORllZGRtElRKMKjXQffv2sb+VLHPx8fEuxU/wZS0qKsKPP/7IVtUClbESSpY5/pyBgYHw9/d3KObo/rjqcnNkmXPUGfPf4+MtwsPD2d/urEji3azUec2fPx/16tWz+y6JFk+4KAsLC9GmTRu89NJL7D1eJJJrqjozRXqWvGWOnqs7KSOclcGR5YWvJ3Ix9+uvvzILelWvMzo6WtIBuxL36gi+7rhqmXOl7I7St+zduxePPPIIAKi6mymulsrHWyZ4AfLpp58qigbAsZhz1c0vjyFVc7Pm5+fDaDQiLi4O+fn5LlnR+T2g3Z0wFRcXIygoCFqtlp3r33//tbMm0XW6Iubk2+Bt2bIFgNQCLBdz9FyCgoLsrEcUN02Eh4er3pfWrVtj0KBB7DX1Tc7crPQMdDqdqhfD1bbmTMxZrVY88sgjOHTokKKYI2644QZmZKAy8QmNaUIbGhoqOe8rr7yiem6LxYKioiLMnDnTad2l57dp0yb2nnyxDT1HR/HariLEnAdo1KgRBg4cyF4vXboU27dvx86dOyWLDKhiBwUFoaioCDabzS03q7wBKs2mL1y4gIsXLyI3NxeFhYUoKChA586dceLECTurIYm548ePK67kVLLMGY1GVvkBdQEkt7rde++9dsvynblZAwMDERAQ4DBmjvaQ5YP9HSEXc65Y5kpKSrB48WIAla4lfhupqKgoNGjQAAAwZMgQu9+mpaU5TMVy6NAhSeepBLkVTSaTw++5QmFhIZvh04yUH8Do2TpyYZaVleHZZ59VFdDUaVfXMsd3/kppWMxms+piHF7EyAeUn3/+WfEc7qDT6SSDcU5ODlq0aIEZM2a49PvVq1dDo9Hg33//BXClPlCfAABfffWV4ozdFcvc+fPnodFosG7dOtXvDBgwgA38zmIHqQ7yfUhxcTH27t2Ly5cvIzMzU9UFRaJbKQmykticMmWKw51JKioqmGVO7mYlyxzVY1dii/n2KZ/g7t69GxqNRnVwV7LMPf744+jbt6+kn6DPlMRccHCw5BqoLhQUFODMmTPM/c73x1ROefhETEyM3XOQ5yuMj49XDVsBKuNz6Z4ouVlzcnLsRC9di8FgkNxP2q0FsK+vamKIrlMtjvPMmTP48ssv0b59e4eWOeBKfVUaP2jMo7riikGgqKgI8+bNw8SJE1nIlBpKHhw1MffRRx85PbczhJhzwpkzZ1zOCUeMHDkSPXr0wNChQzFq1Ci7eA+j0YiioiKUlpaivLzcZTerXGwouZl4C0FBQQGKi4vZnrX8DEFeXqXEnGRNSU9Px+HDh1FQUICQkBBJp6zWgcuFWlhYmOTzyMhIp25WEnOOYuYaNmwIAMw17CquxswdOnQIU6dOxSuvvAIAaNWqFRvY6NrIdL9mzRqJu9lisaBevXosNxYPXcftt9/utKw0GLoaJ+kI/v7GxcUhKipK0jFT5vwnn3xS1W22Y8cOfPjhhxLhoiTMq2uZkwttpYnD559/jnHjxgGQxoXyAx//u+LiYokVrLi4GKdPn3Z7tXhxcTEbyHU6HfLz83HixAlWT5xB52vbtq0kkWxZWRkbmHNycvD+++8rnpv/XwmyHtOqaSV4we7MTTxv3jykpaUhMzMTwcHBaNSoEaxWK+69917MnDkTWVlZqn0B9X9K5ZVb//Pz8zF16lQ89thjDt11SpY5m83GLHM0QPPCXQ01UXHy5EnceOONAJQ9GxUVFVi/fj0MBoNEzFEd51M/KV0LtROTyaQ4qfz888/RuHFj1g75Ok0ioHv37jh06JBDMSefEMTExKCkpATLli2Dv7+/4iRfns7nyJEjiI6Oxq5du9C5c2c0adJE8hu1FC28oHV1Ra2zbAl0H2w2G7s2KufkyZMl4yIJQqXxgwS6mpgjUUgZKIDKPp36OqWJyNKlS1n6HBqT+HAmNTHHn6+qCDHnhDvuuMOlJdJKtG7dGgBYcDFVXpPJhKKiIlYZHIk5fuApKSmRNEwl5c/PaKmRtmrVCkaj0a4zpfLk5OQomqnz8/NRXFyM+Ph4dOzYEYWFhWxBAsFX6KKiItx4440YNWqUnVCTxyAkJCQ4tcxptVqnblayLrm6ulfNMhccHKzYubRr1w7vvPMOex0eHi7pLIuLixEVFcVe79mzh/1NiSv5zoBwZxWpM7cbz+LFi6HRaFQHQv55GQwGREZGSgQodWyrV69W3XxcKf6HL5sjy1xV3azFxcWSslNc34svvshcFGSlBaQdPn8vLl++LGlTb7/9Npo0aSJZLe5q2YqKihAUFITQ0FA7UeIMvgx8gtMLFy5IrEBkleY7elcWQNCEg7eMOELJAsi/N2fOHNx+++3IzMxEZGQkE1GZmZlITU11aJlzJD7l1n9yyUZFRanGEZGYI8scf/yysjKJZe6xxx5zuoct/yz4uvLee++xvy9dumRX1vPnz2Pv3r147LHHJGKOjseXnwZ2uWVOp9MhODjYYcwZTdDz8vLY93gRsGHDBpa/MTo62k5kFBUVSWKdAwMDUVpayhaOkYih8/JijsaY8+fPIzMzE++++67iYjq1FC2HDh1CUlISIiMjHYo5/hnk5eWpxqwB0jpD7Y4E4PTp0yXflVvmxo4dC61Wi5CQEGaZo2citwRarVYsX74cjRs3Zu/RM+OPuXfvXhZCNHr0aEycOBGHDx9mMXv81nLyxTb8c6zuwjqPiLmcnBxWITIyMvDzzz8z94GvQyKnKhmaIyMjAVRWtJKSEjbDckfMFRcXs5WiJSUlktm0UmfHV3SqyKGhoYpWHX6fTqWO2Gw2swpptVqZmOvYsSP7Dv+7ffv2Yffu3fj6668lDbqoqEgSL1O/fn3odDqJmKPj8Nen0WiculnlMSPO4GPV+HsQGhrK3rt48SLOnTunKLiioqLsBCwfVMvPRHfs2AHgivVQqRyuwItuZ9DqTKVEnIBU9BoMBuh0Okn9k2+SrXQcZ2LOkWWuqm7W4uJiyTNu2LCh6t6lwJV2IHdxX7p0SVFcA+6tZiwqKkJRURECAwNhMBhcnkwQfLn4HGtNmjSRxEZFR0dDr9fjueeeY+8VFxfDz89PsbyZmZn4+OOP2aSOtyID6rN/pWPJB+2UlBRkZmYiKioKer0eRUVFyM/PR0pKCvLy8lTboKMYP7kIpvLWq1fP7ng0qJKw5xdAfPzxx2zbQnkoSLNmzSTj0a5du6DRaNj18X07/1x4QXHPPffYhTlQPW/bti20Wi2KiopQXl7O6kJWVhYqKiqwdu1aTJw4EUBlm1m/fj3S09PZZEDuKlYb1E+ePImgoCAsXbpU4jo9ePAgs5IrWebIgkxQfB8JINpqjJJA6/V61TKo9Vtqlrnz58+jcePGLLSIh7/mgIAAtsuE2WyWCCj5efkxjnRHbm6uYt1OTU3FCy+8wERet27dUFJSgubNmzMxR9cqt8wVFRXZpfWxWCxMzFH5H3vsMXz77bdYtGgRm9ifPHlS4m2islFdUxLl7q6UlVNtMffFF1+gU6dO6NixI+bPn4+hQ4di48aNuO+++zyS7d3b0IOuymoTPifSu+++y+KuTCYTLBaLS2LOarWymAl+UFT7Hf85CaOQkBCHYo4vi/xYfAXLy8tDWFgYvvvuO7ZHKv87ilvT6/V2ljm+M6lfv77EXA1cub+HDx9mVhcSc9nZ2XazXrVrcHV2I58hhYaGst/Wr18fDRs2VLS2JCYmori4GL/99hvOnDmD4uJiiZjjf0PiS6nuuGNSp3K5IhgoX1eXLl3sPouIiJB0hAaDwa7jlt8/Suh5+vRpiTiTww/UNHAqpSZR229UCf6YFy5ckNTF4OBgibVBbs3Iy8vD+PHjsWzZMrvjksiWs2TJEkyZMkVx4iYfxHjLnMFgqJZlzlHCXJqQ0XUcP34cRUVFMJlMiuLoyy+/xFNPPaW6YpDqvfwZKj1TchOSaNbpdEzMBQYGIjMzEzabjbX7qog5NctcZGSk3fGeeOIJdhzezWo2m/HUU0+xxRzR0dESMQdcye8JXMnh2LRpU2RlZala5pztGELXQzFzu3fvxsCBA1ldeOmll/Daa69J3K0ajQb9+vVDv3793BZzdJ/XrVsnEQH8gixezG3evBllZWXsPAQtUqDrozALsnBrtVq3V/XyMXPylf/x8fF2Yi4nJ8fOYkqv8/Ly7MScWi5BCkHJzc1VjPP99ttvMWvWLJZui+5bTEwMs4DT/ZZb5oqKiuwmNBaLhU1i6TmTuHvooYdY7ClN9oDKNkdlduRmdXWvaTWqLebmzp2Lw4cPY+/evXjxxRexbNkyfPLJJ9ixY4fTJci+AFXMqog5emDy1AVkmVNK2SGnuLiYCbGSkhKnyWvz8/NZfBqJieDgYEUxV1paygKuLRaL3SBmNpsl111SUoLw8HDExcWxhLR8fAN1NlarVfI7vmIDQFhYGI4cOYLrr79e8p01a9YgOTlZYvlr3bo1li5dyoL2HVnmQkNDVWPQysrKMHHiRPZ9Jcuc/DkodeaUZ2/AgAFo3LgxysvLJWJO7oKVv0e4YplbuHChpIyOUNumjKdBgwaSeJL69evbDSRKHYrNZkOTJk1YuAF9R80yR9/j7zHVk/Lycnz99deKIosnLi5OsjqyS5cukrIFBgZKUqhQuhK+PJ988glLW5OQkIDu3bvbxW7yPPzww5g6daqi5U4uFilmjtys7m4Vxrc1R+mMpk6dCgBo0aIFgMr9qOn3Su2fLKtq9YB+I3/OSsf6999/ERcXx1Zs63Q6mM1mGI1G6PV6NhhS38bXc7PZzOqtI7cwL4KHDBnCLNvl5eV27YbKIXez8gPumDFj0LVrVzsxx0+e+LCIZcuWSZ6t3CV/yy232K0GpTLwi3poUF6/fr1EbPz44492MZtApQX/zTffBABJGzx06BD+85//2J0PuHKfKyoqJFZpPtwmJiYGZWVluHjxIvr06YMNGzYwMde4cWMkJiYylzDfJoEr9ZB3swKQ9Mf8+3wdU3Kz7t27F5s3b0a9evUQHBwseZ633nqr3ZZbISEhmDNnDk6cOIGkpCTJNfLjB19n6Fy5ubmKi1Q2b94seU1hOTExMXaWOaVYQz69CVDptZHH6SllhSgqKpL0iSQU5WJOo9GwuHivizl/f38EBgYiIiICTZs2ZQOb0Wh0KYVFXccdy1xERITEP86LOb4zcdfNylvm1KwoJKDy8/NZYkQ+e7eSmMvJyUFxcTFsNhssFotkQLr55pvtLHN0jcCVCsz/hh8E+dWxtJyb4NN58N+hhRp8I3/00UdRXl7OOiy5RUsutuWNl9i/fz8LTOV/R/feYDC4JOaU0ivwg4NSugH5Pdy2bZvdaj0+FxHx8MMPA6h8zpGRkaweKKF2Lp6GDRuy2e+gQYMwZ84cl8QcdUSbN2/GI488wtKa8O2bBrZ27dqxDpNvOzSxKysrw6hRo3D33XerlhOodIf+73//k7zHX5ter0dSUhJ7/cILL0i+K29T8+bNw7Zt21xy8yqJZ/l7NEEhy5w7m3dfvHhRkt1fKeD7zjvvlLymkA265v79+zsVR0qo7WurVG9OnjzJRCRwxf2m1+sRGBhotwK+tLQUpaWlqKiogMlkwpgxY/Ddd9/hu+++k5xbrbyrVq1i3pzS0lJVMUduVrLM8Tz88MPQaDQOxRz/LI1Go2RixQuUy5cvIyYmRjJZIwIDA9GrVy/2N29h4a+poqJCckz5QpP09HRJG3SUxJomtDabTXJMXsRQWfk9mWnSceLECZw5c4aJNerf5KtH5WKOv361vkJJzHXq1AkAFMXc/v377a6vuLgYzz33HKxWK0wmE6vzgLRflVtzAXXLHAD2nHhiY2PtxFxRUZGkLmRlZUkmWsOHD8fXX3/NrsPR7hhyA0aTJk2wb98+OzdrWVkZOnToAKAOuFkDAgJYwfiB1F23Q13FHTFnMBgkWdHVLDPBwcEuiTmbzWbnZuW/a7Va8ffffyMtLQ3PPvssxowZg/z8fNb4qLIFBgbadW5A5bZEb7/9NoDKhkkxA3/++SfuvPNO5Ofn2103dajUefFxXHz8GN/B8FZIAIrWkcLCQuh0Ojz77LNsBZlGo2GdNd0rNTervIFbrVZJGeTxVWqWOb4TU0rXonQfo6OjMWPGDDRs2JBd57p16/DVV19Jyk4obU/DCxO+E6MyhoWFMbGrtOk1iSlH9TQhIYEJ7rfeegvh4eF2HbeSmCPXgUajwZdffskEIT2LS5cuMQE+ZswYVFRUsIEdqHSFkDvEkeXQUXxqixYt7MScox0I5Is3aPLhipj7559/7LaCkrdRcrNSzJwj65qcYcOGSV4r/faOO+6QTAypP9Xr9bjtttvQtWtXp25LpeTP5GKUP+fCwkKkp6dLBrPc3FxJXaT4Sr1eD71er5g+xGKxYOvWrQAqY7nIkggoizk1a4Q8pASQijmyzFH/oNFocPDgQbZLitL+oPPnz0dKSoqkHsnjpHgrWkZGBmJiYiT1TCk8grfMAdJwCPkCHKVFa/wiDkex2fRsqX0plYmeF1ngadEc5ewMCAhgljkqJ00m1Cxz/K4J/Pv8ddLCAHmeOaCyzSvFzMnhJzUhISGSujd8+HDs3r2b3Qe+bTRv3tyhmOMXRvHXJHezFhUVSVL0UP1+4IEHMG3aNHTv3h2nTp1i10HlVbPMya/3nXfesbPMlZeXs1hMr1vm/vjjD6ZM+QDRoqIih8viPcXEiRPRs2dP3H///R7ZZkkODT4tW7ZUVM633nor+zs0NFTS8HnLHE9YWBgyMjKcijm6HjXLXH5+Prp06YLhw4fj7NmzSE9Pd9kyR0H5NGu2WCxMmEVERMBgMMBisdh1qGqWOY1Gg+LiYpb0lp+BWiwWh2JOq9XiyJEjsFqtGDhwIKtPGo2GdZLUccjvFXUcfNzR6tWr8cYbbyAuLo7NZtV+R+/T3op8Z6s0WMkXCACVnflLL72EJk2asOvs378/62Tl9UYpcJ86p9tvvx2vv/665LOSkhLodDrWvsaMGSPpYIErg73FYlF1JfKdIz1/uWVOKS5PLQcZXdevv/7K6jjFuuTk5LC6SjFDUVFRqmJu3bp1CA8Px5EjR+wG/ccffxxardZOzDlLZMpD9Ujp+ckZMWIEevbsKXlP3recOHECe/bscdkyN2rUKIwZMwaAvXVGKZ9WSEgI6/jDw8PZ86Vgdr1ej4KCAruB05GYi4mJYRuTyweOrKwsxMfHS1K0kEuV4MWcWsynxWJh7Ua+xZ87Yq60tNRuwQ+JObpu3jIXFBQk2W9T7hUqKyvDk08+iZ49e0rqkfy5yd2s0dHRkjpTWFhoN3GkFEpKyK1oSmIuMDBQMrg7Q27t46F+hMRcaWmpYswcbxig66H/5WKO90Y4sszJ8+21bNkSQKUQk1vmlJCLOd7jsWPHDtZ+zGYzGjVqxD4jMZeZmQmtViv5HaCcnzM2NhZmsxnFxcXsWouLiyXxjVSPp0yZgtdee42tOqY+0tFWZ+SN4kXnrl277GK1y8rK7Lbx2759u0spdeRUW8yFhoYqulNjYmKY+bCm2L9/P9LT07F161Zcd911+Omnn+y+Y7VaYTabJf9cYdasWZIHAdhbamw2myRxoNwyp+Zmbd++PdLS0piVhH+wPLzpGpCKOZ1Ox1w1/v7+LEZFzTInF3N0TqqYvJgLDw9n35dfsyM3q9VqZWKOVpbRKi9HYs5gMLD0La1bt5YM0nQeNeFL94OPm7njjjtYJ02NQi5SeMtcQEAAAgMDUVJSIrHmKW3ULa8TwBVrT3BwML777jtmkSPkA5ZczA0aNIgdV6fT2YkUuZjT6/V2bY4sXxaLxc6y9+STT+LUqVPs2RkMBjYw8mKOT1jLo7ZtFj1TekadOnVi587KyrKzfiYlJakOQpRrTb7QQafTMRc4X7bQ0FC30pyQmHNnNS0vJpRE7tGjR1nMHFk15M/lgQcewPr16/H1118zt7F8wFYawENCQpiVLDY2lp2fBs02bdoAqHy2PPzki7f2ApUu8NOnT6OwsFBVRPG7aiiJOaqLaiur+cVUav2Z/PvkludREnPUb5A1LTg4mAktZ3WB7suZM2dQWFiI2NhYtoiDh8pcXl6OzMxMxMTESMSc2Wy2C9wPCgpSrddnz56VhHcoTYz4NuiKmJNb+3iorDSJpe0C+Xqv1WpRXFzMzil388vFHC+O+GfoTMxpNBo8++yzaNCgAYKCglRXkRP8WCK3zAFXno3ZbJZ8xlvmoqOjkZGRgfHjx7P45rCwMLz22muScYcmwxkZGRLLHL/qmSZd1FdSH02Tr7NnzyI1NVWSWgi4klC8qKhIUs7y8nKHljnq93r06IFhw4a5nXfOo3nmqqImq8POnTtZwHv//v0VV6lNnz4dJpOJ/XN138nff//dafJFPg0FcCVvF8HHMfEPhgJKyR1B8W5arVZizXQk5gwGA9t6q0WLFjCbzSgtLVUUc0qWOfkKSd7NGhERwToFuRuCGgQN4NThUsJOWs5PQohW7vL3Ti5myArYr18/1KtXz24ZPZWPvycEn06Eh47BXx/P/fffj48++ohZGuSzVeCK1ZJHybLDWwcA+43NnVnmVq9erSrmmjRpgu3bt0vEnNJAzK8olHeCOp0OjRs3ZmIuNjaWiQ4+NcnMmTMlomXChAkAruQqk8cQ0nXRYLB9+3Z2juzsbMl1+/n5oV69epJBLzs7m6UjoPohd8fw6VP444WGhtaYZY4glySgnhYmLCxMkppELkyWLFki2TuYEoU7Qy7m5Ja5Xr16YebMmfjiiy8klj1+siqP9YqNjcWGDRtgMBhUxdzUqVPZZITEHPVdvGXOFTEnt2YqeSAsFoud6KTf5uTkSMSkvE/ixZyz+Gw+ATa5aENCQuzEHPUn2dnZsNlsdmIuPz/fbvWx3LqtdC1Ebm4uQkJCJNYi+n1FRYXEMqSG1Wq1E3P+/v4oKChgZZW7WeWWOf66lcQcfz38BJava/IUTeRuprLl5+ezcSc4ONhpujI+4XZoaKidhY1f7MDfv6ZNm8JsNuPSpUuszs+bNw8jR44EUDkGTZs2TVJnScylp6dLxNzJkyfZKnl6FtS/072le3f48GF07drVTqCHh4fj3XffxZdffql6DXzMnNwyR/j5+WHevHnqN0yGR8XcyJEjMXv2bIffqW6WY57c3Fx2I0wmk+J2HJMmTUJeXh77J1+doobSTEvucnz22Wclrx1Z5ngaNmyIgIAAVlnKy8tZJ0yJHPnz0eC8ceNGSYwXDQolJSUSyxytNnNkmZOv4CHLnFarZavEAOkgZjKZJGkKAGnjps6XFyvR0dF2A7vcykHPkGLleDcrnYdmSWqJj+XQ+fg9cHkqKiowYcIEZmkgMUfHo46AZ+bMmaxj4/dQlTd2pbLYbDYm/h25WfV6veTz06dPY//+/dDpdCwYXcka7kjMUZujGSZfdj41CU0uqEOk79E2bHJ3IN1js9mMqKgo6HQ6iZgzm81soKY6xberm266iaVSoeek1+sldYXEnNwyZzAYFK0xSvExgOOYucmTJ+PChQt48cUXAVxJn8LvjKG21U+DBg0kz11JVPDi7b777nO62wIgdbPSPqOANGcYrQbnBRz/t7we0MCiZoEl3nrrLXYsXkwFBASwBRDUL/zxxx8IDQ1l9XfmzJmqYu7ChQuYMmWKZAwoLCxUjEMlyxzfn8r3YQ4JCWH3Xml1OJ/Am99zOi0tjQlBGpjfeOMNdl7gikciOjpaUmfMZrNkUqPT6eDn5+dWiE94eDhycnLw7bffYvny5UzMzZkzR9G7JCc/P5+VkyYKYWFhCAkJsXOzHjp0CDt37rSbIPPuZflOL/w+swAkdYD/HT3n0tJS/Pe//4XVanUo5tzBkWUuMzMT0dHR6NatG4DKem2z2XDhwgWJyKN7oeRmpb5tzJgxEjer2WxGfHw8gCspjJTEnEajQWFhoaKe4Ptv/hr4dn/q1Ck0adIE6enpCAkJYccDpH2U2n7HSnhUzK1cuRJTpkzBM888YyfaysvLsWjRItZ5e4Lw8HDWeeXm5ioGROv1ehiNRsk/V1AyY994442SJJxyc7s8Zo6Eh9zNqtFoEBQUJJkd0XXIl/cDVwbX9957j/2GF2fkSiYxZzAYEBQUJFk6rSbmiLKyMly+fBnh4eGShQf8IMZfG1k6+M/z8/Pt4kcSEhJw8eJFySBOgfwEPRP6X0nMkZXEarXizz//hEajQW5urqq7gcQBbYr8+eefK36PLA3UCdF9of1WiSeeeALPP/88a9B8PSZrJR8EzVNYWIjVq1ejffv22LRpk0MxJ58VEzqdDnfddRc2b96M22+/XSIawsLCWL20WCx2s0HaiaRXr1546aWXJIkweatCaWkp7rrrLjRv3hzAlQ7vxIkT6NSpk90Eh7fM0bOjOpKVlYW8vDx2rODgYLY1G8HvTkDPq6KiQtEyV1JSIkmmq2aZU9utxZGbVaPRIDExEc8//zyAK4MGH9+kZolKSkqSDJT8cyGBUVFRwYT0L7/8Ytc3zp8/H7NmzZK8FxAQwL4XGxuL9PR0aDQanDx5kp2P/pfn4Hr44YexaNEiDBgwAEBl0tyCggJJ+3Uk5jQaDWw2GxNzlJqDLNc6nY61+z59+iA2NpZ5PP73v/+pirmioiJMnToVY8eOlUwmlUIXSMzxK9/pedO5g4KC2G+VxByf+ohn0aJFKCsrk4g5WlREz57EnJJljrdkUX1yJy8bTcZGjBiBO++8E1qtFn/99ZfLeVlJzPXs2ZOtgudDPYArYo7EAD8RU4rx4iHRTvD1hp+Y0HMmoZyeng6tVouLFy/iwIEDEjHnTkgEYB8zB0jFXFRUFNauXYsDBw6w/jc9PV3SvqktKom5uLg49OrVSxIzR+FAchFJ1nZezMnjQXn4eySfqDRp0gQajQbffPMNTp8+DavVCn9/f4SEhLBJP9//uZOX06Nirl+/ftiyZQuWLVuGu+++G0VFRSgpKcH8+fPRtGlTPP/88xKXQ3Xp2rUrixtbt24dunfv7rFjq22dxA8oubm5ks5GzTKnFPgZHBwsmeHJE29evnyZxa/wlZoaJV9JaEaRm5vLfPCBgYHIyclh8VWDBw9mg5WaYLh48SIrPzU+fhDjr1XJMkdijicxMVGS1BKojBnkBzS6FrmYA+wFUnFxMXN/nj9/XiLm+EGBFxoTJ05UTVmiZpmj2Zm8jHQOCu4FrnR2jqyEdJ92795dZTGn0WjQq1cvaDQafP/99+yzsLAwiXg1mUysI3vppZdYMlWDwYAZM2awWBJAKuaok6Ty8e4vPtcUQZ05b8HR6XQIDQ1FdnY28vLymBAYNmyYnZjj4bcAk1vmqIx8DKOamFMT1I7EHHW+8t9S3BEgbQdxcXHs3PXq1ZMck3ezUn2w2WwO99V9/PHHWUJcgm8ffAB6Tk6OnVtfnrYhMjISo0ePZnWWLGd8+3Um5goLC2Gz2WA0GrFq1Sq0bNkSVquVWeZoQqbRaNC8eXPJQjA1MUcsWrSIWaDI5blx40bJdyh1hlKfQ2IqMDDQoWXO0Q4hOTk5Ejcr1V/qT8gCpRQzx4s5ehbuWObkdYF2WVHaek1pEWFeXh5KS0uZFwW4MujLxRzBH5tW/KrB77gD2Ft4CXrOfEoTfs/YiooKdq2OVrEr4cwyFxUVBZPJhPbt2zMxd/nyZUmfQH2gmiDq1auXJF8jZZhQa6u8mGvevLnq9/j2KO9vaOEW7+ULCAhgC0SUvB9Hjx516f55fG/W9u3bY9euXTh9+jS6du2KRo0a4c0338S4ceNw7tw5lgTTE9xwww2Ii4tDz549ceTIEdxzzz0eO7ZaZ0eVhbZt4bd8UYuZKyoqsnsY8odMeaUyMjKQnJyM2NhYDB06FIA09iUrK4sF7BO5ubmoqKhgwfsRERHMMkflbdq0KWbOnIlz586pBrSfO3fOTsypWeaUxJzNZrMbYHnhQMjjiug1daj8tclnkZTomM7Hdzr8bIkEAb9ABQDGjRsn6ZzlMXPUmauJOa1WC6PRiLZt27LP6HhqE4DCwkLmWj5+/LhTN6vSceT3oWfPnqzOGI1GycQhODiYdarXXXedw3giuu5ly5bh77//RlRUFHsefBZ2fkuy6dOnY+DAgRLBzM9+IyIikJqaipKSEnTr1g2LFy/GBx98oCrmKEu9/G9AGjN35MgRVr/4BRB8UldnYk5p0Kf35PeYF3PZ2dnsGPXr18e7774LoHKiJbcGyEMClBL8yhfJ8O2mb9++bOcNwD63oSPLXEFBgd3EQ8nd5EzMkVfAaDQiKioKt99+Owua1+l0WLJkCesbfvzxR8ycOROzZ89GcHCwopiTD6gUZ0Tbct1yyy3ss/DwcEXLHHkMqGx6vZ5dm7vhOzk5ORLLnFzMpaWlsbbOP9/c3FyJmKPn5sgyJ98SSi4CyHotZ+rUqWwFJw8tLuLFHD1bNXcmX9/4e81Dud9oL+yOHTsiJydHVcxRvaNxJycnh/1NbYqula9vcu+YUp5FNcschRTxn9G1X7p0SVHMqdWNgIAAiTcmNTUVv//+u6KlmMpE1x0SEsI8HnL4a5WP8zqdTlKHgcpJB01Y5fGYycnJuO6661xK9eZxMZeXl4eFCxciJSUFJ0+eRG5uLjZu3IjJkyc7nJ1WlQ8++ABbt27FkiVLnJqP3UGts6OBhh6GXMzxCW+tViuCgoJw+fJlxVxzSly4cAG9e/eWvMdX3MzMTLsgefny+vDwcLaZstxSlpSUpJgEE6i0OtKgzVvmqEKqWeb4yi8/HwWTTpgwQTExLo+Sm1VpcOYtHrxljpJUAlfEHB/31KRJE3z22Wd2mxu7Y5kDKt0K/Mbs1GkoiTCKAaNOTk1I85Y5EoojR45kHZVS3aZOymAw2Ik5GjzVxA1fPqvVypL48mKO73R5MdesWTNcd911kpg5/rsRERFs5ZrJZMKDDz6IoKAgVTG3Zs0atiNEWVmZYswciXi6Lt4yx7dBtT6A74iBSksh7XdKljlHYi4nJ4cFTQcEBGD8+PH45Zdf0LlzZ0mHXVxcjPj4eOzZs4edq6Kiwq5uyAc0XnC///77qnE3gGMxxwe70/9KrsjCwkKJwOL75oqKComYA67UE7LM6XQ6ySo/Cmfh0xnxYk4+QNK9VXKzRkZGsu2mwsLC8OeffzILlV6vZ4O/Xq93aJlzRGlpqSRdBl0n1c/vv/8e3bt3h0ajkfTVZHEmqA3yYo6Paf3mm2/s4m/l4+CCBQskK16JN954QzLxJYtaZmYmzpw5IxFzVEdIGPDcfffdksmBn58fxo8fb3e+Bg0a4N5778WBAwfw9ddfIzMzE2FhYapijvreS5cuITw8HMHBwSydB40xSmJOPsFXEk9KlrnS0lImvvkxjPrIkpISyfgzZMgQAMpeBQCsP5JbVUNCQrBlyxa77/P1wGg0shXlACRpcXg3q5pljo8bDwgIYOOP2iIRZ/044GExN2nSJDRo0ACLFi3CO++8g4yMDPznP//Bbbfdhr///tuTp6px1HLi5OfnY+3atcwtwA9yoaGhaNmypcQ0brPZcO7cOYlbDLjykJWCf+W5iPhBJisri3WmhFzMkWUOUM5OrUZqaiqzxvCWObLIKVnm5DM3+fnoezExMfjhhx9Y4kce6oipQw0ICEDDhg0xdepUxcGZOs6KigqUlJTg3nvvxdNPPy0ph9Lzo46abxgffvghu5/8LM2RmGvSpIliuZTEXGBgIMrKyiT57pTKxou5fv36ITMzE0uWLGFWGWdijk9QzVvmXBVzhFarxSeffIJHHnlEMujw9zYwMJDFeACVYo63+kRGRkrEHKEm5hYsWMD+prxYBLlZ5dfMW+b4e8NfLx8nSddC1zpx4kQmYKn+ye8V3654Mefv7w+tVouhQ4ey+Fc5R48eldTT4uJiPPDAA+xzRzFE8s/kg51czNH9mjt3LvLy8tj7dO9p4JbvA8k/G7PZzOJAz5w5w+KB+Zgn8jCo9Sn0XXkyVqVroONTfeWJjIxkFhiTyYQ+ffqwFeK8VUOn0zmMmXMG/dbPzw86nQ7+/v5stfHOnTtx3333AZAOyC+88AK++eYb9poGbhrYU1NTkZqaij179mD+/Pm4//777c4rF3OBgYGq1jmerVu3YvXq1QAqrWhKYg6wNxQoTd7nzp2Ly5cvs7yDQGX79Pf3Z5ZlshIp5a3kkwNfunSJ9VPkHaM6SNfK93lyN6+ap6JNmzaSnWLKysqYmFOyzAHS8adt27aw2WySPZx5tFotE3N82+AX1vDw74WFhUlEotI4Dihb5uR5GnnL3N9//y3JoceX1RkeFXPLly/HRx99hBMnTuDRRx9FSEgIFi1ahEcffRQ333wzVqxY4cnT1Rhz585V3OcNqAyyHDhwINs/b9y4cSyFA1VcvkKpLbigh9ynTx/89ttvdp+rJX7Nysqys8zJl9eHh4ez47sbeNqkSRPJ7zIzMx2KOQAOxdyAAQMwZMgQjBs3DgaDQTFwlDpEvlGeOXMGAwYMkDR0WqlIwoXcot27d8dHH30kOaaSYKLOSX5PaEk9Web8/PzskvKqNVYepW3K6DnwOQULCgrwzjvvSL7Hu1mBK/eUfu/I6kxuVloVza8odtYJ6HQ6iQilVbOff/65xFrE37OgoCCJO41fAAFU1hOyiMrFnFJsEf9bNcscwYs5uldqYo6va3LLXHh4OLtHVP/8/Pwk9Y2fPWdnZ7MBi7fK0v2QU1JSYudm7dOnD/vcHTEnP748Zq64uBjZ2dl45plnJO/ToHHHHXcAqNwVIzExEUFBQYrJpf/44w98+eWX0Ol0eO211wBI66V8Y3E59BzJhco/a3n7oWORm5WHLHNms1lR+PBuVvqtu27WwYMHs98GBwczL0BZWZldSii5i7ikpISJCZqcvPXWWzh8+DDi4+NhMBjQoUMHPP7444rnVvJQKfUdSvBWaOCKEHIk5uTuSqDSEhwdHS3ZjUar1UqulcSsPCyGwnyeffZZfPXVVxIxN3bsWAwYMAAnT54EcCVxNS/KaGHOhAkTMGrUKMXr1Ol0MBqNknRnvGWOvyZKog24Z7zgLXPyFDjOxJzJZJJYO9UmE0piTt5+AgICoNfrsWvXLnz88ceSEB6i1sXckSNHMGrUKDulPW3aNMyZMwfDhw93K2+Kt6BOkfj444/Z3/LEh5GRkXj55ZcBKIu5WbNmscrLQxUjJCQE/fr1s/tcLeCRxBx1XkoJK8PCwliH70rl5gdtuZu1oqKCuS/5DocXdvw55ANRZGQkVqxYoeraBa6Y652tNJ4+fTqAK4PETz/9xNykVFaCt+5ER0ejadOmLAZRfk8aNWokiZnTarUIDQ3FTz/9xKwaroQIfPLJJ3ZbddH92LRpE4DKwctqtdp1yrxljseRmJO7WbOzs1FRUYHY2FjWKTsLPeAH6fHjx7PFEsSQIUOQmJgouWck5nJycjB16lQcPHhQ0rlGREQwV5RczClt6cOLSbllzmg0Koo5cu3Jr5Hv9PhzU5/Ei7kbbrgBd9xxh2RfVzpWVFQUCgoK2PnIAm2z2ezyCCqJOavVamep5dsG/a000Loq5ng3Kx/griYUtVotJk2ahPLycjvLHFApFMaOHYs777wTBw8eBCAVc7yIUoLaCFl2HFnm6Bk7crNSmiX5tfPbKFXVzbpy5UrWh9H9pRXtZFGl61RKakzxUnR+rVaL6667zqVzOxJzavFaBN9v8GldKK0Tfz2EUh0j5G2H+o3mzZtj6dKlir+h1f9ApXiTxzbS+aOiopjIGzNmDCZOnAig0kuTlZWF2bNn2+2/TCjF+VZUVDAPh/yaaGLijvGCF3P8PVOzzPH3isQcTfp51yrvopXXX36RCEGWuV27dgEAPv30U7vPleqgHI+KOUeB1o888giWLVuGyZMne/KUtULXrl3ZBsh8ahKg8qHGxsbijTfewM033wxA2tlFRkYyKx6PPJ6FoNxzShnngSsxc7S6Tp5w02g0IiAgwKlljt8yip/VUSPhf0diVL5PI60u5IM55R29KzMKV8UcNVg+yW1FRYVicLvcunP8+HE2y6OBnZ5XgwYN2MIDCvAGKl0GJELVLHN8mcPDw+2sNvx9HDx4MMtLJI8HqYqY489RXFwsSafgjpuVeOihh+ysECtWrMCFCxfsBDt1dlOmTAEgdeXwQp+3/gQEBDjc+xVw3TJHm70D0nvD/600aNJvaMKzcuVKSRui35Nwo/LKc57xKIm548eP24UUyK2bqampki3j5APS6tWr8dJLL6mKOXomRUVFLPmy/DxyKK9gQUGBqvWftwzILcbyv3moLfD5L+XHISgNg5JlLigoCMXFxYpiLjQ0lC264uuAu2JOo9EwaxGFVFBAvCtirlOnTti4caNdjjY1jh07xiw5jsScWqolgvcYFBYWolWrVjh8+DBGjx7N3pcfQ+05A9L+gfZuBaS5KIHKOkbXKk8/VVZWJml3VF/lCwQmT56M5557Dl26dEFERISqXvjwww9Vy/vvv/8iICDArl7wu+O4Cr8Agp94qVnm5OmgdDod86rxYq5nz54s1U1iYiJ27tzJVqtTiIa8HFTuhg0b2oX4uDKGAjWwAMIRAwYMYBYKXyIwMBADBgxAs2bNFMWcn58fpk6dygZovmJTtnY5vGWOh0962qVLFzbQnDlzhs2OeTEnz4cmXxGqVrnfeustlqCYn+XwcWtEp06d8N1339mtFibfvtJSfaDSleIsMztwxRrozJVJZZNbPJQscxaLhZ07JCQEfn5+7DV1ziRAgoKCEBkZibKyMmb5JPjVk3IuXLggWWAB2Oc04u9HmzZtWDoa+U4kSoMm/3slMUduu/DwcFitVomYo7roiptVXgYllCxzPPwgQ/Wpb9++khl7QECAovs7NTWVrUgtKyuTiCB5zBxZSqOiotj7vCeAv14lUbN48WLMnz/f6apXun/8PoxqrjCl83z00Ud49NFHVb8XGBiI+Ph4yTGpE6fvDRo0CDNmzLC71/zm8iTkya0FON6yjI+FVZs88TkU6dxKW+zJ4UUKhS1QneLjixITE2GxWDBkyBCkpqbaxYtptVrWTuTCh3aUoe85W7HII19V2qtXL3z00Udsok5uVhJzdK+UxFzTpk1xyy23SBZdOaJFixZMzCn1JVQPysrKsGrVKol7sW3btpg0aRIr45tvvgngyoRVvmJd3j86atfy/pn6fXmcGT+B4y1zVGZ+vKD6RyE7/DXOmjXLae40uWeM59ChQ4iKirIrNwlWd3eFKS0tRVpammQMtNlsTpMcUz9P1yrf1YXqb2JiIrp27coWRmo0Grvr9/f3Z21KKem5qws7a1XMAajx/VprAn5Aly8dVurI+QoVHx8vSfFAqFnm6MH16NEDu3btYuKxYcOGzGTNZ2CXW+bkK9kcVW7qzHmrilIHHxkZieHDhyu6ZQDgwQcfZO/JB31XWLBgAf7880+njZyOJ4+7oo6Fb1BWq5UNyPLOkwZ/EtlDhw5ljTk1NVXR0qPUAScmJtpZ2Hr37o1WrVqxPFxKrjX6rfzawsLC7NzRjixzzz//PDIyMhAZGWkn5khou2OZc2b948skr7e8mBsxYgT++9//YuHChZLvqIm5tLQ0Npjl5ubixx9/ZAOo3DI3cOBA2Gw2BAYGKlpl+OtVqvuJiYmqsUyA1DIHVE5Inn32WaSkpKiKOVfruVpdIBYuXIhBgwapWmfVjsNv/q12bILuiXwVOg8/sCnl53NmmQMqB7u0tDQUFhZiwIABLEQCqHTNZWdnY/Xq1XjnnXcwYsQIyXF0Oh2zvqlZYLRarURkObPM5efns60fCT8/Pzz99NNMuKi5WZXuU/v27R2eTwkSWUp9LF+XBw8eLIkx++effyQxtpSuRC3jwpAhQxAUFOSw/GpQ36hkheb7QlfEnJoluzqQmJND9cJdNytQOZ6sXLmSCXPKQqEE3QMSj/Q9qn9k0aTxmfp5ul9KGRp4y5ySVqiTljlfhRdzvEtRDT6uoX79+tBoNHYpKZTSfRAXL17E2rVrodFoJDMQmqXqdDqm/OUzKCqrPK5GCToeP/tVcgGoxYv5+fnBZrNJtjXjz+coaSdPaGioJDhcDTq2fGW0Wg4xNTHH51Gz2Wy47rrrmIhKTU2VNB5HYk6JkJAQHDlyBN9//z3i4uLYFlGA9NnIOySNRoPjx4/bueQdiTmNRsMsVORm1esr9+ElMecs2aSjBM1q3+Nn6QQv5uLj4zF58mQ7wUpuDTllZWWsc6QVpOSikYs5JbHGW2X4z93Jnk7IxdyBAweY28cdN6sSzsRc165dsXr1ajurg1J6A/44mzZtwqpVq1wqD2+ZUxvklTLm87n81EQ/30b4v7t06SIpU3BwMLPmN2/e3O56tVot62eVLHPyMrz33nv466+/FMs0depUzJs3T7L6WQ01N2vfvn2xYMECnDx5kk2olYLUnUGJ4eVxtTzynIJKONqjGQA+++wzWCwWdix3xBy1GaU6RPf8+uuvl/TtamLOkXtXjcWLF9u9N2nSJERGRiIgIAAXL15UFHNVsczx19qsWTO8+uqrAMAWwSlBHhW5eCwvL0dOTg6LXSUxR9Z2undKYo5PJ6OkB4SYqwYGg0FSWelG82LKEbx5mQa9hIQEnDt3TpIsE1A2qyYkJCiKB74jo3PIB1UqqyurWWmGyB9DSYA5c5UquSVrArVj0/kfe+wxyfskJuSdGTVU/nhqljlHblZHBAcHIy0tTbIMn55FYmKi4j2NiYmxu/+uxsyVl5fjmWeeQWxsLDQaDdsNxZmgcdUyJ1+h7Ur6AzmOymIwGKDVaplFhs9T5UzM8SK+urkm5W5W2q8WUF9x6Ckxp4b8+Py9DwoKwq+//ioJ/3DFMnfhwgW3xByfR0utHfLWMrnLlScoKEgxUfN7772HJ554QvJ9uRVLadB+8cUX0aVLF8UyvfHGG8w17+yey92sfMzco48+iqZNm+LEiRP4888/3e4PgMrEvT/++KNdiAXx22+/sSB4R9A9UYurJsiD4SkxRxOxfv36SSZQpaWlHhNzvJeHeOedd5CZmcmMJI4sc1URc9Tn0q4+annpgMoJF38+3s0aFhbG6sWcOXPQtWtXVr8dTTJ5Maf0rOqsm9UXKC8vxwcffMBeywd0ElJqg5Oakk5KSmIVklblqG0MrgQNJhR4uWfPHtW8blTJlDpmgjpcdxq7EvIYwQ0bNrAVvp5ErTOme5CYmIi5c+ey98lkrSbm+HJTB5GSkiJ5PyYmBgaDoUqdNyAdeKmcvPBRMqvzuCLm+DpA8UfDhg3Dvn37nG5xp7Z4QI5SahIiISHBJZeKUnshC2JoaCgCAgIUxZya9VDJIuvqLFYNqhsk5sh1DahbmpUGPqUUPPz3XBWAgP018QJHqU24mvZELS5Iqc9QqsdK8Emd5e898MAD+P777yXXzte5F198EZ988olDMecoibYznE1s1NysPEaj0SUvghLt27fHsGHDVD/v16+fJG+pGlQP1XKhEiS+PCXmbrnlFqxatQoPPfSQRMzJLXP0WVXEnCOoTSpNHKsaMwdcafMtW7ZEXl6enTueZ8GCBVi2bJnTmLmhQ4di586ddudy5malZ8XHDQrLXBWhjW75ykwdIHVQNPA7anjXX3+9w7gKstBVVcxFRUWhY8eOdp2a3M3qSMwpWeaqgjzovEePHmy7I0+iNkjxAwdfFhIychc3dYZyIWM0GpGbmyt5/4477sDJkyerLBL4e0vlpwZ76tQp7Nmzx+HvSdzIU5nw8B0Yfy/4PEiu/NZVwQhcuYZOnTrh4sWLLrnUlQZT2gxdr9erijk1y5yScKiumKOBiAYOPnGwWuoJeq58/Or777+v+j2gehZs3uqldBxX3KwAJHtD86gtjCCLhaN7TBZnvoz0nL7++mvce++9TuPv+Lok77+qYoFxFTU3a11FKSExj6fFHO3xrdFo7CxzfJ2g++dq7jygcg9p+f7EcqhNejpmjnepyuv+oEGDJK9DQkLYSlX+GM5iNnk3q5Jlju4f9WUffvihYrJvRwgxJ6OkpAQ2m01Smelm8jFmS5Yswe+//656nH379rG97pT43//+h+eff94tIUWNQylNAL/ROeCaqdtTljm+stXElm2EWueqNJj7+/uz+DN5bAkNFvLjkXWJvx4/Pz+X4ljU4DsKeWLLxo0bu9zh8R2IHL4Dkyc7doarYk4u1vj8Wq6iJOaGDx8OAGx7IhJz1GE7EnPR0dFYsGABPvzwQ9UQiB9++EEyQ3YGDVJUFzIyMhAUFASbzaY6eaNn/PDDDwOofB5K7Y5vZ66s8laDH3B4yyHhipsVkG5XxqP2TGkVpdr2Tjx8vVdysxJKde7QoUMAKmOl5O2DBm1X8m65UjYeNTdrXaS4uFiy05ASVXGz0r1xx3JcUFAgadt0/xwZEuTMmDEDn3zyicPvUJv0tJtVrT4UFhZi+fLlDo9B7VjJPczjzDLH588kqG24aoV2P0L4KoeSWco3zwauiIbQ0FC7/fbkOOusO3ToIFnZu2HDBruVsnKoY+Pz0PCBk2az2S3LHOWjUxOU8fHxLq3a4q+1qu5IV3C27yZwpYFGRUUhODgY69evt7N+KrlZAcdpQDyBO4mciY8//hivvPKKwxx8/PHee+89t8rEX6s7CwaozrjzG6XvtmvXDp9++im6deuGvn37IisrCxqNhgkGg8EgiQ2Sd4SU/qNx48Y4ePCg3edKOR5dITAwEPXq1cOhQ4dcEtylpaXw9/fHPffcA4PBoJgqw1Or+/gJU9euXSVbMgGuu1lvvfVWp4MVzx133IHy8nKHQor6An6hi/y5OxNzHTp0wA8//ICpU6fafUYiWWnrPFeoV6+eJEk0jytu1rqCK2WripijBVPOxBxfv/Py8iTPmJ6NO4LQFRwl2q7OAgi1sdpVQ0tFRYXLceVqCyDovvPPiq5FWOaqiJKYI0io1IT16dZbb7XLLC+HBhU+t1x2djaAKznHqNJQRXU2O7rllluYq0tOamoq1q5d67TsPNW18jlCrcEoWeZo4Ozbt6/dXndKCyD41zUh5v7zn/9U6fhhYWFOV87RcR955BG3ZsP8bwH3rEXU0SntbqKGkpjTarV47LHH0K5dO2aZMxgMiIuLg8lksluFqCYeKfbQZrNh+/btdlnUXYVPSkwpM1wZlAICAqDRaNC6dWskJSVVa1WaK+civv/+e7uQBkflpdieESNGKG627gxnFjGqQ/wqavl1O4u/e+mll1BYWKh4v6hd064l7pKSkoLnn39e8bOAgAB8+eWXGDdunGrZfAly/blzHSTC3RFiZrNZUidpfPT0xJ6upybdrFXBlX7T0QKImJgYdt/5e+aumPNZy9zevXvx7LPPMjfYkiVLPNJZOhJzSqk8ahOqBHz8FK0yu++++/C///2PVQCalTmbXdDGzefPn3c5lYgj3GkYx48fV3QTOeK5557D7NmzJe/xAlIee6CEUswc4H7jcZX8/HwEBgZi8+bNkvN4CrqeqgjpqpaFcoG5E+SsJub4zwsKCpCYmIihQ4eid+/e8PPzk9RhtWcze/ZsGI1G1K9fH40aNWJJOt2F3waNNk+vSrswGAx44YUXcM8990jKEhERwSZgniAgIMBOODqaLDRs2BAdOnTA66+/Xi1XrzPkO3/wOLPMaTQa1X6LQh6creSsCklJSdi+fbtkh4mrAXees6tijrfM2Ww2yTOeMmUK2rRpY5cMurrQOT1lmZMvgKhJlNysjRs3xrBhw9CpUyfF+EZ3J/8+a5lLSEjAunXrsHnzZjRt2tQtd4EaR48exYwZMwA4tsx5q5HTbJR3ufXu3RsVFRUs+JoevLuugvr169tt4VLTNG/eXJK6wxVeeuklu/f4jt9RAC+h5mZ1N0bBVWilpjxmzlPQqraqLGRxtyz8aryIiAi3OkIlIaa0OtVoNMLf358tgnAlF16DBg2waNGiKuWW41m4cCEGDhyI1q1b221P5Q4ajQYffPABS2VA7Nu3Dxs3bnT7eDTpUkL+3B0N3kFBQdi7d69klwcldu7ciX///de9QnI8//zzzOLvSMy5W/+qE7/qDEr0TVS3LvkiVRFzgPReBQcHY9SoUR4vG1nmlEJOkpKSoNVq7bbCcoSnLHOuoBT3+9RTTzG94Qk3q8/WVt46xW8QLMdqtTJhA8Bh0t/9+/fjs88+A1BZmd966y1JFvuajAdzhSFDhmDy5Ml26SY0Gg1rhFQB6JprKv6rNtmxYwf7W0mwKAVbOzK3e8PNypfN08enfHo9e/Z0+7fulKWoqKhaVkulZ8cfj1aOytM38OLE01ZTOd26dcOvv/4K4IoF3tl+mY6QC6sGDRrYbcHnCvJVdTx0X2+++Wa3J0eAskVXLkJdhY8vvv/++3HgwAG3F0A4wp0Vku4yYsQIHDlyBP/9738BVG+RSl2gYcOGdttPOqOqYq6m2yVQuSAmOTlZMU9fw4YNkZ2d7dYYXZtijrfM8dZ/gsRcddysPmuZI86fP48NGzbYzaqI6dOnw2QysX9qCRsBaWqBoKAgvP766zhz5gx7j260txp569atYbPZHM5OKXCcYojkWfh9kW7duqFbt24AnHcyStsPySELpHwCUNNijlzfnrbMtWzZEjk5OW7FrxHulCUwMLBarngl0cB3VLQrwJ133ql6jNoYNAgSc8520fA2JObatm2Lt956y63fHj16FMnJyR4vE6WaUUJpxZ6r1GTfq9FonKbH8CX++usvHDx40K3fUB/l7uKF2rBitm/fXjG3KuGuscXZAghPQv0m72bl+zIlNytZIJ2lPSHqvGUuPT1dMdHiypUrERAQgAcffBBfffWVaic/adIkScCr2WxWFXS8mFOyItRlszutCiTz9gMPPIAOHTqwbZGuFpwN5q6IuU8++QR33323nbioqZg5ghq0K7sluEtVE3TWZsiAq23K0bV4Q8xVxzIHAG+//XaVtn+SExERwWJ6eei+urLZvBzKeu8paGDU6XTs2crd1M7y5HmT2g41qUliYmJcSlWUlpbGRJwn3Ky+Qm3GzNH94rfo5Ccy9Dl/32lRh1KbV6LOP4G4uDhs27bN7v3y8nLcddddeOONNxwGWur1epc7DL4hO7Jo1UXzu0ajkWxnRSvrrjVciZkzGAwYOnSo3fvyHH2eplu3bli4cKHTZJ+1SW264Z25WYmrTczRno/VRZ78mqD6WhUx52mob+Qtc3LLZnUsc0Blvjt38ym6Sl3s22saPmSJ6rq7z8UXxVxtulmp72vVqhVb9Mf3ZQsWLMAXX3whmeiQmHO20wfhe0/g//nhhx+wY8cO5OfnY9q0aXjiiSdYAtKqwldIpQdMrsuqxCYJagdXYubUcLQ/nifQaDR46KGHauTYVaU2OjLCVTHnKKeeJ1Zcu0pdc7OqTTLonrjqjqkNeDEnt8w5SijsClOmTKlW2QTqkJhz9lyuBstcbYq56Oho7Nu3D+3atcPTTz8NQCqY69evb5dX8ZoRcyNGjGB5oDzJt99+q7pfZqNGjWCxWGrMcuPrNGvWrNbO1bFjR7Rt2xapqamS92lAq8ozIjFX3e3NBMo4W7xC1JWBgcRcVVaz1iZkTapLljmdTsdEpiPLZm1OJlxl0aJF2Lt3r7eL4RV69eol2XtUDSHm3Ie2V6R758z6edW5WWsbZwJRCDllcnNza80FduHCBZhMJsV8f47yBDqDGpcQczVDTSaUrgl8ZYCiWF+1RWDewJGbta4zevRojB492tvF8AoTJkzAqFGjnC4mIEFiNBphNptrNfzBU9RmzBwP3Ttn9+yascwJ6hbu7jxQHRzFM9LA4chVp0ZNu1mvdYRIrhkiIyPrhFUOkMbMUZ8gJsC+g0ajcWvbOdpG0lcmPjy1bZkjXLXM0RjmqpirezZugaAa3HbbbZg2bRqLS3AHmikJ0VEz+Oqgfu+993q7CD4DiTl/f38MHjwYX3755TVr5bqaIUFCi5WEmHMdVy1zVD7hZhVck/j7++O1116r0m8p3k5Y5moGZx1+jx49UFhYWEulcY3i4mKfHKjqAn5+fk73mxb4NmQ98sU2Upt55nhctcwRrqad8r0nIBDUEBToLixz3mHr1q3eLoIddS0PmkBQFyBBQhNfXxZzddUyBwCrVq1yuvUe4XtPQCCoIZT2xxMIBK6zfv16rFixwtvFENQwV4OY8/YCCFcsc+4savK9JyAQ1BAk5oRlru6xZs0a/PXXX94uhsAJXbp0QZcuXZx+748//sCJEydqoUSCmuDDDz/EjBkzmJjzxdWs3rbMeTpnplgAIRD8P9eqm3XTpk04cOBArZzriy++UNzRxRkDBgwQyWKvIm6++WbJjjUC3+K+++7D/v37fdoyR2LKW2LO07F6vvcEBIIagixzvtgxVYfevXvX2rkefvjhWjuXQCCoWXxZzGk0Grz66qtsP/PaQog5gaCGIcucL3ZMAoFAUNv4spgDgLfffrvWz1lTYk64WQWC/4fyiSUkJHi5JAKBQFD38XUx5w2eeOIJBAUFoX79+h49rngCAsH/M2DAgDqTSV8gEAjqOkLMuU/Xrl1d3tXBHcQTEAgEtc7JkydRUFDg7WIIBIJq4MurWa82hJgTCAS1TtOmTb1dBIFAUE2EZa7u4PMxc0uXLkV0dLS3iyEQCAQCwTWFEHN1B59+AhUVFfjpp58cBhJarVZYrVb22mw210bRBAKBQCC4qunYsSNGjBiBxMREbxflmsenLXPffvsthg0b5jDp3/Tp02Eymdg/T68gEQgEAoHgWiQm5v/au4OQpvs4juOfZ9GmgTNLR4fsVEFEQSCj4ZZhJB6KMGQehgSBQtChgxRdKqJz4aFLhwQpTSEoOiUeOpRSaTsEIxwRKGHBEF1EbPHv+xzUnuVT1ANP/f259+uoG3zhs//24ffn9/9FNDAwoIqKCr9HKXt/maPb9zzPU1tbm+7du6doNKqJiYnvvu57K3P19fVaWFhQOBz+U+MCAAD8Fqv+Nuu7d+/U3t7+r793dXUpmUz+9CiOUCikUCj0u8YDAADwlbMrc+fOnVM6nVYgEND4+LhOnjypa9eu/fR9+Xxe1dXVrMwBAIA1wdkyV6qhoeGHt1lXMjN9+PBBVVVV//txGgAAAH/amihzAAAA5crp3awAAADljjIHAADgMMocAACAw1b9o0n+pOXNEQAAAKvBr2zYpMyVyOVyikQifo8BAAAgSb/0KDXKXIlgMChJmpmZ4Rl0Dlk+1YPc3EJubiI3N5Gbu6qqqn76GspcieVlzHA4zIfdQeTmJnJzE7m5idzWJjZAAAAAOIwyBwAA4DDKXIlQKKSLFy8qFAr5PQr+A3JzE7m5idzcRG5rG8d5AQAAOIyVOQAAAIdR5gAAABxGmQMAAHAYZQ4AAMBhlLkSPT09SiQSSqVSKhaLfo+DFSYnJ5VIJNTU1KRkMqnPnz9raGhIsVhMzc3NmpmZkSRlMhnF43HFYjGNjo76PDWWDQ4Oqq6uTpLIzRGPHj3SoUOH1NTUpPv375ObA758+aITJ04okUjowIEDev36NbmVA4OZmb148cJSqZSZmV25csVu377t80RYaXZ21j5+/GhmZufPn7fh4WGLRqNWKBTs8ePH1tXVZWZmx44ds6mpKVtYWLBYLObnyFjieZ4dP37c9u3bZ8Vikdwc8OnTJzty5IgVCgUzM3JzxOTkpHV0dJiZ2cjIiJ05c4bcygArc0vGx8fV0tIiSWptbdXY2JjPE2GlLVu2aMOGDZKk9evXa2pqSrt371YwGFRjY6NevnwpSZqdndWOHTsUDoe1efNm5XI5P8eGpIGBAbW3tysQCCibzZKbA8bGxlRZWamjR4+qra1Nz58/JzcHbN26VZJkZpqfn1ddXR25lQHK3JL5+fmv59VVV1drbm7O54nwI9PT0xodHVU8Hv/mjEHP8yQtfoktI0v/eZ6n4eFhdXR0SPr2Wlv+v0Ruq8379+/15s0bPXjwQN3d3bp06RK5OaC2tlaBQEC7du3S2bNndfDgQXIrA5S5JTU1Ncrn85IWf2w2bdrk80T4nnw+r87OTvX19SkSiXzNTJLWrVsnSQoE/vlYk6X/bt26pWQy+TWX0mtNIrfVauPGjYrH4woGg2publY6nSY3Bzx8+FCVlZV69eqV7t69q97eXnIrA5S5Jfv379fIyIikxYuhsbHR54mwkud5SqVSunDhgnbu3Knt27crk8moWCzqyZMn2rt3r6TF27HZbFb5fF5zc3Oqra31efLylslk1N/fr9bWVmWzWd24cYPcHBCNRpXJZCRJ6XRaLS0t5OaImpoaSYuFPJfLkVsZ4DivEj09PXr69Km2bdumvr4+BYNBv0dCicHBQZ0+fVp79uyRJJ06dUpmpt7eXlVUVKi/v1/19fXKZDLq7u6W53m6fPmyDh8+7PPkWNbQ0KCJiQnduXOH3Bxw/fp1DQ0NKRAI6ObNm3r27Bm5rXKe56mzs1Nv375VoVDQ1atXNT09TW5rHGUOAADAYdxmBQAAcBhlDgAAwGGUOQAAAIdR5gAAABxGmQMAAHAYZQ4AAMBhlDkAAACHUeYAAAAcRpkDAABwGGUOAADAYX8DhFUgEorbZSAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -235,7 +239,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHpCAYAAADQwgvtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyde1Rb153vv0Jv9ERCQgiBjAEbbAM2VuwQN47tuHHTOGmbNJNOJn1mJr03aWayemel09uZaWZum046095m7p126pneSW897U0nmbQuaeuE2Imxg+3ID8A2wjwFQhIICZAEQs9z//DaO0dCYLDBILw/a2XF6HWOdPbZ+7d/j+9PwHEcBwaDwWAwGAzGqiZvpU+AwWAwGAwGg3F9mNHGYDAYDAaDkQMwo43BYDAYDAYjB2BGG4PBYDAYDEYOwIw2BoPBYDAYjByAGW0MBoPBYDAYOQAz2hgMBoPBYDByAGa0MRgMBoPBYOQAzGhjMBgMBoPByAGY0cZgMBgMBoORAzCjjcFgMBgMBiMHYEYbI42mpiZs3LgRVVVV+Nd//deVPh1GjvKpT30KBQUF+PSnP73Sp8LIQYaGhrBnzx5s2rQJdXV1+I//+I+VPiVGDhIKhXDHHXdg69atqK2txb/8y7+s9CndNALWMJ5BSCQS2LRpE44fPw61Wo2GhgacOXMGOp1upU+NkWMcP34c4XAYP/3pT/Haa6+t9OkwcgyPx4ORkRFs3boVo6OjaGhoQFdXFxQKxUqfGiOHSCaTiEajyM/Px/T0NLZs2YIPPvgAer1+pU/thmGeNgbl7Nmz2Lx5M0pKSqBSqfDxj38cR48eXenTYuQge/fuhUqlWunTYOQoxcXF2Lp1KwDAaDRCp9MhEAis7Ekxcg6hUIj8/HwAwMzMDJLJJHLdT8WMttuEVCqF6upqfO1rX0t7/OjRo5BIJPiP//gPuN1ulJSU0OcsFguGh4dv9akyVjELGUcMxnwsdgzZ7XakUimUlpbeytNkrHIWOo4mJiZQX18Pi8WC559/HoWFhStxuksGM9puE/Ly8vD1r38dP/rRjzA+Pg4AaGtrw6OPPooXX3wRjz76aNYdiEAguNWnyljFLGQcMRjzsZgx5Pf78bnPfQ6HDh1aqdNlrFIWOo60Wi3a2trQ39+Pn//85xgZGVnJ075pmNG2Brh69eqCXvdHf/RHKCwsxD/+4z/C5XLhgQcewGc/+1n8+Z//OQCgpKQkzbPmcrlQXFy8LOfMWH0s1Thi3L4s5RiKRqP41Kc+ha9//eu46667luuUGauQ5ZiLioqKUFdXhxMnTiz16d5aOEZOc/LkSU6hUHDNzc0Lev0///M/czqdjqutreUefPBBLpFI0Ofi8ThXWVnJuVwuLhgMcpWVldzY2NhynTpjFbGU44hw/Phx7pFHHlnqU2WsUpZyDKVSKe4zn/kM981vfnOZzpaxWlnKceT1ernJyUmO4zhucnKS27RpE9fW1rYs532rYEbbGuCf//mfFzzIQ6EQJ5PJuC1btnDhcHjW87/+9a+5qqoqrqKigvvxj3+8HKfLWKUs5Ti67777uMLCQk4ul3MlJSXc2bNnl+OUGauMpRpDLS0tnEAg4Orr6+l/7e3ty3XajFXGUo0ju93O1dfXc3V1dVxtbS33wx/+cLlO+ZbBJD9ygEuXLqG2tva6r8vPz8fU1NS8r/nCF76AV199FVqtFv39/ZDJZEt1moxVDhtHjJuFjSHGUsDG0Y0jWukTYFyfDRs2oLOzc87n33rrLXz1q1/Fyy+/PO/n/NVf/RXefPNNnD59Gvv378dPfvITPPPMM0t9uoxVChtHjJuFjSHGUsDG0U2w0q4+xs1x9uxZLj8/n/vXf/3XeV/3L//yL5xcLudaW1s5juO4b33rW1xZWRkXi8VuxWkyVjlsHDFuFjaGGEsBG0fzw4y2HCcajXJHjx6d9zW//e1vOYlEwr3++uv0scnJSU6r1XI/+clPlvsUGTkAG0eMm4WNIcZSwMbR/OSs0fbiiy9yNpuNUyqVnMFg4D7xiU9wDocj7TWpVIr75je/yRUXF3MymYy75557uEuXLq3QGa8MdrudUygU3A9+8INZz/3VX/0VV1VVlbXyj8Hgw8YR42ZhY4ixFNzu4yhnCxE+9rGP4TOf+QzuuOMOJBIJfOMb30BHRweuXLlC+9O99NJL+Pa3v41XXnkFGzZswLe+9S2cOHECXV1drMUOg8FgMBiMnCJnjbZMfD4fjEYj3nvvPezevRscx8FsNuO5556jbS6i0SiKiorw0ksv4ctf/vIKnzGDwWAwGAzGwlkzHREmJycBADqdDgDQ398Pr9eL++67j75GKpXinnvuwfvvv78i58hgMBgMBoNxo6wJo43jOHz1q1/FRz7yEWzZsgUA4PV6AVxrXcGnqKiIPpftc4LBYNYenAzGQmBjiHGzsDHEWArYOFqbrAmj7Stf+Qra29vxi1/8YtZzmQ3POY6bswl6KBSCRqPB8PAwgsEg/S8ajS7LeTPWHmQMhUKhlT4VRo7CxhBjKWDjaG2S80bbs88+iyNHjuD48eOwWCz0cZPJBACzvGqjo6OzvG+ZlJaWQqPR0P++853vLP2JMxgMBoPBYCyCnO2IwHEcnn32Wbzxxht49913UV5envZ8eXk5TCYT3n77bWzbtg0AEIvF8N577+Gll16a97OHhoagVqvp31KpdOm/AIPBYDAYDMYiyFmj7ZlnnsHPf/5z/PrXv4ZKpaIeNY1GA7lcDoFAgOeeew4vvvgiqqqqUFVVhRdffBH5+fl4/PHH5/1stVqdZrQxVg632w273Q4AsNlsMJvNK3xGqwu32w2n0wmr1cp+mzVGMBhM+1sqldINJLvujIUy3zhaLtj4XD5yNjz6ox/9CJOTk9izZw+Ki4vpf6+++ip9zfPPP4/nnnsOTz/9NGw2G4aHh/HWW28xjbZVjtvtRmtrK73x7XY7zp07B6fTudKntuzwv/tCcDqd6O3tvS1+m9uN+dI02HVnLJSVSPdh43P5yFlP20IqYgQCAV544QW88MILy39CjCWD3PAAYLVaYbPZ6L/XOvzvvpAdKvlNboff5nZjvjQNdt0ZC2Ul0n3Y+Fw+ctZoY6xN3G43fD4f1Go1da0/9NBDK31at4zFTnZms5mFH9Yo86VpsOvOWCgrke7DxufywYw2xi1hoTkOTqcTwWAQFRUVa/am5/8WANJ+l/kmO5YnwmAwGLc3zGhjLBt8IyNb2C+bEUIMGalUitbW1jVpoPB/CwALDocuJHTKDDsGg8FYuzCjjbFsZOamAenGWDYjhHiaWltbF5XblUtkC4EuJBy6kNDpYnPiGLkBM8YZDAbAjDbGMsI3MrIZY/MZIWs5kTUzBLrQRXgheSJr+Xe7nbmeMT5fyJ3BYKwdmNHGWBbm8gxIpVJMT09DKpXSx0lZeKYhM18YdS2wHN+LJQCvTa5njN9oyJ3BYOQWOavTxlh6/vRP/xTr1q2DQCDApUuXbuqz+Do9fO2xaDSK/Px82s91IXo+a1XzJ9v3crvdOHLkCI4cObJgrbbbme7ubtx1113YsGEDduzYgStXrqz0KS0LZrMZjY2NcxphVqsVFRUVsFqtsFqtUKvV8Pl8bAwtkNtlHOUCi9WqXC3cqjHEjDYG5dOf/jROnjy5JKE1/iJit9vxf/7P/8G3v/1tWhnK9xzw/77eZ60l+F5HQqaY8PWMuMVOcLk6Ic7Fl7/8ZTz11FO4evUqnn/+eTz55JMrfUq3HNI1xOfzAbhm4BkMBgSDwQVvdNbauFgsbBytHnJ1k36rxhALj+YoHMdh165dmJ6extWrV1FSUgKFQoGDBw/iW9/61g195u7du2/qnDLzagDA6/Xi7NmzuHDhAlQqFerr6/HUU0/R5zPDedlChmst5Ee+o8/nQ35+PlwuF6LRKILBINra2qDVaqHT6eBwONDS0gKPxwOVSgWDwTDrd1hs4cFKFios9ZgdHR3F+fPn8dZbbwEAHnnkEXzlK1/BwMAA1q1bt8Rnv3pxOp04d+4cOI6jY2SxuY25VMDCxtHa5lbk5ebyGGJGW44iEAjw/vvvAwBMJhPeeecdlJWVpb3m05/+NHp6erK+/ze/+Q1KS0uX9Jyy5dVMT09jamoKJSUl0Gq1EIvFcLvdMJvNsww0t9uNpqYmGjpd7YvHfMzX74/8Tmq1GhUVFfD5fOjt7UVHRweCwSC2bdsGnU6HN954A2KxGJWVlaiurr5uwcZCcuT4VbxHjhwBcOt6ui71mB0aGoLZbIZIJKKfX1ZWhsHBwTW/2J4/fx52ux1WqxXRaBTl5eXQ6XQ3vNDlUgELG0drm1uxSc/lMcSMtmVmuZPoPR4P4vH4rAEHAK+99tqSHw/48DtJpVJEo1H63axWKxwOB958803odDpUVlbCYDBgYmIC9fX10Ol0NGRjNptn7e6dTiei0SikUmlOLB7zkWkQf+lLX8L/+B//A2azmYZFN23aBJPJRDtAlJWV4dixY3C73ZBIJNBqtSguLsYTTzwBs9mM8+fPo6mpCTabDQ0NDQDSJzh+ZS6QvYKQ/LupqQmdnZ1Qq9WzPHi5NGYFAkHa3wtpb7cWaG5uRmtrK8110+l0MBgMAEA3P6OjozAajTh48OB1r+NyLJRsHDFuFjaGZsOMtmVmucMO7e3t2LZtW9bnlsPTxveGSaVS5OfnA/hw0o/H47h8+TK0Wi0aGxvpc2q1Gn6/Hz6fD5s2bZrVrgqYLRGSy/D7/R0+fBhnzpzB0aNH8cUvfjGtGIN0gFCr1RgcHITH44Hb7cajjz6KP/iDP6C/SWtrK1paWtDR0YHe3l6YTKZZvxH/95tv3BHjuLi4OKsHL1fGbGlpKVwuFxKJBEQiETiOw9DQUNYJeC3AX8AMBgMkEgny8vLoOOMb7NFoFKFQCBqNhuYG2e12ALfOs8rGEeNmmWsMLZUxl4tjiBlty8xyhx2Gh4dhsViyPrccnja+N8xms1FPG/8mamxshMFgoN/Z5/PB4XDA4/FArVZTY4V46whrKXeN3+8vHA4jGAzSRPFsY8LhcGB8fBwzMzOIxWJobW1FZWVlmgFmNBphNpuhUqmot5IP+f2yGcR8shnH/OuXK2PWaDRi27ZtOHz4ML7whS/g9ddfx7p169ZsSIuMA5/PB71ej+3bt0Mul9N7jVw/r9cLqVSKffv20TFAClxCoRC8Xu91vW9LsSiyccS4WeYaQ0u1IcjFMZTT1aMnTpzAgw8+CLPZDIFAgF/96ldpz3MchxdeeAFmsxlyuRx79uzB5cuXb+k5Xq9U/2bZtWsXTp06hSeeeOKmP+uZZ56BxWKBy+XC/v37UVlZmfY8MQasVisOHjyIhoYG6k1ramqC3W5HNBrF3XffjQMHDgD4UINNLpdDoVBAoVDQ8CcJr+ZaldBi2b9/P+6//37s378fQPqYIP/W6/XgOA4ymQxCoRCTk5O0gpSEU+vq6vBnf/ZnuPfee6mhTCr++P8m1afkWJmQYwKg7+FXbOXSmP3xj3+MH//4x9iwYQP+7u/+Dj/5yU+W4AxXJ6SKGriWM1ldXQ2bzUYNK3JNX3/9dRw7dixNcsBqtcJms6G4uHhB99xSVPCxcbT2uNVVxnONoWyKAos5N/LaysrKnBtDOe1pm5qaQn19Pb74xS/ikUcemfX8d7/7XXz/+9/HK6+8gg0bNuBb3/oWPvrRj6KrqwsqlWoFznjp2bhxI7q7u5fks/7pn/4J//RP/5T1OX5Y1GazAQBNZPf7/ejs7IRCoUAkEkmb6O12OyKRCKqrq6FSqdDf34/29nb6OcRTt5ZpaGigOWhzYbPZcOrUKRpy3rFjB7Zv3069JHxtO5/PB5/Ph56eHnR0dGD37t2orq6mO8+enh588MEH0Gg0cx4vs+gj2452ufJJlnLMbty4Ea2trUvyWauZTE/oXNfF6XSip6cHHo8HbW1tmJiYwPbt2/HQQw/hoYcegs1mm1Xhne04Uql0UTI7KyGAzcbRrWclq4wzx9jNVNKT11ZUVOTcGMppo+3+++/H/fffn/U5juPwgx/8AN/4xjfw8MMPAwB++tOfoqioCD//+c/x5S9/+Vae6qrnepNuZpGA0+nE8ePHMTk5ieLiYqjVaiQSCXi9XphMJjrZd3R0YHJyEl6vF+FwGIODg0gmkxCJRKioqKDegdsF4gkD0nOLzGYzHnvsMYjFYkxOTqKiomJW7hE/zCUQCDA2NgaPxwO73Y76+nq6yLa0tIDjOPT29qZV6vKPm3k9s3Wn4IfjSAhurYSvcw3+gjSf90oqlUKhUECpVEKn06UlQ2dK8rS2tlJvN/m/w+FAf38/bDYbHSfAwhfBhbyWkTtkrgsLDXkvhxF/vTGWTfdyLpYqdL8Sm5WcNtrmo7+/H16vF/fddx99TCqV4p577sH777/PjLYM5rsh+GFRi8WCt956CxcuXMDw8DAKCgqoJAWZ8Kurq+lnHDx4kHp0EokEysrKUF5evibFchcC3+jKrNpsaGhANBrF73//e/T398/KW/N6vfD5fCgvL4der4dUKsWxY8egUqnQ3t6O7u5uhMNhFBQUoLy8HMXFxbDb7TAYDGhtbcU777xDhVczJ63W1lb4fD44nU50dHTg4MGDaTmJbEG+9fBlY3Q6HWKxGA2LZzP8yeNk4crPz4fFYqE5O06nE++88w5CoRBqamogEongdrsRDoehVCphNpvh8/loFZzdbofdbofNZsNDDz0077nmkmQIY+FkrgsLzTvOlH+ay7Dhj2WLxZKmRpDJ9YyyzG475PMzjz2XoXUjBthKbFbWrNHm9XoBAEVFRWmPFxUVrfkcqhthrkk3MywajUZx4sQJ9PT0oKCgADqdDvX19WhoaEgL2/BvgIMHD2aVCLkdIblF5N+ZEE8J37Aihp7L5YLFYoHNZqMeytraWjidTrS0tODEiRMYGRmBRqNBY2Mj6urqAFyrKuzt7UUymYREIpnlWfP5fLSClZ9nSDw62UST12o/2NVEZnX3N7/5Tdxzzz1obW2dJabLl/kArs1/MpkMRUVFiEajcLvd6Orqwrlz5xCLxTAyMoJNmzZBLBZDIBDAaDTS1lcKhYLmtgoEAvj9/utq+q2lIqK1xnyakddjscZ4tvD69SrZyVj2er3Iz8+f07MfjUYRjUZht9vnrJ4nRW8+n496ijOPne2xxWiE3sqirWysWaONkE07JfOxTG5mkOcqc026drsdH3zwAWKxGJRKJaRSKZLJJIqLi5FKpRAIBOByudDQ0JD2GUeOHEnbpbMJ/Rpms3ler0U0GoXZbEZFRQX9zUjIMxAIQK/X0wmCP0EaDAZs3boVly9fxsTEBEZHR9OqCg0GA5xOJ110+ZNUZlJvpoHGv678bg7kPmHXdnngy8YAoHOQ1WrF9u3b6b+Ba9dsdHQUHo8Hk5OTCIfD8Pl8NPx99OhRvPbaa0ilUkgmk4jH4wiHw7DZbGnjhCygZJNmMBjg8/lw/PhxTExMALjmESH39vVyNRkrTzbj/4UXXljQe+daF+batPFzxTJTX663Sa2vr0c0GqWbC5KLSY7n8/kQiUQwOTmJpqamWRXQJIpw7tw59Pf3w2AwZPXOZTO0FqMRutBUheVizRptJpMJwLUdZ3FxMX18dHR0lvctk5sZ5GsBvsu6p6cHw8PDEIvF6O/vRzQaBcdxiMViSCaTdOEmNzFpxdTV1YWpqSmsX79+Jb9KzjHfzk2pVKK6uhrANaO4ubkZIyMjqKqqQlFREWpra3Hw4EGcOHEC4XAYDoeDihlbrVZIJBI0NzcDuGYckkU+Ho8DQFp+U2bIgjzH98rdriHuWwVfNoZPpuFPFjSJRAKpVIqCggIAwIYNG6iR7vP5MD09jWQyiS1btkAgEKC8vBxSqRQdHR10sco0BoFr4yIWi1G1d7vdjgsXLgAAM9pygLmM/5thrvBntvkrW74sgWxSiRQU8Zb19fXNOh6pmPZ6vdTjlumRyxzDmUVc5PjzaVxezwhb6VSANWu0lZeXw2Qy4e2336biebFYDO+99x5eeumled+7HIN8NTLfbonsuFOpFMRiMZLJJFKpFMrKyuByuTAzMwO/3w+RSIRf/epXOHPmDEwmE1wuF65evYpQKITS0lLodLoV/Ia5QbbwIx+n0wm5XI6amhrYbDbY7Xb86le/wtWrV5GXl4fKykpqVKnVauzcuRO/+tWv0N7eTvXx3nvvPSSTSUSjUWi1Whw8eBBGoxF+vx+XLl2ixSL5+flwu91wOBzQaDSoqanB6OgoOjs7UVNTg7q6OmqsMQ/b6oC/oBkMBphMJhiNRoRCITQ3N6OtrQ3T09PQarVQq9WYnJxETU0Nqqur0dHRgZaWFrS1tcFms0Gv18NiscDpdOL06dM4c+YMpFIpqqqqYDQaYbPZaOoJCfMzVjdzGf83A99wWUjB0lwhUuIJSyQSNJ+W7/3Ndjzg2sbB4XCgvb0dEomEyt/MFcm4noG1mPD+SqcC5LTRFg6H0xSL+/v7cfHiReh0OpSVleG5557Diy++iKqqKlRVVeHFF19Efn4+Hn/88Xk/dzkG+WpkrhspGAxiYGAAGo0GOp2Oqjzn5eVBLBbjzjvvREtLC/r6+jA9PQ2fz4eamhpYrVbs27cPer0eYrGYVkAy0sk0lvnXwefz0dATyckIBoNUzJhcJ6FQCLlcTitxrVYr2tra0NraCr/fj/HxcXi9XpSWliIUCqG4uBgikQjJZJJOYCaTCWKxGADoYh2NRhGPx+HxeFBcXAybzYZXX32VKuzfKjV9xsLhL2h2ux0DAwPo7++nc2MikcDU1BTMZjMKCgqgUqkgkUhocVFvby8CgQBOnDiBsrIyOBwOeL1eXLhwASMjIygsLIRSqURJScmCz4nlPOYGN5qUn81wma9gaS7vlMvlQmdnJ1KpFBKJBIqLi+FyuWAwGOD1emdJfJDzAq5pf/r9fsRiMUxNTQHALKOR/77W1tY1MR5z2miz2+3Yu3cv/furX/0qAODzn/88XnnlFTz//POIRCJ4+umnMT4+jp07d+Ktt95aMxptNwL/ZpRKpTS0QhI3zWYz2tra0NfXR93WSqWS7rLJwj4yMgKfz4fJyUkUFhbS0BwAqsKe6zfHcpFpLGfmXZCcS/K66elp5Ofnw+VyIRqNYmhoiOZgANe6KYyNjcHv94PjOJSUlGBmZgZOp5MaWiRFYGxsDEeOHMEvf/lL+Hw+1NXV4emnnwZw7X7q6emB3+9HXV0dDhw4QK8hMSTZNV19ZC6gwWAQg4ODEAgEUCgUEIlEEIlEMBqNdBNGchwjkQiKiooQiUTAcRzWrVuH8fFxnD17FsPDw5DJZJBKpejq6kIsFqPeuQsXLmBiYmLOwiImAZIbzHWdMr1nCyki41d/EkiqTSAQgE6nm/Wcw+GA2+2GQCBAXl4eJiYmoFAoEAwG4Xa76eZx//79cLlccDgckMvltKBr165daGtro7qVc1U7r6XxmNNG2549e+ZtyioQCPDCCy/cVvlo1yMzF6GnpweXLl1CeXk5HA4HqqurMTU1BalUCpPJBL1ej7Nnz8LlcmFqagqlpaVQKBQoLi7Gjh07UF9fT3NjWIL6wiATl1QqpVIbJEeD75kkFVj8fLLe3l68//77GB8fR15eHrZs2YJgMIju7m7IZDLU1dVhx44dVDMvmUzSRN/h4WGcPn0aoVAIyWQSeXnXGqI0NTXBZDLh+PHjOH36NDQaTdrkvBBxYMbqgIQvSVVodXU1hoeHEQqFUFFRgfb2dly5cgV5eXnYsGEDhEIhhoeHEQ6HsWHDBqq/ODExQY0+juPgdrvBcRx+/vOfY2xsDBKJBNPT0/i3f/s3TExMYMOGDXj44YfpOCG5ST6fj2oFMlYffA8Yf0MfDAbR0dGBoqIiBINBunEEsleAzlV8kFn5Tjxozc3NcLlcGBsbQyqVQnFxMZWf8fv9qKiooKkdU1NTcDqd8Pv9UKlUMBqNiEQisFgsaGhoQFtbGzo7O6k2YSakcnp0dBSbNm1apl/y1pHTRhtj8fANBuK5IRNwd3c3zp07h1QqBYVCAZVKhYKCAoTDYTidTrjdbkgkEigUCpSXl2PPnj0oLy9HY2MjWltbYbfb0d3djWQyCYPBsMLfdPXjcrlmSW1Eo1EYDAb09vYiGo3SSZDfT/SBBx4AAJSUlKCyshIffPABAoEA9ZqRnCOtVguJRILR0VGo1WrMzMwAAFKpFNavXw+NRgOhUIgPPvgAcrkck5OTNCH48uXLOH/+PF2E+ZWq/B03C4OtLsxmMzX8bTYbTCYTmpqaoNFooNfrUVxcjJaWFsRiMRiNRmzevBnj4+OIRCLIz8/HiRMn0NnZiaKiImzfvh2Tk5MIBAIArlXenz17Fn6/HzabDfn5+ejr60NPTw8GBwdRVlYGk8lExwMZx9n65DJWB3wvbWtrK93QO51OeDweqvsokUhoBCVTJ5AvtdHV1QWdTke98sQjtn79enAcR1937NgxjI2NQaPRQKlUYnR0lKZm6HQ6GAwGFBUV0TSl7u5uuN1uxGIxqFQqCIVCDA0NwW6348yZM7hy5QoKCwtRWlo6q5eo0+mk3UGqq6tvagOamX+8EnMfM9puM8hN2traimAwiD179sDn80EsFmNsbAwjIyMYHx8Hx3Ho6OhAb28vYrEYCgsLIZVK6QSfTCbhcrmwa9cuANeMwY6ODnrzMS28uSE708wKTP5kkOmlILlt8XgcPp8P27dvR2VlJSwWCyYmJqBUKrFjxw6YzWY0NTVhaGgI8Xgc8Xgcly9fhtfrxbp161BcXIzi4mLabNxut+Pq1auIxWKQyWQ0NHvhwgWUlJSgoaEhTR6EiLYSDh8+DI/Hg717986qaGTG3MrAFxk1m81UJ5EsoFNTUzh79ixEIhEtcJmamsL27dvh8XgwODiI8vJy5Ofnw+v1QiQSIT8/H2KxGPF4HCqVCslkEiMjI5ienoZEIoFAIEA4HIbdbqee9vm0H9nYWH3wr5dUKkVvby9UKhXi8Tjy8/OpJiDZoBOB8MbGRhgMBjqXcBwHh8OBJ554Iq0wgBiFRqMRRUVFSCaT0Ov1GBkZgcfjgVarhUKhQG9vLzZv3gybzQapVIq2tjZMTk5ieHgYQ0NDmJ6eprm6R48ehcvlAsdxCAaD8Hg8aZWi5PsUFxdnlfpayFjkv4YfNiZVrLe6Ywwz2m4T+J4Sl8uFQCAAjuOg1+sxMDAAu92O6upqFBQUYGZmBmq1GvF4HOfPn8fMzAxKSkpQUlICgUCAsrIy3HHHHZDL5WlihAcPHoRYLKb5cYzszFdezjfcSNP3hx56iOa9DQ4O4vLly9BqtWhsbERDQwP1bgSDQRw6dAjxeBwikQgzMzNIJpOYmZnB9PQ0CgoK8LGPfYx2Uzhy5Ai8Xi9isRjC4TCGh4dpgYPRaMT09HRa+JYUQ7hcLmpUEl2wTNZSDkmuMVfIi1yHj33sYwBAC1x27doFl8sFv9+PsrIyHDhwADMzM7hw4QLi8ThqamqoyC7JOxoZGYHX68XY2BgEAgFUKhU6OjoAXJOm4UvNZHpkF6qWz7i18L1u5P/Nzc0Ih8N0Xne73VkFwsljyWQSPT09tIiAf035r9XpdLDb7RgbG8PExASEQiHuuOMOTExMwOv14uc//zk2b96M6elpfPDBB9BqtTCZTOA4DqWlpXTD+h//8R/Iy8uDVqtFaWkpUqkUWlpaIJVKqUfNbDbjiSeeyFqhv9jKV/6mmsyJAG7pXMeMttsEflK73W6H2+3G1q1bEQ6H0dTUhOHhYbS3tyMSiUAsFqOmpgZyuRz5+flUo0mtVmPTpk3YvXs3Dhw4kFWE9Ytf/OIKfsvcYK6S8czFjJ+vSbwnFRUVUKvVaSXx5PP+8i//Es3NzZDL5RAKhUgmk0gmk1CpVFAoFJicnITdbseTTz6Jd999F6dPn4ZCoUBRURFCoRBSqRQEAgHUajWqqqoQj8fxy1/+EolEAqWlpdiwYQOi0Sj8fj/6+/tRXl6O0tJSavRl9rJkOm4rA79iLlPlnYTZy8vL6abNZDIhGo2iqakJFy5cgFwux/T0NEZGRmAwGHDnnXcCAN5//32MjIwgGAwiEomgpqaGzg+RSASXL19GV1cXtmzZgomJibQxzj8PfuENM+5XL9FoFF6vF+Pj46ipqYFYLKadUrLJahgMBjzyyCNwuVwAQDeGwIedNMgYJI9JpVK0tLQAAB5++GH4fD4cOnQInZ2dGBkZoUVvRUVFKC4uRl5eHoxGI+RyOcLhMNavX08lug4ePIgzZ87Qpu38MOhccy4pxnM4HJDJZDAajbNEezM32eQ7ZHatuVVzHTPa1hhzuXvJRKlUKuHz+eD3+3H16lWMj4/TpGVSPi0QCHDx4kWqvm8wGCAWi7FlyxZUVFTA7/ezasJlgD85ZFZZkbwRALSqk1/GDgBXr16Fy+WCTCZDeXk56urqoNVqEYlE4Ha70dnZiUuXLuHdd99FOBzG1NQUamtrUV9fj4GBAUgkEtTV1aGhoQEKhQJisRgdHR2Ynp6GSCSC3++HxWJBJBKhivvAtRy5trY2pFIpmrBMkpLXUql9rpFN5Z14ZHU6HbxeL15//XV873vfg16vp3p9IpEIQqEQMzMzCIfDmJycxJUrV9DR0QGhUAixWAylUonCwkJ0d3djYmICU1NTEAgEiMVi8Pv9NK+VeGT558EXPF1poVLG3FitVurdEovF1NDOtsaQggOpVEqNHn4YNRAIIBaL0VaIJJdXrVajsrISbW1t+M///E+o1WrIZDIAgN/vRyAQQDweR0VFBdUL5Tgurd3exMQExsfHAVwrPiSi70ePHqVdYDJzc8m5R6NReDweuN1uFBYWQqPRzPIQZjP4MrvEzMVypAIsq9HW1NSE//bf/htSqRS+9rWv4Y//+I+X83AMzB2WIp6a06dPY3h4GMFgEMlkEpOTk5DL5TCbzUgkErSqMJFIYHp6GgKBAIlEAoWFhaioqIDBYMDx48dpSOx6jaQZCydzcuAnclutVppDQXJLMj1zIpEICoUCBQUF2LBhA5588kmYTCYcPnyYJuLyW7RpNBpaHQYAMpkMer0e69atQ0dHB329RqNBIpFAOByGXq/H/v37YbfbEY1GkUgkIBAIIJfLqSeWhE/JhMU8KSsD39DPfMzhcCAWi6G9vR3Dw8MQCAS044FSqUQkEoFEIgHHcfjggw/gdrvhdrshFotRUFAAjuNw8eJFjI6OIpFIQCKRwGw2Y2JiAqFQiOZUtre3w+12o6qqapaBxvdcMFaWTOOC/L1///60TijEULLb7WhpaYHBYKAaj1KpFD09PXj55Zexb98+RKNRlJeXQ6/Xw+Fw4MyZM3jvvffwwAMP0L9nZmZQVVUFjuPg8XhoNXNBQQH8fj+i0ShisRiuXr2KRCKBdevWYffu3TSHLh6P041Cc3MzxsbGIBaLIZPJcOTIEfT29qKtrY12SOLn4NpsNvh8PuTn56OkpARqtRoulwsbNmxY1G91vd6qSz3/LZvRlkgk8NWvfhXHjx+HWq1GQ0MDHn74YaaQvwycP3+eer741aFHjhyh+jgWiwUVFRX48Y9/jMuXL0MsFiMUCsHhcNDJWSwWUw8LMQxSqRQkEglKS0tpHgO/LRhj+chUHc/0mvDDTCaTCVu3boVCocD4+Dj8fj/a29thMpngcDgwPDyMSCQCkUiEVCoFnU6HO++8E0ajERcvXkQymaQJ6mNjY4hEIojFYjT0tW3bNohEIgSDQbz77rsYGBiASqWCXq+H3+9HT08PfD4fnnzyyVnGZjbpB5aMvvyYzeZZFZzkMafTCa1Wi7179+J3v/sdAECn06GoqAhjY2OYnJxEPB6HXq+HTCaDXC6HTCYDx3GYnJxEKpUCx3G0dZZEIkE0GoVSqcTExATcbjfefvtttLa2QiwW48KFC6itrQXw4Ubv6NGj8Pl82L9/P5OUWWGIIdbR0YGDBw/Cbren9f/MrJrs6OhAX18fHA4HSktLYTAYcPDgQbz88svo7e2Fy+XCnXfeCZvNhsbGRlgsFpw5cwb9/f04fPgwgsEgHA4HOI6DRqPB1q1b0woJ8vPzcc899+D8+fMYHh7G4OAgUqkUIpEITpw4AeDDYi3iZDh9+jQmJydhNptpBXReXh5isRgtjOPn4BKvc1VVFWKxGAYHB2ku5vV+K74hNp+3eDk8yctmtJ09exabN2+mKtof//jHcfToUfzhH/7hch3ytqW5uRnHjh1DW1sbvvGNb8BqteLw4cM4d+4cIpEIAKCgoADl5eXo7e2lCepkYQYAsVgMtVoNlUoFpVKJu+66i+5YioqKsH//frq4zpXUyVga+EUjhEyvidvtRnNzMzweD0wmE0wmE5VZ6erqQnd3N3p6eqDT6dDe3o7p6Wnk5eWhsLAQ1dXVUKvVEIvFCIfDkMlkEAqFiMVi8Hg8GB8fh0KhgE6nQzKZhEQigU6ng8vlgt1uB8dxmJqagkwmw44dO2j4o7e3F3a7nYosE4Ms03Dg51rd6sqr241si4bVaoXD4YDP58OBAweoxIvVasWePXswMDCAEydO0H6lpMm8RqOhuZGBQAAKhQJ6vR6jo6OIRCJIpVLUsAeAt956i+bDKhSKtDCS0+lES0sLxsfHaZI5M+JXDlL9z6/87+npQXt7O6RSaZrQNgAcPHgQJpMJvb29iMfjkEqlMJvNeOyxx/Dqq6+C4zhEIhG6WWtoaMCuXbvwyiuvYHR0FFKpFFKplOZPvvvuu9DpdCgvL8f4+DhEIhG2bNmCRCKBoaEhiEQiul6dOHECBQUFtBtMYWEhTCYTFeblOA55eXnIz8/Hnj17aBGFxWJBXV0d/TfxvhEvYkVFBcrKyqBUKnHo0CFYrdasQvGZ99R83uLl8CQv2mhLpVLYtGkTPvGJT6T18Dx69CgefPBB/Pu//zseffRRuN3utLYnFosFw8PDS3PWjDQMBgOEQiEmJibQ1NQEiUSCU6dOwePxQKFQIBAI4MKFCzRPJS8vDwKBgCa6C4VCSKVSiMViKgMQjUYhFAqxceNGPPXUU2nHYyGN5SWzEwKAWeFRYPausb29HZOTk+A4DslkEhcuXEBvby8SiQSUSiXkcjnq6+vR2NiIkydPoqurC4lEAmazGSUlJZiensbMzAw4jsP09DRisRgMBgPy8vIQCATgdrsxPDxMPbPT09Nwu934+Mc/jp07d8Lv92Nqaiot35GvL8fPq4pGo4hEInA4HFkbSTNP3NIwVz5OPB5Hf38/tFotDAYDxsbGIJPJ4HA4oFKpoNPp0NPTQ3sMq1QqFBcXo66uDh0dHUgkEjCZTJiZmaHGmlarhcvlQjwep7JByWQS+fn5kMlk2LhxI4BrkQHi/R0eHqbt2kgVH4HlzC49c91XmdIwUqkUPp8PIyMjOHToEKLRaNr1IFIeJG+N6LZFo1Hs27cPJ06cwJUrVzAwMICjR4+isrISgUAAMpkM4+PjSKVSKC0thUAgwODgIJ1vrFYrCgoKMDo6ip/97GcIhUIQCoVQKpVQKpWQSCS0aMpgMEAkEqG0tBSbN2+m3T4sFguthieiu4ODgyguLkZ1dTXEYjGVwwGuGW3Eq2yz2WhBTltbG31sqdOAbmZ+W7TRlpeXh69//et49tln8Rd/8RcoKChAW1sbHn30Ubz44ot49NFHASBrp4JsOimMm6e+vh4+n4+2+Ugmk/B4PBgeHoZUKqV6SlKpFEKhEACo0KpQKKRhEZFIhGg0SnObxGIx86atAJkCyPxkbrJ7lUqlKC4uRn19PaRSKa0A1mq1kEqlSKVS8Hg8GBkZgUAggEajgUajoTvSZDKJ8fFxhEIhjI6OorCwEFVVVXQMeL1eCAQCGkY/e/YsEokEpFIpwuEw4vE4hEIhLUiorq5GRUUF7HY73n33XXi9XroIkKRjp9MJr9dLe14CoB7FuUrxAZYLtxzwBXibm5thsViooDbpnhAIBDA4OAiFQoGSkhJs374dxcXF6O/vR2FhIfLy8qBUKqkIKgmbxuNx5OXlIS8vL8247+zsRDAYhEQigUQiwcDAAILBIM6fP0+rzh0OB06cOEGNSXbtl5b5JC74lZHNzc1QKpXUKH/jjTcAgBrYfOkLEs2x2+3Iz8+n19vr9VK5oa6uLtTW1sJqtWJkZIS2QDMYDBAIBNBqtdDr9XC5XBgaGkIsFoNQKIRCocD69esRiUQwMzMDo9EIt9uNyclJjI2NYWZmBtFoFOPj41RbkHjR3n77bQwODqKwsBCRSAS9vb0QiURIJBKIx+M07YToX5LQKLk3SBEOMFurjYSSSWHFYo2vm5nfbig8+kd/9Ef4m7/5G/zjP/4jnnzySTzwwAP47Gc/iz//8z+nrykpKUnzrLlcLuzcufNGDse4DqTFlEAgwPj4OAQCAUZHR2mSMCEajSIvLw+pVIo+lkwmqSeG7FAKCgpgMplgNpupIjVjcfAT/oFrBpjf71/Q7orvHYlGo1SIlyTOOp1OuFwuqFQq9PT04De/+Q08Hg9kMhlsNhsMBgOdyIRCIQYGBpBKpWguWyKRwOTkJK3GCofDmJ6ehkwmg0ajQTgchkAggMViQWVlJS5evIiRkRHodDpEo1FMTU3RHMjR0VEcOXIEJ0+exKc+9SmUl5fTHqZNTU2w2WyoqKigLbiI95CMK6LvlOllI+G7tdB2ZjWS2ZpMq9XScBCpzPvMZz6DtrY29PT0QCAQQCaT4Z133sH09DR0Oh1GR0cRCoVQVlYG4FoeM+lzynEcLWxIJBIYHx/Hu+++C7lcDovFgnvuuQfV1dW0l+Thw4dhNBoxMDCAoaEhqFQqtmFcBvjG1nzJ80Ts9sEHH6RCssC1kPeJEyewe/dubNy4EcFgENXV1TSvtbKyEjabDeFwmHpYXS4XlEoliouLUVpaCq/XC4fDAalUiqqqKqhUKng8HpSXl2NgYAAzMzPQaDSorq6GQqGAQCBAf38/TCYTjEYjotEohoeHIRKJMD4+jmg0is7OToTDYcRiMXR3d2Pz5s202E4gEECpVEIgEFCxeIfDQb1oAKjBRvTdTCZTWtcH4k202Wyw2Ww0lEwM1Wy/40Kuw42M8Rsy2kQiEb72ta/hv//3/47XX38dDQ0N+Md//Me01+zYsQOXLl3C8PAw1Go1fvvb3+Kv//qvb+RwjCxkJoZyHAelUom8vDwqnksMNqLZBSDNYMvLy4NEIoFMJkNBQQE2btwIp9NJdcD4IS3G4igtLU37+5vf/CYOHDiw6N1VZqUd2cFyHIfOzk6EQiGEQiFIJBKao1FfXw8AtLqqtrYWLpcLyWQSly9fRjQaxejoKILBIIRCIU3kdbvdtOMF8GEV4cjICPx+P0ZHR2nJvVwuh06no54U4NpCYDQaEYvF4PV6aUssq9VK1dB37dqF8vLytDySbItGf38/BALBLHXz24lshj8/z3GpmKu3rNvtRjQahV6vpxsFjuNoC6ze3l6EQiF0dnZCLpfTTinEc0I8sUQvkAg9p1IpeL1efPKTn0R7ezscDgdef/112sM4FouB47isYXNyXix0fmPwvWlz5SVbrVbs3bsXwIceWfLaw4cPY3x8nObLks1kU1MTAoEAjQjodDpMTk5CIBBg3bp1MJlMEIlEGBkZwbZt27BhwwaYTCbs3r0bv/71r9Hf34/u7m7U1tZSg33nzp2w2+3o7OyESCRCUVEROI6DUChESUkJpFIpJiYmEI/HAQB6vR7BYJB2fSEpIrFYDDt27IBarcbY2Bi8Xi90Ol3aJpr0RyWh08z5qbe3F+fPn0dBQQEeeughGkXgt/Wbj8wxezMpRjdciPBHf/RHeO6558BxHH7xi1/QsBv9YJEI3/ve97B3716kUik8//zz0Ov1N3o4RgZ8F63VaoVSqcT09DSi0ShdWAnZwtIikQgajQb5+fmorq7Go48+ivr6etjtdpqgTm4GxuIhgo8E4mkDFre7yry5zeZrvSV7e3tRUlJCZTd27dqFcDiM0dFR2O12DA4Oore3F0VFRXjkkUfg9/vR0tKCsbExOk5CoRAEAgGVcJiZmaFh10QigUQigbfeegujo6OIx+NUA0ksFqOsrAxbt25FLBaj2nDd3d0IBoO0FRr5vKamJpw9exbRaBThcJjqt5FJLHNCy6a4fjuSzfB/4YUXlvQY2XrKAtfmF4fDQfPelEol9u3bB71ej+7ubnR3dwMA4vE4NdyJQUc8tlNTU1TjT6PR0LGaSCTQ0dGBTZs2IRaLYXx8HMFgEOFwGAqFAlqtFqFQiHo65uuowIy265PN+M+cVzKNuEzhWCKEXF9fD61Wi6mpKVpdSuYk4FpBW29vL0ZHR8FxHA2BE68rKSJ4+OGHsXHjRvh8PiQSCQSDQcRiMVy8eBEbNmzA+vXrYbVa8Ytf/AJXr16lzoWdO3dCJBKhr68P3d3dkEqlUCgUkEqlSCaTuPPOO1FTU0MrYAcGBjA1NQWdTofKyko4HA4A19bEiYkJ/PKXv0RxcTGMRiMEAgFt6ZjZYjAej9M2bsDi87qXcszesNH2la98BQAwNjY2y2AjPPTQQ6tCx+uHP/wh/v7v/x4ejwebN2/GD37wA9x9990rfVo3DEnujkQimJycxMWLF+FyuTA9PQ21Wo2BgYG0sCj/38C1AVtYWEjduqS6BgCeeuqptOo+1uz5xiDCkXyWqoAjGo1SXSSTyYRgMIjy8nJYrdZZCvi7d+/GQw89hPPnz6OnpweBQIDuTkkxCslf9Hq9UCgUqKurQ3FxMa5evUqrw4inlkiGjI+P0wRfslFwu93YtGkTTST2eDy0kqyyspLuyvmGgtPppLtagtPphMViobl1t6tXJZvhv9SQxcThcMDtduPuu+9GdXU1zXsKhULw+/1QKBRoa2tDZWUlqqqq0N3djVAoRHPXZDIZlWSQSqVQq9W0cpTkJpHzn56eRiAQoKFWklPU1dWFWCyGyspKmM3mtOrDbK2EbmeDfjEsxPjP1lOTwE9rqKiowMGDB6neWXNzMxwOB/bv30/XDrvdju7ubvj9flrQcPXqVahUKtr67LXXXoNSqUR1dTUqKytRX1+PM2fOYGpqCr29vVRaqK+vD1NTU4hEIrQAxmw207ZrpC9qQUEBSktLaTSBCIXX1dXReS8YDMJgMND1USwWY2JiAgKBANXV1di4cSPNIwY+HF+tra3UWL3R9oxLOWZvyGj7q7/6K7z55ps4ffo09u/fj5/85Cd45plnbvpkloNXX30Vzz33HH74wx9i165d+PGPf4z7778fV65cobkYuQQxqEiZ/fDwMBW+JNV7kUhklqHGh1TchEIhuhvu7++H3W5HQ0PDrEoixuois1CBX5bOT/53Op2oq6ujE+no6Cg6Ozvh8/loTlpeXh71nkmlUuTl5aG/vx+pVAqbN2/GxMQETpw4gWQyCaFQCLVaTRfq9vZ2GAwG2kzcbDajoqICWq2Whlx7e3vBcRwOHjxIZQNIqJSf30Z2tZmVs/wK2tvNaMtm+C81ZCx1dnZifHycyoAAwKZNm9LGjdvtRnt7OzQaDdxuN0QiETXQzGYzFTmdmJhAX18fJBIJFAoF4vE4LWxRqVTUk3/x4kUano9Go5BIJNBoNDAajZBIJBgeHkZ3dzc1CsgYYdXri2M+4//o0aM4duwY6uvrae5pph4keQ/xxL711ls4f/48pFIpgsEghoaGoNVq6dphMBjgcDjQ3d2N6elphEIhBINB6PV6yOVySKVSjI6O0pSNTZs2YWZmBmKxmBr+fX19VFhXJBIhPz8f8XgcV69eRTAYRH5+PvR6PS1+2bhxI+655x4cPnwYTqcT58+fx4MPPojKykoIhUKUl5fT7yeVSjEzM4PKykpUVFSgt7cXPT09AEALC4hEEYBZnR7Onz+P5uZmiMViVFRULKjKeSnH7KKNtn/913/F9773PXqhn3vuOXz3u9/FU089BbFYvCQntZR8//vfx5NPPkm7MfzgBz/A0aNH8aMf/Qjf+c53VvjsFofb7abq9mQxu3z5MsbHx5FIJDA1NYVwOJy1cpePQqGAUqmkLt/169ejvLw8bRfBJsbVC7k2ra2taXpumSGkaDSK5uZmAEAsFoNEIkFRURGdIMlEHI/Hae7R9PQ0vF4vOjs7sWHDBtTW1sLpdGJgYIA2dZbJZOjs7IREIoFcLodYLIZEIsHExATOnDmD3bt341Of+hTee+89OJ1OFBQUoLm5Gc3Nzfjc5z6H2tpaWhE7MTGBTZs2zcqp4vcwXUjOCOPGIGOJLNL8OcBkMtFNwPr16/Gzn/0MAwMDGB4epkK6FosF8XgcbrebbgLD4TBSqRTy8/NpqJN4duVyOWKxGC2AIrIgHMfR95C5zOv10nZrfr8fjz32GJuTbgC+8e92u6kmn9lsxrFjx2gYes+ePXA4HIhEIti1a1daVSnB7Xbj7NmzmJiYgM1mQ2VlJXp6eiCRSKh4tlQqhUwmQzKZhM/nQywWg0KhgEwmo/mOqVQK0WgUarUawWAQfr+fynio1Wp4PB4A1xwMEokEBQUFtPNGXl4eampqMDExgQsXLoDjOFRVVWF8fJyKiEejURrC12q1GB0dRV1dXZonrbi4mEamzpw5g7Nnz87aIABI068zm82w2+1obW2l0jakyvlW5Vouymj73e9+h2eeeQa/+MUvaBPhZ599Fv/wD/+An/3sZ/jSl760LCd5o8RiMZw7dw5/8Rd/kfb4fffdh/fff3+Fzmpx8ENJzc3NOHnyJK0QdTqdGBwcpCEJIipIQlmkJJ+I6ZIKsIqKCuzevZtOmiaTKa0/G2NlWejNzxfEtNvtaWEN8lxHRweCwSAaGhrw5JNP0mpAsVhMc99IRSiZVIFrkjDEu2I2m6k+EtHh8vl8mJqawtjYGPx+P5RKJV2grVYramtrMT4+DplMBrPZTOVHjhw5QheQiYkJcByXFophm4WVgV+MQDyhANDY2Eivh8VioekwUqkURUVFKCwshNvtpsVOMzMztCUWEd8luZxCoZCG2lUqFYRCIX2O4Ha70dXVhU2bNsFoNEKhUKTpEZKqdv7rb9fw+Y2QmVu1b98+AMC+fftmFQDxO+2QseF0OqFUKqHX63H33XfjwIEDaG1txTvvvIOXX34Zjz32GNV0Ky0txdGjR+HxeLB9+3ba75Yk/MvlcvT19aGwsJAaZ3q9nhpyxMOm0Wggl8shl8sRj8dpqJ4IPG/duhWFhYVoa2uDUCiETCZDfn4+wuEwzp8/j2QyiVAoRMfJ4OAgYrEY2tra8MQTT2D79u1IJpNUkFyr1aY1jSfVo2RzbLPZMDExQT1t/Nw/flvB5RqXCzbazp07h0cffRTf/e538fDDD9PH1Wo1nn32Wfzd3/0dPv/5z8+Z37YSjI2NIZlMoqioKO3xoqIiWsK8GiHhLEIwGITb7cbJkyfh9XohEokwOjqKqakpWg1KtJEyCxBSqRT1hJjNZmg0GnqTHDhwgHplmCdj9bDQpFV+OJQf1pBKpbDb7ZBIJDAajQCuycL853/+JwBALpejp6cHvb29tGWMxWJBIpFALBaDUqmETCZDIBCgIssf+chHaGjV7/fTcnqyEJOGzWq1GkqlEl1dXVAqlbDZbHj44Yfh8/lw7NgxqqKuVquxfft2AKDFCPwSe7YArxyZ+Tfnz59HS0sLUqkUNBoNLBYL1Go1NBoNBAIBpFIp4vE4ent7ae/igoICuglQqVTgOI4a6AKBAPn5+RCJRNQYI68loqhk3pqenoZEIoFIJIJKpZqVY+t0OvHOO+8gFArhscceYxvP65B5bQ8cOEDD4W63m3papVIpXn31VfT29qK3t5cay1arFZWVlSgtLaWbL6lUilOnTsHlcsHr9eLxxx+HVCrFww8/DJFIhDfffBNyuZzmt586dQpTU1M0lWd8fBxyuRxGoxEymYyGPElF/Lp16zA+Pk47LwwPD1PPXHFxMe655x4MDAwgHo9TTTaZTIZYLEaFn0nHF7FYTDu9EJFyg8GAhx9+mOqckk0wKcYgc6TL5aJe/+eff37e33Y5i2UWbLRt374d4XA463N/+7d/i7/9279dspNaajKrJzmOm1fo91aV2s+F0+nEuXPn0pq6k6TsUCiEZDKJ4eFhJJNJKpibTCapFhcAutslfxcXF+PAgQMYGhpCMBjEhQsXUFJSAqvVisbGxlv23RjXZzFJq/wSfjLJkMpigUCAHTt2wOv14s0336TGeXV1NZWEIYaV2WzGhQsX0N/fD7lcTvPeEokEJiYmMDIygkcffRSXLl3C73//e0xNTUEoFCI/Px+hUAjRaBTT09NQKpU4deoU/H4/iouL8cADDwC4NqYfe+yxtHZF5HHy/3PnzoHjOCaqusJkejvtdjv6+/shk8lQW1uLWCyG6urqtPB6IpGAWq1GaWkpCgoKIBaLMTg4iHg8DoPBQPUAiSjzyMgI7V9qMBhQWVlJO3J4PB74/X4IBALodDps2bIFjY2N9JhHjhwBcM24l0ql6OzspAstM9rm53otl4hhdeTIEdrVgm8sZ8t3Jp56j8eDgYEBOJ1O5OfnU2NHLpdjamoK0WgUBw4cQCQSoUZWIBBAfn4+1V8TCAQIBoPQaDS00C4WiyGRSODSpUt0zSMdOIxGIzWwxGIxSkpKqLdOJBIhEAgAuNbGkVQmf/zjH6etuchcSXLWiHgw0bEjBXrEQOX3Z83WaSTzseVwhixb79HVQGFhIYRC4Syv2ujo6CzvG59bUWo/H1arFeXl5fjtb38Lh8OBVCpFE7tnZmYQCAToLoKUIBPRXKK9ptVqUVRUBLFYDIFAgJ07d2L//v1ob29HZ2cn8vPz6Q3GFsjVxY2ECDPfw1e893q9OHXqFCYmJqDVarFv3z6YTCYUFBTQxO9QKITNmzdj3bp1tDKZJAKHQiH4fD5UVFQgHo+jpaUFExMTAEBD8iTckUqlYLfbqXo5qWhtaWlBb28v/uzP/oxuEvhhOKvVSj1vUqkUra2tLOS1wmTKQBDxXVLkQprDj4+Po7u7GwaDAffddx9kMhlOnjwJlUoF4NoYKS0tRU9PD03diMfjSKVSEAqFEAgEWL9+Perq6tDU1ITOzk5MTk5CKpVCo9GgoKAAZrMZPp8PDocDHo+HLqJEwqGoqOiGK/sY2cPMJpOJGstkDPA94vxxQXqG5ufnQ6lUIhwOIxgMwmg0orKyEqFQCG+88Qa0Wi3MZjNKS0uh1WqhUCgQDodx6dIluFwuRCIRKg7ucrmoU4JUowPXctQqKythsVjQ39+PiYkJpFIp6PV62o5RpVJBr9cjEokgGAxiZmYGVVVVUKvVVHqMiPySqITJZMJDDz2Ulp9GxMzJeRENy2zrZjYttuVgTRttEokE27dvx9tvv41PfepT9PG3334bn/jEJ+Z8360otZ8Ps9kMnU6H/v5+eL1eqFQqyOVyBAIB2ryZL5ILfCiam0qloFQqsXnzZtTW1qKuri7tpjMYDPj4xz8+q6yZsXbg75jJJFtVVQWTyURDW3feeSdN+nU4HBgaGoJEIsGePXsgkUiQn5+PK1eu4OrVqxCLxUgkEjhz5gzVXUqlUlQjiYy9zZs30x03SX4mk9jFixcxPj4Ou91Oz41fBUvax/CrS8l3YawMJMRTUVFB5RxIgQvJGQqHw3SxValU2LVrFwKBANrb2zE9PY1169YhGo2io6OD5t0KBAJqrJFCKBJeFYvF4DiOelPy8vKgUqlw7NgxxGIxAKC6WqRCMZFIoKCgAC6Xa1bOGx+W/zY3meE80lkl87fie/GJR9xsNuPxxx9HIpFASUkJ7YZAPG4kXwy45kjZtGkTtm3bBuDDKFhxcTFGR0cxOTkJuVyOmZkZSCQS6HQ6FBcXo7u7G0KhkM475eXl2Lx5M8bHx3Hp0iW6eSwpKUFnZycCgQCdX86dOwebzYbp6Wls2rQJbW1taGlpgVKpRCgUwsTEBBXb5W8WzWYzjh49itOnT1PZIv7vcr3fcLlY00YbAHz1q1/FZz/7WdhsNjQ2NuLQoUMYHBzEf/kv/2XO99yKUntC5m6W/2+ZTAapVEqTeYnRlmmw5eXl0ZJoor01NTVFG/KSXo9865+FEdY2ZFx1dXXB4XDAZDLRJGHSfH56eprmdSSTSUQiEfT396OkpARlZWU4e/YsbfitVqvR1NSEmZkZ2qpIKBSiuLgYIpEIYrEYmzZtwtWrV6FWq2E0GsFxHE1k/tjHPobjx4/D4XBQ44xfBcuf7K4XHmaL760h8zrY7XYcP34cqVQKJSUlqK+vh8lkwvj4OEZHR1FZWYlgMAidTof8/HxasEBC58CHzepnZmZgMplQU1NDuyv4/X4IhUJs2LCBRhUSiQTefPNNSCQSrF+/HiUlJTAYDNDpdAiFQqiqqgIAeDwenDt3bt7QOhPlTYd/H2Ve62yeIqIPWl5eTteV8+fPIxqNIhqNoqamBh6PB+FwGCaTCQaDgRr5sVgMBQUF1PvlcDjgcrloH9uKigrI5XKoVCqIRCIIBAKUl5dj9+7dsFqtEIvF0Gg08Hg8UCgUKC0txf79+zEwMIC+vj4kEgns3bsX69atw7vvvguJRAKxWIz29nb4fD5cuXIFd911F1wuF9599104HA5YrVZYLBaYzWbs3LkTgUAAv//977F9+3Y89NBDcLvdOHbsGKLRKPXkzpdvm23eWo65as0bbY899hj8fj/+9m//Fh6PB1u2bMFvf/vbVeNhIjuXlpYWANeKJ0ZGRiASiaDX6zE+Po68vDyqPE7+40PK5UtKSmhyZzgcxsjICCYnJ9HX18fyhNY4mZMDWaB6enowMTEBi8WS5l0l3hKn0wm5XI7t27fT5s0cx6GgoIDmK0WjUfT19WF8fBwKhQLl5eWYnJykOW3V1dVIJBLQaDS46667oFKpUFxcDJPJRKUkiKGYmeR7PSMt26SXufgyI2554OdLEsO6u7sbeXl50Gg0s9rcEUFkq9UKqVSKX//617QlUCqVgkqlgs1mw5UrVzA5OUn7Ta5btw5dXV24evUqbDYbamtrEQqF8NZbbyESiSCVStFxJxQK0d/fT/tG8g1KYP7IARPlTYd/H/GrhPlkygiRXqM+nw+/+c1vEAgEsG3bNtTV1cFoNFLxbrIZzM/PR1FREdatW4c77rgD27dvh8PhwMDAAC5fvgyRSESLBiQSCcrKyqBSqTA6OkoL7vR6PS2aO3r0KK1cjkaj+MhHPoKRkREUFhaipKQEEokESqUSbrcb//Iv/wKVSgWTyYSNGzdienoa8Xicvqa4uBh79uyhhtiRI0fQ19eX9vuoVCpUVFQsqMjF6/VSj/Jcc1W233Wxc9aaN9oA4Omnn8bTTz+90qeRFSLNcPr0aYyMjCCZTNJG70T3zuPxYGZmBiqViib0chwHmUwGmUyGqakpWsFHWnBYLBbU19dDqVTS4zDWLpmTA7/9Sl5eHvx+Py5dugSNRkMNJtJChki+AKAdFeLxOEpKSqhxFo/HIZfLIZFIEIvFUFZWBplMRlXHiUFGjtvW1ga9Xo9HHnmELvykNyqAtHPN3NVnls4Txf54PJ62UPMXbOLRWw0dWNYaZGN58eJF5OXloby8nPaP7erqoq2uvF5vmhdVrVbjl7/8JTiOo9INyWQSWq2W9jF1u93Q6XRwOp0YGxvD6dOnaaFCIpGAQCCgkQ+9Xk813SwWS1pRC/+6Z5OqAJicDB/iNSPyPUTaJ5O5OlGQ95B0iLq6OthsNphMJvj9fnR1dVHnAhHyHh8fx7lz5zAwMIDp6WkUFhZSzbVQKASdTgeNRoPe3l643W4ago1EIujq6sJ7772HiYkJbNy4kXrrSL/jYDCIS5cuwev1QiwWY2hoCACg0Wjw9a9/HcC1AkO1Wo0HH3wQDocDcrk8zZnBz4l0u92wWq249957F2xY2e12XLhwAcCHkazMuYqfK0cKHpnRliPwLe2DBw+ira0Nw8PDVMaDtIUZHR2lOwSSW5SXlweRSET1sN5//32MjIzQcFdlZSWqq6sRjUZpeyM2Wa1t5gpvkB2yw+HA9PQ0iouLqSQImbg2btwI4JrBdvHiRUxOTqKyshIbN26ERCLB1NQU7YTg8XgwNDSEUCiEP/zDP4TRaITFYoHFYkFzczN6enpw8uRJDA0NIR6P4zOf+QyAaxMa6VVosVjSdI8ykUqlmJ6epm26AKClpQX9/f0ArrVaI+PZ7XbD4XDMWdnOuHnIxlIqlaKwsBD33nsvgGvXdGJiAuFwmHpsgfQFa+/evVAoFOjr66MyIMPDwygqKkIgEIBarUZPTw/UajVGR0epPphcLodarUZhYSFUKhVkMhmKioqoZpvL5YLL5aJjim+02e12nDx5kkpVAMunmZWrEK9ZPB6nhSVzhUP5HVf4Bo7f74fP54PBYEAwGITL5aIeNlIJbrFYEIlEMDo6CgB4//33EQqFUFdXh+3bt9P+pKRDQX9/P06dOoVEIgGDwYB169ahuroa586dw8jICAKBAEQiETweDxwOB7Zs2YJt27ZBqVTi5MmTUCgUyMvLw65du6iwdyAQgE6no0V7FouFfsfMoieDwUC7IczlfZwLfvEXYa4NaWZv08XAjLYVgt/wnVTbkF0FScIkelik0ioWi4HjOAiFQuj1eiiVSohEItTX1+PKlSsQCoXYtWsXtm7diomJCdr8FmA5HGudzFAWf5IlxhuRTLDb7ejs7AQA1NTUpHVQIPIyY2NjKCoqouECjuNQXl6OmZkZxGIxquvW2dmJiYkJVFdXY2pqCoODg5DL5VAoFJiensYPf/hD7NixAz09PRgcHMS6desAAMPDwxCLxdQ7xx+fJHQbjUbTFPuJ94QPMRaqq6tZ9eAyQWQeiAFExEaJF0yr1dKm8uQakE2pzWajRrrNZkNzczPUajXdQIyNjaGlpQWhUAhFRUWQSqU02Xz9+vWorKzE1NQUiouLsX//fjQ3N2Nqagpnz57F5OQklWQgXr6GhgbYbDbaPq2pqYl65OaSargd4RcBzdVxhBh2FRUVWeUtvvjFLwJI9x6RXsUKhYJ6sS5evIj169dj3bp10Ov16O7uhlqtRlFREdrb2+HxeGhD9wsXLlCNPtLyDABtUs9xHNra2uDxeKBUKnH33XfT81AqlTh37hytSq2vr8fExAQNtRID1W630z6qpGUV+U7832W+Cna+6D35/fgC1df73W9mA8GMtlsIqeQjKuAkGbyrqwt9fX0QiURIJBJU90YkEtFKUZFIRHPXFAoFzGYzrSoliZzbtm2jQomZA4pxe3A9VW7St7a4uJgaOvzJQ6/X480334RCoYBarcb69evR3d0NsViMkZERVFZWora2FhaLBWKxGG63GwBQXV2N8vJyJJNJ6HQ6rFu3Dj09PbTqS6FQoKysjJbbcxyXtqnwer10Yc+We2QymVBbWwuTyTRnAjXf+8Y8K0sLvyIZAK2i488x84W4iRG+f/9+ANdC3h988AFCoRDN2zUYDNi0aRPUajUikQiMRiMqKioAXKsydLlc2L9/P7RaLex2O/r6+qDX6zE2NkY9OWThNJlMOHz4MDo7O9NatjGJo2ssJFS8kBzAzHuRGG8kTYf83lu3bsXBgwfh9Xrx6quvIhAIoKOjA5FIBDqdDhUVFRAIBCguLobP56Mt0S5fvkwVEe68804MDw/D4/EgEAggFAqhp6eHhnbJmGxtbUVraytqa2tx//3309ZVRE+QnBv/e2VGKK5XwZ7ZI3mu193I7349mNF2C7Hb7fjVr36F6elpbNiwARqNBkKhEEVFRejt7aWuX7lcDp1Oh0gkglAoRBWe9Xo9UqkU6urqsG7dOgiFQkSjUQwNDaGgoADV1dV0QLCJ6fZkPlVu4k0zGo2zPA5kMvH5fLQ9UX19PbRaLfbu3UuV6oeGhuhmIRKJYPfu3dDpdFSUUiQSwe12Y3R0lCqWl5eXo66uLm0DQRZ8l8uFrq4ufPDBBzTHg4Q/+V5D/nfx+XxpYbHMsc6qBJef6y0+/HFINqck3K3VapGfn4/8/Hz4fD7IZDKqjUmEVauqqjA9PY3f//73kMlk0Ol0AD70DF+8eBFFRUWor69HfX092traIBaLaTUj8Sz39PRQmRmiMffd734XBoMBBw4cYONjHhZiYJB7jXg8gQ8LUkiXFv58Y7fbMTQ0hPHxcezYsQPr1q3DxMQEenp6cOrUKSrQfPXqVVqdLhAIYDQacffddyMYDOL//b//h8nJSYhEIly6dAmHDx/GE088Qc/18OHD8Hg8qKmpoZqQ0WgUwWCQGlmZhXlE5Js8dj2DdSGeyuWCGW23GKL0fPbsWVitVpoUTkJLLpeLCpcS0dJoNIpkMgmRSIR7770X69atg1gspm7ocDgMpVJ5y/XkGKuPbBMtcfVLpVLqyZpvMlYqlaiuroZarUZ+fj7Ky8vR2NiII0eOIBgMQiAQpEmGkDwWfvFDZ2cnhEIhtFotdDodXC4XAoEAfD4fPQeSV+fxeBCLxehuOVuybmYSdDAYhMPhSKtYXOiEy1h++OF6u91OZSFI0cj4+Di0Wi2i0SiKi4thsVjQ19dHE8m1Wi3Gxsbg8Xig1WqxefNmAKDespqaGqpiD1xbdIeHh+mYAK55A0+dOkXH08GDB/Hyyy+jra0NGo0G8XichUtvEnKP+Xw+GjIHgEAggJ6eHlRUVKC+vp4aRQAwOTlJ04AOHDiAw4cPo7e3F0VFRdi7dy/V6zOZTNi6dSutFPZ6vfi///f/IhqN4rHHHgNwLXfO4/HQzz98+DDGx8dRUVFBvbrAh3myRCCaPzfcyCZvJYtamNF2CyHu2x//+Mfo7++H2+1GaWkphEIhZmZmIJPJkEgkMD09jVQqBa1WSyuo4vE4JiYmaLn85OQkqqqqUFNTg3Xr1s1qvM1gZLr6Kyoq5mxZRhY2i8UySzzSarXSMGhxcTHkcjmVk+nt7UU4HKb5Qo2NjfS9PT09KC8vB3DNy+xyuejn+3w+vPHGG4hGoygoKMBdd91FPR/kfPnJuvwSeqlUSqtYSX4K+b78781YeZxOJ0ZHRxEKhbBr1y4AoK2sSA4RCdETb5lWq4VAIIBGo6Hq9/X19Xj33Xdx9OhRTE5OwmQy4Y//+I+pVAMRVCVNx8mYeeyxx2jYnS/hIBQK0dnZSVXwGXMzX7oB3zjnc+LECYyPj6OsrCwtb8xisaCyshJXr15FKBRCU1MT1WArLS2lWmh33nkn3ZwRr9jhw4dpjq1IJKKG/PT0NFpaWugGkLSoamhoSNsAkhB9Jtk2eXwPYjaR4Rv5rZYKZrQtM5mNsBsbG/H73/8ep0+fRjQapc3ch4eHEYvFkJeXh7y8PCSTSYRCIcjlcmg0GuTl5UGpVEKr1WJ8fByJRAIKhYKWWQPMs8DIzkI8T3zZDLLAWa3X+tK63W4qBVJdXQ2DwQCHw0HlH3w+H/r6+iAWi2mxQzweRzweh8PhQH19Pc1L0Wq1OH36NNra2qjgZnV1dVpoPzNPjYRJySQ+PT0Ni8VCPYdrNW9zpXsgLwVWqxVGoxEajQbRaJQWKhANQYVCgXg8jtraWpqPC3zY4qyxsRGNjY1obW1FR0cHurq6EAwGEQqF0NbWBrVaDb/fD5VKRSsH+WOJnwsJgEo4HD16FC0tLTS/mDE3C/FEkZxHt9uNo0eP0rxrq9VKpTk2bdoEl8uFYDAIi8UClUqFaDSKiooKKBQK6kUlVZt8A8jtdtOQKMdx6OzsxMjICFQqFdUOrK2txd69e+k1Je/nbwBJsQT/u2W7p4hH3+FwzAqd3uxvdbMwo22Zydb2Y/v27Th16hSGhoYwODiI/Px8zMzMIBKJID8/H7FYjO5GS0tLsXPnTkilUkxNTUGr1VIdtx07diyoYoVxe7MQz5Pf74fL5UJ5efmcuXDESOJLiVitVrz11ls4f/48AoEAOjs7MTw8jJKSEgwPDyMvLw8AEIvFEA6HkUgk6ERoNpuxa9cuhMPhtIlzvjJ5tVqNeDxOteXWskdtpXsgLwUk5E0kXsji3traCpFIBJfLRRdr4MPCGb7hTqQnysrKYLVaMTk5ibq6OkxNTeEHP/gBTCYT7r33Xhoq56cDkNAskC4gq9frYbFYaGEMI535uiXwX0McEvw8toGBARQUFOD+++8HAJw6dQoCgYBeB61WS6uB+RsufjcgIN2L19TUBLlcjrq6OirEq1Kp4PF4wHEc1Go16uvraScjImOSbQPIFwueq5iAyH8Qo26hm8Jsv9VSe9+Y0baEZLs4VquVeiPIwmSxWFBQUID+/n6MjY0hFotBJpNBqVQiEAhALpejuLgYZWVlaGxsRElJCex2O2KxGAoLC6lAKpM4YCyExU4afJ004Ppl6hzHIRgMoqCggLYj0mq1+NznPkcbi586dQpCoRAGgwFGo5GO97a2NqhUKtjt9jn7RmYWV/BDJmuZle6BvFTwJVwIxGu4b98+qNVqSKVS6s0FQMP4/KbdTqcTHMdh69at+NKXvoSWlhaay0ZExIm8SDQaRSQSgcfjQXFx8axFl+iMkRy4tbzxvRGP7UK6JTidTqrH5vV6abu77du3Uw03i8VC1ymr9VqnjJqamjTh47nmJ35okxQ03HHHHfS10WiUymPV1dXRzaXVak1Lq8hWcJX5e/CNffK++ea9xQg4L7X3jRltS8hc7XXGx8fR2dkJg8EAk8mE5uZmRKNRqNVqDA4OguM4lJaW0p6iSqUS+/fvx969e2n+j0QioSK7crmcCgUyGNdjIZOGXq9HaWkp9Hr9rEU2cyI6f/48Xn31VahUKtTV1cHn81GtrsLCQgwODqKiogJqtRoHDx6E3W6HRCKB1WpFfX09TT4/duwYQqEQba/F97ZkSknMVVyxmN1rrkmB3MoeyEvFXBtX/v8BoL29HadPn4ZEIsGBAwfQ2tpKF06+54XofjkcDly8eJGGxokB4HQ6MTQ0hEuXLsHtdqOmpgZyuRxSqRSJRAKTk5MoKyubFeIym6/1QO3v74fdbl/TRtuNeGwXklJhtVqxfft2AJhVEETC29FolIZN58otm2t+4nvYSfESMcza2toAXOvPrVarcf78eQwODqK2tpZ2YbkemfNKpszHfBGKbN0P5vud+P+/WZjRtoSQixIMBnHo0CGIxWKEw2GcOnUKU1NTuHDhAm2Um5+fD5lMBo7jkJeXh8LCQoRCIahUKmzZsgV79+6l4R9+kid/J8k0hxgLYSGTBimSyaZdlIndbk9rexOLxajGUl1dHT72sY/Nyh1Rq9W0SwcJSZB+qGazGUajcd6QRWYohtwDmYnC8xlmTApk+cn2G2db/EZHR2mjeSC7N5dfmUjCYXq9nlYjBoNBWK1WVFZWwu/3Y3p6GkajERs3boRUKkVzczOtEs123fkK9vxxQ75Hrhj31+NGPLYLSakgoe5sZM45c3UC4HddyObpIlIi/GvR0dGB/v5+cByHmpoaiMVi/P73v8f09DR27do167yzXdts+oKLMa6ydT+Y73daynHEjLabIHOBIBfm5ZdfhtvtRm1tLbRaLYqKiuD1etHb24uRkRGIxWL8wR/8ATZu3IhkMknLmwsKClBfX48nn3ySVr6QQcy/Ofg99xirk9WURL7QCTgzjDAX/AnLZDLB6/UCAIxGY9pGg58Tw9dlU6vV2LRpE6LRKHbt2pVVnDVT/4hoHGo0GtTU1FCvDIBZ+XdzGWZMCmT5WehvTERyMw2mbKEssmmtq6ujOWh2ux2nT59GXl4e7r77bjz22GNpn9Ha2gq5XJ7W8SPz/uPnA/O9LADWlHG/Eh7bzPlkrlAjv+tCZncCkldG2kqRx2w2G21Kf+DAAdjtdlRUVEAikaTJfPCPkXlt58pjW+j1Xslccma03QTZFghSVq5Wq2EwGFBfXw8A6OzsxJUrV2gftIsXL8JiseC//tf/Cr1eD6fTiUgkgurqagDAkSNHaG9I/ueTf6+FyWQtsxaSyOeCVOQBoK2KMg2vbEbgkSNHqCgu2Xjw89iuF77UaDQoLi6eVTGamXDM/z8fdt8sPwv9jecymLK9N9Oj43a74fV6UVJSAoFAkNaknsD30pA+lUQHM1sBS+a48fl88zZSZyyOucZFtvuV/+/M/FoAcLlcmJqaomslADz44IN0M5mZNpHtGAsRxV2t6RQ5a7R9+9vfxptvvomLFy9CIpFQQVo+g4ODeOaZZ3Ds2DHI5XI8/vjj+Id/+AdIJJIlOQcyMfBvbqvVirq6OkgkEoTDYVrmPjg4CJVKBavVivHxcZw7dw6nTp3CAw88gK997Ws0d83pdOLUqVOIxWIAPlQAZ+QWayWJPBuZIUyyQVkIHMelfQb/M/liupmTpMVimZXATGAbmtwmc1HNXCwzZZPM5mu9UK/3GuKlIaFYt9tN22VljpFs4+bcuXMIBALYuHHjqlu4VzsLNXiybe5IhIlf/Zupr8afR/j9UbNtABYTReCzWtMpctZoi8ViePTRR9HY2Iif/OQns55PJpN44IEHYDAYcPLkSfj9fnz+858Hx3H4X//rfy3JOZCJwW63w+v10t5qp06dAsdxqKysRDAYxLFjx+ByuSASiaDT6aDT6dDV1QWO4zAxMZEWBvB6vVCpVJBIJFl7QzJyg1xMIl8oZHElu9Wurq60tlKZzCXcSzY8xFjLzHfhk60CkbE2yFxUMw36pqYmdHZ2QqVSAQAdQ0RDsLW1FQ6HAy0tLRAKhbR5PNEHq6+vR3V1NY1yLHQTzHEcbTZOzpOxMG7G4OFvCjOLU4D582+zeeZulNWaTpGzRtvf/M3fAABeeeWVrM+/9dZbuHLlCoaGhuig+d73vocvfOEL+Pa3v71kC6rVakVTUxN6e3upSntPTw9kMhnuvfdeHDt2DL29vUilUrBarSgtLYVSqcS+ffswODiIffv20c/KtoNkMFYbmYssEdcFZif9klZVcrmciksTiCeEGGvBYBAdHR10wuXfB9m82oy1SabEC6k2JuGwbDmMPp8PGo0GsViMtssaHh6mGl7EwOO3U+KT6RkihsFK9JZcC9yMwZO5KcyW6wh8OD/w55TMzd3NhDj5zpTFVqovJzlrtF2P1tZWbNmyJe1HPnDgAKLRKM6dO4e9e/cuyXHMZjM0Gg0mJibwwQcfYNeuXZDJZCgpKaG6QlKpFA888ADVEiKx92zFBCy8w8g1+DvfTC/JuXPnEAwGaa9IEvYgO2i+ntKhQ4dw4cIFTExM0L6UQPo9QUJgrPXQ2iXbHJitOpg8DoAWtvDHVmanGCJ0TlquzeXdI8fnH4+xOG5mHVvIe+fy5M1VtZr5usVwvc+4ns7cUht7a9Zo83q9KCoqSnusoKAAEomEVrsthmx5FuTv/fv34/Lly7h69SrC4TBqamogkUgwNTVF/1YqlfB6vYhGozT/ZzXGyxmMxTLXIguA6jiR1lj8XLjMXqikKmxycpKqnmd61khD6tWaJMxYWrLlI2UrXAGQVtjidruzSjp0dHRgdHQUTU1Nac3m+RsIPnNpb7Jxt7LM5cmbr2p1qY9FuJ7OXObjN8uqMtpeeOEFGvaciw8++GDBnQDIBM+H47isj/PJJteQ2UCWFA10dHRQde22tjY4nU4oFArs2LED/f39SCQS8Hg8tCE80aMCPszpOX/+fFY3MIORa2ROmtk8YqTFTDYJBhLaIp4S8lp+yCrTo8fumduTbFIOwNzSLyT9hHReIB603t7eWRsIwnJ4bhg3j9frpakUiyl0uBGu9xlzGXXLlRO3qoy2r3zlK/jMZz4z72vWrVu3oM8ymUw4c+ZM2mPj4+OIx+OzPHCZZJNreOqpp9IayFqtVuqKt9vtcLlctLdiT08PxGIxlEoljEYjRkZG0N3dje3bt6e55UlOj91un6UZw2CsFTI128iima2ogD/Reb1easAB83v0GLcf88lFzOeJ4ecNZ74vk+Xw3Kx2Vrs30e1249VXX0VPTw96e3vnbH+32M+82dy3hT5+s6wqo62wsBCFhYVL8lmNjY349re/TXvPAdeKE6RSKQ3ZzEU2uQapVJrWQJafl0b6Lubn50MgEGBychJerxfV1dXYvn07HA4H/TvbBMCSXRlrmUyPSLaKMAJ/onM6nXNWjN7IhLjaFyPG4phPyiHb+MjsqsFPZF9osnmu5xwv5B5Y7d5EooUqk8mgUqmWpDPQav/OfFaV0bYYBgcHEQgEMDg4iGQyiYsXLwIAKisroVQqcd9992HTpk347Gc/i7//+79HIBDAn//5n+NP/uRPrls5OpdcA1+wEfjwBm5tbcW9996LSCSCcDiMsrIyfOxjH4Ner4fNZoPNZqOTBT8/J9cnAAZjIczlEbne2L8Zr0Y23a5cmpgZSw8pRAiFQpBIJLBYLACu30mDsBaM/oV8z9XuTbRarbj33nvx8Y9/fMmcHav9O/PJWaPtr//6r/HTn/6U/r1t2zYAwPHjx7Fnzx4IhUK8+eabePrpp7Fr1640cd0bheiykbYawIdJrHV1dejr68Pg4CDuuusufPGLX0x7b2Y7DgbjdmGx4pb8xTFbntFC3uvz+XDu3DlwHEfFVHNpYmZcn/mMqLka1xP9tlgslubtXcjYWAtG/0K+51I6ExZq6C7GIF4OZ0cuOVBy1mh75ZVX5tRoI5SVlaGpqWnJjslvbstPhq6oqIDBYIBWqwXHcaioqJj1XrZgMBgLYymEOdVqNU2DIPdcLk3MjOsz3ziZqxDhoYceopXMfANhIWNjLczht/oeWOi9vBYM4ltFzhpttwqyA5BKpWhubobH46Eab3wDDgBqa2vh8/mo250PWzAYjNnM5REh/19sSIr/Xr40xGoSx2QsDfMZUfM9lzkXzyfndL08Ocb8LNTQXU6DeC2Etfkwo20e3G43Dh8+TIsZPB4PJicnAczueQYA1dXVEIvFrNUOg7FA5vKIkH9n9hK83gScbWHN1V18NumhtdTD9maZz4i6noHFH0eZ4yNXx8tqZKGG7nIaxGvtejKjbR6cTic11Orq6mgbFb5O3Hzl5gwGY36ud88shU5Wrt6X2aSHXnjhhZU5mTUGfxzNldeWbbysNa/N7UCu3v9zkbfSJ7CasVqt2Lt3Lz75yU/iwIEDafkQXq8XPp8PdrsdbrcbAKDX63H06FHo9fpbep7RaBQvvPDCLffwrdRxV/rYy83tdD3NZjMaGhpw6NChOaU9Ghsb00KnczWVJ5BwKLkvMz+DsNrH0NDQECYnJ+l/X//61xf83ttpDN3IcfnjiIwP4JpnF0DW8QJ8aOyRQrTVPoZuhrUyv2e7/zPniOU47mJYzHEFHMdxt+CccoJgMAiNRoPJyck5ZUFIuGZ6epo2JL7//vvR2Ni4oPev1HmvpeOu9LHnYynO63a7nkt9XHKPzqVyv1zHXSrYGFqZ4y5k3GR62lbrGAI+/E3m0h1d6PvX4vw+17XOhfHLwqOLhC+Im9mQmMFgrDxrLRzCuDXcajmMWwULs88ml+cIZrQtEv5N29DQsMJnw2AwMsnFhZWx8qzVcZPN03a7k8vXmhltPEikOLNqa6GQ993o+2+U2+24/GOutuj+zY4h/ntvl+u5Go6rUqkgEAhu6fHngo2h3DzuahpDwNxz41x9fzNZDfM7G0ezYTltPFwu1yxXMmN1Mzo6CoPBsNKnQWFjKDdZTTlJbAzlJqtpDAFsHOUq1xtHzGjjkUql4Ha7V92OiTE3q+1asTGUm6ym68XGUG6y2q4XG0e5CfO0MRgMBoPBYKwBmE4bg8FgMBgMRg7AjDYGg8FgMBiMHIAZbQwGg8FgMBg5ADPaGAwGg8FgMHIAZrQxGAwGg8Fg5ADMaGMwGAwGg8HIAZjRxmAwGAwGg5EDMKONwWAwGAwGIwdgRhuDwWAwGAxGDsCMNgaDwWAwGIwcgBltDAaDwWAwGDkAM9oYDAaDwWAwcgBmtDEYDAaDwWDkAMxoYzAYDAaDwcgBmNHGYDAYDAaDkQMwo43BYDAYDAYjB2BGG4PBYDAYDEYOwIw2BoPBYDAYjByAGW0MBoPBYDAYOQAz2hgMBoPBYDByAGa0MRgMBoPBYOQAOWu0fec738Edd9wBlUoFo9GIT37yk+jq6kp7DcdxeOGFF2A2myGXy7Fnzx5cvnx5hc6YwWAwGAwG48bJWaPtvffewzPPPIPTp0/j7bffRiKRwH333YepqSn6mu9+97v4/ve/j//9v/83PvjgA5hMJnz0ox9FKBRawTNnMBgMBoPBWDwCjuO4lT6JpcDn88FoNOK9997D7t27wXEczGYznnvuOXzta18DAESjURQVFeGll17Cl7/85RU+YwaDwWAwGIyFk7OetkwmJycBADqdDgDQ398Pr9eL++67j75GKpXinnvuwfvvv78i58hgMBgMBoNxo6wJo43jOHz1q1/FRz7yEWzZsgUA4PV6AQBFRUVpry0qKqLPMRgMBoPBYOQKopU+gaXgK1/5Ctrb23Hy5MlZzwkEgrS/OY6b9Rj/ubGxMUgkkrTXSKVSSKXSpT1pxpqE4ziEQiGoVKo5xxmDMR9sDDGWAjaO1iY572l79tlnceTIERw/fhwWi4U+bjKZAGCWV210dHSW940QCoVgNBqh1Wqh0Wjof9/5zneW7wsw1hShUAgajYYVuzBuGDaGGEsBG0drk5z1tHEch2effRZvvPEG3n33XZSXl6c9X15eDpPJhLfffhvbtm0DAMRiMbz33nt46aWX5v3soaEhqNVq+jfzsjEYDAaDwVhpctZoe+aZZ/Dzn/8cv/71r6FSqahHTaPRQC6XQyAQ4LnnnsOLL76IqqoqVFVV4cUXX0R+fj4ef/zxeT9brVanGW0MBoPBYOQiwWAw7W+W7pPb5KzR9qMf/QgAsGfPnrTH/+3f/g1f+MIXAADPP/88IpEInn76aYyPj2Pnzp146623oFKpluw83G43nE4nrFYrzGbzsr+Pwbhdud3uGbbYzs3tNhZuhtLS0rS/v/nNb+KFF15YmZNZZeTiOMpZo20h8nICgQAvvPDCkg3QbBfY6XSit7cXABZ10W/0fQzG7crN3jO5NkGzxXZu2Py5cFi6z9zk4jjKWaNtJch2ga1Wa9r/F8qNvo/BuF252Xsm1yZottjODZs/Fw5L95mbXBxHzGhbBJkX+Pz587Db7bDZbIteBMxmc04sHAzGamGh98xcHrVcm6DZYjs3bP5kLAW5OI6Y0TYPmZN/5gW22+24cOECAKChoWHZj89gMK5B7g2pVIpoNJp2j9jtdpw7dw7bt2/HQw89RN+TixM0g8Fg8GFG2zzMF05xu92QSCQoLy+HzWZb8GcuxhDLtXAOg3GrIPfG9PQ08vPzAaTfI2ukpTJjiWAbYMZagRlt8zBfOMXpdEIkEuHuu+9elJdtMYZYroVzGIxbBbkn+J42gs1mg8FgYPcNg8I2wIy1AjPa5mG+cMqtKEDIdny2Y2Qw5r83WRj09mS+uTHbvMvmUkYuwoy2G+RGFwa+VAj/bz6Zk4nb7YbdbqfPE/0mNtEwbmcWs+iyBXrtM583Ldt8zbxva5+1eN8zo20FuN5kkfm80+nEuXPnwHEcbDYbKioq1kTop7u7G5///OcxNjYGrVaLV155BZs2bVrp02IsMzdibGUrOFjMossW6NziRuaG60UxMscdSz9Z23R3d+Phhx/G2NgYCgoK8Nprr62J9YUZbUvMQhYkq9UKn88Hn88Ht9ud9jq32w2fzwe1Wp02qWzfvh0AbkheZLXy5S9/GU899RS+8IUv4LXXXsOTTz6J1tbWlT4txjIzlwE1l3j1O++8gwsXLkCn0+HBBx+ExWKB3W6H1Wpd8AaGLdCrj/nmyhuZG64X/cgcd9eLeqxFL83txJe//GV86Utfwp133omOjo41s77krfQJrDXIxEAmgrnwer1wOp1pr3O73WhqaqKP2e12HDlyBADw0EMP4aGHHqLh0tbWVrjd7uX7IhlwHIe77roLW7duRX5+PqqqqrB161b85V/+5Q193ujoKM6fP48nnngCAPDII4+gv78fAwMDS3jWK0cwGEz7LxqNrvQp3XLmGqdzGVtOpxN2ux1NTU30PVarFaFQCH6/H319fXA4HGhubsaFCxfQ1ta24GObzWY0NjayxXcZuNG5Ya65crnmBqvVCrVaTTfL/HOw2+2zxqrdbsfvfve7tNQUxvKwXOvLs88+i8bGRvzJn/zJmllfmKdtgSx010UWomAwiEOHDsFms6VVlxLDbHR0FEajEVKpFK2trbBarbDb7ejs7ERxcTGAa5OGQCCAwWBIO+ZKhHoEAgHef/99AIDJZMI777yDsrKytNd8+tOfRk9PT9b3/+Y3v0lryzM0NASz2QyRSEQ/v6ysDIODg1i3bt3yfIlbyO3cgojkYDocDsjlcgDp43Quj4jVakVHRwei0ShdyJ1OJ+rr6+H1ehGJRBCLxWCxWKDVahEOh/G73/0O5eXlqK6uXpL2cozFk21uEIlEcDqdNJKQbW6Ix+OIx+P493//97THrzc33IgHjAihi8ViiMViOJ3OtBCpz+fLOl4EAsGN/SiMRcHWl4XDjLYFstBFgCxIhw4dosK7JpOJ5uXY7Xb09PRAIBDg4x//OKLRKP1c4JoKenV1NWw2G/x+P3w+H6RSaVr3hflCPcvt0vd4PIjH47NuKAB47bXXFvVZmRPiWtLWup1bEBGPWSgUQk1NzYJDkmazGQcPHqTjl4jkJhIJCIVCiMVieDweJBIJxONxhMNhCIVC+Hw+iMVi+hkAC4dm41bODa2trWnz5VLODWR8dXR04ODBg/OGNcnrW1pa0N/fD71ej7KyMno/kvk68z0Ak47JBltfVh5mtC2Q+fLQskEEd202W5oQaDQahUAggMVioYnV5HMtFgudJMxmM6qrqyEWixGNRtHR0UGNwKeeemrO4y+3h6G9vR3btm3L+txidkKlpaVwuVxIJBIQiUTgOA5DQ0NZb9Zc5HZuQWS1WtPGf7ZxeP78eTQ3N8NgMODAgQP0NXwvnN/vh8PhoPdNOBxGXl4enYzNZjPuvfde2Gy2WVptjNncyrkh02heyrkh0yM7X1UoAPT29sJgMECr1VJPW1tbG90ENzQ0ZPX+MumY2aym9YV4asViMX7/+9/fNutLThttJ06cwN///d/j3Llz8Hg8eOONN/DJT36SPs9xHP7mb/4Ghw4dwvj4OHbu3Il/+qd/wubNmxd9LLPZDIPBQHMw5kqgBkD//dRTT9HngQ+FQHft2pVWCUc+NxqNorGxkb6HX5BAdoZWq5WGU+cKMZH/L8euaHh4GBaLJetzi9kJGY1GbNu2DYcPH8YXvvAFvP7661i3bl3Ou64Z1+4VfvuobJAcIq1WC71en7ZZIej1eigUCkQiEUgkEgiFQsRiMRgMBshkMphMplnpBwQWHp3Ncnsf+XNDpsGzlHMD3yPLTy/he1nJRlgqlWJ6epqOEzInvvnmm7h8+TImJibmFEdnhQizuZVjKJPMMXTkyBHari4zHWW51pfVMCZy2mibmppCfX09vvjFL+KRRx6Z9fx3v/tdfP/738crr7yCDRs24Fvf+hY++tGPoqurCyqVatHH46uw8yeKbDs7ArnAxBgjkIvP/1z+jeB0OhEMBlFRUUEnwIaGhllhh0z4k+WRI0fobpJ4/DINy8UOvF27duE73/kOnnjiCRw+fHhR783kxz/+Mb7whS/gxRdfhFqtxk9/+tOb+jxG7mCz2XDmzBn09/fjV7/6FdavXw+j0YiDBw/C6/XS6tDdu3ejp6cHer0ewDXvG8dxmJ6ehkqlmrPAg4VHZ7PcnqMbnRuyLYQLnRtcLtcs3Ur+Rpi0OSPjhPwGDocDw8PDMBgMc54XM/xns9gxtFgjZ6FjyO12w+Fw0GufjeVYX1bDmMhpo+3+++/H/fffn/U5juPwgx/8AN/4xjfw8MMPAwB++tOfoqioCD//+c/x5S9/edHHIwM203DiLxAdHR3o6OiAwWCY9wJnNrUmz/N1qUiFHf+xTDmQ690UJJTEzwMxmUw3LNC7ceNGdHd3L+o9833WWijBZqRDChECgQB0Oh0sFgtcLheAD9MGotEoEokEhoeHEYvFIJfL4ff7YTKZ4HA40NraisbGRtx9990QiUT0XiBFPBqNhhYfZIOFtm49C5kb5pJ1yZwnN27ciNdff33WazOLXLJVIvOjFJs2bUI0GoVUKsWRI0fQ29uLeDyO+vp6PPXUU/Ma9czwv3kWa+QsdH1xOp2Qy+WoqamZs/f3cqwvq2FM5LTRNh/9/f3wer2477776GNSqRT33HMP3n///Rsy2giZF46/QDQ1NSEYDMLpdMJms2F6enrOJPRsiZFkkFdUVFDvHDESya6ReN/4r/f5fLNCTBaLBV6vFxaLBSaTieaBAFgzAr2MlYffsYN4dO12O1wuFx2Dw8PD4DiO5qmpVCqIRCJIpVJoNBoYDAY4HA6cOXMGYrEYsVgMYrE47V5zOp0YHR1FKBTCY489tqiev4xbz0INtLkWwswIhtPphM/nw/Hjx+HxeOgcRt5Hoh9ESkkqldKcytbWVtjtdpw/fx6JRAJ+vx9/9md/tqCiMkZ2rucwyKY5ulQEg0G4XC7s27dvlsNjPq/eXKlMcxWzZIp68wtX5ktTWk7WrNHm9XoBAEVFRWmPFxUVXVdD7XrMdzMTq59Uv0WjUWoo8QfMXJVJ/AmMVIyS3WS25tjk3w6Hg4ZCST5RNBqloYHMyjw2GTFuFjKefT4flachaLVapFIpmvxdXl4OnU6Hs2fP4sSJE5BKpdizZw84joNGo0F+fj44jsOlS5cglUohFAoxNjYGAGmpBUajERqN5rbQvcsM/Uil0pyqQp7PQCMpJlKplHphpVLpnB0LSGSivLwc+fn5iEQicLlcMJlMNMRJjhUMBnH69GmUlJSkSXvYbDYUFBSgu7sbKpUKdrsdBoMha7eNtcRyjCMiXcUPO2eSmeIz1+fcSCs68tn8tXwhXr3MjcA777yTdRNIXud2uzE1NUUjYos51nKxZo02Qray3+tp79zMIG9oaKC5Z8QtTyYon89HP5ssRJlq3HxL/tVXX6VFDKSogcAfwI2NjfD5fLOEA7NVvK7FSYmxMpCJS61Wp4UogsEglEoljEYjpqenIRaLaSXt8PAwRkdHkZ+fj3g8TguHLBYLgsEgWltbEYlEkEqlqOgpmSwzNx5rnZXW+rvZpOu5iqIaGxup58vlciEej0OpVMLr9dJKeSLlQeZCkr+k0+mwc+dO9PT0YHx8HCMjI7Tynh9CFwqFEAgE9NjEE7xp0ybE43EYjUYASItgAGszd205xpHT6aTr21z34lweVP5YyEwTut4xSYoP+Uz+vLOQ0CX/NV6vF52dnYhGo7Db7WlGG3kdkRbKPP/l8iAuhDVrtJlMJgDXPG5ErBa4ppSc6X3LZK5BvphJjL+jJB43fv6F2+3G4cOH4fF4UFdXh+rqarrjI+/hOI7uEjNdsZk7BgDYvn37rPg+mQgzBXqB1VEJw1j9zDVO+BMgeZzvHVar1dST0tzcjMuXL0MoFMJsNoPjOHg8HjgcDuzfvx8NDQ1ob29HR0cHxGIxSkpKkJeXl/X4t8tYXWmtv5v1JvCvVbY84I6ODnAch2g0itraWtTX18Nut2N0dBRNTU3UcCP5S8XFxfD7/RAIBKisrMT09DTUajWcTie8Xi8OHjwIABCLxdiyZQv2799PQ6Ovvvoq+vv7UVJSgsLCQmi1WhrKzxbBWEssxzjKdu9nMte9mrl2ZaYJZd7vZE5RKpVwuVxQqVSora2d5cjgH2+uOYv/GqfTiZqaGoRCoVlrLPmPePXmKxK81axZo628vBwmkwlvv/021X2JxWJ477338NJLL8373rkG+WImMX7RAjHE+JpVra2t8Hg88Hg8iMViCIfDiEQi6O7uRiAQQEVFBSorK6lnYb48EP4g8nq9aGpqotpVc+2GMjszZBOpZDCA7LlFmRsIr9cLl8tFE8TJLtRut+PMmTO4cOECwuEwiouLUVFRAZVKBZ/PRxOFXS4XTpw4gYGBARQVFWHXrl1QKBSwWCyromJrJVhprb+bSbrOzAkihVX8yvuDBw/i8OHDiMfj0Ov1aGhogMlkomE3EoVwOByIRCIwGAxob2/H5OQk7r77brrRbW5uRl9fH8RiMXw+HzweD/bu3QuTyYQjR47A7/djfHwc4XAYAoEA27Zto3Px7TCelmMc3cxvxx9XVqt1VppQ5v1ut9tx4cIFqNVqWCwWup7xBeeJgH02RQf+efK9rhaLBffeey9dQ7O9Ptv3XOlihJw22sLhcJrYXn9/Py5evAidToeysjI899xzePHFF1FVVYWqqiq8+OKLyM/Px+OPPz7v5841yK93sbIlL/I9bvxQqFQqRXFxMQ0TkfwMEkOvrKxM2wmSnnnnz5+nn50pI0JCA0SE12azpRmLmTkBo6Oj6OzsBICsIpUMBjB7g8Cf3PjC0S6XCx6PB2KxGH6/HwMDAwgEApiZmQEA1NfXQ61WY2hoCBaLBXq9Hm1tbejt7cW7774Lv9+PRCKBVCqFeDxO8zGJ1hbZPDEP8a3hZhbmTEHxSCSC6upqAEhLEamurk4LP/FD4MFgEF//+tfR19eH6upqVFdX06gJSXExmUyorq7G1NQUNdhIODUQCODEiRPQaDT46Ec/Cq/Xi3379uHAgQP0eGws3Xoyx1VmYn/mOmuz2TAxMQGxWAylUknlf4gxNzExAQDUWLfZbHOGL51OJ86dO4dgMEgrT+dSa5hrTCzEo7ec5LTRZrfbsXfvXvr3V7/6VQDA5z//ebzyyit4/vnnEYlE8PTTT1Nx3bfeeuuGNNqA+ScxfmKmVCqlORKkSXVmeMDlclHjLB6Po6enBz09PaiursbMzAz27dtHW1xVVFRQ3SESas3M+yADXyKRoLy8nHra+BpF/JwAm81G8zqMRuOaDQ0wbp75dpvBYBDvv/8+5HI55HI5ioqKaHgrGAyiqKgIWq0WyWQSEomEhr8KCgpgNpsRiUTQ1tYGmUyGsrIymM1mpFIpjIyM4PLlyxgdHUVlZSXNOyE76tvR85ZLEEM7Ho/j9OnTAEATuvmV66S6OFP70my+1gqwq6sLoVAIEokENpsN4XAYbW1t6O/vp30lSVEXCcUTb++FCxcwODiITZs24Z577pkVAl1stIEZeEsPv5iJb8xnGnLV1dU4d+4c7YBA1BmAa+Hw1tZWuN1u1NfXU4NfrVanSQ+RFpDl5eU4e/YsRkdHYbfbqSJDploDgKzGGYA058etnoty2mgj1WdzIRAI8MILL9yS5N3MxExivROkUincbjcSiQS98BzHQa/Xw2az4dvf/naa1Ad/l0AmI6I7xM/74LfwcTqdCIVC0Gq1NKePvP/IkSMIBAKIRCIArlWWsmpSxmLJNOCcTic8Hg9CoRBKS0tRW1tL28eQlkGRSARTU1Nob2+Hz+dDNBrF1NQUent7cfXqVZhMJmzevBk2mw0CgQAnTpyg4dSZmRlUVlZS7zV/4mQbjZVnLkOGbBg7OjqQl5cHlUqVlnNLog4khePIkSOIxWKoqqrC/v374XK5EA6HoVarEQqF6Lhra2uD0+nEzMwMtm/fnjYGTCYTTCYTAoEARkdHkUqloFKpaMvATGkkMmeHQiFoNJrrRhvYZmHp4UtWeb3eNLFj/nMOhwM9PT2Ix+PYsGEDDAYD1Go1zWP0+XwAgJ6eHmoTOBwOeDweTE5OQqPRwOFwwGAwwOfzQalUIhQK4Y477kA0GsXp06fR0tKC/fv3Z51fMlNE+M6PWy2fldNG22qBVJOQsnKn00k9XPydRDgcxtTUFI2pl5eXIxAI0NLzgYEByGSyNOOOhDyJYRaNRmGz2ajHrbm5GV6vFyaTCfv374dUKkVPTw9efvllPPbYY2hsbMSRI0fwxhtvQKvVor6+HrFYDFKp9LbJ6WAsDdl2m/F4HDMzMxAIBBCLxXRjYLVaEYvFqGJ9UVER1q9fT0MbO3fuRHt7OyQSCRXP7e/vx/DwMK5evYqZmRkYjUZUVVXBZrPRLgls3K4OsnlI+NckGAyio6MDZWVlqKioSGs39j//5//Em2++idLSUtTV1eH999/H5cuXEYvFMD09Da1Wi87OTkxOTiIYDCIYDOLtt9/GF7/4Rezbtw8ul4suwn6/Hz6fD3K5nB67v78fHMehoaEBpaWl1AtXUVEBn89HDQHg2sLMbys4H2yzsHCyGfPZHiO/pdvtTpPwIGsqyXtVKBQIBAIYHByE1+tFf38/ampqcO+996KxsRH79++H3+9Hf38/uru7IZPJIJFIkJ+fD6VSieHhYfT29kIul8NsNkMikcBisdA0qF/96lcYHx+HVqulhiD/nPkpSiSvjmw4SO4uMHev5aWEGW1LQLZqEjLgyKSWTRYhHo9jeHgYfX19UCqV2L59O5RKJTXuyKTY2dlJczmIN454yRwOBzo7O2kV1sGDB/Hyyy/j0qVLcLlc+NznPgeHwwGxWIzi4mLodDoqTEg8g2tZo4hxY2ROsPzwP9n5ejweDA8PY3BwkFZ89vT0wO12o6qqCiqVCsPDw1Cr1dDr9RAKhZiamqITZX19PYLBICorK5FIJCAQCBAMBhEKhVBUVIRPf/rTaRWE/FA/Y2Xh66Zt3LhxVi4QmRPFYnFalZ/b7cavf/1rtLe3o7u7G5FIBOPj49TwI4LKbW1tEAqFWLduHcLhMAoKCujm9nOf+xyOHTuG7u5uOBwOaDQaFBcX016jCoUCBoMBBw4coB4S0teZJK+TMFtFRcWCRZrZZmHhZPNK8j1nBJvNhsbGRgSDQVy+fBmXL1/G+fPn4XK5cPz4cQwMDCAWi0Gr1cJsNiMQCCAUCmF4eBharTZNTisUCuHKlSuQSqVIJpNQq9XYsmUL9djL5XJUVVVBr9fD7/dDpVJRo3H37t0YHR1NEwfndw/ipyhlRqnI6wUCQVaVhqWGGW1LQOYOzGy+1vvObrfTBFy+Bc633kkYMxwO49SpUxAIBNBqtUgkErNKs4mbn7/Tq6+vp94Loj0jFouRSqXg9Xrxve99D1u3boXNZqM7CGIMZmoUkeeYAXf7kulBIeGkrq6utM1DW1sbLl26hHA4TL0jbrcbvb29CIVCcDqdKC8vR1lZGWQyGYRCIa5evQq/3w+NRoO2tjbodDrU1NRg586ddGxrtVrk5eXRUBeBeTlWHxzHQafTZc0F4ouMZ/ZplkgkkMlkkEqldEFMpVJIJBIoKSlBNBpFcXExQqEQPv3pT8PtdqOnpwfvvPMO8vLy6NxWVFSEbdu20fnP6XTSLhzV1dVZ5WlI2DaRSMzbrYaxcDI7ohCpDCD9fiX/9vl8OHfuHDiOo0aOWq2GUCjE4OAgfvrTn+Lq1avo6+tDMplEaWkprFYrpqamcOedd2J0dBQ+n4/muhKtyP7+fgQCAej1ehQWFiKVSiGVSkGj0cBsNmPHjh2wWCxU/5Tk0ALAfffdB6fTSeec+boHBYNBmppE3s8f78sNM9qWgLkStTs6OgBglvXN33mQC3/o0CG43W5MT0+jpqYGXq8X//mf/4mKigooFAraj+2JJ54AAOr1IB0QyGLb0tKCwcFBFBUVYWRkBBMTE+jv70dhYWHaQCSLJN/Tdj1pB8baI7Pi2efzwel00s2G3+/H8ePHaTKvwWCA3++nYdBwOIxkMgmDwQCtVguRSIRIJIJoNIr+/n5s2LABeXl5mJqaQkFBAUwmE3Q6HdatWweHw4GZmRloNBo66fl8PlRUVAAADZfwi20Yt4brJd1bLBYaniTC3fwqX758B0n0t9lsaG1thVarxR133IG+vj4MDg5CoVBAq9Wiq6sL58+fh0AgAMdxiMViNEz2wQcfwOv1Yt26dSgoKEAsFoPFYsGBAwdgt9vh9/sRiUTAcRxcLhd27doFYPbcbLVaqadYLpfP6bllRQcLJ5unKfN35/+e2Qw5q9WK2tpadHd3o6enB1evXsX4+DjkcjkUCgVGRkYQCASgVCphMpkgl8upMdXV1YWzZ88iHo9DIpFAoVBAJBKhoKAADQ0N1KgnaUWBQGBW5Iu/9jU2NuLgwYPUEOXrxXV0dGBwcBB+vx8AqJc2s4Vktu+9VOOIGW3LCLHas1nfZKC3tLSguroaSqUSZrMZFRUVKCgowLlz5+D3+zE1NQWFQgG3242xsTH4/X4UFRVhaGgIk5OTaGlpwcsvv4xkMomCggJaFk8ScLu7uzE5OYlLly5hYGAAkUgEBQUF2LNnDwwGA0wmEw1/8cukWdLt7QFfmiE/P58K4gLXJiKScxmNRrFlyxa899576Ovrw+TkJORyOQKBAKLRKMbGxqBWqyGRSGA0GqnKPZH+EAgE2L17Nz7xiU/QdIFkMonW1lZ0d3fTXBbieckmasm4dVxvAxeNRmfl6GYaQiTR3+PxwO/3Y2JiAp2dnYjH4xCJRDTURdpS+f1+TE5OwuPx0Fwkl8uFyclJXLlyBZFIBCKRCDt37sTVq1fR1dWFH/7whxgZGUEikcDu3bsBXJN+aGtry5r2QaIgZKMy1/hi89/CIbncAGZVARP4IceDBw+mdT8gIWutVou77rqLtiiTyWRQKBSYmZmh6Twkz7WsrAy9vb04e/YsXC4XvF4v8vPzsWPHDoRCIcTjcVgsFirYTATmgWvXc/v27WhoaEjbtGZKfgDpG0ciMaLT6ajW3/XaeS3HOGJG2zJxPdVk4onr6+ujArsSiYTqs/X09GBmZgb5+fnQ6/VQqVR0QguHwygsLMTg4CAuXrxIq2OKiopQU1OD6upq+Hw+3HHHHSgrK0NPTw+mpqaQl5cHkUhEjclMvS2ymGYOYsbahG+ob9q0KS30fvToUbS0tMDr9WJ0dBTJZBJnz55FJBJBIBCATCaD0WiEQqFAKpWivUKTySQUCgWi0Sjy8vIQj8cRjUYhEAgglUphsVhgt9uxadMmBAIB9PT0oKioKK1Cmo25W0+mRyBTm4+/4JLny8vL4fP5EAgE0N/fj2AwSHPLzp8/T6v0hEIh+vr6kEgkUFZWRrUpOY6DVCql44fIxoyNjSESiUAgEKCgoIBKe+Tl5YHjOFy9ehUXLlzA2NgYjEYjdDodlEolgGs5cVevXkUymYRYLAYwe7Hkf7e5FlIWjl84ZrOZGmFHjhxJ64FNQqeBQAAjIyOYmpqCRCIBx3Hw+Xyor6/HsWPH4Ha7UVtbi7vvvhs9PT3o6OhAKpXC1NQUwuEw4vE4ZDIZ+vv70dfXh8LCQiSTSYyMjKCoqAjFxcWwWCzYvXs3Ll++jNOnT1M5oYsXL6Knpwd6vZ46K4hx6XA48P777yMWi2HPnj1pDgu1Wp22BhLDlBTVZErGZBsrmRqThJvxwC2r0fapT30K7777Lu6991689tpry3moVcdCbnqTyZSmOyQWi1FXVwez2YydO3dCKBTCZrPB7/dDLpejpKQEIpEI9fX1NAF4fHwcLpcLqVQK09PTOHbsGPLz82E2m1FdXQ2xWIzCwkKYTCYMDQ2lldSr1WoEg0EcOnQIVuu1tkMOh4OGbTPFexlrC/7GguifkbZnFy5cwMmTJzExMYG8vDxMT08jFAohGo3S0AMJcSaTSSSTSfh8PkgkEojFYsTjccTjcdTU1EAul0MikeAjH/kImpub4fF4aJi0uLgYarWaVpmSTU42rSTG8pHpEcgMb5HUClIMYLVaodfrMTAwAI7joNVq4XQ6kUgkEIvFcPToUUgkEiSTSVy4cAGTk5MwGo20jZTD4UB9fT2mpqZQUlKC4eFhGI1GFBcXIxAI4PTp0wiFQmmbzPXr16OoqIhGHYi3LxqNorCwEAKBAPF4HMlkEpOTk4jH42l9lwkLCbWzcPyN4ff70dXVhVQqlZbULxAIoFarkZeXh9HRUTgcDrjdbpw5cwZSqRQFBQWor6+Hz+dDf38/kskkgsEgwuEwEokE6urqsHXrVpw+fRpOpxNutxv5+fnQ6XQwm8245557EA6H4XQ6UVBQgKmpKXzwwQe0w1AoFMKhQ4cQjUbTClRIbvfIyAjGx8cRj8dhs9mgVqtpGgipGCUFCPz0pmg0ColEkpZ/yydTK5VwMx64ZTXa/vRP/xRf+tKX8NOf/nQ5D7Mq4QveHjlyBMCHSZp8l2oikcDMzAw4joNSqaSTDF8w0uFwQKvVoqioCGazme4q9Xo9SktL6S5mYmIC4+PjKC0tRVFRERwOB9ra2uD1eqHX6xGLxeBwONDV1QWNRoM9e/agra0Nra2t2Lx5M8rKyjA2NgaBQEBzQhi5TbYuHQBmeVPtdjvt7xeLxXDmzBl4PB6aJ0K8ZiTHpLS0FCMjI7T9WiQSQTKZhFAohNFohFarpZ0+Pvaxj+Hhhx+G3W5HW1sbBgcHEQgE8Pjjj6OmpiZrwi/zdCwP8/WRJdXu2YwcUi1HFjkCKVYBrvU5HhwcRH9/Py5duoRoNAqFQoFYLAahUIjh4WFs3boVLpcLCoUCdXV1UKlUiEQiqKioQDAYxMzMDOrq6uD3+9HT0wODwYCqqipaUSwUCjE5OUk3GsC1iAHHcRgdHUV9fT2tDIzH47TCPrMYjLE86PV6CAQCdHd3U48b8ciSjihSqRRisRgTExNIpVKQyWQ4cOAA1Go1fve73yEYDEIqlWLdunXU45ZIJGj1L8dxiEQikMlkAACJRIKBgQGcPXsWU1NTMJlM0Gg08Pv9GBkZgVKppDmSJ06coDluiUQCBoMBmzdvhkqlglarpTIeAHDixAla2FBdXQ25XI6Wlhbq3bVYLLT7Aj+Mymeueexm5rdlNdr27t2Ld999dzkPseohO41QKESbGpMWUqFQiOaUVVVVQa1WQy6Xp+1mnc4PmyUbDAbE43E4HA6cPHkSFy9eRCgUwsTEBKampsBxHFKpFIaHhyEWi5FIJNDT04NAIIC8vDwIBAJ4PB6a7O1wOKgHpaurCzKZjLqvXS4XANAbb6Fl8YzVRWbOGhGxJAYcyfMIBAJwuVyora3F5cuXMTExAYFAAJlMBrFYTMvuNRoNkskkenp6EAwGqYhuIpFAMplEPB6nHrPp6Wl0dXXhZz/7GS5evIji4mKIxWJIpVKMjIygra2Ntjbib2hITgzz9C498/VYJJIG/MWHb/QD6RXspFp9dHQUMzMzNMx96dIleL1eGtIqLCyESqXCxMQEfvazn4HjOOTl5cFoNCIWi6G8vBxbt27F8PAwmpqaoNfr8dGPfhQmkwnj4+MYGxtDXV0drFYrTp48Cb/fj6qqKhw4cABSqRRvvPEGxsbGqPeturoaLS0tOH36NG2hdfHiRTr/MsNt6SFhUL/fj8rKSkxPTwNAWsSHGEMmkwl33nknpqam4PF4YLPZqBZjKpXCzMwM8vLyMDExAY1GQwub/vmf/xlerxeJRAIymQxKpRLxeJzOF0RUeXJyEjqdDhKJBDMzM1Cr1di3bx/tcetwOBCLxdDT04NIJIKdO3fi8ccfT+uo0dPTg2g0SjccZO3t6+ujMjM1NTU4ePAg3fQuxqt7M57cRRttqVQKmzZtwic+8Ym0xutHjx7Fgw8+iH//93/Ho48+ekMnsxYhSZoOhyNN0d1oNEKj0UCpVOL/s/fn0W1e950//gKxkSABkgBBgiAkkCIpUbJIWhQlW1Ykb7Jkx6qauHHdSewmqWeSHjuZ+nR60nZ6+m2a0yatu5xMZ5LOuMlJ2rr1aFrHiSolkS1bsmSblgxSpqiFEldwA0gQIBaCIBYSvz/0u9cgRFLULkrP6xwfmVgePMBzn3s/97O8P/n5+TJefujQIU6cOCFzhkTrjc7OTiYnJ9Hr9YyPj3PkyBESiQRwsQ2ViP/PzMzg9/vJz8/HbDZTWFhIOp3Gbrdjs9kYHx+X1Xzt7e0ytySZTBKJRKipqSEYDBIIBHj//fcZGRkBWNRoUyqtbh8Wyk3KrA4VVcMAb7/9tvRiFBYWkkwmUavV0gucWQ2qUqkoLCxkYmKCiYkJAHJzc0mlUsDFHe/s7CzpdBqTySRbygQCATo6OkgkEhQWFuJ0OuUmJDvvU0kAv7EstsOfz9uWafSLjeYzzzwjr83u3btl1GDz5s3AxTGYl5dHOp2W6RmrV6/m5MmTeDweZmZm0Ov19PX1kZ+fT39/v8xdmp2dJRaLkZ+fz7Zt2/jhD3/I9PQ0drudT3/60/zyl78kHA5z+vRpysvLWbt2rQzfix6mfX19tLa24vV6yc3NxWazSQ9KtjdEmbuuD263m//4j/9geHiYHTt28OSTT14y1nw+n8yNLCgooLW1FYPBQDAYZP/+/eh0OrmGCe+aaIXm8XgoKiqSRpRer2f16tX4/X6ZA2mxWNDpdIyPj9Pd3Y1Wq8VgMBAOhzl27Bj33HMPKpWK0dFRdDodvb29jIyMUFZWxj333MPPfvYzOd+Fw2EsFgsOhwOVSkVjY6OUIerp6aGrq0u2wQKkIXgzNgZXbLTl5OTwh3/4h3z961/nD/7gDyguLqa9vZ2nn36ab3/724rBloVI0hQJ2ELR3el08s4771BWVkZpaanchQjdq0AggN/vx2azYbVaOXXqFG63G6vVSldXF4lEgoGBAfLy8jAajeTk5MhQq1qtJicnh8nJSbxeL6Wlpeh0Orq7u4GLE9XIyAhqtVoadw6HQ4YUqqqqGBsbk8ZeZmn0fCgL7aUIsVCBXq+/KZpQ8yWNZy9SAofDwfvvv4/H48FisbB27VrGxsaYnJwkLy+PqakpZmZmZHNuUb08MzMjk8iFdzcvL4/c3FxUKhUzMzNcuHCBdDpNZWUlKpVK7ooHBgaw2Wzcd999NDY2XqI7uJBRoSyu14fFdvji8dbWVgD27Nkzx+jfu3cvPT097N27F7iYrxMOhwkGg5SWluJwODh06BA6nY4NGzaQSCTw+/3SqEomk+Tk5KDVaikqKkKlUhEKhaR3zmKxUFBQQCqV4syZMxQUFFBbWyu1/fbt24fBYMBoNGI0GjEYDDJvSqVSsXnzZjlXtbW1EYvFcDgcPP744zI0lz2ulLnrUha61xa7B51OJzqdjqmpKXp6eviN3/gN6TkXHjiA0dFRRkdH8fv9eL1eVCoVGo0Gg8FAVVUVBoNBhkxFZbrYQJrNZtavXy9FmVOpFL/yK7+C1+vF7XYzPDws5UAGBgZkWsfY2BhTU1P09vZitVqpqqri8ccfZ2xsTKYDvfbaa7zzzjvYbDY2bdpEYWEhxcXFFBYWkkgkcLlc7N69WzpgUqkUOp0OQEbSdDrdktqhXStXFR79whe+wJ/+6Z/yd3/3dzz//PM8+eSTPPfcc/ze7/3e9T6/O4b5mrcLaz67QsXv98vkyM7OThwOB2NjYxw+fJh0Oi3DBgChUIipqSm5WMJFj4dOpyMQCBCNRunr6+Ps2bNoNBpSqZT0rs3MzBCNRikoKKCxsZGCggLGxsY4d+4cRqNRVrKKdlwLadAolaaXsmLFijl//8mf/MkN6YE7n2dNJI3P51VwuVwcP36cqakpHn74YR555BHeeecdGfYSlczJZJLZ2VnMZjMrV65kcHCQvr4+ksmkPN7s7Kwca8JLYjKZSCaTsjOCw+Fg9erVVFRUkJeXh9vtJpFIMDY2JlXqM1nIqFAW15tHZj/nTA/oI488Ip/fu3cvRqORkydPEggEWLduHel0mkOHDnH+/HnUajVwsf+z2IharVapyZeXl8dHH31EJBIhGo3i9XqZnJwknU6jVqvp7+/nsccekyH8np4eOjo6yM3NZdu2bXLubG9vB2DXrl00NDRIz8fnP/952tvbeeSRR9i1a9eC31XJnZzLYhIWi92Ddrud559/nh/84Ackk0kOHjxIXV0d58+f5+jRo4yPj2OxWDCZTPT29pJMJikqKsJsNsv+r+vXr2d4eJhwOCy9Z7m5uVgsFnJzc6moqGD16tWMjo4Si8UYHR0lmUzyzDPP8L/+1/9icHCQ3Nxc7rvvPu655x4CgQC9vb3SuBKpQLm5udjtdqkhee+993Ls2DHUajUlJSU8//zzUiakoKAAl8slhXetVisej4dUKkVpaSlwsR2l8MotpR3atXJVRptGo+H3f//3+e///b/z+uuv09TUxN/93d9d73O7o8ieHLLLh+HiDSNyjIaHh5mammJ8fByXy4XX68Xr9cqESrEbEa7/3NxcWXGjUqlQqVSUlJQQCoWkxo1arZZq0ZkaW+l0WvY6FUm9paWlMv9uvhs18+ZWKk0vZXBwULZrAm6Yl22+qr/MFisCcb06OzsZHh4mPz9fbg5OnjwpF0Qh3SDEc+PxuMxVEy3WRPhCtE6DixNiLBbDZDKh1WrlBmFsbAy9Xi+rll0uF2NjY+h0unlzQBbiblxcb6a3NtMjInKMBGKMVVdX8zu/8ztS5kBIxoyOjmK32zl58iQ9PT2yRZ/wolRWVgLI3o4jIyN4vV4ikQgqlYrZ2VmCwSAzMzOUl5eTTCapq6ujtLQUrVbL5OQkgUCAsrIyampqKC0tpa+vj1QqxdGjR+UiarFYZKViRUUF9fX1c+5B8T0zNzlKlehcREVkLBaT96d4PLP/ZvZ9OzIywtDQEMXFxUxNTeHz+dBqtXR3dzM+Pi5TMMT6lU6n2blzJ/n5+bz99tuk02kGBgZkcZOoPq+urua3f/u38fl8fPzxx1y4cAGtVovJZGJ6epoTJ04AFzeQBoNBVqlu3ryZwcFBBgYG5Pxz7tw5ZmZmSKVSvPPOOxiNRh599FF27dpFMBhkdHSUHTt2SGFoUXiTTCZltxeAhoYGVCqVTBe42evfVRcifOELX+Cll14inU7z2muvyZ1VJrt27aKtrY1oNIrD4eCNN95g06ZN13TCV8P3v/99/uqv/gqPx8M999zDd7/7XbZt23ZTzyF7cmhqapqTJ5ZpBImct3A4TFdXF8FgkIKCAhwOh6ywisVilJSUsGXLFnJzc6muriYQCHD06FFGRkbweDyy8bbIfRMtYAoKCiguLqaiogKVSoXZbCYvL4/29nYSiQTl5eUy7BAOh+fozIjJXcTwM/VplBDWJ5hMpksWjBtBpjGT+ftnTyIul4tz585hMBh4/PHHZQXVa6+9xsmTJyksLCQ3N1cKMKvVaqmxNjU1RV5eHiaTiYKCAkKhEIlEglQqRU5ODmq1Go1GIxfgiooKqqqqpPSCTqejrq5O5oSIqr+FKq7m425cXG+WtxYujo+f/vSnFBYW8uu//uuXVJZm/qvVapmeniYej8tE78rKSmlkGgwGKioqCIVCpNNpLBaL1KP0+XwMDQ1JHTbR6F0UJjQ0NEhPS3d3NyUlJYTDYblh/bVf+zXq6+vl3CR61Yp0EmFsLuT1uFaP7XKc467E+M/MPxP3p8hFE4oG2cUq8ElaRiwWo7y8nKmpKd566y1ycnIwGAyUlZWxadMmtFot/f39DAwM8NZbb/Hkk09SU1MjUzJKS0tZv349/f39hEIhotEov/jFL3jwwQdRqVT4fD4SiQQajUaKMY+OjpJIJMjPzyeZTDI+Po7VaqWzs5OJiQn0ej1Go5F0Oi3zt4eGhkgmk6xevZqOjg75/0VFRXMKoUZGRujs7JTHDofDsngqEonMa9ze6LFx1Ubb1772NeBinst8BhtcLE641ezdu5eXXnqJ73//+2zdupX/83/+D0888QRnz55l5cqVt/r0JGKHo9fr5cSzf/9+hoeHZbjynnvu4fTp00xMTMjqGeH+7evrw2w2k5+fT3V1NR0dHUxNTckkcYFer2diYoKpqSl27NjBo48+SmtrK52dnej1eoLBIA0NDbKnm6g6zAzrulwuPB4PZrOZT3/600oS+S0k87cXE23m42KR6e7ultf2y1/+MiMjI7z55ptzxC5FTqRAiJNqtVpmZmZkHolarcZoNKJWq1Gr1RQWFsrcD61WS1lZmRwX7e3tWK1WHA7HHM+s0vHg8twsb61YmDQaDeXl5VK7UUQBMg3mlpYW+vr66Orqwu/3k0gkCIVC/OIXv2DdunXodLo5sgkzMzN4vV7C4bAcH8JDKwz+/Px8OY76+vpkFWF7ezsbNmxgdnYWn89Hfn4+brebXbt24fV6pbekrq5OLpqZSvvzca0e2+U4x12J8Z8pVSUqIgOBgMxrzcxxFMYNXDTyioqKKCgowGq1cuzYMXp7e6moqKC6uhqVSkU0GqWoqIj6+no8Hg+9vb387Gc/Y/v27aRSKS5cuCB7yhYWFkoJq6NHj3LhwgUeeOABrFYrk5OT+P1+Wb0uius0Gg16vZ6SkhJZvGcymUgkEhgMBhkhGB8fx2g0Mjk5icvloq+vj4qKChKJBG1tbbS0tFBTUyP1TK1WK3V1dfNuBDo7O2VIXhi04ncUXG9D/6qMtj/+4z/mwIEDfPjhh+zYsYMf/vCHvPjii9d8MjeCv/3bv+X555/nP//n/wzAd7/7XQ4ePMjf//3f853vfOcWn90nZE8mQuBWuG39fj/Dw8NMTEzIXarX6yUUCuH3+0kmk1Js0Gw2U19fz9mzZ2U+yczMjCy/F1V+PT09BINBPB4P09PTMjbf09MjPXDZSvlCCV1oIWWKBi6m9aRw41hIwTvzOaFGn9lcW1TvCd2/4eFhAFksE4/HMRqNUmRSyICo1WrS6TQrV64kPz9fCuX29/fj9/uJx+NYLBZ27dol84laWlrkpiQzNKWwMDfLWytkhZqbm2U16MmTJwFkmEjIe/zDP/wD7e3tpFIp8vLyZLW6SDTXarUEAgG8Xi8ajQadTifbVGm1WmZnZ6UBB1BQUCB1tLq7u5mampLGnBDsLSkpQavVYrPZ5Nh2uVyMjIxgMplkwrgY24uROe6uZjFdjmH6qzX+M6WB1qxZg16vl7/XfG3ORkdHMRqN+Hw+6uvryc/Pp7CwkOrqavr6+ujo6MDhcHDfffeh1Wr52c9+xvj4OG+//Tbl5eV4vV5GR0dlcYDIRQsGg1KKY/fu3QwODsoIlN/vl7m1Qu90eHiY73//+3IdHB0dxePxyAK/cDjMfffdx5NPPinTgcQcKXK9hei9wWCgvLycurq6OW2vhCfO5/PR398PLDw2XC4Xra2tbNy48bKbiqVwxUbbD37wA/7mb/6Gd955h8bGRl566SVefvllvvKVr8id+e1CIpGgtbWVP/iDP5jz+M6dO/nggw9u0Vl9wnz5FYBUg6+urubZZ5+ltLSU7u5uPv74Y3JycgiHwzJEpVKpZNgzFovh8XgYGxuT/dEqKyu5cOECHR0dqNVqqqurWb16Ne+//z5tbW3SJa1Wq0kkEsTjcUZHRxkZGWH79u1S+0Ys5ADJZJL8/HwikcicCWAhrSeFG8tibXnEc+vWrZPae3/+53/OwYMHWbt2LWvWrJFN4qenp6VAbmVlpTTEBgcHpcdWeOSSySTRaJSVK1dSWFhIXl4eNpsNlUqFwWC47DkuxzDTcuVyv3X2tRGefqfTKfPXdDodbreb9957T/69cuVKysvLZZhIdGURYfLMZG2j0Si7JQiDTaPRMD09LdueiZCrCK9u2LCBTZs2cfbsWQYHBykuLsZkMjEyMoJWq6W+vl56XjIjFEvlarxmy3GzcTXGf3bkJ7tLSbaB0tHRgdFoJBKJSNHZ+++/X24mLRYLq1atkkoFIuQ4MTEhNR7z8vIwGAwUFhZSUlIipTk6OzsZHx9nYGCA4uJiKUs1OzvL7OysHG95eXmoVCoCgQB79+5l7dq1fPazn6Wzs5NwOCwr4dVqNTabjS1btnDPPffwzjvvEAwGpa6gzWaToXwh2ZXpTMkcMyJkfLmNaGZxz7VyRUbbL37xC1588UVee+017r//fgC+/vWv89d//df88z//M7/1W7913U7seiB6IZaVlc15vKysDK/Xe4vO6hMWasrsdDo5f/48x44dIxwOYzabqampQaPRyMFx4cIFGZ4YHx/H4/Gg1+uZnp6WOR5CIuSRRx4hJyeHc+fO0dXVxZo1a2SLmVAoRHFxMVarlXQ6LdsQTU1N0d3dLasAh4eHcblcUiRRpVJJd3HmorAcd6LLncwQqWC+zcDQ0BCtra28+uqrslrvueee44033pDizIDM3SguLpahkUwNNpHMazabKSkpYWxsTOoiPfjgg2zcuPGSBTQz7NLS0jJvKFfhxnClxonNZqO+vl5q+kUiEWlsiTCSaKf3qU99iu7ublwuF21tbYRCIXJycigoKJC5TBMTE4TDYenpn56eRqvVSj1A0Ts5mUxKg66oqAiDwUAikaC4uFiGuIQnX6vVsm3btjlh9qV8N2Wump/Fes/a7Xba2to4cOAAcHEDmIkwXlwuF5s2bZJdD0SrxMxOFCJ3W/QCra6upqSkhP7+fnQ6HSaTiZKSEmpqaojFYvT19ckQusViIRgMcuTIEd555x1CoRBqtRqtVovFYkGr1aLT6eR4PXPmDLW1taxfv568vDxZ8NLQ0EBTU5NM/3E4HGi1WiYmJqQOnBi7Dz300BzvWPaYWYoRn2nYXY/N6pKNttbWVp5++mlefvllnnrqKfm4yWTi61//On/xF3/BF7/4xQXz224lIh4vSKfTlzyWyc2q2soMJ3Z2dtLf3y9dqIlEgr6+Pvx+P3q9ngsXLhCJRFi9ejWPPPIIX/7yl3G5XHR3d/Pee++hVqtlWf3ExITU0hoaGmJwcJDR0VFmZ2eZnJzkxIkTrF27lmQyydmzZxkYGMBoNNLU1CQrcI4dO0Z3dzdFRUXk5eVx6tQpzp8/z8aNG9m9ezerV6+WFUWZfdwydx2KN+Xmkb0ByL4egNxxCv2igoIC+vv7CQaDpFKpOcbZ+fPn6e/vJzc3l7KyMiKRCJOTk1KtXEyCIjE4mUxSXl5ORUXFnEkuewwsFspVuDFczjhxuVwcPnyY8vLyORW+mWryIg1Cr9ezb98+WRzl8/kwGAwMDQ3JPpF6vZ7y8nJWrVpFTk4Ovb29suq4pKREGv+bNm2SVYdGo5GSkhJGRkZkUUtvby8XLlzAYDCwYsUKWR1aVVVFXV3dVYXZM++TLVu23NXzUua9ebnesy6XizNnzlBcXCx70GZeCzEOTCYTW7ZsoaWlZY5wtvgsn89Hd3c3Q0NDVFdXs2XLFl5//XX6+/tlEUJOTg5wUbjbZDLJLix2u53+/n45j8HF8Pq6deuor69n3bp1fPDBB3LcRCIR9u/fz9DQEBs3bqSkpIREIoHdbsdiseD3+2XfUPEbxGIxAFm1HAwG+dGPfgRcbNF1NZWi80XRxONXw5KNto0bN0rF6Wy+9a1v8a1vfeuqTuBGUlJSglqtvsSrNjY2don3LZObVbUlLprL5ZIdDTo7O+eU3Gda5zk5OZSXl8u2GYcPHyaRSMjqG9FuyG63y3JkoTItGn+L32PNmjU0NDTQ39/P+Pg4/f39Mneks7OToaEh6XnZvHkzIyMjjI6OYrFY5E0pChSE8SmazYvvthyTdpcbIyMjHDx4UIbTRe6RKLsXuRRWq5Xx8XHcbjerV6/GYrFQXFws9Yk0Gg25ubnk5uYyOTlJNBqVm4ANGzYwMDBAZ2cnKpVKtqLy+XxEo1HWr1/P888/z+Tk5CUetuwxsFgoV+HamW+jtBTDRlTqiVxVj8eD3++nvLycbdu2yUq6/fv3U15eTkFBAefOnePkyZPk5OTIUJoQXBabxlgsJkOkarWa2dlZEokE09PTHD16lKamJjZu3IjBYGDz5s14PB5CoRAWi4VUKsXIyAgDAwMkEgkCgQAjIyOsWrVKno9Ihr+Tc9JuFJn35uV+F6fzYheT2tpaOd+Lak4hwVFdXS0LFDJVB7KVEVQqFbFYjN7eXmZnZ3G73QwODjI7O0tpaSmVlZXMzMxQV1dHbW0tHo+H9vZ2mTOr0+koLi4mFotRVFREc3MzDQ0NpNNpmpubZfcEgLy8PKanp5mamiIUCslOHW63m3PnzqHX63n44YfneMO8Xi979+4llUrR0dEhW6StX78eq9V6y3Mib2jv0VuNTqdj48aNvPXWW3z2s5+Vj7/11lv86q/+6oLvu1lVWwKVSkVNTY3MKXO73WzZskVKgrS0tMi8jd27dwMXvSaiYGDr1q38t//239i3b58srZ+ammJqagqj0YjD4WBqakpOpuPj4/zkJz+hurpaVosFg0FOnz4tS5uFSKpI3iwsLMRqtVJTUyOrzXw+H+vWrZO5bMLzlj0wlQnyxuF2uzl69CjBYJCVK1dKY1m0hwmHw1Kgua+vj7a2NjkBHz9+HLiYLiDkO0QfUTFWhPctPz+f8vJypqen0ev1UuUeoL6+nqqqqkVz6q4knKBw9VzNRsnhcFBXVydDmKWlpVRUVNDS0sLExIQMZ/v9fj766CN0Oh1bt26VhVBarVa+Rwg0p1IpvF4vWq2WtWvX8thjj/Huu+/i8/lkf8lYLEZnZyd/9Ed/JDcKohXWqVOn8Pl8FBQUUFVVJQ2/wsJCzGbzVX9XZfx9wpXMzyaTiQceeEB6zoSRI9rjZfbtzMvLIxaL4fV6CQaD1NXVSSfC6tWrWbt2rZTp0Gg0cypCL1y4gMfjwWg0kpuby9q1awkEAuh0OsLhMLOzs6jVaik9FAwG+elPf8rbb79NYWGh9JBVVVWxbt06YrEYOp1OduMQHrszZ87Q3d2N2WwmEAjIClCn00k8HsfhcGCxWCgtLeXw4cOEw2G0Wu28RV5wc8ffHW20Afzu7/4uzz33nHRrvvLKKwwMDPDbv/3bC77nZlVtwdx4N3ySi5RJZpm12+2ms7MTj8dDcXExqVSK/v5+duzYwdatW3n//felUKVGo5FeNrVazcTEhEz+TaVSpFIpGhoaWLVqFZFIhBUrVrB27VqMRiPDw8O0trZKHZrMJFK3282pU6cIhUJYrdY5CaviXLObfre1tSnN528Aer2eiooKKioq5nhn4WLuiQh1CdHRdDpNJBKRvRpLSkr4T//pP3Hy5ElGRkZknohIHBe7YrVajdlspra2VlYji6Rhg8GwqFK6skjePC63EM/nHYjH49jtFxt7Z3obOjs7GRwc5MCBA1itVsrKymRV+NDQEGazWRphFotFhpYsFgurV6+mvr6eN998U+pjGY1GxsfHSSQScgEVjcHz8/PlhtNgMHDu3Dm8Xi8Gg4GdO3dSV1cnN4XZ41zZFC6dzOufyeUMkPmkPjLDhC0tLbS2thIOh1m7dq30xKbTaerq6mSHnn379lFeXi7z4vLy8rj33ntlqo/wao2Pj1NWVkZbWxvl5eWUl5fT09NDd3c3FRUVTE9Py+jU1NQUwWAQjUZDRUUFGo0Gm81GVVWVzJOcnp6WkQQhuJuXl4der6e7u5uxsTFZbJU5vux2u+y0IR4X3/9Wjb873mh75pln8Pv9fOtb38Lj8bB+/Xp+/vOf3zY3evaittgCNzQ0RDgcxufzyYbc586dY2RkhEOHDnH48GFGRkZIpVLk5+eTTqfl7iQUCkkvSUFBAbFYTBpw999/Pzk5OfT39/PRRx+xcuVKKcJbUlLC+vXriUQinDt3jp/85Cc89dRTlJeXS50bERbLDKFktkEZGRlh7969S2o+r3BlDA0NkZOTI43h7EXZZrPx6quvcu7cOYqLiykuLkar1eLz+WRv0MrKSt577z2CwSDRaJRoNCqTey0Wi0zMFZNcbW2tlIeBhYVM50PJc7yxzGckC80tQXYByHwha5fLRSKRQKfTUVBQQCAQIBQKYTabKS0t5fz587jdbvLz80mlUsRiMcbHx5mdnZVh8Ly8PCmCGo/HKSkpYWZmBo/HQzQaBS5GGbq7u9mzZw8DAwMMDg4SjUbl2BLiuw6HY97vKs4VmJPwrjA/8+W+wsIi3dkh9vlyskRnjKqqKsxmM83NzXi9Xnw+H6WlpdLYaW1tZXp6mtHRUdRqtfTMVldXy9ZR+/fvp6enB7VaLUOhK1aswGg0cuTIEaLRqBTiFVGhZDIpG8jv3LlTGncDAwM8/PDDUrqkurqaZDIpvWkzMzOcOXOGVCqFVqslFovR3d09x4kiDLSvfOUr8u9bnRN5xxttAC+88AIvvPDCrT6Nq2JkZIRXX30Vj8dDQ0MDdXV1c7TTxC5A9O+Dizl5okI2HA5jMplQq9WMjo6i0WhwOBxoNBrC4TAFBQXMzs4yODjIe++9RyKRwO12s3HjRjZs2EBxcTFlZWUcPXqUs2fPMj09zZNPPsmzzz4r5QAyQ6KZpeKZjxmNRulWVxbu60tmUU1mw/jm5mba29vlxCQ8aaKxu0qlwuPxcOrUKdm6anJyErVaTV5eHmVlZVgsFsrKyqirqyOVSqHRaKipqcHv93PkyBFsNtsVLZZKnuPNx+12c/jwYUKhENu3b2fNmjVzDOxs7TKXyyXbAz300EOYzWZef/11mVs2MTHBmTNnGB8fp66ujubmZiYmJnC73aRSKUpKSjAajRw6dIgLFy4wMzOD0WiUemqBQACNRiPHmRDNzcnJwWKxyIT2z33uc3I+icfjUk7I5XLJhVWMd5VKNSffaDHu5vkn0zgTua9CzmkpyfLzedzcbvclXlCXy0VeXh5msxm3243D4WDjxo14PB6GhobweDwyHD8+Pk5BQQFOp5P6+nr0ej3hcJihoSFmZ2elV1f0OYaLqU+VlZWyGbwohmlra0OlUjE1NUV+fr48n4MHD+Lz+WhsbJQOBdEXV1S99/f3k0qlFi3ouh28u3eF0bZcEV6rrq4u2QweLpbkZ95M9fX1dHZ2YrVaUavV7N69G6fTyfe+9z2i0SjFxcWsWrWKRCJBXl4e69ato6CggNHRUdLpNL29vbS2tkopD7vdzkMPPURNTY0UTRwZGZGti8LhsJT/aGhokIu22HEJbZvMnfyjjz4qJ8nrUUFztzDfAiMe0+v1BAIB8vPzcTgc8vcXYapDhw7x5ptv4vf7KS4uluGHkpISzGYz4XCYaDRKe3s7FRUVUonebDazceNGIpEIBoOBmpoaampqgItemsz+uCMjI9TV1S1ZNPJ2mPTuNkQOI4DZbF60+k0YeB6Ph6amJnbu3AnAiRMnmJ6eJi8vj9HRUQKBgAyjV1RUsGbNGvLy8jAajTQ0NGC1WvnlL39JMBiUArsAfX19RKNRSkpKqKiowGq1olKppMjuqlWr5Ovi8ficPrrCyBCSNOK7ZYdLL8fdvHHINM5E7mumQDosfo/O53FzOp10dHQwNjbG97//fSYmJsjPz5dzhsvlQq/Xyw4Db7/9tjTChbbj2NgYPT09OBwOamtr2bdvnwyhl5WVUVxcTGNjo2xbBRedE8JLZjabSSQSfPzxx9I7bDKZpJfN5/PNUWNQqVSyy1B9fb2MKswXNfD5fHO8a+K3E7/HzUYx2m5jxC6ztraWuro6uru7eeWVV9i+fTtf/vKX5WtcLhddXV3k5OSwZs0ampqa8Hq9UndGJHROT0+jVqu599570el0eDweZmZmOHv2LJFIRDaKN5lMsnRfVIOl02nZ5kZU3oRCIT7zmc8A8KMf/QiXy0V5eTmPPvroJSHfzL+VhXvpzLfAiMempqYYHh6WbYEyy/AtFgsnTpwgJydHipeKThrJZJJIJEIqlSISiTA0NMSGDRv4rd/6LU6fPo3T6WTFihWMj4/LKj6xcIoKVafTyYkTJ2Q7o6Wi5LhdO5fzFM0n2v3ss88uqW2Y2AhMTU1RWlqK3W5n3759RKNRNm7ciMPh4MCBA6xatUqKdQsvRyAQoKenh+npabZt24ZWq5V6VytXrmRkZER6zXJycjAajXLDMTk5id1up7q6Gp/PR29vL36//xK5GOGFy5QWulKVeWX+uchCv8NS7tHskLropCGEahsbG2XRnDCchKFWU1MjhZZFEZ4oVPj5z3+OWq2WUkI1NTXce++9RKNRXC4Xw8PDBAIBpqenmZ6exmKxkE6nKSoqktJEoqgqkUjgcrkwGAxYrVaKiopkaBQ+SesQmpHV1dWX9APPfF1m5OhWGv2K0XYLWcyLku2KtdvtvPzyywSDQXw+nzyGqNo5f/48wWCQVatW0dzcTEdHh2xb9PTTT1NTU8Po6Ci9vb385Cc/kXlto6OjMr8tPz+f3Nxc/H4/r7/+Om+88QarVq2SodJgMEhVVZWs5BE9La1WK0ePHsXj8Ug392IoC/fSyZ5YhTfNZDKxbt062Xw9swxftDjLzc1lx44dwMWQRyAQkMrhExMT6HQ6GQatqanhq1/9Ki6XizfeeAOAp59+Gp/Px+HDh8nPz8fpdM5pZbN582bUavWS2gcpXD8ut2jM93x2CHQhoy8ej2M2m2XhicBkMlFaWsrQ0BD5+flUVVXJnpImk0m2rhPK88lkkk2bNsmUiOPHjxONRmWXBFE809DQwJo1awiHw7S3t5NMJmlsbMRqtc7xcFxPuRhl/rnItfwOmRtIYZQ1NzfLfNnGxsY5uYbZ3quCggKOHj1KV1cX0WiU8vJy2c0gEAiQk5Mjix2am5v5wQ9+wODgoCyiEkUI99xzDzMzM/I/kX9bW1sr8+lEJ5jsNA5xHyyUkyvuI6EnJ7jVRr9itN1CFvOiwKWJjmIB1mg0/OhHP5qTCC4W6eLiYjo6OnjnnXfYtGkTNTU17N69G6/Xi8Viobe3l9HRUSKRCDk5OcRiMXJzc6mpqaG2tpZkMsnAwAB9fX2yGXRRURF79uyR+S5DQ0NS+FB45Ox2OxUVFTz11FPKhHidyAyDisnR5XLJCUZMlHb7RcXyzs5OmQx86tQpIpEIjzzyCGfOnJGSIGvWrJFafaFQiLVr1/Lggw/icDhwuVwcP35cVl/p9XpOnDjByMgItbW1MiwuQl3Zlc8KN4elaGqJfzPHkBg3wiMr9CAzPXA+n4+GhgZUKhV+v58f//jHpNNpNm7cCCANq82bN89pkJ1MJrHb7axatYoVK1bQ2NiIyWSSx+3r65PabRqNhlWrVvHQQw/hcDikVMTHH39MKBQC4Mtf/vIllY6KsXV7kenxNxgMVFdXy+v26quv8t5772EwGPj85z8/xxsqDHAhcNvT04PH4yE3NxeLxUJBQQFlZWUyDaO9vR273c6mTZtIJBL4fD7pCdZoNBQXF8sWWpFIhObmZh599FE55gHpZBDjp62tjb1792I0Gnn00UfnTRm4Fk/kjUQx2m4h8w2Kxap4mpqaiMfj/L//9/94++23Wb16tRQG3Lp1q1zQ9+3bJ3cIwmD74Q9/yMTEBPfddx+RSIS+vj4mJiYoKiqipKSEZ599lp07d/Lmm29y5MgREokEk5OT5OTkcPbsWYqLixkcHKStrQ2r1SpbyOzYsYN4PM7atWsxmUyyrdV8O5q7MfH3WhCh76GhIRwOxxxNJGBOwuzevXs5ffo0RUVF/OZv/qbUtXrnnXdwu92EQiH0ej3FxcXk5+dLr6pI7BUtrqampti0aZPMJYpGozI/RWj3icX4Vk9edyuX+90zn9+3bx8ul4uCggL5WCAQYGhoiFWrVskxduDAAU6ePEkoFOKpp56ipqaGN954g1gsRnl5OWvXrqW5uZmHH34YQBpbJpMJv9+Px+OhtraWxsZG2T4vs9n8jh07pLZkbm4uarVaygWJCvSJiQkCgYBsnafMGbcX2UZ0psc/O3zY1dU1Zx2Y73parVbZ/qq1tZXx8XGcTqfssvD6669z/vx5mpubefLJJ/mt3/otaSgmk0lcLhft7e0yF3LVqlV0dXWRTqdlBOrIkSNSuDlznXW5XHg8HmDhzc/tOr8pRtstZL5BcbkqHpFUPDk5SXl5+RxPSzAYlDkDsVhMPpdZRv3YY49hsVh45ZVX8Hq9MlQxMTEBXExUTiaTmM1m1q9fT3d3N5FIhHA4zMTEBNPT01Jk8+mnn6apqYm2tjaZIHzq1Ck8Hg/V1dXU1NTInfzdmvh7LYgEX6PRKCuzxOTo9Xo5dOgQqVRKyneMjIwQCAQ4cOAADoeDsbExYrGYzCtKp9OcPn0as9lMQUEByWSSQCBAZ2cn27Ztk96UzDCCWKTF5Nrf34/FYlGu4zJCpVJRWloq8xF9Ph8OhwOz2SwXt3PnznH27FlmZmbo6emhpqaGoqIiKioq5GYsHo9Lj4kwBquqqvD5fLJbTnt7O319fQSDQYqKiqSno7m5mU2bNpGXl4fT6eThhx+Wny1yMB0OBx0dHbIASpkzbi+y5ULmywODi/NWbW2tzFdzOByXyEAdPHiQo0ePsn37dhobG2W3FYPBIAsWgsGgHFfZxrvP55MFLiqVitzcXBoaGtDpdPT19clCuc7OToqKiqTuqpjbnE4nPT09PPLII8tufClG222MmGBFvsh8ScWZWkV9fX0UFRXxzDPPcP/990tvnU6no7m5merqaiwWC+FwWP5rMBgIh8McP36cZDLJ0NAQHR0daDQaysrK5PGbmprYsGEDVquVjz/+mImJCXle3/ve92hvb+fBBx9Eo9HQ29tLX1+fFN9dag6Asrv+BPFbZBpqmb+J2+3G4/FIg6umpoahoSFCoRDhcJjTp08TiUSorKyU+R+Dg4MMDQ1htVr5zd/8TRobG3n99ddlZw1hYAvmS/IWrc0Ubn9GRkbw+/3k5+fT0NAAwP79+2WlZiAQAJANs61WK6lUij179lBfXy+PkxnC9Pl8slpTaKxNTU2RSCTweDysWLGCDRs2yMbdQvrHbrdz3333oVaraW5uZs+ePbLdUV1dndR43LJly7yRB4Vbz2KRoey5e8eOHbLFlNgUiBaMcDFKcPbsWXw+H0eOHGFiYoKysjI2bdqEzWaTnmCHw0Fubi779++fk5/mcDikfEcoFGJwcFAWygjvW0FBAWvWrJFj0+Px4PV62b17NyaTSQrFZ0eGbncUo+02xm63y7wREY9fyLDJLHvPfL6lpQWNRiPbw3R3dxMIBCgpKQEu9mcV/dja29vp6OggHA5TWFhIVVWV3EWJHUoymZShth07duB2u2lvb2dgYIDW1lb+8A//EI1GI1uJZIbRLtcr8G7fXc/XwDkzCTa7SMVgMNDb20tbWxtNTU1s2rSJZDJJfn4+H3zwgfSQCE+I0CUyGAxYLBaampoYGhqSSeeX+/2VHLabi5C1EIhq7qUg8oqEonw8Hqejo4OTJ09iMpnQ6/VEo1EphiruSTHGvF6vTDAXuUXHjh2T7ezEWOjs7OTUqVPARSOuuLhY5iplS/9kj5/sf7MjD3fjHHA7s9j1ESHOjRs3smfPHuLx+Bw5EaPRSF1dnXxPTU0NH3/8sSysKygoQKfTyTaOmW2yRNqPSBWJRCKsXbuWyclJhoaGmJycpLq6GoDJyUlMJpPcnJaXl8tNRygUkscXUQxx3Mxq5NsdxWi7zcme2BZaWJuamrDZbJe4oTPzD1pbWzl58qRUqhZhsscffxy9Xs+f/dmfkU6nMZlMrF27lsrKSqxWK+FwmFdffRWNRoNKpWLz5s0ycd3pdPLkk0/y5ptvYjabpbaSMDiyvUNLaZVytxoFl2vgnF2kct999+HxePD5fJw6dUoq2IucNVHKPj4+TnV1Nffdd59MDg4EArS0tOBwOC4xxDL/f75Nwq3UKLqbWLFixZy//+RP/oRvfvObS3qv8MQC0sOh1+tlux9hXOn1erlRc7lcsnekXq+XMgxbt24FLvb9zPSWADQ2NpJMJhkbG6O0tBSLxUJra6tsXwSfqMpns9TNnML1Z6HN/5U+LvD7/QwODlJZWQnMnb+y5xO73c7OnTsxm83SiaBWq0mlUlJ9INtAFGuNVquVrfk8Hg/BYJDi4mI2bdokOzEAaLVa2WoRLo61zDZtQqbE7XZfUqV8PX7HG4litN3mXInGmdvtntOYN7NHmpCD8Pl8JJNJioqK2L59OxaLRXp2mpqaKC8vl/locNGN3dLSQkdHB7Ozs6xevZrPfOYzeL1e3nvvPXp6evid3/kdNm7cyJEjRzh06BAmk0nmz2Qi/s5U087euS1Fd+pOJFPKI9s7uW/fPuBiSCDzd21ubiYQCHD06FHOnz+PTqdDr9eTm5sr84pEc/eKigr27NkjNYvMZvO85ezZv2+2oX23e0NvJoODg3N6IM/nZVvo3nA6L3ZLKS8vl8UBTqeTbdu2zbnur7zyCseOHePdd98lPz9f5inV1NSg0+lIp9P88Ic/pLq6WhY9CQ++OI7Id2xubpYSNOIcMjt02Gy2S1pozdf2TuH6Mp/HdqH7+EofF4icRKFokLnBczqdl0SMslMvXnnlFU6ePCmrkDMZGhpieHgYm81GXV0dk5OT6PV6Vq1aRTqdpra2FqfTyf79+3E6P+mqIKSxrFarnDfnW28W6se6FG7FfKgYbcuMxSpanE4npaWlFBYWSiFK+MTL1t/fD1zUyPn85z+P1Wrl0KFD+P1+7HY7paWlfPrTn5YhUTGYfT4f4+PjjIyMcOrUKVasWEFpaalMHhXubK/XyzvvvMOFCxdIJpPs2rVr3nO/0o4Id4OhkCnDkDmR+Hw+2aYHkKEq8bzQ0pqdnZV5RMlkkmg0SigUwmQycc8991BTUyMbg4sJbCkT1UKhrLvVG3ozMZlMc4y2+cg0inbv3i3vD7vdjsViob+/X0omwPzX8eDBg8zOzqLVaikvL6ewsBCtVktdXR0HDx7E5XIxPj4+R4Io8/2ZyvrZi7HX62VoaAij0YjNZsNkMs3JjRPePSExo3jcrj/zeWxFL82FNtbZ3rHMDeV8zJc6kd1Sb76NvJCREuk0Is0nG5FLmz3uZmdnqa6u5tixY7S0tGC329myZQsmk4m6ujrZZm2p1dZXyq2YDxWj7Q4i0+WbqcvU2dlJZ2cn0WgUg8HAqlWrMJlMuFwuWlpaKCoqYsuWLZe0NBGDWa/XyxBINBrl9OnTUpx3cnJyjrs5Go1y9OhR0un0HF2cTK50oN/phsLIyAidnZ1EIhH5mDBUTSbTnIlMGK/CEK+srGT79u2MjY3JEFcikeDee+/l3Llz2Gw2HnnkkTkG9JXIdcyXx6IsqLcPmbk5891v6XT6Ek9D5mtMJhNms5nh4WEaGhrYsmXLnLnD7/czPj4uvRmC+cbBfPdnPB6XcjWi0KW1tZW+vj65ASkoKKCuro54PH7Hb85uBfN5bIW2ZjbzXVe32y09sAtdl4XGgxib8Xh8jkc/c1MqwulPPPHEJZWo4nyF1NFCn9PZ2UlxcTElJSVSyUB45G4kt2I+VIy2O4z5BpHFYiE/P5/CwkLZpkpMokImRFTiiIn34MGDvPPOOzzyyCOYTCa6urqYnJyksLCQ6upq4vE4K1eu5FOf+tSc3f39999PNBqVMiFXEga9ku90u3MlSeRut5u8vDyphZW5s83cJWa68UW+Wk9PD5s3b2bnzp14vV6pXN/Q0DCvEvhy+x0vx3/9r/+Vffv24Xa76ejoYP369bf6lG4qmRs1US0u/j/T+zHfGBI5r6L9j9lsxul0SiV7p9PJrl27Fux4kXmshfqZZm64xDlUVVUxNjYm56DFcioVrp2leGwX42o3zXa7XXpTs+e+zE2pkBpa6PjCaMysbBfHF1EJi8UiWyqGw2GpKbnQZmY5s2yNtj//8z/nwIEDskFsMBi85DUDAwO8+OKLvPPOO+Tl5fH5z3+ev/7rv5aConcL2S7ncDgsDTQhkpsZkoOLoqxi8v6d3/kdEokEOTk5bN68mc9+9rNzduPZVY3ZIdrOzk6SySTNzc3z7qQyuVPy164kiTx7YRNSCGJnO9/i6HA40Ol0jI2NcfjwYTo7O6mrq+PZZ58FkCHrhXIEM1vMLOff+XOf+xzf+MY3+NSnPnWrT+WWkZk/JIx5uLSjinhNpjfLbrezefNmcnJyZAWx8HxYrVa2bNlyST7SQseC+fueZm/Y1qxZg0ajkeHU7OcVbl+WOj9netIu15T+ctdcrF/Z61jmZ4j5UlSbrlu37pJuH3cKy9ZoSyQSPP3002zZsoUf/vCHlzw/MzPDk08+idVq5b333sPv9/PFL36RdDrN//yf//MWnPGtIzPPRCzYQv8tHA7j8/lkrz8x4Tc2NjI0NMTKlStxu900NjaSk5PDhg0bpKaSOE4gEKCvr0+We4vdldPpxGQycezYMfr6+gAua7TdKflrS0kiFyxWbLJQorYIOwkviNfrlUKUQqpBXNfsiTF7Yb5Zv3M6nWbr1q1MTU1x4cIFKioqyM/PZ/fu3fzZn/3ZVR1z+/bt1/ksb0+yF8vsvzM9F9m5Qwv1MxZke7syPWFwcex2dnZy/PhxPvzwQ6qrq3E4HPPmOS3l/r3T0x3uNLJFdZcyPy80Hpfinc2mqalp3nVjvs/Izq9czmvIQixbo+1P//RPAfjxj3887/NvvvkmZ8+eZXBwUF64v/mbv+FLX/oSf/7nf35N7uLljPgthJp5XV2dLHnOvsGeeOIJpqampEK6qCgVN55IkBdVZ52dnVIMNnN31djYKIUWL7dTu1Mm9KWEJBb6LTInm5aWFpnPkR1CEgZzOp2mtLSUdDrNiRMnGB0dpba2Fph/gnU6nZcNSdwIVCoVH3zwAQA2m423336blStXznnN5z73Obq7u+d9/3/8x39c4sG8W7hcFe9inotsqZjs57MXtzVr1hCJRHC5XNhsNuLxOMPDw/T09NDb28u5c+eIRqOsXbuWRx99dMENx0JkegYz/1a4Pcms+hetyxbaFMxXqLKQd1b8fbVRlcXG/HJfPxZj2Rptl6OlpYX169fPuZi7du0iHo/T2toq2/PcrUQiEXw+H7t27ZI7lMwGu5k3anajaUA2mwakZlumcCEgjcHq6mpZrbRv3z6OHDmCzWbj2WefvewCciezmFcis9G3ED8FLskRPHr0KBqNRsotfPDBBwwPD/PAAw8sGB7IrvDL5kaHqD0eD8lk8hKDDeDf//3fr/vn3Qlcrop3sftGr9czNTW15KTs7OIGp9PJ9u3bsdvtlJSU0NXVRTweJxKJzDu2lIrwOwtxTbPTNgTzXcuFxkF29WdPT8+CEYGlntflHrvTuGONNq/XS1lZ2ZzHiouL0el0UoDvbqW5uZnOzk68Xi8ul4s9e/bImzLzJso02MSNIKQnshd+m80mw6XC9d3W1iaTUIUh0N3dzfnz54lEIndcguhSyTTI5iuDh4sT4dtvv00kEuGZZ56R1ydT3gEuCp6K6iyA2tpajEaj7A96Nb/vjV5QT506xYYNG+Z9TvG0zU/mtZzPqF4sTzHb872Uz9q9e/ec+/nLX/6yfF7c12LhFeH4K1l07xSP+t3AYvPVUuRAMplvTroWcdu7kdvKaPvmN78pw54L8dFHHy2o5ZKNMDAySafT8z6eybW0j7mVLNVDYrfbpUhhJtkesqmpKQwGgzTi5lPPzySz7Y3dbufdd9/lwIEDdHR08NhjjxEOh0mlUqxevZqZmRmOHTuGXq9fNM/tTilMyGS+FlVwae5RJBKRi3FTU9MlHpDMVi9i0bweybc3ekEdHh7G4XDM+5ziabs88xnVmekK2XmKV3M9xftbW1sB5mzQRI6R2OSJeSLzfUs5/p1yP9/pLDRfiecuJwciWKhI5VrEbe9Gbiuj7Wtf+xq/8Ru/sehrRJuMy2Gz2Th+/PicxyYmJkgmk5d44LK5lvYxt5Ir8ZDMV2ovbqLMnbTJZJqT82a1WvF6vXNuMlHBI3KvwuEwL7/8Mr/4xS8YGBjA5/MxNDREY2OjbIUTDofp6+uTBsn1+E7LhYUW0ezco2eeeUYK7sJFozgYDFJaWrqo1tq1/k43ekHdunUr3/nOd3j22Wd59dVXr+lYL774Ij/72c/wer3s2LGDgoKCBT11dwrzjR9hsGc/Dtd2PYWo6WLnkblpULjzWMzov9yGINNLJ1JoYO4ctdTxeSdu4K+G28poKykpkY3Mr5UtW7bw53/+53g8HsrLy4GLxQl6vV4mYS/ElVT+3U5cyY56sRtFhFNMJtOcMGcqlSIcDs/ZWQNzRGCdzovtRFpaWojFYphMJtRqNWNjY3R1dVFTU0M6naa6upqVK1de1mt6N4VRsr+r6Cfrdrulx62vr4+ioqJlPWmtWbOGrq6u63Ks733ve3zve9+7LsdaLiyUy7NYnmI2S1kAHQ4HnZ2dBAIB2TMy+71LrQBUWL4stlZczuASG9Gpqal5C6quhOtVxLDcjb/bymi7EgYGBggEAgwMDDAzM8PHH38MQE1NDQUFBezcuZN169bx3HPP8Vd/9VcEAgF+7/d+j//yX/7LZav6rlWM8FZxvTwk2caDyJkSXh6tVntJDkPmDSBEe8+cOUM6nZaaTA888AD5+fmMjY3R2Nh4WfmP6/mdbiWZu00hxZHdg1H8/2KVfwvpFSkoXCkLtb/KJB6PMzk5STQanZN/eid6vxVuDPN5Y692zMxXxABXPgavdfzeaqNv2Rpt/9//9//xj//4j/Jvkdh8+PBhHnroIdRqNQcOHOCFF15g69atc8R1FRYn23gQpd5Go5FEIiGbjmdWCmUicl6Eh06r1aLVaqmurgaQcgLAvDfyrb4prjeZu03hwVyoAEEwX/Kv3W5fkqGrcOdzrfdIdn7kQpV+84Vc7ybvt8K1cT033fMd62rG4LWO31u9aVm2RtuPf/zjBTXaBCtXrmT//v0354TuYLL7By41f0UYb9mJpmKxcLlc8yYw3+qb4npzNbvN+ZJ/7zRjVuHqudZ7RFSIio3BQu3mriTkqqBwI5mvkGGh5xbjWg3JW71pWbZGm8KNJ1sr7HJGx+VuHFFdKgy/+RKYr7SEfDlwuUliIXFK0bVC5BPdacaswtVzPRaOTP2tpY6rhTp0KCgsxvXYcC42/93MufFWp+woRttdxJXeONnenstN7i6Xi9bWVtnOKvs4Ijw4X+l45muXWkJ+p7CQOKXVasXlcuH1etm9e/ccj918nhGFu4frsXCI4ha/34/FYlmSAeh2u685oVzh7uN6GFXXUsV6J6EYbXcRV3rjXE6FfT7mkwi4EmmAu+nmEyz0nbPzjkQLoivxjCgsX260XqToQRsOh1m7du2S3pM5VpWxp7BUrqdn+Eqfu9PIudUncDcRj8f55je/uWRl8uuNzWbj8OHD2Gy2Jb3ebrfP6VWY/Xc2zc3NPPHEEzJ5eWRkhH379vHmm2/i8/koLi7m4MGDssn5Uj7zTmNkZISWlhZGRkbkYwt9Z5F3lNnGKh6P8+///u+sWLHilhi2t3oM3+rPv5msWLGCwsJC+d93vvOd63ZsMY4aGhooLy+XG4PLkTlW5xvLV/L5yjhavoyMjPDuu+/y3/7bf1vSb3gj5vVbfQ1v1eer0oupJ95lhMNhCgsLCYVCN0Ty40Yf/3b7/JaWFn7xi18wNDSEw+Fg+/btPPbYY7fs+98MLvcbCy/ZYiHiazn+jeZu//ybgfiO8+lFXi9PW+bvODk5eVX5Rtcylm/1dbzVn38zuJHjqKWlhdOnT/OVr3zlrr2Gt+rzlfCowg1DSAasWrUKs9l81/aNzORuDP8qXB03Sy/yakNLylheHtyIDj9Op5NoNHpNx1C4OhSjTeGGkS0ZkJ2jczdyN+VeKNzZKGN5eXAjOvzY7XYKCgqu+TgKV45itGUgIsU3yrgQx71Vxsud+PlGoxGVSnXdjnetKGNoeX7+7TSObvQYyjz2nXYdb+Xn305jCBbuGys63Fwrd+I1vB0+/3LjSMlpy2BoaEgJ4S0zbrecFGUMLU9up3GkjKHlye00hkAZR8uVy40jxWjLYHZ2lpGRkdtux6SwMLfbtVLG0PLkdrpeyhhantxu10sZR8sTxdOmoKCgoKCgoHAHoOi0KSgoKCgoKCgsAxSjTUFBQUFBQUFhGaAYbQoKCgoKCgoKywDFaFNQUFBQUFBQWAYoRpuCgoKCgoKCwjJAMdoUFBQUFBQUFJYBitGmoKCgoKCgoLAMUIw2BQUFBQUFBYVlgGK0KSgoKCgoKCgsAxSjTUFBQUFBQUFhGaAYbQoKCgoKCgoKywDFaFNQUFBQUFBQWAYoRpuCgoKCgoKCwjJAMdoUFBQUFBQUFJYBitGmoKCgoKCgoLAMUIw2BQUFBQUFBYVlgGK0KSgoKCgoKCgsAxSjTUFBQUFBQUFhGaAYbQoKCgoKCgoKywDFaFNQUFBQUFBQWAYoRpuCgoKCgoKCwjJAMdoUFBQUFBQUFJYBy9Zo+853vsOmTZswGo2Ulpbymc98hvPnz895TTqd5pvf/CZ2u528vDweeughzpw5c4vOWEFBQUFBQUHh6lm2Rtu7777Liy++yIcffshbb71FKpVi586dRKNR+ZqXX36Zv/3bv+V//a//xUcffYTNZuOxxx4jEoncwjNXUFBQUFBQULhyVOl0On2rT+J64PP5KC0t5d1332X79u2k02nsdjsvvfQSv//7vw9APB6nrKyMv/zLv+SrX/3qLT5jBQUFBQUFBYWls2w9bdmEQiEAzGYzAH19fXi9Xnbu3Clfo9frefDBB/nggw9uyTkqKCgoKCgoKFwtd4TRlk6n+d3f/V0+9alPsX79egC8Xi8AZWVlc15bVlYmn5vvOOFwmDvE+ahwC1DGkMK1oowhheuBMo7uTO4Io+1rX/sap06d4rXXXrvkOZVKNefvdDp9yWOCSCRCYWEhw8PDhMNh+V88Hr8h561w5yHGkJI3qXC1KGNI4XqgjKM7k2VvtH39619n3759HD58GIfDIR+32WwAl3jVxsbGLvG+ZbNixQoKCwvlf9/5zneu/4krKCgoKCgoKFwBmlt9AldLOp3m61//Om+88QZHjhyhqqpqzvNVVVXYbDbeeustNmzYAEAikeDdd9/lL//yLxc99uDgICaTSf6t1+uv/xdQUFBQUFBQULgClq3R9uKLL/Kv//qv/OxnP8NoNEqPWmFhIXl5eahUKl566SW+/e1vU1tbS21tLd/+9rcxGAx8/vOfX/TYJpNpjtE2MjKC2+3G6XRit9sXfe+VvFZBYbmgjOubTzgcnvO3Xq9XNpA3gTttrN9J4+hOuzZXw7INj/793/89oVCIhx56iPLycvnf3r175Wu+8Y1v8NJLL/HCCy/Q3NzM8PAwb775Jkaj8Yo+y+1209PTg9vtlo+NjIzQ0tLCyMjIZV+roLDcuV7jeqH7RuFSlDSNW8OdNoffSePoTrs2V8Oy9bQtpSJGpVLxzW9+k29+85vX9FlOp3POv/DJ4AHmWPzzvVZBYblzvcb1QveNwqUoaRq3hjttDr+TxtGddm2uhmVrtN1M7Hb7JQvMQoNHvE7sBJSFSeFOYL574GpQJt2lk52moXBzuF5j/XbhThpHd9q1uRoUo+0qWWzwZHsTlDi8gsJFrnTSzb53xN96vZ54PK7cUwoKCncVitF2BSzV+Mr2JrhcLo4cOYLNZuPZZ59VFhmFO5rruUnJ3gCJv6empjAYDPJxBQUFhbsBxWi7ApaajzOfN2FiYoJ0Oi3DpornTeFO5XrmrWVvgMS/mZ42BYWrRYmCKCw3FKPtCrjafJzm5uY5x1CSsRXuZK5n3lr2BkjJaVG4nrjdblwuFx0dHezevVuRdFK47VGMtkXIvkHnWzAWu4kzn9uzZ4983Ov1MjU1tayreBQUFuJGGlbKoqlwPXE6nXR0dBCPx3G73ZcdU8qGW+FWs2x12m4GS9FnW0w3ZqHn4vE4BoPhru9p2tXVxQMPPMDq1avZvHkzZ8+evdWnpHCDWUinban6bYpO093Bf/2v/5XKykpUKhWnT59e0nuuRgPQbreze/dumpubl+QZdjqdVFdXK2H5m8By03S8WeuZYrQtwnw3aPaikfma7EG20A0uHg+Hw7zyyiu0tbXdvC91G/HVr36Vr3zlK1y4cIFvfOMbPP/887f6lBT+/1xuwrzaCVXcPy6Xa877XS4Xv/jFL3C5XIu+X9w7er1+WU3oClfG5z73Od57770rMo4y5+bM8Xm5sWq329myZQvAZceUeK3iZbvxLLcN2s1az5Tw6CJkhnkypQYW2mllu84XChOJx1955RVOnjxJMBgkHo+j1+sZGhoCLubB3U4TQzqdZuvWrUxNTXHhwgUqKirIz89n9+7d/Nmf/dkVH29sbIy2tjbefPNNAH7t136Nr33ta/T391NZWXmdz17hSrlcGGgpYaL5Qpl6vZ6pqSmSyaRsryOeU6lUl7zf5XLh9/uxWCzynrDb7bS0tCiyOrcJ13tuANi+ffsVvyczlzJzfAJLCmkqoc/bixup6bic1zPFaFsi4oaurq6Wu7KRkRH2798vw5xOpxOfz4fP52NkZOSyN74oUNBqtVLGYGhoiEgkgtfrXVJi7M1CpVLxwQcfAGCz2Xj77bdZuXLlnNd87nOfo7u7e973/8d//AcrVqyQfw8ODmK329FoNPL4K1euZGBg4I4w2m7Xfn9XK1tzJc+Lz/D5fHN+B/GYwWDAZDJhtVrl+zOLdcS9I5LEh4aGWLFiBVarVZ5z9ucrC+6t43rPDZdDGPMwd3ObKWw+3+Y6e6xm3wuK8PPtxY3MjV3O65litC2RhVpZxeNxYrEYPp8Pp9OJ1WrF5XItyehqamqiqalpjhdPq9Xy85//nJ6eHrRaLV/+8pfnfe9Ci++N9jh4PB6SyeQlAxzg3//936/oWNmelaW0JlsuZC9Cf/Inf3LN7dSuB5czbjLHj9icZD++mBc58zOEErvYyLjdbmKxGHV1dXMWW7EId3Z2kkgkOHHiBCaTicbGRpqbm6mqqkKlUuHz+Whra5NSH5nnpyy4l2c5zQ2LIYx5lUo1x5DP3ESLuXghsjfclxvTCreG5TRmb9Z6phhtS2ShVlY+n4/Ozk7cbrf0HIhqJJfLNcebMN/uMPvY8XicX/7ylwSDQXw+34Lns9Die6M9DqdOnWLDhg3zPnclO5MVK1YwNDREKpVCo9GQTqcZHByc9+ZZjtyu/f4uZ9xcj3E1X5jKZDKh1+sJhUJ4vV7g4oR88OBB3n33XQKBAGVlZZjNZrkZKioq4itf+QqADIe6XC4pqivOK9OQFPlLSpj0UpbL3HA59Ho9BQUFlJaWzruJ1uv1+P1+Wltb2bhxI1ardc73bmtrY+/evaTTaWpqahRD/zZGjFmfzyfX0us5dpfjeqYYbdeA3W7HarVKL5kYULt375ahoMy8isOHDxMMBgHmSIBk4nQ6efzxx/H5fOzYsWPBUMBCi++N9jgMDw/jcDjmfe5KdialpaVs2LCBV199lS996Uu8/vrrVFZW3hGhUbh9+/1dzptwJeNqsTDVQr16hXdDJBcfPXqUc+fOYTQaqa2tZceOHRw5coSenp5LQludnZ0MDAzIsNd8RogSJl2Y5TI3CEZGRojFYhw+fBiz2Qx8EmK32+1UV1fPucaZwsuHDh2SofnMx1taWjh27JgMwd9OKSgKlyKuXeZaej2vV/aYzfTs3a7rmSq9jGNSR48e5a/+6q9obW3F4/Hwxhtv8JnPfEY+n06n+dM//VNeeeUVJiYmuO+++/je977HPffcM+/xwuEwhYWFhEKhJS+4S9VpA/je975HT08Pu3btYteuXfP2VMz2ygG0traSTqd54okn5oSEbgXnz59n9+7d3Hfffbz66qvXfKwvfelL+P1+TCYT//iP/7jgtVkuXM0YWq7s27ePf/mXf2F6epqtW7cu2qItu2eoKLrp7u7G7XZjNBp56qmnaGpqkl41kfcm3nPs2DH6+vrYsGEDX/nKV+a99+6EgoTlOoau59zw4osv8m//9m+Mj49jMBgoKiri3/7t3+aMi/kiGHBxYzA2NkZpaekco0yMq2QySTKZpLm5maampms6z9uZ22kcZa9vV3qP3qj7OnvMijGSmbt+Jce6GevZsva0RaNRGhsb+fKXv8yv/dqvXfL8yy+/zN/+7d/y4x//mNWrV/Nnf/ZnPPbYY5w/fx6j0XhdzmExz0V2YmxhYSHl5eVYLJY5/Uh37NiBy+Wao9t2+PBhQqEQ9fX1zMzMkE6nb4sQ25o1a+jq6rpux2ppabkux1K4+bS1tdHe3o5er6e0tJT9+/cv6LnIDJMGAgFOnDhBQUEBNTU1PProo4TD4TkFPfDJ7lr0GbVarRQVFcnFeb57T8lLunVcz7nhe9/7Hn/0R3/EwYMHZdTBZrPJlBGxeLe0tMhNrchhi8fjlxhsIyMj+Hw+TCbTgpX5d4LBf7uyUDWveO5yv/mNuq+zx+y1eKNv1nq2rI22J554gieeeGLe59LpNN/97nf5oz/6I5566ikA/vEf/5GysjL+9V//la9+9atX/blX4l0T4SC9Xk9eXh5r167F4XBw6NAhhoeHSafT0mATIVaA8vJyAJLJJDk5OahUKoaGhmSSrTKpKNwKMj1mR48eZWJigpqaGmpraxkbG2P//v00NzdfMk4zDbGjR48yMjKCxWKReSGiYCGz0MDpdOJyuaRnJFP2Q+HOYaH51G63U1dXh1arlXOf3++nv7+fQCDAmjVrCIfD5OfnS4/s0NAQTqdzzjgROWxGo5GGhgYZms8eR0po/fqxlMrcq2npeL0M68XG3O2eG7usjbbF6Ovrw+v1snPnTvmYXq/nwQcf5IMPPrgmo22xgZa9oxgbGyMSifDII49gMpnkQM3Ly6O2thaTyURBQQEwNy9IeN+cTqf0QGQm1y6UE6egcCNxuVy0traSn59PKpUiJyeH4uJiduzYwU9+8hPefvttBgYGKCsro6OjQxpwer0en89HIBCgvr4eu92O2WyWY9/v99PX10dnZyd5eXmyF6TVaiUcDjM1NUU4HF5Sq6E7hdtVNuZ6s1j/z0xjP7PCuL+/n/b2dsrLy8nLy8Pn83Ho0CHy8vKksQ8X59RDhw7R3t5OdXU1FRUVC86hSgXytZMp9+N2u+dc02zjKNP7KfINRSrEQg6R7IrfpZzLfMe6XM/Z29mAv2ONNlGhVlZWNufxsrKya1ZYXuzmzn6utLQUuDgIsgeH0LGanJyUba3a2tpwuVzodDqpZyVi6/v27aOvr++azl1B4Vrw+/0MDg5SX1/P9u3b0Wq1lJeXE4/HMZlMJBIJQqEQExMTJBIJgsEgdrtdahCqVCpZaHP48GF6enqoq6sjFotJCYdkMimLFTKTyMVkPh93YmjrdpWNud44nU6OHTtGb28vWq2Wurq6S6RlRkZG6OzsZGJigmAwyOTkJD09PWzcuJGKigo8Hg+Tk5NyI9DX1yclGIaHh0kmk1RXV2OxWOQceiUyNsuZG2X8z3fPZVeLZ/d0zXyP2ABu3LiReDw+JxVCkHn8zOpg0YEoM082+96/3GZgsZ6zt7MBf8cabYL5tFOyH8vmcoN8qTe33W6nubmZH/7wh7jdbmw2G3v27JHvb2tr49ChQ2g0Gmw2G06nk/3793Ps2DGMRiOPP/74nEHT3NwsE3CFcXenJ9MqXH+uxcCxWCw4HA6qq6t55plnqK6upqenh/Pnz9PY2EhRURFarZZTp04Ri8WwWq2YTCZSqRRVVVVYLBYplRMKhVCr1ej1erZu3XpJV5DMxfRy3M4746vldpWNud6IMOjk5CQ+nw+tVisfFxXKgUCA4eFhRkdHUavVaLVaVCoVOTk5MoR67NgxtFotPp+PoqIiUqkUfr+fnJwcnE4nNTU1c+bQO3HMzMeNMv7n+/3mE73OlmUREh6dnZ1yrRWdUpxO55yIVObxs4/96quv4vF4KC8vn1O5Dp/kMMZiMYA58lviNTabbc7xMrmdDfg71mgTF8Tr9cr8MLgYrsz2vmVzLYM8e6DF43F0Op0cPJnE43G8Xq/MC4KLxRXRaJTy8nKsViter1fmCTU1NcmBtH//ftkCS1ThBQIBqqur2bVr12074BRuPZcLDQgyF0xRZK5SqWhubsbhcOByuejp6eHUqVOcOHGCwsJC1qxZQ3l5OYFAgKKiIhobG4nH44TDYVn1Bxc3ID09PXR3d1NQUCB3ym63m3A4fImcw+W4nXfGV8vtKhtzIxDGlAiBh8NhWlpaZFj0woUL+Hw+CgoKqK+vp7q6mmAwSDKZRK/X4/V6ycnJIRQKkUgkcLvd6HQ6SktLefjhhwFwOBzzblbupDEzHzfK+J/vnpsvDDrfe3w+H4lEAp1Oh8PhIB6PXxJZyn5P5rFbWlrweDyEQiEaGhrm7REeDoepq6vDarVeIhnicrk4fPgw5eXlc7qxLAfuWKOtqqoKm83GW2+9JcXzEokE7777Ln/5l3+56HsvN8gX81SIHYNer5fWfkNDg0yiBqSXzOl0EgqFaGtrk96/iYkJuSvM9Lz19PRgs9nk54ljTU5O8sYbbzA4OEgikWB4eJi6ujrFaFNYkPlCAwuFOsSCGYlEKCgowGQyYTabqauro7+/n66uLqampuTmYWBggMLCQtRqNTk5OdJg6+jooKysTO6st2zZQn5+PrOzs7S3tzM7OysrA8VOG5buFbydd8YKl0dcvx//+MccOHCAcDhMeXm59M4K0dL6+npeeOEF7HY7+/bt4/Dhw/T39wMX594HHniAgYEBJiYm0Ov1sqpUbAiyNyt3w5i5UcZ/5u+31OK8zHC31+ulsLBwTtrDfAZgW1vbHMeFeF1DQ4PU7MtGrMPr1q2b03Uo8/jBYBCVSrXs8mSXtdE2OTk5R7G4r6+Pjz/+GLPZzMqVK3nppZf49re/TW1tLbW1tXz729/GYDDw+c9/ftHjXm6QL+ZWFzsGsSAKa3/Lli2yIkXoTcHFwTU5OUl7ezvbtm2TxpjYFSaTSUZHR8nJyZkjqWCz2aivr+f8+fNoNBrMZjPl5eXce++9d/zOUeHaEKKi2bpJ84U6ioqKCIVC6PV6amtrmZiYkJWfGzdulO9tbGxkYmKCU6dO0d/fT0lJCY899pjceIicI7EZGRkZQavVUlVVhcPhYHJykrGxMYLBoLwHhKclO6H5arkT896WI4u14Dtx4gRdXV3E43HpWXM6naxYsYKRkRFMJhMdHR3s37+f8+fPc/z4cQoLCzGbzaxdu5ZoNEoikSA3N5fc3FyCwaAc15m5cyJVReH6sNTivMwwZuYclF21mZmn5nK5OHnyJMCcVKBkMsn4+Dj/9E//REVFBTU1NXKOyFyH5xtvmd61pa6X13P+uJZjLWujzeVySdc3wO/+7u8C8MUvfpEf//jHfOMb3yAWi/HCCy9Icd0333zzmjXarqQQIfP/xeDVaDTSm+B0OhkdHUWv19Pf309nZyePPPIIQ0NDtLa2Mj4+jslkwuPxMDY2JncF4lhms5lNmzYRj8dpbm5eUBBQWbAUBPONhcxxm/l8QUEBJSUl2O12XnjhBTo6Oti3bx/RaBS4uFvt7e2lsLCQuro6PvzwQ8bHx8nNzQUuhvGTySSTk5PMzMzg9/tldZlWq2Xbtm0AMtQqeo+KKlKn0ykn8PnyUq6EuyWH6XYjO2F8PkNcVAYWFBSwadMm/H4/4XCYiYkJJicnaWhokJWiP/vZz/B4PExPTwMXIyOzs7N4PB5KSkoIhUJS21IUICgb2RvLfOte5nW/3DXIrDoNh8OMjIwwOTlJc3Mzzc3NBINBtFot//qv/8p7772HWq2mrKyM4eHhOS0fhUdOVKXOlxs3Xz74Unp5X8/541qOtayNtoceemjRpqwqlYpvfvOb173iajG3+nzPiWpVMWhNJhOlpaWydHnr1q2kUikOHjxIV1cXp0+f5sEHH5S5PQUFBXi9Xim1EA6HaW9vn2P8iZtjIZQFS0GQPRayJyyhCg6f7EiFHI3b7aakpISBgQEikQgXLlwgkUgwMjLC6Oio1BU0GAz09PRIuY5UKkUqleLkyZMcO3aMlStXYrfb6evrY2hoiFAoRHl5OZFIhNHRUbq7u2lqapKfn90W7mrG8J2Y97YcEONNVAYKrT6DwSA9XkJsPB6P82u/9mucPXuWt956iwsXLpBKpSgvL6e0tJTh4WEGBgZIJpPk5uYSi8XIyckhHA6TSCQ4d+4c/f39mEwm7r//fnbs2CEX5paWFqmVudzymG53Flr3srsLZM41Bw8e5OjRo9TX18/JazWZTHR2dhKNRgkEAgQCAfr7++nv78flcsn82NraWtatW8fZs2cpLCxEpVIxNjbG3r17cTgcc3JkM1OW9u7dy8jICHAx9z3TWMzucZo5V17P+eNajrWsjbblQHYexZYtW2TV6IkTJ3C73XInGQqFiEQijI2NkZeXR3l5OTU1NTz00EPs3buX0dFROjo68Hq9cuAK4UmHw7Gg+G6mHo6yYN3diLGQTCbx+XxyEhUVXXBR1kNUecLFiW1oaAibzYZer2diYoJoNIpKpaK4uJjS0lI0Gg0+n4/CwkJycnIwGo1MT09Lr5vBYKCpqYlwOMzg4CC5ubnU1NTQ3t5OOBymqqpKNvbOzc2loKBgTm5mtnF5NdwtOUy3moWEVUVlcEtLiywiyCQYDDIxMcGPf/xjDAYD4+PjwMVislgsxoULFwgGg8zOzlJVVSXf73A42LFjB/39/Rw/fpyJiQlUKhUrV66cE07LXCiVcXBtXC5yMzIywvnz5xkbG2PdunXyMVHx+fDDD+Pz+WT4Wsj+CHJzc5mYmODo0aO0trZKr+r09DS5ubmUlZWhVqsZHh6mtLSUVCqFVqtlenqadDrN0NAQyWQSl8tFQUGBDJm63W7S6TSzs7NzvGdCwDuVSs3xAmePmaXk8C2Fa5mLFKPtBiMmKqPRKEObomr0zJkzRCIR9Ho9+fn5NDY2kkqlqK+vx+m82CDb7XZjtVp55plnmJ6elg3nvV4vBoOBWCyG0WiUXraenh46Ozvn9Na72oo8hTsPMRaSySThcFiKkKZSKZlPZDKZKCsro7OzE6vVyqlTp6ROVl1dHZFIhEgkQiqVwul0Ul5eTnt7O+Pj4+Tk5DAzM0MwGCQcDqPVamlqapLJ5OvWrWPlypUUFBQwOTlJY2MjQ0NDssLL7/dTVVXFtm3bLjHOFKNreZAtMJ5paB86dAiPx4Ner6e5uRm/38+Pf/xjWfne09MjPSapVIqioiK2bNnC9PQ0IyMj9Pf3o9PpqK+vJ5lMYjAYePzxx/nSl77Eyy+/jE6nIzc3l3vuuecSb5oyfhbnSgyR+SI32aHEvr4+0um0zCvbv38/H3/8saz4bGxsxO/309jYSFVVFT6fj1OnTuHxeNBoNAwNDdHX10cwGCSVSqHX61GpVKxZs4annnqKsbExqf04OzsrN5sqlYp0Ok1PTw96vZ7i4mJGRkZIJpM0NjZSUlIitSAzq1mFIySRSEgDb8uWLfP+FrcycqUYbTeYoaEhWdqcabXbbDa8Xi96vR6Hw8HmzZuljEJzczNDQ0NSg0bkghiNRgYGBujq6mJsbIxAIMCTTz5JRUUFgJRmOHLkCKOjowSDQZqampSwkIJEjAERYu/s7KSsrIxYLEZXVxeBQEAWv6jValauXMnQ0BCRSASPx0NpaSkVFRXMzs4yNTXFmTNnKCkpkeEHEfIXE6nBYOC+++6js7OTn/70p+h0Oh577DEOHjyIXq/nN37jN9i2bRs9PT1zeosq2oPLl8z5JtuA6+7uZnBwkOLiYvr6+vjggw/wer2YTCY2bdrEpk2bOHHiBH6/n9nZWXJycjCZTKTTaRKJBHl5eahUKlKpFNu3b5dVhHCxi0x7ezvT09Pcf//92Gy227YV0e3IlRgi860p2aFEUagkxkE8Hqe4uJj8/Hx8Ph8Wi4X6+nqqqqpkod77779POBwmJycHj8fD1NQUZWVlqFQq8vLyKC0tZc2aNUSjUY4fP040GqW6upp169YxMDCAxWJBo9FIx0VRURHJZFIWQtXV1VFXVydzcgVCdmQhfbnLff+bmTOuGG03AaPReEmo59lnn6WoqIixsTFKS0vlrrC+vh6bzcaRI0c4deoUs7OzDA0NcerUKVpbW5mYmKCvr49kMonJZCIvL4/u7m5OnjxJUVERxcXF9Pf3MzExwfnz59m3bx/Nzc3yxhGfr3Bnkz2JZP69ZcsWWlpapCZgLBYjHA5TWFjI7OwsoVAInU5HVVUVPT099Pf3YzQayc/PJ51OU1dXR3V1NT/60Y/w+Xy0trZSW1vLRx99xPj4OIlEgsrKSurr66UOkt/vx+/3Mz09zb/9278Rj8dRq9U89thjcuxnnquy2C5fxDVzuVz4/X6CwSAjIyM0NjZSU1OD1+slEAjInMdgMEgoFMJutzMzM0Nvby8+n096V95++23GxsZkj9FkMsnY2Bjt7e14PB6CwSA2mw2bzcaOHTvw+Xw0NzcrebxXyEKb++y0hMx5JPP5xQoOxGNbt26VvbYBqqur6evr46c//SmNjY3U1dWh0WiIRCKoVCpUKhUFBQXU1tZSU1OD1Wqlr6+PAwcO0NnZyczMDMlkkuLiYurr66UWpOiKMTs7i9frJT8/X66Der2ezs5O/H6/zJET55393RYi22t7M8eaYrTdYBwOB16vF4fDMefx+UqeMxPAA4EAfr+fc+fOYTQaOXfunGwRpNPppMxHd3c3Z8+elbuMaDTKzMwMVquVyclJGf7yer3yRgFu2q5A4daQPYmI3Mpjx45RV1eHw+GgsrKSnp4ehoeHGR8fp7CwkPLycgYGBjAajVRUVHDu3DnGx8eZnZ0lGo1isVgAOHHiBAD5+fk0NDSQSqXo7e2VHjpAekDefPNNKSAdDodZt24d4+PjMqS/UCscce4KtxdL8Sq43W5aW1tJp9P4/X6Z+L1jxw6GhoYYHx8nEonIKITYLMRiMcbGxohGo6jVatm2Kh6Pk5+fT05ODiqVipmZGYaHh2VxVigUQqVSEY1Gefjhh6U2FygRhqUyX/g4u98nMCf/VSAMH2HstLS0yOtvtVplmHFkZASbzYbf7ycQCABw8OBBzpw5Q3d3Nw899BDBYFBe86mpKemha2xspL29XQopl5SUEIvFiMVifPzxx0xMTLB161Z5TmKz2NfXR3Nzs5R4cbvdeL1e3nvvPYqLi3n44YeltMjV9va+mdGsG2a0DQ4O8txzzzE2NoZGo+GP//iPefrpp2/Ux922ZOrFZJN9k2Qm7KbTaVauXElxcbGsypuenkalUrFixQoMBgNut1sWMqRSKUpLS0mn05SXl7Nu3TrZOggudoLo7u7mwoULqFQq1Go1Dz/8sKJVdIeSPYkIQd3e3l6i0ShWqxWLxcLRo0dlKKq0tJTCwkL0ej0zMzO4XC6CwSCJRIJwOIzX66Wzs5PR0VGOHj1Kbm4uDzzwAMlkkgsXLpBOp8nJyUGr1TIyMsK7775LcXExoVCIdDqN3W5n/fr1PPPMM3OqtsQiIKq2lHD+7c1iRnVbWxs/+clPCIfDVFZWUlNTQ2trK319fWg0GuLxOJOTk8RiMTnuRFELXOwII7ywWq2WdDotk8vhohGh0+lIpVLSgPP7/XR0dJCXl0d+fr48FyWH7drJ7vcpEJ0qVCoVGzdulBWf58+fl9dKhCb7+vro6OigublZ5ooJT5fRaJTeWICTJ08yPj4ujTWRE5dIJDh69CixWIzh4WGGh4eZmZmhpKSEmZkZfD4f58+fp62tDZPJhN/vZ+vWrXzxi18EoLOzE4fDIYuh3G43o6OjJBIJEokEdrud7u5ujh07RiAQkNXygisRD77R3DCjTaPR8N3vfpd7772XsbExmpqa+PSnPz3nprobuNwCJFoFAVJnbd++ffh8PhwOB7/6q7/K0aNHGR0dZXp6Wu5OV61aJSte4GK1zczMDBMTE+Tl5eF2uwmFQnzwwQdUVVVht9uJxWL09vai0+lYsWIFfr9fCUMtUy43UdjtdrxeL9///vcBeOqpp9i9ezc2m41AIIDP5yMQCJBIJEilUmzevJmmpibeeustIpEI4XBYynokk0lUKhWJRIKOjg6Zc1ReXk4oFKKjo0PmljQ1NTE4OEgwGOT48ePU19ezbt06eYzc3FxcLpespM7UZ8qusla4PVlsTnO5XBw9elTmn9lsNk6fPs3U1BTvv/8+NpuNoqIiwuGwDG3F43FmZmbkvyKKMDMzQywWQ6/XU1paisPhkEabWq0mPz+fDRs2EIvFKC0tpaamZk7nGYVrZ76KW+ExE4hQtOieEg6HWbNmDWvXrsVgMPD+++8zMjJCMBjk2Wef5dixYwwODgIXexmbTCZmZ2cZHx/nww8/xGq1UlpaisFgwOPxYLfbCYVChEIhotEoXq8Xj8cjI0+i4bzI8x4dHWVqaorW1lYeffRROjs76e7uxu/3Y7PZ+PnPf865c+coKSlh1apVFBQU0NLSQiAQIJVKSR1B+CQKsJhM0s2ODNwwo628vFz2/CwtLcVsNhMIBO46o+1yZcKZYQSr1YrdbicQCNDb24vBYODMmTMMDw/j9XrlrlRUUq1YsQK9Xo/VapWl8B6Ph+7ubj788ENmZmaAi8m/jz32GNFolFQqxaZNm3jwwQcBlDDUMmWhCr3M63jo0CH279+PSqUimUzyO7/zOzQ3N7N//35OnTqFTqejqKgItVqN3W5nz549nDhxQraeisfj5OTkkJ+fT3FxMTqdjv7+fnw+H+l0mry8PJLJJOl0mqKiIpxOJzqdjunpadkXsL+/n+bmZs6cOUN7eztr166lsLBQVlJntqp5//33ZZX1Qt9J4daTrV6frTQ/MDDA4OAg6XSaV155Ba/Xy8zMDNFolAMHDsicpUgkQl5eHmq1mtnZWdLptBTFFWkes7OzlJSU8NWvfpV0Os0vf/lLIpGIHJs7duxYUHBZERS/djLXKYH4TbOjNM3NzczOzjI2NiZzWePxOF1dXfT39xONRnG73ZSWllJdXU1+fj5qtZre3l5KS0sZGxsjHo8TjUalN3XDhg2UlpZKzbZYLCbnI7/fz8zMDIFAgJ07d6JSqRgYGECr1aLT6SguLubEiROk02lyc3Pl3BIMBpmZmZFi32+88QbFxcXk5eWxfft22bUlWwopUzLL5XLJosHMnNybwRUbbbOzs6xbt45f/dVfndPD8+DBg/zKr/wK//Iv/3JJGNTlcjE7O3tJI/a7jYVaBW3cuBG/3y91s4R7OR6Ps3//fvr7+4nH41gsFqqqqojH49TU1JBIJCgqKmLFihXcc889tLe3c/78eZmDJDwbarUan8/H0NAQer2eNWvWsGfPngV1r5TJ7vbH6XTi8/no7Ozk2LFj5OXlAXON79LSUsrKymR40uVy4fV66e7uZnh4WIqMJpNJnE4nLS0trFu3jvfffx+v10symZRej2QyyUcffcTU1BSADEXp9Xo2b95MNBpFo9HQ398vtdnS6TQ6nQ6r1Up7ezt9fX1MTU2xYcMG9Hr9HGXy7CprJa/t9mehjcMLL7yAy+Xi+PHjjI+P4/V60Wg0BAIBJicnSSQS0oOmVqulcZaXlzenX21ubi4mkwmLxUJRUZH0luj1ejQaDQUFBTLkdbnzU8bQJ8w3vy8252caL5m50ZmvE5s+4XXLPI4wevLz83n77bfxeDzU1NTQ39/P4cOHicfjmM1mKioqiEQiUnYjkUgQjUbZtm0bBw4coL29nVQqRU1NDRqNhnQ6TSwWIxAI8B//8R+yxV5eXh733HMPJpOJjz76iEgkgsFgoKSkBL1ez+c//3lsNhsDAwOcOnVKpm7U19fz5JNPSi9/R0cHHR0d2Gw2rFYr1dXVANIrJ0L6NzsMf8VGW05ODn/4h3/I17/+df7gD/6A4uJi2tvbefrpp/n2t799icHm9/v5zd/8TX7wgx9ct5NerizUKmjPnj3s27eP1tZW+dqcnBzGx8eZnp5menqanJwccnJyKC8vp7GxkenpaY4dO4bX62VsbIyBgQHi8Th+v1+KB+r1enQ6HWVlZZSUlMgbobW1lS9+8YtUVVXJxT8zhq9Mdrc/drsdq9WKy+WSpezZ5ecNDQ0kEglZoQzInKL8/HwpWDk8PMzBgwcpKyvDaDQyOzvL7OwsMzMzUrpDtB8S3Q6MRiOBQIDZ2VkqKipkqzWRh+JwOJiamiIvL49gMMj69esZGxvDaDQyOTlJPB6no6ODkydPynwWlUo1p8oaFk8rUDYWtxahMC+EmsPhMHAxf+iXv/wl0WiUiYkJpqammJ2dRaPR4Ha7paFWWlqKSqWS17+srIy6ujoOHz5MLBbDbDZz//33Yzab6enpobu7G4vFQm1tLc3NzWi12nlzhQVKbuT8zDe/L+a5z9Qyy8xvy970Z6b5ZN6TDoeDzs5ONBoNLpcLt9vN2NgYHo+H0dFRGRovLS3FbrfPyU0cHx/n6NGjeDweBgcHpayQRqNBr9eTl5dHJBKRxQtTU1NMT0/T19eH1WolGo3S09MjPbjxeJxdu3ZRX1/P9773PXp7e0mn06xbt46GhgaZl2c2m+ns7CQcDssQrs/nk+PcbDazZs2aWzK2rio8+oUvfIE//dM/5e/+7u94/vnnefLJJ3nuuef4vd/7vTmvi8fjfPazn+UP//APeeCBB67LCS9nMi3yffv2ceTIEWw2G88++yx+v5+BgQEKCwtJpVJMTU0RiUQoKiqS0iBiB3r8+HGZfDk1NUVvby+xWIx0Oo1er0ev10t151gsRjAYpL6+ni1btnDu3DnefvttRkdHMZvNrFq1itWrV8vQLHzixRGeP2VRvHLEAiYQ1+VqWKjk3ul0XtJmSjwv2sc0NzfjcrlwOp14PB5isZiU5+jo6ODo0aMMDw9LA2v16tX4/X7y8/Ol4SZyPYRHJJ1OY7FYmJiYIBQKcfToURobG8nPz8fr9TI5OSkNwqmpKY4fP45er2fTpk3ynEXpPYBWq2VychKbzSa/7+V2r8rG4vpzJYawyMUV6RharZaamhpMJhNtbW18/PHH0rM2MzODXq+X/WhFaFOEQIVH1mw2s3HjRvr7+xkZGZFK9k1NTQSDQU6dOkV5eTl79uyRxtpii6ZSiDA/8xmzC2nrZaYwjIyMzAlFZ6od+Hw+fvrTn1JYWAggXwcXjbmuri4ikYiUBBofH0etVstcbNFFZdOmTXR3d2MwGPB6vbJwasWKFXL86HQ68vLy0Gg0aDQaYrEYQ0ND6HQ6WXU6OTnJ2bNnpbdWo9Gwfv36Oec0NjaG2WzG4XCwYcMGkskk586dIxQK4XA4qKqqkrqR8Xicnp4eUqkUiUSCdevW3TItyasy2jQaDb//+7/Pf//v/53XX3+dpqYm/u7v/m7Oa9LpNF/60pd45JFHeO65567Lyd5pTExMkE6ncbvdWCwWVq5cid/vp7+/n2AwiMFgYMuWLczOznLw4EGSySTRaFRWzqRSKSKRCAAzMzNotVpsNhtTU1Py2Hl5eaTTaT788EPWrVtHfn4+JpOJiYkJ8vPzsdvtlJeXX7JzEi2FRO6RwpWRnQrwJ3/yJ1fdAzd7Fyz+X6/X4/V6L9nZZk/ABoOB9vZ22traCAQCFBYW0tvby+DgILFYTCqIp9Npurq6MBqNWCwWmeg7MTGBRqNBrVaj0+nIz8+nqKiIqqoqPv74Y7nAPvTQQ1RVVdHV1YVKpWJqagq73U4kEuHUqVNoNBoefPBBGZqPx+Ps3r1bfkexi11KY/i7wYtyPQ3/pbBUQ1jIQIjcJbfbTSQSobu7m2AwiEqlQq/XE4vFZMW7Wq3GZrMRiUTIz88nlUrJvEmxaF+4cIH+/n5WrVolNyNdXV0YDAbq6uooKSmR+ZAGg0Hp8HKVzGfMzvfYfMKxmQVCer1eimoDUjIILhpFBw4cYHBwkGQyKcW5RfK/Xq+X2pB5eXnU1dXx0EMP4Xa7GRgYQKPRUFxcLJUXUqkUFRUVUinBYDCgUqkIhUKsXLmSvLw8pqamZJcFl8vFANkgOwAAqSlJREFU6OioVFt44IEH+PSnPy3lPo4fP05PTw8mkwmz2YxKpSIej8tIltlsntP3WGjQiTlqMQ/vjeaqCxG+8IUv8NJLL5FOp3nttdekNpPg/fffZ+/evTQ0NPDTn/4UgH/+53+mvr7+mk74TiGzwkl4TaxWK52dnbS3t6PT6bDb7Tz66KNycOXk5FBbW8uZM2ek1w2YY5yJkOrMzAwFBQWUlZWRTCZ57733+OCDD7Db7bIwpKqqikcffVQu+pk7p7thUbyRDA4OYjKZ5N/XstgutDPev38/J0+eBD5pfJwZyujs7AQuTjrHjx9ncHCQsbExmXQLSINNqMwL1XFRrZyTkwNcrE6uqKigsLCQiooKdDqdFHsWCb0ajYYtW7awbds2WlpaGBgYwGazMTExQSQSwWg0kkql5DmJsZap4bTUxvB3gxflehr+S2Gxe17kHzqdTtrb2+nu7qampoZnn30Wr9crNa4OHDiAxWKhpKSE8fFx6fFPpVJyI2o0GhkfH5feW4BkMsnk5CRqtZqxsTF27drF4OAgHo9Hena3b9/O2NgYTqfzkj7KSrh8Ya7U+F9MOFb87XQ6pZzV0NAQAA8//LBc1zo7O/nwww8ZHR2VaTqzs7PYbDYefPBB+vr6pFxVXl4ejY2NWCwWjhw5ItM57r//fhwOBydPnmRwcJBQKCTTPQoLC2VP2vLycsxmMwAFBQXk5eUxPDxMNBplcnISn8/HuXPnWLFiBXl5eQwNDTExMYHVaiU3N5dEIkE6nZYRgMw8P7E5KS0tlb1Ixfe/VWPuqo22r33tawDSzZnNpz71KWZnZ6/+zK4j3//+9/mrv/orPB4P99xzD9/97nfZtm3bLT0nkbiZ/ZjT6SQYDPLxxx9z7733yptg27ZtBINBJicncTqdaLVazpw5I5PM4WIoSizAarWaZDLJxMQEgBQhHB0dZcWKFTz++OPU1NQAn+QiOBwOGbtfiiq0wsKYTKY5Rtu1kD2JZlbqiX+zJ1aXyyUTd4PBIP39/UxNTaHT6Ugmk9TV1WE0GpmammJychK/309OTg6zs7MMDw8TCoVQq9Xk5OSQm5tLTk4O6XSaQCAgRU9FhaBerycYDHL69GlWrFjBxo0bKS4u5ujRo5hMJoqKijCbzaxevZodO3bIpvVi4c3eyV9rY/g7hetp+C+FxQxhl8vFyZMn+fjjj/H7/ahUKrRaLa+++qr0iv7v//2/6e3tpbe3Vy6Gubm5Ms9ReEsMBgPBYJCcnBxZgSxydjUaDVqtlvfeew+VSiXz3oQ4eW9vL/F4/JK56UrC5XebgXetxn+2515I8zQ3N8/xPgnPp5ADKS0tRavVMjs7y8TEBGazmYceeoidO3dy8OBBhoaGyMvLo7i4mNOnTxMKhbj33ntlpOgnP/kJAwMDzM7OEovFSCQSACQSCaampkgmk9LIFxEBUd2u1+spKioiPz+fiYkJJicnpb6b6G/7K7/yK1RWVtLX14fFYrlkTLlcLilqLzy8mb1IM50cS9V0ux5cldH2x3/8xxw4cIAPP/yQHTt28MMf/pAXX3zxep/bdWHv3r289NJLfP/732fr1q38n//zf3jiiSc4e/YsK1euvNWnN28yp2j2Lm4Sh8PBr//6r3PgwAEp4WCz2cjJyUGtVmMwGEgkEtLDptFoSCaTTE1NkUqlUKvVc6q0hoeH+eCDD/D5fJjNZjo6OqiqqpKGuDDiFOHd25umpibpYctuISMMudHRUVlJbDKZMBgMVFRUkEgk0Ov1rF27ltLSUtmv1uPxkEwmMRqNchEV5fFCiTwajWI0GjGZTBiNRtn8/f3336ewsJCJiQlZhZXpFRET+quvvkpXV5dMKF8oh+Zu53oa/ktloQVHbBCi0SjJZJJEIkF7ezunT58mEolILS3hWQuFQmg0GlnUolKpiMVinD9/npmZGaamplCpVJSVlaHRaBgfH5de3uLiYlkdKAw+l8uFTqdDpVIRCATYt2+fPK/MZPmlGPp3Wz7klRr/ixkdQqQ7Ho8zNDSE1Wqd07dT3N/d3d3ce++9OBwOXn/9dQwGA/fcc4/0iAmHglarpaioiNraWpmDm5+fz9///d9z5swZWcAiqorVarUMT4reoqFQSArQh8NhWXBnsVhkPmUymZT53R6PRxb6ffWrX52z/opczZ6eHhnx2rJliyz0yvxtssPDghs9vq7YaPvBD37A3/zN3/DOO+/Q2NjISy+9xMsvv8xXvvIVtFrtdT/Ba+Vv//Zvef755/nP//k/A/Dd736XgwcP8vd///d85zvfucVnd6nrubW1lXA4zNq1awFkQvmWLVvo7OzEZDIxOjrKwMAAiUSCFStWYLFYqKys5PDhw9J4C4VCMmlco9HIna8w7ITujmgHMzY2RmVlJSUlJbKUWeH2JrPFjAivwydeXIfDgcvloqCggDNnzhCJRBgaGuKjjz5iZmZGhiycTifV1dXMzs7i9/tJpVJy3ExPT1NeXi4nTr/fT25uLrW1tXITkEql8Hq9TE9Pk0gkGB0dlUrqbreb3bt3y8nL5XLR1taGz+eTukkLVVXfDQvq7cZCC47YIIh+oidOnGBsbAy/38/k5CSjo6Pk5+ej1WqlLMzMzAy5ubmyOffk5CSTk5MAqNVqKech8oNycnKwWCzk5+djsVgwGAyk02mGh4cxmUw0NDSwZs0a2e82U9vySgz9uy31YzHjfyHt0OwWeJmpDKL9okhjEOuTmI8+/vhjQqEQW7ZskZXq5eXlVFdXc/jwYdmdwG63Mz09TTKZZHx8nKKiIvbu3SvFu4UxJDYEer1eGnEqlUrmvZWVlQEX9Uij0SharRa9Xi9b8wmHxcTEBE6nk3Q6TSKRkJGmTNxuN0eOHOHo0aPMzMzwwAMPsGvXrnm9a4AMD4s5OHMDodfrb4h4/RUZbb/4xS948cUXee2117j//vsB+PrXv85f//Vf88///M/81m/91nU7seuBkLf4gz/4gzmP79y5kw8++OAWndVcsieQjRs3Ahd3kCJXRAzeXbt20dnZyfHjxxkbG0On01FfX8+KFSvo6OiQooMqlYquri6SyaSM8U9OTpKbmyt3q+JGicfjTE9Py2qbLVu2yHMQbu75KheVBfXWk9liBj7pCWi1WmVpvDCYxIT6wQcfyIo+g8FANBrl7Nmz0lgrKSmRTeSTyaQ09letWgUg9QTHxsZkixqxOdBqtZSXl3P//ffjdDp55513pGEmxvLw8DDpdJrKykpsNht6vX7OgrtQyAHuvrDWrSB7wdHr9QwNDREIBBgbGyORSDA4OMjo6Cjj4+PyfWIeESH12dlZ8vPzKSgokEZbJsXFxaxfv56qqipOnDhBKpVCq9Wi1Wpl9KCuro6hoSGZhyu8aplq/FdjeCme3E9YSDt0sX8FwsMmxoqQBNFqtRiNRlQqlfSkq1Qq+vv7OX/+PNFolKKiImnotba2curUKfbv3y81/IRBXltbK3PyjEYjAKFQiJycHMrKyti+fTtms5n/+3//L+Pj43KzqdVqicViFBcX43A4SKVSMpJQXl7Ok08+SUNDw5y+qna7Xc6beXl56HS6RYu8BAvl4A4NDclzvyVGW2trK08//TQvv/wyTz31lHzcZDLx9a9/nb/4i7/gi1/84rz5bbeK8fFxZmZmpCUuKCsrw+v13qKzmkv2BJIZkhRVUpmD6plnnsFisXD48GEikQg6nY6enh7Onj1LLBZj9erV5Ofnywq+goICNBqNnDiNRqNszByPx2VuitlsZsWKFWi1Wjo7O8nLy5Oem/kqF5VJ79aTOYEIo0hU5Y2MjMgJ6tlnn5UGXmNjIwUFBej1erRaLaWlpaxcuVLq/RUUFKDVaqVXNhKJyATxJ598EpfLRTgc5ty5c1J0V0g4FBQUsGLFCqqrqzGZTDgcDqnpJIomcnJyWLNmjZRzyK7CWswLcreFtW4FYj5qaWnB5XJJ0eNQKERhYSGJRIK+vj6plTUzM0NhYaFMx9BoNOh0OnJyciguLpaFJ4A06MS4u/fee1mxYgUejwe9Xk9ZWRlPPvmk9JY4nU62bt06x4shzlFJ3bg+zHe/zZdDO19hgvCwiY1WKpVCr9fT2NhIMBjEbDbT1NSEy+Xi2LFjTE1NUVFRQW5uLgMDA9TU1LBjxw7C4TDt7e2EQiEKCgqwWq0y/SIYDOLz+WSf2uLiYmZnZ2Xqhsfj4eTJk4yOjspivNWrV2M0GpmYmKCgoID6+npisRgdHR2y1dWmTZuIx+PE43FGR0c5duyYNNhEBWxJSQnd3d386Ec/orGxUY7DzNy3zAKqTMeGKB7MTFm5XizZaNu4caN0bWfzrW99i29961vX7aSuN9nhPpGsvxA3o9R+KV6D+W6opqYmmpqacDgcHDhwgKqqKoaHhzEYDOTk5BCJRDh37hxTU1NzctkyvSYiz0S4mgsKCigoKCAUCklhy9WrV7N161YAGbcXOlp3S1jhdiN7zGROpsIoCwaD1NXVkUwm51SPhsNhhoaG+PVf/3Xq6+tlVVQkEsFiscgWaeFwGI1GI+914UUTBQtCtT6RSGA0GtFoNIyNjQEXK0yFTpO4Z8RONbPVi8lkkhNk9lhazAtyt4W1rjdX4ql0Op0cO3aMiYkJSktLaWxsJJ1O09PTI6vVU6kUExMT6PV6WfyUk5ODXq8nJyeHWCw2Z80QlcgzMzMEg0Gpbq/VaqU+1pkzZ9i8eTMajQar1XrLtLDuFua73y7XHD2ziAjmdmcRXU0y2zs1NzfLcVNTU8PAwABnzpzBZDLR1NTE0NAQx48fl57+nTt3UlhYSE9PjzSKEokEbrcbv98vddcCgQCdnZ3EYjGKiopobGxk7dq1JJNJ1q9fTyqVoqurS24gtVotbW1tFBYWUlpaKs//tdde4+jRo4RCIV588UUpRH7u3Dn8fr/M8zUYDPI3W+w3zPxdbouctuVESUkJarX6Eq/a2NjYJd63TG5Gqf1SvAaZgyG7sXxVVRVPPPEEJpOJyspKQqEQnZ2d+Hw+YrEYgKz88/v9MnxhMBjIz8+XjcJzc3OxWq0kEglaWlpk+xiVSsWhQ4eoq6uT3r6lhBWUENaNY7ExIxKEBUIiwWw2o9free211zh37hyxWAy32013dzcdHR1MTU1RWVkpDSlhuAkPil6vJ5VKUVBQQGtrK1arFbVaTXFxMdu2baOyspLjx49z5swZDAaDTEx2uVwyWVkYZ1/5yleu6fsrYa1rYylzTub9W1paSltbG1arlZ07d+JyuTh16hSrV68mGAzS1tZGOp1menpahqS0Wi05OTnS8yY2hiJsJTbL4nmHw4HX66W2tpa3334bv99PZWUl27ZtU4zzW0BmnixcOk7EBjCzUlTMJ62treTm5tLc3DxHrD0zH1J8RiQS4fz58+zbtw+Hw8HatWvp7e1lbGyMn/zkJ6RSKUwmk1zrBgYG5JjJzc1l5cqVc3K3c3JyqKurw2q1kpOTQ01NDc3Nzbz66qt4PB6qq6spKiqSofadO3fK+eQf/uEfGBwc5NSpU8DF9XXv3r0UFhZKcV3haVtKntqNnqfuaKNNp9OxceNG3nrrLT772c/Kx9966y1+9Vd/dcH33YxS+yv1GohSa5VKJUvsz58/z4kTJ2QbD6GlVVBQwOjoqFSM1ul08jgajYbS0lLpWRFtQFQqFdPT07LaNBaL0draikajIZVKyf6UlxuMSgjr2lnI8J1vzIjXCk+o3++XO97S0lJpQAkx21AoJMPiOp0Oj8dDMBiUivVCDDU/P5/KykpmZmYYHR2lqKiI8vJydDodTU1N1NbWsmPHDuLxONXV1fzLv/wLHo8HlUol1cbFjlUZD7cHl5tzDh48yD/90z9RWFhIZWUl4XBYelmFl2NkZERWfgoZDiHtFAgEpHaXXq+XeZNC9kOj0VBUVCSrR0dGRhgaGsJgMGCz2SguLmZsbIwdO3YoHrZbRGae7HzjJHsMifm+p6eHUChEbm6u1B3NnseEYPvExARjY2MMDQ0Ri8V46KGHpKd2cnKSSCQiZT26urpwu92yElmr1ZKXlyfXL9HjuKSkhFQqJQtZBgcH+eUvf0k8Hpdh1t7eXiKRCKtWrZKFeMLAKiwsJCcnRz4uUjsyi6hg8Zzbm8UdbbQB/O7v/i7PPfcczc3NbNmyhVdeeYWBgQF++7d/e8H33IxS+yu1xkXljNihOJ1OEokELpdLlsvbbDbq6+u5cOECJ06cQK1Wo1KpmJyclHkmIkk0mUxKFenJyUlycnKk0KrJZJIL+JkzZ2RuncViuWwuiRLCunYWMnznGzPitVNTUxgMBnw+H11dXQQCATZs2CA9Xps3bwbAbDbjdDpZvXr1nKbdwiOWSCQwmUxSiFJ474TBp9frpbRDaWkpkUiEWCzGfffdRyqVko8JMUpxjkpl6K1noTlHXJd9+/bJez2ZTDI6OkpxcTEmk4ljx45JsdL+/n6i0Sjr16+ntLQUr9c7p+WZWq2msLAQnU4nUzKE2PeaNWvIz88nFAqxfv16AJn3o4yJW8/lQnt2ux2v18v+/fulLBVcbFslCo+El0300964cSN79uyRr+3s7CQejxOJROjs7JQ5ths2bKCgoAC3283w8DAlJSUMDQ3h8XjQarU4HA4pZ5Wbmys3kZWVlaxYsQKj0ShFvj/88EM6OjrQ6XQ8/vjjdHV10drail6v5+DBg6jVarZv386XvvQlmaOfTqelnIjT6bykCEH8LtktHm/2vHbHG23PPPMMfr+fb33rW3g8HtavX8/Pf/7zZWdUxONxotEo3d3dMpm7ubmZ999/XzboFg10RZshm83G8PAwsVhM6tXMzs4SCATQ6XRy0RY7K6HBNDo6KnfMYkdsNpvx+/233DW8HLnSm3qxiSEzF0yUl/t8PpLJJCaTSfbP0+v1RCIRmXCbuTP2er3odDrGxsZkJ4TJyUmZDF5ZWcm6det48803AWQ7GbfbjU6nw2KxyMKFoqIiec5wsbrU6XTicDguEcxdLOyicOvITCwvKCigsbGRoaEhxsbG5MZtbGwMo9Eo+0cKD2xTUxN+vx+Hw4HT6cTlchGJREin01K8WSjZi2pli8XCzp07pfaVMhZuH7Ln7/mS7A8cOMCZM2cIBoN84xvfkI8/88wzl+SpptNpuW7o9XqpDdrQ0EB/fz/JZJLe3l6efPJJPv/5z6PX6/nJT34iDS5RyTk7O0symZQyMsXFxaxatYqVK1fK3sUdHR1oNBpWrlzJk08+KTeygIwUrV69mkgkwsDAAGNjYzICUV1dTV9fn9yclJeXz5nDMotgrFYrLpcLr9cr5U9upvftjjfaAF544QVeeOGFW30a14RYrIuKiqRHpbm5mYceeoijR49SXl5Obm4uIyMj6PV6CgoK8Hg8JBIJOehzc3MpKyujsLCQ6elpcnNzCYfDJJNJme8mBHmnpqZkgmdtbS1FRUW43W6OHTsmdyiitU1zc7MSzliEhW7qhRrBZ4YS3nzzTRKJhMwXypyIxARrtVoJh8Myn8zn8xEKhbDZbNJjLKqZYrEYLS0teL1eKYrqdDoJBAJoNBpWrVrFF77wBfx+P++++y4Wi4UdO3ZIdfsNGzbIrhmNjY3U19dLzSYRvhdSDa2trVRWVlJXVyflABYKuyjcWBYy+uETg/uRRx6RGwQhz9LX14fH45EV55lFWqJfY25uLhcuXCCZTMpQqdgkitQSg8FASUkJs7OzstK5sbFRMdhuIy6n2QafpDoUFxfL9IdMo18IwgMyt01IYkxNTUnJn+eee47Ozk7ef/99cnNz5Xu///3vs3//fiKRCPX19WzZskUWqojWUxs3bqSyslKGSO12O6dPn6a7u5vCwkKGh4dJpVI0NDQwMzNDKBSS5yParh06dIjS0lJZDe/z+VCpVHg8Hs6ePUtZWZncjAjEbyPyh8fGxqTH8UZUiS7EXWG03QnE43HWrl0rpRpEUqdoNF9ZWSlLo0dGRmTvNZPJRF1dHXl5eeTl5bFmzRqpXxeLxSgpKZGFClarlXQ6LRXPjUajbAei0+no7+8nFArJakHR2gZQjLZFyA4ZZ/bYzFwEMw078dpjx47R0dGByWRi165drFu37pLdbObx3W43drtdJuWKCaalpYWSkhImJiak0G5FRQVbt26lsbFRyoSIvLju7m6p53fmzBmsVitPPPEEzz77LK+++qrcBYvJ3efzUVVVhcVikd6/dDqNz+dDq9XKpGLFs3JryA6jw6VeAa/XO2dcVlRU0N/fTyQSkVJORUVFsm1eIpFgfHxcNotXqVSUlJRQWlqKWq2WzeTLysqora2lqamJwcFBuWFwuVxy3lBC57eWhTzh2XOXz+ejurqazZs3z6kIF/8u1lM4U4FAVJfW1dXh9/vx+/28+uqrnDp1SrZJKyws5NFHH+XcuXPAxdzJhoYGHnroIT766CMSiQRbt26lurqat99+G4/HI1vyTU5Okk6nqa6uprS0lKmpKVmB6nQ6KSoqIhKJYDabZYSirq6OmZkZent7CQaDskXffN9r9+7d8vear63ajUQx2pYJYiEMBAKcPHlSipo+9dRTcnE+ePCgTPKcmZlBpVKRSCSora3FZrPh8Xjo7+9Hq9WSSqVIJBKYzWby8/NJJpMkk0kApqenZQ5cKpWip6cHvV7Ptm3b5sg3NDc3EwwG0Wq1MoyncCkL6RzNp+Mj/l+8R6/X4/f7SafTeL3eefMsxGvb2to4duwYVqt1zuv279/PyMgI/f39GI1GeW1FYu+ZM2cYHBykoKBALtR9fX0y7Do1NUVRURFWqxW3243H46G3t5dAIIDf78disRAOh6mrq5OTl9hlz+fZUbj5iJY7mZIrItVBFDkNDQ3J8VFXV8e6detktWBubi4Oh4NEIoHH46Gvr4+xsTHZNUNUiW7dupXp6WkuXLiA0WhkzZo1jI6OsnPnTh588EHZoWNyclLOI6AUMN0KMg3lhQoQsueuTK9+ZshwvtyvzGMI76qIymRGaQB++tOfMj09TXFxMWvWrJGakg6HQ/amNRqNGAwGjhw5woULFygvL6ehoQFA6rQVFxdjs9no7e0lFArR3d1NXl4earVa6gFmflch/iu+01NPPUUymZTyJNmFCJnzswiN3uzIgWK0LSO8Xi/nzp2Tib/RaFRa+UI/Z3Z2FoPBIPNPhOH1yCOP8M477zA4OMjMzAzV1dX09/dLHSWxuIqcJYvFQk5ODr29vVKJWiQp+3w+maMAcOrUqSUVKShcZKFk3/kWq6amJnw+H6+88grDw8PodDrWrFkzrxEkGjnb7XZ27dolHxfGdTQaZWZmhtLSUtkF4cCBA2i1WmZmZnA4HOzYsYP29nY++ugjjEYjubm5PP/88zQ1NUl1/IaGBhKJBD09PRw7dozPfOYzVFdXz1HRVwy12wuRoyr0tYSXwOfzAUgV+nPnzrF27VqpkSaet1qtVFZWcuzYMUZHR0mn01gsFgoKCigpKZE5Q9u2bcPlcmE0GpmdnaWwsBCr1Up1dbXUmIRPDAax2VMKmG4+mYbyUrXFFrpOmQZgZohUHCszKmOz2di7d6/sbGGz2SgsLGRmZgaz2Sy9YMXFxcTjcVnUUlRUxIoVKzh9+jRer5fCwkJcLhcDAwPEYjFqamr47d/+beLxON3d3ezbt0/macNFsf329nYZDZiv24Hdbpf9nLNz2S6nz3azUIy2ZYLYHRgMBmpra7FYLHO8NC6XC4/Hwz333IPRaMRsNhMKhejv75e5R1arlUOHDsk8g4mJCZk4HggEpKL12rVrue+++/jZz35GMBiU59DW1ia9dSUlJTJvTuQMKCyNKxW0dLvdRKNRpqenpXdDcPDgQXw+Hzt27JAiltmto5qbm/nGN74hq7mamprYsGEDv/jFL+jr68NgMLB+/XppnMXjcSoqKlCpVHzuc5/jy1/+MoDU8aurq6OxsZHXX39dSj80NTXJcvjFQnAKN47LNfoW/7pcLs6dO0d5eTmBQIBTp06RSqVIpVIUFhYSiUQIh8Ps27ePQ4cO8dFHH8nqPrfbzezsLCtXrqS+vp7KykqGhoZQqVSsXLkSn8/H1q1bKSgoYHBwkOnpadatWzfHqwaXetaUAqabT7ahdi2//0K5byICMDAwgMVikZ4to9EoozY2mw2r1UpnZyf9/f1yHE5MTLB//35CoRBOp5OmpibWrVvHe++9J4uj4vE4w8PD0jMnhMO1Wi1NTU2cPn2apqYmtFotXV1duFwuWQCTLfshuN3HomK0LRMycwqEuGHmwIOLUiWivBo+yVMYGxvj1VdfBSAvL4+6ujpGRkbo6upCp9Oxbds2QqEQbW1t8nmhyzU5OYnFYsHj8RCLxZienmZiYoLh4WFWrlxJU1OTFMxsa2tTPCxXicvlkuXxzc3Nc4SUhafMarXOaafidrv55S9/ycjICKFQiN27d/PII4/I/JFDhw7R0tJCMBiUHo50Oo3ZbGbPnj1YLBZ++MMfylCVzWaTnrK1a9ei0+kWVfqOx+P09PTIPBjx/ELdDhZCyWe6PiwWYsxeiESuK8Dw8DB+v5+qqirMZjNGo5F33nmHRCLByZMnGRgYIC8vj4KCAoxGI9FoFJvNRkVFBRqNBpfLRSAQIBqNyq4HW7du5cSJE0SjUerq6hY1IhVuDVdjnCw0xua7npkOBb/fz4YNG2RotLS0VFa2e71eWQiwceNGHA4HQ0NDHDx4kLNnzxKNRlmxYgV79uzB7XZjsVioqKjgN3/zNzGZTHi9XoLBIMlkUq53Op0Ov98vZa6effZZ9u/fT3d3N+fOnWN0dFQK7C9FaPp2mpcUo22ZIG6w7DwEcQOJHKJMPSxRsSfECgHWrl2L0+mkra2NsbExtFotp0+fltpJ8Xicn/70pzIHpqqqiuLiYnw+nxTqFaKIpaWlcuLv6enB5XJJDwsozeWvFJHgPZ+QslCIz/4ta2trUalUUtR2aGhINnKemprC6/UyNTUFzM0zE8aZyFMKBoP8j//xPzAajTz66KMUFBQwOzs7Z1OQPclnT9TZY3SpKPlM14elGkKiC4GojCspKZH9RQ0Gg9Ry1Ol0bNiwgWQySSQSkc3fZ2ZmiEajaDQaOjs7mZ6eRq///7X37mFtn+f9/1ugAzoiBBJCHAQGjHzAxCA7cagTx3HsdHGTNGmaXpm7uEubdjmsWbsry367vmu6tcl6yL7t9l23ZuuVdPO6ZkvaHJwldpzYsWMTOwIb44MwYBAISUhIgA6ADvD5/eHrefyRkEAcjeB5XZcvjJA+n4/0ufU893M/9/2+JdiyZQtqamogFovpwjIajcZV4BGWezRjpTJfRySVjSWbnwDQvEkANNpKdozI7pHdbsfQ0BBisRjuv/9+Gu0vKiqCy+XCxMQE3G433n33XWg0GhQWFuK+++6jKSASiQS5ubnw+/3UYQOuyXyQXswAaPEAcdqi0Sht1ZiM5TouMactw0iV9Ml/nGxTkfwVhUIBgUAAjUZD9/HLy8uh0WioSOGFCxcQi8VoY97s7Gyo1Wr09/cjKysLUqmUDuRjY2PQaDSorq6O+/KSxr/RaDSuMnI5Gfxyhe90k9+B69tZqaJwDzzwACwWC3XiScWv0WikSvMymQwtLS04cuQIRCIRBgcHMTo6iqKiIphMJkgkEgwPD6OzsxMcx6G4uJheh0KhwMsvv0wTiJP1P01ktoMdi7okZ7Y9kNN1hMikSSKkJpMJCoUCPT096O3txYYNGyAWi6HVarFr1y5MTEzg4sWLtNhAIBBAIpFQdfuKigrU19dj3759cRM3GQPIeRg3nsVwRFIFEgBQKRB+Czt+RJ7kPwYCAQDXhHfNZjP8fj8CgQAefPBBfPLJJ2hubqZV7FKpFOFwOO68JpMJ77zzDsRiMbZs2YJAIACpVIpoNAqfzwebzUarPvV6PaxWa9LjzBQ9XA4wpy2DSTVIJ5Zgk1Uvvyx548aNsNvtKCwsRElJCa5cuYLx8XFkZWVBLBbTnIOhoSF0dHRAKpWitLQUlZWVdDWza9cuAKBOBACqmp6Yc8eYnsR7mVjUwY/CNTc3g+M4mpt4+fJl2Gw2VFVVYdOmTTCbzXC5XOjv70d2djaEQiHdKo1Go1AoFJBKpdi0aRPN72hra0NraysAoLu7GyaTCY8//jhefvllnD17FsPDwzRxne9MLMRgx6IuyZlvD+RUOorJ7s/atWtx4sQJANc6FJw6dQrHjh0DAFRVVaGnpwfl5eWQSqXgOA4CgQBWqxUcx2Hv3r2oq6ubkiPEnwyX61bTamO+jghxykiBCoGMCdNtkxL433eS9E8cuHA4DJvNRuetYDCIr3/969BoNPQcJKc30UGcmJhAJBKhLfR8Ph+tICWLHb76Abm2dDrQLCf7ZU7bCoQ/aJKom1arjXtOfn4+BAIBBgYGsHnzZhQXF+PKlSuYnJyESqVCUVERNm7cCKVSiStXrtC+brfddhtaW1vhdDpp66Pm5mb4/X4UFRWhvLycJpwmM+7lZPyZQmIUrqGhAcB1GRin00mjZ1/+8pdhMBhw4MABfPrpp5iYmEBpaSk2bdpEhSrVavWUe2Sz2bBu3To4nU5UVFTERfyGh4fR39+P//7v/45z9Mg2bltb25SWVUupW7RSmW8P5MSKvcQIKRHRJRQWFmJsbAw9PT1oa2tDLBbDxx9/DJVKRSuJTSYTKisr4ff70d3djeLiYphMJprfyJ/MSetA4Hr03+PxUFtm3/+lgb/IUigUtBI8Hfg2wm9bxRfTbmhooNXjyaouyXGSjft8WxSLxbQPMl9OSq/XY+vWrbBYLKioqKDjD4FUrPp8PqrfRqSuQqEQbrrpprhoL3/nItliMxnLaauUOW0rGJvNhtOnT8PpdMJoNNIcgJaWFpw5cwbBYBDRaBRnz56FSCSCUCiERCLB2rVrodPpUF5ejqqqKlRVVeHs2bNwu91wOp0QCoVob29HaWkpzGYzysvLYbFYEIlE4rS6Ul3TcjH+pSTZoJWuA5u44iNaSQcPHqR9+7KysiCXy+nAIxKJ6HZWJBJBXV1dSgFkIhczPj5Ot7YJer0earUanZ2d1HHn39+2tja6OgZYc/iFZL49kPl6iokOtsFgiMudrKiogN1uR3t7Ozo7O5GTkwONRoNoNIpLly5BJpNBIBDQlAuLxYLCwkIUFBTETXYej4dGggFQB40/2TMbWVrmE7FNzK/lC+YSyOJvumbq/AhdMqfdZrOhu7sbfr8fR44cgclkgk6nQ3d3Ny10sdvtWLNmTdz4wz9GTU0NAoEAdfpqa2vxla98hRZFkfGW6F7yjzGTLS6nrVLmtK1gjEYjqqurASAu0maxWHDx4kXae9TtdtOtjtLSUjz99NO0VREZgIlifmdnJ1QqFSYnJ+kX1GQyIRgMYmxsLK5fZqpr4v9cLZBBq729HZFIBGazOS46kW70gRzn1KlTcDqdKCoqgkQigVgsRlVVFX29Wq1GZWUljY5Ml1dEtiJUKhUcDgecTiftrECShauqqmAymeK2FlIJTK62e7tcSdRFe/fdd9HW1obe3l488MADcV0sOjs7accTkhrx+OOPo7W1FZ2dnRAKhSgsLIwTVVUoFHGVoYmTOXDdiU9Ux2c2snTMJ2JL9MzI/wkGg2FKCkfi2M6/136/H21tbdDr9UlznY1GI138d3R0IBQKQS6XU+dKo9GgpKQEGo1m2mu1Wq100Un0S8mCkoyd+fn5U6J1M7GcUjiY07aCMRgMeOKJJ6YMkmazmQoUrlu3DhUVFejt7YVQKKRtPcgXW61WU+HM8fFxAEBdXR28Xi+USiUNnRuNRni9Xvp7KqHd5WT8i0liEjlp33LixAl0d3cDAN1SJFsN/ChIKvgRi/HxcVRXVyMajUIul0Oj0cQNUmvXrk26nZDqmOvXr6fVwIkDcCqHMpnGEWP5YTAYoFKpMDQ0hM7OTlrpTWzj0KFDGBkZQW1tLTZu3Ejz4Gpra3Ho0CF0dnZCoVDEbZvzt+z55+FLDiWOPavl+7+cmE/ENplzNt1zE6NnxGknC8NUuc4GgwH5+flURJdIf/Clg5LZW+IxotEojc7V19fPSUB4ucOcthVOskGyvr4eFosF0WgUxcXF2L17N86ePQupVIqKigoqkEqUpUluQVVVFQoLC6FSqfDwww/TsDUJSYvFYqrZttpz11JtSZCEW7KlQKIPLpeLbjOms1VqNBpxyy23wGg0UhHdkpISmq9RUVGBiooKeDweGjEjr091TGBqD9nlPsl2dHTg0UcfxeDgINRqNV599VWsX7/+Rl/WojNdA/hUz62rqwMA6HQ6bNq0ibbyOXjwIORyOerq6vDwww9PsQGr1QqHwzElV2kmu1jutsNYGNKpviRBgMSiGP7rSSCgoqJiSg52oi0lnjNxgZCsL+pKsceMddp++MMf4t1338W5c+doAmMivb29ePLJJ/HRRx9BKpXikUcewU9/+lOq47KaScx3qaqqwoYNG2iCOfkZjUbR3t6OyclJcByHrVu3UuHWjo4O5OTkwO/30+21HTt20GOu5tyVVFsS/C0rQqptxmTwByeS20Hai5EtUCKg63K50N3dDa/Xi9raWnquZMea6z260c75N7/5TTz++OPYv38/Xn/9dTz22GNoampa8utYasj3a7ruE4nSG5WVlXj22Wfj/ma32+F2uyEQCOIcNlJ5yq8kNxqNcbpbq3lRxrhOOtWXBoMhZU5t4rYlyXuczrYTczQtFgtdDPPlRVaKo8YnY522SCSChx56CNu2bcOvfvWrKX+fmJjAPffcA61Wi08++QRerxePPvooOI7DP/7jP96AK15eJOa7ANfLn0mPQqJpk5OTg5aWFgwPD8Pn88HlcqGjowNXr16FQCBAVlYWHA4H7UHI/5L4/f44na/Vwmy3JNIdXJINkPzVJNHFIsm45HGSQE4g3TKIozfXgW02zjnHcWhsbMTo6CiuXLmC4uJiyOVy7N27Fz/4wQ9mfW63242WlhYcPnwYAPDggw/iqaeeovIUKxlyL/1+P424AfEROCKhQO4/P9+URGTLy8uh0+mQm5sbl/dIJGLKysqwYcMG/MEf/AHNwSSs5kUZ4zr88Wcui7jEaFiyKHKy1yQWQZFdnpVOxjpt3//+9wEAr776atK/Hz58GJcuXUJfXx81npdeegn79+/HD3/4w3lVZa00kjkM5AtEJn6VSgW3242jR49CIpGgsLAQOp0OPT098Pl8qK6ujns+OSbR+QKmbr0xpicx5E8GMn5OSOIgefDgQTqR79mzZ4rUA3m+1Wql/ScTB8XZDLyzKSwRCAQ4deoUgGs5fh9++CHKysrinvOlL30JnZ2dSV//zjvvxG07k+820W0i/S97e3tXvNNGvl9NTU00ysp3xMmER5x34lzzt99J03ci2Mx36nQ6HfLy8qBQKOjx09HgYqw++PNHqgrSVGMKX1KE2FK6W+/83Qmj0ThjzttKIWOdtploamrCxo0b427+nj17qK7YHXfccQOvbnmR7AvFr7ix2Ww0ctTa2gqv14tbb70Vu3fvpr3edDpd0iR6orcjFounrSplTCWVujipimpqaqJbX6QCVaFQ0Kiaw+HAgQMH4HK5sGPHDtq7j1Sskv6TifeEv9UwUxLyXLYfnE4notHoFIcNAF5//fVZHStxdc0v5V8N8B0pUulLHLVkuW6khVlJScmUimV+EdHu3btRU1MzJWeOFZ2sHBY6tYFIByVG9YHUEflESZHZXMdqtccV67S5XC7aEJaQl5cHsVgMl8t1g65qeZLoHPC3zUgYGrhW4q9WqwEAnZ2dtC0WmShsNhtcLhfsdjuA60mn4XAYFosFBw8enLE6knGd6SIb5J5Fo1Gqrdbc3IxYLEYnWpvNBqfTGZfvya8Una6p+2JuNZw/fx6bN29O+rfZRNpKS0tht9sRi8UgFArBcRz6+vqSOoMrDf6ES3TTvF4vlWhI/I4ZDAa4XC689tprtL8s3/n3+Xxx93wl5gIx4lnovGN+951kOzf8n/zHk0mKMFKzrJy2559/nm57puKzzz6L04qajmQTD2nBMh2z7fmX6aRarZPH9Xo9vF4vOjs7EY1GoVarEQqF0NzcDADw+Xw4c+YM7XFKKkqtViv27dsHiUQCu90OpVJJt2dmU/22WpluJcmX/vD7/RgeHqa2TezbaDTSiHLitvV0pJJzWCj6+/uTNhEHZhdp0+l02Lx5Mw4cOID9+/fjjTfeQHl5+YrfGgWmLrSInmKyyCnBYrHQaHei86/RaFBTU8MmzlXEQmtmzuV4ySRFFioCeKOLpBaLZeW0PfXUU/jKV74y7XPSHZD1ej1Onz4d99jQ0BCi0eiUCFwi8+35l2lMl9PW1NQEv9+PaDSK0dFRjIyMoLCwEJOTk4jFYujq6sKHH36IUCgEqVRKuyqEw2GcPHkSwDXx3ZKSkjhHMJ3qN8ZUEqtHye8kcpboBPM1s0jlX6oqQ/4W2GLei8bGRrz44ovYt28fDhw4MK9j/fKXv8T+/fvxwgsvQKVS4de//vUCXeXyJnGCbGhogNfrnVbcml8xnqyIhX3/VhcL/T2f7nizierN1D0hkVTO2WwjiZni5C0rp62goAAFBQULcqxt27bhhz/8IVWNB64VJ0gkEtq7MRXz7fmXySR+8cigLpFIoNfrYbVa4XQ6MTIygqysLHR0dCA3NxcFBQUYHR2F3+9HbW0tcnNz0dzcDKfTSZX0+V+GVNVvjGukOxDNp+o0nb8tBjU1Nejo6FiwY60GiY+ZHOt7772XJoGn0vpLrBhPlI7JlEmLkXnMJgrH30VIZ1xKNX7NNvKX7DjL8TuxrJy22dDb2wufz4fe3l5MTEzg3LlzAICqqiooFArs3r0b69evx1e/+lX85Cc/gc/nw5//+Z/jG9/4xoyVo/Pt+beS4E8O9fX1tNLM5/PB7XZjcHAQSqUSJpMJ/f39CAQCePDBB6HX66m6PlG2JvC/CIkaY4xr8Jsa86NlqRJ9Z2K6AWyht0kYC0/iduhMYqapSNRuA65PUKtdW5GxeMwmqkeem27Ls1R2P9tIYrLjLMfvRMY6bX/9138dtxVCEpuPHj2KHTt2IDs7G++++y6eeOIJNDY2xonrMuYO2XIjpdpWqxVSqTSunxsxbuJskAgA6QlHXgMwh2E6Eish+Ym+wLXPNd2cwOkGMJZ0vvxJzDudScwUSB4l4OuzJbY3Y99Fxo0gVTQr3XFpruNXOmkhy/E7kbFO26uvvppSo41QVlaGgwcPLs0FrTKIA2EymVLmHfCLDSorK2G1WnH8+HEIhUJs2bIlqYwA4xrJigGSTdwsJ3B1MN2EkopUzh3RZyPbotOdg8FYbG5UNCud8y7H70TGOm2MG0viCiRZb0vypSBbzV1dXRAKhaiurp6V9MdyzCtYKNJdZaZ63nSq4emch5F5pDuRGI1GWK1WnDhxAhKJhKY38BcDzC4YC8VcbelGRbOWYxQtHZjTxpgT/Inj7bffniLGys+/Aq5ty4RCIWzZsmXWWm3LMa9goUj13hIHwLkWIMx0HsbyZb7SQwaDAdFoFN3d3bBYLKivr59iN8wuGAvFXG3pRkWzlmMULR2Y08ZYEBK17/j5V/yVTDLhz5nI1BVROqR6b4kD4Hw/g5X8Ga5U5is95HA4IBKJUFFRkVLbktkFY6FgtrQ0ZN3oC8gEwuEwnn/++YytcFzs6zebzbj77rthNpupHhjJYyOdEkgULpXDRl5Hmtfzyc/Px6FDh5Cfn78o179UJLsPBoMB27ZtS5qvlOjwzodU55kN7HuwtPT19WFkZIT++8u//Et0d3fjscceQ3d394yvt9lsEIlE2L59e8q+vwthF7Mh0+5BIpl+/cDivYdEW5puTJ8vmX4f5nP9Am61NeubBr/fj9zcXIyMjMRJfqR6PFNYyusnlaKkR2bi7+m+7kZd/3yZ7lrn8z7S/RwXk0y6D8nIlOuf7jqPHDmCu+66Cx988AF27do17XGWY75aptyDVGTS9ZNrTdQdDYfD0Ol0i/4eFnPMyqT7kIz5XD/bHmUsKIkh8nRD5iy0Pj3s82EA17dME7dOk5GpOTuMhSXRVp577rklOS8bsxYH5rQxFpTEiWKxtXZWC+zzYQCg3V3ITwZjJpJF2v7u7/5u0c/LxqzFgTltPMhOcWLVFvk98fFMYSVfv1KpnFIEcSNJZUP8x1bifcgEMsWOmA0tXzLFhoCp4twEkkeVqfcAWN12xHLaeNjt9rS2HRjLh+WW08BsKDNZTnbEbCgzWU42BDA7ylRmsiPmtPGYnJyEw+FYdismRmqW271iNpSZLKf7xWwoM1lu94vZUWbCIm0MBoPBYDAYKwCm08ZgMBgMBoORATCnjcFgMBgMBiMDYE4bg8FgMBgMRgbAnDYGg8FgMBiMDIA5bQwGg8FgMBgZAHPaGAwGg8FgMDIA5rQxGAwGg8FgZADMaWMwGAwGg8HIAJjTxmAwGAwGg5EBMKeNwWAwGAwGIwNgThuDwWAwGAxGBsCcNgaDwWAwGIwMgDltDAaDwWAwGBkAc9oYDAaDwWAwMgDmtDEYDAaDwWBkAMxpYzAYDAaDwcgAmNPGYDAYDAaDkQEwp43BYDAYDAYjA2BOG4PBYDAYDEYGwJw2BoPBYDAYjAyAOW0MBoPBYDAYGUDGOm0vvvgitmzZAqVSCZ1Oh/vvvx/t7e1xz+E4Ds8//zwMBgOkUil27NiBixcv3qArZjAYDAaDwZg7Geu0ffzxx3jyySfx6aef4oMPPkAsFsPu3bsRCoXoc3784x/j7//+7/H//t//w2effQa9Xo+77roLgUDgBl45g8FgMBgMxuwRcBzH3eiLWAg8Hg90Oh0+/vhj3HbbbeA4DgaDAc888wz+4i/+AgAQDodRWFiIH/3oR/jmN795g6+YwWAwGAwGI30yNtKWyMjICABAo9EAALq7u+FyubB79276HIlEgttvvx2nTp26IdfIYDAYDAaDMVdWhNPGcRy+853v4HOf+xw2btwIAHC5XACAwsLCuOcWFhbSvzEYDAaDwWBkCsIbfQELwVNPPYXz58/jk08+mfI3gUAQ9zvHcVMe4/9tcHAQYrE47jkSiQQSiWRhL5qxIuE4DoFAAEqlMqWdMRjTwWyIsRAwO1qZZHyk7emnn8bbb7+No0ePoqSkhD6u1+sBYEpUze12T4m+EQKBAHQ6HdRqNXJzc+m/F198cfHeAGNFEQgEkJuby4pdGHOG2RBjIWB2tDLJ2Egbx3F4+umn8fvf/x7Hjh1DRUVF3N8rKiqg1+vxwQcfYPPmzQCASCSCjz/+GD/60Y+mPXZfXx9UKhX9nUXZGAwGg8Fg3Ggy1ml78skn8Zvf/AZvvfUWlEoljajl5uZCKpVCIBDgmWeewQsvvIDq6mpUV1fjhRdegEwmwyOPPDLtsVUqVZzTttJwOByw2WwwGo0wGAw3+nIYKwhmW4ylgNlZ+vj9/rjfWbrPzCxn+8pYp+2f//mfAQA7duyIe/yVV17B/v37AQDPPvssxsbG8MQTT2BoaAg333wzDh8+DKVSucRXu3AshDHZbDZ0dXUBwLIzSEZmw2xr4WCTbWqYnaVPaWlp3O/f+9738Pzzz9+Yi8kQlrN9ZazTlo68nEAgwPPPP79iDNThcODgwYMIh8MA5m5MRqMx7ieDQZjvooDZ1sLBJtvUMDtLH5buM3uWs31lrNO2GrHZbAiHw5BIJPMyJoPBsOxWD4zlwXxXmMy2Fg422aaG2Vn6rPR0n8VgOdsXc9puMLOJbPC9/9ka1HLeo2csH4iNSSQSNDU1MXu5gbDJlsFgJMKcthvMbCIbxPt3OByznlDTOQ9z7BjExpqamtDV1QWPxwOtVpuWTRD7kUgkCIfDzI4YDAZjgWFO2yIw1+hZuqRywKY7bzrnWc7Jl4ylhdiJx+NJ2yaI/YyOjkImk6X1GsbKhi0EGYyFhTlti8BcomezIZUDNt150znPck6+ZCwt/KgumXRngr+1SiJtjNUNWwgyGAsLc9oWgbk6P+muSlM5YPN1upZz8iXjxjAbm2D2w+DjcDjg8XigUqlYjiSDsUAwp20RmOvklc6qtKWlBRaLBWazGfX19UkdPZvNNu0xGIzZkGoxwba+GNNhs9ng9/tRWVmJcDjMIm6MRWc1jEkZ33t0JWE0GlFZWTltpMxiseDs2bOwWCwArjt6xFFL/D1dSHGDw+GY+xuYJR0dHbj11luxdu1abN26FZcuXVqyczPSJ5VNWSwWvP/++9QW+fDt6UbYFuPGwx/P0hnbkrFUtsPGopUBf6z60z/9U5SXl0MgEODChQs3+tIWDBZpW2Dm4+mnE6Ezm81xPxO3ROe6RZoY5VuKFcs3v/lNPP7449i/fz9ef/11PPbYY2hqalqUc61kFvteSSQSjI6OxumEORwOWK1WqtqfWDnq8XjiFP0tFgva2tqwd+/eFbsCXm3MZHf8yL/RaMS2bdtmfcylyoljY9HKgD//felLX8Kzzz6Lz33uczf4qhYW5rQtMAs9yCQOYvX19aivr6d/T3T0ZpIFSTXQJjp75H0QyYeysjI89NBDGB0dxZUrV1BcXAy5XI69e/fiBz/4wawdB7fbjZaWFhw+fBgA8OCDD+Kpp55CT08PysvL5/WZLQeWsgXRQtjcdFugFosF4XAY4XCYPs/j8SASiUAsFqOkpAQ2mw0WiwV2ux0lJSVTIittbW0Ih8NxEeGVvIWxkuHbALHzVPeR2EVbWxvMZvOMUjCJtpxsEcpxHBobG1OORbNlpY9FmcBC3VP+fLhSxxbmtC0ws4l0JeanJcNisdDn3HvvvWlfx6FDh3DixAls374dX/va1+KO19zcjIaGhrjjJTp/JLoSi8XowHzq1CkAgF6vx4cffoiysjL6fJvNhm9/+9sYHh6mcg983nnnnbi2PH19fTAYDBAKr5mgQCBAWVkZent7V8RAuZQtiBai6jeV48fvwiGRSGgbNYVCAafTiUgkArvdDrPZjLa2NiiVSkgkEhoJJs6Z2WyGxWKBRCKZ1slcDTkpmQ65f9FoFB6PB9FoNOX9MhqN1GG3WCwppWDIWJjo7PPHJb5tTDcWAcCXvvQldHZ2Jr3+1TYWZQICgWBB7+lKhjltC8xsihBIfhqAlE4bcM2gpyNRlsFms+Hs2bPo7OxEUVHRlOf7/X5YrVaYzeaUW6HhcBgymQwqlYqKqwKA0+lENBqlXyj+ttjPf/7zWU22ie8rnX6ymcJsWhDN11GZjc2lG2lN9jhx4MbGxjA2NoZIJIKJiQl4vV7YbLa4SAqAuD65ACCTyWC32wFcU/snz+NfE5OIWP7wNfx6enoQDAaTRlDJfSV2wZeCSdxOP3HiBLq7uwEAjz/+eNLzJtpG4ljE5/XXX5/Ve1rJY9FCstiLqoW8pysV5rTdQBLz01I9h+80JYMfPdNqtejq6oJSqURlZSWqqqqmHM/lctGtqlR5I4maW4Tz589j8+bN9Hfy2srKSrz00ktpr4RKS0tht9sRi8UgFArBcRz6+vqSflkzkdm0IFpKR4V/LvI7GYBTbaNv27aNyjcYjUb4fD60traisLAQGo0GFosF/f39uPPOO2ne0iuvvIIPP/wQ1dXVkEgksNvt9PMgFYX8nCdyTXwnkUXdlif8FAxCMoeb/E4Wfnq9nt5H0nGDCDFrtVqo1eppx8JE23jttdewfv36pM+dTVRmpY9FC8lij1WJ8wufuUTaHA4HwuEw3G73gl7njSSjnbbjx4/jJz/5CZqbm+F0OvH73/8e999/P/07x3H4/ve/j5dffhlDQ0O4+eab8U//9E/YsGHDjbtoHon5acmYLopCJjWv10tXhmRgW79+fdyq9tChQ/B4PKirq4Ner497brIoS2I7I/JYf38/SkpK6PP4r53NSkin02Hz5s04cOAA9u/fjzfeeAPl5eWrcjtiKUWNEyNnqYpPkk3AxNkCAKVSSRcAfr8fHMfB4/HA4XDAYDDQnDeVSoVwOExfK5FI6DZpsmvi23ui7TEWl3SdZP7zkqVsEE02iUSCysrKpF01jEYjPB4PYrEYVCpVXNQ/lZ5bom1cunQp5cKIjUWLw2KPVYnzCx9yT9OxU37eZSwWW1GV6xnttIVCIdTV1eFrX/saHnzwwSl///GPf4y///u/x6uvvoq1a9fiBz/4Ae666y60t7dDqVQu+vUtdqTAYrHg6NGjkMvl2Lp1K00I52+Tkp8nTpzA0NAQvF4vamtr4yIdyRxD/vYFP8eksbERL774Ivbt24cDBw7MS1D1l7/8Jfbv348XXngBKpUKv/71r+f6UWQ0N0qUlh9Nffvtt/HBBx/A4/Hg7rvvxu7du6c8x+FwIBqNwmAwoKSkhP4DALFYDL/fT6O3u3btopET/iLBZrNBJpPFRW9TFc+wDh1LS7pRlFTPS1zoVVZW0igtGUv491er1dJ82UTJopmuwWg04s4778Rf/uVf0rFoPrCxKD0We6xKnF8ScTgccWkX0xW0/J//839w7tw5DA8P45lnnsFzzz2HM2fOZPwCMKOdts9//vP4/Oc/n/RvHMfhZz/7Gf7qr/4KDzzwAADg17/+NQoLC/Gb3/wG3/zmNxf9+qbbiuKTLCctndWu1WqF0+mESqWCy+UCgKQyC2azGdu3b6eRNiLJ0NLSkrKai7/tyS/Vr6mpQUdHx9w/FB41NTWsrH6J4dvktm3b6CTb3NyMixcvIhaLwe1208G5paUFBw8ehEgkgtPphNVqhclkglQqxZEjR6DT6aDX62mBAYmg6fV61NbWUoeNkMoRSzYYsw4Ls2O+i8TEezPb/EeC3+9HW1sbtFotgHhn7sMPP0QgEMDDDz9Mo21WqxXnz5+HTqeD2WyeUc+NXNdtt91G8+DmCxuLlgczzS/8wqjpbMRoNOJv//Zvqe2ShQRZVGYyGe20TUd3dzdcLheNGADXogW33347Tp06tSRO23RbUXwSnbvpNK34YV+pVEq3V8lkl0xmIRwO42tf+9qUUv3pqrlYlGNlkRg55Uc9jEYjGhoaEAgEYLPZUFJSgkOHDuGjjz6iFcQVFRW0qEWn0yESieDq1auwWq3Izc2lA6ler0d9fX2cZAzJoQSuO4qJpDsYM1Iz33yjRCd5pohaqq3M1tZWXLlyBfn5+aitrYXFYoHX64VAIIDT6aRjDyk4IFXIxI5m0nOb6X2yXMjlwULdB/5xiKM/03kSbbm7uxvvvfce7rnnnjnpBaaj9LBUrFinjUSeCgsL4x4vLCycdbeAuZIsUpBsQkp0kKbTtOIn95rNZvoaokrPN1y+zAI5DnmtSqWCx+PB8PBw0mReFuVYWSRGTvn5Ytu2bYPZbMbJkychEAjQ2tqKYDAIq9UKjUaDNWvWoK6uDrW1tdTxs9vtCAaDmJiYwNDQEPx+PyKRCMrKyqbkM7ndbgQCATQ2NgJIPsjyt2GJ3a92+5ut1t9CL7SSHY/o9gGA1+tFT08PGhoaYDab42wjEAhAJBLBYrHg3/7t39Df34/6+nrceuutiEajMJvNdLcAuDZWmUymtCJsiSkbibAK5HiWUjOSz3zvQ2KQgWiGAqCpGABw4MABOJ1O3HHHHTTHMnGMaW1thcvlQmtrKx555JG0rp0fPElX6WEpWLFOGyFZKfdMEhqLYeSpnKBkE9jevXunJIQTg5VIJDT5lv8arVYLi8UCl8tFI3REtoOIopLmzWSAbW5uBsdxcflFbJW6MkmcgBO7HNhsNqqxFggEMDg4iNLSUhiNRvj9frS2tqK2tpY6fH6/HwqFAtnZ2RgbG4NKpUJeXh6i0eiUfCaXy0WjKORciYN5qsKX1cxstf4WeqGV7Hg2mw1Hjx7F1atXEYlEoNFoIJfLAVwbN0dHR5GdnY38/HxEo1H4fL44p37Pnj30mG+//TacTieKioro44cOHcLPf/5z7Ny5E3v27JlybrIIna6zRrrbvKuFpdSM5DPfRQQ/yMAvaOEHHaxWK1paWsBxHLxeL438JuqR7ty5EwDoT2D6tCSy+FAqlVS2Bphe6WGpWLFOG8mlcblccVplbrd7SvQtkaU08ukmMD7EYCsrK5M6aIkilgDg8/mg0WjiRFFJlZbL5YJcLqfJwC+//DLVU5pNy6FEvaXVOjAudxJtijj0drudbkveeeed2LJlC/793/8dk5OTWL9+PUZGRtDW1ga3200LC6xWK86ePQuBQACO42AwGFBWVoZoNAqhUBinwWYwGOIWIcD0gznblr/ObLT+CIvtoBiNRhQVFaGtrQ2hUAhjY2OQyWQQiUSQy+UwGo3Q6/WwWq2QSqXQaDS4/fbb0dnZiTvuuINeEz/KZjKZ6OMfffQRPvnkE9jtdmi12rgxxWg04sSJE7h69Sr0en1KsfF0t3lXC3Oxo4VgNouI6aLvibp/icGMoqIiFBUVYXh4GP/6r/+K7du3Iz8/P05rb8+ePXQRkKyjB4A4GwmHwygpKaHpGgaD4YZH2Agr1mmrqKiAXq/HBx98QHVfIpEIPv74Y/zoRz+a9rVLOViSPXq+XELi8fgVWMm2UMmXg0yOVqsV77//PgQCAR555BGa1zY2NkbPEw6HIZVKEY1G0draiu7ubgwPD0On08FqtaKoqCitpE3y5SF6S8DqHBgzBWJH3d3daGtrg1QqBcdxdEXa1NSEdevW0e2tCxcuYHx8HEKhEG63G6+99hoikQjOnj2LQCCA22+/HV/+8pepzQFAVVXVlEHWaDTi8OHDcLvd2LVrF80rSfzesG3568xG64+wFA6KyWSCSCRCZ2cnhoaGEIvFEI1G0dnZiffeew9r1qxBTk4OtFotzGYzjezzHXGLxUKjbCUlJXjllVfg8XhQVlaG8vJyFBcXT5tzOxtW+0JgLna01CTbUUoMAiQbG/jSVgcOHKDb94899hh9DpH7SHT4SASPbxepFpapZGhuBBnttAWDwTixve7ubpw7dw4ajQZlZWV45pln8MILL6C6uhrV1dV44YUXIJPJZtzTXsrBkpS+J1a2THc84qBZLBZYrVZYrVbk5+fH6duMj48jGAzC6/XSFYNCoaBJwAAwNjYGAFTYMhQK4fjx48jOzoZOp5tSop8M/nYbXw2fsfSks3AgdtXW1gan04lAIBCnR0WkFCQSCY4cOYKxsTEIBAKo1WqIxWIolUqIxWIUFRUhEolAqVRi27ZtND/S6/WipaUFWq12ykr2+PHjGBoaAgBqK/zBmkCiwTfi88l05uugzPQZEb2+W265BbfffjuOHDkCrVaLuro6vPTSS+jq6kJHRweqq6uRm5s7ZeFJ8h2tViuCwSCAa4Kq//mf/4lAIIAHH3wQP/nJT+Ly48hC02azxfW7TRe2EFj+kHSNaDRKt9mJw+5yuWiLMxLF5xfD2Gw2uFwuaLVaVFZWoqioCOFwOG5eBRA3zvC1AYHrjh2BPw+n02N3Kclop81iseCOO+6gv3/nO98BADz66KN49dVX8eyzz2JsbAxPPPEEFdc9fPjwomi0zWewTBZtSzxespWI1WpFc3MzgGurX5fLBZlMhvz8fDQ2NsLpdEIgEMBiscDtdkMsFsNkMgG4ln9iMpniVjXt7e3Izc1FUVERjdrN5IgmGxBXw+S4HCF9aisqKmAymeh95TvUEokEly9fhsfjoU770NAQfD5fnASMzWaDVCpFdXU1Ojo6cOHCBRiNRmzfvh0SiQShUAjBYBBjY2N49dVXwXEc9Ho9BAJBXO4JfyVbW1uLzs5OhEIhvPfeezQKQ3JTOjs7EYvFAGBWfXbTZSVuky10pHI6weXEcYksMisrK1FfX48/+qM/wltvvQWpVIqcnJy4BSK/iMrhcKCjowM+nw+Dg4Ow2a4JhHu9XgwMDKCtrQ0fffQRdu7cGTfxGo1G6HS6uPxIfmHEdG35GMsbkq4RjUYxOjpKHTSJRILXXnsNDocDXV1dKCkpoTJWRLqKOHnhcBjZ2dno6OiAXC7H7bffHjf+kHFGKpXS3DQSlEg2NkwXkbuRZLTTtmPHjml7xAkEAjz//PNzzkebzZd/Pvv3yaJt/OPxiwgA0IGvpaUFQ0NDMBgMqKiowKZNm2C32+Hz+aDVaqHVauF2uxGJRBAIBKBUKuFyueJ6RPKTvzUaDb785S+n1GVK9z2txMlxsVmoiYY4TSKRCA6HA8FgEAqFIu6YTqeT2s3Y2BhCoRBOnTqFDz74AOvWrcOmTZsAXLvvjY2N+PnPf4729nb09PRg27ZtsNvt6O3tRTAYRGtrK1pbW5Gfn49169ZBr9ejrq4OFRUVUxJ8b7nlFgiFQlitVojFYtqzFACkUimEQiFNal8MVuI22UJ911JJwiRGGfgRDtIsniw2+XlDTU1NtGiAiDd7vV5aoNDc3IxAIEDzdCUSCSYnJ3Hy5EkMDg7S6uQ9e/YgFovBarXC4/FM6W9LCqr8fj/N8SWLF7PZvCjOP2Nh4c9vXq8Xly9fxvDwMPbt2webzQaO4zA6Oorh4WF0dnbSrizhcJiqRIhEIng8HvT19WFoaAjZ2dm45ZZbaFECYXBwEBaLBcePH8ett94KoVBIncDptkqX0zyW0U7bYrMYzkcqRedk0bbEhEliVIcOHcJnn32GkZERGAwGNDQ0QKPRIBwOw+fz4f333wfHcaiursbAwADEYjEaGxvR2tpKVyw7d+6kEyYJTZNyasJsHFH+Z7USJ8fFZiFsjfSpJZG1WCyGUChEtw1IscrExATKysrwB3/wB9Qe+vr6EA6HEQgEAFyLxHZ2duK1116DQCCAXC7H1atX8T//8z/YtGkTamtrEQqFMDo6ikgkAuBaQ/iqqirqsBHbtdlsaGtrg9FohN1uh1wupz1x33vvPVRUVMBsNqOxsZE2lOfndy4UK3GbbKG+a4mVmTabDR9++CGcTieqqqqgUqnicoP4Mgznz5+H1WrFvn376Ofr9/tht9uxc+dO2O12/OpXv4LX68WOHTuwfft2FBQUYGxsDBqNBlVVVZDJZPjtb39Lu7aUlJRAKBRSR7K/v58K6Xq9Xpw4cQK7du2C0XhNY9BqtcbJJM2kEMBYfBIXoqmK1siWe2VlJXw+Hzo6OhAKhehzBQIBJBIJzp8/j5ycHOj1eohEIgwPD8PtduPy5csIBALQ6/Woqamh6R7vv/8+BgcHEYlEoFAoUFRUhFAoBLvdjs7OTsjlcqxfvx7d3d3Q6/VUIosU8JnN5rQ03ZYa5rRNw2I4H6lERJNF28hEHo1GEY1GIZFIYDAYEI1GEQgEIBaLsWPHDmg0GlitVthsNoyNjWF0dBTBYBB6vR6xWAxKpRLBYBBKpRJNTU3IyspCIBDArbfeSs8fDofx0Ucf0VyRZAUR0014iauSlTY5LjYLYWv8sD5J/k+8dwcPHoRMJsOGDRuwZ88evP322zh//jzUajVKS0shFApx5swZZGdn46233oLX64VKpYJGo8Hg4CDGxsZQUlKCWCyG8fFxZGVlYevWrXT1S3JOiBNAtmCBa6KrkUiEbr9bLBb09PQgPz+fDo7hcHjFKJcvBQvxXSORDnKviM0EAgEMDAxgeHgYQqGQLur4W0bRaBQnT57E+fPnIRQKsW3bNlqN3tPTgytXruC2226Dw+GA3W5HVlYWotEoioqKYDQaYTKZ6FZVNBpFU1MTDAYDjahJJJK4VmgAaEs+tVqNxx9/HPfee29csYPRaIRWq2WLxiUmca5IXIgmK1oDQFMjotEoAKCoqAgikYhqsSmVSohEIohEIggEAvh8Pvz+979HRUUFdDodWltb4fV6IZFIUFJSApPJhKNHj+Lw4cPIycnB+vXrUVRURLdFSWCE2EcgEKCVzAcPHsSFCxewceNGaLXaZTkGMadtGhbD+SARtVR/A673giQeP3Bt5Ur01sRiMWpqaqBUKrFp0ya6whwbG4NOp8OmTZtoX1bSyJscu7S0FL29vRgcHEQsFourRiU6XYlVXseOHYNer8e+ffsAJG+zxRy1+bFQn1/i/eIngJMJjYjnksiJ0+nE6OgoSktLYbfbMTQ0BIVCgXA4jFAoBLlcjsHBQUSjUahUKly8eJGujtesWYOqqiq43W44nU5s2rSJrpBJ1bXRaITP58Px48cRDoexadMmOjEnTq4sSrv0kHtJclzJd/vhhx/Ga6+9Bo7jMDY2hvb2dnAcR4uewuEwXUQODAzgyJEjEIlENEVjcHCQ6mdVVFRgZGQEQqEQSqUSOp0Oe/fuRVtbG9Vle/DBB5Gbm0vHMP42KP//Xq+XbpUCqRXxGUtLopOWrBKTbKnHYjG6s3T+/Hl0dHRgdHQUd9xxB6qrq+F0Oukiz+l0QigUYnx8nBbYhUIhhEIh3HPPPTAajbRzS09PD/r7+3HlyhWoVCpUVVXhscceg16vj4vcud1uaLVaBINBaDQaSKVSAIBQKIRYLIZQKJzVGLSUeZTMaZsFC3FjUlWLkr+RHDOLxQKBQICamhpIJBK6dWGz2RAIBOjW1/nz56HRaOjE2N3dTQ2PVNGcP38eAGiukc/nQzAYxOXLl7F79+44uZBk721oaAgcx8VV4ZDrXcjPhjE/iPZVf38/OI6DxWKZUsWpUqmQn5+PkZER2l5IIpFgbGwMw8PDiEQiyMvLQ35+PoaGhmhicH5+PnXqbTYbrl69CrFYDJ1OB47j4HQ60dXVhfb2duTl5aGurg67du2ik+3BgwcRCAQQCoVgsVhQV1eH+vr6pJXRzH6WlsTJlZ/Y/+1vf5tuhx49ehTDw8O47bbb4HK5aKeLvLw8uN1uhEIhXL58GZ/73Oeobpvf70d7ezsikQhycnIgEoloonhbWxv++q//Gi6XC1evXsVdd92FwcFBeL1ebNq0iepLBoNBDA8P08IVk8lEeyiTcYfl0N54Eu0o8btM5j5SOEACDXK5HAaDAUVFRdQRJ47Z+fPnEQqFkJOTQx02Mu7o9Xp4vV5EIhG6oBwZGYHH40FPTw+qqqpw77330lQko9GIX/ziFzh27BhkMhm2bNmCm2++GY2NjXScKikpoRXRs2EpbZA5bbNgtjdmtg2X+Xv+xHhJIqXVasXw8DB27doFiUSCoaEh9Pb24ty5c6iqqsIXvvAF+Hw+qm1UUFAAm80GkUiEK1euoLu7G62trZDL5ZBKpbh69So4jsOBAwewa9cutLa20qRgvmo5XwE6MSLCig9uDMlyRYiNRCIRNDQ0QCQS4dChQ5DL5SgoKKAtglwuFxQKBXQ6HYBrMjn5+fkoLS1FX18fcnJyYDAYcO+998LhcOC///u/4fF4IBaLAQBZWVkYGxtDMBiESCTCp59+igsXLqCwsJAmpff29kImk2H79u3UfkOhEMxmM9rb29HV1YUjR44siFglWywkJ93PJfF5b7/9Nn7zm9/QCBlwrequrq6ONoIfHx+HQqGAz+dDYWEhhEIhKioqEIlEqLSQSqWCwWDAxMQEent7MTY2hlgshs7OTnR3d+Py5cvIycmB3W6H3+9Hd3c33G43+vv7kZWVRR3Hs2fPIisrCxKJBGfOnKHVfxKJhG6x8XcoiKQIE/peetJZcPHvlcViQV9fH4LBINatW4fKykq0tbXBarUiLy8Pra2tuHTpEmKxGHbs2IGKigo0NzdTqaG6ujqIRCIEg0Hk5eUBuBZgmJychFAohFAoxIkTJ9Df34+ysjKMj4/j7Nmz8Pl8GB8fp32R+dIfBoNhTikaS7lDwJy2WTDbG5PKkUll3OT5lZWVU6qeSLTr448/RkdHBziOo4Y3Pj6OxsZGxGIxiMViZGdnY2BgAO3t7ZBKpTAYDPD5fAiHwxCJRACuVeuNjIzA6XTCYrHQCtL+/v44hXIygfMhf+O3HGLbWksHyRcjXStstmuthZxOJ+rr67Fv3z4cPHgQfr8fw8PDKC0tpStHi8UCqVSKmpoaGI1GutWk0+kwMDCAvr4+Olnfe++9+PKXv0wHV1LUolKpEAwGEY1G4Xa76fZaaWkpJiYmUFJSgurqakgkEhw4cACffPIJwuEwqqqqsGHDBvT29tLrma/TxRYLyUn3c+E/D7iWX+Tz+TA5OYmzZ8+iq6sLExMTUKvVyMnJodGP4uJiSKVSCAQCBAIB9Pb2oq6ujkowdXR04PLlywiHwxgdHYVQKIRarcbExATcbjc6OzshlUqRlZWFvLw8xGIxOJ1OrF+/HpcuXYJCoYDJZMLw8DBGR0fh8XhopHbdunUwm81Uw41swxMHkAl9Lz8cDkecuHZ9fT30ej1+/vOfIxAIoLW1FZ9++in8fj9kMhnGxsYwODiI0dFRCAQCdHd3U7mh7u5uRCIRhEIh9PT0IBAIIDs7G6OjoxgYGIBer8eWLVtQV1eHnp4edHV1oaWlBT6fD0qlEuXl5SgsLIROp4Pb7cbBgwfjuv/MZS5byh2CRXPaAoEAdu7ciWg0iomJCfzpn/4pvvGNbyzW6ZaE2d6Y2dx8ftmz0WhES0sLFRQEgNtuuw0A8M4776Cvrw/Z2dkQCoXgOA6FhYXQaDS0i4HNZsPg4CD8fj82bdqELVu20GiYWCzGpUuXAFzrGiGVShEKhVBbWwulUkm1cdJ9f0T7huSYsEFy8eBHYkk0gTg8pDKKYDQa0dXVRbfEiQPV0dEBmUyGgYEBaDQaxGIxSKVSDA0N0UmPDHRNTU1oaGjArbfeCrPZjK6uLtoepqamBl1dXTh16hTNcxofH0dOTg4KCwuh1Wpx5MgRdHZ2YnR0FG63GyMjI9i1axfuv//+uPczH6eLLRaSk87n0tLSghMnTtA8NtKlQK1W0+pLg8GASCQCkUiExsZGmns0MjKCnJwcVFZWUmkZn89HI/NWqxXd3d1wuVwYGhpCXl4eBAIBpFIp8vPzEYlEEIvFUFBQgJycHOTn50MikeDKlSvo7OzEm2++iX379tGkcrvdDolEgsLCQhiNRrrlRbTgZDIZLY5gQt83nsQOPgcPHsRHH32EcDgMtVpNUyMefvhhWCwWXLhwAc3NzfD5fNDr9ZDL5RAIBCgsLITdbsfFixfh8/ngdrsxNjYGjuPQ09OD8+fPw+12Iy8vDzk5ORAKhRgbG8PVq1fh9XoxPj6OyclJurUajUZhMBhouz1iP0RiZCatw+UQ2V80p00mk+Hjjz+GTCbD6OgoNm7ciAceeAD5+fmLdcplTbpK4yqVCjabDe+++y4uXryIoqIi3HrrrcjPz4fVaqXbDPn5+RgcHIRCoUBxcTHdi+/r66MaR2NjY7Db7dizZw9qa2sRDofR0tKCCxcuQK1Wo7CwEMFgEJcuXYJYLKaGf+TIEZorN50jRnIUSBUgv9pmORj3SoMfiTWbzThy5Aja29thNBppdI2sHPV6PUpKShAMBulWRGdnJ/x+P3w+H0KhELKyslBSUoK8vDyMj4/D5/NhYmICExMT8Hg8mJiYgEwmQyQSQV1dHW3aLJVKqVM4OTkJiURC+47KZDKo1WocOnQIY2NjdDIGgMnJSWg0mimCqcDcnS6WA5ecdD4Xi8WC7u5uqNVq+lyVSgW5XI7s7Gyo1WqqUB8MBmEymfDd734X//Iv/0KLVzQaDb71rW/h3//935Gbm4uDBw/SApP169ejr68Pk5OTCAQCCAaD4DgOGzduxM0334zW1lZYrVbEYjEIBAIolUr09fUhEAjA4XDQht9FRUVwOBwQCATIyspCa2srQqEQKioqaM4v2w69sUxXOerxeHD58mXodDqUlJTAbDajpaUFv/vd7zAyMoL6+nrcc889OHfuHG2LVl1dTReQHMeB4zj4fD5EIhGq50gWE+RvGzduhEajQXd3NwYHB6nYrsFgwI4dO2jkNysrix6LSNl0dnZOibglYzlE9hfNacvOzqYh6vHxcUxMTEwrhLsSSdx64P+fJIELBAJoNBqUlJSgsrISVqsVFosFfr8feXl5qK6uhkqlgtVqxblz5+hWltlshtPpRFtbGzweD1pbW6loKsdxkMlkGB8fx5UrV9Da2opwOIw333wTvb298Pl8GBoagtlsRl5eHg4fPozh4WFotVps2rQJYrEYLS0t4DguTn+JRP/MZjPNRzIajTCbzXSbjehrLQfjXs7MxanlOzg2mw2dnZ04fvw4AGD//v3Yu3dvnAagRCJBZ2cnPv74YxQXF9MG3L29vRgfH8e2bdug1+vR09ODlpYWSCQS3H777Th37hycTidyc3MxMjKCo0eP4syZMygoKIBUKqUOf3FxMZ1QBwYGaLm90WhEd3c3fD4fotEonE4n/H4/cnNzEYvFqJN34sQJSCSSlH1IGQtLYvRDJBJRjTxSSdzQ0IC+vj6cOnUK1dXV4DgOoVCIVpUfPnyYFgsIhUL09PQgEongnnvuQWtrKzo7O9HV1UUFmEnRk0qlot0upFIpHnvsMfzd3/0dzp49i/HxcbpwlEgkGB8fh0AgoNG+Xbt2QafT4ezZs5icnKQTNZlP9Ho9s5cbzHSVoyQf+7bbbsPXvvY1tLS04KWXXsLly5cxMTGBUCiE+++/H1/84hfxzjvvIBgM4urVq1RWSKlUguO4uEIpsVhMt93JDoPVaqWyILFYDBzHUZmsmpoaFBQUwOFw0PmR7AbqdDqcOXOGpnrwNeXSzUefLfMZ62bttE1OTmL9+vW477774hqvHzp0CF/4whfwn//5n3jooYcAAMPDw7j99tvR0dGBn/zkJygoKJjt6TIa/g12uVwYHR2lUY/f/OY3GBwcREFBAdauXUtf09XVhVAohPr6epp3RLY88/LyUFxcjJycHGg0GgwNDSEUCuHMmTOQy+W47bbb6ERZUFAAp9OJSCSC0dFR/O53v0NXVxckEgmkUinkcjny8vKoBpzP54NarUZeXh4qKyshl8vx2Wef4dChQ1T24eLFiwiFQujq6qIDJcl5I/ltxOjZttX0zMWp5euwSSQSOmCdOXOGVgGTCBzZqurq6kI4HIbb7YZcLkcsFkMgEEA4HMa5c+egVCrx2WefIRqNoqGhAT/4wQ9w7Ngx2nyZiO6SrYWioiLaIFylUtGBUSaTUQHLqqoq9PT0wOFwQKFQQK/XQ6vV0n6lR44coZFlslUy18+EMZVUE0LiIlIkEmH79u2or69HU1MTFTg9efIkXC4X1Go1vZehUAhtbW146623qG6bWCxGd3c3BgYGkJWVBbFYDJ/PRzsYOJ1OjIyMgOM4WqSQnZ2N7OxsvPHGGxgeHoZcLkc0GsXk5CTV5BofH4fX60VHRwfy8/Oh1WpRU1ODkydP4sKFC1i/fj3uuusuAIjL7STvkTn9S890431+fj7KysogEAjQ1NREdfYEAgG0Wi2USiVaWlpw+fJlyGQyWokuEolQWFhI868jkQgN/uTk5KCgoABtbW0YGxvDxMQEdeh0Oh1ycnIQjUZRXFwMmUyGAwcO0CpUo9EImUxGZWsikQgMBgPEYjHa29tpug+RAVkMaav5jHWzdtqysrLwl3/5l3j66afx3HPP0SqPhx56CC+88AJ12ABArVajtbUVAwMDeOCBB/ClL30JhYWFsz1lRpBKK4g/0cpkMhoF4TiOVkWp1WqcPn2ailZWVVXF6auRL8LatWtx/PhxCAQC2Gw2nD17Fi6Xi8px5Ofno7q6Gp2dneA4Dnl5efB6vbBarbhw4QI8Hg9kMhkmJychk8lw/Phxeuy8vDxkZ2fjzJkzuHLlCkpLS6lMxIULFzA5OYmJiQm66pkpeXO1b1vxG6UDiNMtA+a+YuNvkX7961/Ha6+9BqVSSavtrFYrOjo6YLVawXEcpFIpOI6jLV+EQiEkEgk8Hg9CoRDC4TBGRkYQjUbpxPzmm2+itbUVfr+fRkcmJiagUChw++2301y4s2fPIhAIQKFQoKCgAIWFhXTi9vv9UCgUtKiGX2VM2tQkvv/Ez4RF3uZGqgmB5KB6PB4a2U+mpbVz504AoF1TiAZbZ2cnsrOzUVVVBY1GQ7coDQYDmpubcfr0acRiMYyNjUEqlUKr1SIWi9EOHNnZ2cjLy8OaNWsQDAYxOTmJoqIiqFQqhEIhyGQylJWVIRaLISsrC6Ojo7BYLFAoFKirq4NYLEYwGITH46HK+f39/aiqqoLFYoHL5ZrSaYaxcEz3fUwc7/k2SLbLSU9ioVCIvLw8SCQSBAIBuFwuXLx4ERcvXoRQKER2djZ15EnxHJmzYrEYYrEYtZ2srCwacZ2YmAAArFmzhjqFCoUCly9fpgsLEh0mEkak4l6n00EsFuP48eMYHByEQCBASUkJGhsbF+WznE9QY07bo3/4h3+I73//+/iHf/gHPPbYY7jnnnvw1a9+FX/+53+e9PmFhYXYtGkTjh8/HufUrSQSK/rIY8TA+TeJ/J9fvn758mUMDg6iqqoKJpMJzc3NaGpqwvvvv4/q6mqo1Wp4PB6Mjo5CqVTSpvdqtRocx0GtVuPDDz+E3W6H3W6H1+sFx3EQiUSIRqMIBoNU2420uzp79iy8Xi+NAKrVaqpiTnS4RCIRysvLIZVKUVlZibq6OtqAnu+4JXPSVvOkW1paGvf79773vbgeuHNxahOLVcjrSesVItsSi8VQUlJCiwlIFFWn02FychIejwdqtRoikQiRSIROdD6fDz/72c/o9vzExATtCUlkPoBrPX/1ej0uXrwItVoNuVyOkZER2nC+paUF2dnZuPnmm/Hwww/TZtDhcBh6vR5isZg2jifnTvaZkIHf4/HEib4ypifVhMDXiAyHw3EtehI/e2JjWq2WipyS77/ZbEZrayuOHz8OlUqF2tpa/Pd//zc6OjoQi8VoFGTv3r3wer203dDo6CjGxsbg8/lQUVGBiooKjI6OQiwW0+2q3t5elJWVQa1WY3h4GO3t7VRP8t5770VeXh44jkNLSwvOnj1LIyukZ6VMJotL02AsHOlGh/jjFNF1JPOezWaDSqWCy+XC6dOnEYlE4Pf70d/fTyO469atQ35+PoLBIORyOSQSCXXUhoeHEY1GMTw8THN7iTJCVlYWRCIRent7oVQqaf63SCSCXq9HaWkpcnJy0NvbS4ujWltbMTo6im9961twOBw0FYBEjvlagAs5/swnqDEnp00oFOIv/uIv8P/9f/8f3njjDdTX1+Mf/uEf4p4zMDAAqVRKKzSOHz+OP/mTP5nTRS53iKip1WqlFZxAvAgtf4IFQKMupJl3a2srCgsLoVKpaCup999/H6dPn8a7776LvLw8lJWVYdOmTaioqABwLezs9XoxNjaGy5cvo6mpiW6Z5eTkIC8vj0Y9cnJyoFQqkZeXR1uJTExM0JVLQUEBdu3ahXPnzqG7uxtKpRJyuZw26W1sbKTNoPV6PR2Ip0veXM3bXX19fVCpVPT3mSpy0xkY+D36yHOIQxSNRhGJRCAQCFBcXAyz2QyxWIy2tjZaOk80kbKyslBaWkorsRQKBTiOQywWg91ux+joKM37IC3QSKHCyZMn0d7eTh/TaDQQi8Xo7+9HLBbDyZMnodPpUFtbi507dyIcDqO7uxtNTU3Izs5GdXU1zGYzNBpNXCNnAHE5k3q9ng78QHJB55XOTNHaVEw3IZA+w9Mdh/+9JY7d7373O9hsNpSXl9PFAZHqILIg2dnZEAgEEAqFmJiYQHNzM7Zu3YpAIACbzYahoSFaqTw6OgqdTgehUIjh4WFkZWUBuCZt5PF4oFAoqBAr6YO7detWlJWVwe12w263Q6PRoLa2lrZEI0UUpP3RarKVpWAmfVF+EQIZp4jmGb8LUDAYxJkzZxAMBqHT6RCJRGgUTKlUoqCgAFu3bqWdV0ZHR6FQKKBQKCAUCmnLtba2NgwMDCAnJwcSiQRyuZwW1A0PD6O/vx8ymQxr1qyBXC5HQ0MDdf6Ki4vh9/sxMDBAe9yKxWLI5XLU1tbStnzLUYN0zoUIf/iHf4hnnnkGHMfhv/7rv5CdnR33d7vdjscee4wmjD711FPYtGnTvC94LvziF7/AT37yEzidTmzYsAE/+9nPsH379gU7vs1mQ3d3N1VqTrblQ55HOh2Mj4/TQTkajUIul8PpdKKjowNarRb5+fmoqqrC2bNnEYvFMDw8jIKCAlRVVaGmpgYWiwXRaBSVlZX4+OOPaXK5VqtFeXk5gsEg1Go11b1Rq9WQSqXIy8tDVVUVurq6kJ2dDZVKhcLCQhQWFmL9+vW0GEIqlWJsbAwnT55Ef38/Ojo64rYgTCYT/f/hw4cRiUToZMtfWSV+BqsFlUoV57TNRDoDQ7LPky+7IpfLaXXWnj17qGp9eXk5mpqacOHCBUxMTKCyshJr1qxBe3s71bnKysqCWq2mSb1qtRrr169HQ0MDTp8+jY6ODqjVaoyNjeHChQvUdvPz8yGTyZCVlUXz3qLRKG655RZa5Tc4OAiHw4HJyUlIpVKaw0kU7ok48Pvvv08b1tfW1tKBnwycq82OZorWzgV+1DMZZAHq8Xiwfv16OBwOHDlyBJ9++il12nNzc7FmzRps2bIF0WgU7733HtatW4eRkRGMj4+joKAA/f396O3thUajoc3hJycnEY1GEQ6HaT6jXC6nxQVEA5DkxU1OTqKyshJZWVkwmUx0K+v8+fNwOp246aab8MQTT9BcTq1WC4lEQvXbFiPalom7B3N1/hOZTl+Uv8vEF9C12+2IRqM0xzEYDOLKlStwuVyYmJiAQCBAdnY29Ho9cnNzafsqh8NBu7RkZWXRNIsLFy7gvffeg8fjwW9/+1sIhULk5uaisrISHMfRlA5StUzmMQAQi8VUAiQcDqOiogK33HILVCoV1f3Lzc1FNBpNqpqwXMafOTttTz31FABgcHBwisMGXKtCOnfu3JwvbKF47bXX8Mwzz+AXv/gFGhsb8ctf/hKf//zncenSJZSVlS3IOUgFJYAp6sqpnkfCxmKxmIpGxmIx2Gw22nO0qKgIDz30EJqamtDf3w+VSoWWlha0tLRgZGQEfr8fV69ehd/vx/j4OMRiMQoLC2nCud1ux9jYGI2YANdy12pra6kw75UrV6BQKDAwMIDf/OY3qK6uhtvtpjlMZCUSi8Wown5VVRXMZjNcLheVkiCCrLW1tXGr9EwZ2G4E/AmAn2+UarJJNmiSLS+bzQaBQICioiLaeJn0hjSZTHA4HGhvbwcAmksSi8WQnZ2NnJwcZGVlISsrC3q9nuYq/fSnP6UTLImgkMmVREyGh4cRDAapAjlpKUNWuX19fcjLy4NQKKRq90Q+gnwXDh48iMuXLyMWi9EJmDQIJ5PjarSj2UZr0yGZ48/X/zty5Ajd3vZ6vTCZTHA6nZDJZJiYmMDQ0BC8Xi80Gg2CwSA++OADKhsyPDyMgYEBjI6OQiqV0ig+qUwlRSvBYBCdnZ3QaDSoqKhAT08PxsfHoVKpkJubi9LSUni9Xqxdu5ZK13R0dODdd9+FUqlEVlYWbaGVmD9MFgDhcHhRGn4vt6hLOiyG808gW6HEMUqMnvv9fkSjUVr81tvbS+WGIpEIent7EQgEoFQqqcba6OgoXfwRKSGbzYZXX30V4XAYk5OTVD5Gq9Xi1ltvRU9PD9rb25Gbm0ulYZRKJbZs2YLBwUHIZDKIRCK6UN20aRMdd0lBQklJCdatW0f1L5Plpi8H5uS0/Z//83/w7rvv4tNPP8WuXbvwq1/9Ck8++eRCX9uC8Pd///d47LHH8PWvfx0A8LOf/QyHDh3CP//zP+PFF19ckHOQCsq5PI8MmLFYDF6vl2oWicVimM1mlJSUYGBgABzHYWJiApcuXaKNusfHx2lVak5ODt2K1mg0UKvVCAaDNJdtYmICa9asQXl5OWKxGDZu3Ijm5mZ4vV709PRgcnISV69exejoKLKzszE8PEylQUheE0kuJ9uhpLiisrISZWVlUyZbxvQkbkOl6kmbDP5ES7aT1q1bB7fbHSe6C1yb7IuKiuhWhEajgdfrRVZWFo3ejoyMwOfzQSQS4fbbb4fRaMQrr7yCUChEmyqThN/c3Fzo9Xq4XC46YGdnZ9PICykyiMViyM3Nxfj4OLKzszExMQGXywWpVAq73Y61a9fiwIED6OzshE6nwx133DHtome1MdtobTokm4CIHY6OjlL9NY/HQ8Vx6+rqIJfLEQgE6AIyFArhwoULGB8fRyQSwfj4OBwOB6LRKHp7e6HT6ejClDScj8ViNMJHdg9GRkZgtVqhUqlQXV0NgUCA4eFh6HQ6bNiwAXV1dbTXLUlir6urQ1VVFTZt2pR0ay4cDlOJEsJCRcgycfdgMZx/8nl6PB6aDkQ6rLz//vsYGxtDbW0tqqqqIBaLodfrYTRe64/d39+PvLw8GkkjiwGy8NNqtRCJRBgeHqY2Q54rEomgUCio/ivJd2tvb8fQ0BCysrJgNptx5coVGuVVKpVxzeRJniUQL85cWVkZ14N7uUZVZ+20/du//RteeuklfPTRR6irq8MzzzyDH//4x3j88cdpi6TlQiQSQXNzM5577rm4x3fv3o1Tp04t6bXwJ9lkQpBqtRpr166FWq2GQqGA0WiESqWC3W6HUqlEZWUl9Ho9Ll26hKGhIVRVVUEoFNKVDmmg6/P5cO7cOYjFYgwNDSEQCGBychIjIyOYmJigooKFhYUoKyvDwMAAxsfHaeeK7u5u6HQ6+P1+KrK5Zs0aVFRUYGxsDDt37kxaMZpYFs2YmWSVe/yf02GxWNDc3EybLUejUchkMlqlZbVaYTQasW3bNprrWFZWRm2LdMswGAxobGzEf/zHf8DpdGJ8fBwcx+F///d/YbfbIRKJoFarYTKZsG3bNkSjUTQ3N+P8+fMYGRmBWq2mDedJErlAIMDg4CAqKiogl8tpZWBpaSlyc3NRVFSEwsJC2Gw2OJ1OxGIxbN26Na2FD2Ph4Tv3er0eRUVFOHfuHK5cuYLh4WGqCSgWixGJRDA5OQmfz0c7shBdLFL1l52djXA4TCsA9Xo9nVw5jqO9SdVqNTo7OxGNRmlUxOl0wuv1Iicnh0aQSTeNaDRK217t27cPJSUlcbqEiQVfqaoZ5zM+LbeoSzoshvNPPk9+Bx3Smk4gEGB0dJRGzMi4ZDQacfLkybgxIysri+bAAdfmQTKGEBkPEsgArhU1bt++HW1tbbh69SpCoRCsVisV8ZbJZGhra0MkEkEwGIRer4dUKsXAwACdX10uFz744AN0dHRg69atdK5NjOrz2zQup3s+K6ftvffew5NPPon/+q//wi233AIAePrpp/HTn/4U//Ef/4E//uM/XpSLnCuDg4OYmJiYIjNSWFgIl8u1ZNfhcDjo4MJvdGwwGOjkW1FRgc9//vNxbT86OzupaOnDDz8MAFShnLRzUalU+PDDD5GVlQWdTkcbPZP9fRKKzsrKgsPhQG5uLlQqFV1RkwGVOG5ku1sul6O8vBzbt2+n+STd3d1wOBxoampa1dtWC0Xi5zfbz5NsD/Bb93g8HvT09MDpdCIajcJoNKK1tRVKpRLbtm1Dfn4+otEoenp6EI1G0djYiGAwSAtXiEPX19eHWCwGmUwGv9+PTz/9FKWlpSguLqaLAJJQXlJSgpGREXR3d6Onpwc5OTnQ6/Xo6+vDhQsXkJWVhY0bN0KlUiErK4sOkCUlJTQyS7ZKGfNjpuhAqr+TRHGSZ2gymfDhhx+iu7sbn332GcbGxmh3losXL0IqlSIcDmNgYAButxscx6GkpARZWVnIzc2lW1hEo4tE58jiwWQyUZ1JsmAlBVijo6Po6OjAG2+8AalUikuXLsHr9UIqlVLZB6vVCgBJo2rJmG5BtFwjKjeSRCHmxM8n8fMkf5dIJKivr6eLPQD0fnk8HtTV1SEYDKKqqgqFhYU4fPgwZDIZuru76VwtEAgwNjZGiwH8fj/tflBcXIyqqira7D0rKwtjY2M0N7ujo4M6+BKJBC0tLZDL5VAqlaivr0d5eTncbjdcLhftzV1VVZV0K325RlXTdtqam5vx0EMP4cc//jEeeOAB+rhKpcLTTz+Nv/u7v8Ojjz6aNL/tRkO8dAJZHaZioRI3CRaLBZcvX0ZRUREaGxun9MXjOA4ajYZWajU1NcHtduPTTz+lOjZXrlxBKBSCWCzG5OQk1ZDp6upCZ2cnxsbGoNfrsW7dOmi1WlrAEI1GoVarsW7dOshkMhqVuXr1KmQyGfbu3YvKykq88cYbaG1tpflvRFuprq4O4XAYAoEAwWAQFouFSj8QI2eD3tJDEq8TP3OHwwGfz4djx47hs88+Q2trKyYnJ6k0w5kzZ3Dp0iXaoupf/uVfUFBQgOHhYRQXF2PDhg04ffo0rcKqq6vDp59+irGxMbz//vuQy+UYHByk1V6kUpA4g6TAJhwOo62tDT09PXQBkJ2dTcWdtVot6uvrqbAuY2FITApPtRUKXP/+WiwW/P73v4darabJ/C6XC0ajEYFAAENDQ8jJyYHJZIJer4dOp6PipG+++SZOnz6NyclJ5OXl4aabbkJeXh4CgQBGRkag1+vx8ccfw+fzAQCUSiXuuusu+P1+moyelZWFgYEB2O12GAwGfPrpp7BarcjOzkZBQQFCoRC14erqakQiETidTpoXyf8OpIqoTbcgysQ8tcUmVTefmXJtSWoHcbgsFgvNe87Pz8fnPvc5bNu2jf6d6LVVVFQgLy8PeXl56O/vh1qthlKppAK3k5OTCIVCEAgECIVCuHr1Kt0xqq6uRn9/P9xuN43KKRQKDA8PIxwOo7CwEI2Njdi9ezcOHz6M4uJiAEBOTg6tFJ2pInY5kbbT1tDQQCfrRP7mb/4Gf/M3f7NgF7VQFBQUIDs7e0pUze12TyvyuxiJmyqVCiaTacokxZ98CUajEWKxGDk5OQiHw+jp6aFVfjU1NdDr9RgZGcFrr72G7u5ujI+PY2xsDP39/QCurWyGhobo/VKr1fjqV7+Krq4uDAwMoL29nbbQAkBz1nJzc7Fu3TpMTk7SfCWS1Gs0GmEymeB2u+nKlp/XQBzddA18OX8pMoFUk5DBcK1lS2trK0ZGRlBZWQmfz4euri50dXXB4XAgEAjAaDTSqs7BwUHk5+cjJyeH5j+q1WrU1NRgfHwcQqEQGo0GOp0OnZ2d8Pl8tHm3VCpFVlYWCgsLUVNTg6amJoRCIYhEImg0GtqAfP369eA4DhUVFbTVFcDsYKExGo1oa2ubkkzN/3uygpe8vDyad3Tw4EGcPXsWFRUVuP/++3H69Gm6KCTVf0NDQxgZGYFYLEZZWRndDj1//jzq6+shEAjAcRwOHToEj8eD7OxsiEQibN68GUKhEKdOnUJeXh5txxeJRGj0rKKiAm1tbYhGo1i/fj1GRkbgcDhQW1uLkpISCAQCqtGV+P7SkTRJ9pnxfzJSV6oT0hFwJtWjTqeTVoG2t7fj4sWLcLvd2LBhA03hkclkkMvltOWVTqfDyMgIgGvOVSgUglQqRV9fH44fP45AIECVEXJycrBu3TrY7XYIBAKaD0cqpRsbG/H1r38dLpcLR48ehc/nw9q1a7Fjx46kCxuHw4EDBw6go6MD1dXVtI3jcmHReo8uB8RiMRoaGvDBBx/gi1/8In38gw8+wH333ZfydQuduJnomCVOVMkqAk0mEzo6OuDz+TA+Po6srCyaLFlaWoozZ86gu7ub6tAEAgHa56+4uJi2/AiFQohEIjSHz+fz0VyDoaEh2jRaIBDAYDBg/fr16OjogEqlwvj4OCwWC3Q6HRQKBYLBIMRiMZVgIM4ayZmYTZk9W90uDiTHkS+v09XVhQsXLsDn80Gn06GoqAgNDQ04e/YsfD4frewi+Uh5eXnIycmBQqHAyZMnEQqFsG7dOtTW1tIJViqVUo22/Px8Kv6clZVFK59vvvlmANe6qMRiMdx8881TJlpmBwuLwWCIS6ZO9netVguLxQKr1QqTyURz2UhOktFoRFdXF+rq6rBnzx6YzWZYLBZ0dXVRZfqzZ89idHQUhYWF2LNnD7q6unDq1CkqnLxx40baf1YgEGD9+vVYs2YN7r77bvzP//wPrYZ/+OGH8eGHH+LChQs0HcRsNqO6uhpOpxMVFRUoKyvDiRMnoFAokJubC6lUCpPJBABxqRrAzJImqT6z1WJ7c1kkJft8+E5d4jFJQRURgi8qKsK6deugUCjQ1taGy5cv4+LFi6irq4PdbqfV6cPDw3A4HPD7/QgGg5BIJMjNzUV2djaGhoYQjUZpWgYR3fX7/eju7kZFRQVuvvlmDA0NUYFxpVKJL3zhC3j88cdhMBjw8ssvY2BgAGKxGDfddBPMZjMtokgck1wuF/r7+6FUKped5t+KdtoA4Dvf+Q6++tWvwmw2Y9u2bXj55ZfR29uLb33rWylfM1Pi5mwNP9HoE0PP/AGWlEyXlJSguroaHR0dWLduHaqqqqBSqRCJRNDR0UENllTSxGIxFBcXY2JiAgUFBaitrcWJEydoL9Njx47RCIpCoUBeXh6Aa/kj27dvh9/vB8dxGBwchF6vx0033QSn04mrV6/C6/XS0HNubi68Xi+USiXEYjHdoiDvKV0DZ6vb9EjH1viitHa7Hc3NzWhoaAAAvPnmmxgfH4dcLkckEkFOTg5uu+02bNq0CeXl5Th27BjdqiLl+RqNBgqFgsqIiEQiKnxZX1+PoaEh3HzzzYhGo3C73aiuroZWq8X58+dRWFiIWCyGoqIibNq0CTKZDCdPnkRbWxuN7JIS+9Wu5bdYzOSEkGgcSeQuLi6Gy+XC5cuXaa/PkpIStLa2wul0QqPRALjWS5oIdxNphLvuugs7duzAX/3VX9GuGRqNBseOHaMOlEajwR/8wR9gz549kEgkOH78OAwGA2666SZYrVZcvnyZLjJtNhu8Xi+KiopgMBholShwrVdqf38/enp6oFQq4yL8wHXx6dlG2lYTiYukZOMLPwebPC8Rvo29/fbbsFgsNIoukUhQWVmJlpYWHD9+HEVFRdiwYQPMZjOCwSAuXbpEOw2QllaxWAzBYJC2WQSu5W9rtVqo1WrEYjEIhULaC9lkMkEgECAcDmN8fBxnz56F0+mEwWDAyMgIwuEwNBoN2tra8Nvf/hZf+cpXYDabqcSISCTCkSNHkvYXNRqN2LFjB2pra5Gfn7/sxqYV77Q9/PDD8Hq9+Ju/+Rs4nU5s3LgR//u//zuvGzHf6AB/okp04CwWCx0o9Xo9dY6KioowPj5OVxk9PT1Qq9UoLS1FLBajg9fQ0BA+++wzrF27Fvn5+fD5fLQ4IRqN0grQWCyGCxcuIDs7Gw6HA/feey/eeustjIyMoK6uDiUlJVSKZGRkBEqlEnV1dWhqasLw8DDUajWKi4thMplgMBjQ1taGtrY2ulqfidW0up0P09kacdaIth9wbcB999130dfXh9tuu41Wa65duxZtbW20PygA7NmzB/n5+XjzzTepYz40NASj0YjKykra9orkQgqFQggEAtTW1qK+vh5erxe5ubnYtWsXANDCBxLtI0K/5Fo7OjqQlZUFl8tFi3GYlt/8SMepJ9plwPWCD71eD5FIhPz8fJSUlGB4eJhKuhiNRpw4cQLNzc0QCARYu3YtzGYzdfKj0Sg2btyIrVu30gVbTk4ORCIRCgoKAID2slWpVNDr9bSg5aOPPoJWq8XDDz+Mvr4+/OY3v8HQ0BBqampQWlqKkydP0h7J5eXl6OzsxKZNm/D4449TZ8Lr9aK7uxsajSZOfJlEd2YbaVtNJCsgSBxfUsmmEJLZnEAggMfjgUgkQmVlJbZt24b/+I//QG9vL13YESWENWvWQK1WIy8vj1Z6Ev3G3NxcaDQaKri8bt06lJeXY+3atRgbG8OxY8cQiURQXl4Os9mMjo4OnDx5EgMDA/B6vVSzNCcnBxMTE7hy5QrGxsZoscHWrVthsVhw+vRpcByHhoaGKe8xXQmvG8WKd9oA4IknnsATTzyxYMdbyOhAonp0RUUFvF4vHA4H8vPzYTKZ0NnZicuXL2PdunW0lRQRvc3JyaEO17lz5+B2u6FUKpGbm0v7iRYWFtIV7Zo1ayASiWh/SalUiv7+fvz85z/H4OAgioqKaLWow+GAXC6nrbEGBwcxPj6O8fHxOMFe4Poql4SbGQvDdDk6FosFZ8+eRX5+PjZv3gyz2Yx/+Id/gNvtRkdHB+6//358+ctfhsfjwdGjR2kfWZPJhPPnz+PkyZPYuXMntm/fDrfbTdtGVVZWYv369fjwww9pMYtIJKKyDqFQCGfOnMH58+chk8noVtXly5fR2tpKle2JuO++ffuoHcdisbgSe2CqU8GcuPRJZwFps9nQ3NxMq42Ba8VWRMYFQFwnE5Ke0dnZSZXjiXNGpF5UKhU++eQTvPbaa7jnnnuwfv16hEIhFBUVYc+ePbh06RKuXLlCZToikQg++ugjusU6Pj6OTz75hPY4DgaDtCWRQCCgwqtDQ0MoKyujucAikYg6dIm24vF4qCCrx+OhvXBZvuR1EhfLqXLXPB4PfD4fjeAn7hTxi11KSkpgtVqpCDtJk6mursa5c+dov2Gr1Qq32w2pVErlpciYUFlZicLCQrjdbrjdbqjVauzatQsFBQVoa2uDQqFAIBBATU0NTd+wWq20wwHprECqTEkXDdIzGwCVKDGbzbSwgQQdMolV4bQtNPONEiWKqhoMBjQ1NdGB1GAwUB080rCZ4ziMj4/TalGig8NxHFQqFbZu3Yrjx49DLpdDq9VCLBbTUumbb74Zd955J+1a8L//+7+YmJigJdSkl9/k5CTWrVsHs9mMrq4uBAIBlJWVQSqVwmq1IhwOo7a2Frm5uairq4ubePkdIRgLR6ocHYfDAZFIhIqKCuzatYtOakajkZbanzlzBg888ADMZjMdMHt6elBSUoLm5mYMDw/ThQEpOCgpKcFjjz2GI0eOoKenh0ZZR0dHsXbtWmzcuJFuhZI2ZkeOHMHmzZvR1dUFn8+HhoYGuoIlq3KS10kGTn6zcn57t8VQsV/JpLOANBqNdLs8VWJ54phGOp6QrSgSTY9EIti4cSN27NiBl156CVeuXIHP54NCoUBOTg527NiBRx55BMC16Oprr71GxXXdbjdCoRA0Gg3cbje1OeDaDsHY2BjtjywSiVBaWoqamhoYjUY0NTXB4/FQp/Hmm2+O284jOXpSqZSmjhDRVPL+GFPhR9cI5P/d3d24evXqlO9kYrELAIRCIarB5/f7cejQIXi9XpjNZmzevBkAcP78eeh0OoTDYfT29gK4JtQ9NjaG8vJy3HbbbThw4ACV8KiqqsJnn30Gh8OB7Oxs2tnAbDbj9OnT6OnpofJUGzZsoOkfpNF7WVkZ9uzZk1S2hCxCJBLJlLzI5Q5z2m4A/OgaMRij0Qir1YoTJ07QdkCtra3QarUYHByk+UBHjhyh+lhSqRQCgQASiQSdnZ2QyWS06W1vby9GRkYgEolw7tw5aLVamEwmtLe3o7Ozk1bseL1eiMViiMViaDQa3HTTTbDZbHTrNTs7G4FAAGKxGOXl5XjyySeTGjeTb1gcUk3KNpsNIpEI27dvj/vcGxoa0NfXB5vNhosXL6KsrAyPP/449u3bB6/XS3v7Adf7TAqFQshkMqhUKgQCAfz617/G5OQk5HI5CgoKEIlE0N/fD47j8LnPfQ4CgQByuRxGoxG9vb0YGBhAfn4+8vLyMDAwAIVCQbcXmpqa6KrcbDYnLa+XSCRQKBRT+vYyZiadBWSy7Z50JiiioUfGKSIfo1AoUF9fjz/6oz/Cv//7v6Orq4tGQ1paWgBc60kLXJP4CAQCNNFcLBZDKBSioKAAt956K9rb2xEMBiESiagQ6vDwMDQaDe677z6YzWaaX2U0GiGXy+FwOOgCFLju9AcCAbroJNt7i9mHdKWQTN5DpVLFOfqJW6L8Yhci7UN2dZqamui2aGFhIUpKSmixwdatW6HRaODxeLBlyxao1WqcO3cOFRUViEajKCgoAMdxtB3iyMgI7f7T3t6OUCiErq4u6PV62tVFo9GgsLCQVjPHYjH09vaiubkZIyMjuOOOO3DvvfcmlYBZrgK608GcthtAosF4PB6qZN/d3Y3R0VH09/ejq6uLRrZEIhHcbjf6+vqgUChQUVGBwcFBBINB2pi7oKAAIpEINpuN9nPz+/3o6upCSUkJ1q9fT9XFyaDGcRxkMhltGVNZWYmuri7k5+fji1/8IqxWKzo7O6FQKLBr166MMeyVArGVRFHjVM4ciXSSbQfyu8FgwM6dO2kENxgMwul00p63mzdvRk9PD7q7u3HhwgXU1dXhC1/4ArRaLVpaWjA6OgrgWvTE4/FgdHSUXotCoUBJSQl27NiB7OxsVFVV0esh+VFXr16FXq9PmitCtlErKyuZfS0xqXLiSLpDZWUlwuEwurq6aFK42WyGw+GASqXCd7/7Xfz85z/H0NAQxGIxPB4PTpw4QXMpxWIxSkpKaBcEIvitUqlQXl6OiYkJ2qe2traWanHxdb7cbjccDgeUSiWqqqqQnZ1NnULgek9n0rNZr9fHVZPOpkBqNZJqi5T/eSVzboi0h9Vqhd/vR1ZWFnp7e+FwODA0NASlUkllfwBQhxoARkZGUF5eTgufRkZG0NHRAalUijvuuAONjY04ePAgRkZGYDab4fV6YTAYMDQ0hLa2NtTV1WHfvn3gOI4K7ebl5WHdunVoa2ujkiOpcqz5HYqSLSSXM8xpu0GQZG1SpdrV1QWdTkd7ho6Pj0MgEKCqqgpGoxFutxtHjhwBAFRXV+PBBx/EoUOH0NPTg3feeQfbt2/Hpk2b6ABFBj/gmi7d6dOn6bYmMVCNRoOcnBxEo1GaQ0ccN74R8w2frFiZvtbcSfXZTdfqLDF3iR9hSTzevffeSx8j0RIAVGBXoVDAbDZDKBTS7gf19fWoqanByZMnUVBQgIaGBir1IBQKsW7dOpog3N/fD7/fD71eD7PZTLdv6+rq4PF4IBAI4vKJTCZTSo1HgFUSLwWpqgQPHDgAp9NJoxGExHvC75hgMBhoxaDZbMa3v/1tbNiwAaFQCBMTExAKhfB4PIhEIpDL5bDb7di5cyf27NmD1157DX19fcjKysL58+cxPDyM7OxsWlTAd8aInJBYLIbX68WpU6dQVVVFbZNAbJ44FnwHbS66bauNxGhtsvE80R4sFgvefPNN5ObmYtOmTbR3ssFgQH5+PoRCIaqqqiCRSHDixAn6WpvNRjtffPDBB+jt7YXReK07ikgkQigUQmFhIZUnIlJEhYWFqKiowMjICK0SJVXNPT098Hq9qKuro9ue5eXlKC8vx5133pk0ZYeMp6RoIpNgTtsNgr+SNRqNcVIfdrsdeXl5yM/Pp7klr732GrRaLSYnJ1FQUED78/X09EAqlWJwcBC33HIL6urq6KBIighI1V9zczNMJhNuu+02HD58GEajERzHoaurC263G+fOncPGjRvx+OOPA0Bcnh0R2gWAe++9N6VsCXPgZiZV8nhiBRz/79M5NuR1JGJL7IlMqmQyJgnGJPdnw4YN+PTTT9HR0UFFKIlaORnIfD4fRkZGUFFRAZlMhr6+PuTl5UEqldLmzURTyW634/Lly3C5XIhEIvQ9JBOQ5sMqiReWZA5aqipBl8uF4eFheL3eKe3pyOKM5ItFIhG4XC7s3bsXABAIBGC1WmE2m/Hss89Sp4nk216+fBkFBQUYGhrCRx99RCubSWrGyMgIcnNzcc8990CtVkMgENAIceLika8PSJyDxPeZ7DsyF902xlSSfUdJNJUUx5EF5/bt2+k9efvtt6m0x9tvv03vYSwWQ2dnJ8bHx1FbWwuTyQSv1wuPx4O+vj6MjIygqqoKkUiEFi51dHRgfHwcExMTkEql8Hq96OnpgcVigVgshkKhQDgcpiLRyYRzCZm8UGRO2xxYiChTotGQpF8ih0Aqu8igyXEc1UUbGhrC8ePH4fF4IBaLIRKJ4HK58LOf/Qw6nQ4SiQRisRgcx0EikWDt2rVwOp3o7+9HS0sLBgcHaWuuHTt2YGhoCD09PbSwgJ9nR66xvb0ddrsda9asmXL9TCB1dqQaMEhUILG6Epi6TcqPxvGjIXxHmkyqfF004Jqt6fV6NDY20kpiUglMJkpi4xzHITc3F263G9FoFAMDA8jLy0NpaSkKCwuptlI4HIbP58PY2BiKi4tpXhHfCZgNLJI7d5J9H1Ntge3YsYP+nky/y+PxoLm5GX6/H2KxGLm5ubSwhIxZFouFtr8ifXC7urqQlZVF2wlZrVaMjo7SXpGkEKqxsRF/9md/hqamJrz//vs4efIkdbCeffZZANedfr7NJ3ufM4nAMhaOxDZ6fIddJpPBarVS2Zfc3FyEw2GaGxsIBBCJRFBWVoZdu3ZBq9XCZrPBbreD4zj4fD7I5XKaukMKl6xWK06dOgWv14u+vj4IBAI0NDQgNzcXPT09dLwgrc2AqeLLhExeKDKnbQ7MxklJNfnwjaapqYnmmPGTaEnFVDgcRigUgkwmg06nQ35+PrxeL9XTItGOjo4OeL1ehEIhOJ1OjI+P0/ZCWVlZtM2MXq9HOBymuQbf+c536HW9/fbbeP/999HQ0BCXvKnRaFBSUkJD0olGn6w1zkKx0ibwVAMGiQokVlcS+KKXEokEMpksLrpGHGh+YUtrayuamprQ0NCAO++8EwCgUChoSzW9Xk9VxLds2RLX/5bkNhYVFaG1tRVDQ0OIxWIIh8OoqqpCTU1N3ETq8Xioptdci1Lm0xptJTOb70AyRyWZzSVW0SVziPgJ6XznnySjkygcceT4dksivUeOHEFTUxNtk+dyuSAUCtHQ0ED7WJMK16GhIQwMDECr1ca9Z/5uhEQimTYfaaaOM4zpmSl9I9nnSu4BkX26ePEient7UVZWhg0bNtCFYFdXF82lvfvuu7F7925YLBZ4PB5atKLRaBAKhdDS0oLJyUlkZWXB4/FgeHgYRUVFCAaDiEQicLvd2L17N0pKSvDSSy/B4XDAaDTG7RQl7kCsBFtgTtscmM3qbToHj5/DxI+WkMpAkUiEaDRKByfSXquyshJarRYqlYqudmOxGGKxGLRaLTiOwzvvvIP+/n6Mjo5CKBSiuroaOTk5KCwspNIKZLJ+++23AVxPYidivPxVynRbXAbD9dYli5Hwu1oieTPZFV/0kjj3/Oha4iRtMplw+PBhmsRLJj+v1xsXgWtra8Pw8DBsNlvSBF2yRZqXl0f1/zQaDZ2gSTSYlPgn5pDMxuHgOwuZliC80PDV/i9duoS+vj4AM38HZuOopMrtSbRFkh+ZuPAkUZJEIVayICA5TEVFRcjPz0cgEMDExAQmJydhNBppziXJSyNOZOIWv1arpVpzZDciVT6SxWKhXUGWs0jqcmWm9I3Ex8nvJOImk8nAcRyi0WhctEylUkEkEmHr1q00ckpyKjdt2kS7KdjtdlitVnzyyScYHh4GcK0lZVtbG8bHx7F27VqUlpZCKpXCYrHg5MmTcLlcyM7OnhJJBuJ3IFLlAWcSzGmbA7MZFNPJReJXShGpjg0bNuCee+6hEQe9Xk/37H0+HyKRCKLRaJxytVarpRPdxMQE3nrrLQiFQqqDQ5rWSyQSiEQicByHqqoqHD16lMo/kHB1e3s7/ud//gd6vZ42zE32npeiCme1bHHMZFf8zyHZ4JM4qJrNZtx8883o6uqijhSZCAOBANRqNfbu3UvL6/nHUKlUtABFo9GguroaRUVFqKurQ2trKxWANhgMsNlsOHbsGPr7+9HQ0EC7aZDrnI3Tnew9rlZKS0vjfv/jP/5jmj80W1JNUul8t6ZrfZR4v/h/I87TxMQExsfH0dvbC4VCgY0bN0IqlUIqldJFHn8cIVF70reUHD9ZxC/Z+yTVjIy5kWgT6Y7x/OK68vJyBAIBlJeXT3mN3+9HW1sbxGIxnE4nRkZGkJ+fT9OBwuEwSkpKMDIygq6uLlRVVcHr9SIcDiMrKwt5eXlxx+Q4DtnZ2bjpppvi2k/yU0r4rSKBzA4EMKdtkZluIuZ/OUjVHWnUTh7nbwuQ6IrVaqXdE8gxgsEgmpqaqLJ9YWEh7rvvPqhUKtTV1cFms2FkZITmMxUWFkIikWDTpk1wu93o6urCyZMnAQD79u2Dx+NBf38/Ojs76WPTOQqLWYXDtjiukWqLC0jed9FgMODJJ5+Mu1dHjx6F3W6PazFFtktVKhXNq4tGo7DZbDhx4gR0Oh3KysoQjUbp1kZnZyc+++wzVFdXQ61WQyaTQSAQwOl0ThE1nY3Tze71dUhknUDyUIH021elcugJibmSyRxtMj6R9IdEcXDgelEDkejQ6XQQiUTw+/0YGhqCSCRCUVERdu3alVRDjRzT4XDg8uXLUKvVuOOOO+gWPNl+TdyuS8xZstlskEqlcfISq51EB5ZvR8lI/A6mO8bzi+sAwG630w4o5HgGw7XG7WfPnkVFRQXuuOMOANd3eYjmnkQiwW233UZz1FpbW9HR0YGcnBxoNBoMDw/TnR+XywUAVLOUz3wWK8sV5rTdQPgDTUlJCQ0ZHzlyhE5+9957L916tNvtNPpBVqBWqxUdHR3o7OyE2+1GW1sbamtrsWXLFjz44INTyvsvX74MkUiEsbExqp21b98+AEBzczNcLhcdIK1WK1paWui1kC9J4oDO/8lYeGaaoPlVpyQxnGxl8W1MIpGgqKgIbreb9pm02Wxwu90IBAJobGyMy6sjSegGg4F22ACuCfi+//77uHr1Knp7e1FfX4+tW7di69atAK5HQvji0ZlWVr8cIFtKyUgnUpDqe5pOdWliBI2f/kD+xs+7tdlstMKU9LYlPZPz8/Oh0+ni8nXD4TDtIQpcn7Q9Hg8tZiF2ZLfbk+Y3zlRwwZz/ayRGbL/3ve/h+eefT/v1ycb4ZDbEfx5xpkjXBP48lKyTC/9cRNdxeHgYBoMBra2tsFgsUKlUuPXWW6ksDN+ZB67lBCdWCc+0WMlEmNN2g+GvLEiJst1uRzAYpHllJCzN35svLi4GcK0SsL+/n7YRiUajtDoHQFy+mslkQigUQn5+PvLz8+F0Omluk8lkglarRX5+Pv0ikp6RBHJuvvZRJhv/ciadKAmBP4laLJYpAyV/pUw6I5A8tL1790Kn09EKr8QB2ul00m1RMkDW19ejpKQER44coQ2ik/UMffvtt1lu0SKRzmIp0YHhFz6lcnZSOdrJjkWOo1KpMDY2BrvdjpycHNx99900dYOkbfDtmFQYkt0Fch0GgwEejwdDQ0PUwZsuvzHdgovVTrKILZ+ZFoXJPtNkY1Li84jOI/98JF87sZML/1xE11EoFGJ0dBQXLlxAV1cX1qxZgz179tDIMCnKMpvNcR0a+KzEoAJz2m4wZJtAqVTSiZYk3hInjYSlHQ4HDh06hGPHjkEsFqOxsRE7duxAbW0thoeHEY1GUVJSgmAwSL8wRABRq9XGbReUlJRg3bp1tHdkKBSaMrmS5GBgqhPBtI+mZ7ZbEonMJprJHyz5jb/55+Y72Q8//HBcI2gy4JGVa7Lik8RBO922ZSSilw5zSQ7u6OjAo48+isHBQajVarz66qtYv3592ufMVNJxTlI9J5WzA4BOhPzHUh0rlYPP1+3iFzJIJBKoVCpEo1FaNGUymeLGJf7/E3OobDZb3HUlXlMmJ5cvJtNFbIG55XelGpP49yBRI4+f8zadE8Wf//x+P5RKJQwGA7Zu3Rq3EOXnc6ey9ZXoxGes0/bDH/4Q7777Ls6dOwexWEyrTPj09vbiySefxEcffQSpVIpHHnkEP/3pT2n4fjlAki751VepEijJStRqtUKhUOALX/jCtBEMu90OoVCIoaEhtLe301VvV1cXwuEwnaw//fRT9PX1ITc3Ny5HZKbS+UxstrtUJEsi/9u//ds5DYqzGXj4z+XLZ/AHT71ej9ra2rjKPeD6hE1K5OerIj+TqC4f/sqZf00z8c1vfhOPP/449u/fj9dffx2PPfYYmpqa5nXdK51U9kTkO4g46WyOk8zBJz/5EVetVktzL2Uy2ZRm5GQr1mKxUCFfflSPf9xEMjm5/EYyl2hUMhtK/A4nHjcx522muYY8tn79+inpFrPZBl9pznzGOm2RSAQPPfQQtm3bhl/96ldT/j4xMYF77rkHWq0Wn3zyCbxeLx599FFwHId//Md/vAFXnJzpjC/ZF0Or1aK8vBzV1dUwm81oaWmhURN+lMXlcuHMmTPU2Lu7u2lBA1npJG5JxGKxuEGPbN22tbXFqUsnbo+QxxjX4W9JnDlzhjZxn4vzRZjt4JNKPoM8ztcv4q9cASTtzDDb8ye+B47j0NjYiNHRUVy5cgXFxcWQy+XYu3cv7rnnnriVczq43W60tLTg8OHDAIAHH3wQTz31FHp6elBeXp7WMRjxkKKUVPc3cSF5+PBhuN1u7Nq1i+4GJIo/A9dlhIBr4w+ZiJPl2BmN15qQu91uHDx4EHv37p31djAjfRYqGjVT9Iu/BZ+4QEtnu5U/32zbti3ta15pznzGOm3f//73AQCvvvpq0r8fPnyYahuRG/XSSy9h//79+OEPfzhtuHgpme0XZs+ePXH9+SwWC86ePQsAVLrB4/Hg5MmTaG1thVqtxoYNG2ibkLa2NtozkpBKcZwMnok5UoTpBsmVtrqZLfwtifXr10Mul89pMplNblvi68hWRGK+GbmOZBpvZLueSH6QbS0gubM3m3srEAhw6tQpANeifR9++CHKysro9QLAD37wA/ziF79I+vp33nknLoJJvttCoZAev6ysDL29vcxpmwP8MYEvkp3KBj0eD15//XXEYjGo1WrU19dPyVsjx+Vvd1VWVtKt9WQRVrJlTx632WxpTdIrcSssk0gVgODbz7Zt26iY/NjYGK0eno1TPtsdnpXmzGes0zYTTU1N2LhxY9xN3bNnD8LhMJqbm2mpcaZBtg9IJRcZaEmkDQBVl16zZg2qq6tporjFYkF/fz8cDgdMJhPdWk0MR5MKUqPRGJfvlPhFmW6QXGmrm/kwn8kknQpA8rzEakAyQaaK4PL1l/jaWu+88w7EYnFcM3j++ZOJVc4Gp9OJaDRKHTb+Nb377ruzOhZJZCfMJoeOEU/i2MK3pWQ26PF4qNNMxiH+xJqopZZMXy0xOsO/llTJ5YzlSaocw8TuJvxxhHRQmI1T3tTUlHQHKN3rynRWrNPmcrlQWFgY91heXh7EYjHVdVlupBudSlzR1NfXTxG85DcOb25uBgAq49HZ2UkbPfPPQ7ZDiY4X/1ypyu5TXf9KW90sNTMJWvInUgBTnKh0Pv9k29zk3BMTEzAajdi+fTt12EnEbTpx03Q4f/48Nm/enPRvX/rSl6g2YCKJkbbS0lKqBSUUCsFxHPr6+uKcQUZ6kDQLo9E4xd5S5VcSrT9+27JkEySxL35BVWJuElk4kGOs9kh9ppIsKpuYnpEqZztdZtoBWuksK6ft+eefp9ueqfjss8/SFk1MXIUD11biyR7nM9/Kv7mSKjo1U1SFPMZfffDL9Un0wWC4JuNBWof89re/hUKhoIOu0XhNI4dIjjQ2NlKnT61WQy6XT/s5JIpurrYv00KSTNCS71wlc8oSIxVzKXowGq+1ufJ4PKirqwNw3WEnW17zFVLu7++ni4JEXn/99bSPo9PpsHnzZhw4cAD79+/HG2+8gfLycrY1Ogf4aRakdyMhlS0lVgemIllCeuI4kbhwmEtRCuPGkyoqO9/8XD6rPQq7rJy2p556Cl/5ylemfU66A7Jer8fp06fjHhsaGkI0Gp0SgUtkvmKEsyGd6NRMURXSusVqtUIul9PkXYMhec9Qv9+Pq1ev0uefO3cOd999N9Vys1qtEIvFdNB0Op04f/48qqurAWBKD0ICi64tHNM5ZcmSfOczsSUe62tf+1pcrhGJvpCtjPkuYBobG/Hiiy/SBcR8+OUvf4n9+/fjhRdegEqlwq9//et5HW+1wk+zSJd0v++pEtJT2XaqLVPG8iZR0oO/vQ6k38c08ZjJnLuVtuU5G5aV01ZQUICCgoIFOda2bdvwwx/+kGoHAdeKEyQSCe1hl4qZxAgTmc+qIZ3o1ExRFZvNhu7ubojFYggEgriwceIXx2KxoLOzE8FgkDaPj8ViaG5unqLlRhzJkydPwuv1or+/H6WlpSlD0qv5i7TQJPssF+rzTcde+RMn2UYnzaDtdjt15uZyPTU1Nejo6Jjv26DHYhIf8ydd3T0+yXKY+C33khUyJBuTyGPJCp3YeJI5kDxalUpF720y5yxdvbZUr1/tLCunbTb09vbC5/Oht7cXExMTOHfuHACgqqoKCoUCu3fvxvr16/HVr34VP/nJT+Dz+fDnf/7n+MY3vjFj5ehMYoSJzMewZpN7xP898RjE2SopKaE9/VpaWqjuFn/Lt6ioCFVVVVQvB0BcJ4RE7bedO3cCAOrq6uL6nTKWB3OVAgFS22uyrQ0i0huLxWbMb2SsPkiKhkAgiNNfS2Zv09lgqoR25sQtb6arSk8MMqQqkkp1TKYJep2Mddr++q//Om4rhCQ2Hz16FDt27EB2djbeffddPPHEE2hsbIwT111o5rMtOJ/oCX8w4ztadrsdzc3NsFqtkEqlGBsbg8lkmlKkwE8UJT1Nk6FSqVBbW4uKigrWQ3IZMttFQ7pSLYn3mt+XNF3RXMbKJFXvycQqUv7/Z3osFSzakhkkKzBIFUHl/0znmEwT9DoZ67S9+uqrKTXaCGVlZTh48OCiX8uN2hacbjDjOA5arRbRaBQA4la+ic+dScKB5aotb2Z7f/j2mjjATmdT0yUWM1YPqbpXJIvSk8dTRdP4laTpRH0Zy5+ZIqXTzZepoqrMBq6TsU7baiNZBWkqOQiz2YzOzk5YLBY0NjaitrY2qbGnW3o9mwGWsfTMZtGQeK8TJ9/pBkeWs8gAUmurJZJu7uRMERRmd5nNbES5U9kDs4HrMKctQ7BYLLRdFRHATCW9YDAYMDAwQHuUPvLII3F/n83Khw/bpliezCbnJ7ESmT/5styhlcdC3lO+dqDZbJ7xmLPNnWSsTJLlujF7mDvMacsgiL5cOoZNigfITz5zdb7YF2p5Mpv7mSq/iOWNLD8WQi9yIRdaybQDp4ONFwxgdmK6LKI2M1k3+gIyHbJlSHonJiMcDuP555+fUYRyOsxmM9VSMxgM04rXOhwOqFQqfPvb38aOHTumnNtoNEKlUtG+b+ky03kTWYj3zbjGdJ8l0VFLN7F3OmmZZMe5kfdxNdtQaWkpcnNz6b8XX3xx1sdIvKfpfp7JxrXZ2Bkw1daSnZs4gkQiYrFYzXa0UBCb6O7untNnOdv5IxlsLAIEHGvWR/H7/cjNzcXIyEjakh+JLVoW6rjzgX9NGzZsSHrudK57viz1+14OLNZ7XozjpmsDN/I+rmYbSqYXOV9h43Q/z8UYH5Kde6m25Jkdzd+OiE3o9Xrcddddq248WC42xLZH58ly3AJI55qW43UzlhZmA8ub2epFLiRLZRtsO2zxWagOP8QWNBrNQlwWY44wp22eLMdBh39NiXkxyZ7DWJ0wG2CkgtnGymG2HX5SQWwi1ZzCWBqY08aD7BQvtFGS490IY1/p51YqlbRAYznAbCgzz72c7GixbIh/zJV8L2/UuZeTDQHX7SiRcDg8r7yslX4fb/S5Z7IjltPGw263TwklM5Y3Nzq/IBFmQ5nJcrIjZkOZyXKyIYDZUaYykx0xp43H5OQkHA7HslsxMVKz3O4Vs6HMZDndL2ZDmclyu1/MjjITFmljMBgMBoPBWAEwnTYGg8FgMBiMDIA5bQwGg8FgMBgZAHPaFpienh489thjqKiogFQqRWVlJb73ve8hEolM+7r9+/dDIBDE/bvlllvSOucvfvELVFRUICcnBw0NDThx4sS0z//444/R0NCAnJwcrFmzBv/yL/+S9vsjvPjii9iyZQuUSiV0Oh3uv/9+tLe3T/uaY8eOTXmPAoEAVqt11udf6Sy1HTEbWnmsBhsCmB0tNqvBjjLKhjjGgvLee+9x+/fv5w4dOsR1dXVxb731FqfT6bjvfve7077u0Ucf5e6++27O6XTSf16vd8bz/fa3v+VEIhH3r//6r9ylS5e4b3/725xcLudsNlvS51+9epWTyWTct7/9be7SpUvcv/7rv3IikYh7/fXXZ/U+9+zZw73yyivchQsXuHPnznH33HMPV1ZWxgWDwZSvOXr0KAeAa29vj3ufsVhsVudeDSylHTEbWpmsBhviOGZHi81qsKNMsiHmtC0BP/7xj7mKioppn/Poo49y991336yPvXXrVu5b3/pW3GMmk4l77rnnkj7/2Wef5UwmU9xj3/zmN7lbbrll1ufm43a7OQDcxx9/nPI5xMiHhobmda7VymLZEbOh1cNKtyGOY3a0FKx0O1rONsS2R5eAkZGRtFp/HDt2DDqdDmvXrsU3vvENuN3uaZ8fiUTQ3NyM3bt3xz2+e/dunDp1Kulrmpqapjx/z549sFgsiEajM15jKkZGRgCk1+Jk8+bNKCoqwp133omjR4/O+ZyrjcWwI2ZDq4uVbkMAs6OlYKXb0XK2Iea0LTJdXV34x3/8R3zrW9+a9nmf//zn8Z//+Z/46KOP8NJLL+Gzzz7Dzp07p1WuHhwcxMTEBAoLC+MeLywshMvlSvoal8uV9PmxWAyDg4Npvqt4OI7Dd77zHXzuc5/Dxo0bUz6vqKgIL7/8Mt544w387ne/Q01NDe68804cP358TuddTSyWHTEbWj2sdBsCmB0tBSvdjpa9DS1pXC+D+d73vscBmPbfZ599Fvea/v5+rqqqinvsscdmfT6Hw8GJRCLujTfeSPmc/v5+DgB36tSpuMd/8IMfcDU1NUlfU11dzb3wwgtxj33yySccAM7pdM76OjmO45544gnOaDRyfX19s37t3r17uS984QtzOm8mstzsiNlQ5sFsKDXMjtKH2VFylrsNsd6jafLUU0/hK1/5yrTPKS8vp/93OBy44447sG3bNrz88suzPl9RURGMRiM6OjpSPqegoADZ2dlTViFut3vK6oOg1+uTPl8oFCI/P3/W1/n000/j7bffxvHjx1FSUjLr199yyy04cODArF+XqSw3O2I2lHkwG0oOs6PZwexoKplgQ8xpS5OCggIUFBSk9dz+/n7ccccdaGhowCuvvIKsrNnvQnu9XvT19aGoqCjlc8RiMRoaGvDBBx/gi1/8In38gw8+wH333Zf0Ndu2bcM777wT99jhw4dhNpshEonSvj6O4/D000/j97//PY4dO4aKioq0X8vn7Nmz077HlcZysyNmQ5kHs6F4mB3NDWZH18koG1rUON4qhISPd+7cydnt9rhSYD41NTXc7373O47jOC4QCHDf/e53uVOnTnHd3d3c0aNHuW3btnHFxcWc3++f9nykRPpXv/oVd+nSJe6ZZ57h5HI519PTw3Ecxz333HPcV7/6Vfp8UiL9Z3/2Z9ylS5e4X/3qV3Mqkf6TP/kTLjc3lzt27FjcexwdHaXPSTz3//2//5f7/e9/z125coW7cOEC99xzz3EApt0CXq0spR0xG1qZrAYb4jhmR4vNarCjTLIh5rQtMK+88krK/AA+ALhXXnmF4ziOGx0d5Xbv3s1ptVpOJBJxZWVl3KOPPsr19vamdc5/+qd/4oxGIycWi7n6+vq4MuVHH32Uu/322+Oef+zYMW7z5s2cWCzmysvLuX/+53+e9ftM9R7Je0p27h/96EdcZWUll5OTw+Xl5XGf+9znuHfffXfW514NLLUdMRtaeawGGyLXz+xo8VgNdpRJNsQaxjMYDAaDwWBkAEzyg8FgMBgMBiMDYE4bg8FgMBgMRgbAnDYGg8FgMBiMDIA5bQwGg8FgMBgZAHPaGAwGg8FgMDIA5rQxGAwGg8FgZADMaWMwGAwGg8HIAJjTxmAwGAwGg5EBMKeNwWAwGAwGIwNgThuDwWAwGAxGBsCcNgaDwWAwGIwMgDltDAaDwWAwGBnA/w+BEjvtVgcbngAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHpCAYAAADQwgvtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyde1Rb153vv0Jv9ERCQgiBjAEbbAM2VuwQN47tuHHTOGmbNJNOJn1mJr03aWayemel09uZaWZum046095m7p126pneSW897U0nmbQuaeuE2Imxg+3ID8A2wjwFQhIICZAEQs9z//DaO0dCYLDBILw/a2XF6HWOdPbZ+7d/j+9PwHEcBwaDwWAwGAzGqiZvpU+AwWAwGAwGg3F9mNHGYDAYDAaDkQMwo43BYDAYDAYjB2BGG4PBYDAYDEYOwIw2BoPBYDAYjByAGW0MBoPBYDAYOQAz2hgMBoPBYDByAGa0MRgMBoPBYOQAzGhjMBgMBoPByAGY0cZgMBgMBoORAzCjjcFgMBgMBiMHYEYbI42mpiZs3LgRVVVV+Nd//deVPh1GjvKpT30KBQUF+PSnP73Sp8LIQYaGhrBnzx5s2rQJdXV1+I//+I+VPiVGDhIKhXDHHXdg69atqK2txb/8y7+s9CndNALWMJ5BSCQS2LRpE44fPw61Wo2GhgacOXMGOp1upU+NkWMcP34c4XAYP/3pT/Haa6+t9OkwcgyPx4ORkRFs3boVo6OjaGhoQFdXFxQKxUqfGiOHSCaTiEajyM/Px/T0NLZs2YIPPvgAer1+pU/thmGeNgbl7Nmz2Lx5M0pKSqBSqfDxj38cR48eXenTYuQge/fuhUqlWunTYOQoxcXF2Lp1KwDAaDRCp9MhEAis7Ekxcg6hUIj8/HwAwMzMDJLJJHLdT8WMttuEVCqF6upqfO1rX0t7/OjRo5BIJPiP//gPuN1ulJSU0OcsFguGh4dv9akyVjELGUcMxnwsdgzZ7XakUimUlpbeytNkrHIWOo4mJiZQX18Pi8WC559/HoWFhStxuksGM9puE/Ly8vD1r38dP/rRjzA+Pg4AaGtrw6OPPooXX3wRjz76aNYdiEAguNWnyljFLGQcMRjzsZgx5Pf78bnPfQ6HDh1aqdNlrFIWOo60Wi3a2trQ39+Pn//85xgZGVnJ075pmNG2Brh69eqCXvdHf/RHKCwsxD/+4z/C5XLhgQcewGc/+1n8+Z//OQCgpKQkzbPmcrlQXFy8LOfMWH0s1Thi3L4s5RiKRqP41Kc+ha9//eu46667luuUGauQ5ZiLioqKUFdXhxMnTiz16d5aOEZOc/LkSU6hUHDNzc0Lev0///M/czqdjqutreUefPBBLpFI0Ofi8ThXWVnJuVwuLhgMcpWVldzY2NhynTpjFbGU44hw/Phx7pFHHlnqU2WsUpZyDKVSKe4zn/kM981vfnOZzpaxWlnKceT1ernJyUmO4zhucnKS27RpE9fW1rYs532rYEbbGuCf//mfFzzIQ6EQJ5PJuC1btnDhcHjW87/+9a+5qqoqrqKigvvxj3+8HKfLWKUs5Ti67777uMLCQk4ul3MlJSXc2bNnl+OUGauMpRpDLS0tnEAg4Orr6+l/7e3ty3XajFXGUo0ju93O1dfXc3V1dVxtbS33wx/+cLlO+ZbBJD9ygEuXLqG2tva6r8vPz8fU1NS8r/nCF76AV199FVqtFv39/ZDJZEt1moxVDhtHjJuFjSHGUsDG0Y0jWukTYFyfDRs2oLOzc87n33rrLXz1q1/Fyy+/PO/n/NVf/RXefPNNnD59Gvv378dPfvITPPPMM0t9uoxVChtHjJuFjSHGUsDG0U2w0q4+xs1x9uxZLj8/n/vXf/3XeV/3L//yL5xcLudaW1s5juO4b33rW1xZWRkXi8VuxWkyVjlsHDFuFjaGGEsBG0fzw4y2HCcajXJHjx6d9zW//e1vOYlEwr3++uv0scnJSU6r1XI/+clPlvsUGTkAG0eMm4WNIcZSwMbR/OSs0fbiiy9yNpuNUyqVnMFg4D7xiU9wDocj7TWpVIr75je/yRUXF3MymYy75557uEuXLq3QGa8MdrudUygU3A9+8INZz/3VX/0VV1VVlbXyj8Hgw8YR42ZhY4ixFNzu4yhnCxE+9rGP4TOf+QzuuOMOJBIJfOMb30BHRweuXLlC+9O99NJL+Pa3v41XXnkFGzZswLe+9S2cOHECXV1drMUOg8FgMBiMnCJnjbZMfD4fjEYj3nvvPezevRscx8FsNuO5556jbS6i0SiKiorw0ksv4ctf/vIKnzGDwWAwGAzGwlkzHREmJycBADqdDgDQ398Pr9eL++67j75GKpXinnvuwfvvv78i58hgMBgMBoNxo6wJo43jOHz1q1/FRz7yEWzZsgUA4PV6AVxrXcGnqKiIPpftc4LBYNYenAzGQmBjiHGzsDHEWArYOFqbrAmj7Stf+Qra29vxi1/8YtZzmQ3POY6bswl6KBSCRqPB8PAwgsEg/S8ajS7LeTPWHmQMhUKhlT4VRo7CxhBjKWDjaG2S80bbs88+iyNHjuD48eOwWCz0cZPJBACzvGqjo6OzvG+ZlJaWQqPR0P++853vLP2JMxgMBoPBYCyCnO2IwHEcnn32Wbzxxht49913UV5envZ8eXk5TCYT3n77bWzbtg0AEIvF8N577+Gll16a97OHhoagVqvp31KpdOm/AIPBYDAYDMYiyFmj7ZlnnsHPf/5z/PrXv4ZKpaIeNY1GA7lcDoFAgOeeew4vvvgiqqqqUFVVhRdffBH5+fl4/PHH5/1stVqdZrQxVg632w273Q4AsNlsMJvNK3xGqwu32w2n0wmr1cp+mzVGMBhM+1sqldINJLvujIUy3zhaLtj4XD5yNjz6ox/9CJOTk9izZw+Ki4vpf6+++ip9zfPPP4/nnnsOTz/9NGw2G4aHh/HWW28xjbZVjtvtRmtrK73x7XY7zp07B6fTudKntuzwv/tCcDqd6O3tvS1+m9uN+dI02HVnLJSVSPdh43P5yFlP20IqYgQCAV544QW88MILy39CjCWD3PAAYLVaYbPZ6L/XOvzvvpAdKvlNboff5nZjvjQNdt0ZC2Ul0n3Y+Fw+ctZoY6xN3G43fD4f1Go1da0/9NBDK31at4zFTnZms5mFH9Yo86VpsOvOWCgrke7DxufywYw2xi1hoTkOTqcTwWAQFRUVa/am5/8WANJ+l/kmO5YnwmAwGLc3zGhjLBt8IyNb2C+bEUIMGalUitbW1jVpoPB/CwALDocuJHTKDDsGg8FYuzCjjbFsZOamAenGWDYjhHiaWltbF5XblUtkC4EuJBy6kNDpYnPiGLkBM8YZDAbAjDbGMsI3MrIZY/MZIWs5kTUzBLrQRXgheSJr+Xe7nbmeMT5fyJ3BYKwdmNHGWBbm8gxIpVJMT09DKpXSx0lZeKYhM18YdS2wHN+LJQCvTa5njN9oyJ3BYOQWOavTxlh6/vRP/xTr1q2DQCDApUuXbuqz+Do9fO2xaDSK/Px82s91IXo+a1XzJ9v3crvdOHLkCI4cObJgrbbbme7ubtx1113YsGEDduzYgStXrqz0KS0LZrMZjY2NcxphVqsVFRUVsFqtsFqtUKvV8Pl8bAwtkNtlHOUCi9WqXC3cqjHEjDYG5dOf/jROnjy5JKE1/iJit9vxf/7P/8G3v/1tWhnK9xzw/77eZ60l+F5HQqaY8PWMuMVOcLk6Ic7Fl7/8ZTz11FO4evUqnn/+eTz55JMrfUq3HNI1xOfzAbhm4BkMBgSDwQVvdNbauFgsbBytHnJ1k36rxhALj+YoHMdh165dmJ6extWrV1FSUgKFQoGDBw/iW9/61g195u7du2/qnDLzagDA6/Xi7NmzuHDhAlQqFerr6/HUU0/R5zPDedlChmst5Ee+o8/nQ35+PlwuF6LRKILBINra2qDVaqHT6eBwONDS0gKPxwOVSgWDwTDrd1hs4cFKFios9ZgdHR3F+fPn8dZbbwEAHnnkEXzlK1/BwMAA1q1bt8Rnv3pxOp04d+4cOI6jY2SxuY25VMDCxtHa5lbk5ebyGGJGW44iEAjw/vvvAwBMJhPeeecdlJWVpb3m05/+NHp6erK+/ze/+Q1KS0uX9Jyy5dVMT09jamoKJSUl0Gq1EIvFcLvdMJvNsww0t9uNpqYmGjpd7YvHfMzX74/8Tmq1GhUVFfD5fOjt7UVHRweCwSC2bdsGnU6HN954A2KxGJWVlaiurr5uwcZCcuT4VbxHjhwBcOt6ui71mB0aGoLZbIZIJKKfX1ZWhsHBwTW/2J4/fx52ux1WqxXRaBTl5eXQ6XQ3vNDlUgELG0drm1uxSc/lMcSMtmVmuZPoPR4P4vH4rAEHAK+99tqSHw/48DtJpVJEo1H63axWKxwOB958803odDpUVlbCYDBgYmIC9fX10Ol0NGRjNptn7e6dTiei0SikUmlOLB7zkWkQf+lLX8L/+B//A2azmYZFN23aBJPJRDtAlJWV4dixY3C73ZBIJNBqtSguLsYTTzwBs9mM8+fPo6mpCTabDQ0NDQDSJzh+ZS6QvYKQ/LupqQmdnZ1Qq9WzPHi5NGYFAkHa3wtpb7cWaG5uRmtrK8110+l0MBgMAEA3P6OjozAajTh48OB1r+NyLJRsHDFuFjaGZsOMtmVmucMO7e3t2LZtW9bnlsPTxveGSaVS5OfnA/hw0o/H47h8+TK0Wi0aGxvpc2q1Gn6/Hz6fD5s2bZrVrgqYLRGSy/D7/R0+fBhnzpzB0aNH8cUvfjGtGIN0gFCr1RgcHITH44Hb7cajjz6KP/iDP6C/SWtrK1paWtDR0YHe3l6YTKZZvxH/95tv3BHjuLi4OKsHL1fGbGlpKVwuFxKJBEQiETiOw9DQUNYJeC3AX8AMBgMkEgny8vLoOOMb7NFoFKFQCBqNhuYG2e12ALfOs8rGEeNmmWsMLZUxl4tjiBlty8xyhx2Gh4dhsViyPrccnja+N8xms1FPG/8mamxshMFgoN/Z5/PB4XDA4/FArVZTY4V46whrKXeN3+8vHA4jGAzSRPFsY8LhcGB8fBwzMzOIxWJobW1FZWVlmgFmNBphNpuhUqmot5IP+f2yGcR8shnH/OuXK2PWaDRi27ZtOHz4ML7whS/g9ddfx7p169ZsSIuMA5/PB71ej+3bt0Mul9N7jVw/r9cLqVSKffv20TFAClxCoRC8Xu91vW9LsSiyccS4WeYaQ0u1IcjFMZTT1aMnTpzAgw8+CLPZDIFAgF/96ldpz3MchxdeeAFmsxlyuRx79uzB5cuXb+k5Xq9U/2bZtWsXTp06hSeeeOKmP+uZZ56BxWKBy+XC/v37UVlZmfY8MQasVisOHjyIhoYG6k1ramqC3W5HNBrF3XffjQMHDgD4UINNLpdDoVBAoVDQ8CcJr+ZaldBi2b9/P+6//37s378fQPqYIP/W6/XgOA4ymQxCoRCTk5O0gpSEU+vq6vBnf/ZnuPfee6mhTCr++P8m1afkWJmQYwKg7+FXbOXSmP3xj3+MH//4x9iwYQP+7u/+Dj/5yU+W4AxXJ6SKGriWM1ldXQ2bzUYNK3JNX3/9dRw7dixNcsBqtcJms6G4uHhB99xSVPCxcbT2uNVVxnONoWyKAos5N/LaysrKnBtDOe1pm5qaQn19Pb74xS/ikUcemfX8d7/7XXz/+9/HK6+8gg0bNuBb3/oWPvrRj6KrqwsqlWoFznjp2bhxI7q7u5fks/7pn/4J//RP/5T1OX5Y1GazAQBNZPf7/ejs7IRCoUAkEkmb6O12OyKRCKqrq6FSqdDf34/29nb6OcRTt5ZpaGigOWhzYbPZcOrUKRpy3rFjB7Zv3069JHxtO5/PB5/Ph56eHnR0dGD37t2orq6mO8+enh588MEH0Gg0cx4vs+gj2452ufJJlnLMbty4Ea2trUvyWauZTE/oXNfF6XSip6cHHo8HbW1tmJiYwPbt2/HQQw/hoYcegs1mm1Xhne04Uql0UTI7KyGAzcbRrWclq4wzx9jNVNKT11ZUVOTcGMppo+3+++/H/fffn/U5juPwgx/8AN/4xjfw8MMPAwB++tOfoqioCD//+c/x5S9/+Vae6qrnepNuZpGA0+nE8ePHMTk5ieLiYqjVaiQSCXi9XphMJjrZd3R0YHJyEl6vF+FwGIODg0gmkxCJRKioqKDegdsF4gkD0nOLzGYzHnvsMYjFYkxOTqKiomJW7hE/zCUQCDA2NgaPxwO73Y76+nq6yLa0tIDjOPT29qZV6vKPm3k9s3Wn4IfjSAhurYSvcw3+gjSf90oqlUKhUECpVEKn06UlQ2dK8rS2tlJvN/m/w+FAf38/bDYbHSfAwhfBhbyWkTtkrgsLDXkvhxF/vTGWTfdyLpYqdL8Sm5WcNtrmo7+/H16vF/fddx99TCqV4p577sH777/PjLYM5rsh+GFRi8WCt956CxcuXMDw8DAKCgqoJAWZ8Kurq+lnHDx4kHp0EokEysrKUF5evibFchcC3+jKrNpsaGhANBrF73//e/T398/KW/N6vfD5fCgvL4der4dUKsWxY8egUqnQ3t6O7u5uhMNhFBQUoLy8HMXFxbDb7TAYDGhtbcU777xDhVczJ63W1lb4fD44nU50dHTg4MGDaTmJbEG+9fBlY3Q6HWKxGA2LZzP8yeNk4crPz4fFYqE5O06nE++88w5CoRBqamogEongdrsRDoehVCphNpvh8/loFZzdbofdbofNZsNDDz0077nmkmQIY+FkrgsLzTvOlH+ay7Dhj2WLxZKmRpDJ9YyyzG475PMzjz2XoXUjBthKbFbWrNHm9XoBAEVFRWmPFxUVrfkcqhthrkk3MywajUZx4sQJ9PT0oKCgADqdDvX19WhoaEgL2/BvgIMHD2aVCLkdIblF5N+ZEE8J37Aihp7L5YLFYoHNZqMeytraWjidTrS0tODEiRMYGRmBRqNBY2Mj6urqAFyrKuzt7UUymYREIpnlWfP5fLSClZ9nSDw62UST12o/2NVEZnX3N7/5Tdxzzz1obW2dJabLl/kArs1/MpkMRUVFiEajcLvd6Orqwrlz5xCLxTAyMoJNmzZBLBZDIBDAaDTS1lcKhYLmtgoEAvj9/utq+q2lIqK1xnyakddjscZ4tvD69SrZyVj2er3Iz8+f07MfjUYRjUZht9vnrJ4nRW8+n496ijOPne2xxWiE3sqirWysWaONkE07JfOxTG5mkOcqc026drsdH3zwAWKxGJRKJaRSKZLJJIqLi5FKpRAIBOByudDQ0JD2GUeOHEnbpbMJ/Rpms3ler0U0GoXZbEZFRQX9zUjIMxAIQK/X0wmCP0EaDAZs3boVly9fxsTEBEZHR9OqCg0GA5xOJ110+ZNUZlJvpoHGv678bg7kPmHXdnngy8YAoHOQ1WrF9u3b6b+Ba9dsdHQUHo8Hk5OTCIfD8Pl8NPx99OhRvPbaa0ilUkgmk4jH4wiHw7DZbGnjhCygZJNmMBjg8/lw/PhxTExMALjmESH39vVyNRkrTzbj/4UXXljQe+daF+batPFzxTJTX663Sa2vr0c0GqWbC5KLSY7n8/kQiUQwOTmJpqamWRXQJIpw7tw59Pf3w2AwZPXOZTO0FqMRutBUheVizRptJpMJwLUdZ3FxMX18dHR0lvctk5sZ5GsBvsu6p6cHw8PDEIvF6O/vRzQaBcdxiMViSCaTdOEmNzFpxdTV1YWpqSmsX79+Jb9KzjHfzk2pVKK6uhrANaO4ubkZIyMjqKqqQlFREWpra3Hw4EGcOHEC4XAYDoeDihlbrVZIJBI0NzcDuGYckkU+Ho8DQFp+U2bIgjzH98rdriHuWwVfNoZPpuFPFjSJRAKpVIqCggIAwIYNG6iR7vP5MD09jWQyiS1btkAgEKC8vBxSqRQdHR10sco0BoFr4yIWi1G1d7vdjgsXLgAAM9pygLmM/5thrvBntvkrW74sgWxSiRQU8Zb19fXNOh6pmPZ6vdTjlumRyxzDmUVc5PjzaVxezwhb6VSANWu0lZeXw2Qy4e2336biebFYDO+99x5eeumled+7HIN8NTLfbonsuFOpFMRiMZLJJFKpFMrKyuByuTAzMwO/3w+RSIRf/epXOHPmDEwmE1wuF65evYpQKITS0lLodLoV/Ia5QbbwIx+n0wm5XI6amhrYbDbY7Xb86le/wtWrV5GXl4fKykpqVKnVauzcuRO/+tWv0N7eTvXx3nvvPSSTSUSjUWi1Whw8eBBGoxF+vx+XLl2ixSL5+flwu91wOBzQaDSoqanB6OgoOjs7UVNTg7q6OmqsMQ/b6oC/oBkMBphMJhiNRoRCITQ3N6OtrQ3T09PQarVQq9WYnJxETU0Nqqur0dHRgZaWFrS1tcFms0Gv18NiscDpdOL06dM4c+YMpFIpqqqqYDQaYbPZaOoJCfMzVjdzGf83A99wWUjB0lwhUuIJSyQSNJ+W7/3Ndjzg2sbB4XCgvb0dEomEyt/MFcm4noG1mPD+SqcC5LTRFg6H0xSL+/v7cfHiReh0OpSVleG5557Diy++iKqqKlRVVeHFF19Efn4+Hn/88Xk/dzkG+WpkrhspGAxiYGAAGo0GOp2Oqjzn5eVBLBbjzjvvREtLC/r6+jA9PQ2fz4eamhpYrVbs27cPer0eYrGYVkAy0sk0lvnXwefz0dATyckIBoNUzJhcJ6FQCLlcTitxrVYr2tra0NraCr/fj/HxcXi9XpSWliIUCqG4uBgikQjJZJJOYCaTCWKxGADoYh2NRhGPx+HxeFBcXAybzYZXX32VKuzfKjV9xsLhL2h2ux0DAwPo7++nc2MikcDU1BTMZjMKCgqgUqkgkUhocVFvby8CgQBOnDiBsrIyOBwOeL1eXLhwASMjIygsLIRSqURJScmCz4nlPOYGN5qUn81wma9gaS7vlMvlQmdnJ1KpFBKJBIqLi+FyuWAwGOD1emdJfJDzAq5pf/r9fsRiMUxNTQHALKOR/77W1tY1MR5z2miz2+3Yu3cv/furX/0qAODzn/88XnnlFTz//POIRCJ4+umnMT4+jp07d+Ktt95aMxptNwL/ZpRKpTS0QhI3zWYz2tra0NfXR93WSqWS7rLJwj4yMgKfz4fJyUkUFhbS0BwAqsKe6zfHcpFpLGfmXZCcS/K66elp5Ofnw+VyIRqNYmhoiOZgANe6KYyNjcHv94PjOJSUlGBmZgZOp5MaWiRFYGxsDEeOHMEvf/lL+Hw+1NXV4emnnwZw7X7q6emB3+9HXV0dDhw4QK8hMSTZNV19ZC6gwWAQg4ODEAgEUCgUEIlEEIlEMBqNdBNGchwjkQiKiooQiUTAcRzWrVuH8fFxnD17FsPDw5DJZJBKpejq6kIsFqPeuQsXLmBiYmLOwiImAZIbzHWdMr1nCyki41d/EkiqTSAQgE6nm/Wcw+GA2+2GQCBAXl4eJiYmoFAoEAwG4Xa76eZx//79cLlccDgckMvltKBr165daGtro7qVc1U7r6XxmNNG2549e+ZtyioQCPDCCy/cVvlo1yMzF6GnpweXLl1CeXk5HA4HqqurMTU1BalUCpPJBL1ej7Nnz8LlcmFqagqlpaVQKBQoLi7Gjh07UF9fT3NjWIL6wiATl1QqpVIbJEeD75kkFVj8fLLe3l68//77GB8fR15eHrZs2YJgMIju7m7IZDLU1dVhx44dVDMvmUzSRN/h4WGcPn0aoVAIyWQSeXnXGqI0NTXBZDLh+PHjOH36NDQaTdrkvBBxYMbqgIQvSVVodXU1hoeHEQqFUFFRgfb2dly5cgV5eXnYsGEDhEIhhoeHEQ6HsWHDBqq/ODExQY0+juPgdrvBcRx+/vOfY2xsDBKJBNPT0/i3f/s3TExMYMOGDXj44YfpOCG5ST6fj2oFMlYffA8Yf0MfDAbR0dGBoqIiBINBunEEsleAzlV8kFn5Tjxozc3NcLlcGBsbQyqVQnFxMZWf8fv9qKiooKkdU1NTcDqd8Pv9UKlUMBqNiEQisFgsaGhoQFtbGzo7O6k2YSakcnp0dBSbNm1apl/y1pHTRhtj8fANBuK5IRNwd3c3zp07h1QqBYVCAZVKhYKCAoTDYTidTrjdbkgkEigUCpSXl2PPnj0oLy9HY2MjWltbYbfb0d3djWQyCYPBsMLfdPXjcrlmSW1Eo1EYDAb09vYiGo3SSZDfT/SBBx4AAJSUlKCyshIffPABAoEA9ZqRnCOtVguJRILR0VGo1WrMzMwAAFKpFNavXw+NRgOhUIgPPvgAcrkck5OTNCH48uXLOH/+PF2E+ZWq/B03C4OtLsxmMzX8bTYbTCYTmpqaoNFooNfrUVxcjJaWFsRiMRiNRmzevBnj4+OIRCLIz8/HiRMn0NnZiaKiImzfvh2Tk5MIBAIArlXenz17Fn6/HzabDfn5+ejr60NPTw8GBwdRVlYGk8lExwMZx9n65DJWB3wvbWtrK93QO51OeDweqvsokUhoBCVTJ5AvtdHV1QWdTke98sQjtn79enAcR1937NgxjI2NQaPRQKlUYnR0lKZm6HQ6GAwGFBUV0TSl7u5uuN1uxGIxqFQqCIVCDA0NwW6348yZM7hy5QoKCwtRWlo6q5eo0+mk3UGqq6tvagOamX+8EnMfM9puM8hN2traimAwiD179sDn80EsFmNsbAwjIyMYHx8Hx3Ho6OhAb28vYrEYCgsLIZVK6QSfTCbhcrmwa9cuANeMwY6ODnrzMS28uSE708wKTP5kkOmlILlt8XgcPp8P27dvR2VlJSwWCyYmJqBUKrFjxw6YzWY0NTVhaGgI8Xgc8Xgcly9fhtfrxbp161BcXIzi4mLabNxut+Pq1auIxWKQyWQ0NHvhwgWUlJSgoaEhTR6EiLYSDh8+DI/Hg717986qaGTG3MrAFxk1m81UJ5EsoFNTUzh79ixEIhEtcJmamsL27dvh8XgwODiI8vJy5Ofnw+v1QiQSIT8/H2KxGPF4HCqVCslkEiMjI5ienoZEIoFAIEA4HIbdbqee9vm0H9nYWH3wr5dUKkVvby9UKhXi8Tjy8/OpJiDZoBOB8MbGRhgMBjqXcBwHh8OBJ554Iq0wgBiFRqMRRUVFSCaT0Ov1GBkZgcfjgVarhUKhQG9vLzZv3gybzQapVIq2tjZMTk5ieHgYQ0NDmJ6eprm6R48ehcvlAsdxCAaD8Hg8aZWi5PsUFxdnlfpayFjkv4YfNiZVrLe6Ywwz2m4T+J4Sl8uFQCAAjuOg1+sxMDAAu92O6upqFBQUYGZmBmq1GvF4HOfPn8fMzAxKSkpQUlICgUCAsrIy3HHHHZDL5WlihAcPHoRYLKb5cYzszFdezjfcSNP3hx56iOa9DQ4O4vLly9BqtWhsbERDQwP1bgSDQRw6dAjxeBwikQgzMzNIJpOYmZnB9PQ0CgoK8LGPfYx2Uzhy5Ai8Xi9isRjC4TCGh4dpgYPRaMT09HRa+JYUQ7hcLmpUEl2wTNZSDkmuMVfIi1yHj33sYwBAC1x27doFl8sFv9+PsrIyHDhwADMzM7hw4QLi8ThqamqoyC7JOxoZGYHX68XY2BgEAgFUKhU6OjoAXJOm4UvNZHpkF6qWz7i18L1u5P/Nzc0Ih8N0Xne73VkFwsljyWQSPT09tIiAf035r9XpdLDb7RgbG8PExASEQiHuuOMOTExMwOv14uc//zk2b96M6elpfPDBB9BqtTCZTOA4DqWlpXTD+h//8R/Iy8uDVqtFaWkpUqkUWlpaIJVKqUfNbDbjiSeeyFqhv9jKV/6mmsyJAG7pXMeMttsEflK73W6H2+3G1q1bEQ6H0dTUhOHhYbS3tyMSiUAsFqOmpgZyuRz5+flUo0mtVmPTpk3YvXs3Dhw4kFWE9Ytf/OIKfsvcYK6S8czFjJ+vSbwnFRUVUKvVaSXx5PP+8i//Es3NzZDL5RAKhUgmk0gmk1CpVFAoFJicnITdbseTTz6Jd999F6dPn4ZCoUBRURFCoRBSqRQEAgHUajWqqqoQj8fxy1/+EolEAqWlpdiwYQOi0Sj8fj/6+/tRXl6O0tJSavRl9rJkOm4rA79iLlPlnYTZy8vL6abNZDIhGo2iqakJFy5cgFwux/T0NEZGRmAwGHDnnXcCAN5//32MjIwgGAwiEomgpqaGzg+RSASXL19GV1cXtmzZgomJibQxzj8PfuENM+5XL9FoFF6vF+Pj46ipqYFYLKadUrLJahgMBjzyyCNwuVwAQDeGwIedNMgYJI9JpVK0tLQAAB5++GH4fD4cOnQInZ2dGBkZoUVvRUVFKC4uRl5eHoxGI+RyOcLhMNavX08lug4ePIgzZ87Qpu38MOhccy4pxnM4HJDJZDAajbNEezM32eQ7ZHatuVVzHTPa1hhzuXvJRKlUKuHz+eD3+3H16lWMj4/TpGVSPi0QCHDx4kWqvm8wGCAWi7FlyxZUVFTA7/ezasJlgD85ZFZZkbwRALSqk1/GDgBXr16Fy+WCTCZDeXk56urqoNVqEYlE4Ha70dnZiUuXLuHdd99FOBzG1NQUamtrUV9fj4GBAUgkEtTV1aGhoQEKhQJisRgdHR2Ynp6GSCSC3++HxWJBJBKhivvAtRy5trY2pFIpmrBMkpLXUql9rpFN5Z14ZHU6HbxeL15//XV873vfg16vp3p9IpEIQqEQMzMzCIfDmJycxJUrV9DR0QGhUAixWAylUonCwkJ0d3djYmICU1NTEAgEiMVi8Pv9NK+VeGT558EXPF1poVLG3FitVurdEovF1NDOtsaQggOpVEqNHn4YNRAIIBaL0VaIJJdXrVajsrISbW1t+M///E+o1WrIZDIAgN/vRyAQQDweR0VFBdUL5Tgurd3exMQExsfHAVwrPiSi70ePHqVdYDJzc8m5R6NReDweuN1uFBYWQqPRzPIQZjP4MrvEzMVypAIsq9HW1NSE//bf/htSqRS+9rWv4Y//+I+X83AMzB2WIp6a06dPY3h4GMFgEMlkEpOTk5DL5TCbzUgkErSqMJFIYHp6GgKBAIlEAoWFhaioqIDBYMDx48dpSOx6jaQZCydzcuAnclutVppDQXJLMj1zIpEICoUCBQUF2LBhA5588kmYTCYcPnyYJuLyW7RpNBpaHQYAMpkMer0e69atQ0dHB329RqNBIpFAOByGXq/H/v37YbfbEY1GkUgkIBAIIJfLqSeWhE/JhMU8KSsD39DPfMzhcCAWi6G9vR3Dw8MQCAS044FSqUQkEoFEIgHHcfjggw/gdrvhdrshFotRUFAAjuNw8eJFjI6OIpFIQCKRwGw2Y2JiAqFQiOZUtre3w+12o6qqapaBxvdcMFaWTOOC/L1///60TijEULLb7WhpaYHBYKAaj1KpFD09PXj55Zexb98+RKNRlJeXQ6/Xw+Fw4MyZM3jvvffwwAMP0L9nZmZQVVUFjuPg8XhoNXNBQQH8fj+i0ShisRiuXr2KRCKBdevWYffu3TSHLh6P041Cc3MzxsbGIBaLIZPJcOTIEfT29qKtrY12SOLn4NpsNvh8PuTn56OkpARqtRoulwsbNmxY1G91vd6qSz3/LZvRlkgk8NWvfhXHjx+HWq1GQ0MDHn74YaaQvwycP3+eer741aFHjhyh+jgWiwUVFRX48Y9/jMuXL0MsFiMUCsHhcNDJWSwWUw8LMQxSqRQkEglKS0tpHgO/LRhj+chUHc/0mvDDTCaTCVu3boVCocD4+Dj8fj/a29thMpngcDgwPDyMSCQCkUiEVCoFnU6HO++8E0ajERcvXkQymaQJ6mNjY4hEIojFYjT0tW3bNohEIgSDQbz77rsYGBiASqWCXq+H3+9HT08PfD4fnnzyyVnGZjbpB5aMvvyYzeZZFZzkMafTCa1Wi7179+J3v/sdAECn06GoqAhjY2OYnJxEPB6HXq+HTCaDXC6HTCYDx3GYnJxEKpUCx3G0dZZEIkE0GoVSqcTExATcbjfefvtttLa2QiwW48KFC6itrQXw4Ubv6NGj8Pl82L9/P5OUWWGIIdbR0YGDBw/Cbren9f/MrJrs6OhAX18fHA4HSktLYTAYcPDgQbz88svo7e2Fy+XCnXfeCZvNhsbGRlgsFpw5cwb9/f04fPgwgsEgHA4HOI6DRqPB1q1b0woJ8vPzcc899+D8+fMYHh7G4OAgUqkUIpEITpw4AeDDYi3iZDh9+jQmJydhNptpBXReXh5isRgtjOPn4BKvc1VVFWKxGAYHB2ku5vV+K74hNp+3eDk8yctmtJ09exabN2+mKtof//jHcfToUfzhH/7hch3ytqW5uRnHjh1DW1sbvvGNb8BqteLw4cM4d+4cIpEIAKCgoADl5eXo7e2lCepkYQYAsVgMtVoNlUoFpVKJu+66i+5YioqKsH//frq4zpXUyVga+EUjhEyvidvtRnNzMzweD0wmE0wmE5VZ6erqQnd3N3p6eqDT6dDe3o7p6Wnk5eWhsLAQ1dXVUKvVEIvFCIfDkMlkEAqFiMVi8Hg8GB8fh0KhgE6nQzKZhEQigU6ng8vlgt1uB8dxmJqagkwmw44dO2j4o7e3F3a7nYosE4Ms03Dg51rd6sqr241si4bVaoXD4YDP58OBAweoxIvVasWePXswMDCAEydO0H6lpMm8RqOhuZGBQAAKhQJ6vR6jo6OIRCJIpVLUsAeAt956i+bDKhSKtDCS0+lES0sLxsfHaZI5M+JXDlL9z6/87+npQXt7O6RSaZrQNgAcPHgQJpMJvb29iMfjkEqlMJvNeOyxx/Dqq6+C4zhEIhG6WWtoaMCuXbvwyiuvYHR0FFKpFFKplOZPvvvuu9DpdCgvL8f4+DhEIhG2bNmCRCKBoaEhiEQiul6dOHECBQUFtBtMYWEhTCYTFeblOA55eXnIz8/Hnj17aBGFxWJBXV0d/TfxvhEvYkVFBcrKyqBUKnHo0CFYrdasQvGZ99R83uLl8CQv2mhLpVLYtGkTPvGJT6T18Dx69CgefPBB/Pu//zseffRRuN3utLYnFosFw8PDS3PWjDQMBgOEQiEmJibQ1NQEiUSCU6dOwePxQKFQIBAI4MKFCzRPJS8vDwKBgCa6C4VCSKVSiMViKgMQjUYhFAqxceNGPPXUU2nHYyGN5SWzEwKAWeFRYPausb29HZOTk+A4DslkEhcuXEBvby8SiQSUSiXkcjnq6+vR2NiIkydPoqurC4lEAmazGSUlJZiensbMzAw4jsP09DRisRgMBgPy8vIQCATgdrsxPDxMPbPT09Nwu934+Mc/jp07d8Lv92Nqaiot35GvL8fPq4pGo4hEInA4HFkbSTNP3NIwVz5OPB5Hf38/tFotDAYDxsbGIJPJ4HA4oFKpoNPp0NPTQ3sMq1QqFBcXo66uDh0dHUgkEjCZTJiZmaHGmlarhcvlQjwep7JByWQS+fn5kMlk2LhxI4BrkQHi/R0eHqbt2kgVH4HlzC49c91XmdIwUqkUPp8PIyMjOHToEKLRaNr1IFIeJG+N6LZFo1Hs27cPJ06cwJUrVzAwMICjR4+isrISgUAAMpkM4+PjSKVSKC0thUAgwODgIJ1vrFYrCgoKMDo6ip/97GcIhUIQCoVQKpVQKpWQSCS0aMpgMEAkEqG0tBSbN2+m3T4sFguthieiu4ODgyguLkZ1dTXEYjGVwwGuGW3Eq2yz2WhBTltbG31sqdOAbmZ+W7TRlpeXh69//et49tln8Rd/8RcoKChAW1sbHn30Ubz44ot49NFHASBrp4JsOimMm6e+vh4+n4+2+Ugmk/B4PBgeHoZUKqV6SlKpFEKhEACo0KpQKKRhEZFIhGg0SnObxGIx86atAJkCyPxkbrJ7lUqlKC4uRn19PaRSKa0A1mq1kEqlSKVS8Hg8GBkZgUAggEajgUajoTvSZDKJ8fFxhEIhjI6OorCwEFVVVXQMeL1eCAQCGkY/e/YsEokEpFIpwuEw4vE4hEIhLUiorq5GRUUF7HY73n33XXi9XroIkKRjp9MJr9dLe14CoB7FuUrxAZYLtxzwBXibm5thsViooDbpnhAIBDA4OAiFQoGSkhJs374dxcXF6O/vR2FhIfLy8qBUKqkIKgmbxuNx5OXlIS8vL8247+zsRDAYhEQigUQiwcDAAILBIM6fP0+rzh0OB06cOEGNSXbtl5b5JC74lZHNzc1QKpXUKH/jjTcAgBrYfOkLEs2x2+3Iz8+n19vr9VK5oa6uLtTW1sJqtWJkZIS2QDMYDBAIBNBqtdDr9XC5XBgaGkIsFoNQKIRCocD69esRiUQwMzMDo9EIt9uNyclJjI2NYWZmBtFoFOPj41RbkHjR3n77bQwODqKwsBCRSAS9vb0QiURIJBKIx+M07YToX5LQKLk3SBEOMFurjYSSSWHFYo2vm5nfbig8+kd/9Ef4m7/5G/zjP/4jnnzySTzwwAP47Gc/iz//8z+nrykpKUnzrLlcLuzcufNGDse4DqTFlEAgwPj4OAQCAUZHR2mSMCEajSIvLw+pVIo+lkwmqSeG7FAKCgpgMplgNpupIjVjcfAT/oFrBpjf71/Q7orvHYlGo1SIlyTOOp1OuFwuqFQq9PT04De/+Q08Hg9kMhlsNhsMBgOdyIRCIQYGBpBKpWguWyKRwOTkJK3GCofDmJ6ehkwmg0ajQTgchkAggMViQWVlJS5evIiRkRHodDpEo1FMTU3RHMjR0VEcOXIEJ0+exKc+9SmUl5fTHqZNTU2w2WyoqKigLbiI95CMK6LvlOllI+G7tdB2ZjWS2ZpMq9XScBCpzPvMZz6DtrY29PT0QCAQQCaT4Z133sH09DR0Oh1GR0cRCoVQVlYG4FoeM+lzynEcLWxIJBIYHx/Hu+++C7lcDovFgnvuuQfV1dW0l+Thw4dhNBoxMDCAoaEhqFQqtmFcBvjG1nzJ80Ts9sEHH6RCssC1kPeJEyewe/dubNy4EcFgENXV1TSvtbKyEjabDeFwmHpYXS4XlEoliouLUVpaCq/XC4fDAalUiqqqKqhUKng8HpSXl2NgYAAzMzPQaDSorq6GQqGAQCBAf38/TCYTjEYjotEohoeHIRKJMD4+jmg0is7OToTDYcRiMXR3d2Pz5s202E4gEECpVEIgEFCxeIfDQb1oAKjBRvTdTCZTWtcH4k202Wyw2Ww0lEwM1Wy/40Kuw42M8Rsy2kQiEb72ta/hv//3/47XX38dDQ0N+Md//Me01+zYsQOXLl3C8PAw1Go1fvvb3+Kv//qvb+RwjCxkJoZyHAelUom8vDwqnksMNqLZBSDNYMvLy4NEIoFMJkNBQQE2btwIp9NJdcD4IS3G4igtLU37+5vf/CYOHDiw6N1VZqUd2cFyHIfOzk6EQiGEQiFIJBKao1FfXw8AtLqqtrYWLpcLyWQSly9fRjQaxejoKILBIIRCIU3kdbvdtOMF8GEV4cjICPx+P0ZHR2nJvVwuh06no54U4NpCYDQaEYvF4PV6aUssq9VK1dB37dqF8vLytDySbItGf38/BALBLHXz24lshj8/z3GpmKu3rNvtRjQahV6vpxsFjuNoC6ze3l6EQiF0dnZCLpfTTinEc0I8sUQvkAg9p1IpeL1efPKTn0R7ezscDgdef/112sM4FouB47isYXNyXix0fmPwvWlz5SVbrVbs3bsXwIceWfLaw4cPY3x8nObLks1kU1MTAoEAjQjodDpMTk5CIBBg3bp1MJlMEIlEGBkZwbZt27BhwwaYTCbs3r0bv/71r9Hf34/u7m7U1tZSg33nzp2w2+3o7OyESCRCUVEROI6DUChESUkJpFIpJiYmEI/HAQB6vR7BYJB2fSEpIrFYDDt27IBarcbY2Bi8Xi90Ol3aJpr0RyWh08z5qbe3F+fPn0dBQQEeeughGkXgt/Wbj8wxezMpRjdciPBHf/RHeO6558BxHH7xi1/QsBv9YJEI3/ve97B3716kUik8//zz0Ov1N3o4RgZ8F63VaoVSqcT09DSi0ShdWAnZwtIikQgajQb5+fmorq7Go48+ivr6etjtdpqgTm4GxuIhgo8E4mkDFre7yry5zeZrvSV7e3tRUlJCZTd27dqFcDiM0dFR2O12DA4Oore3F0VFRXjkkUfg9/vR0tKCsbExOk5CoRAEAgGVcJiZmaFh10QigUQigbfeegujo6OIx+NUA0ksFqOsrAxbt25FLBaj2nDd3d0IBoO0FRr5vKamJpw9exbRaBThcJjqt5FJLHNCy6a4fjuSzfB/4YUXlvQY2XrKAtfmF4fDQfPelEol9u3bB71ej+7ubnR3dwMA4vE4NdyJQUc8tlNTU1TjT6PR0LGaSCTQ0dGBTZs2IRaLYXx8HMFgEOFwGAqFAlqtFqFQiHo65uuowIy265PN+M+cVzKNuEzhWCKEXF9fD61Wi6mpKVpdSuYk4FpBW29vL0ZHR8FxHA2BE68rKSJ4+OGHsXHjRvh8PiQSCQSDQcRiMVy8eBEbNmzA+vXrYbVa8Ytf/AJXr16lzoWdO3dCJBKhr68P3d3dkEqlUCgUkEqlSCaTuPPOO1FTU0MrYAcGBjA1NQWdTofKyko4HA4A19bEiYkJ/PKXv0RxcTGMRiMEAgFt6ZjZYjAej9M2bsDi87qXcszesNH2la98BQAwNjY2y2AjPPTQQ6tCx+uHP/wh/v7v/x4ejwebN2/GD37wA9x9990rfVo3DEnujkQimJycxMWLF+FyuTA9PQ21Wo2BgYG0sCj/38C1AVtYWEjduqS6BgCeeuqptOo+1uz5xiDCkXyWqoAjGo1SXSSTyYRgMIjy8nJYrdZZCvi7d+/GQw89hPPnz6OnpweBQIDuTkkxCslf9Hq9UCgUqKurQ3FxMa5evUqrw4inlkiGjI+P0wRfslFwu93YtGkTTST2eDy0kqyyspLuyvmGgtPppLtagtPphMViobl1t6tXJZvhv9SQxcThcMDtduPuu+9GdXU1zXsKhULw+/1QKBRoa2tDZWUlqqqq0N3djVAoRHPXZDIZlWSQSqVQq9W0cpTkJpHzn56eRiAQoKFWklPU1dWFWCyGyspKmM3mtOrDbK2EbmeDfjEsxPjP1lOTwE9rqKiowMGDB6neWXNzMxwOB/bv30/XDrvdju7ubvj9flrQcPXqVahUKtr67LXXXoNSqUR1dTUqKytRX1+PM2fOYGpqCr29vVRaqK+vD1NTU4hEIrQAxmw207ZrpC9qQUEBSktLaTSBCIXX1dXReS8YDMJgMND1USwWY2JiAgKBANXV1di4cSPNIwY+HF+tra3UWL3R9oxLOWZvyGj7q7/6K7z55ps4ffo09u/fj5/85Cd45plnbvpkloNXX30Vzz33HH74wx9i165d+PGPf4z7778fV65cobkYuQQxqEiZ/fDwMBW+JNV7kUhklqHGh1TchEIhuhvu7++H3W5HQ0PDrEoixuois1CBX5bOT/53Op2oq6ujE+no6Cg6Ozvh8/loTlpeXh71nkmlUuTl5aG/vx+pVAqbN2/GxMQETpw4gWQyCaFQCLVaTRfq9vZ2GAwG2kzcbDajoqICWq2Whlx7e3vBcRwOHjxIZQNIqJSf30Z2tZmVs/wK2tvNaMtm+C81ZCx1dnZifHycyoAAwKZNm9LGjdvtRnt7OzQaDdxuN0QiETXQzGYzFTmdmJhAX18fJBIJFAoF4vE4LWxRqVTUk3/x4kUano9Go5BIJNBoNDAajZBIJBgeHkZ3dzc1CsgYYdXri2M+4//o0aM4duwY6uvrae5pph4keQ/xxL711ls4f/48pFIpgsEghoaGoNVq6dphMBjgcDjQ3d2N6elphEIhBINB6PV6yOVySKVSjI6O0pSNTZs2YWZmBmKxmBr+fX19VFhXJBIhPz8f8XgcV69eRTAYRH5+PvR6PS1+2bhxI+655x4cPnwYTqcT58+fx4MPPojKykoIhUKUl5fT7yeVSjEzM4PKykpUVFSgt7cXPT09AEALC4hEEYBZnR7Onz+P5uZmiMViVFRULKjKeSnH7KKNtn/913/F9773PXqhn3vuOXz3u9/FU089BbFYvCQntZR8//vfx5NPPkm7MfzgBz/A0aNH8aMf/Qjf+c53VvjsFofb7abq9mQxu3z5MsbHx5FIJDA1NYVwOJy1cpePQqGAUqmkLt/169ejvLw8bRfBJsbVC7k2ra2taXpumSGkaDSK5uZmAEAsFoNEIkFRURGdIMlEHI/Hae7R9PQ0vF4vOjs7sWHDBtTW1sLpdGJgYIA2dZbJZOjs7IREIoFcLodYLIZEIsHExATOnDmD3bt341Of+hTee+89OJ1OFBQUoLm5Gc3Nzfjc5z6H2tpaWhE7MTGBTZs2zcqp4vcwXUjOCOPGIGOJLNL8OcBkMtFNwPr16/Gzn/0MAwMDGB4epkK6FosF8XgcbrebbgLD4TBSqRTy8/NpqJN4duVyOWKxGC2AIrIgHMfR95C5zOv10nZrfr8fjz32GJuTbgC+8e92u6kmn9lsxrFjx2gYes+ePXA4HIhEIti1a1daVSnB7Xbj7NmzmJiYgM1mQ2VlJXp6eiCRSKh4tlQqhUwmQzKZhM/nQywWg0KhgEwmo/mOqVQK0WgUarUawWAQfr+fynio1Wp4PB4A1xwMEokEBQUFtPNGXl4eampqMDExgQsXLoDjOFRVVWF8fJyKiEejURrC12q1GB0dRV1dXZonrbi4mEamzpw5g7Nnz87aIABI068zm82w2+1obW2l0jakyvlW5Vouymj73e9+h2eeeQa/+MUvaBPhZ599Fv/wD/+An/3sZ/jSl760LCd5o8RiMZw7dw5/8Rd/kfb4fffdh/fff3+Fzmpx8ENJzc3NOHnyJK0QdTqdGBwcpCEJIipIQlmkJJ+I6ZIKsIqKCuzevZtOmiaTKa0/G2NlWejNzxfEtNvtaWEN8lxHRweCwSAaGhrw5JNP0mpAsVhMc99IRSiZVIFrkjDEu2I2m6k+EtHh8vl8mJqawtjYGPx+P5RKJV2grVYramtrMT4+DplMBrPZTOVHjhw5QheQiYkJcByXFophm4WVgV+MQDyhANDY2Eivh8VioekwUqkURUVFKCwshNvtpsVOMzMztCUWEd8luZxCoZCG2lUqFYRCIX2O4Ha70dXVhU2bNsFoNEKhUKTpEZKqdv7rb9fw+Y2QmVu1b98+AMC+fftmFQDxO+2QseF0OqFUKqHX63H33XfjwIEDaG1txTvvvIOXX34Zjz32GNV0Ky0txdGjR+HxeLB9+3ba75Yk/MvlcvT19aGwsJAaZ3q9nhpyxMOm0Wggl8shl8sRj8dpqJ4IPG/duhWFhYVoa2uDUCiETCZDfn4+wuEwzp8/j2QyiVAoRMfJ4OAgYrEY2tra8MQTT2D79u1IJpNUkFyr1aY1jSfVo2RzbLPZMDExQT1t/Nw/flvB5RqXCzbazp07h0cffRTf/e538fDDD9PH1Wo1nn32Wfzd3/0dPv/5z8+Z37YSjI2NIZlMoqioKO3xoqIiWsK8GiHhLEIwGITb7cbJkyfh9XohEokwOjqKqakpWg1KtJEyCxBSqRT1hJjNZmg0GnqTHDhwgHplmCdj9bDQpFV+OJQf1pBKpbDb7ZBIJDAajQCuycL853/+JwBALpejp6cHvb29tGWMxWJBIpFALBaDUqmETCZDIBCgIssf+chHaGjV7/fTcnqyEJOGzWq1GkqlEl1dXVAqlbDZbHj44Yfh8/lw7NgxqqKuVquxfft2AKDFCPwSe7YArxyZ+Tfnz59HS0sLUqkUNBoNLBYL1Go1NBoNBAIBpFIp4vE4ent7ae/igoICuglQqVTgOI4a6AKBAPn5+RCJRNQYI68loqhk3pqenoZEIoFIJIJKpZqVY+t0OvHOO+8gFArhscceYxvP65B5bQ8cOEDD4W63m3papVIpXn31VfT29qK3t5cay1arFZWVlSgtLaWbL6lUilOnTsHlcsHr9eLxxx+HVCrFww8/DJFIhDfffBNyuZzmt586dQpTU1M0lWd8fBxyuRxGoxEymYyGPElF/Lp16zA+Pk47LwwPD1PPXHFxMe655x4MDAwgHo9TTTaZTIZYLEaFn0nHF7FYTDu9EJFyg8GAhx9+mOqckk0wKcYgc6TL5aJe/+eff37e33Y5i2UWbLRt374d4XA463N/+7d/i7/9279dspNaajKrJzmOm1fo91aV2s+F0+nEuXPn0pq6k6TsUCiEZDKJ4eFhJJNJKpibTCapFhcAutslfxcXF+PAgQMYGhpCMBjEhQsXUFJSAqvVisbGxlv23RjXZzFJq/wSfjLJkMpigUCAHTt2wOv14s0336TGeXV1NZWEIYaV2WzGhQsX0N/fD7lcTvPeEokEJiYmMDIygkcffRSXLl3C73//e0xNTUEoFCI/Px+hUAjRaBTT09NQKpU4deoU/H4/iouL8cADDwC4NqYfe+yxtHZF5HHy/3PnzoHjOCaqusJkejvtdjv6+/shk8lQW1uLWCyG6urqtPB6IpGAWq1GaWkpCgoKIBaLMTg4iHg8DoPBQPUAiSjzyMgI7V9qMBhQWVlJO3J4PB74/X4IBALodDps2bIFjY2N9JhHjhwBcM24l0ql6OzspAstM9rm53otl4hhdeTIEdrVgm8sZ8t3Jp56j8eDgYEBOJ1O5OfnU2NHLpdjamoK0WgUBw4cQCQSoUZWIBBAfn4+1V8TCAQIBoPQaDS00C4WiyGRSODSpUt0zSMdOIxGIzWwxGIxSkpKqLdOJBIhEAgAuNbGkVQmf/zjH6etuchcSXLWiHgw0bEjBXrEQOX3Z83WaSTzseVwhixb79HVQGFhIYRC4Syv2ujo6CzvG59bUWo/H1arFeXl5fjtb38Lh8OBVCpFE7tnZmYQCAToLoKUIBPRXKK9ptVqUVRUBLFYDIFAgJ07d2L//v1ob29HZ2cn8vPz6Q3GFsjVxY2ECDPfw1e893q9OHXqFCYmJqDVarFv3z6YTCYUFBTQxO9QKITNmzdj3bp1tDKZJAKHQiH4fD5UVFQgHo+jpaUFExMTAEBD8iTckUqlYLfbqXo5qWhtaWlBb28v/uzP/oxuEvhhOKvVSj1vUqkUra2tLOS1wmTKQBDxXVLkQprDj4+Po7u7GwaDAffddx9kMhlOnjwJlUoF4NoYKS0tRU9PD03diMfjSKVSEAqFEAgEWL9+Perq6tDU1ITOzk5MTk5CKpVCo9GgoKAAZrMZPp8PDocDHo+HLqJEwqGoqOiGK/sY2cPMJpOJGstkDPA94vxxQXqG5ufnQ6lUIhwOIxgMwmg0orKyEqFQCG+88Qa0Wi3MZjNKS0uh1WqhUCgQDodx6dIluFwuRCIRKg7ucrmoU4JUowPXctQqKythsVjQ39+PiYkJpFIp6PV62o5RpVJBr9cjEokgGAxiZmYGVVVVUKvVVHqMiPySqITJZMJDDz2Ulp9GxMzJeRENy2zrZjYttuVgTRttEokE27dvx9tvv41PfepT9PG3334bn/jEJ+Z8360otZ8Ps9kMnU6H/v5+eL1eqFQqyOVyBAIB2ryZL5ILfCiam0qloFQqsXnzZtTW1qKuri7tpjMYDPj4xz8+q6yZsXbg75jJJFtVVQWTyURDW3feeSdN+nU4HBgaGoJEIsGePXsgkUiQn5+PK1eu4OrVqxCLxUgkEjhz5gzVXUqlUlQjiYy9zZs30x03SX4mk9jFixcxPj4Ou91Oz41fBUvax/CrS8l3YawMJMRTUVFB5RxIgQvJGQqHw3SxValU2LVrFwKBANrb2zE9PY1169YhGo2io6OD5t0KBAJqrJFCKBJeFYvF4DiOelPy8vKgUqlw7NgxxGIxAKC6WqRCMZFIoKCgAC6Xa1bOGx+W/zY3meE80lkl87fie/GJR9xsNuPxxx9HIpFASUkJ7YZAPG4kXwy45kjZtGkTtm3bBuDDKFhxcTFGR0cxOTkJuVyOmZkZSCQS6HQ6FBcXo7u7G0KhkM475eXl2Lx5M8bHx3Hp0iW6eSwpKUFnZycCgQCdX86dOwebzYbp6Wls2rQJbW1taGlpgVKpRCgUwsTEBBXb5W8WzWYzjh49itOnT1PZIv7vcr3fcLlY00YbAHz1q1/FZz/7WdhsNjQ2NuLQoUMYHBzEf/kv/2XO99yKUntC5m6W/2+ZTAapVEqTeYnRlmmw5eXl0ZJoor01NTVFG/KSXo9865+FEdY2ZFx1dXXB4XDAZDLRJGHSfH56eprmdSSTSUQiEfT396OkpARlZWU4e/YsbfitVqvR1NSEmZkZ2qpIKBSiuLgYIpEIYrEYmzZtwtWrV6FWq2E0GsFxHE1k/tjHPobjx4/D4XBQ44xfBcuf7K4XHmaL760h8zrY7XYcP34cqVQKJSUlqK+vh8lkwvj4OEZHR1FZWYlgMAidTof8/HxasEBC58CHzepnZmZgMplQU1NDuyv4/X4IhUJs2LCBRhUSiQTefPNNSCQSrF+/HiUlJTAYDNDpdAiFQqiqqgIAeDwenDt3bt7QOhPlTYd/H2Ve62yeIqIPWl5eTteV8+fPIxqNIhqNoqamBh6PB+FwGCaTCQaDgRr5sVgMBQUF1PvlcDjgcrloH9uKigrI5XKoVCqIRCIIBAKUl5dj9+7dsFqtEIvF0Gg08Hg8UCgUKC0txf79+zEwMIC+vj4kEgns3bsX69atw7vvvguJRAKxWIz29nb4fD5cuXIFd911F1wuF9599104HA5YrVZYLBaYzWbs3LkTgUAAv//977F9+3Y89NBDcLvdOHbsGKLRKPXkzpdvm23eWo65as0bbY899hj8fj/+9m//Fh6PB1u2bMFvf/vbVeNhIjuXlpYWANeKJ0ZGRiASiaDX6zE+Po68vDyqPE7+40PK5UtKSmhyZzgcxsjICCYnJ9HX18fyhNY4mZMDWaB6enowMTEBi8WS5l0l3hKn0wm5XI7t27fT5s0cx6GgoIDmK0WjUfT19WF8fBwKhQLl5eWYnJykOW3V1dVIJBLQaDS46667oFKpUFxcDJPJRKUkiKGYmeR7PSMt26SXufgyI2554OdLEsO6u7sbeXl50Gg0s9rcEUFkq9UKqVSKX//617QlUCqVgkqlgs1mw5UrVzA5OUn7Ta5btw5dXV24evUqbDYbamtrEQqF8NZbbyESiSCVStFxJxQK0d/fT/tG8g1KYP7IARPlTYd/H/GrhPlkygiRXqM+nw+/+c1vEAgEsG3bNtTV1cFoNFLxbrIZzM/PR1FREdatW4c77rgD27dvh8PhwMDAAC5fvgyRSESLBiQSCcrKyqBSqTA6OkoL7vR6PS2aO3r0KK1cjkaj+MhHPoKRkREUFhaipKQEEokESqUSbrcb//Iv/wKVSgWTyYSNGzdienoa8Xicvqa4uBh79uyhhtiRI0fQ19eX9vuoVCpUVFQsqMjF6/VSj/Jcc1W233Wxc9aaN9oA4Omnn8bTTz+90qeRFSLNcPr0aYyMjCCZTNJG70T3zuPxYGZmBiqViib0chwHmUwGmUyGqakpWsFHWnBYLBbU19dDqVTS4zDWLpmTA7/9Sl5eHvx+Py5dugSNRkMNJtJChki+AKAdFeLxOEpKSqhxFo/HIZfLIZFIEIvFUFZWBplMRlXHiUFGjtvW1ga9Xo9HHnmELvykNyqAtHPN3NVnls4Txf54PJ62UPMXbOLRWw0dWNYaZGN58eJF5OXloby8nPaP7erqoq2uvF5vmhdVrVbjl7/8JTiOo9INyWQSWq2W9jF1u93Q6XRwOp0YGxvD6dOnaaFCIpGAQCCgkQ+9Xk813SwWS1pRC/+6Z5OqAJicDB/iNSPyPUTaJ5O5OlGQ95B0iLq6OthsNphMJvj9fnR1dVHnAhHyHh8fx7lz5zAwMIDp6WkUFhZSzbVQKASdTgeNRoPe3l643W4ago1EIujq6sJ7772HiYkJbNy4kXrrSL/jYDCIS5cuwev1QiwWY2hoCACg0Wjw9a9/HcC1AkO1Wo0HH3wQDocDcrk8zZnBz4l0u92wWq249957F2xY2e12XLhwAcCHkazMuYqfK0cKHpnRliPwLe2DBw+ira0Nw8PDVMaDtIUZHR2lOwSSW5SXlweRSET1sN5//32MjIzQcFdlZSWqq6sRjUZpeyM2Wa1t5gpvkB2yw+HA9PQ0iouLqSQImbg2btwI4JrBdvHiRUxOTqKyshIbN26ERCLB1NQU7YTg8XgwNDSEUCiEP/zDP4TRaITFYoHFYkFzczN6enpw8uRJDA0NIR6P4zOf+QyAaxMa6VVosVjSdI8ykUqlmJ6epm26AKClpQX9/f0ArrVaI+PZ7XbD4XDMWdnOuHnIxlIqlaKwsBD33nsvgGvXdGJiAuFwmHpsgfQFa+/evVAoFOjr66MyIMPDwygqKkIgEIBarUZPTw/UajVGR0epPphcLodarUZhYSFUKhVkMhmKioqoZpvL5YLL5aJjim+02e12nDx5kkpVAMunmZWrEK9ZPB6nhSVzhUP5HVf4Bo7f74fP54PBYEAwGITL5aIeNlIJbrFYEIlEMDo6CgB4//33EQqFUFdXh+3bt9P+pKRDQX9/P06dOoVEIgGDwYB169ahuroa586dw8jICAKBAEQiETweDxwOB7Zs2YJt27ZBqVTi5MmTUCgUyMvLw65du6iwdyAQgE6no0V7FouFfsfMoieDwUC7IczlfZwLfvEXYa4NaWZv08XAjLYVgt/wnVTbkF0FScIkelik0ioWi4HjOAiFQuj1eiiVSohEItTX1+PKlSsQCoXYtWsXtm7diomJCdr8FmA5HGudzFAWf5IlxhuRTLDb7ejs7AQA1NTUpHVQIPIyY2NjKCoqouECjuNQXl6OmZkZxGIxquvW2dmJiYkJVFdXY2pqCoODg5DL5VAoFJiensYPf/hD7NixAz09PRgcHMS6desAAMPDwxCLxdQ7xx+fJHQbjUbTFPuJ94QPMRaqq6tZ9eAyQWQeiAFExEaJF0yr1dKm8uQakE2pzWajRrrNZkNzczPUajXdQIyNjaGlpQWhUAhFRUWQSqU02Xz9+vWorKzE1NQUiouLsX//fjQ3N2Nqagpnz57F5OQklWQgXr6GhgbYbDbaPq2pqYl65OaSargd4RcBzdVxhBh2FRUVWeUtvvjFLwJI9x6RXsUKhYJ6sS5evIj169dj3bp10Ov16O7uhlqtRlFREdrb2+HxeGhD9wsXLlCNPtLyDABtUs9xHNra2uDxeKBUKnH33XfT81AqlTh37hytSq2vr8fExAQNtRID1W630z6qpGUV+U7832W+Cna+6D35/fgC1df73W9mA8GMtlsIqeQjKuAkGbyrqwt9fX0QiURIJBJU90YkEtFKUZFIRHPXFAoFzGYzrSoliZzbtm2jQomZA4pxe3A9VW7St7a4uJgaOvzJQ6/X480334RCoYBarcb69evR3d0NsViMkZERVFZWora2FhaLBWKxGG63GwBQXV2N8vJyJJNJ6HQ6rFu3Dj09PbTqS6FQoKysjJbbcxyXtqnwer10Yc+We2QymVBbWwuTyTRnAjXf+8Y8K0sLvyIZAK2i488x84W4iRG+f/9+ANdC3h988AFCoRDN2zUYDNi0aRPUajUikQiMRiMqKioAXKsydLlc2L9/P7RaLex2O/r6+qDX6zE2NkY9OWThNJlMOHz4MDo7O9NatjGJo2ssJFS8kBzAzHuRGG8kTYf83lu3bsXBgwfh9Xrx6quvIhAIoKOjA5FIBDqdDhUVFRAIBCguLobP56Mt0S5fvkwVEe68804MDw/D4/EgEAggFAqhp6eHhnbJmGxtbUVraytqa2tx//3309ZVRE+QnBv/e2VGKK5XwZ7ZI3mu193I7349mNF2C7Hb7fjVr36F6elpbNiwARqNBkKhEEVFRejt7aWuX7lcDp1Oh0gkglAoRBWe9Xo9UqkU6urqsG7dOgiFQkSjUQwNDaGgoADV1dV0QLCJ6fZkPlVu4k0zGo2zPA5kMvH5fLQ9UX19PbRaLfbu3UuV6oeGhuhmIRKJYPfu3dDpdFSUUiQSwe12Y3R0lCqWl5eXo66uLm0DQRZ8l8uFrq4ufPDBBzTHg4Q/+V5D/nfx+XxpYbHMsc6qBJef6y0+/HFINqck3K3VapGfn4/8/Hz4fD7IZDKqjUmEVauqqjA9PY3f//73kMlk0Ol0AD70DF+8eBFFRUWor69HfX092traIBaLaTUj8Sz39PRQmRmiMffd734XBoMBBw4cYONjHhZiYJB7jXg8gQ8LUkiXFv58Y7fbMTQ0hPHxcezYsQPr1q3DxMQEenp6cOrUKSrQfPXqVVqdLhAIYDQacffddyMYDOL//b//h8nJSYhEIly6dAmHDx/GE088Qc/18OHD8Hg8qKmpoZqQ0WgUwWCQGlmZhXlE5Js8dj2DdSGeyuWCGW23GKL0fPbsWVitVpoUTkJLLpeLCpcS0dJoNIpkMgmRSIR7770X69atg1gspm7ocDgMpVJ5y/XkGKuPbBMtcfVLpVLqyZpvMlYqlaiuroZarUZ+fj7Ky8vR2NiII0eOIBgMQiAQpEmGkDwWfvFDZ2cnhEIhtFotdDodXC4XAoEAfD4fPQeSV+fxeBCLxehuOVuybmYSdDAYhMPhSKtYXOiEy1h++OF6u91OZSFI0cj4+Di0Wi2i0SiKi4thsVjQ19dHE8m1Wi3Gxsbg8Xig1WqxefNmAKDespqaGqpiD1xbdIeHh+mYAK55A0+dOkXH08GDB/Hyyy+jra0NGo0G8XichUtvEnKP+Xw+GjIHgEAggJ6eHlRUVKC+vp4aRQAwOTlJ04AOHDiAw4cPo7e3F0VFRdi7dy/V6zOZTNi6dSutFPZ6vfi///f/IhqN4rHHHgNwLXfO4/HQzz98+DDGx8dRUVFBvbrAh3myRCCaPzfcyCZvJYtamNF2CyHu2x//+Mfo7++H2+1GaWkphEIhZmZmIJPJkEgkMD09jVQqBa1WSyuo4vE4JiYmaLn85OQkqqqqUFNTg3Xr1s1qvM1gZLr6Kyoq5mxZRhY2i8UySzzSarXSMGhxcTHkcjmVk+nt7UU4HKb5Qo2NjfS9PT09KC8vB3DNy+xyuejn+3w+vPHGG4hGoygoKMBdd91FPR/kfPnJuvwSeqlUSqtYSX4K+b78781YeZxOJ0ZHRxEKhbBr1y4AoK2sSA4RCdETb5lWq4VAIIBGo6Hq9/X19Xj33Xdx9OhRTE5OwmQy4Y//+I+pVAMRVCVNx8mYeeyxx2jYnS/hIBQK0dnZSVXwGXMzX7oB3zjnc+LECYyPj6OsrCwtb8xisaCyshJXr15FKBRCU1MT1WArLS2lWmh33nkn3ZwRr9jhw4dpjq1IJKKG/PT0NFpaWugGkLSoamhoSNsAkhB9Jtk2eXwPYjaR4Rv5rZYKZrQtM5mNsBsbG/H73/8ep0+fRjQapc3ch4eHEYvFkJeXh7y8PCSTSYRCIcjlcmg0GuTl5UGpVEKr1WJ8fByJRAIKhYKWWQPMs8DIzkI8T3zZDLLAWa3X+tK63W4qBVJdXQ2DwQCHw0HlH3w+H/r6+iAWi2mxQzweRzweh8PhQH19Pc1L0Wq1OH36NNra2qjgZnV1dVpoPzNPjYRJySQ+PT0Ni8VCPYdrNW9zpXsgLwVWqxVGoxEajQbRaJQWKhANQYVCgXg8jtraWpqPC3zY4qyxsRGNjY1obW1FR0cHurq6EAwGEQqF0NbWBrVaDb/fD5VKRSsH+WOJnwsJgEo4HD16FC0tLTS/mDE3C/FEkZxHt9uNo0eP0rxrq9VKpTk2bdoEl8uFYDAIi8UClUqFaDSKiooKKBQK6kUlVZt8A8jtdtOQKMdx6OzsxMjICFQqFdUOrK2txd69e+k1Je/nbwBJsQT/u2W7p4hH3+FwzAqd3uxvdbMwo22Zydb2Y/v27Th16hSGhoYwODiI/Px8zMzMIBKJID8/H7FYjO5GS0tLsXPnTkilUkxNTUGr1VIdtx07diyoYoVxe7MQz5Pf74fL5UJ5efmcuXDESOJLiVitVrz11ls4f/48AoEAOjs7MTw8jJKSEgwPDyMvLw8AEIvFEA6HkUgk6ERoNpuxa9cuhMPhtIlzvjJ5tVqNeDxOteXWskdtpXsgLwUk5E0kXsji3traCpFIBJfLRRdr4MPCGb7hTqQnysrKYLVaMTk5ibq6OkxNTeEHP/gBTCYT7r33Xhoq56cDkNAskC4gq9frYbFYaGEMI535uiXwX0McEvw8toGBARQUFOD+++8HAJw6dQoCgYBeB61WS6uB+RsufjcgIN2L19TUBLlcjrq6OirEq1Kp4PF4wHEc1Go16uvraScjImOSbQPIFwueq5iAyH8Qo26hm8Jsv9VSe9+Y0baEZLs4VquVeiPIwmSxWFBQUID+/n6MjY0hFotBJpNBqVQiEAhALpejuLgYZWVlaGxsRElJCex2O2KxGAoLC6lAKpM4YCyExU4afJ004Ppl6hzHIRgMoqCggLYj0mq1+NznPkcbi586dQpCoRAGgwFGo5GO97a2NqhUKtjt9jn7RmYWV/BDJmuZle6BvFTwJVwIxGu4b98+qNVqSKVS6s0FQMP4/KbdTqcTHMdh69at+NKXvoSWlhaay0ZExIm8SDQaRSQSgcfjQXFx8axFl+iMkRy4tbzxvRGP7UK6JTidTqrH5vV6abu77du3Uw03i8VC1ymr9VqnjJqamjTh47nmJ35okxQ03HHHHfS10WiUymPV1dXRzaXVak1Lq8hWcJX5e/CNffK++ea9xQg4L7X3jRltS8hc7XXGx8fR2dkJg8EAk8mE5uZmRKNRqNVqDA4OguM4lJaW0p6iSqUS+/fvx969e2n+j0QioSK7crmcCgUyGNdjIZOGXq9HaWkp9Hr9rEU2cyI6f/48Xn31VahUKtTV1cHn81GtrsLCQgwODqKiogJqtRoHDx6E3W6HRCKB1WpFfX09TT4/duwYQqEQba/F97ZkSknMVVyxmN1rrkmB3MoeyEvFXBtX/v8BoL29HadPn4ZEIsGBAwfQ2tpKF06+54XofjkcDly8eJGGxokB4HQ6MTQ0hEuXLsHtdqOmpgZyuRxSqRSJRAKTk5MoKyubFeIym6/1QO3v74fdbl/TRtuNeGwXklJhtVqxfft2AJhVEETC29FolIZN58otm2t+4nvYSfESMcza2toAXOvPrVarcf78eQwODqK2tpZ2YbkemfNKpszHfBGKbN0P5vud+P+/WZjRtoSQixIMBnHo0CGIxWKEw2GcOnUKU1NTuHDhAm2Um5+fD5lMBo7jkJeXh8LCQoRCIahUKmzZsgV79+6l4R9+kid/J8k0hxgLYSGTBimSyaZdlIndbk9rexOLxajGUl1dHT72sY/Nyh1Rq9W0SwcJSZB+qGazGUajcd6QRWYohtwDmYnC8xlmTApk+cn2G2db/EZHR2mjeSC7N5dfmUjCYXq9nlYjBoNBWK1WVFZWwu/3Y3p6GkajERs3boRUKkVzczOtEs123fkK9vxxQ75Hrhj31+NGPLYLSakgoe5sZM45c3UC4HddyObpIlIi/GvR0dGB/v5+cByHmpoaiMVi/P73v8f09DR27do167yzXdts+oKLMa6ydT+Y73daynHEjLabIHOBIBfm5ZdfhtvtRm1tLbRaLYqKiuD1etHb24uRkRGIxWL8wR/8ATZu3IhkMknLmwsKClBfX48nn3ySVr6QQcy/Ofg99xirk9WURL7QCTgzjDAX/AnLZDLB6/UCAIxGY9pGg58Tw9dlU6vV2LRpE6LRKHbt2pVVnDVT/4hoHGo0GtTU1FCvDIBZ+XdzGWZMCmT5WehvTERyMw2mbKEssmmtq6ujOWh2ux2nT59GXl4e7r77bjz22GNpn9Ha2gq5XJ7W8SPz/uPnA/O9LADWlHG/Eh7bzPlkrlAjv+tCZncCkldG2kqRx2w2G21Kf+DAAdjtdlRUVEAikaTJfPCPkXlt58pjW+j1Xslccma03QTZFghSVq5Wq2EwGFBfXw8A6OzsxJUrV2gftIsXL8JiseC//tf/Cr1eD6fTiUgkgurqagDAkSNHaG9I/ueTf6+FyWQtsxaSyOeCVOQBoK2KMg2vbEbgkSNHqCgu2Xjw89iuF77UaDQoLi6eVTGamXDM/z8fdt8sPwv9jecymLK9N9Oj43a74fV6UVJSAoFAkNaknsD30pA+lUQHM1sBS+a48fl88zZSZyyOucZFtvuV/+/M/FoAcLlcmJqaomslADz44IN0M5mZNpHtGAsRxV2t6RQ5a7R9+9vfxptvvomLFy9CIpFQQVo+g4ODeOaZZ3Ds2DHI5XI8/vjj+Id/+AdIJJIlOQcyMfBvbqvVirq6OkgkEoTDYVrmPjg4CJVKBavVivHxcZw7dw6nTp3CAw88gK997Ws0d83pdOLUqVOIxWIAPlQAZ+QWayWJPBuZIUyyQVkIHMelfQb/M/liupmTpMVimZXATGAbmtwmc1HNXCwzZZPM5mu9UK/3GuKlIaFYt9tN22VljpFs4+bcuXMIBALYuHHjqlu4VzsLNXiybe5IhIlf/Zupr8afR/j9UbNtABYTReCzWtMpctZoi8ViePTRR9HY2Iif/OQns55PJpN44IEHYDAYcPLkSfj9fnz+858Hx3H4X//rfy3JOZCJwW63w+v10t5qp06dAsdxqKysRDAYxLFjx+ByuSASiaDT6aDT6dDV1QWO4zAxMZEWBvB6vVCpVJBIJFl7QzJyg1xMIl8oZHElu9Wurq60tlKZzCXcSzY8xFjLzHfhk60CkbE2yFxUMw36pqYmdHZ2QqVSAQAdQ0RDsLW1FQ6HAy0tLRAKhbR5PNEHq6+vR3V1NY1yLHQTzHEcbTZOzpOxMG7G4OFvCjOLU4D582+zeeZulNWaTpGzRtvf/M3fAABeeeWVrM+/9dZbuHLlCoaGhuig+d73vocvfOEL+Pa3v71kC6rVakVTUxN6e3upSntPTw9kMhnuvfdeHDt2DL29vUilUrBarSgtLYVSqcS+ffswODiIffv20c/KtoNkMFYbmYssEdcFZif9klZVcrmciksTiCeEGGvBYBAdHR10wuXfB9m82oy1SabEC6k2JuGwbDmMPp8PGo0GsViMtssaHh6mGl7EwOO3U+KT6RkihsFK9JZcC9yMwZO5KcyW6wh8OD/w55TMzd3NhDj5zpTFVqovJzlrtF2P1tZWbNmyJe1HPnDgAKLRKM6dO4e9e/cuyXHMZjM0Gg0mJibwwQcfYNeuXZDJZCgpKaG6QlKpFA888ADVEiKx92zFBCy8w8g1+DvfTC/JuXPnEAwGaa9IEvYgO2i+ntKhQ4dw4cIFTExM0L6UQPo9QUJgrPXQ2iXbHJitOpg8DoAWtvDHVmanGCJ0TlquzeXdI8fnH4+xOG5mHVvIe+fy5M1VtZr5usVwvc+4ns7cUht7a9Zo83q9KCoqSnusoKAAEomEVrsthmx5FuTv/fv34/Lly7h69SrC4TBqamogkUgwNTVF/1YqlfB6vYhGozT/ZzXGyxmMxTLXIguA6jiR1lj8XLjMXqikKmxycpKqnmd61khD6tWaJMxYWrLlI2UrXAGQVtjidruzSjp0dHRgdHQUTU1Nac3m+RsIPnNpb7Jxt7LM5cmbr2p1qY9FuJ7OXObjN8uqMtpeeOEFGvaciw8++GDBnQDIBM+H47isj/PJJteQ2UCWFA10dHRQde22tjY4nU4oFArs2LED/f39SCQS8Hg8tCE80aMCPszpOX/+fFY3MIORa2ROmtk8YqTFTDYJBhLaIp4S8lp+yCrTo8fumduTbFIOwNzSLyT9hHReIB603t7eWRsIwnJ4bhg3j9frpakUiyl0uBGu9xlzGXXLlRO3qoy2r3zlK/jMZz4z72vWrVu3oM8ymUw4c+ZM2mPj4+OIx+OzPHCZZJNreOqpp9IayFqtVuqKt9vtcLlctLdiT08PxGIxlEoljEYjRkZG0N3dje3bt6e55UlOj91un6UZw2CsFTI128iima2ogD/Reb1easAB83v0GLcf88lFzOeJ4ecNZ74vk+Xw3Kx2Vrs30e1249VXX0VPTw96e3vnbH+32M+82dy3hT5+s6wqo62wsBCFhYVL8lmNjY349re/TXvPAdeKE6RSKQ3ZzEU2uQapVJrWQJafl0b6Lubn50MgEGBychJerxfV1dXYvn07HA4H/TvbBMCSXRlrmUyPSLaKMAJ/onM6nXNWjN7IhLjaFyPG4phPyiHb+MjsqsFPZF9osnmu5xwv5B5Y7d5EooUqk8mgUqmWpDPQav/OfFaV0bYYBgcHEQgEMDg4iGQyiYsXLwIAKisroVQqcd9992HTpk347Gc/i7//+79HIBDAn//5n+NP/uRPrls5OpdcA1+wEfjwBm5tbcW9996LSCSCcDiMsrIyfOxjH4Ner4fNZoPNZqOTBT8/J9cnAAZjIczlEbne2L8Zr0Y23a5cmpgZSw8pRAiFQpBIJLBYLACu30mDsBaM/oV8z9XuTbRarbj33nvx8Y9/fMmcHav9O/PJWaPtr//6r/HTn/6U/r1t2zYAwPHjx7Fnzx4IhUK8+eabePrpp7Fr1640cd0bheiykbYawIdJrHV1dejr68Pg4CDuuusufPGLX0x7b2Y7DgbjdmGx4pb8xTFbntFC3uvz+XDu3DlwHEfFVHNpYmZcn/mMqLka1xP9tlgslubtXcjYWAtG/0K+51I6ExZq6C7GIF4OZ0cuOVBy1mh75ZVX5tRoI5SVlaGpqWnJjslvbstPhq6oqIDBYIBWqwXHcaioqJj1XrZgMBgLYymEOdVqNU2DIPdcLk3MjOsz3ziZqxDhoYceopXMfANhIWNjLczht/oeWOi9vBYM4ltFzhpttwqyA5BKpWhubobH46Eab3wDDgBqa2vh8/mo250PWzAYjNnM5REh/19sSIr/Xr40xGoSx2QsDfMZUfM9lzkXzyfndL08Ocb8LNTQXU6DeC2Etfkwo20e3G43Dh8+TIsZPB4PJicnAczueQYA1dXVEIvFrNUOg7FA5vKIkH9n9hK83gScbWHN1V18NumhtdTD9maZz4i6noHFH0eZ4yNXx8tqZKGG7nIaxGvtejKjbR6cTic11Orq6mgbFb5O3Hzl5gwGY36ud88shU5Wrt6X2aSHXnjhhZU5mTUGfxzNldeWbbysNa/N7UCu3v9zkbfSJ7CasVqt2Lt3Lz75yU/iwIEDafkQXq8XPp8PdrsdbrcbAKDX63H06FHo9fpbep7RaBQvvPDCLffwrdRxV/rYy83tdD3NZjMaGhpw6NChOaU9Ghsb00KnczWVJ5BwKLkvMz+DsNrH0NDQECYnJ+l/X//61xf83ttpDN3IcfnjiIwP4JpnF0DW8QJ8aOyRQrTVPoZuhrUyv2e7/zPniOU47mJYzHEFHMdxt+CccoJgMAiNRoPJyck5ZUFIuGZ6epo2JL7//vvR2Ni4oPev1HmvpeOu9LHnYynO63a7nkt9XHKPzqVyv1zHXSrYGFqZ4y5k3GR62lbrGAI+/E3m0h1d6PvX4vw+17XOhfHLwqOLhC+Im9mQmMFgrDxrLRzCuDXcajmMWwULs88ml+cIZrQtEv5N29DQsMJnw2AwMsnFhZWx8qzVcZPN03a7k8vXmhltPEikOLNqa6GQ993o+2+U2+24/GOutuj+zY4h/ntvl+u5Go6rUqkgEAhu6fHngo2h3DzuahpDwNxz41x9fzNZDfM7G0ezYTltPFwu1yxXMmN1Mzo6CoPBsNKnQWFjKDdZTTlJbAzlJqtpDAFsHOUq1xtHzGjjkUql4Ha7V92OiTE3q+1asTGUm6ym68XGUG6y2q4XG0e5CfO0MRgMBoPBYKwBmE4bg8FgMBgMRg7AjDYGg8FgMBiMHIAZbQwGg8FgMBg5ADPaGAwGg8FgMHIAZrQxGAwGg8Fg5ADMaGMwGAwGg8HIAZjRxmAwGAwGg5EDMKONwWAwGAwGIwdgRhuDwWAwGAxGDsCMNgaDwWAwGIwcgBltDAaDwWAwGDkAM9oYDAaDwWAwcgBmtDEYDAaDwWDkAMxoYzAYDAaDwcgBmNHGYDAYDAaDkQMwo43BYDAYDAYjB2BGG4PBYDAYDEYOwIw2BoPBYDAYjByAGW0MBoPBYDAYOQAz2hgMBoPBYDByAGa0MRgMBoPBYOQAOWu0fec738Edd9wBlUoFo9GIT37yk+jq6kp7DcdxeOGFF2A2myGXy7Fnzx5cvnx5hc6YwWAwGAwG48bJWaPtvffewzPPPIPTp0/j7bffRiKRwH333YepqSn6mu9+97v4/ve/j//9v/83PvjgA5hMJnz0ox9FKBRawTNnMBgMBoPBWDwCjuO4lT6JpcDn88FoNOK9997D7t27wXEczGYznnvuOXzta18DAESjURQVFeGll17Cl7/85RU+YwaDwWAwGIyFk7OetkwmJycBADqdDgDQ398Pr9eL++67j75GKpXinnvuwfvvv78i58hgMBgMBoNxo6wJo43jOHz1q1/FRz7yEWzZsgUA4PV6AQBFRUVpry0qKqLPMRgMBoPBYOQKopU+gaXgK1/5Ctrb23Hy5MlZzwkEgrS/OY6b9Rj/ubGxMUgkkrTXSKVSSKXSpT1pxpqE4ziEQiGoVKo5xxmDMR9sDDGWAjaO1iY572l79tlnceTIERw/fhwWi4U+bjKZAGCWV210dHSW940QCoVgNBqh1Wqh0Wjof9/5zneW7wsw1hShUAgajYYVuzBuGDaGGEsBG0drk5z1tHEch2effRZvvPEG3n33XZSXl6c9X15eDpPJhLfffhvbtm0DAMRiMbz33nt46aWX5v3soaEhqNVq+jfzsjEYDAaDwVhpctZoe+aZZ/Dzn/8cv/71r6FSqahHTaPRQC6XQyAQ4LnnnsOLL76IqqoqVFVV4cUXX0R+fj4ef/zxeT9brVanGW0MBoPBYOQiwWAw7W+W7pPb5KzR9qMf/QgAsGfPnrTH/+3f/g1f+MIXAADPP/88IpEInn76aYyPj2Pnzp146623oFKpluw83G43nE4nrFYrzGbzsr+Pwbhdud3uGbbYzs3tNhZuhtLS0rS/v/nNb+KFF15YmZNZZeTiOMpZo20h8nICgQAvvPDCkg3QbBfY6XSit7cXABZ10W/0fQzG7crN3jO5NkGzxXZu2Py5cFi6z9zk4jjKWaNtJch2ga1Wa9r/F8qNvo/BuF252Xsm1yZottjODZs/Fw5L95mbXBxHzGhbBJkX+Pz587Db7bDZbIteBMxmc04sHAzGamGh98xcHrVcm6DZYjs3bP5kLAW5OI6Y0TYPmZN/5gW22+24cOECAKChoWHZj89gMK5B7g2pVIpoNJp2j9jtdpw7dw7bt2/HQw89RN+TixM0g8Fg8GFG2zzMF05xu92QSCQoLy+HzWZb8GcuxhDLtXAOg3GrIPfG9PQ08vPzAaTfI2ukpTJjiWAbYMZagRlt8zBfOMXpdEIkEuHuu+9elJdtMYZYroVzGIxbBbkn+J42gs1mg8FgYPcNg8I2wIy1AjPa5mG+cMqtKEDIdny2Y2Qw5r83WRj09mS+uTHbvMvmUkYuwoy2G+RGFwa+VAj/bz6Zk4nb7YbdbqfPE/0mNtEwbmcWs+iyBXrtM583Ldt8zbxva5+1eN8zo20FuN5kkfm80+nEuXPnwHEcbDYbKioq1kTop7u7G5///OcxNjYGrVaLV155BZs2bVrp02IsMzdibGUrOFjMossW6NziRuaG60UxMscdSz9Z23R3d+Phhx/G2NgYCgoK8Nprr62J9YUZbUvMQhYkq9UKn88Hn88Ht9ud9jq32w2fzwe1Wp02qWzfvh0AbkheZLXy5S9/GU899RS+8IUv4LXXXsOTTz6J1tbWlT4txjIzlwE1l3j1O++8gwsXLkCn0+HBBx+ExWKB3W6H1Wpd8AaGLdCrj/nmyhuZG64X/cgcd9eLeqxFL83txJe//GV86Utfwp133omOjo41s77krfQJrDXIxEAmgrnwer1wOp1pr3O73WhqaqKP2e12HDlyBADw0EMP4aGHHqLh0tbWVrjd7uX7IhlwHIe77roLW7duRX5+PqqqqrB161b85V/+5Q193ujoKM6fP48nnngCAPDII4+gv78fAwMDS3jWK0cwGEz7LxqNrvQp3XLmGqdzGVtOpxN2ux1NTU30PVarFaFQCH6/H319fXA4HGhubsaFCxfQ1ta24GObzWY0NjayxXcZuNG5Ya65crnmBqvVCrVaTTfL/HOw2+2zxqrdbsfvfve7tNQUxvKwXOvLs88+i8bGRvzJn/zJmllfmKdtgSx010UWomAwiEOHDsFms6VVlxLDbHR0FEajEVKpFK2trbBarbDb7ejs7ERxcTGAa5OGQCCAwWBIO+ZKhHoEAgHef/99AIDJZMI777yDsrKytNd8+tOfRk9PT9b3/+Y3v0lryzM0NASz2QyRSEQ/v6ysDIODg1i3bt3yfIlbyO3cgojkYDocDsjlcgDp43Quj4jVakVHRwei0ShdyJ1OJ+rr6+H1ehGJRBCLxWCxWKDVahEOh/G73/0O5eXlqK6uXpL2cozFk21uEIlEcDqdNJKQbW6Ix+OIx+P493//97THrzc33IgHjAihi8ViiMViOJ3OtBCpz+fLOl4EAsGN/SiMRcHWl4XDjLYFstBFgCxIhw4dosK7JpOJ5uXY7Xb09PRAIBDg4x//OKLRKP1c4JoKenV1NWw2G/x+P3w+H6RSaVr3hflCPcvt0vd4PIjH47NuKAB47bXXFvVZmRPiWtLWup1bEBGPWSgUQk1NzYJDkmazGQcPHqTjl4jkJhIJCIVCiMVieDweJBIJxONxhMNhCIVC+Hw+iMVi+hkAC4dm41bODa2trWnz5VLODWR8dXR04ODBg/OGNcnrW1pa0N/fD71ej7KyMno/kvk68z0Ak47JBltfVh5mtC2Q+fLQskEEd202W5oQaDQahUAggMVioYnV5HMtFgudJMxmM6qrqyEWixGNRtHR0UGNwKeeemrO4y+3h6G9vR3btm3L+txidkKlpaVwuVxIJBIQiUTgOA5DQ0NZb9Zc5HZuQWS1WtPGf7ZxeP78eTQ3N8NgMODAgQP0NXwvnN/vh8PhoPdNOBxGXl4enYzNZjPuvfde2Gy2WVptjNncyrkh02heyrkh0yM7X1UoAPT29sJgMECr1VJPW1tbG90ENzQ0ZPX+MumY2aym9YV4asViMX7/+9/fNutLThttJ06cwN///d/j3Llz8Hg8eOONN/DJT36SPs9xHP7mb/4Ghw4dwvj4OHbu3Il/+qd/wubNmxd9LLPZDIPBQHMw5kqgBkD//dRTT9HngQ+FQHft2pVWCUc+NxqNorGxkb6HX5BAdoZWq5WGU+cKMZH/L8euaHh4GBaLJetzi9kJGY1GbNu2DYcPH8YXvvAFvP7661i3bl3Ou64Z1+4VfvuobJAcIq1WC71en7ZZIej1eigUCkQiEUgkEgiFQsRiMRgMBshkMphMplnpBwQWHp3Ncnsf+XNDpsGzlHMD3yPLTy/he1nJRlgqlWJ6epqOEzInvvnmm7h8+TImJibmFEdnhQizuZVjKJPMMXTkyBHari4zHWW51pfVMCZy2mibmppCfX09vvjFL+KRRx6Z9fx3v/tdfP/738crr7yCDRs24Fvf+hY++tGPoqurCyqVatHH46uw8yeKbDs7ArnAxBgjkIvP/1z+jeB0OhEMBlFRUUEnwIaGhllhh0z4k+WRI0fobpJ4/DINy8UOvF27duE73/kOnnjiCRw+fHhR783kxz/+Mb7whS/gxRdfhFqtxk9/+tOb+jxG7mCz2XDmzBn09/fjV7/6FdavXw+j0YiDBw/C6/XS6tDdu3ejp6cHer0ewDXvG8dxmJ6ehkqlmrPAg4VHZ7PcnqMbnRuyLYQLnRtcLtcs3Ur+Rpi0OSPjhPwGDocDw8PDMBgMc54XM/xns9gxtFgjZ6FjyO12w+Fw0GufjeVYX1bDmMhpo+3+++/H/fffn/U5juPwgx/8AN/4xjfw8MMPAwB++tOfoqioCD//+c/x5S9/edHHIwM203DiLxAdHR3o6OiAwWCY9wJnNrUmz/N1qUiFHf+xTDmQ690UJJTEzwMxmUw3LNC7ceNGdHd3L+o9833WWijBZqRDChECgQB0Oh0sFgtcLheAD9MGotEoEokEhoeHEYvFIJfL4ff7YTKZ4HA40NraisbGRtx9990QiUT0XiBFPBqNhhYfZIOFtm49C5kb5pJ1yZwnN27ciNdff33WazOLXLJVIvOjFJs2bUI0GoVUKsWRI0fQ29uLeDyO+vp6PPXUU/Ma9czwv3kWa+QsdH1xOp2Qy+WoqamZs/f3cqwvq2FM5LTRNh/9/f3wer2477776GNSqRT33HMP3n///Rsy2giZF46/QDQ1NSEYDMLpdMJms2F6enrOJPRsiZFkkFdUVFDvHDESya6ReN/4r/f5fLNCTBaLBV6vFxaLBSaTieaBAFgzAr2MlYffsYN4dO12O1wuFx2Dw8PD4DiO5qmpVCqIRCJIpVJoNBoYDAY4HA6cOXMGYrEYsVgMYrE47V5zOp0YHR1FKBTCY489tqiev4xbz0INtLkWwswIhtPphM/nw/Hjx+HxeOgcRt5Hoh9ESkkqldKcytbWVtjtdpw/fx6JRAJ+vx9/9md/tqCiMkZ2rucwyKY5ulQEg0G4XC7s27dvlsNjPq/eXKlMcxWzZIp68wtX5ktTWk7WrNHm9XoBAEVFRWmPFxUVXVdD7XrMdzMTq59Uv0WjUWoo8QfMXJVJ/AmMVIyS3WS25tjk3w6Hg4ZCST5RNBqloYHMyjw2GTFuFjKefT4flachaLVapFIpmvxdXl4OnU6Hs2fP4sSJE5BKpdizZw84joNGo0F+fj44jsOlS5cglUohFAoxNjYGAGmpBUajERqN5rbQvcsM/Uil0pyqQp7PQCMpJlKplHphpVLpnB0LSGSivLwc+fn5iEQicLlcMJlMNMRJjhUMBnH69GmUlJSkSXvYbDYUFBSgu7sbKpUKdrsdBoMha7eNtcRyjCMiXcUPO2eSmeIz1+fcSCs68tn8tXwhXr3MjcA777yTdRNIXud2uzE1NUUjYos51nKxZo02Qray3+tp79zMIG9oaKC5Z8QtTyYon89HP5ssRJlq3HxL/tVXX6VFDKSogcAfwI2NjfD5fLOEA7NVvK7FSYmxMpCJS61Wp4UogsEglEoljEYjpqenIRaLaSXt8PAwRkdHkZ+fj3g8TguHLBYLgsEgWltbEYlEkEqlqOgpmSwzNx5rnZXW+rvZpOu5iqIaGxup58vlciEej0OpVMLr9dJKeSLlQeZCkr+k0+mwc+dO9PT0YHx8HCMjI7Tynh9CFwqFEAgE9NjEE7xp0ybE43EYjUYASItgAGszd205xpHT6aTr21z34lweVP5YyEwTut4xSYoP+Uz+vLOQ0CX/NV6vF52dnYhGo7Db7WlGG3kdkRbKPP/l8iAuhDVrtJlMJgDXPG5ErBa4ppSc6X3LZK5BvphJjL+jJB43fv6F2+3G4cOH4fF4UFdXh+rqarrjI+/hOI7uEjNdsZk7BgDYvn37rPg+mQgzBXqB1VEJw1j9zDVO+BMgeZzvHVar1dST0tzcjMuXL0MoFMJsNoPjOHg8HjgcDuzfvx8NDQ1ob29HR0cHxGIxSkpKkJeXl/X4t8tYXWmtv5v1JvCvVbY84I6ODnAch2g0itraWtTX18Nut2N0dBRNTU3UcCP5S8XFxfD7/RAIBKisrMT09DTUajWcTie8Xi8OHjwIABCLxdiyZQv2799PQ6Ovvvoq+vv7UVJSgsLCQmi1WhrKzxbBWEssxzjKdu9nMte9mrl2ZaYJZd7vZE5RKpVwuVxQqVSora2d5cjgH2+uOYv/GqfTiZqaGoRCoVlrLPmPePXmKxK81axZo628vBwmkwlvv/021X2JxWJ477338NJLL8373rkG+WImMX7RAjHE+JpVra2t8Hg88Hg8iMViCIfDiEQi6O7uRiAQQEVFBSorK6lnYb48EP4g8nq9aGpqotpVc+2GMjszZBOpZDCA7LlFmRsIr9cLl8tFE8TJLtRut+PMmTO4cOECwuEwiouLUVFRAZVKBZ/PRxOFXS4XTpw4gYGBARQVFWHXrl1QKBSwWCyromJrJVhprb+bSbrOzAkihVX8yvuDBw/i8OHDiMfj0Ov1aGhogMlkomE3EoVwOByIRCIwGAxob2/H5OQk7r77brrRbW5uRl9fH8RiMXw+HzweD/bu3QuTyYQjR47A7/djfHwc4XAYAoEA27Zto3Px7TCelmMc3cxvxx9XVqt1VppQ5v1ut9tx4cIFqNVqWCwWup7xBeeJgH02RQf+efK9rhaLBffeey9dQ7O9Ptv3XOlihJw22sLhcJrYXn9/Py5evAidToeysjI899xzePHFF1FVVYWqqiq8+OKLyM/Px+OPPz7v5841yK93sbIlL/I9bvxQqFQqRXFxMQ0TkfwMEkOvrKxM2wmSnnnnz5+nn50pI0JCA0SE12azpRmLmTkBo6Oj6OzsBICsIpUMBjB7g8Cf3PjC0S6XCx6PB2KxGH6/HwMDAwgEApiZmQEA1NfXQ61WY2hoCBaLBXq9Hm1tbejt7cW7774Lv9+PRCKBVCqFeDxO8zGJ1hbZPDEP8a3hZhbmTEHxSCSC6upqAEhLEamurk4LP/FD4MFgEF//+tfR19eH6upqVFdX06gJSXExmUyorq7G1NQUNdhIODUQCODEiRPQaDT46Ec/Cq/Xi3379uHAgQP0eGws3Xoyx1VmYn/mOmuz2TAxMQGxWAylUknlf4gxNzExAQDUWLfZbHOGL51OJ86dO4dgMEgrT+dSa5hrTCzEo7ec5LTRZrfbsXfvXvr3V7/6VQDA5z//ebzyyit4/vnnEYlE8PTTT1Nx3bfeeuuGNNqA+ScxfmKmVCqlORKkSXVmeMDlclHjLB6Po6enBz09PaiursbMzAz27dtHW1xVVFRQ3SESas3M+yADXyKRoLy8nHra+BpF/JwAm81G8zqMRuOaDQ0wbp75dpvBYBDvv/8+5HI55HI5ioqKaHgrGAyiqKgIWq0WyWQSEomEhr8KCgpgNpsRiUTQ1tYGmUyGsrIymM1mpFIpjIyM4PLlyxgdHUVlZSXNOyE76tvR85ZLEEM7Ho/j9OnTAEATuvmV66S6OFP70my+1gqwq6sLoVAIEokENpsN4XAYbW1t6O/vp30lSVEXCcUTb++FCxcwODiITZs24Z577pkVAl1stIEZeEsPv5iJb8xnGnLV1dU4d+4c7YBA1BmAa+Hw1tZWuN1u1NfXU4NfrVanSQ+RFpDl5eU4e/YsRkdHYbfbqSJDploDgKzGGYA058etnoty2mgj1WdzIRAI8MILL9yS5N3MxExivROkUincbjcSiQS98BzHQa/Xw2az4dvf/naa1Ad/l0AmI6I7xM/74LfwcTqdCIVC0Gq1NKePvP/IkSMIBAKIRCIArlWWsmpSxmLJNOCcTic8Hg9CoRBKS0tRW1tL28eQlkGRSARTU1Nob2+Hz+dDNBrF1NQUent7cfXqVZhMJmzevBk2mw0CgQAnTpyg4dSZmRlUVlZS7zV/4mQbjZVnLkOGbBg7OjqQl5cHlUqVlnNLog4khePIkSOIxWKoqqrC/v374XK5EA6HoVarEQqF6Lhra2uD0+nEzMwMtm/fnjYGTCYTTCYTAoEARkdHkUqloFKpaMvATGkkMmeHQiFoNJrrRhvYZmHp4UtWeb3eNLFj/nMOhwM9PT2Ix+PYsGEDDAYD1Go1zWP0+XwAgJ6eHmoTOBwOeDweTE5OQqPRwOFwwGAwwOfzQalUIhQK4Y477kA0GsXp06fR0tKC/fv3Z51fMlNE+M6PWy2fldNG22qBVJOQsnKn00k9XPydRDgcxtTUFI2pl5eXIxAI0NLzgYEByGSyNOOOhDyJYRaNRmGz2ajHrbm5GV6vFyaTCfv374dUKkVPTw9efvllPPbYY2hsbMSRI0fwxhtvQKvVor6+HrFYDFKp9LbJ6WAsDdl2m/F4HDMzMxAIBBCLxXRjYLVaEYvFqGJ9UVER1q9fT0MbO3fuRHt7OyQSCRXP7e/vx/DwMK5evYqZmRkYjUZUVVXBZrPRLgls3K4OsnlI+NckGAyio6MDZWVlqKioSGs39j//5//Em2++idLSUtTV1eH999/H5cuXEYvFMD09Da1Wi87OTkxOTiIYDCIYDOLtt9/GF7/4Rezbtw8ul4suwn6/Hz6fD3K5nB67v78fHMehoaEBpaWl1AtXUVEBn89HDQHg2sLMbys4H2yzsHCyGfPZHiO/pdvtTpPwIGsqyXtVKBQIBAIYHByE1+tFf38/ampqcO+996KxsRH79++H3+9Hf38/uru7IZPJIJFIkJ+fD6VSieHhYfT29kIul8NsNkMikcBisdA0qF/96lcYHx+HVqulhiD/nPkpSiSvjmw4SO4uMHev5aWEGW1LQLZqEjLgyKSWTRYhHo9jeHgYfX19UCqV2L59O5RKJTXuyKTY2dlJczmIN454yRwOBzo7O2kV1sGDB/Hyyy/j0qVLcLlc+NznPgeHwwGxWIzi4mLodDoqTEg8g2tZo4hxY2ROsPzwP9n5ejweDA8PY3BwkFZ89vT0wO12o6qqCiqVCsPDw1Cr1dDr9RAKhZiamqITZX19PYLBICorK5FIJCAQCBAMBhEKhVBUVIRPf/rTaRWE/FA/Y2Xh66Zt3LhxVi4QmRPFYnFalZ/b7cavf/1rtLe3o7u7G5FIBOPj49TwI4LKbW1tEAqFWLduHcLhMAoKCujm9nOf+xyOHTuG7u5uOBwOaDQaFBcX016jCoUCBoMBBw4coB4S0teZJK+TMFtFRcWCRZrZZmHhZPNK8j1nBJvNhsbGRgSDQVy+fBmXL1/G+fPn4XK5cPz4cQwMDCAWi0Gr1cJsNiMQCCAUCmF4eBharTZNTisUCuHKlSuQSqVIJpNQq9XYsmUL9djL5XJUVVVBr9fD7/dDpVJRo3H37t0YHR1NEwfndw/ipyhlRqnI6wUCQVaVhqWGGW1LQOYOzGy+1vvObrfTBFy+Bc633kkYMxwO49SpUxAIBNBqtUgkErNKs4mbn7/Tq6+vp94Loj0jFouRSqXg9Xrxve99D1u3boXNZqM7CGIMZmoUkeeYAXf7kulBIeGkrq6utM1DW1sbLl26hHA4TL0jbrcbvb29CIVCcDqdKC8vR1lZGWQyGYRCIa5evQq/3w+NRoO2tjbodDrU1NRg586ddGxrtVrk5eXRUBeBeTlWHxzHQafTZc0F4ouMZ/ZplkgkkMlkkEqldEFMpVJIJBIoKSlBNBpFcXExQqEQPv3pT8PtdqOnpwfvvPMO8vLy6NxWVFSEbdu20fnP6XTSLhzV1dVZ5WlI2DaRSMzbrYaxcDI7ohCpDCD9fiX/9vl8OHfuHDiOo0aOWq2GUCjE4OAgfvrTn+Lq1avo6+tDMplEaWkprFYrpqamcOedd2J0dBQ+n4/muhKtyP7+fgQCAej1ehQWFiKVSiGVSkGj0cBsNmPHjh2wWCxU/5Tk0ALAfffdB6fTSeec+boHBYNBmppE3s8f78sNM9qWgLkStTs6OgBglvXN33mQC3/o0CG43W5MT0+jpqYGXq8X//mf/4mKigooFAraj+2JJ54AAOr1IB0QyGLb0tKCwcFBFBUVYWRkBBMTE+jv70dhYWHaQCSLJN/Tdj1pB8baI7Pi2efzwel00s2G3+/H8ePHaTKvwWCA3++nYdBwOIxkMgmDwQCtVguRSIRIJIJoNIr+/n5s2LABeXl5mJqaQkFBAUwmE3Q6HdatWweHw4GZmRloNBo66fl8PlRUVAAADZfwi20Yt4brJd1bLBYaniTC3fwqX758B0n0t9lsaG1thVarxR133IG+vj4MDg5CoVBAq9Wiq6sL58+fh0AgAMdxiMViNEz2wQcfwOv1Yt26dSgoKEAsFoPFYsGBAwdgt9vh9/sRiUTAcRxcLhd27doFYPbcbLVaqadYLpfP6bllRQcLJ5unKfN35/+e2Qw5q9WK2tpadHd3o6enB1evXsX4+DjkcjkUCgVGRkYQCASgVCphMpkgl8upMdXV1YWzZ88iHo9DIpFAoVBAJBKhoKAADQ0N1KgnaUWBQGBW5Iu/9jU2NuLgwYPUEOXrxXV0dGBwcBB+vx8AqJc2s4Vktu+9VOOIGW3LCLHas1nfZKC3tLSguroaSqUSZrMZFRUVKCgowLlz5+D3+zE1NQWFQgG3242xsTH4/X4UFRVhaGgIk5OTaGlpwcsvv4xkMomCggJaFk8ScLu7uzE5OYlLly5hYGAAkUgEBQUF2LNnDwwGA0wmEw1/8cukWdLt7QFfmiE/P58K4gLXJiKScxmNRrFlyxa899576Ovrw+TkJORyOQKBAKLRKMbGxqBWqyGRSGA0GqnKPZH+EAgE2L17Nz7xiU/QdIFkMonW1lZ0d3fTXBbieckmasm4dVxvAxeNRmfl6GYaQiTR3+PxwO/3Y2JiAp2dnYjH4xCJRDTURdpS+f1+TE5OwuPx0Fwkl8uFyclJXLlyBZFIBCKRCDt37sTVq1fR1dWFH/7whxgZGUEikcDu3bsBXJN+aGtry5r2QaIgZKMy1/hi89/CIbncAGZVARP4IceDBw+mdT8gIWutVou77rqLtiiTyWRQKBSYmZmh6Twkz7WsrAy9vb04e/YsXC4XvF4v8vPzsWPHDoRCIcTjcVgsFirYTATmgWvXc/v27WhoaEjbtGZKfgDpG0ciMaLT6ajW3/XaeS3HOGJG2zJxPdVk4onr6+ujArsSiYTqs/X09GBmZgb5+fnQ6/VQqVR0QguHwygsLMTg4CAuXrxIq2OKiopQU1OD6upq+Hw+3HHHHSgrK0NPTw+mpqaQl5cHkUhEjclMvS2ymGYOYsbahG+ob9q0KS30fvToUbS0tMDr9WJ0dBTJZBJnz55FJBJBIBCATCaD0WiEQqFAKpWivUKTySQUCgWi0Sjy8vIQj8cRjUYhEAgglUphsVhgt9uxadMmBAIB9PT0oKioKK1Cmo25W0+mRyBTm4+/4JLny8vL4fP5EAgE0N/fj2AwSHPLzp8/T6v0hEIh+vr6kEgkUFZWRrUpOY6DVCql44fIxoyNjSESiUAgEKCgoIBKe+Tl5YHjOFy9ehUXLlzA2NgYjEYjdDodlEolgGs5cVevXkUymYRYLAYwe7Hkf7e5FlIWjl84ZrOZGmFHjhxJ64FNQqeBQAAjIyOYmpqCRCIBx3Hw+Xyor6/HsWPH4Ha7UVtbi7vvvhs9PT3o6OhAKpXC1NQUwuEw4vE4ZDIZ+vv70dfXh8LCQiSTSYyMjKCoqAjFxcWwWCzYvXs3Ll++jNOnT1M5oYsXL6Knpwd6vZ46K4hx6XA48P777yMWi2HPnj1pDgu1Wp22BhLDlBTVZErGZBsrmRqThJvxwC2r0fapT30K7777Lu6991689tpry3moVcdCbnqTyZSmOyQWi1FXVwez2YydO3dCKBTCZrPB7/dDLpejpKQEIpEI9fX1NAF4fHwcLpcLqVQK09PTOHbsGPLz82E2m1FdXQ2xWIzCwkKYTCYMDQ2lldSr1WoEg0EcOnQIVuu1tkMOh4OGbTPFexlrC/7GguifkbZnFy5cwMmTJzExMYG8vDxMT08jFAohGo3S0AMJcSaTSSSTSfh8PkgkEojFYsTjccTjcdTU1EAul0MikeAjH/kImpub4fF4aJi0uLgYarWaVpmSTU42rSTG8pHpEcgMb5HUClIMYLVaodfrMTAwAI7joNVq4XQ6kUgkEIvFcPToUUgkEiSTSVy4cAGTk5MwGo20jZTD4UB9fT2mpqZQUlKC4eFhGI1GFBcXIxAI4PTp0wiFQmmbzPXr16OoqIhGHYi3LxqNorCwEAKBAPF4HMlkEpOTk4jH42l9lwkLCbWzcPyN4ff70dXVhVQqlZbULxAIoFarkZeXh9HRUTgcDrjdbpw5cwZSqRQFBQWor6+Hz+dDf38/kskkgsEgwuEwEokE6urqsHXrVpw+fRpOpxNutxv5+fnQ6XQwm8245557EA6H4XQ6UVBQgKmpKXzwwQe0w1AoFMKhQ4cQjUbTClRIbvfIyAjGx8cRj8dhs9mgVqtpGgipGCUFCPz0pmg0ColEkpZ/yydTK5VwMx64ZTXa/vRP/xRf+tKX8NOf/nQ5D7Mq4QveHjlyBMCHSZp8l2oikcDMzAw4joNSqaSTDF8w0uFwQKvVoqioCGazme4q9Xo9SktL6S5mYmIC4+PjKC0tRVFRERwOB9ra2uD1eqHX6xGLxeBwONDV1QWNRoM9e/agra0Nra2t2Lx5M8rKyjA2NgaBQEBzQhi5TbYuHQBmeVPtdjvt7xeLxXDmzBl4PB6aJ0K8ZiTHpLS0FCMjI7T9WiQSQTKZhFAohNFohFarpZ0+Pvaxj+Hhhx+G3W5HW1sbBgcHEQgE8Pjjj6OmpiZrwi/zdCwP8/WRJdXu2YwcUi1HFjkCKVYBrvU5HhwcRH9/Py5duoRoNAqFQoFYLAahUIjh4WFs3boVLpcLCoUCdXV1UKlUiEQiqKioQDAYxMzMDOrq6uD3+9HT0wODwYCqqipaUSwUCjE5OUk3GsC1iAHHcRgdHUV9fT2tDIzH47TCPrMYjLE86PV6CAQCdHd3U48b8ciSjihSqRRisRgTExNIpVKQyWQ4cOAA1Go1fve73yEYDEIqlWLdunXU45ZIJGj1L8dxiEQikMlkAACJRIKBgQGcPXsWU1NTMJlM0Gg08Pv9GBkZgVKppDmSJ06coDluiUQCBoMBmzdvhkqlglarpTIeAHDixAla2FBdXQ25XI6Wlhbq3bVYLLT7Aj+Mymeueexm5rdlNdr27t2Ld999dzkPseohO41QKESbGpMWUqFQiOaUVVVVQa1WQy6Xp+1mnc4PmyUbDAbE43E4HA6cPHkSFy9eRCgUwsTEBKampsBxHFKpFIaHhyEWi5FIJNDT04NAIIC8vDwIBAJ4PB6a7O1wOKgHpaurCzKZjLqvXS4XANAbb6Fl8YzVRWbOGhGxJAYcyfMIBAJwuVyora3F5cuXMTExAYFAAJlMBrFYTMvuNRoNkskkenp6EAwGqYhuIpFAMplEPB6nHrPp6Wl0dXXhZz/7GS5evIji4mKIxWJIpVKMjIygra2Ntjbib2hITgzz9C498/VYJJIG/MWHb/QD6RXspFp9dHQUMzMzNMx96dIleL1eGtIqLCyESqXCxMQEfvazn4HjOOTl5cFoNCIWi6G8vBxbt27F8PAwmpqaoNfr8dGPfhQmkwnj4+MYGxtDXV0drFYrTp48Cb/fj6qqKhw4cABSqRRvvPEGxsbGqPeturoaLS0tOH36NG2hdfHiRTr/MsNt6SFhUL/fj8rKSkxPTwNAWsSHGEMmkwl33nknpqam4PF4YLPZqBZjKpXCzMwM8vLyMDExAY1GQwub/vmf/xlerxeJRAIymQxKpRLxeJzOF0RUeXJyEjqdDhKJBDMzM1Cr1di3bx/tcetwOBCLxdDT04NIJIKdO3fi8ccfT+uo0dPTg2g0SjccZO3t6+ujMjM1NTU4ePAg3fQuxqt7M57cRRttqVQKmzZtwic+8Ym0xutHjx7Fgw8+iH//93/Ho48+ekMnsxYhSZoOhyNN0d1oNEKj0UCpVOL/s/fn0W1e950//gKxkSABkgBBgiAkkCIpUbJIWhQlW1Ykb7Jkx6qauHHdSewmqWeSHjuZ+nR60nZ6+m2a0yatu5xMZ5LOuMlJ2rr1aFrHiSolkS1bsmSblgxSpqiFEldwA0gQIBaCIBYSvz/0u9cgRFLULkrP6xwfmVgePMBzn3s/97O8P/n5+TJefujQIU6cOCFzhkTrjc7OTiYnJ9Hr9YyPj3PkyBESiQRwsQ2ViP/PzMzg9/vJz8/HbDZTWFhIOp3Gbrdjs9kYHx+X1Xzt7e0ytySZTBKJRKipqSEYDBIIBHj//fcZGRkBWNRoUyqtbh8Wyk3KrA4VVcMAb7/9tvRiFBYWkkwmUavV0gucWQ2qUqkoLCxkYmKCiYkJAHJzc0mlUsDFHe/s7CzpdBqTySRbygQCATo6OkgkEhQWFuJ0OuUmJDvvU0kAv7EstsOfz9uWafSLjeYzzzwjr83u3btl1GDz5s3AxTGYl5dHOp2W6RmrV6/m5MmTeDweZmZm0Ov19PX1kZ+fT39/v8xdmp2dJRaLkZ+fz7Zt2/jhD3/I9PQ0drudT3/60/zyl78kHA5z+vRpysvLWbt2rQzfix6mfX19tLa24vV6yc3NxWazSQ9KtjdEmbuuD263m//4j/9geHiYHTt28OSTT14y1nw+n8yNLCgooLW1FYPBQDAYZP/+/eh0OrmGCe+aaIXm8XgoKiqSRpRer2f16tX4/X6ZA2mxWNDpdIyPj9Pd3Y1Wq8VgMBAOhzl27Bj33HMPKpWK0dFRdDodvb29jIyMUFZWxj333MPPfvYzOd+Fw2EsFgsOhwOVSkVjY6OUIerp6aGrq0u2wQKkIXgzNgZXbLTl5OTwh3/4h3z961/nD/7gDyguLqa9vZ2nn36ab3/724rBloVI0hQJ2ELR3el08s4771BWVkZpaanchQjdq0AggN/vx2azYbVaOXXqFG63G6vVSldXF4lEgoGBAfLy8jAajeTk5MhQq1qtJicnh8nJSbxeL6Wlpeh0Orq7u4GLE9XIyAhqtVoadw6HQ4YUqqqqGBsbk8ZeZmn0fCgL7aUIsVCBXq+/KZpQ8yWNZy9SAofDwfvvv4/H48FisbB27VrGxsaYnJwkLy+PqakpZmZmZHNuUb08MzMjk8iFdzcvL4/c3FxUKhUzMzNcuHCBdDpNZWUlKpVK7ooHBgaw2Wzcd999NDY2XqI7uJBRoSyu14fFdvji8dbWVgD27Nkzx+jfu3cvPT097N27F7iYrxMOhwkGg5SWluJwODh06BA6nY4NGzaQSCTw+/3SqEomk+Tk5KDVaikqKkKlUhEKhaR3zmKxUFBQQCqV4syZMxQUFFBbWyu1/fbt24fBYMBoNGI0GjEYDDJvSqVSsXnzZjlXtbW1EYvFcDgcPP744zI0lz2ulLnrUha61xa7B51OJzqdjqmpKXp6eviN3/gN6TkXHjiA0dFRRkdH8fv9eL1eVCoVGo0Gg8FAVVUVBoNBhkxFZbrYQJrNZtavXy9FmVOpFL/yK7+C1+vF7XYzPDws5UAGBgZkWsfY2BhTU1P09vZitVqpqqri8ccfZ2xsTKYDvfbaa7zzzjvYbDY2bdpEYWEhxcXFFBYWkkgkcLlc7N69WzpgUqkUOp0OQEbSdDrdktqhXStXFR79whe+wJ/+6Z/yd3/3dzz//PM8+eSTPPfcc/ze7/3e9T6/O4b5mrcLaz67QsXv98vkyM7OThwOB2NjYxw+fJh0Oi3DBgChUIipqSm5WMJFj4dOpyMQCBCNRunr6+Ps2bNoNBpSqZT0rs3MzBCNRikoKKCxsZGCggLGxsY4d+4cRqNRVrKKdlwLadAolaaXsmLFijl//8mf/MkN6YE7n2dNJI3P51VwuVwcP36cqakpHn74YR555BHeeecdGfYSlczJZJLZ2VnMZjMrV65kcHCQvr4+ksmkPN7s7Kwca8JLYjKZSCaTsjOCw+Fg9erVVFRUkJeXh9vtJpFIMDY2JlXqM1nIqFAW15tHZj/nTA/oI488Ip/fu3cvRqORkydPEggEWLduHel0mkOHDnH+/HnUajVwsf+z2IharVapyZeXl8dHH31EJBIhGo3i9XqZnJwknU6jVqvp7+/nsccekyH8np4eOjo6yM3NZdu2bXLubG9vB2DXrl00NDRIz8fnP/952tvbeeSRR9i1a9eC31XJnZzLYhIWi92Ddrud559/nh/84Ackk0kOHjxIXV0d58+f5+jRo4yPj2OxWDCZTPT29pJMJikqKsJsNsv+r+vXr2d4eJhwOCy9Z7m5uVgsFnJzc6moqGD16tWMjo4Si8UYHR0lmUzyzDPP8L/+1/9icHCQ3Nxc7rvvPu655x4CgQC9vb3SuBKpQLm5udjtdqkhee+993Ls2DHUajUlJSU8//zzUiakoKAAl8slhXetVisej4dUKkVpaSlwsR2l8MotpR3atXJVRptGo+H3f//3+e///b/z+uuv09TUxN/93d9d73O7o8ieHLLLh+HiDSNyjIaHh5mammJ8fByXy4XX68Xr9cqESrEbEa7/3NxcWXGjUqlQqVSUlJQQCoWkxo1arZZq0ZkaW+l0WvY6FUm9paWlMv9uvhs18+ZWKk0vZXBwULZrAm6Yl22+qr/MFisCcb06OzsZHh4mPz9fbg5OnjwpF0Qh3SDEc+PxuMxVEy3WRPhCtE6DixNiLBbDZDKh1WrlBmFsbAy9Xi+rll0uF2NjY+h0unlzQBbiblxcb6a3NtMjInKMBGKMVVdX8zu/8ztS5kBIxoyOjmK32zl58iQ9PT2yRZ/wolRWVgLI3o4jIyN4vV4ikQgqlYrZ2VmCwSAzMzOUl5eTTCapq6ujtLQUrVbL5OQkgUCAsrIyampqKC0tpa+vj1QqxdGjR+UiarFYZKViRUUF9fX1c+5B8T0zNzlKlehcREVkLBaT96d4PLP/ZvZ9OzIywtDQEMXFxUxNTeHz+dBqtXR3dzM+Pi5TMMT6lU6n2blzJ/n5+bz99tuk02kGBgZkcZOoPq+urua3f/u38fl8fPzxx1y4cAGtVovJZGJ6epoTJ04AFzeQBoNBVqlu3ryZwcFBBgYG5Pxz7tw5ZmZmSKVSvPPOOxiNRh599FF27dpFMBhkdHSUHTt2SGFoUXiTTCZltxeAhoYGVCqVTBe42evfVRcifOELX+Cll14inU7z2muvyZ1VJrt27aKtrY1oNIrD4eCNN95g06ZN13TCV8P3v/99/uqv/gqPx8M999zDd7/7XbZt23ZTzyF7cmhqapqTJ5ZpBImct3A4TFdXF8FgkIKCAhwOh6ywisVilJSUsGXLFnJzc6muriYQCHD06FFGRkbweDyy8bbIfRMtYAoKCiguLqaiogKVSoXZbCYvL4/29nYSiQTl5eUy7BAOh+fozIjJXcTwM/VplBDWJ5hMpksWjBtBpjGT+ftnTyIul4tz585hMBh4/PHHZQXVa6+9xsmTJyksLCQ3N1cKMKvVaqmxNjU1RV5eHiaTiYKCAkKhEIlEglQqRU5ODmq1Go1GIxfgiooKqqqqpPSCTqejrq5O5oSIqr+FKq7m425cXG+WtxYujo+f/vSnFBYW8uu//uuXVJZm/qvVapmeniYej8tE78rKSmlkGgwGKioqCIVCpNNpLBaL1KP0+XwMDQ1JHTbR6F0UJjQ0NEhPS3d3NyUlJYTDYblh/bVf+zXq6+vl3CR61Yp0EmFsLuT1uFaP7XKc467E+M/MPxP3p8hFE4oG2cUq8ElaRiwWo7y8nKmpKd566y1ycnIwGAyUlZWxadMmtFot/f39DAwM8NZbb/Hkk09SU1MjUzJKS0tZv349/f39hEIhotEov/jFL3jwwQdRqVT4fD4SiQQajUaKMY+OjpJIJMjPzyeZTDI+Po7VaqWzs5OJiQn0ej1Go5F0Oi3zt4eGhkgmk6xevZqOjg75/0VFRXMKoUZGRujs7JTHDofDsngqEonMa9ze6LFx1Ubb1772NeBinst8BhtcLE641ezdu5eXXnqJ73//+2zdupX/83/+D0888QRnz55l5cqVt/r0JGKHo9fr5cSzf/9+hoeHZbjynnvu4fTp00xMTMjqGeH+7evrw2w2k5+fT3V1NR0dHUxNTckkcYFer2diYoKpqSl27NjBo48+SmtrK52dnej1eoLBIA0NDbKnm6g6zAzrulwuPB4PZrOZT3/600oS+S0k87cXE23m42KR6e7ultf2y1/+MiMjI7z55ptzxC5FTqRAiJNqtVpmZmZkHolarcZoNKJWq1Gr1RQWFsrcD61WS1lZmRwX7e3tWK1WHA7HHM+s0vHg8twsb61YmDQaDeXl5VK7UUQBMg3mlpYW+vr66Orqwu/3k0gkCIVC/OIXv2DdunXodLo5sgkzMzN4vV7C4bAcH8JDKwz+/Px8OY76+vpkFWF7ezsbNmxgdnYWn89Hfn4+brebXbt24fV6pbekrq5OLpqZSvvzca0e2+U4x12J8Z8pVSUqIgOBgMxrzcxxFMYNXDTyioqKKCgowGq1cuzYMXp7e6moqKC6uhqVSkU0GqWoqIj6+no8Hg+9vb387Gc/Y/v27aRSKS5cuCB7yhYWFkoJq6NHj3LhwgUeeOABrFYrk5OT+P1+Wb0uius0Gg16vZ6SkhJZvGcymUgkEhgMBhkhGB8fx2g0Mjk5icvloq+vj4qKChKJBG1tbbS0tFBTUyP1TK1WK3V1dfNuBDo7O2VIXhi04ncUXG9D/6qMtj/+4z/mwIEDfPjhh+zYsYMf/vCHvPjii9d8MjeCv/3bv+X555/nP//n/wzAd7/7XQ4ePMjf//3f853vfOcWn90nZE8mQuBWuG39fj/Dw8NMTEzIXarX6yUUCuH3+0kmk1Js0Gw2U19fz9mzZ2U+yczMjCy/F1V+PT09BINBPB4P09PTMjbf09MjPXDZSvlCCV1oIWWKBi6m9aRw41hIwTvzOaFGn9lcW1TvCd2/4eFhAFksE4/HMRqNUmRSyICo1WrS6TQrV64kPz9fCuX29/fj9/uJx+NYLBZ27dol84laWlrkpiQzNKWwMDfLWytkhZqbm2U16MmTJwFkmEjIe/zDP/wD7e3tpFIp8vLyZLW6SDTXarUEAgG8Xi8ajQadTifbVGm1WmZnZ6UBB1BQUCB1tLq7u5mampLGnBDsLSkpQavVYrPZ5Nh2uVyMjIxgMplkwrgY24uROe6uZjFdjmH6qzX+M6WB1qxZg16vl7/XfG3ORkdHMRqN+Hw+6uvryc/Pp7CwkOrqavr6+ujo6MDhcHDfffeh1Wr52c9+xvj4OG+//Tbl5eV4vV5GR0dlcYDIRQsGg1KKY/fu3QwODsoIlN/vl7m1Qu90eHiY73//+3IdHB0dxePxyAK/cDjMfffdx5NPPinTgcQcKXK9hei9wWCgvLycurq6OW2vhCfO5/PR398PLDw2XC4Xra2tbNy48bKbiqVwxUbbD37wA/7mb/6Gd955h8bGRl566SVefvllvvKVr8id+e1CIpGgtbWVP/iDP5jz+M6dO/nggw9u0Vl9wnz5FYBUg6+urubZZ5+ltLSU7u5uPv74Y3JycgiHwzJEpVKpZNgzFovh8XgYGxuT/dEqKyu5cOECHR0dqNVqqqurWb16Ne+//z5tbW3SJa1Wq0kkEsTjcUZHRxkZGWH79u1S+0Ys5ADJZJL8/HwikcicCWAhrSeFG8tibXnEc+vWrZPae3/+53/OwYMHWbt2LWvWrJFN4qenp6VAbmVlpTTEBgcHpcdWeOSSySTRaJSVK1dSWFhIXl4eNpsNlUqFwWC47DkuxzDTcuVyv3X2tRGefqfTKfPXdDodbreb9957T/69cuVKysvLZZhIdGURYfLMZG2j0Si7JQiDTaPRMD09LdueiZCrCK9u2LCBTZs2cfbsWQYHBykuLsZkMjEyMoJWq6W+vl56XjIjFEvlarxmy3GzcTXGf3bkJ7tLSbaB0tHRgdFoJBKJSNHZ+++/X24mLRYLq1atkkoFIuQ4MTEhNR7z8vIwGAwUFhZSUlIipTk6OzsZHx9nYGCA4uJiKUs1OzvL7OysHG95eXmoVCoCgQB79+5l7dq1fPazn6Wzs5NwOCwr4dVqNTabjS1btnDPPffwzjvvEAwGpa6gzWaToXwh2ZXpTMkcMyJkfLmNaGZxz7VyRUbbL37xC1588UVee+017r//fgC+/vWv89d//df88z//M7/1W7913U7seiB6IZaVlc15vKysDK/Xe4vO6hMWasrsdDo5f/48x44dIxwOYzabqampQaPRyMFx4cIFGZ4YHx/H4/Gg1+uZnp6WOR5CIuSRRx4hJyeHc+fO0dXVxZo1a2SLmVAoRHFxMVarlXQ6LdsQTU1N0d3dLasAh4eHcblcUiRRpVJJd3HmorAcd6LLncwQqWC+zcDQ0BCtra28+uqrslrvueee44033pDizIDM3SguLpahkUwNNpHMazabKSkpYWxsTOoiPfjgg2zcuPGSBTQz7NLS0jJvKFfhxnClxonNZqO+vl5q+kUiEWlsiTCSaKf3qU99iu7ublwuF21tbYRCIXJycigoKJC5TBMTE4TDYenpn56eRqvVSj1A0Ts5mUxKg66oqAiDwUAikaC4uFiGuIQnX6vVsm3btjlh9qV8N2Wump/Fes/a7Xba2to4cOAAcHEDmIkwXlwuF5s2bZJdD0SrxMxOFCJ3W/QCra6upqSkhP7+fnQ6HSaTiZKSEmpqaojFYvT19ckQusViIRgMcuTIEd555x1CoRBqtRqtVovFYkGr1aLT6eR4PXPmDLW1taxfv568vDxZ8NLQ0EBTU5NM/3E4HGi1WiYmJqQOnBi7Dz300BzvWPaYWYoRn2nYXY/N6pKNttbWVp5++mlefvllnnrqKfm4yWTi61//On/xF3/BF7/4xQXz224lIh4vSKfTlzyWyc2q2soMJ3Z2dtLf3y9dqIlEgr6+Pvx+P3q9ngsXLhCJRFi9ejWPPPIIX/7yl3G5XHR3d/Pee++hVqtlWf3ExITU0hoaGmJwcJDR0VFmZ2eZnJzkxIkTrF27lmQyydmzZxkYGMBoNNLU1CQrcI4dO0Z3dzdFRUXk5eVx6tQpzp8/z8aNG9m9ezerV6+WFUWZfdwydx2KN+Xmkb0ByL4egNxxCv2igoIC+vv7CQaDpFKpOcbZ+fPn6e/vJzc3l7KyMiKRCJOTk1KtXEyCIjE4mUxSXl5ORUXFnEkuewwsFspVuDFczjhxuVwcPnyY8vLyORW+mWryIg1Cr9ezb98+WRzl8/kwGAwMDQ3JPpF6vZ7y8nJWrVpFTk4Ovb29suq4pKREGv+bNm2SVYdGo5GSkhJGRkZkUUtvby8XLlzAYDCwYsUKWR1aVVVFXV3dVYXZM++TLVu23NXzUua9ebnesy6XizNnzlBcXCx70GZeCzEOTCYTW7ZsoaWlZY5wtvgsn89Hd3c3Q0NDVFdXs2XLFl5//XX6+/tlEUJOTg5wUbjbZDLJLix2u53+/n45j8HF8Pq6deuor69n3bp1fPDBB3LcRCIR9u/fz9DQEBs3bqSkpIREIoHdbsdiseD3+2XfUPEbxGIxAFm1HAwG+dGPfgRcbNF1NZWi80XRxONXw5KNto0bN0rF6Wy+9a1v8a1vfeuqTuBGUlJSglqtvsSrNjY2don3LZObVbUlLprL5ZIdDTo7O+eU3Gda5zk5OZSXl8u2GYcPHyaRSMjqG9FuyG63y3JkoTItGn+L32PNmjU0NDTQ39/P+Pg4/f39Mneks7OToaEh6XnZvHkzIyMjjI6OYrFY5E0pChSE8SmazYvvthyTdpcbIyMjHDx4UIbTRe6RKLsXuRRWq5Xx8XHcbjerV6/GYrFQXFws9Yk0Gg25ubnk5uYyOTlJNBqVm4ANGzYwMDBAZ2cnKpVKtqLy+XxEo1HWr1/P888/z+Tk5CUetuwxsFgoV+HamW+jtBTDRlTqiVxVj8eD3++nvLycbdu2yUq6/fv3U15eTkFBAefOnePkyZPk5OTIUJoQXBabxlgsJkOkarWa2dlZEokE09PTHD16lKamJjZu3IjBYGDz5s14PB5CoRAWi4VUKsXIyAgDAwMkEgkCgQAjIyOsWrVKno9Ihr+Tc9JuFJn35uV+F6fzYheT2tpaOd+Lak4hwVFdXS0LFDJVB7KVEVQqFbFYjN7eXmZnZ3G73QwODjI7O0tpaSmVlZXMzMxQV1dHbW0tHo+H9vZ2mTOr0+koLi4mFotRVFREc3MzDQ0NpNNpmpubZfcEgLy8PKanp5mamiIUCslOHW63m3PnzqHX63n44YfneMO8Xi979+4llUrR0dEhW6StX78eq9V6y3Mib2jv0VuNTqdj48aNvPXWW3z2s5+Vj7/11lv86q/+6oLvu1lVWwKVSkVNTY3MKXO73WzZskVKgrS0tMi8jd27dwMXvSaiYGDr1q38t//239i3b58srZ+ammJqagqj0YjD4WBqakpOpuPj4/zkJz+hurpaVosFg0FOnz4tS5uFSKpI3iwsLMRqtVJTUyOrzXw+H+vWrZO5bMLzlj0wlQnyxuF2uzl69CjBYJCVK1dKY1m0hwmHw1Kgua+vj7a2NjkBHz9+HLiYLiDkO0QfUTFWhPctPz+f8vJypqen0ev1UuUeoL6+nqqqqkVz6q4knKBw9VzNRsnhcFBXVydDmKWlpVRUVNDS0sLExIQMZ/v9fj766CN0Oh1bt26VhVBarVa+Rwg0p1IpvF4vWq2WtWvX8thjj/Huu+/i8/lkf8lYLEZnZyd/9Ed/JDcKohXWqVOn8Pl8FBQUUFVVJQ2/wsJCzGbzVX9XZfx9wpXMzyaTiQceeEB6zoSRI9rjZfbtzMvLIxaL4fV6CQaD1NXVSSfC6tWrWbt2rZTp0Gg0cypCL1y4gMfjwWg0kpuby9q1awkEAuh0OsLhMLOzs6jVaik9FAwG+elPf8rbb79NYWGh9JBVVVWxbt06YrEYOp1OduMQHrszZ87Q3d2N2WwmEAjIClCn00k8HsfhcGCxWCgtLeXw4cOEw2G0Wu28RV5wc8ffHW20Afzu7/4uzz33nHRrvvLKKwwMDPDbv/3bC77nZlVtwdx4N3ySi5RJZpm12+2ms7MTj8dDcXExqVSK/v5+duzYwdatW3n//felUKVGo5FeNrVazcTEhEz+TaVSpFIpGhoaWLVqFZFIhBUrVrB27VqMRiPDw8O0trZKHZrMJFK3282pU6cIhUJYrdY5CaviXLObfre1tSnN528Aer2eiooKKioq5nhn4WLuiQh1CdHRdDpNJBKRvRpLSkr4T//pP3Hy5ElGRkZknohIHBe7YrVajdlspra2VlYji6Rhg8GwqFK6skjePC63EM/nHYjH49jtFxt7Z3obOjs7GRwc5MCBA1itVsrKymRV+NDQEGazWRphFotFhpYsFgurV6+mvr6eN998U+pjGY1GxsfHSSQScgEVjcHz8/PlhtNgMHDu3Dm8Xi8Gg4GdO3dSV1cnN4XZ41zZFC6dzOufyeUMkPmkPjLDhC0tLbS2thIOh1m7dq30xKbTaerq6mSHnn379lFeXi7z4vLy8rj33ntlqo/wao2Pj1NWVkZbWxvl5eWUl5fT09NDd3c3FRUVTE9Py+jU1NQUwWAQjUZDRUUFGo0Gm81GVVWVzJOcnp6WkQQhuJuXl4der6e7u5uxsTFZbJU5vux2u+y0IR4X3/9Wjb873mh75pln8Pv9fOtb38Lj8bB+/Xp+/vOf3zY3evaittgCNzQ0RDgcxufzyYbc586dY2RkhEOHDnH48GFGRkZIpVLk5+eTTqfl7iQUCkkvSUFBAbFYTBpw999/Pzk5OfT39/PRRx+xcuVKKcJbUlLC+vXriUQinDt3jp/85Cc89dRTlJeXS50bERbLDKFktkEZGRlh7969S2o+r3BlDA0NkZOTI43h7EXZZrPx6quvcu7cOYqLiykuLkar1eLz+WRv0MrKSt577z2CwSDRaJRoNCqTey0Wi0zMFZNcbW2tlIeBhYVM50PJc7yxzGckC80tQXYByHwha5fLRSKRQKfTUVBQQCAQIBQKYTabKS0t5fz587jdbvLz80mlUsRiMcbHx5mdnZVh8Ly8PCmCGo/HKSkpYWZmBo/HQzQaBS5GGbq7u9mzZw8DAwMMDg4SjUbl2BLiuw6HY97vKs4VmJPwrjA/8+W+wsIi3dkh9vlyskRnjKqqKsxmM83NzXi9Xnw+H6WlpdLYaW1tZXp6mtHRUdRqtfTMVldXy9ZR+/fvp6enB7VaLUOhK1aswGg0cuTIEaLRqBTiFVGhZDIpG8jv3LlTGncDAwM8/PDDUrqkurqaZDIpvWkzMzOcOXOGVCqFVqslFovR3d09x4kiDLSvfOUr8u9bnRN5xxttAC+88AIvvPDCrT6Nq2JkZIRXX30Vj8dDQ0MDdXV1c7TTxC5A9O+Dizl5okI2HA5jMplQq9WMjo6i0WhwOBxoNBrC4TAFBQXMzs4yODjIe++9RyKRwO12s3HjRjZs2EBxcTFlZWUcPXqUs2fPMj09zZNPPsmzzz4r5QAyQ6KZpeKZjxmNRulWVxbu60tmUU1mw/jm5mba29vlxCQ8aaKxu0qlwuPxcOrUKdm6anJyErVaTV5eHmVlZVgsFsrKyqirqyOVSqHRaKipqcHv93PkyBFsNtsVLZZKnuPNx+12c/jwYUKhENu3b2fNmjVzDOxs7TKXyyXbAz300EOYzWZef/11mVs2MTHBmTNnGB8fp66ujubmZiYmJnC73aRSKUpKSjAajRw6dIgLFy4wMzOD0WiUemqBQACNRiPHmRDNzcnJwWKxyIT2z33uc3I+icfjUk7I5XLJhVWMd5VKNSffaDHu5vkn0zgTua9CzmkpyfLzedzcbvclXlCXy0VeXh5msxm3243D4WDjxo14PB6GhobweDwyHD8+Pk5BQQFOp5P6+nr0ej3hcJihoSFmZ2elV1f0OYaLqU+VlZWyGbwohmlra0OlUjE1NUV+fr48n4MHD+Lz+WhsbJQOBdEXV1S99/f3k0qlFi3ouh28u3eF0bZcEV6rrq4u2QweLpbkZ95M9fX1dHZ2YrVaUavV7N69G6fTyfe+9z2i0SjFxcWsWrWKRCJBXl4e69ato6CggNHRUdLpNL29vbS2tkopD7vdzkMPPURNTY0UTRwZGZGti8LhsJT/aGhokIu22HEJbZvMnfyjjz4qJ8nrUUFztzDfAiMe0+v1BAIB8vPzcTgc8vcXYapDhw7x5ptv4vf7KS4uluGHkpISzGYz4XCYaDRKe3s7FRUVUonebDazceNGIpEIBoOBmpoaampqgItemsz+uCMjI9TV1S1ZNPJ2mPTuNkQOI4DZbF60+k0YeB6Ph6amJnbu3AnAiRMnmJ6eJi8vj9HRUQKBgAyjV1RUsGbNGvLy8jAajTQ0NGC1WvnlL39JMBiUArsAfX19RKNRSkpKqKiowGq1olKppMjuqlWr5Ovi8ficPrrCyBCSNOK7ZYdLL8fdvHHINM5E7mumQDosfo/O53FzOp10dHQwNjbG97//fSYmJsjPz5dzhsvlQq/Xyw4Db7/9tjTChbbj2NgYPT09OBwOamtr2bdvnwyhl5WVUVxcTGNjo2xbBRedE8JLZjabSSQSfPzxx9I7bDKZpJfN5/PNUWNQqVSyy1B9fb2MKswXNfD5fHO8a+K3E7/HzUYx2m5jxC6ztraWuro6uru7eeWVV9i+fTtf/vKX5WtcLhddXV3k5OSwZs0ampqa8Hq9UndGJHROT0+jVqu599570el0eDweZmZmOHv2LJFIRDaKN5lMsnRfVIOl02nZ5kZU3oRCIT7zmc8A8KMf/QiXy0V5eTmPPvroJSHfzL+VhXvpzLfAiMempqYYHh6WbYEyy/AtFgsnTpwgJydHipeKThrJZJJIJEIqlSISiTA0NMSGDRv4rd/6LU6fPo3T6WTFihWMj4/LKj6xcIoKVafTyYkTJ2Q7o6Wi5LhdO5fzFM0n2v3ss88uqW2Y2AhMTU1RWlqK3W5n3759RKNRNm7ciMPh4MCBA6xatUqKdQsvRyAQoKenh+npabZt24ZWq5V6VytXrmRkZER6zXJycjAajXLDMTk5id1up7q6Gp/PR29vL36//xK5GOGFy5QWulKVeWX+uchCv8NS7tHskLropCGEahsbG2XRnDCchKFWU1MjhZZFEZ4oVPj5z3+OWq2WUkI1NTXce++9RKNRXC4Xw8PDBAIBpqenmZ6exmKxkE6nKSoqktJEoqgqkUjgcrkwGAxYrVaKiopkaBQ+SesQmpHV1dWX9APPfF1m5OhWGv2K0XYLWcyLku2KtdvtvPzyywSDQXw+nzyGqNo5f/48wWCQVatW0dzcTEdHh2xb9PTTT1NTU8Po6Ci9vb385Cc/kXlto6OjMr8tPz+f3Nxc/H4/r7/+Om+88QarVq2SodJgMEhVVZWs5BE9La1WK0ePHsXj8Ug392IoC/fSyZ5YhTfNZDKxbt062Xw9swxftDjLzc1lx44dwMWQRyAQkMrhExMT6HQ6GQatqanhq1/9Ki6XizfeeAOAp59+Gp/Px+HDh8nPz8fpdM5pZbN582bUavWS2gcpXD8ut2jM93x2CHQhoy8ej2M2m2XhicBkMlFaWsrQ0BD5+flUVVXJnpImk0m2rhPK88lkkk2bNsmUiOPHjxONRmWXBFE809DQwJo1awiHw7S3t5NMJmlsbMRqtc7xcFxPuRhl/rnItfwOmRtIYZQ1NzfLfNnGxsY5uYbZ3quCggKOHj1KV1cX0WiU8vJy2c0gEAiQk5Mjix2am5v5wQ9+wODgoCyiEkUI99xzDzMzM/I/kX9bW1sr8+lEJ5jsNA5xHyyUkyvuI6EnJ7jVRr9itN1CFvOiwKWJjmIB1mg0/OhHP5qTCC4W6eLiYjo6OnjnnXfYtGkTNTU17N69G6/Xi8Viobe3l9HRUSKRCDk5OcRiMXJzc6mpqaG2tpZkMsnAwAB9fX2yGXRRURF79uyR+S5DQ0NS+FB45Ox2OxUVFTz11FPKhHidyAyDisnR5XLJCUZMlHb7RcXyzs5OmQx86tQpIpEIjzzyCGfOnJGSIGvWrJFafaFQiLVr1/Lggw/icDhwuVwcP35cVl/p9XpOnDjByMgItbW1MiwuQl3Zlc8KN4elaGqJfzPHkBg3wiMr9CAzPXA+n4+GhgZUKhV+v58f//jHpNNpNm7cCCANq82bN89pkJ1MJrHb7axatYoVK1bQ2NiIyWSSx+3r65PabRqNhlWrVvHQQw/hcDikVMTHH39MKBQC4Mtf/vIllY6KsXV7kenxNxgMVFdXy+v26quv8t5772EwGPj85z8/xxsqDHAhcNvT04PH4yE3NxeLxUJBQQFlZWUyDaO9vR273c6mTZtIJBL4fD7pCdZoNBQXF8sWWpFIhObmZh599FE55gHpZBDjp62tjb1792I0Gnn00UfnTRm4Fk/kjUQx2m4h8w2Kxap4mpqaiMfj/L//9/94++23Wb16tRQG3Lp1q1zQ9+3bJ3cIwmD74Q9/yMTEBPfddx+RSIS+vj4mJiYoKiqipKSEZ599lp07d/Lmm29y5MgREokEk5OT5OTkcPbsWYqLixkcHKStrQ2r1SpbyOzYsYN4PM7atWsxmUyyrdV8O5q7MfH3WhCh76GhIRwOxxxNJGBOwuzevXs5ffo0RUVF/OZv/qbUtXrnnXdwu92EQiH0ej3FxcXk5+dLr6pI7BUtrqampti0aZPMJYpGozI/RWj3icX4Vk9edyuX+90zn9+3bx8ul4uCggL5WCAQYGhoiFWrVskxduDAAU6ePEkoFOKpp56ipqaGN954g1gsRnl5OWvXrqW5uZmHH34YQBpbJpMJv9+Px+OhtraWxsZG2T4vs9n8jh07pLZkbm4uarVaygWJCvSJiQkCgYBsnafMGbcX2UZ0psc/O3zY1dU1Zx2Y73parVbZ/qq1tZXx8XGcTqfssvD6669z/vx5mpubefLJJ/mt3/otaSgmk0lcLhft7e0yF3LVqlV0dXWRTqdlBOrIkSNSuDlznXW5XHg8HmDhzc/tOr8pRtstZL5BcbkqHpFUPDk5SXl5+RxPSzAYlDkDsVhMPpdZRv3YY49hsVh45ZVX8Hq9MlQxMTEBXExUTiaTmM1m1q9fT3d3N5FIhHA4zMTEBNPT01Jk8+mnn6apqYm2tjaZIHzq1Ck8Hg/V1dXU1NTInfzdmvh7LYgEX6PRKCuzxOTo9Xo5dOgQqVRKyneMjIwQCAQ4cOAADoeDsbExYrGYzCtKp9OcPn0as9lMQUEByWSSQCBAZ2cn27Ztk96UzDCCWKTF5Nrf34/FYlGu4zJCpVJRWloq8xF9Ph8OhwOz2SwXt3PnznH27FlmZmbo6emhpqaGoqIiKioq5GYsHo9Lj4kwBquqqvD5fLJbTnt7O319fQSDQYqKiqSno7m5mU2bNpGXl4fT6eThhx+Wny1yMB0OBx0dHbIASpkzbi+y5ULmywODi/NWbW2tzFdzOByXyEAdPHiQo0ePsn37dhobG2W3FYPBIAsWgsGgHFfZxrvP55MFLiqVitzcXBoaGtDpdPT19clCuc7OToqKiqTuqpjbnE4nPT09PPLII8tufClG222MmGBFvsh8ScWZWkV9fX0UFRXxzDPPcP/990tvnU6no7m5merqaiwWC+FwWP5rMBgIh8McP36cZDLJ0NAQHR0daDQaysrK5PGbmprYsGEDVquVjz/+mImJCXle3/ve92hvb+fBBx9Eo9HQ29tLX1+fFN9dag6Asrv+BPFbZBpqmb+J2+3G4/FIg6umpoahoSFCoRDhcJjTp08TiUSorKyU+R+Dg4MMDQ1htVr5zd/8TRobG3n99ddlZw1hYAvmS/IWrc0Ubn9GRkbw+/3k5+fT0NAAwP79+2WlZiAQAJANs61WK6lUij179lBfXy+PkxnC9Pl8slpTaKxNTU2RSCTweDysWLGCDRs2yMbdQvrHbrdz3333oVaraW5uZs+ePbLdUV1dndR43LJly7yRB4Vbz2KRoey5e8eOHbLFlNgUiBaMcDFKcPbsWXw+H0eOHGFiYoKysjI2bdqEzWaTnmCHw0Fubi779++fk5/mcDikfEcoFGJwcFAWygjvW0FBAWvWrJFj0+Px4PV62b17NyaTSQrFZ0eGbncUo+02xm63y7wREY9fyLDJLHvPfL6lpQWNRiPbw3R3dxMIBCgpKQEu9mcV/dja29vp6OggHA5TWFhIVVWV3EWJHUoymZShth07duB2u2lvb2dgYIDW1lb+8A//EI1GI1uJZIbRLtcr8G7fXc/XwDkzCTa7SMVgMNDb20tbWxtNTU1s2rSJZDJJfn4+H3zwgfSQCE+I0CUyGAxYLBaampoYGhqSSeeX+/2VHLabi5C1EIhq7qUg8oqEonw8Hqejo4OTJ09iMpnQ6/VEo1EphiruSTHGvF6vTDAXuUXHjh2T7ezEWOjs7OTUqVPARSOuuLhY5iplS/9kj5/sf7MjD3fjHHA7s9j1ESHOjRs3smfPHuLx+Bw5EaPRSF1dnXxPTU0NH3/8sSysKygoQKfTyTaOmW2yRNqPSBWJRCKsXbuWyclJhoaGmJycpLq6GoDJyUlMJpPcnJaXl8tNRygUkscXUQxx3Mxq5NsdxWi7zcme2BZaWJuamrDZbJe4oTPzD1pbWzl58qRUqhZhsscffxy9Xs+f/dmfkU6nMZlMrF27lsrKSqxWK+FwmFdffRWNRoNKpWLz5s0ycd3pdPLkk0/y5ptvYjabpbaSMDiyvUNLaZVytxoFl2vgnF2kct999+HxePD5fJw6dUoq2IucNVHKPj4+TnV1Nffdd59MDg4EArS0tOBwOC4xxDL/f75Nwq3UKLqbWLFixZy//+RP/oRvfvObS3qv8MQC0sOh1+tlux9hXOn1erlRc7lcsnekXq+XMgxbt24FLvb9zPSWADQ2NpJMJhkbG6O0tBSLxUJra6tsXwSfqMpns9TNnML1Z6HN/5U+LvD7/QwODlJZWQnMnb+y5xO73c7OnTsxm83SiaBWq0mlUlJ9INtAFGuNVquVrfk8Hg/BYJDi4mI2bdokOzEAaLVa2WoRLo61zDZtQqbE7XZfUqV8PX7HG4litN3mXInGmdvtntOYN7NHmpCD8Pl8JJNJioqK2L59OxaLRXp2mpqaKC8vl/locNGN3dLSQkdHB7Ozs6xevZrPfOYzeL1e3nvvPXp6evid3/kdNm7cyJEjRzh06BAmk0nmz2Qi/s5U087euS1Fd+pOJFPKI9s7uW/fPuBiSCDzd21ubiYQCHD06FHOnz+PTqdDr9eTm5sr84pEc/eKigr27NkjNYvMZvO85ezZv2+2oX23e0NvJoODg3N6IM/nZVvo3nA6L3ZLKS8vl8UBTqeTbdu2zbnur7zyCseOHePdd98lPz9f5inV1NSg0+lIp9P88Ic/pLq6WhY9CQ++OI7Id2xubpYSNOIcMjt02Gy2S1pozdf2TuH6Mp/HdqH7+EofF4icRKFokLnBczqdl0SMslMvXnnlFU6ePCmrkDMZGhpieHgYm81GXV0dk5OT6PV6Vq1aRTqdpra2FqfTyf79+3E6P+mqIKSxrFarnDfnW28W6se6FG7FfKgYbcuMxSpanE4npaWlFBYWSiFK+MTL1t/fD1zUyPn85z+P1Wrl0KFD+P1+7HY7paWlfPrTn5YhUTGYfT4f4+PjjIyMcOrUKVasWEFpaalMHhXubK/XyzvvvMOFCxdIJpPs2rVr3nO/0o4Id4OhkCnDkDmR+Hw+2aYHkKEq8bzQ0pqdnZV5RMlkkmg0SigUwmQycc8991BTUyMbg4sJbCkT1UKhrLvVG3ozMZlMc4y2+cg0inbv3i3vD7vdjsViob+/X0omwPzX8eDBg8zOzqLVaikvL6ewsBCtVktdXR0HDx7E5XIxPj4+R4Io8/2ZyvrZi7HX62VoaAij0YjNZsNkMs3JjRPePSExo3jcrj/zeWxFL82FNtbZ3rHMDeV8zJc6kd1Sb76NvJCREuk0Is0nG5FLmz3uZmdnqa6u5tixY7S0tGC329myZQsmk4m6ujrZZm2p1dZXyq2YDxWj7Q4i0+WbqcvU2dlJZ2cn0WgUg8HAqlWrMJlMuFwuWlpaKCoqYsuWLZe0NBGDWa/XyxBINBrl9OnTUpx3cnJyjrs5Go1y9OhR0un0HF2cTK50oN/phsLIyAidnZ1EIhH5mDBUTSbTnIlMGK/CEK+srGT79u2MjY3JEFcikeDee+/l3Llz2Gw2HnnkkTkG9JXIdcyXx6IsqLcPmbk5891v6XT6Ek9D5mtMJhNms5nh4WEaGhrYsmXLnLnD7/czPj4uvRmC+cbBfPdnPB6XcjWi0KW1tZW+vj65ASkoKKCuro54PH7Hb85uBfN5bIW2ZjbzXVe32y09sAtdl4XGgxib8Xh8jkc/c1MqwulPPPHEJZWo4nyF1NFCn9PZ2UlxcTElJSVSyUB45G4kt2I+VIy2O4z5BpHFYiE/P5/CwkLZpkpMokImRFTiiIn34MGDvPPOOzzyyCOYTCa6urqYnJyksLCQ6upq4vE4K1eu5FOf+tSc3f39999PNBqVMiFXEga9ku90u3MlSeRut5u8vDyphZW5s83cJWa68UW+Wk9PD5s3b2bnzp14vV6pXN/Q0DCvEvhy+x0vx3/9r/+Vffv24Xa76ejoYP369bf6lG4qmRs1US0u/j/T+zHfGBI5r6L9j9lsxul0SiV7p9PJrl27Fux4kXmshfqZZm64xDlUVVUxNjYm56DFcioVrp2leGwX42o3zXa7XXpTs+e+zE2pkBpa6PjCaMysbBfHF1EJi8UiWyqGw2GpKbnQZmY5s2yNtj//8z/nwIEDskFsMBi85DUDAwO8+OKLvPPOO+Tl5fH5z3+ev/7rv5aConcL2S7ncDgsDTQhkpsZkoOLoqxi8v6d3/kdEokEOTk5bN68mc9+9rNzduPZVY3ZIdrOzk6SySTNzc3z7qQyuVPy164kiTx7YRNSCGJnO9/i6HA40Ol0jI2NcfjwYTo7O6mrq+PZZ58FkCHrhXIEM1vMLOff+XOf+xzf+MY3+NSnPnWrT+WWkZk/JIx5uLSjinhNpjfLbrezefNmcnJyZAWx8HxYrVa2bNlyST7SQseC+fueZm/Y1qxZg0ajkeHU7OcVbl+WOj9netIu15T+ctdcrF/Z61jmZ4j5UlSbrlu37pJuH3cKy9ZoSyQSPP3002zZsoUf/vCHlzw/MzPDk08+idVq5b333sPv9/PFL36RdDrN//yf//MWnPGtIzPPRCzYQv8tHA7j8/lkrz8x4Tc2NjI0NMTKlStxu900NjaSk5PDhg0bpKaSOE4gEKCvr0+We4vdldPpxGQycezYMfr6+gAua7TdKflrS0kiFyxWbLJQorYIOwkviNfrlUKUQqpBXNfsiTF7Yb5Zv3M6nWbr1q1MTU1x4cIFKioqyM/PZ/fu3fzZn/3ZVR1z+/bt1/ksb0+yF8vsvzM9F9m5Qwv1MxZke7syPWFwcex2dnZy/PhxPvzwQ6qrq3E4HPPmOS3l/r3T0x3uNLJFdZcyPy80Hpfinc2mqalp3nVjvs/Izq9czmvIQixbo+1P//RPAfjxj3887/NvvvkmZ8+eZXBwUF64v/mbv+FLX/oSf/7nf35N7uLljPgthJp5XV2dLHnOvsGeeOIJpqampEK6qCgVN55IkBdVZ52dnVIMNnN31djYKIUWL7dTu1Mm9KWEJBb6LTInm5aWFpnPkR1CEgZzOp2mtLSUdDrNiRMnGB0dpba2Fph/gnU6nZcNSdwIVCoVH3zwAQA2m423336blStXznnN5z73Obq7u+d9/3/8x39c4sG8W7hcFe9inotsqZjs57MXtzVr1hCJRHC5XNhsNuLxOMPDw/T09NDb28u5c+eIRqOsXbuWRx99dMENx0JkegYz/1a4Pcms+hetyxbaFMxXqLKQd1b8fbVRlcXG/HJfPxZj2Rptl6OlpYX169fPuZi7du0iHo/T2toq2/PcrUQiEXw+H7t27ZI7lMwGu5k3anajaUA2mwakZlumcCEgjcHq6mpZrbRv3z6OHDmCzWbj2WefvewCciezmFcis9G3ED8FLskRPHr0KBqNRsotfPDBBwwPD/PAAw8sGB7IrvDL5kaHqD0eD8lk8hKDDeDf//3fr/vn3Qlcrop3sftGr9czNTW15KTs7OIGp9PJ9u3bsdvtlJSU0NXVRTweJxKJzDu2lIrwOwtxTbPTNgTzXcuFxkF29WdPT8+CEYGlntflHrvTuGONNq/XS1lZ2ZzHiouL0el0UoDvbqW5uZnOzk68Xi8ul4s9e/bImzLzJso02MSNIKQnshd+m80mw6XC9d3W1iaTUIUh0N3dzfnz54lEIndcguhSyTTI5iuDh4sT4dtvv00kEuGZZ56R1ydT3gEuCp6K6iyA2tpajEaj7A96Nb/vjV5QT506xYYNG+Z9TvG0zU/mtZzPqF4sTzHb872Uz9q9e/ec+/nLX/6yfF7c12LhFeH4K1l07xSP+t3AYvPVUuRAMplvTroWcdu7kdvKaPvmN78pw54L8dFHHy2o5ZKNMDAySafT8z6eybW0j7mVLNVDYrfbpUhhJtkesqmpKQwGgzTi5lPPzySz7Y3dbufdd9/lwIEDdHR08NhjjxEOh0mlUqxevZqZmRmOHTuGXq9fNM/tTilMyGS+FlVwae5RJBKRi3FTU9MlHpDMVi9i0bweybc3ekEdHh7G4XDM+5ziabs88xnVmekK2XmKV3M9xftbW1sB5mzQRI6R2OSJeSLzfUs5/p1yP9/pLDRfiecuJwciWKhI5VrEbe9Gbiuj7Wtf+xq/8Ru/sehrRJuMy2Gz2Th+/PicxyYmJkgmk5d44LK5lvYxt5Ir8ZDMV2ovbqLMnbTJZJqT82a1WvF6vXNuMlHBI3KvwuEwL7/8Mr/4xS8YGBjA5/MxNDREY2OjbIUTDofp6+uTBsn1+E7LhYUW0ezco2eeeUYK7sJFozgYDFJaWrqo1tq1/k43ekHdunUr3/nOd3j22Wd59dVXr+lYL774Ij/72c/wer3s2LGDgoKCBT11dwrzjR9hsGc/Dtd2PYWo6WLnkblpULjzWMzov9yGINNLJ1JoYO4ctdTxeSdu4K+G28poKykpkY3Mr5UtW7bw53/+53g8HsrLy4GLxQl6vV4mYS/ElVT+3U5cyY56sRtFhFNMJtOcMGcqlSIcDs/ZWQNzRGCdzovtRFpaWojFYphMJtRqNWNjY3R1dVFTU0M6naa6upqVK1de1mt6N4VRsr+r6Cfrdrulx62vr4+ioqJlPWmtWbOGrq6u63Ks733ve3zve9+7LsdaLiyUy7NYnmI2S1kAHQ4HnZ2dBAIB2TMy+71LrQBUWL4stlZczuASG9Gpqal5C6quhOtVxLDcjb/bymi7EgYGBggEAgwMDDAzM8PHH38MQE1NDQUFBezcuZN169bx3HPP8Vd/9VcEAgF+7/d+j//yX/7LZav6rlWM8FZxvTwk2caDyJkSXh6tVntJDkPmDSBEe8+cOUM6nZaaTA888AD5+fmMjY3R2Nh4WfmP6/mdbiWZu00hxZHdg1H8/2KVfwvpFSkoXCkLtb/KJB6PMzk5STQanZN/eid6vxVuDPN5Y692zMxXxABXPgavdfzeaqNv2Rpt/9//9//xj//4j/Jvkdh8+PBhHnroIdRqNQcOHOCFF15g69atc8R1FRYn23gQpd5Go5FEIiGbjmdWCmUicl6Eh06r1aLVaqmurgaQcgLAvDfyrb4prjeZu03hwVyoAEEwX/Kv3W5fkqGrcOdzrfdIdn7kQpV+84Vc7ybvt8K1cT033fMd62rG4LWO31u9aVm2RtuPf/zjBTXaBCtXrmT//v0354TuYLL7By41f0UYb9mJpmKxcLlc8yYw3+qb4npzNbvN+ZJ/7zRjVuHqudZ7RFSIio3BQu3mriTkqqBwI5mvkGGh5xbjWg3JW71pWbZGm8KNJ1sr7HJGx+VuHFFdKgy/+RKYr7SEfDlwuUliIXFK0bVC5BPdacaswtVzPRaOTP2tpY6rhTp0KCgsxvXYcC42/93MufFWp+woRttdxJXeONnenstN7i6Xi9bWVtnOKvs4Ijw4X+l45muXWkJ+p7CQOKXVasXlcuH1etm9e/ccj918nhGFu4frsXCI4ha/34/FYlmSAeh2u685oVzh7uN6GFXXUsV6J6EYbXcRV3rjXE6FfT7mkwi4EmmAu+nmEyz0nbPzjkQLoivxjCgsX260XqToQRsOh1m7du2S3pM5VpWxp7BUrqdn+Eqfu9PIudUncDcRj8f55je/uWRl8uuNzWbj8OHD2Gy2Jb3ebrfP6VWY/Xc2zc3NPPHEEzJ5eWRkhH379vHmm2/i8/koLi7m4MGDssn5Uj7zTmNkZISWlhZGRkbkYwt9Z5F3lNnGKh6P8+///u+sWLHilhi2t3oM3+rPv5msWLGCwsJC+d93vvOd63ZsMY4aGhooLy+XG4PLkTlW5xvLV/L5yjhavoyMjPDuu+/y3/7bf1vSb3gj5vVbfQ1v1eer0oupJ95lhMNhCgsLCYVCN0Ty40Yf/3b7/JaWFn7xi18wNDSEw+Fg+/btPPbYY7fs+98MLvcbCy/ZYiHiazn+jeZu//ybgfiO8+lFXi9PW+bvODk5eVX5Rtcylm/1dbzVn38zuJHjqKWlhdOnT/OVr3zlrr2Gt+rzlfCowg1DSAasWrUKs9l81/aNzORuDP8qXB03Sy/yakNLylheHtyIDj9Op5NoNHpNx1C4OhSjTeGGkS0ZkJ2jczdyN+VeKNzZKGN5eXAjOvzY7XYKCgqu+TgKV45itGUgIsU3yrgQx71Vxsud+PlGoxGVSnXdjnetKGNoeX7+7TSObvQYyjz2nXYdb+Xn305jCBbuGys63Fwrd+I1vB0+/3LjSMlpy2BoaEgJ4S0zbrecFGUMLU9up3GkjKHlye00hkAZR8uVy40jxWjLYHZ2lpGRkdtux6SwMLfbtVLG0PLkdrpeyhhantxu10sZR8sTxdOmoKCgoKCgoHAHoOi0KSgoKCgoKCgsAxSjTUFBQUFBQUFhGaAYbQoKCgoKCgoKywDFaFNQUFBQUFBQWAYoRpuCgoKCgoKCwjJAMdoUFBQUFBQUFJYBitGmoKCgoKCgoLAMUIw2BQUFBQUFBYVlgGK0KSgoKCgoKCgsAxSjTUFBQUFBQUFhGaAYbQoKCgoKCgoKywDFaFNQUFBQUFBQWAYoRpuCgoKCgoKCwjJAMdoUFBQUFBQUFJYBitGmoKCgoKCgoLAMUIw2BQUFBQUFBYVlgGK0KSgoKCgoKCgsAxSjTUFBQUFBQUFhGaAYbQoKCgoKCgoKywDFaFNQUFBQUFBQWAYoRpuCgoKCgoKCwjJAMdoUFBQUFBQUFJYBy9Zo+853vsOmTZswGo2Ulpbymc98hvPnz895TTqd5pvf/CZ2u528vDweeughzpw5c4vOWEFBQUFBQUHh6lm2Rtu7777Liy++yIcffshbb71FKpVi586dRKNR+ZqXX36Zv/3bv+V//a//xUcffYTNZuOxxx4jEoncwjNXUFBQUFBQULhyVOl0On2rT+J64PP5KC0t5d1332X79u2k02nsdjsvvfQSv//7vw9APB6nrKyMv/zLv+SrX/3qLT5jBQUFBQUFBYWls2w9bdmEQiEAzGYzAH19fXi9Xnbu3Clfo9frefDBB/nggw9uyTkqKCgoKCgoKFwtd4TRlk6n+d3f/V0+9alPsX79egC8Xi8AZWVlc15bVlYmn5vvOOFwmDvE+ahwC1DGkMK1oowhheuBMo7uTO4Io+1rX/sap06d4rXXXrvkOZVKNefvdDp9yWOCSCRCYWEhw8PDhMNh+V88Hr8h561w5yHGkJI3qXC1KGNI4XqgjKM7k2VvtH39619n3759HD58GIfDIR+32WwAl3jVxsbGLvG+ZbNixQoKCwvlf9/5zneu/4krKCgoKCgoKFwBmlt9AldLOp3m61//Om+88QZHjhyhqqpqzvNVVVXYbDbeeustNmzYAEAikeDdd9/lL//yLxc99uDgICaTSf6t1+uv/xdQUFBQUFBQULgClq3R9uKLL/Kv//qv/OxnP8NoNEqPWmFhIXl5eahUKl566SW+/e1vU1tbS21tLd/+9rcxGAx8/vOfX/TYJpNpjtE2MjKC2+3G6XRit9sXfe+VvFZBYbmgjOubTzgcnvO3Xq9XNpA3gTttrN9J4+hOuzZXw7INj/793/89oVCIhx56iPLycvnf3r175Wu+8Y1v8NJLL/HCCy/Q3NzM8PAwb775Jkaj8Yo+y+1209PTg9vtlo+NjIzQ0tLCyMjIZV+roLDcuV7jeqH7RuFSlDSNW8OdNoffSePoTrs2V8Oy9bQtpSJGpVLxzW9+k29+85vX9FlOp3POv/DJ4AHmWPzzvVZBYblzvcb1QveNwqUoaRq3hjttDr+TxtGddm2uhmVrtN1M7Hb7JQvMQoNHvE7sBJSFSeFOYL574GpQJt2lk52moXBzuF5j/XbhThpHd9q1uRoUo+0qWWzwZHsTlDi8gsJFrnTSzb53xN96vZ54PK7cUwoKCncVitF2BSzV+Mr2JrhcLo4cOYLNZuPZZ59VFhmFO5rruUnJ3gCJv6empjAYDPJxBQUFhbsBxWi7ApaajzOfN2FiYoJ0Oi3DpornTeFO5XrmrWVvgMS/mZ42BYWrRYmCKCw3FKPtCrjafJzm5uY5x1CSsRXuZK5n3lr2BkjJaVG4nrjdblwuFx0dHezevVuRdFK47VGMtkXIvkHnWzAWu4kzn9uzZ4983Ov1MjU1tayreBQUFuJGGlbKoqlwPXE6nXR0dBCPx3G73ZcdU8qGW+FWs2x12m4GS9FnW0w3ZqHn4vE4BoPhru9p2tXVxQMPPMDq1avZvHkzZ8+evdWnpHCDWUinban6bYpO093Bf/2v/5XKykpUKhWnT59e0nuuRgPQbreze/dumpubl+QZdjqdVFdXK2H5m8By03S8WeuZYrQtwnw3aPaikfma7EG20A0uHg+Hw7zyyiu0tbXdvC91G/HVr36Vr3zlK1y4cIFvfOMbPP/887f6lBT+/1xuwrzaCVXcPy6Xa877XS4Xv/jFL3C5XIu+X9w7er1+WU3oClfG5z73Od57770rMo4y5+bM8Xm5sWq329myZQvAZceUeK3iZbvxLLcN2s1az5Tw6CJkhnkypQYW2mllu84XChOJx1955RVOnjxJMBgkHo+j1+sZGhoCLubB3U4TQzqdZuvWrUxNTXHhwgUqKirIz89n9+7d/Nmf/dkVH29sbIy2tjbefPNNAH7t136Nr33ta/T391NZWXmdz17hSrlcGGgpYaL5Qpl6vZ6pqSmSyaRsryOeU6lUl7zf5XLh9/uxWCzynrDb7bS0tCiyOrcJ13tuANi+ffsVvyczlzJzfAJLCmkqoc/bixup6bic1zPFaFsi4oaurq6Wu7KRkRH2798vw5xOpxOfz4fP52NkZOSyN74oUNBqtVLGYGhoiEgkgtfrXVJi7M1CpVLxwQcfAGCz2Xj77bdZuXLlnNd87nOfo7u7e973/8d//AcrVqyQfw8ODmK329FoNPL4K1euZGBg4I4w2m7Xfn9XK1tzJc+Lz/D5fHN+B/GYwWDAZDJhtVrl+zOLdcS9I5LEh4aGWLFiBVarVZ5z9ucrC+6t43rPDZdDGPMwd3ObKWw+3+Y6e6xm3wuK8PPtxY3MjV3O65litC2RhVpZxeNxYrEYPp8Pp9OJ1WrF5XItyehqamqiqalpjhdPq9Xy85//nJ6eHrRaLV/+8pfnfe9Ci++N9jh4PB6SyeQlAxzg3//936/oWNmelaW0JlsuZC9Cf/Inf3LN7dSuB5czbjLHj9icZD++mBc58zOEErvYyLjdbmKxGHV1dXMWW7EId3Z2kkgkOHHiBCaTicbGRpqbm6mqqkKlUuHz+Whra5NSH5nnpyy4l2c5zQ2LIYx5lUo1x5DP3ESLuXghsjfclxvTCreG5TRmb9Z6phhtS2ShVlY+n4/Ozk7cbrf0HIhqJJfLNcebMN/uMPvY8XicX/7ylwSDQXw+34Lns9Die6M9DqdOnWLDhg3zPnclO5MVK1YwNDREKpVCo9GQTqcZHByc9+ZZjtyu/f4uZ9xcj3E1X5jKZDKh1+sJhUJ4vV7g4oR88OBB3n33XQKBAGVlZZjNZrkZKioq4itf+QqADIe6XC4pqivOK9OQFPlLSpj0UpbL3HA59Ho9BQUFlJaWzruJ1uv1+P1+Wltb2bhxI1ardc73bmtrY+/evaTTaWpqahRD/zZGjFmfzyfX0us5dpfjeqYYbdeA3W7HarVKL5kYULt375ahoMy8isOHDxMMBgHmSIBk4nQ6efzxx/H5fOzYsWPBUMBCi++N9jgMDw/jcDjmfe5KdialpaVs2LCBV199lS996Uu8/vrrVFZW3hGhUbh9+/1dzptwJeNqsTDVQr16hXdDJBcfPXqUc+fOYTQaqa2tZceOHRw5coSenp5LQludnZ0MDAzIsNd8RogSJl2Y5TI3CEZGRojFYhw+fBiz2Qx8EmK32+1UV1fPucaZwsuHDh2SofnMx1taWjh27JgMwd9OKSgKlyKuXeZaej2vV/aYzfTs3a7rmSq9jGNSR48e5a/+6q9obW3F4/Hwxhtv8JnPfEY+n06n+dM//VNeeeUVJiYmuO+++/je977HPffcM+/xwuEwhYWFhEKhJS+4S9VpA/je975HT08Pu3btYteuXfP2VMz2ygG0traSTqd54okn5oSEbgXnz59n9+7d3Hfffbz66qvXfKwvfelL+P1+TCYT//iP/7jgtVkuXM0YWq7s27ePf/mXf2F6epqtW7cu2qItu2eoKLrp7u7G7XZjNBp56qmnaGpqkl41kfcm3nPs2DH6+vrYsGEDX/nKV+a99+6EgoTlOoau59zw4osv8m//9m+Mj49jMBgoKiri3/7t3+aMi/kiGHBxYzA2NkZpaekco0yMq2QySTKZpLm5maampms6z9uZ22kcZa9vV3qP3qj7OnvMijGSmbt+Jce6GevZsva0RaNRGhsb+fKXv8yv/dqvXfL8yy+/zN/+7d/y4x//mNWrV/Nnf/ZnPPbYY5w/fx6j0XhdzmExz0V2YmxhYSHl5eVYLJY5/Uh37NiBy+Wao9t2+PBhQqEQ9fX1zMzMkE6nb4sQ25o1a+jq6rpux2ppabkux1K4+bS1tdHe3o5er6e0tJT9+/cv6LnIDJMGAgFOnDhBQUEBNTU1PProo4TD4TkFPfDJ7lr0GbVarRQVFcnFeb57T8lLunVcz7nhe9/7Hn/0R3/EwYMHZdTBZrPJlBGxeLe0tMhNrchhi8fjlxhsIyMj+Hw+TCbTgpX5d4LBf7uyUDWveO5yv/mNuq+zx+y1eKNv1nq2rI22J554gieeeGLe59LpNN/97nf5oz/6I5566ikA/vEf/5GysjL+9V//la9+9atX/blX4l0T4SC9Xk9eXh5r167F4XBw6NAhhoeHSafT0mATIVaA8vJyAJLJJDk5OahUKoaGhmSSrTKpKNwKMj1mR48eZWJigpqaGmpraxkbG2P//v00NzdfMk4zDbGjR48yMjKCxWKReSGiYCGz0MDpdOJyuaRnJFP2Q+HOYaH51G63U1dXh1arlXOf3++nv7+fQCDAmjVrCIfD5OfnS4/s0NAQTqdzzjgROWxGo5GGhgYZms8eR0po/fqxlMrcq2npeL0M68XG3O2eG7usjbbF6Ovrw+v1snPnTvmYXq/nwQcf5IMPPrgmo22xgZa9oxgbGyMSifDII49gMpnkQM3Ly6O2thaTyURBQQEwNy9IeN+cTqf0QGQm1y6UE6egcCNxuVy0traSn59PKpUiJyeH4uJiduzYwU9+8hPefvttBgYGKCsro6OjQxpwer0en89HIBCgvr4eu92O2WyWY9/v99PX10dnZyd5eXmyF6TVaiUcDjM1NUU4HF5Sq6E7hdtVNuZ6s1j/z0xjP7PCuL+/n/b2dsrLy8nLy8Pn83Ho0CHy8vKksQ8X59RDhw7R3t5OdXU1FRUVC86hSgXytZMp9+N2u+dc02zjKNP7KfINRSrEQg6R7IrfpZzLfMe6XM/Z29mAv2ONNlGhVlZWNufxsrKya1ZYXuzmzn6utLQUuDgIsgeH0LGanJyUba3a2tpwuVzodDqpZyVi6/v27aOvr++azl1B4Vrw+/0MDg5SX1/P9u3b0Wq1lJeXE4/HMZlMJBIJQqEQExMTJBIJgsEgdrtdahCqVCpZaHP48GF6enqoq6sjFotJCYdkMimLFTKTyMVkPh93YmjrdpWNud44nU6OHTtGb28vWq2Wurq6S6RlRkZG6OzsZGJigmAwyOTkJD09PWzcuJGKigo8Hg+Tk5NyI9DX1yclGIaHh0kmk1RXV2OxWOQceiUyNsuZG2X8z3fPZVeLZ/d0zXyP2ABu3LiReDw+JxVCkHn8zOpg0YEoM082+96/3GZgsZ6zt7MBf8cabYL5tFOyH8vmcoN8qTe33W6nubmZH/7wh7jdbmw2G3v27JHvb2tr49ChQ2g0Gmw2G06nk/3793Ps2DGMRiOPP/74nEHT3NwsE3CFcXenJ9MqXH+uxcCxWCw4HA6qq6t55plnqK6upqenh/Pnz9PY2EhRURFarZZTp04Ri8WwWq2YTCZSqRRVVVVYLBYplRMKhVCr1ej1erZu3XpJV5DMxfRy3M4746vldpWNud6IMOjk5CQ+nw+tVisfFxXKgUCA4eFhRkdHUavVaLVaVCoVOTk5MoR67NgxtFotPp+PoqIiUqkUfr+fnJwcnE4nNTU1c+bQO3HMzMeNMv7n+/3mE73OlmUREh6dnZ1yrRWdUpxO55yIVObxs4/96quv4vF4KC8vn1O5Dp/kMMZiMYA58lviNTabbc7xMrmdDfg71mgTF8Tr9cr8MLgYrsz2vmVzLYM8e6DF43F0Op0cPJnE43G8Xq/MC4KLxRXRaJTy8nKsViter1fmCTU1NcmBtH//ftkCS1ThBQIBqqur2bVr12074BRuPZcLDQgyF0xRZK5SqWhubsbhcOByuejp6eHUqVOcOHGCwsJC1qxZQ3l5OYFAgKKiIhobG4nH44TDYVn1Bxc3ID09PXR3d1NQUCB3ym63m3A4fImcw+W4nXfGV8vtKhtzIxDGlAiBh8NhWlpaZFj0woUL+Hw+CgoKqK+vp7q6mmAwSDKZRK/X4/V6ycnJIRQKkUgkcLvd6HQ6SktLefjhhwFwOBzzblbupDEzHzfK+J/vnpsvDDrfe3w+H4lEAp1Oh8PhIB6PXxJZyn5P5rFbWlrweDyEQiEaGhrm7REeDoepq6vDarVeIhnicrk4fPgw5eXlc7qxLAfuWKOtqqoKm83GW2+9JcXzEokE7777Ln/5l3+56HsvN8gX81SIHYNer5fWfkNDg0yiBqSXzOl0EgqFaGtrk96/iYkJuSvM9Lz19PRgs9nk54ljTU5O8sYbbzA4OEgikWB4eJi6ujrFaFNYkPlCAwuFOsSCGYlEKCgowGQyYTabqauro7+/n66uLqampuTmYWBggMLCQtRqNTk5OdJg6+jooKysTO6st2zZQn5+PrOzs7S3tzM7OysrA8VOG5buFbydd8YKl0dcvx//+MccOHCAcDhMeXm59M4K0dL6+npeeOEF7HY7+/bt4/Dhw/T39wMX594HHniAgYEBJiYm0Ov1sqpUbAiyNyt3w5i5UcZ/5u+31OK8zHC31+ulsLBwTtrDfAZgW1vbHMeFeF1DQ4PU7MtGrMPr1q2b03Uo8/jBYBCVSrXs8mSXtdE2OTk5R7G4r6+Pjz/+GLPZzMqVK3nppZf49re/TW1tLbW1tXz729/GYDDw+c9/ftHjXm6QL+ZWFzsGsSAKa3/Lli2yIkXoTcHFwTU5OUl7ezvbtm2TxpjYFSaTSUZHR8nJyZkjqWCz2aivr+f8+fNoNBrMZjPl5eXce++9d/zOUeHaEKKi2bpJ84U6ioqKCIVC6PV6amtrmZiYkJWfGzdulO9tbGxkYmKCU6dO0d/fT0lJCY899pjceIicI7EZGRkZQavVUlVVhcPhYHJykrGxMYLBoLwHhKclO6H5arkT896WI4u14Dtx4gRdXV3E43HpWXM6naxYsYKRkRFMJhMdHR3s37+f8+fPc/z4cQoLCzGbzaxdu5ZoNEoikSA3N5fc3FyCwaAc15m5cyJVReH6sNTivMwwZuYclF21mZmn5nK5OHnyJMCcVKBkMsn4+Dj/9E//REVFBTU1NXKOyFyH5xtvmd61pa6X13P+uJZjLWujzeVySdc3wO/+7u8C8MUvfpEf//jHfOMb3yAWi/HCCy9Icd0333zzmjXarqQQIfP/xeDVaDTSm+B0OhkdHUWv19Pf309nZyePPPIIQ0NDtLa2Mj4+jslkwuPxMDY2JncF4lhms5lNmzYRj8dpbm5eUBBQWbAUBPONhcxxm/l8QUEBJSUl2O12XnjhBTo6Oti3bx/RaBS4uFvt7e2lsLCQuro6PvzwQ8bHx8nNzQUuhvGTySSTk5PMzMzg9/tldZlWq2Xbtm0AMtQqeo+KKlKn0ykn8PnyUq6EuyWH6XYjO2F8PkNcVAYWFBSwadMm/H4/4XCYiYkJJicnaWhokJWiP/vZz/B4PExPTwMXIyOzs7N4PB5KSkoIhUJS21IUICgb2RvLfOte5nW/3DXIrDoNh8OMjIwwOTlJc3Mzzc3NBINBtFot//qv/8p7772HWq2mrKyM4eHhOS0fhUdOVKXOlxs3Xz74Unp5X8/541qOtayNtoceemjRpqwqlYpvfvOb173iajG3+nzPiWpVMWhNJhOlpaWydHnr1q2kUikOHjxIV1cXp0+f5sEHH5S5PQUFBXi9Xim1EA6HaW9vn2P8iZtjIZQFS0GQPRayJyyhCg6f7EiFHI3b7aakpISBgQEikQgXLlwgkUgwMjLC6Oio1BU0GAz09PRIuY5UKkUqleLkyZMcO3aMlStXYrfb6evrY2hoiFAoRHl5OZFIhNHRUbq7u2lqapKfn90W7mrG8J2Y97YcEONNVAYKrT6DwSA9XkJsPB6P82u/9mucPXuWt956iwsXLpBKpSgvL6e0tJTh4WEGBgZIJpPk5uYSi8XIyckhHA6TSCQ4d+4c/f39mEwm7r//fnbs2CEX5paWFqmVudzymG53Flr3srsLZM41Bw8e5OjRo9TX18/JazWZTHR2dhKNRgkEAgQCAfr7++nv78flcsn82NraWtatW8fZs2cpLCxEpVIxNjbG3r17cTgcc3JkM1OW9u7dy8jICHAx9z3TWMzucZo5V17P+eNajrWsjbblQHYexZYtW2TV6IkTJ3C73XInGQqFiEQijI2NkZeXR3l5OTU1NTz00EPs3buX0dFROjo68Hq9cuAK4UmHw7Gg+G6mHo6yYN3diLGQTCbx+XxyEhUVXXBR1kNUecLFiW1oaAibzYZer2diYoJoNIpKpaK4uJjS0lI0Gg0+n4/CwkJycnIwGo1MT09Lr5vBYKCpqYlwOMzg4CC5ubnU1NTQ3t5OOBymqqpKNvbOzc2loKBgTm5mtnF5NdwtOUy3moWEVUVlcEtLiywiyCQYDDIxMcGPf/xjDAYD4+PjwMVislgsxoULFwgGg8zOzlJVVSXf73A42LFjB/39/Rw/fpyJiQlUKhUrV66cE07LXCiVcXBtXC5yMzIywvnz5xkbG2PdunXyMVHx+fDDD+Pz+WT4Wsj+CHJzc5mYmODo0aO0trZKr+r09DS5ubmUlZWhVqsZHh6mtLSUVCqFVqtlenqadDrN0NAQyWQSl8tFQUGBDJm63W7S6TSzs7NzvGdCwDuVSs3xAmePmaXk8C2Fa5mLFKPtBiMmKqPRKEObomr0zJkzRCIR9Ho9+fn5NDY2kkqlqK+vx+m82CDb7XZjtVp55plnmJ6elg3nvV4vBoOBWCyG0WiUXraenh46Ozvn9Na72oo8hTsPMRaSySThcFiKkKZSKZlPZDKZKCsro7OzE6vVyqlTp6ROVl1dHZFIhEgkQiqVwul0Ul5eTnt7O+Pj4+Tk5DAzM0MwGCQcDqPVamlqapLJ5OvWrWPlypUUFBQwOTlJY2MjQ0NDssLL7/dTVVXFtm3bLjHOFKNreZAtMJ5paB86dAiPx4Ner6e5uRm/38+Pf/xjWfne09MjPSapVIqioiK2bNnC9PQ0IyMj9Pf3o9PpqK+vJ5lMYjAYePzxx/nSl77Eyy+/jE6nIzc3l3vuuecSb5oyfhbnSgyR+SI32aHEvr4+0um0zCvbv38/H3/8saz4bGxsxO/309jYSFVVFT6fj1OnTuHxeNBoNAwNDdHX10cwGCSVSqHX61GpVKxZs4annnqKsbExqf04OzsrN5sqlYp0Ok1PTw96vZ7i4mJGRkZIJpM0NjZSUlIitSAzq1mFIySRSEgDb8uWLfP+FrcycqUYbTeYoaEhWdqcabXbbDa8Xi96vR6Hw8HmzZuljEJzczNDQ0NSg0bkghiNRgYGBujq6mJsbIxAIMCTTz5JRUUFgJRmOHLkCKOjowSDQZqampSwkIJEjAERYu/s7KSsrIxYLEZXVxeBQEAWv6jValauXMnQ0BCRSASPx0NpaSkVFRXMzs4yNTXFmTNnKCkpkeEHEfIXE6nBYOC+++6js7OTn/70p+h0Oh577DEOHjyIXq/nN37jN9i2bRs9PT1zeosq2oPLl8z5JtuA6+7uZnBwkOLiYvr6+vjggw/wer2YTCY2bdrEpk2bOHHiBH6/n9nZWXJycjCZTKTTaRKJBHl5eahUKlKpFNu3b5dVhHCxi0x7ezvT09Pcf//92Gy227YV0e3IlRgi860p2aFEUagkxkE8Hqe4uJj8/Hx8Ph8Wi4X6+nqqqqpkod77779POBwmJycHj8fD1NQUZWVlqFQq8vLyKC0tZc2aNUSjUY4fP040GqW6upp169YxMDCAxWJBo9FIx0VRURHJZFIWQtXV1VFXVydzcgVCdmQhfbnLff+bmTOuGG03AaPReEmo59lnn6WoqIixsTFKS0vlrrC+vh6bzcaRI0c4deoUs7OzDA0NcerUKVpbW5mYmKCvr49kMonJZCIvL4/u7m5OnjxJUVERxcXF9Pf3MzExwfnz59m3bx/Nzc3yxhGfr3Bnkz2JZP69ZcsWWlpapCZgLBYjHA5TWFjI7OwsoVAInU5HVVUVPT099Pf3YzQayc/PJ51OU1dXR3V1NT/60Y/w+Xy0trZSW1vLRx99xPj4OIlEgsrKSurr66UOkt/vx+/3Mz09zb/9278Rj8dRq9U89thjcuxnnquy2C5fxDVzuVz4/X6CwSAjIyM0NjZSU1OD1+slEAjInMdgMEgoFMJutzMzM0Nvby8+n096V95++23GxsZkj9FkMsnY2Bjt7e14PB6CwSA2mw2bzcaOHTvw+Xw0NzcrebxXyEKb++y0hMx5JPP5xQoOxGNbt26VvbYBqqur6evr46c//SmNjY3U1dWh0WiIRCKoVCpUKhUFBQXU1tZSU1OD1Wqlr6+PAwcO0NnZyczMDMlkkuLiYurr66UWpOiKMTs7i9frJT8/X66Der2ezs5O/H6/zJET55393RYi22t7M8eaYrTdYBwOB16vF4fDMefx+UqeMxPAA4EAfr+fc+fOYTQaOXfunGwRpNPppMxHd3c3Z8+elbuMaDTKzMwMVquVyclJGf7yer3yRgFu2q5A4daQPYmI3Mpjx45RV1eHw+GgsrKSnp4ehoeHGR8fp7CwkPLycgYGBjAajVRUVHDu3DnGx8eZnZ0lGo1isVgAOHHiBAD5+fk0NDSQSqXo7e2VHjpAekDefPNNKSAdDodZt24d4+PjMqS/UCscce4KtxdL8Sq43W5aW1tJp9P4/X6Z+L1jxw6GhoYYHx8nEonIKITYLMRiMcbGxohGo6jVatm2Kh6Pk5+fT05ODiqVipmZGYaHh2VxVigUQqVSEY1Gefjhh6U2FygRhqUyX/g4u98nMCf/VSAMH2HstLS0yOtvtVplmHFkZASbzYbf7ycQCABw8OBBzpw5Q3d3Nw899BDBYFBe86mpKemha2xspL29XQopl5SUEIvFiMVifPzxx0xMTLB161Z5TmKz2NfXR3Nzs5R4cbvdeL1e3nvvPYqLi3n44YeltMjV9va+mdGsG2a0DQ4O8txzzzE2NoZGo+GP//iPefrpp2/Ux922ZOrFZJN9k2Qm7KbTaVauXElxcbGsypuenkalUrFixQoMBgNut1sWMqRSKUpLS0mn05SXl7Nu3TrZOggudoLo7u7mwoULqFQq1Go1Dz/8sKJVdIeSPYkIQd3e3l6i0ShWqxWLxcLRo0dlKKq0tJTCwkL0ej0zMzO4XC6CwSCJRIJwOIzX66Wzs5PR0VGOHj1Kbm4uDzzwAMlkkgsXLpBOp8nJyUGr1TIyMsK7775LcXExoVCIdDqN3W5n/fr1PPPMM3OqtsQiIKq2lHD+7c1iRnVbWxs/+clPCIfDVFZWUlNTQ2trK319fWg0GuLxOJOTk8RiMTnuRFELXOwII7ywWq2WdDotk8vhohGh0+lIpVLSgPP7/XR0dJCXl0d+fr48FyWH7drJ7vcpEJ0qVCoVGzdulBWf58+fl9dKhCb7+vro6OigublZ5ooJT5fRaJTeWICTJ08yPj4ujTWRE5dIJDh69CixWIzh4WGGh4eZmZmhpKSEmZkZfD4f58+fp62tDZPJhN/vZ+vWrXzxi18EoLOzE4fDIYuh3G43o6OjJBIJEokEdrud7u5ujh07RiAQkNXygisRD77R3DCjTaPR8N3vfpd7772XsbExmpqa+PSnPz3nprobuNwCJFoFAVJnbd++ffh8PhwOB7/6q7/K0aNHGR0dZXp6Wu5OV61aJSte4GK1zczMDBMTE+Tl5eF2uwmFQnzwwQdUVVVht9uJxWL09vai0+lYsWIFfr9fCUMtUy43UdjtdrxeL9///vcBeOqpp9i9ezc2m41AIIDP5yMQCJBIJEilUmzevJmmpibeeustIpEI4XBYynokk0lUKhWJRIKOjg6Zc1ReXk4oFKKjo0PmljQ1NTE4OEgwGOT48ePU19ezbt06eYzc3FxcLpespM7UZ8qusla4PVlsTnO5XBw9elTmn9lsNk6fPs3U1BTvv/8+NpuNoqIiwuGwDG3F43FmZmbkvyKKMDMzQywWQ6/XU1paisPhkEabWq0mPz+fDRs2EIvFKC0tpaamZk7nGYVrZ76KW+ExE4hQtOieEg6HWbNmDWvXrsVgMPD+++8zMjJCMBjk2Wef5dixYwwODgIXexmbTCZmZ2cZHx/nww8/xGq1UlpaisFgwOPxYLfbCYVChEIhotEoXq8Xj8cjI0+i4bzI8x4dHWVqaorW1lYeffRROjs76e7uxu/3Y7PZ+PnPf865c+coKSlh1apVFBQU0NLSQiAQIJVKSR1B+CQKsJhM0s2ODNwwo628vFz2/CwtLcVsNhMIBO46o+1yZcKZYQSr1YrdbicQCNDb24vBYODMmTMMDw/j9XrlrlRUUq1YsQK9Xo/VapWl8B6Ph+7ubj788ENmZmaAi8m/jz32GNFolFQqxaZNm3jwwQcBlDDUMmWhCr3M63jo0CH279+PSqUimUzyO7/zOzQ3N7N//35OnTqFTqejqKgItVqN3W5nz549nDhxQraeisfj5OTkkJ+fT3FxMTqdjv7+fnw+H+l0mry8PJLJJOl0mqKiIpxOJzqdjunpadkXsL+/n+bmZs6cOUN7eztr166lsLBQVlJntqp5//33ZZX1Qt9J4daTrV6frTQ/MDDA4OAg6XSaV155Ba/Xy8zMDNFolAMHDsicpUgkQl5eHmq1mtnZWdLptBTFFWkes7OzlJSU8NWvfpV0Os0vf/lLIpGIHJs7duxYUHBZERS/djLXKYH4TbOjNM3NzczOzjI2NiZzWePxOF1dXfT39xONRnG73ZSWllJdXU1+fj5qtZre3l5KS0sZGxsjHo8TjUalN3XDhg2UlpZKzbZYLCbnI7/fz8zMDIFAgJ07d6JSqRgYGECr1aLT6SguLubEiROk02lyc3Pl3BIMBpmZmZFi32+88QbFxcXk5eWxfft22bUlWwopUzLL5XLJosHMnNybwRUbbbOzs6xbt45f/dVfndPD8+DBg/zKr/wK//Iv/3JJGNTlcjE7O3tJI/a7jYVaBW3cuBG/3y91s4R7OR6Ps3//fvr7+4nH41gsFqqqqojH49TU1JBIJCgqKmLFihXcc889tLe3c/78eZmDJDwbarUan8/H0NAQer2eNWvWsGfPngV1r5TJ7vbH6XTi8/no7Ozk2LFj5OXlAXON79LSUsrKymR40uVy4fV66e7uZnh4WIqMJpNJnE4nLS0trFu3jvfffx+v10symZRej2QyyUcffcTU1BSADEXp9Xo2b95MNBpFo9HQ398vtdnS6TQ6nQ6r1Up7ezt9fX1MTU2xYcMG9Hr9HGXy7CprJa/t9mehjcMLL7yAy+Xi+PHjjI+P4/V60Wg0BAIBJicnSSQS0oOmVqulcZaXlzenX21ubi4mkwmLxUJRUZH0luj1ejQaDQUFBTLkdbnzU8bQJ8w3vy8252caL5m50ZmvE5s+4XXLPI4wevLz83n77bfxeDzU1NTQ39/P4cOHicfjmM1mKioqiEQiUnYjkUgQjUbZtm0bBw4coL29nVQqRU1NDRqNhnQ6TSwWIxAI8B//8R+yxV5eXh733HMPJpOJjz76iEgkgsFgoKSkBL1ez+c//3lsNhsDAwOcOnVKpm7U19fz5JNPSi9/R0cHHR0d2Gw2rFYr1dXVANIrJ0L6NzsMf8VGW05ODn/4h3/I17/+df7gD/6A4uJi2tvbefrpp/n2t799icHm9/v5zd/8TX7wgx9ct5NerizUKmjPnj3s27eP1tZW+dqcnBzGx8eZnp5menqanJwccnJyKC8vp7GxkenpaY4dO4bX62VsbIyBgQHi8Th+v1+KB+r1enQ6HWVlZZSUlMgbobW1lS9+8YtUVVXJxT8zhq9Mdrc/drsdq9WKy+WSpezZ5ecNDQ0kEglZoQzInKL8/HwpWDk8PMzBgwcpKyvDaDQyOzvL7OwsMzMzUrpDtB8S3Q6MRiOBQIDZ2VkqKipkqzWRh+JwOJiamiIvL49gMMj69esZGxvDaDQyOTlJPB6no6ODkydPynwWlUo1p8oaFk8rUDYWtxahMC+EmsPhMHAxf+iXv/wl0WiUiYkJpqammJ2dRaPR4Ha7paFWWlqKSqWS17+srIy6ujoOHz5MLBbDbDZz//33Yzab6enpobu7G4vFQm1tLc3NzWi12nlzhQVKbuT8zDe/L+a5z9Qyy8xvy970Z6b5ZN6TDoeDzs5ONBoNLpcLt9vN2NgYHo+H0dFRGRovLS3FbrfPyU0cHx/n6NGjeDweBgcHpayQRqNBr9eTl5dHJBKRxQtTU1NMT0/T19eH1WolGo3S09MjPbjxeJxdu3ZRX1/P9773PXp7e0mn06xbt46GhgaZl2c2m+ns7CQcDssQrs/nk+PcbDazZs2aWzK2rio8+oUvfIE//dM/5e/+7u94/vnnefLJJ3nuuef4vd/7vTmvi8fjfPazn+UP//APeeCBB67LCS9nMi3yffv2ceTIEWw2G88++yx+v5+BgQEKCwtJpVJMTU0RiUQoKiqS0iBiB3r8+HGZfDk1NUVvby+xWIx0Oo1er0ev10t151gsRjAYpL6+ni1btnDu3DnefvttRkdHMZvNrFq1itWrV8vQLHzixRGeP2VRvHLEAiYQ1+VqWKjk3ul0XtJmSjwv2sc0NzfjcrlwOp14PB5isZiU5+jo6ODo0aMMDw9LA2v16tX4/X7y8/Ol4SZyPYRHJJ1OY7FYmJiYIBQKcfToURobG8nPz8fr9TI5OSkNwqmpKY4fP45er2fTpk3ynEXpPYBWq2VychKbzSa/7+V2r8rG4vpzJYawyMUV6RharZaamhpMJhNtbW18/PHH0rM2MzODXq+X/WhFaFOEQIVH1mw2s3HjRvr7+xkZGZFK9k1NTQSDQU6dOkV5eTl79uyRxtpii6ZSiDA/8xmzC2nrZaYwjIyMzAlFZ6od+Hw+fvrTn1JYWAggXwcXjbmuri4ikYiUBBofH0etVstcbNFFZdOmTXR3d2MwGPB6vbJwasWKFXL86HQ68vLy0Gg0aDQaYrEYQ0ND6HQ6WXU6OTnJ2bNnpbdWo9Gwfv36Oec0NjaG2WzG4XCwYcMGkskk586dIxQK4XA4qKqqkrqR8Xicnp4eUqkUiUSCdevW3TItyasy2jQaDb//+7/Pf//v/53XX3+dpqYm/u7v/m7Oa9LpNF/60pd45JFHeO65567Lyd5pTExMkE6ncbvdWCwWVq5cid/vp7+/n2AwiMFgYMuWLczOznLw4EGSySTRaFRWzqRSKSKRCAAzMzNotVpsNhtTU1Py2Hl5eaTTaT788EPWrVtHfn4+JpOJiYkJ8vPzsdvtlJeXX7JzEi2FRO6RwpWRnQrwJ3/yJ1fdAzd7Fyz+X6/X4/V6L9nZZk/ABoOB9vZ22traCAQCFBYW0tvby+DgILFYTCqIp9Npurq6MBqNWCwWmeg7MTGBRqNBrVaj0+nIz8+nqKiIqqoqPv74Y7nAPvTQQ1RVVdHV1YVKpWJqagq73U4kEuHUqVNoNBoefPBBGZqPx+Ps3r1bfkexi11KY/i7wYtyPQ3/pbBUQ1jIQIjcJbfbTSQSobu7m2AwiEqlQq/XE4vFZMW7Wq3GZrMRiUTIz88nlUrJvEmxaF+4cIH+/n5WrVolNyNdXV0YDAbq6uooKSmR+ZAGg0Hp8HKVzGfMzvfYfMKxmQVCer1eimoDUjIILhpFBw4cYHBwkGQyKcW5RfK/Xq+X2pB5eXnU1dXx0EMP4Xa7GRgYQKPRUFxcLJUXUqkUFRUVUinBYDCgUqkIhUKsXLmSvLw8pqamZJcFl8vFANkgOwAAqSlJREFU6OioVFt44IEH+PSnPy3lPo4fP05PTw8mkwmz2YxKpSIej8tIltlsntP3WGjQiTlqMQ/vjeaqCxG+8IUv8NJLL5FOp3nttdekNpPg/fffZ+/evTQ0NPDTn/4UgH/+53+mvr7+mk74TiGzwkl4TaxWK52dnbS3t6PT6bDb7Tz66KNycOXk5FBbW8uZM2ek1w2YY5yJkOrMzAwFBQWUlZWRTCZ57733+OCDD7Db7bIwpKqqikcffVQu+pk7p7thUbyRDA4OYjKZ5N/XstgutDPev38/J0+eBD5pfJwZyujs7AQuTjrHjx9ncHCQsbExmXQLSINNqMwL1XFRrZyTkwNcrE6uqKigsLCQiooKdDqdFHsWCb0ajYYtW7awbds2WlpaGBgYwGazMTExQSQSwWg0kkql5DmJsZap4bTUxvB3gxflehr+S2Gxe17kHzqdTtrb2+nu7qampoZnn30Wr9crNa4OHDiAxWKhpKSE8fFx6fFPpVJyI2o0GhkfH5feW4BkMsnk5CRqtZqxsTF27drF4OAgHo9Hena3b9/O2NgYTqfzkj7KSrh8Ya7U+F9MOFb87XQ6pZzV0NAQAA8//LBc1zo7O/nwww8ZHR2VaTqzs7PYbDYefPBB+vr6pFxVXl4ejY2NWCwWjhw5ItM57r//fhwOBydPnmRwcJBQKCTTPQoLC2VP2vLycsxmMwAFBQXk5eUxPDxMNBplcnISn8/HuXPnWLFiBXl5eQwNDTExMYHVaiU3N5dEIkE6nZYRgMw8P7E5KS0tlb1Ixfe/VWPuqo22r33tawDSzZnNpz71KWZnZ6/+zK4j3//+9/mrv/orPB4P99xzD9/97nfZtm3bLT0nkbiZ/ZjT6SQYDPLxxx9z7733yptg27ZtBINBJicncTqdaLVazpw5I5PM4WIoSizAarWaZDLJxMQEgBQhHB0dZcWKFTz++OPU1NQAn+QiOBwOGbtfiiq0wsKYTKY5Rtu1kD2JZlbqiX+zJ1aXyyUTd4PBIP39/UxNTaHT6Ugmk9TV1WE0GpmammJychK/309OTg6zs7MMDw8TCoVQq9Xk5OSQm5tLTk4O6XSaQCAgRU9FhaBerycYDHL69GlWrFjBxo0bKS4u5ujRo5hMJoqKijCbzaxevZodO3bIpvVi4c3eyV9rY/g7hetp+C+FxQxhl8vFyZMn+fjjj/H7/ahUKrRaLa+++qr0iv7v//2/6e3tpbe3Vy6Gubm5Ms9ReEsMBgPBYJCcnBxZgSxydjUaDVqtlvfeew+VSiXz3oQ4eW9vL/F4/JK56UrC5XebgXetxn+2515I8zQ3N8/xPgnPp5ADKS0tRavVMjs7y8TEBGazmYceeoidO3dy8OBBhoaGyMvLo7i4mNOnTxMKhbj33ntlpOgnP/kJAwMDzM7OEovFSCQSACQSCaampkgmk9LIFxEBUd2u1+spKioiPz+fiYkJJicnpb6b6G/7K7/yK1RWVtLX14fFYrlkTLlcLilqLzy8mb1IM50cS9V0ux5cldH2x3/8xxw4cIAPP/yQHTt28MMf/pAXX3zxep/bdWHv3r289NJLfP/732fr1q38n//zf3jiiSc4e/YsK1euvNWnN28yp2j2Lm4Sh8PBr//6r3PgwAEp4WCz2cjJyUGtVmMwGEgkEtLDptFoSCaTTE1NkUqlUKvVc6q0hoeH+eCDD/D5fJjNZjo6OqiqqpKGuDDiFOHd25umpibpYctuISMMudHRUVlJbDKZMBgMVFRUkEgk0Ov1rF27ltLSUtmv1uPxkEwmMRqNchEV5fFCiTwajWI0GjGZTBiNRtn8/f3336ewsJCJiQlZhZXpFRET+quvvkpXV5dMKF8oh+Zu53oa/ktloQVHbBCi0SjJZJJEIkF7ezunT58mEolILS3hWQuFQmg0GlnUolKpiMVinD9/npmZGaamplCpVJSVlaHRaBgfH5de3uLiYlkdKAw+l8uFTqdDpVIRCATYt2+fPK/MZPmlGPp3Wz7klRr/ixkdQqQ7Ho8zNDSE1Wqd07dT3N/d3d3ce++9OBwOXn/9dQwGA/fcc4/0iAmHglarpaioiNraWpmDm5+fz9///d9z5swZWcAiqorVarUMT4reoqFQSArQh8NhWXBnsVhkPmUymZT53R6PRxb6ffWrX52z/opczZ6eHhnx2rJliyz0yvxtssPDghs9vq7YaPvBD37A3/zN3/DOO+/Q2NjISy+9xMsvv8xXvvIVtFrtdT/Ba+Vv//Zvef755/nP//k/A/Dd736XgwcP8vd///d85zvfucVnd6nrubW1lXA4zNq1awFkQvmWLVvo7OzEZDIxOjrKwMAAiUSCFStWYLFYqKys5PDhw9J4C4VCMmlco9HIna8w7ITujmgHMzY2RmVlJSUlJbKUWeH2JrPFjAivwydeXIfDgcvloqCggDNnzhCJRBgaGuKjjz5iZmZGhiycTifV1dXMzs7i9/tJpVJy3ExPT1NeXi4nTr/fT25uLrW1tXITkEql8Hq9TE9Pk0gkGB0dlUrqbreb3bt3y8nL5XLR1taGz+eTukkLVVXfDQvq7cZCC47YIIh+oidOnGBsbAy/38/k5CSjo6Pk5+ej1WqlLMzMzAy5ubmyOffk5CSTk5MAqNVqKech8oNycnKwWCzk5+djsVgwGAyk02mGh4cxmUw0NDSwZs0a2e82U9vySgz9uy31YzHjfyHt0OwWeJmpDKL9okhjEOuTmI8+/vhjQqEQW7ZskZXq5eXlVFdXc/jwYdmdwG63Mz09TTKZZHx8nKKiIvbu3SvFu4UxJDYEer1eGnEqlUrmvZWVlQEX9Uij0SharRa9Xi9b8wmHxcTEBE6nk3Q6TSKRkJGmTNxuN0eOHOHo0aPMzMzwwAMPsGvXrnm9a4AMD4s5OHMDodfrb4h4/RUZbb/4xS948cUXee2117j//vsB+PrXv85f//Vf88///M/81m/91nU7seuBkLf4gz/4gzmP79y5kw8++OAWndVcsieQjRs3Ahd3kCJXRAzeXbt20dnZyfHjxxkbG0On01FfX8+KFSvo6OiQooMqlYquri6SyaSM8U9OTpKbmyt3q+JGicfjTE9Py2qbLVu2yHMQbu75KheVBfXWk9liBj7pCWi1WmVpvDCYxIT6wQcfyIo+g8FANBrl7Nmz0lgrKSmRTeSTyaQ09letWgUg9QTHxsZkixqxOdBqtZSXl3P//ffjdDp55513pGEmxvLw8DDpdJrKykpsNht6vX7OgrtQyAHuvrDWrSB7wdHr9QwNDREIBBgbGyORSDA4OMjo6Cjj4+PyfWIeESH12dlZ8vPzKSgokEZbJsXFxaxfv56qqipOnDhBKpVCq9Wi1Wpl9KCuro6hoSGZhyu8aplq/FdjeCme3E9YSDt0sX8FwsMmxoqQBNFqtRiNRlQqlfSkq1Qq+vv7OX/+PNFolKKiImnotba2curUKfbv3y81/IRBXltbK3PyjEYjAKFQiJycHMrKyti+fTtms5n/+3//L+Pj43KzqdVqicViFBcX43A4SKVSMpJQXl7Ok08+SUNDw5y+qna7Xc6beXl56HS6RYu8BAvl4A4NDclzvyVGW2trK08//TQvv/wyTz31lHzcZDLx9a9/nb/4i7/gi1/84rz5bbeK8fFxZmZmpCUuKCsrw+v13qKzmkv2BJIZkhRVUpmD6plnnsFisXD48GEikQg6nY6enh7Onj1LLBZj9erV5Ofnywq+goICNBqNnDiNRqNszByPx2VuitlsZsWKFWi1Wjo7O8nLy5Oem/kqF5VJ79aTOYEIo0hU5Y2MjMgJ6tlnn5UGXmNjIwUFBej1erRaLaWlpaxcuVLq/RUUFKDVaqVXNhKJyATxJ598EpfLRTgc5ty5c1J0V0g4FBQUsGLFCqqrqzGZTDgcDqnpJIomcnJyWLNmjZRzyK7CWswLcreFtW4FYj5qaWnB5XJJ0eNQKERhYSGJRIK+vj6plTUzM0NhYaFMx9BoNOh0OnJyciguLpaFJ4A06MS4u/fee1mxYgUejwe9Xk9ZWRlPPvmk9JY4nU62bt06x4shzlFJ3bg+zHe/zZdDO19hgvCwiY1WKpVCr9fT2NhIMBjEbDbT1NSEy+Xi2LFjTE1NUVFRQW5uLgMDA9TU1LBjxw7C4TDt7e2EQiEKCgqwWq0y/SIYDOLz+WSf2uLiYmZnZ2Xqhsfj4eTJk4yOjspivNWrV2M0GpmYmKCgoID6+npisRgdHR2y1dWmTZuIx+PE43FGR0c5duyYNNhEBWxJSQnd3d386Ec/orGxUY7DzNy3zAKqTMeGKB7MTFm5XizZaNu4caN0bWfzrW99i29961vX7aSuN9nhPpGsvxA3o9R+KV6D+W6opqYmmpqacDgcHDhwgKqqKoaHhzEYDOTk5BCJRDh37hxTU1NzctkyvSYiz0S4mgsKCigoKCAUCklhy9WrV7N161YAGbcXOlp3S1jhdiN7zGROpsIoCwaD1NXVkUwm51SPhsNhhoaG+PVf/3Xq6+tlVVQkEsFiscgWaeFwGI1GI+914UUTBQtCtT6RSGA0GtFoNIyNjQEXK0yFTpO4Z8RONbPVi8lkkhNk9lhazAtyt4W1rjdX4ql0Op0cO3aMiYkJSktLaWxsJJ1O09PTI6vVU6kUExMT6PV6WfyUk5ODXq8nJyeHWCw2Z80QlcgzMzMEg0Gpbq/VaqU+1pkzZ9i8eTMajQar1XrLtLDuFua73y7XHD2ziAjmdmcRXU0y2zs1NzfLcVNTU8PAwABnzpzBZDLR1NTE0NAQx48fl57+nTt3UlhYSE9PjzSKEokEbrcbv98vddcCgQCdnZ3EYjGKiopobGxk7dq1JJNJ1q9fTyqVoqurS24gtVotbW1tFBYWUlpaKs//tdde4+jRo4RCIV588UUpRH7u3Dn8fr/M8zUYDPI3W+w3zPxdbouctuVESUkJarX6Eq/a2NjYJd63TG5Gqf1SvAaZgyG7sXxVVRVPPPEEJpOJyspKQqEQnZ2d+Hw+YrEYgKz88/v9MnxhMBjIz8+XjcJzc3OxWq0kEglaWlpk+xiVSsWhQ4eoq6uT3r6lhBWUENaNY7ExIxKEBUIiwWw2o9free211zh37hyxWAy32013dzcdHR1MTU1RWVkpDSlhuAkPil6vJ5VKUVBQQGtrK1arFbVaTXFxMdu2baOyspLjx49z5swZDAaDTEx2uVwyWVkYZ1/5yleu6fsrYa1rYylzTub9W1paSltbG1arlZ07d+JyuTh16hSrV68mGAzS1tZGOp1menpahqS0Wi05OTnS8yY2hiJsJTbL4nmHw4HX66W2tpa3334bv99PZWUl27ZtU4zzW0BmnixcOk7EBjCzUlTMJ62treTm5tLc3DxHrD0zH1J8RiQS4fz58+zbtw+Hw8HatWvp7e1lbGyMn/zkJ6RSKUwmk1zrBgYG5JjJzc1l5cqVc3K3c3JyqKurw2q1kpOTQ01NDc3Nzbz66qt4PB6qq6spKiqSofadO3fK+eQf/uEfGBwc5NSpU8DF9XXv3r0UFhZKcV3haVtKntqNnqfuaKNNp9OxceNG3nrrLT772c/Kx9966y1+9Vd/dcH33YxS+yv1GohSa5VKJUvsz58/z4kTJ2QbD6GlVVBQwOjoqFSM1ul08jgajYbS0lLpWRFtQFQqFdPT07LaNBaL0draikajIZVKyf6UlxuMSgjr2lnI8J1vzIjXCk+o3++XO97S0lJpQAkx21AoJMPiOp0Oj8dDMBiUivVCDDU/P5/KykpmZmYYHR2lqKiI8vJydDodTU1N1NbWsmPHDuLxONXV1fzLv/wLHo8HlUol1cbFjlUZD7cHl5tzDh48yD/90z9RWFhIZWUl4XBYelmFl2NkZERWfgoZDiHtFAgEpHaXXq+XeZNC9kOj0VBUVCSrR0dGRhgaGsJgMGCz2SguLmZsbIwdO3YoHrZbRGae7HzjJHsMifm+p6eHUChEbm6u1B3NnseEYPvExARjY2MMDQ0Ri8V46KGHpKd2cnKSSCQiZT26urpwu92yElmr1ZKXlyfXL9HjuKSkhFQqJQtZBgcH+eUvf0k8Hpdh1t7eXiKRCKtWrZKFeMLAKiwsJCcnRz4uUjsyi6hg8Zzbm8UdbbQB/O7v/i7PPfcczc3NbNmyhVdeeYWBgQF++7d/e8H33IxS+yu1xkXljNihOJ1OEokELpdLlsvbbDbq6+u5cOECJ06cQK1Wo1KpmJyclHkmIkk0mUxKFenJyUlycnKk0KrJZJIL+JkzZ2RuncViuWwuiRLCunYWMnznGzPitVNTUxgMBnw+H11dXQQCATZs2CA9Xps3bwbAbDbjdDpZvXr1nKbdwiOWSCQwmUxSiFJ474TBp9frpbRDaWkpkUiEWCzGfffdRyqVko8JMUpxjkpl6K1noTlHXJd9+/bJez2ZTDI6OkpxcTEmk4ljx45JsdL+/n6i0Sjr16+ntLQUr9c7p+WZWq2msLAQnU4nUzKE2PeaNWvIz88nFAqxfv16AJn3o4yJW8/lQnt2ux2v18v+/fulLBVcbFslCo+El0300964cSN79uyRr+3s7CQejxOJROjs7JQ5ths2bKCgoAC3283w8DAlJSUMDQ3h8XjQarU4HA4pZ5Wbmys3kZWVlaxYsQKj0ShFvj/88EM6OjrQ6XQ8/vjjdHV10drail6v5+DBg6jVarZv386XvvQlmaOfTqelnIjT6bykCEH8LtktHm/2vHbHG23PPPMMfr+fb33rW3g8HtavX8/Pf/7zZWdUxONxotEo3d3dMpm7ubmZ999/XzboFg10RZshm83G8PAwsVhM6tXMzs4SCATQ6XRy0RY7K6HBNDo6KnfMYkdsNpvx+/233DW8HLnSm3qxiSEzF0yUl/t8PpLJJCaTSfbP0+v1RCIRmXCbuTP2er3odDrGxsZkJ4TJyUmZDF5ZWcm6det48803AWQ7GbfbjU6nw2KxyMKFoqIiec5wsbrU6XTicDguEcxdLOyicOvITCwvKCigsbGRoaEhxsbG5MZtbGwMo9Eo+0cKD2xTUxN+vx+Hw4HT6cTlchGJREin01K8WSjZi2pli8XCzp07pfaVMhZuH7Ln7/mS7A8cOMCZM2cIBoN84xvfkI8/88wzl+SpptNpuW7o9XqpDdrQ0EB/fz/JZJLe3l6efPJJPv/5z6PX6/nJT34iDS5RyTk7O0symZQyMsXFxaxatYqVK1fK3sUdHR1oNBpWrlzJk08+KTeygIwUrV69mkgkwsDAAGNjYzICUV1dTV9fn9yclJeXz5nDMotgrFYrLpcLr9cr5U9upvftjjfaAF544QVeeOGFW30a14RYrIuKiqRHpbm5mYceeoijR49SXl5Obm4uIyMj6PV6CgoK8Hg8JBIJOehzc3MpKyujsLCQ6elpcnNzCYfDJJNJme8mBHmnpqZkgmdtbS1FRUW43W6OHTsmdyiitU1zc7MSzliEhW7qhRrBZ4YS3nzzTRKJhMwXypyIxARrtVoJh8Myn8zn8xEKhbDZbNJjLKqZYrEYLS0teL1eKYrqdDoJBAJoNBpWrVrFF77wBfx+P++++y4Wi4UdO3ZIdfsNGzbIrhmNjY3U19dLzSYRvhdSDa2trVRWVlJXVyflABYKuyjcWBYy+uETg/uRRx6RGwQhz9LX14fH45EV55lFWqJfY25uLhcuXCCZTMpQqdgkitQSg8FASUkJs7OzstK5sbFRMdhuIy6n2QafpDoUFxfL9IdMo18IwgMyt01IYkxNTUnJn+eee47Ozk7ef/99cnNz5Xu///3vs3//fiKRCPX19WzZskUWqojWUxs3bqSyslKGSO12O6dPn6a7u5vCwkKGh4dJpVI0NDQwMzNDKBSS5yParh06dIjS0lJZDe/z+VCpVHg8Hs6ePUtZWZncjAjEbyPyh8fGxqTH8UZUiS7EXWG03QnE43HWrl0rpRpEUqdoNF9ZWSlLo0dGRmTvNZPJRF1dHXl5eeTl5bFmzRqpXxeLxSgpKZGFClarlXQ6LRXPjUajbAei0+no7+8nFArJakHR2gZQjLZFyA4ZZ/bYzFwEMw078dpjx47R0dGByWRi165drFu37pLdbObx3W43drtdJuWKCaalpYWSkhImJiak0G5FRQVbt26lsbFRyoSIvLju7m6p53fmzBmsVitPPPEEzz77LK+++qrcBYvJ3efzUVVVhcVikd6/dDqNz+dDq9XKpGLFs3JryA6jw6VeAa/XO2dcVlRU0N/fTyQSkVJORUVFsm1eIpFgfHxcNotXqVSUlJRQWlqKWq2WzeTLysqora2lqamJwcFBuWFwuVxy3lBC57eWhTzh2XOXz+ejurqazZs3z6kIF/8u1lM4U4FAVJfW1dXh9/vx+/28+uqrnDp1SrZJKyws5NFHH+XcuXPAxdzJhoYGHnroIT766CMSiQRbt26lurqat99+G4/HI1vyTU5Okk6nqa6uprS0lKmpKVmB6nQ6KSoqIhKJYDabZYSirq6OmZkZent7CQaDskXffN9r9+7d8vear63ajUQx2pYJYiEMBAKcPHlSipo+9dRTcnE+ePCgTPKcmZlBpVKRSCSora3FZrPh8Xjo7+9Hq9WSSqVIJBKYzWby8/NJJpMkk0kApqenZQ5cKpWip6cHvV7Ptm3b5sg3NDc3EwwG0Wq1MoyncCkL6RzNp+Mj/l+8R6/X4/f7SafTeL3eefMsxGvb2to4duwYVqt1zuv279/PyMgI/f39GI1GeW1FYu+ZM2cYHBykoKBALtR9fX0y7Do1NUVRURFWqxW3243H46G3t5dAIIDf78disRAOh6mrq5OTl9hlz+fZUbj5iJY7mZIrItVBFDkNDQ3J8VFXV8e6detktWBubi4Oh4NEIoHH46Gvr4+xsTHZNUNUiW7dupXp6WkuXLiA0WhkzZo1jI6OsnPnTh588EHZoWNyclLOI6AUMN0KMg3lhQoQsueuTK9+ZshwvtyvzGMI76qIymRGaQB++tOfMj09TXFxMWvWrJGakg6HQ/amNRqNGAwGjhw5woULFygvL6ehoQFA6rQVFxdjs9no7e0lFArR3d1NXl4earVa6gFmflch/iu+01NPPUUymZTyJNmFCJnzswiN3uzIgWK0LSO8Xi/nzp2Tib/RaFRa+UI/Z3Z2FoPBIPNPhOH1yCOP8M477zA4OMjMzAzV1dX09/dLHSWxuIqcJYvFQk5ODr29vVKJWiQp+3w+maMAcOrUqSUVKShcZKFk3/kWq6amJnw+H6+88grDw8PodDrWrFkzrxEkGjnb7XZ27dolHxfGdTQaZWZmhtLSUtkF4cCBA2i1WmZmZnA4HOzYsYP29nY++ugjjEYjubm5PP/88zQ1NUl1/IaGBhKJBD09PRw7dozPfOYzVFdXz1HRVwy12wuRoyr0tYSXwOfzAUgV+nPnzrF27VqpkSaet1qtVFZWcuzYMUZHR0mn01gsFgoKCigpKZE5Q9u2bcPlcmE0GpmdnaWwsBCr1Up1dbXUmIRPDAax2VMKmG4+mYbyUrXFFrpOmQZgZohUHCszKmOz2di7d6/sbGGz2SgsLGRmZgaz2Sy9YMXFxcTjcVnUUlRUxIoVKzh9+jRer5fCwkJcLhcDAwPEYjFqamr47d/+beLxON3d3ezbt0/macNFsf329nYZDZiv24Hdbpf9nLNz2S6nz3azUIy2ZYLYHRgMBmpra7FYLHO8NC6XC4/Hwz333IPRaMRsNhMKhejv75e5R1arlUOHDsk8g4mJCZk4HggEpKL12rVrue+++/jZz35GMBiU59DW1ia9dSUlJTJvTuQMKCyNKxW0dLvdRKNRpqenpXdDcPDgQXw+Hzt27JAiltmto5qbm/nGN74hq7mamprYsGEDv/jFL+jr68NgMLB+/XppnMXjcSoqKlCpVHzuc5/jy1/+MoDU8aurq6OxsZHXX39dSj80NTXJcvjFQnAKN47LNfoW/7pcLs6dO0d5eTmBQIBTp06RSqVIpVIUFhYSiUQIh8Ps27ePQ4cO8dFHH8nqPrfbzezsLCtXrqS+vp7KykqGhoZQqVSsXLkSn8/H1q1bKSgoYHBwkOnpadatWzfHqwaXetaUAqabT7ahdi2//0K5byICMDAwgMVikZ4to9EoozY2mw2r1UpnZyf9/f1yHE5MTLB//35CoRBOp5OmpibWrVvHe++9J4uj4vE4w8PD0jMnhMO1Wi1NTU2cPn2apqYmtFotXV1duFwuWQCTLfshuN3HomK0LRMycwqEuGHmwIOLUiWivBo+yVMYGxvj1VdfBSAvL4+6ujpGRkbo6upCp9Oxbds2QqEQbW1t8nmhyzU5OYnFYsHj8RCLxZienmZiYoLh4WFWrlxJU1OTFMxsa2tTPCxXicvlkuXxzc3Nc4SUhafMarXOaafidrv55S9/ycjICKFQiN27d/PII4/I/JFDhw7R0tJCMBiUHo50Oo3ZbGbPnj1YLBZ++MMfylCVzWaTnrK1a9ei0+kWVfqOx+P09PTIPBjx/ELdDhZCyWe6PiwWYsxeiESuK8Dw8DB+v5+qqirMZjNGo5F33nmHRCLByZMnGRgYIC8vj4KCAoxGI9FoFJvNRkVFBRqNBpfLRSAQIBqNyq4HW7du5cSJE0SjUerq6hY1IhVuDVdjnCw0xua7npkOBb/fz4YNG2RotLS0VFa2e71eWQiwceNGHA4HQ0NDHDx4kLNnzxKNRlmxYgV79uzB7XZjsVioqKjgN3/zNzGZTHi9XoLBIMlkUq53Op0Ov98vZa6effZZ9u/fT3d3N+fOnWN0dFQK7C9FaPp2mpcUo22ZIG6w7DwEcQOJHKJMPSxRsSfECgHWrl2L0+mkra2NsbExtFotp0+fltpJ8Xicn/70pzIHpqqqiuLiYnw+nxTqFaKIpaWlcuLv6enB5XJJDwsozeWvFJHgPZ+QslCIz/4ta2trUalUUtR2aGhINnKemprC6/UyNTUFzM0zE8aZyFMKBoP8j//xPzAajTz66KMUFBQwOzs7Z1OQPclnT9TZY3SpKPlM14elGkKiC4GojCspKZH9RQ0Gg9Ry1Ol0bNiwgWQySSQSkc3fZ2ZmiEajaDQaOjs7mZ6eRq///7X37mFtn+f9/1ugAzoiBBJCHAQGjHzAxCA7cagTx3HsdHGTNGmaXpm7uEubdjmsWbsry367vmu6tcl6yL7t9l23ZuuVdPO6ZkvaHJwldpzYsWMTOwIb44MwYBAISUhIgA6ADvD5/eHrefyRkEAcjeB5XZcvjJA+n4/0ufU893M/9/2+JdiyZQtqamogFovpwjIajcZV4BGWezRjpTJfRySVjSWbnwDQvEkANNpKdozI7pHdbsfQ0BBisRjuv/9+Gu0vKiqCy+XCxMQE3G433n33XWg0GhQWFuK+++6jKSASiQS5ubnw+/3UYQOuyXyQXswAaPEAcdqi0Sht1ZiM5TouMactw0iV9Ml/nGxTkfwVhUIBgUAAjUZD9/HLy8uh0WioSOGFCxcQi8VoY97s7Gyo1Wr09/cjKysLUqmUDuRjY2PQaDSorq6O+/KSxr/RaDSuMnI5Gfxyhe90k9+B69tZqaJwDzzwACwWC3XiScWv0WikSvMymQwtLS04cuQIRCIRBgcHMTo6iqKiIphMJkgkEgwPD6OzsxMcx6G4uJheh0KhwMsvv0wTiJP1P01ktoMdi7okZ7Y9kNN1hMikSSKkJpMJCoUCPT096O3txYYNGyAWi6HVarFr1y5MTEzg4sWLtNhAIBBAIpFQdfuKigrU19dj3759cRM3GQPIeRg3nsVwRFIFEgBQKRB+Czt+RJ7kPwYCAQDXhHfNZjP8fj8CgQAefPBBfPLJJ2hubqZV7FKpFOFwOO68JpMJ77zzDsRiMbZs2YJAIACpVIpoNAqfzwebzUarPvV6PaxWa9LjzBQ9XA4wpy2DSTVIJ5Zgk1Uvvyx548aNsNvtKCwsRElJCa5cuYLx8XFkZWVBLBbTnIOhoSF0dHRAKpWitLQUlZWVdDWza9cuAKBOBACqmp6Yc8eYnsR7mVjUwY/CNTc3g+M4mpt4+fJl2Gw2VFVVYdOmTTCbzXC5XOjv70d2djaEQiHdKo1Go1AoFJBKpdi0aRPN72hra0NraysAoLu7GyaTCY8//jhefvllnD17FsPDwzRxne9MLMRgx6IuyZlvD+RUOorJ7s/atWtx4sQJANc6FJw6dQrHjh0DAFRVVaGnpwfl5eWQSqXgOA4CgQBWqxUcx2Hv3r2oq6ubkiPEnwyX61bTamO+jghxykiBCoGMCdNtkxL433eS9E8cuHA4DJvNRuetYDCIr3/969BoNPQcJKc30UGcmJhAJBKhLfR8Ph+tICWLHb76Abm2dDrQLCf7ZU7bCoQ/aJKom1arjXtOfn4+BAIBBgYGsHnzZhQXF+PKlSuYnJyESqVCUVERNm7cCKVSiStXrtC+brfddhtaW1vhdDpp66Pm5mb4/X4UFRWhvLycJpwmM+7lZPyZQmIUrqGhAcB1GRin00mjZ1/+8pdhMBhw4MABfPrpp5iYmEBpaSk2bdpEhSrVavWUe2Sz2bBu3To4nU5UVFTERfyGh4fR39+P//7v/45z9Mg2bltb25SWVUupW7RSmW8P5MSKvcQIKRHRJRQWFmJsbAw9PT1oa2tDLBbDxx9/DJVKRSuJTSYTKisr4ff70d3djeLiYphMJprfyJ/MSetA4Hr03+PxUFtm3/+lgb/IUigUtBI8Hfg2wm9bxRfTbmhooNXjyaouyXGSjft8WxSLxbQPMl9OSq/XY+vWrbBYLKioqKDjD4FUrPp8PqrfRqSuQqEQbrrpprhoL3/nItliMxnLaauUOW0rGJvNhtOnT8PpdMJoNNIcgJaWFpw5cwbBYBDRaBRnz56FSCSCUCiERCLB2rVrodPpUF5ejqqqKlRVVeHs2bNwu91wOp0QCoVob29HaWkpzGYzysvLYbFYEIlE4rS6Ul3TcjH+pSTZoJWuA5u44iNaSQcPHqR9+7KysiCXy+nAIxKJ6HZWJBJBXV1dSgFkIhczPj5Ot7YJer0earUanZ2d1HHn39+2tja6OgZYc/iFZL49kPl6iokOtsFgiMudrKiogN1uR3t7Ozo7O5GTkwONRoNoNIpLly5BJpNBIBDQlAuLxYLCwkIUFBTETXYej4dGggFQB40/2TMbWVrmE7FNzK/lC+YSyOJvumbq/AhdMqfdZrOhu7sbfr8fR44cgclkgk6nQ3d3Ny10sdvtWLNmTdz4wz9GTU0NAoEAdfpqa2vxla98hRZFkfGW6F7yjzGTLS6nrVLmtK1gjEYjqqurASAu0maxWHDx4kXae9TtdtOtjtLSUjz99NO0VREZgIlifmdnJ1QqFSYnJ+kX1GQyIRgMYmxsLK5fZqpr4v9cLZBBq729HZFIBGazOS46kW70gRzn1KlTcDqdKCoqgkQigVgsRlVVFX29Wq1GZWUljY5Ml1dEtiJUKhUcDgecTiftrECShauqqmAymeK2FlIJTK62e7tcSdRFe/fdd9HW1obe3l488MADcV0sOjs7accTkhrx+OOPo7W1FZ2dnRAKhSgsLIwTVVUoFHGVoYmTOXDdiU9Ux2c2snTMJ2JL9MzI/wkGg2FKCkfi2M6/136/H21tbdDr9UlznY1GI138d3R0IBQKQS6XU+dKo9GgpKQEGo1m2mu1Wq100Un0S8mCkoyd+fn5U6J1M7GcUjiY07aCMRgMeOKJJ6YMkmazmQoUrlu3DhUVFejt7YVQKKRtPcgXW61WU+HM8fFxAEBdXR28Xi+USiUNnRuNRni9Xvp7KqHd5WT8i0liEjlp33LixAl0d3cDAN1SJFsN/ChIKvgRi/HxcVRXVyMajUIul0Oj0cQNUmvXrk26nZDqmOvXr6fVwIkDcCqHMpnGEWP5YTAYoFKpMDQ0hM7OTlrpTWzj0KFDGBkZQW1tLTZu3Ejz4Gpra3Ho0CF0dnZCoVDEbZvzt+z55+FLDiWOPavl+7+cmE/ENplzNt1zE6NnxGknC8NUuc4GgwH5+flURJdIf/Clg5LZW+IxotEojc7V19fPSUB4ucOcthVOskGyvr4eFosF0WgUxcXF2L17N86ePQupVIqKigoqkEqUpUluQVVVFQoLC6FSqfDwww/TsDUJSYvFYqrZttpz11JtSZCEW7KlQKIPLpeLbjOms1VqNBpxyy23wGg0UhHdkpISmq9RUVGBiooKeDweGjEjr091TGBqD9nlPsl2dHTg0UcfxeDgINRqNV599VWsX7/+Rl/WojNdA/hUz62rqwMA6HQ6bNq0ibbyOXjwIORyOerq6vDwww9PsQGr1QqHwzElV2kmu1jutsNYGNKpviRBgMSiGP7rSSCgoqJiSg52oi0lnjNxgZCsL+pKsceMddp++MMf4t1338W5c+doAmMivb29ePLJJ/HRRx9BKpXikUcewU9/+lOq47KaScx3qaqqwoYNG2iCOfkZjUbR3t6OyclJcByHrVu3UuHWjo4O5OTkwO/30+21HTt20GOu5tyVVFsS/C0rQqptxmTwByeS20Hai5EtUCKg63K50N3dDa/Xi9raWnquZMea6z260c75N7/5TTz++OPYv38/Xn/9dTz22GNoampa8utYasj3a7ruE4nSG5WVlXj22Wfj/ma32+F2uyEQCOIcNlJ5yq8kNxqNcbpbq3lRxrhOOtWXBoMhZU5t4rYlyXuczrYTczQtFgtdDPPlRVaKo8YnY522SCSChx56CNu2bcOvfvWrKX+fmJjAPffcA61Wi08++QRerxePPvooOI7DP/7jP96AK15eJOa7ANfLn0mPQqJpk5OTg5aWFgwPD8Pn88HlcqGjowNXr16FQCBAVlYWHA4H7UHI/5L4/f44na/Vwmy3JNIdXJINkPzVJNHFIsm45HGSQE4g3TKIozfXgW02zjnHcWhsbMTo6CiuXLmC4uJiyOVy7N27Fz/4wQ9mfW63242WlhYcPnwYAPDggw/iqaeeovIUKxlyL/1+P424AfEROCKhQO4/P9+URGTLy8uh0+mQm5sbl/dIJGLKysqwYcMG/MEf/AHNwSSs5kUZ4zr88Wcui7jEaFiyKHKy1yQWQZFdnpVOxjpt3//+9wEAr776atK/Hz58GJcuXUJfXx81npdeegn79+/HD3/4w3lVZa00kjkM5AtEJn6VSgW3242jR49CIpGgsLAQOp0OPT098Pl8qK6ujns+OSbR+QKmbr0xpicx5E8GMn5OSOIgefDgQTqR79mzZ4rUA3m+1Wql/ScTB8XZDLyzKSwRCAQ4deoUgGs5fh9++CHKysrinvOlL30JnZ2dSV//zjvvxG07k+820W0i/S97e3tXvNNGvl9NTU00ysp3xMmER5x34lzzt99J03ci2Mx36nQ6HfLy8qBQKOjx09HgYqw++PNHqgrSVGMKX1KE2FK6W+/83Qmj0ThjzttKIWOdtploamrCxo0b427+nj17qK7YHXfccQOvbnmR7AvFr7ix2Ww0ctTa2gqv14tbb70Vu3fvpr3edDpd0iR6orcjFounrSplTCWVujipimpqaqJbX6QCVaFQ0Kiaw+HAgQMH4HK5sGPHDtq7j1Sskv6TifeEv9UwUxLyXLYfnE4notHoFIcNAF5//fVZHStxdc0v5V8N8B0pUulLHLVkuW6khVlJScmUimV+EdHu3btRU1MzJWeOFZ2sHBY6tYFIByVG9YHUEflESZHZXMdqtccV67S5XC7aEJaQl5cHsVgMl8t1g65qeZLoHPC3zUgYGrhW4q9WqwEAnZ2dtC0WmShsNhtcLhfsdjuA60mn4XAYFosFBw8enLE6knGd6SIb5J5Fo1Gqrdbc3IxYLEYnWpvNBqfTGZfvya8Una6p+2JuNZw/fx6bN29O+rfZRNpKS0tht9sRi8UgFArBcRz6+vqSOoMrDf6ES3TTvF4vlWhI/I4ZDAa4XC689tprtL8s3/n3+Xxx93wl5gIx4lnovGN+951kOzf8n/zHk0mKMFKzrJy2559/nm57puKzzz6L04qajmQTD2nBMh2z7fmX6aRarZPH9Xo9vF4vOjs7EY1GoVarEQqF0NzcDADw+Xw4c+YM7XFKKkqtViv27dsHiUQCu90OpVJJt2dmU/22WpluJcmX/vD7/RgeHqa2TezbaDTSiHLitvV0pJJzWCj6+/uTNhEHZhdp0+l02Lx5Mw4cOID9+/fjjTfeQHl5+YrfGgWmLrSInmKyyCnBYrHQaHei86/RaFBTU8MmzlXEQmtmzuV4ySRFFioCeKOLpBaLZeW0PfXUU/jKV74y7XPSHZD1ej1Onz4d99jQ0BCi0eiUCFwi8+35l2lMl9PW1NQEv9+PaDSK0dFRjIyMoLCwEJOTk4jFYujq6sKHH36IUCgEqVRKuyqEw2GcPHkSwDXx3ZKSkjhHMJ3qN8ZUEqtHye8kcpboBPM1s0jlX6oqQ/4W2GLei8bGRrz44ovYt28fDhw4MK9j/fKXv8T+/fvxwgsvQKVS4de//vUCXeXyJnGCbGhogNfrnVbcml8xnqyIhX3/VhcL/T2f7nizierN1D0hkVTO2WwjiZni5C0rp62goAAFBQULcqxt27bhhz/8IVWNB64VJ0gkEtq7MRXz7fmXySR+8cigLpFIoNfrYbVa4XQ6MTIygqysLHR0dCA3NxcFBQUYHR2F3+9HbW0tcnNz0dzcDKfTSZX0+V+GVNVvjGukOxDNp+o0nb8tBjU1Nejo6FiwY60GiY+ZHOt7772XJoGn0vpLrBhPlI7JlEmLkXnMJgrH30VIZ1xKNX7NNvKX7DjL8TuxrJy22dDb2wufz4fe3l5MTEzg3LlzAICqqiooFArs3r0b69evx1e/+lX85Cc/gc/nw5//+Z/jG9/4xoyVo/Pt+beS4E8O9fX1tNLM5/PB7XZjcHAQSqUSJpMJ/f39CAQCePDBB6HX66m6PlG2JvC/CIkaY4xr8Jsa86NlqRJ9Z2K6AWyht0kYC0/iduhMYqapSNRuA65PUKtdW5GxeMwmqkeem27Ls1R2P9tIYrLjLMfvRMY6bX/9138dtxVCEpuPHj2KHTt2IDs7G++++y6eeOIJNDY2xonrMuYO2XIjpdpWqxVSqTSunxsxbuJskAgA6QlHXgMwh2E6Eish+Ym+wLXPNd2cwOkGMJZ0vvxJzDudScwUSB4l4OuzJbY3Y99Fxo0gVTQr3XFpruNXOmkhy/E7kbFO26uvvppSo41QVlaGgwcPLs0FrTKIA2EymVLmHfCLDSorK2G1WnH8+HEIhUJs2bIlqYwA4xrJigGSTdwsJ3B1MN2EkopUzh3RZyPbotOdg8FYbG5UNCud8y7H70TGOm2MG0viCiRZb0vypSBbzV1dXRAKhaiurp6V9MdyzCtYKNJdZaZ63nSq4emch5F5pDuRGI1GWK1WnDhxAhKJhKY38BcDzC4YC8VcbelGRbOWYxQtHZjTxpgT/Inj7bffniLGys+/Aq5ty4RCIWzZsmXWWm3LMa9goUj13hIHwLkWIMx0HsbyZb7SQwaDAdFoFN3d3bBYLKivr59iN8wuGAvFXG3pRkWzlmMULR2Y08ZYEBK17/j5V/yVTDLhz5nI1BVROqR6b4kD4Hw/g5X8Ga5U5is95HA4IBKJUFFRkVLbktkFY6FgtrQ0ZN3oC8gEwuEwnn/++YytcFzs6zebzbj77rthNpupHhjJYyOdEkgULpXDRl5Hmtfzyc/Px6FDh5Cfn78o179UJLsPBoMB27ZtS5qvlOjwzodU55kN7HuwtPT19WFkZIT++8u//Et0d3fjscceQ3d394yvt9lsEIlE2L59e8q+vwthF7Mh0+5BIpl+/cDivYdEW5puTJ8vmX4f5nP9Am61NeubBr/fj9zcXIyMjMRJfqR6PFNYyusnlaKkR2bi7+m+7kZd/3yZ7lrn8z7S/RwXk0y6D8nIlOuf7jqPHDmCu+66Cx988AF27do17XGWY75aptyDVGTS9ZNrTdQdDYfD0Ol0i/4eFnPMyqT7kIz5XD/bHmUsKIkh8nRD5iy0Pj3s82EA17dME7dOk5GpOTuMhSXRVp577rklOS8bsxYH5rQxFpTEiWKxtXZWC+zzYQCg3V3ITwZjJpJF2v7u7/5u0c/LxqzFgTltPMhOcWLVFvk98fFMYSVfv1KpnFIEcSNJZUP8x1bifcgEMsWOmA0tXzLFhoCp4twEkkeVqfcAWN12xHLaeNjt9rS2HRjLh+WW08BsKDNZTnbEbCgzWU42BDA7ylRmsiPmtPGYnJyEw+FYdismRmqW271iNpSZLKf7xWwoM1lu94vZUWbCIm0MBoPBYDAYKwCm08ZgMBgMBoORATCnjcFgMBgMBiMDYE4bg8FgMBgMRgbAnDYGg8FgMBiMDIA5bQwGg8FgMBgZAHPaGAwGg8FgMDIA5rQxGAwGg8FgZADMaWMwGAwGg8HIAJjTxmAwGAwGg5EBMKeNwWAwGAwGIwNgThuDwWAwGAxGBsCcNgaDwWAwGIwMgDltDAaDwWAwGBkAc9oYDAaDwWAwMgDmtDEYDAaDwWBkAMxpYzAYDAaDwcgAmNPGYDAYDAaDkQEwp43BYDAYDAYjA2BOG4PBYDAYDEYGwJw2BoPBYDAYjAyAOW0MBoPBYDAYGUDGOm0vvvgitmzZAqVSCZ1Oh/vvvx/t7e1xz+E4Ds8//zwMBgOkUil27NiBixcv3qArZjAYDAaDwZg7Geu0ffzxx3jyySfx6aef4oMPPkAsFsPu3bsRCoXoc3784x/j7//+7/H//t//w2effQa9Xo+77roLgUDgBl45g8FgMBgMxuwRcBzH3eiLWAg8Hg90Oh0+/vhj3HbbbeA4DgaDAc888wz+4i/+AgAQDodRWFiIH/3oR/jmN795g6+YwWAwGAwGI30yNtKWyMjICABAo9EAALq7u+FyubB79276HIlEgttvvx2nTp26IdfIYDAYDAaDMVdWhNPGcRy+853v4HOf+xw2btwIAHC5XACAwsLCuOcWFhbSvzEYDAaDwWBkCsIbfQELwVNPPYXz58/jk08+mfI3gUAQ9zvHcVMe4/9tcHAQYrE47jkSiQQSiWRhL5qxIuE4DoFAAEqlMqWdMRjTwWyIsRAwO1qZZHyk7emnn8bbb7+No0ePoqSkhD6u1+sBYEpUze12T4m+EQKBAHQ6HdRqNXJzc+m/F198cfHeAGNFEQgEkJuby4pdGHOG2RBjIWB2tDLJ2Egbx3F4+umn8fvf/x7Hjh1DRUVF3N8rKiqg1+vxwQcfYPPmzQCASCSCjz/+GD/60Y+mPXZfXx9UKhX9nUXZGAwGg8Fg3Ggy1ml78skn8Zvf/AZvvfUWlEoljajl5uZCKpVCIBDgmWeewQsvvIDq6mpUV1fjhRdegEwmwyOPPDLtsVUqVZzTttJwOByw2WwwGo0wGAw3+nIYKwhmW4ylgNlZ+vj9/rjfWbrPzCxn+8pYp+2f//mfAQA7duyIe/yVV17B/v37AQDPPvssxsbG8MQTT2BoaAg333wzDh8+DKVSucRXu3AshDHZbDZ0dXUBwLIzSEZmw2xr4WCTbWqYnaVPaWlp3O/f+9738Pzzz9+Yi8kQlrN9ZazTlo68nEAgwPPPP79iDNThcODgwYMIh8MA5m5MRqMx7ieDQZjvooDZ1sLBJtvUMDtLH5buM3uWs31lrNO2GrHZbAiHw5BIJPMyJoPBsOxWD4zlwXxXmMy2Fg422aaG2Vn6rPR0n8VgOdsXc9puMLOJbPC9/9ka1HLeo2csH4iNSSQSNDU1MXu5gbDJlsFgJMKcthvMbCIbxPt3OByznlDTOQ9z7BjExpqamtDV1QWPxwOtVpuWTRD7kUgkCIfDzI4YDAZjgWFO2yIw1+hZuqRywKY7bzrnWc7Jl4ylhdiJx+NJ2yaI/YyOjkImk6X1GsbKhi0EGYyFhTlti8BcomezIZUDNt150znPck6+ZCwt/KgumXRngr+1SiJtjNUNWwgyGAsLc9oWgbk6P+muSlM5YPN1upZz8iXjxjAbm2D2w+DjcDjg8XigUqlYjiSDsUAwp20RmOvklc6qtKWlBRaLBWazGfX19UkdPZvNNu0xGIzZkGoxwba+GNNhs9ng9/tRWVmJcDjMIm6MRWc1jEkZ33t0JWE0GlFZWTltpMxiseDs2bOwWCwArjt6xFFL/D1dSHGDw+GY+xuYJR0dHbj11luxdu1abN26FZcuXVqyczPSJ5VNWSwWvP/++9QW+fDt6UbYFuPGwx/P0hnbkrFUtsPGopUBf6z60z/9U5SXl0MgEODChQs3+tIWDBZpW2Dm4+mnE6Ezm81xPxO3ROe6RZoY5VuKFcs3v/lNPP7449i/fz9ef/11PPbYY2hqalqUc61kFvteSSQSjI6OxumEORwOWK1WqtqfWDnq8XjiFP0tFgva2tqwd+/eFbsCXm3MZHf8yL/RaMS2bdtmfcylyoljY9HKgD//felLX8Kzzz6Lz33uczf4qhYW5rQtMAs9yCQOYvX19aivr6d/T3T0ZpIFSTXQJjp75H0QyYeysjI89NBDGB0dxZUrV1BcXAy5XI69e/fiBz/4wawdB7fbjZaWFhw+fBgA8OCDD+Kpp55CT08PysvL5/WZLQeWsgXRQtjcdFugFosF4XAY4XCYPs/j8SASiUAsFqOkpAQ2mw0WiwV2ux0lJSVTIittbW0Ih8NxEeGVvIWxkuHbALHzVPeR2EVbWxvMZvOMUjCJtpxsEcpxHBobG1OORbNlpY9FmcBC3VP+fLhSxxbmtC0ws4l0JeanJcNisdDn3HvvvWlfx6FDh3DixAls374dX/va1+KO19zcjIaGhrjjJTp/JLoSi8XowHzq1CkAgF6vx4cffoiysjL6fJvNhm9/+9sYHh6mcg983nnnnbi2PH19fTAYDBAKr5mgQCBAWVkZent7V8RAuZQtiBai6jeV48fvwiGRSGgbNYVCAafTiUgkArvdDrPZjLa2NiiVSkgkEhoJJs6Z2WyGxWKBRCKZ1slcDTkpmQ65f9FoFB6PB9FoNOX9MhqN1GG3WCwppWDIWJjo7PPHJb5tTDcWAcCXvvQldHZ2Jr3+1TYWZQICgWBB7+lKhjltC8xsihBIfhqAlE4bcM2gpyNRlsFms+Hs2bPo7OxEUVHRlOf7/X5YrVaYzeaUW6HhcBgymQwqlYqKqwKA0+lENBqlXyj+ttjPf/7zWU22ie8rnX6ymcJsWhDN11GZjc2lG2lN9jhx4MbGxjA2NoZIJIKJiQl4vV7YbLa4SAqAuD65ACCTyWC32wFcU/snz+NfE5OIWP7wNfx6enoQDAaTRlDJfSV2wZeCSdxOP3HiBLq7uwEAjz/+eNLzJtpG4ljE5/XXX5/Ve1rJY9FCstiLqoW8pysV5rTdQBLz01I9h+80JYMfPdNqtejq6oJSqURlZSWqqqqmHM/lctGtqlR5I4maW4Tz589j8+bN9Hfy2srKSrz00ktpr4RKS0tht9sRi8UgFArBcRz6+vqSflkzkdm0IFpKR4V/LvI7GYBTbaNv27aNyjcYjUb4fD60traisLAQGo0GFosF/f39uPPOO2ne0iuvvIIPP/wQ1dXVkEgksNvt9PMgFYX8nCdyTXwnkUXdlif8FAxCMoeb/E4Wfnq9nt5H0nGDCDFrtVqo1eppx8JE23jttdewfv36pM+dTVRmpY9FC8lij1WJ8wufuUTaHA4HwuEw3G73gl7njSSjnbbjx4/jJz/5CZqbm+F0OvH73/8e999/P/07x3H4/ve/j5dffhlDQ0O4+eab8U//9E/YsGHDjbtoHon5acmYLopCJjWv10tXhmRgW79+fdyq9tChQ/B4PKirq4Ner497brIoS2I7I/JYf38/SkpK6PP4r53NSkin02Hz5s04cOAA9u/fjzfeeAPl5eWrcjtiKUWNEyNnqYpPkk3AxNkCAKVSSRcAfr8fHMfB4/HA4XDAYDDQnDeVSoVwOExfK5FI6DZpsmvi23ui7TEWl3SdZP7zkqVsEE02iUSCysrKpF01jEYjPB4PYrEYVCpVXNQ/lZ5bom1cunQp5cKIjUWLw2KPVYnzCx9yT9OxU37eZSwWW1GV6xnttIVCIdTV1eFrX/saHnzwwSl///GPf4y///u/x6uvvoq1a9fiBz/4Ae666y60t7dDqVQu+vUtdqTAYrHg6NGjkMvl2Lp1K00I52+Tkp8nTpzA0NAQvF4vamtr4yIdyRxD/vYFP8eksbERL774Ivbt24cDBw7MS1D1l7/8Jfbv348XXngBKpUKv/71r+f6UWQ0N0qUlh9Nffvtt/HBBx/A4/Hg7rvvxu7du6c8x+FwIBqNwmAwoKSkhP4DALFYDL/fT6O3u3btopET/iLBZrNBJpPFRW9TFc+wDh1LS7pRlFTPS1zoVVZW0igtGUv491er1dJ82UTJopmuwWg04s4778Rf/uVf0rFoPrCxKD0We6xKnF8ScTgccWkX0xW0/J//839w7tw5DA8P45lnnsFzzz2HM2fOZPwCMKOdts9//vP4/Oc/n/RvHMfhZz/7Gf7qr/4KDzzwAADg17/+NQoLC/Gb3/wG3/zmNxf9+qbbiuKTLCctndWu1WqF0+mESqWCy+UCgKQyC2azGdu3b6eRNiLJ0NLSkrKai7/tyS/Vr6mpQUdHx9w/FB41NTWsrH6J4dvktm3b6CTb3NyMixcvIhaLwe1208G5paUFBw8ehEgkgtPphNVqhclkglQqxZEjR6DT6aDX62mBAYmg6fV61NbWUoeNkMoRSzYYsw4Ls2O+i8TEezPb/EeC3+9HW1sbtFotgHhn7sMPP0QgEMDDDz9Mo21WqxXnz5+HTqeD2WyeUc+NXNdtt91G8+DmCxuLlgczzS/8wqjpbMRoNOJv//Zvqe2ShQRZVGYyGe20TUd3dzdcLheNGADXogW33347Tp06tSRO23RbUXwSnbvpNK34YV+pVEq3V8lkl0xmIRwO42tf+9qUUv3pqrlYlGNlkRg55Uc9jEYjGhoaEAgEYLPZUFJSgkOHDuGjjz6iFcQVFRW0qEWn0yESieDq1auwWq3Izc2lA6ler0d9fX2cZAzJoQSuO4qJpDsYM1Iz33yjRCd5pohaqq3M1tZWXLlyBfn5+aitrYXFYoHX64VAIIDT6aRjDyk4IFXIxI5m0nOb6X2yXMjlwULdB/5xiKM/03kSbbm7uxvvvfce7rnnnjnpBaaj9LBUrFinjUSeCgsL4x4vLCycdbeAuZIsUpBsQkp0kKbTtOIn95rNZvoaokrPN1y+zAI5DnmtSqWCx+PB8PBw0mReFuVYWSRGTvn5Ytu2bYPZbMbJkychEAjQ2tqKYDAIq9UKjUaDNWvWoK6uDrW1tdTxs9vtCAaDmJiYwNDQEPx+PyKRCMrKyqbkM7ndbgQCATQ2NgJIPsjyt2GJ3a92+5ut1t9CL7SSHY/o9gGA1+tFT08PGhoaYDab42wjEAhAJBLBYrHg3/7t39Df34/6+nrceuutiEajMJvNdLcAuDZWmUymtCJsiSkbibAK5HiWUjOSz3zvQ2KQgWiGAqCpGABw4MABOJ1O3HHHHTTHMnGMaW1thcvlQmtrKx555JG0rp0fPElX6WEpWLFOGyFZKfdMEhqLYeSpnKBkE9jevXunJIQTg5VIJDT5lv8arVYLi8UCl8tFI3REtoOIopLmzWSAbW5uBsdxcflFbJW6MkmcgBO7HNhsNqqxFggEMDg4iNLSUhiNRvj9frS2tqK2tpY6fH6/HwqFAtnZ2RgbG4NKpUJeXh6i0eiUfCaXy0WjKORciYN5qsKX1cxstf4WeqGV7Hg2mw1Hjx7F1atXEYlEoNFoIJfLAVwbN0dHR5GdnY38/HxEo1H4fL44p37Pnj30mG+//TacTieKioro44cOHcLPf/5z7Ny5E3v27JlybrIIna6zRrrbvKuFpdSM5DPfRQQ/yMAvaOEHHaxWK1paWsBxHLxeL438JuqR7ty5EwDoT2D6tCSy+FAqlVS2Bphe6WGpWLFOG8mlcblccVplbrd7SvQtkaU08ukmMD7EYCsrK5M6aIkilgDg8/mg0WjiRFFJlZbL5YJcLqfJwC+//DLVU5pNy6FEvaXVOjAudxJtijj0drudbkveeeed2LJlC/793/8dk5OTWL9+PUZGRtDW1ga3200LC6xWK86ePQuBQACO42AwGFBWVoZoNAqhUBinwWYwGOIWIcD0gznblr/ObLT+CIvtoBiNRhQVFaGtrQ2hUAhjY2OQyWQQiUSQy+UwGo3Q6/WwWq2QSqXQaDS4/fbb0dnZiTvuuINeEz/KZjKZ6OMfffQRPvnkE9jtdmi12rgxxWg04sSJE7h69Sr0en1KsfF0t3lXC3Oxo4VgNouI6aLvibp/icGMoqIiFBUVYXh4GP/6r/+K7du3Iz8/P05rb8+ePXQRkKyjB4A4GwmHwygpKaHpGgaD4YZH2Agr1mmrqKiAXq/HBx98QHVfIpEIPv74Y/zoRz+a9rVLOViSPXq+XELi8fgVWMm2UMmXg0yOVqsV77//PgQCAR555BGa1zY2NkbPEw6HIZVKEY1G0draiu7ubgwPD0On08FqtaKoqCitpE3y5SF6S8DqHBgzBWJH3d3daGtrg1QqBcdxdEXa1NSEdevW0e2tCxcuYHx8HEKhEG63G6+99hoikQjOnj2LQCCA22+/HV/+8pepzQFAVVXVlEHWaDTi8OHDcLvd2LVrF80rSfzesG3568xG64+wFA6KyWSCSCRCZ2cnhoaGEIvFEI1G0dnZiffeew9r1qxBTk4OtFotzGYzjezzHXGLxUKjbCUlJXjllVfg8XhQVlaG8vJyFBcXT5tzOxtW+0JgLna01CTbUUoMAiQbG/jSVgcOHKDb94899hh9DpH7SHT4SASPbxepFpapZGhuBBnttAWDwTixve7ubpw7dw4ajQZlZWV45pln8MILL6C6uhrV1dV44YUXIJPJZtzTXsrBkpS+J1a2THc84qBZLBZYrVZYrVbk5+fH6duMj48jGAzC6/XSFYNCoaBJwAAwNjYGAFTYMhQK4fjx48jOzoZOp5tSop8M/nYbXw2fsfSks3AgdtXW1gan04lAIBCnR0WkFCQSCY4cOYKxsTEIBAKo1WqIxWIolUqIxWIUFRUhEolAqVRi27ZtND/S6/WipaUFWq12ykr2+PHjGBoaAgBqK/zBmkCiwTfi88l05uugzPQZEb2+W265BbfffjuOHDkCrVaLuro6vPTSS+jq6kJHRweqq6uRm5s7ZeFJ8h2tViuCwSCAa4Kq//mf/4lAIIAHH3wQP/nJT+Ly48hC02azxfW7TRe2EFj+kHSNaDRKt9mJw+5yuWiLMxLF5xfD2Gw2uFwuaLVaVFZWoqioCOFwOG5eBRA3zvC1AYHrjh2BPw+n02N3Kclop81iseCOO+6gv3/nO98BADz66KN49dVX8eyzz2JsbAxPPPEEFdc9fPjwomi0zWewTBZtSzxespWI1WpFc3MzgGurX5fLBZlMhvz8fDQ2NsLpdEIgEMBiscDtdkMsFsNkMgG4ln9iMpniVjXt7e3Izc1FUVERjdrN5IgmGxBXw+S4HCF9aisqKmAymeh95TvUEokEly9fhsfjoU770NAQfD5fnASMzWaDVCpFdXU1Ojo6cOHCBRiNRmzfvh0SiQShUAjBYBBjY2N49dVXwXEc9Ho9BAJBXO4JfyVbW1uLzs5OhEIhvPfeezQKQ3JTOjs7EYvFAGBWfXbTZSVuky10pHI6weXEcYksMisrK1FfX48/+qM/wltvvQWpVIqcnJy4BSK/iMrhcKCjowM+nw+Dg4Ow2a4JhHu9XgwMDKCtrQ0fffQRdu7cGTfxGo1G6HS6uPxIfmHEdG35GMsbkq4RjUYxOjpKHTSJRILXXnsNDocDXV1dKCkpoTJWRLqKOHnhcBjZ2dno6OiAXC7H7bffHjf+kHFGKpXS3DQSlEg2NkwXkbuRZLTTtmPHjml7xAkEAjz//PNzzkebzZd/Pvv3yaJt/OPxiwgA0IGvpaUFQ0NDMBgMqKiowKZNm2C32+Hz+aDVaqHVauF2uxGJRBAIBKBUKuFyueJ6RPKTvzUaDb785S+n1GVK9z2txMlxsVmoiYY4TSKRCA6HA8FgEAqFIu6YTqeT2s3Y2BhCoRBOnTqFDz74AOvWrcOmTZsAXLvvjY2N+PnPf4729nb09PRg27ZtsNvt6O3tRTAYRGtrK1pbW5Gfn49169ZBr9ejrq4OFRUVUxJ8b7nlFgiFQlitVojFYtqzFACkUimEQiFNal8MVuI22UJ911JJwiRGGfgRDtIsniw2+XlDTU1NtGiAiDd7vV5aoNDc3IxAIEDzdCUSCSYnJ3Hy5EkMDg7S6uQ9e/YgFovBarXC4/FM6W9LCqr8fj/N8SWLF7PZvCjOP2Nh4c9vXq8Xly9fxvDwMPbt2webzQaO4zA6Oorh4WF0dnbSrizhcJiqRIhEIng8HvT19WFoaAjZ2dm45ZZbaFECYXBwEBaLBcePH8ett94KoVBIncDptkqX0zyW0U7bYrMYzkcqRedk0bbEhEliVIcOHcJnn32GkZERGAwGNDQ0QKPRIBwOw+fz4f333wfHcaiursbAwADEYjEaGxvR2tpKVyw7d+6kEyYJTZNyasJsHFH+Z7USJ8fFZiFsjfSpJZG1WCyGUChEtw1IscrExATKysrwB3/wB9Qe+vr6EA6HEQgEAFyLxHZ2duK1116DQCCAXC7H1atX8T//8z/YtGkTamtrEQqFMDo6ikgkAuBaQ/iqqirqsBHbtdlsaGtrg9FohN1uh1wupz1x33vvPVRUVMBsNqOxsZE2lOfndy4UK3GbbKG+a4mVmTabDR9++CGcTieqqqqgUqnicoP4Mgznz5+H1WrFvn376Ofr9/tht9uxc+dO2O12/OpXv4LX68WOHTuwfft2FBQUYGxsDBqNBlVVVZDJZPjtb39Lu7aUlJRAKBRSR7K/v58K6Xq9Xpw4cQK7du2C0XhNY9BqtcbJJM2kEMBYfBIXoqmK1siWe2VlJXw+Hzo6OhAKhehzBQIBJBIJzp8/j5ycHOj1eohEIgwPD8PtduPy5csIBALQ6/Woqamh6R7vv/8+BgcHEYlEoFAoUFRUhFAoBLvdjs7OTsjlcqxfvx7d3d3Q6/VUIosU8JnN5rQ03ZYa5rRNw2I4H6lERJNF28hEHo1GEY1GIZFIYDAYEI1GEQgEIBaLsWPHDmg0GlitVthsNoyNjWF0dBTBYBB6vR6xWAxKpRLBYBBKpRJNTU3IyspCIBDArbfeSs8fDofx0Ucf0VyRZAUR0014iauSlTY5LjYLYWv8sD5J/k+8dwcPHoRMJsOGDRuwZ88evP322zh//jzUajVKS0shFApx5swZZGdn46233oLX64VKpYJGo8Hg4CDGxsZQUlKCWCyG8fFxZGVlYevWrXT1S3JOiBNAtmCBa6KrkUiEbr9bLBb09PQgPz+fDo7hcHjFKJcvBQvxXSORDnKviM0EAgEMDAxgeHgYQqGQLur4W0bRaBQnT57E+fPnIRQKsW3bNlqN3tPTgytXruC2226Dw+GA3W5HVlYWotEoioqKYDQaYTKZ6FZVNBpFU1MTDAYDjahJJJK4VmgAaEs+tVqNxx9/HPfee29csYPRaIRWq2WLxiUmca5IXIgmK1oDQFMjotEoAKCoqAgikYhqsSmVSohEIohEIggEAvh8Pvz+979HRUUFdDodWltb4fV6IZFIUFJSApPJhKNHj+Lw4cPIycnB+vXrUVRURLdFSWCE2EcgEKCVzAcPHsSFCxewceNGaLXaZTkGMadtGhbD+SARtVR/A673giQeP3Bt5Ur01sRiMWpqaqBUKrFp0ya6whwbG4NOp8OmTZtoX1bSyJscu7S0FL29vRgcHEQsFourRiU6XYlVXseOHYNer8e+ffsAJG+zxRy1+bFQn1/i/eIngJMJjYjnksiJ0+nE6OgoSktLYbfbMTQ0BIVCgXA4jFAoBLlcjsHBQUSjUahUKly8eJGujtesWYOqqiq43W44nU5s2rSJrpBJ1bXRaITP58Px48cRDoexadMmOjEnTq4sSrv0kHtJclzJd/vhhx/Ga6+9Bo7jMDY2hvb2dnAcR4uewuEwXUQODAzgyJEjEIlENEVjcHCQ6mdVVFRgZGQEQqEQSqUSOp0Oe/fuRVtbG9Vle/DBB5Gbm0vHMP42KP//Xq+XbpUCqRXxGUtLopOWrBKTbKnHYjG6s3T+/Hl0dHRgdHQUd9xxB6qrq+F0Oukiz+l0QigUYnx8nBbYhUIhhEIh3HPPPTAajbRzS09PD/r7+3HlyhWoVCpUVVXhscceg16vj4vcud1uaLVaBINBaDQaSKVSAIBQKIRYLIZQKJzVGLSUeZTMaZsFC3FjUlWLkr+RHDOLxQKBQICamhpIJBK6dWGz2RAIBOjW1/nz56HRaOjE2N3dTQ2PVNGcP38eAGiukc/nQzAYxOXLl7F79+44uZBk721oaAgcx8VV4ZDrXcjPhjE/iPZVf38/OI6DxWKZUsWpUqmQn5+PkZER2l5IIpFgbGwMw8PDiEQiyMvLQ35+PoaGhmhicH5+PnXqbTYbrl69CrFYDJ1OB47j4HQ60dXVhfb2duTl5aGurg67du2ik+3BgwcRCAQQCoVgsVhQV1eH+vr6pJXRzH6WlsTJlZ/Y/+1vf5tuhx49ehTDw8O47bbb4HK5aKeLvLw8uN1uhEIhXL58GZ/73Oeobpvf70d7ezsikQhycnIgEoloonhbWxv++q//Gi6XC1evXsVdd92FwcFBeL1ebNq0iepLBoNBDA8P08IVk8lEeyiTcYfl0N54Eu0o8btM5j5SOEACDXK5HAaDAUVFRdQRJ47Z+fPnEQqFkJOTQx02Mu7o9Xp4vV5EIhG6oBwZGYHH40FPTw+qqqpw77330lQko9GIX/ziFzh27BhkMhm2bNmCm2++GY2NjXScKikpoRXRs2EpbZA5bbNgtjdmtg2X+Xv+xHhJIqXVasXw8DB27doFiUSCoaEh9Pb24ty5c6iqqsIXvvAF+Hw+qm1UUFAAm80GkUiEK1euoLu7G62trZDL5ZBKpbh69So4jsOBAwewa9cutLa20qRgvmo5XwE6MSLCig9uDMlyRYiNRCIRNDQ0QCQS4dChQ5DL5SgoKKAtglwuFxQKBXQ6HYBrMjn5+fkoLS1FX18fcnJyYDAYcO+998LhcOC///u/4fF4IBaLAQBZWVkYGxtDMBiESCTCp59+igsXLqCwsJAmpff29kImk2H79u3UfkOhEMxmM9rb29HV1YUjR44siFglWywkJ93PJfF5b7/9Nn7zm9/QCBlwrequrq6ONoIfHx+HQqGAz+dDYWEhhEIhKioqEIlEqLSQSqWCwWDAxMQEent7MTY2hlgshs7OTnR3d+Py5cvIycmB3W6H3+9Hd3c33G43+vv7kZWVRR3Hs2fPIisrCxKJBGfOnKHVfxKJhG6x8XcoiKQIE/peetJZcPHvlcViQV9fH4LBINatW4fKykq0tbXBarUiLy8Pra2tuHTpEmKxGHbs2IGKigo0NzdTqaG6ujqIRCIEg0Hk5eUBuBZgmJychFAohFAoxIkTJ9Df34+ysjKMj4/j7Nmz8Pl8GB8fp32R+dIfBoNhTikaS7lDwJy2WTDbG5PKkUll3OT5lZWVU6qeSLTr448/RkdHBziOo4Y3Pj6OxsZGxGIxiMViZGdnY2BgAO3t7ZBKpTAYDPD5fAiHwxCJRACuVeuNjIzA6XTCYrHQCtL+/v44hXIygfMhf+O3HGLbWksHyRcjXStstmuthZxOJ+rr67Fv3z4cPHgQfr8fw8PDKC0tpStHi8UCqVSKmpoaGI1GutWk0+kwMDCAvr4+Olnfe++9+PKXv0wHV1LUolKpEAwGEY1G4Xa76fZaaWkpJiYmUFJSgurqakgkEhw4cACffPIJwuEwqqqqsGHDBvT29tLrma/TxRYLyUn3c+E/D7iWX+Tz+TA5OYmzZ8+iq6sLExMTUKvVyMnJodGP4uJiSKVSCAQCBAIB9Pb2oq6ujkowdXR04PLlywiHwxgdHYVQKIRarcbExATcbjc6OzshlUqRlZWFvLw8xGIxOJ1OrF+/HpcuXYJCoYDJZMLw8DBGR0fh8XhopHbdunUwm81Uw41swxMHkAl9Lz8cDkecuHZ9fT30ej1+/vOfIxAIoLW1FZ9++in8fj9kMhnGxsYwODiI0dFRCAQCdHd3U7mh7u5uRCIRhEIh9PT0IBAIIDs7G6OjoxgYGIBer8eWLVtQV1eHnp4edHV1oaWlBT6fD0qlEuXl5SgsLIROp4Pb7cbBgwfjuv/MZS5byh2CRXPaAoEAdu7ciWg0iomJCfzpn/4pvvGNbyzW6ZaE2d6Y2dx8ftmz0WhES0sLFRQEgNtuuw0A8M4776Cvrw/Z2dkQCoXgOA6FhYXQaDS0i4HNZsPg4CD8fj82bdqELVu20GiYWCzGpUuXAFzrGiGVShEKhVBbWwulUkm1cdJ9f0T7huSYsEFy8eBHYkk0gTg8pDKKYDQa0dXVRbfEiQPV0dEBmUyGgYEBaDQaxGIxSKVSDA0N0UmPDHRNTU1oaGjArbfeCrPZjK6uLtoepqamBl1dXTh16hTNcxofH0dOTg4KCwuh1Wpx5MgRdHZ2YnR0FG63GyMjI9i1axfuv//+uPczH6eLLRaSk87n0tLSghMnTtA8NtKlQK1W0+pLg8GASCQCkUiExsZGmns0MjKCnJwcVFZWUmkZn89HI/NWqxXd3d1wuVwYGhpCXl4eBAIBpFIp8vPzEYlEEIvFUFBQgJycHOTn50MikeDKlSvo7OzEm2++iX379tGkcrvdDolEgsLCQhiNRrrlRbTgZDIZLY5gQt83nsQOPgcPHsRHH32EcDgMtVpNUyMefvhhWCwWXLhwAc3NzfD5fNDr9ZDL5RAIBCgsLITdbsfFixfh8/ngdrsxNjYGjuPQ09OD8+fPw+12Iy8vDzk5ORAKhRgbG8PVq1fh9XoxPj6OyclJurUajUZhMBhouz1iP0RiZCatw+UQ2V80p00mk+Hjjz+GTCbD6OgoNm7ciAceeAD5+fmLdcplTbpK4yqVCjabDe+++y4uXryIoqIi3HrrrcjPz4fVaqXbDPn5+RgcHIRCoUBxcTHdi+/r66MaR2NjY7Db7dizZw9qa2sRDofR0tKCCxcuQK1Wo7CwEMFgEJcuXYJYLKaGf+TIEZorN50jRnIUSBUgv9pmORj3SoMfiTWbzThy5Aja29thNBppdI2sHPV6PUpKShAMBulWRGdnJ/x+P3w+H0KhELKyslBSUoK8vDyMj4/D5/NhYmICExMT8Hg8mJiYgEwmQyQSQV1dHW3aLJVKqVM4OTkJiURC+47KZDKo1WocOnQIY2NjdDIGgMnJSWg0mimCqcDcnS6WA5ecdD4Xi8WC7u5uqNVq+lyVSgW5XI7s7Gyo1WqqUB8MBmEymfDd734X//Iv/0KLVzQaDb71rW/h3//935Gbm4uDBw/SApP169ejr68Pk5OTCAQCCAaD4DgOGzduxM0334zW1lZYrVbEYjEIBAIolUr09fUhEAjA4XDQht9FRUVwOBwQCATIyspCa2srQqEQKioqaM4v2w69sUxXOerxeHD58mXodDqUlJTAbDajpaUFv/vd7zAyMoL6+nrcc889OHfuHG2LVl1dTReQHMeB4zj4fD5EIhGq50gWE+RvGzduhEajQXd3NwYHB6nYrsFgwI4dO2jkNysrix6LSNl0dnZOibglYzlE9hfNacvOzqYh6vHxcUxMTEwrhLsSSdx64P+fJIELBAJoNBqUlJSgsrISVqsVFosFfr8feXl5qK6uhkqlgtVqxblz5+hWltlshtPpRFtbGzweD1pbW6loKsdxkMlkGB8fx5UrV9Da2opwOIw333wTvb298Pl8GBoagtlsRl5eHg4fPozh4WFotVps2rQJYrEYLS0t4DguTn+JRP/MZjPNRzIajTCbzXSbjehrLQfjXs7MxanlOzg2mw2dnZ04fvw4AGD//v3Yu3dvnAagRCJBZ2cnPv74YxQXF9MG3L29vRgfH8e2bdug1+vR09ODlpYWSCQS3H777Th37hycTidyc3MxMjKCo0eP4syZMygoKIBUKqUOf3FxMZ1QBwYGaLm90WhEd3c3fD4fotEonE4n/H4/cnNzEYvFqJN34sQJSCSSlH1IGQtLYvRDJBJRjTxSSdzQ0IC+vj6cOnUK1dXV4DgOoVCIVpUfPnyYFgsIhUL09PQgEongnnvuQWtrKzo7O9HV1UUFmEnRk0qlot0upFIpHnvsMfzd3/0dzp49i/HxcbpwlEgkGB8fh0AgoNG+Xbt2QafT4ezZs5icnKQTNZlP9Ho9s5cbzHSVoyQf+7bbbsPXvvY1tLS04KWXXsLly5cxMTGBUCiE+++/H1/84hfxzjvvIBgM4urVq1RWSKlUguO4uEIpsVhMt93JDoPVaqWyILFYDBzHUZmsmpoaFBQUwOFw0PmR7AbqdDqcOXOGpnrwNeXSzUefLfMZ62bttE1OTmL9+vW477774hqvHzp0CF/4whfwn//5n3jooYcAAMPDw7j99tvR0dGBn/zkJygoKJjt6TIa/g12uVwYHR2lUY/f/OY3GBwcREFBAdauXUtf09XVhVAohPr6epp3RLY88/LyUFxcjJycHGg0GgwNDSEUCuHMmTOQy+W47bbb6ERZUFAAp9OJSCSC0dFR/O53v0NXVxckEgmkUinkcjny8vKoBpzP54NarUZeXh4qKyshl8vx2Wef4dChQ1T24eLFiwiFQujq6qIDJcl5I/ltxOjZttX0zMWp5euwSSQSOmCdOXOGVgGTCBzZqurq6kI4HIbb7YZcLkcsFkMgEEA4HMa5c+egVCrx2WefIRqNoqGhAT/4wQ9w7Ngx2nyZiO6SrYWioiLaIFylUtGBUSaTUQHLqqoq9PT0wOFwQKFQQK/XQ6vV0n6lR44coZFlslUy18+EMZVUE0LiIlIkEmH79u2or69HU1MTFTg9efIkXC4X1Go1vZehUAhtbW146623qG6bWCxGd3c3BgYGkJWVBbFYDJ/PRzsYOJ1OjIyMgOM4WqSQnZ2N7OxsvPHGGxgeHoZcLkc0GsXk5CTV5BofH4fX60VHRwfy8/Oh1WpRU1ODkydP4sKFC1i/fj3uuusuAIjL7STvkTn9S890431+fj7KysogEAjQ1NREdfYEAgG0Wi2USiVaWlpw+fJlyGQyWokuEolQWFhI868jkQgN/uTk5KCgoABtbW0YGxvDxMQEdeh0Oh1ycnIQjUZRXFwMmUyGAwcO0CpUo9EImUxGZWsikQgMBgPEYjHa29tpug+RAVkMaav5jHWzdtqysrLwl3/5l3j66afx3HPP0SqPhx56CC+88AJ12ABArVajtbUVAwMDeOCBB/ClL30JhYWFsz1lRpBKK4g/0cpkMhoF4TiOVkWp1WqcPn2ailZWVVXF6auRL8LatWtx/PhxCAQC2Gw2nD17Fi6Xi8px5Ofno7q6Gp2dneA4Dnl5efB6vbBarbhw4QI8Hg9kMhkmJychk8lw/Phxeuy8vDxkZ2fjzJkzuHLlCkpLS6lMxIULFzA5OYmJiQm66pkpeXO1b1vxG6UDiNMtA+a+YuNvkX7961/Ha6+9BqVSSavtrFYrOjo6YLVawXEcpFIpOI6jLV+EQiEkEgk8Hg9CoRDC4TBGRkYQjUbpxPzmm2+itbUVfr+fRkcmJiagUChw++2301y4s2fPIhAIQKFQoKCgAIWFhXTi9vv9UCgUtKiGX2VM2tQkvv/Ez4RF3uZGqgmB5KB6PB4a2U+mpbVz504AoF1TiAZbZ2cnsrOzUVVVBY1GQ7coDQYDmpubcfr0acRiMYyNjUEqlUKr1SIWi9EOHNnZ2cjLy8OaNWsQDAYxOTmJoqIiqFQqhEIhyGQylJWVIRaLISsrC6Ojo7BYLFAoFKirq4NYLEYwGITH46HK+f39/aiqqoLFYoHL5ZrSaYaxcEz3fUwc7/k2SLbLSU9ioVCIvLw8SCQSBAIBuFwuXLx4ERcvXoRQKER2djZ15EnxHJmzYrEYYrEYtZ2srCwacZ2YmAAArFmzhjqFCoUCly9fpgsLEh0mEkak4l6n00EsFuP48eMYHByEQCBASUkJGhsbF+WznE9QY07bo3/4h3+I73//+/iHf/gHPPbYY7jnnnvw1a9+FX/+53+e9PmFhYXYtGkTjh8/HufUrSQSK/rIY8TA+TeJ/J9fvn758mUMDg6iqqoKJpMJzc3NaGpqwvvvv4/q6mqo1Wp4PB6Mjo5CqVTSpvdqtRocx0GtVuPDDz+E3W6H3W6H1+sFx3EQiUSIRqMIBoNU2420uzp79iy8Xi+NAKrVaqpiTnS4RCIRysvLIZVKUVlZibq6OtqAnu+4JXPSVvOkW1paGvf79773vbgeuHNxahOLVcjrSesVItsSi8VQUlJCiwlIFFWn02FychIejwdqtRoikQiRSIROdD6fDz/72c/o9vzExATtCUlkPoBrPX/1ej0uXrwItVoNuVyOkZER2nC+paUF2dnZuPnmm/Hwww/TZtDhcBh6vR5isZg2jifnTvaZkIHf4/HEib4ypifVhMDXiAyHw3EtehI/e2JjWq2WipyS77/ZbEZrayuOHz8OlUqF2tpa/Pd//zc6OjoQi8VoFGTv3r3wer203dDo6CjGxsbg8/lQUVGBiooKjI6OQiwW0+2q3t5elJWVQa1WY3h4GO3t7VRP8t5770VeXh44jkNLSwvOnj1LIyukZ6VMJotL02AsHOlGh/jjFNF1JPOezWaDSqWCy+XC6dOnEYlE4Pf70d/fTyO469atQ35+PoLBIORyOSQSCXXUhoeHEY1GMTw8THN7iTJCVlYWRCIRent7oVQqaf63SCSCXq9HaWkpcnJy0NvbS4ujWltbMTo6im9961twOBw0FYBEjvlagAs5/swnqDEnp00oFOIv/uIv8P/9f/8f3njjDdTX1+Mf/uEf4p4zMDAAqVRKKzSOHz+OP/mTP5nTRS53iKip1WqlFZxAvAgtf4IFQKMupJl3a2srCgsLoVKpaCup999/H6dPn8a7776LvLw8lJWVYdOmTaioqABwLezs9XoxNjaGy5cvo6mpiW6Z5eTkIC8vj0Y9cnJyoFQqkZeXR1uJTExM0JVLQUEBdu3ahXPnzqG7uxtKpRJyuZw26W1sbKTNoPV6PR2Ip0veXM3bXX19fVCpVPT3mSpy0xkY+D36yHOIQxSNRhGJRCAQCFBcXAyz2QyxWIy2tjZaOk80kbKyslBaWkorsRQKBTiOQywWg91ux+joKM37IC3QSKHCyZMn0d7eTh/TaDQQi8Xo7+9HLBbDyZMnodPpUFtbi507dyIcDqO7uxtNTU3Izs5GdXU1zGYzNBpNXCNnAHE5k3q9ng78QHJB55XOTNHaVEw3IZA+w9Mdh/+9JY7d7373O9hsNpSXl9PFAZHqILIg2dnZEAgEEAqFmJiYQHNzM7Zu3YpAIACbzYahoSFaqTw6OgqdTgehUIjh4WFkZWUBuCZt5PF4oFAoqBAr6YO7detWlJWVwe12w263Q6PRoLa2lrZEI0UUpP3RarKVpWAmfVF+EQIZp4jmGb8LUDAYxJkzZxAMBqHT6RCJRGgUTKlUoqCgAFu3bqWdV0ZHR6FQKKBQKCAUCmnLtba2NgwMDCAnJwcSiQRyuZwW1A0PD6O/vx8ymQxr1qyBXC5HQ0MDdf6Ki4vh9/sxMDBAe9yKxWLI5XLU1tbStnzLUYN0zoUIf/iHf4hnnnkGHMfhv/7rv5CdnR33d7vdjscee4wmjD711FPYtGnTvC94LvziF7/AT37yEzidTmzYsAE/+9nPsH379gU7vs1mQ3d3N1VqTrblQ55HOh2Mj4/TQTkajUIul8PpdKKjowNarRb5+fmoqqrC2bNnEYvFMDw8jIKCAlRVVaGmpgYWiwXRaBSVlZX4+OOPaXK5VqtFeXk5gsEg1Go11b1Rq9WQSqXIy8tDVVUVurq6kJ2dDZVKhcLCQhQWFmL9+vW0GEIqlWJsbAwnT55Ef38/Ojo64rYgTCYT/f/hw4cRiUToZMtfWSV+BqsFlUoV57TNRDoDQ7LPky+7IpfLaXXWnj17qGp9eXk5mpqacOHCBUxMTKCyshJr1qxBe3s71bnKysqCWq2mSb1qtRrr169HQ0MDTp8+jY6ODqjVaoyNjeHChQvUdvPz8yGTyZCVlUXz3qLRKG655RZa5Tc4OAiHw4HJyUlIpVKaw0kU7ok48Pvvv08b1tfW1tKBnwycq82OZorWzgV+1DMZZAHq8Xiwfv16OBwOHDlyBJ9++il12nNzc7FmzRps2bIF0WgU7733HtatW4eRkRGMj4+joKAA/f396O3thUajoc3hJycnEY1GEQ6HaT6jXC6nxQVEA5DkxU1OTqKyshJZWVkwmUx0K+v8+fNwOp246aab8MQTT9BcTq1WC4lEQvXbFiPalom7B3N1/hOZTl+Uv8vEF9C12+2IRqM0xzEYDOLKlStwuVyYmJiAQCBAdnY29Ho9cnNzafsqh8NBu7RkZWXRNIsLFy7gvffeg8fjwW9/+1sIhULk5uaisrISHMfRlA5StUzmMQAQi8VUAiQcDqOiogK33HILVCoV1f3Lzc1FNBpNqpqwXMafOTttTz31FABgcHBwisMGXKtCOnfu3JwvbKF47bXX8Mwzz+AXv/gFGhsb8ctf/hKf//zncenSJZSVlS3IOUgFJYAp6sqpnkfCxmKxmIpGxmIx2Gw22nO0qKgIDz30EJqamtDf3w+VSoWWlha0tLRgZGQEfr8fV69ehd/vx/j4OMRiMQoLC2nCud1ux9jYGI2YANdy12pra6kw75UrV6BQKDAwMIDf/OY3qK6uhtvtpjlMZCUSi8Wown5VVRXMZjNcLheVkiCCrLW1tXGr9EwZ2G4E/AmAn2+UarJJNmiSLS+bzQaBQICioiLaeJn0hjSZTHA4HGhvbwcAmksSi8WQnZ2NnJwcZGVlISsrC3q9nuYq/fSnP6UTLImgkMmVREyGh4cRDAapAjlpKUNWuX19fcjLy4NQKKRq90Q+gnwXDh48iMuXLyMWi9EJmDQIJ5PjarSj2UZr0yGZ48/X/zty5Ajd3vZ6vTCZTHA6nZDJZJiYmMDQ0BC8Xi80Gg2CwSA++OADKhsyPDyMgYEBjI6OQiqV0ig+qUwlRSvBYBCdnZ3QaDSoqKhAT08PxsfHoVKpkJubi9LSUni9Xqxdu5ZK13R0dODdd9+FUqlEVlYWbaGVmD9MFgDhcHhRGn4vt6hLOiyG808gW6HEMUqMnvv9fkSjUVr81tvbS+WGIpEIent7EQgEoFQqqcba6OgoXfwRKSGbzYZXX30V4XAYk5OTVD5Gq9Xi1ltvRU9PD9rb25Gbm0ulYZRKJbZs2YLBwUHIZDKIRCK6UN20aRMdd0lBQklJCdatW0f1L5Plpi8H5uS0/Z//83/w7rvv4tNPP8WuXbvwq1/9Ck8++eRCX9uC8Pd///d47LHH8PWvfx0A8LOf/QyHDh3CP//zP+PFF19ckHOQCsq5PI8MmLFYDF6vl2oWicVimM1mlJSUYGBgABzHYWJiApcuXaKNusfHx2lVak5ODt2K1mg0UKvVCAaDNJdtYmICa9asQXl5OWKxGDZu3Ijm5mZ4vV709PRgcnISV69exejoKLKzszE8PEylQUheE0kuJ9uhpLiisrISZWVlUyZbxvQkbkOl6kmbDP5ES7aT1q1bB7fbHSe6C1yb7IuKiuhWhEajgdfrRVZWFo3ejoyMwOfzQSQS4fbbb4fRaMQrr7yCUChEmyqThN/c3Fzo9Xq4XC46YGdnZ9PICykyiMViyM3Nxfj4OLKzszExMQGXywWpVAq73Y61a9fiwIED6OzshE6nwx133DHtome1MdtobTokm4CIHY6OjlL9NY/HQ8Vx6+rqIJfLEQgE6AIyFArhwoULGB8fRyQSwfj4OBwOB6LRKHp7e6HT6ejClDScj8ViNMJHdg9GRkZgtVqhUqlQXV0NgUCA4eFh6HQ6bNiwAXV1dbTXLUlir6urQ1VVFTZt2pR0ay4cDlOJEsJCRcgycfdgMZx/8nl6PB6aDkQ6rLz//vsYGxtDbW0tqqqqIBaLodfrYTRe64/d39+PvLw8GkkjiwGy8NNqtRCJRBgeHqY2Q54rEomgUCio/ivJd2tvb8fQ0BCysrJgNptx5coVGuVVKpVxzeRJniUQL85cWVkZ14N7uUZVZ+20/du//RteeuklfPTRR6irq8MzzzyDH//4x3j88cdpi6TlQiQSQXNzM5577rm4x3fv3o1Tp04t6bXwJ9lkQpBqtRpr166FWq2GQqGA0WiESqWC3W6HUqlEZWUl9Ho9Ll26hKGhIVRVVUEoFNKVDmmg6/P5cO7cOYjFYgwNDSEQCGBychIjIyOYmJigooKFhYUoKyvDwMAAxsfHaeeK7u5u6HQ6+P1+KrK5Zs0aVFRUYGxsDDt37kxaMZpYFs2YmWSVe/yf02GxWNDc3EybLUejUchkMlqlZbVaYTQasW3bNprrWFZWRm2LdMswGAxobGzEf/zHf8DpdGJ8fBwcx+F///d/YbfbIRKJoFarYTKZsG3bNkSjUTQ3N+P8+fMYGRmBWq2mDedJErlAIMDg4CAqKiogl8tpZWBpaSlyc3NRVFSEwsJC2Gw2OJ1OxGIxbN26Na2FD2Ph4Tv3er0eRUVFOHfuHK5cuYLh4WGqCSgWixGJRDA5OQmfz0c7shBdLFL1l52djXA4TCsA9Xo9nVw5jqO9SdVqNTo7OxGNRmlUxOl0wuv1Iicnh0aQSTeNaDRK217t27cPJSUlcbqEiQVfqaoZ5zM+LbeoSzoshvNPPk9+Bx3Smk4gEGB0dJRGzMi4ZDQacfLkybgxIysri+bAAdfmQTKGEBkPEsgArhU1bt++HW1tbbh69SpCoRCsVisV8ZbJZGhra0MkEkEwGIRer4dUKsXAwACdX10uFz744AN0dHRg69atdK5NjOrz2zQup3s+K6ftvffew5NPPon/+q//wi233AIAePrpp/HTn/4U//Ef/4E//uM/XpSLnCuDg4OYmJiYIjNSWFgIl8u1ZNfhcDjo4MJvdGwwGOjkW1FRgc9//vNxbT86OzupaOnDDz8MAFShnLRzUalU+PDDD5GVlQWdTkcbPZP9fRKKzsrKgsPhQG5uLlQqFV1RkwGVOG5ku1sul6O8vBzbt2+n+STd3d1wOBxoampa1dtWC0Xi5zfbz5NsD/Bb93g8HvT09MDpdCIajcJoNKK1tRVKpRLbtm1Dfn4+otEoenp6EI1G0djYiGAwSAtXiEPX19eHWCwGmUwGv9+PTz/9FKWlpSguLqaLAJJQXlJSgpGREXR3d6Onpwc5OTnQ6/Xo6+vDhQsXkJWVhY0bN0KlUiErK4sOkCUlJTQyS7ZKGfNjpuhAqr+TRHGSZ2gymfDhhx+iu7sbn332GcbGxmh3losXL0IqlSIcDmNgYAButxscx6GkpARZWVnIzc2lW1hEo4tE58jiwWQyUZ1JsmAlBVijo6Po6OjAG2+8AalUikuXLsHr9UIqlVLZB6vVCgBJo2rJmG5BtFwjKjeSRCHmxM8n8fMkf5dIJKivr6eLPQD0fnk8HtTV1SEYDKKqqgqFhYU4fPgwZDIZuru76VwtEAgwNjZGiwH8fj/tflBcXIyqqira7D0rKwtjY2M0N7ujo4M6+BKJBC0tLZDL5VAqlaivr0d5eTncbjdcLhftzV1VVZV0K325RlXTdtqam5vx0EMP4cc//jEeeOAB+rhKpcLTTz+Nv/u7v8Ojjz6aNL/tRkO8dAJZHaZioRI3CRaLBZcvX0ZRUREaGxun9MXjOA4ajYZWajU1NcHtduPTTz+lOjZXrlxBKBSCWCzG5OQk1ZDp6upCZ2cnxsbGoNfrsW7dOmi1WlrAEI1GoVarsW7dOshkMhqVuXr1KmQyGfbu3YvKykq88cYbaG1tpflvRFuprq4O4XAYAoEAwWAQFouFSj8QI2eD3tJDEq8TP3OHwwGfz4djx47hs88+Q2trKyYnJ6k0w5kzZ3Dp0iXaoupf/uVfUFBQgOHhYRQXF2PDhg04ffo0rcKqq6vDp59+irGxMbz//vuQy+UYHByk1V6kUpA4g6TAJhwOo62tDT09PXQBkJ2dTcWdtVot6uvrqbAuY2FITApPtRUKXP/+WiwW/P73v4darabJ/C6XC0ajEYFAAENDQ8jJyYHJZIJer4dOp6PipG+++SZOnz6NyclJ5OXl4aabbkJeXh4CgQBGRkag1+vx8ccfw+fzAQCUSiXuuusu+P1+moyelZWFgYEB2O12GAwGfPrpp7BarcjOzkZBQQFCoRC14erqakQiETidTpoXyf8OpIqoTbcgysQ8tcUmVTefmXJtSWoHcbgsFgvNe87Pz8fnPvc5bNu2jf6d6LVVVFQgLy8PeXl56O/vh1qthlKppAK3k5OTCIVCEAgECIVCuHr1Kt0xqq6uRn9/P9xuN43KKRQKDA8PIxwOo7CwEI2Njdi9ezcOHz6M4uJiAEBOTg6tFJ2pInY5kbbT1tDQQCfrRP7mb/4Gf/M3f7NgF7VQFBQUIDs7e0pUze12TyvyuxiJmyqVCiaTacokxZ98CUajEWKxGDk5OQiHw+jp6aFVfjU1NdDr9RgZGcFrr72G7u5ujI+PY2xsDP39/QCurWyGhobo/VKr1fjqV7+Krq4uDAwMoL29nbbQAkBz1nJzc7Fu3TpMTk7SfCWS1Gs0GmEymeB2u+nKlp/XQBzddA18OX8pMoFUk5DBcK1lS2trK0ZGRlBZWQmfz4euri50dXXB4XAgEAjAaDTSqs7BwUHk5+cjJyeH5j+q1WrU1NRgfHwcQqEQGo0GOp0OnZ2d8Pl8tHm3VCpFVlYWCgsLUVNTg6amJoRCIYhEImg0GtqAfP369eA4DhUVFbTVFcDsYKExGo1oa2ubkkzN/3uygpe8vDyad3Tw4EGcPXsWFRUVuP/++3H69Gm6KCTVf0NDQxgZGYFYLEZZWRndDj1//jzq6+shEAjAcRwOHToEj8eD7OxsiEQibN68GUKhEKdOnUJeXh5txxeJRGj0rKKiAm1tbYhGo1i/fj1GRkbgcDhQW1uLkpISCAQCqtGV+P7SkTRJ9pnxfzJSV6oT0hFwJtWjTqeTVoG2t7fj4sWLcLvd2LBhA03hkclkkMvltOWVTqfDyMgIgGvOVSgUglQqRV9fH44fP45AIECVEXJycrBu3TrY7XYIBAKaD0cqpRsbG/H1r38dLpcLR48ehc/nw9q1a7Fjx46kCxuHw4EDBw6go6MD1dXVtI3jcmHReo8uB8RiMRoaGvDBBx/gi1/8In38gw8+wH333ZfydQuduJnomCVOVMkqAk0mEzo6OuDz+TA+Po6srCyaLFlaWoozZ86gu7ub6tAEAgHa56+4uJi2/AiFQohEIjSHz+fz0VyDoaEh2jRaIBDAYDBg/fr16OjogEqlwvj4OCwWC3Q6HRQKBYLBIMRiMZVgIM4ayZmYTZk9W90uDiTHkS+v09XVhQsXLsDn80Gn06GoqAgNDQ04e/YsfD4frewi+Uh5eXnIycmBQqHAyZMnEQqFsG7dOtTW1tIJViqVUo22/Px8Kv6clZVFK59vvvlmANe6qMRiMdx8881TJlpmBwuLwWCIS6ZO9netVguLxQKr1QqTyURz2UhOktFoRFdXF+rq6rBnzx6YzWZYLBZ0dXVRZfqzZ89idHQUhYWF2LNnD7q6unDq1CkqnLxx40baf1YgEGD9+vVYs2YN7r77bvzP//wPrYZ/+OGH8eGHH+LChQs0HcRsNqO6uhpOpxMVFRUoKyvDiRMnoFAokJubC6lUCpPJBABxqRrAzJImqT6z1WJ7c1kkJft8+E5d4jFJQRURgi8qKsK6deugUCjQ1taGy5cv4+LFi6irq4PdbqfV6cPDw3A4HPD7/QgGg5BIJMjNzUV2djaGhoYQjUZpWgYR3fX7/eju7kZFRQVuvvlmDA0NUYFxpVKJL3zhC3j88cdhMBjw8ssvY2BgAGKxGDfddBPMZjMtokgck1wuF/r7+6FUKped5t+KdtoA4Dvf+Q6++tWvwmw2Y9u2bXj55ZfR29uLb33rWylfM1Pi5mwNP9HoE0PP/AGWlEyXlJSguroaHR0dWLduHaqqqqBSqRCJRNDR0UENllTSxGIxFBcXY2JiAgUFBaitrcWJEydoL9Njx47RCIpCoUBeXh6Aa/kj27dvh9/vB8dxGBwchF6vx0033QSn04mrV6/C6/XS0HNubi68Xi+USiXEYjHdoiDvKV0DZ6vb9EjH1viitHa7Hc3NzWhoaAAAvPnmmxgfH4dcLkckEkFOTg5uu+02bNq0CeXl5Th27BjdqiLl+RqNBgqFgsqIiEQiKnxZX1+PoaEh3HzzzYhGo3C73aiuroZWq8X58+dRWFiIWCyGoqIibNq0CTKZDCdPnkRbWxuN7JIS+9Wu5bdYzOSEkGgcSeQuLi6Gy+XC5cuXaa/PkpIStLa2wul0QqPRALjWS5oIdxNphLvuugs7duzAX/3VX9GuGRqNBseOHaMOlEajwR/8wR9gz549kEgkOH78OAwGA2666SZYrVZcvnyZLjJtNhu8Xi+KiopgMBholShwrVdqf38/enp6oFQq4yL8wHXx6dlG2lYTiYukZOMLPwebPC8Rvo29/fbbsFgsNIoukUhQWVmJlpYWHD9+HEVFRdiwYQPMZjOCwSAuXbpEOw2QllaxWAzBYJC2WQSu5W9rtVqo1WrEYjEIhULaC9lkMkEgECAcDmN8fBxnz56F0+mEwWDAyMgIwuEwNBoN2tra8Nvf/hZf+cpXYDabqcSISCTCkSNHkvYXNRqN2LFjB2pra5Gfn7/sxqYV77Q9/PDD8Hq9+Ju/+Rs4nU5s3LgR//u//zuvGzHf6AB/okp04CwWCx0o9Xo9dY6KioowPj5OVxk9PT1Qq9UoLS1FLBajg9fQ0BA+++wzrF27Fvn5+fD5fLQ4IRqN0grQWCyGCxcuIDs7Gw6HA/feey/eeustjIyMoK6uDiUlJVSKZGRkBEqlEnV1dWhqasLw8DDUajWKi4thMplgMBjQ1taGtrY2ulqfidW0up0P09kacdaIth9wbcB999130dfXh9tuu41Wa65duxZtbW20PygA7NmzB/n5+XjzzTepYz40NASj0YjKykra9orkQgqFQggEAtTW1qK+vh5erxe5ubnYtWsXANDCBxLtI0K/5Fo7OjqQlZUFl8tFi3GYlt/8SMepJ9plwPWCD71eD5FIhPz8fJSUlGB4eJhKuhiNRpw4cQLNzc0QCARYu3YtzGYzdfKj0Sg2btyIrVu30gVbTk4ORCIRCgoKAID2slWpVNDr9bSg5aOPPoJWq8XDDz+Mvr4+/OY3v8HQ0BBqampQWlqKkydP0h7J5eXl6OzsxKZNm/D4449TZ8Lr9aK7uxsajSZOfJlEd2YbaVtNJCsgSBxfUsmmEJLZnEAggMfjgUgkQmVlJbZt24b/+I//QG9vL13YESWENWvWQK1WIy8vj1Z6Ev3G3NxcaDQaKri8bt06lJeXY+3atRgbG8OxY8cQiURQXl4Os9mMjo4OnDx5EgMDA/B6vVSzNCcnBxMTE7hy5QrGxsZoscHWrVthsVhw+vRpcByHhoaGKe8xXQmvG8WKd9oA4IknnsATTzyxYMdbyOhAonp0RUUFvF4vHA4H8vPzYTKZ0NnZicuXL2PdunW0lRQRvc3JyaEO17lz5+B2u6FUKpGbm0v7iRYWFtIV7Zo1ayASiWh/SalUiv7+fvz85z/H4OAgioqKaLWow+GAXC6nrbEGBwcxPj6O8fHxOMFe4Poql4SbGQvDdDk6FosFZ8+eRX5+PjZv3gyz2Yx/+Id/gNvtRkdHB+6//358+ctfhsfjwdGjR2kfWZPJhPPnz+PkyZPYuXMntm/fDrfbTdtGVVZWYv369fjwww9pMYtIJKKyDqFQCGfOnMH58+chk8noVtXly5fR2tpKle2JuO++ffuoHcdisbgSe2CqU8GcuPRJZwFps9nQ3NxMq42Ba8VWRMYFQFwnE5Ke0dnZSZXjiXNGpF5UKhU++eQTvPbaa7jnnnuwfv16hEIhFBUVYc+ePbh06RKuXLlCZToikQg++ugjusU6Pj6OTz75hPY4DgaDtCWRQCCgwqtDQ0MoKyujucAikYg6dIm24vF4qCCrx+OhvXBZvuR1EhfLqXLXPB4PfD4fjeAn7hTxi11KSkpgtVqpCDtJk6mursa5c+dov2Gr1Qq32w2pVErlpciYUFlZicLCQrjdbrjdbqjVauzatQsFBQVoa2uDQqFAIBBATU0NTd+wWq20wwHprECqTEkXDdIzGwCVKDGbzbSwgQQdMolV4bQtNPONEiWKqhoMBjQ1NdGB1GAwUB080rCZ4ziMj4/TalGig8NxHFQqFbZu3Yrjx49DLpdDq9VCLBbTUumbb74Zd955J+1a8L//+7+YmJigJdSkl9/k5CTWrVsHs9mMrq4uBAIBlJWVQSqVwmq1IhwOo7a2Frm5uairq4ubePkdIRgLR6ocHYfDAZFIhIqKCuzatYtOakajkZbanzlzBg888ADMZjMdMHt6elBSUoLm5mYMDw/ThQEpOCgpKcFjjz2GI0eOoKenh0ZZR0dHsXbtWmzcuJFuhZI2ZkeOHMHmzZvR1dUFn8+HhoYGuoIlq3KS10kGTn6zcn57t8VQsV/JpLOANBqNdLs8VWJ54phGOp6QrSgSTY9EIti4cSN27NiBl156CVeuXIHP54NCoUBOTg527NiBRx55BMC16Oprr71GxXXdbjdCoRA0Gg3cbje1OeDaDsHY2BjtjywSiVBaWoqamhoYjUY0NTXB4/FQp/Hmm2+O284jOXpSqZSmjhDRVPL+GFPhR9cI5P/d3d24evXqlO9kYrELAIRCIarB5/f7cejQIXi9XpjNZmzevBkAcP78eeh0OoTDYfT29gK4JtQ9NjaG8vJy3HbbbThw4ACV8KiqqsJnn30Gh8OB7Oxs2tnAbDbj9OnT6OnpofJUGzZsoOkfpNF7WVkZ9uzZk1S2hCxCJBLJlLzI5Q5z2m4A/OgaMRij0Qir1YoTJ07QdkCtra3QarUYHByk+UBHjhyh+lhSqRQCgQASiQSdnZ2QyWS06W1vby9GRkYgEolw7tw5aLVamEwmtLe3o7Ozk1bseL1eiMViiMViaDQa3HTTTbDZbHTrNTs7G4FAAGKxGOXl5XjyySeTGjeTb1gcUk3KNpsNIpEI27dvj/vcGxoa0NfXB5vNhosXL6KsrAyPP/449u3bB6/XS3v7Adf7TAqFQshkMqhUKgQCAfz617/G5OQk5HI5CgoKEIlE0N/fD47j8LnPfQ4CgQByuRxGoxG9vb0YGBhAfn4+8vLyMDAwAIVCQbcXmpqa6KrcbDYnLa+XSCRQKBRT+vYyZiadBWSy7Z50JiiioUfGKSIfo1AoUF9fjz/6oz/Cv//7v6Orq4tGQ1paWgBc60kLXJP4CAQCNNFcLBZDKBSioKAAt956K9rb2xEMBiESiagQ6vDwMDQaDe677z6YzWaaX2U0GiGXy+FwOOgCFLju9AcCAbroJNt7i9mHdKWQTN5DpVLFOfqJW6L8Yhci7UN2dZqamui2aGFhIUpKSmixwdatW6HRaODxeLBlyxao1WqcO3cOFRUViEajKCgoAMdxtB3iyMgI7f7T3t6OUCiErq4u6PV62tVFo9GgsLCQVjPHYjH09vaiubkZIyMjuOOOO3DvvfcmlYBZrgK608GcthtAosF4PB6qZN/d3Y3R0VH09/ejq6uLRrZEIhHcbjf6+vqgUChQUVGBwcFBBINB2pi7oKAAIpEINpuN9nPz+/3o6upCSUkJ1q9fT9XFyaDGcRxkMhltGVNZWYmuri7k5+fji1/8IqxWKzo7O6FQKLBr166MMeyVArGVRFHjVM4ciXSSbQfyu8FgwM6dO2kENxgMwul00p63mzdvRk9PD7q7u3HhwgXU1dXhC1/4ArRaLVpaWjA6OgrgWvTE4/FgdHSUXotCoUBJSQl27NiB7OxsVFVV0esh+VFXr16FXq9PmitCtlErKyuZfS0xqXLiSLpDZWUlwuEwurq6aFK42WyGw+GASqXCd7/7Xfz85z/H0NAQxGIxPB4PTpw4QXMpxWIxSkpKaBcEIvitUqlQXl6OiYkJ2qe2traWanHxdb7cbjccDgeUSiWqqqqQnZ1NnULgek9n0rNZr9fHVZPOpkBqNZJqi5T/eSVzboi0h9Vqhd/vR1ZWFnp7e+FwODA0NASlUkllfwBQhxoARkZGUF5eTgufRkZG0NHRAalUijvuuAONjY04ePAgRkZGYDab4fV6YTAYMDQ0hLa2NtTV1WHfvn3gOI4K7ebl5WHdunVoa2ujkiOpcqz5HYqSLSSXM8xpu0GQZG1SpdrV1QWdTkd7ho6Pj0MgEKCqqgpGoxFutxtHjhwBAFRXV+PBBx/EoUOH0NPTg3feeQfbt2/Hpk2b6ABFBj/gmi7d6dOn6bYmMVCNRoOcnBxEo1GaQ0ccN74R8w2frFiZvtbcSfXZTdfqLDF3iR9hSTzevffeSx8j0RIAVGBXoVDAbDZDKBTS7gf19fWoqanByZMnUVBQgIaGBir1IBQKsW7dOpog3N/fD7/fD71eD7PZTLdv6+rq4PF4IBAI4vKJTCZTSo1HgFUSLwWpqgQPHDgAp9NJoxGExHvC75hgMBhoxaDZbMa3v/1tbNiwAaFQCBMTExAKhfB4PIhEIpDL5bDb7di5cyf27NmD1157DX19fcjKysL58+cxPDyM7OxsWlTAd8aInJBYLIbX68WpU6dQVVVFbZNAbJ44FnwHbS66bauNxGhtsvE80R4sFgvefPNN5ObmYtOmTbR3ssFgQH5+PoRCIaqqqiCRSHDixAn6WpvNRjtffPDBB+jt7YXReK07ikgkQigUQmFhIZUnIlJEhYWFqKiowMjICK0SJVXNPT098Hq9qKuro9ue5eXlKC8vx5133pk0ZYeMp6RoIpNgTtsNgr+SNRqNcVIfdrsdeXl5yM/Pp7klr732GrRaLSYnJ1FQUED78/X09EAqlWJwcBC33HIL6urq6KBIighI1V9zczNMJhNuu+02HD58GEajERzHoaurC263G+fOncPGjRvx+OOPA0Bcnh0R2gWAe++9N6VsCXPgZiZV8nhiBRz/79M5NuR1JGJL7IlMqmQyJgnGJPdnw4YN+PTTT9HR0UFFKIlaORnIfD4fRkZGUFFRAZlMhr6+PuTl5UEqldLmzURTyW634/Lly3C5XIhEIvQ9JBOQ5sMqiReWZA5aqipBl8uF4eFheL3eKe3pyOKM5ItFIhG4XC7s3bsXABAIBGC1WmE2m/Hss89Sp4nk216+fBkFBQUYGhrCRx99RCubSWrGyMgIcnNzcc8990CtVkMgENAIceLika8PSJyDxPeZ7DsyF902xlSSfUdJNJUUx5EF5/bt2+k9efvtt6m0x9tvv03vYSwWQ2dnJ8bHx1FbWwuTyQSv1wuPx4O+vj6MjIygqqoKkUiEFi51dHRgfHwcExMTkEql8Hq96OnpgcVigVgshkKhQDgcpiLRyYRzCZm8UGRO2xxYiChTotGQpF8ih0Aqu8igyXEc1UUbGhrC8ePH4fF4IBaLIRKJ4HK58LOf/Qw6nQ4SiQRisRgcx0EikWDt2rVwOp3o7+9HS0sLBgcHaWuuHTt2YGhoCD09PbSwgJ9nR66xvb0ddrsda9asmXL9TCB1dqQaMEhUILG6Epi6TcqPxvGjIXxHmkyqfF004Jqt6fV6NDY20kpiUglMJkpi4xzHITc3F263G9FoFAMDA8jLy0NpaSkKCwuptlI4HIbP58PY2BiKi4tpXhHfCZgNLJI7d5J9H1Ntge3YsYP+nky/y+PxoLm5GX6/H2KxGLm5ubSwhIxZFouFtr8ifXC7urqQlZVF2wlZrVaMjo7SXpGkEKqxsRF/9md/hqamJrz//vs4efIkdbCeffZZANedfr7NJ3ufM4nAMhaOxDZ6fIddJpPBarVS2Zfc3FyEw2GaGxsIBBCJRFBWVoZdu3ZBq9XCZrPBbreD4zj4fD7I5XKaukMKl6xWK06dOgWv14u+vj4IBAI0NDQgNzcXPT09dLwgrc2AqeLLhExeKDKnbQ7MxklJNfnwjaapqYnmmPGTaEnFVDgcRigUgkwmg06nQ35+PrxeL9XTItGOjo4OeL1ehEIhOJ1OjI+P0/ZCWVlZtM2MXq9HOBymuQbf+c536HW9/fbbeP/999HQ0BCXvKnRaFBSUkJD0olGn6w1zkKx0ibwVAMGiQokVlcS+KKXEokEMpksLrpGHGh+YUtrayuamprQ0NCAO++8EwCgUChoSzW9Xk9VxLds2RLX/5bkNhYVFaG1tRVDQ0OIxWIIh8OoqqpCTU1N3ETq8Xioptdci1Lm0xptJTOb70AyRyWZzSVW0SVziPgJ6XznnySjkygcceT4dksivUeOHEFTUxNtk+dyuSAUCtHQ0ED7WJMK16GhIQwMDECr1ca9Z/5uhEQimTYfaaaOM4zpmSl9I9nnSu4BkX26ePEient7UVZWhg0bNtCFYFdXF82lvfvuu7F7925YLBZ4PB5atKLRaBAKhdDS0oLJyUlkZWXB4/FgeHgYRUVFCAaDiEQicLvd2L17N0pKSvDSSy/B4XDAaDTG7RQl7kCsBFtgTtscmM3qbToHj5/DxI+WkMpAkUiEaDRKByfSXquyshJarRYqlYqudmOxGGKxGLRaLTiOwzvvvIP+/n6Mjo5CKBSiuroaOTk5KCwspNIKZLJ+++23AVxPYidivPxVynRbXAbD9dYli5Hwu1oieTPZFV/0kjj3/Oha4iRtMplw+PBhmsRLJj+v1xsXgWtra8Pw8DBsNlvSBF2yRZqXl0f1/zQaDZ2gSTSYlPgn5pDMxuHgOwuZliC80PDV/i9duoS+vj4AM38HZuOopMrtSbRFkh+ZuPAkUZJEIVayICA5TEVFRcjPz0cgEMDExAQmJydhNBppziXJSyNOZOIWv1arpVpzZDciVT6SxWKhXUGWs0jqcmWm9I3Ex8nvJOImk8nAcRyi0WhctEylUkEkEmHr1q00ckpyKjdt2kS7KdjtdlitVnzyyScYHh4GcK0lZVtbG8bHx7F27VqUlpZCKpXCYrHg5MmTcLlcyM7OnhJJBuJ3IFLlAWcSzGmbA7MZFNPJReJXShGpjg0bNuCee+6hEQe9Xk/37H0+HyKRCKLRaJxytVarpRPdxMQE3nrrLQiFQqqDQ5rWSyQSiEQicByHqqoqHD16lMo/kHB1e3s7/ud//gd6vZ42zE32npeiCme1bHHMZFf8zyHZ4JM4qJrNZtx8883o6uqijhSZCAOBANRqNfbu3UvL6/nHUKlUtABFo9GguroaRUVFqKurQ2trKxWANhgMsNlsOHbsGPr7+9HQ0EC7aZDrnI3Tnew9rlZKS0vjfv/jP/5jmj80W1JNUul8t6ZrfZR4v/h/I87TxMQExsfH0dvbC4VCgY0bN0IqlUIqldJFHn8cIVF70reUHD9ZxC/Z+yTVjIy5kWgT6Y7x/OK68vJyBAIBlJeXT3mN3+9HW1sbxGIxnE4nRkZGkJ+fT9OBwuEwSkpKMDIygq6uLlRVVcHr9SIcDiMrKwt5eXlxx+Q4DtnZ2bjpppvi2k/yU0r4rSKBzA4EMKdtkZluIuZ/OUjVHWnUTh7nbwuQ6IrVaqXdE8gxgsEgmpqaqLJ9YWEh7rvvPqhUKtTV1cFms2FkZITmMxUWFkIikWDTpk1wu93o6urCyZMnAQD79u2Dx+NBf38/Ojs76WPTOQqLWYXDtjiukWqLC0jed9FgMODJJ5+Mu1dHjx6F3W6PazFFtktVKhXNq4tGo7DZbDhx4gR0Oh3KysoQjUbp1kZnZyc+++wzVFdXQ61WQyaTQSAQwOl0ThE1nY3Tze71dUhknUDyUIH021elcugJibmSyRxtMj6R9IdEcXDgelEDkejQ6XQQiUTw+/0YGhqCSCRCUVERdu3alVRDjRzT4XDg8uXLUKvVuOOOO+gWPNl+TdyuS8xZstlskEqlcfISq51EB5ZvR8lI/A6mO8bzi+sAwG630w4o5HgGw7XG7WfPnkVFRQXuuOMOANd3eYjmnkQiwW233UZz1FpbW9HR0YGcnBxoNBoMDw/TnR+XywUAVLOUz3wWK8sV5rTdQPgDTUlJCQ0ZHzlyhE5+9957L916tNvtNPpBVqBWqxUdHR3o7OyE2+1GW1sbamtrsWXLFjz44INTyvsvX74MkUiEsbExqp21b98+AEBzczNcLhcdIK1WK1paWui1kC9J4oDO/8lYeGaaoPlVpyQxnGxl8W1MIpGgqKgIbreb9pm02Wxwu90IBAJobGyMy6sjSegGg4F22ACuCfi+//77uHr1Knp7e1FfX4+tW7di69atAK5HQvji0ZlWVr8cIFtKyUgnUpDqe5pOdWliBI2f/kD+xs+7tdlstMKU9LYlPZPz8/Oh0+ni8nXD4TDtIQpcn7Q9Hg8tZiF2ZLfbk+Y3zlRwwZz/ayRGbL/3ve/h+eefT/v1ycb4ZDbEfx5xpkjXBP48lKyTC/9cRNdxeHgYBoMBra2tsFgsUKlUuPXWW6ksDN+ZB67lBCdWCc+0WMlEmNN2g+GvLEiJst1uRzAYpHllJCzN35svLi4GcK0SsL+/n7YRiUajtDoHQFy+mslkQigUQn5+PvLz8+F0Omluk8lkglarRX5+Pv0ikp6RBHJuvvZRJhv/ciadKAmBP4laLJYpAyV/pUw6I5A8tL1790Kn09EKr8QB2ul00m1RMkDW19ejpKQER44coQ2ik/UMffvtt1lu0SKRzmIp0YHhFz6lcnZSOdrJjkWOo1KpMDY2BrvdjpycHNx99900dYOkbfDtmFQYkt0Fch0GgwEejwdDQ0PUwZsuvzHdgovVTrKILZ+ZFoXJPtNkY1Li84jOI/98JF87sZML/1xE11EoFGJ0dBQXLlxAV1cX1qxZgz179tDIMCnKMpvNcR0a+KzEoAJz2m4wZJtAqVTSiZYk3hInjYSlHQ4HDh06hGPHjkEsFqOxsRE7duxAbW0thoeHEY1GUVJSgmAwSL8wRABRq9XGbReUlJRg3bp1tHdkKBSaMrmS5GBgqhPBtI+mZ7ZbEonMJprJHyz5jb/55+Y72Q8//HBcI2gy4JGVa7Lik8RBO922ZSSilw5zSQ7u6OjAo48+isHBQajVarz66qtYv3592ufMVNJxTlI9J5WzA4BOhPzHUh0rlYPP1+3iFzJIJBKoVCpEo1FaNGUymeLGJf7/E3OobDZb3HUlXlMmJ5cvJtNFbIG55XelGpP49yBRI4+f8zadE8Wf//x+P5RKJQwGA7Zu3Rq3EOXnc6ey9ZXoxGes0/bDH/4Q7777Ls6dOwexWEyrTPj09vbiySefxEcffQSpVIpHHnkEP/3pT2n4fjlAki751VepEijJStRqtUKhUOALX/jCtBEMu90OoVCIoaEhtLe301VvV1cXwuEwnaw//fRT9PX1ITc3Ny5HZKbS+UxstrtUJEsi/9u//ds5DYqzGXj4z+XLZ/AHT71ej9ra2rjKPeD6hE1K5OerIj+TqC4f/sqZf00z8c1vfhOPP/449u/fj9dffx2PPfYYmpqa5nXdK51U9kTkO4g46WyOk8zBJz/5EVetVktzL2Uy2ZRm5GQr1mKxUCFfflSPf9xEMjm5/EYyl2hUMhtK/A4nHjcx522muYY8tn79+inpFrPZBl9pznzGOm2RSAQPPfQQtm3bhl/96ldT/j4xMYF77rkHWq0Wn3zyCbxeLx599FFwHId//Md/vAFXnJzpjC/ZF0Or1aK8vBzV1dUwm81oaWmhURN+lMXlcuHMmTPU2Lu7u2lBA1npJG5JxGKxuEGPbN22tbXFqUsnbo+QxxjX4W9JnDlzhjZxn4vzRZjt4JNKPoM8ztcv4q9cASTtzDDb8ye+B47j0NjYiNHRUVy5cgXFxcWQy+XYu3cv7rnnnriVczq43W60tLTg8OHDAIAHH3wQTz31FHp6elBeXp7WMRjxkKKUVPc3cSF5+PBhuN1u7Nq1i+4GJIo/A9dlhIBr4w+ZiJPl2BmN15qQu91uHDx4EHv37p31djAjfRYqGjVT9Iu/BZ+4QEtnu5U/32zbti3ta15pznzGOm3f//73AQCvvvpq0r8fPnyYahuRG/XSSy9h//79+OEPfzhtuHgpme0XZs+ePXH9+SwWC86ePQsAVLrB4/Hg5MmTaG1thVqtxoYNG2ibkLa2NtozkpBKcZwMnok5UoTpBsmVtrqZLfwtifXr10Mul89pMplNblvi68hWRGK+GbmOZBpvZLueSH6QbS0gubM3m3srEAhw6tQpANeifR9++CHKysro9QLAD37wA/ziF79I+vp33nknLoJJvttCoZAev6ysDL29vcxpmwP8MYEvkp3KBj0eD15//XXEYjGo1WrU19dPyVsjx+Vvd1VWVtKt9WQRVrJlTx632WxpTdIrcSssk0gVgODbz7Zt26iY/NjYGK0eno1TPtsdnpXmzGes0zYTTU1N2LhxY9xN3bNnD8LhMJqbm2mpcaZBtg9IJRcZaEmkDQBVl16zZg2qq6tporjFYkF/fz8cDgdMJhPdWk0MR5MKUqPRGJfvlPhFmW6QXGmrm/kwn8kknQpA8rzEakAyQaaK4PL1l/jaWu+88w7EYnFcM3j++ZOJVc4Gp9OJaDRKHTb+Nb377ruzOhZJZCfMJoeOEU/i2MK3pWQ26PF4qNNMxiH+xJqopZZMXy0xOsO/llTJ5YzlSaocw8TuJvxxhHRQmI1T3tTUlHQHKN3rynRWrNPmcrlQWFgY91heXh7EYjHVdVlupBudSlzR1NfXTxG85DcOb25uBgAq49HZ2UkbPfPPQ7ZDiY4X/1ypyu5TXf9KW90sNTMJWvInUgBTnKh0Pv9k29zk3BMTEzAajdi+fTt12EnEbTpx03Q4f/48Nm/enPRvX/rSl6g2YCKJkbbS0lKqBSUUCsFxHPr6+uKcQUZ6kDQLo9E4xd5S5VcSrT9+27JkEySxL35BVWJuElk4kGOs9kh9ppIsKpuYnpEqZztdZtoBWuksK6ft+eefp9ueqfjss8/SFk1MXIUD11biyR7nM9/Kv7mSKjo1U1SFPMZfffDL9Un0wWC4JuNBWof89re/hUKhoIOu0XhNI4dIjjQ2NlKnT61WQy6XT/s5JIpurrYv00KSTNCS71wlc8oSIxVzKXowGq+1ufJ4PKirqwNw3WEnW17zFVLu7++ni4JEXn/99bSPo9PpsHnzZhw4cAD79+/HG2+8gfLycrY1Ogf4aRakdyMhlS0lVgemIllCeuI4kbhwmEtRCuPGkyoqO9/8XD6rPQq7rJy2p556Cl/5ylemfU66A7Jer8fp06fjHhsaGkI0Gp0SgUtkvmKEsyGd6NRMURXSusVqtUIul9PkXYMhec9Qv9+Pq1ev0uefO3cOd999N9Vys1qtEIvFdNB0Op04f/48qqurAWBKD0ICi64tHNM5ZcmSfOczsSUe62tf+1pcrhGJvpCtjPkuYBobG/Hiiy/SBcR8+OUvf4n9+/fjhRdegEqlwq9//et5HW+1wk+zSJd0v++pEtJT2XaqLVPG8iZR0oO/vQ6k38c08ZjJnLuVtuU5G5aV01ZQUICCgoIFOda2bdvwwx/+kGoHAdeKEyQSCe1hl4qZxAgTmc+qIZ3o1ExRFZvNhu7ubojFYggEgriwceIXx2KxoLOzE8FgkDaPj8ViaG5unqLlRhzJkydPwuv1or+/H6WlpSlD0qv5i7TQJPssF+rzTcde+RMn2UYnzaDtdjt15uZyPTU1Nejo6Jjv26DHYhIf8ydd3T0+yXKY+C33khUyJBuTyGPJCp3YeJI5kDxalUpF720y5yxdvbZUr1/tLCunbTb09vbC5/Oht7cXExMTOHfuHACgqqoKCoUCu3fvxvr16/HVr34VP/nJT+Dz+fDnf/7n+MY3vjFj5ehMYoSJzMewZpN7xP898RjE2SopKaE9/VpaWqjuFn/Lt6ioCFVVVVQvB0BcJ4RE7bedO3cCAOrq6uL6nTKWB3OVAgFS22uyrQ0i0huLxWbMb2SsPkiKhkAgiNNfS2Zv09lgqoR25sQtb6arSk8MMqQqkkp1TKYJep2Mddr++q//Om4rhCQ2Hz16FDt27EB2djbeffddPPHEE2hsbIwT111o5rMtOJ/oCX8w4ztadrsdzc3NsFqtkEqlGBsbg8lkmlKkwE8UJT1Nk6FSqVBbW4uKigrWQ3IZMttFQ7pSLYn3mt+XNF3RXMbKJFXvycQqUv7/Z3osFSzakhkkKzBIFUHl/0znmEwT9DoZ67S9+uqrKTXaCGVlZTh48OCiX8uN2hacbjDjOA5arRbRaBQA4la+ic+dScKB5aotb2Z7f/j2mjjATmdT0yUWM1YPqbpXJIvSk8dTRdP4laTpRH0Zy5+ZIqXTzZepoqrMBq6TsU7baiNZBWkqOQiz2YzOzk5YLBY0NjaitrY2qbGnW3o9mwGWsfTMZtGQeK8TJ9/pBkeWs8gAUmurJZJu7uRMERRmd5nNbES5U9kDs4HrMKctQ7BYLLRdFRHATCW9YDAYMDAwQHuUPvLII3F/n83Khw/bpliezCbnJ7ESmT/5styhlcdC3lO+dqDZbJ7xmLPNnWSsTJLlujF7mDvMacsgiL5cOoZNigfITz5zdb7YF2p5Mpv7mSq/iOWNLD8WQi9yIRdaybQDp4ONFwxgdmK6LKI2M1k3+gIyHbJlSHonJiMcDuP555+fUYRyOsxmM9VSMxgM04rXOhwOqFQqfPvb38aOHTumnNtoNEKlUtG+b+ky03kTWYj3zbjGdJ8l0VFLN7F3OmmZZMe5kfdxNdtQaWkpcnNz6b8XX3xx1sdIvKfpfp7JxrXZ2Bkw1daSnZs4gkQiYrFYzXa0UBCb6O7untNnOdv5IxlsLAIEHGvWR/H7/cjNzcXIyEjakh+JLVoW6rjzgX9NGzZsSHrudK57viz1+14OLNZ7XozjpmsDN/I+rmYbSqYXOV9h43Q/z8UYH5Kde6m25Jkdzd+OiE3o9Xrcddddq248WC42xLZH58ly3AJI55qW43UzlhZmA8ub2epFLiRLZRtsO2zxWagOP8QWNBrNQlwWY44wp22eLMdBh39NiXkxyZ7DWJ0wG2CkgtnGymG2HX5SQWwi1ZzCWBqY08aD7BQvtFGS490IY1/p51YqlbRAYznAbCgzz72c7GixbIh/zJV8L2/UuZeTDQHX7SiRcDg8r7yslX4fb/S5Z7IjltPGw263TwklM5Y3Nzq/IBFmQ5nJcrIjZkOZyXKyIYDZUaYykx0xp43H5OQkHA7HslsxMVKz3O4Vs6HMZDndL2ZDmclyu1/MjjITFmljMBgMBoPBWAEwnTYGg8FgMBiMDIA5bQwGg8FgMBgZAHPaFpienh489thjqKiogFQqRWVlJb73ve8hEolM+7r9+/dDIBDE/bvlllvSOucvfvELVFRUICcnBw0NDThx4sS0z//444/R0NCAnJwcrFmzBv/yL/+S9vsjvPjii9iyZQuUSiV0Oh3uv/9+tLe3T/uaY8eOTXmPAoEAVqt11udf6Sy1HTEbWnmsBhsCmB0tNqvBjjLKhjjGgvLee+9x+/fv5w4dOsR1dXVxb731FqfT6bjvfve7077u0Ucf5e6++27O6XTSf16vd8bz/fa3v+VEIhH3r//6r9ylS5e4b3/725xcLudsNlvS51+9epWTyWTct7/9be7SpUvcv/7rv3IikYh7/fXXZ/U+9+zZw73yyivchQsXuHPnznH33HMPV1ZWxgWDwZSvOXr0KAeAa29vj3ufsVhsVudeDSylHTEbWpmsBhviOGZHi81qsKNMsiHmtC0BP/7xj7mKioppn/Poo49y991336yPvXXrVu5b3/pW3GMmk4l77rnnkj7/2Wef5UwmU9xj3/zmN7lbbrll1ufm43a7OQDcxx9/nPI5xMiHhobmda7VymLZEbOh1cNKtyGOY3a0FKx0O1rONsS2R5eAkZGRtFp/HDt2DDqdDmvXrsU3vvENuN3uaZ8fiUTQ3NyM3bt3xz2+e/dunDp1Kulrmpqapjx/z549sFgsiEajM15jKkZGRgCk1+Jk8+bNKCoqwp133omjR4/O+ZyrjcWwI2ZDq4uVbkMAs6OlYKXb0XK2Iea0LTJdXV34x3/8R3zrW9+a9nmf//zn8Z//+Z/46KOP8NJLL+Gzzz7Dzp07p1WuHhwcxMTEBAoLC+MeLywshMvlSvoal8uV9PmxWAyDg4Npvqt4OI7Dd77zHXzuc5/Dxo0bUz6vqKgIL7/8Mt544w387ne/Q01NDe68804cP358TuddTSyWHTEbWj2sdBsCmB0tBSvdjpa9DS1pXC+D+d73vscBmPbfZ599Fvea/v5+rqqqinvsscdmfT6Hw8GJRCLujTfeSPmc/v5+DgB36tSpuMd/8IMfcDU1NUlfU11dzb3wwgtxj33yySccAM7pdM76OjmO45544gnOaDRyfX19s37t3r17uS984QtzOm8mstzsiNlQ5sFsKDXMjtKH2VFylrsNsd6jafLUU0/hK1/5yrTPKS8vp/93OBy44447sG3bNrz88suzPl9RURGMRiM6OjpSPqegoADZ2dlTViFut3vK6oOg1+uTPl8oFCI/P3/W1/n000/j7bffxvHjx1FSUjLr199yyy04cODArF+XqSw3O2I2lHkwG0oOs6PZwexoKplgQ8xpS5OCggIUFBSk9dz+/n7ccccdaGhowCuvvIKsrNnvQnu9XvT19aGoqCjlc8RiMRoaGvDBBx/gi1/8In38gw8+wH333Zf0Ndu2bcM777wT99jhw4dhNpshEonSvj6O4/D000/j97//PY4dO4aKioq0X8vn7Nmz077HlcZysyNmQ5kHs6F4mB3NDWZH18koG1rUON4qhISPd+7cydnt9rhSYD41NTXc7373O47jOC4QCHDf/e53uVOnTnHd3d3c0aNHuW3btnHFxcWc3++f9nykRPpXv/oVd+nSJe6ZZ57h5HI519PTw3Ecxz333HPcV7/6Vfp8UiL9Z3/2Z9ylS5e4X/3qV3Mqkf6TP/kTLjc3lzt27FjcexwdHaXPSTz3//2//5f7/e9/z125coW7cOEC99xzz3EApt0CXq0spR0xG1qZrAYb4jhmR4vNarCjTLIh5rQtMK+88krK/AA+ALhXXnmF4ziOGx0d5Xbv3s1ptVpOJBJxZWVl3KOPPsr19vamdc5/+qd/4oxGIycWi7n6+vq4MuVHH32Uu/322+Oef+zYMW7z5s2cWCzmysvLuX/+53+e9ftM9R7Je0p27h/96EdcZWUll5OTw+Xl5XGf+9znuHfffXfW514NLLUdMRtaeawGGyLXz+xo8VgNdpRJNsQaxjMYDAaDwWBkAEzyg8FgMBgMBiMDYE4bg8FgMBgMRgbAnDYGg8FgMBiMDIA5bQwGg8FgMBgZAHPaGAwGg8FgMDIA5rQxGAwGg8FgZADMaWMwGAwGg8HIAJjTxmAwGAwGg5EBMKeNwWAwGAwGIwNgThuDwWAwGAxGBsCcNgaDwWAwGIwMgDltDAaDwWAwGBnA/w+BEjvtVgcbngAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -265,7 +269,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHiCAYAAAC6BfsuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+nUlEQVR4nOy9d5jU1dn//5o+s9O278LSpEmRIkZABARb7EaRqLFEY2LyTaLxQZNIYotPVOITk0iMiRoLkcQEREksSBCpoWhQepHOLmwvM7PTy+f3x/7OcXbZhQV3d2Z2z+u65oKdesPecz7vc7ej0zRNQ6FQKBQKhUKR1uhTbYBCoVAoFAqF4uQo0aZQKBQKhUKRASjRplAoFAqFQpEBKNGmUCgUCoVCkQEo0aZQKBQKhUKRASjRplAoFAqFQpEBKNGmUCgUCoVCkQEo0aZQKBQKhUKRASjRplAoFAqFQpEBKNGmUCgUCoVCkQEo0aZQKBQKhUKRASjRpkg57777LmeeeSZDhgzhz3/+c6rNUaQh1113HTk5Odxwww2pNkWRZpSWljJt2jRGjBjB6NGjWbhwYapNUqQZPp+Pc889l7FjxzJq1CheeumlVJt02ujUgfGKVBKLxRgxYgQrVqzA5XIxbtw4Nm7cSG5ubqpNU6QRK1asoLGxkXnz5vHmm2+m2hxFGlFeXk5lZSVjx46lqqqKcePGsWfPHux2e6pNU6QJ8XiccDhMVlYWgUCAs846i08++YS8vLxUm3bKqEibIqV8/PHHjBw5kpKSEpxOJ1dccQVLly5NtVmKNGP69Ok4nc5Um6FIQ3r16sXYsWMBKCwsJDc3l7q6utQapUgrDAYDWVlZAIRCIeLxOJkar1KiTdFpJBIJhg0bxk9/+tNm9y9duhSz2czChQs5duwYJSUl8rE+ffpw9OjRrjZVkSLa4yOKnsup+sd///tfEokEffv27UozFSmkvT7S0NDAmDFj6NOnDz/5yU/Iz89PhblfGiXaFJ2GXq9n9uzZ/PGPf6S+vh6ALVu2MHPmTJ588klmzpzZ6m5Hp9N1tamKFNEeH1H0XE7FP2pra7n99tt58cUXU2WuIgW010eys7PZsmULBw8e5G9/+xuVlZWpNPu0UaJNcdp8/vnnJ33OLbfcQn5+PnPnzqWsrIwrr7yS2267jQceeACAkpKSZpG1srIyevXq1Wk2K7qWjvARRfelo/wjHA5z3XXXMXv2bCZNmtSZJiu6mI5eQ4qKihg9ejSrV6/uDHM7H02hOA3Wrl2r2e127cMPPzzpc//0pz9pubm52qhRo7Srr75ai8Vi8rFoNKoNHjxYKysr07xerzZ48GCtpqamM01XdBEd5SOCFStWaDNmzOgMUxUpoKP8I5FIaDfddJP26KOPdqK1ilTQUT5SUVGheTweTdM0zePxaCNGjNC2bNnSaXZ3Jkq0KU6bP/3pT+36Qvl8Ps1qtWpnnXWW1tjYeNzj//znP7UhQ4ZogwYN0l544YXOMleRAjrKRy699FItPz9fs9lsWklJifbxxx93lsmKLqQj/GPNmjWaTqfTxowZI29bt27tTLMVXUhH+Mh///tfbcyYMdro0aO1UaNGac8//3xnmtypqJEfijbZvn07o0aNOunzsrKy8Pv9bT5+xx138I9//IPs7GwOHjyI1WrtSDMVKUT5iOJEKP9QnAzlI6eGMdUGKNKXoUOHsmvXrjYf//e//82sWbN49tln23zOww8/zHvvvceGDRu4+OKLefnll/nBD37QGeYqUoDyEcWJUP6hOBnKR06RVIf6FJnJxx9/rGVlZWl//vOf23zOSy+9pNlsNm39+vWapmnaL3/5S61fv35aJBLpKjMVKUT5iOJEKP9QnAzlI8ejRJvitAiHw9rSpUvbfPz999/XzGaztmjRInmfx+PRsrOztZdffrkrTFSkGOUjihOh/ENxMpSPHI8SbYoO57///a9mt9u13/3ud8c99vDDD2tDhgxptTtQ0XNQPqI4Eco/FCejp/qIakRQKBQKhUKhyADUcF2FQqFQKFKI1+ulpKSEadOmcdFFF8n7w+Ew1157Leeffz4vvfRSCi1UpAtKtCkUCoVCkUJ27tzJ9773PVauXMny5cvl/QsWLOCyyy5jzZo1LFy4kFAolEIrFemAEm0KRZqhaRper7fVc1kVCuUf3Y8dO3bwwQcfMHXqVF599VV5/6ZNm5g8eTJ6vZ5Ro0a1ORojHA7j9XrlzePxUF1drXykG6JEm0KRZvh8PtxuNz6fL9WmKNIQ5R/djwEDBvD000/z4YcfMm/ePKqrq4Gm37XD4QDAbrfT2NjY6uufeuop3G63vGVnZ1NYWKh8pBuiRJtCoVAoFClk4sSJnHfeeZjNZiZOnMjBgwcBcDgc8hQAv9+Py+Vq9fWzZ8/G4/HIW2lpaZfZruhalGhTdBiVlZUsWLCADRs2qLC8QqFQtJNHHnmEZcuWkUgk2LRpE4MGDQJg3LhxrF69Gk3T2Lx5M2eeeWarr7dYLLhcrmY3RfdEiTZFhzB37lwGDhzIjTfeyHnnncctt9xCPB5PtVkKhUKR9syaNYs5c+YwZcoUbrjhBl555RV27tzJjTfeyLJlyxg/fjwzZszotudpKtqPmtOm+NL87//+L4888ggAw4YNY//+/USjUZ588klmz56dYusyD6/Xi9vtxuPxqB2z4jiUfyhOhvKR7ouKtCm+FIsXL5aC7Ve/+hU7d+7kxRdfBGDOnDnU1dWl0jyFQqFQKLoNSrQpTpujR4/yzW9+E4Af/ehH/OQnP0Gn03H77bczevRovF4vzz//fIqtVCjSjxkzZnDo0CHWr1/PhAkTmD59uiw+VygUirZQok1x2syaNQuv18uECRP4v//7P3m/Xq9n1qxZAPz1r39VTQkKxf9PJBLhuuuuY+PGjQA88cQTLFmyhD/84Q/MmTMnxdYpFIp0R4k2xWmxfPlyFixYgF6v509/+hMmk6nZ49dddx0Wi4Xdu3ezZcuWFFmpUKQX4XCY//mf/+Hiiy8GIBgMkpuby4gRI9i7d2+br0kenOr1ervSZIVCkUYo0aY4LR577DEAvv/97zN27NjjHne5XFxxxRUAvP32211omUKRvjidTqZOnSp/TiQS8u9tRaRbDk7t27dvp9upUCjSEyXaFKfMmjVrWLt2LWaz+YTdoZdffjlAs7P0FArFF+h0Ovl3vb715VgNTlUoFAJjqg1QZB6i9ubOO++kd+/ebT5PpIA2btyIz+fD6XR2iX0KRaZgs9moqamhqqqKAQMGtPoci8WCxWLpWsMUCkVaoiJtilPiyJEjLFmyBIAHHnjghM8944wzGDhwILFYjNWrV3eFeQrFKbN3714mTZrE0KFDGT9+PDt37uyyz3744Ye56qqruOuuu9RMwzQmlT6iyAy6ykeUaFOcEvPmzUPTNKZPn87gwYNP+nxRv7N+/frONk2hOC2++93vcvfdd/P555/zk5/8hLvuuqvTP/O1115jwIABTJw4kQ0bNrB+/fp2fZ8UqSEVPqLILLrKR5RoU7SbRCLBq6++CsC3vvWtdr1mwoQJAHLEgULxZdA0jUmTJjF27FiysrIYMmQIY8eO5aGHHjqt96uqquLTTz/l1ltvBZrmpx08eJBDhw51oNWKrkT5iOJkZLKPqJo2Rbv5z3/+w8GDB3G5XFx//fXteo0QbR9//DGJRKLNYmtF16BpGrFYjEQigaZp6HQ6dDodBoMBvV7frDA+HdHpdKxbtw6A4uJili9fTr9+/Zo954YbbmDfvn2tvv6dd95p1n1ZWlpK7969MRqN8v379evHkSNH2qwxU6Q3ykcUJyOTfUSJNkW7eeuttwD42te+RlZWVrteM2rUKGw2G16vlz179jB8+PDONFFxAjRNIxKJtDpmIh6PA2AwGDAajWkvrsvLy4lGo8cttABvvvnmKb1XS6GqhkF3D5SPKE5GJvqIEm2KdqFpGosXLwaaBue2F6PRyDnnnMPatWvZuHGjEm0pJJFISMFmMpnQ6XQkEgni8Xgz8RaPx9Hr9VK8pWP0bevWrZx99tmtPnYqO+S+fftSVlZGLBbDaDSiaRqlpaWtLuKKzEL5iOJkZKKPKNGmaBdbtmzh0KFD2Gw2Lr300lN67YQJE6Rou+OOOzrHQMVJEcJMCLLGxkaCwaB83GQyYTAYMBgMJBIJIpGITJ0ajca0Em9Hjx6lT58+rT52KjvkwsJCzj77bObPn88dd9zBokWLGDBgQI9Pe2maJgV+ugr3k5FJPlJaWsrtt99OOBzmmmuu4cEHHwTA6/UyfPhwhgwZgsFgUDMvO5hM8hFBeudAFGmDiLJ99atfbXdqVDB+/HgAPvnkk442S3EKiAtvIpEgFos1E2wA0WiUUChEIBAgEokQj8flc0OhEKFQiGg02iwylyrOP/98/vOf/8jC3y/DCy+8wAsvvMDQoUOZM2cOL7/8cgdYmLlomkYoFCIcDhMOhwkGg4RCIWKxWMp/76dCJvnIs88+y2OPPca6detYtmwZPp8PgJ07d/K9732PlStXKsHWCWSSjwh0WiZ9CxUpY8yYMWzdupXXXnuNb37zm6f02v379zN48GDMZjM+nw+z2dxJVnYPvF4vbrcbj8eDy+XqsPfVNI1wOCwbEMSFITc3Vz4WCoWa1bzpdDqMRqOMwLWc4N/a/YrOpbP8QxCLxYhEIkDT77/lJSK57lH93juGuro63G43BoOBadOmsWTJEmw2Gy+//DKvvPIKBoOBO++8kzvvvLPV1wuBLfB6vfTt27fTfESROlSkTXFSjhw5wtatW9Hr9Vx11VWn/PqBAweSnZ1NJBJhx44dnWChoj0IAQZN0Tbxd5/Ph8FgwG63k5ubi9vtlhP4NU2TETi/308gECAcDhOLxYjH4/IxcV+y4FNkJkKkGQwGbDYbVqtV1kBCU92jiMCp33vHkJubi8Fg4MUXX2TcuHHYbDYABgwYwNNPP82HH37IvHnzqK6ubvX16nzanoMSbYqT8u9//xuAiRMnkpeXd8qv1+l0jBs3DoBNmzZ1qG2KUyN5tIeIeEajUfx+v4zAmc1mXC4X+fn5uFwubDYber1eNi0kiziRNhP3i2hdJBJpNlpEkbno9XqZIm8p0uLxOJFIhFAoRDAYlGl19Ts/debPn8/ixYvlMYHQtOaed955mM1mJk6cyMGDB1t9rTqftuegGhEUJ0WItksuueS032PcuHF89NFHfPrppx1lluI0EKIsHA6j1+ux2WwEg0GCwSB6vb5ZvWI8HicYDNLY2EgoFJL36/V62cwgxJr4WaTNNE2TY0TStZlB0TpCcInfVSQSwev1Hvc8o9Eom1cEsViMWCwGIFPnKn1+cjZu3Mi8efP417/+1ax85JFHHuHSSy/lkksuYdOmTfz4xz9u9fXd6Xxa0QQjbm1tAMSMSXETm9Hu7mtKtClOSDwelwWwp9o1msw555wDqEhbOpAs3AwGA1arVUbODAYDFosFv99PRUVFqwumWEzFxVmv12MymTCbzUSjUQwGAyaTSaZfxUBf0Q6vxFt601K0iVopk8mExWIhHA4TjUabCTT4QswLkS4is+K16vfeNr/85S+pqKjg8ssvB2D69OnMnDmTWbNmceutt/L4449z++23n1amIxNIXiOEz5wuYjPRXWsulWhTnJBPP/2Uuro6XC6X7AI9HYRo27JlC9FoFJPJ1FEmKk4DvV6P2WwmEolIoRYOh/H5fJhMJmpra9E0DYvFgtPpxG63YzQaSSQShEIhPB4PwWBQirREIiFFoNlsJhaLodPpZARA0zS5MMfjccxmc9oP8O2p6PV64vG4FNlCtGVlZWG1WrHb7bKuTQi45OgINKXc4YumhUQiIb/3SrwdzzvvvNPmYytWrOhCS7oW4RfCXwAZpReiPzna1lpkTTRECZ8S4k+sa91tnVGiTXFCli1bBsCFF14oIyenw6BBg3A6nfh8Pnbt2sXo0aM7ykTFaSLq2xKJBFarVQqqxsZGefHNz8+XRdHBYJDS0lJqamqaReCEODMajVgsFuLxOKFQCLPZLMWc2WxuJt7C4bCKuqUpRqNRjveIRCLN5vsJRJOC3+/H6/UeV8cmLqZGoxGz2Syjr/F4vNl9ip6JmAOZHKkVTU/BYLBZtC15ZiDQLAWavHYYjUasVqtcZ+LxOIFAAKvV+qWuXelG9/mXKDoFUc/2ZVKj0LTgjxs3jlWrVrFp0yYl2tIEESXTNA2n00lDQwPhcBiTySRnudlsNqqrq9m7d6+8MIuLrig8FzVvjY2NmEwmrFarjMYI8RaJRLBYLDLKKgrazWazEm5pRHL6XIisSCRCY2MjOTk5cgzIsWPHaGhoaPU9Wg7nFWl4q9WK2WyW0dbkrlRF96atFKhOpyMej+P1euVaFIlEiEajcn1pjeRa2eQIf2NjIw6HQ9YGhkKhZutOpqNEm6JNGhsb5aG6X6YJQXDOOedI0dbWvCFF15KcdhB1aZFIpNk4EKfTyb59+9A0jezsbPr164fD4SAUClFXV4fP55OjQERkJhqN0tjYKNNpQrCJKFtyR6qIyqnIS/ogLoKRSASTySQvol6vF5fLhcfjkYKtV69ezaKxR44cob6+/jjfEqlyu92OzWbDZrPJ+9TvvnuQnNoUUXUh4Fub92cwGGSpBSBFl0iXxmKx41Lw0FywmUwmKf4tFgs2m43GxkaMRiNOpxOdTkc4HO42G0Ql2hRtsmrVKqLRKGeccQaDBg360u8nxn6oDtL0ITkaAk11S+L4Kp1ORzQapb6+Xi54I0aMIBAIsHz5co4ePdrqe5rNZln/JDpQbTYbDoeDaDQqxZuoORERO5UuTS+EcI9EIrLLOBQKodfrZTdpXl4eubm5QJNg27Fjh7zg6nQ6IpEIgUAATdNkBDYrKwu73S5rJbOysrBYLN3igtpTEZux5HRna4hZkSaTiXA4THV1tUytR6NRPB4PgNz0iQHgQLMaNyHahNg3Go1kZWXhdDrlptBut9PQ0IDb7Uav1xONRkkkEhlf56ZEm6JNkkd9dMRiKpoRNm/eLIucFaml5e5XFIrHYjGysrLkQF1AHmG1YsUKamtrAXC73dhsNhkx8/l8RCIROVHfYDDgcrlwu92EQiFZxG40GuXrRI2TalJIP5K/o6LLOBAIyPVACDJN06RgczqdDBs2jPLyclasWHGcj9ntdtxuNzk5OdI3HA6HTJ+qESGZhTj2TKQxk7uIxc+ixlGIp7q6Ormu6PV6Ghsb8fv9ch2pqakBkAOcW56TLBAbAbvdLoWe2+2WqVhR8uFwOGRNZSAQkGtOJq4z6qqpaBPRhPBl69kEQ4cOxeFw0NjYyJ49exg5cmSHvK/i9DEYDFIsiQu0xWIhFovJ0R8iOhYOhzl69Ci1tbXo9XquueYa9Ho969ato7y8XAouETEJBoMkEgnq6+vlcTqiTs7pdMrni88TNU6qSSG9SBZuIqIihFUwGKS+vl7OcjMYDJx11llomsbq1avRNI2ioiKi0Sj79u0jFAphMpmw2Wy43W7y8/MpLCwkJyeH7OzsZj6RiRfUnkhyjdqJiv5F1N7v98v7jEYjNTU1coRMQ0ODPPu4sbFRdrGLAc6iQSZ5ELjNZsPn82GxWMjNzZXNT+LvTqeTxsZGmZoXNsdiMTmuKJPWGiXaFK1SVlbGrl270Ov1XHjhhR3ynnq9nrFjx7J27Vo2bdqkRFsaIESbGNcgFjFoSkcIkW232wmHw3IHDE1p0Oeee67NYnTx/m63W6ZKfT4fOTk5xGIxrFbrcSlTIRbF54t5S4rU0lK4RSIRGYmtqKiQv6OioiJsNhv//e9/icViFBYWcskll/D000/LZhURka2urqayspKqqipKSkooKioiNzdXinsh4tXvP30RaU2g2WzGZGKxGB6Pp5lYM5vNhEIhysvLZaSutrZWNiTU1NQQj8flqSvitS0bXHQ6HfX19c1So2IzEI/HycvLk8INmoSjy+WSY2iEwBO1m5nQGKNEm6JVRJTt3HPPJScnp8Pe95xzzpGi7fbbb++w91WcHqKzT5xsYDabmw3FFbtUcV8wGMRkMhGNRtm0aZOsGbnoooswGAzs27eP2tpaAoEAHo+HSCRCXV0d0BTBc7vdxGIxvF4v+fn5hMNh7Ha7nNckUqZihIgQbiqVnnqS/ULcRIOCSF1VV1czcOBAjhw5AsDIkSNlhC0/P5+LLrqIN998kwMHDqDT6WRnck1NDSUlJfTr14/8/HxycnKw2+2y6y8TLqY9EVFjBjQ7yQGa/MTr9eL1emWKXHQPl5WVye5kn8+H1+uVws3v98uTWES0XjQ4iaguNK1dLpdLdsAHAgGcTqcUksXFxSQSCfLz8/F6vTidTiwWCw0NDZjNZrKzs2W6NtmXRYo+XenUlfDdd9/l/vvvJ5FI8NOf/pRvf/vbnflxig6ko0Z9tETUtalmhPRB1HqInWfygiUaBeLxuJyzl52dLaMkAMXFxfTp04fHHntM1rolvz4nJwdN07BarYTDYerr68nLyyMcDuN0OsnPzycUCuFyuYjH41itVjRNk6lWUUCsLtypx2g0yguwEPUej0cKq2g0yvbt22W6zGAwyNqlXr16EQ6H2bNnj3y/SCSCx+OhtraW6upqqqurOeOMM+jTpw95eXk4nU55YL3wReUD6YFIlQPHfTdF2lw0JlgsFrKzswkGgxw8eFCuNTU1NXJYt0iTNjQ0yPo2kXYXPiTQ6XQkEgkZ5ReCDZCNDRUVFRQXF1NTU0N+fr5sarBarUQiEaqqqnC5XHLdEcIwGAzKtScd6TTRFovFmDVrFitWrMDlcjFu3Diuv/562WmkSF8SiYSMtHXEqI9kRAfpZ599RjweT+sdTU9BdHTFYjF5jqgYxyHElt/vl6JNpC8bGxsBqKys5J133qG2tha3201xcTE+n4+qqirC4TAVFRXys7KysnC5XPJiXVhYSCAQoKCggHg8jt1ub3ZuqRj8K0RlphYPdydMJlMz4SZGgLhcLurq6mhoaJA+8sknnzB48GAAPB6PvHAOHDiQG264gddff50NGzZgsVior6+noaGBhoYG6uvrOeOMMygoKMDtdpOVlSWFu/KB9EBEqERtGSCjYWJtMBgMZGdnk5WVhdfr5cCBA3JDdvjwYSKRCA0NDVK81dXVEY1GZfOB8Jf8/Hz69u1LWVkZ+/fvx+fzkZubS//+/QmHw3JsSEFBAfDFAN7q6mqKioqoq6trJtxycnIIBoN4vV4ikQj5+flkZWXJDlgh4NKxo7nTRNvHH3/MyJEjKSkpAeCKK65g6dKl3HzzzZ31kYoO4rPPPqO2than08nEiRM79L2HDRsmJ6l//vnnDB8+vEPfP90Ih8N8/etfp6amhjvuuIPvfOc7qTapVcTh76KuTKQcRL2Z3++XxeFippoQeA0NDTI9duONN3LxxRdTW1vLwoUL2bVrl0x5+Hw+WZ9isVhkhC0vL0+OBikoKCAajeJ2u0kkEvIAe6vVCiAH/6p0aWppOajU7Xbj8XjIzs6moaEBm82GyWTC4/HIVGlpaSlf+cpXAKipqWHQoEEsXbpURmOOHTtGXl6eFG4NDQ0MHDiQkpISsrOzcTqd2Gw22ayQScXj3Y3kWjYhbDRNo6amRq4FTqdTjtsIhUJSsLlcLg4ePCjFWU1NjfwzHo+j0+koLy8HIDc3l7POOoulS5eyZs2aZjZ4vV4OHTqE1Wrloosu4sCBA1RXVzdrqNLpdNjtdnQ6ncwS+Hw+jEYjhYWF1NfXEwqFqK6upqCgQK5xIlUqjvJLJz875e1KIpFg2LBh/PSnP212/9KlSzGbzSxcuBBo+gIKwQbQp0+fNuc6KdILkRq98MILO3yKtMFgYOzYsUDPSJEuWLCAyy67jDVr1rBw4UJZjJ1uiAGo0BQlF38PBoMyahIOh8nLy0Ov15Obmyv/BGRk7MiRI3i9XmbMmMHvfvc7li5dyn//+1927dpFWVkZn3/+Ofv376eiooKjR49SXl5OZWUl5eXlNDQ0cOzYMUKhEA0NDUSjUQKBQLOaKUCeVdjaYfaKrkH4i+gEFfWKNpuN7OxsjEYjxcXF6PV6qquryc/PR9M0tm/fjtVqxev1sn//finYxAkptbW1bNu2Td62bNnC7t27OXbsGDU1NXg8HhobGwmFQoTDYeUDKSJ5WK4QSYFAgGAwiE6no6CggJycHPR6PZqmcejQIRKJBHa7nUAggN/vR6/Xc/ToURKJBI2NjcTjcdxuNwcPHgSasjx5eXm88MILHDp0iJycHO6++27eeOMNli1bxgsvvMCECRMIhUIsWbKEMWPGAE0DwROJBB6Ph1gsRlVVlayvE2lcEQ0sLCyUw3fr6+sBZPcyILMP6cQpiza9Xs/s2bP54x//KP+RW7ZsYebMmTz55JPMnDkTOH7+E5BWalXRNp1VzyYQdW2bNm3qlPdPJzZt2sTkyZPR6/WMGjWKXbt2pdqkNkkeVinmKomBlsl1bfBF5EukRUQ6ZMOGDaxZs4aKigoKCgq47777+PGPf8y3v/1tJk2ahMlkIhAIUFZWxr59+6iqqqKsrIz6+nqOHTuG3++nvLxcpk1isRiBQEBG4kRaTLTsZzrhcJhrr72W888/n5deeinV5pwSycJNnPkoUpmikaBXr17odDqsVis6nY7PP/+cvn37ArB7926GDBkCwF133cVbb73FqFGjiMfjHDlyhK1bt7Jjxw62bdvGzp07KSsro6amhoaGBincRKG6omsRm7TkaKeoOxMRUYGItOv1eoqLi6UoC4VCsuShsbERl8vFgQMHAJg5cyYHDhzgX//6FwaDge9///usWrWKBx98kAkTJjBo0CAuueQS/vrXv3LdddeRSCTYsWMHBQUF8hgrEZFNrtM9fPgwvXr1ApoCS4BMqSbPpBQ1lMAJj9JKBadVGHDLLbeQn5/P3LlzKSsr48orr+S2227jgQcekM8pKSlpFlkrKyuT/1mK9KWxsZH//Oc/gBJtHYHP58PhcABNQ0WFuEkmHA7LLitxSxVixEJynUo4HJb/hkAgQG5urmwwSJ5ob7VaaWhokMLUZDJx9913c9ddd/HAAw/wyiuvsHbtWu6//35cLhfBYJD9+/dTXV3N0aNH8Xg8VFZWEggEqK2tJRqN4vP5pGATM97Ezr7lGYaZSKZEYttC+InZbG5VuDmdTnr16oXZbJZd6OLCuHTpUsaPHw/Axo0bGTduHIsXL+bBBx/EYDDQ0NDAjh072LNnD7t27WLnzp2UlpZSV1cn530J4ZbpAr4t8Z6uor7lSSrJ9yVnZzRNk6nO3r17c+TIEdnAcvjwYTRNo7q6GmhqVPH5fPTp04eSkhLeffddjEYjL7/8Mg888IBcg5LR6/X87Gc/Q6fTsW3bNlkzLQSXCB6JpgOxCRRdphUVFVitVlwuFwANDQ3yNcllGKJjNR04LdFmNBr56U9/yty5c7niiisYN24cc+fObfac8ePHs337do4ePYrP5+P999/nq1/9aocYreg8OvroqtYQdS2bNm1Ku9BzR+NwOOSMIb/fLxeHZJ566incbre8iUhEKhAXYdGckFxgLGapiWLw7OxsWZsm2u+hKe3tcDg4duwYixcvbvb+breb73znO7z//vtMnjyZRCLBkSNHqK2tpby8HI/HI8+1DAaDciK6ODxa/Cl2zpmeJm1PJDadRH1bCJ8QZ4m6XC5sNhu5ubm43W569eqF2+3GbrfLo6zC4bCsd/vwww8JBoMYDAa+973vsXDhQgoKCgiFQuzZs4eDBw+yd+9e9uzZw+HDh6mtrZXCLdlHMpW2xHu6ivrkM0AF4juZLKDFoFy9Xk9+fj5lZWXAF2IqOzsbr9dLVlaWjHxdfvnlsszqzjvvZOrUqSe0JS8vTwq6lh2foru1vr6e3r17A00CTgSQ6urqSCQSuFwu9Ho98Xi82f+xeL/k0Sap5rRbcG655RZ5hMkbb7xxXBeg0WjkmWeeYfr06Zx99tn8+Mc/Ji8v70sbrOhcklOjnZXOHjFiBLm5ufj9/m4fbRs3bpycDL9582bOPPPM454ze/ZsKVY8Hg+lpaUpsPQLxMHLQsAlH8YsdtEulwuTyURhYSE2m428vDxcLhdZWVnEYjG5KP7yl79k9+7dx31Gfn4+L7zwAtdeey2aplFaWorP56O2tpa6ujp5cDQgF1FRw5R8jFJyp2km0p5IbDqJ+hMhUqXJws1qtZKTkyO7igsKCrBarRQUFKDX6+W/v6qqip/97Gfywjhu3DjeeecdhgwZQjQaZf/+/VRWVnLw4EH2798vI27J4l4cn5aJIr4t8d7e8opUCfvka4SIbiXXn4q/2+12/H6/PO1EjOoQZRZnnnmmXPfOOuss9u7dC9Cuwe7V1dWyK1T4j0jPJo+IEachCJ8TcyADgQB6vV42PSWLNjHHEkibdea0RdsPf/hDoKkLqK2xDddccw2ff/45+/bt4+677z7dj1J0IZ1dzwZNX4QLLrgAgJUrV3ba56QDN954I8uWLWP8+PHMmDFDLlLJiAtc8i3VCJGm1+ubHeYtugLFSQc2m42ioiJ5YS4qKpI1Tnl5eQQCAe644w4+++yz4z7DYDDwy1/+krFjxxKPx6msrJTH2NTV1cnhvKFQSHaniUVZnB8IyKNtMpH2RGLTTdSfCOEbImXqcrlkKj0nJ4devXpRXFyMw+GguLgYg8FAcXExOp2Ot99+m3vuuUemT4uLi3njjTfo3bu37C6sqanh2LFjHD58WEZmvV4v4XCYYDAoI7GZ5g9tiff2iHroemEv0qLJQkaIHvGdhS9EVPK8PtGMIO4H5LoCTd+D/Px8gFbXjZYsWLAAgDFjxnDo0CGgKaIPTZtL4QvJNWqizlL8DF80VLSMqIl/a0ZH2h5++GHee+89NmzYQCwW4+WXX+5ouxQp4MiRI+zevRuDwdBhR1e1xbRp04DuL9qsVitvv/02n3zyCd///vdTbc4pISJtYsyHiL6JBdZsNuN2u3E6nRQXF1NUVER2dja9e/eW3YMul4uGhgZuv/12nn/++eOGZJpMJtmJ7vP50DSNhoYGvF5vs1RFy4VTpFwgs6Nt7YnEpqOobwvhMwaDodWIW05ODn369KF3797k5eXRu3dvsrOz6d+/Pzqdjvfee4+rrrqKDRs2AE0RWTErsri4GGhKb9XW1lJWVkZVVZWcqB+NRuX5lJnWWdqWeG+PqIeuF/bJ5QnJwkwIzPr6ejnnDJDn1ULTJqvlKJ9du3bJDuLXXnuNr33tawA888wzvPTSS22mvtevX89zzz0HwIwZM2QkUkTVkufCClGYvG7AF9FCsYa0zDClmx+d8rCjP//5zzzzzDN89NFHjBkzhvvuu4+nn36au+++u8PHQyi6FjFQd8KECWRnZ3fqZwnRtnbtWqLRqPKdNEVchMXZfDqdjlAohM1mk4tfTk6O7DYVf0JTd1bfvn0pLy+nrq6OuXPn8sorrzB69Gi5aAOyUFnsdMPhsBwD4PF45JmCYhp/clerGAosZstlWof6jTfeyM0338yrr77KnXfe2WokNtMQUdpQKCQjtC39w2g0YjAYZGROROcOHjzIgQMHuOmmm5gyZQrXXnst7733HgDf/OY3effdd+UssJqaGrKysrDZbM3OKY1EIvLzRddquiPE+8iRI9m8eTNPPPHECe9viRDIXYXRaJSCLRgMyvXA7XbLMT1er1eKJ/EcaBKfvXv35uDBg9TX1+Nyuaivr2fAgAHY7XY+//xzdDod11xzDf/617946qmneO2117j88ss566yzcDgc1NTUsGbNGpYuXUoikeDCCy+kurqaRCLBqFGj5EDvvLw8SktLcTgcsr5NnLgifk4Wlsk/Q/MNYboMgj8l0bZkyRJ+8IMf8MYbb8ihq/fccw+//vWvef311/nWt77VKUYquob3338f6NzUqOCss84iNzeXuro6PvnkEyZNmtTpn6k4PYRwE7tdm81GKBSS6VNAzmQyGAzyoqzX6ykvL6ekpAS73Y7X68Xj8bBu3bpWP+faa69l165d8j3D4bAsMA8EAjLVkXwRFqJNpE7TZWFtLyIS291oKdzE70X4hejME2JDzHuzWq1yJtuaNWvkQNW8vDxGjx7N3/72NwB5hq04eSP5qCvxOQaD4Tg/TVdaivff//73XHnllWkr6kXEXYxcCQQCWK1WjEYj2dnZsrzBZrPhcDhobGykoaGBwsJCqqqqMJvN2Gw26uvrGTNmDGvXruWzzz7jggsuYNWqVezZswebzcYNN9zAihUrKC8v55VXXmnVlmuuuYbBgwezZMkSdDodl112GQsXLpSDdaEpYivq6FwuF4FAgFgsJv8d4tB4oNm4kuRGp3RZW9ot2jZt2sTMmTN5+umnuf766+X9LpeLe+65hzlz5vDNb34zbf5hilMjHA7Lerarrrqq0z9Pr9dz8cUXs2DBAt5//30l2tKc5OG78IVwE5GTYDBITk6OjJqIC6jRaKS6uhqdTkd2djY6nY7BgwdTUlIiJ5/X1NTg8/lkauOMM86QkT1A1is5nU5isVizcQM6nU7OkFPHoqUXoh5SpMbcbrf0DSHYzGYzWVlZWK1WbDYbTqeTrKwsioqKqKmpkSNmvv71r/P8888TiUQYPXo0vXv3Zt++fXIcjN/vl8LNZDIRi8VkZFYIt3T2jROJ93QV9S2FmxDoomZNHABfWFhIY2MjVVVVDBw4UM5mnDhxIitWrODIkSNMnTqVVatWsXPnTsaPH09ZWRl79+5lx44d9OvXj6985Sv4/X7q6+uJRqPYbDby8/PJzs6WncUAN998sxxZdfbZZ7N//34A+vXrJ0eQ5efnU1VVBSAzSnV1dUBTWjU59SuEXDqdiqDT0i1hq0gJS5cu5bLLLqN3796UlZV1iYPOnz+f2267jVGjRrF169ZO/7xMwev1ymOB0q1+SRxfI468Emf1JRIJGRkLBAJ4vV6qq6upqamRBeNVVVUnnHdksVgYOnQokUiERCLBmWeeiaZpsnA9NzcXk8mEy+VCp9ORm5srBVvL4uLuTDr7R2tEIhE5BsJoNBIKheT0fHG+ZENDA+Xl5dTW1lJbW4vH45EX6GSysrK4+uqr2bRpE3q9nq985SvU1NSQm5tLfn6+PGTebreTk5MjDyYH5NFXPYGu9JHkdQC+aEapqKiQpyDU1NTIobc+n4/S0lJsNhtGo5FPP/0UvV7PsGHDWLZsGbFYDJfLxcCBA9m4caMsnzgRvXr1ko0IoVAIl8vF+eefz86dOzGZTFx66aV8/vnnGI1GzjvvPA4fPgw0da2K7mO9Xk+vXr3Q6/XNBJvYYKSLaOsZHqw4Ke+88w7QFGXrKue84oorMBgMbNu2jYMHD3LGGWd0yecqTp/kiFs8HpfRNFE/JNKjIpoi6o2qq6uxWq34fD4aGxvluaUlJSX07t2bYDBIQ0ODbDwYMmSInJskUhzJYz50Ot1xdWxq/5meiAPm4/E4sVhMpkRFc4vVapU3IbhErZOIosViMex2OyUlJXJM0IUXXigvviJiIoYvW61WGhsbyc7OlpsA0VWqziztWJI7zZPP7MzNzaWmpga/309BQQGBQIDGxkby8/PlMVLZ2dkMGzaM3bt3s2vXLq688krWr19PVVUVmzdvpk+fPowfP15G6kRHefLxaWJgrhgtVFxcTHFxMTt37gSaIm4iEjdo0CDZpJGfny8Fmzh6S9Tsijo20XCVTv6iRJsCTdP417/+BcDVV1/dZZ+bm5vL5MmTWbVqFe+88w733ntvl3224vRpKdyMRiMOh0MufqKeyGg0yvEf4oJcXV193M5fFA3r9Xr69etHcXExPp+PWCxGQUGBTHdZLJZmXaKi4LxlF5givUiuiUw+xUKcpJE8202kSJO7Qv1+v4y4eb1edDodEyZM4MiRI8TjcQYMGECfPn2oqKiQtWuBQACDwUA4HMZqtcrPFsXz6XYhznSSh3KLqJvRaMTlcuH1emlsbJRZnNraWoYMGcL27dtpaGggOzub4cOHs2vXLjZv3syQIUMYNmwYn3zyCdXV1fLEBGhaI5JHdSRHw4qLi6WIq6+vx2QyMXDgQHncZnFxcbO5cWazWf6cn5/fbCwJ0GwuZTqhRJuCrVu3ynD1RRdd1KWffc0117Bq1SoWLVqkRFsGIYSbiHhBU52b6CbLysqSEQ0RVXE4HNhsNpk+FQuuy+WSRx2JtBg0nQk4fvx49uzZg06nIysrC5/PJy+24nit5Bb+RCKR9kXnPZHkUSBCOCUSCfl7Fd2fQuDbbDY8Hg+1tbUyvSoiZRaLRdYklZSUMHz4cFm71KtXLzm3TaTixMw4EQkSo2QyoUEh00juMBcbraysLHkyQlFREZWVldTW1jJy5Eh27NhBQ0MDVquVr3zlK3z22Wfy1IThw4djMpmor6+ntrZWjnUxGo04nU6ys7Ox2+3E43EaGxtlZN5kMlFcXCzPHdXpdBQWFkoBJtYhEe3Pz8+XNsMXwjBdfUOJNoU8aujiiy9u1jnTFXz961/ngQceYPXq1Rw6dIgBAwZ06ecrTh8h3MTFEJoWPIfDQTQalVE3cRyW2WzG6XRSX1+P3W5vls5MTlP06tWLQYMG4XQ65TFHeXl5ctEVYz9EfZ24ICcSCfmziqKkJ6JRJZFINIu6mUwmnE5ns+OwsrKycDqdMq2WXD9pNpvp06cPo0aNYs+ePQAMHDiQgoICeRqA8BEx30xsIsQMt0xoUMhERHpapBmdTifxeJxwOCzTkNXV1dTV1TF8+HAOHDhAY2MjoVCIUaNG0dDQII+2EzgcDrlB0+l08lgpcRKCqEdzuVxEo1H5OxVHp4laxuzsbPl3k8lEXl5es+amdEyHtkSJth6Opmn8/e9/B2DmzJld/vl9+vThwgsvZPny5cyfP5+HHnqoy21QfDkMBoNMQYkGBZEyFUNwRRG4SImJY8yEUBNT891uN+FwmPLyclmAbDKZ6N+/v0yRRaNRsrKyCIVChMNhGaUR891EylaRvgif0DQNTdPkrD1RnJ4cdQsEAseJfMH27duBpu7Lfv36yXolh8NBdnY29fX1BINBHA5Hs9lcgnA4rIRbJyCK98XInpycHGpra2WkTETcGhoaKCkpIRgMUlZWht/vl9930ZHq9/sJBALNmkoA2WVcVFSEwWCQc9oMBgN5eXmyxhaasgBZWVkyeuZ0OuX6JPxKjCxJd9LfQkWnsmXLFnbv3o3VauXaa69NiQ233XYby5cv5y9/+Qs///nP03qXo2gdkf6Kx+PNZhsJQRUKheTF2Gw2N6s1EiQSCZkaBeSB47179262+00enpqcIhUz28ROW/lR+iMG7wpR3zJCa7Va5ZmVYpZWcl2jTqfD4XAwePBg2fUHyE5j0V18osPkI5FIxgzhzSRMJpNsPolGo+Tn51NZWUksFsNsNtOvXz/KyspkXVn//v0JhUJ4PB5ZWyaOQhOlD0K0iQaoaDTaLCJXWFhIXl6ePEXCZDLJI62EX4mZkkLAp3s6tCVKtPVwRJTtyiuvTNn4gOuvv54f/OAH7N27lxUrVnT6EVqKzkN0j4r0l6gpETO0ks+ltFqtslZJ7JAtFgtOpxOn0ynTaC0L2BOJhEzLiq5AsYiL+rpMHLTb0xFz3cQIF3Fcmrg4C5HeWsStvLwci8Ui0/RiBIyoc9I0TQo4oNnfVddx5yF+n6J7WKRGRQS+X79+eL1e6uvrZT1afn6+TKeKNUREYsWGUHzv4YsmhL59++LxeOT5rHl5eRgMBvn7dblc8mQE8btPt3Ee7UGJth5MLBbjr3/9KwA33XRTyuxwOp3cfvvt/PGPf+TZZ59Voi3DEQNvW9Yuia5SEQkTC3PLlITf75c75daw2WwypRoMBmWKK3nQrhJtmUtyul1ER0StoojciOYE8bsWkTiB6DAU/iZeLyJuYgivaFzJpIt2JpF8MoboKC0sLJSpUr/fj8FgoKioSP5exdiQ1r6/QrCJwb7iFg6HOXbsmKx37dOnjyyXMBgM8gB60Wwg7MqEdGhL1HDdHszbb7/N9ddfT0FBAaWlpV16dl1Ldu/ezfDhw9HpdOzbt4+BAwemzJZUk2nDU9tDct2S+FkMsEwe2JvcVajX65sdFC8idrm5uRiNRsLhMF6vF4PBIA+GFlE5EdHrjnRH/2gLEWlNjtYIPxL1cC19xm63y/8XkW4TBfDiQi6aY7or6eYj0WhUimohxCORCH6/v82B2+L3LX6/Yg1pK9oKTbWMooNYNKzk5+fLaD5kZnQtmcyTmYoO4w9/+AMA3/72t1Mq2ACGDRvGV7/6VZYuXcpzzz3Hb37zm5Tao+hYRKdp8gHvoo5JnAGYjIjUJR8ynizixMVbvLeieyJSpiJiKy74rQk4QTQaxefzNUuNieeLhhUR9cmUOqZMR4wCEYJLRFGdTieATIMm34QgF4Jd4HA45Hc+uetTNJuIM0aFYEsWeZnSbHAiVKSth7J9+3ZGjRqFXq/nwIED9O/fP9Um8f7773PllVfidDo5ePAgeXl5qTYpJaTbLrkzEBEUseiKBVpEyk4FMXcJkIXqoumhO9IT/KMtki/k4mKeHMVty3eS53GJmiYhCLuj6E9XH0n+XSU3lJwMMeYjFArJFGfyYzqdrllnqc1mIycnRwo2kU7tDiI98/8FitPikUceAZqaANJBsAFcdtlljB49Gp/PpyJt3RxxwRRdoaIezWaz4Xa7ZdFwVlaWPK5GNDKIi6xIhSWfN6pOR+jeCD8RjSyiLkkcayT8QTxmtVqx2+3k5uZKnxBivuUIiVSxZcsWJk+ezIQJE3j99debPbZ161YGDhzItGnTuOWWW1JkYcchIu7id5X83RY1r63VGIpaNbvdTkFBAdnZ2TI7JIQ8NEXXcnNzcbvdhEKhbifYQEXaeiSiQ1On07F9+3ZGjBiRapMkos7O4XBw6NChHhltS9ddcmchUlctxzKIBTx5ET+RGBMF6UC3nnbf0/yjPYiUW3KkLflINTFoV9ySzyFNdW3bDTfcwDPPPEOfPn2YPHky69evl4/9/e9/JxqNctttt53Se3YHH0muWWwtipr8ewXk9z15WG6mjfNoD93nX6JoF3V1dXz7298G4Lvf/W5aCTaAr33ta4wdO5bGxkZ+/etfp9ocRRcgLq6i3kQIMyHkwuGwTIsEg0E5+iG5QF2kXYBmtW+KnoGY9SaG88IXQk74TbLvpFNE9o9//KPMdrS0Z8eOHbz22mtMnTqVJUuWtPkeoikn+ZbpiFpWsTaI80KT61qFUE/uPE2uc+tOETaBirT1IILBIJdccgn/+c9/6NevH9u2bUvLXdi//vUvrr32WqxWK7t27epxR1t1h13ylyG5I/B0UljijMvuSk/3j/aQ3KjQ0n+S0/HJm4RUM3v2bHr16tXsDOaFCxdy1llnUVJSwsUXX8z69etb9e3HHnuMX/ziF8fd3x19pGVdY/LvV6/XYzAYZONDd0SJth5CPB5n5syZvP3227jdbtauXctZZ52VarNaRdM0LrroIlasWMGMGTN48803U21Sl6IuyseT3AUoFu3kPwWiNqY7o/zj1Eie7SVuqWTu3LksWLBA/vzzn/+czz77jP379/Pyyy83e67X65W/45tuuom5c+dSWFh43Hu2nFPn9XrlsFnlI92L7hU3VLSKpmn86Ec/4u2338ZsNvPPf/4zbQUbNO2En332WfR6PYsWLZIH2it6LuJim7yTFsXoybfuLtgUp46IqqXLEN17772XtWvXylsgEGD79u289NJLxz33zjvvZPfu3YTDYY4cOSKHxLbEYrHgcrma3RTdEyXaegB/+tOf5Ey2119/nQsuuCDFFp2cUaNG8cADDwDwne98h4qKihRbpEhX0iWColCcDo899hh79+7lwgsvZNq0acTjce6//37q6up47LHHuOuuu5g+fToPPvhgt6vPUpw6Kj3azfnkk0+YPHkykUiEX/3qV/zkJz9JtUntJhwOM2HCBLZs2cKkSZNYvnx5s/EO3RWV/lKcCOUfipOhfKT7omR7NyYSiXD77bcTiUS47rrr+PGPf5xqk04Ji8XC3//+d7Kzs1m3bh233HLLcWMhFAqFQqHoKSjR1o359a9/ze7duyksLOTll1/OyPTRsGHDePvttzGZTLz11ltcf/31BIPBVJulUCgUCkWXo0RbN+XAgQP87//+LwDPPPMMOTk5Kbbo9Jk2bRqLFy/GarXy7rvvcuWVV+Lz+VJtlkJxykSjUSZOnCh/Xrx4MePHj+eKK66grq4uhZYpFIpMQIm2bsr//M//EAqFmD59erc4/uSKK67ggw8+wOl0smLFCi677LJuMUBS0XOoq6vjsssu48CBA/K+3/3ud6xdu5Yf/vCHvPDCCym0TqFQZAJKtHVDli5dyr/+9S+MRiPPPfdcRqZFW+OCCy5g+fLlssbt0ksvpaGhIdVmKRTtwu/389vf/laeQtLQ0EBeXh5ms5kpU6awYcOGVl/XHafdKxSK00OJtm5GJBLhRz/6EQD33HNP2h1T9WU599xzWb58Obm5uWzcuJHLL79cpUoVGUHfvn0ZPXq0/Nnn8+FwOACw2+00Nja2+rqnnnoKt9stb3379u0SexUKRfqhRFs347nnnmPPnj0UFhby6KOPptqcTmHcuHF89NFH5OTksGHDBq655hrVnKBIO+bOncvkyZPlreXZkQ6HA7/fDzRF4doazTB79mw8Ho+8lZaWdrrtCoUiPVHjw7sRBw8e5JFHHgG+2J13V8aMGcPSpUu56KKLWLlyJddffz2LFy/GYrGk2jSFAmiafJ98jmRLcnJyqK6uJhQKsWbNGsaNG9fq8ywWi/JrhUIBqEhbtyGRSPCtb30Lv9/P1KlTueOOO1JtUqdz7rnn8t5772Gz2fjggw/4xje+QSwWS7VZCkW7mTVrFhdccAFPP/003//+91NtjkKhSHPUiQjdhMcff5xHH30Uu93O1q1bGThwYKpN6jKWLVvGVVddRSQS4Rvf+AavvvoqZrM51WadNmqaueJEKP9QnAzlI90XFWnrBvzzn//kscceA5pq2nqSYAO45JJLWLhwIUajkb/97W9MmjSJrVu3drkdagaXQqFQKDoTJdoynKVLl/L1r38dTdP4f//v//WItGhrXHPNNSxevJjc3Fw2bdrE2LFjufHGG1mzZg1dEUxWM7gUCoVC0dko0ZahaJrG888/z9VXXy3PFn322WdTbVZKufLKK9m6dasUsQsWLGDq1KmMGjWK3/72txw7dqzTPvt0Z3CBmsOlUCgUivahRFuGEQ6Heffdd5kyZQo/+MEPiEajfP3rX+fvf/87JpMp1ealnJKSEv7xj3+wefNmvv3tb5OVlcWOHTuYNWsWffr04aKLLuKll15i//79HRqBO90ZXKDmcCkUCoWifaiRH2nMypUr+fOf/4zP56OxsZGamhr27NlDOBwGwGaz8b//+7/MmjWr25x60FGMGTOGl156iV//+tf87W9/469//Sv/+c9/+Oijj/joo4+AppELffv2pXfv3tjtdsxmM7179+ahhx4iOzv7hO8/d+5cFixYIH/++c9/zuWXXy5/bu8MLmiawzVr1iz5s9frVcJNoVAoFMehukcVig5k2rRprFy5Emg6dmvp0qV89NFHbNq0iYcffrhd76E6vxQnQvmH4mQoH+m+qEibQtFJiBlcNpuNRYsWtft1TqcTj8eD0+nsROsUmYryD8XJUD7SfVGRNoVCoVAoFIoMQDUiKBQKhUKhUGQASrQpFAqFQqFQZABKtCkUCoVCoVBkAKoRIY3QNA2fz5dqMxSt4HQ6Uz5WRflHeqN8RHEylI8oTsbJfESJtjSipqaGwsLCVJuhaIV0aJ33+Xy43e6U2qBoG+UjipOhfERxMk7mI6p7NI3weDxkZ2dTWlqa8i92exGDYLu7zWqHfPpkoo/AqdutfOT0UT7SdWSij2Sqf0DH+4iKtKUR4hflcrkyzjGVzZ2PTqfLKHtbkmn/34JMslv5SGrIJLsz2Ucy6f+5JR1lu2pEUCgUCoVCocgAlGhTKBQKhUKhyACUaEsjLBYLjz76KBaLJdWmtBtls+JkZOr/d6banYlk6v91ptqdaWTy/3NH264aERQKhUKhUCgyABVpUygUCoVCocgAlGhTKBQKhUKhyACUaFMoFAqFQqHIAJRoUygUCoVCocgAlGhLE7Zs2cLkyZOZMGECr7/+OgCLFy9m/PjxXHHFFdTV1aXYwuMJh8Nce+21nH/++bz00kupNqdNSktLmT59OpMmTWLOnDmsX7+eCRMmMH36dA4ePJhq87o1meIjAuUrXY/yEcWJUP7RAk2RFsyYMUM7dOiQFovFtIkTJ2qapmkXXHCBFg6Htffee0978sknU2zh8fzlL3/Rnn/+eS0ej2uXXHKJFgwGU21Sq9x///3aypUrNU3TtAsvvFC78MILtdraWm3Hjh3a3XffnWLrujeZ4iMC5Stdj/IRxYlQ/tEcFWlLE/74xz/Sv39/oOmYkYaGBvLy8jCbzUyZMoUNGzak2MLj2bRpE5MnT0av1zNq1Ch27dqVapNa5Wc/+xmTJ08GIB6PA5Cbm8uIESPYu3dvKk3r9mSKjwiUr3Q9ykcUJ0L5R3OUaEsTCgoKAHjooYe46aab8Pl8OBwOAOx2O42Njak0r1UywUZo+sIYDAZefPFFxo0bRyKRkI9pakxhp5IpPiJQvtL1KB9RnAjlH81Roi1FzJ07l8mTJ8vbkiVLePLJJ6mqquLee+/F4XDg9/sB8Pv9aXlIbibYKJg/fz6LFy9mzpw56HQ6eb9er74CnUkm+YhA+UrXonxEcSKUfzRHeViKuPfee1m7dq28BQIBtm/fLgstc3JyqK6uJhQKsWbNGsaNG5dii49n3LhxrF69Gk3T2Lx5M2eeeWaqTWqVjRs3Mm/ePBYtWoTZbMZms1FTU8POnTsZMGBAqs3r1mSKjwiUr3Q9ykcUJ0L5R3PUMVZpwqhRo7BardjtdgCWL1/Ou+++y5NPPonNZmPRokXk5eWl2MrmhEIhbr75ZsrKyrjzzjv5/ve/n2qTWuXqq6/m0KFD8v/viSee4P7770en0/H6668zePDgFFvYfckUHxEoX+l6lI8oToTyj+Yo0aZQKBQKhUKRAaj0qEKhUCgUKcTr9VJSUsK0adO46KKL5P2ZNqNM0fko0aZQKBQKRQrZuXMn3/ve91i5ciXLly+X9y9YsIDLLruMNWvWsHDhQkKhUAqtVKQDSrR1MZqm4fV6VWu4QqE4LdQa0v3YsWMHH3zwAVOnTuXVV1+V97d3Rlk4HMbr9cqbx+Ohurpa+Ug3RIm2Lsbn8+F2u/H5fKk2RaFQZCBqDel+DBgwgKeffpoPP/yQefPmUV1dDbR/RtlTTz2F2+2Wt+zsbAoLC5WPdEOUaFMoFAqFIoVMnDiR8847D7PZzMSJE+UZle2dUTZ79mw8Ho+8lZaWdpntiq5FiTaFQqFQKFLII488wrJly0gkEmzatIlBgwYB7Z9RZrFYcLlczW6K7okSbQqFost5++23ufbaa3nwwQdlJEGh6KnMmjWLOXPmMGXKFG644QZeeeUVdu7cyY033siyZcsYP348M2bMwGq1ptpURYpRc9q6GK/Xi9vtxuPxqN2Qokfyt7/9jVtuuUX+fPnll/Pee+81O+5F0TZqDVGcDOUj3RcVaWsnpaWlTJ8+nUmTJjFnzhzWr1/PhAkTmD59uqw/UCgUJ6a+vl5ONL/22muxWq0sWbKEf/7znym2TKFQKNIfJdraybPPPstjjz3GunXrWLZsGQ899BBLlizhD3/4A3PmzEm1eQpFRvD73/8ej8fDWWedxZtvvsl9990HwG9+85vUGqZQKBQZgBJt7eRnP/sZkydPBiAejwOQm5vLiBEj2Lt3b5uvazk/x+v1dom9CkW6EQ6HmTt3LgAPPfQQRqORH/7whxiNRtasWcPWrVtTbGHXMWPGDA4dOqQi9gqF4pRQoq2d5ObmYjAYePHFFxk3bhyJREI+dqKywJbzc/r27dsV5ioUacf7779PbW0tvXv35oYbbgCgpKSEq666CoA333wzleZ1CZFIhOuuu46NGzcCTYdJq4i9QqFoL0q0nQLz589n8eLFzJkzp1nRtF7f9n+jmp+jUDTxl7/8BYBbb70Vg8Eg77/++uuBpo7S7k44HOZ//ud/uPjiiwEIBoMnjdiraL1CoRAo0dZONm7cyLx581i0aBFmsxmbzUZNTQ07d+5kwIABbb5Ozc9RKKCxsZH3338foFnnKMDVV1+N0Whk+/bt7N+/PxXmdRlOp5OpU6fKn9sTsVfReoVCITCm2oBM4Ze//CUVFRVcfvnlQFNa46qrrkKn0/H666+n2DqFIr358MMPiUQinHHGGYwaNarZY9nZ2UyaNInVq1ezfPlyOVi0J9CeiP3s2bOZNWuW/Nnr9SrhplD0UJRoayfvvPPOcfdt2LAhBZYoFJnHu+++CzRF1Vqbx3bhhRdK0Xb33Xd3tXkpQ0Tsq6qq2ozYWywWLBZL1xqmUCjSEpUeVXRr9u7dy6RJkxg6dCjjx49n586dqTapx5FIJHjvvfcAZNNBSy666CIAPvroo2Ypw+7Oww8/zFVXXcVdd93F7NmzU22Oog3UOqI4GV3mI5qiS/F4PBqgeTyeVJvSI5g+fbr26quvapqmaQsXLtQmTpyYWoN6IJ988okGaA6HQwuHw60+JxwOa3a7XQO0zZs3d7GFmYVaQ7qeTFtHlI90PV3lIyrSpkgbNE1j0qRJjB07lqysLIYMGcLYsWN56KGHTuv9qqqq+PTTT7n11luBptlYBw8e5NChQx1oteJkfPTRR0BTCtRsNrf6HLPZzJQpUwBYvnx5l9mm6H6odURxMjLZR1RNmyJt0Ol0rFu3DoDi4mKWL19Ov379mj3nhhtuYN++fa2+/p133mlWoF1aWkrv3r0xGo3y/fv168eRI0dO2PGr6FhWrVoFwLRp0074vAsvvJAPPviAVatWNSu8VyhOBbWOKE5GJvuIEm2KtKO8vJxoNHrclwhOfQBry6J37QSDkBUdTywWY82aNQBccMEFJ3yuEHWrV68mHo83m+WmUJwqah1RnIxM9BEl2hRpx9atWzn77LNbfexUdj99+/alrKyMWCyG0WhE0zRKS0tb/YIqOofNmzfj8/lwu92MGTPmhM89++yzcTqdNDQ0sG3bNsaOHds1Riq6JZm0jpSWlnL77bcTDoe55pprePDBB4Gm8S7Dhw9nyJAhGAwGVTrQwWSSjwiUaFOkHUePHqVPnz6tPnYqu5/CwkLOPvts5s+fzx133MGiRYsYMGCASml0ISI1OmXKlJNGzoxGI+eff75MkSrRpvgynGwd0TRNRkN0Ol2ro2iga9aRZ599lscee4wLLriAiy66iB/84Ac4nU527tzJ9773PR5++OEO+yzFF2TitUY1IijSjvPPP5///Oc/sqjzy/DCCy/wwgsvMHToUObMmcPLL7/cARYq2svKlSuBk6dGBeJ5QuwpFKdL8jqiaRqJRIJYLEYkEiEYDBIMBgmFQoRCIYLBIOFwuM2UVmevIz/72c+YPHkyAPF4XNZG7dixgw8++ICpU6fy6quvtvl6ddTZ6ZGJ1xqdppLzXYrX68XtduPxeNSRVopuTTweJy8vD4/HwyeffMJXvvKVk75mw4YNnHfeeeTm5lJdXX3Cc317KmoNOTGaphGPx0kkEiQSiWYRtZOh0+mwWq1tRt06mxdffJHdu3fzm9/8BmjqpLZarZx77rlceumlLFy4kIKCguNe99hjj/GLX/ziuPuVj3Q/VHq0ByIWMbGgifvgizSBXq8/YcpAoTgZW7ZswePx4HQ6253qPOecc7Db7dTV1bFjx47jjrxSKFpD0zRisZgUa22h0+kwGAwYDAa5xom1MBKJoGka0Wi0zdE0ncn8+fNZvHgxixcvlvdNnDgRm82GXq9n4sSJHDx4sFXRpo466zmobWwPQixMoVCIcDhMNBolFovJxS4ejxOLxYhGo4TDYcLhMLFYTHVKKU4LkeKcPHmyTPecDJPJxKRJk5q9XqFoDSHUwuEwwWCQaDTaLLKm0+kwGo1YLBasVis2mw2bzYbZbMZgMMgNqRByJpMJICUncmzcuJF58+axaNGiZoLxkUceYdmyZSQSCTZt2tTmubwWiwWXy9XspuieqEhbDyGRSBAOh5vd11o0rWUULhqNEo1G5c70ZK9XKATtnc/WkmnTprFs2TJWrlzJD3/4w06wTJFpiDUp+ZacJRAbTrH5TMZoNGIymTAYDPK58XgcTdMwGo04nU75WKr45S9/SUVFBZdffjkA06dPZ+bMmcyaNYtbb72Vxx9/nNtvv528vLyU2ZguiNpEEVUVvze9Xn9cFLU7XpuUaOshxGIxoMmxjUajdOq2SF4Ikxe61kj+snTHL4ni1EkkEqxevRpofxOCQDx/9erVMmKi6Hkkrzst157k9SkWi50wOiae09ZjovZSvEcq6ijfeeedNh9bsWJFF1qSnoioajQabfM61JqfJAu3lqVAer0evV4vBX2mrDNKtPUwhMASxONxgsGgdHaDwSB3pkajEYPB0Gx3m4z4WTwWjUaVgFMAsG3bNurr67Hb7YwbN+6UXnvuuedis9morq5m165djBgxopOsVKQj4gLdsjRDrDPi4p3cESoiZzqdDpPJhMPhwOVyyXVJCLvkmrZEIoHX65XvlbwGKtIDke0R9YaAFOvJ1yRRh50cYTtZtC3Zn4xGY0obUE4FJdp6CHq9/rgi3Xg8Tn19fZtpAbELETez2dxqKjU53ZAs4IQAVB2APY/kejZRK9RezGYzkyZNYvny5axatUqJth5CcjQl+T5N02QNrlhvhBBrLeoSDodpbGyktraW/Px8nE4nNpvtuOcFAgGgKX0qPlNc+BWpJbleMdkHIpGI9ANxvYETl+oIASfqFq1WqxRowt9isRjBYBCbzZb2wk2Jth6CWIhEDYBOpyMYDKJpGgaDQS5qyQuiqIMTtXCisDe5vq3lTkfUhiSLOfFlSfcvg6LjONX5bC254IILWL58OStXruT//b//14GWKdKReDzeLJoi7hNZAPF48gVbpMr0ej0WiwW3201WVhbRaJT6+nqi0Sjl5eVUVlaSlZWF2+3G4XDIjlG/3w+A1WqV6VOj0ajWqRSTSCQIhUIyECBm6YkZeydqkBPXJiHiksWa8CG/34/BYCA/Px+bzYbJZCIQCEh/S3fhpkRbD6Fle7tIDwCyswqQziuEnU6nk9Ez8feTObQINev1ehKJhFx0RdeWonvzZerZBMlDdlVdW/dFiC8hmsT6JMSa6GQXEZFQKCTFW0vKy8txOBz07duXM844A4/HQ319PbFYjMbGRhobG8nLy6OgoECuc3q9HrPZTCwWk6lTRWoQviCCBNFoFL/fTzQalYOQY7GY9AFxnRLXNpHZEbeWddt2u53s7GwZoa2srKS4uFhe/4TPNTY2yuBEclNDuqBEWw8iOUWaHC0TKQav10tVVVW73ke8Prl2LbnQMxaLYTAYyMrKkvdHIhFZK6fovmzfvp3a2lqysrLaNVC3NcaPH4/FYqGyspI9e/YwbNiwDrZSkWpEJD953QgGg80Emrhg+/1+eZEWm0CTyYTL5cJmsxGNRvF6vTQ2NrJr1y4sFgv9+vXjjDPOIBKJ4PV6qa+vp66ujtzcXBllczgccv1T2YDU0TK6Jk6sEKluceJDKBRC0zQp2pLFWsu0ttFoxOFwYLfb0el0+P1+AoEAgwYNkmNiampq6N27N0ajkaysLEKhkKxzS25eEeVB6ZA6V1fPHkRLcSXEk1i0fD4fAFlZWZjN5mZt9JFIhEgk0iwdeqKGA7PZLN9D1BGInZSmaadc56TIHES32+TJk097SKnVamXy5MksX76cpUuXKtHWjWhZuybWBXHRFpEUv9+P3+8nEonQ2NhIIBAgHA4fV8fmdrspKSlhwIABaJrG0aNHCYfD7N27l/LyckaPHk1hYaGs3xUXZnH6QSgUAlQDQioQAiwSiQBN16Lk33koFMLj8dDY2EgwGMTj8RAIBFpNjWZlZZGVlYXVapW/y4aGBhoaGigpKcHpdNLY2MjBgwcZNmwYkUiEWCxGdXU1BQUFMsiQ3LEsfE2MvrLZbCkPOijR1oNoKdqEYwvHFILM7XZjt9sBqK6u5ujRo3Jn2hqiUUHUg4i6NhFZs1qt0uH1er2qH+nmCNE2ffr0L/U+l19+OcuXL+f999/nRz/6UUeYpkgxyVESQKZCk4fkhkIhvF4vwWCQ+vp6Ghsbm72HEFsiUufxePB4POzcuROHw8H48eOxWq0cPHhQRt7GjBkjXy/WH4vFctz7KrqGtrpCvV4vsVgMn89HKBSitrZWRsQaGxulmBfpbJHtMRqNJBIJ2Vyi1+vp378/xcXFVFVVcfToUYqKinC5XASDQQ4cOED//v3l+5eVleFwOMjKysJisUhhJiK7wmeDwSBZWVkpFfhKtPUgxKIkmhFaNie0bC44duwYBw8elK83Go14vV58Pp+MmBmNRsxms+zIEc4s6tpsNhuxWExG2kQEThSSqpRE9yK5nu3LirYrrriCBx54gJUrV+L3++VGQpGZJKdDxcVQ1JaJKJqIqtTW1sqISyAQkBdo0XCQk5NDTk4Obrcbk8lEZWWlFGkfffQRU6dOZdy4cWzcuJH6+np5MYcv1sF0SHX1RIRAT55kINKgYgxLOBympqaGYDBIeXm5FHBCwCdfs8Tv02Aw0KdPH1wul4yolZaWcs4551BXV0dlZSXxeJysrCwp3IqLi2X01uv14vV60ev12Gw2HA4HVqtV1reJmrpgMChTrqmgU0Xbddddx8qVK7nooot48803O/OjFO0geZFKJBLH/Zx8/mg8HufIkSMAlJSUYLPZWLlypUwlhMNh+Xch0ER42WKxYLfbiUajBAIBHA4HiUQCk8kkF2ur1So/Wwm37sOWLVuor6/H6XRyzjnnfKn3GjZsGAMGDODQoUOsWLGCq666qoOsVHQ1LQWbOE5PiDK/34/H46Gurk5G17xer0ybJXP06NFmPxsMBiZMmMCNN97Ip59+yvbt2/n4448ZOnQoFoul2VolhosDzWqWFJ1Py1SoaHRraGiQzSgimlZbW0soFKKiooJAIEBVVRWhUEg+7vV6AWQXaFZWFrFYjMOHDwMwcuRI7HY71dXVbNy4kYEDB6LX66mpqZENCZFIhCNHjmCz2XC73RiNRlkCJFLzFouF/Px8mTHy+/3y39EyUttVdKpou/fee/nWt77FvHnzOvNjFO1EpC5FrZro5kyeLA5NX4S6ujri8TgWi4VevXrxz3/+k1AohMPhoKqqirKysuPe32Kx4HA4cDqdmM1mbDYb2dnZsk5FDLsUzQnJTq+EW/dApEanTJnypWs/dDodV1xxBc8//zzvv/++Em0ZSjwelx2BoqZMiLVQKERDQwMej4eKigq8Xi91dXUyEp9IJOjbty8DBw6kd+/eGAwGGhsbZVNBZWUltbW1rFu3DqfTyeTJk9m+fTuhUEhG6uCL+l3RLQo0S9OqtadzSZ61B03XGDGaBZAp0VgsRn19PeFwmOrqaoLBINXV1dJPGhoamr2v6AIFKC4uZsSIERw6dIgdO3ZgtVoZO3YslZWVHDhwALfbTV5enhRkBQUFmM1m2fRgNBopLi7G7XYTCARkA0R5eTm9evXCZDJhsVhkg0zLuaVdRaeKtunTp8t5TYr0QMyrEaM4hNOKrhxoWsDEF6GwsJCtW7cSDAZxuVyEw2HKysrQ6XTSocUgXRFSttvt2O12cnJyCAQC2O12CgoKiMViZGdno2maFG4i4iZSp2rxzGw6qp5NkCza1OiPzCNZsAEEg0Ep2ILBIHV1ddTW1lJVVUVNTY28oIrHE4kER44c4T//+Q/QVGyenZ1N3759+epXv8rw4cNZvXo1H3zwAfv27WPo0KFA0zrn8/nkGpPc+JTsQ8kbVUXnIQr5oalJzefzyVSnpml4PB6ZGg0Gg3i9Xhl9FTWODQ0NGAwGevfuzd69e4nFYowZM4ZRo0bx0UcfUVFRQXV1NV/72teoqanhyJEjbNiwgcGDB2MymfB4PPh8PgYNGkQ8Hqe6uhqz2cwZZ5wh6+vKysrweDwMHjwYt9tNVVUVkUiEmpoaiouLm9W6iSkMXc0pJ/UTiQTDhg3jpz/9abP7ly5ditlsZuHChR1mnKLjEQNyAblbgKZdp7hfdOkA2Gw2du/eDUD//v3Ztm0bOp0Ot9vN4cOHZWFoRUUFR44c4ciRIxw8eJCysjJKS0s5evQoDQ0NlJWV4fP5qK+vl7tg0TEmBvm2HK6pyCxisViH1bMJpk+fjtVq5fDhw2zbtq1D3lPRNSQLNp1ORyAQkOtFIBCgpqaG8vJyjh49ytGjR6mtreXo0aNUV1fj9/tJJBJYrVZcLpe8OAYCAY4dO8bGjRv53//9X7Zt2ybLPMxmM5s3bwbgjDPOkOUdvXr1aibORH1b8iHxqe4I7M6IGjZo+h2J0SzQ5Be1tbUyAuvz+YhEItTV1RGJRKRoq6urk9ed5cuXc+TIEY4dO8aSJUuYN28ejz76KFOmTCEej7No0SJ8Ph+XXHIJRqORffv2UVlZSVFREYlEgr1792I2m3E4HEQiEfbs2UNubi79+/dHr9fj8/koKyvDaDRSWFgIIKOEorYSaFaT15WcsmjT6/XMnj2bP/7xjzK0uWXLFmbOnMmTTz7JzJkzO9xIRceSPNMmkUjINKW4LzkEfejQIRKJBMXFxfz3v/8FmmqNxN/Hjh3Lvn37OHbsGKWlpezatYt9+/ZRWlrK4cOHqa6u5siRI9TX11NeXo7H46GhoYFwOEwgEJDDEpVwy3w+++wzvF4v2dnZjB07tkPeMysri0svvRSAt956q0PeM50Ih8Nce+21nH/++bz00kupNqfDEDVs8IVgE8NShWA7duwYlZWVlJeXU1NTQ0VFhTy/uE+fPgwdOpR+/fpRWFjIsGHDmDRpEt/+9rf5+c9/zle+8hU0TWPZsmV8/vnnAGRnZ1NWVoZerycvL49AIIDJZKJXr15UV1cDyLokQG5YTSaTakroJER3MDT9P4sNu/hZ/F70er0Ub0Kwi2uBuB6MGTOGDRs2YDKZ+L//+z/mzZvH4MGDqays5J577uGGG27gBz/4AWazmU8//ZR//OMfXH311eTn51NXV8eOHTs4++yzAdi9ezdut5v+/fsDsHnzZrKzsxk0aBAAtbW1JBIJ2WgHyJR9ckYqFZyWp95yyy3k5+czd+5cysrKuPLKK7ntttt44IEHOto+RSeg0+lkKlJ0gIoInDiPTSxiYtiuzWbj8OHDMq+vaRpDhw7lww8/BJqGoY4ePRpomve2b98+Dh8+TFlZmVyYa2trqayslC36Ik0iduQibZs8cFOROfz73/8Gmk4z6Mi0wfXXXw90T9G2YMECLrvsMtasWcPChQtlwXwmI+qXAFlGISJsIiUqUlkVFRVUVVXR0NAgH9uyZQtLlixh0aJFLFq0iLfffpu///3vvPDCC/zoRz/i3//+N1OnTgWaLq4HDhwAkNmBgQMHSjEwaNCgZiUcYl0RY4rEuIhU05Z4z2RR33IEh16vl4Eep9MpS3Byc3Nlc0l2draMqtXU1JBIJKipqQEgPz8fgKlTp/K1r32NSZMm8dprr1FSUsKhQ4e46qqrWLFiBT/60Y/kiRjPPvssF1xwASUlJfh8PrZs2cK0adMA2LBhAyNHjsThcBCLxaiqqsLlcknbxfVIpHXFWJGWI7O6mtMSbUajkZ/+9KfMnTuXK664gnHjxjF37tyOtk3RiQjhJv4ujp2yWCzodDoZfROFuiLVMGLECNasWQM0XZyPHTsGwDPPPMOCBQtYunQp1157LfDFgip20TU1NdTW1lJdXS1rFJKFmxh6KRb9VIWfFafHkiVLgKb5ah3J1VdfjdFoZNu2bezdu7dD3zvVbNq0icmTJ6PX6xk1ahS7du067jliGnzyLV0RnXWi/lCMSBBNB3V1dVRVVR1Xx+bxeDh48CBHjx7FaDQyadIk7rjjDu655x7uvfdevvvd78qI6yuvvCJHEYkLa05ODsFgsNnU+sLCQvm5er2erKws9Hq97AQ0GAxpU0fblnjPVFEvTjUQfmCz2aTfWq1WAoEAiURCpijj8Ti5ublS1OXn56NpGoWFhcRiMZxOJ8XFxQDN/g+Kior4xz/+wbRp04jH4yxevJi7776b3Nxczj//fOLxOM899xzXX389JpOJ/fv3k52djdPpJBKJUFFRgdvtlu+bvNkwGAyyLlIcjSUeT+WM0dOOCd9yyy1yMvEbb7zRqur86le/ysyZM3n//ffp06cPn3zyyZcyVtGxCJEGTbsGi8UiO0rFHBoh7MSXqaqqioqKCgwGA5MnT5bvJRy4f//+/OpXv+Kll17C5XIRCAQ4fPiwPCKrtraWhoYGKisr8fv9st1bfImTu8yUcMsc6uvrWb9+PQCXXXZZh753bm6urJHrbtE2n8+Hw+EAms5GbDlIFuCpp57C7XbLW9++fbvazHYjTlAB5OgEcTGsq6ujoaGB+vp6qqqqZDG6x+PhyJEjxONxLrzwQpYsWcKLL77IAw88wHe/+13uvvtu7rnnHn7zm99wxhlnAMjaNREFEY0GhYWFskPdZDLJdKvdbpciTTQmpItgg7bFe3tEPaSXsBeCTZw6kZWVJVPk0DS8XaRM8/LypM8np7GF8C4qKgKahJ4YIfTJJ580m7tXVFTESy+9xFtvvcVll10mNUllZSUjR44kFAqxatUqzjrrLAAOHjwoZz6Kgc7QlC4XpUF2ux1N0+TPbre72QkJqRr3AV9CtP3whz8EoKamps0w4dKlS6muriYQCFBWVsa55557uh+n6CSSW+CNRiMmk4msrCx5bpvD4cBisWCz2dDpdHLURzwep7a2Vr5Py3TmlClTeP3113G5XPj9fiorK+ViUlVVJZsXgsGgFG5iMnryTqq1Y2sU6ceHH35IIpFg+PDhsk6kI+muKVKHwyFrfPx+v0zPJDN79mxZUuDxeCgtLe1qM9tFcipJp9PJIdzJ50bW1NRQX19PJBKhvr6eaDQq02Q333wzzz77LL169Wr1/evq6uS/XaRERQef1WqVMyINBoOcDSn+LrrbrVar3Jymi2CDtsV7e0Q9pJewTx6lIk7BSSQScgOePIQ9EonI648Qesk4nU6gKWvTq1cvSkpKiEQifPzxx8d97qhRo/j973/Piy++iNFo5P3332f48OEA7N27t9lmQqRcs7KyZEAiJydH3i+ifmKqgTiXFEj5GaSn9ckPP/ww7733Hhs2bCAWi/Hyyy93tF0ZQSbXGyRjMBjknDRxhEdWVpZc5AoLCzGbzWRnZ2MwGOQX6fnnn5fdNWLnm8yZZ57J008/DTR96cLhMLW1tXKhFiNDxAweMXBTtF+LRTX5zFNFevLBBx8AHR9lE3zta19Dp9Px8ccfp61oOR3GjRvH6tWr0TSNzZs3c+aZZx73HIvFgsvlanZLN0RaFJoEm5huL046EPVq0WiUxsZGfD6fjFyEw2FGjhzJgw8+2KaQ0jSNX/3qV8RiMQoKCmRJh9Vqxel0YjAYyMnJkR2GolbN4XBgNBqx2+0yypYONWwtaUu8t0fUQ/oI+2Q/SBZnLces5OTkAE2Zm+S/i2uLEHI+n49+/fqRSCRYt24dEyZMAJqantpi+vTpTJw4EYA9e/YATQGJnTt3AtDY2EgsFiMvL49jx46haRp5eXlyCLO4xgmBnJOTIzNAyUGOVHHKou3Pf/4zzzzzDO+88w5jxozhvvvu4+mnn5Y7rJ5EptYbtIbBYJBHgthsNkwmk5wUbbfbKSoqIj8/H5vNRl5eHgaDgX379knR9vjjj3Po0KHj3nfatGlMnjxZnsAgDgSOxWLU1NQQjUapqKiQU65F0bLYrYkdjeoqTV80TZOiraPr2QTFxcWcf/75ACxevLhTPiMV3HjjjSxbtozx48czY8aMZieFZBKi+xu+iLSIhiK/3088HpeHvosD4+GLYu7rrruuzYxNIBDgoYce4r333kOv18sLe05ODhaLhezsbHJycrDZbDidTrnxtNvt8k9Rx5auXaJtiff2iHpIT2Gf/PsUR0NB03SCnJwcrFYr8XhcnozQ2NgoBZxIP+7bt082DixevFg2u51ItDU2NrJjxw4A+aeYUFBSUiKjtEOGDJENEEOHDpV120VFRTItKs4ZTY4cpjpCe0oevGTJEn7wgx8wf/58qWTvuecevF4vr7/+eqcYmM50pyLilo0JItVgtVrJyckhOzuboqIievfujcPhoFevXtJ53W431dXVfOMb32DDhg3HvfeVV14JfDELqaamBk3T8Pl8sualpqaGUCgkC4dFnZuwRxwwrEg/Nm/ezLFjx7DZbEyZMqXTPkekSBctWtRpn9HVWK1W3n77bT755BO+//3vp9qc0yI5LWowGGSaKxwONzsIPnlcgni+SKX/9re/5dvf/jYPPfQQv/3tb3nttdf429/+xq9+9SuuuOIK/vnPf6LT6ejduzd2u53c3FzsdjuFhYU4HA5yc3PJyso6TqiJUg/RYJWutBTvv//979m5c2fGiXpRwA80G9gOTZ2hgNy0iw1/Y2OjbAYQgjwQCMjoV0FBAXa7nSNHjsjaxf/+97/4fL7jPl/TNB577DHq6+txOBzE43HsdjvhcFimxHU6HYMGDZL1c8OGDaOqqkqeS2qz2QiHw+h0OrKzs2WUzWKxpIXob3eceNOmTcycOZOnn35aLp4ALpeLe+65hzlz5vDNb36zR02Wbm8R8S9+8YuuNu20EMJNpCZFMaamaXIHlHzYsqZplJeXU1JSQiKRoK6ujjvuuIOZM2fywx/+UBaR9u7dG2j6sk6ePJnNmzfLmoGGhgaysrLweDyyOFSkasWRNW63m2g0KjvF0uGLo/gCIaIuv/zyTr2ozJgxg1mzZrF69WqOHTsm/UqRWoQA0+v1zU4/gC9qXcV3VvzpcrkIhUI4nU769u1LaWlpqxs+gcPhoKCgAIfDISNrRUVFuFwuioqKsNlsuFwuTCbTcanQdKtfaw0h3lujrfvTFYvF0myUU/JEApvNJruJhUALBoO43W55LQAoLy9n4sSJvPfee/Lc4X/84x989NFHDBkyhL179/KPf/yDb3/72/JzY7EYv/jFL6TAz87Oxmg0ynNFc3Nz5dw+0dV6xhlnyCic2WymqKhIjo7Jzc2VEWHRdZwOtFu0nXPOOW0WQT7++OM8/vjjHWZUptDeIuJZs2bJn71eb1p3fxkMBhkOFm3yAlEzImbuiOceO3aM/v37y7EeCxcu5O233+b888/nnHPOkeFot9vNpEmT2Lx5MzU1NeTm5uLxeHA6nfj9furr67HZbPh8PkwmE8FgkKysLILBIBaLpdmZqYr0QNM03nzzTaBJVHUm/fr1Y9KkSaxbt44FCxZw3333dernKU6OmGcFTXVI4hrRsnlIbOYdDgc1NTUUFRVRU1PDnj17cLvd8kxHccSdEFqiLk50f+bl5eF2uykuLiY7O5tevXrJo62EYEvHkR49CdEYIjImomYamgRdMBgkGo3KTXo8HpdBgVAoRHFxMRUVFVgsFnJycqivr5fnWpeWlvKVr3yFvXv38uyzz1JSUsJ5553H9u3b+e1vf8vWrVuBpi5iu91OXl4eNpuNgoICbDYbhYWFsjmif//+cmCu1WqloKBARu9cLhdGo1GKtnRIiwrSryIzgxD1BiNHjmTz5s088cQTxz3HYrGktD34dDCZTHJemhimKxDCTQg2UT9SWVmJXq+XO6ba2lpWrVrFqlWr5GuvueYa2XZ9+PBhpk2bxpo1a+RuTJyBqtPp8Pv9OBwOeXSI+NLH43F1BmUasXPnTvbs2YPZbO6SA91vvvlm1q1bx9///ncl2tIAIc5EBE1cBEXETTwuNn8i6tHY2EhxcTGNjY1Eo1GsVmurdauiKNxqtZKXlyfra3NycuSF2e12NxNsNptNrk1qnUgN4hoSiUQIh8Nyrpn4fWiaJuuoE4mETI/W1NQwevRoKioq2LJlC5dccgkLFixg7dq1XHrppbz11lvs2LGDc889l08++YR777232eeKo6ecTicFBQU4nU4KCwvJysqSqXSLxSLnv0GTQBPBAWjyUbPZ3EywpVN2R4m2L8GNN97IzTffzKuvvsqdd96Z9vUG7UWIJNG1mZWVRTwex2q1yrCz6M4Sos5oNNLQ0EBNTY3c4ZjNZmw2G7m5uVx66aVcccUVAHJ+kqhpKC0t5fLLL2fz5s2EQiFsNhuBQACbzUYoFMJoNMpom9h996Q0fDqzYMECAC699NIuKX6eOXMmP/rRj9i4cSMHDhxg4MCBnf6ZitZJbigQ31FADtVNFkwlJSXs3bsXr9dL79698fl8+Hy+ZhtCUbcqLu4iUiPqa51OJ7m5ueTl5ZGbm4vT6cThcMiRDEKwJQ8JV6QOUWqjaRrxePy44xNFCY7P52sWYaupqZEp0N27d3POOeewadMm9u7dy7Bhw9i9ezfRaJRzzz2X3bt34/P55KSD7OxsrFYr+fn5UrAJoS8a67KystA0Db1eT25urvRjvV5Pdna2FJJAWnYbp5c1GcaJ6hAyHSHKYrEYsVgMh8OB1+ttVowpdkoimlhZWYndbpfHkIgdd3l5OUuXLmXLli2yaFmv18tBmT6fj969e7N582bq6uooKSmRDQmiiFTUFIjUrRJtqSeRSDBv3jwAbrrppi75zKKiIi688EI+/PBD/vGPfzB79uwu+VzF8USj0WbnMIpSEXHBEzWx0FQWMnHiRD777DOCwSDZ2dlkZ2eTSCSIxWIyjSY6ygFZL2yz2cjOzpaNB06nE7fbLUd+iLlrLU91UaQWcTSiGLgsNvmAHJxeVFSEz+ejoqKCM844g9raWjweD4WFhXKmX15eHr179+bYsWMYjUYGDBjAoUOH8Hg8FBcXU1RUJK9JYrqBiKwJwWa1WsnNzZWBB5fL1azxzmazNavh1uv1zUaWpBNKtCnaxGg0yl1SPB7H4XDQ2NgoUxHJaVKbzSYnSlssFnJzc/F6vbLotKKigoqKCvne11xzjYzYiS90VlYWgUAAt9tNIBDA7/djs9nkAMZwOIzNZlMNCWnC8uXLOXz4MG63u1lzUmdz00038eGHH/LGG28o0ZYCRERMRNlMJhNer1dGwEXXtxBXlZWVcoRC7969iUQizbpNA4GAHHDau3dv2XUqBJjRaMTlcpGXlyejKaIzVJxsIDaT6dLhp2jCYDDIjb/Y3AshV1dXJyOntbW1lJWVMXLkSLZs2UJVVRXDhg1j8+bN1NbWys5TcWxicXGx9BPhd3a7HYvFgt1uJz8/X4p8IdiEuBebBWGf2+2WQQZoihCmcy2kEm2KNmmtlkwIK7FoQpO4E8WnYtilKB5NHqAJTTVx/fv3p1evXixevFgKNofDIdOiQhT6/X4pzsLhsFwATCaTakhIA1555RWg6Ug7MYOpK7j++uv5f//v/7Ft2za2bdvGqFGjuuyzezpieKqoVTOZTM3ObHS5XPKkFDF+Y9y4cZSWluL1eolEIs2Oz4Om6Eh+fj6NjY3U1dVJ0SW6DUWNkdPplEJNnCNqtVrlBVYJtvRDnNcpGlZEM0llZSWNjY1omkbfvn2JxWJ4PB5qa2sZMWIEO3bsoKqqiuHDh7N//348Ho/s7gwGg83mvsEX52cLHxEiX0RpzWYzLpcLq9UqBZv4ObkuM12ja8ko0aY4IUK4JdepiLZtIa4CgQC5ubk0NjZiNBrx+/2y88fv9+Pz+QgGg1K8ff7553z++efyM6ZMmdKsJsZsNlNQUIDf7ycajWI0GuXIj0gkgtFoVNG2FHPs2DE56uOuu+7q0s/OycnhmmuuYdGiRfz5z3/m2Wef7dLP76m0JtjEsGz4ooBbRC1EOkvUxVosFpl6EmuK1+ulurqaRCKB3W5vllIVnerJ89fEuaHi78klGukaGenJ6PV6GVkTmRIh0mtqavD7/UQiEfr168eRI0fweDx4vV7OPPNMPv/8czwej6xfrK2tlTNEc3JyZJRNXKOE6HK5XDgcDux2u+wCFQPhRVSuoKDguM7ndI6uJaNEm+KkJH8pxE5ZDCCEph11MBjE6XRiNpulmPP5fHi9XpxOp6xvE1PSxXMGDRrEoEGD+OyzzwgEAnKejhBwkUiE/Px8KeBUtC09ePbZZ4lGo0yZMoVx48Z1+ed/5zvfYdGiRfzlL39hzpw5XRrp64m0FGxmsxmDwdBscrz4HRQUFFBVVdXsUO+WiKOO9Hq9TImKdJfoLBQXUvF3EUkTxeGiPCNTLrY9FYvFIuvaQqEQVqtVngdbXV0tT8UpLi5Gp9PR0NCA3++nf//+1NXVyVrqXr16SfHXcm6nEPFCvOfn58szQgsKCuR1w2g0UlRU1OxoRJvNlnbNBicicyxVpByRAk0+W0783W63y2O8ROepaNePRCLy5IOWC/n+/fvZv3+//Hn06NGYTCZ5cK8Yjih2ZBaLRUbf1PiP1OD1evnTn/4EwI9//OOU2HDJJZfQv39/Dh8+zKJFi7j11ltTYkdPQVx0AXkoe3KkQszcAuRpBYFAoNlF1WAwyIh9MBjE7/cTDodliUTyhVMUsZvNZvlaUQ8lvu/iMUV6I4S2GGIbDAaxWq3YbDZ69+5NdXW1PJdaNAhUV1cTi8XkOI6WQk2U3SRHZUUzgQgwAFIIig1/UVER0WhUCjZxTFUmoTxecUqIUxPi8TjRaFQu4OFwWKYrxG7KbDajaRqNjY2yhiWRSMgaGNE5pmkadrudIUOGMHDgQILBIIcPHwaQQxFFG7YIh4uFXvyp6DpefPFFvF4vw4cPl0eUdTV6vZ7vfOc7PPTQQ/zmN7/hlltuUeK9k0g+Qk50cMMXRxbF43EaGhpkYxEgi75jsZhsPBDfeYHdbsdmszU7tzR5eLdYa8RFOPk0FhFFUWQGIh0uymT8fr+MpBYXF1NfX4/X65Wb+oKCAiKRiBR6JpOp1bOnk+9L/v5bLBaKi4vl60XELTnClomCDUCnqVO4uxSv14vb7cbj8aTFob5fBpEyEWIqFArJv4uD38XzRHg6FAoRDAZl55lA1CoYjUZ8Ph+JRAKn08lZZ52FXq+ntLSUcDhMdnY2mqbJcLgoQFYX7K4hEokwcOBAjh49yiuvvMKdd96ZMltqa2vp378/fr+fDz74gK9+9asps6Ur6eo1RAgvUeyd/F2LRqPU1dXJiLd4XGzqkkXayUjuRhe35M8SZRot71ccT7peZ8R1QkRoxe9UzHSrr6+XGZuWiHEcItImpEvyUWkijZ680TAajeTn58sAAWSuYAMVaVN8CVpG3cR4DjHh3Gw2N9thi6JiMbZD1MiIFIkoaIamcQHDhg2TZ5wKkWe1WqXoE++phu12HW+88QZHjx6lV69efOMb30ipLXl5edx999389re/5YknnuDSSy9VF/NORNSlCkElGgry8vJoaGiQqa+WiIiKSHMmv584eaWt2IGIurWcqK/ITEQ9tKhNExt/UU6Tk5Mj70tOycMXok3M9WsLESwAZDepeL5Io2by9UKJNsWXQtSe6PX649KlYueclZUlO8rEF050gULTEE2xczKZTLhcLnJzc+XjXq9Xtovb7XY5I0qcjyqG9aoFvXPRNI3/+7//A+C+++5Li+PZZs2axR/+8AfWrFnDO++8wzXXXJNqk7odyecRi0i6+M4JMZaXlyc3bMkdoiIt1pK2InHiTOPkFKmieyGia6KrVGRrRJ1a8nPaOqRdnIwjzqMWvpncnGI2m2UJDtAsO5PJqKIARYeQvICLQbniCye+XIlEApPJhMPhIDc3l9zcXFwuFzabrdkX1Ov1cujQIQ4fPszRo0dlU4I491R0qYkjUsQAYEXnsmTJEnbs2IHT6eS73/1uqs0BoE+fPsyaNQuA+++/X3Y0KzoOEVEX4zZElEKkuoLBoEyfivSUEGsikiYQUZTk+jbRZCCOIuppKdAtW7YwefJkJkyYwOuvv97ssa1btzJw4ECmTZvGLbfckiILOwchzLKysuRIGBGNFaJdiHhxX/LZpSJgYLVa5XgPp9MpI2nJjWqi8aE7+JSqaeti0rXWoCMRBwWL9IeYiH2i+hYRhUveOSUjOo1ExK6uro5EItHsbDg1XLNzmTZtGqtWreKBBx6QEbd0wOfzMXToUCoqKnjsscd49NFHU21Sp5IOa4iItrVnsyTmqCWvC4Aa1/H/c8MNN/DMM8/Qp08fJk+ezPr16+Vjf//734lGo9x2222n9J7p4COdhYj2ishcWz5oMBhkRK87+ZgSbV1Md/4yJSNEWMuGg5bPSQ5xJ4u65F24zWaTKVZBKBTC5/MBX5xRKKJ93ekLmi58/PHHTJgwAZPJxIEDB+jTp0+qTWrGG2+8wTe+8Q2MRiOffPIJY8eOTbVJnUY6rSEiyt2yKDz5sdYQZRQKqK6upqCggHg8zpQpU1i3bp187OGHH2bdunVEo1Fmz57N5Zdf3up7iDl3Aq/XS9++fdPCRzobkW1JHv/RnesfVVhC0SmI0Hdri3NyWNvhcOB2u8nLyyM3NxeHwyHb+UUTgji/NFnUiRQMfFF4mjw3StGxiMjaN77xjbQTbNB0Hul1111HLBbjjjvuaFaMrOg8xHdZlDeIWiKRJm1ZQyQ2YUqwfUFBQQEADz30EDfddFOzx0aPHs1zzz3Hu+++y6OPPtrm+vbUU0/hdrvlrW/fvp1ud7ogxsS0lkbtjqhIWxeTTrvkrkSkSVsuOslfNpH6FBE4sXtMPhtOHAoshnSKg6bFqQtAtyg2TSf27dvH0KFD0TSNbdu2cdZZZ6XapFaprKxk5MiR1NbW8uijj/LYY4+l2qROIdPWEPGd7s7Rj1Nh7ty5LFiwQP7885//nM8++4z9+/fz8ssvN3uu1+uVv+ObbrqJuXPnUlhYeNx79uRIW09DRdoUXYJIXYpCY1F7JmpjREGzGLwrutNEAakY7eHz+WhoaJAt4snNDuKCoKJtHcszzzyDpmlceeWVaSvYAIqKinjuuecAeOKJJ9i+fXuKLVLAF5EQJdiauPfee1m7dq28BQIBtm/fzksvvXTcc++88052795NOBzmyJEj5Ofnt/qeFosFl8vV7KbonqhIWxeTabvkzqS140gEyV1C4k8x20cg0qfiRAVxHqkofFZ8eY4dO8bAgQMJh8OsXLmSCy64INUmnRBN07j++utZvHgxkydPZtWqVd2uOUWtId2LUaNGyQ5IgOXLl/OTn/yEn//85xw9epTvfe97aJrGgw8+2O6RNspHui9KtHUx6svUOq0VksLxaVXxs5gHJZ6fk5MD0Gxyu+LLc8899/Dcc88xefJkVq9enRHRkiNHjjB8+HACgUDKT23oDNQaojgZyke6L91rC6rIWFqeOShITquKIlOz2Sxn+zgcDrKzs2WNm3gvxZentLSUF198EYDHH388Y/5f+/Xrxy9+8QsAfvKTn+D1elNskUKhUHQMSrQpMoLkwZ2iaUGkvVoeRq0OkO8Y7rvvPiKRCNOmTWP69OmpNueU+NGPfsSZZ55JTU0NzzzzTKrNkUSjUSZOnCh/Xrx4MePHj+eKK66grq4uhZYpFIpMQIk2RUaRHHkTx2eJCJB4TI0T+PK8++67vPXWWxgMBp599tlUm3PKmEwmnnjiCaCpkaKqqirFFkFdXR2XXXYZBw4ckPf97ne/Y+3atfzwhz/khRdeSKF1CoUiE1CiTZGRJM+BEx2mamBnx3D06FHuuusuoOlsz9GjR6fYotPj+uuv5ytf+Qp+v59f/vKXqTYHv9/Pb3/7W0aMGAFAQ0MDeXl5mM1mpkyZwoYNG1p9XTgcxuv1NrspFIqeiRJtCoVCEgwGmTlzJlVVVYwZMyajZ53pdDrmzJkDwJ/+9CcOHjyYUnv69u3bTAD7fD55mofdbqexsbHV1/XkwakKhaI5SrQpFAqgqd7qxhtvZP369WRnZ7No0SKysrJSbdaX4qKLLuKSSy4hGo3yyCOPdOlnz507l8mTJ8vbkiVLmj3ucDjw+/1AUxSurS6/2bNn4/F45K20tLTTbVcoFOmJqthWKBQkEgm+9a1v8c4772C1WvnnP//JoEGDUm1WhzBnzhyWLVvGX//6Vx544AHGjBnTJZ977733cu+997b5eE5ODtXV1YRCIdasWcO4ceNafZ7FYlFzBxUKBaAibQpFjyeRSHDPPfcwf/58jEYjb775JlOnTk21WR3GuHHjuOmmm9A0jdmzZ6fanGbMmjWLCy64gKeffprvf//7qTZHoVCkOWq4bhejhh4q0olYLMZ3vvMdXnvtNQDmz5/PLbfcklqjOoF9+/YxfPhwYrEYixcv5tprr021SaeNWkMUJ0P5SPdFRdoUih5KTU0N11xzDa+99hoGg4F58+Z1S8EGMHjwYO6//34Avvvd73L06NEUW6RQKBSnjhJtCkUPI5FI8Ne//pUxY8awZMkSrFYrb775JrfffnuqTetUHnvsMc466ywqKyu56qqr0mJ2m0KhUJwKSrQpFD0En8/H73//e4YNG8att97KsWPHGDp0KBs3buRrX/taqs3rdESDRUFBAZs3b+acc87hjTfekMefKRQKRbqjRJtC0Y3RNI3Nmzdz33330adPH+6991727t2L2+3miSeeYMuWLRk7PPd0GDhwIGvXrmXIkCGUlZXxjW98g379+vH973+fpUuXEg6HU22iQqFQtIlqROhiVIGooqPRNI1IJEI4HCYcDlNeXs7+/ftZt24dS5cuZdu2bfK5Z555Jvfeey+33367HOzaEwkEAvz617/mueeeo7q6Wt5vs9mYMGECU6ZMYfTo0QwcOJBevXpht9vJyspKi3Nt1RqiOBnKR7ovSrR1MerLpOhIbrvtNubPn3/C55jNZq699lq+9a1vcemll6LXqwC7IBwOs3z5cv75z3/yr3/9i4qKihM+X6fT0b9/fzZs2EBRUVEXWdkctYYoTobyke6LEm1djPoyKRSKL4NaQxQnQ/lI90WJti5G0zR8Ph9OpxOdTpdqcxQKRYah1hDFyVA+0n1Rok2hUCgUCoUiA1DFLQqFQqFQKBQZgBJtCoVCoVAoFBmAEm0KhUKhUCgUGUDqhw4pJKJ4VJF+pENBr/KP9Eb5iOJkKB9RnIyT+YgSbWmEz+fD7Xan2gxFK6RD67zyj/RG+YjiZCgfUZyMk/mI6h5NI8QOyOv10rdvX0pLS1P+Bf8ydJd/B6TvDjnT/4+7k/0lJSVp5SOZ/n8r6C7/Dki/daS7/N92l38HqEhbRqHT6Zo5nMvlyngHhO7z70g1Lf0jmUz/P+4O9qf6Ygyt+0im/98Kusu/I9UoH8lsVCOCQqFQKBQKRQagRJtCoVAoFApFBqBEWxpisVh49NFHsVgsqTblS9Fd/h3pTKb/Hyv7O490tu1U6C7/jnSku/zfdpd/R3tQjQgKhUKhUCgUGYCKtCkUCoVCoVBkAEq0KRQKhUKhUGQASrQpFAqFQqFQZABKtKUZ0WiUiRMnyp8XL17M+PHjueKKK6irq0uhZadGOBzm2muv5fzzz+ell15KtTndkkz3lUz3kRkzZnDo0CHWr1/PhAkTmD59OgcPHky1WUDm+4Yg030knVE+kqFoirShtrZWu/DCC7WCggJ53wUXXKCFw2Htvffe05588skUWndq/OUvf9Gef/55LR6Pa5dccokWDAZTbVK3ojv4Sqb6SDgc1r72ta9pJSUl2sGDB7Urr7xSq62t1Xbs2KHdfffdqTavW/iGIFN9JN1RPpK5qEhbGuH3+/ntb3/LiBEjAGhoaCAvLw+z2cyUKVPYsGFDii1sP5s2bWLy5Mno9XpGjRrFrl27Um1St6I7+Eqm+kg4HOZ//ud/uPjiiwEIBoPk5uYyYsQI9u7dm2LruodvCDLVR9Id5SOZixJtaUTfvn0ZPXq0/Nnn8+FwOACw2+00NjamyrRTJpNtzwS6g69kos3QdDbg1KlT5c+JREL+XUuDCUrdwTcEmWx7OqN8JHNRoi2FzJ07l8mTJ8vbkiVLmj3ucDjw+/1A084ok85Uy2Tb05Hu6CuZaHNrJJ85qtd3/ZLaHX1DkMm2pxPKR7oP6sD4FHLvvfdy7733tvl4Tk4O1dXVhEIh1qxZw7hx47rQui/HuHHjWL16NSNHjmTz5s088cQTqTYpo+mOvtJdfMRms1FTU0NVVRUDBgzo8s/vjr4h6C4+kmqUj3QflGhLc2bNmsUFF1yAzWZj0aJFqTan3dx4443cfPPNvPrqq9x5551YrdZUm9TtyTRf6S4+8vDDD3PVVVeh0+l4/fXXU21Oq2Sabwi6i49kAspHMgN1jJVCoVAoFApFBqBq2hQKhUKhUCgyACXaFAqFQqFIIV6vl5KSEqZNm8ZFF10k7+9xg2MVJ0WJNoVCoVAoUsjOnTv53ve+x8qVK1m+fLm8f8GCBVx22WWsWbOGhQsXEgqFUmilIh1Qoq2L0TQNr9ebFvOcFOmJ8hGFomexY8cOPvjgA6ZOncqrr74q72/v4NhwOIzX65U3j8dDdXW1WkO6IUq0dTE+nw+3243P50u1KYo0RfmIQtGzGDBgAE8//TQffvgh8+bNo7q6Gmj/4NinnnoKt9stb9nZ2RQWFqo1pBuiRJtCoVAoFClk4sSJnHfeeZjNZiZOnMjBgweB9g+OnT17Nh6PR95KS0u7zHZF16JEm0KhUCjSBk3Tuv1RRC155JFHWLZsGYlEgk2bNjFo0CDgi8GxmqaxefNmzjzzzFZfb7FYcLlczW6K7okSbQqFQqFIC/bt28fw4cNxOp3cdNNNhMPhVJvUJcyaNYs5c+YwZcoUbrjhBl555RV27tzJjTfeyLJlyxg/fjwzZszo9oNjFSdHDdftYrxeL263G4/Ho3ZDilZRPqLoiWiaxsSJE/n444/lfT/+8Y95+umnU2hVZqLWkO6LirS1k9LSUqZPn86kSZOYM2cO69evZ8KECUyfPl3WHygUCoXi9Fi9ejUff/wxdruduXPnAvDMM8+wZcuWFFumUKQPSrS1k2effZbHHnuMdevWsWzZMh566CGWLFnCH/7wB+bMmZNq8xQKhSKjefHFFwH4xje+wT333MMNN9xAIpHg8ccfT7FlCkX6oERbO/nZz37G5MmTAYjH4wDk5uYyYsQI9u7d2+brWs7P8Xq9XWKvQqFQZArBYJC33noLgLvvvhuAxx57DJ1Ox1tvvcX27dtTaZ5CkTYo0dZOcnNzMRgMvPjii4wbN45EIiEfO1FZYMv5OX379u0KcxUKhSJjWLVqFaFQiL59+3LOOecAMHLkSGbMmAHAE088kUrzFIq0QYm2U2D+/PksXryYOXPmoNPp5P16fdv/jWp+jkKhUJyYDz74AICvfvWrzdbWn//85wAsXLiQQ4cOpcI0hSKtUKKtnWzcuJF58+axaNEizGYzNpuNmpoadu7cyYABA9p8nZqfo1AoFCfm3//+NwCXXXZZs/vHjh3LxRdfTDwe53e/+10KLFMo0gs18qOdXH311Rw6dIi8vDygKVx///33o9PpeP311xk8eHC73ke1YitOhvIRRU+itraW/Px8AKqrq+XfBf/+97/56le/it1up7S0lJycnFSYmVGoNaT7oiJt7eSdd95h27ZtrFy5kpUrV3L++eezYcMG1q9f327Bpuh69u7dy6RJkxg6dCjjx49n586dqTZJkWYoH0ktGzZsAGDo0KHHCTaASy65hDFjxuD3+/njH//Y1eYpFO2iq9YRJdoU3Zrvfve73H333Xz++ef85Cc/4a677kq1SYo0Q/lIalm/fj0A5513XquP63Q6HnjgAQDmzp1LKBTqMtsUivbSVeuIEm2KtEHTNCZNmsTYsWPJyspiyJAhjB07loceeui03q+qqopPP/2UW2+9FYAZM2Zw8OBBVdCcwSgf6X6cTLQB3HjjjfTp04fKykrmz5/fVaYpuimZvI4YO/wdFYrTRKfTsW7dOgCKi4tZvnw5/fr1a/acG264gX379rX6+nfeeafZSJXS0lJ69+6N0WiU79+vXz+OHDlywuYRRfqifKR7EY/H5bFVJxJtJpOJ++67jwceeIDf/OY33HXXXc26TBWKUyGT1xEl2hRpR3l5OdFo9LgvEcCbb755Su/VcmFXfTfdg9Z8RPxuFy5cCBz/u28L5SOpY/v27TQ2NuJ0Ohk5cuQJn/ud73yHhx9+mF27dvHJJ58wfvz4LrJS0V3JxGuNEm2KtGPr1q2cffbZrT52Krufvn37UlZWRiwWw2g0omkapaWlrX5BFZmF8JF4PE48HieRSMiB17fccgv79+9Hp9Mdt5AqH0kvRLRjwoQJGAyGEz7X5XJx3XXX8be//Y3XX39diTbFlyYTrzVKtCnSjqNHj9KnT59WHzuV3U9hYSFnn3028+fP54477mDRokUMGDBApb0yGE3TSCQSHD58mOLiYsLh8HHP+etf/yr/rtPpsFqtbUbdlI+klvbUsyVz22238be//Y0FCxbwu9/97qRCL1MoLS3l9ttvJxwOc8011/Dggw8CTaM7hg8fzpAhQzAYDCxfvjzFlnYvMvJaoym6FI/HowGax+NJtSltkkgktEQikbLP3717tzZ48GDtlltu6ZD3mjhxojZkyBDtnHPO0bZv394BFnYumeAjnUUikdAikYgWCoW0YDCoBQIBLRgMyr/7/X7N7/drn332mTZo0CDtxhtv1ILBoBaJRLR4PC59NxaLyedGIpETfmYm+kh3YfDgwRqgvf/+++16fiQS0dxutwZo69at62Truo77779fW7lypaZpmnbhhRdqXq9X0zRNW79+vfb444+f8vv15DXkVMjEa40artvFpPvQQ03TCIfDJBIJ9Ho9ZrP5hMd0KTqedPeRziCRSBCNRonH4yd9rliyYrEYkUiEeDyOTqcjKysLh8Mho2rRaJRoNIper8dqtXaq/YpTp7q6msLCQgDq6uraPTT35ptv5u9//zuzZ8/mySef7EwTu4y6ujrcbjcGg4Fp06axZMkSbDYbL7/8Mq+88goGg4E777yTO++8s9XXh8PhZlFnr9dL3759e9Qa0lNQV+MeRjweJxQKEQwGCYfDxGKx4womRW1QIpEgFAoRjUZTYaqiB6BpGpFIhFAoRCwWIxaLNRNvJpMJs9mM0WhEp9MRi8UIBAL4fD6CwaB8nqZp+P1+IpGIfG/VXZjeiNTo8OHDT+mUg6uvvhqA9957r1PsSgW5ubkYDAZefPFFxo0bh81mA2DAgAE8/fTTfPjhh8ybN4/q6upWX//UU0/hdrvlLbneStG9UDVtPQhxgRQiTRRx63Q6DAYDRqMRvV6P0WgkFovJ10WjUTRNw2QyqQuhosNIJBIyqhuJRJr55snQ6XRYLBasVismkwmPx0MkEiEWi2GxWACkoFOR4vTkVOvZBBdffDHQVEReU1PT6ikKmcj8+fNZvHgxixcvlvdNnDgRm82GXq9n4sSJHDx4kIKCguNeO3v2bGbNmiV/FpE2RfdDrWY9DHFRFNELcV8sFpMRuNYunLFYjHA4rMYhKDoEEfGNRqP4/X7pW0KMmc3mZkXmmqah1+uxWCy43W4KCgrIzs7GarViMBhkdFi8RtM0Kdq6S7F6d0OItkmTJp3S6woLC+V4kFWrVnW4Xalg48aNzJs3j0WLFmE2m+X9jzzyCMuWLSORSLBp0yYGDRrU6ustFgsul6vZrTuj/f8NSSLwIDrIe8L1SUXaehDiwqbT6aRgM5lMxONxYrGYdPrkuiIReYtEIjJdarFYVPRCcVqIDUI0GpVpUeFz4jG/34+mafLWcjG22WwUFhbKFJJ4HTT5MyB/1ul0ylfTkGg02q6hum0xffp0duzYwYoVK5gxY0ZHm9fl/PKXv6SiooLLL78caPr3zZw5k1mzZnHrrbfy+OOPc/vtt5OXl5diSzsf8Z0X33txA9olzMR3XtwMBkO3yhAp0daDaCvyINKfom5IfGmg6SJoMBjQ6/UyGiKEm4pgKE4FTdNkc4CIsiVH3NpLMBiktLSUQYMGYTAYmi3iQqAJXxc+rUgvtm7dSjAYJDs7m2HDhp3y66dPn85zzz3HihUrOsG6ruedd95p87Hu8m88GaJ8J7k0p63nJV+jADmTUXzXRfQt+XEh4sSakKnrghJtPYiWOxRN06ivr292wRT1bcLJ4/G4TEFZrVZZgxQOhzEajarOTdEuRN1aPB4nEAjIzs9gMAg0iS23243JZKKxsZFAICCbCmw2GwUFBTidTuLxOGVlZUQiEerr68nPz5cLsBCFZrNZLugqypaeiNToxIkTT+t3dMEFF6DT6di5cyeVlZUUFRV1tImKLkJEyls2Een1+uM6waPRaKvNc8mvM5vNx5X/iGh+PB6XHeUiIJFp1y8l2noQBoNBpkJNJpNMU0FTjZuIuCXvdMLhMI2NjZjNZmw2G2azWXb5iZSqGguiaIvkdGg8Hpcdn4FAQPpeVlYWJpOJY8eO0dDQ0Or7lJWV0adPHwYPHkxeXh7l5eXU1dWRnZ2N0WjEYrEQCoUIh8MyRQpKtKUr4iSE00mNAuTl5TFq1Ci2bt3K2rVru0WKtCeSvJkD5JgpnU5HJBLB7/fLEorkSL0opxB1sCINajab5dgqaNrw2e12GZFPrn8Lh8OyTjaT1gkl2noQYlchwtACo9FITk6OvMAm17aJC2EoFCISiaDX67HZbLIWTtS5Je9sFApoviBHIhE5YiYQCEgfMxqNHD16lFAoJF9nt9ux2WxSzPl8PqqqqigrK8NgMHDGGWdQV1dHOBzm2LFj9O3bV4q25AtAJqdAujun24SQzOTJk5Voy1Bai66ZTCaMRiPBYBCfzyeFWTQalXPoxHVJXKeAZpMP/H4/FosFm80m3ysYDGIymXA4HLIOVoi/RCJBMBjEbDY32+ylM+oq24MQoeNwOEw8Hpe7CxFu1ul0BAIB/H6/rGPzeDxy1yJ2JZFIBKPR2OwmGhVUulQhFlqxsAaDQdmdLBbeSCRCIBCQYk3slhsaGjh48KAUXnl5eUyYMIHc3Fx2797N4cOHyc3NpXfv3hw+fJhAIEBdXR12u11+tuoaTW/Ky8s5dOgQOp3uS50fOnnyZJ5//nnWrFnTgdYpOpu2omuRSIS6ujp5fzQalWUSIjp/ovrXrKwsLBaLjLSZzWbZRRuNRqmvr8fr9eJ0OsnKysJoNDYbOZQpY62UaOthiF1JLBaTwk1cWEW9UFuINFcgEMBsNmO1WmUoW4SlVbq05yIEk1gAW0bX4vE44XBYDsEVi2s0GqW6uvq4wmJN06itrWXJkiVccskl9OrVi/Lycnbt2sW5555LYWEhFRUVeDweOSZBlAAAKvKbpogo21lnnfWlRlNMmTIFgM8++wyfz4fT6ewQ+xSdhxgdJTCZTHKzJjZwiUSCQCBAMBgkkUjg8/kIBAJyvRBriRgDJGqrNU2T1yaHw4GmadTU1JCVlUV2drZMjTY0NODz+XC5XFitVnldE+VB4pqWrqhVrQdiMplkS7XZbCYUCuH3+6XQEkXhiUQCq9WKw+Fg7969chp38mBTq9WKzWaTxxBZLBb5vuqi2XNIPv5MpNVjsRjBYJBIJEI0GsXn80mR5vP5aGxslOmRRCKBzWYjOzsbt9vNgAEDKCwsZMOGDezbt4/Vq1czY8YM6uvrCYVCHDp0SB70LGrl4AuhJjrFFOnHf/7zH+DLpUYB+vTpQ//+/Tl8+DAbNmzgkksu6QjzFJ1Ay87Q5KxNbW1ts5KchoYGGUgQadJgMIjX68Xv97f5GWazGafTid1uJxKJyGsXQCAQkPPrRE1cfX09JpOJnJwcGemLxWIyCJGuqKtqD0Q4ZSgUkrUAiURC7i50Oh29evWisbGRAwcOUFdX16xbx+v1SkEnCj1FDVI8Hm8WdcuEcLPiyyEiaCItKgSb2BH7fD45QLe+vp7GxsZmwk48JznSBjBy5EhmzpxJdXU1Ho+Hffv2MWTIELZt20ZFRQW5ublAk1ATZ+UKoZbOi25PRwzEnTp16pd+rylTpnD48GHWrl2rRFuaIuqexTXEZDJhMpnw+/14PB6gScSJiJpYD0SXudfrlQ1Ker2egoKCZmUXInUqovx1dXU4nU7cbjehUEjWsnm9XrxerxRvYjNZVVWF2+2WIlJ0l6Zr0CE9rVJ0Osl1BELAxWIxOebD7/ezZcsWGQlxOBxkZ2ezcePGZrsdk8mE2+0mJycHl8slD+2OxWIyAmexWJRw64Ykd4ZqmkYwGJRDc8XfGxoaCIfD1NbW4vF45I45eREX2O12ioqKMBqN7N+/nx07djBo0CBGjx7NmjVr2LVrl5zpFY1Gmy34gPQzUY+pSD+8Xi+fffYZ0DGibfLkycyfP5+1a9d+6fdSdDzJgk1kaAwGA16vF5/PBzRtumpqamTDQUNDg9z01dXVEY1GZSChoqKCTz75pM3Ps9vtcjKCSJnHYjEaGxtxu91YrdZm4s1utxOLxfB4PDgcDiwWi9yECtvSjU6zqLS0lNtuu42qqiqMRiMPP/wwM2fO7KyPU5wG4uImmgnEuY3BYJD6+nrZLTp27FjWr1/Pp5/+f+29d5iU1dn4/5ne23Z6kaI0FRVQVhRLVLBEjV2jxPa+ajRqYoLlVZNYwtcUiYmx94YNKzFEowKKChFQel92Ydk+dac/vz/2d44z1AV2d2Z2z+e65oKdnXnmnp17zrnPXf8LtH0xQqEQtbW1QFtZtdvtpqysjOLiYuLxOE6nU4ZghVdObaTdBxHuEBXE4tQrEofFUPdgMEh9fT2hUIimpiY5Kk3kq4i+SUajkV69enH88cczceJE5s+fz4cffsh3333HFVdcwRdffEEgEKChoQFo091oNIpOp5N5MZlTPhT5yYIFC0in0wwePFiGtw+EyspKABYuXEgikVCffR4hUiaEwSb2gHA4LA02q9XK1q1bpee9qamJdDpNS0uL9K55vV7i8TgLFy4E2g5pQ4cOpXfv3qTTaWpqamS7IOFx9/v90iALhUJ4vV40TcNgMFBSUiINx1AoRHl5uXyccGZkjm3MN53qNKPNaDTyl7/8hcMOO4y6ujrGjh3LlClTZJWXIveIDU+EMZPJpKy4C4VC8jErV65k8+bN6PV6fD4fGzZsoLGxUV5HnIgaGxspKyujT58+lJSUyNwBu92OpmmySa+isMnMXxNJw8JgEx6wcDhMQ0MDzc3NNDY2EgwG8fv9MkdlR1KpFJs2beKRRx7B4XAwdOhQANnmw+Px0NTUxLZt24C2xV6E+fV6vfxZ5bLlNyI0etxxx3XI9Q455BCKiopoamri22+/PaBqVEXHIg50gDTYhPcd2qo9hcGWSCRk5WhTUxPBYBC9Xk+vXr349ttv5QHtqKOO4sQTT2Tr1q3MmTOHJUuW7NQc3uVyyX0tEong8Xik96y4uJi6ujrcbjfFxcXEYjFqa2vp27cv0WiUQCBASUmJdGKISFM+GW6dZrT16tWLXr16AW0DfsUXSxlt+cWO3jZROSMSRlOpFFu3bgXaEn8//fRToO0L169fPxYvXkxtbS1GoxGn00lLSwt+v5/+/fvTu3fvrL5vgDLcCpzdGWzhcFiW1UciEbZt24bf76euro5gMEhDQ4PMTxGh00QiQUlJCVOmTOHHP/4x77zzDvPmzePTTz/lxhtvxGQykUgk5HOhLbwGP7TzEDmTwsuWj+EMxQ90tNGm1+uZOHEi7733HvPmzVNGWx6ROQ9Yr9ejaZo02Mxmc9Y0noaGBjRNk144q9VK//79+fe//w1Av379OPvss0mn0zzyyCN8//338nWcTidut1vmyIk1QhhsokgO2sK1FRUVBAIBjEYjJSUlhEIhmpubKSoqorW1Fb/fLyetiHQP0bw3H9jnFS6dTjNixAjOOuss/vCHP8j7P/roI8444wxeeumlncKgixYtIp1O069fvwOXWNHhiD5rwtsmermJ04b48q1ZswaAoUOH8s0337Bs2TJ5jWQyKQ024WmJRCL0798/a/Av9CzDLRaLcf7559PQ0MAVV1zB1VdfnWuR9hsREhWfZzQalUnAYqxUKBRi27ZttLS0UF9fT1NTk9SH7du371T9FQ6HefTRR7HZbFRWVjJv3jyqq6vR6/WUlZVRU1NDTU2NXIhTqRRGoxGr1SoPGlarVV6vp+hVIRIOh1m0aBHQcUYbtBUjvPfee8yfP59bb721w66r2H8y+yWKg5Rofg1txrb4TgcCARmJ2bhxIwaDgRNOOIEnnngCaAuBT5kyhQ8++IDXXntNrgGTJ0/m2GOPpaWlhXXr1hGJRHA4HGiaxmeffSZ7jJaUlAA/5LyGw2HcbjdNTU0MHDiQUChEKBSiX79+sg+cGIeX2QRYNObNNftstOn1eqZPn87Pf/5zfvOb3+Dz+Vi6dCnnnXce999//04GW2NjIz/96U958sknO0xoRceS6W0zmUzY7XbZnFAUJwAyOXPNmjU0NDTg9XqZNGkSOp2OefPm8d1338kE0HA4TDgclrlOwmATBQk2m61HhLFmzZrFqaeeyrXXXsupp57KZZddlmVkFBKZQ5gze/ZlGmxbt26lubmZhoYGGRZtaWmhpqaGdDqNx+PhJz/5CUcffTQlJSV89NFHPProo7z11lucdtppANTX18seTNCWHwttJ2oxA1eMrMnsEZg5q1CRf3zxxRckk0n69+/PwIEDO+y6Iq9t/vz5Mn9KkVsyp5IIL5vIY3M4HDJ6I0KkRqNResNGjx7N9u3bSaVSDBgwgDPOOIOXX36Zd999F4CjjjqKQw89lH/+8588+uijst2PwGQyccUVV5BKpfjmm29obm7GaDTS2NiIxWKhrq6O3r17y2KIzL6lVqtVtimyWCxyDxSRhXzYs/YrlnDJJZdw7733MnPmTK688kqmTp3KZZddxi9/+cusx8ViMc4++2ymT59+wD15FJ2HyG3LNNTsdrtMMLdYLFmPF/lsp5xyCg888MBO8yIbGxvxer1EIhHZl2vH0UKZeUjdmcWLF3PllVei1+sZPXo0K1eu5PDDD896jBjRIhAn0Hxix9FnYmGLx+O0tLTQ2trKtm3bCAaDNDY2ygUxGo2ydetW0uk0p5xyCnfffXdWQ1WHw8Gjjz5KdXU1paWlcuZgXV2dLHTZtm0ber0eh8OBTqfD6XTKA4bNZpMHAhUazW86OjQqOOKII7BarTQ0NLB69WpZYVxI7M4jX6ie+h29bKKVRuYYRYPBINeU3r17s2HDBgCKiorYvn07ACUlJSxfvlwabD/5yU/4+OOPefrpp+VrlZWVMXr0aFwuF2vWrGHFihU88cQTXHvttYwYMYIVK1bIg53Yb4THP3McVmYxk4guif0qM1KUa/bLbDQajfz6179m5syZTJkyhbFjxzJz5sysx2iaxhVXXMEJJ5zAZZdd1iHCKjoPg8Egcw9E/zWLxSKbFVosFux2O/CDt+zFF1+kpaUFi8XCVVddxZ/+9CfOP/98DAYDLS0trFixgtWrV7Nq1SpWrlxJdXU1jY2NsmeXqM7pzgSDQdngUVTd7sgDDzyAx+ORt3xMI8gsHhCVn6ISNBaLyZJ9Uf0lDE+bzUYqleKEE07g//2//7dTB3xxIBAeXeGFFNWANptNVp45nU5psAlPrXi8aPWhyF86y2gzm82MHz8eoGBbfwiP/Lx583j99dfldIDd3Z/vZBpCgJTbarUSiUSAtqpQYRzZ7XbZd3Hjxo1yzQwGg7z99ttAWzPmJ554gs8//xyj0ch5553HrFmz+M9//sNf//pX7r//ft544w3uueceAJ599ll+9KMfAcj2QEKOzNGMQtbMST6Z+5LY7/Jlr9pvX98ll1wiR0u88sorOy2YCxYs4LXXXmP27NkcdthhHHbYYXz33XcHLLCi8zAajXLMldVqlQab3W6noqICs9ksDQtRug1Io+2cc85hxowZvPPOOwwePJhEIsHatWtZtWoVq1atYsWKFWzZsoWGhgZCoRCxWEyOM+quOJ1O+XcSuRQ7Mn36dJkL6Pf7ZTgwnxCLa+YA53Q6LUdShUIhWT1qMBhIJpOUlZXJKRpXXHHFLkMLYgE3m83U1tbS2tqKXq/Pai8jGmpaLBbZyNlgMOByuaQxqZo45zeBQEC2bDjhhBM6/PqZIdJCZPHixVRWVmZ55Pd0/47EYjHZf0zccsmORptYP8xms/ydKF6DNm/6IYccArQZbYKmpiaWL18OwPfff091dTX9+vXj7bff5t5772XUqFE7fe/PO+88bDYbsVhMhk5F6FXsNZkyCLky0yt2bPSdT+y30XbDDTcAbVUfuzrhVlZWkk6nWbJkibyNHj16/yVVdDqZLRTEbFFhpLlcLsrLy/H5fNjtdkpKSvB4PNjtdgKBANdee600TkaNGsW7777Lj370IzRNY9OmTaxZs4Y1a9awfPnynQw38YXujowdO5bPP/8cTdNYsmQJw4cP3+kxFotFdukWt3xCTLcAsga+i7EvIsQhKsPLy8t3usbuQpdff/01AIMGDeK1114D2k7gYiSa0+mkpKREzg8UeSaZofV8quxS7Jr//Oc/JJNJhg4dyqBBgzr8+mIOaaEOj9+dR749nnooDG89IL3m0Ob96tu3L0ajEb/fT1NTEwcddBAANTU1ALS0tKBpGh6PhwULFqDX6/nb3/4mH7cr/vnPf9La2orVamX9+vUAO3WtEOuZ8PSLCSrCyOx2Rttdd93FBx98wMKFC0kmkzz11FMdLVdBEIvFOOuss5g4caKsdCl0RNdqMRtObJZFRUUUFxdTXl5OeXl51oxIo9HI0qVLufTSS2XzU6fTyaOPPsqll14KQFVVFRs2bGDdunWsXLmSLVu2UF9fL/OeuqvhdsEFFzB37lzGjRvHueeeW5BFCJmfjTDUMg05sfCJgd0tLS0YjUbq6urw+XzAD4twJlu3buXhhx8G2oy2r7/+OqsJZ2lpqdyEfD6fDNubTCYsFktWl3XlZctvPvroIwAZrupojj76aPR6PRs2bJBJ7oXE7jzy7fHUQ/5768WhKh6P4/P50Ov1RKNRGhoaGDFiBADr1q2Txqbw0Gfm+kJbEcKQIUN2+zqffvopt99+OwDHH3+8bBkiMJvNmEwm+e+ODbl3FR7dsYgu1+yz0fbkk0/yxz/+kffee49DDz2UX/ziF8yYMSOrwV1PoVDzDfZGpuFmNpuzDLeysjIqKiro1asX5eXlFBcXc9BBB2EwGPj222+ZOnUq//73v2X36d/97ndcfPHFAGzatImtW7eyYcMGVq9eTXV1tfS4ifYR3Q2r1crbb7/NN998w3XXXZdrcfYZUfIOP5w+M2cIwg/GWiQSwev1Eo1GZbd7cYKtqqrKuu7ChQu59NJLZUNmsckI46ysrAyPx0NpaSlFRUVYrVbsdjsGg0GW9Yvr58tiqtg9//rXv4C24qXOwO12M2bMGOCH3LlCYnce+fZ46iH/vPU75oGJdhkiXNm/f3+gLVJnNBopLy9H0zTpSRT/7rj2iN6vO6JpGs8//zw33HADsViM4cOHU11dDfywpng8HsxmM2VlZej1eioqKqTdsrtZxZkFCPlQOQr7aLTNmTOH66+/nhdffJEJEyYA8POf/5xAIMALL7zQKQLmM+3JN8i3XIP2kunBMJvNOBwOvF4vPp9PGm3iVlZWxvDhw7FarWzfvp2rrrqKqVOn8tBDD/Huu+9y8cUXM3HiRDRNkx62zZs3s27dOrZt20ZDQwPBYJDW1tZuabgVMpmNkXfMUxELcSKRoLy8nFQqJUOjImQqFsNPP/2UpUuX8s4773D11Vdz1VVXyUHNRUVF6PV6vF4vXq9XNuOuqKigqKgIu92Ow+HAYDDgdDqlPGKOoSK/Wb9+PevXr8doNHL88cd32uucdNJJQFt4rNDY0SP/17/+lRUrVnQLTz20rQOigrOhoQGHw0GfPn0AqK2tpaKiAkC25xAIo03ct27dup2uHQgE+OUvf8mDDz5IOp1m0KBBMsfV6/XicrlwOp24XC7cbrc8bA4YMEAah2ItE68n1rgdux7kA+2ukV+8eDHnnXceM2bM4JxzzpH3u91ufv7zn/Pggw9y+eWX96hFtL2Vgffee29Xi9YhCINNNNoVHpXM34ubqD6tra2loaGBFStWsGLFip2uGQqFSKfTbN++XVaomkwmDAZDVg+3nqRH+YooOoC2RVN4kjOTd202G62trfTv35/6+nqi0Sh6vV4udiL/7LvvvuOSSy6R19bpdJSUlFBaWorRaKS4uBiPx0N5eTklJSXSiysMtsykZXFdpSOFgQiNTpw4cac1pCOZMmUKDz30EHPmzMmbnlrtRXjkd8Xu7i8EMkOLRUVF1NfXk0qlqK+vx+fzUVJSQkNDAy0tLTidTkKhEG63m0QikZWrGg6HMRqNfP/99zz22GNcfvnlRKNR2autvr4eg8FA//795dB4r9crnQ1OpxO73U5ZWRnpdJoBAwbI6S6ijRD8EI4Vh02xjuXTWtNuo+2II47YbRLkb3/7W3772992mFCFQnsrA2+55Rb5cyAQyNsk0V0hGu+m02ksFgupVEq6jEVDU/Hlslgs0tUdCATweDxomsbGjRtlY8Xx48fj8XjkXMrMPCVxLZHXlE9flJ5IZg8jo9Eo/2+z2WRvtqFDh7Js2TKam5vp27cvVVVVOJ1OWUXq9/s5/fTT+fbbb6mvr5dTDHw+nzToiouLcblclJWVUVpaSklJCUVFRdhsNmmwZSYSm81m1ZOtgJgzZw7QeflsAmEU1tfXs3jxYo466qhOfT3F7hEHNzG9ANr2ktLSUpqamojH4zQ1NeHxeAgEAsTjcdxuN6FQSKY8uN1uObs6EokwYcIE5s+fz8MPPyxzYQU+n0965UU6j8lkoqKiQjaMHzJkCOFwGIfDwaBBg2RfODFrNJFIyPCt6P9Y0EabYmdEvsHIkSNZsmQJ9913306PsVgsOzWnLTRE491UKiXbLHg8HgA591F0qLfZbDJPQXD00UdTUVGBz+djwoQJLF++nA8//JBwOCyTUZ1Op9yMe9rUhHxETDyAH2YHCkQFp5jJJ+YKi9Opw+EgEAgwdOhQVq1axerVq7Hb7QwYMEBeQ+SYiP5MIuwuQqQih00suJmvnU8LqGLPhEIh5s6dC8AZZ5zRqa9lNps5+eSTeeutt/jwww+V0ZZDjEYjqVRqp/mjBoOBkpISWlpaiEQiBAIBSktLqampkXnQwosu0nMcDgeRSISWlhbGjx/PunXrZIP30tJSHA6HbA3k8Xhwu904HA7Ky8tJp9PY7XaOPPJIOR5vzJgxVFVVkUwmsVqt9OrVi2QyKa9ptVoxm80kEgnpKcynNUcZbQfABRdcwEUXXcQzzzzDtGnTCjbfYG9ketsSiQRerzcrQVNMVBAd6i0WC5FIBL/fTyQSoaGhQVaVZpbkC8OvpaWFxsZGXC6XDJdm5k0pw61rEbP3ANm3b0e8Xi91dXUEAgG8Xi9NTU1yYXO5XNTW1hKNRikvL5e5ipmGvclkwuVyyTxJER51Op1ShywWS9Z3Shlshce//vUvYrEYgwcPZtSoUZ3+elOmTOGtt97i3Xff5e677+7011PsGuGZTyQScn61Xq+XqTBerxdAjsFzuVwEg0G8Xi+NjY34fL4s50BxcTHNzc1EIhGZR53ZUNtms+FyubDZbJSXl2O1Wkmn07hcLk444QQ5YP7ggw+msbGRaDSK0Whk4MCBcki8MBq9Xi+pVCorLzdf8tlAGW0HxJ7yELobZrOZaDQq85xE6BPIymmz2WzY7XYaGxux2Wzyi+vz+TAYDDQ3NxMIBKioqODiiy/m2WeflW0kmpqasFqt0gAUxmJPGHeVL2R62MSoqF397UW4MhaLyXwQUd2ZSCQ4+OCDqaqqQqfTSU+ZMNpEnprT6ZShUY/HI1vMGI1GeS3IrmZWFBZifTz77LO75Dt85plnyubM69ev32M/L0XnIjxm8Xhczu6MxWJyTRf9GBOJhAyBms1mWWwkPF2ZhUehUEj2iBT7hPDKZ1aGappGRUUFkyZN4rvvvkPTNMrLy9HpdIRCIfR6PQMGDCAYDGYZZz6fj3Q6Le/b3aE1l+SXNIq8RXzRhOGWTCZxu91yjqhoDyI61VutVkKhEE1NTej1etn53ul0MmjQIIxGIx9++CHwQ0FDMBgkmUzS2tpKKBTCYDBgMBiIxWKqF1cXkDlfdEeDbcf8jszmkyL8n0gkOProo5k/fz7RaJSysjKZA5mZr+hwOPB4PDgcDnk6zixKEaOrxGvl20lX0T7i8Tjvv/8+AD/+8Y+75DVLS0uZPHkyH3/8Ma+//jq/+c1vuuR1FbvGYDDIw7s4EIqZ1jabjaKiIurq6kin0xQXF1NfX4/T6cxaX8ShLRAIyMrPTER3A3HQM5vNjB07lpKSEpYsWUIymcTlctG7d28507Rv376yKE6n08k9K3NCT2aINp9QRpui3QjDLfPkJMKXwsASjU/tdjv19fVYrVZisRiRSIRIJEI0Gs1q/KjX6znllFPYsGEDiUSCeDxOJBLBZrPJocJ6vZ5EIrHbXjqKjiGzoWTmSBdAnnpFDqMowDGZTHg8HgwGA9FolEAgwOjRo2lubs5q4WI0GmXIUxQWiNOxzWaT80Qzq4hF88t8WzQV7eOjjz6ipaWFiooKjj766C573fPPP5+PP/6YWbNmKaMtTxCHelGFLg6IFouFoqIiGhsb0TSN0tJS6uvr5ahEUZQmitYyR+iJa4pDnWgj4nK5aGxspK6uDmhL5RgyZIhsulxeXi5lEFWmmeFQYKf86nxCGW2KfUJMSkilUrIsW3Sw1+v1tLa2YjAYZJjT5XJRV1eH1WrF5/Ph8/nkF0t8MWpqakgkEjI3LpVKydOY2WwmlUpJY0GFyDoPEebOXMBEaEBUVYmTp/i9MKwOOeQQVq5cKT2qVqs1Kx9NGPTifjHfVtyXaZCrcGj34MUXXwTgoosu6tJcxLPPPpvrrruOb7/9lnXr1u2xg76iaxH7h5iCI/YKn89Hc3MzmqZRUlJCU1MTLpdLGk42m02OPYxGo7I6XXjoRSV6MpmkubkZaFuDBg4ciM1mkwZbUVGRDLmKWdqZgwFEyDUfjTWBMtoU+0xmxagw3kSSuHApi9JtEe5qbGykpaVF3kRhQyZHHHGELLsW1xX5BaIku9ArcfMZ0ZcvM3lYJBSLHm2ZlZzwQ8dwn8/HmDFjaGxspLW1VVaNCZ0QBpjQDzFKRjS1FOwpj05ROPj9ft59910AOcquqygtLeWEE05g7ty5zJo1S441UuQH4gAnvGbQtq7odDppuBUVFREMBuWaJPo/7gmr1Sr7sYlq0mAwKBvaFxUVSSeA0WjMMtiEMVkIB0VltCn2m0zjLXOTFsmm4l8xhN7j8eD3+wmFQvLL4nA46Nu3LwcffDAej4evvvoKaKsGEiXjmc1aC61pZqEhPtPMHm0iz0MstvBDB/FwOMzq1auzriF6sUG20SaKS8QJOdMwy9QTReHzxhtvEI1GOeSQQzj88MO7/PUvvPBC5s6dy7PPPsv06dPVISDPMJlMpNNpUqmUDHdarVbpZRPtpaxWq2y8a7PZSCaTMhIDP0QHMteOZDKJ3++Xr2U0GiktLZV94wwGAz6fL6tCPh9z13aHMtoUB4wIaxqNRuLxuPxZbPJGoxGz2Yzf78dsNlNSUoLD4aB///5y/FFNTQ1r165F0zS8Xq90h4svkviyJZNJldvWxQiDOdMDZrPZKCsro76+PmsWqQhniDzHzIVQ5LVl5suJk/SOOXSKwuYf//gHAJdffnlOPtfzzz+fm266ibVr1zJv3jwmTZrU5TIodo9IgRCdAxKJBKlUCovFktWAVzTIDYfDBIPB3YbZRZVnZrN3se/odLqscViialU8r5AMNlBGm6IDEV/EzHw34W0THrlwOCyLElatWsWaNWuywqQul4uRI0fKJFLhsRGPSSaTKnzWyez4txUn2MxiBGgLN3i9XiKRyC7nxgqPm/C07ehZE/341GfZvfj6669ZtGgRFouFK6+8MicyOJ1OLrjgAp566imeeuopZbTlIWK/ENEZkccsPG5+v59wOEwqlZJtPUQEQMxEFp773a0hmWuSw+GQeW9QmAYbKKNN0QmITTqZTGYVEAiPis1mIxKJyCkL0Gas9e/fXzZNFIieO+KLBj8YborOR9M06R1LpVJy9Izov5QZ6hYJw6L1iwh/ZCJOwKpJbvflb3/7G9Dm7SopKcmZHFdddRVPPfUUr7/+OjNnzpSNWhX5hdgfhOEWjUZlkYDNZpNjrkRqzI4pFJmHwh2bvmdGezLbFhVCwcHuUEabolPIDJGKcUfC4xYOhzEYDLIfj8/no7y8XIY9MxNUTSaTzKkSX0qRIF+IX7hCI51Oyy7hzc3NJBIJGhoadioksdvtWCwWeQreschEeN1Uzlr3pqGhgddeew2A66+/PqeyjB8/npEjR7J8+XJeeuklrrvuupzKo9g9oguBOMiLsKlIpxEFacLDlplekUnmz5kGnPg3s59ooaJWUEWnIqpyLBaLbKIqOuALoy4QCLB27Vo2bdpETU0N69atk2FVMdoKkB6dzBOTouPJHA8jQqJms5ni4mJpWIumlDabjeLiYtmqJXNxFDlswvumDLbuz9///ndisRhHHHEE48aNy6ksOp2Oa665BoBHHnkkqw9hPrF06VIqKysZP348L7zwQtbvli1bxuDBgzn++OO55JJLciRh1yDCpZlrTDQalf09M4sPBMIwE7fMQ2Omx020GBK9IAsZnZavmtxNCQQCsorS7XbnWpwuRYwxERVDYoRJa2trVq8caEt079Wrl2yyK3rveDwe6SbvrrNe80FHMtt8iIReQTKZlPkkIn9RoBri9lzC4TADBgygsbGRV199lQsuuCDXIhEIBOjTp48cXH/SSSflWqSd+MlPfsIf//hH+vbtS2VlJV9++aX83auvvkoikeCyyy7bp2vmwxpyIGTOLd2RzCk8O+bEZpozYtJOdzssdq93o8hrhKElvC92ux2r1YrH48Hn8+HxeCgqKqJ///4MGjRItpUQ+QeAbOq6q3wpRcchPKRAVvsP+CHUueNgeTEIXhlsPZMnn3ySxsZGDjroIH7yk5/kWhwA3G43V1xxBQAzZ87MrTC74dFHH2XAgAHAzuG+5cuX8+yzzzJp0iTmzJmz22vEYjECgUDWrZAR64/dbpcRGrFniH1DNGcXxQgiX3bHAqjuRvd7R4q8RuS6iS+dGGUkEkZ3VU0oRpQARKNR6d7OnBOn6HjEQgjIE68Y5JxZLSoa5SpjrecSj8d56KGHALjtttvyKgR1ww03APD++++zYcOGHEuzM6WlpQDceeedXHjhhVm/GzNmDI888gjvv/8+d999924Pqg888AAej0fe+vXr1+lydwV78qr1VJTRpsgJmbluFosFh8MhF/pwOExDQwOhUCgrpwGQYTnxf+Vt61wyjbZoNJoVyhaeU+VdUzz++ONUV1fTq1cvfvrTn+ZanCyGDx/OKaecgqZpsrI1l8ycOZPKykp5mzNnDvfffz91dXXceOONWY895ZRTOOSQQ3C73QwePJjGxsZdXnP69On4/X55y5zvrOheKKNNkTNEgqgIq9lsNqxWKzqdjnQ6TTgcxu/3EwwGpdGW2bQXfkiUV3QOmSGGzERgs9lcMGNfFJ1LKBTid7/7HQB33XVXXuaaCmPoqaeeIhQK5VyW+fPny1skEuH777/niSee2Omx06ZNY9WqVcRiMaqqqnbbQsViseB2u7Nuiu6JWnEVOUdUDYmZlKIJYuY0BYfDgdfrxefzSWMPlLets8n8bMRQZjHwXXnXFAB/+tOfqKurY8iQIVx11VW5FmeXnHrqqQwZMgS/3y8H2ecL99xzD2vXruWEE07g+OOPJ5VKceutt9LU1MQ999zDlVdeyeTJk/nNb36jDkkKVT3a1RR6VU9no2ka8Xg8yxDLbMaa2XtHVDFmFip0B5SOKAqF6upqDjnkEEKhUN5UjO6Ohx9+mF/84hcMGTKElStXyoNfd0StId0XZbYr8goRestMbE8mk8RiMWKxGPF4XFYtZvYEUygUXc9NN91EKBRiwoQJnHfeebkWZ49ceeWVFBcXs27dOl599dVci6NQ7Bdqt1PkHZnNEEVlaWbPncwSbzG7TqFQdC1vvvkmb731FkajkccffzzvD09Op5NbbrkFgPvuu0+lVSgKkvz+lil6NMJ4y5ymIPq8iZsy2BSKrqeqqkrmr/3qV79i9OjROZaofdxwww14vV5WrVrF66+/nmtxFIp9RhltCoVCoWg3yWSSSy65hJaWFsaNG8e9996ba5Hajdvt5uabbwbg17/+NeFwOMcSKRT7hjLaFAqFQtFu7rnnHubPn4/L5eKVV14puCKgX/7ylwwYMICqqiruu+++XIujUOwTymhTKBQKRbt47bXXpKHz2GOPMXjw4BxLtO/Y7XYefvhhAGbMmJE161OhyHeU0aZQKBSKvfLVV1/JOZ633norF110UW4FOgDOPPNMLrzwQlKpFBdddBFNTU25FkmhaBfKaFMoFArFHlm0aBGnnHIK0WiUqVOn8oc//CHXIh0QOp2Of/zjHwwePJjNmzdz9tlnE4vFci2WQrFXlNGmUCgUil2iaRovvfQSxx13HH6/n8rKSl555ZVuUbXt8XiYPXs2brebzz//nGnTpqk2IIq8RxltCoVCochC0zTmzJlDZWUll156KZFIhJNPPpkPP/wQl8uVa/E6jNGjR/Pmm29iNBp55ZVX+OlPf0oikci1WArFblFGm0LRQSQSCSZMmCB/nj17NuPGjWPKlCkqZ0ZREKTTaWbPns1RRx3FlClT+OKLL7BYLNx9993MmTOnWxlsgpNOOomXX34Zo9HIyy+/zNlnn01LS0uuxVIodoky2hSKDqCpqYlTTz2VDRs2yPv+8pe/MH/+fG644QYee+yxHEqnUOyZZDLJa6+9xmGHHcbZZ5/N4sWLsdvt3HrrrWzcuJF77rmnW4REd8d5553H7NmzsVgsfPDBB4wdO5Z//vOfuRZLodgJZbQpFB1AOBzmz3/+MyNGjACgpaWF4uJizGYzxx57LAsXLtztc2OxGIFAIOumUHQFW7duZcaMGRx00EFceOGFfPfdd7hcLm6//XY2bdrEQw89RK9evXItZpcwdepU5s2bx6BBg9i4cSOnnXYalZWVPPPMM2zZskXOOlYocokx1wIoFN2Bfv360a9fP/lzMBjE6XQC4HA4CIVCu33uAw88UFBd5RWFxYoVK/jmm2+IRqO0trYSDodZv349S5Ys4dtvv5WPKykp4YYbbuDGG2/E5/PlUOLccdRRR/Htt9/yu9/9jpkzZ7JgwQIWLFgAtE1TGDBgAMXFxfh8Pnw+H0VFRfh8PjweD2azGaPRiMlkYtSoURx22GG5fTOKboky2hSK/WDmzJnMmjVL/nzHHXdw2mmnyZ+dTqcckRMOh3G73bu91vTp0+Uga4BAIJBlACoU+0s8Hueoo44iEons9jHjx4/nmmuu4eKLL8ZqtXahdPmJx+PhoYce4pZbbuHpp5/mvffeY9GiRQQCAb777rt2XcNgMNDQ0IDX6+1cYRU9Dp2mfL5dSiAQwOPx4Pf797iRKwqT448/nk8//RSA4447jo8++ohPPvmExYsXc9ddd7XrGkpHFArFgaDWkO6L8rR1MS6XC7/f3y2rsBTZ3HLLLRx33HHYbDbefPPNdj9P6YhCoTgQ1BrSfVGeNoVCoVAoFIoCQFWPKhQKhUKhUBQAymhTKBQKhUKhKACU0aZQKBQKhUJRAKhChDxC0zSCwWCuxVDsApfLhU6ny6kMSj/yG6Ujir2hdESxN/amI8poyyOCwSAejyfXYih2QT6Uziv9yG+Ujij2htIRxd7Ym46o6tE8Yn9OQKIR65YtW3K+GGTS3eQq5BNyd/ssOpueqCOQn59Hvsl0oPIUqo7k2+eQSb7K1lnriPK05RE6nW6/lc7tdueVwgqUXB3HgegH5O97VnJ1HAeqI5Cf7zvfZMo3efaF7rjPQP7K1tFyqUIEhUKhUCgUigJAGW0KhUKhUCgUBYAy2goci8XC3XffjcViybUoWSi58od8fc9KrvwiH993vsmUb/J0Ffn8vvNVts6SSxUiKBQKhUKhUBQAytOmUCgUCoVCUQAoo02hUCgUCoWiAFBGm0KhUCgUCkUBoIy2AiaRSDBhwgT58+zZsxk3bhxTpkyhqakpZ3LFYjHOOussJk6cyBNPPJEzOXbk3HPPZdOmTXz55ZeMHz+eyZMns3HjxlyL1akoHdk3eqKOQH7qSb7pSE/VDchP/YD80xFBp+qKpihIGhsbtRNOOEErLS2V9x133HFaLBbTPvjgA+3+++/PmWzPP/+89ve//11LpVLaySefrLW2tuZMFk3TtFgspv34xz/W+vTpo23cuFGbOnWq1tjYqC1fvly75pprcipbZ6J0pP30VB3RtPzVk3zRkZ6sG5qWv/qhafmjI4Ku0BXlaStQwuEwf/7znxkxYgQALS0tFBcXYzabOfbYY1m4cGHOZFu8eDGVlZXo9XpGjx7NypUrcyYLtJ3Gbr75Zk466SQAWltbKSoqYsSIEaxduzansnUmSkfaT0/VEchfPckXHenJugH5qx+QPzoi6ApdUUZbgdKvXz/GjBkjfw4GgzidTgAcDgehUChXouWVLNA2y23SpEny53Q6Lf+vdeOON0pH2k9P1RHIXz3JFzl6sm5A/upHvskCXaMrymgrEGbOnEllZaW8zZkzJ+v3TqeTcDgMtJ2McjmDLZ9k2RWZw3j1+u7zFVA60nF0Vx2BwtGTfJFjR7qzbkDh6Ee+ybIrOkNX1MD4AuHGG2/kxhtv3O3vfT4f9fX1RKNR5s2bx9ixY7tQumzGjh3L559/zsiRI1myZAn33XdfzmTZFTabjYaGBurq6hg4cGCuxekwlI50HN1VR6Bw9CRfdaQ76wYUjn5A/uqIoDN0RRlt3YhbbrmF4447DpvNxptvvpkzOS644AIuuuginnnmGaZNm4bVas2ZLLvirrvu4vTTT0en0/HCCy/kWpwuRelI++jJOgL5oSf5qiM9XTcgP/QD8ldHBJ2hK2qMlUKhUCgUCkUB0P0C8gqFQqFQKBTdEGW0KRQKhUKhUBQAymhTKBQKhUKhKACU0dbFaJpGIBDoEf19FPuH0hHFnlD6oVD0XJTR1sUEg0E8Hg/BYDDXoijyFKUjij2h9EOh6Lkoo02hUCgUCoWiAFBGm0KhUCgUioJh+/btPPbYY3zwwQc9Lk1ANddVKBQKhUJREKxfv55jjjmGuro6AM4//3xeeukljMaeYc4oT5tCoVAoFIqC4JprrqGuro6+fftiNpuZNWsWN9xwQ67F6jKU0dZOtmzZwuTJkznmmGN48MEH+fLLLxk/fjyTJ09m48aNuRZPoVAoFIpuzX/+8x8++eQTzGYz8+bNY9asWeh0Oh577DFeffXVXIvXJSijrZ08/PDD3HPPPXzxxRfMnTuXO++8kzlz5vC3v/2NBx98MNfiKRSKAuLcc89l06ZN6vCnUOwDf/zjHwG4+uqrGThwIGeddRa33347ANdeey01NTW5FK9LUEZbO7n99tuprKwEIJVKAVBUVMSIESNYu3btbp8Xi8UIBAJZN4VC0TOJx+OcffbZfPXVVwDcd9996vCnULSDbdu2MWfOHABuvPFGef8999zD+PHjCQQC3HzzzbkSr8tQRls7KSoqwmAw8PjjjzN27FjS6bT83Z6qVx544AE8Ho+89evXryvEVSgUeUgsFuPmm2/mpJNOAqC1tXWvhz918FMo4IUXXiCdTnPMMccwbNgweb/RaOSxxx5Dr9fz+uuvs2TJktwJ2QUoo20fePHFF5k9ezYPPvggOp1O3q/X7/7POH36dPx+v7xt2bKlK0RVKBR5iMvlYtKkSfLn9hz+1MFP0dPRNI1nnnkGgGnTpu30+0MPPZTzzz8faPu+dGeU0dZOvvrqK5577jnefPNNzGYzNpuNhoYGVqxYwcCBA3f7PIvFgtvtzropFAoF0K7Dnzr4KXo6S5cuZdWqVVitVmmc7chvfvMbAN566y0aGxu7UrwupWc0NukAfv/731NbW8tpp50GtOWinH766eh0Ol544YUcS6dQKAoRcfirq6vb7eHPYrFgsVi6VjCFIo947bXXAJgyZcpuHR+HHnoohx56KEuXLuXNN9/kmmuu6UoRuwxltLWT9957b6f7Fi5cmANJFPvC2rVrufzyy2loaMDr9fLss88yYsSIXIulyCNyqSN33XWXOvwVAGodyR2apkmj7YILLtjjYy+66CKWLl3Ka6+91m2NNjRFl+L3+zVA8/v9uRalRzB58mTtmWee0TRN015//XVtwoQJuRWoHSgd6VoKTUeUfnQ9haYj3YlvvvlGAzS73a6FQqE9PnbNmjUaoJlMpr0+tlBROW2KvEHTNI455hgOO+ww7HY7Q4cO5bDDDuPOO+/cr+vV1dXx3//+l0svvRRo6421ceNGNm3a1IFSK7oSpSOKvaF0pHshvGynn346Dodjj48dMmQIAwYMIJFIMG/evK4Qr8tR4VFF3qDT6fjiiy8AqKio4OOPP6Z///5Zj/nJT37CunXrdvn89957L6uybsuWLfTu3VvOpNPpdPTv35+qqqo9Fo8ocoP2/1dPZibn74jSEcXeUDrSfdA0jVmzZgF7D41C22dz0kkn8dRTTzF37lxOPfXUzhaxy1FGmyLv2LZtG4lEYqeFFuCNN97Yp2vtaABoe+ipp+haNE0jmUySTCZJpVJZRpter8doNGI0GndZVal0RLE3lI4UPl999RVVVVU4nU5ZBLg3TjzxRJ566ik+++yzTpYuNyijTZF3LFu2jMMPP3yXv9uXE3K/fv2orq4mmUxiNBrRNI0tW7bschFXdB3pdJp4PE4ikdjl7zVNI5VKkUqliMViGI1GzGYzBoNBPkbpiGJvKB0pfN59910Apk6dis1ma9dzjj76aKDt849Go1it1k6TLxcoo02Rd9TU1NC3b99d/m5fTshlZWUcfvjhvPjii1xxxRW8+eabDBw4UIU0ckQqlSIej5NMJuV9Op0Ok8mEwWCQHjVhtAkPnPDGmc1mzGYzOp1O6YhirygdKXw++OADAM4444x2P2fAgAGUlpZSX1/PkiVLmDBhQmeJlxN0mvLzdimBQACPx4Pf7y/4RruZm2s6nUbTNDRNk+Etg8Gw2/DWnli9ejWnn34648eP58UXXzwgGVevXs0VV1xBY2Mjbreb5557jpEjRx7QNTub7qYjyWSSRCIhZ/YCGAwGTCYT8XicWCwmvW5GoxG73Y7VakWn0+1k6JnNZiwWS4/Wke6mH+KWTqez1pFMdDpdVth8T3mPgp6sI92BqqoqBgwYgF6vp66ujuLi4nY/94wzzuD999/nL3/5CzfddFMnStn1KE+bYr9IJpPE4/GsMTyCzPBWPB7HYDDsFN7aE8OHD9/tHMZ9Zfjw4Xz55Zcdci1F+xHGWiwWy9qADQYDOp2OSCRCQ0PDLvUnGAxisVgoKSnBZDJhs9mkcRePxzGZTEpHCphdHfb2BaEDJpNpj8ab0pHCRnjZjj766H0y2ADGjx/P+++/z9dff90ZouUUZbQp9glN03bKRxLhLXEaFidmYbilUilaW1sxGo1YLJZ2nZIVhUs6nSYajUrPmk6nw2AwEI/HCQQCWbpjMBiw2Wyy438sFiMcDhOLxaitraVXr14YjUZMJpMMlyYSCTUhoEARh71dedL0en3Wv5kI71symUTTNBKJBMlkEqvVus+efEVhMGfOHKAtn21fGTduHNBWyNDdUEabot1ompa1GZtMJpljlEnmIiqSzjOrBC0WiyyfV3QvhIEuNmWj0UgkEiEUCmVt1Ha7XfZcSiQSpNNpbDYbLpcLr9fL9u3bSSQS1NfXU1FRgU6nw2g0Sg+NMtoKC2FoCYNdfJ475jJmVhCLWyYmk0l68DVNo7W1FbPZ3O6QqaIw0DSNBQsWAG3VoPvKUUcdBcD69etpaGigpKSkQ+XLJWrnVLQL4T0R4Syr1ZpleImcFE3T5ElZnJqtViupVIpoNCoNP5FUrug+pFIpIpEI0Ga4a5pGfX291BlRBRqLxWhoaKCqqmqna7hcLvr3709ZWRlbt24lFovR2tqK3W7HaDQSi8WkF7e94XZF7sk02IQeJBIJQqEQsVhMetB2hVhLRI6s1WrFYrHIPElxKNyXFAxFfrNmzRqampqwWq0cdthh+/x8n8/HsGHDWLNmDYsXL+aUU07peCFzhDLaFHslnU5L74lOp8NqtWIwGEgkEoTDYaLRKIlEImvR1ev1WCwWbDYbdrsdg8GA3W6XC3Q8HgdQhls3QXjYoO2zj8ViBAIBAOlRaWpqko8RiA1ceE2CwSArV65k2LBhuFwuAoEAwWAQu90uk9CTySStra3YbDa1SRcAmQab8Mw3NjYSi8Xa9fzMQoVEIkFrays6nQ673Y7NZpO5cdFoVOqT8roVNqI58lFHHbXfe8SRRx7JmjVrWLRokTLaFD2HTA+ZTqeTi2RjYyPRaHS3zxOGXmtrKy0tLbhcLlwuFxaLBb1eTzweJx6Py5YPisJlR6M+EokQDocBsNlsNDc3EwqFgDavicfjwW63y+cbjUZcLhcGg4GNGzcSDAZZt24dw4cPJxAI0NraSjwel5WjohFvJBLJagOiyD+EJwzaQpuapmUVoNhsNqxWKyaTSYY4xeFPeO7T6XRWeoXwrIXDYSKRCB6PRxrz4qZSMAobYbQdc8wx+32NI488kpdffplFixZ1lFh5gdJqxW5JJpPSMNPr9ZjNZvx+P8FgUD7GZrPJRHKx6IoTcTQaJRQKkUql8Pv9hEIhiouLsVqtMsclFotl5bUoCovMHDadTkdra6s02CwWCzU1NaTTafR6PV6vl2AwyPr163fyuAEUFxczYsQIqTvbtm3D6XTKStOKigr0ev1OHttkMondbleGW54hqoehreBE0zQaGxvRNA2TyYTP55MFJqFQSHrsM3vziVsmZrMZl8uF0WgknU7T0tKC3W7H5XLJXDdRtawOhIVJRxltQLcz2lSfti6mUHosCYMK2hZcg8FAY2OjDHPY7XbcbjfxeJxIJJLVS0tUiTqdTiwWi/S2iQIGj8eDy+UiFovJ3CTRl0tRWDqSadRHo1Fp0BuNRmpra4E2wz4Wi7Fly5asRHOHwyFzm8TzdDodo0aNorm5GYBBgwYRDodJp9MYjUa8Xi8OhwOdTpf1+kajsd0d0wudfNcPUWEu1gO9Xo9er5cGm9lspri4mHA4TF1dXdYhcE9keuGgbV0qLS2V64rNZsPr9crKUqBdrUEU+UVzczNFRUUA1NXVUVpaul/XCYVCuN1uNE1j27ZtVFRUdKSYOUN52hQ7IUKXgBzbsn37dllkYLVaCQQCbNmyZZd9tjIxm80UFRVRXFwsqwj9fj/pdBq3201ra6s8WatTcWEgiknExijaeYjN12AwZBls1dXV0rPmcDjQNE1u2EajkeLiYkaNGkVDQwO1tbV8//33DB48mFgsRlVVFYMGDSIYDJJMJmloaJCLusPhQK/XE4lEZF6T8tjmlkzvGiBzX0V+o8lkwuVysWnTJnkftBU2Wa1W4vE40WiUaDQq1yHx2YrGyx6PB51ORzwep7a2lj59+hCPx2ltbUWv18vf75hLpygMFi5cCMDQoUP322ADcDqdHHLIIaxYsYLFixfvV+uQfEQZbYosMg02EbpobGwE2hbgcDjM9u3b5eONRiMOhyMrh0QkiodCIbmwbt++ndLSUtxut0wu1+v1snFqPB5XZfsFgPDACo+H2WwmGo3S0tICtOmI0A+TycS6devkY8PhMOvXr9/pmlu2bGHJkiX06dOHvn370tDQwKZNm+jTpw+pVIoNGzZQUVGBw+EgHA6TSqWor68nmUzi8XjQ6/WyN6Ay2nLDjt41UfGZ2ZdPeFVXr14tdaKkpASr1crWrVupqqqSzxf9+MShUKRnxONxWlpasFqt9O7dW4bRBwwYQCgUIhwOYzKZpDdW9JQU0QJF/tMRoVHBkUceyYoVK1i0aJEy2hTdj0yDTSywwmCDNld1Op2WyeQAra2tNDU1Sc+LOBGL8KjZbJZ5T3V1dTQ3N1NeXk4sFsPv98vQifDeqDBpfiLyhMQGLDZRYYBDmwEvPLKaprFx40b5vJqaGqAtudzj8WCxWGQekqZprFmzhpqaGhoaGhgyZAjRaJSamhr69OlDOp1m69atGI1GevfujdFoJBAI0NzcnJXLpjI9ckemwWYwGIhEIll5izqdju3bt8vHOJ1OXC4XVVVV1NfXy2uEw2FaW1t3WeSk0+koLi7G6XQSjUapqqqiV69epFIpamtrqaiokJ58s9mMyWSSRQzxeFytLQVCRxttzz//fLfKa1NGm2KnKQdmsznLw5ZOp+X/jUYj4XCYqqqqdm+Ser2ekpIS2Vupuroan8+HwWCgubkZr9eLXq+Xlapqcc0vRHWo8HoIQzxzExYGWzqdln3YEokELS0tBAIBWThQX1+/k97YbDYmTJhAJBKhrq6OVatWcdBBB5FKpaiqqqJv376yOrCqqkrqkpieIMLqSmdyQ2YOmcFgwO/3Z/3c0tIijTCz2YzT6aS2tpY1a9YAP/T3Ez39xEQMUSUs+rOJxroNDQ2UlZXhcDjkTErRLsZqtRKLxWhqaqKsrEyuZcITq7xt+U0ymZRTDDrKaIO2YgRRLFXoqEKELibfkojFJiuSecWGLE6/okRfeE9qamrkputyubDZbFmzBEVZvlgkxYIpFkuv1ysbpYoebnq9XlaDZTbk7amhrnzSkV0ZbH6/P6uJbjqdlm0cQqEQgUBAVnxGo1H8fj9+v1/qidfrpaSkBKfTSXV1tQytlpSUMHToUGpra9HpdAwdOlTqpdPpZPDgwTQ1NQHQq1cvEokENptN5snZbLYe0eYhn/RDtF6BNsPd7/eTSCRkg22R22gwGHC5XGzfvj3Le280Gtm0aZPs6xcKheQ6IipBDQaDbBUkKkcdDgderxefzyfbCel0Ovr16ydnIovHiCkuYoKLIn/59ttvGTt2LG63m+bm5gPeAyKRCG63m1QqRXV1NX369OkgSXNH91/hFLsls6UHIL0XYmPU6XTSeEskEnIBdjqdhMNhli9f3q4GmTqdDp/PJ5uoBgIBvF6vbPvhcrkIBoOyfUg6nSYSiWCxWFRxQg4RDW9FSFzkq2VOxWhqaiISiZBIJPD7/bS2ttLc3ExzczORSISmpiZisRjBYFBWiW7ZsgVoM/jGjRvHGWecwfz582loaCAQCDB27Fi2b9/OmjVrOOSQQ4C2SrCVK1cyfPhwWlpa8Pv92O32rHYQ3eEUXWhkjqUS4XO9Xo/JZKK6uhpoO6ilUilWrlwpvR1i4sWGDRtIJpO0tLTIvmsiRJqJKDCw2+0yKpDpbxCHwOrqavr37y+vIwx5cahURlt+I0KjRx99dIcc2u12OyNHjmTZsmUsWrRIGW17IhgMcsIJJ8i+OzfeeCNXX311Z72cYh/YMRwqFtlAICB7bBmNRurq6oA2b0ttba3se7RkyRK5YIqB39BmBIqKLeFtEyGOZDIpH+vz+WQHc5/PRyqVwul0ymu4XC4AObJINU/NDeLvL+ZEinw10UJBeF2FoRaPx6mvrycUCtHU1CQ9J36/X+pbMpmkqKgIq9VKS0sLCxcu5JtvvuHSSy+VIbNvvvmGiRMnsmXLFlauXMnIkSPx+Xw0NzdTU1ODw+EgEonIRs+K3CC+14BcP6DNA79x40YASktLicfjrF69GoDy8nI8Hg+ff/65bBXU3Nws2wJlViBXVFRgs9loaWmRVcOhUAiv1ytlEIcJoaNms5mamhrKy8tl0YKoQBSNenuqB78Q6Mh8NsGRRx4pjbazzjqrw66bKzrNaLPb7Xz22WfY7XYikQijRo3inHPOobi4uLNeUtFOMg02kaxbV1cnQ1FWq5Vt27bJHmrixKzX61m5ciUAffv2JRQKsXbtWhke2ROiL5fT6aS1tRW3201JSQnxeJyioiIZOrPb7fj9/ixPnE6nUyfkLkY0SIY2D6ww2KxWK8lkkm3btkmDTXjb6uvrs/5taGggEonIYgWhJ9XV1ZhMJs444wxsNhvffPMNzz33HGeccQaHH3443377LfPnz+eUU05h9erVLF++nMrKSnQ6Hc3NzdhsNvR6vWwTk9lBX+UsdR07DngX64dIkTCbzXi9XubNmwfAsGHDiMVifPTRR9LjVl9fL737okmzw+Fg5cqVLFmyBIB+/fpx9tlns3XrVlavXk1jY6M8xIkDhMVikblu0Nbry+l0kkwmiUQiGAwGeYhURlv+0llG29NPP91tihE6TXvFrElA5hSo9LncI7xh0LYZi+TwVColQww1NTVyFIyoGLVYLDJxeMCAAXz11VcsXbqUSCSCyWTC6/XidDpl36ympiYaGxtlflMoFCIYDFJbW0tjYyMtLS1UV1cTDoepr6/PCo2IcInYgOPxuNwQCo1YLMZZZ53FxIkTeeKJJ3ItTrsROmIwGGQRgcFgwGQyyTB5PB6nqamJUChEbW0tgUCAbdu24ff72bp1K36/n+rqarZv3y71ZOTIkQwaNIhEIsFbb73Fpk2bmDZtGgDvvfceLS0tHH744aTTaf79738zatQoAL7++mt8Ph+A9O7s2COwUHWkUMk02MT/RZNlaEujqKqqIp1OU1xcjKZp/Oc//5HG/+bNm2ltbaWhoUH2a9y8eTNfffUVgUBA5rhu2bKFmTNn4na7Ofroo0mn0wSDQdLptCx6aGxslEUKIr1C6LBoLwRKR/KZrVu3smnTJpk20VGIYoRvvvmmW9gg+2y0pdNpDj74YH79619n3f/RRx9hNpt5/fXX5X0tLS0ceuih9O3bl9tuu42SkpIDl1hxQOw4B1AkBdvtdsxms1xkRd5aOBzGYrHIPKTevXszb948kskkw4YNY8SIETQ0NLBkyRK+//57NmzYQF1dnfSuNDU1UVdXR319PXV1ddJ4q6urIxwOU1NTQyQSobGxMavcP5VKEQwGswy3QmTWrFmceuqpzJs3j9dff32P81rzCWEQGY3GrMa4wmAzm83U19cTjUalZ010t9++fbvMXWttbcXlcnHbbbfx1VdfMXv2bP71r3/x5JNPYrfbWbBgAVVVVdx6663o9Xo++eQTNm3axLBhw0gkEnzxxRcUFRXJdhCwsy4IWZPJZMEtyoVq1O+OzJCp0Whk27ZtQFuRySeffAK0efLXrFlDNBqVxSqRSIQVK1YQDAY5+OCDeeKJJ/jvf//L119/zS9+8QsAnn76aU4++WQqKipkI12RlxuLxQiFQtKQ0zSN5ubmrEHzgHIe5DFffvklAKNHj+7QAptDDz0Uq9VKY2OjdDwUMvtstOn1eqZPn86jjz4qR80sXbqU8847j/vvv5/zzjtPPtbr9bJ06VI2btzIyy+/nNWUVdH1iIpOQPbYAmQFXlVVFdA2A9JoNLJ161YZ1vT7/dhsNplMPHbsWNavX8+HH34oQxHDhg2jV69emEwmWUUIUFRUhM1mk6fqQCAgN/toNEptba3MbUkkErKCTAyqB2SOXKGxePFiKisr0ev1jB49WoaXMxGVc5m3XJO5sWWOI2ptbUWn08mRROKzamxslK0+YrEY27dvJ5VKcdRRRzFnzhyuvvpqmasIcNxxx/Hggw8C8Nhjj2G1WrnrrruwWCz897//paqqCrfbLSuXAZljKQxf4TURG7LYoAuJQjXq4YfCDzEpRfxf6IuYbqDX6/n+++9lk9s1a9bItSAWi9HS0iKbLl9++eW8+uqrTJw4UTbuvuaaazj++OOBNo/r6aefniWHGJHX2NgoG3sLGUShVGbBlDLa8pPOCI1C214nPHfz58/v0Gvngv0Kj15yySWUlJQwc+ZMqqurmTp1Kpdddhm//OUvd/n48vJyxowZw+eff35AwioOjMxwhugWDm2Jw6J/ltvtpqysjOXLlwNw8MEHs2zZMqDttNzS0oLX62XDhg2sX78ej8fDeeedRywW45133uGTTz5h2bJlbNmyhZqaGlauXMmCBQtYtmwZvXv3lnlJIgm5paWFRCJBU1MTqVSKUCgE/LARRyIRuSEU2oYMbaEZUWThcDjk+8vkgQcewOPxyFu/fv26WsydyNyExf+Fvuj1ellcINp/iEkJItE7kUhw5JFH8swzz1BeXr7L1zjttNM4++yzSafTXHXVVXz11VfcfffdMqfJYrEAsGrVKukVFr38RDsZaNMV0eqj0MJfhWrU70imIST0JHN01ZYtW0gmk2zevFke0JLJpAyhG41GHnzwQX7961/vMn9V6IKmaQwaNAho+26J5roidC6+X8LLFolEZG5sIa8jPYHOMtoAJk6cCMCCBQs6/NpdzX4ZbUajkV//+tfMnDmTKVOmMHbsWGbOnJn1mO3bt8svbSAQ4PPPP2f48OEHLrFiv8k8GWcusmIaAbR5xTZv3kwqlaKoqIhgMEhrayter5dNmzYBMGTIEJYsWYLZbObCCy/kD3/4A8uWLcNqtXLGGWdw//338+KLL/Lqq6/y4IMPMnHiRJLJJB9//DHDhw/HYDDIRpqRSIRIJCJfR8yYFIttNBqVchfahgw/tEeBtjFOu3L7T58+XfYy8/v9MhSdSzJzgETblUwjKfNnoUvCmyGee+mll8rNdnf87ne/4+STTyaRSDBz5kzuuOMO/ud//gdoa4hptVplInmmF0e0cABkhWumLIVCoRr1OyIMIZ1OJ9cS0X9PpGCIfpDhcFjqUHV1NRaLhX/84x+ceeaZu7x2OByWG/qYMWNoaGgA2r5bo0ePlo/T6/U0NTVJPRFV7IXoge1pRKNRFi9eDCijbW/sdyHCJZdcIjfWV155ZaeqrerqaiZNmsShhx5KZWUlN9xwA2PGjDlggRX7T2bbDFFcAG2jqISnIpFIyLB3v379+P7774G2yq/q6mr0er3MazrppJOYMWMGsViMSZMm8dlnn/Hwww9z4YUXcswxxzBu3DjOP/98XnjhBX7/+98D8M477/CjH/0I2NkIEP+K5pg7hkQLbUMGGDt2LJ9//jmaprFkyZJdHlwsFgtutzvrlmsyPVdCT8TnIz4T8W9mEjpA//79Afjzn//MvHnz9rhhWiwW/va3v/Hwww9TUlLC6tWrmTt3LmPGjCGdTmO1WrNeI/M1hT7rdLoso6GQKFSjHrI990I34IfPSOSY1dfXy5F4wmtoNptZt24d0Ga472mjfv755wkGgwwYMIDDDjuM9957D2jLVRLVouFwmIqKiqzniUNeIa4bPY3FixeTSCQoLy+XntSO5OijjwZgzZo1svdoobLfRtsNN9wAQENDwy7L7I844giWLFnC0qVLWbZsGf/7v/+7/1LmKYWWRCx6GUGbYeRwOIC2xVX0WhP5IYBccOGHhe+ggw5i7dq1QFsu3NatWyktLeXRRx+V/ZB2xcUXX8y4ceNIp9Oyqri2tjYrcViEVcRr7WqjLjQuuOAC5s6dy7hx4zj33HOlEZLviJmw0GbAifmwVqtVft+FgSR0SoRBU6kUFRUVbN68mZ/97GdMnDiRm266iccee4y5c+eydu3arBwjnU7HlClTuOmmmwBYsWKF3Iwz20hk/qzX6+XriikembIUCoVq1EP2Z5FptIn7BJkGttD/wYMHE41GKS4u3uMg78WLF/OPf/wDgJ///Oe8/fbbrFu3DpvNxpQpU7IKqYRe7uiRF7pSqIZ9T0C0hTnmmGM65fMpKipixIgRwA9h2EJlv1a4u+66iw8++ICFCxdy0kkn8dRTT3H99dd3tGx5j0givvbaazn11FO57LLL8n5TFrP4hAdFTEEQX5RwOCw3PuFxc7lcMiQxYMAAWQXm9/sBmDBhgjT69oTw2IhwW2aYNjNHaUcjrZB7K1mtVt5+++1ci7FfmEwmGdKy2Wxyzmc0GsVsNsvco8xcIY/Hw7Zt2ygpKaF///6sWLGChoYGPvzwQz788EN5baPRyNChQzn44IMpKiqiqqqKTz/9FGjLoxSVZCJcGI/HsdlsmM1mjEYjBoNBbtJCXw0GQ8HpyQUXXMBFF13EM888w7Rp0/J+/chEGEcGg0F+d8U6suNBfldeWVHQ8sYbb3DOOedkPScQCPD666/zyCOPkEgkOPnkk7Hb7Tz33HMA/OxnP8NiscjE8oMOOkjm4Yr2RSaTSfZxy5ysUmg60hMQ331RcNIZTJw4kRUrVrBgwYKCbrK7z0bbk08+yR//+Ec++eQTDj30UH7xi18wY8YMrrnmmh43cmjx4sVceeWVWUnEhx9+eNZjYrFYllch10nEYvpBIpEgHo/j9XrZvn279LyFw2G5eGZORxCNUUUvNtF4F2hXxduaNWvkCUckDTscDunR0ev1O3lwBDt63hRdQ6bnwmw2Ew6H5YZnNpsxmUxy9mx5eTnbt2+nf//++P1+qqqqiMfj9OrVi9LSUjweD8lkktraWjZu3CjHUu2YeD9q1CjWrVtHNBrF6/WSTqex2WxYLBbZlsZut8uGqiaTScq0t/y5fKRQjfrMPDHRuBZ+OJCJghQxQSOZTGYVP61YsYKJEycyf/587r77bv785z8zbNgw2Upm/fr10hA89thjOfLII3n00UcBOP3005k4cSJPP/00wWCQ0tJSWQzjdDoxm81YLBY5ISFTLlGEpcgfEomENL4722h74oknCj6vbZ+Mtjlz5nD99dfzyiuvMGHCBKDNZf3QQw/xwgsv8LOf/axThMxX2ptEfO+993a1aHtEeNtE2MJqtRKNRrFarYTDYbmoCWMzEonIdg2RSIS+ffuyceNG+d4XLFhAc3OzNMZ2JBwO84tf/IJUKsXJJ58sv6ADBw4kHA5TUlKCTqeT3rodjTdlrOWGTI+E+EwyDaRQKER5eTmbNm3C5/PJKmCDwcCECRNoaWlh9erVNDQ0SE/tQQcdxGmnnYbX66W+vp6qqirZXNXv90uvr8PhwO12YzAY8Pl8GAwGioqKMBgMOJ1ObDabbOAtPClqGkLXkRlqFAeuRCIhP4dUKkVJSQl1dXV4vV4SiQRutxu/3y9HkrW0tDB69Gg2bNhAS0sLX3/9ddZr9OrVixEjRhAKhXj//feBtorjiy66iNdff521a9diNps54ogjWLFiBQAejwedTidTMDKNtmQyqbxsech///tfwuEwRUVFspl2ZyCKERYtWiT3u0Kk3Ubb4sWLOe+885gxYwbnnHOOvN/tdvPzn/+cBx98kMsvv7xHLZztTSK+5ZZb5M+BQCDn1V9iLFQsFpMetswqTbEgiw00FovJ8WOrV6/mqKOOYuPGjSxfvpwRI0awYsUKpk+fziOPPLJTTlFTUxPXX389q1atori4mMrKSl599VXMZrNs2iq+PMIIzDwVZ/6r6FqEVyLTaBafhfBqmc1mPB4Pfr+fiooKKioqWLFihezJWFlZid1up6qqilWrVrF+/XrZk2tXWK1WnE4nLpcLs9lMSUkJNpuNsrIyrFYrRUVF0tsmhoELr5sid4iDXyQSobS0lNraWgwGAxaLBU3TCIfDMm9VpEUEAgHS6TSDBg2itbVVFiAZjUasVitms1n25isvL+fiiy/miCOO4I033uC///0ver2eY489VhpsZWVl0iNrtVpxOBxyyotaS/IXERqdNGlSpxrVBx10EGVlZdTV1bFo0SIqKys77bU6k3YbbUccccQuPUkAv/3tb/ntb3/bYUIVCiKJeOTIkSxZsoT77rtvp8eIvLF8w2g0ygV0R0NL5AalUinKysrYvn27TPTdvHkzkyZNwmKxsGrVKk455RTWrVvHv/71Ly6++GKuv/56Bg8eTH19PZ999hkvvviibL5722238cILLwBtFYZieDiQlRMn5BELrPgiqwW369mxMlR8Nnq9XobTBw8ezMaNG2WLh3HjxskO95lza4855hj0ej3BYBC/3y9HF0FboYHVasVisWAwGHC5XHg8HiwWC2VlZdjtdoqLi7HZbNKgEzpjtVqVbnQxmV5wUVwkWnno9XppyLvdblKpFKWlpWiaRklJCc3NzdKbGgqFiMfj0hMGbbpisVhwuVyUlJQwcOBABgwYQFNTEw899BDNzc3SYBNFUaWlpTgcDsxmM263Wxp+0HYYzKx0VeQXH3/8MdDWcLsz0el0VFZW8tZbb7FgwYKCNdp0moo97TfRaJSLLrqI6upqpk2bxnXXXbfX5wQCgawFLZdEo1E5dLuurk6efkVZfktLCzabjWXLllFUVITb7eazzz7D6/UyZswYnn/+efR6PSeeeCJPPfWU9DruyLBhw7j66qt5+eWXiUaj9O3bV57CS0pKMJlMDBkyBJ1OR1FRkcybKyoqQqfTybmFJpMpLw3gjiZfdERMPADkzFG9Xi8nWjidTtauXSuLWlKpFGvWrJEbZK9evUgmk2zatEl6TPaE8JA4nU6MRiNut1t61oqLi7Farbjdbrmh6/V6mb/Uk8gX/RDj5vR6PVarVVabC0NcrCNilnA0GqWpqYlAIEA8Hpd6tGORwt4MK7fbzeGHH87GjRuBtgkubrcbs9mMz+fDaDTKULrVaqW4uFjKKnIxFflBc3MzZWVlJJNJVq9ezbBhwzr19f70pz9x6623csYZZ/Duu+926mt1FoVVH59nFGoSsSCz672oABPVpB6Ph5aWFpls3tTUxJAhQ2TC+cqVKzn++OP59NNPmTt3LtOmTaO+vp4vvviC+vp6PB4Po0aN4rDDDiMQCPD0008DUFFRIQsPfD4fJpOJvn37yrwkl8uFpmm4XK6dqr56Uug93xBVeOl0mrKyMqqqqgiFQgwdOlQO/gY4/PDDaWlpYcOGDXLupMPh4KCDDpLe22QyKRPTRbsIUe2n1+txuVx4vV5MJhNOp1NuyMLDJgw2k8m0y+75iq5BpDik02mi0SgWi4XS0lIaGxtJJBLSiGpubpaNuvV6PU6nk5aWFsxmswyZJpNJ0um0XIvsdjsul0uuB/F4HKvVisfjobm5WRpsJSUluFwuTCYTXq8Xo9EocyB1Oh0ej0f2fAS1huQb77//PslkklGjRnW6wQY/5LV98cUXWa1oCgnlaeti8uWUDMjRQwaDQXrYdDoddXV12O121qxZIzdpUXEzYcIE5s6dS1NTEw6Hg+LiYjmezG63M2rUKJxOJ42Njaxbt05633Q6nWy6qtPpKCkpweFwUFZWJjfliooKmW/ndrvR6XR4vV7ZHkAknXd38klHQqEQmqZht9tpamoiHA7LzVYYZRaLhUQiwZYtW6S3xOv1EolEqK+vl3NK94QIe4owvM1mw+12YzKZZP6a1WrFbrdLg81isfQIfdiRfNIPMVZMYLVa0ev1tLS0yIpzMbxdzBMOhUIkEgkSiQSRSES2IBLr0Y4I3QiFQvKaBoNBriHCYDOZTHg8HnnA8Hq92O126c0THsGeqDP5ytlnn83s2bP5v//7vy4p2IvH43g8HqLRKCtXruTggw/u9NfsaJTR1sXk04IrFlExeiYcDmOz2eTgeKPRyIYNG2T5/JIlSwAYPnw4y5cvp6amBp1Ox8CBA1m5cqWclJCJzWajT58+xONx6WErKiqSBp/P58Nms1FcXIzBYJALr6hqzawC6ylelXzSkUgkIsNKBoOBrVu3ykkFJpOJqqoqUqmU9GrU19fLIgRBOp2Wo6YyN0zRkkGMHBIGu8vlktcXm7IInQrva0812CC/9APaPl8xdxaQeYnhcFj2ctQ0jdbWVlmQIAoPhBEmEPOPbTYb9fX1bN68Wea6AbKKWOiHMOiMRiMej0euEQ6HA4/HI/sMQttapKpH8wfROSAajbJkyRIOPfTQLnnd4447js8//5wnn3ySK6+8sktesyNR4dEeTGZ4NLO/ktPpJBQKybYLgUAAvV7PkUceyaJFi1i9ejU+n4+ioiK+++47Nm7ciMPhYOLEiTKUkUgkCAaDMhwmwiIixCUMNqfTidfrlSERMaXBaDTicrmkQaDyUHKDyWSSXhCz2SwLU4T34uCDD2br1q2yhYPD4WD06NEEg0ECgYBMNN/VZinCavCD50RMXxBGmgiXZjZJ7ckGWz4iPFjCQIrFYpjNZtkzrampiVQqJT9T0VbIbrfjdrtlmCoSiRAIBAgGgwSDQbxeL5MnT5YzicPhsFxLxCFBVIaKHDb4YYJEpsFmsViUwZZnzJkzh2g0yuDBg7t0xOXEiRP5/PPPmT9/vjLaFIVF5sYnkrljsRi9evVi7dq1+P1+Bg0aJMOc8XicSZMm8e233xIMBgEYOXIkjY2N1NbWUlNTs9NriJYQYmE3Go2UlpbicrmkwZaZ3yaqWYuLi+VoHLPZrDbpHCFaamiaRiwWw2q1UlFRIRsyNzQ00LdvX3w+H1u2bCEej8sGqna7HbvdjqZpspeXpmmyNYSYtOByuaQ3DtqaL4uNWRj0QhZlsOUnou2KyE8T7TuEoR8KhQiFQvLw5nQ6SSaTsu0HtH3uQ4YMob6+npqaGlpaWmRFssBgMMh0CpEDWVpamuXlKyoqIh6PZxlshTberCfw1ltvAXDuued26Xe60IfHq/BoF5NvoQ3RdsFsNssKL7ExisHUTqeTuro62SDV7XYTj8dZsWIFqVRKnpSNRqNMKBbNe4XBlZnHJnJQRJWomDMpHl9SUkIsFpMGXKE2Qdxf8k1HkslkVk89MVGjrq5OhjWLiopk3pvIZxI6sCPCk6bX6+XjoM2r5/P55AYsvCciH6mn5DTujXzTj0w0TZP5aoD0jorZn8JjJrDZbKRSKalLgCxE8fv9BAIBqWPCUyb+dbvdOBwOqT82mw2v16sMtgIgFotRWlpKMBjkyy+/lM36u4KmpibZd3T79u1y/ykUlNHWxeTbgiuSf8Xiun37djkYXNM02WdLhK02bdokF0mHw0FrayubN2/e5SirzM3caDRKr03v3r2lJ0UMGc88lYvTek8qPsgk33QEkI2YAdnUNpVKUV9fLz97kXsmQpkCMb4oGAzS3NwsryMwGo14vd6sRr4lJSWy2lTogQpvtZGP+rEjIkyaub2IubHpdFr26RP3iwkZ7WkN43a7padOXF8YcMpgKww+/PBDpk6dSu/evdmyZUuXf7dHjhzJihUrePvtt/nxj3/cpa99oCiN7uFkNtkVzS8bGhpkgULfvn2pr6+XVV1DhgwhEolQXV0tT8z9+/eXm7go2xeJ55mNcXv16oXNZpMn6t69e2MwGIhGozJsqmmaNApVpVf+YDabpQe1tbVVGm7l5eWyp18ikZCJ5ztiNBpxOp0ylNXa2ir1IJFISI+t6LGlaZpKIC9gRAWwKDIRua6ip19RUZHs2xaPx2lsbKSoqIiioiLq6+vx+/1ZQ+htNps8EIhrwg8Gn9FozMphs1qtqr1HHvPmm28CbdWjufhuV1ZWyuHxymhTFBQiFyUajcrZgeXl5XIxjcVicq5kY2OjrPY6+OCDiUajbN++XXZCz7ym6JNUVFREaWkpRqNRhjr0ej0DBgzAaDTKnJWSkhIMBoM8fRuNRrXo5hGimleE01tbW2VFr8fjweVyEYlEZMNmcQgQhl4ymcTv9+/WqNPr9bjdbqxWa1ZoTcwYVRQemaFRkeeWSqWIx+NYLBasVqvs65ZKpWhsbJSzZUWBQiqVkoUwgDTkRKGDSJ3IbNKrDLb8JplM8s477wBkjcTsSiZOnMjjjz9ekHltymhTyNYLoupTp9Ph8/mIx+P4/X7Z9byiokJWeIlO+b169ZLd0MWiKSr8DAYDwWAwa/yZx+OhX79+aJomQyE+n0/2/hInZVUtmn8IIyoWi5FIJGTRgdiYHQ6HnB+bifCshUIhotFoVud7MSsys/UHILvZKw9b4SOMN71eL416cSgzmUyUlZXJXLdUKrVTGxCB8N4JjxvsHIZVBlv+M2/ePBobGykuLmbSpEk5kSFzeLyIHBQKymhTAG0nV71eLxdAYbyJETCifYfFYqFPnz5EIhFaWlqyqgX3hMfjoaKiAqfTSSKRkL287Ha73OiFwSY8dYr8Q3jcDAZDlq5kesdEpajYmMWcUofDkWWYGwwGuelmPl/kIqnQePdC6ITwuon0BzGr1OVySV0QOqLX6+WhMrOSOXOyBvygl8rIz39E1ehZZ52Vs5zDwYMHy+k+ixYt4thjj82JHPuDMtoUErHJCo+HGP9iMpkoKSmRnhLhXRkwYADpdJpIJEI4HM5qsGk0GmVXezE/EpCVYqLwQMwXBeRzlcGW/wjvmghdiZy0zJBWPB6XM2bFZyqqjEWPtsxNV7RxUMZa90XkpInPX3jgRIW51WqVxpzwnok8WdFGRKwTAqFjSm/yn3Q6LUc/5io0Cm3rzcSJE+XweGW0KQqWzDwUsfGKhVL0VxIDn0UhgsPhoKKiImtiwa4WUGGwpVIpWXiQeTJu78BoRX4gDDBxWhY5bMJoE+OJIpEIJpNJhrSEp0WgGub2HPR6vZxvLCYp7C9C99Qhr3D4+uuvqampweVyceKJJ+ZUlkyjrZBQRptil4gNWXjeMr1oRUVFJJNJgsEgsViMSCQiN2aHwyErCzM34VgsRmNjI8lkEoPBQFlZ2U6Lrbi+2rwLExHWFp+r2JSF5zazWAV+6KSvNt2ehWgflOmh3RtiBJ4Ive84Ek1RGIjQ6NSpU3Pef1Pktc2fP1/mWRYChSGlImcIz5vIYcoMe5WVlclxVaKCVHQxF0O9dTpdVu6JeN6OXxDhoRGPURQ+er1etn3I7J8lEtBV3lrPRXjcBHsy3JSOdA80TeONN94AchsaFRxxxBEUFRXR1NTEggULOO6443ItUrtQWZuKdiG8Ipm5aZFIRI6c6tOnDz6fTy7EwsuSmbckwqiZlaHpdJpEIiFbfYjTtKL7YDQasdvtuFwuXC7XLhvwKno2wnO2q5uie/DNN9+wceNG7HY7U6ZMybU4GI1GTj/9dADefffdHEvTftTuqGg3IllcDGnWNE2OITIYDLhcLsrLy+nbty/l5eUUFxfLPm19+vShuLhYzp+Mx+MyrCqqEEUislqoFQqFonvx2muvAXDmmWficDhyLE0bZ555JtAWtt2xwCVfUUabYp8R/ZKERywajWY1txShD9G3Szw2mUwSjUbl8PnMx5vNZjWqSKFQKLoh6XRaGm0XXnhhjqX5gdNOOw23282mTZv47LPPci1Ou1A7pGK/EPlKmRWBwnMmjLjW1lbZDiQcDmeFSjMNNdFcVXnYFAqFovuxYMECampq8Hg8nHrqqbkWR2K327nooosAePLJJ3MsTftQRptivxGNUDO9bpljizJnkYrHm0wm2dVcNPRVKBQKRffl5ZdfBtpmjWYWoOQDV199NQCzZs1i8+bNOZZm76gdU3HAGAwG6TGzWCxyJqXZbJZGneiIn9loVaHoaSQSCSZMmCB/nj17NuPGjWPKlCk0NTXlUDKFonMIBoO89NJLAFxyySU5lmZnjjjiCE488USSySQPPfRQrsXZK8poU3QYos1HptEm2oWo0Keip9PU1MSpp57Khg0b5H1/+ctfmD9/PjfccAOPPfZYDqVTKDqHl156iWAwyLBhwzjhhBNyLc4uuf3224G2EGltbW2OpdkzymhTKBSKLiAcDvPnP/+ZESNGANDS0kJxcTFms5ljjz2WhQsX7vJ5sViMQCCQdVMoCgFN0/j73/8OwHXXXZe36TCTJ0/m6KOPJhqN8vvf/z7X4uyR/PwLKhQKRTejX79+jBkzRv4cDAZxOp1AWw/DUCi0y+c98MADeDweeevXr1+XyKtQHCjvvfce3333HXa7ncsvvzzX4uwWnU7HfffdB8Djjz/Oxo0bcyzR7lFGm0KhUHQCM2fOpLKyUt7mzJmT9Xun0ynn94bDYdxu9y6vM336dPx+v7xt2bKl02VXKA6URCLBHXfcAcBNN92E1+vNrUB7YfLkyZx88skkEgnuueeeXIuzW9QYK4VCoegEbrzxRm688cbd/t7n81FfX080GmXevHmMHTt2l4+zWCx5V3GnUOyNGTNm8P333+Pz+fjVr36Va3Haxf3338/cuXN54YUXuO222xg5cmSuRdoJ5WlTKBSKHHHLLbdw3HHHMWPGDK677rpci6NQdAjvv/8+//d//wfAX//6V3w+X44lah9HHnkk55xzDpqmceedd+ZanF2i0/Y0qVfR4QQCATweD36/f7fhEEXPRumIYk8o/VDkK8lkkkceeYRf/epXJJNJpk2bxlNPPVVQ3QNWrlzJqFGjSKfTLFiwgGOOOSbXImWhPG0KRQehenApFIqeyJo1a5g+fTr9+/fn5ptvJplMcuGFF/LYY48VlMEGcMghh3DFFVcAcNVVVxGNRnMr0A4oo02h6ABUDy6FQtGTCAaDPP300xx77LEMHz6cBx98kG3btlFSUsLf//53Xn75ZTnmsNCYMWMG5eXlrFy5kunTp+danCyU0aZQdAD724MLVB8uhUJRGCSTST799FN+9rOf0atXL6688krmz5+PXq9n6tSpvPnmm9TU1PC///u/Bedhy6S4uJjHH38caDt8//73vydfMslU9ahC0QH069cvq39We3twQVsfrnvvvbfTZVQoFIp9IRQKsXr1ar755hu++OILPvzwQxobG+Xvhw0bxrRp0/jpT39K7969cyhpx3PmmWfy+9//njvvvJO77rqLDz74gEsuuYSxY8fSq1cvysrKsNvtXW6cKqNNodgPZs6cyaxZs+TPd9xxB6eddpr8ub09uKCtD9ctt9wifw4EAqqBqkKh6BJSqRQ333wzK1asoLW1lWg0SjQapa6ujoaGhp0eX1RUxI9//GN+9rOfccwxxxS0R21v3H777RQXF3PLLbewcOHCnSImer0ep9OJy+XCZDKhadpONwCz2YzT6ZQzuI1GI6eccgo333zzPsukqke7GFX51b05/vjj+fTTTwE47rjj+Oijj/jkk09YvHgxd911V7uuoXREsSeUfigUPRflaetiXC4Xfr8fl8uVa1EUnYzowWWz2XjzzTfb/TylI4o9ofRDoei5KE+bQqFQKBQKRQGgqkcVCoVCoVAoCgBltCkUCoVCoVAUAMpoUygUCoVCoSgAVCFCHqFpGsFgMNdiKHaBy+XKeWm70o/8RumIYm8oHVHsjb3piDLa8ohgMIjH48m1GIpdUFdXR2lpaU5lUPqR3ygdUewNpSOKvbG3Vj7KaMsjRCl/ZyGatm7ZsqVT+zt1xet09Xsxm82d9hrtpbP1A5SOHMjrKB0prNfIxevkk4501XvvLApdftj1e9hbKx9ltOUROp2uS5TP7XZ3m9fpqveS65CGkKGrFielI/uO0pHCfI2ufJ181JGueu+dRaHLD/v2HlQhgkKhUCgUCkUBoIw2hUKhUCgUigJAGW09CIvFwt13343FYin41+lO7yWf6E5/1+70XvIJ9dnl7+vsC/ko075Q6PLD/r0HNcZKoVAoFAqFogBQnjaFQqFQKBSKAkAZbQqFQqFQKBQFgDLaFAqFQqFQKAoAZbR1c5YuXUplZSXjx4/nhRdeyPrdsmXLGDx4MMcffzyXXHLJfl0/Fotx1llnMXHiRJ544om93r+/bNmyhcmTJ3PMMcfw4IMPyvsDgQB9+vTh+OOP58QTTzyg19jdtTr6veQbSkfaj9KRwtWRrtCPPV0v33SkIz63XJFvf8v9Yb/1TlN0a84991xt06ZNWjKZ1CZMmJD1u1deeUV7/vnnD+j6zz//vPb3v/9dS6VS2sknn6y1trbu8f795dZbb9U+/fRTTdM07YQTTtACgYCmaZr25Zdfar/97W8P6NqC3V2ro99LvqF0pP0oHSlcHekK/djT9fJNRzric8sV+fa33B/2V++Up62b8+ijjzJgwABg527cy5cv59lnn2XSpEnMmTNnv66/ePFiKisr0ev1jB49mpUrV+7x/v3l9ttvp7KyEoBUKoXRaJTv4Z///CeTJk3imWeeOaDX2N21Ovq95BtKR9qP0pHC1ZGu0I89XS/fdKQjPrdckW9/y/1hf/VOGW3dHDGc+M477+TCCy/M+t2YMWN45JFHeP/997n77rtJpVL7fP1gMIjT6QTA4XAQCoX2eP/+UlRUhMFg4PHHH2fs2LHYbDYABg4cyIwZM/j3v//Nc889R319/X6/xu6u1dHvJd9QOtJ+lI4Uro50hX7s6Xr5piMd8bnlinz7W+4P+6t3avZoN2PmzJnMmjVL/nzHHXfw7bffUldXxwMPPJD12FNOOUXOOxs8eDCNjY2UlZXt0+s5nU7C4TAA4XBYXm939x8IL774IrNnz2b27NnyvgkTJmCz2dDr9UyYMIGNGzfKDWZf2d21OuO95BKlI0pH9kZ31ZHO1o89XS/XOrLjZ/qrX/2KQw45BNj/zy1X5Ppv2RHsr94pT1s348Ybb2T+/PnyFolE+P7773eZrDlt2jRWrVpFLBajqqqKkpKSfX69sWPH8vnnn6NpGkuWLGH48OF7vH9/+eqrr3juued48803MZvN8v7/+7//Y+7cuaTTaRYvXsxBBx2036+xu2t19HvJNUpHlI7sje6oI12hH3u6Xq51ZMfP9Pnnnz/gzy1X5Ppv2RHsr96piQjdnNGjR2O1WnE4HAB8/PHH3Hbbbdxxxx3U1NTwP//zP2iaxm9+8xvOPPPMfb5+NBrloosuorq6mmnTphEOh5k6dSqDBw/Ouv+66647oPdxxhlnsGnTJoqLiwGYPHky5513Hh6Ph0svvZR4PM5Pf/pTrr322v1+jZqamqxrBQKBTnkv+YbSkfajdKRwdaQr9AMKR0e+++67A/7ccsWO+pLrv+X+sKOetFfvlNGmUCgUCoVCUQCo8KhCoVAoFApFAaCMNoVCoVAoFIoCQBltCoVCoVAoFAWAMtoUCoVCoVAoCgBltCkUCoVCoVAUAMpoUygUCoVCoSgAlNGmUCgUCoVCUQAoo02hUCgUCoWiAFBGm0KhUCgUCkUBoIw2hUKhUCgUigJAGW0KhUKhUCgUBcD/B+eXNd4d5BGBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHiCAYAAAC6BfsuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+nUlEQVR4nOy9d5jU1dn//5o+s9O278LSpEmRIkZABARb7EaRqLFEY2LyTaLxQZNIYotPVOITk0iMiRoLkcQEREksSBCpoWhQepHOLmwvM7PTy+f3x/7OcXbZhQV3d2Z2z+u65oKdesPecz7vc7ej0zRNQ6FQKBQKhUKR1uhTbYBCoVAoFAqF4uQo0aZQKBQKhUKRASjRplAoFAqFQpEBKNGmUCgUCoVCkQEo0aZQKBQKhUKRASjRplAoFAqFQpEBKNGmUCgUCoVCkQEo0aZQKBQKhUKRASjRplAoFAqFQpEBKNGmUCgUCoVCkQEo0aZQKBQKhUKRASjRpkg57777LmeeeSZDhgzhz3/+c6rNUaQh1113HTk5Odxwww2pNkWRZpSWljJt2jRGjBjB6NGjWbhwYapNUqQZPp+Pc889l7FjxzJq1CheeumlVJt02ujUgfGKVBKLxRgxYgQrVqzA5XIxbtw4Nm7cSG5ubqpNU6QRK1asoLGxkXnz5vHmm2+m2hxFGlFeXk5lZSVjx46lqqqKcePGsWfPHux2e6pNU6QJ8XiccDhMVlYWgUCAs846i08++YS8vLxUm3bKqEibIqV8/PHHjBw5kpKSEpxOJ1dccQVLly5NtVmKNGP69Ok4nc5Um6FIQ3r16sXYsWMBKCwsJDc3l7q6utQapUgrDAYDWVlZAIRCIeLxOJkar1KiTdFpJBIJhg0bxk9/+tNm9y9duhSz2czChQs5duwYJSUl8rE+ffpw9OjRrjZVkSLa4yOKnsup+sd///tfEokEffv27UozFSmkvT7S0NDAmDFj6NOnDz/5yU/Iz89PhblfGiXaFJ2GXq9n9uzZ/PGPf6S+vh6ALVu2MHPmTJ588klmzpzZ6m5Hp9N1tamKFNEeH1H0XE7FP2pra7n99tt58cUXU2WuIgW010eys7PZsmULBw8e5G9/+xuVlZWpNPu0UaJNcdp8/vnnJ33OLbfcQn5+PnPnzqWsrIwrr7yS2267jQceeACAkpKSZpG1srIyevXq1Wk2K7qWjvARRfelo/wjHA5z3XXXMXv2bCZNmtSZJiu6mI5eQ4qKihg9ejSrV6/uDHM7H02hOA3Wrl2r2e127cMPPzzpc//0pz9pubm52qhRo7Srr75ai8Vi8rFoNKoNHjxYKysr07xerzZ48GCtpqamM01XdBEd5SOCFStWaDNmzOgMUxUpoKP8I5FIaDfddJP26KOPdqK1ilTQUT5SUVGheTweTdM0zePxaCNGjNC2bNnSaXZ3Jkq0KU6bP/3pT+36Qvl8Ps1qtWpnnXWW1tjYeNzj//znP7UhQ4ZogwYN0l544YXOMleRAjrKRy699FItPz9fs9lsWklJifbxxx93lsmKLqQj/GPNmjWaTqfTxowZI29bt27tTLMVXUhH+Mh///tfbcyYMdro0aO1UaNGac8//3xnmtypqJEfijbZvn07o0aNOunzsrKy8Pv9bT5+xx138I9//IPs7GwOHjyI1WrtSDMVKUT5iOJEKP9QnAzlI6eGMdUGKNKXoUOHsmvXrjYf//e//82sWbN49tln23zOww8/zHvvvceGDRu4+OKLefnll/nBD37QGeYqUoDyEcWJUP6hOBnKR06RVIf6FJnJxx9/rGVlZWl//vOf23zOSy+9pNlsNm39+vWapmnaL3/5S61fv35aJBLpKjMVKUT5iOJEKP9QnAzlI8ejRJvitAiHw9rSpUvbfPz999/XzGaztmjRInmfx+PRsrOztZdffrkrTFSkGOUjihOh/ENxMpSPHI8SbYoO57///a9mt9u13/3ud8c99vDDD2tDhgxptTtQ0XNQPqI4Eco/FCejp/qIakRQKBQKhUKhyADUcF2FQqFQKFKI1+ulpKSEadOmcdFFF8n7w+Ew1157Leeffz4vvfRSCi1UpAtKtCkUCoVCkUJ27tzJ9773PVauXMny5cvl/QsWLOCyyy5jzZo1LFy4kFAolEIrFemAEm0KRZqhaRper7fVc1kVCuUf3Y8dO3bwwQcfMHXqVF599VV5/6ZNm5g8eTJ6vZ5Ro0a1ORojHA7j9XrlzePxUF1drXykG6JEm0KRZvh8PtxuNz6fL9WmKNIQ5R/djwEDBvD000/z4YcfMm/ePKqrq4Gm37XD4QDAbrfT2NjY6uufeuop3G63vGVnZ1NYWKh8pBuiRJtCoVAoFClk4sSJnHfeeZjNZiZOnMjBgwcBcDgc8hQAv9+Py+Vq9fWzZ8/G4/HIW2lpaZfZruhalGhTdBiVlZUsWLCADRs2qLC8QqFQtJNHHnmEZcuWkUgk2LRpE4MGDQJg3LhxrF69Gk3T2Lx5M2eeeWarr7dYLLhcrmY3RfdEiTZFhzB37lwGDhzIjTfeyHnnncctt9xCPB5PtVkKhUKR9syaNYs5c+YwZcoUbrjhBl555RV27tzJjTfeyLJlyxg/fjwzZszotudpKtqPmtOm+NL87//+L4888ggAw4YNY//+/USjUZ588klmz56dYusyD6/Xi9vtxuPxqB2z4jiUfyhOhvKR7ouKtCm+FIsXL5aC7Ve/+hU7d+7kxRdfBGDOnDnU1dWl0jyFQqFQKLoNSrQpTpujR4/yzW9+E4Af/ehH/OQnP0Gn03H77bczevRovF4vzz//fIqtVCjSjxkzZnDo0CHWr1/PhAkTmD59uiw+VygUirZQok1x2syaNQuv18uECRP4v//7P3m/Xq9n1qxZAPz1r39VTQkKxf9PJBLhuuuuY+PGjQA88cQTLFmyhD/84Q/MmTMnxdYpFIp0R4k2xWmxfPlyFixYgF6v509/+hMmk6nZ49dddx0Wi4Xdu3ezZcuWFFmpUKQX4XCY//mf/+Hiiy8GIBgMkpuby4gRI9i7d2+br0kenOr1ervSZIVCkUYo0aY4LR577DEAvv/97zN27NjjHne5XFxxxRUAvP32211omUKRvjidTqZOnSp/TiQS8u9tRaRbDk7t27dvp9upUCjSEyXaFKfMmjVrWLt2LWaz+YTdoZdffjlAs7P0FArFF+h0Ovl3vb715VgNTlUoFAJjqg1QZB6i9ubOO++kd+/ebT5PpIA2btyIz+fD6XR2iX0KRaZgs9moqamhqqqKAQMGtPoci8WCxWLpWsMUCkVaoiJtilPiyJEjLFmyBIAHHnjghM8944wzGDhwILFYjNWrV3eFeQrFKbN3714mTZrE0KFDGT9+PDt37uyyz3744Ye56qqruOuuu9RMwzQmlT6iyAy6ykeUaFOcEvPmzUPTNKZPn87gwYNP+nxRv7N+/frONk2hOC2++93vcvfdd/P555/zk5/8hLvuuqvTP/O1115jwIABTJw4kQ0bNrB+/fp2fZ8UqSEVPqLILLrKR5RoU7SbRCLBq6++CsC3vvWtdr1mwoQJAHLEgULxZdA0jUmTJjF27FiysrIYMmQIY8eO5aGHHjqt96uqquLTTz/l1ltvBZrmpx08eJBDhw51oNWKrkT5iOJkZLKPqJo2Rbv5z3/+w8GDB3G5XFx//fXteo0QbR9//DGJRKLNYmtF16BpGrFYjEQigaZp6HQ6dDodBoMBvV7frDA+HdHpdKxbtw6A4uJili9fTr9+/Zo954YbbmDfvn2tvv6dd95p1n1ZWlpK7969MRqN8v379evHkSNH2qwxU6Q3ykcUJyOTfUSJNkW7eeuttwD42te+RlZWVrteM2rUKGw2G16vlz179jB8+PDONFFxAjRNIxKJtDpmIh6PA2AwGDAajWkvrsvLy4lGo8cttABvvvnmKb1XS6GqhkF3D5SPKE5GJvqIEm2KdqFpGosXLwaaBue2F6PRyDnnnMPatWvZuHGjEm0pJJFISMFmMpnQ6XQkEgni8Xgz8RaPx9Hr9VK8pWP0bevWrZx99tmtPnYqO+S+fftSVlZGLBbDaDSiaRqlpaWtLuKKzEL5iOJkZKKPKNGmaBdbtmzh0KFD2Gw2Lr300lN67YQJE6Rou+OOOzrHQMVJEcJMCLLGxkaCwaB83GQyYTAYMBgMJBIJIpGITJ0ajca0Em9Hjx6lT58+rT52KjvkwsJCzj77bObPn88dd9zBokWLGDBgQI9Pe2maJgV+ugr3k5FJPlJaWsrtt99OOBzmmmuu4cEHHwTA6/UyfPhwhgwZgsFgUDMvO5hM8hFBeudAFGmDiLJ99atfbXdqVDB+/HgAPvnkk442S3EKiAtvIpEgFos1E2wA0WiUUChEIBAgEokQj8flc0OhEKFQiGg02iwylyrOP/98/vOf/8jC3y/DCy+8wAsvvMDQoUOZM2cOL7/8cgdYmLlomkYoFCIcDhMOhwkGg4RCIWKxWMp/76dCJvnIs88+y2OPPca6detYtmwZPp8PgJ07d/K9732PlStXKsHWCWSSjwh0WiZ9CxUpY8yYMWzdupXXXnuNb37zm6f02v379zN48GDMZjM+nw+z2dxJVnYPvF4vbrcbj8eDy+XqsPfVNI1wOCwbEMSFITc3Vz4WCoWa1bzpdDqMRqOMwLWc4N/a/YrOpbP8QxCLxYhEIkDT77/lJSK57lH93juGuro63G43BoOBadOmsWTJEmw2Gy+//DKvvPIKBoOBO++8kzvvvLPV1wuBLfB6vfTt27fTfESROlSkTXFSjhw5wtatW9Hr9Vx11VWn/PqBAweSnZ1NJBJhx44dnWChoj0IAQZN0Tbxd5/Ph8FgwG63k5ubi9vtlhP4NU2TETi/308gECAcDhOLxYjH4/IxcV+y4FNkJkKkGQwGbDYbVqtV1kBCU92jiMCp33vHkJubi8Fg4MUXX2TcuHHYbDYABgwYwNNPP82HH37IvHnzqK6ubvX16nzanoMSbYqT8u9//xuAiRMnkpeXd8qv1+l0jBs3DoBNmzZ1qG2KUyN5tIeIeEajUfx+v4zAmc1mXC4X+fn5uFwubDYber1eNi0kiziRNhP3i2hdJBJpNlpEkbno9XqZIm8p0uLxOJFIhFAoRDAYlGl19Ts/debPn8/ixYvlMYHQtOaed955mM1mJk6cyMGDB1t9rTqftuegGhEUJ0WItksuueS032PcuHF89NFHfPrppx1lluI0EKIsHA6j1+ux2WwEg0GCwSB6vb5ZvWI8HicYDNLY2EgoFJL36/V62cwgxJr4WaTNNE2TY0TStZlB0TpCcInfVSQSwev1Hvc8o9Eom1cEsViMWCwGIFPnKn1+cjZu3Mi8efP417/+1ax85JFHHuHSSy/lkksuYdOmTfz4xz9u9fXd6Xxa0QQjbm1tAMSMSXETm9Hu7mtKtClOSDwelwWwp9o1msw555wDqEhbOpAs3AwGA1arVUbODAYDFosFv99PRUVFqwumWEzFxVmv12MymTCbzUSjUQwGAyaTSaZfxUBf0Q6vxFt601K0iVopk8mExWIhHA4TjUabCTT4QswLkS4is+K16vfeNr/85S+pqKjg8ssvB2D69OnMnDmTWbNmceutt/L4449z++23n1amIxNIXiOEz5wuYjPRXWsulWhTnJBPP/2Uuro6XC6X7AI9HYRo27JlC9FoFJPJ1FEmKk4DvV6P2WwmEolIoRYOh/H5fJhMJmpra9E0DYvFgtPpxG63YzQaSSQShEIhPB4PwWBQirREIiFFoNlsJhaLodPpZARA0zS5MMfjccxmc9oP8O2p6PV64vG4FNlCtGVlZWG1WrHb7bKuTQi45OgINKXc4YumhUQiIb/3SrwdzzvvvNPmYytWrOhCS7oW4RfCXwAZpReiPzna1lpkTTRECZ8S4k+sa91tnVGiTXFCli1bBsCFF14oIyenw6BBg3A6nfh8Pnbt2sXo0aM7ykTFaSLq2xKJBFarVQqqxsZGefHNz8+XRdHBYJDS0lJqamqaReCEODMajVgsFuLxOKFQCLPZLMWc2WxuJt7C4bCKuqUpRqNRjveIRCLN5vsJRJOC3+/H6/UeV8cmLqZGoxGz2Syjr/F4vNl9ip6JmAOZHKkVTU/BYLBZtC15ZiDQLAWavHYYjUasVqtcZ+LxOIFAAKvV+qWuXelG9/mXKDoFUc/2ZVKj0LTgjxs3jlWrVrFp0yYl2tIEESXTNA2n00lDQwPhcBiTySRnudlsNqqrq9m7d6+8MIuLrig8FzVvjY2NmEwmrFarjMYI8RaJRLBYLDLKKgrazWazEm5pRHL6XIisSCRCY2MjOTk5cgzIsWPHaGhoaPU9Wg7nFWl4q9WK2WyW0dbkrlRF96atFKhOpyMej+P1euVaFIlEiEajcn1pjeRa2eQIf2NjIw6HQ9YGhkKhZutOpqNEm6JNGhsb5aG6X6YJQXDOOedI0dbWvCFF15KcdhB1aZFIpNk4EKfTyb59+9A0jezsbPr164fD4SAUClFXV4fP55OjQERkJhqN0tjYKNNpQrCJKFtyR6qIyqnIS/ogLoKRSASTySQvol6vF5fLhcfjkYKtV69ezaKxR44cob6+/jjfEqlyu92OzWbDZrPJ+9TvvnuQnNoUUXUh4Fub92cwGGSpBSBFl0iXxmKx41Lw0FywmUwmKf4tFgs2m43GxkaMRiNOpxOdTkc4HO42G0Ql2hRtsmrVKqLRKGeccQaDBg360u8nxn6oDtL0ITkaAk11S+L4Kp1ORzQapb6+Xi54I0aMIBAIsHz5co4ePdrqe5rNZln/JDpQbTYbDoeDaDQqxZuoORERO5UuTS+EcI9EIrLLOBQKodfrZTdpXl4eubm5QJNg27Fjh7zg6nQ6IpEIgUAATdNkBDYrKwu73S5rJbOysrBYLN3igtpTEZux5HRna4hZkSaTiXA4THV1tUytR6NRPB4PgNz0iQHgQLMaNyHahNg3Go1kZWXhdDrlptBut9PQ0IDb7Uav1xONRkkkEhlf56ZEm6JNkkd9dMRiKpoRNm/eLIucFaml5e5XFIrHYjGysrLkQF1AHmG1YsUKamtrAXC73dhsNhkx8/l8RCIROVHfYDDgcrlwu92EQiFZxG40GuXrRI2TalJIP5K/o6LLOBAIyPVACDJN06RgczqdDBs2jPLyclasWHGcj9ntdtxuNzk5OdI3HA6HTJ+qESGZhTj2TKQxk7uIxc+ixlGIp7q6Ormu6PV6Ghsb8fv9ch2pqakBkAOcW56TLBAbAbvdLoWe2+2WqVhR8uFwOGRNZSAQkGtOJq4z6qqpaBPRhPBl69kEQ4cOxeFw0NjYyJ49exg5cmSHvK/i9DEYDFIsiQu0xWIhFovJ0R8iOhYOhzl69Ci1tbXo9XquueYa9Ho969ato7y8XAouETEJBoMkEgnq6+vlcTqiTs7pdMrni88TNU6qSSG9SBZuIqIihFUwGKS+vl7OcjMYDJx11llomsbq1avRNI2ioiKi0Sj79u0jFAphMpmw2Wy43W7y8/MpLCwkJyeH7OzsZj6RiRfUnkhyjdqJiv5F1N7v98v7jEYjNTU1coRMQ0ODPPu4sbFRdrGLAc6iQSZ5ELjNZsPn82GxWMjNzZXNT+LvTqeTxsZGmZoXNsdiMTmuKJPWGiXaFK1SVlbGrl270Ov1XHjhhR3ynnq9nrFjx7J27Vo2bdqkRFsaIESbGNcgFjFoSkcIkW232wmHw3IHDE1p0Oeee67NYnTx/m63W6ZKfT4fOTk5xGIxrFbrcSlTIRbF54t5S4rU0lK4RSIRGYmtqKiQv6OioiJsNhv//e9/icViFBYWcskll/D000/LZhURka2urqayspKqqipKSkooKioiNzdXinsh4tXvP30RaU2g2WzGZGKxGB6Pp5lYM5vNhEIhysvLZaSutrZWNiTU1NQQj8flqSvitS0bXHQ6HfX19c1So2IzEI/HycvLk8INmoSjy+WSY2iEwBO1m5nQGKNEm6JVRJTt3HPPJScnp8Pe95xzzpGi7fbbb++w91WcHqKzT5xsYDabmw3FFbtUcV8wGMRkMhGNRtm0aZOsGbnoooswGAzs27eP2tpaAoEAHo+HSCRCXV0d0BTBc7vdxGIxvF4v+fn5hMNh7Ha7nNckUqZihIgQbiqVnnqS/ULcRIOCSF1VV1czcOBAjhw5AsDIkSNlhC0/P5+LLrqIN998kwMHDqDT6WRnck1NDSUlJfTr14/8/HxycnKw2+2y6y8TLqY9EVFjBjQ7yQGa/MTr9eL1emWKXHQPl5WVye5kn8+H1+uVws3v98uTWES0XjQ4iaguNK1dLpdLdsAHAgGcTqcUksXFxSQSCfLz8/F6vTidTiwWCw0NDZjNZrKzs2W6NtmXRYo+XenUlfDdd9/l/vvvJ5FI8NOf/pRvf/vbnflxig6ko0Z9tETUtalmhPRB1HqInWfygiUaBeLxuJyzl52dLaMkAMXFxfTp04fHHntM1rolvz4nJwdN07BarYTDYerr68nLyyMcDuN0OsnPzycUCuFyuYjH41itVjRNk6lWUUCsLtypx2g0yguwEPUej0cKq2g0yvbt22W6zGAwyNqlXr16EQ6H2bNnj3y/SCSCx+OhtraW6upqqqurOeOMM+jTpw95eXk4nU55YL3wReUD6YFIlQPHfTdF2lw0JlgsFrKzswkGgxw8eFCuNTU1NXJYt0iTNjQ0yPo2kXYXPiTQ6XQkEgkZ5ReCDZCNDRUVFRQXF1NTU0N+fr5sarBarUQiEaqqqnC5XHLdEcIwGAzKtScd6TTRFovFmDVrFitWrMDlcjFu3Diuv/562WmkSF8SiYSMtHXEqI9kRAfpZ599RjweT+sdTU9BdHTFYjF5jqgYxyHElt/vl6JNpC8bGxsBqKys5J133qG2tha3201xcTE+n4+qqirC4TAVFRXys7KysnC5XPJiXVhYSCAQoKCggHg8jt1ub3ZuqRj8K0RlphYPdydMJlMz4SZGgLhcLurq6mhoaJA+8sknnzB48GAAPB6PvHAOHDiQG264gddff50NGzZgsVior6+noaGBhoYG6uvrOeOMMygoKMDtdpOVlSWFu/KB9EBEqERtGSCjYWJtMBgMZGdnk5WVhdfr5cCBA3JDdvjwYSKRCA0NDVK81dXVEY1GZfOB8Jf8/Hz69u1LWVkZ+/fvx+fzkZubS//+/QmHw3JsSEFBAfDFAN7q6mqKioqoq6trJtxycnIIBoN4vV4ikQj5+flkZWXJDlgh4NKxo7nTRNvHH3/MyJEjKSkpAeCKK65g6dKl3HzzzZ31kYoO4rPPPqO2than08nEiRM79L2HDRsmJ6l//vnnDB8+vEPfP90Ih8N8/etfp6amhjvuuIPvfOc7qTapVcTh76KuTKQcRL2Z3++XxeFippoQeA0NDTI9duONN3LxxRdTW1vLwoUL2bVrl0x5+Hw+WZ9isVhkhC0vL0+OBikoKCAajeJ2u0kkEvIAe6vVCiAH/6p0aWppOajU7Xbj8XjIzs6moaEBm82GyWTC4/HIVGlpaSlf+cpXAKipqWHQoEEsXbpURmOOHTtGXl6eFG4NDQ0MHDiQkpISsrOzcTqd2Gw22ayQScXj3Y3kWjYhbDRNo6amRq4FTqdTjtsIhUJSsLlcLg4ePCjFWU1NjfwzHo+j0+koLy8HIDc3l7POOoulS5eyZs2aZjZ4vV4OHTqE1Wrloosu4sCBA1RXVzdrqNLpdNjtdnQ6ncwS+Hw+jEYjhYWF1NfXEwqFqK6upqCgQK5xIlUqjvJLJz875e1KIpFg2LBh/PSnP212/9KlSzGbzSxcuBBo+gIKwQbQp0+fNuc6KdILkRq98MILO3yKtMFgYOzYsUDPSJEuWLCAyy67jDVr1rBw4UJZjJ1uiAGo0BQlF38PBoMyahIOh8nLy0Ov15Obmyv/BGRk7MiRI3i9XmbMmMHvfvc7li5dyn//+1927dpFWVkZn3/+Ofv376eiooKjR49SXl5OZWUl5eXlNDQ0cOzYMUKhEA0NDUSjUQKBQLOaKUCeVdjaYfaKrkH4i+gEFfWKNpuN7OxsjEYjxcXF6PV6qquryc/PR9M0tm/fjtVqxev1sn//finYxAkptbW1bNu2Td62bNnC7t27OXbsGDU1NXg8HhobGwmFQoTDYeUDKSJ5WK4QSYFAgGAwiE6no6CggJycHPR6PZqmcejQIRKJBHa7nUAggN/vR6/Xc/ToURKJBI2NjcTjcdxuNwcPHgSasjx5eXm88MILHDp0iJycHO6++27eeOMNli1bxgsvvMCECRMIhUIsWbKEMWPGAE0DwROJBB6Ph1gsRlVVlayvE2lcEQ0sLCyUw3fr6+sBZPcyILMP6cQpiza9Xs/s2bP54x//KP+RW7ZsYebMmTz55JPMnDkTOH7+E5BWalXRNp1VzyYQdW2bNm3qlPdPJzZt2sTkyZPR6/WMGjWKXbt2pdqkNkkeVinmKomBlsl1bfBF5EukRUQ6ZMOGDaxZs4aKigoKCgq47777+PGPf8y3v/1tJk2ahMlkIhAIUFZWxr59+6iqqqKsrIz6+nqOHTuG3++nvLxcpk1isRiBQEBG4kRaTLTsZzrhcJhrr72W888/n5deeinV5pwSycJNnPkoUpmikaBXr17odDqsVis6nY7PP/+cvn37ArB7926GDBkCwF133cVbb73FqFGjiMfjHDlyhK1bt7Jjxw62bdvGzp07KSsro6amhoaGBincRKG6omsRm7TkaKeoOxMRUYGItOv1eoqLi6UoC4VCsuShsbERl8vFgQMHAJg5cyYHDhzgX//6FwaDge9///usWrWKBx98kAkTJjBo0CAuueQS/vrXv3LdddeRSCTYsWMHBQUF8hgrEZFNrtM9fPgwvXr1ApoCS4BMqSbPpBQ1lMAJj9JKBadVGHDLLbeQn5/P3LlzKSsr48orr+S2227jgQcekM8pKSlpFlkrKyuT/1mK9KWxsZH//Oc/gBJtHYHP58PhcABNQ0WFuEkmHA7LLitxSxVixEJynUo4HJb/hkAgQG5urmwwSJ5ob7VaaWhokMLUZDJx9913c9ddd/HAAw/wyiuvsHbtWu6//35cLhfBYJD9+/dTXV3N0aNH8Xg8VFZWEggEqK2tJRqN4vP5pGATM97Ezr7lGYaZSKZEYttC+InZbG5VuDmdTnr16oXZbJZd6OLCuHTpUsaPHw/Axo0bGTduHIsXL+bBBx/EYDDQ0NDAjh072LNnD7t27WLnzp2UlpZSV1cn530J4ZbpAr4t8Z6uor7lSSrJ9yVnZzRNk6nO3r17c+TIEdnAcvjwYTRNo7q6GmhqVPH5fPTp04eSkhLeffddjEYjL7/8Mg888IBcg5LR6/X87Gc/Q6fTsW3bNlkzLQSXCB6JpgOxCRRdphUVFVitVlwuFwANDQ3yNcllGKJjNR04LdFmNBr56U9/yty5c7niiisYN24cc+fObfac8ePHs337do4ePYrP5+P999/nq1/9aocYreg8OvroqtYQdS2bNm1Ku9BzR+NwOOSMIb/fLxeHZJ566incbre8iUhEKhAXYdGckFxgLGapiWLw7OxsWZsm2u+hKe3tcDg4duwYixcvbvb+breb73znO7z//vtMnjyZRCLBkSNHqK2tpby8HI/HI8+1DAaDciK6ODxa/Cl2zpmeJm1PJDadRH1bCJ8QZ4m6XC5sNhu5ubm43W569eqF2+3GbrfLo6zC4bCsd/vwww8JBoMYDAa+973vsXDhQgoKCgiFQuzZs4eDBw+yd+9e9uzZw+HDh6mtrZXCLdlHMpW2xHu6ivrkM0AF4juZLKDFoFy9Xk9+fj5lZWXAF2IqOzsbr9dLVlaWjHxdfvnlsszqzjvvZOrUqSe0JS8vTwq6lh2foru1vr6e3r17A00CTgSQ6urqSCQSuFwu9Ho98Xi82f+xeL/k0Sap5rRbcG655RZ5hMkbb7xxXBeg0WjkmWeeYfr06Zx99tn8+Mc/Ji8v70sbrOhcklOjnZXOHjFiBLm5ufj9/m4fbRs3bpycDL9582bOPPPM454ze/ZsKVY8Hg+lpaUpsPQLxMHLQsAlH8YsdtEulwuTyURhYSE2m428vDxcLhdZWVnEYjG5KP7yl79k9+7dx31Gfn4+L7zwAtdeey2aplFaWorP56O2tpa6ujp5cDQgF1FRw5R8jFJyp2km0p5IbDqJ+hMhUqXJws1qtZKTkyO7igsKCrBarRQUFKDX6+W/v6qqip/97Gfywjhu3DjeeecdhgwZQjQaZf/+/VRWVnLw4EH2798vI27J4l4cn5aJIr4t8d7e8opUCfvka4SIbiXXn4q/2+12/H6/PO1EjOoQZRZnnnmmXPfOOuss9u7dC9Cuwe7V1dWyK1T4j0jPJo+IEachCJ8TcyADgQB6vV42PSWLNjHHEkibdea0RdsPf/hDoKkLqK2xDddccw2ff/45+/bt4+677z7dj1J0IZ1dzwZNX4QLLrgAgJUrV3ba56QDN954I8uWLWP8+PHMmDFDLlLJiAtc8i3VCJGm1+ubHeYtugLFSQc2m42ioiJ5YS4qKpI1Tnl5eQQCAe644w4+++yz4z7DYDDwy1/+krFjxxKPx6msrJTH2NTV1cnhvKFQSHaniUVZnB8IyKNtMpH2RGLTTdSfCOEbImXqcrlkKj0nJ4devXpRXFyMw+GguLgYg8FAcXExOp2Ot99+m3vuuUemT4uLi3njjTfo3bu37C6sqanh2LFjHD58WEZmvV4v4XCYYDAoI7GZ5g9tiff2iHroemEv0qLJQkaIHvGdhS9EVPK8PtGMIO4H5LoCTd+D/Px8gFbXjZYsWLAAgDFjxnDo0CGgKaIPTZtL4QvJNWqizlL8DF80VLSMqIl/a0ZH2h5++GHee+89NmzYQCwW4+WXX+5ouxQp4MiRI+zevRuDwdBhR1e1xbRp04DuL9qsVitvv/02n3zyCd///vdTbc4pISJtYsyHiL6JBdZsNuN2u3E6nRQXF1NUVER2dja9e/eW3YMul4uGhgZuv/12nn/++eOGZJpMJtmJ7vP50DSNhoYGvF5vs1RFy4VTpFwgs6Nt7YnEpqOobwvhMwaDodWIW05ODn369KF3797k5eXRu3dvsrOz6d+/Pzqdjvfee4+rrrqKDRs2AE0RWTErsri4GGhKb9XW1lJWVkZVVZWcqB+NRuX5lJnWWdqWeG+PqIeuF/bJ5QnJwkwIzPr6ejnnDJDn1ULTJqvlKJ9du3bJDuLXXnuNr33tawA888wzvPTSS22mvtevX89zzz0HwIwZM2QkUkTVkufCClGYvG7AF9FCsYa0zDClmx+d8rCjP//5zzzzzDN89NFHjBkzhvvuu4+nn36au+++u8PHQyi6FjFQd8KECWRnZ3fqZwnRtnbtWqLRqPKdNEVchMXZfDqdjlAohM1mk4tfTk6O7DYVf0JTd1bfvn0pLy+nrq6OuXPn8sorrzB69Gi5aAOyUFnsdMPhsBwD4PF45JmCYhp/clerGAosZstlWof6jTfeyM0338yrr77KnXfe2WokNtMQUdpQKCQjtC39w2g0YjAYZGROROcOHjzIgQMHuOmmm5gyZQrXXnst7733HgDf/OY3effdd+UssJqaGrKysrDZbM3OKY1EIvLzRddquiPE+8iRI9m8eTNPPPHECe9viRDIXYXRaJSCLRgMyvXA7XbLMT1er1eKJ/EcaBKfvXv35uDBg9TX1+Nyuaivr2fAgAHY7XY+//xzdDod11xzDf/617946qmneO2117j88ss566yzcDgc1NTUsGbNGpYuXUoikeDCCy+kurqaRCLBqFGj5EDvvLw8SktLcTgcsr5NnLgifk4Wlsk/Q/MNYboMgj8l0bZkyRJ+8IMf8MYbb8ihq/fccw+//vWvef311/nWt77VKUYquob3338f6NzUqOCss84iNzeXuro6PvnkEyZNmtTpn6k4PYRwE7tdm81GKBSS6VNAzmQyGAzyoqzX6ykvL6ekpAS73Y7X68Xj8bBu3bpWP+faa69l165d8j3D4bAsMA8EAjLVkXwRFqJNpE7TZWFtLyIS291oKdzE70X4hejME2JDzHuzWq1yJtuaNWvkQNW8vDxGjx7N3/72NwB5hq04eSP5qCvxOQaD4Tg/TVdaivff//73XHnllWkr6kXEXYxcCQQCWK1WjEYj2dnZsrzBZrPhcDhobGykoaGBwsJCqqqqMJvN2Gw26uvrGTNmDGvXruWzzz7jggsuYNWqVezZswebzcYNN9zAihUrKC8v55VXXmnVlmuuuYbBgwezZMkSdDodl112GQsXLpSDdaEpYivq6FwuF4FAgFgsJv8d4tB4oNm4kuRGp3RZW9ot2jZt2sTMmTN5+umnuf766+X9LpeLe+65hzlz5vDNb34zbf5hilMjHA7Lerarrrqq0z9Pr9dz8cUXs2DBAt5//30l2tKc5OG78IVwE5GTYDBITk6OjJqIC6jRaKS6uhqdTkd2djY6nY7BgwdTUlIiJ5/X1NTg8/lkauOMM86QkT1A1is5nU5isVizcQM6nU7OkFPHoqUXoh5SpMbcbrf0DSHYzGYzWVlZWK1WbDYbTqeTrKwsioqKqKmpkSNmvv71r/P8888TiUQYPXo0vXv3Zt++fXIcjN/vl8LNZDIRi8VkZFYIt3T2jROJ93QV9S2FmxDoomZNHABfWFhIY2MjVVVVDBw4UM5mnDhxIitWrODIkSNMnTqVVatWsXPnTsaPH09ZWRl79+5lx44d9OvXj6985Sv4/X7q6+uJRqPYbDby8/PJzs6WncUAN998sxxZdfbZZ7N//34A+vXrJ0eQ5efnU1VVBSAzSnV1dUBTWjU59SuEXDqdiqDT0i1hq0gJS5cu5bLLLqN3796UlZV1iYPOnz+f2267jVGjRrF169ZO/7xMwev1ymOB0q1+SRxfI468Emf1JRIJGRkLBAJ4vV6qq6upqamRBeNVVVUnnHdksVgYOnQokUiERCLBmWeeiaZpsnA9NzcXk8mEy+VCp9ORm5srBVvL4uLuTDr7R2tEIhE5BsJoNBIKheT0fHG+ZENDA+Xl5dTW1lJbW4vH45EX6GSysrK4+uqr2bRpE3q9nq985SvU1NSQm5tLfn6+PGTebreTk5MjDyYH5NFXPYGu9JHkdQC+aEapqKiQpyDU1NTIobc+n4/S0lJsNhtGo5FPP/0UvV7PsGHDWLZsGbFYDJfLxcCBA9m4caMsnzgRvXr1ko0IoVAIl8vF+eefz86dOzGZTFx66aV8/vnnGI1GzjvvPA4fPgw0da2K7mO9Xk+vXr3Q6/XNBJvYYKSLaOsZHqw4Ke+88w7QFGXrKue84oorMBgMbNu2jYMHD3LGGWd0yecqTp/kiFs8HpfRNFE/JNKjIpoi6o2qq6uxWq34fD4aGxvluaUlJSX07t2bYDBIQ0ODbDwYMmSInJskUhzJYz50Ot1xdWxq/5meiAPm4/E4sVhMpkRFc4vVapU3IbhErZOIosViMex2OyUlJXJM0IUXXigvviJiIoYvW61WGhsbyc7OlpsA0VWqziztWJI7zZPP7MzNzaWmpga/309BQQGBQIDGxkby8/PlMVLZ2dkMGzaM3bt3s2vXLq688krWr19PVVUVmzdvpk+fPowfP15G6kRHefLxaWJgrhgtVFxcTHFxMTt37gSaIm4iEjdo0CDZpJGfny8Fmzh6S9Tsijo20XCVTv6iRJsCTdP417/+BcDVV1/dZZ+bm5vL5MmTWbVqFe+88w733ntvl3224vRpKdyMRiMOh0MufqKeyGg0yvEf4oJcXV193M5fFA3r9Xr69etHcXExPp+PWCxGQUGBTHdZLJZmXaKi4LxlF5givUiuiUw+xUKcpJE8202kSJO7Qv1+v4y4eb1edDodEyZM4MiRI8TjcQYMGECfPn2oqKiQtWuBQACDwUA4HMZqtcrPFsXz6XYhznSSh3KLqJvRaMTlcuH1emlsbJRZnNraWoYMGcL27dtpaGggOzub4cOHs2vXLjZv3syQIUMYNmwYn3zyCdXV1fLEBGhaI5JHdSRHw4qLi6WIq6+vx2QyMXDgQHncZnFxcbO5cWazWf6cn5/fbCwJ0GwuZTqhRJuCrVu3ynD1RRdd1KWffc0117Bq1SoWLVqkRFsGIYSbiHhBU52b6CbLysqSEQ0RVXE4HNhsNpk+FQuuy+WSRx2JtBg0nQk4fvx49uzZg06nIysrC5/PJy+24nit5Bb+RCKR9kXnPZHkUSBCOCUSCfl7Fd2fQuDbbDY8Hg+1tbUyvSoiZRaLRdYklZSUMHz4cFm71KtXLzm3TaTixMw4EQkSo2QyoUEh00juMBcbraysLHkyQlFREZWVldTW1jJy5Eh27NhBQ0MDVquVr3zlK3z22Wfy1IThw4djMpmor6+ntrZWjnUxGo04nU6ys7Ox2+3E43EaGxtlZN5kMlFcXCzPHdXpdBQWFkoBJtYhEe3Pz8+XNsMXwjBdfUOJNoU8aujiiy9u1jnTFXz961/ngQceYPXq1Rw6dIgBAwZ06ecrTh8h3MTFEJoWPIfDQTQalVE3cRyW2WzG6XRSX1+P3W5vls5MTlP06tWLQYMG4XQ65TFHeXl5ctEVYz9EfZ24ICcSCfmziqKkJ6JRJZFINIu6mUwmnE5ns+OwsrKycDqdMq2WXD9pNpvp06cPo0aNYs+ePQAMHDiQgoICeRqA8BEx30xsIsQMt0xoUMhERHpapBmdTifxeJxwOCzTkNXV1dTV1TF8+HAOHDhAY2MjoVCIUaNG0dDQII+2EzgcDrlB0+l08lgpcRKCqEdzuVxEo1H5OxVHp4laxuzsbPl3k8lEXl5es+amdEyHtkSJth6Opmn8/e9/B2DmzJld/vl9+vThwgsvZPny5cyfP5+HHnqoy21QfDkMBoNMQYkGBZEyFUNwRRG4SImJY8yEUBNT891uN+FwmPLyclmAbDKZ6N+/v0yRRaNRsrKyCIVChMNhGaUR891EylaRvgif0DQNTdPkrD1RnJ4cdQsEAseJfMH27duBpu7Lfv36yXolh8NBdnY29fX1BINBHA5Hs9lcgnA4rIRbJyCK98XInpycHGpra2WkTETcGhoaKCkpIRgMUlZWht/vl9930ZHq9/sJBALNmkoA2WVcVFSEwWCQc9oMBgN5eXmyxhaasgBZWVkyeuZ0OuX6JPxKjCxJd9LfQkWnsmXLFnbv3o3VauXaa69NiQ233XYby5cv5y9/+Qs///nP03qXo2gdkf6Kx+PNZhsJQRUKheTF2Gw2N6s1EiQSCZkaBeSB47179262+00enpqcIhUz28ROW/lR+iMG7wpR3zJCa7Va5ZmVYpZWcl2jTqfD4XAwePBg2fUHyE5j0V18osPkI5FIxgzhzSRMJpNsPolGo+Tn51NZWUksFsNsNtOvXz/KyspkXVn//v0JhUJ4PB5ZWyaOQhOlD0K0iQaoaDTaLCJXWFhIXl6ePEXCZDLJI62EX4mZkkLAp3s6tCVKtPVwRJTtyiuvTNn4gOuvv54f/OAH7N27lxUrVnT6EVqKzkN0j4r0l6gpETO0ks+ltFqtslZJ7JAtFgtOpxOn0ynTaC0L2BOJhEzLiq5AsYiL+rpMHLTb0xFz3cQIF3Fcmrg4C5HeWsStvLwci8Ui0/RiBIyoc9I0TQo4oNnfVddx5yF+n6J7WKRGRQS+X79+eL1e6uvrZT1afn6+TKeKNUREYsWGUHzv4YsmhL59++LxeOT5rHl5eRgMBvn7dblc8mQE8btPt3Ee7UGJth5MLBbjr3/9KwA33XRTyuxwOp3cfvvt/PGPf+TZZ59Voi3DEQNvW9Yuia5SEQkTC3PLlITf75c75daw2WwypRoMBmWKK3nQrhJtmUtyul1ER0StoojciOYE8bsWkTiB6DAU/iZeLyJuYgivaFzJpIt2JpF8MoboKC0sLJSpUr/fj8FgoKioSP5exdiQ1r6/QrCJwb7iFg6HOXbsmKx37dOnjyyXMBgM8gB60Wwg7MqEdGhL1HDdHszbb7/N9ddfT0FBAaWlpV16dl1Ldu/ezfDhw9HpdOzbt4+BAwemzJZUk2nDU9tDct2S+FkMsEwe2JvcVajX65sdFC8idrm5uRiNRsLhMF6vF4PBIA+GFlE5EdHrjnRH/2gLEWlNjtYIPxL1cC19xm63y/8XkW4TBfDiQi6aY7or6eYj0WhUimohxCORCH6/v82B2+L3LX6/Yg1pK9oKTbWMooNYNKzk5+fLaD5kZnQtmcyTmYoO4w9/+AMA3/72t1Mq2ACGDRvGV7/6VZYuXcpzzz3Hb37zm5Tao+hYRKdp8gHvoo5JnAGYjIjUJR8ynizixMVbvLeieyJSpiJiKy74rQk4QTQaxefzNUuNieeLhhUR9cmUOqZMR4wCEYJLRFGdTieATIMm34QgF4Jd4HA45Hc+uetTNJuIM0aFYEsWeZnSbHAiVKSth7J9+3ZGjRqFXq/nwIED9O/fP9Um8f7773PllVfidDo5ePAgeXl5qTYpJaTbLrkzEBEUseiKBVpEyk4FMXcJkIXqoumhO9IT/KMtki/k4mKeHMVty3eS53GJmiYhCLuj6E9XH0n+XSU3lJwMMeYjFArJFGfyYzqdrllnqc1mIycnRwo2kU7tDiI98/8FitPikUceAZqaANJBsAFcdtlljB49Gp/PpyJt3RxxwRRdoaIezWaz4Xa7ZdFwVlaWPK5GNDKIi6xIhSWfN6pOR+jeCD8RjSyiLkkcayT8QTxmtVqx2+3k5uZKnxBivuUIiVSxZcsWJk+ezIQJE3j99debPbZ161YGDhzItGnTuOWWW1JkYcchIu7id5X83RY1r63VGIpaNbvdTkFBAdnZ2TI7JIQ8NEXXcnNzcbvdhEKhbifYQEXaeiSiQ1On07F9+3ZGjBiRapMkos7O4XBw6NChHhltS9ddcmchUlctxzKIBTx5ET+RGBMF6UC3nnbf0/yjPYiUW3KkLflINTFoV9ySzyFNdW3bDTfcwDPPPEOfPn2YPHky69evl4/9/e9/JxqNctttt53Se3YHH0muWWwtipr8ewXk9z15WG6mjfNoD93nX6JoF3V1dXz7298G4Lvf/W5aCTaAr33ta4wdO5bGxkZ+/etfp9ocRRcgLq6i3kQIMyHkwuGwTIsEg0E5+iG5QF2kXYBmtW+KnoGY9SaG88IXQk74TbLvpFNE9o9//KPMdrS0Z8eOHbz22mtMnTqVJUuWtPkeoikn+ZbpiFpWsTaI80KT61qFUE/uPE2uc+tOETaBirT1IILBIJdccgn/+c9/6NevH9u2bUvLXdi//vUvrr32WqxWK7t27epxR1t1h13ylyG5I/B0UljijMvuSk/3j/aQ3KjQ0n+S0/HJm4RUM3v2bHr16tXsDOaFCxdy1llnUVJSwsUXX8z69etb9e3HHnuMX/ziF8fd3x19pGVdY/LvV6/XYzAYZONDd0SJth5CPB5n5syZvP3227jdbtauXctZZ52VarNaRdM0LrroIlasWMGMGTN48803U21Sl6IuyseT3AUoFu3kPwWiNqY7o/zj1Eie7SVuqWTu3LksWLBA/vzzn/+czz77jP379/Pyyy83e67X65W/45tuuom5c+dSWFh43Hu2nFPn9XrlsFnlI92L7hU3VLSKpmn86Ec/4u2338ZsNvPPf/4zbQUbNO2En332WfR6PYsWLZIH2it6LuJim7yTFsXoybfuLtgUp46IqqXLEN17772XtWvXylsgEGD79u289NJLxz33zjvvZPfu3YTDYY4cOSKHxLbEYrHgcrma3RTdEyXaegB/+tOf5Ey2119/nQsuuCDFFp2cUaNG8cADDwDwne98h4qKihRbpEhX0iWColCcDo899hh79+7lwgsvZNq0acTjce6//37q6up47LHHuOuuu5g+fToPPvhgt6vPUpw6Kj3azfnkk0+YPHkykUiEX/3qV/zkJz9JtUntJhwOM2HCBLZs2cKkSZNYvnx5s/EO3RWV/lKcCOUfipOhfKT7omR7NyYSiXD77bcTiUS47rrr+PGPf5xqk04Ji8XC3//+d7Kzs1m3bh233HLLcWMhFAqFQqHoKSjR1o359a9/ze7duyksLOTll1/OyPTRsGHDePvttzGZTLz11ltcf/31BIPBVJulUCgUCkWXo0RbN+XAgQP87//+LwDPPPMMOTk5Kbbo9Jk2bRqLFy/GarXy7rvvcuWVV+Lz+VJtlkJxykSjUSZOnCh/Xrx4MePHj+eKK66grq4uhZYpFIpMQIm2bsr//M//EAqFmD59erc4/uSKK67ggw8+wOl0smLFCi677LJuMUBS0XOoq6vjsssu48CBA/K+3/3ud6xdu5Yf/vCHvPDCCym0TqFQZAJKtHVDli5dyr/+9S+MRiPPPfdcRqZFW+OCCy5g+fLlssbt0ksvpaGhIdVmKRTtwu/389vf/laeQtLQ0EBeXh5ms5kpU6awYcOGVl/XHafdKxSK00OJtm5GJBLhRz/6EQD33HNP2h1T9WU599xzWb58Obm5uWzcuJHLL79cpUoVGUHfvn0ZPXq0/Nnn8+FwOACw2+00Nja2+rqnnnoKt9stb3379u0SexUKRfqhRFs347nnnmPPnj0UFhby6KOPptqcTmHcuHF89NFH5OTksGHDBq655hrVnKBIO+bOncvkyZPlreXZkQ6HA7/fDzRF4doazTB79mw8Ho+8lZaWdrrtCoUiPVHjw7sRBw8e5JFHHgG+2J13V8aMGcPSpUu56KKLWLlyJddffz2LFy/GYrGk2jSFAmiafJ98jmRLcnJyqK6uJhQKsWbNGsaNG9fq8ywWi/JrhUIBqEhbtyGRSPCtb30Lv9/P1KlTueOOO1JtUqdz7rnn8t5772Gz2fjggw/4xje+QSwWS7VZCkW7mTVrFhdccAFPP/003//+91NtjkKhSHPUiQjdhMcff5xHH30Uu93O1q1bGThwYKpN6jKWLVvGVVddRSQS4Rvf+AavvvoqZrM51WadNmqaueJEKP9QnAzlI90XFWnrBvzzn//kscceA5pq2nqSYAO45JJLWLhwIUajkb/97W9MmjSJrVu3drkdagaXQqFQKDoTJdoynKVLl/L1r38dTdP4f//v//WItGhrXHPNNSxevJjc3Fw2bdrE2LFjufHGG1mzZg1dEUxWM7gUCoVC0dko0ZahaJrG888/z9VXXy3PFn322WdTbVZKufLKK9m6dasUsQsWLGDq1KmMGjWK3/72txw7dqzTPvt0Z3CBmsOlUCgUivahRFuGEQ6Heffdd5kyZQo/+MEPiEajfP3rX+fvf/87JpMp1ealnJKSEv7xj3+wefNmvv3tb5OVlcWOHTuYNWsWffr04aKLLuKll15i//79HRqBO90ZXKDmcCkUCoWifaiRH2nMypUr+fOf/4zP56OxsZGamhr27NlDOBwGwGaz8b//+7/MmjWr25x60FGMGTOGl156iV//+tf87W9/469//Sv/+c9/+Oijj/joo4+AppELffv2pXfv3tjtdsxmM7179+ahhx4iOzv7hO8/d+5cFixYIH/++c9/zuWXXy5/bu8MLmiawzVr1iz5s9frVcJNoVAoFMehukcVig5k2rRprFy5Emg6dmvp0qV89NFHbNq0iYcffrhd76E6vxQnQvmH4mQoH+m+qEibQtFJiBlcNpuNRYsWtft1TqcTj8eD0+nsROsUmYryD8XJUD7SfVGRNoVCoVAoFIoMQDUiKBQKhUKhUGQASrQpFAqFQqFQZABKtCkUCoVCoVBkAKoRIY3QNA2fz5dqMxSt4HQ6Uz5WRflHeqN8RHEylI8oTsbJfESJtjSipqaGwsLCVJuhaIV0aJ33+Xy43e6U2qBoG+UjipOhfERxMk7mI6p7NI3weDxkZ2dTWlqa8i92exGDYLu7zWqHfPpkoo/AqdutfOT0UT7SdWSij2Sqf0DH+4iKtKUR4hflcrkyzjGVzZ2PTqfLKHtbkmn/34JMslv5SGrIJLsz2Ucy6f+5JR1lu2pEUCgUCoVCocgAlGhTKBQKhUKhyACUaEsjLBYLjz76KBaLJdWmtBtls+JkZOr/d6banYlk6v91ptqdaWTy/3NH264aERQKhUKhUCgyABVpUygUCoVCocgAlGhTKBQKhUKhyACUaFMoFAqFQqHIAJRoUygUCoVCocgAlGhLE7Zs2cLkyZOZMGECr7/+OgCLFy9m/PjxXHHFFdTV1aXYwuMJh8Nce+21nH/++bz00kupNqdNSktLmT59OpMmTWLOnDmsX7+eCRMmMH36dA4ePJhq87o1meIjAuUrXY/yEcWJUP7RAk2RFsyYMUM7dOiQFovFtIkTJ2qapmkXXHCBFg6Htffee0978sknU2zh8fzlL3/Rnn/+eS0ej2uXXHKJFgwGU21Sq9x///3aypUrNU3TtAsvvFC78MILtdraWm3Hjh3a3XffnWLrujeZ4iMC5Stdj/IRxYlQ/tEcFWlLE/74xz/Sv39/oOmYkYaGBvLy8jCbzUyZMoUNGzak2MLj2bRpE5MnT0av1zNq1Ch27dqVapNa5Wc/+xmTJ08GIB6PA5Cbm8uIESPYu3dvKk3r9mSKjwiUr3Q9ykcUJ0L5R3OUaEsTCgoKAHjooYe46aab8Pl8OBwOAOx2O42Njak0r1UywUZo+sIYDAZefPFFxo0bRyKRkI9pakxhp5IpPiJQvtL1KB9RnAjlH81Roi1FzJ07l8mTJ8vbkiVLePLJJ6mqquLee+/F4XDg9/sB8Pv9aXlIbibYKJg/fz6LFy9mzpw56HQ6eb9er74CnUkm+YhA+UrXonxEcSKUfzRHeViKuPfee1m7dq28BQIBtm/fLgstc3JyqK6uJhQKsWbNGsaNG5dii49n3LhxrF69Gk3T2Lx5M2eeeWaqTWqVjRs3Mm/ePBYtWoTZbMZms1FTU8POnTsZMGBAqs3r1mSKjwiUr3Q9ykcUJ0L5R3PUMVZpwqhRo7BardjtdgCWL1/Ou+++y5NPPonNZmPRokXk5eWl2MrmhEIhbr75ZsrKyrjzzjv5/ve/n2qTWuXqq6/m0KFD8v/viSee4P7770en0/H6668zePDgFFvYfckUHxEoX+l6lI8oToTyj+Yo0aZQKBQKhUKRAaj0qEKhUCgUKcTr9VJSUsK0adO46KKL5P2ZNqNM0fko0aZQKBQKRQrZuXMn3/ve91i5ciXLly+X9y9YsIDLLruMNWvWsHDhQkKhUAqtVKQDSrR1MZqm4fV6VWu4QqE4LdQa0v3YsWMHH3zwAVOnTuXVV1+V97d3Rlk4HMbr9cqbx+Ohurpa+Ug3RIm2Lsbn8+F2u/H5fKk2RaFQZCBqDel+DBgwgKeffpoPP/yQefPmUV1dDbR/RtlTTz2F2+2Wt+zsbAoLC5WPdEOUaFMoFAqFIoVMnDiR8847D7PZzMSJE+UZle2dUTZ79mw8Ho+8lZaWdpntiq5FiTaFQqFQKFLII488wrJly0gkEmzatIlBgwYB7Z9RZrFYcLlczW6K7okSbQqFost5++23ufbaa3nwwQdlJEGh6KnMmjWLOXPmMGXKFG644QZeeeUVdu7cyY033siyZcsYP348M2bMwGq1ptpURYpRc9q6GK/Xi9vtxuPxqN2Qokfyt7/9jVtuuUX+fPnll/Pee+81O+5F0TZqDVGcDOUj3RcVaWsnpaWlTJ8+nUmTJjFnzhzWr1/PhAkTmD59uqw/UCgUJ6a+vl5ONL/22muxWq0sWbKEf/7znym2TKFQKNIfJdraybPPPstjjz3GunXrWLZsGQ899BBLlizhD3/4A3PmzEm1eQpFRvD73/8ej8fDWWedxZtvvsl9990HwG9+85vUGqZQKBQZgBJt7eRnP/sZkydPBiAejwOQm5vLiBEj2Lt3b5uvazk/x+v1dom9CkW6EQ6HmTt3LgAPPfQQRqORH/7whxiNRtasWcPWrVtTbGHXMWPGDA4dOqQi9gqF4pRQoq2d5ObmYjAYePHFFxk3bhyJREI+dqKywJbzc/r27dsV5ioUacf7779PbW0tvXv35oYbbgCgpKSEq666CoA333wzleZ1CZFIhOuuu46NGzcCTYdJq4i9QqFoL0q0nQLz589n8eLFzJkzp1nRtF7f9n+jmp+jUDTxl7/8BYBbb70Vg8Eg77/++uuBpo7S7k44HOZ//ud/uPjiiwEIBoMnjdiraL1CoRAo0dZONm7cyLx581i0aBFmsxmbzUZNTQ07d+5kwIABbb5Ozc9RKKCxsZH3338foFnnKMDVV1+N0Whk+/bt7N+/PxXmdRlOp5OpU6fKn9sTsVfReoVCITCm2oBM4Ze//CUVFRVcfvnlQFNa46qrrkKn0/H666+n2DqFIr358MMPiUQinHHGGYwaNarZY9nZ2UyaNInVq1ezfPlyOVi0J9CeiP3s2bOZNWuW/Nnr9SrhplD0UJRoayfvvPPOcfdt2LAhBZYoFJnHu+++CzRF1Vqbx3bhhRdK0Xb33Xd3tXkpQ0Tsq6qq2ozYWywWLBZL1xqmUCjSEpUeVXRr9u7dy6RJkxg6dCjjx49n586dqTapx5FIJHjvvfcAZNNBSy666CIAPvroo2Ypw+7Oww8/zFVXXcVdd93F7NmzU22Oog3UOqI4GV3mI5qiS/F4PBqgeTyeVJvSI5g+fbr26quvapqmaQsXLtQmTpyYWoN6IJ988okGaA6HQwuHw60+JxwOa3a7XQO0zZs3d7GFmYVaQ7qeTFtHlI90PV3lIyrSpkgbNE1j0qRJjB07lqysLIYMGcLYsWN56KGHTuv9qqqq+PTTT7n11luBptlYBw8e5NChQx1oteJkfPTRR0BTCtRsNrf6HLPZzJQpUwBYvnx5l9mm6H6odURxMjLZR1RNmyJt0Ol0rFu3DoDi4mKWL19Ov379mj3nhhtuYN++fa2+/p133mlWoF1aWkrv3r0xGo3y/fv168eRI0dO2PGr6FhWrVoFwLRp0074vAsvvJAPPviAVatWNSu8VyhOBbWOKE5GJvuIEm2KtKO8vJxoNHrclwhOfQBry6J37QSDkBUdTywWY82aNQBccMEFJ3yuEHWrV68mHo83m+WmUJwqah1RnIxM9BEl2hRpx9atWzn77LNbfexUdj99+/alrKyMWCyG0WhE0zRKS0tb/YIqOofNmzfj8/lwu92MGTPmhM89++yzcTqdNDQ0sG3bNsaOHds1Riq6JZm0jpSWlnL77bcTDoe55pprePDBB4Gm8S7Dhw9nyJAhGAwGVTrQwWSSjwiUaFOkHUePHqVPnz6tPnYqu5/CwkLOPvts5s+fzx133MGiRYsYMGCASml0ISI1OmXKlJNGzoxGI+eff75MkSrRpvgynGwd0TRNRkN0Ol2ro2iga9aRZ599lscee4wLLriAiy66iB/84Ac4nU527tzJ9773PR5++OEO+yzFF2TitUY1IijSjvPPP5///Oc/sqjzy/DCCy/wwgsvMHToUObMmcPLL7/cARYq2svKlSuBk6dGBeJ5QuwpFKdL8jqiaRqJRIJYLEYkEiEYDBIMBgmFQoRCIYLBIOFwuM2UVmevIz/72c+YPHkyAPF4XNZG7dixgw8++ICpU6fy6quvtvl6ddTZ6ZGJ1xqdppLzXYrX68XtduPxeNSRVopuTTweJy8vD4/HwyeffMJXvvKVk75mw4YNnHfeeeTm5lJdXX3Cc317KmoNOTGaphGPx0kkEiQSiWYRtZOh0+mwWq1tRt06mxdffJHdu3fzm9/8BmjqpLZarZx77rlceumlLFy4kIKCguNe99hjj/GLX/ziuPuVj3Q/VHq0ByIWMbGgifvgizSBXq8/YcpAoTgZW7ZswePx4HQ6253qPOecc7Db7dTV1bFjx47jjrxSKFpD0zRisZgUa22h0+kwGAwYDAa5xom1MBKJoGka0Wi0zdE0ncn8+fNZvHgxixcvlvdNnDgRm82GXq9n4sSJHDx4sFXRpo466zmobWwPQixMoVCIcDhMNBolFovJxS4ejxOLxYhGo4TDYcLhMLFYTHVKKU4LkeKcPHmyTPecDJPJxKRJk5q9XqFoDSHUwuEwwWCQaDTaLLKm0+kwGo1YLBasVis2mw2bzYbZbMZgMMgNqRByJpMJICUncmzcuJF58+axaNGiZoLxkUceYdmyZSQSCTZt2tTmubwWiwWXy9XspuieqEhbDyGRSBAOh5vd11o0rWUULhqNEo1G5c70ZK9XKATtnc/WkmnTprFs2TJWrlzJD3/4w06wTJFpiDUp+ZacJRAbTrH5TMZoNGIymTAYDPK58XgcTdMwGo04nU75WKr45S9/SUVFBZdffjkA06dPZ+bMmcyaNYtbb72Vxx9/nNtvv528vLyU2ZguiNpEEVUVvze9Xn9cFLU7XpuUaOshxGIxoMmxjUajdOq2SF4Ikxe61kj+snTHL4ni1EkkEqxevRpofxOCQDx/9erVMmKi6Hkkrzst157k9SkWi50wOiae09ZjovZSvEcq6ijfeeedNh9bsWJFF1qSnoioajQabfM61JqfJAu3lqVAer0evV4vBX2mrDNKtPUwhMASxONxgsGgdHaDwSB3pkajEYPB0Gx3m4z4WTwWjUaVgFMAsG3bNurr67Hb7YwbN+6UXnvuuedis9morq5m165djBgxopOsVKQj4gLdsjRDrDPi4p3cESoiZzqdDpPJhMPhwOVyyXVJCLvkmrZEIoHX65XvlbwGKtIDke0R9YaAFOvJ1yRRh50cYTtZtC3Zn4xGY0obUE4FJdp6CHq9/rgi3Xg8Tn19fZtpAbELETez2dxqKjU53ZAs4IQAVB2APY/kejZRK9RezGYzkyZNYvny5axatUqJth5CcjQl+T5N02QNrlhvhBBrLeoSDodpbGyktraW/Px8nE4nNpvtuOcFAgGgKX0qPlNc+BWpJbleMdkHIpGI9ANxvYETl+oIASfqFq1WqxRowt9isRjBYBCbzZb2wk2Jth6CWIhEDYBOpyMYDKJpGgaDQS5qyQuiqIMTtXCisDe5vq3lTkfUhiSLOfFlSfcvg6LjONX5bC254IILWL58OStXruT//b//14GWKdKReDzeLJoi7hNZAPF48gVbpMr0ej0WiwW3201WVhbRaJT6+nqi0Sjl5eVUVlaSlZWF2+3G4XDIjlG/3w+A1WqV6VOj0ajWqRSTSCQIhUIyECBm6YkZeydqkBPXJiHiksWa8CG/34/BYCA/Px+bzYbJZCIQCEh/S3fhpkRbD6Fle7tIDwCyswqQziuEnU6nk9Ez8feTObQINev1ehKJhFx0RdeWonvzZerZBMlDdlVdW/dFiC8hmsT6JMSa6GQXEZFQKCTFW0vKy8txOBz07duXM844A4/HQ319PbFYjMbGRhobG8nLy6OgoECuc3q9HrPZTCwWk6lTRWoQviCCBNFoFL/fTzQalYOQY7GY9AFxnRLXNpHZEbeWddt2u53s7GwZoa2srKS4uFhe/4TPNTY2yuBEclNDuqBEWw8iOUWaHC0TKQav10tVVVW73ke8Prl2LbnQMxaLYTAYyMrKkvdHIhFZK6fovmzfvp3a2lqysrLaNVC3NcaPH4/FYqGyspI9e/YwbNiwDrZSkWpEJD953QgGg80Emrhg+/1+eZEWm0CTyYTL5cJmsxGNRvF6vTQ2NrJr1y4sFgv9+vXjjDPOIBKJ4PV6qa+vp66ujtzcXBllczgccv1T2YDU0TK6Jk6sEKluceJDKBRC0zQp2pLFWsu0ttFoxOFwYLfb0el0+P1+AoEAgwYNkmNiampq6N27N0ajkaysLEKhkKxzS25eEeVB6ZA6V1fPHkRLcSXEk1i0fD4fAFlZWZjN5mZt9JFIhEgk0iwdeqKGA7PZLN9D1BGInZSmaadc56TIHES32+TJk097SKnVamXy5MksX76cpUuXKtHWjWhZuybWBXHRFpEUv9+P3+8nEonQ2NhIIBAgHA4fV8fmdrspKSlhwIABaJrG0aNHCYfD7N27l/LyckaPHk1hYaGs3xUXZnH6QSgUAlQDQioQAiwSiQBN16Lk33koFMLj8dDY2EgwGMTj8RAIBFpNjWZlZZGVlYXVapW/y4aGBhoaGigpKcHpdNLY2MjBgwcZNmwYkUiEWCxGdXU1BQUFMsiQ3LEsfE2MvrLZbCkPOijR1oNoKdqEYwvHFILM7XZjt9sBqK6u5ujRo3Jn2hqiUUHUg4i6NhFZs1qt0uH1er2qH+nmCNE2ffr0L/U+l19+OcuXL+f999/nRz/6UUeYpkgxyVESQKZCk4fkhkIhvF4vwWCQ+vp6Ghsbm72HEFsiUufxePB4POzcuROHw8H48eOxWq0cPHhQRt7GjBkjXy/WH4vFctz7KrqGtrpCvV4vsVgMn89HKBSitrZWRsQaGxulmBfpbJHtMRqNJBIJ2Vyi1+vp378/xcXFVFVVcfToUYqKinC5XASDQQ4cOED//v3l+5eVleFwOMjKysJisUhhJiK7wmeDwSBZWVkpFfhKtPUgxKIkmhFaNie0bC44duwYBw8elK83Go14vV58Pp+MmBmNRsxms+zIEc4s6tpsNhuxWExG2kQEThSSqpRE9yK5nu3LirYrrriCBx54gJUrV+L3++VGQpGZJKdDxcVQ1JaJKJqIqtTW1sqISyAQkBdo0XCQk5NDTk4Obrcbk8lEZWWlFGkfffQRU6dOZdy4cWzcuJH6+np5MYcv1sF0SHX1RIRAT55kINKgYgxLOBympqaGYDBIeXm5FHBCwCdfs8Tv02Aw0KdPH1wul4yolZaWcs4551BXV0dlZSXxeJysrCwp3IqLi2X01uv14vV60ev12Gw2HA4HVqtV1reJmrpgMChTrqmgU0Xbddddx8qVK7nooot48803O/OjFO0geZFKJBLH/Zx8/mg8HufIkSMAlJSUYLPZWLlypUwlhMNh+Xch0ER42WKxYLfbiUajBAIBHA4HiUQCk8kkF2ur1So/Wwm37sOWLVuor6/H6XRyzjnnfKn3GjZsGAMGDODQoUOsWLGCq666qoOsVHQ1LQWbOE5PiDK/34/H46Gurk5G17xer0ybJXP06NFmPxsMBiZMmMCNN97Ip59+yvbt2/n4448ZOnQoFoul2VolhosDzWqWFJ1Py1SoaHRraGiQzSgimlZbW0soFKKiooJAIEBVVRWhUEg+7vV6AWQXaFZWFrFYjMOHDwMwcuRI7HY71dXVbNy4kYEDB6LX66mpqZENCZFIhCNHjmCz2XC73RiNRlkCJFLzFouF/Px8mTHy+/3y39EyUttVdKpou/fee/nWt77FvHnzOvNjFO1EpC5FrZro5kyeLA5NX4S6ujri8TgWi4VevXrxz3/+k1AohMPhoKqqirKysuPe32Kx4HA4cDqdmM1mbDYb2dnZsk5FDLsUzQnJTq+EW/dApEanTJnypWs/dDodV1xxBc8//zzvv/++Em0ZSjwelx2BoqZMiLVQKERDQwMej4eKigq8Xi91dXUyEp9IJOjbty8DBw6kd+/eGAwGGhsbZVNBZWUltbW1rFu3DqfTyeTJk9m+fTuhUEhG6uCL+l3RLQo0S9OqtadzSZ61B03XGDGaBZAp0VgsRn19PeFwmOrqaoLBINXV1dJPGhoamr2v6AIFKC4uZsSIERw6dIgdO3ZgtVoZO3YslZWVHDhwALfbTV5enhRkBQUFmM1m2fRgNBopLi7G7XYTCARkA0R5eTm9evXCZDJhsVhkg0zLuaVdRaeKtunTp8t5TYr0QMyrEaM4hNOKrhxoWsDEF6GwsJCtW7cSDAZxuVyEw2HKysrQ6XTSocUgXRFSttvt2O12cnJyCAQC2O12CgoKiMViZGdno2maFG4i4iZSp2rxzGw6qp5NkCza1OiPzCNZsAEEg0Ep2ILBIHV1ddTW1lJVVUVNTY28oIrHE4kER44c4T//+Q/QVGyenZ1N3759+epXv8rw4cNZvXo1H3zwAfv27WPo0KFA0zrn8/nkGpPc+JTsQ8kbVUXnIQr5oalJzefzyVSnpml4PB6ZGg0Gg3i9Xhl9FTWODQ0NGAwGevfuzd69e4nFYowZM4ZRo0bx0UcfUVFRQXV1NV/72teoqanhyJEjbNiwgcGDB2MymfB4PPh8PgYNGkQ8Hqe6uhqz2cwZZ5wh6+vKysrweDwMHjwYt9tNVVUVkUiEmpoaiouLm9W6iSkMXc0pJ/UTiQTDhg3jpz/9abP7ly5ditlsZuHChR1mnKLjEQNyAblbgKZdp7hfdOkA2Gw2du/eDUD//v3Ztm0bOp0Ot9vN4cOHZWFoRUUFR44c4ciRIxw8eJCysjJKS0s5evQoDQ0NlJWV4fP5qK+vl7tg0TEmBvm2HK6pyCxisViH1bMJpk+fjtVq5fDhw2zbtq1D3lPRNSQLNp1ORyAQkOtFIBCgpqaG8vJyjh49ytGjR6mtreXo0aNUV1fj9/tJJBJYrVZcLpe8OAYCAY4dO8bGjRv53//9X7Zt2ybLPMxmM5s3bwbgjDPOkOUdvXr1aibORH1b8iHxqe4I7M6IGjZo+h2J0SzQ5Be1tbUyAuvz+YhEItTV1RGJRKRoq6urk9ed5cuXc+TIEY4dO8aSJUuYN28ejz76KFOmTCEej7No0SJ8Ph+XXHIJRqORffv2UVlZSVFREYlEgr1792I2m3E4HEQiEfbs2UNubi79+/dHr9fj8/koKyvDaDRSWFgIIKOEorYSaFaT15WcsmjT6/XMnj2bP/7xjzK0uWXLFmbOnMmTTz7JzJkzO9xIRceSPNMmkUjINKW4LzkEfejQIRKJBMXFxfz3v/8FmmqNxN/Hjh3Lvn37OHbsGKWlpezatYt9+/ZRWlrK4cOHqa6u5siRI9TX11NeXo7H46GhoYFwOEwgEJDDEpVwy3w+++wzvF4v2dnZjB07tkPeMysri0svvRSAt956q0PeM50Ih8Nce+21nH/++bz00kupNqfDEDVs8IVgE8NShWA7duwYlZWVlJeXU1NTQ0VFhTy/uE+fPgwdOpR+/fpRWFjIsGHDmDRpEt/+9rf5+c9/zle+8hU0TWPZsmV8/vnnAGRnZ1NWVoZerycvL49AIIDJZKJXr15UV1cDyLokQG5YTSaTakroJER3MDT9P4sNu/hZ/F70er0Ub0Kwi2uBuB6MGTOGDRs2YDKZ+L//+z/mzZvH4MGDqays5J577uGGG27gBz/4AWazmU8//ZR//OMfXH311eTn51NXV8eOHTs4++yzAdi9ezdut5v+/fsDsHnzZrKzsxk0aBAAtbW1JBIJ2WgHyJR9ckYqFZyWp95yyy3k5+czd+5cysrKuPLKK7ntttt44IEHOto+RSeg0+lkKlJ0gIoInDiPTSxiYtiuzWbj8OHDMq+vaRpDhw7lww8/BJqGoY4ePRpomve2b98+Dh8+TFlZmVyYa2trqayslC36Ik0iduQibZs8cFOROfz73/8Gmk4z6Mi0wfXXXw90T9G2YMECLrvsMtasWcPChQtlwXwmI+qXAFlGISJsIiUqUlkVFRVUVVXR0NAgH9uyZQtLlixh0aJFLFq0iLfffpu///3vvPDCC/zoRz/i3//+N1OnTgWaLq4HDhwAkNmBgQMHSjEwaNCgZiUcYl0RY4rEuIhU05Z4z2RR33IEh16vl4Eep9MpS3Byc3Nlc0l2draMqtXU1JBIJKipqQEgPz8fgKlTp/K1r32NSZMm8dprr1FSUsKhQ4e46qqrWLFiBT/60Y/kiRjPPvssF1xwASUlJfh8PrZs2cK0adMA2LBhAyNHjsThcBCLxaiqqsLlcknbxfVIpHXFWJGWI7O6mtMSbUajkZ/+9KfMnTuXK664gnHjxjF37tyOtk3RiQjhJv4ujp2yWCzodDoZfROFuiLVMGLECNasWQM0XZyPHTsGwDPPPMOCBQtYunQp1157LfDFgip20TU1NdTW1lJdXS1rFJKFmxh6KRb9VIWfFafHkiVLgKb5ah3J1VdfjdFoZNu2bezdu7dD3zvVbNq0icmTJ6PX6xk1ahS7du067jliGnzyLV0RnXWi/lCMSBBNB3V1dVRVVR1Xx+bxeDh48CBHjx7FaDQyadIk7rjjDu655x7uvfdevvvd78qI6yuvvCJHEYkLa05ODsFgsNnU+sLCQvm5er2erKws9Hq97AQ0GAxpU0fblnjPVFEvTjUQfmCz2aTfWq1WAoEAiURCpijj8Ti5ublS1OXn56NpGoWFhcRiMZxOJ8XFxQDN/g+Kior4xz/+wbRp04jH4yxevJi7776b3Nxczj//fOLxOM899xzXX389JpOJ/fv3k52djdPpJBKJUFFRgdvtlu+bvNkwGAyyLlIcjSUeT+WM0dOOCd9yyy1yMvEbb7zRqur86le/ysyZM3n//ffp06cPn3zyyZcyVtGxCJEGTbsGi8UiO0rFHBoh7MSXqaqqioqKCgwGA5MnT5bvJRy4f//+/OpXv+Kll17C5XIRCAQ4fPiwPCKrtraWhoYGKisr8fv9st1bfImTu8yUcMsc6uvrWb9+PQCXXXZZh753bm6urJHrbtE2n8+Hw+EAms5GbDlIFuCpp57C7XbLW9++fbvazHYjTlAB5OgEcTGsq6ujoaGB+vp6qqqqZDG6x+PhyJEjxONxLrzwQpYsWcKLL77IAw88wHe/+13uvvtu7rnnHn7zm99wxhlnAMjaNREFEY0GhYWFskPdZDLJdKvdbpciTTQmpItgg7bFe3tEPaSXsBeCTZw6kZWVJVPk0DS8XaRM8/LypM8np7GF8C4qKgKahJ4YIfTJJ580m7tXVFTESy+9xFtvvcVll10mNUllZSUjR44kFAqxatUqzjrrLAAOHjwoZz6Kgc7QlC4XpUF2ux1N0+TPbre72QkJqRr3AV9CtP3whz8EoKamps0w4dKlS6muriYQCFBWVsa55557uh+n6CSSW+CNRiMmk4msrCx5bpvD4cBisWCz2dDpdHLURzwep7a2Vr5Py3TmlClTeP3113G5XPj9fiorK+ViUlVVJZsXgsGgFG5iMnryTqq1Y2sU6ceHH35IIpFg+PDhsk6kI+muKVKHwyFrfPx+v0zPJDN79mxZUuDxeCgtLe1qM9tFcipJp9PJIdzJ50bW1NRQX19PJBKhvr6eaDQq02Q333wzzz77LL169Wr1/evq6uS/XaRERQef1WqVMyINBoOcDSn+LrrbrVar3Jymi2CDtsV7e0Q9pJewTx6lIk7BSSQScgOePIQ9EonI648Qesk4nU6gKWvTq1cvSkpKiEQifPzxx8d97qhRo/j973/Piy++iNFo5P3332f48OEA7N27t9lmQqRcs7KyZEAiJydH3i+ifmKqgTiXFEj5GaSn9ckPP/ww7733Hhs2bCAWi/Hyyy93tF0ZQSbXGyRjMBjknDRxhEdWVpZc5AoLCzGbzWRnZ2MwGOQX6fnnn5fdNWLnm8yZZ57J008/DTR96cLhMLW1tXKhFiNDxAweMXBTtF+LRTX5zFNFevLBBx8AHR9lE3zta19Dp9Px8ccfp61oOR3GjRvH6tWr0TSNzZs3c+aZZx73HIvFgsvlanZLN0RaFJoEm5huL046EPVq0WiUxsZGfD6fjFyEw2FGjhzJgw8+2KaQ0jSNX/3qV8RiMQoKCmRJh9Vqxel0YjAYyMnJkR2GolbN4XBgNBqx2+0yypYONWwtaUu8t0fUQ/oI+2Q/SBZnLces5OTkAE2Zm+S/i2uLEHI+n49+/fqRSCRYt24dEyZMAJqantpi+vTpTJw4EYA9e/YATQGJnTt3AtDY2EgsFiMvL49jx46haRp5eXlyCLO4xgmBnJOTIzNAyUGOVHHKou3Pf/4zzzzzDO+88w5jxozhvvvu4+mnn5Y7rJ5EptYbtIbBYJBHgthsNkwmk5wUbbfbKSoqIj8/H5vNRl5eHgaDgX379knR9vjjj3Po0KHj3nfatGlMnjxZnsAgDgSOxWLU1NQQjUapqKiQU65F0bLYrYkdjeoqTV80TZOiraPr2QTFxcWcf/75ACxevLhTPiMV3HjjjSxbtozx48czY8aMZieFZBKi+xu+iLSIhiK/3088HpeHvosD4+GLYu7rrruuzYxNIBDgoYce4r333kOv18sLe05ODhaLhezsbHJycrDZbDidTrnxtNvt8k9Rx5auXaJtiff2iHpIT2Gf/PsUR0NB03SCnJwcrFYr8XhcnozQ2NgoBZxIP+7bt082DixevFg2u51ItDU2NrJjxw4A+aeYUFBSUiKjtEOGDJENEEOHDpV120VFRTItKs4ZTY4cpjpCe0oevGTJEn7wgx8wf/58qWTvuecevF4vr7/+eqcYmM50pyLilo0JItVgtVrJyckhOzuboqIievfujcPhoFevXtJ53W431dXVfOMb32DDhg3HvfeVV14JfDELqaamBk3T8Pl8sualpqaGUCgkC4dFnZuwRxwwrEg/Nm/ezLFjx7DZbEyZMqXTPkekSBctWtRpn9HVWK1W3n77bT755BO+//3vp9qc0yI5LWowGGSaKxwONzsIPnlcgni+SKX/9re/5dvf/jYPPfQQv/3tb3nttdf429/+xq9+9SuuuOIK/vnPf6LT6ejduzd2u53c3FzsdjuFhYU4HA5yc3PJyso6TqiJUg/RYJWutBTvv//979m5c2fGiXpRwA80G9gOTZ2hgNy0iw1/Y2OjbAYQgjwQCMjoV0FBAXa7nSNHjsjaxf/+97/4fL7jPl/TNB577DHq6+txOBzE43HsdjvhcFimxHU6HYMGDZL1c8OGDaOqqkqeS2qz2QiHw+h0OrKzs2WUzWKxpIXob3eceNOmTcycOZOnn35aLp4ALpeLe+65hzlz5vDNb36zR02Wbm8R8S9+8YuuNu20EMJNpCZFMaamaXIHlHzYsqZplJeXU1JSQiKRoK6ujjvuuIOZM2fywx/+UBaR9u7dG2j6sk6ePJnNmzfLmoGGhgaysrLweDyyOFSkasWRNW63m2g0KjvF0uGLo/gCIaIuv/zyTr2ozJgxg1mzZrF69WqOHTsm/UqRWoQA0+v1zU4/gC9qXcV3VvzpcrkIhUI4nU769u1LaWlpqxs+gcPhoKCgAIfDISNrRUVFuFwuioqKsNlsuFwuTCbTcanQdKtfaw0h3lujrfvTFYvF0myUU/JEApvNJruJhUALBoO43W55LQAoLy9n4sSJvPfee/Lc4X/84x989NFHDBkyhL179/KPf/yDb3/72/JzY7EYv/jFL6TAz87Oxmg0ynNFc3Nz5dw+0dV6xhlnyCic2WymqKhIjo7Jzc2VEWHRdZwOtFu0nXPOOW0WQT7++OM8/vjjHWZUptDeIuJZs2bJn71eb1p3fxkMBhkOFm3yAlEzImbuiOceO3aM/v37y7EeCxcu5O233+b888/nnHPOkeFot9vNpEmT2Lx5MzU1NeTm5uLxeHA6nfj9furr67HZbPh8PkwmE8FgkKysLILBIBaLpdmZqYr0QNM03nzzTaBJVHUm/fr1Y9KkSaxbt44FCxZw3333dernKU6OmGcFTXVI4hrRsnlIbOYdDgc1NTUUFRVRU1PDnj17cLvd8kxHccSdEFqiLk50f+bl5eF2uykuLiY7O5tevXrJo62EYEvHkR49CdEYIjImomYamgRdMBgkGo3KTXo8HpdBgVAoRHFxMRUVFVgsFnJycqivr5fnWpeWlvKVr3yFvXv38uyzz1JSUsJ5553H9u3b+e1vf8vWrVuBpi5iu91OXl4eNpuNgoICbDYbhYWFsjmif//+cmCu1WqloKBARu9cLhdGo1GKtnRIiwrSryIzgxD1BiNHjmTz5s088cQTxz3HYrGktD34dDCZTHJemhimKxDCTQg2UT9SWVmJXq+XO6ba2lpWrVrFqlWr5GuvueYa2XZ9+PBhpk2bxpo1a+RuTJyBqtPp8Pv9OBwOeXSI+NLH43F1BmUasXPnTvbs2YPZbO6SA91vvvlm1q1bx9///ncl2tIAIc5EBE1cBEXETTwuNn8i6tHY2EhxcTGNjY1Eo1GsVmurdauiKNxqtZKXlyfra3NycuSF2e12NxNsNptNrk1qnUgN4hoSiUQIh8Nyrpn4fWiaJuuoE4mETI/W1NQwevRoKioq2LJlC5dccgkLFixg7dq1XHrppbz11lvs2LGDc889l08++YR777232eeKo6ecTicFBQU4nU4KCwvJysqSqXSLxSLnv0GTQBPBAWjyUbPZ3EywpVN2R4m2L8GNN97IzTffzKuvvsqdd96Z9vUG7UWIJNG1mZWVRTwex2q1yrCz6M4Sos5oNNLQ0EBNTY3c4ZjNZmw2G7m5uVx66aVcccUVAHJ+kqhpKC0t5fLLL2fz5s2EQiFsNhuBQACbzUYoFMJoNMpom9h996Q0fDqzYMECAC699NIuKX6eOXMmP/rRj9i4cSMHDhxg4MCBnf6ZitZJbigQ31FADtVNFkwlJSXs3bsXr9dL79698fl8+Hy+ZhtCUbcqLu4iUiPqa51OJ7m5ueTl5ZGbm4vT6cThcMiRDEKwJQ8JV6QOUWqjaRrxePy44xNFCY7P52sWYaupqZEp0N27d3POOeewadMm9u7dy7Bhw9i9ezfRaJRzzz2X3bt34/P55KSD7OxsrFYr+fn5UrAJoS8a67KystA0Db1eT25urvRjvV5Pdna2FJJAWnYbp5c1GcaJ6hAyHSHKYrEYsVgMh8OB1+ttVowpdkoimlhZWYndbpfHkIgdd3l5OUuXLmXLli2yaFmv18tBmT6fj969e7N582bq6uooKSmRDQmiiFTUFIjUrRJtqSeRSDBv3jwAbrrppi75zKKiIi688EI+/PBD/vGPfzB79uwu+VzF8USj0WbnMIpSEXHBEzWx0FQWMnHiRD777DOCwSDZ2dlkZ2eTSCSIxWIyjSY6ygFZL2yz2cjOzpaNB06nE7fbLUd+iLlrLU91UaQWcTSiGLgsNvmAHJxeVFSEz+ejoqKCM844g9raWjweD4WFhXKmX15eHr179+bYsWMYjUYGDBjAoUOH8Hg8FBcXU1RUJK9JYrqBiKwJwWa1WsnNzZWBB5fL1azxzmazNavh1uv1zUaWpBNKtCnaxGg0yl1SPB7H4XDQ2NgoUxHJaVKbzSYnSlssFnJzc/F6vbLotKKigoqKCvne11xzjYzYiS90VlYWgUAAt9tNIBDA7/djs9nkAMZwOIzNZlMNCWnC8uXLOXz4MG63u1lzUmdz00038eGHH/LGG28o0ZYCRERMRNlMJhNer1dGwEXXtxBXlZWVcoRC7969iUQizbpNA4GAHHDau3dv2XUqBJjRaMTlcpGXlyejKaIzVJxsIDaT6dLhp2jCYDDIjb/Y3AshV1dXJyOntbW1lJWVMXLkSLZs2UJVVRXDhg1j8+bN1NbWys5TcWxicXGx9BPhd3a7HYvFgt1uJz8/X4p8IdiEuBebBWGf2+2WQQZoihCmcy2kEm2KNmmtlkwIK7FoQpO4E8WnYtilKB5NHqAJTTVx/fv3p1evXixevFgKNofDIdOiQhT6/X4pzsLhsFwATCaTakhIA1555RWg6Ug7MYOpK7j++uv5f//v/7Ft2za2bdvGqFGjuuyzezpieKqoVTOZTM3ObHS5XPKkFDF+Y9y4cZSWluL1eolEIs2Oz4Om6Eh+fj6NjY3U1dVJ0SW6DUWNkdPplEJNnCNqtVrlBVYJtvRDnNcpGlZEM0llZSWNjY1omkbfvn2JxWJ4PB5qa2sZMWIEO3bsoKqqiuHDh7N//348Ho/s7gwGg83mvsEX52cLHxEiX0RpzWYzLpcLq9UqBZv4ObkuM12ja8ko0aY4IUK4JdepiLZtIa4CgQC5ubk0NjZiNBrx+/2y88fv9+Pz+QgGg1K8ff7553z++efyM6ZMmdKsJsZsNlNQUIDf7ycajWI0GuXIj0gkgtFoVNG2FHPs2DE56uOuu+7q0s/OycnhmmuuYdGiRfz5z3/m2Wef7dLP76m0JtjEsGz4ooBbRC1EOkvUxVosFpl6EmuK1+ulurqaRCKB3W5vllIVnerJ89fEuaHi78klGukaGenJ6PV6GVkTmRIh0mtqavD7/UQiEfr168eRI0fweDx4vV7OPPNMPv/8czwej6xfrK2tlTNEc3JyZJRNXKOE6HK5XDgcDux2u+wCFQPhRVSuoKDguM7ndI6uJaNEm+KkJH8pxE5ZDCCEph11MBjE6XRiNpulmPP5fHi9XpxOp6xvE1PSxXMGDRrEoEGD+OyzzwgEAnKejhBwkUiE/Px8KeBUtC09ePbZZ4lGo0yZMoVx48Z1+ed/5zvfYdGiRfzlL39hzpw5XRrp64m0FGxmsxmDwdBscrz4HRQUFFBVVdXsUO+WiKOO9Hq9TImKdJfoLBQXUvF3EUkTxeGiPCNTLrY9FYvFIuvaQqEQVqtVngdbXV0tT8UpLi5Gp9PR0NCA3++nf//+1NXVyVrqXr16SfHXcm6nEPFCvOfn58szQgsKCuR1w2g0UlRU1OxoRJvNlnbNBicicyxVpByRAk0+W0783W63y2O8ROepaNePRCLy5IOWC/n+/fvZv3+//Hn06NGYTCZ5cK8Yjih2ZBaLRUbf1PiP1OD1evnTn/4EwI9//OOU2HDJJZfQv39/Dh8+zKJFi7j11ltTYkdPQVx0AXkoe3KkQszcAuRpBYFAoNlF1WAwyIh9MBjE7/cTDodliUTyhVMUsZvNZvlaUQ8lvu/iMUV6I4S2GGIbDAaxWq3YbDZ69+5NdXW1PJdaNAhUV1cTi8XkOI6WQk2U3SRHZUUzgQgwAFIIig1/UVER0WhUCjZxTFUmoTxecUqIUxPi8TjRaFQu4OFwWKYrxG7KbDajaRqNjY2yhiWRSMgaGNE5pmkadrudIUOGMHDgQILBIIcPHwaQQxFFG7YIh4uFXvyp6DpefPFFvF4vw4cPl0eUdTV6vZ7vfOc7PPTQQ/zmN7/hlltuUeK9k0g+Qk50cMMXRxbF43EaGhpkYxEgi75jsZhsPBDfeYHdbsdmszU7tzR5eLdYa8RFOPk0FhFFUWQGIh0uymT8fr+MpBYXF1NfX4/X65Wb+oKCAiKRiBR6JpOp1bOnk+9L/v5bLBaKi4vl60XELTnClomCDUCnqVO4uxSv14vb7cbj8aTFob5fBpEyEWIqFArJv4uD38XzRHg6FAoRDAZl55lA1CoYjUZ8Ph+JRAKn08lZZ52FXq+ntLSUcDhMdnY2mqbJcLgoQFYX7K4hEokwcOBAjh49yiuvvMKdd96ZMltqa2vp378/fr+fDz74gK9+9asps6Ur6eo1RAgvUeyd/F2LRqPU1dXJiLd4XGzqkkXayUjuRhe35M8SZRot71ccT7peZ8R1QkRoxe9UzHSrr6+XGZuWiHEcItImpEvyUWkijZ680TAajeTn58sAAWSuYAMVaVN8CVpG3cR4DjHh3Gw2N9thi6JiMbZD1MiIFIkoaIamcQHDhg2TZ5wKkWe1WqXoE++phu12HW+88QZHjx6lV69efOMb30ipLXl5edx999389re/5YknnuDSSy9VF/NORNSlCkElGgry8vJoaGiQqa+WiIiKSHMmv584eaWt2IGIurWcqK/ITEQ9tKhNExt/UU6Tk5Mj70tOycMXok3M9WsLESwAZDepeL5Io2by9UKJNsWXQtSe6PX649KlYueclZUlO8rEF050gULTEE2xczKZTLhcLnJzc+XjXq9Xtovb7XY5I0qcjyqG9aoFvXPRNI3/+7//A+C+++5Li+PZZs2axR/+8AfWrFnDO++8wzXXXJNqk7odyecRi0i6+M4JMZaXlyc3bMkdoiIt1pK2InHiTOPkFKmieyGia6KrVGRrRJ1a8nPaOqRdnIwjzqMWvpncnGI2m2UJDtAsO5PJqKIARYeQvICLQbniCye+XIlEApPJhMPhIDc3l9zcXFwuFzabrdkX1Ov1cujQIQ4fPszRo0dlU4I491R0qYkjUsQAYEXnsmTJEnbs2IHT6eS73/1uqs0BoE+fPsyaNQuA+++/X3Y0KzoOEVEX4zZElEKkuoLBoEyfivSUEGsikiYQUZTk+jbRZCCOIuppKdAtW7YwefJkJkyYwOuvv97ssa1btzJw4ECmTZvGLbfckiILOwchzLKysuRIGBGNFaJdiHhxX/LZpSJgYLVa5XgPp9MpI2nJjWqi8aE7+JSqaeti0rXWoCMRBwWL9IeYiH2i+hYRhUveOSUjOo1ExK6uro5EItHsbDg1XLNzmTZtGqtWreKBBx6QEbd0wOfzMXToUCoqKnjsscd49NFHU21Sp5IOa4iItrVnsyTmqCWvC4Aa1/H/c8MNN/DMM8/Qp08fJk+ezPr16+Vjf//734lGo9x2222n9J7p4COdhYj2ishcWz5oMBhkRK87+ZgSbV1Md/4yJSNEWMuGg5bPSQ5xJ4u65F24zWaTKVZBKBTC5/MBX5xRKKJ93ekLmi58/PHHTJgwAZPJxIEDB+jTp0+qTWrGG2+8wTe+8Q2MRiOffPIJY8eOTbVJnUY6rSEiyt2yKDz5sdYQZRQKqK6upqCggHg8zpQpU1i3bp187OGHH2bdunVEo1Fmz57N5Zdf3up7iDl3Aq/XS9++fdPCRzobkW1JHv/RnesfVVhC0SmI0Hdri3NyWNvhcOB2u8nLyyM3NxeHwyHb+UUTgji/NFnUiRQMfFF4mjw3StGxiMjaN77xjbQTbNB0Hul1111HLBbjjjvuaFaMrOg8xHdZlDeIWiKRJm1ZQyQ2YUqwfUFBQQEADz30EDfddFOzx0aPHs1zzz3Hu+++y6OPPtrm+vbUU0/hdrvlrW/fvp1ud7ogxsS0lkbtjqhIWxeTTrvkrkSkSVsuOslfNpH6FBE4sXtMPhtOHAoshnSKg6bFqQtAtyg2TSf27dvH0KFD0TSNbdu2cdZZZ6XapFaprKxk5MiR1NbW8uijj/LYY4+l2qROIdPWEPGd7s7Rj1Nh7ty5LFiwQP7885//nM8++4z9+/fz8ssvN3uu1+uVv+ObbrqJuXPnUlhYeNx79uRIW09DRdoUXYJIXYpCY1F7JmpjREGzGLwrutNEAakY7eHz+WhoaJAt4snNDuKCoKJtHcszzzyDpmlceeWVaSvYAIqKinjuuecAeOKJJ9i+fXuKLVLAF5EQJdiauPfee1m7dq28BQIBtm/fzksvvXTcc++88052795NOBzmyJEj5Ofnt/qeFosFl8vV7KbonqhIWxeTabvkzqS140gEyV1C4k8x20cg0qfiRAVxHqkofFZ8eY4dO8bAgQMJh8OsXLmSCy64INUmnRBN07j++utZvHgxkydPZtWqVd2uOUWtId2LUaNGyQ5IgOXLl/OTn/yEn//85xw9epTvfe97aJrGgw8+2O6RNspHui9KtHUx6svUOq0VksLxaVXxs5gHJZ6fk5MD0Gxyu+LLc8899/Dcc88xefJkVq9enRHRkiNHjjB8+HACgUDKT23oDNQaojgZyke6L91rC6rIWFqeOShITquKIlOz2Sxn+zgcDrKzs2WNm3gvxZentLSUF198EYDHH388Y/5f+/Xrxy9+8QsAfvKTn+D1elNskUKhUHQMSrQpMoLkwZ2iaUGkvVoeRq0OkO8Y7rvvPiKRCNOmTWP69OmpNueU+NGPfsSZZ55JTU0NzzzzTKrNkUSjUSZOnCh/Xrx4MePHj+eKK66grq4uhZYpFIpMQIk2RUaRHHkTx2eJCJB4TI0T+PK8++67vPXWWxgMBp599tlUm3PKmEwmnnjiCaCpkaKqqirFFkFdXR2XXXYZBw4ckPf97ne/Y+3atfzwhz/khRdeSKF1CoUiE1CiTZGRJM+BEx2mamBnx3D06FHuuusuoOlsz9GjR6fYotPj+uuv5ytf+Qp+v59f/vKXqTYHv9/Pb3/7W0aMGAFAQ0MDeXl5mM1mpkyZwoYNG1p9XTgcxuv1NrspFIqeiRJtCoVCEgwGmTlzJlVVVYwZMyajZ53pdDrmzJkDwJ/+9CcOHjyYUnv69u3bTAD7fD55mofdbqexsbHV1/XkwakKhaI5SrQpFAqgqd7qxhtvZP369WRnZ7No0SKysrJSbdaX4qKLLuKSSy4hGo3yyCOPdOlnz507l8mTJ8vbkiVLmj3ucDjw+/1AUxSurS6/2bNn4/F45K20tLTTbVcoFOmJqthWKBQkEgm+9a1v8c4772C1WvnnP//JoEGDUm1WhzBnzhyWLVvGX//6Vx544AHGjBnTJZ977733cu+997b5eE5ODtXV1YRCIdasWcO4ceNafZ7FYlFzBxUKBaAibQpFjyeRSHDPPfcwf/58jEYjb775JlOnTk21WR3GuHHjuOmmm9A0jdmzZ6fanGbMmjWLCy64gKeffprvf//7qTZHoVCkOWq4bhejhh4q0olYLMZ3vvMdXnvtNQDmz5/PLbfcklqjOoF9+/YxfPhwYrEYixcv5tprr021SaeNWkMUJ0P5SPdFRdoUih5KTU0N11xzDa+99hoGg4F58+Z1S8EGMHjwYO6//34Avvvd73L06NEUW6RQKBSnjhJtCkUPI5FI8Ne//pUxY8awZMkSrFYrb775JrfffnuqTetUHnvsMc466ywqKyu56qqr0mJ2m0KhUJwKSrQpFD0En8/H73//e4YNG8att97KsWPHGDp0KBs3buRrX/taqs3rdESDRUFBAZs3b+acc87hjTfekMefKRQKRbqjRJtC0Y3RNI3Nmzdz33330adPH+6991727t2L2+3miSeeYMuWLRk7PPd0GDhwIGvXrmXIkCGUlZXxjW98g379+vH973+fpUuXEg6HU22iQqFQtIlqROhiVIGooqPRNI1IJEI4HCYcDlNeXs7+/ftZt24dS5cuZdu2bfK5Z555Jvfeey+33367HOzaEwkEAvz617/mueeeo7q6Wt5vs9mYMGECU6ZMYfTo0QwcOJBevXpht9vJyspKi3Nt1RqiOBnKR7ovSrR1MerLpOhIbrvtNubPn3/C55jNZq699lq+9a1vcemll6LXqwC7IBwOs3z5cv75z3/yr3/9i4qKihM+X6fT0b9/fzZs2EBRUVEXWdkctYYoTobyke6LEm1djPoyKRSKL4NaQxQnQ/lI90WJti5G0zR8Ph9OpxOdTpdqcxQKRYah1hDFyVA+0n1Rok2hUCgUCoUiA1DFLQqFQqFQKBQZgBJtCoVCoVAoFBmAEm0KhUKhUCgUGUDqhw4pJKJ4VJF+pENBr/KP9Eb5iOJkKB9RnIyT+YgSbWmEz+fD7Xan2gxFK6RD67zyj/RG+YjiZCgfUZyMk/mI6h5NI8QOyOv10rdvX0pLS1P+Bf8ydJd/B6TvDjnT/4+7k/0lJSVp5SOZ/n8r6C7/Dki/daS7/N92l38HqEhbRqHT6Zo5nMvlyngHhO7z70g1Lf0jmUz/P+4O9qf6Ygyt+0im/98Kusu/I9UoH8lsVCOCQqFQKBQKRQagRJtCoVAoFApFBqBEWxpisVh49NFHsVgsqTblS9Fd/h3pTKb/Hyv7O490tu1U6C7/jnSku/zfdpd/R3tQjQgKhUKhUCgUGYCKtCkUCoVCoVBkAEq0KRQKhUKhUGQASrQpFAqFQqFQZABKtKUZ0WiUiRMnyp8XL17M+PHjueKKK6irq0uhZadGOBzm2muv5fzzz+ell15KtTndkkz3lUz3kRkzZnDo0CHWr1/PhAkTmD59OgcPHky1WUDm+4Yg030knVE+kqFoirShtrZWu/DCC7WCggJ53wUXXKCFw2Htvffe05588skUWndq/OUvf9Gef/55LR6Pa5dccokWDAZTbVK3ojv4Sqb6SDgc1r72ta9pJSUl2sGDB7Urr7xSq62t1Xbs2KHdfffdqTavW/iGIFN9JN1RPpK5qEhbGuH3+/ntb3/LiBEjAGhoaCAvLw+z2cyUKVPYsGFDii1sP5s2bWLy5Mno9XpGjRrFrl27Um1St6I7+Eqm+kg4HOZ//ud/uPjiiwEIBoPk5uYyYsQI9u7dm2LruodvCDLVR9Id5SOZixJtaUTfvn0ZPXq0/Nnn8+FwOACw2+00NjamyrRTJpNtzwS6g69kos3QdDbg1KlT5c+JREL+XUuDCUrdwTcEmWx7OqN8JHNRoi2FzJ07l8mTJ8vbkiVLmj3ucDjw+/1A084ok85Uy2Tb05Hu6CuZaHNrJJ85qtd3/ZLaHX1DkMm2pxPKR7oP6sD4FHLvvfdy7733tvl4Tk4O1dXVhEIh1qxZw7hx47rQui/HuHHjWL16NSNHjmTz5s088cQTqTYpo+mOvtJdfMRms1FTU0NVVRUDBgzo8s/vjr4h6C4+kmqUj3QflGhLc2bNmsUFF1yAzWZj0aJFqTan3dx4443cfPPNvPrqq9x5551YrdZUm9TtyTRf6S4+8vDDD3PVVVeh0+l4/fXXU21Oq2Sabwi6i49kAspHMgN1jJVCoVAoFApFBqBq2hQKhUKhUCgyACXaFAqFQqFIIV6vl5KSEqZNm8ZFF10k7+9xg2MVJ0WJNoVCoVAoUsjOnTv53ve+x8qVK1m+fLm8f8GCBVx22WWsWbOGhQsXEgqFUmilIh1Qoq2L0TQNr9ebFvOcFOmJ8hGFomexY8cOPvjgA6ZOncqrr74q72/v4NhwOIzX65U3j8dDdXW1WkO6IUq0dTE+nw+3243P50u1KYo0RfmIQtGzGDBgAE8//TQffvgh8+bNo7q6Gmj/4NinnnoKt9stb9nZ2RQWFqo1pBuiRJtCoVAoFClk4sSJnHfeeZjNZiZOnMjBgweB9g+OnT17Nh6PR95KS0u7zHZF16JEm0KhUCjSBk3Tuv1RRC155JFHWLZsGYlEgk2bNjFo0CDgi8GxmqaxefNmzjzzzFZfb7FYcLlczW6K7okSbQqFQqFIC/bt28fw4cNxOp3cdNNNhMPhVJvUJcyaNYs5c+YwZcoUbrjhBl555RV27tzJjTfeyLJlyxg/fjwzZszo9oNjFSdHDdftYrxeL263G4/Ho3ZDilZRPqLoiWiaxsSJE/n444/lfT/+8Y95+umnU2hVZqLWkO6LirS1k9LSUqZPn86kSZOYM2cO69evZ8KECUyfPl3WHygUCoXi9Fi9ejUff/wxdruduXPnAvDMM8+wZcuWFFumUKQPSrS1k2effZbHHnuMdevWsWzZMh566CGWLFnCH/7wB+bMmZNq8xQKhSKjefHFFwH4xje+wT333MMNN9xAIpHg8ccfT7FlCkX6oERbO/nZz37G5MmTAYjH4wDk5uYyYsQI9u7d2+brWs7P8Xq9XWKvQqFQZArBYJC33noLgLvvvhuAxx57DJ1Ox1tvvcX27dtTaZ5CkTYo0dZOcnNzMRgMvPjii4wbN45EIiEfO1FZYMv5OX379u0KcxUKhSJjWLVqFaFQiL59+3LOOecAMHLkSGbMmAHAE088kUrzFIq0QYm2U2D+/PksXryYOXPmoNPp5P16fdv/jWp+jkKhUJyYDz74AICvfvWrzdbWn//85wAsXLiQQ4cOpcI0hSKtUKKtnWzcuJF58+axaNEizGYzNpuNmpoadu7cyYABA9p8nZqfo1AoFCfm3//+NwCXXXZZs/vHjh3LxRdfTDwe53e/+10KLFMo0gs18qOdXH311Rw6dIi8vDygKVx///33o9PpeP311xk8eHC73ke1YitOhvIRRU+itraW/Px8AKqrq+XfBf/+97/56le/it1up7S0lJycnFSYmVGoNaT7oiJt7eSdd95h27ZtrFy5kpUrV3L++eezYcMG1q9f327Bpuh69u7dy6RJkxg6dCjjx49n586dqTZJkWYoH0ktGzZsAGDo0KHHCTaASy65hDFjxuD3+/njH//Y1eYpFO2iq9YRJdoU3Zrvfve73H333Xz++ef85Cc/4a677kq1SYo0Q/lIalm/fj0A5513XquP63Q6HnjgAQDmzp1LKBTqMtsUivbSVeuIEm2KtEHTNCZNmsTYsWPJyspiyJAhjB07loceeui03q+qqopPP/2UW2+9FYAZM2Zw8OBBVdCcwSgf6X6cTLQB3HjjjfTp04fKykrmz5/fVaYpuimZvI4YO/wdFYrTRKfTsW7dOgCKi4tZvnw5/fr1a/acG264gX379rX6+nfeeafZSJXS0lJ69+6N0WiU79+vXz+OHDlywuYRRfqifKR7EY/H5bFVJxJtJpOJ++67jwceeIDf/OY33HXXXc26TBWKUyGT1xEl2hRpR3l5OdFo9LgvEcCbb755Su/VcmFXfTfdg9Z8RPxuFy5cCBz/u28L5SOpY/v27TQ2NuJ0Ohk5cuQJn/ud73yHhx9+mF27dvHJJ58wfvz4LrJS0V3JxGuNEm2KtGPr1q2cffbZrT52Krufvn37UlZWRiwWw2g0omkapaWlrX5BFZmF8JF4PE48HieRSMiB17fccgv79+9Hp9Mdt5AqH0kvRLRjwoQJGAyGEz7X5XJx3XXX8be//Y3XX39diTbFlyYTrzVKtCnSjqNHj9KnT59WHzuV3U9hYSFnn3028+fP54477mDRokUMGDBApb0yGE3TSCQSHD58mOLiYsLh8HHP+etf/yr/rtPpsFqtbUbdlI+klvbUsyVz22238be//Y0FCxbwu9/97qRCL1MoLS3l9ttvJxwOc8011/Dggw8CTaM7hg8fzpAhQzAYDCxfvjzFlnYvMvJaoym6FI/HowGax+NJtSltkkgktEQikbLP3717tzZ48GDtlltu6ZD3mjhxojZkyBDtnHPO0bZv394BFnYumeAjnUUikdAikYgWCoW0YDCoBQIBLRgMyr/7/X7N7/drn332mTZo0CDtxhtv1ILBoBaJRLR4PC59NxaLyedGIpETfmYm+kh3YfDgwRqgvf/+++16fiQS0dxutwZo69at62Truo77779fW7lypaZpmnbhhRdqXq9X0zRNW79+vfb444+f8vv15DXkVMjEa40artvFpPvQQ03TCIfDJBIJ9Ho9ZrP5hMd0KTqedPeRziCRSBCNRonH4yd9rliyYrEYkUiEeDyOTqcjKysLh8Mho2rRaJRoNIper8dqtXaq/YpTp7q6msLCQgDq6uraPTT35ptv5u9//zuzZ8/mySef7EwTu4y6ujrcbjcGg4Fp06axZMkSbDYbL7/8Mq+88goGg4E777yTO++8s9XXh8PhZlFnr9dL3759e9Qa0lNQV+MeRjweJxQKEQwGCYfDxGKx4womRW1QIpEgFAoRjUZTYaqiB6BpGpFIhFAoRCwWIxaLNRNvJpMJs9mM0WhEp9MRi8UIBAL4fD6CwaB8nqZp+P1+IpGIfG/VXZjeiNTo8OHDT+mUg6uvvhqA9957r1PsSgW5ubkYDAZefPFFxo0bh81mA2DAgAE8/fTTfPjhh8ybN4/q6upWX//UU0/hdrvlLbneStG9UDVtPQhxgRQiTRRx63Q6DAYDRqMRvV6P0WgkFovJ10WjUTRNw2QyqQuhosNIJBIyqhuJRJr55snQ6XRYLBasVismkwmPx0MkEiEWi2GxWACkoFOR4vTkVOvZBBdffDHQVEReU1PT6ikKmcj8+fNZvHgxixcvlvdNnDgRm82GXq9n4sSJHDx4kIKCguNeO3v2bGbNmiV/FpE2RfdDrWY9DHFRFNELcV8sFpMRuNYunLFYjHA4rMYhKDoEEfGNRqP4/X7pW0KMmc3mZkXmmqah1+uxWCy43W4KCgrIzs7GarViMBhkdFi8RtM0Kdq6S7F6d0OItkmTJp3S6woLC+V4kFWrVnW4Xalg48aNzJs3j0WLFmE2m+X9jzzyCMuWLSORSLBp0yYGDRrU6ustFgsul6vZrTuj/f8NSSLwIDrIe8L1SUXaehDiwqbT6aRgM5lMxONxYrGYdPrkuiIReYtEIjJdarFYVPRCcVqIDUI0GpVpUeFz4jG/34+mafLWcjG22WwUFhbKFJJ4HTT5MyB/1ul0ylfTkGg02q6hum0xffp0duzYwYoVK5gxY0ZHm9fl/PKXv6SiooLLL78caPr3zZw5k1mzZnHrrbfy+OOPc/vtt5OXl5diSzsf8Z0X33txA9olzMR3XtwMBkO3yhAp0daDaCvyINKfom5IfGmg6SJoMBjQ6/UyGiKEm4pgKE4FTdNkc4CIsiVH3NpLMBiktLSUQYMGYTAYmi3iQqAJXxc+rUgvtm7dSjAYJDs7m2HDhp3y66dPn85zzz3HihUrOsG6ruedd95p87Hu8m88GaJ8J7k0p63nJV+jADmTUXzXRfQt+XEh4sSakKnrghJtPYiWOxRN06ivr292wRT1bcLJ4/G4TEFZrVZZgxQOhzEajarOTdEuRN1aPB4nEAjIzs9gMAg0iS23243JZKKxsZFAICCbCmw2GwUFBTidTuLxOGVlZUQiEerr68nPz5cLsBCFZrNZLugqypaeiNToxIkTT+t3dMEFF6DT6di5cyeVlZUUFRV1tImKLkJEyls2Een1+uM6waPRaKvNc8mvM5vNx5X/iGh+PB6XHeUiIJFp1y8l2noQBoNBpkJNJpNMU0FTjZuIuCXvdMLhMI2NjZjNZmw2G2azWXb5iZSqGguiaIvkdGg8Hpcdn4FAQPpeVlYWJpOJY8eO0dDQ0Or7lJWV0adPHwYPHkxeXh7l5eXU1dWRnZ2N0WjEYrEQCoUIh8MyRQpKtKUr4iSE00mNAuTl5TFq1Ci2bt3K2rVru0WKtCeSvJkD5JgpnU5HJBLB7/fLEorkSL0opxB1sCINajab5dgqaNrw2e12GZFPrn8Lh8OyTjaT1gkl2noQYlchwtACo9FITk6OvMAm17aJC2EoFCISiaDX67HZbLIWTtS5Je9sFApoviBHIhE5YiYQCEgfMxqNHD16lFAoJF9nt9ux2WxSzPl8PqqqqigrK8NgMHDGGWdQV1dHOBzm2LFj9O3bV4q25AtAJqdAujun24SQzOTJk5Voy1Bai66ZTCaMRiPBYBCfzyeFWTQalXPoxHVJXKeAZpMP/H4/FosFm80m3ysYDGIymXA4HLIOVoi/RCJBMBjEbDY32+ylM+oq24MQoeNwOEw8Hpe7CxFu1ul0BAIB/H6/rGPzeDxy1yJ2JZFIBKPR2OwmGhVUulQhFlqxsAaDQdmdLBbeSCRCIBCQYk3slhsaGjh48KAUXnl5eUyYMIHc3Fx2797N4cOHyc3NpXfv3hw+fJhAIEBdXR12u11+tuoaTW/Ky8s5dOgQOp3uS50fOnnyZJ5//nnWrFnTgdYpOpu2omuRSIS6ujp5fzQalWUSIjp/ovrXrKwsLBaLjLSZzWbZRRuNRqmvr8fr9eJ0OsnKysJoNDYbOZQpY62UaOthiF1JLBaTwk1cWEW9UFuINFcgEMBsNmO1WmUoW4SlVbq05yIEk1gAW0bX4vE44XBYDsEVi2s0GqW6uvq4wmJN06itrWXJkiVccskl9OrVi/Lycnbt2sW5555LYWEhFRUVeDweOSZBlAAAKvKbpogo21lnnfWlRlNMmTIFgM8++wyfz4fT6ewQ+xSdhxgdJTCZTHKzJjZwiUSCQCBAMBgkkUjg8/kIBAJyvRBriRgDJGqrNU2T1yaHw4GmadTU1JCVlUV2drZMjTY0NODz+XC5XFitVnldE+VB4pqWrqhVrQdiMplkS7XZbCYUCuH3+6XQEkXhiUQCq9WKw+Fg7969chp38mBTq9WKzWaTxxBZLBb5vuqi2XNIPv5MpNVjsRjBYJBIJEI0GsXn80mR5vP5aGxslOmRRCKBzWYjOzsbt9vNgAEDKCwsZMOGDezbt4/Vq1czY8YM6uvrCYVCHDp0SB70LGrl4AuhJjrFFOnHf/7zH+DLpUYB+vTpQ//+/Tl8+DAbNmzgkksu6QjzFJ1Ay87Q5KxNbW1ts5KchoYGGUgQadJgMIjX68Xv97f5GWazGafTid1uJxKJyGsXQCAQkPPrRE1cfX09JpOJnJwcGemLxWIyCJGuqKtqD0Q4ZSgUkrUAiURC7i50Oh29evWisbGRAwcOUFdX16xbx+v1SkEnCj1FDVI8Hm8WdcuEcLPiyyEiaCItKgSb2BH7fD45QLe+vp7GxsZmwk48JznSBjBy5EhmzpxJdXU1Ho+Hffv2MWTIELZt20ZFRQW5ublAk1ATZ+UKoZbOi25PRwzEnTp16pd+rylTpnD48GHWrl2rRFuaIuqexTXEZDJhMpnw+/14PB6gScSJiJpYD0SXudfrlQ1Ker2egoKCZmUXInUqovx1dXU4nU7cbjehUEjWsnm9XrxerxRvYjNZVVWF2+2WIlJ0l6Zr0CE9rVJ0Osl1BELAxWIxOebD7/ezZcsWGQlxOBxkZ2ezcePGZrsdk8mE2+0mJycHl8slD+2OxWIyAmexWJRw64Ykd4ZqmkYwGJRDc8XfGxoaCIfD1NbW4vF45I45eREX2O12ioqKMBqN7N+/nx07djBo0CBGjx7NmjVr2LVrl5zpFY1Gmy34gPQzUY+pSD+8Xi+fffYZ0DGibfLkycyfP5+1a9d+6fdSdDzJgk1kaAwGA16vF5/PBzRtumpqamTDQUNDg9z01dXVEY1GZSChoqKCTz75pM3Ps9vtcjKCSJnHYjEaGxtxu91YrdZm4s1utxOLxfB4PDgcDiwWi9yECtvSjU6zqLS0lNtuu42qqiqMRiMPP/wwM2fO7KyPU5wG4uImmgnEuY3BYJD6+nrZLTp27FjWr1/Pp5/+f+29d5iU1dn4/5ne23Z6kaI0FRVQVhRLVLBEjV2jxPa+ajRqYoLlVZNYwtcUiYmx94YNKzFEowKKChFQel92Ydk+dac/vz/2d44z1AV2d2Z2z+e65oKdnXnmnp17zrnPXf8LtH0xQqEQtbW1QFtZtdvtpqysjOLiYuLxOE6nU4ZghVdObaTdBxHuEBXE4tQrEofFUPdgMEh9fT2hUIimpiY5Kk3kq4i+SUajkV69enH88cczceJE5s+fz4cffsh3333HFVdcwRdffEEgEKChoQFo091oNIpOp5N5MZlTPhT5yYIFC0in0wwePFiGtw+EyspKABYuXEgikVCffR4hUiaEwSb2gHA4LA02q9XK1q1bpee9qamJdDpNS0uL9K55vV7i8TgLFy4E2g5pQ4cOpXfv3qTTaWpqamS7IOFx9/v90iALhUJ4vV40TcNgMFBSUiINx1AoRHl5uXyccGZkjm3MN53qNKPNaDTyl7/8hcMOO4y6ujrGjh3LlClTZJWXIveIDU+EMZPJpKy4C4VC8jErV65k8+bN6PV6fD4fGzZsoLGxUV5HnIgaGxspKyujT58+lJSUyNwBu92OpmmySa+isMnMXxNJw8JgEx6wcDhMQ0MDzc3NNDY2EgwG8fv9MkdlR1KpFJs2beKRRx7B4XAwdOhQANnmw+Px0NTUxLZt24C2xV6E+fV6vfxZ5bLlNyI0etxxx3XI9Q455BCKiopoamri22+/PaBqVEXHIg50gDTYhPcd2qo9hcGWSCRk5WhTUxPBYBC9Xk+vXr349ttv5QHtqKOO4sQTT2Tr1q3MmTOHJUuW7NQc3uVyyX0tEong8Xik96y4uJi6ujrcbjfFxcXEYjFqa2vp27cv0WiUQCBASUmJdGKISFM+GW6dZrT16tWLXr16AW0DfsUXSxlt+cWO3jZROSMSRlOpFFu3bgXaEn8//fRToO0L169fPxYvXkxtbS1GoxGn00lLSwt+v5/+/fvTu3fvrL5vgDLcCpzdGWzhcFiW1UciEbZt24bf76euro5gMEhDQ4PMTxGh00QiQUlJCVOmTOHHP/4x77zzDvPmzePTTz/lxhtvxGQykUgk5HOhLbwGP7TzEDmTwsuWj+EMxQ90tNGm1+uZOHEi7733HvPmzVNGWx6ROQ9Yr9ejaZo02Mxmc9Y0noaGBjRNk144q9VK//79+fe//w1Av379OPvss0mn0zzyyCN8//338nWcTidut1vmyIk1QhhsokgO2sK1FRUVBAIBjEYjJSUlhEIhmpubKSoqorW1Fb/fLyetiHQP0bw3H9jnFS6dTjNixAjOOuss/vCHP8j7P/roI8444wxeeumlncKgixYtIp1O069fvwOXWNHhiD5rwtsmermJ04b48q1ZswaAoUOH8s0337Bs2TJ5jWQyKQ024WmJRCL0798/a/Av9CzDLRaLcf7559PQ0MAVV1zB1VdfnWuR9hsREhWfZzQalUnAYqxUKBRi27ZttLS0UF9fT1NTk9SH7du371T9FQ6HefTRR7HZbFRWVjJv3jyqq6vR6/WUlZVRU1NDTU2NXIhTqRRGoxGr1SoPGlarVV6vp+hVIRIOh1m0aBHQcUYbtBUjvPfee8yfP59bb721w66r2H8y+yWKg5Rofg1txrb4TgcCARmJ2bhxIwaDgRNOOIEnnngCaAuBT5kyhQ8++IDXXntNrgGTJ0/m2GOPpaWlhXXr1hGJRHA4HGiaxmeffSZ7jJaUlAA/5LyGw2HcbjdNTU0MHDiQUChEKBSiX79+sg+cGIeX2QRYNObNNftstOn1eqZPn87Pf/5zfvOb3+Dz+Vi6dCnnnXce999//04GW2NjIz/96U958sknO0xoRceS6W0zmUzY7XbZnFAUJwAyOXPNmjU0NDTg9XqZNGkSOp2OefPm8d1338kE0HA4TDgclrlOwmATBQk2m61HhLFmzZrFqaeeyrXXXsupp57KZZddlmVkFBKZQ5gze/ZlGmxbt26lubmZhoYGGRZtaWmhpqaGdDqNx+PhJz/5CUcffTQlJSV89NFHPProo7z11lucdtppANTX18seTNCWHwttJ2oxA1eMrMnsEZg5q1CRf3zxxRckk0n69+/PwIEDO+y6Iq9t/vz5Mn9KkVsyp5IIL5vIY3M4HDJ6I0KkRqNResNGjx7N9u3bSaVSDBgwgDPOOIOXX36Zd999F4CjjjqKQw89lH/+8588+uijst2PwGQyccUVV5BKpfjmm29obm7GaDTS2NiIxWKhrq6O3r17y2KIzL6lVqtVtimyWCxyDxSRhXzYs/YrlnDJJZdw7733MnPmTK688kqmTp3KZZddxi9/+cusx8ViMc4++2ymT59+wD15FJ2HyG3LNNTsdrtMMLdYLFmPF/lsp5xyCg888MBO8yIbGxvxer1EIhHZl2vH0UKZeUjdmcWLF3PllVei1+sZPXo0K1eu5PDDD896jBjRIhAn0Hxix9FnYmGLx+O0tLTQ2trKtm3bCAaDNDY2ygUxGo2ydetW0uk0p5xyCnfffXdWQ1WHw8Gjjz5KdXU1paWlcuZgXV2dLHTZtm0ber0eh8OBTqfD6XTKA4bNZpMHAhUazW86OjQqOOKII7BarTQ0NLB69WpZYVxI7M4jX6ie+h29bKKVRuYYRYPBINeU3r17s2HDBgCKiorYvn07ACUlJSxfvlwabD/5yU/4+OOPefrpp+VrlZWVMXr0aFwuF2vWrGHFihU88cQTXHvttYwYMYIVK1bIg53Yb4THP3McVmYxk4guif0qM1KUa/bLbDQajfz6179m5syZTJkyhbFjxzJz5sysx2iaxhVXXMEJJ5zAZZdd1iHCKjoPg8Egcw9E/zWLxSKbFVosFux2O/CDt+zFF1+kpaUFi8XCVVddxZ/+9CfOP/98DAYDLS0trFixgtWrV7Nq1SpWrlxJdXU1jY2NsmeXqM7pzgSDQdngUVTd7sgDDzyAx+ORt3xMI8gsHhCVn6ISNBaLyZJ9Uf0lDE+bzUYqleKEE07g//2//7dTB3xxIBAeXeGFFNWANptNVp45nU5psAlPrXi8aPWhyF86y2gzm82MHz8eoGBbfwiP/Lx583j99dfldIDd3Z/vZBpCgJTbarUSiUSAtqpQYRzZ7XbZd3Hjxo1yzQwGg7z99ttAWzPmJ554gs8//xyj0ch5553HrFmz+M9//sNf//pX7r//ft544w3uueceAJ599ll+9KMfAcj2QEKOzNGMQtbMST6Z+5LY7/Jlr9pvX98ll1wiR0u88sorOy2YCxYs4LXXXmP27NkcdthhHHbYYXz33XcHLLCi8zAajXLMldVqlQab3W6noqICs9ksDQtRug1Io+2cc85hxowZvPPOOwwePJhEIsHatWtZtWoVq1atYsWKFWzZsoWGhgZCoRCxWEyOM+quOJ1O+XcSuRQ7Mn36dJkL6Pf7ZTgwnxCLa+YA53Q6LUdShUIhWT1qMBhIJpOUlZXJKRpXXHHFLkMLYgE3m83U1tbS2tqKXq/Pai8jGmpaLBbZyNlgMOByuaQxqZo45zeBQEC2bDjhhBM6/PqZIdJCZPHixVRWVmZ55Pd0/47EYjHZf0zccsmORptYP8xms/ydKF6DNm/6IYccArQZbYKmpiaWL18OwPfff091dTX9+vXj7bff5t5772XUqFE7fe/PO+88bDYbsVhMhk5F6FXsNZkyCLky0yt2bPSdT+y30XbDDTcAbVUfuzrhVlZWkk6nWbJkibyNHj16/yVVdDqZLRTEbFFhpLlcLsrLy/H5fNjtdkpKSvB4PNjtdgKBANdee600TkaNGsW7777Lj370IzRNY9OmTaxZs4Y1a9awfPnynQw38YXujowdO5bPP/8cTdNYsmQJw4cP3+kxFotFdukWt3xCTLcAsga+i7EvIsQhKsPLy8t3usbuQpdff/01AIMGDeK1114D2k7gYiSa0+mkpKREzg8UeSaZofV8quxS7Jr//Oc/JJNJhg4dyqBBgzr8+mIOaaEOj9+dR749nnooDG89IL3m0Ob96tu3L0ajEb/fT1NTEwcddBAANTU1ALS0tKBpGh6PhwULFqDX6/nb3/4mH7cr/vnPf9La2orVamX9+vUAO3WtEOuZ8PSLCSrCyOx2Rttdd93FBx98wMKFC0kmkzz11FMdLVdBEIvFOOuss5g4caKsdCl0RNdqMRtObJZFRUUUFxdTXl5OeXl51oxIo9HI0qVLufTSS2XzU6fTyaOPPsqll14KQFVVFRs2bGDdunWsXLmSLVu2UF9fL/OeuqvhdsEFFzB37lzGjRvHueeeW5BFCJmfjTDUMg05sfCJgd0tLS0YjUbq6urw+XzAD4twJlu3buXhhx8G2oy2r7/+OqsJZ2lpqdyEfD6fDNubTCYsFktWl3XlZctvPvroIwAZrupojj76aPR6PRs2bJBJ7oXE7jzy7fHUQ/5768WhKh6P4/P50Ov1RKNRGhoaGDFiBADr1q2Txqbw0Gfm+kJbEcKQIUN2+zqffvopt99+OwDHH3+8bBkiMJvNmEwm+e+ODbl3FR7dsYgu1+yz0fbkk0/yxz/+kffee49DDz2UX/ziF8yYMSOrwV1PoVDzDfZGpuFmNpuzDLeysjIqKiro1asX5eXlFBcXc9BBB2EwGPj222+ZOnUq//73v2X36d/97ndcfPHFAGzatImtW7eyYcMGVq9eTXV1tfS4ifYR3Q2r1crbb7/NN998w3XXXZdrcfYZUfIOP5w+M2cIwg/GWiQSwev1Eo1GZbd7cYKtqqrKuu7ChQu59NJLZUNmsckI46ysrAyPx0NpaSlFRUVYrVbsdjsGg0GW9Yvr58tiqtg9//rXv4C24qXOwO12M2bMGOCH3LlCYnce+fZ46iH/vPU75oGJdhkiXNm/f3+gLVJnNBopLy9H0zTpSRT/7rj2iN6vO6JpGs8//zw33HADsViM4cOHU11dDfywpng8HsxmM2VlZej1eioqKqTdsrtZxZkFCPlQOQr7aLTNmTOH66+/nhdffJEJEyYA8POf/5xAIMALL7zQKQLmM+3JN8i3XIP2kunBMJvNOBwOvF4vPp9PGm3iVlZWxvDhw7FarWzfvp2rrrqKqVOn8tBDD/Huu+9y8cUXM3HiRDRNkx62zZs3s27dOrZt20ZDQwPBYJDW1tZuabgVMpmNkXfMUxELcSKRoLy8nFQqJUOjImQqFsNPP/2UpUuX8s4773D11Vdz1VVXyUHNRUVF6PV6vF4vXq9XNuOuqKigqKgIu92Ow+HAYDDgdDqlPGKOoSK/Wb9+PevXr8doNHL88cd32uucdNJJQFt4rNDY0SP/17/+lRUrVnQLTz20rQOigrOhoQGHw0GfPn0AqK2tpaKiAkC25xAIo03ct27dup2uHQgE+OUvf8mDDz5IOp1m0KBBMsfV6/XicrlwOp24XC7cbrc8bA4YMEAah2ItE68n1rgdux7kA+2ukV+8eDHnnXceM2bM4JxzzpH3u91ufv7zn/Pggw9y+eWX96hFtL2Vgffee29Xi9YhCINNNNoVHpXM34ubqD6tra2loaGBFStWsGLFip2uGQqFSKfTbN++XVaomkwmDAZDVg+3nqRH+YooOoC2RVN4kjOTd202G62trfTv35/6+nqi0Sh6vV4udiL/7LvvvuOSSy6R19bpdJSUlFBaWorRaKS4uBiPx0N5eTklJSXSiysMtsykZXFdpSOFgQiNTpw4cac1pCOZMmUKDz30EHPmzMmbnlrtRXjkd8Xu7i8EMkOLRUVF1NfXk0qlqK+vx+fzUVJSQkNDAy0tLTidTkKhEG63m0QikZWrGg6HMRqNfP/99zz22GNcfvnlRKNR2autvr4eg8FA//795dB4r9crnQ1OpxO73U5ZWRnpdJoBAwbI6S6ijRD8EI4Vh02xjuXTWtNuo+2II47YbRLkb3/7W3772992mFCFQnsrA2+55Rb5cyAQyNsk0V0hGu+m02ksFgupVEq6jEVDU/Hlslgs0tUdCATweDxomsbGjRtlY8Xx48fj8XjkXMrMPCVxLZHXlE9flJ5IZg8jo9Eo/2+z2WRvtqFDh7Js2TKam5vp27cvVVVVOJ1OWUXq9/s5/fTT+fbbb6mvr5dTDHw+nzToiouLcblclJWVUVpaSklJCUVFRdhsNmmwZSYSm81m1ZOtgJgzZw7QeflsAmEU1tfXs3jxYo466qhOfT3F7hEHNzG9ANr2ktLSUpqamojH4zQ1NeHxeAgEAsTjcdxuN6FQSKY8uN1uObs6EokwYcIE5s+fz8MPPyxzYQU+n0965UU6j8lkoqKiQjaMHzJkCOFwGIfDwaBBg2RfODFrNJFIyPCt6P9Y0EabYmdEvsHIkSNZsmQJ9913306PsVgsOzWnLTRE491UKiXbLHg8HgA591F0qLfZbDJPQXD00UdTUVGBz+djwoQJLF++nA8//JBwOCyTUZ1Op9yMe9rUhHxETDyAH2YHCkQFp5jJJ+YKi9Opw+EgEAgwdOhQVq1axerVq7Hb7QwYMEBeQ+SYiP5MIuwuQqQih00suJmvnU8LqGLPhEIh5s6dC8AZZ5zRqa9lNps5+eSTeeutt/jwww+V0ZZDjEYjqVRqp/mjBoOBkpISWlpaiEQiBAIBSktLqampkXnQwosu0nMcDgeRSISWlhbGjx/PunXrZIP30tJSHA6HbA3k8Xhwu904HA7Ky8tJp9PY7XaOPPJIOR5vzJgxVFVVkUwmsVqt9OrVi2QyKa9ptVoxm80kEgnpKcynNUcZbQfABRdcwEUXXcQzzzzDtGnTCjbfYG9ketsSiQRerzcrQVNMVBAd6i0WC5FIBL/fTyQSoaGhQVaVZpbkC8OvpaWFxsZGXC6XDJdm5k0pw61rEbP3ANm3b0e8Xi91dXUEAgG8Xi9NTU1yYXO5XNTW1hKNRikvL5e5ipmGvclkwuVyyTxJER51Op1ShywWS9Z3Shlshce//vUvYrEYgwcPZtSoUZ3+elOmTOGtt97i3Xff5e677+7011PsGuGZTyQScn61Xq+XqTBerxdAjsFzuVwEg0G8Xi+NjY34fL4s50BxcTHNzc1EIhGZR53ZUNtms+FyubDZbJSXl2O1Wkmn07hcLk444QQ5YP7ggw+msbGRaDSK0Whk4MCBcki8MBq9Xi+pVCorLzdf8tlAGW0HxJ7yELobZrOZaDQq85xE6BPIymmz2WzY7XYaGxux2Wzyi+vz+TAYDDQ3NxMIBKioqODiiy/m2WeflW0kmpqasFqt0gAUxmJPGHeVL2R62MSoqF397UW4MhaLyXwQUd2ZSCQ4+OCDqaqqQqfTSU+ZMNpEnprT6ZShUY/HI1vMGI1GeS3IrmZWFBZifTz77LO75Dt85plnyubM69ev32M/L0XnIjxm8Xhczu6MxWJyTRf9GBOJhAyBms1mWWwkPF2ZhUehUEj2iBT7hPDKZ1aGappGRUUFkyZN4rvvvkPTNMrLy9HpdIRCIfR6PQMGDCAYDGYZZz6fj3Q6Le/b3aE1l+SXNIq8RXzRhOGWTCZxu91yjqhoDyI61VutVkKhEE1NTej1etn53ul0MmjQIIxGIx9++CHwQ0FDMBgkmUzS2tpKKBTCYDBgMBiIxWKqF1cXkDlfdEeDbcf8jszmkyL8n0gkOProo5k/fz7RaJSysjKZA5mZr+hwOPB4PDgcDnk6zixKEaOrxGvl20lX0T7i8Tjvv/8+AD/+8Y+75DVLS0uZPHkyH3/8Ma+//jq/+c1vuuR1FbvGYDDIw7s4EIqZ1jabjaKiIurq6kin0xQXF1NfX4/T6cxaX8ShLRAIyMrPTER3A3HQM5vNjB07lpKSEpYsWUIymcTlctG7d28507Rv376yKE6n08k9K3NCT2aINp9QRpui3QjDLfPkJMKXwsASjU/tdjv19fVYrVZisRiRSIRIJEI0Gs1q/KjX6znllFPYsGEDiUSCeDxOJBLBZrPJocJ6vZ5EIrHbXjqKjiGzoWTmSBdAnnpFDqMowDGZTHg8HgwGA9FolEAgwOjRo2lubs5q4WI0GmXIUxQWiNOxzWaT80Qzq4hF88t8WzQV7eOjjz6ipaWFiooKjj766C573fPPP5+PP/6YWbNmKaMtTxCHelGFLg6IFouFoqIiGhsb0TSN0tJS6uvr5ahEUZQmitYyR+iJa4pDnWgj4nK5aGxspK6uDmhL5RgyZIhsulxeXi5lEFWmmeFQYKf86nxCGW2KfUJMSkilUrIsW3Sw1+v1tLa2YjAYZJjT5XJRV1eH1WrF5/Ph8/nkF0t8MWpqakgkEjI3LpVKydOY2WwmlUpJY0GFyDoPEebOXMBEaEBUVYmTp/i9MKwOOeQQVq5cKT2qVqs1Kx9NGPTifjHfVtyXaZCrcGj34MUXXwTgoosu6tJcxLPPPpvrrruOb7/9lnXr1u2xg76iaxH7h5iCI/YKn89Hc3MzmqZRUlJCU1MTLpdLGk42m02OPYxGo7I6XXjoRSV6MpmkubkZaFuDBg4ciM1mkwZbUVGRDLmKWdqZgwFEyDUfjTWBMtoU+0xmxagw3kSSuHApi9JtEe5qbGykpaVF3kRhQyZHHHGELLsW1xX5BaIku9ArcfMZ0ZcvM3lYJBSLHm2ZlZzwQ8dwn8/HmDFjaGxspLW1VVaNCZ0QBpjQDzFKRjS1FOwpj05ROPj9ft59910AOcquqygtLeWEE05g7ty5zJo1S441UuQH4gAnvGbQtq7odDppuBUVFREMBuWaJPo/7gmr1Sr7sYlq0mAwKBvaFxUVSSeA0WjMMtiEMVkIB0VltCn2m0zjLXOTFsmm4l8xhN7j8eD3+wmFQvLL4nA46Nu3LwcffDAej4evvvoKaKsGEiXjmc1aC61pZqEhPtPMHm0iz0MstvBDB/FwOMzq1auzriF6sUG20SaKS8QJOdMwy9QTReHzxhtvEI1GOeSQQzj88MO7/PUvvPBC5s6dy7PPPsv06dPVISDPMJlMpNNpUqmUDHdarVbpZRPtpaxWq2y8a7PZSCaTMhIDP0QHMteOZDKJ3++Xr2U0GiktLZV94wwGAz6fL6tCPh9z13aHMtoUB4wIaxqNRuLxuPxZbPJGoxGz2Yzf78dsNlNSUoLD4aB///5y/FFNTQ1r165F0zS8Xq90h4svkviyJZNJldvWxQiDOdMDZrPZKCsro76+PmsWqQhniDzHzIVQ5LVl5suJk/SOOXSKwuYf//gHAJdffnlOPtfzzz+fm266ibVr1zJv3jwmTZrU5TIodo9IgRCdAxKJBKlUCovFktWAVzTIDYfDBIPB3YbZRZVnZrN3se/odLqscViialU8r5AMNlBGm6IDEV/EzHw34W0THrlwOCyLElatWsWaNWuywqQul4uRI0fKJFLhsRGPSSaTKnzWyez4txUn2MxiBGgLN3i9XiKRyC7nxgqPm/C07ehZE/341GfZvfj6669ZtGgRFouFK6+8MicyOJ1OLrjgAp566imeeuopZbTlIWK/ENEZkccsPG5+v59wOEwqlZJtPUQEQMxEFp773a0hmWuSw+GQeW9QmAYbKKNN0QmITTqZTGYVEAiPis1mIxKJyCkL0Gas9e/fXzZNFIieO+KLBj8YborOR9M06R1LpVJy9Izov5QZ6hYJw6L1iwh/ZCJOwKpJbvflb3/7G9Dm7SopKcmZHFdddRVPPfUUr7/+OjNnzpSNWhX5hdgfhOEWjUZlkYDNZpNjrkRqzI4pFJmHwh2bvmdGezLbFhVCwcHuUEabolPIDJGKcUfC4xYOhzEYDLIfj8/no7y8XIY9MxNUTSaTzKkSX0qRIF+IX7hCI51Oyy7hzc3NJBIJGhoadioksdvtWCwWeQreschEeN1Uzlr3pqGhgddeew2A66+/PqeyjB8/npEjR7J8+XJeeuklrrvuupzKo9g9oguBOMiLsKlIpxEFacLDlplekUnmz5kGnPg3s59ooaJWUEWnIqpyLBaLbKIqOuALoy4QCLB27Vo2bdpETU0N69atk2FVMdoKkB6dzBOTouPJHA8jQqJms5ni4mJpWIumlDabjeLiYtmqJXNxFDlswvumDLbuz9///ndisRhHHHEE48aNy6ksOp2Oa665BoBHHnkkqw9hPrF06VIqKysZP348L7zwQtbvli1bxuDBgzn++OO55JJLciRh1yDCpZlrTDQalf09M4sPBMIwE7fMQ2Omx020GBK9IAsZnZavmtxNCQQCsorS7XbnWpwuRYwxERVDYoRJa2trVq8caEt079Wrl2yyK3rveDwe6SbvrrNe80FHMtt8iIReQTKZlPkkIn9RoBri9lzC4TADBgygsbGRV199lQsuuCDXIhEIBOjTp48cXH/SSSflWqSd+MlPfsIf//hH+vbtS2VlJV9++aX83auvvkoikeCyyy7bp2vmwxpyIGTOLd2RzCk8O+bEZpozYtJOdzssdq93o8hrhKElvC92ux2r1YrH48Hn8+HxeCgqKqJ///4MGjRItpUQ+QeAbOq6q3wpRcchPKRAVvsP+CHUueNgeTEIXhlsPZMnn3ySxsZGDjroIH7yk5/kWhwA3G43V1xxBQAzZ87MrTC74dFHH2XAgAHAzuG+5cuX8+yzzzJp0iTmzJmz22vEYjECgUDWrZAR64/dbpcRGrFniH1DNGcXxQgiX3bHAqjuRvd7R4q8RuS6iS+dGGUkEkZ3VU0oRpQARKNR6d7OnBOn6HjEQgjIE68Y5JxZLSoa5SpjrecSj8d56KGHALjtttvyKgR1ww03APD++++zYcOGHEuzM6WlpQDceeedXHjhhVm/GzNmDI888gjvv/8+d999924Pqg888AAej0fe+vXr1+lydwV78qr1VJTRpsgJmbluFosFh8MhF/pwOExDQwOhUCgrpwGQYTnxf+Vt61wyjbZoNJoVyhaeU+VdUzz++ONUV1fTq1cvfvrTn+ZanCyGDx/OKaecgqZpsrI1l8ycOZPKykp5mzNnDvfffz91dXXceOONWY895ZRTOOSQQ3C73QwePJjGxsZdXnP69On4/X55y5zvrOheKKNNkTNEgqgIq9lsNqxWKzqdjnQ6TTgcxu/3EwwGpdGW2bQXfkiUV3QOmSGGzERgs9lcMGNfFJ1LKBTid7/7HQB33XVXXuaaCmPoqaeeIhQK5VyW+fPny1skEuH777/niSee2Omx06ZNY9WqVcRiMaqqqnbbQsViseB2u7Nuiu6JWnEVOUdUDYmZlKIJYuY0BYfDgdfrxefzSWMPlLets8n8bMRQZjHwXXnXFAB/+tOfqKurY8iQIVx11VW5FmeXnHrqqQwZMgS/3y8H2ecL99xzD2vXruWEE07g+OOPJ5VKceutt9LU1MQ999zDlVdeyeTJk/nNb36jDkkKVT3a1RR6VU9no2ka8Xg8yxDLbMaa2XtHVDFmFip0B5SOKAqF6upqDjnkEEKhUN5UjO6Ohx9+mF/84hcMGTKElStXyoNfd0StId0XZbYr8goRestMbE8mk8RiMWKxGPF4XFYtZvYEUygUXc9NN91EKBRiwoQJnHfeebkWZ49ceeWVFBcXs27dOl599dVci6NQ7Bdqt1PkHZnNEEVlaWbPncwSbzG7TqFQdC1vvvkmb731FkajkccffzzvD09Op5NbbrkFgPvuu0+lVSgKkvz+lil6NMJ4y5ymIPq8iZsy2BSKrqeqqkrmr/3qV79i9OjROZaofdxwww14vV5WrVrF66+/nmtxFIp9RhltCoVCoWg3yWSSSy65hJaWFsaNG8e9996ba5Hajdvt5uabbwbg17/+NeFwOMcSKRT7hjLaFAqFQtFu7rnnHubPn4/L5eKVV14puCKgX/7ylwwYMICqqiruu+++XIujUOwTymhTKBQKRbt47bXXpKHz2GOPMXjw4BxLtO/Y7XYefvhhAGbMmJE161OhyHeU0aZQKBSKvfLVV1/JOZ633norF110UW4FOgDOPPNMLrzwQlKpFBdddBFNTU25FkmhaBfKaFMoFArFHlm0aBGnnHIK0WiUqVOn8oc//CHXIh0QOp2Of/zjHwwePJjNmzdz9tlnE4vFci2WQrFXlNGmUCgUil2iaRovvfQSxx13HH6/n8rKSl555ZVuUbXt8XiYPXs2brebzz//nGnTpqk2IIq8RxltCoVCochC0zTmzJlDZWUll156KZFIhJNPPpkPP/wQl8uVa/E6jNGjR/Pmm29iNBp55ZVX+OlPf0oikci1WArFblFGm0LRQSQSCSZMmCB/nj17NuPGjWPKlCkqZ0ZREKTTaWbPns1RRx3FlClT+OKLL7BYLNx9993MmTOnWxlsgpNOOomXX34Zo9HIyy+/zNlnn01LS0uuxVIodoky2hSKDqCpqYlTTz2VDRs2yPv+8pe/MH/+fG644QYee+yxHEqnUOyZZDLJa6+9xmGHHcbZZ5/N4sWLsdvt3HrrrWzcuJF77rmnW4REd8d5553H7NmzsVgsfPDBB4wdO5Z//vOfuRZLodgJZbQpFB1AOBzmz3/+MyNGjACgpaWF4uJizGYzxx57LAsXLtztc2OxGIFAIOumUHQFW7duZcaMGRx00EFceOGFfPfdd7hcLm6//XY2bdrEQw89RK9evXItZpcwdepU5s2bx6BBg9i4cSOnnXYalZWVPPPMM2zZskXOOlYocokx1wIoFN2Bfv360a9fP/lzMBjE6XQC4HA4CIVCu33uAw88UFBd5RWFxYoVK/jmm2+IRqO0trYSDodZv349S5Ys4dtvv5WPKykp4YYbbuDGG2/E5/PlUOLccdRRR/Htt9/yu9/9jpkzZ7JgwQIWLFgAtE1TGDBgAMXFxfh8Pnw+H0VFRfh8PjweD2azGaPRiMlkYtSoURx22GG5fTOKboky2hSK/WDmzJnMmjVL/nzHHXdw2mmnyZ+dTqcckRMOh3G73bu91vTp0+Uga4BAIJBlACoU+0s8Hueoo44iEons9jHjx4/nmmuu4eKLL8ZqtXahdPmJx+PhoYce4pZbbuHpp5/mvffeY9GiRQQCAb777rt2XcNgMNDQ0IDX6+1cYRU9Dp2mfL5dSiAQwOPx4Pf797iRKwqT448/nk8//RSA4447jo8++ohPPvmExYsXc9ddd7XrGkpHFArFgaDWkO6L8rR1MS6XC7/f3y2rsBTZ3HLLLRx33HHYbDbefPPNdj9P6YhCoTgQ1BrSfVGeNoVCoVAoFIoCQFWPKhQKhUKhUBQAymhTKBQKhUKhKACU0aZQKBQKhUJRAKhChDxC0zSCwWCuxVDsApfLhU6ny6kMSj/yG6Ujir2hdESxN/amI8poyyOCwSAejyfXYih2QT6Uziv9yG+Ujij2htIRxd7Ym46o6tE8Yn9OQKIR65YtW3K+GGTS3eQq5BNyd/ssOpueqCOQn59Hvsl0oPIUqo7k2+eQSb7K1lnriPK05RE6nW6/lc7tdueVwgqUXB3HgegH5O97VnJ1HAeqI5Cf7zvfZMo3efaF7rjPQP7K1tFyqUIEhUKhUCgUigJAGW0KhUKhUCgUBYAy2goci8XC3XffjcViybUoWSi58od8fc9KrvwiH993vsmUb/J0Ffn8vvNVts6SSxUiKBQKhUKhUBQAytOmUCgUCoVCUQAoo02hUCgUCoWiAFBGm0KhUCgUCkUBoIy2AiaRSDBhwgT58+zZsxk3bhxTpkyhqakpZ3LFYjHOOussJk6cyBNPPJEzOXbk3HPPZdOmTXz55ZeMHz+eyZMns3HjxlyL1akoHdk3eqKOQH7qSb7pSE/VDchP/YD80xFBp+qKpihIGhsbtRNOOEErLS2V9x133HFaLBbTPvjgA+3+++/PmWzPP/+89ve//11LpVLaySefrLW2tuZMFk3TtFgspv34xz/W+vTpo23cuFGbOnWq1tjYqC1fvly75pprcipbZ6J0pP30VB3RtPzVk3zRkZ6sG5qWv/qhafmjI4Ku0BXlaStQwuEwf/7znxkxYgQALS0tFBcXYzabOfbYY1m4cGHOZFu8eDGVlZXo9XpGjx7NypUrcyYLtJ3Gbr75Zk466SQAWltbKSoqYsSIEaxduzansnUmSkfaT0/VEchfPckXHenJugH5qx+QPzoi6ApdUUZbgdKvXz/GjBkjfw4GgzidTgAcDgehUChXouWVLNA2y23SpEny53Q6Lf+vdeOON0pH2k9P1RHIXz3JFzl6sm5A/upHvskCXaMrymgrEGbOnEllZaW8zZkzJ+v3TqeTcDgMtJ2McjmDLZ9k2RWZw3j1+u7zFVA60nF0Vx2BwtGTfJFjR7qzbkDh6Ee+ybIrOkNX1MD4AuHGG2/kxhtv3O3vfT4f9fX1RKNR5s2bx9ixY7tQumzGjh3L559/zsiRI1myZAn33XdfzmTZFTabjYaGBurq6hg4cGCuxekwlI50HN1VR6Bw9CRfdaQ76wYUjn5A/uqIoDN0RRlt3YhbbrmF4447DpvNxptvvpkzOS644AIuuuginnnmGaZNm4bVas2ZLLvirrvu4vTTT0en0/HCCy/kWpwuRelI++jJOgL5oSf5qiM9XTcgP/QD8ldHBJ2hK2qMlUKhUCgUCkUB0P0C8gqFQqFQKBTdEGW0KRQKhUKhUBQAymhTKBQKhUKhKACU0dbFaJpGIBDoEf19FPuH0hHFnlD6oVD0XJTR1sUEg0E8Hg/BYDDXoijyFKUjij2h9EOh6Lkoo02hUCgUCoWiAFBGm0KhUCgUioJh+/btPPbYY3zwwQc9Lk1ANddVKBQKhUJREKxfv55jjjmGuro6AM4//3xeeukljMaeYc4oT5tCoVAoFIqC4JprrqGuro6+fftiNpuZNWsWN9xwQ67F6jKU0dZOtmzZwuTJkznmmGN48MEH+fLLLxk/fjyTJ09m48aNuRZPoVAoFIpuzX/+8x8++eQTzGYz8+bNY9asWeh0Oh577DFeffXVXIvXJSijrZ08/PDD3HPPPXzxxRfMnTuXO++8kzlz5vC3v/2NBx98MNfiKRSKAuLcc89l06ZN6vCnUOwDf/zjHwG4+uqrGThwIGeddRa33347ANdeey01NTW5FK9LUEZbO7n99tuprKwEIJVKAVBUVMSIESNYu3btbp8Xi8UIBAJZN4VC0TOJx+OcffbZfPXVVwDcd9996vCnULSDbdu2MWfOHABuvPFGef8999zD+PHjCQQC3HzzzbkSr8tQRls7KSoqwmAw8PjjjzN27FjS6bT83Z6qVx544AE8Ho+89evXryvEVSgUeUgsFuPmm2/mpJNOAqC1tXWvhz918FMo4IUXXiCdTnPMMccwbNgweb/RaOSxxx5Dr9fz+uuvs2TJktwJ2QUoo20fePHFF5k9ezYPPvggOp1O3q/X7/7POH36dPx+v7xt2bKlK0RVKBR5iMvlYtKkSfLn9hz+1MFP0dPRNI1nnnkGgGnTpu30+0MPPZTzzz8faPu+dGeU0dZOvvrqK5577jnefPNNzGYzNpuNhoYGVqxYwcCBA3f7PIvFgtvtzropFAoF0K7Dnzr4KXo6S5cuZdWqVVitVmmc7chvfvMbAN566y0aGxu7UrwupWc0NukAfv/731NbW8tpp50GtOWinH766eh0Ol544YUcS6dQKAoRcfirq6vb7eHPYrFgsVi6VjCFIo947bXXAJgyZcpuHR+HHnoohx56KEuXLuXNN9/kmmuu6UoRuwxltLWT9957b6f7Fi5cmANJFPvC2rVrufzyy2loaMDr9fLss88yYsSIXIulyCNyqSN33XWXOvwVAGodyR2apkmj7YILLtjjYy+66CKWLl3Ka6+91m2NNjRFl+L3+zVA8/v9uRalRzB58mTtmWee0TRN015//XVtwoQJuRWoHSgd6VoKTUeUfnQ9haYj3YlvvvlGAzS73a6FQqE9PnbNmjUaoJlMpr0+tlBROW2KvEHTNI455hgOO+ww7HY7Q4cO5bDDDuPOO+/cr+vV1dXx3//+l0svvRRo6421ceNGNm3a1IFSK7oSpSOKvaF0pHshvGynn346Dodjj48dMmQIAwYMIJFIMG/evK4Qr8tR4VFF3qDT6fjiiy8AqKio4OOPP6Z///5Zj/nJT37CunXrdvn89957L6uybsuWLfTu3VvOpNPpdPTv35+qqqo9Fo8ocoP2/1dPZibn74jSEcXeUDrSfdA0jVmzZgF7D41C22dz0kkn8dRTTzF37lxOPfXUzhaxy1FGmyLv2LZtG4lEYqeFFuCNN97Yp2vtaABoe+ipp+haNE0jmUySTCZJpVJZRpter8doNGI0GndZVal0RLE3lI4UPl999RVVVVU4nU5ZBLg3TjzxRJ566ik+++yzTpYuNyijTZF3LFu2jMMPP3yXv9uXE3K/fv2orq4mmUxiNBrRNI0tW7bschFXdB3pdJp4PE4ikdjl7zVNI5VKkUqliMViGI1GzGYzBoNBPkbpiGJvKB0pfN59910Apk6dis1ma9dzjj76aKDt849Go1it1k6TLxcoo02Rd9TU1NC3b99d/m5fTshlZWUcfvjhvPjii1xxxRW8+eabDBw4UIU0ckQqlSIej5NMJuV9Op0Ok8mEwWCQHjVhtAkPnPDGmc1mzGYzOp1O6YhirygdKXw++OADAM4444x2P2fAgAGUlpZSX1/PkiVLmDBhQmeJlxN0mvLzdimBQACPx4Pf7y/4RruZm2s6nUbTNDRNk+Etg8Gw2/DWnli9ejWnn34648eP58UXXzwgGVevXs0VV1xBY2Mjbreb5557jpEjRx7QNTub7qYjyWSSRCIhZ/YCGAwGTCYT8XicWCwmvW5GoxG73Y7VakWn0+1k6JnNZiwWS4/Wke6mH+KWTqez1pFMdDpdVth8T3mPgp6sI92BqqoqBgwYgF6vp66ujuLi4nY/94wzzuD999/nL3/5CzfddFMnStn1KE+bYr9IJpPE4/GsMTyCzPBWPB7HYDDsFN7aE8OHD9/tHMZ9Zfjw4Xz55Zcdci1F+xHGWiwWy9qADQYDOp2OSCRCQ0PDLvUnGAxisVgoKSnBZDJhs9mkcRePxzGZTEpHCphdHfb2BaEDJpNpj8ab0pHCRnjZjj766H0y2ADGjx/P+++/z9dff90ZouUUZbQp9glN03bKRxLhLXEaFidmYbilUilaW1sxGo1YLJZ2nZIVhUs6nSYajUrPmk6nw2AwEI/HCQQCWbpjMBiw2Wyy438sFiMcDhOLxaitraVXr14YjUZMJpMMlyYSCTUhoEARh71dedL0en3Wv5kI71symUTTNBKJBMlkEqvVus+efEVhMGfOHKAtn21fGTduHNBWyNDdUEabot1ompa1GZtMJpljlEnmIiqSzjOrBC0WiyyfV3QvhIEuNmWj0UgkEiEUCmVt1Ha7XfZcSiQSpNNpbDYbLpcLr9fL9u3bSSQS1NfXU1FRgU6nw2g0Sg+NMtoKC2FoCYNdfJ475jJmVhCLWyYmk0l68DVNo7W1FbPZ3O6QqaIw0DSNBQsWAG3VoPvKUUcdBcD69etpaGigpKSkQ+XLJWrnVLQL4T0R4Syr1ZpleImcFE3T5ElZnJqtViupVIpoNCoNP5FUrug+pFIpIpEI0Ga4a5pGfX291BlRBRqLxWhoaKCqqmqna7hcLvr3709ZWRlbt24lFovR2tqK3W7HaDQSi8WkF7e94XZF7sk02IQeJBIJQqEQsVhMetB2hVhLRI6s1WrFYrHIPElxKNyXFAxFfrNmzRqampqwWq0cdthh+/x8n8/HsGHDWLNmDYsXL+aUU07peCFzhDLaFHslnU5L74lOp8NqtWIwGEgkEoTDYaLRKIlEImvR1ev1WCwWbDYbdrsdg8GA3W6XC3Q8HgdQhls3QXjYoO2zj8ViBAIBAOlRaWpqko8RiA1ceE2CwSArV65k2LBhuFwuAoEAwWAQu90uk9CTySStra3YbDa1SRcAmQab8Mw3NjYSi8Xa9fzMQoVEIkFrays6nQ673Y7NZpO5cdFoVOqT8roVNqI58lFHHbXfe8SRRx7JmjVrWLRokTLaFD2HTA+ZTqeTi2RjYyPRaHS3zxOGXmtrKy0tLbhcLlwuFxaLBb1eTzweJx6Py5YPisJlR6M+EokQDocBsNlsNDc3EwqFgDavicfjwW63y+cbjUZcLhcGg4GNGzcSDAZZt24dw4cPJxAI0NraSjwel5WjohFvJBLJagOiyD+EJwzaQpuapmUVoNhsNqxWKyaTSYY4xeFPeO7T6XRWeoXwrIXDYSKRCB6PRxrz4qZSMAobYbQdc8wx+32NI488kpdffplFixZ1lFh5gdJqxW5JJpPSMNPr9ZjNZvx+P8FgUD7GZrPJRHKx6IoTcTQaJRQKkUql8Pv9hEIhiouLsVqtMsclFotl5bUoCovMHDadTkdra6s02CwWCzU1NaTTafR6PV6vl2AwyPr163fyuAEUFxczYsQIqTvbtm3D6XTKStOKigr0ev1OHttkMondbleGW54hqoehreBE0zQaGxvRNA2TyYTP55MFJqFQSHrsM3vziVsmZrMZl8uF0WgknU7T0tKC3W7H5XLJXDdRtawOhIVJRxltQLcz2lSfti6mUHosCYMK2hZcg8FAY2OjDHPY7XbcbjfxeJxIJJLVS0tUiTqdTiwWi/S2iQIGj8eDy+UiFovJ3CTRl0tRWDqSadRHo1Fp0BuNRmpra4E2wz4Wi7Fly5asRHOHwyFzm8TzdDodo0aNorm5GYBBgwYRDodJp9MYjUa8Xi8OhwOdTpf1+kajsd0d0wudfNcPUWEu1gO9Xo9er5cGm9lspri4mHA4TF1dXdYhcE9keuGgbV0qLS2V64rNZsPr9crKUqBdrUEU+UVzczNFRUUA1NXVUVpaul/XCYVCuN1uNE1j27ZtVFRUdKSYOUN52hQ7IUKXgBzbsn37dllkYLVaCQQCbNmyZZd9tjIxm80UFRVRXFwsqwj9fj/pdBq3201ra6s8WatTcWEgiknExijaeYjN12AwZBls1dXV0rPmcDjQNE1u2EajkeLiYkaNGkVDQwO1tbV8//33DB48mFgsRlVVFYMGDSIYDJJMJmloaJCLusPhQK/XE4lEZF6T8tjmlkzvGiBzX0V+o8lkwuVysWnTJnkftBU2Wa1W4vE40WiUaDQq1yHx2YrGyx6PB51ORzwep7a2lj59+hCPx2ltbUWv18vf75hLpygMFi5cCMDQoUP322ADcDqdHHLIIaxYsYLFixfvV+uQfEQZbYosMg02EbpobGwE2hbgcDjM9u3b5eONRiMOhyMrh0QkiodCIbmwbt++ndLSUtxut0wu1+v1snFqPB5XZfsFgPDACo+H2WwmGo3S0tICtOmI0A+TycS6devkY8PhMOvXr9/pmlu2bGHJkiX06dOHvn370tDQwKZNm+jTpw+pVIoNGzZQUVGBw+EgHA6TSqWor68nmUzi8XjQ6/WyN6Ay2nLDjt41UfGZ2ZdPeFVXr14tdaKkpASr1crWrVupqqqSzxf9+MShUKRnxONxWlpasFqt9O7dW4bRBwwYQCgUIhwOYzKZpDdW9JQU0QJF/tMRoVHBkUceyYoVK1i0aJEy2hTdj0yDTSywwmCDNld1Op2WyeQAra2tNDU1Sc+LOBGL8KjZbJZ5T3V1dTQ3N1NeXk4sFsPv98vQifDeqDBpfiLyhMQGLDZRYYBDmwEvPLKaprFx40b5vJqaGqAtudzj8WCxWGQekqZprFmzhpqaGhoaGhgyZAjRaJSamhr69OlDOp1m69atGI1GevfujdFoJBAI0NzcnJXLpjI9ckemwWYwGIhEIll5izqdju3bt8vHOJ1OXC4XVVVV1NfXy2uEw2FaW1t3WeSk0+koLi7G6XQSjUapqqqiV69epFIpamtrqaiokJ58s9mMyWSSRQzxeFytLQVCRxttzz//fLfKa1NGm2KnKQdmsznLw5ZOp+X/jUYj4XCYqqqqdm+Ser2ekpIS2Vupuroan8+HwWCgubkZr9eLXq+Xlapqcc0vRHWo8HoIQzxzExYGWzqdln3YEokELS0tBAIBWThQX1+/k97YbDYmTJhAJBKhrq6OVatWcdBBB5FKpaiqqqJv376yOrCqqkrqkpieIMLqSmdyQ2YOmcFgwO/3Z/3c0tIijTCz2YzT6aS2tpY1a9YAP/T3Ez39xEQMUSUs+rOJxroNDQ2UlZXhcDjkTErRLsZqtRKLxWhqaqKsrEyuZcITq7xt+U0ymZRTDDrKaIO2YgRRLFXoqEKELibfkojFJiuSecWGLE6/okRfeE9qamrkputyubDZbFmzBEVZvlgkxYIpFkuv1ysbpYoebnq9XlaDZTbk7amhrnzSkV0ZbH6/P6uJbjqdlm0cQqEQgUBAVnxGo1H8fj9+v1/qidfrpaSkBKfTSXV1tQytlpSUMHToUGpra9HpdAwdOlTqpdPpZPDgwTQ1NQHQq1cvEokENptN5snZbLYe0eYhn/RDtF6BNsPd7/eTSCRkg22R22gwGHC5XGzfvj3Le280Gtm0aZPs6xcKheQ6IipBDQaDbBUkKkcdDgderxefzyfbCel0Ovr16ydnIovHiCkuYoKLIn/59ttvGTt2LG63m+bm5gPeAyKRCG63m1QqRXV1NX369OkgSXNH91/hFLsls6UHIL0XYmPU6XTSeEskEnIBdjqdhMNhli9f3q4GmTqdDp/PJ5uoBgIBvF6vbPvhcrkIBoOyfUg6nSYSiWCxWFRxQg4RDW9FSFzkq2VOxWhqaiISiZBIJPD7/bS2ttLc3ExzczORSISmpiZisRjBYFBWiW7ZsgVoM/jGjRvHGWecwfz582loaCAQCDB27Fi2b9/OmjVrOOSQQ4C2SrCVK1cyfPhwWlpa8Pv92O32rHYQ3eEUXWhkjqUS4XO9Xo/JZKK6uhpoO6ilUilWrlwpvR1i4sWGDRtIJpO0tLTIvmsiRJqJKDCw2+0yKpDpbxCHwOrqavr37y+vIwx5cahURlt+I0KjRx99dIcc2u12OyNHjmTZsmUsWrRIGW17IhgMcsIJJ8i+OzfeeCNXX311Z72cYh/YMRwqFtlAICB7bBmNRurq6oA2b0ttba3se7RkyRK5YIqB39BmBIqKLeFtEyGOZDIpH+vz+WQHc5/PRyqVwul0ymu4XC4AObJINU/NDeLvL+ZEinw10UJBeF2FoRaPx6mvrycUCtHU1CQ9J36/X+pbMpmkqKgIq9VKS0sLCxcu5JtvvuHSSy+VIbNvvvmGiRMnsmXLFlauXMnIkSPx+Xw0NzdTU1ODw+EgEonIRs+K3CC+14BcP6DNA79x40YASktLicfjrF69GoDy8nI8Hg+ff/65bBXU3Nws2wJlViBXVFRgs9loaWmRVcOhUAiv1ytlEIcJoaNms5mamhrKy8tl0YKoQBSNenuqB78Q6Mh8NsGRRx4pjbazzjqrw66bKzrNaLPb7Xz22WfY7XYikQijRo3inHPOobi4uLNeUtFOMg02kaxbV1cnQ1FWq5Vt27bJHmrixKzX61m5ciUAffv2JRQKsXbtWhke2ROiL5fT6aS1tRW3201JSQnxeJyioiIZOrPb7fj9/ixPnE6nUyfkLkY0SIY2D6ww2KxWK8lkkm3btkmDTXjb6uvrs/5taGggEonIYgWhJ9XV1ZhMJs444wxsNhvffPMNzz33HGeccQaHH3443377LfPnz+eUU05h9erVLF++nMrKSnQ6Hc3NzdhsNvR6vWwTk9lBX+UsdR07DngX64dIkTCbzXi9XubNmwfAsGHDiMVifPTRR9LjVl9fL737okmzw+Fg5cqVLFmyBIB+/fpx9tlns3XrVlavXk1jY6M8xIkDhMVikblu0Nbry+l0kkwmiUQiGAwGeYhURlv+0llG29NPP91tihE6TXvFrElA5hSo9LncI7xh0LYZi+TwVColQww1NTVyFIyoGLVYLDJxeMCAAXz11VcsXbqUSCSCyWTC6/XidDpl36ympiYaGxtlflMoFCIYDFJbW0tjYyMtLS1UV1cTDoepr6/PCo2IcInYgOPxuNwQCo1YLMZZZ53FxIkTeeKJJ3ItTrsROmIwGGQRgcFgwGQyyTB5PB6nqamJUChEbW0tgUCAbdu24ff72bp1K36/n+rqarZv3y71ZOTIkQwaNIhEIsFbb73Fpk2bmDZtGgDvvfceLS0tHH744aTTaf79738zatQoAL7++mt8Ph+A9O7s2COwUHWkUMk02MT/RZNlaEujqKqqIp1OU1xcjKZp/Oc//5HG/+bNm2ltbaWhoUH2a9y8eTNfffUVgUBA5rhu2bKFmTNn4na7Ofroo0mn0wSDQdLptCx6aGxslEUKIr1C6LBoLwRKR/KZrVu3smnTJpk20VGIYoRvvvmmW9gg+2y0pdNpDj74YH79619n3f/RRx9hNpt5/fXX5X0tLS0ceuih9O3bl9tuu42SkpIDl1hxQOw4B1AkBdvtdsxms1xkRd5aOBzGYrHIPKTevXszb948kskkw4YNY8SIETQ0NLBkyRK+//57NmzYQF1dnfSuNDU1UVdXR319PXV1ddJ4q6urIxwOU1NTQyQSobGxMavcP5VKEQwGswy3QmTWrFmceuqpzJs3j9dff32P81rzCWEQGY3GrMa4wmAzm83U19cTjUalZ010t9++fbvMXWttbcXlcnHbbbfx1VdfMXv2bP71r3/x5JNPYrfbWbBgAVVVVdx6663o9Xo++eQTNm3axLBhw0gkEnzxxRcUFRXJdhCwsy4IWZPJZMEtyoVq1O+OzJCp0Whk27ZtQFuRySeffAK0efLXrFlDNBqVxSqRSIQVK1YQDAY5+OCDeeKJJ/jvf//L119/zS9+8QsAnn76aU4++WQqKipkI12RlxuLxQiFQtKQ0zSN5ubmrEHzgHIe5DFffvklAKNHj+7QAptDDz0Uq9VKY2OjdDwUMvtstOn1eqZPn86jjz4qR80sXbqU8847j/vvv5/zzjtPPtbr9bJ06VI2btzIyy+/nNWUVdH1iIpOQPbYAmQFXlVVFdA2A9JoNLJ161YZ1vT7/dhsNplMPHbsWNavX8+HH34oQxHDhg2jV69emEwmWUUIUFRUhM1mk6fqQCAgN/toNEptba3MbUkkErKCTAyqB2SOXKGxePFiKisr0ev1jB49WoaXMxGVc5m3XJO5sWWOI2ptbUWn08mRROKzamxslK0+YrEY27dvJ5VKcdRRRzFnzhyuvvpqmasIcNxxx/Hggw8C8Nhjj2G1WrnrrruwWCz897//paqqCrfbLSuXAZljKQxf4TURG7LYoAuJQjXq4YfCDzEpRfxf6IuYbqDX6/n+++9lk9s1a9bItSAWi9HS0iKbLl9++eW8+uqrTJw4UTbuvuaaazj++OOBNo/r6aefniWHGJHX2NgoG3sLGUShVGbBlDLa8pPOCI1C214nPHfz58/v0Gvngv0Kj15yySWUlJQwc+ZMqqurmTp1Kpdddhm//OUvd/n48vJyxowZw+eff35AwioOjMxwhugWDm2Jw6J/ltvtpqysjOXLlwNw8MEHs2zZMqDttNzS0oLX62XDhg2sX78ej8fDeeedRywW45133uGTTz5h2bJlbNmyhZqaGlauXMmCBQtYtmwZvXv3lnlJIgm5paWFRCJBU1MTqVSKUCgE/LARRyIRuSEU2oYMbaEZUWThcDjk+8vkgQcewOPxyFu/fv26WsydyNyExf+Fvuj1ellcINp/iEkJItE7kUhw5JFH8swzz1BeXr7L1zjttNM4++yzSafTXHXVVXz11VfcfffdMqfJYrEAsGrVKukVFr38RDsZaNMV0eqj0MJfhWrU70imIST0JHN01ZYtW0gmk2zevFke0JLJpAyhG41GHnzwQX7961/vMn9V6IKmaQwaNAho+26J5roidC6+X8LLFolEZG5sIa8jPYHOMtoAJk6cCMCCBQs6/NpdzX4ZbUajkV//+tfMnDmTKVOmMHbsWGbOnJn1mO3bt8svbSAQ4PPPP2f48OEHLrFiv8k8GWcusmIaAbR5xTZv3kwqlaKoqIhgMEhrayter5dNmzYBMGTIEJYsWYLZbObCCy/kD3/4A8uWLcNqtXLGGWdw//338+KLL/Lqq6/y4IMPMnHiRJLJJB9//DHDhw/HYDDIRpqRSIRIJCJfR8yYFIttNBqVchfahgw/tEeBtjFOu3L7T58+XfYy8/v9MhSdSzJzgETblUwjKfNnoUvCmyGee+mll8rNdnf87ne/4+STTyaRSDBz5kzuuOMO/ud//gdoa4hptVplInmmF0e0cABkhWumLIVCoRr1OyIMIZ1OJ9cS0X9PpGCIfpDhcFjqUHV1NRaLhX/84x+ceeaZu7x2OByWG/qYMWNoaGgA2r5bo0ePlo/T6/U0NTVJPRFV7IXoge1pRKNRFi9eDCijbW/sdyHCJZdcIjfWV155ZaeqrerqaiZNmsShhx5KZWUlN9xwA2PGjDlggRX7T2bbDFFcAG2jqISnIpFIyLB3v379+P7774G2yq/q6mr0er3MazrppJOYMWMGsViMSZMm8dlnn/Hwww9z4YUXcswxxzBu3DjOP/98XnjhBX7/+98D8M477/CjH/0I2NkIEP+K5pg7hkQLbUMGGDt2LJ9//jmaprFkyZJdHlwsFgtutzvrlmsyPVdCT8TnIz4T8W9mEjpA//79Afjzn//MvHnz9rhhWiwW/va3v/Hwww9TUlLC6tWrmTt3LmPGjCGdTmO1WrNeI/M1hT7rdLoso6GQKFSjHrI990I34IfPSOSY1dfXy5F4wmtoNptZt24d0Ga472mjfv755wkGgwwYMIDDDjuM9957D2jLVRLVouFwmIqKiqzniUNeIa4bPY3FixeTSCQoLy+XntSO5OijjwZgzZo1svdoobLfRtsNN9wAQENDwy7L7I844giWLFnC0qVLWbZsGf/7v/+7/1LmKYWWRCx6GUGbYeRwOIC2xVX0WhP5IYBccOGHhe+ggw5i7dq1QFsu3NatWyktLeXRRx+V/ZB2xcUXX8y4ceNIp9Oyqri2tjYrcViEVcRr7WqjLjQuuOAC5s6dy7hx4zj33HOlEZLviJmw0GbAifmwVqtVft+FgSR0SoRBU6kUFRUVbN68mZ/97GdMnDiRm266iccee4y5c+eydu3arBwjnU7HlClTuOmmmwBYsWKF3Iwz20hk/qzX6+XriikembIUCoVq1EP2Z5FptIn7BJkGttD/wYMHE41GKS4u3uMg78WLF/OPf/wDgJ///Oe8/fbbrFu3DpvNxpQpU7IKqYRe7uiRF7pSqIZ9T0C0hTnmmGM65fMpKipixIgRwA9h2EJlv1a4u+66iw8++ICFCxdy0kkn8dRTT3H99dd3tGx5j0givvbaazn11FO57LLL8n5TFrP4hAdFTEEQX5RwOCw3PuFxc7lcMiQxYMAAWQXm9/sBmDBhgjT69oTw2IhwW2aYNjNHaUcjrZB7K1mtVt5+++1ci7FfmEwmGdKy2Wxyzmc0GsVsNsvco8xcIY/Hw7Zt2ygpKaF///6sWLGChoYGPvzwQz788EN5baPRyNChQzn44IMpKiqiqqqKTz/9FGjLoxSVZCJcGI/HsdlsmM1mjEYjBoNBbtJCXw0GQ8HpyQUXXMBFF13EM888w7Rp0/J+/chEGEcGg0F+d8U6suNBfldeWVHQ8sYbb3DOOedkPScQCPD666/zyCOPkEgkOPnkk7Hb7Tz33HMA/OxnP8NiscjE8oMOOkjm4Yr2RSaTSfZxy5ysUmg60hMQ331RcNIZTJw4kRUrVrBgwYKCbrK7z0bbk08+yR//+Ec++eQTDj30UH7xi18wY8YMrrnmmh43cmjx4sVceeWVWUnEhx9+eNZjYrFYllch10nEYvpBIpEgHo/j9XrZvn279LyFw2G5eGZORxCNUUUvNtF4F2hXxduaNWvkCUckDTscDunR0ev1O3lwBDt63hRdQ6bnwmw2Ew6H5YZnNpsxmUxy9mx5eTnbt2+nf//++P1+qqqqiMfj9OrVi9LSUjweD8lkktraWjZu3CjHUu2YeD9q1CjWrVtHNBrF6/WSTqex2WxYLBbZlsZut8uGqiaTScq0t/y5fKRQjfrMPDHRuBZ+OJCJghQxQSOZTGYVP61YsYKJEycyf/587r77bv785z8zbNgw2Upm/fr10hA89thjOfLII3n00UcBOP3005k4cSJPP/00wWCQ0tJSWQzjdDoxm81YLBY5ISFTLlGEpcgfEomENL4722h74oknCj6vbZ+Mtjlz5nD99dfzyiuvMGHCBKDNZf3QQw/xwgsv8LOf/axThMxX2ptEfO+993a1aHtEeNtE2MJqtRKNRrFarYTDYbmoCWMzEonIdg2RSIS+ffuyceNG+d4XLFhAc3OzNMZ2JBwO84tf/IJUKsXJJ58sv6ADBw4kHA5TUlKCTqeT3rodjTdlrOWGTI+E+EwyDaRQKER5eTmbNm3C5/PJKmCDwcCECRNoaWlh9erVNDQ0SE/tQQcdxGmnnYbX66W+vp6qqirZXNXv90uvr8PhwO12YzAY8Pl8GAwGioqKMBgMOJ1ObDabbOAtPClqGkLXkRlqFAeuRCIhP4dUKkVJSQl1dXV4vV4SiQRutxu/3y9HkrW0tDB69Gg2bNhAS0sLX3/9ddZr9OrVixEjRhAKhXj//feBtorjiy66iNdff521a9diNps54ogjWLFiBQAejwedTidTMDKNtmQyqbxsech///tfwuEwRUVFspl2ZyCKERYtWiT3u0Kk3Ubb4sWLOe+885gxYwbnnHOOvN/tdvPzn/+cBx98kMsvv7xHLZztTSK+5ZZb5M+BQCDn1V9iLFQsFpMetswqTbEgiw00FovJ8WOrV6/mqKOOYuPGjSxfvpwRI0awYsUKpk+fziOPPLJTTlFTUxPXX389q1atori4mMrKSl599VXMZrNs2iq+PMIIzDwVZ/6r6FqEVyLTaBafhfBqmc1mPB4Pfr+fiooKKioqWLFihezJWFlZid1up6qqilWrVrF+/XrZk2tXWK1WnE4nLpcLs9lMSUkJNpuNsrIyrFYrRUVF0tsmhoELr5sid4iDXyQSobS0lNraWgwGAxaLBU3TCIfDMm9VpEUEAgHS6TSDBg2itbVVFiAZjUasVitms1n25isvL+fiiy/miCOO4I033uC///0ver2eY489VhpsZWVl0iNrtVpxOBxyyotaS/IXERqdNGlSpxrVBx10EGVlZdTV1bFo0SIqKys77bU6k3YbbUccccQuPUkAv/3tb/ntb3/bYUIVCiKJeOTIkSxZsoT77rtvp8eIvLF8w2g0ygV0R0NL5AalUinKysrYvn27TPTdvHkzkyZNwmKxsGrVKk455RTWrVvHv/71Ly6++GKuv/56Bg8eTH19PZ999hkvvviibL5722238cILLwBtFYZieDiQlRMn5BELrPgiqwW369mxMlR8Nnq9XobTBw8ezMaNG2WLh3HjxskO95lza4855hj0ej3BYBC/3y9HF0FboYHVasVisWAwGHC5XHg8HiwWC2VlZdjtdoqLi7HZbNKgEzpjtVqVbnQxmV5wUVwkWnno9XppyLvdblKpFKWlpWiaRklJCc3NzdKbGgqFiMfj0hMGbbpisVhwuVyUlJQwcOBABgwYQFNTEw899BDNzc3SYBNFUaWlpTgcDsxmM263Wxp+0HYYzKx0VeQXH3/8MdDWcLsz0el0VFZW8tZbb7FgwYKCNdp0moo97TfRaJSLLrqI6upqpk2bxnXXXbfX5wQCgawFLZdEo1E5dLuurk6efkVZfktLCzabjWXLllFUVITb7eazzz7D6/UyZswYnn/+efR6PSeeeCJPPfWU9DruyLBhw7j66qt5+eWXiUaj9O3bV57CS0pKMJlMDBkyBJ1OR1FRkcybKyoqQqfTybmFJpMpLw3gjiZfdERMPADkzFG9Xi8nWjidTtauXSuLWlKpFGvWrJEbZK9evUgmk2zatEl6TPaE8JA4nU6MRiNut1t61oqLi7Farbjdbrmh6/V6mb/Uk8gX/RDj5vR6PVarVVabC0NcrCNilnA0GqWpqYlAIEA8Hpd6tGORwt4MK7fbzeGHH87GjRuBtgkubrcbs9mMz+fDaDTKULrVaqW4uFjKKnIxFflBc3MzZWVlJJNJVq9ezbBhwzr19f70pz9x6623csYZZ/Duu+926mt1FoVVH59nFGoSsSCz672oABPVpB6Ph5aWFpls3tTUxJAhQ2TC+cqVKzn++OP59NNPmTt3LtOmTaO+vp4vvviC+vp6PB4Po0aN4rDDDiMQCPD0008DUFFRIQsPfD4fJpOJvn37yrwkl8uFpmm4XK6dqr56Uug93xBVeOl0mrKyMqqqqgiFQgwdOlQO/gY4/PDDaWlpYcOGDXLupMPh4KCDDpLe22QyKRPTRbsIUe2n1+txuVx4vV5MJhNOp1NuyMLDJgw2k8m0y+75iq5BpDik02mi0SgWi4XS0lIaGxtJJBLSiGpubpaNuvV6PU6nk5aWFsxmswyZJpNJ0um0XIvsdjsul0uuB/F4HKvVisfjobm5WRpsJSUluFwuTCYTXq8Xo9EocyB1Oh0ej0f2fAS1huQb77//PslkklGjRnW6wQY/5LV98cUXWa1oCgnlaeti8uWUDMjRQwaDQXrYdDoddXV12O121qxZIzdpUXEzYcIE5s6dS1NTEw6Hg+LiYjmezG63M2rUKJxOJ42Njaxbt05633Q6nWy6qtPpKCkpweFwUFZWJjfliooKmW/ndrvR6XR4vV7ZHkAknXd38klHQqEQmqZht9tpamoiHA7LzVYYZRaLhUQiwZYtW6S3xOv1EolEqK+vl3NK94QIe4owvM1mw+12YzKZZP6a1WrFbrdLg81isfQIfdiRfNIPMVZMYLVa0ev1tLS0yIpzMbxdzBMOhUIkEgkSiQSRSES2IBLr0Y4I3QiFQvKaBoNBriHCYDOZTHg8HnnA8Hq92O126c0THsGeqDP5ytlnn83s2bP5v//7vy4p2IvH43g8HqLRKCtXruTggw/u9NfsaJTR1sXk04IrFlExeiYcDmOz2eTgeKPRyIYNG2T5/JIlSwAYPnw4y5cvp6amBp1Ox8CBA1m5cqWclJCJzWajT58+xONx6WErKiqSBp/P58Nms1FcXIzBYJALr6hqzawC6ylelXzSkUgkIsNKBoOBrVu3ykkFJpOJqqoqUqmU9GrU19fLIgRBOp2Wo6YyN0zRkkGMHBIGu8vlktcXm7IInQrva0812CC/9APaPl8xdxaQeYnhcFj2ctQ0jdbWVlmQIAoPhBEmEPOPbTYb9fX1bN68Wea6AbKKWOiHMOiMRiMej0euEQ6HA4/HI/sMQttapKpH8wfROSAajbJkyRIOPfTQLnnd4447js8//5wnn3ySK6+8sktesyNR4dEeTGZ4NLO/ktPpJBQKybYLgUAAvV7PkUceyaJFi1i9ejU+n4+ioiK+++47Nm7ciMPhYOLEiTKUkUgkCAaDMhwmwiIixCUMNqfTidfrlSERMaXBaDTicrmkQaDyUHKDyWSSXhCz2SwLU4T34uCDD2br1q2yhYPD4WD06NEEg0ECgYBMNN/VZinCavCD50RMXxBGmgiXZjZJ7ckGWz4iPFjCQIrFYpjNZtkzrampiVQqJT9T0VbIbrfjdrtlmCoSiRAIBAgGgwSDQbxeL5MnT5YzicPhsFxLxCFBVIaKHDb4YYJEpsFmsViUwZZnzJkzh2g0yuDBg7t0xOXEiRP5/PPPmT9/vjLaFIVF5sYnkrljsRi9evVi7dq1+P1+Bg0aJMOc8XicSZMm8e233xIMBgEYOXIkjY2N1NbWUlNTs9NriJYQYmE3Go2UlpbicrmkwZaZ3yaqWYuLi+VoHLPZrDbpHCFaamiaRiwWw2q1UlFRIRsyNzQ00LdvX3w+H1u2bCEej8sGqna7HbvdjqZpspeXpmmyNYSYtOByuaQ3DtqaL4uNWRj0QhZlsOUnou2KyE8T7TuEoR8KhQiFQvLw5nQ6SSaTsu0HtH3uQ4YMob6+npqaGlpaWmRFssBgMMh0CpEDWVpamuXlKyoqIh6PZxlshTberCfw1ltvAXDuued26Xe60IfHq/BoF5NvoQ3RdsFsNssKL7ExisHUTqeTuro62SDV7XYTj8dZsWIFqVRKnpSNRqNMKBbNe4XBlZnHJnJQRJWomDMpHl9SUkIsFpMGXKE2Qdxf8k1HkslkVk89MVGjrq5OhjWLiopk3pvIZxI6sCPCk6bX6+XjoM2r5/P55AYsvCciH6mn5DTujXzTj0w0TZP5aoD0jorZn8JjJrDZbKRSKalLgCxE8fv9BAIBqWPCUyb+dbvdOBwOqT82mw2v16sMtgIgFotRWlpKMBjkyy+/lM36u4KmpibZd3T79u1y/ykUlNHWxeTbgiuSf8Xiun37djkYXNM02WdLhK02bdokF0mHw0FrayubN2/e5SirzM3caDRKr03v3r2lJ0UMGc88lYvTek8qPsgk33QEkI2YAdnUNpVKUV9fLz97kXsmQpkCMb4oGAzS3NwsryMwGo14vd6sRr4lJSWy2lTogQpvtZGP+rEjIkyaub2IubHpdFr26RP3iwkZ7WkN43a7padOXF8YcMpgKww+/PBDpk6dSu/evdmyZUuXf7dHjhzJihUrePvtt/nxj3/cpa99oCiN7uFkNtkVzS8bGhpkgULfvn2pr6+XVV1DhgwhEolQXV0tT8z9+/eXm7go2xeJ55mNcXv16oXNZpMn6t69e2MwGIhGozJsqmmaNApVpVf+YDabpQe1tbVVGm7l5eWyp18ikZCJ5ztiNBpxOp0ylNXa2ir1IJFISI+t6LGlaZpKIC9gRAWwKDIRua6ip19RUZHs2xaPx2lsbKSoqIiioiLq6+vx+/1ZQ+htNps8EIhrwg8Gn9FozMphs1qtqr1HHvPmm28CbdWjufhuV1ZWyuHxymhTFBQiFyUajcrZgeXl5XIxjcVicq5kY2OjrPY6+OCDiUajbN++XXZCz7ym6JNUVFREaWkpRqNRhjr0ej0DBgzAaDTKnJWSkhIMBoM8fRuNRrXo5hGimleE01tbW2VFr8fjweVyEYlEZMNmcQgQhl4ymcTv9+/WqNPr9bjdbqxWa1ZoTcwYVRQemaFRkeeWSqWIx+NYLBasVqvs65ZKpWhsbJSzZUWBQiqVkoUwgDTkRKGDSJ3IbNKrDLb8JplM8s477wBkjcTsSiZOnMjjjz9ekHltymhTyNYLoupTp9Ph8/mIx+P4/X7Z9byiokJWeIlO+b169ZLd0MWiKSr8DAYDwWAwa/yZx+OhX79+aJomQyE+n0/2/hInZVUtmn8IIyoWi5FIJGTRgdiYHQ6HnB+bifCshUIhotFoVud7MSsys/UHILvZKw9b4SOMN71eL416cSgzmUyUlZXJXLdUKrVTGxCB8N4JjxvsHIZVBlv+M2/ePBobGykuLmbSpEk5kSFzeLyIHBQKymhTAG0nV71eLxdAYbyJETCifYfFYqFPnz5EIhFaWlqyqgX3hMfjoaKiAqfTSSKRkL287Ha73OiFwSY8dYr8Q3jcDAZDlq5kesdEpajYmMWcUofDkWWYGwwGuelmPl/kIqnQePdC6ITwuon0BzGr1OVySV0QOqLX6+WhMrOSOXOyBvygl8rIz39E1ehZZ52Vs5zDwYMHy+k+ixYt4thjj82JHPuDMtoUErHJCo+HGP9iMpkoKSmRnhLhXRkwYADpdJpIJEI4HM5qsGk0GmVXezE/EpCVYqLwQMwXBeRzlcGW/wjvmghdiZy0zJBWPB6XM2bFZyqqjEWPtsxNV7RxUMZa90XkpInPX3jgRIW51WqVxpzwnok8WdFGRKwTAqFjSm/yn3Q6LUc/5io0Cm3rzcSJE+XweGW0KQqWzDwUsfGKhVL0VxIDn0UhgsPhoKKiImtiwa4WUGGwpVIpWXiQeTJu78BoRX4gDDBxWhY5bMJoE+OJIpEIJpNJhrSEp0WgGub2HPR6vZxvLCYp7C9C99Qhr3D4+uuvqampweVyceKJJ+ZUlkyjrZBQRptil4gNWXjeMr1oRUVFJJNJgsEgsViMSCQiN2aHwyErCzM34VgsRmNjI8lkEoPBQFlZ2U6Lrbi+2rwLExHWFp+r2JSF5zazWAV+6KSvNt2ehWgflOmh3RtiBJ4Ive84Ek1RGIjQ6NSpU3Pef1Pktc2fP1/mWRYChSGlImcIz5vIYcoMe5WVlclxVaKCVHQxF0O9dTpdVu6JeN6OXxDhoRGPURQ+er1etn3I7J8lEtBV3lrPRXjcBHsy3JSOdA80TeONN94AchsaFRxxxBEUFRXR1NTEggULOO6443ItUrtQWZuKdiG8Ipm5aZFIRI6c6tOnDz6fTy7EwsuSmbckwqiZlaHpdJpEIiFbfYjTtKL7YDQasdvtuFwuXC7XLhvwKno2wnO2q5uie/DNN9+wceNG7HY7U6ZMybU4GI1GTj/9dADefffdHEvTftTuqGg3IllcDGnWNE2OITIYDLhcLsrLy+nbty/l5eUUFxfLPm19+vShuLhYzp+Mx+MyrCqqEEUislqoFQqFonvx2muvAXDmmWficDhyLE0bZ555JtAWtt2xwCVfUUabYp8R/ZKERywajWY1txShD9G3Szw2mUwSjUbl8PnMx5vNZjWqSKFQKLoh6XRaGm0XXnhhjqX5gdNOOw23282mTZv47LPPci1Ou1A7pGK/EPlKmRWBwnMmjLjW1lbZDiQcDmeFSjMNNdFcVXnYFAqFovuxYMECampq8Hg8nHrqqbkWR2K327nooosAePLJJ3MsTftQRptivxGNUDO9bpljizJnkYrHm0wm2dVcNPRVKBQKRffl5ZdfBtpmjWYWoOQDV199NQCzZs1i8+bNOZZm76gdU3HAGAwG6TGzWCxyJqXZbJZGneiIn9loVaHoaSQSCSZMmCB/nj17NuPGjWPKlCk0NTXlUDKFonMIBoO89NJLAFxyySU5lmZnjjjiCE488USSySQPPfRQrsXZK8poU3QYos1HptEm2oWo0Keip9PU1MSpp57Khg0b5H1/+ctfmD9/PjfccAOPPfZYDqVTKDqHl156iWAwyLBhwzjhhBNyLc4uuf3224G2EGltbW2OpdkzymhTKBSKLiAcDvPnP/+ZESNGANDS0kJxcTFms5ljjz2WhQsX7vJ5sViMQCCQdVMoCgFN0/j73/8OwHXXXZe36TCTJ0/m6KOPJhqN8vvf/z7X4uyR/PwLKhQKRTejX79+jBkzRv4cDAZxOp1AWw/DUCi0y+c98MADeDweeevXr1+XyKtQHCjvvfce3333HXa7ncsvvzzX4uwWnU7HfffdB8Djjz/Oxo0bcyzR7lFGm0KhUHQCM2fOpLKyUt7mzJmT9Xun0ynn94bDYdxu9y6vM336dPx+v7xt2bKl02VXKA6URCLBHXfcAcBNN92E1+vNrUB7YfLkyZx88skkEgnuueeeXIuzW9QYK4VCoegEbrzxRm688cbd/t7n81FfX080GmXevHmMHTt2l4+zWCx5V3GnUOyNGTNm8P333+Pz+fjVr36Va3Haxf3338/cuXN54YUXuO222xg5cmSuRdoJ5WlTKBSKHHHLLbdw3HHHMWPGDK677rpci6NQdAjvv/8+//d//wfAX//6V3w+X44lah9HHnkk55xzDpqmceedd+ZanF2i0/Y0qVfR4QQCATweD36/f7fhEEXPRumIYk8o/VDkK8lkkkceeYRf/epXJJNJpk2bxlNPPVVQ3QNWrlzJqFGjSKfTLFiwgGOOOSbXImWhPG0KRQehenApFIqeyJo1a5g+fTr9+/fn5ptvJplMcuGFF/LYY48VlMEGcMghh3DFFVcAcNVVVxGNRnMr0A4oo02h6ABUDy6FQtGTCAaDPP300xx77LEMHz6cBx98kG3btlFSUsLf//53Xn75ZTnmsNCYMWMG5eXlrFy5kunTp+danCyU0aZQdAD724MLVB8uhUJRGCSTST799FN+9rOf0atXL6688krmz5+PXq9n6tSpvPnmm9TU1PC///u/Bedhy6S4uJjHH38caDt8//73vydfMslU9ahC0QH069cvq39We3twQVsfrnvvvbfTZVQoFIp9IRQKsXr1ar755hu++OILPvzwQxobG+Xvhw0bxrRp0/jpT39K7969cyhpx3PmmWfy+9//njvvvJO77rqLDz74gEsuuYSxY8fSq1cvysrKsNvtXW6cKqNNodgPZs6cyaxZs+TPd9xxB6eddpr8ub09uKCtD9ctt9wifw4EAqqBqkKh6BJSqRQ333wzK1asoLW1lWg0SjQapa6ujoaGhp0eX1RUxI9//GN+9rOfccwxxxS0R21v3H777RQXF3PLLbewcOHCnSImer0ep9OJy+XCZDKhadpONwCz2YzT6ZQzuI1GI6eccgo333zzPsukqke7GFX51b05/vjj+fTTTwE47rjj+Oijj/jkk09YvHgxd911V7uuoXREsSeUfigUPRflaetiXC4Xfr8fl8uVa1EUnYzowWWz2XjzzTfb/TylI4o9ofRDoei5KE+bQqFQKBQKRQGgqkcVCoVCoVAoCgBltCkUCoVCoVAUAMpoUygUCoVCoSgAVCFCHqFpGsFgMNdiKHaBy+XKeWm70o/8RumIYm8oHVHsjb3piDLa8ohgMIjH48m1GIpdUFdXR2lpaU5lUPqR3ygdUewNpSOKvbG3Vj7KaMsjRCl/ZyGatm7ZsqVT+zt1xet09Xsxm82d9hrtpbP1A5SOHMjrKB0prNfIxevkk4501XvvLApdftj1e9hbKx9ltOUROp2uS5TP7XZ3m9fpqveS65CGkKGrFielI/uO0pHCfI2ufJ181JGueu+dRaHLD/v2HlQhgkKhUCgUCkUBoIw2hUKhUCgUigJAGW09CIvFwt13343FYin41+lO7yWf6E5/1+70XvIJ9dnl7+vsC/ko075Q6PLD/r0HNcZKoVAoFAqFogBQnjaFQqFQKBSKAkAZbQqFQqFQKBQFgDLaFAqFQqFQKAoAZbR1c5YuXUplZSXjx4/nhRdeyPrdsmXLGDx4MMcffzyXXHLJfl0/Fotx1llnMXHiRJ544om93r+/bNmyhcmTJ3PMMcfw4IMPyvsDgQB9+vTh+OOP58QTTzyg19jdtTr6veQbSkfaj9KRwtWRrtCPPV0v33SkIz63XJFvf8v9Yb/1TlN0a84991xt06ZNWjKZ1CZMmJD1u1deeUV7/vnnD+j6zz//vPb3v/9dS6VS2sknn6y1trbu8f795dZbb9U+/fRTTdM07YQTTtACgYCmaZr25Zdfar/97W8P6NqC3V2ro99LvqF0pP0oHSlcHekK/djT9fJNRzric8sV+fa33B/2V++Up62b8+ijjzJgwABg527cy5cv59lnn2XSpEnMmTNnv66/ePFiKisr0ev1jB49mpUrV+7x/v3l9ttvp7KyEoBUKoXRaJTv4Z///CeTJk3imWeeOaDX2N21Ovq95BtKR9qP0pHC1ZGu0I89XS/fdKQjPrdckW9/y/1hf/VOGW3dHDGc+M477+TCCy/M+t2YMWN45JFHeP/997n77rtJpVL7fP1gMIjT6QTA4XAQCoX2eP/+UlRUhMFg4PHHH2fs2LHYbDYABg4cyIwZM/j3v//Nc889R319/X6/xu6u1dHvJd9QOtJ+lI4Uro50hX7s6Xr5piMd8bnlinz7W+4P+6t3avZoN2PmzJnMmjVL/nzHHXfw7bffUldXxwMPPJD12FNOOUXOOxs8eDCNjY2UlZXt0+s5nU7C4TAA4XBYXm939x8IL774IrNnz2b27NnyvgkTJmCz2dDr9UyYMIGNGzfKDWZf2d21OuO95BKlI0pH9kZ31ZHO1o89XS/XOrLjZ/qrX/2KQw45BNj/zy1X5Ppv2RHsr94pT1s348Ybb2T+/PnyFolE+P7773eZrDlt2jRWrVpFLBajqqqKkpKSfX69sWPH8vnnn6NpGkuWLGH48OF7vH9/+eqrr3juued48803MZvN8v7/+7//Y+7cuaTTaRYvXsxBBx2036+xu2t19HvJNUpHlI7sje6oI12hH3u6Xq51ZMfP9Pnnnz/gzy1X5Ppv2RHsr96piQjdnNGjR2O1WnE4HAB8/PHH3Hbbbdxxxx3U1NTwP//zP2iaxm9+8xvOPPPMfb5+NBrloosuorq6mmnTphEOh5k6dSqDBw/Ouv+66647oPdxxhlnsGnTJoqLiwGYPHky5513Hh6Ph0svvZR4PM5Pf/pTrr322v1+jZqamqxrBQKBTnkv+YbSkfajdKRwdaQr9AMKR0e+++67A/7ccsWO+pLrv+X+sKOetFfvlNGmUCgUCoVCUQCo8KhCoVAoFApFAaCMNoVCoVAoFIoCQBltCoVCoVAoFAWAMtoUCoVCoVAoCgBltCkUCoVCoVAUAMpoUygUCoVCoSgAlNGmUCgUCoVCUQAoo02hUCgUCoWiAFBGm0KhUCgUCkUBoIw2hUKhUCgUigJAGW0KhUKhUCgUBcD/B+eXNd4d5BGBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -326,7 +330,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAHvCAYAAADQPjKVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABidUlEQVR4nO3df3hTdZ4v8HdTpxQaCyVi3a3sldErsyAg0hYeKSxWUhvlp11XBqdYfiMqKAyjd13nkavO9YHnDtxScEphzDBmHcuMoi5Wt3TgwriztFYQbqmzjoKKQrVNhza1SWr6vX9oMi05gZye38n79Tx9HnKSnO9JefecT77fc74nRQghQERERESWYzN6A4iIiIhoYFjIEREREVkUCzkiIiIii2IhR0RERGRRLOSIiIiILIqFHBEREZFFsZAjIiIisigWckREREQWxUKOiIiIyKJYyBERERFZFAs5IiIiIotiIUf9HDx4EHfccQeKioqwd+9eozeHLOjBBx9EXl4e1qxZY/SmkEWdO3cOpaWluPPOOzF79mzU1NQYvUlkMT6fDyUlJZg7dy5mz56N6upqozdJMylCCGH0RpA5fPPNN7jrrruwZ88eZGRk4O6770Z1dTWGDRtm9KaRhfznf/4nvv76a+zbtw/l5eVGbw5Z0Jdffom2tjb8/d//Pdra2jB//ny89dZbGDJkiNGbRhYRCoUQDAYxePBgdHd3Y9asWfjtb3+LrKwsozdNdeyRo4gTJ07ghhtuQHZ2Nux2O6ZPn44//OEPRm8WWcyUKVOQkZFh9GaQhV199dX4+7//ewCAw+HA0KFDceHCBYO3iqwkNTUVgwcPBgAEAgH09vYiUfutWMglid7eXhQXF2Pz5s39lh85cgQ33XQTampq8OWXXyI7Ozvy3DXXXIOWlha9N5VMKp4MEV2O3BydPHkSQgj8zd/8jZ6bSSYWb4Y6OjowZ84c/MM//AOWLVuG4cOHG7G5mmMhlyRsNhtWrlyJl156KfLN9oMPPsDatWvx6KOPwuVySX5bSUlJ0XtTyaTiyRDR5cjJUXt7Ox577DH8z//5P43aXDKheDOUmZmJ119/HXV1dXjjjTfQ2tpq5GZrhoVcgjh9+vRlXzN79mxkZWXh17/+Nc6fP48VK1Zg7ty5WLp0KQAgOzu7Xw/c+fPnMWLECM22mcxFjQwRqZWjYDCIhx56CCtWrMAtt9yi5SaTyai9L7rqqqswevRoNDQ0aLG5hmMhlwAaGxtx9913449//OMlX3fFFVdg+fLl+PWvf43ly5djzJgx+Jd/+ZfI8+PHj8eHH36IlpYW+Hw+HD58GAUFBVpvPpmAWhmi5KZWjoQQePzxxzFlyhTMmzdP460mM1ErQ62trfD5fAC+vYL13XffxahRozTddsMISggvvfSSuPnmm8V//Md/XPJ1Pp9PjBs3TsyaNUt0dXVFPX/gwAFRVFQkZs6cKX7zm99otblkQmplaMmSJWLy5Mli/PjxYtq0aeL999/XapPJhNTIUUNDgxg9erSYM2dO5OeDDz7QcrPJRNTI0MmTJ8WcOXPE7NmzxaxZs4TH49Fykw3F6Ucs4r/+678we/bsy75u8ODBOH78eMznH3/8cbz55pvIzMxEXV0dBg0apOJWkpkxQ6QG5oiUYobUdYXRG0Dxue666/Dmm2/GfP6dd97Bc889hyeeeCLma7Zu3YpDhw6huroaZWVl+O1vf4v77rtPi80lE2KGSA3MESnFDKnM6C5BUu79998XEyZMENXV1TFfU11dLcaPHy+OHTsmhBBix44dYsaMGSIYDOq0lWRmzBCpgTkipZgh+VjIJYBAICCOHDkS8/lDhw6JsWPHirfffjuyrLOzU+Tm5oq9e/fqsYlkcswQqYE5IqWYIflYyCW4kydPiptvvlm43e6o57Zu3SqKiorEN998Y8CWkVUwQ6QG5oiUYoak8WIHIiIiIouyzDxyJSUlOHPmTORxIBDA3LlzMXXqVFRVVRm3YUREREQGMX0hFwwGMX/+fBw9erTf8urqahQXF+PIkSPYu3cv/H6/QVtIREREZAzTTz8SCATw6KOP4pe//GW/5Y2NjVi6dClsNhvGjRuH5uZmTJw4Mer9wWAQwWAw8lgIgUAgAIfDwfuIUlyYIVIDc0RKMUMkxfSF3JVXXonp06dHFXKdnZ2w2+0AgIyMjMitOC5WWVmJioqKyONQKISPPvoIFy5cQGZm5iXbbmlpQVlZGerr65Gfnw+3243s7GyFn4isRkmGiMKYI1KKGSIplrnYoaysDE899RSuu+46AMDatWuxfPly3HTTTVi/fj0WLVqECRMmRL3v4m8wHR0dyMnJiSv4LpcLtbW1CIVCSE1NhdPpRE1Njaqfi8xPSYaIwpgjUooZIimm75GL5ZZbbsHhw4cxduxYHD9+HM8++6zk69LS0pCWlhZ53NvbG3cb9fX1CIVCAL795tPQ0KBso8mSlGSIKIw5IqWYIZJi+osdLrZ582acOnUK9957L2pra5Gfn4+SkhKkp6er3lZ+fj5SU1MBAKmpqcjLy0NLSwtcLhccDgdcLhdaWlpUb5eIiIgoHpYZWlVLR0cHhg4dKuscuYaGBuTl5cHtdqOsrIzDrUlOToaIYmGOSClmiAALD63qITs7O6pI43ArERERmYXlhlaNJjXcCoBDrkRERKQ7FnIyud1uOJ1OOBwOOJ1OuN1uAIgMuXq9XtTW1qKsrMzQ7SQiIqLEx6FVmaSGWwEOuRIREZH+2COnklhDrkRERERaSZoeOY/HA4/Hg56eHk3WH76ite8VrrwzRGLROkOUHJgjUooZor44/YiGeGeIxMRL/kkNzBEpxQwRwKFVTfG8OSIiItISCzkNcaoSIiIi0hILOQ1xqhIiIiLSUtJc7GAETlVCREREWmKPnAGkhlw53EpERERymb6QCwQCmDt3LqZOnYqqqqrI8o6ODuTk5GDGjBm4/fbbDdxC+aSGXDncSkRERHKZvpCrrq5GcXExjhw5gr1798Lv9wMATp06hVWrVuHQoUOoq6szeCvlCQ+5tra2oqamBtnZ2RxuJSIiItlMX8g1NjaioKAANpsN48aNQ3NzMwCgqakJb731FqZPn44XXngh5vuDwSB8Pl+/HzPicKt5WSVDZG7MESnFDJEU01/s0NnZCbvdDgDIyMiIBPe6667Dpk2bkJeXh6KiIsyaNQsjRoyIen9lZSUqKioij8O9XmYjdWeI8HBrKBSKDLdyQmH9WSVDZG7MESnFDJEU09/ZYe3atVi+fDluuukmrF+/HosWLcKECRPQ1dWFwYMHw2az4fHHH8fdd9+N/Pz8qPcHg0EEg8HI4/C5dVaYCdvhcMDr9fZ73NraauAWJScrZ4jMgzkipZghkmL6odVbbrkFhw8fhhACx48fx+jRowEAP/3pT1FbW4ve3l40Njbi+uuvl3x/Wloa7HZ7vx+r4ITC5mDlDJF5MEekFDNEUkzfI+f3+/HDH/4QZ8+exeLFi9HV1YW77roLQ4cOxY9+9CMEg0EsWrQIK1eujGt9Vro3XUtLS9Rwa3Z2Nu/hajArZYjMizkipZghAixQyKktEYIvNeTa1NSEsrIy1NfXIz8/P1L0kfoSIUNkPOaIlGKGCLDA0CpFkxpy5Tx0REREyYeFnAVJTSgsNQ8dz6UjIiJKbBxaTRBS580B4Ll0GkjUDJG+mCNSihkigD1yCSPeXjqAV70SERElChZyCULqtl+xpi/h+XRERESJwfR3dlCLx+OBx+NBT0+P0ZuiG6m7RQCIeT4dr3q9tGTMEKmPOSKlmCHqi+fIJSE559OxwIvGDJEamCNSihkiQOOh1YMHD+KOO+5AUVER9u7dq2VTJIOc8+mkhmF5jh0REZE5aFbIffPNN3juueewZ88evPLKK6iqqsJf/vIXrZojGeScTydV4Mkp7lj0ERERaUezQu7EiRO44YYbkJ2dDbvdjunTp+MPf/iDVs2RQlK9dID05MPxFneAvB49Fn1ERETyyC7kent7UVxcjM2bN/dbfuTIEdx0002Recq+/PLLfudSXXPNNTwwm5hULx0gXeDFW9wB8ffoAfEXfSz4iIiIviW7kLPZbFi5ciVeeuklXLhwAQDwwQcfYO3atXj00UfhcrkAAFLXUKSkpCjcXNKbVIEXb3EHxN+jB8Rf9HH6FCIiom8NaGh19uzZyMrKwq9//WucP38eK1aswNy5c7F06dLIa7Kzs/v1lJw/fx4jRoyQ3VYgEMDcuXMxdepUVFVVXXY5aS/e4g6Iv0cPiL/oi1UIEhERWY3iUSYxQC+99JLIz88Xs2bNEitXrhTffPNNv+d7enqE0+kU58+fF52dncLpdAqv1yu7nT179ogdO3aIUCgknE6n6O7uvuTyy7lw4YIAIC5cuCB7W0gd58+fF8XFxcLhcIji4mJx/vz5mMuLi4tFamqqACBSU1NFcXGx5DI9MUOkBuaIlGKGzCt8/Bo+fHjkeCa1TAih+Jg24AmBZ8+ejZ/97GcAgJ///OeRnpSwK664Ao899hgWLVqE3t5eLFu2DFlZWbLbaWxsxNKlS2Gz2TBu3Dg0Nzdj4sSJMZdfLBgMIhgMRh77fD7Z2+D3+wF8O6wshIgMG9tsNvT29gL467Cx2s+lpKREHvdtX4vn9PpMWVlZePXVV/u17/f7MWzYMLz22mv9tq2yshLLli1DY2MjcnNz8Ytf/AIAsGLFCjQ2Nvab6FgrcjPEvFjrM6Wnp1/y/1MtcnLEDFnrM5kxQ8DAc3Tu3DksX74c7777LvLy8rBz504A3+53GxoakJubi127diE7Oxvnz5+PvDY3NxdVVVVISUnB8uXLI6/dvXs3rr766sgIXnh5VVUVbDYbli1bFpm4fteuXejt7Y1q/5prrsGXX36JpUuXRpZXVVVBCBHVfvic/GXLll3yM4Tbv3idV199NVpaWqI+b0pKimT7F6/zb/7mb7Bo0SIcOHAAvb29+Pd//3eUlpYCAOrq6iLLFi1ahDfeeANHjx5VNMo04AmBH3/8cbz55pvIzMxEXV0dBg0aNJDVXNbSpUvxL//yLxg1ahR++tOfwul0Ytq0aTGXX2zbtm2oqKiIPA6FQvjoo49kTaDInao5P1NaWlpc/39Kyc0Q82KuzyS1Q77mmmsiB6vGxkZdJruWkyNmyLjPdP78+agCIDs7G1999VXMgsOMGQL65yjW5/ryyy+jiq6lS5dGCg6bzYbbb78dAPotmzlzJl5//XXMnj076rUpKSmRImYgrxVCRL3ujTfewJw5cwb8WqnPEKv91157DXPmzIn6vADiav/f/u3fcM0116C9vT3yfzF8+HAIIaKWnTt3DrNmzYqso++E/HETA7BlyxYxefJk0dzcLCZPnixefPHFgawmLmvWrBEnT54UQgixbt06cfz48Usuv1ggEBCdnZ2Rn88//5xd0SQLM6S+WEMMcoYj4n1trGELvYfomSN96JkXs2ZI6ecaPny4ABD5cTgcksuEEJq81kptxXq/nLzEOt0oXrILuerqajF+/Hhx7NgxIYQQO3bsEDNmzBDBYFDuquLidrvF9u3bRW9vrygsLIycCxdr+eXwnAJSihkyx8Ey3tfK2VHriTmKn5y86ZkXs2ZI6efS4u9Qzmut1Jac4kxpwRaLrELu0KFDYuzYseLtt9+OLOvs7BS5ubli7969qmzQxbq7u8W8efNEbm6u2L59u9i0aZNoamqKWh4v7jxJqUTOkF6FmJ7fuM3SI3exRM6RElr0JgmhTV7MmiGln0tOEaLFa63UllbFmRxxF3InT54UN998s3C73VHPbd26VRQVFUVduWpG3HmSUomQITlXT5n1YBnva+XsqPWUCDlSKt6iTWlvkhDa5MWsGbLS3wEpN6Bz5KyMO09SKhEyFOtgp1chpuc3brNKhBzFS84XBy16k/pug1XzIiVWhqz+uUgeFnJEMlktQ1IHUaUn6CbTwVIrVsuREnK+OLA3KX7JlCGKjYUckUxmzZDS4dK+62Ahpj2z5kgppV8cmLf4JWqGSB4WckQymTVDcno9eLA0nllzJEe857jJ+eJA8UuEDJFyA76zAxEZp6WlBWVlZaivr49MRBrrHrT5+fmora1FKBSK3MM2fL9cIiXKysoi2aqtrY1k8uIcNjU1oaysLDKZbvhuLMwhkXJJU8h5PB54PB709PQYvSlkUWbKkNQBVKpgAwC32y15ECVjmClH8ZL64pCdnS1ZtPGLg/asmCHSzoBv0WVVHR0dGDp0qKxbdBH1ZYYMORwOeL3efo+lej20vF0QKWOGHMXL5XL1K87CtxCSWi71xYE51IaVMkTasRm9AUR0aS0tLXC5XHA4HHC5XGhpaUF+fj5SU1MBIKrXo7W1FTU1NTx40oBI5S3WsL3b7YbT6YTD4YgUccwhkb7YI0ckk94ZYq9HYjLrvkgqbwAke+TIWGbNEOmLPXJEJiHVEwJAsjeEvR6kFam8SfW8EZE5sJAjMonwBQxerzdyAQMAyWFUIqVifXHgsD2RtbCQIzIJOechESkV64sD80ZkLaaefqStrQ333HMPAoEA/vmf/xl33XVX5LkTJ05g3rx5+Lu/+zvk5OTA4/EYuKVEysWaPoRTN5AWYn1xYN6IrMXUPXI7duzAhg0bUFdXh61bt/Z77tSpU9i4cSMOHTrEIo4sR2pYiz0hpCcO2RMlBlMXco2NjSgoKEB6ejoyMzPR3t4eea6pqQlutxvTp0+/5LfHYDAIn8/X74dIDi0yJDWsxfOQEpuR+yJ+cUgMPJ6RFFMPrXZ2dsJutwMAMjIy4PP5kJWVBQAYP348Fi5ciJycHMycORNFRUWRb5d9VVZWoqKiIvI4PJRAFC8tMhRrWIsSl5H7Iqk7gdTU1HAI1WJ4PCMppppHrry8HNXV1ZHHDQ0NaGtrg91uR0lJCXbv3o1hw4YB+Hb+nPC8OQsWLEB5eTmuvvrqqHUGg0EEg8HI446ODuTk5HDeHYqbFhmKNVM+JS4j90VSdwJpbW3VtE1SH49nJMVUQ6tr1qzBH/7wh8jPP//zP+Pw4cPw+/3wer2RIg4AFi9ejA8++ACBQACffvoprrrqKsl1pqWlwW639/shkkNJhmJN8cBhreRj5L6I58MlBh7PSIqpCrmLPfjgg9iyZQsKCgqwdu1aAMD69evh9Xrx1FNPYenSpbjtttvw+OOPw2Yz9UehJBVrigeeD0da4flwRMnFVEOreuAtTUgpORnikBbFotW+iMP2yYPHMwJM3iNHZHUc0iK98UIaouTCQo5IQxzSIr3xywNRcmEhR6QSqXOTeC4caYUX0hARwHPkjN4csqBYGeK5SSSH0n0R80Y8nhHAHjki1fDcJNIT80ZEgMnv7KAmj8cDj8eDnp4eozeFLOpyGYp103uivtTaFzFvyYvHM+qLQ6tEMsXKUEtLC8rKytDQ0IC8vDy43W6eE0cxydkXhbNVX1+P/Pz8yHlvzFty4/GMABZyRm8OWRAzRGqQypFUwZadnc3z4UgS90UE8Bw5IiLTiHUnEJ4PR0SxsJAjIjKJWAUb54YjolhYyBERmUSsgo1zwxFRLElz1SoRkdm53e6oCxgARCaWJiK6mOl75Hp6ejBlypSo5W1tbSgsLMTUqVOxf/9+A7aMiEhdvBMIEcll6kLO6/WiuLgYH3/8cdRzO3bswIYNG1BXV4etW7fqv3FEREREBjN1IdfV1YUtW7ZgzJgxUc81NjaioKAA6enpyMzMRHt7u+Q6gsEgfD5fvx8iOZghUgNzREoxQyTF1OfIjRw5EiNHjpR8rrOzE3a7HQCQkZEBn8+HrKysqNdVVlaioqIi8jh8RRhRvJghUgNzREoxQyTFVBMCl5eXo7q6OvL4iSeegMvlwowZM3Do0KF+r507dy48Hg/sdjtKSkqwe/duDBs2LGqdwWAQwWAw8lgIgUAgAIfDgZSUFK0+CiUQZojUwByRUswQSTFVIReLVCG3ceNG5OXlobCwEC6XCwcPHjRm44iIiIgMYupz5KSsX78eXq8XDz74ILZs2YKCggKsXbvW6M0iIiIi0p0leuSIiIiIKJrleuSIiIiI6FumvmpVb0IIdHZ2Gr0ZJMOVV15pqpN8mSFrMlOOmCFrMlOGAObIqgaSIxZyfbS1tWHEiBFGbwbJ8NVXX+Gqq64yejMimCFrMlOOmCFrMlOGAObIqgaSIxZyfQwaNAjXX389Dh8+HJmjTis+nw/Tp0/XvC292jGqrUGDBmnajlyJmKFkaMtMOWKGrNmWmTIEMEdWbWsgOWIh10dKSgpSU1ORmZmp+X+azWbTpS292jGqLTMNZQCJmaFkaMtMOWKGrNmWmTIEMEdWbWsgOeLFDkREREQWxUKOiIiIyKJYyPWRlpaGhx56CGlpaQnTViJ+Jr3bkiNRfwdsSz+J+vnZlr4S9XfAtqJxQmAiIiIii2KPHBEREZFFsZAjIiIisigWckREREQWxULuO8FgEA888AAWLFiA6upqTdvy+XyYNm0aSktLcf/992va1sMPP4yzZ8/i2LFjuOeee1BaWorPPvtM07b27NmD+fPno7S0FLt27VJt/efOnUNpaSkWLFiAnTt36vKZ5GCG1GsrWTME6JcjPTMEMEd64r5IvbYskSFBQgghXn31VeHxeEQoFBKLFy8Wfr9fs7aOHTsmKioqNFu/EEIEAgGxevVqMW3aNPHZZ5+JFStWiPb2dvHhhx+KJ598UtO2nnzySfHFF1+o2oYQQjz33HPi6NGjQgghFi1aJBYtWqTZZxoIZki9tpI1Q0LolyM9MiQEc2QE7ovUa8sKGWKP3HeampowadIk2Gw23Hjjjfjoo480a+vDDz/EkSNHcN999+F3v/udJm0Eg0GUlZXh1ltvBQD4/X4MGzYMN9xwA86cOaNpW6dPn8bTTz+NJUuWqPptaeXKlZg0aRIAoLe3FwA0+0wDwQyp11ayZgjQL0d6ZAhgjozAfZF6bVkhQyzkvtPV1YUhQ4YAAAYPHoyvv/5as7auvfZabNiwAS+88AL27dsHr9ereht2ux15eXmRx+GgAIBQecaZi9sqLCzE5s2b8ZOf/ASbN29WrZ1hw4YhNTUVL7/8MsaMGaPpZxoIZki9tpI1Q4B+OdIjQwBzZATui9RrywoZYiH3nSFDhqC7uxsA0N3drel91SZMmICJEyciLS0NEyZMwNmzZzVrK6zv/dtsNm3/2++55x5kZGTgBz/4Adrb21Vd92uvvYYDBw5g/fr1un6meDBD6knWDAH65ciIDAHMkR64L1KPFTJkfOJMYuzYsWhoaIAQAs3NzRg1apRmbZWXl+Odd95Bb28vmpqaMHLkSM3aCktPT4fX68Wf//xn5OTkaNaOEAKlpaXo6enB6dOn4XA4VFv3+++/j3379mHbtm1IS0vT7TPFixlSRzJnCNAvR0ZkCGCO9MB9kTqskqErVNsqi7vzzjuxbt06vPLKK7j77rsxaNAgzdpavHgxfvzjH2P79u2YN28esrKyNGsrbPXq1Vi1ahVSUlKwadMmzdpJSUnBkiVLsHDhQqSnp+OZZ55Rbd3PP/88WltbsXz5cgDAI488ostnihczpI5kzhCgX46MyBDAHOmB+yJ1WCVDlrlFV0lJCf73//7fuO666wAAgUAA//RP/4TW1laUlZVFfhlEREREycL0Q6vBYBDz58/H0aNH+y2vrq5GcXExjhw5gr1798Lv9xu0hURERETGMH0hFwgE8Oijj2LmzJn9ljc2NqKgoAA2mw3jxo1Dc3OzQVtIREREZAzTnyN35ZVXYvr06fjlL3/Zb3lnZ2fkSpyMjAz4fD7J9weDQQSDwchjIQQCgQAcDke/q0SIYmGGSA3MESnFDJEU0xdysdjtdnR1dQH4ds6czMxMyddVVlaioqIi8jgUCuGjjz7ChQsXYr6HqC9miNTAHJFSzBBJsczFDmVlZXjqqaciFzv86le/QldXFx544AHMnDkT+/fvR3p6etT7Lv4G09HRgZycHAaf4sYMkRqYI1KKGSIppj9H7mKbN2/GqVOncO+996K2thb5+fkoKSmRLOIAIC0tDXa7vd8PkRzMEKlB7Ry1tLTA5XLB4XDA5XKhpaVFpS0ls+K+iKRYpkdOLR0dHRg6dCi/wdCAyclQS0sLysrKUF9fj/z8fLjdbmRnZ+u0pWRmSvdFLpcLtbW1CIVCSE1NhdPpRE1NjQZbSmbF4xkBFuyRI7KSsrIy1NbWwuv1ora2FmVlZUZvEiWI+vp6hEIhAN+eK9XQ0ACAPXVEyYaFHJGGYh1siZTKz89HamoqACA1NTVyo29+eSBKLizkiDQU62BLJIdUL5vb7YbT6YTD4YDT6YTb7QbALw9EyYaFHJGGYh1sieSQ6mXLzs5GTU0NWltbUVNTEzn3kl8eiJILCzkiDcU62BLJIaeXTerLA8+bI0pcLOSIDMADK8khp5dN6ssDz5sjSlyWvbODXB6PBx6PBz09PUZvClmUmhkKH1hDoVDkwMqpI5LDQHLkdrtRVlaGhoYG5OXlyR6i53lziYXHM+qL88gRyaRGhhwOB7xeb7/Hra2tam0iWYBUjrSad5BzziUmHs8I4NAqkSF4QjpJ0WoIlBfdECUuFnJEBuCBlaRoNQQqdd4cz9MkSgws5IgMwAMrSdGzp5YXQBAlBhZyRCbBAyvp2VPLCyCIEoPpC7lAIIC5c+di6tSpqKqqiizv6OhATk4OZsyYgdtvv93ALSRSBw+spOe8gzxPkygxmL6Qq66uRnFxMY4cOYK9e/fC7/cDAE6dOoVVq1bh0KFDqKurM3griZTjgZX0FKv3j0P8RNZi+kKusbERBQUFsNlsGDduHJqbmwEATU1NeOuttzB9+nS88MILBm8lkXI8sJKeYvX+cYifyFpMPyFwZ2cn7HY7ACAjIwM+nw8AcN1112HTpk3Iy8tDUVERZs2ahREjRkS9PxgMIhgMRh6H308UL70yFD6wXoyTBycGq+yLOMRvXlbJEOnL9IWc3W5HV1cXAKCrqysy6eGUKVMwePBg2Gw2TJkyBadPn5Ys5CorK1FRURF5HN5BEcXL6AzxwJoYjM5RvPLz8/tNHpyXl6fZRMUkj1UyRPoy/Z0dfvWrX6GrqwsPPPAAZs6cif379yM9PR3r169HUVERnE4n7rjjDvzmN7+Bw+GIev/F32DCF0lwJmyKl9EZkpqVP3zLJh5YrcPoHMUrXLT1vR1Y315h3hnCOFbJEOnL9IWc3+/HD3/4Q5w9exaLFy9GV1cX7rrrLgwdOhQ/+tGPEAwGsWjRIqxcuTKu9fGWJqSU3hnigTUxWWlfxFvKmZOVMkTaMf3Qanp6Ol599VXJ5w4ePKjz1hDpT+rcOQ63kp6khlsB7e4NS0TxM/1Vq0QUTWqqEl7dSlqJdUU1r3AlMh4LOSILkjqw8qBKWok1VYlUzzC/UBDpi4UckQVJHVhjDbfywEpakeoZ5hcKIn2xkCNKELHuDMEDK2lFqmeYvXRE+mIhR5QgYp3HxAMraUWqZ1hOLx1zqA3+XpOL6acfURsv1yalrJYhqXnoAHD6EoNZLUfxkpouZ8yYMZLTl0hlkzmMX6wM8feaXJKmR87j8eDOO+9ESUmJ0ZtCFmXVDMU7/AXwm7werJqjeMXbSwewt3igLpchTk+UZESSuXDhggAgLly4YPSmkEUlQoaKi4tFamqqACBSU1NFcXFxzOXnz58XxcXFYvjw4ZHHpFwi5Che4Qw5HI5+GZLKGzMYv1gZivX3TYlJ00Ju9erVIjc3Vzz88MNaNiNLMu08SRuJkKFYB9bhw4cLAJGf8PM8sKovEXKklFQO481g3/cnaw5jZSjW3zclJk0LuT/+8Y+irq6OhRwllETOkNQBU+mBNdkPtrEkco6UiDeDsV6bTHmTk6Fk+r0kG82HVv/zP/+ThRwllETOkNQ3eaUHVjkH22QqBBM5R0rEm0Eh4u9B7rvey2XLSnmTkyEOtyYu2YVcKBQSd9xxh9i0aVO/5YcPHxZjx44Vb775Zr/lLOQo0SRbhpQeWOUcbOMtBPtul1UPzMmWIyXknGOn9EuGlXqb5WQo1u/F6n9HNMAeuVdeeUVMnDhR/OUvfxFCCNHc3CwmTpwodu3aFfVapYWc3+8Xc+bMEbfeeqvYuXPnZZdfDneepBQzpPzk9VgHlXgLQTltmfX8KuZIOS2+ZCjNm57U6JEzusCV834t/maN3g+oYUCFXE9PjygsLBTbtm0T586dE9OmTRNPPfWU5GuVFnJ79uwRO3bsEKFQSDidTtHd3X3J5ZfDnScpxQzFJnVglXOwlXMA0eLArCfmSBtKv2QozZueBnKOXDwXOGlV4EoVTXLeL7Vc6WkaWvX461mgDvgcuZdeeknk5+eLWbNmiZUrV4pvvvlG8nVKC7m1a9eKEydOCCGEWLdunXjvvfcuufxyuPMkpZgh5WIdVOItBIXQ5sCsJ+ZIX/FmS2ne9KRGhvQscOPtnZfTY6/0S6FWPf5KXyvHFRig2bNn42c/+xkA4Oc//3lksse+li5diqamJnR3d2P69OmoqKjA+PHjZbXT2dkJu90OAMjIyIDP57vk8osFg0EEg8HI41ivC/P7/QAAm80G8W2hG3nc29sLAEhJSQEA1Z9LSUmJPO7bvhbPJcJnSk9Pv+T/pVrkZkgKc9X/uaFDh2Lfvn39ngsGgxg6dCheffXVqPe99tpr/dYZDAbxi1/8AsuXL0djYyNyc3Pxi1/8AikpKVi+fDneffddTJo0CTt37oQQAsuWLev3Or/fj9zcXBw4cAC9vb39JqnVipwcMS/qf6Zwti7etr7ZCj8XzmB4u/1+P3bu3Illy5bh3XffRW5uLnbu3Ine3l4sX74c7733XuQuFlrS4nhWWVkZ9TcT/lx9/2YAYMWKFZHXVVZWIhAIYNKkSairq0Nvby9sNhtuueUWpKSkRP62bDYbJk2ahEAggKNHj/abqLi+vr7f32H4tUKIqHUGAgHJ10qtM1ZbQoi42vf7/XG/X2pZMBiM+/1Sr5U7gfOAC7mnn34aANDe3i5ZxAHA7t27B7r6CLvdjq6uLgBAV1dX5DYksZZfrLKyEhUVFZHH4V8WWVdLSwuWLl2KxsZG5Ofnw+12Izs7W7P2mCFzys7Oxuuvvx51YH7jjTeiDsyvv/56VEGxa9euSIGnx0GYObK2cN4uLk5ff/113b5UapGhvp8L+GuRF/6bAf5aIPf92wo/V1VVFSn6Jk2ahKqqqqgvVLt27QIA5Obm9ivQws/1LZB37doVVUju3LkTwLd/s+F9f25uLqqqqrBs2bKodQJAXl5eVIEGQLL9i9cpta25ubkA0G+dubm5UUWnnPbD6+zb1oC+VMrqv/vOli1bxOTJk0Vzc7OYPHmyePHFFweymri43W6xfft20dvbKwoLCyPnwsVafrFAICA6OzsjP59//jmHM0xK6TkNWmGGSA3MESll9QxpMVGxGqdpxLteOetU+lo5UoT4rtSO0969e/HMM8/gV7/6FW6++WY8//zzqK6uxr//+7/je9/7nrwqMg5+vx8//OEPcfbsWSxevBhdXV2466678P3vf7/f8tWrV8e1vkS9UbWVhG+qXV9f369HLd6bu9fX10vegFsvzBCpgTkipZghAiCvR+7QoUNi7Nix4u23344s6+zsFLm5uWLv3r2yKkij8ARjfcnpUVM6B5lemCFSA3NESjFDJIQQtngLvv/3//4fHnnkEWzYsAFFRUWR5Xa7HT/60Y9QVVXFcz6SWEtLC1wuFxwOB1wuF1paWgAAZWVlqK2thdfrRW1tbaQnTurEzvz8/Mj5luHzBKSWud1uOJ1OOBwOOJ1Ozc9tIiIiMivZQ6tWx65o5aSGRsMFW98h0JqaGjgcjqhh0Ly8PMnXhtfb0NDQ7+Tzi5dpeWFDPJghUgNzREoxQwQouGqVklffoi2eXra+RVu4GJMq2LKzs1FTUxPVntQyIiIiAuIeWqXkJDVkKlW0SQ2BApAcBg0XbK2traipqTG8h42IiMiq2CNHlyTV+6ZGLxsREREplzSFnMfjgcfjQU9Pj9GbYkqxpgSR6n1ramqSPG8t0Qs2ZojUwByRUswQ9cWLHQgAJOdwq6mpibk8mTFDpAbmiJRihgjgOXJJKd7z3gDpc9yIiIjIHJJmaJX+Kt7z3gCe40ZERGRm7JFLYLEm6ZXqfWPPGxERkfWwkEtgUndVAKTvoMApQYiIiKyHhVwC43lvREREic3UhVxbWxsKCwsxdepU7N+/v99zJ06cwPe//33MmDED9913n0FbaB5Sw6ixJull7xsREVFiMHUht2PHDmzYsAF1dXXYunVrv+dOnTqFjRs34tChQ/B4PMZsoIlIDaOy542IiCixmfqq1cbGRjzyyCNIT09HZmYm2tvbkZWVBQBoamrCf/zHf6Cqqgr/43/8D7hcLsl1BINBBIPByGOfz6fLtutNahiVV5yqI1kyRNpijkgpZoikmLqQ6+zshN1uBwBkZGTA5/NFCrnx48dj4cKFyMnJwcyZM1FUVBQZRuyrsrISFRUVkcfhYsfKpO7CEGv6EFIuETNE+mOOSClmiKSY6s4O5eXlqK6ujjxuaGhAW1sb7HY7SkpKsHv3bgwbNgzAtzNah2eyXrBgAcrLy3H11VdHrfPibzAdHR3Iycmx9EzYUndbkLrXKc99U0ciZoj0xxyRUswQSTFVIXexjRs3Ii8vD4WFhXC5XDh48GDkuZKSEjz77LMYNWoUbrvtNvzhD3+AzXb5U/6sdEuTWPc/dTgc8Hq9kdc5HA60trYauKXJxUoZIvNijkgpZogAk1/s8OCDD2LLli0oKCjA2rVrAQDr16+H1+vFU089haVLl+K2227D448/HlcRZzVy5oEjIiKi5GPqHjktWOkbTKyet3BPHYdRjWGlDJF5MUekFDNEgMkvdkh2vP8pERERXUrijUdalNSEvpwHjoiIiC6FPXImET4fLhQKRc6Hq6mpYc8bERERxcQeue9I9Yjp2Vas+6ISERERxcJC7juxrhDVqy1eiUpERERyJc3QqsfjgcfjQU9Pj+TzevaISbXV1NQUdSUqmcvlMkQUD+aIlGKGqC9OP/IdqbslKD0/LdaEvlq0RfrhJf+kBuaIlGKGCODQaoQWV4jGGq7l1ahERESkhqQZWr0cqbnZYvWoxSvWcC3ngSMiIiI1sEfuEuRcACF1JSovYCAiIiItsZC7BKketVjTlEgVfRxCJSIiIi3xYodLkLooAYDkhQqx7otKiYcnGJMamCNSihkiwAI9cj09PZgyZUrU8ra2NhQWFmLq1KnYv3+/Jm1L9ajFOu+Nw6hERESkN1MXcl6vF8XFxfj444+jntuxYwc2bNiAuro6bN26VZP2wxcltLa2oqamBtnZ2TELNg6jEhERkd5MfdVqV1cXtmzZgjVr1kQ919jYiEceeQTp6enIzMxEe3s7srKyol4XDAYRDAYjj30+n6JtcrvdkhP38krUxKV2hig5MUekFDNEUkxdyI0cORIjR46UfK6zsxN2ux0AkJGRAZ/PJ1nIVVZWoqKiIvI4PCw6UCzYko/aGaLkxByRUswQSTHVxQ7l5eWorq6OPH7iiSfgcrkwY8YMHDp0qN9r586dC4/HA7vdjpKSEuzevRvDhg2LWufF32CEEAgEAnA4HEhJSdHqo1ACYYZIDcwRKcUMkRRTFXKxSBVyGzduRF5eHgoLC+FyuXDw4EFjNo6IiIjIIKa+2EHK+vXr4fV68eCDD2LLli0oKCjA2rVrjd4sIiIiIt1ZokeOiIiIiKJZrkeOiIiIiL5l6qtW9SaEQGdnp9GbQTJceeWVpjrJlxmyJjPliBmyJjNlCGCOrGogOWIh10dbWxtGjBhh9GaQDF999RWuuuoqozcjghmyJjPliBmyJjNlCGCOrGogOWIh18egQYNw/fXX4/Dhw5E56rTi8/kwffp0zdvSqx2j2ho0aJCm7ciViBlKhrbMlCNmyJptmSlDAHNk1bYGkiMWcn2kpKQgNTUVmZmZmv+n2Ww2XdrSqx2j2jLTUAaQmBlKhrbMlCNmyJptmSlDAHNk1bYGkiNe7EBERERkUSzkiIiIiCyKhVwfaWlpeOihh5CWlpYwbSXiZ9K7LTkS9XfAtvSTqJ+fbekrUX8HbCsaJwQmIiIisij2yBERERFZFAs5IiIiIotiIUdERERkUSzkvhMMBvHAAw9gwYIFqK6u1rQtn8+HadOmobS0FPfff7+mbT388MM4e/Ysjh07hnvuuQelpaX47LPPNG1rz549mD9/PkpLS7Fr1y7V1n/u3DmUlpZiwYIF2Llzpy6fSQ5mSL22kjVDgH450jNDAHOkJ+6L1GvLEhkSJIQQ4tVXXxUej0eEQiGxePFi4ff7NWvr2LFjoqKiQrP1CyFEIBAQq1evFtOmTROfffaZWLFihWhvbxcffvihePLJJzVt68knnxRffPGFqm0IIcRzzz0njh49KoQQYtGiRWLRokWafaaBYIbUaytZMySEfjnSI0NCMEdG4L5IvbaskCH2yH2nqakJkyZNgs1mw4033oiPPvpIs7Y+/PBDHDlyBPfddx9+97vfadJGMBhEWVkZbr31VgCA3+/HsGHDcMMNN+DMmTOatnX69Gk8/fTTWLJkiarfllauXIlJkyYBAHp7ewFAs880EMyQem0la4YA/XKkR4YA5sgI3Bep15YVMsRC7jtdXV0YMmQIAGDw4MH4+uuvNWvr2muvxYYNG/DCCy9g37598Hq9qrdht9uRl5cXeRwOCgAIlWecubitwsJCbN68GT/5yU+wefNm1doZNmwYUlNT8fLLL2PMmDGafqaBYIbUaytZMwTolyM9MgQwR0bgvki9tqyQIRZy3xkyZAi6u7sBAN3d3ZreV23ChAmYOHEi0tLSMGHCBJw9e1aztsL63r/NZtP2v/2ee+5BRkYGfvCDH6C9vV3Vdb/22ms4cOAA1q9fr+tnigczpJ5kzRCgX46MyBDAHOmB+yL1WCFDxifOJMaOHYuGhgYIIdDc3IxRo0Zp1lZ5eTneeecd9Pb2oqmpCSNHjtSsrbD09HR4vV78+c9/Rk5OjmbtCCFQWlqKnp4enD59Gg6HQ7V1v//++9i3bx+2bduGtLQ03T5TvJghdSRzhgD9cmREhgDmSA/cF6nDKhm6QrWtsrg777wT69atwyuvvIK7774bgwYN0qytxYsX48c//jG2b9+OefPmISsrS7O2wlavXo1Vq1YhJSUFmzZt0qydlJQULFmyBAsXLkR6ejqeeeYZ1db9/PPPo7W1FcuXLwcAPPLII7p8pngxQ+pI5gwB+uXIiAwBzJEeuC9Sh1UyxFt0EREREVmUZYZWS0pK+l3JEQgEMHfuXEydOhVVVVXGbRgRERGRQUxfyAWDQcyfPx9Hjx7tt7y6uhrFxcU4cuQI9u7dC7/fb9AWEhERERnD9OfIBQIBPProo/jlL3/Zb3ljYyOWLl0Km82GcePGobm5GRMnTox6fzAYRDAYjDwWQiAQCMDhcPS7SoQoFmaI1MAckVLMEEkxfSF35ZVXYvr06VGFXGdnZ+SS6oyMDPh8Psn3V1ZWoqKiIvI4FArho48+woULF5CZmandhlPCYIZIDcwRKcUMkRTTF3Kx2O12dHV1Afh28sNYIV65ciUWL14cedzR0WGKy8PJOpghUgNzREoxQyTFsoXcLbfcgsOHD2Ps2LE4fvw4nn32WcnXpaWlIS0tLfK47+zJRPFghkgNzBEpxQyRFNNf7HCxzZs349SpU7j33ntRW1uL/Px8lJSUID093ehNIyIiItJV0s0j19HRgaFDh/KcAhowZojUICdHLS0tKCsrQ319PfLz8+F2u5Gdna3TlpJZcV9EgAV75IiIkk1ZWRlqa2vh9XpRW1uLsrIyozeJiEyChRwRkcnV19cjFAoB+PZKxYaGBoO3iIjMgoUcEZHJ5efnIzU1FQCQmpqKvLw8g7eIiMyChRwRkcm53W44nU44HA44nU643W6jN4mITMKy048QESWL7Oxs1NTUGL0ZRGRCSVPIeTweeDwe9PT0GL0pZFHMEKlBrRzxStbkxX0R9cXpR4hkYoZIDUpz5HK5UFtbi1AohNTUVDidTvbaJRnuiwjgOXJEqmlpaYHL5YLD4YDL5UJLS4vRm0QJjFeyEhHAQo5INZzri/TEK1mJCGAhR6Qa9pCQnnglKxEBLOSIVMMeEtJT+ErW1tZW1NTURC504BA/UXJhIUekEvaQkBlwiJ8ouZi+kAsEApg7dy6mTp2KqqqqyPKOjg7k5ORgxowZuP322w3cQqJvSfWQsHeE9MYhfqLkYvpCrrq6GsXFxThy5Aj27t0Lv98PADh16hRWrVqFQ4cOoa6uzuCtJJLG3hHSG4f4iZKL6Qu5xsZGFBQUwGazYdy4cWhubgYANDU14a233sL06dPxwgsvxHx/MBiEz+fr90Mkh5IMsXeEwvTaF0kN8bNnODHweEZSTH9nh87OTtjtdgBARkZGJLjXXXcdNm3ahLy8PBQVFWHWrFkYMWJE1PsrKytRUVEReRw+qBLFS0mG8vPz+03ayt6R5KXXvkjqdl59Jw8O9wxz8mDr4fGMpJj+zg5r167F8uXLcdNNN2H9+vVYtGgRJkyYgK6uLgwePBg2mw2PP/447r77buTn50e9PxgMIhgMRh6Hz63jTNgULyUZCt9GqaGhAXl5eZHbKPH2SsnHyH2Rw+GA1+vt97i1tVXTNkl9PJ6RFNMPrd5yyy04fPgwhBA4fvw4Ro8eDQD46U9/itraWvT29qKxsRHXX3+95PvT0tJgt9v7/RDJoSRDsaaI4LlzycfIfRHPm0sMPJ6RFNMXcvfeey9qa2uRn5+PkpISbNu2DadOncK6devw3HPPYdq0afjHf/xHOBwOozeVKG5S587xPCbSCs+bI0pcph9aVRtvMkxKqZEhqRueA+BN0JOI0fsiqQwyb9ZidIbIHEzfI0eUiKR6SHiFK+kpVt7YU0dkLSzkiAwgde5crPOYeGAlLcTKG8/fJLIWFnJEJhHrFl88sJIWYuWN528SWQvPkSOSSe8MSU0d0dTUxOlLLM6s+yKev2kdZs0Q6Ys9ckQmJzUExl460oqc8zfZU0dkPNPf2UEtHo8HHo8HPT09Rm8KWZRRGXK73VGTCo8ZM0Zy+Iu9dOZn9n2R1J0hYt2hJPyFgneM0JfZM0T64tAqkUxmyJCc4S8WeOZkhhzFK9YdSjjsbywrZYi0w6FVIguSM/zFYVhSKtYdSuId9ucQLJF2NCvkzp07h9LSUtx5552YPXs2u9uJVCRn+hJehUhaifcLRawvE1I5ZDaJZBIaaWlpEadOnRJCCNHa2iqmTZsmurq6tGoubhcuXBAAxIULF4zeFLIos2bo/Pnzori4WDgcDlFcXCzOnz8vhBCiuLhYpKamCgAiNTVVFBcXSy7ru47hw4dH1iG1jJQza46UksrW8OHDBYDIj8PhiPlaqWXMoLREzRDJo1khd7FZs2aJL774Qq/mYmLwSSmrZUiqwNPqwBpvIcgDs/VyFC+pvMX64iCVQ6llanzxSMTMJWqGSB7ZhVwoFBJ33HGH2LRpU7/lhw8fFmPHjhVvvvlm1HtOnDgh7rrrroFvpYoYfFIqETKk1YE13kJQqwOzlQ7WiZCjeCntLVb6xSPWa5Xmxei8xcpQshe4yWZAPXKvvPKKmDhxovjLX/4ihBCiublZTJw4UezatSvqtV6vV7hcLtHY2DigDfT7/WLOnDni1ltvFTt37rzs8stJpp0naSMRMqTVgTXeQlCrA7PS3kM9JUKOlJLKoRY9erFeqzQvsbZLL7EyZHSBG4vSHvtk+qInx4AKuZ6eHlFYWCi2bdsmzp07J6ZNmyaeeuqpqNcFAgGxcOFC8eqrrw54A/fs2SN27NghQqGQcDqdoru7+5LLL4c7T1IqkTOk9MCqtEdO6YFZae+hnhI5R2pT4/zPeL+QKH2/nmJlyOgCN9Zrle4fjP6ip2fRKceAz5F76aWXRH5+vpg1a5ZYuXKl+Oabb/o939vbKx599FFRXl4+0CaEEEKsXbtWnDhxQgghxLp168R77713yeUXCwQCorOzM/Lz+eefX3Ln2d3dLbq7u0UgEBB+v7/f4/C//X6/Js/1fdy3fS2eS4TPpBdmKPq5M2fOCKfTKYYPHy6cTqc4c+aM8Pv94pNPPoksLyoqEmfOnBFnzpwRRUVF/V776aef9nvdJ598Irq7u4XT6RQ2m00AEDabTRQVFYmioqKoZd3d3ZLLL17mdDpFVlZWvwPV8OHDRSAQiFqu9UFYbo6kJEO25GybnGxd/NpPPvlEMkPx5iW8nvD79fgyEG+G+hYsl/rbiPV3dLnPGn6d3++PWu50OiXX6ff7Jdcb7zI575fz2lj7l3j3RVKfPxAISP6+pdYZCAQU52jAd3aYPXs2fvaznwEAfv7zn0emPQhrbGzEm2++idGjR+PAgQMAgE2bNmH06NGy2uns7ITdbgcAZGRkwOfzXXL5xSorK1FRURF5HL4snqyrpaUFS5cuRWNjoy4TjjJD0bKzs/H666/DZrOht7c3ajmAfs+Fl4nv5h+32WyRZSkpKZHnqqqqsGLFCrz77ruYNGkSqqqqkJKSEvn/zs3NRVVVFQCgqqoKy5cvj7x2165dEEJg2bJlkdfu3LkTy5cvR11dHXp7e2Gz2ZCbmwsAyM3NjSzvO12LVpgj9fXN2+WylZ2djTfeeCOSyZSUFOzatSsqW8uWLeuXl0mTJgEA8vLycODAgX7Lw3ltbGyMTJSspXgzFL4bTH19/SX/NgDpv6OlS5dG/Q7efffdyO+ut7cX7777LgBELW9sbIQQQvK1ff/mwutNSUnp93vNzc2FECKu/wM5rw0vv/i1DQ0NcX2ud999V/JzXbyssbERAKLWe6nfS9+2+s4BGreBfjN47LHHxLhx48TUqVOF3+8f6Goua82aNeLkyZNCiG973o4fP37J5RdT41swqUtpV7TeQ2LMkLXFGpaLtVwrzJE1mCUvUvTKkBanU8Rab7zL5Lxfzmu1Ok1E6WvlGFAht2XLFjF58mTR3NwsJk+eLF588cWBrCYubrdbbN++XfT29orCwsLIkFqs5ZfD81K0ocYJwvEG36znpRDJwRyRUnpmSI3iyoyUfi6tik45ZBdy1dXVYvz48eLYsWNCCCF27NghZsyYIYLBoNxVxaW7u1vMmzdP5Obmiu3bt4tNmzaJpqamqOXx4s5TOaXFmVYnr+uFGSI1MEekFDNEQsgs5A4dOiTGjh0r3n777ciyzs5OkZubK/bu3av6xmmBwZcn3qJN6RVRQsi/ysiob3vMEKmBOSKlmCESQkYhd/LkSXHzzTcLt9sd9dzWrVtFUVFR1JWrZsTgS5NzubjS4szqXfTMEKmBOSKlmCESQogUIb671CdJdHR0YOjQobhw4QIyMzON3hzTcLlcqK2tRSgUQmpqKpxOJ2pqauBwOOD1eiOvczgcyMvLi3pt+CqphoaGyNVb2dnZaGlpkVxuZcwQqYE5IqWYIQKAAU8/QtYVLq7q6+sj03fU19dHLmXve/lzfn5+v6ItXIxJFWc1NTVRbcVaTkRERMrZjN4A0k5LSwtcLhccDgdcLhdaWloAAGVlZaitrYXX60VtbS3KysqQn58fmQuw75xabrcbTqcTDocj0vMWLs5aW1tRU1Nj+R42IiIiq+LQagKTM1za1NSUcEOgWkmmDJF2mCNSihkiIImGVj0eDzweD3p6eozeFE0oHS7lEOjlJXqGSB/MESnFDFFf7JFLEFK9bwAke+QS8QIEPSVqhkhfzBEpxQwRkEQ9cokk3t43qeFSgBcgEBERJQoWchYUvlghFAr1u1iBw6VERETJhYWcBcnpfSMiIqLExelHTCzW9CFSU4VwShAiIqLkw0LOxKTmewOk53YjIiKi5GPqQq6trQ2FhYWYOnUq9u/f3++5EydO4Pvf/z5mzJiB++67z6At1Fas6UPY+0ZERESAyQu5HTt2YMOGDairq8PWrVv7PXfq1Cls3LgRhw4dgsfjMWYDVSQ1jBrrbgtEREREgMkLucbGRhQUFCA9PR2ZmZlob2+PPNfU1AS3243p06df8srMYDAIn8/X78eMpIZROYRqDlbJEJkbc0RKMUMkxdRXrXZ2dsJutwMAMjIy4PP5kJWVBQAYP348Fi5ciJycHMycORNFRUWR3qu+KisrUVFREXkcHqo0G6lhVE4fYg5WyRCZG3NESjFDJMVUd3YoLy9HdXV15HFDQwPa2tpgt9tRUlKC3bt3Y9iwYQC+ndE6PJP1ggULUF5ejquvvjpqncFgEMFgMPK4o6MDOTk5hs6ELTWhb9+54frehYGMZ8YMkfUwR6QUM0RSTNUjt2bNGqxZsybyeOPGjTh8+DAKCwvh9XojRRwALF68GM8++yxGjRqFTz/9FFdddZXkOtPS0pCWlhZ53Nvbq9n2x0tqQt9wMcd54MzHjBki62GOSClmiKSY+hy5Bx98EFu2bEFBQQHWrl0LAFi/fj28Xi+eeuopLF26FLfddhsef/xx2Gzm+yix5oG71DAqr0QlIiKieJlqaFUPet5kWOpG9jU1NTGXkzXwRtWkBuaIlGKGCDB5j5zVxZoHjlejEhERkRpYyKlEzjxwHEYlIiIiNbCQUwnngSMiIiK9meqqVSvjPHBERESkN/bIyRTrSlTeTouIiIj0ljQ9ch6PBx6PBz09PYrWIzUHXE1NDeeBSwJqZYiSG3NESjFD1BenH7kEqTswjBkzBl6vN/Iah8OB1tZWrTebTISX/JMamCNSihkigEOrEVJDplIXMHAIlYiIiMwiaYZWL0dqyFTqAoampiYOoRIREZEpsJD7jlTRlp+f3+8ODHl5ebwSlYiIiEyDQ6vfkRoy5TxwREREZGbskfuO1FWn7H0jIiIiMzN9j1xPTw+mTJkStbytrQ2FhYWYOnUq9u/fr7gd3jaLiIiIrMbUhZzX60VxcTE+/vjjqOd27NiBDRs2oK6uDlu3btV/44iIiIgMZupCrqurC1u2bMGYMWOinmtsbERBQQHS09ORmZmJ9vZ2yXUEg0H4fL5+P0RyMEOkBuaIlGKGSIqpz5EbOXIkRo4cKflcZ2cn7HY7ACAjIwM+nw9ZWVlRr6usrERFRUXkcfjKVKJ4MUOkBuaIlGKGSIqp7uxQXl6O6urqyOMnnngCLpcLM2bMwKFDh/q9du7cufB4PLDb7SgpKcHu3bsxbNiwqHUGg0EEg8HIYyEEAoEAHA4HUlJStPoolECYIVIDc0RKMUMkxVSFXCxShdzGjRuRl5eHwsJCuFwuHDx40JiNIyIiIjKIqc+Rk7J+/Xp4vV48+OCD2LJlCwoKCrB27VqjN4uIiIhId5bokSMiIiKiaJbrkSMiIiKib5n6qlW9CSHQ2dlp9GaQDFdeeaWpTvJlhqzJTDlihqzJTBkCmCOrGkiOWMj10dbWhhEjRhi9GSTDV199hauuusrozYhghqzJTDlihqzJTBkCmCOrGkiOWMj1MWjQIFx//fU4fPhwZI46rfh8PkyfPl3ztvRqx6i2Bg0apGk7ciVihpKhLTPliBmyZltmyhDAHFm1rYHkiIVcHykpKUhNTUVmZqbm/2k2m02XtvRqx6i2zDSUASRmhpKhLTPliBmyZltmyhDAHFm1rYHkiBc7EBEREVkUCzkiIiIii2Ih10daWhoeeughpKWlJUxbifiZ9G5LjkT9HbAt/STq52db+krU3wHbisYJgYmIiIgsij1yRERERBbFQo6IiIjIoljIEREREVkUC7nvBINBPPDAA1iwYAGqq6s1bcvn82HatGkoLS3F/fffr2lbDz/8MM6ePYtjx47hnnvuQWlpKT777DNN29qzZw/mz5+P0tJS7Nq1S7X1nzt3DqWlpViwYAF27typy2eSgxlSr61kzRCgX470zBDAHOmJ+yL12rJEhgQJIYR49dVXhcfjEaFQSCxevFj4/X7N2jp27JioqKjQbP1CCBEIBMTq1avFtGnTxGeffSZWrFgh2tvbxYcffiiefPJJTdt68sknxRdffKFqG0II8dxzz4mjR48KIYRYtGiRWLRokWafaSCYIfXaStYMCaFfjvTIkBDMkRG4L1KvLStkiD1y32lqasKkSZNgs9lw44034qOPPtKsrQ8//BBHjhzBfffdh9/97neatBEMBlFWVoZbb70VAOD3+zFs2DDccMMNOHPmjKZtnT59Gk8//TSWLFmi6rellStXYtKkSQCA3t5eANDsMw0EM6ReW8maIUC/HOmRIYA5MgL3Req1ZYUMsZD7TldXF4YMGQIAGDx4ML7++mvN2rr22muxYcMGvPDCC9i3bx+8Xq/qbdjtduTl5UUeh4MCAELlGWcubquwsBCbN2/GT37yE2zevFm1doYNG4bU1FS8/PLLGDNmjKafaSCYIfXaStYMAfrlSI8MAcyREbgvUq8tK2SIhdx3hgwZgu7ubgBAd3e3pvdVmzBhAiZOnIi0tDRMmDABZ8+e1aytsL73b7PZtP1vv+eee5CRkYEf/OAHaG9vV3Xdr732Gg4cOID169fr+pniwQypJ1kzBOiXIyMyBDBHeuC+SD1WyJDxiTOJsWPHoqGhAUIINDc3Y9SoUZq1VV5ejnfeeQe9vb1oamrCyJEjNWsrLD09HV6vF3/+85+Rk5OjWTtCCJSWlqKnpwenT5+Gw+FQbd3vv/8+9u3bh23btiEtLU23zxQvZkgdyZwhQL8cGZEhgDnSA/dF6rBKhq5Qbass7s4778S6devwyiuv4O6778agQYM0a2vx4sX48Y9/jO3bt2PevHnIysrSrK2w1atXY9WqVUhJScGmTZs0ayclJQVLlizBwoULkZ6ejmeeeUa1dT///PNobW3F8uXLAQCPPPKILp8pXsyQOpI5Q4B+OTIiQwBzpAfui9RhlQzxFl1EREREFmWZodWSkpJ+V3IEAgHMnTsXU6dORVVVlXEbRkRERGQQ0xdywWAQ8+fPx9GjR/str66uRnFxMY4cOYK9e/fC7/cbtIVERERExjD9OXKBQACPPvoofvnLX/Zb3tjYiKVLl8Jms2HcuHFobm7GxIkTo94fDAYRDAYjj4UQCAQCcDgc/a4SIYqFGSI1MEekFDNEUkxfyF155ZWYPn16VCHX2dkZuaQ6IyMDPp9P8v2VlZWoqKiIPA6FQvjoo49w4cIFZGZmarfhlDCYIVIDc0RKMUMkxfSFXCx2ux1dXV0Avp38MFaIV65cicWLF0ced3R0mOLycLIOZojUwByRUswQSbFsIXfLLbfg8OHDGDt2LI4fP45nn31W8nVpaWlIS0uLPO47ezJRPJghUgNzREoxQyTF9Bc7XGzz5s04deoU7r33XtTW1iI/Px8lJSVIT083etOIiIiIdJV088h1dHRg6NChPKeABowZIjUwR6QUM0SABXvkiIiIiOhbLOSIiIiILIqFHBEREZFFsZAjIiIisigWckREREQWZdl55OTyeDzweDzo6ekxelPIopghUgNzREoxQ9QXpx8hkokZIjUwR6QUM0QAh1aJiIiILIuFHBEREZFFsZAjIiIisigWckRECa6lpQUulwsOhwMulwstLS1GbxIRqYSFHBFRgisrK0NtbS28Xi9qa2tRVlZm9CYRkUpMX8gFAgHMnTsXU6dORVVVVWR5R0cHcnJyMGPGDNx+++0GbiFRbLF6QthDQlqRylZ9fT1CoRAAIBQKoaGhweCtJCK1mL6Qq66uRnFxMY4cOYK9e/fC7/cDAE6dOoVVq1bh0KFDqKurM3griaTF6glhDwlpRSpb+fn5SE1NBQCkpqYiLy/P4K0kIrWYvpBrbGxEQUEBbDYbxo0bh+bmZgBAU1MT3nrrLUyfPh0vvPBCzPcHg0H4fL5+P0RyKMlQrJ4Q9pAkH732RVLZcrvdcDqdcDgccDqdcLvd7BW2IB7PSIrp7+zQ2dkJu90OAMjIyIgE97rrrsOmTZuQl5eHoqIizJo1CyNGjIh6f2VlJSoqKiKPwzs4ongpyVB+fj5qa2sRCoX69YRILW9paUFZWRnq6+uRn58Pt9uN7Oxs1T8PGUOvfZFUtrKzs1FTU9PvdS6XK/K6cM/dxa8hc+HxjCQJk1uzZo04efKkEEKIdevWiePHjwshhPD5fCIUCgkhhHjsscfE0aNHJd8fCAREZ2dn5Ofzzz8XAMSFCxf0+QBkeUoydP78eVFcXCwcDocoLi4W58+fj7m8uLhYpKamCgAiNTVVFBcXa/3RSEd67YtiZe5iw4cPFwAiPw6HQ9XtIPXxeEZSTH+Lrl/96lfo6urCAw88gJkzZ2L//v1IT0/H+vXrUVRUBKfTiTvuuAO/+c1v4HA4Lrs+3tKElNIqQw6HA16vt9/j1tZW1dZP5mL0vqhvj1xqaiqcTidqamrYM2whRmeIzMH058jde++9qK2tRX5+PkpKSrBt2zacOnUK69atw3PPPYdp06bhH//xH+Mq4ojMLNYJ6TyXibQgdd4cwAtxEhX3I4nL9D1yauM3GFJKqwyFe0IaGhqQl5cX6QmJ1XNC1mbWfRF7hq1DToa4H0lcpu+RI0oW4RPSW1tbUVNTExnO4hWupCepnmH25lgf9yOJi4UckcnxwEp6khpy5XCr9XEuwcTFoVUimfTOkNSQa/jAymES67LSvojDreYkJ0OxTt0g62OPHJHJSQ25Sg2TsJeOtMILcawv1qkbZH0s5IhUoudBTerAyuGv5KJn3niFK5GJGTmJnZ5efPFF4XK5xMyZMzmBIg3I5TKk54S+UpO+xprgNfza4cOHX3KCWNKHWvsiM0wgLZU55k17PJ5RXzxHjkimWBky+jyiWNMLSC0Pn2fHSV+No3RfZHTeAOnMAeD5mzrh8YwADq0Sqcboq8JiDX9JnU/HITHrMzpvgHTmeP6mtfD/JgFo1dXX2dkp7r77bjFnzhwxa9Ys8fLLL2vVlCwXLlxgVzQpEitD8d7jUm9SQ3AchjWenH2R1P+LlfIWaxiYeVNGjeOZGYboSRnNCrlvvvlGfP3110IIIb7++mtRWFgovF6vVs3FjYUcKWW1DEkd8GPtvKWW82CrDTk5stLBVs75m/HmLVYGkz2bauyLYv3fkHXocrFDe3u7mDFjhmhra9OjuUuy2kGYzCcRMhSrN0dqpy6nuEv2A6sccnJk9YNtrEI03rzxi4c09siREAMo5EKhkLjjjjvEpk2b+i0/fPiwGDt2rHjzzTcjyy5cuCBmz54txo8fL1588UXlW6uCRDgIk7ESOUPxDsMqPbCyEJTOUazPb/WDbawvDvHmLVYhKyeb8ebQShlUY19k1iH6eFnp/0srA+qRe+WVV8TEiRPFX/7yFyGEEM3NzWLixIli165dkq//6quvxL333iu++uor2W35/X4xZ84cceutt4qdO3dedvnlJPJBmPSRyBmKdxhW6YFVjR4Wq+/ApXJ0uSLEqgfbWOLNm5y8yBnGtfr5fGbYF2nxe5HzN2/1LzlqGFAh19PTIwoLC8W2bdvEuXPnxLRp08RTTz11yff89Kc/7ddbF689e/aIHTt2iFAoJJxOp+ju7r7k8ssxQ/DJ2pItQ0rPsdOqh8XqvX9SObL6EKoapPIWq5CVk814cyinEDSaVvsiOX9HWgxvq1G4K+2B1XP/oLStAZ8j99JLL4n8/Hwxa9YssXLlSvHNN9/0e/6rr74SnZ2dQohvr2C98847RXNzs+x21q5dK06cOCGEEGLdunXivffeu+TyiwUCAdHZ2Rn5+fzzzy8Z/O7ubtHd3S0CgYDw+/39Hof/7ff7NXmu7+O+7WvxnJU/06effiqcTqduB2BmKPq5M2fORP4PnE6nOHPmjPD7/eKTTz6JLC8qKoq8zmazCQDCZrMJp9MpioqK+i0rKioS3d3dUa8tKioSWVlZ/XbUw4cPF93d3ZLLL16v0+mUXGcgEOi3XI8Dczw56nugCm9romZIq8905swZUVRUFMnmJ598EvX/fakcSmUoVt76/h2YcV8kJZ7/B6nfi9TvL9bvReq1fffdWVlZoqioSHzyySeSGVHyN3+pfUk8+wen0xkzL+FsZWVlRbIV6zN98skn/V776aefRvaP4deeOXMm6vc9kH3RgAs5n88nxo0bJ2bNmiW6urqinj958qSYM2eOmD17tpg1a5bweDwDamfJkiXi448/FkII8eSTT4rDhw9fcvnFysvLxY033hj5uf7665P+IGylzyT1h6M09HIxQ8oydPGB9cyZM/2K8b47P6mDcKwdtdRyqR291LJAIBC1XOver3hy1PebeXjnzwyp85n6Fl3hg2g4X31/31JfRmLlTe8vA3L3RVLi+X+I9+9Izt+h3++XfO3F+/jw43iLs1j7kng/Q7z7B6kCVao4vNT+Kd4vCXL3RQMu5B577DExbtw4MXXqVOH3+we6mstas2aNOHnypBDi256348ePX3L5xeL9BmP0MEsyUXr+g97DT2p8C6aBUzqsJmeYRkvMkbXJmVZFK3plaCDnDg50ePtSQ7Px/M0r/Qx6niai1bD9gAq5LVu2iMmTJ4vm5mYxefJkTa9IdbvdYvv27aK3t1cUFhaK7u7uSy6/nFjnFJjx/AcrUePk1Hj/cIz+v0q2c+SsROn5VXpijqwvUfdFcv6O4n2/EPLOcdPrM+j5RVFOMSyH7EKuurpajB8/Xhw7dkwIIcSOHTvEjBkzRDAYlLuquHR3d4t58+aJ3NxcsX37drFp0ybR1NQUtTxesYLPk4zjp0VxJoTyb2t64QGY1MAcWR/3RfLI6b0zI6WFoFZ5kVXIHTp0SIwdO1a8/fbbkWWdnZ0iNzdX7N27V5UN0pqcHjkOtyof7lTrKkQzTbtgtZ0nmRNzREolQobMuI+3mrgLuZMnT4qbb75ZuN3uqOe2bt0qioqKoq5cNSM598m00jcFpeRcWq5VcWaVP+hE2HmS8ZgjUooZIiGESBFCCCSRjo4ODB06FBcuXEBmZuYlX+twOOD1evs9bm1t1XoTDeFyuVBbW4tQKITU1FQ4nU7U1NRI/g7y8vKiXut2u1FWVoaGhgbk5eXB7XYjOzsbLS0tksutTE6GiGJhjkgpZogAwGb0BphZfn4+UlNTAQCpqanIy8szeIvU0dLSApfLBYfDAZfLhZaWFtTX1yMUCgEAQqEQGhoaAEj/DtxuN5xOJxwOR6SIy87ORk1NDVpbW1FTUxMp1mItJyIiIuVYyF2CVMFiJVIFGwCUlZWhtrYWXq8XtbW1KCsri1m0yinaiIiISF8cWpUpPFRYX1+P/Px8Uw8VyhkubWpqSrghUK1wOIPUwByRUswQAcAVRm+AXjweDzweD3p6ehStJ9ybFQqFIr1ZNTU1Km3lwEkVmJcaLu1b4OXl5UV62Sg2tTJEyY05IqWYIeqLPXIymeECCKmirW+BGe59AyDZI5eIFyDoid+CSQ3MESnFDBGQRD1yapHqzdKbVK+gVO+b1HApAPa+ERERJQhe7CBTrAsgYl1YoESsdUoVbVIXK/CiBCIiosTGQk6mWMWR1JWgckgVbbHWGe+UIERERJTYWMipRKqXLFaPWrxFW6yLFTglCBEREQG82EG19UpN9QFIX2wg9dr6+vq47qDAc9uMxxOMSQ3MESnFDBFg8h65trY2FBYWYurUqdi/f3+/506cOIHvf//7mDFjBu677z6DtvCvpHrJYvWoxXuOG4dLiYiI6FJMfdXqjh07sGHDBtx2222YPXs27rrrrshzp06dwsaNG1FaWmrgFv6V1JWgsa5wlVoe616l7IEjIiKiWEzdI9fY2IiCggKkp6cjMzMT7e3tkeeamprgdrsxffr0SxY7wWAQPp+v349eYvWo8Rw3azEyQ5Q4mCNSihkiKabukevs7ITdbgcAZGRkwOfzISsrCwAwfvx4LFy4EDk5OZg5cyaKiooiQ5N9VVZWoqKiIvI4PKSph1g9auxpsxYjM0SJgzkipZghkmKqix3Ky8tRXV0dedzQ0IC2tjbY7XaUlJRg9+7dGDZsGIBvT/IMn9y5YMEClJeX4+qrr45aZzAYRDAYjDzu6OhATk4OTw6luDFDpAbmiJRihkiKqXrk1qxZgzVr1kQeb9y4EYcPH0ZhYSG8Xm+kiAOAxYsX49lnn8WoUaPw6aef4qqrrpJcZ1paGtLS0iKPe3t7Ndt+SkzMEKmBOSKlmCGSYupz5B588EFs2bIFBQUFWLt2LQBg/fr18Hq9eOqpp7B06VLcdtttePzxx2GzmfqjEBEREanOVEOreuC8O6QUM0RqYI5IKWaIAJP3yBERERFRbCzkiIiIiCyKhRwRERGRRbGQIyIiIrIoFnJEREREFmWqeeS05PF44PF40NPTY/SmkEUxQ6QG5oiUYoaoL04/QiQTM0RqYI5IKWaIAA6tEhEREVkWCzkiIiIii2IhR0RERGRRLOSIiIiILIqFHBEREZFFmb6Q6+npwZQpU6KWt7W1obCwEFOnTsX+/fsN2DIiIiIiY5m6kPN6vSguLsbHH38c9dyOHTuwYcMG1NXVYevWrfpvHBEREZHBTF3IdXV1YcuWLRgzZkzUc42NjSgoKEB6ejoyMzPR3t4uuY5gMAifz9fvh0gOZojUwByRUswQSTH1nR1GjhyJkSNHSj7X2dkJu90OAMjIyIDP50NWVlbU6yorK1FRURF5HAqFtNlYSljMEKmBOSKlmCGSYqo7O5SXl6O6ujry+IknnoDL5cKMGTNw6NChfq+dO3cuPB4P7HY7SkpKsHv3bgwbNixqncFgEMFgMPJYCIFAIACHw4GUlBStPgolEGaI1MAckVLMEEkxVSEXi1Qht3HjRuTl5aGwsBAulwsHDx40ZuOIiIiIDGLqc+SkrF+/Hl6vFw8++CC2bNmCgoICrF271ujNIiIiItKdJXrkiIiIiCia5XrkiIiIiOhbpr5qVW9CCHR2dhq9GSTDlVdeaaqTfJkhazJTjpghazJThgDmyKoGkiMWcn20tbVhxIgRRm8GyfDVV1/hqquuMnozIpghazJTjpghazJThgDmyKoGkiMWcn0MGjQI119/PQ4fPhyZo04rPp8P06dP17wtvdoxqq1BgwZp2o5ciZihZGjLTDlihqzZlpkyBDBHVm1rIDliIddHSkoKUlNTkZmZqfl/ms1m06Utvdoxqi0zDWUAiZmhZGjLTDlihqzZlpkyBDBHVm1rIDnixQ5EREREFsVCjoiIiMiiWMj1kZaWhoceeghpaWkJ01Yifia925IjUX8HbEs/ifr52Za+EvV3wLaicUJgIiIiIotijxwRERGRRbGQIyIiIrIoFnJEREREFsVC7jvBYBAPPPAAFixYgOrqak3b8vl8mDZtGkpLS3H//fdr2tbDDz+Ms2fP4tixY7jnnntQWlqKzz77TNO29uzZg/nz56O0tBS7du1Sbf3nzp1DaWkpFixYgJ07d+rymeRghtRrK1kzBOiXIz0zBDBHeuK+SL22LJEhQUIIIV599VXh8XhEKBQSixcvFn6/X7O2jh07JioqKjRbvxBCBAIBsXr1ajFt2jTx2WefiRUrVoj29nbx4YcfiieffFLTtp588knxxRdfqNqGEEI899xz4ujRo0IIIRYtWiQWLVqk2WcaCGZIvbaSNUNC6JcjPTIkBHNkBO6L1GvLChlij9x3mpqaMGnSJNhsNtx444346KOPNGvrww8/xJEjR3Dffffhd7/7nSZtBINBlJWV4dZbbwUA+P1+DBs2DDfccAPOnDmjaVunT5/G008/jSVLlqj6bWnlypWYNGkSAKC3txcANPtMA8EMqddWsmYI0C9HemQIYI6MwH2Rem1ZIUMs5L7T1dWFIUOGAAAGDx6Mr7/+WrO2rr32WmzYsAEvvPAC9u3bB6/Xq3obdrsdeXl5kcfhoACAUHnGmYvbKiwsxObNm/GTn/wEmzdvVq2dYcOGITU1FS+//DLGjBmj6WcaCGZIvbaSNUOAfjnSI0MAc2QE7ovUa8sKGWIh950hQ4agu7sbANDd3a3pfdUmTJiAiRMnIi0tDRMmTMDZs2c1ayus7/3bbDZt/9vvueceZGRk4Ac/+AHa29tVXfdrr72GAwcOYP369bp+pngwQ+pJ1gwB+uXIiAwBzJEeuC9SjxUyZHziTGLs2LFoaGiAEALNzc0YNWqUZm2Vl5fjnXfeQW9vL5qamjBy5EjN2gpLT0+H1+vFn//8Z+Tk5GjWjhACpaWl6OnpwenTp+FwOFRb9/vvv499+/Zh27ZtSEtL0+0zxYsZUkcyZwjQL0dGZAhgjvTAfZE6rJKhK1TbKou78847sW7dOrzyyiu4++67MWjQIM3aWrx4MX784x9j+/btmDdvHrKysjRrK2z16tVYtWoVUlJSsGnTJs3aSUlJwZIlS7Bw4UKkp6fjmWeeUW3dzz//PFpbW7F8+XIAwCOPPKLLZ4oXM6SOZM4QoF+OjMgQwBzpgfsidVglQ7xFFxEREZFFcWiViIiIyKJYyBERERFZFAs5IiIiIotiIUdERERkUSzkiIiIiCyKhRwRERGRRbGQIyIiIrIoFnJEREREFsVCjoiIiMiiWMgRERERWRQLOSIiIiKLYiFHREREZFEs5IiIiIgsioUcERERkUVdYfQGEBFZ0dmzZ3H77bejrq4O1157raHbMnr0aAwaNAjTpk0DABw5cgSBQAB/+tOfDN0uItIeCzkiIpNZtWoVDh48KPncjh07cPvtt0ctr6qqwuTJkwEAR48exaJFizTdRiIyBxZyREQq+P3vf4+dO3fik08+wddff41x48bhmWeewXXXXYdTp07h6aefxgcffIC/+7u/Q3FxMfbu3Yvf//73kuv6X//rf+Gbb77B119/jaKiIuzcuRNjxowBAGRlZen5sYjI5HiOHBGRQufPn8fatWuxYsUK/PGPf8ShQ4cghMD27dvh8/mwbNkyTJkyBUePHsWmTZtQXV19yfVlZWVhxIgR8Hq9SElJwaRJkzBixAiMGDECV1zB799E9Fcs5IiIFBo+fDj279+PwsJC+Hw+nD9/HllZWWhpacHvf/97pKam4uGHH0ZaWhpGjx6NZcuWxbXeP/3pT8jJyYHdbtf4ExCRVfGrHRGRQt/73vfwb//2b/jNb36DlJQU3HjjjfD5fLjiiitw/vx5/O3f/i1str9+bx45cmRc6/3Tn/6E0aNHa7XZRJQAWMgRESlUU1ODF198ES+99BL+23/7bwCAp59+Gv/1X/+Fv/3bv8UXX3wBIQRSUlIAAF988UVc6/3888/x3//7f9dsu4nI+ji0SkSkUGdnJ2w2G9LT0yGEwOHDh7Fv3z709PSgsLAQQgj84he/QDAYxMcff4zdu3fHtd7e3l588cUXOH/+PIQQGn8KIrIiFnJERArNnz8ft956K+666y5MmTIFzz//PO6//36cPn0aV1xxBXbs2IG6ujrk5+dj3bp1mDp1Kr73ve9ddr2lpaV477334HK5WMgRkSQOrRIRDcC1117bb8LdTZs2Rb1mzZo1aG9vR09PD377299Glv/617/GBx98cNk2/uEf/gH/9//+X3U2mIgSEnvkiIg0FAqFcP/990cKsrNnz+Jf//Vfcdtttxm8ZUSUCFIE++uJiDR14MAB/J//839w9uxZZGZmYv78+XjooYdUmxOOt+giSl4s5IiIiIgsikOrRERERBbFQo6IiIjIoljIEREREVkUCzkiIiIii2IhR0RERGRRLOSIiIiILIqFHBEREZFFsZAjIiIisigWckREREQWxUKOiIiIyKJYyBERERFZ1P8HK5TCP9pTFcAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAHvCAYAAADQPjKVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABidUlEQVR4nO3df3hTdZ4v8HdTpxQaCyVi3a3sldErsyAg0hYeKSxWUhvlp11XBqdYfiMqKAyjd13nkavO9YHnDtxScEphzDBmHcuMoi5Wt3TgwriztFYQbqmzjoKKQrVNhza1SWr6vX9oMi05gZye38n79Tx9HnKSnO9JefecT77fc74nRQghQERERESWYzN6A4iIiIhoYFjIEREREVkUCzkiIiIii2IhR0RERGRRLOSIiIiILIqFHBEREZFFsZAjIiIisigWckREREQWxUKOiIiIyKJYyBERERFZFAs5IiIiIotiIUf9HDx4EHfccQeKioqwd+9eozeHLOjBBx9EXl4e1qxZY/SmkEWdO3cOpaWluPPOOzF79mzU1NQYvUlkMT6fDyUlJZg7dy5mz56N6upqozdJMylCCGH0RpA5fPPNN7jrrruwZ88eZGRk4O6770Z1dTWGDRtm9KaRhfznf/4nvv76a+zbtw/l5eVGbw5Z0Jdffom2tjb8/d//Pdra2jB//ny89dZbGDJkiNGbRhYRCoUQDAYxePBgdHd3Y9asWfjtb3+LrKwsozdNdeyRo4gTJ07ghhtuQHZ2Nux2O6ZPn44//OEPRm8WWcyUKVOQkZFh9GaQhV199dX4+7//ewCAw+HA0KFDceHCBYO3iqwkNTUVgwcPBgAEAgH09vYiUfutWMglid7eXhQXF2Pz5s39lh85cgQ33XQTampq8OWXXyI7Ozvy3DXXXIOWlha9N5VMKp4MEV2O3BydPHkSQgj8zd/8jZ6bSSYWb4Y6OjowZ84c/MM//AOWLVuG4cOHG7G5mmMhlyRsNhtWrlyJl156KfLN9oMPPsDatWvx6KOPwuVySX5bSUlJ0XtTyaTiyRDR5cjJUXt7Ox577DH8z//5P43aXDKheDOUmZmJ119/HXV1dXjjjTfQ2tpq5GZrhoVcgjh9+vRlXzN79mxkZWXh17/+Nc6fP48VK1Zg7ty5WLp0KQAgOzu7Xw/c+fPnMWLECM22mcxFjQwRqZWjYDCIhx56CCtWrMAtt9yi5SaTyai9L7rqqqswevRoNDQ0aLG5hmMhlwAaGxtx9913449//OMlX3fFFVdg+fLl+PWvf43ly5djzJgx+Jd/+ZfI8+PHj8eHH36IlpYW+Hw+HD58GAUFBVpvPpmAWhmi5KZWjoQQePzxxzFlyhTMmzdP460mM1ErQ62trfD5fAC+vYL13XffxahRozTddsMISggvvfSSuPnmm8V//Md/XPJ1Pp9PjBs3TsyaNUt0dXVFPX/gwAFRVFQkZs6cKX7zm99otblkQmplaMmSJWLy5Mli/PjxYtq0aeL999/XapPJhNTIUUNDgxg9erSYM2dO5OeDDz7QcrPJRNTI0MmTJ8WcOXPE7NmzxaxZs4TH49Fykw3F6Ucs4r/+678we/bsy75u8ODBOH78eMznH3/8cbz55pvIzMxEXV0dBg0apOJWkpkxQ6QG5oiUYobUdYXRG0Dxue666/Dmm2/GfP6dd97Bc889hyeeeCLma7Zu3YpDhw6huroaZWVl+O1vf4v77rtPi80lE2KGSA3MESnFDKnM6C5BUu79998XEyZMENXV1TFfU11dLcaPHy+OHTsmhBBix44dYsaMGSIYDOq0lWRmzBCpgTkipZgh+VjIJYBAICCOHDkS8/lDhw6JsWPHirfffjuyrLOzU+Tm5oq9e/fqsYlkcswQqYE5IqWYIflYyCW4kydPiptvvlm43e6o57Zu3SqKiorEN998Y8CWkVUwQ6QG5oiUYoak8WIHIiIiIouyzDxyJSUlOHPmTORxIBDA3LlzMXXqVFRVVRm3YUREREQGMX0hFwwGMX/+fBw9erTf8urqahQXF+PIkSPYu3cv/H6/QVtIREREZAzTTz8SCATw6KOP4pe//GW/5Y2NjVi6dClsNhvGjRuH5uZmTJw4Mer9wWAQwWAw8lgIgUAgAIfDwfuIUlyYIVIDc0RKMUMkxfSF3JVXXonp06dHFXKdnZ2w2+0AgIyMjMitOC5WWVmJioqKyONQKISPPvoIFy5cQGZm5iXbbmlpQVlZGerr65Gfnw+3243s7GyFn4isRkmGiMKYI1KKGSIplrnYoaysDE899RSuu+46AMDatWuxfPly3HTTTVi/fj0WLVqECRMmRL3v4m8wHR0dyMnJiSv4LpcLtbW1CIVCSE1NhdPpRE1Njaqfi8xPSYaIwpgjUooZIimm75GL5ZZbbsHhw4cxduxYHD9+HM8++6zk69LS0pCWlhZ53NvbG3cb9fX1CIVCAL795tPQ0KBso8mSlGSIKIw5IqWYIZJi+osdLrZ582acOnUK9957L2pra5Gfn4+SkhKkp6er3lZ+fj5SU1MBAKmpqcjLy0NLSwtcLhccDgdcLhdaWlpUb5eIiIgoHpYZWlVLR0cHhg4dKuscuYaGBuTl5cHtdqOsrIzDrUlOToaIYmGOSClmiAALD63qITs7O6pI43ArERERmYXlhlaNJjXcCoBDrkRERKQ7FnIyud1uOJ1OOBwOOJ1OuN1uAIgMuXq9XtTW1qKsrMzQ7SQiIqLEx6FVmaSGWwEOuRIREZH+2COnklhDrkRERERaSZoeOY/HA4/Hg56eHk3WH76ite8VrrwzRGLROkOUHJgjUooZor44/YiGeGeIxMRL/kkNzBEpxQwRwKFVTfG8OSIiItISCzkNcaoSIiIi0hILOQ1xqhIiIiLSUtJc7GAETlVCREREWmKPnAGkhlw53EpERERymb6QCwQCmDt3LqZOnYqqqqrI8o6ODuTk5GDGjBm4/fbbDdxC+aSGXDncSkRERHKZvpCrrq5GcXExjhw5gr1798Lv9wMATp06hVWrVuHQoUOoq6szeCvlCQ+5tra2oqamBtnZ2RxuJSIiItlMX8g1NjaioKAANpsN48aNQ3NzMwCgqakJb731FqZPn44XXngh5vuDwSB8Pl+/HzPicKt5WSVDZG7MESnFDJEU01/s0NnZCbvdDgDIyMiIBPe6667Dpk2bkJeXh6KiIsyaNQsjRoyIen9lZSUqKioij8O9XmYjdWeI8HBrKBSKDLdyQmH9WSVDZG7MESnFDJEU09/ZYe3atVi+fDluuukmrF+/HosWLcKECRPQ1dWFwYMHw2az4fHHH8fdd9+N/Pz8qPcHg0EEg8HI4/C5dVaYCdvhcMDr9fZ73NraauAWJScrZ4jMgzkipZghkmL6odVbbrkFhw8fhhACx48fx+jRowEAP/3pT1FbW4ve3l40Njbi+uuvl3x/Wloa7HZ7vx+r4ITC5mDlDJF5MEekFDNEUkzfI+f3+/HDH/4QZ8+exeLFi9HV1YW77roLQ4cOxY9+9CMEg0EsWrQIK1eujGt9Vro3XUtLS9Rwa3Z2Nu/hajArZYjMizkipZghAixQyKktEYIvNeTa1NSEsrIy1NfXIz8/P1L0kfoSIUNkPOaIlGKGCLDA0CpFkxpy5Tx0REREyYeFnAVJTSgsNQ8dz6UjIiJKbBxaTRBS580B4Ll0GkjUDJG+mCNSihkigD1yCSPeXjqAV70SERElChZyCULqtl+xpi/h+XRERESJwfR3dlCLx+OBx+NBT0+P0ZuiG6m7RQCIeT4dr3q9tGTMEKmPOSKlmCHqi+fIJSE559OxwIvGDJEamCNSihkiQOOh1YMHD+KOO+5AUVER9u7dq2VTJIOc8+mkhmF5jh0REZE5aFbIffPNN3juueewZ88evPLKK6iqqsJf/vIXrZojGeScTydV4Mkp7lj0ERERaUezQu7EiRO44YYbkJ2dDbvdjunTp+MPf/iDVs2RQlK9dID05MPxFneAvB49Fn1ERETyyC7kent7UVxcjM2bN/dbfuTIEdx0002Recq+/PLLfudSXXPNNTwwm5hULx0gXeDFW9wB8ffoAfEXfSz4iIiIviW7kLPZbFi5ciVeeuklXLhwAQDwwQcfYO3atXj00UfhcrkAAFLXUKSkpCjcXNKbVIEXb3EHxN+jB8Rf9HH6FCIiom8NaGh19uzZyMrKwq9//WucP38eK1aswNy5c7F06dLIa7Kzs/v1lJw/fx4jRoyQ3VYgEMDcuXMxdepUVFVVXXY5aS/e4g6Iv0cPiL/oi1UIEhERWY3iUSYxQC+99JLIz88Xs2bNEitXrhTffPNNv+d7enqE0+kU58+fF52dncLpdAqv1yu7nT179ogdO3aIUCgknE6n6O7uvuTyy7lw4YIAIC5cuCB7W0gd58+fF8XFxcLhcIji4mJx/vz5mMuLi4tFamqqACBSU1NFcXGx5DI9MUOkBuaIlGKGzCt8/Bo+fHjkeCa1TAih+Jg24AmBZ8+ejZ/97GcAgJ///OeRnpSwK664Ao899hgWLVqE3t5eLFu2DFlZWbLbaWxsxNKlS2Gz2TBu3Dg0Nzdj4sSJMZdfLBgMIhgMRh77fD7Z2+D3+wF8O6wshIgMG9tsNvT29gL467Cx2s+lpKREHvdtX4vn9PpMWVlZePXVV/u17/f7MWzYMLz22mv9tq2yshLLli1DY2MjcnNz8Ytf/AIAsGLFCjQ2Nvab6FgrcjPEvFjrM6Wnp1/y/1MtcnLEDFnrM5kxQ8DAc3Tu3DksX74c7777LvLy8rBz504A3+53GxoakJubi127diE7Oxvnz5+PvDY3NxdVVVVISUnB8uXLI6/dvXs3rr766sgIXnh5VVUVbDYbli1bFpm4fteuXejt7Y1q/5prrsGXX36JpUuXRpZXVVVBCBHVfvic/GXLll3yM4Tbv3idV199NVpaWqI+b0pKimT7F6/zb/7mb7Bo0SIcOHAAvb29+Pd//3eUlpYCAOrq6iLLFi1ahDfeeANHjx5VNMo04AmBH3/8cbz55pvIzMxEXV0dBg0aNJDVXNbSpUvxL//yLxg1ahR++tOfwul0Ytq0aTGXX2zbtm2oqKiIPA6FQvjoo49kTaDInao5P1NaWlpc/39Kyc0Q82KuzyS1Q77mmmsiB6vGxkZdJruWkyNmyLjPdP78+agCIDs7G1999VXMgsOMGQL65yjW5/ryyy+jiq6lS5dGCg6bzYbbb78dAPotmzlzJl5//XXMnj076rUpKSmRImYgrxVCRL3ujTfewJw5cwb8WqnPEKv91157DXPmzIn6vADiav/f/u3fcM0116C9vT3yfzF8+HAIIaKWnTt3DrNmzYqso++E/HETA7BlyxYxefJk0dzcLCZPnixefPHFgawmLmvWrBEnT54UQgixbt06cfz48Usuv1ggEBCdnZ2Rn88//5xd0SQLM6S+WEMMcoYj4n1trGELvYfomSN96JkXs2ZI6ecaPny4ABD5cTgcksuEEJq81kptxXq/nLzEOt0oXrILuerqajF+/Hhx7NgxIYQQO3bsEDNmzBDBYFDuquLidrvF9u3bRW9vrygsLIycCxdr+eXwnAJSihkyx8Ey3tfK2VHriTmKn5y86ZkXs2ZI6efS4u9Qzmut1Jac4kxpwRaLrELu0KFDYuzYseLtt9+OLOvs7BS5ubli7969qmzQxbq7u8W8efNEbm6u2L59u9i0aZNoamqKWh4v7jxJqUTOkF6FmJ7fuM3SI3exRM6RElr0JgmhTV7MmiGln0tOEaLFa63UllbFmRxxF3InT54UN998s3C73VHPbd26VRQVFUVduWpG3HmSUomQITlXT5n1YBnva+XsqPWUCDlSKt6iTWlvkhDa5MWsGbLS3wEpN6Bz5KyMO09SKhEyFOtgp1chpuc3brNKhBzFS84XBy16k/pug1XzIiVWhqz+uUgeFnJEMlktQ1IHUaUn6CbTwVIrVsuREnK+OLA3KX7JlCGKjYUckUxmzZDS4dK+62Ahpj2z5kgppV8cmLf4JWqGSB4WckQymTVDcno9eLA0nllzJEe857jJ+eJA8UuEDJFyA76zAxEZp6WlBWVlZaivr49MRBrrHrT5+fmora1FKBSK3MM2fL9cIiXKysoi2aqtrY1k8uIcNjU1oaysLDKZbvhuLMwhkXJJU8h5PB54PB709PQYvSlkUWbKkNQBVKpgAwC32y15ECVjmClH8ZL64pCdnS1ZtPGLg/asmCHSzoBv0WVVHR0dGDp0qKxbdBH1ZYYMORwOeL3efo+lej20vF0QKWOGHMXL5XL1K87CtxCSWi71xYE51IaVMkTasRm9AUR0aS0tLXC5XHA4HHC5XGhpaUF+fj5SU1MBIKrXo7W1FTU1NTx40oBI5S3WsL3b7YbT6YTD4YgUccwhkb7YI0ckk94ZYq9HYjLrvkgqbwAke+TIWGbNEOmLPXJEJiHVEwJAsjeEvR6kFam8SfW8EZE5sJAjMonwBQxerzdyAQMAyWFUIqVifXHgsD2RtbCQIzIJOechESkV64sD80ZkLaaefqStrQ333HMPAoEA/vmf/xl33XVX5LkTJ05g3rx5+Lu/+zvk5OTA4/EYuKVEysWaPoRTN5AWYn1xYN6IrMXUPXI7duzAhg0bUFdXh61bt/Z77tSpU9i4cSMOHTrEIo4sR2pYiz0hpCcO2RMlBlMXco2NjSgoKEB6ejoyMzPR3t4eea6pqQlutxvTp0+/5LfHYDAIn8/X74dIDi0yJDWsxfOQEpuR+yJ+cUgMPJ6RFFMPrXZ2dsJutwMAMjIy4PP5kJWVBQAYP348Fi5ciJycHMycORNFRUWRb5d9VVZWoqKiIvI4PJRAFC8tMhRrWIsSl5H7Iqk7gdTU1HAI1WJ4PCMppppHrry8HNXV1ZHHDQ0NaGtrg91uR0lJCXbv3o1hw4YB+Hb+nPC8OQsWLEB5eTmuvvrqqHUGg0EEg8HI446ODuTk5HDeHYqbFhmKNVM+JS4j90VSdwJpbW3VtE1SH49nJMVUQ6tr1qzBH/7wh8jPP//zP+Pw4cPw+/3wer2RIg4AFi9ejA8++ACBQACffvoprrrqKsl1pqWlwW639/shkkNJhmJN8cBhreRj5L6I58MlBh7PSIqpCrmLPfjgg9iyZQsKCgqwdu1aAMD69evh9Xrx1FNPYenSpbjtttvw+OOPw2Yz9UehJBVrigeeD0da4flwRMnFVEOreuAtTUgpORnikBbFotW+iMP2yYPHMwJM3iNHZHUc0iK98UIaouTCQo5IQxzSIr3xywNRcmEhR6QSqXOTeC4caYUX0hARwHPkjN4csqBYGeK5SSSH0n0R80Y8nhHAHjki1fDcJNIT80ZEgMnv7KAmj8cDj8eDnp4eozeFLOpyGYp103uivtTaFzFvyYvHM+qLQ6tEMsXKUEtLC8rKytDQ0IC8vDy43W6eE0cxydkXhbNVX1+P/Pz8yHlvzFty4/GMABZyRm8OWRAzRGqQypFUwZadnc3z4UgS90UE8Bw5IiLTiHUnEJ4PR0SxsJAjIjKJWAUb54YjolhYyBERmUSsgo1zwxFRLElz1SoRkdm53e6oCxgARCaWJiK6mOl75Hp6ejBlypSo5W1tbSgsLMTUqVOxf/9+A7aMiEhdvBMIEcll6kLO6/WiuLgYH3/8cdRzO3bswIYNG1BXV4etW7fqv3FEREREBjN1IdfV1YUtW7ZgzJgxUc81NjaioKAA6enpyMzMRHt7u+Q6gsEgfD5fvx8iOZghUgNzREoxQyTF1OfIjRw5EiNHjpR8rrOzE3a7HQCQkZEBn8+HrKysqNdVVlaioqIi8jh8RRhRvJghUgNzREoxQyTFVBMCl5eXo7q6OvL4iSeegMvlwowZM3Do0KF+r507dy48Hg/sdjtKSkqwe/duDBs2LGqdwWAQwWAw8lgIgUAgAIfDgZSUFK0+CiUQZojUwByRUswQSTFVIReLVCG3ceNG5OXlobCwEC6XCwcPHjRm44iIiIgMYupz5KSsX78eXq8XDz74ILZs2YKCggKsXbvW6M0iIiIi0p0leuSIiIiIKJrleuSIiIiI6FumvmpVb0IIdHZ2Gr0ZJMOVV15pqpN8mSFrMlOOmCFrMlOGAObIqgaSIxZyfbS1tWHEiBFGbwbJ8NVXX+Gqq64yejMimCFrMlOOmCFrMlOGAObIqgaSIxZyfQwaNAjXX389Dh8+HJmjTis+nw/Tp0/XvC292jGqrUGDBmnajlyJmKFkaMtMOWKGrNmWmTIEMEdWbWsgOWIh10dKSgpSU1ORmZmp+X+azWbTpS292jGqLTMNZQCJmaFkaMtMOWKGrNmWmTIEMEdWbWsgOeLFDkREREQWxUKOiIiIyKJYyPWRlpaGhx56CGlpaQnTViJ+Jr3bkiNRfwdsSz+J+vnZlr4S9XfAtqJxQmAiIiIii2KPHBEREZFFsZAjIiIisigWckREREQWxULuO8FgEA888AAWLFiA6upqTdvy+XyYNm0aSktLcf/992va1sMPP4yzZ8/i2LFjuOeee1BaWorPPvtM07b27NmD+fPno7S0FLt27VJt/efOnUNpaSkWLFiAnTt36vKZ5GCG1GsrWTME6JcjPTMEMEd64r5IvbYskSFBQgghXn31VeHxeEQoFBKLFy8Wfr9fs7aOHTsmKioqNFu/EEIEAgGxevVqMW3aNPHZZ5+JFStWiPb2dvHhhx+KJ598UtO2nnzySfHFF1+o2oYQQjz33HPi6NGjQgghFi1aJBYtWqTZZxoIZki9tpI1Q0LolyM9MiQEc2QE7ovUa8sKGWKP3HeampowadIk2Gw23Hjjjfjoo480a+vDDz/EkSNHcN999+F3v/udJm0Eg0GUlZXh1ltvBQD4/X4MGzYMN9xwA86cOaNpW6dPn8bTTz+NJUuWqPptaeXKlZg0aRIAoLe3FwA0+0wDwQyp11ayZgjQL0d6ZAhgjozAfZF6bVkhQyzkvtPV1YUhQ4YAAAYPHoyvv/5as7auvfZabNiwAS+88AL27dsHr9ereht2ux15eXmRx+GgAIBQecaZi9sqLCzE5s2b8ZOf/ASbN29WrZ1hw4YhNTUVL7/8MsaMGaPpZxoIZki9tpI1Q4B+OdIjQwBzZATui9RrywoZYiH3nSFDhqC7uxsA0N3drel91SZMmICJEyciLS0NEyZMwNmzZzVrK6zv/dtsNm3/2++55x5kZGTgBz/4Adrb21Vd92uvvYYDBw5g/fr1un6meDBD6knWDAH65ciIDAHMkR64L1KPFTJkfOJMYuzYsWhoaIAQAs3NzRg1apRmbZWXl+Odd95Bb28vmpqaMHLkSM3aCktPT4fX68Wf//xn5OTkaNaOEAKlpaXo6enB6dOn4XA4VFv3+++/j3379mHbtm1IS0vT7TPFixlSRzJnCNAvR0ZkCGCO9MB9kTqskqErVNsqi7vzzjuxbt06vPLKK7j77rsxaNAgzdpavHgxfvzjH2P79u2YN28esrKyNGsrbPXq1Vi1ahVSUlKwadMmzdpJSUnBkiVLsHDhQqSnp+OZZ55Rbd3PP/88WltbsXz5cgDAI488ostnihczpI5kzhCgX46MyBDAHOmB+yJ1WCVDlrlFV0lJCf73//7fuO666wAAgUAA//RP/4TW1laUlZVFfhlEREREycL0Q6vBYBDz58/H0aNH+y2vrq5GcXExjhw5gr1798Lv9xu0hURERETGMH0hFwgE8Oijj2LmzJn9ljc2NqKgoAA2mw3jxo1Dc3OzQVtIREREZAzTnyN35ZVXYvr06fjlL3/Zb3lnZ2fkSpyMjAz4fD7J9weDQQSDwchjIQQCgQAcDke/q0SIYmGGSA3MESnFDJEU0xdysdjtdnR1dQH4ds6czMxMyddVVlaioqIi8jgUCuGjjz7ChQsXYr6HqC9miNTAHJFSzBBJsczFDmVlZXjqqaciFzv86le/QldXFx544AHMnDkT+/fvR3p6etT7Lv4G09HRgZycHAaf4sYMkRqYI1KKGSIppj9H7mKbN2/GqVOncO+996K2thb5+fkoKSmRLOIAIC0tDXa7vd8PkRzMEKlB7Ry1tLTA5XLB4XDA5XKhpaVFpS0ls+K+iKRYpkdOLR0dHRg6dCi/wdCAyclQS0sLysrKUF9fj/z8fLjdbmRnZ+u0pWRmSvdFLpcLtbW1CIVCSE1NhdPpRE1NjQZbSmbF4xkBFuyRI7KSsrIy1NbWwuv1ora2FmVlZUZvEiWI+vp6hEIhAN+eK9XQ0ACAPXVEyYaFHJGGYh1siZTKz89HamoqACA1NTVyo29+eSBKLizkiDQU62BLJIdUL5vb7YbT6YTD4YDT6YTb7QbALw9EyYaFHJGGYh1sieSQ6mXLzs5GTU0NWltbUVNTEzn3kl8eiJILCzkiDcU62BLJIaeXTerLA8+bI0pcLOSIDMADK8khp5dN6ssDz5sjSlyWvbODXB6PBx6PBz09PUZvClmUmhkKH1hDoVDkwMqpI5LDQHLkdrtRVlaGhoYG5OXlyR6i53lziYXHM+qL88gRyaRGhhwOB7xeb7/Hra2tam0iWYBUjrSad5BzziUmHs8I4NAqkSF4QjpJ0WoIlBfdECUuFnJEBuCBlaRoNQQqdd4cz9MkSgws5IgMwAMrSdGzp5YXQBAlBhZyRCbBAyvp2VPLCyCIEoPpC7lAIIC5c+di6tSpqKqqiizv6OhATk4OZsyYgdtvv93ALSRSBw+spOe8gzxPkygxmL6Qq66uRnFxMY4cOYK9e/fC7/cDAE6dOoVVq1bh0KFDqKurM3griZTjgZX0FKv3j0P8RNZi+kKusbERBQUFsNlsGDduHJqbmwEATU1NeOuttzB9+nS88MILBm8lkXI8sJKeYvX+cYifyFpMPyFwZ2cn7HY7ACAjIwM+nw8AcN1112HTpk3Iy8tDUVERZs2ahREjRkS9PxgMIhgMRh6H308UL70yFD6wXoyTBycGq+yLOMRvXlbJEOnL9IWc3W5HV1cXAKCrqysy6eGUKVMwePBg2Gw2TJkyBadPn5Ys5CorK1FRURF5HN5BEcXL6AzxwJoYjM5RvPLz8/tNHpyXl6fZRMUkj1UyRPoy/Z0dfvWrX6GrqwsPPPAAZs6cif379yM9PR3r169HUVERnE4n7rjjDvzmN7+Bw+GIev/F32DCF0lwJmyKl9EZkpqVP3zLJh5YrcPoHMUrXLT1vR1Y315h3hnCOFbJEOnL9IWc3+/HD3/4Q5w9exaLFy9GV1cX7rrrLgwdOhQ/+tGPEAwGsWjRIqxcuTKu9fGWJqSU3hnigTUxWWlfxFvKmZOVMkTaMf3Qanp6Ol599VXJ5w4ePKjz1hDpT+rcOQ63kp6khlsB7e4NS0TxM/1Vq0QUTWqqEl7dSlqJdUU1r3AlMh4LOSILkjqw8qBKWok1VYlUzzC/UBDpi4UckQVJHVhjDbfywEpakeoZ5hcKIn2xkCNKELHuDMEDK2lFqmeYvXRE+mIhR5QgYp3HxAMraUWqZ1hOLx1zqA3+XpOL6acfURsv1yalrJYhqXnoAHD6EoNZLUfxkpouZ8yYMZLTl0hlkzmMX6wM8feaXJKmR87j8eDOO+9ESUmJ0ZtCFmXVDMU7/AXwm7werJqjeMXbSwewt3igLpchTk+UZESSuXDhggAgLly4YPSmkEUlQoaKi4tFamqqACBSU1NFcXFxzOXnz58XxcXFYvjw4ZHHpFwi5Che4Qw5HI5+GZLKGzMYv1gZivX3TYlJ00Ju9erVIjc3Vzz88MNaNiNLMu08SRuJkKFYB9bhw4cLAJGf8PM8sKovEXKklFQO481g3/cnaw5jZSjW3zclJk0LuT/+8Y+irq6OhRwllETOkNQBU+mBNdkPtrEkco6UiDeDsV6bTHmTk6Fk+r0kG82HVv/zP/+ThRwllETOkNQ3eaUHVjkH22QqBBM5R0rEm0Eh4u9B7rvey2XLSnmTkyEOtyYu2YVcKBQSd9xxh9i0aVO/5YcPHxZjx44Vb775Zr/lLOQo0SRbhpQeWOUcbOMtBPtul1UPzMmWIyXknGOn9EuGlXqb5WQo1u/F6n9HNMAeuVdeeUVMnDhR/OUvfxFCCNHc3CwmTpwodu3aFfVapYWc3+8Xc+bMEbfeeqvYuXPnZZdfDneepBQzpPzk9VgHlXgLQTltmfX8KuZIOS2+ZCjNm57U6JEzusCV834t/maN3g+oYUCFXE9PjygsLBTbtm0T586dE9OmTRNPPfWU5GuVFnJ79uwRO3bsEKFQSDidTtHd3X3J5ZfDnScpxQzFJnVglXOwlXMA0eLArCfmSBtKv2QozZueBnKOXDwXOGlV4EoVTXLeL7Vc6WkaWvX461mgDvgcuZdeeknk5+eLWbNmiZUrV4pvvvlG8nVKC7m1a9eKEydOCCGEWLdunXjvvfcuufxyuPMkpZgh5WIdVOItBIXQ5sCsJ+ZIX/FmS2ne9KRGhvQscOPtnZfTY6/0S6FWPf5KXyvHFRig2bNn42c/+xkA4Oc//3lksse+li5diqamJnR3d2P69OmoqKjA+PHjZbXT2dkJu90OAMjIyIDP57vk8osFg0EEg8HI41ivC/P7/QAAm80G8W2hG3nc29sLAEhJSQEA1Z9LSUmJPO7bvhbPJcJnSk9Pv+T/pVrkZkgKc9X/uaFDh2Lfvn39ngsGgxg6dCheffXVqPe99tpr/dYZDAbxi1/8AsuXL0djYyNyc3Pxi1/8AikpKVi+fDneffddTJo0CTt37oQQAsuWLev3Or/fj9zcXBw4cAC9vb39JqnVipwcMS/qf6Zwti7etr7ZCj8XzmB4u/1+P3bu3Illy5bh3XffRW5uLnbu3Ine3l4sX74c7733XuQuFlrS4nhWWVkZ9TcT/lx9/2YAYMWKFZHXVVZWIhAIYNKkSairq0Nvby9sNhtuueUWpKSkRP62bDYbJk2ahEAggKNHj/abqLi+vr7f32H4tUKIqHUGAgHJ10qtM1ZbQoi42vf7/XG/X2pZMBiM+/1Sr5U7gfOAC7mnn34aANDe3i5ZxAHA7t27B7r6CLvdjq6uLgBAV1dX5DYksZZfrLKyEhUVFZHH4V8WWVdLSwuWLl2KxsZG5Ofnw+12Izs7W7P2mCFzys7Oxuuvvx51YH7jjTeiDsyvv/56VEGxa9euSIGnx0GYObK2cN4uLk5ff/113b5UapGhvp8L+GuRF/6bAf5aIPf92wo/V1VVFSn6Jk2ahKqqqqgvVLt27QIA5Obm9ivQws/1LZB37doVVUju3LkTwLd/s+F9f25uLqqqqrBs2bKodQJAXl5eVIEGQLL9i9cpta25ubkA0G+dubm5UUWnnPbD6+zb1oC+VMrqv/vOli1bxOTJk0Vzc7OYPHmyePHFFweymri43W6xfft20dvbKwoLCyPnwsVafrFAICA6OzsjP59//jmHM0xK6TkNWmGGSA3MESll9QxpMVGxGqdpxLteOetU+lo5UoT4rtSO0969e/HMM8/gV7/6FW6++WY8//zzqK6uxr//+7/je9/7nrwqMg5+vx8//OEPcfbsWSxevBhdXV2466678P3vf7/f8tWrV8e1vkS9UbWVhG+qXV9f369HLd6bu9fX10vegFsvzBCpgTkipZghAiCvR+7QoUNi7Nix4u23344s6+zsFLm5uWLv3r2yKkij8ARjfcnpUVM6B5lemCFSA3NESjFDJIQQtngLvv/3//4fHnnkEWzYsAFFRUWR5Xa7HT/60Y9QVVXFcz6SWEtLC1wuFxwOB1wuF1paWgAAZWVlqK2thdfrRW1tbaQnTurEzvz8/Mj5luHzBKSWud1uOJ1OOBwOOJ1Ozc9tIiIiMivZQ6tWx65o5aSGRsMFW98h0JqaGjgcjqhh0Ly8PMnXhtfb0NDQ7+Tzi5dpeWFDPJghUgNzREoxQwQouGqVklffoi2eXra+RVu4GJMq2LKzs1FTUxPVntQyIiIiAuIeWqXkJDVkKlW0SQ2BApAcBg0XbK2traipqTG8h42IiMiq2CNHlyTV+6ZGLxsREREplzSFnMfjgcfjQU9Pj9GbYkqxpgSR6n1ramqSPG8t0Qs2ZojUwByRUswQ9cWLHQgAJOdwq6mpibk8mTFDpAbmiJRihgjgOXJJKd7z3gDpc9yIiIjIHJJmaJX+Kt7z3gCe40ZERGRm7JFLYLEm6ZXqfWPPGxERkfWwkEtgUndVAKTvoMApQYiIiKyHhVwC43lvREREic3UhVxbWxsKCwsxdepU7N+/v99zJ06cwPe//33MmDED9913n0FbaB5Sw6ixJull7xsREVFiMHUht2PHDmzYsAF1dXXYunVrv+dOnTqFjRs34tChQ/B4PMZsoIlIDaOy542IiCixmfqq1cbGRjzyyCNIT09HZmYm2tvbkZWVBQBoamrCf/zHf6Cqqgr/43/8D7hcLsl1BINBBIPByGOfz6fLtutNahiVV5yqI1kyRNpijkgpZoikmLqQ6+zshN1uBwBkZGTA5/NFCrnx48dj4cKFyMnJwcyZM1FUVBQZRuyrsrISFRUVkcfhYsfKpO7CEGv6EFIuETNE+mOOSClmiKSY6s4O5eXlqK6ujjxuaGhAW1sb7HY7SkpKsHv3bgwbNgzAtzNah2eyXrBgAcrLy3H11VdHrfPibzAdHR3Iycmx9EzYUndbkLrXKc99U0ciZoj0xxyRUswQSTFVIXexjRs3Ii8vD4WFhXC5XDh48GDkuZKSEjz77LMYNWoUbrvtNvzhD3+AzXb5U/6sdEuTWPc/dTgc8Hq9kdc5HA60trYauKXJxUoZIvNijkgpZogAk1/s8OCDD2LLli0oKCjA2rVrAQDr16+H1+vFU089haVLl+K2227D448/HlcRZzVy5oEjIiKi5GPqHjktWOkbTKyet3BPHYdRjWGlDJF5MUekFDNEgMkvdkh2vP8pERERXUrijUdalNSEvpwHjoiIiC6FPXImET4fLhQKRc6Hq6mpYc8bERERxcQeue9I9Yjp2Vas+6ISERERxcJC7juxrhDVqy1eiUpERERyJc3QqsfjgcfjQU9Pj+TzevaISbXV1NQUdSUqmcvlMkQUD+aIlGKGqC9OP/IdqbslKD0/LdaEvlq0RfrhJf+kBuaIlGKGCODQaoQWV4jGGq7l1ahERESkhqQZWr0cqbnZYvWoxSvWcC3ngSMiIiI1sEfuEuRcACF1JSovYCAiIiItsZC7BKketVjTlEgVfRxCJSIiIi3xYodLkLooAYDkhQqx7otKiYcnGJMamCNSihkiwAI9cj09PZgyZUrU8ra2NhQWFmLq1KnYv3+/Jm1L9ajFOu+Nw6hERESkN1MXcl6vF8XFxfj444+jntuxYwc2bNiAuro6bN26VZP2wxcltLa2oqamBtnZ2TELNg6jEhERkd5MfdVqV1cXtmzZgjVr1kQ919jYiEceeQTp6enIzMxEe3s7srKyol4XDAYRDAYjj30+n6JtcrvdkhP38krUxKV2hig5MUekFDNEUkxdyI0cORIjR46UfK6zsxN2ux0AkJGRAZ/PJ1nIVVZWoqKiIvI4PCw6UCzYko/aGaLkxByRUswQSTHVxQ7l5eWorq6OPH7iiSfgcrkwY8YMHDp0qN9r586dC4/HA7vdjpKSEuzevRvDhg2LWufF32CEEAgEAnA4HEhJSdHqo1ACYYZIDcwRKcUMkRRTFXKxSBVyGzduRF5eHgoLC+FyuXDw4EFjNo6IiIjIIKa+2EHK+vXr4fV68eCDD2LLli0oKCjA2rVrjd4sIiIiIt1ZokeOiIiIiKJZrkeOiIiIiL5l6qtW9SaEQGdnp9GbQTJceeWVpjrJlxmyJjPliBmyJjNlCGCOrGogOWIh10dbWxtGjBhh9GaQDF999RWuuuoqozcjghmyJjPliBmyJjNlCGCOrGogOWIh18egQYNw/fXX4/Dhw5E56rTi8/kwffp0zdvSqx2j2ho0aJCm7ciViBlKhrbMlCNmyJptmSlDAHNk1bYGkiMWcn2kpKQgNTUVmZmZmv+n2Ww2XdrSqx2j2jLTUAaQmBlKhrbMlCNmyJptmSlDAHNk1bYGkiNe7EBERERkUSzkiIiIiCyKhVwfaWlpeOihh5CWlpYwbSXiZ9K7LTkS9XfAtvSTqJ+fbekrUX8HbCsaJwQmIiIisij2yBERERFZFAs5IiIiIotiIUdERERkUSzkvhMMBvHAAw9gwYIFqK6u1rQtn8+HadOmobS0FPfff7+mbT388MM4e/Ysjh07hnvuuQelpaX47LPPNG1rz549mD9/PkpLS7Fr1y7V1n/u3DmUlpZiwYIF2Llzpy6fSQ5mSL22kjVDgH450jNDAHOkJ+6L1GvLEhkSJIQQ4tVXXxUej0eEQiGxePFi4ff7NWvr2LFjoqKiQrP1CyFEIBAQq1evFtOmTROfffaZWLFihWhvbxcffvihePLJJzVt68knnxRffPGFqm0IIcRzzz0njh49KoQQYtGiRWLRokWafaaBYIbUaytZMySEfjnSI0NCMEdG4L5IvbaskCH2yH2nqakJkyZNgs1mw4033oiPPvpIs7Y+/PBDHDlyBPfddx9+97vfadJGMBhEWVkZbr31VgCA3+/HsGHDcMMNN+DMmTOatnX69Gk8/fTTWLJkiarfllauXIlJkyYBAHp7ewFAs880EMyQem0la4YA/XKkR4YA5sgI3Bep15YVMsRC7jtdXV0YMmQIAGDw4MH4+uuvNWvr2muvxYYNG/DCCy9g37598Hq9qrdht9uRl5cXeRwOCgAIlWecubitwsJCbN68GT/5yU+wefNm1doZNmwYUlNT8fLLL2PMmDGafqaBYIbUaytZMwTolyM9MgQwR0bgvki9tqyQIRZy3xkyZAi6u7sBAN3d3ZreV23ChAmYOHEi0tLSMGHCBJw9e1aztsL63r/NZtP2v/2ee+5BRkYGfvCDH6C9vV3Vdb/22ms4cOAA1q9fr+tnigczpJ5kzRCgX46MyBDAHOmB+yL1WCFDxifOJMaOHYuGhgYIIdDc3IxRo0Zp1lZ5eTneeecd9Pb2oqmpCSNHjtSsrbD09HR4vV78+c9/Rk5OjmbtCCFQWlqKnp4enD59Gg6HQ7V1v//++9i3bx+2bduGtLQ03T5TvJghdSRzhgD9cmREhgDmSA/cF6nDKhm6QrWtsrg777wT69atwyuvvIK7774bgwYN0qytxYsX48c//jG2b9+OefPmISsrS7O2wlavXo1Vq1YhJSUFmzZt0qydlJQULFmyBAsXLkR6ejqeeeYZ1db9/PPPo7W1FcuXLwcAPPLII7p8pngxQ+pI5gwB+uXIiAwBzJEeuC9Sh1UyxFt0EREREVmUZYZWS0pK+l3JEQgEMHfuXEydOhVVVVXGbRgRERGRQUxfyAWDQcyfPx9Hjx7tt7y6uhrFxcU4cuQI9u7dC7/fb9AWEhERERnD9OfIBQIBPProo/jlL3/Zb3ljYyOWLl0Km82GcePGobm5GRMnTox6fzAYRDAYjDwWQiAQCMDhcPS7SoQoFmaI1MAckVLMEEkxfSF35ZVXYvr06VGFXGdnZ+SS6oyMDPh8Psn3V1ZWoqKiIvI4FArho48+woULF5CZmandhlPCYIZIDcwRKcUMkRTTF3Kx2O12dHV1Afh28sNYIV65ciUWL14cedzR0WGKy8PJOpghUgNzREoxQyTFsoXcLbfcgsOHD2Ps2LE4fvw4nn32WcnXpaWlIS0tLfK47+zJRPFghkgNzBEpxQyRFNNf7HCxzZs349SpU7j33ntRW1uL/Px8lJSUID093ehNIyIiItJV0s0j19HRgaFDh/KcAhowZojUICdHLS0tKCsrQ319PfLz8+F2u5Gdna3TlpJZcV9EgAV75IiIkk1ZWRlqa2vh9XpRW1uLsrIyozeJiEyChRwRkcnV19cjFAoB+PZKxYaGBoO3iIjMgoUcEZHJ5efnIzU1FQCQmpqKvLw8g7eIiMyChRwRkcm53W44nU44HA44nU643W6jN4mITMKy048QESWL7Oxs1NTUGL0ZRGRCSVPIeTweeDwe9PT0GL0pZFHMEKlBrRzxStbkxX0R9cXpR4hkYoZIDUpz5HK5UFtbi1AohNTUVDidTvbaJRnuiwjgOXJEqmlpaYHL5YLD4YDL5UJLS4vRm0QJjFeyEhHAQo5INZzri/TEK1mJCGAhR6Qa9pCQnnglKxEBLOSIVMMeEtJT+ErW1tZW1NTURC504BA/UXJhIUekEvaQkBlwiJ8ouZi+kAsEApg7dy6mTp2KqqqqyPKOjg7k5ORgxowZuP322w3cQqJvSfWQsHeE9MYhfqLkYvpCrrq6GsXFxThy5Aj27t0Lv98PADh16hRWrVqFQ4cOoa6uzuCtJJLG3hHSG4f4iZKL6Qu5xsZGFBQUwGazYdy4cWhubgYANDU14a233sL06dPxwgsvxHx/MBiEz+fr90Mkh5IMsXeEwvTaF0kN8bNnODHweEZSTH9nh87OTtjtdgBARkZGJLjXXXcdNm3ahLy8PBQVFWHWrFkYMWJE1PsrKytRUVEReRw+qBLFS0mG8vPz+03ayt6R5KXXvkjqdl59Jw8O9wxz8mDr4fGMpJj+zg5r167F8uXLcdNNN2H9+vVYtGgRJkyYgK6uLgwePBg2mw2PP/447r77buTn50e9PxgMIhgMRh6Hz63jTNgULyUZCt9GqaGhAXl5eZHbKPH2SsnHyH2Rw+GA1+vt97i1tVXTNkl9PJ6RFNMPrd5yyy04fPgwhBA4fvw4Ro8eDQD46U9/itraWvT29qKxsRHXX3+95PvT0tJgt9v7/RDJoSRDsaaI4LlzycfIfRHPm0sMPJ6RFNMXcvfeey9qa2uRn5+PkpISbNu2DadOncK6devw3HPPYdq0afjHf/xHOBwOozeVKG5S587xPCbSCs+bI0pcph9aVRtvMkxKqZEhqRueA+BN0JOI0fsiqQwyb9ZidIbIHEzfI0eUiKR6SHiFK+kpVt7YU0dkLSzkiAwgde5crPOYeGAlLcTKG8/fJLIWFnJEJhHrFl88sJIWYuWN528SWQvPkSOSSe8MSU0d0dTUxOlLLM6s+yKev2kdZs0Q6Ys9ckQmJzUExl460oqc8zfZU0dkPNPf2UEtHo8HHo8HPT09Rm8KWZRRGXK73VGTCo8ZM0Zy+Iu9dOZn9n2R1J0hYt2hJPyFgneM0JfZM0T64tAqkUxmyJCc4S8WeOZkhhzFK9YdSjjsbywrZYi0w6FVIguSM/zFYVhSKtYdSuId9ucQLJF2NCvkzp07h9LSUtx5552YPXs2u9uJVCRn+hJehUhaifcLRawvE1I5ZDaJZBIaaWlpEadOnRJCCNHa2iqmTZsmurq6tGoubhcuXBAAxIULF4zeFLIos2bo/Pnzori4WDgcDlFcXCzOnz8vhBCiuLhYpKamCgAiNTVVFBcXSy7ru47hw4dH1iG1jJQza46UksrW8OHDBYDIj8PhiPlaqWXMoLREzRDJo1khd7FZs2aJL774Qq/mYmLwSSmrZUiqwNPqwBpvIcgDs/VyFC+pvMX64iCVQ6llanzxSMTMJWqGSB7ZhVwoFBJ33HGH2LRpU7/lhw8fFmPHjhVvvvlm1HtOnDgh7rrrroFvpYoYfFIqETKk1YE13kJQqwOzlQ7WiZCjeCntLVb6xSPWa5Xmxei8xcpQshe4yWZAPXKvvPKKmDhxovjLX/4ihBCiublZTJw4UezatSvqtV6vV7hcLtHY2DigDfT7/WLOnDni1ltvFTt37rzs8stJpp0naSMRMqTVgTXeQlCrA7PS3kM9JUKOlJLKoRY9erFeqzQvsbZLL7EyZHSBG4vSHvtk+qInx4AKuZ6eHlFYWCi2bdsmzp07J6ZNmyaeeuqpqNcFAgGxcOFC8eqrrw54A/fs2SN27NghQqGQcDqdoru7+5LLL4c7T1IqkTOk9MCqtEdO6YFZae+hnhI5R2pT4/zPeL+QKH2/nmJlyOgCN9Zrle4fjP6ip2fRKceAz5F76aWXRH5+vpg1a5ZYuXKl+Oabb/o939vbKx599FFRXl4+0CaEEEKsXbtWnDhxQgghxLp168R77713yeUXCwQCorOzM/Lz+eefX3Ln2d3dLbq7u0UgEBB+v7/f4/C//X6/Js/1fdy3fS2eS4TPpBdmKPq5M2fOCKfTKYYPHy6cTqc4c+aM8Pv94pNPPoksLyoqEmfOnBFnzpwRRUVF/V776aef9nvdJ598Irq7u4XT6RQ2m00AEDabTRQVFYmioqKoZd3d3ZLLL17mdDpFVlZWvwPV8OHDRSAQiFqu9UFYbo6kJEO25GybnGxd/NpPPvlEMkPx5iW8nvD79fgyEG+G+hYsl/rbiPV3dLnPGn6d3++PWu50OiXX6ff7Jdcb7zI575fz2lj7l3j3RVKfPxAISP6+pdYZCAQU52jAd3aYPXs2fvaznwEAfv7zn0emPQhrbGzEm2++idGjR+PAgQMAgE2bNmH06NGy2uns7ITdbgcAZGRkwOfzXXL5xSorK1FRURF5HL4snqyrpaUFS5cuRWNjoy4TjjJD0bKzs/H666/DZrOht7c3ajmAfs+Fl4nv5h+32WyRZSkpKZHnqqqqsGLFCrz77ruYNGkSqqqqkJKSEvn/zs3NRVVVFQCgqqoKy5cvj7x2165dEEJg2bJlkdfu3LkTy5cvR11dHXp7e2Gz2ZCbmwsAyM3NjSzvO12LVpgj9fXN2+WylZ2djTfeeCOSyZSUFOzatSsqW8uWLeuXl0mTJgEA8vLycODAgX7Lw3ltbGyMTJSspXgzFL4bTH19/SX/NgDpv6OlS5dG/Q7efffdyO+ut7cX7777LgBELW9sbIQQQvK1ff/mwutNSUnp93vNzc2FECKu/wM5rw0vv/i1DQ0NcX2ud999V/JzXbyssbERAKLWe6nfS9+2+s4BGreBfjN47LHHxLhx48TUqVOF3+8f6Goua82aNeLkyZNCiG973o4fP37J5RdT41swqUtpV7TeQ2LMkLXFGpaLtVwrzJE1mCUvUvTKkBanU8Rab7zL5Lxfzmu1Ok1E6WvlGFAht2XLFjF58mTR3NwsJk+eLF588cWBrCYubrdbbN++XfT29orCwsLIkFqs5ZfD81K0ocYJwvEG36znpRDJwRyRUnpmSI3iyoyUfi6tik45ZBdy1dXVYvz48eLYsWNCCCF27NghZsyYIYLBoNxVxaW7u1vMmzdP5Obmiu3bt4tNmzaJpqamqOXx4s5TOaXFmVYnr+uFGSI1MEekFDNEQsgs5A4dOiTGjh0r3n777ciyzs5OkZubK/bu3av6xmmBwZcn3qJN6RVRQsi/ysiob3vMEKmBOSKlmCESQkYhd/LkSXHzzTcLt9sd9dzWrVtFUVFR1JWrZsTgS5NzubjS4szqXfTMEKmBOSKlmCESQogUIb671CdJdHR0YOjQobhw4QIyMzON3hzTcLlcqK2tRSgUQmpqKpxOJ2pqauBwOOD1eiOvczgcyMvLi3pt+CqphoaGyNVb2dnZaGlpkVxuZcwQqYE5IqWYIQKAAU8/QtYVLq7q6+sj03fU19dHLmXve/lzfn5+v6ItXIxJFWc1NTVRbcVaTkRERMrZjN4A0k5LSwtcLhccDgdcLhdaWloAAGVlZaitrYXX60VtbS3KysqQn58fmQuw75xabrcbTqcTDocj0vMWLs5aW1tRU1Nj+R42IiIiq+LQagKTM1za1NSUcEOgWkmmDJF2mCNSihkiIImGVj0eDzweD3p6eozeFE0oHS7lEOjlJXqGSB/MESnFDFFf7JFLEFK9bwAke+QS8QIEPSVqhkhfzBEpxQwRkEQ9cokk3t43qeFSgBcgEBERJQoWchYUvlghFAr1u1iBw6VERETJhYWcBcnpfSMiIqLExelHTCzW9CFSU4VwShAiIqLkw0LOxKTmewOk53YjIiKi5GPqQq6trQ2FhYWYOnUq9u/f3++5EydO4Pvf/z5mzJiB++67z6At1Fas6UPY+0ZERESAyQu5HTt2YMOGDairq8PWrVv7PXfq1Cls3LgRhw4dgsfjMWYDVSQ1jBrrbgtEREREgMkLucbGRhQUFCA9PR2ZmZlob2+PPNfU1AS3243p06df8srMYDAIn8/X78eMpIZROYRqDlbJEJkbc0RKMUMkxdRXrXZ2dsJutwMAMjIy4PP5kJWVBQAYP348Fi5ciJycHMycORNFRUWR3qu+KisrUVFREXkcHqo0G6lhVE4fYg5WyRCZG3NESjFDJMVUd3YoLy9HdXV15HFDQwPa2tpgt9tRUlKC3bt3Y9iwYQC+ndE6PJP1ggULUF5ejquvvjpqncFgEMFgMPK4o6MDOTk5hs6ELTWhb9+54frehYGMZ8YMkfUwR6QUM0RSTNUjt2bNGqxZsybyeOPGjTh8+DAKCwvh9XojRRwALF68GM8++yxGjRqFTz/9FFdddZXkOtPS0pCWlhZ53Nvbq9n2x0tqQt9wMcd54MzHjBki62GOSClmiKSY+hy5Bx98EFu2bEFBQQHWrl0LAFi/fj28Xi+eeuopLF26FLfddhsef/xx2Gzm+yix5oG71DAqr0QlIiKieJlqaFUPet5kWOpG9jU1NTGXkzXwRtWkBuaIlGKGCDB5j5zVxZoHjlejEhERkRpYyKlEzjxwHEYlIiIiNbCQUwnngSMiIiK9meqqVSvjPHBERESkN/bIyRTrSlTeTouIiIj0ljQ9ch6PBx6PBz09PYrWIzUHXE1NDeeBSwJqZYiSG3NESjFD1BenH7kEqTswjBkzBl6vN/Iah8OB1tZWrTebTISX/JMamCNSihkigEOrEVJDplIXMHAIlYiIiMwiaYZWL0dqyFTqAoampiYOoRIREZEpsJD7jlTRlp+f3+8ODHl5ebwSlYiIiEyDQ6vfkRoy5TxwREREZGbskfuO1FWn7H0jIiIiMzN9j1xPTw+mTJkStbytrQ2FhYWYOnUq9u/fr7gd3jaLiIiIrMbUhZzX60VxcTE+/vjjqOd27NiBDRs2oK6uDlu3btV/44iIiIgMZupCrqurC1u2bMGYMWOinmtsbERBQQHS09ORmZmJ9vZ2yXUEg0H4fL5+P0RyMEOkBuaIlGKGSIqpz5EbOXIkRo4cKflcZ2cn7HY7ACAjIwM+nw9ZWVlRr6usrERFRUXkcfjKVKJ4MUOkBuaIlGKGSIqp7uxQXl6O6urqyOMnnngCLpcLM2bMwKFDh/q9du7cufB4PLDb7SgpKcHu3bsxbNiwqHUGg0EEg8HIYyEEAoEAHA4HUlJStPoolECYIVIDc0RKMUMkxVSFXCxShdzGjRuRl5eHwsJCuFwuHDx40JiNIyIiIjKIqc+Rk7J+/Xp4vV48+OCD2LJlCwoKCrB27VqjN4uIiIhId5bokSMiIiKiaJbrkSMiIiKib5n6qlW9CSHQ2dlp9GaQDFdeeaWpTvJlhqzJTDlihqzJTBkCmCOrGkiOWMj10dbWhhEjRhi9GSTDV199hauuusrozYhghqzJTDlihqzJTBkCmCOrGkiOWMj1MWjQIFx//fU4fPhwZI46rfh8PkyfPl3ztvRqx6i2Bg0apGk7ciVihpKhLTPliBmyZltmyhDAHFm1rYHkiIVcHykpKUhNTUVmZqbm/2k2m02XtvRqx6i2zDSUASRmhpKhLTPliBmyZltmyhDAHFm1rYHkiBc7EBEREVkUCzkiIiIii2Ih10daWhoeeughpKWlJUxbifiZ9G5LjkT9HbAt/STq52db+krU3wHbisYJgYmIiIgsij1yRERERBbFQo6IiIjIoljIEREREVkUC7nvBINBPPDAA1iwYAGqq6s1bcvn82HatGkoLS3F/fffr2lbDz/8MM6ePYtjx47hnnvuQWlpKT777DNN29qzZw/mz5+P0tJS7Nq1S7X1nzt3DqWlpViwYAF27typy2eSgxlSr61kzRCgX470zBDAHOmJ+yL12rJEhgQJIYR49dVXhcfjEaFQSCxevFj4/X7N2jp27JioqKjQbP1CCBEIBMTq1avFtGnTxGeffSZWrFgh2tvbxYcffiiefPJJTdt68sknxRdffKFqG0II8dxzz4mjR48KIYRYtGiRWLRokWafaSCYIfXaStYMCaFfjvTIkBDMkRG4L1KvLStkiD1y32lqasKkSZNgs9lw44034qOPPtKsrQ8//BBHjhzBfffdh9/97neatBEMBlFWVoZbb70VAOD3+zFs2DDccMMNOHPmjKZtnT59Gk8//TSWLFmi6rellStXYtKkSQCA3t5eANDsMw0EM6ReW8maIUC/HOmRIYA5MgL3Req1ZYUMsZD7TldXF4YMGQIAGDx4ML7++mvN2rr22muxYcMGvPDCC9i3bx+8Xq/qbdjtduTl5UUeh4MCAELlGWcubquwsBCbN2/GT37yE2zevFm1doYNG4bU1FS8/PLLGDNmjKafaSCYIfXaStYMAfrlSI8MAcyREbgvUq8tK2SIhdx3hgwZgu7ubgBAd3e3pvdVmzBhAiZOnIi0tDRMmDABZ8+e1aytsL73b7PZtP1vv+eee5CRkYEf/OAHaG9vV3Xdr732Gg4cOID169fr+pniwQypJ1kzBOiXIyMyBDBHeuC+SD1WyJDxiTOJsWPHoqGhAUIINDc3Y9SoUZq1VV5ejnfeeQe9vb1oamrCyJEjNWsrLD09HV6vF3/+85+Rk5OjWTtCCJSWlqKnpwenT5+Gw+FQbd3vv/8+9u3bh23btiEtLU23zxQvZkgdyZwhQL8cGZEhgDnSA/dF6rBKhq5Qbass7s4778S6devwyiuv4O6778agQYM0a2vx4sX48Y9/jO3bt2PevHnIysrSrK2w1atXY9WqVUhJScGmTZs0ayclJQVLlizBwoULkZ6ejmeeeUa1dT///PNobW3F8uXLAQCPPPKILp8pXsyQOpI5Q4B+OTIiQwBzpAfui9RhlQzxFl1EREREFmWZodWSkpJ+V3IEAgHMnTsXU6dORVVVlXEbRkRERGQQ0xdywWAQ8+fPx9GjR/str66uRnFxMY4cOYK9e/fC7/cbtIVERERExjD9OXKBQACPPvoofvnLX/Zb3tjYiKVLl8Jms2HcuHFobm7GxIkTo94fDAYRDAYjj4UQCAQCcDgc/a4SIYqFGSI1MEekFDNEUkxfyF155ZWYPn16VCHX2dkZuaQ6IyMDPp9P8v2VlZWoqKiIPA6FQvjoo49w4cIFZGZmarfhlDCYIVIDc0RKMUMkxfSFXCx2ux1dXV0Avp38MFaIV65cicWLF0ced3R0mOLycLIOZojUwByRUswQSbFsIXfLLbfg8OHDGDt2LI4fP45nn31W8nVpaWlIS0uLPO47ezJRPJghUgNzREoxQyTF9Bc7XGzz5s04deoU7r33XtTW1iI/Px8lJSVIT083etOIiIiIdJV088h1dHRg6NChPKeABowZIjUwR6QUM0SABXvkiIiIiOhbLOSIiIiILIqFHBEREZFFsZAjIiIisigWckREREQWZdl55OTyeDzweDzo6ekxelPIopghUgNzREoxQ9QXpx8hkokZIjUwR6QUM0QAh1aJiIiILIuFHBEREZFFsZAjIiIisigWckRECa6lpQUulwsOhwMulwstLS1GbxIRqYSFHBFRgisrK0NtbS28Xi9qa2tRVlZm9CYRkUpMX8gFAgHMnTsXU6dORVVVVWR5R0cHcnJyMGPGDNx+++0GbiFRbLF6QthDQlqRylZ9fT1CoRAAIBQKoaGhweCtJCK1mL6Qq66uRnFxMY4cOYK9e/fC7/cDAE6dOoVVq1bh0KFDqKurM3griaTF6glhDwlpRSpb+fn5SE1NBQCkpqYiLy/P4K0kIrWYvpBrbGxEQUEBbDYbxo0bh+bmZgBAU1MT3nrrLUyfPh0vvPBCzPcHg0H4fL5+P0RyKMlQrJ4Q9pAkH732RVLZcrvdcDqdcDgccDqdcLvd7BW2IB7PSIrp7+zQ2dkJu90OAMjIyIgE97rrrsOmTZuQl5eHoqIizJo1CyNGjIh6f2VlJSoqKiKPwzs4ongpyVB+fj5qa2sRCoX69YRILW9paUFZWRnq6+uRn58Pt9uN7Oxs1T8PGUOvfZFUtrKzs1FTU9PvdS6XK/K6cM/dxa8hc+HxjCQJk1uzZo04efKkEEKIdevWiePHjwshhPD5fCIUCgkhhHjsscfE0aNHJd8fCAREZ2dn5Ofzzz8XAMSFCxf0+QBkeUoydP78eVFcXCwcDocoLi4W58+fj7m8uLhYpKamCgAiNTVVFBcXa/3RSEd67YtiZe5iw4cPFwAiPw6HQ9XtIPXxeEZSTH+Lrl/96lfo6urCAw88gJkzZ2L//v1IT0/H+vXrUVRUBKfTiTvuuAO/+c1v4HA4Lrs+3tKElNIqQw6HA16vt9/j1tZW1dZP5mL0vqhvj1xqaiqcTidqamrYM2whRmeIzMH058jde++9qK2tRX5+PkpKSrBt2zacOnUK69atw3PPPYdp06bhH//xH+Mq4ojMLNYJ6TyXibQgdd4cwAtxEhX3I4nL9D1yauM3GFJKqwyFe0IaGhqQl5cX6QmJ1XNC1mbWfRF7hq1DToa4H0lcpu+RI0oW4RPSW1tbUVNTExnO4hWupCepnmH25lgf9yOJi4UckcnxwEp6khpy5XCr9XEuwcTFoVUimfTOkNSQa/jAymES67LSvojDreYkJ0OxTt0g62OPHJHJSQ25Sg2TsJeOtMILcawv1qkbZH0s5IhUoudBTerAyuGv5KJn3niFK5GJGTmJnZ5efPFF4XK5xMyZMzmBIg3I5TKk54S+UpO+xprgNfza4cOHX3KCWNKHWvsiM0wgLZU55k17PJ5RXzxHjkimWBky+jyiWNMLSC0Pn2fHSV+No3RfZHTeAOnMAeD5mzrh8YwADq0Sqcboq8JiDX9JnU/HITHrMzpvgHTmeP6mtfD/JgFo1dXX2dkp7r77bjFnzhwxa9Ys8fLLL2vVlCwXLlxgVzQpEitD8d7jUm9SQ3AchjWenH2R1P+LlfIWaxiYeVNGjeOZGYboSRnNCrlvvvlGfP3110IIIb7++mtRWFgovF6vVs3FjYUcKWW1DEkd8GPtvKWW82CrDTk5stLBVs75m/HmLVYGkz2bauyLYv3fkHXocrFDe3u7mDFjhmhra9OjuUuy2kGYzCcRMhSrN0dqpy6nuEv2A6sccnJk9YNtrEI03rzxi4c09siREAMo5EKhkLjjjjvEpk2b+i0/fPiwGDt2rHjzzTcjyy5cuCBmz54txo8fL1588UXlW6uCRDgIk7ESOUPxDsMqPbCyEJTOUazPb/WDbawvDvHmLVYhKyeb8ebQShlUY19k1iH6eFnp/0srA+qRe+WVV8TEiRPFX/7yFyGEEM3NzWLixIli165dkq//6quvxL333iu++uor2W35/X4xZ84cceutt4qdO3dedvnlJPJBmPSRyBmKdxhW6YFVjR4Wq+/ApXJ0uSLEqgfbWOLNm5y8yBnGtfr5fGbYF2nxe5HzN2/1LzlqGFAh19PTIwoLC8W2bdvEuXPnxLRp08RTTz11yff89Kc/7ddbF689e/aIHTt2iFAoJJxOp+ju7r7k8ssxQ/DJ2pItQ0rPsdOqh8XqvX9SObL6EKoapPIWq5CVk814cyinEDSaVvsiOX9HWgxvq1G4K+2B1XP/oLStAZ8j99JLL4n8/Hwxa9YssXLlSvHNN9/0e/6rr74SnZ2dQohvr2C98847RXNzs+x21q5dK06cOCGEEGLdunXivffeu+TyiwUCAdHZ2Rn5+fzzzy8Z/O7ubtHd3S0CgYDw+/39Hof/7ff7NXmu7+O+7WvxnJU/06effiqcTqduB2BmKPq5M2fORP4PnE6nOHPmjPD7/eKTTz6JLC8qKoq8zmazCQDCZrMJp9MpioqK+i0rKioS3d3dUa8tKioSWVlZ/XbUw4cPF93d3ZLLL16v0+mUXGcgEOi3XI8Dczw56nugCm9romZIq8905swZUVRUFMnmJ598EvX/fakcSmUoVt76/h2YcV8kJZ7/B6nfi9TvL9bvReq1fffdWVlZoqioSHzyySeSGVHyN3+pfUk8+wen0xkzL+FsZWVlRbIV6zN98skn/V776aefRvaP4deeOXMm6vc9kH3RgAs5n88nxo0bJ2bNmiW6urqinj958qSYM2eOmD17tpg1a5bweDwDamfJkiXi448/FkII8eSTT4rDhw9fcvnFysvLxY033hj5uf7665P+IGylzyT1h6M09HIxQ8oydPGB9cyZM/2K8b47P6mDcKwdtdRyqR291LJAIBC1XOver3hy1PebeXjnzwyp85n6Fl3hg2g4X31/31JfRmLlTe8vA3L3RVLi+X+I9+9Izt+h3++XfO3F+/jw43iLs1j7kng/Q7z7B6kCVao4vNT+Kd4vCXL3RQMu5B577DExbtw4MXXqVOH3+we6mstas2aNOHnypBDi256348ePX3L5xeL9BmP0MEsyUXr+g97DT2p8C6aBUzqsJmeYRkvMkbXJmVZFK3plaCDnDg50ePtSQ7Px/M0r/Qx6niai1bD9gAq5LVu2iMmTJ4vm5mYxefJkTa9IdbvdYvv27aK3t1cUFhaK7u7uSy6/nFjnFJjx/AcrUePk1Hj/cIz+v0q2c+SsROn5VXpijqwvUfdFcv6O4n2/EPLOcdPrM+j5RVFOMSyH7EKuurpajB8/Xhw7dkwIIcSOHTvEjBkzRDAYlLuquHR3d4t58+aJ3NxcsX37drFp0ybR1NQUtTxesYLPk4zjp0VxJoTyb2t64QGY1MAcWR/3RfLI6b0zI6WFoFZ5kVXIHTp0SIwdO1a8/fbbkWWdnZ0iNzdX7N27V5UN0pqcHjkOtyof7lTrKkQzTbtgtZ0nmRNzREolQobMuI+3mrgLuZMnT4qbb75ZuN3uqOe2bt0qioqKoq5cNSM598m00jcFpeRcWq5VcWaVP+hE2HmS8ZgjUooZIiGESBFCCCSRjo4ODB06FBcuXEBmZuYlX+twOOD1evs9bm1t1XoTDeFyuVBbW4tQKITU1FQ4nU7U1NRI/g7y8vKiXut2u1FWVoaGhgbk5eXB7XYjOzsbLS0tksutTE6GiGJhjkgpZogAwGb0BphZfn4+UlNTAQCpqanIy8szeIvU0dLSApfLBYfDAZfLhZaWFtTX1yMUCgEAQqEQGhoaAEj/DtxuN5xOJxwOR6SIy87ORk1NDVpbW1FTUxMp1mItJyIiIuVYyF2CVMFiJVIFGwCUlZWhtrYWXq8XtbW1KCsri1m0yinaiIiISF8cWpUpPFRYX1+P/Px8Uw8VyhkubWpqSrghUK1wOIPUwByRUswQAcAVRm+AXjweDzweD3p6ehStJ9ybFQqFIr1ZNTU1Km3lwEkVmJcaLu1b4OXl5UV62Sg2tTJEyY05IqWYIeqLPXIymeECCKmirW+BGe59AyDZI5eIFyDoid+CSQ3MESnFDBGQRD1yapHqzdKbVK+gVO+b1HApAPa+ERERJQhe7CBTrAsgYl1YoESsdUoVbVIXK/CiBCIiosTGQk6mWMWR1JWgckgVbbHWGe+UIERERJTYWMipRKqXLFaPWrxFW6yLFTglCBEREQG82EG19UpN9QFIX2wg9dr6+vq47qDAc9uMxxOMSQ3MESnFDBFg8h65trY2FBYWYurUqdi/f3+/506cOIHvf//7mDFjBu677z6DtvCvpHrJYvWoxXuOG4dLiYiI6FJMfdXqjh07sGHDBtx2222YPXs27rrrrshzp06dwsaNG1FaWmrgFv6V1JWgsa5wlVoe616l7IEjIiKiWEzdI9fY2IiCggKkp6cjMzMT7e3tkeeamprgdrsxffr0SxY7wWAQPp+v349eYvWo8Rw3azEyQ5Q4mCNSihkiKabukevs7ITdbgcAZGRkwOfzISsrCwAwfvx4LFy4EDk5OZg5cyaKiooiQ5N9VVZWoqKiIvI4PKSph1g9auxpsxYjM0SJgzkipZghkmKqix3Ky8tRXV0dedzQ0IC2tjbY7XaUlJRg9+7dGDZsGIBvT/IMn9y5YMEClJeX4+qrr45aZzAYRDAYjDzu6OhATk4OTw6luDFDpAbmiJRihkiKqXrk1qxZgzVr1kQeb9y4EYcPH0ZhYSG8Xm+kiAOAxYsX49lnn8WoUaPw6aef4qqrrpJcZ1paGtLS0iKPe3t7Ndt+SkzMEKmBOSKlmCGSYupz5B588EFs2bIFBQUFWLt2LQBg/fr18Hq9eOqpp7B06VLcdtttePzxx2GzmfqjEBEREanOVEOreuC8O6QUM0RqYI5IKWaIAJP3yBERERFRbCzkiIiIiCyKhRwRERGRRbGQIyIiIrIoFnJEREREFmWqeeS05PF44PF40NPTY/SmkEUxQ6QG5oiUYoaoL04/QiQTM0RqYI5IKWaIAA6tEhEREVkWCzkiIiIii2IhR0RERGRRLOSIiIiILIqFHBEREZFFmb6Q6+npwZQpU6KWt7W1obCwEFOnTsX+/fsN2DIiIiIiY5m6kPN6vSguLsbHH38c9dyOHTuwYcMG1NXVYevWrfpvHBEREZHBTF3IdXV1YcuWLRgzZkzUc42NjSgoKEB6ejoyMzPR3t4uuY5gMAifz9fvh0gOZojUwByRUswQSTH1nR1GjhyJkSNHSj7X2dkJu90OAMjIyIDP50NWVlbU6yorK1FRURF5HAqFtNlYSljMEKmBOSKlmCGSYqo7O5SXl6O6ujry+IknnoDL5cKMGTNw6NChfq+dO3cuPB4P7HY7SkpKsHv3bgwbNixqncFgEMFgMPJYCIFAIACHw4GUlBStPgolEGaI1MAckVLMEEkxVSEXi1Qht3HjRuTl5aGwsBAulwsHDx40ZuOIiIiIDGLqc+SkrF+/Hl6vFw8++CC2bNmCgoICrF271ujNIiIiItKdJXrkiIiIiCia5XrkiIiIiOhbpr5qVW9CCHR2dhq9GSTDlVdeaaqTfJkhazJTjpghazJThgDmyKoGkiMWcn20tbVhxIgRRm8GyfDVV1/hqquuMnozIpghazJTjpghazJThgDmyKoGkiMWcn0MGjQI119/PQ4fPhyZo04rPp8P06dP17wtvdoxqq1BgwZp2o5ciZihZGjLTDlihqzZlpkyBDBHVm1rIDliIddHSkoKUlNTkZmZqfl/ms1m06Utvdoxqi0zDWUAiZmhZGjLTDlihqzZlpkyBDBHVm1rIDnixQ5EREREFsVCjoiIiMiiWMj1kZaWhoceeghpaWkJ01Yifia925IjUX8HbEs/ifr52Za+EvV3wLaicUJgIiIiIotijxwRERGRRbGQIyIiIrIoFnJEREREFsVC7jvBYBAPPPAAFixYgOrqak3b8vl8mDZtGkpLS3H//fdr2tbDDz+Ms2fP4tixY7jnnntQWlqKzz77TNO29uzZg/nz56O0tBS7du1Sbf3nzp1DaWkpFixYgJ07d+rymeRghtRrK1kzBOiXIz0zBDBHeuK+SL22LJEhQUIIIV599VXh8XhEKBQSixcvFn6/X7O2jh07JioqKjRbvxBCBAIBsXr1ajFt2jTx2WefiRUrVoj29nbx4YcfiieffFLTtp588knxxRdfqNqGEEI899xz4ujRo0IIIRYtWiQWLVqk2WcaCGZIvbaSNUNC6JcjPTIkBHNkBO6L1GvLChlij9x3mpqaMGnSJNhsNtx444346KOPNGvrww8/xJEjR3Dffffhd7/7nSZtBINBlJWV4dZbbwUA+P1+DBs2DDfccAPOnDmjaVunT5/G008/jSVLlqj6bWnlypWYNGkSAKC3txcANPtMA8EMqddWsmYI0C9HemQIYI6MwH2Rem1ZIUMs5L7T1dWFIUOGAAAGDx6Mr7/+WrO2rr32WmzYsAEvvPAC9u3bB6/Xq3obdrsdeXl5kcfhoACAUHnGmYvbKiwsxObNm/GTn/wEmzdvVq2dYcOGITU1FS+//DLGjBmj6WcaCGZIvbaSNUOAfjnSI0MAc2QE7ovUa8sKGWIh950hQ4agu7sbANDd3a3pfdUmTJiAiRMnIi0tDRMmTMDZs2c1ayus7/3bbDZt/9vvueceZGRk4Ac/+AHa29tVXfdrr72GAwcOYP369bp+pngwQ+pJ1gwB+uXIiAwBzJEeuC9SjxUyZHziTGLs2LFoaGiAEALNzc0YNWqUZm2Vl5fjnXfeQW9vL5qamjBy5EjN2gpLT0+H1+vFn//8Z+Tk5GjWjhACpaWl6OnpwenTp+FwOFRb9/vvv499+/Zh27ZtSEtL0+0zxYsZUkcyZwjQL0dGZAhgjvTAfZE6rJKhK1TbKou78847sW7dOrzyyiu4++67MWjQIM3aWrx4MX784x9j+/btmDdvHrKysjRrK2z16tVYtWoVUlJSsGnTJs3aSUlJwZIlS7Bw4UKkp6fjmWeeUW3dzz//PFpbW7F8+XIAwCOPPKLLZ4oXM6SOZM4QoF+OjMgQwBzpgfsidVglQ7xFFxEREZFFcWiViIiIyKJYyBERERFZFAs5IiIiIotiIUdERERkUSzkiIiIiCyKhRwRERGRRbGQIyIiIrIoFnJEREREFsVCjoiIiMiiWMgRERERWRQLOSIiIiKLYiFHREREZFEs5IiIiIgsioUcERERkUVdYfQGEBFZ0dmzZ3H77bejrq4O1157raHbMnr0aAwaNAjTpk0DABw5cgSBQAB/+tOfDN0uItIeCzkiIpNZtWoVDh48KPncjh07cPvtt0ctr6qqwuTJkwEAR48exaJFizTdRiIyBxZyREQq+P3vf4+dO3fik08+wddff41x48bhmWeewXXXXYdTp07h6aefxgcffIC/+7u/Q3FxMfbu3Yvf//73kuv6X//rf+Gbb77B119/jaKiIuzcuRNjxowBAGRlZen5sYjI5HiOHBGRQufPn8fatWuxYsUK/PGPf8ShQ4cghMD27dvh8/mwbNkyTJkyBUePHsWmTZtQXV19yfVlZWVhxIgR8Hq9SElJwaRJkzBixAiMGDECV1zB799E9Fcs5IiIFBo+fDj279+PwsJC+Hw+nD9/HllZWWhpacHvf/97pKam4uGHH0ZaWhpGjx6NZcuWxbXeP/3pT8jJyYHdbtf4ExCRVfGrHRGRQt/73vfwb//2b/jNb36DlJQU3HjjjfD5fLjiiitw/vx5/O3f/i1str9+bx45cmRc6/3Tn/6E0aNHa7XZRJQAWMgRESlUU1ODF198ES+99BL+23/7bwCAp59+Gv/1X/+Fv/3bv8UXX3wBIQRSUlIAAF988UVc6/3888/x3//7f9dsu4nI+ji0SkSkUGdnJ2w2G9LT0yGEwOHDh7Fv3z709PSgsLAQQgj84he/QDAYxMcff4zdu3fHtd7e3l588cUXOH/+PIQQGn8KIrIiFnJERArNnz8ft956K+666y5MmTIFzz//PO6//36cPn0aV1xxBXbs2IG6ujrk5+dj3bp1mDp1Kr73ve9ddr2lpaV477334HK5WMgRkSQOrRIRDcC1117bb8LdTZs2Rb1mzZo1aG9vR09PD377299Glv/617/GBx98cNk2/uEf/gH/9//+X3U2mIgSEnvkiIg0FAqFcP/990cKsrNnz+Jf//Vfcdtttxm8ZUSUCFIE++uJiDR14MAB/J//839w9uxZZGZmYv78+XjooYdUmxOOt+giSl4s5IiIiIgsikOrRERERBbFQo6IiIjIoljIEREREVkUCzkiIiIii2IhR0RERGRRLOSIiIiILIqFHBEREZFFsZAjIiIisigWckREREQWxUKOiIiIyKJYyBERERFZ1P8HK5TCP9pTFcAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -611,7 +615,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABl40lEQVR4nO3dd3hUZd4+8Puc6ZMe0ugQSoDQu0oTUVEEAbGuWNd91VV3V9eybvW37+qu71pWbIt9XQEVsFEsoID0XkMJJQFCEkJ6ps85z++PABoJZMqZTLs/1+VlmDnnOd8EZubOc54iCSEEiIiIKG7J4S6AiIiIwothgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKc/pwF0BErUt4vXCWHIOj+DCUhgYIjxsAIBmM0CUmwtI5F+b2HSHp+fZAFC/4aieKcUJV0bBnB2rWfQ/7wf1wHTsKoXgbn5RkQJJOHygAoTY+rNPD1LETrN3zkHrRaCTmD4AksyORKFZJQggR7iKISHue2hpUr/gGp75eDE9FOaDTAYriXyOnzzFkZiPjiklIG3c5DCmpIamXiMKHYYAoxqguJ8o+/gAVixae/m1fo5e4JAGShMxrpiPn+p9BNpm1aZeIwo5hgCiGNOzegaOvPQ/PqQrtQsBPSRIMGZnodN/DSOw7IDTXIKJWxTBAFANUtxsl77yGquVfNo4DOH3vP2ROXyP9solof+d9kI3G0F6PiEKKYYAoyim2Bhz+x19g318Qut6A85EkWPP6IPeJp6CzJrTutYlIMwwDRFFMsTXg4F8eg/NYMaCGuDfgfGQZ5o6d0f0vz0KXkBieGogoKJwrRBSlFKcDh/76ZHiDAACoKpzHinHor09CcTrCVwcRBYxhgChKnXhvNhxFh8IbBM5QVTiKDuHEe2+EuxIiCgDDAFEUqtuyoXGwYCQEgTNUFVXLl6Ju68ZwV0JEfmIYIIoy3roaHH31+R9WDowkkoSjrzwHb11tuCshIj8wDBBFmZJ3Z0OxNbT+zAFfCAHF1oCS9/4d7kqIyA8MA0RRxF1ZgZo1KyLr9sBPqSpqVq+Au7Ii3JUQkY8YBoiiSOXXiyPz9sBPSRIqv1kS7iqIyEcMA0RRQnW7G8NAJPcKnKGqqPxqEVS3O9yVEJEPGAaIokTtxjWNYwVawf8dKcOdu4vwXFF5wG0otgbUblyrYVVEFCoMA0RRwrZ3d+OWwq3gqswU/LJjZnCN6HSw7dutTUFEFFIMA0RRwnZgL6AorXKtvokWWHRBvj0oSmPNRBTxGAaIooDqccN57GhwbQiBX+87hv+eqGzy+PY6O27eeRjrarS/BeE8WgzVw3EDRJGOYYAoCjiLjwBqcL0CsiRhalYqvqmsQ4O3sa0ihwsvFJfj5px0XJQagk2GVKWxdiKKaAwDRFHAU12lSTuj0xKRpNdh6ak6VLq9+PuRMoxOS8KUrFRN2m+Op6Y6ZG0TkTb04S6AiFqmul2atKOTJFyblYq5pVXYUGtDV4sJd7Vvo0nb5yM4vZAo4rFngCgaaLj08OjURLhUAQGBX3XKgtzMIkZ/O1SK54vKsa3OjnsLinHQ7gz4eiIa1kUginPsGSCKApLBqFlbb5WcAgDUe1XI51nM8Pfd2mp2vVK7gqcX7sS4npkY1S0DKRaDZm0TkTbYM0AUBfSJSZq0M6+0Clvr7Phbj3ZQhMC3VfWatHshu6q92FRcjf/75gCm/XstHl24E4t3l6LW4Qn5tYnIN+wZIIoCli65QbexvLIOiypq8adubdHFYsKkzBR8frIWE9okQx/C/Q6W11sANN7mUAWwqbgam4qr8dyyAxjSKY09BkQRgD0DRFFAl5AIQ2Z2wOdvq7PjrZJTeLBTFnommAEAEzNS4FBVrAph74DcJgsH6psf73AmGLDHgCj8GAaIokRCXm9A9v8le9juwvPF5bi1bRuMSE04+7hVJ2NiRjI+O1kLVcMBimfJMqqyuvh06I+DwfTZ6/CnL/ZgQ1EVFDUEdRHROSQhQvEuQERaq1j6GU68+29NZxaElCRhdb9J+Dihb8BNZCeZcFV+Dq7Kz0F2slnD4ojoxxgGiKKEp7YGBffe2mr7EwRNp8OTg34Jm8EadFMSgOFd0jGpbw4uzm0DfbD7JhBRExxASBQlDCmpSLtkHKpXrwh6aeKQk3Vo6DNCkyAANA4/3FBUhQ1FVUizGjCxTw6u7puDjmnatE8U79gzQBRF7IcLUfjEQ+EuwyeLL38QXzcktHxgEAZ0SMGkvm0xtkcGTPrW2d6ZKBYxDBBFmcLf/wb2QweASF3ZT5Zh6toDv8yZ3moDABNNelzeOwuT+rZF98wQbLhEFOMYBoiijKPoEA488VBEhwH85mk8vrEOTm/r15iXnYRr+uZgfF4WEky8E0rkC4YBoihU/smHKJv7brjLaFbOLXcie+oNcHoUbCiqwooDFVh3uLLVg4FZL2N8XhYm9c1Bn7bJkEK4sBJRtGMYIIpCQlVw8A+PwH64MHJ6CGQZ1m490f2v/4QkN71/H+5g0CXdikn92uKK3tlc6ZCoGQwDRFHKVXYChb/7FRSHPfyBQJahs1jR4+8vwZR94U2OwhkMzHoZ1/RrixuGdERWkqnVrksU6RgGiKJYw+6tOPLs/0J1u8IXCGQZssmM7k/9n997KDg9CtYfqcI3e8ux7kglWmvBQb0s4co+2bh5WCd0SLW0zkWJIhjDAFGUEh43Gj5/Hc6KCpRv2AvF4Wj9QCDL0CUkIvcPf4O1a/egmjrV4MKXBWVYsrsMJ2qdGhV4YbIEjOuZiZ8N64RunIVAcYxhgChK2VctgKdwGwDA43Dh5K4SeGpqWm+5YkmCKacduj751xZvDfhDFQLbj9Vg0e5SfH/wFDxK63w/I7um49bhndC3XUqrXI8okjAMEEUhd+FWOFYtbPKYUFXUldlRvaew8YFQ9RKc3iwpe9qNyJp+E2SDMTTXAVDr8OCbveVYtLsURZX2kF3nxwZ0SMGtwzthaKc0zkCguMEwQBRllOqTaPj8NcDb/Fa/bqeCysKTcJ040fjBrVUoON2WJbc7Ot7/MCydumrTrg+EECgoq8fi3aX4dv9JOD2hvx3SMysRtw7vhFHdMyAzFFCMYxggiiJnxgmoNScvfJwQcOvSUX+sAg27dwQXCk6fm9h/MDKuuBrJQ0eeM3WwNdlcXnx3oAKLdpViX3l9yK/XOd2KW4Z1xGV5WdwgiWIWwwBRFLGvWghP4Vafj5dTMuBN74H6A4Vo2LUdnoryxickCZDkczc8knWAUM+OOzBkZiNt9KVIH38lTFk5Wn0bmjlY0YAlu8vw9d5yNLi8Ib1WdrIJNw/tiKvyc7gPAsUchgGiKOEu3AbHqgV+neOqs6Ns8yG0v+t+tLnsSih2GxxFh+EoOgRH0WEoDQ1QXQ4AEmSTGbrERFi65MLSpRssXXKhs4Z2oyGtuLwKVhWewuLdpdh+vDak10qzGnD94A64tn87LndMMYNhgCgKKDUn0fDZ+ccJNMddb0fppkKoTjeypt6AdjPvDmGFkeN4tR2Ld5fhy4IyVNt9/3n5K9Gkx7SB7XDdoA5I5aqGFOUYBoginPC60fBZy+MEfsxd70Dpxv1QXY0fhikjLkHXx/4UqhIjkldRsXz/SXyw6RiOVoVuJoJZL2PG4A64ZVgnWI28fUDRiWGAKIIJIeBYOR+eQzt8Psfd4EDZ+n1Q3D/cQzd37IxeL84ORYkRTxUCqw+ewn83HsWBkw0hu06bBCN+fklXXNknm7MPKOowDBBFMOeOlXBt/sbn4z02J0rX74Piato9LhkM6P/BZ5B08fubqxACm49W478bj2JHCMcV9MxKxC/HdsOADqkhuwaR1hgGiCKUp6gA9uVzfD/efjoIOJu/T977tfcickZAOOw+UYsPNh7FuiNVIbvG2B4ZuHd0LtqmcO8DinwMA0QRSKksRcOi2T4PGPTYXaeDgPu8x+T+8WkkDxyiVYkx4WBFA+ZsOooVBypCskmSQSdhxqAOuHV4J848oIjGMEAUYVR7PRo+fx3C5ltXttfhQun6/fA6XBc8rv3d9yPz6mu1KDHmHK+2Y+7mY/iqoBzeEKSCNKsBd1/cFVfl50AnczwBRR6GAaIIIrwe2Ja8DaXimE/HKy4PTqzbC6/9wkEAADKuvhYd7r4/2BJj2sl6Fz7eegxf7CyF06v9ksfdMhLwy7HdMLhTmuZtEwWDYYAoQvg7c0DxeFG2YT/cdb5Nm0saOATd/vh0MCXGjRqHBwu3HcfC7SdCsrLhJd3a4L7RueiQZtW8baJAMAwQRQh/Zg6oioKyjQfgqvZ9qpwxKxt9XvtPoOXFJZvLi893nsBHW49rvoCRXpYwfWB7zBzRGUlmjieg8GIYIIoAnuK9sC+bA6Dll6NQVZRvOQhHhZ/T4yQJ/T/4DLLJFFiRcczlVfDlnnLM3XwMZXVOTdtONutx18VdcE2/dtBzPAGFCcMAUZg1zhx4A/CefybAGUIIVOw4DNuJwKbE9fzHS7B2zwvoXGpc1fDznaV4Z10R6jW+fdAl3Yr7x3bD8C7pmrZL5AuGAaIwUh0NaPjsNZ9mDgghUFlwFPXFvi9L/FMd7/s12ky4KuDzqVGd04P31hXj050noGg8+2Bk13TcN6YbOqdzPAG1Hm7OTRQmQvHCvmyOz1MIawpPBBUEAMBx5FBQ51OjZLMBD17aHW/PHIqRXbX9TX79kSrc/f5mvL+hOCTTHImaw54BojAQQsCxagE8B7f7dHztkTJU7fVtuuGFJPTOR4//fT7odqipTcVVeGXlIRRVarshUs+sRPzuyl7omhEdW0lT9GIYIAoD187v4dz0lU/H1h8/hVM7j2hyXdliRb//LIAks1NQa15VYPGuUry19gjqnNqNJzDoJNwxsgtuHNqRAwwpZPiOQNTKPMV74dz0tU/HClXAY3PCmKTN+vaqww73yXJN2qKm9LKEawe0wwd3jsANQzpo9sHtUQTeWHMED364DcWVNk3aJPop9gwQtSKlqqxxzwFPyzMHfsow5Co4KhtQt20T6jath/Bx34Kf6vLYn5A64pKAziXfHa+24/XvD2P1oUrN2jToJNx9cVdcP7gDlzUmTTEMELUS1dHQuOdAQ43f55oGjYd58PjGdjxu7L59BlRXy0sQNyf7+p+h7U23BXQu+W/bsWq8vPIQDlVo91t9fttkPHFlHjpyBUPSCG8TELUCoXhhXz4noCBg6NoXpkGXnv2zbf/egIMAADiKDgd8LvlvUMc0zL5lCH47oSfSrAZN2txTWoe739+Cj7ce13xqI8UnhgGiEBOqCseqhVDKj/p9ri6jPSxjpkOSfugSrt++xfcGpHO7kp3FDAOtTSdLuKZfW/z3juG4ZVhHGHTBd/G7FRWvrDyEX3+8HcdrHBpUSfGMYYAohIRQ4VjzGTyHd/p9rmRNgnXCzyDpjU0er9/hexhI6j8Y+W/NQ6cHH0XqqHHQJSbBfbIcXpvvexqQdhJMevxiVC7+c/swjOuRqUmbu07U4e73N2PhthKop+/61tTU4Nix4KeiUvzgmAGiEBFCwLl+MdwF6/0/WWdAwqSfQ5/ZvsnD3toa7L7rRp+baXf7PciaMuOHmhQF9kMHYGrbHvqkZP/rIk3tOF6Dfy47gGPV2vxmP6BDCoaoh3H3rTfC6/Xi5ptvxpw5czRpm2IbewaIQkAIAeemrwMLAgAsY6afEwQAoH7nNr/aSRo4tMmfJZ0OCT17MwhEiAEdUvHmrUNww+AO0GJuwKrvV+PuO2/HxIkT8eSTT2Lu3Llwu/2fuULxh2GAKARc27+De9f3AZ1rGnQpjLn9mn2uzo/xAvq0dJg7dg6oBmo9Jr0O94/thn/dMBDtUwNbT0JVvDj4ySxsn/UgLh42GHPmzEGvXr0ANAZTopYwDBBpzLXze7i2fhvQuT+dOfBjQgg07PK9ZyBpwJAmAw8psvVvn4K3bh2C6wad2yPUklM7V+HE6oX45z//iSVLlqCkpOTsc4t3nWAgoBYxDBBpyFWw3udlhn9Kl9Hu9MyB5l+W7vIyeCpP+dxe8sDBAdVB4WM26PDguO548foBaJdi9vk8j70Oer0e3bp1w7Bhw7B8+fKzz7343UH8/vM9qNdwiWSKPQwDRBpxH9gC57pFAZ3bOHPg1nNmDvxYQ4F/MxKS+jMMRKuBHVLx1syhmDawnU/HJ3XsBY+iYNq0adi7d+85z689XIl7527F4VOcRULNYxgg0oD70A44vv80oHMlcwISrroLcsKFB/U17Nnlc5vmTl2hT0kNqB6KDBaDDr+6tAdemNEfOckX7iVI7tQLwx57F0MfexeSrvmFjUpqHLh/7jYs3xfcNtgUmxgGiILkKSqAY+UCAP7fl5WMFiRMvAO61JbnnNv86BlIzG9+ACJFn0Ed0/D2zCGY0r/tBY+zZnVCQk6XCx7j9Kr469K9mLXiILyKqmGVFO0YBoiC4Dl+APbvPgREAG+sBhOsE2+Hrs2F3+QBwF1x0q/dBhPz+/tfD0Usq1GPhy/riX9O74esJFPQ7S3YVoKHF+xEpY3TDqkRwwBRgLylh2FfNgdQFf9P1huQcMVM6DM7+HR4Q4HvtwgAIKEPewZi0dDO6Xhn5lBM6psTdFs7S2rxiw+2YFdJrQaVUbRjGCAKgLf8KGxf/xdQAhihrdMj4fJboW+hS/fH/Bk8aOrQCQaOF4hZCSY9Hr08D89O64eMxPMPOPVFpc2NX8/fgYXbSjj9MM7pw10AUbRRTpXA9tV7gDeALlZZB+v4m6Fv182v02x+DB5M7NPX36ooCg3vko53Zg7Dq6sOYemesrOPm9Oz8fzzz0On08GY3AaSfOG3eUUVeGnFQewtq8MjE3rCbNCFunSKQOwZIPKDUlUO25fvAp4AthCWJFjH3QBDpzy/TvNUV8JVWtLygacl9uF4gXiRZNbj8Svy8PepfZGR0NhL0PvWP8KZ0w8NGb3Q547/B0n27W3+m30n8ct521DCHRDjEjcqIvKRUlMB25K3IByBzNWWYBl7HYzdB/p9ZvWaFSh+/hmfj89/Yw4M6W38vg5FtzqnB/+7dC82FlUH1U6iSY/fT+yFi3L5byiesGeAyAdqfRVsS98JMAgAlkumBBQEAP/WFzDmtGMQiFPJZgOeubYfbh8R3H4UDS4vfvfZbryzrujslsgU+xgGiFqgVJejYfGbEPa6gM43j5wEY69hAV/ftsef9QV4iyCe6WQJd17cBU9f2xcJpuDu/b+3vhhPfrYbdU6PRtVRJGMYILoAb3kxGha9AWELLAiYhl4OU/5FgV+/tgbO40d9Pp6DBwkALs5tg3/fMgS5GQlBtbP+SBX+54OtKDzJZYxjHcMA0Xl4igpgW/oO4HYGdL5p4DiYB4wNqoaGvbv9Op6DB+mMDqkWvHLTIEzolRVUO6V1Tvxy3jZ8XeD7olcUfRgGiJrh3rcJ9m/nBraOAABj30tgGnxZ0HXYC/f7fKwhMxvGrOygr0mxw2LQ4fcTe+Ghcd2hkwPfztqtqHj6q3148dtCeFWOI4hFDANEPyKEgHPrt3Cs+QwIcPCUsddwmIdPhCQF/uZ7hv3QAZ+P5X4E1BxJkjB9UHu8MGMA0q3BLVL06Y4T+NMXe+D0BLDqJkU0hgGi04Sqwrn2c7i2fRtwG4Yeg2C++BpNgoBQVb/CQEJen6CvSbGrf/sUvPGzwejX7sK7Y7Zk7eFKPLpwJ+o5sDCmMAwQARBeD+zfzoV736aA2zB07QfLqGmQJG1eVq7SEqh2u8/HW7v31OS6FLvaJJrwwowBuG5g+6Da2XWiDg99tAOnGgJYfIsiEsMAxT3hcsD25bvwFu8NuA19p96wjJvh82pvvrAfKvT5WElvgLljF82uTbFLr5Px4KXd8YeresGkD/zf65FKG3754TYcq/Y9sFLkYhiguKbaatGw6A0o5cUBt2HI7Qfr+Bshydqu6W4/6PvgQUvXXMgGg6bXp9g2oVc2Xr1pENqlmANuo7zOhQc+3I59ZfUaVkbhwDBAcUupPomGL2ZDrTkZcBvG/IthGXc9JJ32e345Dvo+XsDajbcIyH/dMhPx71uG4KKu6QG3Uevw4Dfzd2BzcXDLIFN4MQxQXPKWF8O26A0IW+B7uZuHXQnziKs0GyPwY0JRYD9yyOfjrd392/yI6Iwksx5/u7Yv7rqoCwId9urwKHji0134bn/gwZrCi2GA4o6neG/jPgPuAHdnk2RYxlwHU//RmswaaI7zWDGE2/fBWZZuPUJSB8UHWZJw28jO+PvUvkgyBdbL5VUF/t+Svfhku+87bFLkYBiguOLevxn25XMCXkwIegOsV9wKY49B2hb2E3Y/bhHIZjPM7TuGsBqKFyO6tsHrtwwOeByBAPCv7w7inbVF4Ia40YVhgOKCEALObd/BsfrTgBcTksxWJFx9NwwdQn9/3n7Ij8GDuT0g6bQdvEjxq32qBS/fOAg9shIDbuO9DcV4fnkhFK5WGDUYBijmNS4m9AVcW5cH3IaUlIaEa34BfWYHDSs7P3+mFVp5i4A0lp5gxIszBmBQx9SA2/hiVymeWlwAl1fVrjAKGYYBimnC7YR9+Ry4920MuA05vS0Sr/kFdCkZGlZ2fqrHDWfxEZ+P5+BBCoUEkx5/n9oPY7oH/u9+1cFTeOLTXbC5ArwtR62GYYBillJVhobPXoP36L6A29C1zUXipLshW5M0rOzCHEWHIby+v3ly5UEKFZNexp8n9cGU/m0DbmPbsRr8ev4OVNncGlZGWmMYoJjkPrgdDZ//G2pdZcBtGLr2Q8KVt0EyBr4oSyAcfkwp1CUmwpgd+Bs1UUt0soTfjO+B20d2DriNwpMNeODDbThRE+AMHgo5hgGKKULxwrHmczhWzgeUwDdSMeZfBMuloVlMqCXOY76vhmjt1jNk0xuJzpAkCXde1AW/Ht894LUITtQ68cCH23GwokHT2kgbDAMUM9SGGtgWvxnU+ADgzGJCV4dkMSFf+BMGLF27hbASoqamDmiPP13dG3o5sEhQZXfjVx9tx87jNdoWRkFjGKCY4Ck5iIZPX4VScTzwRlphMSFfOI8d9flYc8fAu26JAnFpXhb+PrUfLIbAprPa3Aoe/3Q3CkrrNK6MgsEwQFFNCBXO7Stg//I9CFcQu6fpDbBeHvrFhFrira+Dt6bK5+O5UyGFw9DOaXhhxgCkWgLbHMvhUfDYJ7t4yyCCMAxQ1BIuB+zffADXlmVoXPssMGcXE+oY/lH5/twiAAATVx6kMOmVk4RZNw5EdrIpoPMbXF48unAnjlZxC+RIwDBAUUk5dQL1n70K77H9EEJgW9EJzFmzE3PX7sTOo2U+L4UqJaa26mJCLXEe9/0WgTErBzpz6850IPqxjmlWvHLjIORmJAR0frXdg0cW7ERprVPjyshfrT9UmihI7gNb4Fj7BaB4cbSyFr9441OsP3j87H1+IQTG5+fitbsmIzvl/Euq6tt1g+XSGyCbA3sjCwV/egY4XoAiQUaiCf+6fiCe/GwXdp3wfxxARYMLjyzYgVk3DESbxMB6GSh47BmgqCG8Hti//wSO7z8BFC9cHi9unvURKoQJS5cuRUNDA+rr6/Hpp59iX7UTt726AIra/FKopkGXwnrl7REVBACGAYpOSWY9/nldf1yS2yag80/UOvHIgp2ocQQ+HZiCwzBAUUGtr0LDojfgObDl7GNLdxRiz/GTWLhwISoqKtC2bVt06dIFOp0Oc+bMwYZDx7HmQNNud8logfWKmTAPvgySHHn//P2bSdAphJUQ+cek1+Gpyfm4Oj8noPOLqux4bOFONHDp4rCIvHdDop/wHNuPhk9fg1p5osnjmw6VoGPHjsjOzsbjjz+O/OwUJMsK/va3v2Hs2LFISEjArqPlZ4+X27RD4tT7YOgYmWv5cyYBRTu9LOHRy3vi5qGBDWw9cLIBT3y6Cw6PonFl1BKGAYpYQlXh3LIM9q/fh3Cfu4xpfocsHDt2DDk5OSgtLcV9E4ajzuFCfn4+6urq4HK5kGQ2AgAMPYcg8Zp7ICelt/a34TO/ZhJIEswdOJOAIo8kSfjFqK6YMah9QOfvPlGHP36+h7sdtjIOIKSIpDbUwPH9J/CeOP86/bdc0h/Du7VHYVklvKqKP3y0HClZbfH000/j2WefhQyBCQPzYBk9DcaeQ1qx+sD4EwaMmdmQTZxJQJFJkiT8cmw3ODwKFu8u8/v8zUer8f+WFOCpSX2g1/F31tbAnzJFFCEE3Ps2oX7hrAsGgTO657RBitWMh95bgsTs9vjuu+/w1Vdf4ZlnnsFj0y9Hz5m/jYogAPg3rZCDBynSSZKEhy/ricvysgI6f82hSvz96/1QfZwmTMFhGKCIodZXw/blO3Cs+QzwuHw6Z+XeI5j6/BwMHD4Sq1evxscff4zbb78dt105Bn95dz50Ge1CXLV2OJOAYo1OlvC7K/MCnmWwbN9JvLC80Od1QyhwDAMUdkKocO3dgPqFs6CcOOzzeaU19bj9tYW49LIJWLx4Mf7whz/gkUcegRACIqsTnn/5VTid0bOYibu81OdjGQYoWuh1Mv40qQ8Gd0wN6PwvdpXite8PMxCEGMcMUFipdVWwr/4ESukRv8/915froLcmYt68efj444+xbds2XHzxxQCAwsKDmDt3HrKysnD77bdrXbbmhKLAfarC5+NN7SNjxUQiX5j0Mv52bV88umAndgewQdFHW47DatDhjou6aF8cAWAYoDARQoW7YAOcm78GvIEtNPL9vmJMnjwZkiTh2muvxbXXXtvk+d69e6O42L+1/sPFfaoCOM8CSc0xZQU2l5soXCwGHZ6Z2g8PL9iBwpP+b1D07vpiWI063DCEs2hCgbcJqNUpdZWwLX4LzvWLAw4CAJDXNgPvvPMOUlNTm/2vtLQUo0aN0rDy0HGf9H3EtWw2Q5ecEsJqiEIjyazH/03rh87p1oDOf3XVYXyx80TLB5LfJMEbMdRKhKrCXbAOzs3LACX4ZUftisAGKQee1OZ/S+7Tpw/y8/ODvk5rqFz+FY69+rxPx5o7dUGvF/4d4oqIQqeiwYWHPtyO0jr/x/RIAJ6c2AuX987WvrA4xtsE1CqUmgo4vv8Eyknfp89diJySgazxN2Nqemy8IfjTM2DMjI3vmeJXZqIJz8/ojwc/2o5TDW6/zhUAnvlqH1IsBgzvErmLiEUb3iagkBKqCteu1Wj49BXNgoCh+0AkTrkXuhgJAgDgPlne8kGnGbM5XoCiX9sUC567bgBSLQa/z1UF8NTiAhw+ZQtBZfGJYYBCRqk5Cdui2XBu/BJQgt98RLImwXr5rbCOnQHJGFur7/nVM8DBgxQjOqdb8X/T+yPR5H8ntc2t4Hef7UKVzb+eBWoewwBpTqgKXDtWoeHTV6FUHNekTUOPQUia/hAMnXpp0l6k8S8MxE6PCFGPrET8Y1o/mA3+fxyV17nw+893w+XlxkbBYhggTSlV5bB9MbtxyqAmvQHJsF5xG6xjroNksmhQYeRRPW54qip9Pp49AxRr8tsm4+kpfWHQSX6fu7esHs98yWWLg8UwQJpQnXY41i1qHBtwqkSTNg09hyDpuodg6NhTk/YilbvipF/Hs2eAYtHgTml46pp86GT/A8GKwgq8vbbovM8LIaCoDAsXwjBAQRGKF65dq1H/8fNwF6wHRPDbjkoJKbBeeTuso6fF3NiA5rjLfb9FoEtIhD4hMYTVEIXPxblt8PuJvRBAHsB/Nx7F0j3nvpY8iornlhViy9FqDSqMXZxaSAERQsBbVADnpi+h1mv3IjP2Gg7zsCviIgSc4a7wYyYBbxFQjBuflwW7W8E/lx3w+9znlh1ATrIZg07vg1Bjd+NPiwqws6QWGYlGTkW8AIYB8pu34jicG5ZCKdduqV8pMRXW0dOgb9dNszajhT89A7xFQPHgmn5tUVrrwAebjvl1nlcV+NMXe/DqzYPg8qr4/ee7UV7XuANqQZn/eyLEE4YB8pnaUAPn5q/hObRT03aNvUc09gYYTJq2Gy08lb5vUMQwQPHi7ku6oqTGiRWFvr8+AKDe5cVvF+xErdMDp+eH25YFpfVQhYAsBXAPIg4wDFCLhNsF185VcO1eo8kMgTPkpDRYRk+Dvm2uZm1GI0+N77dZjBlZIayEKHLIkoTfTcxDeb0Te8vq/Tq3vN51zmMNLi+OVTsC3hch1jEM0HkJVYHnwFY4tyyDcGq50pcEY5+RMA+9HJLBqGG70clbW+Pzsfq0tNAVQhRhTHod/jalL+6bt/Vsd38wCkrrGAbOg7MJqFme44Vo+OQVONZ8pmkQkJPbIGHS3bBcNIlB4DS/wkByasjqIIpE6QlGPHNtP1iNuqDbKijluIHzYc8ANaFUl8O58Ut4jxdq3LIEY9+LYR5yGSQ9Q8AZQlHgrff9DcqQyp4Bij+5GQn4y6Q+eOLTXQhmuQCGgfNjGCAAgOpogGvrcrj3bwY0XslLbtMOlouugT67k6btxgJvfR2g+r42g55hgOLU8C7p+NWlPfDCt4H/onKk0ga72wurkR99P8WfSJwTXg9ce9bCtWMV4An+ntyPSdZkmIdeDkP3AZAk3pFqjj+3CCDL0HHBIYpj1w5oh+M1dny8NbBVTlUB7C+vx6CODNU/xTAQp4THDfeBLXDtWg1hq9W2cb0Rpv6jYep3CW8JtMDrx0wCfUoqJJmhiuLbzBGd8eWectS7ApvZVFDKMNAchoE4o7rscBesh3vPegiXXePWJRh6DoZ5yATI1iSN245NHj96BjhegOLdsWo7nvxsd8BBAAD2cNxAsxgG4oRqq4Vr15rGMQFe7ff/1rXLhWX4VdC1aat527HMr5kEKakhq4Mo0m0qrsJfFhfA5gpuu+K9XImwWQwDMU6pqYBr1/fwHNwBqNrv+S2nZMI8fCL0HXtC4spefvP3NgFRvBFCYP62Ery26lBQMwnOqLZ7UGVzIz2BtzB/jGEgRnkrjsO1cxW8RXsBaL91p2S2wjToMhh7DYUkBz//N155a/0JA7xNQPGpT04SxvbIxMrCCk0CwaFTDUhP4KZFP8YwEEOEEPCeOATXjlVQSg+H5iKyDsb8i2EeODaudhYMFW+t74M3DampoSuEKEJJkoT8dinIb5eC8jonPt1xAl/sKkVDEOMGDlXYMKwzw8CPMQzEAKGq8BYXwLljFdTKEyG7jqFrP5iHXQ45iS8irXj86hlIDV0hRFEgO9mM/xmdi9tGdsZXBWWYt/k4yuqcfrdzsKIhBNVFN4aBKCYULzyF2+DatRpqXWXIrqPL7AjziKu4aFAI+DeAkLcJiADAYtBh6oD2uKZfO3y7/yTmbDyKoirfZ0cxDJyLYSAKCbcT7n2b4NqzFsLu325e/pASU2EediUMXftycGCIKHbf933Qp6SEsBKi6KOXJVzROxsTemVhzaFKfLDxKPaVt/yeeLTKDpdXhUnPdTvOYBgIA6F44T26D4auff06T3U0wL1nHVx7NwBu/7vGfGYwwTxwHIx9RkLSG0J3nTgnhIDq9P3vUWfhbmtEzZElCaO7Z2BUtzbYeqwGH2w8iq3Has57vCqA4kobemZzPZQzYioMCLcTSlUZhL0eQvECQkDS6QGDEbq0LEiJaWH/DVcIFY6V8+EtPQJ9594tjsQXQkA5eRTufZvgObIbUAIfNNMSyWSBsc9FMPYZCdnMD55QE26XX/sSyGZLCKshin6SJGFIpzQM6ZSGPaV1mLPxKNYcbv4W6qFTLYcBIQS8lSfhLj0G1eWE8HoAWYasN0CXnAZj+84xE9KjOgyotjp4Du+EUnEcyqmSlpfV1Ruha9MWuox20HfoCV3brq26Zr4QAs71Sxs/1AF4j+6HoUuf5o91O+E+uB3ufZugVpeHtC4pIQWmvpfAmDeU2wq3IsXh8Ot4OUbedIhaQ37bZPzt2r44fMqGDzYexbf7TzaZZH3wZAOQ3/QcoapwFO6BvWAbXEcPwXW8GKKFXlh9WhuYOnWHqXN3JA25BPrU6BxgLQmh8RZ1ISZUFd6Sg/Ds2wjv8QPAmd/0/fk2JBkQKqTEVBh7DYeh+0DIltBvAOPcsRKuzd+c/bO+Yx4SrpjZ5BjlVAlcezfCc3gn4PWEtB45NROm/qNhyO3f2INCrcpVWoK9D9zl28GShAEfLw17zxZRtDpyyoZ31xdhZeEpAMCADin41/UDAQDe+lrUb1yJutXfwFtVAcg6/xZpk2ScWc/F2mcQki+5HNbeA6JqL5Go+gTwFBfAuX4JhL3u9A8fgW23Kxq7ZkVDDVybv4FryzIY8obAPOTykM2ddx/Y2iQIAID3+AGotjpIRjM8h3fCvW8TlFOB7cblD11mB5gGjIW+Ux53EwwjxY/xArLZwiBAFISuGQl46pp8FJ5swDvrirCrpBaK3YaqRXNRt+7bxs+SM58n/q7WKn643Wffux32PVuhS01HxvQ7kDhguIbfRehERc+Aaq+Hc/0ieIv3ApAQihX1IEmQTAkwXzIFhk69NG3ac2Q37N992Gxw0WV2gFJTofn2wc3Rd+gBU/8x0OV04QdLBGgo2IWDf/ytT8fq09LR9825Ia6IKH7sW7UKpq8+gGqrb/JhrhlJAoRAQv9hyLj+buiTU7W/hoYivmfAfXA7nOsXAd4zA+dClF2EgHDa4Fg+B54u+bBcPAWSKfgBW56j+2D/7qPz9mAoFceDvsYFSRIMXfs2hgBuIhRROJOAqPUp9gZUfPgmDNvXQz39gR0Sp9u17d4C+/5dyLz+LiQNGxOaa2kgYsOAEAKu7d/BvX1Fa14VAOAtLoCtuhzWK++AnJAccGvekoOwfzsvNKmzJTo9jD0Gw9jvEuiS27T+9alFisP3RVJkC2cSEAXLW1OFE6/+LzwVZY0PtEbHuKpCuJw4+d9X4TlVjrSJMyKyZzYiw4AQAq6NS+EuWB+uAqDWVcG2aDYSJv0ccmKq3014y4pgW/ZBSKcCNstggqn3CBjzL4Js5RzaSKb6MZuA0wqJguOpqkDJi3+GUl/j15ReLVV/uQCqw442026LuEAQkWHAtfmb8AWBM4QK4WiAbcnbSLjm55CtvvcQeCuOw/b1+yGfDfBjkiURpvyLYew9nBsIRQnV6XsY0DEMEAXMW1uFEy89FdYgcEbtyqWQ9Aa0mXJLWOv4qYgLA54ju+HevTrcZTQSKoS9Do4VH8N61Z0+jbxXKkth//K9VhkQCAByUhqM/UfD2H0QVwuMMoofYYA9A0SBEaqK8ndfgre2KuxB4Iya5Z/D1CkXiQNHhruUsyIqDKj2ejjWfBbuMpoSKpTyYrgL1sOUf/EFD1VqTsL25bsQbv8WkwmErl0uTL2G+7SKIUUmf24T6DhmgCggtSuXwnl4X7jLOEfFvNkwd82LmA3IIiYMCCHgWP0J4HWHu5RmuTZ/DX377tClZjX7vFJXCdvSdyCcvm884y/JZIWh52AY84ZCl5IRsutQ6/DnNgF7Boj85y49hsov5oS7jGapLicq5v4bOf/zeESMH4iYMOA5uB1KycFwl3F+AnCsnI+EKfed8xen1lc3BoEQ7SCoy+4MY69hMHTJ562AGKK6/Fl0iONAiPwhhED5+6+0zoyBQKgq7Hu3o2HT90gaHv4phxERBoQQcO1cGe4yLkyoUKvKoJQegb5d7tmH1boqNCx9G6KhRtvrGc0wdh8IY69h0KVla9s2RQR/1vuSdLwVROQPx4HdcJcUhbuMFlV//QkSh40Oe+9ARIQBpfQwRF1VuMtomSTDXbDubBhQ6iphW/IWhK1Os0vIKZkw9R8FQ9d+3DQo1vkzmCmK1jgnigS1K5c2vm4iZNDg+XgqSuE4sBvWvH5hrSMi3mFce9b9sNdAJBMqvMf2Q62vhlJTAdviNzUNAsDp2QE9hzAIxAHhx5tUNG14QhRunsqTsO/ZGvFBAAAgy43BJczC3jOgNtRAOX4g5Ncpq7Pjz1+sR7XdBZ0s4e5L8jGhV0f/G5IkuHaugqd4L4SjQfM6vSWFUG21kBNSNG+bIgx7BohCom7NslbrFdhwshZv7iuBADCjaxYmdvRzcLeqwr5nKzxVp2BID9/A8LCHAW95catcRy9LeHjCIORlp6HK5sTMd7/GJbltYTH6+SMQAkplKRKn/hJqXSXUuqof/l9fBaWuEmhh/+uW2ncXboN54LjA26Co4FfPQASMNiaKFvYDu1olCCiqwBv7SvD34d1h1evw0Nr9uCQ7FUn+fq4AcB7eB0P6qBBU6ZuwhwG1oqRVElxGogUZiY3Ts9ITzEg2G1HrdPsfBgCo1eWQzFborUlATpdzn3fZm4aEukqotloIWx1Ue12LKxN6DmyBacAYbi8c6/wZ5cy1JIh8IrxeuE8cbZVr7a+1oXOiGRnmxtu6QzOTseVUHca1S/evIZ0OrqOHkDQ0jsOAt+JYUEFAFQI3vLEUY3u0x4OXDjj7+LrDpXh4/mr8dcrIc24HFJRWQRUCOckB7gSnKlCrT553F0DZZIWcaQUyO5zznBAC8Ligng4GZwKCsNdDtdVB2Bv/rJQVQ9+2a2D1UVQQfuyZzp4BIt+4S48Biu+vreaoQuDe1XsxMisFd+W1P/v4loo6PLX1MB4d0Bmjc9JQ5fKgjfmH6d4ZZgMqXQEsQ68ocBYVBlVzsMIaBoSqQK0qC6oNWZJwx0W98c9vtuL2i3oj2WzEgfJq/O7Ttbh/bL9zgkCNw4W/LNqA3181LKjrKhXHA9oSWJIkwGiGzmiGLq35BYwoTnDMAJHmnEcPBd2GLEm4ITcbrxUcx/W52Ugy6HG4zo6ntx/B7T3bYnRO46qBzfXtBRrbXSVFEIoStmnEYX2HEU474MdvR+czMb8zUiwmfLj5AMrr7PjN/O9xVd8umDmiV5Pj3F4Fjy1Ygzsu6o0BHYIYqCHLUG21QVZN8U6ofqwzwDBA5BNv9SlAgw/US9umI8Wox+fFFTjldOPPWw5jfPt0XNf1h3Vf2pgMqHT+0BNwyulBminAheG8Xii20Cxc54vw3ibQaHtfvSzj9pG98OrKXfh2/3HkZafhtxMGNTlGCIGnFm/E0M5ZuLpvl+Av2tpbE1PsUVUU19uwsqwC7a0WjG2bCf35PvQZBoh8IjzaLGmvkyXM6JqN9wpPYE1ZDbonW3Bv76a3fvNSElDc4MQppxtWvQ6bK+pwS7ecgK+pVe2BCG8YENoNGpyY3xnPL98OAeBvUy6C7idvnjuOn8I3e4+ie1YqVhSWAAD+3zUj0D0rNbALRsP8VYpopbW1uH3lRqgmM+x2O/40sBemdG7f7LHsGSDykYbvzZe2S8PsfcchADw+oAt0Pxm7o5Ml/LxXezyx8SAEBGZ0zUZyAIPSzwrj50p4w4BOu8s/+/VWAECN3QVZPveuzcCOmdj4xI2aXQ/6sI+9pCi2detW3PruHCRn52Dbtm245JJLcLDuAutWMAwQ+UQyaLd/y2sFxwEAdR4v5PMM4h2ZlYKRWdqsCxPOxebC+g4jGbXZfOW1Vbuw5lAp3p55GRRV4LMdhzVp97yE0Kx2ij/PPfcchgwZgtSOnbFixQq0adOmxXM4zZTIN7LZqsnmRP8pPIGNFXV4fmRPKCrw1fFKDaq7sHDuThreMGAwQUpIDqqNT3ccwgcb9+P5GaPQMzsNNw/rifc37INXCWF3ixDQpfs/k4AIAGbNmoWZM2di7dq1+PDDD307iVMLiXxi7NAl6O72L4+dwidHTuIvQ3KRm2zF1C6ZmH+kHF4/Bv36S5+WEb9hAAB0mZ0CfqNbc6gUz369Ff9v8kj0a984O+CGIT1gc3mwZHeRhlWeS85oF9L2KXbJsozi4mL0798f//jHP3w6RwQ5b5ooXpg7dQvq/E0VtXi14Dh+278LeqUmAACmdM6Ew6vi2xMh2lBPlmHq0iM0bftaQlivDkCX2b75yZot2FtWhd99uhYPjhuA8Xk/jPBMNBlww5AeeG/9XighGowhWZMhmxNC0jbFvt/85jfYt28fDh3yfT50OEcZE0UTXWIydCl+rgB4WmGtHc9sL8Jdee1wSU7q2ceteh0md87ER4fLoWhwC+IcQsDcubv27fpBEv5sqh4C3rIi2Je+Hc4S/CNJ0HfOh/XSG8JdCUW5JyddgVfXbERNTQ169eqF4aoTD/fLa/bYdnf8D7ImT2/lComiU9k7L8K2Y6OmM9ZCrd1Df4GlW6+WDwyR8PcMZHWCZA1u3ECrEgKGbv3DXQXFAj/2G2DPAJHvkoaOiqogoEtNh7lrz7DWEPYwIMkyjH1GIvBFHFuXlJACfYfw/qVRbPBn2VHVE8B650Rxypo/GLrUlmfpRARJQurYq8O+lkjYwwAAGHsOiZpd2Yx9Rob9L41igz9hQLjZM0DkK0mWkTr2qqiYhSPp9EgaOS7cZURGGJBMFhh6DIz8vzidHsYeg8NdBcUKnQ5CCJSVlUFpYbaAaGHbayJqKmnkOEiRvjicLCNpxFjorInhriQywgAAmAaNBwymcJdxQeahV0AyhW8eKMWWi/v0Rn1dHdq2bYuDBw9iWOb5R0DzNgGRf3TWRKRPviXcZVyABNlsQdrEGeEuBEC4lyP+EdmSCMuoqXB8Oy/cpZxLkqHL7gRD7+HhroRiyKC8nlh05WgcqmtAx0QruiSdf7oqBxAS+S9l9JWw7dwE5+F9EbifjEDmTf8DfXJquAsBEEE9AwBg6NwH+m4DIu92gU4Py+jruCQsaUoyGNAuwYLRbTMvGAQAQLBngMhvkiwj+9b7w7rmf7MkGYnDxiBxQOT8ghlxn26WkZMgJaQAEfTBa7nkWsiJ2mxEQXSG7MeGKioHEBIFRJ+WgaybfhHuMn4gy9CntUHGdXeEu5ImIucT9zTJaEbCVXdBsiRGRCAwj7wGhtx+4S6DYpA/v61wACFR4BIHX4yMGXeGuwxAlqFLTkX7h/4MncUa7mqaCP+nbTPkxFQkXH336R6C8N0yMF90DYwcJ0Ahwp4BotaTMvpKZFx/V/gKkGXo0zLQ/qG/QJ+WEb46ziMiwwAAyElpSJj8C8itvTugJDeOEbj0Rhh7MQhQ6Piz7zrHDBAFL2XUFci+49eQ9AagldeLMbXvgg4P/y8MbbJa9bq+ipjZBM2RzQlIuOYeuPesg2vr8sY9qkO8xKQuuzMso6ZCTkoL6XWIZJPZ52MVuz2ElRDFj8RBI2Hq2BUn582Gs3BPaC8my4AkI33SjUgdd7VfC421tojtGThDknUw9RuFxGkPQJfV8fSDGt86kCTAYIL54inw2uzw1lQgzPs3URzQJSb5fKzSUB/CSojiiyEjG+1++Qdk3nwvJJNZ+8+U070O5q556PS7fyLtsskRHQSACO8Z+DE5uQ2sV90F79F9cO/bCOXEoca/wEA/tCUZECokaxKMecNgyBsK2ZII+5YVqP/sDejb5cI68koY2uVq+40QnaZL8H3VMcXGMECkJUmSkDxyHKz5g1C3dhnqVn8Dpa6m8YM80DUJTn+uWLrnI2X0FbD2Gwop0qbKn0fYtzAOlFpfDfeBLfAUboVwNDQ+eOaH3ty3dPovCUDjQI523WHoNRz69t2b7DVQ/9UHcBduP/tnQ8eesIy4EoacTiH6TiheuU+Wo+C+23w+vv+8LyBH2nxpohghVBX2vTtQt+Yb2PftAM4sES7rALWZ5cIlqfG/08FBl5SKpJHjkHzR+IgdF3AhURsGfky110OpLIVaVQql8gRUWx2geBv/AvUGSAYzdOnZkNPbQtemHeTUDEjn2RjJseU72NctOedxQ4fusAy9DPr23aIm6VFkU+w27Jo53efj89+cC0Pa+ZcsJiJtCMULd1kJXCVFcB8vgqukGKrTAeFxQ5JlSAZj47bDHXNhbN8Fpg5doE+J7nFmUXOb4EJkaxJkaxLQMfithXUZzc9e8Bw/CM/xg9Bnd4JlyKUwdO3DFQkpKLLF6leXpNJQzzBA1AoknR6m9p1hat8ZGD423OW0ipgIA1rSZ7S74PPe8qOoX/IedOnZsAwZD2OPAeftZSC6EEmSoEtMglJX69PxXltDiCsionjFX21/Qk5Iblz9sAVKVTkavpmLmv8+C+fudVwhjgKi92dGQT0HERJRaDAMNEN/nlsFzVHrqmBbsRDV/3kGjq0rINzOEFZGsYYzCogoEjAMNEPXwq2C5gh7PexrF6P6vadhW7MISn11CCqjWOPfWgO8TUBEocExA81oadzAhQiXA85tK+Hc/j2MuX1hHjgK+pwunIFAzdIn+t4z4OXCQ0QUIgwDzQikZ+AcQoX70E64D+2EqfcwJIy/noGAzuFXzwAHEBJRiPA2QTN0qZmNC01owJCbj4TR1zIIULP8GjPAngEiChH2DDRD0umgy2gL5eTxoNqxDL0MlhFXcD0COi9dku89A17OJiCiEGEYOA9DdufAw4BOj8QJN8LUY6CmNVHs8WdqobeGg1KJKDT4K+t56HM6B3U+t0AmX+hTfV9R0FN1KoSVEFE8Yxg4D30wGxMpXtQvfgdKXZV2BVFMMrbJ8PlYb20NVI87hNUQUbxiGDgPOTkdkiUh4POFw4b6RW9DdTk0rIpijSHd9zAAAJ5qBkwi0h7DwHlIkgR9dnC3CpSqcjR8+T6E0sz2l0QAZKsVstni8/GeSt4qICLtMQxcgCHIcQMA4DlWCNuqTxEDO0VTCEiSBEN6G5+P57gBIgoFhoELCGrcwI+49qyHc/sqTdqi2GPwY9wAewaIKBQYBi5An9UB0GixIPuaxXAf3q1JWxRb/AsDlSGshIjiFcPABUhGM3TpOU0eMw8YBevFVwfQmkD913PgDXIhI4o9ft0mqKwIYSVEFK8YBlpwdr0BWYeE8dcjYfS1MA8aB1P+SP8b83pQt/gdKA01WpZIUc7YJtPnYz1V7BkgIu0xDLRAn9MJkiUByVP/B+Y+wwE0DvpKGDMVho49/G5P2OpQ//mbUB02rUulKOVPz4CbYwaIKAQYBlpg6NgTKdf/CoZ2XZs8Lul0SJw4E7r0bL/bVKrKUff5G1yDgAAABn96BqorIVQ1hNUQUTxiGGiBLjEFuuTmlxaWTRYkXXNXQIsTKRUlqF/0NgRXlIt7/vQMQFHgra0JWS1EFJ8YBoKkS05H0tV3ADr/93zylhahfsm7EF6P9oVR1NCnpAI637fM5vRCItIaw4AGDG27IHHCjQGd6zlWiPqv/stVCuOYJMswpPkxbuBkWQirIaJ4xDCgEVOPgbCMnBjQuZ4jBWhYNo/3guOYMdP3cQOu0pIQVkJE8YhhQEOWIeNhyhsS0Lnuwu2wrVjIZYvjlKlte5+PdZ5gGCAibTEMaEiSJCSMnxHQlEMAcBVsgH3NIgaCOGRq28HnY93sGSAijTEMaEzS6ZF09R3Qt+0S0PnO7avg2PiNtkVRxDO1befzsU6GASLSGMNACEgGI5KuuQu6TN+7fn/MsekbOLat1LgqimSmdr73DCh1tfA21IewGiKKNwwDISKbLEieck9AixIBgH3NIjh3r9O4KopUppy2fh3PQYREpCWGgRCSLQlInnIP5OT0gM63rfgErv1bNK6KIpFsMsOQ4ceMAg4iJCINMQyEmJyYguSp/wM5ISWAswUaln0E16FdmtdFkcefGQXsGSAiLTEMtAJdcjqSp/4ioGWLIVQ0fPUB3Ef3a18YRRS/wgB7BohIQwwDrUSXloXka38ByWTx/2RVQf2S9+A5cVj7wihi+BUGyhgGiEg7DAOtSJ/RDkmT7wYMRv9P9npQ/8Xb8JYf074wigimdv71DHA9CiLSCsNAKzPkdEbypDsD2thIeFyo+/xNeE+VhqAyCjd/egZUh527FxKRZhgGwsDQoTuSrroNkP3/8QuXHXWfvAZPaZH2hVFYGbNy/Po34TpxPITVEFE8YRgIE2OX3ki8/BZAkvw+V7gcqPtsNtxFe0NQGYWLbDDAmOX7uhTOY8UhrIaI4gnDQBiZegxAwqXXB3ay14P6xe/CtY/rEMQSf/YocBRxQCkRaYNhIMzMfYbBOvrawE4WKhqWzePSxTHE0rmLz8c6ihkGiEgbDAMRwDJgFCwjJwZ8vn3NIti422FMsHTJ9flYZ/ERCFUNYTVEFC8YBiKEZch4mAdfGvD5zm0rYVv+EYSqaFgVtTZLl24+H6s6nXCXcWYJEQWPYSBCSJIE60VXwdTv4oDbcO3bjPol70F43BpWRq3J1K4DJIPB5+MdRYdCWA0RxQuGgQgiSRISxlwLU6+hAbfhKdqLus/fgOq0a1gZtRZJp4O5U1efj+cgQiLSAsNAhJEkGQmXXQ/zgFEBt+EtLULdwtegNNRqWBm1FktX38cNsGeAiLTAMBCBJEmGddQUWEdeFXAbSlUZ6ha8AqX6pIaVUWuwdPYnDLBngIiCxzAQoSRJgmXoeCRcOiOghYkAQK2vRu2CV7mfQZSxdPV9EKGn8hS89XUhrIaI4gHDQIQz549oXLo4gL0MAEA4baj99HW4jx7QuDIKFUtn38cMAOwdIKLgMQxEAWNuXyRPuQeS0RxYAx436he9DdeB7ZrWRaGhsybAmN3W5+MdRzhugIiCwzAQJQztc5E8/T5I1qTAGlAVNHw9B44dq7UtjELCn8WHuBIhEQWLYSCK6DPaIWXGA5BTMgJsQcD+/Wewr/+SqxVGOL/CAHsGiChIDANRRpecjpTr7ocus33AbTg2L4dt2YcQXo+GlZGW/FqW+PhRqC5nCKsholjHMBCFZGsSkqfdC32H7gG34dq/BbULXoFSV6VhZaQVf5YlhqLAfrAwdMUQUcxjGIhSstGM5Ml3w9itf8BtKBUlqP3wRbiL92tYGWnBkJkFXVKyz8fb9heEsBoiinUMA1FM0umReOXPYOp7UcBtCJcD9V+8BfumZRCCO+BFCkmSkNCzt8/H2w4wDBBR4BgGopwky0gYOw2W4ZcH0YqAY8NXqF/8HlSXQ7PaKDgJeX6Egf17OSiUiALGMBADJEmCdfgVSBg7DUBgqxUCgKeoALUfvQTvKW6LGwmseX18Plapq4W77EQIqyGiWMYwEEPM/S5G4sSfAbIu4DbU2lOonT8LrgPbNKyMAmHtngfIvr9EOW6AiALFMBBjTN0HIHny3YDBFHgjXg8avp4D2/efQSiKdsWRX3Rms19TDBkGiChQDAMxyNCxB1Km3QvJmhhUO84dq1H36b+h2rgRTrj4NYhw/94QVkJEsYxhIEbpszog5YZfQ5/TOah2vKVHUPPhv+ApPaJRZeSPhF6+jxtwHi2CYreFsBoiilUMAzFMl5iC5Gn3wtTv4qDaEfY61H3yOhw7VnPEeiuz9vQ9DEAI2Au5ZgQR+Y9hIMZJOj0Sx05D4oQbA94GGQCgqrB//xkavpkL4XFrVyBdkDErG/rUdJ+P57gBIgoEw0CcMPUa2rjJUbLvHyzNcR/Yhtr5L0OpPaVRZXQhkiT5ud4AwwAR+Y9hII7oM9sj5YZfwdC5V1DtKJWlqP3oJbiLOGCtNfgVBg7sg1C5kiQR+YdhIM7IZiuSrrkTlmETgmpHuByoX/Q2bGuXQChejaqj5viz+JBqt8F5tCh0xRBRTGIYiEOSJMM64kokTboTktEcVFvOrd+h9sMX4S0/plF19FPW3B6Q9L6P96jftT10xRBRTGIYiGPGrn2QcsOvoGvTNqh2lKpy1M5/Gfb1X7KXIARkoxGW3B4+H9+wk6tHEpF/GAbinC41AykzHoCx56DgGhIqHJuXo/ajf8FbUaJNcXRWYr7vW1U3FOyE8DKUEZHvGAYIksGIxMtvhnX0tX6thQ8AxadqsHJfMXYfPwlVFVAqy1D78Uuwb/iavQQaSurve1hTnU7YCveFsBoiijVBTDynWCJJEiwDRkGf2R71X74PYa+/4PGHK6rx0AdfYf2h42cf65qRiuduugJj8jrBsekbuI/sQeKEG6HPaBfq8mNeQq98SEYjhNu3NR4adm1HYu++Ia6KiGIFewaoCUO7rki98dfQt+163mNq7E7MePljVMoWLFiwAAcPHsR3332HbgOH4oZX52P70TIAgHLqBGo/egn2Tcu44VGQZKMRCX7MKqjfuTWE1RBRrGEYoHPICclInvo/MA8Y1ezz763egUqXgmXLlqGkpARXXXUVPvjgAyxatAh5vXvjxa83/HCwqsCx4SvUzn8Z3sqyVvoOYlNS/8E+H2s7sA+KwxHCaogoljAMULMknQ4Jo69F4uW3AHpDk+fWHDyGPn364MSJE/jNb36DwsJCvPnmmygoKMDVV1+NPSUV57SnVBxH7YcvwrH5WwiVvQSB8GfcABQFtoJdoSuGiGIKwwBdkClvEFKufwi6jB+mH07s2w1bt2zGRRddBOV093+nTp3QrVs37N27F5lJ1uYbUxXY1y9F7fxX4K0qb43yY4qlazfoEnzflrqeUwyJyEcMA9QifZscpFz/UOOqhZKMu8YMwv5nfolbRvaFXq/Hl19+iYKCAsybNw+LFi2CyXDhcanKyWONvQRbV3DpXD9IOh0S+w7w+fj6XQwDROQbhgHyiaTTwzriSqRc/yB0bXKQYjGhW2Ya9Ho9XnjhBfzud7/DTTfdhHvuuQdbik6g2tbC/WrFC/vaxahb8AqU6pOt803EAH9uFTiLj8BTWxO6YogoZjAMkF/0WR3wQaURPX7/b/z1i+/hdDohSgoxa9YsPP300/jjH/8Iu9uL9Yd9W3jIW34UNfNegGPbSvYS+CDRn3EDaJxiSETUEoYB8tu/XpqFwcOG4x//+AcAYHyvLshJSURpaSlSUlIAAHaXx/cGFS/saxah9uNZ8Jw4HIqSY4apbXsYMjJ9Pp7jBojIFwwD5Le+ffuitrYWjzzyCEaPHo0n5n8LB3R44IEH8PHHH0OSgCFd/N/vQKk4jrqFr6H+y/eh1FWFoPLoJ0kSkvoN9Pn4+h1bIIQIXUFEFBMYBshvDz30ELZs2YKHH34YixcvxubNm3H48GFUVlbi0UcfxZSBPdElIzXg9t0Hd6Lmg/+Dbe0SqG6ndoXHiEQ/1hvwnKqAs5i9LUR0YZLgrw0UgJdffhkPPvggUlNTkZeXh/LychQVFWHskP5458ZxSLYYNbmOZE2EdcREmHoPg+TnvgmxylNdiT0/v8Xn43Nuvh05M3w/nojiD8MABezgwYP46KOPUFhYiNTUVEydOhVjxoyBt6wIDcs+glp7SrNr6TLaImHUFBg6dNeszWi27zf3wnn0iE/HWrv3RM9/zApxRUQUzRgGKCSExw37+i/h3LEagHb/xAy5+Ui4+BroUjM0azMalc55F+UL5vp8fP4bc2BIbxPCiogomrHflUJCMhiRMHoKkqfdCzk5XbN2PYf3oGbOP2Fb/QVUV/yuvZ88dKRfx9du3tDyQUQUtxgGKKQM7XORevMjMPe/RLtGVQXO7atQ8/4/4Ny1Ni73OrB27wl9aprPx9dtXh/Caogo2jEMUMhJBiMSxkxF8tR7ISf5/gHWEuG0wbbyE9TOewHuo/s1azcaSLKM5KEjfD6+ftc2KE7OzCCi5jEMUKsxdOh2updgFCBp909PqSpH/edvou6Lt+NqaeMUP24VCLcbDTu3hrAaIopmDAPUqiSjCQljrkXKzQ/D0LmXpm17iveiZu5zsK36DKrTrmnbkSip/yBIRt+ncHLcABGdD8MAhYU+PRvJk+9G0uSfQ5eerV3DqgrnztWoef/vcGz9DiKGFy2STWYk9fN9r4K6zeu5/wMRNYthgMLK2DkPKTf9Bgljp0EyWzVrV7gcsK9dgur3noZ9w1dQHTbN2o4kKcN8v1Xgra2B/WB8ja0gIt9wnQGKGKrTDsfm5XDuXA1o/RuswQhz/kiYB46BLjFF27bDyN/VCLOn34S2P7szhBURUTRiGKCIo1RXwLZ2ETxHCrRvXNbB1GsoLIPHxczCRQcefxD2gwd8OtbcqQt6vfDvEFdERNGGYYAiludYIWyrv4BSWap945IEY/cBsAy5FPqMdtq334rK5s9B2dz3fD6+9yvvwJQT3d8zEWmLYYAimlBVuPZugn39lxCOhpBcw9ClDyxDx8OQ0zkk7Yeao+gQ9j9yv8/Ht731LmRPuzGEFRFRtGEYoKigup1wbP4Wzu2rgBCtOKhv3w2WIeNh6NgDkiSF5BqhIIRAwb23wXPKtzUWLN16IO/Zl0NcFRFFE4YBiipKbSXsa5fAfWhnyK6hy+oAy5DxMObmQ9JwcaRQOv7mKzi19HOfj+/9yrsw5bQNYUVEFE2i452O6DRdShskXTUTydPugy6zfUiuoZw8joal/0HtnOfg2rcFQon8vQ9SRvi390PN+u9DVAkRRSP2DFDUEkKFa98W2NcthbDXh+w6clIaLIPHwdR7GCS9IWTXCYZQFOy55xZ4a2t8Ot7SrSfynp0V2qKIKGowDFDUE24XnLvWwrF9VcgGGQKAZE2Eue9FMPUeDl1SasiuE6hjs2eh8qtFPh/f+9X3YMrOCWFFRBQtGAYoZgivB66CjXBsWwG1viZ0F5IkGDrlwdRnOIxd+kDS6UJ3LT/U79qOQ3953KdjE3r1QftbboUpOxtQvI0P6vSQDCZIiekR8z0RUetgGKCYIxQFrgPb4Nz6Xch3MZSsiTD1GgZzn2HQpWaG9FotudCtAp3FhPShA5CU2wWGBCPgrAfO99KXJEgJqZDTsiEnZ0LXthskc0JoiyeisGIYoJglhAr34T1wbF4OpaIk5NfTt8uFOX8EjN36hW1swbF/v4TKrxc3/kECUgf2Q3q/HjDoTv/2L0nnDwE/dfZYCXJ2Z+g794Wc2TFqZlgQke8YBijmCSHgOXYAjs3fwnvicMivJ5ksMPUcDFP+8FZf3bB+13Yc//dLyBx7MRKSAHhd/gWA8znThikBht4joWufF1VrMRDRhTEMUFzxlB6BY/N38BTvbZXr6bI6wpw/AqYeAyAZzSG/nmKrhWfnCojK4yG9jpzRAYb+l0K2Jof0OkTUOhgGKC55K0rg2Pod3IU7AbTCS8BghKn7AJjyR0Cf3Unz36qFEFCKdsKzdx0g1OB7AloiSYAkw9D7Yui69GMvAVGUYxiguKZUV8CxbQVc+7aEbJnjn9KlZ8PUZwRMeYMhW4IfmCdUFZ5dK6Aca53ejp/SdewNQ79xkGSOJSCKVgwDRACUhho4t62Cc896wOtpnYvKOhi79YO5z3DoO3QLaGCeUBW4t3wFtfxICAr0nZzdFcYhV0KSOSWRKBoxDBD9iOpogHPHajh3roFwO1vtunJCCozd+8PYvT/0OZ18CgZCqHBv/QZq6cFWqLBlctvuMA6+nLMNiKIQwwBRM1S3E67d6+DcvR5qXVWrXtvXYOAp3Azv/g2tWltL9HkjYOgxNNxlEJGfGAaILkAIFd7jh+As2Aj3oV2tNq7gjPMFA7W2Aq7vP0arDH70iwTT6Oshp4R3ASYi8g/DAJGPVIcNrv1b4SrYAKWqvNWvfyYYmPpdBO+2ryHstaGfNeAvSYJkTYFpzI2QdPpwV0NEPmIYIPKTEALesmK4CjbCVbi99QYcnpZ48RVQTxxo1Wv6S99tMAy9Lwp3GUTkI4YBoiCobifcB7bDWbARysljIb+enJoBc3pKq9+u8Jusg/nyOyEZTOGuhIh8wDBApBHvqRNw7dkI14GtEC5HSK5h7j0IsqM6JG1rzdBnFPS5A8JdBhH5gGGASGPC64H70E4492zUfC8Ea49egKf1pjwGxZwI82UzOdWQKAowDBCFkFJdAefejXDt3QzhaAiqLV1qGkypKRpVdn42pxv3vL4QXkWFqgrcPHoArhvZN6C2jMMmQZfdRdsCiUhzDANErUAoCtxFBXAVbISneD8CmRJo7t4HsuJs3HsghBRVhdurwGI0wOH2YMb/fYAPfn0jUhMs/jUkydB37QdDn1GhKZSINMO5P0StQNLpYOrWD6Zu/aDUV8O1bwvcB3dAqSzzuQ3ZoAe8oQ0CAKCTZViMjV37bq8CVYjAZjAKFUp1OQzalkdEIcCbeUStTJeUBuuwCUi9+RGk/uxRWEZcCV2bnAueIxlMgMsW1HVVVWDq39/Hi4vWNHl87b5iDH3sZXy9o/DsY3UOF2745xxc+f/exu3jBiMt0c9egdNEbQVEiHsyiCh4vE1AFCGU6pNwHdzZbI+BsXs/6L31QV/j80178Y9PVmDpH+5EstWM/ScqcNfL8/GLy0fg9ksHn3N8Zb0dD7+7GM/fMQltkqwBXdM05ibIyW2CLZ2IQog9A0QRQpeWdd4eA0N2e02ucfXgPKQmWDDn+x0or6nHg29+jklDejUbBACgTZIVPdtmYMvhkoCvKRx1AZ9LRK2DYwaIItCZYGAdNgFK9UmIhkp4SvYF3a5eJ+PO8UMwa8k6LN91EL3bZ+HxaWObHFNZb4fJoEOi2YQGpwtbDpfg+ov7BXxNoXiDLZuIQoxhgCjC6dKy4LXXaNbe1YPz8H+froIQwN9vnQid3LSDsLymAX/5aBkgAAGBm0b1R892GYFfUOWYAaJIxzBAFAUkWadZW88sXAkAqLE5IMvSOc/36ZiFjx65RbPrccMiosjHMQNE0UCvzQS9V5auw+q9R/CfX90ARVXxyYY9mrR7QXpj6K9BREFhGCCKAnJS8KPxF67fjfdXbsO/7p6MvHaZuGXMILy3Yis8Smg3PeJMAqLIxzBAFAUkcwJgDGyuPwCs3luEZxauwN9uuQL9O7cFANw8qj8anG4s3hz8wMTzMlkhmQKbkkhErYdhgChKyGk5AM69x9+SgmMn8eh/luLX14zCZf27n3080WzCzaMG4O1vt0AJySA/CXJadgjaJSKtcdEhoijhObgF3n0bEMi+BuEhQd9rBAzdh4S7ECJqAXsGiKKErm03RE8QAAABXdvuLR9GRGHHMEAUJeSEVMiZnQDJ/1sFrU6SIGd2hpwQ+i2XiSh4DANEUUTfdQAC20KwlQkBfW7/cFdBRD5iGCCKInJmR0jWZAQykLD1SJCsyZAzOoa7ECLyEcMAURSRJAmGvmMQ2WMHBAx9x0CKhtsZRASAYYAo6uiyOkPXqQ8is3dAgq5TPnRZncNdCBH5gWGAKAoZ+lwCWBIRUYFAkiBZEhtrI6KowjBAFIUkvRHGwVdE2MwCCcbBV0DSaB8FImo9DANEUUqXlgPjkImIjN4BCcahE0+vkkhE0YZhgCiK6XK6NgYCSUZ4QoEESDKMQydCl901DNcnIi1wOWKiGKBUlsC9cTGgeltvHQJJAmQ9jMOvga5Nu9a5JhGFBMMAUYwQThvcu1ZALS9qlevJ2V1h7De2cUdFIopqDANEMUQIAbX0ENy7VgIeF7Rfj0ACDCYY+487vVcCEcUChgGiGCTcTniLdsFbvBtw2Ru79AN9qZ8512SFvnNf6Lv0g2Q0a1swEYUVwwBRDBNChXryKLzFe6CeLPrhiQuFg588J2d1gb5zPuSsTpAkjjkmikUMA0RxQng9UOsrIWoroJ7+T7idjYMOAUDWQzKaIadkQk7JhJSSCTmpDdcNIIoDDANERERxjn1+REREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIjiHMMAERFRnNOHu4AfMw66C7LeCEnWQZJ10Bl++FqS5R+e0+kg642Qzz6nO+c5SdZBliVIsgSdTob0k69lWYKsk84ec8HnJAk6vQydLEEnSzCe/lp/9s+6H57T/XCc/kfH6pr7WpIgSxJ0EmDQyWe/1utk6CQ0/lmWYJClZr5ufN4gy2e/1kkSJAmQJUCScLp9QAKgkyXIQOP3IuPs17IE6KQff93YhiQEIFRIqhdo8rXa+J96/uckoQKK8sPXqhdQFQhVBbxuCEUBVLXxMa8HQlUav/Z4gDNfnzn2zHEe9w/nqApUjxdCUSFUFarbC1VpPEcoKlSPF6ryw9fi9NeKxwvxo+MUt/dHXysQqoCqiNN/Pn2+KhqfUwSEIqAqKhSPerpNAcWjnD7nh/NUIaAIAbcqoAj85Ouf/rnxaxWNXysCp5/74evXRVFYX5da4eubr2++viP39c2eASIiojjHMEBERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiongnYpTL5RIvvfSScLlc4S7lHJFcmxCsLxiRXFssieSfcyTXJgTrC0Yk1xasmO0ZcLvdePnll+F2u8NdyjkiuTaA9QUjkmuLJZH8c47k2gDWF4xIri1YMRsGiIiIyDcMA0RERHGOYYCIiCjOxWwYMBqNeOCBB2A0GsNdyjkiuTaA9QUjkmuLJZH8c47k2gDWF4xIri1YkhBChLsIIiIiCp+Y7RkgIiIi3zAMEBERxTmGASIiojgXU2Gguroat912G2666SasWLGiyXMVFRW49dZbcf3112PlypURV98ZTzzxBDZs2NCqdbndbtx333246aab8NFHH7X4eCTUdsasWbOwcOHCMFTW6Hz1OZ1O3H333bjhhhswf/78sNUXS/j6Dgxf34GLp9d3TIWBOXPm4O6778Z7772H9957r8lzixcvxg033ID//Oc/ePvttyOuPgA4ePAgli1b1up1LVmyBKNHj8acOXPw5ZdfwuVyXfDxSKgNAKqqqsL2JnbG+er7/vvvMXToUMybNy9m3izCja/vwPD1Hbh4en3HVBjYs2cPhgwZApPJhMTERNTW1p59Li8vD3a7HU6nE2azOeLqA4C33noLU6dODVtdsiyjZ8+eOHTo0AUfj4TaAODNN98My8/rx85XX25uLjweD7xeLwwGQ1hrjBV8fQdXF1/f/oun13dMhQGbzYaEhAQAgMVigd1uP/uc1WrF66+/jqlTp+Kaa66JuPp27tyJ9u3bIyUlJSx1Wa3Wc+o63+ORUFtpaSlsNhu6du3a6jX92PnqMxgMWLx4MSZOnIhLLrkknCXGDL6+A6+Lr+/AxNPrWx/uAoLxn//8B0uXLj375127dsFutyMhIQEOh+PsCxMAZs+ejZdffhk9e/bEXXfdhcsvvzzkv0H4U9/bb7+N//3f/8U777wT0pqaY7Va4XA4AAAOhwOJiYkXfDwSavv3v/+Ne+65Bxs3bmz1mn7sfPX997//xcMPP4zLL78cDzzwAEpKStC+fftwlhp1+PrWBl/fgYun13dU9wzcdtttmDt37tn/7r33XmzevBkulws1NTVITk4+e6zFYkFCQgKMRiMkSYLX642Y+mw2Gw4cOID77rsPn3zyCZ5++mnYbLaQ13dGfn4+Nm3aBCEE9u7dezaNn+/x1nS+Gnbt2oXf/e53mD17NmbPno3i4uJWr+1C9Z359ybLMhITE8PyW1e04+tbG3x9a19fLL6+Y2oFwqqqKjzyyCOora3F/fffjwkTJuDvf/877r33XlRVVeGPf/wjvF4vrrjiCtx9990RVV9qaiqAxtGzw4cPx4gRI1qtLpfLhYcffhhlZWWYPn06HA4Hxo0bh44dOzZ5/Gc/+1mr1dRSbd27dweAsyONp0+f3uq1Xai+1NRUPProo3C5XOjbty+efPLJsNQXS/j6Dgxf39rXF4uv75gKA0REROS/qL5NQERERMFjGCAiIopzDANxoqioKNwlEBFRhGIYiAPffvttUAOqNmzYgLy8PIwZMwaqqp7z/L333ou8vLwmy6zW19fjueeew5VXXolBgwZh1KhR+O1vf4ujR4+ePWbhwoUYP358wHURkbYWLlyIvLw83Hjjjc0+P2XKFOTl5eH48eNnHzt58iSeeuopjB8/HoMGDcK4cePw5z//GadOnTp7zKxZszBz5syQ10+BYxiIAzU1NdBinKjb7caaNWuaPHbq1Cls27atyWNVVVWYPn06iouL8frrr2Pr1q344osvkJKSghtvvBElJSVB10JEoZGUlIQ9e/bg8OHDTR7ftWvXOa/d4uJiTJ48Gaqq4oMPPsC2bdswb9481NTU4Oabb0ZDQ0Nrlk5BYBiIIt9++y1uuukmXHTRRRgwYABuvfVWFBUVNfsb9syZMzFr1ixs2LABf/7zn3HixAkMGjQI5eXlcDqdePbZZzF27FgMGzYMM2fOxM6dO1u8/uTJk/Hpp582eeyTTz7BlVde2eSxWbNmwWw244UXXkDXrl0hSRLS0tLwxz/+EePGjcP+/fuD/lkQxYI9e/Zg5syZZ3vP/vWvf2H9+vUYO3YsHnnkEQwdOhSzZ8+GqqqYPXs2JkyYgCFDhmDGjBn4/vvvz7bz1VdfYdKkSRgyZAiuuuoqvPrqq2efmzNnDiZMmIChQ4di8uTJ+Pjjjy9YU3JyMsaMGXPOa33BggWYNGlSk8f+9re/oX///njqqafQtm1bAEBOTg6effZZ9O7dG4WFhUH+hKjVCIoKpaWlom/fvmL58uVCCCGqqqrELbfcIn7729+KBQsWiEsvvbTJ8bfeeqt46aWXhBDinOcff/xxMXnyZFFUVCRcLpd49913xaBBg0RJSUmz116/fr3o2bOn2Lt3r+jfv7+oq6s7+9zEiRPFjh07RM+ePcX69euFEEKMGTNGvPzyyy1+T83VTRQvqqurxfDhw8WsWbOEy+USxcXFYsyYMWLu3LmiZ8+e4uWXXxZut1vU19eLl156SYwZM0bs3r1beDwesXjxYtG3b1+xY8cO4XA4RL9+/c6+/vbs2SMGDhwoduzYIY4ePSr69u0rDh06JIQQYtWqVaJfv36ivLy82ZrOvCa/+eYbMWbMGKEoihBCCKfTKUaMGCG2bNkievbsKY4dOyZcLpfo1auX+OSTT1r8Xl966SVx6623avODo5Bgz0CUSE9Px+LFizF+/Hg0NDSgrKwMaWlpKC8v96sdl8uFRYsW4ZFHHkHnzp1hNBpx++23Izc3F4sWLbrgub169ULXrl2xZMkSAMCWLVug0+nQv3//JsdVVVUhMzPTv2+QKM589913MJlM+OUvfwmj0YhOnTrhnXfegcViAQDMmDEDBoMBiYmJWLBgAX7xi18gPz8fer0eV199NcaPH392xzyz2Yz58+dj3bp16NatG7Zs2YL+/ftDp9NBCIF58+Zhy5YtuOiii7B9+3ZkZWVdsLaxY8fC7XZj7dq1ABp7HgYMGNDkvNraWqiqytd6jGAYiBIGgwGLFi3CmDFjMGnSJDz//POorKz0eyxAbW0tPB4POnTo0OTxDh064Pjx4/j8888xaNCgs/99/vnnTY6bPn06PvnkEwCN3YYzZsw45xqZmZk4efJks9evqqqCoih+1UwUiyoqKtC2bVtIknT2sdzcXOTk5ABAkw/eU6dOoWPHjk3O79ChA0pKSmA2mzF37lyoqopHHnkEw4YNw+OPP47a2lq0a9cO77//PkpKSnDvvfdi+PDhePrpp+FyufD66683ea1v3rz5bNsGgwFTpky54Gs9NTUVBoMBFRUVzX5/gbw/UfgwDESJpUuX4r///S/ef/99rFy5Em+88Qb69OkDAJBlGW63u8nx1dXVzbaTkZEBk8mEY8eONXn86NGjyMrKwpQpU7Bt27az/02ZMqXJcZMnT8bu3buxd+9eLF++/JznAWD8+PH4+uuvz/nQF0Lg5z//OZ566im/v3+iWJOTk4PS0tImH5jLli1DaWkpADQJCe3btz/nNXvs2DFkZWWhoaEBJ0+exHPPPYe1a9fiww8/xO7du/H666+jsrISiqLglVdewYYNGzB79mwsWbIE8+fPx7333tvktT506NAm7U+fPh3Lli3Dvn37cOjQIYwbN67J8waDAaNGjTrbU/hjbrcb1157LWbPnh3sj4laCcNAlKivr4csyzCbzRBCYNWqVfj000/h8XjQrVs3nDp1CuvXr4cQAp999lmTfcFNJhMcDge8Xi9kWcZ1112H559/HsXFxXC73Xjvvfdw8ODBcwYHNSctLQ2XXnopHnvsMYwYMQLp6ennHHP//fejtrYWDz/88NkNRsrLy/Hkk0+irKwMP//5z7X7wRBFqXHjxsHr9eL111+H2+3G0aNHz/7W/lPXX389Zs+ejT179kBRFCxduhTffvstpk2bBpvNhnvuuQdffPEFhBDIysqCLMtIS0vDiRMncNddd2HdunWQZRnZ2dkAGl/HLcnLy0O3bt3w6KOPYvLkyTAYDOcc89hjj2HLli3461//evaWZVFRER544AEkJCScd4oiRZ6o3sI4nkybNg1btmzBpEmToNPpkJubi9tvvx0ffPAB8vLycN999+GJJ56AzWbDhAkTmozwHzZsGNq0aYNhw4Zh3rx5eOyxxzBr1izccccdqKmpQV5eHt566y2fdy2bPn067r33Xvz2t79t9vn09HTMnz+/yTUSExMxcuRIzJ07F506ddLkZ0IUzZKTk/HWW2/hmWeeOTtW4Gc/+xm6dOlyzrF33nknVFXFb37zG1RUVKBz5854/vnnMXz4cADASy+9hBdffBF/+tOfYDabcfXVV+OOO+6A0WjEn/70J/zlL3/ByZMnkZSUhFtuuQVXXXWVTzVOnz4df/3rX/Hiiy82+3xubi7mz5+PV155BTNmzEBDQwNSU1MxduxYPP3002c3aKLIx42KiIiI4hxvExAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTn/j/aZl+HY16lwgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABl1klEQVR4nO3dd3hUZf428Puc6ZMeUumEEiD0rtJEVBRBQawr1nVXXdfd1dV13eq7v9VtlhXbYl9XQEVsFAuoIL3XUEJJgJDeM33Oed4/AigSyJQzmXZ/rsvLMHPOc74JzMyd5zxFEkIIEBERUdySw10AERERhRfDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5/ThLoCI2pfweuEsPQZHyWEozc0QHjcAQDIYoUtMhKVbHsydukDS8+2BKF7w1U4U44SqonnPDtSv+xb2g/vhOnYUQvG2PCnJgCSdPFAAQm15WKeHqUtXWHvlI/WCcUgsGAxJZkciUayShBAi3EUQkfY8DfWo++ZLVH+xBJ6qCkCnAxTFv0ZOnmPIzEbGZVORNvFSGFJSQ1IvEYUPwwBRjFFdTpS//w6qFi86+du+Ri9xSQIkCZlXzUTOdT+CbDJr0y4RhR3DAFEMad69A0dfehqe6irtQsAPSRIMGZnoeu+DSBwwODTXIKJ2xTBAFANUtxulb7yE2hWftYwDOHnvP2ROXiP9kinodMe9kI3G0F6PiEKKYYAoyim2Zhz++59h318Yut6Ac5EkWPP7I+/Rx6GzJrTvtYlIMwwDRFFMsTXj4J8fgfNYCaCGuDfgXGQZ5i7d0OvP/4AuITE8NRBRUDhXiChKKU4HDv3lsfAGAQBQVTiPleDQXx6D4nSErw4iChjDAFGUOvHWXDiKD4U3CJyiqnAUH8KJt14JdyVEFACGAaIo1LhlQ8tgwUgIAqeoKmpXLEPj1o3hroSI/MQwQBRlvI31OPri09+tHBhJJAlHX3gK3saGcFdCRH5gGCCKMqVvzoVia27/mQO+EAKKrRmlb/0n3JUQkR8YBoiiiLumCvVrvoms2wM/pKqoX/0N3DVV4a6EiHzEMEAURWq+WBKZtwd+SJJQ8+XScFdBRD5iGCCKEqrb3RIGIrlX4BRVRc3ni6G63eGuhIh8wDBAFCUaNq5pGSvQDv55pBx37C7GU8UVAbeh2JrRsHGthlURUagwDBBFCdve3S1bCreDKzJT8LMumcE1otPBtm+3NgURUUgxDBBFCduBvYCitMu1BiRaYNEF+fagKC01E1HEYxggigKqxw3nsaPBtSEEfrnvGP53ouaMx7c32nHTzsNYV6/9LQjn0RKoHo4bIIp0DANEUcBZcgRQg+sVkCUJ12Sl4suaRjR7W9oqdrjwTEkFbspJxwWpIdhkSFVaaieiiMYwQBQFPHW1mrQzLi0RSXodllU3osbtxd+OlGNcWhKmZ6Vq0n5rPPV1IWubiLShD3cBRNQ21e3SpB2dJOHqrFTML6vFhgYbelhMuLNTB03aPhfB6YVEEY89A0TRQMOlh8elJsKlCggI/KJrFuRWFjH666EyPF1cgW2NdtxTWIKDdmfA1xPRsC4CUZxjzwBRFJAMRs3aeq20GgDQ5FUhn2Mxw9/1zNXseofdBixYtBMT+2RibM8MpFgMmrVNRNpgzwBRFNAnJmnSzoKyWmxttOOvvTtCEQJf1TZp0u75bGjUY1NJHf755QHM+M9aPLxoJ5bsLkODwxPyaxORb9gzQBQFLN3zgm5jRU0jFlc14I89c9HdYsLUzBR8UtmAyR2SoQ/hfgfrvzd+UBXAppI6bCqpw1PLD2B41zT2GBBFAPYMEEUBXUIiDJnZAZ+/rdGO10qr8fOuWeiTYAYATMlIgUNVsSqEvQO1nXrjaH3r4w1OBQP2GBCFH8MAUZRIyO8HyP6/ZA/bXXi6pAK35HbA6NSE049bdTKmZCTj48oGqBoOUDxNlrG320ifDv1+MJg5dx3++OkebCiuhaKGoC4iOoskRCjeBYhIa1XLPsaJN/+j6cyCkJIkPD/xIRQ5A78bmZ1kwhUFObiiIAfZyWYNiyOi72MYIIoSnoZ6FN5zS7vtTxCsRnMy/jD0Pk3akgCM6p6OqQNycGFeB+iD3TeBiM7AAYREUcKQkoq0iyaibvU3QS9NHHKyDgdHTAU0KlMA2FBciw3FtUizGjClfw6uHJCDLmlWbS5AFOfYM0AUReyHi1D06APhLsMnb07/E7ZVabNy4rkM7pyCqQNyMaF3Bkz69tnemSgWMQwQRZmi3/0K9kMHgEhd2U+WgV4FeDDzqnYbAJho0uPSflmYOiAXvTJDsOESUYxjGCCKMo7iQzjw6AMRHQbcv/4X/rCuGk5v+9eYn52EqwbkYFJ+FhJMvBNK5AuGAaIoVPHhuyif/2a4y2hVzs13IPua6+H0KNhQXItvDlRh3eGadg8GZr2MSflZmDogB/1zkyGFcGElomjHMEAUhYSq4ODvH4L9cFHk9BDIMqw9+6DXX/4FST7z/n24g0H3dCumDszFZf2yudIhUSsYBoiilKv8BIp++wsoDnv4A4EsQ2exovffnoMp+/ybHIUzGJj1Mq4amIvrh3dBVpKp3a5LFOkYBoiimL1wG47866/w2h3hCwSyDNlkRq/H/+n3HgpOj4L1R2rx5d4KrDtSg/ZacFAvS7i8fzZuGtkVnVMt7XNRogjGMEAUpYTHjeZPXobqaEbllgOwl1W1fyCQZegSEpH3+7/C2qNXUE1VN7vwWWE5lu4ux4mG1vcz0JosARP7ZOJHI7uiJ2chUBxjGCCKUvZVH8BTtO3knyQ0VTShZucBtNuv15IEU05H9HjsL23eGvCHKgS2H6vH4t1l+PZgNTxK+3w/Y3qk45ZRXTGgY0q7XI8okjAMEEUhd9FWOFYtOutxRTajbOUWeJ3u0PUSnNwsKXvGDciaeSNkgzE01wHQ4PDgy70VWLy7DMU19pBd5/sGd07BLaO6YkTXNM5AoLjBMEAUZZS6SjR/8hLgPcdWv3oj6o/WoX7XvpYPbq1Cwcm2LHm90OW+B2Hp2kObdn0ghEBheROW7C7DV/sr4fSE/nZIn6xE3DKqK8b2yoDMUEAxjmGAKIqcHidQX9n2wWmdUF14DM07twUXCk6emzhoGDIuuxLJI8acNXWwPdlcXnx9oAqLd5VhX0VTyK/XLd2Km0d2wSX5WdwgiWIWwwBRFLGvWgRP0Vafj5dTMuDt0AdN+w+gedd2eKoqWp6QJECSz97wSNYBQj29TbIhMxtp4y5G+qTLYcrK0erb0MzBqmYs3V2OL/ZWoNnlDem1spNNuGlEF1xRkMN9ECjmMAwQRQl30TY4Vn3g1zmuRjvKNx9CpzvvQ4dLLodit8FRfBiO4kNwFB+G0twM1eUAIEE2maFLTISlex4s3XvC0j0POmtCaL4Zjbm8ClYVVWPJ7jJsP94Q0mulWQ24blhnXD2oI5c7ppjBMEAUBZT6SjR/fJ5xAq1wN9lRtqkIqtONrGuuR8fZd4WwwshxvM6OJbvL8VlhOersvv+8/JVo0mPGkI64dmhnpHJVQ4pyDANEEU543Wj+2MdxAie5mxwo27gfqqvlwzBl9EXo8cgfQ1ViRPIqKlbsr8Q7m47haG3oZiKY9TJmDeuMm0d2hdXI2wcUnRgGiCKYEAKOlQvhObTD53PczQ6Ur98Hxf3dPXRzl27o++zcUJQY8VQhsPpgNf638SgOVDaH7DodEoz48UU9cHn/bM4+oKjDMEAUwZw7VsK1+Uufj/fYnChbvw+K68zucclgwKB3Poaki9/fXIUQ2Hy0Dv/beBQ7QjiuoE9WIn42oScGd04N2TWItMYwQBShPMWFsK+Y5/vx9pNBwNn6ffJ+L70VkTMCwmH3iQa8s/Eo1h2pDdk1JvTOwD3j8pCbwr0PKPIxDBBFIKWmDM2L5/o8YNBjd50MAu5zHpP3hyeQPGS4ViXGhINVzZi36Si+OVAVklWcDToJs4Z2xi2junLmAUU0hgGiCKPam9D8ycsQNt+6sr0OF8rW74fX4TrvcZ3uug+ZV16tRYkx53idHfM3H8PnhRXwhiAVpFkNuOvCHriiIAc6meMJKPIwDBBFEOH1wLb0dShVx3w6XnF5cGLdXnjt5w8CAJBx5dXofNd9wZYY0yqbXHh/6zF8urMMTq/2Sx73zEjAzyb0xLCuaZq3TRQMhgGiCOHvzAHF40X5hv1wN/o2bS5pyHD0/MMTwZQYN+odHizadhyLtp8IycqGF/XsgHvH5aFzmlXztokCwTBAFCH8mTmgKgrKNx6Aq873qXLGrGz0f+m/gZYXl2wuLz7ZeQLvbT2u+QJGelnCzCGdMHt0NySZOZ6AwothgCgCeEr2wr58HoC2X45CVVGx5SAcVX5Oj5MkDHrnY8gmU2BFxjGXV8Fneyowf/MxlDc6NW072azHnRd2x1UDO0LP8QQUJgwDRGHWMnPgFcB77pkApwghULXjMGwnApsS1+fvz8HaKz+gc6llVcNPdpbhjXXFaNL49kH3dCvum9ATo7qna9oukS8YBojCSHU0o/njl3yaOSCEQE3hUTSV+L4s8Q91ufeX6DD5ioDPpxaNTg/eWleCj3aegKLx7IMxPdJx7/ie6JbO8QTUfrg5N1GYCMUL+/J5Pk8hrC86EVQQAADHkUNBnU8tks0G/PziXnh99giM6aHtb/Lrj9Tirrc34+0NJSGZ5kjUGvYMEIWBEAKOVR/Ac3C7T8c3HClH7V7fphueT0K/AvT+v6eDbofOtKmkFi+sPITiGm03ROqTlYjfXt4XPTKiYytpil4MA0Rh4Nr5LZybPvfp2Kbj1ajeeUST68oWKwb+9wNIMjsFteZVBZbsKsNra4+g0andeAKDTsLtY7rjhhFdOMCQQobvCETtzFOyF85NX/h0rFAFPDYnjEnarG+vOuxwV1Zo0hadSS9LuHpwR7xzx2hcP7yzZh/cHkXglTVH8PN3t6GkxqZJm0Q/xJ4Bonak1Ja37DngaXvmwA8Zhl8BR00zGrdtQuOm9RA+7lvwQ90f+SNSR18U0Lnku+N1drz87WGsPlSjWZsGnYS7LuyB64Z15rLGpCmGAaJ2ojqaW/YcaK73+1zT0EkwD5vU0o7Hjd23zYLqansJ4tZkX/cj5N54a0Dnkv+2HavD8ysP4VCVdr/VF+Qm49HL89GFKxiSRnibgKgdCMUL+4p5AQUBQ48BMA29+PSfbfv3BhwEAMBRfDjgc8l/Q7ukYe7Nw/HryX2QZjVo0uaeskbc9fYWvL/1uOZTGyk+MQwQhZhQVThWLYJScdTvc3UZnWAZPxOS9F2XcNP2Lb43IJ3dlewsYRhobzpZwlUDc/G/20fh5pFdYNAF38XvVlS8sPIQfvn+dhyvd2hQJcUzhgGiEBJChWPNx/Ac3un3uZI1CdbJP4KkN57xeNMO38NA0qBhKHhtAbr+/GGkjp0IXWIS3JUV8Np839OAtJNg0uMnY/Pw39tGYmLvTE3a3HWiEXe9vRmLtpVCPXnXt76+HseOBT8VleIHxwwQhYgQAs71S+AuXO//yToDEqb+GPrMTmc87G2ox+47b/C5mY633Y2s6bO+q0lRYD90AKbcTtAnJftfF2lqx/F6/Gv5ARyr0+Y3+8GdUzBcPYy7brkBXq8XN910E+bNm6dJ2xTb2DNAFAJCCDg3fRFYEABgGT/zrCAAAE07t/nVTtKQEWf8WdLpkNCnH4NAhBjcORWv3jIc1w/rDC3mBqz6djXuuuM2TJkyBY899hjmz58Pt9v/mSsUfxgGiELAtf1ruHd9G9C5pqEXw5g3sNXnGv0YL6BPS4e5S7eAaqD2Y9LrcN+Envj39UPQKTWw9SRUxYuDH87B9jk/x4Ujh2HevHno27cvgJZgStQWhgEijbl2fgvX1q8COveHMwe+TwiB5l2+9wwkDR5+xsBDimyDOqXgtVuG49qhZ/cItaV65yqcWL0I//rXv7B06VKUlpaefm7JrhMMBNQmhgEiDbkK1/u8zPAP6TI6npw50PrL0l1RDk9Ntc/tJQ8ZFlAdFD5mgw4/n9gLz143GB1TzD6f57E3Qq/Xo2fPnhg5ciRWrFhx+rlnvz6I332yB00aLpFMsYdhgEgj7gNb4Fy3OKBzW2YO3HLWzIHvay70b0ZC0iCGgWg1pHMqXps9AjOGdPTp+KQufeFRFMyYMQN79+496/m1h2twz/ytOFzNWSTUOoYBIg24D+2A49uPAjpXMicg4Yo7ISecf1Bf855dPrdp7toD+pTUgOqhyGAx6PCLi3vjmVmDkJN8/l6C5K59MfKRNzHikTch6Vpf2Ki03oH75m/Din3BbYNNsYlhgChInuJCOFZ+AMD/+7KS0YKEKbdDl9r2nHObHz0DiQWtD0Ck6DO0Sxpenz0c0wflnvc4a1ZXJOR0P+8xTq+KvyzbiznfHIRXUTWskqIdwwBREDzHD8D+9buACOCN1WCCdcpt0HU4/5s8ALirKv3abTCxYJD/9VDEshr1ePCSPvjXzIHISjIF3d4H20rx4Ac7UWPjtENqwTBAFCBv2WHYl88DVMX/k/UGJFw2G/rMzj4d3lzo+y0CAEjoz56BWDSiWzremD0CUwfkBN3WztIG/OSdLdhV2qBBZRTtGAaIAuCtOArbF/8DlABGaOv0SLj0Fujb6NL9Pn8GD5o6d4WB4wViVoJJj4cvzcc/ZgxERuK5B5z6osbmxi8X7sCibaWcfhjn9OEugCjaKNWlsH3+FuANoItV1sE66SboO/b06zSbH4MHE/sP8LcqikKjuqfjjdkj8eKqQ1i2p/z04+b0bDz99NPQ6XQwJneAJJ//bV5RBZ775iD2ljfiocl9YDboQl06RSD2DBD5QamtgO2zNwFPAFsISxKsE6+HoWu+X6d56mrgKitt+8CTEvtzvEC8SDLr8ZvL8vG3awYgI6Gll6DfLX+AM2cgmjP6ov/t/w+S7Nvb/Jf7KvGzBdtQyh0Q4xI3KiLykVJfBdvS1yAcgczVlmCZcC2MvYb4fWbdmm9Q8vSTPh9f8Mo8GNI7+H0dim6NTg/+b9lebCyuC6qdRJMev5vSFxfk8d9QPGHPAJEP1KZa2Ja9EWAQACwXTQ8oCAD+rS9gzOnIIBCnks0GPHn1QNw2Orj9KJpdXvz24914Y13x6S2RKfYxDBC1QamrQPOSVyHsjQGdbx4zFca+IwO+vm2PP+sL8BZBPNPJEu64sDueuHoAEkzB3ft/a30JHvt4NxqdHo2qo0jGMEB0Ht6KEjQvfgXCFlgQMI24FKaCCwK/fkM9nMeP+nw8Bw8SAFyY1wH/uXk48jISgmpn/ZFa/PSdrSiq5DLGsY5hgOgcPMWFsC17A3A7AzrfNGQizIMnBFVD897dfh3PwYN0SudUC164cSgm980Kqp2yRid+tmAbvij0fdErij4MA0StcO/bBPtX8wNbRwCAccBFMA27JOg67EX7fT7WkJkNY1Z20Nek2GEx6PC7KX3xwMRe0MmBb2ftVlQ88fk+PPtVEbwqxxHEIoYBou8RQsC59Ss41nwMBDh4yth3FMyjpkCSAn/zPcV+6IDPx3I/AmqNJEmYObQTnpk1GOnW4BYp+mjHCfzx0z1wegJYdZMiGsMA0UlCVeFc+wlc274KuA1D76EwX3iVJkFAqKpfYSAhv3/Q16TYNahTCl750TAM7Hj+3THbsvZwDR5etBNNHFgYUxgGiAAIrwf2r+bDvW9TwG0YegyEZewMSJI2LytXWSlUu93n4629+mhyXYpdHRJNeGbWYFw7pFNQ7ew60YgH3tuB6uYAFt+iiMQwQHFPuBywffYmvCV7A25D37UfLBNn+bzamy/sh4p8PlbSG2Du0l2za1Ps0utk/PziXvj9FX1h0gf+7/VIjQ0/e3cbjtX5HlgpcjEMUFxTbQ1oXvwKlIqSgNsw5A2EddINkGRt13S3H/R98KClRx5kg0HT61Nsm9w3Gy/eOBQdU8wBt1HR6ML9727HvvImDSujcGAYoLil1FWi+dO5UOsrA27DWHAhLBOvg6TTfs8vx0HfxwtYe/IWAfmvZ2Yi/nPzcFzQIz3gNhocHvxq4Q5sLgluGWQKL4YBikveihLYFr8CYQt8L3fzyMthHn2FZmMEvk8oCuxHDvl8vLWXf5sfEZ2SZNbjr1cPwJ0XdEegw14dHgWPfrQLX+8PPFhTeDEMUNzxlOxt2WfAHeDubJIMy/hrYRo0TpNZA61xHiuBcPs+OMvSs3dI6qD4IEsSbh3TDX+7ZgCSTIH1cnlVgf+3dC8+3O77DpsUORgGKK6492+GfcW8gBcTgt4A62W3wNh7qLaF/YDdj1sEstkMc6cuIayG4sXoHh3w8s3DAh5HIAD8++uDeGNtMbghbnRhGKC4IISAc9vXcKz+KODFhCSzFQlX3gVD59Dfn7cf8mPwYF5vSDptBy9S/OqUasHzNwxF76zEgNt4a0MJnl5RBIWrFUYNhgGKeS2LCX0K19YVAbchJaUh4aqfQJ/ZWcPKzs2faYVW3iIgjaUnGPHsrMEY2iU14DY+3VWGx5cUwuVVtSuMQoZhgGKacDthXzEP7n0bA25DTs9F4lU/gS4lQ8PKzk31uOEsOeLz8Rw8SKGQYNLjb9cMxPhegf+7X3WwGo9+tAs2V4C35ajdMAxQzFJqy9H88UvwHt0XcBu63DwkTr0LsjVJw8rOz1F8GMLr+5snVx6kUDHpZfxpan9MH5QbcBvbjtXjlwt3oNbm1rAy0hrDAMUk98HtaP7kP1AbawJuw9BjIBIuvxWSMfBFWQLh8GNKoS4xEcbswN+oidqikyX8alJv3DamW8BtFFU24/53t+FEfYAzeCjkGAYopgjFC8eaT+BYuRBQAt9IxVhwASwXh2YxobY4j/m+GqK1Z5+QTW8kOkWSJNxxQXf8clKvgNciONHgxP3vbsfBqmZNayNtMAxQzFCb62Fb8mpQ4wOAU4sJXRmSxYR84U8YsPToGcJKiM50zeBO+OOV/aCXA4sEtXY3fvHeduw8Xq9tYRQ0hgGKCZ7Sg2j+6EUoVccDb6QdFhPyhfPYUZ+PNXcJvOuWKBAX52fhb9cMhMUQ2HRWm1vBbz7ajcKyRo0ro2AwDFBUE0KFc/s3sH/2FoQriN3T9AZYLw39YkJt8TY1wltf6/Px3KmQwmFEtzQ8M2swUi2BbY7l8Ch45MNdvGUQQRgGKGoJlwP2L9+Ba8tytKx9FpjTiwl1Cf+ofH9uEQCAiSsPUpj0zUnCnBuGIDvZFND5zS4vHl60E0druQVyJGAYoKikVJ9A08cvwntsP4QQ2FZ8AvPW7MT8tTux82i5z0uhSomp7bqYUFucx32/RWDMyoHO3L4zHYi+r0uaFS/cMBR5GQkBnV9n9+ChD3airMGpcWXkr/YfKk0UJPeBLXCs/RRQvDha04CfvPIR1h88fvo+vxACkwry8NKd05Cdcu4lVfUde8Jy8fWQzYG9kYWCPz0DHC9AkSAj0YR/XzcEj328C7tO+D8OoKrZhYc+2IE51w9Bh8TAehkoeOwZoKghvB7Yv/0Qjm8/BBQvXB4vbprzHqqECcuWLUNzczOamprw0UcfYV+dE7e++AEUtfWlUE1DL4b18tsiKggADAMUnZLMevzr2kG4KK9DQOefaHDioQ92ot4R+HRgCg7DAEUFtakWzYtfgefAltOPLdtRhD3HK7Fo0SJUVVUhNzcX3bt3h06nw7x587Dh0HGsOXBmt7tktMB62WyYh10CSY68f/7+zSToGsJKiPxj0uvw+LQCXFmQE9D5xbV2PLJoJ5q5dHFYRN67IdEPeI7tR/NHL0GtOXHG45sOlaJLly7Izs7Gb37zGxRkpyBZVvDXv/4VEyZMQEJCAnYdrTh9vNyhIxKvuReGLpG5lj9nElC008sSHr60D24aEdjA1gOVzXj0o11weBSNK6O2MAxQxBKqCueW5bB/8TaE++xlTAs6Z+HYsWPIyclBWVkZ7p08Co0OFwoKCtDY2AiXy4UksxEAYOgzHIlX3Q05Kb29vw2f+TWTQJJg7syZBBR5JEnCT8b2wKyhnQI6f/eJRvzhkz3c7bCdcQAhRSS1uR6Obz+E98S51+m/+aJBGNWzE4rKa+BVVfz+vRVIycrFE088gX/84x+QITB5SD4s42bA2Gd4O1YfGH/CgDEzG7KJMwkoMkmShJ9N6AmHR8GS3eV+n7/5aB3+39JCPD61P/Q6/s7aHvhTpogihIB73yY0LZpz3iBwSq+cDkixmvHAW0uRmN0JX3/9NT7//HM8+eSTeGTmpegz+9dREQQA/6YVcvAgRTpJkvDgJX1wSX5WQOevOVSDv32xH6qP04QpOAwDFDHUpjrYPnsDjjUfAx6XT+es3HsE1zw9D0NGjcHq1avx/vvv47bbbsOtl4/Hn99cCF1GxxBXrR3OJKBYo5Ml/Pby/IBnGSzfV4lnVhT5vG4IBY5hgMJOCBWuvRvQtGgOlBOHfT6vrL4Jt720CBdfMhlLlizB73//ezz00EMQQkBkdcXTz78IpzN6FjNxV5T5fCzDAEULvU7GH6f2x7AuqQGd/+muMrz07WEGghDjmAEKK7WxFvbVH0IpO+L3uf/+bB301kQsWLAA77//PrZt24YLL7wQAFBUdBDz5y9AVlYWbrvtNq3L1pxQFLirq3w+3tQpMlZMJPKFSS/jr1cPwMMf7MTuADYoem/LcVgNOtx+QXftiyMADAMUJkKocBdugHPzF4A3sIVGvt1XgmnTpkGSJFx99dW4+uqrz3i+X79+KCnxb63/cHFXVwHnWCCpNaaswOZyE4WLxaDDk9cMxIMf7EBRpf8bFL25vgRWow7XD+csmlDgbQJqd0pjDWxLXoNz/ZKAgwAA5Odm4I033kBqamqr/5WVlWHs2LEaVh467krfR1zLZjN0ySkhrIYoNJLMevxzxkB0S7cGdP6Lqw7j050n2j6Q/CYJ3oihdiJUFe7CdXBuXg4owS87alcENkg58KS2/lty//79UVBQEPR12kPNis9x7MWnfTrW3LU7+j7znxBXRBQ6Vc0uPPDudpQ1+j+mRwLw2JS+uLRftvaFxTHeJqB2odRXwfHth1AqfZ8+dz5ySgayJt2Ea9Jj4w3Bn54BY2ZsfM8UvzITTXh61iD8/L3tqG52+3WuAPDk5/uQYjFgVPfIXUQs2vA2AYWUUFW4dq1G80cvaBYEDL2GIHH6PdDFSBAAAHdlRdsHnWTM5ngBin65KRY8de1gpFoMfp+rCuDxJYU4XG0LQWXxiWGAQkapr4Rt8Vw4N34GKMFvPiJZk2C99BZYJ8yCZIyt1ff86hng4EGKEd3SrfjnzEFINPnfSW1zK/jtx7tQa/OvZ4FaxzBAmhOqAteOVWj+6EUoVcc1adPQeyiSZj4AQ9e+mrQXafwLA7HTI0LUOysRf58xEGaD/x9HFY0u/O6T3XB5ubFRsBgGSFNKbQVsn85tmTKoSW9AMqyX3Qrr+GshmSwaVBh5VI8bntoan49nzwDFmoLcZDwxfQAMOsnvc/eWN+HJz7hscbAYBkgTqtMOx7rFLWMDqks1adPQZziSrn0Ahi59NGkvUrmrKv06nj0DFIuGdU3D41cVQCf7Hwi+KarC62uLz/m8EAKKyrBwPgwDFBSheOHatRpN7z8Nd+F6QAS/7aiUkALr5bfBOm5GzI0NaI27wvdbBLqEROgTEkNYDVH4XJjXAb+b0hcB5AH8b+NRLNtz9mvJo6h4ankRthyt06DC2MWphRQQIQS8xYVwbvoMapN2LzJj31Ewj7wsLkLAKe4qP2YS8BYBxbhJ+VmwuxX8a/kBv899avkB5CSbMfTkPgj1djf+uLgQO0sbkJFo5FTE82AYIL95q47DuWEZlArtlvqVElNhHTcD+o49NWszWvjTM8BbBBQPrhqYi7IGB97ZdMyv87yqwB8/3YMXbxoKl1fF7z7ZjYrGlh1QC8v93xMhnjAMkM/U5no4N38Bz6GdmrZr7De6pTfAYNK03WjhqfF9gyKGAYoXd13UA6X1TnxT5PvrAwCaXF78+oOdaHB64PR8d9uysKwJqhCQpQDuQcQBhgFqk3C74Nq5Cq7dazSZIXCKnJQGy7gZ0OfmadZmNPLU+36bxZiRFcJKiCKHLEn47ZR8VDQ5sbe8ya9zK5pcZz3W7PLiWJ0j4H0RYh3DAJ2TUBV4DmyFc8tyCKeWK31JMPYfA/OISyEZjBq2G528DfU+H6tPSwtdIUQRxqTX4a/TB+DeBVtPd/cHo7CskWHgHDibgFrlOV6E5g9fgGPNx5oGATm5AxKm3gXLBVMZBE7yKwwkp4asDqJIlJ5gxJNXD4TVqAu6rcIyjhs4F/YM0BmUugo4N34G7/EijVuWYBxwIczDL4GkZwg4RSgKvE2+v0EZUtkzQPEnLyMBf57aH49+tAvBLBfAMHBuDAMEAFAdzXBtXQH3/s2Axit5yR06wnLBVdBnd9W03VjgbWoEVN/XZtAzDFCcGtU9Hb+4uDee+SrwX1SO1Nhgd3thNfKj74f4E4lzwuuBa89auHasAjzB35P7PsmaDPOIS2HoNRiSxDtSrfHnFgFkGTouOERx7OrBHXG83o73twa2yqkqgP0VTRjahaH6hxgG4pTwuOE+sAWuXashbA3aNq43wjRoHEwDL+ItgTZ4/ZhJoE9JhSQzVFF8mz26Gz7bU4EmV2AzmwrLGAZawzAQZ1SXHe7C9XDvWQ/hsmvcugRDn2EwD58M2ZqkcduxyeNHzwDHC1C8O1Znx2Mf7w44CADAHo4baBXDQJxQbQ1w7VrTMibAq/3+37qOebCMugK6Drmatx3L/JpJkJIasjqIIt2mklr8eUkhbK7gtivey5UIW8UwEOOU+iq4dn0Lz8EdgKr9nt9ySibMo6ZA36UPJK7s5Td/bxMQxRshBBZuK8VLqw4FNZPglDq7B7U2N9ITeAvz+xgGYpS36jhcO1fBW7wXgPZbd0pmK0xDL4Gx7whIcvDzf+OVt8GfMMDbBBSf+uckYULvTKwsqtIkEByqbkZ6Ajct+j6GgRgihID3xCG4dqyCUnY4NBeRdTAWXAjzkAlxtbNgqHgbfB+8aUhNDV0hRBFKkiQUdExBQccUVDQ68dGOE/h0Vxmagxg3cKjKhpHdGAa+j2EgBghVhbekEM4dq6DWnAjZdQw9BsI88lLISXwRacXjV89AaugKIYoC2clm/HRcHm4d0w2fF5ZjwebjKG90+t3OwarmEFQX3RgGophQvPAUbYNr12qojTUhu44uswvMo6/gokEh4N8AQt4mIAIAi0GHawZ3wlUDO+Kr/ZWYt/Eoimt9nx3FMHA2hoEoJNxOuPdtgmvPWgi7f7t5+UNKTIV55OUw9BjAwYEhoth93/dBn5ISwkqIoo9elnBZv2xM7puFNYdq8M7Go9hX0fZ74tFaO1xeFSY91+04hWEgDITihffoPhh6DPDrPNXRDPeedXDt3QC4/e8a85nBBPOQiTD2HwNJbwjddeKcEAKq0/e/R52Fu60RtUaWJIzrlYGxPTtg67F6vLPxKLYeqz/n8aoASmps6JPN9VBOiakwINxOKLXlEPYmCMULCAFJpwcMRujSsiAlpoX9N1whVDhWLoS37Aj03fq1ORJfCAGl8ijc+zbBc2Q3oAQ+aKYtkskCY/8LYOw/BrKZHzyhJtwuv/YlkM2WEFZDFP0kScLwrmkY3jUNe8oaMW/jUaw53Pot1EPVbYcBIQS8NZVwlx2D6nJCeD2ALEPWG6BLToOxU7eYCelRHQZUWyM8h3dCqToOpbq07WV19UboOuRCl9ER+s59oMvt0a5r5gsh4Fy/rOVDHYD36H4Yuvdv/Vi3E+6D2+HetwlqXUVI65ISUmAacBGM+SO4rXA7UhwOv46XY+RNh6g9FOQm469XD8Dhahve2XgUX+2vPGOS9cHKZqDgzHOEqsJRtAf2wm1wHT0E1/ESiDZ6YfVpHWDq2gumbr2QNPwi6FOjc4C1JITGW9SFmFBVeEsPwrNvI7zHDwCnftP359uQZECokBJTYew7CoZeQyBbQr8BjHPHSrg2f3n6z/ou+Ui4bPYZxyjVpXDt3QjP4Z2A1xPSeuTUTJgGjYMhb1BLDwq1K1dZKfbef6dvB0sSBr+/LOw9W0TR6ki1DW+uL8bKomoAwODOKfj3dUMAAN6mBjRtXInG1V/CW1sFyDr/FmmTZJxaz8XafyiSL7oU1n6Do2ovkaj6BPCUFMK5fimEvfHkDx+BbbcrWrpmRXM9XJu/hGvLchjyh8M8/NKQzZ13H9h6RhAAAO/xA1BtjZCMZngO74R73yYo1YHtxuUPXWZnmAZPgL5rPncTDCPFj/ECstnCIEAUhB4ZCXj8qgIUVTbjjXXF2FXaAK/dhrrF89G47quWz5JTnyf+rtYqvrvdZ9+7HfY9W6FLTUfGzNuROHiUht9F6ERFz4Bqb4Jz/WJ4S/YCkBCKFfUgSZBMCTBfNB2Grn01bdpzZDfsX7/banDRZXaGUl+l+fbBrdF37g3ToPHQ5XTnB0sEaC7chYN/+LVPx+rT0jHg1fkhrogofmxZvQGJn70FfXP9GR/mmpEkQAgkDBqJjOvugj45VftraCjiewbcB7fDuX4x4D01cC5E2UUICKcNjhXz4OleAMuF0yGZgh+w5Tm6D/av3ztnD4ZSdTzoa5yXJMHQY0BLCOAmQhGFMwmI2p9ib0bVu68idfv60x/YIXGyXdvuLbDv34XM6+5E0sjxobmWBiI2DAgh4Nr+Ndzbv2nPqwIAvCWFsNVVwHr57ZATkgNuzVt6EPavFoQmdbZFp4ex9zAYB14EXXKH9r8+tUlx+L5IimzhTAKiYHnra3Hixf+Dp6q85YH26BhXVQiXE5X/exGe6gqkTZkVkT2zERkGhBBwbVwGd+H6cBUAtbEWtsVzkTD1x5ATU/1uwlteDNvyd0I6FbBVBhNM/UbDWHABZCvn0EYy1Y/ZBJxWSBQcT20VSp/9E5Smer+m9Gqp7rMPoDrs6DDj1ogLBBEZBlybvwxfEDhFqBCOZtiWvo6Eq34M2ep7D4G36jhsX7wd8tkA3ydZEmEquBDGfqO4gVCUUJ2+hwEdwwBRwLwNtTjx3ONhDQKnNKxcBklvQIfpN4e1jh+KuDDgObIb7t2rw11GC6FC2Bvh+OZ9WK+4w6eR90pNGeyfvdUuAwIBQE5Kg3HQOBh7DeVqgVFG8SMMsGeAKDBCVVHx5nPwNtSGPQicUr/iE5i65iFxyJhwl3JaRIUB1d4Ex5qPw13GmYQKpaIE7sL1MBVceN5DlfpK2D57E8Lt32IygdB1zIOp7yifVjGkyOTPbQIdxwwQBaRh5TI4D+8LdxlnqVowF+Ye+RGzAVnEhAEhBByrPwS87nCX0irX5i+g79QLutSsVp9XGmtgW/YGhNP3jWf8JZmsMPQZBmP+COhSMkJ2HWof/twmYM8Akf/cZcdQ8+m8cJfRKtXlRNX8/yDnp7+JiPEDERMGPAe3Qyk9GO4yzk0AjpULkTD93rP+4tSmupYgEKIdBHXZ3WDsOxKG7gW8FRBDVJc/iw5xHAiRP4QQqHj7hfaZMRAIVYV973Y0b/oWSaPCP+UwIsKAEAKunSvDXcb5CRVqbTmUsiPQd8w7/bDaWIvmZa9DNNdrez2jGcZeQ2DsOxK6tGxt26aI4M96X5KOt4KI/OE4sBvu0uJwl9Gmui8+ROLIcWHvHYiIMKCUHYZorA13GW2TZLgL150OA0pjDWxLX4OwNWp2CTklE6ZBY2HoMZCbBsU6fwYzRdEa50SRoGHlspbXTYQMGjwXT1UZHAd2w5o/MKx1RMQ7jGvPuu/2GohkQoX32H6oTXVQ6qtgW/KqpkEAODk7oM9wBoE4IPx4k4qmDU+Iws1TUwn7nq0RHwQAALLcElzCLOw9A2pzPZTjB0J+nfJGO/706XrU2V3QyRLuuqgAk/t28b8hSYJzxyp4j+6FcDRrXqe3tAiqrQFyQormbVOEYc8AUUg0rlnebr0CGyob8Oq+UggAs3pkYUoXPwd3qyrse7bCU1sNQ3r4BoaHPQx4K0ra5Tp6WcKDk4ciPzsNtTYnZr/5BS7Ky4XF6OePQAgoNSeQeM3PoDbWQG2s/e7/TbVQGmuANva/bqt9d9E2mIdMDLwNigp+9QxEwGhjomhhP7CrXYKAogq8sq8UfxvVC1a9Dg+s3Y+LslOR5O/nCgDn4X0wpI8NQZW+CXsYUKtK2yXBZSRakJHYMj0rPcGMZLMRDU63/2EAgKivhGS2Qm9NAnK6n/W86rKfGRIaa6DaGiBsjVDtjW2uTOg5sAWmweO5vXCs82eUM9eSIPKJ8HrhPnG0Xa61v8GGbolmZJhbbuuOyEzGlupGTOyY7l9DOh1cRw8haUQchwFv1bGggoAqBK5/ZRkm9O6En188+PTj6w6X4cGFq/GX6WPOuh1QWFYLVQjkJAe4E5yqQK2rPOcugLLJCjnTCmR2Pus5IQTgcUE9GQxOBQRhb4Jqa4Swt/xZKS+BPrdHYPVRVBB+7JnOngEi37jLjgGK76+t1qhC4J7VezEmKwV35nc6/fiWqkY8vvUwHh7cDeNy0lDr8qCD+bvp3hlmA2pcASxDryhwFhcFVXOwwhoGhKpArS0Pqg1ZknD7Bf3wry+34rYL+iHZbMSBijr89qO1uG/CwLOCQL3DhT8v3oDfXTEyqOsqVccD2hJYkiTAaIbOaIYurfUFjChOcMwAkeacRw8F3YYsSbg+LxsvFR7HdXnZSDLocbjRjie2H8FtfXIxLqdl1cDW+vYCje2u0mIIRQnbNOKwvsMIpx3w47ejc5lS0A0pFhPe3XwAFY12/Grht7hiQHfMHt33jOPcXgWPfLAGt1/QD4M7BzFQQ5ah2hqCrJrinVD9WGeAYYDIJ966akCDD9SLc9ORYtTjk5IqVDvd+NOWw5jUKR3X9vhu3ZcOJgNqnN/1BFQ7PUgzBbgwnNcLxRaahet8Ed7bBBpt76uXZdw2pi9eXLkLX+0/jvzsNPx68tAzjhFC4PElGzGiWxauHNA9+Iu299bEFHtUFSVNNqwsr0InqwUTcjOhP9eHPsMAkU+ER5sl7XWyhFk9svFW0QmsKa9Hr2QL7ul35q3f/JQElDQ7Ue10w6rXYXNVI27umRPwNbWqPRDhDQNCu0GDUwq64ekV2yEA/HX6BdD94M1zx/FqfLn3KHplpeKbolIAwP+7ajR6ZaUGdsFomL9KEa2soQG3rdwI1WSG3W7HH4f0xfRunVo9lj0DRD7S8L354o5pmLvvOASA3wzuDt0Pxu7oZAk/7tsJj248CAGBWT2ykRzAoPTTwvi5Et4woNPu8v/4YisAoN7ugiyffddmSJdMbHz0Bs2uB33Yx15SFNu6dStueXMekrNzsG3bNlx00UU42HiedSsYBoh8Ihm027/lpcLjAIBGjxfyOQbxjslKwZgsbdaFCedic2F9h5GM2my+8tKqXVhzqAyvz74Eiirw8Y7DmrR7TkJoVjvFn6eeegrDhw9Hapdu+Oabb9ChQ4c2z+E0UyLfyGarJpsT/bfoBDZWNeLpMX2gqMDnx2s0qO78wrk7aXjDgMEEKSE5qDY+2nEI72zcj6dnjUWf7DTcNLIP3t6wD14lhN0tQkCX7v9MAiIAmDNnDmbPno21a9fi3Xff9e0kTi0k8omxc/egu9s/O1aND49U4s/D85CXbMU13TOx8EgFvH4M+vWXPi0jfsMAAOgyuwb8RrfmUBn+8cVW/L9pYzCwU8vsgOuH94bN5cHS3cUaVnk2OaNjSNun2CXLMkpKSjBo0CD8/e9/9+kcEeS8aaJ4Ye7aM6jzN1U14MXC4/j1oO7om5oAAJjeLRMOr4qvToRoQz1Zhql779C07WsJYb06AF1mp9Yna7Zhb3ktfvvRWvx84mBMyv9uhGeiyYDrh/fGW+v3QgnRYAzJmgzZnBCStin2/epXv8K+fftw6JDv86HDOcqYKJroEpOhS/FzBcCTihrseHJ7Me7M74iLclJPP27V6zCtWybeO1wBRYNbEGcRAuZuvbRv1w+S8GdT9RDwlhfDvuz1cJbgH0mCvlsBrBdfH+5KKMo9NvUyvLhmI+rr69G3b1+MUp14cGB+q8d2vP2nyJo2s50rJIpO5W88C9uOjZrOWAu1jg/8GZaefds+METC3zOQ1RWSNbhxA+1KCBh6Dgp3FRQL/NhvgD0DRL5LGjE2qoKALjUd5h59wlpD2MOAJMsw9h+DwBdxbF9SQgr0ncP7l0axwZ9lR1VPAOudE8Upa8Ew6FLbnqUTESQJqROuDPtaImEPAwBg7DM8anZlM/YfE/a/NIoN/oQB4WbPAJGvJFlG6oQromIWjqTTI2nMxHCXERlhQDJZYOg9JPL/4nR6GHsPC3cVFCt0OgghUF5eDqWN2QKijW2viehMSWMmQor0xeFkGUmjJ0BnTQx3JZERBgDANHQSYDCFu4zzMo+4DJIpfPNAKbZc2L8fmhobkZubi4MHD2Jk5rlHQPM2AZF/dNZEpE+7OdxlnIcE2WxB2pRZ4S4EQLiXI/4e2ZIIy9hr4PhqQbhLOZskQ5fdFYZ+o8JdCcWQofl9sPjycTjU2IwuiVZ0Tzr3dFUOICTyX8q4y2HbuQnOw/sicD8Zgcwbfwp9cmq4CwEQQT0DAGDo1h/6noMj73aBTg/LuGu5JCxpSjIY0DHBgnG5mecNAgAg2DNA5DdJlpF9y31hXfO/VZKMxJHjkTg4cn7BjLhPN8uYqZASUoAI+uC1XHQ15ERtNqIgOkX2Y0MVlQMIiQKiT8tA1o0/CXcZ35Fl6NM6IOPa28NdyRki5xP3JMloRsIVd0KyJEZEIDCPuQqGvIHhLoNikD+/rXAAIVHgEoddiIxZd4S7DECWoUtORacH/gSdxRruas4Q/k/bVsiJqUi48q6TPQThu2VgvuAqGDlOgEKEPQNE7Sdl3OXIuO7O8BUgy9CnZaDTA3+GPi0jfHWcQ0SGAQCQk9KQMO0nkNt7d0BJbhkjcPENMPZlEKDQ8WffdY4ZIApeytjLkH37LyHpDUA7rxdj6tQdnR/8Pxg6ZLXrdX0VMbMJWiObE5Bw1d1w71kH19YVLXtUh3CJSSEEdNldYR03A3JSWsiuQwQAssns87GK3R7CSojiR+LQMTB16YHKBXPhLNoT2ovJMiDJSJ96A1InXunXQmPtLWJ7Bk6RZB1MA8ciccb90GV1OfmgxrcOJAkwmGC+cDoUhwPe+iqEef8migO6xCSfj1Wam0JYCVF8MWRko+PPfo/Mm+6BZDJr/5lystfB3CMfXX/7L6RdMi2igwAQ4T0D3ycnd4D1ijvhPboP7n0boZw41PIXGOiHtiQDQoVkTYIxfyQM+SMgWxLh2LoSTR+/An3HPFjHXA5DxzxtvxGik3QJvq86ptgYBoi0JEkSksdMhLVgKBrXLkfj6i+hNNa3fJAHuibByc8VS68CpIy7DNaBIyBF2lT5cwj7FsaBUpvq4D6wBZ6irRCO5pYHT/3QW/uWTv4lAWgZyNGxFwx9R0HfqdcZew00ff4O3EXbT//Z0KUPLKMvhyGna4i+E4pX7soKFN57q8/HD1rwKeRImy9NFCOEqsK+dwca13wJ+74dwKklwmUdoLayXLgktfx3MjjoklKRNGYiki+YFLHjAs4nasPA96n2Jig1ZVBry6DUnIBqawQUb8tfoN4AyWCGLj0bcnoudB06Qk7NgHSOjZEcW76Gfd3Ssx43dO4Fy4hLoO/UM2qSHkU2xW7DrtkzfT6+4NX5MKSde8liItKGULxwl5fCVVoM9/FiuEpLoDodEB43JFmGZDC2bDvcJQ/GTt1h6twd+pToHmcWNbcJzke2JkG2JgFdgt9aWJfR+uwFz/GD8Bw/CH12V1iGXwxDj/5ckZCCIlusfnVJKs1NDANE7UDS6WHq1A2mTt2AURPCXU67iIkwoCV9RsfzPu+tOIqmpW9Bl54Ny/BJMPYefM5eBqLzkSQJusQkKI0NPh3vtTWHuCIiilf81fYH5ITkltUP26DUVqD5y/mo/98/4Ny9jivEUUD0/swoaOIgQiIKDYaBVujPcaugNWpjLWzfLELdf5+EY+s3EG5nCCujWMMZBUQUCRgGWqFr41ZBa4S9Cfa1S1D31hOwrVkMpakuBJVRrPFvrQHeJiCi0OCYgVa0NW7gfITLAee2lXBu/xbGvAEwDxkLfU53zkCgVukTfe8Z8HLhISIKEYaBVgTSM3AWocJ9aCfch3bC1G8kEiZdx0BAZ/GrZ4ADCIkoRHiboBW61MyWhSY0YMgrQMK4qxkEqFV+jRlgzwARhQh7Bloh6XTQZeRCqTweVDuWEZfAMvoyrkdA56RL8r1nwMvZBEQUIgwD52DI7hZ4GNDpkTj5Bph6D9G0Joo9/kwt9NZzUCoRhQZ/ZT0HfU63oM7nFsjkC32q7ysKemqrQ1gJEcUzhoFz0AezMZHiRdOSN6A01mpXEMUkY4cMn4/1NtRD9bhDWA0RxSuGgXOQk9MhWRICPl84bGha/DpUl0PDqijWGNJ9DwMA4KljwCQi7TEMnIMkSdBnB3erQKmtQPNnb0MorWx/SQRAtlohmy0+H++p4a0CItIew8B5GIIcNwAAnmNFsK36CDGwUzSFgCRJMKR38Pl4jhsgolBgGDiPoMYNfI9rz3o4t6/SpC2KPQY/xg2wZ4CIQoFh4Dz0WZ0BjRYLsq9ZAvfh3Zq0RbHFvzBQE8JKiCheMQych2Q0Q5eec8Zj5sFjYb3wygBaE2j6Yh68QS5kRLHHr9sENVUhrISI4hXDQBtOrzcg65Aw6TokjLsa5qETYSoY439jXg8al7wBpbleyxIpyhk7ZPp8rKeWPQNEpD2GgTboc7pCsiQg+Zqfwtx/FICWQV8J46+BoUtvv9sTtkY0ffIqVIdN61IpSvnTM+DmmAEiCgGGgTYYuvRBynW/gKFjjzMel3Q6JE6ZDV16tt9tKrUVaPzkFa5BQAAAgz89A3U1EKoawmqIKB4xDLRBl5gCXXLrSwvLJguSrrozoMWJlKpSNC1+HYIrysU9f3oGoCjwNtSHrBYiik8MA0HSJacj6crbAZ3/ez55y4rRtPRNCK9H+8IoauhTUgGd71tmc3ohEWmNYUADhtzuSJx8Q0Dneo4Voenz/3GVwjgmyTIMaX6MG6gsD2E1RBSPGAY0Yuo9BJYxUwI613OkEM3LF/BecBwzZvo+bsBVVhrCSogoHjEMaMgyfBJM+cMDOtddtB22bxZx2eI4Zcrt5POxzhMMA0SkLYYBDUmShIRJswKacggArsINsK9ZzEAQh0y5nX0+1s2eASLSGMOAxiSdHklX3g59bveAznduXwXHxi+1LYoinim3o8/HOhkGiEhjDAMhIBmMSLrqTugyfe/6/T7Hpi/h2LZS46ookpk6+t4zoDQ2wNvcFMJqiCjeMAyEiGyyIHn63QEtSgQA9jWL4dy9TuOqKFKZcnL9Op6DCIlISwwDISRbEpA8/W7IyekBnW/75kO49m/RuCqKRLLJDEOGHzMKOIiQiDTEMBBicmIKkq/5KeSElADOFmhe/h5ch3ZpXhdFHn9mFLBngIi0xDDQDnTJ6Ui+5icBLVsMoaL583fgPrpf+8IoovgVBtgzQEQaYhhoJ7q0LCRf/RNIJov/J6sKmpa+Bc+Jw9oXRhHDrzBQzjBARNphGGhH+oyOSJp2F2Aw+n+y14OmT1+Ht+KY9oVRRDB19K9ngOtREJFWGAbamSGnG5Kn3hHQxkbC40LjJ6/CW10Wgsoo3PzpGVAddu5eSESaYRgIA0PnXki64lZA9v/HL1x2NH74EjxlxdoXRmFlzMrx69+E68TxEFZDRPGEYSBMjN37IfHSmwFJ8vtc4XKg8eO5cBfvDUFlFC6ywQBjlu/rUjiPlYSwGiKKJwwDYWTqPRgJF18X2MleD5qWvAnXPq5DEEv82aPAUcwBpUSkDYaBMDP3HwnruKsDO1moaF6+gEsXxxBLt+4+H+soYRggIm0wDEQAy+CxsIyZEvD59jWLYeNuhzHB0j3P52OdJUcgVDWE1RBRvGAYiBCW4ZNgHnZxwOc7t62EbcV7EKqiYVXU3izde/p8rOp0wl3OmSVEFDyGgQghSRKsF1wB08ALA27DtW8zmpa+BeFxa1gZtSdTx86QDAafj3cUHwphNUQULxgGIogkSUgYfzVMfUcE3IaneC8aP3kFqtOuYWXUXiSdDuauPXw+noMIiUgLDAMRRpJkJFxyHcyDxwbchresGI2LXoLS3KBhZdReLD18HzfAngEi0gLDQASSJBnWsdNhHXNFwG0oteVo/OAFKHWVGlZG7cHSzZ8wwJ4BIgoew0CEkiQJlhGTkHDxrIAWJgIAtakODR+8yP0Mooylh++DCD011fA2NYawGiKKBwwDEc5cMLpl6eIA9jIAAOG0oeGjl+E+ekDjyihULN18HzMAsHeAiILHMBAFjHkDkDz9bkhGc2ANeNxoWvw6XAe2a1oXhYbOmgBjdq7PxzuOcNwAEQWHYSBKGDrlIXnmvZCsSYE1oCpo/mIeHDtWa1sYhYQ/iw9xJUIiChbDQBTRZ3REyqz7IadkBNiCgP3bj2Ff/xlXK4xwfoUB9gwQUZAYBqKMLjkdKdfeB11mp4DbcGxeAdvydyG8Hg0rIy35tSzx8aNQXc4QVkNEsY5hIArJ1iQkz7gH+s69Am7DtX8LGj54AUpjrYaVkVb8WZYYigL7waLQFUNEMY9hIErJRjOSp90FY89BAbehVJWi4d1n4S7Zr2FlpAVDZhZ0Sck+H2/bXxjCaogo1jEMRDFJp0fi5T+CacAFAbchXA40ffoa7JuWQwjugBcpJElCQp9+Ph9vO8AwQESBYxiIcpIsI2HCDFhGXRpEKwKODZ+jaclbUF0OzWqj4CTk+xEG9u/loFAiChjDQAyQJAnWUZchYcIMAIGtVggAnuJCNLz3HLzV3BY3Eljz+/t8rNLYAHf5iRBWQ0SxjGEghpgHXojEKT8CZF3AbagN1WhYOAeuA9s0rIwCYe2VD8i+v0Q5boCIAsUwEGNMvQYjedpdgMEUeCNeD5q/mAfbtx9DKIp2xZFfdGazX1MMGQaIKFAMAzHI0KU3UmbcA8maGFQ7zh2r0fjRf6DauBFOuPg1iHD/3hBWQkSxjGEgRumzOiPl+l9Cn9MtqHa8ZUdQ/+6/4Sk7olFl5I+Evr6PG3AeLYZit4WwGiKKVQwDMUyXmILkGffANPDCoNoR9kY0fvgyHDtWc8R6O7P28T0MQAjYi7hmBBH5j2Egxkk6PRInzEDi5BsC3gYZAKCqsH/7MZq/nA/hcWtXIJ2XMSsb+tR0n4/nuAEiCgTDQJww9R3RsslRsu8fLK1xH9iGhoXPQ2mo1qgyOh9Jkvxcb4BhgIj8xzAQR/SZnZBy/S9g6NY3qHaUmjI0vPcc3MUcsNYe/AoDB/ZBqFxJkoj8wzAQZ2SzFUlX3QHLyMlBtSNcDjQtfh22tUshFK9G1VFr/Fl8SLXb4DxaHLpiiCgmMQzEIUmSYR19OZKm3gHJaA6qLefWr9Hw7rPwVhzTqDr6IWteb0h638d7NO3aHrpiiCgmMQzEMWOP/ki5/hfQdcgNqh2ltgINC5+Hff1n7CUIAdlohCWvt8/HN+/k6pFE5B+GgTinS81Ayqz7YewzNLiGhArH5hVoeO/f8FaValMcnZZY4PtW1c2FOyG8DGVE5DuGAYJkMCLx0ptgHXe1X2vhA0BJdT1W7ivB7uOVUFUBpaYcDe8/B/uGL9hLoKGkQb6HNdXphK1oXwirIaJYE8TEc4olkiTBMngs9Jmd0PTZ2xD2pvMef7iqDg+88znWHzp++rEeGal46sbLMD6/KxybvoT7yB4kTr4B+oyOoS4/5iX0LYBkNEK4fVvjoXnXdiT2GxDiqogoVrBngM5g6NgDqTf8EvrcHuc8pt7uxKzn30eNbMEHH3yAgwcP4uuvv0bPISNw/YsLsf1oOQBAqT6Bhveeg33Tcm54FCTZaESCH7MKmnZuDWE1RBRrGAboLHJCMpKv+SnMg8e2+vxbq3egxqVg+fLlKC0txRVXXIF33nkHixcvRn6/fnj2iw3fHawqcGz4HA0Ln4e3prydvoPYlDRomM/H2g7sg+JwhLAaIoolDAPUKkmnQ8K4q5F46c2A3nDGc2sOHkP//v1x4sQJ/OpXv0JRURFeffVVFBYW4sorr8Se0qqz2lOqjqPh3Wfh2PwVhMpegkD4M24AigJb4a7QFUNEMYVhgM7LlD8UKdc9AF3Gd9MPpwzoia1bNuOCCy6AcrL7v2vXrujZsyf27t2LzCRr642pCuzrl6Fh4Qvw1la0R/kxxdKjJ3QJvm9L3cQphkTkI4YBapO+Qw5SrnugZdVCScad44di/5M/w81jBkCv1+Ozzz5DYWEhFixYgMWLF8NkOP+4VKXyWEsvwdZvuHSuHySdDokDBvt8fNMuhgEi8g3DAPlE0ulhHX05Uq77OXQdcpBiMaFnZhr0ej2eeeYZ/Pa3v8WNN96Iu+++G1uKT6DO1sb9asUL+9olaPzgBSh1le3zTcQAf24VOEuOwNNQH7piiChmMAyQX/RZnfFOjRG9f/cf/OXTb+F0OiFKizBnzhw88cQT+MMf/gC724v1h31beMhbcRT1C56BY9tK9hL4INGfcQNomWJIRNQWhgHy27+fm4NhI0fh73//OwBgUt/uyElJRFlZGVJSUgAAdpfH9wYVL+xrFqPh/TnwnDgcipJjhim3EwwZmT4fz3EDROQLhgHy24ABA9DQ0ICHHnoI48aNw6MLv4IDOtx///14//33IUnA8O7+73egVB1H46KX0PTZ21Aaa0NQefSTJAlJA4f4fHzTji0QQoSuICKKCQwD5LcHHngAW7ZswYMPPoglS5Zg8+bNOHz4MGpqavDwww9j+pA+6J6RGnD77oM7Uf/OP2FbuxSq26ld4TEi0Y/1BjzVVXCWsLeFiM5PEvy1gQLw/PPP4+c//zlSU1ORn5+PiooKFBcXY8LwQXjjholIthg1uY5kTYR19BSY+o2E5Oe+CbHKU1eDPT++2efjc266DTmzfD+eiOIPwwAF7ODBg3jvvfdQVFSE1NRUXHPNNRg/fjy85cVoXv4e1IZqza6ly8hFwtjpMHTupVmb0Wzfr+6B8+gRn4619uqDPn+fE+KKiCiaMQxQSAiPG/b1n8G5YzUA7f6JGfIKkHDhVdClZmjWZjQqm/cmKj6Y7/PxBa/MgyG9QwgrIqJoxn5XCgnJYETCuOlInnEP5OR0zdr1HN6D+nn/gm31p1Bd8bv2fvKIMX4d37B5Q9sHEVHcYhigkDJ0ykPqTQ/BPOgi7RpVFTi3r0L923+Hc9fauNzrwNqrD/SpaT4f37h5fQirIaJoxzBAIScZjEgYfw2Sr7kHcpLvH2BtEU4bbCs/RMOCZ+A+ul+zdqOBJMtIHjHa5+Obdm2D4uTMDCJqHcMAtRtD554newnGApJ2//SU2go0ffIqGj99Pa6WNk7x41aBcLvRvHNrCKshomjGMEDtSjKakDD+aqTc9CAM3fpq2ranZC/q5z8F26qPoTrtmrYdiZIGDYVk9H0KJ8cNENG5MAxQWOjTs5E87S4kTfsxdOnZ2jWsqnDuXI36t/8Gx9avIWJ40SLZZEbSQN/3KmjcvJ77PxBRqxgGKKyM3fKRcuOvkDBhBiSzVbN2hcsB+9qlqHvrCdg3fA7VYdOs7UiSMtL3WwXehnrYD8bX2Aoi8g3XGaCIoTrtcGxeAefO1YDWv8EajDAXjIF5yHjoElO0bTuM/F2NMHvmjcj90R0hrIiIohHDAEUcpa4KtrWL4TlSqH3jsg6mviNgGTYxZhYuOvCbn8N+8IBPx5q7dkffZ/4T4oqIKNowDFDE8hwrgm31p1BqyrRvXJJg7DUYluEXQ5/RUfv221H5wnkon/+Wz8f3e+ENmHKi+3smIm0xDFBEE6oK195NsK//DMLRHJJrGLr3h2XEJBhyuoWk/VBzFB/C/ofu8/n43FvuRPaMG0JYERFFG4YBigqq2wnH5q/g3L4KCNGKg/pOPWEZPgmGLr0hSVJIrhEKQggU3nMrPNW+rbFg6dkb+f94PsRVEVE0YRigqKI01MC+dinch3aG7Bq6rM6wDJ8EY14BJA0XRwql46++gOpln/h8fL8X3oQpJzeEFRFRNImOdzqik3QpHZB0xWwkz7gXusxOIbmGUnkczcv+i4Z5T8G1bwuEEvl7H6SM9m/vh/r134aoEiKKRuwZoKglhArXvi2wr1sGYW8K2XXkpDRYhk2Eqd9ISHpDyK4TDKEo2HP3zfA21Pt0vKVnH+T/Y05oiyKiqMEwQFFPuF1w7loLx/ZVIRtkCACSNRHmARfA1G8UdEmpIbtOoI7NnYOazxf7fHy/F9+CKTsnhBURUbRgGKCYIbweuAo3wrHtG6hN9aG7kCTB0DUfpv6jYOzeH5JOF7pr+aFp13Yc+vNvfDrWmt8PHW+4GZZOHQHF2/KgTg/JYIKUmB4x3xMRtQ+GAYo5QlHgOrANzq1fh3wXQ8maCFPfkTD3HwldamZIr9WWtm4VmDt3RnLfXkjq3AF62Quc66UvSZASUiGnZUNOzoQutyckc0LoCieisGMYoJglhAr34T1wbF4Bpao05NfTd8yDuWA0jD0Hhm1swbH/PIeaL5ac/rOpY0ck9+qGxEwrjMkJgCSdOwT80OljJcjZ3aDvNgByZpeomWFBRL5jGKCYJ4SA59gBODZ/Be+JwyG/nmSywNRnGEwFo9p9dcOmXdtx7D/PIWXQACSk6GBK0PsXAM7lVBumBBj6jYGuU35UrcVAROfHMEBxxVN2BI7NX8NTsrddrqfL6gJzwWiYeg+GZDSH/HqKrQGenV9D1IS2J0TO6AzDoIshW5NDeh0iah8MAxSXvFWlcGz9Gu6inQDa4SVgMMLUazBMBaOhz+6q+W/VQggoxTvh2bsOEGrwPQFtkSRAkmHodyF03Qeyl4AoyjEMUFxT6qrg2PYNXPu2hGyZ4x/SpWfD1H80TPnDIFuCH5gnVBWeXd9AOdY+vR0/pOvSD4aBEyHJHEtAFK0YBogAKM31cG5bBeee9YDX0z4XlXUw9hwIc/9R0HfuGdDAPKEqcG/5HGrFkRAU6Ds5uweMwy+HJHNKIlE0Yhgg+h7V0QznjtVw7lwD4Xa223XlhBQYew2Csdcg6HO6+hQMhFDh3vol1LKD7VBh2+TcXjAOu5SzDYiiEMMAUStUtxOu3evg3L0eamNtu17b12DgKdoM7/4N7VpbW/T5o2HoPSLcZRCRnxgGiM5DCBXe44fgLNwI96Fd7Tau4JRzBQO1oQqub99Huwx+9IsE07jrIKeEdwEmIvIPwwCRj1SHDa79W+Eq3ACltqLdr38qGJgGXADv9i8g7A2hnzXgL0mCZE2BafwNkHT6cFdDRD5iGCDykxAC3vISuAo3wlW0vf0GHJ6UMPoSiIpD7XpNf+l7DoOh3wXhLoOIfMQwQBQE1e2E+8B2OAs3Qqk8FvLryckdYOqQAkmoIb9WUGQdzJfeAclgCnclROQDhgEijXirT8C1ZyNcB7ZCuBwhuYaxRz/oRWja1pqh/1jo8waHuwwi8gHDAJHGhNcD96GdcO7ZqPleCKauedDJEd4rcIo5EeZLZnOqIVEUYBggCiGlrgrOvRvh2rsZwtEcVFuSyQJzTlbIl/61Od24++VF8CoqVFXgpnGDce2YAQG1ZRw5Fbrs7toWSESaYxggagdCUeAuLoSrcCM8JfsRyJRAQ8duMJh0LXsPhJCiqnB7FViMBjjcHsz65zt455c3IDXB4l9Dkgx9j4Ew9B8bmkKJSDOc+0PUDiSdDqaeA2HqORBKUx1c+7bAfXAHlJpyn9uQzWZAdYWwyhY6WYbF2NK17/YqUIUIbAajUKHUVcCgbXlEFAK8mUfUznRJabCOnIzUmx5C6o8ehmX05dB1yDn/SQYTZBHcFEZVFbjmb2/j2cVrznh87b4SjHjkeXyxo+j0Y40OF67/1zxc/v9ex20ThyEt0c9egZNEQxVEpM98ICLeJiCKFEpdJVwHd7baY2Do3g8GBD+L4JNNe/H3D7/Bst/fgWSrGftPVOHO5xfiJ5eOxm0XDzvr+JomOx58cwmevn0qOiRZA7qmafyNkJM7BFs6EYUQewaIIoQuLeucPQaG7M6aXOPKYflITbBg3rc7UFHfhJ+/+gmmDu/bahAAgA5JVvTJzcCWw6UBX1M4GgM+l4jaB8cMEEWgU8HAOnIylLpKqE3V8FYUtX1iG/Q6GXdMGo45S9dhxa6D6NcpC7+ZMeGMY2qa7DAZdEg0m9DsdGHL4VJcd+HAgK8pFG+wZRNRiDEMEEU4XVoWhL1es/auHJaPf360CkIAf7tlCnTymR2EFfXN+PN7ywEBCAjcOHYQ+nTMCPyCKscMEEU6hgGiKCDJOs3aenLRSgBAvc0BWT57zYL+XbLw3kM3a3Y9blhEFPk4ZoAoGui1maD3wrJ1WL33CP77i+uhqCo+3LBHk3bPS28M/TWIKCgMA0RRQE4KfjT+ovW78fbKbfj3XdOQ3zETN48fire+2QqPomhQ4blxJgFR5GMYIIoCkjkBMAY21x8AVu8txpOLvsFfb74Mg7rlAgBuGjsIzU43lmzep1WZZzNZIZkCm5JIRO2HYYAoSshpOQD835eg8FglHv7vMvzyqrG4ZFCv048nmk24aexgvP7VFighGeQnQU7LDkG7RKQ1LjpEFCU8B7fAu28DAtnXIDwk6PuOhqHX8HAXQkRtYM8AUZTQ5fZE9AQBABDQ5fZq+zAiCjuGAaIoISekQs7sCoR4C2NNSBLkzG6QE1LCXQkR+YBhgCiK6HsMRmBbCLYzIaDPGxTuKojIRwwDRFFEzuwCyZqMQAYSth8JkjUZckaXcBdCRD5iGCCKIpIkwTBgPCJ77ICAYcB4SNFwO4OIADAMEEUdXVY36Lr2R2T2DkjQdS2ALqtbuAshIj8wDBBFIUP/iwBLIiIqEEgSJEtiS21EFFUYBoiikKQ3wjjssgibWSDBOOwySBrto0BE7YdhgChK6dJyYBw+BZHROyDBOGLKyVUSiSjaMAwQRTFdTo+WQCDJCE8okABJhnHEFOiye4Th+kSkBS5HTBQDlJpSuDcuAVRv+61DIEmArIdx1FXQdejYPtckopBgGCCKEcJpg3vXN1AritvlenJ2DxgHTmjZUZGIohrDAFEMEUJALTsE966VgMcF7dcjkACDCcZBE0/ulUBEsYBhgCgGCbcT3uJd8JbsBlz2li79QF/qp841WaHvNgD67gMhGc3aFkxEYcUwQBTDhFChVh6Ft2QP1Mri7544Xzj4wXNyVnfouxVAzuoKSeKYY6JYxDBAFCeE1wO1qQaioQrqyf+E29ky6BAAZD0koxlySibklExIKZmQkzpw3QCiOMAwQEREFOfY50dERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5fbgL+D7j0Dsh642QZB0kWQed4buvJVn+7jmdDrLeCPn0c7qznpNkHWRZgiRL0OlkSD/4WpYlyDrp9DHnfU6SoNPL0MkSdLIE48mv9af/rPvuOd13x+m/d6yuta8lCbIkQScBBp18+mu9ToZOQsufZQkGWWrl65bnDbJ8+mudJEGSAFkCJAkn2wckADpZggy0fC8yTn8tS4BO+v7XLW1IQgBChaR6gTO+Vlv+U8/9nCRUQFG++1r1AqoCoaqA1w2hKICqtjzm9UCoSsvXHg9w6utTx546zuP+7hxVgerxQigqhKpCdXuhKi3nCEWF6vFCVb77Wpz8WvF4Ib53nOL2fu9rBUIVUBVx8s8nz1dFy3OKgFAEVEWF4lFPtimgeJST53x3nioEFCHgVgUUgR98/cM/t3ytouVrReDkc999/bIoDuvrUit8ffP1zdd35L6+2TNAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU70SMcrlc4rnnnhMulyvcpZwlkmsTgvUFI5JriyWR/HOO5NqEYH3BiOTaghWzPQNutxvPP/883G53uEs5SyTXBrC+YERybbEkkn/OkVwbwPqCEcm1BStmwwARERH5hmGAiIgozjEMEBERxbmYDQNGoxH3338/jEZjuEs5SyTXBrC+YERybbEkkn/OkVwbwPqCEcm1BUsSQohwF0FEREThE7M9A0REROQbhgEiIqI4xzBAREQU52IqDNTV1eHWW2/FjTfeiG+++eaM56qqqnDLLbfguuuuw8qVKyOuvlMeffRRbNiwoV3rcrvduPfee3HjjTfivffea/PxSKjtlDlz5mDRokVhqKzFuepzOp246667cP3112PhwoVhqy+W8PUdGL6+AxdPr++YCgPz5s3DXXfdhbfeegtvvfXWGc8tWbIE119/Pf773//i9ddfj7j6AODgwYNYvnx5u9e1dOlSjBs3DvPmzcNnn30Gl8t13scjoTYAqK2tDdub2Cnnqu/bb7/FiBEjsGDBgph5swg3vr4Dw9d34OLp9R1TYWDPnj0YPnw4TCYTEhMT0dDQcPq5/Px82O12OJ1OmM3miKsPAF577TVcc801YatLlmX06dMHhw4dOu/jkVAbALz66qth+Xl937nqy8vLg8fjgdfrhcFgCGuNsYKv7+Dq4uvbf/H0+o6pMGCz2ZCQkAAAsFgssNvtp5+zWq14+eWXcc011+Cqq66KuPp27tyJTp06ISUlJSx1Wa3Ws+o61+ORUFtZWRlsNht69OjR7jV937nqMxgMWLJkCaZMmYKLLroonCXGDL6+A6+Lr+/AxNPrWx/uAoLx3//+F8uWLTv95127dsFutyMhIQEOh+P0CxMA5s6di+effx59+vTBnXfeiUsvvTTkv0H4U9/rr7+O//u//8Mbb7wR0ppaY7Va4XA4AAAOhwOJiYnnfTwSavvPf/6Du+++Gxs3bmz3mr7vXPX973//w4MPPohLL70U999/P0pLS9GpU6dwlhp1+PrWBl/fgYun13dU9wzceuutmD9//un/7rnnHmzevBkulwv19fVITk4+fazFYkFCQgKMRiMkSYLX642Y+mw2Gw4cOIB7770XH374IZ544gnYbLaQ13dKQUEBNm3aBCEE9u7dezqNn+vx9nSuGnbt2oXf/va3mDt3LubOnYuSkpJ2r+189Z369ybLMhITE8PyW1e04+tbG3x9a19fLL6+Y2oFwtraWjz00ENoaGjAfffdh8mTJ+Nvf/sb7rnnHtTW1uIPf/gDvF4vLrvsMtx1110RVV9qaiqAltGzo0aNwujRo9utLpfLhQcffBDl5eWYOXMmHA4HJk6ciC5dupzx+I9+9KN2q6mt2nr16gUAp0caz5w5s91rO199qampePjhh+FyuTBgwAA89thjYakvlvD1HRi+vrWvLxZf3zEVBoiIiMh/UX2bgIiIiILHMEBERBTnGAbiRHFxcbhLICKiCMUwEAe++uqroAZUbdiwAfn5+Rg/fjxUVT3r+XvuuQf5+flnLLPa1NSEp556CpdffjmGDh2KsWPH4te//jWOHj16+phFixZh0qRJAddFRNpatGgR8vPzccMNN7T6/PTp05Gfn4/jx4+ffqyyshKPP/44Jk2ahKFDh2LixIn405/+hOrq6tPHzJkzB7Nnzw55/RQ4hoE4UF9fDy3GibrdbqxZs+aMx6qrq7Ft27YzHqutrcXMmTNRUlKCl19+GVu3bsWnn36KlJQU3HDDDSgtLQ26FiIKjaSkJOzZsweHDx8+4/Fdu3ad9dotKSnBtGnToKoq3nnnHWzbtg0LFixAfX09brrpJjQ3N7dn6RQEhoEo8tVXX+HGG2/EBRdcgMGDB+OWW25BcXFxq79hz549G3PmzMGGDRvwpz/9CSdOnMDQoUNRUVEBp9OJf/zjH5gwYQJGjhyJ2bNnY+fOnW1ef9q0afjoo4/OeOzDDz/E5ZdffsZjc+bMgdlsxjPPPIMePXpAkiSkpaXhD3/4AyZOnIj9+/cH/bMgigV79uzB7NmzT/ee/fvf/8b69esxYcIEPPTQQxgxYgTmzp0LVVUxd+5cTJ48GcOHD8esWbPw7bffnm7n888/x9SpUzF8+HBcccUVePHFF08/N2/ePEyePBkjRozAtGnT8P7775+3puTkZIwfP/6s1/oHH3yAqVOnnvHYX//6VwwaNAiPP/44cnNzAQA5OTn4xz/+gX79+qGoqCjInxC1G0FRoaysTAwYMECsWLFCCCFEbW2tuPnmm8Wvf/1r8cEHH4iLL774jONvueUW8dxzzwkhxFnP/+Y3vxHTpk0TxcXFwuVyiTfffFMMHTpUlJaWtnrt9evXiz59+oi9e/eKQYMGicbGxtPPTZkyRezYsUP06dNHrF+/XgghxPjx48Xzzz/f5vfUWt1E8aKurk6MGjVKzJkzR7hcLlFSUiLGjx8v5s+fL/r06SOef/554Xa7RVNTk3juuefE+PHjxe7du4XH4xFLliwRAwYMEDt27BAOh0MMHDjw9Otvz549YsiQIWLHjh3i6NGjYsCAAeLQoUNCCCFWrVolBg4cKCoqKlqt6dRr8ssvvxTjx48XiqIIIYRwOp1i9OjRYsuWLaJPnz7i2LFjwuVyib59+4oPP/ywze/1ueeeE7fccos2PzgKCfYMRIn09HQsWbIEkyZNQnNzM8rLy5GWloaKigq/2nG5XFi8eDEeeughdOvWDUajEbfddhvy8vKwePHi857bt29f9OjRA0uXLgUAbNmyBTqdDoMGDTrjuNraWmRmZvr3DRLFma+//homkwk/+9nPYDQa0bVrV7zxxhuwWCwAgFmzZsFgMCAxMREffPABfvKTn6CgoAB6vR5XXnklJk2adHrHPLPZjIULF2LdunXo2bMntmzZgkGDBkGn00EIgQULFmDLli244IILsH37dmRlZZ23tgkTJsDtdmPt2rUAWnoeBg8efMZ5DQ0NUFWVr/UYwTAQJQwGAxYvXozx48dj6tSpePrpp1FTU+P3WICGhgZ4PB507tz5jMc7d+6M48eP45NPPsHQoUNP//fJJ5+ccdzMmTPx4YcfAmjpNpw1a9ZZ18jMzERlZWWr16+trYWiKH7VTBSLqqqqkJubC0mSTj+Wl5eHnJwcADjjg7e6uhpdunQ54/zOnTujtLQUZrMZ8+fPh6qqeOihhzBy5Ej85je/QUNDAzp27Ii3334bpaWluOeeezBq1Cg88cQTcLlcePnll894rW/evPl02waDAdOnTz/vaz01NRUGgwFVVVWtfn+BvD9R+DAMRIlly5bhf//7H95++22sXLkSr7zyCvr37w8AkGUZbrf7jOPr6upabScjIwMmkwnHjh074/GjR48iKysL06dPx7Zt207/N3369DOOmzZtGnbv3o29e/dixYoVZz0PAJMmTcIXX3xx1oe+EAI//vGP8fjjj/v9/RPFmpycHJSVlZ3xgbl8+XKUlZUBwBkhoVOnTme9Zo8dO4asrCw0NzejsrISTz31FNauXYt3330Xu3fvxssvv4yamhooioIXXngBGzZswNy5c7F06VIsXLgQ99xzzxmv9REjRpzR/syZM7F8+XLs27cPhw4dwsSJE8943mAwYOzYsad7Cr/P7Xbj6quvxty5c4P9MVE7YRiIEk1NTZBlGWazGUIIrFq1Ch999BE8Hg969uyJ6upqrF+/HkIIfPzxx2fsC24ymeBwOOD1eiHLMq699lo8/fTTKCkpgdvtxltvvYWDBw+eNTioNWlpabj44ovxyCOPYPTo0UhPTz/rmPvuuw8NDQ148MEHT28wUlFRgcceewzl5eX48Y9/rN0PhihKTZw4EV6vFy+//DLcbjeOHj16+rf2H7ruuuswd+5c7NmzB4qiYNmyZfjqq68wY8YM2Gw23H333fj0008hhEBWVhZkWUZaWhpOnDiBO++8E+vWrYMsy8jOzgbQ8jpuS35+Pnr27ImHH34Y06ZNg8FgOOuYRx55BFu2bMFf/vKX07csi4uLcf/99yMhIeGcUxQp8kT1FsbxZMaMGdiyZQumTp0KnU6HvLw83HbbbXjnnXeQn5+Pe++9F48++ihsNhsmT558xgj/kSNHokOHDhg5ciQWLFiARx55BHPmzMHtt9+O+vp65Ofn47XXXvN517KZM2finnvuwa9//etWn09PT8fChQvPuEZiYiLGjBmD+fPno2vXrpr8TIiiWXJyMl577TU8+eSTp8cK/OhHP0L37t3POvaOO+6Aqqr41a9+haqqKnTr1g1PP/00Ro0aBQB47rnn8Oyzz+KPf/wjzGYzrrzyStx+++0wGo344x//iD//+c+orKxEUlISbr75ZlxxxRU+1Thz5kz85S9/wbPPPtvq83l5eVi4cCFeeOEFzJo1C83NzUhNTcWECRPwxBNPnN6giSIfNyoiIiKKc7xNQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZz7/9GQTeLIk6KhAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -638,7 +642,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGJCAYAAACXXXqWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADmlklEQVR4nOz9d5gc1Z3vj7+rqnP39Ez35KgZjXIWICEhUCIIAUIEASaIbLANOFx71/vde393Hxbvvbv2XowxNiZnkxFRZBRRFsp5co6dc1fV+f3R6tHMdFXH6prucb+ex49RV3X1qTlV5/M5n0gRQghy5MiRI0eOHOMGeqwHkCNHjhw5cuSQlpxwz5EjR44cOcYZOeGeI0eOHDlyjDNywj1Hjhw5cuQYZ+SEe44cOXLkyDHOyAn3HDly5MiRY5yRE+45cuTIkSPHOCMn3HPkyJEjR45xRk6458iRI0eOHOOMnHDPkSNHjhw5xhk54Z4jR44cOXKMM8adcOc4Dk8//XRK19i2bRtuuOEGXHfddbjmmmuwYcMGiUYXH6neg8PhwNq1a4f+t2rVKsyYMQM2m026QcaBFHMRCATw7//+77jiiitw9dVX4ze/+Y1Eo4sPKe5h5cqVuPLKK4fmY+PGjRKNLn6kuI8wTz31FKZOnYrTp09Lcr1EkOI+7r33XqxZswZr167FbbfdhhMnTkg0uvhI9R78fj9+9rOfYdWqVVi7di3uu+8+dHR0SDjC+JBiLn73u99h5cqVY/Y8xYuU749skHHG8ePHydq1a5P+Ps/zZOHCheTEiROEEELa29vJrFmziNPplGiEsUn1Hkbz/PPPkwcffFCy68WLFPfxH//xH+Sxxx4jPM8TQgjp7e2VYGTxI8U9rFixgpw6dUqaASWJVM/U0aNHyX333UeWL18+JvckxX3Y7fah//7666/Jddddl+KoEiPVe/D5fGTz5s1D78Rrr71G7rnnHolGFz9SzMWePXtId3d3Rrwj0ZB6TZaDcbVzb2howAMPPIDe3l6sXbsWTz75ZNLXcjqdAACXy4WCggKoVCqphhkVKe8hzAcffIB169ZJMLr4keI+PB4PPvjgA/zqV78CRVEAgJKSEqmHKko65mIskOo+wlaUf/u3fxuaDzmR6j6MRuPQfzudTlnvRYp7UKvVWLZs2dC4586di/b2dqmHGhWp5mLBggUoKyuTeHTSkq3rgGKsByAlkyZNwuWXX46JEyfijjvuSOoaFEXhiSeewMMPPwydTge73Y6nnnpKNuEuxT0M58CBA7DZbFi+fHnqg0sAKe6jra0NBQUFePrpp7Fjxw5oNBo88sgjWLx4scSjFUbKufjNb34DQgjmzJmDX//61zCbzRKNMjZS3cef/vQnXHvttaiurpZwdPEj5Xz88z//M3bv3g0AeP7556UYXlxI/X4DwGuvvYYVK1ZIcq14Scd9ZCrZeq/jSrgDwNGjR3HttddGfH7bbbehsbFR8DsffvghysvLAQAsy+KZZ57BX//6V5x//vk4fPgwHnroIXzyyScoKChI59CHSPUehvP+++9j7dq1UCjkn2op5qK9vR2TJk3Cb37zG5w8eRJ33303Nm7cKJtwlGIuXn/9dVRUVCAYDOKJJ57Ab3/7Wzz33HNpG7MQqd7HgQMHcOTIEdljHkYj1bvx+9//HgCwYcMG/P73v5d1PqR8v//2t7+htbUVjz76qOTjjIWU95HpiN1rRjPWfgEpCQaDZN68ecTn8yV9jcOHD5PVq1eP+OyGG24gO3fuTHV4cSHFPYRxu91k/vz5pKGhQYKRJYYU9zE4OEimTZtGWJYd+uzGG28ku3btkmKIMZFyLsL09vaSefPmSXa9eJDiPp555hmyZMkSsmLFCrJixQoyffp0cvHFF5PNmzdLONLopGM+CCFk9uzZxGKxSHpNMaS8h+eff55cf/31I2II5ELquchkn3u6nrt0M6587j09PdDr9VCr1Ulfo7y8HD09PWhqagIAtLa2or29HXV1dVINMypS3EOYL774AlOnTkV9fb0EI0sMKe7DbDZj8eLF2L59OwCgs7MTHR0dWTUXHo8HDodj6N+fffYZZsyYIcXw4kaK+3jggQewfft2fPfdd/juu+9QVlaGF154AcuWLZNwpNGR4j5cLhd6e3uH/v3111+joKBANqucVO/3Sy+9hM8++wwvvfTSiBgCuZByncp0svVeKUIIGetBSAXLsnjwwQfR0dGBVatW4X/8j/+R1HU+/fRTPPPMM6AoCoQQ/OQnP8HVV18t8WiFkeoegJB57MYbb8SNN94o4QjjQ6r7aG9vx7/+67/CZrOBpmk8/PDDuPzyyyUerTBS3EN7ezseeeQRcBwHAKiqqsL//J//E1VVVVIPVxQpn6kwK1euxN/+9jdMmTJFghHGhxT30d3djUceeQR+vx8URcFsNuO3v/0tpk+fnoYRRyLFPfT09GDZsmWorq6GXq8HAKhUKrz77rtSD1cUqZ6pRx99FN9++y0GBgZgMpmg0+nw9ddfSzza1EjH+yMH40q458iRI0eOHDnGYRGbHDly5MiR4x+dnHDPkSNHjhw5xhk54Z4jR44cOXKMM3LCPUeOHDly5Bhn5IR7jhw5cuTIMc7ICfccOXLkyJFjnJET7jly5MiRI8c4Iyfcc+TIkSNHjnFGTrjnyJEjR44c44yccM+RI0eOHDnGGTnhniNHjhw5cowzcsI9R44cOXLkGGfkhHuOHDly5MgxzlCM9QDkhBCCQCAAv98PnucBAAqFAhqNBgpF9vwpOI6Dz+cDy7IghICiKKjVaqjValAUNdbDiwtCCILBIHw+39BcMAwDrVabVXPB8zx8Ph+CweDQXKhUKqjVatB09ujO4bkIt6ZlGAZqtRpKpTKrnimfz4dAIDA0F0qlEhqNJqvmgmXZofcbAGiahlqthkqlyqq58Pv98Pv9CDceDc8FwzBjPLr4Ca+1wWAQALJqrc2eVTRJCCFwOp2wWCxwu90Q63CrUChQUFAAk8kEtVot8yhjEwwGYbPZYLVaEQgERM/T6XQwmUzIz8/PuAWNEAK32w2r1Qqn0zkk1EfDMAzy8/NhMpmg1WplHmVsOI4bmgufzyd6nkajgclkQkFBQUYuaF6vFxaLBQ6HY0ioj4amaeTl5cFsNkOn02XcgsbzPOx2OywWC7xer+h5KpUKJpMJJpMpI5VHv98Pi8UCu90+JNRHQ9M09Ho9zGYzDAZDRs5FeK31eDyia61SqRxaa1UqlcyjjE0gEIDVaoXNZhsS6qOhKAo6nQ5msxlGozHj5gIY5/3cHQ4Hurq6RF8WMfLy8lBRUQGlUpmmkcUPx3Ho6emB1WpN6Hs0TaO0tBRmszkjHjy3243Ozs6oiokQOp0OlZWVGaFw8TyP/v5+DAwMiC5cQlAUheLiYhQVFWWEwuXz+dDZ2RlVGAqhVqtRWVkJnU6XppHFDyEEg4OD6OvrE1USxSgsLERJSUlGKFyBQABdXV1wuVwJfU+pVKKiogJ5eXlpGln8EEJgt9vR3d0tqiSKkZ+fj/Ly8oxQuFiWRXd3N+x2e0LfYxgG5eXlyM/Pz4i1Nsy4FO4cx6GzsxMOhyPpa1AUhYqKCphMJglHlhgulwsdHR0JKyfD0Wq1qK6uHjMNmed59PT0wGKxpHSd0tJSFBUVjdnL4/V60d7enrByMhy1Wo3q6mpoNBoJRxY/hBD09/ejr68vpesUFhairKxszObC7/ejvb09qtUkFgqFAtXV1dDr9RKOLDEsFgu6u7sTUhRHk5+fj4qKijFTVFiWRUdHR8LKyXAYhkFlZSWMRqOEI0sMu92Ozs7OhBXF4RgMBlRVVWWEogKMQ+HOsiyam5vh9/sluV5xcTFKS0sluVYi2Gw2dHR0SHIthmFQV1cnu1DheR6tra1wu92SXK+goACVlZWyCxWXy4XW1taUFuEwFEWhtrZWdqFCCEFHR0fCuxIxDAYDampqZLdEeL1etLS0JLxDFKO6uhr5+fmSXCteCCHo7e3FwMCAJNfTaDSoq6uTXcAHAgE0NzeLmq4Tpby8HIWFhZJcKxEGBwfR3d0tybWUSiXq6uoywt0w9jZCCeF5XlLBDgD9/f3o7++X7Hrx4HA4JBPsQMiS0dzcnNKuM1EIIZIKdiCk8Ej1EsaLx+ORTLADob9LS0tLwibxVOns7JRMsAMhhae9vV2yv0s8+P1+NDc3SybYAaC9vT2lXWcyhF07UuHz+dDS0pLSrjNRwpsoqQQ7AHR3dyfsfkwVq9Uq6ZoSDAbR3NyckrVVKsaVcO/p6ZFUsIfp7e2VbTEOBoOSCvYwYVeFXIvx4OCgpII9TDgATA54nk+LACOEoL29XbbF2G63w2azSX7dcPCUHIQtD+n4m7W3t8u2GLvd7pTdIkJ4vd60XFcIQgi6urokFexhurq60rKGC+H3+9HV1SX5dYPBoOybECHSKtw3bdqEVatW4YorrsC7776bzp+Cy+VK60Ij12Kcqt8nGm63W5bF2OfzoaenJ23X7+zslGUx7unpScsCBoRMmnIsxizLorOzM23XT5dCPZqBgYG0Kdgcx6VlkR8Nz/NpUdzDDAwMwOPxpO36YRwOR9oU7LASl+5NSLp/x263S2opS4a0CXeWZfGf//mfePXVV/HBBx/gueeeS8vuIUy6F8pAIJDwAx3o7QRrj9/M5PV6024i7OvrS/iB9jacAElA4ZDS5CgEx3EJm++ClgEE++NXOILBYNoVocHBwYSVFG/TKZAEvjM4OJhWpTQctZ4InNsFf0dL3OeHsxTSicPhSFhJ8bU2gPfHH9QXLbVKKhJdBwnHwdt4Iv7zz8YLpBOv15uw1c/f2QrO7Yz7fJfLlXZrbDJrrZSkTbgfPnwYkyZNQmlpKQwGA5YuXYrt27en5bd8Pp8sGmuiQsvXfAZtj/0cAx+8EpeQT3SRTAaO4xJWUgbeewnt//XPcP2wI6aQZ1k2rUpcmMHBwYRenGB/N9r+z/9A3xtPxyXk5fD9EUIS/h3b1x+i7Xe/hGPHNzGFPM/zslhqrFZrQn5wzu1Exx/+BT0v/L+4hLzdbpfFapbo++fcvQWtjz4C67efxBTyyShByeByuRJTUgiPricfRddTj8Ul5N1utyyxO4mutZ7jB9H66M8x+NnbcQl5OebC7/enxTUZLwkLd57nceWVV+IPf/jDiM+3bduGWbNm4fPPPwcQ0lqGR5mXlZWlTeOTy/wRrn6VCCQYhH3L5zGFfDhXVA6SEb7Bng70vvJkTCEvlz+cZdnEFTqeh3PPlriEvBwKSrK/w1oH0P/28zGFvNvtljT4TAxCSFLz7j68Ny4hL+dcJLrT4t1OWD5+I6aQD1drk4Nk1hHvmWNxCXm51iiXy5Xws0v8Xti+2hBTyHMcJ1sQ5Via5pNKhduwYQMee+wxbNq0Cfn5+Th58iRuu+02PPTQQ7jvvvsAAJ9//jn27t2L//2//zcA4PnnnwdN07j33nulvQMAzc3NsmlIhW4ryA/b4jqXtVkQ7BnpY6OUShgvugwFl14LRf65HHqfz4eGhgZJxyoGwzDI37wh7vN9TadAAiMXJmVZFcyrboB+3iJQw9KhOjs7ZYt4NfEBUN9/Ede5vNsFf3vTyA9pGnkXXALTFddDWVw29DHHcThxIn5TZaoUHdgK3mWL61x/ezP4UYuWwlQE0xXXIW/hclDDcmz7+vpkC7LKZygwmz+K61zi98PXfCric/2cBTCtuhHqqtpz5xKCEydOyBZ8WNR8FHxHU+wTAQR6OsDZRlpGaH0eCi69FvkXXw5afS711Gq1pjX2YTh6lRLqb9+P72SewHv6SMTH2skzYVq9Dtr66SM+P3PmjGxKStFgB/jjP8R1LjvQh+DASGWdUmuRv+xKFCy/Coz+XLEfl8uFlpYWKYcqilqtxuTJk2X5rdEklW2/Zs0aPPXUU3jttdewbt06PPDAA1i7du2QYAdCRUeG79R7enowd+7c1EcsgJxpRT6/H/zJw0l/P7yTd+z4ZoSQl/MeOI6Dp7URlDd5hSi8k1d++cEIIS+HeySMLxAEUpiL8E7euW/bCCEvd5qaZ7AfpDl5ZSK8k7d+9eEIIS/nfXhZFkwqc4HQTt59eO8IIR8MBmVN8fI6HSm93+GdvO3bj0cIeVnXqGAwpXsAQjt575ljI4Q8z/OyCXYA8Hq8qa21Z3fy9i1fjBDycs5FuI/JWFSmTLqIzVtvvYU//vGPKCkpQWVlJf7yl7+MKKLAsiyuuuoqvPbaa9Dr9bjhhhvw9ttvS17xjRCCY8eOSXrNaGjtA8A7f5PseuGdPL9wJfps8plw1O89A9oqXZBSeCffrjXJYgoGAHXAC/qV/yfdBc/u5BVLr0KXPf7gnFTRbvsMOHlAsuuFd/J9JbUpVXFL6DcJD+Xz/0fSa+rnLID20uvQ7pJvMdad2A+y/XPJrhfeyTvrZ8MhYz699rnfSXu9yTORd+WNaPXJp2hpu1uAT1+X7HrhnXxgzmJYHE7Zgt2mTZs2JlXrklYn1qxZM6QBPf744xHVkRQKBX7729/izjvvxPXXX4/77rtvTEu5ZiokGARrt4CXUSNOB7zLCdYmT87zOSSuVMfzobnwybtzlxre6w7NBZFvIU7HMsnaLWATiIDORIjfB842CCKTwpsuWIcNrGNsU7tShQT94GyD4Nn0ZixkCkmrE4899hiAkC9JrOzhpZdeiksvvTTZn4gLiqJAUZRsWhjFcZItZPp5F4bMjxU1IT+1TD45AKAC0uzoGEM+Ci5dA+OSy0CrNeg7fVq2nTtFpPsd7dTZMF25DtqJU0PBNjL55ACACvoleaZojRb5y1Yjf9lVYPQGOFpaAL88VQkZCcW7ekI9TFeug276vFAA65kzkl07FhQblOROKIUSxosuRcFl10KRb0agqwuQyRwspQFYWVoJ05U3wjBvEQiAzuPHJbx6dGiOhSTqKU0j74KLYbriBiiLy9Df3w/ilk+BH6tmUUkJ9yeeeAKbN2/GO++8g7vvvhvvvfcebr/9dqnHFjdarVY2X6+aBriyqrjO5T1ucI7I4LLhQj2MnHXfaZqGMi8fVF58NbWD/T0ANzIie7RQD6PT6WQrc6umKJA454L4fWCtkek1w4V6GLlr8KuVirifKdbSHxHcSKm1KFh+TqiH0Wq1skUFq2kKVLxzwQbBDkRmzqhr6mFaHRLq4f4B4R7mcinvKpqKey44uxX8qLiV0UI9jJzPlEbBQBHnPYDwCPZGFvBRllbAdOU6GIYFzFIIzYdc77cqgbWWcznAu0ZlbIwS6mHknAuVSjVmwj1hn/u7776L3/3ud3jllVcwb948PP3003jnnXfw1VdfjVmL1J6enrQXTgkzefLkuNuPOnZtRv+b5/zz+rkLQ0K9ckLEuYQQHD9+XJZFzGAwoLa2Nu7z2//znxHobgMgLtTDSNmEIRa1tbUwGAyxTwTgOXUE3X/9j6F/a6fMhunKG6GtnyZ4/smTJ2WpgqdSqTBlypS4z+9+5r/gOR7yz4sJ9TAOhwNtbW2SjTUaFRUVMJvNsU8EEOjrRvt//Gro3+qaszv1GfMEmwI1NTXJorxTFIUZM2bE3Zio/50X4Pj+69B3RYR6GK/Xi8bGRknHK0Yiza4IG0TTr9cP/VtZWgHTqhthmL94RBZMmI6ODtlSE6dPnx53Mxzr1x/B8umboX+ICPUwLMvi5MmTUg5VlIKCAlRVxaloSUxCO/ctW7bg0UcfxeOPP4558+YBANavX48XX3wRH330EdatW5eOMcbEaDTKItxVKlVS3X6iCfUwFEUhLy9PljzxZForxhLqYfLy8mQR7jRNJ9VXPJZQD1NQUCDLM5VMR7JYQj2MXq+XbdebzDMVS6iHyc/Pl0W4J9OPO5ZQD6PRaKBUKtNeoQ5Ibi5iCfXh15ZDuOt0usS73FEU8hZcIirUwygUCuh0OlmeqbFsYxv3zv3o0aNYv349fvnLX+Kuu+4acexPf/oTNm7ciI0bN45JX2FCCBobG9MeGZzI7gRAKK+aZqIK9eG43W40NzcnO7y4oGka06ZNS8hU5DqwE7oZ86MK9eG0trbC6UxvIFSirXgDfd3gnPaYQn3o/EAAp0+fTnZ4cTN16tSELF7uI/ugmTgtqlAfTnd3d9qrceXn56O6ujru81mnHf62pphCPQzHcTh58mTalZT6+npotdq4z/ecPARVeXVUoT6cgYGBtPZcAEJCceLEiXGfTzgWroO7Ywr1ofMJwalTp9Ju1aqpqUlIMHobT4LJy4eqpDyu8+12O9rb25MdXlwolUpMmTJF9hbVYcZNP/d0myAVCgWmTJmSVv8JIQRNTU1pzcMsKSlBSUlJ2q4PhNqkNjXFVwgkGSiKwpQpU9LuBmpvb09rhSk5THaBQABnzpxJq2BMVCgmQ7pdb3q9HnV1dWm7PhBSUk6nOeB0woQJyMvLi31iClgslrQ22lGpVJg8eXJahSIhBGfOnElr/ECim0GpGTctX41GY1ImznipqqpKe2AERVGoqqpK20OtVqtRXFyclmsPR6fToaioKG3Xr6iokCW+o7y8PG2WKIVCgfLy+HYZqaBSqVBWJm6iTJWSkpK0C/bw7yTjEosHmqZRWVmZlmsPh2GYtP5OQUFB2gU7AJhMJuj1+rRdv7q6Ou27XYqiErI2JYperx/z1O9xI9yB0GKcjkW/sLAw7sCtVFGr1aioqJD8uuGHWS4TUUlJSVqiUo1GIwoKCiS/rhAKhSJtO+vq6mrZXFhmszktz69Wq5VFWQRCAjhdz29FRUXaFIfRGI3GtCz6SqVSFmURCK0llZWVaXl+S0tLZVEWgdDzm4hrL14YhknrJi1expVwVygUqKurk7QaUEFBQVp3PkKYTCZJf5OiKNTW1sqebldbWxt3ZkE8GAwG2V+avLw8yQV8TU1NWnc+o6EoSvLf1Gg0qK2tlXUutFotJkyYIOlvlpeXy6YshqmoqJDUyqhUKjFx4kRZ451UKhXq6uok/c2ioqK0Wvzk+E2GYVBXVzdmmWPDGTc+9+EEg0G0tbWl7LsuKSlBcXHxmGlgNpsNnZ2dKflLVSoVqqurZdOGR8NxHDo6OlIOsDObzSgvLx+zuXA6nejo6EjJXxq2BMhlBRoNz/Po7u5OubGP0WhM284tHjweD9rb21OKPA+b4tPpyosGIQR9fX0p96nX6/Worq4ek/KmQKh2eltbW0o15ymKQllZGQoLCyUcWWIMDg6ip6cnpbVWrVajpqZG0g1NKoxL4Q6c65Xd3d2d8IRpNBpUVVXJXsxEiEAggKbWDrD+xNM2iouLUVxcPGZFFMIQQtAzYIW1vyfhJiBKpRJVVVWy7nTFYFkWja0dCHoTLwwTtsaMlUAczqDNgd7uLvBcYhHPYZ/xWKb3hOF5Ho1tnfC7Eg94NBqNaXPhJYrL5UZ7Ryc4NrHALpqmh6wOY23+JYSgsb0bfqc14bVWp9OhsrIyIwSi1+dDS1sHuASrd1IUhZKSEhQVFY35XAxn3Ar3MBzHwW63Y3BwMKZ2aTQaYTabh/KDx5p+lx+Pf3MaJXka/OSiKlitVthstqgCUqlUwmQywWQyZcTiRQjBljMD+NOmM3jypjnIo1kMDg7GtKoYDAaYzWbk5eVlxFw4fUH8ZUsjbN4gHl09BVarFVarNepOnmEYmEwmmM1m2Xy6sdjfZsV/f30av7lsMiabFLBYLDGr2Ol0OpjNZhiNxjFXFAHAF+Tw0s4W7G+z4elb5sBqtcJisURNz6JpGgUFBTCbzRmhtAPAqV4nfv/VKaybX4lLavNgsVhi1rnQaDQwm83Iz8/PCEWR5Qne3teO9w904p37FsBms8FisUSNQqcoCvn5+TCbzdBqtRnxfndYPfjD16dxXk0+bppTCovFArvdHlVZUalUMJvNKCgoGDPLSTQyb0QSwzAMzGYzzGYzOI6D1+sdasNHURQYhoFWq4Varc6IhwwICcTPjvbg6a2NcAc43L4gZFbXarUoLy9HIBCAz+dDMBgEIQQURUGtVg8VysgUBl1+PLGpAdsaQilMeRoVCnQGFBQUgOM4+Hw++Hy+IWVl+FxkghAJs61hAH/89gwsngAum1YCtVqNsrIylJaWIhgMwufzIRAIDM2FSqUamotMeaZcfhZ/29qET4+GCgwZNEoYjXkwGo3geX5oLsLKCsMw0Gg00Gg0GTUXhzps+P3Xp9Fp82JOZT6USuVQemd4Lvx+/9BcKJVKaDSaoTK2mYCf5fHKrha8ta8dPAnNhcFggMFgGGqrGp4LQghomh6ai0wQ6GEa+l34/VencLrPhTKjBgqFYsiHzbLs0FyE11qFQgGNRpNRay3HE7z7Qwde3NGCAMdj6eQi6HS6IYtCeC5Ylh2ai/Bam4kCfTiZPTqJYRhm6CXKVLrtXvzh69P4od029Fme5pzADgvyTDBjiUEIwZfHe/HUlka4/Od2Uwb1uceNYRjo9fqMMLeLYfUE8OSmBmw6fc4vmqc5dw9hQZ4pu3IxdjQN4vFvT2PAdW43lTdsLsLV/pKp+CcXngCLZ7Y146PD5/Krh98DELJaKZVKWdLBkuVIpx2///oU2q3nLFfDnymapocU+UwlwPJ4bU8r/r63HRwf2tkOvwcgFF+S6Wtt84Abv//6FE70nIsHylOPXGvDSlU28g8l3DMZjifYcLATz3/fDB870uxuUGfPNPU6fPjvb05jb+vIoC2tkoGCyZwdYDQIIfjmZB/+vLkBDt9IU+9ogZLJ2LxBPLW5Ad+c7Is4NnoxzmR2t1jw/745jT7nSLeaIYvuwRPg8Pz3zdhwsDOi61w2PVPHux34/Ven0GIZGQOUTfcQ5Hj8fW8bXtvdBpYfORvZ9EzFYvzcSRbTavHgD1+dwtFuYX9bNgh3nhB8fLgLz2xrhjcY6YfOhnsAgD6nH49/exq7moV702fDfRBCsOl0P57c1ACbVziiXKfK/Ptw+IL4y+ZGfHkisoMckB1zAQD7Wq34729Oo8chHKiVDffhC3J4cUcL3jvQAV7ADZ0N9wAAJ3uc+P3Xp9A04BY8ni33EQ/j506yEJbj8fb+Dry8qwVBTjxwI9N3We1ng1EOd4pHLmf6PRBC8OmRbvxtWxPcAfEgueEukkxkwOXHH787g+8bxevJ69UMGDozfJ5ibDnTjye+OwOrRzzdLdN3i04fi6e3NWLj0ej15DP93TjQbsMfvj6FLrt4FHmm73j9LIeXd7bi7f3tgspJmEx/phIhO+yk45RtDQN4ZVdrVMEOZPYDF2B5/HlzQ1TBDmT2PQDAwQ47ntneHFWwA5mt2RNC8Pz3zVEFOzDSr5iJNA+48eSmhqiCHch8ofj2/vaYgp2mQi6rTGXAFbJkRRPsQOa/318c68U7PwhbHYaT6c9UIuSE+xiyYmoJXr17Ac6rLoh6XiYLFJWCxn9dNxv/dtV0aBTij1Mm3wMAzK8uwOt3L8CKKdHLqWbyfVAUhX9ZNQ1/uGE2TDpxAZ7J9wAAdUV6vHb3Alw/L3oZ5ky/j/uX1OHpW+ejskA8OM6gVmRM5LgQRQY1XrjjAtx3UW3U8zJ9LtbOrcCL6y/A1NLowZaZfh+JkBPuY0xJnhqeGLvFTNcmKYpCoV4VEQg4nEw32wFAgU4VEWAzmkyfCwAoM2rg9InnfGfDPehUCtAxhF6m7xYBoCJfC4dI3AOQ+W4eIKTAq6Mo7kB2PFPlRg2cPvG5UDJUzPvMJsbPnWQpXx7vxcne6KVZMz34ieMJntzcGPWcbNCI97Vah3LyxciG+/jLlsaoSko23EPLoBsbDnZGPceQBYLxxR0tcPrFFa1smAuLO4BXdrVGPScb7uPdHzqixw1kuBUlUXLCfQxx+Vk8u1247/n0sjzQVHYEP312tBsN/ZFVznQqBrWFodzpTN9lsRyPpzY3CB6bUmKAkgnNQabfx67mQcFIf5oCpp01SWb6PRBC8OfNDYL+0dpCHXSqkI860++jod+FT44I9z2fVR4q4Zvp9wAAz38vHItSka8Zcv9k+n30u/x4bY+wgjLz7Fxkg4KSCOPrbrKMV3e3CgYNVeRr8MRN89Bu9eDdHzrGYGTx4/QF8fz3zYLH7lo0ATfOr8LHh7qgV2du0BAAfHS4KyJ3Fwi98L+/YQ48fhZ/29Y0JFgykSDH4ykRC8r18yrx8LJ6fHOyD1ZPYnXM5WZ74yD2t9kiPlfQFH63Zia0KgWe/745o03BhBD8eZOwgnLJpCI8tmYmdjYN4phI+mumcLLHgc+PCQcF/ssVUzGx2IBXd7ciX5vZhZye3dYEXzDSbTitNA9/vmUejnc7BOtBZDOZ+3aMc1otHrx/QNjs+NCyeqgVNCYVG/D/rZom88gS46WdrRGFXgCg2qTFDfMqoaAp3DC/cgxGFj82TwAv7mwRPHbvRbUo0CpRoFXi39fMlHdgCfL+gU502CJr9udrlbh7Uag96+XTpe9fLSV+lsdftwgrKDedV4UqU8gS9Nsrpso5rITZdLofhwQySJQMhZ8tnQgAWDyxEIsnjl0ntFjwhODJzQ0RRXcAYOXUYsypKgAA/GxpvazjSpQjnXZ8LSK4H1kxCTRFYVZFPmZVjE2HwHSRM8uPAYQQ/GVLw1DpxuEsmGDCRRn8wg+nacCNDw8JKygPL58EZZZUpHthRwvc/kizY12hHtfOiR6xnSkMuvyiftEfL6nL6F3ucN7Z345ugWIvZp0K6y+sGYMRJY43yOFv24TdbT+6oBrl+ZlbWnY435zow/HuyHggtYLGTy6ZOAYjShyOD7l4hFg1vXTIJD8eyY7Vd5yxs9mCPS2RPbUZmsLDy+qzIqiDEIKnRPyiF00sxIW1ZvkHlQSne5349Ei34LFHltdDkeHxDmGe/V64MuCUEgNWzywbgxElTp/Thzf2tAkee/CSuowPLA3z5t62iFK5AFBsUOO2BdmhoHgCrKiCcvvCGpTkZUe99c+P9eB0X2Q8kFbJ4IGL68ZgRPKRE+4yE2DFA7dumFeBCYWZ20hlOFsbBkY0twmjZCj8bFlmm+nCkChmx6WTinBejUn2MSXD8W4HvjwuXKL1keWTMj4gM8zftjUJplNOL8vLeHdCmG67F2/uaxc89pOlEzO6YM1wXtvdBotAbEaZUYNbzq8agxEljtPH4jmReKA7L6xBoSFzm29JQU64y8x7B4TTMUw6Je5aVCv/gJLAz3L469YoftEoRTsyiW9P9eFoV2RAk4qh8dMM9yOG4QnBk5uElcXLppVgdmV2+BEPd9jw3al+wWO/OOsXzQae3tokWHFyTmU+VsYokJQpdEQJ5A3FA2WHgvLKrhbYBWoMVBVoceP87FBQUiEn3GVkwOXHq7uF/aL3L6nLmlSMt/a1o9cRaXYs1Ktwx8JsMTty+NtWYbPjrRdUozw/O8yOYnUSNEoaD2aRX/RPItas1TPLMK0sO/yi+9us2CpQJ4GmQhaUbHC3AcBTInUSzqsuwMX12REP1DLoxgcidRIeWlYP1TgqViPG+L/DDOLZ7c2C6RhTS/Oyxi/a6/Dh73uFzY4PXjIxa/yif9/bhgF3pNmxJE+NWxdUj8GIEidanYT1CyegOEvMjp8d7UZjf2SXLr2KwY+XZIdflOV40cCta2aXY3JJ5vY1H060OgnZoqBEq5OwqM6c0RkKUpIT7jJxrMuOr0RaV/58eX3WmB3/tq0JfgG/6MxyIy6fVjIGI0qcTpsXb+8XVlB+trQemizxi0ark7DuvOwwO0ark3Dnogkw6zM7fzrMR4e70DIoXCfh3ouyQ0EJcjz+IpKGeP3cStQVZUc8ULQ6CQ9lSTyQFOSEuwzwhOBPIn7RK6aXYmaW5Fce7LBh0+lIvyiF7NHqAeCvWxsF/aJzq/KxbHLRGIwoceKpk5ANxKqTkA3YPAG8tFPY3Rauk5ANvH+gE+1WkToJiyeMwYgSJ1qdhHXzK1F9tk7CPwLZsQJkOeMhHYPlQxW3hFg9qwzTyqJ3W8oU9rZaBFui0hTw8yxRUHJ1EjKLF3a0wCVQPz6r6iS4A+LxQBfVZkWDG0C8ToJJp8T6C7NDQZGK7Hh7shinj8Vz24XNjusvrEFRtvhFj3SjcWA8+EWFtfpr51Sgvjg7/KK5OgmZw5m+8VEn4bntTYLdKSeXGHDVrPIxGFHi9Dn94nUSLp4IfZYELEtFTrinmVd3t8AmkI5RWaDFuixJx3D4gnhhh7CCcvfiWph02eEX3XCoC20C9eONGgXuWVwr/4CSIFcnIXMgZ91t46FOwhfjoE7CM1HqJFwxIzvqJEhJTrinkdZBNz44KNwVKpvSMV7c0SLoF51g1uH6udlhdrR6Ang5Sv34/Czxi+bqJGQO353qHxd1EsSi/C+bVoI52VInodOOb08J14//eRbVSZCS7JAuWQghBE9taRT0i15Ya8biuuwwOzb2u/DxYWEF5ZHl9VBkiV/0OZG2lfVFelwzOzsUlFydhMzBG+Tw9DZhBSXb6iSc6BGok6Cg8cDF2VMnQayQ05UzSjE9S+okSE12rMxZyPdNg9jbKuwXfSiL/KJi+aJL6gtxwYTsUFBO9jjx+VHhtpWPrJiUNX7RXJ2EzOGNPW0YcGV3nQR3lDoJd1xYg5K87IgH2ni0Gw39kQHLOhWDH2eJgpIOcsI9DcRKx6gxZ0c6xpYzAzjYIdy28qEsMTuGFRQhv+iKKcWYd7ZtZaaTq5OQOXT9A9RJuOm87FBQnL5glPrxE1CYJXUS0kFOuKeBd39oF/WL3pkl6Ri+IIenRfyit5xfjYos8Yt+fbIPx7oj/aLZ1LbyH6FOws9XZEcaIjA+6iS0RamT8LMsqpPwcpQ6CTfOz446CekiO2Ywi+hz+vH6buF0jAeyKB3jzX3t6BVoW1lkUGVV28pnRNpW3ragGqXG7PCLjvc6CVfNKsPU0uyok7Cv1YLtWV4nAQD+IlI/fsEEE5ZkUZ2EDWJ1EpbVZ02dhHTxj333aeDZ7eLpGKuyJB2jx+HDmyJ+0Z9cMhE6VXaYHV/f04ZBgfrxpUY1fnRBtpgdx3mdBDWD+3N1EmRlZ9MgdrdE1o8fL3USFtWZcWFddigo6SQn3CXkSKcd35wUTsd4ZHn2pGM8vbURAS5SQZlVYcSlU7PDL9ph84q2rfzZ0uxpWznu6yQsyq46Ca3joU6CSDxQNtVJ2CZSJ0FxVkHJkRPuksHxBE+K5IteOaMUM8qzIx3jQLsVW85Etq2kEOqrnQ1aPQD8dYuwX/S86gIsnZQdftFcnYTMweoJ4OVdLYLHsqlOwvsHOtBpi6wfX6BV4s4La+UfUBL4WQ5/iVYn4R+ofnw0smN1yAI+P9aDMwJ+0WxKx2B5gic3Cb80obaV2eEX3d1iwY4mYb/ow1niF83VScgsnv++GW5/dtdJGHT58apIPNCPL65DniY74oHe3tchWCfBrFNh/YXZEQ8kB9nxZmU44yUd4+PDXWgeFPaL3ndRrfwDSoIgJ16e9bq5lZiYJW0rd+TqJGQMp3qd2DhO6iR4g5EKypQSQ1bVSXhjr0j9+EvqsqZOghzkhLsEvLyrFXYBv2g2pWPYvEG8tKNF8Ni9i2tRkCV+0Q8OCretDPlFsyMN0c+K99XO1UmQF0JCUf5ZXyeh24EvxeokZFF5VrE6CTPK83D59OwIWJaLnHBPkeYBNzYczP50jBd3NMMp0Lay1qzD2ixqW/nKLvHyrNnStvK9H8Trx+fqJMjLNyf7cHQc1EkQK896+bQSzMryOglAKA0xWxQUucgOyZOhRDM7ZlM6xpk+l2jbyoeXT8oqv6hQ28pJxQZcnSVtK/tdfry2R1hBydVJkBdPgBsXdRK+ONaDU70C9eOVNB7MEgUlap2EmWWY9g9aPz4a2bFqZyjbGwezPh0jmoKydFIRLpiQHW0rT/Q48PkxYb/oz5fXZ1fbSoH68bk6CfLzxp5WDGR5nQSXnxWNB1q/cEL210lQZU+dBLnJCfck8bOcqF80m9IxNp3ux+FOYb/oT5dmh1Yfzey4cmox5mSJXzRXJyFz6LB58c54qJOwK1r9+Oyvk3DXogkwZ0nAstzkhHuSvL2/Az2OSL9oNqVjeIMcnt4qbHYMta3MDr/oV1HaVmaLXzRanYRVuToJsiNWJ2F+ltVJeD9KPFC210moMetw/bzsCFgeC7JjdjOMPqcPb+zJ/nSMN/e2od8V6RctNqhxa5b4RUNtK4W1+tsW1qAkLzv8otHqJDyQJWbHf4Q6CY8sz540RLE6CQtrTVicNfXjxeskZFPA8liQ+8skwXhIx+i2e/HmPmG/6E+XToQ2S9pWvra7FRZPpF+03KjBLednh180Zp2ELPGLjvc6CWvnVmBiUXbUj49eJyE7LCjkrLtNsE7CxEIsrM2OOgljRU64J8ihDhu+O5X96Rh/3dok3LayMh8rphSPwYgSp93qwXvjoW1lrk5CxrAhap2EWvkHlATR6iTcOL8SE8ZBnYSfZUnA8liSHatfhhDNL5pN6Rj7Wq3Y1hDpF82m8qyAeNvK82sKcHF9dpgdo9VJeCiLzI7joU6CJUqdhPsuqoMxVydBNqLVSbj5vCpUZkmdhLEkO1aODOHTI91o7M/udAw2itkx5BfNDrPjzqZB7GqObFsZ8otmh4ISq07ColydBFl5/vtmuAXqJNQX63HN7PFRJ8GQJXUS3hKrk6BX4faF2aGgjDXZ8dZlAOMlHeOjw11oEWhbmadW4N6LskNBCXLiZsfr51WiNkvaVo73OgmXZFGdhJM9DmwUqZPwi+WTsr5OwrTS7KqT8HeROgkPZlGdhLEmJ9zj5KWd2Z+OYfME8OLOFsFj91xUi4KsaVvZiQ6BtpX5WiXuXlQr/4CS4B+hTsLPsqlOgog1a9zUScim+vFbm4TrJJQbcdm07KiTkAnkhHscNA248NGh7E/HeGFHi2DbyrpCPa7NEr/ooMsv6hf98ZIsals5zusk/CiL6iR8faIXx7sj6yRkU/14jg9ZUIRYNb0UM7OoTsLmM5EByxRCCko2uNsyheyQSmNIyOzYmPXpGKd7naJ+0Z+vqM+etpXfZ3/byj6nD38f53USsqd+PItntgm7227PsjoJpwXqJGiVDB64ODvcbSwfWmuFuHpWOaaWZkedhEwhJ9xjsOXMAA4I+EWzKR2DnDU7CrWtXDa5CPOrs8MverzbgS+PC7etfCSL/KJ/29YEn0CdhOll46NOwk+yqk5Cm2CdhDKjBrecnx3lWZ0+8frxd15YkzV1Ej453IUmofrxagb3L6mVf0BZTk64R2G8pGN8e6oPR7si21aqGBo/zZK+2tHqx182rQSzK7OjbeXhKHUSfpFFftGnReokzKnMx8osqZPQYfXgXZH68Q8ty5768a/sahGsk1BVoMWN87NDQbF7g3hRpE7CPYuyp05CJpET7lEYD+kYngCHv4nVj19QjbIsaVv55fFenMzytpUcT/CncVAnYX+bFVtF6iRkSxoiADw1DuoktAy68YFY/fjl2VU/XqxOwnVzsyMeKNPIjpkfA8ZLOsbf97YJt63MU+PWLGpb+ex2YQVl/cIJKM4Ss+NnR8dHnQSxwK1sqpOwqzlXJyFTaOh34ZMjIgHLy+uzpk5CppH7q4kwHtIxOm1evL1frH58PTRZ4hd9dbd428p1WdK20ukL4nkRv2jW1UkYzNVJyAS2Nw5if5st4nMFTeGhLIoH+rNI/fiL6wtxwYTsCFjORHLCXYAD7bZxkY7x163CbSvnVeVj2eQsaVtp8eB9kfrxD2VR/fiXdrYK1kmoNmmzqk7CSzuF0xCzrU6CUP347KqTwOOvIgrKuvmVqM6SOgmbT/fjkGidhOxQUDKV7FgZZYSNki961ayyrEnH2NtqwfeNYm0rs0NBIYTgL1saBNtWLphgwkVZ07bSjQ8PiflFJ2VVnQSXgF80q+okuAN4dXf210l4Z387ukXrJGRHPJAvyOHpbcLutlvOr0ZFlgQsZyrZsarIyKdHoqVjZIfZMeQXFdbqr51Tgfri7PCL7my2YE+LcNvKh5dlUV9tEb/oRRMLcWGW1Ek40zc+6iQ8t70JHoH68ZOzqk6CH2+I1El44OI66LOkfvybe9vRJxSwbFDh9oXZUSchk8kJ92HYvUG88H2L4LF7FtXClCXpGBsOdaFNoH68UaPAvVnSVzvAije4uXFeJSZkiV90a8OAYP34bKuT8KdN46NOwhcidRJ+nkV1Ep6JUifhiiypH99t94nWSfjp0vqsqZOQyWSHiicBhBCwLAuv1wu/3w+e50FRFBiGgVarhUajwUs7Mz8dg+d5+P1++Hw+BINBEEJAURTUajU0Gg3cLPCySP34TGpbOXwuOC60k1IoFNBoNNBoNHjvQKd428pFmWF2JIQMzUUgEBiaC5VKBa1WC0Iz+KtInYSbzqtCVYaYHTmOg9frhc/nG5oLhmGG5mJLgyXj6yQQQhAIBODz+eD3+4fmQqlUQqvVQqlSibrbMqlOAs/z8Pl88Hq94DgOhBDQND00Fyf6PPj2lHD9+J9nSJ0EQgiCweDQXITXWoVCAa1WC7Vajae3NgoGLGdSnYTwXPh8PrAsOzQX4bVWqVRmtPVw3At3lmVhs9lgsVgQCESmhA3n0goNPC4jvm50jNiljHU6BiEEXq8XFosFdrsdhAjtoUIwDINfLS7BC/v70e06p6hkQttKjuNgt9sxODgIvz/SHDeceUY1bpxhwocnrBgeE/jjJXVj3rbS5/PBYrHAZrOB5yMXqDA0TeORBYV4+cAAGiznnr0ivQp3jHGdBJ7n4XA4YLFY4PFEWnmGU6FU4a75hXjz0CACw243E+ok+P1+WK1WWK3WIcVECIqicO8cI15HEId6zimNmVAngRACp9MJi8UClyuyhOxwVEolHlpYgpd+6IeHPfdirJ5ZhuljXCchGAzCarXCYrGAZSM3ScO5YZIGXECP79vOuUAzIR6IEAK32w2LxQKHI1KhHY5CoYDZbIbJZIJSmRmbpuFQJJqkyGIIIRgcHERvb29UYShEgNB44ZADx/r9uLi+EL+7dlaaRhnHWAIBdHZ2wu2OjAOIRYODwl/3DSDAAX+6aS7mjlF3K0IIbDYburu7owpDITjQeOukGzvbPZhamoenb50/ZrsTlmXR1dUV86UXottH48ndA3AGCP71ymm4YgzLzDocDnR1dcVcgEdDQGFjsx+fNzhRkqfGq3ctGLN0So7j0NPTA6s1MiYjFrYgjT/tsaDfw+H+JbVjqmi53W50dnbG3HhEQmF7F4u3j9mgVTF47e6FKByjdEqe59Hf34/+fuHKi9Hw8gye3m9Fky2INbPL8evLpqRhhPHh8/nQ0dEBny/SYhiL4uJiFBcXg6Yzx9M9LoV7IBBAW1tbUpM0nDYvg7mTJqByjNJKLBYLuru7E1ZOhkMoBsedStyyaJKEI4sflmXR3t6elHIynIGgAkUlZZhVWSDNwBLE4XCgo6MjYeVkBBSNQzYGt100ZUx2JzzPo7OzE3Z7ZOpRIrh4BTidGUsmjU29B7fbjfb29oSVkxFQFI7aGFx/4ZQxSackhKC7uxsWS2QhnUQIQIFeYsDq2WNT78Hn86GtrS0J5WQkZ1wMls+pH5O4JkIIBgYG0NsrHI8RLyqVCjU1NdBoMqPqZ+aoGRLh9/vR2NiYsmAHgBotB941mJJwTZa+vj50dXWl/NsU4TArzx/T3JcOgsEgmpqaUhbsAFCkZKHzW1ITrklitVrR1taW+m8THnPzgykL12TgOA7Nzc2S/LaBZlFC7KkJ1yRxOp1obm5O/bcJwax8Fk5basI1uZ8maGtrS1mwA4AKLOqUrpSFazJ4vV40NTVJ8tuTDRy8tgHZ19qwkpWqYAdCm8qmpiZ4vZE1FMaCcSXcWZZFc3NzVN9botjtdnR1CZdGTBeDg4Po6xMOmkkGQghaW1tlfeh4nkdLS4uki47H40FbW5usC4DD4UBnp3COerJ0dHTIqmyFhYmU8+/3+9HS0iKrsuXxeNDaKpyjnizJmvZTobOzE05nZJ+EZEnHuheLQCCA5uZmSeffYrEkZdpPhb6+PkmUrDA8z6O5uXlMlK3RjBvhTghBZ2dnWnYTVqtV0pcxGn6/Hz09PZJflxCSulk5AXp7e2MGzSWDy+WSbTFmWVZywR4mZbNyAgwODkpiPRmNz+eTbTHmeR7t7cKpU6nS1dUl22Jst9ths9kkv24wGJRtE0IIQXt7e1rWkr6+vpgBnlLh8XjS8vzyPI+Ojo4xsfgOJ63C/aGHHsKCBQvw85//PJ0/AyC0w0qnAO7o6Ei7Zhx+adL1UPj9flkWY7fbjcHByOp4UtHd3S3LYtzV1ZW2OQ8HhKWbdCmLYfr7+2WxCPX29iIYjOwvIAVhxTfdpFNZBEKKQzLBnolisVjSOufpXAPDhNfadOHxeCS1CCRDWoX7+vXr8V//9V/p/AkAoYmS0owtBMdxCWvc7jMn4T5zMv7z3W5JYgWiMTg4mLDGbdnyDTh3/GbkdCsQhJCEXxxfZzuch/bHvWj4/f60L5Q2my1hJcW2YyuCCfiJ06lkhUl0voM2K2w7t4HE+RxyHJf2hdLj8SS8Y3Ts3w1/X/yKk9VqTbvlLNG5ICyLwW+/AInTikQISfv7HQwGE373XEcPwdsm3JhJCIfDkTZlMUx/f/+Y7t7TKtwXLVoEvT79lcQ8Hk9aTMCjGRxMLLjO39GGhv/5KzT93/9fXEJejoWY5/mElZT+T97HiYfvQc97b8QU8oFAQBZ/ssWSWHBd0DKApv/4X2j437+B8/APMedRLq070d+xbP0WJx6+F12vPhdTyHMcJ4sLI9GFkvd60PrH/4PT//QQbLtiC3mr1SrLIpno++c4sBcnf3E/2v/2REwhH07NTTderzehXTUhPDqe+RNO/uJ+DH73ZUwh73A4ZHEnDQwMJHS+u+EUTv/mZ2h5/D/iEvKJXj8ZWJaVzZ0rRMLCned5XHnllfjDH/4w4vNt27Zh1qxZ+PzzzyUbXLzIYYoCQoIrGSXCeWBfTCHP87xsD0IyEdOc24Xed16PKeTlmgue55PyI3tOHUfT7/5nTCEvV0R7Mn8vEvCj/9MPYgp5t9st284hmWfX196C1sdjC3k55yLhvxfHwfLdlzGFfLjKmRwk80wF+nvR8bcnYgp5ud5vr9eb1N/Lvmt7TCEfro4pB3L9vYRIKs99w4YNeOyxx7Bp0ybk5+fj5MmTuO222/DQQw/hvvvuG3Hu7t278cYbb+DJJ5+UbNCjaWxslG2yDF1t8Hz0dlzn8l4vOFfkopc3/wKUrrsd+snThj7zer1obBQuVSo1NE2D/OW/EG+mddAyCIzyPTN6A4quvg7FV10HRnfOOtPe3i7bYmxwOeB57Zm4ziWBAFi7LeJz3dQZKLvpdhhmzx/KPWdZFidPxu9OSRXVe6+C7Y8vFYe12UCCI035lEqNoiuuRvG166AsOFfnvaenR5YdCgDoeRbeZ/4Y17mE5cBaI3exmupalN50G/IXLgF1thgIIQTHjx+XTUnRbf8GviMH4jqXczrB+0atOwwD87LLUHLDj6AuOdeIxmKxyBbwpmVo+J+K0x1KgOBApEtTVVyKkhtvhXnppaAU5ypCnjp1Ku3m7DD6U0fg/e6LuM7lPR7BDUf+ootRuu42aGvONf1yOp2SZ12IoVKpMGXK2BTmSaqO55o1a/DUU0/htddew7p16/DAAw9g7dq1EYJdLtLtpx5OkFEg2J+af995YB+cB/aNEPJyp6lx/gDgsCV9jfBOfuCzD0cIeTnvI0jRKc9FeCc/XMjL+TwBQJBmwKZwH+Gd/MBXn40Q8nLeR4Ag5bkI7+SHC/nA2f4JchFglKndx9mdvGXLNzAvuxwlN9wCdUmZrO+Fn+NTnovwTr7v/TeHhDyhadkEOwAE6dTXWvuu7bDv2j5CyMs5F4FAADzPj0nluqSEu0KhwI9//GP88Y9/xJdffokZM2bgf/2v/yX12OKCECLry08Y6cptDhfymhtul+y6caHRABJYjIYL+eKrrwc3c37qF40TXsIXZriQN95yJwAZy6qq1JJcZrSQZxctk+S68cBLWHFvuJA33XoXoJGxRbFUNcI5DpbvvoBly9cwL7sc/GVXSXPdOJAyZG+4kC+86XagSMb+FArp6rWfE/KXQLFmHSiKkk1ujJVwT/oX16xZM6QBPf7442AEhN59992HX/ziF9iyZQuWLl2Kw4cPJz/STEHi54HWaKGtrYfCIHOPdYkfbFVJGTS1Y9uAI1UohSI0FwXZ0WNdDFVhEbS19UAG1blOGIqGtnYiVCXZ0WNdDGV+AbS1E0Eps6NdtBiamlpoquWuwS/tGsUY8qCtnQhGox3zHHQ5SLq91mOPPQYgFMkqJNgB4IUXXkj28nFDURRompatOAvFSmOWojVaFK2+FsXX3ABFnjEUwW61SXLtuPBIU9REWzcJpTfdDuP5F4KiKPSdOSNbpSxGot+hFAqYL12NkutugqqwOBSoZ5OxRKxXmqId6vJKlN54GwqWLAPFMHC0tspmmmekWiwpGqaLl6PkxluhqagKpQo6Tktz7XjwS/P3UpoLUXLdLTCvXAVapUJ3d7ck140HBoBUb6Dx/AtRetPt0E2cHFpjjx+X6MqxoYLS1LJgDHkovuYGFF25BoxOH4pDkbEE9Fg1k0lKuD/xxBPYvHkz3nnnHdx999147733cPvtMpuVh6HVatNSgUsIPe+C4ZKF8PtpEBLdFBkc6IO3eWSQ3GihHkbOZgMMw6B04TT4fAxYlgJihNa5jh4EP8pPNVqoh9HpdLKkJQKAJuiCYekC+HxMzLlgHXZ4To1cmEYL9aHrytz4oaTaCL/pQgSDsefCc/okWPvI9LbRQj2MVquVLQNDzXqRvyw0Fzwf/R54nw+u0UFro4R6GKVSKavybsoD2CULEQjQiDUXvpYmBEYFQo4W6mHkfKbU4GBetgB+Pw2OiyFYeB6O/bsjPh4u1MOEe5nL9X5rDXlQLFgc17n+7k74O9pGfDZaqIeRcy40Gk32CPd3330XL730El555RVMmzYNd911F55//nncfPPNY9bTVqfTySbc1YPNUOg46IwMVFPOg2rGIjD5RYLnWjZ9hfanQxHEYkJ96LpqtWx+IA3rgUpFoFKxoM1lUM9cDOXEOaBEfFynfvNT+NpaAIgL9TBarVa28rAqSzPUWh5aPQVl/RyoZ14EplDYJ+g8cgBNj/0rAHGhHoZhGKhUKlmq4KkpAhXlgyoPoPNMUM1YDNWU80GJ+OGb/vPf4PxhT+i7IkI9jFarTevYh6O2dUCj4aHREigmTA/NRekEwWfE392Jk7+4P/QPEaEehqIo2ZR3mgLU3j5oDACl1UI1/UKopi0ErRWu1dHx/FMY/OozAOJCPYxOJ19nSbWzLzQXGh6KinqoZl0ERdVkUFSkkOGDARy5fe3Qv4WE+nDkVN7LL10F5or4YhV6P3wHPX9/CYC4UA8j53sh57yPJiHhvmXLFjz66KN4/PHHMW/ePAChKnQvvvgiPvroI6xbty4dY4xJfn6+LGVV1YSFwnvWnMMGEDi+C4Hju6GongL17IuhKK+L+E4soR6GoigUFBTIIhi17ceG/pu39MC7bQN8e7+CavpCqGYsAq0ReCFiCPUwRqMx5Ta18aCgANXA2fKRPIfgmQMInjkApqw2NBfVUyPGGUuoD6egoCDtVQ8BQDdwLheXd1rh270Rvh++hWrK+VDPugi0oSDiO7GEehi9Xg+GYdLuJqEAqMPPFCFgW46DbTkOurAC6lkXQTlxNih61DhjCPXhmEwmWYR7nntgaK9OvC74f/gW/kNboKyfC/Xsi8EURD4zsYR6GJVKJduuV9O4b+i/2a5GsF2NoPOLoJq5GKrJ5wkq8bGEehi51iij0Sjq7hUjllAfOo9hkJeXJ4tVKz8/P+2/IUbcee5Hjx7F+vXr8ctf/hJ33XXXiGN/+tOfsHHjRmzcuDHhCZGK5ubmtC8ARR2HoO08IXqcKa+DZv7KISHv7+kCozdEFerD8fl8aGhokGSsYjAUUL7rbVBiwSpKFdQzFkE1a8mQkPc0nIK2Pv4e5B0dHWlpjjEck7UVhtM7RY/TheWhuaiZBoqiELSE2knGEuph5Mh1pwBU7HsfNCcSx0EzUE29AOo5lwwJeU/jaWhr66MK9eH09fWlXUkxei3IP/yV6HHaWAj1vOVQ1s8BRTPg3C4E7baYQj0Mz/M4depU2pWU8kOfQeETWfApCsqJc6Cet3xIyHtbGqGuqI4q1IdjtVrTWlseAHScD4X7PhQ9TunyoJ67LGQdUihBOA7e1qaYQj0MIQQNDQ1pV1Lq6uoSqm7q62iF0lwUVagPx+VyoaWlJcnRxYdarcakSZPiXjelJqkiNpmI2+1Gc3P8tYUTRUUDJbveBhXHn2u0kE+Etra2tFY1KrQ0Q3cm0scWgYCQjxe/34+Ghoa07d4ZmkLZnvfEheIwRgv5ROju7k5rydAC7yDyDn8d+0QBIR8vLMviTBqDHCmKQtnBT8WF4jBGC/lEGBwcTGtQmoHzwrTvo9gnCgj5eOF5Hg0NDWl195Se3gqVNXaxnNFCPhEcDgfa2tpin5gkOp0OdXV1aRWKhBA0NzentQNdTU0NjMb4NnbpYNwIdyC9FblqTQbg0Hfgupvi/k4yQj6di7Fer0eZrQXBE7tBvHHWf09SyKdzMa4uyofiyFawbScRb7pMMkI+nYuxWq1GddCCwJFtIC5bfF9KUsinczEuLzJBe3IHgs1HAT6+ZzYZIZ/OxVihUGCCMgj24CbwtjitHEkKeY/Hg6am+NeQRCg2m2Bs3o9AwwEgzqyeZIV8uipRUhSFyZMnQxWnNSQVAoEAzpw5k5ZNSEFBAaqq4rNMpYtxJdx5nkdTU5Pk6T/l5eUoLCwEAHCWHviP7UCw8TDAxVf7OFEhn47yiAqFAvX19VAqlSAci2DTYfiP7gRviVMAJyjkCSFoa2uT3K9VVFSEsrJQ7jPnGAzFPZzeD8SZNpOokPd6vWhqapJ0AaBpGhMnToRGowHhebBtJ+A/ugNcb5xznoSQ7+rqkrwZjtFoRHV1NSiKAu92IHByDwIn94D44hPAiQr5QCCAxsZGyRXfsAmYEAK2qxGBozvAdsSZfpeEkO/v70dvb3zlhuNl+G6X93sQPLUf/uM7QdzxWQETFfIcx6GxsVFyxbe6ulpWP7XNZpO83a9KpUJ9ff2YuajDjCvhDoQeuubmZskEfGlpKYqLI19a3usKLWbHd8W9mCUi5KXcbSkUCtTV1UGtHhmBTQgB19MC/9Hvz+6C4yABIc/zPNra2iTrEmc2m1FeXh4hlEnAh8DpH+A/+j2IO77dRCJC3u12o7W1VZJ0LJqmUVtbKxhFyw10wn90B4JNh+MrMpSAkCeEoKurS7JgKKPRiKqqqog0H8IGEWw8BP+R78Hb4wtyTUTI+3w+NDc3SyLgKYpCTU0N8vLyIo5xtn4Eju1E4MwP8SnxCQp5KWMhtFotamtrI4QJ4TkEW44jcGQ7uIH4fP2JCPlgMIjm5mbJBHxlZSVMJlPsEyVGyrr/KpUKdXV1Y5Y5NpxxJ9yBkFDp6upKKaiLpmlUVFSgoKAg6nkk6EfgxB74j2yLW8grKuqhWXQ1GFNJ1PNcdjs6ujrBcskLFb1ej6qqqpgPGzfQBd/BTWBbxQMGR6BUQT13GdSzloBixJMuCCHoamqE1Zu8skVRFMrKymA2m6MKYsKxCJz5Af6DW+IW8kxRJTSLr4GipDrqeV63G+1tbQikIFQ0Gg2qq6sjlKzRcPYB+A9tQbDhYPxCfuZiaOYtB6USz+ElhKC3tRWDLldKtb+Ki4tRUlISfS54HsHmI/Af2By/kM8vgmbRVVBWRW+04ff70d7cDF8KXdaUSiWqq6tjpirxbgf8h7chcGpv/EJ+8nnQXHA5aG30qpODXV3oSbGdrclkQnl5edRcakII2I7T8P/wXQJC3gjNwlWhFNko88yyLNqbGuEOJF/ci2EYVFVVCSpZcmEfGEBXXx+4FBR4o9GIiooKKBRJ14aTlHEp3MO4XC50dXUlrFnm5+ejvLw8oUlKWMhTNFQzFkFz3sqIBZnwPGzfb0HXGy+h8ie/gK+sMuFe8gzDoKysDAUFBQkFpiQq5Ok8c2hBrpkWcSxos6Ln7VfhPnkCE/7PH9HZ2ZmwRcVgMKCioiIhH1wyQl45eT40F1wBWjdygSGEwHlwH7pefR5FV18HMvcC9PX1JTQXNE2jpKQEhYWFic1FgkKe0hqgWbAKyklzI3KaObcbvRvehuXbLzDp6VfR3d2dcHaJVqtFZWVlQkVAkhHyippp0Fy4GoyxMOKY+9RxdL7yLAyz50Ozag16e3sT2sVTFIWioiIUFxcnVFwkYSGv0kAzfyVUMy6MsEbwgQD6N36I3vffxJQ/v4g+hzPhIFqVSoXKysqEIsqTEfJM6QRoF18jWD/C29aC7tdeAGPMh+muB9DV1ZVwm1aTyYSysrIxM2ETjsPgt1+i5+1XUfu/fge7KvE6HQqFAhUVFWMaPCfEuBbuQOiBdrvdsFgscLvdoguBSqVCfn4+TCZTSsEciQp5SqOHZsEVUE6eD4qi4Tp2BF2vPgtPQ8jnN/0vL0NdVg6O42Cz2WC1WkUFJE3T0Ol0MJlMMBqNKUWbJirkFVVToFl0FZj8IvB+H/o++QB9G94B7/PCuGARJv7LoyCEwOv1wmKxwOVyiS4ESqUSRqMRZrM55i43GgkLeaU6tCDPXASKZuBtaUTXq8/DeegHAED9o79H3qy54HkedrsdVqsVXq9XUNCHi6+YTCbk5+enVKUqUSHPlFRDu3gNmKIKEJbFwNcb0fPO6+Acdmjr6jH1v/8KIGTitlqtcDgcot2+FAoF8vLyYDabUyr+kbCQZxRQz1oC9dxloJQq+Hu60P36i7Dt3AYAqHnkNzAvvxw8z8PpdMJiscDj8YgqXRqNBiaTCQUFBSkJkkSFPF1QAu3ia6ComHhWad+MrtdfQnCgD4whD7NfeQ9AKJ7AarXCbreLbkYYhoHBYIDZbIZOp0v6/U5YyFMUVFMXQH3BZaDVOgStFvS8/RoGv/0C4HmU3XoXytbdBkIIXC7X0For5sZSq9UoKCiAyWQas10uIQTOH/ai69Xn4Dtb2W726x+C0WrBsiysVitsNptoyh9N09Dr9TCbzTAYDGOW7haNcS/ch0MIAcuy8Pv9Qw+eQqFIS4nARIU8py6AtWkAzkPDynIyDOa++UlETjPP8/D7/QiebYcZLgupVColf8gSEfKEouGHCQM794Z6wJ+leM0NqLz7wYjzWZaFz+cbmguGYaDRaCTX4hMV8rwqD/ZuD2x7do8QpjOefT0iT54QMjQX4e5PKpUKKpVK+rlIQMgTAgSVhejfexiB7nP+xPzFl6DuN5EdHDmOg8/nG1J+aZqGRqORfPFNVMjzSh2cFgLrzh0gw5TByf/xOPTTZo68NiEIBAJDbTYpihoqHiP1XCQq5IPqIgwePAVv87lIed3kqZjyn09GnMtxHPx+/5DyO/z9lpJEhTxRqOByq2HZvgP8sBr8E371/8F08fKIaweDwaG1lqIoKJVKqNXqMSvHGsbb0ojOl5+F68jBoc8UBWbMeuHNiHPlXGulJjOcAzIRfsDkCHaglGqo51wC1fSFUYU8z3KwNXTB3rwvYsFWl5QJFiuhaRparVaWMopMUQX0l90eU8j7bS4MHmuD3x5p6lWXVQh+R6FQwCBDNzyKUUA9bSFUk8+LKuQJx8Pe0gtbw36QUXEOlEoFpSnSTExRFDQajSz1qpn8IuiW3ghu7rKoQj7g8sJyvA3egUhTr9hcMAyTkIk3WSiahqp+LpR1s6MKeUIInO0DsJ7uAB+IFJ6q8srIa1MU1Gp1StaeeKH1RmgXXw31nEuiCnnW64flZAfc3XsjjkWbCznKllIUBWX1VCiqpkQV8oQQeHqssJxsB+uNtCoI3UdYsZIjpS1eWKcD3W++gsGvNwKjrArqcuGy1XKutVLzDyXcx4IhIT9tIXwHNyNwbAfAcyF3QdcgLCc7wPmFTaKqMhl7J8cgLOTZvnb4dn46tAhw/iAspzrg6hCvL6AuF17E5Ga4kPcf/R7+g1sANrRYefpsGDzeBtYjbIZTl5SBypAWqkNCfvYl8O36DGxXqDkRH2RhbeiCo6VPdGcvJlDkZoSQP70fvn1fg/hDyq/P4sTg8TYEHMIWL1qrhcI4dmU9hzMk5GcvgW/PF6F8fwA8x8PR3ANbY3eEohhGlSlzMVzItxyDd/fnQ8pvwOnB4PE2+AbFU1ozaZ0SgnAcBr/eiO43XwYnkrmTKe+FlGTGavUPAKVSQ7twFQzXPwzeWIbuXSfRf6hZVLADAOUeANsvbQ5mqihKqqG/9kFoL74Ozi472rcciSrYAYDvPgXCpr8JS7xQjAKaucuQt+6XoMono2fvafTuOyMq2AGA5r0IdpyRcZSxYUwl0F15N3SX3gqPzY+OLUfgaO6NarInPafA+9NXlStRKJqGatoCGG76JRSTzkPfoSZ07zopKtgBQKFiQumCGQRtKIBu5Y+gX30v/AEGnVuPwnq6U1SwAwD6m8DHGfApBxRFQVk3C3k3/gKqOUsxeKIdnduPRRXstFIBrvUoCJGna1+ieFsaceqfHkLHc0+JCnYgcxQtKckJd5lhCoqRf/1PYFp6GSgm+p9fQbNwf/IsfD98CxJn9S85oCgaqqkXoPieX0NbFWkeHQ1pPwrXh3/NOEWF1huRt/pOFK6+AbQ6uqtGoaTg+fIVeHd8klmKCkVBWTsTRff8M/ST46gPbu2A64M/Z5yiQqt10C+7AUU33AmFProJVKFRwLv5XXi+ezujFBUAUFRMhPnO3yBvztyY51JeC5wf/BmBhoOydIOMF0qpgnbBFSi+7adQFUS3kCi0Kvh2fQb3Fy+Dj7fSooyoK6tRsOhiUDFiR1RF0dOSs5GccB8DaIUCZXf+FFUP/iLqeYxGBRAe/gOb4P7kWXC29He+SwR1VS0m//ez0FTXiJ7DqJWgaBq8fSBDFRUKRWt/hLp/+feo5zGakO8wcGJ3SFHpa5djeHGjNBdj4r8/gbx550c9T6FWgnic5xSVOCv7yYVp+ZWY9J9PAVGClcJzEWw+clZRibOanEwo9HmY8M+PofCyK6Ofp1EBAR+8W96Dd9Pb4OOskyEXeectwpQnXgAVxW+uODsXXFcTnBueyjhFhVaqUHbzHSj70Z1Rz1MWCrftzmZywn2M4AMB9H7wdtRzwi8OEKpe5vrwL/Af25lRJjD7ru3wtYtX0mOG3UOmKiqE59HzzutRz1Foz90Hbx+A+9Pn4Nv/TUYpKu7TJ4bS9oRgVIoR1qKQovKXjFNUet5+LaprYfh7EVJUXoX3+48zSlHx93TDsvW7qOcMfzeCzUfh+uBJBNszS1Hp2/A2SJQ6ISPe77OKiue7t8D70t+iN15YlxP9H78f9RxVUWJNgLKBnHAfI3o3vI1AT/SSh4x2lMbMsfDt+gyeL17JCBMY5/Wg88Wno56j0ESau4cUlaM7MkJRsWz6Gu4Tx6KeM1ygAAgpKgc3w/XxM+Cs6e/7HgvCcWh/5smoQpEZfQ8AeMcg3J8+G1JU4uyVkE6ch/bDtn1z1HMi5gJA4OSekKLSm75uZfFCCEHH809FFYq0SgF6lFuOeF3wfPUqvN9/BBJMf9/3WHhbm9H3yQdRzxF6v9mWYyGLStupdA0tIbrfeBGsI3psg9Kc27nnkABfVwf6RHbt5kuvhOJsGUaFiB+Y7WrMCBNYz1uvjshnD6PIL4B5+aWh/x6toIThWPh2bxxzXx3rsKPr1ecEjxUsWQZVUeilFxKMAMAPdsH10V/HXFHp3/gRfC2R3cYolRpFV14D0LT4XBASUlQ+eXZMFRU+EED7s08JHsubvwDampD7J0LpDX/fMQj3Z8+FIu/HUFGx79oO54F9kQcoCsVXrwWlVAgqKGECJ/fCtWFsFRXC8+h49s+AQNEv3ZTpMMyYAUD8/SZeFzxfvwbv9g/HVFFxnzqOwa82Ch4rumotGGM+GGM+aBnSJ+XmH6qITSZACEHjo/8yooBCGN3kqZj8H38E7/eh562XYDSy4O3RI9EVtTOhXbIWtCb9ebHD8TQ14PRvH4nIFwWACb/8LUyXrITr+GF4Dn4Pta8biCb4VBpoF10N5aR5sheGaPvL/4Plu68ih1RSimlPPAvQNHreeBF5+Tx4SwxLS3kddEtvTLjneqoEBvpw8hc/Bi9QubD89ntResMt8LQ2w7n1c2j4/ujtQBkFNBdcDtXMxRElbNNN99uvoVfAPULr9Jj+5PNQGPPR//G7UPEWULboc0EXlkO3bB0YU2m6hisI53Hj5C9+LKj0Fq66BtUPPIJAXy8sX7wPHW0F8XvFL0ZRUM+5BOr5K6P2b0gHg998gfan/xh5gGEw9b//Ck31BFi/+xIYbAbjjF4Ah84zQbtsHRSlE9I0WmEIx+HUPz0EX2tzxDHj+QtR9//9OziHHYPffI7SG2+VdWxykBPuMmPd9h1an/ivyAM0jSn/9WfoJk4a+oiwAfj2fo3A8Z1Rr0np8qBbcQsUZbUSj1YYwnE486+/HCqROxzD7Hmo/7f/HCGk2f5OeLe8F7MimXLiHGgvvg6UUp7CF65jR9Dwv38jeKzuX/8d+edfOPRvwnPwH9oK/4FN0RUVpRq6ZeugnDBd6uGK0vz7f4d99/cRn2uqajDlv/8KeljRJs4+AO+W98H1R/ezKyrqoV1xc1ztfaXA19WBU7/6CYiA4lH144dRdOWaoX8TQhA4uRe+PZ/HVFS0i66GatqCdAxZkI4Xn8bAZx9GfK7IL8C0P78Ahf5c0Sbe44R324aY7WXpwgroL70VdJ48HdNYuw0nfn4/OFdkClzJ9beg4o57R3wWbD4ainmIlrlAUVDPXwH1vOWyKY19H7+PrleejRyKSo1pTzwLdWmZLOMYK3JmeRlhXU50vvSM4LHiq9aOEOwAQClU0C6+GvrV94DSizclIB4n3BtfhP/EHlnM9INfbxQU7JRCiaoHHonYfSuKK2G47mdQzbwo6nWDTYfh+vRZ8E5p+44LwQeDaH82svQnAORfuGSEYAcAimagmb8ChmsfBB2tpWfQD883b4SyAmQw09v37RIU7ABQ9cDPRwh2IFQAR3/N/VCffxkQZZFluxrh+uhpcIPdko5XCEIIOp79s6Bg102eisLLrxrxGUVRUE9fCMN1D4EpjtLNj2Ph/f6jkA9bBjO9p+kMBj7/WPBY5T0PjhDsAEDr8qC7Yj00S64ForRXDbl+nh4qVpRuul57XlCwq0pKUXbTbRGfK+tmwXDDI1BE6+ZHCPw/fAfPt2+CBKRpxx2NwEAfet5+VfBY2U23j3vBDuSEu6x0v/ESWLst4nOluShqqoaioh551z8CZX2U3FnCw7fj45CPK40LWdBqQdcbLwoeK7nhFmgqqgSPUQoltIuuOquoiOfO8pae0ELW2SDJeMXo/+R9+DsifZq0RovK+34q+j2mqBKGtbEVFf+BTfB88/e0LmScz4eO5/8qeMy88goYZs4WPEbRDDTzlsNw7U9AF4jn9xKXDa5PnkWg8ZAk4xXDum2ToJsKNI2qB34uWIIZGKaoXHA5EKUPfODkXrg3vgjeI16MJVUIx6HjmScF3VSG2fNQcPEKwe9RFAX1tIUwXP8wmBLxlFLi98D9xStnYzvSp8C7jh2GZdPXgscq738ItFq4zHJYUdEuWQsoxC1vbOsJuD55BlwMd2OqdL74N0E3laaqBsVrbkjrb2cKOeEuE56mhlBNYwEq7/0JGG10nzml1kK3/CboVv4IlFr83ODp/XB/9gJ4d2ItJOOl6/UXwXsizW+qsgqUXn9LzO8rKuqRd8MjUE6aJ3oO8Xvh/vIV+I9sT8tCFhgcQM+7fxc8VvajOyOaw4zmnKJyb1RFhW07GYqmT1PaX9+GtxHs7434nDHkoWL9/TG/zxRVwLD2p1DNWgJAJNaBC8K7+V1493yRlrQ/zutF1yvCAY1C1qzRUDQDzdxlMRUVrq8Nro/SV5/AsumrhKxZo2GMhdBfHUNRITx8uzfCu+U9QStHqhCOE1UWhaxZo6EoKlRt8PqHwJSKKyq8rR+uj/+Wtmh6x8H9CVmzxis54S4T3a+/IJimZDxvIfIXXRz3dc6ZwMSrkXH97aGFTOJoW29LE6xbvhE8Vv3Aw6DjbBJBqTTQLVsH3aW3glKJVCMjBL49X8C75V3JK8L1vP0aSCAygldTOxHFV62N+zqKiokxFRXeHl7ITiYzVFGC1kH0fyKcu1tx54/jrr1OKZTQXrga+qvujer6CRzZDs+Xr0peEa7/k/fB2iLdMLGsWaNhCsuHKSrCEI8T7s+eR+CUQCR7CvB+Xyg3X4Bo1qzRUDQdl6ISbDwE16fPSZ5lYtnyLXxtkcFnsaxZo2GMhdBfdT80F1wh7voJ+OD5+nX4Dm6WVIEnPB9aawWIZs0aj+SEuww4D+0XLC5CqVSovP+hhCPEwyYw9bzloucQrwvujS8gcDKyG1WydL3+oqCCUnDxcuTNjV4ZTQhl7Uzo1/4EdJSI5mDjYbg+eQ6805rw9YXwtbfCsikyOh4UheoHfyFqAhaDUmmgXXojNIvXiC9kQX9oITvwnWR++J53Xgcv0GtaP30mzCsuT/h6ivI6GNb+DEyUoMwhP7ylJ+HrCxG029D30XuCx+KxZo0mrKjoVv5I3DTMc/Bu/zAUACaR+6r/0w2C0fHxWrNGwxSWw7DmQShqZ4ieM+SH745Mf0wG3u9Hz1uvCB6Lx5o1GoqmoZ67FPrVd4MSzeQh8O//Bp7v3hRUtpPBum0TvM2RsQnxWrPGEznhnmYIz6PrNREf9bXrkg7soCgamvMvg+7S2wCx6HKeCwUUSeCHdx45COeBSEWBUqlQcWfyLw1jLIRhzYNQ1s0SPYe3dEsWUNT1xouCflHTskuhnzItqWtSFAX1jAtDu98o0eVSBRT5Otsx+M0Xgscq7/1p0t3raK0B+tX3QDVjkeg5xGmF65NnEGg6ktRvDKf33TfA+yJTwQwz5yRkzRqNsm4WDGsejBpdHji5B+7PX0rZD8867Oj98B3BY5V3PxC3NWs0lEoN3cpbQ4GPIi4T4nPD/fnLZ6tWprb7Hfj8YwQHI/3g6ooqFK++NunrKsonwrD2Z6ALxRuzsC3HQ354R6SClAh8MIDuN0UUlFvWZ0wnQbnICfc0Y/t+M7zNkcFhjDEfJWvXpXx9Ze0MGNb8BLQxstd4mMCpfXBvfCHphYwQImrqKr76+oS1+tFQShW0K24JmfHEFrJhAUXJ4jpxFI69uwR+X4nyH92V9HXDKMpqYVj7UzBF4s10pAgo6n7jJWEF5ZIV0E2Mo3lMFCiagXbxNdBecgMgllvNBuHd9DZ8e79M2hLh7+7EwFefCR6ruPP+lOsdMOZS6Nf+FIpKcZ8919saUhr7o+dpR6P3/TcFY1D002fCeIG4khQPFEVBM285dJffAaiEA9lAePh2fQbvtg+SVuBZpwO9H7wleKz89ntiNl2JBW0ogOGaH0cNCOZtfXB99HRKDY0GvvhUMAZFVVYekXHxj0BOuKcRPhhA999fFjxWdtPtYHTS5BAzphIYrv1J1FQUrq8d7k+fSyrNzLZjq2CwEGPIQ8n1Nyd8PSEoioJ67lLoVq2PvpDt3hgK7kpwp0IIQderzwseK1q9FqpiabpC0YYC6K++H8rJ80XP4W39cH/6HLiB6IVYhHCfOi4YLEQpFCi79e6EryeGasp50F99PyiduB/ef3gbvFveTyrQrvvvLwtWPyu4aCl0k6YmfD0haLUOuivuhHrOJaLnEI8D7o0vJJWd4e/twcAXnwgeq1ifuoISRlkz9awfXlyJDp45AM9XryVVDa73g7fBuSPboeqmTEf+heIxDIlAKZTQLlsHzYVXRffDf/UaAg0HE74+63ah9z3hINny2+75hwmiG05OuKeRwS8/Q6BPQJMslV6TpNRa6C6/A+q5y0TP4Z0WuD59Dpw1ckxiEJZF999fEjxWeuOtEbm7qaKsmgLD2p9GDSgKHNkecjUI7F7FsO/ZAc/pExGfM3oDSm9I3C8aDUqhhPaSG6BZdLXoQkZ8brg2vgC2pyXu6xJC0PWasAWlcNU1kufuKoqrYLjuZ2CiVBYLNh4KpfwlEL3taTgF246tkQcYBuW33Z3ESMWhaBqaBaugXXGLeC45G4D7q9cQbI7eX2A0PW+9AsJG7pbzL1wC/VRxf3kyMPlFIT98lOJIbFdjyNWQQHe5QH8fBj7/SPBYxfr7JK0YSVEU1LMugv7Ku8QzfggP75b34D8eaWGLRt+H7wjm5mvrp6BgsbhyN57JCfc0wbnd6BHVJO9OiyZJ0TQ0F1weNaAoHDEcb0rQwNcbEeiJLGSiLC5F0eo1At9InbAfPlpAUfD0fng2vR2XKZJwHLpfF8/NV+SJ706ThaIoqGcujh5QFPTD/cXLcacEOfbthvvE0YjPaZ0OZesii4tIwZAffrp4GhTbfgruL16OK5YgmoJSdPlVUJeLuzRSQTVxNgxrHgQl5ofnOXg2vYXA6f1xXc/T1ACrUNc3mkb57fekMFJxKJUGuktvhfq8S0XP4fo74P7s+bhTYbvfehUkGKmYGS9YBMOM9ESWKyrqQwq8uVz0HN/OT+E7sCkuC11gcAD9n34oeKxi/X1Jx6BkO/+Ydy0DfR++A84Z+YJp6yej4KKlaf3tcwFFZsHjxO+F+/OXYpoiOa9HsNY3AJTfehfoNJaJjSegiG05FpcpcvDbL+Dv6oj4XFlYhOLV8ae+JUPMgCKOheebN2IWigkpKMJCsfS6m9MaLEQxCmgvWgPtxdeJ5mBzva1wbXwBvDfSvDsc54F9cB2NvFdao0XpzXdIMVxRGHMZDNf+FIqKeuETCIF32wb4j2yPeS2xuSi87EpoKqNUzUsRiqKhmb8i5IdXCjc74W19cH36bMwANdHUVpqOKDErNXSeCYY1P4ayfo7oOf4fvoVv98aYcR1iqa158xcgb/a8VIeateSEexoIWgbR9+kGwWMV6++XRZNkzKXQr3lQXKiETZEt4qbIvo/fF2yVqKmdCNMlwhW3pCQcUKRdfpOoeXvIFCmSf835fOh5W1hBKfvRXbJ0g6INBTBcfb94cBfh4d0c3RRp2fwNfAIV9RQmM4qvuV6qoUZFNfUC6FfdKZqdwQ92h3aNImmLhONEd+0la9dBmV8g1VBFoTU66FbdGbU2gW/PF/Dt+0p01yiW2kqr1ShLs4ISRlkzDYar7welFXaLEZctFNcRJW2x+42XBFNbzSuugKY6/U1eKIUK2mU3QT1XfLMTOLYT3q0fiMZ1REttTbeCkunkhHsaENUk550vqyZJa/UwXHWveO4yz8HznbApMmi1oP9j4RzkijvkNXWp6ueEdiqMsCuD6++A+1NhU2T/px8IFknR1NTCvEzcvCk1lFIF3eV3REn5I6KmyFCXQOE62eW3rBctCZoOFBX1ocp8Ij5T3j4A12fPCVbls277TrBIiqLAhOI1N0o+VjEomoF26Q1QzVwseo7/0Fb4dnwcEdcRLbW1eM2NUJrEs1akhiksh/6aH4MS6UJIvC64PntesJiV8+ghOH7YE/E5pVKh7BZ5FBTgrAJ/wRXQLLxS9Jxgw8FQCqlAXEe01FZt7URJx5pt5IS7xPg62jD43ZeRBygKFevvk308lEoD/aq7oKgRyeEWMUX2vPuGYG1mw+x5yJuXeMGaVFFWT4F+9d2ikfS8rS8kVIaZIlm7DX0fvit4fvkd9yZcsCZVKEYB7fKboZp6geg5IVPk5yNMkf2ffYSgRSAHubIa5pWr0jLWaCiKq6C/RjySnrgdcH/23IgUMz4QQPeb4o08GK1IpcI0QVE0NBdeFdV/HTi5F97N746I60h3amuiMMZCGK55QDwANeCD+/OXEBzWeY4Qgu7XhDNHpEhtTQb17ItDbh+RAD627STcX706Iq4j3amt2U5OuEuMaA7y0pXQ1or4+tIMpVBCd+mtcZsifV0donXwpUzxSRRF6QQYrrpP3BTptI4wRfa89yZ4r0AO8sw5MJ63MK1jFYOiaWiWrI1hitwB77YNIDwXykHe8LbgeRVjoKCEYQpKYLjmx6L1FYjPA/fnL4DtClVQG/jiYwQH+iLOU5dXovCy1WkdqxgURUEzfwU0i68RPSfYfASeb94ACQZkS21NFFpvhP7q+8EUi5S55YLwfP3GUOEh+85taU9tTQbV1AugW/Ej8biO7ma4P38RvNd9NjAz/amt2UxOuEuI6+Qx2PdEFlmhFMqE6mSngyFT5Izopkj//m9CC5iAglKwZDl09akVSUmVeEyR7s9fhPfMMQx+9angORV3SJvikyhDpsgF4rvu4JkD8G7bcLZIijviuH7qDBgXiM+lHNB5Juiv+bF41HMwFNfhbzqG3vffFDxFiiIpqaKesQjaZevE4zo6zsDzzRsY+OIT2VJbE4XW6KBffQ+YChFTNM/Bu/kdBBoOo+sN+VJbE0VZNxP6K9aLZvtwA11wf/Ey7N9vhueUPKmt2UpOuEsEIQTdokVS1kBdMvb9gymKhmbRVVCft1L0HPuWz2DfuS3yuwqF5DnIyRLLFEl8HnT85b+Ec5AXX5J0mVmpUc+5JKop0nN4NwY2fih4TIoqblJAaw0wXH2feC48F0TXs4+DcwkUSZk8LaUys1KimjQPustuE63KF2g9JVp7PV2prYlCKdXQX3GneAopIeh97S8I9EQWT0pnamuiKConhVpDizSV4ga60PniXwSPpSu1NRvJCXeJsO/ZCfep4xGf0zo9Sm+8dQxGJEzIFLlS0BRJCIH1ZGTKGAAUXnEN1GXiealyE80U6be54W4XKNRD06i4LT05yMkSzRRpPd0JwkVaUPIXXgT9tJlyDC8uKJUG+ivvgqI6srIc6/XD0Shc3lXqIimpoqyZBv2quwRTzGxNPeB9kUGycqS2JgLFKKBbcQuUU86LOMazHKynhd/vdKe2JoqipPpshcS8iGPOjn4E7ZEFa+RIbc0mcsJdAggholp96fWZqUkKmSJ9Aw74LJEvDa3VoWxd5igoYcKmyNF5y9YzwsKk8PKroK5IT5GUVBAyRQZcXri7BPKU01gkJRUohQq6y26LyFu2NXSD8AKtjs9fCMNM8RznsUJRXheK6xjWAIgLBOFoFq7qKHfmSDxQNAPtxddHtL91tPSCD0Ras+RKbU0UxlwaiusYVq+D8DxsZ4TLNpf96E5ZUluzhcx6KrMU56Ef4GtrifhcaS5C8dXXyT6eeFFNmgft0huG/m1vEV7ASq67CQoZcpCTgVKqobv89iGzcMDphbc/MjefVmtky0FOBkXlJOgvv31oBy8mTApXroKmqkbOocVNKK5j3VC6HxcIwtUp0CCHolF+h/yZI/HCFFVAf+XdQ5kZzrZ+wVLHefPOR94c8R4CYwlFUdAsvHIo3Y9wPBytkQGNQGYqKGHoPHOo26I+tEFydVvA+SNT4kKprZfJPbyMJjNnNMvo/+R9wc/Lbrkj4zVJ1aR50Cy+RlQoMmolzAsXjMHI4odSqKC/Yj3owgo4RBSUgpmToMiLNPFlEoqKeuhW3AIuwAoKRYqmUHiReBnYTICiaWiXrYOicjIcbf2Cu/a8ukpoysY+BiUaTGE59FesBwEjKhSLLsrw94KioLlwNZST54sLxRIz9JPHNkg2FrShAPor7wHUWnGld8HcMcscyVRywj1FvG0tcB6MLAKjMJlhyhJNUj1jEVxO4RfDOKEE3i1vR610lQlQKg3Ui6+DqzPSlE3RNAxmBbxb3kuo2cxYoKydAS8KBYWiobIIwR++kKSvfTqhGAU0S9fB2Sbc1tZYlQ/3168n1GxmLFCUTkDQNElQKGqL84GW/Ul1MJMTigqlXjo6bYLHCyYUwfPlKwk1mxkLmIJioG4RAo7IcSoNWig9nfAfEmhG9A9MTrinSL9Imdniq9ZmRARtPATtNjiORQYDUjSNvJqSUCGML16OWat6rLFs+U5QeBuqCsGolAg2H4V3x8cJt4uVEz4QgHXvPsFjxrpSgOfg/voNsP3CgVGZgm3X9+CEAtCK86EyaMH1tMDz3VtJtYuVC0IIBrdHttcFgPy6UgCAd+sHCLadlHNYCeM+fhSBwciSwEqDFpoiI3hbHzxfviJYVTOTGNyyRfDz/LpSUBQF376vEDi5V+ZRZS454Z4CQZsV1q3fRnxOq9VjnveaCINffirYGSokFEOpQaH88Zfi7jYlN3wgINpb21hbOvTfwVP74N8nUIs6Q7Bu3wTWbov4PCwUAQBsAJ4vX0moda+cEELQ/8kHgsfy686Z49n2U/BufT9mY5CxwnXkIHytkeVylXlaaArPBskSHp7v3gLbHXlepiDmNgwLRQDgBjrh/ub1uLosjgW+znY49u+O+JxRKWCoOFdIyfv9x0PFev7RyQn3FBgQEYrmFVdkZIS8EHwggIHPPxY8ll870i9KXLZQta4MNKdat4kIxZJhQvEs/sPb4m7tKSfxCkUg1NnP8/Xrog1zxhLX4QOCNeRVeVpoCkfGPQQbD8N/cLNMI0uMaHMxIoWPY+H59u/gnZE9DMYaX0cbHPsja8iPFopAqAKcd8cnGWnZErOQ5k0oBcUMF2ME3q3vjyh9/I9KTrgnCe/3Y1Bop0hRKL5ani5dUmDd+p1g5zd9TSWUhsg67txAZ8aZtkNCUWR3Ui9cktP7/cdx97SXC9dh4awLdVFhhFAEAN5phfe7tzPOtN0nJhSn1Ajmtft/+A7B1shqY2OJr6NNsLEKo9fDUB7ZSpn4vXB/83eQYECO4cVN/2fCQtE4pXaUUAwRPL0fgRORO+SxhHXYYdkc2ZqWUihgrBGog8+x8Hz7Rsz2w+OdnHBPEus2YaFovGBRRuZSCxFNKJbd/RCYYuG+1MEzBxA4tjOdQ0sI56Ef4GtvjfhcWzcJ5psfEC4rynOh3ZYnMq9/rBATiiU/uhvKCdMFj7FdjfDtzRw3g6+9Fc4DkX5PhcmM4nt+LdqD3LPlXXBW4aj0sUA0lubadVDPXCR4jLf0wLvtg4xRfEWFokqFsgd+I9qjwbdrY0a5GQa++kwwHsC84groLhLuS0DcDni+/XvGuhnkICfck4AQIr4Qy9i6MlWcB/cL9gjXTpwEw5zzoFu1HnR+keB3fXsyJ2pbTEEpXnMDVDXToF0mPCfE44Tnm8xYALxtLXAeiAykU5jMMF28AroVt4iWeA0c/R6BMwfSPcS4EBWKq6+FqnwC9JfdLqxsBQMhl4/fm+YRxoa122DZIiQU1Si64mpoLroGilrhCoHB5qPwHxIO/JKbkFCMtCSYl18GdWVdKJdfSNkiPDzfvQneGRmEJzd8MICBz4VjaYqvuR7quctEW/dyvW3w7fosncPLaHLCPQmcB/fBLyQU6ydDP0OsX3fmIeZTLF5zIyiKAq3WQXfZ7VEWgLfG3M8oloqoNBcOlQVV1c+Fes4lgt/n+tszws8oZj4NZ12EO/uFi3mMxvv9R2PuZ4wmFAuvuBoAoKiYCM0i4WBT3jEIz+Z3xjxdMZpQVBjzQVE0dEtvBG0WztX37/8WwbZT6R5mVEJCUTiWJuw2ZMxl0C0TblNLfB64v/07CDu2bgbb9i1gbZFrjPG8hdBU1QwV6xldpTJM4ORe+E9Gulf+EcgJ9yQQE4ola27IqFrZ0fC2tcB5SEgoFqFg8TlByBQUQ7f8ZgCR95UJfkaxnWLR6pGpiOrzL4eiSrhYx1j7GYN2G6xbYmdd0FoDdJfeLtzcJAP8jOIBppePCDBVTb8QyinnC16D7TgD376v0zbGWEQLMC2+5lwsDaVUQX/ZbaDUOoEzCTyb3wFn60/TKGNj3bYZrC1y5208f+GICofKCdOhni/cSIof7IZ324djpviGLKTiVrkwFM1Au+IWUHkmwXN9Oz8D29OSjiFmNDnhniDeliY4D/0Q8XlIKGZOA4lYiJmyi666NiI/X1kzFerzLxU8fyz9jEGbNYpQHOmLo2gauuU3i/YfH0s/48AXn8SddaEorgx1khNgLP2M0VIRhwtFIFQ5TXvRGjAlwjEdgSPbEGg8JPkY40Es68J4/oXQVI4cL51nhm7lLSJuBn/IzRDwpWmk4kTLuigWcBuq5y+HQiSmI9h0GIEj26UcXty4Dh8QTEXUTKiDYfa8EZ/RGl3I5SPUKpbnQlZGd2SM1HgmJ9wTpP9T4Zem6Oq1Y96XOl6CVgusWzdFfB4tP189d9lQzfCI642Rn3Hgi08E0/LEUhEptfasm0FgARgjP2O0rIsikb4EqknzIpqChBkrP6N163fCQvGCRdBURGYsUIwCuktvE+z6BQDebR+CGxBuEJIuogWYDt8pDkdRUQ/NwisFj/H2AXg2vyu7myGUdSEgFGsnwjBrbsTnITfDOtEWyr59XyHYcUbyccYiWlyTkIWUMZdBt1QkvsbrCsXXZGAab7rICfcECFoHYd0mIBQ1GhReJhy1mYmICsWVq6AwCC+2FEVBe8kNGeNn5P1+DHz5aeSBGKmIjKkEumU3CR4bCz+jeNbFhYJCMYxmwRUZ42dMRigCAK3Lg+7S2wTb3YILwv2NvG4G8ayLekGhGEY1czGUk4UbyLDtp+D/IdK6lE7EhaK425BShRowhZvljIAQeDa9LWuFStGsiwIzCi5eJvo9Zd1MqOctFzzGDXTC+/1HYx5fIxc54Z4AA198CsJGmjyjCcVMI7pQvC7qd+PxM/IOeQLsrFu/BZdkKqJywnSoz4viZ/xe2OcqNalkXVA0A+3KW0CL+Rl3fCpbiVrRrIu6STHbuipKqqFdcq3gMeK2w7NJvgA7UQXlmuixNCE3w7VgioSfO/+hLbLl8UfLuihYsjzqdxljIXQrbgGE7jXgg+dr+QpYicfSrInZd1593kooaqYJHgs2HMy4PP50kRPucZKKUMwkrFu/BeeMLCGbv2Ax1OWx8/Nj+hk3v5P2oiqEEPSJvPzxpiKq5y2HYsIMwWPBhoOyNARxHtwvnHUxcRL0M2bH/P5QNoOQn5Hw8G56Wxafr5irqjjOAFPVlPOhmiGcO851N8F/ZFtK44sHX3uraAOogiXiO8UwlEIJ3WW3ieaOe7d9IIvPd+CzDwU/L14dGUsjhLJqMjQLVgke42198O3+PJXhxQXrsIunIq66Jub3KYqGbtk60PkCBW4QSuPN9EZYUpAT7nHi2L9bWCguvAjqsooxGFFyDG4SLngSzXw6mmh+Rq6/I+1mSM+ZUymnIg6lM4n4Gb07Pk67GdIiOhfCPkUhovkZeac17dUEA4P9IgGm51IR40Fz4Wow5XWCx/z7v017NUHLJuEI/UQaQNH6fFE3A/F70+5/5/1+WLdvjvh8eCpiPKhmLYGyXtgNETi5B8GWyCZTUmLdvjmurItoUCqNuJuBY+HZ9PaYp/mlm5xwjxPL1u8EPx8dCZzJ+Hu64TkVaR7U1k+Gfnpi+fmqmYuhnDRP+HcObRtR4Ib3uhO6diys28TmIrFUxKh+xmAA3k3vDEWeE0LA+6S7D87rgX3vrojPlebCEamI8aCsmwn1XOHdZbDxMILDrBBSz4Vt+2ZAQHkoinOnGIaiGehW/giUPj/yIOFDi/EwK4SU90F4HtbtkbE0lCrxBlCK0hpoFwvvLrmelhGBp8TvlTSzwb5vF3hfZBEg8/LLEup1QVEUtBdfB7qwXPC4d9sG8C7b0L+lf78j5wJAwhZSJr8IuuXC8TW8rR++XRuH/k3YYMZ3xUuUnHCPA9blFAzuUJVVJCwUxxKhBQwACleuSjg/P+xnFK5gR+DZ8h54rxv+E3vg+uivSYxWGMJxsH0fGZlP63QouFA4gjwajLEQOpHUMm6gE/4fvgXvccLz1WsInJAuSM2+e4fgYmJaemlSrYLV560UrWDn3fkJOPsAgs3H4Hr/TyBB6RYx67bNkR9SFMzLL0/4WrRGD92KmwV9vsRlCwVDBXzwbHkPvv3S5cK7TxxFcDCy93z+wsVJNYBSTr0Ayjpht4r/wCawvW1gu5vg3PCUpEWgxIRi4aXCZvZoUAplyP8u4PIhgbNWiGAA3l0b4d0qHKuQDP6ebnhOR25A9NNnRqQixoOyeipUsy8WPBY4tQ/B5qPgBrvh+uhpsH2R1sBsJjtyt8YY+85tgoF0pktWZE3RGkKI8MtP0wnvFMNQShV0y2+G65NngFF+duJxhgTJ2a5lxO8FpdYKXSYhnIcPCKZcFVy4BLRauG55LJR1s6Cccj6CAp3i/Ie3IXByH0jAC0qrT+r6QohZH0yXrEjqehTNQLf8Jjg3PAWM9rMHA3B/8uzQXPAOCxiRXVki+Dra4G1uiPjcMGsulGbhegKxUJROgHr+SkHXTrDpCNjORhC/R9SEnwxWEatc0nNBUdAuuRZsfzvIsB0ugJAV4qvXzlohSGguRFxDicA6HaIbEG39lKSuyeQXQXvRNfBujYyp4Hpb4Xz7v0H8HtHaEckgtgExXZzcXACA5vzLwHU3gxuIrODo2fYBwHEAz8kWDCwXuZ17HIhpxMm+/GOBt6VJ0E9tnHcBFPkFSV+XKaoQDcAhw9qRchK9OKIv/yXC0e/xol10tWgADgmETJ1SvfxBmxXOw5G14DU1tdDWTkz6urShALqLhd1Ew+dCqt2i+HuR2lyo5y4DU1YreGy4giIFfDAA267IgD0mzwjjvAuSvi6l1oYqOwoEnoaep5ArQ6r7sO/aLrwBWboypQ2IctJ8KOuFMx6G5sJplSSIlhAirGgxTELxG6OhGAW0K24Wrm8RDAxtTHgZU/3kICfcYxAY7Ifr+JGIz7X1k5MyE40VYruTAgkUFNXMxVBURd8dSPHi8H4f7Lu+j/hcUWCOmoccD5RSFTIJC+Vch39fopfftmMrIBBYJYWyqKybCdW0BVHPkUKgiFmCKIUS+YsSd4+MuAZNQ7f8pqiWHuJ2SJKW5TywD5wrMpe+YPElKRelUpTWiKZchpHqmbKkaQMSdr+JlXYFABB+hA8+WbzNjfB3RgZOGuedD4VRIBYjARhjIbQXCadchhnrPhlSkxPuMRALGEp1dyInhOdD9zEKWq1G/gLhjkqJQFFUHAIl9UXMvm+3YMCQ6eJloBhxoRwvtKkECpEdIxCqciWFv1p0x5uC6XE4qqkXQKgXQBgpsgA8Z04i0Nsd8bnx/IVQ6IXTwRKB0uWJ5iqHIOBdqVcTFJ2LpdK836r6ucKpimeRQtEKDPTBLbgBmRK1EFK8UCpN6D6iIMV9pMsSFEZRPUW08RIw/nbuOZ97DAQfOIqCKY7c10zBdfwIghahgKGLwGhT84MTnoP/wKaY5Wel0IrF/dSpv/ycrR/eLe/GLHmaqr/a39MlGjCkKilN+roAQAiPwPHd8O39EmGzrxBSLGKifmoJhCLvdsC79f2YLYVT9VdzHjfs+wQyFopLoZ8qXAMhEQKNh+Hd8TEQJeVKirmwbd8ivAFZmrqySPxeeHd8jGBTpPIwnNB9CDdmiut3OE54A6LRwCjBBoTtbIBn6/sgHqfoObzTCkJ4UEI1PLKQ8XEXacLX3gpvc+QCk0rA0FggJhSlMMmD50KmbEX0CO9UzXahgKHIylvq8kpo65NfVIbgWFCq2IpOqveR1l07IQBFgRJq0Tv8tBTvgbCsSMaCHsbzFqZ0bQAgXDCu4MtU5yKUsRApeE0XLwdFp7Y0EkIAwsecC95tByGp5b5bhN5vmpZkA0I4NnQPMfz2qc5F1A2IRiBVNUEIz8V+vzkWROK0vrEkt3OPQrrNRHLABwOw74zs6sTkGWGcK9x2MxEohQqa+SugmrYA/gObEDi5FxBYrIg7sgBQIth2pidgKAxTWA796nsQ7DgD394vwYtUsOI9yd9HugKGwlA0A/WMRVBNmgf/4W3wH90BcJF+ad7jBCEk6b+b88gBwXr4BYsuBq2KXho0HhhjIXQrfwS2rz1UTaw3st47kPozlU6TPEVRUE2aB2XtTARO7Ibv4ObILAYA4DkQn0e0sl0svG0t8LU0RXxumDUXSlPqGxBalwftxddBNfMi+PZ9BbbtpOB5JIX3AkhPlPxwlNVToaichOCZA/D98K3oDp53O0CLNDPKNnI7dxFEA4aUShQsEs6bzEQcP+wD5xYIGLpoqaRd7GitAdqL1sBw48+hqJ0ZcZz3OFKqlCZqkpfo5Q+jrJoMw9qfQbv0RsGCKqkIFG9zA/xdkfXepQgYGg6l0kBzweXIu+lXob7po4U4x4L4I2MX4kWooyAgffaIoqQa+qvvh+6y2wUzGVJRtIJWC5xHhDIW6qCtqU36uqOhFEqoZ1+MvJv/R6iTn1D1uhSeKZtMmTyMqQT6y++A/qr7wBRH+vH5FO5BdANizEfe3POSvu5oKJqBauoFyFv3K6jPv0wwej5VJSWTyAl3ETynTyDQF7l7M563EIxeunzndGMTE4oSBQyNhskvgv7SW6G/6t6RpV3ZoPDOJQ7EAoZ0k6bEbBKTDBRNQzV5PvLW/SLUYWrYgpyKQJHbEkTrjdBdcj0Ma38W0Ts92UWM9/tg3yOQsWAyx2wSkwwURUE5YToMNzwMzYWrgWFm7lQEimjGggR+aiFotQ7aC1eHlN9RmSXJPlOEEOHKekolCi5MzwZEUV4H/ZoHoF16AyjNuXUwmi87FmIbEJPEG5AwlFIFzbzlyFv3q4gyu6k8U5nGP4xZnuM4eL1e+Hw++Hw+8DwPiqKgUCig0Wig1WqhVquHTJXpDBhKhUAgAK/XC6/Xi2AwCEIIaJqGSqWCVquFVquF4uwLwXncsO+P7ICkLC6Ffsr0tI5TUT4RhusfQuDYLvgOfAsEA+DdDjBqLXiej5gLAGAYZmguNBrNubkQCLQBJIoZiAKlUEFz/mVQTpoH366NYDtOj9hlBYPBobkIBAJDpu7hc6E8W20u3QFD0WAKy6G/5scInjkI394vQXxu8G47GHMZCCEj5oLjQjm/NE2PmAv6rA/avncXeF+kkmZaslySjAUxKJqBetYSKCfOgW/PFwg2HhqhoLAsO2Iuwu+3UqkcmgvVMJeBqCUoRue0VGGMhdBdsR5s20l4d30G4rINCRRCyNA8eL1ecBw39H6H50Kr1Q7NhefUcQT6eiN+w3j+hWndgFAUDdXk86CsmQ7fD98icGL32diB0PPPcRw8Hg98Ph/8fv+ItXb4XAy93xIXdIoXWpcH3fKbwE69AN6dn4K39oJ4Qu4mQgj8fv/QXLAsOzQXarV66D6YND7zqTLuhbvX64XFYoHNZotpFlapVDCbzcjPywtp9qOQKmAoUXieh91uh8Vigdcb25xqNBphNpvh37tTOGDoktQDhuKBohmoZy+BcuJs+PZ+AZ/TBoefh9VqHRLoYigUCpjNZphMJtHKenJlLDD5RaEFufUE/Kf2Dc2F2x07+Eav16OwsBBobULQEhkZLVXAUCwoioZqynlQTji7IHtcsPT2wmKxDAl0MWiajj4XkE/pHbEg7/0KDocDVqsVTmfsnaNWq4XZbIbG64bnzKmI4/rps1LOWIiHsDVCUVkP/6GtYP1eOPr7YbFYEBRomDL6uyaTCWazecznglJroV18DVRTzod3xydw262wOt2w22N3v1Or1TCbzTCqVXAIZCyoSkqhkyBjIR4U5XUwXPczBI7vBuu0YnBwEBaLBX5/9LRXiqJgNBpRWFgInU6oDfbYMm6FO8dx6OnpgdUafy5sIBBAT08Peru7wU2YCIzyyUkVMJQIbrcbHR0dMV/64TgcDjgcDtAcAfILgFHlWmUPCNQa4Ji2FAMDAwDiS/1hWRZ9fX3o7+sDW1oBtDaPSPeRKmAoXiiKAltah+6gEv72+DuUud1uuN1u0C43UFwK9I/caUkdMxATlQbuyYvQ29sL0t8f11d4nsfAwAAGBgbAGwsAhgmV7DyLuqIK2omT0jRgkTEVVqJ/1uXwtMVfD9zr9aKzsxO03wdU1wLtLSOOy15xklHCO/F8dHd3g++N3IELQQiBxWKBxWIB0egAlRoY1qOA1ulhnB+95oTUkPxiWOaugqMjehrpcPx+P7q7u9HLcUDtJODMyPRQ08XylvamaAb+mlno7OwE1x1Zv0EIQgjsdjvsdjuMRiMqKiqGrKaZwLj0uXs8Hpw+fTohwT4cAoBZdwfoH909IuhCzpefEILu7m40NzcnJNiHwxWXgnn4t6BmnPOFaiZIGzAUC7/fj4aGhrOCPXEIIWCuuh7MvQ8BunOmRjkVFEIIBgYG0NjYGFObF4PTGcD89NegFp6r3iZ1wFAsgsEgGhsb0dPTk3RwI7X0MjA//TVQYB76TO4eCzabDWfOnIHH44l9sgC8UgXmvodBX7r63IcSZSzEC8dxaG1tRWdnZ0wrlihzLwDzyG+BsnNxJwWLL5F1A+J0OnH69Gk4HMn53HmaAnPH/aDX3gwMsyam2+U2Ygw8j46ODrS1tcW0YonhcDhw+vRpuASqHY4V4064u91uNDc3Jz1JAIaii6mpM8Hc9SCgUqUtYEgIQgg6OjowOJhagQuKYQCFAvTNd4KaF9Lm5VRQfD4fmpqaEBBwDcRNWGhU1oC5/xFAbzgbMJRaidN4IYSgt7cXPT3CqXHxQjEMKIYBc/UNoJZeBiB9AUNCBINBNDU1wSfgL08EiqIAcxGYH/8cKAx1BJTzmRocHERHR0dqPeppGhRFgV56Geg16wCc7bGQRAe4ZOA4Ds3NzSkLAoqmAb0BzH0PA1U1AOSdC4fDgdbW1uSVE2Co9j41fwHoW+8BGEbWDQjP82hra4PNZpPkWi0tLXA4MiMoL3NsCBLg9/vR0tKS2os/DIqmQSprQN+0HgV2a1oDhobT29sbl98qHiiaDgWCXHcLeIddNjMwy7KpK1nDoBgGpMAMZv0D0B/eJ1vGgtVqTdrqIAZz6WpwdptsC3F40UnWAjQaimFAtDowd/0Uqi82QF0ufcaCEA6HA91xmkzjhb5gMYjDBtN58piyCSFoa2tLWckKQzEMCEWBufNBUG88D8MM4VazUuP1etGWgEskFhRFA5Omgb76Bpjy5VGyAKCrq0vy3XZbWxvq6+uhTbH6Z6qMG+Ee3u1KJdjDUDQNasoMMDLZONxut+TChKIoEJ4Hc/N6MDJU1iOEoKurSzLBHoZiGJCyCjCmxHuFJ0PYLyg1hBAwa26Eok4eP3Vvb2/S7gQxKIYByTOCXi3chU5qWJZFZ2dky04poJevgrKmJi3XHk28gZiJQNE0iEIJ5sY7Rpi20wXP82hPIO4kXiiaBnX+Iijy5Cki43A4JNmxC9He3o5JkyYNZTaMBWn75e7ubqxfvx5XXXUV1qxZg88//zxdPwUAcUeSJwMhBBZCgRWokCb173R0RBY5kQKKpgGNNmXzcjw4nc60maYoioJTo5Ns5xONzs5OyZVF4Kxpm1GkRXEYjdfrTdm9IwZF0/AbC2TxM3Z3d0uuLIahAHT19aVlrocTDAbT9v5RDAMuvyDpOKNE6O/vT83VFg2eR5/Hk5qpP66f4dOmLAKh4Oz+OANW00XahDvDMPjXf/1XbNy4ES+//DL+7//9v0kHwMQiHPCULiiKGopSTQS2swGBhoNx9zp2Op2SmU4FoShYrdaElRT/wU3gbPE/qHI81IkKLG6gC4Hju+NuE+r1etP2vAIAaBoulythJcV/bAe4gfgXpXS+F2ESnW/eZYf/0BaQOIsaBYNBydxUgtA0AoFAwkpK4PR+sF1NcSsFg4ODaVcgBgYGEvoNwrGhcsve+O6d5/m0KYsAAJoGx3EJ76iDLccQbD0ed51+m82WNmUxzODgYNqVlGikTbiXlJRg+vRQoZTCwkLk5+en7QVNu1A8S6IvJ+9xwLftA7g3PBWXkJdjIQaQsHYfbDkO94dPwbvlvZhCPlxIJN0k+nKSgBe+3Z/B9f4TcQn5tC5gw0hUYeS6muD+5Bl4vnk9ppBnWTa9QvEsbrc7IbM/4Vj4f/gWznf/GJeQT/RvlCwJK4yDXfB8+TI8n78YU8jzPC/LfQQCgYTN/oGj38P13h/jEvI2m00WgZXoXPCOQXi/ewvuj/8WU8inezM4NKaz9UnGioSFO8/zuPLKK/GHP/xhxOfbtm3DrFmzBM3vR44cASEE5eXJt8qMhlzpBxzHwetxg3BsXP8Ll7fkHYMxhTzP8+ndKQ7D6XTGfQ+EY0P55YQg2HQ4ppCXay4IIXC5XAnPBfE4Ywp5QkhcRVGkwOFwJD4XANj20zGFvJxpOYk8Uwg//wFvXEJerrlwu93gE5kLPjQXXG9rTCHv9Xpl28UlNRdsMC4hL9cz5ff7EfD7El9rLT0xhXwwGEyfW2EUcj27QlAkCTvRhg0b8Nhjj2HTpk3Iz8/HyZMncdttt+Ghhx7CfffdN+Jcq9WK22+/Hb/73e9w3nnpyeltaGiQxQcLAMV+C7SHv0npGrSxEKq5y6CcOBvU2brl4RQ+OaAoClV73gEVped3HBeBsm42VHOXgSk419Sjra1NtlQQE/zI2/tRStegdHlQz14K5ZTzQJ1tWxsIBHD69GkphhgXVae+A+1IbSehqJ4C9bwVYIrORa53d3fLZoEwKoCCne+kdhGVFupZF0E1/UJQqlDVPp7ncfz4cQlGGB8VXYeh6BTufBYvTOmE0FyU1w3l/w8MDMgS7wIAWiWD4h1vpnYRhRKqaQuhmrUE9LCOdSdPnkx77FGYUkc71Kd2pnQN2lwG9bzlUNRMG+rTbrfb0xIQKIRCocC0adNk+a3RJGWWX7NmDUwmE1577TX09PTggQcewNq1ayMEeyAQwMMPP4wHHnggbYIdgOSRwNEI0NH7lseD0E5eznsghIBTp1guUWQnL4dJPkwgzseXECJqMhXaycs5FwAQVMfX7jOaHi60k5dL4QUAXwLuS9H7ENjJy7XDGhqCKr73ItpcCO3k5ZwLP5uAu0rsPgR28hzHySbYASDAqGOfhOjvt9BOXs73m2XZtPv2xUhq5w4Ab731Fv74xz+ipKQElZWV+Mtf/jKiiD4hBL/+9a9RV1eHRx55RLIBj4YQgmPHjqXt+qPJC7phOviZpNekjYVwz78S/Z70xw2EKTv6JVReCf1BFAXlxDloKZ4h28OsBYvivR/EPI8QAtbrB0VToXQbhg79v0BVNUqXh8B5q9Eto3wvbvsB2t6GmOfxQRZckAXF0KDP3gcoSvA+FNVT0DVhIXx+eYSjggIq9sS3c2e9PgBUaB6izAVUWpD5l6OdT3/t/TCFg83QN+2NeR7PceD8QVA0DZqJPhdM6QQMTlsGh0c+AV+zN8658PkBgnPzwIjMhUIJetYlaFEWSTxScfI9A8g/JtxUZjiE58H6/KBoZujdAC08F7S5DI7Zl8Pike8FnzZt2piUpU06oG7NmjVDu7THH388ojvO/v37sXHjRnzzzTdYu3Yt1q5di1OnIps1ZBspmbIFoPPMIdN2njn2yRJCSRq1S0FRNwuqOUtlLUMaLxRFgaIpEI4PCUhfAKzHB9brBxcIgj/bfYvS5kE9+xIoiirkHV+cc0ExNEAICMuBCwTBev1gvT6wvgD4IAty1u+oqJoM9dzlQy4fOUhk1imaBuFHz4UvNBdsaC6g0kA9czGUVfLWrEec7zdFn50LbthceHxgfX5wZ+eCEAKmpAbqectBKePbhUpB0nPhD81F0OsD5w+cmwvmrIl+0vy0jVlwbHGfGDqTcBz4QBCsb/hcBEG40FzQplKo5y4DrYvPUpbtJK1OPPbYYwBCPnWhtncXXHABTp5MzXcVDxRFgWEY2XaLDJHmd+g8M1Tzlg/53ZUyR1UyQSnM5xQUE2dBPXf5kN9dOeiQzXSnQHwBSoQnEFoqCM+HBGIQAM1AWVgAzu8HHWdakFQwbOwdnajpkYQWtaFWrYZ80AotWPsglEwe5HKSKOJciUXdIzwB4c8+NxQNRUE5OJYD5bJJM8A4UXCxLR2EkFAwHUWNaGYEICRIOB48AEqjB60ygHPYoNDLt+NVxFk4RdRoyxPwPAewHAAKTEkReI6AtvcPpQXLAcPHXkfI2WDf6HPBglKpQWuM4NwuMEr5KuCF5dNYkJRZ/oknnsBbb72Fl19+GXfffTceeeQR3H777ekYX1y0trbKFpVYqWOgtcQXjMFbesF2nhnx2WihHkbOIC6lUokJzta4zw+e/gHEPzySP1Koh+nq6pItdalUr0beYGQQIgkGwDms4OwWcA4LiC+BLASahmbJGjQzBdINNAoURaGeGwRGRYoTQsB7XOAdltB9OK0jOrHFgjGXIXDJjeizy6OoFBq0MA00RnxO2CA4p+3cXHgSG4/2/JVoLaiVTXmfyHhAu20jPiOEgPg8Q/fAOaxAnPUSAIDOKwBZ/iN0OeVRtYw6LUosAnPBceCdttA92C1DfeTjRT19AXomzIfPJ49Ju0bNQ2WPDELkfd5z9+CwgATjdz1Rah2YS3+Edo9MrkOtFvX19bL81mgS3rm/++67eOmll/DKK69g2rRpuOuuu/D888/j5ptvhlKZerBZMuh0OtmEe17NZCgmTo/r3MCZH4aEu5hQD6NUKmWzQOh0OmimXhH3+WzHmbPCXVyoD7+2XMLdUFYFTd1kkGAAwc5GBDsaEOw4A24gucpvlC4PeVeuh7KiDhqZMjC0Wi00E0PdyDjbAIIdZxBsb0CwsyExpWQYqsnzYFh5EzyBICCTcNebi6GprQfhWLBdzWfnogFsXwcQZ2GR4VAqDQyX3QLVxFnQyaS8KxQK6KYtBABwLhuCbWcQ7AzdB0lQEIZRVk+G4YrbwTJKwCmP8q7PL4Bm4hUgPAe2ty30PHU0gO1pPZf6lgg0A/2y66GZeSH03d2yCHeKomConwWangPe60Kw/czQM8U7kltfmOJK5K2+E5ShAJApA2Ms+7wnJNy3bNmCRx99FI8//jjmzZsHAFi/fj1efPFFfPTRR1i3bl06xhiTgoIC9MbZDzkVDAZDwoERsYR6GIqiYDKZZCmuYDKZEvsCRUExcXZUoR7GaDSCpum05/SqlEpQLcfhaD6CYOspgEvNFaAor0PelXeA1odMdiaTSZbysEYFBc/uLxFoPArOkmKqFEVDd/E10My5GBRFQadQQqlUpr3AE0PTUPa2wLnrKIItJ+KuPCd6PXMp8lbfBcYUetZMJpMswr1Aq4Z3/3cINB0F25t6qpTmvBXQLboSFE1DhdBCL0ctC62jF65D3yHQdAzEl1ode9qQD8PqO6EsPdt1zmSSJb3SqNPCf2QHAo1HwHY3R5jcE0U97QLol98wlO5aUFCQtrryw0l4rZWQuCXV0aNH8ctf/hL/9E//hCuuOLfrMxgMuOOOO/Dcc8/h+uuvHxP/glKphNFoTHt+dWFhYk1XFNVToayfG3dgk9lsTrtwV6lU0CfYUU13+XrQuviaOdA0nf4FgBBoj22Fu0uanZBmzhLolqwZ0fWvoKAgpb7nMSEEFBcEPn0NXgkUIUpnQN6q9VBWTjz3GUWhqKgovUoKIdC2HIKn6QdJLqeaNBeGlTeBUp0LQMvLy0u/kkJ40F++CE+KigkAQKmG4bJboK4f2aGtqKhI0k5qERACbV8LvCe2SnI5RWV9SOEdlueu0WhkUVKUm9+Cxy1BnXyagX7pWqhnLhoR7FtYWJh24a7T6aDRyJfpMZqkU+EyDZ/Ph4aG2OlEyaLT6VBXV5f2aPB0+6xrampgNKY3oIRlWZw+fTo9u3eeB+N1onj/x6BSvT5NQ7/8RmhmLBQ8nO7CI8bTu6DvSj2DhCkqR97V94LJK4g4xvM8zpw5kx7BSHhQwQBK9nwImk3dVKtddCW0568UfMfSWniEEOjbj8IogYJC55mQd829UBSWCfwMQVNTU3pqQRAC8ByK934MhS91K4d69mLoL14r2OY6rQW3CA9NXytMEigolEaHvKvugrJiouDxdBfcmjhxYvaY5TMZjUaDsrKytCzGFEWhqqpKljSvsrKytNXKLygoSLtgB0K+y8rKyvQsxhRgOrE1bsFO6Y1QVk2CsmoylGU1sL35/wCeB6XWIe+qO6GsFA92KSwshN1ul34x5kOBQrp4BTtFQ1FSFbqP6skIdjXDu+crAIBy4kzkXXbriJ3ucGiaRnV1NZqamqQa/YhxFZzcHrdgpzR6KKvqQ/dROQn2DU+DeJyAQgnDZT+CetIc0e/m5+fD4XBIX6ub58F4HchrPhj3V5iiirPP1CTwbgfcm94DcNa1c9WdI3a6wwmvIw0NDdJbhCgKxoa9cQt2SqWBonLi0Fy4vnsXXF87QNHQX3ItNHOWiH5Xr9ejqKhIeisj4UEH/cg/syvurzCmEijOzgVFM3B+9lLoc3Mp8q6+B0y+uLW1oqICbrc7LXFOxcXFYyrYgXEk3IHQYuzxeCTXxqqrq6FSqSS9phg0TaOmpgbNzc2S7nzVanXaavsLkZ+fD7fbLbkVwnhmD5Qu8WtSGh2UlZOGhAhdUDxCKVMUV4EEfMi75h4w+dHTkyiKGhKMkqX38TzogAcFJ7ZHzeNlisrP3sckKConglYNM+8xCnj3fAXt+SuhXbRqqKymGDqdLi2Kr771MDQW8eY1lFJ9ToBUTQJTWDZirMqKOgS7W2C8+h4oSqpi/l5FRQV8Pp90FcZ4HhTHwnRsM6goQX90QfHQPSgr60Frz7m1OFdI2VBPOx/6FetAMdGXVLVajaqqKmkVX0Kg6WuGrjuKm4pRQFlRF3qeqiZBUVw5wl2orKgDb+uH4cr1UNVMifmTJSUl8Hg80pnnCQ8QAtOxzaBZ8eh3Os80ci4M+ecuwbGh+6yaBMOq20e+MwIoFArU1NSgpaVFUmVLp9OhuDh6bJIcjBuzfBie59HR0SGZgK+urkZ+fn7sEyXG4/GgpaVFEgGv0WhQW1sre5UkQgh6enpS978THgAFY8Me6AXqfjPmUqjqZ0NVNxNMcUVUYedvPBIS+mpt3D/v9/vR3NycuoAnPBifG+aDX0LhHxXoxCigrJkKdf0sKCdME939AaFFLNBwBOqpiRUVkcTNcDanWN92BHlNP0QoKLTRHJqLiTOhKK2JGm8SaDsFhblsxAIdC5Zl0dzcnLqA53lQbACFh76CcrRvl6ahrJwEVf0sKGungzEURL2U78Q+qKedn5Blz2azoaOjI4mBR6LpaUTBqe8jiiFROiNU9TOhmjgLyoqJURWPYE8raLUWjKkk7t/lOA5tbW0Jd6GLgOcBwsN85FuobaOfTwqK8lqo6mdBVTsDdH5h1L+z/9R+qCbPDxUZihOXy4XW1tb/f3tvHh1HdeZ/f2vrXWrtli3Lkvcdg/HGasCY3eyQBAgkkLBkec+8mcmczHreOZlfzvx+c05m5iUzb0wIeyAhBGPAxiwGG+MFbGO84d2WbO27el+q6r5/lFq01FXd1a2q6lbrfs7hWFSVqm7p1r3fe5/n3ucxRODdbjcaGhqUKHl5pujEHfgmpV9XV1duFUYIbEMj7HyaVmKxGFpaWnIaHRNZAsNyqKioQG1tbd4+NkIIBgYG0N7enttARZbBxiPwntgJR1/b8GF+Uj1sMxbBNmNRVh1SroiiiLa2tpwGjUSWwbAsHJ1n4T39Bdi4IkyMzQGhcb7yHg3zwAjmW4d8Ph9aW1tzM0UOzXS9p/bA2fWNz5WrqFU635mLwVVONt19JUkSOjo6sk5dDCjfI8MwsPW1wXti1zeDLI6H0DAX9hmLITTOB+swv90Hg0G0tLTk5IIjkgQGBKXnvoSr5djwIOubwdUi8LXTMlp1xoosy+ju7kZ3d/pU0JoQAj7Qi7LjOyEk4gskDa5s0xcO72Axk0gkgpaWljFtf62urkZ1dXVBCDtQpOKeIBqNoqOjQ9c2mkQHTMJhlMoi6pevLIhKIoSgv78fXV1dumaORJLAcBxIWwtmXHFV1ivjzSLqH0T72VMIsDYMR4vTEAEiy8o5MQ7h5EFU9p0EK0vgp8z4RtBVFo+ZDSEE/c2n0TXgg8jblRlHmm9kuC66OlDeegjOwXYwDjdsMxbCNnOx4ifMYMY1g3g4iPbTJ+AjHJDo/LXqghAARPFNnzqKqt7j4OKRocHV4qHBVX5MkL62ZnR0diEmOPXXxUAfSpq+gmfgAtg8DK5GI8Wi6Dx1DP0iQDhesVJpCPJwNDYAzNkTqO75GnwkAK6yVnkHiwZXagS72tHe2oJINnUR8MN15it4+8+B4XnYps1VrCUN1gyuUspFCHp7e9Hd3Z3V4NftdmPy5Ml5XRmvRlGLe4JYLIb+/n4Eg0GEw+GU2TzxDYK0ngc5chDk2CHM/T+/gbNRfYVlvkjkLx8YGEA4HE7JlkUkEejsAGk+A/nLL+CZVItZ/8//zlNph8pECMT2JkSO7Ebs9CFAliAJdoRrZyFaUYd4SSUIP7JDJQE/SNsFkONHQA4fwKSrVqD8mhthm74granaTORYBLETXyJyZDek3g4QAPHSaoRqZyHurYHoKh3RIRNZBro7Qc6fg3xgL/iBLkz/waOwzVwEfnKjpTHfkxG7WxE5sgfRkweAeBQyJyA8aToildMQL60EEUZ2TiQcAmlrATl1DOSrfahcNBtVN9+et8EVoES8i50+iMiRPUpQFgBxTzlCtbMQ89ZCdJeNEBYiy0B/L8j5JpBD+4Gms5jxxPdgn31R3gZXACANdCt1cWwfSDQEwnIIVzcgUt2AeEkV5FFZG0ksqtTFmZMgB76Ad2o1au++T6mLDLEnzIJIEmJNXyN6ZDfiF5RgXaKzBKHJsxErq0XcXQ6M+vuSgT6QC80gR74COfk1Gh66F65FK2CbNjcvgys1CCHw+/3Dfe1oywrDMHA4HHC73SgvL4fdbl3egGyYEOKeDCEE8Xgcsiyj7YVn4PvsYyBpNTTD81j8yltg8xRtTy+J9IvxwQGc/vu/AgYHlBHzENW33Y267z+Rl7LJ0TCiJ75E9MhuSH3awYUIANnmgswL8J/vQvBsKxAcGVFtwfqXYasy3+yuhtjVonTApw4AaUJcEpaFZHdDBovOz48BAyNDxXpXXYnpP/8nK4qcWrZ4DNHTBxE9sgdiZ/o91pLgABFsCHYMwHfyPOAf6YKY9b9+Dc+8hWYWV7ts/V1KXRzfBxLV3r1AGAaS3QPCcuj+8hSknt4RdeecOQdz/8/TVhQ5tWyShNi5o4oYtqTftivzdsiCHZGBIPqPnAP8gyMCuTT81S9QftW1ZhdZFck/gOjXnyNy9AuQkLabioCB5HCBsAL6jjYh1t4FRL8xe/PeMix67k9WFHlMJPpaQghYloUgCAWZIGs0RbVaXg8MwwyvfI8eOzxC2AHAXldf8MIOABzHgeM4RFsvAP2pq8cdDdMtL5MihruVmaGO2NsMAC4WAhdnIPcNpgg75/ZAqLR2VkLiMURPHVRm6V36VjQzsgw+7IcocUBv6vYgZz7qoq8T0aN7ED2+P60YJsPFI0A8AjIYSBF2AHBOazS4lOkhkojY2aOIHNkNsTU1VroaDCHgI34QzgZJJXhPPixykr8f0aOfI/L1F8rWPx2wYhSsGAXxRwDfQMp5q9+DyDLiF04icng34s3HdEWMY0DAR4IgHA+xvRMYtQjS2ZifmOvZkuhrxxsTTtwTyLEYom2pq1ULzRyfiUizejAJq96DSCKiCZN1V3arfxlXKRwLV8C+YCXa/++nUs47GmdYNkKWBnoQObRTmRlmGaVMmDoL9kWXIdjWA3x6IOW8ZXUhy4idPYzIYf1imICxO2GftwyORavQ+7//NeW8raYWnMua9RtyYBCRw7sQOfZF1olm+EnTYF+0CqJkAz7al3LesrogBPHzJxE5vBPx5uPZhU/lBdjnLIVj0Sr4XnoBwMgtbowgwD4l89ZBI5AjIUSP7EHk6B7I/uwWMHIVk2BfdBmYqmmQP/pByvnx1teONyasuEcuNI8wYycYbx9cuFklOAnLwlE/zdTnEklE9NhehPd/DNk/kNXvCvWzYV90GWyNC8BwHMTBAYgq1gdng/l1IQ30ILxvK6InvswqwQljd8E+fxkcC1cNLyjr3fOc6rUOk78pIsuInT6E8N4PIfV3ZfW7fG0DHItWwTZrCRheAJEkhJubUq6zol3IgUGEv9yGyNE92eUKEGzDYshX1wEAera8o3qp2d+UIuonEP7ig6zj03MVtXAsvgy2OZcMb9WMNKW2b0d9g2rkOCORIyFEDu5A5OBn2Q12WQ62WRfBsegyZX0Jw2Bw/+eql+bDujiRmLDiHlZpNEB+TKhjQe09HHX1YE1anKKI+j6E92/NStQZhwv2+csVMSwbGTwmH3UhDfYgvDd7UedrG5QOeOZFw0koEqhZUViXC7bqSWMurxo5i7pgh33uJUoHXDVlxKloZztILHUPuZkdsRz0IfzlJ4gcyU7UucpaOBZdBtvcpSkBS8IaFi1HQ+NYiqpJzqLO8UNiuAp8beMIS5UUiSDa0ZbyK2YOtHIVddZbCcfCVbDPX5ay8DXf1sWJChX3UTjGiR8IAOR4DJHW1I7EjEZDJBHR4/sR3rc1K/McP3m6MjOcuThFDBOoWh9gzntIgz0I7/sY0eP7dYs6I9hhm7cUjoWrUsQwGbVvytlgfD4CQhKi/lHaBYuj4aomw7HoMtjnXAJGI3qX2kwRMKcuFFHfhsiR3fpFneNhn7UE9kWrwNc2aP5t1b4poaoGvEdfAiS9fCPqH2ZcsJgM662CY9Eq2OctGxHxLpnI+SZVc74ZAy05Gkbkqx2IHNyhX9QZFrbpC2BfdBmE+lmae+rV2gXD85a5FiYqE1bcIyqNny+rgOAts74wORJpuTBiVXYCI83AuYi6IoaXKjNDlQQao1GdZbEsHPUN2RZXE2mwVzG/ZyHqXNWUJDFMv91F9PsQ71NbTGdgXRAZsdOHlZm6XlHneNhnL4F90WVKxLgMAw1NK4qB31Quoq5HDBMQWVadLRr5DgmfujJT1ynqDAvbjIWwL1qlbMPLEGBG26JlYF3kIOqsxwv7gpWwL1gBTkd0QbX3sE+dNi4WLo9nJqS4E0JUR/bjzSSvOcsy4D2IJCF6fF9Wos5VTobjoitgn31xRjFMRrXxT64Da8D+0axFneVgn3MJ7IsvA19Tr3vWrWkJMqAjJkRG7MxhhL/QL+qstxKOxVfAPu/SrAKCqA20WIcTtprMg7RMZC/qDGwzF8Gx+HLwdTN110WsqwOySqQxQ9oFIYhfOKnM1If22WeCcZXCsXgVHPNXZBVqV20CAhgzSJGjYcX8/pV+URfq58Bx0eUQGubpjtUgR6OItqfmH6AmefOZkOIe7+2GFEhdhTvePjgzZlk5iXrVZLhW3ABh+sKsTdByPI5oS+rMZ6x1Ifn6hkR9n+rCyRRYDvYFy+G89DpwJeVZP88M10Kuou5cdj3scy/JKViO6hqOhsasYnWPRg75vxF1HVskAQa22UvgXH49+Irs1yuY0i5yFHXnpdfCsXClpksqHaquhYoq8CW5h2NVRP0zZaauc4uk0DAPzhVrIUzKfpGu5sLlcTaRGo9MSHHX9rePM3FXcy2UesGXVWR9LyJJiJ7Yj/Dej7KaqTtXrIVtxsKcY1hHWy+AqITVzbUjzknU5w+Jemn2op5A1YrCMHDksDdcEfUjQ6KuL9ELW1oB5/LrYZ+7NOcIeGLAj3hP6sK8XM3AVot6AiPbtyLqpxTzu25RLxkS9VU5iXriuWpWlFzbhRwNI3LoM2WmboGoJ7DCtUBRZ0KKu+bqzXE0miSEaMyyslvARQhB7MwhhHZthuzTl57VCFFPoL2qObu6kMNBhD7fgujXX+gUdXZI1NeMSdQTqL2HvXYKuCzjTccvnELws7ch9WYp6nOWjnl7VERlCxyQfbsg8RjC+7YifHBHFqJ+EZzLrte1RiMTau2bsdlhn5RdymOx8wKCn70Nsb1J1/VGiHqCWHcnZJWEUY7GLOtCEhE5+BnC+z/OTtSXr4VQO/bttFrte7xZSccjE1Lc1VdvCnDU1eehNLkh9vdBUosilkWjkfq7EPz0reG40JngKmvhXHGDIaKeYKwmVEJkRL/ei9DuzSARHdnzWBb2ecvhXHYduNLsLRyqZZAkxfw4imxmilJgEKHP3kHs9EFd17OlFUPm97GLeoKxuhYIIYidPYLQjrchBwZ0/AYD26yLlJm6AaKeQH3XQqPuv5McCSG0ZwuiR/ZACZKcHsblgXPpdXAsGruoJ9BeT6P/m4q3nEFw+5u6t0kK0+YqM/Va4xayqloXyyrAj6OFy+OViSnu55tSjjnqp4GxON/5WBjLiHh4ZnVgOyBnzn7EVdbCuXwtbDMXGZ5CMnI+9T04TwmEiiqVq0cidrUguH2DvtXKJoh6gmh7K4hK2k5ddSFJiBz6DKEvPgTimXOUK6K+Bva5lxoeyETLoqXHiiINdCP46UbEz5/Q9SzbrCWGizoASOEwYl2pVg89okiIjOix/Qjt2gQSyZyjXBH1oZm6wXEl1PooQN83JQd9CO58F7GTqdES1RCmzVFm6pMbsyihPtR3LYwfC+l4ZvyomYHEe1JzDxu57coK1HyjAOCob9T8HUII4ueOIrhjo64ANFxFrWJ+N0HUE8Q06iKda0GOhodmVrszh/VkWdjnLYNz2RrDRT1BrFurLtJ/U/HWs8rMSsdiObakfMinbryoJ4ipfFNC9SRwTu3V9kSMI7z/Y4T3f6JroKjM1NcaLuoJ4r3qecUz1YXY04bgtjd1+dXNFPUEcbVviuNgn1yn+TtElhA5tAvhz98H0TFQFOrnKDN1E0QdUILwSIHUWPrjra8dr0w4cZdCQciRVN+TnpliIRFXCdcKAEKl+ntIg72KCb75eMZ7WyHqCeJ9vSnHtN6BEILYif0I7twEEs4Qc5xhYZ+/TFko5600oqiaxPtT3wEAbBrvIQd9CO7ahNiJLzPe2wpRTxDvS/2mtN4BAGLnvlYGijrWathmDpnfq7Lze2eL2vcEaH9TcjSM8BcfIHJoZ8aBIuP0wLn0GjgWXWZ6elK1b0oor9D8BuLt5xDctgFSb2qynJT7mCzqCUTNushPitqJxoQTd83GX2GuABiN6ntwHPjSkftoiRhH+MtPlJlVhr3FjKsE7ituhW3OJaaLOqCM7OVQqvlTrS7EnnbFBN+ubjoe8fvTF8B95TpwXmsGbFrfFF8+8j2ILCFyeLcys8qwt5ixOeBceaPix7Uo57iWoIxG8vUhuGMj4ue+znhPfsp0uK+6Yzjmu9nobd+EEMROHkBw57uZM7VxPJyXXgfnJastyzmuNtASylPbhRwKILTrXSWOQwa4yslwX30nhDprFrNpDXqFCnMsaJSRTDxx15rxFoG4C+UVI/Yjx5qOIfjpW5lnVgwLx0VXwLli7XDCCisQNRv/N6IsxyIIf56YWaVfBc+WVsB91R2wTV9gaDkzoZb0BiwLoeybVfjx9iYEt2+A1JMaK3w0trlL4b7iNrAuY0OlpkOOx1QXaCbPeIkkIvzlNoT3bc08UHR64L7iNtjmLrU097W2oHzzHmJfpzJQ1JE5T2iYD/fVd5hu/RmN6kArqY8isozo0T0I7dmScRU8I9jhXHUjHIsvz3mbZC5oD7TGl5V0vDLxxL2IZ+6Jkb3k60fws42Inz2a8T785Ea4V9+VNma6WWjXRYUyszp1EMHP3gEJpYrOCDgezqXXwnnptYatVs6GmEoOd95bBobjIIcDCO3ajOixvRnvw1XUwr36LstmVsmozRSBb76p2PkTCG5/C/Jg6ruOgGHgWHQ5nKtutHSgmEDTilJWDhKLIrT3Q0QO7si4XZItKYf76jtgm77QjGKmhYgixMGBlOOJPireeV4xwXdnTrFsm3OJMlB05x74JlfUwjED6hYIivFMQHEvjg9O3YRajvC+jxHa91HG/cWM0w3X5bfCPu9SS0zwamh1xCzHwrfxGYgtpzPeQ2iYB/dVd6RkmrMSNQuEUF6JyJHdCO1+L/P+YsEO14q1cFx0pel+dS20Zrys0wH/ey8hduZwxnvwk6bBfc3dlpng1VD7pvhSL+LNXyO04x3IwcH0N2A5OJdeA+el11lmgh9NfKBP1f/Pl5Qg8PEbSiyHDFv0uIpJcF99F4Sp+UuEpT1gpGZ5K5iA4q7+wfHlYw9kYhVaI3u55wJCe97L8NsM7ItXwbXypqxijpuBlqBEPtsA3pH+02RLyuC68nbYZiyy1Oyrhto3xUR8CG57M+Pv2mZfrMyssog5bgZai5+iX34ApiR9IB7G4VIGivOX5W2gmEDtm2I5BoEtr2T8XaF+DtxX3wmuPL8LvrT6qNjxPYh2p0+aA8EG1/K1cCy5Km8DxQRqdcF5SgzJGUHJzMQTd7UPrtRrWv5zM4gP9quO7FmS3g/KT6qHe/Xd4GsKI9Wi5sxdSCMQLAfnJavhXLYmbzOrZIgkKTOtUTBIbznhymuUxU31s80qWlZo1UV6fWBgX7gSrlU3ZczUZhVqwsgy6bfosR6vMlCcuTjvA0VAe9DLMeldCbZZF8F15TpwnjITSpU9qq7Dceb+HM9MOHFXm6GMtw8u3qvR+O3q1cnYXXBdfgvsC5bnfWaVjFrjZ3kOLKdeRmHqLLhX3wWuvMbsoulG9A2o+m85u4bvnxeUmdXFV1m2Cl4PmuJuU38Prnoq3NfcNaa440ZDZFnVRaJZFywLx8VXw7Xs+qyyGJpNXGUNB6D9Hqy3Cu7Vd8I2ba6ZxcqadOuCKOZTOL2LRaj7qsfXB6c5sldp/PYFK+G67OaCmVkloxZwhFUZoDDuUrivvB22WRcVxMwqGS0Tqpoo2mYuVmZWOWSdM5uYSl0wHAuWHzl1Z+xOuC67GfYFK8eUKc4MJL9PNQmR2qCXr5upLCQdQ4Ias9A90OIFOJetUbboFdBAERgKmKW64p/6262isL4IkyGEqO8fHUczdyLGEfh8q+q5ZHHnquvgXn23IckfzEDsvIDoBZXQs8kdGMPCseRKuFasBWPLLgGLFRBZQmDPR6rnkgWF9VbCffWdsDXMs6poWSH1dyNyMnXB3OjBon3+crguvwWs02NV0XRDCEHgi49VzyV/U0osh3Wwzbm44AaKgBLgKHRoT8pxhmXA8N8MpoTpC5SFpCZFXRwrUjAAEoulHKfb4KxjQom7MrJP9YWOl9WbYk8bAh+8iui5k6rnORsPgIFz2XVwLl+b9wU1ahAiI/LldgT3vAcpnBrIJSEobGkFPDc8YGgSCyORfH0IfPAqwkfUo8wl3sO+YCXcV91eEOsDRkMIQfTYXgR3bIToTw3konxPys4Kz5pvwdY43+oi6kIOBxDY+mcE9qeKIvBNXQgzFsJz7X0FacUClIh/ga2vq87cObugDEYEOzyr74Rt7qUFOThJUCxbjsczE0rcsw1NWSgQQhA5tBOhXZsASYQUSzU9MiwDrqwCJTc8AKEuf9tf0iEFBhH46I8QW06DxEUQOXVRIGcXlCAuq+8CW4CzdQCInvwKwW1/AYlFIEXVF87xJSXw3PQA7DMXW1w6fciREILb3hzOQqf2TXF2AcK0ufCsuT8v+6T1EDt/EoGP/ggS8mvWBedywn3N3bAvXFWQgkjEOII730X08C4AUH0PziaAq6lHyQ0P5HXbp170Rm2kmMfEEnet6FUF/MHJoQACW/80Iia8auP3uFH2nb/O+/Y2LWJnjyCw9c8gUSUtq5qYAIDrolUoWfsdK4umGxKLILj9LURPfBPqU4qpCArLoPzhvwVfgL51AIi3nUXgg9eG07LKogQipS4KdMyYj5J1jxbUIswERBIR2rMFkQPbh49JUfVvquy+p+CYXliLzRIkrHHJyYPU2oZtch289/y4IK1xaqQLUEWxhokl7hqrzAvVVBRrPo7AR39KSZKiJij2usaCFHYSjyH42TuIHh1pMtWaZTnnX2xBqbIn3nkegQ9ehTw48htSExShsroghZ1IEsJ7P0R4/8cjtlKqDlAAOOctKUhhl/q74P/gVUjdrSOPqw60WDimzbKoZPoZbY1LIEsyiJi6dc8xZ/G4EXZAX2hpirlMLHEfJ4kMiBhHaPd7SphMFVQFpQAHKGJ3qzIr6U9NX6kl7oVmRSGyrCTe+eID1S1vau9RiHUhDfYi8MGrEDvPp57TmPEW2nsQQhD9+gsEd2xUjcCoWhdl2pnU8oWaNS7BeGkXmVCduTPMiHwLFHOZWOKu9sGxLPjSMsvLooXk74d/84sps5IEWiP7Qmv8kaOfI7h9g2aOb21BKZyBlhwJIbDlZcTThMFVmy0WWl3Ezn2NwAevaub41lw3UEDiTsQ4AltfR+zUV5rXqA96C+d7ApQEQv73XgQJqacs1rKiFNpAKxOqYYC95QU30CpmJpa4q2TvKqSRfbzjPPybn9ds+ABAOPVFZkJlYTR+IssI7dqEyFefpr/O6QXQMfIgw0AoK4zOWOrvhu/d59InSuFtkOMqA60CMT0SQhD56lOEdm5CuljkSl1cSDleKIIiB33wb34BYmdqGYfheMhIbceFUhcAED3xJQJbX9cc8AIA7OoLFwulLvSi2tcWSB81USg8h5qJyFGVrVeewtizGz31FXwb/r+0wi40LoD7hgdUz3Fu69KDakFiEfg3v5Be2AUb3NfdD25S6hY31ukEw+d/vBlvOY3BN55OK+z85EaU3Pkj1XOF8E0RSUTwkzcQ2vkuNIWdZeG6/FbYZi5RPc0XwDcldrdi8M//b1ph5yomwXvf/wWiFimwEOqCyAh9/j4CH76WVtgdl6yG/eLVquc4T/7rIhtU+1p3/utiIpH/ntRCSDzV5MUI1qcITYYQgvDejxSfrhYcD/eV62BfdBnCZ06pXpLv95D8/fC/+zyk3nbNa7iaqUNbeaqBD1ID8bB5SNc6GsWd8KZ2SlCGhXP59XAuu051bzgAsHmuCzkSgv+9l9LmK2e9VSi58UHwNVPR//Vzqtfk+5uKnTsK/wevAvHUYCgJHIuvgOuKW8Hwgnr7zvM3ReIxBLb+CbHThzSvYVyl8Fz/LdimzUF4yzuq1xRC28gGtbrId7uYaEwscVdZhJPPmaIePyJXMQmeGx8CX1kLAJA1UrmyeXwPPe4ExyWr4Vp103CYTLnAOmI97gTWUwbPjQ9CmNyo/I6G6OTzm9LjTrDPuxTuq+8ajqeu1hED+XsPQggiB7YjtGsztKwOjN0Jz/Xfhm36guHfKTRxl4M++Da9AKlL2+ogNMyD5/pvDUf902rfhWDRyoZCa98TkfH1xYwRtQ8uXyNiOeSHf9MLqquXEwgN8+C58cERwVw0O+I8jYqjJ79CYOufRmznGQHHw3PdfbDPXTrisFoM8Hy9A4lF4P/gVcSbjmlew0+qR8kt3xsRzEXtHYD8dWLxC6fg3/JymvzxDFxX3qakA00K5qI26AXH5SV2PJFEBLdvGMpZrg5bVo3S276vWIASSOrm7nzNFsXuVvg3PQ85oJ0/3nHJarguu2XE31nzmxpns17V9k3F3VImlLgXiqCIPW1Kw/cPaF7jWHIlXFfcBoYduUhItSOG9Q2HEILwFx8ivPdDzWsYpwcltzwyPNMd8fsF4iKRfP3wb3oOUm+H5jW22UvgWfOtlL+x1kArH4ISObIHwU83aLsTBDtKbnhgeKabjNpsMR/vIIeDijuh7azmNfzUWSi56bspMR3UBu5Afr6p2Nkj8H/4mrY7gWXhvuYeOBasSDlVaIP3XCFi6ruPt3cY70wscS8AQYmd+3rIj6i+LQkMC/fqO+FYdJnq6UJo/PrcCbUoue37moktCkFQ4h3N8G96ISVIUDLO5WvhXLFWNWxpIQgKkWWEdr6rGRMBANiSMpTc+n3wVVPU71EAJlSpv2vInaAeiwIA7AtXKu4Eld0tmoNeK+uCEEQObENo13vQdie4UHLzwxCmqoeI1naRjC9hVPW5jzPXwnhnQv2189mJ6dmWxNgc8Nz8Xdjq52jfR8NsZ1XDUbYlvZi1O2E0+V7/ED15QNmWlM6dsOZ+2OdconmPfJvl5VgEgfdfRbw5nTthGkpueSRtbPh8m1BjF04i8N7LILHUFdZDpVF1JySjbdGy5psikojgtjcRPbZX8xpVd8Lo+2i173E265ULxEo6kZlY4p6n2SKRpCE/4uea17DeSpTe9ii48pq099KeLZqfdUzsaYP/3eeHY5Kr4Vhy1ZA7Ib2/Nl8DLcWd8AHCe9VTtQJD7oRbv5cxI10+rSiSr0/ZndCXzp1wMTxr7s/4d82nRStyZDeC298CSPbuhGS02oUVa2rG4k5IuZfae7BswcTi0AORZdU1EFTcrWVCibuaKdhsQZEjIfi3vAwxTZQzfsoMlNz8sK5UlPkSFMWd8AdtP2IGd8Jo8iEoijvhT4idOqh5DVdZi5JbHwVXmjlMpppfETBfUOLtTfBvfjG9O2HFWiXtr44saKoLTc2uC1lGaOc7iBz8TPOaTO6EEffLU7sYqzthNKq+6nFmzi603RcTlQn111afLZr3J5B8ffC9/SzkgW7Na+zzl8N9zd3DW8QykQ/zY/jQToQ+3Yi025JueiitO2E0auZHM0VRjoTgf+f3GdwJ81Fy4wNgdKaaVTM9AubWRfT0ISUYSlp3wrdgn3Ox7nta7SIhYhz+917O7E649XtgXfqCt+TDRRJvPQv/pue13QkMA9cV6+BYcqXuVLP5dpEYgbZrwXzrIuUbJoy4a+6DNWlkLw32wvfWb9OsiGfguvwWOC5ZnVWOae197ua8R/jLbUrmKg1Yb5XiR8zgThiN6j5Yk+pCDgfg2/gMpB7tADuOi6+G6/Jbs9r+ZfVsMXriAAIfvTYio9uI57o8KLklszthNKribtI7kHgMvk3Pp7Vk6XUnjLyvtXURv3AKvk3PqyawAaC4E258ELbG+VndtxiCv2jv1R9f7zHemTDibuU+WGmgG74N6yEHNfa48oLiR5yxKOt7W9mJhfZtRXjPFs3z2bgTRqM+WzT+HeSQH7631o/Ilz0CloV79d1wLFyZ9b2trIvo8X3KAkANYecqJyu7E3JINau+stn4dyCxKHzvPpfWN+1ccQOcy6/PasALpBn0mlAXseYT8G9+QdN6wpaUD7kTJmd9b/XgL+Ormy7E4E4TkQnz19ZciGZwJyb1d2Fww3qQkE/1POvxKg2/ui6n+1sV5CL0xYdpQ+Jm604YjRWzRTnoU4RdJeUsoLgTlG1JueX7tmplc+TrLxD8+A1ouUWExvkouUG/O2E0VqxslmMRxS3S3qR+AcfDc/23YJ99cU73t2oLWazpGPybX9SMEZ+tO2E0hRKLYywUSyCe8c6EEXcr9sGKvR3wbVyvGYaVq65D6W2Ppt2WlAmzOzFCCMKfv4/wvtTY7wkUd8I1Wc+uRjzH5H2wUmBAsZ5ohGFlSytQuu4H4Mq1tyVlwooBY+TIbgS3val5Xgl2tG5M0eTMXosiR8Pwv/2s5noHxuFGyW2PQqidlvMzrFiLEjt7BP4tr2gKu23WEniuTw12lA1WWVHMpJCCO01kJry4G9VwxJ42+N56BiQSVD3PT6pHye0/BGt3juk5mlt+DGg4hBCEdm9G5Mttmte4V98Fx+LLx/wsM33ukr8fvg2/hexLTTsJDK0TuOsJcJ6yMT3H7GiBykLGtzTPO5etgXPljWMaZAHm7lyQIyH43v4dpK4W1fOM04PSO58Yzp2QK2a7SKKnDyHwwR80IwDa510K93X3jzlkr+qOnnEmitqD3gkjNwXBhPlrmxlNTOxuVYQ9GlI9z9c2oGTdY2MWdkDD5GXAPlhCCEKfvZMm0hkD97X35OSbTnmWJKl2kkbUheTrU4Td3696niuvQekdj4P1eMf8LDOtQeGvPkXoM/UMYUB2W90yYdbOBTkcHFrI2KZ6nnGVKMJeMWnMzzLTRRI99RUCH7ymuRffvmAF3NfeA4YZeyx+q9aimAk1yxcGE0bczdp7KXZegO/t32km6+CnTEfpbY/m7A8djRn7YAkhCH26EZHDOzWuYOBecx8c85eP6TnDzzNpC5k00APfW+s1g+xwFZNQeucTOftDR6Npfhzje4T3f4LQ7s2a552rboJr2ZoxPSMZM2aLcigA38b1mjH7WbcXpXc+MSa3yIjnmeQiiZ7Yj8BHf9JcyGhftAru1XcZIuyA9dt1zaBYQuiOd8bXVzMGzDDbxTua4X/7Wc19rnzdTEXYDdzfaXRkN0JkBLdtQPToHvULGAae67+dktVtLGivbM797yT1d2HwrfUgQfWFjFzlZJTe+fhwak0jMMMaFNr7EcKfv6953nX5LXAuvTbn+6th9DclB33KjF1jhwJbUqYIu7cq52eMxoz2HTm2F8Gtf4bWQkbHRVfAddUdhlhPEhRC/ouxkq/gTpSRTBhx12qgQG4NM95+Dv63fw+ikQBGqJ+Nklu+Z3hYWLUJRK6dCyEygp/8RTu9JsPCc8N3cl7BnObBht5O7OuE7631ICG/6nmuug6lt/8wpy17adF6jxzqQ09YXNeV6+C8+Oqs763j4anHcvym5MAgBt9arxm4iS0pR+ldT2omFModY7+pyNHPEfzkDc3zjouvVsIsGyjsAFTrwvBnmIxm8x5n7zHemTDirjUT0fKbpiPeega+d5/TDMUqNMxDyc0Pm2KGUvMhas0g00FkGcGtryN6Yr/Gg1h4bngQ9lkXZX3vTGj5QbVmX+kQezvge+u3IGH1hYxczVRF2DPE9M4FrRkViceBLJZXEEIQ3rMF4f0fa17juvpOOC+6Itsi6oIRBCAy0q2US11I/gHFLaK1Q8FbqczYc9iLnwkj23fk8C4Et2/QPO9Yei1cl91siuiqTQZyad/5RKt9j7f3GO9MHHG3qc+gSUwjVroGmSJTCY0LUHLzd3Pe/50JtcZP4jEQQvSHuJQlBD78o3bKVpZDyU0P5RRkRw9aHbGsFbdeA7G7Fb6Nz4BENBYyTpqGktt/YMhCRjVYjW8qm/cghCC0axMiB7ZrXuO+5m7dMftzgRVsGL25K9u6kHx9irBr7VAoq1aE3YCFjKr3N6h9hw/uQGjH25rnjdqhoAVjS20bWkFhChUta+V4e4/xzoQRd83RZBYj+9j5E/BvekEzMpVtxiJ4bnzQNGEHNN6DECUCn46FN0SSEPjwVcROH1K/gONRcvPDWYfNzAaG4wCOS4kamM1sUexqUYRdayHj5EZlh4JBCxnV0Jwt6nwPZYfC22mSpzBwX3cvHAtW5FhCfahZILKpi0yhlrnyGmUh4xjiO2RCy4qSzWwxfGA7Qjvf1TzvXHEDXCvWZl22bFDzS4+3GW9aixbFMiaMuGuOJnWO7OPt55TIVFrCPusieNY+YHpqRu1OLAYug7gTIiP48Z/TC/ut34Nt2tyxFjMjrGCDLI0UZr2dmNTflWGHwoyhHQr2MZczHZozd53fVPjz97WFnWGUfPLzluVaPN2oDRj1dsSJxXOawl5RqyxkNGiHghaa7Vvn4D1yZHdaYXetuhnOZdflVLZsULMwjjdRpGb5wmDCiPtY/LxiTzv872qb4m1zLlEiU7Hm51zO1c9LCEFo5yZtHzsvoPTW70Oon21AKTOTq59X8g/At/F3mqZ4YeoslNz6fUvy24/Fzxs+uEM7CiDDDu1QuGQsxdONup838wBFjoaVrIcapniuarISU8DAHQpaaApKLHNdRE8fQnCbto/ddfmtcC69JteiZYXaNzXezNnULF8YTBhxz9XPm0jbqjVLtM+9FO41Y49MpZdc/byRA9sQ+epT9ZOCDaW3PQqhbuZYi6ebXPy8cjgI/9u/09zHLkybo+xQsGjLTa5+3uiJL7X9uiwLzw0PwD5ryViLpxt1P296USRiHP5Nz0PqVc+0x1XXKcJuwkJGNbRn7unrIn7hFAIfvAqt1fauq26Hc8lVYy2ebtS+qfE242VVvidg/FkgxjsTR9xz8PMqgTh+p5kExj5/OdzX3WtYAAs95OLnjXz9BUK7NIKiCDaU3v4DCJOnG1E83WTr5yXxGPzvPqeZBMbMHQpa5OLnjTUfR2DrnzRuyMJz40Owz1xsRPF0o+7n1RZFIkvwv/8KxLZzqufN3KGghaZFK83MXexqgS9NEhj31XfCYdIOBS3U28X4mvEatWCWMjasU6UCQC1IilZHLMci8L3zrOa2HtvMxXBfa62wA9n7eWNnj2jv12U5lNzyiOXCDmj5edXfgUgi/O+9qJl4hJ88HSU3fdfyCFja5kf1byre3gT/ey9pxif3rLnfcmEHsvPzEkIQ/OQviJ/7WvU8V16D0nU/sFTYgez9vFJ/N3zvPAtoxKlwrbrZcmEH1Puo8Tbj1bRojbP3GO8whBgcUaRAiUajaN+xDaLTCdHhUmbxDAPBZoO7vAJOpxMejwccx4GIcfje+T3E1jOq9+KnzkLpusdMXRWvhizL6DtzEr4LFyC6PZBtdiWuPMPAVeqF0+OBy+WC0+kEwzCIt56F7+3faSwCZOC58UHYZ1tn/k0Qi8XQsWcnYiwLyeEC4XmAYcDzPNwVlcN1wfM8CJGVbXsnD6jei6usReldT1kuJoQQDFy4gP5TxyG5PZDsDqUuwMDh8cBVWgqXywWXywWGYZT9+G/+j6Z7x7QANRkQRREdez9HNB6H6HKBcALAMuBYDu7Kb+pCGBLP4K7NiHz5ieq9WI8Xpff82JR97OkghCDQ24PuA/sheUq+qQuGhc3phLusbPg9GIZRAu385b818w84llwF15XrLA8eI0kSug4eQMjvg+hyg/ACwLJgGQbuyio4nU643W7Y7eYuFB0r4WAQ7Tu3Q/aUKH3tUB8l2B1wl5cP1wVrkSszF2RZRiAQQDgcRjgcRnxoYMIwDBwOx3BdOBzm7cYZK0Ut7oQQ+Hw+9Pb2IhRSX4CVDMMwKCsrQ0nfBcS3/0X1Gq66DqV3PWnqFqvRxONx9Pb2or+/H5KkbkJMxm63o7y8HNwHL0LuU4/tbVR2t2zw+/3o7e1FIKCeEnc0Xq8XpTE/xPeeVz3PlpTDe8+PDUkCoxdJktDb24u+vj6IGjHykxEEARUVFRB2bYR04YTqNY6l18J9+S1GFzUtoVAIPT098PnUXU6j8Xg8KBcYiBv+G2r+acbuQuk9PzIkCYxeZFlGX18f+vr6ENOxQ4HjOFRUVMDx9WcQNcIt2+ZcAs/ab1tqkYtEIujp6cHg4CD0dMculwuVlZUoLS0tmOh1hBAMDAygt7cXkYh6OO5kWJZFeXk5KisrYdOY6eeDWCw23NfKGha2ZBwOByorK1FWVlYwdZGgaMU9Go2itbVVl6irURbzwbF7I5ikTFCst0oRE5f5q38BpcH09/ejo6ND14c2GoHnUHbsM/CtJ0ccd65YC9eKG4wqZkbi8Tja2trg96uHh81EKYnBufMNsEmr0BmnB957fgSuzJjEI3rw+XxobW3VNcAaDcdxKG86AOHMSAuEklHsXss6BkmS0NHRgf5+9VlrJjwsgWvXX8AlpzbmBZTe+QSE2gaDSpmZQCCA1tbW4RlVNrAsi7KuM7Ad+XRE8GmhYZ6yINPk7awJZFlGV1cXenrUXX+ZcLvdqKury7s4hsNhtLS0IBpVd3Gkg2EYTJo0CZWVlXkVR0IIent70dnZqWuANRqHw4G6ujo4neYEzMqFohT3wcFBtLS05FRJydggoWz3m+CiITCuUnjv/bEJMbHVkWUZ58+f1z3LTYe3+xycR5WOzL74crivvtOyhhQMBtHc3JzT4CQZngHK970L3t8LRrCj9K4nwddMNaiU6SGEoK2tLWdBTMbj74Jn/xYwIBBmLFTWCliwhRJQZohNTU26LA7pYBmg4tBWCL0tAMui5NZHYWswPzYCoNRFV1cXurvVY9dngyvqR+nnb4GRZfC1DSi943FLtlACygyxqalJl8UhHQzDoL6+HqWl5gUISkdfXx/a2tRT+maDy+VCQ0MDOIsGVsmIoojm5maEw+ous2yYMmUKKiqs0YhMFJ24DwwMoKWlxbD78QxQdWALym56EHzVZMPumw5ZltHU1JSz1UGNUl8Hyv0d8NzwgGUmx0AggKamJsPuxzJA1aGtKL/qVghTZxl233QQQnDhwgXd5ms9uKM+lDcfhPf2H1i2CDAcDuPcuXNjHmQlYABUntiJ8sUrYJ9jzX58Qgg6OjrQ29tr2D2dcgwVR7fDe9cTlq3biMViOHv27JgHWcnU19fD67XOPQUAPT096OhQd/vlgt1ux4wZMywVeFEUce7cuZysDlpMnjwZlZWVht0vV4pK3EOhEM6ePWv4fR12O2bOmmXZbPfChQsYHBw0/L51kyej3KKPLhaL4dSpU2O2noyG53nMnj3bsg6gs7PTkFniaGqqq1Azqdbw+6ohiiJOnTqVkzshHSzLYvbs2cOL7czGqFniaMq8Xkytrzf8vmrIsowzZ84YKiYJZs6caZlZ2O/3o7m52fD7ut1uNDY2WtLXEkLQ1NSEYFA96dRYaGhoQEmJuVEZM1G4yxWzRJZlXLhwwZR7R6JRUzp4NQYHB00RdgBo6+gYsxlQD4nZrhnjRlEU0d6uHjjFaEKhkGn13tXdY4gZUA/t7e2GCzugtDkj3F96iEajptX7wOBgzutBsqWrq8sUYQeAlpYWwywz6RBF0VDraDLBYNAQ95ce+vr6TBF2QKkLIy0zuWCauAcCAdxzzz244447sG7dOrz++utmPQoA0N3dndPiGr2Y2SgTyLJsyswkQcKsaTYDAwOmCtfAwIBpjTIBIQStra2mPqO1tdV0YQwEAqYNFgGlMzbz/gna29tN/VtZUReJVfFmEY1GDXVZaNHZ2WnKYDFBe3u76cIoiqKpfaEkSejqUg+4ZRWmibvT6cQrr7yCjRs34vXXX8f69etNG5EltsSYTbbPkNpOI358D0gs89YQQJm1m9loAGXFd7az99jBrZA6m3R1foQQUzuwBNl2YlJfG2JHPgUJ61ugGAwGTR/MRSKRrAdB8a93Qmw9CUL0zdCsqItsnyEHBxE78JFmGOHRRKNRQxaWpkMUxazXVcRP74fYdAREZ5u1oo/q7e3NapBCJAnRvZsgD+qzUImiiIGBgRxLp7NMQ7uEskFsPor46f0Zww0n6O/vN30wp3frslmYJu4cxw37f6LRKGRZNu2P6fP5LPkj6t37mIBIcYin9yPy8Uu6RN6KUTeQfScjD3QjtncTop+9kVHkQ6GQ6aIIKHWelaVGliA1HUbkk5d1ibxVdZHtc+RAP+IHPkR022sZRT4Wi5kuikAOgxRCILWeQHTbq7pE3gpRBLIfpJBwAPEj2xH95JWMIi9JkiXmZlEUs3YxyJ1NiO54XZfIDwwMWOKGyXqQEo9APL4Hka0vZxT5xLY3s8llkGIkWYdYk2UZt9xyC9asWYOf//znw8d37NiBp556Cv/+7/+Om2++GYDSAT/00ENobm7G3/7t35q2RcCKDgxQ3j082A+nzrVcwwIiKiIvNh0C33gR+BkXgxkVBEeSJF3BH4wgEAhA9mXxcQ9FuCODXYjt3QTGWwNhznKwNQ0pC1/MNpePeJZvAKWCvvEpCQ7NymQZUtNhSOePgpu2EMLMpWBGZS0jhFj2HoFAAHKgXzMkbQpDnRYJDiB+4EOIJ/eCn7Mc3JRZKbsgrKyLgG8Q9ri+3R0knBAfReSl1pPg6uaAn70MrKcs5Xqr/OHhcBiivx+sTqsIhgbrJKKIvHh6P/hZl4Krn5+yVz4cDlsiigAQ8Pvggc6Bb1JcfbmzCdHOJrCTGiHMWQHWmxpDwqq+VhRFRP39sGkk9BkNiQ59e0MiL575CvzMi8E3LgbDj9zeGIvFLPOHB4NBVFVVWfKs0eS0Wn7Dhg345S9/iU8++QRerxfHjx/HAw88gB//+Md47LHHUq7v6enBT37yE/zmN78x5UVPnjxpyUIxAKhGCKVNe8d2E15IEXmjt41lYkbTp2B0Nhwt1ES+qanJsg6ggpdRfnrH2G7CsikiH41GcerUKQNKqI/GrkPgQmMb4TPushSRb2trs2zWW2JjUXNSPSytfpgUkZdlGV9/rR7H3gymBs7D3qOeEEcvjMOTIvLd3d3o7Ow0oogZcQg86k5ppBPOgtEiTwjB8ePHLTM1Txb74Go5PLabCI4UkTd6u3Q6OI7D/PnzLXnWaHIyy69btw7l5eV4+eWX0dHRgccffxx33HGHqrADQFVVFebOnYu9e8coihpYJewAEIMBW7DEVHO9FabsZOL82MPnJmbyyeZ6K98jasTC4KGZfLK53uq6iBlRF0Mz+WRzvVWWIACIikbMSlPN9ZbXBTv2IDaJmXyyud7SdmHQrHS0uV6WZUt9yFHGgC2WKuZ6K+tCkqS8+d1zynzC8zx++MMf4j/+4z/w/vvvY8GCBfjHf/zHEdf09PTA4XDA4/EgEAhg3759+M53vmNIoZOxeps+gYH7L5PM9dK864y7rw6IgYFsEiLPVk2F7J1j2H0zYeimnyRzvTjvGiPvnBFD6yJhrj9zAPJka4LLAIA8RivQSL4x18fnXAbAumx/xMD91cPm+rMHIE+3Lo+D0V1iwlxPGpcAKDP25mkw9DUS5vqzX0Gec42Rd86ILMt5ibyXc1qzdevW4Ve/+hUA4Ne//nVK4Ts6OvAP//APIISAEIIHH3wQ8+bNG1tpC4CxmrJHw1ZPgzBnOUKyAASs2b8NGPwevA38jCXgpy8Bc2ZsJs1sMDrMBVM2CcLcFYjZvEDInJgJqhjZG7McuIZFEGZeAqbV/G2PCRiDa4MpqYAwezlI2RTAhMBUms81snkzDLip88DPuhRMnw+ANXENDG8XzhLws5eB1M4ETlrnrjL6PdjamRDmLAMTEoGANXUBIG8x83MW91/+8pcAlBXkaqOSRYsWYePGjbmXTCcMw0AQBFP3uCcjGDRfTIg6W65EKRMMDG+qB140wGSbLOqCkobSZrNZtljFZtCENyHqbFU9GIaBzaLgMgkEyQAzYbKoO9wAlHCeVgXKsXHGdGAJUWcnz1TqwuJAIIJsQD+SJOqsWwkJawtY5yIReGNmiQlR56bOBcNyIISAYRjLrKUCMabuE6LOlirrvWyiNetQACWKYz5m7UCO4v6f//mf2LZtG15//XV873vfwxtvvIEHH3zQ6LLpxul0WiburspJELz6TOhyXxukC8dHHBst6gmszCZks9lgv+ga3dfHT3wOjMgClirqCVwul6Ex8dPh9JZDWKKvLoi/D+LZr0YcGy3qCRwOh2WdGMuycM5ZCkbW55cTzx4E8SftdFAR9QROp9P0PcnDz3J79NdFNATx+MiUq6NFPQHP85YO3t0Nc8HW6ctuJ7WcgNybFOhIRdQTWNm+XS6X7rqALCN+eNuIQ6NFffg4w8DpdFrWvl2TGiBU6luALXU2Q+44M+LYaFFPYGVdOJ3O8TNz//Of/4znn38eL774IubNm4dHHnkEzz77LO6//37LYkyPxu12G5rYI+2zaup0j8REYFjctUQ9gSAIlnVibrcbfF2d7uvFswdBIsG0op7A5bIm+QYAeCpqwNv1xQSXei4AQ+KuJeoJrOzEXC4XhLpG3ddL7WcUcU8j6sn3tgpPWQV4zzRd18qBgWFx1xL1ZFwulyVR8Gw2G2yTp+u+Xh7oAnpb04p6AivrwuUpAV+hb4BCJGlY3LVEPRm3221Ju2BZFq5a9fapBomGhsVdS9QTOBwOsCxrSaheK+t9NFmJ+/bt2/Ev//Iv+PWvf42LL74YAPDd734Xzz33HDZu3Ih7773XjDJmxOv1oqOjw/SZltfrzdrEkknUk6moqLBku0y28QYYwQZuzvK0op6gpKQEPM+bbpp3uVyw29OXZTSZRD2ZiooKSzqxrGM/cDy46UvSinoCh8MBh8Nh+qp5QRDgdqcvy2j0iHqCiooKS8Q960xeDAOufn5aUU/A8zxKSkpM37PPMEzW2eH0iHqC8vJyS/JslJeXZznjZTKK+vCVDIPy8nJLAtmUl5eb/gwtdO9zP3LkCL773e/ir/7qr/DII4+MOPdf//Vf2Lx5MzZv3pw3/0Jra6vp0YBmzJiR1UiMSFJKMIt0iKKIEydOmDpIcTqdmDlzZla/k+17dHV1mR5XOdsUl0SSAJbV3WHIsowTJ06Yuo2F53nMnTs3q04s27ro7+83PUZ+bW1tVvEriCwBjP66IITg9OnTpm5hYhgG8+bNy6r/yrYugsEgzp0zd8FpZWUlJk/Wn5qaEAIQOaOoJ9Pc3Gz6IGXOnDmw2fRvS8y2LqyIZVFSUoKGBn0WFDMompSv8Xgcp06dMs3U4vV6UW9BWkizg11kO0DJBUmScPr0adNcDC6XC9OnTzfdl2V2sItp06ahtLTUtPsDSud99uxZ0xbW2Ww2zJo1CyxrboJJs4XRihzciWyJZrkQOY7D7NmzwfM5r5PWRTQaxenTp02bhFRVVaG21vx0yO3t7abN3hmGwaxZs7K2LhpJ0aR8FQQBdVn4kbOB53lMmTLFlHuPpqqqyrQFH9XV1Zb4gDiOw9SpU025N8MwmDp1qiWLVLxer2niW1ZWZrqwA+b/verr600XdkDx9ZoVxtPtdpsWGjsZhmEwZcoU06ybdXV1pgs7oOzCMEt8bTYbampqTLn3aCZNmpSVdSAbamtr8yrsQBGJO6B0xkZ3AAzDYNq0aZa5GxiGQX19veGN1OPxWNZoAKXDzMY8qJf6+nrTGuRoGIZBXV2d4Y3U4XCY8rfRwm63mzLYmjJliqUrj2tqarL27WdCEATLBouAMlGYNm2a4c+rrq62ZLCYoKKiImvffiY4jkNDQ4Mlg0VAWbRnRt9eVlZmyWAxE0Vjlk9ACEFXV5chiz5YlkVjY2NeVjzGYjE0NTUZElq3tLQUU6dOtazRJNPb24v29rEH50kMskpKSgwoVXaIoojm5mZDTNsulwsNDQ15WZsyODiICxeMCc5TV1eXl8VCsizj/PnzhuQvsNvtaGxszMsun2AwiObmZkPciDU1NaiurrZ8yxUhBG1tbYasdeJ5Ho2NjXA4xh6KOVsikQiampoMWQRcXl6OKVOm5G37WzJFJ+4JfD4fWltbc14Q5fF4MGXKFMtmiWpIkoSOjo6cGw/DMKitrUVFRUVeP7ZgMIiWlpacffBOpxN1dXV5afgJZFlGd3f3mAaNNTU1qKqqyssgK0EkEkFLS0vOK+htNhumTp2a1y0+iZSdnZ2dOft9KyoqMGnSpLwtAAaUAXxra2vO2ft4nkddXV1eBrwJCCEYGBhAe3t7zgMVr9eLyZMnW+JS0EIURbS1teW8HoJlWUyZMgVer7cghB0oYnEHFHHs7u5GX1+f7g/P4XAMm7gKpZKCwSC6urp0dwKJ7TA1NTV5HZwkI8syenp60Nvbq3vAZbPZUFVVlcO2GPMIh8Po6urKarVwaWkpampq8jo4SYYQgr6+PvT09OgecPE8j8rKSlRWVuZ1cJJMLBZDZ2dnVtvk3G43Jk2alNfBSTKEEAwODqK7u1v3bgCWZVFRUYHq6uq8Dk6SEUURXV1d6O/v1z3gcjqdqKmpyevgZDQ+nw/d3d26rXSJbXU1NTV5HZyoUdTinkCWZfh8PgSDQYRCoRGNiGVZOJ1OOJ1OeL1eS32I2RKNRjE4OIhwOKzknk4yI9lsNjidTrhcLpSVlRVMox8NIQR+vx+BQADhcBiRSGS4M2BZFg6HA06nE6WlpXC5XAUj6qOJx+MYHBxEKBRCOBweIZKCIAzXhdfrzVtwp0wk8tb7/f7hbypRFwzDDNdFSUkJPB5PwdaFKIoj6iLZlcXz/HD7LisrK5jB7mgIIQiHw/D5fMN1kZiQMAwDu90Op9MJj8eDkpKSghlgjUaSpOG+NhwOj+hrOY4b0dcWymBXjUgkMqKvTZ6QJOrC7XbD6/UWbF1MCHFXI7kTG68UwzsAxfEeyc2oGN6jGN4BKI73GM/vABTHe4zHd5iw4k6hUCgUSrFSmPYECoVCoVAoOUPFnUKhUCiUIoOKO4VCoVAoRQYVdwqFQqFQigwq7hQKhUKhFBlU3CkUCoVCKTKouFMoFAqFUmRQcadQKBQKpcig4k6hUCgUSpFBxZ1CoVAolCKDijuFQqFQKEVGYeWoo1AoRY3tkkfBsBxY3gaG5cBwHLjEzyw7fJwVhv5Nvjb5OG8DyzJgWAYcx4IZ9TPHM2AYBizLgOVZsMzQeZ4FwwydZ5mhn1lwLAOOZWAb+tk+fIwdPsYxynk+6TpO7WeGgcAqz07+mR36mWOHjjEjfxY45frEzwwDsGDAsQDDYOgcwADgWAYslEQmHKvM0jiWAQOAZZJ/ZsCCAEQGI4sASf5ZVn6Whn6WJTBDxyCLys9y0nFZBGQJRJYBMQYiSYAsg4ixkf9KknJ+6HeJGFf+jceG7yeLcRBJBpFkyHERRJIhxb85Jg0dG3leBJGU58sxEbIkD/0sQZZkSHF56HcIpJgEWSbDPxOJQIpLkCWi3Cum/K4UG3qGRCCJMiRCIBEgJhNIhAz9ixHHkn+Ok8T55GsJ/ltuymczA0Bn7hQKhUKhFB1U3CkUCoVCKTKouFMoFAqFUmRQcadQKBQKpcig4k6hUCgUSpFBxZ1CoVAolCKDijuFQqFQKEUGFXcKhUKhUIoMKu4UCoVCoRQZVNwpFAqFQikyqLhTKBQKhVJkUHGnUCgUCqXIoOJOoVAoFEqRQcWdQqFQKJQig4o7hUKhUChFBhV3CoVCoVCKDCruFAqFQqEUGVTcKRQKhUIpMqi4UygUCoVSZFBxp1AoFAqlyKDiTqFQKBRKkcEQQki+C0GhUCjZEIvFsH79ejzxxBOw2Wz5Lg4AWia9FGKZgMItV67QmTuFQhl3xGIx/OY3v0EsFst3UYahZdJHIZYJKNxy5QoVdwqFQqFQigwq7hQKhUKhFBlU3CkUCoVCKTKouFMolHGHzWbDT37yk4Ja+ETLpI9CLBNQuOXKFbpankKhUCiUIoPO3CkUCoVCKTKouFMoFAqFUmRQcadQKBQKpcig4k6hUMYF/f39ePjhh/Htb38b27ZtG3Guu7sbDz30EO677z5s3769IMqU4Be/+AU+//xzS8oTi8Xw1FNP4dvf/jZef/31jMfzWaYETz/9NN58882CKFMkEsFjjz2G+++/H2+88YalZTIaKu4UCmVc8Oqrr+Kxxx7Diy++iBdffHHEuU2bNuH+++/HSy+9hOeee64gygQAp0+fxkcffWRZeTZv3oyrrroKr776KrZs2YJoNJr2eD7LBAB9fX2WDzbSlWnHjh1YtmwZ/vjHP1Jxp1AoFCs4evQoLr30Utjtdng8HgwODg6fmzt3LkKhECKRCBwOR0GUCQB+//vf484777S8PCzLYs6cOThz5kza4/ksEwA8++yzlv59MpVpxowZiMfjEEURgiBYXi4joeJOoVDGBcFgEG63GwDgdDoRCoWGz7lcLvz2t7/FnXfeidtuu60gynTo0CHU1dXB6/VaWh6Xy5VSHq3j+SxTe3s7gsEgpk+fbllZMpVJEARs2rQJN910E6644grLy2UkfL4LQKFQKGq89NJLeO+994b///DhwwiFQnC73QiHw8OiCgDPPPMMfvOb32DOnDl49NFHsXbtWlNm8NmU6bnnnsO//uu/4vnnnze8HFq4XC6Ew2EAQDgchsfjSXs8n2Vav349fvjDH+KLL76wrCyZyvTKK6/gZz/7GdauXYuf/OQnaG1tRV1dneXlMwI6c6dQKAXJww8/jNdee234vyeffBL79u1DNBrFwMAASktLh691Op1wu92w2WxgGAaiKOa1TMFgECdPnsRTTz2FDRs24Fe/+hWCwaApZUpm4cKF2Lt3LwghOHbs2PCsWOu4FWg9+/Dhw/i7v/s7PPPMM3jmmWfQ3Nyc9zIlviOWZeHxeCy1cBgNjVBHoVDGBX19ffjrv/5rDA4O4kc/+hGuv/56/Nu//RuefPJJ9PX14Z/+6Z8giiJuuOEGPPbYY3kvU1lZGQBlNfiKFSuwcuVK08sTjUbxs5/9DB0dHbj77rsRDodxzTXXoL6+fsTxBx980PSyZCrTrFmzAGB4pfzdd9+d9zKVlZXh5z//OaLRKBYtWoS///u/t6xMRkPFnUKhUCiUIoOa5SkUCoVCKTKouFMoFAqFUmRQcadQKBQKpcig4k6hUCjjjLlz52Lu3Lk4e/Zsyrnnn38ec+fOxdNPPz18TJZlvPrqq7j33nuxbNkyrFy5Eo888gh27949fE1LSwvmzp2LlpYWS96BYi5U3CkUCmUcUl5ejg0bNqQcf/PNN0fsYyeE4Kc//Slee+01/OIXv8CePXuwY8cO3HbbbXjyySexdetWK4tNsQgq7hQKhTIOWbduHTZu3AhZloePHTp0CLFYDAsWLBg+tmXLFnz66adYv349li1bBp7nYbPZcN999+GnP/2ppaFoKdZBxZ1CoVDGIddccw3i8Th27do1fOyNN97AvffeO+K6jz/+GEuXLsWUKVNS7vGDH/wAjz/+uOllpVgPFXcKhUIZh/A8j3Xr1g2b5iORCN5///2URCx9fX2oqqrKQwkp+YSKO4VCoYxT7r77bnz00UcIBALYsmULli5diurq6hHX1NTUoLu7W/X3A4HAcIx1SnFBxZ1CoVDGKfPmzcOMGTPw3nvv4c0330wxyQPAtddeiwMHDqCjoyPl3NNPP4277roLNFBp8UHFnUKhUMYxd999N1544QWcO3cOq1evTjm/du1arFy5Eo8//ji+/PJLyLKMQCCAF154AX/4wx/wN3/zN2AYJg8lp5gJFXcKhUIZx9x2221obm7G7bffDp5PzeLNMAz+53/+BzfddBP++Z//GcuXL8eaNWuwfft2/O53v8P111+fh1JTzIYmjqFQKBQKpcigM3cKhUKhUIoMKu4UCoVCoRQZVNwpFAqFQikyqLhTKBQKhVJkUHGnUCgUCqXIoOJOoVAoFEqRQcWdQqFQKJQig4o7hUKhUChFBhV3CoVCoVCKDCruFAqFQqEUGVTcKRQKhUIpMv5/zA2s93zBNMgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAGJCAYAAACXXXqWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADpZ0lEQVR4nOy9d5jb1pnv/wXYy8yQnN6kKepdtiVLlqzmIjdZLrIdF7mXJI7j5G52s3fv/u4+Xmfv3U32Oo7jxHHvcVzlKnerWsWyrN5H03th7wRwfn9QHM0MARIkQZCc8PM8eeIhQPBABzjve95KEUII8uTJkydPnjzjBjrTA8iTJ0+ePHnySEteuOfJkydPnjzjjLxwz5MnT548ecYZeeGeJ0+ePHnyjDPywj1Pnjx58uQZZ+SFe548efLkyTPOyAv3PHny5MmTZ5yRF+558uTJkyfPOCMv3PPkyZMnT55xRl6458mTJ0+ePOOMvHDPkydPnjx5xhnjTrizLIunnnoqpWts27YN1113Ha655hpcddVV2LBhg0SjE0eq9+B0OrF27drh/61evRozZsyA3W6XbpAikGIugsEg/v3f/x2XXnoprrzySvzqV7+SaHTikOIeVq1ahcsuu2x4PjZu3CjR6MQjxX1EePLJJzF16lScPHlSkuslghT3cffdd2PNmjVYu3YtbrnlFhw7dkyi0Ykj1XsIBAL46U9/itWrV2Pt2rW455570NnZKeEIxSHFXPzmN7/BqlWrMvY8iUXK90c2yDjj6NGjZO3atUl/n+M4snDhQnLs2DFCCCEdHR1k1qxZxOVySTTC+KR6D2N57rnnyAMPPCDZ9cQixX38x3/8B3n00UcJx3GEEEL6+vokGJl4pLiHlStXkhMnTkgzoCSR6pk6fPgwueeee8iKFSsyck9S3IfD4Rj+7y+//JJcc801KY4qMVK9B7/fTzZv3jz8Trz66qvkrrvukmh04pFiLr777jvS09OTFe9ILKRek+VgXO3cm5qacP/996Ovrw9r167FE088kfS1XC4XAMDtdsNkMkGtVks1zJhIeQ8R3nvvPaxbt06C0YlHivvwer1477338Mtf/hIURQEAysrKpB6qIOmYi0wg1X1ErCj/9m//NjwfciLVfRQWFg7/t8vlkvVepLgHjUaD5cuXD4977ty56OjokHqoMZFqLhYsWICKigqJRyctuboOKDM9ACmZNGkSLrnkEjQ0NOC2225L6hoUReHxxx/Hz372M+j1ejgcDjz55JOyCXcp7mEk+/btg91ux4oVK1IfXAJIcR/t7e0wmUx46qmnsGPHDmi1Wjz00ENYvHixxKPlR8q5+NWvfgVCCObMmYN/+Id/gMVikWiU8ZHqPv7whz/g6quvRm1trYSjE4+U8/FP//RP2L17NwDgueeek2J4opD6/QaAV199FStXrpTkWmJJx31kK7l6r+NKuAPA4cOHcfXVV0d9fsstt+D06dO833n//fdRWVkJAGAYBk8//TT+/Oc/49xzz8XBgwfx4IMP4qOPPoLJZErn0IdJ9R5G8u6772Lt2rVQKuWfainmoqOjA5MmTcKvfvUrHD9+HHfeeSc2btwom3CUYi5ee+01VFVVIRQK4fHHH8evf/1rPPvss2kbMx+p3se+fftw6NAh2WMexiLVu/Hb3/4WALBhwwb89re/lXU+pHy///KXv6CtrQ2PPPKI5OOMh5T3ke0I3WtWk2m/gJSEQiEyb9484vf7k77GwYMHyeWXXz7qs+uuu47s3Lkz1eGJQop7iODxeMj8+fNJU1OTBCNLDCnuY2hoiEybNo0wDDP82fXXX0927dolxRDjIuVcROjr6yPz5s2T7HpikOI+nn76abJkyRKycuVKsnLlSjJ9+nSydOlSsnnzZglHGpt0zAchhMyePZtYrVZJrymElPfw3HPPkWuvvXZUDIFcSD0X2exzT9dzl27Glc+9t7cXBoMBGo0m6WtUVlait7cXzc3NAIC2tjZ0dHSgvr5eqmHGRIp7iPDZZ59h6tSpaGxslGBkiSHFfVgsFixevBjbt28HAHR1daGzszOn5sLr9cLpdA7//cknn2DGjBlSDE80UtzH/fffj+3bt+Obb77BN998g4qKCjz//PNYvny5hCONjRT34Xa70dfXN/z3l19+CZPJJJtVTqr3+8UXX8Qnn3yCF198cVQMgVxIuU5lO7l6rxQhhGR6EFLBMAweeOABdHZ2YvXq1fgf/+N/JHWdjz/+GE8//TQoigIhBD/+8Y9x5ZVXSjxafqS6ByBsHrv++utx/fXXSzhCcUh1Hx0dHfiXf/kX2O120DSNn/3sZ7jkkkskHi0/UtxDR0cHHnroIbAsCwCoqanB//pf/ws1NTVSD1cQKZ+pCKtWrcJf/vIXTJkyRYIRikOK++jp6cFDDz2EQCAAiqJgsVjw61//GtOnT0/DiKOR4h56e3uxfPly1NbWwmAwAADUajXefvttqYcriFTP1COPPIKvv/4ag4ODMJvN0Ov1+PLLLyUebWqk4/2Rg3El3PPkyZMnT54847CITZ48efLkyfP3Tl6458mTJ0+ePOOMvHDPkydPnjx5xhl54Z4nT548efKMM/LCPU+ePHny5Bln5IV7njx58uTJM87IC/c8efLkyZNnnJEX7nny5MmTJ884Iy/c8+TJkydPnnFGXrjnyZMnT54844y8cM+TJ0+ePHnGGXnhnidPnjx58owz8sI9T548efLkGWcoMz0AOSGEIBgMIhAIgOM4AIBSqYRWq4VSmTv/FCzLwu/3g2EYEEJAURQ0Gg00Gg0oisr08ERBCEEoFILf7x+eC4VCAZ1Ol1NzwXEc/H4/QqHQ8Fyo1WpoNBrQdO7ozpG5iLSmVSgU0Gg0UKlUOfVM+f1+BIPB4blQqVTQarU5NRcMwwy/3wBA0zQ0Gg3UanVOzUUgEEAgEECk8WhkLhQKRYZHJ57IWhsKhQAgp9ba3FlFk4QQApfLBavVCo/HA6EOt0qlEiaTCWazGRqNRuZRxicUCsFut8NmsyEYDAqep9frYTabUVRUlHULGiEEHo8HNpsNLpdrWKiPRaFQoKioCGazGTqdTuZRxodl2eG58Pv9gudptVqYzWaYTKasXNB8Ph+sViucTuewUB8LTdMoKCiAxWKBXq/PugWN4zg4HA5YrVb4fD7B89RqNcxmM8xmc1Yqj4FAAFarFQ6HY1ioj4WmaRgMBlgsFhiNxqyci8ha6/V6BddalUo1vNaq1WqZRxmfYDAIm80Gu90+LNTHQlEU9Ho9LBYLCgsLs24ugHHez93pdKK7u1vwZRGioKAAVVVVUKlUaRqZeFiWRW9vL2w2W0Lfo2ka5eXlsFgsWfHgeTwedHV1xVRM+NDr9aiurs4KhYvjOAwMDGBwcFBw4eKDoiiUlpaipKQkKxQuv9+Prq6umMKQD41Gg+rqauj1+jSNTDyEEAwNDaG/v19QSRSiuLgYZWVlWaFwBYNBdHd3w+12J/Q9lUqFqqoqFBQUpGlk4iGEwOFwoKenR1BJFKKoqAiVlZVZoXAxDIOenh44HI6EvqdQKFBZWYmioqKsWGsjjEvhzrIsurq64HQ6k74GRVGoqqqC2WyWcGSJ4Xa70dnZmbByMhKdTofa2tqMacgcx6G3txdWqzWl65SXl6OkpCRjL4/P50NHR0fCyslINBoNamtrodVqJRyZeAghGBgYQH9/f0rXKS4uRkVFRcbmIhAIoKOjI6bVJB5KpRK1tbUwGAwSjiwxrFYrenp6ElIUx1JUVISqqqqMKSoMw6CzszNh5WQkCoUC1dXVKCwslHBkieFwONDV1ZWwojgSo9GImpqarFBUgHEo3BmGQUtLCwKBgCTXKy0tRXl5uSTXSgS73Y7Ozk5JrqVQKFBfXy+7UOE4Dm1tbfB4PJJcz2Qyobq6Wnah4na70dbWltIiHIGiKNTV1ckuVAgh6OzsTHhXIoTRaMSECRNkt0T4fD60trYmvEMUora2FkVFRZJcSyyEEPT19WFwcFCS62m1WtTX18su4IPBIFpaWgRN14lSWVmJ4uJiSa6VCENDQ+jp6ZHkWiqVCvX19Vnhbsi8jVBCOI6TVLADwMDAAAYGBiS7nhicTqdkgh0IWzJaWlpS2nUmCiFEUsEOhBUeqV5CsXi9XskEOxD+d2ltbU3YJJ4qXV1dkgl2IKzwdHR0SPbvIoZAIICWlhbJBDsAdHR0pLTrTIaIa0cq/H4/WltbU9p1JkpkEyWVYAeAnp6ehN2PqWKz2SRdU0KhEFpaWlKytkrFuBLuvb29kgr2CH19fbItxqFQSFLBHiHiqpBrMR4aGpJUsEeIBIDJAcdxaRFghBB0dHTIthg7HA7Y7XbJrxsJnpKDiOUhHf9mHR0dsi3GHo8nZbcIHz6fLy3X5YMQgu7ubkkFe4Tu7u60rOF8BAIBdHd3S37dUCgk+yaEj7QK902bNmH16tW49NJL8fbbb6fzp+B2u9O60Mi1GKfq94mFx+ORZTH2+/3o7e1N2/W7urpkWYx7e3vTsoABYZOmHIsxwzDo6upK2/XTpVCPZXBwMG0KNsuyaVnkx8JxXFoU9wiDg4Pwer1pu34Ep9OZNgU7osSlexOS7t9xOBySWsqSIW3CnWEY/Od//ideeeUVvPfee3j22WfTsnuIkO6FMhgMJvxAB/u6wDjEm5l8Pl/aTYT9/f0JP9C+pmMgCSgcUpoc+WBZNmHzXcg6iNCAeIUjFAqlXREaGhpKWEnxNZ8ASeA7Q0NDaVVKI1HricB63Ah0too+P5KlkE6cTmfCSoq/rQlcQHxQX6zUKqlIdB0kLAvf6WPizz8TL5BOfD5fwla/QFcbWI9L9Plutzvt1thk1lopSZtwP3jwICZNmoTy8nIYjUYsW7YM27dvT8tv+f1+WTTWRIWWv+UU2h/9OQbfe1mUkE90kUwGlmUTVlIG33kRHf/1T3D/sCOukGcYJq1KXIShoaGEXpzQQA/a/8//QP/rT4kS8nL4/gghCf+O/cv30f6bX8C546u4Qp7jOFksNTabLSE/OOtxofN3/4ze5/+fKCHvcDhksZol+v65dm9B2yMPwfb1R3GFfDJKUDK43e7ElBTCofuJR9D95KOihLzH45EldifRtdZ7dD/aHvk5hj55U5SQl2MuAoFAWlyTYklYuHMch8suuwy/+93vRn2+bds2zJo1C59++imAsNYyMsq8oqIibRqfXOaPSPWrRCChEBxbPo0r5CO5onKQjPAN9Xai7+Un4gp5ufzhDMMkrtBxHFzfbREl5OVQUJL9HcY2iIE3n4sr5D0ej6TBZ0IQQpKad8/BPaKEvJxzkehOi/O4YP3w9bhCPlKtTQ6SWUd8p46IEvJyrVFutzvhZ5cEfLB/sSGukGdZVrYgykya5pNKhduwYQMeffRRbNq0CUVFRTh+/DhuueUWPPjgg7jnnnsAAJ9++in27NmD//2//zcA4LnnngNN07j77rulvQMALS0tsmlIJb3N4E4dFnUuY7ci1Dvax0apVCi84GKYLroayqKzOfR+vx9NTU2SjlUIhUKBos0bRJ/vbz4BEhy9MKkqamBZfR0M8xaBGpEO1dXVJVvEa7GtF+Twd6LO5TxuBDqaR39I0yg470KYL70WqtKK4Y9ZlsWxY+JNlalS8sMmcCJNioGOlqhzleYSmC+9BgULV4AakWPb398vW5BVkdcOxd6tos4lgQD8LSeiPjfMWQDz6uuhqak7ey4hOHbsmGzBh6XH94AdEBcMFeztBGsfbRmhDQUwXXQ1ipZeAlpzNvXUZrOlNfZhJMaQH+pdX4g7mSPwnTwU9bFu8kyYL18HXeP0UZ+fOnVKNiWltO0o2HZxayIz2I/Q4GhlndLoULT8MphWXAGF4WyxH7fbjdbWVimHKohGo8HkyZNl+a2xJJVtv2bNGjz55JN49dVXsW7dOtx///1Yu3btsGAHwkVHRu7Ue3t7MXfu3NRHzIOcaUWB3i4wxw8m/f3ITt6546tRQl7Oe2BZFr4U7gE4u5NXff7eKCEvh3skQmCwD2wq93FmJ+/6ftsoIS93mpqv6Rg4R/Lm88hO3vbF+6OEvJz3EbQNASk+U56De+A5uGeUkA+FQrKmePnbmsC0n076+5GdvP3rD0cJeVnXKJcjtfcC4Z2879SRUUKe4zjZBDsQ9qOHUllrz+zkHVs+GyXkZZ2LM31MMlGZMukiNn/729/w+9//HmVlZaiursaf/vSnUUUUGIbBFVdcgVdffRUGgwHXXXcd3nzzTckrvhFCcOTIEUmvGQvjD1vA7t0m2fUiO3lu/lL0e+R76HTP/kbS60V28p1aExiZFmP9iX0gWz+R7oJndvLKxRej2yvfImZ4688pCfexRHbyAyW18AXTG8AVQd1+CorP35T0moY5C6BbfiU6/PLlDBs/ewNsR/LCfSyRnbyrbgacMgkVeqAHmvefl/SauskzUXDJtWiT53ECABi3fwL22D7JrhfZyQennwerzy9bsNu0adMyUrUuaXVizZo1wxrQY489FlUdSalU4te//jVuv/12XHvttbjnnnsyWso1WyGhEBiHFcSXucALKeDcLjB2Kwib+eINScNxYBxW0SbybIXzecDYrQAj40qcBhiHFazLLvOvSlzTIOAHax8CgsmXyk34NyW+BwBgnHawDiuQwwVNSSgA1j4EEpDXMpcpklYnHn30UQBhX5JQ2cOLLroIF110UbI/IQqKokBRlGxamJSlTw3zzg+bH6smhP3UMvnkpERhLILpojUoXHIxaI0W/SdPgpWpEh5FU5ItY7qps2G+bB10DVPDwTYy+eSkhNbqULT8chQtvwIKgxHO1lZApsAhKc2OmomNMF+2Dvrp88IBrKdOSXbteEj1flNKFQovuAimi6+GssgSzqOXqeCPQsK5UJVXw3zZ9TDOWxR+144eleza8ZBsraVpFJy3FOZLr4OqtAIDAwMgaU7nG/3zmakVl5Rwf/zxx7F582a89dZbuPPOO/HOO+/g1ltvlXpsotHpdLL5etWmYlAVNaLO5bwesM7o4LKRQj2CnHXfaZqGqqIagLiXJzTQC4zZkY8V6hH0er1sZW7VBUVgRc4FCfjB2KLTa0YK9Qhy1+BXl1WC1YnrtMZYB6KCGymNDqYVZ4V6BJ1OJ1tUsNpYAIidCyYEZjB6cdVMaIT58rBQjyzskR7mcinv6uIyUEFxLhnWYQM3xuI2VqhHkPOZ0hiMUIicCxAOob7oAj6q8iqYL1sH44iAWQrh+ZDt/baUil5rWbcTnHtMxsYYoR5BzrlQq9UZE+4J+9zffvtt/OY3v8HLL7+MefPm4amnnsJbb72FL774ImMtUnt7e9NeOCXC5MmTRbcfde7ajIE3/jL8t2HuwrBQr54YdS4hBEePHpVlETMajairqxN9fsd//hOCPe0AhIV6BCmbMMSjrq4ORqMx/okAvCcOoefP/zH8t27KbJgvux66xmm85x8/flyWKnhqtRpTpkwRfX7P0/8F79GwH1JIqEdwOp1ob2+XbKyxqKqqgsViiX8igGB/Dzr+45fDf2smnNmpz5jHu1trbm6WRXmnKAozZswQvWMceOt5OL/9MvxdAaEewefz4fRp6Xz5sUik2RVhQmj+h/XDf6vKq2BefT2M8xePyoKJ0NnZKVtq4vTp00U3w7F9+QGsH78R/kNAqEdgGAbHjx+XcqiCmEwm1NSIVLQkJqGd+5YtW/DII4/gsccew7x58wAA69evxwsvvIAPPvgA69atS8cY41JYWCiLcFer1Ul1+4kl1CNQFIWCggJZ8sSTaa0YT6hHKCgokEW40zSdVF/xeEI9gslkkuWZSqYjWTyhHsFgMMi2603mmYon1CMUFRXJItyT6ccdT6hH0Gq1UKlUaa9QByQ3F/GE+shryyHc9Xp94l3uKAoFCy4UFOoRlEol9Hq9LM9UJtvYit65Hz58GOvXr8cvfvEL3HHHHaOO/eEPf8DGjRuxcePGjPQVJoTg9OnTKfV3FkMiuxMA4bxqWhFTqI/E4/GgpaUl2eGJgqZpTJs2LSFTkXvfTuhnzI8p1EfS1tYGlyu9QWmJtuIN9veAdTniCvXh84NBnDx5MtnhiWbq1KkJWbw8h76HtmFaTKE+kp6enrRX4yoqKkJtba3o8xmXA4H25rhCPQLLsjh+/HjalZTGxkbodDrR53uPH4C6sjamUB/J4OBgWnsuAGGh2NDQIPp8wjJw798dV6gPn08ITpw4kXar1oQJExISjL7Tx6EoKIK6rFLU+Q6HAx0dHckOTxQqlQpTpkyRvUV1hHHTzz3dJkilUokpU6ak1X9CCEFzc3Na8zDLyspQVlaWtusD4Tapzc3N8U9MEoqiMGXKlLS7gTo6OtJaYUoOk10wGMSpU6fSKhgTFYrJkG7Xm8FgQH19fdquD4SVlJMnT6a1auDEiRNRUFAQ/8QUsFqtaW20o1arMXny5LQKRUIITp06ldb4gUQ3g1Izblq+FhYWJmXiFEtNTU3aAyMoikJNTU3aHmqNRoPS0tK0XHsker0eJSUlabt+VVWVLPEdlZWVabNEKZVKVFaK22WkglqtRkWFsIkyVcrKytIu2CO/k4xLTAw0TaO6ujot1x6JQqFI6++YTKa0C3YAMJvNMBgMabt+bW1t2ne7FEUlZG1KFIPBkPHU73Ej3IHwYpyORb+4uFh04FaqaDQaVFVVSX7dyMMsl4morKwsLVGphYWFMJlMkl+XD6VSmbaddW1trWwuLIvFkpbnV6fTyaIsAmEBnK7nt6qqKm2Kw1gKCwvTsuirVCpZlEUgvJZUV1en5fktLy+XRVkEws9vIq49sSgUirRu0sQyroS7UqlEfX29pNWATCZTWnc+fJjNZkl/k6Io1NXVyZ5uV1dXJzqzQAxGo1H2l6agoEByAT9hwoS07nzGQlGU5L+p1WpRV1cn61zodDpMnDhR0t+srKyUTVmMUFVVJamVUaVSoaGhQdZ4J7Vajfr6ekl/s6SkJK0WPzl+U6FQoL6+PmOZYyMZNz73kYRCIbS3t6fsuy4rK0NpaWnGNDC73Y6urq6U/KVqtRq1tbWyacNjYVkWnZ2dKQfYWSwWVFZWZmwuXC4XOjs7U/KXRiwBclmBxsJxHHp6elJu7FNYWJi2nZsYvF4vOjo6Uoo8j5ji0+nKiwUhBP39/Sn3qTcYDKitrc1IeVMgXDu9vb09pZrzFEWhoqICxcXFEo4sMYaGhtDb25vSWqvRaDBhwgRJNzSpMC6FO3C2V3ZPT0/CE6bValFTUyN7MRM+gsEgfjjZBiMSf3lKS0tRWlqasSIKEQgh6Oy3ore3FzpFYnOhUqlQU1Mj605XCIZhsP9UO7Rs4ik0EWtMpgTiSAZtDjS1d8GoSKwHQMRnnMn0nggcx+HA6U6oAomnjhYWFqbNhZcoLrcHh0+3o0CRmNJI0/Sw1SHT5l9CCA41d0HhdyS81ur1elRXV2eFQPT5/dh/sg0FdGJKI0VRKCsrQ0lJScbnYiTjVrhHYFkWDocDQ0NDcbXLwsJCWCyW4fzgTDPgDuCxr06irECLH19QA5vNBrvdHrNLlkqlgtlshtlszorFixCCLacG8YdNp/CHdXNRqAhhaGgorlXFaDTCYrGgoKAgK+bC5Q/hT1tOw+4L4ZHLp8Bms8Fms8XcySsUCpjNZlgsFtl8uvHY227Df395Ev9w8WRMMSthtVrjVrHT6/WwWCwoLCzMuKIIAP4Qixd3tmJvux1P3TQHNpsNVqs1ZnoWTdMwmUywWCxZobQDwIk+F377xQmsm1+NC+sKYLVa49a50Gq1sFgsKCoqygpFkeEI3vy+A+/u68Jb9yyA3W6H1WqNGYVOURSKiopgsVig0+my4v3utHnxuy9PYn6tCTfOLYPVaoXDEVtZUavVsFgsMJlMGbOcxCL7RiQxCoUCFosFFosl3OrU5xtuw0dRFBQKBXQ6HTQaTVY8ZEBYIH5yuBdPbT0NT5DFrQvCZnWdTofKykoEg0H4/X6EQiEQQkBRFDQazXChjGxhyB3A45uasK0pnMJUqFPBpDfAZDKBZVn4/X74/f5hZWXkXGSDEImwrWkQv//6FKzeIC6eVgaNRoOKigqUl5cjFArB7/cjGAwOz4VarR6ei2x5ptwBBn/Z2oyPD4cLDBVoVSgsLEBhYSE4jhuei4iyolAooNVqodVqs2ouDnTa8dsvT6LL7sOc6iKoVKrh9M7IXAQCgeG5UKlU0Gq1w2Vss4EAw+HlXa342/cd4Ahg1KpgNBphNBqH26pG5oIQApqmh+ciGwR6hKYBN377xQmc7HejolALpVI57MNmGGZ4LiJrrVKphFarzaq1luUI3v6hEy/saEWQ5bBscgn0ev2wRSEyFwzDDM9FZK3NRoE+kuwencQoFIrhlyhb6XH48LsvT+KHDvvwZwXaswI7IsizwYwlBCEEnx/tw5NbTsMdOLubMmrOPm4KhQIGgyErzO1C2LxBPLGpCZtOnvWLFmjP3kNEkGfLrlyIHc1DeOzrkxh0n91NFYyYi0i1v2Qq/smFN8jg6W0t+ODg2fzqkfcAhK1WKpVKlnSwZDnU5cBvvzyBDttZy9XIZ4qm6WFFPlsJMhxe/a4Nf93TAZYL72xH3gMQji/J9rW2ZdCD3355Asd6z8YDFWhGr7URpSoX+bsS7tkMyxFs2N+F575tgZ8ZbXY3anJnmvqcfvz3Vyexp2100JZOpYBSkT07wFgQQvDV8X78cXMTnGN6iY8VKNmM3RfCk5ub8NXx/qhjYxfjbGZ3qxX/76uT6HeNdqsZc+gevEEWz33bgg37u6I6GebSM3W0x4nffnECrdbRcSe5dA8hlsNf97Tj1d3tYLjRs5FLz1Q8xs+d5DBtVi9+98UJHO7h97flgnDnCMGHB7vx9LYW+ELRfuhcuAcA6HcF8NjXJ7Grhb89Zy7cByEEm04O4IlNTbD7+IOD9Orsvw+nP4Q/bT6Nz4/xt+fMhbkAgO/bbPjvr06i18lfHjsX7sMfYvHCjla8s68THI8bOhfuAQCO97rw2y9PoHnQw3s8V+5DDOPnTnIQhuXw5t5OvLSrFSFWOHAj23dZHWeCUQ52CZdqzfZ7IITg40M9+Mu2ZniCwkFyI10k2cigO4Dff3MK354Wridv0CigoLPD5ynEllMDePybU7B5hSOXs3236PIzeGrbaWw8HLuefLa/G/s67PjdlyfQ7RDu3ZHtO94Aw+KlnW14c28Hr3ISIdufqUTIDTvpOGVb0yBe3tUWU7AD2f3ABRkOf9zcFFOwA9l9DwCwv9OBp7e3xBTsQHZr9oQQPPdtS0zBDoz2K2YjLYMePLGpKaZgB7JfKL65tyOuYKepsMsqWxl0hy1ZsQQ7kP3v92dH+vDWD/xWh5Fk+zOVCHnhnkFWTi3DK3cuwDm1ppjnZbNAUStp/Nc1s/FvV0yHVin8OGXzPQDA/FoTXrtzAVZOiV1ONZvvg6Io/PPqafjddbNh1gsL8Gy+BwCoLzHg1TsX4Np5scswZ/t93LukHk/dPB/VJuHgOKNGmTWR43yUGDV4/rbzcM8FdTHPy/a5WDu3Ci+sPw9Ty2MHW2b7fSRCXrhnmLICDbxxdovZrk1SFIVigzoqEHAk2W62AwCTXh0VYDOWbJ8LAKgo1MLlF875zoV70KuVoOMIvWzfLQJAVZEOToG4ByD73TxAWIHXxFDcgdx4pioLtXD5hedCpaDi3mcuMX7uJEf5/GgfjvfFLs2a7cFPLEfwxObTMc/JBY34+zbbcE6+ELlwH3/acjqmkpIL99A65MGG/V0xzzHmgGB8YUcrXAFhRSsX5sLqCeLlXW0xz8mF+3j7h87YcQNZbkVJlLxwzyDuAINntvP3PZ9eUQCayo3gp08O96BpILrKmV6tQF1xOHc623dZDMvhyc1NvMemlBmhUoTnINvvY1fLEG+kP00B086YJLP9Hggh+OPmJl7/aF2xHnp12Eed7ffRNODGR4f4+57PqgyX8M32ewCA577lj0WpKtIOu3+y/T4G3AG8+h2/gjLzzFzkgoKSCOPrbnKMV3a38QYNVRVp8fgN89Bh8+LtHzozMDLxuPwhPPdtC++xOxZNxPXza/DhgW4YNNkbNAQAHxzsjsrdBcIv/G+vmwNvgMFftjUPC5ZsJMRyeFLAgnLtvGr8bHkjvjreD5tXuDRoNrD99BD2ttujPlfSFH6zZiZ0aiWe+7Ylq03BhBD8cRO/gnLhpBI8umYmdjYP4YhA+mu2cLzXiU+P8AcF/vOlU9FQasQru9tQpMvuQk7PbGuGPxTtNpxWXoA/3jQPR3ucvPUgcpnsfTvGOW1WL97dx292fHB5IzRKGpNKjfifq6fJPLLEeHFnW1ShFwCoNetw3bxqKGkK182vzsDIxGP3BvHCzlbeY3dfUAeTTgWTToV/XzNT3oElyLv7utBpj67ZX6RT4c5F4fasl0yXvn+1lAQYDn/ewq+g3HBODWrMYUvQry+dKuewEmbTyQEc4MkgUSko/HRZAwBgcUMxFjdkrhNaPDhC8MTmpqiiOwCwamop5tSYAAA/XdYo67gS5VCXA18KCO6HVk4CTVGYVVWEWVWZ6RCYLvJm+QxACMGftjQNl24cyYKJZlyQxS/8SJoHPXj/AL+C8rMVk6DKkYp0z+9ohScQbXasLzbg6jmxI7azhSF3QNAvet+S+qze5Y7krb0d6OEp9mLRq7H+/AkZGFHi+EIs/rKN3932o/NqUVmUvaVlR/LVsX4c7YmOB9Ioafz4woYMjChxWC7s4uFj9fTyYZP8eCQ3Vt9xxs4WK75rje6praAp/Gx5Y04EdRBC8KSAX/SChmKcX2eRf1BJcLLPhY8P9fAee2hFI5RZHu8Q4Zlv+SsDTikz4vKZFRkYUeL0u/x4/bt23mMPXFif9YGlEd7Y0x5VKhcASo0a3LIgNxQUb5ARVFBuXTgBZQW5UW/90yO9ONkfHQ+kUylw/9L6DIxIPvLCXWaCjHDg1nXzqjCxOHsbqYxka9PgqOY2EVQKCj9dnt1muggkhtlx2aQSnDPBLPuYkuFojxOfH+Uv0frQiklZH5AZ4S/bmnnTKadXFGS9OyFCj8OHN77v4D3242UNWV2wZiSv7m6HlSc2o6JQi5vOrcnAiBLH5WfwrEA80O3nT0CxMXubb0lBXrjLzDv7+NMxzHoV7lhUJ/+AkiDAsPjz1hh+0RhFO7KJr0/043B3dECTWkHjJ1nuR4zAEYInNvErixdPK8Ps6tzwIx7stOObEwO8xx4+4xfNBZ7a2sxbcXJOdRFWxSmQlC10xgjkDccD5YaC8vKuVjh4agzUmHS4fn5uKCipkBfuMjLoDuCV3fx+0XuX1OdMKsbfvu9AnzPa7FhsUOO2hblidmTxl638Zsebz6tFZVFumB2F6iRoVTQeyCG/6B8ErFmXz6zAtIrc8IvubbdhK0+dBJoKW1Bywd0GAE8K1Ek4p9aEpY25EQ/UOuTBewJ1Eh5c3gj1OCpWI8T4v8Ms4pntLbzpGFPLC3LGL9rn9OOve/jNjg9c2JAzftG/7mnHoCfa7FhWoMHNC2ozMKLEiVUnYf3CiSjNEbPjJ4d7cHogukuXQa3AfUtywy/KsJxg4NZVsysxuSx7+5qPJFadhFxRUGLVSVhUb8nqDAUpyQt3mTjS7cAXAq0rf76iMWfMjn/Z1owAj190ZmUhLplWloERJU6X3Yc39/IrKD9d1ghtjvhFY9VJWHdObpgdY9VJuH3RRFgM2Z0/HeGDg91oHeKvk3D3BbmhoIRYDn8SSEO8dm416ktyIx4oVp2EB3MkHkgK8sJdBjhC8AcBv+il08sxM0fyK/d32rHpZLRflELuaPUA8Oetp3n9onNrirB8ckkGRpQ4Yuok5ALx6iTkAnZvEC/u5He3Reok5ALv7utCh02gTsLiiRkYUeLEqpOwbn41as/USfh7IDdWgBxnPKRjMFy44hYfl8+qwLSK2N2WsoU9bVbelqg0Bfw8RxSUfJ2E7OL5Ha1w89SPz6k6CZ6gcDzQBXU50eAGEK6TYNarsP783FBQpCI33p4cxuVn8Ox2frPj+vMnoCRX/KKHenB6cDz4Rfm1+qvnVKGxNDf8ovk6CdnDqf7xUSfh2e3NvN0pJ5cZccWsygyMKHH6XQHhOglLG2DIkYBlqcgL9zTzyu5W2HnSMapNOqzLkXQMpz+E53fwKyh3Lq6DWZ8bftENB7rRzlM/vlCrxF2L6+QfUBLk6yRkD+SMu2081En4bBzUSXg6Rp2ES2fkRp0EKckL9zTSNuTBe/v5u0LlUjrGCztaef2iEy16XDs3N8yONm8QL8WoH1+UI37RfJ2E7OGbEwPjok6CUJT/xdPKMCdX6iR0OfD1Cf768T/PoToJUpIb0iUHIYTgyS2nef2i59dZsLg+N8yOpwfc+PAgv4Ly0IpGKHPEL/qsQNvKxhIDrpqdGwpKvk5C9uALsXhqG7+Ckmt1Eo718tRJUNK4f2nu1EkQKuR02YxyTM+ROglSkxsrcw7ybfMQ9rTx+0UfzCG/qFC+6JLGYpw3MTcUlOO9Lnx6mL9t5UMrJ+WMXzRfJyF7eP27dgy6c7tOgidGnYTbzp+AsoLciAfaeLgHTQPRAct6tQL35YiCkg7ywj0NxEvHmGDJjXSMLacGsb+Tv23lgzlidowoKHx+0ZVTSjHvTNvKbCdfJyF76P47qJNwwzm5oaC4/KEY9eMnojhH6iSkg7xwTwNv/9Ah6Be9PUfSMfwhFk8J+EVvOrcWVTniF/3yeD+O9ET7RXOpbeXfQ52En6/MjTREYHzUSWiPUSfhpzlUJ+GlGHUSrp+fG3US0kVuzGAO0e8K4LXd/OkY9+dQOsYb33egj6dtZYlRnVNtK58WaFt5y4JalBfmhl90vNdJuGJWBaaW50adhO/brNie43USAOBPAvXjF0w0Y0kO1UnYIFQnYXljztRJSBd/33efBp7ZLpyOsTpH0jF6nX68IeAX/fGFDdCrc8Ps+Np37RjiqR9fXqjBj87LFbPjOK+ToFHg3nydBFnZ2TyE3a3R9ePHS52ERfUWnF+fGwpKOskLdwk51OXAV8f50zEeWpE76RhPbT2NIButoMyqKsRFU3PDL9pp9wm2rfzpstxpWznu6yQsyq06CW3joU6CQDxQLtVJ2CZQJ0F5RkHJkxfuksFyBE8I5IteNqMcMypzIx1jX4cNW05Ft62kEO6rnQtaPQD8eQu/X/ScWhOWTcoNv2i+TkL2YPMG8dKuVt5juVQn4d19neiyR9ePN+lUuP38OvkHlAQBhsWfYtVJ+DuqHx+L3FgdcoBPj/TiFI9fNJfSMRiO4IlN/C9NuG1lbvhFd7dasaOZ3y/6sxzxi+brJGQXz33bAk8gt+skDLkDeEUgHui+pfUo0OZGPNCb33fy1kmw6NVYf35uxAPJQW68WVnOeEnH+PBgN1qG+P2i91xQJ/+AkiDECpdnvWZuNRpypG3ljnydhKzhRJ8LG8dJnQRfKFpBmVJmzKk6Ca/vEagff2F9ztRJkIO8cJeAl3a1wcHjF82ldAy7L4QXd7TyHrt7cR1MOeIXfW8/f9vKsF80N9IQA4xwX+18nQR5ISQc5Z/zdRJ6nPhcqE5CDpVnFaqTMKOyAJdMz42AZbnIC/cUaRn0YMP+3E/HeGFHC1w8bSvrLHqszaG2lS/vEi7PmittK9/5Qbh+fL5Ogrx8dbwfh8dBnQSh8qyXTCvDrByvkwCE0xBzRUGRi9yQPFlKLLNjLqVjnOp3C7at/NmKSTnlF+VrWzmp1Igrc6Rt5YA7gFe/41dQ8nUS5MUbZMdFnYTPjvTiRB9P/XgVjQdyREGJWSdhZgWm/Z3Wj49FbqzaWcr200M5n44RS0FZNqkE503MjbaVx3qd+PQIv1/05ysac6ttJU/9+HydBPl5/bs2DOZ4nQR3gBGMB1q/cGLu10lQ506dBLnJC/ckCTCsoF80l9IxNp0cwMEufr/oT5blhlYfy+y4amop5uSIXzRfJyF76LT78NZ4qJOwK1b9+Nyvk3DHoomw5EjAstzkhXuSvLm3E73OaL9oLqVj+EIsntrKb3YMt63MDb/oFzHaVuaKXzRWnYTV+ToJsiNUJ2F+jtVJeDdGPFCu10mYYNHj2nm5EbCcCXJjdrOMfpcfr3+X++kYb+xpx4A72i9aatTg5hzxi4bbVvJr9bcsnICygtzwi8aqk3B/jpgd/x7qJDy0InfSEIXqJCysM2NxztSPF66TkEsBy5kg/y+TBOMhHaPH4cMb3/P7RX+yrAG6HGlb+eruNli90X7RykItbjo3N/yicesk5IhfdLzXSVg7twoNJblRPz52nYTcsKCQM+423joJDcVYWJcbdRIyRV64J8iBTju+OZH76Rh/3trM37ayuggrp5RmYESJ02Hz4p3x0LYyXycha9gQs05CnfwDSoJYdRKun1+NieOgTsJPcyRgOZPkxuqXJcTyi+ZSOsb3bTZsa4r2i+ZSeVZAuG3luRNMWNqYG2bHWHUSHswhs+N4qJNgjVEn4Z4L6lGYr5MgG7HqJNx4Tg2qc6ROQibJjZUjS/j4UA9OD+R2OgYTw+wY9ovmhtlxZ/MQdrVEt60M+0VzQ0GJVydhUb5Ogqw8920LPDx1EhpLDbhq9viok2DMkToJfxOqk2BQ49aFuaGgZJrceOuygPGSjvHBwW608rStLNAocfcFuaGghFhhs+O186pRlyNtK8d7nYQLc6hOwvFeJzYK1El4eMWknK+TMK08t+ok/FWgTsIDOVQnIdPkhbtIXtyZ++kYdm8QL+xs5T121wV1MOVM28oudPK0rSzSqXDnojr5B5QEfw91En6aS3USBKxZ46ZOQi7Vj9/azF8nobIQF0/LjToJ2UBeuIugedCNDw7kfjrG8ztaedtW1hcbcHWO+EWH3AFBv+h9S3KobeU4r5Pwoxyqk/DlsT4c7Ymuk5BL9eNZLmxB4WP19HLMzKE6CZtPRQcsUwgrKLngbssWckMqZZCw2fF0zqdjnOxzCfpFf76yMXfaVn6b+20r+11+/HWc10nInfrxDJ7exu9uuzXH6iSc5KmToFMpcP/S3HC3MVx4reXjylmVmFqeG3USsoW8cI/DllOD2MfjF82ldAxyxuzI17Zy+eQSzK/NDb/o0R4nPj/K37byoRzyi/5lWzP8PHUSpleMjzoJP86pOgntvHUSKgq1uOnc3CjP6vIL14+//fwJOVMn4aOD3Wjmqx+vUeDeJXXyDyjHyQv3GIyXdIyvT/TjcHd020q1gsZPcqSvdqz68RdPK8Ps6txoW3kwRp2Eh3PIL/qUQJ2EOdVFWJUjdRI6bV68LVA//sHluVM//uVdrbx1EmpMOlw/PzcUFIcvhBcE6iTctSh36iRkE3nhHoPxkI7hDbL4i1D9+AW1qMiRtpWfH+3D8RxvW8lyBH8YB3US9rbbsFWgTkKupCECwJPjoE5C65AH7wnVj1+RW/XjheokXDM3N+KBso3cmPkMMF7SMf66p52/bWWBBjfnUNvKZ7bzKyjrF05EaY6YHT85PD7qJAgFbuVSnYRdLfk6CdlC04AbHx0SCFhe0ZgzdRKyjfy/mgDjIR2jy+7Dm3uF6sc3QpsjftFXdgu3rVyXI20rXf4QnhPwi+ZcnYShfJ2EbGD76SHsbbdHfa6kKTyYQ/FAfxSoH7+0sRjnTcyNgOVsJC/cedjXYR8X6Rh/3srftnJeTRGWT86RtpVWL94VqB//YA7Vj39xZxtvnYRasy6n6iS8uJM/DTHX6iTw1Y/PrToJHP4soKCsm1+N2hypk7D55AAOCNZJyA0FJVvJjZVRRpgY+aJXzKrImXSMPW1WfHtaqG1lbigohBD8aUsTb9vKBRPNuCBn2lZ68P4BIb/opJyqk+Dm8YvmVJ0ETxCv7M79Oglv7e1Aj2CdhNyIB/KHWDy1jd/ddtO5tajKkYDlbCU3VhUZ+fhQrHSM3DA7hv2i/Fr91XOq0FiaG37RnS1WfNfK37byZ8tzqK+2gF/0goZinJ8jdRJO9Y+POgnPbm+Gl6d+/OScqpMQwOsCdRLuX1oPQ47Uj39jTwf6+QKWjWrcujA36iRkM3nhPgKHL4Tnv23lPXbXojqYcyQdY8OBbrTz1I8v1Cpxd4701Q4ywg1urp9XjYk54hfd2jTIWz8+1+ok/GHT+KiT8JlAnYSf51CdhKdj1Em4NEfqx/c4/IJ1En6yrDFn6iRkM7mh4kkAIQQMw8Dn8yEQCIDjOFAUBYVCAZ1OB61Wixd3Zn86BsdxCAQC8Pv9CIVCIISAoihoNBpotVp4GOAlgfrx2dS2cuRcsGx4J6VUKqHVaqHVavHOvi7htpWLssPsSAgZnotgMDg8F2q1GjqdDoRW4M8CdRJuOKcGNVlidmRZFj6fD36/f3guFArF8FxsabJmfZ0EQgiCwSD8fj8CgcDwXKhUKuh0OqjUakF3WzbVSeA4Dn6/Hz6fDyzLghACmqaH5+JYvxdfn+CvH//zLKmTQAhBKBQanovIWqtUKqHT6aDRaPDU1tO8AcvZVCchMhd+vx8MwwzPRWStValUWW09HPfCnWEY2O12WK1WBIPRKWEjmVmkxKFiHU4PjQ62yXQ6BiEEPp8PVqsVDocDhPDtocJwoHHVNDPeP2pFYIR2nw1tK1mWhcPhwNDQEAKBaHPcSGpUSsypNOJgz+iSmvctqc9420q/3w+r1Qq73Q6Oi16gIhBQuHJyEd4+bB2lNJYY1Lgtw3USOI6D0+mE1WqF1xtt5RmJgVNi8cRC7GwbLeCzoU5CIBCAzWaDzWYbVkyEWDVRh36XH0Oes5kX2VAngRACl8sFq9UKtzu6hOxIQkSBiyeZ8XWTbZQl5fKZFZie4ToJoVAINpsNVqsVDBO9SRrJwnIlmgc06HScXQeyIR6IEAKPxwOr1QqnM1qhHYlSqYTFYoHZbIZKlR2bppFQJJakyGEIIRgaGkJfX19MYTgWjhB838/ig5MeOPwMljYW4zdXz0rjSGMTDAbR1dUFjyc6DiAWNj+LT9tY7GgPF375ww1zMTdD3a0IIbDb7ejp6YkpDPm+d2iIxfunfOh3BzG1vABP3Tw/Y7sThmHQ3d0d96UfizvI4ctOFpuaneAI8C+XTcOlGSwz63Q60d3dHXcBHsspG4MNTQG02/0oK9DglTsWZCydkmVZ9Pb2wmaLjsmIRYAl2NzF4rMmJ0Iswb1L6jKqaHk8HnR1dcXdeIylw8Xi/dNBnBjwQq9W4NU7F6I4Q+mUHMdhYGAAAwP8lReFYDiCHb0sPj7lhjfIYs3sSvzDxVPSNMr4+P1+dHZ2wu+PthjGo7S0FKWlpaDp7PF0j0vhHgwG0d7entQkRfCGOGzuAW69YBKqTZlJK7Farejp6UlIORlLi5NDd0iHB5ZPlnBk4mEYBh0dHQkrJyMJsgTf9hGsmDkBs6tN0g0uAZxOJzo7OxNSTsbS4yU4ZFfgl5dMz8juhOM4dHV1weGITj0SC8sR7BkgmFJbgWVTMlPvwePxoKOjI2HlZCRDPg47B2j88tIZGUmnJISgp6cHVmt0IZ1ErnHQChiLzFg7LzP1Hvx+P9rb2xNWTkbiDHDY0gv8ZOW0jJSZJYRgcHAQfX388RhiUavVmDBhArTa7Kj6Oe6EeyAQQHNzc1wTnViKiopQU1Mj+2Lc39+P/n5+31qiUBSFiRMnwmiUN0o+FAqhpaUlpRd/JHq9HnV1dbJrxzabDV1d/KlsyVBTUwOTySTZ9cTAsixaW1vh80XndyeDRqNBfX09lEp5XSQulwttbfypbMlQUVGBkhJ5az4QQtDe3g6XK7qccjIolUo0NDRArZZXMPp8PrS0tKSk8I7EYrGgsrJS1rVWCiVrJDRNo76+Hjpd5uNpsseGIAEMw6ClpUUywQ4ADocD3d38pRHTxdDQkGSCHQg/wG1tbZIt7GLgOA6tra2SCXYA8Hq9aG9vT8mSkShOp1NSwQ4AnZ2dcX2rUhIRJlLOfyAQQGtrq2QLuxi8Xq+kgh1AUqb9VOnq6pJMsAPpWffiEQwGJRXsQNhSmahpP1X6+/slE+xAeN2TckOTCuNGuBNC0NXVlZKpTgibzSbpyxiLQCCA3t5eya9LCEnZrJwIfX19cYPmksHtdsu2GDMMI7lgj5CqWTkRhoaGUnKLCOH3+2VbjDmOQ0cHf+pUqnR3d8u2GDscDtjtdsmvGwqFZNuEEELQ0dGRlrWkv78/boCnVHi93rQ8vxzHobOzU9ZNCB9pFe4PPvggFixYgJ///Ofp/BkA4R1WOgVwZ2dn2jXjyEuTrociEAjIshh7PB4MDUVXx5OKnp4eWRbj7u7utM15JCAs3aRLWYwwMDAgi0Wor68PoVB0fwEpiCi+6SadyiIQVhwSDfZMBqvVmtY5T+caGCGy1qYLr9crqUUgGdIq3NevX4//+q//SudPAAhPlJRmbD5Ylk1Y4/acOg7PqePiz/d4UgoCFMPQ0FDCGrd1y1dgPeLNyOlWIAghCb84/q4OuA7sFb1oBAKBtC+Udrs9YSXFvmMrQnbx955OJStCovMdsttg37kNRORzyLJs2hdKr9eb8I7RuXc3Av3iFSebzZZ2y1mic0EYBkNffwYi0opECEn7+x0KhRLPSDl8AL52/sZMfDidzrQpixEGBgYyuntPq3BftGgRDIb0VxLzer1pMQGPZWhoKKHJCnS2o+l//RLN//f/EyXk5ViIOY5LWEkZ+OhdHPvZXeh95/W4Qj4YDMriT7ZarQktlCHrIJr/41/R9L9/BdfBH+LOo1xad6K/Y936NY797G50v/JsXCHPsqwsLoxEF0rO50Xb7/8PTv7jg7Dvii/kbTabLItkou+fc98eHH/4XnT85fG4Qj6SmptufD5fQrtqQjh0Pv0HHH/4Xgx983lcIe90OmVxJw0ODiZ0vqfpBE7+6qdofew/RAn5RK+fDAzDyObO5SNh4c5xHC677DL87ne/G/X5tm3bMGvWLHz66aeSDU4scpiigLDgSkaJcO37Pq6Q5zhOtgchmVQo1uNG31uvxRXycs0Fx3FJ+ZG9J46i+Tf/K66QTyVdLBGS+fciwQAGPn4vrpD3eDyy7RySeXb9Ha1oeyy+kJdzLhL+92JZWL/5PK6Qj1Q5k4NknqngQB86//J4XCEv1/vt8/mS+vdy7NoeV8hHqmPKgVz/XnwklQq3YcMGPProo9i0aROKiopw/Phx3HLLLXjwwQdxzz33jDp39+7deP311/HEE09INuixnD59WrbJMu7bDe+uraLO5Xw+sO7oRa9g/nkoX3crDJOnDX/m8/lw+jR/qVKpoWka+JN4d0nIOgSM8T0rDEaUXHkNSq+4Bgr9WetMR0eHbIuxsekYvF9+LOpcEgyCcdijPtdPnYGKG26Fcfb84RQchmFw/Lh4d0qqqN94HoxIUztjt4OERpvyKbUGJZdeidKr10FlOlvnvbe3V5YdCgAYejvh2/CGqHMJw4KxRe9itbV1KL/hFhQtXALqTLojIQRHjx6VTUnRffoeAq3i3kPW5QLnH7PuKBSwLL8YZdf9CJqys41orFarbAFvWocNwb8+J+5kAoQGo12a6tJylF1/MyzLLgI1It3xxIkTaTdnRzBs/xq+Qz+IOpfzenk3HEWLlqJ83S3QTTjb9EvqdMpYqNVqTJmSmcI8SSWprlmzBk8++SReffVVrFu3Dvfffz/Wrl0bJdjlIt1+6pEEnQ6EBlLz77v2fQ/Xvu9HCXm509TYFO8hspMf/OT9UUJezvsIuJwpz0VkJz9SyMv5PAFAaGgQjDV5IRzZyQ9+8ckoIS/nfQTc7pTnIrKTHynkg2f6J8hFyGpN7T7O7OStW76CZfklKLvuJmjKKuR9L3xeMCnORWQn3//uG8NCntC0bIIdAEIOe8rPlGPXdjh2bR8l5OWci2AwCI7jMlK5LinhrlQqcd999+H3v/89Pv/8c8yYMQP/+q//KvXYREEIkfXll/K3Rgp57eq1gDo7KhslwkghX3rltWAmzwAU8hQ2kXIuRgr5gquuBwzy1ekmvP3WkrjOGCHPzFsI0PKUh5UyUGykkDdfcyNglq+RiFRzERbyn8G65UtYll8CbslKgJJnged4GrIky0ghX3zNDSAVE2QrMsNJ+H6fFfIXQnnR5aCUatnkRqaEe9K/uGbNmmEN6LHHHoNCEb2I3HPPPXj44YexZcsWLFu2DAcPHkx+pOMUWquDrq4RCktxpoeSEuqyCmjrGkCpNZkeStJQSiV0dY1QleVGX28h1MUl0NU1AtrMV8lKGoqGrq4B6qrMlFWVClWRCbq6BlAG+apDpkP2aifUQTuxIau7oMVDYSyArq4BdKEp4znocpD0FuvRRx8FEI5k5RPsAPD8888ne3nRUBQFmqZlK84ilQZGa3UoufxqlF51HZQFheEIdrf0hUbSja5+EspvuBWF554PiqLQf+qUbJWyFBLNBaVUwnLR5Si75gaoi0vDgXot4tNqUv59SLNgaiqrUX79LTAtWQ5KoYCzrQ1+mYqzKBQ0JDHYUjTMS1eg7Pqboa2qCacKnjwpxZXF/bxEwktlKUbZNTfBsmo1aLUaPT09gEzFWWiFAlK9gYXnno/yG26FvmFyeI09elSiK8eHpqWZC4WxAKVXXYeSy9ZAoTeE41DSUNRJiEw1k0lKuD/++OPYvHkz3nrrLdx555145513cOutt0o9NtHodLq0VODio8iihvHChQgEaBAS++ELDfbD1zI6OGesUI8gZ7MBNWFgXnke/H4FGIYC4ggX9+H94Mb4qcYK9Qh6vV6WtEQAKDBQKFi2AH6/Iu5cME4HvCdGL0xjhXoEWRs/cCzKz50Mv6cRoVD8ufCePA7GMTq9baxQj6DT6WTLwCjUcDAtD88Fx8W+B87vh/vQvtEfjhHqEVQqlXzKOyEomVyOQHkRgkEa8ebC39qM4MDoZiNjhXoEOZ8po4KBZvkCBAI0WDaOYOE4OPfujvp4pFCPEOllLtf7rW+cApVIZSvQ04VAZ/uoz8YK9QhyzoVWq80d4f7222/jxRdfxMsvv4xp06bhjjvuwHPPPYcbb7wxYz1t9Xq9LMKdZgLQ+AcAPQt9oQLqKedAPWMRFEX8jSesm75Ax1O/D39XQKhH0Gg0oChKFnNRobUNajWBWs2AtlRAM3MxVA1zQCn55+/Er34Cf3srAGGhHkGn08lTHpbjoPP1AToOOgMFVeMcaGZeAEUxf89616F9aH70XwAIC/UICoUCarValip4Ra4+qOggVAUAXWCGesZiqKecK+jeaP7Pf4Prh+8ACAv1CLI1ryAEOk8fKC0HrY5AOXF6eC7KJ/I+I4GeLhx/+N7wHwJCPQJFUbIp7zqvFSrOA5URoHQ6qKefD/W0haB1/LU6Op97EkNffAJAWKhH0Ovl6yxZ4OkDreWg1XJQVjVCPesCKGsmg+Lx+XOhIA7dunb4bz6hPhI5lffKa24UtAqPpe/9t9D71xcBCAv1CHI2dZFz3seSkHDfsmULHnnkETz22GOYN28egHAVuhdeeAEffPAB1q1bl44xxqWoqEiWsqomeyfAnsm9ZIIIHt2F4NHdUNZOgWb2Uigr66O+E0+oR6AoCiaTKf2CkXDQdZ8Y/pOz9sK3bQP8e76AevpCqGcsAq3leSHiCPUIhYWFKbepFYPR2QP4zqS+cCxCp/YhdGofFBV14bmonRo1znhCfSQmkyntVQ8BwNh3avi/OZcN/t0b4f/ha6innAvNrAtAG01R34kn1CMYDAYoFIq0u0k0Hiso+5kdLCFgWo+CaT0KurgKmlkXQNUwG9TYwL44Qn0kZrNZFuFuGjrriiE+NwI/fI3AgS1QNc6FZvZSKEzRz0w8oR5BrVbLsutVBDyg+5qH/2a6T4PpPg26qATqmYuhnnwOrxIfT6hHkGWNQngdESvYI8QT6sPnKRQoKCiQxapVVFSU9t8QQnSe++HDh7F+/Xr84he/wB133DHq2B/+8Ads3LgRGzduTHhCpKKlpSW9CwAhqD3yOeCxC56iqKyHdv6qYSEf6O2GwmCMKdRH4vf70dTUJMVoBTE4emA5vkX4BJUamhmLoJ61ZFjIe5tOQNc4RbQ/srOzMy3NMUZS3bQN9JBwnW66uDI8FxOmgaIohKyDIITEFeoR5Mh1V3ttKD/0ufAJtALqqedBM+fCYSHvPX0SurrGmEJ9JFK2DhaiouMHqLqF/eJ0YTE081ZA1TgHFK0A63Ej5LDHFeoROI7DiRMn0qqk0EEfqvd/BBAB8z9FQdUwB5p5K4aFvK/1NDRVtTGF+kikbh3MR2nfcWhb9wsep/QF0MxdHrYOKVUgLAtfW3NcoR6BEIKmpqa0Kyn19fUJVTf1d7ZBZSmJKdRH4na70dramuToxKHRaDBp0qSMBSGOm37uHo8HLWkMgirwDMB0+GtR544V8onQ3t6e1qpGNS07QfWLKODAI+TFEggE0NTUlLbdu8bvQtmBT0SdO1bIJ0JPT09aS4ZWdh+EskNEgBKPkBcLwzA4lcYgRwUTQNW+DwEu/vXHCvlEGBoaCgelpYnSwVPQnt4b/0QeIS8WjuPQ1NSUPncPx6L24CdAIH7g3lghnwhOpxPt7e3xT0wSvV6P+vr6tApFQghaWlrS2oFuwoQJKCyUL6V2LONGuAPprchVX6QFObQVbE9z/JPPkIyQT+dibDQYUGFvQfDYdyA+kfXfkxTy6VyMJ5gNUBzdAab9OCAyLzkZIZ/OxVij0aA2NITgoe0gbru4LyUp5NO5GFeZC6A99R1CLYdFCXggOSGfzsVYqVSiThlA6MAWcHaRVo4khbzX60Vzs/g1JBFKiwpQ2H4AwaZ9ACMudyFZIZ+uSpQURWHy5MlQi7SGpEIwGMSpU6fSsgkxmUyoqclsGue4Eu4cx6G5uVnyylyVlZUoLg7nobPWXgSO7EDo9MGz/vc4JCrk01EeUalUorGxESqVCoRlEGo+iMDhneCsIgVwgkKeEIL29nbJ/VolJSWoqAjnobPOoXDcw8m9QEicAE5UyPt8PjQ3N0u6ANA0jYaGBmi1WhCOA9N+DIHDO8D2iZzzJIR8d3e35M1wCgsLUVtbC4qiwHmcCB7/DsHj34H4xQngRIV8MBjE6dOnJVd8IyZgQgiY7tMIHt4BplNk+l0SQn5gYAB9fX3xT0yAkbtdLuBF6MReBI7uBPGIswImKuRZlsXp06clV3xra2tl9VPb7XbJ2/2q1Wo0NjZmzEUdYVwJdyD80LW0tEgm4MvLy1FaGv3Scj53eDE7ukv0YpaIkJdyt6VUKlFfXw+NZnQENiEEbG8rAoe/PbMLFkECQp7jOLS3t0vWJc5isaCysjJKKJOgH8GTPyBw+FsQj7jdRCJC3uPxoK2tTZJ0LJqmUVdXxxtFyw52IXB4B0LNBwExr2UCQp4Qgu7ubsmCoQoLC1FTUxOV5kOYEEKnDyBw6FtwDnFBrokIeb/fj5aWFkkEPEVRmDBhAgoKCqKOsfYBBI/sRPDUD+KU+ASFvJSxEDqdDnV1dVHChHAsQq1HETy0HeygOF9/IkI+FAqhpaVFMgFfXV0Ns9kc/0SJkbLuv1qtRn19fcYyx0Yy7oQ7EBYq3d3dKQV10TSNqqoqmEymmOeRUADBY98hcGibaCGvrGqEdtGVUJjLYp7nstnQdeokGJFBInwYDAbU1NTEfdjYwW74928C03ZM3IVVamjmLodm1hJQMcrNEkLQdeQQ7Cl0F6YoChUVFbBYLDEFMWEZBE/9gMD+LaKFvKKkGtrFV0FZVhvzPJ/Xg/ZDhxBKodKYVqtFbW1tlJI1FtYxiMCBLQg17Rcv5GcuhnbeClAxShgTQtB36gQG/UEghdzb0tJSlJWVxZ4LjkOo5RAC+zaLF/JFJdAuugKqmtiNNgKBADoO7odfIEVNDCqVCrW1tXFTlTiPE4GD2xA8sUe8kJ98DrTnXQJaF/tZGWxvQ9/gIEgKVR3NZjMqKytj5lITQsB0nkTgh28SEPKF0C5cHU6RjTHPDMOg4+ABeFK4B4VCgZqaGl4lSy4cA/3oam0Fp0s+da2wsBBVVVVQKuUpvx2PcSncI7jdbnR3dyesWRYVFaGysjKhSUpYyFM01DMWQXvOqqgFmXAc7N9uQffrL6LmgYfgq6xNuJe8QqFARUUFTCZTQoEpiQp5usASXpAnTIs6FrLb0PvmK/AcP4aJ/+f36OrqStiiYjQaUVVVlZAPLhkhr5o8H9rzLgWtH73AEELg2v89ul95DiVXrAWZtwD9/f0JzQVN0ygrK0NxcXFic5GgkKd0RmgXrIZq0tyonGbW40Hfhjdh/fozTHrqFfT09CScXaLT6VBdXZ1QEZBkhLxywjRoz78cisLoksyeE0fR9fIzKJg9H5rVa9DX15fQLp6iKJSUlKC0tDSh4iIJC3m1Ftr5q6CecX6UNYILBjGw8X30vfsGpjzxAvpdroSDaNVqNaqrqxOKKE9GyCvKJ0K3+Cre+hG+9lb0vPo8FIVFMN9xP7q7uxNu02o2m1FRUZExEzZhWQx9/Tl633wFdf/yKBxafcLWLaVSiaqqqowGz/ExroU7EH6gPR4PrFYrPB6P4EKgVqtRVFQEs9mcUjBHokKe0hqgXXApVJPng6JouI8cQvcrz8DbFPb5Tf/TS9BUVIJlWdjtdthsNkEBSdM09Ho9zGYzCgsLU4o2TVTIK2umQLvoCiiKSsAF/Oj/6D30b3gLnN+HwgWL0PDPj4AQAp/PB6vVCrfbLbgQqFQqFBYWwmKxxN3lxiJhIa/ShBfkmYtA0Qr4Wk+j+5Xn4DoQbjvZ+MhvUTBrLjiOg8PhgM1mg8/n4xX0keIrZrMZRUVFKVWpSlTIK8pqoVu8BoqSKhCGweCXG9H71mtgnQ7o6hsx9b//DCBs4rbZbHA6nYLdvpRKJQoKCmCxWFIq/pGwkFcooZm1BJq5y0Gp1Aj0dqPntRdg37kNADDhoV/BsuIScBwHl8sFq9UKr9crqHRptVqYzWaYTKaUBEmiQp42lUG3+CooqxrOKO2b0f3aiwgN9kNhLMDsl98BEI4nsNlscDgcgpsRhUIBo9EIi8UCvV6f9PudsJCnKKinLoDmvItBa/QI2azoffNVDH39GcBxqLj5DlSsuwWEELjd7uG1VsiNpdFoYDKZYDabM7bLJYTA9cMedL/yLPxnKtvNfu19KHQ6MAwDm80Gu90umPJH0zQMBgMsFguMRmNW1twf98J9JIQQMAyDQCAw/OAplcq0lAhMVMizGhNszYNwHRhRllOhwNw3PorKaeY4DoFAAKEz7TAjZSFVKpXkD1kiQp5QNAIwY3DnnnAP+DOUrrkO1Xc+EHU+wzDw+/3Dc6FQKKDVaiXX4hMV8py6AI4eL+zf7R4lTGc881pUnjwhZHguIt2f1Go11Gq19HORgJAnBAipijGw5yCCPWf9iUWLL0T9r6I7OLIsC7/fP6z80jQNrVYr+eKbqJDnVHq4rAS2nTtARiiDk//jMRimzRx9bUIQDAaH22xSFDVcPEbquUhUyIc0JRjafwK+lrOR8vrJUzHlP5+IOpdlWQQCgWHld+T7LSWJCnmiVMPt0cC6fQe4wNkNxsRf/k+Yl66IunYoFBpeaymKgkqlgkajyVg51gi+1tPoeukZuA/tH/5MabJg1vNvRJ0r51orNdnhHJCJyAMmR7ADpdJAM+dCqKcvjCnkOYaFvakbjpbvoxZsTVkFb7ESmqah0+lkKaOoKKmC4eJb4wr5gN2NoSPtCDiiTb2aiire7yiVShiN6e+WRSmU0ExbCPXkc2IKecJycLT2wd60F2RM20xKrYbKHG0mpigKWq1WlnrViqIS6JddD3bu8phCPuj2wXq0Hb7BaFOv0FwoFIqETLzJQtE01I1zoaqfHVPIE0Lg6hiE7WQnuGC08FRXVkdfm6Kg0WhSsvaIhTYUQrf4SmjmXBhTyDO+AKzHO+Hp2RN1LNZcyFG2lKIoqGqnQlkzJaaQJ4TA22uD9XgHGF+0VYHvPiKKlRwpbWJhXE70vPEyhr7cCIyxKmgq+ctWy7nWSs3flXDPBMNCftpC+PdvRvDIDoBjw+6C7iFYj3eCDfCbRNUV/A9cJogIeaa/A/6dHw8vAmwgBOuJTrg7hesLaCr5FzG5GSnkA4e/RWD/FoAJL1befjuGjraD8fKb4TRlFaAyvOOIMCzkZ18I/65PwHSHmxNxIQa2pm44W/sFd/ZCAkVuRgn5k3vh//5LkDPFV/xWF4aOtiPo5Ld40TodlIWZK+s5kmEhP3sJ/N99Fs73R7inurOlF/bTPVGKYgR1tszFSCHfegS+3Z8OK79BlxdDR9vhHxJOac2mdYoPwrIY+nIjet54CaxA5k62vBdSkh2r1d8BlFoD3cLVMF77M3CFFejZdRwDB1oEBTsAUJ5BMAPS5mCmirKsFoarH4Bu6TVwdTvQseVQTMEOAFzPCRBGntajYqAUSmjnLkfBul+AqpyM3j0n0ff9KUHBDgA050Oo85Tg8UygMJdBf9md0F90M7z2ADq3HIKzpS+myZ70ngAnooKZXFA0DfW0BTDe8AsoJ52D/gPN6Nl1XFCwA4BSrQinC2YRtNEE/aofwXD53QgEFejaehi2k12Cgh0AMNAMTmTApxxQFAVV/SwUXP8w1HOWYehYB7q2H4kp2GmVEmzbYRChsr0Zxtd6Gif+8UF0PvukoGAHskfRkpK8cJcZhakURdf+GOZlF4NSxP7nV9IMPB89A/8PX4OIrP4lBxRFQz31PJTe9Q/Q1USbR8dCOg7D/f6fs05RoQ2FKLj8dhRffh1oTWxXjVJFwfv5y/Dt+Ci7FBWKgqpuJkru+icYJouoD27rhPu9P2adokJr9DAsvw4l190OpSG2CVSpVcK3+W14v3kzqxQVAFBWNcBy+69QMGdu3HMpnxWu9/6IYNN+WbpBioVSqaFbcClKb/kJ1KbYFhKlTg3/rk/g+ewlcGIrLcqIproWpkVLQcWJHVGXxE5LzkXywj0D0EolKm7/CWoeeDjmeQqtGiAcAvs2wfPRM2Dt6e98lwiamjpM/u9noK2dIHiOQqMCRdPgHINZqqhQKFn7I9T/87/HPE+hDfsOg8d2hxWV/g45hicalaUUDf/+OArmnRvzPKVGBeJ1nVVURFb2kwvzissw6T+fBGIEK0XmItRy6IyiIrKanEwoDQWY+E+Povjiy2Kfp1UDQT98W96Bb9Ob4ETWyZCLgnMWYcrjz4OK4TdXnpkLtrsZrg1PZp2iQqvUqLjxNlT86PaY56mK+dt25zJ54Z4huGAQfe+9GfOcyIsDhKuXud//EwJHdmaVCcyxazv8HcKV9BQj7iFbFRXCceh967WY5yh1Z++DcwzC8/Gz8O/9KqsUFc/JY8Npe3wo1MpR1qKwovKnrFNUet98NaZrYeR7EVZUXoHv2w+zSlEJ9PbAuvWbmOeMfDdCLYfhfu8JhDqyS1Hp3/AmSIw6IaPe7zOKivebv4Hzp79Fr1gYtwsDH74b8xx1SWJNgHKBvHDPEH0b3kSwN3bJQ4VujMbMMvDv+gTez17OChMY6/Oi64WnYp6j1Eabu4cVlcM7skJRsW76Ep5jR2KeM1KgAAgrKvs3w/3h02Bt6e/7Hg/Csuh4+omYQlEx9h4AcM4heD5+JqyoiOyVkE5cB/bCvn1zzHOi5gJA8Ph3YUWlL33dysRCCEHnc0/GFIq0Wgl6jFuO+NzwfvEKfN9+ABJKb0tVMfjaWtD/0Xsxz+F7v5nWI2GLSvuJdA0tIXpefwGMM3Zsg8qS37nnkQB/dyf6BXbtlosug/JMGUalgB+Y6T6dFSaw3r+9MiqfPYKyyATLiovC/z1WQYnAMvDv3phxXx3jdKD7lWd5j5mWLIe6JPzS8wlGAOCGuuH+4M8ZV1QGNn4Af2t0tzFKrUHJZVcBNC08F4SEFZWPnsmoosIFg+h45kneYwXzF0A3Iez+iVJ6I993DsHzybPhyPsMKiqOXdvh2vd99AGKQumVa0GplLwKSoTg8T1wb8isokI4Dp3P/BHgKfqlnzIdxhkzAAi/38TnhvfLV+Hb/n5GFRXPiaMY+mIj77GSK9ZCUVgERWERaBnSJ+Xm76qITTZACMHpR/55VAGFCPrJUzH5P34PLuBH799eRGEhA84ROxJdWTcTuiVrQWvTnxc7Em9zE07++qGofFEAmPiLX8N84Sq4jx6Ed/+30Ph7gFiCT62FbtGVUE2aJ3thiPY//T9Yv/kiekhl5Zj2+DMATaP39RdQUMSBs8axtFTWQ7/s+oR7rqdKcLAfxx++DxxP5cLKW+9G+XU3wdvWAtfWT6HlBmK3A1UooT3vEqhnLo4qYZtuet58FX087hFab8D0J56DsrAIAx++DTVnBWWPPRd0cSX0y9dBYS5P13B5Yb0eHH/4Pl6lt3j1Vai9/yEE+/tg/exd6GkbSMAnfDGKgmbOhdDMXxWzf0M6GPrqM3Q89fvoAwoFpv73n6GtnQjbN58DQy1QuGIXwKELzNAtXwdl+cQ0jZYfwrI48Y8Pwt/WEnWs8NyFqP+f/w7W6cDQV5+i/PqbZR2bHOSFu8zYtn2Dtsf/K/oATWPKf/0R+oZJwx8RJgj/ni8RPLoz5jUpfQH0K2+CsqJO4tHyQ1gWp/7lF8MlckdinD0Pjf/2n6OENDPQBd+Wd+JWJFM1zIFu6TWgVPIUvnAfOYSm//0r3mP1//LvKDr3/OG/CccicGArAvs2xVZUVBrol6+DauJ0qYcrSMtv/x2O3d9Gfa6tmYAp//1n0COKNrGOQfi2vAt2ILafXVnVCN3KG0W195UCf3cnTvzyxyA8ikfNfT9DyWVrhv8mhCB4fA/8330aV1HRLboS6mkL0jFkXjpfeAqDn7wf9bmyyIRpf3weyhGNhzivC75tG+K2l6WLq2C46GbQBfJ0TGMcdhz7+b1g3dEpcGXX3oSq2+4e9Vmo5XA45iFW5gJFQTN/JTTzVsimNPZ/+C66X34meihqDaY9/gw05RWyjCNT5M3yMsK4Xeh68WneY6VXrB0l2AGAUqqhW3wlDJffBcog3JSAeF3wbHwBgWPfyWKmH/pyI69gp5Qq1Nz/UNTuW1laDeM1P4V65gUxrxtqPgj3x8+Ac0nbd5wPLhRCxzPRpT8BoOj8JaMEOwBQtALa+SthvPoB0LFaeoYC8H71ejgrQAYzveP7XbyCHQBq7v/5KMEOhAvgGK66F5pzLwZiLLJM92m4P3gK7FCPpOPlgxCCzmf+yCvY9ZOnoviSK0Z9RlEUNNMXwnjNg1CUxujmxzLwfftB2Ictg5ne23wKg59+yHus+q4HRgl2AKD1BdBfuh7aJVcDMdqrhl0/Tw0XK0o33a8+xyvY1WXlqLjhlqjPVfWzYLzuIShjdfMjBIEfvoH36zdAgtK0445FcLAfvW++wnus4oZbx71gB/LCXVZ6Xn8RjMMe9bnKUhIzVUNZ1YiCax+CqjFG7izh4N/xYdjHlcaFLGSzovv1F3iPlV13E7RVNbzHKKUKukVXnFFUhHNnOWtveCHrapJkvEIMfPQuAp3RPk1aq0P1PT8R/J6ipBrGtfEVlcC+TfB+9de0LmSs34/O5/7Me8yy6lIYZ87mPUbRCmjnrYDx6h+DNgnn9xK3He6PnkHw9AFJxiuEbdsmXjcVaBo19/+ctwQzMEJROe8SIEYf+ODxPfBsfAGcV7gYS6oQlkXn00/wuqmMs+fBtHQl7/coioJm2kIYr/0ZFGXCKaUk4IXns5fPxHakT4F3HzkI66YveY9V3/sgaA1/meWIoqJbshZQClvemLZjcH/0NNg47sZU6XrhL7xuKm3NBJSuuS6tv50t5IW7THibm8I1jXmovvvHUMTpI0xpdNCvuAH6VT8CpRE+N3RyLzyfPA/Ok1gLSbF0v/YCOG+0+U1dUYXya2+K+31lVSMKrnsIqknzBM8hAR88n7+MwKHtaVnIgkOD6H37r7zHKn50e1RzmLGcVVTujqmoMO3Hw9H0aUr769/wJkIDfVGfK4wFqFp/b9zvK0qqYFz7E6hnLQEgEOvAhuDb/DZ8332WlrQ/1udD98v8AY181qyxULQC2rnL4yoqbH873B+krz6BddMXCVmzxqIoLIbhyjiKCuHg370Rvi3v8Fo5UoWwrKCyyGfNGgtFUeFqg9c+CEW5sKLC2Qfg/vAvaYumd+7fm5A1a7ySF+4y0fPa87xpSoXnLETRoqWir3PWBCZcjYwd6AgvZBJH2/pam2Hb8hXvsdr7fwZaZJMISq2Ffvk66C+6GZRaoBoZIfB/9xl8W96WvCJc75uvggSjI3i1dQ0ovWKt6OsoqxriKiqcI7KQHU9mqIKEbEMY+Ig/d7fq9vtE116nlCrozr8chivujun6CR7aDu/nr0heEW7go3fB2KPdMPGsWWNRFFeOUFT4IV4XPJ88h+AJnkj2FOAC/nBuPg+xrFljoWhalKISOn0A7o+flTzLxLrla/jbo4PP4lmzxqIoLIbhinuhPe9SYddP0A/vl6/Bv3+zpAo84bjwWstDLGvWeCQv3GXAdWAvb3ERSq1G9b0PJhwhHjGBaeatEDyH+NzwbHwewePR3aiSpfu1F3gVFNPSFSiYG7syGh+qupkwrP0x6BgRzaHTB+H+6FlwLlvC1+fD39EG66bo6HhQFGofeFjQBCwEpdZCt+x6aBevEV7IQoHwQrbvG8n88L1vvQaOp9e0YfpMWFZekvD1lJX1MK79KRQxgjKH/fDW3oSvz0fIYUf/B+/wHhNjzRpLRFHRr/qRsGmYY+Hb/n44AEwi99XAxxt4o+PFWrPGoiiuhHHNA1DWzRA8Z9gP3xOd/pgMXCCA3r+9zHtMjDVrLBRNQzN3GQyX3wlKMJOHILD3K3i/eYNX2U4G27ZN8LVExyaItWaNJ/LCPc0QjkP3qwI+6qvXJR3YQVE0tOdeDP1FtwBC0eUcGw4oksAP7zq0H6590YoCpVaj6vbkXxpFYTGMax6Aqn6W4DmctUeygKLu11/g9Yual18Ew5RpSV2ToihoZpwf3v3GiC6XKqDI39WBoa8+4z1WffdPku5eR+uMMFx+F9QzFgmeQ1w2uD96GsHmQ0n9xkj63n4dnD86Fcw4c05C1qyxqOpnwbjmgZjR5cHj38Hz6Ysp++EZpwN977/Fe6z6zvtFW7PGQqk10K+6ORz4KOAyIX4PPJ++dKZqZWq738FPP0RoKNoPrqmqQenlVyd9XWVlA4xrfwq6WLgxC9N6NOyHd0YrSInAhYLoeUNAQblpfdZ0EpSLvHBPM/ZvN8PXEh0cpigsQtnadSlfX1U3A8Y1PwZdGN1rPELwxPfwbHw+6YWMECJo6iq98tqEtfqxUCo1dCtvCpvxhBayEQFFyeI+dhjOPbt4fl+Fyh/dkfR1Iygr6mBc+xMoSoSb6UgRUNTz+ov8CsqFK6FvENE8JgYUrYBu8VXQXXgdIJRbzYTg2/Qm/Hs+T9oSEejpwuAXn/Aeq7r93pTrHSgs5TCs/QmU1cI+e7avLaw0DsTO045F37tv8MagGKbPROF5wkqSGCiKgnbeCugvuQ1Q8weygXDw7/oEvm3vJa3AMy4n+t77G++xylvvitt0JR600QTjVffFDAjm7P1wf/BUSg2NBj/7mDcGRV1RGZVx8fdAXrinES4URM9fX+I9VnHDrVDopckhVpjLYLz6xzFTUdj+Dng+fjapNDP7jq28wUIKYwHKrr0x4evxQVEUNHOXQb96feyFbPfGcHBXgjsVQgi6X3mO91jJ5WuhLpWmKxRtNMFw5b1QTZ4veA5nH4Dn42fBDsYuxMKH58RR3mAhSqlExc13Jnw9IdRTzoHhyntB6YX98IGD2+Db8m5SgXY9f32Jt/qZ6YJl0E+amvD1+KA1eugvvR2aORcKnkO8Tng2Pp9UdkagrxeDn33Ee6xqfeoKSgTVhKln/PDCSnTo1D54v3g1qWpwfe+9CdYT3Q5VP2U6is4XjmFIBEqpgm75OmjPvyK2H/6LVxFs2p/w9RmPG33v8AfJVt5y199NEN1I8sI9jQx9/gmC/TyaZLn0miSl0UF/yW3QzF0ueA7nssL98bNgbdFjEoIwDHr++iLvsfLrb47K3U0VVc0UGNf+JGZAUfDQ9rCrgWf3KoTjux3wnjwW9bnCYET5dYn7RWNBKVXQXXgdtIuuFFzIiN8D98bnwfS2ir4uIQTdr/JbUIpXXyV57q6ytAbGa34KRYzKYqHTB8IpfwlEb3ubTsC+Y2v0AYUClbfcmcRIhaFoGtoFq6FbeZNwLjkThOeLVxFqid1fYCy9f3sZhIneLRedvwSGqcL+8mRQFJWE/fAxiiMx3afDroYEussFB/ox+OkHvMeq1t8jacVIiqKgmXUBDJfdIZzxQzj4tryDwNFoC1ss+t9/izc3X9c4BabFwsrdeCYv3NME6/GgV1CTvDMtmiRF09Ced0nMgKJIxLDYlKDBLzci2BtdyERVWo6Sy9fwfCN1In74WAFFoZN74d30pihTJGFZ9LwmnJuvLBDenSYLRVHQzFwcO6AoFIDns5dEpwQ5v98Nz7HDUZ/Tej0q1kUXF5GCYT/8dOE0KKbjBDyfvSQqliCWglJyyRXQVAq7NFJB3TAbxjUPgBLyw3MsvJv+huDJvaKu521ugo2v6xtNo/LWu1IYqTCUWgv9RTdDc85FguewA53wfPKc6FTYnr+9AhKKVswKz1sE44z0RJYrqxrDCrylUvAc/86P4d+3SZSFLjg0iIGP3+c9VrX+nqRjUHKdv8+7loH+998C64p+wXSNk2G6YFlaf/tsQJGF9zgJ+OD59MW4pkjW5+Wt9Q0AlTffATqNZWLFBBQxrUdEmSKHvv4Mge7OqM9VxSUovVx86lsyxA0oYhl4v3o9bqGYsILCLxTLr7kxrcFClEIJ3QVroFt6jWAONtvXBvfG58H5os27I3Ht+x7uw9H3Smt1KL/xNimGK4jCUgHj1T+BsqqR/wRC4Nu2AYFD2+NeS2guii++DNrqGFXzUoSiaGjnrwz74VX8zU44ez/cHz8TN0BNMLWVpqNKzEoNXWCGcc19UDXOETwn8MPX8O/eGDeuQyi1tWD+AhTMnpfqUHOWvHBPAyHrEPo/3sB7rGr9vbJokgpLOQxrHhAWKhFTZKuwKbL/w3d5WyVq6xpgvpC/4paURAKKdCtuEDRvD5siBfKvWb8fvW/yKygVP7pDlm5QtNEE45X3Cgd3EQ6+zbFNkdbNX8HPU1FPabag9KprpRpqTNRTz4Nh9e2C2RncUE941yiQtkhYVnDXXrZ2HVRFJqmGKgit1UO/+vaYtQn8330G//dfCO4ahVJbaY0GFWlWUCKoJkyD8cp7Qen43WLEbQ/HdcRIW+x5/UXe1FbLykuhrU1/kxdKqYZu+Q3QzBXe7ASP7IRv63uCcR2xUlvTraBkO3nhngYENcl558qqSdI6A4xX3C2cu8yx8H7Db4oM2awY+JA/B7nqNnlNXerGOeGdioLflcEOdMLzMb8pcuDj93iLpGgn1MGyXNi8KTWUSg39JbfFSPkjgqbIcJdA/jrZlTetFywJmg6UVY3hynwCPlPOMQj3J8/yVuWzbfuGt0iK0mRG6ZrrJR+rEBStgG7ZdVDPXCx4TuDAVvh3fBgV1xErtbV0zfVQmYWzVqRGUVwJw1X3gRLoQkh8brg/eY63mJXr8AE4f/gu6nNKrUbFTfIoKMAZBf68S6FdeJngOaGm/eEUUp64jliprbq6BknHmmvkhbvE+DvbMfTN59EHKApV6++RfTyUWgvD6jugnCCQwy1giux9+3Xe2szG2fNQMC/xgjWpoqqdAsPldwpG0nP2/rBQGWGKZBx29L//Nu/5lbfdnXDBmlShFEroVtwI9dTzBM8JmyI/HWWKHPjkA4SsPDnI1bWwrFqdlrHGQllaA8NVwpH0xOOE55NnR6WYccEget4QbuSh0AlUKkwTFEVDe/4VMf3XweN74Nv89qi4jnSntiaKorAYxqvuFw5ADfrh+fRFhEZ0niOEoOdV/swRKVJbk0Eze2nY7SMQwMe0H4fni1dGxXWkO7U118kLd4kRzEFetgq6OgFfX5qhlCroL7pZtCnS390pWAdfyhSfRFGWT4TxinuETZEu2yhTZO87b4Dz8eQgz5yDwnMWpnWsQlA0De2StXFMkTvg27YBhGPDOcgb3uQ9ryoDCkoEhakMxqvuE6yvQPxeeD59Hkx3uILa4GcfIjTYH3WeprIaxRdfntaxCkFRFLTzV0K7+CrBc0Ith+D96nWQUFC21NZEoQ2FMFx5LxSlAmVu2RC8X74+XHjIsXNb2lNbk0E99TzoV/5IOK6jpwWeT18A5/OcCcxMf2prLpMX7hLiPn4Eju+ii6xQSlVCdbLTwbApckZsU2Rg71fhBYxHQTEtWQF9Y2pFUlJFjCnS8+kL8J06gqEvPuY9p+o2aVN8EmXYFLlAeNcdOrUPvm0bzhRJ8UQdN0ydgcIFwnMpB3SBGYar7hOOeg6F4zoCzUfQ9+4bvKdIUSQlVTQzFkG3fJ1wXEfnKXi/eh2Dn30kW2protBaPQyX3wVFlYApmmPh2/wWgk0H0f26fKmtiaKqnwnDpesFs33YwW54PnsJjm83w3tCntTWXCUv3CWCEIIewSIpa6Apy3z/YIqioV10BTTnrBI8x7HlEzh2bov+rlIpeQ5yssQzRRK/F51/+i/+HOTFFyZdZlZqNHMujGmK9B7cjcGN7/Mek6KKmxTQOiOMV94jnAvPhtD9zGNg3TxFUiZPS6nMrJSoJ82D/uJbBKvyBdtOCNZeT1dqa6JQKg0Ml94unEJKCPpe/ROCvdHFk9KZ2pooyupJ4dbQAk2l2MFudL3wJ95j6UptzUXywl0iHN/thOfE0ajPab0B5dffnIER8RM2Ra7iNUUSQmA7Hp0yBgDFl14FTYVwXqrcxDJFBuweeDp4CvXQNKpuSU8OcrLEMkXaTnaBsNEWlKKFF8AwbaYcwxMFpdbCcNkdUNZGV5ZjfAE4T/OXd5W6SEqqqCZMg2H1HbwpZvbmXnD+6CBZOVJbE4FSKKFfeRNUU86JOsYxLGwn+d/vdKe2JoqyrPZMhcSCqGOuzgGEHNEFa+RIbc0l8sJdAgghglp9+bXZqUnymSL9g074rdEvDa3To2Jd9igoESKmyLF5y7ZT/MKk+JIroKlKT5GUVOAzRQbdPni6efKU01gkJRUopRr6i2+Jylu2N/WAcDytjs9dCONM4RznTKGsrA/HdYxoAMQGQ3C28Fd1lDtzRAwUrYBu6bVR7W+drX3ggtHWLLlSWxNFYSkPx3WMqNdBOA72U/xlmyt+dLssqa25QnY9lTmK68AP8Le3Rn2uspSg9MprZB+PWNST5kG37Lrhvx2t/AtY2TU3QClDDnIyUCoN9JfcOmwWDrp88A1E5+bTGq1sOcjJoKyeBMMltw7v4IWESfGq1dDWTJBzaKIJx3WsG073Y4MhuLt4GuRQNCpvkz9zRCyKkioYLrtzODPD1T7AW+q4YN65KJgj3EMgk1AUBe3Cy4bT/QjLwdkWHdAIZKeCEoEusIS7LRrCGyR3jxVsIDolLpzaerHcw8tqsnNGc4yBj97l/bziptuyXpNUT5oH7eKrBIWiQqOCZeGCDIxMPJRSDcOl60EXV8EpoKCYZk6CsiDaxJdNKKsaoV95E9ggwysUKZpC8QXCZWCzAYqmoVu+DsrqyXC2D/Du2gvqq6GtyHwMSiwUxZUwXLoeBApBoVhyQZa/FxQF7fmXQzV5vrBQLLPAMDmzQbLxoI0mGC67C9DohJXeBXMzljmSreSFe4r42lvh2h9dBEZptsCcI5qkZsYiuF38L0bhxDL4trwZs9JVNkCptdAsvgburmhTNkXTMFqU8G15J6FmM5lAVTcDPhTzCkVjdQlCP3wmSV/7dEIplNAuWwdXO39b28KaIni+fC2hZjOZQFk+ESHzJF6hqCstAlr3JtXBTE4oKpx66eyy8x43TSyB9/OXE2o2kwkUplKgfhGCzuhxqow6qLxdCBzgaUb0d0xeuKfIgECZ2dIr1mZFBK0YQg47nEeigwEpmkbBhLJwIYzPXopbqzrTWLd8wyu8jTXFUKhVCLUchm/Hhwm3i5UTLhiEbc/3vMcK68sBjoXny9fBDPAHRmUL9l3fguULQCstgtqoA9vbCu83f0uqXaxcEEIwtD26vS4AFNWXAwB8W99DqP24nMNKGM/RwwgORZcEVhl10JYUgrP3w/v5y7xVNbOJoS1beD8vqi8HRVHwf/8Fgsf3yDyq7CUv3FMgZLfBtvXrqM9pjSbjea+JMPT5x7ydocJCMZwaFM4ff1F0tym54YJBwd7ahXXlw/8dOvE9At/z1KLOEmzbN4Fx2KM+jwhFAAAThPfzlxNq3SsnhBAMfPQe77Gi+rPmeKbjBHxb343bGCRTuA/th78tulyuqkAHbfGZIFnCwfvN38D0RJ+XLQi5DSNCEQDYwS54vnpNVJfFTODv6oBz7+6ozxVqJYxVZwsp+b79cLhYz987eeGeAoMCQtGy8tKsjJDngwsGMfjph7zHiupG+0WJ2x6u1pWF5lTbNgGhWDZCKJ4hcHCb6NaeciJWKALhzn7eL18TbJiTSdwH9/HWkFcX6KAtHh33EDp9EIH9m2UaWWLEmotRKXwsA+/XfwXniu5hkGn8ne1w7o2uIT9WKALhCnC+HR9lpWVLyEJaMLEclGKkGCPwbX13VOnjv1fywj1JuEAAQ3w7RYpC6ZXydOmSAtvWb3g7vxkmVENljK7jzg52ZZ1pOywUBXYnjfwlOX3ffii6p71cuA/yZ11oSoqjhCIAcC4bfN+8mXWm7X4hoThlAm9ee+CHbxBqi642lkn8ne28jVUUBgOMldGtlEnAB89XfwUJBeUYnmgGPuEXioVT6sYIxTChk3sRPBa9Q84kjNMB6+bo1rSUUonCCTx18FkG3q9fj9t+eLyTF+5JYtvGLxQLz1uUlbnUfMQSihV3PghFKX9f6tCpfQge2ZnOoSWE68AP8He0RX2uq58Ey43385cV5djwbssbndefKYSEYtmP7oRq4nTeY0z3afj3ZI+bwd/RBte+aL+n0mxB6V3/INiD3LvlbbA2/qj0TCAYS3P1OmhmLuI9xll74dv2XtYovoJCUa1Gxf2/EuzR4N+1MavcDINffMIbD2BZeSn0F/D3JSAeJ7xf/zVr3QxykBfuSUAIEV6IZWxdmSqu/Xt5e4TrGibBOOcc6FevB11Uwvtd/3fZE7UtpKCUrrkO6gnToFvOPyfE64L3q+xYAHztrXDtiw6kU5otMC9dCf3KmwRLvAYPf4vgqX3pHqIoBIXi5VdDXTkRhotv5Ve2QsGwyyfgS/MI48M47LBu4ROKGpRceiW0F1wFZR1/hcBQy2EEDvAHfslNWChGWxIsKy6Gpro+nMvPp2wRDt5v3gDnig7CkxsuFMTgp/yxNKVXXQvN3OWCrXvZvnb4d32SzuFlNXnhngSu/d8jwCcUGyfDMEOoX3f2IeRTLF1zPSiKAq3RQ3/xrTEWgL9l3M8olIqoshQPlwVVN86FZs6FvN9nBzqyws8oZD6NZF1EOvtFinmMxfftBxn3M8YSisWXXgkAUFY1QLuIP9iUcw7Bu/mtjKcrxhKKysIiUBQN/bLrQVv4c/UDe79GqP1EuocZk7BQ5I+libgNFZYK6Jfzt6klfi88X/8VhMmsm8G+fQsYe/QaU3jOQmhrJgwX6xlbpTJC8PgeBI5Hu1f+HsgL9yQQEopla67LqlrZsfC1t8J1gE8olsC0+KwgVJhKoV9xI4Do+8oGP6PQTrHk8tGpiJpzL4Gyhr9YR6b9jCGHHbYt8bMuaJ0R+otu5W9ukgV+RuEA00tGBZiqp58P1ZRzea/BdJ6C//sv0zbGeMQKMC296mwsDaVSw3DxLaA0ep4zCbyb3wJrH0jTKONj27YZjD1651147sJRFQ5VE6dDM5+/kRQ31APftvczpviGLaTCVrkIFK2AbuVNoArMvOf6d34Cprc1HUPMavLCPUF8rc1wHfgh6vOwUMyeBhLxEDJll1xxdVR+vmrCVGjOvYj3/Ez6GUN2WwyhONoXR9E09CtuFOw/nkk/4+BnH4nOulCWVoc7yfGQST9jrFTEkUIRCFdO012wBooy/piO4KFtCJ4+IPkYxSCUdVF47vnQVo8eL11ggX7VTQJuhkDYzRD0p2mkwsTKuijlcRtq5q+AUiCmI9R8EMFD26UcnmjcB/fxpiJqJ9bDOHveqM9orT7s8uFrFcuxYSujJzpGajyTF+4JMvAx/0tTcuXajPelFkvIZoVt66aoz2Pl52vmLh+uGR51vQz5GQc/+4g3LU8oFZHS6M64GXgWgAz5GWNlXZQI9CVQT5oX1RQkQqb8jLat3/ALxfMWQVsVnbFAKZTQX3QLb9cvAPBtex/sIH+DkHQRK8B05E5xJMqqRmgXXsZ7jHMMwrv5bdndDOGsCx6hWNcA46y5UZ+H3QzrBFso+7//AqHOU5KPMx6x4pr4LKQKSwX0ywTia3zucHxNFqbxpou8cE+AkG0Itm08QlGrRfHF/FGb2YigUFy1Gkoj/2JLURR0F16XNX5GLhDA4OcfRx+Ik4qoMJdBv/wG3mOZ8DMKZ12czysUI2gXXJo1fsZkhCIA0PoC6C+6hbfdLdgQPF/J62YQzrpo5BWKEdQzF0M1mb+BDNNxAoEfoq1L6URYKAq7DSl1uAFTpFnOKAiBd9ObslaoFMy6MFlgWrpc8Huq+pnQzFvBe4wd7ILv2w8yHl8jF3nhngCDn30MwkSbPGMJxWwjtlC8JuZ3xfgZOac8AXa2rV+DTTIVUTVxOjTnxPAzfsvvc5WaVLIuKFoB3aqbQAv5GXd8LFuJWsGsi/pJcdu6KstqoVtyNe8x4nHAu0m+ADtBBeWq2LE0YTfD1VCU8D93gQNbZMvjj5V1YVqyIuZ3FYXF0K+8CeC716Af3i/lK2AlHEuzJm7fec05q6CcMI33WKhpf9bl8aeLvHAXSSpCMZuwbf0arCu6hGzRgsXQVMbPz4/rZ9z8VtqLqhBC0C/w8otNRdTMWwHlxBm8x0JN+2VpCOLav5c/66JhEgwzZsf9/nA2A5+fkXDwbXpTFp+vkKuqVGSAqXrKuVDP4M8dZ3uaETi0LaXxicHf0SbYAMq0RHinGIFSqqC/+BbB3HHftvdk8fkOfvI+7+ell0fH0vChqpkM7YLVvMc4ez/8uz9NZXiiYJwO4VTE1VfF/T5F0dAvXwe6iKfADcJpvNneCEsK8sJdJM69u/mF4sILoKmoysCIkmNoE3/Bk1jm07HE8jOyA51pN0N6T51IORVxOJ1JwM/o2/Fh2s2QVsG54Pcp8hHLz8i5bGmvJhgcGhAIMD2biigG7fmXQ1FZz3sssPfrtFcTtG7ij9BPpAEUbSgSdDOQgC/t/ncuEIBt++aoz0emIopBPWsJVI38bojg8e8Qao1uMiUltu2bRWVdxIJSa4XdDCwD76Y3M57ml27ywl0k1q3f8H4+NhI4mwn09sB7Ito8qGucDMP0xPLz1TMXQzVpHv/vHNg2qsAN5/MkdO142LYJzUViqYgx/YyhIHyb3hqOPCeEgPNLdx+szwvHnl1Rn6ssxaNSEcWgqp8JzVz+3WXo9EGERlghpJ4L+/bNAI/yUCJypxiBohXQr/oRKENR9EHChRfjEVYIKe+DcBxs26NjaSh14g2glOUToFvMv7tke1tHBZ6SgE/SzAbH97vA+aOLAFlWXJxQrwuKoqBbeg3o4kre475tG8C57cN/S/9+R88FgIQtpIqiEuhX8MfXcPYB+HdtHP6bMKGs74qXKHnhLgLG7eIN7lBXVCUsFDMJ3wIGAMWrViecnx/xM/JXsCPwbnkHnM+DwLHv4P7gz0mMlh/CsrB/Gx2ZT+v1MJ3PH0EeC0VhMfQCqWXsYBcCP3wNzuuC94tXETwmXZCaY/cO3sXEvOyipFoFa85ZJVjBzrfzI7COQYRajsD97h9AQtItYrZtm6M/pChYVlyS8LVorQH6lTfy+nyJ2x4Ohgr64d3yDvx7pcuF9xw7jNBQdO/5ooWLk2oApZp6HlT1/G6VwL5NYPrawfQ0w7XhSUmLQAkJxeKL+M3ssaCUqrD/ncflQ4JnrBChIHy7NsK3lT9WIRkCvT3wnozegBimz4xKRRSDqnYq1LOX8h4LnvgeoZbDYId64P7gKTD90dbAXCY3crcyjGPnNt5AOvOFK3OmaA0hhP/lp+mEd4oRKJUa+hU3wv3R08AYPzvxusKC5EzXMhLwgdLo+C6TEK6D+3hTrkznLwGt4a9bHg9V/SyoppyLEE+nuMDBbQge/x4k6AOlMyR1fT6ErA/mC1cmdT2KVkC/4ga4NjwJjPWzh4LwfPTM8FxwTisUAruyRPB3tsPX0hT1uXHWXKgs/PUE4qEsnwjN/FW8rp1Q8yEwXadBAl5BE34y2ASscknPBUVBt+RqMAMdICN2uADCVogvXj1jhSDhuRBwDSUC43IKbkB0jVOSuqaiqAS6C66Cb2t0TAXb1wbXm/8NEvAK1o5IBqENiHlpcnMBANpzLwbb0wJ2MLqCo3fbewDLAhwrWzCwXOR37iIQ0oiTffkzga+1mddPXTjvPCiLTElfV1FSJRiAQ0a0I2UlenEEX/4L+aPfxaJbdKVgAA4Jhk2dUr38IbsNroPRteC1E+qgq2tI+rq00QT9Un430ci5kGq3KPxepDYXmrnLoaio4z02UkGRAi4UhH1XdMCeoqAQhfPOS/q6lEYXruzIE3gafp7Crgyp7sOxazv/BmTZqpQ2IKpJ86Fq5M94GJ4Ll02SIFpCCL+ipVAkFL8xFkqhhG7ljfz1LULB4Y0JJ2OqnxzkhXscgkMDcB89FPW5rnFyUmaiTCG0OzFJoKCoZy6Gsib27kCKF4cL+OHY9W3U50qTJWYeshgolTpsEubLuY78vkQvv33HVoAnsEoKZVFVPxPqaQtiniOFQBGyBFFKFYoWJe4eGXUNmoZ+xQ0xLT3E45QkLcu173uw7uhcetPiC1MuSqUsnyCYchlBqmfKmqYNSMT9JlTaFQBAuFE++GTxtZxGoCs6cLJw3rlQFvLEYiSAorAYugv4Uy4jZLpPhtTkhXschAKGUt2dyAnhuPB9jIHWaFC0gL+jUiJQFCVCoKS+iDm+380bMGReuhyUQlgoi4U2l0EpsGMEwlWupPBXC+54UzA9jkQ99Tzw9QKIIEUWgPfUcQT7eqI+Lzx3IZQG/nSwRKD0BYK5ymEIOHfq1QQF52KZNO+3unEuf6riGaRQtIKD/fDwbkCmxCyEJBZKrQ3fRwykuI90WYIiKGunCDZeAsbfzj3vc48D7wNHUTCLyH3NFtxHDyFk5QsYugAKXWp+cMKxCOzbFLf8rBRasbCfOvWXn7UPwLfl7bglT1P1Vwd6uwUDhtRl5UlfFwAI4RA8uhv+PZ8jYvblQ4pFTNBPLYFQ5DxO+La+G7elcKr+atbrgeN7noyF0nIYpvLXQEiE4OmD8O34EIiRciXFXNi3b+HfgCxLXVkkAR98Oz5EqDlaeRhJ+D74GzOJ+h2W5d+AaLUolGADwnQ1wbv1XRCvS/AczmUDIRwovhoeOcj4uIs04e9og68leoFJJWAoEwgJRSlM8uDYsClbGTvCO1WzXThgKLrylqayGrrG5BeVYVgGlDq+opPqfaR1104IQFGg+Fr0jjwtxXsgDCOQsWBA4TkLU7o2ABA2JCr4MtW5CGcsRAte89IVoOjUlkZCCEC4uHPBeRwgJLXcdyvf+03TkmxACMuE7yGO3z7VuYi5AdHypKomCOHY+O83y4BInNaXSfI79xik20wkB1woCMfO6K5OioJCFM7lb7uZCJRSDe38lVBPW4DAvk0IHt8D8CxWxBNdACgR7DvTEzAUQVFcCcPldyHUeQr+PZ+DE6hgxXmTv490BQxFoGgFNDMWQT1pHgIHtyFweAfARvulOa8LhJCk/91ch/bx1sM3LVoKWh27NKgYFIXF0K/6EZj+jnA1sb7oeu9A6s9UOk3yFEVBPWkeVHUzETy2G/79m6OzGACAY0H8XsHKdvHwtbfC39oc9blx1lyozKlvQGh9AXRLr4F65gXwf/8FmPbjvOeRFN4LID1R8iNR1U6FsnoSQqf2wf/D14I7eM7jBC3QzCjXyO/cBRAMGFKpYFrEnzeZjTh/+B6shydg6IJlknaxo3VG6C5YA+P1P4eybmbUcc7rTKlSmqBJXqKXP4KqZjKMa38K3bLreQuqpCJQfC1NCHRH13uXImBoJJRaC+15l6Dghl+G+6aPFeIsAxKIjl0QC19HQUD67BFlWS0MV94L/cW38mYypKJohWxWuA7xZSzUQzehLunrjoVSqqCZvRQFN/6PcCc/vup1KTxTdpkyeRTmMhguuQ2GK+6BojTaj8+lcA+CG5DCIhTMPSfp646FohVQTz0PBet+Cc25F/NGz6eqpGQTeeEugPfkMQT7o3dvhecshMIgXb5zurELCUWJAobGoigqgeGim2G44u7RpV2ZEP/ORQRCAUP6SVPiNolJBoqmoZ48HwXrHg53mBqxIKciUOS2BNGGQugvvBbGtT+N6p2e7CLGBfxwfMeTsWC2xG0SkwwURUE1cTqM1/0M2vMvB0aYuVMRKIIZCxL4qfmgNXrozr88rPyOySxJ9pkihPBX1lOpYDo/PRsQZWU9DGvuh27ZdaC0Z9fBWL7seAhtQMwSb0AiUCo1tPNWoGDdL6PK7KbyTGUbfzdmeZZl4fP54Pf74ff7wXEcKIqCUqmEVquFTqeDRqMZNlWmM2AoFYLBIHw+H3w+H0KhEAghoGkaarUaOp0OOp0OyjMvBOv1wLE3ugOSqrQchinT0zpOZWUDjNc+iOCRXfDv+xoIBcF5nFBodOA4LmouAEChUAzPhVarPTsXPIE2gEQxAzGglGpoz70Yqknz4N+1EUznyVG7rFAoNDwXwWBw2NQ9ci5UZ6rNpTtgKBaK4koYrroPoVP74d/zOYjfA87jgMJSAULIqLlg2XDOL03To+aCPuODduzZBc4fraSZl6yQJGNBCIpWQDNrCVQNc+D/7jOETh8YpaAwDDNqLiLvt0qlGp4L9QiXgaAlKE7ntFRRFBZDf+l6MO3H4dv1CYjbPixQCCHD8+Dz+cCy7PD7HZkLnU43PBfeE0cR7O+L+o3Cc89P6waEomioJ58D1YTp8P/wNYLHdp+JHQg//yzLwuv1wu/3IxAIjFprR87F8PstcUEnsdD6AuhX3ABm6nnw7fwYnK0PxBt2NxFCEAgEhueCYZjhudBoNMP3oUjjM58q4164+3w+WK1W2O32uGZhtVoNi8WCIqMxrNmPQaqAoUThOA4OhwNWqxU+X3xzamFhISwWCwJ7BAKGLkw9YEgMFK2AZvYSqBpmw7/nMwQcQ3AEONhstmGBLoRSqYTFYoHZbBasrCdXxoKiqCS8ILcdQ/DEnuG58HjiB98YDAYUFxeDamtGyBodGS1VwFA8KIqGeso5UE0ML8iMywFrXx+sVuuwQBeCpunYcwH5lN6RC7J/zxdwOp2w2WxwueLvHHU6HSwWC7ReD7ynTkQdN0yflXLGghgi1ghldSMCB7aC9bkxMDAAq9WKEE/DlLHfNZvNsFgsGZ8LSqODbvFVUE85F74dH8FjG4LN44PDEb/7nUajgcViQYFaDSdPxoK6rBx6CTIWxKCsrIfxmp8ieHQ3WOcQhoaGYLVaEQjETnulKAqFhYUoLi6GXs/XBjuzjFvhzrIsent7YbOJz4UNBoPo7e1Fb9OJtAYMJYLH40FnZ2fcl34kTqcTTqcT+GIj73HZAwJ1RjinLcNgfz/gEZf6wzAM+vv70X/kEJg0BgyJhaIoMOX16A4oEOgQ36HM4/GElYBPPuA9LnXMQFzUWngmL0JfTw/IwICor3Ach8HBQQy0t4H9IbrEqaaqBrqGSVKPNPaYiqsxMPNieNra4kZyR/D5fOjq6gK1jb9roewVJxUq+BrORU9XF7i+6B04H4QQWK1WDA0MgOMxydN6Awrnx645ITWkqBTWOavh7OrmbwXNQyAQQE9PD3oO7uXtAGdeKm9pb4pWIDBhFro7O8H0RNdv4IMQAofDAYfDgcLCQlRVVQ1bTbOB7BmJhHi9XrS1tcXdkQjBHoiuMQ7I+/ITQtDb24uhoeTyYInLCfZUdGSrdqK0AUPxCAQCaGtrQzAYBJKwFgjPhXwKCiEEQ0ND6O1Nrgc0YRiwh6LbokodMBSPUCiEtrY2+P1+0QJxJOTIwageAoD8PRbsdju6urrClrgEf5cQAmZ/tIIiVcaCWFiWRUdHB9w81fHEQJpPgghU1pNzA+JyudDR0RG2xCWRH87uj05vBdLvchsJx3Ho7u6G3W5P+hpOpxNutxsTJkyA0Zh6EScpGHfC3ePxoLW1NenIbBIKgRyPDt5KV8AQ7xgIQWdnpyjzluA1jhwQqKwn30vj9/vR0tKStJJFCAE5HB3RHA4YSq3EaSJj6Ovrw+BgdA6u6Gs0HQf4/NRpChjiIxQKobm5OSEL0Fg4nrkA5H2mhoaG0CNyZ8VLbxcwGG2xKJx3XlId4JKBZVm0tLSElawkITyR/oC8c+F0OtHennwnNeJ2gTSfivpczg0Ix3Fob29PWskae63W1lZMmDABhYXyPEuxGFfR8oFAICXBDgCkvRng8VOblkhT4lQMfX19KQl24IxA4UEuMzDDMCkJdgDA0ABgi65sl+6AoZHYbLaUBDsAEB4LCiDfQhxZdFIR7MTvB9pboj7XTZoCTaX0GQt8OJ3O1AQ7YsyFTH5qQgja29tTE+wcB9IUHTOgNFtgnMHfalZqfD5fSoIdAMjpkwKV9eSzynV3d0si2EfS3t4uKjYq3Ywb4R7Z7aYi2AGAnI7WJAFAMXNeStcVi8fjSV2YMAwIj5+aqp0IhQyV9Qgh6O7uTk2w48zLzwM1Qx4LSsQvmCqkmec+CgqhrJfHT93X1xc3OCgepO00b+oYNSO1hj1iYRgGXV3RLTsThW+nCIUC6pny3IfYQMyY9PcCPKlj1Iw5Sbm+EoXjOHQkEHciBO97AUA5a37K1xaD0+lMyRQfi2FXRQZJ25PQ09OD9evX44orrsCaNWvw6aefpuunAEB0JHk8eF9+jRZDWj0YngppUhJRUFKmsy3cynAsDVOS9hsngsvlCgf0pQjvXFAUXCXlKe18xDLs100BYhsCeKLkqcYpkigO8fD5fEnHbYxESOkNVE+QfOfDR09PT+rKYjAIwmN9oCbUo2tgIOW5jkcoFJLk/RNSetmJDQkFECfLwMBAOIYmBQgh/O+3pRj9ISbtgpHjOEmURSGCwSAGRAaspou0CXeFQoF/+Zd/wcaNG/HSSy/h//7f/wuv1xv/i0lACEl5twsAxOMO++TGQNU3AjQNqzWx5idMVxOCTftF9zp2uVwpmU4jcHwvDQC6YTJsNlvCSkpg/yawdvEPqhQPNWFZkNam6AMV1aAMxoQFFjvYjeDR3aLbhPp8PkmeV94FDADVMAVutzthJSVwZAfYQfGLkhTvBSCwyzIYgbKKhOebczsQOLAFRGRRo1AolLKbCkBYsPMoCFTDZASDwYSVlODJvWC6m0UrBUNDQ5IoELzPFE2DmtiIwcHBhH6DsEy43LJP3L1zHCeJsojBfoAnI4lqmAKWZRPeUYdajyDUdlR0nX673Z6yshiPoaGhjO7e0ybcy8rKMH16uFBKcXExioqKJHlB+ZBKKJLW07w+IKohXFEq0ZeT8zrh3/YePBueFCXk07oQq9RAzUQASFi7D7Uehef9J+Hb8k5cIR8pJJIyPZ28QWhUQ7hJTKIvJwn64N/9CdzvPi5KyEuygCGWcA/fR6IKI9vdDM9HT8P71WtxhTzDMNIIRacDGIhO1aLqJ4GiaXg8noTM/oRlEPjha7je/r0oIZ/ov5Hg7wqYgUe+34nADnXD+/lL8H76Qlwhz3GcJPdBGAakLdrlhuoJoLRaBIPBhM3+wcPfwv3O70UJebvdLonAivdeJDoXnHMIvm/+Bs+Hf4kr5KXaDMYd05n6JJkiYeHOcRwuu+wy/O53vxv1+bZt2zBr1ixe8/uhQ4dACEFlZfKtMmMhlVlQ0Md75oFjWRY+rxeEZUT9L+Kj5JxDcYU8x3HS7BT9PqAr2h9G1TUMR2a7XC7R90BYJqzwEIJQ88G4Ql66uRB4+c90gCOEwOMWfx+RuSBeV1whTwgRVRQl7j1wHP8iVlYB6kxkttPpTHwuADAdJ+MKecnmokXY+jD8Wwk8U8PpdEGfKCEvxVwAAgJFqwXO9Dz3eDzgEpkLLjwXbF9bXCHv8/mk2cUJuNwiaxSQ5FwwIVFCXrJnik/RoihQZ+JQAoEAgoFA4muttTeukA+FQim7FcQi1bObDAnn4dA0jQceeACPPvoo7r//fhQVFeH48eN4+OGH8ctf/hKXX375qPNtNht+/etf4ze/+Y1kgx6LVOZ+3pe/sAgoOVsjPfj9F2Ca+dNQ4hER8sEDW6CeuxyqhtmgztQtlyq6krQKBD6NWIh9Ph9cr/x7kj8QFvKhlkNQ1c+Geu5yKExnm3pIdh98L79SCWpCw/CfwWO74ToWXedc1PXPCPnAoa3QzF4G1ZRzQJ1pWxsKhaQx2fX1AN7oXdTIhZhhGLjfeTzpWu9Mx0kwHSehrJ0CzbyVUJScjVyXbC7iKFoAEGo7CtdHXyX3A2eEfODwDmhmXQD19PNBqcNV+ziOkyS+gnjcQA+fy23ycLVGQgg8G18AGUwu7iUi5BXlE8NzUVk/nP8v1VxwAhsQuvHs+x3s64Drs6eS+4EzQj54/Duopy2EetYS0CM61kmyAWFZEJ5W2qisBqU/mwXj3/ou/J382Q3xiAh52lIBzbwVUE6YNtynXc5I9nS5osWQlFl+zZo1MJvNePXVV9Hb24v7778fa9euxT333DPqvGAwiJ/97Ge4//77cc456SvWkWokMAAQ6xBg4wl8apg8qkAHw6YeVMe3k5fiHoD45i4A0gQOCezkJQlqDAZAOlqjPqdq60CpzvaNZ0Li5oIQInjPfDt5yeZC0BI0unGI2PmIdR7fTl4SoUgIv6JlKQFlsgz/mchOSPA+eHbyUu2whK0Pk0f9LXZ3HWsu+HbyUgWA8s6FWg1UTxj+MxBMwEUidB88O3mWZaUJKu7uAALCLrcIrMhYpVjvN99OXqr3WwwMw6Tdty9EUhU0lEol7rvvPvz+97/H559/jhkzZuBf//VfR51DCME///M/Y9GiRbjmmmukGCsvsSY2oevECHwa+3tSMXInT2YuA6CK+5148N7HmcCntDByJ98wB8QyBUBq1cqEA5/GdNMSGTwDAIwvAIqmQNE0KAUd/v8RStvInTw3azmA1GtF8y7ENA2qriH6czHXY1gwIQaUggZ95j5AUaOVzxE7ea5qLlKdCwz0Aa5oq8LYhTiR94L1BwBQ4XngmYuRO3l61oWAwpTk4EeMT8j6MPb9BhH1L0Y4DkwgBIqmQSv452LkTh4NC5Hye+ETcLlNbBxVDIlwCcxFIAgQnJ0HxZi5GLGTV05fDGjKk6puOOo+xM6F2GeKEDD+AChaMfxugB49FyN38pi2FHJmgac7C0OIpO9wzZo1w7u0xx57LKo7zt69e7Fx40Z89dVXWLt2LdauXYsTJ6ILL2QLwsE2oxcxKtXFcgx0gQXquctBLKkXAhEMfGqYnOZGMRSU9bOgnrMMUEqgoIgwA4d/VdxcUBQFiqZAWA5ciAHrD4Lx+sH4AmCDIXBnum9RugJoZl8IVDamfg+hEG/aFWomgNIk1yiGUtAAISAMCzYYAuMLgPH5wfiD4EIMyJldp7JmMjRzVwAaKRQUobmYwvu5GCiaBuHGzoU/PBdMeC6g1kIzczHouplJ/04EQetDkQkoLhk9NrHPFH1mLtgRc+H1g/EHwJ6ZC0IIFGUToJm3AkRflPp9tDbxB/yOmYtEZO+ouQiE5yLk84MNBM/OhUIF9bSFUE09L2XBDgCcoMutfuzoRN5E+DzCsuCCITD+kXMRAmHDc0Gby6GZuxxcYWmcC44Pkq59+eijjwII+9T52t6dd955OH48OX9JIlAUBYVCkZLpg3Acv9luROBTBFoiIUkXWKCet2LY766SIqpZhEleWigoG2ZBM3fFsN9dNeRM2XTHuxBrdUBlzaiPFApxcxHeyUQvFITjwgIxBIBWQFVsAhsIQOFxhBfRFBYy0tkG8GRwjN2dhD+M/zuCFioSXtSGW7Uai0ArdWAcQ1BBi1SdJIKBT3WjC/CIbX0p6B7hCAh35rmhaChNlWAZFpTLBpDk6pYPYxsC7NEZImNdbgBE1cgnhISD6SgqStgSlgsrkQAorQG02gjWaYdKI4FwF/l+KxTilnXBHSVHwHEswLAAKCjKSsCxBLRjEBThQFKYCxIIhIMCx0BNqB/lcgMAmhY5FyTeXDCg1BrQ2kKwHjdUVPq7MEaIyKdMkJRwf/zxx7F582a89dZbuPPOO/HOO+/g1ltvlXpsotHr9alFJfZ1AzyBD3wLsbKqAeqCAlGX5ax9YLpGv5BjhXoEnU6X4KCjiZfqE0GlUkE9e6no64ZO/gASGPnvEy3UI+h0upT87uFaA91Rn0fSrkaiLK2BWhN9HyQUBOu0gXVYwTqt4QyCeHAsQh0nEepqgu6Cq1I2BQv52+mxliCKgnraAiA02g9ICAHndYNzWsP34bLxuirGwrkdCBzZDaanDfrFa5BKKaFwrQG+wKcaUGNaXKos5bzPFGFCYF32s3PhFRFtTTgw3S1gulugO3cVFEUTwCZgao66nEgzMACoGueCqhq9gySEgPi9w/fAOm2AiHoJxO9B8MReMN2noV16XXKDH3k9vvfbWBDlclMXmfnngmXBuezhe3BYwYkK4iRg+zvh6++ExuOEpmYO/CJjXXiv1t4syuUGAMraaVBayqI+5/y+s/fgtILwFewa+7vBAIJNBxHqaIJ6+fWQyyyv1Wplbao0koSF+9tvv40XX3wRL7/8MqZNm4Y77rgDzz33HG688UaoVKmbZJMhVeEu1gwMAPrG2aLb+gVP/TAs3IWEegSVSpWSBUKw4lNxCSiTedRHer0e2qmXir4203nqjHAXFuojr51KPq+YtKsIutrJ0OrmgISCCHWdRqizCaHOU2AHk6v8RukLUHDZeqiq6qFtakqt/jffXKg1w7UGIuh0Omgbwn3pWfsgQp2nEOpoQqirCcSfXKStevI8GFfdAG8wBLTwuAbE0tUO8AQf8VmCdOW10E6eCcIyYLpbzsxFE5j+zvDOO0EotRbGi2+CumEW9G1tqb3fIl1uSqUSummLAACs245Q+ymEusL3QTzJqUmq2skwXnorGIUKOMk/DjEQh4234Q2f9UFnKYN28nQQjgXT1x5+njqbwPS28Xb1iwutgGH5tdDOPB+Gnh74U6gBIdrlRlHQTz0HNE2D87kR6jg1/ExxzuTWF0VpNQouvx2U0QQcPZrUNRIlk33eExLuW7ZswSOPPILHHnsM8+bNAwCsX78eL7zwAj744AOsW7cuHWOMi8lkQp/Ifsh8CAY+TRwd+GQ0GhPu1xtPqEegKApmszn54gqCgU/RQtFsNkd9FhOKgrJhdkyhHqGwsDD8QiaZ0yv25dfSANV2BM7mwwi1nQBSzGJQVtaj4LLbQBvCbhiz2Zx0eVji84YjgsdA1TWMbj5ECEwIwrv7cwRPHwZrTbE0KUVDv/QqaOcsDS+OShVUKlXSBZ6E/e1jzMDgoO5rgWvXEYRaj4muPCeEwlKOgsvvgMIcftbMZnPSwj3scuOpdFheCco42gJnUQG+vd8g2HwYTF/qtdO156yEftFloGgaaoQX+mRTo0S73DgWensP3Ae+QbD5CIg/tTr2tLEIxstvh6o8HI1vNptTKvDEu9bq9EDF6Jgjk4pG4NAOBE8fAtPTwhtrkAiaaefBsOK64XRXk8mUtrryI0l4rZUQ0ZLq8OHD+MUvfoF//Md/xKWXnt31GY1G3HbbbXj22Wdx7bXXZsS/oFKpUFhYmFQ9c+HAp4lRgU/FxYk1XVHWTg2b+WII9ZFYLJakhbvYl1+tVsOQYEc1/SXrQevFuSJomk56ARAOfDIDlhLQAR+0Q+3QDrRDY++FJ4kdIR/aOUugX7JmlOA1mUzo7e1NKtI1ZqVDQqByDkA7GL4P4nel7BcHAEpvRMHq9VBVn1VIKYpCSUlJ0koKbxljpRJUbT2oUADaoU5oB9qgsfXAw0mQIgVAPWkujKtuAKXWDH9WUFCQvJLS2wX4+FxukwFCoHTboB1sg3agHQqvHZJkJas0MF58EzSNozu0lZSUJN1JLdb7TTEhaKxd4WfK2gUvI036oLK6Mazwjshz12q1SSspxO0K134YQ8TlpvA6oB1oh3awDWrXkDRzQStgWLYWmpmLRlk4iouL0y7c9Xo9tFr5/PtjES3cZ82ahX37+Iu3PPzww3j44YclG1QylJWVJSfcO1p5A5/G+kb1ej2MRmPUebGgtYkJUbVaDYvFkpRZm9fHO6LiU4SKioqEfUBiBXuE0tJS2Gy2xHfvVv7AJ1V5CSz7P4PK0S9trgJNw7DiemhnLIw6pFAoUF5enlSjDyF/u1Hhg3Hn21AEpS2ioSipRMGVd0NRYIo6FrEGJSoYSSAA8NQaUJSXo/joJqjtvaAkTvHRLboMunNX8Qa5VVRUJNWJTMgSZNABBbvfg9IvbdMbusCMgqvuhrI4OvW0oKAgqZgUIZcbbTLB0r4PGls3qGTM7THQzF4Mw9K1vG2uy8vL0ZKEu0fI5aYt0qLouw+g8toTvmYsKK0eBVfcAVVVdOqpTqdLekMoloqKNKUfiyTpaPlsQ6vVoqKiIuHFWEyqD0VRqKmpkSUwoqKiIuFa+YKBT1W1oHRnfT4mkwmFhYXR50mMUqlEdXV1wouxkG+0UBmA2tGf1FgoQyFUNZOgqpkMVcUE2N/4fwDHgdLoUXDF7VBVC6e9FRcXw+FwJL4Y89wHrVai0NOT3DNE0VCW1YTvo3YyQt0t8H33BQBA1TATBRffPGqnO+p3aRq1tbVobuapRx7rHgRavBo1LDS2JGMatAaoahrD91E9CY4NT4F4XYBSBePFP4JmknAr36KiIjidzoRrdQtF+xeFhkCT5KyMipKqM8/UJHAeJzyb3gFwxrVzxe2jdrqjfza8jjQ1NSVmEervBdzRbgm9QQHtUHLuA0qthbK6YXgu3N+8Dba/A6BoGC68Gto5SwS/azAYUFJSkrCVUUjpNREHlN7kXDkKcxmUZ+aCohVwffJi+HNLOQquvAuKImFra1VVFTweT1qKzJSWlmbU3w6MI+EOhBdjr9ebmDbGk5YBjWZUxafa2lqo1WoJRhgfmqYxYcIEtLS0iN/5DvQBPFWpRprkNRpN2mr781FUVASPxyPOCkEIlG4ruGP7wGdQ1JjFW0worR6q6knDQoQ2lY4SqMrSGpCgHwVX3QVFUUmMK4UX44hgFJPeRzFBqLtOgxmKXvS0ZmNCgl1RUnnmPiZBWd0AWj3CvKdQwvfdF9Cduwq6RauHy2oKodfrxSu+hEDpdYAc3gO+Ol5aSwJzodKcFSA1k6Aorhg1VlVVPUI9rSi88i4oy2piXClMVVUV/H6/uApjLAO1tQs+HpebplAPWilesNOm0uF7UFU3gtadtcix7rCyoZl2Lgwr14GKk4am0WhQU1MjWvFV+FygD+7kdd1oE3gvoFBCVVUffp5qJkFZWj3KXaiqqgdnH4Dx/2/vzYPjKO/8/3dfc4/uW9ZhS7Z8yBh8cxow5jYYAiSBELKQEMjxq/1lN1vZs2orW6n91lZld3/Jb3+BEK4kkBAWY8DGHAYbAzbYxmAbjG/J1n1Lc8909/P7ozVC0nTP9Iy6e0aj51VFWUy3ep7W0/28n+dzPTfeD1t96hoGFRUVCAaD+szzsgzbSA8iZ09guoxyDht4p/rEVA3WWzy1LzxfpRgSSVTuc14zPDfcN/WdUYHnedTX16Otrc3QQjMulwvl5dnPpc8rcY/PjDs6OnQJPCEEpFcl7aq2fsIcVVdXZ8lqdzJOpxONjY1oa2vTJfBq9wBgoiiEw+FAY2Oj5fEQ1dXVYBhG0//ORoJwdZ+Cs/sU+EgAPSr3wTtt4GzJH1OupBK2puWwzV8Grrwmqdg5Vl6tiL5dX+qhzWbD/Pnzce7cOXWBJwS24W64uk7CMXgBkaExqIUw2QtTuGg4HkJ9C+xNrRAaFmuu/gCAr5gHz6Z7YW+5RNc9AIq/F4CmwDOxCFw9p+HsPgUhOIr+zrbEc1gGgif5340tKFH6YsEy8JX1SeNN7EvXwn3FbVMG6GRwHDfRF6oCTwgE3wBcXSfg6GuHHAggqNJntsIUKyqWhVDbDFtTK4TGJeA8Rdpt8hTCvfHrsC9epXvyVlhYCEIIOjrUa9gzYgyOvnNwdZ+EzTeI4XPqGwPZUjxTjKsAtqZlsC1ohVCzIOnEw9Z8ERzL1oErTkw9U4NlWTQ0NOD8+fOau9Dx/mG4uk/C2XsWTCSMDpUx2Z6qL8CAr26ErakVtsalYAtLNf/ODMfDc+1dsC28RHfRLrfbjYaGBrS3txsi8PHrGVUPZSbklbgDX5khBwYG0NfXl7zDfGOq+e2oqoHNZsO8efOyZlpxuVxobm5GR0dHytkxUckLBwCmqgYlJSWoqqrKysMW95U6HA50d3crE5UJMTwBx8AFMFD6h8gEsUDigK0lJnxlHWwLWmFb0Kp7QAKQEOSk63fsdjQ3N6Orq2ti0sjEwnD1nIGr6yT40FeDVsyvbl4UPImrCMbmgNC4RLmPhsVgBH3WIYbj0xL2OGVlZbDZbOjs7FRMkePBfa6uk3D2nQMzKUAx5k9cKwoep+rAypVUKYNv03JwpdW6Rc5W35L2PfA8jwULFqCnp2di62JGjMHZdxaurpMQ/F9ZisIafWFTe6Y4HkJDC+wLlkNoXALWof+9dyxZnd5NQHGRCYKAjo6OCRcc7x+Gq+sEnL1nwUpfueXUninOxqtOer+aXLWCr6pPadWJI1Q1pD5pehs4Dg0NDejv70d//3ianiTBMdAOd9eJKa60aDAMqAzFqu/3pMmVbf6yiQwWPdhbVqV7G/B4PGhqakJHR8eM0l/Ly8tRXl6eE8IO5KG4A4qolJeXo6CgAD09PZppNFqiWLhoMeqbm7PeSfFV4/DwMPr6+rRNw2pFX1xuLFhxcdqR8UYTT/FzcQyGDu4Ge/YI+HBif8SCEdUIc1tcFBlGKSAUF3SV4DEz4XkedXV1GD3zBYKfvQ9bz9kpYhgnFlD3zwtu5T4Yhxu2Bctga1qu+Al1VhMzioKCArgEDgOH3gNOHYYQSAxglEUJUjgx5mPyBEWZXC0fn1xZa4LkOA61tbUokMPwffIehK6TYFVSIVNNtDKdXBmF2+1G8/xGDH76AaQTh1TjSgghiKo8U5NFkSutUu4hzcmVEbAsi8rKSngQw+ihPRDOHwcrJk7So5oTrfFnihdgq29RrCUN6U2ujMDhcKCpqQmDg4Po7+9Pyw/vdrtRXV2d1ch4NfJS3OPY7XY0NDQgGo1ieHgYgUAAoVDoq9W8hjm7cvnFWRf2OAzDoKSkBMXFxfD7/RgZGUEoFJqyWxZRSS9xNy3MurATQiB2tyF8bB+ip4/AliSiV0sUHQsWwn31DbDNX5rUVG0mcjSM6IlPED62D9JgD5J5CNUGMd7tgGvlBtiaWsFXN+pOjTQasb8T4WP7ETl5GEJM22+tJYqO2jq4rrwtK5OrOESMIXr6M4SP7YfY0560L9SsDwzLwr3qStgXXpSVyVUcaaRf6YvjB8FFgtB6IqRIDERMnETaKyvguuxmpS9S1J4wCyJJiLZ9gcixfYhdOJWiL9SfKdeKNXC1roWtvsXyydV04qmjpaWl8Pl8E2Pt9OBmhmHgcDjgdrtRXFwMu11/zICV5LW4x7HZbKisrASgCE4sFoMsy+ja+XJCeU6G52GvrbO+kSlgGAZerxfe8dK38e0XY8NDOB1ITOdxNiSmf1iFHAkhcuITRI7tgzSkr7iQ1stfes/3YSvTb3Y3ErGvQxmATx0G9JS4lAligcT7cC9fDfdVt5vRxJSQWBSR058hcmw/xF59OdZRFVEEgOItD8C5eOYbuWSCNNyn9MWXB0Ei+rIX1CZajvnN8F53j9HN0wWRJETPfa6IYYdKYR0V1CYoAFB0w91wrrzGyObpRvKNIPLFRwh//jGIrhK26vfBFxah+PaHVM7OLgzDoKCgYCLWKj7WEkLAsiwEQchaSdl0mBPiPhmGYSYi3yMXEiPl7bV1YLNURjcdOI4Dx3GIdKsH2zgapu+wZD6KGO5D5ORhXbW3J2AYiFLi2oVzeyCUWrsqIbEoIqc+U1bpfemlGUmEVzYUmYYzG30x1IvI5/sR+fKQbjGMIxH1FZSzvtGAlumHSCKiZz9H+Ng+iJ0qqZ7JfpezQQonTsicGW63OxMk3zAin3+E8BcfK6l/aSBqrIetvg8iy4hdOInw0X2ItR9Pq2Ic4XjEQoluE2fjzHdftIL4WDvbmHPiHkeORhHpSoxWzcbLPxPC7erFJKy6DyKJiMRN1n3q0b9aMK4COJathX3pOnT/348mHHc0LrBshiyNDCB85ANlZZhm+VRhXjPsrZci0DUAvJdY6MmyvpBlRM8eRfho+mLI2J2wL14NR+t6DP6ff0s4bquoAueyxs0j+0cRPvohwsc/1rfRzCT4ynrYW9dDlGzA2wcTjlvWF4Qgdv4kwkc/QKz9y/TKp/IC7ItWwtG6HmPPPg1gan44Iwiw16ROHTQCORxE5Nh+hD/fD9mXGJ+RDK6kEvbWS8GU1UN++7sJx2fbWDvbmLPiHr7QrlqkY7Y9cKF2leIkLAtHXX3i5wZCJBGR4wcQOvQOZN9IWr8r1C2EvfVS2BqXguE4iKMjEIcT8+GtcC1IIwMIHdyFyIlP0trghLG7YF+yGo5l6ycCygb3P6l6rsPkZ4rIMqKnjyB04C1Iw+kV++GrGuBoXQ9b8wowvAAiSQi1tyWcZ8V7IftHEfpkN8Kf709vrwDBNiGGfLlSo3xg56uqp5r9TCmifgKhj99Muz49V1IFx/JLYVt0yUSqZrgt8f121DWoVo4zEjkcRPizvQh/9n56k12WU9LqWi9V4ksYBqOHPlI9NRvWxbnEnBX3kMpLA2THhDoT1O7DUVsH1qTgFEXUDyJ0aFdaos44XLAvWaOIYdHU4jHZ6AtpdAChA+mLOl/VoAzATRdNbEIRR82KwrpcsJVXzri9amQs6oId9pZLlAG4rGbKoUhvN4hKQSQzB2I5MIbQJ+8ifCw9UedKq+BovRS2lpUJBUtCGhYtR0PjTJqqScaizvHjYrgefFXjFEuVFA4jopIJY+ZEK1NRZwtL4Vi2HvYlqxMCX7NtXZyrUHGfhmOW+IEAQI5FEe5MHEjMeGmIJCLy5SGEDu5KyzzHV89XVoZNyxPEMI6q9QHm3Ic0OoDQwXcQ+fKQblFnBDtsi1fCsWx9ghhORu2ZcjbMN9y1QEhc1N/WHbAIKFXvHK2Xwr7oEjAa1bvUVoqAOX2hiPpuhI/t0y/qHA978wrYW9eDr2rQ/NuqPVNCWQV4T3r7JKTiK1F/S3fAIgCwhWVwtK6HffHqKRXvJhM+36ZqzjdjoiVHQgh/uhfhz/bqF3WGhW3+UthbL4VQ16yZU6/2XjA8b5lrYa4yZ8U9rPLy80UlEAqLrG9MhoQ7LgAq+ZhGmoEzEXVFDFcpK0OVDTSmo7rKYlk46tIvrKGFNDqomN/TEHWurGaSGCZPdxF9Y4gNJZadNdIMrIj6UWWlrlfUOR72hStgb71UqRiXYqKhaUUx8JnKRNT1iGEcIsuqq0Uj7yHuU1dW6jpFnWFhW7AM9tb1ShpeigIz2hYtA/siA1FnPYWwL10H+9K14HRUF1S7D/u8+lkRuDybmZPiTghRndnPNpO85irLgPsgkoTIlwfTEnWutBqOiy6HfeHFKcVwMqovf3UtWAPyR9MWdZaDfdElsC+/FHxFne5Vt6YlyICBmBAZ0TNHEfpYv6izhaVwLL8c9sWr0ioIojbRYh1O2CpmvsNV+qLOwNbUCsfyy8DXNunui2hfD2SVSmOGvBeEIHbhpLJS71HZl0IFxlUAx/L1cCxZq7vULqC+AAGMmaTIkZBifv9Uv6gLdYvguOgyCA2LdddqkCMR1YweapI3nzkp7rHBfkh+ldzwWfbAmbHKykjUy6rhWns9hPnL0jZBy7EYIh2JK5+Z9oU0NjQu6gdVAycTYDnYl66Bc9W14LzFaX+fGa6FTEXdufo62FsuyahYjmoMR0Oj7lrdashB31eiritFkoFt4Qo411wHviT9eAVT3osMRd256ho4lq3TdEklQ9W1UFIG3pv5XheKqL+vrNR1pkgKDYvhXLsJQmX6QbqagcuzbCE1G5mT4q7tb59l4q7mWigoBF9Ukva1iCQhcuIQQgfeTmul7ly7CbYFy3TXsJ5OpPMCiEpZ3UwH4oxEfcm4qBekL+pxVK0oDANHBrnhiqgfGxd1fVsYswUlcK65DvaWlRlXwBP9PsQGEgPzMjUDWy3qcYx8vxVRP6WY33WLundc1NdnJOrx71WzomT6XsiREMJH3ldW6haIehwrXAsUdeakuGtGb86i2SQhRGOVlV4AFyEE0TNHEPxwB+QxHduzwhhRj6Md1ZxeX8ihAIIf7UTki491ijo7LuobZyTqcdTuw15VAy7NetOxC6cQeP8VSINpivqilTNOjwqrpMAB6b8XJBZF6OAuhD7bm4aoXwTn6ut0xWikQu39Zmx22CvT2/JY7L2AwPuvQOxu03W+EaIeJ9rfC1llwyhHY5p9IYkIf/Y+QofeSU/U12yCUDXzdFqt93u2WUlnI3NS3NWjNwU4crDsrBbi8BAkX2Lpx3ReGmm4D4H3Xkbswild53OlVXCuvd4QUY8zUxMqITIiXxxAcN8OkLCOvaVZFvbFa+BcfS24gvQtHKptkCTF/DiNdFaKkn8UwfdfRfT0Z7rOZwtKxs3vMxf1ODN1LRBCED17DMG9r0D2j+j4DQa25ouUlboBoh5HPWuhUfffSQ4HEdy/E5Fj+6G6ldk0GJcHzpXXwtE6c1GPox1Po/+ZinWcQWDPS7rTJIX6FmWlnsEOcVqoWheLSsDPosDl2crcFPfzbQmfOerqwfCz588xkxnxxMrq8B4gyWYucbjSKjjXbIKtqdUwUY8TPp94H5zHC6GkTOXsqYh9HQjs2aovWtkEUY8T6e4EiSWuUHX1hSQhfOR9BD9+C0iymUscRdQ3wt6yyvBCJloWLT1WFGmkH4H3tiF2/oSu77I1rzBc1AFACoUQ7Uu0eugRRUJkRI4fQvDD7SBh9T3KJ6OI+vhK3eC6EmpjFKDvmZIDYwh88BqiJxOrJaoh1C9SVurVjWm0UB/qWQuzx0I6m5k9amYgsYH+hM+MTLuyAjXfKAA46ho1f4cQgti5zxHYu01XARqupEoxv5sg6nGiGn2RzLUgR0LjK6t9qct6sizsi1fDuXqj4aIeJ9qv1RfJn6lY51llZaUjWI71Fo/71I0X9ThRlWdKKK8E59SOtidiDKFD7yB06F1dE0Vlpb7JcFGPExtMfJ6A1H0hDnQhsPslXX51M0U9TkztmeI42KtrNX+HyBLCRz5E6KM3QHRMFIW6RcpK3QRRB5QiPJI/sZb+bBtrZytzTtylYAByWGV/ZB0rxVwiplKuFQCEUvX7kEYHFRN8+5cpr22FqMeJDQ0mfKZ1D4QQRE8cQuCD7SChFDXHGRb2JauVQLnCUiOaqklsOPEeAMCmcR9yYAyBD7cjeuKTlNe2QtTjxIYSnymtewCA6LkvlImijlgNW9O4+b0sPb93uqg9T4D2MyVHQgh9/CbCRz5IOVFknB44V14NR+ulpm9PqvZMCcUlms9ArPscAru3QhpM3P454Tomi3ocUbMvsrNF7Vxjzom75stfYq4AGI3qfXAc+IKpebREjCH0ybvKyipFbjHj8sJ9+S2wLbrEdFEHlJm9HEw0f6r1hTjQrZjgu9VNx1N+f/5SuK/YDK7Qmgmb1jPFF0+9DyJLCB/dp6ysUuQWMzYHnOtuUPy4Fu05riUo05HGhhDYuw2xc1+kvCZfMx/uK2+fqPluNnrfb0IIoicPI/DBa6l3auN4OFddC+clGyzbc1xtoiUUJ74XctCP4IevKXUcUsCVVsN91RYItdYEs2lNeoUScyxolKnMPXHXWvHmgbgLxSVT8pGjbccReO/l1CsrhoXjosvhXLtpYsMKKxA1X/6vRFmOhhH6KL6ySh4FzxaUwH3l7bDNX2poO1OhtukNWBZC0VdR+LHuNgT2bIU0kFgrfDq2lpVwX34rWJexpVKTIceiqgGak1e8RBIR+mQ3Qgd3pZ4oOj1wX34rbC0rLd37WltQvroPcahXmSjq2DlPaFgC91W3m279mY7qRGvSGEVkGZHP9yO4f2fKKHhGsMO5/gY4ll+WcZpkJmhPtGaXlXS2MvfEPY9X7vGZvTQ2jMD72xA7+3nK6/DVjXBvuCNpzXSz0O6LEmVldeozBN5/FSSYKDpT4Hg4V14D56prDItWTofoYGLZWb6wCAzHQQ75EfxwByLHD6S8DldSBfeGOyxbWU1GbaUIfPVMRc+fQGDPy5BHE+91CgwDR+tlcK6/wdKJYhxNK0pRMUg0guCBtxD+bG/KdEnWWwz3VbfDNn+ZGc1MChFFiKMjCZ/Hx6hY73nFBN+feotl26JLlImiO/PCN5miVo4ZULdAUIxnDop7fjxw6ibUYoQOvoPgwbdT5hczTjdcl90C++JVlpjg1dAaiFmOxdi2xyF2nE55DaFhMdxX3p6w05yVqFkghOJShI/tQ3Df66nziwU7XGs3wXHRFab71bXQWvGyTgd8rz+L6JmjKa/BV9bDffWdlpng1VB7pviCQsTav0Bw76uQA6PJL8BycK68Gs5V11pmgp9ObGRI1f/Pe73wv/OiUsshRYoeV1IJ91V3QJiXvY2wtCeM1CxvBXNQ3NUfOL545oVMrEJrZi8PXEBw/+spfpuBffl6uNbdmFbNcTPQEpTw+1vBO5I/mqy3CK4rboNtQaulZl811J4pJjyGwO6XUv6ubeHFysoqjZrjZqAV/BT55E0w3uSFeBiHS5koLlmdtYliHLVniuUY+Hf+IeXvCnWL4L5qC7ji7AZ8aY1R0S/3I9KffNMcCDa41myCY8WVWZsoxlHrC87jNWTPCEpq5p64qz1wBYWm7X9uBrHRYdWZPUuS+0H5yjq4N9wJviI3tlrUXLkLSQSC5eC8ZAOcqzdmbWU1GSJJykprGgySW0644goluKluoVlNSwutvkiuDwzsy9bBtf7GlDu1WYWaMLJM8hQ91lOoTBSblmd9oghoT3o5JrkrwdZ8EVxXbAbnKTKhVemj6jqcZe7P2cycE3e1Fcpse+Bigxovv129Oxm7C67LboZ96Zqsr6wmo/byszwHllNvozCvGe4Nd4ArrjC7aboRx0ZU/becXcP3zwvKyuriKy2LgteDprjb1O+DK58H99V3zKjuuNEQWVZ1kWj2BcvCcfFVcK2+Lq1dDM0mphLDAWjfB1tYBveGLbDVt5jZrLRJFhdEMZ/cGV0sQt1XPbseOM2ZvcrLb1+6Dq5Lb8qZldVk1AqOsCoTFMZdAPcVt8HWfFFOrKwmo2VCVRNFW9NyZWWVwa5zZhNV6QuGY8HyU5fujN0J16U3wb503Yx2ijMDyTemugmR2qSXr21SAklnsEGNWeieaPECnKs3Kil6OTRRBMYLZqlG/FN/u1Xk1hNhMoQQ9fzRWbRyJ2IM/o92qR6bLO5ceS3cG+40ZPMHMxB7LyByQaX07OQBjGHhWHEFXGs3gbGltwGLFRBZgn//26rHJgsKW1gK91VbYGtYbFXT0kIa7kf4ZGLA3PTJon3JGrguuxms02NV03RDCIH/43dUj01+ppRaDpthW3Rxzk0UAaXAUfDI/oTPGZYBw381mRLmL1UCSU2qujhTpIAfJBpN+JymwVnHnBJ3ZWaf6AudLdGb4kAX/G8+h8i5k6rHORsPgIFz9bVwrtmU9YAaNQiREf5kDwL7X4cUSizkEhcUtqAEnuvvNXQTCyORxobgf/M5hI6pV5mL34d96Tq4r7wtJ+IDpkMIQeT4AQT2boPoSyzkojxPSmaFZ+PXYWtcYnUTdSGH/PDv+gv8hxJFEfiqL4QFy+C55u6ctGIBSsU//64XVFfunF1QJiOCHZ4NW2BrWZWTk5M4+ZJyPJuZU+KebmnKXIEQgvCRDxD8cDsgiZCiiaZHhmXAFZXAe/29EGqzl/6SDMk/Cv/bf4LYcRokJoLIiUGBnF1QirhsuANsDq7WASBy8lMEdv8vSDQMKaIeOMd7vfDceC/sTcstbp0+5HAQgd0vTexCp/ZMcXYBQn0LPBvvyUqetB6i50/C//afQII+zb7gXE64r74T9mXrc1IQiRhD4IPXEDn6IQCo3gdnE8BV1MF7/b1ZTfvUi96qjRTzmFvirlW9KocfODnoh3/Xn6fUhFd9+T1uFH3zb7Ke3qZF9Owx+Hf9BSSibMuqJiYA4LpoPbybvmll03RDomEE9ryMyImvSn1KURVBYRkUf/vvwOegbx0AYl1n4X/z+YltWWVRApESgwIdC5bAu/nBnArCjEMkEcH9OxE+vGfiMymi/kwV3f0oHPNzK9gsTtwaN3nzILV3w1Zdi8Kv/TAnrXFqJCtQRbGGuSXuGlHmuWoqirZ/Cf/bf07YJEVNUOy1jTkp7CQWReD9VxH5fKrJVGuV5VxysQWtSp9Y73n433wO8ujUZ0hNUITS8pwUdiJJCB14C6FD70xJpVSdoABwLl6Rk8IuDffB9+ZzkPo7p36uOtFi4ahvtqhl+plujYsjSzKImJi651i0fNYIO6CvtDTFXOaWuM+SjQyIGENw3+tKmUwVVAUlBycoYn+nsioZTty+Ukvcc82KQmRZ2Xjn4zdVU97U7iMX+0IaHYT/zecg9p5PPKax4s21+yCEIPLFxwjs3aZagVG1L4q0d1LLFmrWuDiz5b1IherKnWGm7LdAMZe5Je5qDxzLgi8osrwtWki+Yfh2PJOwKomjNbPPtZc//PlHCOzZqrnHt7ag5M5ESw4H4d/5e8SSlMFVWy3mWl9Ez30B/5vPae7xrRk3kEPiTsQY/LteQPTUp5rnqE96c+d5ApQNhHyvPwMSVN+yWMuKkmsTrVSolgEuLM65iVY+M7fEXWX3rlya2cd6zsO34ynNFx8ACKceZCaU5sbLT2QZwQ+3I/zpe8nPcxYC6Jn6IcNAKMqNwVga7sfYa08m3yiFt0GOqUy0csT0SAhB+NP3EPxgO5LVIlf64kLC57kiKHJgDL4dT0PsTWzjBBwPGYnvca70BQBETnwC/64XNCe8AAC7euBirvSFXlTH2hwZo+YKuedQMxE5opJ65cmNnN3IqU8xtvX/SyrsQuNSuK+/V/UY57Zue1AtSDQM346nkwu7YIP72nvAVSamuLFOJxg++/PNWMdpjL74q6TCzlc3wrvlB6rHcuGZIpKIwLsvIvjBa9AUdpaF67JbYGtaoXqYz4FnSuzvxOhf/p+kws6VVKLw7v8LRK1SYC70BZER/OgN+N96PqmwOy7ZAPvFG1SPcZ7s90U6qI617uz3xVwi+yOphZBYosmLEazfInQyhBCEDryt+HS14Hi4r9gMe+ulCJ05pXpKtu9D8g3D99pTkAa7Nc/hKuaNp/KUA28mFuJhs7Bd63QUd8JL2luCMiyca66Dc/W1qrnhAMBmuS/kcBC+159Nul85W1gG7w33ga+Yh+EvnlQ9J9vPVPTc5/C9+RwQSyyGEsex/HK4Lr8FDC+ov99ZfqZILAr/rj8jevqI5jmMqwCe674OW/0ihHa+qnpOLrwb6aDWF9l+L+Yac0vcVYJwsrlS1ONH5Eoq4bnhW+BLqwAAssZWrmwW70OPO8FxyQa41t84USZTzrGBWI87gfUUwXPDfRCqG5Xf0RCdbD5TetwJ9sWr4L7qjol66moDMZC9+yCEIHx4D4If7oCW1YGxO+G57huwzV868Tu5Ju5yYAxj25+G1KdtdRAaFsNz3dcnqv5pvd+5YNFKh1x7v+cis+uJmSFqD1y2ZsRy0Aff9qdVo5fjCA2L4bnhvinFXDQH4izNiiMnP4V/15+npPNMgePhufZu2FtWTvlYrQZ4tu6BRMPwvfkcYm3HNc/hK+vgvfk7U4q5qN0DkL1BLHbhFHw7f59k/3gGrituVbYDnVTMRW3SC47LSu14IokI7Nk6vme5OmxROQpu/SvFAhRHUjd3Z2u1KPZ3wrf9Kch+7f3jHZdsgOvSm6f8nTWfqVm26lV9v6m4W8qcEvdcERRxoEt58X0jmuc4VlwB1+W3gmGnBgmpDsSw/sUhhCD08VsIHXhL8xzG6YH35gcmVrpTfj9HXCTS2DB825+ENNijeY5t4Qp4Nn494W+sNdHKhqCEj+1H4L2t2u4EwQ7v9fdOrHQno7ZazMY9yKGA4k7oOqt5Dj+vGd4b70+o6aA2cQey80xFzx6D763ntd0JLAv31V+DY+nahEO5NnnPFCIm3vtsu4fZztwS9xwQlOi5L8b9iOppSWBYuDdsgaP1UtXDufDy63MnVMF7619pbmyRC4IS62mHb/vTCUWCJuNcswnOtZtUy5bmgqAQWUbwg9c0ayIAAOstgveWvwJfVqN+jRwwoUrDfePuBPVaFABgX7ZOcSeoZLdoTnqt7AtCED68G8EPX4e2O8EF703fhjBPvUS0totkdgmjqs99lrkWZjtz6q+dzUFMT1oSY3PAc9P9sNUt0r6OhtnOqhdHSUt6Jm13wnSyHf8QOXlYSUtK5k7YeA/siy7RvEa2zfJyNAz/G88h1p7MnVAP780PJK0Nn20TavTCSfhf/z1INDHCerw1qu6EyWhbtKx5pogkIrD7JUSOH9A8R9WdMP06Wu/3LFv1yjliJZ3LzC1xz9JqkUjSuB/xI81z2MJSFNz6ILjiiqTX0l4tmr/rmDjQBd9rT03UJFfDseLKcXdCcn9ttiZaijvhTYQOqG/VCoy7E275Tsod6bJpRZHGhpTshKFk7oSL4dl4T8q/azYtWuFj+xDY8zJA0ncnTEbrvbAipmYm7oSEa6ndB8vmTC0OPRBZVo2BoOJuLXNK3NVMwWYLihwOwrfz9xCTVDnjaxbAe9O3dW1FmS1BUdwJf9T2I6ZwJ0wnG4KiuBP+jOipzzTP4Uqr4L3lQXAFqctkqvkVAfMFJdbdBt+OZ5K7E9ZuUrb91bELmmqgqdl9IcsIfvAqwp+9r3lOKnfClOtl6b2YqTthOqq+6llmzs617Iu5ypz6a6uvFs37E0hjQxh75QnII/2a59iXrIH76jsnUsRSkQ3zY+jIBwi+tw1J05Ju/FZSd8J01MyPZoqiHA7C9+rvUrgTlsB7w71gdG41q2Z6BMzti8jpI0oxlKTuhK/Dvuhi3de02kVCxBh8r/8+tTvhlu+Adekr3pINF0ms8yx825/SdicwDFyXb4ZjxRW6t5rNtovECLRdC+ZbFylfMWfEXTMP1qSZvTQ6iLGXf5MkIp6B67Kb4bhkQ1p7TGvnuZtzH6FPdis7V2nAFpYpfsQU7oTpqObBmtQXcsiPsW2PQxrQLrDjuPgquC67Ja30L6tXi5ETh+F/+/kpO7pN+V6XB96bU7sTpqMq7ibdA4lFMbb9qaSWLL3uhKnXtbYvYhdOYWz7U6ob2ABQ3Ak33Adb45K0rpsPxV+0c/Vn133MduaMuFuZByuN9GNs62OQAxo5rryg+BEXtKZ9bSsHseDBXQjt36l5PB13wnTUV4vG34Mc9GHs5cem7Jc9BZaFe8OdcCxbl/a1reyLyJcHlQBADWHnSquV7IQMtppVj2w2/h5INIKx155M6pt2rr0ezjXXpTXhBZJMek3oi2j7Cfh2PK1pPWG9xePuhOq0r61e/GV2DdO5WNxpLjJn/tqagWgGD2LScB9Gtz4GEhxTPc56CpUXv7w2o+tbVeQi+PFbSUviputOmI4Vq0U5MKYIu8qWs4DiTlDSkjLb79uqyObwFx8j8M6L0HKLCI1L4L1evzthOlZENsvRsOIW6W5TP4Hj4bnu67AvvDij61uVQhZtOw7fjmc0a8Sn606YTq7U4pgJ+VKIZ7YzZ8TdijxYcbAHY9se0yzDypXXouDWB5OmJaXC7EGMEILQR28gdDCx9nscxZ1wddqrqynfY3IerOQfUawnGmVY2YISFGz+Lrhi7bSkVFgxYQwf24fA7pc0jyvFjjbPqJqc2bEociQE3ytPaMY7MA43vLc+CKGqPuPvsCIWJXr2GHw7/6Ap7LbmFfBcl1jsKB2ssqKYSS4Vd5rLzHlxN+rFEQe6MPby4yDhgOpxvrIO3tu+B9bunNH3aKb8GPDiEEIQ3LcD4U92a57j3nAHHMsvm/F3melzl3zDGNv6G8hjidtOAuNxAnd8H5ynaEbfY3a1QCWQ8WXN487VG+Fcd8OMJlmAuZkLcjiIsVd+C6mvQ/U44/SgYMv3J/ZOyBSzXSSR00fgf/OPmhUA7YtXwX3tPTMu2aua0TPLRFF70jtn5CYnmDN/bTOriYn9nYqwR4Kqx/mqBng3PzRjYQc0TF4G5MESQhB8/9Uklc4YuK/5Wka+6YTvkiTVQdKIvpDGhhRh9w2rHueKK1Bw+8NgPYUz/i4zrUGhT99D8H31HcKA9FLdUmFW5oIcCowHMnapHmdcXkXYSypn/F1mukgipz6F/83nNXPx7UvXwn3N18AwM6/Fb1UsiplQs3xuMGfE3azcS7H3AsZe+a3mZh18zXwU3Ppgxv7Q6ZiRB0sIQfC9bQgf/UDjDAbujXfDsWTNjL5n4vtMSiGTRgYw9vJjmkV2uJJKFGz5fsb+0Olomh9neB+hQ+8iuG+H5nHn+hvhWr1xRt8xGTNWi3LQj7Ftj2nW7GfdhSjY8v0ZuUWmfJ9JLpLIiUPwv/1nzUBGe+t6uDfcYYiwA9an65pBvpTQne3MrqdmBphhtov1tMP3yhOaea58bZMi7Abmdxpd2Y0QGYHdWxH5fL/6CQwDz3XfSNjVbSZoRzZn/neShvsw+vJjIAH1QEautBoFWx6e2FrTCMywBgUPvI3QR29oHndddjOcK6/J+PpqGP1MyYExZcWukaHAeosUYS8sy/g7pmPG+x0+fgCBXX+BViCj46LL4brydkOsJ3FyYf+LmZKt4k6UqcwZcdd6QYHMXsxY9zn4XvkdiMYGMELdQnhv/o7hZWHVFhCZDi6EyAi8+7/a22syLDzXfzPjCOYkX2zo5cShXoy9/BhI0Kd6nCuvRcFt38soZS8pWveRQX/oKYvrumIznBdflfa1dXx54mcZPlOyfxSjLz+mWbiJ9Raj4I5HNDcUyhxjn6nw5x8h8O6LmscdF1+llFk2UNgBqPaF4d9hMpqv9yy7j9nOnBF3rZWIlt80GbHOMxh77UnNUqxCw2J4b/q2KWYoNR+i1goyGUSWEdj1AiInDml8EQvP9ffB3nxR2tdOhZYfVGv1lQxxsAdjL/8GJKQeyMhVzFOEPUVN70zQWlGRWAxII7yCEILQ/p0IHXpH8xzXVVvgvOjydJuoC0YQgPBUt1ImfSH5RhS3iFaGQmGpsmLPIBc/FUa+3+GjHyKwZ6vmccfKa+C69CZTRFdtMZDJ+51NtN7v2XYfs525I+429RU0iWrUStcgVWUqoXEpvDfdn3H+dyrUXn4Si4IQor/EpSzB/9aftLdsZTl4b/xWRkV29KA1EMtades1EPs7MbbtcZCwRiBjZT28t33XkEBGNViNZyqd+yCEIPjhdoQP79E8x331nbpr9mcCK9gwPbkr3b6QxoYUYdfKUCgqV4TdgEBG1esb9H6HPtuL4N5XNI8blaGgBWNLfDe0isLkKlrWytl2H7OdOSPumrPJNGb20fMn4Nv+tGZlKtuCVnhuuM80YQc07oMQpQKfjsAbIknwv/UcoqePqJ/A8fDe9O20y2amA8NxAMclVA1MZ7Uo9nUowq4VyFjdqGQoGBTIqIbmalHnfSgZCq8k2TyFgfvau+BYujbDFupDzQKRTl+kKrXMFVcogYwzqO+QCi0rSjqrxdDhPQh+8Jrmcefa6+FauynttqWDml96tq14k1q0KJYxZ8Rdczapc2Yf6z6nVKbSEvbmi+DZdK/pWzNqD2JRcCnEnRAZgXf+klzYb/kObPUtM21mSljBBlmaKsx6BzFpuC9FhsKC8QwF+4zbmQzNlbvOZyr00Rvaws4wyn7yi1dn2jzdqE0Y9Q7E8eA5TWEvqVICGQ3KUNBC8/3WOXkPH9uXVNhd62+Cc/W1GbUtHdQsjLNNFKlZPjeYM+I+Ez+vONAN32vapnjbokuUylSs+XsuZ+rnJYQg+MF2bR87L6Dglr+CULfQgFamJlM/r+Qbwdi232qa4oV5zfDe8leW7G8/Ez9v6LO92lUAGXY8Q+GSmTRPN+p+3tQTFDkSUnY91DDFc2XVSk0BAzMUtNAUlGjqvoicPoLAbm0fu+uyW+BceXWmTUsLtWdqtpmzqVk+N5gz4p6pnze+bavWKtHesgrujTOvTKWXTP284cO7Ef70PfWDgg0Ftz4IobZpps3TTSZ+XjkUgO+V32rmsQv1i5QMBYtSbjL180ZOfKLt12VZeK6/F/bmFTNtnm7U/bzJRZGIMfi2PwVpUH2nPa68VhF2EwIZ1dBeuSfvi9iFU/C/+Ry0ou1dV94G54orZ9o83ag9U7NtxcuqPE/A7LNAzHbmjrhn4OdVCnH8VnMTGPuSNXBfe5dhBSz0kImfN/zFxwh+qFEURbCh4LbvQqieb0TzdJOun5fEovC99qTmJjBmZihokYmfN9r+Jfy7/qxxQRaeG74Fe9NyI5qnG3U/r7YoElmC740/QOw6p3rczAwFLTQtWklW7mJfB8aSbALjvmoLHCZlKGih/l7MrhWvUQGzlJlhnSrlAGpFUrQGYjkaxtirT2im9dialsN9jbXCDqTv542ePaadr8ty8N78gOXCDmj5edXvgUgifK8/o7nxCF89H94b77e8Apa2+VH9mYp1t8H3+rOa9ck9G++xXNiB9Py8hBAE3v1fxM59oXqcK65AwebvWirsQPp+Xmm4H2OvPgFo1Klwrb/JcmEH1Meo2bbi1bRozbL7mO3MmZV7JBKB98bbIEoSRI4DEQQwNjuildXo6emB0+mEx+MBx3HjJsenIfV3ql6Ln9cMz/X3WmaKjyPLMkhlDby33gmR5SBxHGCzg3U40B+NwTUwAJfLBafTCYZhEOs8C98bf9SoKsHAs+mbsNUtsvQeACAajcJ11UZwvjFILAd5vC/k0jJ0d3dP9AXP8yBEhn/XC4idP6l6La60Ct5bjC8WlApCCKSCQnhvuQMix0HmeBDBBtbhwJDdiUh/P1wuF1wuFxiGgTjYA99rT2rGbbiu2Az74lWW3gMAiKII28p18MxrQIxlQXgbGLsdnLcAXV1dE30hjItncN/riBw/oHot1lOopB4aXSwoBYQQxAQbvLfcAYnjILHcRF+MlVdB7uubuA+GYSD7R5WATI3aCI4VV8KxytgqgHqQJAn8klZ47A6ILAeZF8DY7WAdTnR2dsLpdMLtdsNuNzdQdKZEJAkF4+9FvC8Yux3B2jr09vZO9AVr8fiZDrIsw+/3IxQKIRQKITY+MWEYBg6HY6IvHA7zsnFmCkOIweXCcghCCMbGxjA4OIhgUD0AazIMw6CoqAgFvWcQ/VB90w6uvBYFdzxiaorVdGKxGAYHBzE8PAxJUjchTsZut6OkqAjsG09pVgozane3dPD5fBgcHITfr74l7nQKCwtRFBxE9K0/qh5nvcUo/NoPDdkERi+SJGFwcBBDQ0MQNWrkT0YQBJSUlMD2/ksQO0+rnuNYeQ3cl91sdFOTEgwGMTAwgLExdZfTdDweD0pYEbFXHoeaf5qxu1DwtR8YsgmMXmRZxtDQEIaGhhDVkaHAcRxKSkrgPPIuYhqBpbZFl8Cz6RuWWuTC4TAGBgYwOjoKPcOxy+VCaWkpCgoKcqZ6HSEEIyMjGBwcRDisXo57MizLori4GKWlpbBprPSzQTQanRhrZQ0L22QcDgdKS0tRVFSUM30RJ2/FPRKJoLOzU5eoJ0AIKvtOgj0+td46W1imiInL/OhfpRkEw8PD6Onp0fWgTcchRVBydBfINIF3rt0E19rrjWpmSmKxGLq6uuDzqZeHTUXZ8AUIR96dYoFgnB4Ufu0H4IqM2XhED2NjY+js7NQ1wZqOIIsoP74HpH/q1qfKjmJ3WTYwSJKEnp4eDA+r75qXiuJAPxyfvDk1JZQXULDl+xCqGgxqZWr8fj86OzsnVlTpwBIZlWc+AjqmWoOEhsVKQKbJ6axxZFlGX18fBgbUXX+pcLvdqK2tzbo4hkIhdHR0IBJRd3Ekg2EYVFZWorS0NKviSAjB4OAgent7dU2wpuNwOFBbWwun05yCWZmQl+I+OjqKjo6OjDppMgV9Z+A+/gFACBhXAQrv+qEJNbHVkWUZ58+f173K1YKJRVB58n0w46JiX34Z3FdtsexFCgQCaG9vz2hyMhnXUCcKP98DSDEwgh0FdzwCvmKeQa1MDiEEXV1dGQviBJKIijMfgetSVvDCgmVKrIAFKZSAskJsa2vTZXFIht3Xj5Jj7wKREMCy8N7yIGwN5tdGAJS+6OvrQ3+/ukVK/4VklLV/CqHtKABlW+aC2x+2zL0TjUbR1tamy+KQDIZhUFdXh4IC8woEJWNoaAhdXepb+qaDy+VCQ0MDOIsmVpMRRRHt7e0IhdQzotKhpqYGJSXWaEQq8k7cR0ZG0NHRkfpEnbhGulF0aj8KNn8XfFm1YddNhizLaGtry8zqoIYkofLcx3A4nUqsgEUmR7/fj7a2NsOuZ/cNoPT4Xniv/yaEec2GXTcZhBBcuHBBt/k69QVllJ0/AmfEh4LbvmtZEGAoFMK5c+dmPMmKw4fGUPHFbrgvvQn2Rdbk4xNC0NPTg8HBQaMuiOLek3D1taHwzkctCwKMRqM4e/bsjCdZk6mrq0NhoXXuKQAYGBhAT4/6lr6ZYLfbsWDBAksFXhRFnDt3LiOrgxbV1dUoLS017HqZklfiHgwGcfbsWcOv6xB4NC1qsWy1e+HCBYyOjhp7UUJQU12NkjLjttlMRjQaxalTp2ZsPZkOzwALFy+xbADo7e2d+SpxOoSgoqwUFdU1xl5XA1EUcerUqYzcCclgiYyFi5dMBNuZjVGrxOkUF3hRW2+NS0GWZZw5c8ZQMYnT1NRkmVnY5/Ohvb3d8Ou63W40NjZaMtYSQtDW1oZAQD2wciY0NDTA6zW3KmMqcjdcMU1kWcaFCxdMuXY4Jho/wGswOjpqvLADAMOgu7d3xmZAPcRXu2bMG0UCdHerF04xmmAwaE6/Mwz6BocMMQPqobu723BhBwCZYQ1xf+khEomY1u/DY76M40HSpa+vzxRhB4COjg7DLDPJEEXRUOvoZAKBwMzdXzoZGhoyRdgBpS+MtMxkgmni7vf78bWvfQ233347Nm/ejBdeeMGsrwIA9Pf3ZxRcoxczX8o4siybsjKJEzdrms3IyIipwjUyMmLaSxmHEILOTvVUSKPo7Ow0XRj9fr85k8VxAoGAqdeP093dberfyoq+iEfFm0UkEjHOZZGE3t5eUyaLcbq7u00XRlEUTR0LJUlCX596wS2rME3cnU4n/vCHP2Dbtm144YUX8Nhjj5k2I4unxJhNut8hdZ1G7Mv9INHUqSGAsmo386UBlIjvdFfv0c92Qept0zX4EUJMHcDipDuISUNdiB57DySkL0AxEAiYPpkLh8NpT4JiX3wAsfMkCNG3QrOiL9L9DjkwiujhtzXLCE8nEonMOLA0FaIoph1XETt9CGLbMRCd76wVY9Tg4GBakxQiSYgc2A55VJ+FShRFjIyMZNg6nW0azxJKB7H9c8ROH0pZbjjO8PCw6ZM5vanLZmGauHMcN+H/iUQiSgEWk/6YY2NjlvwR9eY+xiFSDOLpQwi/86wukbdi1g2kP8jII/2IHtiOyPsvphT5YDBouigCSp+nZamRJUhtRxF+9/e6RN6qvkj3e2T/MGKH30Jk9/MpRT4ajZouikAGkxRCIHWeQGT3c7pE3gpRBNKfpJCQH7FjexB59w8pRV6SJEvMzaIopu1ikHvbENn7gi6RHxkZscQNk/YkJRaG+OV+hHf9PqXIx9PezCaTSYqRpF2hTpZl3Hzzzdi4cSN++tOfTny+d+9ePProo/iP//gP3HTTTQCUAfhb3/oW2tvb8Xd/93empQhYMYAByr2HR4fg4PQFe0wIiKiIvNh2BHzjReAXXAxmWhEcSZJ0FX8wAr/fD3ksjYd7PKeZjPYhemA7mMIKCIvWgK1oSAh8MdtcPpng6BC8Nn2PMAmMr8pkGVLbUUjnPwdXvwxC00ow03YtI4RYdh9+vx+yf1izJG0C44MWCYwgdvgtiCcPgF+0BlxNc0IWhJV94R8Zgj2mr7ATCcXFRxF5qfMkuNpF4BeuBuspSjjfKn94KBSC5BsGo9MqgvHJOgkrIi+ePgS+eRW4uiUJufKhUMgSUQQA/9gIPNA58Z1UV1/ubUOktw1sZSOERWvBFibWkLBqrBVFEdGxYQiMvr8ZiYxnFo2LvHjmU/BNF4NvXA6Gn5reGI1GLfOHBwIBlFkUxDydjKLlt27dip///Od49913UVhYiC+//BL33nsvfvjDH+Khhx5KOH9gYAA/+tGP8Otf/9qUGz158qQlgWIAUB/phtCtXgpVN7yQIPJGp42loqltz4yvoSbybW1tlg0ANeIQnB1HZ3YRlk0Q+UgkglOnThnQQn009RwEwjMTYsZdlCDyXV1dlq16y4gfhe0a2wnrhkkQeVmW8cUX6nXszWDB8HEwozPzlTIOT4LI9/f3o7e314gmpsRLIqho35/6xBRMF3lCCL788kvLTM2NgTZw/TOMyBccCSJvdLp0MjiOw5IlSyz5rulkZJbfvHkziouL8fvf/x49PT14+OGHcfvtt6sKOwCUlZWhpaUFBw6o16SeKVYJOwBjHmwx0VxvhSnbaOIr+cnmeivvw5DZ9/hKfrK53uq+MGJBF1/JTzbXW2UJAoCYjn3TU5Norre8L+SZd0Z8JT/ZXG/lfcQM2n1turlelmVLfciyZEDkv4q53sq+kCQpa373jDaO4Xke3/ve9/Cf//mfeOONN7B06VL80z/905RzBgYG4HA44PF44Pf7cfDgQXzzm980pNGTsTpN39Dvm2SuZ5qtrfNuJHGRZ8vmgXit2xPe0L6YZK5nmtcDsHKHOePuY8Jcf+YwUNFq2HVTfq+h7+FX5nrStAqAdRvRECP7Im6uP3sYqFtt2HVTfq/BY2LcXM/UtwJMCWBRvQ8j+2LCXH/2U7BNlxp3XR3IspyVynsZ7wq3efNm/OIXvwAA/PKXv0xofE9PD/7xH/8RhBAQQnDfffdh8eLFM2ttDsDA2AebLa+HsGgNgrIAWJS/bTi8DfyCFeDnrwDOnAMs8mcZXeiCKaqE0LIWMVshYFLNBNNhOXANrRCaLgHp7AFEa3LpDe8LbwmEhWsQLaoBTChMZQkMA27eYvDNq0CGxoCI+SmDytca3BdOL/iFq0GqmoCT1rmrDB9rq5ogLFqN0aAIhMzPIomTrZr5GYv7z3/+cwBKBLnarKS1tRXbtm3LvGU6YRgGgiCYmuM+GZYzJsEgLupscRUAQDCqvKmVTBJ1RlC2obTZbJYFq3CcMTsWx0WdLatTnieListMfL8RL/8kUWccykrXbrdbViiH5w3qi3FRZ6ublL6wuBAIa0Rp5kmizrqVkrA2v3UuEsP6YlzUuXktYFgOhBAwDGOZtdSoLWHjos4WKPFeNtGaOBRAuYdsrNqBDMX9v/7rv7B792688MIL+M53voMXX3wR9913n9Ft043T6bRM3LmahRAq63SdKw91Qbrw5ZTPpot6HCt3E7LZbBBWXKv7/NiJj6YGfKmIehyXy2VcTfwUcBV1EMr07QpHfEMQz3465bPpoh7H4XBYNoixLAthyeWArE/ExLOfgfgmZTqoiHocp9Npek5yHK64EkKJvmeKRIIQv5wa8DVd1OPwPG/p5F1YuAqMqM8nK3WcgDw4qdCRiqjHsfL9FgpK9L/fsozY0d1TPpou6hOfMwycTqd173f9Mgi1+tx8Um875J4zUz6bLupxrOwLp9M5e1buf/nLX/DUU0/hmWeeweLFi/HAAw/giSeewD333GNZjenpuN1u4zb2SIGzsl73TEwEJsRdS9TjCIJg2SDmdrvB19bqPl88+xlIOJBU1OO4XNZsvgEAzrIa8Hb1dkxHGrgAjIu7lqjHsXIQc7lc4GsbdZ8vdZ9RxD2JqE++tlW4SirAe/RthSz7RybEXUvUp1zb5bKkCp7NZoNQvUD3+fJIHzDYmVTU41j6XhQUg9eZdkwkaULctUR9Mm6325L3gmVZOKr115gnkeCEuGuJehyHwwGWZS0p1Wtlv08nLXHfs2cP/vVf/xW//OUvcfHFFwMA7r//fjz55JPYtm0b7rrrLjPamJLCwkL09PSYvtIqLCxM28SSStQnU1JSYkm6TLr1BhjBBm7RmqSiHsfr9YLnedNN8y6XC3adwh4nlahPpqSkxJJBLO3aDxwPbv6KpKIex+FwwOFwmB41LwgC3O70gt70iHqckpISS8Q97Z28GAZc3ZKkoh6H53l4vV7Tc/YZhkl7dzg9oh6nuLjYkn02iouL01zxMilFfeJMhkFxcbElhWyKi4tN/w4tdOe5Hzt2DPfffz/++q//Gg888MCUY//93/+NHTt2YMeOHVnzL3R2dppeDWjBggVpzcSIJCUUs0iGKIo4ceKEqZMUp9OJpqb0ItrTvY++vj7T6yqnu8UlkSSAZXUPGLIs48SJE6amsfA8j5aW9HYbTLcvhoeHTa+RX1VVlVb9CiJLAKO/LwghOH36tKkpTAzDYPHixWmNX+n2RSAQwLlz5zJpnm5KS0tRXa1/a2pCCEDklKI+mfb2dtMnKYsWLYLNZkt94jjp9oUVtSy8Xi8aGqzZbVCNvNnyNRaL4dSpU6aZWgoLC1FXp8/XPhPMLnaR7gQlEyRJwunTp01zMbhcLsyfP990X5bZxS7q6+tRUFBg2vUBZfA+e/asaYF1NpsNzc3NhgU/aWG2MFqxB3d8t0SzXIgcx2HhwoWGBdRpEYlEcPr0adMWIWVlZaiqSm3pnCnd3d2mrd4ZhkFzc3Pa1kUjyZstXwVBQG0afuR04HkeNTXW7L1dVlZmWsBHeXm5JT4gjuMwb948U67NMAzmzZtnSZBKYWGhaeJbVFRkurAD5v+96urqTBd2QPH1mlXG0+12m1YaezIMw6CmpsY062Ztba3pwg4oWRhmia/NZkNFRYUp155OZWVlWtaBdKiqqsqqsAN5JO6AMhgbPQAwDIP6ev1BdEZ8X11dneEvqcfjseylAZQBMx3zoF7q6upMeyGnwzAMamtrDX9JHQ6HKX8bLex2uymTrZqaGksjjysqKtL27adCEATLJouAslCor683/PvKy8stmSzGKSkpSdu3nwqO49DQ0GDJZBFQgvbMGNuLioosmSymIm/M8nEIIejr6zMk6INlWTQ2NmYl4jEajaKtrc2Q0roFBQWYN2+eZS/NZAYHB9FtQHGe+CTL6/Ua0Kr0EEUR7e3thpi2XS4XGhoashKbMjo6igsGFeepra3NSrCQLMs4f/68IfsX2O12NDY2ZiXLJxAIoL293RA3YkVFBcrLyy1PuSKEoKury5BYJ57n0djYCIdD3+ZDRhIOh9HW1mZIEHBxcTFqamqylv42mbwT9zhjY2Po7OzMOCDK4/GgpqbGslWiGpIkoaenJ+OXh2EYVFVVoaSkJKsPWyAQQEdHR8Y+eKfTidra2qy8+HFkWUZ/f/+MJo0VFRUoKyvLyiQrTjgcRkdHR8YR9DabDfPmzctqik98y87e3t6M/b4lJSWorKzMWgAwoEzgOzs7M969j+d51NbWZmXCG4cQgpGREXR3d2c8USksLER1dbUlLgUtRFFEV1dXxvEQLMuipqYGhYWFOSHsQB6LO6CIY39/P4aGhnQ/eA6HY8LElSudFAgE0NfXp3sQiKfDVFRUZHVyMhlZljEwMIDBwUHdEy6bzYaysrIM0mLMIxQKoa+vL61o4YKCAlRUVGR1cjIZQgiGhoYwMDCge8LF8zxKS0tRWlqa1cnJZKLRKHp7e9NKk3O73aisrMzq5GQyhBCMjo6iv79fdzYAy7IoKSlBeXl5VicnkxFFEX19fRgeHtY94XI6naioqMjq5GQ6Y2Nj6O/v122li6fVVVRUZHVyokZei3scWZYxNjaGQCCAYDA45SViWRZOpxNOpxOFhYWW+hDTJRKJYHR0FKFQCKFQaIoZyWazwel0wuVyoaioKGde+ukQQuDz+eD3+xEKhRAOhycGA5Zl4XA44HQ6UVBQAJfLlTOiPp1YLIbR0VEEg0GEQqEpIikIwkRfFBYWZq24Uyri+9b7fL6JZyreFwzDTPSF1+uFx+PJ2b4QRXFKX0x2ZfE8P/F+FxUV5cxkdzqEEIRCIYyNjU30RXxBwjAM7HY7nE4nPB4PvF5vzkywpiNJ0sRYGwqFpoy1HMdNGWtzZbKrRjgcnjLWTl6QxPvC7XajsLAwZ/tiToi7GpMHsdlKPtwDkB/3Mfk1yof7yId7APLjPmbzPQD5cR+z8R7mrLhTKBQKhZKv5KY9gUKhUCgUSsZQcadQKBQKJc+g4k6hUCgUSp5BxZ1CoVAolDyDijuFQqFQKHkGFXcKhUKhUPIMKu4UCoVCoeQZVNwpFAqFQskzqLhTKBQKhZJnUHGnUCgUCiXPoOJOoVAoFEqekVt71FEolLzGdsmDYFgOLG8Dw3JgOA5c/GeWnficFcb/nXzu5M95G1iWAcMy4DgWzLSfOZ4BwzBgWQYsz4Jlxo/zLBhm/DjLjP/MgmMZcCwD2/jP9onP2InPOEY5zk86j1P7mWEgsMp3T/6ZHf+ZY8c/Y6b+LHDK+fGfGQZgwYBjAYbB+DGAAcCxDFgoG5lwrLJK41gGDACWmfwzAxYEIDIYWQTI5J9l5Wdp/GdZAjP+GWRR+Vme9LksArIEIsuAGAWRJECWQcTo1H8lSTk+/rtEjCn/xqIT15PFGIgkg0gy5JgIIsmQYl99Jo1/NvW4CCIp3y9HRciSPP6zBFmSIcXk8d8hkKISZJlM/EwkAikmQZaIcq2o8rtSdPw7JAJJlCERAokAUZlAImT8X0z5bPLPMRI/Pvlcgv9XbsvmawaArtwpFAqFQsk7qLhTKBQKhZJnUHGnUCgUCiXPoOJOoVAoFEqeQcWdQqFQKJQ8g4o7hUKhUCh5BhV3CoVCoVDyDCruFAqFQqHkGVTcKRQKhULJM6i4UygUCoWSZ1Bxp1AoFAolz6DiTqFQKBRKnkHFnUKhUCiUPIOKO4VCoVAoeQYVdwqFQqFQ8gwq7hQKhUKh5BlU3CkUCoVCyTOouFMoFAqFkmdQcadQKBQKJc+g4k6hUCgUSp5BxZ1CoVAolDyDIYSQbDeCQqFQ0iEajeKxxx7D97//fdhstmw3BwBtk15ysU1A7rYrU+jKnUKhzDqi0Sh+/etfIxqNZrspE9A26SMX2wTkbrsyhYo7hUKhUCh5BhV3CoVCoVDyDCruFAqFQqHkGVTcKRTKrMNms+FHP/pRTgU+0TbpIxfbBORuuzKFRstTKBQKhZJn0JU7hUKhUCh5BhV3CoVCoVDyDCruFAqFQqHkGVTcKRTKrGB4eBjf/va38Y1vfAO7d++ecqy/vx/f+ta3cPfdd2PPnj050aY4P/vZz/DRRx9Z0p5oNIpHH30U3/jGN/DCCy+k/DybbYrzq1/9Ci+99FJOtCkcDuOhhx7CPffcgxdffNHSNhkNFXcKhTIreO655/DQQw/hmWeewTPPPDPl2Pbt23HPPffg2WefxZNPPpkTbQKA06dP4+2337asPTt27MCVV16J5557Djt37kQkEkn6eTbbBABDQ0OWTzaStWnv3r1YvXo1/vSnP1Fxp1AoFCv4/PPPsWrVKtjtdng8HoyOjk4ca2lpQTAYRDgchsPhyIk2AcDvfvc7bNmyxfL2sCyLRYsW4cyZM0k/z2abAOCJJ56w9O+Tqk0LFixALBaDKIoQBMHydhkJFXcKhTIrCAQCcLvdAACn04lgMDhxzOVy4Te/+Q22bNmCW2+9NSfadOTIEdTW1qKwsNDS9rhcroT2aH2ezTZ1d3cjEAhg/vz5lrUlVZsEQcD27dtx44034vLLL7e8XUbCZ7sBFAqFosazzz6L119/feL/jx49imAwCLfbjVAoNCGqAPD444/j17/+NRYtWoQHH3wQmzZtMmUFn06bnnzySfzbv/0bnnrqKcPboYXL5UIoFAIAhEIheDyepJ9ns02PPfYYvve97+Hjjz+2rC2p2vSHP/wBP/nJT7Bp0yb86Ec/QmdnJ2pray1vnxHQlTuFQslJvv3tb+P555+f+O+RRx7BwYMHEYlEMDIygoKCgolznU4n3G43bDYbGIaBKIpZbVMgEMDJkyfx6KOPYuvWrfjFL36BQCBgSpsms2zZMhw4cACEEBw/fnxiVaz1uRVofffRo0fx93//93j88cfx+OOPo729Pettij9HLMvC4/FYauEwGlqhjkKhzAqGhobwN3/zNxgdHcUPfvADXHfddfj3f/93PPLIIxgaGsI///M/QxRFXH/99XjooYey3qaioiIASjT42rVrsW7dOtPbE4lE8JOf/AQ9PT248847EQqFcPXVV6Ourm7K5/fdd5/pbUnVpubmZgCYiJS/8847s96moqIi/PSnP0UkEkFrayv+4R/+wbI2GQ0VdwqFQqFQ8gxqlqdQKBQKJc+g4k6hUCgUSp5BxZ1CoVAolDyDijuFQqHMMlpaWtDS0oKzZ88mHHvqqafQ0tKCX/3qVxOfybKM5557DnfddRdWr16NdevW4YEHHsC+ffsmzuno6EBLSws6OjosuQeKuVBxp1AolFlIcXExtm7dmvD5Sy+9NCWPnRCCH//4x3j++efxs5/9DPv378fevXtx66234pFHHsGuXbusbDbFIqi4UygUyixk8+bN2LZtG2RZnvjsyJEjiEajWLp06cRnO3fuxHvvvYfHHnsMq1evBs/zsNlsuPvuu/HjH//Y0lK0FOug4k6hUCizkKuvvhqxWAwffvjhxGcvvvgi7rrrrinnvfPOO1i5ciVqamoSrvHd734XDz/8sOltpVgPFXcKhUKZhfA8j82bN0+Y5sPhMN54442EjViGhoZQVlaWhRZSsgkVdwqFQpml3HnnnXj77bfh9/uxc+dOrFy5EuXl5VPOqaioQH9/v+rv+/3+iRrrlPyCijuFQqHMUhYvXowFCxbg9ddfx0svvZRgkgeAa665BocPH0ZPT0/CsV/96le44447QAuV5h9U3CkUCmUWc+edd+Lpp5/GuXPnsGHDhoTjmzZtwrp16/Dwww/jk08+gSzL8Pv9ePrpp/HHP/4Rf/u3fwuGYbLQcoqZUHGnUCiUWcytt96K9vZ23HbbbeD5xF28GYbB//zP/+DGG2/Ev/zLv2DNmjXYuHEj9uzZg9/+9re47rrrstBqitnQjWMoFAqFQskz6MqdQqFQKJQ8g4o7hUKhUCh5BhV3CoVCoVDyDCruFAqFQqHkGVTcKRQKhULJM6i4UygUCoWSZ1Bxp1AoFAolz6DiTqFQKBRKnkHFnUKhUCiUPIOKO4VCoVAoeQYVdwqFQqFQ8oz/H0d2BE3Bz0jKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -669,7 +673,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -743,7 +747,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAm/ElEQVR4nO3deZRU9Z338c+9tXT1Ar2wL4Ig0rhEREHEFQmoeQRUXGLGdaLhQR998hx1HMfncUwmmWQm58TMiEmUuGEUcxwEdzCjBHEDNxQ0iILS2EADTS/0Wtu9zx9NN3S6gQa6771Vv/frnD4pqqrr9+0+uda7bt2+Zbmu6woAABjL9nsAAADgL2IAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADBf2e4Ce5qZSSuzYqsS2cqXrd8tNpaR0SrIsWeGIrEhEkT4DFB00VKHCYlmW5ffIAAB4KqtiwHVdxcs2qHHdp4pv3axE+SYld+2QHGfPPSzJtlr+V67k7vlqvTUnVzmDj1J0yHDlDB2h/LETFO5V6MePAgCAZyzX3efZMEMltpWr7sO3Vff+CqWqKyXb7vBEf0jskOSkJctSbul31Ou0c1Rw0gTZsdzuHRwAgADI2Bhw02ntfvcN1axYquS28pYAaNsD0I0sW3IdKRRW/knjVXLBLOUMPbr71wEAwCcZGQMNn69W5cInlNy5zduF9wRHr0nnqc/0qxQuLPZ2fQAAekBGxUB862ZVPjdfTevX7n3F7gfblhUKqfiCy1Q0ZbrsaNSfOQAA6AYZEQOu46jq1f9S9WuLJMvqmbcDDoulUFGJBv3oDsWGj/J7GAAADkvgYyDdWK+Kx/9TTes+9XuUzlm2ZFvqf9Vs9Z50nt/TAABwyAIdA8nqSm194GdK7toeoL0B+1d8/qUqmXEV5yoAAGSUwMZAoqJcWx74F6Xrd2dECLTqdfpk9f+7ObJsTu4IAMgMgXzGSjfUa+tv/zXjQkCS6lYuV9Wr/+X3GAAAdFngYsB1HFU88Z9K1VZnXAi0ql76nBrWfuj3GAAAdEngYqBqycKWgwUzNAQkSZaliiceUGJnhd+TAABwUIGKgYa1H6l6yUK/xzhyris3mdC2h/5dTrzZ72kAADigwMSAm0xqx4KHWs4jkA0cR8kdW1Xzl1f8ngQAgAMKTAzsXrVc6braw/9woSByXdW8/pKc5ia/JwEAYL8CEQNuOqWqJc+p5aOFs4sTb1LtW6/5PQYAAPsViBioe3+F0rVVkrJor0Ar11X1f7/AsQMAgMAKRAxUvbY4e44V6ITT2KDdK5f7PQYAAJ3yPQaSVZVKVW7PrmMF/pZlqfGLNX5PAQBAp3yPgeaN6/weoee5rpo3/FVuJp87AQCQtXyPgaaNX0h2yNM1axMp3fT2Oq2pqvdsTaepUckdWz1bDwCArvI/Br78XHLSnq3315oG3fH+V9rWlPBszVZNG7/wfE0AAA7G1xhwEnFPXy2/vrVKv1pbputGDfRszTZ2SPGyDd6vCwDAQfgbAx6fjOeUPr306JnH6ZyBxZ6uK0lyHTlNjd6vCwDAQYT9XNxNxD1dryQn4ul67biuHI9/XgAAusL3YwaMksV/PQkAyFy+xoAVzfFzeW9Zluwcg35eAEDG8DUG7JyYn8t7y7Jlx/L8ngIAgA58j4FIPx+O7PeDk1bOsJF+TwEAQAe+HkAoSbmjT1Ry105PzzUgSa9MG+vpepIUG3Wc52sCAHAwvh9AGDtmjOch4AcrlqvogCF+jwEAQAe+x0DuyDF+j9DzLEu5x4yRZfv+6wYAoAPfn53CffopXNJXUvZ+hLEk5R3n/dsSAAB0he8xYFmWis+fpWz+I3w7lqvek6b4PQYAAJ3yPQYkqffEcxXqXeT3GD3DslT03Zlm/RklACCjBCIGrEhExRfM8nuMHmFFc1R47oV+jwEAwH4FIgYkqfekKbILevk9RveyLBVNma5QLicbAgAEV2BiwI5G1f/7P/J7jO5j2wr36a/iKdP9ngQAgAMKTAxIUsG401U0dabfY3QDS1YorMFz/lE2ewUAAAEXqBiQpD4zfqDYscdLGf03+a4GXHerogOH+j0IAAAHFbhnXCsU0qAf3q5QQaFkBW68LimaOlMF4073ewwAALokkM+2oV69Nfh/3SM7Lz/j9hAUnHqG+sz4gd9jAADQZZbruoE920+ycru2PPAvStXskhzH73EOqvC8i9T30ms57TAAIKMEOgYkKV23W9se/bWaN6zze5TOWZYkS/2u+Hv1Pvt8WVZ2n1YZAJB9Ah8DkuSm09r1wtOqWfZyy9sGQdlLYFkKFfTWwJvuUO4xBnzgEgAgK2VEDLRq3vy1Khc+ruav17e8IvdrdNuWLFvFU2eqeNrFsmO5/swBAEA3yKgYkCTXddXwySpVLnpSqepKbxffs1ei4NQz1efiqxUp6evt+gAA9ICMi4FWbjKpmhWvqXbFUqV27ei5tw9a90BYtvKOH6uSCy9TbMTo7l8HAACfZGwMtHJdV/Fvv1H9h2+r7v0VStfvluyQ5KQP/0FtuyUAXFexkWPU67RzVHDyRIWy7bMTAABQFsTAvlzHUdOGdWpc94kSWzcrvqVM6ZqqvXewbUmW1HrAvyvJddqOPbDCYUUGDFHO0KOVM3SE8k8+TZFi3goAAGS3rIqBzjjxZiUqypXY+q3SDXVyUym5qaQs25YVjsiKRBTpM0DRQUMV7tOfcwQAAIyT9TEAAAAOjJfBAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHBhvwcAAMBP6cZ6pasr5aaSclNJyXVlhcNSKKxQXi+FivvKsrP7tTMxAAAwguu6Sm4tU2LbZqV2bFVye7mSO7bIaaw/8DeGQgr3GajowKMU7j9Ykf6DlTN8tOxYrjeDe8ByXdf1ewgAAHpKcscWNa55X42fvqf07uqWK+2Q5KQP7YFsW3Ldlq9QSLHRY5U/dqJio74jKxLp/sE9RAwAALKO09Soho9WqOGTd5XauU2ybMl1uncR25YcR1Y0R7knjFfB+HMVHTqie9fwCDEAAMgabjqtho9WqPaN5+XGm1pexXthTxjknjBehedfrnBRH2/W7SbEAAAgKzR/9ZlqlvxJqV3b/RvCtiXLUq8zLlCvs78nOyfm3yyHgBgAAGS0dP1uVS1+TPENn0uW5d3egAOxLNmxPBVffL1yjxvn9zQHRQwAADJWvPxr7VrwWzlN9ZLTzccEdJNeZ/8P9Z5ycaD/PJEYAABkpMbPPlDVc49Irrr/4MBuFht9kkqumC07muP3KJ0iBgAAGad+1V9U8+oCv8foOstSdMgI9b3mf8vOzfd7mg6Cu88CAIBONK5ZmVkhIEmuq8SWTap8eq7cdMrvaTogBgAAGSNR8a2qnp/v9xiHx3WU+Hajav/8nN+TdEAMAAAygtPUoF0LHgzsgYJdVb/ydTWuXeX3GO0QAwCAwHMdR7sW/kHp3TWBP1iwK6oWP6FERbnfY7QhBgAAgde4+p2W8whkQQhIkhxHVc/9QUE5hp8YAAAEmptOaffyl/weo3u5jlI7tqp5/ad+TyKJGAAABFzj2vf3ftpgNrEs7f7Li4HYO0AMAAACy3WcPXsFLL9H6X6uq2TFty1vf/iMGAAABFbTXz9SurpSLacZzEKWHYi3QIgBAEBgNX3xScsnAWYr11Gi/GulG+t9HSOLf8MAgEwX/2Z9xp9XoCsSmzf4un7Y19UBANiPVM0uOfW1nq1X3ZzQ/R98pU931ChkWZp69ADNOXmkQnYPH69g24pv3qDcMSf37DoHGsG3lQEAOACvXy3/7N11yg2H9OzFp+u354/Tx9urtXC9BycGchzFN63v+XUOgBgAAARS/NuNkh3yZK0tdU36dEetZp88QrFwSIMLcnXNCcP0/FdbPVk/uW2z3FTSk7U6QwwAAALJaajz7IyDm2ob1CsaVt/cnLbrhvfO147GuOoTHnzKoOPIiTf3/Dr7QQwAAALJTSYkj07I05hKKzfcfi9ELNTyFNmUSnsyg5tMeLJOZ4gBAEAguWkPXpHvkRsOqflvnvSb007bbZ5wvImOzhADAIBAsqMxz9Y6ujBfuxMpVTXvfXVetrtB/XKjKoh684d3ViTqyTqdIQYAAIFkRaOenXBoaK9cndi3t3738UY1JlPaVt+kpz7frO+NHOjJ+hIxAABAB5H+Qz07ZkCS7jvreKVdV1e/9L5u/e9PNGFgia45Ybgna9u9CmXH8jxZqzOcdAgAEEjR4aM8jYGSWFT3nXm8Z+u1sW3FRozxft19R/B1dQAA9iM6aLgU8ujgPT85jqLDRvk6AjEAAAgkKxxWdMgIv8fwRM6wY31dnxgAAARWzsjjJCu7n6qsWJ7C/Qb5OkN2/4YBABmt4NRzJKuHPyjIT5alXpOmyvL5Y5qJAQBAYIV6Fyn/1LOzdu+AFY6oYOJ3/R6DGAAABFuvsy6UsnHngGWpYNJU2bn+/UlhK2IAABBo4aI+yjv5DM9OQOSZUFgFp0/1ewpJxAAAIAP0njxDViQnq44f6D15hkL5vfweQxIxAADIAOHCEvW5cranJyHqMZalWOnYlrc/AoIYAABkhNioE9V7yiV+j3FkbFuhoj4qmXWjrADt5SAGAAAZo9fZ31Ns9EmZ+9cFdkh9/+422bFcvydpJ0N/mwAAE1m2rZLLblSk/+DMCgLLkmxbfa6Y3TJ7wFiumw1vwAAATOLEm1W54EElyr4M/nEEli0rHFafv7tVsZHH+T1Np4gBAEBGclNJVb/0lBo/edfvUfbPsmUX9Fbfq29TdNAwv6fZL2IAAJCxXNdVwwdvqmbJMy1XOI6/A/2N6IhS9blyjkJ5BX6PckDEAAAg4yV3bFXN0mcV3/h5y/vzfj61WZbs3HwVTrtMeSef4fvnDnQFMQAAyBrNGz5Tzat/UmrXdu8Xt+2WDx468wL1Out7snNi3s9wmIgBAEBWcdNpNXz8lnYvf0lO/e6WJ+meevugdS+EbSv3hPEqnDpL4aI+PbNWDyIGAABZyXUcJTZ/pcY176vxs/flxpu7Lwz2REB02LHKG3u68o4/VXZe/pE/rk+IAQBA1nNTKTVv/FxNn3+oRPk3SlXv3BsFti25kuS2P9bAslrOZeCk266y8woUGTBUsWO/o9wTxytcWOLpz9FTiAEAgHHcdEqpXTuU3LlVye1blK6plJtKyk2l5Dpp2eGoFA7Lzs1XpP9gRfoPUaT/YNm5mfvq/0CIAQAADBf8v3cAAAA9ihgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHBhvwfwiuu6ctMpucmk3FRKlm3JCkdkRSKy7JDf4wEA4JusjIFkdZXi5WVqLi9TvLxMTWXfKL5ls9xEvNP7h4tLFBs2QrGjjlbO0OGKDR2unCFHyY7meDw5AADes1zXdf0eojskdm5X7btvqvrtZUps/bblSsuSbFtKp7vwCJYU2ue+obB6n3KaCs+crF5jJ8iORntsdgAA/JTRMZCq263a91ao5u1latq4XrJsyXW6bwHblhxHVk5MhRPPUtGZk5V/wsmyLKv71gAAwGcZGQNOMqldr72oHYsW7N3139M/RigkpdPKHXmsBl03R3nHjunZ9QAA8EhGxYDrutr9/juqePoRJXft9GeIPXsLCiedowHf/3tF+/X3Zw4AALpJxsRAc/lmbXnkATV9ta7lWAC/x7ZtWbatvtMvV/9LfyArnJXHYgIADJARMVC76m2V//7XctMpyenGYwK6g2Upd9QYDfs/9yhSVOL3NAAAHLJAx4Drutrx3NPaufiZYOwN2B/bVqigt46++2fKHT7S72kAADgkgY0BN53WlsceVM3yP/s9StfYtqxIVMPvvE8Fx5/k9zQAAHRZIGPAdV1tmfcfqlnxut+jHJo95zUYee+/K+/Y4/yeBgCALgnkZxNUvfFq5oWA1PI2huuq7P6fK1Vb7fc0AAB0SeBioPGrddo2/yG/xzh8jqN0/W5t/s9fyO3SmQ8BAPBXoGIgVVutsvt/7vcYR85x1PjlOlU887jfkwAAcFCBioHyh3+jdP3u4P354OFwXe1aslh1az7yexIAAA4oMDHQuHG96j/9KDtCoJVta/uzTyqAx2gCANAmMDGw47kFLaf6zSaOo+ZvNqjhs0/8ngQAgP0KxLNv06aNqv/0w+zaK9DKtrX9uaf9ngIAgP0KRAzsWPxM9u0VaOU4avpqnRrWrfV7EgAAOuX7M3C6uUl1H63Mzr0CreyQat5d7vcUAAB0yvcYaNqwPrifOdBdnLQa/rrG7ykAAOiU75+727j+ry1vEXiwZ2BTY1zzv63U141xhS1LYwvzdMPQvuodCfX42omKrUrV7Va4V+8eXwsAgEPh+56Bhi/WSk7P7xmIO45+/tVWlRbE9MjYEfqPE4epLpXWg5u29/jarRq/WufZWgAAdJWvMeCm02r86gtJPR8DlYmUjs7N0RWDSxSxLfUKh3R+v0Ktq2/u8bUlSaGQGr/43Ju1AAA4BL6+TZBurJebTHiy1pBYVP9v9OB2171XXa+ReTmerC/HVbKq0pu1AAA4BL7uGXDicV/WdV1XC7bs0oc1DfrhUX09WtSRk/Dn5wUA4EB83TPgplKer9mYdvTgN9v1dWNcPysdouFe7RmQ5Ca82QsCAMCh8DUG7EjU0/UqmpP616+2qm80rF8dd5Qnf0WwLzvHu/AAAKCrfI0By8Mnx/pUWvd9uUXf6ZWrW47uL9uyPFtbkmTbsqLEAAAgeHyNgVB+gey8fDmNDT2+1rLK3apMpPRudb3eq65vd9vTpxzT4+tLUs7AIZ6sAwDAofB3z4BlKb/0BNV98kGPn4Vw5sBizRxY3KNrHJDjKK/0eP/WBwBgP3w/6VDemBP9HsEblqXcUaV+TwEAQAe+x0B+6fHZ/9kEkmLDRigUy/V7DAAAOvA9BmIjRskKR/weo2fZIeUff5LfUwAA0CnfY8AOR1R0zndbPqwoWzlpFZ87ze8pAADoVCCegfvNvNLvEXqObavX+EmKHXW035MAANCpQMRAtN8AFZ01JTv3DjiO+l/6A7+nAABgvwLz7Nvv4u9n34GEdkgFY8cr92hvzmMAAMDhCEwM5AwcrOJzz5e8PjNgj3I14Ipr/R4CAIADCkwMSNKg62YrZ8iwrHm7YNC1/1O5I0b5PQYAAAcUqGddOyem4XfcKzsnltl7CCxLhWeep5JpF/k9CQAABxWoGJCkaP9BOurWf8zc4wdsWzlDhmnIjbfKyuSgAQAYI3AxIEm9Th6vAVfd4PcYh862FcrL37t3AwCADGC5bnBfglcufUEVf5zn9xhdY9uKFPfR0f/3l8oZMMjvaQAA6LJAx4Ak1b63QuUP3S/XSUuO4/c4nbMsxYYfo6Pv+onChT5+MiIAAIch8DEgSU2bNqrs1/+iVE1VsILAsiTXVfHkCzTohptlR7L8MxYAAFkpI2JAklL1ddr+7JOqXrak5UnY7yiwLIWLijXo6h+pcNI5/s4CAMARyJgYaNVcXqZtf5ynhs8+aXtl7inblhUOq/8lP1Cf710sO5rj7foAAHSzjIuBVnWffqhtT85TomKLZIckJ92zC+4Jj6LJ52vAFdcqUlTSs+sBAOCRjI0BSXIdR43r/6qad5er9r035TQ1dm8Y2LbkOIoNH6mis6eocOLZipT07Z7HBgAgIDI6BvblpJJqWLtaNe8sV90nH7SEgdTyit62pfSBAsGSQvvcx7IUHThYRZMmq/CMc5UzaEiPzw8AgF+yJgb25bquUrXVipdvVnN5meLlZWou+1qput1yk0m5qeSe9/4jsiNRRQcNUeyo4YoNHa6cocOVM3goxwIAAIyRlTEAAAC6LpCnIwYAAN4hBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABgu7PcA+4qO+6HscFSWHZJlhxSK7L1s2fbe20Ih2eGo7LbbQh1us+yQbNuSZVsKhWxZf3PZti3ZIavtPge8zbIUCtsK2ZZCtqXonsvhtn+H9t4W2nu/8D73DXV22bJkW5ZClhQJ2W2XwyFbIUst/7YtRWyrk8stt0dsu+1yyLJkWZJtSZalPY8vWZJCtiVbavlZbLVdti0pZO17ueUxLNeVXEeWk5LaXXZavpz932a5jpRO773spCQnLddxpFRCbjotOU7LdamkXCfdcjmZlFovt9639X7JxN7vcdJykim5aUeu48hJpOSkW77HTTtykik56b2X3T2X08mU3H3ul06k9rmcluu4ctLunn/v+X7Hbbkt7cpNu3LSjtJJZ89jukon03u+Z+/3Oa6rtOsq4bhKu/qby3/775bLjloup13tuW3v5YfcTb5ul92F7Zvtm+07uNs3ewYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADCdm6Xi8bj7wAMPuPF43O9ROgjybK7LfEciyLNlkyD/noM8m+sy35EI8mxHKmv3DCQSCT344INKJBJ+j9JBkGeTmO9IBHm2bBLk33OQZ5OY70gEebYjlbUxAAAAuoYYAADAcMQAAACGy9oYiEajuvXWWxWNRv0epYMgzyYx35EI8mzZJMi/5yDPJjHfkQjybEfKcl3X9XsIAADgn6zdMwAAALqGGAAAwHDEAAAAhsuqGKiurtZ1112nq666SsuXL293286dO3XNNdfoiiuu0Jtvvhm4+VrdfffdWrVqladzJRIJ3Xzzzbrqqqv07LPPHvT6IMzWau7cuVq0aJEPk7XY33zNzc268cYbdeWVV2rhwoW+zZdN2L4PD9v34TNp+86qGFiwYIFuvPFGzZ8/X/Pnz2932yuvvKIrr7xSTz75pB577LHAzSdJGzZs0Ouvv+75XK+++qrOPvtsLViwQEuXLlU8Hj/g9UGYTZKqqqp8+49Yq/3N99Zbb2n8+PH605/+lDX/sfAb2/fhYfs+fCZt31kVA59//rlOPfVU5eTkqKCgQLW1tW23lZaWqrGxUc3NzYrFYoGbT5IeffRRXXLJJb7NZdu2Ro8erY0bNx7w+iDMJkmPPPKIL7+vfe1vvpEjRyqZTCqVSikSifg6Y7Zg+z6yudi+D51J23dWxUBDQ4Py8/MlSbm5uWpsbGy7LS8vTw899JAuueQSTZ8+PXDzrVmzRkOGDFFhYaEvc+Xl5XWYa3/XB2G2bdu2qaGhQSNGjPB8pn3tb75IJKJXXnlFF154oc4880w/R8wabN+HPxfb9+ExafsO+z3AkXjyySe1ZMmStn+vXbtWjY2Nys/PV1NTU9uGKUnz5s3Tgw8+qNGjR+uHP/yhpk2b1uOvIA5lvscee0w///nP9fjjj/foTJ3Jy8tTU1OTJKmpqUkFBQUHvD4Isz388MP60Y9+pPfff9/zmfa1v/meeuop3X777Zo2bZpuvfVWbdmyRUOGDPFz1IzD9t092L4Pn0nbd0bvGbjuuuv0zDPPtH3NmTNHH374oeLxuGpqatS7d++2++bm5io/P1/RaFSWZSmVSgVmvoaGBn355Ze6+eabtXjxYv3iF79QQ0NDj8/X6oQTTtAHH3wg13W1bt26thrf3/Ve2t8Ma9eu1T/90z9p3rx5mjdvnsrKyjyf7UDztf7/zbZtFRQU+PKqK9OxfXcPtu/uny8bt++sOgNhVVWV7rjjDtXW1uqWW27R1KlT9W//9m+aM2eOqqqqdO+99yqVSun888/XjTfeGKj5ioqKJLUcPXvaaadp4sSJns0Vj8d1++23q6KiQrNmzVJTU5MmT56so446qt31V199tWczHWy2UaNGSVLbkcazZs3yfLYDzVdUVKR/+Id/UDwe14knnqh77rnHl/myCdv34WH77v75snH7zqoYAAAAhy6j3yYAAABHjhgAAMBwxIAhNm3a5PcIAICAIgYMsGzZsiM6oGrVqlUqLS3VOeecI8dxOtw+Z84clZaWtjvNal1dnX7961/rggsu0Lhx43TWWWfpzjvv1ObNm9vus2jRIk2ZMuWw5wLQorS0VKWlpfr666873Pb444+rtLRUc+fObbvOcRwtWLBAl19+ucaPH6+JEyfq+uuv13vvvdd2n/LycpWWlqq8vNyTnwH+IgYMUFNTo+44TjSRSOidd95pd11lZaVWr17d7rqqqirNmjVLZWVleuihh/Txxx/rpZdeUmFhob7//e9ry5YtRzwLgPaKi4u1ePHiDtcvWrSo3TkEXNfVbbfdpmeeeUZ33323Vq5cqbfeekvTp0/XnDlz9MYbb3g5NgKCGMggy5Yt01VXXaVJkyZp7Nixuuaaa7Rp06ZOX2Ffe+21mjt3rlatWqX77rtPW7du1bhx47R9+3Y1NzfrV7/6lc4991xNmDBB1157rdasWXPQ9WfMmKHnn3++3XWLFy/WBRdc0O66uXPnKhaL6Te/+Y1GjBghy7JUXFyse++9V5MnT9b69euP+HcBoL0ZM2bohRdeaLf3bs2aNUokEjr++OPbrlu6dKlWrFihhx9+WOPHj1c4HFY0GtUVV1yh2267zZfTEsN/xECGqKio0I9//GPNnj1b7733npYvXy7XdfXb3/72gN83ceJE/fSnP9XgwYO1evVqDRgwQD/5yU/09ttv68knn9Q777yjqVOn6oYbbtDWrVsP+FiXXXaZXn/9ddXV1bVdt2jRIl1++eXt7rds2TJdeOGFCoVCHR7jl7/8JW8NAD1g8uTJSiaTevfdd9uuW7hwYafb5ymnnKLBgwd3eIybbrpJs2fP7vFZETzEQIYoKSnRK6+8oilTpqi+vl4VFRUqLi7W9u3bD+lx4vG4Xn75Zd1xxx0aPny4otGorr/+eo0cOVIvv/zyAb93zJgxGjFihF599VVJ0kcffaRQKKSTTjqp3f2qqqrUr1+/Q/sBARyRcDisGTNmtL1V0NzcrNdee63Dh/1UVVWpb9++PkyIICMGMkQkEtHLL7+sc845RxdddJHuv/9+7dq165CPBaitrVUymdTQoUPbXT906FCVl5frxRdf1Lhx49q+XnzxxXb3mzVrVtt/bJ577rkOrzokqV+/ftqxY0en61dVVSmdTh/SzAC6ZtasWXr99ddVX1+vpUuX6pRTTukQ5v3799fOnTs7/f76+vq2c/HDLMRAhliyZImeeuop/fGPf9Sbb76pP/zhD23vA9q2rUQi0e7+1dXVnT5O3759lZOTo2+//bbd9Zs3b1b//v01c+ZMrV69uu1r5syZ7e43Y8YMffbZZ1q3bp3eeOONDrdL0pQpU/TnP/+5w5O+67q66aab9NOf/vSQf34ABzdmzBiNHDlSS5Ys6fQtPEk677zztHr1alVUVHS4be7cubr00ku75YBjZBZiIEPU1dXJtm3FYjG5rqsVK1bo+eefVzKZ1DHHHKPKykqtXLlSruvqhRdeaHcQUE5OjpqampRKpWTbti677DLdf//9KisrUyKR0Pz587VhwwZddNFFB52juLhY5513nu666y5NnDhRJSUlHe5zyy23qLa2VrfffnvbB4xs375d99xzjyoqKnTTTTd13y8GQDuzZs3SE088oW+++Ubnnntuh9unTZumiRMnavbs2fr444/lOI7q6+v1xBNP6Omnn9add94py7J8mBx+IgYyxKWXXqozzjhDF110kU4//XT9/ve/1/XXX69vvvlGpaWluvnmm3X33XfrtNNO08qVK9sd4T9hwgT16dNHEyZM0Pr163XXXXfprLPO0g033KCJEydqyZIlevTRR7v8qWWzZs3Sl19+qcsuu6zT20tKSrRw4UIVFhbqhhtu0Lhx43T55ZcrlUrpmWee0bBhw7rldwKgo+nTp6usrEwzZ85UONzxU+oty9Lvfvc7XXjhhfrnf/5nTZgwQd/97nfb9jhOnTrVh6nhNz6oCAAAw7FnAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcP8fxaq5vCidRwYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAm/ElEQVR4nO3deZRU9Z338c+9tXT1Ar2wL4Ig0rhEREHEFQmoeQRUXGLGdaLhQR998hx1HMfncUwmmWQm58TMiEmUuGEUcxwEdzCjBHEDNxQ0iILS2EADTS/0Wtu9zx9NN3S6gQa6771Vv/frnD4pqqrr9+0+uda7bt2+Zbmu6woAABjL9nsAAADgL2IAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADBf2e4Ce5qZSSuzYqsS2cqXrd8tNpaR0SrIsWeGIrEhEkT4DFB00VKHCYlmW5ffIAAB4KqtiwHVdxcs2qHHdp4pv3axE+SYld+2QHGfPPSzJtlr+V67k7vlqvTUnVzmDj1J0yHDlDB2h/LETFO5V6MePAgCAZyzX3efZMEMltpWr7sO3Vff+CqWqKyXb7vBEf0jskOSkJctSbul31Ou0c1Rw0gTZsdzuHRwAgADI2Bhw02ntfvcN1axYquS28pYAaNsD0I0sW3IdKRRW/knjVXLBLOUMPbr71wEAwCcZGQMNn69W5cInlNy5zduF9wRHr0nnqc/0qxQuLPZ2fQAAekBGxUB862ZVPjdfTevX7n3F7gfblhUKqfiCy1Q0ZbrsaNSfOQAA6AYZEQOu46jq1f9S9WuLJMvqmbcDDoulUFGJBv3oDsWGj/J7GAAADkvgYyDdWK+Kx/9TTes+9XuUzlm2ZFvqf9Vs9Z50nt/TAABwyAIdA8nqSm194GdK7toeoL0B+1d8/qUqmXEV5yoAAGSUwMZAoqJcWx74F6Xrd2dECLTqdfpk9f+7ObJsTu4IAMgMgXzGSjfUa+tv/zXjQkCS6lYuV9Wr/+X3GAAAdFngYsB1HFU88Z9K1VZnXAi0ql76nBrWfuj3GAAAdEngYqBqycKWgwUzNAQkSZaliiceUGJnhd+TAABwUIGKgYa1H6l6yUK/xzhyris3mdC2h/5dTrzZ72kAADigwMSAm0xqx4KHWs4jkA0cR8kdW1Xzl1f8ngQAgAMKTAzsXrVc6braw/9woSByXdW8/pKc5ia/JwEAYL8CEQNuOqWqJc+p5aOFs4sTb1LtW6/5PQYAAPsViBioe3+F0rVVkrJor0Ar11X1f7/AsQMAgMAKRAxUvbY4e44V6ITT2KDdK5f7PQYAAJ3yPQaSVZVKVW7PrmMF/pZlqfGLNX5PAQBAp3yPgeaN6/weoee5rpo3/FVuJp87AQCQtXyPgaaNX0h2yNM1axMp3fT2Oq2pqvdsTaepUckdWz1bDwCArvI/Br78XHLSnq3315oG3fH+V9rWlPBszVZNG7/wfE0AAA7G1xhwEnFPXy2/vrVKv1pbputGDfRszTZ2SPGyDd6vCwDAQfgbAx6fjOeUPr306JnH6ZyBxZ6uK0lyHTlNjd6vCwDAQYT9XNxNxD1dryQn4ul67biuHI9/XgAAusL3YwaMksV/PQkAyFy+xoAVzfFzeW9Zluwcg35eAEDG8DUG7JyYn8t7y7Jlx/L8ngIAgA58j4FIPx+O7PeDk1bOsJF+TwEAQAe+HkAoSbmjT1Ry105PzzUgSa9MG+vpepIUG3Wc52sCAHAwvh9AGDtmjOch4AcrlqvogCF+jwEAQAe+x0DuyDF+j9DzLEu5x4yRZfv+6wYAoAPfn53CffopXNJXUvZ+hLEk5R3n/dsSAAB0he8xYFmWis+fpWz+I3w7lqvek6b4PQYAAJ3yPQYkqffEcxXqXeT3GD3DslT03Zlm/RklACCjBCIGrEhExRfM8nuMHmFFc1R47oV+jwEAwH4FIgYkqfekKbILevk9RveyLBVNma5QLicbAgAEV2BiwI5G1f/7P/J7jO5j2wr36a/iKdP9ngQAgAMKTAxIUsG401U0dabfY3QDS1YorMFz/lE2ewUAAAEXqBiQpD4zfqDYscdLGf03+a4GXHerogOH+j0IAAAHFbhnXCsU0qAf3q5QQaFkBW68LimaOlMF4073ewwAALokkM+2oV69Nfh/3SM7Lz/j9hAUnHqG+sz4gd9jAADQZZbruoE920+ycru2PPAvStXskhzH73EOqvC8i9T30ms57TAAIKMEOgYkKV23W9se/bWaN6zze5TOWZYkS/2u+Hv1Pvt8WVZ2n1YZAJB9Ah8DkuSm09r1wtOqWfZyy9sGQdlLYFkKFfTWwJvuUO4xBnzgEgAgK2VEDLRq3vy1Khc+ruav17e8IvdrdNuWLFvFU2eqeNrFsmO5/swBAEA3yKgYkCTXddXwySpVLnpSqepKbxffs1ei4NQz1efiqxUp6evt+gAA9ICMi4FWbjKpmhWvqXbFUqV27ei5tw9a90BYtvKOH6uSCy9TbMTo7l8HAACfZGwMtHJdV/Fvv1H9h2+r7v0VStfvluyQ5KQP/0FtuyUAXFexkWPU67RzVHDyRIWy7bMTAABQFsTAvlzHUdOGdWpc94kSWzcrvqVM6ZqqvXewbUmW1HrAvyvJddqOPbDCYUUGDFHO0KOVM3SE8k8+TZFi3goAAGS3rIqBzjjxZiUqypXY+q3SDXVyUym5qaQs25YVjsiKRBTpM0DRQUMV7tOfcwQAAIyT9TEAAAAOjJfBAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHBhvwcAAMBP6cZ6pasr5aaSclNJyXVlhcNSKKxQXi+FivvKsrP7tTMxAAAwguu6Sm4tU2LbZqV2bFVye7mSO7bIaaw/8DeGQgr3GajowKMU7j9Ykf6DlTN8tOxYrjeDe8ByXdf1ewgAAHpKcscWNa55X42fvqf07uqWK+2Q5KQP7YFsW3Ldlq9QSLHRY5U/dqJio74jKxLp/sE9RAwAALKO09Soho9WqOGTd5XauU2ybMl1uncR25YcR1Y0R7knjFfB+HMVHTqie9fwCDEAAMgabjqtho9WqPaN5+XGm1pexXthTxjknjBehedfrnBRH2/W7SbEAAAgKzR/9ZlqlvxJqV3b/RvCtiXLUq8zLlCvs78nOyfm3yyHgBgAAGS0dP1uVS1+TPENn0uW5d3egAOxLNmxPBVffL1yjxvn9zQHRQwAADJWvPxr7VrwWzlN9ZLTzccEdJNeZ/8P9Z5ycaD/PJEYAABkpMbPPlDVc49Irrr/4MBuFht9kkqumC07muP3KJ0iBgAAGad+1V9U8+oCv8foOstSdMgI9b3mf8vOzfd7mg6Cu88CAIBONK5ZmVkhIEmuq8SWTap8eq7cdMrvaTogBgAAGSNR8a2qnp/v9xiHx3WU+Hajav/8nN+TdEAMAAAygtPUoF0LHgzsgYJdVb/ydTWuXeX3GO0QAwCAwHMdR7sW/kHp3TWBP1iwK6oWP6FERbnfY7QhBgAAgde4+p2W8whkQQhIkhxHVc/9QUE5hp8YAAAEmptOaffyl/weo3u5jlI7tqp5/ad+TyKJGAAABFzj2vf3ftpgNrEs7f7Li4HYO0AMAAACy3WcPXsFLL9H6X6uq2TFty1vf/iMGAAABFbTXz9SurpSLacZzEKWHYi3QIgBAEBgNX3xScsnAWYr11Gi/GulG+t9HSOLf8MAgEwX/2Z9xp9XoCsSmzf4un7Y19UBANiPVM0uOfW1nq1X3ZzQ/R98pU931ChkWZp69ADNOXmkQnYPH69g24pv3qDcMSf37DoHGsG3lQEAOACvXy3/7N11yg2H9OzFp+u354/Tx9urtXC9BycGchzFN63v+XUOgBgAAARS/NuNkh3yZK0tdU36dEetZp88QrFwSIMLcnXNCcP0/FdbPVk/uW2z3FTSk7U6QwwAAALJaajz7IyDm2ob1CsaVt/cnLbrhvfO147GuOoTHnzKoOPIiTf3/Dr7QQwAAALJTSYkj07I05hKKzfcfi9ELNTyFNmUSnsyg5tMeLJOZ4gBAEAguWkPXpHvkRsOqflvnvSb007bbZ5wvImOzhADAIBAsqMxz9Y6ujBfuxMpVTXvfXVetrtB/XKjKoh684d3ViTqyTqdIQYAAIFkRaOenXBoaK9cndi3t3738UY1JlPaVt+kpz7frO+NHOjJ+hIxAABAB5H+Qz07ZkCS7jvreKVdV1e/9L5u/e9PNGFgia45Ybgna9u9CmXH8jxZqzOcdAgAEEjR4aM8jYGSWFT3nXm8Z+u1sW3FRozxft19R/B1dQAA9iM6aLgU8ujgPT85jqLDRvk6AjEAAAgkKxxWdMgIv8fwRM6wY31dnxgAAARWzsjjJCu7n6qsWJ7C/Qb5OkN2/4YBABmt4NRzJKuHPyjIT5alXpOmyvL5Y5qJAQBAYIV6Fyn/1LOzdu+AFY6oYOJ3/R6DGAAABFuvsy6UsnHngGWpYNJU2bn+/UlhK2IAABBo4aI+yjv5DM9OQOSZUFgFp0/1ewpJxAAAIAP0njxDViQnq44f6D15hkL5vfweQxIxAADIAOHCEvW5cranJyHqMZalWOnYlrc/AoIYAABkhNioE9V7yiV+j3FkbFuhoj4qmXWjrADt5SAGAAAZo9fZ31Ns9EmZ+9cFdkh9/+422bFcvydpJ0N/mwAAE1m2rZLLblSk/+DMCgLLkmxbfa6Y3TJ7wFiumw1vwAAATOLEm1W54EElyr4M/nEEli0rHFafv7tVsZHH+T1Np4gBAEBGclNJVb/0lBo/edfvUfbPsmUX9Fbfq29TdNAwv6fZL2IAAJCxXNdVwwdvqmbJMy1XOI6/A/2N6IhS9blyjkJ5BX6PckDEAAAg4yV3bFXN0mcV3/h5y/vzfj61WZbs3HwVTrtMeSef4fvnDnQFMQAAyBrNGz5Tzat/UmrXdu8Xt+2WDx468wL1Out7snNi3s9wmIgBAEBWcdNpNXz8lnYvf0lO/e6WJ+meevugdS+EbSv3hPEqnDpL4aI+PbNWDyIGAABZyXUcJTZ/pcY176vxs/flxpu7Lwz2REB02LHKG3u68o4/VXZe/pE/rk+IAQBA1nNTKTVv/FxNn3+oRPk3SlXv3BsFti25kuS2P9bAslrOZeCk266y8woUGTBUsWO/o9wTxytcWOLpz9FTiAEAgHHcdEqpXTuU3LlVye1blK6plJtKyk2l5Dpp2eGoFA7Lzs1XpP9gRfoPUaT/YNm5mfvq/0CIAQAADBf8v3cAAAA9ihgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHBhvwfwiuu6ctMpucmk3FRKlm3JCkdkRSKy7JDf4wEA4JusjIFkdZXi5WVqLi9TvLxMTWXfKL5ls9xEvNP7h4tLFBs2QrGjjlbO0OGKDR2unCFHyY7meDw5AADes1zXdf0eojskdm5X7btvqvrtZUps/bblSsuSbFtKp7vwCJYU2ue+obB6n3KaCs+crF5jJ8iORntsdgAA/JTRMZCq263a91ao5u1latq4XrJsyXW6bwHblhxHVk5MhRPPUtGZk5V/wsmyLKv71gAAwGcZGQNOMqldr72oHYsW7N3139M/RigkpdPKHXmsBl03R3nHjunZ9QAA8EhGxYDrutr9/juqePoRJXft9GeIPXsLCiedowHf/3tF+/X3Zw4AALpJxsRAc/lmbXnkATV9ta7lWAC/x7ZtWbatvtMvV/9LfyArnJXHYgIADJARMVC76m2V//7XctMpyenGYwK6g2Upd9QYDfs/9yhSVOL3NAAAHLJAx4Drutrx3NPaufiZYOwN2B/bVqigt46++2fKHT7S72kAADgkgY0BN53WlsceVM3yP/s9StfYtqxIVMPvvE8Fx5/k9zQAAHRZIGPAdV1tmfcfqlnxut+jHJo95zUYee+/K+/Y4/yeBgCALgnkZxNUvfFq5oWA1PI2huuq7P6fK1Vb7fc0AAB0SeBioPGrddo2/yG/xzh8jqN0/W5t/s9fyO3SmQ8BAPBXoGIgVVutsvt/7vcYR85x1PjlOlU887jfkwAAcFCBioHyh3+jdP3u4P354OFwXe1aslh1az7yexIAAA4oMDHQuHG96j/9KDtCoJVta/uzTyqAx2gCANAmMDGw47kFLaf6zSaOo+ZvNqjhs0/8ngQAgP0KxLNv06aNqv/0w+zaK9DKtrX9uaf9ngIAgP0KRAzsWPxM9u0VaOU4avpqnRrWrfV7EgAAOuX7M3C6uUl1H63Mzr0CreyQat5d7vcUAAB0yvcYaNqwPrifOdBdnLQa/rrG7ykAAOiU75+727j+ry1vEXiwZ2BTY1zzv63U141xhS1LYwvzdMPQvuodCfX42omKrUrV7Va4V+8eXwsAgEPh+56Bhi/WSk7P7xmIO45+/tVWlRbE9MjYEfqPE4epLpXWg5u29/jarRq/WufZWgAAdJWvMeCm02r86gtJPR8DlYmUjs7N0RWDSxSxLfUKh3R+v0Ktq2/u8bUlSaGQGr/43Ju1AAA4BL6+TZBurJebTHiy1pBYVP9v9OB2171XXa+ReTmerC/HVbKq0pu1AAA4BL7uGXDicV/WdV1XC7bs0oc1DfrhUX09WtSRk/Dn5wUA4EB83TPgplKer9mYdvTgN9v1dWNcPysdouFe7RmQ5Ca82QsCAMCh8DUG7EjU0/UqmpP616+2qm80rF8dd5Qnf0WwLzvHu/AAAKCrfI0By8Mnx/pUWvd9uUXf6ZWrW47uL9uyPFtbkmTbsqLEAAAgeHyNgVB+gey8fDmNDT2+1rLK3apMpPRudb3eq65vd9vTpxzT4+tLUs7AIZ6sAwDAofB3z4BlKb/0BNV98kGPn4Vw5sBizRxY3KNrHJDjKK/0eP/WBwBgP3w/6VDemBP9HsEblqXcUaV+TwEAQAe+x0B+6fHZ/9kEkmLDRigUy/V7DAAAOvA9BmIjRskKR/weo2fZIeUff5LfUwAA0CnfY8AOR1R0zndbPqwoWzlpFZ87ze8pAADoVCCegfvNvNLvEXqObavX+EmKHXW035MAANCpQMRAtN8AFZ01JTv3DjiO+l/6A7+nAABgvwLz7Nvv4u9n34GEdkgFY8cr92hvzmMAAMDhCEwM5AwcrOJzz5e8PjNgj3I14Ipr/R4CAIADCkwMSNKg62YrZ8iwrHm7YNC1/1O5I0b5PQYAAAcUqGddOyem4XfcKzsnltl7CCxLhWeep5JpF/k9CQAABxWoGJCkaP9BOurWf8zc4wdsWzlDhmnIjbfKyuSgAQAYI3AxIEm9Th6vAVfd4PcYh862FcrL37t3AwCADGC5bnBfglcufUEVf5zn9xhdY9uKFPfR0f/3l8oZMMjvaQAA6LJAx4Ak1b63QuUP3S/XSUuO4/c4nbMsxYYfo6Pv+onChT5+MiIAAIch8DEgSU2bNqrs1/+iVE1VsILAsiTXVfHkCzTohptlR7L8MxYAAFkpI2JAklL1ddr+7JOqXrak5UnY7yiwLIWLijXo6h+pcNI5/s4CAMARyJgYaNVcXqZtf5ynhs8+aXtl7inblhUOq/8lP1Cf710sO5rj7foAAHSzjIuBVnWffqhtT85TomKLZIckJ92zC+4Jj6LJ52vAFdcqUlTSs+sBAOCRjI0BSXIdR43r/6qad5er9r035TQ1dm8Y2LbkOIoNH6mis6eocOLZipT07Z7HBgAgIDI6BvblpJJqWLtaNe8sV90nH7SEgdTyit62pfSBAsGSQvvcx7IUHThYRZMmq/CMc5UzaEiPzw8AgF+yJgb25bquUrXVipdvVnN5meLlZWou+1qput1yk0m5qeSe9/4jsiNRRQcNUeyo4YoNHa6cocOVM3goxwIAAIyRlTEAAAC6LpCnIwYAAN4hBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABgu7PcA+4qO+6HscFSWHZJlhxSK7L1s2fbe20Ih2eGo7LbbQh1us+yQbNuSZVsKhWxZf3PZti3ZIavtPge8zbIUCtsK2ZZCtqXonsvhtn+H9t4W2nu/8D73DXV22bJkW5ZClhQJ2W2XwyFbIUst/7YtRWyrk8stt0dsu+1yyLJkWZJtSZalPY8vWZJCtiVbavlZbLVdti0pZO17ueUxLNeVXEeWk5LaXXZavpz932a5jpRO773spCQnLddxpFRCbjotOU7LdamkXCfdcjmZlFovt9639X7JxN7vcdJykim5aUeu48hJpOSkW77HTTtykik56b2X3T2X08mU3H3ul06k9rmcluu4ctLunn/v+X7Hbbkt7cpNu3LSjtJJZ89jukon03u+Z+/3Oa6rtOsq4bhKu/qby3/775bLjloup13tuW3v5YfcTb5ul92F7Zvtm+07uNs3ewYAADAcMQAAgOGIAQAADEcMAABgOGIAAADDEQMAABiOGAAAwHDEAAAAhiMGAAAwHDEAAIDhiAEAAAxHDAAAYDhiAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcMQAAACGIwYAADCdm6Xi8bj7wAMPuPF43O9ROgjybK7LfEciyLNlkyD/noM8m+sy35EI8mxHKmv3DCQSCT344INKJBJ+j9JBkGeTmO9IBHm2bBLk33OQZ5OY70gEebYjlbUxAAAAuoYYAADAcMQAAACGy9oYiEajuvXWWxWNRv0epYMgzyYx35EI8mzZJMi/5yDPJjHfkQjybEfKcl3X9XsIAADgn6zdMwAAALqGGAAAwHDEAAAAhsuqGKiurtZ1112nq666SsuXL293286dO3XNNdfoiiuu0Jtvvhm4+VrdfffdWrVqladzJRIJ3Xzzzbrqqqv07LPPHvT6IMzWau7cuVq0aJEPk7XY33zNzc268cYbdeWVV2rhwoW+zZdN2L4PD9v34TNp+86qGFiwYIFuvPFGzZ8/X/Pnz2932yuvvKIrr7xSTz75pB577LHAzSdJGzZs0Ouvv+75XK+++qrOPvtsLViwQEuXLlU8Hj/g9UGYTZKqqqp8+49Yq/3N99Zbb2n8+PH605/+lDX/sfAb2/fhYfs+fCZt31kVA59//rlOPfVU5eTkqKCgQLW1tW23lZaWqrGxUc3NzYrFYoGbT5IeffRRXXLJJb7NZdu2Ro8erY0bNx7w+iDMJkmPPPKIL7+vfe1vvpEjRyqZTCqVSikSifg6Y7Zg+z6yudi+D51J23dWxUBDQ4Py8/MlSbm5uWpsbGy7LS8vTw899JAuueQSTZ8+PXDzrVmzRkOGDFFhYaEvc+Xl5XWYa3/XB2G2bdu2qaGhQSNGjPB8pn3tb75IJKJXXnlFF154oc4880w/R8wabN+HPxfb9+ExafsO+z3AkXjyySe1ZMmStn+vXbtWjY2Nys/PV1NTU9uGKUnz5s3Tgw8+qNGjR+uHP/yhpk2b1uOvIA5lvscee0w///nP9fjjj/foTJ3Jy8tTU1OTJKmpqUkFBQUHvD4Isz388MP60Y9+pPfff9/zmfa1v/meeuop3X777Zo2bZpuvfVWbdmyRUOGDPFz1IzD9t092L4Pn0nbd0bvGbjuuuv0zDPPtH3NmTNHH374oeLxuGpqatS7d++2++bm5io/P1/RaFSWZSmVSgVmvoaGBn355Ze6+eabtXjxYv3iF79QQ0NDj8/X6oQTTtAHH3wg13W1bt26thrf3/Ve2t8Ma9eu1T/90z9p3rx5mjdvnsrKyjyf7UDztf7/zbZtFRQU+PKqK9OxfXcPtu/uny8bt++sOgNhVVWV7rjjDtXW1uqWW27R1KlT9W//9m+aM2eOqqqqdO+99yqVSun888/XjTfeGKj5ioqKJLUcPXvaaadp4sSJns0Vj8d1++23q6KiQrNmzVJTU5MmT56so446qt31V199tWczHWy2UaNGSVLbkcazZs3yfLYDzVdUVKR/+Id/UDwe14knnqh77rnHl/myCdv34WH77v75snH7zqoYAAAAhy6j3yYAAABHjhgAAMBwxIAhNm3a5PcIAICAIgYMsGzZsiM6oGrVqlUqLS3VOeecI8dxOtw+Z84clZaWtjvNal1dnX7961/rggsu0Lhx43TWWWfpzjvv1ObNm9vus2jRIk2ZMuWw5wLQorS0VKWlpfr666873Pb444+rtLRUc+fObbvOcRwtWLBAl19+ucaPH6+JEyfq+uuv13vvvdd2n/LycpWWlqq8vNyTnwH+IgYMUFNTo+44TjSRSOidd95pd11lZaVWr17d7rqqqirNmjVLZWVleuihh/Txxx/rpZdeUmFhob7//e9ry5YtRzwLgPaKi4u1ePHiDtcvWrSo3TkEXNfVbbfdpmeeeUZ33323Vq5cqbfeekvTp0/XnDlz9MYbb3g5NgKCGMggy5Yt01VXXaVJkyZp7Nixuuaaa7Rp06ZOX2Ffe+21mjt3rlatWqX77rtPW7du1bhx47R9+3Y1NzfrV7/6lc4991xNmDBB1157rdasWXPQ9WfMmKHnn3++3XWLFy/WBRdc0O66uXPnKhaL6Te/+Y1GjBghy7JUXFyse++9V5MnT9b69euP+HcBoL0ZM2bohRdeaLf3bs2aNUokEjr++OPbrlu6dKlWrFihhx9+WOPHj1c4HFY0GtUVV1yh2267zZfTEsN/xECGqKio0I9//GPNnj1b7733npYvXy7XdfXb3/72gN83ceJE/fSnP9XgwYO1evVqDRgwQD/5yU/09ttv68knn9Q777yjqVOn6oYbbtDWrVsP+FiXXXaZXn/9ddXV1bVdt2jRIl1++eXt7rds2TJdeOGFCoVCHR7jl7/8JW8NAD1g8uTJSiaTevfdd9uuW7hwYafb5ymnnKLBgwd3eIybbrpJs2fP7vFZETzEQIYoKSnRK6+8oilTpqi+vl4VFRUqLi7W9u3bD+lx4vG4Xn75Zd1xxx0aPny4otGorr/+eo0cOVIvv/zyAb93zJgxGjFihF599VVJ0kcffaRQKKSTTjqp3f2qqqrUr1+/Q/sBARyRcDisGTNmtL1V0NzcrNdee63Dh/1UVVWpb9++PkyIICMGMkQkEtHLL7+sc845RxdddJHuv/9+7dq165CPBaitrVUymdTQoUPbXT906FCVl5frxRdf1Lhx49q+XnzxxXb3mzVrVtt/bJ577rkOrzokqV+/ftqxY0en61dVVSmdTh/SzAC6ZtasWXr99ddVX1+vpUuX6pRTTukQ5v3799fOnTs7/f76+vq2c/HDLMRAhliyZImeeuop/fGPf9Sbb76pP/zhD23vA9q2rUQi0e7+1dXVnT5O3759lZOTo2+//bbd9Zs3b1b//v01c+ZMrV69uu1r5syZ7e43Y8YMffbZZ1q3bp3eeOONDrdL0pQpU/TnP/+5w5O+67q66aab9NOf/vSQf34ABzdmzBiNHDlSS5Ys6fQtPEk677zztHr1alVUVHS4be7cubr00ku75YBjZBZiIEPU1dXJtm3FYjG5rqsVK1bo+eefVzKZ1DHHHKPKykqtXLlSruvqhRdeaHcQUE5OjpqampRKpWTbti677DLdf//9KisrUyKR0Pz587VhwwZddNFFB52juLhY5513nu666y5NnDhRJSUlHe5zyy23qLa2VrfffnvbB4xs375d99xzjyoqKnTTTTd13y8GQDuzZs3SE088oW+++Ubnnntuh9unTZumiRMnavbs2fr444/lOI7q6+v1xBNP6Omnn9add94py7J8mBx+IgYyxKWXXqozzjhDF110kU4//XT9/ve/1/XXX69vvvlGpaWluvnmm3X33XfrtNNO08qVK9sd4T9hwgT16dNHEyZM0Pr163XXXXfprLPO0g033KCJEydqyZIlevTRR7v8qWWzZs3Sl19+qcsuu6zT20tKSrRw4UIVFhbqhhtu0Lhx43T55ZcrlUrpmWee0bBhw7rldwKgo+nTp6usrEwzZ85UONzxU+oty9Lvfvc7XXjhhfrnf/5nTZgwQd/97nfb9jhOnTrVh6nhNz6oCAAAw7FnAAAAwxEDAAAYjhgAAMBwxAAAAIYjBgAAMBwxAACA4YgBAAAMRwwAAGA4YgAAAMMRAwAAGI4YAADAcP8fxaq5vCidRwYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -770,7 +774,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Here, due to small sample size and weak link strength, we miss both links from 0 to 1 (lag 0) and from 2 to 1 (lag 2) and get a false positive." + "Here, due to small sample size and weak link strength, we miss both links from 0 to 1 (lag 0) and from 2 to 1 (lag 2)." ] }, { @@ -796,7 +800,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJnklEQVR4nO3dd3yU9eEH8M/z3MhlkxD2nglDlpALsveQlQMUhURb0apVa9Va609ra622tmorap1VE4YDEpYMRaZAwt4bZIQQIGTPG8/z+yMQpWE8CfeMu/u8Xy9eDXff3PeT1OM+9zzf+z6CLMsyiIiIKGCJegcgIiIifbEMEBERBTiWASIiogDHMkBERBTgWAaIiIgCHMsAERFRgGMZICIiCnAsA0RERAGOZYCIiCjAsQwQEREFOJYBIiKiAMcyQEREFOBYBoiIiAIcywAREVGAYxkgIiIKcCwDREREAY5lgIiIKMCxDBAREQU4lgEiIqIAxzJAREQU4FgGiIiIAhzLABERUYBjGSAiIgpwLANEREQBzqx3ALXJbjecF7LhPJcFT0kRZLcb8LgBQYBgtkCwWGCp3wjWJs1hioyCIAh6RyYiItKUX5UBWZZReeoYyg7uRmX2aTizTsJ16QIgSZdHCIAoVP0vZEC+/OfKvUHBCGraAtZmrRDUvA1Cu/eBOTxSjx+FiIhIM4Is/+zV0Ec5z2WheNsPKN6yHu78XEAUa7zQ14poAiQPIAgIjr0N4fEDEdatD0RbsHeDExERGYDPlgHZ40HRpu9RsH4FXOeyqgpA9REALxJEQJYAkxmh3XojepQDQc1be38eIiIinfhkGSjdvxO58z+D6+I5bSe+XDjC+w5B/XHTYI6M0nZ+IiIiFfhUGajMPo3cBZ+j/PDen96x60EUIZhMiBo1GfWGjoNoteqTg4iIyAt8ogzIkoS8ZV8jf2UaIAjqnA6oEwGmetFo8uDTsLVqr3cYIiKiOjF8GfCUlSDn03+j/OBuvaNcmyACooCG0x5CRN8heqchIiKqNUOXAVd+LrLf/gtcl84b6GjA9UWNTET0+Gncq4CIiHyKYcuAMycLZ99+GZ6SIp8oAleEJwxGw3sfhiByc0ciIvINhnzF8pSWIPvdv/pcEQCA4oy1yFv2td4xiIiIFDNcGZAlCTmf/RvuwnyfKwJX5K9YgNK92/SOQUREpIjhykDe8vlViwV9tAgAAAQBOZ+9DefFHL2TEBER3ZShykDp3u3IXz5f7xi3TpYhu5w49/7fIVVW6J2GiIjohgxTBmSXCxfmvl+1j4A/kCS4LmSjYM03eichIiK6IcOUgaLMtfAUF9b94kJGJMsoWLUEUkW53kmIiIiuyxBlQPa4kbd8AaouLexfpMpyFG5YqXcMIiKi6zJEGSjesh6ewjwAfnRU4ApZRv53i7h2gIiIDMsQZSBvZbr/rBW4BqmsFEUZa/WOQUREdE26lwFXXi7cuef9a63A/xIElB3ao3cKIiKia9K9DFQcP6h3BPXJMiqOHYDsy3snEBGR39K9DJQfPwSIJk3nLHS6MfOHg9iTV6LZnFJ5GVwXsjWbj4iISCn9y8CR/YDk0Wy+AwWleHrLUZwrd2o25xXlxw9pPicREdHN6FoGJGelpu+WV2Xn4fW9p5DcvrFmc1YTTag8dUz7eYmIiG5C3zKg8WY8veqH45N+nTCwcZSm8wIAZAlSeZn28xIREd2EWc/JZWelpvNFB1k0ne8qsgxJ45+XiIhICd3XDAQUP/70JBER+S5dy4BgDdJzem0JAsSgAPp5iYjIZ+haBsQgm57Ta0sQIdpC9E5BRERUg+5lwNJAh5X9epA8CGrZVu8URERENei6gBAAgjt2hevSRU33GgCAb0Z013Q+ALC176T5nERERDej+wJCW7s4zYuAHgRbMKyNmukdg4iIqAbdy0Bw2zi9I6hPEBDcLg6CqPuvm4iIqAbdTxOY6zeAOToG7rxL8OfP3oV0urXTEs7yCuSfyUb+mXPIO5ON/NPZyDtzDvlnshE3rB9G/u5XXkpKRESBRvcyIAgCokY6cPGLD/WOohrRFoyIvkOve7/H5UJB9nnkX35xzztzDnmns6tf/PPPnENJbt51v//OP/5GjdhERBQgdC8DABBhH4S8ZV/BU1SgdxTvEwQE24fh9J7DP72r/58X+8JzF+p8eeMG7Vqhbd9eXg5NRESBxBBlQLBYEDXKgdyv/6t3FK8TrEHYd7wIC6ZOVOXx7UmJEARBlccmIqLAYJgVbRF9h0IMC9c7hncJAuoNHYcRv/81xr7wuCpT2JMcqjwuEREFDsOUAdFqRcO7H9Q7hveIIsz1GyJq6DgAwPiXn8KQJ+736hRBoSE4vHoTyguLvPq4REQUWARZlg21hD934WwUrFqsd4xbJECwWNDi93+DtXHz6lslScLsmb/Hpk+/9upsFlsQuk0YDnuSA11GDYTJouPVGYmIyOcYrgzIHg/OvvMXVBw/BNRxUZ0RNH7gKYT1TKhxu+Tx4ON7nsCOr79RZd7wBvXR+57xSEiejJa9unI9ARER3ZThygAAeIqLcPq138FTXAjIvlcI6g2fgJhJM657v9vpxH8mPYT9y9eqmqNxp/ZISHYgfvokRLdoqupcRETkuwxZBgCg8uwpnH37ZUjlpT51hCDs9jvQKPlxCCbTDcc5yyswa8x9OLouU/VMgiCg4+AE2JMd6DV5DGzhYarPSUREvsOwZQAAXLnncfbtl+EuuOQThSByyJ2ISUxSvO1weVEx/jV8Bk5t3a1ysp9Ygm3okTgKCUmJiBveHyazIT5dSkREOjJ0GQCqThmc++QNVBw7qHeUaxMEAAIaTP0FIgaMrPU5+pJL+Xhz8DRk7zusTr4biGjcAPH3ToQ9KRHNu3fm+gIiogBl+DIAVC0qvLRoDgpWLwVE0ThHCQQBprAINJ75NILb1f2CS4XnLuCfA6bi4vFTXgxXO81ui4M9KRHx0yehXtNGuuUgIiLt+UQZuKLi9Ankzv8UFScOV70j1yu6KAKCiKjhExA1YiJEW/AtP2TuyTN4Y8BdyM8654WAdSeIIuKG9YM9KRE9EkfBFhaqax4iIlKfT5UBAJBlGaW7MpGblgJ3fq62k18+KhF2ez/UnzgdlugYrz58zuHjeGPg3Si+oPHPdR1BoSHo4RgNe1Ii4obeAfEmiyKJiMg3+VwZuEJ2uVCwfiUK16+A+9IF9U4fXDkCIYgI6dwd0aMnw9amo/fnuSxr9wG8OXgaygquvaugLTwMFcUlqs1/PZFNGyF++iQkJDvQrGus5vMTEZF6fLYMXCHLMirP/IiSbT+geMt6eEqKANEESJ66P6goVhUAWYatbRzC4wcirIcdJo2unXAiYwf+PXwGKkvLrrq9w8B4PL78c+xe/B0yUtJw8NsNkDy38HPWUYsenWFPcqDPvRMQ2bih5vMTEZF3+XwZ+DlZkrDzg4/RonEIXDlnUHn2FDwFeT8NEEUAAnBl0byMqk2NLv8KBLMZlkbNENS8NYKat0Foj3hYorx7KkCpQ6s34Z2x98Nd6ay+Lenjv6PfA3dX/70w5wK2zluMzNR0nNm5X/OMgiii88gBSEh2oPvEkbCG3PraCSIi0p5flYFtXy7BJ/f+Bi8fWYMG7VoBAKTKCjhzsuDMPgNPaTFktxuy2wVBFCGYLRAsFljqN4K1SXOY6zdUvEeAFvYsWYX3HQ9DcrthsQXh9ZytCI6MuObYs/sOIzM1DVvmLELB2RyNk1advug1ZQzsSYnoMCgBooF+j0REdGN+UwZ2LfoWH055FJLbjUeXfIJu44bpHckrtn6xGP+99zfoNXUsHvzy3ZuOlzweHF6zGZmpadi5YEWNUw1aiGrRFPYZk2BPcqBJp/aaz09ERLXjF2Vg/8p1+M+EB+F2Vh1Sd/zjeYx85iGdU3nPDx9/gcimjXDb2CG1+r7K0jLsSl+JzNQ0HFy1EbIO+zO06t0N9qRE9J42HhEN9TnlQkREN+bzZeDwmk14Z+wv4KqorL7tjl/eheRPXtcxlffJsnxLOwQWZJ/HlrmLkJmShrN7D3kxmTKiyYQuYwbDnpSI7hOGw2KzaZ6BiIiuzafLwPFN2/H2yKQah8Lb9u2FZzel6ZTK+LJ2H0BGajq2zFmIopyLms8fHBmOXlPvREKyA+369eb6AiIinflsGTi1bQ/eGjYdFUXFNe4LiYrEG5d2ca/9m/C43Tj0/UZkpKRhV/pKuMorNM9Qv3Vz2Gckwp6UiEYd22o+PxER+WgZyNpzsGpjnvzC6455PWcrIho10DCVb6soLsHOtBXISEnDkTWbocd/Fm3sPWBPcqD3tPEIqx+l+fxERIHK58rAuYPH8Oagu1F88dINxz219gt0HJSgUSr/kncmG1vmLERmajrOHTiq+fwmiwVdxw5GQvJkdL1zCCxBQZpnICIKJD5VBi6dysLrd0xGYfb5m4699z+vYODDMzRI5b9kWcbpHfuQmZqGrXMX37SAqSEkKhK97x4He5IDbfv24qkfIiIV+EwZKL54Cf/sPxXnj5xQNH7ob36Bu/71ksqpAofH5cKBbzcgMzUNuxZ+e9XOiFpp0K4V7EmJsM9IrN5UioiIbp1PlIGKklK8NfRenNq6W/H3dB45AE+sTFUxVeAqLyzCjvnLkZGahqPrMnXJ0K5fb9iTEnH7XeMQGhWpSwYiIn9h+DLgdjrx3vgHcODbDbX6vqjmTfDamc0qpaIrck+ewZY5VfsXKD1q401mqxW3jR8Ge1Iiuo4ZDLPVqnkGIiJfZ+gyIEkSPp3xJLbOW1yn7//Hhe0Ib1Dfy6noWmRZxsmtu5GRkoZtXyxB6aV8zTOE1o9C72njkZDsQOs+3bm+gIhIIcOWAVmW8fVvX8bqf39a58d4YmUKOo8c6MVUpITb6cT+FeuQkZKGvUu+r94mWkuNOraFPSkR8TMmIaZ1C83nJyLyJYYtAyv+9h4W/uHWthSe9NqzGP3co15KRHVRml+I7V8tRWZqOo5v3KZLhg4D45GQPBm9poy57lUfiYgCmSHLwMb/foXUB5695cfpNfVOPPTVza/0R9q4ePwUMmenIzM1HRePn9J8fostCN0mDEdC8mR0HjkAJotF8wxEREZkuDKwe/F3eD/xV165wl6Ddq3wl2PrvJCKvEmWZZzYvAOZqWnY9uXSG+4kqZbwBvXR+57xSEiejJa9unJ9AREFNEOVAWdZOT66+zEc/HaD184zv5m/GyH1+NEzo3JVVmLfN2uQkZqGfd+sgcfl0jxD407tkZDsQPz0SYhu0VTz+YmI9GaoMnCFs6wcR9dn4sC3G3Dw2w3I3n+kzo/12zXzEDu4rxfTkVpKLuVj25dLkZmyAD9m7tJ8fkEQ0HFIX9iTEtFr8hjYwsM0z0BEpAdDloGfc5ZX4KmobnXe8W7yP/8PI55+0MupSG3nj5xA5uyFyExNw6WTWZrPbwm2oUfiKCQkJSJueH+YzGbNMxARacXwZeDgqh/w7xF1v8ZAn3sn4oE5//ZiItKSJEk4vnEbMlLSsOPrb1BeWPOS1WqLaNwA8fdOREKyA827d9Z8fiIitRm+DKT/4e9Y+bf/KBorCEKNS+82jmuHPx38Xo1opDFneQX2LFmFzNR07F+xDpLbrXmGZrfFVe1fMH0S6jVtpPn8RERqMHwZeK3PBJzatkfR2K5jh2D6h6/h4HdVaw0OfvcDSi/l462ifbCFhaqclLRUdCEX275YgszUdMX/fXiTIIqIG9YPCckO9EgchaDQEM0zEBF5i6HLQGl+IZ6p36PGu/3rcfzjeYx85qHqv0uShKxdBxDTtgU/UeDHzh08hszUNGTOXoj8M9mazx8UGoIejtFISHYgdkhfiCaT5hmIiG6FocvAzvQV+MDxsOLxf9i2BK1uv03FRGRkkiTh6LoMZKamY8f85agoLtE8Q2TTRrDPmAR7kgPNusZqPj8RUV0YugzM+/WLWPeesssQh9SLwD9zd/JdGQGo+njq7kXfIiM1HQdWrvfKJla11aJnF9iTEtHnngmIbNxQ8/mJiJQydBl4+bZRyN53WNHYbhOG49FFH6uciHxRYc4FbJ23GJkpaTiz64Dm84smEzqNHICEpER0nzgS1pBgzTMQEd2IYctAaV4Bnq7fQ/H4qf/6I4b95pfqBSK/cHbf4er1BYXZ5zWf3xYehl5TxsCelIgOgxIgiqLmGYiI/pdhy8Cepd/jvfEPKB7/wu7laN6tk4qJyJ9IHg8Or9mMjJQ07EpbgcrSMs0zRLdshvjpE2FPcqBJp/aaz09EdIVhy0D6c3/Dyr+/r2hsaP0o/OPCdr7LojqpKCnFrvSVyExNx6FVPyj+9Io3terdrXp9QXiD+prPT0SBzbBl4B/9p+D4xm2KxvacPAa/mq9sYyKiG8k/m4OtcxchIyVN8XoVbxLNZnQZPQgJyQ50Gz8MFptN8wxEFHgMWQZcFRX4bWQ3xVcunPbOyxj862SVU1EgkWUZWbsPIDM1HVvmLETR+VzNMwRHhqPX1DuRkOxAu369eeSLiFRjyDJwdMMWvDHwLsXj/7j/OzTt3EHFRBTIPG43Dq36ARmp6diVvhKu8grNM9Rv3Rz2JAfsSYlo1KGN5vMTkX8zZBlY8dq7WPj8PxSNjWgUg7+f2wpBEFRORQSUFxVjZ9oKZKam48iazbqsL2hj7wF78mT0vnscwupHaT4/EfkfQ5aBWWPvx/7laxWN7X33OMz84h11AxFdQ96ZbGyZsxAZKWnIOXhM8/lNFgu63jkECUkOdL1zCCxBQZpnICL/YLgyIHk8eLp+D8WXquV6AdKbLMs4vWMfMlIWYNu8JSi+eEnzDCFRkeh99zjYkxxo27cXj5QRUa0Yrgxk7TmIV7qPUTz+2c1paJvQS8VERMp5XC4c+HYDMlIWYPei7+CuVLYI1psatGsFe1Ii7EkONGjbUvP5icj3GK4MrH03BV889kdFY0WTCf8q3g9rMD9+RcZTVlCIHfOXIzM1DUfXb9ElQ7t+vWFPSsTtd41DaBSv3ElE12a4MvDxPY9j2xdLFI1t2jUWf9y7UuVERLcu9+QZbJm9EJmp6Th/5ITm85utVtw2fhgSkh3oMnoQzFar5hmIyLgMVwb+0PIOxdekT7hvMu7/7A2VExF5jyzLOLllFzJS07Ft3mKU5hVoniG0fhR6TxuPhGQHWvfpzvUFRGSsMlB0/iKebdxH8fi7/v0Shj7xCxUTEanH7XRi3/K1yExNx94l3yveZMubGnVsC3uyA/YZk1C/VXPN5yciYzBUGdi3fA3eGav8xf2ZH+ajfb/eKiYi0kZpfiG2f7UUGSlpOLFpuy4ZOgyyIyHJgV5TxiA4MkKXDESkD0OVgWWvzMLiF5Ud9hcEAW8V7YMtLFTlVETaunj8FDJnpyMjJQ25J05rPr/FFoTuE0fAnuRA55EDYLJYNM9ARNoyVBl43/Er7EpXtiCwcaf2+NOBVSonItKPLMs4sXkHMlIWYPuXS1FWUKR5hvCGMehzz3jYkxxo2asr1xcQ+SlDlYHnW/VD3umzisbGT5+EX87+l7qBiAzCVVmJvUtXIzM1DfuWrYXH5dI8Q5POHWBPSkT89EmIbtFU8/mJSD2GKQMluXl4poHyzYOmvPkChv92poqJiIypJDcP275ciszUNPyYuUvz+QVBQMchfWFPSkSvyWNgCw/TPAMReZdhysCBb9fj7VHKtxV+au0X6DgoQcVERMaXc/h41f4Fs9Nx6WSW5vNbgm3okTgKCckOxA3rB5PZrHkGIrp1hikDK/72Hhb+4XXF498q3IvgiHAVExH5DkmScPyHrchITcf2r75BRZGya3t4U0TjBoifPgkJSYlo3r2z5vMTUd0Zpgx8OPVR7Ji/TNHYhh3a4OUja1ROROSbnOUV2LNkFTJT0rB/xTpIHo/mGZrdFgd7sgPx905EvaaNNJ+fiGrHMGXghXYDFX+Mqve08Zg5b5bKiYh8X9GFXGz7YgkyUtJwevtezecXRBGdhveDPcmBHomjEBQaonkGIro5Q5SB0vxCPB3dXfF4x+t/wMjf/UrFRET+J/vAUWSmpmHL7IXIzzqn+fxBoSHoOXk07EkOxA7pC9Fk0jwDEV2bIcrAodWb8K9h9yoe/+T3cxE39A4VExH5L0mScHRdBjJS0rBj/nJUlpRqnqFes8aInz4R9iQHmnWN1Xx+IrqaIcrAt//8EGm/e1Xx+DfydvNyrERe4Cwrx66F3yIzNQ0Hvt0AWZI0z9CiZxfYkxLR554JiGzcUPP5icggZeCT6b/B1rmLFI2NadsSrxxfr3IiosBTeO4Cts5bjMzUNJzZdUDz+UWTCZ1GDkBCsgPdJ46ENdimeQaiQGWIMvDXnmMV/+PTa8pYPPT1eyonIgpsZ/ceQkZqOrbMTkfhuQuaz28LD0OvKWNgT3agw0A7RFHUPANRING9DEiShN+EdYarvELR+EmvPYvRzz2qcioiAgDJ48Gh1ZuQmZqOnQuWw1lWrnmG6JbNED+jav+CxnHtNZ+fKBDoXgZyfzyDF9oOUDz+iZUp6DxyoIqJiOhaKkpKsSt9JTJS0nD4+43Q45+OVn26IyEpEb2njUd4g/qaz0/kr3QvA/uWr8E7Y3+hePw/L+5AWEy0iomI6Gbyz+Zg69xFyEhJQ/a+w5rPL5rN6DpmMOxJieg2fhgsNq4vILoVupeBVW9+jPlPv6JobHTLZnj11EaVExGRUrIsI2v3AWSkpGHr3EUoOp+reYbgyHDcftc42JMS0b5/H15mmagOdC8DqQ8+h40ff6FobI/EUXg47QOVExFRXXjcbhxa9QMyUtKwa+G3itcBeVNMmxaIn5EIe1IiGnVoo/n8RL5K9zLwj/5TcHzjNkVjJ/zlaYx94XGVExHRrSovKsbOBcuRmZqOw2s265KhTUJPJCQ7cPtd4xBWP0qXDES+QtcyIMsynonpidK8AkXjf/3Np7ht7BB1QxGRV+WdPostcxYiIyUNOYeOaz6/yWJB1zuHICHZga5jh8ASFKR5BiKj07UMFF3IxbONeise/8qPGxDTuoWKiYhILbIs4/T2vchITcPWuYtRkpuneYaQqEj0njYeCUmJaJPQi+sLiC7TtQwcWZeBNwdPUzRWNJsxq/wQTGazyqmISG0elwv7V65HZmoadi/6Du5Kp+YZGrRvjYSkRMTPSESDti01n5/ISHQtA+s/mIO5D/+forHchpjIP5UVFGLH/OXISEnDsQ1bdMnQvn8f2JMS0WvqnbzuCQUkXcvAV0/+Gav//amisXHD++PJ72arnIiI9JT74xlkzk5HZmo6Lhz9UfP5zUFWdBs/HAnJDnQZPQgmi0XzDER60LUMvD0qCQe+3aBo7ICH7sH0D15TORERGYEsyzi5ZRcyUtKw7YslihcZe1NYTHTV+oJkB1r17sb1BeTXdC0DL7QdgNwfzygay2sSEAUmt9OJfcvWIDM1HXuXrobbqf36gkaxbWFPcsA+YxLqt2qu+fxEatOtDEgeDx6zxUJyuxWNn/nlO+h91ziVUxGRkZXmFWD7V0uRkZqOE5u265KhwyA7EpIno9eUMQiOCNclA5G36VYG8s5k4/mWdyge/9yWRWjdp7uKiYjIl1w4drJ6fUHuidOaz2+xBaH7pJGwJznQeeQAftKJfJpuZeDYD1vxzwFTFY//Z+5O7iJGRDXIsozjm7YjMzUN279cirKCIs0zhDeMQZ97JyAhyYEWPbtwfQH5HN3KQOachfh0xpOKxtrCw/BW4V4+wYjohlwVFdj7zRpkpCzAvmVrFZ+G9KamXTrCnpSI+OmTENW8iebzE9WFbmVg+avvYtH//UPR2ObdO+GFXctVTkRE/qQkNw/bvlyKjJQFOLllt+bzC4KA2KF3wJ6UiJ6O0bCFh2megUgp3crAnF/9ARs+nKdobPdJI/FI+ocqJyIif5Vz+DgyU9OROTsdeafOaj6/NSQYPRJHISHZgbhh/SCaTJpnILoR3crA26OTcWClsh0Fhz81E1PeeEHlRETk7yRJwrENW5CZmo7tXy9DRVGx5hkimzREn3snIiHZgebdOmk+P9G16FYGXoobivOHTygaO+2dlzH418kqJyKiQOIsr8Cexd8hMzUd+1esg+TxaJ6hWbc4JCRPRvy9ExHZpKHm8xNdoUsZkGUZT4R2gqu8QtF4XrqYiNRUdP4itn6xBJmp6Ti9fa/m8wuiiE4j+sOe5ECPSSMRFBqieQYKbLqUgdpeuvhPB1ehcVx7FRMREVXJPnAUmalp2DJ7IfKzzmk+f1BYKHpOHo2EJAc6Dk7g+gLShC5l4OTW3fhb/ETF42eVH4LFZlMxERHR1SSPB0fWZSIjZQF2LliBypJSzTNENW+C+OkTYU9yoGmXjprPT4FDlzKwff4yfDRV2XUGIps2wt/PZqqciIjo+ipLy7B70XfISFmAg9/9AFmSNM/QsldX2JMS0eeeCYho1EDz+cm/6VIGvnvjIyx45q+Kxrbr1xu/+2G+yomIiJQpPHcBW+ctRkbKAmTtPqj5/KLJhM6jBiIh2YFuE0bAGsyjpnTrdCkD85/5K1a98ZGisfYZifhF6lsqJyIiqr2sPQeRmZqOLXMWovDcBc3nt0WEo9eUMUhIdqD9gHiIoqh5BvIPupSBT5OfQmZqmqKxo557BImv/V7lREREdSd5PDj0/UZkpqZjZ9oKOMvKNc8Q3aoZ7DMSYU9KROPYdprPT75NlzIwa8x92L9inaKxU958AcN/O1PlRERE3lFRUopdaSuQkZqOw99vhB5bubSO7w57kgN9po1HWEy05vOT79GlDLx6+zic3rFP0dhfpL4F+4xElRMREXlfftY5bJm7CJkpacjef0Tz+UWzGV3HDoY9yYFu44byU1l0XbqUgT+0vAP5Z7IVjX1iZQo6jxyociIiIvXIsowzu/ZfXl+wCMUXcjXPEFIvArffdSfsSQ6069ebV4Glq2heBmRZxuPBsXBXOhWNf37HUrTs2VXlVERE2vC43Tj43QZkpqZjV/pKuCoqNc8Q07Yl7DMmwZ7kQMP2rTWfn4xH8zJQUVyCJyOUv7i/lpWBqGaNVUxERKSP8qJi7FywHBkpaTiyNkOXDG379kJCsgO33zUOodH1dMlA+tO8DFw8fgovth+kePysisOwBAWpmIiISH+XTmVhy5xFyExNQ86h45rPb7Za0fXOIUhIdqDr2CEwW62aZyD9aF4GTmTswOt9HYrGBkeG460C7S8aQkSkF1mWcXr7XmSkpGHrvMUoyc3TPENodD30njYe9qREtLH35PqCAKB5Gdi9+Dv8Z+KDisY2aN8afzm6Vt1AREQG5XG5sH/FOmSkpmPP4u8Ur7XypoYd2sCelAj7jETEtGmh+fykDc3LwMZPvkTqTGWbCLW943Y8u3GByomIiIyvrKAQ279ehszUdBzbsEWXDO0HxMOelIjbp45FSL1IXTKQOjQvAyteexcLn/+HorHdJ47AIwuVbVtMRBQocn88g8zZ6chIScPFYyc1n98cZEW3CSOQkJSILqMHwWSxaJ7BmzxlJfDk50J2uyC7XYAsQzCbAZMZppBwmKJiIPj5Vs+al4Gvn/oLvn/rE0Vj+z94D2Z8+JrKiYiIfJMsy/gxcycyU9Ox7YslKM0r0DxDeIP66D1tPBKSHWh5+22GXl8gyzJc2afgPHca7gvZcJ3PguvCWUhlJTf+RpMJ5vqNYW3cAuaGTWFp2BRBrTpCtAVrE1wDmpeBT5N+i8zZ6YrGjn7+15j019+pnIiIyPe5nU7sW7YGGSlp2Lt0NTwul+YZGse1gz3JAfuMSYhu2Uzz+a/HdeEsyvZsQdnuzfAU5VfdKJoAyVO7BxJFQJar/phMsHXsjtDudtja3wbBx4+OaF4G3ps4E3sWr1I0dsobL2D4U7wuARFRbZTmFWD7V0uRkZKGE5t36JKh4+AEJCQ70HPyGARHhGs+v1RehtLt61G6axPcF88BggjIkncnEUVAkiBYgxDcpTfCeg+CtXkb786hEc3LwFvD7sXh1ZsUjZ3+4WsY8OA9KiciIvJf54/+iC2z05GZmo7cH89oPr8l2IYek0bCnpSITiMGwGQ2qzqf7PGgdPt6FH6/EHJledW7eC1cLgbBXXojcuQUmOvV12ZeL9G8DPw9YRJ+zNylaOwDc/+NPvdMVDcQEVEAkGUZxzduQ2ZqGrZ/9Q3KCoo0zxDRKAZ97p0Ie1IiWvTo4vX1BRVH96Fg+RdwXzrv1cetFVEEBAHhd4xC+IAxEIN84+JQmpeBl7uOVHz1rkcXf4xu44ernIiIKLC4KiqwZ+lqZKamYd+ytZDcbs0zNO0aC3tSIuKnT7rlLec9JUXIS/8vKo/tBwRBu6MBNyIIEG0hiJp4H4I79dQ7zU1pXgaeb90PeafOKhr75PdzETf0DpUTEREFruKLl7Dty6XITE3DyS27NZ9fEATEDuuHhKRE9HCMhi0stFbfX5l1ApfmvgupvASQvLwmwEvCB4xFxNCJhv54ouZl4OmYnii9lK9o7O8zF6JNfA91AxEREQAg59AxZM5eiMzUdOSdVvamzZusIcHo6RgNe7IDcUPvgGgy3XB82b6tyFvwMSDD+4sDvczWsRuipz4E0WrMa+1oXgYes3VUvKXmH/d/h6adO6iciIiIfk6SJBzbsAUZKWnY8fUyVBTf5HP4Kohs2gjx905EQrIDzW6Lq3F/SeYaFCybq3muOhMEWJu1QcyMJyAG1+7ohxY0LQMetxu/trRXPP7VUxsN9VlVIqJA4yyvwJ7F3yEjJQ0HVq6H5KnlZ/O9oHn3TkhInow+905AZOOGKNuTgbwFyjavMxRBhLV5GzT4xTMQTOp+qqK2NC0D5YVF+G29borH/zN3J8LqR6mYiIiIlCo6fxFb5y1GZmo6Tu/Yp/n8t40bhgc/+hMufPgq4NF+0aO3hCUMR70xd+sd4yqaloH8szn4Q/MExeNnVRyGJciY51eIiAJZ9v4jyExNw5Y5i5CfdU6TOR+c8waa5myBp6jA8GsEbiZ6ykyE3GbXO0Y1TZc2VpaUKh4rms0wW60qpiEiorpq2qUjEv/2HP568gc8uWoOEu6bjKDQENXms0WEo4XzlF8UAQDIS/8MzpwsvWNU07gMlCkeawsLMfQFL4iICBBNJsQN64f7P3sDr5/fhl/M/hc6jxro9Y/RjbtvKJw/HvSLIgAAkCTkLfgIGq/hvy5Ny4CzVHkZCKrlZ02JiEhfQaEhsE+fhCdWpOBvWRmY/M//Q7NuNT8JUFuiKKBjYz97cyhLcF/IRsVh7fd2uBZty0BZueKx1hD/uTQkEVGgiWzSECOefhAv7l6BF3Yvx4hnHkJkk4Z1eiz74E4QK5WfZvYZgoCiNYsNcXRA0zIgeZQf3jFZjPWxCyIiqpvm3Tph8j+ex2tnNuOJlSmInz5J8Rs+QQD692sNwM+ODACALMOVc6ZqG2WdafqKK9diq0gjb9tIRES1J5pM6DxyIDqPHIiK4hLsSl+JjJQ0HF696brvjjt1aoQgwaVxUg0JIorWLoGtQ1ddY2haBqRalQE/bIFERAQAsIWHISF5MhKSJyM/6xy2zKnaBvl/L2TX846O1ZcH9kuyBGfWCXjKSmAKCdMthqZvv3lkgIiI/ldU8yYY9ftH8OLelXh+x1IMffKXCG8YAwBo0Tzcf4vAzzhPH9N1fo1PEyhfJMEyQEQUWARBQMueXdGyZ1dM/sfzOLhkBcy7Fmk2f36FE29uPYrdFwpgEgQMb90ID/doC5PaR6pFEZWnjyE4roe689wogpaT8cgAEREpYTKb0bZdA03n/Mumgwg2m/DVxAS8O7IndpzPx/zDGmwMJEmoPHlY/XluwLBlQOSaASKigFZ55jgg3vgyxt5ytrgcuy8U4qEebWAzm9A0LBgzurTEwqPZmszvOncaslu/hZKGLQM8MkBEFNik0mLNdhw8WViKcKsZMcE/XQ+nVUQoLpRVosSpwUWRJAlSZYX681yHpmsGTmafxTGUwgkJkbCgMYJgus5nR1kGiIgCm+xyAhptyFPm9iDYfPVRCJup6nWo3O1BmFX9l0vZ5VR9juvRpAyUlZXhkUceQUpKCgDAZDLB4/EgEmYMQQwaoeaVCVkGiIgCm6zhZYqDzSZUuD1X3VZxeaO8/y0JqpE8Nx+jEk1ecZ944gksWLAAH330EQoLC1FWVoZt27ahc98+WIELKEXN/8O5zwARUWATrTbN5modGYoipxt5FT+9Oz9VVIoGwVZNjgoAgGDR70q9qpeB7OxsfPLJJ3j99dfRs2dP3HbbbYiIiMDSpUuxZMkSBEdF4iBKagbjkQEiooAmWK1VGw5poHl4MLrGROC9HcdR5nLjXEk5Zu8/jTFtG2syP+DnZSAzMxMA0KdPH7z66qu4dPosGlYKePnllxEWFob4+HhcQs3zJDxNQEQU2CwNm2u2ZgAAXurfGR5ZxvQlW/DYd7vQp3E0ZnRppcncYngkRFuIJnNdi+rHPuLi4hAUFIT4+HgAgB31cBLl6NChA4KCgnDx4kVYr9FJJI9+506IiEh/1lbtNS0D0TYrXurXWbP5qokibG1u/VLPtxRB7Qk6deqE06dPY+XKlXjrdy/iDMpRHGLCZ599hhUrVmDHjh1ojZptyF2p36pKIiLSn7VJK8Ck0eI9PUkSrC3b6xpBk2PxDRs2RKdOnfDul6kojwrB8uXLYbVace+996IFbGiNmpeyZBkgIgpsgtkMa7M2esfQRFDLDrrOr0kZOH36NPr37w+3CGzcuBFOpxNDhgyBJb8Uw9AAwjX2GnBVVGoRjYiIDCyobSdA8O81ZIItBOYGTXTNoPpv2OPxYMqUKTCZTPjhhx+QkZGBsWPHoqioCKEwYwcKr/nRQpYBIiIKu30gIPjxR80FAeF9h+u+aF71BYTp6enYunUrNm/ejIsXL+LTTz+F3W6vvv/QoUOozC3AYMRc9X08TUBERKaIegi9fQBKt63XbGtiLQlmC8Lsw/SOoX4ZWLNmDeLi4hAbGwsAWLTo6stRzpw5E5lpy2p8H48MEBERAIT3H43S7esB7T5YoA1BQFjf4RCD9ftI4RWql4EuXbrgvffeQ3R09HXH9EZkjdt4ZICIiADAXK8+QnrcgbJdm4BaXPDO8ExmhCUM1zsFAA3KwCOPPIKuXbvi4sWLKDh3Hl8+/tJV9wfDhMbXuDYBjwwQEdEVEYPHo3z/dsjOCk33HlBTxODxMIWG6x0DACDIsna/1bzTZ/F8q36Kx7/nPg4xED5jSkREN1VxbB9yU/+td4xbJwiwdeyG+vf8GoJBFkdqunzRbKt5BOBGeKqAiIiusLXvioihk/SOcWtEEaZ69RHteMAwRQDQuAxYgmp3EQaeKiAiop8LHzAGto7dfHfvAdGEmHsfh2irudmennhkgIiIfIYgioie/AAsDZv6ViEQBEAUUX/qQ1XZDUbbMmCt3ZEBZ1m5SkmIiMhXibYQNHjg97C26uAbGxIJIgSzBTFJTyI4rofeaa5J0zIgCAJs4WGKx5cVFKmYhoiIfJUYZEODpN8gpHtfvaPcmCBCDItAgwd+D1vbTnqnuS7Nj7GERNXcU+B6SvMK1AtCREQ+TTBbEDXpftS7czogilV/DMbaugMaPfoSrE1a6h3lhlTfZ+B/hUZHIu/0WUVjy/ILVU5DRES+TBAEhMUPRlDrjihY8RUqj++vOnWg514EggAxOBSRIyYjpMcdul93QAnNy0BtjgywDBARkRKWhk3RIPlJVBzbh4JlX8B96bz2IUSx6sJD/UYhvP8YiEE27TPUkbHLAE8TEBFRLdjad0WjX/8ZpTs2oGjtEkglRVUv0mptY3zlKIQoIrhLb0QOd8Bcr746c6lI+zIQXU/x2NJ8LiAkIqLaEUwmhPUZjNDbB8J5+ijK9mxB2b4tkCsrvFcMLpcAa4v2COmegJDOt0MMCb31x9WJsY8M8DQBERHVkSCKCGodi6DWsag39h5UHN+P8v3b4Mz6Ee78iz+VAlG8fEVE+eq1BoJQtZeB5Km+SQwJg6VRc9g63Ibgrr1hjrz+Rfh8ifYLCKMiFI/laQIiIvIGwWxGcGx3BMd2BwDIHjfcly7AdTEbrvNn4SnIhex2QXa7IUseiGYrYDZDDA6FpWFTWBo2g6VhU4jBvvvu/0Z4ZICIiAKOYDJffpFvCnTprXcc3Wm/z0At1gywDBAREanP2JsOsQwQERGpTvMyEFqrjxayDBAREanN0KcJKopL4HG51AtDREREOhwZiFZ+ZAAACs9dUCkJERERATqUgeDICFhsQYrH5505p2IaIiIi0rwMCIKAes0aKx6fr/CiRkRERFQ3ulxKqV6zRorH8sgAERGRunQqA7U4MsAyQEREpCrDl4E8niYgIiJSleFPE/DIABERkbp84MhAtopJiIiISJcyENlU+ZGB0kv5cJaVq5iGiIgosBn+NAEA5J3h0QEiIiK16FMGanFkAOC6ASIiIjXpUgbMVivCG9RXPD6fRwaIiIhUo0sZAGq58RAXERIREalGxzLAjYeIiIiMQLcyENWiieKxPDJARESkHt3KQIP2rRWP5ZoBIiIi9ehWBhp2aK14bP6Zc5BlWb0wREREAUzHMtBG8djK0jKU5ReqmIaIiChw6VYGYto0hyAIisfzVAEREZE6dCsDFpsNUS2bKh5/6RSvXkhERKQG3coAULtTBTkHj6mYhIiIKHDpWwbat1I8NmvPIRWTEBERBS6fOTJwdvdBFZMQEREFLp3LQGvFY3MOHYerslK9MERERAFK1zJQm42HJI+H6waIiIhUoGsZiGnbAoKoPEIWTxUQERF5na5lwBIUhOhafLzwLBcREhEReZ2uZQCo3akCfqKAiIjI+3QvA006tVc89uzug7xGARERkZfpXgaadYtTPLb44iUUnb+oYhoiIqLAo3sZaN69U63GcxEhERGRd+leBpp26VirCxZxESEREZF36V4GrCHBtduJkGWAiIjIq3QvAwDQrBanCniagIiIyLsMUQaa12IR4bmDx+B2OlVMQ0REFFgMUQZq84kCye1GzqHjKqYhIiIKLIYoA/xEARERkX4MUQaiWzaDLSJc8XguIiQiIvIeQ5QBQRBqtW6ARwaIiIi8xxBlAKjduoGze1gGiIiIvMUwZaA26waKzudyW2IiIiIvMUwZqM2RAYBXMCQiIvIWw5SB5t07QzSbFY/nIkIiIiLvMEwZsAbb0KJHZ8XjuW6AiIjIOwxTBgCgTUJPxWP5iQIiIiLv8NkycO7AMXhcLhXTEBERBQZDlYG2tSgDHpcL2fuPqJiGiIgoMBiqDMS0bYmwmGjF44+sy1QxDRERUWAwVBkQBKFWpwoOr96kYhoiIqLAYKgyANRu3cCRtZnwuN0qpiEiIvJ/hisDtVk3UFFUjDM796uYhoiIyP8Zrgy06tMNgiAoHn94zWYV0xAREfk/w5WB4IhwNOnSUfF4rhsgIiK6NYYrA0Dt1g0c27AVbqdTxTRERET+zZBloDbrBpxl5Ti5ZbeKaYiIiPybIctAm769ajWe6waIiIjqzpBloEmn9ohoFKN4PNcNEBER1Z0hy4AgCIgb3l/x+BObdsBZXqFiIiIiIv9lyDIAAHHD+yke63Y6cWLTdhXTEBER+S/jloFhyssAwHUDREREdWXYMhDdoikaxbZVPJ7rBoiIiOrGsGUAADqNGKB47Mktu1FRXKJiGiIiIv9k6DJQm3UDkseDoxu2qpiGiIjIPxm6DMQOToAgKo94hOsGiIiIas3QZSA4MgKt47srHs91A0RERLVn6DIAAJ1qsd/AmZ37UZpXoF4YIiIiP2T4MlCbdQOyLOPIugwV0xAREfkfw5eBtn17wRoSrHj8kTUsA0RERLVh+DJgtlrRYZBd8XiuGyAiIqodw5cBoHbrBrL3H0HR+YsqpiEiIvIvPlEGarNuAODWxERERLXhE2WgaddYhDdUfklj7jdARESknE+UAVEUa3V04NBqlgEiIiKlfKIMAECnWpSBi8dO4uLxUyqmISIi8h8+UwZqe0nj3Yu+UykJERGRf/GZMhDdshkadVR+SeNd6StVTENEROQ/fKYMAEDn0QMVjz2+cRuKLuSqmIaIiMg/+FQZ6DFppOKxsixj75LvVUxDRETkH3yqDLQfEI+QqEjF43ct/FbFNERERP7Bp8qAyWxGt/HDFI8/+N0GVBSXqJiIiIjI9/lUGQCA7rU4VeCudGL/yvUqpiEiIvJ9PlcGOo8cCIstSPH43TxVQEREdEM+VwaCQkPQeZTyTxXsXfo9PC6XiomIiIh8m8+VAaB2pwrKC4txZF2mimmIiIh8m0+WgW7jhkEQlUfnBkRERETX55NlICwmGu0H9FE8fvei7yBJkoqJiIiIfJdPlgEA6JE4StE40WxGs9tiUZZfCMntgqe8DO7iInhKiyFVVkCWPConJSIiMjZBlmVZ7xB1kXvyDF5oM+Ca94WFBaHHkNsRd3tHxNQPhTvnLCrPnobsrLzmeHNUNGwt28DWojWCmreCrXkrBDVrAdGq/FMLREREvspnywAA/LXnWJzZdQAAEBlhwx3DuqF1jBmm0sKqAYIAiCLgUfLuXwBMPxtrMiOiVzwi+w1GePc+EK1WdX4IIiIinfl0Gfj2L2+hZEcG2ja2wVyUCwgiIHtxbYAoApIEIciGSHt/1Os3GKFdekAQBO/NQUREpDOfLAOSy4VLKxfjQtrcnw79q/1jmEyAx4Pgth3QJPlhhHSIU3c+IiIijfhUGZBlGUVbNiJnzsdwXbqoT4jLRwsi+w5Eo7t/AWuDhvrkICIi8hKfKQMVWadx9uO3UX70YNVaAL1jiyIEUUTMuClomHgPBLNZ3zxERER15BNloDDzB2T95w3IHjdgtP0CBAHB7ePQ8snnYakXrXcaIiKiWjN0GZBlGRcWzMHF9HnGOBpwPaIIU1gEWj/3FwS3aqt3GiIioloxbBmQPR6c/e87KFjrI1cdFEUIFitaPfMSwjp30zsNERGRYoYsA7Is4+yH/0LB+lV6R6mdy/satH3x7wjp0EnvNERERIoYcjvivO+X+V4RAKpOY8gyTr35CtyF+XqnISIiUsRwZaDs6EGc+/x9vWPUnSTBU1KE0/9+FbKinQ+JiIj0Zagy4C7Mx6k3X9E7xq2TJJQdOYiceZ/qnYSIiOimDFUGsj54C56SIuN9fLAuZBmXlqejeM92vZMQERHdkGHKQNnxwyjZvd0/isAVoojzX6XAgGs0iYiIqhmmDFxYMLdqq19/Ikmo+PEYSvft0jsJERHRdRni1bf85HGU7N7mX0cFrhBFnF8wR+8URERE12WIMnAhfZ7/HRW4QpJQfvQgSg/u1TsJERHRNen+CuypKEfx9gz/PCpwhWhCwaa1eqcgIiK6Jt3LQPmxw8a95oC3SB6UHtijdwoiIqJr0v26u2WHD1SdItDgyMDJskp8fiYXJ8oqYRYEdI8Mwf3NYxBhMak+tzMnG+7iIpjDI1Sfi4iIqDZ0PzJQemgvIKl/ZKBSkvDK0WzEhtnwcfc2+FfXlih2e/DOyfOqz31F2dGDms1FRESklK5lQPZ4UHb0EAD1y0Cu043WwUGY2jQaFlFAuNmEkQ0icbCkQvW5AQAmE8oO7ddmLiIiolrQ9TSBp6wEssupyVzNbFa80LHpVbdtzi9B25AgTeaHJMOVl6vNXERERLWg65EBqbJSl3llWcbcs5ewraAUv2wRo9GkEiSnPj8vERHRjeh6ZEB2uzWfs8wj4Z0fz+NEWSX+EtsMrbQ6MgBAdmpzFISIiKg2dC0DosWq6Xw5FS789Wg2YqxmvN6phSafIvg5MUi74kFERKSUrmVA0PDFscTtwUtHzuK28GA82rohREHQbG4AgChCsLIMEBGR8ehaBkyhYRBDQiGVlao+1+rcIuQ63diUX4LN+SVX3TenVzvV5weAoMbNNJmHiIioNvQ9MiAICI3tguJdW1XfhXBC4yhMaByl6hw3JEkIie2s3/xERETXofumQyFxXfWOoA1BQHD7WL1TEBER1aB7GQiN7ez/1yYAYGvZBiZbsN4xiIiIatC9DNjatIdgtugdQ12iCaGdu+mdgoiI6Jp0LwOi2YJ6A4dVXazIX0keRA0aoXcKIiKiazLEK3CDCXfpHUE9oojw3n1ha9Fa7yRERETXZIgyYG3QCPX6D/XPowOShIaJ9+idgoiI6LoM8+rbYOLd/reQUDQhrHtvBLfWZh8DIiKiujBMGQhq3BRRg0YCWu8MqCoZjaYm6R2CiIjohgxTBgCgSfJDCGrW0m9OFzRJ+hWC27TXOwYREdENGepVVwyyodXTL0IMsvn2EQJBQGS/IYgecafeSYiIiG7KUGUAAKwNm6DFY7/33fUDooigZi3R7IHHIPhyoSEiooBhuDIAAOE9eqPRtPv1jlF7oghTSOhPRzeIiIh8gCDLxn0LnrtiEXJSP9Q7hjKiCEtUfbT+v9cQ1KiJ3mmIiIgUM3QZAIDCzeuR9f6bkCUPIEl6x7k2QYCtVTu0fvZPMEfqeGVEIiKiOjB8GQCA8pPHceqNl+EuyDNWIRAEQJYRNXgUmtz/CESLn19jgYiI/JJPlAEAcJcU4/xXKchfvbzqRVjvUiAIMNeLQpPpDyKy70B9sxAREd0CnykDV1RkncK51A9Rum9X9TtzTYkiBLMZDSfdg/pjJkK0Bmk7PxERkZf5XBm4onj3NpxL+RDOnLOAaAIkj7oTXi4e9QaPRKOpSbDUi1Z3PiIiIo34bBkAAFmSUHb4AAo2rUXh5nWQysu8WwxEEZAk2Fq1Rb0BQxFpHwBLdIx3HpuIiMggfLoM/JzkdqF0704UbFyL4l1bq4oBUPWOXhQBz40KggCYfjZGEGBt3BT1+g5G5B2DENSkmer5iYiI9OI3ZeDnZFmGuzAflVmnUZF1CpVZp1Bx6gTcxUWQXS7Ibtflc/8WiBYrrE2awdaiFWzNWyGoeSsENW3OtQBERBQw/LIMEBERkXKG3I6YiIiItMMyQEREFOBYBoiIiAIcywAREVGAYxkgIiIKcCwDREREAY5lgIiIKMCxDBAREQU4lgEiIqIAxzJAREQU4FgGiIiIAhzLABERUYBjGSAiIgpwLANEREQBjmWAiIgowJn1DvBz1p6/hGi2QhBNEEQTTJafvhZE8af7TCaIZivE6vtMNe4TRBNEUYAgCjCZRAj/87UoChBNQvWYG94nCDCZRZhEASZRgPXy1+bqv5t+us/00zjzz8aarvW1IEAUBJgEwGISq782m0SYBFT9XRRgEYVrfF11v0UUq782CQIEARAFQBBw+fEBAYBJFCACVT+LiOqvRQEwCT//uuoxBFkGZAmC5Aau+lqq+iNd/z5BlgCP56evJTcgeSBLEuB2QvZ4AEmqus3tgix5qr52uYArX18Ze2Wcy/nT90geSC43ZI8EWZIgOd2QPFXfI3skSC43JM9PX8uXv/a43JB/Ns7jdP/saw9kSYbkkS///fL3S3LVfR4ZskeG5JHgcUmXH1OGx+W5/D0/fZ8ky/DIMpySDI+M//n6f/9e9bWEqq89Mi7f99PX78sndX1eeguf33x+8/lt3Oc3jwwQEREFOJYBIiKiAMcyQEREFOBYBoiIiAIcywAREVGAYxkgIiIKcCwDREREAY5lgIiIKMCxDBAREQU4lgEiIqIAxzJAREQU4FgGiIiIAhzLABERUYBjGSAiIgpwLANEREQBjmWAiIgowLEMEBERBTiWASIiogDHMkBERBTgWAaIiIgCHMsAERFRgGMZICIiCnAsA0RERAGOZYCIiCjAsQwQEREFOtlPVVZWym+//bZcWVmpd5QajJxNlpnvVhg5mz8x8u/ZyNlkmfluhZGz3Sq/PTLgdDrxzjvvwOl06h2lBiNnA5jvVhg5mz8x8u/ZyNkA5rsVRs52q/y2DBAREZEyLANEREQBjmWAiIgowPltGbBarXjsscdgtVr1jlKDkbMBzHcrjJzNnxj592zkbADz3QojZ7tVgizLst4hiIiISD9+e2SAiIiIlGEZICIiCnAsA0RERAHOr8pAfn4+kpOTMW3aNKxdu/aq+y5evIgZM2Zg6tSpWLduneHyXfHcc88hMzNT01xOpxOPPPIIpk2bhq+++uqmtxsh2xWzZs1CWlqaDsmqXC9fRUUFHnjgAdx1112YP3++bvn8CZ/fdcPnd90F0vPbr8rA3Llz8cADD+Dzzz/H559/ftV933zzDe666y6kpKTgv//9r+HyAcCxY8ewatUqzXMtW7YMAwYMwNy5c7FixQpUVlbe8HYjZAOAvLw83f4Ru+J6+TZs2IDevXvjiy++8Jt/LPTG53fd8Pldd4H0/ParMrB//37cfvvtCAoKQlhYGAoLC6vvi42NRVlZGSoqKmCz2QyXDwA++eQTTJo0SbdcoiiiY8eOOH78+A1vN0I2APj44491+X393PXytW3bFi6XC263GxaLRdeM/oLP71vLxed37QXS89uvykBpaSlCQ0MBAMHBwSgrK6u+LyQkBO+//z4mTZqEcePGGS7fnj170KxZM0RGRuqSKyQkpEau691uhGznzp1DaWkp2rRpo3mmn7tePovFgm+++QajR49Gv3799IzoN/j8rnsuPr/rJpCe32a9A9yKlJQULF++vPrve/fuRVlZGUJDQ1FeXl79xASADz/8EO+88w46duyIX/7ylxgxYoTq7yBqk++///0vXnnlFXz66aeqZrqWkJAQlJeXAwDKy8sRFhZ2w9uNkO2DDz7Agw8+iC1btmie6eeul2/27Nl46qmnMGLECDz22GM4e/YsmjVrpmdUn8Pnt3fw+V13gfT89ukjA8nJyZg3b171n4cffhjbtm1DZWUlCgoKEBERUT02ODgYoaGhsFqtEAQBbrfbMPlKS0tx5MgRPPLII0hPT8err76K0tJS1fNd0aVLF2zduhWyLOPgwYPVbfx6t2vpehn27t2LP/zhD/jwww/x4Ycf4tSpU5pnu1G+K/+9iaKIsLAwXd51+To+v72Dz2/v5/PH57df7UCYl5eHp59+GoWFhXj00UcxfPhw/O1vf8PDDz+MvLw8vPjii3C73Rg5ciQeeOABQ+WrV68egKrVs/Hx8bDb7ZrlqqysxFNPPYWcnBw4HA6Ul5dj8ODBaNGixVW3T58+XbNMN8vWvn17AKheaexwODTPdqN89erVw+9+9ztUVlaia9eueP7553XJ50/4/K4bPr+9n88fn99+VQaIiIio9nz6NAERERHdOpYBIiKiAMcyECBOnjypdwQiIjIoloEAsHr16ltaUJWZmYnY2FgMHDgQkiTVuP/hhx9GbGzsVdusFhcX44033sCoUaPQs2dP9O/fH8888wxOnz5dPSYtLQ1Dhw6tcy4iqhIbG4vY2FicOHGixn2ffvopYmNjMWvWrOrbJEnC3LlzMWXKFPTu3Rt2ux333XcfNm/eXD0mKysLsbGxyMrK0uRnIH2xDASAgoICeGOdqNPpxMaNG6+6LTc3Fzt37rzqtry8PDgcDpw6dQrvv/8+duzYgSVLliAyMhJ33303zp49e8tZiOhqUVFRSE9Pr3F7WlraVXsIyLKMxx9/HPPmzcNzzz2HjIwMbNiwAePGjcPDDz+M77//XsvYZBAsAz5k9erVmDZtGvr27Yvu3btjxowZOHny5DXfYSclJWHWrFnIzMzESy+9hOzsbPTs2RPnz59HRUUFXn/9dQwaNAh9+vRBUlIS9uzZc9P5x48fj4ULF151W3p6OkaNGnXVbbNmzYLNZsNbb72FNm3aQBAEREVF4cUXX8TgwYNx+PDhW/5dENHVxo8fj0WLFl119G7Pnj1wOp3o3Llz9W0rVqzA+vXr8cEHH6B3794wm82wWq2YOnUqHn/8cV22JSb9sQz4iJycHPzmN7/BQw89hM2bN2Pt2rWQZRnvvvvuDb/Pbrfjz3/+M5o2bYqdO3eiUaNG+NOf/oQffvgBKSkp2LhxI4YPH477778f2dnZN3ysyZMnY9WqVSguLq6+LS0tDVOmTLlq3OrVqzF69GiYTKYaj/Haa6/x1ACRCgYPHgyXy4VNmzZV3zZ//vxrPj979eqFpk2b1niMmTNn4qGHHlI9KxkPy4CPiI6OxjfffIOhQ4eipKQEOTk5iIqKwvnz52v1OJWVlVi6dCmefvpptGrVClarFffddx/atm2LpUuX3vB74+Li0KZNGyxbtgwAsH37dphMJnTr1u2qcXl5eWjQoEHtfkAiuiVmsxnjx4+vPlVQUVGBlStX1rjYT15eHmJiYnRISEbGMuAjLBYLli5dioEDB+LOO+/Em2++iUuXLtV6LUBhYSFcLheaN29+1e3NmzdHVlYWFi9ejJ49e1b/Wbx48VXjHA5H9T82CxYsqPGuAwAaNGiACxcuXHP+vLw8eDyeWmUmImUcDgdWrVqFkpISrFixAr169apRzBs2bIiLFy9e8/tLSkqq9+KnwMIy4COWL1+O2bNnIzU1FevWrcNHH31UfR5QFEU4nc6rxufn51/zcWJiYhAUFIQzZ85cdfvp06fRsGFDTJgwATt37qz+M2HChKvGjR8/Hvv27cPBgwfx/fff17gfAIYOHYpvv/22xou+LMuYOXMm/vznP9f65yeim4uLi0Pbtm2xfPnya57CA4AhQ4Zg586dyMnJqXHfrFmzkJiY6JUFx+RbWAZ8RHFxMURRhM1mgyzLWL9+PRYuXAiXy4V27dohNzcXGRkZkGUZixYtumoRUFBQEMrLy+F2uyGKIiZPnow333wTp06dgtPpxOeff45jx47hzjvvvGmOqKgoDBkyBM8++yzsdjuio6NrjHn00UdRWFiIp556qvoCI+fPn8fzzz+PnJwczJw503u/GCK6isPhwGeffYYff/wRgwYNqnH/iBEjYLfb8dBDD2HHjh2QJAklJSX47LPPMGfOHDzzzDMQBEGH5KQnlgEfkZiYiDvuuAN33nknEhIS8J///Af33XcffvzxR8TGxuKRRx7Bc889h/j4eGRkZFy1wr9Pnz6oX78++vTpg8OHD+PZZ59F//79cf/998Nut2P58uX45JNPFF+1zOFw4MiRI5g8efI174+Ojsb8+fMRGRmJ+++/Hz179sSUKVPgdrsxb948tGzZ0iu/EyKqady4cTh16hQmTJgAs7nmVeoFQcB7772H0aNH449//CP69OmDYcOGVR9xHD58uA6pSW+8UBEREVGA45EBIiKiAMcyQEREFOBYBoiIiAIcywAREVGAYxkgIiIKcCwDREREAY5lgIiIKMCxDBAREQU4lgEiIqIAxzJAREQU4FgGiIiIAtz/A1tXMi07UxK4AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJtElEQVR4nO3dd3yU9eEH8M/z3MhlkxDCCnskDFmGXJC9h6wcoCgk2opWrVqr1qo/ra212tqqrai1jqoJwwEJS4YiUyDH3htkhLBC9rz1/P4IRGkYT8I94+4+79eLV8PdN/f9JPW4zz3P976PIEmSBCIiIgpYotYBiIiISFssA0RERAGOZYCIiCjAsQwQEREFOJYBIiKiAMcyQEREFOBYBoiIiAIcywAREVGAYxkgIiIKcCwDREREAY5lgIiIKMCxDBAREQU4lgEiIqIAxzJAREQU4FgGiIiIAhzLABERUYBjGSAiIgpwLANEREQBjmWAiIgowLEMEBERBTiWASIiogDHMkBERBTgWAaIiIgCHMsAERFRgDNqHUBpkssFx4VcOM7mwF1aDMnlAtwuQBAgGE0QTCaYGjaGuWkcDJFREARB68hERESq8qsyIEkSqk4eRfmBXajKPQVHzgk4L10APJ7LIwRAFKr/FxIgXf5z5d6gYAQ1awFz81YIimuD0O69YQyP1OJHISIiUo0gST97NfRRjrM5KNn6A0o2r4OrIA8QxVov9HUiGgCPGxAEBMffhvCkAQjr1huiJdi7wYmIiHTAZ8uA5HajeOP3KFy3HM6zOdUFoOYIgBcJIiB5AIMRod0SET3ShqC41t6fh4iISCM+WQbK9u1A3rzP4Lx4Vt2JLxeO8D6D0XDsVBgjo9Sdn4iISAE+VQaqck8hb/7nqDi056d37FoQRQgGA6JGTkKDIWMhms3a5CAiIvICnygDkseD/KVfo2BFJiAIypwOqBcBhgbRaPrg07C0aq91GCIionrRfRlwl5fi3Kf/QsWBXVpHuTZBBEQBsVMfQkSfwVqnISIiqjNdlwFnQR5y3/kznJfO6+howPVFjUhB9Lip3KuAiIh8im7LgONcDs688wrcpcU+UQSuCE8ehNh7H4YgcnNHIiLyDbp8xXKXlSL3vb/4XBEAgJLsNchf+rXWMYiIiGTTXRmQPB6c++xfcBUV+FwRuKJg+XyU7dmqdQwiIiJZdFcG8pfNq14s6KNFAAAgCDj32TtwXDyndRIiIqKb0lUZKNuzDQXL5mkd49ZJEiSnA2c/+Bs8VZVapyEiIroh3ZQByenEhTkfVO8j4A88Hjgv5KJw9TdaJyEiIroh3ZSBYvsauEuK6n9xIT2SJBSuXAxPZYXWSYiIiK5LF2VAcruQv2w+qi8t7F88VRUoWr9C6xhERETXpYsyULJ5HdxF+QD86KjAFZKEgu8Wcu0AERHpli7KQP6KLP9ZK3ANnvIyFGev0ToGERHRNWleBpz5eXDlnfevtQL/SxBQfnC31imIiIiuSfMyUHnsgNYRlCdJqDy6H5Iv751ARER+S/MyUHHsICAaVJ2zyOHCjB8OYHd+qWpzeirK4byQq9p8REREcmlfBg7vAzxu1ebbX1iGpzcfwdkKh2pzXlFx7KDqcxIREd2MpmXA46hS9d3yytx8vLHnJNLaN1FtzhqiAVUnj6o/LxER0U1oWwZU3oynV8NwfNK3EwY0iVJ1XgCA5IGnolz9eYmIiG7CqOXkkqNK1fmig0yqzncVSYJH5Z+XiIhIDs3XDAQUP/70JBER+S5Ny4BgDtJyenUJAsSgAPp5iYjIZ2haBsQgi5bTq0sQIVpCtE5BRERUi+ZlwNRIg5X9WvC4EdSyrdYpiIiIatF0ASEABHfsCueli6ruNQAA3wzvrup8AGBp30n1OYmIiG5G8wWElnYJqhcBLQiWYJgbN9c6BhERUS2al4HgtglaR1CeICC4XQIEUfNfNxERUS2anyYwNmwEY3QMXPmX4M+fvQvpdGunJRwVlSg4nYuC02eRfzoXBadykX/6LApO5yJhaF+M+N2vvJSUiIgCjeZlQBAERI2w4eIXH2odRTGiJRgRfYZc936304nC3PMouPzinn/6LPJP5da8+BecPovSvPzrfv+df/iNErGJiChAaF4GACDCOhD5S7+Cu7hQ6yjeJwgw9BqMU7sP/fSu/n9e7IvOXqj35Y0btWuFtn16eTk0EREFEl2UAcFkQtRIG/K+/q/WUbxOMAfhwI/FWHDvBEUe35qaAkEQFHlsIiIKDLpZ0RbRZwjEsHCtY3iXIKDBkLEY9cLjGPPi44pMYU21KfK4REQUOHRTBkSzGbF3P6h1DO8RRRgbxiJqyFgAwLhXnsLgJ+736hRBoSE4tGojKoqKvfq4REQUWARJknS1hD9vwSwUrlykdYxbJEAwmdDi93+FuUlcza0ejwezZvweGz/92quzmSxB6DZ+GKypNnQZOQAGk4ZXZyQiIp+juzIgud048+6fUXnsIFDPRXV60OSBpxDWM7nW7R63Gx/f8wS2f/2NIvOGN2qIxHvGITltElr26sr1BEREdFO6KwMA4C4pxqnXfwd3SREg+V4haDBsPGImTr/u/S6HA/+e+BD2LVujaI4mndojOc2GpGkTEd2imaJzERGR79JlGQCAqjMnceadV+CpKPOpIwRht9+BxmmPQzAYbjjOUVGJmaPvw5G1dsUzCYKAjoOSYU2zodek0bCEhyk+JxER+Q7dlgEAcOadx5l3XoGr8JJPFILIwXciJiVV9rbDFcUl+Oew6Ti5ZZfCyX5iCragR8pIJKemIGFYPxiMuvh0KRERaUjXZQCoPmVw9pM3UXn0gNZRrk0QAAhoNOUXiOg/os7n6EsvFeCtQVORu/eQMvluIKJJIyTdOwHW1BTEde/M9QVERAFK92UAqF5UeGnhbBSuWgKIon6OEggCDGERaDLjaQS3q/8Fl4rOXsA/+k/BxWMnvRiubprflgBragqSpk1Eg2aNNctBRETq84kycEXlqePIm/cpKo8fqn5HrlV0UQQEEVHDxiNq+ASIluBbfsi8E6fxZv+7UJBz1gsB608QRSQM7Qtragp6pIyEJSxU0zxERKQ8nyoDACBJEsp22pGXmQ5XQZ66k18+KhF2e180nDANpugYrz78uUPH8OaAu1FyQeWf6zqCQkPQwzYK1tQUJAy5A+JNFkUSEZFv8rkycIXkdKJw3QoUrVsO16ULyp0+uHIEQhAR0rk7okdNgqVNR+/Pc1nOrv14a9BUlBdee1dBS3gYKktKFZv/eiKbNUbStIlITrOhedd41ecnIiLl+GwZuEKSJFSd/hGlW39AyeZ1cJcWA6IB8Ljr/6CiWF0AJAmWtgkITxqAsB5WGFS6dsLx7O3417DpqCorv+r2DgOS8Piyz7Fr0XfITs/EgW/Xw+O+hZ+znlr06Axrqg297x2PyCaxqs9PRETe5fNl4Ockjwc/vP1vxLeJgOt8DqrOnIS7MP+nAaIIQACuLJqXUL2p0eVfgWA0wtS4OYLiWiMorg1CeyTBFOXdUwFyHVy1Ee+OuR+uKkfNbakf/w19H7i75u9F5y5gy9xFsGdk4fSOfapnFEQRnUf0R3KaDd0njIA55NbXThARkfr8qgxs/XIxPrn3N3jl8Go0atcKAOCpqoTjXA4cuafhLiuB5HJBcjkhiCIEowmCyQRTw8YwN42DsWGs7D0C1LB78Up8YHsYHpcLJksQ3ji3BcGREdcce2bvIdgzMrF59kIUnjmnctLq0xe9Jo+GNTUFHQYmQ9TR75GIiG7Mb8rAzoXf4sPJj8LjcuHRxZ+g29ihWkfyii1fLMJ/7/0Nek0Zgwe/fO+m4z1uNw6t3gR7RiZ2zF9e61SDGqJaNIN1+kRYU21o2qm96vMTEVHd+EUZ2LdiLf49/kG4HNWH1G1/fwEjnnlI41Te88PHXyCyWWPcNmZwnb6vqqwcO7NWwJ6RiQMrN0DSYH+GVondYE1NQeLUcYiI1eaUCxER3ZjPl4FDqzfi3TG/gLOyqua2O355F9I+eUPDVN4nSdIt7RBYmHsem+cshD09E2f2HPRiMnlEgwFdRg+CNTUF3ccPg8liUT0DERFdm0+XgWMbt+GdEam1DoW37dMLz27M1CiV/uXs2o/sjCxsnr0Axecuqj5/cGQ4ek25E8lpNrTrm8j1BUREGvPZMnBy6268PXQaKotLat0XEhWJNy/t5F77N+F2uXDw+w3ITs/EzqwVcFZUqp6hYes4WKenwJqagsYd26o+PxER+WgZyNl9oHpjnoKi645549wWRDRupGIq31ZZUoodmcuRnZ6Jw6s3QYv/LNpYe8CaakPi1HEIaxil+vxERIHK58rA2QNH8dbAu1Fy8dINxz215gt0HJisUir/kn86F5tnL4A9Iwtn9x9RfX6DyYSuYwYhOW0Sut45GKagINUzEBEFEp8qA5dO5uCNOyahKPf8Tcfe++9XMeDh6Sqk8l+SJOHU9r2wZ2Riy5xFNy1gSgiJikTi3WNhTbWhbZ9ePPVDRKQAnykDJRcv4R/9puD84eOyxg/5zS9w1z9fVjhV4HA7ndj/7XrYMzKxc8G3V+2MqJZG7VrBmpoC6/SUmk2liIjo1vlEGagsLcPbQ+7FyS27ZH9P5xH98cSKDAVTBa6KomJsn7cM2RmZOLLWrkmGdn0TYU1Nwe13jUVoVKQmGYiI/IXuy4DL4cD74x7A/m/X1+n7ouKa4vXTmxRKRVfknTiNzbOr9y+Qe9TGm4xmM24bNxTW1BR0HT0IRrNZ9QxERL5O12XA4/Hg0+lPYsvcRfX6/r9f2IbwRg29nIquRZIknNiyC9npmdj6xWKUXSpQPUNowygkTh2H5DQbWvfuzvUFREQy6bYMSJKEr3/7Clb969N6P8YTK9LRecQAL6YiOVwOB/YtX4vs9EzsWfx9zTbRamrcsS2sqSlImj4RMa1bqD4/EZEv0W0ZWP7X97Hg+VvbUnji689i1HOPeikR1UdZQRG2fbUE9owsHNuwVZMMHQYkITltEnpNHn3dqz4SEQUyXZaBDf/9ChkPPHvLj9Nryp146KubX+mP1HHx2EnYZ2XBnpGFi8dOqj6/yRKEbuOHITltEjqP6A+DyaR6BiIiPdJdGdi16Dt8kPIrr1xhr1G7Vvjz0bVeSEXeJEkSjm/aDntGJrZ+ueSGO0kqJbxRQyTeMw7JaZPQsldXri8gooCmqzLgKK/AR3c/hgPfrvfaeea3CnYhpAE/eqZXzqoq7P1mNbIzMrH3m9VwO52qZ2jSqT2S02xImjYR0S2aqT4/EZHWdFUGrnCUV+DIOjv2f7seB75dj9x9h+v9WL9dPRfxg/p4MR0ppfRSAbZ+uQT29Pn40b5T9fkFQUDHwX1gTU1Br0mjYQkPUz0DEZEWdFkGfs5RUYmnorrVe8e7Sf/4Pwx/+kEvpyKlnT98HPZZC2DPyMSlEzmqz28KtqBHykgkp6YgYVg/GIxG1TMQEalF92XgwMof8K/h9b/GQO97J+CB2f/yYiJSk8fjwbENW5GdnontX3+DiqLal6xWWkSTRki6dwKS02yI695Z9fmJiJSm+zKQ9fzfsOKv/5Y1VhCEWpfebZLQDn888L0S0UhljopK7F68EvaMLOxbvhYel0v1DM1vS6jev2DaRDRo1lj1+YmIlKD7MvB67/E4uXW3rLFdxwzGtA9fx4HvqtcaHPjuB5RdKsDbxXthCQtVOCmpqfhCHrZ+sRj2jCzZ/314kyCKSBjaF8lpNvRIGYmg0BDVMxAReYuuy0BZQRGeadij1rv967H9/QWMeOahmr97PB7k7NyPmLYt+IkCP3b2wFHYMzJhn7UABadzVZ8/KDQEPWyjkJxmQ/zgPhANBtUzEBHdCl2XgR1Zy/Ef28Oyxz+/dTFa3X6bgolIzzweD46szYY9Iwvb5y1DZUmp6hkimzWGdfpEWFNtaN41XvX5iYjqQ9dlYO6vX8La9+VdhjikQQT+kbeD78oIQPXHU3ct/BbZGVnYv2KdVzaxqqsWPbvAmpqC3veMR2STWNXnJyKSS9dl4JXbRiJ37yFZY7uNH4ZHF36scCLyRUXnLmDL3EWwp2fi9M79qs8vGgzoNKI/klNT0H3CCJhDglXPQER0I7otA2X5hXi6YQ/Z46f88w8Y+ptfKheI/MKZvYdq1hcU5Z5XfX5LeBh6TR4Na2oKOgxMhiiKqmcgIvpfui0Du5d8j/fHPSB7/Iu7liGuWycFE5E/8bjdOLR6E7LTM7EzczmqyspVzxDdsjmSpk2ANdWGpp3aqz4/EdEVui0DWc/9FSv+9oGssaENo/D3C9v4LovqpbK0DDuzVsCekYWDK3+Q/ekVb2qV2K1mfUF4o4aqz09EgU23ZeDv/Sbj2Iatssb2nDQav5onb2MiohspOHMOW+YsRHZ6puz1Kt4kGo3oMmogktNs6DZuKEwWi+oZiCjw6LIMOCsr8dvIbrKvXDj13Vcw6NdpCqeiQCJJEnJ27Yc9IwubZy9A8fk81TMER4aj15Q7kZxmQ7u+iTzyRUSK0WUZOLJ+M94ccJfs8X/Y9x2ade6gYCIKZG6XCwdX/oDsjCzszFoBZ0Wl6hkato6DNdUGa2oKGndoo/r8ROTfdFkGlr/+Hha88HdZYyMax+BvZ7dAEASFUxEBFcUl2JG5HPaMLBxevUmT9QVtrD1gTZuExLvHIqxhlOrzE5H/0WUZmDnmfuxbtkbW2MS7x2LGF+8qG4joGvJP52Lz7AXITs/EuQNHVZ/fYDKh652DkZxqQ9c7B8MUFKR6BiLyD7orAx63G0837CH7UrVcL0BakyQJp7bvRXb6fGyduxglFy+pniEkKhKJd4+FNdWGtn168UgZEdWJ7spAzu4DeLX7aNnjn92UibbJvRRMRCSf2+nE/m/XIzt9PnYt/A6uKnmLYL2pUbtWsKamwJpqQ6O2LVWfn4h8j+7KwJr30vHFY3+QNVY0GPDPkn0wB/PjV6Q/5YVF2D5vGewZmTiybrMmGdr1TYQ1NQW33zUWoVG8cicRXZvuysDH9zyOrV8sljW2Wdd4/GHPCoUTEd26vBOnsXnWAtgzsnD+8HHV5zeazbht3FAkp9nQZdRAGM1m1TMQkX7prgw83/IO2dekT75vEu7/7E2FExF5jyRJOLF5J7IzsrB17iKU5ReqniG0YRQSp45DcpoNrXt35/oCItJXGSg+fxHPNukte/xd/3oZQ574hYKJiJTjcjiwd9ka2DOysGfx97I32fKmxh3bwppmg3X6RDRsFaf6/ESkD7oqA3uXrca7Y+S/uD/zwzy075uoYCIidZQVFGHbV0uQnZ6J4xu3aZKhw0ArklNt6DV5NIIjIzTJQETa0FUZWPrqTCx6Sd5hf0EQ8HbxXljCQhVORaSui8dOwj4rC9npmcg7fkr1+U2WIHSfMBzWVBs6j+gPg8mkegYiUpeuysAHtl9hZ5a8BYFNOrXHH/evVDgRkXYkScLxTduRnT4f275cgvLCYtUzhMfGoPc942BNtaFlr65cX0Dkp3RVBl5o1Rf5p87IGps0bSJ+OeufygYi0glnVRX2LFkFe0Ym9i5dA7fTqXqGpp07wJqagqRpExHdopnq8xORcnRTBkrz8vFMI/mbB01+60UM++0MBRMR6VNpXj62frkE9oxM/Gjfqfr8giCg4+A+sKamoNek0bCEh6megYi8SzdlYP+36/DOSPnbCj+15gt0HJisYCIi/Tt36Fj1/gWzsnDpRI7q85uCLeiRMhLJaTYkDO0Lg9GoegYiunW6KQPL//o+Fjz/huzxbxftQXBEuIKJiHyHx+PBsR+2IDsjC9u++gaVxfKu7eFNEU0aIWnaRCSnpiCue2fV5yei+tNNGfhwyqPYPm+prLGxHdrglcOrFU5E5JscFZXYvXgl7OmZ2Ld8LTxut+oZmt+WAGuaDUn3TkCDZo1Vn5+I6kY3ZeDFdgNkf4wqceo4zJg7U+FERL6v+EIetn6xGNnpmTi1bY/q8wuiiE7D+sKaakOPlJEICg1RPQMR3ZwuykBZQRGeju4ue7ztjecx4ne/UjARkf/J3X8E9oxMbJ61AAU5Z1WfPyg0BD0njYI11Yb4wX0gGgyqZyCia9NFGTi4aiP+OfRe2eOf/H4OEobcoWAiIv/l8XhwZG02stMzsX3eMlSVlqmeoUHzJkiaNgHWVBuad41XfX4iupouysC3//gQmb97Tfb4N/N38XKsRF7gKK/AzgXfwp6Rif3frofk8aieoUXPLrCmpqD3PeMR2SRW9fmJSCdl4JNpv8GWOQtljY1p2xKvHluncCKiwFN09gK2zF0Ee0YmTu/cr/r8osGATiP6IznNhu4TRsAcbFE9A1Gg0kUZ+EvPMbL/8ek1eQwe+vp9hRMRBbYzew4iOyMLm2dloejsBdXnt4SHodfk0bCm2dBhgBWiKKqegSiQaF4GPB4PfhPWGc6KSlnjJ77+LEY996jCqYgIADxuNw6u2gh7RhZ2zF8GR3mF6hmiWzZH0vTq/QuaJLRXfX6iQKB5Gcj78TRebNtf9vgnVqSj84gBCiYiomupLC3DzqwVyE7PxKHvN0CLfzpa9e6O5NQUJE4dh/BGDVWfn8hfaV4G9i5bjXfH/EL2+H9c3I6wmGgFExHRzRScOYctcxYiOz0TuXsPqT6/aDSi6+hBsKamoNu4oTBZuL6A6FZoXgZWvvUx5j39qqyx0S2b47WTGxRORERySZKEnF37kZ2eiS1zFqL4fJ7qGYIjw3H7XWNhTU1B+369eZllonrQvAxkPPgcNnz8hayxPVJG4uHM/yiciIjqw+1y4eDKH5CdnomdC76VvQ7Im2LatEDS9BRYU1PQuEMb1ecn8lWal4G/95uMYxu2yho7/s9PY8yLjyuciIhuVUVxCXbMXwZ7RhYOrd6kSYY2yT2RnGbD7XeNRVjDKE0yEPkKTcuAJEl4JqYnyvILZY3/9Tef4rYxg5UNRURelX/qDDbPXoDs9EycO3hM9fkNJhO63jkYyWk2dB0zGKagINUzEOmdpmWg+EIenm2cKHv8qz+uR0zrFgomIiKlSJKEU9v2IDsjE1vmLEJpXr7qGUKiIpE4dRySU1PQJrkX1xcQXaZpGTi8NhtvDZoqa6xoNGJmxUEYjEaFUxGR0txOJ/atWAd7RiZ2LfwOriqH6hkatW+N5NQUJE1PQaO2LVWfn0hPNC0D6/4zG3Me/j9ZY7kNMZF/Ki8swvZ5y5Cdnomj6zdrkqF9v96wpqag15Q7ed0TCkialoGvnvwTVv3rU1ljE4b1w5PfzVI4ERFpKe/H07DPyoI9IwsXjvyo+vzGIDO6jRuG5DQbuowaCIPJpHoGIi1oWgbeGZmK/d+ulzW2/0P3YNp/Xlc4ERHpgSRJOLF5J7LTM7H1i8WyFxl7U1hMdPX6gjQbWiV24/oC8mualoEX2/ZH3o+nZY3lNQmIApPL4cDepathz8jCniWr4HKov76gcXxbWFNtsE6fiIat4lSfn0hpmpUBj9uNxyzx8LhcssbP+PJdJN41VuFURKRnZfmF2PbVEmRnZOH4xm2aZOgw0IrktEnoNXk0giPCNclA5G2alYH807l4oeUdssc/t3khWvfurmAiIvIlF46eqFlfkHf8lOrzmyxB6D5xBKypNnQe0Z+fdCKfplkZOPrDFvyj/xTZ4/+Rt4O7iBFRLZIk4djGbbBnZGLbl0tQXliseobw2Bj0vnc8klNtaNGzC9cXkM/RrAzYZy/Ap9OflDXWEh6Gt4v28AlGRDfkrKzEnm9WIzt9PvYuXSP7NKQ3NevSEdbUFCRNm4iouKaqz09UH5qVgWWvvYeF//d3WWPjunfCizuXKZyIiPxJaV4+tn65BNnp83Fi8y7V5xcEAfFD7oA1NQU9baNgCQ9TPQORXJqVgdm/eh7rP5wra2z3iSPwSNaHCiciIn917tAx2DOyYJ+VhfyTZ1Sf3xwSjB4pI5GcZkPC0L4QDQbVMxDdiGZl4J1Radi/Qt6OgsOemoHJb76ocCIi8ncejwdH12+GPSML275eisriEtUzRDaNRe97JyA5zYa4bp1Un5/oWjQrAy8nDMH5Q8dljZ367isY9Os0hRMRUSBxVFRi96LvYM/Iwr7la+Fxu1XP0LxbApLTJiHp3gmIbBqr+vxEV2hSBiRJwhOhneCsqJQ1npcuJiIlFZ+/iC1fLIY9Iwuntu1RfX5BFNFpeD9YU23oMXEEgkJDVM9AgU2TMlDXSxf/8cBKNElor2AiIqJqufuPwJ6Ric2zFqAg56zq8weFhaLnpFFITrWh46Bkri8gVWhSBk5s2YW/Jk2QPX5mxUGYLBYFExERXc3jduPwWjuy0+djx/zlqCotUz1DVFxTJE2bAGuqDc26dFR9fgocmpSBbfOW4qMp8q4zENmsMf52xq5wIiKi66sqK8euhd8hO30+Dnz3AySPR/UMLXt1hTU1Bb3vGY+Ixo1Un5/8myZl4Ls3P8L8Z/4ia2y7von43Q/zFE5ERCRP0dkL2DJ3EbLT5yNn1wHV5xcNBnQeOQDJaTZ0Gz8c5mAeNaVbp0kZmPfMX7DyzY9kjbVOT8EvMt5WOBERUd3l7D4Ae0YWNs9egKKzF1Sf3xIRjl6TRyM5zYb2/ZMgiqLqGcg/aFIGPk17CvaMTFljRz73CFJe/73CiYiI6s/jduPg9xtgz8jCjszlcJRXqJ4hulVzWKenwJqagibx7VSfn3ybJmVg5uj7sG/5WlljJ7/1Iob9dobCiYiIvKOytAw7M5cjOyMLh77fAC22cmmd1B3WVBt6Tx2HsJho1ecn36NJGXjt9rE4tX2vrLG/yHgb1ukpCiciIvK+gpyz2DxnIezpmcjdd1j1+UWjEV3HDII11YZuY4fwU1l0XZqUgedb3oGC07myxj6xIh2dRwxQOBERkXIkScLpnfsury9YiJILeapnCGkQgdvvuhPWVBva9U3kVWDpKqqXAUmS8HhwPFxVDlnjX9i+BC17dlU4FRGROtwuFw58tx72jCzszFoBZ2WV6hli2raEdfpEWFNtiG3fWvX5SX9ULwOVJaV4MkL+i/vrOdmIat5EwURERNqoKC7BjvnLkJ2eicNrsjXJ0LZPLySn2XD7XWMRGt1AkwykPdXLwMVjJ/FS+4Gyx8+sPARTUJCCiYiItHfpZA42z14Ie0Ymzh08pvr8RrMZXe8cjOQ0G7qOGQyj2ax6BtKO6mXgePZ2vNHHJmtscGQ43i5U/6IhRERakSQJp7btQXZ6JrbMXYTSvHzVM4RGN0Di1HGwpqagjbUn1xcEANXLwK5F3+HfEx6UNbZR+9b485E1ygYiItIpt9OJfcvXIjsjC7sXfSd7rZU3xXZoA2tqCqzTUxDTpoXq85M6VC8DGz75Ehkz5G0i1PaO2/HshvkKJyIi0r/ywiJs+3op7BlZOLp+syYZ2vdPgjU1BbdPGYOQBpGaZCBlqF4Glr/+Hha88HdZY7tPGI5HFsjbtpiIKFDk/Xga9llZyE7PxMWjJ1Sf3xhkRrfxw5GcmoIuowbCYDKpnsGb3OWlcBfkQXI5IbmcgCRBMBoBgxGGkHAYomIg+PlWz6qXga+f+jO+f/sTWWP7PXgPpn/4usKJiIh8kyRJ+NG+A/aMLGz9YjHK8gtVzxDeqCESp45DcpoNLW+/TdfrCyRJgjP3JBxnT8F1IRfO8zlwXjgDT3npjb/RYICxYROYm7SAMbYZTLHNENSqI0RLsDrBVaB6Gfg09bewz8qSNXbUC7/GxL/8TuFERES+z+VwYO/S1chOz8SeJavgdjpVz9AkoR2sqTZYp09EdMvmqs9/Pc4LZ1C+ezPKd22Cu7ig+kbRAHjcdXsgUQQkqfqPwQBLx+4I7W6Fpf1tEHz86IjqZeD9CTOwe9FKWWMnv/kihj3F6xIQEdVFWX4htn21BNnpmTi+absmGToOSkZymg09J41GcES46vN7KspRtm0dynZuhOviWUAQAcnj3UlEEfB4IJiDENwlEWGJA2GOa+PdOVSiehl4e+i9OLRqo6yx0z58Hf0fvEfhRERE/uv8kR+xeVYW7BlZyPvxtOrzm4It6DFxBKypKeg0vD8MRqOi80luN8q2rUPR9wsgVVVUv4tXw+ViENwlEZEjJsPYoKE683qJ6mXgb8kT8aN9p6yxD8z5F3rfM0HZQEREAUCSJBzbsBX2jExs++oblBcWq54honEMet87AdbUFLTo0cXr6wsqj+xF4bIv4Lp03quPWyeiCAgCwu8YifD+oyEG+cbFoVQvA690HSH76l2PLvoY3cYNUzgREVFgcVZWYveSVbBnZGLv0jXwuFyqZ2jWNR7W1BQkTZt4y1vOu0uLkZ/1X1Qd3QcIgnpHA25EECBaQhA14T4Ed+qpdZqbUr0MvNC6L/JPnpE19snv5yBhyB0KJyIiClwlFy9h65dLYM/IxInNu1SfXxAExA/ti+TUFPSwjYIlLLRO31+VcxyX5rwHT0Up4PHymgAvCe8/BhFDJuj644mql4GnY3qi7FKBrLG/ty9Am6QeygYiIiIAwLmDR2GftQD2jCzkn5L3ps2bzCHB6GkbBWuaDQlD7oBoMNxwfPneLcif/zEgwfuLA73M0rEboqc8BNGsz2vtqF4GHrN0lL2l5h/2fYdmnTsonIiIiH7O4/Hg6PrNyE7PxPavl6Ky5Cafw1dAZLPGSLp3ApLTbGh+W0Kt+0vtq1G4dI7quepNEGBu3gYx05+AGFy3ox9qULUMuF0u/NrUXvb4105u0NVnVYmIAo2johK7F32H7PRM7F+xDh53HT+b7wVx3TshOW0Set87HpFNYlG+Oxv58+VtXqcrgghzXBs0+sUzEAzKfqqirlQtAxVFxfhtg26yx/8jbwfCGkYpmIiIiOQqPn8RW+Yugj0jC6e271V9/tvGDsWDH/0RFz58DXCrv+jRW8KSh6HB6Lu1jnEVVctAwZlzeD4uWfb4mZWHYArS5/kVIqJAlrvvMOwZmdg8eyEKcs6qMucv0/+BFhe3wF1cqPs1AjcTPXkGQm6zah2jhqpLG6tKy2SPFY1GGM1mBdMQEVF9NevSESl/fQ5/OfEDnlw5G8n3TUJQaIhi81kiwhDnOOEXRQAA8rM+g+NcjtYxaqhcBsplj7WEhej6ghdERASIBgMShvbF/Z+9iTfOb8UvZv0TnUcO8PrH6LoNvh2eU4f8oggAADwe5M//CCqv4b8uVcuAo0x+GQiq42dNiYhIW0GhIbBOm4gnlqfjrznZmPSP/0PzbrU/CVAfnZr52ZtDyQPXhVxUHlJ/b4drUbcMlFfIHmsO8Z9LQxIRBZrIprEY/vSDeGnXcry4axmGP/MQIpvG1uuxoprGIC5GX6vvvUIQULx6kS6ODqhaBjxu+Yd3DCY//D+eiCgAxXXrhEl/fwGvn96EJ1akI2naxDq94evatTEEQb+799WbJMF57nT1NsoaU/UVV6rDVpF63raRiIjqTjQY0HnEAHQeMQCVJaXYmbUC2emZOLRq4w3fHXftEInqbQb9kCCieM1iWDp01TSGqmXAU6cy4Gfnh4iIqIYlPAzJaZOQnDYJBTlnsXl29TbI/3shu7j2zdAwNly31x24ZZIHjpzjcJeXwhASplkMVd9+88gAERH9r6i4phj5+0fw0p4VeGH7Egx58pcIj40BANzWNdZ/i8DPOE4d1XR+lU8TyD/MwzJARBRYBEFAy55d0bJnV0z6+wvYm/kNgrdkqjZ/QaUDb205gl0XCmEQBAxr3RgP92gLg9JHqkURVaeOIjihh7Lz3CiCmpPxyAAREclhMBrRIaEJQkLU23zuzxsPINhowFcTkvHeiJ7Yfr4A8w6psDGQx4OqE4eUn+cGdFsGRK4ZICIKaFWnjwHijS9j7C1nSiqw60IRHurRBhajAc3CgjG9S0ssOJKryvzOs6cguZyqzHUtui0DPDJARBTYPGUlqu04eKKoDOFmI2KCf7oeTquIUFwor0KpQ4WLInk88FRVKj/Pdai6ZuBE7hkcRRkc8CASJjRBEAy49hEAlgEiosAmOR2AShvylLvcCDZefRTCYqh+HapwuRFmVv7lUnI6FJ/jelQpA+Xl5XjkkUeQnp4OADAYDHC73YiEEYMRg8aofWVClgEiosAmqXiZ4mCjAZUu91W3VV7eKO9/S4JiPO6bj1GIKq+4TzzxBObPn4+PPvoIRUVFKC8vx9atW9G5T28sxwWUofb/4dxngIgosIlmi2pztY4MRbHDhfzKn96dnywuQ6NgsypHBQBAMGl3pV7Fy0Bubi4++eQTvPHGG+jZsyduu+02REREYMmSJVi8eDGCoyJxAKW1g/HIABFRQBPMZkCl14K48GB0jYnA+9uPodzpwtnSCszadwqj2zZRZX7Az8uA3W4HAPTu3RuvvfYaLp06g9gqAa+88grCwsKQlJSES6h9noSnCYiIApspNk61NQMA8HK/znBLEqYt3ozHvtuJ3k2iMb1LK1XmFsMjIVpCVJnrWhQ/9pGQkICgoCAkJSUBAKxogBOoQIcOHRAUFISLFy/CfI1O4nFrd+6EiIi0Z27VXtUyEG0x4+W+nVWbr4YowtLGO5d6rncEpSfo1KkTTp06hRUrVuDt372E06hASYgBn332GZYvX47t27ejNWq3IVeVdqsqiYhIe+amrQCDSov3tOTxwNyyvaYRVDkWHxsbi06dOuG9LzNQERWCZcuWwWw2495770ULWNAatS9lyTJARBTYBKMR5uZttI6hiqCWHTSdX5UycOrUKfTr1w8uEdiwYQMcDgcGDx4MU0EZhqIRhGvsNeCsrFIjGhER6VhQ206A4N9ryARLCIyNmmqaQfHfsNvtxuTJk2EwGPDDDz8gOzsbY8aMQXFxMUJhxHYUXfOjhSwDREQUdvsAQPDjj5oLAsL7DNN80bziCwizsrKwZcsWbNq0CRcvXsSnn34Kq9Vac//BgwdRlVeIQYi56vt4moCIiAwRDRB6e3+UbV2n2tbEahKMJoRZh2odQ/kysHr1aiQkJCA+Ph4AsHDhwqvunzFjBuyZS2t9H48MEBERAIT3G4WybesA9T5YoA5BQFifYRCDtftI4RWKl4EuXbrg/fffR3R09HXHJCKy1m08MkBERABgbNAQIT3uQPnOjUAdLninewYjwpKHaZ0CgApl4JFHHkHXrl1x8eJFFJ49jy8ff/mq+4NhQJNrXJuARwaIiOiKiEHjULFvGyRHpap7DygpYtA4GELDtY4BABAkSb3fav6pM3ihVV/Z4993HYMYCJ8xJSKim6o8uhd5Gf/SOsatEwRYOnZDw3t+DUEniyNVXb5otNQ+AnAjPFVARERXWNp3RcSQiVrHuDWiCEODhoi2PaCbIgCoXAZMQXW7CANPFRAR0c+F9x8NS8duvrv3gGhAzL2PQ7TU3mxPSzwyQEREPkMQRURPegCm2Ga+VQgEARBFNJzyUHV2nVG3DJjrdmTAUV6hUBIiIvJVoiUEjR74PcytOvjGhkSCCMFoQkzqkwhO6KF1mmtStQwIggBLeJjs8eWFxQqmISIiXyUGWdAo9TcI6d5H6yg3JogQwyLQ6IHfw9K2k9Zprkv1YywhUbX3FLiesvxC5YIQEZFPE4wmRE28Hw3unAaIYvUfnTG37oDGj74Mc9OWWke5IcX3GfhfodGRyD91RtbY8oIihdMQEZEvEwQBYUmDENS6IwqXf4WqY/uqTx1ouReBIEAMDkXk8EkI6XGH5tcdkEP1MlCXIwMsA0REJIcpthkapT2JyqN7Ubj0C7gunVc/hChWX3io70iE9xsNMciifoZ60ncZ4GkCIiKqA0v7rmj86z+hbPt6FK9ZDE9pcfWLtFLbGF85CiGKCO6SiMhhNhgbNFRmLgWpXwaiG8geW1bABYRERFQ3gsGAsN6DEHr7ADhOHUH57s0o37sZUlWl94rB5RJgbtEeId2TEdL5doghobf+uBrR95EBniYgIqJ6EkQRQa3jEdQ6Hg3G3IPKY/tQsW8rHDk/wlVw8adSIIqXr4goXb3WQBCq9zLwuGtuEkPCYGocB0uH2xDcNRHGyOtfhM+XqL+AMCpC9lieJiAiIm8QjEYEx3dHcHx3AIDkdsF16QKcF3PhPH8G7sI8SC4nJJcLkscN0WgGjEaIwaEwxTaDKbY5TLHNIAb77rv/G+GRASIiCjiCwXj5Rb4Z0CVR6ziaU3+fgTqsGWAZICIiUp6+Nx1iGSAiIlKc6mUgtE4fLWQZICIiUpquTxNUlpTC7XQqF4aIiIg0ODIQLf/IAAAUnb2gUBIiIiICNCgDwZERMFmCZI/PP31WwTRERESkehkQBAENmjeRPb5A5kWNiIiIqH40uZRSg+aNZY/lkQEiIiJlaVQG6nBkgGWAiIhIUbovA/k8TUBERKQo3Z8m4JEBIiIiZfnAkYFcBZMQERGRJmUgspn8IwNllwrgKK9QMA0REVFg0/1pAgDIP82jA0RERErRpgzU4cgAwHUDREREStKkDBjNZoQ3aih7fAGPDBARESlGkzIA1HHjIS4iJCIiUoyGZYAbDxEREemBZmUgqkVT2WN5ZICIiEg5mpWBRu1byx7LNQNERETK0awMxHZoLXtswemzkCRJuTBEREQBTMMy0Eb22KqycpQXFCmYhoiIKHBpVgZi2sRBEATZ43mqgIiISBmalQGTxYKols1kj790klcvJCIiUoJmZQCo26mCcweOKpiEiIgocGlbBtq3kj02Z/dBBZMQEREFLp85MnBm1wEFkxAREQUujctAa9ljzx08BmdVlXJhiIiIApSmZaAuGw953G6uGyAiIlKApmUgpm0LCKL8CDk8VUBEROR1mpYBU1AQouvw8cIzXERIRETkdZqWAaBupwr4iQIiIiLv07wMNO3UXvbYM7sO8BoFREREXqZ5GWjeLUH22JKLl1B8/qKCaYiIiAKP5mUgrnunOo3nIkIiIiLv0rwMNOvSsU4XLOIiQiIiIu/SvAyYQ4LrthMhywAREZFXaV4GAKB5HU4V8DQBERGRd+miDMTVYRHh2QNH4XI4FExDREQUWHRRBuryiQKPy4VzB48pmIaIiCiw6KIM8BMFRERE2tFFGYhu2RyWiHDZ47mIkIiIyHt0UQYEQajTugEeGSAiIvIeXZQBoG7rBs7sZhkgIiLyFt2UgbqsGyg+n8dtiYmIiLxEN2WgLkcGAF7BkIiIyFt0UwbiuneGaDTKHs9FhERERN6hmzJgDragRY/Ossdz3QAREZF36KYMAECb5J6yx/ITBURERN7hs2Xg7P6jcDudCqYhIiIKDLoqA23rUAbcTidy9x1WMA0REVFg0FUZiGnbEmEx0bLHH15rVzANERFRYNBVGRAEoU6nCg6t2qhgGiIiosCgqzIA1G3dwOE1drhdLgXTEBER+T/dlYG6rBuoLC7B6R37FExDRETk/3RXBlr17gZBEGSPP7R6k4JpiIiI/J/uykBwRDiadukoezzXDRAREd0a3ZUBoG7rBo6u3wKXw6FgGiIiIv+myzJQl3UDjvIKnNi8S8E0RERE/k2XZaBNn151Gs91A0RERPWnyzLQtFN7RDSOkT2e6waIiIjqT5dlQBAEJAzrJ3v88Y3b4aioVDARERGR/9JlGQCAhGF9ZY91ORw4vnGbgmmIiIj8l37LwFD5ZQDgugEiIqL60m0ZiG7RDI3j28oez3UDRERE9aPbMgAAnYb3lz32xOZdqCwpVTANERGRf9J1GajLugGP240j67comIaIiMg/6boMxA9KhiDKj3iY6waIiIjqTNdlIDgyAq2Tussez3UDREREdafrMgAAneqw38DpHftQll+oXBgiIiI/pPsyUJd1A5Ik4fDabAXTEBER+R/dl4G2fXrBHBIse/zh1SwDREREdaH7MmA0m9FhoFX2eK4bICIiqhvdlwGgbusGcvcdRvH5iwqmISIi8i8+UQbqsm4A4NbEREREdeETZaBZ13iEx8q/pDH3GyAiIpLPJ8qAKIp1OjpwcBXLABERkVw+UQYAoFMdysDFoydw8dhJBdMQERH5D58pA3W9pPGuhd8plISIiMi/+EwZiG7ZHI07yr+k8c6sFQqmISIi8h8+UwYAoPOoAbLHHtuwFcUX8hRMQ0RE5B98qgz0mDhC9lhJkrBn8fcKpiEiIvIPPlUG2vdPQkhUpOzxOxd8q2AaIiIi/+BTZcBgNKLbuKGyxx/4bj0qS0oVTEREROT7fKoMAED3OpwqcFU5sG/FOgXTEBER+T6fKwOdRwyAyRIke/wuniogIiK6IZ8rA0GhIeg8Uv6nCvYs+R5up1PBRERERL7N58oAULdTBRVFJTi81q5gGiIiIt/mk2Wg29ihEET50bkBERER0fX5ZBkIi4lG+/69ZY/ftfA7eDweBRMRERH5Lp8sAwDQI2WkrHGi0Yjmt8WjvKAIHpcT7opyuEqK4S4rgaeqEpLHrXBSIiIifRMkSZK0DlEfeSdO48U2/a95n2g0omNyN3RKjEe7Vg2AvLOoOnMKkqPqmuONUdGwtGwDS4vWCIprBUtcKwQ1bwHRLP9TC0RERL7KZ8sAAPyl5xic3rkfACAaDWjXrT3axprQIswFi9kACAIgioBbzrt/ATD8bKzBiIheSYjsOwjh3XtDNJuV+0GIiIg0ZNQ6wK3oMWEYgs0C2jWxoLm5DJYgEyB5ABiqB0iSzCIAAP8z1u1C8bZsFG/ZCCHIgkhrPzToOwihXXpAEARv/yhERESa8ckjAx6nE5dWLMKFzDk/HfpX+scwGAC3G8FtO6Bp2sMI6ZCg7HxEREQq8akyIEkSijdvwLnZH8N56aI2IUQR8HgQ2WcAGt/9C5gbxWqTg4iIyEt8pgxU5pzCmY/fQcWRA9VrAbSOLYoQRBExYycjNuUeCEafPuNCREQBzCfKQJH9B+T8+01Ibhegt/0CBAHB7RPQ8skXYGoQrXUaIiKiOtN1GZAkCRfmz8bFrLn6OBpwPaIIQ1gEWj/3ZwS3aqt1GiIiojrRbRmQ3G6c+e+7KFzjI1cdFEUIJjNaPfMywjp30zoNERGRbLosA5Ik4cyH/0ThupVaR6mby/satH3pbwjp0EnrNERERLLocjvi/O+X+l4RAKpPY0gSTr71KlxFBVqnISIikkV3ZaD8yAGc/fwDrWPUn8cDd2kxTv3rNUiyNzwiIiLSjq7KgKuoACffelXrGLfO40H54QM4N/dTrZMQERHdlK7KQM5/3oa7tFh/Hx+sD0nCpWVZKNm9TeskREREN6SbMlB+7BBKd23zjyJwhSji/Ffp0OEaTSIiohq6KQMX5s+p3urXn3g8qPzxKMr27tQ6CRER0XXp4tW34sQxlO7a6l9HBa4QRZyfP1vrFERERNelizJwIWuu/x0VuMLjQcWRAyg7sEfrJERERNek+Suwu7ICJduy/fOowBWiAYUb12idgoiI6Jo0LwMVRw/p95oD3uJxo2z/bq1TEBERXZPm190tP7S/+hSBCkcGTpRX4fPTeTheXgWjIKB7ZAjuj4tBhMmg+NyOc7lwlRTDGB6h+FxERER1ofmRgbKDewCP8kcGqjwevHokF/FhFnzcvQ3+2bUlSlxuvHvivOJzX1F+5IBqcxEREcmlaRmQ3G6UHzkIQPkykOdwoXVwEKY0i4ZJFBBuNGBEo0gcKK1UfG4AgMGA8oP71JmLiIioDjQ9TeAuL4XkdKgyV3OLGS92bHbVbZsKStE2JEiV+eGR4MzPU2cuIiKiOtD0yICnqkqTeSVJwpwzl7C1sAy/bBGj0qQeeBza/LxEREQ3oumRAcnlUn3OcrcH7/54HsfLq/Dn+OZopdaRAQCSQ52jIERERHWhaRkQTWZV5ztX6cRfjuQixmzEG51aqPIpgp8Tg9QrHkRERHJpWgYEFV8cS11uvHz4DG4LD8ajrWMhCoJqcwMARBGCmWWAiIj0R9MyYAgNgxgSCk95meJzrcorRp7DhY0FpdhUUHrVfbN7tVN8fgAIatJclXmIiIjqQtsjA4KA0PguKNm5RfFdCMc3icL4JlGKznFDHg9C4jtrNz8REdF1aL7pUEhCV60jqEMQENw+XusUREREtWheBkLjO/v/tQkAWFq2gcESrHUMIiKiWjQvA5Y27SEYTVrHUJZoQGjnblqnICIiuibNy4BoNKHBgKHVFyvyVx43ogYO1zoFERHRNeniFbjR+Lu0jqAcUUR4Yh9YWrTWOgkREdE16aIMmBs1RoN+Q/zz6IDHg9iUe7ROQUREdF26efVtNOFu/1tIKBoQ1j0Rwa3V2ceAiIioPnRTBoKaNEPUwBGA2jsDKkpC4ympWocgIiK6Id2UAQBomvYQgpq39JvTBU1Tf4XgNu21jkFERHRDunrVFYMsaPX0SxCDLL59hEAQENl3MKKH36l1EiIiopvSVRkAAHNsU7R47Pe+u35AFBHUvCWaP/AYBF8uNEREFDB0VwYAILxHIhpPvV/rGHUnijCEhP50dIOIiMgHCJKk37fgecsX4lzGh1rHkEcUYYpqiNb/9zqCGjfVOg0REZFsui4DAFC0aR1yPngLkscNeDxax7k2QYClVTu0fvaPMEZqeGVEIiKietB9GQCAihPHcPLNV+AqzNdXIRAEQJIQNWgkmt7/CESTn19jgYiI/JJPlAEAcJWW4PxX6ShYtaz6RVjrUiAIMDaIQtNpDyKyzwBtsxAREd0CnykDV1TmnMTZjA9RtndnzTtzVYkiBKMRsRPvQcPREyCag9Sdn4iIyMt8rgxcUbJrK86mfwjHuTOAaAA8bmUnvFw8GgwagcZTUmFqEK3sfERERCrx2TIAAJLHg/JD+1G4cQ2KNq2Fp6Lcu8VAFAGPB5ZWbdGg/xBEWvvDFB3jnccmIiLSCZ8uAz/ncTlRtmcHCjesQcnOLdXFAKh+Ry+KgPtGBUEADD8bIwgwN2mGBn0GIfKOgQhq2lzx/ERERFrxmzLwc5IkwVVUgKqcU6jMOYmqnJOoPHkcrpJiSE4nJJfz8rl/E0STGeamzWFp0QqWuFYIimuFoGZxXAtAREQBwy/LABEREcmny+2IiYiISD0sA0RERAGOZYCIiCjAsQwQEREFOJYBIiKiAMcyQEREFOBYBoiIiAIcywAREVGAYxkgIiIKcCwDREREAY5lgIiIKMCxDBAREQU4lgEiIqIAxzJAREQU4FgGiIiIApxR6wA/Z+75S4hGMwTRAEE0wGD66WtBFH+6z2CAaDRDrLnPUOs+QTRAFAUIogCDQYTwP1+LogDRINSMueF9ggCDUYRBFGAQBZgvf22s+bvhp/sMP40z/mys4VpfCwJEQYBBAEwGseZro0GEQUD130UBJlG4xtfV95tEseZrgyBAEABRAAQBlx8fEAAYRAEiUP2ziKj5WhQAg/Dzr6sfQ5AkQPJA8LiAq772VP/xXP8+QfIAbvdPX3tcgMcNyeMBXA5Ibjfg8VTf5nJC8rirv3Y6gStfXxl7ZZzT8dP3eNzwOF2Q3B5IHg88Dhc87urvkdweeJwueNw/fS1d/trtdEH62Ti3w/Wzr92QPBI8buny3y9/v0eqvs8tQXJL8Lg9cDs9lx9Tgtvpvvw9P32fR5LgliQ4PBLcEv7n6//9e/XXHlR/7ZZw+b6fvv5AOqHp89Jb+Pzm85vPb/0+v3lkgIiIKMCxDBAREQU4lgEiIqIAxzJAREQU4FgGiIiIAhzLABERUYBjGSAiIgpwLANEREQBjmWAiIgowLEMEBERBTiWASIiogDHMkBERBTgWAaIiIgCHMsAERFRgGMZICIiCnAsA0RERAGOZYCIiCjAsQwQEREFOJYBIiKiAMcyQEREFOBYBoiIiAIcywAREVGAYxkgIiIKcCwDREREAY5lgIiIKNBJfqqqqkp65513pKqqKq2j1KLnbJLEfLdCz9n8iZ5/z3rOJknMdyv0nO1W+e2RAYfDgXfffRcOh0PrKLXoORvAfLdCz9n8iZ5/z3rOBjDfrdBztlvlt2WAiIiI5GEZICIiCnAsA0RERAHOb8uA2WzGY489BrPZrHWUWvScDWC+W6HnbP5Ez79nPWcDmO9W6DnbrRIkSZK0DkFERETa8dsjA0RERCQPywAREVGAYxkgIiIKcH5VBgoKCpCWloapU6dizZo1V9138eJFTJ8+HVOmTMHatWt1l++K5557Dna7XdVcDocDjzzyCKZOnYqvvvrqprfrIdsVM2fORGZmpgbJql0vX2VlJR544AHcddddmDdvnmb5/Amf3/XD53f9BdLz26/KwJw5c/DAAw/g888/x+eff37Vfd988w3uuusupKen47///a/u8gHA0aNHsXLlStVzLV26FP3798ecOXOwfPlyVFVV3fB2PWQDgPz8fM3+EbvievnWr1+PxMREfPHFF37zj4XW+PyuHz6/6y+Qnt9+VQb27duH22+/HUFBQQgLC0NRUVHNffHx8SgvL0dlZSUsFovu8gHAJ598gokTJ2qWSxRFdOzYEceOHbvh7XrIBgAff/yxJr+vn7tevrZt28LpdMLlcsFkMmma0V/w+X1rufj8rrtAen77VRkoKytDaGgoACA4OBjl5eU194WEhOCDDz7AxIkTMXbsWN3l2717N5o3b47IyEhNcoWEhNTKdb3b9ZDt7NmzKCsrQ5s2bVTP9HPXy2cymfDNN99g1KhR6Nu3r5YR/Qaf3/XPxed3/QTS89uodYBbkZ6ejmXLltX8fc+ePSgvL0doaCgqKipqnpgA8OGHH+Ldd99Fx44d8ctf/hLDhw9X/B1EXfL997//xauvvopPP/1U0UzXEhISgoqKCgBARUUFwsLCbni7HrL95z//wYMPPojNmzernunnrpdv1qxZeOqppzB8+HA89thjOHPmDJo3b65lVJ/D57d38Pldf4H0/PbpIwNpaWmYO3duzZ+HH34YW7duRVVVFQoLCxEREVEzNjg4GKGhoTCbzRAEAS6XSzf5ysrKcPjwYTzyyCPIysrCa6+9hrKyMsXzXdGlSxds2bIFkiThwIEDNW38erer6XoZ9uzZg+effx4ffvghPvzwQ5w8eVL1bDfKd+W/N1EUERYWpsm7Ll/H57d38Pnt/Xz++Pz2qx0I8/Pz8fTTT6OoqAiPPvoohg0bhr/+9a94+OGHkZ+fj5deegkulwsjRozAAw88oKt8DRo0AFC9ejYpKQlWq1W1XFVVVXjqqadw7tw52Gw2VFRUYNCgQWjRosVVt0+bNk21TDfL1r59ewCoWWlss9lUz3ajfA0aNMDvfvc7VFVVoWvXrnjhhRc0yedP+PyuHz6/vZ/PH5/fflUGiIiIqO58+jQBERER3TqWASIiogDHMhAgTpw4oXUEIiLSKZaBALBq1apbWlBlt9sRHx+PAQMGwOPx1Lr/4YcfRnx8/FXbrJaUlODNN9/EyJEj0bNnT/Tr1w/PPPMMTp06VTMmMzMTQ4YMqXcuIqoWHx+P+Ph4HD9+vNZ9n376KeLj4zFz5sya2zweD+bMmYPJkycjMTERVqsV9913HzZt2lQzJicnB/Hx8cjJyVHlZyBtsQwEgMLCQnhjnajD4cCGDRuuui0vLw87duy46rb8/HzYbDacPHkSH3zwAbZv347FixcjMjISd999N86cOXPLWYjoalFRUcjKyqp1e2Zm5lV7CEiShMcffxxz587Fc889h+zsbKxfvx5jx47Fww8/jO+//17N2KQTLAM+ZNWqVZg6dSr69OmD7t27Y/r06Thx4sQ132GnpqZi5syZsNvtePnll5Gbm4uePXvi/PnzqKysxBtvvIGBAweid+/eSE1Nxe7du286/7hx47BgwYKrbsvKysLIkSOvum3mzJmwWCx4++230aZNGwiCgKioKLz00ksYNGgQDh06dMu/CyK62rhx47Bw4cKrjt7t3r0bDocDnTt3rrlt+fLlWLduHf7zn/8gMTERRqMRZrMZU6ZMweOPP67JtsSkPZYBH3Hu3Dn85je/wUMPPYRNmzZhzZo1kCQJ77333g2/z2q14k9/+hOaNWuGHTt2oHHjxvjjH/+IH374Aenp6diwYQOGDRuG+++/H7m5uTd8rEmTJmHlypUoKSmpuS0zMxOTJ0++atyqVaswatQoGAyGWo/x+uuv89QAkQIGDRoEp9OJjRs31tw2b968az4/e/XqhWbNmtV6jBkzZuChhx5SPCvpD8uAj4iOjsY333yDIUOGoLS0FOfOnUNUVBTOnz9fp8epqqrCkiVL8PTTT6NVq1Ywm82477770LZtWyxZsuSG35uQkIA2bdpg6dKlAIBt27bBYDCgW7duV43Lz89Ho0aN6vYDEtEtMRqNGDduXM2pgsrKSqxYsaLWxX7y8/MRExOjQULSM5YBH2EymbBkyRIMGDAAd955J9566y1cunSpzmsBioqK4HQ6ERcXd9XtcXFxyMnJwaJFi9CzZ8+aP4sWLbpqnM1mq/nHZv78+bXedQBAo0aNcOHChWvOn5+fD7fbXafMRCSPzWbDypUrUVpaiuXLl6NXr161inlsbCwuXrx4ze8vLS2t2YufAgvLgI9YtmwZZs2ahYyMDKxduxYfffRRzXlAURThcDiuGl9QUHDNx4mJiUFQUBBOnz591e2nTp1CbGwsxo8fjx07dtT8GT9+/FXjxo0bh7179+LAgQP4/vvva90PAEOGDMG3335b60VfkiTMmDEDf/rTn+r88xPRzSUkJKBt27ZYtmzZNU/hAcDgwYOxY8cOnDt3rtZ9M2fOREpKilcWHJNvYRnwESUlJRBFERaLBZIkYd26dViwYAGcTifatWuHvLw8ZGdnQ5IkLFy48KpFQEFBQaioqIDL5YIoipg0aRLeeustnDx5Eg6HA59//jmOHj2KO++886Y5oqKiMHjwYDz77LOwWq2Ijo6uNebRRx9FUVERnnrqqZoLjJw/fx4vvPACzp07hxkzZnjvF0NEV7HZbPjss8/w448/YuDAgbXuHz58OKxWKx566CFs374dHo8HpaWl+OyzzzB79mw888wzEARBg+SkJZYBH5GSkoI77rgDd955J5KTk/Hvf/8b9913H3788UfEx8fjkUcewXPPPYekpCRkZ2dftcK/d+/eaNiwIXr37o1Dhw7h2WefRb9+/XD//ffDarVi2bJl+OSTT2Rftcxms+Hw4cOYNGnSNe+Pjo7GvHnzEBkZifvvvx89e/bE5MmT4XK5MHfuXLRs2dIrvxMiqm3s2LE4efIkxo8fD6Ox9lXqBUHA+++/j1GjRuEPf/gDevfujaFDh9YccRw2bJgGqUlrvFARERFRgOORASIiogDHMkBERBTgWAaIiIgCHMsAERFRgGMZICIiCnAsA0RERAGOZYCIiCjAsQwQEREFOJYBIiKiAMcyQEREFOBYBoiIiALc/wPudzGaIp7HJAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] diff --git a/tutorials/causal_discovery/tigramite_tutorial_conditional_independence_tests.ipynb b/tutorials/causal_discovery/tigramite_tutorial_conditional_independence_tests.ipynb index 05f977ff..d5e31213 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_conditional_independence_tests.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_conditional_independence_tests.ipynb @@ -622,8 +622,9 @@ "\n", "Runge, Jakob. 2018. “Conditional Independence Testing Based on a Nearest-Neighbor Estimator of Conditional Mutual Information.” In Proceedings of the 21st International Conference on Artificial Intelligence and Statistics. \n", "\n", - "CMIknn involves no assumptions about the dependencies. The parameter ``knn`` determines the size of hypercubes, ie., the (data-adaptive) local length-scale. Now we cannot even pre-compute the null distribution because CMIknn is not residual-based like GPDC and the null distribution depends on many more factors. We, therefore, use ``significance='shuffle_test'`` to generate it in each individual test. The shuffle test for testing $I(X;Y|Z)=0$ shuffles $X$ values *locally*: Each sample point $i$’s $x$-value is mapped randomly\n", - "to one of its nearest neigbors (``shuffle_neighbors`` parameter) in subspace $Z$. Another free parameter is ``transform`` which specifies whether data is transformed before CMI estimation. The new default is ``transform=ranks`` which works better than the old ``transform=standardize``.\n", + "CMIknn involves no explicit assumptions about the dependencies. However, since the density is implicitely approximated by local sample hyperpoints, there is an assumption that the density is constant inside these hypercubes. The parameter ``knn`` determines the size of hypercubes, ie., the (data-adaptive) local length-scale. \n", + "\n", + "Now we cannot even pre-compute the null distribution because CMIknn is not residual-based like GPDC and the null distribution depends on many more factors. We, therefore, use ``significance='shuffle_test'`` to generate it in each individual test. The shuffle test for testing $I(X;Y|Z)=0$ shuffles $X$ values *locally*: Each sample point $i$’s $x$-value is mapped randomly to one of its nearest neigbors (``shuffle_neighbors`` parameter) in subspace $Z$. Another free parameter is ``transform`` which specifies whether data is transformed before CMI estimation. The new default is ``transform=ranks`` which works better than the old ``transform=standardize``.\n", "The following cell may take some minutes." ] }, @@ -683,13 +684,15 @@ "\n", "Another note: CMIknn has a huge computational cost because of the shuffle testing. You can decrease the number of shuffle samples by ``sig_samples`` (at the cost of a larger error in the p-value estimate).\n", "\n", - "Alternatively, you may use the option ``significance='fixed_thres'`` and choose a threshold ``fixed_thres`` $I^*$ in any conditional independence test. Then no hypothesis testing on conditional independence is conducted. The criterion for conditional independence for a test statistic $I(X;Y|Z)$ is then \n", + "Alternatively, you may use the option ``significance='fixed_thres'``. Then ``pc_alpha`` is interpreted as a (one-sided) threshold $I^*$ in any conditional independence test. Then no hypothesis testing on conditional independence is conducted. The criterion for conditional independence for a test statistic $I(X;Y|Z)$ is then \n", "\n", "$$\n", "I(X;Y|Z) < I^*\n", "$$\n", "\n", - "$I^*$ should then be regarded as a hyperparameter. Note that picking $I^*$ for CMIknn is tricky because the value of $I(X;Y|Z)$ depends on the dimensionality of the variables due to an estimation bias for finite samples. On the plus side, then even CMIknn is pretty fast.\n", + "$I^*$ should then be regarded as a hyperparameter. Note that picking $I^*$ for CMIknn is tricky because the value of $I(X;Y|Z)$ depends on the dimensionality of the variables due to an estimation bias for finite samples. On the plus side, then even CMIknn is pretty fast. \n", + "\n", + "You may then also use something like ``pc_alpha = [0.001, 0.005, 0.01, 0.05]`` (or any other list of your chosen thresholds). Then the graphs for all these thresholds are computed and the (new) ``get_model_selection_criterion`` function of CMIknn is used to choose among these graphs. This function uses sklearn's ``cross_val_score`` (based on k-fold cross-validation set with ``model_selection_folds``) with a ``KNeighborsRegressor`` (with same number of neighbors as the estimator, but standard euclidean norm) model on each node using its parents in the graph resulting from the given threshold. It will return the result for the smallest score (prediction error).\n", "\n", "This option only makes sense for conditional independence tests that rely on permutation testing, these are CMIknn and CMIsymb." ] @@ -701,7 +704,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHjElEQVR4nO3deXwT1d4G8CdJ030FWvYdW5YCsoOyg7ggKIgKSAUFFQVBFFHfixeXV/TVKyAFLwKiiAoqmyzKVRCRRYqXfd/XUtpCWbpmm/P+kbZSaCHTzGQmyfP9fHobktMzv+aa5Ok5Z84YhBACRERE5LeMWhdARERE2mIYICIi8nMMA0RERH6OYYCIiMjPMQwQERH5OYYBIiIiP8cwQERE5OcYBoiIiPwcwwAREZGfYxggIiLycwwDREREfo5hgIiIyM8xDBAREfk5hgEiIiI/xzBARETk5xgGiIiI/BzDABERkZ9jGCAiIvJzDANERER+jmGAiIjIzzEMEBER+TmGASIiIj/HMEBEROTnGAaIiIj8XIDWBahOCEA4Cr8EAHFDAwNgMALGgMLbBg2KJCIi0o5vhQEhAGEHJBsgOZy3hSSvD0MAYDQ5v5sCnUGBiIjIhxmEEDf+qex9JDvgsAIOCwCZH/63YzADAUGAMZCjBkRE5JO8NwwI4fzwdxQ4pwA8wRgIBIQUTikQERH5Bu8MAw4rYM+VPwWgFGMQYA7lFAIREfkE7woDkh2w5QHCpnUlTgEhgCmE0wdEROTVvCMMCAHY8wFHvtaVlMIIBEZw6oCIiLyW/sOAkABbjvMMAT0LCAMCgrWugoiISDZ9hwHhAKzXtFsbIJcpxDl1wGkDIiLyIvoNA5LdGQRu2iRI54yBgDmcgYCIiLyGPpfDCwmwZsPrggAASFbn+gYiIiIvob8wIIRzjYDSmwd5kiPfefojERGRF9BfGLDn63+xoCts2c4tkYmIiHROX2HAYdXp6YPlZLtWeHEkIiIi/dJPGCieHvAhQvKtcENERD5JP2HAYYFXLhi8HXsBRweIiEjX9BEGhADseVpXoRLhvJgSERGRTukjDPjqqEARez5HB4iISLd0EgZ8fV698HLLREREOqR9GBAOXWw3POql19Gm470Y88r/qHMAifsOEBGRPml/qT3JrnUFAICkwY/ikYcfxPKVP6lzAMmOwytXYusnn8AUGIiAoCCYAgNhKvxe2r/NoaEIjIhAUGSk8+u624EREQiKiIDJbFanXiIi8hs6CAP62GCofdtWSPlrh4pHELh25jROrlunaK8BISE3h4SywkPR/ZGRCIuNRXiVKgitVAlGk0nRmoiIyLv4dBiQJAkP9BuMHl074dVxo4rv37h5K54fMwEfvf8W7u/VXbXj31SPTfmpAnt+Puz5+cjNyCjXzxuMRoTGxiK8cmWEV6mCsMqVS96uUgXhlSsjrHJlZ3Awaj+zREREytI2DAih6noBo9GI54Y/iXc/mIJnhychKjIShw4fxdhXJ2LcmJEeDQIAINn1t25ASBJy09ORm56O9D17btnWYDIVjyiUFRoia9ZEdO3aCAgK8tBvQERE7tJ4ZED90+36PNALM2bNw4Jvf8CAfn3w7OjxeOjB+zB86GDVj30jyaaP9RHlJRwO5Fy4gJwLF27d0GBAZPXqiK5bFzH16iGm8HvRv8OrVOEIAxGRjmg/MqCygIAAPPPUEExNnoX/rP0djRslYOJr41Q/bmkkhz7WR6hOCFw7dw7Xzp3DmY0bb3rYFBSEmLp1Sw8LdesiOCpKg6KJiPyXQQgNd8ORHID1iuqHyc3LQ4euD6B2zRr4bsEchIaG3NRm+MiXsP/QEeTn5yMqMhIzpr6PZomNFa1jwwdTsf7t9xTt0xeFVKhwU1ComJCAuMREhFWqpHV5REQ+R9uRAYPBI4d59/0pAIDLV67CZCp9ePrzWdNUr8Nh85ORATflZ2UhPysLadu33/RYWOXKiEtMRFyTJs7viYmIbdIEwZGRGlRKROQbNF4zoH4YmDZjNn7fuAXfL5iDYc+NxeJlq/DEwEdUP25pJLtDk+P6ktz0dJxMT7/pFM2oWrUQe11AiEtMRGyjRjCH3DwKREREJWk/MmAwqnZGwQ9LV+CLBQsxf04yGibcgaFPPIa5X36Nxx55CGaz5391yaH9Tou+6uqZM7h65gyO/fzz33caDKhQv36JgBCXmIgKd9yBgMBA7YolItIZ7fcZMJpV2bd/w6Y/8fbkjzHlg7dxZ7NEAEDSoEcxb/5C/LhqDQb0e1DxY94Ow4CHCYGsY8eQdewYDi1fXny3MSAAFRMSULlpU1Rr3RrV27ZF1VatEBgaql2tREQa0nYBIeAMArYcRbvcd+AQkp4ehZdefBZDn3i8xGOfzJyDn9asxU/Lv4XJwzvvpe45jvR9++CwWp1fFgscVivshd9L/NtigTUnB5bsbFiuXYPl2jVYC29bc5R9vsi5h0JcYiJqtGuH6m3bonq7doht1Ii7MxKRX9A+DHjojALNGc1AoDKL3CSHA9bc3JtCguXatRLhodTHrl5F3sWLyElPh8QFjbdkDgtDtdatSwSEyOrVYfDQwlciIk/RPgwIAViuAPDxIfSAUCBAP4vZhBDIv3wZuenpyElPR86FC87bFy6U/Hfh7oSS3bs3TFJKeNWqf4eDtm1RrU0bnslARF5P+zAAAPYCwJ6rdRUqMgBBMR47lVJpkiSh4PLlUoNC0e3stDRcPX0aBVeuaF2uZxkMqNSwYYmAULl5c5gCtF+OQ0TkKn2EASEAy2V4YntiTQSEOEcG/ED+5cu4fPIkrpw8icsnT+LyiRPO2ydO4MqpU3BY9Xd9BqUFhoejVqdOqNu9O+p264Yqd97JtQdEpGv6CAMAYM8H7HlaV6GOoBjnKZR+TpIkZJ8/XxwOikND4e3s1FStS1RFcHQ0anfpgrrduqFOt26IS0zktRmISFf0EwZ8dXTAFAKY/WNUwF22ggJcPX26OBxcPnECWUePImP/flw+ccIj17LwhNBKlVCna1fU6dYNdbt3R6WEBC5KJCJN6ScMAKqcZqgpgxEIjOKogAKseXm4ePAgMvbtK/F17dw5rUtzW3iVKs5gUBgOYurVYzggIo/SVxgAAFsu4CjQugplBEYBRi4kU1P+lSvIPHCgREDI3L8fuRkZWpdWbpE1axYHgzrduiG6Vi2tSyIiH6e/MCAEYL0GCC8/lc0cDpiCtK7Cb+VkZCBz//6/Q0LhbcvVq1qXJltMvXqo36sX4vv0Qd1u3Xi9BSJSnP7CAOC8VoHlCrx2/YApGDCHaV0F3UAIgWupqUjfswfn//oLqdu24VxKCvIvXdK6NJeZQ0NRr2dPxPfpg/jevRFRtarWJRGRD9BnGAAAye4cIfC2QGAMdI4KcM7XKwghcPnkSaSmpCB12zakbtuGtB07YC/wjqmqaq1bI/7BBxHfpw+qtmjBtQZEVC76DQNA4VbF1+A1uxOagp37CfAN2as5bDak791bHBDOpaTg4qFDuj+bIaJateJgUK9HD04nEJHL9B0GAOeUgTVb/2sIAsKcawQYBHxSwdWrOL99e4mAkJOWpnVZZQoICUG9Hj2KpxMiq1fXuiQi0jH9hwHA+ReZPU+nZxkYgMAI54WIyG8UrT8oCgdn//wTqSkput1hsWrLls5g8OCDqNqyJTc9IqISvCMMFJHszlMP9TJKYApxbjXM0QCCcy+Ec3/+iZPr1+Pkb7/h/F9/6fICT+FVqyL+wQfReMAA1O3enddRICIvCwOAc5RAsgK2PGi2lsAY6NxV0MD95qlslpwcnNm0CSd/+w2n1q9H2o4dEJK+1r+Exsai8YABSBw4ELU6duSIAZGf8r4wUEQI57SBo8C5rkBl2WkXcGj1L2j57EiYArkwi+TLv3IFp//4A6fWr8fJ9euRvnu31iWVEFG9Opo89hiaDhqEaq1b88wEIj/ivWGgiBCAcDi3MnZYoOSpiNlpF3Dgx59wYOkKnN60GRACwzZsQJ3OnRU7Bvmv3IsXcXrDBpxcvx6n1q9H5oEDWpdULKZePSQOHIjEgQNRuWlTrcshIpV5fxi4nhDOdQWS1RkQJDvkhoNraRk4uHw19i9djjObt9x0Oln7l17CfVOnKlg0kVP2hQs49fvvxSMHWUePal0SACC2SRNnMHj8cVS84w6tyyEiFfhWGChN0chBcTAQzm8GFP0Psi9k4MDS5di/eAnObNp0y/PJo+vUwdgTJziESqq7fPIkjqxahcMrV+LU779Dstm0LglVW7VC4sCBaPLYY7xmApEP8f0w4IJNH36Ita+95nL7kbt2oUrz5ipWRFSSJTsbx3/5BUdWrcKR1auRl5mpdUmoeffdaDpoEBoPGIDwypW1LoeI3MAwAODS0aNIjo93uX3Xt95C10mTVKyIqGySw4HUbduKRw0y9u7VtB6D0Yi63buj6eDBaPLYYwgM43U5iLwNw0ChmU2auLyAq3Lz5nh+1y51CyJy0eVTp3B09WrndML69ZpufBQYEYGmgwah5YgRPCOByIswDBRa949/YOPkyS63H3viBGLq1lWxIiL5LDk5OPHrr87phFWrkJuR4ZHjXgCQDqAOgKjC+yo3a4aWI0ag6RNPILRCBY/UQUTlwzBQKPWvvzCnbVuX2987dSo6vPSSegURuUmSJJz/66/i6QS19jU4BeArONflBgAYByD0usdNQUFo/MgjaDliBGp36cKNjYh0iGGgkCRJmFqrFrJTU11qX7tzZzy1YYPKVREp58rp09j//ffYt2gR0nbsUKTP4wAWA+jQrRs+/fRTNGrUCE8CKGvMLKZ+fbQcPhx3DhuGiKpVFamBiNzHMHCd1aNH46+ZM11qazAaMf7CBYTFxqpcFZHyLh45gv3ffYe9Cxfi4sGDsn9eAPgRwG4A9957L77//ntcvHgR9evXv2UYKGIwmRDfuzdajhiBBvffz+sjEGmM43XXafjwwy63FZKEI6tWqVcMkYoqxcejy5tvYtT+/Ri5ezc6vvEGomWsgcmCMwhMnToV3333HX755RdZxxcOBw6vWIGFfftiaq1aWPePfyDr+HF5vwQRKYZh4Dp1unRBUFTU7RsWOrhsmYrVEKnPYDCgSrNm6Dl5MsYeP44RKSloP24cIqpVu+XPOQq/Hz16FI0aNcLSpUvLXUNOWho2Tp6M6Q0aYH6PHti7aBFsBXq8XDmR72IYuI7JbEb8gw+63P74L7/AkpOjYkVEnmMwGFCjbVvcN2UKxp09i2G//47WI0citFKlm9pWAlAdwKxPP0VaWppiNZz87TcsGTQIU6pXx5px4zhaQOQhDAM3aNSvn8ttHRYLTq5bp2I1RNowGo2o06ULHvz3v/HK+fMYsmYN7hw2DEGRkc7HAQwHMBHO0wmVlp+Vha3TpmH6HXdg4cMP49SGDeDyJiL1MAzcoP6998IUFORy+xMMA+TjTGYzGtx7Lx7+4guMT0/HwOXLkThwIAJDQ6H6lkJC4PCPP+LLrl3xWcuW2DV/PuwWi9pHJfI7DAM3CAoPR/177nG5/Ylff1WxGiJ9MQcHo+FDD2HAwoUYf+EC+s6dWzxaoLYLu3Zh+bBhmFq7Nn5/5x3keGhDJSJ/wDBQCjnrBi4eOoSr586pWA2RPgVFRKDl8OGo1qqVR4+bm56O3ydNwtRatfDj8OFI1/jaDES+gGGgFHV79JDVnusGiP7W6R//kP0aKg+HxYKd8+bh382aYX7Pnji8ahUkSVL9uES+iGGgFBXq10dkzZoutz+xdq2K1RDpW+vWrbFw4ULUr18fgYGBeGjsWAxduxZjjh9Hp3/847anKSrh5Lp1WNinD2Y0bIhtM2fyLB8imbgDYRmWDRuG3fPnu9Q2vEoVvHL+PK/QRn7JZrPhp59+QkZGBrp164YGDRqUeNxht+PYmjXYMXcujqxaBeFwlNGTcoKjo9HymWfQdvRoRNeqpfrxiLwdw0AZds2fj+XDhrnc/oV9+xDXpIl6BRH5gOy0NOyaPx875s7FZQ/sIWAwmdD4kUfQ/qWXULNDB9WPR+StGAbKcOXMGUyrXdvl9vdNm4b2Y8eqWBGR75AkCaf/+AM75s7FgcWL4fDA6YI1OnRA54kTccf993MUj+gGDAO3MP2OO5B17JhLbe/o3RtP8FoFRLLlZWVh7zff4L+ffYbM/ftVP17VVq3QeeJEJPTty8spExViGLiFlc89h+2zZ7vU1hwWhtcvX4bJbFa5KiLfJITAiXXrsHXqVBz96SfVjxfXtCk6T5yIxo88AqPJpPrxiPSMsfgW6nTr5nJbW24uzqWkqFgNkW8zGAyo37Mnnli9GqMPHUKbF16AOTRUteNl7N2LxY8/jk8TE7H766/hsNtVOxaR3jEM3EJdGWEA4CmGREqplJCA3jNnYtzZs+j5f/+HyBo1VDvWxUOHsCwpCTMbNcKOefPgsNlUOxaRXnGa4DZmJia6PI9Z8+67MXzTJpUrIvI/DpsNB5cuxdZp03Bu61ZVjxVVuzY6vv46Wjz1FAJkXKeEyJsxDNzGT2PGYFtyskttDSYTXsvKQrCH9mon8kdnt27F1mnTcGDxYlX3LIioXh0dX3sNLUeMgDkkRLXjEOkBpwluQ85UgXA4cPqPP1Sshohqtm+PRxctwksnT+LuCRMQHB2tynGyU1Px85gxmFa3Ljb/61/c1ZB8GkcGbiMvKwsfVqoEuPg0tRs7FvdPm6ZuUURUzJqbi13z5yPlk09w6cgR1Y4TUrEiOrz8MtqOHs3RP/I5DAMu+KxVK6Tt2OFS29jGjTHKA+dKE1FJkiTh2Jo12Dp1qqqLeYOjo9Fu7Fh0GDcOwVFRqh2HyJM4TeCCut27u9w288ABXDt/XsVqiKg0RqMR8Q88gCd//RXP79mDpoMHw6DCpkIFV65gw9tv45P69fHntGmwe2D3RCK1MQy4QM5+AwAvaUyktcpNm+KRb77BqIMH0XzoUBhU2FQo/9Il/GfcOCQnJGD311/z8snk1RgGXFC7UydZbybHf/1VxWqIyFWV4uPR78sv8eKRI2j5zDMwqrBD6NXTp7EsKQmftWyJo2vWgDOv5I0YBlwQFBGB6m3butz+7ObNKlZDRHJVqFcPfWfPxphjx9Bm1CiYVNg/IH33bnxz//2Y36MHUv/6S/H+idTEMOAiOesGLp84gZyMDBWrIaLyiK5VC71nzMDYEyfQftw4BKiwf8Cp9esxp21bfP/YY7h09Kji/ROpgWHARXK3Jk7ldQqIdCuyWjXcN2UKXjp1Cne/9hoCw8MVP8aBH37AzMaNsXrUKOSkpyveP5GSGAZcVPOuu2AKDHS5vdpbphKR+8Lj4nDPBx/gpVOn0PnNNxGk8KmCkt2Ovz79FJ/Ur4/1kybBkp2taP9ESmEYcJE5JAQ177rL5fYMA0TeI7RiRXR/5x28dOoUur37LkIqVFC0f1tuLja88w4+qV8fKcnJsFutivZP5C6GARnkrBtI3bYNkor7phOR8kKio9Fl4kS8dOoUev7f/yE0NlbR/vMyM/HzmDGY2agR9i5axNMRSTcYBmSQs9+ANScHmQcOqFgNEaklKCICHSdMwEunTuHeqVMRFhenaP+XT5zAkkGDMKdNGxznpc9JBxgGZKjeti3MoaEut+dUAZF3CwwNRYeXXsKYY8fQ9a23YA4LU7T/tB07sOCee/D1Aw/wzAPSFMOADAGBgajVqZPL7RkGiHxDUEQEuk6ahLHHj6Pt6NEwBgQo2v+xn3/Gp4mJWPvGG7w6ImmCYUCmGu3bu9yWYYDIt4RXrowHkpMx6uBBJA4cqGjfDqsVmz74ADMaNsTeRYu4kyF5FMOATJWbNXO5beaBA8i/ckW9YohIExUbNMCAhQvx7H//i7o9eijad3ZqKpYMGoQvu3VD+t69ivZNVBaGAZnkhAEAOM9tSYl8VrVWrfDkr79iyH/+gyp33qlo36c3bMCsFi3w89ix/KOCVMcwIFNMvXqyFhFxqoDItxkMBjTo1QvPbt+O/t98g+g6dRTrWzgcSJk+Hcnx8dgxbx5PRSTVMAzIZDQaUblpU5fbMwwQ+Qej0Yhmgwdj9KFDuO+TTxBaqZJifedlZmLF8OH4vEMHXgSJVMEwUA6Vmzd3ue2F3btVrISI9CYgKAjtx4zBmOPH0fnNN2Wdjnw7qdu2YU67dljxzDPIzcxUrF8ihoFykLNuIDs1FXmXLqlYDRHpUXBkJLq/8w7GHDuG1s8/D4PJpEzHQmDH3LlIjo9HyowZcNjtyvRLfo1hoBzkLiJM37NHpUqISO8iqlbFg59+ilEHDqDxgAGK9Vtw5Qp+fvFFzG7VCqc3blSsX/JPDAPlIGfNAMAwQERApfh4PPbDDxi6fj3iEhMV6zd9zx580bkzljzxBK6dP69Yv+RfGAbKITgqStaKYa4bIKIidbt2xXM7d+K+Tz5R9JLJe7/9FjMSEvDn1Km8SBrJxjBQTnKmCjgyQETXMwUEoP2YMXjxyBG0ePppxfq15uTgPy+/jM/vvhvp+/Yp1i/5PoaBcpJzRkHGvn1c5ENENwmPi8NDn3+OEVu3olrr1or1m5qSgs9atsT6t96C3WJRrF/yXQwD5SRnZMBhsSCLVyQjojLUaNcOI1JS0GfOHMX2J5BsNmx4+2181rIlznK/E7oNhoFyqiJjZADgVAER3ZrRaESrESPw4pEjaDt6NAxGZd6eMw8cwOd33YU148bBmpurSJ/kexgGyimmXj1Zm4lwESERuSIkJgYPJCfjuR07UKtjR2U6FQJbp03Dp4mJOL52rTJ9kk9hGCgno8kk6/QgjgwQkRxVmjfHU3/8gf7ffIPwqlUV6fPKqVNYcM89WP7008i/fFmRPsk3MAy4Qc4iwnSODBCRTAaDAc0GD8aLhw/jrldfhTEgQJF+d33xBWY0aoQDS5Yo0h95P4YBN8hZRHjt3DnkZWWpWA0R+aqgiAj0+vBDPL93L+r36qVIn7np6fh+wAAs6t8f2WlpivRJ3othwA1ytyXO4Hm/ROSG2IYNMWTNGjy+bBmiatdWpM9Dy5ZhZuPG2DFvHoQQivRJ3odhwA1yw0DWsWMqVUJE/sJgMKDRww/jhX370G7sWMBgcLvPgitXsGL4cHx1zz3IOnFCgSrJ2zAMuCEkOhpRtWq53J57DRCRUoLCw3H/tGkYvnkzYhs3VqTPk+vW4dPERGyZMoVbGvsZhgE3yVlEeIlhgIgUVrNDBzy3Ywe6TJoEo9nsdn/2/Hz88sor+Pyuu5B56JACFZI3YBhwk5ypAk4TEJEaAoKC0O2tt/Dcjh2o3ratIn2mbtuGz1q2xF///jfXEvgBhgE3yQ0DfFERkVoqJyZi+JYtuHfKFFmbopXFnp+P1S+8gG/79EFOeroCFZJeMQy4Sc62xLbcXJ7CQ0SqMppM6DBuHJ7fuxd1e/RQpM+jq1fj06ZNcXjlSkX6I/1hGHBThQYNEBAc7HJ7ThUQkSdUqFcPT/76Kx6aNw/B0dFu95eXmYmFffti5ciRvMaBD2IYcJPRZEJskyYut+cZBUTkKQaDAS2eegqjDhxAo/79Felz+2efYVaLFkj96y9F+iN9YBhQQEy9ei635RkFRORpEVWr4vElS/DY4sUIq1zZ7f6yjh7F3A4dsOF//xcOu12BCklrDAMKiKpZ0+W2nCYgIq00fuQRjD54EC2eftrtvoTDgfVvvokvu3ThRkU+gGFAAdx4iIi8RUhMDB76/HMk/forouvWdbu/s1u2YFbz5tj55Zc8W8qLMQwoIFLmyABfMESktfo9e+KFvXvR/qWX3O7LmpODH596Ct8PGIC8S5fcL448jmFAAXJGBmx5eTy9kIh0ITAsDPdNnYon165FRPXqbvd3cOlSfNq0KY798osC1ZEnMQwoQM6aAQC4cvKkSpUQEclXr0cPPL9nD5o89pjbfeWkpeHre+/Fz2PHwpafr0B15AkMAwoIjY2FKTDQ5fbXUlNVrIaISL7QChUwYNEi9FuwAEGRkW73lzJ9Oma3bo20XbvcL45UxzCgAKPRKGvdQDbDABHpkMFgQPMhQzBy927U6tTJ7f4yDxzAnLZt8efUqVwrpXMMAwqRM1WQff68ipUQEbknpk4dDFu/Hj3efx/GgAC3+pJsNvzn5Zex6OGHkZeVpVCFpDSGAYXIWUTIaQIi0jujyYROr7+OESkpqNSwodv9HV6xAp+1aIGzf/5527Y5GRluH4/kYRhQCKcJiMgXVWvZEs9u3442o0a53dfVM2fwRefO2PzRR5AkqdQ2Fw8fxpw2bVBw7ZrbxyPXMQwohCMDROSrAkND0XvGDAxevdrt7Ywlux2/TpiAhX37IvfixRKPWfPy8P2AAbh65gz+++9/u3UckodhQCGy1gykpnIxDRF5nfgHHsALe/ci4aGH3O7r6OrV+KxFC5zetKn4vp9GjULGvn0AgC0ff8yrI3oQw4BC5EwT2AsKkH/5sorVEBGpIyw2FgOXLUOfOXNgDg11q69r587hy65dsfGDD7Dj88+x68svix/Ly8zE9jlz3KyWXGUQ/BNVEQXXruGDqCiX2z+/Zw8qN22qYkVEROq6dPQolg4ZgtRt21TpP6JaNYw5fhzm4GBV+qe/cWRAIcGRkbI26uC6ASLydhXvuANPb9qELpMmwWBU/uMk+/z5EqMFpB6GAQXJWUTIMwqIyBeYzGZ0e+stPLVxo6z3QFdt+uADOGw2xfulkhgGFCRn3QBHBojIl9S66y48t3MnEvr2VbTfq6dPY8/XXyvaJ92MYUBBcs8oICLyJaEVKmDg8uW4d8oUGM1mxfrdOHkyJIdDsf7oZgwDCpIzMpB3w/m1RES+wGAwoMO4cXh60yZE16mjSJ9Zx45h//ffK9IXlY5hQEFhsbEut+WphUTky2q0bYvndu5Ew379FOnvj/feK3PXQnIfw4CCgmNiXG5bwDBARD4uJDoajy9ZgvunT5d1mffSZO7fjyOrVilUGd2IYUBBITLCQD6v3kVEfsBgMKDdiy9i+JYtiKpd262+Nn/4oUJV0Y0YBhQUUqGCy205TUBE/iSienXYCwrc6uPs5s04s3mzQhXR9RgGFCRnmsCanc1zZ4nIL0gOB5YMGoTc9HS3+9r80UcKVHQDIQGSHZBsgMPq/JJshV8OwA826g3QugBfImeaAAAKrlyRteiQiMgbrZ80Cad+/12Rvg7/+CMyDx1CbMOG8n9YCEA4nB/813+HCx/2BpPzyxhw3Xff+Xvad34THQiKigIMBpfbc6qAiHzd0Z9/xsb33lO0zy3/+pe8H5DsgC0PsFwBrFcBey7gKACEHS4FAaAwPFgBex5gywYslwHrNcBh8YmRA4YBBRmNRgRHR7vcnmcUEJGvs+Xloc0LL6BGhw5uX+WwyJ4FC3Dt/PlbNxISYM//OwA48gEofGqiZANsOYAly/ld8t6pX04TKCwkJsblD3meUUBEvq7xI4+g8SOPAHCuHbh05AjSdu7EhZ07i7/LfS90WK1ImT4d93zwwc0PCuH8a92eB5f/6leCw+L8MgYC5lDnVIIX4SWMFfZZ69ZI277dpbb9v/kGzQYPVrkiIiL9EkLg6tmzxeEgbft2nEtJQV5m5i1/LigyEuPOnkXw9VeLdVidUwBCB5sTmUKAgBBZU8da4siAwuScXshpAiLydwaDAdG1aiG6Vi00fOghAM6AcPnkSZzbuhWpKSk4t3Ur0nbuhHTdGViWa9ewffZs3D1+vPPDX2/D9I5857oEczhgcm/DJU9gGFAYNx4iInKPwWBAhXr1UKFeveLRU1tBAS7s2lUiIGydOhXtRo1EgMEKj04JuEw4FxtK+h8lYBhQmKwtia9cUa8QIiIfYg4ORs327VGzffvi+3LOn4Ej9xICwsM1rMwFjnznmQvmCN0GAoYBhQVdP391G7b8fBUrISLyYfYChFcI07oK10k256mIgRG63J+AYUBhAUFBZT6WB2ALgDOFt2uvXIlL7dohKSkJRqP+/uMgItIlh8W5UNDbCDtgzQYCI3U3QsAwoLCA4OBS788CMA9AQFQU+vTpg9jYWOzfvx/Dhg3DsmXLsHTpUgYCIqLbkezOxYLeStidpz2a9TWqwU8fhZnKGBlYAaBqgwY4cuQIhg4dirp162L27NlYsWIFVqxYgTlz5ni2UCIibyMk51/W3s5R4Bzd0BHuM6CwlBkz8POLL5a4LwfAxwC+/fZbGI1GDBw4EABQqVIlnDx5Eo8//jgcDgfWrFnj+YKJiLyBKFqZr6PTB90VGOW8xoEO6KMKH1LamoFrhd9/+uknHD58GJUBtAWw8uJFZGRkoE6dOti0aZMnyyQi8i4Oi28FAcA53REo75o2amEYUFhpawaqAugA4JevvwYAtAKwDkCPHj1Qp04drF+/Hi1atPBkmURE3kMI53UGfI1wOAOODjYlYhhQWGlhwACgV+Ht0wAWAWiQmIjvvvsOkydPxsGDBzFv3jwPVklE5EUkCxS/yJBe2PMAo1nz0QEuIFRYWQsIAeAAgK8AdOjWDZs2bcK8efPw5ptv4p133kH76zbSICKiQr46KlCkaHRAYwwDCivr1MLjAH4A8PigQVi9ejUmTpyICRMm4MUXX8T48eM9WiMRkdeQrPq48JCadBB2GAYUVtoCQhuA5QDuu+8+zJs3D4MHD8aMGTMAAMnJyYiOjkZycrJH6yQi8goOq9YVYP2Gzbi370D06vMYfli6QvkDCLvmgYenFirsXEoK5t4w5L8HwHKDAcePH0dISAg2b95c4vGvv/4ahw8fxoEDBzxYKRGRFyjIgpYXIbLb7ejd7wl8NXcGwsJD0X/gU/j+67mIjnJ963mXmCM0XUjIBYQKK23NQA6A0NBQzJ8/v9SfyczMRHAZ0wtERH5LOKD11Qj37DuIBvXronLlWABA544dsGnLVjx4f6/b/KRMGp9VwDCgMFPgzf9nJgI4lJuLqW+/XfIBgwGR1asjKioKkydP9kyBRETeQrKr17Uk4YF+g9Gjaye8Om5U8f0bN2/F82Mm4KP338L9vbojIzMTleNiix+vUjkO6RkXVShI20WEDANKK2XWJRLA06U0NYeG4h9nz6peEhGRV1LxA9JoNOK54U/i3Q+m4NnhSYiKjMShw0cx9tWJGDdmJO7v1R1AqW/pUOUkQOFwHkyjUwy5gFBhQnJ9EYiBFyYiIiqbykva+jzQCzHR0Vjw7Q+4kJ6BZ0ePx0MP3ofhQwcXt6kcF4v0jMzif19Iz0BsbCWVKtJuSoSfRgpjGCAiUoq6H44BAQF45qkhWPDtD3hm1Cto3CgBE18bV6JNs8RGOHr8BNLTM5GTm4s/Nv2Jjne1U6kihgGfwTBARKQQD3w29undC/kFBYAQmPLB2zCZTCUeDwgIwGuvvIgnR4xGv8eHYfjQwYiJjlKnGA3XSnLNgMIYBoiIFGIwqP4B+e77UwAAl69chclU+ntyj66d0KNrJ3ULATTdkpifRgpjGCAi8g7TZszG7xu34PsFc2B3OLB42SqtS9IMP40UxjBARKQQo3qD1z8sXYEvFizErOkfomHCHRj6xGOY++XXsNnUO53x1gyAQbvPBH4aKYxhgIhIISqFgQ2b/sTbkz/GR+9Nwp3NEgEASYMeRU5OHn5ctUaVY96W0azNcYsOr+nRfRDDABGRQgzKh4F9Bw7hpfET8eq4F9CrZ9fi+8PDwzBk0ADMmbcADodD8ePelsZhgNcmUNjpjRvxRefOLrWNrFkTL585o3JFRERezHLVeSEfXxcYpeq0yO3wT1OFcWSAiEhBGv/F7BkGwGC6fTMV8dNIYQwDREQKCvCDi7gFBGt6WiHAMKA4hgEiIgUZjIDp5qvB+hST9oGHn0YKs+Xnu9y2tCscEhHRDQJCtK5APaYQTU8pLKJ9BT7GmpPjctvA8HAVKyEi8hEGE2D00dEBnUyDMAwojGGAiEgF5hCodPFg7QSE6mJUAGAYUBzDABGRCgwmwOxD75lGsy7WChRhGFCYLTfX5bYMA0REMpgCfWP9gMHoDDYan0FwPYYBhXFkgIhIRaYQ7997wByhm+mBIvqqxgfICgNhYSpWQkTkgwyGwr+qtd2kp9zMEZruNFgWhgGFcWSAiEhlBqNz+14Vrl2gKnOkc6pDhxgGFGblmgEiIvUZDEBgJGDU54drSQZneDHpd3qDYUBhHBkgIvKQoimDAB1PuRoCgKBoXU4NXE/f1XkhOWHAzDUDRETuMRicG/cYAwB7HiDZtK6okMG5j4ApSFdnDZSFYUBhHBkgItKAMcA5beCwAvZcQLh+nRjFmUKcp0B6QQgowjCgMIYBIiINmQKdpx46LM6RAgjPHdsYCJhDvfJMB4YBhVmuXnW5LU8tJCJSQdHUgSkIEHZnMHBYVDpWgPM4pkDd7R0gB8OAgiRJQt7Fiy63D6lYUcVqiIj8nMEAGMzOkYKAMOd6AofFGRDKPY1gcP7lbwosDADeNwpQGoYBBeVnZUFIrv8HFhYXp2I1RERUzGD4+wMcAIQAhMP5JRV+dz5Q9AOF34yFV000Ob978V//t8IwoKDcjAyX2xqMRoRUqKBiNUREVCaDoXDTogDAN/64d4tvRhyN5GVmutw2tFIlGI18+omISHv8NFKQnJGB0NhYFSshIiJyHcOAgnJljAyEMQwQEZFOMAwoSM7IABcPEhGRXjAMKEjWmgGODBARkU4wDCiIIwNEROSNGAYUxDUDRETkjRgGFMSRASIi8kYMAwrimgEiIvJGDAMKcdhsyLt0yeX2HBkgIiK9YBhQyNUzZ5x7XbuIYYCIiPSCYUAhl0+ccLmtOSwMITExKlZDRETkOoYBhVw+edLlttG1a8NgMKhYDRERkesYBhQiZ2QgqnZtFSshIiKSh2FAIVdkjgwQERHpBcOAQjgyQERE3ophQCGy1gzUqaNeIURERDIxDCig4OpV5MvYY4DTBEREpCcMAwqQMyoAcJqAiIj0hWFAAXIWD5oCAxFepYqK1RAREcnDMKAAOYsHI2vWhNHIp52IiPSDn0oK4OJBIiLyZgwDCpAzMsDFg0REpDcMAwqQs2aAiweJiEhvGAbcJEmSrGmCmLp1VayGiIhIPoYBN+VcuACHxeJy+0qNGqlYDRERkXwMA26Ss14AACo1bKhSJUREROXDMOAmWacV1qiBoPBwFashIiKSj2HATXIWD3KKgIiI9IhhwE1Zx4653DaWYYCIiHSIYcBNaTt3utyWIwNERKRHDANusObl4eLBgy6358gAERHpEcOAG9J374aQJJfb80wCIiLSI4YBN6Tt2OFy2+CYGITFxalYDRERUfkwDLjh/PbtLreNbdQIBoNBxWqIiIjKh2HADXJGBrh4kIiI9IphoJxsBQXI3L/f5fZcPEhERHrFMFBOGXv3QrLbXW7PxYNERKRXDAPlJGe9AADENW2qUiVERETuYRgoJznrBUIrVUJUzZoqVkNERFR+DAPllCZjZKBqq1Y8k4CIiHSLYaAc7FYr0vfudbl91ZYtVayGiIjIPQwD5ZCxbx8km83l9tVatVKxGiIiIvcwDJSDnPUCAEcGiIhI3xgGykHOeoHgmBhE16mjXjFERERuYhgoBzkjA1VbtuTiQSIi0jWGAZkcNhsu7N7tcnuuFyAiIr1jGJAp8+BBOCwWl9tXZRggIiKdYxiQSc56AYCLB4mISP8YBmSSs14gKCoKFerXV7EaIiIi9zEMyCTnmgRVW7Tg4kEiItI9hgEZJIcDF3btcrk9pwiIiMgbMAzIcPHQIdjz811uX/Ouu1SshoiISBkMAzLI3Xmw5t13q1QJERGRchgGZJCzXqBCgwaIqFJFxWqIiIiUwTAgg5yRgVqdOqlYCRERkXIYBlxkt1pl7TFQq2NHFashIiJSDsOAi87/9RdseXkut2cYICIib8Ew4KKT69e73DYsLg4V77hDxWqIiIiUwzDgolMywkCtjh252RAREXkNhgEX2C0WnN2yxeX2nCIgIiJvwjDggnNbt8JeUOBye4YBIiLyJgwDLpCzXsAcGooqd96pXjFEREQKYxhwgZz1AjXat4fJbFaxGiIiImUxDNyGLT8f57Zudbk9NxsiIiJvwzBwG2e3bIHDanW5PdcLEBGRt2EYuA056wVMQUGoxYsTERGRl2EYuA056wVq3nUXzCEhKlZDRESkvACtC9CLjR98gPQ9e1C/Vy/Uv+ceRFavDktODlK3bXO5j3o9e6pYIRERkToYBgpF1ayJdW+8gX0LFwIAYps0QaWEBEh2u8t91OvRQ63yiIiIVGMQQgiti9CDzEOHMLNRo3L/fFBUFCZcvAhTAPMVERF5F64ZKFTxjjtgDgsr98/X6dqVQYCIiLwSw0Aho8nk1s6BlmvXcHTNGlhlXOaYiIhIDzhNcJ2fxozBtuRkt/owBQaiVqdOqN+rF+J790ZckyYKVUdERKQOjgxcp2rLlm734bBacXLdOvw2cSKupaYqUBUREZG6GAauo0QYKNJv/nw06NVLsf6IiIjUwjBwndhGjWAKCnK7n/umTUPTQYMUqIiIiEh9DAPXMZnNqNK8uVt9dHzjDbQfO1ahioiIiNTHMHADd6YKWjz9NHq8956C1RAREamPYeAG5Q0DCX374sHPPoPBYFC4IiIiInUxDNwgrmlT2T9Tq2NHDFi0iJsOERGRV2IYuEGlhg1ltY9LTMSgFSt4tUIiIvJaDAM3CImORniVKi61japVC0PWrEFITIzKVREREamHYaAUrowOhFWujKRffkFk9eoeqIiIiEg9DAOlqHSbqxeGVKyIJ9euRaWEBA9VREREpB6GgVLcamQgKCoKSb/8gsqJiR6siIiISD0MA6WILWNkIDA8HEPWrEE1BbctJiIi0hrDQClKGxkICAnB4NWrUbN9ew0qIiIiUg/DQCkia9SAOSys+N+moCAM+vFH1OncWcOqiIiI1MEwUAqDwVA8OmAMCMBjixej/j33aFwVERGROvwnDAhx3ZdU+FX471LENmoEg9GIRxYuRMKDD3q4WCIiIs/xzf1zhQRIdkA4nF9Ft8tkAIwBgMFU/D22cWP0++orNBkwwGNlExERacEgRBl/GnsbyQFIVsBhuc0Hv2tsBQUwh0YApiDAGAjwAkREROSjvDsMCAlwWAFHgSIB4JaMgYXBwMxgQEREPsU7w4AQzgBgz/P8sQ0mwBzmDAVEREQ+wLvCgBDOqQBbHgBJ21qMgYA51BkOiIiIvJj3hAHJDthyAWHXupKSTCFAQAinDoiIyGt5RxhwWABbjtZVlM0QAARGAAb/OVOTiIh8h77DgBCAPR9w5GtdiQsMQGCk89REIiIiL6LfMCCEc1pAsmhdiTzmSMDExYVEROQ99DmuLYRzWsDbggAA2K4Bkk3rKoiIiFymzzDgsDjPGvBW1mznHghEREReQH9hQLIB9lytq3CTKAwE+pyBISIiup6+woCQnB+ivkDYtdkUiYiISCZ9hQFbDgAf+mvaUeDcLpmIiEjH9BMGJJtvLryz53G6gIiIdE0/YcDuDXsJlINw+GbIISIin6GPMCDZffsD01eDDhER+QR9hAFfX2gnfDzsEBGRV9N+71whNP+gTLuQjgn/eAeXsi7DZDLhhWefwv29uit7EIeFlz0mIiJd0n47YofNuWufhjIyL+LSpSw0ahiPS5ey0G/gU1jz4yKEhoYodxCDEQiKUa4/IiIihehgZED74fO42EqIi60EAKhYsQKioiJx9do1ZcOAkJxfvLIhERHpjPafTA71woAkSbjvoYH4aOrMEvdv3LwVia064+dffrvpZ/buPwghSahapbIKBdmV75OIiMhN2oYBIZyL61RiNBrx3PAnsfCHZbh6zTkVcejwUYx9dSLGjRl507qAy1eu4rWJ7+Kdf76uTkFcREhERDqk8ciA+ssV+jzQCzHR0Vjw7Q+4kJ6BZ0ePx0MP3ofhQweXaGe1WjF63Ot49ukktLyzqTrF8OJFRESkQ9ouIBQOwHJF9cMs+mE5pibPQlxcLKpXq4qZU9+HyWT6uwwh8Mrrk1C3Ti28+PwI9QoxmoHASPX6JyIiKgdtw4DkAKxXVD9Mbl4eOnR9ALVr1sB3C+bctDDwvzt2Y8jTLyAhvkHxfR++908k3FFf2UIMZiCIYYCIiPRF27MJDJ45zLvvTwHgXBNgMt08M9K6ZXMc2rVZ/UIMHvqFiYiIZNB4zYD6H47TZszG7xu34PsFc2B3OLB42SrVj0lERORNdBAG1AsEPyxdgS8WLMSs6R+iYcIdGPrEY5j75dew2TQ6xc9oun0bIiIiD9M2DBgMgFGdmYoNm/7E25M/xkfvTcKdzRIBAEmDHkVOTh5+XLVGlWPeloHbERMRkf5ov+mQCvv17ztwCC+Nn4hXx72AXj27Ft8fHh6GIYMGYM68BXA4HIof97ZUCj5ERETu0P7aBJINsGp7bQKPMJiAoGitqyAiIrqJ9iMDBj/5a5lXLCQiIp3SQRgwAMYgratQn8kPfkciIvJK2ocBAAhQ8OqAemQ0c70AERHplj7CgNEEGAO1rkI9AaFaV0BERFQmfYQBwHc/MDkqQEREOqefMGA0+ebaAV8NOURE5DP0EwYAwBzmPAXPVwSEcVSAiIh0T19hwGAAzBHw2BWM1GQM5BkERETkFfQVBgDndIE5XOsq3GMo/B14lUIiIvIC+gsDAGAK9OK59sLRDQYBIiLyEvqd0C7ae8Cep20dshiBwEhenZCIiLyK9tcmuB2HBbDlaF3F7RlMziBg0OdgCxERUVn0HwYAQLID1mwAktaVlM4YVHgmBKcGiIjI+3hHGAAAIQG2PECyaF3JdQzOEMCzBoiIyIt5TxgoItmdoUDYtK0jIBQwBXM0gIiIvJ73hYEiDitgz3WOGHiSMQgwh3JtABER+QzvDQMAIAQg7M5Fhg4rAJV+FYPJORVgCvStHRKJiIjg7WHgekIAks0ZDCQb3A4GBqMzABiDeKogERH5NN8JA9cTAoAAJIdz5EA4nGsNiu4vZnDufGwwOb+MAX/f5loAIiLyE74ZBoiIiMhlXAVHRETk5xgGiIiI/BzDABERkZ9jGCAiIvJzDANERER+jmGAiIjIzzEMEBER+TmGASIiIj/HMEBEROTnGAaIiIj8HMMAERGRn2MYICIi8nMMA0RERH6OYYCIiMjPMQwQERH5uQCtCyih4BIgJADC+b34tijlPgmi6H4IQDhuaCf+/lnhuO62BED6+/4b+xZSiZ8R4obHIADpuj4gAMlxQx+ijC+psNzrarzp37f5km5o63D8fZ9DctZWymPi+scchb/39f+WxA2PFf7ukij8tQWEVHR/4b8dJW87n+LC7w5nf0IIoKidVNiHQOF3AckhQUgSIAlIDkfx/eL6f0tSYbvC36XwsaL+im8LASE5f1chOW9LDqnwfuexpMLbQghIjr9vO4p+5rq2QghI193+++ckSEW3JYHC/xogANgLv0sAHGXcX/TYje2K2jpuaPeWEGq82jyPr2++vvn61u3rmyMDREREfo5hgIiIyM8xDBAREfk5hgEiIiI/xzBARETk5xgGiIiI/BzDABERkZ9jGCAiIvJzDANERER+jmGAiIjIzzEMEBER+TmGASIiIj/HMEBEROTnGAaIiIj8HMMAERGRn2MYICIi8nMMA0RERH6OYYCIiMjPMQwQERH5OYYBIiIiP8cwQERE5OcYBoiIiPwcwwAREZGfYxggIiLycwwDRERE/k7ohMViEdOnTxcWi0XrUm6i59qEYH3u0nN9eq5NDj38HqyBNeitBj3RTRjIzs4W8fHxIjs7W+tSbqLn2oRgfe7Sc316rk0OPfwerIE16K0GPeE0ARERkZ9jGCAiIvJzDANERER+TjdhIDAwEKNHj0ZgYKDWpdxEz7UBrM9deq5Pz7XJoYffgzWwBr3VoCcGIYTQuggiIiLSjm5GBoiIiEgbDANERER+jmGAiIjIz2kSBqxWK55//nkMHDgQ33///W3v10t9RV588UWcO3dOg8qcyqovLS0NSUlJGDhwIGbPnq2r2nJycjB8+HA89thjWLlypSa13aq+IsnJyVi6dKkGlTnd6vnr1KkTkpKSMHToUM3quxU5r+udO3fi0UcfRVJSEs6ePatJDV999RX69euHpKQkzJ07V/Uailz//uHp56G0Gjz9PJT2PuXp56G0GtR6HryGFjsdLVu2THzzzTfC4XCIp556ShQUFNzyfr3UZ7FYxAsvvCA6deokzp49q0ltt6rvgw8+ECkpKUIIIZ588klNdtYqq7aFCxeKJUuWCEmSxJAhQzxe1+3qE0KIS5cuiY4dO4olS5borr6dO3eKGTNmaFaXK+S8rp999llx+fJlcfToUfHmm29qUsObb74pzp8/r9ixb1dDae8fnn4eSqvB089Dae9Tnn4eSqtBrefBW2gyMrB//360atUKRqMR8fHxOH78+C3v10t9VqsVw4YNw1133aVJXber77nnnkOrVq0AAJIkISAgQDe1DRw4EA899BByc3MhNDyB5Vb/jc2dOxcPP/ywZrUBZdd39OhRbNy4EU888QSWLFmiaY1lkfO6LigoQHR0NBo0aIBTp05pUsPJkyfx7rvv4umnn1b0r1E57x+efh5Kq8HTz0Np71Oefh5Kq0Gt58FbaBIGcnNzERoaCgAICQlBXl7eLe/XS33h4eFo06aNJjVdr6z6oqOjYTKZ8N1336Fx48YIDg7WTW0AcPHiRfTp0weJiYker6tIWfWlpaUhNzcXdevW1aw2oOz6atSogVdffRVffPEFli9fjqysLC3LLJWc17UkScU/p2Q4lFND9+7d8dFHH2HChAn46KOPVK+htPcPTz8PpdXg6eehtPcpTz8PpdWg1vPgLTQJA6GhocjPzwcA5OfnIzw8/Jb366U+vbhVfT/++CPWrl2LV155RXe1Va5cGb/99hvOnTuHEydO6Kq+zz77DM8884wmNV2vrPqaN2+OFi1aIDAwEM2bN9d0zUpZ5LyuDQZD8c8Zjcq9Dcmp4dFHH0VYWBgaNmyIy5cvq15DaTz9PJRGi+fhxvcpLZ6HG2tQ63nwFpqEgSZNmuCvv/6CEAIHDx4s/musrPv1Up9elFXf7t27sXz5ciQnJ2u2q1ZZtS1YsACbN2+GwWBAUFBQiRe/Hurbu3cv3njjDcyePRuzZ8/G6dOndVXf9OnTsXnzZkiShP3796NmzZqa1Hcrcl7XwcHByMrKwrFjx1C9enWP11CnTh0kJSXBZrPh5MmTqFixouo1lMbTz8ONhBAefx5Ke5/y9PNwYw1qPg/eQpMdCC0WC15++WVcuHAB/fv3R35+Prp27YqaNWuWuP+JJ57wdGm3rK9BgwYAgNdffx2jR49GjRo1dFXfv/71L6SmpiI6OhoA8K9//QuVK1fWRW1RUVF49dVXYbVa0a5dO4wdO9ajdd2uvqL/b4vOJOjfv7+u6ouIiMD48eNhs9nw8MMPY+DAgZrUdytyXte7du3C5MmTYTAY8OGHH6J27doer2HlypX46quvEBwcjP/93/9VvYbS3j88/TyUVoOnn4fS3qfS0tI8+jyUVsO2bdtUeR68BbcjJiIi8nPcdIiIiMjPMQwQERH5OYYBP6HkubtERORbGAb8wG+//Ybhw4eX++dTUlKQkJCAzp07lzgfuMjIkSORkJCAlJSU4vuys7Px8ccf495770WLFi3QsWNHjB8/HmfOnClus3TpUnTv3r3cdRGRspYuXYqEhAQ8/vjjpT7et29fJCQklDi1NSMjA2+//Ta6d++OFi1aoGvXrpg0aRIuXrxY3CY5ORlJSUmq10/lxzDgB65cuaLIRh5WqxWbN28ucd/Fixexc+fOEvdlZWWhf//+OH36NGbNmoUdO3Zg5cqViIqKwuOPP47U1FS3ayEidURERGD//v037QWyd+/em167p0+fRp8+fSBJEr755hvs3LkTixYtwpUrVzBo0CDk5OR4snRyA8OAF/ntt98wcOBAdOjQAc2bN8eQIUNw6tSpUv/CTkpKQnJyMlJSUjBp0iScP38eLVq0QHp6OgoKCvDhhx+iS5cuaNOmDZKSkrBnz57bHr9Pnz5Yvnx5ifuWLVuGe++9t8R9ycnJCA4OxtSpU1G3bl0YDAbExMTgzTffRNeuXXH48GG3nwsiX7B//34kJSUVj5598skn2Lp1K7p06YJXXnkFrVu3xuzZsyFJEmbPno2ePXuiVatWGDBgADZu3Fjcz3/+8x/07t0brVq1wv33349PP/20+LFvv/0WPXv2ROvWrdGnTx/88MMPt6wpMjISnTt3vum1vmTJEvTu3bvEfe+99x6aNWuGt99+G1WrVgUAVKlSBR9++CEaNWqEo0ePuvkMkcd46iII5J60tDSRmJgo1q1bJ4QQIisrSwwePFiMHz9eLFmyRHTr1q1E+yFDhojp06cLIcRNj7/22muiT58+4tSpU8JisYgvv/xStGjRQqSmppZ67K1bt4r4+Hhx8OBB0axZM3Ht2rXix+677z6xe/duER8fL7Zu3SqEEKJz584uXVSntLqJ/MXly5dF27ZtRXJysrBYLOL06dOic+fOYuHChSI+Pl7MmDFDWK1WkZ2dLaZPny46d+4s9u3bJ2w2m1i9erVITEwUu3fvFvn5+aJp06bFr7/9+/eLO++8U+zevVucOXNGJCYmiuPHjwshhPjjjz9E06ZNRXp6eqk1Fb0mf/31V9G5c2fhcDiEEEIUFBSIdu3aie3bt4v4+Hhx9uxZYbFYRMOGDcWyZctu+7tOnz5d0wuU0e1xZMBLVKhQAatXr0b37t2Rk5ODCxcuICYmBunp6bL6sVgsWLVqFV555RXUrl0bgYGBGDp0KOrVq4dVq1bd8mcbNmyIunXr4qeffgIAbN++HSaTCc2aNSvRLisrC7GxsfJ+QSI/s379egQFBWHUqFEIDAxErVq18MUXXyAkJAQAMGDAAJjNZoSHh2PJkiV49tln0aRJEwQEBOCBBx5A9+7dsXjxYgDOHfwWL16MP//8E/Xr18f27dvRrFkzmEwmCCGwaNEibN++HR06dMCuXbsQFxd3y9q6dOkCq9WKLVu2AHCOPDRv3rzEz129ehWSJPG17iMYBryE2WzGqlWr0LlzZ/Tu3RtTpkzBpUuXZK8FuHr1Kmw22027J9aoUQPnzp3DihUr0KJFi+KvFStWlGjXv39/LFu2DIBz2HDAgAE3HSM2NhYZGRmlHj8rKwsOh0NWzUS+KDMzE1WrVi2xNXe9evVQpUoVACjxwXvx4sWbtqCuUaMGUlNTERwcjIULF0KSJLzyyito06YNXnvtNVy9ehXVqlXDggULkJqaipEjR6Jt27aYPHkyLBYLZs2aVeK1/t///re4b7PZjL59+97ytR4dHQ2z2YzMzMxSf7/yvD+RdhgGvMTPP/+Mr7/+GgsWLMCGDRswZ84cNG7cGIDzwh5Wq7VE+7IutFGpUiUEBQXddInOM2fOIC4uDn379sXOnTuLv/r27VuiXZ8+fbBv3z4cPHgQ69atu+lxwHkVtF9++eWmD30hBEaMGIG3335b9u9P5GuqVKmCtLS0Eh+Ya9euRVpaGoCSF++pXr36Ta/Zs2fPIi4uDjk5OcjIyMDHH3+MLVu24LvvvsO+ffswa9YsXLp0CQ6HAzNnzkRKSgpmz56Nn376CYsXL8bIkSNLvNZbt25dov/+/ftj7dq1OHToEI4fP46uXbuWeNxsNqNjx47FI4XXs1qteOihhzB79mx3nybyEIYBL5GdnQ2j0Yjg4GAIIfDHH39g+fLlsNlsqF+/Pi5evIitW7dCCIEff/yx+LrdABAUFIT8/HzY7XYYjUY88sgjmDJlCk6fPg2r1Yr58+fj2LFjNy0OKk1MTAy6deuGCRMmoF27dqhQocJNbV544QVcvXoVL7/8cvEFf9LT0/E///M/uHDhAkaMGKHcE0Pkpbp27Qq73Y5Zs2bBarXizJkzxX+13+jRRx/F7NmzsX//fjgcDvz888/47bff0K9fP+Tm5uKZZ57BypUrIYRAXFwcjEYjYmJicP78eTz99NP4888/YTQai69VEhMTc9v6EhISUL9+fbz66qvo06cPzGbzTW0mTJiA7du349133y2esjx16hRGjx6NsLCwMk9RJP0J0LoAck2/fv2wfft29O7dGyaTCfXq1cPQoUPxzTffICEhAc8//zxef/115ObmomfPniVW+Ldp0wYVK1ZEmzZtsGjRIkyYMAHJyckYNmwYrly5goSEBHz++ecuX52xf//+GDlyJMaPH1/q4xUqVMDixYtLHCM8PBzt27fHwoULUatWLUWeEyJvFhkZic8//xzvv/9+8VqBJ554AnXq1Lmp7VNPPQVJkjBu3DhkZmaidu3amDJlCtq2bQvAeVXLadOm4Z///CeCg4PxwAMPYNiwYQgMDMQ///lPvPXWW8jIyEBERAQGDx6M+++/36Ua+/fvj3fffRfTpk0r9fF69eph8eLFmDlzJgYMGICcnBxER0ejS5cumDx5cvGFgEj/eKEiIiIiP8dpAiIiIj/HMEBEROTnGAaIiIj8HMMAERGRn2MYICIi8nMMA0RERH6OYYCIiMjPMQwQERH5OYYBIiIiP8cwQERE5OcYBoiIiPzc/wOnNrUZYIBrewAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAG/CAYAAADFO9TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABFe0lEQVR4nO3dd3wUZR4/8M8zs7uppAAJRTpIlyIi6ikiehYQC6IiGkFRDtvdqYieP+t5h/70RA+8+yFYTrFTRETsWBAEBREFQQHpLYSQkLpl5vn9MUkgkMBOdmZndvfzfr1ikt0nM9+sbPazzzxFSCkliIiIKGEpThdAREREzmIYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMExDBARESU4hgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgSnMfpAmwnJSC1qg8JQB7RQABCARRP1dfCgSKJiIicE19hQEpAhgA9COia8bXUzR1DeABFNT6rPiMoEBERxTEhpTzyrXLs0UOAFgA0PwCTL/7HI7yAJwlQfOw1ICKiuBS7YUBK48VfqzQuAUSD4gM8KVWXFIiIiOJDbIYBLQCEysxfArCKkgR4U3kJgYiI4kJshQE9BATLARl0uhKDJwVQU3j5gIiIYlpshAEpgVAFoFU4XUkdFMDXiJcOiIgoZrk/DEgdCJYaMwTczJMGeJKdroKIiMg0d4cBqQGBg86NDTBLTTEuHfCyARERxRD3hgE9ZASBoxYJcjnFB3jTGQiIiChmuHM4vNSBQAliLggAgB4wxjcQERHFCPeFASmNMQJWLx4UTVqFMf2RiIgoBrgvDIQq3D9YMBzBEmNJZCIiIpdzVxjQAi6dPthAwYNVmyMRERG5l3vCQM3lgTgi9fgKN0REFJfcEwY0P2JywODxhCrZO0BERK7mjjAgJRAqd7oKm0hjMyUiIiKXckcYiNdegWqhCvYOEBGRa7kkDMT7dfWq7ZaJiIhcyPkwIDVXLDd821/vQ/8zL8Cf777fnhPoXHeAiIjcyfmt9vSQ0xUAAPJGXYkrLrsY895faM8J9BD031ZAW/EhoHoA1Quheqq+Nr6H6gE8XkDxQHg8gDcJ8CUDvlSIpBTj66Tqr43vher8/0IiIoptzr+SuGSBodNO7Yfl3/9g4xkk5MECyC1rDrvFAh6fEQySUg6FhKQUCF9K/bcnpQCpGRBpWcZnxfkOIiIick5chwFd1zHk8lE4d9BZuOfO22puX7xkGW7580Q89fgjuOj8wbad/yiaDb9rKGB8lBfXChdhBw0hqoJBJpCWdehz+hHfp2UCqY0gBIMDEVG8cTYMSGnreAFFUfCnsdfjsScmY9zYPGRmZGD9rxvwl3sewJ1/Hh/dIAC4phekFimBsmLIsmIA244dIoRiBIf0LCAts3ZQSM+CSM2EyGgCZOZAeLzRqZ+IiCLmcM+A/dPthg05H89Newkz35iFEZcPw7jbJ+DSiy/E2NGjbD/3UbQY36tA6kBZEWRZkfFtvQ0F0KgxRFYORFYziKwcIKsZRFYuRFauERzYw0BE5BrO9wzYzOPx4OYbrsMzU6fh48++RPduXfDAvXfaft46yRgPA2GTQMl+yJL9kNvXH3236gWycqrCQbOa0ICsXIjMXIjk1OiXTESUwISUDq6Go2tAoMj205SVl+P0QUPQtnUrvD1zBlJTU45qM3b8X7F2/W+oqKhAZkYGnnvmcfTq2d3SOrTlH0Nb8p6lx4xLKelGKMjKNQJCVi5Ek5YQOa0hUjOcro6IKO442zMgRFRO89jjkwEAB4qKoap1d0+/OO1Z2+uQsX6ZIFoqSiErSiH3/H70fWmZRiho2tr4nNMaIqcVRBJ7E4iIGsrhMQP2h4Fnn5uOLxcvxTszZ2DMn/6C2e8uwLUjr7D9vHVyweJKMa9qsOPhUzQBABlNjVCQc1hIaNIKwutzpk4iohjifM+AUGx7kZw1dz5envkmXpkxFV27nIjR116FF/73Gq664lJ4vQ786tyewD4HC4x1HDb9eNiNAshuVjsg5LSGaNyCizURER3G2TEDABAstWXd/q+++Ra3/fU+TH7iUZx/3iAAQGlpGc65cDjuvfsOjLj8YsvPeTyhxe9D//7DqJ+XjqCoRiDIbQPRogNEi07GZ2+S05URETnC+TCg+Y1AYKE1v6xH3o234a93jMPoa6+udd+//zMDCz/6DAvnvQFVVS097/Ho+w9AFmwHtFDVRxDQQpChkLEscyhY+/ZAJRCoAPwVkP4K4+tABRDglsiWE4rRa9Cy06GPpq24OiMRJQTnw0CUZhQ4TvECPmtGwktdB4KVgL8qKFSHhOqv/RWAv7zq60ogUF4VJiqN28tLgLIi47Gn+nmTIFp0hGjZCUpVQECjxhBRGvhKRBQtzocBKQF/EYA4H1znSQU8R09pdIqUEqgsq1pEqBiytKhqcN6Rn4uBsmIGh2rp2VXhoKNxeaFlR85kIKKY53wYAIBQJRAqc7oKGwkgKTtqUymtJqUOVJTVHRRKi6o+H4A8WGAEjIQigCYtoZzQqSocdIJo1hZCie4lKCKiSLgjDEgJ+A8gbofbe1KMnoEEICtKIYvzgaJ9kEX5kEV7IYv2QRbtBYr3GWMi4p0vGaJ1Vyhte0K07QHRrB3HHhCRq7kjDABAqAIIlTtdhT2Sso0plAlOSh0oOVAVEowPFOdDHsg3AkRJodMl2iM5DaJNNyhtekC062EMVOS/ByJyEfeEgXjtHVBTAG9i9ApESoYCQHFBVW9CVWAo3GPMwDiQj7j5t5HSCKJtdyhte0Bp2xNo0pKDEonIUe4JA4At0wwdJRTAl8leAQvIoB+yYCfkvu21PlCy3+nSIpeWBaVtD4i2PaC062Hs8MhwQERR5K4wAADBMkCLk3n0vkxA4Up3dpKVZZAFO44ICTuA8mKnS2u4jCZV4aCn8TmzqdMVEVGcc18YkBIIHARkjA8086YDKle0c4osK64dEKoCA/wxOC4lqxmU9r2gnNjPGJDI/RaIyGLuCwOAsVeBvwgxe41YTQa8aU5XQUeQUgIlhZD52yB3b4S+axPkro1ARYnTpYXPmwTR7iQoJ54MpdPJEOnZTldERHHAnWEAMJbnDRxEzAUCxWf0CvCab0yQUgJF+dB3bYTctRFy90bIPZuNpaFjgGjRwQgFJ/aDaNaeYw2IqEHcGwaAqqWKDyJmVidUk431BPgHOaZJLQS5bxvkTiMc6Ds3Avt3wfXBND0bSqeTjcsJ7U7i5QQiCpu7wwBgXDIIlLh/DIEnzRgjwCAQl2RlOeSe3yF3bTh0eaH0gNNl1c/jg2jXE8qJ/Yyeg0aNna6IiFzM/WEAMAYVhspdOstAAL5GxkZElDBqxh/s2mhcYtj5mxEQXLrComjeHqJTPygnnmx8zemuRHSY2AgD1fSQMfXQLb0Eaoqx1DB7AwhVayHs+A361rWQW9dC7t7kzg2eqi8ndB0A0a4n91EgohgLA4DRS6AHgGA5HBtLoPiMVQUF/4hS/WSgEnL7euhb1xjhYM9m49+vm6RmQOk6AEr3MyBad2WPAVGCir0wUE1K47KBVmmMK7D7dCVF0DaugXrKBRDeZNvPR/FHVpZBblt3qOcgf6vTJdXWqDGUbqcbwaBFR85MIEogsRsGqkkJSM1Yyljzw8oR37KkCNqvq6GtXwl926+AlPCN/TvUdj0sOwclLll+sHY4KNjhdEmHZDWD0v0M4yO3jdPVEJHNYj8MHE5KY1yBHjACgh6C2XAgSw9CW/8jtHXfQ9/+21HduurpF8M35AYLiyYyyNKimmCgb/sFKNztdEkAANG0VU0wEI1bOF0OEdkgvsJAXap7DmqCgTQ+CVT/xwgAv3wP7Zdl0LetP+Z1XZGVi6S7/ssuVLKdLMqHvmEl9I0/QG5d64rBiKJ5ByMYdDudeyYQxZH4DwNhCC6eh9AnM8Nun3Tr01BatLOvIKIjSH8F5OafoG9cCX3jKqD8oNMlQbTqAqX7H4xZCelZTpdDRBFgGACg798F/7N3hN3ec87V8A6+ysaKiOondd1Y32DjD5AbVkLu2+ZsQUIYOyz2+IPRY+DjAFuiWMMwUKVyyl+MrW/DIJq3Q/JtT9tcEVF4ZFE+9I2roG9caVxOcHLhI1+KcRmhz2DOSCCKIQwDVYKfvo7Q13PDbp9013+hZDezsSIi82Sgsupywg/QN/wAlBdH5bw/7S7Cz3uKcFb7HLTJMnbsFLltoPQeDKXnWRAp6VGpg4gahmGgir5jI/zP3xt2e+9FN8BzxsU2VkQUGSl1yF2bDl1OsGldg69+z8dFL38FTZdI9qj4/d6L0SQ16VAD1Qul66lQeg+GaNudCxsRuRDDQBWp66h8+k/AwcKw2ivtuiNp7GM2V0VkHVm8D/q6b6H/stRYDdECn27Yg7y3l6HPaX/Af//7X3Tr1g0f3Xg2zulYT69ZdjOovc+B0msQRHq2JTUQUeQ8ThfgFkJRoHY7Fdryj8Jqr29dD1lWDJGWaXNlRNYQmTlQT7sE6mmXQO7fBX3dt9DWLgH27zR9LCklbp7zPWau2oILLrgA77zzDgoKCo7/gwf2QvvyLWhfvQPR6WSofQZDdOzD/RGIHMb+usOo3U4Nv7HUof260r5iiGwkmrSEeuYV8I57Gp6bnoRyxmVAVm7YP79hfylmrtqCZ555Bm+//TY++eQTcwVIHXLDCoRmPYngc7ch9OVbkAf2mDsGEVmGPQOHUdr1AJJTgcrysNprvyyH5+TBNldFZB8hBERuWyi5bSHPHgm5exP0X5ZC/2UpUHqg3p8LasZ+IBs2bEC3bt0waNAgnHzyyQ0rovQA9KXvQl/6rjFFsc9gKF36Q3h8DTseEZnGMHAYoXqgdj4F2k9fh9Ve37Qa0l8BkZRic2VE9hNCQLTsBKVlJ8hzr4Pctt4IBuuXARUltdp2zWmEU1s3xoznp9UEAyvIrWugbV0DLSUdSs+BxsZg2c0tOz4R1Y1h4Ahq91PDDgMIBaH//rO5ywtEMUAIBaJtdyhtu0OePwZy6xojGPz6HeCvgKoo+GrcuQCAi17+yvoCKkqhf78Q+vcfQnTuB7X/UIg23bhuAZFNGAaOoHTqA3i8QCgYVnuNYYDinFA9EB36QOnQB/LCmyB/X21cRtiwEgj6bT67hPxtBUK/rYBo1g5K/yHGhkker83nJUosDANHEEkpUDr2gh7m4EB942qbKyJyD+HxQXTuD6Vzf0h/BfR13wIzl0fl3HLvFmgL/gvti9ehnnw+lJP/yNk8RBbhbII6qF1OCbutLNgJWbzfxmqI3EkkpRhTA1t0iO6Jy4qhLZ5lzEL4YBr0fIf3ZiCKAwwDdVA6nGSqvfb7TzZVQhR7lD8Mh2jX0/4TaUHoq79A6IV7EHzjMegbVkJK6wYzEiUSrkBYBykl/E+PhywOYxEVAGrvgfCN+IvNVRG508SJE/HUU08BAHw+H3bs2IGcnBzIA3uhrf4C+k9fHnOaoqUat4B6ykVQep3N3ROJTGAYqEdg7lRoq74Mr3F6FpInvsCRzpSQgsEgFi5ciPz8fJxzzjno1KlTrfulrkFu+hHa6kWQG34AovHuPTkNSp/BUPtdCJHZ1P7zEcU4hoF6hFZ9geDc58Jun3T7M1CatbGxIqLYJ0sPQP/pK2irFwEH9tp/QqFA6TrAmIXQqrP95yOKUQwD9dCL9sH/9Piw23uH3ADP6dzFkCgcUuqQ29ZB/3ER9PXLAS28qbyRECd0hvqH4cZeCOzFI6qFYeAYKp+5DbIwvPXSlc79kJR3v80VEcUfWVEKfc1i6Ks+gyzYYfv5RPMORijo3I/bKRNVYRg4hsB706Ct+DS8xr5kJN//CoTKpRuIGkJKCbnlZ2jfLYTctMr284mcNlD+MBxK1wEQCkMBJTaGgWMI/fQNgrOeCbu976Z/QG3bzcaKiBKD3L8L2vcfQv/5K/tXOWzSEuofhhsrG3IrZUpQDAPHIEuLUPl/x4bd3nPOVfAOvtrGiogSi6wohf7j59BWfAyU2Ly4V3ZzqGdcBqXnWezho4TDMHAclVP/Cpm/Pay2SpuuSLr5nzZXRJR4pBaC/ut30L9fCLlzg70ny8yBevqlUHoN4h4IlDAYBo4j8MGL0JYtDK+xoiD5b69AJKfaWxRRAtN3/gb9u4XGLAQ71yxo1BjqaZdA6XMuhNdn33mIXIBh4Di0X5Yj8OaTYbf3Xfc3U3sbEFHDyIMF0FZ8DP3Hz4HKMvtOlJYJdcAwY2MkrmpIcYph4DhkeQkqn7gBCPNhUk8fCt+QG22uioiqyUAl9J+/gvb9h0DhbvtOlNII6qlDoZxyAUQSe/8ovjAMhKHy/90Duev3sNqKnFZI/vO/ba6IiI4kpQ65aTW07z6A3PKzfSdKToNyykVQTx3KS4IUNxgGwhD86BWElswPu33yPTMgMhrbWBERHYuevw36t/Og/7I07F4901IaQf3D5VBOPp8DDSnmMQyEQfttJQIzJ4Xd3nvFHfD0GWRfQUQUFrl/F7Sl86CvWWzfYMPMHKhnXw2lxx+4oiHFLIaBMEh/BSonXQ/o4f0xUXufDd+IP9tcFRGFSx7YC+3b94ztlHXNlnOI3LZQzxkF0aE39z6gmMMwECb/9Puhb/81rLYiuxmS7/qvzRURkVmyuADasvnQf1xk2+ZIom0PqOeMgtKy0/EbE7kEw0CYgp+9gdBXc8Jun3zvSxDpmTZWREQNJUsKoS1fAP2HT4FQwJZzKF1PgzpoJETjFrYcn8hKDANh0jb9hMD/Hg27ve/a+6B27W9jRUQUKVlWDO27D6Cv/BgIVFp/AkWF0udcqGdeAZGeZf3xiSzCMBAmGfSj8p/XA1oorPaegcPh/eO1NldFRFaQ5SXGxkgrPgT85dafwJsEZcDFUAcMg0hKsf74RBFiGDDB/9JD0DevDaut0uEkJN3wiL0FEZGlZGUZ9BUfQft+IVBRav0JUjOMHRJP/iM3QyJXYRgwIfjFLIQWvRVeY18ykv/Pq9wSlSgGSX8F9B8+gbZ8AVB+0PoTZDUzpiN2P53TEckVGAZM0LauQ+CFB8Jun3TbZCjN29pYERHZSQb90Fd9Bm3pe0B5seXHF83bGzMP2vey/NhEZjAMmCBDQVROGg0E/WG19146Hp5T/mhzVURkN+mvgP7dAmjL3g/7+W+G6NgHnj+O4cwDcgz7p0wQHi+Utt3Cbq9v/83GaogoWkRSCtSzroT3lilQ+l0AWHz5T276EcEZExD64g1IO2Y1EB0Hw4BJSuvOYbdlGCCKLyI9C54LboR33GQo3c+w9uBaCPq37yH4/J3Q1i4BO20pmniZwCRt7TIE3noq7PbJ978KkZJmY0VE5BR99+/Qvngdcssay48t2nSHev4NUHLbWH5soiOxZ8AkYXJAoL5zo02VEJHTlBYd4LnmAXhG3g/RrJ2lx5bbfkHoxXsR+uR/kJVllh6b6EgMAyaJ7GaALzns9rxUQBTfhBBQOvSG58bHoV56B5CZY93BpQ59xYcITvsrtNVfQNq18yIlPIYBk4SiQDQLv9tO38EwQJQIhFCg9jgT3j89A/WPY4CURtYdvPwgtA+mIfTKg9B3sbeRrMcw0ABK83Zht9X3bLGtDiJyH+HxQu1/Eby3ToHyhysAb5Jlx5a7NiL0vwcQWvg8ZJkNiyFRwmIYaAClmYlxAwcLIctL7CuGiFxJJKXCc/ZV8N7ybygn/xGwbKVBCf3HRQg+/1doKz6C1DWLjkuJjGGgAUwPImTvAFHCEunZ8Fx4E7zjnoboOsC6A1eWQfvkZYReug/6tnXWHZcSEsNAAygmxgwAgNy71aZKiChWiCYt4R1+FzzXPgSR09qy48r8bQi99ghC702BLCm07LiUWBgGGkAkp0Fk5YbdXt/DMEBEBqVtD3jG/l9jkGFSqmXH1dcuMRYs+u4DSJ2zDsgchoEGMnOpgGGAiA4nFNUYZDj+WSi9z7HuwIFKaJ+9itCrD0LP32bdcSnuMQw0kJndCGX+NkiNg3yIqDaRlgnP0PHwjP4HRIsOlh1X7tqI0Ev3IfT1LMhQ0LLjUvxiGGggxcxqY6Eg5P7dttVCRLFNOeFEeMb8E+qQcdatT6Br0L+ZbQww3Mn1TujYGAYaSLQwOaOAgwiJ6BiEUKD2Ode4dNDvAkAIS44rC3Yg9MpDCH36CndEpHoxDDSQyG5majERyemFRBQGkZIOzwU3wnPjExCtulp0VAn9+4UIzpgAffNPFh2T4gnDQAMJRTW3LDEHERKRCUqzdvDkPWLsd5Cebc1Bi/ch9OY/EVrw/yArSq05JsUFhoEImBpEyJ4BIjJJCFGz34Fy2jBAUS05rv7TlwhOvwv6+uWWHI9iH8NABMwsSywP7ueyxETUICIpBZ7B18F701MQ7XtZc9CyYoTmTkZw9r8gSw9Yc0yKWQwDETC9LDHn/RJRBETTE+AZeT88V0ywbKtk+dv3CE6/u2qLZGnJMSn2MAxEwNT0QgBy/x57CiGihCGEgNKlP7w3/wtK/4sAWDDroLLM2CL5zX9AHtgb+fEo5jAMRECkpEFkNg27PdcaICKrCF8yPH8cA8/1f4do2sqSY8otaxCcMQHa8gVc0jjBMAxESDRvF3ZbnWGAiCymtOoMz41PQDlzhDUDDEMBaJ/PROjVByELdkZ+PIoJDAMRMjWjoJCXCYjIesLjhWfglcbaBC07WXJMuWsjgi/dB23lJxxLkAAYBiIkzMwoKNzDJxUR2UbJbQPP9Y9BPe96U4ui1SsUgPbxiwjNehKytCjy45FrMQxESDFxmQCBSqCEU3iIyD5CUaCeOtSYhtiupyXHlBt/QPCFe6BvWGnJ8ch9GAYiJJo0Bzy+sNvrhRw3QET2E9nN4LnmAahDxwPJaZEfsPwgQrOeROjDGdzjIA4xDERIKCpEbuuw23NGARFFixACau9z4B33NESXUy05pr7qMwRfug/6ro2WHI/cgWHAAkp2bthtGQaIKNpEeja8V9wNz/C7gLTMyA9YuBuhVx6E9s0cSF2L/HjkOIYBC5hZa0DnwkNE5BCl6wB4x02G0vucyA8mdWhfv4PQa49woaI4wDBgAZHFhYeIKDaIlHR4ho6H55r/A2SF36tZH7njNwRfnAjtpy85WyqGMQxYQGSYCAOcXkhELqC07wXvTU9B6T8k8oMFKqEt+H8IzZ3MDdliFMOABcz0DCDo5/RCInIFY0nj0fBc8wDQqHHEx5O/fmdMQfx9tQXVUTQxDFjAzJgBANAP5NtUCRGReUr7k4xegm6nR36w0gMIvTUJoU/+BxkMRH48igqGASukZgCqJ+zm8uB+G4shIjJPpKRDvewvUC+5HUhKifh4+ooPEXr5b9D3bom8OLIdw4AFhKKY6x0oKbSvGCKiBhJCQO15Frxjn4Ro3TXi48mCHQi9fD+07z7gWCmXYxiwiMhsEnZbeZBhgIjcS2TlwnPtw1AHXRP5Toi6Bu2zVxGa/S/IilJrCiTLMQxYRGTmhN2WYYCI3E4oCtQzLoNnzD+AJi0jPp7csALBF++FvuO347ctK474fGQOw4BFTPUM8DIBEcUIpXkHeG98Akq/CyI/2MEChF57BNqy+ZBSr7OJ3L8LwZfvh/SXR34+ChvDgEXMjBlgzwARxRLhTYLnghvhueq+yJcz1jVoi15HaNZTkOUHa90lg36E5k4GDhZA/+HTyM5DpjAMWMRsGOBgGiKKNUqnvvDe9C+IzqdEfCy58QcEX7wP+vb1NbdpH78IuW+78fXyBdwdMYoYBixiajZBKABwIA0RxSCRlgHPFROgDhkHeJMiO1jJfoReexTa0nnQflwE/aevDt1XfhD6j59HdnwKG8OARcwuPMRLBUQUq4QQUPucC+/Y/wvRslNkB5M6tC/fhLbw+aPu0pa9DxniwkXRwDBgEZGcCiSlht2egwiJKNaJxi3gyXsUypkjACGsP0Hpgdq9BWQbhgELmRs3wFUIiSj2CdUDz8Ar4cl7FDCxaVu4tG/fg9RClh+XamMYsBAXHiKiRKW06mJcNjgx8sGFtRTvg75msbXHpKMwDFiI0wuJKJGJlHR4RkyAet71ka9ceBht6TxIve51CcgaDAMWMhUGjphfS0QUD4QQUE8dCs/1fwdMrMx6TAf2QF/3rTXHojoxDFhIpGWE37iizL5CiIgcprTsZFw26NzfkuPpS+bWu2ohRY5hwErJaWE3lQwDRBTnRHIaPFfcDfWPY0xt814XWbADcsMP1hRGR2EYsJBISQ+/cUWJfYUQEbmEEAJq/4vguf6xiC8baMvmW1QVHYlhwEJmwoCsZM8AESUO0aixsfpqBOSOX2stX0zWYRiwUkr4lwngr+DcWSJKCFLXEZr3b8CCrYm15e9bUNERpA7oIUAPAlrA+NCDVR8akAB7yUR2EYdqMXWZAAAqyyLfAYyIyOW0r9+B3PaLJceSv62ALNgJ0fSEBvywBKRmvPAf/hlhvNgL1fhQPId9jp/30/Hzm7hBUqqpJTk5iJCI4p2+aRX0pe9aekzTvQN6CAiWA/4iIFAMhMoArRKQIYQVBICq8BAAQuVAsATwHwACBwHNHxc9BwwDFhKKYmpGAXcuJKK4FwxAOfl8iBM6R77LYRV9zeLj7+8idSBUcSgAaBUALJ6aqAeBYCngLzQ+60Frjx9FvExgMZGcBhnmi3y47YiIYpXSdQCUrgMAGGMHULgL+t4tkHu2QO7dDLl3i/k3RloI2oqP4Dln1NH3SWm8Ww+VI+x3/VbQ/MaH4gO8qcalhBjCMGC1lHTgwN6wmvIyARElEqEoQNNWUJu2AnqcCQCQUgIH90Pu3Qx9zxbIPb9D7toIHGeVVv2HTyDPuAzi8N1itYBxCcDJxYn0AOAPAGoK4EmxZzdHGzAMWEykpIefRSvZM0BEiU0IAWQ2hchsCqVqtUIpJVCUD33XBsidGyF3bYDcs9kY2V/NXwF91edQTxtmvPi7rZteqzDGJXjTAdXndDXHxTBgMWFieqEsZxggIjqSEALIbgY1u9mhHoRQAHLvFsidGyB3bYS+cwO07z6AcvK5EHolonpJIGzSGGyou7+XgGHAamamF3LhISKisAiPzxiEeELnmtvkwXyg8gDgS3awsjBoFcbMBW8j1wYCziawmEhKCbutjHA1LiKihBWqhPCpEG4PAtX0oDEV0aWbLbFnwGqqt967Csr9mLJsA77ZVoDCigDaL1yPawqTkJeXB0VhLiMiCovmNwYKxhoZAgIlgC/DdT0EfAWymqfuMPB7YSlOef4zzFi7F50GDcHQ62+GbNoKY8aMwfDhw6Hr7kyLRESuooeMwYKxSoaqpj26C8OA1eoJA7cs+AEZLVrjt99+w+jRo9G+fXtMnz4d8+fPx/z58zFjxowoF0pEFGOkbryzjnVapdG74SJCyjhYR9FFQssWIvjBi7Vu21NaiQ7PLsQbb7wBRVEwcuRIAEDTpk2xefNmXH311dA0DR999JETJRMRuZ+sHpnvoumDkfJlGnscuAB7BqxWR8/ArpIKAMDChQvx9NNP46TcTPxnaF8UFBQgPz8f7dq1w+7du6NdKRFR7ND88RUEAONyh0vej7sjksSTOsJAn+ZZ+OtpJ+LTj+dDCOCGvu3xyBe/4Nxzz0W7du3wxRdfoG/fvg4US0QUA6Q09hmIN1IzAo4LFiViGLCY8Bz9P1URApPOOwmTzjsJS7YV4Kp3vsUJnbrg7bffxqRJk7Bu3Tq89NJLDlRLRBQDdD8s32TILULlgOJ1fHYBLxNY7RhTC+et24mLXluMPqefiW+++QYvvfQSHnzwQfz973/HaaedFsUiiYhiRLz2ClSr7h1wGMOA1bx1h4HPNu3FqDnLceXVI/HBBx/ggQcewMSJE3HHHXdgwoQJUS6SiChG6AHXLtRjGReEHYYBq9XRM1AeDOHm91fgwgsvxEsvvYRRo0bhueeeAwBMnToVWVlZmDp1arQrJSJyP835lVq/+GoJLrhkJM4fdhVmzZ1v/QlkyPHAw6mFFtO3/wb/9L/Vuu2tn7dh7PyV2LRpE1JSUrBkyZJa97/22mv49ddf8csvv0SzVCIi96sshJObEIVCIQy9/Fq8+sJzSEtPxfCRN+Cd115AVmaGtSfyNnJ0ICEHEFqtjtkEe0orkZqaildeeaXOH9m3bx+Sk2NkfW0iomiRGpzejfCnNevQqWN7NGuWAwAYeObp+GbpMlx80fnWnsjhWQUMA1ZTj35IR/Rohfd/3Y0XJj9Z+w4BiIwmyMzMxKRJk6JUIBFRjNBD9h1a1zHk8lE4d9BZuOfO22puX7xkGW7580Q89fgjuOj8wcjftw/NcnNq7m/eLBd78wtsKMjZQYQMA1ar46pLq4xUfD7m7KPb+pKR8uDrUSiKiCgG2fgCqSgK/jT2ejz2xGSMG5uHzIwMrP91A/5yzwO488/jcdH5gwHUvSaQLZMApWaczKEphhxAaDUzQzBctmsVEZGr2DykbdiQ85GdlYWZb8zCnr35GHf7BFx68YUYO3pUTZtmuTnYm7+v5vs9e/ORk9PUpoqcuyTCMGA1hgEiIovY++Lo8Xhw8w3XYeYbs3DzbXeje7cueODeO2u16dWzGzZs+h179+5DaVkZvv7mW5x5xgCbKmIYiB9mpocIPvxERPWKwmvjsKHno6KyEpASk594FKqq1rrf4/Hg3rvvwPU33Y7Lrx6DsaNHITsr055iHBwryTEDVmPPABGRNYSw/QXysccnAwAOFBVDVet+g3buoLNw7qCz7C0EcPQ1gW9NrcYwQEQUE559bjq+XLwU78ycgZCmYfa7C5wuyTEMA1bjZQIiImso9nVez5o7Hy/PfBPTpjyJrl1OxOhrr8IL/3sNwaB90xmPTTj6msBXI4uZWtCRPQNERPWzKQx89c23eHTS03jqnw+jT6+eAIC8a65EaWk53lvwkS3nPC6l/k3uonJ6R88ejxgGiIisIawPA2t+WY+/TngA99x5K84/b1DN7enpabjumhGY8dJMaJpm+XmPy+EwwL0JLKZt+QWBFx8Mq63IbIrkCc/bXBERUQzzFxsb+cQ7X6atl0WOhz0DVmPPABGRdRx+xxwdAhDq8ZvZiGHAaqYGEDIMEBEdkycBNnHzJDv+esAwYDVTPQN8+ImIjkkogJrkdBX2Up0PPHw1slooEH7bOnY4JCKiI3hSnK7APmqKK94YOl9BnJH+yvAb+5xPg0REridUQInT3gGXXAZhGLBaIPwwIBgGiIjC402BTZsHO8eT6opeAYBhwHomwgB7BoiIwiRUwJvudBXWUbyuGCtQjWHAYpI9A0RE9lB98TF+QChGsHHRjDKGAauZ6RlIYhggIjJFTYn9tQe8jVxzeaCau6qJA2Z6BuBlGCAiMkWIqnfVzi7S02DeRo6uNFgfhgGr8TIBEZG9hGIs32vD3gW28mYYlzpciGHAahxASERkPyEAXwaguPPFtTZhhBfVvZc3GAYsZmoAIccMEBE1XPUlA0+a05XUT3iApCxXXho4nLuri0WmxgzE6SIaRETRIoSxcI/iAULlgB50uqIqwlhHQE1y1ayB+jAMWMzc1MI4mCJDROQGise4bKAFgFCZuU3jrKamGFMgYyAEVGMYsBqnFhIROUf1GVMPNb/RUwATm8dFSvEB3tSYnOnAMGAxWVkefmNeJiAisl71pQM1CZAhIxhofpvO5THOo/pct3aAGQwDFpK6DpSXhN1epDaysRoiogQnBCC8Rk+BJ80YT6D5jYDQ4MsIwnjnr/qqAkDs9QLUhWHAShWlpv6BibRMG4shIqIaQhx6AQcAKQGpGR961WfjjuofqPqkVO2aqBqfY/jd/7EwDFhIlhWH31goQEocbbpBRBRLhKhatMgDxMeb+4jEZ8RxiCw7GH7j1EYQCh9+IiJyHl+NrGSiZ0CkZdhYCBERUfgYBixkpmeAYYCIiNyCYcBCZsYMcPAgERG5BcOAhUyNGWDPABERuQTDgIXYM0BERLGIYcBKHDNAREQxiGHAQuwZICKiWMQwYCGOGSAioljEMGARqYWAChP7ErBngIiIXIJhwCKyuMBY6zpMDANEROQWDAMWkYV7w2/sS+a+BERE5BoMAxaRB8IPAyKzKYQQNlZDREQUPoYBi5gKA1k5NlZCRERkDsOAReSB/LDbMgwQEZGbMAxYRGfPABERxSiGAYuY6xnItbESIiIicxgGLCAry4ByE2sMsGeAiIhchGHAAmZ6BQBAYRggIiIXYRiwgKkwoHqA9CzbaiEiIjKLYcACpgYPZjaFUPiwExGRe/BVyQJcY4CIiGIZw4AFzCxFzDBARERuwzBgAS44REREsYxhIEJS1yGLTISBbK4xQERE7sIwEKnSIiAUDLu5ktPKvlqIiIgagGEgQmZmEgCAaHqCTZUQERE1DMNAhEwNHsxoApGUYmM1RERE5jEMRMjU4EFeIiAiIhdiGIiQLNwddluRw0sERETkPgwDEdJ3bw67LQcPEhGRGzEMREAG/JD7dobdnpcJiIjIjRgGIqDv2QJIPez2Ci8TEBGRCzEMREDu/j38xinpQFqmfcUQERE1EMNABPRd4YcBJecECCFsrIaIiKhhGAYiYCYMcLwAERG5FcNAA8lgADJ/e9jtGQaIiMitGAYaSO7dBuha2O0VLkNMREQuxTDQQPquTabai2ZtbKqEiIgoMgwDDaSbmUmQmgGR2dS+YoiIiCLAMNBApmYStOzAmQRERORaDAMNIENBY8xAmJSWHWyshoiIKDIMAw0g87cDWijs9gwDRETkZgwDDWDmEgEACIYBIiJyMYaBBjA1kyAlHSIr175iiIiIIsQw0ACmti1u0Z6DB4mIyNUYBkySWghyz5aw2ystO9pXDBERkQUYBkyS+3YAoWDY7TlegIiI3I5hwCSzgwc5k4CIiNyOYcAkU2EgORWicXP7iiEiIrIAw4BJ0szKgxw8SEREMYBhwASpa9D3mJlJwEsERETkfgwDJsh9O4FgIOz2SpsuNlZDRERkDYYBE0ztVAhAadPVpkqIiIiswzBggpnBg6Jxc4hG2TZWQ0REZA2GARNMDR5s193GSoiIiKzDMBAmGQqa6hngJQIiIooVDANh0nduAoL+sNsrbbvZWA0REZF1GAbCpG9eE37jtEyIJi3sK4aIiMhCDANhMhMGlLZdudgQERHFDIaBMMhQEPq2X8Nur/ISARERxRCGgTDo238DQmYWG2IYICKi2MEwEAZT4wW8SRAt2tlWCxERkdUYBsJgarxA684QqsfGaoiIiKzFMHAcMug3LhOEiVMKiYgo1jAMHIe+7VdAC4XdXmnLxYaIiCi2MAwch6nxAh4vVx4kIqKYwzBwHObGC3SB8CbZWA0REZH1ONKtSvDruZB7tkLp1Btqp94QGU0g/RXQd2wM+xhKx142VkhERGQPhoEqIrMpQp++Du3nbxAEIHJbQzRtCeha2MdQO5xkX4FEREQ2YRioorTsUOt7mb8dMn97+AdIToVo2dHiqoiIiOzHMQNVRJMWgC+5wT+vtOsBoaoWVkRERBQdDANVhKJCad6u4QfwV0DbsAoyEP42x0RERG7AywSHES07ANvWN+hn9c1rENi8BlA9UNp2g9KpD9TOJ0Np1sbiKomIiKzFMHAYpUV7hD9csB5aCPrvP0Pfug5Ki3YAwwAREbkcLxMc5shBhJHwDr8daqc+lh2PiIjILgwDhxE5rQCPN+LjeIfcAE+vsyyoiIiIyH4MA4cRqgcikkGEADwDh8Nz+sXWFERERBQFDANHUFq0b/DPqicPhue8URZWQ0REZD+GgSM0dNyA0rU/vJeMhxDC4oqIiIjsxTBwBKVZW/M/07YbfFfdyUWHiIgoJjEMHEE0PcFc+9w28F17H3crJCKimMUwcASRkgakZ4XXNrMpkkY/AJGSbm9RRERENmIYqIOSE0bvQHoWfKMfgshoYn9BRERENmIYqIPIaXXsBqmNkDTm4fBCAxERkcsxDNRBOda4geRUJI1+iHsOEBFR3GAYqEO9PQO+ZCRd/6ClyxYTERE5jWGgDqKu7n+vD768+6G07hz9goiIiGzEMFAHkdEE8CUfusHjhW/UfVDb9XCuKCIiIpswDNRBCHFovQFFhW/kBKidejtbFBERkU0SJwxIediHXvVR9X0dlJwTAKHAd+WdULucEuViiYiIokdIWc+rYSyTOqCHAKkZH9Vf10sAigcQas3n4OL5EFlN4ek9MGplExEROSF+woCuAXoA0PzHeeEPjwwFIXypgJoEKD6AGxAREVGciu0wIHVACwBapSUB4JgUX1Uw8DIYEBFRXInNMCClEQBC5dE/t1ABb5oRCoiIiOJAbIUBKY1LAcFyALqztSg+wJtqhAMiIqIYFjthQA8BwTJAhpyupDY1BfCk8NIBERHFrNgIA5ofCJY6XUX9hAfwNQJE4szUJCKi+OHuMCAlEKoAtAqnKwmDAHwZxtREIiKiGOLeMCClcVlA9ztdiTneDEDl4EIiIood7uzXltK4LBBrQQAAggcBPeh0FURERGFzZxjQ/MasgVgVKDHWQCAiIooB7gsDehAIlTldRYRkVSBw5xUYIiKiw7krDEjdeBGNBzLkzKJIREREJrkrDARLAcTRu2mt0lgumYiIyMXcEwb0YHwOvAuV83IBERG5mnvCQCgW1hJoAKnFZ8ghIqK44Y4woIfi+wUzXoMOERHFBXeEgXgfaCfjPOwQEVFMc37tXCkdf6HcvWcvJv6fv2N/4QGoqopbx92Ai84fbO1JND+3PSYiIldyfjliLWis2ueg/H0F2L+/EN26dsb+/YW4fOQN+Oi9t5CammLdSYQCJGVbdzwiIiKLuKBnwPnu89ycpsjNaQoAaNKkMTIzM1B88KC1YUDqxgd3NiQiIpdx/pVJsy8M6LqOCy8diaee+U+t2xcvWYae/Qbiw08WHfUzP69dB6nraNG8mQ0Fhaw/JhERUYScDQNSGoPrbKIoCv409nq8OetdFB80LkWs/3UD/nLPA7jzz+OPGhdwoKgY9z7wGP7+0H32FMRBhERE5EIO9wzYP1xh2JDzkZ2VhZlvzMKevfkYd/sEXHrxhRg7elStdoFAALffeR/G3ZiHk/ucZE8x3LyIiIhcyNkBhFID/EW2n+atWfPwzNRpyM3NwQktW+A/zzwOVVUPlSEl7r7vYbRv1wZ33HKTfYUoXsCXYd/xiYiIGsDZMKBrQKDI9tOUlZfj9EFD0LZ1K7w9c8ZRAwNX/LAa1914K7p07lRz25P/fAhdTuxobSHCCyQxDBARkbs4O5tAROc0jz0+GYAxJkBVj74ycsrJvbH+xyX2FyKi9AsTERGZ4PCYAftfHJ99bjq+XLwU78ycgZCmYfa7C2w/JxERUSxxQRiwLxDMmjsfL898E9OmPImuXU7E6Guvwgv/ew3BoENT/BT1+G2IiIiizNkwIASg2HOl4qtvvsWjk57GU/98GH169QQA5F1zJUpLy/Hego9sOedxCS5HTERE7uP8okM2rNe/5pf1+OuEB3DPnbfi/PMG1dyenp6G664ZgRkvzYSmaZaf97hsCj5ERESRcH5vAj0IBJzdmyAqhAokZTldBRER0VGc7xkQCfJumTsWEhGRS7kgDAhASXK6CvupCfA7EhFRTHI+DACAx8LdAd1I8XK8ABERuZY7woCiAorP6Srs40l1ugIiIqJ6uSMMAPH7gsleASIicjn3hAFFjc+xA/EacoiIKG64JwwAgDfNmIIXLzxp7BUgIiLXc1cYEALwNkLUdjCyk+LjDAIiIooJ7goDgHG5wJvudBWREVW/A3cpJCKiGOC+MAAAqi+Gr7VX9W4wCBARUYxw7wXt6rUHQuXO1mGKAvgyuDshERHFFOf3JjgezQ8ES52u4viEagQB4c7OFiIiovq4PwwAgB4CAiUAdKcrqZuSVDUTgpcGiIgo9sRGGAAAqQPBckD3O13JYYQRAjhrgIiIYljshIFqesgIBTLobB2eVEBNZm8AERHFvNgLA9W0ABAqM3oMoklJArypHBtARERxI3bDAABICciQMchQCwCw6VcRqnEpQPXF1wqJREREiPUwcDgpAT1oBAM9iIiDgVCMAKAkcaogERHFtfgJA4eTEoAEdM3oOZCaMdag+vYawlj5WKjGh+I59DXHAhARUYKIzzBAREREYeMoOCIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMF5nC6glsr9gNQBSONzzdeyjtt0yOrbIQGpHdFOHvpZqR32tQ5AP3T7kceWeq2fkfKI+yAB/bBjQAK6dsQxZD0felW5h9V41PfH+dCPaKtph27TdKO2Ou6Th9+nVf3eh3+vyyPuq/rddVn1a0tIvfr2qu+12l8bD3HVZ804npQSqG6nVx1DouqzhK7pkLoO6BK6ptXcLg//Xter2lX9LlX3VR+v5mspIXXjd5W68bWu6VW3G+fSq76WUkLXDn2tVf/MYW2llNAP+/rQz+nQq7/WJar+NUACCFV91gFo9dxefd+R7arbake0e0RKO55t0cfnN5/ffH679vnNngEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMExDBARESU4hgEiIqJEJ13C7/fLKVOmSL/f73QpR3FzbVKyvki5uT4312aGG34P1sAa3FaDm7gmDJSUlMjOnTvLkpISp0s5iptrk5L1RcrN9bm5NjPc8HuwBtbgthrchJcJiIiIEhzDABERUYJjGCAiIkpwrgkDPp8Pt99+O3w+n9OlHMXNtQGsL1Jurs/NtZnhht+DNbAGt9XgJkJKKZ0ugoiIiJzjmp4BIiIicgbDABERUYJjGCAiIkpwjoSBQCCAW265BSNHjsQ777xz3NvdUl+1O+64Azt27HCgMkN99e3evRt5eXkYOXIkpk+f7qraSktLMXbsWFx11VV4//33HantWPVVmzp1KubOnetAZYZjPX5nnXUW8vLyMHr0aMfqOxYzz+tVq1bhyiuvRF5eHrZv3+5IDa+++iouv/xy5OXl4YUXXrC9hmqH//2I9uNQVw3Rfhzq+jsV7cehrhrsehxihhMrHb377rvy9ddfl5qmyRtuuEFWVlYe83a31Of3++Wtt94qzzrrLLl9+3ZHajtWfU888YRcvny5lFLK66+/3pGVteqr7c0335Rz5syRuq7L6667Lup1Ha8+KaXcv3+/PPPMM+WcOXNcV9+qVavkc88951hd4TDzvB43bpw8cOCA3LBhg3zwwQcdqeHBBx+Uu3btsuzcx6uhrr8f0X4c6qoh2o9DXX+nov041FWDXY9DrHCkZ2Dt2rXo168fFEVB586dsWnTpmPe7pb6AoEAxowZgzPOOMORuo5X35/+9Cf069cPAKDrOjwej2tqGzlyJC699FKUlZVBOjiB5Vj/xl544QVcdtlljtUG1F/fhg0bsHjxYlx77bWYM2eOozXWx8zzurKyEllZWejUqRO2bNniSA2bN2/GY489hhtvvNHSd6Nm/n5E+3Goq4ZoPw51/Z2K9uNQVw12PQ6xwpEwUFZWhtTUVABASkoKysvLj3m7W+pLT09H//79HanpcPXVl5WVBVVV8fbbb6N79+5ITk52TW0AUFBQgGHDhqFnz55Rr6taffXt3r0bZWVlaN++vWO1AfXX16pVK9xzzz14+eWXMW/ePBQWFjpZZp3MPK91Xa/5OSvDoZkaBg8ejKeeegoTJ07EU089ZXsNdf39iPbjUFcN0X4c6vo7Fe3Hoa4a7HocYoUjYSA1NRUVFRUAgIqKCqSnpx/zdrfU5xbHqu+9997DZ599hrvvvtt1tTVr1gyLFi3Cjh078Pvvv7uqvueffx4333yzIzUdrr76evfujb59+8Ln86F3796Ojlmpj5nntRCi5ucUxbo/Q2ZquPLKK5GWloauXbviwIEDttdQl2g/DnVx4nE48u+UE4/DkTXY9TjECkfCQI8ePfD9999DSol169bVvBur73a31OcW9dW3evVqzJs3D1OnTnVsVa36aps5cyaWLFkCIQSSkpJqPfndUN/PP/+Mv/3tb5g+fTqmT5+OrVu3uqq+KVOmYMmSJdB1HWvXrkXr1q0dqe9YzDyvk5OTUVhYiI0bN+KEE06Ieg3t2rVDXl4egsEgNm/ejCZNmtheQ12i/TgcSUoZ9cehrr9T0X4cjqzBzschVjiyAqHf78ddd92FPXv2YPjw4aioqMCgQYPQunXrWrdfe+210S7tmPV16tQJAHDffffh9ttvR6tWrVxV37/+9S/s3LkTWVlZAIB//etfaNasmStqy8zMxD333INAIIABAwbgL3/5S1TrOl591f9vq2cSDB8+3FX1NWrUCBMmTEAwGMRll12GkSNHOlLfsZh5Xv/444+YNGkShBB48skn0bZt26jX8P777+PVV19FcnIy/vGPf9heQ11/P6L9ONRVQ7Qfh7r+Tu3evTuqj0NdNXz33Xe2PA6xgssRExERJTguOkRERJTgGAaIiIgSHMNAgrBy7i4REcUXhoEEsGjRIowdO7bBP798+XJ06dIFAwcOrDUfuNr48ePRpUsXLF++vOa2kpISPP3007jgggvQt29fnHnmmZgwYQK2bdtW02bu3LkYPHhwg+siImvNnTsXXbp0wdVXX13n/Zdccgm6dOlSa2prfn4+Hn30UQwePBh9+/bFoEGD8PDDD6OgoKCmzdSpU5GXl2d7/dRwDAMJoKioyJKFPAKBAJYsWVLrtoKCAqxatarWbYWFhRg+fDi2bt2KadOm4YcffsD777+PzMxMXH311di5c2fEtRCRPRo1aoS1a9cetRbIzz//fNRzd+vWrRg2bBh0Xcfrr7+OVatW4a233kJRURGuueYalJaWRrN0igDDQAxZtGgRRo4cidNPPx29e/fGddddhy1bttT5DjsvLw9Tp07F8uXL8fDDD2PXrl3o27cv9u7di8rKSjz55JM4++yz0b9/f+Tl5eGnn3467vmHDRuGefPm1brt3XffxQUXXFDrtqlTpyI5ORnPPPMM2rdvDyEEsrOz8eCDD2LQoEH49ddfI34siOLB2rVrkZeXV9N79u9//xvLli3D2WefjbvvvhunnHIKpk+fDl3XMX36dJx33nno168fRowYgcWLF9cc5+OPP8bQoUPRr18/XHTRRfjvf/9bc98bb7yB8847D6eccgqGDRuGWbNmHbOmjIwMDBw48Kjn+pw5czB06NBat/3zn/9Er1698Oijj6JFixYAgObNm+PJJ59Et27dsGHDhggfIYqaaG2CQJHZvXu37Nmzp/z888+llFIWFhbKUaNGyQkTJsg5c+bIc845p1b76667Tk6ZMkVKKY+6/95775XDhg2TW7ZskX6/X/7vf/+Tffv2lTt37qzz3MuWLZOdO3eW69atk7169ZIHDx6sue/CCy+Uq1evlp07d5bLli2TUko5cODAsDbVqatuokRx4MABeeqpp8qpU6dKv98vt27dKgcOHCjffPNN2blzZ/ncc8/JQCAgS0pK5JQpU+TAgQPlmjVrZDAYlB988IHs2bOnXL16tayoqJAnnXRSzfNv7dq1sk+fPnL16tVy27ZtsmfPnnLTpk1SSim//vpredJJJ8m9e/fWWVP1c/LTTz+VAwcOlJqmSSmlrKyslAMGDJArV66UnTt3ltu3b5d+v1927dpVvvvuu8f9XadMmeLoBmV0fOwZiBGNGzfGBx98gMGDB6O0tBR79uxBdnY29u7da+o4fr8fCxYswN133422bdvC5/Nh9OjR6NChAxYsWHDMn+3atSvat2+PhQsXAgBWrlwJVVXRq1evWu0KCwuRk5Nj7hckSjBffPEFkpKScNttt8Hn86FNmzZ4+eWXkZKSAgAYMWIEvF4v0tPTMWfOHIwbNw49evSAx+PBkCFDMHjwYMyePRuAsYLf7Nmz8e2336Jjx45YuXIlevXqBVVVIaXEW2+9hZUrV+L000/Hjz/+iNzc3GPWdvbZZyMQCGDp0qUAjJ6H3r171/q54uJi6LrO53qcYBiIEV6vFwsWLMDAgQMxdOhQTJ48Gfv37zc9FqC4uBjBYPCo1RNbtWqFHTt2YP78+ejbt2/Nx/z582u1Gz58ON59910ARrfhiBEjjjpHTk4O8vPz6zx/YWEhNE0zVTNRPNq3bx9atGhRa2nuDh06oHnz5gBQ64W3oKDgqCWoW7VqhZ07dyI5ORlvvvkmdF3H3Xffjf79++Pee+9FcXExWrZsiZkzZ2Lnzp0YP348Tj31VEyaNAl+vx/Tpk2r9VxfsWJFzbG9Xi8uueSSYz7Xs7Ky4PV6sW/fvjp/v4b8fSLnMAzEiA8//BCvvfYaZs6cia+++gozZsxA9+7dARgbewQCgVrt69too2nTpkhKSjpqi85t27YhNzcXl1xyCVatWlXzcckll9RqN2zYMKxZswbr1q3D559/ftT9gLEL2ieffHLUi76UEjfddBMeffRR078/Ubxp3rw5du/eXesF87PPPsPu3bsB1N6854QTTjjqObt9+3bk5uaitLQU+fn5ePrpp7F06VK8/fbbWLNmDaZNm4b9+/dD0zT85z//wfLlyzF9+nQsXLgQs2fPxvjx42s910855ZRaxx8+fDg+++wzrF+/Hps2bcKgQYNq3e/1enHmmWfW9BQeLhAI4NJLL8X06dMjfZgoShgGYkRJSQkURUFycjKklPj6668xb948BINBdOzYEQUFBVi2bBmklHjvvfdq9u0GgKSkJFRUVCAUCkFRFFxxxRWYPHkytm7dikAggFdeeQUbN248anBQXbKzs3HOOedg4sSJGDBgABo3bnxUm1tvvRXFxcW46667ajb82bt3L+6//37s2bMHN910k3UPDFGMGjRoEEKhEKZNm4ZAIIBt27bVvGs/0pVXXonp06dj7dq10DQNH374IRYtWoTLL78cZWVluPnmm/H+++9DSonc3FwoioLs7Gzs2rULN954I7799lsoilKzV0l2dvZx6+vSpQs6duyIe+65B8OGDYPX6z2qzcSJE7Fy5Uo89thjNZcst2zZgttvvx1paWn1TlEk9/E4XQCF5/LLL8fKlSsxdOhQqKqKDh06YPTo0Xj99dfRpUsX3HLLLbjvvvtQVlaG8847r9YI//79+6NJkybo378/3nrrLUycOBFTp07FmDFjUFRUhC5duuDFF18Me3fG4cOHY/z48ZgwYUKd9zdu3BizZ8+udY709HScdtppePPNN9GmTRtLHhOiWJaRkYEXX3wRjz/+eM1YgWuvvRbt2rU7qu0NN9wAXddx5513Yt++fWjbti0mT56MU089FYCxq+Wzzz6Lhx56CMnJyRgyZAjGjBkDn8+Hhx56CI888gjy8/PRqFEjjBo1ChdddFFYNQ4fPhyPPfYYnn322Trv79ChA2bPno3//Oc/GDFiBEpLS5GVlYWzzz4bkyZNqtkIiNyPGxURERElOF4mICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMH9f/6BZtLKyWv0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -711,12 +714,13 @@ } ], "source": [ - "# Pick fixed_thres\n", - "fixed_thres = 0.05\n", + "# Pick pc_alpha here interpreted as fixed threshold with significance='fixed_thres'\n", + "pc_alpha = 0.05 #[0.001, 0.005, 0.01, 0.025, 0.05, 0.1]\n", "\n", - "cmi_knn = CMIknn(significance='fixed_thres', fixed_thres=fixed_thres, transform='ranks', knn=0.1)\n", + "cmi_knn = CMIknn(significance='fixed_thres', model_selection_folds=3)\n", "pcmci_cmi_knn = PCMCI(dataframe=dataframe, cond_ind_test=cmi_knn, verbosity=0)\n", - "results = pcmci_cmi_knn.run_pcmciplus(tau_max=2) # if fixed_thres is used, pc_alpha (and alpha_level) is ignored.\n", + "results = pcmci_cmi_knn.run_pcmciplus(tau_max=2, pc_alpha=pc_alpha) \n", + "# if fixed_thres is used, pc_alpha (and alpha_level) is interpreted as a threshold on the test statistic.\n", "\n", "tp.plot_graph(\n", " val_matrix=results['val_matrix'],\n", @@ -735,6 +739,13 @@ " ); plt.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, picking ``pc_alpha = [0.001, 0.005, 0.01, 0.025, 0.05, 0.1]`` does not give the correct result. Thresholding does not come with the statistical rigor of significance testing, but can help in tasks like causal feature selection or if causal discovery is used in a larger ML pipeline." + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/tutorials/causal_discovery/tigramite_tutorial_heteroskedastic_ParCorrWLS.ipynb b/tutorials/causal_discovery/tigramite_tutorial_heteroskedastic_ParCorrWLS.ipynb index 31c5ed4d..d07bb288 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_heteroskedastic_ParCorrWLS.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_heteroskedastic_ParCorrWLS.ipynb @@ -17,7 +17,7 @@ "\n", "W. Günther, U. Ninad, J. Wahl, J. Runge, Conditional Independence Testing with Heteroskedastic Data and Applications to Causal Discovery, Advances in neural information processing systems 35 (2022)\n", "\n", - "Last, the following Nature Communications Perspective paper provides an overview of causal inference methods in general, identifies promising applications, and discusses methodological challenges (exemplified in Earth system sciences): https://www.nature.com/articles/s41467-019-10105-3" + "Last, the following Nature Review Earth and Environment paper provides an overview of causal inference for time series in general: https://github.com/jakobrunge/tigramite/blob/master/tutorials/Runge_Causal_Inference_for_Time_Series_NREE.pdf" ] }, { @@ -122,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 24, "id": "155d7755", "metadata": {}, "outputs": [], @@ -141,8 +141,8 @@ " stds_matrix[:, 1] = stds\n", " noise_X = random_state.normal(0, stds, T)\n", " noise_Y = random_state.normal(0, stds, T)\n", - " data[:, 0] = 0.7*Z[:T] + noise_X\n", - " data[:, 1] = 0.7*Z[:T] + noise_Y\n", + " data[:, 0] = 0.8*Z[:T] + noise_X\n", + " data[:, 1] = 0.8*Z[:T] + noise_Y\n", " return data, stds_matrix, noise_X, noise_Y\n", "\n", "def generate_parent_dependent_stds(Z, T):\n", @@ -177,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 25, "id": "5155bc6f", "metadata": { "scrolled": true @@ -185,7 +185,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUVfrHv5NMMsmkTCa9kErvShEBAQUUEBsLgoiVte2yAqKroq7lB4oVbGtDxIoCLqAi0hSRDgklQCCEAAnpfTKZJNN/f8zzHu6dlplkkkk5n+fhAZKZO2fuPeV7vu97zpGYzWYzOBwOh8PhcDgdGh9vF4DD4XA4HA6H03K4qONwOBwOh8PpBHBRx+FwOBwOh9MJ4KKOw+FwOBwOpxPARR2Hw+FwOBxOJ4CLOg6Hw+FwOJxOABd1HA6Hw+FwOJ2ATi/qzGYzamtrwbfj43A4HA6H05np9KJOrVZDoVBArVZ7uygcDofD4XA4rUanF3UcDofD4XA4XQEu6jgcDofD4XA6AVzUcTgcDofD4XQCuKjjcDgcDofD6QRwUcfpUpjNZixYsABnz571dlE4HA6Hw/EoXNRxuhQmkwnvv/8+9uzZ4+2icDgcDofjUbio43QpDAYDAECv13u5JBwOh8PheBYu6jhdChJ19DeHw+FwOJ0FLuo4XQqj0QiAO3UcDofD6XxwUcfpUnCnjsPhcDidFS7qOF0KnlPH4XA4nM5KuxZ133//PaKiogAAa9euxciRIzF+/HhcvnzZyyXjdFS4U8fhcDiczkq7FXUmkwk//vgjEhMTodfrsXz5cuzevRtLlizBkiVLvF08TgeFO3UcDofD6ay0W1G3Zs0azJgxAz4+PsjJyUH//v3h7++P0aNH4+TJkw7fp9VqUVtbK/rD4RDcqeNwOBxOZ6Vdijqj0Yh169Zh1qxZAICamhqEhoaKfu+IZcuWQaFQsD+JiYmtXl5Ox4E7dRwOh8PprLRLUfftt99i5syZ8PGxFE+pVIocN19fX4fvXbx4MVQqFfvD8+84Qrio43A4HE5nRertAtgjKysLx44dw7fffoucnBx89tlnyMrKgk6nw5EjRzBo0CCH75XJZJDJZG1YWk5HglxeHn7lcDgcTmejXYq6N954g/172LBhWLFiBX744QeMGzcOAQEB+Prrr71YOk5Hhjt1HA6Hw+mstEtRJyQ9PR0AcNddd+Guu+7ycmk4HR2+UILD4XA4nZV2mVPH4bQW3KnjcDgcTmeFizpOl4I7dRwOh8PprHBRx+lScKeOw+FwOJ0VLuo4XQru1HE4HA6ns8JFHadLwZ06DofD4XRWuKjjdCn4PnUcDqe9UFZWBrPZ7O1icDoRXNRx2oRPPvkEc+bM8XYxuFPH4XDaBY2NjUhLS8PWrVu9XRROJ4KLOk6bkJmZyfYc9CY8p47D4bQHNBoNNBoNysrKvF0UTieCizpOm9DY2AitVuvtYnCnjsPhtAt0Op3obw7HE3BRx2kT2puo404dh8PxJtQfclHH8SRc1HHahMbGxnbReXGnjsPhtAeoP2wPk11O54GLOk6bwJ06DofDuQJ36jitARd1nDZBq9W2K1HHnToOh+NNuKjjtAZc1HHahMbGRhgMBphMJq+Wg+9Tx+koHDp0CPPmzfN2MTitBF8owWkNuKjjtAmNjY0AvN+BcaeO01HYvXs3vvjiC28Xg9NKkFPXHiIYnM4DF3WcNoFEnbc7MJ5Tx+koaLVaNDY28hMHOik8/MppDbio47QJ3KnjcNyD2gyvq50THn7ltAZc1HHaBO7UcTjuQW2F2g6nc8GdOk5rwEUdp01ob6KOux+c9k57aTMc59TW1iI/P9/t97WWU3fhwgXU1tZ69JqdEaPRiPfff7/TjQVc1HHahPYWfuVOHae9Q22GO3Xtm+XLl2Pq1Kluv8/eQolTp05h+/btLSrPrbfeinfeeadF1+gKnDx5EgsWLMDhw4e9XRSP0i5FXUZGBsaMGYNx48Zh5syZ0Ov1WLt2LUaOHInx48fj8uXL3i4ix03ai+sgdOp4AjqnPdMVV0fq9XosWrQINTU13i6Ky9TU1KCoqMjt99kLv3744Yd46qmnWlSeyspKlJSUtOgaXYH6+nrR352FdinqEhISsG3bNuzevRs9evTApk2bsHz5cuzevRtLlizBkiVLHL5Xq9WitrZW9IfjXYT703l7gBI6dN7eM4/DcUZ7mQi1JTk5OVixYgUOHjzo7aK4jE6nQ01Njdv9ib3wq0ajQV1dXYvK09DQAJVK1aJrdAUaGhoAcFHXJsTGxkIulwMA/Pz8cO7cOfTv3x/+/v4YPXo0Tp486fC9y5Ytg0KhYH8SExPbqtgcBwjDR94Ov9LmwwDPq+O0bzwdfq2oqGj3+95VVVUBuDLgdgR0Oh1MJpPbYsyeU1dfX99iUVdfX89FnQtwUecF8vPzsXPnTlx33XUIDQ1lPxcOzNYsXrwYKpWK/eGhWu8jHJS87ToInbqm8urUanW7cPO0Wi3OnTvn7WJw3MRoNGLatGk4c+ZMs97v6fDrTz/9hL///e/tOkevuroaQMcTdcCVsruKvefb0NDQIlGn1+thMBi4qHMBLuramNraWtx7771YvXo1oqOjRWFUX19fh++TyWQIDQ0V/eF4l/Yq6ppy6nr16oW1a9e2dpGaZM2aNRg2bBjPAexgqFQqbNq0Cenp6c16v6edOo1GA6B9D2IkjNpzGa0hUeduHqC98Gt9fT0aGhqcGhfOIKHCRV3T0L3y1ASitrYWSqUSR48e9cj1mku7FHVGoxFz5szBiy++iF69eqFHjx7IysqCTqfDvn37MGjQIG8XkeMG7Sn86qpTp9PpUFJS0i6c3srKSqjVaq/fO457tNRp83ROnbdEXU1NDRYvXuySUOmo4Veg+U6dsF3T96Zn5S5c1LmOp526iooK1NTUIDMz0yPXay7tUtStW7cO+/fvx5IlS3D99ddjw4YNWLhwIcaNG4cXXngBL7zwgkc+59VXX8WRI0c8ci2OYzqiU0chkJbmt3gC6nSa29FzvENLRZ2nNx/2Vj3au3cvXn/9dVy8eLHJ13al8Ksjpw5ofr9jT9QZDAa+GtYOzla/7tmzB88884xb16P22pyV0J6kXYq62bNno7KyEn/++Sf+/PNPzJo1C3fddRcOHDiAXbt2eWzxw9KlSzvUKquOSkd06tRqNYD2Ieqoo25OWfbu3YuKigq333fkyBH84x//cPt9nCtwpw6iz3NlJ4KOLOrcDb86yqkDmt/vCEUh9W/r1q1Dv379ePqGFc6cuh07duDTTz9163r0HIuLiz1Strlz57o9UQDaqahrKwICAjpU59FR6chOXXtwx1oye582bRpWr17t9vt27NiBzz//3O33tZRTp05hzJgx0Ov1uHz5coceiFoqyjwt6ry1Lxe1IVdEHYVfO2JOnSfCr55y6oAr97uoqAjV1dVeX+3/6quvNnvRUGvgLKeOViG70/940qnLycnB6tWrm5Wf16VFXWBgIBd1bUB7E3UBAQEAnIu69ujUNUdg1tTUNCt8V1FRAYPB0OYnbxw7dgx79+7FmTNnkJSU5PZsuT3havjUbDZj/vz5NiucPR1+pfrT1hMV7tQ5f58nRZ1QDFMIlq7lqlA2m81Ys2aNR0Wg2WzGiy++iM2bN3vsmi3FmVOn0WhgNBrdanuedOqojdI45A5dWtQFBAS06+X9nQWhkPN2+NVoNCIwMBCAa+FXbzh148aNw0cffcT+39yOXqfTuS3MNBoN1Go1C9m2tQin+00D0rZt29r08z2Jq+FXjUaDDz74ALt27RL9vLM5da4MUB1Z1HlyoYQnnLrmirrs7GzMmTMHe/bsaVYZAKC8vBybNm0SlctkMrWrwwCcibrm9Ln0HD3h1NHnclHnJtypax79+vXDt99+6/LraXDy9fXtME6dtxZKmM1mHDp0CPv27WM/a65TR2V3R9TNnTsX99xzDxN1bT3psQ57d+QEb1dFHQ101nWts2xp4o5T157Cr6WlpcjKymrydU2JupUrV+KHH36w+bm1qDMajezf3nTqysvLAbj2vBzx/fffY9asWez/dK3miJTWwtOiTujUtTRthDt1zSQwMJA7dW5iMplw9uxZHD9+HIDlMOv777/f6XvoHisUinYl6lprocTevXvtrpzKzs5uspFWVVVBq9Xi/Pnz7GfNdero9a7ueaXVavHrr78iOzubdezeEnX0d2lpaZt+vidx1WmzV9fMZrNTUfi///0Pv//+u1vl8dbqV3dy6tqTU/fGG29g+vTpTb6uqfDrypUr8f333zt8Hz1f4Xd2pa2/9tpr8Pf3F/3ME05dZWUlgJYJsNraWnbShvBa7cmpo/vhKKcOcO8eCEU6TU6aCxd1zYQvlHAfSh4tLCwEAGRkZDS5LQwNbqGhoV4Pv7qbU9ecAXDbtm2i8CkxceJEuz8XUlBQAMCSKEu0lVO3Z88eaDQaFBYWes2ps+7MvOnUvfvuu1i3bl2z398Sp07YTuw9gzfffBMffvihW+Vp706d2WxuV6KupqYGOTk5TeaWNeXUlZaW2t03juoFnY0tfC6uiLrnn38eer3ebk4e0HJR15IoBb2XvmNHc+qorTTHqQNanlfHRV0z4eFX96GOgvIGVCpVkxWvsbERMpkMMpmsTZ26Tz75BA888IDoZwaDwaWcupaEX2tra0VbCgCWAau0tBRlZWVO30tiubq62mYj1uY6da6Kul9//ZW9j8Slt5w6qlPebJ9ffvllm4o6YTtqanFRTU2N2wOHt3Pqqqurcd9994kmLNav0+v18PX1bRf9cn19PYxGIy5duuT0dST67Ik6avf2BK1Op2OnI+n1erdE3enTp9m/SYQBlvYik8ng7+/fLkQd1WN3nLrBgwe7ld7TXFwJvzbHqQNanlfHRV0z4eFX96GOgsSHSqVqsvF7S9RlZGRg+/btop+1hVNH7xXOzhsaGqDX65vs1Oi+AlfcuuaGzej1roq6Q4cOITk5WfQeb4dfgaaPc2stqqurmxThznB19ao9p07YTuy1merqarddTG+vfs3OzsY333yDQ4cO2X0diaL4+Ph2kVNHZXAkQgmdTgd/f3+74Ve1Wg2tVuvQqQsJCWHXcCf8un79evZv4T6U9fX1kMvlUCgU7DPddWhpMtkSV82RqHPlmtnZ2Q5zGbVaLR566CGWHtISWiunDuBOndfg4Vf3ETp1ZrOZiTpniaGNjY0ICAiATCZrtfCrXq/HkCFDRANGQ0MDSkpKRKKgrZw6QJxjQ/fNFVGnUCgAgOXVtdSpczWnTqPRoH///qKfeTv8CoiFbmtiMBjw/PPPM3HRUlHXkpw64X23fgZmsxk1NTUoKSlxKSH7/fffxz//+U+POHUGg8FtkU3PNDs7G4DjOkX3PSEhoV30y1Ru661mrNHpdIiOjrbr1FFOaFOiTqvVuuXUFRYWQqlUArCIOpPJhDfeeAPFxcUIDAyEQqFg/U97Cr821f/p9XpotVqHoezc3FysWrUKBw4caHbZiNZw6gICAhAeHu4xp645z6BLi7rWcurMZnOH3jTVGdQ5NTQ0oKamBiqVCgaDwenARaLO39+/1Zy6srIyHDt2THTuXkNDA8xms2jW5K5T15zDtem9wo6JOtimzmQsKChAz549ERMTw0RdSxdKuOrU1dfXo0ePHqKftZaoO3v2rN37b28pf35+fquUwZozZ87gtddew44dO2AwGKBWqz3i1DUnp47eI5FIbN5Prq8jB8iaX3/9FTt37nTLsTGbzTh8+LDNzxcsWIB77rmnyfcLoc8jcU7fZ9myZXjzzTeh1+tRVVXFHKL4+Ph2IercceqioqLQ2NhoM2kVijrrMUGn09l16pRKZZNtvaamhrXViooKXLp0Cc8++yw2bdrERJ03F0o0N/xKddTRQgP6eXNOWrDG2ebDzRFVOp0OMpkMcXFx3KnzFq3l1M2bNw9z5871+HWF7Nu3zyvCUTiIFBYWOtyOQYjQqWtNUQeIGwE9W8oPAyyulTurXwH3nY2WOnXdunVD9+7dceHCBQBtt1Civr4e4eHhiIiIYD9rDVHX2NiIq666Cv/73/9sfmfPIc3Ly/N4Gexx+fJl9nn07Kqrq5vtLnsipy4kJMTmGQgHNFcGj5ycHJSWlrLruFKP0tPTMWLECJw9exZ//PEHK9vp06ebdK6ssf48uh+bNm3C5s2b8cknn2DYsGEeCb9u3boVzz77bLPeaw2VwRWnLjIyEoBt+yZRZzAYbMYa6/ArfV50dLRLoi45ORm+vr6oqKhgn1NQUAC5XA6lUskEkCNRd+HCBbviqDVy6lxdKEHvcyTa6Du1dHUpYOlX5XK56L5cuHABly5darZTJ5PJEB8fz3PqvEVrOXVZWVks1NAabNu2Dddddx1++uknj1zPbDbjo48+cmnW70jUCSuf0WjE8OHD2V5rZEu3ZvjVmagThu/c2aeOtguw7tzUajXeeusttlzfGiqDUNS56tQVFhYiISEBMTEx7Du11ZYm1MklJCSwn7VG+ygvL4dWq7WbE2bt1Pn7+zdr1vvNN9/ghhtucOs9JOouXbokGlSac3Yu0DKnztk2QMJ61VRenU6nQ15enkhsuCKYaGDPzc3FjTfeiG+++QaAJe3C3fth/Xn0fS5fvozS0lJkZ2cjLy+PfWZLnLo1a9Zg1apVzXqvNa44dSaTCQaDwaGoEzq91r+zduro86KiolwSdTQBq6ysZJ9D6SXR0dEs78yRqLvjjjvwf//3fzbXbo6os45oWIdfhU6dMzPCnlN3/vx5dtShMDWipdTX1yMiIgL19fWsTPPmzcOTTz7Z7Jw6cuq4qPMSrbX6tbKy0iMzCUfs3bsXAByKCnc5duwY5s2bh6+++qrJ16pUKgQFBQGwzGCpDMLKX1tbi/T0dJbf5iz8umDBApw8ebLF34E6NWHHac+pczWnTq1WIzY2FoCt07B161Y8/fTTuHjxot332nPq6N+uOHUJCQmIiopCRUWFaEPS1l4oUV9fj8DAQCQkJEAikQDwnKhTq9X4+eefATjf3NS6M0tOTm6WqMvIyHDbzaYwb15enmjQaG4I1hPhV4VCgeLiYsyePZuJKXdE3YULF0T9hJ+fn0uijp7DiRMnYDKZ2L0pLi4WrbZ0BY1Gw+oTYPluOp0OJSUlKCkpQXFxMUwmEy5duoSQkBCEhIQ0u18+ffo0qqqqPNI3ajQaREVFobCw0GE9oolhVFQUANtJm3CfRevfOVoo4apTFxYWhsjISFRUVIjqqFwuZ6LOYDCwNmz93C9dumRXsDZnoYRcLsfjjz/O/u8o/GoymZw+W3tO3f3334+5c+dCrVZ7PPxKUQkqZ35+PvLz823213MFoVPHw69egsKvhw8fxqlTpzx23dYQdT/++CPboZsORXY318sRu3fvBmARK02hUqkQFRWFqKgo0QolYSdEnRcNOI5Wv+p0Orz//vuio6C2bduGF154weWyG41G7Nq1y+Xwqzs5dSTqrDtYup4j182eU+dK+LWhoQFVVVVISEhgnbXwNI7WzKkzGo3QarXMqYuJiQHgOVG3fv163H777VCpVEzU2bt/QqdOIpEgISGhWXvVVVRUsFwtVxGGX4XvsxZ1DQ0NGDNmTJOHkzs7EeKPP/5AQkIC9Hq904USCoUCR44cwQ8//ID3338fgHhAa+reWA/akZGRLk0O6DW0yXhBQQHUajXq6urQ0NDgVni0vr6eiR7A8t1o1/3a2lqWZnD+/HmEh4cjMDAQWq3WbWFmMplw5swZmEwmt89hdVTuxMREll9pD5pwOQu/SqVSAM5FnXChhKtOnVDUCcUjOXVlZWWiZy10pNRqNdRqtc12LWazGZWVlZBIJC73NxQJEY4fjhZKWP/bGnqfsP2FhYUBAA4cONBqoo7GiqKiItYPCMvjClqtFv7+/iz82pL0qDYRdfbyXzo6FH596qmnsHTpUo9ckxpFVVWVR3Pedu3ahR07dgAAE1PWnXNOTg7++usvt69N79m1a1eTM2SVSgWFQoGEhATRXklqtRo1NTV4+eWXWcOj2QrtnWQdfqUKK1ye/tNPP+Hdd991+d59//33GD9+PHMvXRF1zpy6kpISXHXVVTh79izi4uIAuCfqaKAC7C+UUKvVDgcr6hy7deuGyMhIlJeXs47e1cFYiFDUbdmyhTll9iARIZfLcdddd2HBggXw9/f3mKijulBQUODUqRPm1FknHWdkZGDXrl0wm81N1lP6DHdmzORGWYdfrUXdmTNnsHfvXuzfv9/p9Zw5dcePH2ehTGc5dTSgAcB///tf1NfXs7rkiiNgLeqioqJcEmT0mhMnTgCwCF7hZ7kTgtVoNGyCBFjuh3DgpH4kNzcXSqWStU933bqLFy+y9zQ3ZC6kvr4eSUlJAGDjTn7yySc4evQo689ItNoTdWlpaQBs+wudTofg4GD2b+onQ0NDnYoJWv3clFNXWVkpErfnzp1DcHAwzp07x57lpUuXRH2tRqOBTqdDXFycy4KCIjKDBw9mP7Pn1MlkMvZva2hyQu9TqVTMtIiPjwdg2Ryd2mVLTROj0Qi9Xs9EXX19PVv8RwJZIpE0y6mLi4uDTqdrkfBsE1F39913Y8WKFU5f09FWfFL4taqqyiPKH7jSKIxGo0d3zy4oKGCzZErcte6cX3vtNTz22GPs/2q1GmPHjkVubq7D65pMJvz111+YMWMGGhsbmWvnCBJ1SUlJorBpXV0dHnvsMbzyyitssKOGWl5ejqioKJvwK3WAQlFXWloKjUaD06dPY8mSJU3O1mm/Jiq3K+FXf39/SCQS6PV6HD9+HAcPHmS/P3v2LE6cOAGtVusw/ErXs+cG0MHV1r+nDt1sNjvssEnUUfhVo9GwzsuV2bs1wpy6qVOn4vbbb3fYRqkuBQYGYsKECXj22WcREBDgVNQZjUbRvaHBefr06fjtt99ErxUmctMAZD3ICXfVV6vV8Pf3R1xcHKtHr7/+OhYsWIA1a9YgOTnZadloUHfH5bt8+TLS0tJQV1eHCxcuQCqVIigoyEbUUb6ssF7Zw5moo3JVVVWxOis8HUAYfgUAHx8fVFVV4Y8//kBNTQ1kMhlSU1Ptfj/hVic5OTls70HAdVFHz5VEYUFBgUjUuRqCNZvNqK+vdyrqyDE/f/48lEol5HI5APdFnXCSWVZW1qJtL/R6PfR6PRN11iJx8eLF+Pzzz22cOus6XVZWhl69etn8zmQyQa/X2+TUBQYGIjg42OHYUVBQgKKiIhgMBoSFhSEiIsKhUwdA5MRlZmaivr4eJ0+eZDlfGo1G9Czp38nJyS73N9R/0gTEZDKx+iMUdZSray18Dx48iMTERNb3A2DbZQlfv3fvXo85dVS3hKLOui1FREQ0K6eORGhL8uo0Gg3Lp3V3CyGXRd3PP/+Ml19+GfPnz7cZGIxGI7788kv07dvXrQ/3NjRo1dTUeMSuB8Sd3Y4dO+yeAdocCgsLodfrkZ6ezmYw1mLj/PnzosadmZmJPXv2YPv27fj111/triLMzs5GVVUVHn30UURERDR55JdQ1AnvWW1tLdauXQvgymAndGe6detmE361J+qoYb322mt48cUXRWegEkePHsXvv/8OtVrNQrfUyK2dOqlUKhpADAYDpFIp/Pz8YDAY8Pjjj+Nf//oXVCoVdu/eLeosmhN+FXZY9nLqHL0PEIs6GiSo7CTy3MFe+NVR0jcN9DSgArAr6vLz89k9XrFiBYYOHQrA4h4PGDAAR48exS+//IJffvlF9D6ql4WFhQ7Dr0KxQTP72NhYVicqKiqQnZ2N3bt3o7y83Omg7a5TZzKZcPnyZVx33XUALHmmSqVStGCFoElVU/vn2RN1tN0RfafKykrU1tYyp8fa4SBR1717dwCWe1BdXY2wsDDExsbafL+qqiqkpKSwRVQXL17EVVddBT8/PwCu1yPh4ApY6rzw+zpzws6dO8fERGNjI8xmM3O96X5cvnyZnaZAUPJ/c52606dPs2t+/fXXGDVqVLNXTtNn23PqyC09e/YsE3WhoaHw8/OzCTNmZWWxvR+Fv6P3WYs6uVyOmJgYlJeX2wzmr7/+OlJTU9nE3ZFTJxR1lPerUChYX5Kfny8SHELhR98zJSXFqaCpqKjA3LlzodFomFNHE1phHywMvzoSdQUFBTAYDMy4IKgvptcfPHiQ9SPuiLqsrCwbZ8+eqLNuS9HR0c126oCWbUCs0WhYCoy7k3mXRd2kSZPw119/YePGjfjb3/6GhoYG6HQ6fPzxx+jRowcWLVrEcr46CtR5lJWVOV2VuGXLFpeTpYWNf9WqVXjzzTcdzowvXLggml06g4QEDSh+fn42nfOFCxdQVVXFOgN67aFDhzBjxgz897//tbkuiab+/fujd+/eTS7fF4o6IVu2bGH/pk6CHAOhqBOGXx05dQDYoGTdKVdXV+OWW27B448/jm3btkGr1YpWawo7jMbGRvTp0weFhYVskCRRJ5VKoVKpcOjQIZw+fRorVqzApEmT7Io6d5w66gTCwsJsRB2FHxzllBQUFCA0NBTBwcFM1FFIsDlOnXChxLXXXgvgylFg1rgq6qZOncpSFTIzM5GdnY3CwkKWk5qXlwe9Xs/q9d69e7FmzRomYpyFX4Xfj1Yfx8XFQaVSoaGhARUVFdDpdCyMTOkI9nDVqdu2bRtmzZqFsrIy6PV6jBkzBoAlPKpUKllukhBXnTp7mw8/8cQTuPnmm22cOprdW4u60NBQABbnJDg4mIXUwsLCkJSUZNM+MjMzodVq8fvvv7PrUw4sYHGU3HHqCJ1Oh5MnT7L8MGei7rHHHmPbitBnCZ26xsZGXL58Gb169bIRdsLwq7vbmpw8eRJDhgwBcMU9Onv2rOg1X3zxBb7++usmr0XfPzExEYClXzebzfj8889Zn5mdnc36MwqbCseRN998Ew0NDZg3bx6CgoJEv7MWda+99hrWr1+PwMBAdO/eHUajUbQ/44kTJ7B48WLI5XKRMybMqSMhR+FXACxfMTo6mn1mfn4+iouL2bMUijqq0927d0ddXZ0opC1k/fr1WL16NdLT05Geng7AIpQWLVqE2267jb3OnlNnLZSoH6ioqBD1ASTEamtrkZSUhMbGRhw9elT0u6Ywm82YOHEiXnzxRdHPqW45E3UxMTHN3qcOcM2p+/HHH+2enlFXV8fajLsRP7cWSgwePBgHDx7EhQsXcO211yI1NRUvvfQSHn74YeTl5eGVV15x68O9jTBh3pFTZzQaMW3aNLz11lsuXVMo6igfxdptuv/++/Hjjz/i3//+tyhc6gidTidyOgAgLi5O1PE2NDSwSkQdLgm09evXo7Gx0e4glJ+fDz8/P8TExKB3795NbsVCoo5COj4+PggPD8dff/1l00lUVlaiuLgYWq0WiYmJLodfgSuNzjqR94UXXkBxcTHOnz+PjIwMxMfHi7auoAZAeVdDhgyByWRi98JoNMLX1xd+fn7YvXs39Ho9Ghsb8e2330Kr1Yo60rKyMvj5+YkattFoFJ17aw19J2snU6VSMSHsSNTRHnXAlRwdR6Jux44dThOOhbNeo9HItmcRim8h1HE3JeqKi4vZBs9UtkOHDrH7S3Xs9OnTMJvNWLFiBZ5//nlR+NWRU2d9oL2/vz/r2EpKSljbKi0thY+Pj42o27lzJ86fP8/yY6i8gGWQnjlzJksZWLZsGZYuXYrffvsNmzZtYi7G1VdfjfDwcJbfFR0dLXK/Adh8V0dYO3XFxcX4+OOPcejQIXbNyspKuwOeVquFn58fEzhxcXGIiIhAVVUVampqoFQqkZaWhry8PNGCKfp+tJ0QCUCqT7SqesyYMWzAt4ewb6FncPjwYaSkpMDf399p+JW2KhFep1evXvD390dCQgK0Wi0KCgqQnJzM3AhaHdsSp+7IkSMYOXIkFAoFGyitnekvvvgCL7/8MsxmM3777Tfcdddddo+cEuayBgYGoqKiApmZmXj44Yfx6aefAhBv7+Lv7w+FQsHaZFlZGZYvX46FCxciMTFRtBkwcKVOkKj7888/kZWVBblczlxZYdrM//3f/yEtLQ0PP/ww+0wSdRqNBpcvX8bAgQMB2HfqhAtVyKlLS0tDSEiIqI/ds2cPEhIS0LdvX5hMJlx99dVYtmwZ+/0PP/yAYcOGYePGjQAs9ay+vh7BwcGor6/HxYsXRbmmwn3qHDl1VOcrKyvtOnUqlQrDhw8HYKnPQUFBqK6utptKotPpsHPnTvb/S5cuobi4GH/88QcWLlyIadOmAbB16hoaGlos6sipc3aqhMFgwIYNG2AymbB//37ceeedWLRokc3rhHmorSrqVCoVvvjiCxQWFiInJwc1NTX4/fff8dxzz7HK2Zo89dRTGDNmDObMmeOR/c6o8wDsD9B6vR6FhYXQ6XR2c81o5aUQYWdHD1XofpWWluLrr7/G5s2bce7cObsDg7W1LKxshYWFkMlkCA8PF3W8wu01yFmwzr0TftaePXtw7733Ii8vD4mJifDx8UGvXr1w7tw5p7mRKpWKuQSAxUkICQlhCcFBQUEi94BmcfbCr9YLJTQajU0jsnYi/vzzT/Tq1Qt6vR6//fYb+vXrh969ewOwDD50Tb1ezzolAPjll18waNAgVFRUMKdu+/btzAmhDjQnJwdRUVGYMWMG7r//fgQHB4vuc1lZGQtn2qsz9PmJiYk2CyXonjkLv1LHZy/8SjlX69evx0033YTXXnvN7nWys7ORlJTEFo8Ij3ZytMpbmFNHWIs6StCmVZ/0bOyJusrKSpSWliIrKwt5eXns54WFhXa3nwFs3SEKvwKWNiB0h/72t78hIyODtQ2tVosbb7wRt99+O6tPPj4+7PcvvfQS1q9fj3Xr1gGwLLBZt24dcnNzodPpWPmio6Mxbtw4ABaBoVAoRJ2q2WxGdnY2IiIiXA6/6vV6zJ8/HyNHjmQJ1CQ2nDl1AQEBbOIZFxeH8PBwVFZWsvBrWloadDqdaPAgUXfixAm2eEmpVIpEHWBxUGnvOXsIn8U111wDwCKa4uPjmTskxGw2Y86cOdi3b59IgFO96tWrF6qqqjB06FAm6oSrrGkxQXNz6iorK3H+/HmMGDECERERTOhaRx4qKytx8eJFLF++HLfddhvWr1+P8ePH23yW0LmmveBoJfCff/7JXkftyd/fX+TUrVixAr6+vvj3v/8NADYunrVTRxgMBiQmJkIqlbI+KT8/Hxs2bMDixYtFJ76EhYXhqquuAmCpNyTq5HI5goKCEBgYKHLqCBJ18fHxSElJEYm6v/76C2PHjmXlUqlUovOzV69ejYyMDDah+uOPPwAAAwYMQENDA+rq6kTpHsJ96qKioiCVStl5uHSPhU6dRqNhQksYfu3Tpw9bVNK9e3cYDAa7aQSPP/44brzxRlY/ydU8c+YMVq5ciV9++UW0rx991po1a3DkyBFmTNA9a074lcpob3X8p59+ynKOH3roIfY5Qmjbl1YXdYsXL0ZycjK+/PJLvPbaaygvL8edd96JiRMnNpmH5QmOHTuGkpIS7NmzB/369cOPP/7Y4msKB7DGxkaR4KBQGOUGZWRk2AxCn376KcaPH49du3ahW7dumD17Ns6fPw+pVAofnyu3VtixUCPIzs5Gbm4uW9pPg25hYSHi4+NFGwsLxVhBQQEUCgWCgoJYpZ47dy4WLlzIXiMUdcKzPIXXWbVqFb799lukp6cz1613795QqVTIyclxOEOpqakRhV8VCgXrAJKSkhAeHi4KeVmLOnvhV7VajWnTpuGBBx4AAJabqVAoRKLOaDTi/PnzzN4/ceIE+vbty0Rd9+7d2TWpk46Pj0dMTAyWL1/OBjypVMoGnVtvvVUUGjp//jzi4uKwfv16JCcnIygoSHQv6B4GBASgpqYGR48eFeW+tNSpI1Enl8sREBAgcuoASzjp73//O/z8/ESdrZA9e/aIhLnBYIDBYIBMJkNJSYnTsw6dOXX19fUwGo3Iy8uDWq1GQUEBJBIJDh8+LEqoJ44dO4acnByYzWZoNBqEhIQwp87f39+pUweAhV8BS10W3ucXX3wRQUFB+PDDDwGATa6USiXr0Hv06IGSkhLk5ORgxYoVkMvl2LdvH/R6Pc6ePYtz584xZ5rqWVhYGK6//np2Lesd54uLi1FXV4cbbrgBVVVV2Lhxo928T0Acdl2/fj0CAgLYXl5UP0tLS9HQ0MC+Z1ZWFiorK0XbAAG2Tl1YWBhSU1MBiCd0p06dYu70oUOHRE6dn58fy9EDruxo8NxzzyEpKUnkwAgHzMGDB7PBOD4+niXnC8nNzcWaNWvw448/oq6ujrUvuk5QUBCCgoLYxE6lUkGpVCI2NhZhYWGs3luHX5cvX46bbrqpyQ2F6UizESNGsAkRAFb/Xn75ZZw6dYqV66mnnsLEiROxb98+nDp1SiTU6LOp3CRijx07xp4RPRdyrUnU1dbWor6+Hv/9738xb948hIeHA4DIxQNsnTrizJkzkEqlSElJYaJu3bp1kMlkmDlzpmjRS1hYGAYNGsREt9CpAyxigUSd0KnLy8tjom7QoEHYvHkzGhoaoFarkZGRgXHjxjEBBVjE/OHDh3HgwAHs2rWLiZDw8HDs27cPEokEffv2RX19vY3QopxKtVqN0NBQdo8ef/xx3HrrrQBsw6+xsbHw9fUVhV/DwsLYghNyMoWT5srKSmRlZbFJW2lpKUaNGoXly5ez+kD918SJE9nELT4+Hqmpqfjqq6/w9ddfs7EEaJ5TRxGRYcOGsbGPqK2tZdHM1157DWfOnIG/v7/NPbNOWVCr1aitrcWePXtEi/oc4bKo27RpE95//32cO3cOjzzyCIKCgvDll1/ikUcewQ033OCx0w0cceDAAdx0000AgMmTJzvcTkCr1aK2tlb0xxE0CyaEg8ylS5fQ2NjIZrMmk4mFNADLTOv1118HYOkgCgsL8fPPP2Pp0qWIiIhghy0DEIU0KdclIyMDDQ0N0Gq1+OSTT5CSkgKz2Yz//e9/aGxsZB0urcQjCgsLERoaykRdZWUlvvrqK+zYsYMlQ5eWlsJkMiEnJwd33nknJBIJkpOTUVhYCJPJBLPZzCzqPXv2MLFBjWbYsGH4xz/+YXO/TCYTamtroVAoEBsbywYJ6gASExPZ96aGT7Of6OhoBAUFobKyEgsXLmTXIn755Rds2rQJgCV/U6FQ4MYbbxTNIi9dugSdToeJEyeyZ9evXz8MGDCA/ZtWC9GgGRgYiL59+4pyMKRSKf72t79h8uTJWLFiBesMAYuoE24jER0dLXJCyDnr27cvLl26hOHDh+Pll19mv6dZlbWoq6mpcRh+IMi9ACzhqKioKCbqrr32Wvj5+WHChAkICAjA8uXLcezYMSbgly9fjtGjRwOATcMnp446LHubJjcVft23b58oTPXnn3/CYDBg7NixOHLkCJuVCkXdxo0bRaHBq6++mok6ytmh3zc2NrLvSvdfJpNBqVTCz8+POSI9evSAQqHAgAED8PDDD+Pjjz9GXV0dEyO9evVi5Rw4cCALeSqVSjz77LM4dOgQzpw5w85OJTGan58PHx8fBAcHi0SdcPIEXHFmJk6cCMDiGDraDqmxsZEN2mVlZXjooYdsXkv1m5y6uXPn4sknn2SnsFA9j4+PZ04duW8pKSkAruRNmc1mnDp1CnfeeSeCgoKwf/9+6PV6JurkcjkTIwkJCTh58iRycnKwceNGJCUlQSqVYv78+QAsYowGw/j4eAwePBhXXXUVnnvuOURGRuLQoUNMUAOWfgS4sr1FRUUFW/kKXKlXMpkMjY2N0Gg0CAoKQnx8PBOKgG349aOPPsKOHTvwySef2L3HxOHDhxEREYG0tDRWbn9/f+Tk5OCLL77AK6+8gg8//BBVVVXw8fFBaGgoPv/8c4wYMQLdunUThewA504dAKSmpiI+Pp5NFIXh16NHj0KtVuOuu+5ir7cOv1J7E4onIWlpaUzUrV27FlOnTkVoaCh75v7+/qxuPProowAsedGBgYGiPrikpASBgYGsHvr6+qK8vBy5ubmIj4/HSy+9hOLiYrz55ps4cOAAjEajyKnz8fGByWTCqFGjMGrUKOj1emzduhWrVq3C+PHj0djYiISEBCiVSjQ0NIjailQqhVarRWNjIwwGA4vqVFdXY9OmTdi3bx90Oh3rM0nUhYSEQKlUorq6mo0ToaGhosk7cCWvTq/XY/LkyRgxYgTrc8+cOYMDBw4gPT0dkyZNQp8+fTB8+HCMHDlS9BwVCgUuXLjAdvbo1asXc+uio6OZUJ03b16T2+QInbqhQ4fi7NmzqKurw+eff46///3v2LRpE8rLyzFlyhTs378fERERmDp1qo0TR/dQKOomTJiAsWPHisYaR7gs6rKysnDffffZJLYuWbIE7777LmbNmiVq5J6mpqaGhcoUCoXDRMlly5ZBoVCwP5Toag+hUweIRR1d/9ChQ0hISEBCQgLeffdd1ti/+OILFBQU4KqrrsLRo0fRt29f/O1vf4NWq0VERASboSmVSpFTt3PnTnTr1k3kOmzatAlFRUWorKxkDuRvv/0Gk8mEW265Bffddx97bWFhIRQKBXMQtm7dyrbQ6NmzJ9uCYc+ePdBqtRgxYgR27NiBpUuXQqfToby8nCW3A5YBn0Rdjx492N48FLoTQjurR0REwMfHB926dbPr1AGWhufj44P09HQkJCTA19cXDz74IBYvXoz33nsPv/32m0jcGI1GZts/88wzyM7ORq9evUROHYnjvn37omfPnuzfffv2ZY0XsDQCa1EnRCqV4n//+x9+++03REVFYfTo0ejTpw977kJB3q9fP5b0f+rUKfzrX/9CSkoKevTogePHj8NkMuGdd97BH3/8AaPRiNraWvj6+iIhIUG0SSut7AsJCbFxqIxGI7777jsUFxeznDrAEoIloTNo0CC88cYbqKiowKuvvorp06ez+lReXo6XX34ZBw4cgFarxcGDB0VhBNqTiTpFe7lUzsKva9aswXXXXceO6gHAVh0/88wz0Ol07DuRqEtOTsYPP/zArgMAQ4YMYeFG6pipQ5s7dy7uvvtuAGB1yN/fHz4+PoiNjWX5qa+99hq++eYbSCQSLFy4ELW1tfjwww+ZqNPpdKzzHThwIAoKCrB69WrMnTsX48ePR319Pb777jub75+Xl4ewsDBIJBIMGDAAMTExiI+Pt3HqMjIyEBoaymb6gK2IJrRaLeuzTCYTwsPDERoaylwTpVLJBm7hYp8DBw6IzksGxE5dRUUFc7Ti4uKYSKeQ66BBgxAXF8cWCSiVSvTr1w+pqamsjb3zzjsALGK9pqYGkyZNwr/+9S8UFBSgtrYWGo2GPaP4+HgcPnwYR48excCBAxEREYH09HQ8/vjjrJ8kUUeJ7DqdDlVVVez70Sk05NTRSs9nn30WK1euFPWXJAApVywuLs7ptkyARdRdc801kEgkTNSNHj0aFy9exJNPPgnAUteMRiPeeust7N27l52cMnHiRBtRRwOrXC5nTt3x48eZ05mQkIC0tDTWJwnDrxkZGZDJZKIoiXX4lSYeQgdtw4YNbBFQ9+7dkZubi+PHjyM9PZ0tQqS+muoqANxzzz344osvMHz4cBw8eJC1I5pYBwcHs3var18/AJa+PC0tDT179sTdd9+NjRs3Ijc3F76+vujduzcTmwMHDkRycjLi4+MxdepUjB07FldffTXmzp3LnOLu3buz7cGEoi4iIgKNjY3MHVUqlRg6dCg+++wzdlTgqVOnbJy64OBghIeHo7i4GBqNBmaz2a6oI6duxYoVOHbsmOjUEuGOB9dffz2++OILrFy5EvPmzcOtt96KH3/8ESkpKewezZ07F+Hh4WwMCwwMZPd6w4YN+Oijj7Bp0yZ89NFHbOJijVDUDRs2DGazGZs2bcL8+fPx5ZdfYsuWLejXrx87F/62225DeHi4wzSU+Ph4hIaGYu/evUhPT8fy5ctZP+cMl0Wd8IZZ89BDD2Hjxo147rnnXL2c2yiVStHxS9QJWLN48WKoVCr2R/hwrbEWdUJnRWjtdu/eHStXrsS+ffuwYMECqNVqvPTSS7j33nsxb948AJYHNGHCBAAQOXXjx49noq6xsRF5eXm48847RZ9LDmBGRgb27t2Lv//976ioqMB3331nk8tXUVEhcup++eUXDB06FJMnT8agQYMQExOD1atX4/rrr0dQUBAGDx6MCRMmMNFSUFCAnTt3ws/Pj4kdsvRlMhn69euHxMREXLp0ySaB+JtvvoFcLseNN94IwLLsXalUsg4gKSmJfe/w8HAkJyejoqKCDVihoaFYsmQJhg8fjvfeew+1tbU2M1VfX19ER0cjJiYGycnJLAH46NGjOHfuHAIDA9GtWzfmKtJ3GDp0KBtAa2trRaKOOjKakAgFDwA8//zzyMjIYB2fUNQNGDCAJf1/++23MBgM2L9/P5tJAhabfsKECXjllVegVqsREhLCcoRyc3NZ/gdNNGpra5GRkYG3334b58+fR3p6Ou655x4YjUb2PsDS4Tc2NsLPzw9SqRQLFy7E0aNH8dBDDyEuLg79+/fHrl278O6770KtVsNsNuPEiRPIysrCzJkz2XUo/JqYmIiAgACsWrUKqampLHQEOBZ1ZWVleOKJJwCIHT4K/Y4ePZrlhgQHBzNR9+yzz7JTOcgJHTVqFHs/iXIa6IT5J9S2qYPs2bMn60hHjhzJwjZJSUmYNWsWnnvuOSYUtVotysvLIZfLMWrUKDQ2NqKxsRGPPfYYhg4dCn9/f3zxxReIiYkR1b1Lly4xh9DHxweHDh3CggUL7Iq6IUOGsMmiXC5n2wJZo9VqReFO+l6UF9W/f3/m9Ajd4nPnzuHo0aOIjo4W5dRFRESgpKQEhYWFzLFJS0vDhQsXUFNTgxkzZqBv374YN24cYmJimOAICwvDI488gvT0dEyfPh1btmzBzJkzERQUxPboDAsLY+3kzJkz0Gg0GDRoEL777jtMmjQJPj4+bAwQuucUYtqzZw8kEoko5Lx48WI8+OCD7D7RM9Vqtcyp69GjB0aNGsWcOmH4lfIdx48fj+rqaqfbWBw9epRtr0Oi7sYbb4TJZEJiYiJGjBjBJmeDBw8W3e+JEyciMzMTmzZtYhNka6cuIyMDKpWKJdonJCQgPDyc9ZFCpy4jIwODBw9mkRPA4roIXWxaSEI5hQAwbdo0VrdJ1D3++OPo3bs3+9ygoCBERUWJogn+/v548MEH4ePjg0GDBrH7R4sLunXrxu4/3SMALN2lW7durB4olUr4+PiwiXr//v3x888/Y+/evdi8ebMoh1xYBwMDA23CryTqaBKZmpqKRYsWobq6GiEhIfD19UV6erpNTl1QUBCmTJmClStXsnQlhULhUNRt2rQJM2bMwOuvv87aNI376enpmDt3LkaOHInBgwdjzpw5+PnnnzF9+nRcvHiRTTaCgoKwb98+PP/884iIiIBcLmefRxGktWvX4l//+hcmT55ss6oaEIu6fv36QSaT4eGHH4ZcLofJZML69esxcuRITJgwAXFxcbjvvvtYOFoI3cPQ0FCMHz8eH3/8Masf1prFHh47JmzKlCk2eQme5Nprr2UDybZt21ioyRpaWi784wjr8GtpaSkLtQk76bS0NEyZMgX33XcfDh06hM8//xwqlQpLly7F1KlTWT7d+PHjAUDk1N14442oqqpCWVkZ6wCo7DRLo4e4ZcsWmM1mPPvss4iPj8fDDz8MhUKBjz/+GO+88w6rMMKcul27dmHKlCnYsGEDVq9ejejoaJw6dQp9+vRBWVkZy9WhQYhE3ahRozBy5EgAEG1Psnv3bpYEK8yVNJlM+OKLL3DnnXeye7pixQosXbqUdQDC8GtoaCiztIX3UiKR4PHHH8eOHTuQmZnJGmhkZCT8/f0RFRXF8hFJbJ46dQp79+5FdnY2evbsCR8fH+amCGe6VA5rp+7OO+/EG2+8wTpya1EnlUpZ5w2Id/Hv378/amtrUVBQAJVKhcTERMTFxbHXBAQE4Pz58xg3bhxOnz7NQgUkOs+dO8c6H3Jqjh07hptvvhn//ve/MWrUKPb8N23axMJ6wJWQHD13iUSCq6++mg2u1157LY4cOYIdO3awkOH3338Ps9nMcreUSiULv/r7+yM1NRU//fQTLl26hClTpjCnrL6+HgEBAaJc0ICAABw8eJCFeClUOWjQIOTk5EAqlSI0NBQvvfQSnnvuOVx77bXQ6XTw9fXF3//+dyQlJWHAgAFMwN1xxx34888/8d577+H2228HcCUUTfcLuBKSovyUPn36sHLSMyKeeuopmM1m/Pvf/0bfvn2h1WpRUVGByMhI3HjjjWwfyrS0NAQEBGD+/PmoqKjAwIEDRfkz5NQRlE9pT9QNHToUQUFBmD17Nj744AMAlm083n77bQBgJ6vU19c7FXV9+/aF0WhESEiIKFcKsDiwt9xyCwYOHIhRo0YhMTGR5auaTCYm/tPS0nDx4kX8/PPPyM3NxS+//IKgoCAbUSeRSODr6wupVIopU6ZAIpEwN0Sr1SIsLAx9+vSBRCJBVlYW6uvrERQUhLvvvpvVP+Lll1/Gv/71L3aE2ZkzZ3D+/Hk2qSXIvQOuOHUBAQGoq6uDXq9nPxPem/DwcLZKltwzWt1+8eJFnD59Gvfeey8MBgOr51u3bkVJSQlbFEV1ZNasWVi4cCG2bduGPn36sIHYug5NnjwZPXr0wLRp07BkyRIAtqJOpVJBJpPh3nvvBWBpm0qlkqUP+Pn5iZw6oXgCLC51dnY2q8elpaVsrEpMTGRHwBFTp05FcHAw9u7dizfffFMkEJOTk0V11REvvfQSi7qQqBs2bBjuu+8+HD9+nAkEmqCSqAOutMH+/ftj0KBBbIwQ9g8k6rp37w65XC5y6gICAhAUFAStVstc1tTUVIwaNQpjx47F7bffjv79++PIkSM2q1+Dg4PxxhtvoHfv3sxlDQ0NxfXXX4877riD5RBSeDYzMxNDhw7FP//5TyaWSdQlJSWJyuyMPn36ICoqCuHh4ZDL5UhMTERgYCCLSuzcuRM+Pj4ICwtjYdCSkhJs3rwZwJUtTQBLfRg5ciSio6Oxa9cuJCYmsjC2UqlEUVERrr/+eibqDh8+jJ9//hklJSVsAVxQUBAmTZqExsZGJCYm2vQRjvDo2a+0R1BrcPXVVyM2NhZjxoxBVlYWCz+1BGvVSwnDS5YsEc0KqQPt06cPzp07hwMHDmD48OFsgL98+TIGDx6MpKQk9O7dm61UCwgIYB1SZmYmE3UpKSno1q0b+vfvL3Ic//zzT/j5+SE1NRWbN29GYGAg5syZg8ceewyLFi1iooWcOpVKhbKyMqSmpiIwMBABAQHMTh4/frwoP4oSpS9duoRdu3Zh4sSJTOQIRV1ERAR69eplsxExLewgax+4MuMVOnXCxODbb78d77zzjs1JJGPHjgVgEY0xMTEICgrC8OHDmdNIXH311Rg6dCjCwsKQm5uL7OxsNhA/+eSTzB0gSGxai7qYmBg8/fTTTABapxAQNMO3duoAsDCBMAWAvrOfnx969uzJNuYNCQlBZGQkwsLCkJOTw8IPERERGDVqFH755RdIpVK8/PLLqK6uZnlrw4cPF3VAtN2No2Td4cOH49SpUzh27BjuvPNOBAQE4IcffoBCocA111wDrVaL+++/n4W2pVIpq8tTpkxBUVER2/qhoaFBVF8AS8dMC1uSk5OZqKOkdQrlxcTE4NVXX2XPnjZi/fnnn/Huu+9i0KBBSExMhJ+fH8aNG4f58+ezekpOHX3HKVOmsI6RRB25sXK53KbNXn311Th9+jRefvll5gKRqAMsgl0oSl599VXceOONmDJlCvr27Svah8zeQEmiTq1W45dffsGlS5fYgL1mzRo8+OCDiIqKwvr169lKx82bN+OVV17BpUuXRJNKuj8DBgxAfHw8m3ANGDAAEokEo0ePxvLly1l7uuOOOzBgwADs27cPMplMJEZoMtSrVy+cPn0aR44cQc+ePdnPY2Ji2AArrM9ClEolc18p7JmSkoKsrCzmmNhj6tSp+OCDDzBs2DAcOXIEr732Grp168YmEiRAsrOzkZKSgptvvpk9S5lMxiZ5wusLnTrA4lySKKQ+9MKFCxgwYAC+/fZbFBcX48KFC/jwww9Z/i+tBB04cCC6d++OlJQUrFixAvHx8YiNjWUuonAhBX32uXPn8NRTT+HNN99EYWEh6uvr4efnJ1pcMmfOHIwYMQI+Pj6iCSxwxakrKirCmTNnMGzYMNFnDB8+HGazmYWnS0tLERMTA4lEgvz8fHbviD59+iA/Px9Hjx4V7fsGWCZVJKiagkKv1G5iY2Px1VdfiY70Cg8PR11dHcrKyth3CgkJwV133WXz2UJIZFD4tb6+nonh4OBglr6Rm5uLhIQEBAQEQCKRYNu2bVi1ahWGDx+OI0eO2A2/ymQyTJw4kQnC0NBQxMbGYuPGjVAoFAgNDUVVVRUuXrzIXGXA0t9LpVKWtiKcVLkKOXW0I4RGo2H3b+zYsZgzZw5+//13mEwmfPPNN2xMFDp1gCVsm5WVhYEDB7I6TEYKQaJu4sSJuP3227F48WKWthISEsJSisaOHes0WirEo6KutXn77bexZ88efPfdd6yTaAnCig5YtgMwGo148cUXUVRUhNjYWPj4+DAh0adPH2i1Wmzbtk3UKIT8+uuvePnllxEbG4vu3buzWcyJEyeY4xEVFYXJkydj/PjxzI0BLMIvNTUVvr6+uPrqq0UJnMCV2RM5dVRxhUui6d/CnB/AMsNKSEjAxo0bWSW69dZbMXPmTFHID7A4Qtardyg0Lcz9IRw5dQCwaNEiTJ48WfR6yrGrq6tjrtbYsWMxd+5cUWg6Ojoa6enpuO6663D+/HmcOnWKDfAhISHMAbIuh3X4lSBRZ+3UEdYDC2ARbUFBQTh9+jTbow+44uZRx5aUlITLly+jsLCQddY9e/bEuXPn2CAWHh6OlStX4uzZszh48CCSkpJgMBiYoLEWLCNGjHDaKQ0fPpwJtuuuuw5paWkoKSlhA4+/vz87OUOv18PPz489axpEaMsPOqJICDnZcrkcaWlpqKyshK+vL4YOHYp9+/bZHAVGz5z+Hjx4MPr3748FCxbYLGyi70WiTq1W45577sGWLVtEAgC4IuqsB2OiX79+8PX1FeVrORIk/v7+2L59OxYtWoSnn34an3zyCas3jkQdAKxcuZINcMIBWyKR4JFHHgEA1k8INxS3J+oef/xx7N+/XyTyAMs2I0888QSGDBmCXr16sZQJ6/dLpVKWe3ndddehpqYGa9euFU2qhX2CI1dHqVSy0Bi9pl+/fk2KOmL48OHYtWsX1qxZg6effpq5rXQfzGYz7rvvPvz6669sQJLJZKwvEU4ibr31Vrz99tusXgwcOJAdhZWamorQ0FB89tln7PVlZWXszGoSz5Tjdeutt+L8+fOiCZJwhbu1UwdYnuMLL7yA4OBg3Hbbbbh06RIrH7UL2kR4x44duPfee21CoKGhodBqtTCbzTaDd58+fSCXy9lEmUSdM2QyGXMfhfz3v//FV1995fS91tB3EUY2COrvcnNzWR3z8fHB999/z+qmPfr06YOlS5diypQpCAwMZIvwKHeYFsVcuHCBTTYAS7/i7++Pvn374vz58ywNRyjqAIj6d+uIG7mLlGtL47FEIkFoaCgKCgoQGBjYLJ0QFRXF+gSqyzNnzoRUKsWMGTMwceJEtm8hbcNlNpttRB0ttAKAu+66C6NGjRJFBwDLmEXbvQBgi0/XrFmDlJQUpKam4v7778f999/vcvntj25dBBq0IiIioNFooFar0bdvX5w5cwanT59G7969sXXrVpbwSp1sbW0tmxlYQ5V38eLFeOyxx+Dr64uBAwfixIkTrKONiorCypUrAVhCFKdOnWLJuMJ9iKxn2FTRSNSRi2JP1JEbJmTIkCHYsGEDFAoFhg0bBqlUyo72siYxMVGUc0XCw95qrdjYWCQmJkIul4ucOkdIpVIkJSXh4sWLCA0Nxb59++Dv7+/QQevRowe+/PJL1NTU2IQ1hAjDr9S4hEJF6N7Yg34v7Kx9fHzYYona2lo2Q6bvR/+nswtPnDjBVmnTvn8k6mgwoYZN9Y8GOet0AMASLnd0KsLAgQPZthf9+/dHjx49kJWVhREjRrDXSKVSkagbN24cjh07hptuugm+vr7s2pS4LkSYz0X1ikJ5wvw4gjpe620aAgICRAtAhK8VbmtD76OOWBh+BRyLOoK2zKFFBk0xcOBADBw4kO1F50zU5efnIywsDJ9++qnNZGLp0qXw9fXFF198AQCiHeKFgxG158DAQCQnJ7P6YD1wvvPOO9BqtTYzc3p9cnIyq8MjRoyAv78/ysvLRW2DBANthmqP8PBwNijSd+/fvz/Wrl3rkqi74YYb8Prrr2Pu3Ll45JFHWD5ajx49kJ2dDb1ez4QWIZPJ2HY7wuvHxMSwUBtwJccwOTkZEokEaWlp2LFjB+Li4lBcXIzy8nLs3r2bOalXXXWVUyeDRF1gYKDDvCSFQoEdO3ZgwoQJeOutt5iT+tBDD+Gaa65hopnSbKydOnomt9xyi93FWUOGDGETZVdEnSNcqdvWOBN11GdfuHCBpXG4gq+vL55//nnR9QHgP//5D/r374/3338fWq0WeXl5okUjRLdu3aDRaFBUVISePXvi5MmTKCkpYfVC2M6sx5Pw8HAm6qKiokT3MjQ0FHl5ec2+v8899xzrs6mvHj16NJ555hn07NkTRqMRgYGB2LlzJxoaGthG99aiTsiUKVMwZcoUm59bi1WJRILnnntOFGr98ssv3Sp/h3LqPI2fnx98fHxYAjtwpcGePn0aSqWS7dEEWCohVThHTh0RGRnJKuXgwYNx4sQJlJeXs00hifj4eEilUpZnJxR11liHXwlhQ73llluwaNEi0cyUWL16NWbPno2HHnrIobAhyE4nSNTZ6+gfe+wxtgLQ2qlzBImh0NBQBAYGOhR0gOWekPBxVdTZc+pIFDj6LHtOHWB5RqWlpVCpVDbhV6FTB1i2RCERQqJOuPpLCJWNvpu9DiE4ONhhnfDz88PQoUMxcuRI+Pr6sgkFHQlG35UWSkilUkyfPh179uyBr68vYmJimFPnKPwKWAZEoahzBN2Tpp49YKlHPj4+ovCrtaij+xEfH89C2s6gE0tcFXUEfSdnoq6kpARRUVGiBShCgoODWRsROnV0T+yJCRpMhUn7gMUJtJczLFxZTgQGBrIcI6FTRwOao9Ar/Y7qHn13SiNoaGhoUtTddNNNqKmpwapVqyCTydhJBrSoA4BNmFD4XJxdXyjqgCspMMuXLwcAJuoefPBBhIeHO+0XgCuizp5LJ2TQoEFspSk9e39/f5twKnDl3lK+IpXZ0elDw4YNQ0ZGBoCWibrmMGjQIIwdO9Zu2Ja+R3FxsdP64gxh3R44cCBuvPFG5tTl5ubaRIOAK1GfxsZG9nuVSmXXqbOeKCqVSlRVVSEzMxODBw+2ScMxm83NCr0ClrpGz1sYpevbty9L5xg1ahT27t3LUmc0Go1onzpXob4yLy8Pd9xxBz755BOXc+cc0aVFnUQiQUBAAMLCwlinRqJOrVbbVHAKxdK2B64yePBgnDlzBoWFhTYzpYEDB2LIkCHsQToTddbhV0Lo1I0cOZJtV2BNaGgo1qxZwxK6nUGJrydOnGAHNwvLICQgIICFkV1x6gCwGbwrAkCYJyQMV1vj6+sLuVzuMPxKosDRDt32cuoAsK0kaI8+wH74lSBR17NnT7YnFG28KoQGuOrqarZ9h7t8+eWXbA8vqpvWTh1taSJMtgYsDhztjbd27VqH4de4uDhWb509V+vwqzMoTCIMv1Ldss6pk0gkGDhwoOhQeHtQ+NVdUWf9TIXQwF5aWur0e9Em1Q0NDaItY+ja9sTENddcg3vvvZeJsqaga1gPkOTKC0N1JBiciXBhPi+9Li0tza6T5gjr+rB8+XI8/PDDrKz2nDrC2fX79u0LX19fJkJGjBiBYcOGYebMmQgODsbJkydx6dIlXH/99fjrr7/wwgsvOC2nq6IOuLKQramzZ+me+fv7QyKRYOTIkTAajTZhc6J37964dOkSDAZDm4u6Hj16YPfu3XZdSmE9cLSrRFMIrytcFFNWVobKykrRRIQQuvfCOk39QLdu3diCC3tnBFdXVyM3N9cmpGk98W4JEyZMwMyZM23WC8TExLAzqYEros6RU+cIKqvRaMSECRNYKkdL6NLhV8BSGcPCwtjgcs011zBL314F79u3L+rq6lzq8IjBgwdDr9djz549NqJu0aJFWLBgAcuds1f5CaFTRzMTOhLG09A9+Ouvv7B69WoMHjyY5S05ozlOXVOQ0B02bFiTyaK0yadMJmNnvBLUoTvaRNLe6lf6eWVlpWihBA0S1KEIOyjq1Knc6enpdgcT6girq6ubFVIBxLPZe++9F/369RN9lnX4VUhsbCz27dvHVnxbO0b2RJ0zkeCOqAOuiGXAefgVAL799tsm71FrirqSkhKnojI4OBgGgwGZmZkwm82Ijo5GWVkZuxf2+pLIyEiXDpcnKPRtLermzZuH7t27iz7DFWeV2qqvry/rQ4QirDn9ypw5cwBYni3t1yhE2H9YO8PWr3vmmWdYovjTTz+Nf//735BIJIiOjmZb3PTu3dtuaM8ad0QdpRZYnwVqDd0/YT11NjFLTk6GwWBAYWFhm4s6Zwgnsc116oTPUijqaAW2tbgHIJqgjxw5EocPH8a+fftYv+jj44Pu3bvb3cpGqVQiPz/fbrv0pKiLjY21m6JE4yOJOpVKBbPZ3GxRB9gPjTeHLu3UAZaBVaFQICwsDEFBQUhISGCVzV4Ff+WVV9zqiAGw/Lv09HSbByeRSESJz85EnT2nzvrcOE9hvZlkYWEhgoODmxRViYmJkMlkTa7OokbuypnBlEPUVIgFuDKDa2hosJmV0mDo6DOdOXWVlZWi8Cvlr9FeUAEBAWwlLw1kdA+OHj1qd1AXOnWu7D/UFHK5HGPGjBH9jEQdhV+FxMXFiU47cSWnzhWnztVzoKOiolBWVgaj0cgOBQdsw6+Apb644tS5k1NHuBp+dSZWqex0XBVtTeNM1LmLVCrFDz/8YJM0HR8fzzY0JVwJv1KZhBvZJiYmMlekJZPFiIgIdkqFEFedOsCyUlmYG0xljIqKYrlprq4CVSgUNiuIHSF03Z1hT9Q5g8qamZkJrVZrN0XGG9DOCYBnnTqZTMZEj72Qor+/v+jIsd9//x1vvfWWKPesZ8+edttdeHg4ysrKUFFRYXMfPSnqHGEt6mhy2h5EXZd36gYMGICBAwdCo9Ggb9++kEgkiI+Px/nz5+12iLSi1R1oM9oLFy44fHA333wz3nnnHdF+XfauA4CtsgJaT9RRpaUQRFFRkcMjbYTExMSgsrKyyQ7bHafOz88PmzZtcilMRaIuKirKRigNGzYMf/zxh91FJIDlGbz33ns24oGScgFxR2GdDE17EdFsPTIyEoGBgSgtLbUbrveEU9cUvr6+0Ov1MJlMdp06e+UhhDl1rjh17uTUAZa6W15eziYOVL+tw6+u0ppOXU1NjVOxSm2DQu30vOnanhB1ABzm9FkTEhLCUkscQf2b8DVSqRTJycm4cOFCi0TdhAkT7OZRuZpT54yoqCjU19cjIiLC5QmERCJBbGysS6JOIpFg0qRJTV5bGH51BRI2JPzbi1MHWOqCp3LqhE4dAHZMpD0SEhJQVlbGVss+9dRTot/Pnj1btDG5sLz5+fkwm81eEXWUc06ijsYHd0WdsI5xUechaFuGKVOmsMGFnBZPdcSAJQTrTNQpFAosWrTI6TWEq1+prJ6qCNYEBgZCp9Ox1Ynk1LmCK51179694e/v7/KseOrUqS69Ljw8HFVVVWhsbLTrftF+QfZQKBTs7EshwoHAmWD529/+Jsr9kEgkSElJwZkzZ5w6dTU1Na0m6qRSKet47Dl11q+1V77WCr9GR0fjxIkTNiur7Tl1rtCaog5w/r2o7AUFBaID6snd9mRf4goUpnQlp876NampqS0WdXTSjjXCZ9pcd5oEgr2QnjPefPNNm5XLjti6dWuTr3HXqZPL5YiOjmaLytqTqKONqD0RfrXOjY2Pj3e4OC0hIQHHjh1z2LYcTWKUSiXL/XQk6lzZoLm5kOlBCyWa69RxUdeKCG18Z+HX5jJ48GBs3LixRQ9OGH4lWtOpA67knxUVFbk8K3aFqKgoFBcXe3ywo/M07YVfm4urom7x4sU2PyNR11ROXWvkRQJXwq8AHDp1PXr0wPnz51luHdHc8Ks7oq6srIwtXHGWU+cKwtWv7jx7Z6JO+FxcFXVKpZKlU9CWM20t6gDLudyOkvYB+04dYElT+P3331ulTtKgJ5fLXd5M1RrqQ10NvRKuupyuEhgYCD8/P7fqaUpKCnbt2oXg4GC3RWlrIjzesTkI2xv9m/oP6+2MhNDvXO0zCOHY3JHDr35+fizVyRUX2RW6fE6dPVpL1AEtU+P2tjRpK1HnjlPnKq0x0DnLqWsuwnK621FQyMWbTh1hb/UrAHauZF5enuj3ERERkEqlSExMRFhYGAIDA53WX0+JurYOvzrLqRNexxVRd/nyZXaOalxcHFJSUhAREWF30+7W5r777nOasuBI1JHYaE1R15JrN1fUeRqJRAKlUum2qDMajZg0aZLbAqA1of6ppeFXOokBuPKsnYk6ahfuGgb2FgUR3hR1zdnsODQ0FEql0qZ/bi7cqbOD9fYcnmDo0KHw8fFp0R40ffv2RVpaGkJCQlo9p44aKR1tptFoPC7qWoPWEHWuOnX2oIHHXl0SOnWeKqs1wrCHdXg1KSkJEokEEydOxFtvvcWOzCImTpwoCh3/9ddfTp0f2kne1ToeFRWFhoYGtgGyJ8KvJpMJGo3GLVFHWyfYe0Y+Pj5sJu1KTl1JSQmGDh2K2NhY5nzu27evXYXaCEfh12HDhon27vQk9Fw8Ierag9PVHFEHWE69aE+QmGupqBM+V1ecumuuuQa9e/d2uz5QOSMjI23EUFuJOoPBwCakzXXqAPFuFp6Aizo7TJw4EU888YRHZ4KJiYnIzs52e5GFdbmEZ+HJZLIWb1ToCGunDmidmbunoZy61nLq3BV19HzsWevU6RmNRq84dQkJCezotWPHjtmIOh8fH9G+ifY2YBUSGBiIgoICl2fdNCGhfd1aGn6lDrWhocGt+3nzzTfj3LlzDus37dnY1D51AGAymWwGxtZqoy1FoVBAIpHYiLobb7wRZWVlHjmK0RpPOHVUb7zt1AHu52317NkTvr6+dk8X8Cbh4eFsA+nm4OPjA5lMJpr4uyLqbrrpJpw9e9btz6M2Zm8FcVuJOgBsY/mWijpP9v9c1NkhMjKS7VzuSZxtLOwuAQEBOH36dKt1bNS4haKuozh1dKi7p0RdQEAAs9s96dRJpVKW8+YNUQdYzvoErhyG3lLcuT80ONNExTrBujlOHeHO/aQD2h0hl8tRWVnp9LsFBgZCIpHAbDa3aoK2J/Hx8UF0dLRdt781BB0gzqlrLv369UNycrLH6mxLUCqVbNGaK9xzzz245pprWi3C0lx69OiB7t27t8gxCgwMFIl1V8KvzYX6U2+LOjqRxTra4A5KpdLtccUZXNR1YFri+jUFVVrhruodRdQBwPHjx3HnnXd67LoREREwm81u5z0MGDAAkydPdrjHXmBgINRqdatuaUI0dTRcWyN06iQSCRsQWrJQgvDk/aS24MyB9PHxYadKeDIXt7X5/fffnQpaT+MJpy4pKQmXLl3yUIlaRq9evVBWVuby6wMCAhyeG+5NHn30UTz44IMtuob1RviuOHXNhUKW9kQd9SutmfJgPSm5ePGi6LPdYfny5R6dRLWvXp7TbrA3k+4Ioo5mcBUVFR51RiMiIqDT6dx+X3BwMNs2xx4BAQGtKuqacuq8CW32nJubK9rYuiU5dURriLqmZtN0/mtHceoAuHQagyfxRE5de2L58uVsa42OjK+vb4sjG9ZOHY0Xrm5b5Q4+Pj4ICwuzK+oGDx6MI0eOsChEa2A9PhYVFUEmkzVrhwjrk3xaChd1HLvYa+AdQdQJXRJPi7qmzoJsDnSfW2uhhFDUtTenTiqVIiIiAhcuXBCFp1uy+pXwlqgDPLtqvrPhCaeuPeFo/7WuiLWomzRpEnbs2NFqK79feeUVXHfddXZ/11T+b0uxZ3pER0d7dMFDc2lfvTyn3dBRnbrWEnXh4eHsfGBPQuKjKzp1gGUlY2VlpWiG29KFEgAXde0VT+TUcdoncrlcNEb4+fmx4/Jag8cff7zVrt0UjkRde4CLOo5dOoNT58ktDx599FG2vYsnsd6o09MInYT2KOqGDx+Os2fPisrZXsOvTYVWqH10pPBrW9PZnDrOFR566KF2uXVPayAcH2l/zPby3bmo49iFlqhrtVqEhIRArVZ3CFHn7++PoKAgKJVKj4Y0J0yY4LFrCWlLp669hV8B4KWXXsI333wjOt+xPTp1woUcjuBOXdNIpVL4+vpyUdcJefjhh71dhDZD6NRFRkaisLCQO3Wc9o9cLodWq0VcXFyHEXWAZVD1ZOi1NWltp669h1+7d++O119/XSTImrulSWuufnVlg1ASKtypc45MJuOijtOh4aKO0yEJDAxEdXU14uLicO7cuQ4j6uLj49G3b19vF8MlSHy0xUKJ9ijqAOCZZ54R/X/AgAF44IEH0KtXL7eu05pOnSv7SHGnzjX69++P3r17e7sYHE6z8ff3h4+PD0wmE1vFz0WdAzIyMrBw4UL4+PggJiYG3333Hfz8/LB27Vq8++67CAwMxFdffdWmeyt1VWg2QsemdZTZ9fr165u1tNwbtGVOXXsMv9ojNDQUq1evdvt9rSXqxo0b59KqtuDgYEil0g7TTrzF4cOHvV0EDqdFSCQSyOVy1NXVtTtR5+PtAliTkJCAbdu2Yffu3ejRowc2bdoEvV6P5cuXY/fu3ViyZAmWLFni7WJ2CUjU0cHvHcWpS0pK6jBuSVdf/epJWkvUTZ8+He+9916TrwsODkZYWFi72NaAw+G0LjQ+tjdR1+6m7sLNBP38/CCVSpGTk4P+/fvD398fo0ePxlNPPeXw/Vqtlh12DwC1tbWtWt7ODLlIgwcPRnBwcLtZ3dOZaMucuo7i1DWX1hJ1rjJ9+nS7m6FyOJzOR3sVde3OqSPy8/Oxc+dO3HLLLaipqRHltBiNRofvW7ZsGRQKBfvDw7TNhyrtddddB5VK1apn6XVVuFPnOVproYSrDB8+HAsXLmzzz+VwOG1PexV1Xpu6l5SUYMaMGTY///nnnyGVSnHvvfdi9erV8PPzg1KpFDluznbxXrx4MRYtWsT+X1tby4VdM6FKGxQUBB+fdqv/OzStfaJEe9+nzpP4+PiwLTN4CJTD4bQmND5OnDgRf//739uNS+81URcbG4u9e/fa/NxoNOKOO+7Aiy++yFa/9ejRA1lZWdDpdDhy5IjTA5FlMpnbWyFw7ENCgyd+tx5dfZ86TyOTybrE9+RwON6F9q/s3bs3Pv/8c28Xh9Huer9169Zh//79UKvVWLJkCf7xj39g1qxZWLhwIcaNG4eAgAB8/fXX3i5ml4BmIq3lInH4PnWeRiaTdYnvyeFwvEtgYCACAgLaXVSg3Ym62bNnY/bs2TY/v+uuu3DXXXd5oURdF6q0/NDq1qO1nTp6dl0lJCmTydw+iYLD4XDcRS6Xt0vDo92JOk77QS6X89BrK9NWTl1XCUny9AsOh9MWtFdRx7PfOQ6JiYnh25i0Mm11okRXCUn6+/t7ZeUrh8PpWnBRx+lwLFiwAH/88Ye3i9Gp4U6dZ5HJZFzUcTicVic1NRUpKSneLoYNXNRxHBIQEMCdulZm7NixWLBgQaudgEE5dV3FqeOijsPhtAXPPvsstm3b5u1i2NA1pu8cTjslISEB7777bqtdv6uFX7mo43A4bYFEImmXi8+4U8fhdGJ4+JXD4XC6Dl2jp+dwuihdzam7/fbb22XyMofD4bQFXNRxOJ2YrpZTN3/+fG8XgcPhcLwGD79yOJ0YEnVdJfzK4XA4XRku6jicToxEIoGvr2+Xceo4HA6nK8NFHYfTyZFKpdyp43A4nC4AF3UcTieHO3UcDofTNeCijsPp5EilUi7qOBwOpwvARR2H08nh4VcOh8PpGnBRx+F0crhTx+FwOF0DLuo4nE4Oz6njcDicrgEXdRxOJ4eHXzkcDqdrwEUdh9PJ4eFXDofD6RpwUcfhdHJ8fX25U8fhcDhdAC7qOJxODnfqOBwOp2vQbkXd999/j6ioKPb/tWvXYuTIkRg/fjwuX77sxZJxOB0LLuo4HA6na9AuYzImkwk//vgjEhMTAQB6vR7Lly/Hnj17cOTIESxZsgSfffaZ3fdqtVpotVr2/9ra2jYpM4fTXgkKCkJQUJC3i8HhcDicVqZdOnVr1qzBjBkz4ONjKV5OTg769+8Pf39/jB49GidPnnT43mXLlkGhULA/JAw5nK7KV199hcWLF3u7GBwOh8NpZdqdqDMajVi3bh1mzZrFflZTU4PQ0FDRaxyxePFiqFQq9oeHajldnd69eyMmJsbbxeBwOBxOK+O18GtJSQlmzJhh8/OHH34YM2fOZC4dACiVSlEY1dfX1+F1ZTIZZDKZZwvL4XA4HA6H087xmqiLjY3F3r17bX7+zDPP4NixY/j222+Rk5ODJ554Am+++SaysrKg0+lw5MgRDBo0yAsl5nA4HA6Hw2m/SMxms9nbhXDEsGHDkJ6eDgD44Ycf8N577yEgIABff/21y7lytbW1UCgUUKlUohAuh8PhcDgcTmeiXYs6T8BFHYfD4XA4nK5Au1soweFwOBwOh8Nxn07v1JnNZqjVaoSEhEAikXi7OBwOh8PhcDitQqcXdRwOh8PhcDhdAR5+5XA4HA6Hw+kEcFHH4XA4HA6H0wngoo7D4XA4HA6nE8BFHYfD4XA4HE4ngIs6DofD4XA4nE4AF3UcDofD4XA4nQAu6jgcDofD4XA6AVzUcTgcDofD4XQCuKjjcDgcDofD6QRwUcfhcDgcDofTCeCijsPhcDgcDqcTwEUdh8PhcDgcTieg04s6s9mM2tpamM1mbxeFw+FwOBwOp9Xo9KJOrVZDoVBArVZ7uygcDofD4XA4rUanF3UcDofD4XA4XQEu6jgcDofD4XA6AVzUcTgcDofD4XQCuKjjcDgcDofD6QRwUcfhdCD0ej0mTJiAM2fOeLsoHA6Hw2lncFHH4XQgVCoV/vjjD2RmZnq7KBwOh8NpZ3BRx+F0IPR6vehvDofD4XAILuo4nA6EwWAAAOh0Oi+XhMPhcDjtDS7qOJwOBBd1HA6Hw3EEF3UcTgeCRB0Pv3I4HA7HGi7qOJwOBHfqOJzOy/bt2/HRRx95uxicDgwXdRxOB4KLOg6n87JhwwZ8+umn3i4GpwPDRR2H04Hgoo7D6bwYDAaeWsFpEVzUcTgdCJ5Tx+F0XgwGA2vjHE5z4KKOw+lAcKeOw+m86PV6PmHjtAgu6jicDgQXdRxO54WHXzkthYs6DqcDwcOvrYtarfZ2EThdGC7qOC2FizpOm/D+++9j2rRp3i5Gh4c6fO7UeZ6qqipERUUhPT3d20XhdFG4qOMAQGVlZbPfy0Udp004d+4czpw54+1idHh4+LX1qK6uhlarRX5+vreLwumi8Jw6zpEjRxAXF4eysrJmvZ+LOk6boNfruRDxADz82nrQPa2rq/NySThdlc7o1B09etTbRehQlJaWQq/Xo7i4uFnv56KO0yZwUecZXHHqGhoacO+997bIwu+KcFHH8TadTdSdPXsWQ4cOxenTp71dlA4DPX+VStWs93NRx2kTeFjBM7gi6i5evIhvv/0Wx44da6tidQq4qON4G4PBAJPJBJPJ5O2ieARaeFRbW+vlknQcqG/noo7TruFOnWdwJfxK97mhoaFNytRZoHvLRR3HW1C77iwbEBuNRgA8XcQdqP+uqalp1vu5qOO0Cdyp8wyuOHX0u/r6+jYpU2eBO3Ucb9PZcmb5wi734U4dp0PAnTrPwEVd60EDqUaj8XJJOF2VzibquFPnPtyp43QIyKkzm83eLkqHxp3wKxd17sGdOo634aKOw506Toegs+WKeAvu1LUeXNRxvA3Vwc4igpojUu+++25s3769tYrU7uGijtMh4CcheAYu6loPLuo43qazOnXu9PubN2/u0qe68PArp0PQ2Wag3oKHX1sPLuo43qazibrmfB+dTgetVttaRWr38H3qOB0C7tR5BlfuIxd1zYOLOo636WyTX3dz6sxmM3Q6XZceJ3j4ldMh6Gydlbfg4dfWg4s6jrfprE6dqyLNaDQyYddV6ZTh14yMDIwZMwbjxo3DzJkzodfrsXbtWowcORLjx4/H5cuXvV1Ejptwp84z8PBr68G3NOF4G2rfnWVBmbtOHfVdXTn82imduoSEBGzbtg27d+9Gjx49sGnTJixfvhy7d+/GkiVLsGTJEm8XkeMm3KnzDNypaz24U8fxNp3VqXP1+5CY68qT/04p6mJjYyGXywEAfn5+OHfuHPr37w9/f3+MHj0aJ0+edPherVaL2tpa0R+O9+FOnWfgoq71oDqq1Wo7zaDK6Vh0tsmvu6tfuVMnPuaxOeNluxR1RH5+Pnbu3InrrrsOoaGh7OdUUeyxbNkyKBQK9icxMbEtisppgs7WWXkLHn5tPYQhr44Ugv3tt9/Qv39/bxeD4wE6m1PX3PBrV5j8L1u2DGfPnrX5ufC7N8eta7eirra2Fvfeey9Wr16N6OhokePm6+vr8H2LFy+GSqVif3j+XfuAO3WeQZhzYzKZ7L6GZrlc1LmHcODpSCHYc+fOISsry+lkl9Mx6Miibvny5fj+++9FP3P3+3QlUffSSy/ht99+s/m5TqeDn58fgOYtlmiXos5oNGLOnDl48cUX0atXL/To0QNZWVnQ6XTYt28fBg0a5PC9MpkMoaGhoj8c79MeRd327dtx9OhRbxfDLYRukqOOkjt1zaOjirrGxkYAlnANp+NiMpnYMYodUdT98MMP+PXXX0U/4wsl7GMymRyeh67T6RAVFQWgeU6dtMWlawXWrVuH/fv3Q61WY8mSJfjHP/6BhQsXYty4cQgICMDXX3/t7SJy3KQ9hl//85//oE+fPvjqq6+8XRSXEYo6nU4HmUxm8xphTgbHdYR1syOFX0nU1dfXIzg42Mul4TQXYf1rT/2kq9TX19uIMXe3NOkqTp0z8arX6xEREYGioqJmTS7bpaibPXs2Zs+ebfPzu+66ywul6Ti8//77OHjwINasWePtotjQHp26+vp6NiB6kq+//hoffPABjhw54vFrc6eu9eioTh0NDFzEd2xcaduOaGhowOjRo/Hdd9+hb9++ni6aS9gTdTynzj7OVvnqdDooFAoAzWvT7TL82tU5fvx4s/JjTp06hT179rRCiVpOe3TqGhoaWmUgzMnJQU5OjsevC9g6dfbgoq556PV65nR1JFHX3sOvRUVFmDVrVqcPqbmD2WzGTz/9JMqLbYmoKy8vx7Fjx3DmzBmPldFd6uvrbfqk5ubUdfa60pSoo7QxLuo6ASqVCkOHDsXWrVvdfq9Wq0VpaanDBHpvYTKZWJna0wystZy6hoaGVrkuIO4cmxJ1DQ0N7a4utEcqKirw7rvvQq/XIywsDAAXdZ4kPT0d69atQ15enreL0m7IycnBHXfcgYMHD7KftUTUOasDe/bswU033dTMkrqOM6eOh1/F0H2yJ16FTl1zxhEu6toZtbW1MJlMzVr1otPpoNfrUV1d7fmCtYD2mivSWuKLOjdKevYkBoMBPj6WZttU+BVoXqfQXrh06VKr3ENrtm3bhieeeAIVFRUdUtS199XOdC+bu5lqZ4TapTB3U9ie3T1RwpmoO3bsGHbs2NGqEzyz2ew0p87dzYc7u1NHz8uRUxcSEgKAO3WdAnqIzXmY1BBKSko8WiZnVFRU4OLFi05f44q75A3q6+tbxd2ga7bGdzUYDGxj7qacOqD9DvRNUVVVhZ49e2Lv3r2t/ll0j9RqNWQyGWQyWbt1vezR3p06LupsIbEjfGaecOrsTeLoZ60plPR6PYxGo02fxHPq7CMMv86bNw/PP/88+51Op0NAQAD8/f25qOsMOGucTeENUbdkyRLcc889Tl/THkUddUCtFX4FWsclc1XUSaWWNVAdVdTV1tbCYDC0iessFHV+fn4IDAz0qEDauHEjCgsLPXY9a5oSdZmZmdi5c2erfX5TeFrUGQwGfPTRRx16Xz4ScMI+oqULJYR/2/tda7r21IZ4+NU1hI7kqVOnkJWVxX6n0+ng7++PwMBAHn7tDLSkAVJDaEtRV1NT0+TA663w60cffYQHHnjA7u9aIp6bwlEH5wkMBgMCAwMBOA+/Uhixo4o6qsttcbA5tbna2lpIpVIEBAR4rF6YzWbcfffd+Pbbbz1yPXsItzSxx9tvv41nn3221T6/KUjUeerIxoMHD2LevHnIyMjwyPW8gadFnStOnTdEHV8oYR+hU9fY2Cj6vkJRx526dsb69etx1VVXufUeT4RfS0tL3X5vc9FqtU0KB285dceOHRMlIguhMgvvs6cEZ3tw6jwl6pqT2+kJ6Fm0pahrDaeutrYWjY2NrSqum9rSpLy83Kvi3tNOXWVlJQCgrKzMI9fzBlS/HfU/nlwo0R6cOh5+FSN06ugPodfr4e/vj4CAAC7q2htnz57F6dOn3Ur27mhOnVarbbLiecupczaYWt/nDz/8EP7+/h7p+OjareXUtZWo+/PPPxEfHw+1Wt3sazQX+m5tEWJrzfArTbBaU1Q1FX6tqKjoVKKuqqoKgEWsdlQ6q1PnqS1Nuoqo405dB0Oj0cBgMLhVQTtaTp27oq4tG2tDQ4PLou7w4cMAgK+++gr33ntvi0JFre3UtVX49fz582hoaEBFRUWzr9FcvBF+raurg5+fX7NnyPYgUdeaixhcEXVNff6pU6dw8uRJj5cNaD1R15GdupYslNi7dy/++OMP0c9ccepaM6Tp6Zy6rhZ+FY4VPKeuDZg/fz4OHDjg9vtoubo72yM4Cr/++uuvePjhh52+tyOIuvbi1AnDr2azGUlJSQCAxx57DN9++22LBjhP59Tt3r0bN910E8xms8tOnVKpFJWlOZCY88b2HlRP2sKpsxd+9ZQgbwtR19SWJq6EX59//vlWy7sjp9dTOXVd3al78cUXsWTJEtHPnE0km2sUfPDBBy4LZ0/n1On1+jbZzshbCFckW4dfdTpdiyIGXNS5wGeffWYzM3KFlog66wb4119/YePGjU7f663wq8FgcOqoeNOpc7QBL91nk8kEg8Fgc9ZnS8SQp526o0ePYseOHSgtLXU7/NoSQUaDpjfDr23h1NGzNpvNnS782tDQAI1Gg/r6eqeDZE1NTattOcJz6myxFnX/+Mc/8Omnn7LfOxJBZrMZmZmZNvfSWR1ojqjTaDSYP38+NmzY4NLrHYVf3c2psxY3nRVXwq88p66F5Obm4sSJE+z/hw4dglKpxMWLF6HVaps1y/SkqKutrW3yAWu1Wvj6+ra5qAOcOxHedOoA+2UTDrKNjY3QaDRITU3Fv//9bwAtEzKeDndQWXNyckSirqnwq0KhQFFREc6cOdOsOkFOXWfPqRPWj84WfiUBZDKZnLa92traVnNkeU6dhbq6Oranp/VCid9//53tySiVSh1OZoqLi1FZWelQ1NkTbs2ZZNIzKy4udun11EcZDAa7R5+5G3515z0dEaGoEzp1RqMRRqORh189wf/93/9h3rx5ACwVcfLkyaipqcGxY8cANC90QA3Dnc7SUQetVqubnG3rdDpERES06SAsPJLKEdSBSSSSNnfqAPsuibC8DQ0NqKurQ3JyMpYuXQrAPSFz5513Yvv27ez/9HnWDTIrK6tZ9ciRqHPm1Pn7+yMpKQn5+fmYOXMm/u///s/tz20Pok44uC1fvhxPPfWUxz9LWD88HX4lMe2t8KswH9KZW6hWq1td1Hk6/NoenTpnz/mDDz7ApEmTANg6dRqNht0fuVzuUIBnZmYCsL2Xnnbq6JkVFRU5fI3RaMTLL7+M6upqUd0STmabu/rV+t/tkbfeegtTpkxp1nuFq1+FTh3dJ75QwgOo1WrWAe7cuZNt5dCSgc2TTh19vrOGqdVqERERgcbGxjYJW9FnAq6JOrlc3qYN1dn+XcLyklMXFBQEf39/+Pv7u/y86WBuYc6lI6du0qRJ+Oijj9z+HnS9nJwc6PV6tlDCFVF38eJFnDt3DgUFBW5/rjdFnb2cugMHDmDPnj0e/yxrp641wq/ecuqEbpYzUVdbW9tqz7m1nboff/zRqwfZE/v370dUVJTD+1haWsr29LQWdXV1dez+BAYGNinqVCqVaILv6YUSroi67OxsvPLKK/j5558dirrm5tQJr5Obm+vyPo9FRUVYsGBBmzj8ubm5OHv2bLPeS9+trq4OZrNZ5NwB4OFXT9DQ0MA6C+HB0zQb9Hb4lToKZx0zOXXufGZ9fT2eeOKJZg867oi6oKCgNg2/OnPq7IVfg4ODAQAhISEuD3BarRZ6vZ7VDzouh64rpLy8vFkrSa2dOplMBl9fX6fhVxJ1Bw4cgE6na9behd5cKGHPqWtsbGwV4dEWos4TOXVmsxmvv/46Lly4IPq5swFdWN+cfafWdupkMplHRV1ISAjKyspgNpuxcOFCfP755y69V6/Xt9qENz8/HxqNxqGDWFtby/pL4epXs9nM8h4B10SdXq8X9S+e3tKExi5noi4/Px8AcOLECVH9Fgqz5q5+Ff579erVeOyxx1x6/59//on333+/WZNYd2lsbLSrC+6++26kp6c7fS/VA3q/PVHHw69uYjabUVdXxypjfX09qqqqYDabUVhYiLi4OEgkEtYpt7VTZy/8au/nQsipc+czjx07hnfffRenT592uYzWn9lUudxx6v78808sW7asWWWxxt6h2YS98GtQUBAAi6hz9f7RQEV/C68rnLFS3kRzBjZrUSeVSuHn5+dw5k2iLjExkTkD7SGnrqioCJMmTXLpevZy6ug5eRrr8Gt7zak7ceIEFi9ejFdffZX9TJgr19zwKwmE+vr6VnE46urqEB8f71FR16dPH2i1WuZwubpJ9v33349//vOfTb6upqYGP/zwg1vOMPUzjgwAtVptI+oo9Ca8785E3blz5xAdHQ1A7Hw627S+JeFXZzl1ly9fBmARmq0Zfi0sLIRGo3HJaaR60BZ55STqhI6pXq/H999/j3379jX5XuBK36rVamE2m3n4taWEhYXhq6++AgDWodXV1aGwsBDdunWDXC5nnXJbOXWOGmBTTh0lqLor6lwJ6zrD007dxo0b8cEHH7j02RqNBrt27XL4e3edOqGoc1XIUL2gDtb6ukRLtnWga54/fx56vR5SqRRBQUEO64LQqSNKS0vd2iJAp9OxsnpK1B05cgTbt2/H+fPnXfp8QOzUtZaos+fUeSKnzmw2o7S01GPO33fffQcA6NatG/uZcKBryqlzVF+Ez9feBKglGAwGNDY2IiEhAfX19S12yXQ6HdRqNfr06QPAIjrq6upcFnWZmZk4depUk6/75z//idmzZ+Mf//iHy2Wj++uojdfW1kKn04kGb3t12pmoq6ysRI8ePQCIRV1rLZQoKytzWBahUyesNy0Nv/r4+IiuQ+cmu3IONN0TVxd42OOXX37B+++/3+TrKM1JeF+FRw46g74b9cm0CwMPv7YAiUSCiIgItjqMbl5VVRUKCwuRkJCA4OBgkVN37tw55ObmuvwZroq6goICFj5oyqk7f/48/va3v9n8nipDeHi4S59JWNu/7uJpp66qqoqFwZti3bp1mDhxosOyu5pTR9s+UPg1ODjYbVFHf1s7dZWVlUhISMCRI0dEr3OHhoYG+Pn5ob6+HsXFxZBKpQgLC3M4kNkTde66hEIx4ClRR2EpVwZgezl1FH61J0537NjR7E2SWyv8SlvqJCUltTj8ajKZ8P3337PrAsDJkyfZpCY0NNShqKPJiqPvJHy+nhbN1AeSEG3pYgka2EnUUSjaVVFXUFDgNKRo/TnutBl6xo7eQ99dp9OJnDprIe1M1FVVVSElJcXmc1pjSxPgysSEKCkpwZYtWwBcceoqKipE42JLnTrqh2msoOflyrjgCafuyy+/xNtvv93k6+h+Cuu0u6LO+mfW4Vcu6txEKOqoQVZXV9sVdbW1tZg/fz6efvppl6/v6urXH3/8EQ8//LBo2xJ7W5oAV/arsxaXVEnag1NnPei649RVVVU53ND4m2++YSc/0GtNJpPdGZzJZHK6KrChoQFSqRSA5btbh1+thUxtba1d0WDt1FkvwDhz5gyKiopw6NAh0evdob6+HrGxsQDAwq+ORJ3RaITJZBKJupCQEADunQlM39XPz89jAz2JOuHzeuONN7B+/Xqb1zpy6hyd0HLHHXfgm2++wZNPPokXX3zRrXK1VviV2lR4eHiLr3fq1CnmWFAdWrZsGVuxr1QqHS6UoHrgSFgK66SnRR1dLyEhAUDLF0vQwE6ijlxfV0SdWq2GSqVCUVGR3b0rhViHx1yhKadO2NcKRZ2rTp3RaERNTQ0TdcLPccWpa85CCUDsen3zzTeYMWMGzGYz8vPzMXz4cACWRUx+fn4AxCHU5mxpQqLO2qlzRdRR/WqJqMvLy8Ply5ebdK3tiTrhkYPOaErUtSRi0OVFHQ1ejpw6GojUajWKiopcsoABSwMUrnBxBv0+KyvLrqgzmUzsNTQwWwsMqgyeFnV79uzB9ddfb9cdIcsYuHL/Kioq4OPjg3Xr1rHXuevUCf8Wct9992HEiBE2Zbf3WmGjcRR+pVMXXAm/Ll68GHfffbfNdZoKv9Js9tKlS6LXu0N9fT3i4+PZ/52JOuFMLz4+Hj4+Phg5ciQA9zo6ql/Jycked+qEbWjlypWiukI4yqkDbOu2TqdDfX096urqkJ6e7vbpL60VfqXvoFAoRJtdC9uAq2IvPT0dEokEw4cPZ3WIJqCARdQ5yqlrStQJn6+nF6LQs6L66ylRRyFId5w6Sp7X6/VsMu8I6j8cOcP2cCX8StcW9pvORJ3wmdG9S01NFf0fcOzUmc1mp4IvIyODLb4QUldXB4lEAkC8WEKtVqOhwXL84uXLlzFmzBiEhISgqKiIbXjeEqdOq9WySSi1a3q27jh1LQm/Ul/dVJoId+raIZGRkTZOXWFhIaqrq5GQkICgoCA2ANXX16OoqMjlTk+o8l0VdadOnbLbOIXXciTqqJJQ+NXVcgpF3datW20aTmZmJnbv3m23Q7CXz0N5FrNmzWI/Ezp1roo6V8SzM1EnvH+OnDq6V/X19aivr3e6+rWsrIx9NyFNhV9J1NGK6uYulGiOqPPz88MDDzzAjpdrjlOXkpLSauFXs9mMgoICuyvVHK1+BWzrNv1fo9FAo9G4tSmt9WpIoahr6TFFVO8VCgX0ej2OHTuGgIAATJ06FYClbSmVSpfCgenp6ejbty/i4+NZXaupqWGf4cipE4o6RwNEWzh1VIamxFRTUFuPjo5GaGhos0QdcMX9cYRWq0VoaChMJpPLA6urTp1Q1DkKvxoMBpw8eVJUP+i7JycnA3CcU2eduE+upL0+fNiwYRg8eLDNzzUaDWJjYyGVSkX1k8paXl6Oy5cvIzk5GQMHDgQANkm2l1NnMplcWoRjHX4VfnZbOHV1dXWsjmZnZzt9rTOnzhOiLiAgoFn9UJcWdUKnjh4GJdHGx8ezykVUVla63Ok5E3WnTp0SVVD6/enTp+06dcJBrClRRw3L3Zy6xsZG3H777fjmm2/sXtdeJbUn6oRijI410+v1kEgkCAgIaHLGRu9vrqhbv3498vLyRPdPo9HAbDZj//797Gf19fVM1FEjdrb6taGhwe6A5Gj1a1BQkEeduri4OPZ/V0UdAKxatQrTp0+HTCZzW9RJpVIkJCS0mlNXWVkJrVZrd4C1l1NH9/bQoUOiNAjhIiKNRuNWbp31gC2VStk+gC116+hZhIaGAgCeeOIJ6PV67Ny5EwBw5swZaLVamy1K7HHkyBEMGzYMoaGhNu4w4FzUkWPrilPnrqjTaDSYN2+ew1AVXa93794AmhZTTUHXCwkJQUREhEjUNTX4UVt0pRxarRaRkZEAnE+QV61ahTfeeAPAlT7f3sTNbDaLnDqq39bhV19fX/j5+UGv1yMnJwc6nY5NCIWCNigoyGb1q7+/v83JIfa2PSGc7e1XV1eH0NBQxMbG2hV1Z8+ehVarRVJSEgYNGgTgythjb0sTwDW3TqfTMafOum9ojqjbsGGDW5tUC7cza46o87RTB1gcQ3dC5y6LuuYmIbdnyKkTztbpIHcKv1rjrlMXFBRk01FOnToVK1asYP8XOnWUFC/c70z4mVRZHYVfAwICEBwc7Hb4Va1WQ6fT2bgc7oo6odCgBkkrNv39/Z06dWaz2Wn4laBVlFQm4WsfeughfPfddzZO3f79+zF69Gjs3bsXly9fRl1dHUJCQiCVSu2KOuvnTFveWOfiUBk0Gg0MBgP7XKVSKXLq6G/rJfCu0NDQgOjoaLYqzB1RB1gWBcXExLg1e62pqUFYWBhCQ0NFdYny2poDiUoSdeScFBcX28ziHeXUAZYFMm+99Rb7nfAZ1NfXo6Kiwuk9/uc//4nPPvtMdE1fX18AV3LqgJaLOqFTB1wJFdKgRSGipp6LVqvFiRMnMHz4cKeizlq0mc1mVFRUICoqCoGBga2SU5eZmYmPPvpIdMQiYBHwly5dYteLjIxEZGRki/cPo+cVGBiIiIgIduyWMEXFEQUFBYiMjISPj0+T7qirom79+vV49913YTabnbo09fX1rO+wDr8KBbGfnx/r/6kvpv6J2k14eDgUCoWNUydMJxH+3N6/gSuT7p49e9qUl9JR4uPjRaFMKuvRo0cBAImJiczpc+TUUb/lTNRVVlZi0KBBOH/+vCj8SmOIMP9dyJNPPon//ve/7P/C8KtKpcL06dOxdu1ah59rDU2+k5KScO7cOaevbUlOXWNjIwtvE45E3ZAhQ0TfsSlcFnUjR450a+VnR4CcOqEAIKfOU6IuJiZG1NkYDAYUFBSIXBNrUWfdOIWfSbMO6wpODUkmkzVL1JEwcnRdYcU9c+YMGhoanDp1qamprFPS6/WizspZWWhwd+bUPfDAA3j22Wdtym4ymaBWq9HY2CjqwOrr69kM7L333kPPnj2xceNGBAYGIiAggAlkEnX2Vr82NDTAZDLZzMKF94WOcgMsHZzQqaPvRRuNukN9fT2CgoKYOPDz83NL1AFAbGysW05dbW0tQkNDbQTuDTfcgOXLl7tVfsI6/Er3xmAw2MymrXPqhLloNJBTHbd26rRaLd577z1R/qWQDRs2sHM26XmRa0vhV8Byssw333zj8mpsa4Q5dYAlNykuLo5NoGiwbOq5nDlzBnq9HkOGDGnSqROK2draWuj1ekRGRkIulztd/Urf2V1Xll5v3S4eeOAB3H333ewZBQcHo1u3bh4Rdf7+/vDx8UFERISon2sqBHv58mWkpKQgJibGY05dUVERSkpKcPHiRaeiTngN6/Cr8DvQHpR6vZ71S9QnUz1UKpWiekDXoXHDemW/8HMJs9nMxI69elFXV4fg4GDExcWJBDB9Rzo+U+jUOcqpo7rlrO/PysrCyZMnkZeXJwq/FhYWIiQkBMnJyXbb4bZt2/DTTz+x/6tUKkRFRaGkpIQJT3dSXvLy8uDn54frr7/eZafu4sWLeO+992A2m91y6ki8Cn8m3KeOJpd1dXXIyspy+Tu4LOomTJiAkSNHslV8nYHIyEjU1taKHsDly5cRFxeH0NBQVrloFg9cOdajKYSiztppM5lMNuFXqVSKkpISFBUVORV11Bk4curcFXXCpGvAVtRZz0bMZjNGjhyJpUuXOhR1CoUCsbGxNqKuKadOeE+sG7DwnmdlZaGqqspG1NGzaWxstHHqaAD98ccfWbnlcjkCAwPZvXSWU0edmfX9EdYdlUrFPjcsLEzk1Dl6jyvU19dDLpczceCuUwcAcXFxdnMCHVFbWwuFQmFzL/Ly8ty6DmE0Gtl9tnbqANtwGHVu1scpAVdEnXU+o3BX/i1btiAjI8PGAdRoNCgtLWX3TuisAmJR98gjj+C+++7Dvffe6/b3FX4Hem5Go5GFIaurq10WdXS/09LS2GBuMBhEkwOlUgmz2SxqX3S/SdQ5C78qFAq7UQUhQ4YMwbPPPmvzXkBcp4uKirBt2zbk5ORApVJBIpFALpc3KeqMRiM2bdrktH9taGhggx0JcaKplI2CggIkJiYiPj7eLafOWXul6+zfv9/plibCazhbKCEUddZOXVVVFfz8/NgEzx2njtJBiJ9//hmZmZm47bbb7PYjJOqs75XQqQsICEBkZKTTnDqhqHPW9ws/Q7j6lRYthoeH2xV11dXVoqO6ampq0KdPH+j1evz+++8A3JuoXLp0CUlJSejRo4coFOvspI6vvvoKCxcuRGVlpVs5ddairrGx0a5TB1zp81zBZVH3ySef4IknnsCECROwadMmlz+gPUMrRamjoS0urr/+egBXnBvawRuwOAau7DlFDdXaqbO3PFutVqNXr14ALJXSunFSBaHyAY5z6vz9/REcHIyTJ0+iT58+TQ7Arjp1KpUKmzZtYrb2unXrHIq6sLAwREVFOXTqLly4gLi4OGa3E8J7UlpaKqpn1iE/oaiz3lNK6NQFBwczUUd2t1wuBwDm1NkLv+p0OrurFO2JOmp8JOqo41WpVCgvLxc1TmE5XUGv10Ov10Mul7OZMIk6OgxaiCNRN2TIEKSnpze5lYOwjDSxsV4dKcwBtc7BFLJy5UqsWrUKgOW+mc1mKJVKkaije24t6qydOqFIp0HIenPkuro69rqjR4/CaDTaCCYKr1iLOqFTR6KBXuOOiK2rq2MuoLVTB4C188rKSlH49bPPPnOY+1NcXAwfHx9ERUUxUWc9aNhzaaiPcCX8GhIS4vQklQsXLuDYsWMsf0z4fQFxnV6zZg1MJhMqKiqQmZmJpKQk+Pr6NinqfvvtN0ybNg3Hjx93+JqGhgbWnqj/Jppy6vLz89GtWzckJCQ06dQ1NjYiKioKgGNRQPtQAsC+ffua5dSZzWaRGG1K1IWHh0MikdgVddQ/NDQ0YNeuXUhPTxdNMoV9xZIlS3DDDTdg2rRpqKurs3HRmgq/XrhwAYmJiZBIJAgJCcGYMWNYGNZ6SxNXnDqhqJPL5fDx8YFOp8OFCxeQmprqVNRROo1er0d9fT369u0LwDKBB9ybROfl5SElJQUhISHsu168eBFhYWE2KQZ0PymtQjipb65T16aiDrBs6/Dpp5/i7rvvdnnX//YMzcTITaEVhiTqaMYgTFIHXMs7oQoRGxvbpKirq6tD//792f+tO2jqEITi0pGoI6du9+7dyM7OxsqVKx2WkcKVwBVhZN1w6Lp79+7FtGnT2CbJ58+fF51vJ8ypUyqViIqKYoOUtVP3xx9/oLS0FCdPnhQtXqAyhISE4PPPP8e0adOY6LN3woZ1WEKYiEzliYiIgEajQXFxMUaNGoU33ngDb775JrumvfArNTbrXDLgyn0nN0GlUiExMZF9PrlqAQEBLF1hwIABAK7UJ3c6Gfpce6IOsB3IHIm6kSNHorq6usk8EUIYftXr9dDpdDCZTGyFKQB89tlnmD9/vs179+zZg6qqKqxevZrtzE51oXfv3qzMBQUFGDRoEPz8/GwGe+ucOnshImE+KCBuE1Q3rAdv6hypDM7Cr4AlvOTOatrnn38eY8aMgUqlsnHqAPuiLjMzE48++igbhKwpLi5GTEwMfH19ERoaCr1ebyNWaR9DoTC0duqE+5UtWLCAiQK1Wm1XwAtZvXo1AODaa68V/dxe+HXt2rVsteuOHTvYd05ISHAq6kjM0ZGF//3vf22227An6ui7OxN1BoMB58+fR69evRAXF9fklheOwq+XL19mbZ+ESHJyMg4ePOhU1Fk7dUKBI6y3fn5+kEqldsOv1dXVrJ46c+oaGhqwePFivP7666zfpHQQKktGRgYefPBB1o9YTzSF4VfhqRJCd5j6PcCyf+ojjzwCiURi49TRJMlVUefv7w9/f39otVrk5OSgZ8+edkWdsJ8/d+4c+w4TJ05E9+7dWfjUHaeuqKgI8fHxzNk2m83YsmULtFqtyBE0m802ixeo/wcs/ZezxQ20utr6Z8J96ui+AZYJiau5zG6vfp0zZw7+97//YdGiRRg3bhyefvpprF27Fjk5Oe5eyutQp0CijjbItBZ1MTExove5Ukkc5dTZ2x27rq4Oqamp7CHaC7/6+vqKwg1NhV+pcq1atcpuZXj44YeRlJRks9jAkVNHYoDyF0JCQlhORkhIiMipI1HnyKlLT09Hv379EB0dzZwTYRm6d+/O/k05jsIGYr1/Er3WnlMXHh7OnLpu3brh6aefxuTJkwFYFsU4Cr/SfSeE4dfDhw8jPDwceXl5qK2tZZ0bzdQCAwMhk8nYDI5yToTiz1WEieHW4VfAMpBlZ2fj4MGDAByLumuuuQYSicTlPdxUKhULv9K9sD4h5cKFC6ipqbGZ5Nxyyy34+OOPUVBQwFZ0kwjp3bs3E++XL19GUlIS4uPjm3Tq7IU/rMOv9sSX9XWtt8BwFn4FgMGDB6OiosJlh5Pa2tGjR506dVVVVUxY0GkjjoQGDTTAlZW01u7hqFGjAEC0OTfdj4iICJFTd/LkSbz//vuiDbFDQkIQHByMH374AWPGjGFt4vfff4fRaGRt3TqEZh1+LS0tRXp6Ojte69y5cywRv1u3bigvL3e4AIVEXVZWFqqrqzF//nx8/fXXotfYE3W0xYc9UUcC7NKlS9DpdOjTpw8iIiKchmppwFYqlZBIJOw7FhQUIDU1lZ3rSf3PqFGj2PmkwnshxDr/TdgnV1RUsPZqz6krLy/H2LFjsWXLFlZPQ0NDbVa/Up/Q2NiIsrIyVFVVsXstdOpInPTv359dz/p+CMOvwJXFPEK3V3hiDWDpl2Uymc1CCXedOhJ1DQ0NuHDhgkjU1dTUoH///jh79qzoeZ89e5bdj4iICLz88svsd3TvN2/ejK+//hp6vV4k0ISUlZUhJiYGcrmc1YPt27cDELdPe4JN6NQBV9qGwWCwub+ORB31pdZOndFodDkf1S1RV11djaVLl+LBBx9EVFQUunXrht9++w333HMPevfuLeq8OgLWTl3fvn2RmprKOiEa5BUKBeRyOWt4roo6e8m8jpy6kJAQ1khIvAlFXUhICHOSfHx8nIZfaSAOCQlBcXExNm/eLHrtqlWr8Pnnn6OwsJBVFEc5dXRdcp2OHj2KmJgY9OvXjwm9sLAwG1EXHR3tMKcuPT0dw4cPR0pKiihvoaqqCj4+PmzHdMBW1D3zzDMsBEQDflZWFrp164aMjAx234ROHYk6clzT0tIAWDo1e+FXeu7C5ywMv27fvh01NTX45JNPRKKOTgShsC4NgCTqmnNUEnWizpy6t99+GwsWLADgWNQpFAr069ePib+mEDp1dC+sT0ghgSTMG6RDrnNyctiq1szMTCbeSdTRHnUUDrPusKxz6uw5ddbhV3sr9Om66enpMJvNzKmj+u4s/ApYRJ3RaHR503Gqu+np6ew7CDtvEnVFRUWoqqpCfHw8E4yORJ2w7tLzoHsulUohkUgQHR2N3r17i0R7RUUFQkJCIJPJRDl11AcJnU5y6vLz87F3715Mnz4dx48fx8SJE/HTTz8hNzeXiSGVSsWevbVTt3XrVgCWhRJUB+k7U/13lM9G4a0zZ87g999/h8lkshGv9kRddHQ0AgICbERdfn4+lEoljh07xgbxPn36OAzlEfTcaCcB+o7Hjx+H0WjE5cuXceutt2Lp0qUAgIEDB6KqqgoajQYBAQF20yschV8BsBXKgP2FEsePH8eePXuQnZ3N6mlYWBj7HIPBAIPBIHLqysvLUVlZKZq00HiSlZUFiUSCPn36OHT8heFX4Mozc+TUEdairjk5dSTqcnNzodPp0KNHD/bMsrKykJWVhb/++stG1NH/w8LCMHv2bHz44Ye45ZZboFarUVJSgrvvvhuPPfYY5s+fj6uuusrugrWysjJER0ezFB2VSoU//vgDgHiVur2JiUqlEonelStXYufOnXj11VcRHh6Om2++WfR+ast0fwoLC7F06VKMGjUKvr6+7OcU1nY1BOuyqFu4cCGSkpKwcuVK/Oc//8HFixfx3Xff4eTJk1Cr1di3bx+WLVvm6uWaxVNPPYUxY8Zgzpw5Lh874oywsDBIJBLWQT7//PNs53bgyuAeFBSEkJAQtpO3q6KO3qfVatGrVy9kZGSwDpVW6QFXRB3NOO2FX0NCQlhFS0xMRF1dHduY8LrrrmNbpJBTBwDXXXcdrrnmGrZ9A11r8eLF6NevH4ArlVO4ybKwwlIZhXtppaamIiwsjLkv1qKOcuoocV0o6urq6pCZmYlhw4YhOTnZxqlTKpWiXBkKxVA5brrpJtxyyy3s99HR0SgoKEBhYSEb0Bw5dTQwSiQSFBQUYNWqVexIKIlEwhqRUMioVCqRzV9ZWcmE0cqVK1FWVobY2Fj4+vqymZpcLodMJmOfT4MZOcGORJ0wtEO4IuqEydZCcW/NqFGjsHPnTpdcJ1ooIQwZCzf5FQokoagjgXz48GE2cGVkZODzzz/H9ddfj8TERLZTfH5+PpKSkpCWlmazZ5aznDrC2iWy50gXFhbiyJEjGD58OH799VdWj+vq6mAwGJoMv1KH6upeV1SG9PR0u05dTEwMFAoFW8129dVXs9+5IupIIJJYTUlJQUBAACQSCUaOHGkj6kgsCMOv1qJO6NQBwIgRI/DXX3/h9ddfB2AJoZpMJgwZMgQ1NTV44403MGbMGNE2IiQwfv31VwwfPhyxsbGsPxM6dcKyC6mrq2PCMSsri4lDV0SdQqGAUqm0ESaHDh2CSqXCxx9/jOzsbAQFBbGke1oZbA9hKotwoRBNMKurq/HXX39h69atCAgIQI8ePWA0GlFeXo64uDiXwq/Woo5Sa6ydOl9fX1HfKxR1NTU1OH36NEaPHg0AIteNNtEVOnX0vbKyspCcnAy5XC56T0NDA0uHEYZfAWD06NF48MEHRULI2qmje2adU+du+FUmk0Emk7G+v2fPnoiIiGCTRfoONGZFRkbi1KlTrA4qFAr4+vpi3rx5SEhIQG1tLV555RX4+fnBYDDgk08+gVarZSYAodPpUFNTw/YBBCxpRzQ+C9sn3VdhXpzwmE8AeOGFF/D6669j3759kMlk+O2335hQF+bUUZt+7733UF1djbVr14rGoxtuuAESicTzom7z5s1YsWIFzp8/j3nz5rFBC7DMaEaOHIl//vOfrl7ObY4dO4aSkhLs2bMH/fr1c5h/4g4U0qSOQ6FQiEKc9GCDgoIQGhqK7t27A7BsdfDCCy84vTaJOpqlNjY24rbbbsPRo0eZOKuurobRaGSnGViLOqFTFxoayh4yOU2VlZX4/fffsW/fPhYSoIUSgKXRPfLII9i6dStzxD788EOoVCqbBHehEyF066gjEAq9tLQ0hIWFsQYuFHXCnDrAEjogUTdhwgQYjUbo9Xrm1AlFHeWM0PePjY21cepkMpnoGdE9A64c60IiTCKRICwsDJWVlVCpVKLcyISEBLb6FbAMeiTmhaJu4sSJePXVV0X35tChQ7jrrrtQWVmJoqIiKBQKluNSWloKhULBOrLExERW3vDwcMjlctbB5+fnY82aNQAsA11aWhp2794tei5CUeco/EoiSfichG4TMXfuXFy4cMHGubUHLZSg+5ubmyty6kpLS9kzF4o66rRIpAUGBuLTTz/FwYMH8cQTT7Bne/r0aWi1WnTv3h3jx49HRkaGqN5Z59TR9xIKpNraWhiNRptJltAhKiwsxC+//ALAsiL24sWLLAdLGC6xF3719fVlk5+m8urKysqQl5fHyi106qjMvr6+UCgUiIiIYPX6qquuYtdwFn61FnV0z9PS0lhfPHLkSGRmZkKj0eDHH3/EiRMnWDRCGH61FnU0gNMk7fnnn0dkZCQLuVL46eqrr0ZNTQ3y8vJQVFTEJvSA5Vm8+uqrWL9+PWbPng3gimtJfaC16yPk5MmTMJvNmDFjBs6fP48tW7bAz8/PJVEXGhpqdzU4iYLvv/8e6enp6NOnDyQSCXvWjnLwqK8JCAiwK+rKy8tZG46Pj2flMJlMiIuLs5tPpVarRatDDQYDG1+Eos7Pzw9KpZIJMjISCLoGLTg6fPgwC7nT76huCJ06Yfj1zJkzrF5TP0JRuNGjR6O0tJSdhR0ZGQmpVAqj0Ygvv/wSGo2G9e32nDrKhSNc3dKkqKiI9TXk1J06dQpSqRTJycmsLpFrJhR1s2bNwq+//somSvSdAEvdUKvVOHz4MKZPn44777wTcrkccrncJmpBbTwqKoqN0TQ+DRo0yK5TR/cCuOLUUXs0mUxIT0/H8ePH2SkylOcnDL8GBQXB19cXeXl56NmzJ5v80H3r168f4uPjWf1rCpdFXXZ2Nh566CF2aG9bc+DAAdx0000AgMmTJ4sS7IVotVq2OszeKjFroqKimOChB0kInboXXngBCxcuBAB88cUXePXVV9k+OIAlD+PGG2/Eo48+ys6hDA4OxqhRo2A2m3Ho0CHodDqcPn2aJc5XVVWxjjY4OJjNfKxFXXZ2Nkt2Bq6c/VdaWor//Oc/rAwSiQRSqZSVOzk5GbNmzYKvry+2bNkCwDLzuOmmm3D11VezTgUQuxz2RJ0QEnWEo/ArIBZ1Q4YMwbp16zBlyhQMHjwYKSkpuHz5MoxGI7Zs2YLffvsNSqWSff9Zs2YhOzsber1eJOro9wBEoVqaxZFTFxAQgKCgIBY6tl7wAlwRP8I9CenfdXV1KCwsFOVfHDlyBBUVFbjnnntYbl5oaCgTdXv27MGoUaNYw05MTBTlwQgTnNPS0jBnzhwAwMGDB2EwGEQiF3Ds1FFHUFNTA61WywS2M1F37bXXYuTIkfjPf/6D9evXixa6CKHd70NDQxEXF4fIyEicOHFCJAKE7oE9p464/fbbkZmZibFjx+KWW25h34FmyWlpabjppptgNpvZFgSAY6dOuFjo9OnTCAkJsfkeiYmJCAwMxFVXXYXCwkL8+uuvACyr4c6cOYMxY8YAuOJyUngSEIu62NhYJgAdibr58+fjf//7H2JiYpCSksLKfeHCBebuBQYGQiqVIiIiAhKJBOHh4WyTc3LqgoOD7Yo6WsFrnVN3+fJlyGQyJCQksGc9atQoGI1GbN68GbNmzcLWrVuZqHMWfqV9EGnvsTFjxojc8AsXLsDHxweDBg2C2Wxmk6ft27eLVs+/9NJLmD9/PusnU1JSIJVKWRul/sbeKtytW7ciKCgIM2bMgMlkQm1tLR577DGUlJSInJ/Gxka7Tl1YWJhNSPX06dPo3bs3GhoasG7dOradDE2yqqqqUFBQgGuvvVZUb6kNyWQyJgroenQ/iPj4eHaPgSuLNvbv3y/aToecbxI9er2eTR4rKirYNaRSKa6//nrWH/fp0weAJc84OTmZ9f1KpRJ6vV7kelLbIiHc2NjIhI9CoRCFX0nUhYSEwMfHBzU1Newz9+7dy4wGHx8f1m/GxMRAp9Mx8eXIqXOUUyd8josWLcINN9yAiooKltoxZMgQAFdEnUqlQlpaGqRSKVvRSg7umTNnmCh//vnnIZfL8dprrwEQpzvQavHy8nLExMTg/fffx/79+zFixAgbUUftVRh+pYlOz5497Tp1wv6InDphDj7tgDBjxgxIJBKRqKPnHxAQAJlMBqPRKKpLISEhWLNmDWbNmoUZM2bg3Xffxbvvvmtzz61xWdQJ92rzBjU1NexhKRQKhzkRy5YtY86JQqGwO5sQEh8fzx6m9UAoFHX33XcfJkyYAOBKpyjc5TknJwc7d+7EZ599hpdffpk5HURcXBwLZ9BDr6qqEm3OaS/8mpmZia1bt2Lu3LmsopEg+9vf/oZDhw6xlbMymQwSiUTk1JFYJOu2vLwcsbGxkEgkrLO1XlrtSNTRfkTdu3e3K+poeb4jpw4AbrvtNmzZsgUymQzJycnQ6/X4/vvvcfvtt8NsNuPBBx9Ev379kJKSgttvvx16vR7vvPMOG9RlMpnIjRQ6ddTIKacuMDAQcrmcfQd7oo7qhzDvkQYfCh/TDC00NJSJkWuuuQaPP/44u38pKSnYsGEDCgsLcf3119t16kJCQhAaGoq8vDwcO3aMdfqUZwjY5oUJF0oIRR25kNZOndBlsMfbb7+NhoYGzJw5E8OHDxethn3mmWfw8ccfs0RuhUIBiUSCwYMH48SJE+weaTQaNrD17dsXly9fZmJUWHf8/f3xxRdfoLCwELt374aPjw+r23QfU1JSkJCQgP79+zNHCHCcU0f1ys/PD4cPH0ZDQ4NocgVY6kRycjISEhKwf/9+HD16FLNnz2bhMRIdNTU1UKlUCAoKYveLVh/6+voiLi4OYWFhkEqlKC4utjn5obS0FB9++CG+++479jNhe6EBwd/fH3K5nHXYtDt+bGwsC++OHz8eZWVluPvuu/HWW29Bp9NBrVajvLycOUCAWNQpFAq2pyZgyRHt1q0bFi9ezELsJLjthV/pedbX1yMwMBCPPvoofH19ERYWhmnTpgGwhH4ASz2mAYwGJqGoO3v2LIxGIyZNmsQc75tvvhn33HMP24rJ19cX/v7+NqJOq9Xi008/xf33349Ro0Zhzpw52LlzJ2699VaYzWYUFhairKwMJ0+edBh+7dGjh80GradOncKNN96Ijz76CCaTiQkDoajbunUrDh06hK+//pq1R3vhV4PBwNxna1EnTBchUTd+/HiRI06TJBI9BoOB9WEk8Ej89+/fnz1vEnW9e/fGqVOn8K9//QvAlTFCeCAA9Q/Wx6HRFks02b148SK7LvUjlDYDXBFOVL7Ro0dDIpGw/pU2wXYl/GrPqdu2bRtWrFiBQ4cO4ZZbbmHO7dChQwFY2guVhca26OhoKJVKlJWVQSqVoqCgAHl5eZBKpYiNjcXSpUvZIgeh8RQSEoLa2lqUlZUhKioKERERGDx4MK699locOHBAlO7iSNRJJBJ0796dtX+j0SiaZEokEiQmJjKnznphJWCZUCcnJzODQOjUUbgZgEjUAcDs2bMRGhqK5cuX46mnnnLpVKAOc/arUqkUHWRtvfEksXjxYqhUKvbH3uavQijPKTAw0ObYDqrU9IB9fHzYz/z9/bFmzRrk5ORg9uzZ+O9//ws/Pz+MGzcO2dnZojwY4sEHH8SLL76IZ555BoBl64ddu3axz7IXfl2xYgVSUlIwe/ZsVo6UlBSsXbsWly9fxrPPPos777yTlUlYbrpeamoqE3WUCEo/B8QWMgA8/fTTbNWZcJC6+uqrsWHDBtx5550iUadQKNhxN5Sw60jUCSFR+eCDD2Ls2LE4fvw4HnvsMdxxxx24ePEixo4di0cffRSLFy9mHaQwVw2w5A1eddVVbDEC3Tdy6oQOnD1Rt2LFCmzcuBHr169nP5PJZPDx8WHbd1BDoonNzJkzERUVhcmTJ+O1117DTTfdhEceeQTnzp2Dj48PrrvuOruiTqFQID4+Hl988QWblQKWDp9EnbUj5Cj8StcTijraeFkikTh01EeNGoVz586xrSKE+wTu3LkTu3fvZk4idTok6oROXW5uLmJiYtC3b1/88MMP6N69OwoLC0WiNCEhAYGBgcxlAizP3M/PD7/88gvi4+NZh3/rrbdizZo1zIF3tPqVOr2UlBSRIBWK2CeffBKvvPIKYmNj0djYiJiYGLz55pvo1q0b3nnnHVYPKCepT58+rBx036jcPj4+iIyMxGuvvYY+ffqI0hA2b95sc6awcECj+0XnyQpFHQBMmTIFPXr0wPbt2zF37lyYTCb88MMP2L9/P1599VVMmjSJDXhU5oCAAEilUibqFi1ahP/9738ALAP0zTffLBq0p0yZwr6PI6eO8kA/+eQTNvDeeuut+Ouvv3DPPfcAELvzKpUKSqUSe/fuZX0yDYgUOgKAO+64g22FQtg72eLHH39EaWkp/vWvf0Eul+Pbb7/Ftddey0RDbm4ubr75ZsyePVsk6kJCQhATE4PU1FQMHz4cJ06cgFarxb59+zB58mTk5OSgf//+eOSRR7B582Y88sgjAK70HdXV1exZbNy4ETExMdi6datdUZebmwutVovAwEAmpD788EM8//zzIlEnDJcKQ8dVVVUICwuzK+oAy0RSLpezCRtFpeg59ujRA8HBwawPojFC2H4DAgIQHh4u2gamoKCALdxqbGxEVVUVzGYzE590rZqaGub2k6ijye3333+Pjz76iN2XW2+9FaWlpaJID2FvoQS1TZ1OB7PZjCeffBLjx4/H6tWrcejQIdZ+hE7dunXr8Mcff7AtuSQSCRPltNL7wIEDbIXyvHnzUFNTwxxwIjQ0lJ1+JHTVhg0bhpKSEpSVleG5555Dfn4+q8PC8GtZWRnLLSwvL0dpaSkCAgLY2dO33XYbnnjiCURFRbF0DjqKLiUlBampqQgNDUVKSgr69OmD7OxsmEwmGAwG1r8GBASwe2Qt6ggfHx+8+eabLq1b6DCi7tprr2Uz+W3btrHkUGvIMhf+cQaJOuvQKyDOqSPI1XrooYdgMpkwadIk/PDDD3j//fdx3XXXoWfPnuzoGGHDASwP5pVXXsE111wDAHjuuefw97//HYBFiI0YMQLPPfcc236isbERZ8+exQ033AA/Pz9WxtDQUEydOhWFhYV49dVXmYAiwSN06gCw3DWz2SwSdSSq6P3Uaaenp+P+++8HIBZ1kZGRmDZtGoKCgkQ5SNRRC1cf0XP46KOPsGHDBrsig0RnYmIi1q1bJ9pcGbCIqPfeew/AlYOWrXeTv+qqq3Ds2DHW+VGZqfO///778eabb+Kbb76xOxGQSqW444472OAHWDqQoKAgFpIgUTd27FgAwEcffQTA8jwXL16MmJgYTJ8+HXFxcRgyZAgUCoUo/BoUFIRvv/0W06ZNw8aNG7F//35s2rQJ77zzDgCLuHDk1NkLv9K9DAoKQn19PbRaLVt+39jYyBxbZ/Tt2xe+vr7Iz8/HN998g/LyctTX10OtVrOBWijqLl68yASGyWRCdnY2UlJSkJiYyM61PHv2LCorK1kbobYlRC6XY8SIESgrK2O5oQDw4osvYtiwYZgxY4boZAR7Tp2fnx8SEhJEAkvY1m666SbMnDkTU6dOxfTp03Ho0CF069YNly9fFk1IampqcOLECQwePFjk1AEWEURCKjo6mm26LRRwP/30E6RSqWjPOJ1Ox+69Wq2Gn58fS3qmwZ/+pjybG2+8kd0rs9mMkpISnD17Fvn5+SzkI1zkExoaCo1Gg7CwMERERLB0DgBshd3NN98MvV7PogPOwq9CoURll0gkGDNmDHr06AHgyuIoYtiwYWhsbBStXgfEos4e9jZB/vrrrzF27Fg2aBPkoj/11FPIyMhgRzoKy3rhwgXceeeduOaaa6DT6ZCZmYmVK1di27ZtMBqN7N5MnTqV9XvUd1VVVbF6tWfPHlRWVuLYsWN2RR09h379+rF/T5s2DYMGDUJAQADrm4cOHcoWIgjDdXl5eUhOThaJOmGEJDg4GHK5nNW/6dOnIzw8nPVr1uez0rMQOnUmkwkDBgwQTXYKCwuZaKDUJEAcoiSnjpxbCukK01yEYkPobFtjnVMnDL9OmTIFM2bMwOnTp/H888+zyNd//vMfJCQkYMyYMZDL5YiKikJSUhJuuOEGkWCm+jF58mRIJBLs27dPVCeDg4NtDArhPRb+jr5bXl4eli1bhv/7v/9DWVkZc0xpzC8tLRUtGKHQ+M6dOwFYxoR33nkHCoVCtE9paGgoBgwYgDFjxmDkyJGQSCTo3bs3srOz2f2xDr9a32d7NNWvAx1I1F199dWIjY3FmDFjkJWVhenTp3vkus5EnTD8av2zoUOH4q677sLFixeZSJs0aRLb2LK4uNhG1BF+fn7sgQpPPggICMCrr77KOgmNRsPCmQBEM1QALIxKnRU5daNGjcJdd93Fvhs5dRqNBg0NDaxyW4s64cyRZk3CBipsFNSYZDIZAgMD0dDQwPI3qLxLly5lZ53a2xIiODgYb731FrZs2WKzOzzh7+8PqVTKwu1U+en1dC+EZRM6dXFxcfj3v//NHAdXCQoKYjM3GvyWLFmC+vp6u2X18/PDmjVr2CpkoVMHWPZ3pIO4R44cidtvvx3jxo0DYFkEpFKpIJfL7Tp1tP8TfUeqBzRAkADSaDTsezeFVCpFQkICjh8/jvvuuw8bNmxAQ0MDamtrRavIgCsrQIWCJjc3F7GxsaL0htzcXFRUVCAxMRGRkZEOB3jaB1Io6gIDA/Hkk0+ytmMvp44WiERGRtpsn0RtjeoLYAnd/Pjjj6IQPX0viUSC4uJinD17FldddZWNqBs8eDBr18K6tWPHDlau33//HQ888AD7XVRUFHQ6HRswa2tr2fXkcjmrN5R8PnHiRPZeoYtcXFyMwsJC1NbWsnC2sLOnf9vbQmrixIkYMWIE7r77bub6AGBOTV1dnWgrGDqI3l7/B1wRE2lpaaJBnhZ4FBcXs+8bGBgoeo09hE7drl27sGrVKuzcuZPlllq/NiIiAidOnGB7agpFHb2GUgSkUikOHz6M7du3Y/To0ejfvz+ru0ICAwMRGBgo2seNuHTpkl1RRy6WsE4Lvys926CgIPTt29fmJIaLFy8iJSVFJOqUSiXrR3v06MGcOuCKG5aamsryGYXQZ5eUlGDGjBnYtGkTRo8ebXNk1/+3d+bhbVTn/v9qsbVZsmR5i504cRISO3tYE0LIQgJpKVtZUwhbWQql7NAChS5wCwUK5dKWwg/KUgIlcLmQspQQIBDCEkJYsy+O7cR2vFteJVnS7w/f9/jMaEYaLbYk53yeh4fEkUdnZs6c853v+5731NTUsLqZfL00XtSRU0f1UlesWIGVK1cyR4w/PzpHNZScOrfbjTFjxuCwww7Dq6++ismTJ2PRokXIz89nea9nn302cnJysGfPHparLIdE3ZQpU1BZWYmWlpao/Y0/T/45pj5Ez9c///lPfPvtt2wu5cOvdrudjS/bt2+XzJM0blDdQHK9S0pKcOSRR+Kxxx7DqlWrAAyE0Pfs2cPmE4vFAoPBEDH8Gg/G6B9JHx588MGkH5MPv8pxu914+OGHJS4OiYiysjLcdNNN2LRpE1555RVs2rQJixcvxgsvvICGhgZJgqkSeXl5klV7fEcBBlc38aKOd+p45E5dRUUFXnzxRfbv5eXlaGlpYbkg1HHpLZO/BrNnz8ZXX33FHBKv1wudTodQKKQq6sgx4p06APjFL36Ba665Bm+88YZqZ7355ptVrxEw6JrRwycPv9L94K11PqcuXmw2W5jA4lfLKkFihW9nJOeCJmUKlxx++OGKTh1NXNOmTcPatWvZRCUXdVSORouoAwb68DvvvANgMH9Qyamj1Yt8WGffvn2YMWMGzjzzTPh8PjzxxBPYvXs3Wlpa4Ha7MW/ePCaK5CxcuBD33HOPRNQBYMnbtIE9IF39ajab8dOf/hRz5syRbOINDIq6SBMOodfr4XA4sGHDBgQCAcyaNYuJL7onJN6Awb5VWVmJtWvX4t5770VtbS16enrw4x//GC+//DLb45QSoDs6OtDZ2cletO677z7mnF966aXM0SWKiorYc0Zb2nV2dqK1tVUSngGA3/3ud1i+fLnihuM2m02xFqHFYkFfXx9z6QoKCtDZ2Qm/349gMKjar4uLi3H22WfjpJNOkrSXL8VCZSNKS0ujOgm8Y3jnnXdiw4YNMBqNqi/pEyZMQGlpKX7+85/jyiuvlGzLx2M2mzFz5kw89dRTqK+vx3PPPScRzXKo7hmFM3/6059i27ZtElHHr36VizoShoTb7UZtbS0bo0eNGoW6ujocf/zxWLp0Kerq6lBeXg6TyYS+vj74/X64XC7U1dUhEAggJycHDz30kCRaYTQaUVJSgj179kgWhAHhLtppp50GYHD3msMOOwybNm3C7t27sXTpUtZ/aExTcup0Oh3Ky8vDCj7T+RHRRJ28pAnVPwwGg7j55ptxwgknsH6yePFifP311zjnnHMAQNUIAQbz6yjcvnXr1qiijnfq+DmC7hOZBT6fDytXrmRjFl0vKlnFz+UrVqzAY489Jvlcbm4u9uzZwxbyvP/++5IqCNT+/v5+rF69GsDA+JudnR2TU6eFjBJ1Q0Ekp06n07GkaoIXdZMmTWIrosixGDVqFAKBAAKBQMQOSoMKCTv5YgW3243m5mZFUSf/LHVWvswMDw0ItPSdPr9kyRLU1tayEKfVasXmzZvx61//mpU88Xq9yMvLQ0tLi6Koo0ULvAPADxg6nQ6nnHKK6nXQgs1mC3Pq8vLyYDab2WQsF3WxiBu175TXJotFJJaVlcHtdkcUdXSd+EUH69atk3xGHm6ikAUwKOpoEqJQbCyijvYpJVHHrxinSdxisSAvL08S6qHE43HjxuG2227D+++/jz179qC3txdut1tSG1HO3LlzkZ+fjyOPPFLy8/LycmRnZ2Pr1q2KTp3FYkFlZSUqKytZLiqJBHrW1BwnOU6nEx988AH0ej2mTZsGq9XKwmZyiouL4XK5cOONN+KKK66Ax+Nhgmry5MlYsGABVq9ezQQ23VcKvwKQPAOjR48O6xdGoxFlZWWw2WzYunUrC2tS7hzPeeedhx07doSF5CJBTh25R5MmTUJnZ6ckvK+ETqdjTgMA9qzzDlhpaSm2bdsWNfQKgLn6wMBuE0cffTROOeUUVaf+hRdegN1uZyWbGhsbVZ/D5cuX4+abb4bFYsFxxx0XsR00/tLipSeffBI33ngj3nzzzTCnzuPxMFFH84W8vbxTBwwsoFi7di12797N7qXcqZPXROSdOh65oAMGF9/09PRI0krIqSsqKmKlUY444giJSAGkc4jL5UJ1dbWkxqkc/nwjPWNKJU1IOOv1ejz00EOSz1966aXwer045phjVI9JLF26FK+++iqmT5+Oo446Cs8++6wk/KoEPxfx50DXneaVefPmYcOGDWwe0ev1rK/a7XYUFhZi+vTp+O1vfyvZm5h36qjEktVqVVwscfjhh0Ov1+Pxxx+H0WjEjBkzkJ2dLXHq1J6DWMiY8OtQEUnUKUEPg9qqWj4pPJJTR6vc9PqBWyB/+3G73aipqYHf72cPrZqoI7GlVHAWGEzelYs6nU6H/Px81jGpo/M1n7xeLzu+mlNnt9vR39/P3DR5+xJFyalzu92SB5YPQfM5dYl8p1zUae0jwMAA1NDQoCq0gUHRtHfvXhiNRowfPz7MHWxsbFT9Xnrrj9ep4wUMheap4DIgvY+jR49GMBiUTDp8f5g4cSILv0Z727RarWhoaGA5ZYTRaMTkyZOxbds2xZw6/n5S2+bOnQsgNqcOACueXVlZya6vPKeLuOGGG/Dvf/8b06dPZ0WXd+7ciezsbIwdOxarVq3Cgw8+yEQd3VfeqdPC+vXr2QsWrcqrqalRnLh+85vf4Cc/+YnmY5vNZgSDQfZcl5aWorOzU7K6WgvUltGjR7NnjsScFlFHQqStrQ1NTU248cYbI9b8nDBhAgoLC9mz7vf7Vdt600034aOPPsJLL70U9RlwuVwsp44+Szvc8CvteacuOzub9Xl5fi5fOgYYGPu3b9+O/v5+tmCCnDoSdXIBpybqIp0DIBUC5NTRSk9gQEzQNaP8T/7Z5nPqtIi6aE5ddXU1W7CgdJ48U6dOxV/+8hc2D0bCYDDgjDPOgE6nw1FHHQUAmsOveXl5krxuefj1tttug16vl5gD/F7gBoMB3377LX784x9LrgXv1NHqV7X+mZOTg8rKSmzatIntZmQymZLu1B3yoq6oqIipci3Y7Xbk5+erfp4XcpGcuptvvhlXXnklysvLWWydx+12s5VN1HFPPvlkPPTQQ2HfnZeXB71eryogioqKYDKZ2F6P8rcB6pg0INFK40AgIFk1pCbqaCAgF0DrxKqVnJwctLe3Iysriz38l112GR5//HH2GWpbYWEh+vr6Ij5cWlAKv8ZyPKoZGAkqz7J3717k5eWhsLAQ7e3tLPS4adMm/O1vf2PlJeRQ8rNc1EUSkjx8SYK2tjZWH8zj8cBsNksECb388H2a7w8TJkzA7t270dzcrOltU61EUmVlJbZu3cquAb/6lZ+oabBetGgRcnNzmUOhVXjTpHPLLbdE/eyYMWMwb948JoKrq6uxY8cOTJw4keXE5OTkMNeUL14dS13PMWPGhBWbrampScr2i3TtKKeKwq/RnDo5tAjKbrezPkH/1+rU9fT0sJqSFNqPBn8NIj2H8+fP1xQZIKeOr3s3btw4eL1eJsLoPCnXlF8gJhd11Od5UcdjMBgwevRo9swqiZ0f/OAHWLp0adS2EzQG823Jzc3F5MmTUV5eztp0xBFHsM/s27dP4gwB0pw6NVHHLwaJNL6Xl5fjm2++YeF03qlLJjNnzkRWVlZUp04p5xoId+oqKirw6KOP4sILL2SfofOVXxO6rnq9nt1Dcuoop04NEqN8+RYh6pIM1bnROqiVlJSovtEDkNiukUQdMWnSJMUHKT8/n4XlaCApLS3FDTfcEPZZKrug5gpQiOnbb78Ne2MBoOjUAWBbZP3gBz/AQw89xHbUAAYHWV7UNTQ0wGazaXrrigWbzYZQKCQZiMrLy3H66aezv5PwLCoqQigUQktLS9SVz9G+k3fq9Hp9TK6LVnJzc9HY2Ij8/Hz2QNPb4yOPPILy8nK2160cefg1loUSgFTUUS6fz+dDU1NTmJCgCVtN1E2cOBHd3d2oqqpKaGCqrKzU5NTx+X4tLS046aSTAGh/oaD6aytWrNDctsLCQmRnZ6O6uho7d+5kxWyBgXtBiw748GusfUY+Zqg5dbEiF3WFhYVxOXVUWFyn07GohFzcRYIWStAKTa0hZP5ZTuRljSBRx/crCnNSaJ1EHQBWwiOaqKNj0bXhF0wZjcaITt0NN9zA9nDWglpbPv74Y9x8881wu91wOp0Sgbdv376wSArv1EV6fuTnqMQDDzyA++67D/v370coFIrq1MWLyWTC3/72t6gL4JRyroFwp85iseDqq6+WhO3VImM0vtH2fADY6tfu7u6I14dy9nhRJ8KvQ8Do0aM1i7rf//73YUnaPNnZ2cjPz4fD4dB0zKlTpyqW2nC73cytiGYxAwOdNpJDQ2+A8s4NhDt1/NYxXq8XbrcbN9xwgyQJmpK35U6d2pteItBAE+n86Lz4nSwScThsNptkWxulOobJgNrodruZSCKB1draisrKStXzVlooEWtOHcEv0KitrQ0TxNGcumnTpjExn8jAVFFRgcbGRiY+AoEA1q9fjz179iiGX0eNGiXZ/FqrqHvzzTfR09MT0wuIXq9HWVkZampqsGPHjjBRB4A5OrTQIdYdeGi/aKKhoSGpoq61tRU6nQ5utztup45eXEm4TJgwARaLhSWyR4LCrzt37kRJSYnm8YJ/lhPJlSV4UUfHIydWSdTRC6uSOwYMzCG5ublMwJBTN3v2bMlOEPTM+v3+hMWOUvgVAEupmTFjBisGTZ+pqqoKe7ZdLhcCgQAaGhoi3g+32w2LxRLxmdHpdCgrK2P7UQeDwSHbuOCyyy6L2ucMBgMrk8JD95xEnVL/VxN1dC35fpibm8v2Qo7mJOv1elaS7bzzzsOSJUvYPJqMvn3IL5QABlamac0Do33jIlFSUhK2VF6N2267DZdeemnYz/kHVYuoKygoiCh6TjzxRNx3331hnRsId+ro+yj8qHZcl8sV5tQlO58O0CbqXC4XnnnmGQDA22+/jcbGxoSdOp5kuANKUBt5p44EVkdHB6sTpkSiq18rKipw55134oMPPpCIuj179oSJf3LqyKWRr4aeOHEi1q1bh1deeYUVTo0HPoRHG3BTfUB+dTFN8jR5UgqFVnGiNUQth6rC19TUSEKHdM07OztZnkxvb29c7m5xcTGCwSBLzk9G+JX6b1tbG1vV2d/fz3LstPbv008/nQluEvpUvkNLOyn5fOfOnZpDr4D28KtWyJ3iw6+03djOnTtZqodc1Km5YxdddBFzf4FBwVtRUYHTTz9dkq7i8XjYQolEUGsLwe9Z7XA4oNfrUVNTEyaE+LqN0USdlpcmEv1U1zLVu1E5HI6weY/SlSj8qtSnooVfldJB+N9TYtq0aaivr2fjK92jF154ISmhV0CIOgCQPIzJYNSoUWFV09XIy8tTdeoILaLuqquuiugkHXvssbBarTE5dVR0V20CpPyaoXbq6JjRJuKLLrqIVUPv6upKaDKUP5ixLJKIBSWnjsQ0bS2kBi2U4Fe/xpJTZzQa8fvf/x7nnnuupGDp7t27JTWqgMEJ3G63w2azoaurK2ygnD9/PttXNV54J9BisUj2z+Qnh6VLl+Kxxx6TlEWxWq1Jz+eUU1ZWxrYF41fv0jWnkCuJungm7lGjRsFqteK7775DMBhMevjVYrEwsUIpBlr7N/8CSsLFbrdrftbIqdu9e7ekLEo0TCYTsrKyIi6UiAW73Y6uri6JUwcMCJLdu3ez76Dnr6Ghga0oBcKFlMlkkoSSSQDNmDFDUkEhUvg1VqKJOh69Xo+8vDw0NzcrOnVEtPBrPKJuKMKvsbBs2TJWE5SHahXqdDrFly9+oQSPkqjjBVm0/qk0B/O18BJFiLoh4Ne//jXLBYoXvriuloeCtgpTw2Qy4YYbblB0fmhCkufU0UopraKurq4upoFaK1qcOkLt7Sne79Tr9RHreCUKtdHtdiM3NxfFxcW4+uqrMWrUKHR0dEScLE0mE9vNARjMqdMyyPPwq4uBwQmMh0RdTk4Ou9/JCBXI4Qc2q9UqeY6orAW1+Wc/+5nkd2mrpaFk7Nix8Pl8KCkpkezkwIdfKU8GUF+RHomjjjoKXV1dqK6uRnt7e1JFXXt7u6Koi6d/H3PMMZg+fbriJKUGOXVdXV2KZR/U0Ol0yM3NRXNzc9JEHRVj5o+Xn5+PHTt2sPvHO3Xjx4+Hw+GA2+2W5Bertfezzz4L+9xQiDotL/3AYJksuUjhfz/SS3lRUZEm8U73lWoiptqpk29VR5CoozqgctTCrw6HA0ajUTL+HXnkkZgzZw4+++yzuJ75u+66S1K3NhGEqBsCotVI0gKJOq0PrBbuuecexZ/LnTp6cKOJOlq5SwNBpNVTiUACS4uISLaoo83Xh9qpy8/Ph06nw6efforjjjsOr7zySlSnzmw2SwaCWHPqCJvNJnHEAIRNuBQWtdvtbEujoSAnJ4eFd8mpI3dHKXWAJz8/P+pnEoXyrk488UTJREDPiNfrZU4dgLicOiqy/p///Aft7e1JX/3Kizp6xuMRSjNmzJAUpNYC3cuenp6YxzaHw5E0UUfjVHNzs2SBh7yQO10nypXU6/WoqqrS5Fjxop8gdz0Zoq6yshKTJ0/WLCJoTpGPKfKtttT41a9+pZgqJCcvLw8GgyFtnDo1LBYLGhoaVHOA1cKvlKPIj7N6vR7vvvsu7rnnnriiFVpWjmslPa+2YEhEnRrynDqDwQCHwxE1/Prkk0+yLawMBgMCgUDKcuoIefJqot+Zk5OTtJCPEnz4FQDbBLq5uVlT+FUu6uIpuqwk0OSizul0YuzYsZgwYQJycnLizknTAjkKFosFnZ2d8Hq9uOmmmxRXfvO8/vrrCQl5LfCijoe/HvxqtkRWTNO5DEf4dShcVyUsFgsr/RDr2MYXw04U/vx5N01N1AHq4bhYSOZCiXPOOYftxKAFcvDjFXUlJSWSOqxqUL23dHHq1LBYLOzlUQk1pw5AmKgDBq4d7bWcSsTq1zQlFaKOn9ypOCugLqYsFgtb1k2DQSpz6uSfSYZTZ7VakZubOywLJQjacigYDEYNv/ILcmLNqSOUXAe5qNPpdKiqqsJZZ50Fm802pI4YXzrB5/MhEAhgypQpUUtmjB49eshF3Zw5c3Drrbfi1FNPlfycv+a8U5eIqKN7n2ynjhZKAANO3VCt7FaC3/s1laKOxpSmpibJ8ahf8/eP7mEy8jXlO0oMJ/L9sgnanQJIXo3RoqKitHfq6JzV+lMkEa8k6tKF9LzaAuTm5sJgMMScHxUPcqcO0CbqeHJyctDR0THinDqbzcaWxQ8FcqeO/rx582YAkYWp/HrEWqeO4M+NJh2lfCea+C+88MIhFU98IVcquTGUzmAsWCwWxbqBaqIukYk7mU4dv/q1oqJC4lQNdR4iD/9d8YRfgeQ6dZ2dnYoJ7/z9tNvtaGlpSYrgiVR8eKhRC78CA/eip6cnaS/lRUVFGeHUAeqLhNTCr8BAfUV+j9t0Qoi6NIVWK6XKqXO5XNi/fz8A7aKO/38ySeVCCZvNJskbTDb8QgnC7Xazax/NqeNJJKcOGBh83W436urqIiaxX3HFFTEdP1boRYZ2HwDSR9SpIRd1yQi/0r1PZviVUglo66Pa2tohc6GV4L8r1hfWoXDq5MeTh1+B5Iq6ZC6UiJVIos7pdOLAgQNJFXXbt28HkP6iLp7w69/+9reha1iCCFGXxlAi7FCj5tRt2rQJQGyiLtVOHf+ZZDl1v/vd74bMai8oKIBOp5OsIHS73Wzvz2gLJfj2JppTZ7FY4HA4ooq6oYYPv9ICjkwSdVSnDkiOU5eM8KvRaJSs5DYYDCgsLER9fX1M9eISJd2cOvnx1EQdkPzw63CLOrWcOmDwXhxK4ddERF06j0fpebUFAIAPPvhgWHJdCgoKsHDhQsycOZP9LC8vjxU/TbVTF0sJDf4ziQhMPqfu8MMPj/s40TjllFOwYcMGyQQn38tRDfn+jYnm1FmtVrYTylA5k1rg91YkhmKLtmSS7k6dTqeD2WyW7IlcXFyM+vr6lDl18eTU0cKsROH7Nz9mDJeoCwQCKXPqlMZF6mPJeu4LCwvZjjyZ7tSlciyMB7FQIo3R6/XDIupMJhM++OADyRs7rfKjf48GDRSpDr/yNfcScUl4p24oycrKwty5cyU/40OxWnPqXC5X3Dl1vKiz2+0pdemAwfP3eDzsZ+n8ZgwMXU6dXq9P2jMld+RpN45U5NQZjcaYny2n05m0RR38dlfyOnXA0Ik6s9nMFv+kaqFEJKcuWX2BH0PS3alTO+dZs2bh2GOPHZLo01AiRJ1AEdrcGsis8KvBYIDRaEw4ZDVcok4JXtRFup789XA6nejq6oLP54s7/EpOXapF3UUXXYSZM2dKdnrJVFGXiFO3cOFCXHzxxUl7sVMTdalw6lwuV8zndcEFF+DZZ59NSjv4FfuRVr8CyRV1vOs63GKHaqEp7VzgdDphtVqT5qrxY0imOnXHHHMMNmzYENP+0OlAekpoQcqJ1alLl4USwMCAnOjqTN69Gm5I1OXk5EQcEOWijlabxevUWSwWXH311ejq6oq1yUmltLQUX3/9NZ544gn2s3QXdXzOGl+nLhE3Zt68eWzj72Qgn8Rock+FUxfPqv5Ro0bhrLPOSlpb7HY7PB6P5HmxWCyw2WxD5tTxIefhFnWTJk3Cjh07FHMo8/Pzk5K7SWSSUzecLzXDQXpebUHKSSenLpY6dcCAqBkJTl00YSoPv9Lm1LEKIN6pW7JkSUy/O5Twk0G659QBA9e9t7c3aU5dsqE20f9T4dRRXxuOVf3RUHLqgAG3TqneZTJeWFMp6gCoLoq56qqrsHTp0qR9TyY5dal4cR9KhKgTKMJvW6LloRxpTl2yi3HGArkY0YSpfCPy9vb2sJ9rIZWuZCT4fpfuTh0gFXXJcOqSTTrk1PHh11RDL6Dy5+Xoo49GRUVF2Ocy3amLREFBQVILitO2h6FQKK3Ok0c4dYJDilgfxOHIqdMqVkwmU8JOnV6vxwknnIBZs2YldJx4MJlMsNlsMTl1EydOZH9OpKRJOsH3wUwRdUDycuqSTTrk1KWTU0djlfz8X3rpJcXPjWRRl2yMRiPy8/PR1NSU9k5duo17iTJye5VgWBlKp85oNMJsNmt++JLh1AHA2rVrEz5GvLjd7qjClBc6/P6VwqlLDXTdk1WnLtnIRV0qcuqoDekg6tTCr3KSKeocDgfbJzud+sZQUFRUlNaiLl1fZhMls5Z1CNKWoqKipIkpJV566SUsX75c02dPPfXUpOaHpAK32x2TU5eIqFPaUSQdyMScOiB5deqSTTo4dTqdDhaLJS1EnVr4VQ49h8kQdTqdjq2AHclOHTCYV5eu5yly6gSHHJdddhmefPJJTZ89/fTT8d133w3ZJCbfQD0Sf/jDH4akDcPJhRdeKNllQgkSDnq9HqNHj5asvowFvV4Pq9WadoNbpjl1SuHXdHJj5OEms9mMgoKCpBQ3joWlS5dizpw5w/qdSmh16k4++WQ8/vjjSROiLpcLLS0taSt2kgWJunR16kT4VXDI8cQTT0jKSkTCaDRK8roEiXH99ddH/Qwf7jMajSgtLUVtbW1cW5rRHrfphMipSy5K2wG+//77KCsrG9Z2vP7668P6fWqo5dTJcTqdSd3vmMThoSLq0vU8R6qoE+FXgSo6nW5YdrQQxIc8xDdmzBgAsYdfgQEn9Nhjj01e45IAveHr9fq0fdvnofuRrDp1yUZJ1E2bNm3IUibSnVi2H0wmh5qoS9dnV4RfBQJBWpFMUac1zD6c0KSXCS4dkDlO3XCLmHRFq1OXbEjUpZPgHwqEU5cahFMnEGQoer0eRqMxTNRligiKBr3hZ8r5KC2USKeJW8mpO5QRTt3QcvTRR+Poo48e9pxNrdD9T0Ut0qFkZPcqgWCEw4f6EnHq0hHh1CUXIeqkLFmyBDfddJMQdUPElClT8Pnnn6e6GapMmzYNzz33HI4++uhUNyWppJ1T9+WXX2L+/PlYsGABzjnnHPj9fgADJS3mzp2LxYsXo7a2NsWtFAjSA5PJxITDueeei7/+9a9pJSQSgZy6TDkfPqcuE1a/HupMmDABDz744LDnDdOOMSNd1KU7Op0OK1asSNucv3hJO1FXWlqKd955Bx9++CEmTpyI1157DX6/Hw899BA+/PBD3H333bj77rtVf9/r9cLj8Uj+EwhGKmazmYmeoqIiXH311SluUfLIRKeOFnVkQp06QWo4VJw6QWpIO1FXXFzMVqNkZWXBaDRi165dmDp1KrKzszFv3jx89913qr9/7733Ijc3l/1HISmBYCTCh19HGpko6kjEpaNTJ0RdenCoLJQQpIa0E3VETU0N1q5dix/96Edob2+XLLsPBAKqv3fbbbeho6OD/SdCtYKRDC8kRhqZuFCC2lpaWorCwsJhrwEXiZycHOj1eiHqUsyRRx6JpUuXstWhAkEySZn/29DQgLPOOivs56tXr4bRaMSKFSvw9NNPIysrCy6XSxJGjRQDH8nOhUAgZySLOnLqMuX8+HtRUFCAgwcPprhFUn784x+jsLAwY67nSKWsrAxr1qxJdTMEI5SUibri4mJ8/PHHYT8PBAI4/fTTcdddd2HSpEkAgIkTJ2Lr1q3w+Xz44osvMGPGjOFurkCQloxkUZdpTp3FYknrtubk5GDZsmWpboZAIBhC0i5Tc9WqVfjkk0/Q2dmJu+++G1dddRXOPfdcXH/99ViwYAHMZjOee+65VDdTIEgLzGZzWguJRMi0nLqLL74YRx55ZKqbIRAIDmHSTtQtX74cy5cvD/v5eeedh/POOy8FLRII0pfCwkLk5uamuhlDQqY5dRMmTMCECRNS3QyBQHAIk3aiTiAQaOepp56CXp+2650SItNy6gQCgSDVCFEnEGQwI3kz9kxz6gQCgSDVjMxXfIFAkPFkWk6dQCAQpBoh6gQCQVoinDqBQCCIDSHqBAJBWiJy6gQCgSA2hKgTCARpiXDqBAKBIDaEqBMIBGmJyKkTCASC2BCiTiAQpCVC1AkEAkFsCFEnEAjSEgq/ipw6gUAg0IYQdQKBIC2hosrCqRMIBAJtCFEnEAjSEp1Oh7y8PBQUFKS6KQKBQJARiB0lBAJB2rJlyxbk5+enuhkCgUCQEQhRJxAI0pbi4uJUN0EgEAgyBhF+FQgEAoFAIBgBCFEnEAgEAoFAMAIQok4gEAgEAoFgBCBEnUAgEAgEAsEIQBcKhUKpbsRQEgqF0NnZCbvdDp1Ol+rmCAQCgUAgEAwJI17UCQQCgUAgEBwKiPCrQCAQCAQCwQhAiDqBQCAQCASCEYAQdQKBQCAQCAQjACHqBAKBQCAQCEYAQtQJBAKBQCAQjACEqBMIBAKBQCAYAQhRJxAIBAKBQDACEKJOIBAIBAKBYAQgRJ1AIBAIBALBCECIOoFAIBAIBIIRgBB1AoFAIBAIBCMAIeoEAoFAIBAIRgBC1AkEAoFAIBCMAEa8qAuFQvB4PAiFQqluikAgEAgEAsGQMeJFXWdnJ3Jzc9HZ2ZnqpggEAoFAIBAMGRkn6l588UUUFBSkuhkCgUAgEAgEaYUx1Q2IhWAwiFdeeQVjxoxR/YzX64XX62V/93g8w9E0gUAgEAgEgpSSUU7dCy+8gLPOOgt6vXqz7733XuTm5rL/IglAgUAgEAgEgpGCLpQhKwgCgQDOOOMMvPbaazj66KOxadMmxc8pOXVjxoxBR0cHHA7HcDVXIBAIBAKBYFjJGKfu+eefxznnnBPRpQMAk8kEh8Mh+U8gEGQWXV1dGD16NL799ttUN0UgEAgyhowRdVu3bsVzzz2HZcuWYdeuXbjhhhtS3SSBQDBEtLa24sCBA6iqqkp1UwQCgSBjyJiFEn/84x/Zn4888kg8/PDDKWyNQCAYSvx+PwDA5/OluCUCgUCQOWSMU8ejlk8nEAhGBiTmSNwJBAKBIDoZKeoEAsHIhsScEHUCgUCgHSHqBAJB2iFEnUAgEMSOEHUCgSDtEKJOIBAIYkeIOoFAkHYIUScQCASxI0SdQCBIO8TqV4FAIIgdIeoEAkHaIZw6gUAgiB0h6gQCQdohRJ1AIBDEjhB1AoEg7RCiTiAQCGJHiDqBQJB2iOLDAoFAEDtC1AkEgrRDLJQQCASZwt69e5GTk4P6+vpUN0WIOoFAkH6I8KtAIMgU9u/fj+7ubtTV1aW6KULUCQSC9EOIOoFAkClQRKG3tzfFLRGiTiAQpCFC1AkEgkzB6/UCAPr6+lLcEiHqBAJBGiJEnUAgyBSEUycQCAQREAslBAJBpiBEnUAgSFseeeQRLF68OKVtEE6dQCDIFEjUifCrQCBIO6qqqrB3796UtkGIOoFAkCkIp04gEKQtPp8v5W+coviwQCDIFISoEwgEaYvf70+5qBNOnUAgyBRo9asQdQLBMOL1erFixQo0NDSkuilpTTo4dULUCQSCTEHk1AkEKWD//v14/vnnsXnz5lQ3Ja3x+Xzwer0IhUIpa4NY/SoQCDIFEX4VCFIAWeRCKESGBFUq3zrjcepqa2vh8XiGqkkCgUCgiBB1AkEKEKJOG+kQSohH1J1xxhm4//77h6pJAoFAoEg6jJmEEHWCQwYSdfR/rXg8HnR3dw9Fk9KSdBig4hF1ra2twqkTZCzd3d2H1DgzkhBOnUCQAkikxOrUXXTRRbjllluGoklpSaaKur6+PvT398f1fcFgEP/+979Tmkc4lPT19aG+vj7VzRD8H4FAAA888IDkBfPKK6/Ez3/+8xS2ShAvYvVrHHz55ZeYP38+FixYgHPOOUesihPETLxOXV1dHZqamoaiSWlJOuXUxSLAExF1GzduxKmnnoodO3bE9ftyGhoakJubi927dyfleIny97//HQsWLEh1MzTz1FNPjehn7vvvv8ett96KjRs3sp81NDSgsbExha0SxItw6uKgtLQU77zzDj788ENMnDgRr732WqqbJMgw4s2p6+7uPqTy8NLBqYun+LDX641b1PX09AAAOjo64vp9OTU1NfB4PGkj6lpaWtDW1pbqZmjC5/Phsssuw7///e9UN2XIoDQBflzp7e3N2HHGbrfj2muvTXUzUkY6jJlExoi64uJiWK1WAEBWVhaMRqPi57xeLzwej+Q/gQCIX9T19PQcUs5wOgxQsYZfQ6FQQk4dnXNXV1dcvy+HxGF7e3tSjpcofr8/7msz3NC9yFSBowUlUdfX15ex59zV1YVHH3001c3QjN/vx5tvvpm04wmnLgFqamqwdu1a/OhHP1L893vvvRe5ubnsvzFjxgxzCwWpxO/3q+ZFxRt+7e7uzlhRt3fvXuZCaSUdBqhYRV1/fz+CwWDc94nOOVmJ6jRpJ8v5SxQh6tIL6hcjxakjMiUn9f3338ePfvSjpOWZpsOYSWSUqPN4PFixYgWefvppZGVlKX7mtttuQ0dHB/uvtrZ2mFsZGzt37hzRYYbhZubMmXj66acV/y0Rpy4dBtuuri785Cc/icn9mT9/Pv7f//t/MX1POuXUaRVpdG8TdeqSLerSxanz+XwZ82JyKOwmQv2DP8e+vj5N5/yHP/wBv/rVrxT/rampCYFAIDmNjINdu3al7LtjgV50k+XMC1EXB4FAAOeffz7uuusuTJo0SfVzJpMJDodD8l8689RTTx3SuQjJpqqqCtXV1Yr/Fo9TFwqF0sap27FjB1588UV8//33mj4fDAbR0NAQcy5VOoVftYppamu8oo76RLyiLhQKIRgMsr+nm6gTTl16kUhO3SeffIJ169Yp/lthYSFuvPHGpLRRK7yI/Pzzz4f1u+OFxpdkiTAaP0ROXQysWrUKn3zyCe6++24sXLgQL730UqqblBR6e3tjDo8JlAkEAujr61O9nvE4dX19fQiFQmkxwcSa99XV1YVgMBjzQJMuok6v16O/v19TSCdRUZdoTt3tt9+Os88+m/09HcOvgUAgI8Jj8SySyTSUwq9ac+q6u7vR2toa9nO6t//617+S1Ept8OMEv5o3nUm2qBNOXRwsX74cLS0tWLduHdatW4dzzz031U1KCl6vNy06wkiAXJZooi4Wp46OlQ4TDLW7s7NT0+dp4ohVnKVL+NVmswHQJtRSHX6trq7Gnj172N/T0akDkNLQnFYOZadOyzijJurod4e7FAw/TrS0tAzrd8dLoiIsGAxKXpBiOV5/fz9WrFiBffv2xfXd0cgYUTdS8fl8QtQlCa2iLpbJgo6ZTqJOq5tEgiJTnTpa7a7l2ifLqYtX1PX19UnEdqKi7uWXX8ZNN90U1+/y0ORD1zATQrCHglMnF3WhUAher1ezU9fW1iYJ9wOD12u43Viav3Q6XUJzWTAYxAUXXICdO3cmq2mqJPriOm3aNBxzzDHs77GMma2trXj++efx4YcfxvXd0RCiTsb777+Po48+etgeDKqtlQmDLbF371709vbi+eefT6swOImdZIo6OpbW39m5cyc2bNig+fixEGuI8FASdcly6uINv3q9XomoI5c03vDrRx99lJQFVJdccgmuvfbajBR1meDUdXd3a3bOeeTh11h2u+nu7kYwGAzrW8N1vTo7O/HCCy+wv5OQc7lcCY0Z7e3tWLly5bCEcBNx6kKhELZt24YvvvhCcrycnBxNczmNVUPlqApRB+DSSy/FHXfcAWCg0vcXX3wxbPXt0ml7Ea3MnTsXTz/9NJ555hm8+OKLUT/f3Nw8LJXShyL8GqtT9/DDD+O6667TfPxYiDX8msmizufzsfCrlskq1U6d1+uVCMJEnbpkrVbdvn07ampqMlLUpcqpa2pq0izub7zxRlx00UUxf4fcqaP+qzX8CiAsBDtc1+utt97C+eefHza+uFyuuOaxlpYW3HDDDYp5hkNFIjl1Sk6i1+uF0+nUdEw6PxJ1Bw4cwMGDBwEAa9euxcSJE8Nc2FgQog7A5s2bsX37dgCDgiBeFX366afjd7/7nebPZ5qoCwQCaGxsRFNTE7q7uzVNEtdddx2uuuqqIW/bUDh1sYq6np6eIbuXQx1+veuuu/DEE0+wASXVdeoyKfxKubH0/YmKOr/fL+mngUAAt912W8w5Sy0tLRKBmAkhzXi2iEsmZ555Ju68805Nn923b19Mtc42b96Mc889lwkYubjQ6tQB4flr/L0dymeXxld6uUzUqfvwww/x5z//GVu2bAGQ/qLuo48+AgCMHz+e/czn8yE3N1fTMeWi7sorr8TNN98MYKAkzJ49exIylYSow4CTRB2Vbki8oq6qqkqSMB2NdBV1Ho8Hzc3NYT+nB7m7uxs9PT2aJtH6+vphSaCN5tTRgBPNqevp6cHYsWPx9ddfxxx+9Xq9Q+ZwxRoijHWhxBtvvIF33nmH/V2EX7UjL4ni8Xig0+niDr/Knbra2lrcd999MYf2W1tbJccSTl10Dhw4oDmvq729PaYXgY8++girVq1i9dxiDb8GAgE2V8idOv53SWh6vV7FRRWJIO/r1Pa8vDzJPOb1ejVt50lzLblVw3HfEwm/rl+/HgAku1r5fD5WPi3auCkXdc3NzWyupWubyD075EVdKBRCS0sLm7wTdep8Pl9MJUrSVdTddNNNuOCCC8J+Tm8Q3d3dmp26jo6OYTm/ZDl1ra2tqKmpwZ49e2J26rxer6po/PTTTxPKoxhqp66rq0viLGWSqEsHpw4YfOnxeDwYNWpU3DUOfT6fpJ/ScWM5ViAQQHt7e1qJunXr1mme9FLl1Hk8Hhw4cEDTZ9va2mIa72mypvspFxfRSvjw3xXJqaurqwMA/Pd//zcWLVqkuX1aoPtH45CaU/fGG2/gjDPOiDrmUWoOibp0d+q2bt0a9ruJOHVdXV3sWtI4ksg+zYe8qOvp6UFfXx+7EYk6dfGKunSrVbdt2zY0NDSE/Zych1icuvb29mERCMla/cq/NdMxY3Hq1ETd6aefHvPuDjzUhqHKqevq6pI4S6kWdZRTl0mijgZnj8eDsrIyAIPPzHPPPYeVK1dqbg9/3nIRoIX29nZWY3E4RN2yZcvw3nvvqf57c3MzFi1ahNdffz3icVLp1IVCIXR0dGD//v2aPt/W1hZTn1Fz1/hnLdJ5898VyakjUdfU1IS6ujqEQiHs3r1bczvl/OEPf8BvfvMbAOF9nRd1vKChNkSb21Ih6hLJG1YyYuIRdXTe3d3d7FpSe4SoSwB620lW+HWkOHXV1dWKg1UmOHVq36V1oQQv/mKtU6cWfpU7wvEwHE5dpoo6ujaJ7v2aaPi1s7MToVBIUdQ9//zzklWD0dqj5NTFMuHR2DYcoi4QCOCdd97BV199pfoZEhXRJqxUOnW0VVdLS0vUMSsUCsXt1BFKYcBI5x1J1Ck5dfRi+uGHH6KioiLuNJhPP/0U77//PgDpOLRt2zZVp45MgWjjCIkb+v9wiPlEnDqfzweDwRB2zyj8Gu2Y8tWvSk6dCL8mAMWyRfh1EL/fj7q6OsUJjnfqtIg6evNNZ6fu008/xWOPPab4OTpmIBDQtCJJzanr7u5GIBBIaKKKJOr+/Oc/Y9asWZKfxSLqaDs0+h29Xp8yUUd11Sj8+uKLL7KQhxqp3iaMvze9vb0IBAJM1NE1paiAFnw+nyQUx4u6H/3oR3jyySejHoMmhuEQdfSyF2kc27t3r+SzasiduhtvvBHnnHNOMpoZFb5tJIzU6OrqQiAQiGm8lwvaRJw6uUDjxxYSVFQH9cCBAwgEAnGVX6HjUH+itu7ZswfTpk3Df/7zHwCA0+mU3H9y3qK9RMtz6tI9/EquXG9vL0KhEKsxSKtftaYXdHV1oa+vT+LUifBrEqAHI1nhV7/fnxJR197enrTq9fv370cwGFQUDzTotbW1IRAIRJ0kaEVgOuXUyQeZhQsX4uqrr2YTKB9+5Y+l5Q2SJlC5AEzGcv1I4dcbbrgB33zzjeRnsYi6vr4+BINB9jt2u33IRd1DDz2ERx55JExI0a4HJOruu+8+/PKXv4x4LDVR19jYiAsuuEDzQJuMnDq612PGjAEgFXVanwO5sOFF3TfffBN2r5VQEnVD5YLQOcvPb82aNcjLy0N/fz9bQBZNWMiduocffhgvv/xyspusCO9URwvB0n3t7+/X/FyruWuxOnX5+fmqxzIajWERhkQFEy/qqK/v2bMHwWAQVVVVMBqNYWMGCUv6fHV1taLAS2X4NRFRFwwGJdvvkaiLNv/z53fw4EH09vYKUZdM5OHXTHXqrr76alxxxRWq//6LX/wC//M//6PpWLR9CeXNff311+zfaNCj6xNN1KkN9kMBDXher1dxOyQ1p66goADA4Ju5klMHxBYGlA9eNAEkMqnGGn6NZfUrHZPup8PhGFJRFwqFcMcdd+D6669nNSIJukYk6gDg7bffjljrUG3166ZNm7By5cqoK9KTFX7t6upiLz5KTl2sok4u5H0+H7xer6aSB8MZflV7zv/xj3+gra0N33zzDXPqook6NQE6HLVDeVEXbbEEP/FqHfNbW1uh1w9Mu3a7XdGp0yLqxowZo7pQwul0huUC885dPJCoC4VCrK0kehsaGmA2m2E2myXFd3mnrr+/H+PGjVN8OZOLukwIv/L5c3RN3W43AO0vLcDgXEv7dIvwaxKQh18zNaeuoaGBDZpy/H4//v73v+PSSy9FbW0t+/n27duxdOnSsAe9uroawMDE+9RTT+GYY45hDwENrPQgRpskYnGLVq1ahccffzzq59TgJ2Sl66km6iZOnAhgoPC0/HPJFnVDEX7lj9ne3o5bb70Vfr8f7e3tMBqNMYk6wuFwDKkQb2hoUE0KputMOXXAgHsXqdC1mlNH909rHpfaC0E0eKeOnpHi4mIA0ihALOFXQNmp8/l8mkqlpEP4dfLkyQAGapGRsNYafqX/kwPy3Xffqf7O3XffndDYQfBti+bU8X1Kq8Pb2tqKyspKAANuW7w5dWPGjFHNz3M6nWFOXTJEHc1t1NdJ9DY0NMBiscBisQAAXn31Vfzyl7+U5NRRiRj5y1UgEGDilH8JiZfOzk784x//0HQ+QHzzrt/vVxR1LpcLOp1Oc/8GINn/lb+2SuNVd3e3pvHjkBd11JH6+/vh9/sTEnWUC5QKUdfd3a24WhUYeJD6+/vR2dmJBx54gP18/fr1WLt2bdi5kqij3/X5fOzY1GG1lligyScQCLDPNjY2YtGiRWGD0sqVK/Hcc89FPVc1+IFV6R6oCS6afEnUqYVftQw2Qynq1NwkKpwNDNTBeuCBB7Blyxa0t7ejqKgoblE3lE5dVVUVAKCwsDDsWtF58k5dZWUl3nzzTdXjRRN10VIT+PsSawg2GAyy7+Wduvz8fADSFe7Jcuq0iLpEnbpgMIh7771XUx4WtUf+3NG5f/TRRzGHX6nNVOT122+/Vf2dN998k+V2JQKdR3FxcUyiTsuYHwwG0dbWhrPOOgvLly/HYYcdxsYYrS+P9LnRo0eH9WneqZPX16S6dfGOP7yDJHfqOjs7YbFYYDabAQD/+7//iz//+c8Sp47uHYl8orW1NSxVJZEx8s0338RPf/pTxRqrPIns/arm1JnNZuTk5MTk1NE4CAzm2AHKTt3y5ctx9tlnR23fIS/q+Jvf29uLnp4eGAyGuEQddZSenh7Ne8fKRR0f6oyFrq4uHDx4UDGZf9u2bQCAiooKyflSuFE+oe/btw86nQ7A4NsY/V8+mfT396O7u1s1vKW0mnLr1q1Yt25dWF5QoqtDu7q6kJ2dDUBd1On1+rBBg+4bVTRPhlNH5yrfAzQZTh3t/Ujwkx1N5NXV1Whvb0dxcTG8Xm/E/vjxxx+HhTZjFXXt7e04/vjjoyaXE/SGOnny5DBRpxR+Pfvss7Fx40bVxSpq4ddYnLqcnBzJ7wDAM888gz//+c/s71999RV0Oh0rHst/NzAwwdGzbLfbYTQaJaIuUaeOFuLE4tR5vV7Nom7jxo245ZZbAAz0odtvvx3vvPMOurq6Iv6uWviV2v3BBx+wvhFrTh313Uh5hD09PXEXeuahY0yZMiXp4deOjg6EQiFMmzYNL7zwAgu/zpw5E3/729/Y56I5dTqdDvn5+WEvH7xTJ6+vmQynDhjoU9Sf+Z00zGYzc+oaGxslLxK8qKNnjKBxh+Ybvs3xQPck2v0YivBrdnY2HA5HVKeO5iGbzRYm6iI5dV6vlwnnSBzyoo7PS6A36dGjR6O3tzfmN3a6ubwrFQlKtKTv3r59O2bPns0co1iglahKCn/79u3Izc1FeXm5pLPToCU/z/3797N8IHobowFZ3mH7+/tx3nnnsRCmHH6gpQeIRCQfCgakO3vEQ3d3NwoLCwGoizqHwxEmIujvb7/9NlasWMHaR2/RsexByjt133zzDQoKCnDw4EFFp27Xrl34y1/+ovn81NwkXtTR/f/666/R39+P0tJSSbvk9PT0YOHChWH182IVdbt378b69evx5Zdfavp8VVUV3G438vPzNYm6448/Hh0dHdi+fTv8fn9Y31Fz6qgfaBF1LpcLgPQl5/XXX8err77K/k4hYD7VgW8//7ZtNpuRnZ0Nn8+HUCiE3t5e9gzQ5uWR2sP/n9+SiUqmRCMep27NmjX405/+BK/Xy/pYbW0tjjnmGPz+97+XfJYX2Grh187OTphMJnasqVOnxuzU0fWNVC6lu7s7KaLO4/HAYrFg1KhRUd0e3inTMlfQs5mXlwcArG/U1tZKxvxoos5qtSInJyfsZZyuV25ubphTNxSijn9R5J06cuiIvr4+FjqXfz+ZJ6NHjw77rnig51xrrTi1z1EFCDmBQACBQEAi6uh6aBV1Pp8P2dnZcLvdqKmpYT+PJur6+vpgMpkiHhsQog7Nzc3sIevp6UFPTw9btRZrTR++M2oRJ/zne3t72UOvdENfffVVnH/++arHokFF/kABA05dZWUlrFarYnFI+eDQ1dWFUaNGARgUdZGcOnIXlYSsklOnJuqS4dTRogc1UccnJ8vb1dDQgOeff56dM01slNMTa07dvn374Pf70dTUpCjq/vnPf+LWW2/VfH5y8UDw95z6EIWiZs6cKTlHOTU1NQgEAhLnCVAXde+++66iK0sTtdZK/FVVVSgvL4fJZFIVdXxO3dFHHw2dTofPPvsML7zwAqZPny6ZVJIRfqVxgJ+gqXQPQblB5AgD4U4dL+ro/MgtpefvggsuwAUXXKAqBtScOvp/LE4dv49stD7c1dWFUCiEffv2sbbt3r0b27Ztw1NPPcXyDVeuXAmDwcAmsEhO3eLFi9Ha2opt27Zh0aJFMefUeb1ejBo1Chs3blSNCCTTqcvNzYXL5Yr6ItDW1sYcJhpvIolmJVHX19en2v+V6Orqgs1mg81mi+jUyUUdCdRYBNPq1avZveJFndK4IHfqeHinTv799Fn5PqrxQvcs2gtpNKduwYIF7IVY6feUnDqTyQS73a7ppSWaqFMyZ7xerxB1WmhpaWEijt6ki4qKAMS+2irWvBz+Yebf4pU62po1a/DKK6+ohp/o+5Ty6nhRp+TUyUVdX18fywcii50+6/F42OotYGAQo0FKKWTNT6aRnLpgMIjW1ta4S0oA2p06PgeKfn7eeefhqaeeAjA4MFD4NR5R19fXJ1l9qiTqqqqq0NfXF1OonsIXXV1d+M9//oMdO3agp6eHDag0GGzcuBF6vR7Tp09nbVCC8if5MACgXtLk8ssvV9zsnJ6VWMKv48aNiyjqeKfObrdj2rRp+Oyzz3DgwAF0dHRIriUffr333nvZFndK4ddrr702rM4b79TxfbCrq0vSl3bs2AFAej3VnLrs7Gx2fnzieiAQwIcffghA/eVPvqk9TRT07FAoLxItLS3MPdEiOvjj7927l12HDRs2IBQKoa6uDh988AGAgdqOAFh9x0iizm63w+FwoKKiAg6HA52dnbj44osltSGVzp3Pe7rgggvgdDrx+OOPK7rOPT09SSnp5PF4kJubC6fTGfV4bW1tbK7o7u7GunXr4HK5VCd1JVGn9B3RnDoSdfJSKkqrX+VjllbBtHXrVpx22ml46KGHJL/HO3U8vFMndzibm5uZeJF/f3NzM7KyslBSUhJ2HmqEQiFcffXVihGtZDh1zc3NrH+r/R5faDjW8CuJuvz8fMkcqMWpE+FXDTQ3NzNRR+FXSpyPtVBjrE6dXNTR7yhNptXV1fD5fIpOHL/Js1zUhUIhbN++HRUVFWGiTs2p6+3tZY4XvZnTZzs6OthABgxMErSUO9K2Yvx5KYm69vZ2BIPBhJ26aKLObrcDQJggsNvtmDp1KgDpqsGenh4m6qINiLxY5POeent72Z/5AWvfvn1scY0WfD6fZNn8ddddh8ceewy9vb1soqC2B4NBjB8/ngmVaKJOPoiorX5taWnBu+++G/ZyMRROHYk6OudZs2axBSCAVHzR+QUCAWzbto3lRyqJunfffRcbNmyQfKda+JV36kKhUERRR2/pFCbR6XQsxMb3x76+vqg1FaM5dX6/P6obUV9fz8Y2ul/UP9esWaP4gkjnumfPHtY2cllyc3Pxv//7vwAGJ7U//elPktW4aqKOoGu0Zs0afPbZZ2Hn/I9//CNslToVdl2xYgUeeOABFBYWhr38kVOn9QVJjY6ODjgcDs1OHbk5PT09eOutt1husxJyUZeVlSURdfTCpkXUKeV/+v1+6PV62O32MKeOUDr2I488ElYO65VXXgEw6EjF4tSFQiFMmDCBzTn89ZB/f1tbG1wul6SPRBtnvV4vHnvsMfzwhz8M+zetoi6SU/fEE0+wP8tfgqhtdF06OzvZ3BhP+FW+FaDX60V2djY6OzvD5gXh1GkgFAqhsbER48aNAzDwltbf389ES0dHB+69917NiyYSFXXUwZQeGkos5+1ape+SCysqbFhaWgqLxcK+w+fzSfae4+GdOoJ36ig0C0idOqXBrKOjAwaDgbUFCBd1fX19kpVS8ZSUoPNQC79SfSWajPh7RZMwiQi5U0cPcDTxJReKWpw6YPC6bN26NeKk5PV62bXu6upigqOnp4cJH962nzJlCnuzixR+VYJCOPzE7/P50NXVhebm5rD8JhIbWpw6r9eLmpqaMFEXDAaxbds2tpqXBrBTTz0VwGDB1UiiDpAuSFAKv/Lb8vDnpiT46foCAyKJ7g8/GVD73W43c+routP58Z/nw1PRRJ3cqeNfNCOFG/v6+lBXVxe22rC/vx87duzASSedpLiamK7Lnj17JGLWaDTi8MMPZy4MtaOpqQnV1dWSnLqVK1ey/V2VRF1HRwcOHjwYJprWrl2Ln/70p0xE8jl1JpMJv/3tb3HnnXfC4/FI+q3P52P10RKtIsCHX7u6uiI+821tbcxh6unpYS8Kavelra0NWVlZLK0gOztbcg1obIq2+pWcOvo74fP5kJWVJXl51+LUffbZZ2EC+6WXXgIwmDcXi1MHACtWrMC2bdtgNpslY5L8+1tbW+FyuSQLKKKJOrrH8vQdIHZRpzQu8qVz5MaOXNT99a9/ZeIyOztbc/jVZDKxMZsiX+TUkakkd3HFQgkNUN2XsWPHAhjMoSNRt2fPHtx+++2al8rHK+poHzm18GsoFGKOitIkzD/YclFHHcxut0sedv5zSk6dw+GQ5A3xTh1vlff39zOHQ03UkXum5tTNmzcPt99+u+T74yFSTh09xDRw8gMTPSwk6ninrq+vT5Oo27Bhg6S0CB9+7e3tDRN1Xq+XXdO+vj40NjZi6tSp+K//+i/V7/B6vWwgoO2oSHTInTpgoAxINFHHl6/hoXtKifl/+MMfJPlM77zzjuTzsTh17777Lvr7+3H88cdLRN1TTz2FKVOmsC2hnE4ndu3ahb///e8ABhyOtrY2RVEnD4HyK4UBqVOnJOrUXFw+/MovSFFy6vLz85lTx4s6uVPHh3ZiFXV8uz0eD7q6uhTHBPrZpEmTJD/v7+9n90g+kfPH50UdAIwdOxa5ubns3zs7O9mzRuFwYKC/PPbYY2zhjVzUORwOtuWeXNRR/5LXKyNRl5eXh4suuoh9J8Ffw0Tz6ij8Sv0/Ugi2vb0dLpeLCZdNmzZF/J2WlhZWywwYzKkjlF445SiJuvb2dixfvhytra1M1MmLDxNKx25vb5dcw71797Jt+XgTAFB36vg6dfy5mEwmdp+V8pnJqeNFXbSXZ/775QYAfVdLSwsqKytVaxtGC79S+6OJOooIALGtfiWnDhhwaM1mM3sh5E0lnmFZKHHeeedF3ZMxnaE3ZhJ19BZKIoQGRq1bdsQr6mjPPDWnrqmpif1bJFGn0+nChBV1MLmo4wdFpZw6qrkDDFTGj+TU0SClJurkRVjp+9rb29HZ2Yk9e/ZIREI8eXUUunW73dDpdKr1spQGTpo0lJy63t5exclezpVXXon77rtPcsxITl1NTY3E9aH7RAJGCT6Zn0QdLe5REnVanDpe1PEing9F1tXV4Y477mCrNR0OBz7//HPJcWJx6l555RVUVlZi6tSpElHX0NAAt9uNTz/9FFu2bMH48eMxceJE1i6XyyVx6vh+yw94fBFPuVMXCoXQ2dmp6NRRf+cFYnd3N3p7exEMBlFTUwO9Xg+dTqcq6khQ0nXPzs6W5NQBwCeffML+rDRO8PsMy8OvfLs7Ojpw/vnnY+zYsWEOL7nASk4dPaeRRN3evXslbRs/frxkxWVnZyc7Ni/qKAxK36Hk1BHycZVWFPMLPEKhEHw+H7ue9ELJ9zMlUefz+SSrlrVC4VdKuYgk6jo7O+FwOGCz2fDRRx+xZ1tNWFZXV7OqAoD0eQPCQ51KyEVdV1cXvvvuO/zrX//Cd999h+zsbNhsNvj9fvYfj9KxOzo6JNeQSseYTCb09PSwFZ9AuFNHcyUffgWURZ3T6VQUdXl5eXE5dYBUVNHxgIFrvX37dlVRR6FqJVHX1NTEFm6oiTqbzQaDwSCZ8+IJvwIDoo6eLT4aozSHDbmoW7VqFRYvXqwq7LQuvU8VJOoo/EpviDk5ObDZbKr5RmrwD5CaqLvgggvYGx0v6vjCpPIJmNphMBgURR0NtGPGjFF16hwOhyT8SoOi3W4PE1G9vb2wWCzsQaMyBC0tLejr6wtz6uS1kHioAC4dl9pLIVkK3fAPVzx5dZ2dnQiFQnA4HGG5g4A074n/OxA5/MqHbCO9QXo8HklYTS7q5HXq+IUJfX197PwPHDiA/v5+7Nq1K8z18nq9kmR+EnW9vb1sgGhpaUFFRQVmz56N+fPnRxR1+/btQ3V1NZvAaICmfRzpe6h/UL3D2bNnhzl81M+ojwDAokWLcPHFF0s+5/f78frrr+Oss84CAImo6+rqgtPpxJw5czBlypSw9ubl5cHv9yuW4unr65O0WR5+pXtK4X0t4ddQKMR+v7e3F3V1dSgqKkJOTo6iqHO73YpOnVzUVVdXs5CLUl/nJzUqh6Im6ijHj+4NsW/fPhgMBsmqQkAq6r744oswp6Orqwt6vR579+6VfNf48eNhs9kkoq64uBi5ubnYv39/WP5oY2Mja7eaqJOv8JOLOp/PJ1lZCAw4Qnl5eZJng+8H1I63334bZ555ZtQCwnL48CsQeezv6upiL8sfffQRu+dqQnD37t2S0k9yURdv+JVfPENOHSBN4ie0OHVbtmxBXl4eysvL0dvby9qj0+mYqKMxg+ZOefiVzoUPv7pcrrDQbbTw65///Ge26Ingnz35gga6X2TQqN0Ln88Hh8MBn88X9gw0NzejvLwcgLqoy87OlohY+lmsq18BsBxJuaiTz8vDFn6dOXMmFi1aFKaYgQHRRA9HOkK5cmPGjIFOp2Oizmq1wuFwaBJ1PT09OPPMM9HQ0BDVqfP5fFi5ciU++ugjAOpOnfztgfLpjjjiiIhO3bhx49DY2IiNGzdi1qxZ8Pl8iuHXUCiEAwcOwGQyYcyYMZLBm2rsWSwWNnDQGzmVveCdumAwyM5byalrampiNYj48CsNbkp5ZPJrt3LlSkloUwkK5Y4ZM0aTqHvyySclxYaVwq+UC6U1LMKXwIkWfuW3h+EXyQDACy+8gEmTJrHq4XV1dVi9ejVzk7KysliflIdfOzs7UVpais2bN6O8vFxV1H3++ecoLy9HTU0NjjjiCACDe+BmZ2dLVtlS/6LrFUnUAQO5Zz09PVi3bh2effZZyef27duH9vZ2LFq0CEC4qJMXJ+WhcyRBLA+/8hOdWviV+rqSqLNYLNDpdJIVzNQ3e3p6UFdXh9LSUpjNZsWcury8PJbPRyKEwq/85w8ePMieoWiijna5IedOnlM3Y8YMAGCrUomqqir2LPD4/X6JiyYXg11dXWwy379/P3teysvLkZOTw64nibXS0lIcOHAAHo8HeXl5TNTRRuXBYDCiU/fII4/gwgsvBDAYfuVzLOn68A5FSUmJaviVnjN6aY1Wa05ONFEXCoVw3HHH4cMPP0RnZydycnJgtVrh8XiYm5moqFMbZ0KhEGpqauB2uyULJahPeDweZGdns3ve3d0dl6j7/vvvMXXqVFYCi36Hclr7+vqYIKEol9lshsFgQFZWluRcTCYTG0/VnDpe1BkMBomoXbNmDf79739L5gj+WeLHoUAgwEwkuu9qc7ff72dt5MfGUCgkcerkplQ0UUdOXaTcaK1OnVKu+5A7dTqdDs888wwWL16MRYsWKS4xTnQ10lBCzkp+fj4sFgublC0WCxwOR1j4de3atVi3bp3kGHv37sWrr76KzZs3RxV1Sq4BED38Wl1djZycHMyaNUsxB4qOW1BQgL6+PmzduhXffPMNGhoaJKLOYrEwEVZXV4eSkhLY7fawMBYASfiV3lroTZpW1BHUbrmoC4VCqK2tZXk99LnOzk720FDdLx7+2rW0tOCCCy5AZWUl3njjjbDPEnSvxo4dC4vFgjvuuAP33nsv+3d5+PWPf/wjHn30UXbOJpMJWVlZMBqNYXlMWt+geVGnFH51Op3sGJ988gkLW/NOnd1uZ3lD/f392Lt3L0pLS3Haaaeht7eXDdr8nsU9PT2Slyd+IlcTdZs3b2Z/JoFFoo5P5uadut27dwMYEHXt7e2SMFNnZydzcA8cOIC1a9cCQNhLHfU1ftDXKur4PD9qG9HX18d+V75QgpLe+/v7JU4T/9JDycu0WpVvKx2HnhmLxaLo1LlcLvbdkZy6hoYGzaKOb6O84Cw/eSiJuvLy8jDhQE4drfSW72DT1dXFnm863zvuuAM//vGPw8KvvKijNItgMAiPxwOv18uElzynjujr68OaNWvw5ptvIhQKKe5dTd/HT2alpaVRw680FtFYe//99+OCCy5gixmamprCVkDTtSkqKlIVdc3NzdiwYQM2b97MrgE9K+Xl5XA6nejo6MB3330nWWTU09ODAwcOYMKECexnJICInJwcxR1viM2bN2PPnj049dRTIzp19G89PT2awq/t7e2SUO2WLVswdepUWCwW9PT0sN8pLCxEe3u7JLeXRB0JHOr3sYRfeVEn/8yOHTvg8Xgku1fQ828wGCQvObyYJsNGTWDLRR29gHR1dcHn86mGX+ka8aLuoosuwn/913/B6XSynNFIeeF8SRNgwKmjeVhN1FEIfMhFXSgUgsFgwMqVK3HCCSdg8eLFYcKO3/4j3WhsbITb7YbRaITVapU4dXa7nXUk6pR33303Hn74Yckx+LckraKOd4IAZVE3c+ZMVj6guroaY8eOxdixYyM6dW63G319fZJiunKnDhh4KA4cOIDS0lLJ2zd9NwBJ+JVEHTkkfPiVjgeEi7r29nZ0dXVh7NixkqRgKj1isViYUAAGJ23+2vGT2PPPPx927kRNTQ2MRiOKi4vZNeJdIrlTBwBffvklQqGQxNbmBRG9pUUTdYFAAF6vV+IK8KKuo6MDXq+XbeD99NNP49lnn8V1110HQLryefPmzfjtb3+Lww47DEajUZJj19zczMLE1FcpDGuz2dg58G+QaqJu27ZtqKioQFNTE0477TQAA/0wOztb1akLBALIycnBYYcdBkD6lsznWNXX1+O1114DMODq8kV36X7SxMOLuu7ubk1OHaEm6rq7u9kg2N3dzcpOUA4ntePiiy9mdQtpoKX2/O1vf8P69evZ8WlSLikpgdlsVhV1VLA6Uk4dCQc6rhy5U0dtdrvdEqHQ0dHBrgHVvSOoDqCaqJswYQKsVmvYyn5aKQ8MiHObzYZ77rkHhx12WFj4lUTd/v374fF4JKWOgMGXADWnDhgQEK2trdi6datkIqR5Q0nUyZ06pfArjUWtra0IhUL49a9/jZUrV7Ix4S9/+UvYPpr79+9HIBBgjpvBYAgTdRTObWlpYYtraMwYP348nE4ndu/ejVmzZuGf//wn+z0SrGpOHTnAWVlZquPMiy++iMLCQixevFhV1PFOHS/ICPnf+ZXZFGrdsWOHolNHok7NqQMGxx4+/Ep9PDc3VzWnjs6HF3VUwB2QphfQs1dYWCgRXfy9iubU+XzSrb6mTJmCp556ij0PsYRfp06dittvvx06nS5sgcX999+Pm266KewY/OpXcuqopIlSTh2NMcO2+lWv12PlypVYsmQJFi9erJqcmG40NTWxPCIlp47egqljNDQ0hE2OWkRdKBTCO++8o9mp6+npwXfffccGxdbWVuTn52PChAloaWkJq9hND7WSqPN4PNDpdLDZbJKHnd7C+YEaGBRokZw6t9st6VxyUUcTD4VEy8rKJCErcmTy8/Mloo6SiPlBmn5nwYIFeO+991SLL1dXV2P06NEwGAy48sorUVFRgZ07dzJhJnfqgIHVjBSOpkmDF3U0QfBhkUAgEJY7SO2V5+nR79MAk5eXB5/Ph9deew0LFy5ke2z29fWx/pKXl4ff/OY3+NGPfoS2tjbJpNvT0xPm1NFAYLVa2SCjxamjgtT5+fnMoaM+QsnWdG78/cjLy2MDuVzUkdjv7OzExo0b2Z8feeQRWK1W1NfXs2NR3zKZTAgEAsxF43eRkBNJ1PHhV7qWJLAo/E8vGfS7JITef/991hZy6u655x5JgWLeqZOLOvozta+trS1s9SsvWHw+H5xOp2KaAP07/2caY/jzNxgM6OjoYDlwzc3NkusRzakrKiqC2+2WuMuUQ0jXa//+/ZK+RC+AfK5caWkpdu3ahUAgwBZEEZFEHZ0L9SH5amr6Xjp3frwhd5CI5tTxeWE0dh44cCBswqaX1vLycuh0OsUCxPIddij/mn4vNzcX3377LYLBIP7nf/4HbW1t8Pl87FooibqsrCxcd911OOWUUyROsZzXX38dZ555JoxGI7KyspCVlSVZye3xeMJc9mhOHe+29/T0YNeuXfD7/Zg2bRrLwaZxraioCB6PB8FgMCanDhi4n/Qs8G0hJ53GA5fLxdq8Z88eNt7zoo6epUiijvq1FqfO4/Fg3759eP/999m4WlJSApPJpEnU0fgJDPZvmnc+//zzsBcu+epXyqnjw9SAcsmmYQm/sgPp9Xj++eeZsOOX/yeLm2++GfPnz8f5558fdYWMFhobG9kN4d0PEnWEFlFH4Rz6/bfffpsVMdywYQOWLVvGJrpoTh29XfIhJJvNhjlz5gCQrp6jf9fpdHC5XJJQHjl1drsdOp2OdUJyHcipUwq/8k7dmDFjWPI0MPDg2Ww2GI1GdjxgQLxs2bIFBoMBGzZsYI7ZmDFjJCErJVE3e/ZslhzPD9L051NPPRXNzc1h4SKipqaGicK///3vePnllxEKhVg9NfpueZFLCkNqEXV+vx//+te/MHnyZPT39yMUCuGXv/ylYgiZd+rkoq6npwcFBQXsfvD3jH7mcrnQ3t6OlpYWSQ6jyWSCzWZjfZXvs0pOndFohMFgCOu327dvR2VlJQBI3hhJ1Ck5dfTZ4uJiZGdnh4k6p9PJlubTnp8ej4eNBZdddpmiU0fXK1r4ld6sCbn4p9+lc+3r65OIlLa2Nklfp5cV2kydnDpaIMOfHyX/R8qpo8G4tbVVMfxKi4PoXGw2myanjgQKv21Rfn4+E3UUKqqursbPfvYz1NfXo6mpSdWpa2hoYKKOX6xA5Wso/NrQ0CAR2Tk5Oejv74fX65WIOhofaUs6QknU8YuveF5//XXodDr2YkCfo/FV7tQ1NDQgEAjgkksuYTnKLpeLPXP04sWXwCksLGTXsqGhgQlUoqqqCjqdjgkVpQLEclGn5NTR4pU1a9YgLy8Pt99+O3bv3g2bzSZxM+ne2Gw23HLLLTj55JMjirr9+/ejoqKC/Z22CqNr1NPTI1koQU4djdOAtG9t2bJFEvLu7u7Gxo0bodPpMGPGDCbqeKeOmD17NubOnYujjjoKwOCYI3fqIok6urZyUUefoetYWFioSdTRfbbZbOxlOJJTR22kUP6mTZvY7+Xn5yuuZFUSdXxNV14oAgP3QL4giKICdrsdRqOROXU0T1B5GKWSTUPu1Mnz5UjYLV26FCeccILqBBwPX331FRoaGrB+/XpMmTKFVbyW4/V64fF4JP+p0djYyDqqPPwqF3U9PT3weDyanDqn04kPPvgAV155JYBBx4oGBH51JX2eT5anmysXdWVlZRg9enRYLgj9u9VqVQy/0qDKh1/JdZCLOrlTRxXKnU4nqqqqYDQa2eormmT7+vrYhENb/2zduhW1tbUsJKrm1NEg++677+Kvf/0rAGVRd8IJJ8BqtbJcLTm8qAOAiooKWCwWfPnllwgGg7j33nvhdDolb8o6nY4JZKXwKz1UNpsNer0efr+fuX8NDQ1obW3F/fffj3//+9+SthgMBonDRQMFDVi9vb2wWq3sO3lBTz9zOp1oa2tDS0uLJA+Hwq/UR/jdF5ScOjom3287Ozuxf/9+JuqMRiMLgVitVmRlZcFkMkGv1ys6dXq9HmVlZWGizm63Mzenq6sLJSUl6OzsZGLmrbfeYvc7HlFnMBiYcOLvD7kV8r0aKVGcD7/yfZ2ey9WrVwMACz17vV709fVJFrNQEr9aTh3vbvKijg+/8vmFaqu0gXCnrra2Fnq9nolQYMAdIFFHP3/nnXfw+OOPs7CfklPn9/vR2Nio6NTRtSFhFQwGJaKO/tzS0oL+/n4m6gDg+OOPx/z58yXfRdeMF3V6vR4OhwPTpk2TfPajjz7CnDlzmOih71ISdaWlpQgEAqitrcUzzzzD7t+oUaPYxM6HX+lnkyZNYj+nQtK8u15VVcUcGmDgeW1qamICbt++fWwMp//zoo6cOr/fL1lws3PnTuzZswcTJkyQGCF0b/jnVU3UUa4mvYDRNeLDr/T7/EIJv9/P+p3T6WRtuvXWWzFt2jTccMMNku/44IMPMHPmTOTl5YXl1PGO1Lhx4/DJJ5+guLgYd9xxB5YsWQJgcPzinXhqq/zceFE3depU3HvvvTj++OMlos7hcOD444+PKfxaUlLCnqtITh3NX2Q+7N69my0GzM/PV1zJSm3LyspSdOrk4dfe3t4wYUmiTqfTwe12s7mU+ia9uKfEqXvzzTfD3p5J2J144ok488wzEzm8hE8//RQnnngiAGDZsmVhbhVx7733Ijc3l/0nT+rn4cOvVquVdQAlp44uuFzU8da3vDAhQW8ClKMnd+pcLhfLjaJ28d9Fok2n02HevHn4+OOPJcenfzebzZIcCbmoo0548OBBtkpSrfOQU5ebmwu9Xg+n04na2lpWPJNfIdbb24vZs2cDAMulys/PR01NDQuJKjl1vEPkdrvhdDphMBgkEx2di9PpxIIFC/Duu+9CCbmoMxqNmDVrFjZt2oT/JZCedwAAOk1JREFU/Oc/WL16NZ599lnJ22ZFRQWr1aXk1BGU6+Lz+dg93L9/P7tu8tIjDodDEjZVcuosFgv7TnLqaPUlMJifVVdXJxF1NGjzkzG1W8mpo/bz/ZZWEvNv/X/6059w/vnnM6dOp9MxwS8XdcBA2EVN1JHIGjVqFILBoCSpva6uDllZWWxC40VdtJw6/vuB8CLW8vId9JyRSCERRFCOHJU04HPq+JA4MLjyWy2nji+J09raGrb6taenBw6Hg7kmubm5rEjsX//6V8nx+JCZz+dDTU0NSkpKJH2T8pt4UUf1xdasWQNAWdQ1NTXB7/ejuLgYeXl5iqIuNzeXjX/y8Csw6ILZ7XZMmjQJOp0Od955Z5hDrOTUAQO7Ffzyl79kf6fx8uSTT2bfwddho+tIkHNNE311dTVMJpPEqePDrzSuT548mYVf6Rz4e0wha8LpdOKZZ57B6NGj8fXXX6O8vBxvv/02APXwK710jBkzBo8++ig7Xn19fdhLh5KoU8upo/vE93/+BYr/fWoPGRo0Trvdbvh8A7tv0J6u/IKp7u6B/Wtp4ZRSTh3BO0aUcwkMzhv0Ise/LMtFHb9tmsFgwK9+9Ss4HA52/jt27MDkyZNRUVHBXDtgYE4gQSQXdXq9XtLOSKtfaVzgj71mzRrY7XaYTKaIok5r+JX2JObLppCoA4DFixfj8MMPh9vtZn1TSdSRVhhyUfeDH/xA8Uv0ej3++c9/sgTsZNDe3s4Gmtzc3DBLk7jtttvQ0dHB/lPaSoTgw690g8ihoJuj0+nQ29vLJjB5nR0lp06efEyTGh8SoGMZDAbk5eUhEAiwyV/NqQMGdl/48ssvJeEfykWS10minDr5AE2DrVL4lXeMKisrWUjF5XIhGAyyAeIf//gHfvWrX7HfKSgokOS60FZQJKrJqQsEAujp6YHdbme2NR1Tp9NJqqEDg4Ou1WrFkiVLsH79+rCVRVQln8ImxIwZM7Bt2zY2wFN4AxhwfUpKSlj/iCTqLBYLsrOz4ff72b3cv38/a5u84K7D4ZDkPdKATOfp8XhgtVqh1+thMpmYS8tPivTZmpoaiViRL5Tg26jm1JlMJoloIIHCF6a9+OKLMW3aNDb4AoNOgJKoKysrkzxb1M9sNhvLI6LJt6amhv25vr5e4v7InbpIOXX8deH3/6Q3bTVRR7leHR0dkkE6EAhI6uGRUycPywGDz4wWUSfPqaMXLf4ekaj76quvcM0110he1OThV3phofui0+lQUFDAwslUK4xE3fr165GdnY1Ro0aFiTpymCI5dTk5OUycyMOvwODLqd1uR0VFBRoaGrBkyRJJ/50wYQK7ZvJ7umzZMrZKHRhw+QBlUafk1NG4Qf3Y5/Mxt4MWj/CL0nhRR+FKGhMiiTq+D5BrS+kc8qLu5OzQdSstLcU111yDBQsWoKWlBU1NTZLJHxhc/cpfHzWnjvqyFqeOriudNz0z9FJ58OBBBAIBVFRUhIVja2pqmKiLFH5VExdms1liiPDjaiSnjr8m9JmGhgaMHj0aeXl58Hg82LVrF9xuN2pqamCxWMJEV1tbG8tVJega/P3vf8eqVasADBb3LikpgU6nY3V2DQYD3n77bda/tIq6SOFXmqt4x5AXdS+88AJ++tOfIi8vj+UPkqhL6UIJxQP/n2MnLw4YLy6Xi12o9vb2sKRpwmQyweFwSP5TgurR8E4dEJ4TQPk49FYYLfyanZ0dlnwsd+ra2toQDAbZZECdWl5bSe5sAcCSJUvg9/slW5eRw6Ek6pTCr/wERaJu9erVzKGg63D55ZezUgnURvr/kUceyQbA3t5eZGVlSUIqvb29qK2tZe4ZDRDUUSn8CkASUpN3Zl7ULV26FF6vNyz8XF9fj0AgEObKOhwO5oBmZWXBYDCwQWb06NHIzc1l4ksp/Erwq9LoHtXW1qo6dbyV7nQ6mcinPtvR0SFJLOadOoKuSTAYREFBAXMz6IGXv83z4ddoTl1DQwNycnLCHBQ6Dk02vFNHx6RzKCoqYteOisSSU0fnTm/CNTU1THBHE3VanbrS0lKJqKOQMA89hw6HAzk5OWFOHSDN7SJRJ0/Z0Ov12LVrF0tu5ot4U9t5URcKhRTDr/w9IlFHL4vykCv/Z7mooy2z2tra0N3djby8POTm5rLJyefzYezYsdDr9WGijvpvYWGhRNSFQiFJviM950rhV17U0bGAwX5nMBgwbtw4tlqaCi3LcblcMBqNOOuss3D44Ydj5syZ7P7zOZ2AdDKTizpgoN/Swgbqf263W+LUUWmlrVu3MuckkqjjV7PzoXgeu92On/zkJ/jDH/4AYNB1JFfO7XajublZkupDxBJ+pfukJOp44UFlmbKzs9l5/+AHP8D1118Pq9XKwvnAoJgm3nvvPQBgYXSlkiaEmriwWCySSJXW8Ct//pSvzEegKB2itbUVO3fuhNlsVhR1LpdLMv61t7cjGAzi8ccfx4svvghg0Am3WCzIz89nzw0VRCc3XYuoo9w4/rpkZWWxa8/nyROUrsHD6xneqfvss89Yji9/PSMxpHu/6nQ6HH300Uk51pw5c1hY4Z133sG8efMSPua2bdtw7rnnAhh8sOj/JOro7Z9uvBZRx0M14YDBwTAYDLJViyaTiU3g9O800Cg5dZWVlZg9e7akvAff+QHpwg6l8CsfSiJn5bTTTsPbb78dlttFyEUdMNj5lURdX18famtrJU5dX1+fxA1QEnXyPCN+AcG0adNQXFwcFoIl90Eu6mhQ4gUTCZZbbrklLI+Bvp8/NzpOpPCr3Kmz2+3suEVFRWGrIzs6OiQvEZRTxw/u/HV2u93s73zODA8ffo2WU8eX1FA6jpJTN27cOOh0OnYOhYWFTNTxZXNycnLYNSJ3zuPxMFFXV1cnEW58CFpr+NVgMKCoqAjt7e247777sGPHDpbrxkMDqc1mg8PhYKKOX7AgF3W0uIOgItx79uxhb/ZqTh0vgJT2fuXvEYk66rs0WVRXV0v6k5JTRy+CdXV1CAaDyMnJQUFBgWTCJPeOH4+MRiObbBwOB1so8cMf/hB33XWXZqeOD7/y8IKV7rfaSzUw0MdHjRqFCy+8EF9++SUL+fPfq+TUUQFuXtTRIoSGhgbWvsrKSubUGY3GsDA1MDjW9vb2or6+XiLqXnjhBdx6660AINn3mB+v7HY7jjrqKFx++eWSfyMzID8/H83NzYpOXaLhV6pcIHfq6N/oXs+ePRsPP/ww64vU5xYsWAAA7HnYt2+f5N7LnTq+/VqdumjhV/n2YtR+v9+Pnp4eNq/xNSYPHjwocer4KhW0Fy9BK7UpBxqQ5sUVFxejqqoKDoeDhaRp/FJbKKHX61lKUX5+viRPUqfTsXsODPYvPgxMJU14+PtKhfAPHjyIefPm4ZVXXkkPpy7ZzJ49G8XFxZg/fz62bt2acL6eTqfDhAkT2JvP6aefjvnz57Pq5nJRF4tT9+677+LSSy8FMLh3JgBJAcVHH30Uq1evlog6eWiXr9/FD64rVqzAG2+8IdlVQC38qubUkU3NT6JNTU0Sp45HSdSRQFITdbThNR2vt7dXUdTJC+dSmRFg4KGgkLhOp8Phhx8etrsEOWXy+nm8YKLz0el0CIVC+PnPfy6piSQXRPK3r+zsbPT29jKxxodf+Td6o9EIi8XCBA8vnugNlnbsoGNT/paSUwcMPPB0jXhHSH6uauFXh8MhGVRo9aMSBQUFbIDhnbrc3Fw8+eST7CWosLCQbXbPizqbzcYmVf5+8KJOyalrb29HKBSKKupcLhecTidsNhs++OAD3HbbbXjqqadQVlYmEeKAVNRRaK6rq0ty7hMmTGATiZJTR4uCvF4vO59o4Vf6DJ2fklNHCyVoAqf/L1++nOWbUdicHG++nS6Xi/WxnJwc5qKQK0bixGAwsEnHYrGwe2WxWOB2u1ke1RtvvKEo6pRy6uROHcGLugceeAD/+te/8NRTT0ENl8sVlmcmd+qURB3lU/HlkKxWK0aNGoX6+nr2jFZUVDCnzul0svuuJOrIieNFXWVlJZYvXw5AKuooZE+OGA8ffgUG3cKOjg5VUacl/NrS0gK9Xi9xwZTCrzQm8zni9DM69v79+2GxWNhOMpSeUFtbK3EC5Tl1tDoeUBd1M2fOZMflP6ck6ui+8FBb+Rch6lc0hjU2NjJRR6ux6d95p47EKjmlJIzpWcvKykJRURFCoRDy8vJQUlKC9957j5lHJBoPHDgAg8GAHTt2SIybGTNm4Nhjjw27BgUFBWxOUHLqlMwfJaeuqqqK7Tk9bDl1w82DDz6I9evXY+XKlWEXJVHOPfdcfPTRR2wXAhqwYhF1fr8f2dnZWLJkCc455xwAg/WtAKnVf9ddd+GTTz6RhF/l0DZFclH3wx/+ED6fj+V3qOXUUZFhEqiUAL9nzx72JslPoq2trXE5dcDAA7JkyRKcdNJJbDLi3SdaKKHFqVu5ciVGjRqFzz//nD3YRG5uLpt016xZg3POOQf79++H2WwOu45Koo5HKUwgd2rpOFlZWdi/fz9CoRDcbrfEqePJzs5mC1aAwQHTZrNJHkj5dZG3MR6nTi38Wl5eLgkfRXLq/vSnP7H6bLxTZ7PZcOmllzI3lEREU1NTmFNHkypfioV+r7m5WdGpowE3Wk7dpEmTMHHiREkicXt7O8rKysIq9PPHJFHX2dkpOXcq0QIoO3X8REYTNYm6I444Ak8++aQmUaeWU0fQRFNbW8uclJycHOzfvx9+v18x/ErYbDYmGGjBEokTnU7Hfs9isbBzI1EHDIwT3377LRun1Jw6tfArwZ+bw+HAueeei2XLlkGN2bNn45hjjpH8TIuoAwbuG9+nrVYrW229Z88eGI1GTJw4kTl1TqcT+fn50Ov1iqKOatTJ8zLpOu/duxeTJk3CzTffjB//+Mfs/OXF9eXh1/z8fPaCmkj4tbW1la0856+VFlHHvwyQqBszZgxz3wsKCmA0GlFXVyfpV/I6ddnZ2ez81Byj3/zmN6yKARA5/KrkzFNbqYYd726TqDt48CALvwKD+WtyUUfjz86dOxEMBpmw4neFoLGAnoXFixdj7ty5AAZF3csvv4xgMIhPP/1UIsh+/vOf4+WXXw67BgUFBSzlhvpXNFHHi2kSdZSaUV9fnz7h10yGJnUaHGnA83q9kgRa+epXPh+Jfo8Xc3Qz6RhGozFstSxB5UlCoZBkcKUHjzqzUk4dddaqqirJog+r1Qqv18vCM/xDRZux83v4EdFEndFoxOjRo/Gf//yHJbFTUVxgcKEEL+qoI8udupaWFhw8eBAnnXQSmpqaFEXdli1bcOaZZ+Lll1/Gpk2bWGiMh9405S4YfyxCLur4a5adnY2srCz2kB199NGora1VLEdhMpnYsUpKStjkmJOTI3mQ5ddFLur41bG8qJOH+fjjqYVfy8vLJfWoIok6l8vFxDY5dRQG4aEJqrGxMUzU0XXhnbqCggLWLiWnjgRYNKfuuuuuw/r168PaE4tTR/X0gIFniUQdFR+WO3XUbjofi8WC9vZ2bN68GZdffjl6e3tZLo181R9NZGrhV8Ln8yEUCqGxsZElTOfk5DCHaMyYMWFOHUHhV2BgyzeDwSBZBEPXmJw6yrXjJ5JgMIi1a9cy90kpp47aS6JOfq+oKK7aeCbnv//7v/HnP/9Z8jO11a/ySTA/P1+yotBms7FJ/JNPPsHYsWNZLb+Wlha2sj4/Px/ffPMNGyvoxaCqqgpZWVlhbj9dh6qqKhQVFeGBBx5gwk8pJ1XJqSO0LJSIFH6V55Er5dQphV/lTl1tbS1Gjx7N9v6mqE0wGAwTdbR1Fv0+nZ8WcQEoh1/5KIx8rFILvwKDoq69vZ05dcCg8JeLOnk+PNV/5cOvclHHQ6KOzBMqjBzNUMrPz0dTUxMCgQD7rnicOhqHGhoaRmb4dbghUcfXLaILyodJ1XLq6EGlvA/6XXm4Ye/evTCbzYoTMuUZ8cfj20bL9zs7O8Ocujlz5rCBix986Pgk6njnkZw6pY6jxakjzGYzewB590irUwcMhC07Ojqwd+9eidih3KgXX3yRiYd169aFXVf+u2kQkMNPPmrhV7PZzIQdibpjjjkGdXV1ksmf3qB5UXfYYYex49Kbqrxt/EIJ+QBH10Uu6tTy/tScuvHjx+PAgQOs30YSdTyUsyN3igF1Ucd/rqCggIkc2heRjkvQtaJBL5qo0+v1yMrKYp+j6x6LqKNin8DAYEpiQMmpo/ArAEn4ld9V5MUXX4TJZGI7t/DnpRZ+VXLq5LvSUAgGGJig5Dl1BB9+nT59Or777jtJ5QHeqQsEAqx0Dk0kJpMJBQUF+M9//sNKJymFX/V6PQuvW61WSW4iIU+UjxWlnDq6tjzySZjCr8BAsffx48eza1RdXc3Oh9IGaMLnnbqxY8eGnVNOTg7bD5qOR/1Yqa8eccQReOSRR5jbw6+MTHShhPyctYZflZw6Ov9JkyZJXrjk4VdgcJ7hRZ0WcQGEh1+BgWoFABQjKHz4lZw6efgVQEyijvLh6TnknTp6oVNaeEk5dVRvt6+vT1GQyaHwK7+YSp5Tpxa2B8Jf3IVTlySmTp2Ka6+9FkceeSQeeOABXHLJJbjqqqsADIZFKZ/IbDajs7MTfX19qqKO6viUlJRAr9ezh53eWvhl54RcBBEkHKgY8tatW1FZWck6c39/P4qKijB9+nQAUlFHnyFRN2/ePMyaNQszZsxgTp2SAIpV1NGEyjtS/Kb3lKgNKIs6WplVV1en6NS1traioqICer2e1RuTQ+fR0tISd/iVX2BRXV0NvV6PWbNmIRAISMI/dD/VRJ2aU8evClbKY6Rwq1L4lf9OvV6vmlNXXl6OUCiE6upqBINBVnw2GhTeURJ19N0HDx5kg77T6ZT0U7vdzvqe0+lk1ztS+DWaqCOoPSeeeCKmT5+OOXPmhIm65uZm6PV6mM1miagjR5GuJR9+1eLUmc1mSfkBCr8C0v5O/x4IBODxeGCz2dg94ovWAoNFgXmsVisaGxuZANPi1I0aNQqVlZWSMJ1cPMgn8MmTJ2Px4sXwer3svJTCr/T3+vp6RZcKSFzU0XF5p05pIqO2U1ifF3WNjY0oLy+XhE7pfMrKymAwGHDNNdcAkIo6Pp+OoJ16gMGxmc5P6RoYjUZce+21bDzkRZ2WhRJyUef1enHJJZfg+++/VxR1Ho8HPT09rO/TMXNycpiQUMqpI8HzxBNP4MEHH2TXW+7UAYOiLisrK2anTknU0flFcuooZUEp/ApAEn699dZbceutt4YtlKAXfRJ1wEB6A+VianHqurq6sGXLFgDaRR05dbyoi7b6lS+sLk/lqK+vH7k5dcOJ2WzGI488Arvdjl/84hf4xz/+wer39PX14a233kJpaSmamppQUlKCUCiEtrY2yUMFDJYPoeX0lK8ir75ON5QfrNWcOgBskvr000/h9XqxePFiyduT2WzGkUceCUDZqaMBLD8/H1999RUTdcly6uSibtKkSdi1axc2bNiA8vJy2O12WCwW/PrXv8YPf/hD9rv0e2qijpy6trY2FBUVsQT8SE6dFlEnd+r4Dan58ysuLmaDM+U+AYNv4XJRR98rF3XRSpoAA9fa7XZLJhb+gaeBSC4klJw6YGDiam1tRSAQSNipy8rKQl5eHhobG9He3g69Xi9xwGhbOrqOLpcrolOnNaeObxsATJs2Dd9++y2OOOKIMFHX2NiI3NxcViybcuqonXl5edDpdBKnjkoq8N9D38Xn1BG0fy/lEcrvBd3zgwcPsrCv3W6HwWAIC7/yos5gMMBsNiMUCrEC4NQHlZw66pNKLze8U8f/3+l0QqfTobKykuUSk+uhJupycnIkrpWcZDl1fE6d0kRGYokKaJMbS9d9/Pjx7DM1NTXsfJ544gns2rULt956K1sdD6iLOiB87Isk6uSQSKJV1DxKCyUo/Nre3o5//vOf2LVrF5555hl8+eWXYcKDz1+lc6U+YrfbWbI+/zJAuwmRGC4vL0dZWZmiU8dHOoxGIytCD8Tu1PGRikiijtpPL1b8i5CaU/fuu+/irbfeQkdHh8Spo1XYmzZtYr/3y1/+kuV58qJOyalbvHgxCgsLWZifFo1oder4nGt5+FWpT1MbzGZzmFPn9XqRlZWlWh6IR4i6GOA3R6+qqmI1kWiwb25uDntQq6urYTabJQnzp59+OpYvX47rr78eP/vZzwDELurIGn7//ffhdrsxbdq0MFE3Y8YMAJBMUvLwK5GXl4fW1takOHUWi4V1YjrWvHnz4PP58Pzzz7M9bAHg7rvvZoIXGBTBJHrr6+sl7cnNzWWlRVwuF3NAlUQdnWtra2tUUceHLYDBAZt+j+7rYYcdxq4BX5+O3B8+fBcp/KpU0kTeRqfTGZZ3mJ09uB0VLb6QT9bygZJ29di7d6+k1Eo0Ijl1wGBZk/b2diY86HM5OTnQ6XQSpy4Z4VeCjsH3Y7moO3jwILvHSuFXGkTlCyWIvLw8yUIJPqeOoK0AKfleyakDIJlwlHZrkDt1JDAB6b2n/8sXShxzzDFYuHBhWKI/fV6n04W5iQaDAaWlpZg9ezbKy8uxevVqPPLII5LvVBJ1AFRLVf385z9PqDKBWvhVDu/UkZvKC/Tx48ejoqICdrsdgUBAkutG4o0vnxRJ1NG1los6LX3VaDTC6XSGhV6ByE7d2WefjQsvvFAiBuTCg9/ykI5P4xi9/PLfk52djYaGBvT397M+T1Ab1Jw6Ogadu9aFivKcOmBQ1CmNefQZEnBqTh0v6oCBXSFCoZBE1NlsNixcuBB+v5/dq/Xr10u+K5JTN3HiRHz//fd44YUXYLVamVMnzzeXU1BQwPZYBgbGvtbWVtTV1eGqq65Cf3+/4vWjNvBjPDCQ99nc3KzZHTVG/4iA4HPq6IEBEFXUud1uyYRGy/zPPvtsdgyl8CttncQfj6BJ6vvvv8eiRYtYmIlv69KlSwEM5hYA4eFXggqR9vX1Kb6FTZ8+HXfeeadktVokp45cLBosZsyYwZwf+Yo3Hsp3mDZtGnQ6Hfx+f5hTBwxc14kTJ6KkpARr1qyJGH6NJur4nJ1oTl1FRQWbIHhRZ7PZmKijHQ4OO+wwlodHtbXkbTObzSz/Qi7GysrK2JuZklNntVol4UE1p85oNGLs2LGoqqpiCfSxOHVqizNI1JnNZsmCEP7/dB15UcdPhnRN4g2/8ruIyEVdR0cH6+f0vGRnZzNRR58/6aSTcNVVV8Fut0sG2zPOOAOzZ89mb/p8+JW+r7S0FA8++CCbJNVEHV0D3snSKupoTOBz6mw2G4xGI4LBIMxmMyZOnMgKhcuhhT50vnz/+OSTT5jLd8opp7Cf0wQjd6PoBZFqnMm5+eabFX+uFSWnTqlP8C87kyZNYmPwqFGjUFVVhfHjx8NoNGL+/Pl46623wkpnAIOirr29He3t7VGdOi3hVyX4nFieSCVNSHzwfUIuPI466ij2ZxJ1dEx+9T4ffuW3LORREnX0s/b2dnZcp9PJXhK0EC38KheX9BnKB1RaKAEM7k1OUL90Op3spTonJweLFi3Cs88+i6lTp+Lzzz+XHCMrK4s5nEqiDhhwQJcvX45rr71Ws1PHO8TAwPzb2tqKDz74AH//+98l58mTl5fH3Dj+xb27uxv79u3T7I4KURcDvFOnJupokqHwSV1dHWbMmBGWKyInXqfum2++wRlnnAFAOoGYzWZMmTIFra2tYatL7XZ72CBDTp1a+Y/s7Gz8/ve/l/xMS/iVjmU0GjFnzhy89957EqdOzrvvvovvvvsOBoOBvW3Kc+qAgdyIvLw8JlgjhV+jiTr+YaHrLHfqKIGaF3V8kVglUTd+/HjV8Ku8pIlSTt2DDz7IBqtjjz0W5513HoqKiiS/a7VaJX/nj80zfvx4bNmyhZW8kA+mSpBT19/fH1HUORwOVVFHuWN8OQT+WOQgtbS0SHb8iIYWpw6AxKnz+XysRl9FRQW7tuPGjcPf/vY3ANJn6L//+79htVpxzTXXSPIDqb9QaPymm24Ka5c8/AoMPNvnn38+q20lD7+Si0q/R8+U3KmjlxDaHzjaBCsXdfz3qu2NPXfuXLz22muorKyU/Jzyk9REXaJQv6G+3NXVJclLI+hneXl5+PDDD9n1JuFNjuXixYujijp6XuXbDBLyKAWtktYq6vLz8xXDe/LoADBwr3h3jt9yUi485KvL+WPyoo536uQ53ESk8GtHRwd7LgoLCyMWlJYTKfwaaaEEza+RFkpQCgNfhYCv32iz2VjKVEVFBb744guWM0rXo7i4GE888YTkhUYJSpPRGn4FBkVdaWkpqqurJfdSTdTx1wsYMDc+//xzVFVVaR4bRfg1BnhRxydT08PFO3XAwABFdc0irZgC4supq6+vR3d3Nws58KVIqK1KtduoPhEPbfbc3Nys/Y0ggqijNy1+wJo/fz7MZjNmzZqlesypU6fivPPOAzB4TeSrX4GB/ftcLhemT58OnU4X5jzyv9ff3x/VqSOUVr8Cg2UcaEEK1eLjHVjaCPrOO+/E6NGjJaGDSKtf1cKvfL2wMWPG4MUXX0RWVlaYqJOLOaVzPfPMM/H222/jtddeg9Vq1eSI2Ww2BINB9Pb2Rg2/ynOweFEnXzUoPxaJOlp5qYU5c+ZgxYoVktB9NFEHDPSbmTNn4tFHH8Vjjz0W9nn+HlG/KC8vZ6kMwGCfUBIbdA/41a+E0+nEwoULcckll0g+Cww6dXzCe6TwK/1cy32kYyk5dWro9XqcdtppqvdDKcybDOi5I+HU3d0dMfzqcrlgt9vZ+DNq1Cg4nU52zRYvXgwAqqKuu7s7bAcUOfLwKzDQn7SKuosvvhg/+clPwn7ucDhwxx134IQTTmA/s9vtLDEfGHTq7r//flYfj4ffCxkY7Bt823inTv57RKTwK+/UXXbZZWE7+kQiUvg10kIJLeFXIHzHEj78mpOTg7KyMsycORPTpk0LO2e6LpdffnnUPFBKk4nHqSsvL8fBgwfDnHg5vKij60KLHWNx6oSoi4FoTp3H45HcLJq83G53VKcu2upXJaeO8s+U9uRTG7hPOOEEtscdD33vgQMHNA36QGRRR/AP7Q033ID169drfuNQClPxD5/L5cLChQuxfft2RceB/z2lc6JFDUrtla9+pXphlJhNkwQJet6pu+yyy9j+ilpWv6otlFCD+gIlX9OxTjnlFDzxxBOK1/eSSy5BSUkJVq1aheuuu07T9/CDoJqoO3jwoETUKYVf6d/UXmxMJhNaW1s1h16BgWfuueeek1xT2nWEjgmEizoAEoEmh37PaDQyd/bGG2/Ehx9+yD5D90kpZBMt/Kr0WWBQ1FGeVDSnDhjM+YtGJKcuVl599VX84x//0Cy+Y2XChAl4/PHHMX/+fMnCEDl07eUO2EUXXYT77ruP/X3mzJm4//77cdJJJ4Udg1weyn1Sc6+V8onvvPNOxXFUiZ/97Ge44IILwn6u0+lwzz33SKIMv/zlL3HRRRexlxUSAtdcc41iXh45qfKFEmpOnfyciGhOHS8WI72Uy4l39atS+JXPDaef2e12VFZWSkwMPqcOAL744gvcdNNNYc9rtNw4nlicOvoeEnUTJkxAW1sbS8Xhz5NnzJgx7D5S28vLy2G1WrFv3z6RUzcURBJ1er0ewWAwzKkDBh44NZeCoAGfBinn/21O7fF4YDabw+on5ebmspwuPj+Kyquoqfprr71W8efUEdXKgygRaaGE0p8dDgdbkasFpVpZ/GDlcrmg0+kkbg2PWjt4cnNzJQ9LWVkZXC4Xy6+h36Pl6SQenU4nDh48iJKSEmzfvh02m01S01D+vZFWv1JJE62TLZ9Tx4dfCwsL2R6UckwmEx5//HF88cUXuOuuuzR9z3HHHcf+rNRvS0pK0NjYiObmZraHqlzUXX755Wy1WSSnzu/3a175Ggmj0Qi/34/c3Fy2+pX/7vHjx0d0WOge8c+PTqeTPH9anDolUSefSPkt9Gj16+TJk7F9+/aIOXW8UyffWlDtnNRy6mKFUj2GCp1OhyuuuAIAIjp1ZWVlWLZsmSSvDBioE8dvU6XX69kKZTkk6urr6yUuiRy6/ryA/MUvfhHbiWmkuLgYzzzzDPbt24fy8nJW0kZtPH/44YdxxRVXsNBxtJw6+rt8rImUU9fR0aEYPtaCUviV+myk8Csf6aGi3nyxad6pKysrQyAQwK5du5CbmysZc/ljys9B62IPIDZRl5WVBZfLJUnDAYBvv/024ndfe+21WLFiBYDBMbKgoABlZWXYvn27CL8OBfLwK3Uel8vFJnte3MTj1NH/acKgsJQc/qHl3+B4sRAL1OHr6uqS6tQlMoFECr8C4ZOknHhFXWtrK3sQ5QslaOECtY1CNjabDY8//jgeffRRyfGVwq/8SkSq38fvBxsN3uUrKytTzYuSc/LJJ+O3v/2tpmXxwMC1IedIqQ+OGjUKwWAQO3fuVA2/zp07l22ZF0nUAer5XbEgdyrkTt3MmTMj/r6SqJMTSdRFyqmTO3Vz5szBhg0bMGnSJObUjRs3DllZWRHDr3S9Ro8erWnBC4k6pRyudEZ+vjxmsxlvv/12QmFgXtRFyjFVcuqGGupHjY2NEdMSjj76aHz99desf/MlTQillwGl3XeA8I3lAWn4NVbGjh2LCRMmoLy8PC6nTv6SRNBYec899+D222/H2LFj2Qp8pagX/Z0Pscfi1MUSfgUG5mQqHD5hwgQAgztb8Ocp/w4+8gMMjDHyuSgawqmLAblTd8oppyAUCmH8+PEoLy9HdXV13E6dvCPShtWtra2Kv0MPsU6nk0wu1MZYRR1vTScjpw4YGIyVqs5rRcmpo5Cp1+uNOshqEZdquRTy2l47duyQ1B3iB3qqK6R0LD78SteIKvrTn+W7b0SDD78+/fTTQxYKA4ClS5dKNk7noQGoo6NDNfzKo1YKgiZtNcc1FqhPxivq5LvHKBFP+FXJHdHpdDj22GORnZ0Nv9+P1tZWtlKSF2FqOXX333+/4pZScpLp1A0nEydOZPt8DgVUSLm+vl41nw4Y2Gv7j3/8o6KIHyroGWlsbNQkwvki6UBkp05p3LRarXA4HJIxXa/Xs7E2XlFXXFzMxg/aFYG2ClNa8a8UfqXz6+7uZo4d9QmKAowbN459z/Tp07Fx40ZMmTJFcuwJEyYgFAqxHMp4nDp5NQY1SkpKsGPHDhiNRpSVlQGAxGnkF8MoUVRUBIPBgPLychY1EuHXIUAu6iZNmoS7774bwIDFum7duqg5dWo5MCeddBIef/xxSVFgILpT53a7JQ9ivKLO4XCw5fTJcuoSnTyURB21tampKWpIgArgRspXy83NlWyVRsgdG3m5A75tjzzyCEvIlsOLOoPBAL1eLzkfKjALaL9efF06rQ96vPz+979HR0dHWJgLkCaWaxF1ai821Hf4/UrjhfokPW8k5lwuF5YtWxZ1lVskd4iIJ/xKhX6VyMrKgs/nYzUiaSeRaE6dUvK/2jlloqg744wzsGHDBkkuVTLhc+rUVr4CAyGwW2+9dUjaoIbZPLA9YVNTk6bVptTv5OFXo9HI+p08nM9z2mmnKT6zVqs1IVHHwzt1fr+fbVnHw4dfaY9iYPB5KiwsDKtdCgzsCX3yyScDGBj3lcarBx54AIFAgO1NPpROHb3wWq1WOJ1OJo5//vOf469//askRUCJ0aNHo66uDoWFhcypE+HXIYCqalP4lXdm6MKribri4mLYbDbVWkg2mw1XXHEF66zRRB19tzz8Eq+o0+l0rMYUvclo+R1y4pREXaJhHqXwKyCdqKMhL8wrJz8/X3Ewkzt1am2j+8YXAlX6frqH2dnZqmFhrZMtuTjDMTnn5+dj5cqVihNLYWFhWDia7rnSNa2srERlZWVYmJWSwZMl6vhrQ+02GAx4++23cfjhh0f8fS1OXSyiLpI7QtAuAlQjMpqoi3WCTeZCieGE8vfef//9ITm+1vBrKqB9hNXGfzlyp45eavhxOVJfPOKIIxSFK1+YO1HoGI899hieeeYZAOF9kXfqqKA0MPg80Xwnfz6nTp0q2e9YCarxKS//ooVYcuqAwcWTFJUhkTd37lyEQiHm3kWC0qpIM/AVNyIhnLoYoITV3t5eVVHH7/fGh19p4YNS2QUeh8OBrKwsdtObm5sVH0KarOQrohJxyX73u99hy5Ytiiu11DAajQgEAkMq6pScOkA9dMoTTdTdd999ihtoR8utUmubHOoDfCV2tVW5sVyva665RtUdHC4MBgOKiopQX1/ProfBYIDFYlEUdeXl5ZJ9GAl6iUhW+DU7O5vdt1i3rNKSU5efn49jjjlGcdGPWkmTSK4aOeRer5eJOr/fH5bgrcVFVILKg2SaU0djKl/yI5nwTl2k8GuqoOLfWsYFNaeOFyBaXjDkTJkyBdu2bUuqqFu9ejUrTi/vixTNaG9vl4hZ+hzNd4n04b/85S+49dZbY0pbiVXUyXefoaLYSiuYo0HPAV/sPhJC1MUI7QAQCoUk7oXSheedOkC5jpYch8OBLVu2wOPx4O6770ZLS4tkRwgi2U4dte+1116L+XdoXzoimpDSippwys3NRW5urqZ8vWhtUapvBwxOnGq/p7aNkpzy8nK89tprrFir3Kmj4piRvkuJhx56SPNnh5KSkhKJqAOA3/72t5L9fLWidi9iwWg0SvbfjVXUKdWXU/rMZ599pvhvs2fPxoIFC9izTseJ5tRR6SKTyYRLL70UXq+X5QjR70Yq8RGJX/ziF2hsbMSbb74JIHOcOmCg+HAyBIUSVqsVBw8elNT6TCf4XQWioZZTl6ioo5IpybgHfL+llaFKfTErKwvt7e3MUQPCnbpE5paTTz6ZhWq1QuFXtS2+5PDhV/7v8Yg6cur4YveREOHXGDGbzSxcpOTU8aKO3Aq1LUjU4DeCb2pqUizBEM2pG6rkYjk0eQ1n+NXhcGgemCIV5I1ENFdDq1MHDOSrkACVO3WFhYVYs2YNysvLI+b1pCs0GfKi7tZbb8W0adNiPlYii2qIREWdFqcuEscddxzWrVsXlscUzanr7Oxk33vWWWfh/PPPj7pQQiszZ87E0qVLJQt1MgWbzRZTmCwWrFYrE9OZLuoKCwtx1FFHMRFmMpkki22A+J06AJJdG+KF77e0XZnS+JmdnR3mUNLzOG3aNNxyyy0RdyUaCninTkt/VHLqgPhEHc31WnNLhVMXI2azmW3nw08Y8qKB9Gej0RjTtir89wADNX2U6sYNhVMXD8Mh6uTHcTqdmusmxesa6nS6iN8jL+GhFblTBwysMN27d29Mx0kXlERdrNx2222SauuJMBzh11jbo9frI16frKwsiajj26LX68Pyo+JdHJNpOXVDDf8cKm0zmGrIFNC6+nXjxo2Sn9HiNyIRUUfF1xNB6aVNaVx2uVzo7OxUDL/m5OQM+6IV+v7e3l7odLqEnLp4V1BXVFREXeRFCFEXIyaTiYk6XqzpdDq8++67kmXUp556qqTKfSzwg7vSgJMJTl2ijgAJVvkgdNNNN7EN4KORSCh448aNqrXTqE2xTpBKpS0yGRqsEhF1f/jDH5LUGoSFPeMNvybz+TGZTFHDryTqeMG2aNEiXHfddWwxik6nw9lnn624sk8LmZZTN9QcdthhAAbyaunP6UQsTp0S8hIl8Yg6ynPdt29fXG2IhtJYePjhh6OmpkbRqUtV3yWnzmAwaBJ19LJL7T377LMlu8TECl/jLhpC1MWIWvgVAJYsWSL5+9SpU1ml/Xi+h1ASdU6nE48++ihOP/10yc/jLT4cLzRoKJVVSVS8TJkyBRs3bgyrLUb74WkhEVEXaaBPplOXyUyePBlOp1PzPphDDW3vRSUhYtl6DIh/MUIk3G53xF1a5OFXQr47AgCsWrUq7nYIp07K0qVLWTmhdCRRUWe32yW10eIRdTRWJSM1QgmlvnjkkUfitddeU6wMMFzzmhxe1GkZG8xmM/Ly8tj5TZgwATfeeONQNxOAEHUxoxZ+HYrvIdRCA9dcc43q76XSqUvWQgkAcbsSRLw5ddGorKzE2WefHZPABMJz6jKdc889FyeeeKLmXSqGGqrLZTKZ4HA4Ym7XUDh1GzZsiJhLoxZ+TTbCqcsskuHUUc4gMNi3Yt3y6/333x+yki9KfZHGfH5hQKqdOip+3N/frzmEWlpampL2ClEXI2azGT09PayO0FDBvw3Eku9BDsVQrRiTM5Q5dckgmQKTJycnJy7X5LLLLsvIBRFq6PX6mBcCDSVGoxFGoxELFiyQ7M+slWTn1AGIWpMqKyuL7Yc5lMWkhVOXWdD8Eu/9cjgcknJNU6dOxRNPPIG5c+fGdBx+hX6yUXPqAEjKH6Va1JnNZnYttS52uPbaazVt45dshKiLEepc8bgAsWAwGGA0GtHf3x8xdCPHbDYzYTccHKqiLl6uvvrqVDdhREP7pi5ZsiQsHUILWkqaJBv+BUw4dQIiUacuNzeXOcDAwAvY5ZdfnpS2JQM184GcRD79JdXhV/6Z4UutROKyyy4bquZERIi6GKFORUvHh/q7zGZzTBOM0+kc0rCwnKFcKJEM0k3UCYYWWv0aL0Ph1EVD6dkZyu9Jh5ctQXQoHzReUXfbbbdJRF26MHXqVGzbtk2yB7acHTt2SHL/Uj2n8M9lPGVJhhMh6mKENnX/yU9+MuTfZTabY15q/9Of/hRLly4dohaFk+5OHW01M1zhaEFqoTp18ZIKUSecOoESiYZfY833HQ7279+P3NxcVtdVDfnuMql26oSoGwK+/PJLXH/99dDr9SgqKsLKlSuHrChlJNasWQMAOOecc4b8u+IRdXa7Pe4Vt/FA90BpoUQ6iDqLxRLxjVAwshgzZkxCK3GHYqFENPhnR+TUCYhEw6/pCM1n+fn5zCDRQqqdOn7Hjnjqzg4nGSPqSktL8c4778BqteL222/Ha6+9hrPPPnvY2/Hss8/igw8+GJYEyHhE3XCT7uHX2bNnY+HChaluhmCYePrppxMqUzEUJU2iMVzhVzq3dHguBdEZiaKOyM/Pj+k5TfWcQt9fWFiY9gZBxog6fkl1VlaW6j6qXq+XrSQDAI/Hk9R2XHjhhbjwwguTekw17rrrLlRUVAzLd8WLUp06i8WC/Pz8pOzlmSinnHKK5krcgpFBIoNuKpw6Pvw6lGLytNNOw0svvTSsglUQP4mGX9OZWJ26VIdf6fvTPfQKZJCoI2pqarB27Vr8+te/Vvz3e++9F7/73e+GuVVDw4oVK1LdhKhQCQl+IjUajWhoaEib2mUCgVYMBgNuvvnmIS3jIIecuuzs7CF1AVwu17CkjQiSw0h26ubNmxfTfrs5OTnQ6XQpE7i8U5fupJ2oa2howFlnnRX289WrV8NoNGLFihV4+umnVfPpbrvtNknlZo/Ho7rVkyBxjEaj4r0YqgrkAsFQ88ADDwzr99HzkyoXQpCe0OrPRLbgS1duuummmD5/2mmn4a233kq5qNNaziSVpJ2oKy4uxscffxz280AggNNPPx133XVX2MoYHpPJJMILw4iaqBMIBNpIxYpbQfpz7LHH4r333sOECRNS3ZSUY7VasWzZspR9fyaFXzMmPrZq1Sp88sknuPvuu7Fw4UK89NJLqW6SAELUCQSJQs+PeBkV8Oh0OixevDjVzRBAhF+HhOXLl2P58uWpboZAhhB1AkFiCKdOIEhvrFYrjEZjTLs7pYqMEXWC9ESIOoEgMUROnUCQ3phMJnz88ceYNWtWqpsSFSHqBAkhRJ1AkBgi/CoQpD/HHHNMqpugiYzJqROkJ0LUCQSJIcKvAoEgWQhRJ0gIIeoEgsQQ4VeBQJAshKgTJIQQdQJBYojwq0AgSBYip06QED/5yU8wb968VDdDIMhYRPhVIBAkCyHqBAkxnNspCQQjERF+FQgEyUKEXwUCgSCFkFMnwq8CgSBRhKgTCASCFCKcOoFAkCyEqBMIBIIUIkSdQCBIFkLUCQQCQQoRCyUEAkGyEKJOIBAIUogoaSIQCJKFEHUCgUCQQoRTJxAIkoUQdQKBQJBCRE6dQCBIFkLUCQQCQQoR4VeBQJAshKgTCASCFGIymVBUVIRx48aluikCgSDDETtKCAQCQQrR6/VoaGhAKBRKdVMEAkGGI5w6gUAgSAN0Ol2qmyAQCDIcIeoEAoFAIBAIRgBC1AkEAoFAIBCMAISoEwgEAoFAIBgBCFEnEAgEAoFAMALQhUb4kqtQKITOzk7Y7XaRiCwQCAQCgWDEMuJFnUAgEAgEAsGhgAi/CgQCgUAgEIwAhKgTCAQCgUAgGAEIUScQCAQCgUAwAjiktwmjRRQCgUAgEAgE6U60RZ+HtKhrbm5GYWFhqpshEAgEAoFAEJWOjg44HA7Vfz+kRV12djYAoLa2NuJFEqQfHo8HY8aMEfcuQxH3L3MR9y6zEfcvs7Hb7RH//ZAWdWRhOhwO0bkzFHHvMhtx/zIXce8yG3H/RiZioYRAIBAIBALBCECIOoFAIBAIBIIRwCEt6kwmE37zm9/AZDKluimCGBH3LrMR9y9zEfcusxH3b2QjtgkTCAQCgUAgGAEc0k6dQCAQCAQCwUhBiDqBQCAQCASCEYAQdQKBQCAQCAQjACHqBAKBQCAQCEYAh7Sou/nmmzF//nycf/758Pl8qW6OQIHOzk4cc8wxyMnJwffffw8AeOmllzB37lwsXrwYtbW1AICtW7fiuOOOw9y5c7F27dpUNlnwf3z55ZeYP38+FixYgHPOOQd+v1/cuwzi+++/x7x587BgwQKcfPLJ6OrqEvcvw3jxxRdRUFAAQIybhwyhQ5TNmzeHzj///FAoFArdc889oZUrV6a4RQIl/H5/qLGxMXTRRReFvvvuu5DP5wsdffTRIa/XG/r4449Dl19+eSgUCoVOO+200M6dO0MdHR2huXPnprjVglAoFKqvrw91d3eHQqFQ6LbbbgutWrVK3LsMwufzsT//9re/DT333HPi/mUQgUAg9OMf/zg0e/ZsMW4eQhyyTt2nn36KE088EQCwbNkyfPLJJylukUAJo9HI3jQBYNeuXZg6dSqys7Mxb948fPfddwCA+vp6HHbYYXA4HHC73Whubk5VkwX/R3FxMaxWKwAgKysLO3fuFPcug8jKymJ/7unpQVlZmbh/GcQLL7yAs846C3q9XoybhxCHrKhrb29n+97l5uaitbU1xS0SaIG/bwAQCAQAACGu3KK4n+lFTU0N1q5di+OOO07cuwzj3XffxezZs/HBBx8gKytL3L8MIRAIYNWqVTj33HMBiHHzUOKQFXUulwsejwfAQIfPy8tLcYsEWuDvGwAYDAYAgF4/2JXF/UwfPB4PVqxYgaeffhqFhYXi3mUYS5cuxVdffYWzzjoLH374obh/GcLzzz+Pc845h90bMW4eOhyyom7OnDlYs2YNAOCdd97BvHnzUtwigRYmTpyIrVu3wufzYcOGDZgxYwaAgVDfrl274PF40Nraivz8/BS3VBAIBHD++efjrrvuwqRJk8S9yzC8Xi/7c25uLnJycsT9yxC2bt2K5557DsuWLcOuXbvwxBNPiHt3iHBIbxN288034/PPP0dZWRmefvppZGdnp7pJAgV++MMf4uuvv8bYsWNx5ZVXwmw245FHHoHZbMZzzz2HMWPGYOvWrbjiiisQCATw+9//HkuXLk11sw95XnzxRVxzzTWYPn06AOCqq65CKBQS9y5DeOONN/DAAw9Ar9ejoKAAzzzzDFavXi3uX4Zx5JFHYtOmTfjXv/4l7t0hwCEt6gQCgUAgEAhGCods+FUgEAgEAoFgJCFEnUAgEAgEAsEIQIg6gUAgEAgEghGAEHUCgUAgEAgEIwAh6gQCgUAgEAhGAELUCQQCgUAgEIwAhKgTCAQCgUAgGAEIUScQCAQCgUAwAhCiTiAQCAQCgWAEIESdQCAQCAQCwQjg/wOdZZcZBZHCQgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3RU1drGn0lmMskkmWTSGyWB0JuAggKiIChgL3S94LXjZ8GKV7HgFbmKiv2qV0CRoiAWqoKINGnSIySBEFIgvU5v3x9Z7845M2cmM5NJ37+1WEAyc2bPObs8+3nfvbfMbrfbweFwOBwOh8Np0wS0dAE4HA6Hw+FwOI2HizoOh8PhcDicdgAXdRwOh8PhcDjtAC7qOBwOh8PhcNoBXNRxOBwOh8PhtAO4qONwOBwOh8NpB3BRx+FwOBwOh9MO4KKOw+FwOBwOpx3Q7kWd3W5HdXU1+B7LHA6Hw+Fw2jPtXtTV1NQgIiICNTU1LV0UDofD4XA4nCaj3Ys6DofD4XA4nI4AF3UcDofD4XA47QAu6jgcDofD4XDaAVzUcTgcDofD4bQDuKjjdCjsdjsee+wxnD59uqWLwuFwOByOX+GijtOhsNls+OCDD7Br166WLgqHw+FwOH6FizpOh8JisQAAzGZzC5eEw+FwOBz/wkUdp0NBoo7+5nA4HA6nvcBFHadDYbVaAXCnjsPhcDjtDy7qOB0K7tRxOBwOp73CRR2nQ8Fz6jgcDofTXmnVom7VqlWIjY0FAKxZswZXXnklxowZg7y8vBYuGaetwp06DofD4bRXWq2os9lsWLt2LTp16gSz2Yx33nkHO3fuxIIFC7BgwYKWLh6njcKdOg6Hw+G0V1qtqFu5ciXuvPNOBAQEICsrC3379kVQUBBGjBiBEydOuHyf0WhEdXW16A+HQ3CnjsPhcDjtlVYp6qxWK7799ltMmTIFAFBZWQm1Wi36vSsWLlyIiIgI9qdTp05NXl5O24E7dRwOh8Npr7RKUbdixQpMnjwZAQF1xdNoNCLHLTAw0OV7582bh6qqKvaH599xhNCEgDt1HA6Hw2lvyFu6AFJkZGTgyJEjWLFiBbKysvDZZ58hIyMDJpMJBw8exIABA1y+V6lUQqlUNmNpOW0J7tRxOBwOp73SKkXdokWL2L+HDh2Kd999F6tXr8bo0aMRHByMr776qgVLx2nL8Jw6DofD4bRXWqWoE3Lo0CEAwNSpUzF16tQWLg2nrcOdOg6Hw+G0V1plTh2H01Rwp47D4XA47RUu6jgdCu7UcTgcDqe9wkUdp0PBnToOh8PhtFe4qON0KLhTx+FwOJz2Chd1nA4F36eOw+FwOO0VLuo4HQru1HE4nNZCcXEx7HZ7SxeD047goo7TLKxcuRKPP/54SxeD59RxOJxWgcFgQFpaGrZs2dLSReG0I1r9PnWc9sGePXuwbdu2li4Gd+o4HE6rQKvVQqvVori4uKWLwmlHcKeO0ywYDAaYTKaWLgZ36jgcTquA+sPW0C9y2g9c1HGaBYPBAKPR2NLF4E4dh8NpFVB/yEUdx59wUcdpFrhTx+FwOPVwp47TFHBRx2kWWotTR1uacKeOw+G0JNQftoZ+kdN+4KKO0yy0FlHHnToOh9Ma4OFXTlPARR2nWTAajTCbzS2+JxPPqeO0FY4ePYoXXnihpYvBaSJ4+JXTFHBRx2kWDAYDgJbvwLhTx2kr/Prrr3j33XdbuhicJoI7dZymgIs6TrNAoq6lQ7DcqeO0FShloaXdbU7TwJ06TlPARR2nWeBOHYfjHSTo+ASkfcIXSnCaAi7qOM0Cd+o4HO9oLW2G0zTw8CunKeCijtMscKeOw/EO7uS0DfR6PUpLS71+X1OFXy9cuICamhq/XrM9YrVa8eGHH7a7CX6rFHWHDx/GqFGjMHr0aEyePBlmsxlr1qzBlVdeiTFjxiAvL6+li8jxktbiOvB96jhtBWoz9DendbJ48WKMHz/e6/dJOXVHjx7Fxo0bG1WeSZMm4Z133mnUNToCJ0+exP/93//hwIEDLV0Uv9IqRV1ycjK2bt2KnTt3onv37vjhhx/wzjvvYOfOnViwYAEWLFjQ0kXkeElrEXXcqeO0FVpLm2lO7HY7vv766xZ39L2htLTUJ6NByqn75JNPMG/evEaX5+LFi426RkdAp9OJ/m4vtEpRl5CQAJVKBQBQKBTIzMxE3759ERQUhBEjRuDEiRMtXEKON1gsFuaQtXRnTWLObrezMnE4rREScx3JqcvOzsY999yDP/74o6WL4jEmkwkVFRVer1KWcup0Oh1qa2sbVR6dToeqqqpGXaMjoNfrAXBR16xcuHAB27Ztw8iRI6FWq9nP3Q3GRqMR1dXVoj+clkXoNLS06yB06Lhbx2nN+NupKy4uxqeffuqXazUVZWVlAACtVtvCJfEck8kEq9XqdZmlcib9Ier0ej0XdR7Anbpmprq6GnfffTeWLl2KuLg4kTgLDAx0+b6FCxciIiKC/enUqVNzFJfjBqHT0JpEXUN5dXa7ne8RxvEZi8WCSZMm4dSpUz69398LJX766Sc8/PDDrdr5Ky8vB1DvorQFyGmrqKjw6X1Cp06v1zdK1FksFpjNZi7qPIDqmD/rWn5+fouPGa1S1FmtVsyYMQPz589Hjx490L17d2RkZMBkMmHPnj0YMGCAy/fOmzcPVVVV7A9fVNHyCAeR1hJ+dfy3FKmpqfj++++bukgN8tNPP6F79+4tXQyOl1RXV2PTpk3466+/fHq/vxdKtAVngoRRay6jI9SnVVZWevU+V+FXvV7vc2oICRQu6hrG3+HXsrIypKamtnjqgLxFP90F3377Lfbu3YuamhosWLAADz/8MJ544gmMHj0awcHB+Oqrr1y+V6lUQqlUNmNpOQ3RFp06s9mM3NxcnDt3rjmK5Zbs7GycPXsWZrMZCoWipYvD8ZDGOm3+duooPKjT6RAVFeWXa3qCXq/HsmXL8NBDD0Emk7l9LYm6tuTUUT/irVMnJeqEQiM8PNzrstD7vRWYHRF/i7rKykpYLBacPXsWo0eP9ss1faFVirpp06Zh2rRpTj+fOnWqXz9n8+bN6N27N7p27erX63LEtCZRJ5wBu3PqKATS2PwWf0CdjlarRWRkZMsWhuMxjRVl/s6paymnbseOHXjkkUdw/fXXIy0tze1r26Ko89Wpkwq/0rOpra1tlKgTOnV2ux16vZ4tPuTU4S78eubMGezbtw+zZs3y+HrUTouKivxSPl9pleHX5uLWW2/Fhg0bWroY7Z7WGn5159SRmGsNCdvU6fhSlvPnz/s0iO/YsQM333yz1+/j1NNYUdZewq9Ubz1ZtNaRcuqkRD99b18nk0JRSBPYdevWNSimOyLunLpVq1bhqaee8up69BwvXbrU6LLZbDa8//77Po2XHVrUBQcHt+qk4fZCW1z9SjuytwanrjEd/ahRo/DFF194/b49e/Zg8+bNXr+vseTn5+P//u//YLPZmv2z/U1jtyRpqvBrc09UvBF1HSmnriGnzheEYpjud25uLoqKilp8w/W1a9f6RfD4C3eiTqfTeX0qhz9F3d9//43HH38ce/bs8fq9HVrUhYSEtKkZYVultTl1lHPZVpy6xnT0xcXFPiVNl5aWwmKxNPu2L3/88Qc+/PBDnDt3DjKZrEWEpb/wRpT9+OOPTs+pvYRf6fO8EXVtqV/250KJxjp1wvtG9Ymu5c1zz83N9enzXWG32zFjxgysXLnSr9dtDO5EnVarhdls9mq8otf6Q9TRM/PluDcu6tpQ59FWaU05dRaLBcHBwezfrmhJp+7JJ58UpQX4Gn6lTsmblXQmkwlGo5HtF9bcz4vuN3WMX375ZbN+vj/xVNQZDAbceuutWLduneT7efi1ddPY8Ks/nTrhs/VV1OXl5SE1NRUHDx70qQz0mcLjt4xGI0wmU6vaN9ZdTh3dK29ElT+dusbkdHdoUcfDr74xc+ZM/Pbbbx6/nu5xQEBAqxB1ISEhAFqvU/e///0P69evZ//3taOnsnvjtj3wwAOYMWMGO6C8udsHfUfqaAsLC5v18/2Jp6KOBjrHAYQ7dS2LVqtFSUlJg69ryKnbt28fjh496vJ99LfVamX/9rXfkXLqhKuePYH2WmuMOPn6668xZswY9n+q261R1LkKvwLe9bn+XChBz4w7dV7CnTrvsdvtWL16NX755RcAwEcffYQHH3zQ7XtocAoPD28V4VdvnDpfOtf9+/fj1Vdfdfq51WptcGPKmpoa1NTUICsri/3MV6eOOiRPRZ3FYsGPP/6IjIyMFhN1jp1ZWxZ1nooyGuiEA4jdbne7UOK3337DoUOHvCqPt4O7v/BF1LWGnLo33ngDEyZMaPB1DTl1zzzzDF5//XWnnzs6dcKxyBMx8c033+Daa68V/cwf4VdyS30RFERFRQW0Wi3LjaVn39ZEnS9OXVVVVaN1BRd1PhISEsKdOi/R6XSwWq3Iz88HUDcL3b17t9v30D1Wq9WtwqkjUeeJU+eL/b1hwwYsXrzY6eeDBw/G559/7va9BQUFAOr2piN8deq8FXUHDx5EZWUlCgsLWfi1pZw6+rslDybftm2bzxsHA547dVKhfovFwiYAUu//17/+hYULF3pVHh5+9Y5Lly7h5MmTDS7aacipKyoqkvyd0KmjbUcIT9r6zJkz8fvvv4vatz/Cr9T2G5N6Qu+lukt1vDFC0d+4C79SnfXFqQMa79ZxUecjwcHBraLzaEtQR0GirqqqqsGKZzAYoFAoEBIS0qyibsuWLXjnnXdEP7NarU3u1JHb5nj9zMxMkViTgkTdxYsXnUKRvoo6T3Pqtm7dCqDumVI5Wtqpa8lJwLx58/DWW2/5/H5vw6/C59tQHmplZaXX4bGWDr9WVVXhtddecynUDQYD+96toV/W6XQwGo0NnkrUkFNXVFQkuVjJaDQiIKBuCDabzaLn0lBb//vvv9m/SQgDdfdNoVBAoVD4HH4lUdcYAeZK1Hki7K+44gqsWrXK58/2FH87dcIoVGPz6rio8xHu1HmPlKhrqAMyGAwIDg6GUqls1vDr+vXr8f7774t+1hxOnVQHZjKZYDAYGuzUSEwBwNmzZwE0X/j1jz/+QExMDCsv0HJOnbAzaylhV15ejuLiYp/f7+lCB6mcOuF3lnq/L6KupcKv9LmZmZl4+eWXsX37dsnXkSiKi4trNaIOgCgVQgqTyYSAgABJN06v16Ompkay3RuNRoSFhbFreOPUrVmzhv2bUiXo80JCQhAREdEqnDqqu96IuuPHj+PkyZOSv7Pb7Vi1apVftmdpqpw6wH+iji+U8BLu1HmPUNTZ7XaPRJ3RaERwcDCCgoKabIC22+147rnncOHCBfYzvV6PgoICUfhEuFCiqZw66riEnTzdt4a2FykoKEBQUBCA+hBscy2UqKiocDpXuTWIOuEzbUrMZjMef/xxNkhWVFT4RdQ1pVPnyeHhH3/8MZ588knRySTNCX1uZmYmANf3gxyn5OTkVpFTR2VoyF03mUyIjY2VdOooDCfV7k0mEzs1wmQyib5zQ8+ooKCAvZfq66ZNm1BVVQWVSiUp6jwd6/yRU+fo1LlaDOSIxWKB0Wh06XqePXsW06dPdzkx8IamyKlTKpUIDAzkTl1LwRdKeA91FEajEaWlpaiurm5wP5/mcOpKS0vxn//8R9TY9Xo9LBaLaGD21qnTarUeDZxCqCEKRR392xOnrmfPnoiIiGAOQXM5dTqdDunp6aKfNZWoE+aMCZHqzM6fP98kZXDk9OnTeP/997F9+3bYbDZUVVV5tPrRFZ4ulJDKqXO3YTeFKXU6nUdC/+eff8bmzZu9Dr9K1bcFCxbgySef9Oj9jtehvc/o+3z99deifctoIE9OTm4V/TKV2xOnLi4uTnSKA0F9j6vwq1DU0XcODw9v8LlWVlaie/fuAOqctYKCAkyaNAnr1q1jTh31OW3JqaN77krUUdno78bgyZYm3jp1ISEhSEhIaPQCL75PnY80Vfh17ty5ePjhh/1+XSHe7D3mT4SNMj8/32k2KIXBYIBSqWxSp446T2H5qLEKQ5qeOnX0fRwTmD1BStR549QlJycjPT290U6dtzl1er0ecXFxUKvV7GdN0T4sFguSkpKwZcsWp99Jhb39vRGqKyh3Kjc3FzU1NbDZbCgpKfH5dAt/OHUqlcrpGQjrkCeOQFZWFoqLi70SdX///Tc0Gg3y8vLw999/s8nYzp07sWvXrgbfL4Q+z3Hhx6effoovvvgCa9aswbXXXssG8qSkJJ9FXVZWFn766Sef3uuIN+FXSltwHITJqTMYDE4TWqFTZzQa2efFxsZ6JOpSU1Mhk8lQWlrK8hTPnTuHkJAQaDQadj9bMqfOW1FH73Ml6ujn3u4JKIVer0dQUJDovtCG6744ZUajEUFBQUhOThaNOb7AnTofaarw69GjR3Hs2DG/X5c4efIk5HK5aHPHxnL+/HmPHCnhgJKXl+dyO4YnnniCiRKhU9fUok7YCOjZUv4f4LlTV1NTw5KYHTtYq9Xq9viWxjp1ycnJSExMZN+psQslvHHqVCoVkpKS2M+aQtSVlpaipKREMqzlOEMNDQ31aQXspk2bcN9993n1Hqonubm5bNCw2WyiRHRv8Ieoi4iIcHq/sF41JOrMZjPOnz+PiooK1r49Gdzz8vJgNptx5swZDB48GCtWrAAA0cpoT3F0/Oj75Ofn49KlS/jzzz+xZ88edp8bI+reeustv02oPRF1NpsNFosFsbGxAJwnbcJVkI5t35VTR66fOyorKxEdHQ2NRoOysjLWVxgMBqhUKsTGxrKwrCun7rrrrpNcQd0Uq1+F4Vd344yUqCsvL8f+/fvZv4V/Nwa9Xo/o6GjodDpWptmzZ2POnDk+TaRNJhOUSiWSkpIa7dTxnDofaSqnrqyszC8zCVfQaQPnzp3zy/Xy8vLQvXt3fP/99w2+tqqqCqGhoZDL5Thz5gxzgYRiqqamBkuWLGFOjLvw67Jly/yybYU3os5Tp446asdBaevWrRg5cqTLhksdmLCD99api4mJQUlJicgpbI7wa0hICJKTk9nP/NU+rFYrc9wopCklcB1nqJ07d/Zpe4DffvsNK1eu9Cp0TvXkwoULovbra15dY7Y0ofdERERAp9Nh5cqV7Dl6I+rOnz8vcmplMplHoo6ew/Hjx2EwGNiinYsXL4oS8z3B8fMMBgOsVisKCgpQVFSEixcvwmw2Iy8vDyEhIYiMjPQ5p+7o0aMoLS31OmVCCq1Wi4iICLdOMU0MyalzrNPCuuvY9h0XSnjr1EVGRiI6OhqlpaWiOhoSEoLY2FgUFxfDZrO5dOqOHj0qudehL07dVVddha+++or935VTZ7FY3PYpVFahaPv8889x7bXXinLt/OXURUdHw263s3Hp5MmTOHXqFGtrvuTUtRmnzvEIm/YA5dTl5ub6dT+s8vJyv8wkhPz5559YtGgRACAjIwMAWEJ9Y9m+fTusVqtHYYuqqipoNBokJyeLVigJOyHqvGjAIVHnGH61Wq2YPXu2aCXXn3/+iQ8++MCr8gvz5qTCr0JRJ9zSpCGnLiEhAYCzmKIcL1eDm69OncViwaVLl5CcnMxm2sIO0NeFEp6EX0k8klNHg5S/RN369evRq1cv6HQ6JuqkBK6jU5eSkuJT0nFpaSlbeegpwvCrO1FnMpkwc+bMBsPC7jYPPnr0KCZMmACr1dqgU7dz507MmDEDX3/9NQDvRJ2jG0rORENQ3aGIQ35+PvR6PSorK1FbW+uV467T6RAVFcX+bzQaUVRUBKvVivLycrYQJjs7G1FRUVCpVNDr9V4LM4vFghMnTsBkMvnleD+dTofOnTtDr9e7dA5JDHji1Dn+zmQysVQHoVMXExPT4ASuqqoKkZGRiImJkRR1cXFxopA7fR+CjgKUylelscvTe1hRUYF9+/bh2WefZT9ztaUJ4L4PdOXU6fV6/PXXX6xs/hR1QP29uXjxomi88Danjpy6NiHqpk+fjnfffdfta/wxO2pOKPx633334fnnn/fbdcmp8+f9WLNmDd5++20A9aLOseEXFBTg+PHjXl+bjvzavHlzg/lDVVVViIiIQEpKCk6dOsV+TknCW7duZY3WUdQ5hl+pwgqT0VesWIGXXnrJ43u3e/duRERE4MSJE6JrAq5z6tztU1dRUYHbb78dubm5TNQ5Nmxq9FJbGNjtdrc5ddXV1S6/W1FREWw2m8ipo+8QFRXVqPDr+fPnkZOT4/K1whyuYcOGYdiwYVAqlX4TdefOnYPBYEBBQYFbUScMOyiVSiQkJLCBMTs72+O0BhLc3ghCqfAr4Czqzpw5g2+++QY7duxwez13Tt2uXbuwZcsWlJeXS4o6oVNH/160aBFsNhurVxqNxmtRFxMT47OoE058vQnBarVa1pYAOO39Rm03OzsbGo2GOenepmqcOXOG1Vd/JNKTqJO63s6dO1FYWMhEnSunrri4GJ06dZL8nWP4VafTQaFQIDIy0m1bt9vtzKmLiYlBWVmZSDySqCsrKxN95tmzZ5GcnIycnBxWbxxFndFohFarRXR0tMeCgkKjgwYNYj+Tcurkcjn7tyvofZWVlayfpH5i9+7drF021jSx2WwwGAwiUUfmgHC88NWpKy8vb1Tf2Syi7qeffsIrr7yCxx57zGlQslqtWLZsGXr37u11AVoSCr8WFxc3ausCITSrM5vNft06oKCggG1oSxtPOl7/1Vdfxd13383+b7Va8eabb7qdGdntdvz222+44oorUFJS0uAO+kJRJ9wAs7a2Fi+++CJuuOEGdhA0dTTl5eWIiIhwCr9SuYSijjbqLC4u9ihn8Ouvv4ZOp8O2bdtE1wRch1/J4TSbzaioqBA5bidOnMD69etRWlrq0qkT7tHniNFoZA6glFMnDIc4Qp0JOXVVVVXsM2JjYxsVfu3WrRvS0tJcvpYGepVKhTlz5mDDhg0+n43873//2+msS6oL+fn5LsOvdrtd5NQFBQUhISGBDUAvvfQS/vnPf2Lv3r2466673E5AfBF1eXl5SExMRHV1NRvsFAqFpKgD0OBs3J2oo3IJB17hsUpCp074uTt37kRFRQUCAgLQvXv3Br9fVlYW4uLi2P89cYGoLED9BDI/P1+UbuCpaLLb7dDpdCJRZzAYJN0QR1HnbV6dsM55GyJ2xGKxwGQyMVHneL0pU6Zg8eLFrK27c+poRbnwd3a7HWaz2Sn8qlKpEBYW5lbU6XQ6mM1ml+FXyqmz2Wyi7YCOHj2KwsJCHDt2jD1L4aQCqH+uXbp08XgSuXfvXgBgubjCdkz1uLq6GomJiezfQk6cOAGNRoPy8nJRdMFxcYVQ1DXWqaNykYOs0+lQVFQEu93OJvsNiWtHhAslgMYdcajVaqFSqUR9gqd4LOquv/56/PHHH1i/fj1uv/126PV6mEwmfPLJJ+jevTvmzp2LKVOmeF34loScusrKSpdHvHiLcAZx8uRJrF271i/XLSgogNFoxMmTJ13uN5WdnS2aTZ84cQLz5s3Dzz//jBMnTkg2hLNnz6KgoAAvvPACVCoV/vjjD7flIFHXqVMnpx3Q33vvPQBgjhANOPn5+ejUqZNT+NWVqAOA//znPxg2bJhkw6ipqWHhGzr4nj7Tk5w62nHdYrHgn//8J6ZPnw6dToejR4+K7lFDTp2UqBN+vpRT5+p9gFjU0cyfPsuTPBtHhKKOOgZXg51Q1BENOXVr167F9OnTAdQ969TUVJw/fx6vv/46S6wn6Lm6c+oMBgMrZ01NDZRKJeLj49l7i4uLkZGRgXXr1mHt2rVuXWlvRZ3dbkd+fj5GjBgBoG4AVKvViI+PdxJ1tN9aQ522p6KupqYGoaGhAOqfg6OoowEzPz+fuTSJiYlOaSM6nQ59+/Zl7sm5c+cwdOhQtugnNjbWK6eORIs3ok446TeZTLBarWxAB5ydOqKoqAhRUVFM1HmbV3f06FH23i1btiAyMtLnwZ8+W8qpM5lMKCoqwunTp9kkNTIyEgEBASLBYrVacfbsWfTo0QOAuL7T+4SrX2nj4MjISJSVlTmZJwcOHEB6ejoef/xxAHV1g5w6qfArUN8vhoSEMIGXl5cnepbCNAL6nl27dnXrEpWXl+PBBx+ETqdjoo7ar3AxhDD8SnXYUdRlZWWhsrISFy5cEPVx9OyEoo7K11hRR2MDOXV6vd6pPcfFxfnk1NH3bKyoc2UqNIRXCyUGDhyIP//8E+fOncPw4cORmpqKl19+Gffffz9yc3MlDzFvzYSEhMBut6O4uNhtAntGRobXhyEDwNtvv41p06a5TFQ3mUwehxhocKdQBeDc6Z07dw6lpaXs88hROHz4MEaPHs1ElxAaoIYMGYIePXqw/7tC6NQJ+f3339lARC4HbY6al5eHlJQUj506AGz/KsfFIBaLBePHj8ftt9+O3bt3o6SkhIVTAWdR17VrV1y4cIHllVksFsjlcsjlcuj1emzbtg2HDx/Ghx9+iJEjR0qKOqkwNyAdfqXPDwkJcXLqAgMDRd/bEdp4OCYmhok66oh9ceqEs96+ffsCAH755RfJ11JdokERgKRTd+ONN+LDDz8EULdgZPXq1aiqqsJff/2F8+fP49SpUzAYDMzhOXv2LPbv3y/p1Dm2OeH3q62tZU5dTU0NdDody5Oj3E861kwKT0XdsWPHsHDhQlRVVUGr1TJRd+zYMWg0GpabJITaiC9O3fz583HXXXeJXOzq6mo2EDjmIlHOVWpqKkJCQlBeXs5EXXJysmjCAgCnTp1CRkYGu0dlZWVISEhgg5e34VdCp9MhIyMDMpkMgHsnbObMmXjiiSfY+wA4hV/z8/PRtWtXdj2iMU7dkSNHcPXVVwOoqxtVVVWiFBGg7tQUEiHuoHJT6JS+76lTp9hgfebMGdafKZVKqNVqUZ3+8ssvkZeXh3vvvRdBQUGi39HzJadu6dKl2LZtG1QqFdLS0qDT6UT1rry8HOPHj0d2djZrw45OHd03WigB1Iu6uLg41pbz8vJEkwFhCJY+k5w6rVYrmZP7/fff47PPPsOhQ4dYREWn02Hu3Lm4+eab2euE4VcaMxyFEvWHpaWlLkVddHQ0ysvLWR63N+HXUaNGOaWOOYo6nU7nNEGKj4/3afUrOXWe5NXt2rVLcoJTW1uL+Ph4AN6HYL0SdVVVVfjyyy9RUFDA1PX27dvxwgsvsBlHW4IagcFgcOnU2e12XHXVVU5niLpCOKM7duwYy2cS8p///Ad79uzBE088galTpzZ4TZvNxjoSqiiJiYmijtdkMiEvLw92u52VgUTd6tWrUVFRIZlTdeHCBQQGBiIxMdEnUSeTyRAeHo5ff/2VvYZmfnSQtVarRUpKikunTjhA0GDnKufjnXfewZ9//omTJ09i3759UKvVuP76652uCdQ13EGDBsFoNLIykahTKBTYv38/ampqUF5ejvXr10Or1YoamNVqhUwmc9quxZ1TR5/fqVMnJ6eOGrs7py4pKQkymYx1yiTqHLc5yMnJcbuqVa/Xi5w6EombN292+XpA7NRJibpDhw6xHMzc3FzY7XYcPnyY1Ru6NyTqXn75ZcyaNcuj8KvjQoGgoCDWsRUVFbF6Qnlijvvc0RY7ZrPZabGOzWbDO++8w/6/fPlyfPnll1i5ciUWLFjAnvvQoUMRGhqKjIwMaDQaxMbGOm1A7Gn41XHz4ZqaGrz33nv4/fffncKv5GQJw1YBAQFs0E9MTER0dDTKysqYqEtNTUVOTo7I0aFJHwkXYe4VUCfqKioqMH/+fLfRCWHfQm7hwYMH0aVLFwQEBLh16o4dO+aUItKtWzcAdYMoOXWpqalsUCVooQTgnaiz2+04evQorrrqKoSEhODIkSMA4NSfvfzyy3j00UcB1NWjxYsXS4oWoRiVy+VsUUH//v2xbNkyAHVtkAbcoKAgqNVqVqf1ej1eeuklzJw5E5dffjkiIiKcjg0E6kX7ypUrsWvXLoSEhLB7RSuOAbBQ7/Tp01ldpedaWVmJwsJCNnFTqVROTp0wBE9OXefOnaFUKkV97P79+xEWFoaBAwfCarWiV69eoqMW//jjD9x///2sv6c+VKlUQq/X49y5c9i3bx97vbDuU//n2O7pHpaWlorqHYm6qqoqDBkyhH0fuVzu1qkT1uuysjLs3r0b33//PZYuXcq2cPFU1Pni1KnVaqhUKpdOHfULhw8fxtVXX80mQEKETl2Tibp58+ahS5cuWLZsGd544w2UlJTgrrvuwnXXXcdyqJqap59+GqNGjcKMGTP8cjKB0OFxNdBSjperpGhHi1w4g6DBR9ix1NbW4l//+he++uorHD58WJSX5oqSkhI2gOfn50Mulzvlxly4cIGFrmi2RYMPVVbhrD4vLw/Lly/HhQsXkJKSgsDAQK9EHc1gw8PDoVarkZubi9TUVFEnYTab2SBDTp278KvBYHB6Do4rDL/99lvExMSguroaO3fuRO/evdGrVy8AdR0kNQCz2Qyr1YrLLrsMQN0g9/DDD7OEXblcjq1btzL37M8//wRQ98woobdbt24IDQ0V3efKykrRAeWOCLficBR1FMpxJ+qo45Ny6oxGIywWCzZv3oz09HSXE43z589Do9GwULrFYmFhNGGHK0Qq/Col6iorK1mdpbIdOHCA7eUlXGxQW1uLkydP4uzZs6JJiSunznFWTAslgDpxJhQS1157Lfbs2cOuYbPZ0LlzZ0yZMkX0OhJP7733Hp566im2gvTDDz/Exx9/jLNnz0Kv17NyJyYmYtiwYbBardBoNExICcnMzIRKpfLYqTObzdizZw/mzp2LmpoalJaWsr7BnVNHi4uoXFKirra2VlQ+cjIOHDjAckYjIyPZJIHq0YIFC9i9kEJY54cOHcqumZyczNwhR5YsWYKzZ8+Ktj2hetW3b19kZWXhqquuYjl1nTp1Ys+XRK2vTl1BQQHKysowaNAgUd/o2J+VlpbiyJEj2Lt3L6655ho8/fTTeOqpp5yuR+UODQ1lK0wPHz4Mu93OnDKbzYbTp08DqBN1wqO5li1bhpKSErzyyisAIPodUF83HM2QgIAAlvtKok6r1eL999/Ho48+iiuuuIK9NjIyEl26dGHRpv79+wMAO1FCoVCwSAc9f6Cu3V68eBHJycno0qWLSNTt2rULV111FSIjIwHUtedNmzax3y9ZsgRffPEFSyuiCV7fvn2h1+uh1WpFY7Mwpy4uLg6BgYFOos7RqaOJjNCpGzhwIOuru3TpAoPBIFk/PvjgA2g0GnZN6tf379+P+fPn44033mChbqBe1OXk5DiJMG+dOhJ1MpkMXbt2ldzfcO/evYiIiMDx48dxzz33ABD3uUBdvdLpdE4TPU/xWNT98MMPeP/995GZmYkHHngAoaGhWLZsGR544AFce+21+PHHH736YG85cuQILl26hF27dqFPnz5+yVUThpoo+ZQoLi5Geno6O3Zq3759TkJy165diIyMRE5ODm6++Wb897//RVlZmVNIQfhw9+zZA4vFgqysLNYBCvciKy8vR1xcHH7//Xf2HuHgUVBQgIiICJHYWLNmDb755htR2YG6Ds1xhka8++67mD17NjIyMpjYSE9PR0FBgdtK5OjUqdVq1ghTUlIQFRUlEo+0D5K78Gt5eTmeeeYZvPTSSwDAhE1gYKBI1Nntdpw5cwYTJ04EUNeh9OrVi+WsdOvWTTRTBoAePXpApVLhzTffxKeffgqj0YjAwEA2mI4fP17UqLKzs9GrVy9UV1fjlltuQVhYmGiAo+/m6gBvEnWOTl1lZSW7z+7Cr/Td1Wo1FAoFE04k8rKzs3HXXXfBbrdLnsgA1NUxx61jaFKQm5vr1plwJ+oMBgOMRiOys7NhMpncijqgLlR1+vRpmM1mlJWVQaFQMKdOJpO5Db8CEDl1Z8+eFX2nl19+GTabjdX7w4cPA6gbsEhQxMfH49KlS7hw4QLmzZuHgIAA7Nu3DzabDRkZGThz5gwTV1TPNBoNRo4cyf5N22sQpaWlKC8vx8iRI1FUVITCwkKX4kNY3nvuuQdffPEFBg4cCKBe0NJA5ijq6BQWd6KOBn+hA3/y5EkkJSVBp9Ph+PHjIqdOJpOJthb57rvvANQ5ng888ADmzZvHBnjhsxg0aBACAgJQWloqKoeQS5cu4YknnsCyZctQXl7Ofk/XCQ0NRffu3dnErry8HNHR0YiPj4dKpUJqaiq758KcupMnT2LVqlUNHhVHztxll10mcv9I1B0/flwkgK+//noEBQVh/vz5WLJkiVOYlsqtUqnY96WVwAcPHmR9PE1ahU6d1WrFW2+9hbvuuou5bo6hWeoHqe8kTpw4gdDQUCQkJDBRt2XLFtTW1uKBBx5A165d2WsjIyNxzTXXsMG/X79+AOrGNXL7qW4IRR05dUlJSejevTt2794Nu90Oq9WKvXv3YtSoUaJy7d27F2azGXq9Hlu2bIFCoYDNZkNQUBA7XaRv377Q6XRObVgYfg0PD0d4eDhqamqwZs0aLF68GICzqKM+0DH8SvWd7qmjW0duPFDn0P33v//Fhg0boFAoYDabkZ+fj9raWrzwwgsYN24cgLo+QqFQ4L777sNrr73G6iHgW04dLcK77LLLWJ0k6Hxyk8mEN954g6UzOE6cqT9p8vBrRkYG7rnnHqaWiQULFuC9997DlClTWK5NU7Bv3z6MHz8eAHDDDTe4zIswGo2orq4W/XGFUNQBYucgOzsb2dnZWL58OYC6G+24UeO///1vVFdX48UXX8TPP/+Mhx56CIsXL0ZkZKRo1ZpQ1JHj99dff7HQyxdffIHU1FTY7XZs2LABJSUlon0BHUWdWq1mos5sNuPBBx/EK6+8wjqa4uJiJoDuvPNOAHUzxfz8fOYs/vLLL7Db7di+fTsTGySOZs2ahc8++8zpftntdibq4uPjIZfLERERwTqATp06QaPRwGq1snt7+PBhyGQyJCYmsrySnTt3AhCLmw8//BAfffQRALBB9eqrrxZ15oWFhaitrcWkSZMgk8lgMpnQu3dv9OzZEwDQvXt36HQ6WK1W0RYdPXv2FHXacrmcDaKLFi1iYQt67pGRkQgPD2ehZWHnQc+ie/fuKC0txZgxY0QuritRV1VVxYSwJ06dTCZDTEwME+JUxsmTJ0Mul2P+/PnYu3cv6wC++eYbtlDJ0Tknpy41NRUWi8UpDwvwTNRRuS0WC/bt2we9Xo8ePXpg//79kqJuw4YNImHTr18/Juo6d+7MjuIiSNDQogGlUono6GgEBgYyB6pTp05QqVQYOXIkbrrpJvz3v/+F3W5nk8rLL7+cibp+/frh0qVLWLZsGRQKBebMmYN9+/YhNzeXnZtK1yVRp1arWV4diTphDhq5lGPGjIHNZkPfvn2ZG+OIcMuKgoICLFiwQJSmANSJULvdzgbm6dOn47333mNOHUUTEhMTERUVJcqpowHIUdTNmDEDCoUCO3fuhNFohEajQUxMDEJDQ9m9lcvl2L17Ny5evIjnnnsOGzduxH//+1/cfvvtAOpEDb22U6dOSE1NRWxsLObMmYPo6GgUFhaKogy7d+8GUO+MkHhyrFck6uj6CQkJTCgCEC2U0Ov1uOeeezB9+nTcf//9kveYOHr0KKKiopCSksImQECdqPvrr78wcOBAvPnmm6LTEpYvX4558+YhODjY6bk4OnVlZWVsda3FYkHXrl2hVqtFoo7cuFOnTiEnJwcPPvggu56jU0ftylXaUrdu3Zio+/777zFw4EB069YNXbp0AVD3/FQqFRQKBWbPng0AzKmje02iTi6XM+cNqOtHaaX33LlzceDAAXz77bc4ceIEqqurMWrUKFG5dDodRo0ahYEDB0Kn02Hp0qWYMGECxo0bx8KE0dHRzKkjAgIC2G4ABoMBarWaidtFixbh7bffFm0BReHXiIgIqNVqti1YdXU11Go1W0UsJeqeeOIJXH755Wy8yMjIwEMPPYRPP/0UEydORExMDJKSktC1a1e88847zPiIjo5GZmYm7r33XgB1hgKNo/Hx8SyncOvWrQ3u90lOHVCXo07pVzt37sSSJUuwa9cu7N69G0lJSVizZg1CQ0Nx4403OmkUuofC8Ou8efPQs2dPVk53eCzqHN0nIffddx/Wr1+PF154wdPLeU1lZSXLP4iIiHCZKLlw4UJERESwPxQmlEIYfqXPIOj6O3bsQFRUFMLCwkQnLhw7dgxbt26FSqXCypUrER8fjzFjxuDMmTOIjo5mM2KFQiESdb///jtCQkJEDXzDhg0oKipCWVkZG5zI4l++fDnbdBioGzSFTt3evXvZtbp06YKQkBAUFxfj0qVLqKmpwbhx4/Doo4/i6aefhsFgYIc/k8ipra11EnXr1q3Df//7X6f7VVtbC7PZjIiICAQGBiIpKUkk6lJSUqDRaACAHTZ96NAhxMfHIygoCJMmTUKvXr0wZswYnD59WlSZhXb6c889hxUrVmDQoEEip47CyQMHDmTPtXfv3hg6dCiee+453HDDDQDqGgFdKyQkhIk+Qi6X4/jx49Dr9ejfvz/69+/PvkNxcTH7DnRPhPlBn376KZRKJXr16oVjx45hx44dmDVrFvsu9HdKSgqqq6tFpwBERUUhPDxccqJht9tFog6oc+fIDRs1ahT+8Y9/4MSJE3jsscdw++23w2g0Mgf5+eefx7p162A2m12KOroPUieRCO8XQaIuKysLkZGRLNQC1OezPfjggygsLGSdKYk6lUqFVatWAajvO4YMGYJLly6hpKQE3bt3F2198NNPP+Ghhx4CUL/NQFBQEAICAhAXF8cGzxdeeAGLFi1CYGAgHnzwQRw/fhy7du1iq6CtVqtI1BUWFmLZsmWYMmUKxo0bh0uXLonCSdRR5+bmIjw8HHK5HMOHD0dAQAAiIyOdwu+HDx9GcHAwxo4dy56r0FUXYjQaWZ9lNBoRHR2NmJgYNmCqVComyGiSkZeXh2+//Va0tyMg7dRpNBpERESwa5SUlODixYsYMmQIEhMTWRuPjIxEXFwcQkNDWV/x3HPPse2MysvL8c9//hNvvPEG27xXq9UyZyQxMRE7duxAVlYWrrnmGsTExGDNmjUYMmQIEyfk2NCqW9qg2FHUUZ0iUTd9+nT83//9H3vmjuHX7OxsKBQK1vZdcfToUQwaNIhNhoA6hzErKwuzZs0CUCesTSYT7rnnHnz44YcYNWoUgoODMWLECLYlEiEsN4Wbjx07xkwNOp+Z7rHQqTt48CACAgJw+eWXs+s55tRRCoLQQXv22Wfxn//8B0C9qDMYDNiwYQMT2+TURUZGsnb18MMPY9y4cRgyZAjmzp2LMWPGAKjPowsLC2MCvUuXLrBarfj777+RlJSEsWPH4oYbbsCSJUuYs3TFFVew/jA9PR2hoaE4cOAArFYrhg4dihkzZmDTpk1svEhLS2OTH2Fb0Wg0MBgM7Hur1Wr07t0bP/74I4u8FRYWSoZf6exavV4Pi8WCiIgI0ecB9WP0tm3bsGTJEtF2XMKtXEaNGoW5c+fipZdewm233Qa1Ws0W1KjVanTt2hWvvfYagLr+W6PRICgoiI0xv/zyC2644Qb89NNPbjesp4USADB48GDo9XocO3YMs2bNwnPPPYdNmzYhOjoazz33HABg7NixiImJcXLi6B4mJSUhICAAubm5WLJkCbp168YcRnf47ZiwCRMmuOzc/IEwTk4DpBTz5s1j+3tVVVVJriwhHJ06oaijWYDFYkH37t3x+OOPY/HixWwF6Ysvvoi0tDQ8/fTTAOq+/3XXXQegblCi8g0fPpyFAKxWKw4fPswaKEGz3HPnzmHr1q24/PLLkZmZiZMnT+LRRx8VnTN66dIlkajbtGkT4uPj0b17d3Tv3h1xcXE4dOgQJkyYgMDAQAwcOBAffPABcznz8/Oxbds2yGQyNpCQqIuKikJ0dDQCAgJw7Ngxp1Vy5B5eddVVAOqEi6Ooo++dlJSEsLAwZGZmMoeqb9+++PPPPxEbG4slS5agurqaNQJCJpOhf//+mDFjBrp27YqcnBx8/vnnqKqqwpkzZyCXy5GWlsYaeK9evaBUKvHmm28yQeQo6ijnjpDL5YiOjmai/tlnn8Xq1avZ/4WibsCAAUxQfPDBB9iyZQtWrlyJmJgYJo4KCwvRvXt3bNu2DTU1NQgLC2P3lBavkMNJM9WioiL89ttvMBgMyMnJQWhoqCj0AIDtVRcQEICgoCC89957mD9/Pp566in07dsXsbGx+O2337BixQrk5+ezLRSOHDnCOnag/pDq7t27QyaTYefOnXjmmWdEnYmr1a86nQ733nsvqqqqRCtnSdT94x//wPDhwwHUzcypvc2ePRtnz55FZGQku//CQY5m2yQy5syZw0KhVIeobnTr1o2JhYkTJ7JE9/Hjx6Nfv36YOnUqMjIyEBgYCKPRiNLSUgQGBqJ3794oKipCTk4O7r33XlbOzz//HGFhYVAoFKw8ubm5zM1Qq9V45plnMHHiRCenjlwfckyAutCf1NYv5E4Q0dHRkMlk7Lv37t2bbcsinHgcOXIEJSUlCAkJETl1JC7y8vJYPaHFEmazGffccw9CQ0MxYsQIxMfHs3yvyMhIPPjgg1i+fDmuvfZaJCUl4dFHH0VISAhKS0uZSOzTpw8sFguys7Oh1WoxYMAA3HHHHbjqqqvQqVMnFn2gwVSv1zP3ikSdsE698847rN8Ruq9Cp27ixIl4/PHHRaKOBGB+fj5qamowduxY5Ofnu91e58iRIyx/lly/8ePHw2QyITc3FxqNhvXD06dPx5w5c9h7r7vuOvz++++iAVso6mJiYpCdnY0LFy4wMZ+cnIy4uDiWryx06g4ePIjevXuLQpgajUZyQRiF2IC6qMEzzzwDoK7OZ2dnY9GiRdDpdJg2bRp7lhERESLnLSUlBb/88guioqKwePFiFoalOhIaGsru6eDBg9n7yNkfOHAgMxXUajVCQkLYxGPgwIF44YUX8NlnnyEzM5ONVQBYG0hLS2OnMwlFXUxMDIxGI5vwde7cGffee68oanLo0CEnURcaGoouXbpg48aNzFFz59S9++67uOKKK9g9AupTjVavXo2HH34Y8+bNw0MPPYQFCxbgxIkT2L59O/bu3cvuf3JyMn744QesXLmSLdahMYYmjNu3b0efPn1w9913S7p2QqeONmJ+8MEHcf78eRiNRnz++ee46qqr2MK+iRMnihbXEHQPo6OjccUVV+Dtt9+GXq/Ha6+9JvqOrvDr2a/CCuNvhg8fzgaVrVu3shCJI7T6RPjHFY5OndA9EzqBaWlpeP3113HHHXdg9erV+OOPP7BhwwYsXLgQN910EwBg0qRJbCClg5aBOjWem5sLg8GA8vJyWCwWXHvttQDqB1D6rJ9//hlarRZvvvkmAgMDMW3aNOh0OgQHB6N///6Qy+Ww2+1sdY1Op8OmTZswYcIEfP/993j33XcRFxeHFStWICcnB7///jsL0ZCwys/Pxy+//ILBgwez2QoJEKAuDPrll18yASrkk08+wfXXX89mSo899hjuv/9+1gEInbqIiAjWaQg7Y6VSiTlz5rBFGlQ+lUqFgIAAREdHs4UKXbp0gdlsxgMPPIAffvgBZ86cQbdu3aBQKJCeno6goCDRhrpUDkdRd+WVV0Kj0YhCF0J69uyJSZMmscFA2GH2798f+fn5qKioQGFhIXr06IHbb7+dDXAymQxHjhyBRqPB8uXLWe4IdQiZmZmorq6GzWZjzkppaSluvvlmjB07FoMGDcKFCxeg1+sxefJkkRijmTblyERGRuLVV19FREQEAgICMGLECOzbtw/fffcdE04//vgj9Hq9aNCyWq0wm80IDQ1FSkoK3nzzTbz99tu46aabmJOo0+kQFBQkujfBwcHYt28f68ipo0xNTcXRo0ehVCoRFRWF1157DWq1GgMHDoRWq4VMJsPLL7+MsLAw9O3bl3XG06ZNw8svv4yhQ4fimmuuAVDvbJLgEt5/yk/p3bs3C5sJQ2sBAQGYP38+Ll68iDvvvBM33HADE3XR0dGYMmUKPv30U2zbtg0jRoxAbGwsRowYgWPHjqFv375scADEog4A3nzzTYwZM8ZJ1B0+fBiDBw9GTEwMNBoNJk+eDLPZjOXLl7OUELvdjtzcXJFTB9SLVfrcPn36oLa2FnK5nIXOgLr2smLFClx99dXsWScnJyMqKgp5eXnQ6XTMCSdR99NPP2HLli1Yv349UlJSEB8fz9wtjUaDlJQU1nYLCgqQkJCAqKgoFBcXo7a2lok6oC50RacKrF271mn7omHDhgGoa8u0Xc2xY8eYqCJoMATE4VedTgej0ciEHgBR+DU4OBhqtZoJxXHjxsFutyMnJwf5+fl45ZVXWBrJ77//jry8POTk5LCBlOrIlClTcOutt2Lbtm24/vrrmZhwXHFLYcSYmBi2Otwxp45CoTSoJicnMycKcHbqhBMYoK4fOXHiBBOORUVFCAoKYnVOuIIfqFucQgstnn32WdaGgLp+UVhXXfHWW2/hgw8+wKJFi9j9p0Uvjz76KOs7o6KiUFFRgYqKCtZ/kyDt27cvXnjhBdx3330IDAwUTcKFoo7aCTnvCoUC4eHhMBgMbLLWrVs33HLLLYiOjsbgwYMRFxeHw4cPO4Vfw8LCsGTJEpw+fRpPPvkkgDpRR2KVDjkgUXfkyBGMGzcOH330ETsXnZy6q6++WpRSEhoais6dO0Mul+PKK68U3a9bbrkFffv2RXR0NEJDQ9G1a1fI5XL8/PPPAOq2qMnOzsaKFSvw5ptvAqgTcpSSIxR1ERERSE9Px+HDhzF//nwWXbzqqqvQs2dP/PLLL5g9ezarM4cPH8amTZtgs9lYZCg0NBQTJkxAbm4u1Gq16MQOd/hV1DUll112GRISEjBq1ChkZGTgjjvuaPQ1HZ26d999F3369MHWrVtF8XoSHkOGDMHp06exdu1apKWl4a677sLQoUOxY8cO3H777RgyZAjCw8OZUyeXyzF27FjY7Xb8/fffbNbRq1cvaDQa9OvXT1ThyOkcNmwYFi9ejJMnT+Kmm25CVVUV9u3bx0QLOXW1tbXIzMzEkCFD0L9/f/Tr148Jgeuuu47lpgFgOXAXLlzAtm3bMH78eAwYMAAARK7D1KlTMWPGDISGhrL8GKDORTxw4IAot2XKlCm47bbbRDl1NHCp1WoW4vjnP/8pus933XUX9Ho9/vjjD6SkpEChUGDw4MHo1auXaOYqPKEkKysLZ86cYY7GzJkz8eKLL4pECN2f6upqkagbP348iouLWSfmKOoIGgwcnTqgLoGZ3DagXngkJSWhX79+GDp0KC5cuMDyPzp37oygoCBkZmYy0U6d2ccff4yDBw9iypQpyMnJYQPD22+/LVrYMnnyZACuN58cPnw4Dhw4gD179mDGjBkICgrC119/Dblcjuuvvx6ZmZl47LHHWPiVXE6j0YiePXti586dzCmi3eyFBAcHs3YQGRnJnA7KfTQajZDJZBg3bhwqKirY/VWr1YiNjcWyZcvw/PPPsxBOeHg4XnnlFRw8eJDdV5pICRfQUMcoFHX0LB3LeMcdd+Cjjz7CRx99xFwgEnXkUJG7AtQdQ6fRaDBo0CD07NmTPevCwkLJgZIGK7vdDq1Wi9OnT2PIkCGQyWQ4efIkvvrqK4SEhOChhx5ik6TffvsN3bp1Y4uaCBIT3bp1g0qlYpOp3r17i85xDgwMhMFgwB133IEJEybgwIEDiI6OZoePA/XpDWlpacjKysLBgweRkpIiSgAnIexKAGg0GuaiUN5dbGwsE3VC0SWE3KPLLrsM+/fvx1tvvYXQ0FDMnTsXANhGx8Ij3aivVSqVrE4Jry906mQyGQYNGsQEFkVAsrOzMXToULz66qsoLCxERUUFxo4dy07RoUEvISEBCoUC/fr1w/r163H55ZcjISGB1TXhxACoMyM2btyIgQMH4pFHHoFer2dHdikUCvbcrr76atx4440A6tq9sJ8gp664uBjHjx93EnVXXHEFDAYDE5ZFRUWIj4+HTCZDdna2SAADdS7O9u3b8corr+DFF18U/S49PV3UT7giJiYGjz76KGbMmMHuf7du3VBYWCjapkSj0aCyshIlJSWi/nvw4MHs3kvh6NTpdDo2AQoLC2Oh9uzsbGZ0KJVKfPnll1i0aBGGDh0q6dSFhYVh0KBBmDZtGjZu3MjKM2rUKPz111/o1asXQkNDUV5ejqKiIly8eBGDBg2CRqPBxIkTIZPJ2ARU2P48hZw6uVyObt26sRX0er0eaWlpmDVrFlugtXTpUrYiWSjqAOD999/Hhg0b8Oqrr7KxmMyocePGiSYC11xzDSZNmoS33nqL9fvh4eGYMGECgLo8c1fjliOevaqVQGef+guq6LRknc4+vfXWWzF79mx2XAuJut69e6OqqgqbN2/G5ZdfznIayHUICAjAyy+/jPT0dGzevBlJSUksz+Po0aPsOnFxcejXrx/S0tJQUVHBZjL79+9HUlISQkND8fjjj2P48OHo0qULgoKCEBQUxJL2SdTR2YNCISQUdUIoB44s7XHjxkGtVmPFihWiFT9Anei5/PLLRaKOckDIgRIilVMXERGB4OBgyRMqKC+kpKQEERERSEhIwODBgxEYGCjacLNHjx4oLS3FnXfeiaysLGRkZLB9/a666ioWBibIFampqWEDCz1j2gaG/i0Fdd6OOXUKhQLHjx9HVVWVKK9T+F26dOmCPXv2IDU1FZGRkQgMDET37t2RmZnJBtfo6Gh8+eWXSE9PZ/laa9asYaLN0Tm+5ZZbJMtJDB8+nM2MR48ejW+++QanTp3CFVdcgdDQUKSnp0OpVLLwq0KhQFpaGnbu3InHHnsMc+bMYeEjV6KO7lfv3r2xb98+yGQyXH/99Vi1apUo1BYQEMDuDf1NE68ePXqwWTZB948G2pqaGtx5551YvHgxcxmpgyRR5zgY0+c+8sgj7PXl5eUi8e1I165dceTIEajVamzcuBHdunXDp59+Cp1OJ3ruhEqlgtVqxdq1azFr1izYbDYWkaD0hWuvvRabNm1iix0OHToEq9UKq9UqKgcNmPfddx/69u3L6gUJXBogZs6cidzcXIwePRpyuZzt0UX1UyaTMQE9fPhwLF68GD///LMoUiLsE1yJuqioKJZCQK/p06cP22zdlagLCAhASEgIhg8fjm+++Qa1tbV45pln2OdTvTeZTHj22Wfx6quvsr4yODiYTXKE9W3kyJG45ZZb2DMYNGgQ/vjjD4SFhaFfv34IDg7GypUrWdiypKSEbeO0c+dOlucK1E34Bg0aJBLKwhMtHJ06mUyGiRMnolu3bujfvz/uv/9+9OnTh5WPFvM89dRTiI6Oxvz583HLLbew/eoA533qyM0kLrvsMgQGBuLAgQMYNGgQE3UARI6xkDFjxoice+L9999vMGnfEeHiCeG9AOrqgd1ux/nz51kdDQwMdIrUONK7d2/cdtttuPbaa7Fjxw5WptDQUCbqjEYjsrKy2CQEANuc+Pfff8fSpUuhUqlYKgAtAgTqzA9yNiMiIiCTyZgbTDl3NHEgQS+TyaBWq5GXlweFQuFk3HgCLQQC6vquM2fOYNy4cfj1118xZcoUDB06FMuWLUNOTg6Ki4vZ8WLC1a8AWI43UDce79ixgzmlBK0GTkpKQm1tLV566SVcf/31uOuuu9C1a1d06dIFaWlpog2dG6JNiTp/Q4NWdHQ0DAYDamtrkZKSgvz8fGRkZGDQoEG47bbbcNtttwGoH1yys7Nx3333SV6T9jzq3LkzrrvuOoSFhSE9PR1Hjx5llTU2NharV6+GUqnE7bffjuzsbPZwhTa7Y8dAThRVfMoBFM7aXIk6oC5xfNOmTVCpVLjqqqugVCqdlvIT3bp1YysDgfqViY5L8OlnCoUCcXFxrFNuKOydlJSEwsJCqNVqrFmzBl27dnXqbIC6Z5Oeno6tW7fiwoULbkP8QqeOBIGwUZMocFzB7fh74SCoUCjQu3dvtjKMViTRa2i22rlzZ1ZvaHChff9o8I6KioJCocD8+fMB1J+aQc/RsQMKCAjA4cOHRaeICKHjn0iEd+vWDadPnxY5tHK5nIVfFQoFm+XOmDEDjz76qGgW6vj51D4SEhLY96ZwoNSm2SRgHFf09ejRw2kyQPWDBsGamhp0796dOZxAvVNHYUEpUSeEtswxGAxuO3N6ZjNnzsTMmTOxatUq6HQ6l04dUCfUbDYb5syZIwqVAnVbCi1YsABr1qwBAFG7ccypA+qclvT0dLaynkQdJfQ//vjjqK2tFeX8Cd+fkpLCng1NKDMyMkTHNJJgoFWSUmg0GrZvoVDU7dq1y61TR4waNQrvvfcerr32WsydO5dNlnr16oXs7GzYbDakpaWJJitKpZKJJOH1+/fvjx9++IH9nwbp1NRUBAQEoFu3bli9ejXLJS4pKRGtOqf0FKCuPxKG84H6lYQKhUKyDwPq0jCWL1+OWbNmwWQysf7o3nvvRUhICG666SbIZDJ2cpKjU0ffZ8SIEU79lEqlQr9+/XDgwAE88MADuHTpkkh4ewNNJrxBKOocISF39uxZr1KogoOD2eJBYXv75z//iYSEBOzZs4ftSSgUdUTXrl1x8eJFaDQapKamIiMjA0VFRez5CPNMHccTEnVHjx5FWFiYKA1HrVazBYXuFni64p577mHh2549e+Lnn3/GhAkTMHnyZNxyyy1QKpVQKBTYuHEj9Ho9rFYrTCaTaKGEI4888ghuvvlmp35JrVbDZrOxn5vNZrz22mvM/ZPJZMjMzGQmhSe0mfBrU0AbBUZGRrJOjUI1J0+eRHR0NObOncsGk7S0NNZxOOaPODJo0CDmVAwaNAhHjx5FSUkJFAoFIiIikJSUhOjoaNZxUHxfqvITVNnJqSOEoo4SMaWus2zZMowdOxaTJ092WfkIstMJd6JuzJgxuP/++xEQEMA6iIZsb3IHw8PDceWVV0oKOiI9PZ01MnItpHCVU0dQh+ZK1Ek5dUCdCCgsLBQ5QI5OXefOnVkeIol/EnXC8KsQGuwoHOXo1AF1oaF//OMfkuUNDQ3FgAEDcMUVVyA4OJg9c2G+qVwuF4Vf58yZg7/++oudG+nOqROuvKQ65i6Xx9Gpc0dYWJhorzrhpqP0ufR3p06dEBoa6nT/HKETSxoSdY7Qd5L6btTOLl68iMTERHz44YdOTi+t1qM2IiXqFAqFk0ii70N71xH/+Mc/RDmRBLUtYduOiYlholDYNkgwUDhTCo1Gw5xx+u69evVCZmamW6eOuO2223Dy5Els376d9UmxsbGsbwPgFAUQ9jvuri8UdUC9m0UL1YqLi/H777/jjjvugFKpbDDfiEQdLVZxxbRp0zBz5kwA9UIoOjoajz76qOSRZkDdwBsYGMj6l0WLFkl+xuWXX85Wpguduuagc+fOUKlUTvmRQP33yM3NdbkAsSGE7e3mm29mW8XQvpZCs4JISUmB3W5HeXm5aEUr9QPCiaDjRJG29zl69CgGDhwoEj0RERFslwZfGDduHEsZojL07t0b9913H2JjY9m2R7/99hsbZ7RarVP4VYhj/jdB/cP58+cxePBgPPjgg6INpoG68cobcdqhRZ1MJkNwcLBI1JHDVVZW5jS4U4I+0LCoE0Kirri4GLGxsaIH1KlTJ6SkpLCOWqryE445dYRQ1N18883YsmWLZCWIjY3Ftm3bsHTp0gbLTJuuXrx4EZ999pnTHmJCrr32WpZn5YlTB9R31p4IALo3ERERLkMVQN3zCQ4OdsqpI0icu1pFJ5VTB4CtOpQSdeT60N82m405Sz169EBubi4709Xx3lHZ6FxYT3MmhHz88cdYsmQJ+zxAWtRR+DU0NJS9LjExEYWFhbjhhhvYuZNChCsvqY656yjpd54804CAANH2LrTABICTUyeTydC3b98GB0HKqaPtQDzFMU9SCN2TS5cuuf1elKphsVhE+7fRe6TExGWXXYYxY8Y4OfKuIKHkOGGjhVdCl8UTES4cwOl13bp1Y/mNDYk6ei7C77Vw4ULMnj270aKuT58+kMvlonzmPn36YNasWVCpVMjOzsaxY8cwadIkrFixguXzuYImjQ1NDIA6BxJAg6cWUT8RFBQEmUyGG2+8EYWFhS4X8fXr1w+ZmZmw2+0oKioSnYfb1FxxxRWSYxpQXw/oFBVfcFyMANQ965KSEhQVFUmaDEKBKRQ8JOq6devGxmhhWBOod+pOnz4t2mcUqG9zniwmaYhhw4axHD8hiYmJbMsVoGFR5woqq9lsxqxZs/Dpp582uswdOvwK1A1cERERTLSMHDkSQUFBMJlMkrOW3r17o7q6WtLGdsWgQYPYqijH9z399NOYNm0a2yLCnVMnDL8Scrnc54boDkoQX79+PebMmYMPP/wQMpmsQQdEmGjrDm9EHQldSlB3B20ZolQqERAQIAphUYfu6jByV04d7Q9GiyAA6fArQU5deno67HY7Dh48KDmo072sqKjwSoQIEa7guvvuu5GWliYSP4GBgcypcwznJSQkYP/+/Wx/JxIHhFDUUb31l1MH1NUVCk1LiTphB0m5N+4gUafX671yHDwVde6+e1hYGIxGI06fPg2j0chEHl1bqjzJycnsxBpPINfNsY944IEHEBwcLHK7qQ64K7PQaaJyCidNDYk6KcjhoPoubBeA2I12d32lUomFCxey8PJLL72E559/HnK5HLGxsdi7dy/sdjv69+/vlKckBQmohkL4QL2oc7cdFiAWdQDYJuuu6Nq1KwwGA4qKiprdqQOkIwGAuG76w6mj5xocHMwmOFKTceEessOHD8euXbtw5MgRUfvv2rWr09ZaQN29//vvv3Hp0iWncLRj3nNjGDBggOSJDjQ+Co9Bs9lsXos6oQPpjaZwR4d26oC6ykhOHa1Io0oiJZaefPJJvPXWW159Bqn8nTt3Oq1aio+Px+DBg9meQt46dbGxsV7F2z2Fwq+UxF9YWMhCZu6g79fQjFi4UrIhqENwF3olaHm+Xq9HcHCwqLzUsTfk1DkOhCTqhE7dgAED8N5777FBJzw8nG1aSd+NhOvhw4cl74cw/OpLQq8j4eHhouRcQJxT5+gEJiYmio6ycZVTl5SU5PfwK1BXV0pKStgmxFS/HVe/AnXOjfCIJCma0qkrKipq0KkD6jffpQR3urYnDlFDyOVyfPPNNyz3jujTpw/bYoEQhl9dIXTVqQ/p2rUrazO+iDoiJiYGycnJToOcp04dUDfhJcEmk8lYfYiNjcWBAwcAODuBrqCtkjx5DlJhMikcRV1DUP09fvw4DAZDs4s6V4SGhrK+wVdRJ5xwUVugfS4BOIl7QHzEZHR0NH799VdMmzaNiWqgLvog1e6ioqJQWloq6Xj6U9S5gkQdOXU0OfW0LhDC7+bJhMMTOrxTR8eHGAwG9O7dm+0JJVwJJESYhO4pCQkJiIuLY+FXKa655hpMmTLF6fQDIcKcOhImnixt9wUKv5KoKygocJlgLCQtLQ3btm1j2zu4whunLiQkBIsXL8akSZMafC3Z8rGxsU4i5ZprrsFbb72Fhx9+WPK91113HZ599lmnmV90dDTLi6OOIjAwEI8//rjodZ07d4bFYmEdZFJSEhQKBc6ePSt5P/zh1DWEXC6HyWSCzWZzcuoSExPZFhmA88HSUuFXd6LOm/ArANYmdDodbDaby/Crp/gq6tzl1NE9KSkp8UjUnT59GsHBwRg8eDB++ukn9h5fB0tHPNl8FKhrB47HQzlCZRK+Jjg4GMnJycjPz/eovbti4MCBks/AG1HnCtpgnbaP8oSAgADEx8d7JOpomx5XR3gRJOoc25UrSNTRrgKtRdTRmcCOp+l4g5RTR886MDBQ8rvKZDKkpKTg9OnTUKvViI6OZovHiNGjR0vWE41Gg5ycHNhsNpeizh/hV1fQ+Cg8sx2Az+FXwH9OXYcXdVu2bIFarUZJSQkTMOSa+SusKZPJMHDgQPz6668uH1yXLl2wevVqt9cRhl8p2b8pRZ3RaGTWMzl1niDcF8wVPXr0QGBgoNtwhZCGcmYISqCVWs0ZEBDATgCRIj4+XnQkGyEcCNzN/kaOHClahBEYGIjOnTvj7Nmzbp26ysrKJhV1NAGQCr8KcRRR3ubU+eLUnTp1itUxql9S4VdPEIo6b5xP+k6utjQBwDb9dgWVPT8/HxqNhoWWhE5Ec0LHq3kSfnV8TVpaGvLz8xvl1NEKUUeE9dxXd5r60NTUVK8SyB9++GGPc6GFp6e4wnGT7IaIiIiARqNpdaIOABN1/nDqhOFXoG5y62pxGok6VwJ63rx5LstLW6g4jiEt4dT5KuqaIvza4UUdVQhhB0aizl+za6AuBPvrr782SoQJw69EU4k66nBpfzpPnTpPSUxMRGZmpsfhE0/RaDTIzc2VFHW+IhyQ3Q3sH374odPPunbt6lLUCZ06f5XVkcDAQLbXk1T4FQDbXoa2NyG8dero3jTkcBBxcXHYsWMHy2d1F371BOGWJv4Kvwr7BU9EXV5enkjUKZVKBAcH+7Uv8ZR77rnHaRNcIcINf4V069YNf/zxR6NEnSuEWw35mjYiFHXe8K9//cunz3NFeHg4AgMDvaqnXbt2xbZt2xAaGupxmLc5oLrQ2Jw6Yd41PWvh0YeO0GIJTyeChLDOtpRTJxR1tIOBLxNRmoz6a+LX4XPqpGgqUQc0To0LRR3NjJrSqQPqFxX4W9QBdY6AL/sIucOdU+crnjp1UlDIpaGcuqZ06gip8CsA3HrrrQDqtjQQQp0jnekbGBjo1r32NfxKTp27hRKe0BThV2Ed8lTURUZGonfv3ggJCWHnI3vqSPuThQsXOp0zLcSdUwc0LqfOFfRMG3Nt6vMayrFsamg7LG9FndlsxnXXXed1/W5KqC40dvUrHfcI1PdvUtuoEPQ7TyeChLCcjo6n4w4FTYG/nDqg7rur1Wq/1Qcu6iTwd/gVqN8CpTHL2Lt27Yro6GiEh4ezTrG5RF1VVZXfRV1TQDl1bUHUNVdOHeEo6qieU7jcsWO9/vrrsXPnTsTHxyMwMBDfffcdpk+f7vKzNBoN21jaE+Li4qDVatkpAf7IqbNaraitrfXqfrpa9QxAdN6lu4GH2kZhYSE7a7W6uhrp6en47bff8MADD3jzVZoFV6Ju4MCBUKlUXrsnnuAPUeerU9cU0OIoT6H+YOLEiU1UIt9orFNH7U34XOlZuxN16enpUKlUXo8tQpfZUQw1V/jVbDazCSmJOm/7LKD+WEV/0eHDr1KMGzcOzz77rF87jd69e2P9+vVOBzd7w0033YQLFy4gMDCQNYKmystwDL8C0hsPtzZam1NHdUiqs6SO0GQyNWn4lXAMv6alpeGHH37AxIkT8dtvvzmd+qBQKEQLPOhkFVeEhobizJkzbjtxITQhocPSGxt+pddrtVqv7uctt9yCLVu2uHy2lF/qiVNnsViYWKL7TfsWtjZcOZQ33ngjcnJymqROSg3+3tLaRJ030QZyQVujqJPaINtTAgICoFQqRe/3xKmbPn06Ro0a5fUendTGpEyS5gq/AvWrXhvj1PnTpQO4qJMkOjpaMmG+sVCYy1dkMhmrTOHh4Vi1alWTdQ6OTh3QNkSdRqOBwWBAeXm53wYl6qy0Wq3XYQJ3Tp1CoUBgYCCsVmuLOHVA/fmyjnvU+YrU1gWucBR1/lgoQXhzP0NCQtxOtlQqFSoqKtyKOmGieFPsG9kU0OpYxwmHTCZrsgiAP5y6Hj16IDg42Om4tpZAo9FI7qPmipkzZyI1NdXjiU9zQZvgNyYdxtFx80TUCTeY9gaqs+5EXVM7dUD9EY90MktDe2lKoVar/eqKc1HXhpE6f9NfUOWkJHagbYg6auzHjx/3q+CNjo6G3W73ePsCol+/fhg8eLDTUVBEcHAwtFpti4m6loSEAx0q7yjqfAm/Ev68n9QW3HW8AQEBTPi3FVEHAN98843LutkU0DPyZfAj0tPTUV1d3Srqc0pKCnNrPCEyMtKjrZmamzlz5jR6PAkJCfE6/OorJNhcnRcO+G/fNymEq+IBICcnB4Bv6VBPPfWUX11xLuo4kkhVsrYk6i5evOh2I2dviY6OZqtIvSEiIgKHDx92+fuQkJBmE3W+HEPWlFCne+7cOYSGhrIE6+Z26hqCBqqGZtNhYWHQarVNGvbxN80dBvSHUwe0ngnKu+++C4vF0tLFaDS0P2FjUKlUoudKY0hTiLrAwEBERERIOnWDBw/Gr7/+2qROruOkJC8vr8F9IV1x8803+6lUdbSuXp7TapCaSbcFUSd0Sfwt6rwJs3gKiY/myKlrLQMhoVAoEBUVhbNnz4oEU2O2NCGa26kD6tpHUVFRm3Lqmht/5NS1JppiMUlbxdGpGz9+PJYvX+5VSoY3PProoxg/frzTz2UyGTvDvalwHB9pE2R/7+bgC1zUcSRpq6JOmB/kT1EXExPDDp/3JyTmOmL4FagLV5w+fVrkEvjDqfOnSPZG1AFtJ6euJfCXU8dpfTg6dSqVCvfcc0+Tfd7rr7/eZNduCKnxsanyUL2FizqOJG01/CocUKUOkfaVp59+miXF+pPmFHWtLfwK1G31c/r0aZHgbIs5dQAXdZ7ARV375ZlnnmnSPLbWhFDUKRQKmM3mVnNCSOvr5TmtAlqibjQaWQJ4WxB1CoUCYWFhiIyMbFQytiNDhgzx27WENHX4tbU7dS+//DJWrVqFjIwM9rPWGH6VyWQNChFaGc1FnWvkcjkCAwO5qGuH3HHHHS1dhGZDOLbExMTg4sWL3KnjtH5of67ExERkZ2e3CVEH1A2q3bt3b+lieERTO3WtOacOAHr27IkXXnhBtFWMr+FXoQj0t6gLDw9v8Fgr7tR5hlKp9OuEi8NpboST8NYm6lrdiRKHDx/GqFGjMHr0aEyePJmtOFyzZg2uvPJKjBkzBnl5eS1cyo4BVVxaNt5WRF3nzp2bdZuGxkDio6OGXwHg3//+N55//nn2/549e2Ls2LFe71/VlKtfPUmIp/bRlla/tgR9+vRBz549W7oYHI7PBAUFsUkebYbdWkRdq+vlk5OTsXXrVqhUKrzwwgv44YcfcOutt+Kdd97Brl27cPDgQSxYsACfffZZSxe13UOzaTr2qa2Iuh9//LHJRJK/6egLJaSIiYnBtm3bvH5fUy2UuOKKK9hxQO4ICwuDXC7nocUGOHjwYEsXgcNpFHQQQG1tLdsXr7WIulbn1CUkJDAxoVAoIJfLkZWVhb59+yIoKAgjRozAiRMnWriUHQN6Dm3NqYuOjm4zA2tHz6nzJ03l1M2cORNLly5t8HVhYWFeHxvF4XDaJjQ+0uIQvlCiAS5cuIBt27bhxRdfxMGDB0XhD6vV6vJ9RqMRRqOR/b8ptqHoKJDQ6N+/P0JCQvx66DCnjubMqWut4Vd/0VSizlOmT5/u1210OBxO68VR1LUWp67FevlLly7hzjvvdPr5Tz/9BLlcjrvvvhtLly6FQqGARqMRiTPhQOXIwoUL8eqrrzZJmTsaVGmvueYalJWVNZmb1JFpzpy69u7UCRdK+POAbE/p379/qziPlMPhND1c1DmQkJCA3bt3O/3carXi1ltvxfz589GjRw8AQPfu3ZGRkQGTyYSDBw9iwIABLq87b948zJ07l/2/uroanTp18v8X6ABQpQ0NDeWCromg+8rDr40nICAACoUCMpmswZWqHA6H0xhofBw1ahQmTpwoeWRZS9Dq4jHffvst9u7di5qaGixYsAAPP/wwpkyZgieeeAKjR49GcHAwvvrqK5fvVyqVLTJLb4+Q0ODbDzQdTe3UdaTwK1DX/t05+RwOh+MPaP/KQYMGYePGjS1dHEar6+WnTZuGadOmOf186tSpmDp1aguUqONCYo6Luqajo58o4W+CgoLavSPJ4XBaHpVKheDg4Fa3MKr99/IcnwkJCUFwcDB3PpqQ5sqpCwgI6BAhSaVS6fVJFBwOh+MtKpWqVaYlcVHHcYnjAc0c/9NcOXUdxb3i6RccDqc5aK2irv1P3Tk+k5CQwPao4zQNzZVT15FEXVvZeJrD4bRduKjjtDkef/xx7Nixo6WL0a5prpy6jpBPB9SJutbY0XI4nPZF79690bdv35YuhhNc1HFcolQq2R48nKbhqquuwqxZs5rsEPiOGH7lTh2Hw2lqnnjiCfzwww8tXQwnOsb0ncNppXTt2tWjI6h8hYs6DofD6Thwp47DacdQTl1HCr9yUcfhcDoqHaOn53A6KB3NqZszZw5f/crhcDosXNRxOO2YjibqbrvttpYuAofD4bQYPPzK4bRjaMPhjhJ+5XA4nI4MF3UcTjtGJpMhMDCwwzh1HA6H05Hhoo7DaefI5XIu6jgcDqcDwEUdh9POkcvlPPzK4XA4HQAu6jicdg536jgcDqdjwEUdh9PO4Tl1HA6H0zHgoo7Daefw8CuHw+F0DLio43DaOTz8yuFwOB0DLuo4nHYOD79yOBxOx4CLOg6nncPDrxwOh9Mx4KKOw2nn8PArh8PhdAxarahbtWoVYmNj2f/XrFmDK6+8EmPGjEFeXl4LlozDaVtwUcfhcDgdg1Yp6mw2G9auXYtOnToBAMxmM9555x3s3LkTCxYswIIFC1q4hBxO2yEwMJCHXzkcDqcD0CpF3cqVK3HnnXeyw8izsrLQt29fBAUFYcSIEThx4oTL9xqNRlRXV4v+cDgdmaioKERHR7d0MTgcDofTxLQ6UWe1WvHtt99iypQp7GeVlZVQq9Wi17hi4cKFiIiIYH/I7eNwOirff/89XnrppZYuBofD4XCamBaLyVy6dAl33nmn08/vv/9+TJ48mbl0AKDRaESOW2BgoMvrzps3D3PnzmX/r66u5sKO06HhLh2Hw+F0DFpM1CUkJGD37t1OP3/uuedw5MgRrFixAllZWXjyySfxn//8BxkZGTCZTDh48CAGDBjg8rpKpRJKpbIpi87hcDgcDofT6pDZ7XZ7SxfCFUOHDsWhQ4cAAKtXr8aSJUsQHByMr776ymP3rbq6GhEREaiqqhKFcDkcDofD4XDaE61a1PkDLuo4HA6Hw+F0BFrdQgkOh8PhcDgcjve0e6fObrejpqYG4eHhkMlkLV0cDofD4XA4nCah3Ys6DofD4XA4nI4AD79yOBwOh8PhtAO4qONwOBwOh8NpB3BRx+FwOBwOh9MO4KKOw+FwOBwOpx3ARR2Hw+FwOBxOO4CLOg6Hw+FwOJx2ABd1HA6Hw+FwOO0ALuo4HA6Hw+Fw2gFc1HE4HA6Hw+G0A7io43A4HA6Hw2kHcFHH4XA4HA6H0w7goo7D4XA4HA6nHcBFHYfD4XA4HE47oN2LOrvdjurqatjt9pYuCofD4XA4HE6T0e5FXU1NDSIiIlBTU9PSReFwOBwOh8NpMtq9qONwOBwOh8PpCHBRx+FwOBwOh9MO4KKOw+FwOBwOpx3ARR2Hw+FwOBxOO4CLOg6nDWGxWHDHHXcgOzu7pYvC4XA4nFYGF3UcThuisrIS33//Pf7666+WLgqHw+FwWhlc1HE4bQiLxQIAMJlMLVwSDofD4bQ2uKjjcNoQXNRxOBwOxxVc1HE4bQgSdWazuYVLwuFwOJzWBhd1HE4bgjt1HA6Hw3EFF3UcThuCizoOp/2ybds2fPrppy1dDE4bhos6DqcNwcOvHE77Ze3atfjkk09auhicNgwXdRxOG4I7dRxO+8VisbA2zuH4Ahd1HE4bgos6Dqf9YrFYuAvPaRRc1HE4bQgefuVw2i9ms5m3bU6j4KKOw2lDUIfPnToOp/3BnTpOY+GijsNpQ3CnrmnhYpnTknBRx2ksXNRxmoU1a9bgqaeeaulitHl4Tl3TUVFRgcjISH6uLqfF4KKO01i4qOM0C7t378bGjRtbuhhtHi7qmo6Kigro9XqcP3++pYvC6aDw1a+cjIwMJCYmorKy0qf3c1HHaRZ4ArB/4OHXpoPuaW1tbQuXhNNRaY/9pF6vb+kitClycnJw6dIl5Ofn+/R+Luo4zYLZbObukh/wxKmz2+1YunRpuxscmhq6X1qttoVLwumotLfw64ULFxAREYGcnJyWLkqbgZ4/d+o4rZr2OANtCTwRdVlZWbj33nuxZ8+e5ipWu4A7dZyWxmKxwGq1wm63t3RR/EJxcTHMZjOKiopauihtBurbq6qqfHo/F3WcZoE7df7Bk/CrwWAAwB0nb+GijtPStLf0CqvVCqD9fJ/mgIs6TpuAO3X+wROnjn6n0+mapUztBR5+5bQ07U3Utbfv0xxwUcdpE3Cnzj9wUdd0cKeO09JQHWwvK2DJqeN9v+dwUcdpE5BT115yRVoKT2a+1CnwVWfeQfeWizpOS9HenK329n2aAy7qOG0CEnQ0c+P4Bnfqmg4efuW0NO1NBPmSUzd//nwcOnSoqYrU6mns6le5H8vC4biEKqrZbIZczqudr3jj1HFR5x08/MppadqbqPPl+yxZsgQhISEYOnRoUxWrVcOdOk6bgB9E7x+4U9d0cFHHaWmEk9/2gC85dSaTCUajsamK1Orhoo7TJmhvnVVLwUVd08HDr5yWhjt1df1XR578c1HHaRNwp84/8PBr08GdOk5LQ+27va1+9VTUWa1W2Gy2Dj1OtEtRd/jwYYwaNQqjR4/G5MmTYTabsWbNGlx55ZUYM2YM8vLyWrqIHC/hTp1/4E5d08FFHaelaW9Onbeijvqujizq2uUxYcnJydi6dSt27tyJ7t2744cffsA777yDnTt3YsGCBViwYEFLF5HjJdyp8w9c1DUddG95+JXTUrQ3UedJfyWEXsdz6tqZU5eQkACVSgUAUCgUyMzMRN++fREUFIQRI0bgxIkTLt9rNBpRXV0t+sNpebhT5x/4PnVNB91TnU7Ht97htAjtrZ/kTp330HevqanxqR9qlaKOuHDhArZt24aRI0dCrVazn7v7ogsXLkRERAT706lTp+YoKqcBuFPnH7hT13QIB562dO9ycnLw1ltvtXQxOH6gvTp1XNQ5s3btWly6dMnp58LvXlNT4/V1W62oq66uxt13342lS5ciLi5O5LgFBga6fN+8efNQVVXF/vD8u9ZBe5uBthTCTtLV6Rxc1PmGsG62pby6jRs34tlnn+WntbQD2rKoW7p0KTZu3Cj6ma9OXUcIv959991Ys2aN08+Fos6XEGyr3AXWarVixowZmD9/Pnr06AGz2YyMjAyYTCYcPHgQAwYMcPlepVIJpVLZjKXleEJrdOqMRiMCAgKgUChauigeI1wVZ7FYJMvORZ1vCAeetpRXZzAY2N8hISEtXBqOr9hsNthsNgBtc/Xrp59+ih49emDSpEnsZ97m1JGYa03jRFNgt9thMBgkxavJZEJ0dDTKysraj6j79ttvsXfvXtTU1GDBggV4+OGH8cQTT2D06NEIDg7GV1991dJF5HhJa3Tq7rrrLvTq1Qv/+c9/WrooHiPs7E0mExd1fqStOnUk6vR6PRd1bRhh225N/aSn6HQ6J5HCc+qkcfc9zWYzYmJi2peomzZtGqZNm+b086lTp7ZAadoO27Ztw5kzZzBnzpyWLooTrdGpy8vLQ1hYmN+vu3XrVqxevRpLly71+7UdRV1oaKjTa7io8422KupoIOULY9o2jRF1drsdH330EWbNmtUkfZonSIk6X3Pq2nv4lb6fK6cuIiICQP2EzRtabU4dx3vWrl2Ld955p6WLIUlrdOr0er1PjaYh9u7dix9++MHv1wU86/i5qPMNi8WCoKAgAG0z/NpaRZ3BYMCXX37Jc/4ccHxejRF1Fy9exP/93/9h+/btfimbL3CnznPchZlNJhNbGOpLm+airpVhMBjQq1cvHDlyxOv3Go1GFBUVNUGpGofdbvfpDMCmRqfTNYmok+rc/IWjUyeFUNTxgbRhKL/FbDZDo9EAaFtOHdXh1irif/vtN/zzn//E+fPnW7oorYaLFy8iMjISp0+fZj9rjKijwV9KBGRlZeGVV17xraBelsGxT/K23+eijou6dkd5eTnOnDmDM2fOeP1ek8kErVbb6gYkYQfV2py6pnA3yAFsCkHljVPX0Y/b8ZQdO3YgISEBtbW1bVLUtfbwK23L4OsO+e2R0tJSmEwmFBQUsJ81RtQJF8s4snXrVrz66qtNPsHzZ/i1vfdbPPzagXA342oIqiDN6dZZLJYGG6CwQbemxtpU4Ve9Xg+73d4kK9gsFguCg4MBNOzUUVnaIkajERMmTEBOTk6Tf1Zubi6qqqpQUVEBlUoFuVzeal0vKVp7+JUEsq875LdHqG8Q9j/CftLbvsOdqKOfNWXfazabYTab/RZ+7Sg5dSaTCbt378ahQ4fY78xmM0JDQxEYGMiduvaAu8bZENQgpDY0bCpeffVV3HLLLW5f0xqdOrvd3mThV2qITXFts9nMVjh6IurakjgRUlRUhC1btuDkyZNN/ln0vGpqaqBQKBAcHOzXZ1dUVNSkA2pDTl1RURHOnj3bZJ/fECTq/Hm6T1t3/Ui0CZ+ZP5w6qTrQlP2R42c41nPu1EkjFHWvvPIKFi1axH5nMpkQFBTkcz/ERV0rozENsCWcury8vAY3eG4ppy4jIwO//PKL5O9MJhPsdnuThV+BppltWiwWdoSeu/BreHg4gLYr6ui7Ncd+XXSPqquroVAoEBIS4td6MXjwYHz55Zd+u54jDeXUzZ8/H//4xz+a7PMbghad+MupO3PmDGJjY3Hu3Dm/XK8lkHLqmir82hijwFOo7rly6nhOnRhh+NUxYkRbVfnaD3FR14RcuHABK1as8Oo9bc2pM5lMDVa8lnLqPvzwQzz11FOSv2vK2WtTXlso6tw5dZGRkQDarqij79YcZ7AKnTq5XO5Xp06v16OwsLBJJ1oNhV8LCwtb1Nnyd/g1JycHFouFizoB7upAS4o6vqWJNEKnznETYnLquKhrhaxatQoPPvigV+9pazl1NNNwR0s5dXq93uXWFNQJUUf3559/YvLkyX5JJm5qp472pmtqUXf+/HnMmDGjRULm9N2aw6mj51VbW+t3p47aYlPmuzUUfi0tLW3RfDt/h1/Ly8sBACUlJX65XktAbUr4XBoz+fXEqWtKoUT9jKvVrzz8KsYTUcfDr62Q2tpa6HQ6r9yGxrg8LeHUeSvqmlMg6PV6l6LG8T6/+eab+O6773DgwAFs3ry5UeKuqZ06yqlzF371h6jbtWsXVq5c2SLb5NB3aw6nju6RMKeuLYm6hpy60tLSFnVs/e3UtQdR1xinzmQyOYked2ZAc+TUNRR+5aJOjFDUGY1G7tQ1N3/++adP4QtyibzpUF3NuEpKSnDgwAG376WK0ZpFXXM2VoPB4PLe08+p7P379wcAjBw5EhMnTsRff/3l8+f626krLy/H5s2bATRv+JUGzZbY3qMlnDphTp2/BkBqi80h6lw9a0+cujfeeAOvvvqq38sGNJ2oKy4u9sv1WoKGFkq4q/cPP/ywU45kU+TUlZaWejy5ddXneXv2qzD82p732BTm1Dk6dWazmTt1Tc2ECRN8SnQmUefNoOhqVvXxxx/jjjvucPteahDNHX5tqAG2tFMnVTbhai2bzcbuN3VCtLeWr58L+E/UrV69GjfeeCP0er3Hoo72OfKHqGvMvfCVlsipa2yCshQtHX41m82orKxssB78/vvv+OOPP5qkfP4Ov5aVlQFoX07d+vXrRZN2d/3k7t27nbb68XdOnclkQlpaGn788UePXu/v8Ktww/r2iGP4lS+UaAK0Wq3IjaupqcHLL78MrVaLqqoqNjv09pqAb6LO8WFWVFQ02Cm2lFMHuO8wWtKps1qtkh2K8P4ajUb2jGJiYgA0Tsg45us1ltraWthsNpw9e9bj8GtUVBTkcjlKS0tRXl7uk7grLS1ln9/cNKdTJ7w3/t7SpDmdOqnPoH7LbDa7vZfV1dVN9px5+NUZarv07F588UV88sknAACZTOaybet0OmRlZTlFjvydU1dTU4OamhqPN8GnNmQ2m2Gz2djPfV0o4fjv9oar8KvdbufhV3/x/PPPY/r06ez/kyZNwmuvvYZdu3bBbrf7NMj7IupcNc6ampoGB2ZyaGgm2xxQw3NX+VrSqQOk3Srhz2hBxciRI9lRRt48771796KiosLpc/3l1FFZs7KyPHbqQkJCkJKSggsXLmDSpEl4+eWXvf7clnTqpHLqdu3ahZ9//tnvnyWsu23RqXMXfiVh3lAZaBBvCrioq+O3337Dc889B8A5/FpbW8vuT0hIiMt+MiMjA3a73StR50tOHY1dFy9edPs6MhqEdU/YL3nr1DnmlrVm1qxZg6efftqn97oKv1K94OFXP3Dx4kVcuHABQF0O3a5duwDUd4rNJepcNcCamhpYLBa3jcNoNCI6OhparbbZ8hE8OaKIyqxUKpvdqQOkBztheQ0GA7RaLUJDQ6FSqSCTybx6ZpMmTcL//vc/p2s7PsPZs2dj06ZNXn0HwLWoc+fUBQUFoXPnzsjNzcWJEyd82ny2NYRfhe7SRx99hIULF/r9s4R1gbY0aUuizl0b9EbUNbVT5+/Vr5RTZ7fbW0X+VVFREZ588kmXYcOtW7fiq6++AuAcfq2trWX3x52oO378OABngezv8Cs9s8LCQpevKSkpQVxcHHbt2iXqY4XCzNecOuF1rFarx5EGu93ebLmWO3fuxA8//ODTe4Vt1mKxOJ0Fy506P6DX61lnITxkmTplXzokEnWuttWQwp1TR+V0BYXdvNlU1263Y/fu3R6XzxFPwq/UsFUqVYs4dVL335Wok8lkCAsL81jIWK1WVFZWsrpjs9lcnuu3bt06n+41lZVEnVKpBODeqQsKCkKXLl1w8OBBaLVanzq61hB+FQ6QBoOhScriGH5tioUS/lp9umvXLqe+yN2ALhR17srQ1OFXmUzmV6cuICCATTpGjBiBDz74wC/Xbgy7du3Ce++951IIVVdXO+XuCvsoT0TdiRMnAMApD8vfCyWoLrhz6rKzs2E0Gp1EXWOcOqnw6+eff45BgwZ59P7t27ejS5cuzXIkncFgkNQF33zzTYP9LY0NNM5IiTru1DUSnU7HQmiFhYUs0ZxEXXM7dY4dNH2+u47ZaDQiKirKq888duwYRo0ahVOnTnlcRsfPBDxz6kJDQxucsV26dAkHDx70qSyOuHPqpMKvtP9beHi4x8/b0YWQ6miBOrEnnI17g6NTp1AoEBQU1KCo69y5M3PofFk842+nzm63Y+/evR69Vsqp0+v1TSI8HMOvrdWpu3jxIq6++mpRKN1ut3ss6lyVgdJLmkrUabVaxMfH+1XUpaWloaKiAmazGVlZWcjMzPTovevWrcOGDRs8eq1Wq/UqsiA8mUSKmpoapzCbwWBgTg25jcHBwS7zH0+cOMFyaoX30xOnzpt0EE/Cr3SS0JEjRxp06hoj6k6dOoWzZ8+KcvVcceHCBRgMBuTn53v0eY1BStTZbDbMnDkT3333ndv30j2iZ0j/p/vEnTofsNvtmDVrFrZt2wag/nB3g8GAwsJCdOnSBUFBQX5x6vwVfgVcizqbzQaz2Yzo6GivPpM6fV9DI96IOk+cuvfeew9Tp071qSyOuMupc+XUAXWiztP7R/eNGqfjAgyCQuK+DGyOok4ul0OpVLqcxQlFHeGtU2c2m9kkx1+D/a5duzBixAiPQsFSx4Q1l6jzt1Mnl8v9Iuq+//57AHVlJCwWCxMDDeXUuduzkfoPf29Qa7fbUVtbi6SkJFRXVzc6TGqz2VBeXo6ePXsCqPt+VVVVHm85tXjxYo9cvWeffRZhYWEYP368x2VrSNRVV1c7Dd5SG6S76ycvXbqE3r17AxCff+vvnDqhU+fqmVG6kjtR1xinjq5TWFgIm83m0RhF/WtDuYDucOXASb3OaDSKyizcHskdjvWAFpjQtfjqVx+QyWT4/vvvcfToUQD1DbKiogKFhYVISkpCWFgYGwx9cSuoYTQ0EFVVVbEcvobCr1qtVtLJosrhrVNH1/V1EPNW1DU08y0pKfE4AfrYsWOYNm2ay07Hl5w6AF6FX6nx0t+Oos5sNuP5559ns9rGOHWFhYWoqqqCXC5HRESEy2tJiTph6McThKu9/eXU0ezZk+fb0uFXf4gwEqEpKSl+uR7N/uVyOfsZPVOFQiH5GWVlZQgMDGTlkUJYj/x9fw0GA2w2G5KSkpjAawzV1dWw2Wzo1asXgDq3iLZt8YS8vDy3eWLEyZMnAdQLF0/wxKmz2WywWCwip85R1LkLv5aXlyM1NRWA906dLwsldDqdy+9DfdrZs2dFOy5IhV+9yakLDg4WvaegoAAAPNqBwh+ibt68ebjxxhsbfB3dT2H/KDxy0JP3ChEKRB5+9ZHo6Gi2UrQhUVddXY2PP/4YX3zxhcfX99SpW7lyJcaMGQODwdCgU7dlyxZcccUVrEERJK7IqfM0j6+1ibry8nK2KMSR2tpa0ft3796N1atXSzYgYV5hQ+FXT5w6i8UiWXZ3Tp3BYMDJkyexaNEibNmyRfR6b9Dr9Uysl5eXQy6XIzIyUnIgs9vtbPNKEnUBAXXN3JsQLAkvmUzmN1FHbUm4Unjfvn2SoTNX4VdKLHbk7rvvxh9//IHXX38dixcv9qpcUuFXfzh1dN3o6OhGi7qysjK2jxzVoddffx333nsvAECj0bgMvyYnJwNw7dQJn6+/RR1dj8rQ2BAsDezk1GVnZwOAR6LOYrHg4sWLHok6x5wnT6A+19V3pOdmNBpFos7xnnsq6jx16nwJvwrLJBRI3377LQYPHgygTtTRc923bx9kMpnT5/gSfg0LC2P/BuoXa3gi6uieNEbUnTx5En/99VeDrjLdV2Gf3pCwJ6SehaOo406dD8TExDBRRzevvLycibrQ0FBRTt0333zDQiANYbfbPRZ1lZWVsFgsyMzMdDnjos4lNzcXgHOlpcrgq1PnqsHX1NS43JSU9tQB6iu43W7HihUrRAOIMKeuocZNA75UJx0eHo4bbrjBqexSjd1isbAcDFdOXXh4OPt3bW0t60ykcuqef/55TJ482ek6DTl1JL7pufkafk1MTGT/J6dO6h4JczI6deoEABg4cCAA70KwJOqSk5P9NtDT5wvL/dBDD+H11193eq3UliauFr7Y7XasXLkS+/btw7Zt2/DLL794Va6mcuroO0RERDT6eocOHYLdbkdCQgKrm4cOHcKOHTsAuBd1JO5dlaE5RV1jV8BSW+/RowcA4Ny5cwA8E3WXLl2C1WpFeXl5g8/DF1HniVNH1xYulPDUqdPr9TAajZKizl2ItTELJQDxWHPmzBkcPXoUFosFeXl5GDduHJRKJf7++2+Wh97Y8Cv1w0ajETabjX2+N05dY/ZqPX/+PLRaLXMIXeFO1DVUbzwRddyp84Ho6GiWc0IPo6ysDBcvXpQMvxYVFXncyKlCAg13lPT7v//+W7JxCnNdSGQKc2Xo8+g7efKZRENO3bfffouxY8dKLtMXNlThCs27774bt99+u9PrPHXqALGbI4QGMWHZpV4r7LRdiTqNRgPAs/DrhQsXkJWV5XSdhpw6CjmSqPM1/Ooo6iIjIyUForBTCA8PR6dOnXDdddcB8M6po/qVmprapE5dXl6eZFKzK6cOcK7bOp0ONpsNWq0WWq3Wq30ahQsNAP8ulKB6r1arodfrYbfbMX/+fDzzzDMA6u7xrFmzPPqsQ4cOISIiAoMGDRLVOfquGo3GZU4diXtXTp2wTvp7+xp6VikpKQBct2tPof6ha9eukMvl7GQFT0SdsJ415OQYjUYolUqWQuEJnuTU0bU9cerMZjOWLl3KHCP67p07d0ZAQICkU+dYl4Sr8aX6+JtuugmPP/6408+F/aHQ2aTc4IqKCuTl5SE1NZXl+FF/KuzjhU6dJ/mUJpOJTbZNJhNKSkrYNZoj/Gqz2VjIvaGNl92FX3116pp1oYSjiGgPCMOvjttGkKgTOgZ5eXked3rC2VdDodCGRJ3wM2kG4vg8fHXqhKs2b7zxRvz+++9OZbNYLJLfW1gxqdx0P7du3cr2VPJmoQR1+p50/lJOndVqdRqope6/Tqdj96q6uhoWi8Vt+FW45Y0QR6eOOvbAwEAYjUa/iDq9Xo+kpCT2f3fhV6GoA4DDhw/jlVdeAeC9qJPL5U3q1Gm1WlRUVEjOiF3l1AF191BYH4WLiHQ6nVeiznGgk8vlCAkJEeU9+Qp9h4iICNjtdrz66qtYsGAB3n77bQB1m1YvX74cGRkZDV7r8OHDGDJkCCIiItj3FYp6d04dCaqmcupomw0p6Hrdu3cH0LiwGFD/nSMiIhAVFeWzqGsoBGs0GhEbGwvAvdA9f/482wKL2r4rN17o1LlaKBEQEICgoCCYzWbs3LkT9957L9uZgPrE6OhoqNVqSVHneGSjsI92rOs6nQ4bNmzA+++/71TW2tpaxMfHIzw8XPTMqKwFBQUoKipCp06d0K9fPwBg501LOXWAZ6fDOIZfhX2DL6LO24U5ly5dYu3WU1HXFE4dRQzMZrPXx6V5LOquvPJKnzYwbc2QqLNarewmUwOi8KsQk8nkk6hz7Cjvuece0ZJn+n1GRobIKqcKKfzMhpy68PBwyOVyr506vV6PjRs3Yt++fZLXlRIjUqJOKMZoTzaz2YzAwECPNh9uyKmTKruwsQ8YMADLly93cuqKiopw4403ory8nJ2FSZ0QiQB3Tp1er0dZWZlTJyF0TYR5fJGRkTAYDE7hV1+duoSEBPZ/d+FXR1EXGxsLlUqFqKgor8KvlZWViIyMhFqtbjKnjjrs/Px8p/vqzqn73//+h+7du7P30D311Km7ePGi5E74QL1TBzT+mDdh+BUA26iU3HSaoHkitknUqdVqVnbh83cn6uLj4xEUFNQkOXWnTp3CgAED2MICR+h6nTp1QkhISKO3mqDvoFKpEB0dzcKvWq22wQljXl4eW2Tiiajz5MjA5557DjNmzBCVTaqNWywW9ntHp044VsjlcigUClgsFtZeqD5TPxcVFeXk1BsMBiaGXG2r5CgkKE2B+kEhtbW1CA0NRWJioqSoO3bsGACIRJ1U+FXYft09H4PBgEcffRQlJSUiUUfPKTAwUFLUHTp0iOVVAuKcOqvVii5dumD9+vUuP9cR6qeDgoJE+9VKITU2NsapMxgMTuFXAJg/fz6OHDni4TfwQtSNHTsWV155Jfbv3+/xxVs7lFMnrPhCUUeVS4i3oi46OlrUUdrtdnz//feiTWgdnbqwsDC2SsrxM2kAcBy4qDIolUqEhYV5LeqoMThe11NRR/eQBuzw8HAmPM1mMxQKBRQKRYMnYggXrLji+eefxz//+U9JUZednY3c3FzRM9XpdDh06BA2btyIL774Ap07d8bq1auhUqkQHBzMyulunzqdTgez2ezk+tF9oRC5UNQJnTr6PsJz/jyFBCg1ck/Dr0Li4+O9cuqqq6sRHh7uVJfWrl3r856G9PlU1+je6HQ6p+/imFMnFMx//fUXiouLnfKeyKmrqanBoUOH8NFHH0mW45ZbbmHuJV2Tnj3NkIHGizqhUwfUiYqgoCBUVFSIcoUaei6lpaW4cOEChgwZgvDwcKeQPyAt6oxGI2pqahATE+M2lNOY1a8kPBwnDO+++y6efvppdr2wsDCkpKQ0WtTp9XoEBARAoVAgOjpatGCsoXzV/Px8pKWlQaVS+U3U5eXl4ejRo6iqqnIr6oT3lfamo38Lf0eizmw2s36J+mTqQzQajZNTbzAYROkkwp9L/RsAEzvkSArRarUICwtDUlKSU/gVABMZQlFHv3N06mizdHd9//Hjx/HRRx/hyJEjLPxqNBpRWFiIgIAApKamSoq6Rx55BC+99BL7f1VVFRQKBS5duoTs7Gzk5eVJps24go6JHDlypFdOHT0bbxZKUH8u/JnjQgkAeOONN7B69WqPv4PHou7TTz/Fk08+ibFjx/p8NEZrg5w64Qz21KlTCAgIQHx8vF9EXXx8vKjR1tTUQKvViioo/T4zMxO1tbVs5iS1PJoqiyunzldRR5XSseFIibq7774bv/zyi6RTV1lZCYVCgS5durBkexJ17jbMFZbB8d+OfPDBB9i3b5+TqKOZjnAVMVDX0GgAnT9/PntfSEgIgoODnZw6V+FXqfsjvC9VVVXsdRqNRuTUuXqPJ+h0OqhUKlYv3IVfhTkZQuLi4rwWdWq12kngPv3006Ij0bzBMfwqHOAdB3tHp05YbyjkJhX6pnb33nvv4fnnn3cqg91ux99//80GKnpeFIoXOnXTp0/HwIED2V6W3iLMqQPq6k6PHj3YnlueijoKz/bv3585p457HkZGRsJkMolCNVSvY2JioFKp3Dp1ERERkMvlbvu37777jm29REid62qz2fDOO+9g/fr17Hn4S9QZDAaEhIRAJpMhOjpatCFtQyHYvLw8dOrUCUlJSQ0mwXsq6mgPtb1797oNvwrbvLuFEkJRR/2no1PnStQ5jhvCfwcGBopEXWlpKdatWwelUinZ1zbk1EmJOrqnjluaUHtyJ+qEwtEx/JqQkIC4uDhJUVdaWipy1KqqqpCeno7q6mrs2bMHgHf97fnz56HRaHD55Zd7LOq+++47dOrUiU0qAc/CryRehT+TcuqA+j7PE7xaKDFv3jz897//xfTp01vFsSyNJTo6GmazWdSp6nQ6DBkyBHK5XBSOI4SzLHe4EnVSy7O1Wi1iY2NhMpmQk5PjNOOSqiCucupI1FVUVGDZsmUNxuMdRZ0rp064EGDFihVYvHix5KaLFRUV0Gg0iI2NdenU2Ww2rFu3Dp988omoAxLeE8eORth563Q6tvWJ8H3CRGS6d4GBgdDpdCzUJRSiKpUKISEhkuHX2tpaUUjQMWeQEHYY1dXV7HUREREudzb3ppMhhyokJIQ5PhR+raqqctpl3ZVTl5aW1mAn5VhGKVFHkxJPKC4uZnVAq9VCp9MhICCAPdv8/Hy2DYLjIOuYUyesJ457/lH5amtrWad65MgR1NbWOrWdsrIy1NbWsgGRXi8UdTRD/u2333D8+HHRCQ7e4OjUAfWrNsvLyz0WdfS65ORk5tTpdDpR26Y+Q3if6N574tSp1Wq3k0G9Xo/Jkyfj2muvFf2c7q+wTh84cAD5+flsTziVSgWlUtmgqMvJycHgwYPd5k5RWwDqnxnRkKjLz89HSkqKk/skhSeizm63s2cjPCpLqn0LryEUdXTMICHl1AlTUsLCwqBQKJzSLxyduvLyctHelJQOQixZsgR2ux3/+te/UFFR4ZT+QE6dK1F39OhRREdHQ6VSsdXV1Oc4hl/pebmb0LsSdbRtSnR0tGS9qKysRGZmJjv/t6qqiu1hSOdse5M+kpubi65duyI6OprdX5vNhq+//tqp/HQ/9+7dy9I+vAm/NiTq6L4B9Q6iJ3i9+nXGjBlYt24d5s6di9GjR+PZZ5/FmjVrvLI4WwvUaGmQoE7immuuAVBfuYT5TIBnIQp6jSeirra2Fn379gVQ18gdRR29X1gJXDl1QUFBCAsLw4YNGzB79mz8+OOPbstJlY/K40rUnT17Fj179mQLKbZv3y5yoaREnSunbufOnbjzzjvxyCOPYPPmzewaNNgHBARg//79GD9+PLuuY8hSStSR8BSeixgVFcVEXXx8PFQqFW699VYA9Ye3S4VfbTab5IxXyqmjekNOHTmAhYWFMBqNLFGd9ovzZlsTSnyWcuqkNnN1JeqGDRuG48ePe3wGqeNAT51+bW0t+8xPPvkEV155pctrPPDAA2wfNXLpunbtKnLqqAN2FHWOJ0oInwWJGUdRJ6y7NHt3HLxpxkt1TeisAmJRZ7VaERAQ4FUu4ubNmxEWFgar1erk1AFAeno6ALGoy8/PR/fu3bF9+3bJa168eBEhISFQq9VQq9Wora11qodUfuHzFYo6R6dO+O+amhrJULsQ6kdoOw3hewFxnaZ8YUr279GjB2QyGVJSUtw6ZNu3b8eRI0dw6NAhAHX30tHpFoo6yk2kut6QqDt37hy6du2K5ORkj7araEjUlZeXw2QyITQ0FLt27WKCR2pAd3TqhK6VsC9XKBSQy+WS4dfy8nLW10jl1AmdupkzZ+Lpp58WiTrqQ+12Oz755BPcf//9SE9Ph9VqdZqoNeTUVVdXs1XVtJE/5eg5hl89ceqEnxESEsIWmp09exbdunVDVFSUU5232WwsP7qgoAB6vR5msxkjR46EQqFgEUVvRN2FCxfQuXNnhIaGsjaya9cu3HPPPaKdF4SL8YRinv5dW1vr9lgzo9Eo6hfoZ46rX4kmE3UVFRV4/fXXMXv2bMTGxiIlJQWbN2/GzJkz0bNnT9GMtC1AnQLNHmmF4ejRowHUizrhdhKAZ5WEKn9CQoJHoo6WhQNw6dTFxcWx1zSUU0eVwFWo7NKlS/j555+dhJGr8OuBAweQmZmJr7/+GkBdY12xYgWAOjfMUdTFxMQ4iTqagR44cABhYWEICQkRVVb67E6dOmHDhg349ddf2QpaR1FnNptZR0ADtHAlr3DjV61Wi0uXLmHgwIGorKzE008/DaCuk3cl6oT3HahvuOXl5aitrcVHH30Eq9Uq6tzIqSNRRwm8AwYMAFA/OfDGqRMmhlP7UigUrAN3HMhcibrhw4fDarXi8OHDHn2u0Kmz2+3Q6XQwmUwwmUysPv/55584fPiwU+d10003YePGjTh79iz27dsHu93OhFHPnj1FTl1aWhri4uJchl9JwEnltzm6RMKTKqhMrkQd3TcpUScMewwcONDjE04A4IsvvoBWq0V2drZbp462TgKAPXv24OzZsy6ToS9evIjExETIZDJWNx2/F/Uff//9N/uZK6eusLAQUVFRbNVqTU0Ne9ZlZWWSm0EvX76cXUuI4zOw2+1Yu3Yt60N37tzJhCyJOleDHbX1U6dOwWg04vbbb8fHH38seo2UqCOnyJ2oq6qqQlFREXr27Im4uLgGd3MwGo3s+vQdzWYz5s6dy95Lz2/EiBE4d+6cT04dIBZ1rsKvf//9N0pKSlg9bSinLicnh52DCtRHDqjcZWVlGDNmDOtHHCMjtG9nUlKS6Fxg4WSA+j0AuO2225Cenu60GE7o1Hkafg0KCmLXOXv2LLp3746oqCg25m3ZsoX1vTTZzMzMZCI3PT0d06ZNc5r8UWqOO4qKipCYmMh2ajCbzUysCoWncB9UQph+Q/fQFVJOnXChhGM/VFJS4nFKlcei7oknnkDnzp3x+eef46WXXkJOTg6++eYbnDhxAjU1NdizZw8WLlzo6eVaBdRoaTaYnJyMgIAAjBw5EkD9IB8TE8NcFsA7URcXFyeaBVHlFTai2tpaxMXFsQ7TMZRSU1MDpVIpGhwacuqosm/ZssVpVlpbW4vrr78et99+u9MWIu6cOqBu9qxQKDBw4EB2XJnQ2q+oqEBkZKRk+JWcukOHDmHw4MFITU1lq42EZUhLS2MNhpLyqRwRERFIS0sTlbW8vBwHDhxo0KlLTEyEQqHAoEGDANQNgK7Cr3TfCWH4dd26dXj00UexefNmVFdXMydO6NQplUoWVuvfvz+A+r26fBV1QqeO6kJlZSV++OEHLFmyBIBrUde3b1+oVCr8+eefHn2u0KkDxA4d1edz587BbDaLnCybzYZNmzZhx44dKCgoQGlpKfLy8threvToIXLqUlJSJJ0Tx5w6qdCho1MnNVA3JOocw6+0pQkxYMAAVFVVeby4hRz3I0eOOK1+BepFXWlpKYqKiqBUKtlg4WrDVBJ1QL3r5+hgDRkyBKGhoaKFbLQtjVqthkqlEm3bZDQaRSuyyan76KOP0Lt3byxduhQGgwEPPPAALl26xPKTHIWTo1N36NAhXLhwAU899RSAurpC3zklJUUkVhyhFZUZGRk4cOCAZPqCVPiVxIXUBOff//43tFotSz3o0aMHNBqN2xAvDdihoaEIDg5m3/HYsWN49913sXv3bmzZsoXtFNCvXz+UlZVBq9VCJpN5lVMH1PUpwtQKWv1K9bmgoACDBg3C0qVLRU4dfV9yjah/MBgMKC4uFm2yLOyjSfj36tWLjTWO904YfgXqBY1wLBOKOoL29iOsVqtHok4omIKCghAUFISqqioUFBSInLqsrCxMmDABmzZtEpX5zJkzou1unnzySchkMtHq/alTp2LcuHHIzMyU3PAcqIsoxMXFQaVSAairb1KiTkocCp06oL5t7N+/H88//7woL04o6ugYP6PRiIyMDLYQiO4b/S0cK93hsajbsGED3n33XWRnZ2POnDlsRQsABAcH48orr8Qjjzzi6eV84umnn8aoUaMwY8YMj8+Sc4ejqLvrrrvw7LPPsgZGA1poaCjCw8NZg/JU1JEQq6qqYseOCJ06YUgrLCyMzTilnLrw8HBW0dRqNUpLS9n7CwoKWEdJTh1Q12iVSiWbZROPPfYYjh8/zo7NAcQLJaT2ORIex9OlSxdER0ezgVq4Y35lZaUo/ErHVgmdusOHD2Po0KHo0qWLqKKWl5dDpVIhPj6e/YxEHd2Lb7/9FitXrmS/VygU2L9/P4YNG8ZCucJVqNHR0WyhBDlloaGhmDlzJpYvX+5yoQQ9F0C88rK8vJyJ2c8++0wk6hydOqCuk6YQo1D8eQp9rmNOHXXgVVVV+PHHH9kzFs70hMjlcgwdOtTj1etCpw6oq4PC3DWgfjd/4cBbWVkJm82G06dPszp16NAh7N69G5GRkUhPT2evycvLQ0pKClJSUpw6LG9EHf0tNZMtLCzExYsXkZaWhoyMDNEJBMLnKrVQAqh3WT1166jt/fXXX5JOXefOnREUFITs7GyYzWaWZA64F3VUdx1FnUajQWBgIIKCgpyeb2lpKWJiYiCTyRASEiI6Qxio78eE4Vegrg+57777sHLlSnz++edYtWoVampqMHDgQFRUVOCvv/7CsmXLADgvlPjuu+8QExODCRMmsEkqOXV0qoRUXp3dbmei7tSpU9i5c6fka/V6PXs+1H9rNBqnfduAulynF198EV9//TVzH3v06MEEgqs9zISLzoQ5pbRgpaKiArNnz8bcuXMB1Al5o9GIsrIyxMTE+OTUURRGyqk7dOgQTCYTzGYzGxsop85msyE7Oxs2m439rqamBuXl5aKdHWjhFlAn6hQKBdLS0th7pJw6Cr8Cdf2/cCESIC3qgoKCGp1TR6KOUiiEoo7ab0ZGBiuzTCYTOXWRkZEYNGgQMjMzcfvtt6O6uhq///471q9fj927d+POO+/ESy+95DTho4iCUNRduHCBRTeE7ZPupfAcZuEKaACYPXs23n77bXzyySdYtGgRhg8fzswKoaij/uGnn37CwoUL8dxzzyEwMJDVczKZPF0s4bGoO3PmDO677z6nwaK5OHLkCC5duoRdu3ahT58+WLt2baOvSVtaUAd50003idxGR1HXrVs3AJ6LutDQUISGhsJms2HIkCF45ZVXmCNhtVrZKjaaFXkq6tLS0mC1WpmDkJKSgvvvvx9AXYMgcdK3b1/cdddd+PLLL1ll+v3337F06VI2kyaogThuNEwNVOjGpKWlITIykokhoagThl/NZjOqq6uZqAsLC0NlZSVycnKYqBOGXysqKhAVFcW+P+Ds1AUHB4tCQJ06dWL3iTpdoVOn0WhY+FWYG/n111/jhhtuQHBwMGw2GxsYAbFTd+zYMVHIiFxBtVqNjRs3Ijc3FzExMQgODnZy6oC6kD6VNy4uDkFBQaJOXziw/PDDD04dnyunThh+FW4FQ9/bcbk8AFx77bX45ZdfPHIKSdSRiKioqGADeG1tLfR6PesUha4R1Qnhfod79+7Fl19+iVmzZiEmJoZt51FaWoq0tDQMHToUf/75pyjx33FLE6nv5ejUOaJQKFBQUIBNmzYhJycH69evR05ODmQyGUwmEztLFpBeKAF4f8QaPT+hUyfMnYmOjkZUVBSr13R9wPWCCaFTRwMB3fO0tDR2T4YNGyYp6gCInDopUadWq1n9f+qppyCTyfCvf/0LQN1G4gAwePBgVFZW4n//+x8efvhh6PV6Ufj1zJkz+PLLL3HHHXdALpeja9euACAKvwLSoi4vLw9VVVUYMWIEMjIy3Io6x/BrRESE5GpwusdfffUVzpw5g6SkJDY5F078HBH2NUJRJ9wEmBbcREVFsbQdvV6PxMRE1NbWOi1Qq66uFi0ksFgs7LmVlpaybUVo8ksiUTjpBCBy6rRaLTZu3MicUOo36Z6Vl5dL5tSdPn0a6enpTv1IXl4eXn/9ddGYRN9t4sSJGD58OLRaLfseNF4JcQy/epNTR3WbRB315927d0dsbCwsFgtLUfj777/ZmNW7d28cPHiQPX8SSd27d2ebdb/11lsYPHgwEhISWNrBgQMHnJ6RyWRCXFwcG0MpfaRLly6STp1wOxia1NPir19//RXffvstjh8/juTkZBQXF7PTKoQ5dWFhYZDJZNiwYQO6du3KXESq51dddRWCgoI8zqvzWNSRRdhS7Nu3D+PHjwcA3HDDDdi7d6/k64xGI6qrq0V/XEHL4qmDFHbmQL1zExoaioSEBDar/v777zFr1iynmR4lawL1om748OEYM2YMHn74Ybz22mtYu3Yt66Ap0ZZOM/BG1AF1AyjluBEUfgXqBM+9996Ls2fPsq0IPv74YwwcOBALFiwQvU84MAo7EamwU2pqqmjDysjISMmFEkBdh0Wi7u6772Yd0JAhQ0ROncViQX5+PjQaDfv+w4YNY5uaCmfPwlVvXbp0Yf8mN5Fy6hQKBcLDw1FcXOy0gS9BHU5oaChrjEJ3asqUKSKrvrCwEEePHsXzzz+PkJAQNiDSprBnzpxBSkoKu26nTp3Y9wkPDxdtHvviiy+yZ5qRkYHbbrsNW7ZsEZVPKqfOMfxqMpmc9oiSEnX3338/9Hq9R1uSkKij5/X333+LnDrhrFE48Dqu2EtPT8fHH3+M0tJSPPTQQ6ze/PXXXwDq6vLo0aNRVVXFcqoA106dYye6adMmJ+eT7vegQYNQWFjIwie//vorW/BD945W5NIzFzp1wcHBTJC4EnVUt3799VesWrWK3f8jR46w70Cdd3BwMNsImgQCpQIA3odfAwIC0KVLF5GoKygoQH5+PiZNmoQvvviCiTp3Th25MuSM3HLLLRgxYgQrDwmswYMHs7CtwWDArl27ROHXm266CfHx8axvobbpKDqknGqqD1OnTkVVVRV+//13dO7c2Wljaqnwq1qtlhR1GRkZkMlk2Ldvn0j80PtcbZvUkFOXn5/PBEpiYiITl0B93qzjRKOmpgYajQYBAQEsIZ7qnKNT17VrV5SWlsJqtbIykyMkzKkDxKd50M9IOFRWVrKJmGP4lXIwhTl1r7/+Ol566SWcOXOG1QnhuHPixAnodDrm0HkSfhWKV8djJel5UQoHtQXKqcvIyIBKpUJCQgJrh7SY6PTp0+z9jz/+OPbs2YONGzcCEDvjtFo8NzcXI0aMwMMPP4wePXogMTHRKWpBbVzo1JGQ69OnT4Oijpw64c+OHTuGjIwM3HnnnQDAHGOhU0cmQE1NDZKSkliqF+Wd9+/fH127dsWvv/7qdvEF0WbOfq2srGQdWkREhMuciIULFyIiIoL9kap4QhISEpgCdhR1Qqfuxx9/xKJFiwAAq1evxvLly0VHapnNZgwaNAhXXHEFcnNzmajr2bMntm/fjo8++oidwUkNipLu6bMcRR2dF7l//3507tzZSdTt3bsXb7zxBiuDXC5HQEAAK3fnzp1x9dVXIzw8nM1KLl26hP79+yMkJITNwoQWMpWLEDZQErneiLqSkhIm6iIjI7F161b897//RXp6Orp06YLKykqUlpZi5MiR+PLLL5GYmMi+/7Rp01BQUMDcKAAspE0CTCjqSGiQUxcSEoLQ0FD2cylRR89cOGun+6fValFZWclES0BAAHbs2AGz2YyxY8di2rRpAOoGlYiICOYkjx07ljl1KSkp7PsIxZ/FYsG///1vGAwG2Gw2FtJ1dGuE4VehUxccHAylUomqqiqYTCaPnLrk5GRMnToVr7zyCiZPnux07mhWVhYKCwthNpthMBhY+DUtLQ3Hjh1jA5VWq2VhkNDQUElRR7z11lu47bbbsGjRIvTs2ZPdCxrEU1NTMWzYMCiVSvzxxx/sfa62NBG6tDt37sSkSZNEK6iBusFGrVajV69eyMvLw7Zt25CUlISdO3fi3Llz7FziyspK6PV6trUNIHbqaH8sQFrU2e12DB8+HK+99hrGjx+P6dOns3KXlZWx+6JUKhEUFITo6Gg2kczMzERgYCAL7yYmJuLSpUsoLi52yr8qLy+XdOoiIiIQGxvL6trIkSMhk8nw3nvvYdOmTdDr9ez17pw6ugckBgYNGoSbb74ZQJ0AoiR8ct4oP23r1q3sGvn5+cjKysK//vUv1vZTU1Oh0WiY6FEoFGyLIUf+97//oX///rjpppsQGBiI6667Di+//DLbnoO2rHDl1EVHRzu1nYyMDNx4443o0qULjhw5wsQ8ibry8nIcPnwYMplMdCqBK1FHQpzqPlDnxEuJukceeUTUFihvUalUsm2xqJ+prq5GZGQk5HI55HI5xo4dy95HZe7duzfuv/9+9jvqC4SnPFHboucI1IsS4UKJ06dPszEoKCgIKpUKFRUVzEndtm0bK59MJmN1j9oejVOehF+lcursdjsmTZqEnj17IjMzkz23yy67jF2DjkpLS0uDTCZjoo7MCWF6x+zZszFgwAB88sknosVEQP1G8iUlJYiLi8NLL72EU6dOYfjw4U5OnZSoo7Klp6dLhl+pfwgJCWFOnTB9yGQywWg0YtKkSQgKCmJtR+jUKZVK1oaF/VtwcDDOnDmD2267Da+88go2bNjAInLuaDOiTqPRiI7HcdyjiJg3bx6qqqrYH6nNX4UkJyfDZDKxpeRChKKOwmhyuZxVpnfffRdAXcXds2cPSktLkZOTgzfeeAPFxcWiBySTyVholxqJMKTlKvy6a9cuHDx4EI888ghrHMOGDcPVV1+Ne+65BxUVFbjxxhsBgFUMoVMnk8mQmprKhA3lDABgnbTjijahUydMCB05ciTCw8MxePBgJ1FHHVVNTQ0iIyPZNYWiDqgTOQ888ABkMhkTZPfeey8OHz6MVatWsbDo008/jYkTJ0Imk2HGjBnsniuVSgQEBLB7RNcQnlZBoRVyRgjHVcxA3bYbgFjwkXilY6eoMdPAq1KpMHDgQDz44IPs+w8bNgxffPEF9Ho9rrvuOkmnTq1WQ6PR4JdffsELL7zAPk+r1bJtHBxzt1w5dfS5rsKvwpxXIe+88w7uu+8+5ObmYvny5Th69Cj73X333YeXX36ZDWLU6QwYMADHjh0ThV/PnTsHpVKJIUOG4OzZs2yWLKw74eHhuOWWW/DNN9/g2WefBVBft/fv3w+VSoW4uDgEBwdj+PDh+O2339h7HZ06x5lxTEwMG2QdBVeXLl3QuXNnJCcn488//0R5eTk7QeLGG29kxzpVVFQgPz8fsbGx7HmR8FAoFEhMTERwcDDUajWOHTuGVatWiT7n2LFjyMnJEUUNhKEnmhyRUKTBPyoqChaLBVdeeSV69+6NkJAQ3HbbbSgtLcUNN9yAF154ARcvXsTRo0fZoOJK1PXu3Zu1gbi4OAwbNgxLlixhz5+EpZRTJ1zRqFKpsH37dnz44YeQy+WYOnUqbrjhBlbHKeUCqJ88CUUdORDCgf6JJ57A999/zyZgjrl9xJkzZ7BhwwbMnTuXufcbN25kkZH8/HzcfffduPLKKyVFnVqtxmWXXcYmRna7HZWVlTh16hSGDBmCn3/+mb2G7j89H1o0sHr1auzYsQM6nU5S1Gm1Wjb5JyGl0WiQnp4uGovoOa1atUo02SBHn5wsoagD6vpslUoFuVyOhIQEJvYpH7dbt2747LPPcP311wOod6OEAlOtVkMmk4lEXWFhIZRKJUJCQtjpFYWFhcwBpO9RWVnJnhPt70b94MMPP4wrrriCidQJEyZg2rRpTAQKkQq/OubULV++HDt27EBQUBBuu+02Vh+Foo7GwsGDB7OydOrUiTlcVVVV+PvvvxEeHg6FQoFly5bhuuuuw7hx40SLGmkSXVZWhtjYWMhkMsjlcgwbNgwHDx6E1Wplkx1Xoo420xcuaKJ+OiUlBeHh4UhNTWVOHYm6oKAgVpZBgwahe/fukk4dTdAB59M9OnXqhICAAEybNg3ffPMNxo0b53TPHWkzom748OEsjLJ161aMGDFC8nVKpZI5IsKcIFdQxRQO/oQw/ApANAuIjY3Fzz//jB9//BEJCQl49tlnER8fj+uuuw65ubmikAkxdOhQbN++nblrr732GtteIywsjDlw9GANBgM+/vhj9O3bFzfccAMrY2RkJL7//nvcfvvtWL9+PbsXjjlh1MGmpaWxxl9cXCyaSQs/j0Ls119/Pf7v//4PgNipS0tLQ1FREcaNG8c6eLoner2ehVUopw4Qh18docHo559/xmuvvYapU6ciLi4O/fr1w1tvvYX09HT8+OOP2LRpE9sniyo/iYObb74ZH330EdtbkO4bOXWUBxkQECAp6saPH4+ysjLRwCyXyxEUFITa2lpotVrWmElYLFiwgAman376CTfddBOeffZZtmFp//79RU5dVFQUlEol4uLisGjRIlRUVOC9995j5amqqvJI1AmdOqA+WZqW6lutVhgMBgQGBjpNUIjY2FgsXryY5UkJB4DKykqUlZWxyRO1nYEDB4qcOoPBgKysLKSlpaFz585Yt24dbrzxRmRlZYncCUqMF0Li4Ndff2WzcAC488478dNPP7EtLBxz6hzDr6mpqaKyCwfWl19+GR988AGrgxMnTsS9996LDz/8EJ999ploxd/x48cxcOBAkVMH1HW0JPTj4uLw3nvvYfr06SI3iISsMIwjbC81NTUIDAxEQEAAVCoVKw+Vdfz48YiLi0NlZSUmTpwIoC5se+7cOSxcuBAzZsxgdY/qCoWmCgsLERERgccee0x05OBNN90Ei8WCsWPH4ssvv8Rnn30GAE5bmlD56N6GhITg2muvxZw5c9iz27x5M4YPH86eG903q9WKnj174tSpU2yyRQO2cKBPTk4WtUtA7BgSn3/+OWJjY5nzTbsQ0LX27NmDb775Bvv37xeJuuDgYEydOhUjR47ElVdeyfrdzz//HPHx8SgpKUGfPn3Qv39/FBQUsAmcUNTRtT7//HOMGTMGq1evlhR1tMFtQkIC60t//fVXvPXWW4iIiGB951VXXcX6dGG4rqioCDExMSJRJ3SUQkNDmaijugHUO3Xdu3cX3TPqC4SiLjAwEMnJyaJtiwoLC5loMBqN7HkJxUNkZKTIYKDJFY0jTz31FB566CH2+kGDBmHlypWSfYxU+JXu8SuvvIIDBw5g3rx5mDZtGj755BNkZGRgxYoVUCgUbM/LoKAgbNiwAcXFxfjyyy/ZtehejBkzBkBdpIrq5GWXXYbNmzezfo2gPUetVqtoS7D+/fujpqYGOTk5UKlUeOutt1BcXIzAwEBoNBqRqAsPD0diYiK0Wi1Onz6NxMRE/OMf/wBQ58j+8ccfiIyMZKtf1Wo1goOD0bdvX/Tq1Qvx8fGIjY1Fz549cebMGba6WpiWIeXUOTJ16lRMnTrV5e+JNiPqLrvsMiQkJGDUqFHIyMjAHXfc4Zfr0sAjJeqETh1BDfGRRx5BXFwcJk+ejNLSUhw8eBATJ05ESkoKW3EnJSLGjBmDlJQUBAQE4I8//mALPsLCwjB48GBs27YNQ4cOZce6nD9/HsOHD4dMJhOtfo2Ojsa6detwzTXXsAYq5dQBYE6d2WxGRUUFq9yOok4YRvjwww8BiAep2NhY1kBppkizQL1eLzqbUKFQQKPR4MEHH8TKlSslk9kTExOhVCpx1113SR7pBNTNCoH6WRR9R+qY4+Li8Mgjj4juNeXUBQcHY+bMmcjOzsbOnTtdCvyoqCinWWdoaCjKyspgt9vZQP7444/jjjvuwOOPPw6gTtDedNNNCA0NRf/+/XH33Xdj2rRpCAgIEDl1SqUSR48exR133IGxY8ciOzsbWq2WPfuysjLmmLkSdY6rX4G6zsBgMLBnpNfrYTAYJEOvjkRGRkKtVuPcuXPo1q0btm7dCp1OJ8pDFYq60tJS0QbjmZmZbOUqkZWVhbKyMla/pURdYGAgxowZA4vFwiYxADBnzhw88MADmDt3LiwWi2ROnUwmY4eZC+sqUO+0BgQEYPDgwbjmmmtw22234bnnnsO6desQGBiIOXPmIDExUZQcfuzYMQwYMEC0WpnuN9WpuLg4lssiPDJs48aNiI+PFzkTJpOJTa5qamrYvx2dOgDMdQkKChI5xRcvXsSFCxdQVlbGXGLh74VpKDKZTORMUNj0hhtuwOzZszF06FAAYJsPC1fgC8/Mler/gPp8OKFTB9Q7KNnZ2aJ8a0rpcIXQqTMYDDCbzfj2228xefJkJ3c5Pj6ePTegfj9MYZrMqlWrMGzYMCY+//zzT6xbt449kz59+gCoT0YH6gWRcMsPmiCcO3dO5HaTqCPXtUePHqz8qampUKlUrF4Cdc/2rbfeQp8+fUSrK8+dO4e0tDSRqIuMjBQZByqVik0qZs+ejZkzZ7L7T5NTgr5DXl4ee3ZRUVEYPHgwqqur2XUKCgoQHBzM+gqaeAv7QnLqSNQZjUakpqayZwyIxwbheOiI1JYm1Lb27NmDESNGoLS0FK+//jquueYaBAUF4aOPPsKYMWOQnp6ORx55BCNGjIBcLkdsbKyobtG9uPbaaxEUFITDhw+L6qQUQuEsFLI0RpLwfvbZZ1l0LSAggH3H4uJihIWFsfZH+y+SAx4XF4dBgwZBrVazhXIqlQrh4eHo168fJkyYwNy1Hj164MyZM+z+UB63q/Crr7QZUQcAb7/9Nnbt2oVvvvnGaR8uX6GBxzGfDqhrOMIZO1BfSXr06IFHHnkEJpMJr7zyCgYOHIi7774bycnJKCwsRGFhoaSoAyAKHxLU6YwdOxYymQyhoaFs53jqMKjxOm5aSCKN7sl1112HefPmsc9PS0vD+fPnRfYyUC/qhCvkiGHDhgFwFnXCewPUNeLg4GAnUQfUzX5fffVVJCUlsWXZjvehqqoK3377LetwHZHL5VAqlaxTdRR1dC+EszA6Joyeabdu3SQ/3x2hoaHsfpFbNGXKFKxdu9bloqGvvvoK77//vqicJHp69erFOlrah4hE2v79+2Ew/H97Zx4fVXX+/89sycwkM5nJRhYIIYRdUBAQBQRRXHCpC5WqWFu11WL1i1bbaq3Ll7Zo61KrtrZqbVVc+FlrUStuLFp3qbgBsoUQAiH7nkwmk/n9ke9zcu6de2fuTCaZSXjerxcvIJnl3HvPPedzP89zntMp3AWZjo4OUeagpKQEbrdbXFe73a7YWqa9vd2wqAN6c2M2btyIvXv3YufOnWhvb0dLS0uIqKNQkOxmlpWVIScnByUlJTCbzbBardi9ezdqa2uRl5eHgoICTVEHQOSWyqLOZDJh2bJl8Pl8isK98upXh8OBY445RqQByMjlaqgvlZSU4K677go5H5SYvGPHDlRXVytEHV2jk046SQzg1LfMZrOiav5HH32E6667TtGGrq4ucd7kydXtdouwzJgxY1BQUIBjjz1WvFfOw6mqqkJlZSWamppEv5edSLpvtR6UjjrqKLz44ou44oorFD+XJ3V5f8qenh7FvaKmpKQE6enpmDJliqaooxWfABT5fXrITt2VV16JoqIiVFRU4MILLwx5rcViEdf/xBNPRE9PD9ra2jTbSg8YGzZswObNm3HzzTfj/vvvVxR1lz+X8rLV9cb27dunG36l7wF6+6uckE+ih8QA7cSwfv167Ny5E2VlZRgzZowQPbRQYsOGDbj88suxZMkShVM3efJkPPXUUygqKoLValUsqAH67s1gMIilS5eipaUFkydPFiFMykErKysT9faAvpxXWdTJTt0JJ5yATz75BDt37lSM97LYCCfqtEqajBgxApdddhnWrl2LvLw8XH311aJfzZ8/Hz09PTjvvPNgNpvx8MMPh+xaQpBTN3bsWBx77LHo6uoKmUfVyMcpzxHUh+R0kZdfflmRIwconTqgV+TJKQZ0XjMyMoRT53A48L3vfQ8XX3wx7rnnHrGYccKECdi/f78Y4+12u9jjVS/8GgvaMZojiEjh1927dyuePmkyGT16NJYsWQKLxYKbbrpJ7A9JT9iAdg4XIVfIBpT7ywK9g0RdXZ1YeCC3Ue04qZ26kSNHKhZQjBkzBl1dXcINoo575pln4mc/+5lYXeZwOPDLX/4Sa9asUeyjSk/58k0hizraUkUu/ghAuKk333yz7nmINAkAfa4Z0HcT0SRH501um+zUxYos6gi9iU8L2anTg64j5fUce+yxipANoHRRCgsLFSsHaYIgAdTW1gafzxeVqKPVZLQ3q5ZTN3r0aJjNZpHDBvROfkuWLMHy5csxc+ZM4YhSra7vf//7Ih9IDYk69eBNhXu//vprzW3C7HY7Lr/8clx++eW48sorFe8lUafnOKnxeDxiYcbRRx8twiUkRJ977jnx2tzcXJjNZnz/+9/Hq6++imAwiF27dqGnpwfz589XOOE+nw8ZGRmora1VOHV///vfxcR41VVXYfny5YqHA7n/VldXC7FVXV2NtLQ0RfrC888/jzFjxuCEE07QPLbzzjsv5GeUU0XuUVFREVpaWoSo0TtvlNw9YsQI8TDi9/sVLk5hYaEoJB0Jebuyjz/+WBQF10unWbx4MTo6OkSYq6amRvc+nD9/Ph599FH4fD5897vf1e1/AETdM7vdDqvVit///vfYsGFDRFFH/cPj8Siun/rBu6CgAGVlZfje976H4447Ds3NzQpR193dDavVitmzZ2P27NkAeq+ROqQ5YsQIVFVVhTjTVqtVbOuWlZUlxkESdaNGjcK+fftw+PBhnH322WJMIEGhdur27dsnapySuytjVNRp5dSlpqaKuoZnn322wpBZsmQJNm3ahG9961u6n0nQ+FBSUoLjjz8eH3zwQURRp+fUaYm6Tz75RCxEodIyTU1NmDRpkhhf8vLycP7554ti73Re3W439uzZI5y63/72tyFtoSL0a9asAdD7oE/pFPQ5R5xTNxCEC7/S72UXSRZ1Ho8Ht956q0KYyO5EOFGXnZ2tGHS0RF1NTU1MTp0amjwp94c694gRI3DXXXeJz3U6nfjf//1ffPe73xXLxX0+n/h8PaeOBhdyDtTt6y9paWmaTp3T6RQDq9w2yqlLpKibM2cOli9frnBg1JD4pcTrSZMmhaweDRcaowmCJqFYnDr5vR0dHZqizmq1Ij8/X5FP5vf7RTh++vTpKC0tFTl12dnZWLFihch9UVNaWoqHH34Yy5YtU/w8NzcXWVlZ+PrrrzVXv8rnXxacQPSizuv14p133oHT6URJSQlGjhyJr776SnMB1umnn44VK1bgvPPOQ1VVFSoqKkT5j0mTJmHlypU4+uijhcCWS+KQGJs2bZpitbl6S8WUlBTk5uZiwoQJ6OnpEX2vvLw8ZOIqLi6Gz+cTE4sRyKmjcO64cePQ0tKiCO/rUVBQAIvFApPJJO77iRMnin5GY56eMytDqRrd3d0oKyvDL37xC7z11lu67vf69evxzjvviPPV2tqq29Z7770Xc+bMwdSpU4WroweJus7OTqSnp+Oaa67BlClTIoo6uobqfkKiSxZ127Ztw+HDh0We15gxY4S7TqJORnbqtD5bDV0LuS0k6nJzc8XPZ82aJcZNuof1nDr1PKTVhnD3mFZOnXxt7Xa7Il3gmmuuwccff6xZmUDNokWLsHHjRkyePFnk30UKv8pjmPxaOgaaV3784x8DUKa/yPOtx+PBo48+iq1bt4asUAWUTp3e+Zk2bRpSU1Px5z//Genp6Rg/fnyIU8eiLg6EC79q4XK5xCSnhezqhRN1DzzwAP7xj3+InAz1RJydnY2ysjJFpfDx48dj7NixITee2qlTQ6tcSdTJrgDQ1zHpHHi9XhFK9fl84vP1RJ3L5VJsaxNvUZeeno66ujqxcgnoncTlgYaOiSqnD4RTZ1QwAL2T/VNPPaUYwNRQyH3v3r1wOp0oKioSu3AAfauq9QYuKo8Qa/hVLgfT0tICn88nwq+UAkCQCyO3Re4P48aNE+FXvUmIMJlMWLFiRYjgNZlMmDJlikLUyatftUQdhUjl8KsR6AFo3rx5Ya8R0Ot8Pfjgg+LhqLy8HNu3b0dWVhays7Nx3XXX4Qc/+IEQddQ22akzwr/+9S/8/ve/V/xs//79mtc/JSUlqtqh1CdoEqM9PSkUGo3DCfReexo7qW9E49Tt27cP3d3dOOmkk0TemxZms1ls90TojdX5+fnYtGmTKFMSjszMTDQ0NCjGieLiYhw8eFA8nMrFhynsq86LJNSiLj8/X5xrEjlaTp2Mx+OJaoyhayHfb6NGjUJ2djby8vJEG2fOnCnGZCp+L4/RNN6HE3Uej0fcJ+HuMZfLhY0bN4rC1YFAIGw/TU1NVbi+4TCZTGLhDYk6o04drXwl1E4drfKW20LXgs7JlVdeiREjRiiEF93flFNH4VctUlJSMH36dFRUVGDGjBmwWCzCpePwaxyhgrBGbyaXy4WioiLdjiqLunBJw7NmzQLQK9T27NkTMghlZWWJ8BDdnKeccoqinhKRnp4u4vNaOJ1OUd7B6XSG3JQ0qMmra8nt8vl8mDVrFrq6uoQ4pNcAym3JDh06JFaOxpO0tDS0tbXBbreL8/TjH/8Y5557rngNiboRI0agoaEBTU1N/XrqSUtLU4QbAe3ab/2Bit7u3bsX2dnZyMnJQWdnp6jmfvfdd+PNN98UK3/V2O12tLa2KsKvnZ2dhkLagLIiPAnylpYWURNS7pMjR47ERx99hLy8POHiyg8HpaWl2LdvH1wuV7/O+5QpU/DOO+9oOnXy+adJfv78+cjOzsaSJUvw05/+1PB9TPcR5UAagURweXm5otYX0HsfUH0/cpVaWlqi6jNz5swJ2QO3vLw8ohthBJpoSGjk5uYadupkvF4vMjMzYbPZUFBQgD179oSIu0jtaG9vF6UdKPcrErKzGamtRnY9yszMRG1trcIBLi4uFqF1oO+BNRAIoK6uDmlpaUJEGHHqZGgnCzmnTi3q7rvvvohiVEbLqTOZTFi3bh1Gjx4tVtTPnDlTpHVQjp08f1FppHCizmKxiHMWTtTdfffdaGlpweOPP45f//rXmuI1HhQWFmLGjBlhHwgApaiTUd8PtM2c3LfU20YSNL6lpqaK60VOnc1mCzsGHXfccfjwww9FiJvCr+zUxZnCwkLDg9qyZctw/fXX6/4+IyMDTqcTKSkpurX0ZMaPH695I2VnZyv2dwyHyWRCbm5u2Mn8xBNPRHNzs+aTAL1PduqAvi2opk6diq1bt4bUVTKbzYodLGirl2gGJiPQzSUfn8fjUeybSQJDLhYbqZxNpO+UizBTfbx4Q1usZWdnK2r7Ab17Pi5evFjUIVQTj/ArIYd9Dx06FHLuaMKWwyRyXyotLUV3dzcaGhoiOnXhmDJlili0AShz6uR7lAbaUaNG4d577xUlH4w6devWrcPLL78cMUwnk5aWhqysLOHUyekT1DdbW1sV4ddoH3BGjBihuH/iJeqoT5ADT6IuFqeOHFZ12NVI+JUWSuzatQt2u92QEASiE3VG8Hq9Ivwqizqgr7gyiTqg955IS0vTFFLy/+k8U5SmqKgIqampGDNmjFjpSDU91eKzpKREd5GAFnRO1Pfb8ccfj4KCAmRmZmL06NHIyckRrykrKwu5t2krxYaGBl1RR9+TkpISVqTl5eXhjDPOQHV1Nbq7uyM6df1hy5YtIbm1apxOJ8xmc0h0Su3UUR1Q+X7VS3eicVr9kEnpK+H6J+VP0iKpnJwcMXfTDkj95Yh36gBg4cKFYUOlMlRiQw+TyYSCggJ0dXUZEjcLFy7UXMUm36hGxGGklWennXYann322ZDODYSGX2ngoq1qtD7XbDaLYprywBduUIgVeaNxPUaMGAGPx4NJkybhnXfeQXV1dUjeUjSoxUE0YZFoyMjIQEVFhXDqgF5RN2bMGDQ3N4d9clMvlIhW1I0fP15cP1nU7du3L0RIRBJ106dPx6RJk/DNN9+ETVCPxNixY+H3++H3+2EymdDd3Y3p06dj69atOPHEE8XraGKS67dZLBbD10mu2h8NtF/xN998I4oYA333EA3qVqtVkVNnFCrlQKF/KubdX2RRZzabkZmZiba2NlHGwqhQovw6oE/ETZgwAStWrDBUGJWcul27dmHs2LGGH5SMhF+jgRaqyQ4wleLZsWOHWNGtFnV6Tt2JJ56IpUuXijGfnLpp06ahtrZWnKtw4ddo0Qq/ynz/+98XD4SyqFO3nT6nsrIy7PidnZ2tuz+xTF5enqIU1EA4dUahOqpqMyMlJQUmk0mIOq0+FY2ok+eacGPQKaecggULFoh84/Xr18PpdOKyyy4LCRHHCos6QBQ8jReFhYUhS+X1+NGPfoQf/ehHIT+PVtSNHDky7M1DxSzDiTrqjDRw0U2pJ6Y8Hk9I+DXe+XRAn8AKJ1ZSU1Nx6NAhvP322/jzn/+M2trafok69eAWj4lEC5qs1KIO6C1KrK5PJaPOqYt29Wtubi7q6upw6aWXim27gN4adGrXRc6po4lJHiizsrKwbdu2fk9W8sOV0+lEIBAQYXD5uI466ihMmjRJlEWhOo4DJb6J0aNH46233kJ7e7tYzQb03SPkzlFoPJZUhLy8PFitVrFSNd6izuFwiPuU+prR83bfffcJ95T6SEZGBh5++GFD7yenbufOnYZDr0Bf/mkwGIzLvUjhMtkBpnqBe/bsEdeTzlNVVRXS09N1Rd28efMUZZOoH0+aNAlXXXWV6Aepqalim8B4iTq9+eHMM88U/6bddWpqahRpNEDfeE97kOuRnZ1tyAmnY6daboneN97tdoeIOhovKBoTTtSp5wI9p44I1z9zc3MV24vStUtNTY1L6BVgUTcgnHfeeYZFnR50geXNxsPx4IMPhv19fn4+Zs+eHXJDA9oLJYC+DcYjiTp54DOyiilatMKvWtjtdnEMwWCw3+FXmYESdXIIhQaedevWYdGiRWhubg57DHrh12jampaWhrS0NIVTt2fPHkUNNaCvNIvL5UJ6ejoCgYCm2OjvRCX3H4fDIQQE0Lc9FdAbpqUN1tXHMpCMHj0a//znP5GSkqIowyGLOsqRaW1tjdqpA3rv1fT0dJHIH8+cOrWoI0cwmpw6gnIMo2kfLZSoqKjA6aefbvh9NA42NzfHJbfV5XKhtbU1JKyfk5ODzz//XByTPLaNHz9eV9SpcTgcuPjii3HOOecoHswG06lTk5WVJXY8kJGvaSSnzsj9RfcwibpEOnVA74OIVu6dw+FAXV2dbmqNnlNH51vuh/IDXixzxXe/+11Fser+wKJuAKAdB/oDdRyv12soRBGuHhrx2muvaQojrYUSQGxOXTRP30YxEn4l5NfEI/xKk9BAOUCyU5eSkoJbb70Vq1evFnsJhhN15AYRJOoi5WCqcTqdomQD0LtaT70ylZw6EnU2my3uuZOAMlHY4XAgEAggJSUFXV1dih0ttBgspw7o3Q5KnuC0nDpAv8xQOFauXAmfz4errroqbqJOXv0qizq6x2M5b2effTY2bNgQ1Yo9Kmni9/ujzr0kdy0eD1jp6eno7u5GU1OTYnJWVxKQz9P06dNht9tx9dVXGwrfUz0yGSpporVQIlpo4YXRB5msrCyxZ7CM3L/CiboLL7xQ1IoLB40dyeLULV26VPPnDocD1dXVuv1Jb6EEFY6X+01ubi4qKyvx8MMPixX50UC1O+MBi7okhSa3aCfocOg9XaoXStB2NbRiSk9Mfe9731MslPD7/QOSU2fUqQP08xxi/U6v14uenp4Bd+roeq9atQr//ve/UVZWhubm5rDHkJqaqsjHjHb1K6E1Kagd1/z8fJhMJqSnpyMtLa1fLmg4LBaLWO0sF6qdOnUqVq1aFfa9F154oUhEHihI1FE6A0HnPBgMKkRdLE4dOVg//elPcfjw4QENv0br1MnYbDacdNJJUb2HHiDa2tqiHtuoz8XjXpSPX34Q1RN1FJo0mUz405/+FPP3yk5dLH1D5rLLLsPUqVMNP1zRGBOrU3fqqaeG9HstbDYbsrOzxUruRIs6PRwOB3w+n+7DhZ5TB/SeS7VjXFBQgF//+tfxb2iUsKhLUvTqIQ0EaqfOZDLB6/VGDL/SpsYAhJsykDl10Yq6eIRf09LSFJtSxxu1qAN6r31VVRU6Ojoihl+pUDAQ/UIJQkvUqZ26lJQUPPHEEzjllFPw3HPPDYh4J7KyskRdsObmZnR1deG6666LWHV+9erVA9Ym4qijjoLNZgtZkSz3TSpTQP+OFeob8Q6/ut1uhQNF29ANBg6HA01NTQgGg1GLOjof8XLqgN6cQtoGD1CWqwCU90Y8QvvxDL9mZWUZWpwivx4IHRfT09PFlmzxuq/z8vKSJvyqB813ev1JL6cO0BZ1yQKXNElS5PDrQKPOqQN6J5JI4VcZ6viJWv1KxNupS0tLE2VqBgI5/EpkZWVh3759AMIfQ2pqqqjjBsQu6uRjo6d+rdzIyy67DIWFhSgoKFDs2xpv5JpfVHIj3rUPY2XcuHFoaGhQ5NAAyr4pb/vTH7EUT1EXzqkbqAcWLZxOpyiuHe0D60A4dTU1NWHDr2azWYw/ySbqokVP1Mk7hcRr/M7Pz0+a8Kse1I8iiTotoyInJ2fAUz1iJTklNAOHwwGn05kQpw6AIadOxuVyob6+PuFOnfyaeDl1Vqt1UBZKEJmZmWJRQKScOploV78S8mSVlZWF2trasNub/f3vfx/QgZrOBZW/AIxd+8FCa3JXO3X9yakjqG/E48GO2kMFVqlfVVVVDerkpB5jomEgnLqurq6QhRKA8t6iRRXDVdQBvQ8OVGA5HuTl5eG9994DkLxOnZxupEU4UffrX/9a8UCdTCTn2WYA9Lo3iXTqSFgk2qkzUtKEGAin7oQTTojbcnM1euFXypWLFH4lLBZLv506u90uNqMPt4p5oPLpCHqQcTgcolxLMok6LeRzLodfk82pA3rPK22BVV5ebrhGZzyQx5hkcOrUn6e15aLL5RJ16voLlSGKx0KJaAkn6mieGYjw61B16vQWSgBQhOyTDRZ1ScyqVasiboMSD/ScOkqijkbUDYRTl8jwq9PpxN133x3z50Ri7ty5uOiiixQiSnbtIoVfCY/HI0RdrAslnE4n3G43LBZLv3aF6C9aJQOSXdTphV+TJaeOdn+Rnan8/Hzs3LnziHTqohV1QPzDr4OVx0hEcuqA+IZf6YEsWZ26/uTUJTPJebYZAL21awaDvLw8PPzww4qkW7n4rNHwKzCwTl00os5qtfYrkVV26gaSsWPH4plnnlH8TBZURp062uqnP04dibrc3NwB2RLNKHT8cq3HoSTq+rv6lSAREy9n1G63K0RdXl4edu7cOag5depoQDS43W7YbLa4OD/yOBUupw4YGFHX09MzrJ06uch9sjt1eg81Ho8HFotlQIyKgYRFHQOTyYQVK1YofiYXKU60UxeNqLNarTCbzcjIyOhXHbXBEnVaGHXq5MmoP6KOjpES6AeigHQ0HH300QCUk89QE3XxWP06duxYjBkzJm6Tv91uV9R5o7BrIpw6t9sd9XEde+yxmD9/flzaYbPZhMAaTKfO5XKhp6cHwOA7WDSuaI3RHo8HVqs1bguSZFGXrE5dpPDr+eefj+Li4qRd5aoHr35lNEkmURdN+BXoyw3rD4kUdZRrFMltVDt1zc3N6OnpiVnUOZ1OHH/88VHXHos3F1xwAT755BNFEc9kWf2qh9y+eDl1l1xyCXbs2NHvthFqZ4LE+2CvfgViW/yxZMkSvP3223FrC40r8vF7vV6YTCZNURcPF0s+7sEWO8cccwxuv/12zVqOXq9XbMUWD4aSU6fX/x0Oh2LXmKFCckpoJuFEK+qSJfwK9Iq6/oas4lnGIFroiTqS26jOqfviiy8AGFtQIiOHX2+55ZZomxt3TCYTZs6cic8//1z8LNmdOpPJJHLW4pVTR58ZL9QLohLh1NF3D8aq/ki4XC7U1dUp7hfKJx0opy6Roi4lJQV33HGH5u/mz58vis3Hg6Eg6uRxbzjBoo7RhCrnA8bchsEIvxoVK0PdqQuX+yIjTzxZWVmoq6sDEL2ok8OvyYQ86SW7qAN629jV1RW31a/xRi3qhppTF2+0nDqgV5CoS5oA8RkLZDGbTH3jrLPOCimo3R/k1fxDNfw6VEnOs80kHFmcGbHkB9Kpizb8mpqa2m9RZ7PZ4PF4otrXMl5kZGTAbDZHJeqKi4vh9/tDfm6EZH1iHYqiLh57vw4U6kkskU5dMog6GrPUk/o999yDgoKCkNcNdaduMJEFa7I6dSzqGCYMA+nUORyOkDyXcMQj/AoAW7ZsUawCHizMZjMyMzMjClPZTSgtLdX8uRHknLpkQp4MhoKoo/Merx0l4k0yOHXJFn4FQu+XM844Q/N1LOpiI1mPM9Lq16FKcp5tZsgxkMWHTSYTpk6dqhAu4Rg9erTh14ZjILfCikRmZmZUTt3YsWPFv/uTU5dMDEWnDojf6td4kww5dbTPbDI4dXrhVzXxFHWyyE9WsRMvTCYTgsFg0jp1kerUDVWGd69i+kVhYSEqKysNvfbkk0/GDTfcMGCFGuWk+Ui88sorcVvFlSgKCgoihn7jJepsNhtsNlvSDW7yZJBM4kgPWcgNBacuKytrQLfA0yM7O1sR3kwUeuFXNcXFxXC5XP1O6VAz3EUdbTmYrMfJ4VfmiGPLli1iq7BIlJSU4N577x3gFhkjWZ8Mo+Gvf/1rRHEmJ+Onp6fD6/WioaEhprpKaWlp7NT1Ey1Rl0xiVD2Jmc1mfPvb38Zxxx03qO149913k0LU0QNopPvl5JNPxoEDB+I2+TscDnR0dCSV4B8IMjMzUVtbm7TjMYdfmSOOESNGhN3YnRk4xowZE/E1auEwatSomEVdZmZmUoTEZGgyMJlMSfu0L0OiLjU1dUisfgUQspvJYCC7yonEqFNnMpniut+xy+VCR0fHkOjT/UGut5mMsFPHMExSIYsIoFfUffHFFzG5Wq+++uqgbuxuBJoMUlNTh0Q4PdmdOi1RdyRjNKcu3rhcLlRXVyet2IkXJOoSueVgOIZrTl1ynm2GYSJCLpDs1AHR59QBwMSJE+OeM9RfyKkbCqFXIPlz6oarMxEreqtfB+t7h7uomzp1KgAgGAwmuCXacPiVYZikgsq8kKgrKioCMPiT1EBBk14yuV3hGGqrX490qMhwIpw6YPiLulWrVuGkk07CyJEjE90UTSZOnIjLL78c06ZNS3RT4krSOXVbtmzB/PnzsWDBAlx44YWioOrzzz+P448/HosWLUJFRUWCW8kwyYHdbhcC4oQTTsDRRx89ZJytSAw1p26o1ak70rnggguwdevWQb9GJOqSqW8MBDabDaeddlqim6GL0+nE448/nnQRiv6SdKKusLAQr7/+OjZv3ozS0lK89NJL8Pv9uO+++7B582asWrUKq1atSnQzGSYpkJ26BQsWYOvWrUmbwxItck7dUIDaabVakzKnjsOvSmw2GyZMmDDo30uiLllXhTJDm6Qb/fPy8kSM22azwWq1YteuXZgyZQpSUlIwd+5cfPnll7rv9/l8aG5uVvxhmOGKLOqGG0NR1KWkpCh2P0kmN4aduuSAVtL6fL4Et4QZjiSdqCP279+Pt956C2eddRYaGxsVS8oDgYDu+1avXo2MjAzxh5LHGWY4IpfPGG4MtfCrfC3owTSZ8htZ1CUHJ554IgDEtUwKwxAJy9SsqqrC0qVLQ36+bt06WK1WXHrppXjiiSfEljKy4xbOtr755ptxww03iP83NzezsGOGLezUJQ/ytZg0aRKeeuopzJ49O8Gt6uPUU0/FHXfckVRC80hk+fLlOPnkk5OuhBAzPEiYqMvLy8N//vOfkJ8HAgGce+65uO222zB+/HgAvZuVb9u2DV1dXfjkk0/CrlYZzs4Fw6ix2+3DVtTRw9tQOT5Z1JlMJixfvjzBLVJSVFSE22+/PdHNYAAWdMyAkXRrqteuXYv3338fLS0tWLVqFX70ox9h2bJlWLlyJRYsWAC73Y4nn3wy0c1kmKRgOD/EDDWnbsGCBWhvb090MxiGOYIxBZO1MmCcaG5uRkZGBpqamjiHgRl2LFq0CB6PBy+++GKimxJ39uzZg9LSUpx11ll4+eWXE90chmGYpCfpnDqGYYxz+eWXD9vE96Hm1DEMwyQaFnUMM4RJtryteDLUVr8yDMMkmqQtacIwzJENO3UMwzDRwaKOYZikZKitfmUYhkk0LOoYhklK2KljGIaJDhZ1DMMkJSzqGIZhooNFHcMwSQkvlGAYhokOFnUMwyQl7NQxDMNEB4s6hmGSEl4owTAMEx0s6hiGSUrM5t7hiZ06hmEYY7CoYxgmKTGZTBgxYgQKCgoS3RSGYZghAe8owTBM0rJz506kp6cnuhkMwzBDAhZ1DMMkLW63O9FNYBiGGTJw+JVhGIZhGGYYwKKOYRiGYRhmGMCijmEYhmEYZhjAoo5hGIZhGGYYYAoGg8FEN2IgCQaDaGlpgcvlgslkSnRzGIZhGIZhBoRhL+oYhmEYhmGOBDj8yjAMwzAMMwxgUccwDMMwDDMMYFHHMAzDMAwzDGBRxzAMwzAMMwxgUccwDMMwDDMMYFHHMAzDMAwzDGBRxzAMwzAMMwxgUccwDMMwDDMMYFHHMAzDMAwzDGBRxzAMwzAMMwxgUccwDMMwDDMMYFHHMAzDMAwzDGBRxzAMwzAMMwwY9qIuGAyiubkZwWAw0U1hGIZhGIYZMIacqHv22WeRk5Nj+PUtLS3IyMhAS0vLALaKYRiGYRgmsQwpUdfT04MXXngBo0aNSnRTGIZhGIZhkoohJeqeeeYZLF26FGazfrN9Ph+am5sVfxiGYRiGYYY7Q0bUBQIBrF27FsuWLQv7utWrVyMjI0P8YVePYRiGYZgjgSEj6p5++mlceOGFYV06ALj55pvR1NQk/lRUVAxSCxmGYRiGYRLHkBF127Ztw5NPPonTTz8du3btwvXXX6/5utTUVLjdbsUfhmGGFp2dnZg/fz52796d6KYwDMMMGUzBIVjrY+bMmfj0008Nvba5uRkZGRloampigccwQ4T9+/dj9OjReOmll/Ctb30r0c1hGIYZEgwZp07GqKBjGGZo4vf7FX8zDMMwkRmSoo5hmOENizqGYZjoYVHHMEzSwaKOYRgmeljUMQyTdLCoYxiGiR4WdQzDJB0k5rq6uhLcEoZhmKEDizqGYZIOduoYhmGih0UdwzBJB4s6hmGY6GFRxzBM0kFhVxZ1DMMwxmFRxzBM0sFOHcMwTPSwqGMYJunghRIMwzDRw6KOYZikg506hmGY6GFRxzBM0sGijmGYocKBAwcwadIk1NbWJropLOoYhkk+WNQxDDNUKCsrw44dO7B///5EN4VFHcMwyQeLOoZhhgo+nw8A0NHRkeCWsKhjGCYJ4YUSDMMMFWic6uzsTHBLWNQxDJOEcJ06hmGGCjResVPHMAyjAYdfGYYZKrCoYxgmafnb3/6Giy++OKFtYFHHMMxQgcOvDMMkLZ9//jk++OCDhLaBRR3DMEMFXijBMEzS0tXVlfAnTl4owTDMUIHDrwzDJC3JJOrYqWMYJtlhUccwCSAQCOBnP/sZGhsbE92UpMbv97OoYxiGMQjn1DFMAigvL8dvf/vbhOeLJTvk1AWDwYS1gUUdwzBDBXbqGCYB0FMU52mFh84PJf8mglhEXXNzM19bhmEGHRZ1DJMASKQkUqwMBZIhlEBtiEakLVmyBHffffdANYlhGEYTXv3KMAmAbrxo3ZxAIICenp6BaFJSQu5YIkVdLE7doUOHUFNTM1BNYpgBpaen54gaZ4YTyfAgTAwZUbdlyxbMnz8fCxYswIUXXsi5NkzUxOrULV++HDfeeONANCkpSYYBKhZR19nZie7u7pi+LxgM4pNPPonpvUOBQCCA9vb2RDeD+T+CwSCefvppRX+96qqrsGLFigS2iokVDr/GQGFhIV5//XVs3rwZpaWleOmllxLdJGaIEatTV1ZWhoqKioFoUlJyJIq6//73v5g9ezZ2794d0/vV1NbWYuLEidi/f39cPq+//OUvf8GcOXMS3QzDvPLKK2hubk50MwaMbdu24dJLL8XHH38sflZWVpY0/YWJDhZ1MZCXlwen0wkAsNlssFqtCW4RM9SIVdS1tbUdUc7wUBV1Pp8vZlHX1NQEAKivr4/p/WrKysrwzTffYPv27XH5vP5y8OBBHDp0KNHNMITf78c555yDF198MdFNGTAaGhoAKO+xzs7OIbvQZ86cOUd0PiuLun6wf/9+vPXWWzjrrLM0f+/z+dDc3Kz4wzBA7OHX9vb2ITvYxgIJqUQOUIPt1NH1bWtri+n9amjcIbGYaPx+f8znZrDp6upCMBhMivykgYL6hzyudHR0DNmHx48++gg///nPE90Mw/T09ODTTz+N2+fRnJIMfXZIibrm5mZceumleOKJJ2Cz2TRfs3r1amRkZIg/o0aNGuRWMsnKkejU1dfXR932ZHLqjF6r7u5uBAKBfou61tbWmN6vhibtZCl0PdREHTC8axRqibqh7NQRiaxtGQ2bNm3C7NmzUV1dHZfPY6cuBgKBAC655BLcdtttGD9+vO7rbr75ZjQ1NYk/yZ4LdeDAAbz33nuJbsawYd68eXjuuec0f9cfpy4ZJpjOzk5cf/31UblJs2bNwmOPPRbV9ySTqDN63umaJotTRw4di7roiaWczVCD+ofaqTNyzH/84x/x29/+VvN3fr8/ocKqvLw8Yd8dDc3NzQgGg3GL5LGoi4G1a9fi/fffx6pVq7Bw4UI8//zzmq9LTU2F2+1W/Elm/vjHP+Kyyy5LdDOGDf/973+xY8cOzd/F4tQFg0G0tbUlxQSzbds2/P73v8fWrVsNvT4YDKK8vByHDx+O6nuGYkkTamuyiDoOv8bOkezUGTnm1157TXehYEpKClatWhWXNhpFLsPy4YcfDup3x0q8U0yS4UGYGDKi7qKLLkJdXR02bdqETZs2YdmyZYluUlxoa2uLW8jnSCcQCKCjo0O3dEMsTp3P50NPT09STDDUbqP9pa2tDYFAIOqBJhkGqK6uLphMJsPOQ7xEXaz34urVq3HllVeK/ydr+HUohMeOBKdOL6fOyDG3tbVpLuiha/unP/0pTq00hjxOfPTRR4P63bESb2eNnTpG4PP5kqIjDAdIzEUSddFMFvRZySDqqN0tLS2GXk+CYiiKOr/fL1a7BwKBiK9PdPj1yy+/xJYtW8T/k1HUAcbOZaI5Evb9JQdXPkajOXVtbW2oq6sL+Tn1/cEuwC3PX/HKURtoBsqpM/J5PT09uPHGGwdsNTqLugTDoi5+0ISsJ+pi2fuVPjMZXINonbqhLurS0tIU7QkHtTVWIdBfUefz+RRiu7/h1/Xr1+M3v/lNTO/Vgs7LUAjBHolOHa32NdJ/yalT7z5BnzXYwl0eJ/ozlwWDQfzkJz8ZlFp9/XXWlixZggsvvFD8P5ptwmpra3Hvvffirbfeium7I8GiTsUHH3yAs846a9DCFD6fD36/f0g8QRO1tbXw+/145ZVX8Prrrye6OQISO/EMv9Ikb1QsVFZW4quvvjL8+dEwWKIuWUqakFNn5NwnOvzq8/kU7+2vU/fvf/8bf//732N6r8z//M//4NZbbx2Som4oOHWBQCCmsVst6qKJIrS1taGnpyfEsR+s89XZ2Yk333xT/J/GCa/X268HwcbGRtx333145513+t3GSPQnbzgYDOK1117D//t//0/8rKurC+np6eju7o54j9E1HihHlUUdgJ/85CdiNdEnn3yCV199ddDy3JJpI2CjzJgxA3//+9/xwAMPGMrfGKy8wUhOXX/Cr0bfs3r1alxxxRWGPz8aog2/kks01J06I5NVosOvek5drKKuq6srLk7VRx99hC+//HJIirpEOXXR1Iu74YYbsHz58qi/Q736lcZ/o6IOQEgIdrDO1yuvvIJTTz1V9HEaJ7xeb0zzWEtLC1avXi3miMEQp/1x6srKyjQ/jxZlRho31aKusbFRjB3/+c9/cMIJJ/RrD2AWdQA2bNggtmuhixyrir788stx//33G379UBN1PT09OHDgAA4ePIi2tjZDk8S1116LH/zgBwPetmRw6lpbWwdMwA60U3f//ffjueeeE85DokXdYDp1dG77I+ra29vFuaNJO9bwa1dXl+K4g8Eg7r//fsOCnqivr1d81lASdYly6s455xzcdttthl67c+dO7Nu3z/Bnb9++Hddee22IqIsmNYT6qHqxhHy+oi3bFA00/pCok526WOaxt99+G7fccgu+/PJLAIMjTvsTjXj33XcBAKNHjxY/6+rqQkZGhqHPVIu6yy+/HCtXrgTQm5v7wQcfRH2fy7CoQ+8TDwmB/oq6//73v4ZLTgB9N1+ybbatl+vX2toqyny0t7cbmiTKy8sHZYuieDl1nZ2dmDVrFrZv3x71QgmfzzdgA+pAi7qnn34aL7zwgvh/okVdNE5dMoRfgb4+GG+nrqKiAjfccAM2bdoU1efU1dUNWVGXKKeurKwMX3/9taHXNjQ0RDV2v/nmm3jooYewd+9eAKGiLlJf7+npEd+ndurk99J4OxAr96mt1Nf1wq/d3d34z3/+E/HzaHEFlV5KdlFH4WG73S5+Fo2oo7GCNMahQ4fE9aLf0TZyscCiDr05YuqVk7GKuq6urqhu8mR16m688UbNsjH0hNnW1mbYqWtqahoUgWDUqYs0aNTV1eHTTz/F9u3bo14o4fP5dI9127Zt/Sp2Ga3wiFbUtba2KpylRIs6cuqMnPtkCL8CfaHx5uZm5OXlobW1NaY2qZ06rRIYkejp6UFDQ4PisxKdp/bll18azjlKVFubm5tx4MABQ6+NVtSRu0aTtjoMGKmEj/xdaqdO7hsHDx4EADz00EOYN2+e4fYZQf1wqRd+ffXVVzF//nzNlboyNNeSqEv28Cs5ivJ7fT6fEHVGw68kZuXoDp3b/uxBfcSLuo6ODvGH/g+wqPviiy80d+OgySVaUTcYx2fUqYvkpMmhkGjDr+GculNPPRWPPPKIoc/R+2xg4EqatLa2KpylRNepS8RCif6KOjk0RVsU0j3zr3/9C6+88orh9siTNF3zaERdY2MjgsGg4rMG0qm79NJL8f777+v+vqGhAdOnT8e6devCfk60W8TFm6ampqhEXTR9Ri9kKt9r4fq7/F3hwq8k6g4cOCBywCKJq3A89NBDuO+++wCE9nU9p47OYaSH0KHm1NExyu/tT/hVzjlnpy4OUEdnp05JeXm55mAlO3VGw69DzamTXxev8GswGER1dXW/ciUGOvyaTKJuKK5+BXrFF20/VFRUBKDvOjz88MOGRb3aqYtF1NGkPxjh10AggKeffhoffPCB7mt2796NQCAQcWxNpFNHteJqamoiPvwFg0E0NjbG5NQRWo6RUVEXbqEEiTp6MH3//fdRUFAQs1h4/fXX8a9//QtA373W2tqKqqoq8f/MzEzFcVRVVQGI/BBNoo7+HgxR15/FYF1dXTCbzXETdVpOHYu6flBbWwsAccupGw6irru7GwcOHNCc4KJ16mjgS2an7osvvlBsO6fl1Bmtxq8XfqUVdf0ZsMIJjzVr1uDb3/624mfRrH6lPEkSICaTKWF9MhgMKnLq1q9fH3FPyWQJv7a2tqKzsxPd3d0ikZrOqRwRMNIeORQni7rvfve7ePbZZyN+Bk36gyHqqH3hjm/Pnj0AEDEFQZ1Td8899+DGG2+MRzMjIreNhJEetCd0f5w6LXERboww6tSRoPL7/Whvb0d5eTm6urr6tXCHvo/6+r59+1BUVIS3334bQKhTR85bJFGXiPBrf5w6EnBqUUerX42KuubmZvh8Pk2njsOv/UDt1A1VUdfZ2Rk3Z6WyshKBQEBTPMgblRupyUMFNZPZqVu4cCG+853viAlUFn/yIGq0tIbf7w9Zkk4Te39EXbjw6/LlyxWLHOTvNHLufT4fAoGAuL5ut3vAr9nf/vY3rFmzJuS80gpScup+9rOfRZzU9Zy6hoYGrFy5MuK1i2dOHQkDCr/SOW1vbzd8TtVulSzqNm7caGiPzcF06ugY1ePYxx9/jLlz56Knp0csDojkVquP/aabbsK9994b7yZrIoueSCFYclO6u7sNCxEjTp0RUef1enWdOovFIsZC+ll/Q5uyqKM+vGvXLvj9fuzcuRMWiwXp6emaTh29vqGhQbOm31ALv5KoCwQCosZsT08PPB6Poc+Uj6+6uhrt7e3s1MUTcuroQgzV8OvVV18dtmzI7bffrigYGQ5yRVpbW9HV1aWoy0MTFp2fSJOE3mA/ENCARwJFjZ5Tl5qaCiD0yVJ9LaNJ2Fe/Nh6ibiAXSqhrRA20qAsGg7jmmmuwfPly/OIXv1D8jtpAog4A1q1bF3ag01s9+OGHH+KBBx7Arl27wrYnXuFXebEJhV+p3e3t7YbvA/XCBlnUGXVcBlPU0bigHvt++9vf4v3338eXX34pnDqjok59r8QquKNBduoqKyvDvlbuj0bHfFnUpaWlaTp1RsKvo0aN0nXqPB5PSNoICax4iDrq6yR6q6qq4HA44HA4FA/68ngaCASQmZmJ22+/PeSzSdT1t43R0J+FEmpXjj4rKysLQOT+Lc8/8lxLu4oALOr6RbI4df0taVJRUYFvvvlG83fd3d246667cMkllyiOq6ysDBdddFHIQE91l4LBIJ544glMnTpVvIYmE7oRjYo6IwLhtddeMxRW0kOekLW+T09wlZaWAoDYCUIr/ApEVwRX/f3xdOrUwkO+Bm1tbbj77rsRCATQ2NgIi8USlagjXC7XgIo6ekIF+gZ/gs4zhV+B3vO2du1a3c/TC7/S9Ys0SMqTayw7BGg5dfn5+QCUY0s04Vf5b1nU+Xw+Q6JOK/w6UKEtvYe3yZMnA+gtA0FOndHwq/yAASDsTi1/+MMf8Mwzz8TQciWxOHWAccFZX1+PCRMmAACys7NjduqKiooMiTr6LCqZ0R9R19nZiY6ODjEuyKLObreLEh+vv/467rrrLkVO3e7duwFAsT8y0LtCm4wV6q/96aOdnZ0i9y8c8XDq6P1072dmZgIw3r+BvkLGwWAQ7e3tHH6NB9Sh/H4/uru7++XUUS5QNE+U8XLq2traxE2kpqysTCT/3n333eLnGzZswHPPPReyCbOcv7Rz5060tbWJiVe9p2UkUUdiRn6Cq6+vx7e//e2Qzv+Xv/wFDz/8cKRD1UU+71oiWa/AZ2FhIQCI2lR6Tl00ok7tBqqLjcaCnqiTXaiNGzfi5z//Ob7++ms0NjYiNzc3JlE30E4dPThkZWWFnCstUVdSUhJ21aRe+JX6RKR6cfJ1ifYBS64F1traKvp1dna24rPjFX41Kur669QFg0E8+uijhsYmPVFH37t58+aYnbqxY8cCAD7//HPd9zz77LMh6QexQMeRk5MTUdTJfcpIn6ESM+eddx4WL16M0tLSmHPqRo4cqRvK9Xg8Iav24+HUAb19iu5XcjKbmpqEUwcAzzzzDO68806FqKMyIBMnTlR8rhySpfSX/oyRr7zyCs4999yIoqi/Tp0s6uizHA4H0tPTDfdvQLk7RWtra9jw63nnnYcLLrggYvuOeFEn5yXQk7TZbI5J1NEN1N7ebnjvWHXnipQQrgetRNL63u3btwMAxo8frygCTInA6gldbgMNbPINLNPd3Q2fzxfithDy6+kYv/zyS7zwwgv47LPPFK+V6wXGQmtrK2w2GwDtQdbn88FsNoeICJroIjl1RgYbeg19B12PeIdf5Zy9L774Qvyb+nN5eTkaGxsxYsQI+Hy+sP3xq6++ChkEoxV1LS0tOP/88w3fNzSYTZgwQVfUyeHXZcuW4cMPP9Q9jkiiLpJT5/P5hIiU74d//OMfeOKJJ8T/d+zYAZPJpLhH5Pa3tLSIvudyuWCxWBRufH+dOlpsE6tTF0nUffHFF1i9ejUAYP/+/fjhD3+I1157DT09PWH7kJ6oo3Zv3LhRjCWRJj09V1Hu52ra29tjXgQgQ4J88uTJcXfqmpub0dPTgxkzZuCNN96Ax+OB3+/HtGnT8Je//EW8zkj4NScnJ+Q7wzl1AyHq5IUkslN3+PBhsYoY6L036dqRGCLIUDCZTCHfFQtk0kS6HvF06qi9KSkpcLvdhpw6k8kEp9Op2I1EFnVaorS9vV1xnvQ44kUddQKg96S1t7ejsLBQlOyIBrq4lEAZCaohBfR2jt27d6O4uBg7duyI6nuB3k7s9/s1J68dO3bA5XJh7NiximMioaYWdfv378fIkSMB9Ik6uoHVHba7uxuXX3458vLyNNulVcyWvk9dB0/e2SMW2trakJOTA0Bf1LlcrpBBg9r15ptvYuXKlYp9GNva2qIqrSE7ddu2bUN6ejpqa2uFqJM/o6KiAmvWrDF8fLJ4kI9PnuxoMKD9PgsKCkLeK9PZ2Yljjz0Wjz76qOLn0YZfd+7ciX/+859iu71I7Nu3Dx6PB7m5uYZE3YIFC1BfX49du3ahp6cnxHmLFH414tR5vV7Fe4DeVcWyqHvyyScB9BaSVn830Lf6Feid6FJTU4Wolp269vZ2vPbaa2HbA4Q6de3t7ejp6TFUxDoWp+7ll1/GrbfeCr/fr7hPZ82aJfbH1kK9ZRRB7a6vr0cwGERpaWnUTh2dX/VDoExbW1tcRF1TUxPsdjsKCwsVc4MW0ebU0espTGez2dDV1YVdu3bhv//9r3hdOFHT2toKp9OJ9PT0EOFC78vIyBhQUUd9WH6wlJ06deTH5/OJMUr9/fRaGqeA/oVf6RxHEmta9QFlenp6NPtpIBBAIBDot6hLTU1FVlaW4uEwklPn8/lE/nc4jnhRV1dXJy4QPUnTqrVoizVGG8KRX9/R0SE6uJbbsX79evz4xz/W/Sy6wbVCsNu3b8fEiRORlpamaBcJNfXg0NraKm4yI07d5s2bxb/VaDl1eqKutra2X8nQra2tyM3NBaAv6txud4iIoP+Xl5fjgQceEO2i8CutaopmoURnZyd2796N9vZ2HD58WNOpe/zxx/HDH/7Q8PGpxQMhJ3TTRP76668DAI4++mjRHi0qKirQ1dUV8iDhdrs1B8aPPvpIs9QDDWSRksuJsrIyjBkzRogeGTpHsqibPXs2gN6FD88//zzGjx+veE9/nTo9Udfa2qroS5S3ShMYEOrUqUUdLW4IBoPinH7/+9/HkiVLdMcJPaeOrvtAOXXkAst1Kvfu3YutW7fikUceERP5K6+8AqfTKY4nnFN3+umno7y8HO+++y5OO+20qHPqfD4fvF4vPvzwQ82C6ED8nLqmpiZkZGTA6/VGfBCIVtTRvUmiLiUlReSoyQIpUvg1LS0NaWlpYZ06dfiV5pRoRN1//vOfEHEoO3UyDodD4dTJhBN11K6SkhLxs/44dUZFXaTw67nnnityOWXofOqJOpfLZeihJSUlBVlZWdi/f7/4eSRR19nZqdiaTI8jXtTV1taKVWok6kaMGAEgcsKjGvkJw8hNLt8cchK11gS8bt06PPbYY7ohELqJtcKg27dvx6RJk+BwOBSdWM+p6+joEI4XTeD02ubmZoUF7Pf7xaofLTFq1Knr6elBfX39oDh1PT09imR4n8+HpUuXCidCdjja2tqEqIvWqZMnOq2cun379qGzszOqUD0JnZaWFrz//vsoLy9He3u7uNlpIn/vvfdgMplwzDHHANAXdfSkKOd2APrh14svvhi33HJLyM9pIItU24sIJ+q0nDqv14tJkybhww8/xL59+1BTU6M4l7Ko+8Mf/oAVK1YA0BZ1t956a8iCHFnUyfeD2rEn8aveIoiQB+bU1FSkpKTA5/MpJsdAIIA33ngDgP44oefU0d9Gc+pSUlIU32NE1AG9NeXo3L333nvo6enBvn378N577wHoHY86OjqEwxtO1LlcLhQVFWHevHlwu91oaWnBypUr8dRTT4U9dtmpu+yyy+B0OvHXv/5V8z3xDL9mZGTA4/FEfBBoaGgQD5FtbW348MMPMXLkSN0HUy1Rp9VmI6IuPT0dfr9fMSbJOXVqMRZtvtru3bsxf/58/P73v1e8T3bqZOx2u3jQUTucdXV1YnzREnUWi0XkNRtpYzAYxC9/+Uux8EYmWqdO63WNjY14+eWXNd8nu6H0frrfjTp1Pp9PU9TJD4Ra4Vd26gxSW1srnLmOjg60t7eLUGK01f+jdeqiEXXl5eXw+Xwh1jag3ORZ7dQFg0Hs2LEDkyZNgtPp1HTq1KKus7NTJHnTJECvbWpqEgMZ/Z4GKS1BKT/thnPqmpqaEAgE+p1TZ8SpAxAiCDweD+bPnw9AuS9jNKJOTpiXRV1nZ6emU1dWVhbVhts+n08I6NbWVlxxxRV44IEH0N7eLn5Og0EgEEBxcbG4NpFEndqV1nPqampq8MYbb4QIUbpXjDp1+/btMyzqSGxNnz4dX3zxhTiX8uRJnxEIBLBlyxaxs4FW+PXFF18MKe+j59RRkW1i586dAJTnk76bkqQ7OzuRmpoKk8kkjk/ujz6fT7QnWqdOXjARKTx+6NAhkUZBDzF0bj/99FPNhwktUUdhz/T0dLEYgR6efvvb38Lv9ytq8cmQqCPIyXjhhRdE0VoiEAjgpZdeEudTvpeys7Nx8cUX484778TIkSND+iYVzjb6gKRHU1MT3G43vF6vIVFHYqS9vR0vv/wyKisrdfOLtUSd/B2U0xkpp46cOvo/4ff7YTKZ4HK5dHfC0RJMjz32GG666SbFz+g6k4iIxqnr6elBQUEBCgoK4HQ6FXOS+vsbGhqQmZmp6CNGakr+6le/wumnnx7yOzqfRvdf1RrjHnvsMfFv9Up4WTgDyoeJaMKvJOrk80EPhDabDc3NzSHf7fP52KkzQk1Njaj83tTUhO7uboVT9+c//zmiDU/ES9RpdTRKqJSVvdZ3qUVdZ2cnmpqaMHLkSIWo8/v9YvBRP1nKTh0hO3VUqgGILOqamppgNptFWwBtUUdPd+pQRDSEc+qCwaBw6gDluaebhUSE7NS1t7eLp7JIT5BqoSi7F3qijl4LRBZEXV1dClFHfzo6OsQ1kJ/wJk2aJAaBSKJOjcfjQUdHh2KS9Pv9aGlpwaFDh8RqNiIap87v96O8vBzFxcUhou7w4cPiM2hCOeWUUwAAubm5qK+vF+dSr4RNW1tbSKkgefKUt+Uhurr6ak+pnTe59Ao95GiJuuzsbJFTR22n8KvcH9V5vFpECr8C4d26rq4uVFZWhoSpu7u7sWfPHsyaNUu4hTJyyJXa1tPTA4vFgmOPPVaML7KILy8vV+TUrVu3Tgg2LVHX1NSEqqqqENH09ttv47zzzhOr0GWnzm6344477sC1116LyspKxThIlQviUeRcDr+2tLSEdTYbGxtFmkpbW5twMfXmi/r6elGkF+gVAfJrtR441ahFndwf/H4/UlJS4HQ6xXVUf5bWZ2/cuDGkL1D5IBq7qY/X1dVFdOoA4Morr0RZWRlSU1MV11lL1Hm9XnFO9NooQ/OjVu3JeDh1cu6m2thRh18feeQRLFiwAEDvvR5N+JWME4p8kagjU0ndj+RxJRz9EnXf+c53FAnDQw0KrRQXFwPomxDppO7duxdXX311VJtwE9GIOrPZrFgZp75pgsGgmHy1RJ0sytSijgZbl8ulCL/KK2W1nDq32y1WkgLKnDo5qdWIqCP3jL6bOj2Jurlz5+KOO+4Q74nVrQvn1NE2X3pOXWpqqhgoZaeuo6NDvCfcE+QXX3yhWMkUyamjSRfoPS+1tbUYOXIkHnjgAd3vUDt1HR0dog9ribrJkyfHLOq8Xq/IAQsGg3jkkUcUfY9y9ohonLqNGzeiq6sLc+fOVYi6J598Enl5eeIJ3OVyYcuWLfj73/8u2tTQ0KDYf5iQj0+u96QVfm1padEUdSQ+5L4hO3XyghQtUZeVlSWcOjrvFH6VJw95N4hYw69A3zZDWgn9+/fvRzAYFDXRiO7ubnHfkQiR0XLqgN5it3KuVktLi+hzlZWVigeY3/3ud6Ifq0Wd2+1Gd3c3AoFAiKijWmaUxiEns6empiI/Px/XXnut+E5CPof9DcFS+JVc23AP9I2NjcjMzERqaioaGxvx0UcfhX1PXV0dvF6vmMQpp44w8vDY1taG9PR0hVPX2tqKFStWoKmpCTabTZE7bcSpU+9fu3//fiFsYsmpo2NJSUmB3W4XY1J6enrI99fX18cs6gCEGADUpxoaGjB37lzd2q3hRF1NTY1oj1qgqcOvW7duFb+LxakDese51NRUIepoDtNaDDbgom7t2rVYtGiRrrCjja2TFQplklNHISg6qTThGa3uHKuoI1dET9TV1dWJwTRaUUed0u12K5w62VHRyqmjmjtAbx03efWr2qmjpzmtRRpNTU3C+VQ7dfX19Whra8O2bdsUNchiEXW0d2lWVhZMJlPIZ9C51nPqUlNThVNH19vn693HlW7gcKLu0ksvxapVqxSfGU7UVVRUiAFJ/v3999+v+x2yqGtpaRHpAvESdbKIl/PLqqqq8KMf/Uis/ExLS8P777+v+JxonLoXXngBY8eOxTHHHKMQdeXl5fB6vXj11Vfx7rvvYty4cZgxY4ZwADIzM1FfXy+ujzr8SvljbW1t4njV4ddgMKjr1OmJuo6ODrF4gCZkrZw62amj864VfpXFlFZfp22H5LboOXWXX345cnJyQsKOcskYme7ubnGfkgiR0RN1JSUlSE9PF79vaWkRNcfUoq6pqUk84Gk5dYR6XKU6dvJDFVUIoMmMHijlfia3U66fuXHjxpDjiwSFXym8Fk7UNTc3w+12Iy0tDe+9957oc3rCsqKiQqT6AMr7DYChh0et8OvWrVvxpz/9CVu3bhVOXVdXF7q7uw05dWpRR0LFarWio6NDrPgEQkUdjUfy6lf5WGSnzuPxGHLqIoVf5bFMvcCLvqusrAzvv/++7orprq4umM1mzXGxtrYWY8aMAaAv6tLS0mCxWBRzXqyijnIkSdTRz7XmsEEJvx599NE46aSThGUuU11dLSaHZISeCMmpI1HncrngdDoHRNRde+21oh6anqhTPz1QO8xms6aoo4F25MiRuqKOnDpqFz3ppqWlaTp1drtd3GhTpkxBU1MTGhsb0dHREeLU0U2ol1NHzqecU0dCsLy8HE1NTYo2xCLqaJsVtXgl6FxrOXXhwq8dHR2ak73WccrnXh1+pX/TuZJdPfnal5eXo6enBwcPHtTc25HuJxJzWk5daWkpRo8eLZwwao+ahoYGlJeXi+Oj0LXVahU/kzebpoe36dOnhzh81M9qamrEuV6+fDl+/vOfK17X3d2Nf/7zn1i6dKki54y+KzMzE0uWLMG8efNCajJlZmaiq6tLc9V2Z2en6K9y+FXt1NFkpyXq6P1yjUF6f2dnJw4ePIjc3Fykp6cbduq0wq/79u0Tx6bV1+V+5vf7EQwGNZ26pqYmIczUoah9+/bBbDaLwr1Ed3e3uE8/+uijEKejtbUVJpMJe/fuDRF18ljR0tKC/Px8uFwuXVFH7TYq6ijxne4/qslH5xHozbP0eDwRnbr169dj0aJFhhfuyO+XnbpwY39ra6uYKzZt2iQeKvSE4O7du8XuNQDE64lowq9yX5cXz9hsNjGOtbe3xyTqvv76a2RkZKC0tBQdHR0KkUULJaitNHfKderkY0lNTRXX0+v16ubU6Tl1jz76KK655hrFe+T5kXJn5c8D+lIc9K6f3++Hy+WCz+cLuQdqamrEalw9UZeSkgKHw6F4mCJRZ2SbMCppAvTOwS6XS4g6rdxeYJDCryaTCX/729+waNEinHTSSZrbuPQ3cXUgIaeOnp6oIzgcDrjdbkOizufz4corr0RdXV1EUef3+/HQQw+JJG2jTh0JgGOOOSasUzdmzBhUV1dj69atOOmkk9Dd3a0QdVSCIBgM4uDBg7DZbCgqKlJ0nkAggK6uLoVTR0/klCQuO3U9PT3iuLVEXW1trRCBsqijyWbbtm0hfUR97l599dWIhUAppKTOHSTUTt3atWvFJEI3i1rUUdjM6BO0LMIiOXXyalPafod4+eWXUVhYiGXLlon2bN68WRTItVqtIfuJ0gDR1NSE0aNHY9++fRg/fryuU/fZZ58hMzMT+/btw7HHHgugz6G22Wzi2re2tor+YUTUAb0J+j6fD2vWrFHsYELHXVtbK/LkZFHX2tqq2EVCDQ12dO7CiTo9p04WJTK0sthkMolrJOd3trW14eDBgygsLITD4dAUdV6vV9SiU4df1Xmv6i3E1G2R/y1vXaZ26qZPnw4AIa5UWVkZRo4cqZgsAaWoa2pqEvc00draiuLiYrS1taGyslJcDy2nzuVyobCwEJWVlWhubobX61WIOmq3nqirr6/HY489JkKqdD/SvRAIBMS/5cmsoKBAV9TRdabfR1tEXh1+VY/9wWAQZ599Nj788EO0tLSIUGhDQ4MQvgMp6g4cOACv1xsSfgWgCL8CvecllvDrV199hSlTpggTgN6TnZ0tnDrKByNR53A4YLVaYbVaFcciizotp04dfjWbzYrX/Otf/8Kzzz6rmCPksVJeARsIBMSYG0nUdXX1FRCW7+VgMIja2loh6tSuG7XNZrMpnEn6mcvlQnNzc1jdo3bq0tPTxb3V2dkpHtDVom5QnLpgMAiLxYI1a9bg5JNPxqJFi0KEnZEKyImCRF1OTg4cDoeYlJ1OJ9xutxBQ1DE++OADfPLJJ4rP2L17Nx5//HF8/PHHEUWd2jVQizp6j3oCLi8vh9PpxIwZMzRzoOQq452dndi6dSs2bdqEqqqqEFFHhZErKytRUFAgnhAIapPs1JEVTZOpHEIA+m4yLVFXUVEhkrXl8CuJOq1kV7kz19fX46yzzsKoUaNCVsvJ0LUaPXo0HA4HbrnlFjz44IMhx0WDzS233IJ7771X/M5ut8Nms8FqtSpEhvyeSE/Qcm6TlqjLyMgQnyHvgSgLerPZjHPPPRdAr3N84MABZGVlYeHChQrxSX1V7dQByhpqeqJO7sfz5s0D0OfUpaSkKCYNuh4kAKZPn476+nqFMGppaRFh9oMHD2LDhg0AECIq6JxSeEst6tSvl1EPdurwq55T5/F4xGoyOYwpF/+mEB+JMPXnt7e3i3vGbrcbFnV0fPJEdPjw4bCiTp6IaXEK0DsuqXPqaHxVizpaXawWDrRAisKyctFbOi90f1dWVqKwsBArVqzA2WefrSh4qxZ1TU1NyMvLExMrOZsAQnLqCFpU8fzzzyMYDIrwq7o9ABSTmZwOAmiHX2ksorH2z3/+M6699lpxvI2NjSHbjgUCARw+fBi5ubm6oq6+vh6vvPKKEHU0rgK946TH40FTUxPKy8sVE3tnZycqKirCirr09HSYTCbdh8cvv/wSO3fuxJIlSzRFXXNzswi/AtE5deRgA71O3ZQpU4QJQO/Jzc1FY2MjOjs7hSCh1CW6PvQ3XWe73R5V+FX9mp07d6KhoUFR9YHuPbPZHOJcEzQW6wlsv98v2khGBznznZ2dhp06oHe3mxtvvBFer1fkjIZbsKMXfm1paVGEX9VmS3d39+CVNDGbzVizZg1OOeUULFq0KGRlXLJSU1ODzMxMYVnTRElOHQ0c1ClvueUW/PrXv1Z8Bl305uZmw6JOdoIA7fDrggUL8O9//xtA7wA9evRojB49Omz4NSsrC52dnaJDVVVViScNt9stOmF7e7twHeSnb/puOgdqUUdPRXJNIfk96tBvU1MTmpubUVxcDJvNpnDqcnNzYbfbRXI0AEURaPWxAVBU9lezf/9+WCwW5Ofni3P0yCOPiN/TOZEnlS1btohVsXJ4R26//B69wTYQCKCzs1ORzyaHX2mSow28165di0ceeQSXX365eC0d8xdffIGVK1ciPz8fTqdTsRdubW2tGLRp0KIwrNPp1DwGPVG3fft2jBs3Drt27cKFF14IoLcfpqSkICUlRdOp6+7uRlpamhDp8gNGS0uLEAoHDx7ESy+9BACiBqTseAF9Yi8WUUfoOXXt7e0iGb+trU3018bGRtGfWltbcfXVVyM1NVX0ATr2rq4uPP300wrhS04diTqtnLrMzEzhuoYLv1ZVVQkBbMSpozEmKytLESqS0xY2bdqk+IyysjIUFxeHCAdy6saPHw+HwxFSIqm1tVWUQSGn7uGHH8ZRRx0V1qmTc2cJEml6Th3QKyBqamqwa9cuzfpudOzyZEbfSWiFX2ksamhoQDAYxHXXXYeHHnpIbMf14IMP4qyzzlJ8V2VlJfx+P8aMGYP09HSYzeYQUUARAwpDyqKupKQEHo8HZWVlKC0tFStIgd6xk3bUIORrk5+fD4fDIfqfFs8++yy8Xi9OPfVUxepXWdTJ4VfaZUhGS+TR+aP7ZseOHTjqqKPEwjq1qPP5fOJeJFFHcwv9LTt1dF3lh1pCHX71er2izV1dXWLOoa0ugb75Jjc3VyG6ZAFuJPwqi7opU6bg6aefFu+LlFMni7oZM2bgd7/7HUwmk/hMet/DDz+sWARInyGvfiWnjkSdllMn176MRL/Dr+KDzGY8/fTTQtiF26cvVm688UbMnz8fl1xyScQVMkaorq4W7oRa1FGRWqCvYxw6dChkctQTdfIFCQaD+OijjyI6dbKoe/fdd0WeYn19PXJyclBSUoKampqQwoT0udnZ2aJCOQDh1JlMJqSlpYmbvaOjQ7gO6u1m5Gr4NHCoRV1WVpbiyVnPqaOQaFFRkSJkRbko2dnZClEnF4Em6N8nnHAC3nrrLV1bu7y8HIWFhbBarVi2bBkyMzOxY8cOMeCpw69A7wbhFGLTEkSyIAZC85vUbVRP9OpQAOWEPfPMMzjhhBPwv//7vwCU4df8/Hzcf//9WLZsGRoaGhTntK2tTazSpc+kgcDpdIYMrEB4UTdp0iSUlpaKeyA9PR1Op1MRwpFFHR0DDeRqUUdigAoj078ff/xxWCwW1NXVietBn5+amioSsWllnx7q/Nxw4Ve6Bnqirq2tDS+++CIA4N133wXQO1CTyPzpT3+Khx56SHy+/CAULvwK9N6vckkTrTp1Ho9HM00ACC/qCLPZjKamJkXRcfmzqLiznqgbMWIEsrKyFGMJLSJRizpCnVNHom7Xrl0IBAIhWwXSva0l6sipJfdfvZpaLrJN55EIF35VO3UkvtQpIvv37w8RbNSWkpISmM1mzQLE6h12XC6XYpzMyMjA559/ju7ubqxdu1YssqFzoSXqrFYrrrjiCpxyyilhRd2LL76ICy64QDx8WK3WkJw62WU34tTJ7lZ7ezv27NkDn8+nGX7Nzc0V9URJkKidOi1RRz+32+0h+aKtra0Kp07Ou9u7d69IO5BFHd17alEnX08Ku+s5dXIJo5aWFmzfvh2vv/66eF9BQQFSUlIMiTo6F0Bf/6a5Y8OGDXj11VdDPkPLqZMdTQAhYwaAwQm/Kj7s/4Td4sWLcfLJJyuW+/aXzz77DFVVVXj33XcxefJkURyxP1RXV4s8IlnUUfiVoJNdVVVlSNTZ7XZs2rRJVK3/+OOPMWfOHGH9azl1ckkTerqU84LS0tIwZ84cAAhZedjW1gaTyQSv1xvi1FHeB20gDCgnKPVCCS2nrqioCCaTSQx6lNNhsVgU76mtrcWuXbtgMpmwZcsW4ZgVFRUp3A1yZLKyskT4dfLkycIBkjszvedb3/oWDh8+rJm3CfQO0iQKn3vuOWzYsAE9PT2iD6rDrwBEqJquGRDeqevq6sILL7yAMWPGIBAIIBgMYvXq1SG7MdD3qUUdDVjt7e1CHNAxyuedXtvY2Ii6ujpFsWd1+FXus/Re+RisVqvmKi8SdQAUgwu5BbJAUou6/Px8WK3WEFHn8Xhgt9vR2tqKlpYW2Gw2tLS0iG3krr76avFZsqij8xUpp44GO0Jdp47eS8dKoo5ESkNDg3hPMBgUuaJ//OMfAUDh1HV2diqOj/LEwoVfqX319fWaOXW0OAjodS2MiDq/36+5P2Z2drZw6uih68CBA/j5z3+O2tpaHD58OKxTR6JOzgOlMBSdr0OHDin6Unp6ulhRKYs66t+TJ09WfJeWqJMXXwF9c8i//vUvABBun7oOm9qpO3ToEHp6enD99deLEjEU+gSU4Vea2LOzs8XPq6qq0N7erpjD6D6mPDGtAsRqUUcPQkBf+JUEyPr16+F0OnHnnXdi9+7dcDgcinxkWv2alpaGVatWYenSpWFF3f79+3HUUUcpzqUcfm1rawtZKOH3+8U4DSj71v79+xW1Qtvb24U7PW3aNM3wKzFt2jRMnDhR5OPS2EP9nqIu9P+0tLSQY6Nzqxd+pXIkmZmZUTl1ciTDiFNHEblPP/1UvC8nJ0dzJauWqJNrutJnynUb1SYMiTq32w2r1SqcOtlUcjgcmmbLgDt1r776qrh44gP/T9ideuqpuOCCC/rz8Qo++OADnHrqqQCA008/PUTYED6fD83NzYo/etTU1IiOKufUUfiVaGhoEAnARkSd1+vFv//9b1x88cUA+hY6qBde6Dl19LSgFnVjxoxBfn5+SH2ptrY2MalriToaVOXwK+XLqMOv9F4SdWQpezwe7N27VxTPTEtLU2yVkpeXh2AwKMKFn376KSoqKkRIVO3UpaenIzs7G4cOHQLQ+6RO79Vy6hYvXozU1NSQnQAIWdQBvRNMamqqCLE+8MAD4hzKUD/ScupkV8lsNsPv92Pbtm2oq6vD4cOHUV9fj1tuuQX/+Mc/FJ9pNpsVg63s1Pn9frS3tyvqOsnhV/oZuQT19fWKFYwUfpX39aTrpX5aBnrddLUIaW1txf79+4Wos9lsYmB1Op2ivpTJZApx6rKysmCxWFBUVKQQPXJ5BwoJFRQUoLm5WbTrhRdeEAJFDr8CfaIunFNntVoV4w21q729HS0tLQrRQ7/3+XwKp06eBGiCJseOnLquri74fD7F8VH4TE/UyUJYFnX0eR0dHQqnUW+VNhDq1O3fvx8mk0mxP2ZOTo4QdfTz9evX4+677xalZ8Ll1I0YMQKZmZkKUUfnk85jIBBQiGw6vrq6OrF6kATgcccdh0WLFim+S0vU0fhBoo54++23MXPmTCF61HXC1E5dd3c3Kisr8fvf/17cf/n5+ULAyU4d/WzChAmi/1VVVSkWeQG9oi4/P19cO6/XqyihQzmuQF/fkZ06Cr/SZ9K1/fjjj7Fnzx6MHTtWEd2iayOPOTabTTPNg+YHOQWB9n+Vx2/ZZW9ra1OsmJfb9utf/xolJSW4/vrrxXvb29uxceNGHHXUUSLPXBZ1sngpLS3F9u3bMXLkSFxzzTWiAC+NPer7m8YVPVE3adIk/OxnP8PcuXPF8X/zzTdIT0/HggULohJ1BQUFmjvJyMgLJUjYfvPNNyJlIDs7W7OQsFFRR+9rb28PEZaU7mMymZCZmSnmUuqzFCXTCr8OuFN3xhlnaCpHs9mMp556Ct/61rf68/EKGhsbxQnLyMjQ3BsNAFavXo2MjAzxR53UL6MOv9LJ1xJ1dMKNiDq10KUnARIwaqeOEqxlx0v+LprsTCYT5s6dKEg7/QAAOrVJREFUGyLqyOGw2+2KUA/l1NGx0OBRU1OD5uZmEX7VcupooURGRoYIRezfv18Uz0xPTxfOREdHh9hjlJ64c3JysH//fhQWFsJisWg6dWRbp6WlYeTIkcjNzYXFYglJUAd6BdH8+fPDijoKBQC9g9vRRx+NTz/9FG+99RaeffZZPPbYY4oQ0fjx48WSeC2njnA4HGKwpWt54MAB0Ta6roTb7VasulOHXykHjr6TBmwSUgCE63rw4EFFyEbt1BF6Th0dm9xv6QmYRB0A3HHHHVi6dKkYfOkaazl1QG/YRe3UuVwu8R4SWVSehTh48CCsVquY0KIRdXReCGoXDcqy6AGUgzygzEEDeq/hiBEjxCRCTh3VJ5RfSwKlsLBQM6dOvXpaq04dPZkDfU5dW1sb1qxZo7mHJ9ArwioqKlBQUKAQWJTfJDt1lPhPuwNoiTpapa/l1MmLWEiIqcOvQF9/d7lc4oHj1ltvVTxMWCwWTVEHAI8//jh+8pOfiP/TNT/zzDPFv+WcTkA5mdH1pNXY+/btQ2pqKrxer2ZOnSzqZKcOgGbImvB4PHjssceQmZmJr776CiNGjBDjjyzqZKeOxv6RI0di1apVyM3NRUpKCg4ePCgEMEHXRj7Hek4dzRlyCF5L1MkLJehc0D1D408gEMAdd9yBQCCAjz/+WLyXRN1JJ50EAJo5dYQ87z/00ENCpNO8Qe5gOFEnb5tms9lw1113KcKvO3fuxIQJEzBp0iRFPbrOzk6YTCZRQohoaGiAyWRStDOcU0cPEHKB4jfeeAPp6emw2+2GRV248CvtJiRv+UVOHQDMmjULU6ZMQVZWluiTNJYkxKkL+8H/59ip68jEitfrFSeKKnlrcfPNN6OpqUn8ke1lNerwK9B7sSwWi2Igam9vF6FEtaiTc0xoYFZPuGpRJzt1FosFmZmZ6O7uFu8jESCvwqMbf968efjkk08UBSApF4kGPnlg03Lq5AlK/UQgO3Vjx47FuHHjAPSe/0AgIAaIP/7xj2Jgpv1y8/LyhCtJDgOJanLqenp6RHvpZqDPpBCxllPndDqxePFivPPOOyEVzQOBAA4cOKBw6oDeGopff/21GICXLl0qbgqz2YyRI0cKYaLl1BG0Mrarq0tcw4qKCnHe1LsouN1uRS6cHH6lnDyHwwGz2YyUlBSRU6fewB7odXdlsaLOqSP0cuqo/fI5o5C3XJj2uuuuw7HHHity6gAIwa8l6oqKikI2oyZRV19fj66uLjH57t+/X4jpQ4cOKSYxWdRFyqmTvz87OzukILda1NH9RIO3WtR1d3crHKPU1FSR2K2uXUXnrKCgQDOnTr0jiVb4VRbyJOo+//xzLF++XOT1AdpOXVFRkZgITCYTcnJyRDhZLeo2b94Mm80m8oJkqK+GE3XyA5s6/Ar0CSKXy4WjjjoKu3btwllnnaXod2PGjBGuh/qaXnjhhYpyO7Tnsizq6FxqOXU0btA1oZxSCr+2t7crCpyTqBs/frzoz0ZEnRy2pPwuqgtIYyxFLTIzM5GRkSHOW2FhIW699VacccYZqKurQ01NTcjWi1pOnZ6oo+ukFnWU6kDI4Ve1qKO9Rmm7u9LSUkU/3r59O8rKyhSiTp1TR+g5RmpDRB1+lcch2anTOv7KykqMGjUKWVlZaGpqQllZGUpKSnDgwAFN0dXQ0CByVQm69k8//bTYGYqKexcWFsJkMomHA7PZjFdffVX0r/44dbKoCwaDitxFWdS98soruOaaa5CZmSnGHBpLErJQIhImkwmzZ8+Oy2fNmTNHPIG+/vrrmDt3rubrUlNT4Xa7FX+0CAaDClGndjnofRS6Ifs3klOXkpKicGmoJhygFHXyqkvq1PQ6vfArACxatAidnZ146623xHfQ7+kGoo586NAhhaijY5NFHU3cmzdvht/vVzh111xzjRDl1Eb6e8GCBSInqaOjAzabTZHvQUv4SWiRu0GDqCzq5FwptaiTc80WL16M9vb2kAeFQ4cOobu7O8SVzcjIENtpUQ0luplGjhwJj8cjwjHhRB3lmek5deoCp263W3yu2+1WOHVA72BL30NPw7SLB0HnJBAIIDc3V/RHuWK8uo16bqPaqaNcKbWjTO+VHQRy6uiz6Rjy8vLEMfr9frGvblpamhC0JKYqKiqEi3rw4EHFJB+tU0ffX1hYqBB1JpNJ4dQCfU4AhYXVog5Q5oGRU6dO2TCbzdi1axdsNptYJKQl6ui89/T0aIZfZeFNoo4eKuTPUzt19HAku5uZmZlC1GVmZsLtdot8087OThQVFcFisUQUdXLEQxZ1dJ9rhV9lpw7oS/6n47dYLBgzZgy6urpE6oIWXq8XFosF3/rWt1BaWopjjz02xKnTEnUkbORySGlpafB4PGhsbBT9j1IYZKcO6HX4qHyHPHGqRZ1sCMjFwmVcLhfOP/98/OIXvxDfCUC4cllZWaitrTUs6vTCr3qiTsupo3GOjvuUU07B97//fTFu0EPuiSeeqPgOmlPo55RTR4JCXt2sJy7sdrtizjUafpXbT1s6tre3C7Oio6MDu3fvRllZGXbs2CEWM8r3KpVHkcfRxsZG9PT04P7778df//pXAH1VDBwOB7KysoSoO/vssxX3rlZOnezqUwRHPl6q10fnnuYI+T6TRR0hm1SyqPv666/R3d09eOHXwWT69OnIy8vD/PnzsW3btrjk63344Yfic+RJFugTdfT0b1TUqbd+kSvg09Mh1cuiyYAGAhos5Sr29H8aXI866igcddRRePrpp8V30O+p7dSh1E6dWtRR+LW+vh4LFy7E+vXrFU6dyWQST6tqUQdAhJJI1E2dOlX8rrOzM8Sp6+joUEwcaqeO2qjl1DkcDhx99NHIyckJCcHSIKUWdVqCiW6mFStWhOQxyOeIjo1+R06dLOroOoUTdXl5eeIY6DibmpoUicWUUycPRvI5ycrKEv+XxYNMJKdO7reUU6WFLOpkp46Sx2nwyc3NFcco10JMT08PEXWNjY1C3Os5dRTuDLdQgs6L2WzGiBEj0NzcjD/96U/YvXu3KAEjQxMh5ayQqJNFhuzUUU6dPJA7HA6kpaVh9+7dKCgogNlsjijqAGiGX+WtlEjUkcso78oiu7BaTl1KSgq8Xq9YLJCeno6cnByFC0LiRJ48LBaLmEjdbrdw6pYtW4bVq1crckhpTIoUfpWRx066F/UeqoHea5mXl4errroK33zzDcxmsyGnjsLYsqhzOp3Izc3F4cOHRf+bNGmScOqsVqs4J3JlBrk2aGVlpULUrVmzBldffTUAKGroycfkcrkwf/583HDDDQD6Um/IDMjOzkZdXZ3CQCCiCb9SX5Ynf/VCCaBv8YXT6RTzwOzZs/HXv/5VfDaNl5QHR/fD3r17kZaWptj6Sy+nzqhTF0nUpaamKsYrar/f71fkisu7wFRXVwtR19LSIha7aIm6np4etLa24tChQ4qdSuhcjxgxAnv37oXL5cLvf/97cR4AfafObDbDYrHA4XAgOztbkSdpMpmQnZ0t7mF58aP8GUZEXU1NDaZPn44XX3wxOcKvA8E999yDd999F2vWrAk5KdFiMpkwY8YMERY67bTTMG3aNJx//vkAYhd1KSkpWLdundgNgOpbAcrcq7/+9a948803FaJOvT2YlqgzmUxYvnw5XnrpJTH5yDl1gFLUyTl11Nl37dqFjIwMxR6CQO+EIjt1MkZEnezUUS6BPEDIeUrhnDp1Tl1qaiosFgvMZjNmzpwZsiUdnV91/Tx60pRFnclkEiUrMjIyQmxtmpjlCYueyDo7O8WEUVFRISYEudaXxWKB0+kUr5Nz+Og4afcC+mwtp04+z5mZmeL/cskC9bHqOXUul0uRMHz48OGQ8hPyd1F/kZ06j8eD+++/XzwEUZJyR0dHiKijhxd54YLs1GmJuqamJgSDQUNOHeV8bdy4EStWrMCjjz6KoqIihRAH+p6OZVHX0tKimFzHjRsnJhItp45KAXV2dorjoWtGaIk6Oq5I4Ve5+DHQG5q86aabFO8lx5vaSe4+nWcSdUBfmSkS4RaLRfzM6XSKYyOXorW1Fa+++ir+8Y9/aIZfjTh1hCxY77rrLvzlL3/BH/7wB+jh9XrFPUvCQi3qtHLqKJ9KLofkdDqRn5+PQ4cOifMyadIk4dR5PB7xICMXHaZ7mBxTOYR/zDHH4KqrrgKgFHXk7lqt1pBJVg6/AhDCubGxMcSpkwUYES6njnKbCbo/ZeEhu390z8sPA11dXaioqIDdbsesWbMA9I1RFRUVIUXM5fArbTUJ6IuLcePGKXJ16XV6q189Ho/m4hGt3GN5EQyFX2UXSy3qqE/Rwjb14jKbzYa8vDz09PQgMzMTxcXFWLdunagPS6KOVpLv27dPIcjGjRuHo48+OuQc5OTkKOqIArE5dWVlZfD7/di3b9/wdOoGmu9///v4/PPPRW0qtagji9aIqDv77LPxve99D4BS1MlPVD/5yU/w9ttvK8Kvajo7O0WVa3lwPfvss9HZ2Sl2JVDn1MlbSB08eFAMvrTiZs+ePWLQkSdRqukEhLo94UQd0HuDLFq0CHPmzIHVag1xn8hCjyTq0tLS8MILL2DcuHH44osvNMOSNDG9++67uPLKK3HgwAERkpKhQUn9GbQQQA4/qgWRPGHZ7XakpKSgsrISPT098Hq9CqdOhvKy6DzSRCIPTvL5JddHnVMnnxMjTp3sAql/X1xcrCi7Es6p+93vfieKNstOXVpaGlauXCnuBxJGNTU1ClGXlpYmJlW5fAM5dTU1NZrhVxpwI4m6kpISFBcXIy0tTfSDurq6iKLO7XYLp04WtFlZWeL/eqKO7j0SdXTNzjjjDKxduzYkp45eQ8cnT1CymyVfJ3IPysrKhMBIT09HZWUlfD5fiFOndmzoekybNg1An1NnMpnE+xwOh2J3Crly/WeffSbEWjQ5dTKyqMvJycEPfvADLF26FHpMnDhRLLAi1As0tJw6oPe6yX06LS0N+fn5aGpqEqv0x40bJ5w6j8cjXBUtUUefpV4dT/fd3r17MXbsWPzwhz8UCwBp8ZqMOvyanZ0tnCQjTl248Cu51PIx6zl18nZl8kMLOXUjR47EmDFjRH6m1WrFwYMHFeFddfg1JSVFjJl6ou7uu+/G3/72N/F/eVxVizqqV6p1TqhKgByBonnt8OHDwqkD+voIiTr6Thp/du7ciZ6enhCnzmaziXGQjvvss8/GySefDKBP1D3//PMoLy/Hhg0bFILsxhtvxGuvvRZyDrKzs0UKFT38yaJOLnZPyOed9iGncYC2XQSGoVM3mFCHoUmMLGufz6eobaQl6gDlU63WTUdJkTabLaT+FkHlSSjEQpAYouRLdU5dQ0ODeCokaxnoW4jQ0dEhnuTlz62rq0NHRwfMZnPIBGlE1BUXF+ODDz5AXl6eKCchO1Jqp446sjr8evDgQezevRsnn3wyamtrFRMLTc67du3COeecg8cffxxbtmxBQUFByABLjoo6tEnIok7t1JGop03nbTabuMlmz54dVtTRdcjLyxPXNj09XfF0pj4v6jZSHh/Q//BrSUmJYVE3YsQIMSHJTp3aHaQJqrq6OsSpU5fGAPq24gsGg5pOnVFRd/3112Pz5s0h7dESdXrhV6/XK743MzNTIerU4Ve5aLcs6pqamrB+/XosW7YMHR0doo9QuoLWNmFa4VeCCltXV1eLlXIU9qXjk3Pq5HtGdupOOukkmEwmscCJjgvo7Re0tZhaGPb09ODtt9+GxWJRfL58nqm9sviTobxVrVxNLR599FHFri/yZ6pz6tTORnZ2tsiLo7bRJP7BBx+gqKhI1PKrq6uDx+OB1WpFVlaWon6qLOqsVmvIClVZ1OXn5+PPf/6zqKepFiRAaPhVnqz7u1BC/dAaTtSFc+pI1NntdhQWForFBYFAIMSpo4Vt9H4az4w4RoByXKUHHJo/1Q/bcvu7urpE+FVtVjQ0NIQVdfSZdC0pykbCSl7soBZ1MpRTR/2FdgSKFCUkpy4QCAgxFotTJ+fGD9vw62BCk7q8gky2hgk9UUeDIeV90M/VIcJ9+/bBbrdrJup3dnaGFGsF+gaOcOHX4447TrxeHUoE+sIz8lMhOXWUTyejJerk/EH53w6HQ3RIOh6jTh29nvIS9uzZozgnGRkZaG5uxlNPPSVE7aZNm0JqlMnH2tjYqCmEwok6OmdUZkQWdbNmzUJlZaViMKXzRU4d0GvPy3WbtEQdnRf1AEfFpAGlqJNLFsir88ItlBgzZgwqKioUVfX1RJ2M2qmTCSfqiJycHOEseDwecb7DOXWRcupsNptYcQj0nXc5PElohV9pMQa1QS3qUlJSFCvVZFFH967dbldsiffCCy8IF1y+rnR8cvhVT9RRQV85Ly49PV2I8ZEjR4bk1MltJMFwzDHH4KOPPsJ5550nfi+LukAgAKfTKUKY9PvMzEysX79euE9a4Vez2Qyn0ykW2qhFNH2HUVFnMplCxhmtnDpy1mXUk7As6t577z2UlJSI1ebl5eXieCgXk66lLOpocYmMy+WCxWKBz+cT55yOT0vUzZgxA6tWrRKF4uVyF/0VdepjlmtCan1mOFFHOY+lpaXIysoSbZC/g/oq3Q+yqDMiLuTXUfgVgBDjdE/IqMOvarOCoPAroC/q6BrLUTYqyAwonTqtahrk1H322WcAIPIL1eOMmpycHNTU1CiiepFEnTwHql1/2anj8Gs/mDx5Mr73ve9hxowZuP3223HBBRco9uoE+pIwKWRDRUiBvsGJNkGnp7v8/HzFhE0dXEs0UZkHACHuhvyd27ZtU5QI6O7uRn5+vkgClxNX5ZpKAHDsscciJycHEyZMEE6dVscx4tQRdrtddGLZPWpvbxc/d7lcYgCROzS9nlZgHTp0SCF26Omprq4OEyZMgMlkEvXw1Mh1wyI5dXrhV7k0RXl5OcxmM2bMmIHu7m6F+0UDtlrUqZf0q49TDr+q2+jxeEQxUdmpo75A549yDsM5dcFgEPv37xdukBFRF86po8mqurpaDPoej0fxOpfLJfoebXZNn0vQuaJ+Ecmpk9sGACeffDJGjx6NWbNmhYiMmpoamM1mITQop45EHZ1bEgNaTp0sIOWcOrnuVEtLS8hDgdxvAoEAmpubFROUVvhVvQ9rWlqa+FlmZmZYp45Edn5+fsi5kEWd/Df1n/Hjx2PhwoVob28X4klL1NF3VVVVaQoa+myjok4LrTp1WgKC2k73fVpamrg+hw4dQklJiZioy8rKQsKiV1xxBQClqFOHXgHlwxV9HvVjrb6akpKCW2+9VbRZFnVGF0rID9p+vx/XXXcdvvnmmxBRR/uFtrW1iYcnuRwR3VPq8GtFRYU4D3/84x+xevVq0RfVTh0ARRg3WqdOHX4F+kwRrTFPK6dOHX6lttF1uOOOO3DnnXdGFHVAb04vrQBPSUkRD3RaTh2JOnlVuRGnjsKv8oK/SAslZIdbS9SxUxcHnE4nnnjiCXg8Htxyyy144YUXsGTJEgC9F/eNN95AXl4e6urqUFBQgGAwiIaGhpAblRJsKRzicrng8XhEbSaCbhb5ptJz6gCISeqjjz5CR0cHTj75ZMWNJifChnPqCgoKUF1djZkzZ6Kurk44dWpiFXU0WIwdOxa7du3Chx9+iKKiIuFUXHfddVi8eLF4Lw0gdH4OHjyoGX6tr69HXl6eyNXSEnV0HEZEnV74ld5ns9nQ09OD3NxcIYgoJA/0Ddh6oo5EBKG1UEL91Or1epGVlaWYWOTwK00Y6slay6kDekNIDQ0N8Pv9/XbqyC06fPgwGhsbYTKZFE6dyWRShEg8Ho+mqKPzYzT8StBnTJs2Dfv27RO5nDLV1dVwu90if1Lt1GVmZsJkMomBnR6W5LCeXviV+OlPf6pov5ZTB/S6ox6PBw6HQxRnDSfqqGB3T08PMjIyFOVJ1PmjcvhVy7FWO0L0NxUSnzRpEn7zm98A6Lv/tHLq6Ls6Ozt1hVu8RJ3s1GkJCOr7VFaJ6tTR+S4pKRETtezU/fGPf8SXX36JO++8E3a7XYyveqIOCB37wjl1aug6yXtpE3olTbq6utDa2op//vOf2LlzJx588EF88MEHmk4dLcii60+f6Xa7RZ+UnTpa5UuibtKkSRg/frymUyfXu6PtBmN16rREnZZTR2MkPShqhV8BKMaWl156Cf/4xz/Q2NioEHUejwcjR47Ep59+Kt538803i1W/kZy6E088ERkZGWI8MCrqKPwqi7pITp3cBj2nzmaz6ZYHkmFRFwXytk67du1CTU2N2EMV6C0yq3bqysvLkZqaqtj+ZvHixfj2t7+N7373uyKRWEs0hRN15Fht2LABXq8XRx99dIioo6Rp2VWgm4hEHZGZmYn6+vq4O3X0fXPnzoXP58OTTz4pQhMA8MADDyhWzZIIJqdOLepoxerhw4fh9XqFAxou/FpXVxdR1KkHWC2nDugVajSwyUWHydFJTU0V4YBw4ddIJU2A3kFJnXcoh1/T09MVIk9rmzCgt9SLxWJBWVmZCBsader0RB3QV9aksbFR7DwiT8pms1nTqevPQgm5bYCyH2s5dXSNZVFH4pMGUbVTR5DzqBV+JVasWAEAYl9napda1MkTDrVJHX6VRR2FgoG+wV4v/Jqeno6ZM2fi2GOP1RQmFL6ktlD/sFgsyMvLw9FHH40JEybgueeeE+JOK6dO/v/MmTNDvgfoXXB21llnaf7OCFqrX8M5daNGjYLD4RAhZbqWY8aMwcSJE+F0OtHd3S3u2ZKSEjHeyOWT9u7dG1K8mqDzH4uos9lsyMjIQG5ubkgIOVxJk4suugjnn3++QsiohQc58EDfQyWNw/KKd9mpq6qqEpEcmXBOXVNTk2hrPMKv4UQdvYbarrVQAlCGXwFgx44dCAaDioUS6enpWLhwIXw+nzjHGzduFO/RWighM2nSJHz11Vd45JFHFOVdjIg62o4P6NsBq7q6GjfddBP8fr/mZ8iRF7lPtLa2oq6uzvA5D02KYHSRRZ2cd6Ml6uiilJeXIysrS+FS0N6My5cvF59BN4ta1Mk5aDI0SX344YdYuHChCDMRDodDrOKRczn0RB0tvddz6qZOnYqVK1cK9w8IL+poxS991jHHHAOn04mmpiaFqFNDgogEaVdXV0j4FejbaSE/Px9vvvlmv5w6yocCQkWd7NQBvc4AXSu5Pl1aWhpcLhdSU1NF0dJx48aJf6vDr7JTR2FvdRvlpG0tp44mM/n/8mcTNpsNo0aNwt69e4UINurUtbW1we/3hxV1drtdsSBE/lt26uh8q1f7AX27bkTKqZPbBoQXdQ0NDSJ3iO6XlJQU4dTR608++WQsX74cLpdLcY1OP/10zJw5U4Rf5PArALEH7i9+8QshpujcyyVNCI/HoyjOGs6pS0lJEedGFvT02eT2BYNB2O12TJw4UeFIyNBn0fHK37tp0yZx71AZJqBvclcLF1rgtXDhQs3vuv322zV/bhSthRJafYImwMzMTJSWlgq3NT8/H/v27UNJSQlSUlIwf/58vP7665qL0UjUNTU1oaGhIaJTR+dEKzc0HHJOrEy4kiZvv/02ACh2plELD3ks1nLq5M8EevsNrcpUC8RI4Vf6jIyMDM0cRz0ihV/V45Ba1IVz6uTzTyFreeeptLQ0nHTSSXj66acxefJkfPLJJ4odVOTFQlqiDuid26+66ir84he/iCr8CvSVySksLER9fT3efvtt3HPPPYrjlKHt0ih3lY6zo6NDbIVnBBZ1UWBE1FE4kMInlZWVOOqoozRDTzLRhl/Jqfvss89w6623AlA+PZFTd+DAAYWLRTeDuhNHcupSU1Nx//33K36mJ+ocDkeIU2ez2TB79mxs2rRJsYhDzZtvvonPPvsMVqtVHKPaqQMg9qGlc6/l1BnNqZPPmzr8SueCEqgnTpwoBmjZqUtLSxPOGRWULS0txfvvvw8gslOnJep+97vfiQHwuOOOw1lnnYXc3FzRF0jUqcOvWsdaUlKC7du3Y/r06QCic+rUT44EiTq32x2SgyWLOhrQte4BcpCoDpfRXB0jTh0AhVPn8/lQVVWF3NxclJSUiLDKuHHj8NRTTwFQDraPP/44nE4nrrnmGiHagb4+QaHxX/3qV+I9euFXoHfC+fa3vy2uQSRRR21RizqaVL1eL3w+X8QJllbm0vmR+weJfDUnnHCCmAxlqEYkhbDiDfUbamNLS4tmaIwmzszMTGzYsEG8jxwoct0WLVoUUdTR/areZpBQO3VU4siIU0dt1ToGvfCrXFNS7hPqMVt+6FM7dbKok506EuVqkRlpoQS1NTs727CYBWIPv0YSdXa7XaQwyGFOeZeg9PR0EfGhhx65coXNZkN+fj7uvfdekVqlR7ROHdC3feHIkSNRUVGhuJZaAi0zM1PhbAK9mw188sknYkGlETj8GgVGRJ0sbtLS0tDT04OsrCzNDbJlog2/ZmRkiB0jSNBYLBbx/dRW2t+OcDqdKC4u1lxN5vP5dEOVWoRz6tSrX4HefWttNpuY1LSYPn26WJCilddDg1V3dze8Xq9YDKJ2HoG+Qcnv94cVdfLNopdTJ1epp0G9o6NDcV1JuK1cuVLswSiHAiKVNFEPcB6PRwzWY8aMwcsvv6wIvzqdTkV4UC/8CgDnnHMO/v3vf+Pf//63Ih8lHOnp6ejp6UFHR0fE8KueUycLPr0E89TUVNTV1WnW/dJj5syZOPfccxWlOyKJOqC330ybNg1/+tOf8Oijj4a8Xh5s6d+jRo3ClClTRNvoPMtJ8EQ4UefxeHDaaafhmmuuUbwWgNiTkx4ewok6uRyLkQk2nFOnh8ViwSWXXKJ7PeTzHk/oeCi/sa2tLWz41ev1Ijs7W5zvgoICuN1uIaIWLVoEAJp5fmlpaWhvbxclWrQeDOk75L/p84yKumXLlmnugORyuXDdddcpXM+0tDR8+eWX4v8kBH75y1+K+niEXGsznKhTV29QHwug7dTJOXX03iuuuAIvv/xyxGMmwoVftfKIjYZf6WfqayDn1KWlpaG4uBiTJk3CpEmTQo6ZHo5uuOEGXaeOoIfvaJw6itIUFxfj8OHDIQ9tarREHe3SFI1Tx6IuCmRRJ6+QI1End36gb4DKzs427NRFk1NH5VK0NlrWU/Vz587VzHmhm7mystLwE0E4UUdPRLLAuP766/HWW28ZFo1aok4enL1eL0455RT897//Ddn3U/3dWt9J4kzLqVOHXynXb+LEiYqSDzQRyOHX//mf/xEDlzzA6Dl1WiVNwqEXfj3zzDNx3333aV6/H/zgB8jOzsZTTz2Fq666ypB4ks+1nqijhRLhwq/Up/XuAVnUGWX06NH45z//qThWs9msKC0jH4N8LNOmTYPFYgkpXwH0DbZWq1X8/sYbb8SmTZvEa8KJOr2cOkB/IgX6nLqxY8eKdtA9pZVTR58Xi6gz2s+0ePbZZ/Hggw8aFt/RUlpainvvvVc8AALaY5kcfpW56KKLcPvtt4v2TZ8+HbfddptiMRZBLg/lmertsqIOvwLADTfcECKy9Ljhhhtw5ZVXhvzcbDbjgQceUIxdN910Ey644AIxrlC49Oabb9YUnbR7gzr8Kosd2alTHxMRzqmTw69erxcnnHBC5IP+P8KFX7XyiMOFX+VVwbKoGz9+vKJ9ch6zyWTCJ598gptuuilEuEUqTSJDTp1ePpwMjQvk1I0dOxb19fWKvYS1PqOwsDAkl7WkpAQOhwNlZWXG52VDr2IAhHfqTCYTgsGg4mLJpSfoJtMbhNXhV8oBam5uFiUrZDIyMsTqSzmUZrfbdVeMAX2r9dRQh6+srAxJotUjnKgj5IkrMzMzZBPpcNA50cqpA/pW7+k5f5FEHdB7HuX2jho1Cna7XTh/9DsS1xSiIZu/oKAA33zzDdLS0jBixIiQpymjTl00ok4Ov8pPsgUFBbj++us13+N0OvHwww/jgw8+wN13323oe+bNmxfynTIFBQVi+x2aXNTh18suu0yE6rRy6oBe4aOXtxctVqsVfr8fbrc7ZKEE0PvUHG51Jl0/uU9QUV1CXRJERqukCaEOAcrhfxJ1EyZMwM6dO2Gz2SI6dV6vV7OmmZpYnDo9vvOd78T8XiOYzWaxj2o4p66oqAjz5s3Dscceq/j5CSecoBAdFosFd955p+Z3kag7dOiQyHfUQh1+BYCf//zn0R2YQUaNGoUXXngB+/btw5gxY1BdXQ2TyaTbtrvvvhsXXnihyB014tRZrdaQey1STp3erkeRiEf4lVbeUugY6Lu/XC4XRo8ejWAwKLa/lMtIyX+rHwAiiTOZaJw6Kv0iizpAuT2d1mdcd9114v6iNufk5KCoqAjffPMNO3UDgVrU0f+9Xq/Ib9By6tQLJbRQW/yk9uvr6zXfI9+0Wk5dtE/j8XbqiP64ApGcOq08FRn5feFEnXyzFBcXo6WlBaWlpZrvI3FN14kEcFpaGv70pz/hgQceULxeq6SJvBKRyiqoF4QYOS6Hw4GCggLdsJGaCy64APfcc4+mQ6WF1+sVyeNafTA/Px89PT3YuXOnrlO3cOFCsWVeuPAroF2WJlqoT9J3qUWd1l6NMmrhpEWs4Vf1xHjCCSfgjTfewMSJE8Xq1zFjxsBqtYZdKEF/FxQUaLZB65hSUlLi4tQNJvJet2ocDgfefffdfoWBnc7efaYPHToU9kFWK/w60ND9Vl1dLVb2anHiiSeiqqoqpI+EE3VUykfr+/RWvxoVFGpGjRqFESNGoLi4OObwK5VHkqH///KXv8SNN96I0aNHi9I/dK+rr1dWVpbCAInGqYtG1AG9czLVMSVRJ9fL0/ru9PR0kQsql62iMZgXSgwANFD7fD40NzfjzDPPREdHB8aMGYOSkhJUVFRoOnXZ2dkRc+rU4dfs7Gzs2bMHtbW1mu6eLG7k1a2Rwq96aNnukQi3UALovUGNCggttEo/UK5NV1dXxEHWiLj0eDyK5FkAYlKVP+Obb75RhNzl60ULCbQmWK2SJg6HQ5GfpV5UEgk5p+6vf/2rodpFsbJ48WL85S9/0fwdiUnamBsIFXUy4cKvADBhwoR+t7e/ok7LqVMTi6izWq0h19dsNmPx4sViv8+6ujpkZ2fD6/Uayqm76667onLqtFZbJjMlJSWorq6OWVBEwul0oqqqKqKoO/3003HbbbeF7AgxkNA9UlNTY8jBVq/SDxd+1Ro3nU4nXC6XYhw3m81iH+toXC2ZgoICEd7eu3cvAIitwoyGX4G+h1+LxYJAICDeRzunFBcXiy31jjnmGGzYsEHkWxPFxcXw+/148803AcQWfu3q6jJUh7GgoAA7d+6E1WoV0R25/qUc6dOCSuCMHj1aCD0Ovw4Aaqdu0qRJWLVqFYDeAWjz5s0xO3Wnnnoq7rvvPqHqSWTV1dWFdeqysrIU4ipWUZeRkSEmF6PvlQWbllPX38lDK/xKba2pqYko6ihsoVemhT5L3s6FkAUYELpKUF7tedddd+G0007T/Hw5FGCxWDRLz2jlH4ZDduqiyUOLhTvuuAMHDx4MCXMBUEyEeqtfZfScOjrXeisxo0EdfpKf2ufPn48zzzwz7PvVYl4LefWrGjp+dUkTj8ej67akpPTuIkD9VE/UqZ0royIjnjl1g8l5552HDz/8UFFnM57IOXUUvtQiLy9PN4Q7UNCDX3V1taEFGfKDNNDX/61Wq+h34UTdGWecodk/HQ6HYqek/iA7dX6/X2xZJyOHX0lUyseXk5ODqqqqkPtzxYoVooSXyWTCSSedFPL9v/vd7+D3+1FQUID29vYBC78CyvJH9ODv8/nwgx/8AI8++qiiNqsWRUVF2Lt3L4qLi0VtPQ6/DgB0g5Coky1uUtN6OXUjRoyAw+HQXTbvdrtx/fXXi85LLoCeqKPJSl2aQk7AjwaTyYTrrrsOQN+G3ZEwm80h29PI3x0vUaf+HLmgbSTClfkAesMNWuc30uRO3+10OrFy5UqRU6ZGDr/S58rHE0uomlyXwZic8/Pz8fLLL2uWhMjNzVXs7Qr09XmtiWjixIkoKioK2TSdksHj5dRZrVZxbug+sVgseOeddzB79uyw7zci6tT3qIyeUxeur9IuAp2dnbDb7ULURVooYZR45tQNJuTCbN68eUA+X86p01skkShoH+G6ujpD10suHQX0jZHyuBxO1B1//PGawpXml3iKuieeeALPPfccgNAxT3bq5LAz3U+UaqR+3/Tp0yPmezqdTmRkZIiHoVidOiPvo1QSdVHsE088EcFgUJg34aC8btIWVMM1EizqooCcn46ODjQ3NytsWDrx8obccvjV6/WipqYm4qRCG0jTxBfJqVPvJxirUwcAv/nNb7Bw4cKokqGpg2uJuv6KDj1RR+ddS2ioURfmVfOrX/0K9957b8jP1U6dXtsihUbUIiclJUV3AUc05+vyyy+PatHJQGC1WkX/k8WTnoM4duxYlJeXh+RCUr2/eIk6eau2aLesoveFeyrOysrC1KlTNRfo6Im6cH2V0gl8Pp/Y19VI+NUoQ9Wpo3y5448/fkA+XxZ1RheHDSbp6ekIBoP9Cr/KYiycqNOD6hTGU9Q9//zz+MMf/gAgdGy3WCwwmUxC1BF0P5H47k8fvueeezR3+AhHf5w6oC+qoZ6vjUA5dXKx+3Bw+DVK7HY7amtrEQwGNUWdeusooC9MY+TmzMjIwGeffYbOzk785je/EXvLar0OCHXq+iPqUlJSFNuoGMFqtcLn82mGgAcq/Op2u0VSbCQiOXV6IT+joi7SMZaUlOCZZ54RK0DVTp1cxDWageqRRx4x/NqBhHJmZNHy05/+FGeccUbUn6VVazBaSNRRH4xW1BkNv37xxReav5s6dSpmzpwp7gcjE6nNZhOrq+12O5YvXw6fzydKIOgtlDDK1VdfjaqqKrFLwVBx6oDefM2ByqlLS0tDdXU1Wltbk1LUqVdvhoOuqTr8atSp02Py5Mn45z//GVdRB/TVcNPqiykpKWhsbFQ44TQ20nwXy/xGLF26VGzPaRQyc7q7u6MSdXR89P9YRB1pC6Oijp26KLHb7aIQrVb4Vd7kXXbqomHq1KmKRFmtUFYkp26wnsZp8tJaKDFQ4deMjAzDA1MkUadHuBpZctsiDbgmkwkXXXSRIllZbkt+fj7WrVuHzMxM3dB8MkOToSzq7rjjjrAFpvXQKh4cy2fItQdjdepinTQWLlyITz75JKReXjinzmazidCK3W7HJZdcgssvvzzsNmHRMGvWLJx99tlDzqkDes/bQLXX6XSK857Mos7IOJqTk4MpU6aIh1TaRSReTl1HR4fh9+ght4UK8Wpd25SUFLS0tGg6dZMnT8Y111wTdleigYBKT8Xq1PVH1NEYZmRRFMBOXdTY7XbRIbVWoMrihvaXlMVfNN8D9C7KGCynLha0RN1ghF+NDkyRwq96mEwmuFwu3clYzqmLBtppQubss89W7Ek4lKC+aSQUrsePf/xjsUKuvwyGUxdte8xmc9j+SpMYoBRsKSkpMJvNIa5LrK4JvX8oibqBRD4PRssCDSbROnW0RzHQO3653W5Npy5SKSgZyhWm4uv9QSuyojV+ZmRkhIg6ulZutxsPPfRQv9sSLRR+BYzdf3rh12gNHiIvLw/nn3++odeyqIsS2amTJwyTyYSXX35ZUTJhyZIlhvZm1PseQqt+10Dk1MVCOFHXX6dOna9F/M///I9Iro9ErE4dALz33nu6Ca1GnTo1aqduqKPl1EXLgw8+GKfW9PXHgcypi5bU1NSITh2Vy5Hv23nz5uGHP/yhWIxiMplw5plnYsaMGTG1Y6gtlBhoKLpy++23x2XldbyJRtRpoS5REotTR3muVHOtP2jNg1p9ccaMGThw4IDiuAd7XlNDCyUsFoshUUfjIh3f+eefj56enpgfyIwuXgRY1EWNnqgDELL91tFHHx2xLla47yG0RJ3H48Fvf/tbnHPOOZrvSwZR11/xMmXKFGzevBnHHHOM4ufRTGr9EXW0754WRnPq1Khz6oY648aNg8vlMrwP5kBDzpjdbofJZIq65Eu8nTqgt6+EC+/ZbDa0traGfO+cOXMwZ84cxWtfeeWVmNsxFMOvA8lpp50Gv98fl7D/QBBN+FULt9utKAcTi6gb6LFKqy/OmjUL69atU/xusNOK1JBTZ7FYDD3wORwOZGZmivZOmDABv/jFLwa6mQBY1EWNHH6NJaxqFLnjaIk6k8mEm266SbN98t8DzUA6dSaTqd8rPPsj6sIxceJEnHXWWRHrDakZbk7dRRddhEWLFvWryHQ8obJDqampcLlcURdmHghR984774QN78nh14G8b9mpU2IymZJW0AF9C+1idercbrd4WACMldfRYv369QOWc6jVF2fOnAkAipSMgRrHjeJwONDW1obu7m7N+pRaFBQUJOReS94enaRQZetYXIBoiCTq9KCilfFYrWSEgVwoEQ9izamLhNvtxssvvxz1+y699FKxRH04YLFYkiofierUzZ07Vzjq0TAQ4Vfack4Pm80m8nUGaqUnwE7dUCMe4Vc5uX7KlCl44IEHoi4Ro1dYPR6EE3Vff/21+Fmiw692u12cS6OLHa6++uqE1D9kURcl1KncbveAbs9Ek1N3d3dUk6bdbhehp8FgIMOv8SDRT3hqrr/++kQ3YVhDq19PP/10nH766VG/fyCcOqPfOdDfy07d0KK/oo4WHBAWi0UUmE8G9MwHWkwgVwNI9Jwi35dGRd0111wzUM0JC4u6KKGLG49CqUa+S17JZwS32z2o+U0DGX6NB8km6piBxWaz9cvt6m9Jk1jQuncGAnbqhhb9zan76U9/GnGP0URQWlqKvXv3KvbAVvPVV19p7keeyPArMZh7AMfCkBF1W7ZswcqVK2E2mzFixAisWbMmqm0+4gXV67n44osH/LvsdnvUoa0rrrhCc9+7gWIoiLrBDEcziYVKmsRKIpw6+d4ZyPArfU8y3JdMZPrr1MVSK3KgKSsrg9frjZiSMGXKFMX/kyH8SsRSa24wGTLFhwsLC/H6669j8+bNKC0txUsvvZSQdqxfvx4AsGzZsgH/LrvdHlU+HdBruQ/mzZzs4Ven0xn2iZAZXhQWFobdnD0SA5FTF4nBDr8mw33JRKa/CyWSkeLiYmRkZCA7Ozuqh4tkcepsNlvUZZIGmyHj1MkJh/I+hoPNo48+itdff31QEiBjEXWDTbIvlJg2bRpOOOGERDeDGSQef/zxfgn4RDt1A/m9XHx4aNHf8Gsyk52djdraWsOvTxanLto9YxPBkBF1xP79+/HWW2/h1ltv1fy9z+eDz+cT/6einvHiyiuvxJVXXhnXz9Tj5z//udimJVmhiUIW2VSjJxm2vTr33HNx7rnnJroZzCDR34e9ROTUaW3lNBCcc845eOqppxI2MTLR0d/wazKTnZ0t9js2QqKjP/T9yZ5PByShqKuqqtLcbHfdunWwWq249NJL8cQTT+jm061evRp33nnnQDdzULjiiisS3YSI0Cpd+enFarWisrJyUENYDBMPLBYLrr32WixYsGDQvlPe/msgV9RnZWVh+fLlA/b5THwZzqJuzpw5UW2ZRaHoRLmWJCaTPZ8OSEJRl5eXh//85z8hPw8EAjj33HNx2223hd3S5eabb8YNN9wg/t/c3NyvHBsmPFarVVNgsxvADFX+8Ic/DOr30f3D9wwjQ7vWJHsOVyz87Gc/i+r155xzDv71r38lTNTJ4ddkZ8gslFi7di3ef/99rFq1CgsXLsTzzz+v+brU1FS43W7FH2bg0BN1DMMYg0Ku7GwzMieccAJee+21iCtFjwTS09NDtsQcTMip4/BrHLnoootw0UUXJboZjAoWdQzTP9ipY7Qwm80xFdBm4g87dcwRA4s6hukfLOoYJrlxOp1JtyWiHkPGqWOSExZ1DNM/ElFGhWEY46SmpmLTpk1iX9pkhkUd0y9Y1DFM/6D7h3PqGCZ5mTdvXqKbYAgOvzL9gkUdw/QPduoYhokXLOqYfkF16hiGiQ3OqWMYJl6wqGP6BTt1DNM/OPzKMEy8YIuF6Rff+c53MGfOnEQ3g2GGLBx+ZRgmXrCoY/rFySefnOgmMMyQhsOvDMPECw6/MgzDJBDeUYJhmHjBoo5hGCaBsFPHMEy8YFHHMAyTQFjUMQwTL1jUMQzDJBAOvzIMEy9Y1DEMwyQQduoYhokXLOoYhmESCIs6hmHiBYs6hmGYBMJ16hiGiRcs6hiGYRII7yjBMEy8YFHHMAyTQFJTU5Gbm4vi4uJEN4VhmCEO7yjBMAyTQMxmM6qqqhLdDIZhhgEs6hiGYRKMyWRKdBMYhhkGcPiVYRiGYRhmGMCijmEYhmEYZhjAoo5hGIZhGGYYwKKOYRiGYRhmGGAKBoPBRDdiIAkGg2hpaYHL5eJkZIZhGIZhhi3DXtQxDMMwDMMcCXD4lWEYhmEYZhjAoo5hGIZhGGYYwKKOYRiGYRhmGHBE7yhBiygYhmEYhmGSnUiLPo9oUVdbW4vc3NxEN4NhGIZhGCYiTU1NcLvdur8/okVdSkoKAKCioiLsSWKSj+bmZowaNYqv3RCFr9/Qha/d0Iav39DG5XKF/f0RLerIwnS73dy5hyh87YY2fP2GLnzthjZ8/YYnvFCCYRiGYRhmGMCijmEYhmEYZhhwRIu61NRU3H777UhNTU10U5go4Ws3tOHrN3Thaze04es3vOFtwhiGYRiGYYYBR7RTxzAMwzAMM1xgUccwDMMwDDMMYFHHMAzDMAwzDDiiRd2NN96I+fPn45JLLkFXV1eim8No0NLSguOOOw7p6en46quvAADPP/88jj/+eCxatAgVFRUAgG3btmHevHk4/vjj8dZbbyWyycz/sWXLFsyfPx8LFizAhRdeCL/fz9duCPHVV19h7ty5WLBgAc4880y0trby9RtiPPvss8jJyQHA4+YRQ/AI5b///W/wkksuCQaDweCvfvWr4Jo1axLcIkYLv98frK6uDl522WXBL7/8MtjV1RWcPXt20OfzBf/zn/8Ef/CDHwSDwWDwW9/6VnDnzp3Bpqam4PHHH5/gVjPBYDB46NChYFtbWzAYDAZvvvnm4Nq1a/naDSG6urrEv++4447gk08+yddvCBEIBILnn39+cPr06TxuHkEcsU7dBx98gFNPPRUAcPrpp+P9999PcIsYLaxWq3jSBIBdu3ZhypQpSElJwdy5c/Hll18CAA4dOoRx48bB7XYjKysLtbW1iWoy83/k5eXB6XQCAGw2G3bu3MnXbghhs9nEv9vb21FUVMTXbwjxzDPPYOnSpTCbzTxuHkEcsaKusbFRbJGSkZGB+vr6BLeIMYJ83QAgEAgAAIJSZR6+nsnF/v378dZbb2HevHl87YYYb775JqZPn46NGzfCZrPx9RsiBAIBrF27FsuWLQPA4+aRxBEr6rxeL5qbmwH0dvjMzMwEt4gxgnzdAMBisQAAzOa+rszXM3lobm7GpZdeiieeeAK5ubl87YYYixcvxmeffYalS5di8+bNfP2GCE8//TQuvPBCcW143DxyOGJF3Zw5c/DGG28AAF5//XXMnTs3wS1ijFBaWopt27ahq6sL7733HqZNmwagN9S3a9cuNDc3o76+HtnZ2QluKRMIBHDJJZfgtttuw/jx4/naDTF8Pp/4d0ZGBtLT0/n6DRG2bduGJ598Eqeffjp27dqFv/zlL3ztjhCO6B0lbrzxRnz00UcoKirCE088gZSUlEQ3idFgyZIl2Lp1K0aPHo2rrroKdrsdDzzwAOx2O5588kmMGjUK27Ztww9/+EMEAgH87//+LxYvXpzoZh/xPPvss/jxj3+MqVOnAgB+9KMfIRgM8rUbIrzyyiv43e9+B7PZjJycHPztb3/DunXr+PoNMWbOnIlPP/0Uzz33HF+7I4AjWtQxDMMwDMMMF47Y8CvDMAzDMMxwgkUdwzAMwzDMMIBFHcMwDMMwzDCARR3DMAzDMMwwgEUdwzAMwzDMMIBFHcMwDMMwzDCARR3DMAzDMMwwgEUdwzAMwzDMMIBFHcMwDMMwzDCARR3DMAzDMMwwgEUdwzAMwzDMMOD/A6AlVD8+Bsr1AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -208,7 +208,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 26, "id": "26546c89", "metadata": { "scrolled": false @@ -216,7 +216,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAF1CAYAAAD4LDsuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvkklEQVR4nO3df3gU1b0/8PewSkAgKbsJJGTWhov0hw+1Wtr6xXZrcrVor7XRsKikVbAWS1XIgtJWzdeQPkWsokn80VZsv/QHN8GQrNLb1haiG5pea6tWvlr91qfaUEIIAoEmiBrMcL5/cGeb3czuzszO7Ozsvl/PM88jm9nZswOeTz5nzvkcSQghQERERERERLaZ4HQDiIiIiIiIch0TLyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIimzHxIiIiIiIistlpTjfAbU6ePIn9+/dj2rRpkCTJ6eYQEeUVIQSOHTuGWbNmYcIEjh2qGJuIiJxhJC4x8TJo//798Pv9TjeDiCiv9fX1QZZlp5uRNRibiIicpScuMfEyaNq0aQBO3dzCwkKHW0NElF+Gh4fh9/ujfTGdwthEROQMI3GJiZdB6hSOwsJCBjciIodwOl0sxiYiImfpiUucIE9ERERERGQzJl5EREREREQ2Y+JFRERERERkMyZeRERERERENmPiRUREREREZDMmXkRERERERDZjOXkiogxSFAU9PT0YGBhAWVkZAoEAPB6P080iIqIsw3iRe5h4ERFlSDgcRl1dHfbt2xd9TZZltLS0oKamxsGWERFRNmG8yE2cakhElAHhcBjBYDAmiAJAf38/gsEgwuGwQy0jIqJswniRu5h4ERHZTFEU1NXVQQgx7mfqa6FQCIqiZLppRESURRgvchsTLyIim/X09IwbuRxLCIG+vj709PRksFVERJRtGC9yGxMvIiKbDQwMWHoeERHlJsaL3MbEi4jIZmVlZZaeR0REuYnxIrcx8SIislkgEIAsy5AkSfPnkiTB7/cjEAhkuGVERJRNGC9yGxMvIiKbeTwetLS0AMC4YKr+ubm5mfuzEBHlOcaL3MbEi4goA2pqatDR0YHy8vKY12VZRkdHB/dlISIiAIwXuUwSWvUqKaHh4WEUFRVhaGgIhYWFTjeHiFxGURT09PRgYGAAZWVlCAQCHLk0gH2wNt4XotzDeOEORvrf0zLUJiIiwqlpJJWVlU43g4iIshzjRe7hVEMiIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIimzHxIiIiIiIishmLaxARERER5QhWQ8xeOfvEa8OGDZAkCaFQKPqaEALr1q3DrFmzMHnyZFRWVuLVV191rpFERERERBYJh8OoqKhAVVUVamtrUVVVhYqKCoTDYaebRsjRxOv555/Hpk2bcM4558S8fu+99+KBBx7Aww8/jOeffx6lpaX4/Oc/j2PHjjnUUiIiIiKi9IXDYQSDQezbty/m9f7+fgSDQSZfWSDnEq+3334bX/7yl/HYY49h+vTp0deFEGhubsadd96JmpoazJs3Dz/96U/xzjvvoLW11cEWExERERGZpygK6urqIIQY9zP1tVAoBEVRMt00GiPnEq+bb74Zl112GS6++OKY13t7e3HgwAEsXLgw+lpBQQEuvPBCPPvsswmvNzIyguHh4ZiDiIiIiChb9PT0jHvSNZYQAn19fejp6clgqyheTiVeW7duxZ///Gds2LBh3M8OHDgAAJg5c2bM6zNnzoz+TMuGDRtQVFQUPfx+v7WNJiKinPaDH/wA55xzDgoLC1FYWIgFCxbgqaeeiv6c64+JKF0DAwOWnkf2yJnEq6+vD3V1ddiyZQsmTZqU8DxJkmL+LIQY99pYt99+O4aGhqJHX1+fZW0mIqLcJ8sy7rnnHrzwwgt44YUX8O///u+orq6OJldcf0xE6SorK7P0PLJHziReL774Ig4ePIj58+fjtNNOw2mnnYZdu3bhwQcfxGmnnRZ90hX/dOvgwYPjnoKNVVBQEB2lVA8iIiK9Lr/8cvzHf/wHPvShD+FDH/oQ1q9fj6lTp+K5557j+mMiskQgEIAsywkfJkiSBL/fj0AgkOGW0Vg5k3hddNFFeOWVV7B79+7o8clPfhJf/vKXsXv3bvzbv/0bSktLsXPnzuh7Tpw4gV27duGCCy5wsOVERJQvFEXB1q1bcfz4cSxYsIDrj4nIEh6PBy0tLQDGz+5S/9zc3Mz9vByWM4nXtGnTMG/evJhjypQp8Pl8mDdvXnRPr7vvvhtPPPEE/vKXv2DZsmU444wzUFtb63TziYgoh73yyiuYOnUqCgoKsGLFCjzxxBM4++yzuf6YiCxTU1ODjo4OlJeXx7wuyzI6OjpQU1PjUMtIdZrTDcikb37zm3j33Xdx00034ejRozj//POxY8cOTJs2zemmERFRDvvwhz+M3bt345///Cc6OzuxdOlS7Nq1K/pzM+uP16xZE/3z8PAwky8iQk1NDaqrq9HT04OBgQGUlZUhEAjwSVeWkIRWwX9KaHh4GEVFRRgaGuJ6LyKiDMuVPvjiiy/GnDlz8K1vfQtz5szBn//8Z5x33nnRn1dXV+MDH/gAfvrTn+q6Xq7cFyIitzHS/+bMVEMiIiK3EEJgZGQEs2fP5vpjIqI8kVdTDYmIiDLtjjvuwBe+8AX4/X4cO3YMW7duRXd3N37zm9/ErD+eO3cu5s6di7vvvpvrj4lcTFEUTvUjTUy8iIiIbPTWW2/h2muvxcDAAIqKinDOOefgN7/5DT7/+c8D4PpjolwSDodRV1eHffv2RV+TZRktLS0sbkFc42UU59ETETmHfbA23hci54XDYQSDQST61bq9vR2LFy+27fP5pM0ZRvpfPvEiIiIiIkqDoiioq6tLmHQBwJIlSyBJEoLBoOWfzydt7sDiGkREREREaejp6YlJerQoioLFixcjHA5b+tnqk7b4z+/v70cwGLT888g8Jl5ERERERGkYGBjQfW4oFIKiKJZ8brInbeprVn4epYeJFxERERHlFUVR0N3djba2NnR3d5tOTNTrvPbaa7rf09fXh56eHlOfFy/VkzYhhKWfR+nhGi8iIiIiyhtWrYfSuo5eRp6QWXEdqz6P0sMnXkRERESUF6xaD5XoOnqVlZWZep/Z61j1eZQelpM3iCV7iYicwz5YG+8LUWqKoqCioiJhsiRJEmRZRm9vb9Iy7Kmuk4zez9BLbUt/f7/mOi+rP4/GM9L/8okXEREREeU8q9ZD6algqEWSJABAc3OzZUmQx+NBS0tLzPXt/DxKDxMvIiIiIsp5Vq2H0nsdr9cb82dZltHR0WH5vlo1NTXo6OhAeXl5Rj6PzGNxDSIiIiLKeVath9J7nfb2dng8HgwMDKCsrAyBQMC2J081NTWorq5GT09PRj6PzGHiRUREREQ5LxAIQJbllOuhAoGAJdeprKzMaOLj8XhQWVmZsc8j4zjVkIiIiIhynlXrobiuisxi4kVEREREecGq9VBcV0VmsJy8QSzZS0TkHPbB2nhfiIxRFMWS9VBWXYfcy0j/yzVeRERERJRXrFoPxXVVZAQTLyJyLY40EhERkVsw8SIiVwqHw6irq4vZxFKWZbS0tGRkbj2TPiIiIjKCxTWIyHXC4TCCwWBM0gUA/f39CAaDCIfDtn9+RUUFqqqqUFtbi6qqKlRUVNj+uUREROReTLyIyFUURUFdXZ3m3inqa6FQCIqi2PL5Tid9RETkXoqioLu7G21tbeju7rYtVlF2YuJFRK7S09MzLukZSwiBvr4+9PT0WP7ZTid9RETkXpwtQUy8iMhVBgYGLD3PCCeTPiIici/OliCAiRcRuUxZWZml5xnhZNJHRETuxNkSpGLiRUSuEggEIMsyJEnS/LkkSfD7/QgEApZ/tpNJHxERuRNnS5CKiRcRuYrH40FLSwsAjEu+1D83NzfbUtrdyaSPiIjcibMlSMXEi4hcp6amBh0dHSgvL495XZZldHR02LaPl5NJHxERuRNnS5BKEloTTimh4eFhFBUVYWhoCIWFhU43hyivObWJsdbmzX6/H83NzRnZvDmfsQ/WxvtClL0URUFFRQX6+/s113lJkgRZltHb28uBOxcy0v+elqE2ERFZzuPxoLKyMuOfW1NTg+rqakeSPiIichd1tkQwGIQkSTHJF2dL5BcmXkREJjiV9BERkfuoU+TjZ0vIsszZEnmEiRcRERERkc04W4KYeBERERERZQBnS+Q3VjUkIiIiIiKyGRMvIiIiG23YsAGf+tSnMG3aNMyYMQNXXHEFXn/99ZhzhBBYt24dZs2ahcmTJ6OyshKvvvqqQy0mIiI7MPEiIiKy0a5du3DzzTfjueeew86dOzE6OoqFCxfi+PHj0XPuvfdePPDAA3j44Yfx/PPPo7S0FJ///Odx7NgxB1tORERW4j5eBnGvFCJ3cGqPL7JXLvTBhw4dwowZM7Br1y587nOfgxACs2bNQigUwre+9S0AwMjICGbOnInvfe97+PrXv57ymrlwX4jisR8nNzDS//KJFxHlnHA4jIqKClRVVaG2thZVVVWoqKhAOBx2umlEGBoaAgB4vV4AQG9vLw4cOICFCxdGzykoKMCFF16IZ599VvMaIyMjGB4ejjmIcgn7ccpFTLyIKKeEw2EEg8GYfVIAoL+/H8FgkEGbHCWEwJo1a/DZz34W8+bNAwAcOHAAADBz5syYc2fOnBn9WbwNGzagqKgoevj9fnsbTpRB7McpVzHxIqKcoSgK6urqoDWDWn0tFApBUZRMN40IAHDLLbfg5ZdfRltb27ifSZIU82chxLjXVLfffjuGhoaiR19fny3tJco09uOUy5h4EVHO6OnpGTdCOpYQAn19fejp6clgq4hOWblyJX7xi18gEolAluXo66WlpQAw7unWwYMHxz0FUxUUFKCwsDDmIMoF7Mcpl3EDZSLKGQMDA5aeR2QFIQRWrlyJJ554At3d3Zg9e3bMz2fPno3S0lLs3LkT5513HgDgxIkT2LVrF773ve850WSijIkvoNHf36/rfW7vx1k4JD8x8SKinFFWVmbpeURWuPnmm9Ha2ort27dj2rRp0SdbRUVFmDx5MiRJQigUwt133425c+di7ty5uPvuu3HGGWegtrbW4dYT2SccDqOuri7mCVdxcbGu97711ltQFMWVyYrW95ZlGS0tLaipqXGwZWQ3lpM3iCV7ibKXoiioqKhAf3+/5voASZIgyzJ6e3tdGazJnX1wonVamzdvxrJlywCceirW2NiIRx99FEePHsX555+PRx55JFqAIxU33hfKb2oBjXR+DXVjspLoe6v9REdHh6u+Dxnrf5l4GcTgRpTd1KAGICawMajlBvbB2nhfyE3UQbJka7mAU/12sl9T3davp/reRgcHOV0xO3AfLyLKWzU1Nejo6EB5eXnM67IsuyY4ExHlslQFNFSpph26rcqhlYVDuM+ZOzHxIqKcU1NTgz179iASiaC1tRWRSAS9vb1MuoiIsoDewhhNTU1oampKeo6bqhxaVQCK+5y5F4trEFFO8ng8qKysdLoZREQUR2+Bo/Lycrzwwgu6zk23ymEmpu1ZUQAq1T5narGe6upqTjvMQnziRUQ5QVEUdHd3o62tDd3d3a6YdkJElI8CgQBkWU5YeEaSJPj9fhw+fBjNzc26rplOtVo7p+2NjU2Kouj63oFAIOH1uM+Zu/GJFxG5ntnSvIlGOLlgmYjIPh6PBy0tLQgGg+MKaKhJyf3334/Vq1envJZakCJZspJMoiqD6rS9dNYGa8Umn88XfTKl9b2bm5uTxhvuV+luTLyIKCE3JCBmg2aiZG3JkiVoa2vj/ipERCbojRtqISStfri5uRler1dXAQ4hRMJkJVlb1CdRy5cvTzhtDwDq6upMTdtLFJuOHDkCAPB6vRgcHIy+rn7vVHGG+1W6nCBDhoaGBAAxNDTkdFOIbNXZ2SlkWRYAoocsy6Kzs9PppkWNjo6Oa+PYQ5Ik4ff7xejoaMz7Ojs7hSRJCd+ndR1JkrLqu+cr9sHaeF8oG5iJG6OjoyISiYjW1lYRiUSi/XVra6uu/jkUChlui9bPkh2NjY2G7oOe2CTLsujq6hr3vfVeO1EMSxT3yD5G+l8mXgYxuFE+SJSYZFsCEolEdAXNSCQSfU+qgGgkiUv0CwPZh32wNt4XcprVccNM/66nLUb7fvUw0v502q6H+v3iv0+2xeh8YaT/zaniGhs2bMCnPvUpTJs2DTNmzMAVV1yB119/PeYcIQTWrVuHWbNmYfLkyaisrMSrr77qUIuJsk+qiklA9uyZYmauu979Y+KJuAXL3EOFiOgURVGwatUqS+OGngIcsixDUZSYokp6YpgZWu1PVNTJ7nVY3K/SvXIq8dq1axduvvlmPPfcc9i5cydGR0excOFCHD9+PHrOvffeiwceeAAPP/wwnn/+eZSWluLzn/88jh075mDLibKHmyommZnrnu6C44GBAe6hQkQ0xvr169Hf35/w52bihlqAA4Bm8iWEwLvvvouLL744ZvBr/fr1pgbXUolvf7LBt0ysw+J+lS5l12O3bHDw4EEBQOzatUsIIcTJkydFaWmpuOeee6LnvPfee6KoqEj88Ic/1HVNTuegXKd3Xn1ra6vTTTU1113vFJBER1dXl6l1ZWQN9sHaeF/IKZ2dnbr7TzNxo7OzU/h8Pt1TwtPp3/W2P9W0ym3btnEdVh7J26mG8YaGhgCcqhwDAL29vThw4AAWLlwYPaegoAAXXnghnn32Wc1rjIyMYHh4OOYgymVuqpiUbEQ0UWneVNNXElH3VwHgmieCRER2Uqf16WU2boyt/peMSGMqoR5lZWW6pjKuWbMGDzzwAAD9sYnyQ84mXkIIrFmzBp/97Gcxb948AMCBAwcAADNnzow5d+bMmdGfxduwYQOKioqih/qLF5EbmNlUWO/Glmb3TLGa0bnuqaavaBkbKA8ePKjrPdxDhYhynZE1s2bihtHEzi5j457e6fglJSVch0Xj5Gzidcstt+Dll19GW1vbuJ/F/7Il/mcjOy233347hoaGokdfX58t7SWymtniD2aeIjnN6Fz3RMma3+/H2rVrIctyzOtjA6WbnggSEdnJyACTmbhhthiSKlEM0/pZqmuo7TdSOIPrsCheTiZeK1euxC9+8QtEIpGYX6BKS0sBYNzTrYMHD457CqYqKChAYWFhzEGU7dIt/uDGikkejweVlZVYsmQJKisrUwb4RAHx3nvvTRoo1SeCiWTbE0EiIrvoHWBqbGwcFzf0zMhIZ+ZAY2OjZgzr7OxEZ2enqYE3wPh0fI/Hg0AggLKyMgwMDKCnpycrqgKTMyRh94TYDBJCYOXKlXjiiSfQ3d2NuXPnjvv5rFmzsHr1anzzm98EAJw4cQIzZszA9773PXz9619P+RnDw8MoKirC0NAQkzDKSoqioKKiIuEooVqCt7e3N2VyoigKenp6MDAwgLKyMgQCAcefdDndpo6ODtxwww2a6z3VkdFsTU5zAftgbbwv5AQ13vT39ydcX1VSUoJ9+/Zh4sSJ0dfC4TDq6upi4pQsy2hpaYnpO7u7u1FVVWW4XT6fD2+99RYAJIwXY2PJjBkzAJwaiB/731oxJtV3jo+xer8ruZeh/tee+h7O+MY3viGKiopEd3e3GBgYiB7vvPNO9Jx77rlHFBUViXA4LF555RWxZMkSUVZWJoaHh3V9BitHUbaze+NGJ3V2do6rKCjLcsY2i1y7dm3Se+rz+bhxpc3YB2vjfSGnJNrMN1E/bWSj5VSVa5P1xXorBpqJK3o3ME70XdWD8SI3GOl/cyrxSvQPe/PmzdFzTp48KRoaGkRpaakoKCgQn/vc58Qrr7yi+zMY3CjbuakcvBFGgrUd2tvbU95TWZZZHthm7IO18b6Qk7SSF61+ur293fB2HHoSO7ODi+nEFa3v7Pf7o+9Rk0arEkTKXkb635yaapgJnM5B2U7v1IxIJILKykr7G5SAkSmDVk6fNNvW0tJSHD58OOW5Tt/XXMc+WBvvCzntxIkTKC8vT9hPSpKE4uJiHDp0KOW14vtRrel6qbS2tmLJkiUJf25FXEkWx/TG4sbGRtx11106vhFlKyP9b04W1yDKZ1aXgzdTkj4VoxUX9ZbvtWvvrJ6eHl1JF5B9ZeTt+PsjIor37LPPJu0nhRC6ki5gfD86thhSfX29rmukKoJhRVxJVtRJbyx48MEH2S/nESZeRDnGynLwZkvSp7qm0YqLRsr32sHIdbOpjLwdf39ElH/srkAYT6sfVZOcdevWJa0sC+jbM8zuuKI3FgwODto2aEjZh4kXUQ5Ktxy8oij4zne+g0WLFpkuSZ/ounV1dZqVoNTXQqHQuKDu9N5Zeq9bUlKSNWXk091SgIgI0D+AY6SfTGdGhsfjSTqFEACuueaalIOLetv72muvmZotEAgE4PV6dZ2bbTMlyEZ2LjbLRVzATG4yOjoqIpGIaG1tFZFIRNci3lSLpJFgAbQeZisujo6OivLycsvbo5eeRdIAxLZt22z5fKNStdfu+2Un9sHaeF/IDlZWIFT7nW3btiUtlhEKhZLGKz39sZ7+zWjFRDMVdBsbGy0rBELZy0j/yydeRDnM6KbCiZ6SxBMac9+tnIoSf9727dvx3nvvaZ5rdPqkGer0zUSjtACwdu1aBINBWz7fKKfXxBGR+xmdoaBnmvv999+P4uJirFy5clwRArX/bm5uTjotOlX/BgB9fX3o7u5OGpOStVeLmdkCd955J3w+X8KfG11zTTnA5iQw53BUkXLV6Oio8Pl8hsr11tfXi9HRUd37oJh54pVqH5RM7p2l9T1LSkpEe3t7Rj5fr1zdUkAI9sGJ8L6Q1czOUEhUZn3t2rW6Zg6oR6KnavX19bre7/V6dT2x0jPLY2ybjM4WcHorFLJf3u7jlQkMbuQUM9MGjdA7JUIr8TESNPVMRVG/m54pJZneO8vuvwcr5PIm2uyDtfG+kNXSGcCJ7yfV6YVG48vYmNDe3i6Ki4tNxalUiY7aXr1JndG+M9WeX+RuTLxsxOBGTtDzRCmdhGB0dHTc6KAVh5HNMLWCYi4nEHqY/Ts1muC6CftgbbwvZDWr+l+9a2STHVdddZVtMWksO2cLuGHQjsxh4mUjBjfKND3TFNJNzPQGWLOH3qko8aN/uTxlLhW90zeTvV9vgusm7IO18b6Q1awawLE7vpg5mpqaNNud74N9ZA4TLxsxuFEm6alO5/P50k7MtmzZYmuQ0zMVhUHwX6xaE5CL01vYB2vjfSE7GB3A0erX9Q6gWXFMnTpV97laA1m5PFuA7MPEy0YMbpRJ6Y4UqolZop+pgbOpqcnWYGg2McrHIGh1Kfhcm97CPlgb7wvZRe8AjtZ5Xq9XXH/99RlJuhYtWmQ4Pmolj7k6W4Dsw3LyRDki3U0VhRAYHBxM+DMhBFasWIHp06en9TmJSJIEWZahKErSMvOJ6ClPbGcZeSdYXQre6JYCRERj1dTUYM+ePYhEImhtbUUkEkFvby9qamqi5yTaiuTIkSPYvHmzrnLt6frd735n6HyhURIfOPV9Ozo6UF5eHnO+LMvo6OiI+d5ERp3mdAOIKLGysjLbP+PQoUNYtWqV5deVJAlCCLz77ru4+OKLo6/LsoyWlhbdwUsNgnV1dTFBXZZlNDc351wQNLvXGRGRXdQBHC3J9vtSJfuZFYqKinDo0CHD7xs7kDX2+9XU1KC6uho9PT0YGBhAWVkZAoEAB64obXziRZTFAoEAZFm2fbRweHg45Tk+nw+SJCV88hS/SaTX6wWAcU/czGxCqTXi+sYbb8Dr9Zp6kpbN9CbbmUjKyRq/+93vcPnll2PWrFmQJAlPPvlkzM+FEFi3bh1mzZqFyZMno7KyEq+++qozjSUyQFEUPPTQQyk3NLbb0qVL03p/f3//uNc4W4DswMSLKIslm2pnF63ESpIkbNq0KeH0i87OTrz11lvo6upCfX097rjjjoTtTTS9I5WxQfDIkSOYM2cOqqqqUFtbi6qqKlRUVBhK5rJVqmRbkiT4/X4EAoEMt4zMOn78OD7+8Y/j4Ycf1vz5vffeiwceeAAPP/wwnn/+eZSWluLzn/88jh07luGWEukXDodRUVGB1atXO9qOtWvX4sorr0zrGqFQyJb4oSgKuru7c26AkNJg10KzXMUFzOQErUXLJSUluhYQn3HGGYYWHMdfN34RdaJiDVptTHWYKbphVcW/bMbF3Ym5vQ8GIJ544onon0+ePClKS0vFPffcE33tvffeE0VFReKHP/xhwuu89957YmhoKHr09fW5+r6QuyTqhzN5lJSUiG3btgkhrNmL0uq+NVk1YSNFj3KtQFIuYlVDG7k96JN7xXe+dpWA37Jli+FO3mwQVsvM6w0seir+lZSURL+DmwNULpaCt4Lb++D4xOvNN98UAMSf//znmPO+9KUvieuuuy7hdRoaGjT/H3DrfSH3sGJDZDPH1KlTRVdXV8I40djYmHbiZVWV3FQxsbCwUDMh07pOOvs5UmYw8bKR24M+5Q67NqU0+hQqnSAciUQMBRaj37m8vNzVAYojneO5vQ+OT7z++7//WwAQ/f39MectX75cLFy4MOF1+MSLnOLkhshdXV0J2zU6Oppw+xQ7Y6BWO4zGRK3ZDPkwuyNXsJw8UR6wuvCG2bVDqcqfJyLLMg4dOqRZgjhRAQ6jlfz6+/uxaNEi16794uLu/BH//7EQIun/2wUFBSgsLIw5iDLByYqq3d3dCX/m8XiwadMmzZ8ZiZMDAwNprc0yExNF3NrnZJUi488ld2HiReRCiqKgp6cHwWAw5S9oeqSzJ5bZIHzDDTdgzZo1hgKL2Up+N954IwMUZaXS0lIAwIEDB2JeP3jwIGbOnOlEkyiP6Ekw4s+ZMWOGAy095R//+EfSvrympgadnZ2QZTnmdVmW0djYqOsz/va3v6GiosJ08SazMVGMKW1v9X6OlD2YeBG5wNjA953vfAcf/OAHUVVVhebmZgDAhAnp/a+czsaQZpMhRVEMBxazT/kGBweTjpQSOWX27NkoLS3Fzp07o6+dOHECu3btwgUXXOBgyyjXqVUJkyUYWucsW7Ysur1Ipv385z9PmQQl2vD5zjvvHJeQaWloaNA9CyOeoih466239H2ZBAYGBrifYw7jBspEWa6jowM33XRT0s0hzTzNKSoqwiOPPILy8vK0NoY8dOgQPB6PbU+UxgYWtbx+MBiMbtCs1zPPPIOLLrrIjiYSJfX222/jjTfeiP65t7cXu3fvhtfrxZlnnolQKIS7774bc+fOxdy5c3H33XfjjDPOQG1trYOtplylKArWr1+PhoaGcT9TE4yOjg4AiM6qiD9Hfc1oP2yFsW1MNFgYv+GzOktk0aJF0S1ajFBnloRCIVRXV2vGy3A4jLq6urT3NDMymMn9HF3IjkVmucztC7vJHdSiCl/84hdtXaic7iJiM9UM1cpRXV1dpttopnT9tGnTuBg5B7ixD05UjGDp0qVCiFMl5RsaGkRpaakoKCgQn/vc58Qrr7xi6DPceF8o8/T0nZIkCVmWU1aQ9fl8ory83NYYlSqO6K26a2UVxkQxKd3y+mO/k1qgI9E1razASOljVUMbMbiR3awOEskOtZy7GelWbko3sKjJ6R133GHo85l8uRv7YG28L5SKHXtvdXV1RSuvbty40ZJrTpgwIa0kyO7vHB83rSivn6yqIfdzzH6sakjkUuFwWLPKn13ipykYqeRkpnLT2LVkHo8HDzzwgOY0FT3FPtSpJN/5znfg8/l0t0GrElQ6FayIiLJdsip56Th48CAqKytRUFCADRs2WHLNkydP6j432Ronu75zfNw0W9l3LK111jU1Nejo6EB5eXnKc8k9uMaLKEtYGSRSrbmSJAmyLMeUjteany7LMlpaWlBdXY2enh4MDAygrKwMgUBA96Le+vp6nH322dH3qYlUOBzGmjVrNN8jyzKam5t1BRa1hPCiRYtSnivGFOxQ5/8n+94MbESUC6xIDrSUlZUhHA7r6n/tkGyN0/r16y39zlpxEzBf4KKkpARf/vKXUV1dnXCddU1NjWb85dYiLmbvw7fcw+kcZBcrN6VMNrXC6EaNAMZtSun1esWyZctMTwVJNf1j27Zthu9fZ2en8Hq9hqaKcINK92EfrI33hbSoU7JvueUWS6f7qVPB33nnHVFcXGzpVD69MW7seqj4jeY7Ozst/7xEMcFI7C4pKRFbtmyJtpNyg5H+VxIiw+VoXG54eBhFRUUYGhrihpVkqba2NkurmEmSBK/Xi4KCAuzfvz/6enFxMZYsWYKTJ09CCIE5c+bggQceQH9/v+HPmDBhQsJpIeroYG9vb8zonKIoqKioSDgSmeh9ejQ2NmLdunUpz4tEIggEAra1g+zDPlgb7wvFs6rKXjx1Kvhtt92GzZs34/Dhw5ZeX+/nq5UXtWYsvPvuuxgcHDR1fZ/Ph8mTJ8dc0+/3J5yFkSqmxYtEIjEVF8n9jPS/nGpIlCWsLgsrhMDg4CCKi4tjXj98+DAeeughSz4jWdIFaK/R0rsxZHd3t6Hy7+FwOGXSNXaqiJENKuODpFqamFM/iCgbqeuF7RhbLy8vx5IlS7Bx48aMlJIvLi6OSe7UqeiAdrl7s4mmWhp/1apVmDNnDg4dOoSSkpLoJucHDx5Ed3f3uP5e3eZE73RLvVMTjcYZxiWXsO25W47idA4yQmsKRLJzM1XN0OrD4/HE/Nnv9yecptfa2qrrml6vV/dUP733buxUEb3tiK9gpVV1UpZlTkvMEPbB2nhfSGV3LPn2t78tSkpKMhZf1Kl5Y+OoHd/R5/ONm1av9Vqi/r6xsVHX5+jZxsVonGFcchbLyduIwY30MtMRtre3ZyyYWX00NTVFA+PIyEjChNPIfPhU66zUxLa+vl7X9RobGw23Y2yQ5Jow57EP1sb7Qior1wtnw6GVqFjxHRsaGqJxqrGxUXfZ+UT9fapkUO/eW0bjDOOS85h42YjBjfRIVTyivb1d8316R8yy8RhbsCJZwplq/y69gcrMfmdjn14Z3UfMqqBK6WEfrI33hcwW0lCPwsJCx+OI3j5V74yFRIfX69XdtxtpW7p7bxmNM2bO1zsLh/Rj4mUjBjdKRU8n7vF4xlXuGx0d1V2VLxuPSCSie+TN6KaW8SOeZjfFTHQdPUHSzBMysh77YG28L/nNzEBUNh+pEhUrBinVa6fz9KypqUkz+Yr/u0g2/X4so3FG7/ldXV2cjmgjJl42YnCjVIx04mZ+sc/kET+3PdmxdetWQyNvZsq/C2Ht6KTaDj1B0uyaMLIW+2BtvC/5y+xAlFPHZZddFu2XE53j9XrF9ddfH13fNTIyIrq6ukR9fb1YtGiRJe2QZVmMjo6m/fRMK3kx+2TJaJzRe/7UqVMTxkZOR0yfkf6XVQ2JLGZkM8Ubb7wRRUVFCAQCePrpp21slX4lJSVYvnw5JkyYgMrKShw9ehQrVqxIWZp35cqVOHToUMKfi7gqgTU1NSgqKsLFF1+csk1jKz4a3Qg0WYVFQP8GlXqrTlpdnZKIKBFFUVBXV5eR6oJWefnll7Ft2zasXr06pi8vLCyEoig4fvw4jhw5gs2bN2Pz5s0Akm9dYta+ffvQ09OTdp/d39+PYDCIjo6OaLl5j8djqmS80Tij9/y3335b83UhBCRJQigUQnV1NasgZoLdWWCu4agipWLmyVV8VcBsOmRZFg0NDZZdL511VkIYn9uvd4pHKmbaStZjH6yN9yU/ZeNMCT2H+hRobHELJ9rR2tpqaN1xosOq/t/s2mMrnnhymrx5RvrfCSAiSwUCAciybOg9iqLY1Jr09ff3o7Gx0bLrzZgxI/rf6v4nwL+eTKkSPanSO8JXX1+PSCSC3t5ezU0vjTLTVoqlKAq6u7vR1taG7u7urP53T+QGemdYXHrppZb24+kaGBiIPhW66qqr8OCDDzrSjrKysqR9u15izIyOdBiNM2PPT5eR2TqUBvvzwNzCUcX8Y2audmdnp20jdNOmTRPTpk1zfMRS69BTFau8vFyzHK7exchOP3lKZ+F0PrNqYTf7YG28L/nJ6Jri9vb2rJhhUV9fH42nXV1djrRBXeOl0uqjtPbxSnZYtcbXaJwxsmY60cEnXuaxuIaNGNzySzq/LFoZ4AoLC0UwGBRdXV1idHRUjIyMZHQDSz1HosW78UeyPVD0JrjpluxNF0vyGmPlPjPsg7XxvuQnI8WGvF6v2Lhxo+OxIj6eWlUsw+iRaGBPa7PmpqYmXdccm7yo19qyZYtoamqKFgrRGy+MxhmzCSynyaePiZeNGNzyhxW/LG7bti3t4DBt2jQxMjKi2T6ng6bZI1lHrzfYaCXFJSUlIhQKMRnKIlbvf8Y+WBvvS/5yeyzI9Gf6fD7Dg3NGZ1okK+9vVwl3M+u9zA5WcvAxFhMvGzG45Qc9o4jx0xS0dHZ2GpqmkOhoaGiIGTn72c9+JjZu3CimTJnieOBM54jfA8XoE0a18w+FQuOeAHJ/kuxg9f5n7IO18b7kt1AoZGnffNpppzkeH6w8Jk2aJD73uc+JHTt2mE4S9M600FPe366ZGcnaCIzfIsbMNHnuBzYeEy8bMbjlB72/LDY2NkbfM3YEqKury9JKgLl8qB222SeMVk5jI+tZvf8Z+2BtvC/5zcrqhhMmTHA8Ltgdb8xKtfbKyNRPu6b3JWtjuk+qGG+1Gel/JSFctPlDFhgeHkZRURGGhoZQWFjodHPIJm1tbaitrdV1bmdnJwCgrq7O0P5SdIokSRBCwOfzJdwrTJIkyLKM3t7emKqBiqKgoqIi4X1P9D7KnO7ublRVVaU8LxKJ6Nr3hn2wNt6X3KMoSsr9BceeW1FRgf7+flft6ZVpamXAsXtuGZXs70Vvf6fS2+9Z2Uaz72G8TcxI/8sNlIk0GNlQ8cYbb0y5ubCbeTweW8t+q78kJLuHIm7zZVWqzZQTvY8yR91eIdEvhGqwDgQCDrSOKDuFw+Fxg3myLOOBBx5ASUnJuF+O1bLiwWDQwVZnP/E/GwZ//etfx4svvogJEyagsrISlZWVupOFZJsjGy3JblcJd6MbOCf699bS0hJNUBlvrcF9vIg0GNmLKxeTrpKSEoRCITQ2NmLy5MlONycqPkjpDVrcn8Q53P+MyJhwOIxFixaN+yV33759uOqqq1BVVYXa2lpUVVWhoqIC4XAYAFBTU4PHH38c06ZNc6LZriGEwOHDh3H33Xfju9/9Li6++GLMnDkzeh/TYWTQ1sz5dgiHwwgGg+P+vfX39yMYDEbvC+OtNZh4UdYbu+nq008/jaefftrWDVjVx+35OHIYCoUQiUQwMDCAQCCAhoYGvP322043Kyo+SOkNWtkQ3PJZTU0NOjo6UF5eHvO6LMtpTfkhcopdm4ErioIbb7xR9/n79u3DokWL8NWvfhWhUAg33XQTjh07Zklb8sng4CAWLVqkmXwZ+btWB231bMTs9/sdf9KvKArq6uo0ZyOor4VCISiKwnhrFSOLxzZu3Gjk9JzEBcyZlawkKyxYKGv083L5GFti14p9wqyuiqVVRVJP+Vyfz5f3pW6zhRUliOP74D/96U9WN9OVGJsyx86qbk5tJsxDO86Y+bt2sqqhUUaqzhotqZ9PbKtqePXVV4srrrhi3IWPHDki7rvvPmOtdCkGt8zR23kl68DMbMrrdMfv1KHey7Vr14ri4mLH2xN/JNp7Rc8eNmPfx/1H3C2+Dz733HPF97//fYdb5TzGJv3S6QNSVXVraGgQ9fX1or6+XnR1dYmRkRFDn1VfX+94X5vtR2FhYdKfNzQ0GN7Pauyhbm2RTgU/J/bxMsNo1Vm9JfXzja3l5B988EHx0Y9+VLz00kviz3/+s7j++uvFnDlzxHe+8x1TjXUbBrfMMFKSVe3I4gPatm3bdO3tNDo6Krq6uoTX63U8oPBIfCTq2EdHR5PulTZ2FI77j7hffB/89ttvi9raWlFbWyuOHz/ucOucw9ikTzp9gNG4BIwvzZ5qX8KvfOUrjve12X5s2bJFNDY2jovZY8u6J0oQ9Bytra2WbPw+OjoqGhsbxfTp02PeW15enjUxx8w+i6lK6ucjWxOv0dFRceuttwqPxyNmzpwptm7dKt5///1x57333ntGL+0KDG6ZYWZPkoaGhuj7165dm7TDVDsIreSMR/YeWsHOyJ5r3H/E/RL1wQ8//LA477zzxPbt20Vvb6/me3M1LgnB2KRHunsQWbFXVqLPyudp7kaPrq4uEYlExJYtW0RTU5PYsmWL5tNEs/c0EolYsvF7Jve8MvsU1+z0Qc4ciWVb4tXQ0CDmzJkjbrjhBrFr1y5x6aWXiuXLl4sTJ06MO/cTn/jEuNdef/11Ix+XlRjcTon/n27sdIquri7R1dWV1v+QX/ziF011yF/84hd1bVzs9/vFmjVrHA8gPMwdY4Od3qkSyZ5o5vPcdLfR6oN7enrEl7/8ZXHWWWeJYDAo5s2bJ7xerzj//PNj3purcUkIxiYt8Zval5eXp9UH6O1r9Bzl5eXRONnY2Oh4n+qWY+rUqeP+HlM9RYxEIuJnP/uZmDZtWsrrq7Nn0t34Xc/TUatiTrozOTh9MH22JV733nuvGBwcjHlt3bp1Yv78+eLvf/+7EEKI//qv/xL33Xef+PCHPyz6+/tjzj3nnHOMfFxWypfglmw0Q+t/co/HkzTAGFmDNTIyMm56Bg8eY4+xwc6KUWj1SDZ6Sdkhvg8+++yzRWVlpejo6Ijpp95//33x2muvCSFyPy4JkT+xSa90nnYIoR2brOxreFh3pEoQjPxbUK+R7hMvK56Y6f13bsVTNU4fTI+tUw21/Pa3vxVnnXWWEEKIv//97+KRRx4R06dPF4FAQMyePVsEAgFx9dVXi/POO8+Kj3NUPgS3ZKMn6RSg0DO1QpZlsWzZMsc7ch7ZfYwNVnqmSsTPsU90JBq9pOwR3we//PLLKd+T63FJiPyITXqlE6dCoVDC2PT4449zanqWHomeWOr9t+Dz+cS2bdtEV1eXqK+vF3fccYcoLi42XcFvy5Ytutq9ZcuWpP+Wkw2CW7EOTe9nUXIZT7yOHz8u9u7dK06ePBl9bdeuXdH/3rdvn+jp6RFHjx614uMclevBLdXoSbIiBno6NvV/5Pb2dsc7ah7uO1IFV62pEkDqKljqwSde2U9vH3z8+HFx6NChvIhLQuR+bNLLTAEMHrlzxA/KJZteCkBMmzZN7NixQ7S3t+v+/UbP06SmpiZd12pqakp4jVRTCDP1VI1SM9L/noY0NTc34/bbb8eJEycwceJEzJs3D+eeey7OPfdcnH766fj4xz+O8vLycRtn5iN1Y96BgQGUlZUhEAjA4/E43awoPRvpDQ4Omr7+4OAguru7cfToUSxZssT0dSg/qRtSNjc3j/v/Rt2gt66uDvv27Yu+7vV6MTg4iOHh4ZTXlmXZ8c0syRqMS7lJTwzt6emJ6QMovwwMDET/e/369ejv7096/rFjx/CHP/wBDQ0Nuj+jvLwcy5cvx8jICLq7uzX/HZaUlOi6VqLzwuEwgsHguN/H+vv7EQwG0dHRgZGREV2fMfaeUBZIN8srLS0Vt956q3j11VfFM888I5qamsTSpUvFxz/+cTFx4kTh8XjE3LlzxeLFi9P9KEs98sgjoqKiQhQUFIhPfOIT4ne/+52u95kdVXRDGetMzF//X//rfzk+IsbDHUf8ukE9883jF9PrHfmWJEk0NjZyioUL6OmD8y0uCZH7T7z0xlArC2DwcN8xdg8uve/RMxW9uLg4WsZeT3GPdJ5G6Z1CqHezbT7xsl9Gpxp6vV7x5ptvav7sxIkT4qWXXhKbN28WoVAo3Y+yzNatW8Xpp58uHnvsMfHaa6+Juro6MWXKFPGPf/wj5XvNBLdMlhRNBwMWj2w4vF6vqY1H4+kNfIWFheOmmGTboAj9i54+ON/ikhDuSryMriXRG0NHR0d1T/HikVvH2Gnodk03NbIlSTpVDfXGLnVw0ew6NLJORhOvFStWiK1bt6Z7mYz69Kc/LVasWBHz2kc+8hHx7W9/e9y57733nhgaGooefX19um+uENYvfrQTKzZl/6F3rZLbj7FVxMwmXukMJGTboAj9i54Al+txSYtbEi+jsz/0xtD29nau7crxY+LEiUl/bnTtk9HD6JYkyQp7JIsvRkrZsxR8dsho4vXd735XfPjDHxY7duxI91IZMTIyIjwejwiHwzGvr1q1Snzuc58bd36iPaH0Bjc3LX7UUx0uneIaPNI7/H6/eOedd0RTU5M477zzHG+PnUcoFEp7am66wTebBkXoX/QEuFyPS0KkPyg4VqaqmZmZ/cEBQR56Dp/PF/334+Tsnfjf5cyUaTf6eyNLwTsvo4nXvHnzxOmnny4kSRKzZs0SX/rSl8Rdd90lwuFwdG+vbNLf3y8AiP/+7/+OeX39+vXiQx/60Ljz0w1u6W7Cl2l6Rk9CoZDjnWw+Hrfeemtej+gaHcFLNZCg98iGQRH6Fz0BLtfjkhDpDwqqMrX+2OzsD06B56HnGBsf7EjWkz3tGnto/S5ndGBDzyB4/P8rLAXvrIyXkx8ZGREvvvii+PGPfxwdofvABz4gJkyYYMXlLaUGuGeffTbmdXWENBWj0znc9MRLlWr0hCOQPOw8km3GbfQpVKoy83qObBkUoVP09sG5HpeseOKVyfXHZmMh4w0PI4fX6xU7duwQ5eXlaQ+6jT0aGxt1nWfV73KcQuguGU+8EtmzZ4+dlzfFzJSOsYwmXmZGLqySzgiInk37rOzUePAwchgJbloDCUY2Qc2mQRFKfy1TLsYlIczHpkT/7q2OTWZnfzDe8DBzTJ061ZLreL1e0djYKLZs2SKKi4sTnmfH73KcQugeWZN4ZatPf/rT4hvf+EbMax/96Ed1LWJOp6phJkcu7J4+YqRUK4/8PLxer+FflhYtWqTrPKNPoeIHErZs2aLrc8Zu+k3ZwS1FJIxKJy4Jkf2zMdL5PCueXKfqq5zuL3nYc0yYMEHXeZIkCVmWxW9/+1tRX18v6uvrRUNDg6EtSez4XY5TCN2BiVcKatneH//4x+K1114ToVBITJkyRddIqJX7eNk1cpGp6SNc68Uj0bF27dqEvywlOmRZzti+JHp/CWxsbLTk/xWyTq4mXunEJSGM35dMrz9Od/ZHohi6bdu2tJ6IXX311br7HR7uPUKhUHS6oJ5B8GQVCbWOscU9KP8w8dLhkUceER/84AfFxIkTxSc+8Qmxa9cuXe9LJ+hnYuQik9NHOPeeR/wxYcIE8fjjj0f/jWj9shR/jA16eqYVybIc/fdr9v8pPZ/Dp13ZKVcTLyHMxyUhsv+JlxDpz/5I9P+70V+S4z9bTd6c7j952Heov/foGQQ3sw8Y117lNyZeNsr2oJ/JYJru3PuSkhKxZcsW0dXVJXbs2GH7dA9JksTKlSvFddddJ04//XTHA0GuHvH/tsb+stTY2Jgy6KV6UqaOLKY7nTbV5zCAZqds74Od4pb1x3bN/ujs7Ey6BidZXFD3AXO67+Rh76HGplQDdmYHlbkFSf5i4mWjbA/6mZ4+omfuvd7RzVS/CK9atSqtDYS3bdsW/ayRkZG82Yw400eqf1t6nlJ1dnYm3DNOT6Lf3t6u+98vFy+7S7b3wU5xy/pjIeyb/TEyMmKocM7YIxKJ6Op31q1bxzVhLj30/t6T7hYGLMiUf5h42Sjbg75T00cS/fJq9BfbVOenSvSuvvrqcUEx0eelMz2FR+Lj/vvvT/sXqdHRUVFeXm66DR6PJybRTvVZXLzsHtneBzvFDeuPM8Ho2lL1UH8pHx0dFY2NjUnjiNnP4OHsofbvySo2RyIRUV9fn9bncAuS/MPEy0bZHvSdmj6ipzMzsnlgsvNT/aJg5PP0rEHiYfxItNBY79+NVesH3frLIyWW7X2wU7J9/XEmmenXk02R1huHeGTvoU4nTTQ93cq/Tz7xyj9MvGzkhqCfDxvvWfmLwujoqO4y5jyMHfFrt/SuyUp3qod6cL597nFDH+wE3pdYaoywc/+l0dFR0dXVlXLqoVV7SvEwf6xdu9b2J5TZssYr1wZS3ICJl43cEtxybfqI3TJdoXHSpEmOB6JMHOXl5aKrqyvh1gOJBgOs/Pvg6GNucUsfnGm8L4nZORhpZGsKrYGntWvX6nrSorZ17dq1ObHGLJNrrP/3//7flj3NUtcAZuvAtt17uJI2Jl42clNw46iHfulWaDR6tLe3p7WGKZcOrVFCK/8+ON8+t7ipD84k3pfk7BqMNFLQKlFMHvt0rqmpSdTV1Y0rEjK2rbmw71gmZ5kEg0HLrlVeXq6ZLGfDwHam9nCl8Yz0v5IQQoB0Gx4eRlFREYaGhlBYWOh0c8hC4XAYwWAQADD2fwtJkiCEQENDAxRFAQB4PB786Ec/Qn9/v6HP8Hg8aGtrw+LFi9HR0YHFixdb9wVcLhKJoLKyMvrnRH8f6V6X3I19sDbel9QURUFPTw8GBgZQVlaGQCAAj8eT1jW7u7tRVVWV8jyj/VCytiqKgoqKCuzbt89ss11NlmUsX74cDQ0NGf9sSZIAAO3t7SguLrb031I6Uv2bkCQJsiyjt7fX0XbmKkP9r705YO7hqGJuMzIqOjIykrD0cLJDLVuciYXZwWDQNWXz459MJaouph5er1dMmDAh4fWyZb49WYt9sDbeF2c4uR+a0312Jo/6+vqYJ4V6K98mixFmj2yMLU5UtKZ/MdL/TgARRdXU1GDPnj2IRCJobW1FJBJBb28vampqxp377LPPYnBw0PBnbN++HcFgMOHI1OzZsw1fMxEhBIaHhy27np02b96MK6+8Evfffz8ef/xxVFRUoKGhAUeOHNE8/+jRozh58qTmz9RRyebmZo7uEZFtPB4PWlpaAPyr31HZ2Q/V1NSgsbHR0muqpk6dast103HRRRdhyZIlqKyshMfjgcfjwYMPPpjyfYliRDqEEOjr60NPT4/l1zZrYGDA0vPIPky8iOJ4PB5UVlbGdPJazHZg/+f//J+EU+ckScL7778PWZbHBXEzuru7075GpuzcuRNPPvkkbrvtNlxzzTUpp9EIISBJEnw+H2RZjvmZLMvo6OjQTJiJiKxUU1ODjo4OlJeXx7xudz905513juv79NJKrnw+Hzo7O/Hkk0+m1a6mpiaEQiEUFxendR3gVEz0+/0IBALjflZdXY3GxkbHEsVsSmLKysosPY/sw8SLyCSzHViyJ1BCCOzbtw/Lly9Pa10TABQWFpp6IucmQggMDg5i9erVqK+vR319Pbq6uhI+pSQisoOR2RJWUZ+2SZKke6BuwoQJqK6uRkFBwbifqTHn4MGDptvk8/nwsY99DBs3bsSBAwfQ1NRk+lpqm7SeGIbD4eisiLfffjutzzArm5KYQCCQdMA2WQJLmcXiGgZxATOp1MWs/f39aSdJ8UKhEIBTU1TMmj9/Pl588UVrGuQisiyjpaXFll947FicT8awD9bG+5K/wuEw6urqLCu20djYmHbhCrUfHhkZQW1tbVrX6uzsjOnP1cJLdv36OmXKFHg8noSDpHYVqhgbX2bMmAHgVBKsN9YkKxAGgLNAbMTiGjbiAmYaK1H51nSPkpIS8dvf/jata9ixqDjdQ71XdpYStqt0LvdHyQ7sg7XxvuQ3dTNnKzZrnj59umX9cENDQ9rXUQtZ6N2w2qo4Ff/fmY4vZmIN93B1BsvJ24ijihQvHA5jxYoVOHTokKXXLS4uxuHDhy29ZqZIkgSv14tJkybFlNz3+/1obm62ZBQ01edbOSKZaISVI4mZxz5YG+8L6S1tn0kejye6DUs6Ghsb8dhjj1laQl/dKibRz7xeLyZPnhzzmWoMs7K/1/MEz0is4cyMzDPS/zLxMojBjbScOHEC5eXlKRMlSZIwZcoUx+akW2nq1KkJv4ckSejo6EB1dbVmAMjULwhW7OHF/VGyC/tgbbwv1NbWZuuAVj7q6uqCx+OxLYkxsicbY032MtL/srgGkQUmTpyIRx99VNcC57Vr12agRfbx+XwpFzTfdtttqKmpSVghMhAIjKsAZgcrqk719PQkDYoiC0sLE1H+yaZiD7ni4MGDuqocm5UqvozFWJMbmHgRWUQtKZyovK/f70dHR0daJYCNsKIcvZZHHnkEP/7xj5Oes3Xr1qTTS/TuwZIuK34R4f4oROQGqSrbkXF2J7Nm4gZjjbud5nQDiHJJTU1NdHpdf38/Dh06hJKSEpSXl8dMUWhpadGsPmQlu647MDCQcoSur68P3d3dSado1NTUoLOzE0uXLh339GzChAlYvXo1ZFnG6tWrTbXT5/NZUjqX+6MQkRuo5eXV2ELmqdP67C6/biZuMNa4G9d4GcR59GQVrRLAJSUllhfpsNott9yChx9+OOV5Xq8XR44cif45UZl3RVHw9NNP4+c//znefvttfPazn8XKlSsxceLEtEv2x5chNiNVGzjvPrPYB2vjfSGV1eXl800miyYZiXGMNdmLa7yIXEBrw819+/Zl/VSROXPm6DpvbNIFAP39/QgGgwiHwzGvezweLFy4ED//+c/xxBNP4NZbb8XEiROjP2tpaQFgbupkKBRKu6JWsjaof9ba4JOIyAljY8sdd9zhdHOyXny/LstyxirV6o1xjDW5g0+8DOKoItkt0SaITlNH29544w3MmTPH1FMosyN26YzgWlHZMFEb7CgtTMmxD9bG+0Ja0p01kMrUqVMRDAbxk5/8xPJrq3w+HwYHB227/tKlS3Httdeiu7sbAFBZWZlWIQ1FUdDd3W3oeqliHGNNdmM5eRsxuJHVtPbc2L59+7hOWJZlLF++HHPmzImuHXvttddw9913m/pcn88HSZIM7RUWCoVQXV2NQ4cO4eqrrwZgLjk0kwyp9+mRRx5BR0eH7ve1trZiyZIlBluYvA3cH8U57IO18b5QInYN5gWDQWzduhW33XYbmpubLbtuvLVr1+K+++6z7fqrVq1COBweF2+1psanEg6HceONN45LFH0+HzZt2pT0emPjy4wZMwCcqqrIWJP9DPW/1u3bnB+M7E5NlIrWLvPqDvWjo6MiEomI1tZWEYlExOjo6Lj3d3V1JdzpPtEhSZKQJEl0dnaKkZERUVxcnPI9Ho9nXBvXrl07ru0+n09XG2655ZaE3ymZ0dHRcZ+Z6ohEIhb9bVE2YB+sjfeFktGKNfH9utfrNdy3dnZ2Go5BRo677rrLcJ9vxTE2TsZLFJv13Aut65H7Gel/+cTLII4qklUS7Vavd2FvOBzGqlWr0N/fn/RzPB5PzDon9cnZ3LlzUVZWhl/+8pe4//77DbVdbeNdd90Vvbb6BOviiy/WfR2jo4pGNl7mQuTcxD5YG+8LpRL/xP6CCy7As88+G/2zoii6+2+/3x+ddm5nEY/7778ft956q23XT0YrhmhNCZRlGU1NTQiFQinjsSzL2LNnD2NSjuFUQxsxuJEVUu1WnyppSJS0abn11lvxxS9+EQMDA/jb3/6GTZs2xQSH+MTMrPLyclx33XXYsGGD7vcYrR7V1taG2tpa3dfO1AJpyhz2wdp4XyhdRtaDdXZ2wuv16h4IM+sLX/gCnnrqqZTnLVy4EDt27LClDfX19bjoootw+PBhXHXVVZqDpUZ+lbZq3TFlD1Y1JMpyqXarF0l2qFcUBXV1dbo7+vb2dgQCARQUFGDdunXjRuSsSLqAU1ULjSRdAKLfQW/1Qb37l5SUlDDpIiIyQE+FPZ/PF92mIxMb+epJuoBTCZpdvvvd76KqqgrXXHONZtw1+vyCGyDnNyZeRA7Yvn27rvO0OuhUSVs8dTNjI8laJiVLMuMFAoGU5fZLSkqwb98+Jl1ERAbV1NSgo6MD5eXlMa/7fD40Njbirbfeivat6Wzku3HjRni93qTn6J2O5/f7cdNNNyWNDZIkoaioyHA7x7JqkJIbIOc3Jl5EGaYoCrZs2aLrXK0OOtUcci3d3d1Zv5mmnlHAVHtqSZKE73//+3j22WfR1taG7u5uy4IlEVE+0Npj8q233sJdd90VkwzpGQiLJ0kS/H4/QqEQHnvssWi/HX8OoD/RaW5uxsSJE1Put3j99dfrbqddZFlGIBBwuhnkICZeRBnW09Ojq4R7SUnJuA46HA5j9erVhj+zq6vL8HsyTe8oYKIRWVmWcdttt2H16tWoqqpCbW0tqqqqUFFRMW7TZiIiSszj8aCyshJLlixJuAeV0Q3u4zcBTtaXh0IhXe2cOnUqqqurAZyKDe3t7SguLh53vY6Ojuh5TmppaWFhDfxrr7O8HCC1oapiTmPJXkpXa2urrnK2oVAo5n2dnZ1CkqSMl9W1+5AkSfj9flOl5ceW9G1vb9e8P8nKApP7sA/WxvtCTtEqVe/z+cZtL+L3+3WXZ49EIrpjiLpliFY7iouLRXt7e/RzZFm2JY6qcay9vV1zWxWfz8cY9D+SbaPjViwnbyNWjqJ06S2JPrbyUaoqiG5ltKphIulWiST3YB+sjfeFnKS1uTwA0xvOK4qCGTNm4MiRIynPra+vxznnnIOrr7465fYsiTaTVisTBoNBdHR06Gpjos9Qn+Z0d3cDOLXVSqKnhvkm3W10shXLyduIwY3Spadkr9/vj0kSjOxflY0kScLNN9+MrVu3xkyz9Pv9aG5uTrujNZPMkjuxD9bG+0JGaCVK2ZYYfOc730FDQ4Ouc5NtixI/8Ka1F5cai6qrq1PG51R7Y2bjvcwGuTxAynLyRFlMT4EIdQ68yu3lZ4UQePjhh3H48GGUlJQgFAohEomgt7fXktEtvffH7feR3Gf9+vW44IILcMYZZ+ADH/iA5jl79+7F5ZdfjilTpqC4uBirVq3CiRMnMttQyhvhcBgVFRWOrYXVu77nzjvvhM/n033NRERc5Vyt4iFqLNITn9va2qLvbWxsBAA0NDRwXXEK6Wyjk0uYeBE5INmiYq1H7XaXn83k6NLhw4fR0tKCI0eOWPa5eu8Py/hSpp04cQKLFy/GN77xDc2fK4qCyy67DMePH8fvf/97bN26FZ2dnbj11lsz3FLKB+pUr/hfgPv7+xEMBm1PGIwkfR6PB5s2bTJUNTGZsQNvyYqHpIrPixcvRmVlZXRvTKfupdtwgPR/2LPMLHdxATNZSWtRcaLzki0KliRJeDwe0wuDr776alcU1Eh2H1PdHys/j5zj1j548+bNoqioaNzrv/71r8WECRNEf39/9LW2tjZRUFCQ9Du+9957YmhoKHr09fW58r5Q5qj9ZKb65XiJCkSlKoCkVYzBzNHV1WWovcnis9P30o30FkxRi6W4iZG4xCdeRA7SU7JXPS/VHiVr1qzR3BMl1edv27Yt42V2hcVTCvTcn/jpm0TZ4A9/+APmzZuHWbNmRV+75JJLMDIyghdffDHh+zZs2ICioqLo4ff7M9FccjEnp3opioK6ujrNdVPqa6FQSHPKoDo18Nprr02rDUuXLjX0FCpZfOa0OeNS7fum7vGW6/ucMfEicolU0x/uvfdezZ8n09bWhmAw6NgUPCunFBidvkmUDQ4cOICZM2fGvDZ9+nRMnDgRBw4cSPi+22+/HUNDQ9Gjr6/P7qaSyzk51SvdRMXj8eCDH/xgWm2InwKYzl5SnDZnHAdITznN6QYQkX41NTWorq5OWI1K6+eHDx/G6tWrNSs4qcmIOhKVrJKTHaxO+FLdHyIrrFu3LrqoPpHnn38en/zkJ3VdT2sEWAiR9Ol1QUEBCgoKdF2fCHB2LWy6iYqiKAmL0xghhMCNN96IkydPjouLsiyjpaVF1yAd1xWbow6QxleVlGXZkgrHbsBy8gaxZC+5kZ7SwYn2N7GDm8vGkrOyoQ8+fPhwzLYIWioqKjBp0qTon3/yk58gFArhn//8Z8x5d911F7Zv347/+3//b/S1o0ePwuv14plnntG9jUQ23BfKbqm2MrGzX05nyw+t8u+JTJs2DceOHTPVRiN7STl5L3OBG7YzMMJQ/2vLKrMc5taF3UR6WLWI2e/3i7Vr10YXTY/9WaqF1ETJuLUPTlVcY//+/dHXtm7dmrK4Rjy33hfKLLXARab7ZbMFkBIV5Eh0hEKhjBV+cupeUvZhcQ0iMiV+f5Ouri4UFxfrem9TU1PMniiJ1pzJsoz29nZ4vV5Tc+uJ3GTv3r3YvXs39u7dC0VRsHv3buzevRtvv/02AGDhwoU4++yzce211+Kll17C008/jdtuuw3Lly/nkyuynFNrYc2s70lWkCOeLMvo7OzE9OnT02qnMFAUg+uKyQxONTSI0zko32zbtg1XXXVV0nP8fn/CKRXxUwoOHTqENWvWmJ5bT/nNbX3wsmXL8NOf/nTc62OnVO3duxc33XQTnnnmGUyePBm1tbXYuHGjoTVcbrsv5CynpnppTRuMX3Os0js9cdmyZfjRj34E4NQUXz1TElNpbW3FkiVLdJ2ba9PmyDgj/S8TL4MY3CgfffOb38R9992n+TNJknSP7qnryOK7HSNz652iFVwBMOBmGPtgbbwv5BZ6E5W2tjbU1tamvJ7X68XBgwfR09Oje01kKlprzaxKsJio5R6u8bIR59FTvtq2bZsoKSkZt5ZL7zx2N284qbX2zefzCZ/PF/OaLMuc128z9sHaeF8o1+jdcBeAaGpqElu2bEl7fXKytWbxMcBMf2/VdSi7GOl/+cTLII4qUj5LZ6QunapWTkr0lE6LG57cuR37YG28L5RrFEXBjBkzcOTIEV3nFxcXp6w2OpYkSTH9eqL+2+hMjURx0s0zPig5I/0vi2sQkW4ejweVlZVYsmQJKisrDU2PcOOGk0YWdwP/KsMfCoVYMISIKA0ejwd1dXW6zzeSdDU2NuoqipEsBmj19+FwGBUVFaiqqkJtbS2qqqpQUVGBbdu2GboO5S4+8TKIo4qU6+yaf+7GJ15626wlm75HLmEfrI33hdwqWcxRFAUzZ87E4OCgZZ+nFoMCUq/RNRK3jhw5kvCJlt5ftRk33MlI/3tahtpERC6gVXHKqoqDekYj/X5/tGhFNkjn6Vs2PbkjIspGqWKOx+PBpk2bsGjRIks+T5KkmLL1qZIcvf14f38/vv3tbyd9oqUH40bu41RDIgLwr3ns8aV4+/v7EQwGEQ6HTV9bURSsXr065Xn333//uBFHRVHQ3d3tyJ5fZWVljryXiCjX6Y05NTU16OzshCzLuq992WWXYcKE2F9xPR4PbrvtNkODiHr78UOHDllSxp5xI/cx8SIiw/PYk11HK0nq6enRFZRKSkpi/pxovnw6SaARgUAAsiyP2/AzGUmSsu7JHRFRNjEac2pqarBnzx40NTXpuv6vfvUrnDx5ctxnbty40VD8SBUD1P4+PnYZxbiRP5h4EVHKxEgIgb6+PvT09CQ8J1mSZKawhp1P4LRoJY0ejwctLS0AoCv5Us8ZO5WFiIhimYk5Ho8HK1euTJkIpep7jRSxSBYDxvb38YU6kkl2HcaN3MfEi4jSrjiYKkn629/+puv66jQLq57A6ZUsaaypqUFHR8e4wOrz+eDz+WJe06qKRUREsczGnFSJkBAiaVzQM4gYL1EMGNvfq0/GElGfaG3btk1XNUXKXSyuQUS655VrnZcqSZIkCY899hjKy8uxf/9+zfMkSYIsy9FpFkZGQ9OtAJVobxU1aVQDYnV19bgKWGpbra4ASUSUy9KJOWoipFWUY9GiRWhubk55XaNFLBLFALW/3759O959913N9459olVTU4Mrr7yScSOPsZy8QSzZS7lIURRUVFSgv78/aWLU29trutxuY2Mj1q1bBwApN61sa2tDbW1tymu2trZiyZIlKc9LRP3eiZK8ZN+bnME+WBvvCznJ6DYkesrE+3w+vPXWWwmvo/WZPT09Gd+2JNHgncrn82HTpk18opXD8nID5T179uCGG27A7NmzMXnyZMyZMwcNDQ04ceJEzHl79+7F5ZdfjilTpqC4uBirVq0adw5RvtE7j10rAOodOZw7d27K6RqqdEZDjbBibRsRUT4zWwQp3XF/j8eDyspKLFmyBJWVlfB4PLqLYVhVxCLZjA/V5MmTUV1dbcnnkfvlzFTDv/71rzh58iQeffRRnHXWWfjLX/6C5cuX4/jx49i4cSOAU/+DXHbZZSgpKcHvf/97DA4OYunSpRBC4KGHHnL4GxA5K9n0DXWKhBa9yc+MGTPg8Xhwzz334NChQygpKUF5ebnmyKgaPFM9gTMTPMeOkr722mu63sO9VYiIxtM7VTve+vXrceTIkaTXHhwcNDydXB1EDAaDCTcutrKIhZ6Kvfv27bNkWjzlCJHD7r33XjF79uzon3/961+LCRMmiP7+/uhrbW1toqCgQAwNDem65tDQkACg+3witxkdHRWRSES0traKSCQiRkdHU54vy7KQJEkAGHdIkiR8Pp8oLy+PeV2WZdHZ2Znwup2dnUKSpHHXVV9L9t5k15RlWbOdyY5IJGL4s8ge7IO18b5Qpql9f6J+U5Ik4ff7x8WQzs5O3X1va2urqbZ1dnYKn8837no+n89U7EiktbXV1u9B7mCk/82ZqYZahoaG4PV6o3/+wx/+gHnz5mHWrFnR1y655BKMjIzgxRdf1LzGyMgIhoeHYw6iXKY1fSPV+amqTA0ODqK/vz/mZ6nKwuupJGVEosqLyXBvFSIibWamaqtT8/RKZzq51vqxI0eOWLodid3T4hPtjUnulbOJ15tvvomHHnoIK1asiL524MABzJw5M+a86dOnY+LEiThw4IDmdTZs2ICioqLo4ff7bW03UTbR2+knSpLKy8vHlVxXCR1l4dVNMyORCFpbWxGJRNDb22s46dIzDz8e91YhIkrMTEl4PVPzVGYHvZIld3rijt7P6O7uRn9/P4qLixOel87gndm1c5Tdsj7xWrduHSRJSnq88MILMe/Zv38/Lr30UixevBhf+9rXYn6mteBS/E/Jay233347hoaGokdfX591X44oixnt9LWSpJ/85CdJq1ZpjYjGM/oETouRYK/i3ipERImZedpjZL3s/fffb0t/ryfuJDM2Nn7lK1/B4cOHNc9LZ/Au1d6YTL7cK+uLa9xyyy245pprkp5TUVER/e/9+/ejqqoKCxYswKZNm2LOKy0txR//+MeY144ePYr3339/3JMwVUFBAQoKCsw1nsilzC6YVpMkVVtbm67Ps7t4hd7r19fX4+yzz+beKkREKZgpgmRkyl1JSYmpdpndnFmPVKXjx/J6vabKyOvZGzMUCqG6upoxyoWyPvEqLi5O+hh3rP7+flRVVWH+/PnYvHkzJkyIfaC3YMECrF+/PrrnAwDs2LEDBQUFmD9/vuVtJ3IjKzv9TJWFt+r6F110EStPERHpkKyCYKKnPYFAAF6vN2VFQ8D8gJxdccfolHWzZeSNPLFjvHKfrJ9qqNf+/ftRWVkJv9+PjRs34tChQzhw4EDM2q2FCxfi7LPPxrXXXouXXnoJTz/9NG677TYsX76cG04S/Q8rp2lkek+VbG8HEVEuMVoEyePx6C6uYXZALlV/D5za1Nhof290yrpaRt4oO5/YkfNyJvHasWMH3njjDTzzzDOQZRllZWXRQ+XxePCrX/0KkyZNwmc+8xlcddVVuOKKK6L7fBGRtZ1+OhszWylb2kFElGuMFkG68847ExZdAtIfCFP7+2RPpgYHB7F9+3ZD1zWT6Jh5T7bMFCF75EzitWzZMgghNI+xzjzzTPzyl7/EO++8g8HBQTz00ENcw0U0htWdvtVl4c3KlnYQEeUaI0WQPB4PNm3apPlEyqqBsOrq6pTJndHKhmYSHTPv4QyN3CYJI/WVCcPDwygqKsLQ0BCnJ1JOUhQFFRUVKRdM9/b2GgqMiqKgp6cnusbSqeIV2dIOMod9sDbeF3KbcDiMurq6mOl7fr8fzc3NugfCEvXn3d3dqKqqSvn+SCSie51Uqtg4ltk4qVKLeADQXDvHwcLsYqT/zfriGkSUWWYWTOu9bjYsBM6WdhAR5StFUeD1enHPPffg0KFDKCkpQXl5uaGBMK3ETZZltLS0YGRkRNc1jEwFTBYbx7LiqZ06Q0Pr+xlJTCn75MxUQyKyDqflERGRHeL3wVq9ejW+/e1v48iRI4aSrmT7XP3tb3/TdR2jUwETxcaxrIqTRtfOkTtwqqFBnM5B+YTT8ijbsA/WxvtCbpBoHywjU+jUKX+JKgxKkoTy8nIIIbB//35Lp8yPbYMaG2fMmAEAOHjwIONknjLS/zLxMojBjYjIOeyDtfG+ULbTkzDpSYb0rt9qbGzEunXrAHCdFNnLSP/LqYZEREREZCur9ojUuy5r7ty5aU+ZVxQF3d3daGtrQ3d3t6EqiHbItvaQcSyuQURERES2smqPSCNbnlRWVqK6utrUlPlkxTuceFKWbe0hc5h4EZErcL0ZEZF7WbVHpLrPVaotT9R9rsxUsk20Fk0t3pHpaYrZ1h4yj1MNiSjrja2CVVtbi6qqKlRUVCAcDjvdNCIi0sGqjYHVsu7qe+KvAaRXyl1RFNTV1WkmdeprRjdfTke2tYfSw8SLiLJaqrLBTL4oW+3Zswc33HADZs+ejcmTJ2POnDloaGjAiRMnYs7bu3cvLr/8ckyZMgXFxcVYtWrVuHOI3M7KhMnOLU+sWotmlWxrD6WHUw2JKC12TgFMNdInSRJCoRCqq6s1P5PTE8lJf/3rX3Hy5Ek8+uijOOuss/CXv/wFy5cvx/Hjx7Fx40YAp/6NXnbZZSgpKcHvf/97DA4OYunSpRBC4KGHHnL4GxBZy8qNgWtqakyv30rGqrVoVsm29lB6mHgRkWl2L/Y1MtIXP4efC5HJaZdeeikuvfTS6J//7d/+Da+//jp+8IMfRBOvHTt24LXXXkNfXx9mzZoFALj//vuxbNkyrF+/nqXhKedYmTCZWb+VilVr0aySbe2h9HCqIRGZkokpgGZH+jg9kbLV0NAQvF5v9M9/+MMfMG/evGjSBQCXXHIJRkZG8OKLLya8zsjICIaHh2MOIrdQE6YlS5agsrIyq2YiWLUWLVfbQ+lh4kVEhmVqsa+ZkT4uRKZs9eabb+Khhx7CihUroq8dOHAAM2fOjDlv+vTpmDhxIg4cOJDwWhs2bEBRUVH08Pv9trWbKJek2gvL7uIdRmVbeyg9TLyIyLBMLfY1M9LHhchkt3Xr1kGSpKTHCy+8EPOe/fv349JLL8XixYvxta99LeZnWv++1TWMidx+++0YGhqKHn19fdZ8OaIcprdCbjrFO+zY5NjOYiKUWVzjRUSGZWqxrzrSFwwGIUlSzFOsRCN9XIhMdrvllltwzTXXJD2noqIi+t/79+9HVVUVFixYgE2bNsWcV1paij/+8Y8xrx09ehTvv//+uCdhYxUUFKCgoMB444nylNG9sMysRbNzbbFdxUQos5h4EZFhmVzsa7QKFhcik92Ki4tRXFys69z+/n5UVVVh/vz52Lx5MyZMiJ1osmDBAqxfvz76ixRwquBGQUEB5s+fb3nbifKR2Qq5Rop3ZGKTYzuKiVBmSULrXyElNDw8jKKiIgwNDbHaFOUtRVFQUVGB/v5+zUAmSRJkWUZvb6+lpeX1jPQ50TbKHDf1wfv378eFF16IM888Ez/72c9i/r2VlpYCOPXv9dxzz8XMmTNx33334ciRI1i2bBmuuOIKQ+Xk3XRfiDKtu7sbVVVVKc+LRCKmEhs17iSa5p6puMMtVJxhpP/lEy8iMszMFEArPlNPQHSibURaduzYgTfeeANvvPEGZFmO+Zn679Lj8eBXv/oVbrrpJnzmM5/B5MmTUVtbGy03T0Tps3sKejpbn1iFW6i4A4trEJEp2bzYN5vbRvlj2bJlEEJoHmOdeeaZ+OUvf4l33nkHg4ODeOihh7h+i8hCdk9Bd3ptMbdQcQ9ONTSI0zmIYmXz1Aan2pbN98Tt2Adr430hSszuKeh2T2VMJlumOeYzTjUkoozJ5sW+TrSN0z2IiDJHz0CX3VPQ1a1PUiV2yTY5Njtglw3THEk/TjUkIrIIp3sQEWWO3n25AHunoKe7ybGR7xHP6WmOZAwTLyIiC6QqVwwAoVDIks00iYjynZmBrpqaGuzZsweRSAStra2IRCLo7e21ZDaC2cQu3QE7bqHiLlzjZRDn0RORFifn+OcT9sHaeF8on2TzuiYjUwat+B7cQsV5RvpfPvEiIrIAp3sQEWWGkXVNmaauLV6yZAkqKyuTJjtWfI90pzlSZjHxIiKyAKd7EBFlRq4MdFn1PbiFinuwqiERkQWsqGpFRESp5cpAl5Xfo6amBtXV1dzKJMsx8SIisoDd5YqJiOiUXBnosvp7ZPP2LnQKpxoSEVmE0z2IiOyXK+uacuV7kH5MvIiILGRnuWIiIjolVwa6cuV7kD4sJ28QS/YSETmHfbA23hfKV0bKt2ezXPke+chI/8s1XkRERETkSrmyrilXvgclx6mGRERERERENmPiRUREREREZDMmXkRERERERDZj4kVERERERGQzJl5EREREREQ2Y+JFRERERERkMyZeRERERERENmPiRUREREREZDMmXkRERERERDZj4kVERERERGQzJl5EREREREQ2Y+JFRERERERkMyZeRERERERENmPiRUREREREZDMmXkRERERERDZj4kVERERERGQzJl5EREREREQ2Y+JFRERERERkMyZeRERENvnSl76EM888E5MmTUJZWRmuvfZa7N+/P+acvXv34vLLL8eUKVNQXFyMVatW4cSJEw61mIiI7MLEi4iIyCZVVVVob2/H66+/js7OTrz55psIBoPRnyuKgssuuwzHjx/H73//e2zduhWdnZ249dZbHWw1ERHZQRJCCKcb4SbDw8MoKirC0NAQCgsLnW4OEVFecXsf/Itf/AJXXHEFRkZGcPrpp+Opp57CF7/4RfT19WHWrFkAgK1bt2LZsmU4ePCg7u/o9vtCRORWRvrfnHziNTIygnPPPReSJGH37t0xP+OUDiIicsKRI0fwn//5n7jgggtw+umnAwD+8Ic/YN68edGkCwAuueQSjIyM4MUXX0x4rZGREQwPD8ccRESU3XIy8frmN78ZE8RUnNJBRESZ9q1vfQtTpkyBz+fD3r17sX379ujPDhw4gJkzZ8acP336dEycOBEHDhxIeM0NGzagqKgoevj9ftvaT0RE1si5xOupp57Cjh07sHHjxnE/27FjB1577TVs2bIF5513Hi6++GLcf//9eOyxxzhaSJTnFEVBd3c32tra0N3dDUVRnG4SZal169ZBkqSkxwsvvBA9f+3atXjppZewY8cOeDweXHfddRg7y1+SpHGfIYTQfF11++23Y2hoKHr09fVZ+yWJiPJApmP/abZePcPeeustLF++HE8++STOOOOMcT9PNaWjqqpq3HtGRkYwMjIS/TMTNKLcEw6HUVdXh3379kVfk2UZLS0tqKmpcbBllI1uueUWXHPNNUnPqaioiP53cXExiouL8aEPfQgf/ehH4ff78dxzz2HBggUoLS3FH//4x5j3Hj16FO+///64J2FjFRQUoKCgIK3vQUSUz5yI/TmTeAkhsGzZMqxYsQKf/OQnsWfPnnHnmJnSsWHDBjQ2NtrRZCLKAuFwGMFgEPF1hvr7+xEMBtHR0cHki2KoiZQZ6r8zdUBvwYIFWL9+PQYGBlBWVgbg1OyMgoICzJ8/35oGExFRDKdif9ZPNdQ7peOhhx7C8PAwbr/99qTXMzqlg9M5iHKXoiioq6sb1/EC//oFORQKcdohmfKnP/0JDz/8MHbv3o1//OMfiEQiqK2txZw5c7BgwQIAwMKFC3H22Wfj2muvxUsvvYSnn34at912G5YvX87qhERENnAy9md94nXLLbfg//2//5f0mDdvHp555hk899xzKCgowGmnnYazzjoLAPDJT34SS5cuBQCUlpaOe7KVakpHQUEBCgsLYw4iyg09PT0xUwziCSHQ19eHnp6eDLaKcsXkyZMRDodx0UUX4cMf/jC++tWvYt68edi1a1d0mqDH48GvfvUrTJo0CZ/5zGdw1VVX4YorrtBcp0xEROlzMvZn/VRDvVM6HnzwQXz3u9+N/nn//v245JJL8Pjjj+P8888HwCkdRBRrYGDA0vOIxvrYxz6GZ555JuV5Z555Jn75y19moEVERORk7M/6xEuvM888M+bPU6dOBQDMmTMHsiwDiJ3Scd999+HIkSOc0kGUx9QBGKvOIyIiouzmZOzP+qmGVuKUDiIaKxAIQJblhGs8JUmC3+9HIBDIcMuIiIjIDk7G/px54hWvoqJCc9Ecp3QQkcrj8aClpQXBYBCSJGnurdTc3AyPx+NUE4mIiMhCTsb+vHriRUQUr6amBh0dHSgvL495XZZllpInIiLKQU7FfkloPRaihIaHh1FUVIShoSGuCyPKIYqioKenJ1p8JxAI8ElXFmIfrI33hYjIOCtiv5H+N2enGhIRGeHxeFBZWel0M4iIiChDMh37OdWQiIiIiIjIZky8iIiIiIiIbMbEi4iIiIiIyGZMvIiIiIiIiGzGxIuIiIiIiMhmTLyIiIiIiIhsxnLyBqnbng0PDzvcEiKi/KP2vdyCMhZjExGRM4zEJSZeBh07dgwA4Pf7HW4JEVH+OnbsGIqKipxuRtZgbCIicpaeuCQJDhsacvLkSezfvx/Tpk2DJEm2ftbw8DD8fj/6+vpS7oSdLdjmzHFju9nmzMjlNgshcOzYMcyaNQsTJnC2vIqxKTm2OTPY5sxxY7tztc1G4hKfeBk0YcIEyLKc0c8sLCx0zT9QFducOW5sN9ucGbnaZj7pGo+xSR+2OTPY5sxxY7tzsc164xKHC4mIiIiIiGzGxIuIiIiIiMhmTLyyWEFBARoaGlBQUOB0U3RjmzPHje1mmzODbSY7ufHvim3ODLY5c9zYbraZxTWIiIiIiIhsxydeRERERERENmPiRUREREREZDMmXkRERERERDZj4kVERERERGQzJl5EREREREQ2Y+LlEl/60pdw5plnYtKkSSgrK8O1116L/fv3O92spPbs2YMbbrgBs2fPxuTJkzFnzhw0NDTgxIkTTjctqfXr1+OCCy7AGWecgQ984ANON0fT97//fcyePRuTJk3C/Pnz0dPT43STkvrd736Hyy+/HLNmzYIkSXjyySedblJSGzZswKc+9SlMmzYNM2bMwBVXXIHXX3/d6Wal9IMf/ADnnHMOCgsLUVhYiAULFuCpp55yulm6bdiwAZIkIRQKOd0U0sltsYlxyV6MTfZyY2xye1wCrI1NTLxcoqqqCu3t7Xj99dfR2dmJN998E8Fg0OlmJfXXv/4VJ0+exKOPPopXX30VTU1N+OEPf4g77rjD6aYldeLECSxevBjf+MY3nG6KpscffxyhUAh33nknXnrpJQQCAXzhC1/A3r17nW5aQsePH8fHP/5xPPzww043RZddu3bh5ptvxnPPPYedO3didHQUCxcuxPHjx51uWlKyLOOee+7BCy+8gBdeeAH//u//jurqarz66qtONy2l559/Hps2bcI555zjdFPIALfFJsYl+zA22c+NscnNcQmwITYJcqXt27cLSZLEiRMnnG6KIffee6+YPXu2083QZfPmzaKoqMjpZozz6U9/WqxYsSLmtY985CPi29/+tkMtMgaAeOKJJ5xuhiEHDx4UAMSuXbucboph06dPFz/60Y+cbkZSx44dE3PnzhU7d+4UF154oairq3O6SWSSG2MT45I1GJsyz62xyQ1xSQh7YhOfeLnQkSNH8J//+Z+44IILcPrppzvdHEOGhobg9XqdboZrnThxAi+++CIWLlwY8/rChQvx7LPPOtSq3Dc0NAQArvq3qygKtm7diuPHj2PBggVONyepm2++GZdddhkuvvhip5tCaXBrbGJcSh9jkzPcFpvcFJcAe2ITEy8X+da3voUpU6bA5/Nh79692L59u9NNMuTNN9/EQw89hBUrVjjdFNc6fPgwFEXBzJkzY16fOXMmDhw44FCrcpsQAmvWrMFnP/tZzJs3z+nmpPTKK69g6tSpKCgowIoVK/DEE0/g7LPPdrpZCW3duhV//vOfsWHDBqebQia5OTYxLlmDsSnz3BSb3BaXAPtiExMvB61btw6SJCU9Xnjhhej5a9euxUsvvYQdO3bA4/HguuuugxAi69sNAPv378ell16KxYsX42tf+5or2pzNJEmK+bMQYtxrZI1bbrkFL7/8Mtra2pxuii4f/vCHsXv3bjz33HP4xje+gaVLl+K1115zulma+vr6UFdXhy1btmDSpElON4f+hxtjE+NSdmBsyhw3xSY3xSXA3tgkCSd+cycAp0aIDh8+nPSciooKzb/0ffv2we/349lnn83441qj7d6/fz+qqqpw/vnn4yc/+QkmTMh8vm/mXv/kJz9BKBTCP//5T5tbp9+JEydwxhlnYNu2bbjyyiujr9fV1WH37t3YtWuXg63TR5IkPPHEE7jiiiucbkpKK1euxJNPPonf/e53mD17ttPNMeXiiy/GnDlz8OijjzrdlHGefPJJXHnllfB4PNHXFEWBJEmYMGECRkZGYn5GmeHG2MS45CzGpsxye2zK5rgE2BubTrOqkWRccXExiouLTb1XzZdHRkasbJIuRtrd39+PqqoqzJ8/H5s3b3YkuAHp3etsMnHiRMyfPx87d+6MCW47d+5EdXW1gy3LLUIIrFy5Ek888QS6u7tdGdhUQghH+gk9LrroIrzyyisxr11//fX4yEc+gm9961tMuhzixtjEuOQsxqbMyJXYlM1xCbA3NjHxcoE//elP+NOf/oTPfvazmD59Ov7+97/jrrvuwpw5c7J6ceL+/ftRWVmJM888Exs3bsShQ4eiPystLXWwZcnt3bsXR44cwd69e6EoCnbv3g0AOOusszB16lRnGwdgzZo1uPbaa/HJT34SCxYswKZNm7B3796sXqPw9ttv44033oj+ube3F7t374bX68WZZ57pYMu03XzzzWhtbcX27dsxbdq06BqFoqIiTJ482eHWJXbHHXfgC1/4Avx+P44dO4atW7eiu7sbv/nNb5xumqZp06aNW5ugrhXK9jUL5M7YxLhkH8Ym+7kxNrktLgE2x6a06yKS7V5++WVRVVUlvF6vKCgoEBUVFWLFihVi3759Tjctqc2bNwsAmkc2W7p0qWabI5GI002LeuSRR8QHP/hBMXHiRPGJT3wi60vJRiIRzXu6dOlSp5umKdG/282bNzvdtKS++tWvRv9dlJSUiIsuukjs2LHD6WYZwnLy7uHG2MS4ZC/GJnu5MTblQlwSwrrYxDVeRERERERENmNVQyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIimzHxIiIiIiIishkTLyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEicqlf//rXkCQp4XHVVVc53UQiIsozjE1EiUlCCOF0I4jIuHfffRdDQ0MxrymKguuvvx4vvfQSnnnmGXzsYx9zqHVERJSPGJuIEjvN6QYQkTmTJ0/G5MmTo39WFAVf+cpXGNiIiMgxjE1EiTHxIsoBamDbuXMnAxsREWUFxiaiWFzjReRyiqLg2muvxc6dO/H000/jnHPOif7s73//O/7rv/7L9LWvvPJKTJ8+HcFg0IqmEhFRnmBsIhqPiReRi6mBbceOHXj66afx8Y9/PObnTz31FP7617+avv6qVavws5/9LN1mEhFRHmFsItLGxIvIpdTA9tvf/hZdXV3jAtuuXbtQX1+Pxx57DOeddx7effddw59RVVWFadOmWdVkIiLKcYxNRIlxjReRCymKguuuuy4a2M4999xx51x44YWYN28eWltb4ff7M99IIiLKK4xNRMkx8SJymZMnT+K6667Dk08+iY6ODpSVleHAgQMx55SUlMDj8WDfvn2agW3+/PkYGRkZ9/qOHTswa9Ys29pORES5ibGJKDUmXkQu8/zzz6O1tRUA8B//8R+a5xw9ehRvv/02ysvLNX/+4osv2tY+IiLKP4xNRKkx8SJymfPPPx969j1/5ZVXOEJIREQZwdhElBqLaxDlqHnz5uFvf/sbPvaxj5muHnXJJZdg8eLF+PWvfw1ZlvH8889b3EoiIsonjE2UzyShZ3iCiIiIiIiITOMTLyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIimzHxIiIiIiIishkTLyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIim/1/RAAPzeqWGMIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAF1CAYAAAD4LDsuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvkklEQVR4nO3df3gU1b0/8PewSkAgKbsJJGTWhov0hw+1Wtr6xXZrcrVor7XRsKikVbAWS1XIgtJWzdeQPkWsokn80VZsv/QHN8GQrNLb1haiG5pea6tWvlr91qfaUEIIAoEmiBrMcL5/cGeb3czuzszO7Ozsvl/PM88jm9nZswOeTz5nzvkcSQghQERERERERLaZ4HQDiIiIiIiIch0TLyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIimzHxIiIiIiIistlpTjfAbU6ePIn9+/dj2rRpkCTJ6eYQEeUVIQSOHTuGWbNmYcIEjh2qGJuIiJxhJC4x8TJo//798Pv9TjeDiCiv9fX1QZZlp5uRNRibiIicpScuMfEyaNq0aQBO3dzCwkKHW0NElF+Gh4fh9/ujfTGdwthEROQMI3GJiZdB6hSOwsJCBjciIodwOl0sxiYiImfpiUucIE9ERERERGQzJl5EREREREQ2Y+JFRERERERkMyZeRERERERENmPiRUREREREZDMmXkRERERERDZjOXkiogxSFAU9PT0YGBhAWVkZAoEAPB6P080iIqIsw3iRe5h4ERFlSDgcRl1dHfbt2xd9TZZltLS0oKamxsGWERFRNmG8yE2cakhElAHhcBjBYDAmiAJAf38/gsEgwuGwQy0jIqJswniRu5h4ERHZTFEU1NXVQQgx7mfqa6FQCIqiZLppRESURRgvchsTLyIim/X09IwbuRxLCIG+vj709PRksFVERJRtGC9yGxMvIiKbDQwMWHoeERHlJsaL3MbEi4jIZmVlZZaeR0REuYnxIrcx8SIislkgEIAsy5AkSfPnkiTB7/cjEAhkuGVERJRNGC9yGxMvIiKbeTwetLS0AMC4YKr+ubm5mfuzEBHlOcaL3MbEi4goA2pqatDR0YHy8vKY12VZRkdHB/dlISIiAIwXuUwSWvUqKaHh4WEUFRVhaGgIhYWFTjeHiFxGURT09PRgYGAAZWVlCAQCHLk0gH2wNt4XotzDeOEORvrf0zLUJiIiwqlpJJWVlU43g4iIshzjRe7hVEMiIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIimzHxIiIiIiIishmLaxARERER5QhWQ8xeOfvEa8OGDZAkCaFQKPqaEALr1q3DrFmzMHnyZFRWVuLVV191rpFERERERBYJh8OoqKhAVVUVamtrUVVVhYqKCoTDYaebRsjRxOv555/Hpk2bcM4558S8fu+99+KBBx7Aww8/jOeffx6lpaX4/Oc/j2PHjjnUUiIiIiKi9IXDYQSDQezbty/m9f7+fgSDQSZfWSDnEq+3334bX/7yl/HYY49h+vTp0deFEGhubsadd96JmpoazJs3Dz/96U/xzjvvoLW11cEWExERERGZpygK6urqIIQY9zP1tVAoBEVRMt00GiPnEq+bb74Zl112GS6++OKY13t7e3HgwAEsXLgw+lpBQQEuvPBCPPvsswmvNzIyguHh4ZiDiIiIiChb9PT0jHvSNZYQAn19fejp6clgqyheTiVeW7duxZ///Gds2LBh3M8OHDgAAJg5c2bM6zNnzoz+TMuGDRtQVFQUPfx+v7WNJiKinPaDH/wA55xzDgoLC1FYWIgFCxbgqaeeiv6c64+JKF0DAwOWnkf2yJnEq6+vD3V1ddiyZQsmTZqU8DxJkmL+LIQY99pYt99+O4aGhqJHX1+fZW0mIqLcJ8sy7rnnHrzwwgt44YUX8O///u+orq6OJldcf0xE6SorK7P0PLJHziReL774Ig4ePIj58+fjtNNOw2mnnYZdu3bhwQcfxGmnnRZ90hX/dOvgwYPjnoKNVVBQEB2lVA8iIiK9Lr/8cvzHf/wHPvShD+FDH/oQ1q9fj6lTp+K5557j+mMiskQgEIAsywkfJkiSBL/fj0AgkOGW0Vg5k3hddNFFeOWVV7B79+7o8clPfhJf/vKXsXv3bvzbv/0bSktLsXPnzuh7Tpw4gV27duGCCy5wsOVERJQvFEXB1q1bcfz4cSxYsIDrj4nIEh6PBy0tLQDGz+5S/9zc3Mz9vByWM4nXtGnTMG/evJhjypQp8Pl8mDdvXnRPr7vvvhtPPPEE/vKXv2DZsmU444wzUFtb63TziYgoh73yyiuYOnUqCgoKsGLFCjzxxBM4++yzuf6YiCxTU1ODjo4OlJeXx7wuyzI6OjpQU1PjUMtIdZrTDcikb37zm3j33Xdx00034ejRozj//POxY8cOTJs2zemmERFRDvvwhz+M3bt345///Cc6OzuxdOlS7Nq1K/pzM+uP16xZE/3z8PAwky8iQk1NDaqrq9HT04OBgQGUlZUhEAjwSVeWkIRWwX9KaHh4GEVFRRgaGuJ6LyKiDMuVPvjiiy/GnDlz8K1vfQtz5szBn//8Z5x33nnRn1dXV+MDH/gAfvrTn+q6Xq7cFyIitzHS/+bMVEMiIiK3EEJgZGQEs2fP5vpjIqI8kVdTDYmIiDLtjjvuwBe+8AX4/X4cO3YMW7duRXd3N37zm9/ErD+eO3cu5s6di7vvvpvrj4lcTFEUTvUjTUy8iIiIbPTWW2/h2muvxcDAAIqKinDOOefgN7/5DT7/+c8D4PpjolwSDodRV1eHffv2RV+TZRktLS0sbkFc42UU59ETETmHfbA23hci54XDYQSDQST61bq9vR2LFy+27fP5pM0ZRvpfPvEiIiIiIkqDoiioq6tLmHQBwJIlSyBJEoLBoOWfzydt7sDiGkREREREaejp6YlJerQoioLFixcjHA5b+tnqk7b4z+/v70cwGLT888g8Jl5ERERERGkYGBjQfW4oFIKiKJZ8brInbeprVn4epYeJFxERERHlFUVR0N3djba2NnR3d5tOTNTrvPbaa7rf09fXh56eHlOfFy/VkzYhhKWfR+nhGi8iIiIiyhtWrYfSuo5eRp6QWXEdqz6P0sMnXkRERESUF6xaD5XoOnqVlZWZep/Z61j1eZQelpM3iCV7iYicwz5YG+8LUWqKoqCioiJhsiRJEmRZRm9vb9Iy7Kmuk4zez9BLbUt/f7/mOi+rP4/GM9L/8okXEREREeU8q9ZD6algqEWSJABAc3OzZUmQx+NBS0tLzPXt/DxKDxMvIiIiIsp5Vq2H0nsdr9cb82dZltHR0WH5vlo1NTXo6OhAeXl5Rj6PzGNxDSIiIiLKeVath9J7nfb2dng8HgwMDKCsrAyBQMC2J081NTWorq5GT09PRj6PzGHiRUREREQ5LxAIQJbllOuhAoGAJdeprKzMaOLj8XhQWVmZsc8j4zjVkIiIiIhynlXrobiuisxi4kVEREREecGq9VBcV0VmsJy8QSzZS0TkHPbB2nhfiIxRFMWS9VBWXYfcy0j/yzVeRERERJRXrFoPxXVVZAQTLyJyLY40EhERkVsw8SIiVwqHw6irq4vZxFKWZbS0tGRkbj2TPiIiIjKCxTWIyHXC4TCCwWBM0gUA/f39CAaDCIfDtn9+RUUFqqqqUFtbi6qqKlRUVNj+uUREROReTLyIyFUURUFdXZ3m3inqa6FQCIqi2PL5Tid9RETkXoqioLu7G21tbeju7rYtVlF2YuJFRK7S09MzLukZSwiBvr4+9PT0WP7ZTid9RETkXpwtQUy8iMhVBgYGLD3PCCeTPiIici/OliCAiRcRuUxZWZml5xnhZNJHRETuxNkSpGLiRUSuEggEIMsyJEnS/LkkSfD7/QgEApZ/tpNJHxERuRNnS5CKiRcRuYrH40FLSwsAjEu+1D83NzfbUtrdyaSPiIjcibMlSMXEi4hcp6amBh0dHSgvL495XZZldHR02LaPl5NJHxERuRNnS5BKEloTTimh4eFhFBUVYWhoCIWFhU43hyivObWJsdbmzX6/H83NzRnZvDmfsQ/WxvtClL0URUFFRQX6+/s113lJkgRZltHb28uBOxcy0v+elqE2ERFZzuPxoLKyMuOfW1NTg+rqakeSPiIichd1tkQwGIQkSTHJF2dL5BcmXkREJjiV9BERkfuoU+TjZ0vIsszZEnmEiRcRERERkc04W4KYeBERERERZQBnS+Q3VjUkIiIiIiKyGRMvIiIiG23YsAGf+tSnMG3aNMyYMQNXXHEFXn/99ZhzhBBYt24dZs2ahcmTJ6OyshKvvvqqQy0mIiI7MPEiIiKy0a5du3DzzTfjueeew86dOzE6OoqFCxfi+PHj0XPuvfdePPDAA3j44Yfx/PPPo7S0FJ///Odx7NgxB1tORERW4j5eBnGvFCJ3cGqPL7JXLvTBhw4dwowZM7Br1y587nOfgxACs2bNQigUwre+9S0AwMjICGbOnInvfe97+PrXv57ymrlwX4jisR8nNzDS//KJFxHlnHA4jIqKClRVVaG2thZVVVWoqKhAOBx2umlEGBoaAgB4vV4AQG9vLw4cOICFCxdGzykoKMCFF16IZ599VvMaIyMjGB4ejjmIcgn7ccpFTLyIKKeEw2EEg8GYfVIAoL+/H8FgkEGbHCWEwJo1a/DZz34W8+bNAwAcOHAAADBz5syYc2fOnBn9WbwNGzagqKgoevj9fnsbTpRB7McpVzHxIqKcoSgK6urqoDWDWn0tFApBUZRMN40IAHDLLbfg5ZdfRltb27ifSZIU82chxLjXVLfffjuGhoaiR19fny3tJco09uOUy5h4EVHO6OnpGTdCOpYQAn19fejp6clgq4hOWblyJX7xi18gEolAluXo66WlpQAw7unWwYMHxz0FUxUUFKCwsDDmIMoF7Mcpl3EDZSLKGQMDA5aeR2QFIQRWrlyJJ554At3d3Zg9e3bMz2fPno3S0lLs3LkT5513HgDgxIkT2LVrF773ve850WSijIkvoNHf36/rfW7vx1k4JD8x8SKinFFWVmbpeURWuPnmm9Ha2ort27dj2rRp0SdbRUVFmDx5MiRJQigUwt133425c+di7ty5uPvuu3HGGWegtrbW4dYT2SccDqOuri7mCVdxcbGu97711ltQFMWVyYrW95ZlGS0tLaipqXGwZWQ3lpM3iCV7ibKXoiioqKhAf3+/5voASZIgyzJ6e3tdGazJnX1wonVamzdvxrJlywCceirW2NiIRx99FEePHsX555+PRx55JFqAIxU33hfKb2oBjXR+DXVjspLoe6v9REdHh6u+Dxnrf5l4GcTgRpTd1KAGICawMajlBvbB2nhfyE3UQbJka7mAU/12sl9T3davp/reRgcHOV0xO3AfLyLKWzU1Nejo6EB5eXnM67IsuyY4ExHlslQFNFSpph26rcqhlYVDuM+ZOzHxIqKcU1NTgz179iASiaC1tRWRSAS9vb1MuoiIsoDewhhNTU1oampKeo6bqhxaVQCK+5y5F4trEFFO8ng8qKysdLoZREQUR2+Bo/Lycrzwwgu6zk23ymEmpu1ZUQAq1T5narGe6upqTjvMQnziRUQ5QVEUdHd3o62tDd3d3a6YdkJElI8CgQBkWU5YeEaSJPj9fhw+fBjNzc26rplOtVo7p+2NjU2Kouj63oFAIOH1uM+Zu/GJFxG5ntnSvIlGOLlgmYjIPh6PBy0tLQgGg+MKaKhJyf3334/Vq1envJZakCJZspJMoiqD6rS9dNYGa8Umn88XfTKl9b2bm5uTxhvuV+luTLyIKCE3JCBmg2aiZG3JkiVoa2vj/ipERCbojRtqISStfri5uRler1dXAQ4hRMJkJVlb1CdRy5cvTzhtDwDq6upMTdtLFJuOHDkCAPB6vRgcHIy+rn7vVHGG+1W6nCBDhoaGBAAxNDTkdFOIbNXZ2SlkWRYAoocsy6Kzs9PppkWNjo6Oa+PYQ5Ik4ff7xejoaMz7Ojs7hSRJCd+ndR1JkrLqu+cr9sHaeF8oG5iJG6OjoyISiYjW1lYRiUSi/XVra6uu/jkUChlui9bPkh2NjY2G7oOe2CTLsujq6hr3vfVeO1EMSxT3yD5G+l8mXgYxuFE+SJSYZFsCEolEdAXNSCQSfU+qgGgkiUv0CwPZh32wNt4XcprVccNM/66nLUb7fvUw0v502q6H+v3iv0+2xeh8YaT/zaniGhs2bMCnPvUpTJs2DTNmzMAVV1yB119/PeYcIQTWrVuHWbNmYfLkyaisrMSrr77qUIuJsk+qiklA9uyZYmauu979Y+KJuAXL3EOFiOgURVGwatUqS+OGngIcsixDUZSYokp6YpgZWu1PVNTJ7nVY3K/SvXIq8dq1axduvvlmPPfcc9i5cydGR0excOFCHD9+PHrOvffeiwceeAAPP/wwnn/+eZSWluLzn/88jh075mDLibKHmyommZnrnu6C44GBAe6hQkQ0xvr169Hf35/w52bihlqAA4Bm8iWEwLvvvouLL744ZvBr/fr1pgbXUolvf7LBt0ysw+J+lS5l12O3bHDw4EEBQOzatUsIIcTJkydFaWmpuOeee6LnvPfee6KoqEj88Ic/1HVNTuegXKd3Xn1ra6vTTTU1113vFJBER1dXl6l1ZWQN9sHaeF/IKZ2dnbr7TzNxo7OzU/h8Pt1TwtPp3/W2P9W0ym3btnEdVh7J26mG8YaGhgCcqhwDAL29vThw4AAWLlwYPaegoAAXXnghnn32Wc1rjIyMYHh4OOYgymVuqpiUbEQ0UWneVNNXElH3VwHgmieCRER2Uqf16WU2boyt/peMSGMqoR5lZWW6pjKuWbMGDzzwAAD9sYnyQ84mXkIIrFmzBp/97Gcxb948AMCBAwcAADNnzow5d+bMmdGfxduwYQOKioqih/qLF5EbmNlUWO/Glmb3TLGa0bnuqaavaBkbKA8ePKjrPdxDhYhynZE1s2bihtHEzi5j457e6fglJSVch0Xj5Gzidcstt+Dll19GW1vbuJ/F/7Il/mcjOy233347hoaGokdfX58t7SWymtniD2aeIjnN6Fz3RMma3+/H2rVrIctyzOtjA6WbnggSEdnJyACTmbhhthiSKlEM0/pZqmuo7TdSOIPrsCheTiZeK1euxC9+8QtEIpGYX6BKS0sBYNzTrYMHD457CqYqKChAYWFhzEGU7dIt/uDGikkejweVlZVYsmQJKisrUwb4RAHx3nvvTRoo1SeCiWTbE0EiIrvoHWBqbGwcFzf0zMhIZ+ZAY2OjZgzr7OxEZ2enqYE3wPh0fI/Hg0AggLKyMgwMDKCnpycrqgKTMyRh94TYDBJCYOXKlXjiiSfQ3d2NuXPnjvv5rFmzsHr1anzzm98EAJw4cQIzZszA9773PXz9619P+RnDw8MoKirC0NAQkzDKSoqioKKiIuEooVqCt7e3N2VyoigKenp6MDAwgLKyMgQCAcefdDndpo6ODtxwww2a6z3VkdFsTU5zAftgbbwv5AQ13vT39ydcX1VSUoJ9+/Zh4sSJ0dfC4TDq6upi4pQsy2hpaYnpO7u7u1FVVWW4XT6fD2+99RYAJIwXY2PJjBkzAJwaiB/731oxJtV3jo+xer8ruZeh/tee+h7O+MY3viGKiopEd3e3GBgYiB7vvPNO9Jx77rlHFBUViXA4LF555RWxZMkSUVZWJoaHh3V9BitHUbaze+NGJ3V2do6rKCjLcsY2i1y7dm3Se+rz+bhxpc3YB2vjfSGnJNrMN1E/bWSj5VSVa5P1xXorBpqJK3o3ME70XdWD8SI3GOl/cyrxSvQPe/PmzdFzTp48KRoaGkRpaakoKCgQn/vc58Qrr7yi+zMY3CjbuakcvBFGgrUd2tvbU95TWZZZHthm7IO18b6Qk7SSF61+ur293fB2HHoSO7ODi+nEFa3v7Pf7o+9Rk0arEkTKXkb635yaapgJnM5B2U7v1IxIJILKykr7G5SAkSmDVk6fNNvW0tJSHD58OOW5Tt/XXMc+WBvvCzntxIkTKC8vT9hPSpKE4uJiHDp0KOW14vtRrel6qbS2tmLJkiUJf25FXEkWx/TG4sbGRtx11106vhFlKyP9b04W1yDKZ1aXgzdTkj4VoxUX9ZbvtWvvrJ6eHl1JF5B9ZeTt+PsjIor37LPPJu0nhRC6ki5gfD86thhSfX29rmukKoJhRVxJVtRJbyx48MEH2S/nESZeRDnGynLwZkvSp7qm0YqLRsr32sHIdbOpjLwdf39ElH/srkAYT6sfVZOcdevWJa0sC+jbM8zuuKI3FgwODto2aEjZh4kXUQ5Ktxy8oij4zne+g0WLFpkuSZ/ounV1dZqVoNTXQqHQuKDu9N5Zeq9bUlKSNWXk091SgIgI0D+AY6SfTGdGhsfjSTqFEACuueaalIOLetv72muvmZotEAgE4PV6dZ2bbTMlyEZ2LjbLRVzATG4yOjoqIpGIaG1tFZFIRNci3lSLpJFgAbQeZisujo6OivLycsvbo5eeRdIAxLZt22z5fKNStdfu+2Un9sHaeF/IDlZWIFT7nW3btiUtlhEKhZLGKz39sZ7+zWjFRDMVdBsbGy0rBELZy0j/yydeRDnM6KbCiZ6SxBMac9+tnIoSf9727dvx3nvvaZ5rdPqkGer0zUSjtACwdu1aBINBWz7fKKfXxBGR+xmdoaBnmvv999+P4uJirFy5clwRArX/bm5uTjotOlX/BgB9fX3o7u5OGpOStVeLmdkCd955J3w+X8KfG11zTTnA5iQw53BUkXLV6Oio8Pl8hsr11tfXi9HRUd37oJh54pVqH5RM7p2l9T1LSkpEe3t7Rj5fr1zdUkAI9sGJ8L6Q1czOUEhUZn3t2rW6Zg6oR6KnavX19bre7/V6dT2x0jPLY2ybjM4WcHorFLJf3u7jlQkMbuQUM9MGjdA7JUIr8TESNPVMRVG/m54pJZneO8vuvwcr5PIm2uyDtfG+kNXSGcCJ7yfV6YVG48vYmNDe3i6Ki4tNxalUiY7aXr1JndG+M9WeX+RuTLxsxOBGTtDzRCmdhGB0dHTc6KAVh5HNMLWCYi4nEHqY/Ts1muC6CftgbbwvZDWr+l+9a2STHVdddZVtMWksO2cLuGHQjsxh4mUjBjfKND3TFNJNzPQGWLOH3qko8aN/uTxlLhW90zeTvV9vgusm7IO18b6Q1awawLE7vpg5mpqaNNud74N9ZA4TLxsxuFEm6alO5/P50k7MtmzZYmuQ0zMVhUHwX6xaE5CL01vYB2vjfSE7GB3A0erX9Q6gWXFMnTpV97laA1m5PFuA7MPEy0YMbpRJ6Y4UqolZop+pgbOpqcnWYGg2McrHIGh1Kfhcm97CPlgb7wvZRe8AjtZ5Xq9XXH/99RlJuhYtWmQ4Pmolj7k6W4Dsw3LyRDki3U0VhRAYHBxM+DMhBFasWIHp06en9TmJSJIEWZahKErSMvOJ6ClPbGcZeSdYXQre6JYCRERj1dTUYM+ePYhEImhtbUUkEkFvby9qamqi5yTaiuTIkSPYvHmzrnLt6frd735n6HyhURIfOPV9Ozo6UF5eHnO+LMvo6OiI+d5ERp3mdAOIKLGysjLbP+PQoUNYtWqV5deVJAlCCLz77ru4+OKLo6/LsoyWlhbdwUsNgnV1dTFBXZZlNDc351wQNLvXGRGRXdQBHC3J9vtSJfuZFYqKinDo0CHD7xs7kDX2+9XU1KC6uho9PT0YGBhAWVkZAoEAB64obXziRZTFAoEAZFm2fbRweHg45Tk+nw+SJCV88hS/SaTX6wWAcU/czGxCqTXi+sYbb8Dr9Zp6kpbN9CbbmUjKyRq/+93vcPnll2PWrFmQJAlPPvlkzM+FEFi3bh1mzZqFyZMno7KyEq+++qozjSUyQFEUPPTQQyk3NLbb0qVL03p/f3//uNc4W4DswMSLKIslm2pnF63ESpIkbNq0KeH0i87OTrz11lvo6upCfX097rjjjoTtTTS9I5WxQfDIkSOYM2cOqqqqUFtbi6qqKlRUVBhK5rJVqmRbkiT4/X4EAoEMt4zMOn78OD7+8Y/j4Ycf1vz5vffeiwceeAAPP/wwnn/+eZSWluLzn/88jh07luGWEukXDodRUVGB1atXO9qOtWvX4sorr0zrGqFQyJb4oSgKuru7c26AkNJg10KzXMUFzOQErUXLJSUluhYQn3HGGYYWHMdfN34RdaJiDVptTHWYKbphVcW/bMbF3Ym5vQ8GIJ544onon0+ePClKS0vFPffcE33tvffeE0VFReKHP/xhwuu89957YmhoKHr09fW5+r6QuyTqhzN5lJSUiG3btgkhrNmL0uq+NVk1YSNFj3KtQFIuYlVDG7k96JN7xXe+dpWA37Jli+FO3mwQVsvM6w0seir+lZSURL+DmwNULpaCt4Lb++D4xOvNN98UAMSf//znmPO+9KUvieuuuy7hdRoaGjT/H3DrfSH3sGJDZDPH1KlTRVdXV8I40djYmHbiZVWV3FQxsbCwUDMh07pOOvs5UmYw8bKR24M+5Q67NqU0+hQqnSAciUQMBRaj37m8vNzVAYojneO5vQ+OT7z++7//WwAQ/f39MectX75cLFy4MOF1+MSLnOLkhshdXV0J2zU6Oppw+xQ7Y6BWO4zGRK3ZDPkwuyNXsJw8UR6wuvCG2bVDqcqfJyLLMg4dOqRZgjhRAQ6jlfz6+/uxaNEi16794uLu/BH//7EQIun/2wUFBSgsLIw5iDLByYqq3d3dCX/m8XiwadMmzZ8ZiZMDAwNprc0yExNF3NrnZJUi488ld2HiReRCiqKgp6cHwWAw5S9oeqSzJ5bZIHzDDTdgzZo1hgKL2Up+N954IwMUZaXS0lIAwIEDB2JeP3jwIGbOnOlEkyiP6Ekw4s+ZMWOGAy095R//+EfSvrympgadnZ2QZTnmdVmW0djYqOsz/va3v6GiosJ08SazMVGMKW1v9X6OlD2YeBG5wNjA953vfAcf/OAHUVVVhebmZgDAhAnp/a+czsaQZpMhRVEMBxazT/kGBweTjpQSOWX27NkoLS3Fzp07o6+dOHECu3btwgUXXOBgyyjXqVUJkyUYWucsW7Ysur1Ipv385z9PmQQl2vD5zjvvHJeQaWloaNA9CyOeoih466239H2ZBAYGBrifYw7jBspEWa6jowM33XRT0s0hzTzNKSoqwiOPPILy8vK0NoY8dOgQPB6PbU+UxgYWtbx+MBiMbtCs1zPPPIOLLrrIjiYSJfX222/jjTfeiP65t7cXu3fvhtfrxZlnnolQKIS7774bc+fOxdy5c3H33XfjjDPOQG1trYOtplylKArWr1+PhoaGcT9TE4yOjg4AiM6qiD9Hfc1oP2yFsW1MNFgYv+GzOktk0aJF0S1ajFBnloRCIVRXV2vGy3A4jLq6urT3NDMymMn9HF3IjkVmucztC7vJHdSiCl/84hdtXaic7iJiM9UM1cpRXV1dpttopnT9tGnTuBg5B7ixD05UjGDp0qVCiFMl5RsaGkRpaakoKCgQn/vc58Qrr7xi6DPceF8o8/T0nZIkCVmWU1aQ9fl8ory83NYYlSqO6K26a2UVxkQxKd3y+mO/k1qgI9E1razASOljVUMbMbiR3awOEskOtZy7GelWbko3sKjJ6R133GHo85l8uRv7YG28L5SKHXtvdXV1RSuvbty40ZJrTpgwIa0kyO7vHB83rSivn6yqIfdzzH6sakjkUuFwWLPKn13ipykYqeRkpnLT2LVkHo8HDzzwgOY0FT3FPtSpJN/5znfg8/l0t0GrElQ6FayIiLJdsip56Th48CAqKytRUFCADRs2WHLNkydP6j432Ronu75zfNw0W9l3LK111jU1Nejo6EB5eXnKc8k9uMaLKEtYGSRSrbmSJAmyLMeUjteany7LMlpaWlBdXY2enh4MDAygrKwMgUBA96Le+vp6nH322dH3qYlUOBzGmjVrNN8jyzKam5t1BRa1hPCiRYtSnivGFOxQ5/8n+94MbESUC6xIDrSUlZUhHA7r6n/tkGyN0/r16y39zlpxEzBf4KKkpARf/vKXUV1dnXCddU1NjWb85dYiLmbvw7fcw+kcZBcrN6VMNrXC6EaNAMZtSun1esWyZctMTwVJNf1j27Zthu9fZ2en8Hq9hqaKcINK92EfrI33hbSoU7JvueUWS6f7qVPB33nnHVFcXGzpVD69MW7seqj4jeY7Ozst/7xEMcFI7C4pKRFbtmyJtpNyg5H+VxIiw+VoXG54eBhFRUUYGhrihpVkqba2NkurmEmSBK/Xi4KCAuzfvz/6enFxMZYsWYKTJ09CCIE5c+bggQceQH9/v+HPmDBhQsJpIeroYG9vb8zonKIoqKioSDgSmeh9ejQ2NmLdunUpz4tEIggEAra1g+zDPlgb7wvFs6rKXjx1Kvhtt92GzZs34/Dhw5ZeX+/nq5UXtWYsvPvuuxgcHDR1fZ/Ph8mTJ8dc0+/3J5yFkSqmxYtEIjEVF8n9jPS/nGpIlCWsLgsrhMDg4CCKi4tjXj98+DAeeughSz4jWdIFaK/R0rsxZHd3t6Hy7+FwOGXSNXaqiJENKuODpFqamFM/iCgbqeuF7RhbLy8vx5IlS7Bx48aMlJIvLi6OSe7UqeiAdrl7s4mmWhp/1apVmDNnDg4dOoSSkpLoJucHDx5Ed3f3uP5e3eZE73RLvVMTjcYZxiWXsO25W47idA4yQmsKRLJzM1XN0OrD4/HE/Nnv9yecptfa2qrrml6vV/dUP733buxUEb3tiK9gpVV1UpZlTkvMEPbB2nhfSGV3LPn2t78tSkpKMhZf1Kl5Y+OoHd/R5/ONm1av9Vqi/r6xsVHX5+jZxsVonGFcchbLyduIwY30MtMRtre3ZyyYWX00NTVFA+PIyEjChNPIfPhU66zUxLa+vl7X9RobGw23Y2yQ5Jow57EP1sb7Qior1wtnw6GVqFjxHRsaGqJxqrGxUXfZ+UT9fapkUO/eW0bjDOOS85h42YjBjfRIVTyivb1d8316R8yy8RhbsCJZwplq/y69gcrMfmdjn14Z3UfMqqBK6WEfrI33hcwW0lCPwsJCx+OI3j5V74yFRIfX69XdtxtpW7p7bxmNM2bO1zsLh/Rj4mUjBjdKRU8n7vF4xlXuGx0d1V2VLxuPSCSie+TN6KaW8SOeZjfFTHQdPUHSzBMysh77YG28L/nNzEBUNh+pEhUrBinVa6fz9KypqUkz+Yr/u0g2/X4so3FG7/ldXV2cjmgjJl42YnCjVIx04mZ+sc/kET+3PdmxdetWQyNvZsq/C2Ht6KTaDj1B0uyaMLIW+2BtvC/5y+xAlFPHZZddFu2XE53j9XrF9ddfH13fNTIyIrq6ukR9fb1YtGiRJe2QZVmMjo6m/fRMK3kx+2TJaJzRe/7UqVMTxkZOR0yfkf6XVQ2JLGZkM8Ubb7wRRUVFCAQCePrpp21slX4lJSVYvnw5JkyYgMrKShw9ehQrVqxIWZp35cqVOHToUMKfi7gqgTU1NSgqKsLFF1+csk1jKz4a3Qg0WYVFQP8GlXqrTlpdnZKIKBFFUVBXV5eR6oJWefnll7Ft2zasXr06pi8vLCyEoig4fvw4jhw5gs2bN2Pz5s0Akm9dYta+ffvQ09OTdp/d39+PYDCIjo6OaLl5j8djqmS80Tij9/y3335b83UhBCRJQigUQnV1NasgZoLdWWCu4agipWLmyVV8VcBsOmRZFg0NDZZdL511VkIYn9uvd4pHKmbaStZjH6yN9yU/ZeNMCT2H+hRobHELJ9rR2tpqaN1xosOq/t/s2mMrnnhymrx5RvrfCSAiSwUCAciybOg9iqLY1Jr09ff3o7Gx0bLrzZgxI/rf6v4nwL+eTKkSPanSO8JXX1+PSCSC3t5ezU0vjTLTVoqlKAq6u7vR1taG7u7urP53T+QGemdYXHrppZb24+kaGBiIPhW66qqr8OCDDzrSjrKysqR9u15izIyOdBiNM2PPT5eR2TqUBvvzwNzCUcX8Y2audmdnp20jdNOmTRPTpk1zfMRS69BTFau8vFyzHK7exchOP3lKZ+F0PrNqYTf7YG28L/nJ6Jri9vb2rJhhUV9fH42nXV1djrRBXeOl0uqjtPbxSnZYtcbXaJwxsmY60cEnXuaxuIaNGNzySzq/LFoZ4AoLC0UwGBRdXV1idHRUjIyMZHQDSz1HosW78UeyPVD0JrjpluxNF0vyGmPlPjPsg7XxvuQnI8WGvF6v2Lhxo+OxIj6eWlUsw+iRaGBPa7PmpqYmXdccm7yo19qyZYtoamqKFgrRGy+MxhmzCSynyaePiZeNGNzyhxW/LG7bti3t4DBt2jQxMjKi2T6ng6bZI1lHrzfYaCXFJSUlIhQKMRnKIlbvf8Y+WBvvS/5yeyzI9Gf6fD7Dg3NGZ1okK+9vVwl3M+u9zA5WcvAxFhMvGzG45Qc9o4jx0xS0dHZ2GpqmkOhoaGiIGTn72c9+JjZu3CimTJnieOBM54jfA8XoE0a18w+FQuOeAHJ/kuxg9f5n7IO18b7kt1AoZGnffNpppzkeH6w8Jk2aJD73uc+JHTt2mE4S9M600FPe366ZGcnaCIzfIsbMNHnuBzYeEy8bMbjlB72/LDY2NkbfM3YEqKury9JKgLl8qB222SeMVk5jI+tZvf8Z+2BtvC/5zcrqhhMmTHA8Ltgdb8xKtfbKyNRPu6b3JWtjuk+qGG+1Gel/JSFctPlDFhgeHkZRURGGhoZQWFjodHPIJm1tbaitrdV1bmdnJwCgrq7O0P5SdIokSRBCwOfzJdwrTJIkyLKM3t7emKqBiqKgoqIi4X1P9D7KnO7ublRVVaU8LxKJ6Nr3hn2wNt6X3KMoSsr9BceeW1FRgf7+flft6ZVpamXAsXtuGZXs70Vvf6fS2+9Z2Uaz72G8TcxI/8sNlIk0GNlQ8cYbb0y5ubCbeTweW8t+q78kJLuHIm7zZVWqzZQTvY8yR91eIdEvhGqwDgQCDrSOKDuFw+Fxg3myLOOBBx5ASUnJuF+O1bLiwWDQwVZnP/E/GwZ//etfx4svvogJEyagsrISlZWVupOFZJsjGy3JblcJd6MbOCf699bS0hJNUBlvrcF9vIg0GNmLKxeTrpKSEoRCITQ2NmLy5MlONycqPkjpDVrcn8Q53P+MyJhwOIxFixaN+yV33759uOqqq1BVVYXa2lpUVVWhoqIC4XAYAFBTU4PHH38c06ZNc6LZriGEwOHDh3H33Xfju9/9Li6++GLMnDkzeh/TYWTQ1sz5dgiHwwgGg+P+vfX39yMYDEbvC+OtNZh4UdYbu+nq008/jaefftrWDVjVx+35OHIYCoUQiUQwMDCAQCCAhoYGvP322043Kyo+SOkNWtkQ3PJZTU0NOjo6UF5eHvO6LMtpTfkhcopdm4ErioIbb7xR9/n79u3DokWL8NWvfhWhUAg33XQTjh07Zklb8sng4CAWLVqkmXwZ+btWB231bMTs9/sdf9KvKArq6uo0ZyOor4VCISiKwnhrFSOLxzZu3Gjk9JzEBcyZlawkKyxYKGv083L5GFti14p9wqyuiqVVRVJP+Vyfz5f3pW6zhRUliOP74D/96U9WN9OVGJsyx86qbk5tJsxDO86Y+bt2sqqhUUaqzhotqZ9PbKtqePXVV4srrrhi3IWPHDki7rvvPmOtdCkGt8zR23kl68DMbMrrdMfv1KHey7Vr14ri4mLH2xN/JNp7Rc8eNmPfx/1H3C2+Dz733HPF97//fYdb5TzGJv3S6QNSVXVraGgQ9fX1or6+XnR1dYmRkRFDn1VfX+94X5vtR2FhYdKfNzQ0GN7Pauyhbm2RTgU/J/bxMsNo1Vm9JfXzja3l5B988EHx0Y9+VLz00kviz3/+s7j++uvFnDlzxHe+8x1TjXUbBrfMMFKSVe3I4gPatm3bdO3tNDo6Krq6uoTX63U8oPBIfCTq2EdHR5PulTZ2FI77j7hffB/89ttvi9raWlFbWyuOHz/ucOucw9ikTzp9gNG4BIwvzZ5qX8KvfOUrjve12X5s2bJFNDY2jovZY8u6J0oQ9Bytra2WbPw+OjoqGhsbxfTp02PeW15enjUxx8w+i6lK6ucjWxOv0dFRceuttwqPxyNmzpwptm7dKt5///1x57333ntGL+0KDG6ZYWZPkoaGhuj7165dm7TDVDsIreSMR/YeWsHOyJ5r3H/E/RL1wQ8//LA477zzxPbt20Vvb6/me3M1LgnB2KRHunsQWbFXVqLPyudp7kaPrq4uEYlExJYtW0RTU5PYsmWL5tNEs/c0EolYsvF7Jve8MvsU1+z0Qc4ciWVb4tXQ0CDmzJkjbrjhBrFr1y5x6aWXiuXLl4sTJ06MO/cTn/jEuNdef/11Ix+XlRjcTon/n27sdIquri7R1dWV1v+QX/ziF011yF/84hd1bVzs9/vFmjVrHA8gPMwdY4Od3qkSyZ5o5vPcdLfR6oN7enrEl7/8ZXHWWWeJYDAo5s2bJ7xerzj//PNj3purcUkIxiYt8Zval5eXp9UH6O1r9Bzl5eXRONnY2Oh4n+qWY+rUqeP+HlM9RYxEIuJnP/uZmDZtWsrrq7Nn0t34Xc/TUatiTrozOTh9MH22JV733nuvGBwcjHlt3bp1Yv78+eLvf/+7EEKI//qv/xL33Xef+PCHPyz6+/tjzj3nnHOMfFxWypfglmw0Q+t/co/HkzTAGFmDNTIyMm56Bg8eY4+xwc6KUWj1SDZ6Sdkhvg8+++yzRWVlpejo6Ijpp95//33x2muvCSFyPy4JkT+xSa90nnYIoR2brOxreFh3pEoQjPxbUK+R7hMvK56Y6f13bsVTNU4fTI+tUw21/Pa3vxVnnXWWEEKIv//97+KRRx4R06dPF4FAQMyePVsEAgFx9dVXi/POO8+Kj3NUPgS3ZKMn6RSg0DO1QpZlsWzZMsc7ch7ZfYwNVnqmSsTPsU90JBq9pOwR3we//PLLKd+T63FJiPyITXqlE6dCoVDC2PT4449zanqWHomeWOr9t+Dz+cS2bdtEV1eXqK+vF3fccYcoLi42XcFvy5Ytutq9ZcuWpP+Wkw2CW7EOTe9nUXIZT7yOHz8u9u7dK06ePBl9bdeuXdH/3rdvn+jp6RFHjx614uMclevBLdXoSbIiBno6NvV/5Pb2dsc7ah7uO1IFV62pEkDqKljqwSde2U9vH3z8+HFx6NChvIhLQuR+bNLLTAEMHrlzxA/KJZteCkBMmzZN7NixQ7S3t+v+/UbP06SmpiZd12pqakp4jVRTCDP1VI1SM9L/noY0NTc34/bbb8eJEycwceJEzJs3D+eeey7OPfdcnH766fj4xz+O8vLycRtn5iN1Y96BgQGUlZUhEAjA4/E43awoPRvpDQ4Omr7+4OAguru7cfToUSxZssT0dSg/qRtSNjc3j/v/Rt2gt66uDvv27Yu+7vV6MTg4iOHh4ZTXlmXZ8c0syRqMS7lJTwzt6emJ6QMovwwMDET/e/369ejv7096/rFjx/CHP/wBDQ0Nuj+jvLwcy5cvx8jICLq7uzX/HZaUlOi6VqLzwuEwgsHguN/H+vv7EQwG0dHRgZGREV2fMfaeUBZIN8srLS0Vt956q3j11VfFM888I5qamsTSpUvFxz/+cTFx4kTh8XjE3LlzxeLFi9P9KEs98sgjoqKiQhQUFIhPfOIT4ne/+52u95kdVXRDGetMzF//X//rfzk+IsbDHUf8ukE9883jF9PrHfmWJEk0NjZyioUL6OmD8y0uCZH7T7z0xlArC2DwcN8xdg8uve/RMxW9uLg4WsZeT3GPdJ5G6Z1CqHezbT7xsl9Gpxp6vV7x5ptvav7sxIkT4qWXXhKbN28WoVAo3Y+yzNatW8Xpp58uHnvsMfHaa6+Juro6MWXKFPGPf/wj5XvNBLdMlhRNBwMWj2w4vF6vqY1H4+kNfIWFheOmmGTboAj9i54+ON/ikhDuSryMriXRG0NHR0d1T/HikVvH2Gnodk03NbIlSTpVDfXGLnVw0ew6NLJORhOvFStWiK1bt6Z7mYz69Kc/LVasWBHz2kc+8hHx7W9/e9y57733nhgaGooefX19um+uENYvfrQTKzZl/6F3rZLbj7FVxMwmXukMJGTboAj9i54Al+txSYtbEi+jsz/0xtD29nau7crxY+LEiUl/bnTtk9HD6JYkyQp7JIsvRkrZsxR8dsho4vXd735XfPjDHxY7duxI91IZMTIyIjwejwiHwzGvr1q1Snzuc58bd36iPaH0Bjc3LX7UUx0uneIaPNI7/H6/eOedd0RTU5M477zzHG+PnUcoFEp7am66wTebBkXoX/QEuFyPS0KkPyg4VqaqmZmZ/cEBQR56Dp/PF/334+Tsnfjf5cyUaTf6eyNLwTsvo4nXvHnzxOmnny4kSRKzZs0SX/rSl8Rdd90lwuFwdG+vbNLf3y8AiP/+7/+OeX39+vXiQx/60Ljz0w1u6W7Cl2l6Rk9CoZDjnWw+Hrfeemtej+gaHcFLNZCg98iGQRH6Fz0BLtfjkhDpDwqqMrX+2OzsD06B56HnGBsf7EjWkz3tGnto/S5ndGBDzyB4/P8rLAXvrIyXkx8ZGREvvvii+PGPfxwdofvABz4gJkyYYMXlLaUGuGeffTbmdXWENBWj0znc9MRLlWr0hCOQPOw8km3GbfQpVKoy83qObBkUoVP09sG5HpeseOKVyfXHZmMh4w0PI4fX6xU7duwQ5eXlaQ+6jT0aGxt1nWfV73KcQuguGU+8EtmzZ4+dlzfFzJSOsYwmXmZGLqySzgiInk37rOzUePAwchgJbloDCUY2Qc2mQRFKfy1TLsYlIczHpkT/7q2OTWZnfzDe8DBzTJ061ZLreL1e0djYKLZs2SKKi4sTnmfH73KcQugeWZN4ZatPf/rT4hvf+EbMax/96Ed1LWJOp6phJkcu7J4+YqRUK4/8PLxer+FflhYtWqTrPKNPoeIHErZs2aLrc8Zu+k3ZwS1FJIxKJy4Jkf2zMdL5PCueXKfqq5zuL3nYc0yYMEHXeZIkCVmWxW9/+1tRX18v6uvrRUNDg6EtSez4XY5TCN2BiVcKatneH//4x+K1114ToVBITJkyRddIqJX7eNk1cpGp6SNc68Uj0bF27dqEvywlOmRZzti+JHp/CWxsbLTk/xWyTq4mXunEJSGM35dMrz9Od/ZHohi6bdu2tJ6IXX311br7HR7uPUKhUHS6oJ5B8GQVCbWOscU9KP8w8dLhkUceER/84AfFxIkTxSc+8Qmxa9cuXe9LJ+hnYuQik9NHOPeeR/wxYcIE8fjjj0f/jWj9shR/jA16eqYVybIc/fdr9v8pPZ/Dp13ZKVcTLyHMxyUhsv+JlxDpz/5I9P+70V+S4z9bTd6c7j952Heov/foGQQ3sw8Y117lNyZeNsr2oJ/JYJru3PuSkhKxZcsW0dXVJXbs2GH7dA9JksTKlSvFddddJ04//XTHA0GuHvH/tsb+stTY2Jgy6KV6UqaOLKY7nTbV5zCAZqds74Od4pb1x3bN/ujs7Ey6BidZXFD3AXO67+Rh76HGplQDdmYHlbkFSf5i4mWjbA/6mZ4+omfuvd7RzVS/CK9atSqtDYS3bdsW/ayRkZG82Yw400eqf1t6nlJ1dnYm3DNOT6Lf3t6u+98vFy+7S7b3wU5xy/pjIeyb/TEyMmKocM7YIxKJ6Op31q1bxzVhLj30/t6T7hYGLMiUf5h42Sjbg75T00cS/fJq9BfbVOenSvSuvvrqcUEx0eelMz2FR+Lj/vvvT/sXqdHRUVFeXm66DR6PJybRTvVZXLzsHtneBzvFDeuPM8Ho2lL1UH8pHx0dFY2NjUnjiNnP4OHsofbvySo2RyIRUV9fn9bncAuS/MPEy0bZHvSdmj6ipzMzsnlgsvNT/aJg5PP0rEHiYfxItNBY79+NVesH3frLIyWW7X2wU7J9/XEmmenXk02R1huHeGTvoU4nTTQ93cq/Tz7xyj9MvGzkhqCfDxvvWfmLwujoqO4y5jyMHfFrt/SuyUp3qod6cL597nFDH+wE3pdYaoywc/+l0dFR0dXVlXLqoVV7SvEwf6xdu9b2J5TZssYr1wZS3ICJl43cEtxybfqI3TJdoXHSpEmOB6JMHOXl5aKrqyvh1gOJBgOs/Pvg6GNucUsfnGm8L4nZORhpZGsKrYGntWvX6nrSorZ17dq1ObHGLJNrrP/3//7flj3NUtcAZuvAtt17uJI2Jl42clNw46iHfulWaDR6tLe3p7WGKZcOrVFCK/8+ON8+t7ipD84k3pfk7BqMNFLQKlFMHvt0rqmpSdTV1Y0rEjK2rbmw71gmZ5kEg0HLrlVeXq6ZLGfDwHam9nCl8Yz0v5IQQoB0Gx4eRlFREYaGhlBYWOh0c8hC4XAYwWAQADD2fwtJkiCEQENDAxRFAQB4PB786Ec/Qn9/v6HP8Hg8aGtrw+LFi9HR0YHFixdb9wVcLhKJoLKyMvrnRH8f6V6X3I19sDbel9QURUFPTw8GBgZQVlaGQCAAj8eT1jW7u7tRVVWV8jyj/VCytiqKgoqKCuzbt89ss11NlmUsX74cDQ0NGf9sSZIAAO3t7SguLrb031I6Uv2bkCQJsiyjt7fX0XbmKkP9r705YO7hqGJuMzIqOjIykrD0cLJDLVuciYXZwWDQNWXz459MJaouph5er1dMmDAh4fWyZb49WYt9sDbeF2c4uR+a0312Jo/6+vqYJ4V6K98mixFmj2yMLU5UtKZ/MdL/TgARRdXU1GDPnj2IRCJobW1FJBJBb28vampqxp377LPPYnBw0PBnbN++HcFgMOHI1OzZsw1fMxEhBIaHhy27np02b96MK6+8Evfffz8ef/xxVFRUoKGhAUeOHNE8/+jRozh58qTmz9RRyebmZo7uEZFtPB4PWlpaAPyr31HZ2Q/V1NSgsbHR0muqpk6dast103HRRRdhyZIlqKyshMfjgcfjwYMPPpjyfYliRDqEEOjr60NPT4/l1zZrYGDA0vPIPky8iOJ4PB5UVlbGdPJazHZg/+f//J+EU+ckScL7778PWZbHBXEzuru7075GpuzcuRNPPvkkbrvtNlxzzTUpp9EIISBJEnw+H2RZjvmZLMvo6OjQTJiJiKxUU1ODjo4OlJeXx7xudz905513juv79NJKrnw+Hzo7O/Hkk0+m1a6mpiaEQiEUFxendR3gVEz0+/0IBALjflZdXY3GxkbHEsVsSmLKysosPY/sw8SLyCSzHViyJ1BCCOzbtw/Lly9Pa10TABQWFpp6IucmQggMDg5i9erVqK+vR319Pbq6uhI+pSQisoOR2RJWUZ+2SZKke6BuwoQJqK6uRkFBwbifqTHn4MGDptvk8/nwsY99DBs3bsSBAwfQ1NRk+lpqm7SeGIbD4eisiLfffjutzzArm5KYQCCQdMA2WQJLmcXiGgZxATOp1MWs/f39aSdJ8UKhEIBTU1TMmj9/Pl588UVrGuQisiyjpaXFll947FicT8awD9bG+5K/wuEw6urqLCu20djYmHbhCrUfHhkZQW1tbVrX6uzsjOnP1cJLdv36OmXKFHg8noSDpHYVqhgbX2bMmAHgVBKsN9YkKxAGgLNAbMTiGjbiAmYaK1H51nSPkpIS8dvf/jata9ixqDjdQ71XdpYStqt0LvdHyQ7sg7XxvuQ3dTNnKzZrnj59umX9cENDQ9rXUQtZ6N2w2qo4Ff/fmY4vZmIN93B1BsvJ24ijihQvHA5jxYoVOHTokKXXLS4uxuHDhy29ZqZIkgSv14tJkybFlNz3+/1obm62ZBQ01edbOSKZaISVI4mZxz5YG+8L6S1tn0kejye6DUs6Ghsb8dhjj1laQl/dKibRz7xeLyZPnhzzmWoMs7K/1/MEz0is4cyMzDPS/zLxMojBjbScOHEC5eXlKRMlSZIwZcoUx+akW2nq1KkJv4ckSejo6EB1dbVmAMjULwhW7OHF/VGyC/tgbbwv1NbWZuuAVj7q6uqCx+OxLYkxsicbY032MtL/srgGkQUmTpyIRx99VNcC57Vr12agRfbx+XwpFzTfdtttqKmpSVghMhAIjKsAZgcrqk719PQkDYoiC0sLE1H+yaZiD7ni4MGDuqocm5UqvozFWJMbmHgRWUQtKZyovK/f70dHR0daJYCNsKIcvZZHHnkEP/7xj5Oes3Xr1qTTS/TuwZIuK34R4f4oROQGqSrbkXF2J7Nm4gZjjbud5nQDiHJJTU1NdHpdf38/Dh06hJKSEpSXl8dMUWhpadGsPmQlu647MDCQcoSur68P3d3dSado1NTUoLOzE0uXLh339GzChAlYvXo1ZFnG6tWrTbXT5/NZUjqX+6MQkRuo5eXV2ELmqdP67C6/biZuMNa4G9d4GcR59GQVrRLAJSUllhfpsNott9yChx9+OOV5Xq8XR44cif45UZl3RVHw9NNP4+c//znefvttfPazn8XKlSsxceLEtEv2x5chNiNVGzjvPrPYB2vjfSGV1eXl800miyYZiXGMNdmLa7yIXEBrw819+/Zl/VSROXPm6DpvbNIFAP39/QgGgwiHwzGvezweLFy4ED//+c/xxBNP4NZbb8XEiROjP2tpaQFgbupkKBRKu6JWsjaof9ba4JOIyAljY8sdd9zhdHOyXny/LstyxirV6o1xjDW5g0+8DOKoItkt0SaITlNH29544w3MmTPH1FMosyN26YzgWlHZMFEb7CgtTMmxD9bG+0Ja0p01kMrUqVMRDAbxk5/8xPJrq3w+HwYHB227/tKlS3Httdeiu7sbAFBZWZlWIQ1FUdDd3W3oeqliHGNNdmM5eRsxuJHVtPbc2L59+7hOWJZlLF++HHPmzImuHXvttddw9913m/pcn88HSZIM7RUWCoVQXV2NQ4cO4eqrrwZgLjk0kwyp9+mRRx5BR0eH7ve1trZiyZIlBluYvA3cH8U57IO18b5QInYN5gWDQWzduhW33XYbmpubLbtuvLVr1+K+++6z7fqrVq1COBweF2+1psanEg6HceONN45LFH0+HzZt2pT0emPjy4wZMwCcqqrIWJP9DPW/1u3bnB+M7E5NlIrWLvPqDvWjo6MiEomI1tZWEYlExOjo6Lj3d3V1JdzpPtEhSZKQJEl0dnaKkZERUVxcnPI9Ho9nXBvXrl07ru0+n09XG2655ZaE3ymZ0dHRcZ+Z6ohEIhb9bVE2YB+sjfeFktGKNfH9utfrNdy3dnZ2Go5BRo677rrLcJ9vxTE2TsZLFJv13Aut65H7Gel/+cTLII4qklUS7Vavd2FvOBzGqlWr0N/fn/RzPB5PzDon9cnZ3LlzUVZWhl/+8pe4//77DbVdbeNdd90Vvbb6BOviiy/WfR2jo4pGNl7mQuTcxD5YG+8LpRL/xP6CCy7As88+G/2zoii6+2+/3x+ddm5nEY/7778ft956q23XT0YrhmhNCZRlGU1NTQiFQinjsSzL2LNnD2NSjuFUQxsxuJEVUu1WnyppSJS0abn11lvxxS9+EQMDA/jb3/6GTZs2xQSH+MTMrPLyclx33XXYsGGD7vcYrR7V1taG2tpa3dfO1AJpyhz2wdp4XyhdRtaDdXZ2wuv16h4IM+sLX/gCnnrqqZTnLVy4EDt27LClDfX19bjoootw+PBhXHXVVZqDpUZ+lbZq3TFlD1Y1JMpyqXarF0l2qFcUBXV1dbo7+vb2dgQCARQUFGDdunXjRuSsSLqAU1ULjSRdAKLfQW/1Qb37l5SUlDDpIiIyQE+FPZ/PF92mIxMb+epJuoBTCZpdvvvd76KqqgrXXHONZtw1+vyCGyDnNyZeRA7Yvn27rvO0OuhUSVs8dTNjI8laJiVLMuMFAoGU5fZLSkqwb98+Jl1ERAbV1NSgo6MD5eXlMa/7fD40Njbirbfeivat6Wzku3HjRni93qTn6J2O5/f7cdNNNyWNDZIkoaioyHA7x7JqkJIbIOc3Jl5EGaYoCrZs2aLrXK0OOtUcci3d3d1Zv5mmnlHAVHtqSZKE73//+3j22WfR1taG7u5uy4IlEVE+0Npj8q233sJdd90VkwzpGQiLJ0kS/H4/QqEQHnvssWi/HX8OoD/RaW5uxsSJE1Put3j99dfrbqddZFlGIBBwuhnkICZeRBnW09Ojq4R7SUnJuA46HA5j9erVhj+zq6vL8HsyTe8oYKIRWVmWcdttt2H16tWoqqpCbW0tqqqqUFFRMW7TZiIiSszj8aCyshJLlixJuAeV0Q3u4zcBTtaXh0IhXe2cOnUqqqurAZyKDe3t7SguLh53vY6Ojuh5TmppaWFhDfxrr7O8HCC1oapiTmPJXkpXa2urrnK2oVAo5n2dnZ1CkqSMl9W1+5AkSfj9flOl5ceW9G1vb9e8P8nKApP7sA/WxvtCTtEqVe/z+cZtL+L3+3WXZ49EIrpjiLpliFY7iouLRXt7e/RzZFm2JY6qcay9vV1zWxWfz8cY9D+SbaPjViwnbyNWjqJ06S2JPrbyUaoqiG5ltKphIulWiST3YB+sjfeFnKS1uTwA0xvOK4qCGTNm4MiRIynPra+vxznnnIOrr7465fYsiTaTVisTBoNBdHR06Gpjos9Qn+Z0d3cDOLXVSqKnhvkm3W10shXLyduIwY3Spadkr9/vj0kSjOxflY0kScLNN9+MrVu3xkyz9Pv9aG5uTrujNZPMkjuxD9bG+0JGaCVK2ZYYfOc730FDQ4Ouc5NtixI/8Ka1F5cai6qrq1PG51R7Y2bjvcwGuTxAynLyRFlMT4EIdQ68yu3lZ4UQePjhh3H48GGUlJQgFAohEomgt7fXktEtvffH7feR3Gf9+vW44IILcMYZZ+ADH/iA5jl79+7F5ZdfjilTpqC4uBirVq3CiRMnMttQyhvhcBgVFRWOrYXVu77nzjvvhM/n033NRERc5Vyt4iFqLNITn9va2qLvbWxsBAA0NDRwXXEK6Wyjk0uYeBE5INmiYq1H7XaXn83k6NLhw4fR0tKCI0eOWPa5eu8Py/hSpp04cQKLFy/GN77xDc2fK4qCyy67DMePH8fvf/97bN26FZ2dnbj11lsz3FLKB+pUr/hfgPv7+xEMBm1PGIwkfR6PB5s2bTJUNTGZsQNvyYqHpIrPixcvRmVlZXRvTKfupdtwgPR/2LPMLHdxATNZSWtRcaLzki0KliRJeDwe0wuDr776alcU1Eh2H1PdHys/j5zj1j548+bNoqioaNzrv/71r8WECRNEf39/9LW2tjZRUFCQ9Du+9957YmhoKHr09fW58r5Q5qj9ZKb65XiJCkSlKoCkVYzBzNHV1WWovcnis9P30o30FkxRi6W4iZG4xCdeRA7SU7JXPS/VHiVr1qzR3BMl1edv27Yt42V2hcVTCvTcn/jpm0TZ4A9/+APmzZuHWbNmRV+75JJLMDIyghdffDHh+zZs2ICioqLo4ff7M9FccjEnp3opioK6ujrNdVPqa6FQSHPKoDo18Nprr02rDUuXLjX0FCpZfOa0OeNS7fum7vGW6/ucMfEicolU0x/uvfdezZ8n09bWhmAw6NgUPCunFBidvkmUDQ4cOICZM2fGvDZ9+nRMnDgRBw4cSPi+22+/HUNDQ9Gjr6/P7qaSyzk51SvdRMXj8eCDH/xgWm2InwKYzl5SnDZnHAdITznN6QYQkX41NTWorq5OWI1K6+eHDx/G6tWrNSs4qcmIOhKVrJKTHaxO+FLdHyIrrFu3LrqoPpHnn38en/zkJ3VdT2sEWAiR9Ol1QUEBCgoKdF2fCHB2LWy6iYqiKAmL0xghhMCNN96IkydPjouLsiyjpaVF1yAd1xWbow6QxleVlGXZkgrHbsBy8gaxZC+5kZ7SwYn2N7GDm8vGkrOyoQ8+fPhwzLYIWioqKjBp0qTon3/yk58gFArhn//8Z8x5d911F7Zv347/+3//b/S1o0ePwuv14plnntG9jUQ23BfKbqm2MrGzX05nyw+t8u+JTJs2DceOHTPVRiN7STl5L3OBG7YzMMJQ/2vLKrMc5taF3UR6WLWI2e/3i7Vr10YXTY/9WaqF1ETJuLUPTlVcY//+/dHXtm7dmrK4Rjy33hfKLLXARab7ZbMFkBIV5Eh0hEKhjBV+cupeUvZhcQ0iMiV+f5Ouri4UFxfrem9TU1PMniiJ1pzJsoz29nZ4vV5Tc+uJ3GTv3r3YvXs39u7dC0VRsHv3buzevRtvv/02AGDhwoU4++yzce211+Kll17C008/jdtuuw3Lly/nkyuynFNrYc2s70lWkCOeLMvo7OzE9OnT02qnMFAUg+uKyQxONTSI0zko32zbtg1XXXVV0nP8fn/CKRXxUwoOHTqENWvWmJ5bT/nNbX3wsmXL8NOf/nTc62OnVO3duxc33XQTnnnmGUyePBm1tbXYuHGjoTVcbrsv5CynpnppTRuMX3Os0js9cdmyZfjRj34E4NQUXz1TElNpbW3FkiVLdJ2ba9PmyDgj/S8TL4MY3CgfffOb38R9992n+TNJknSP7qnryOK7HSNz652iFVwBMOBmGPtgbbwv5BZ6E5W2tjbU1tamvJ7X68XBgwfR09Oje01kKlprzaxKsJio5R6u8bIR59FTvtq2bZsoKSkZt5ZL7zx2N284qbX2zefzCZ/PF/OaLMuc128z9sHaeF8o1+jdcBeAaGpqElu2bEl7fXKytWbxMcBMf2/VdSi7GOl/+cTLII4qUj5LZ6QunapWTkr0lE6LG57cuR37YG28L5RrFEXBjBkzcOTIEV3nFxcXp6w2OpYkSTH9eqL+2+hMjURx0s0zPig5I/0vi2sQkW4ejweVlZVYsmQJKisrDU2PcOOGk0YWdwP/KsMfCoVYMISIKA0ejwd1dXW6zzeSdDU2NuoqipEsBmj19+FwGBUVFaiqqkJtbS2qqqpQUVGBbdu2GboO5S4+8TKIo4qU6+yaf+7GJ15626wlm75HLmEfrI33hdwqWcxRFAUzZ87E4OCgZZ+nFoMCUq/RNRK3jhw5kvCJlt5ftRk33MlI/3tahtpERC6gVXHKqoqDekYj/X5/tGhFNkjn6Vs2PbkjIspGqWKOx+PBpk2bsGjRIks+T5KkmLL1qZIcvf14f38/vv3tbyd9oqUH40bu41RDIgLwr3ns8aV4+/v7EQwGEQ6HTV9bURSsXr065Xn333//uBFHRVHQ3d3tyJ5fZWVljryXiCjX6Y05NTU16OzshCzLuq992WWXYcKE2F9xPR4PbrvtNkODiHr78UOHDllSxp5xI/cx8SIiw/PYk11HK0nq6enRFZRKSkpi/pxovnw6SaARgUAAsiyP2/AzGUmSsu7JHRFRNjEac2pqarBnzx40NTXpuv6vfvUrnDx5ctxnbty40VD8SBUD1P4+PnYZxbiRP5h4EVHKxEgIgb6+PvT09CQ8J1mSZKawhp1P4LRoJY0ejwctLS0AoCv5Us8ZO5WFiIhimYk5Ho8HK1euTJkIpep7jRSxSBYDxvb38YU6kkl2HcaN3MfEi4jSrjiYKkn629/+puv66jQLq57A6ZUsaaypqUFHR8e4wOrz+eDz+WJe06qKRUREsczGnFSJkBAiaVzQM4gYL1EMGNvfq0/GElGfaG3btk1XNUXKXSyuQUS655VrnZcqSZIkCY899hjKy8uxf/9+zfMkSYIsy9FpFkZGQ9OtAJVobxU1aVQDYnV19bgKWGpbra4ASUSUy9KJOWoipFWUY9GiRWhubk55XaNFLBLFALW/3759O959913N9459olVTU4Mrr7yScSOPsZy8QSzZS7lIURRUVFSgv78/aWLU29trutxuY2Mj1q1bBwApN61sa2tDbW1tymu2trZiyZIlKc9LRP3eiZK8ZN+bnME+WBvvCznJ6DYkesrE+3w+vPXWWwmvo/WZPT09Gd+2JNHgncrn82HTpk18opXD8nID5T179uCGG27A7NmzMXnyZMyZMwcNDQ04ceJEzHl79+7F5ZdfjilTpqC4uBirVq0adw5RvtE7j10rAOodOZw7d27K6RqqdEZDjbBibRsRUT4zWwQp3XF/j8eDyspKLFmyBJWVlfB4PLqLYVhVxCLZjA/V5MmTUV1dbcnnkfvlzFTDv/71rzh58iQeffRRnHXWWfjLX/6C5cuX4/jx49i4cSOAU/+DXHbZZSgpKcHvf/97DA4OYunSpRBC4KGHHnL4GxA5K9n0DXWKhBa9yc+MGTPg8Xhwzz334NChQygpKUF5ebnmyKgaPFM9gTMTPMeOkr722mu63sO9VYiIxtM7VTve+vXrceTIkaTXHhwcNDydXB1EDAaDCTcutrKIhZ6Kvfv27bNkWjzlCJHD7r33XjF79uzon3/961+LCRMmiP7+/uhrbW1toqCgQAwNDem65tDQkACg+3witxkdHRWRSES0traKSCQiRkdHU54vy7KQJEkAGHdIkiR8Pp8oLy+PeV2WZdHZ2Znwup2dnUKSpHHXVV9L9t5k15RlWbOdyY5IJGL4s8ge7IO18b5Qpql9f6J+U5Ik4ff7x8WQzs5O3X1va2urqbZ1dnYKn8837no+n89U7EiktbXV1u9B7mCk/82ZqYZahoaG4PV6o3/+wx/+gHnz5mHWrFnR1y655BKMjIzgxRdf1LzGyMgIhoeHYw6iXKY1fSPV+amqTA0ODqK/vz/mZ6nKwuupJGVEosqLyXBvFSIibWamaqtT8/RKZzq51vqxI0eOWLodid3T4hPtjUnulbOJ15tvvomHHnoIK1asiL524MABzJw5M+a86dOnY+LEiThw4IDmdTZs2ICioqLo4ff7bW03UTbR2+knSpLKy8vHlVxXCR1l4dVNMyORCFpbWxGJRNDb22s46dIzDz8e91YhIkrMTEl4PVPzVGYHvZIld3rijt7P6O7uRn9/P4qLixOel87gndm1c5Tdsj7xWrduHSRJSnq88MILMe/Zv38/Lr30UixevBhf+9rXYn6mteBS/E/Jay233347hoaGokdfX591X44oixnt9LWSpJ/85CdJq1ZpjYjGM/oETouRYK/i3ipERImZedpjZL3s/fffb0t/ryfuJDM2Nn7lK1/B4cOHNc9LZ/Au1d6YTL7cK+uLa9xyyy245pprkp5TUVER/e/9+/ejqqoKCxYswKZNm2LOKy0txR//+MeY144ePYr3339/3JMwVUFBAQoKCsw1nsilzC6YVpMkVVtbm67Ps7t4hd7r19fX4+yzz+beKkREKZgpgmRkyl1JSYmpdpndnFmPVKXjx/J6vabKyOvZGzMUCqG6upoxyoWyPvEqLi5O+hh3rP7+flRVVWH+/PnYvHkzJkyIfaC3YMECrF+/PrrnAwDs2LEDBQUFmD9/vuVtJ3IjKzv9TJWFt+r6F110EStPERHpkKyCYKKnPYFAAF6vN2VFQ8D8gJxdccfolHWzZeSNPLFjvHKfrJ9qqNf+/ftRWVkJv9+PjRs34tChQzhw4EDM2q2FCxfi7LPPxrXXXouXXnoJTz/9NG677TYsX76cG04S/Q8rp2lkek+VbG8HEVEuMVoEyePx6C6uYXZALlV/D5za1Nhof290yrpaRt4oO5/YkfNyJvHasWMH3njjDTzzzDOQZRllZWXRQ+XxePCrX/0KkyZNwmc+8xlcddVVuOKKK6L7fBGRtZ1+OhszWylb2kFElGuMFkG68847ExZdAtIfCFP7+2RPpgYHB7F9+3ZD1zWT6Jh5T7bMFCF75EzitWzZMgghNI+xzjzzTPzyl7/EO++8g8HBQTz00ENcw0U0htWdvtVl4c3KlnYQEeUaI0WQPB4PNm3apPlEyqqBsOrq6pTJndHKhmYSHTPv4QyN3CYJI/WVCcPDwygqKsLQ0BCnJ1JOUhQFFRUVKRdM9/b2GgqMiqKgp6cnusbSqeIV2dIOMod9sDbeF3KbcDiMurq6mOl7fr8fzc3NugfCEvXn3d3dqKqqSvn+SCSie51Uqtg4ltk4qVKLeADQXDvHwcLsYqT/zfriGkSUWWYWTOu9bjYsBM6WdhAR5StFUeD1enHPPffg0KFDKCkpQXl5uaGBMK3ETZZltLS0YGRkRNc1jEwFTBYbx7LiqZ06Q0Pr+xlJTCn75MxUQyKyDqflERGRHeL3wVq9ejW+/e1v48iRI4aSrmT7XP3tb3/TdR2jUwETxcaxrIqTRtfOkTtwqqFBnM5B+YTT8ijbsA/WxvtCbpBoHywjU+jUKX+JKgxKkoTy8nIIIbB//35Lp8yPbYMaG2fMmAEAOHjwIONknjLS/zLxMojBjYjIOeyDtfG+ULbTkzDpSYb0rt9qbGzEunXrAHCdFNnLSP/LqYZEREREZCur9ojUuy5r7ty5aU+ZVxQF3d3daGtrQ3d3t6EqiHbItvaQcSyuQURERES2smqPSCNbnlRWVqK6utrUlPlkxTuceFKWbe0hc5h4EZErcL0ZEZF7WbVHpLrPVaotT9R9rsxUsk20Fk0t3pHpaYrZ1h4yj1MNiSjrja2CVVtbi6qqKlRUVCAcDjvdNCIi0sGqjYHVsu7qe+KvAaRXyl1RFNTV1WkmdeprRjdfTke2tYfSw8SLiLJaqrLBTL4oW+3Zswc33HADZs+ejcmTJ2POnDloaGjAiRMnYs7bu3cvLr/8ckyZMgXFxcVYtWrVuHOI3M7KhMnOLU+sWotmlWxrD6WHUw2JKC12TgFMNdInSRJCoRCqq6s1P5PTE8lJf/3rX3Hy5Ek8+uijOOuss/CXv/wFy5cvx/Hjx7Fx40YAp/6NXnbZZSgpKcHvf/97DA4OYunSpRBC4KGHHnL4GxBZy8qNgWtqakyv30rGqrVoVsm29lB6mHgRkWl2L/Y1MtIXP4efC5HJaZdeeikuvfTS6J//7d/+Da+//jp+8IMfRBOvHTt24LXXXkNfXx9mzZoFALj//vuxbNkyrF+/nqXhKedYmTCZWb+VilVr0aySbe2h9HCqIRGZkokpgGZH+jg9kbLV0NAQvF5v9M9/+MMfMG/evGjSBQCXXHIJRkZG8OKLLya8zsjICIaHh2MOIrdQE6YlS5agsrIyq2YiWLUWLVfbQ+lh4kVEhmVqsa+ZkT4uRKZs9eabb+Khhx7CihUroq8dOHAAM2fOjDlv+vTpmDhxIg4cOJDwWhs2bEBRUVH08Pv9trWbKJek2gvL7uIdRmVbeyg9TLyIyLBMLfY1M9LHhchkt3Xr1kGSpKTHCy+8EPOe/fv349JLL8XixYvxta99LeZnWv++1TWMidx+++0YGhqKHn19fdZ8OaIcprdCbjrFO+zY5NjOYiKUWVzjRUSGZWqxrzrSFwwGIUlSzFOsRCN9XIhMdrvllltwzTXXJD2noqIi+t/79+9HVVUVFixYgE2bNsWcV1paij/+8Y8xrx09ehTvv//+uCdhYxUUFKCgoMB444nylNG9sMysRbNzbbFdxUQos5h4EZFhmVzsa7QKFhcik92Ki4tRXFys69z+/n5UVVVh/vz52Lx5MyZMiJ1osmDBAqxfvz76ixRwquBGQUEB5s+fb3nbifKR2Qq5Rop3ZGKTYzuKiVBmSULrXyElNDw8jKKiIgwNDbHaFOUtRVFQUVGB/v5+zUAmSRJkWUZvb6+lpeX1jPQ50TbKHDf1wfv378eFF16IM888Ez/72c9i/r2VlpYCOPXv9dxzz8XMmTNx33334ciRI1i2bBmuuOIKQ+Xk3XRfiDKtu7sbVVVVKc+LRCKmEhs17iSa5p6puMMtVJxhpP/lEy8iMszMFEArPlNPQHSibURaduzYgTfeeANvvPEGZFmO+Zn679Lj8eBXv/oVbrrpJnzmM5/B5MmTUVtbGy03T0Tps3sKejpbn1iFW6i4A4trEJEp2bzYN5vbRvlj2bJlEEJoHmOdeeaZ+OUvf4l33nkHg4ODeOihh7h+i8hCdk9Bd3ptMbdQcQ9ONTSI0zmIYmXz1Aan2pbN98Tt2Adr430hSszuKeh2T2VMJlumOeYzTjUkoozJ5sW+TrSN0z2IiDJHz0CX3VPQ1a1PUiV2yTY5Njtglw3THEk/TjUkIrIIp3sQEWWO3n25AHunoKe7ybGR7xHP6WmOZAwTLyIiC6QqVwwAoVDIks00iYjynZmBrpqaGuzZsweRSAStra2IRCLo7e21ZDaC2cQu3QE7bqHiLlzjZRDn0RORFifn+OcT9sHaeF8on2TzuiYjUwat+B7cQsV5RvpfPvEiIrIAp3sQEWWGkXVNmaauLV6yZAkqKyuTJjtWfI90pzlSZjHxIiKyAKd7EBFlRq4MdFn1PbiFinuwqiERkQWsqGpFRESp5cpAl5Xfo6amBtXV1dzKJMsx8SIisoDd5YqJiOiUXBnosvp7ZPP2LnQKpxoSEVmE0z2IiOyXK+uacuV7kH5MvIiILGRnuWIiIjolVwa6cuV7kD4sJ28QS/YSETmHfbA23hfKV0bKt2ezXPke+chI/8s1XkRERETkSrmyrilXvgclx6mGRERERERENmPiRUREREREZDMmXkRERERERDZj4kVERERERGQzJl5EREREREQ2Y+JFRERERERkMyZeRERERERENmPiRUREREREZDMmXkRERERERDZj4kVERERERGQzJl5EREREREQ2Y+JFRERERERkMyZeRERERERENmPiRUREREREZDMmXkRERERERDZj4kVERERERGQzJl5EREREREQ2Y+JFRERERERkMyZeRERENvnSl76EM888E5MmTUJZWRmuvfZa7N+/P+acvXv34vLLL8eUKVNQXFyMVatW4cSJEw61mIiI7MLEi4iIyCZVVVVob2/H66+/js7OTrz55psIBoPRnyuKgssuuwzHjx/H73//e2zduhWdnZ249dZbHWw1ERHZQRJCCKcb4SbDw8MoKirC0NAQCgsLnW4OEVFecXsf/Itf/AJXXHEFRkZGcPrpp+Opp57CF7/4RfT19WHWrFkAgK1bt2LZsmU4ePCg7u/o9vtCRORWRvrfnHziNTIygnPPPReSJGH37t0xP+OUDiIicsKRI0fwn//5n7jgggtw+umnAwD+8Ic/YN68edGkCwAuueQSjIyM4MUXX0x4rZGREQwPD8ccRESU3XIy8frmN78ZE8RUnNJBRESZ9q1vfQtTpkyBz+fD3r17sX379ujPDhw4gJkzZ8acP336dEycOBEHDhxIeM0NGzagqKgoevj9ftvaT0RE1si5xOupp57Cjh07sHHjxnE/27FjB1577TVs2bIF5513Hi6++GLcf//9eOyxxzhaSJTnFEVBd3c32tra0N3dDUVRnG4SZal169ZBkqSkxwsvvBA9f+3atXjppZewY8cOeDweXHfddRg7y1+SpHGfIYTQfF11++23Y2hoKHr09fVZ+yWJiPJApmP/abZePcPeeustLF++HE8++STOOOOMcT9PNaWjqqpq3HtGRkYwMjIS/TMTNKLcEw6HUVdXh3379kVfk2UZLS0tqKmpcbBllI1uueUWXHPNNUnPqaioiP53cXExiouL8aEPfQgf/ehH4ff78dxzz2HBggUoLS3FH//4x5j3Hj16FO+///64J2FjFRQUoKCgIK3vQUSUz5yI/TmTeAkhsGzZMqxYsQKf/OQnsWfPnnHnmJnSsWHDBjQ2NtrRZCLKAuFwGMFgEPF1hvr7+xEMBtHR0cHki2KoiZQZ6r8zdUBvwYIFWL9+PQYGBlBWVgbg1OyMgoICzJ8/35oGExFRDKdif9ZPNdQ7peOhhx7C8PAwbr/99qTXMzqlg9M5iHKXoiioq6sb1/EC//oFORQKcdohmfKnP/0JDz/8MHbv3o1//OMfiEQiqK2txZw5c7BgwQIAwMKFC3H22Wfj2muvxUsvvYSnn34at912G5YvX87qhERENnAy9md94nXLLbfg//2//5f0mDdvHp555hk899xzKCgowGmnnYazzjoLAPDJT34SS5cuBQCUlpaOe7KVakpHQUEBCgsLYw4iyg09PT0xUwziCSHQ19eHnp6eDLaKcsXkyZMRDodx0UUX4cMf/jC++tWvYt68edi1a1d0mqDH48GvfvUrTJo0CZ/5zGdw1VVX4YorrtBcp0xEROlzMvZn/VRDvVM6HnzwQXz3u9+N/nn//v245JJL8Pjjj+P8888HwCkdRBRrYGDA0vOIxvrYxz6GZ555JuV5Z555Jn75y19moEVERORk7M/6xEuvM888M+bPU6dOBQDMmTMHsiwDiJ3Scd999+HIkSOc0kGUx9QBGKvOIyIiouzmZOzP+qmGVuKUDiIaKxAIQJblhGs8JUmC3+9HIBDIcMuIiIjIDk7G/px54hWvoqJCc9Ecp3QQkcrj8aClpQXBYBCSJGnurdTc3AyPx+NUE4mIiMhCTsb+vHriRUQUr6amBh0dHSgvL495XZZllpInIiLKQU7FfkloPRaihIaHh1FUVIShoSGuCyPKIYqioKenJ1p8JxAI8ElXFmIfrI33hYjIOCtiv5H+N2enGhIRGeHxeFBZWel0M4iIiChDMh37OdWQiIiIiIjIZky8iIiIiIiIbMbEi4iIiIiIyGZMvIiIiIiIiGzGxIuIiIiIiMhmTLyIiIiIiIhsxnLyBqnbng0PDzvcEiKi/KP2vdyCMhZjExGRM4zEJSZeBh07dgwA4Pf7HW4JEVH+OnbsGIqKipxuRtZgbCIicpaeuCQJDhsacvLkSezfvx/Tpk2DJEm2ftbw8DD8fj/6+vpS7oSdLdjmzHFju9nmzMjlNgshcOzYMcyaNQsTJnC2vIqxKTm2OTPY5sxxY7tztc1G4hKfeBk0YcIEyLKc0c8sLCx0zT9QFducOW5sN9ucGbnaZj7pGo+xSR+2OTPY5sxxY7tzsc164xKHC4mIiIiIiGzGxIuIiIiIiMhmTLyyWEFBARoaGlBQUOB0U3RjmzPHje1mmzODbSY7ufHvim3ODLY5c9zYbraZxTWIiIiIiIhsxydeRERERERENmPiRUREREREZDMmXkRERERERDZj4kVERERERGQzJl5EREREREQ2Y+LlEl/60pdw5plnYtKkSSgrK8O1116L/fv3O92spPbs2YMbbrgBs2fPxuTJkzFnzhw0NDTgxIkTTjctqfXr1+OCCy7AGWecgQ984ANON0fT97//fcyePRuTJk3C/Pnz0dPT43STkvrd736Hyy+/HLNmzYIkSXjyySedblJSGzZswKc+9SlMmzYNM2bMwBVXXIHXX3/d6Wal9IMf/ADnnHMOCgsLUVhYiAULFuCpp55yulm6bdiwAZIkIRQKOd0U0sltsYlxyV6MTfZyY2xye1wCrI1NTLxcoqqqCu3t7Xj99dfR2dmJN998E8Fg0OlmJfXXv/4VJ0+exKOPPopXX30VTU1N+OEPf4g77rjD6aYldeLECSxevBjf+MY3nG6KpscffxyhUAh33nknXnrpJQQCAXzhC1/A3r17nW5aQsePH8fHP/5xPPzww043RZddu3bh5ptvxnPPPYedO3didHQUCxcuxPHjx51uWlKyLOOee+7BCy+8gBdeeAH//u//jurqarz66qtONy2l559/Hps2bcI555zjdFPIALfFJsYl+zA22c+NscnNcQmwITYJcqXt27cLSZLEiRMnnG6KIffee6+YPXu2083QZfPmzaKoqMjpZozz6U9/WqxYsSLmtY985CPi29/+tkMtMgaAeOKJJ5xuhiEHDx4UAMSuXbucboph06dPFz/60Y+cbkZSx44dE3PnzhU7d+4UF154oairq3O6SWSSG2MT45I1GJsyz62xyQ1xSQh7YhOfeLnQkSNH8J//+Z+44IILcPrppzvdHEOGhobg9XqdboZrnThxAi+++CIWLlwY8/rChQvx7LPPOtSq3Dc0NAQArvq3qygKtm7diuPHj2PBggVONyepm2++GZdddhkuvvhip5tCaXBrbGJcSh9jkzPcFpvcFJcAe2ITEy8X+da3voUpU6bA5/Nh79692L59u9NNMuTNN9/EQw89hBUrVjjdFNc6fPgwFEXBzJkzY16fOXMmDhw44FCrcpsQAmvWrMFnP/tZzJs3z+nmpPTKK69g6tSpKCgowIoVK/DEE0/g7LPPdrpZCW3duhV//vOfsWHDBqebQia5OTYxLlmDsSnz3BSb3BaXAPtiExMvB61btw6SJCU9Xnjhhej5a9euxUsvvYQdO3bA4/HguuuugxAi69sNAPv378ell16KxYsX42tf+5or2pzNJEmK+bMQYtxrZI1bbrkFL7/8Mtra2pxuii4f/vCHsXv3bjz33HP4xje+gaVLl+K1115zulma+vr6UFdXhy1btmDSpElON4f+hxtjE+NSdmBsyhw3xSY3xSXA3tgkCSd+cycAp0aIDh8+nPSciooKzb/0ffv2we/349lnn83441qj7d6/fz+qqqpw/vnn4yc/+QkmTMh8vm/mXv/kJz9BKBTCP//5T5tbp9+JEydwxhlnYNu2bbjyyiujr9fV1WH37t3YtWuXg63TR5IkPPHEE7jiiiucbkpKK1euxJNPPonf/e53mD17ttPNMeXiiy/GnDlz8OijjzrdlHGefPJJXHnllfB4PNHXFEWBJEmYMGECRkZGYn5GmeHG2MS45CzGpsxye2zK5rgE2BubTrOqkWRccXExiouLTb1XzZdHRkasbJIuRtrd39+PqqoqzJ8/H5s3b3YkuAHp3etsMnHiRMyfPx87d+6MCW47d+5EdXW1gy3LLUIIrFy5Ek888QS6u7tdGdhUQghH+gk9LrroIrzyyisxr11//fX4yEc+gm9961tMuhzixtjEuOQsxqbMyJXYlM1xCbA3NjHxcoE//elP+NOf/oTPfvazmD59Ov7+97/jrrvuwpw5c7J6ceL+/ftRWVmJM888Exs3bsShQ4eiPystLXWwZcnt3bsXR44cwd69e6EoCnbv3g0AOOusszB16lRnGwdgzZo1uPbaa/HJT34SCxYswKZNm7B3796sXqPw9ttv44033oj+ube3F7t374bX68WZZ57pYMu03XzzzWhtbcX27dsxbdq06BqFoqIiTJ482eHWJXbHHXfgC1/4Avx+P44dO4atW7eiu7sbv/nNb5xumqZp06aNW5ugrhXK9jUL5M7YxLhkH8Ym+7kxNrktLgE2x6a06yKS7V5++WVRVVUlvF6vKCgoEBUVFWLFihVi3759Tjctqc2bNwsAmkc2W7p0qWabI5GI002LeuSRR8QHP/hBMXHiRPGJT3wi60vJRiIRzXu6dOlSp5umKdG/282bNzvdtKS++tWvRv9dlJSUiIsuukjs2LHD6WYZwnLy7uHG2MS4ZC/GJnu5MTblQlwSwrrYxDVeRERERERENmNVQyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIimzHxIiIiIiIishkTLyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEicqlf//rXkCQp4XHVVVc53UQiIsozjE1EiUlCCOF0I4jIuHfffRdDQ0MxrymKguuvvx4vvfQSnnnmGXzsYx9zqHVERJSPGJuIEjvN6QYQkTmTJ0/G5MmTo39WFAVf+cpXGNiIiMgxjE1EiTHxIsoBamDbuXMnAxsREWUFxiaiWFzjReRyiqLg2muvxc6dO/H000/jnHPOif7s73//O/7rv/7L9LWvvPJKTJ8+HcFg0IqmEhFRnmBsIhqPiReRi6mBbceOHXj66afx8Y9/PObnTz31FP7617+avv6qVavws5/9LN1mEhFRHmFsItLGxIvIpdTA9tvf/hZdXV3jAtuuXbtQX1+Pxx57DOeddx7effddw59RVVWFadOmWdVkIiLKcYxNRIlxjReRCymKguuuuy4a2M4999xx51x44YWYN28eWltb4ff7M99IIiLKK4xNRMkx8SJymZMnT+K6667Dk08+iY6ODpSVleHAgQMx55SUlMDj8WDfvn2agW3+/PkYGRkZ9/qOHTswa9Ys29pORES5ibGJKDUmXkQu8/zzz6O1tRUA8B//8R+a5xw9ehRvv/02ysvLNX/+4osv2tY+IiLKP4xNRKkx8SJymfPPPx969j1/5ZVXOEJIREQZwdhElBqLaxDlqHnz5uFvf/sbPvaxj5muHnXJJZdg8eLF+PWvfw1ZlvH8889b3EoiIsonjE2UzyShZ3iCiIiIiIiITOMTLyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIimzHxIiIiIiIishkTLyIiIiIiIpsx8SIiIiIiIrIZEy8iIiIiIiKbMfEiIiIiIiKyGRMvIiIiIiIim/1/RAAPzeqWGMIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -256,7 +256,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 27, "id": "8c51c08e", "metadata": {}, "outputs": [], @@ -275,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 30, "id": "feb478b5", "metadata": {}, "outputs": [ @@ -301,10 +301,10 @@ "## Resulting lagged parent (super)sets:\n", "\n", " Variable $X$ has 1 link(s):\n", - " ($Y$ -1): max_pval = 0.00098, min_val = -0.148\n", + " ($Z$ -1): max_pval = 0.00459, min_val = 0.127\n", "\n", " Variable $Y$ has 1 link(s):\n", - " ($Z$ -1): max_pval = 0.00216, min_val = 0.137\n", + " ($Z$ -1): max_pval = 0.00099, min_val = 0.147\n", "\n", " Variable $Z$ has 0 link(s):\n", "\n", @@ -329,10 +329,11 @@ "\n", "## Significant links at alpha = 0.01:\n", "\n", - " Variable $X$ has 0 link(s):\n", + " Variable $X$ has 1 link(s):\n", + " ($Z$ -1): pval = 0.00459 | val = 0.127\n", "\n", " Variable $Y$ has 1 link(s):\n", - " ($Z$ -1): pval = 0.00216 | val = 0.137\n", + " ($Z$ -1): pval = 0.00099 | val = 0.147\n", "\n", " Variable $Z$ has 0 link(s):\n" ] @@ -354,13 +355,13 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 31, "id": "755e99ce", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArnUlEQVR4nO3df5QcVZ338c+tqu6eSUISfkRCMCZKAgZCAIUDzwaEXc4ahAXEZwEF3IVofHhA8AeI7BE2gARwVx6Qc9YjwiHJsqghKKyKCIILa1aWdY9EiGb54cHDgmQ1vwiQyXR31ff5YzLDJJPJdM10d93qer/OmUNnuqb7O5MU9Zl7v/eWMzMTAAAorCDrAgAAQLYIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAUXZV1Aq5lZ30eSyPo+8faTzm3/j1MQBAOPAQAoko4KA/0X/iSOlSTJwJ/T6A8GLggUhiHhAADQ8ZylvVp6KEkSxXGsuF5v+mu7IFAUhgoIBgCADpXbMGBmAwGgXd9CEASKSqWBKQUAADpBLsNAHMeq12ptCwE7C8JQpVKJkQIAQEfIVRhIkkS1Wk2WJFmXIkmKokhhFBEKAAC5loswYGaq1+st6QlohnKlwtQBACC3vA8DZqZatarEk9GA4USlkqKooxZnAAAKwuswYEmiarWaWW9AWmEUKWLaAACQM96GgSRJVO3tzbqM1GguBADkjZcT3WaWyyAgSUkcq+5pbwMAALviXRjo7xHIs7heVxzHWZcBAEBDvAsD9Xrd+2bBRuSh6REAAMmzMNCqLYWzUstR8yMAoLi8CQOdMD2wMzPrqHADAOhM3oSBTp1jr7fx3gkAAIyGF2HAzFSv1bIuo2UYHQAA+MyLMNCpowL9GB0AAPjMjzBQgN+cOz3wAADyK/MwYElSiN+aE8IAAMBTmYeBoqzFTwoSegAA+VOIMFCv13XwIYfo85ddNuS5Sy65RAcfcoj+8Ic/tLwOwgAAwEeFCANRFOnyyy7T8uXLtWHDhoHP//3f/73uf+AB/fMDD+gd73hHy+soyigIACBfMg0DZta235bPO+887bXXXrr99tslSd/+znd04003aeXKlZo9e3ZbajDCAADAQ1HWBbRLuVzW5z/3Od1400163/vep4suukh33XWX/tcxx7StBiYJAAA+cpbhRHaSJG29VfG2bds0Z84c/eGPf9RNN92kSz796ba9tyQFQaBypdLW9wQAYCSFGRmQpK6uLn3g+OP1yiuvtD0IAADgq0x7BpxzbX/PNWvW6Kijjmr7+0qSMvh+AQAYSearCdqpp6dHzz33nI444ohM3p8oAADwUeYjA+0cHfjVM88ojmMdcfjhbXvPwVxQqOwFAMiJzK9OQRsvkKuffloTJkzQrFmz2vaeg7XzewUAoFGZriaQ+m5SVOvg2xcPVunqyqRPAgCA3cn8V9WiDJ0HQUAQAAB4KfMrcVEukEEYZl0CAAC75EUYiEqlrMtouZAwAADwVOZhQOr8C2UURYUZAQEA5I8XYaDTRwfCqFAbPQIAcsaLMCB17uhAyKgAAMBz3oQB55xK5XLWZTSVc04RowIAAM95EwakvtGBThpSL5XLjAoAALznVRiQtjfbdcDeA6VymR0HAQC54N3Vyjmncs6nC8Io6tgeCABA5/EuDEjbA0GlknUZoxIEAX0CAIBc8TIMSH0X1bwFgjAM6RMAAORO5jcqGomZqVqtypIk61J2KyqVFIYhQQAAkDvehwGpLxDU63XF9XrWpexSuVzm3gMAgNzKRRjolySJatWqfCk5jCK2GgYA5F6uwoDUN0rQHwqyEgSBSqVSRyyBBAAgd2Ggn5kprtcVx3HbRgqCIFBUKrF/AACgo+Q2DPQzs75gEMct6Slwzg3sG8B0AACgE+U+DAxmZop73pBFXQPTCWk55+SCQEEQKAwCpgIAAB2vo3bHsZ43pE2vKtr3ALmob4+C/pGDJEmk7bnHJA38ju9cXwAY9AEAQJF0TBhIet5QsulVSZLVeuWivi2N+y/wzPMDALBrHXGFTLa9qWTjq29/op7dSgMAAPIm92Eg6X1LyYZX1Df438fqvdkVBABAzuQ6DFjvViUb/luDg4AkGSMDAAA0LLdhwKo9ijf890BT4A5qvd7sUggAgO9yGQastk3x+pclG2bpoCVSEre3KAAAcip3YcBqvbsPAv3oGwAAoCG5CgNWr/UFgQZ+66dvAACAxuQmDFhcV7zhZSlpbMthqzEyAABAI3IRBixJ+poF0/y2z8gAAAAN8T4MmJmSja9ItW3pvo6eAQAAGuJ1GDAzJZt+L+t9K/0Xx3VZ3Py7GAIA0Gm8DQNmpuT1/5H1bBn9a6QcTQAAoIj8DQNvbpC9tWlsL0IYAABgRF6GgeStzUq2/HHMr8PIAAAAI/MuDCQ9byjZ/FpTXsuqhAEAAEbiVRiwJJFt3SzJNecF45qMbYkBANgtZx7e0ceSRFbdKtv2Vt9KgjEsEwz2eZeCyvgmVgcAQGfxamSgnwsCBV0TFE7eV+E7ZmpMIwVMFQAAsFtehoHBrLdH0ugHL2giBABg93IQBkax4dDgrycMAACwW1HWBYwkTRhwlfEK9txvoNegr9+gKksSucD73AMAQCa8DgOWxKk2DnKV8XJhSW78ZGn8ZJnZ9q/3rkcSAABv+B0GUk4RuMq4Hf/snFTubmZJAAB0HK/Hzq13a+MHu0AqdbWuGAAAOlTHhAFXGdc3EgAAAFLxNgxYEqfabMixsRAAAKPibxhIM0Wgof0CAACgMf6GgWpP4wcHoRRVWlcMAAAdzOMwkKJfoEy/AAAAo+VlGDBLUt1TgCkCAABGz8sw0BcEGt8oiOZBAABGz8swkGaKoK9foNy6YgAA6HB+hoFU+wuMp18AAIAx8C4MmFmqlQSO7YYBABgT78KA6r2SJQ0fThgAAGBsvAsDaTcbUon9BQAAGAv/wkCazYaiipzz7lsAACBXvLuSpttsiLsUAgAwVl6FAYvrUlxv+HjHLYsBABgzv8JArfFdByXCAAAAzeBVGEizBbEkiTAAAMCYeRUGUo0MRGW5wKvyAQDIJa+uplZLsdkQowIAADSFN2EgdfMgKwkAAGgKf8IAzYMAAGTCmzCglGGA5kEAAJrDmzBgaVYShGW5IGxdMQAAFIg/YSDFyAD9AgAANI8XYcCSWIprDR9PvwAAAM3jRxhI2y/AyAAAAE3jRRhIu/MgIwMAADSPF2Eg1chAWKJ5EACAJvIjDNR7Gz6WUQEAAJor8zBgZlK92vDxrCQAAKC5Mg8DimuSWePHMzIAAEBTZR4GLMWogMQ0AQAAzZZ5GFCt8X4BhZFcGLWuFgAACijzMJBmZMCVultYCQAAxeRBGGAlAQAAWco0DJiZVEvRM8BKAgAAmi7bkYEklixu+HAXlVtYDAAAxZRtGEgxRSBJCkutqQMAgALLdpogzbLCsCTnXOuKAQCgoLINAymWFTJFAABAa2Q8TZBuZAAAADRfbqYJXEQYAACgFTILA2bWd1+CRoVMEwAA0ArZjQzE9VSHMzIAAEBrZBgGUowKSPQMAADQItlNE6QJAy6QgrB1xQAAUGD5GBmI2GMAAIBWyW5koN54GHBMEQAA0DI5GRlgJQEAAK2Si54BRgYAAGidTMJA6j0GGBkAAKBlshkZSGLJrOHDGRkAAKB1sgkDafcYYMMhAABaJptpgjRhIIjkXLb3UwIAoJNlc5VNsayQUQEAAForm5GBpPH7EtAvAABAa2XUMxA3fixhAACAlspoNUGakQHuSQAAQCtlNE2QYmQgiFpXCAAA8H9kgLsVAgDQWm0PA327DzY+MuAYGQAAoKXaPzJgiaTGdx8UPQMAALRU+8NAmn4BiWkCAABazO8w4AJ2HwQAoMXa3zMQ0zwIAIBP/B4ZCGkeBACg1dp/tU2z4RAjAwCAFjOzvpVuZgPt7U6SnOt77Jzc9sedqu1hwNJsRcyyQgBAk/Rf9JMkkSWJEjNZkjT0tc45uSBQ0P/fIOiogOD1yAA9AwCAsUqSRHEcK66nuP7sxMxkcazB0SEIAoVR1BHBoP1hwBpLYRLTBACA0TEzxfW64jjumwJogSRJlFSrkqQwDAeCQR55HQaU0x8qACAbZqY4jlWv1dr6vnEcK45jBUGgUqkkl7PrV/t7Bhqcn5EksccAAKBB/SGgVSMBjUiSRL29vQqjSFEU5Wb6IIORgRR/SYQBAMAIzEy1alVJml82Wyyu1xXX6yqVywpzsK0+0wQAgNxKkkTV3t6syxhWrVpVkoNRgoxuVNQYtiIGAAwnrte9DgL94npdtWo10+mLkWSwAyE9AwCAsanX66q1uUlwLPpHMHwNBG292vb9EOgZAACMXlyvt321QDOYmbeBoL1X2zT9AtLAVpAAAEh9v2HnaURgZ2bmZZDxOwzQQAgA2K7/N+u8G+tuiK3Q3qtt6mUfjAwAAN5ePtgparWaV0sh/R0ZcPnf6xkA0BxxHHt18WwGn1YYtDkMpPimmSIAAMjfefax6r+Dog/avJqAZYUAgHSSOM66hJbJevvkfm2+4qb5hpkiAICiMzPVPWu2ayZfRgfaPE3Q1ncDAORc0sJbEPvChymQloYBM9P3vvc9XXjhhTryyCP1jukz9c4jjtONt31j5C9mYAAACi/u4CmCfmaWeeBx1sIKvv3tb+vcc8/VIYccove///066KCD9Otf/1orVqzQhrVPaVx39/BfXKooesd7WlUaACAHtvX0ZF1CW2R9d8OWjgz85je/0fTp0/Xss8/qmmuu0aJFi3T66adv31N6pDkghgYAoMisTXPpSZLosMMP15euumqHz//kJz/RxEmT9N3vfa8tNWSppWFg6tSpeu2117TPPvvo3e9+t1atWtXKtwMAdJB2XSCDINAXLr9cd9xxhzZt2iRJeuaZZ3Tueefp2muv1f/+yEdaXkPWKyZaGgY++clPasmSJVq4cGEr3wYA0IHa+dvyRz/6Ue299976+te/rldeeUVnfOQjOudjH9PnPvvZtrx/1n0DLe0Z6Ld+/XpNmTJF999/v2q1ms466yyt/81TmjRxj+G/qNytaMrMVpcGAPBUtVpt62/Md955pxZfc42mTZumGe96l1asWNHWefxKV1dmO++ysw8AwE9t/k35ox/9qLZu3Soz0/Lly9vf0JfhyABhAADgpXZfGj/3+c9LkjasX59JZ3+Wiws9DgOsJgCAImvnVeDaa6/Vj3/8Yz3x+OOqx7GWLVvWxnfvk+XN+VoaBqrVqk455RTNnDlzyHMzjjxBZ1xw8bDbTBIFAKDg2nRxXLp0qb5222267777NG/ePH364ov1/265RTUPdgZsl5Y2ED7yyCNasGCBlixZonHjxunUU09VkiR68MEH9cYbb+hv//Zv9ciKu/Sn848ZWlhlnMJ9ZrSqNACA5+q1WsvvS/Dwww/rrLPP1vJly/ThD39YkrRlyxYd9N736qYbb9Rf//Vft/T9B+va3UZ8LdbSkYH+ZSHlclmVSkWPPPKIHn30UVUqFZXLZUkafilFZ29FDQAYQdDieftf/vKXOve887RkyZKBICBJEydO1P+98EJ99eab27Ydcqu/15G0dGSgt7dXp5xyip544oldPv+n84/WPy/7ukql0tAnWVoIAIVmZurdti3rMtoiKpUURVFm79+WfQb6JT1blGx8tbGDS12K3vHu1hYEAPBa77Ztmd/Epx3KlYqCILue/va+c5pmEMv+/s4AgGxlPXzeLlmuJJDavrQwxdsVIAkCAHYvy6HzdomiqFhhINU3SxgAgMJzzmV6a992CD0IPP5OE7CcAACgzh4dCD0YFZB8DgOMDAAAJLkg6NjeAV+CTpvDQJqeARoIAQB9Sp5cNJvJh16Bfm1uIEz3TRdhOQkAYGQuCFTavlldJwiCwItegX7+ThNITBUAAAaEYejNsPpYOOdUKpe9GRWQfA8DNBECAAYJoyjTzXmawbcgIPkeBugbAAAM4uNv1WmUymUvw4zXPQNMEwAAduacU7lSkfPworo7pXLZ2z0T2r/pUJoVBUl77hYFAMgX55zK5XJulhyWKxVvg4DU9pEBSSmSnBEGAADDcM6pVCop2tWdbz3hgkCVri4vpwYGa39bZhBKcb2xYxN6BgAAw3POKdreVFiv1ZR4dN2ISiWFYZiL/oa2hwHnwsbXCBgjAwCAkQVBoHKlojiOVa/VMt2nJowirzYUakQ2IwONYpoAAJBCGIYKgmAgFLRTEAQqlUq5a2yUPA8D9AwAANLqnzoIw1CWJIrjWHHcmuuJCwKFYZib6YDhZBAG0qwm8GfuBwCQL845uTBUEIaKzJRsDwaWJGOaRnBBoHD7dsJ5DgCDtb9nIEjRM8DIAACgCZxzA7/BS333vun/SAaHg8EhwTk5bb9ronNyQdAxF/+deT1NQBgAALSCc27gwu7z+v92aX+Xg0vRM8BqAgAAWs7rTYfoGQAAoPXaHgYc0wQAAHglg5GBFGHAxtbxCQAARuZ3GJAa37oYAACMSgYNhIFS3co4bu8OUgAAFE37ewack8LGVzQaYQAAgJbKZgPlMMXtJpkmAACgpTIJA46RAQAAvJHRyECKjQ8JAwAAtFRGIwONTxMwMgAAQGvlYGSAngEAAFopm5GBIEUYSPpuNwkAAFrD/5EBib4BAABayP+lhZKMqQIAAFomm2kC59JtS8zIAAAALZPNyIDE8kIAADyRWRhwAcsLAQDwQXYjAxHLCwEA8EF2IwNhueFjGRkAAKB1MhwZaDwMKK7JzFpXCwAABZbdyECaMGAmGRsPAQDQChmODKTba4AVBQAAtEZ2IwMuSLX5kNUJAwAAtEJ2IwNKOVVQ721dIQAAFFimYSDNVIHVCAMAALRCtiMDaZYXEgYAAGiJjEcG0k0TGCsKAABouvz0DEhSrdqaQgAAKLDc9AxIktW2tagQAACKK9uRgdTLC+kbAACg2bIdGVDKqQKaCAEAaLrMw0CaJkKrbeMeBQAANFnmYcCVKo0fnMR9HwAAoGk8CANdqY6niRAAgObKPAwoSjEyINE3AABAk2UeBlwQpO4bAAAAzZN5GJDS9Q2wLTEAAM3lRxiIUvQN1HtZUQAAQBN5EQaUZkWBxO2MAQBoIi/CQPoVBYQBAACaxYswoDCSXOOl0EQIAEDzeBEGnHPppgoYGQAAoGm8CANSuqkCRgYAAGgej8JAum2JLa63rhgAAArEozDAtsQAAGTBmzCQenkhfQMAADSFN2HAuUBK1TdAGAAAoBm8CQOS5MrdDR9rdaYJAABohtyGAdXYlhgAgGbIbxiQ6BsAAKAJvAoDCktSEDZ8uFW3trAYAACKwasw4JxL1zfQ+1YLqwEAoBi8CgNSyibC3q30DQAAMEbehQGVUvQNWCKx+RAAAGPiXRhw5ZQ7EfbSNwAAwFj4FwaCUIoa342QvgEAAMbGuzAgpewbqNI3AADAWOQ+DMhMqva0rhgAADpc/sOAmCoAAGAsvAwDisrpNh+iiRAAgFHzMgw45+Qq4xs+3qo9MktaWBEAAJ3LyzAgKVUYkEzWS98AAACj0SFhQLIqfQMAAIyGv2EgKvX1DjSIvgEAAEbH2zAgpRwdqPbIkrh1xQAA0KE6Jwyor5EQAACk43kYGJfqePYbAAAgPb/DQBCmuoshfQMAAKTndRiQJNeVYnSgto2+AQAAUvI+DARp+waYKgAAIBXvw4DK4yTnGj6cqQIAANLxPgw45+TKjU8VEAYAAEjH+zAgpVxiWO+VxfXWFQMAQIfJRxjoom8AAIBWyUUYUFThlsYAALRILsJA6lsaMzIAAEDDchEGpJR9A3FNVq+2rhgAADpIZ4YBSdbzRosqAQCgs+QnDKS8pXGyjTAAAEAjchMGpFHc0pglhgAAjChfYaB7j1TH27Y3W1QJAACdI19hoDxOco2XbEwVAAAwonyFAefkuhofHbBtb3EXQwAARpCrMCBJrntCiqONPQcAABhB/sJAZYKkFHcxZIkhAAC7lb8wEASp7lVg296UmbWwIgAA8i13YUBSqr4BWcK9CgAA2I2choE0fQOsKgAAYHfyGQbCSCqPa/h463mDqQIAAIaRyzAgSUGKDYhcqSJLYpnZLj8AACiyKOsCRst1TZBe/59dPmculLr2kCoTZFG576JfrUmqDft6QRDIBYEC5/qaFJ2Tc42vWgAAIK/yGwaislSqSLVeSZIFkWzcZCWlnXYpTJKGXi9JEilJNHiLoiAIFEZRX1AgGAAAOpSzHI+Tx2+sVxwnsvJ4WYptikcjCEOFYUgwAAB0nFyGATNTXK+rXm//XQmdcyqVywqC3LZbAACwg1yFATNTkiSqVatZl6IgCFQqleQIBQCAnMtNGOgPAb6VG0aRoihi6gAAkFu5CANxHHsxGjAc55zKlQqBAACQS16HATNTvV5XnEFvwGiUKxV6CQAAueNtGDAz1Wo1JXE88sEeKZXLCsMw6zIAAGiYl7/G5jUISFKtWs1l3QCA4vIyDMRxnOsLatXDRkcAAIbjXRhI4lj12vDbBudFtbeXQAAAyAWvwoCZqerxqoE0+psfAQDwnVdhwOflg6MR1+uKczzdAQAoBm/CQJIkfTcL6jD1Wo3pAgCA17wJA53QJ7Ar/VsoAwDgKy/CQKeOCvTr1KADAOgMXoSBTr9Ymlmul0oCADpb5mGgKMPoNBICAHyVeRgoQhCQivN9AgDyJ/MwYG26SP74xz9W97hxw36ce955LX1/M2NVAQDAS5nfqKi3t7ctgaCnp0evv/76Dp+L41j/58IL9atf/UoP/ehHmjt3bktr4CZGAAAfRVm+uZm1bWSgu7tb3d3dA3+O41gXLFzYtiAg9U0VEAYAAL7JNAxkpT8I/PSnP21bEJDENAEAwEvZ9gxkcHGM41gLP/EJ/fSnP9WPHnxQhx56aPvenDAAAPBQpmGg3ZfG/iDw2GOP6UcPPqh58+a19f2JAgAAH2U6TeCca9t79QeBRx99NJMgIEnt+24BAGhc5ksL2yGOY33ik5/Uo48+qgd/+EMddthh2RTSxvADAECjOr6BMEkSfeKTn9QPfvADfeueezR16lStW7duh2OmTJnSli7/gDAAAPBQ5vsMVHt7W7o733/8x3/o+BNO2O0xr/3+95o8eXLLaujHPgMAAB9lHgbqtZrq9XqWJbRNpaurrX0SAAA0IvOegSDIvIS2cM4RBAAAXsr8SuwKEgaKEnoAAPmT+RXKOaegAPPoYdTxvZoAgJzKPAxIUtThF8ogCBgZAAB4y4srVBAEHT06EJVKWZcAAMCwvAgDUueODjAqAADwnTdXqU4dHWBUAADgO2/CgCSVSqWOWn4XlUqMCgAAvOfVlco5p1K5nHUZTREEAbsNAgBywaswIPVdRPMeCPpDTSeNcgAAOpd3YUCSwjDMdUMhQQAAkCdehgGpb749j8135UqFPgEAQK54/et3FEVykmq1WtaljMg5p3KlwogAACB3Mr9rYSOSJFG1tzfrMoYVhGHHrYQAABRHLsKAJJmZarWakjjOupQdlEol7jsAAMi13ISBfkmSqFaryZIk0zqiKFIYRYwGAAByL3dhoF8cx6rXamp3+UwJAAA6TW7DgNQ3dWBJojiOFbdw+sA5pzCKFIYhIQAA0HFyHQYGMzMlSaK4XlfShCkE55zCMFQQhiwVBAB0tI4JA4P1f0tJkgyMHiRJIut7codjnXN9H0GgYPt/+z8HAEARdGQYAAAAjWP8GwCAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOCirAsYrHzEQgVRWS4I5YJQYentxy4I3n4uDBVEZQUDz4VDnnNBqCBwcoFTGAZyOz0OAqcgdAPH7PY55xRGgcLAKQycytsfRwN/Dt9+Lnz7uGjQseGuHjunwDmFTiqFwcDjKAwUOvX9OXAqBW4Xj/ueLwXBwOPQOTknBU5yTttfX3KSwsApkPq+l0ADjwMnhW7w477XcGaSJXJJXdrhcdL3kQz/nLNEiuO3Hyd1KYllSSLVq7I4lpKk73P1miyJ+x7XalL/4/5j+4+rVd/+miRWUqvL4kSWJEqqdSVx39dYnCip1ZXEbz+27Y/jWl026Li4Wh/0OJYlpiS27X/e/vWJ9T0Xmyw2JXGiuJZsf01TXIu3f83bX5eYKTZTNTHFpp0e7/znvseJ+h7Hpu3Pvf34G/a7TM/LZuH85vzm/Pb3/GZkAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAorMOtW3bNlu8eLFt27Yt61KG8Lk2M+obC59r6yQ+/5x9rs2M+sbC59rGypmZZR1IWmHLli2aNGmSXn/9dU2cODHrcnbgc20S9Y2Fz7V1Ep9/zj7XJlHfWPhc21gxTQAAQMERBgAAKDjCAAAABdexYaBSqWjx4sWqVCpZlzKEz7VJ1DcWPtfWSXz+Oftcm0R9Y+FzbWPVsQ2EAACgMR07MgAAABpDGAAAoOAIAwAAFFzHhYHLL79cxx13nM4991xVq9Udnuvp6dFf/MVf6Pjjj9ef//mfa+PGjV7V1+/GG2/UkUcemXlN9Xpd559/vo477jh95jOfaVs9jdbXr90/r8GGq82Hf2udiPO7eTVxfo+sSOd3R4WBp59+WuvWrdPPfvYzHXzwwbrvvvt2eP6hhx7S3Llz9cQTT+iss87S3Xff7VV9kvTGG29ozZo1XtT0gx/8QO985zv1s5/9TFu3btXPf/7zttXVSH1S+39ejdaW9b+1TsT53dyaOL9HX1vW/9ZaoaPCwJNPPqkPfvCDkqSTTjppyD/u2bNna+vWrZKkzZs3a8qUKV7VJ0lf+9rXdPHFF3tRUyP1Zlmf1P6f12C7qy3rf2udiPO7uTVxfu9e0c7vKOsCmmnz5s2aNm2aJGnSpElDhm4OOOAArVmzRnPnzpVzTk899ZRX9b3++ut69tlnddVVV3lR0+bNmwf2395VvVnXl8XPq9Hasv631ok4v5tbE+f36GvL+t9aK+RyZGDdunU69thjh3yYmbZs2SKp7y9yr7322uHrli9frhNOOEFr1qzRtddeq+uuu86r+m699VZ9+tOfbklNw9lzzz2HrWl3z/lQXxY/r8F2V1u7/q11Is7v5uH8Hr2ind+5DANTp07VqlWrhnycfPLJeuSRRyRJDz/8sObPnz/ka/v/QidPnqzNmzd7Vd+LL76oJUuW6KSTTtILL7ygm266qSX1DXbMMccMW9PunmuX3dWQxc+r0dqk9vxb60Sc383D+d2a2qQOPL+zu3tya1x22WV27LHH2jnnnGO9vb1mZvapT33KzMxef/11O/nkk+3444+3+fPn23PPPedVfYO9//3vz6ym/npqtZr91V/9lR177LF2ySWXtK2eRusbrJ0/r8GGq82Hf2udiPN77DVxfjeuSOc32xEDAFBwuZwmAAAAzUMYAACg4AgDAAAUHGEAAICCIwwUwLJlyzR58uSmvNbvfvc7OecURZFeffXVHZ577bXXFEWRnHP63e9+t8Nz3/3ud3XCCSdo0qRJmjBhgubNm6frrrtuYCOPZtYIYOxmzpwp55y+853vDHnukEMOkXNOy5Yt2+HzTz/9tM4880ztu+++6urq0oEHHqhFixbp+eefl/T2/z9Wr17dhu8AaRAGMCrTpk3TP/7jP+7wueXLl2v//fcfcuyXvvQlnX322TrqqKP00EMPac2aNbr55pv1q1/9qiP29AZarVarZfK+06dP19KlS3f43L//+79r3bp1Gj9+/A6f/+EPf6hjjjlGvb29uueee7R27VrdfffdmjRpkq6++up2lo3RyHptI0b20EMP2fz5823SpEm211572SmnnGIvvviimZn9y7/8i0myTZs2DRz/9NNPmyR76aWXBp4f/LF48WIzM9u4caN9/OMft8mTJ1t3d7eddNJJ9vzzz++2lpdeeskk2VVXXWWzZ8/e4bmDDjrIrr766oH3NjN76qmnTJLdeuutu3y9/rqXLl1qkyZNSv2zAfIqjmO76aab7IADDrByuWzTp0+366+/fuAcW7FihR1//PFWqVTsrrvusjiO7dprr7X999/fyuWyHXbYYfbQQw8NvF5vb69dfPHFNnXqVKtUKjZjxgy74YYbBp5fvHixTZ8+3crlsu23334j7i0wY8YMu/LKK61SqdjLL7888PlFixbZJZdcYpMmTbKlS5eamdlbb71l++yzj334wx/e5Wv1n+f939vTTz89uh8aWoaRgRx466239PnPf16/+MUv9NhjjykIAp1xxhlKkmTEr/2TP/kT3XrrrZo4caJee+01vfbaa7r88sslSeeff77+8z//U9///vf15JNPysx08sknN/RbyGmnnaZNmzZp1apVkqRVq1Zp48aNOvXUU3c47p577tGECRN00UUX7fJ1mBpAUf3N3/yNvvKVr+jqq6/Wb37zG33rW9/SvvvuO/D8F7/4RV166aVau3atFixYoK997Wu6+eab9dWvflXPPPOMFixYoNNOO00vvPCCJOm2227T97//fd1777167rnn9E//9E+aOXOmJOm+++7TLbfcottvv10vvPCCHnjgAR166KEj1rjvvvtqwYIFWr58uSRp69atWrFihRYuXLjDcQ8//LDWr1+vK664Ypevw3meA1mnEaT3hz/8wSTZs88+O+LIgNmuf+t+/vnnTZL927/928Dn1q9fb93d3XbvvfcO+96Dk/1nP/tZu+CCC8zM7IILLrDPfe5zQ977Qx/6kM2bN2/E74mRARTJli1brFKp2B133DHkuf5zbOfRtGnTptmSJUt2+NxRRx1lF110kZmZXXLJJfZnf/ZnliTJkNe8+eab7cADD7RqtdpwjTNmzLBbbrnFHnjgATvggAMsSRJbvny5HXHEEWZmO4wMfOUrXzFJtnHjxt2+JiMD/mJkIAd++9vf6pxzztF73vMeTZw4Ue9+97slSS+//PKoX3Pt2rWKokhHH330wOf23ntvHXTQQVq7dq0k6UMf+pAmTJigCRMm6JBDDhnyGp/4xCe0cuVKrVu3TitXrhzy24IkmZmcc6OuE+hEa9euVW9vr0488cRhjznyyCMHHm/ZskW///3vh+yPP3/+/IHz9fzzz9fq1at10EEH6dJLLx3YV1+SzjzzTPX09Og973mPFi1apPvvv1/1el2SdMMNNwyc5xMmTBjy/5VTTjlFb775pv71X/9Vd91117DnOfKNMJADp556qjZs2KA77rhDTz311MDtMqvVqoKg769w8MnYyDD/cCfv4Iv3nXfeqdWrV2v16tX60Y9+NOTYuXPn6r3vfa8+9rGPac6cOZo7d+6QYw488ED99re/zawBCvBRd3f3iMfs3KAnaUiwHny+vu9979NLL72kL3/5y+rp6dFZZ52lv/zLv5TU1wj43HPP6R/+4R/U3d2tiy66SB/4wAdUq9V04YUXDpznq1evHrhtb78oivTxj39cixcv1lNPPaVzzz13SF0HHnigJOm//uu/GvsBwDuEAc9t2LBBa9eu1VVXXaUTTzxRc+bM0aZNmwaenzJliqS+ZX39dl62Uy6XFcfxDp87+OCDVa/Xd7gP94YNG/T8889rzpw5kqT9999fs2bN0qxZszRjxoxd1rdw4UI9/vjju/xtQZLOOeccvfnmm/r617++y+c74m5fQEqzZ89Wd3e3HnvssYaOnzhxoqZNmzbQo9Pv5z//+cD52n/c2WefrTvuuEMrVqzQd7/73YHlu93d3TrttNN022236fHHH9eTTz6pZ599VnvttdfAeT5r1ixFUTTk/RcuXKgnnnhCp59+uvbcc88hz3/wgx/UPvvso7/7u7/bZf2c5/4b+rcOr+y5557ae++99c1vflP77befXn75ZV155ZUDz8+aNUvTp0/XNddco+uvv14vvPCCbr755h1eY+bMmXrzzTf12GOP6bDDDtO4ceM0e/ZsnX766Vq0aJFuv/127bHHHrryyiu1//776/TTT2+4vkWLFunMM88ctkHo6KOP1hVXXKHLLrtMr776qs444wxNmzZNL774or7xjW/o2GOP1Wc+85lR/WyAvOrq6tIXv/hFXXHFFSqXy5o/f77++Mc/6te//vWwUwdf+MIXtHjxYh1wwAE6/PDDtXTpUq1evVr33HOPJOmWW27Rfvvtp8MPP1xBEGjlypWaOnWqJk+erGXLlimOYx199NEaN26c7r77bnV3dw8b8nc2Z84crV+/XuPGjdvl8+PHj9edd96pM888U6eddpouvfRSzZo1S+vXr9e9996rl19+eZf7FcAjWTYsoDE/+clPbM6cOVapVGzevHn2+OOPmyS7//77zcxs1apVduihh1pXV5cdd9xxtnLlyh2a+MzMLrzwQtt77713ubRw0qRJ1t3dbQsWLGh4aeFwDUA7NxD2W7FihX3gAx+wPfbYw8aPH2/z5s2z6667jqWFKKw4ju3666+3GTNmWKlUsne96112ww03DHuODV5aWCqVhiwt/OY3v2mHH364jR8/3iZOnGgnnnii/fKXvzQzs/vvv9+OPvpomzhxoo0fP96OOeYYe/TRR3dbX38D4XAGNxD2+8UvfmEf+chHbMqUKVapVGzWrFn2qU99yl544QUzo4HQZ9zCGACAgqNnAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAK7v8DYIJInlt1bIkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6MklEQVR4nO3de5RkVX33/88+51RV36Z7ZmC4zICDMEAGYcRb4BdQWPGJeEVNRCNgoig+BEVFDGqCa4SgYiIP6PolPxUjEEWDqBhNRKMoRiJB8ggqZgQkElQYh7n19LWqztnf3x+nu+mea9V0VZ1Tdd6vtZopqk5X7b5Un8/Z+7v3dmZmAgAAhRVk3QAAAJAtwgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBRVk3oN3MLP3wXpbe8eSDzs384xQEwdxtAACKpKfCwOyJ3yeJvPdz/9+M2WDggkBhGBIOAAA9z1mzZ8sc8t4rSRIlcdzy53ZBoCgMFRAMAAA9qmvDgJnNBYBOfQlBECgqleaGFAAA6AVdGQaSJFFcr3csBOwsCEOVSiV6CgAAPaGrwoD3XvV6XeZ91k2RJEVRpDCKCAUAgK7WFWHAzBTHcVtqAlqhXKkwdAAA6Fq5DwNmpnqtJp+T3oA9iUolRVFPTc4AABRErsOAea9arZZZbUCzwihSxLABAKDL5DYMeO9Vq1azbkbTKC4EAHSbXA50m1lXBgFJ8kmiOKe1DQAA7E7uwsBsjUA3S+JYSZJk3QwAABqSuzAQx3HuiwUb0Q1FjwAASDkLA+1aUjgr9S4qfgQAFFduwkAvDA/szMx6KtwAAHpTbsJAr46xxx3cOwEAgP2RizBgZorr9ayb0Tb0DgAA8iwXYaBXewVm0TsAAMizfISBAlw593rgAQB0r8zDgHlfiKtmTxgAAORU5mGgKHPxfUFCDwCg+xQiDMRxrOOe9jS985JLdnnsoosu0nFPe5o2bdrU9nYQBgAAeVSIMBBFkd51ySW68cYbtWXLlrn7/+Zv/ka3fuUr+qevfEUHHXRQ29tRlF4QAEB3yTQMmFnHrpbPPfdcLV++XJ/4xCckSZ//x3/Uh666SrfccouOPvrojrTBCAMAgByKsm5Ap5TLZb3z4ov1oauu0jOf+UxdeOGF+vSnP63/5+STO9YGBgkAAHnkLMOBbO99R7cqnp6e1tq1a7XpiSd01VVX6aK3vrVjry1JQRCoXKl09DUBANiXwvQMSFJfX5+ed9pp+vWvf93xIAAAQF5lWjPgnOv4a95///16znOe0/HXlSRl8PUCALAvmc8m6KSpqSk98MADesYznpHJ6xMFAAB5lHnPQCd7B378k58oSRI948QTO/aa87mgUNkLANAlMj87BR08Qd53770aGhrSmjVrOvaa83XyawUAoFGZziaQ0k2K6j28ffF8lb6+TOokAADYm8wvVYvSdR4EAUEAAJBLmZ+Ji3KCDMIw6yYAALBbuQgDUamUdTPaLiQMAAByKvMwIPX+iTKKosL0gAAAuk8uwkCv9w6EUaEWegQAdJlchAGpd3sHQnoFAAA5l5sw4JxTqVzOuhkt5ZxTRK8AACDnchMGpLR3oJe61EvlMr0CAIDcy1UYkGaK7Xpg7YFSucyKgwCArpC7s5VzTuUuHy4Io6hnayAAAL0nd2FAmgkElUrWzdgvQRBQJwAA6Cq5DANSelLttkAQhiF1AgCArpP5RkX7Ymaq1Woy77Nuyl5FpZLCMCQIAAC6Tu7DgJQGgjiOlcRx1k3ZrXK5zN4DAICu1RVhYJb3XvVaTXlpchhFLDUMAOh6XRUGpLSXYDYUZCUIApVKpZ6YAgkAQNeFgVlmpiSOlSRJx3oKgiBQVCqxfgAAoKd0bRiYZWZpMEiSttQUOOfm1g1gOAAA0Iu6PgzMZ2ZKJrbJykNzwwnNcs7JBYGCIFAYBAwFAAB6Xk+tjmNTO6Ttjys65Gi5KF2jYLbnwHsvzeQekzR3je9cGgDmfQAAUCQ9Ewb81A75rb+WJFm9KhelSxrPnuAZ5wcAYPd64gzpp8flt/z6yTvianaNAQCgy3R9GPDTE/KbH1Xa+Z+yOmEAAIBGdXUYsOqk/JaFQUCSjJ4BAAAa1rVhwGpTSjb/j2S7mTFQz88qhQAA5F1XhgGrTSt5Yg9BQJIskXzS2UYBANClui4MWL2qZPMj6Ql/bxgqAACgIV0VBiyuKXnikYau+ikiBACgMV0TBiyJ0xoB39iSwxQRAgDQmK4IA+YTJZsfleImdiqkZwAAgIbkPgyYefktv5LqU819Hj0DAAA0JNdhwMzktz4mq040/8lJLEtav4shAAC9JrdhwMzkRzfKpkb3/znq0y1sEQAAvSm/YWBss2x86+KepNbc0AIAAEWUyzDgJ7bJ79i06OehZwAAgH3LXRjwUzvktz3WkueyGmEAAIB9yVUYMO9lE9skudY8YVKTsSwxAAB75SyHO/qY97LahGx6QjY9vqilhYMDj1DQN9jC1gEA0Fty1TMwywWBgr4lCpceovDgI7WonoIm1ycAAKBochkG5rPqpKT977ygbgAAgL3rgjCwHwsOzf98egYAANirKOsG7ItNjzd8rOsbUrBspWx6PK03qI5LcVpE6IKwja0EAKB75ToMmE+kJtYKcJVBubAkN7hMGlwmM2vq8wEAKKJ8h4EmhwhcZeGsAeecVO5vZZMAAOg5ua4ZaGaIQC6QSn3tawwAAD0q32GgOtnwsa4ymPYEAACApuQ2DJiPm1psaOchAgAA0Jj8hoFqc1MCCQMAAOyf/IaBWuNDBApCqVRpX2MAAOhh+Q0D1AsAANARuQwDZl6qNT5M4CoDbWwNAAC9LZdhIA0Cje9HQL0AAAD7L5dhoJkhAgWRFFEvAADA/spnGGiieNBVBqgXAABgEXIXBsysyeJB6gUAAFiM3IUB1auS+YYPdyX2HgAAYDFyFwas1tzmRCqzHwEAAIuRvzDQTPFgVJFzufsSAADoKrk7k1oz6wuwPTEAAIuWqzBgSSwl9YaPd2xZDADAouUrDDTRKyDRMwAAQCvkKgyoPt3c8WxOBADAouUqDDTVMxBV5IKwfY0BAKAg8hUGmugZcEwpBACgJXITBigeBAAgG/kJA03WC1A8CABAa+QmDKjJmQSiZwAAgJbITRhoqmcgKlM8CABAi+QnDDSz8iC9AgAAtEwuwoD5pLniQeoFAABomXyEAeoFAADITC7CQLMrD9IzAABA6+QiDFitiTAQligeBACghfIRBuJqw8fSKwAAQGtlHgbMTGomDFAvAABAS2UeBpTUJbPGj6dnAACAlso8DFi98V4BiZ4BAABaLfMw0MwQgcKSXBi1ry0AABRQ5mGgqeJBegUAAGi57MNAvdbwscwkAACg9TINA83OJGDlQQAAWi/bngGfpB8NcqVKGxsDAEAxZRsGmukVkKSw1J52AABQYNkOEzQzrTAsyTnXvsYAAFBQ2YaBZmYSROU2tgQAgOLKdpigmZ4BwgAAAG2Rcc9AE9MKqRcAAKAtMgsDZpbuS9AoegYAAGiL7HoGkripw6kZAACgPTIMA40PEUhiWiEAAG2S3TBBM0MELpCCsH2NAQCgwLLrGYibqxdgjQEAANqjK3oGmEkAAED7dE3PAAAAaI8MewaaWGMgomcAAIB2ySQMNL3GQEjPAAAA7ZJNz4BPJLOGD2eNAQAA2iebMNBMr4AkMUwAAEDbZDNM0MSeBAoiOZftfkoAAPSy/PcMMEQAAEBbZdMz0MS+BMwkAACgvTIqIGxikyIWHAIAoK0yGiZIGj7UsScBAABtlc0wQTM9A0HUvoYAAIAM1xloVEgYAACgnToeBtLVB5soIGSYAACAtup8z4B5SY2vPkjPAAAA7dX5MNDMEIEk0TMAAEBbdT4MNDFEIBew+iAAAG3W+ZqBptYYYIgAAIB2y/cwAUMEAAC0XecvvZuaSUDPAACgvcwsnelmNlfe7iTJufS2c3Izt3tVx8+2xhoDAIAMzJ70vfcy7+XNZN439LnOObkgUDD7bxD0VEDo/Nm2qdUHGSYAACyO915JkiiJmzj/7MTMZEmi+dEhCAKFUdQTwSCDMNBYCpNYcAgAsH/MTEkcK0mSdAigDbz38rWaJCkMw7lg0I06Hwas8TAgphUCAJpgZkqSRHG93tHXTZJESZIoCAKVSiW5LgsFna8ZaCYM0DMAAGjQbAhoV09AI7z3qlarCqNIURR1zfBBrocJ6BkAAOyLmaleq8k3c35psySOlcSxSuWywjD/F7Y5HybojkQFAMiG9161ajXrZuxRvVaT74Jegow2KmpMt425AAA6J4njXAeBWUkcq16rZTp8sS8ZrEDIMAEAYHHiOFa9w0WCizHbg5HXQNDRs236TWjiG0EYAADsJInjjs8WaAUzy20g6OzZtpl6AYkwAABYwHvfVT0COzOzXAaZfIcBagYAADNmr6y73WJXQ2yHzp5tm572kd/KSwBA58xOH+wV9Xo9V1Mh89sz4Lp/rWcAQGskSZKrk2cr5GmGQX7DAEMEAJB7lsQN7/y336+R03H2xZrdQTEPOjybgGmFANBLrF5V8tuHlex4Qpa054Ttk6Qtz5sHWS+fPKuzKxA29fUyRAAAeeeCQDIvG9+qZHyrXP8SBYPL5Mr9LXl+M1Ocs2K7VprtHch6yeLOL0fcKLIAAOTfTr24NjWmZGpMKvUpGFou1ze0qPov38YtiPMirteLFgaa+YGSBgAg9/Y0pFuflt/2mBRGaU/BwIjcfuxEm/TwEMEsM5OZZVo0n9+eAQBA/u2r2DuJ5Xc8IY1tkRsYSYNBVGr46fNSYNduWQ8VdHg2QUdfDQDQJDOT+UQW12S1afnqhPzUmPzEdvnxrUp2bFYy+lsl2x5XsuXXSrb8usEn9rKJbUo2/beSbY/J6tMNfEpngoD3Xk8/8UT95WWXLbj/W9/6loZHRvSlL3+5I23IkrMODsb4yVH5rQ3+4pT6FR18ZHsbBAAFYGbp1O4klvlE8rGUJDIfS0ks+dnbM491iKsMyg0tlyv377aLPOngZkSf/exn9c5LLtEDP/+5li1bpp/85Cf6X3/wB3rve9+ri9/xjra/vnNOlb6+tr/OHl8/t2Gg3K/oIMIAAOxOXk/w+2UPxYb1Wq1jNQNxHOuEdet07jnn6E//9E912umn62Uvfamuvfbajry+JFX6+jKrGyAMAEBOmfdSUk/n78cz/yZ1WZz+2/R+L3kXltJQMDAs5wLVarWOrjHwqU99Suvf/36tXLlSq5/yFN18880dHccvUBjYLr/1N40dXB5QdNBT29sgAMiQmaVX9nMn+drCk73v/Ur63QpCBYPLFEcD6mTcGR8f1+FPeYqOOuoofe+OOzQ4ONjBV5cqlUq6bkMGOjKbwMz085//XD/89+/px/f8h6amq1p79FF609mvUrnceFUpAHQb816Kqwuv7udd5WM3zMvMd7zm/OJ3vlOStGXz5kwq+03ZTarvSBj4oz/6I916661yzunII4/UkiVL9Pef/5JGhod0zh++rBNNAIC2MvNSXJPVq+kVfr0qi6vp+D0a5gaWKlhygFwYKalWOzaj4PLLL9c3vvENfe+OO/SSl75UN9xwgy644IKOvPasnl5nYPv27br11lt11VVX6YILLtDIyIgkadWqVfrv//nVHj+PHQsB5JGZpSf9uCqr19Kr/nqVq/xFcv1LFCw5UC4qz7uzM+eB66+/Xh/92Md02223ad26dXrrW96i/3PNNXrjG9+oUqkYvddtH5yY7Wq555579LrXvU6vfe1r2/2SALBoZiaLa+kc+7HNSrY+pnjTL5U8/qCSJx6R3/a4bHyLbHqcILAIrjKocMVqhctWLgwCkoIOhIFvfvObesfFF+vTf//3Oul3f1eS9Gd/9mcaGxvT5z73uba//nw93TOwZMkSXXzxxfryl7+ssbEdOuGEdQ1+JisUAegM816qT8vq0zPd/FWpXhN/h9qo1KdweIVcZWCPhwRhKLVxk6If/ehHOufcc/WBD3xAr3jFK+buHx4e1p9dcIE+cvXVOvfccztSPxBkvDdBR2cTnPPHr9ZvNm7SHXfcoVWrVulNf/wKve/iC3d/MFMLAbRB2s1fldVmTv61KSmuZd2s4ojK6XBAAxsYmZmq0/teqbAXRKWSoii7HQI6/MpNdIH0+C5VANpvbupefWru5K/6NH9fGuUCKQglF6RT3mZuKwjT/3ehFASy2pRscnTvzxWEaWHgwNKGu8Odc3LO9fyuhZIUZDSlcFZnw0AzwyEF+OEDaC3ziaw2Lc0/+Rd1rv6eBKEURHJh+q+CUC6Mdn9/gydtL+0lDDi5wZkZAvuxa2EQhkraOFSQF1kXzee4Z6DHVtYC0FJmPp2+V5ueu/IvbCFfG07wTdnDNsaub0jB8IpdCgObEUVRz4eBKIqKEQYefPBBffzjH9fdP7xHhx1++Nz9X/3X76pWq+vC15+tQw9esdNn0TMA4ElmPj3xVydltUmpNpV1kzonCKWwJBeWpGinf8NS5ieSXcJAA8WBDT+1cwrDsGN7FGQhzLBWYFZHWnD++efr4Ycf1mGHHabjjjtOkvSsZz1LmzZt0nWf/7I2bdmqT/z15Qs/iWECoNDMTKpNyWqTsupUWujXqxcJzu10si8vPNlnPJ68L3PtCyIFwwfK9Q+3NKBEUdSzYSDMQa+A1KHZBKtXr9arX/1q/cVf/MUuj73pTW/S6BOP6Ruf+9ROLQsUrVrb7qYByAkzS6f3zVz5W22qty4KgijtLp9/ko/Sf9vWfd8hFtdkUzvkBpe3Lbh0etOiTslyc6L5OtIz8LznPU8f+chH9JGPfGS3j7//krfueic1A0BPS0/+1Zkr/9mTfw+874NQLqpIpbJcVEkDQKmyX8Vz3cJFZbklB7b1NUpRpGqPhYE81ArM6kjPQBzH+u53v6vRbVvltz++4LGDDliuU373mbv9hoSrjsvNNwrA4swt4zt75V+d7O6TvwvSk3xUnjn5z9wOsx//7VVJkqhe6401IYIgUKlczs05rqOLDlkSK3n8gYaPD1euzf1YGYA9sySWVSdk0+PplX83TvNzTpq5wnelSnq7VE67/XPyh7xI4npdcZfPLnDOqVyp5Or3p8PrDDT7hXt1YPsEAC0yt7rf9Lj89ES6wE83CUK5Up9cuU8q9aVd/Hmo1secMIrkvZfv0G6G7ZCnHoFZ+Q4DvVQ8BPQoM592/U+Py6YnJN8lV23OpSf8Up9cuV+u1CeFXO3nnXNOpXJZtWq1K1cmLJXLma82uDv5XXRIIgwAOWVJXTY92/0/2R3v1agiV+578so/ylc3LRo3281eq9XSTaa6RKlc7simR/ujo2HAOZcW3TRaNNSN44tAD5qd9uenJ2TVcalezbpJexdGcqX+uZO/Sn3UH/UY55zK5bLq9XpXTDksVyq57BGY1fmy1yCUksbCgPmk2b4EAC1i3qfFfzMFgLkN5y6YGeN/8uRPRX8xOOdUKpWUBIHiej6XonZBoHIOawR2llEYaPCHltc/PkCPsiSWTY+lQwDVSeVyxT/n5MoD6Th/ZSC96s/5H1q0j3NOURQpmAkEeSosjEolhWF3LCjV8TDggrDxPy+EAaDtzCeyqbH0ozaZdXN2w82d+Dn5Y0+CIFC5UlGSJIrr9UyLC8MoytWCQo3IoGegiTETwgDQFuZ9Wvw3tUNWnci6OTtxUrlPrjygoDKQ3t7DrnjAzsIwVBAEc6Ggk4IgUKmU/70kdiebYYIGGWEAaBkzn3b/T+1IpwDmaQig1Dd35e9K/V35xxT5MTt0EIahzHslSdK2jY5cECgMw64ZDtiTzocB18S0CiMMAIthZmkB4NSYbHosP1MAZ0/+s2P/nPzRBs45uTBUEIaKzORngoF5v6hhBBcECoMgNzsOtgI1A0CPMbN07f+ZOoBcrP8fhHKVQbm+oTQE9PCmPcgn59zcFbw08z6Z+fDzw8H8kOCcnNKTf+CcXBD0zMl/Z7keJlCOqkKBPDMzqTYlPz0TAPIQpKOyXN+Qgr4hiv6QO865ud/JvC4E1Em5DgPUDAB7Z/Wq/ORoOgSQZL0MsJOr9M9c/Q/JRaWM2wOgUbkOA7m4ugFyZnYqoJ8czX4joCCcOfkPph+M/QNdKZOagYYRBgBJ85YDntiefSFgqSJXGVLQN0j3P9Aj8t0zYGlRB39sUFSWxLKpHWkvQFxb+JiZ4jhWMDO1qX1cWvTXNyTXNygX0v0P9Jp8hwEpXbo4KrenLUAOpdMBJ2WztQDzjI2P6//9+8/q+3ffox/95Gfasm27+vv69MG/vERvPe91rWuEc+m4f/8Suv+BAnDW4TUbzUzJbzao0QVPwhVPTZcgBXqcxXXZ1GjaC7CHYsBLr/iwrrvpFp1++ul69rOfrSOOOEL/9E//pPv+7z168K5vL7IFLr3y71+SBgECAFAYna8ZcE4KS1JS2/fBSvdNZ5AAvcrM0mWBJ0cbWhb4kV/9Wqeeeqo++9nP6kc/+pGe9axn6ZFHHtHdd/37frfBVQbk+ofTYQDm/wOFlM0+n2HUcBhoeIdDoIvMTQmc2tFUoezqw1bpb6+/ScuWLZOZ6YEHHti/BpT7FcwGALb7BQovk78CLiw1vAqhxYQB9AYze7IYsDa1X89x+aVv11FHrNYjv/q1rv7//r65Ty71Kehfkg4DUAQIYJ5sBgWbuRKhZwBdzpJYfmyLkt8+LL99434HAUka6O/XBX/6Wr3kf53e2CdEFQVLDlR40FMVrVitYGg5QQDALvLfM0AYQJeyelV+Yptscoc6ukNgWJLrH057AUqVzr0ugK6VXc1AowgD6CJzuwSOb5PVJjv62m5gRMHACAsBAWhaZj0DDfPpdpNMc0KemffptMDxbW0PsN57TU4tXIbYK1C1PKyBcn9bXxtAb8p/zYBE7wByy+K6ktFNaT3A6Ka2/67+9//8Ssf+3gv00nPPX3D/xo0bNTg4qNe85jVtfX0AvSn/wwSaWWuAsU/kxNw+AePbdlkhsJ1cZVD/dMfd2rZjTJ///OclSYceeqhe9apX6dhjj9XPfvYzXXnllbr66qt12GGHdaxdALpfNsMELkiXJW50fjU9A8iBdGrgmPzEts7tFhhGCgZG5PpH5KKS+oaGFcexNmzYIElz/0rSo48+KkkqlZgtAKA52a02EpYIA+gK5hPZxHb5ie2S3/0ywa3m+pbIDYykqwPOKwb84z/+Y9122226/vrrd/mcMAy1fv16HXzwwR1pI4De0fG9CWYlm/9HNj3e0LFuYKnC5ava3CJgIUvq8mNbZZOj6sjUwKg80wswzKqAADoq256BRtEzgA6yuCY/PhsC2sw5ub4lCgaXMiUQQGYyCwMuKrPwEHLF4pr82JZ0v4B2CyIFg0vlBpeyORCAzGXXMxCVGz82iWVmXDWhLaxelR/fIpvqwMyAUp+CwWXp/gD8PgPIiQx7BpqYKmheskRyjKOidaw+nfYENFi7shiub4mCoWUMBQDIpQx7Bpqc/hTHUpkwgMWz2lQaAqoT7X0hF6RLBA8uk2v29x0AOii7ngEXpEWEDdYDWFKTU1+bW4VeZtXJdDig2uY9A8KSgqFl6doALKMNoAtkeqntonLjxYH1qsSy62iSmclqk/JjWxa1dXAjXGVAbnCZXGWQoQAAXSXbfveoLDXYVWv1apsbg14yu3ugH9vS5tUCndzAcDoUwJLZALpU9j0DDR5rnVr+FV2tYyEgCNMAMDDCAkEAul7GPQNNXEnFVZn5tNYA2A2rTirZ8UR7Q0BUVjC0PF0lkKEAAD0i856BptSrEvu1YydWr8rveKK9swOisoIlB6R7BhACAPSYjHsGmptuZfWqHGEAMyyuy49tbu+KgaWKgqED5PqGCAEAela2PQPNTi+kbgBKdxH0Y1tkE9vVtg2ESn1pTwAzAwAUQOaVT81NLyQMFJl5L5vYJj++NV2Vsh3K/WkIKA8QAgAURuZhQKVKE9MLp9mjoIDMTDY5ms4Q8HFbXsNVBtLhgMpAW54fAPIs8zDgSn2Nd/T6JD0ZNLP9MbqWmcmmx+XHNktxrS2v4SqDMz0B1KIAKK5chIFmWL0qRxjoee2eJuj6htKegDJLXANA5mGgqbUGpPTk0DfUnrYgc+2eJuj6l6QhgNUCAWBO5mHABUG6LHGD3cDMKOhN7Z4m6PqH0+GAZte2AIACyDwMSDN1A4SBQjLv5ce3ysa3qh3TBF1lUMHwCnoCAGAv8hMGGr0irLMscS+YKw7csUlK2jBDoNSncHgFswMAoAG5CANq9qqtXpMo/OpaVq/Kj26S1SZb/+RRWcGSA1kxEACakIsw0PyMgmmqwLvQkysHbmv9kwdRWhMwMEIIAIAm5SIMKCxJLmh4VTnqBrqLmcmmdsjveCJdK6KVXJDuIji4LC1GBQA0LRdhwDknlfqkRruNCQNdw2rTSkZ/24afmZMbXJr2BgRhi58bAIolF2FAklyp0vAYstWrbW4NFsuSOJ0qODna8udOpwkeKNfkrpcAgN3LURhoZlniWJbEcmFumo8Z6T4C2+V3bG75ZkJMEwSA9sjN2XS/ighDViLME6tOKhndJMUt7rlhmiAAtFVuwkDTUwVZljg3LInTJYRbvXpgWEp7ApgmCABtlZsw4FyQFhE2WGjGjILsmZlsYlu6q6C1cPVAF6SFgYPLCAEA0AG5CQOS5MoDDZ/kKSLMVjok8NuWby3s+ofT3gDqQQCgY3L1F9dV+mWNblZXr8rMuHLsMPNJOiTQ6lkCUUXhyEHUBQBABvIVBsrNnAgsHVIo97etPVjIT4/Lb/+t5Fu4l4AL0p4AVg4EgMzkKgwoLElB2PAqdVadlCMMtJ0lcbqXwPRYS5/XDYykQYBFgwAgU7kKA845uXK/bHq8oeOtOiEtOaDNrSquuWWERze1ds2AUp/CkYPZXwIAciJXYUCaKSJsIgxQN9AeFtflRzfKqi3cWTAI056A/mF+ZgCQI7kLA03VAJinbqDF0umC2+XHnmjpdEE3uIx9BAAgp3IXBpqtAbDqBHUDLWL1qpLtG1u6qZArDygYOYglhAEgx/IXBoJQiioNL2lr0xPSkgPb3KreZmay8S3yY1ulxneI2LswUjB8EKsHAkAXyF0YkGbWG2g0DNQmZObTFQzRNKtNpb0BLVs8yMkNLVcwtFwu4GcCAN0gn2GgPCCb2N7YwWZSbUqqDLa1Tb3GvE+3GJ7Y1ronLfcrXHqIXFRu3XMCANoup2FgP+oGCAMN89WJdPGgpN6aJ3RuZuGgpQwJAEAXymUYUFSRgqjhle6s2ugaxsVm3svv2NTSpYRdZVDB0oPlwlLLnhMA0Fm5DAPOObm+wYZPWladom5gH6w2pWTb463rDQjCtECwfwm9AQDQ5XIZBqT0irPxK1hLlybuG2prm7qRmcmPbZGNb2nZc7r+JWkQYGdBAOgJuf1r7irNnditOiERBhawuJb2BrRq3YAwUjBysAK+zwDQU/IbBqKSFJUbnvJG3cCTzEw2OSq/Y1PLVhF0A0tnNhViKAYAek1uw4CU9g5YvLWxg2tTMp8UfrlbS2L57RtbF46icrqpUKWZ7aUBAN0k32Ggb1A20WAY0MyWxv1L2tiifPPT4/LbNza8BfS+uKHl6X4CFGYCQE/Ldxhocu0Aq05IBQwDLZ8yWKqkiweV2GIYAIog32EgCNMdCWtTDR1fxLqB1k4ZdAqGD5QbXMZ0QQAokFyHAWlmimGDYUD1aZmP5YLcf1mLlm4utFV+bHNrnpClhAGgsHI/GNzsNDarTrapJflhcU3J5kdbFgSC4RUKDzicIAAABZX/S+hyv+Rcw1Pk0rqB4TY3KhtmJpvaIT/629ZMGYzKCpcdSm0AABRc7sOAc0E6VDA93tDxNt2bdQOWxPKjv234+7AvbnBZWh/ATAEAKLzchwFJTYUBxVVZEvfUUrm+Oim/7bHWTBkMIgVLD1HQxy6PAIBUV5wx06WJf9vw8VadkBsYaV+DOqTVRYKub0jB0kMKvzATAGChrggDKlWkIGz4ytiqE1KXhwHzify2x1szXdIFCkYOkusfZsogAGAXXREGnHPp0sRTjW5p3N11A+naAY9JSbz4J2PKIABgH7oiDEgzSxM3GAYU12RxretOgGYmm9iebjDUAsGSA+WGltMbAADYq+4JA80uTTy1Q27JgW1qTeuZT9INhloxWyAqK1x6qFyZKYMAgH3rnjAQlZva0thPjSnokjBg9WklWx9ryZLCbDUMAGhW14QBKa2Gt/FGtzSezP0UQzOTTY7Kj26StMhFhIJwZspgcys2AgDQVZePrq+5lQVteqxNLVk8815++8Z0NcFFBgHXN6RwxREEAQDAfsnvZfNuuMqA5ELJGpxiOLVDGlzW5lY1z+rVdLZAg0Mee+YUjKyQG1hKkSAAYL91VxhwTq5/SDbZ4BTD6QmZT3K1yI6f3CE/unHxewuEJYXLVlIkCABYtK4aJpAk19QmRNaytfwXy8wr2b5Rfvvjiw4C6bDAaoIAAKAluqpnQJpdmtip0XF2mx7LfDVCi2vpsEC9uujnCoZXyA0uY1gAANAy3RcGgiCdVdBgcaBNjcnMMjt5+qkx+e0bJfOLe6IgUrh8pVy5vzUNAwBgRtcNE0iS61/S+MHmM1me2MyU7Hgi3W1wkUHAVQZmhgUIAgCA1uu6ngFJcn1NhAHNzCro4LS7Vm4yxJLCAIB2684wEEZSeUCqTTZ0vE13bqjA6lUlW3+z+NUEg1DBskMVNLkMMwAAzerKMCBJQf+wfINhwEV9Mp+k2yDv7vEWhYS0PmDxswVU7k+nDeZ49UQAQO/o2rON618ijW7c8wGVQamyRFYeUCInq9Ul7flqPQgCuSBQ4FxapOhcwyHBzOTHtsjGtzT5VezKDS1PhwYYFgAAdEj3hoGoLJX6pPr0k3eWB+TLg/KlgSd7AWzuP3vlvZe81/y1DYMgUBhFaVDYw8m5ZbsNuiAdFmBJYQBAh3VtGJDSBYgsCOVLAwsDQIt47+Vr6ZLBQRgqDMMFwcDiWlofsNhlhUt96bBAVFpskwEAaJozW+wAd+eZmZI4VhzHHX9t55xK5bKCIJAf2yI/tnlxzze4VMHwQQwLAAAy01VhwMzkvVe9ttgNfhYvCAJFUSQb3c8hAucULD1UQTNrJgAA0AZdEwZmQ0DemhuGgdz2JncgDEsKl6+SK1Xa1zAAABrUFWEgSZJc9AbsifOxwh2NLTnsKoMKlh2aq50UAQDFluswYGaK41hJBrUBzXL1aYXjm/Z+DNMGAQA5lNswYGaq1+vySbLvg3PCVccUTm7bzQNOwdJDFDS1/TIAAJ2Ry6mF3RgEJMkqS+STuoLqvILCsJTuNljqy65hAADsRS7DQJIkXRcEZvn+ZVJSVxBX5coDCpavpD4AAJBruRsm8EmiWo6LBRviEwW1cUUjBykIunKXaABAgeQqDJiZqtPT+z6wS4RRpFKJVQUBAPmWq8vWPE8f3B9JHCvp0uEOAEBx5CYMeO/TzYJ6TFyv526hJAAA5stNGIjre95euJvNLqEMAEBe5SIM9GqvwKxeDToAgN6QizDQ6ydLM+vaqZIAgN6XeRgoSjc6hYQAgLzKPAwUIQhIxfk6AQDdJ/MwYB06SX7jG99Q/8DAHj/OOffctr6+mTGrAACQS5kvOlStVjsSCKampjQ6OrrgviRJ9L8vuEA//vGPddvXv67jjz++rW0olcsKQ5YmBgDkS6Z7E5hZx3oG+vv71d/fP/f/SZLoDeed17EgIKVDBYQBAEDe5HKjonabDQLf+c53OhYEJDFMAADIpWxrBjI4OSZJovPe+EZ95zvf0df/5V90wgkndO7FCQMAgBzKNAx0+tQ4GwRuv/12ff1f/kXr1q3r6OsTBQAAeZTpMIFzrmOvNRsEvv3tb2cSBCSpc18tAACNy3xqYSckSaI3vulN+va3v61/+ed/1tOf/vRsGtLB8AMAQKN6voDQe683vulN+trXvqbP3XSTDjnkEG3cuHHBMStWrOhIlX9AGAAA5FDm6wzUqtW2rs73wx/+UKedfvpej3n8sce0dOnStrVhFusMAADyKPMwENfriuM4yyZ0TKWvr6N1EgAANCLzmoEgyLwJHeGcIwgAAHIp8zOxK0gYKEroAQB0n8zPUM45BQUYRw+jnq/VBAB0qczDgCRFPX6iDIKAngEAQG7l4gwVBEFP9w5EpVLWTQAAYI9yEQak3u0doFcAAJB3uTlL9WrvAL0CAIC8y00YkKRSqdRT0++iUoleAQBA7uXqTOWcU6lczroZLREEAasNAgC6Qq7CgJSeRLs9EMyGml7q5QAA9K7chQFJCsOwqwsKCQIAgG6SyzAgpePt3Vh8V65UqBMAAHSVXF9+R1EkJ6ler2fdlH1yzqlcqdAjAADoOpnvWtgI771q1WrWzdijIAx7biYEAKA4uiIMSJKZqV6vyydJ1k1ZoFQqse8AAKCrdU0YmOW9V71el3mfaTuiKFIYRfQGAAC6XteFgVlJkiiu19Xp5jMkAADoNV0bBqR06MC8V5IkSto4fOCcUxhFCsOQEAAA6DldHQbmMzN575XEsXwLhhCccwrDUEEYMlUQANDTeiYMzDf7JXnv53oPvPey9MEFxzrn0o8gUDDz7+x9AAAUQU+GAQAA0Dj6vwEAKDjCAAAABUcYAACg4AgDAAAUHGEAAICCIwwAAFBwhAEAAAqOMAAAQMERBgAAKDjCAAAABUcYAACg4AgDAAAUHGEAAICCIwwAAFBwhAEAAAouyroB85WfcZ6CqCwXhHJBqLD05G0XBE8+FoYKorKCucfCXR5zQaggcHKBUxgGcjvdDgKnIHRzx+z1MecURoHCwCkMnMozt6O5/w+ffCx88rho3rHh7m47p8A5hU4qhcHc7SgMFDql/x84lQK3m9vp46UgmLsdOifnpMBJzmnm+SUnKQycAin9WgLN3Q6cFLr5t9PncGaSeTkfSwtu+/TD7/kxZ15Kkidv+1jyicx7Ka7JkkTyPr0vrst8kt6u16XZ27PHzh5Xrz35OT6Rr8eyxMu8l6/F8kn6OZZ4+Xosnzx522ZuJ/VYNu+4pBbPu53IvMknNvP/M5/vLX0sMVli8olXUvczz2lK6snM5zz5ed5MiZlq3pSYdrq98/+nt73S24lp5rEnb3/cHsn0fdkqvL95f/P+zu/7m54BAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAACKznrU9PS0rV+/3qanp7Nuyi7y3DYz2rcYeW5bL8nz9znPbTOjfYuR57YtljMzyzqQtMOOHTs0MjKi0dFRDQ8PZ92cBfLcNon2LUae29ZL8vx9znPbJNq3GHlu22IxTAAAQMERBgAAKDjCAAAABdezYaBSqWj9+vWqVCpZN2UXeW6bRPsWI89t6yV5/j7nuW0S7VuMPLdtsXq2gBAAADSmZ3sGAABAYwgDAAAUHGEAAICC67kw8K53vUvPfe5zdc4556hWqy14bGpqSi996Ut12mmn6Q/+4A+0devWXLVv1oc+9CE9+9nPzrxNcRzr9a9/vZ773Ofq7W9/e8fa02j7ZnX6+zXfntqWh9+1XsT7u3Vt4v29b0V6f/dUGLj33nu1ceNGff/739dxxx2nL37xiwsev+2223T88cfre9/7nl796lfrM5/5TK7aJ0ljY2O6//77c9Gmr33tazrssMP0/e9/X5OTk/rBD37QsXY10j6p89+vRtuW9e9aL+L93do28f7e/7Zl/bvWDj0VBu666y694AUvkCS98IUv3OWX++ijj9bk5KQkafv27VqxYkWu2idJH/3oR/WWt7wlF21qpL1Ztk/q/Pdrvr21LevftV7E+7u1beL9vXdFe39HWTeglbZv366VK1dKkkZGRnbpujnqqKN0//336/jjj5dzTnfffXeu2jc6Oqqf/vSnuuyyy3LRpu3bt8+tv7279mbdviy+X422LevftV7E+7u1beL9vf9ty/p3rR26smdg48aNOvXUU3f5MDPt2LFDUvqDXL58+YLPu/HGG3X66afr/vvv1+WXX64rrrgiV+279tpr9da3vrUtbdqTZcuW7bFNe3ssD+3L4vs1397a1qnftV7E+7t1eH/vv6K9v7syDBxyyCG68847d/l48YtfrH/913+VJH3zm9/UKaecssvnzv5Aly5dqu3bt+eqfb/4xS/0gQ98QC984Qv10EMP6aqrrmpL++Y7+eST99imvT3WKXtrQxbfr0bbJnXmd60X8f5uHd7f7Wmb1IPv7+x2T26PSy65xE499VQ7++yzrVqtmpnZm9/8ZjMzGx0dtRe/+MV22mmn2SmnnGIPPPBArto337Oe9azM2jTbnnq9bn/yJ39ip556ql100UUda0+j7Zuvk9+v+fbUtjz8rvUi3t+LbxPv78YV6f3NcsQAABRcVw4TAACA1iEMAABQcIQBAAAKjjAAAEDBEQYK4IYbbtDSpUtb8lyPPPKInHOKoki/+c1vFjz2+OOPK4oiOef0yCOPLHjsS1/6kk4//XSNjIxoaGhI69at0xVXXDG3kEcr2whg8Y444gg55/SP//iPuzz2tKc9Tc453XDDDQvuv/fee3XWWWfp4IMPVl9fn4455hidf/75evDBByU9+ffjvvvu68BXgGYQBrBfVq5cqX/4h39YcN+NN96oVatW7XLsX/7lX+o1r3mNnvOc5+i2227T/fffr6uvvlo//vGPe2JNb6Dd6vV6Jq97+OGH6/rrr19w33/8x39o48aNGhwcXHD/P//zP+vkk09WtVrVTTfdpA0bNugzn/mMRkZG9L73va+Tzcb+yHpuI/bttttus1NOOcVGRkZs+fLl9pKXvMR+8YtfmJnZd7/7XZNk27Ztmzv+3nvvNUn2y1/+cu7x+R/r1683M7OtW7fa6173Olu6dKn19/fbC1/4QnvwwQf32pZf/vKXJskuu+wyO/rooxc8duyxx9r73ve+udc2M7v77rtNkl177bW7fb7Zdl9//fU2MjLS9PcG6FZJkthVV11lRx11lJXLZTv88MPtyiuvnHuP3XzzzXbaaadZpVKxT3/605YkiV1++eW2atUqK5fL9vSnP91uu+22ueerVqv2lre8xQ455BCrVCq2evVq++AHPzj3+Pr16+3www+3crlshx566D7XFli9erW95z3vsUqlYo8++ujc/eeff75ddNFFNjIyYtdff72ZmU1MTNiBBx5or3jFK3b7XLPv89mv7d57792/bxrahp6BLjAxMaF3vvOduueee3T77bcrCAK98pWvlPd+n5/7e7/3e7r22ms1PDysxx9/XI8//rje9a53SZJe//rX6z//8z/11a9+VXfddZfMTC9+8Ysbugo588wztW3bNt15552SpDvvvFNbt27Vy172sgXH3XTTTRoaGtKFF1642+dhaABF9d73vlcf/vCH9b73vU//9V//pc997nM6+OCD5x5/97vfrbe97W3asGGDzjjjDH30ox/V1VdfrY985CP6yU9+ojPOOENnnnmmHnroIUnSxz72MX31q1/VF77wBT3wwAP67Gc/qyOOOEKS9MUvflHXXHONPvGJT+ihhx7SV77yFZ1wwgn7bOPBBx+sM844QzfeeKMkaXJyUjfffLPOO++8Bcd985vf1ObNm3XppZfu9nl4n3eBrNMImrdp0yaTZD/96U/32TNgtvur7gcffNAk2b//+7/P3bd582br7++3L3zhC3t87fnJ/h3veIe94Q1vMDOzN7zhDXbxxRfv8tovetGLbN26dfv8mugZQJHs2LHDKpWKXXfddbs8Nvse27k3beXKlfaBD3xgwX3Pec5z7MILLzQzs4suush+//d/37z3uzzn1Vdfbcccc4zVarWG27h69Wq75ppr7Ctf+YodddRR5r23G2+80Z7xjGeYmS3oGfjwhz9skmzr1q17fU56BvKLnoEu8PDDD+vss8/WkUceqeHhYT31qU+VJD366KP7/ZwbNmxQFEU66aST5u474IADdOyxx2rDhg2SpBe96EUaGhrS0NCQnva0p+3yHG984xt1yy23aOPGjbrlllt2uVqQJDOTc26/2wn0og0bNqharer5z3/+Ho959rOfPXd7x44deuyxx3ZZH/+UU06Ze7++/vWv13333adjjz1Wb3vb2+bW1Zeks846S1NTUzryyCN1/vnn69Zbb1Ucx5KkD37wg3Pv86GhoV3+rrzkJS/R+Pi4/u3f/k2f/vSn9/g+R3cjDHSBl73sZdqyZYuuu+463X333XPbZdZqNQVB+iOc/2ZspJt/T2/e+SfvT33qU7rvvvt033336etf//ouxx5//PH6nd/5Hb32ta/V2rVrdfzxx+9yzDHHHKOHH344swIoII/6+/v3eczOBXqSdgnW89+vz3zmM/XLX/5Sf/VXf6WpqSm9+tWv1qte9SpJaSHgAw88oL/9279Vf3+/LrzwQj3vec9TvV7XBRdcMPc+v+++++a27Z0VRZFe97rXaf369br77rt1zjnn7NKuY445RpL085//vLFvAHKHMJBzW7Zs0YYNG3TZZZfp+c9/vtauXatt27bNPb5ixQpJ6bS+WTtP2ymXy0qSZMF9xx13nOI4XrAP95YtW/Tggw9q7dq1kqRVq1ZpzZo1WrNmjVavXr3b9p133nm64447dnu1IElnn322xsfH9Xd/93e7fbwndvsCmnT00Uerv79ft99+e0PHDw8Pa+XKlXM1OrN+8IMfzL1fZ497zWteo+uuu04333yzvvSlL81N3+3v79eZZ56pj33sY7rjjjt011136ac//amWL18+9z5fs2aNoija5fXPO+88fe9739PLX/5yLVu2bJfHX/CCF+jAAw/UX//1X++2/bzP82/XnzpyZdmyZTrggAP0yU9+UoceeqgeffRRvec975l7fM2aNTr88MP1/ve/X1deeaUeeughXX311Que44gjjtD4+Lhuv/12Pf3pT9fAwICOPvpovfzlL9f555+vT3ziE1qyZIne8573aNWqVXr5y1/ecPvOP/98nXXWWXssEDrppJN06aWX6pJLLtFvfvMbvfKVr9TKlSv1i1/8Qh//+Md16qmn6u1vf/t+fW+AbtXX16d3v/vduvTSS1Uul3XKKafoiSee0M9+9rM9Dh38+Z//udavX6+jjjpKJ554oq6//nrdd999uummmyRJ11xzjQ499FCdeOKJCoJAt9xyiw455BAtXbpUN9xwg5Ik0UknnaSBgQF95jOfUX9//x5D/s7Wrl2rzZs3a2BgYLePDw4O6lOf+pTOOussnXnmmXrb296mNWvWaPPmzfrCF76gRx99dLfrFSBHsixYQGO+9a1v2dq1a61Sqdi6devsjjvuMEl26623mpnZnXfeaSeccIL19fXZc5/7XLvlllsWFPGZmV1wwQV2wAEH7HZq4cjIiPX399sZZ5zR8NTCPRUA7VxAOOvmm2+25z3vebZkyRIbHBy0devW2RVXXMHUQhRWkiR25ZVX2urVq61UKtlTnvIU++AHP7jH99j8qYWlUmmXqYWf/OQn7cQTT7TBwUEbHh625z//+fajH/3IzMxuvfVWO+mkk2x4eNgGBwft5JNPtm9/+9t7bd9sAeGezC8gnHXPPffYH/7hH9qKFSusUqnYmjVr7M1vfrM99NBDZkYBYZ6xhTEAAAVHzQAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFNz/DzwZqMCbErjuAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -391,13 +392,13 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 32, "id": "1f3e8755", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+hUlEQVR4nO3deZhcZZ0v8O/7nlNVve+dpbPvJIQQNmFknWEQRcQVHAFHBONFFBVxXGbwRh1QnIEL+jwz14VLyCgqoAOukREUJGyiJIRAkwSSJmTpJJ30vlWd8/7uH9Xd6Sbbqe46dc6p8/08T5NK1alTv266cr71rkpEBERERBRbOugCiIiIKFgMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMWcHXYDfRCT7ZQwke8fBB5Ua+kNBaz1ym4iIKE6KKgwMX/iN68IYM/L3XAwHA6U1LMtiOCAioqKnJNerZQgZY+C6LlzHyfu5ldawLQuawYCIiIpUZMOAiIwEgEJ9C1pr2InESJcCERFRMYhkGHBdF04mU7AQ8GbaspBIJNhSQERERSFSYcAYg0wmAzEm6FIAALZtw7JthgIiIoq0SIQBEYHjOL6MCciHZCrFrgMiIoqs0IcBEUEmnYYJSWvAkdiJBGy7qCZnEBFRTIQ6DIgxSKfTgY0NyJVl27DZbUBERBET2jBgjEF6cDDoMnLGwYVERBQ1oezoFpFIBgEAMK4LJ6RjG4iIiA4ndGFgeIxAlLmOA9d1gy6DiIjIk9CFAcdxQj9Y0IsoDHokIiICQhYG/FpSOCiZCA1+JCKi+ApNGCiG7oE3E5GiCjdERFScQhMGirWP3Sng3glERETjEYowICJwMpmgy/ANWweIiCjMQhEGirVVYBhbB4iIKMzCEQZi8Mm52AMPERFFV+BhQIyJxadmwzBAREQhFXgYiMtcfBOT0ENERNETizDgOA6WHH88PnfjjYc8dv3112PJ8cdj7969vtfBMEBERGEUizBg2zY+f+ONWL16Nfbv3z9y/7//+7/jwYcewi8eegiTJk3yvY64tIIQEVG0BBoGRKRgn5avvPJK1NXV4Xvf+x4A4Cc//Sm+eeuteOCBB7BgwYKC1CAMA0REFEJ20AUUSjKZxOduuAHfvPVWnHzyybjuuutw991342/OOKNgNbCTgIiIwkhJgB3ZxpiCblU8MDCAxYsXY+++fbj11ltx/ac+VbDXBgCtNZKpVEFfk4iI6Fhi0zIAACUlJTjn3HOxY8eOggcBIiKisAp0zIBSquCvuXHjRpx22mkFf10AQADfLxER0bEEPpugkPr7+7Fp0yacdNJJgbw+owAREYVR4C0DhWwdeGHDBriui5OWLy/Ya46mdKyyFxERRUTgVyddwAvk+nXrUFFRgfnz5xfsNUcr5PdKRETkVaCzCYDsJkWZIt6+eLRUSUkg4ySIiIiOJvCPqnFpOtdaMwgQEVEoBX4ljssFUltW0CUQEREdVijCgJ1IBF2G7yyGASIiCqnAwwBQ/BdK27Zj0wJCRETRE4owUOytA5Ydq4UeiYgoYkIRBoDibR2w2CpAREQhF5owoJRCIpkMuoy8UkrBZqsAERGFXGjCAJBtHSimJvVEMslWASIiCr1QhQFgaLBdEaw9kEgmueIgERFFQuiuVkopJCPeXWDZdtGOgSAiouITujAADAWCVCroMsZFa81xAkREFCmhDANA9qIatUBgWRbHCRARUeQEvlHRsYgI0uk0xJigSzkqO5GAZVkMAkREFDmhDwNANhA4jgPXcYIu5bCSyST3HiAiosiKRBgYZoxBJp1GWEq2bJtLDRMRUeRFKgwA2VaC4VAQFK01EolEUUyBJCIiilwYGCYicB0HrusWrKVAaw07keD6AUREVFQiGwaGiUg2GLiuL2MKlFIj6wawO4CIiIpR5MPAaCICp20nUD1ppDshV0opKK2htYalNbsCiIio6BXV6jhmbwvMS2uRPOM9UGWVAA62HBhjgKHcIwBGPuMrlQ0Ao76IiIjipGjCgLtvO5yX1wIQmL5OWENhYPgCz35+IiKiwyuKK6TZvxPOxj8d/OTf1xlwRURERNER+TBg2luRefExQA6OD5BehgEiIiKvIh0GTOdeZDb8ATDumPsZBoiIiLyLbBgwXW3IrH8UcA+dTih9naFZpZCIiCjsIhkGTE87MusfAdzM4Q9w0kBmoLBFERERRVTkwoDp7UBm3e+zF/yjYFcBERGRN5EKA9Lfkw0CHj71c0YBERGRN5EJA5IeQOaFR4B0v7fje7t8roiIiKg4RCIMiJNB5oVHIX3eL/Cmr8O/goiIiIpI6MOAGBeZjY9Buvfn9jyOGSAiIvIk1GFAROA0Pwk5sDv3Jw/2QdKcUUBERHQsoQ0DIgJ3y19g9rSM/xzdB/JXEBERUZEKbRhwX98Id0fzhM5hcuxaICIiiqNQhgF31xa4W9dN+DzSw5YBIiKiYwldGHD3vQHnlWfyci7DbgIiIqJjClUYENeB2bUFUCo/J+zvhmSOvlIhERFR3CkJ4Y4+4jqQjj0wB3bBHNgN6e0Y97kSJ70NunZK/oojIiIqMqFqGRimLBu6fhrsBachcepFgB5/mRxESEREdHShDAOjSedewJjxP5/jBoiIiI4q9GHAtLdO6PkMA0REREdnB13AsZgcVh/U9dNgH/c3Q2MNhsYb9HVCnAyUnfCxSiIiougKdRiQzGBOexKo2ilQqTJYU+fDmjofIpJdayB8YySJiIhCI9RhwHTsyel4XTN21oBSCqqyPp8lERERFZ1QjxnIpYsAdhKqsta/YoiIiIpUqMOA5NAyoGsmQalQfztEREShFNqrp2QGc1psSNVO9a8YIiKiIhbaMGA69+V0PFcZJCIiGp/QhoFcugiQSEGV1/hWCxERUTELbRgwnXs9H6trJkPla3MjIiKimAllGBDXhXR5X1+AXQRERETjF84w0N0GiPf9CBTDABER0biFMgyYDu9dBEiWQJVV+1cMERFRkQtlGJCcxgtM4XgBIiKiCQhdGBAxOQ4enORjNURERMUvfGGgtxNwMp6P594DREREExO+MJDL+gJKQVVwPwIiIqKJCF0YyGXwoCqrhrJCvfEiERFR6IUvDOQwXoBdBERERBMXqjAg6X5gsM/z8aqyzsdqiIiI4iFUYcB0H8jpeM2WASIiogkLVRjIZQliABw8SERElAfhCgM93lsGVFk1lJ3wsRoiIqJ4CFUYMDm0DHC8ABERUX6EJgxIegAY7PV8PGcSEBER5Ud4wkDOgwfZMkBERJQPoQkDpjvHwYMMA0RERHkRmjCQS8uAKq2EspM+VkNERBQfoQkDubQMcLwAERFR/oQiDEhmEBjo8Xw8uwiIiIjyJxxhgCsPEhERBSYUYcDksNgQwJYBIiKifApFGMipZaCkAiqR8q8YIiKimAlHGOjt8HwsuwiIiIjyK/AwICKQvi7Px7OLgIiIKL8CDwMY6AGM6/lwtgwQERHlV+BhwOTQKgCwZYCIiCjfAg8D0tvp/eBUOVSyxL9iiIiIYigEYaDD87G6il0ERERE+RZ8GOjz3jKgKthFQERElG+BhgERyambgOMFiIiI8i/YloHMAOCkPR+uy2v8q4WIiCimgm0ZyGXwoFJAqsy/YoiIiGIq2DCQy7TCVDmUDnyIAxERUdGJTMuAKq30sRIiIqL4CjQMmL4Oz8eq0gr/CiEiIoqxgLsJuj0fq0oYBoiIiPwQWBgQMcBgr+fj2U1ARETkj+BaBgb7ARHPh7ObgIiIyB/BtQwM9OR0PMMAERGRPwIMA967CGAlADvlXzFEREQxFokwoEoroJTysRoiIqL4ikQ3AWcSEBER+SciLQOcSUBEROSX4GYT5NIywMGDREREvgkkDIhIbgMI2U1ARETkm2BaBjIDgHE9H85uAiIiIv8E0zKQS6sAOICQiIjIT+EPA8lSKMvyrxgiIqKYCygMcPAgERFRWAQzZmCw3/OhqoTjBYiIiPwUTMtAZsDzsaqkzMdKiIiIKJgwkPYeBpAo8a8QIiIiCnBqoUcqyTBARETkp9C3DCi2DBAREfmq4GFARHJqGUCSWxcTERH5qfAtA64DGOP5cJUs9bEYIiIiKnwYyGXwIAAk2DJARETkp8J3E+TSRWAnoDRXHyQiIvJT4cMABw8SERGFSuG7CXIaPMgwQERE5De70C/IlgEiIgoTEcnOdBOBDN2nAECp7G2loIZuF6uChwG2DBARURCGL/rGGIgxMCIQj7PblFJQWkMP/6l1UQWEAFoGBj0fy5YBIiKaKGMMXNeF6zjjPoeIQFwXo6OD1hqWbRdFMCh8y4Cb9n4spxUSEdE4iAhcx4HrutkuAB8YY2DS2WuaZVkjwSCKCt8y4HpPZsoqfFYhIqLoEhG4rgsnkyno67quC9d1obVGIpGAilgoCKBlIIdmGivhXx1ERFRUhkOAXy0BXhhjMDg4CMu2Ydt2ZLoPwh0GbLYMEBHR0YkIMuk0TA5L3fvNdRy4joNEMgnLCv/ieQF0E3hvulGaYYCIiI7MGIP0oPeB6YWWSadhItBKEMxGRV7Z7CYgIqLDcx0n1EFgmOs4yKTTgXZfHEsAYSCHQR0cQEhERIfhOA4yBR4kOBHDLRhhDQQFDQNiTG7bFzMMEBHRm7iOU/DZAvkgIqENBIVtGTA5LvjAMEBERKMYYyLVIvBmIhLKIFPYMJDLeAGAUwuJiGjE8CfrqJvoaoh+KGw3gZNDGlIKUNFatIGIiPwxPH2wWGQymVBNhQxvy4CVCPU0DCIiKhzXdUN18cyHMM0wCHEY4HgBIqKwk3R/TuvHjOs1QtrPPlHDOyiGQWgHEHImARFR+En3AaSf/DmcV/8KGej15TWM6/py3jAIevnkYQW94ub0DXO8ABFR+NkJwEnD3f4S3Ddehm6cBWvmEuiqhrycXkTghGywXT4Ntw4EvWRxgT9+B59+iIgoj0bP+hKB2dsCs7cFqroR1owl0A0zJrSDn/FxC+KwcDKZmIWBnFoGOHiQiCjs1BGmgEvnPjidjwMl5bCmL4bVNB/KTuZ8freIuwiGiQhEJNBB8yHumGcYICIKvWPtITPQC/fVv8Dd9gKsqfNhzVgMVVrh+fRhGWDnt6C7CtgyQEREI0QEcNJAJg1x0oBzhD8zmaHbHhcBcjNwdzTD3fkK9KTZsGYeD11Zd/RaChQEjDE46eSTcfHFF+OWm28euf/3v/893v+BD2DVqlV4//ve53sNQYYBJQXsjHH3tsDZ+CdPx6rKeiRPe6fPFRERFb/hC7yk+4H0QHY6YHoASPePum9g5DakMBdhVdcEe9ZSqJrJh20idwu4GdGPfvQjfO7GG7HplVdQW1uLDRs24O8vuABf/vKXccNnP+v76yulkCop8f11jvj6BQ0De7bBeekJT8eqqgYkT73I54qIiKIprBf48VBVDdmWgsYZUKNmkmXS6YKNGXAcBycsW4Yrr7gCH/nIR3DueefhXRdfjDvvvLMgrw8AqZKSwMYNFDYMtG6D87LXMNCI5Knv8LkiIqLwEteBDPRA+nuA/u6R2yP3+bzYT6GpsqpsKJgyF0pbSKfTBV1j4K677sLKr34VTU1NmDVzJu67776CNt3HKAxshfPyWk/HqupGJE9hGCCi4iXGAIN9Qxf37jEXehnoAdL9QZcYjGQprBmL4U6el9NQs4nq6enBjJkzMW/ePDz+2GMoLy8v3IsDSKVSE5qGOREFGUAoInjllVfw50d+g/VPPIr+wQwWz2rC1e88D8nEkUrgAEIiij5xMpC+zjdd7LO3Mdib28DquHAy2a8Cu+FznwMA7G9rC2QwnyC4K19BwsD73/9+PPjgg1BKYe7cuaisrMTda/6EqvJSXH7BmYd/EmcTEFGEiOtkL/o9HZDe7Jfp7QB8WqK3KCkF3bQQ9uxlUKlSmMFBSIHGOnzta1/D7373Ozz+2GN458UX45577sG1115bkNceVtTrDHR0dODBBx/ErbfeimuvvRbV1dUAgGnTpmHr7r1HeSbDABGFjxgX0tcN6W0fuuh3Qnras5/0ucrquOnJs2HPOQmqrPLgnQW6OK5atQrf/s53sGbNGixbtgyf+uQn8X/uuAPXXHMNEoljrKNQJHwPA8NNLc899xyefPJJlJeX4yc/+cmxn8gsQEQBEjHZZv3ejjGf9qWvk037eaTrp8Gae9Jh1xzQSsHvdoGHH34Yn73hBqy+5x6c/pa3AAA+8YlP4M5vfxs//vGP8ZGPfMTnCg4q6paByspK3HDDDfjv//5vdHd24oQTT/T2RL7ZiKhAxMlAug/AdLdlP+X3DF30TfEvhRsUVdUAe97J0LVTjniMtizAx02Knn/+eVxx5ZW45ZZb8J73vGfk/qqqKnzi2mtx2+2348orryzI+AEd8N4EBZ1NcMX734Od+zvw2GOPYdq0abj6grfgpn987+EL49RCIvKBGJP9hN/VBtPVBulqg/R2gk38haHKqmHNOym7gdExPgmLCAYHBgpUWbDsRAK2HdwOAYV95VyaQISJnIgmRkSAgd6Ri77paoN07+cnfq/sJGAnoezE0J9Df08kRz2WhOnYA7P71aOfK5GCPWc5dNMCz9PnlFJQShX9roUAoAOaUjgsvGGAb1YiypFkBsd84jdd+4FMPD5ZeqOAZAoqWQokSqBSpVDJEiBZCpUcfbsESKTGrAZ4VGKOHAaUhjVjMazZJ4xr10JtWXB97CoIiyDHCwAF37XQ+zcrMdi2kojGT1wX0nPgYFN/VxukvzvosoKRLDn8BX7o7+O6wOfiCBd53TgL9vyToUorD/u4p1PbdtGHAdu24xEGNm/ejO9+97t49q/PY/rMWSP3//rJdUhnXHziPX+PqfU1Y58U4nW0iajwxHUhXftg2lth2lshXW3x+XciUQJVWgFVUjH2z9JKIFUe2Kp1w5Q19lKiKuthLzgVumbyxM+tFCzLKtgeBUGwAhwrMKwgFaxYsQKvvfYapk+fjiVLlgAATjnlFOzduxf/7+GnsK+jC//3xqvHPondBESxJsbNNvW37xm6+O8FinVve20PXdyzF3qUVo698Nshn+s+3DKQKsvOEJg8J6+fdG3bLtowYIWgVQAoUBhoaWnBhz70IfzzP/8zAKC9vR2rV68GAHzsYx/D6y2bDn0SwwBRrIgxkO79Bz/5d+4DTBE1D6fKoMqqhi7yoy72pRXZT/4huCCMWyIFa85yWDOXHNJKkA9Ka2jLKuimRYUS5AyC0QpSxTnnnIPbbrsNt91222Ef/99Xve/QOxkGiIqaiIH0tGcv/O2tMB17i2MXvkQJVHkNVEU1dHlt9nZ5TXYEfpHSZVXQc5b5+hoJ28ZgkYWBMIwVGFaQdQYcx8Ef//hHdLbthbPpmTGPNdZU4cwTFh72B5L82yv9GexCRAUnItn1+kcu/nsAJx10WeNnJ4Yu9LXQ5dVQFbVQ5dXZgXzkC9d1kUlH+HdmFK01EslkaMJAQVoGbNvGBRdcAEn3I702h2RnDGAxDBBFlaT7Ydp2wOzfBdPRCmQGgy4pd9rOXuQrsp/wdXkNVEVtdoR+SP4hjwvLsiC2DSfiswuUUqEKAkChpxbqHJdbNC7gQ/8TEflDRLJN/207YPbvyI74j5JECXR1A1RlA1RlLXR5DVBSEap/tOPOsm0YY2AiPJg0bEEAiEIYIKJQE9fJDvrbvwOmbQcw2Bd0Sd5oG6qyLnvxr2qArmwASspD9480jTX8qTo9OBjJlQkTyWTgqw0eToFXIMzxB1Bkg0WIioUM9o18+jcHdkcguKtsM39lPXR1I1RVA1RZdeDz82l8lFJIplJIp9OQCLUQJJLJgmx6NB4FDQNKKcBKeB4xLE6aOxkThYCIZKf9DTf/dx8IuqSjKymHrhr6xF/VAFVZB2WFfK4+5UQphWQyiUwmE4kph8lUKpQtAsMK3yFvJ71PH3IiONiIqEiIm4E5sHsoAOwE0v1Bl3R4VgKqeuiiX9UIXVXPEf0xoZRCIpGAqzWcTDinpSqtkQzhGIE3K3gYUIkkZLDX07GSKY4pJERRIel+mL3b4ba9AeloDeeKf5YNVT0JunYKdO0UqIo6NvfHmFIKtm1DDwWCMA0stBMJWJYV+iAABNIykPJ+bJTnIBNFhGQGYfZth7unBdLeCiBkg7K0BVXdOHTxnwpVWc+LPx1Ca41kKgXXdeFkMoEOLrRsO1QLCnkRTMuAx2MlinOSiSJAnAxM2xswe1pgDuwK14Y/Smcv/jWTsxf/6gaoXGciUWxZlgWt9UgoKCStNRKJRCTDajBjBrxiywBR3ojrwOzfmQ0A+3eEZwaAUtmBfjVDzf7Vjb6sb0/xMdx1YFkWxBi4ruvbRkdKa1iWFZnugCMJoGXAezcBWwaIJkaMmx0EuKcFpm074IZh5TaVnd8/3OdfPSn8u/JRJCmloCwL2rJgi8AMBQMxZkLdCEprWFqHZsfBfGDLAFGRETGQ9j1w92yD2bc9HO+jRAq6fhp0w3To2qai3rSHwkkpNfIJHhiaLjv0ZUaHg9EhQSkoDO2aqBSU1kVz8X+zQMYMeMXZBETeiAikcx/cvdtg9r4OpAeCLim7jn/DdOiG6dlFfrjpGIWIUmrkwh7WhYAKKeSzCdhNQHQ0pqcdpvU1uHtagl8GWGmo2imwGqZD10+HKq0Ith4i8izcLQNhaN4kChlx0jB7WuDu2gLp3h9sMckS6PrpQ83/U9n3TxRR4R4zwG4CIgBD3QBd++Du2gKz53XABDcQUFXUHWz+r6wv2j5UojgJ9WwCuBmIMZGcs0mUD5IegNu6FWbXFkhf59jHROC4LrTSsCwf3yPayo78b5gBXT8NqqTcv9ciokCEe8wAAKT7gBL2PVJ8iAjkwG64u7fA7HtjzIJA3X39+I8Hf4+1GzZh3eYW7O/qQWkqiVtWXIbr3ntB/orQVvbiP3k2dF0T5/0TFbkAwkAC0JbnBU9koA+KYYBiQAZ64O5+De7uV4GBw+/fcct/PYS71qzFeeedh+sv/gBmz56NX/ziF/jOzx+eeBhQOjv9b/Ls7ABA9v8TxUbhuwmUAlJlQH+3p+PlCP8oEhUDMS5M247sYMADu455fEtrG8466yz86Ec/wvPPP49TTjkFLS0tePZPfxxfAUpB1U6FNXk2dMNMzv8niqlA2v5UqgziNQx43OGQKEpMbyfM7i1wd28FMt7XBJg1uQH/+YtHUVtbCxHBpk2bxvX6qmZyNgA0zoJKlozrHERUPAIKA6XeNytiGKAiIcaF2fs63J2bIZ17x3WOlR99H+ZNm4SW3W34P/f/NqfnqqoG6MmzYU2aDZUqG9frE1FxCqxlwDN2E1DESXoA7s7NcHduAtL9EzpXWUkKH7/kfDyx4RVPYUBV1EJPmg1r8myo0soJvTYRFa9ghgjnEAZkIOBV1YjGyfS0w32jGWbPtoLuEKjKqqAnzc4OBCyvKdjrElF0hb5lgN0EFCUiArN/J9w3miHtuwv3wkpBNy2E1TSfCwERUc6CCQPJHLoJMoMQ1+E8Zwo1cTLZPQLeaPY8OHa8jDHoHxi7OqexU8jMXIZEGccCEFHuQt8yAGSnF6ryap+qIRo/GeiBu2MT3F1bCrJV8NZde/GOf/o3vN66b8z9ra2tKC8vx2WXXYb77rvP9zqIqLgENGagNLfjB3sBhgEKiZF9At5ohtm3fez+5z5SdU341Z82oaM/jZ/85CcAgKlTp+IDH/gAFi1ahJdeegk333wzbr/9dkyfPr0gNRFRcQimZUBbQKLE8/xqDiKkMBBjYPa2ZLsCCrVbYKocVtN8WFPnQZVUoPSJZjiOg+bmZgAY+RMAtm/fDgBIJLhyIBHlJrCOeJUqhXgNAxxESAGSzADcnVvg7nhlwlMDPVEaunEGrKnzoeqmQqmDmxD9wz/8A9asWYNVq1Yd8jTLsrBy5UpMnjzZ/xqJqKgokQK1cb5J5oVHYfbv9HSsnjoficVv9bkiorFkoBfO6xthdr9akKmBqqwaumkBrClzuSogERVUcEP0c9gGlfsTUCFJf/dQCHhtzI6BvtBWdlGgaQugqho5JZCIAhFcN0Euq6ENcswA+c/0dsJ9fSPMnq3+DwpMlcGatigbAhJsBSCiYAUYBqo8HyuDvRARfmoiX5iedrgtL8LsfR3wvGvG+KjKelgzlkBPmgWl9bGfQERUAMGFgbIcWgZcJzuHO5HyryCKHdO9PxsC9m3394WUgm6cCWvGEqiqBoZaIgqd4MJASW6bpshALxTDAOWB6WqDu20DzP4d/r6QnYTVtADW9EVQJRX+vhYR0QQEFwYsKzuI0OPgQBnoBSrrfK6Kipnp2AOnZQPkgL97BqiyKljTj4OeMg/K5px/Igq/QBf8V6VVnmcKSF8ngBn+FkRFR0Qg7a3ZENCxx9fXUrVTYc1YDF0/jV0BRBQpwYaBskrPO7tJT7vP1VAxERGYA7vgbtsA6dp37CeMl9bQk+dmQ0BFrX+vQ0Tko8BbBrxiGCAvRASmbQfclg3+LhmcLIU1fRGspoVcIIiIIi/wlgGvpK8TYtzsvgZEh2E69sB59a+QrjbfXkOVVcGadQL05Nn8XSSiohFwy0AOMwpEIL2dUBxESG9ietrhvrbO19kBqrwG1uxl0JNmjtkrgIioGIQgDCh4XehFeto5o4BGyEAPnK0vwLS+5ttrqMq6bAhomMFBgURUtIINA3p4emGPp+M5boCAoV0EWzbC3fkKYPzZO0BVNWRDAGcGEFEMBBoGgGzrgHgMA4ZhINbEdeC+0Qx3+0bAyfjyGqpmMuzZJ0DVTmUIIKLYCDwM6PJquDlML+QeBfEjxsC0vgZn63og3e/La6jaqbBnL4OunezL+YmIwizwMKBymZudGQDSA0Cq1L+CKDSy0wTfgPvauqFFp/JP10/LdgdUN/pyfiKiKIhWGAAgPQegUtN8qobCIjtN8HnfFgzSjTNhzT4BurLel/MTEUVJ8GGgvCan401PO3Q9w0CxMj3tcLeug2nzZ5qgnjQ7GwK4WiAR0Yjgw4BlQ5VVQfq6PB0vPR3+FkSBODhNcCu8TjXNhZ4yN7tYUHl13s9NRBR1gYcBINtV4D0MHPC5GiokcR24r78Id/tLvkwT1PXTYc07iS0BRERHEY4wUF4L4HVPx3JZ4uIgIjD7tsPZ8hww2Jf386uqBtjzTuHsACIiD8IRBnL51CYC6evKeeAhhYfp7YCz+c+Q9ta8n1uVVWdbArhiIBGRZ6EIA7k24Ur3AYBhIHLEScPd9gLcHa8AkudxAclS2HOXQ0+ZB6W5dwARUS5CEQZQUg5YCcD1tqqc9HIlwigREZjWrXBe+2t2nYh8shOwZi6FNWMxlBWOX2cioqgJxb+eSqnsIMLOvZ6ON90MA1FhuvfD2fTn/K8XoDSs6cfBmr0UKlGS33MTEcVMKMIAgJzCAFsGwk/SA3C2roPZtSXv59ZT5sGecyJUaUXez01EFEehCQO6ohaeJ5alByDpfqgklyUOGxEDs3Nzdh8BJ53Xc+v6abDmncxpgkREeRaaMJD7ssTtUHUMA2FiOvZkZwnkeXdJThMkIvJXuMKAUp5HmZuedui6Jp+rIi9ksA/Oq8/D7Nma1/OqsqpsSwCnCRIR+So8YcCyoSrqIN37PR2f70+flDsxLtw3muG2bABcJ38nthKw5iyDNf04Li5FRFQAoQkDAKCqGxgGIsK074Gz6Zm8by2sp8yFPe9kqFRZXs9LRERHFqowoKsaYbDJ07HS2wkxhgvMFJg46WyXwK7NeT2vqqiFvfB06JpJeT0vEREdW+jCgGdiIL0dUJV1/hVEY7htb8DZ9Gx+9xKwk7DnnQTdtABKMdgREQUhVGEApRVAIgVkBj0dbjr2QDMM+E7S/XA2PweztyWv59XTFsKeu5yLBhERBSxUYUAple0q2L/D0/HSvhuYsdjnquJrZBnhLc/ldc0AVd0Ie+FboCvr83ZOIiIav1CFASA7iBAew4Bp38NxAz6R/h5kNj0DObArfydNlmTXC5gyl1MFiYhCJHRhQFc1wvV6sJuB9ByAqmrws6RYETEwOzbB2bouf9MFlYI1fTGsOcug7GR+zklERHkTujCgqnJrOjbtrdAMA3lhejvgND+d102FVO1U2AtPgy6vyds5iYgov8IXBuwkVHkNpLfD0/GmvRWYtdTfooqcGBfu6y9lFw8SzztEHF2qHPaCU6EbZ7JLgIgo5EIXBoDsWvRew4B07IUYlyvVjZPpaoPT/JTnn/cxKQ1r1lJYs5ZCWaH89SIiojcJ5b/WuroRZver3g42DqSrDaqGm9jkQtwM3K0vwH2jGYC3/SCORVVPgn3c30CXV+flfEREVBihDAOqOofFh5CdVaAZBjwzB3Yj88rTwEBPfk5o2bDnnQw9bRG7BIiIIiicYaCsGkiWAOkBT8eb9t3AnGU+VxV94mTgbHnOe6uLB7p+GuxFZ0CVlOftnEREVFjhDANKQddOhdmzzdPx0rkP4jrsoz4K07kPmZeeyF9rQCIFe8Fp0JPnsDWAiCjiQnv11HXewwDEQDr3QdVN9beoCBJj4LZsgNvyIvI1NkBPngN7wWlQSS4jTERUDMIbBmpzu7Cb9lZohoExTF8XnJee8Lwt9DGlymAvOgNWw/T8nI+IiEIhtGFAlZRDlVVB+ro8HW/aW32uKDpEBGbXFjhb/gKY/KwiqKctgj3vZCg7kZfzERFReIQ2DACAqpvqOQxIdxvEycT+YiXpfjjNT3ve7OlYVFlVdrogZ2sQERWtUIcBXTsVZscmbweLwHTsiXUTttu2A07zU0DG2yyMo1IK1sylsGYvg7K4oBMRUTELeRiYAkDB68A36WgFYhgGxM3A2fJXmF2b83I+VVmfbQ2orMvL+YiIKNxCHQaUnYSqqod0tXk6Po7jBkxXW3aQYH/3xE+mLVhzl8OavpjbQhMRxUiowwCQnWLoegwD0n0AkhmESqR8rip4Ygzc1zfCbXkBkIlPGVQ1k5E47m+gyqryUB0REUVJ+MNA7dShOfLemI49sBpn+lhR8KSvG5mX1+Znq2Gls60BM5dAKbYGEBHFUejDgKpuBLTteYqctLcCRRoGRARm96twtjwHuBOfMqjKq2EvOZtjA4iIYi78YUBb0LWTYfbv9HR8sY4bkPQAnE3PwOzbnpfzWdMXw5p3EpdwJiKi8IcBAFC1UwGPYUB6OyDpfqhkqc9VFY5pb83uK5Dun/jJkqVILDkTuq5p4uciIqKiEIkwoOumws3heNPeCmvyHN/qKRQRyQ4S3Loe+dhXQDfOhH3cGVAJ7ilAREQHRSIMqPIaIFHieTGdYggDkhmA8/KTnrtHjspKwF74Fugpc7nDIBERHSIaYUCpnHYxlIiPGzCd+5DZ+Dgw2Dfhc6nqRiSWnAVVWpmHyoiIqBhFIgwAQ0sTew0D/d2Qvm6osmhdAEUE7o5X4L76l4mvHaAUrDnLYc06nlMGiYjoqKITBuqm5HS82/YG7JlLfKom/8RJw2l+Ki+zBVRZFewlZ0FXNeShMiIiKnaRCQOqpCK3LY33bQciEgZM9wE4Gx/Py5LCetoi2PNP4ZRBIiLyLFJXDF3XBNfrlsade0M/xVBEYHZtgbPlz4AxEztZogT24rfGetdGIiIan0h1JuscVxY0bTt8qmTixM3AaX4SzqZnJhwEdMN0JE9/F4MAERGNS6RaBlT1JMBOAk7a0/Fm3xuwmhb4XFXuTG9Htlugt3NiJ1Ia9oLToKct5JRBIiIat2iFAa2hG6bDtG71dLxp3wVxMlB2wufKvHNbt2ZbAya6t0BJBRInnAtdWZ+fwoiIKLYi1U0A5NhVYAzMgV3+FZMDcV1kXnkGzstrJxwEdMMMJE+7mEGAiIjyIlItA0B2aWJoCzDeFig2+7bDmjTL56qOTvq7kdn4OKT7wMROpBSseafAmrGY3QJERJQ3kQsDykpA1zXBtL3h6XizfwfEGCgdTCOIu287nOYnASczsROlypBYeg509aT8FEZERDQkcmEAAHTjDM9hAE4G0tEKVeBd+kQM3K3r4b6+ccLnUnVN2SWFk9xgiIiI8i+aYaB+OgAFrzv5ufveKOiWvZJJw3n5iTxsMqRgzTkR1uwT2C1ARES+idwAQgBQyRKoGu/N5abtDchE1/r3+lq9Hcj85TcTDwKJEiSW/z3sOcsYBIiIyFeRbBkAsrMK3I49xz5QKajyGkhmEEikjnBIfi627r7teZktoGomI3H82VCpsrzURUREdDSRDQNWwwy4W5477GOSLIWePAeomwaU10CgkHYFcAeOeD6tdXYdA6WgtIZSynNIEBG4216A27JhXN/LaNaspbDmLA9swCMREcVPZMOAKq2AqqiF9LQDAKSkHGr68ZC6JsBKYGSBXxn5z1EZYwBjMHrCotYalm1ng8IRgoE4aTgvr5340sd2EvaSs7ikMBERFZySQnWm+yDz+kswAkj99OwyxT7SlgXLssYEA9PXBWfDHyF9E1tWWFU1IHH8OVClFfkolYiIKCeRbBkQEbiOA3fS3IK9pnFdGNeFUgqJZBJaa5g9LRMOAtb042DNPwVKW3mqlIiIKDeRahkQERhjkEl726jIT1pr2IkE3I2Pe1/zYDTLzm45PGl23msjIiLKRWTCwHAICFu5llYw638P9LZ7fo4qrYS97G+hy2v8K4yIiMijSIQB13VD0RpwJAoCWf8/UP1dxzxW10+DveRsqIS/YxyIiIi8CnUYEBE4jgPXmeB2v4UgBnjxUajejiMeYs1aCmvucijFaYNERBQeoQ0DIoJMJgPjetudMBTEAC//Capr39j79dD4gMmzAymLiIjoaEIZBiIZBIaJABv/ANUztF1xSQUSy/4WuqI22LqIiIiOIJRhwHEcOJkJbvkbJCcNrP8ddEUtEkvPgUpwt0EiIgqv0IUB47pIh3iwoGfpfiQrqqEtrh9AREThFqqRbCJSHEEAAJKlcI059nFEREQBC1UYCPP0wfFwHQduFMc9EBFRrIQmDBhjspsFFRknkwndQklERESjhSYMRHrA4FEML6FMREQUVqEIA8XaKjCsWIMOEREVh1CEgWK/WIpINNdMICKiWAg8DMSlGZ0DCYmIKKwCDwNxCAJAfL5PIiKKnsDDgBToIvm73/0OpWVlR/y64sorfX19EeGsAiIiCqXAVyAcHBwsSCDo7+9HZ2fnmPtc18X/uvZavPDCC1jz299i6dKlvtaQSCZhcUVCIiIKGTvIFxeRgrUMlJaWorS0dOTvruvio1dfXbAgAGS7ChgGiIgobAINA0EZDgJ/+MMfChYEALCbgIiIQinYMQMBXBxd18XV11yDP/zhD/jtb36DE044oXAvzjBAREQhFGgYKPSlcTgIPProo/jtb36DZcuWFfT1GQWIiCiMAu0mUEoV7LWGg8AjjzwSSBAAgMJ9t0RERN4FPrWwEFzXxTUf+xgeeeQR/ObXv8aJJ54YTCEFDD9EREReFf0AQmMMrvnYx/CrX/0KP773XkyZMgWtra1jjmlsbCzIKH/NMEBERCEU+DoD6cFBX1fn+/Of/4xzzzvvqMfs3rULNTU1vtUwjOsMEBFRGAUeBpxMBo7jBFlCwaRKSgo6ToKIiMiLwMcMaB14CQWhlGIQICKiUAr8SqxiEgbiEnqIiCh6Ar9CKaWgY9CPbtlFP1aTiIgiKvAwAAB2kV8otdZsGSAiotAKxRVKa13UrQN2IhF0CUREREcUijAAFG/rAFsFiIgo7EJzlSrW1gG2ChARUdiFJgwAQCKRKKrpd3YiwVYBIiIKvVBdqZRSSCSTQZeRF1prrjZIRESREKowAGQvolEPBMOhpphaOYiIqHiFLgwAgGVZkR5QyCBARERREsowAGT726M4+C6ZSnGcABERRUqoP37btg0FIJPJBF3KMSmlkEyl2CJARESRE/iuhV4YY5AeHAy6jCPSllV0MyGIiCg+IhEGAEBEkMlkYFw36FLGSCQS3HeAiIgiLTJhYJgxBplMBmJMoHXYtg3LttkaQEREkRe5MDDMdV04mQwKXT67BIiIqNhENgwA2a4DMQau68L1sftAKQXLtmFZFkMAEREVnUiHgdFEBMYYuI4Dk4cuBKUULMuCtixOFSQioqJWNGFgtOFvyRgz0npgjIFkHxxzrFIq+6U19NCfw/cRERHFQVGGASIiIvKO7d9EREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMWcHXcBoyZOuhraTUNqC0hasxMHbSuuDj1kWtJ2EHnnMOuQxpS1oraC0gmVpqDfd1lpBW2rkmKM+phQsW8PSCpZWSA7dtkf+bh18zDp4nD3qWOtwt5WCVgqWAhKWHrltWxqWQvbvWiGh1WFuZx9PaD1y21IKSgFaAUph6PyAAmBpBQ1kvxeNkdtaAZYafTt7DiUCiIEyDjDmtsl+mSM/psQArnvwtnEA40KMAZw0xHUBY7L3ORmIcbO3Mxlg+PbwscPHZdIHn2NcmIwDcQ3EGJi0A+NmnyOugck4MO7B2zJ02804kFHHuWln1G0XYgTGlaG/Dz3fSPYxVyCuwLgGbsYMnVPgZtyh5xx8nhGBK4K0EbiCN91+89+ztw2yt13B0GMHb39XWgJ9X+YL3998f/P9Hd73N1sGiIiIYo5hgIiIKOYYBoiIiGKOYYCIiCjmGAaIiIhijmGAiIgo5hgGiIiIYo5hgIiIKOYYBoiIiGKOYYCIiCjmGAaIiIhijmGAiIgo5hgGiIiIYo5hgIiIKOYYBoiIiGKOYYCIiCjmGAaIiIhijmGAiIgo5hgGiIiIYo5hgIiIKOYYBoiIiGKOYYCIiCjmGAaIiIhijmGAiIgo5hgGiIiI4k6K1MDAgKxcuVIGBgaCLuUQYa5NhPVNRJhrKyZh/jmHuTYR1jcRYa5topSISNCBxA9dXV2orq5GZ2cnqqqqgi5njDDXBrC+iQhzbcUkzD/nMNcGsL6JCHNtE8VuAiIiophjGCAiIoo5hgEiIqKYK9owkEqlsHLlSqRSqaBLOUSYawNY30SEubZiEuafc5hrA1jfRIS5tokq2gGERERE5E3RtgwQERGRNwwDREREMccwQEREFHNFFwY+//nP4+yzz8YVV1yBdDo95rH+/n5cfPHFOPfcc3HBBRfgwIEDoapv2De/+U2ceuqpgdfkOA6uuuoqnH322fjMZz5TsHq81jes0D+v0Y5UWxh+14oR39/5q4nv72OL0/u7qMLAunXr0NraiieeeAJLlizBz372szGPr1mzBkuXLsXjjz+Oyy67DD/84Q9DVR8AdHd3Y+PGjaGo6Ve/+hWmT5+OJ554An19fXjqqacKVpeX+oDC/7y81hb071ox4vs7vzXx/T3+2oL+XfNDUYWBp59+Gm9729sAAG9/+9sP+eVesGAB+vr6AAAdHR1obGwMVX0A8O1vfxuf/OQnQ1GTl3qDrA8o/M9rtKPVFvTvWjHi+zu/NfH9fXRxe3/bQReQTx0dHWhqagIAVFdXH9J0M2/ePGzcuBFLly6FUgrPPvtsqOrr7OzEiy++iJtuuikUNXV0dIysv324eoOuL4ifl9fagv5dK0Z8f+e3Jr6/x19b0L9rfohky0BrayvOOuusQ75EBF1dXQCy/yPr6urGPG/16tU477zzsHHjRnzta1/D17/+9VDVd+edd+JTn/qULzUdSW1t7RFrOtpjYagviJ/XaEerrVC/a8WI7+/84ft7/OL2/o5kGJgyZQrWrl17yNdFF12E//mf/wEAPPzwwzjzzDMPee7w/9Camhp0dHSEqr5XX30Vt9xyC97+9rdjy5YtuPXWW32pb7QzzjjjiDUd7bFCOVoNQfy8vNYGFOZ3rRjx/Z0/fH/7UxtQhO/v4HZP9seNN94oZ511llx++eUyODgoIiIf//jHRUSks7NTLrroIjn33HPlzDPPlE2bNoWqvtFOOeWUwGoarieTycg//uM/yllnnSXXX399werxWt9ohfx5jXak2sLwu1aM+P6eeE18f3sXp/c3lyMmIiKKuUh2ExAREVH+MAwQERHFHMMAERFRzDEMEBERxRzDQAzcc889qKmpycu5WlpaoJSCbdvYuXPnmMd2794N27ahlEJLS8uYx37+85/jvPPOQ3V1NSoqKrBs2TJ8/etfH1nII581EtHEzZ49G0op/PSnPz3kseOPPx5KKdxzzz1j7l+3bh0uvfRSTJ48GSUlJVi4cCFWrFiBzZs3Azj478f69esL8B1QLhgGaFyamprwX//1X2PuW716NaZNm3bIsf/yL/+CD37wgzjttNOwZs0abNy4EbfffjteeOGFoljTm8hvmUwmkNedMWMGVq1aNea+Z555Bq2trSgvLx9z/69//WucccYZGBwcxL333ovm5mb88Ic/RHV1Nb7yla8Usmwaj6DnNtKxrVmzRs4880yprq6Wuro6eec73ymvvvqqiIj88Y9/FADS3t4+cvy6desEgGzbtm3k8dFfK1euFBGRAwcOyIc//GGpqamR0tJSefvb3y6bN28+ai3btm0TAHLTTTfJggULxjy2aNEi+cpXvjLy2iIizz77rACQO++887DnG6571apVUl1dnfPPhiiqXNeVW2+9VebNmyfJZFJmzJghN99888h77L777pNzzz1XUqmU3H333eK6rnzta1+TadOmSTKZlBNPPFHWrFkzcr7BwUH55Cc/KVOmTJFUKiWzZs2Sb3zjGyOPr1y5UmbMmCHJZFKmTp16zLUFZs2aJV/60pcklUrJ9u3bR+5fsWKFXH/99VJdXS2rVq0SEZHe3l5paGiQ97znPYc91/D7fPh7W7du3fh+aOQbtgxEQG9vLz73uc/hueeew6OPPgqtNd773vfCGHPM5771rW/FnXfeiaqqKuzevRu7d+/G5z//eQDAVVddhb/85S/45S9/iaeffhoigosuusjTp5BLLrkE7e3tWLt2LQBg7dq1OHDgAN71rneNOe7ee+9FRUUFrrvuusOeh10DFFdf/vKX8a1vfQtf+cpX8PLLL+PHP/4xJk+ePPL4F7/4RXz6059Gc3MzLrzwQnz729/G7bffjttuuw0bNmzAhRdeiEsuuQRbtmwBAHznO9/BL3/5S9x///3YtGkTfvSjH2H27NkAgJ/97Ge444478L3vfQ9btmzBQw89hBNOOOGYNU6ePBkXXnghVq9eDQDo6+vDfffdh6uvvnrMcQ8//DDa2trwhS984bDn4fs8AoJOI5S7vXv3CgB58cUXj9kyIHL4T92bN28WAPLkk0+O3NfW1ialpaVy//33H/G1Ryf7z372s/LRj35UREQ++tGPyg033HDIa7/jHe+QZcuWHfN7YssAxUlXV5ekUin5wQ9+cMhjw++xN7emNTU1yS233DLmvtNOO02uu+46ERG5/vrr5e/+7u/EGHPIOW+//XZZuHChpNNpzzXOmjVL7rjjDnnooYdk3rx5YoyR1atXy0knnSQiMqZl4Fvf+pYAkAMHDhz1nGwZCC+2DETAa6+9hssvvxxz585FVVUV5syZAwDYvn37uM/Z3NwM27Zx+umnj9xXX1+PRYsWobm5GQDwjne8AxUVFaioqMDxxx9/yDmuueYaPPDAA2htbcUDDzxwyKcFABARKKXGXSdRMWpubsbg4CDOP//8Ix5z6qmnjtzu6urCrl27Dlkf/8wzzxx5v1511VVYv349Fi1ahE9/+tMj6+oDwKWXXor+/n7MnTsXK1aswIMPPgjHcQAA3/jGN0be5xUVFYf8u/LOd74TPT09+NOf/oS77777iO9zijaGgQh417vehf379+MHP/gBnn322ZHtMtPpNLTO/i8c/Wb00sx/pDfv6Iv3XXfdhfXr12P9+vX47W9/e8ixS5cuxXHHHYcPfehDWLx4MZYuXXrIMQsXLsRrr70W2AAoojAqLS095jFvHqAH4JBgPfr9evLJJ2Pbtm3413/9V/T39+Oyyy7DBz7wAQDZgYCbNm3Cf/zHf6C0tBTXXXcdzjnnHGQyGVx77bUj7/P169ePbNs7zLZtfPjDH8bKlSvx7LPP4oorrjikroULFwIAXnnlFW8/AAodhoGQ279/P5qbm3HTTTfh/PPPx+LFi9He3j7yeGNjI4DstL5hb562k0wm4brumPuWLFkCx3HG7MO9f/9+bN68GYsXLwYATJs2DfPnz8f8+fMxa9asw9Z39dVX47HHHjvspwUAuPzyy9HT04P//M//POzjRbHbF1GOFixYgNLSUjz66KOejq+qqkJTU9PIGJ1hTz311Mj7dfi4D37wg/jBD36A++67Dz//+c9Hpu+WlpbikksuwXe+8x089thjePrpp/Hiiy+irq5u5H0+f/582LZ9yOtfffXVePzxx/Hud78btbW1hzz+tre9DQ0NDfi3f/u3w9bP93n4Hfp/nUKltrYW9fX1+P73v4+pU6di+/bt+NKXvjTy+Pz58zFjxgx89atfxc0334wtW7bg9ttvH3OO2bNno6enB48++ihOPPFElJWVYcGCBXj3u9+NFStW4Hvf+x4qKyvxpS99CdOmTcO73/1uz/WtWLECl1566REHCJ1++un4whe+gBtvvBE7d+7Ee9/7XjQ1NeHVV1/Fd7/7XZx11ln4zGc+M66fDVFUlZSU4Itf/CK+8IUvIJlM4swzz8S+ffvw0ksvHbHr4J/+6Z+wcuVKzJs3D8uXL8eqVauwfv163HvvvQCAO+64A1OnTsXy5cuhtcYDDzyAKVOmoKamBvfccw9c18Xpp5+OsrIy/PCHP0RpaekRQ/6bLV68GG1tbSgrKzvs4+Xl5bjrrrtw6aWX4pJLLsGnP/1pzJ8/H21tbbj//vuxffv2w65XQCES5IAF8ub3v/+9LF68WFKplCxbtkwee+wxASAPPvigiIisXbtWTjjhBCkpKZGzzz5bHnjggTGD+ERErr32Wqmvrz/s1MLq6mopLS2VCy+80PPUwiMNAHrzAMJh9913n5xzzjlSWVkp5eXlsmzZMvn617/OqYUUW67rys033yyzZs2SRCIhM2fOlG984xtHfI+NnlqYSCQOmVr4/e9/X5YvXy7l5eVSVVUl559/vjz//PMiIvLggw/K6aefLlVVVVJeXi5nnHGGPPLII0etb3gA4ZGMHkA47LnnnpP3ve990tjYKKlUSubPny8f//jHZcuWLSLCAYRhxi2MiYiIYo5jBoiIiGKOYYCIiCjmGAaIiIhijmGAiIgo5hgGiIiIYo5hgIiIKOYYBoiIiGKOYYCIiCjmGAaIiIhijmGAiIgo5hgGiIiIYu7/AyP7abbudHNRAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/KklEQVR4nO3deZhcZZ02/vt5zqmq3rek09kTspKQBMJiGMM2wwioiBvgCDgiiC+DgiKOy4y+UQcUZ+AH+rvG1+0lMIqK6MCIggjBoCA7CSQQspEQsnQ6vXenl6pznu/7R3V3upN0cipdp845de7PdfWVStWpU9/udOXc9axKRAREREQUWzroAoiIiChYDANEREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDHHMEBERBRzDANEREQxxzBAREQUcwwDREREMccwQEREFHMMA0RERDFnB12A30Qk+2UMJHvHgQeVGvhDQWs9dJuIiChOiioMDF74jevCGDP091wMBgOlNSzLYjggIqKipyTXq2UIGWPgui5cx8n7uZXWsC0LmsGAiIiKVGTDgIgMBYBCfQtaa9iJxFCXAhERUTGIZBhwXRdOJlOwEHAwbVlIJBJsKSAioqIQqTBgjEEmk4EYE3QpAADbtmHZNkMBERFFWiTCgIjAcRxfxgTkQzKVYtcBERFFVujDgIggk07DhKQ1YDR2IgHbLqrJGUREFBOhDgNiDNLpdGBjA3Jl2TZsdhsQEVHEhDYMGGOQ7u8PuoyccXAhERFFTSg7ukUkkkEAAIzrwgnp2AYiIqLDCV0YGBwjEGWu48B13aDLICIi8iR0YcBxnNAPFvQiCoMeiYiIgJCFAb+WFA5KJkKDH4mIKL5CEwaKoXvgYCJSVOGGiIiKU2jCQLH2sTsF3DuBiIjoWIQiDIgInEwm6DJ8w9YBIiIKs1CEgWJtFRjE1gEiIgqzcISBGHxyLvbAQ0RE0RV4GBBjYvGp2TAMEBFRSAUeBuIyF9/EJPQQEVH0xCIMOI6DhSecgM/fdNMhj11//fVYeMIJaGpq8r0OhgEiIgqjWIQB27bxhZtuwj333IOWlpah+//jP/4DDzz4IP7nwQcxYcIE3+uISysIERFFS6BhQEQK9mn5iiuuQF1dHX74wx8CAH7xy1/i27feivvvvx9z584tSA3CMEBERCFkB11AoSSTSXz+xhvx7Vtvxcknn4zrrrsOd911F/7m9NMLVgM7CYiIKIyUBNiRbYwp6FbFfX19WLBgAZr27cOtt96K6z/zmYK9NgBorZFMpQr6mkREREcTm5YBACgpKcFZZ5+NnTt3FjwIEBERhVWgYwaUUgV/zfXr1+O0004r+OsCAAL4fomIiI4m8NkEhdTb24uNGzdi6dKlgbw+owAREYVR4C0DhWwdeOXVV+G6LpaedFLBXnM4pWOVvYiIKCICvzrpAl4g165Zg4qKCsyZM6dgrzlcIb9XIiIirwKdTQBkNynKFPH2xcOlSkoCGSdBRER0JIF/VI1L07nWmkGAiIhCKfArcVwukNqygi6BiIjosEIRBuxEIugyfGcxDBARUUgFHgaA4r9Q2rYdmxYQIiKKnlCEgWJvHbDsWC30SEREEROKMAAUb+uAxVYBIiIKudCEAaUUEslk0GXklVIKNlsFiIgo5EITBoBs60AxNaknkkm2ChARUeiFKgwAA4PtimDtgUQyyRUHiYgoEkJ3tVJKIRnx7gLLtot2DAQRERWf0IUBYCAQpFJBl3FMtNYcJ0BERJESyjAAZC+qUQsElmVxnAAREUVO4BsVHY2IIJ1OQ4wJupQjshMJWJbFIEBERJET+jAAZAOB4zhwHSfoUg4rmUxy7wEiIoqsSISBQcYYZNJphKVky7a51DAREUVepMIAkG0lGAwFQdFaI5FIFMUUSCIiosiFgUEiAtdx4LpuwVoKtNawEwmuH0BEREUlsmFgkIhkg4Hr+jKmQCk1tG4AuwOIiKgYRT4MDCcicHZugjTMBCQ7xiBXSikoraG1hqU1uwKIiKjoFdXqOGbPVrjr/oRk3Uehy6sBHGg5MMYAA7lHAAx9xlcqGwCGfREREcVJ0YQBd+82ZF5ZBUAg3W3AQBgYvMCzn5+IiOjwiuIK6e7bgcyaPwKS7RaQ/e3BFkRERBQhkQ8DbssuZF76AzBsfIB0twVYERERUbREOgyYtkZkXnwYMO7I+xkGiIiIPItsGDDtTUi/8HvAPXQ6oexvD80qhURERGEXyTBgOluQfuF3gDPKKoSZfiDdW9iiiIiIIipyYcB0tyH9/G+zF/wjkO72whREREQUcZEKA9LbhfRzDwHpvqMey3EDRERE3kQmDEh/L9LPPwT07/d2/H6GASIiIi8iEQbEySD94sOQ/R3en8NuAiIiIk9CHwbEuMi8/Cikoymn55nuVp8qIiIiKi6hDgMigswrT8A0v537k/v2Q/o5o4CIiOhoQhsGRATOhqdh9mw55nOYzuY8VkRERFScQhsG3DfXwN2+bkznkM59eaqGiIioeIUyDDhvb4Cz8bkxn8d0sGWAiIjoaEIXBty92+CsezIv52LLABER0dGFKgyIm4H79gZAq/ycr6cTcpSVComIiOJOSQh39BE3A9O6B2bf2zDNb49pS+LEsotgjZuSx+qIiIiKS6haBgYpKwGrfjoSC5cjufxiQFvHfC7pYFcBERHRkYQyDAxn2hoB4x778zm9kIiI6IjCHwaad47p+WwZICIiOjI76AKOxrR4DwO6fjoSi8+G27wzO96gZSdkfzvEyUDZCR+rJCIiiq5QhwHJ9Of0yV6PmwJVUgF76vHA1OMhIpDOZkCMj1USERFFW6jDgGnZldPx+qBZA0opqOr6fJZERERUdEI9ZiCn8QJ2EqpqnH/FEBERFalwh4HWPZ6P1XWToVSovx0iIqJQCu3VU9J9kO5Wz8cf3EVARERE3oQ2DJi2xpyOZxggIiI6NsURBhIlUJV1/hVDRERUxEIcBnIYLzBuMpTKz+ZGREREcRPKMCCuA+lo8ny8rmMXARER0bEKZxjoaAKM94WC9LjJPlZDRERU3EIZBkxrDuMFkqVQFbX+FUNERFTkwhkGchovMIXjBYiIiMYgdGFAxOQ0k0DXTvKxGiIiouIXvjDQ1QY4ac/H6+rxPlZDRERU/EIXBnJZghhKQVUxDBAREY1F+MJADuMFVHktlBXqjReJiIhCL4RhwPt4AW5PTERENHahCgPS3wP0dXs+nuMFiIiIxi5UYcB07MvpeF3FlgEiIqKxClUYkM7mnI7n4EEiIqKxC1UYyKVlQFXUQtkJH6shIiKKh+iGAbYKEBER5UVowoCke3McPMjxAkRERPkQmjBgOnIbL8DBg0RERPkRmjAgnbnNJGA3ARERUX6EJgzkNF6grBoqkfSxGiIiovgITRjIZVohVx4kIiLKn1CEAcn0Q3o6PR/PlQeJiIjyJxRhINeVBxUHDxIREeVNKMJArisPclohERFR/oQiDJhcxguUVUElUj5WQ0REFC+hCAPS3eb5WE4pJCIiyq/Aw4CIQLrbPR/PLgIiIqL8Cj4M9HYBxvF8PAcPEhER5VfwYSCHLgKA0wqJiIjyLQRhoN37wSUVUMlS32ohIiKKo+DDwH7vLQMcL0BERJR/gYcBk0M3AcMAERFR/gUaBrIzCTitkIiIKEjBtgyke4FMv+fDVUWtj8UQERHFU7AtA7kMHlQaqqTCt1qIiIjiKtAwYHIYPKhKK6B04EMciIiIik7ALQO5hIEqHyshIiKKr8h0E6gyhgEiIiI/BBsG9rd7PlaVVfpXCBERUYwFFgZEDKRvv+fj2TJARETkj+BaBvp6ADGeD+eYASIiIn8E1zLQ25XT8WwZICIi8kc0woCdABIp/4ohIiKKsUiEAVVaBaWUj9UQERHFV4BhoNvzsewiICIi8k80WgYYBoiIiHwTjTDAmQRERES+CSQMiEiO3QRccIiIiMgvwbQMpHsB43g+nN0ERERE/gmmZSCHVgEAUKVsGSAiIvJLQGEghzUGUuVQlu1fMURERDEX+jDA8QJERET+CiYM9Pd4PpYzCYiIiPwVTBhI93o+VpWU+1gJERERBTebwCOVKvWxECIiIgqomyCHMJBkGCAiIvJTQN0Efd4PZhggIiLyVcHDgIjk1k2QLPGxGiIiIip8y4CbAYzr+XCOGSAiIvJX4VsGchgvAABIMAwQERH5qfAtAzl0EcBOQlmWf7UQERFRAC0DOY0XYKsAERGR3wIIAznMJOB4ASIiIt8VfgegnNYY4EwCIiLyl4hkZ7qJQAbuUwCgVPa2UlADt4tVwcMAuwmIiCgIgxd9YwzEGBgRiDGenquUgtIaevBPrYsqIAQQBrjgEBERFY4xBq7rwnWcYz6HiEBcF8Ojg9Yalm0XRTAofDeBk/Z8qEqwm4CIiHInInAdB67rZrsAfGCMgUlnr2mWZQ0FgygqfBhwM96PtRP+1UFEREVHROC6LpxMDteaPHBdF67rQmuNRCIBFbFQUPhughzCgGIYICIijwZDgF8tAV4YY9Df3w/LtmHbdmS6DwLoJsghrVkMA0REdGQigkw6DeNxMGAhuI4D13GQSCZhRWDxvABaBnIYwGEVPqsQEVF0GGOQ7u8PuoxRZdJpmAi0EhS+UyOHlgF2ExAR0Whcxwl1EBjkOg4y6XSg3RdHE8yuhV6xm4CIiA7DcRxkCjxIcCwGWzDCGggKGgbEmNy2L2bLABERHcR1nILPFsgHEQltIChsy0AurQIAWwaIiGgEY0ykWgQOJiKhDDIMA0REFAmDn6yjbqyrIfqhsN0EuUwrVBqI2KINRETkj8Hpg8Uik8mEaipkgVsGcptWGOZpGEREVDiu64bq4pkPYZphEN5uAg4eJCIKPenvya3V91heI6T97GM1uINiGBS2myCHlgHFBYeIiELPdDaj/4n/QuaNZyC93f68hut9FlrUBL188qDCXnFz+YYVxwsQEYWdspOAk4b75lq4216Bnjgb9nFLoGsa8nJ+EYETssF2+TTYOhD0ksUhDgMcL0BEFHrDu3RFYPZsQXrPFqjaibBnLoFuOG5MO/gZH7cgDgsnk4lZGEAu/6AMA0REYafs5GHvl7ZGZNoagdJK2DMWw5p2PFQilfP53SLuIhgkIhCRQAfNs2WAiIiO3ShhYEhvF5w3/gpnywuwph4Pa+YS6LIqz6cPywA7vwXdVRDeMMCWASKighMRINMPyfQDTjr7Z6Yf4qRH/plJA87AcV44Gbjb18F9az30pDmwZ50EXTX+yLUUKAgYY7D05JNx4YUX4pabbx66/7HHHsOHL74YK1euxIc/9CHfawgyDCgpYGeMu2crMmv+6OlYVT0BqeUf9rkiIqLiN3SBT/dC+nuA/h5I/8DtgfukvxeS7gH6ewEpzEVY10+DNWspdN3kwzaRuwXcjOhnP/sZPn/TTdj4xhuora3Fq6++ir9/17vwla98BTd+7nO+v75SCqmSEt9fZ9TXL2gY2L0FmbWPeTpW1UxA6p0MA0REhyMi2U/u/T2husAfC1U9AfbspdANM6GGzSTLpNMFGzPgOA4WL1mCKy6/HB//+Mdx9jnn4H0XXog777yzIK8PAKmSksDGDRQ4DGxGZu3jno5VNQ1IvdPfZhkiojATNwPp6YL0dkF6OrNfg7d7OwGfF/spNFVeDWvWSbAmz4eyLKTT6YKuMfCTn/wEK77+dUyePBkzpk/HfffdV9Cm+/iEgV2bkHllladjVe1EpP7mgz5XREQUHDEG0tc9ysW+C+jvCbrEYKTKYM9cAnfiHIgu3NC27u5uTJs+HbNnz8aTq1ejvLy8YK8NAKlUakzTMMeiID9lEcEbb7yB5//4ENY8+Uf0pTM4fvokXHX+ciQTo5XAAYREFH3ipCHd7ZCejoFP+cMu+r3doW6+D4yTzv7cCvyyN37+8wCAlubmQAbzCYK78hUkDHz4wx/GAw88AKUUZs2ahcrKStz1x2dQXVaCj/7dssM/iVMLiShCxHUg3W2Q7laYrlZIVxtMdyvQ2xV0adGhNKxpC2DPPRUqVQbp7y/Y1MJvfOMb+MMf/oAnV6/Gey+8EHfffTeuvfbagrz2oKJeZ6C9vR0PPPAAbr31Vlx77bWorq4GAEyZMgVvNjaP+jxmASIKIzEuZH8HpKsVprsV0jXw1dOJ3BZWo+H0pDmw570Durz6wJ0FuhCsXLkS3/3e9/DII49gyZIl+MynP43/7447cPXVVyORiMemeb6HgcGmlhdeeAFPP/00ysvL8Ytf/MLDM5kGiCg4IgayvxMycME33W2QrhbI/g427eeRrp8Oe/6yw645oJWC3z/pRx99FJ+78Ubcc/fdWPaOdwAA/umf/gl3fve7+PnPf46Pf/zjPldwQFG3DFRWVuLGG2/Ef//3f6Orox2LTzzJ2xOLfC1qIgoPcTKQzn0w7U0wXS3ZT/rdbYAp/qVwg6JqGpCYfzr0uMmjHqMtC/Bxk6KXX34Zl19xBW655RZ84AMfGLq/qqoK/3Tttbjt9ttxxRVXFGT8gA54b4KCzia4/EMXYVdrJ1avXo0pU6bgqr9din+97L2HL4xTC4nIB2JMtl+/vQnSvhemownS1QY28ReGqqiFPW/ZwJoCR/4kLCLo7+srUGXBshMJ2HaBtwsa/voFfbVcmkCYyIlojEQkO2q/oyn7qb99L6SjGTDFuyVuXtnJ7OZCiVR2Q6LhfyaSgJ3907TugbvzjSOfK1kCe+5psKYt9Dx9TikFpVTR71oIADqgKYWDChwGcvhmGQaIKEeS7st+0m8fuPh37AXS8fhk6Y0CkiVQqTKoVCmQKoNKlg78vQwYul2aPc7j/9kiAowWBrSGNXMJ7NknH9Ouhdqy4PrYVRAWQY4XANgyQEQRJa4D6WyGGfjUL+1NkJ6OoMsKxvCL+IgLfCmQLDumC3wuRtvGWE+cBfv4v8lpl8KD2bZd9GHAtu14hIFNmzbhBz/4AZ57aQ2mTp8xdP/vnn0V6YyDa993DibVVY94jjAMENEw4jow7XthWnbBtOyCtDfFZ1R/sgSqtAqqrAqqrHLY7SqoknIoHezgM9gjp9+p6nokFiyHrps05lMrpWBZVsH2KAiCFeBYgUEFqeCaa67B1q1bMXXqVCxcuBAAcMopp6CpqQn/d9WL2NfRje/fcPnIJxXxPzwRHZ0YN9vc37ILpnUXTNve4m0xtOyBC3xl9gJfetBF3w73XPehloGS8uwMgclz8/pJ17btog0DVghaBYAChYHt27fjox/9KP7lX/4FANDW1oZ77rkHAPDJT34Sb735+qFPKtY3PREdlhiTnd438MnftDUCbhE1D5eUQ5fXDFzsKw98si+tzDbzh+CCcMwGBwfOOhHKyn9wUVpDW1ZBNy0qlCBnEAxXkCrOOuss3HbbbbjtttsO+/j/vuLCQ+9kGCAqaiIG0tky7OK/pzh24UuWQFfWQVXUQVXWQQ/8eSyD56JCl9dAzz3V19dI2Db6iywMhGGswKCCrDPgOA7+9Kc/oaN5LzLr/zzisfrqSiw/YfZhfyCpd/8vXwa7EFHhiUh2Jb/BZv+W3YCTDrqsY2cnR17sK+ugK2qzo/LJF67rIpOO8O/MMFprJJLJ0ISBgrQM2LaNd73rXZD+HvRX57Bph3EBi2GAKKqkvwdu01sw+3bAtO6O5jQ/y4aqqBv4tF+bvehX1gGp8tD8Rx4XlmVBbBtOxGcXKKVCFQSAQk8tzHXEq+sCPvQ/EZE/sp/+W2D2bofb9BakoynoknKTLIWumQBdPQGqanz2E39pZaj+0447y7ZhjCnYboZ+CFsQAAoeBnJ8OY4bIAo9cZ1s039TNgCgb3/QJXlj2VBV9dmLf00DdM0EoKQidP9J00iDn6rT/f2RXJkwkUwGvtrg4RQ4DOT2AxDX4d6FRCEkfd1wm3bANG2Had4VgeV9VbZ5v2YCVM0E6OqGbJN/CP9TpqNTSiGZSiGdTkMi1EKQSCYLsunRsShoGFBKZRen8DpiOMqDi4iKiIhAOvbBbdoO0/QWpLM56JKOrLQSunrCwKf+CVBV9aGfq0+5UUohmUwik8lEYsphMpUKZYvAoMJPcLRTnsOARHGwEVGRECcD07Iz2/+/bwfQ3xN0SYdnJ6FrGgY+8Q9c/DmiPxaUUkgkEnC1hpMJ57RUpTWSIRwjcLCChwGVLIH0dXs72On3txgiGkH6e+A2vplt/m/ZHc5xO5YNXTcJum4K9Lgp2YF+If7ERf5SSsG2beiBQBCmgYV2IgHLskIfBIAgwkAi6XnXcMkwDBD5TTL92QCwewtMyy7A8zu0QLQFXTsRetzAxb+6Pvi1+Cl0tNZIplJwXRdOJhPo4ELLtkO1oJAXwXQTeJVmGCDygzjpbPP/ni0w+94O14Y/WkPVNEDXTYE1fgpUdQNUSAddUfhYlgWt9VAoKCStNRKJRCRbqgLpJvBK2E1AlDfiOjBNb2UDQNNb4ekCUDrb3183Ofvpv7bBl/XtKT4Guw4sy4IYA9d1fdvoSGkNy7Ii0x0wmsK3DOSyPje7CYjGRIwL07wT7u4tMHu3AW4YBlkpqOp66HGDF/9JHOlPvlBKQVkWtGXBFoEZCAZizJi6EZTWsLQOzY6D+VD4loEcugk4m4AodyIGpmU3zJ4tcBvfDEeoTpZA10+HNWEm9PipRb1pD4WTUmroEzwwMF124MsMDwfDQ4JSUBjYNVEpKK2L5uJ/sHC3DLCbgMgTEYG0NcLdswXunq1AujfokrKL/EyYAWvCTKiaCdx0jEJFKTV0YQ/rQkCFFMCYgRxaBjJcdIjoSExnC9xdG7MBwOuUXb9onZ3uN2Em9ITp0GVVwdZDRJ6FejYBpxYSHUoy6WwLwNsbgt8IKFkKa8IM6AkzoMdPY98/UUQFsM5ALgMIOWaACBjoBmjfC/ftDXD3bAHc4PYCUFXjB5r/Z0BVTyjaPlSiOCl8y0AOUwvhZCDG5QIjFFvS3wt31ya4OzdAuttGPiYCxzXQSsGyfOyP1xb0uKnQDTNg1c+AKq3w77WIKBDhbhkAsuuhl1b6UwxRCIlIdjrg2xuy0wGHLQjU1dOH7//2T3jqtS1Ys2UHWjr3ozSVwM1XfgDXXfS3+StC29ANM2FNmg1dP43z/omKXABjBpKAtjwveCK93VAMAxQD0tsFd+cbcHZuBHq7DnvMLT//Pf7vY8/hnHPOwfUXfQQzZ87E//zP/+D/f/CJsYcBrbPT/ybNgZ4wk/3/RDFS+JYBpaBKyiE9nZ6O97ypEVEEiXGzywLv3JBdFvgotu9twRlnnIGf/exnePnll3HKKadg+/btePbPTxxbAUpluwAmz4HVcBzn/xPFVOFbBgCgpBzwGgZ6GQao+JjutuxgwF0bgRwW15rRMA7/53erUFtbCxHBxo0bj+n1Vd1kWJPmwJo4CypVekznIKLiEUgYUKly7zsXsmWAioQYF2bPVjg7XoO0NR7TOVZc8T7MnlSP7XubccdvHs/puapmQjYATJoNVcJBgER0QDBhoKTc87FsGaCok/5euG+/Duet9dkBsWNQVpLEp957Fp5av9lTGFCV42BNngM9aQ4XASKiUYU/DLBlgCLKdLXA3b4O7q5NBd0hUJVXQ0+amw0BFbUFe10iiq6AwoD3Jkq2DFCUiAjMvh1wt70K07KzgK+sYE1bCGvaAqjqei4EREQ5CWjMQJn3gzN9EDfDec4UauJk4O7cCHf7q5CeDl9fyxiDnr6R+3ZIogSZ2achUZbDe4uIaEBwswlyIL3dUGzupBCS3i44b62Hu+N1wPF/Y61te5rx7q9+D281No+4v7GxEeXl5bj00ktx3333+V4HERWX0I8ZAADp2w8wDFBIDO4T4Gx7FWbvmyP3P/eRrp+Gh57dgfbeDH7xi18AACZNmoSLL74Y8+fPx2uvvYabb74Zt99+O6ZOnVqQmoioOAQTBrSV3aPA4/xqjhugMBiaGrh9XeF2CyypgD3teFhTj4cqrUTps9vgOA42bNgAAEN/AsCOHTsAAIkEu9SIKDfBdBMgO4hQvC620nf4pVmJCkHSfXB3DE4N3O//CyoN3XAcrGnHQ4+fCqUObEL0D//wD3jkkUewcuXKQ55mWRZWrFiBhoYG/2skoqISXBhIlUPQfPQDwZYBCob0dsN5cw3ctzcUZGqgqqiFNXUBrCnzRl0VsL6+Hg8//LDvtRBRvAQXBkq51gCFk+nphLv1Zbg7N47YMdAX2oY1aTas6Quhaho4JZCIAhFcGCir9nwsWwaoEEx3G5yta2B2b/J/UGBJOewZi2BNWwiVLPH3tYiIjiK4MFCeQxjo64aI8FMT+cJ0tcDZ8jLMnq2A510zjo2qngD7uCXQE2dlB9ISEYVAgGGgxvvBrgNk+rMzEIjyxHTsg7PlJZi92/x9IaWgJ86CPXMJuwKIKJQCHDNQmdPx0tfN5lTKC9O+NxsCmt7y94XsJKzpC2HPWJTz7zsRUSEFFwYsGyitBHq9TRuU3i6garzPVVExM617siGg+W1fX0eVV8OauQTWlPlQNuf8E1H4BRYGAECXVcN4DQPd7QCnT1OORASmZRecLS9BWnf7+lp6/FRYM5dA109nVwARRUqgYUCVVwEt3o41XR4PJMKB3QOdLS9B2vf690LagjVlHqyZi6Erx/n3OkREPgo2DJTVeD5WOr0tUETxJiIwTduzIaBjn38vlCo7MDVwlAWCiIiiIuCWgRymF+5vh7gulMXpWHR4pnU3Mm8862tLgCqvgT17KfTkuZwaSERFIzJhACKQ/W1QHERIBzFdLXA2Pufr7ABVWQd7zinZ9QGG7RVARFQMgg0DpVUAFLwu9CKdzZxRQEOktwvOphfg7tro22uoqvGw55wK3TCTgwKJqGgFGwYsC6q0Ijtt0APT1Qo2zJKk++BsfRnuW+t920BI1TRkWwI4M4CIYiDQMABk9yjwGgakkzMK4kzcDNzt6+BsXQM4aV9eQ9VNyrYEjJvCEEBEsRF8GKioBVp2ejrWdDVzj4IYEmPg7noDzqYXgf79vryGHj812xJQN9mX8xMRhVnwYaCqzvvB6T4g3QukyvwriEJDRGD2boez8VnI/nZfXkPXz4A952To2om+nJ+IKAoCDwO6MrcBgaazGVb9dJ+qobDwe5qgbjgu2xJQXe/L+YmIoiTwMKAqa3M6XrpaAIaBouX3NEE9aU62JYCrBRIRDQk+DFgJqPJqyP4OT8ebzlafK6IgHJgmuAlep5rmQk+ZB3v2ydAVuYVPIqI4CDwMAICqHO85DEgXlyUuJuJm4GxdA/fNtb5ME9QTZsCetwy6ii0BRESjCUUY0FXjYBq3ejpWutshxuVSsBEnIjCNbyKz4a9AX3fez69qGpA4/nTODiAi8iAUYUBV5jCjQAykux2Kn/Qiy3S1wnn9KZiWXXk/tyqvgT3/dK4YSESUg1CEAZ3jEsPS1QwwDESOZPrhbH4xu3KgmPyePFUOe96psKYcD6W5dwARUS5CEQZQUgHYSc+rypnOFlhTfK6J8kZEYHZtROaNZ7PrROSTnYQ9eymsmYuhrER+z01EFBOhCANKKajKOkhbo6fjpYvLEkeF6diHzGt/yf96AVrDmrEY9uyToZIl+T03EVHMhCIMAICuHAfXYxgw3KMg9CTdC2fj83Dffj3v59ZT5iMx7zSo0sq8n5uIKI5CEwZULuMG0r2Q/h4oLkscOiIG7o7X4Wx6Hsj05/Xcun4G7PmcJkhElG+hCQM6lxkFGBg3UM8wECamdQ8yrz8F6czvWhCcJkhE5K/QhAFVNR5Q2vMo8+yyxNN8roq8kL79yLzxLMzuTXk9ryqvHpgmeBynCRIR+Sg8YcCyoarGQTr2eTrecBBh4MS4cLe/CmfzS4Cbyd+J7QTsOadmZwhwcSkiIt+FJgwAgK5pgOsxDAgHEQbKtO5GZt2Ted9aWE+Zh8T806FKyvN6XiIiGl34wsBb6z0dK91tXJY4AJLph/PGs3mfJaCqxiOx8Azoukl5PS8RER1dqMKAqmnwfrAYSHdbbrMQaEzcvduRee3PQN/+/J00kYI9bxms6QugFFcOJCIKQrjCQFkVkCwB0n2ejjctu3NeyphyJ/09yLz+NMyeLXk9rzV9Iex5y7hoEBFRwMIVBpSCrmmAaXrL0/GmZRdw3BKfq4ovEYHZvQmZ15/O65oBqnZitkuguj5v5yQiomMXqjAAILcw0LobYgw3pvGB9HYhs+5JmOa383fSZCkSC/4GevI8ThUkIgqR0IWBnMYNOGlIZzNUzQT/CooZEQP3rdfgbHwWcJ38nFRpWDMXw55zKlQimZ9zEhFR3oQuDOjq3C7spmUXNMNAXpiuVmTWrc7rpkJ63FTYJ5wBXVGbt3MSEVF+hS4MqEQSqqIO0t3q6XjTsguYvdTnqoqbGBfu1jVwtr4EGG8rQB5VSQUSC94JPXEWuwSIiEIudGEAAHRtA1yvYaBtD9cbGAPTvjfbGtDl7ed9VFrDmrUU9uylUFYiP+ckIiJfhTIMqJoG4O0N3g52HUh7ExQXq8mJOBk4m1+Au+1VAJKXc6raiUgsPoddAkREERPKMKBzGUSIgXEDDAOeuc074axbDentys8JrQTs40+HNf0EdgkQEUVQKMOAqqgFkqVAutfT8aZlFzD3VJ+rij5x0nA2/BWu11YXD3T9DCQWnQVVWpG3cxIRUWGFMwwoBT1+KszuzZ6ON+2NENeBskL57YSCaWtE5pVVkJ7O/JwwWYLEguXQk+eyNYCIKOJCe/XMJQzAGJi2Rljjp/pbVASJceFseQnulpeRr7EBevJcJBYsh0qV5uV8REQUrNCGAWvcVOSy5I1p2cUwcBDT3Z5tDehoys8JSyqQWHQWrAkz8nM+IiIKhdCGAVVaAVVeA9nf7ul407LL34IiRETgvr0Bzoan87aKoDVjEez5y6BsriBIRFRsQhsGgGxXgesxDEhHE8RJx/5iJf09yKxb7Xl/h6NR5TXZ6YKcrUFEVLTCHwbeWu/tYBGY1j2xbsJ2925HZt1qz7MwjkhpWLNOgj3nFA7MJCIqcqH+X17XTQag4HXgm2nZFcswIE5mYMrg63k5n6qqR2LJOdBV4/NyPiIiCrdQhwGVSEHVTPC8cU4cxw2Y9iZk1j4O6ekY+8m0BXveO2DNXMJtoYmIYiTUYQAY6CrwGAaksxmS7oNKlvhcVfDEGLhvroGz+QVAxj5lUNVNQmLx30KXV+ehOiIiipLQhwFr3FS4W17yfLxp3Q1r4iwfKwqe2d+RnTKYj62GlYY9/x2wjjsRSrE1gIgojkIfBlRtA2DZnqfImZbiDQMiAnfnG3BefxpwM2M+n6qoReKkv+fYACKimAt/GNAWdN1kmH07PB1vWnb6XFEwJN2LzLonYfZuy8v5rJmLYc8/nTMFiIgo/GEAAPS4qZ7DgHS3Qfp7oFJlPldVOG7LLmTWPg7094z9ZKlyJJb8Laz6aWM/FxERFYVohIEclxk2LbtgTZ7rUzWFIyJwt74MZ9MLyMe+AnriLCQWnR2LAZZERORdJMKAqqzLcUvj3ZEPA5LuQ+aVVZ5bRI7ITiCx8AzoKfO5wyARER0iGmEg1y2NI77egGlrRHrNY0Bf95jPpWonInHiudBlVXmojIiIilEkwgAwMG7AYxiQng6Y/R2RmzMvInC3r4PzxjOAmLGdTGnYc0+FNXsppwwSEdERRSYMWOOn5Lal8d7t0LNO9K2efJNMf3aDocY3x3wuVV6TbQ2omTD2woiIqOhFJgyo0kqo8mrIfm/L7rp734QdkTBgOpuRefmPeVlS2Jp+AuwFfwNlJfJQGRERxUFkwgAA6PrpcPev83SstDWGfoqhiMB9ewOc158CjDu2kyVLs1MGY7hRExERjU2kOpN1w3E5He82veVTJWMnTgaZV5+As/7JMQcBPWEmUmdeyiBARETHJFotA7WTgEQKyPR7Ot7s3QZMW+BzVbkz3W3IvPwopLttbCfSGvaC5bCmn8Apg0REdMwiFQaU1tATZsDs2uTpeNO8E+Kkoeykz5V55+7ahMz6Jz3vtTAaVVaFxNLzoKvr81QZERHFVaS6CQDAyqWrwLgw+972r5gciOsgs+5JZF5ZNeYgoBuOQ3L5xQwCRESUF5FqGQAAPX4aoC3P/ezu3m2wJs32uaojMz2d2W6BzuaxnUhp2PNPh3XcEnYLEBFR3kQuDCg7AV0/DWbvdk/Hm6a3IMaF0pa/hY3CbdyGzKtPAE56bCcqKUdy6XnQtRPzUxgREdGAyIUBINtM7jUMwEnDtO6BleNmR2MlYuBseh7u1jVjPpcePw2Jk86FSpbmoTIiIqKRIhkGrAkz4EDB605+pvHNgoYByfQjs/bxPGwypGDPOw3W7JPZLUBERL6J3ABCAFDJUqi6SZ6Pd5u2Q2TsWwB7YbpakX76N2MPAslSJN5xIew5pzAIEBGRryLZMgBkZxU4rbuPfqDS0JV1kHQfkCw5/CF5uti6jdsGZgtkxnQeVTcJyZPeBVVSnpe6iIiIjiSyYUA3zAQ2PH34B5WGGjcFquE4YPx0iJVA2gjQ1zf6+bTOrmOgFJTWUEp5DgkiAmfzi3C3vHgM38lI1qylsOe9A0pHstGGiIgiKLphoKwKqmr8gel6SkPVTYZMmAmMmwZJpA6MKPDQRWCMAYzB8AmLWmtYtp0NCqMEA8mkkXllFUzT9jF8NwASKSROPJdLChMRUcFFNgwAgJ44CyZZCqmfMRQA8skYA5POTgnUlgXLskYEA9PdjszLfxjzssKqegKSJ58HVVo55pqJiIhypaRQI+vySETgOg4cZ2wr+R0LpRQSySS01nC2vARn0/NjOp81Y3F2y+GA1kEgIiKKVBgQERhjkEmPcQGfPNBaw7ZtOGsfy26IlCsrkd1yOODVEYmIiCITBgZDQNjK1RDIiw9Bulo9P0eVVSNxygXQlXU+VkZERORNJMKA67qhaA0YVV838OLvgMzosxUG6frpSJz091B5Ht9ARER0rEIdBkQEjuPADWBsQM7a9gCvPAaIGfUQa/bAtEHFaYNERBQeoQ0DIoJMJgPjetudMBR2vQFsevbQ+y17YHzAnMLXREREdBShnFoYySAAAFOOB7rbgN0bh+5SpZVInPJu6KpxARZGREQ0ulCGAdd1oxcEBs1dBvR0AO2N0OOmILH0PKhRlkEmIiIKg9B1ExjXRTrMgwW9SPcBuzciOe80aIvrBxARUbiFKgyICPqPsH9A1Fi2jUQiEXQZRERERxSqYe2hnj54DFzHgRvV7g4iIoqN0IQBY0x2s6Ai42QyoVsoiYiIaLjQhAEnkwm6BF8MLqFMREQUVqEIA8XaKjCoWIMOEREVh1CEgWK/WIpIdKdKEhFR0Qs8DMSlGZ0DCYmIKKwCDwNxCAJAfL5PIiKKnsDDgBToIvmHP/wBpWVlo35dfsUVvr6+iHBWARERhVLgiw719/cXJBD09vaio6NjxH2u6+J/XXstXnnlFTzy8MNYtGiRrzUkkklYXJGQiIhCJtC9CUSkYC0DpaWlKC0tHfq767r4xFVXFSwIANmuAoYBIiIKm1BuVOS3wSDwxBNPFCwIAGA3ARERhVKwYwYCuDi6rourrr4aTzzxBB7+/e+xePHiwr04wwAREYVQoGGg0JfGwSCwatUqPPz732PJkiUFfX1GASIiCqNAuwmUUgV7rcEg8PjjjwcSBACgcN8tERGRd4FPLSwE13Vx9Sc/iccffxy//93vcOKJJwZTSAHDDxERkVdFP4DQGIOrP/lJPPTQQ/j5vfdi4sSJaGxsHHFMfX19QUb5a4YBIiIKocDXGUj39/u6Ot/zzz+Ps88554jH7Nm9GzU1Nb7VMIjrDBARURgFHgacTAaO4wRZQsGkSkoKOk6CiIjIi8DHDGgdeAkFoZRiECAiolAK/EqsYhIG4hJ6iIgoegK/QimloGPQj27ZRT9Wk4iIIirwMAAAdpFfKLXWbBkgIqLQCsUVSmtd1K0DdiIRdAlERESjCkUYAIq3dYCtAkREFHahuUoVa+sAWwWIiCjsQhMGACCRSBTV9Ds7kWCrABERhV6orlRKKSSSyaDLyAutNVcbJCKiSAhVGACyF9GoB4LBUFNMrRxERFS8QhcGAMCyrEgPKGQQICKiKAllGACy/e1RHHyXTKU4ToCIiCIl1B+/bduGApDJZIIu5aiUUkimUmwRICKiyAl810IvjDFI9/cHXcaotGUV3UwIIiKKj0iEAQAQEWQyGRjXDbqUERKJBPcdICKiSItMGBhkjEEmk4EYE2gdtm3Dsm22BhARUeRFLgwMcl0XTiaDQpfPLgEiIio2kQ0DQLbrQIyB67pwfew+UErBsm1YlsUQQERERSfSYWA4EYExBq7jwOShC0EpBcuyoC2LUwWJiKioFU0YGG7wWzLGDLUeGGMg2QdHHKuUyn5pDT3w5+B9REREcVCUYYCIiIi8Y/s3ERFRzDEMEBERxRzDABERUcwxDBAREcUcwwAREVHMMQwQERHFHMMAERFRzDEMEBERxRzDABERUcwxDBAREcUcwwAREVHMMQwQERHFHMMAERFRzDEMEBERxRzDABERUczZQRcwXHLpVdB2EkpbUNqClThwW2l94DHLgraT0EOPWYc8prQFrRWUVrAsDXXQba0VtKWGjjniY0rBsjUsrWBpheTAbXvo79aBx6wDx9nDjrUOd1spaKVgKSBh6aHbtqVhKWT/rhUSWh3mdvbxhNZDty2loBSgFaAUBs4PKACWVtBA9nvRGLqtFWCp4bez51AigBgo4wAjbpvslxn9MSUGcN0Dt40DGBdiDOCkIa4LGJO9z8lAjJu9nckAg7cHjx08LpM+8BzjwmQciGsgxsCkHRg3+xxxDUzGgXEP3JaB227GgQw7zk07w267ECMwrgz8feD5RrKPuQJxBcY1cDNm4JwCN+MOPOfA84wIXBGkjcAVHHT74L9nbxtkb7uCgccO3P6BbA/0fZkvfH/z/c33d3jf32wZICIiijmGASIiophjGCAiIoo5hgEiIqKYYxggIiKKOYYBIiKimGMYICIiijmGASIiophjGCAiIoo5hgEiIqKYYxggIiKKOYYBIiKimGMYICIiijmGASIiophjGCAiIoo5hgEiIqKYYxggIiKKOYYBIiKimGMYICIiijmGASIiophjGCAiIoo5hgEiIqKYYxggIiKKOYYBIiKimGMYICIiijspUn19fbJixQrp6+sLupRDhLk2EdY3FmGurZiE+ecc5tpEWN9YhLm2sVIiIkEHEj90dnaiuroaHR0dqKqqCrqcEcJcG8D6xiLMtRWTMP+cw1wbwPrGIsy1jRW7CYiIiGKOYYCIiCjmGAaIiIhirmjDQCqVwooVK5BKpYIu5RBhrg1gfWMR5tqKSZh/zmGuDWB9YxHm2saqaAcQEhERkTdF2zJARERE3jAMEBERxRzDABERUcwVXRj4whe+gDPPPBOXX3450un0iMd6e3tx4YUX4uyzz8a73vUutLa2hqq+Qd/+9rdx6qmnBl6T4zi48sorceaZZ+Kzn/1swerxWt+gQv+8hhuttjD8rhUjvr/zVxPf30cXp/d3UYWBNWvWoLGxEX/5y1+wcOFC/PrXvx7x+COPPIJFixbhySefxKWXXoqf/vSnoaoPALq6urB+/fpQ1PTQQw9h6tSp+Mtf/oKenh789a9/LVhdXuoDCv/z8lpb0L9rxYjv7/zWxPf3sdcW9O+aH4oqDDzzzDM477zzAAAXXHDBIb/cc+fORU9PDwCgvb0d9fX1oaoPAL773e/i05/+dChq8lJvkPUBhf95DXek2oL+XStGfH/ntya+v48sbu9vO+gC8qm9vR2TJ08GAFRXVx/SdDN79mysX78eixYtglIKzz33XKjq6+jowLp16/DVr341FDW1t7cPrb99uHqDri+In5fX2oL+XStGfH/ntya+v4+9tqB/1/wQyZaBxsZGnHHGGYd8iQg6OzsBZP8h6+rqRjzvnnvuwTnnnIP169fjG9/4Br75zW+Gqr4777wTn/nMZ3ypaTS1tbWj1nSkx8JQXxA/r+GOVFuhfteKEd/f+cP397GL2/s7kmFg4sSJeOqppw75es973oM//vGPAIBHH30Uy5cvP+S5g/+gNTU1aG9vD1V9W7ZswS233IILLrgAmzdvxq233upLfcOdfvrpo9Z0pMcK5Ug1BPHz8lobUJjftWLE93f+8P3tT21AEb6/g9s92R833XSTnHHGGXLZZZdJf3+/iIh86lOfEhGRjo4Oec973iNnn322LF++XDZu3Biq+oY75ZRTAqtpsJ5MJiP/+I//KGeccYZcf/31BavHa33DFfLnNdxotYXhd60Y8f099pr4/vYuTu9vLkdMREQUc5HsJiAiIqL8YRggIiKKOYYBIiKimGMYICIiijmGgRi4++67UVNTk5dzbd++HUop2LaNXbt2jXhsz549sG0bSils3759xGO/+c1vcM4556C6uhoVFRVYsmQJvvnNbw4t5JHPGolo7GbOnAmlFH75y18e8tgJJ5wApRTuvvvuEfevWbMGl1xyCRoaGlBSUoJ58+bhmmuuwaZNmwAc+P9j7dq1BfgOKBcMA3RMJk+ejP/6r/8acd8999yDKVOmHHLsv/7rv+IjH/kITjvtNDzyyCNYv349br/9drzyyitFsaY3kd8ymUwgrztt2jSsXLlyxH3PPvssGhsbUV5ePuL+3/3udzj99NPR39+Pe++9Fxs2bMBPf/pTVFdX42tf+1ohy6ZjEfTcRjq6Rx55RJYvXy7V1dVSV1cn733ve2XLli0iIvKnP/1JAEhbW9vQ8WvWrBEAsm3btqHHh3+tWLFCRERaW1vlYx/7mNTU1EhpaalccMEFsmnTpiPWsm3bNgEgX/3qV2Xu3LkjHps/f7587WtfG3ptEZHnnntOAMidd9552PMN1r1y5Uqprq7O+WdDFFWu68qtt94qs2fPlmQyKdOmTZObb7556D123333ydlnny2pVEruuusucV1XvvGNb8iUKVMkmUzKiSeeKI888sjQ+fr7++XTn/60TJw4UVKplMyYMUO+9a1vDT2+YsUKmTZtmiSTSZk0adJR1xaYMWOGfPnLX5ZUKiU7duwYuv+aa66R66+/Xqqrq2XlypUiIrJ//34ZP368fOADHzjsuQbf54Pf25o1a47th0a+YctABOzfvx+f//zn8cILL2DVqlXQWuODH/wgjDFHfe473/lO3HnnnaiqqsKePXuwZ88efOELXwAAXHnllXjxxRfx29/+Fs888wxEBO95z3s8fQq56KKL0NbWhqeeegoA8NRTT6G1tRXve9/7Rhx37733oqKiAtddd91hz8OuAYqrr3zlK/jOd76Dr33ta3j99dfx85//HA0NDUOPf+lLX8INN9yADRs24Pzzz8d3v/td3H777bjtttvw6quv4vzzz8dFF12EzZs3AwC+973v4be//S1+9atfYePGjfjZz36GmTNnAgB+/etf44477sAPf/hDbN68GQ8++CAWL1581BobGhpw/vnn45577gEA9PT04L777sNVV1014rhHH30Uzc3N+OIXv3jY8/B9HgFBpxHKXVNTkwCQdevWHbVlQOTwn7o3bdokAOTpp58euq+5uVlKS0vlV7/61aivPTzZf+5zn5NPfOITIiLyiU98Qm688cZDXvvd7363LFmy5KjfE1sGKE46OzsllUrJj3/840MeG3yPHdyaNnnyZLnllltG3HfaaafJddddJyIi119/vfzd3/2dGGMOOeftt98u8+bNk3Q67bnGGTNmyB133CEPPvigzJ49W4wxcs8998jSpUtFREa0DHznO98RANLa2nrEc7JlILzYMhABW7duxWWXXYZZs2ahqqoKxx13HABgx44dx3zODRs2wLZtLFu2bOi+cePGYf78+diwYQMA4N3vfjcqKipQUVGBE0444ZBzXH311bj//vvR2NiI+++//5BPCwAgIlBKHXOdRMVow4YN6O/vx7nnnjvqMaeeeurQ7c7OTuzevfuQ9fGXL18+9H698sorsXbtWsyfPx833HDD0Lr6AHDJJZegt7cXs2bNwjXXXIMHHngAjuMAAL71rW8Nvc8rKioO+X/lve99L7q7u/HnP/8Zd91116jvc4o2hoEIeN/73oeWlhb8+Mc/xnPPPTe0XWY6nYbW2X/C4W9GL838o715h1+8f/KTn2Dt2rVYu3YtHn744UOOXbRoEY4//nh89KMfxYIFC7Bo0aJDjpk3bx62bt0a2AAoojAqLS096jEHD9ADcEiwHv5+Pfnkk7Ft2zb827/9G3p7e3HppZfi4osvBpAdCLhx40b853/+J0pLS3HdddfhrLPOQiaTwbXXXjv0Pl+7du3Qtr2DbNvGxz72MaxYsQLPPfccLr/88kPqmjdvHgDgjTfe8PYDoNBhGAi5lpYWbNiwAV/96ldx7rnnYsGCBWhraxt6vL6+HkB2Wt+gg6ftJJNJuK474r6FCxfCcZwR+3C3tLRg06ZNWLBgAQBgypQpmDNnDubMmYMZM2Yctr6rrroKq1evPuynBQC47LLL0N3dje9///uHfbwodvsiytHcuXNRWlqKVatWeTq+qqoKkydPHhqjM+ivf/3r0Pt18LiPfOQj+PGPf4z77rsPv/nNb4am75aWluKiiy7C9773PaxevRrPPPMM1q1bh7q6uqH3+Zw5c2Db9iGvf9VVV+HJJ5/E+9//ftTW1h7y+HnnnYfx48fj3//93w9bP9/n4XfovzqFSm1tLcaNG4cf/ehHmDRpEnbs2IEvf/nLQ4/PmTMH06ZNw9e//nXcfPPN2Lx5M26//fYR55g5cya6u7uxatUqnHjiiSgrK8PcuXPx/ve/H9dccw1++MMforKyEl/+8pcxZcoUvP/97/dc3zXXXINLLrlk1AFCy5Ytwxe/+EXcdNNN2LVrFz74wQ9i8uTJ2LJlC37wgx/gjDPOwGc/+9lj+tkQRVVJSQm+9KUv4Ytf/CKSySSWL1+Offv24bXXXhu16+Cf//mfsWLFCsyePRsnnXQSVq5cibVr1+Lee+8FANxxxx2YNGkSTjrpJGitcf/992PixImoqanB3XffDdd1sWzZMpSVleGnP/0pSktLRw35B1uwYAGam5tRVlZ22MfLy8vxk5/8BJdccgkuuugi3HDDDZgzZw6am5vxq1/9Cjt27DjsegUUIkEOWCBvHnvsMVmwYIGkUilZsmSJrF69WgDIAw88ICIiTz31lCxevFhKSkrkzDPPlPvvv3/EID4RkWuvvVbGjRt32KmF1dXVUlpaKueff77nqYWjDQA6eADhoPvuu0/OOussqayslPLyclmyZIl885vf5NRCii3XdeXmm2+WGTNmSCKRkOnTp8u3vvWtUd9jw6cWJhKJQ6YW/uhHP5KTTjpJysvLpaqqSs4991x5+eWXRUTkgQcekGXLlklVVZWUl5fL6aefLo8//vgR6xscQDia4QMIB73wwgvyoQ99SOrr6yWVSsmcOXPkU5/6lGzevFlEOIAwzLiFMRERUcxxzAAREVHMMQwQERHFHMMAERFRzDEMEBERxRzDABERUcwxDBAREcUcwwAREVHMMQwQERHFHMMAERFRzDEMEBERxRzDABERUcz9P4AWc+Zlh0ccAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -438,7 +439,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 33, "id": "3cfb4b66", "metadata": {}, "outputs": [], @@ -455,13 +456,13 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 34, "id": "378ab9c4", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA53klEQVR4nO3de5RkZX3/+8+z965bX6ZnBhAYgqgMKMrN2w9OQHGFnyJeULOCnniJisHDAdEoBnUFzyDxgklYousk8Xa4RMkR0cDxhkYxGImKugQRg4AePCTICHPt7um67ud7/thVfZmenulLVe1dtd+vtXpNdVX13k/3dPX+1PN8n+dxZmYCAAC5FaTdAAAAkC7CAAAAOUcYAAAg5wgDAADkHGEAAICcIwwAAJBzhAEAAHKOMAAAQM4RBgAAyDnCAAAAOUcYAAAg5wgDAADkHGEAAICcIwwAAJBzhAEAAHKOMAAAQM4RBgAAyDnCAAAAOUcYAAAg5wgDAADkHGEAAICcIwwAAJBzhAEAAHKOMAAAQM5FaTeg18ws+fBeltwx96Bz7X+cgiCYvQ0AQJ4MVRjoXPh9HMt7P/v5SnSCgQsChWFIOAAADD1nK71aZpD3XnEcK261un5sFwSKwlABwQAAMKQGNgyY2WwA6Ne3EASBokJhdkgBAIBhMJBhII5jtZrNvoWAvQVhqEKhQE8BAGAoDFQY8N6r2WzKvE+7KZKkKIoURhGhAAAw0AYiDJiZWq1WT2oCuqFYKjF0AAAYWJkPA2amZqMhn5HegKVEhYKiaKgmZwAAciLTYcC8V6PRSK02YKXCKFLEsAEAYMBkNgx479Wo19NuxopRXAgAGDSZHOg2s4EMApLk41itjNY2AACwL5kLA50agUEWt1qK4zjtZgAAsCyZCwOtVivzxYLLMQhFjwAASBkLA71aUjgtzQEqfgQA5FdmwsAwDA/szcyGKtwAAIZTZsLAsI6xt/q4dwIAAKuRiTBgZmo1m2k3o2foHQAAZFkmwsCw9gp00DsAAMiybISBHLxzHvbAAwAYXKmHAfM+F++aPWEAAJBRqYeBvMzF9zkJPQCAwZOLMNBqtfT0ZzxD77rkkkWPXXzxxXr6M56hxx57rOftIAwAALIoF2EgiiK9+5JLdP3112v79u2z9//t3/6tbr7lFv0/t9yiJzzhCT1vR156QQAAgyXVMGBmfXu3/PrXv14bN27Upz71KUnS//2FL+gjV16pm266Scccc0xf2mCEAQBABkVpN6BfisWi3vXOd+ojV16pZz3rWbrwwgt1zTXX6H859dS+tYFBAgBAFjlLcSDbe9/XrYprtZqOO+44Pfb447ryyit18dve1rdzS1IQBCqWSn09JwAAB5KbngFJKpfLev4ZZ+i///u/+x4EAADIqlRrBpxzfT/nvffeq+c+97l9P68kKYXvFwCAA0l9NkE/VatV3X///XrmM5+ZyvmJAgCALEq9Z6CfvQM/v+cexXGsZ558ct/OOZ8LcpW9AAADIvWrU9DHC+Tdd92lsbExbd68uW/nnK+f3ysAAMuV6mwCKdmkqDnE2xfPVyqXU6mTAABgf1J/q5qXrvMgCAgCAIBMSn1qYV4ukEEYrunrzbwUt2RxK/nXz912pYrC0Q1daikAIG8yEQaiQkGtIR8qCPcTBsxMmndxt7g1+3nnPtnSSxkHYxt70WQAQE6kHgak5EI5zGEgDANZq77g4m5+/oU/XsPBI7kCqxoCAFYvE2Fg2HsHXHNG8dSOnhw7qIznZqgFANAbmane2183+iALo0jR6AYFPRrTD8rjPTkuACA/MhMGnHMqFItpN6OrnHOKoqTzJRjboGBkotsnkDWqsrUMMwAAci/1dQb21mw2FbdaaTejK4ql0oKFhsxM8eTjsupUl8/k5MojCsrjcqURhg0AACuSuTBgZmo0GjK/dPX8ICgUi/sc+jAzxbt/L6vt6c2Jg0BBeVxBZVyKigQDAMABZS4MSMkFs16rpd2MVQujSIVCYcnHzUzxzq2yxkyPG1JQUEmCgQszUSsKAMigTIYBSfLeq1Gvp92MFQuCQIXigd+Rm3nFOx6VNfsTelyxnAwjlMdys+ojAGB5MhsGpMELBGEYKioUlt01b94r3vk7WbOf36OTK48mvQXFCsMIAIBshwFpcGoIokJBYRiu+OJqPlZrx++kVqNHLduPIFRQHqO+AAByLvNhQEoCQavVyuwsg2KxuKa9ByxuqbXjkWTZ4bRERQWVsWQogfoCAMiVgQgDHd57NRsNZaXJYRQpiqKuvKO2VjMJBBlYM8AVK8kwQmmU+gIAyIGBCgNS0kvQCQVpCYJAhUKh6xdKazWSIYMMBAJJknNyJeoLAGDYDVwY6DAzxa2W4jjuW09BEASKCoUFCwl1mzXrSSBYapdC56Q0/suCMJmmWB5jYyQAGDIDGwY6zCwJBnHck5oC55zCKFpVceBq+UZN8c7fLbrou0JZ4cbDZbU98tXp3q9TsJSoOBcMqC8AgIE38GFgvs4Qgvde1v53pZxzckGgIAgUBkFqY+a+PqN451ZJc/894bpDFIysm/3c4pZ8bVq+OpXObATNqy8oj8o56gsAYBANVRjYl07Pgfd+9p22SZp9j+9cEgDmfWSFr+1RvGtr+zOn6AlHyQX7nrVgzfpcMEij5sA5uXJ7NkKxnKmfIwBg/4Y+DAw6X51SvPsxufKoovWHHfD5ZiZrVOWrU7L6npTqC6JkmmJlXC4arp0oAWAYEQYGgJ+ZlMJQQWl0RV9n3svqe5Jg0Kj2qHX756KSXGWM+gIAyDDCwIAwszV1vWeivqDU3ma5PEJ9AQBkCGEgh6xZl69OydemU6ovCOb2RyhQXwAAaSMM5NiC+oLaHs2fudA3YaSgPK6gMkZ9AQCkhDAASZ36gun2+gUp1RcUSnKdYLDErAkAQPcRBrCIxa32MMKU1Gqm0gZXGpnbH4FhBADoKcIAlmRmUqsxFwzS2EbaBclMhMp40nNAMACAriMMYFnMTFafka9Np1tfUBlPZiREhf6fHwCGFGEAK2Y+bu+PMCVr1lJpgyuU59YvoL4AANaEMIA1sVZzbv2COK36gvY0xdIIwwgAsAqEAXSFmcmadVltSr46vfQWzL3kgmQmQpn6AgBYCcIAum62vqCzP0IawsLcNsvUFwDAfhEG0FPm46TosDqdan3B7DbL1BcAwCKEAfRNUl8w1a4vaKXQAidXbu+PQH0BAMwiDKDvZusLOvsjpFFfEATtZZDHpahIMACQa4QBpCqpL9iTLIOcdn1BZZxtlgHkEmEAmTFXXzAla9ZTaYMrVpKiw/KYXMA2ywDygTCATLJWQ746nSyDnFp9QXv9gmKFYQQAQ40wgExL6gtqc9ssp1JfECoojyXBoFDq//kBoMcIAxgYZl5Wm5GvTcnqM+k0IioqqIwlMxKoLwAwJAgDGEgWt+bWL2ilWF/Q2WaZ+gIAA4wwgIFnnW2Wq9OST6G+wLm5/RGoLwAwgAgDGBpmJmvUkmGE2rSUxq92EM4tg0x9AYABQRjAUErqC9rrFzTSrC9oBwPqCwBkGGEAQ69TX+CrU1KrkUobXHGkvaPiqJyjvgBAthAGkCvWrM8FAx/3vwHOyZXbsxGKZeoLAGQCYQC5lNQXVOe2WU6lviBKpilWxuWiYv/PDwBthAHknnnf3h9hStaoptIGF5XkOsGAbZYB9BlhAJgnqS9oT1NMq76gNNJev2CE+gIAfUEYAPbBzKTO+gW16ZTqC4K5/REK1BcA6B3CAHAAC+oLanskpfCSCSMF5fFkRgL1BQC6jDAArIB5L6tNJ0shp1VfUCjJddYvoL4AQBcQBoBVsrjVXgZ5SoqbqbQhWQZ5LNkfgWEEAKtEGADWaGF9wZTkU9hm2QVJT0F7m2WCAYCVIAwAXWRmsnp7m+XajFKrL6iMJwsbRYX+nx/AwCEMAD1iPm7vjzAla9ZSaYMrlJP1C6gvALAfhAGgD6zVnFsGOdX6gs76BQwjAJhDGAD6yMxkzbqss7CRpVRfUBmTK1NfACBBGABSMltf0NkfIQ1hIakvqIzJhdQXAHlFGAAywHycrF1QnU61viCojCfbLFNfAOQKYQDImKS+oLN+QSuFFrhkGeTyGPUFQE4QBoCMmq0v6OyPkEZ9QRAqKCe7KSoqEgyAIUUYAAZAUl/QnqZYn0mnEVGhvT/CuFwYpdMGAD1BGAAGjPlYvjotq03JmvVU2uCKlWQYoTwmF7DNMjDoCAPAALNWQ746nSyDnGZ9QWVcrlhhGAEYUIQBYAgk9QW1uW2WU64vcIVS/88PYNUIA8CQMfOyWnt/hNTqC4rt/RHGqC8ABgBhABhiFrfm1i9opVhfUBlPtlmmvgDIJMIAkBPW2Wa5OiX5uP8NcG5ufwTqC4BMIQwAOWNmskatvc3ytJTGn4AgnBtGoL4ASB1hAMixpL6gvX5Bo5pOI6gvAFJHGAAgaa6+wFenpFYjlTa44kh7R8VROUd9AdAvhAEAi1izPhcM0qovKI8pKI/LFcvUFwA9RhgAsKSkvqA6t81yKvUFkYJKe/2CqNj/8wM5QBgAsCzm/dz+CCnVF7hCSa48ngwlsM0y0DWEAQArltQXTMlXp9OrLyiNtNcvGKG+AFgjwgCAVTMzqbN+QW06pfqCYG5/hAL1BcBqEAYAdMWC+oLaHkkp/GkJo/Y2y2PUFwArQBgA0HXmvayW7KZojVoqbXCFklxn/QLqC4D9IgwA6CmLm8k2y9UpKW6m0oZkGeSxZH8EhhGARQgDAPrCzGStuqwTDNLYZtkFSU9Be5tlggGQIAwA6Dszk9Xb2yzXZpROfUEhWb+gPC4XFfp/fiBDCAMAUmU+ntsfoZlWfUE5mY1QHqW+ALlEGACQGdZqzq1fkEp9gdtr/QKGEZAPhAEAmWNmsmZd1gkGadUXVNr1BRH1BRhuhAEAmTZbX9DZHyENYSHZZrkyJhdSX4DhQxgAMDDMx/K1aVl1OgP1BWNyAcsgYzgQBgAMJGs128sgT0lxK4UWuPYyyGNyReoLMNgIAwAGWlJfUEvWL6ilVF8QhArKyTbLiooEAwwcwgCAoWHm59UXzKTTiKjQ3h9hXC6M0mkDsEKEAQBDyXwsX52W1aZkzXoqbXDFSnsZZOoLkG2EAQBDzzrbLFenJZ9CfYFz7f0RxuWKFYYRkDmEAQC50akvmN1mOeX6Alco9f/8wD4QBgDkkpmX1dr7I6RWX1BM1i8oj1FfgFQRBgDknsWtufULWmnWF4wn2yxTX4A+IwwAwDxz9QVTko/73wDn5Epj7fULqC9AfxAGAGAfzEzWqCYzEurTUhp/KoOwPYwwLlco9v/8yA3CAAAcgHkvq7e3WW5U02kE9QXoIcIAAKxAp77AV6ekViOVNrjSSNJbUB6Rc9QXYO0IAwCwStast/dHmE6pviBo748wLlcoU1+AVSMMAMAazdUXtLdZTqW+IFJQaa9fEFFfgJUhDABAF2WhvsAVSnLl8WRGQhCm0gYMFsIAAPSIxa25bZZbzVTa4Eoj7fULqC/A0ggDANBjZiZ11i9Isb4gKI/JVcaoL8AihAEA6KOkvmCmvaPiHkkp/AkOo7ltlqNC/8+PzCEMAEBKzHtZbTrZH6FRS6UNrlCS66xfQH1BbhEGACADLG7KV9vrF8Rp1ReMzqsvYBghTwgDAJAhZiZr1WWdYJDGNssuSGYilJNtlgkGw48wAAAZZWayenub5dqM0qkvKCTrF5SpLxhmhAEAGADmY1mtvX5BM636gnIyjFAepb5gyBAGAGDAWKspX5uSr06nVF/g5Mrt/RGGoL7AzJLpn2azfS9Oktrfl3Nu4L/HAyEMAMCAMjNZsy7rBIM06guCIAkFlTG5KNv1BZ2Lvvde5r28mcwv72fmnJMLAgWdf4Mg09/rShEGAGAIzNYXdPZHSENYSLZZrozJhdmpL/DeK45jxa1WV48bBIHCKBqKYEAYAIAhYz6Wr03LqlOyZj2VNrhiub3N8phc0P9lkM1McaulOI7Vj8tcGIazwWAQEQYAYIhZq5GsX1CbkuLuvjNeHtfeZnlMrtj7+gIzUxzHajXTWashCAIVCoVUAtBaEAYAIAeS+oJasn5BLa36glBBOdlmWVGx68GgEwKycFkLo0hRFA3M8AFhAAByxszPqy+YSacRUXE2GLgwWtOhzEzNRkN+mcWA/VQoFhWG2Z+GSRgAgBwzH7c3TUqzvqDSXgZ5dMXd6957NerptHu5BqGXgDAAAJDUqS9oT1P0KdQXODe3P0KxcsCLZ9xqqZlSbcBKBUGgQrH7QyPdQhgAACzQqS/w1SlZbVpK4zIxr77AFUqLHm61WqkVCa6Wc07FUjbXYiAMAACWZOZltfb+CGnWF3S2WQ6jgeoR2FtWAwFhAACwLBa35Gvt3RRbjb6f35VGFEwcmvkagQMJw1CFYjHtZixAGAAArJg1G+39EaYkH/flnMHEoWoq+5X5y1EoFBRGa5tF0U2EAQDAqpmZrFFNZiTUe1dfYC6QrT9c5ofnklUslTKzYiFhAADQFea9rN7eZrlR7e6xRzfKR+WuHjNtWaofIAwAAFbN4pbkgkXrA3SzvsAk+YlNazpGVmVlUSLCAABg1Xx9j/zOrXIjEwpGJ/a5W6E168n6BbXpVdUX+OKYrLKuG83NnKz0DhAGAACrZo2q4u3/Pfu5K48pGN0gV1zcpT9XX9DeZnkZlx+T5NcdJrlsjK33QhZ6B7JTyggAGDx7XaStNq24Ni0VygpG1ydbGLff9TrnkumBpZFl1xdYoTzUQUCSWs0mYQAAMMCWulA3a/K7tkphpGBkvdzIOrkgnPdlgVxlXEFlPKkvqE4l2yy39lpMqDjaw8Zng5nJzFIdKmCYAACwauZjxb//fw/8RBfIVdYlvQXR4roCKbkoqrM/Qru+IF53uJSBavteS3uoYLj7XgAAK2JmMh/LWo1kf4L2Vsd+Zrf89E7FU9sV735M8a6tinf8TvGO3y3zwF42s0vx479VvHPrPndIdM7JFUoK1x2s6JCjFKw/rC9BwHuvk04+WX912WUL7v/2t7+tdRMT+vK//Etf2pAmegYAYMiZmWReimOZbyUV/b4li+O52z6W4rivuxW60ojc6IYldyjs5x4En//85/WuSy7R/b/6lTZs2KB77rlH//OFL9T73vc+vfMv/qLn53fOqVRObx0FwgAADKCsXuBXpVBSMLpRrjy6IBQ0Gw3FcX+WOm61WjrhxBP1+te9Tm984xt1xgteoJe/7GW6+uqr+3J+SSqVy6nVDRAGACCjzLzUaiYL+8RNWdxsf96U4lYSBoZJWFAwtkGuMi7nAjUaDfk+hQFJ+uxnP6stl1+uTZs26agnPlE33nhjX8fxCQMAkENmJsWt9sW9c7Gf+7xfGwBlThAqGF2vZjSifl6ipqendeQTn6ijjz5a37v9do2O9ncmQ6lUWrSSY78wtRAAesi8l1qNuQt+q3PhT97tYx/MJ70iffbOd71LkrR927ZUKvtNUlrzJphNAABdYOaT6vuZScWT2xTveEStxx5S/PvfKN7+X/K7tspPbZdVJ5NFdggC++RGJhQe8iSF4wf3tcv8Ax/4gL75zW/qe7ffrlYc67rrruvbuTtYZwAABkRnLry1P9SsJ/9ycV8TVx5TMH6QXFScva9fNQPXXnutLnn3u3XrrbfqlP/xP/TRj35U/9c11+iX996rQmHfayL0AjUDAJAxyXh+c8EF31qNNe/Ah4VcaUTB+MFyhdKix1rNplqt3s6E+Na3vqVXv+Y1uv666/TKV75SkjQ5OamnPu1puvIjH9Eb3/jGnp5/vnKl0rdz7Y0wACD3zPvkgt+syVp1WbNz0efPY88UygrHD5IrjSz5FO+9GvXFixN1y89+9jO96KyzdPnll+ttF1204LErrrhCN33pS7r7rrv6Uj8QhKGKxeKBn9gjhAEAuTLbzd+syRo1WbPGu/1+iorJcEBp9IBd4mameq3Wp4alKyoUFEXp1fQzmwDA0JqduteszV781ayLd/zL5AIpCCQXJlPeOp8Hody8x6xRlVUn93+sIFQwtlFuZGLZ4+LOOTnn+jq9MC1BSlMKOwgDAIaG+Th5p99+x2/Nen7n6i8lCJOLeRBJ4bzbQSiF824H4bIv2l62nzDg5EbXJ4sJBSvvbg/CUHGP6wayIM2ZBBJhAMCAMuuM89fnuvvzWtHfgwv8iiyxjXEyQ+DgJXcpXI4oioY+DERRRBgAgOUw88lFv1GV1WekZj7GkiW1L+qRXFiQwkJycQ0L7c/Tv5Bo7y7uQknhukPkimuvjnfOKQzDvu1RkIYwxVqBjvRbAAD7YGZSsyarzyQBoFHT0I71Ozfv4l6Qi6KFn6c8nnwgrtMzEERJcWBlvKsBJYqioQ0DYQZ6BSTCAICMSC7+dVljRlavyppVaZgKx4Jo7h39Xu/se9Z93y+d4sCxDXPBoItcECgIw75uWtQvac4gmI+phQBSkUzxqycX/sZM8s5/GHbhC8JkFb2oKBeV5Art26sonsMc8171Hq45kIYoihT1cYXD/SEMAOiL2fn9nXf+jepgX/xdkFzkC8lFP7n4F+XCbLzTG0ZxHKvZGI41IYIgUKFYzEyPEL+1AHrG4pasvmd23H8gp/k5N/cuPypKnYv/oHftD6AwDGVR1PMlinvNOZepICARBgB00ey7/9q0fH1Pe4GfARKEcoVysk5+oZRc9LNQrY9ZYRTJey/vB7dXKWtBQGKYAMAamfmk27++R1bbI/kBedfmXHLBL5RnP7jwDwYzU6NeH8iVCQvFYl/2OlgpwgCAFZvt/q8lQwADMeUvKiYX/WL7wh9l790Zls/M1Gg0kk2mBkRWg4BEGACwDJ1pf77z7r+V8e7/MJp7x18sS1Ep83P1sXJmpmazORBTDoulUur7D+wPYQDAPpn3SeV/bY+svie7xX8uSN7pF5OxflcoU9GfI2amOI7VamZzKWoXBCpmsEZgb4QBALMsbslq0+0ZAFVlsvvfOblipf0xkoz7Z/wPLXrPe69Ws5mpwsKoUFAYDsasE8IAkHPm4yQAVKeS6X+Z45Jx/uKIXKkiFcoD8ccV6ej0EqR5aQujKBObD60EYQDIIfNeVp+WVZNegGxxSZd/saKgOCIVSz1Z4hbDK62hgyAIVChkfy+JfSEMADlh5pPx/9p0UgSYpSGAQlmulHT7u2KZiz+6wsxk3iuO455tdOSCQGEYDsxwwFIIA0AGNZtN3XHHHfrpT3+qe+65R7VaTSeccIIuvfRSlcvlZR/HzJLV/2pTstp0djb+KZTaF/722P8AvpPCYDEz+XYwMO/XNIzggkBhEGRmx8FuIAwAGWNmOvXUU/XjH/9YY2NjOumkkzQ2Nqbvfve7uuaaa/T617/+gF9vjWpSA1Cbzsb6/0EoVxqRK40m/7JpD1JmZrMffn44mH9JdE5O7V0TnZMLgqG5+O+N+TdAxjz66KP68Y9/rGuuuUZvfOMbZ+cmH3TQQXrkkUf2+TXJOgA1+U4AyMI0wKgoVxpVUB6l6A+Z45yb/Z3M6kJA/UQYADKmMwzwhS98Qf/4j/+oTZs26ZZbbtnnc61Zl69OyqrTGVgG2CXj/qXR5CPKxtasAA6MMABkzMaNG3X55Zfr1ltv1X/9139p48aNCx7vTAX0M7vT3wgoCJMLf3k0qQFg7B8YSLxygQzasmWLfvSjH+m0005bcL+vTil+7CH53Y+lFwSiktzYRoUHHanwCU9WuP5QBeUxggAwwOgZALJs7/reZj2FGQGd7v8xufKIXEj3PzBsCANAxiSzAWZkM5MpLgjkkq7/ynhS/c+8f2CoEQaAjLC4KZuZlK9OSnEaxYAuufBXxpM6ALr9gdwgDAApMrP2vgCTsvrM7P13/uzn+j8/e71+8JOf6aRnPmv2/n/64r/oN//fw3rfO/53HfUHR3SlDa40IlceT3oCmP8P5BJhAEiBtRryM7tl1al9rglw0Xv+D9Vj03NPOVXPfvazJUlnn322Jicn9fXb/l2S9Mm//eDqG1CsJEV/5TG2+wXACoRAv5iZrDrVnhJY2+9zjzz5NP2vr32dLrjggkWPXXTRRaoEppuv/+TKGlAoK6iMJb0ABAAA8/AXAegxi1tJLcDMrmWvDHj2mWfo6quv1tVXX73Px//+o1cs7+RRUUFlPAkALAIEYAn0DAA9Ys26/J5dyVDACncINDP9/Jf3aXrPzKLHDnvCIdr85KOW/uKwIFcZV1AelysUV9hqAHlEGAC6aHaXwD07ZY1q/07sArnKmILKRLIjIPsAAFgBhgmALjDvZdVJ+T27pLjZvxMXygpGJpJCQKYCAlglwgCwBhY35ffsls3s7t9WwUGYDAOMTMhFDAMAWDvCALBCs9sF79mVbBfcJ8mCQOuSXgCGAQB0EWEAWKZkgaCpZCigX5sEhZGCyjq5kXXsCQCgZwgDwAGYj2Uzu5MQsMypgWvlymNJACiO0AsAoOcIA8ASLG7KT++UzUxqpVMDVyUqJr0AFRYFAtBf/MUB9mKtpvz0Dll1sg9nc8mUwJEJqVCmFwBAKggDQJu1Gu0QMNX7kwWRgtEJuZEJNgcCkDrCAHLPmvUkBPRjZkChpGB0AzMCAGQKYQC5Zc1aOwTs6fm5XHlMweh6hgIAZBJhALljjXYIqPc4BLhAbmQiGQ5gWiCADCMMIDesUZWf2iFrLN78p6vCgoLR9ckCQSwRDGAAEAYw1MwsCQHTO6QebxzkiiNyo+uTlQIZCgAwQAgDGEqd3QP99A6pWevhmVyyT8DoerlCqYfnAYDeIQxgqCQhYE87BPRwyeAgVDCyvr1MMC8jAIONv2IYGtaoKp7c1tuegLCgYGxjskogQwEAhgRhAAPPmnX5qe29nR0QFZMQwPoAAIYQYQADy+JmEgJ6uWJgVFIwvlGuNEoIADC0CAMYOObjZJ2APbvVsw2ECuWkJ4CZAQBygDCAgWHmZXt2yU/vlMz35iTFShICihVCAIDcIAwg88xMVp2Un9ou+bgn53DFkXZPQKUnxweALCMMILNmpwlObpPiZk/O4Uojsz0BAJBXhAFkUq+nCbrSaFIYWCj35PgAMEgIA8iUXk8TdOWxpCeA1QIBYBZhAJnQ62mCrjKehICo2JPjA8AgIwwgVWZefnqnbHqnejFNMBkOOIieAADYD8IAUmFmstp0UhzoW90/QaGscPxgZgcAwDIQBtB31qzLTz4u68WWwmFBwbqDWTEQAFaAMIC+mVs5cFf3Dx6EyXBAZR0hAABWiDCAnksWDZqSn9rW/UWDXKBgbIPc6Ho5F3T32ACQE4QB9JQ1a4p3P96D9QKc3OhEMkMgCLt8bADIF8IAesJ8LD+1TTYz2fVjJ9MED5KLCl0/NgDkEWEAXWVmspndyT4CXd5MyJVGFIwfzDRBAOgywgC6xhrVZEigVe/ugZkmCAA9RRjAmlncSoYEur16INMEAaAvCANYNTOT7dklP71dsi6uHuiCpDBwdD0hAAD6gDCAVbF6VfHu33d9a2FXGU/qAkJ+NQGgX/iLixXp2SyBqKRw4hC5InUBANBvhAEsm69Ny+9+vLt7CbggWTlwZIIhAQBICWEAB2RxK9lLoDbd1eO6kYkkCLBoEACkijCAJc0uIzz5eHfXDCiUkyGBQrl7xwQArBphAPtkrab85GOy+kz3DhqESXFgZZwhAQDIEMIAFphbQXBbV6cLutH17CMAABlFGMAsa9YV736sq5sKuWJFwbonyBWKXTsmAKC7CANIegOmd8hP75TUpd6AMEqGBMpjDAkAQMYRBnLOGrVk8aBWo0tHdHJjGxSMbZBzQZeOCQDoJcJATpn38tPbZXt2de+ghbLC9YfKRQwJAMAgIQzkkK/PyO/+vRR3afEg55IhARYOAoCBRBjIEfM+WTyo2r2lhF1pRMHEE+TCQteOCQDoL8JATlijqnhXFzcWCsJke+EyawYAwKAjDAw5M5Of3iGb3tG1Y7ryeBIE2FkQAIYCf82HmLUaindtlZr17hwwiBRMPEFBebQ7xwMAZAJhYAglewpMtvcU6M66AcmmQgfLBUwXBIBhQxgYMha35Hc/Jqvv6c4Bw0IyXbBY6c7xAACZQxgYIr42Lb/7McnHXTlesnjQRhYPAoAhRxgYAua9/NTjspkuTRkslBROHCpXKHXneACATCMMDDhr1JIiwa5MGXQKxg+SG13PdEEAyBHCwIBKNhfaKT+9vTsHLFYUTjyBpYQBIIcIAwMomTL4+65tNRyMH0xvAADkGGFggHR9ymBUVLj+MGoDACDnCAMDwnwsv/v3slp3pgy6kfUK1h3ETAEAAGFgEPj6jPyurd2ZMhiECtYfqqDEKoIAgARhIMPMTLZnp/xUd4oEXXks2WEwCLtyPADAcCAMZJT5WH7XVll9Zu0Hc4GCdYfIVdhhEACwGGEgg6xRVbxzq+Rbaz9YoZwUCUaFtR8LADCUCAMZYmaymV3yk9u6crxkAaEN9AYAAPaLMJARyWyBx2S16bUfLCwkvQHF8tqPBQAYeoSBDLBmXfHOR7uypLAbmVCw7mCmDAIAlo0wkKLZRYR2Py5pjYsIBaGCiUMVlJkyCABYGcJASsx7+cnHZNWpNR/LlUaTKYMh/50AgJXj6pECazYU73pUajXWeCSXDAmMTFAkCABYNcJAn/nqpPzux9a+t0BYULjhMLkCRYIAgLUhDPSJmZeffFw2M7nmY7nSqIL1h7KSIACgKwgDfWCtZjJboFVf87HYbhgA0G2EgR7ztWn5Xb+XzK/tQEGUDAsUK91pGAAAbYSBHjEz+antsj0713wsVxpRsP4whgUAAD1BGOiBbm4yFIwdJDfGksIAgN4hDHRZ11YTDEIF6w9TUBrpTsMAAFhCbsKA7WcqX7fedSf1AVvXPm2wWEn2FmARIQBAHwzl1cbM5L1Plvv1fvb2/gRBIBcECpyTCwI555YdEsxMfnqHbHrHmtvuRjckuw0yLAAA6BNnB7pKDgjvvXwcK47jA174lysIAoVRlASFJS7OSX3A72X1PWs7mQuSYQH2FgAA9NlAhwEzUxzHilutrgWApQRhqDAMFwQDazXa6wescVnhQknh+sPlokIXWgoAwMoM5DCBmSlutdRqtfp2Th/H8nEs55wKxaKCIJBVp9ccBJIthw9hWAAAkJqB6hno1AI0G2vd4GftgiBQVCjIdm1d3RCBc8mWw5Xx7jcOAIAVGJgw0AkBWWtuGIbS7kflVtJDEBYUbjhcrlDqXcMAAFimgQgDcRxnojdgKU5SMLlVzh942ILVBAEAWZPpMGBmarVaivtYG7B6pnDyMTm/9GJDTBsEAGRRZsOAmanZbMrHcdpNWT4zBXu2Kdh7d0LqAwAAGZbJMDCQQaDDTOH043Jxe1gjjBRu2ER9AAAgszIZBlqtllrNNa7tnybzCie3KiiUFGw4nPoAAECmZS4M+DhWI8PFgsvlLFahPKIgCNJuCgAA+5WpK5WZDUUQkCRzoeJBHOYAAOROpsJAlqcPrkbcahEIAACZl5kw4Nu7Cw6bVrOZuYWSAACYLzNhYKALBvejs4QyAABZlYkwMKy9Ah3DGnQAAMMhE2Fg2C+WZjaYayYAAHIh9TCQl250CgkBAFmVehjIQxCQ8vN9AgAGT+phwPp0kfzmN7+pysjIkh+ve/3re3p+M2NWAQAgk1JfgbBer/clEFSrVe3evXvBfXEc63+74AL9/Oc/163f+IaOP/74nrahUCwqDFmaGACQLVGaJzezvvUMVCoVVSqV2c/jONabzzuvb0FASoYKCAMAgKxJNQykpRMEvvvd7/YtCEhimAAAkEnp1gykcHGM41jnveUt+u53v6tvfP3rOuGEE/p3csIAACCDUg0D/b40doLAbbfdpm98/es68cQT+3p+ogAAIItSHSZwzvXtXJ0g8J3vfCeVICBJ/ftuAQBYvtSnFvZDHMd6y5//ub7zne/o61/7mk466aR0GtLH8AMAwHINfQGh915v+fM/11e/+lX98w036LDDDtPWrVsXPOeQQw7pS5V/QBgAAGRQ6usMNOr1nq7O9+Mf/1hnvOAF+33Oo7/7ndavX9+zNnSwzgAAIItSDwOtZlOtVivNJvRNqVzua50EAADLkXrNQBCk3oS+cM4RBAAAmZT6ldjlJAzkJfQAAAZP6lco55yCHIyjh9HQ12oCAAZU6mFAkqIhv1AGQUDPAAAgszJxhQqCYKh7B6JCIe0mAACwpEyEAWl4ewfoFQAAZF1mrlLD2jtArwAAIOsyEwYkqVAoDNX0u6hQoFcAAJB5mbpSOedUKBbTbkZXBEHAaoMAgIGQqTAgJRfRQQ8EnVAzTL0cAIDhlbkwIElhGA50QSFBAAAwSDIZBqRkvH0Qi++KpRJ1AgCAgZLpt99RFMlJajabaTflgJxzKpZK9AgAAAZO6rsWLof3Xo16Pe1mLCkIw6GbCQEAyI+BCAOSZGZqNpvycZx2UxYoFArsOwAAGGgDEwY6vPdqNpsy71NtRxRFCqOI3gAAwMAbuDDQEcexWs2m+t18hgQAAMNmYMOAlAwdmPeK41hxD4cPnHMKo0hhGBICAABDZ6DDwHxmJu+94lZLvgtDCM45hWGoIAyZKggAGGpDEwbm63xL3vvZ3gPvvSx5cMFznXPJRxAoaP/buQ8AgDwYyjAAAACWj/5vAAByjjAAAEDOEQYAAMg5wgAAADlHGAAAIOcIAwAA5BxhAACAnCMMAACQc4QBAAByjjAAAEDOEQYAAMg5wgAAADlHGAAAIOcIAwAA5BxhAACAnIvSbsB8xWeepyAqygWhXBAqLMzddkEw91gYKoiKCmYfCxc95oJQQeDkAqcwDOT2uh0ETkHoZp+z38ecUxgFCgOnMHAqtm9Hs5+Hc4+Fc8+L5j033Ndt5xQ4p9BJhTCYvR2FgUKn5PPAqRC4fdxOHi8Ewezt0Dk5JwVOck7t40tOUhg4BVLyvQSavR04KXTzbyfHcGaSeTnfkhbc9smHX/oxZ16K47nbviX5WOa91GrI4ljyPrmv1ZT5OLndbEqd253ndp7XbMx9jY/lmy1Z7GXeyzda8nHyNRZ7+WZLPp67be3bcbMlm/e8uNGadzuWeZOPrf15++u9JY/FJotNPvaKm759TFPcjNtfM/d13kyxmRreFJv2ur3358ltr+R2bGo/Nnf7k/bbVF+X3cLrm9c3r+/svr7pGQAAIOcIAwAA5BxhAACAnCMMAACQc4QBAAByjjAAAEDOEQYAAMg5wgAAADlHGAAAIOcIAwAA5BxhAACAnCMMAACQc4QBAAByjjAAAEDOEQYAAMg5wgAAADlHGAAAIOcIAwAA5BxhAACAnCMMAACQc4QBAAByjjAAAEDOEQYAAMg5wgAAADlHGAAAIO9sSNVqNduyZYvVarW0m7JIlttmRvvWIsttGyZZ/jlnuW1mtG8tsty2tXJmZmkHkl6YnJzUxMSEdu/erXXr1qXdnAWy3DaJ9q1Flts2TLL8c85y2yTatxZZbttaMUwAAEDOEQYAAMg5wgAAADk3tGGgVCppy5YtKpVKaTdlkSy3TaJ9a5Hltg2TLP+cs9w2ifatRZbbtlZDW0AIAACWZ2h7BgAAwPIQBgAAyDnCAAAAOTd0YeDd7363nve85+l1r3udGo3Ggseq1ape9rKX6YwzztALX/hC7dixI1Pt6/jIRz6i5zznOam3qdVq6U1vepOe97zn6R3veEff2rPc9nX0++c131Jty8Lv2jDi9d29NvH6PrA8vb6HKgzcdddd2rp1q77//e/r6U9/ur70pS8tePzWW2/V8ccfr+9973t69atfrc997nOZap8kTU1N6d57781Em7761a/qD/7gD/T9739fMzMz+sEPftC3di2nfVL/f17LbVvav2vDiNd3d9vE63v1bUv7d60XhioM/PCHP9SLXvQiSdKLX/ziRb/cxxxzjGZmZiRJu3bt0iGHHJKp9knSxz/+cV100UWZaNNy2ptm+6T+/7zm21/b0v5dG0a8vrvbJl7f+5e313eUdgO6adeuXdq0aZMkaWJiYlHXzdFHH617771Xxx9/vJxzuvPOOzPVvt27d+sXv/iFLrvssky0adeuXbPrb++rvWm3L42f13Lblvbv2jDi9d3dNvH6Xn3b0v5d64WB7BnYunWrTj/99EUfZqbJyUlJyX/kxo0bF3zd9ddfrxe84AW699579YEPfEBXXHFFptp39dVX621ve1tP2rSUDRs2LNmm/T2Whfal8fOab39t69fv2jDi9d09vL5XL2+v74EMA4cddpjuuOOORR8veclL9K//+q+SpG9961s67bTTFn1t5z90/fr12rVrV6ba9+tf/1of+tCH9OIXv1gPPvigrrzyyp60b75TTz11yTbt77F+2V8b0vh5LbdtUn9+14YRr+/u4fXdm7ZJQ/j6Tm/35N645JJL7PTTT7fXvva1Vq/XzczsrW99q5mZ7d69217ykpfYGWecYaeddprdf//9mWrffM9+9rNTa1OnPc1m0/7sz/7MTj/9dLv44ov71p7ltm++fv685luqbVn4XRtGvL7X3iZe38uXp9c3yxEDAJBzAzlMAAAAuocwAABAzhEGAADIOcIAAAA5RxjIgeuuu07r16/vyrF++9vfyjmnKIr0yCOPLHjs0UcfVRRFcs7pt7/97YLHvvzlL+sFL3iBJiYmNDY2phNPPFFXXHHF7EIe3WwjgLV70pOeJOecvvCFLyx67BnPeIacc7ruuusW3H/XXXfp3HPP1aGHHqpyuaxjjz1W559/vh544AFJc38/7r777j58B1gJwgBWZdOmTfqnf/qnBfddf/31OuKIIxY996/+6q/0mte8Rs997nN166236t5779VVV12ln//850OxpjfQa81mM5XzHnnkkbr22msX3PejH/1IW7du1ejo6IL7v/a1r+nUU09VvV7XDTfcoPvuu0+f+9znNDExofe///39bDZWI+25jTiwW2+91U477TSbmJiwjRs32ktf+lL79a9/bWZm//Zv/2aSbOfOnbPPv+uuu0ySPfTQQ7OPz//YsmWLmZnt2LHD3vCGN9j69eutUqnYi1/8YnvggQf225aHHnrIJNlll11mxxxzzILHnvrUp9r73//+2XObmd15550mya6++up9Hq/T7muvvdYmJiZW/LMBBlUcx3bllVfa0UcfbcVi0Y488kj74Ac/OPsau/HGG+2MM86wUqlk11xzjcVxbB/4wAfsiCOOsGKxaCeddJLdeuuts8er1+t20UUX2WGHHWalUsmOOuoo+/CHPzz7+JYtW+zII4+0YrFohx9++AHXFjjqqKPsve99r5VKJXv44Ydn7z///PPt4osvtomJCbv22mvNzGzPnj128MEH2ytf+cp9HqvzOu98b3fdddfqfmjoGXoGBsCePXv0rne9Sz/5yU902223KQgCvepVr5L3/oBf+4d/+Ie6+uqrtW7dOj366KN69NFH9e53v1uS9KY3vUk//elP9ZWvfEU//OEPZWZ6yUtesqx3Ieecc4527typO+64Q5J0xx13aMeOHXr5y1++4Hk33HCDxsbGdOGFF+7zOAwNIK/e97736aMf/aje//736z//8z/1z//8zzr00ENnH3/Pe96jt7/97brvvvt01lln6eMf/7iuuuoq/d3f/Z3uuecenXXWWTrnnHP04IMPSpI+8YlP6Ctf+Yq++MUv6v7779fnP/95PelJT5IkfelLX9LHPvYxfepTn9KDDz6oW265RSeccMIB23jooYfqrLPO0vXXXy9JmpmZ0Y033qjzzjtvwfO+9a1vadu2bbr00kv3eRxe5wMg7TSClXvsscdMkv3iF784YM+A2b7fdT/wwAMmyf7jP/5j9r5t27ZZpVKxL37xi0uee36y/4u/+At785vfbGZmb37zm+2d73znonOfffbZduKJJx7we6JnAHkyOTlppVLJPvOZzyx6rPMa27s3bdOmTfahD31owX3Pfe5z7cILLzQzs4svvtj+6I/+yLz3i4551VVX2bHHHmuNRmPZbTzqqKPsYx/7mN1yyy129NFHm/ferr/+envmM59pZragZ+CjH/2oSbIdO3bs95j0DGQXPQMD4De/+Y1e+9rX6ilPeYrWrVunJz/5yZKkhx9+eNXHvO+++xRFkU455ZTZ+w466CA99alP1X333SdJOvvsszU2NqaxsTE94xnPWHSMt7zlLbrpppu0detW3XTTTYveLUiSmck5t+p2AsPovvvuU71e15lnnrnkc57znOfM3p6cnNTvfve7Revjn3baabOv1ze96U26++679dSnPlVvf/vbZ9fVl6Rzzz1X1WpVT3nKU3T++efr5ptvVqvVkiR9+MMfnn2dj42NLfq78tKXvlTT09P693//d11zzTVLvs4x2AgDA+DlL3+5tm/frs985jO68847Z7fLbDQaCoLkv3D+i3E53fxLvXjnX7w/+9nP6u6779bdd9+tb3zjG4uee/zxx+tpT3ua/vRP/1THHXecjj/++EXPOfbYY/Wb3/wmtQIoIIsqlcoBn7N3gZ6kRcF6/uv1Wc96lh566CH99V//tarVql796lfrT/7kTyQlhYD333+//v7v/16VSkUXXnihnv/856vZbOqCCy6YfZ3ffffds9v2dkRRpDe84Q3asmWL7rzzTr3uda9b1K5jjz1WkvSrX/1qeT8AZA5hIOO2b9+u++67T5dddpnOPPNMHXfccdq5c+fs44cccoikZFpfx97TdorFouI4XnDf05/+dLVarQX7cG/fvl0PPPCAjjvuOEnSEUccoc2bN2vz5s066qij9tm+8847T7fffvs+3y1I0mtf+1pNT0/rH/7hH/b5+FDs9gWs0DHHHKNKpaLbbrttWc9ft26dNm3aNFuj0/GDH/xg9vXaed5rXvMafeYzn9GNN96oL3/5y7PTdyuVis455xx94hOf0O23364f/vCH+sUvfqGNGzfOvs43b96sKIoWnf+8887T9773Pb3iFa/Qhg0bFj3+ohe9SAcffLD+5m/+Zp/t53WefYv/15EpGzZs0EEHHaRPf/rTOvzww/Xwww/rve997+zjmzdv1pFHHqnLL79cH/zgB/Xggw/qqquuWnCMJz3pSZqentZtt92mk046SSMjIzrmmGP0ile8Queff74+9alPaXx8XO9973t1xBFH6BWveMWy23f++efr3HPPXbJA6JRTTtGll16qSy65RI888ohe9apXadOmTfr1r3+tT37ykzr99NP1jne8Y1U/G2BQlctlvec979Gll16qYrGo0047TY8//rh++ctfLjl08Jd/+ZfasmWLjj76aJ188sm69tprdffdd+uGG26QJH3sYx/T4YcfrpNPPllBEOimm27SYYcdpvXr1+u6665THMc65ZRTNDIyos997nOqVCpLhvy9HXfccdq2bZtGRkb2+fjo6Kg++9nP6txzz9U555yjt7/97dq8ebO2bdumL37xi3r44Yf3uV4BMiTNggUsz7e//W077rjjrFQq2Yknnmi33367SbKbb77ZzMzuuOMOO+GEE6xcLtvznvc8u+mmmxYU8ZmZXXDBBXbQQQftc2rhxMSEVSoVO+uss5Y9tXCpAqC9Cwg7brzxRnv+859v4+PjNjo6aieeeKJdccUVTC1EbsVxbB/84AftqKOOskKhYE984hPtwx/+8JKvsflTCwuFwqKphZ/+9Kft5JNPttHRUVu3bp2deeaZ9rOf/czMzG6++WY75ZRTbN26dTY6Omqnnnqqfec739lv+zoFhEuZX0DY8ZOf/MT++I//2A455BArlUq2efNme+tb32oPPvigmVFAmGVsYQwAQM5RMwAAQM4RBgAAyDnCAAAAOUcYAAAg5wgDAADkHGEAAICcIwwAAJBzhAEAAHKOMAAAQM4RBgAAyDnCAAAAOff/Ay58RgTZUpICAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABH5ElEQVR4nO3de5RkVXk//O/e55y6dFVfZ4YZZhwGmQEDcvMWeAOKK/4iXlGToK+CUVF8CYiKGNQE16hBgwm8oOtN4i1covgT0cBPo2gUxUhU0CWIJMgtEBRmGGb6VtVdt3P28/6xq/oy3T1zqrvqnFN1vp+1xmm6qqv2tF19vrX3s/ejRERAREREqaXjHgARERHFi2GAiIgo5RgGiIiIUo5hgIiIKOUYBoiIiFKOYYCIiCjlGAaIiIhSjmGAiIgo5RgGiIiIUo5hgIiIKOUYBoiIiFKOYYCIiCjlGAaIiIhSjmGAiIgo5RgGiIiIUo5hgIiIKOUYBoiIiFKOYYCIiCjlGAaIiIhSjmGAiIgo5RgGiIiIUo5hgIiIKOUYBoiIiFKOYYCIiCjl3LgH0G0iYv8YA7GfmL9RqeZfClrruY+JiIjSpK/CQOvCb4IAxpi5/25HKxgoreE4DsMBERH1PSXtXi0TyBiDIAgQ+H7HH1tpDddxoBkMiIioT/VsGBCRuQAQ1T9Baw3X8+aWFIiIiPpBT4aBIAjgNxqRhYD9aceB53mcKSAior7QU2HAGINGowExJu6hAABc14XjugwFRETU03oiDIgIfN/vSk1AJ2SyWS4dEBFRz0p8GBARNOp1mITMBqzE9Ty4bl9tziAiopRIdBgQY1Cv12OrDWiX47pwuWxAREQ9JrFhwBiDeq0W9zDaxuJCIiLqNYlc6BaRngwCAGCCAH5CaxuIiIiWk7gw0KoR6GWB7yMIgriHQUREFEriwoDv+4kvFgyjF4oeiYiIgISFgW4dKRyXRg8VPxIRUXolJgz0w/LA/kSkr8INERH1p8SEgX5dY/cj7J1ARES0GokIAyICv9GIexhdw9kBIiJKskSEgX6dFWjh7AARESVZMsJACt4593vgISKi3hV7GBBjUvGu2TAMEBFRQsUeBtKyF9+kJPQQEVHvSUUY8H0fxzz72XjfxRcvue3CCy/EMc9+Nvbs2dP1cTAMEBFREqUiDLiui/dffDGuv/567Nu3b+7zf/d3f4ebb7kF/+eWW3DIIYd0fRxpmQUhIqLeEmsYEJHI3i2fffbZGBsbw2c/+1kAwP/+ylfwN5dfjptuuglHHnlkJGMQhgEiIkogN+4BRCWTyeB9F12Ev7n8cjz3uc/F+eefj2uuuQb/18knRzYGLhIQEVESKYlxIdsYE2mr4mq1iqOPPhp7nn4al19+OS5817sie24A0Fojk81G+pxEREQHk5qZAQDI5XJ40Wmn4Xe/+13kQYCIiCipYq0ZUEpF/pz33XcfXvCCF0T+vACAGP69REREBxP7boIoVSoVPPDAA3jOc54Ty/MzChARURLFPjMQ5ezAr+69F0EQ4DknnhjZcy6kdKqyFxER9YjYawa01pGd23/P3XejWCxix44d3X8yY6Cq01B+FRABlIJkBmCG10Hr2L/tREREc2LdTQDYJkWNfmtfXJmGUy/bj70slONBggbQsDsnVLYAZ2RjLDUTRERE+4s9DES9vbDrmkFAZQfgDK6DcjNzN4lfR1DaB6nNAgB0fggqPwjlZRkMiIgoNrGHARFBrVqNcwidYwyc0m4bBEY2LXuBFxEEk7vnAgEAwHGh84PQuUEo14twwERERAkIA4BtJOT3wVKBmp2EbszCXb910YzA/sSvw9/72+Ufw8tB5YvQuSKUdro1VCIiojmJqGRzHKc/woBftTUCBwgCAOztXnauhmAhaVQhjSrM9F6obAE6PwiVHeAyAhERdU0iwoBSCq7n9X4gEIFywk3zK8eFLBMGFj1cbQZBbQZQGjpfhMqxvoCIiDovEWEA6JPZAaXsroEQJPDDP64YmNlpYHYacLxmfUGR9QVERNQRiQkDSil4mQwa9XrcQ1k1cXNQjVmIXz9ozcBySwShBA2Y8jhMeRzKy9llhFyB9QVERLRqiSggXKjRaCDw23jXnCSr3U2wZgoqN2B3I7C+gIiI2pS4MCAiqNfrEGPiHsrqtHHOQFdobUNBvgjlsr6AiIgOLnFhAOj9swecegmolOx/eFlbLBj4q18aWPVAmvUF+UEoJzErQkRElDCJDANA755MqLWGl8lAJIApTUBqM7Y3AQSAAiSeGQ+VydkZg1yRDZOIiGiRxIYBoPcCgeM4cD3vgFPz4tdhKmWYagloZ0dBxyioXPP8gkyeywhERJTsMAD0Tg2B63lwHCf0xVVE7OFClRKkOhPPjIF2oHNF6Pwg4GYYDIiIUirxYQCwF07f9xO7yyCTyUA7q9/aJ2IgtVkbDLpZXHggbgY6X7RLCawvICJKlZ4IAy3GGDTqdSRlyI7rwnXdjr6jFhPAVMqQaumgJxR2i8rkm8cgF1hfQESUAj0VBgA7S9AKBXHRWsPzvK5fKG19QQmmUgZMDLMiSs33R2B9ARFR3+q5MNAiIgh8H0EQRDZToLWG63nQEb9bFhFIvQpTLUGq5ebuhIhpZ/4YZC8b/fMTEVHX9GwYaBERGwyCoCs1BUopOK7bVnFgN4kYSHXGLiXU46wvaAYD1hcQEfW8ng8DC4kIgtlpiJefW05ol1IKSmtoreFoneg1cwl8mGoZplIC/HiWTebqC3IFKJXc7xUREa2sr8KAqZRgJnfD2bBt7hjg1syBMWZuer15/I+llA0AC/70ImnU5oOBCaIfgFJQueZuhEyuZ7+PRERp1DdhwFTLMBO7AAB69FDoXDHmEcXD1hdUmtsUZ2KqL3DtNsX84AG7NxIRUTL0RRgwtRmY8V2w7/kBPbgeujga76ASQIyB1GZsMKhXYhmDcrNQ+SLrC4iIEqznw4CpzcKMP4lWEAAAlR+CM7IxvkElUCLqC7LNNsu5AdYXEBElSE+HAalXEIw/sXQq3MvBXb81nkH1AGnUbH1FtRxTfYGe74/gsb6AiChuPRsGpF5tBoFldgwoDWfjEbzIHMSi+oLqDBbOrkTGcaFzg9D5IusLiIhi0pNhQBo1BPt+d8DmPs4hz+QadRtsfUG5eX5BTPUFXhaqFQz06ns9EBFRe3ouDEijjmD8dwed3nbGtkBlByIaVX+RwG8uI5QAvxHLGFR2YL4/Amd4iIi6qqfCgPgNBPt+G2qdWw9tgC6MdH9QfUxEgFZ/hBjrC3SuCJUftDMHDAZERB3XM2FAAt8uDQTh3qmqgRE4wxu6PKr0EBHbZrlajre+ID9odyS4XvTPT0TUp3oiDIgxdmmgjZa+KjMAZ92WLo4qvcQEzf4IJUijGssYlJebP7+A9QVERGuS+DAgIjDjT7bflEe7cDc+szuDojniN+bPLwg5a9Npc22WswNcRiAiWoVEhwERgZncbdv2rgJ3FERHRCCNGqRagqmUD7jTo2uUtjsRcqwvICJqR2LDgIjATO+FzE6u+jH02GbobKFzg6JQ5uoLWv0R4uB4822WWV9ARHRAiQ0DpjwOU9q3psfQg+ugi2MdGhGtRlLqC+baLLO+gIhoiUSGATM7BTO1Z82Po3JFOKOHdmBE1Am2vqDUrC/wYxiBgso1+yOwvoCIaE7iwsDCVsRr5nhwDzm8M49FHTNXX9A6vyCO+gKtm8cgDwJuhsGAiFItUWFAxMBM7IbUZtGpfezOxiM4NZxgtr5gxh6DHHd9QX6QBadElEqJCgMtIgZSq0DqszYYrKHlrh7bAs1jiXuCmMAealQpQdo4U6KTVCZviw5zRSjNNstElA6JDAMLiRgEu/8bq50p0IProYujnR0UdZ34dZhK2fZHiK2+oHl+QSbPZQQi6muJDwOmNgsz/sSqv17lBuGMburgiChKtr6gOt9mOZb6Agc6V7TBwMtG//xERF2W+DAQTO+FzEys/gFYRNg37PJR6/yCNk+k7BQ3A50v2h0JrC8goj6R+DDg7308dE8ClR2AHt4Iqc1CajOQegUwAZyN27n+22fEBLbosFKC+DHWF7TaLPPni4h6WKLDgJgAwVP/Hfr++9cH2Ba8NcDxuKOgj0mrzXKlDJgY6guUmu+PwPoCIupBiQ4D7Z454KzfCuXlujgiSjIRgdSrMNWS7WcRx4+2duaPQWZ9ARH1iESHgWBqD2R2KtydlbZnCvBdGaFZX1Btnl/QbsfLTnEz88GA9QVElGCJDgP+0/8T+owBlS3AGdvc5RFRL5LAn2+zvIYzK9ZCZQaaHRULUIr1BUSULIkNA23XCwythy7wPAE6MGnU5oOBCaIfgFJQueZuhEyOM1lElAiJDQPt1wscxjVaCs3WF1Tm2yzHUl/g2m2K+UEoNxP98xMRNSV2IVPqbbS7VRrgL1Nqg1LKbkXNDkCMafZHKNntqFExPszMJMzMJJSbhWoFA+58IaKIJXZmwN/7W6ARLhCwVTF1SiLqC7IDzfMLBlhfQESRSGQYaLcfgR7aAF0Y6eqYKH2kUbPnF1TLMdUX6Pn+CB7rC4ioe5IZBuoVBPt+F/r+rBegblpUX1CdQafaa7fFcaFzg3ZHApfEiKjDEhkGTHkcprQv3J21A+eQZ/JdE0VCjIFUy7bVcpT1BQsoLwvVOr+A9QVE1AGJDAPB+BOhG9GwXoDiIoHfPAa5BASNWMZgj0Eu2v4IDMREtEqJCwMiYs8XCNmqlvUCFDfbA6PZH6FaAkwMbZaVtjMFzTbLDAZE1I7khYFGDcHex0Pf31n3DKhMvosjIgpPRGyb5Wo53vqC/KA92Mj1on9+Iuo5iQsDZmYSZvrp0Pd3Nm3n9itKJDFBsz9CCRJym2ynKS9nzy9gfQERHUDiwkAwsct2nAvDzcDdsK27AyLqAPEb8+cXxFpf0Dq/gMsIRDQvcWHAf+rR0D3pVX4QzsimLo+IqHNEBNKoQaolmEo5dG1MRyndbJrE+gIishIVBiTwEex5NPT9WTxIvWyuvqDVHyEOjmfrC/JFKIf1BURplagwYKozMBNPhr4/iwepX4gJbNFhpRxrfYHOD9o2y6wvIEqVZIWB0jhMOeRhQwCcjduhNIsHqb/Y+oLW+QXhlsw6S9ljkHNF1hcQpUSiwkAw/mT46VIWD1Kfm6svaPVHiKO+QDvQOdtNEW6GwYCoTyUqDPh7Hg39TkjlBuGMsniQ0sHWF8zAVMrx1Re4XrM/wiCUk9ju50S0CokJA2ICe/JgSHpwPXRxtIsjIkqm+fqCEqRRi2UMKpO3ywi5IpfqiPpAYsKAqc3AjLdRPDi2BSo70MURESWf+HWYStkegxxnfUF+ECqT5zICUY9KThhop1MhAGfjEax4Jmqy9QXV+TbLMdcXsKU4UW9JzMJfW9OdjscgQLSAUspO3WfykCEDqc7CVEuhu392hAlgZqdgZqcAN9Psj1BkfQFRD0jMzIC/57HQx7SybTFROBL48+cX+DHWF+QHbZtl1hcQJVIiIruYoK3z2pWX6+JoiPqHclw4hRGgMNKsL2gegxzyyO9OkHoFQb0CKDXfH4H1BUSJkoiZAVObhRl/IvT99dgWaBYPEq2KiEDqVbuMUC0DcfwK0M78MgLrC4hil4wwUJ6AKe0NfX8WDxJ1hohptlkuQ+oR1hcsxPoCotglIgwEE7sh1VK4Ozse3EMO7+p4iNKoVV9gKiXAr8cyBpUZaHZULEAp1hcQRSURYcB/+nEgZHETiweJuk8atflgYILoB6AUVK4InRuEyuRYX0DUZbHPyYlIW+9CuL5I1H3Ky8LxstDFMUi9Mt9mOar3DiKQSglBpQRoFzrfPL/AzUTz/EQpE3sYsKemtfELhmGAKDJKKajsAHR2AGJMsz9CCVKvRDcI48PMTMLMTEJ5WajcoF1KYN0QUcfEvkxgqjMwE20cQ8ziQaLY2fqC5jbFuOoLsgPN8wsGWF9AtEbxzwy084vEcRkEiBLAnl8wCj0wArTOL6iWI60vkNosgtosoPR8fwSP9QVEqxF7GJB26gVcLhEQJYlSCmjVFwyum68vqM6greW/tRAzX1/guM02y0XWFxC1obfCAE8eJEqsJfUFVdtNUerV6AYR+DAzEzAzE7a+oHV+AWcUiQ4o1poBEUHw1H+H7rCmRzdD5wpdHhURdZIEDdtmuVJq69jxTrLHIBdtfwQuIxAtEe/MgAnaarXKaT+i3qMcD05xFLowsqC+oASY6NosS20GQW0GUNrOFDTbLDMYEFnxhoF2q5B5VClRz1pSX1BrtlmuziLK+gJTmQYq04Dj2fMLcoNQrhfN8xMlVKxXV/HbmDJ0PKZ4oj6hlLI7AHIFiAma/RFKkEaU9QUN2xelPAHl5exuhFyB9QWUSrHWDARTT0NmJ0PdV2XycNY9o7sDIqJYid+YPwY5lvoCtd/5BXwDQunQO8sEnMYj6nvKna8vkEYN0jrYqI3aorWRxfUF+WZ9gcv6Aupvsc4M+HsebR5HfHB6cB10cazLIyKipBERW1/Q6o8QB8ezbZbzRSiHb0yo/8Q2MyAioYMAAIAvQKJU2r++wFTLkEo5hvqCcZjy+IL6giKU5jHI1B9imxmQoIFgz2Oh7++s2wqV4aFDRGSJ35jfptjOG4uOaYaUfBEqw/oC6m3x1Qy0++JlzQARLaBcD87gGHRxFNKoQipl2x8hyvqCahlBtQxoBzpn2yzDzTAYUM+JbWbAVKZhJp8Kd2elbbdCvsCI6ABsfUFzm2JtNp5BuF6zP8IgFM9GoR4RXxgoj8OU9oW7s5uBu2FbdwdERH1FTABTKUOqJUijFssYVCbfPAaZ9QWUbPEVELaxh5jVu0TULqUdOIVhoDAM8evz/RFMdPUFUq8gqFcAtbfZH2EQKpPnLCclTm/UDLBegIjWQLmZRfUFc22Wo6ovkOXrC5THtuyUDPHNDLRxFDFnBoioE5RSduo+k4cMGUi12R8hyvoCE8DMTsHMTgFuxp5fkCuyvoBiFUvNgIgg2P0IwjYnYetiIuomCfz58wv8OOsLBm2bZdYXUMTiiaImQDtdythRjIi6STkunMIIUBhp1heUmvUFQWRjmK8vUFDZYvP8AtYXUDTimRmoVxHs+23o+zubtkMpJmUiio6IQOoVO2NQLQNxbLzSTnMZYRDKy0T//JQasYQBUynBTO4Od2ftwN14RHcHRER0ACJmvs1yvRLPIFhfQF0UTxgoT8CU9oa7s5eDu35rdwdERBRSq77AVErtdV7tIJUdsLMFuQHOmlJHxBIGgumnITOToe6r8oNwRjZ1d0BERKsgjdp8MIiwvmCO0s3+CINQXo71BbRqMRYQhqQ5HUZEyaS8LBwvC10cs/UFrTbLUb3HEgOplBBUSoB2ofPN8wtc1hdQexIfBpR2ujgQIqK1U0rZqfvsAMSY+f4IUdYXGB9mZhJmZhLKy0LlBu2OBP4OpRBiCQMStDMzwB9kIuodSmuovG1UJIE/32a5jYPW1koaNbuEUdprQ0p+ECrL+gJaWeJnBuAwDBBRb1KOC6c4Cl0YAVrnF1TL0Z5fUJtFUJsFlLY7EfJF1hfQEpGHARHhMgERpYpSCmjVFwyug9Rnmx0VZ9DOAWxrIgamMg1UpgHHnW+zzEPdCHHMDIigrR9+FhASUR+x9QUF6GzB1hdUy7Y/Qr0a3SACH2ZmAmZmwtYXtM4v4Juv1Ir+Sttu+1Ce0U1EfUppDTUwBD0wBAka822W22jxvlZz9QXTC9osZwe4jJAyMYSBNtbKlGbBCxGlgnK8ufoC8WuQVjCIqs0yAKnNIKjN2PqCfBEqZ9ssMxj0v+hrBto6Y4BTVkSULkopKC8HeDlbX1BrtlmuziLS+oLZaWB2GnA8e35BjvUF/SzZMwMMA0SUYkope8JgrgAxwXx/hEaU9QUNe4R8eQLKy9llhFyB9QV9JtFhgD9sRESW0s58fYHfgKmWYCrliOsLqggaVWB6L1Su2R+hD+oLRMTudBOZm3tRAND8dymlev7feDBcJiAi6jHK9eAUx6ALo7YAsBUMIqsvEEh1BkF1BtDahoJ8EcpNdn1B66JvjIEYAyMCMeG+Z0opKK2hW39rneh/a7sib1QUTO6GVEqh7qsKo3CG1nd5REREvU9EbH1Bqz9CHBzPtlnOF6Gc5NQXGGMQBAECv83dbAehtYbjun0RDKIPA+NPhv5B1YProYujXR4REVF/ERPAVMuQSgnSqMUyBpXJNdssF6Fi2CIuIgh8H0EQIIrLnOM4c8GgF0UfBvb9LnTzDj18CPTAcJdHRETUv8Sv2/MLqiUg6Ow743CaRZD5IlSm+/UFIoIgCOA3oqulWEhrDc/zYglAaxF5GPD3/hYIWQmrRzZB5we7PCIiov4nIpBG1Z5fUI2yvmAB7UDnbJtluJmOB4NWCIj4srYsx3Xhum7PLB9EHwae/h/Ar4e6rx49FDpX7PKIiIjSRcQsqC+YjWcQbmYuGChnbbXsIoJGvQ4TshgwSl4mA6cHGu5FHwb2PBp6qkqPbYHODnR5RERE6SUmaDZNirO+IN88BrnQ9vS6MQb1WjzjDqsXZgliOGcgfHLjUcRERN2ltAOnMAwUhpv1Bc1tiu32kVkDqVcQ1CtAq4lTfhAqkz/oxTPwfTRiqg1oR+D7EGPgZTq/NNIp0c8M7HoYYY/UdNYfBuVluzsgIiJapFVfYColSLXc7DYbsQX1BctdB3zfj61IcLWUUshkk3kWQ6RhQEQQ7H449P2dQw5P1F5VIqK0ETGQarM/Qlz1BQAAZZvX5QYg+REEQRsH2CVIUgNBtMsE7VavcpmAiChWSmmofBE6X4QEPky12U0xZCF4R3hZKMeDBA17aF2lBGSKQH4oujF0iIjAbzTgZTJxD2WRiMNAm5MQCUtORERpphwXTmEETmEE0qg3+yOU2mtA187zZQfgDK6DcucvnOLXEZT2wamVEQA9GQiCIID2fThu9GV7K4n2rXfb+1oZBoiIkkh5GTiD6+Bu2AZn9FCo3GBH38Cp7ACckU2LggAAKDdjP58dgFMvt1WUniSNRiNRWyGTGwZU75/1TETU75RS0NkBuCOHwN1wOJzhQ6Ay+TU/rjO4bsVrgFIKzuA6+3F1es3PFZdGvZ6IA5KAqJcJTBv/aNYLEBElngS+ffOmm3/yg9D5wbXVF3jZJTMC+1Nuxt7Pr4bcn5Y8rQ6KSTiUKNIwIG3NDHBWgIgo6aRRg5l4EqowAl0YmdsBtri+oGbPL6iWQ9UXhN1FphwX0oiwkLEL/EYjEV0Pk1O9sD+GASKixFNaA2Ig5XEE5XE7M1AYXbRUoLwsHC8LPbgOUq/Mt1leYYpcgnDnB9hZid6+ViRldiDiMNCrkzlERLSs/ZZ0pVJCUCkBXg66OGZbGDcv2EopqOwAdHYAYgykNmODwf6dbBs1iF8/4FKB+HV7P6/3j6z3G420hQEiIuorK9V3NaowE08CjmtnCgaGobSz4Mv2qy+olGybZd/OCgSlfXbXwDLv/EUEQWmf/TjXe1sL9yciEJFYlwoSHAZ6e+qHiCgVDtZYKPBhpp8GSvugBoZtMHAX1wQox4VTHIUujAB+Hf7UHkhtFsHk7hXPGZDaLIJM8eDP3yPiXiqIeGthO7sJujcMIiJanohATADx65B6FaY5lW9mJmHK4wim9yKYegrBxC4E+36HYN/vQj6wgcxMINjz3wgmnoQ0qkvuopSC8rLw1m+FGhiG1Gbh7/0tGvt+B39yt/1772/ng0CHDhwyxuCEE0/EX1166aLPf+9738PQ8DC+/i//0pHnOdgY4hRpbwJTKcFM7g53Zy8Ld/1h3R0QEVEKiIg95yXwISawHQmDAGJ821LetD4OIu1WqLIFqOLYih0KG/U6TGkflF+1byaVgrg5uzTQ4RmBL33pS3jfxRfjgd/8BqOjo7j33nvxv/7oj/ChD30IF733vR19ruUopZDN5br+PCs+f3LDQA7u+q3dHRARUY9K6gV+VZYpNgRsGIiqIZHv+zju+ONx9lln4S1veQtOe/GL8epXvQpXX311JM8PANlcLra6AYYBIqKEEmOAoGG32vnNv4MGxLd/t3/Ee8I5ng0FA0NQSqNer8NE2J3wC1/4AnZ+5CPYvHkzth12GG688cZI1/FTFAamYSafCndnhgEi6nMiYt/Zz13k64sv9l1qAJR42oEujMJ3BxBl3CmXy9h62GHYvn07fnT77SgUChE+O5DNZu25DTGIZDeBiOA3v/kN7vqPH+NXv7gTlWoVRx+1A+846/XIrNTGkQWERNQHxBjAry1+d7/gXT4tQwxETOQn01z0vvcBAPbt3RtLZb8gvktfJGHgT/7kT3DzzTdDKYUjjjgCg4OD+Kcv34ThoUGc9SevWeGrmAaIqHeIGMCvQ5oH5tiDc2p2/Z5CUwMj0IProBwXQa1mw1QEPvrRj+I73/kOfnT77Xjlq16F6667Duedd14kz93S1+cMTE5O4uabb8bll1+O8847D8PDwwCALVu24L8fe3zFr2MUIKIkEhF70fdr9lx8vwZp1Pguf41UfhB6cP3iUwcjujhee+21+NSnP41bb70Vxx9/PN51wQX4f6+6Cm9/+9vheeH6JPS6ri9OtKZafv7zn+PNb34z3vjGN3b7KYmI1kxEIH7dFj6X9iIYfxL+nkcR7HoQwdOPwUzsgpT3QaplBoE1UNkCnA3b4IxuXnL8sI4gDHz3u9/Fey+6CNf80z/hpN//fQDAn//5n6NUKuHLX/5y159/ob6eGRgcHMRFF12Ef/mXf0GpNI3jjju+209JRNQWMQZoVCGNanOavwY06mA/lS7ycnCGNkBlV+4toB0H8Lu3zPLLX/4SZ519Nj7+8Y/jta997dznh4aG8OfnnYcrrrwSZ599diT1Azrm3gSR7iY4641vwBO7nsLtt9+OLVu24B1v/BN8+OILl78zdxMQURfYaf4apN68+NcrgN/bbXB7ipuxywH7nSmwHBFBrbr0pMJ+5HoeXDe+DgHJ7U0QXUYhoj41t3WvUZm7+KNR5e+XsJQGtAMobbe8NT+Gdux/KwfQGlKvQGanDvxY2rGFgQMjoafDlVJQSiHC96yx0TH3WIg4DLSzHtL//+cTUWeJCSD1KrDw4p/Wvfor0Q6gXSjH/g3tQDnu8p8PedE2wAHCgIIqNHcI6PanwrXjIOjiUkFSxFkvAHBmgIh6lIix2/fq1bl3/qkt5OvCBb4tK7QxVrki9NCGJYWB7XBdt+/DgOu66QgDDz74ID7zmc/gzrt+jmdsna8D+MZ3b0O90cD5bzsbh248ZPEXMQwQ0QIixl74a7OQ+ixQr8Q9pOhoB3A8KMcD3P3+drzYLyRLwkCI4sDQD60UHMeJrEdBHJwYawVaIhnBueeei0ceeQTPeMYzcMwxxwAAnve852HPnj34/A03Yc/effjsFR9f/EX9duY2EbVFRIB6BVKfhdQqttCvX5cPldrvYp9ZfLGPeT35YObGp13oofVQ+aGOBhTXdfs2DDgJmBUAItpNsG3bNrz+9a/HX/7lXy657R3veAemnt6N79x43X4jU3A37ej20IgoIUTEbu9rvvOXeqW/Zgi1a6fLF17kXft316bvIyJ+HVKZhiqMdS24RN20KCpxNidaKJKZgRe96EW44oorcMUVVyx7+0f+4j1LP9lPvwSIaAl78a813/m3Lv59MCOoHSg3C3gZKDdrA4CXXVXxXK9QbgZqcH1Xn8NzXdT6LAwkoVagJZKZAd/38cMf/hBTk+MwU08vuu2Q9WM45fefv+w3xNm0IzHfKCJam7ljfFvv/GuzvX3xV9pe5N1M8+Lf/NiJf/23XwVBgEa9P86E0FrDy2QSc42L9NAhCXwEex4NfX9n03aoFapUiSj5JPAhtRlItWzf+ffiNj+lgOY7fOVl7cdexk77J+QXeZr4jQb8Ht9doJRCJptN1M9PtBG23X+4CDsWEfWQudP9qmWY6ow94KeXaAfKy0FlcoCXs1P8SajWpzmO68IYAxNRN8NuSNKMQEvywwARJZqIsVP/1TKkOgOYHnnXppS94Hs5qEweyssBDt/tJ51SCl4mg3qt1pMnE3qZTOynDS4nwScQorfXE4n6mAQNSLU1/T/bG8HdzUJlcvPv/N1kTdNSeK1p9nq9bptM9Qgvk4mk6dFqRBoGlFK26CbsRZ5hgCgRWtv+THUGUisDjVrcQzowx4Xy8nMXf3i5xO/Vp/YopZDJZNBoNHpiy2Emm03kjEBL9GWvWgNBuIu8mIAlA0QxEWNs8V+zADCxxX9KN9f45y/+rOhPB6UUPM9DoDX8RjKPolZaI5PAGoH9Rf+KUQ6AkGuKPTT9Q9QPJPAh1ZJdAqjNIpEn/ikFlRmw6/zZAfuuP+G/aKl7lFJwXRe6GQiSVFjoeh4cpzcOlIo8DCitw/96SdD/qUT9SkwAqZTsn/ps3MNZhpq78PPiTyvRWiOTzSIIAviNRqzFhY7rJupAoTDiWSYISxI6LUnU48QYW/xXmYbUZuIezn4UkMlBZQagswP2Y543QiE5jgOt9VwoiJLWGp6X/F4Sy4lpmSCcXqoSJUo6EWOn/yvTdgtgkpYAvNzcO3/l5XvylyklR2vpwHEciDEIgqBrjY6U1nAcp2eWA1YSw8xAG9sqklqwRNRljUYDd9xxB37xi1/g3nvvRbVaxXHHHYdLLrkEuVwu9OOIiC0ArJQg1VJytgC2Lv6ttX9e/KkLlFJQjgPtOHBFYJrBQIxZ0zKC0hqO1onpONgJya4Z4DIBpZCI4NRTT8Vdd92FYrGIE044AcViEZdddhmOOOIInH322Qf9eqnPztUBJGKLrnagsgWoXNGGgD5u2kPJpJSaewcPNF8nzT9mYThYGBKUgoK9bmmloLTum4v//mJYJmjjHQCXCSiFdu3ahbvuugvXXHMN3vKWt8ztTV63bh2eeOKJZb9GRIB6BabaDABJmFVzM1C5InSuyKI/Shyl1NzPZFIPAopSopcJWDNAadRaBvjKV76Cf/zHf8TmzZtxyy23LHtfadRgZqfsEkAQ9zHACiqbb777L0K5XszjIaKwuJuAKGHGxsbwkY98BLfeeit++9vfYmxsbNHtra2AZnYq/kZA2mle/Av2D9f+iXpS5K9c1cZuAi4TUFrt3LkTP/vZz3DKKacs+rypTCN46hGYqafiCwJeFqq4Ds76w+Bs3A5nZBN0fpBBgKiHJXqZAGKLOrjWSKm1f8VzoxbDjgBli/5yRahcAcrh9D9Rv0n2MgFg26Hylw+liN0OOAuZnbI9AeLo0KGUXffPD3L6nygFYtpNoBD6wJOAYYDSQfwGpDJlawFiKQZU9p1/ftAGAQYAotSI/pwBpQDHBYJwx0RK4LNzIfUtEbHHAs9OLToW+M5f/gr/3z/9M37yi7txwnOeO/f5f/7qzXjkfx7Hh959HrY9Y0tHxqCyA1D5IbsMwP3/RKkUT5/PNsJA6PsR9ZC5LYGV6WXPBLjggx9BLRC84KST8bznPQ8A8PKXvxzT09P41m0/BgB85m//evUDyOShWwGA7X6JUk9JDK2dgoldzbXQg1MDw3CGD+nyiIi6T0QglWm7DFCvHPC+W5/zQvzfbzoL55133pLbLrjgAuS1wc3X/WN7A/Bytuo/P8giQCJaJL6ZgbBiP0iFaG0k8CGzUzAzE6FPBnz5S07D1VdfjauvvnrZ2//+8o+Ee3I3Ox8A3Ey4ryGi1IllZsDMTMBM7w13ZzcLd8Nh3R0QURdIowYzMwGZnUa7HQJFBL/6z9+gPDu75LZNG9ZjxzO3rfzFjgeVH7IhwMu2OWoiSqN4wkClBDO5O9ydlYa7aXt3B0TUIXNdAssTkPrSC3nXKA2VH4QeGGYfACJqWyzLBG0VLImBiIFqp8ERUcTEGLstsDwRbdFrJg89MAyV4wmARLR68dQM6DafNvABrndSAonfaC4FTEXXKlg7dhlgYJjLAETUEckvIETzrAGGAUoIEQEaVZjyhO0WGBGVLUANDNvtgFwGIKIOimeZQCnboyBsz3WeNUAJYLcGluyugKiaBDmunQHID7MlMBF1TXynjWi3jTDA7YUUHzEBZGYSZmbS9sqIgMoN2lmA7ABnAYio62ILA8pxICF/rwrDAMVAggZMadzWA7S5NXBV3ExzFmCIpwISUaTi+43TzgloDAMUIfHrMOVWCOgypaByg9CFEW4JJKLYxDgz4IV+ryWsGaAIiF+HKe2z/QK6TbvQhRGowgibAxFR7OKbGWinGMr4EBG+a6KukEYNprwPUolgZ4CXgy6M2uOB+fNMRAkR48xAG1sFRewebsV3UNQ50qjamYCQTbPWQuUGoYujXAogokSKcWZgFQcPcTqVOkDqFRsCajPdfSKloQaG7UwAtwUSUYLFNzOgtD18KGRxoAQNnrZGayK1WbscUOtyzwDHgy6O2rMBeEQwEfWAWPcvKccLv23Qr3d3MNSXRARSn4Up7QPqla4+l8oOQBVG7UmBXAogoh4S72ZmNxP6F7Q0GAYovFb3QFPa1+XTAhXUwJBdCuDMFRH1qPhnBkLeV/xaV8dC/SGyEKAdGwAGhnlAEBH1vJhnBtooqvLrbGVMByS1WQTTT3c3BLgZ6OKYPSWQSwFE1CdinhlosxOh3wA4FUv7kUYNZvrp7u4OcDPQg+tszwCGACLqMzHPDLTZyrhR47oszRG/AVPa290TA70sdHEd2wYTUV+Ld2ag3e2FrBsg2C6CprQPMjOJrjUQ8nJ2JoA7A4goBWKvfGpre2GDYSDNxBjIzARMedyeSNkNmbwNARm2Diai9Ig9DLS1vdCvs0dBCokIZHbK7hAw3elgqbIDdjkgO9CVxyciSrLYw4DysuEnek1g/3ArVyqICKRahint7dqhUypbaM4E5Lvy+EREvSD2q6py2ysIFL/Gfd0p0O1tgipXtDMBmVxXHp+IqJfEf1X12txe2KgD2UJ3xkKx6/Y2QZUftCGAu1KIiObEHgbsjgIPCBqh7s8dBf2p29sEVX7ILge4bYZPIqIUiD0MAM26gbBhgDsK+ooYA1Meh5TH0Y1tgipbgB7awJkAIqIDSEYYcLMQlMPdmTsK+sJcceD0ntDnTLTFy8EZ2sDdAUREISQiDLRdN+DXeSxxD5NGDWZqD6Q+2/kHdzPQg+t5YiARURsSEQba3lHAY4l70vzJgROdf3Dt2pqAgWGGACKiNiUiDMBxAaVDnyrHIsLeIiKQyjTM9NP2nIhOUtp2ESyMQml2tCQiWo1EhAGllD2JMOye8kZ3DqChzpN6FcHUU104L0BBFUbsbIB2OvzYRETpkogwADR3FIS8YHBmIPkk8O1Wwdmpjj+23Sa4Hsr1Ov7YRERplKwwEPbOJoAEPk8iTCDbR2ASZnpvx5sJcZsgEVF3JOZq2u5hMDyWOHmkNotgag/Q6ZkbbhMkIuqq5FxN2323x2OJE0MC3x4h3OnTAx3PzgRwmyARUVclJgwopW0gCHnCIOsG4icikJkJ21VQOnh6oNK2MLAwyhBARBSBxIQBAFBeLvRxwzyWOF52SeCpjrcWVvkhOxvAJSAiosgk6jeuyuTCV5/zWOJYiAnskkCndwm4WTjDh7AugIgoBskKA16bveV5LHGkTLUMM/kUYDrYS0BpOxPAkwOJiGKTqDAAxwO0E/qUOqnPcptZBCTwbS+Baqmjj6sGhm0Q4KFBRESxSlQYUErZuoHaTKj7S60CFEa7PKr0mjtGeGpPZ88M8HJwhjdCZdqcCSIioq5IVBgA0F4YqFdYN9Al4jdgpnZDah3sLKgdOxOQH+L/Z0RECZK4MIB23i2KsVsR+Q6zY+x2wUmY0tMd3S6oCqPsI0BElFCJCwPt1gBIfZbTzR0ijRqCyd0dbSqkMgPQw4ewtoOIKMGSFwa0YzsYhty/LvVKl0fU/0QEUt4HUxoHwneIODDHhR46hKcHEhH1gMSFAaBZN9BGGGDdwOpJvWJnAzp2eJCCKo5BF8egtO7QYxIRUTclMwxkcuHPuRex09qZfHcH1WfEGNtieGaicw+aycMZ2dR20ykiIopXMsNAm4cPSW0WimEgNFObsYcHBY3OPKBSzYODRjhDQ0TUgxIZBuBm2jx8iHUDYYgxMNN7OnqUsMoWoEc2Qjlexx6TiIiilcgwoJSCygyEPvFO6lWIGNv5kJYl9QqCiV2dmw3Qji0QzA9yNoCIqMclMgwAgMqGDwOAQOpVNrlZhojAlPZByvs69pgqP2iDADsLEhH1hcT+NlfZ9moApD4LMAwsIn7dzgZ06twAx4Ue3gidK3bm8YiIKBGSGwYczzYuCjmtLbUKMNjlQfUIEYHMTsFM7+nYKYJqYKTZVIhLMURE/SaxYQBoLhWELXZrVCHGpP5iJYEPM7k7dH+Hg3IztqkQZ12IiPpW/4QB2CI5lSt0cUTJZqplmMndoXdhHIwqjtl+AizMJCLqa8kOA22eHSD1WSCFYaDjWwa9rD08qM3zHoiIqDclOwxoB/ByoQvgpJa+8wY6u2VQQQ+thyqMcrsgEVGKJDoMAM2lgrDV8H4NYoJUtMm1zYXGYUp7O/OAPEqYiCi1Eh8GdCaPdlbAbd1Af2996/SWQT20gbMBREQplvgwgEweUCr0FjmpzQJ9GgZEBFKZhpl6qjNbBt0MnNFDWRtARJRyiQ8D9mjivL3Ih9CvfQok8GGmnoJUyx15PFUYtfUB3ClARJR6iQ8DAGyfgpBhAH4dEvh9dVSuqc3CTDzZmS2D2oUe2QSdwl0XRES0vJ64YqrsABC2TQGadQP53j+OsNNFgipXhB7ZlIoCSyIiCq8nwkD7LY1ngR4PA2ICmIldnTlJUGno4UOg8kMsEiQioiV6Igy03dK4x88bsGcHPAkE/tofjFsGiYjoIHoiDAC2i2HolsZBA+LXe+4CKCKQmUnbYKgD9OB6qOIYZwOIiOiAeigMtNcoR6ozUMXeCQNiAttgqBO7BdwMnJFDoTLcMkhERAfXO2GgzZbGplqGLo52eVSdIY0qgvEnO3KkMFsNExFRu3omDACAyhYgs5Ph7tyoJn6LoYhAZqdgpvYAWOMhQtppbhnszwOXiIioe3rq7WO77Yk7UonfJWIMzORue5rgGoOAyhXhbDicQYCIiFYluW+bl6EyeUBpQEyo+0t1BhgY7vKo2ieNmt0t4NfX+EgKengD1MAIiwSJiGjVeisMKAWVK0AqYbcYzkKMSdT6uZmdhpnavfbeAo4HZ3QziwSJiGjNknOVDKm9joSSmKUCEYNgcjfM5K41BwG7LLCNQYCIiDqip2YGANunAFAIu84u1ZnYTyO0LYefBBq1NT8W2w0TEVGn9V4Y0BoqOxD6Hb/UZiAisV08TaUEM7k7dJ3DirQLZ2yzrZsgIiLqoJ4LA4CdJg89/S/GNi5q89CitRIRmNJeSHl8zY+lsgPQI4cmepskERH1rp68uqhcAZgKf3+ploEIw0AnmwzxSGEiIuq23gwD2gEyeaAeriGRVGcgQ9EsFUijhmD8ibWfJqgd6NFDobPtna1ARETUrp4MAwCgcwWYkGFAeRmICWwb5OVu71BIsPUBa98tgEzebhvksgAREUWgZ682KlsEsHflO2TyQLYAcXMIoCD1BoCV361rraG0hlbKFikqFTok2PqAfZDyvvb+EctQxTG7NMBlASIiikjvhgHXA9ws4C/YruflYbw8jJsDWgcNydz/HJAxBjAGwYLPaa3huK4NCitcnDvWbVBpuyzAI4WJiChiPRsGAFtIKHUN4+4XADrEGANTt0cGa8eB4ziLgoH4dVsfsNZjhb2cXRZwvbUOmYiIqG09GQZEBIHvw3cHADeaXQImCGCCAEopeJkMtNb2WOQ1BgFVGIEeOoTLAkREFBslstZqt+iICIwxaNTX2uBn7bTWcF0XMrXKJQKloEcOhY75dEQiIqKeCQOtEJC04TqOhppsswOh48EZ2wLlZbs3MCIiopB6IgwEQZCI2YCVKOPDmQ535LDKFqBHD7VnJRARESVAosOAiMD3fQS+H/dQDko1qnDKew58H24bJCKiBEpsGBARNBoNmCA4+J0TQtVKcGYnlrlBQY9sgs4PRT8oIiKig0jkboJeDAIAINlBmKABXVtQUOh4ttugl4tvYERERAeQyDAQNLfx9SKTHwWCBrRfg8oMQI9tZn0AERElWuKWCUwQoJ7gYsFQTABdL8MdPgS6wwchERERdVqiwoCIoFatxj2MjnFcF57HUwWJiCjZEvW2NcnbB1cj8H0EPbrcQURE6ZGYMGCMsc2C+ozfaCTuoCQiIqKFEhMG/MbK7YV7WesIZSIioqRKRBjo11mBln4NOkRE1B8SEQb6/WIpIj27VZKIiPpf7GEgLdPoLCQkIqKkij0MpCEIAOn5dxIRUe+JPQxIRBfJ73znO8gPDKz456yzz+7q84sIdxUQEVEixX7oUK1WiyQQVCoVTE1NLfpcEAT4f847D7/61a9w67e/jWOPPbarY/AyGTgOjyYmIqJkibU3gYhENjOQz+eRz+fn/jsIArztnHMiCwKAXSpgGCAioqRJZKOibmsFgR/84AeRBQEAXCYgIqJEirdmIIaLYxAEOOftb8cPfvADfPtb38Jxxx0X3ZMzDBARUQLFGgaivjS2gsBtt92Gb3/rWzj++OMjfX5GASIiSqJYlwmUUpE9VysIfP/7348lCABAdP9aIiKi8GLfWhiFIAjw9ne8A9///vfxrX/9V5xwwgnxDCTC8ENERBRW3xcQGmPw9ne8A9/85jfx5RtuwKZNm7B79+5F99mwYUMkVf6aYYCIiBIo9nMG6rVaV0/nu+uuu3Dai198wPvsevJJjIyMdG0MLTxngIiIkij2MOA3GvB9P84hRCaby0VaJ0FERBRG7DUDWsc+hEgopRgEiIgokWK/EquUhIG0hB4iIuo9sV+hlFLQKVhHd9y+r9UkIqIeFXsYAAC3zy+UWmvODBARUWIl4gqlte7r2QHX8+IeAhER0YoSEQaA/p0d4KwAERElXWKuUv06O8BZASIiSrrEhAEA8Dyvr7bfuZ7HWQEiIkq8RF2plFLwMpm4h9ERWmueNkhERD0hUWEAsBfRXg8ErVDTT7McRETUvxIXBgDAcZyeLihkECAiol6SyDAA2PX2Xiy+y2SzrBMgIqKekui3367rQgFoNBpxD+WglFLIZLOcESAiop4Te9fCMIwxqNdqcQ9jRdpx+m4nBBERpUdPhAEAEBE0Gg2YIIh7KIt4nse+A0RE1NN6Jgy0GGPQaDQgxsQ6Dtd14bguZwOIiKjn9VwYaAmCAH6jgaiHzyUBIiLqNz0bBgC7dCDGIAgCBF1cPlBKwXFdOI7DEEBERH2np8PAQiICYwwC34fpwBKCUgqO40A7DrcKEhFRX+ubMLBQ659kjJmbPTDGQOyNi+6rlLJ/tIZu/t36HBERURr0ZRggIiKi8Dj/TURElHIMA0RERCnHMEBERJRyDANEREQpxzBARESUcgwDREREKccwQERElHIMA0RERCnHMEBERJRyDANEREQpxzBARESUcgwDREREKccwQERElHIMA0RERCnHMEBERJRybtwDWCjznHOg3QyUdqC0A8eb/1hpPX+b40C7Gei525wltyntQGsFpRUcR0Pt97HWCtpRc/c54G1KwXE1HK3gaIVM82N37r+d+duc+fu5C+7rLPexUtBKwVGA5+i5j11Hw1Gw/60VPK2W+dje7mk997GjFJQCtAKUQvPxAQXA0QoasP8WjbmPtQIctfBj+xhKBBADZXxg0cfG/jEr36bEAEEw/7HxARNAjAH8OiQIAGPs5/wGxAT240YDaH3cum/rfo36/NeYAKbhQwIDMQam7sME9mskMDANHyaY/1iaHwcNH7LgfkHdX/BxADECE0jzv5tfb8TeFggkEJjAIGiY5mMKgkbQ/Jr5rzMiCERQN4JAsN/H+/+3/djAfhwImrfNf/wZeSzW12Wn8PXN1zdf38l9fXNmgIiIKOUYBoiIiFKOYYCIiCjlGAaIiIhSjmGAiIgo5RgGiIiIUo5hgIiIKOUYBoiIiFKOYYCIiCjlGAaIiIhSjmGAiIgo5RgGiIiIUo5hgIiIKOUYBoiIiFKOYYCIiCjlGAaIiIhSjmGAiIgo5RgGiIiIUo5hgIiIKOUYBoiIiFKOYYCIiCjlGAaIiIhSjmGAiIgo5RgGiIiIUo5hgIiIKO2kT1WrVdm5c6dUq9W4h7JEkscmwvGtRZLH1k+S/H1O8thEOL61SPLY1kqJiMQdSLphenoaw8PDmJqawtDQUNzDWSTJYwM4vrVI8tj6SZK/z0keG8DxrUWSx7ZWXCYgIiJKOYYBIiKilGMYICIiSrm+DQPZbBY7d+5ENpuNeyhLJHlsAMe3FkkeWz9J8vc5yWMDOL61SPLY1qpvCwiJiIgonL6dGSAiIqJwGAaIiIhSjmGAiIgo5fouDLz//e/HC1/4Qpx11lmo1+uLbqtUKnjVq16F0047DX/0R3+E8fHxRI2v5W/+5m/w/Oc/P/Yx+b6Pt771rXjhC1+I97znPZGNJ+z4WqL+fi200tiS8LPWj/j67tyY+Po+uDS9vvsqDNx9993YvXs3fvzjH+OYY47B1772tUW333rrrTj22GPxox/9CK9//evxxS9+MVHjA4BSqYT77rsvEWP65je/iWc84xn48Y9/jNnZWfzkJz+JbFxhxgdE//0KO7a4f9b6EV/fnR0TX9+rH1vcP2vd0Fdh4Kc//Sle+tKXAgBe9rKXLfnhPvLIIzE7OwsAmJycxIYNGxI1PgD41Kc+hQsuuCARYwoz3jjHB0T//VroQGOL+2etH/H13dkx8fV9YGl7fbtxD6CTJicnsXnzZgDA8PDwkqmb7du347777sOxxx4LpRTuvPPORI1vamoKv/71r3HppZcmYkyTk5Nz528vN964xxfH9yvs2OL+WetHfH13dkx8fa9+bHH/rHVDT84M7N69G6eeeuqSPyKC6elpAPb/yLGxsUVfd/311+PFL34x7rvvPnz0ox/Fxz72sUSN7+qrr8a73vWuroxpJaOjoyuO6UC3JWF8cXy/FjrQ2KL6WetHfH13Dl/fq5e213dPhoFNmzbhjjvuWPLnFa94Bf7t3/4NAPDd734Xp5xyypKvbf0fOjIygsnJyUSN7+GHH8bHP/5xvOxlL8NDDz2Eyy+/vCvjW+jkk09ecUwHui0qBxpDHN+vsGMDovlZ60d8fXcOX9/dGRvQh6/v+Lond8fFF18sp556qrzpTW+SWq0mIiLvfOc7RURkampKXvGKV8hpp50mp5xyijzwwAOJGt9Cz3ve82IbU2s8jUZD/uzP/kxOPfVUufDCCyMbT9jxLRTl92uhlcaWhJ+1fsTX99rHxNd3eGl6ffM4YiIiopTryWUCIiIi6hyGASIiopRjGCAiIko5hgEiIqKUYxhIgeuuuw4jIyMdeazHHnsMSim4rosnnnhi0W27du2C67pQSuGxxx5bdNvXv/51vPjFL8bw8DCKxSKOP/54fOxjH5s7yKOTYySitTv88MOhlMJXvvKVJbc9+9nPhlIK11133aLP33333TjzzDOxceNG5HI5HHXUUTj33HPx4IMPApj//XHPPfdE8C+gdjAM0Kps3rwZ//zP/7zoc9dffz22bNmy5L5/9Vd/hTe84Q14wQtegFtvvRX33XcfrrzySvzqV7/qizO9ibqt0WjE8rxbt27Ftddeu+hzP/vZz7B7924UCoVFn//Xf/1XnHzyyajVarjhhhtw//3344tf/CKGh4fx4Q9/OMph02rEvbeRDu7WW2+VU045RYaHh2VsbExe+cpXysMPPywiIj/84Q8FgExMTMzd/+677xYA8uijj87dvvDPzp07RURkfHxc3vzmN8vIyIjk83l52cteJg8++OABx/Loo48KALn00kvlyCOPXHTbs571LPnwhz8899wiInfeeacAkKuvvnrZx2uN+9prr5Xh4eG2vzdEvSoIArn88stl+/btkslkZOvWrXLZZZfNvcZuvPFGOe200ySbzco111wjQRDIRz/6UdmyZYtkMhk54YQT5NZbb517vFqtJhdccIFs2rRJstmsbNu2TT7xiU/M3b5z507ZunWrZDIZOfTQQw96tsC2bdvkgx/8oGSzWXn88cfnPn/uuefKhRdeKMPDw3LttdeKiMjMzIysX79eXvva1y77WK3Xeevfdvfdd6/um0Zdw5mBHjAzM4P3ve99+PnPf47bbrsNWmu87nWvgzHmoF/7B3/wB7j66qsxNDSEXbt2YdeuXXj/+98PAHjrW9+KX/ziF/jGN76Bn/70pxARvOIVrwj1LuSMM87AxMQE7rjjDgDAHXfcgfHxcbz61a9edL8bbrgBxWIR559//rKPw6UBSqsPfehD+OQnP4kPf/jD+K//+i98+ctfxsaNG+du/8AHPoB3v/vduP/++3H66afjU5/6FK688kpcccUVuPfee3H66afjjDPOwEMPPQQA+PSnP41vfOMb+OpXv4oHHngAX/rSl3D44YcDAL72ta/hqquuwmc/+1k89NBDuOWWW3DccccddIwbN27E6aefjuuvvx4AMDs7ixtvvBHnnHPOovt997vfxd69e3HJJZcs+zh8nfeAuNMItW/Pnj0CQH79618fdGZAZPl33Q8++KAAkP/4j/+Y+9zevXsln8/LV7/61RWfe2Gyf+973ytve9vbRETkbW97m1x00UVLnvvlL3+5HH/88Qf9N3FmgNJkenpastmsfP7zn19yW+s1tv9s2ubNm+XjH//4os+94AUvkPPPP19ERC688EL5wz/8QzHGLHnMK6+8Uo466iip1+uhx7ht2za56qqr5JZbbpHt27eLMUauv/56ec5zniMismhm4JOf/KQAkPHx8QM+JmcGkoszAz3gkUcewZve9CYcccQRGBoawjOf+UwAwOOPP77qx7z//vvhui5OOumkuc+tW7cOz3rWs3D//fcDAF7+8pejWCyiWCzi2c9+9pLHePvb346bbroJu3fvxk033bTk3QIAiAiUUqseJ1E/uv/++1Gr1fCSl7xkxfs8//nPn/t4enoaTz755JLz8U855ZS51+tb3/pW3HPPPXjWs56Fd7/73XPn6gPAmWeeiUqlgiOOOALnnnsubr75Zvi+DwD4xCc+Mfc6LxaLS36vvPKVr0S5XMa///u/45prrlnxdU69jWGgB7z61a/Gvn378PnPfx533nnnXLvMer0Ore3/hQtfjGGm+Vd68S68eH/hC1/APffcg3vuuQff/va3l9z32GOPxe/93u/hjW98I44++mgce+yxS+5z1FFH4ZFHHomtAIooifL5/EHvs3+BHoAlwXrh6/W5z30uHn30Ufz1X/81KpUKXv/61+NP//RPAdhCwAceeAB///d/j3w+j/PPPx8vetGL0Gg0cN555829zu+55565tr0truvizW9+M3bu3Ik777wTZ5111pJxHXXUUQCA3/zmN+G+AZQ4DAMJt2/fPtx///249NJL8ZKXvARHH300JiYm5m7fsGEDALutr2X/bTuZTAZBECz63DHHHAPf9xf14d63bx8efPBBHH300QCALVu2YMeOHdixYwe2bdu27PjOOecc3H777cu+WwCAN73pTSiXy/iHf/iHZW/vi25fRG068sgjkc/ncdttt4W6/9DQEDZv3jxXo9Pyk5/8ZO712rrfG97wBnz+85/HjTfeiK9//etz23fz+TzOOOMMfPrTn8btt9+On/70p/j1r3+NsbGxudf5jh074Lrukuc/55xz8KMf/Qivec1rMDo6uuT2l770pVi/fj3+9m//dtnx83WefEv/X6dEGR0dxbp16/C5z30Ohx56KB5//HF88IMfnLt9x44d2Lp1Kz7ykY/gsssuw0MPPYQrr7xy0WMcfvjhKJfLuO2223DCCSdgYGAARx55JF7zmtfg3HPPxWc/+1kMDg7igx/8ILZs2YLXvOY1ocd37rnn4swzz1yxQOikk07CJZdcgosvvhhPPPEEXve612Hz5s14+OGH8ZnPfAannnoq3vOe96zqe0PUq3K5HD7wgQ/gkksuQSaTwSmnnIKnn34a//mf/7ni0sFf/MVfYOfOndi+fTtOPPFEXHvttbjnnntwww03AACuuuoqHHrooTjxxBOhtcZNN92ETZs2YWRkBNdddx2CIMBJJ52EgYEBfPGLX0Q+n18x5O/v6KOPxt69ezEwMLDs7YVCAV/4whdw5pln4owzzsC73/1u7NixA3v37sVXv/pVPP7448ueV0AJEmfBAoXzve99T44++mjJZrNy/PHHy+233y4A5OabbxYRkTvuuEOOO+44yeVy8sIXvlBuuummRUV8IiLnnXeerFu3btmthcPDw5LP5+X0008PvbVwpQKg/QsIW2688UZ50YteJIODg1IoFOT444+Xj33sY9xaSKkVBIFcdtllsm3bNvE8Tw477DD5xCc+seJrbOHWQs/zlmwt/NznPicnnniiFAoFGRoakpe85CXyy1/+UkREbr75ZjnppJNkaGhICoWCnHzyyfL973//gONrFRCuZGEBYcvPf/5z+eM//mPZsGGDZLNZ2bFjh7zzne+Uhx56SERYQJhkbGFMRESUcqwZICIiSjmGASIiopRjGCAiIko5hgEiIqKUYxggIiJKOYYBIiKilGMYICIiSjmGASIiopRjGCAiIko5hgEiIqKUYxggIiJKuf8fujRU/pGerAQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -485,7 +486,7 @@ "id": "e425644c", "metadata": {}, "source": [ - "We see that the standard partial correlation test is not able to recover the link between $Z$ and $Y$. It even finds a wrong link from $X$ to $Y$." + "We see that the standard partial correlation test finds a wrong link between $X$ and $Y$." ] }, { @@ -507,13 +508,13 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 51, "id": "7f827281", "metadata": {}, "outputs": [], "source": [ "random_state = np.random.RandomState(42)\n", - "\n", + "T = 2000\n", "def generate_time_dependent_stds(Z, T):\n", " stds = np.array([1 + 0.018*t for t in range(T)])\n", " return stds\n", @@ -537,7 +538,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 52, "id": "0f209e3c", "metadata": { "scrolled": true @@ -545,7 +546,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gUVfb+356O05Mjk4ABhpwFlQxiQF30iygIomvYVQyrorvooiLroou6K2Yx7BpQfgImQBREBZEMImnIDAMMk3P3hJ6Ovz/mOZdb1VUdZnqYGbif5+EBOlTdqq669633nHuuxuPxeCAQCAQCgUAgaNeEtXYDBAKBQCAQCATNR4g6gUAgEAgEggsAIeoEAoFAIBAILgCEqBMIBAKBQCC4ABCiTiAQCAQCgeACQIg6gUAgEAgEggsAIeoEAoFAIBAILgCEqBMIBAKBQCC4ALjgRZ3H44HFYoGosSwQCAQCgeBCpk2Kut27d2P06NEYO3Yspk6dCofDgWXLlmH48OEYP3488vLyAt6W1WpFTEwMrFZrC7ZYIBAIBAKBoHVpk6IuPT0dP/zwAzZu3IisrCysWLECCxcuxMaNGzF//nzMnz+/tZsoEAgEAoFA0KZok6IuJSUFZrMZAKDX63Hs2DH07dsXBoMBI0eOxIEDB1S/29DQAIvFIvkjEAgEAoFAcKHTJkUdcebMGfz0008YNWoUoqOj2esul0v1OwsWLEBMTAz707Fjx/PRVIFAIBAIBIJWpc2KOovFgjvuuAMfffQRkpOTJY6bVqtV/d6cOXNQXV3N/gSTfycQCAQCQWvicrlQV1fX2s0QtFPapKhzuVyYMWMGnn32WfTo0QNZWVk4dOgQ7HY7tmzZggEDBqh+12g0Ijo6WvJHIBAIBIL2wIcffoghQ4a0djME7RRdazdAieXLl2Pr1q2wWq2YP38+HnjgAcyaNQtjx46FyWTC4sWLW7uJAoFAIBCEnFOnTqGwsLC1myFop2g8F3gBN4vFgpiYGFRXVwvXTiAQCARtmkcffRT/+9//UFNT02ptqKioQHx8fKvtXwDs3LkTl156KTQaTVDfa5PhV4FAIBAILkZqamrgdDpbbf9FRUXo0KED9u/f32ptuNjJzc3F5Zdfjl27dgX9XSHqBAKBQCBoI9TU1MDhcLTa/ktLS+F0OlFcXNxqbbjYocUSqqqqgv6uEHUCgUAgELQRampq4Ha74Xa7W2X/DQ0NANCqwrK1+eabb3DTTTe12v7p3NtstqC/K0SdQCAQCC5KPB4Pjh071trNkEAuja96rC0JCYmLWdTt378fmzZtarX907mvr68P+rtC1AkEAoHgomTHjh3o1atXm5ptShMkWiuvri2LOpfLhblz57b4Wu5OpxN2u71F9+EL4dQJBAKB4IIgPz//vO2rvLwcHo+nTS0nSaKutURVWxZ1p0+fxvPPP49t27a16H4cDkerijrat3DqBAKBQNBuKSwsROfOnfHbb7+dl/1R/lhrzjaVczE4dQ6Hg537YCCx09KhaXLqWqvim3DqBAKBQNDuKSwshMvlQllZ2XnZ3/mYFLB582bs3r1b8b2lS5d6hRIvBlH3zDPPYOrUqUF/j9rU0ufG6XTC4/G0Wl6jyKkTCAQCQbuHSjicr9DX+RB1zz77LF5++WWv161WK6ZPn47Vq1ez1zwez0Uh6goLC1FUVBT09+i6aOlzQ8feWiFYIeoEAoGgHVNdXd1qoZ62BIm685XPdT7Cr7W1tYqhRhJP/Ht1dXXsOriQc+ocDkeTzjm16XyEX4HWF3Ui/CoQCATtDJfLhczMTIljc7FyITp1dXV1isejtG9+abAL2alzOBxNEmbny6lrK6JOOHUCgUDQzrDZbKiqqmpSOOpC40J06urq6hSPJ1hRd9999+H7779voVaeo6VE3W233YbNmzezbTdF1J3PnDqg9UWdcOoEAoGgDfLDDz/g0KFDiu/R4N6aJRTaCq0l6kKxP7XweVOdOnmbvvzySyaKWpKWEnXLly/Hjh07ADSKpuaEX0Mh6qqrq3HdddcpTsppiZy6qqoq/Otf/woozUKUNBEIBII2zOzZs/H2228rvidE3TlaK/zaXJHw7LPPIioqSvE9NVFHrwXq1NXW1qK2trZZ7QyElhB15MzxQra1w6/Hjh3D2rVrJQ9bc+fOxQsvvNAiTt38+fPx9NNPY8+ePX4/2xynThf0NwQCgUAQFA0NDairq1N9DxCiDmifTp3FYsH8+fNV36+vr292Th0Vw22voo4cJ37brT1Rgs41L5y2bduGiIgIaLVaAKG9Jw0GA4BGh9AfSjl19957LzQaDd5//32f3xVOnUAgELQwdrtdNZQiRN052uNEiQ8++ID9Wy42HA6H6uoESr87X7OOFz0k5gIRdbm5uc1aIaMlRR3vjLa0U/fVV1/5LHBM55K/L202G/vN+P2FgujoaADBiTpecObm5rL7wxdC1AkEAkELI0RdYLTHiRIFBQXs3/J202/e3Jy6YETdhAkT8MorrwTSdEWURN26deuwZs2aJm9TLuqa69T5+25JSQluueUWrFu3TvUzSk5dQ0ODpG2hvA5jYmIAICDBreTUWa1W1RA/jwi/CgQCQQvjcDiEqAuA9hh+5QWG3W6HyWRi/6eQe3PDr4GKOrfbjVOnTjVrJrWSqHvzzTdht9tx3XXXNWmbSuHXlnTq6NyqpTwA5841f1+SqJPvLxSYzWYATXfqAhV1wqkTCASCFqYpTp3ValVdXupCpT1OlPAlAnyJumAmStDr/kRdeXk5HA5HQGE6NZREXV1dXZOS9onz7dQFMtFASdTZbDbY7fYWCb+SiA1E1CnNfhWiTiAQCNoITRF1n3zyCa6++uoWb1tbor07dfLtNMWp0+l0XtsN1KmjUHCoRV19fX1Q5TWcTidKS0sl3wdCl1Pn77t07gIRdb7Cr6EUdbTNiooKv5+94Jw6q9WKyy+/HJGRkcjOzgYALFu2DMOHD8f48eORl5fXyi0UCASCwHE4HEHPfq2urpY4Nxc6TqeTTRRoqsjaunUrFi5cGPDnadBsjlMnD7/yNEXUxcbGer3eHFGXm5uruPasGmqiLhinbunSpejfv7/k+/Jtnw+nztdECV/h17Yi6qhtHo+nfYu68PBwrF69GrfccguAxgNcuHAhNm7ciPnz5/ucPi4QCARtCbfbDafTqep0qM02pJl4brcb5eXlLd7OlsLlcuHXX3/1+zk+gbypg+nXX3+N1157LeDP+3PqysvLsWHDBp/b8BV+DXaiRG1tLRN1oXLqvvvuOzz55JNeRW9vv/12vPfeewG1q66uLiinrqSkRFLUVyn82pI5dcE4dUqzX1tS1AVyL8uduvr6erjd7vYr6nQ6HZKSktj/jx8/jr59+8JgMGDkyJE4cOCA6ncbGhpgsVgkfwQCgaC18LeOo5pTRx16dnY2OnTogNzc3BZsZcuxceNGjB07Fvn5+T4/xwsRXlAcPXpUdTUOOTU1NUG5fP5EXf/+/TF+/Hif23A6nQgPDwfQNKeOf6+uro6VvmhKTp2SqKM2yEXU9u3bFQvhhsKps9vtcLlcTEiGStQF6tTxoq6+vl7x877Cry2RU0fbbIpTR21tt6JOTlVVFbvQAd/x9AULFiAmJob96dix4/lookDQYqxbtw5Dhw5t7WYImkhzRV1eXh5cLle7TTuhB2t/eV70vsFgYOfCbrejV69eGDx4cED7qqmpCWog9jVRoqamBoWFhX634XQ62cxGtZw6t9vtNW4pCcr6+no2cCs5dXV1dUwoud1uL5HHizq5oFISnErhfbru5GIzWFHHHwN9lw93t2TxYd7pGjdunKJ7K3fqPB7PeQm/BuPUkTimtIQLRtTFxcVJHDeq9qzEnDlzUF1dzf60145Q0HI4nc6A1t9rKxw6dAi7d+8OSRV1wfnH3zqO/kQddejNSX5vTeTHoQb18QkJCWxQo8K+JJr8YbVaQ+bULVu2jP3bV3/hcDgQEREBQN2pU3pPafYr79Qp5dR5PB52HS1evBg9evSQtI1EqN1uZ+ddzS2sq6tTdP6aMlEiJydHMXxOQkbJqXO73UH3w00Jv+bl5Sm63HTsvND0eDyw2+1NEnU1NTXQaDRYu3atzzYF49QBjefsghN1WVlZOHToEOx2O7Zs2YIBAwaoftZoNCI6OlryRyAgPB4PMjIy8N1337V2UwKGOsLzsUSQ4Bz79u3DyZMnm70d6qDVksPVRB0NhIE6XW0VOj5/kz5ocI2Ojmbn7LPPPgMAdO/ePaB9hdKp+/3339m/fW0zkPCr0ntNcer4bR44cAAFBQWorKyEx+PBp59+ioMHDyIlJQXAuetFzamrr6/36dRRuzwej1+n7tprr8Vbb73lday+RB0Q/HJfTQm/1tXVKaZhyZ06/ribEn6lHMKZM2f6bFNFRYVfMcvvt76+PihR12aLD19//fXYu3cvjh49ipkzZ2LWrFkYO3YsTCYTFi9e3NrNE7RTGhoaUFxcHJLB+nzBi7oL/SGlpKQE7777LubOnQuNRtOqbbn//vuRlZWFTz/9tFnbkXfQ8o45UKeusrKyWe1oLeg4AhV1UVFR7FzQsQca+gtlTp0818poNCpugw+/NlfU1dXVISIiAmFhYYo5dUBjP5CYmMiiUKdPn0ZtbS3++Mc/AgCGDx+OoqIiVFVVITU1VdGpc7lcqmvJykUdtdPlcsHhcECv13t9h/ZH8A8ygLdwomNzuVyshEsgBOrU8eHXQEWdUg29YEQdCdQzZ87AZrNJilDzbXa5XLBYLGyFCbX2azQaeDwe2Gy2C8Op+/7771FQUIBt27bhrrvuwrRp07Bt2zZs2LBB5MkJmgzdwO3J9bqYnLr169dj3rx5OHPmDJKTkyVuyfmmuLgYZ8+ebfZ25KJOzvkKv7rdbsmMxPNFc5w6Ol+BzrysqalRzF/z1zYlkSAXdWrw4Ve1nDql99ScOrPZDJ1Opxh+5f995swZ9jf/u1511VUAzj0EKDl18gR8Hrmok88OleN0Or0c0kCdukDz6sjZCtapo3C8L1FHx9RcUce3SWlJNf59f3l1DoeDCbhgnbo2K+oEgpYgUNegLXExiTo61qKiIpSWlrI6la1BWVmZZF3PpiIftOWcL1G3YsUKdOvWrcVXaygsLJQUng30nqPzwDt1JIqCceqAwOvcBePUqRFqpy48PBw6nc4r/EouPfUDvFNHeVpHjhxh4T+6XqgN8v3w2+KPxel0wmAwsM/zx6B0/dIKCYGIOpvNBo/Hw0R3IOJ7wYIFCAsLk2w30IkSJGzPR/iV/72OHz/u831/eXUOh4P93rxTFxkZ6bcdQtQJLiroxm1PAuliEnXUidKx8uLgfELJyYHMfvRHU506+myowq+5ubmwWCwoKSlp1nb8ce+99+KJJ55g/+dF3bFjx7wGZLvdjtLSUthsNmg0GpjNZolLFBcXF7SoC3Qw9ifqaGBtqqjjf+9Ac+rMZjP0er1X+DU5ORlA473hcDjYtXnmzBnm/KSkpLA6d75y6tScOl5YB+rUKS3tJp8Ewjt1/PEqOW55eXmS/dCElZKSkqCdukBEnZJT1xRRxx+X0tq7TqeThZr9Oc9KTh2F5f0hRJ3goqI9OHXyGXyBLE4dCkaOHIkZM2a06D78IRewLS1A1KBB0mq1Nvlasdvt6N69u6TwblOculBNlCB3oLi4uFnb8UdZWZlEgPLua//+/b0mKb3//vsYNmwYy0OSu0RNEXXBOnVqE1go76klnDq+bAv/eTWnjhd1BQUF8Hg80Ov1OH36NMrLy6HVahEdHc3Ct3KnTr4f2hYPn9fYEk5dQ0OD5LiUHLeRI0eyWc8A0KtXLwCNE0OCnf1K17xc1FE5GL1e7xUaptIm8mPyB+0zJiZGVdSRUPPXlys5dYGEXgEh6gTnCbvd3iaEVHtw6kaNGoX//Oc/7P/ny6nbunUr/t//+38tug9/yPOvWkvU8TlKTXXrLBYLTpw4IQkh+xJ1SitKAKELv5JQVRpw5FRUVGD69OlNuubkMyXp37m5ubDb7V6O49mzZ1FUVMREnV6vZ2UlHA4H4uPjAxJ1drtdUj5m06ZNPj9PK30A6k5dIKLO4XD4rFOnVu4k0Jy6H3/8EVarVSLqKJ9uyJAhOHPmDCoqKhAfHw+NRgONRoPY2NiAnLra2lq43W7JMQNNc+r4c+Qr/Mofr5Koq6iokBSq7tSpE4BGURfsMmFqoq6+vh4ejwdJSUleoo4/zqaIuoyMDMUHJ6fTyYRaIE4d/1kh6gRtjhdeeAHXXnttazfDZ4JwW8Dj8eDIkSPYvXs3e605ou6mm27Ct99+G3QbWou25tQBaHJeHQ0M5GQAyk/oTZn9+txzz2HRokVBtScYp+7AgQNYunQpjh49Knl99+7dfsVSbW2toqg7ffo0gHPHuX37duzYsQPV1dVsxQLeqaN7NS4uLqBitfz9sXbtWowZM8angOUHcbWJEoE6db5KmlA41J+oIxHLO3UnTpzANddcg23btklEHeXTjRw5kjl1CQkJbNtxcXEBOXWAsmhTE3VKYiSY8Kt832oOKX+tk+jcv39/wDl1tF0SczabTdI+6v8TExO9CiPzyH+zI0eOqNZbpH2mp6f7der8iTq73c4+K5w6QZvk+PHjOHXqVGs3o1Wdui1btvgVKZWVlbDb7Th27Bh7rTltXrt2reJSQL4IRR5ZU2krOXWhcOrkdeb413iaUqfuiy++wJdffhlUe4Jx6uShX+Jf//oX5s6d6/O7cqeOjk8u6p555hk899xzsFgs8Hg8sFgsEqeOjj8+Pl6yHTX4BzX6/XzlIfLba45T53Q6odfrWbt5ghF1dLx8Th1/HmNiYmAwGJioi42NRd++fVFcXIyCggKJqAvUqQOk581f+DXYnDq5Uyffn1yckXvKX+u0raY4dTy8GKP+hZy6hQsXYt++fV7fkf9m11xzjeJ6uXybMjIyQhp+FU6doE1SWloqcSxai9bMqbvllltUOwSCBMTx48fZE2pTnTqqKh/sbMdA19lsCdpS+FWn08FsNjfbqQtG1N17771YuHCh5Pt0LniBkp+fjxMnTgTVnmCcOrVVIMrLy/0OSHV1dYqhLBJadD2WlJSgsrKS9QuVlZUwGo3Q6/VwOBxsPyTq/IVg+Xua/u1rFYtQOXUOhwM6nU6yvBkRjKij4+WdOv5cR0REICIiArW1tSgqKkJqaiq6du0KAPjtt9/YeQIay8LQefXn1PH9SqidOl7U0cxN/neSn3f5rFX+tYMHD3rVuVND6X3+PuSdutraWjzxxBP4/PPPvb4j/82qqqpUxzFqZ0ZGBioqKry+63Q6YTQaYTAYggq/CqdO0CYpLS1FTU1Nk9b7C5R9+/b5TZAOxPXyeDx499138fHHH4e0/ENlZaXfOmEk6mh5G6Dpoo4GtECPgfKCDh48GNR+QklbCb+WlZUhISEB6enpTRZ1TXHqduzYwZxVubCyWq1soK+qqkJeXp5f94qnKU6dXBRVVFQEJOqUwq8EtZlEHZ2fyspKxfBrU0QdtdvXwxu1g0SknGCcOhJ1Sjl1TXHqKKdOfr2QqKupqUF0dDR69OgBoHGZLt6pi4qKYudAyalTEnXZ2dm44oor2PdD4dTxx0bnwZdTR99TKmRcX1/PruFQibqkpCTU1dXB5XIp9jVKea5q1yHv1AHefRddJ+Hh4QGJOrPZjLCwMLbyhxB1gjYFhdGUppaHgpqaGgwdOhQrVqzw+blAnLpTp07hgQcewN13343nn38+JO1zOBxoaGjwm+zOh/ooBNtUUUfnOtCBnzrUefPmoUePHkGH9wLF4/HgwQcf9MrX4ttAx1pfX+913Bs3bsQ111wT0tw/j8cjWR+yrKwMiYmJSE1NbXL4tSlOXU1NDVu0Xen7FouFiUx5m/3RFKfOYrFg69atbGD3J+qocKuvGm92ux1utxulpaVeTh0ffqX9xMXFSdqkRlOdusjIyKBLmuzbt4+dTwq/Kjl19fX1TBj6W/tVyanjr5ejR49KRF1kZCRSUlKYA8aLuujoaHbdKNWpUwqHbt++HVarFVqtFhkZGQE7dYHOfqXfkf9N5OKLzrOSUwdAcs59ofR78g4b/TspKYm9piTq+GNyu92sH1dCLurk91mwok6v1yM8PFw4dYK2h8fjYaKupdavLC4uhtPplORgFRQUeBWvDWRFCcr9GzVqFJYsWRIS8UAdZyCiLioqCnq9PmSiji+doCZmKRE9OTkZHTt2RFpaGu66666A91VSUoK0tLSAREZtbS0WLVqEX375xes9pdUH5J3tli1b2IzAULFjxw507doV33zzDYBzoq5Dhw5NLgEid+q0Wq3fiRJWqxV1dXWw2+3suuPFTGVlpWRmYCAh2Llz5+K6665DbW0tEhISgnLqKisrMXbsWLYGqz9RR9eoUviVsNvtqKiogNvtVhV1TXHq+OuBdzfVoDZGREQEHX696aabWJhcLfzq8XiQn5/PBnk1p46fsQtIc+rotauvvhpPPfUUIiMjJaJOo9GwdXH58Cs5dWqrIyg5dXa7nTmEHTp0kIg6WvLKZrPBYrFIls4LdPZrU506u93OlmgjURfoRAkei8UCm82GwsJCbNmyBQkJCejWrZvXeVBqD398gTp18vuMRJ3ZbA4op06v18NkMrEHW5pF7Q8h6gQtjsViYR1ES4k6Gvh5V+Oll17ClClTJJ8LxKmjhO4nn3wSJ0+exK5du5rdvkALyBYWFiI9PR1ZWVnMyQqFU3fgwAEYjUZcffXVip+lweP111/HgQMHcNddd6G2tjbgcPmpU6dQWFiInJwcxfeLiorwn//8Bx6Px6eLonSsclFHwt2Xg1ZTUxPU+r7Upvnz5wM4J+rMZnPANdLkyGe/xsTESITeF198AaDxmA0GA4DG+0Np8XRyjKqqqphTp9PpAhJ169atw7p16wAAffr0CUik0u9w5swZOJ1OFBQUoL6+HvX19T4HJKUVIJREHf2mDoeDtaeiokISfm2OUycXddu3b/fKhaLt+XLq1ERdZWUlKytCg7V8okRhYSEqKytxySWXsOPmod89kJy6FStWoF+/fkyskagDwEKwSuFXteLHSk4diSeNRsOEtcfjYWVZqKbbZ599hj/+8Y/s/gok/Gqz2Zio4+9tp9OJwsJCTJ06VZL/W1lZKVkajARrUyZKaLVaAI39+ujRo9G/f398+eWXuPbaa32u0GA2myXH5GuWLN+m1NRUAOqiLhCnzm63M6eO7juaYe0PIeoEcDqdePjhhwPOHZo2bRp+/PHHgLfPu2ctNVmCBgl++1VVVThx4oTkBuerh6t1DKdPn0ZycjKuu+46JCUlqZYEcblcmDJlilcY8ezZs/j+++8lrwVaa4wSoDt16sQcmVA4df/4xz8ANCZUK0GdDHUc9FQY6D7p+NQ+v2bNGsyePRtVVVU+XRR5+BVQF3W+rtdFixax/KBAoP3u2bOHraWZkJAAo9EYVN4aD51Tl8sFjUaDyMhI9trKlSsxdepUWK1W2Gw2FlqhgVw+cHTo0AFA4/WTn5+PqKgo9OzZU1FEy0tG7N+/n0266dOnD6qqqvwKJHqfXGvKf6Ptq7nXSqJOfv4aGhokwpI+W1VVxSZKKM1+baqo83g8uPrqq/HJJ594tQNoFHXyvsDpdMLlciEiIgJardbrGGpra9lDBR9+5fsaihIMHjwYgLKo4wUlfw/Kc+rIKeNFHd2jgYq6hoYGrFy5Em63mxV1pmOh9tHDhV6vB9B47VLtPJPJBJvNxtZjpr4k0IkSSuFXl8uFffv24YsvvsCZM2ckJUuoXbyoI4LJqUtISIBWq8Vf/vIX5OTkoLa2FkePHsUf/vAHn0JJTdSp9Qf0O4aHhyMxMbFZoo536mw2GytKHQhC1Alw5MgRvPXWWwHVM3M6nVi+fLnf3DUeXtSF2qkrLy/Hk08+yQQQ79TV1dXB6XRKSqnwA4OaADl9+jQ6d+4MrVaLLl26eDlCJ0+exBVXXIGCggJ8+eWX2Lhxo+T9jz/+GNOnT5e8pjSDUYnCwkKkpKQgKSmJTapo6ooSvKijjjQ9PV3xs80VdbQvtc9T28vLy9m5UHJLAwm/BuLUVVRU4OzZswEv7M5fF+vXr0dxcTESExNhNBqb7dQBgMFgkHTm9HtYLBY2uBPyOm/AOVFH4Vdyc+VOXU1NDTp06ICff/4ZQOO9zW+rX79+AOA3TC4XdcXFxZLQl9qEJF7U8eFjcksAqVMnb3uonDreDaZwpfwhgg+/yo+H3jOZTBJhv2/fPrbUFT1UqIVfs7OzER4ejqysLISFhfkUdeSIAd7hV6PRyJaHolw53qmj8KuSqOP7jD179mDSpEnYtWsXE1kajYadK94xJlFHv0N4eDjL76IamsGKOqXwK9XmA87dCwT1lXa7vVmiLiIigj003XvvvXjwwQeh0+kwYcIEJpaVaKpTp9frER0d7XW98eHXYHLqyKmjiWz+EKJOwHK3Dhw44PezZWVl8Hg8AX2W4DvwUDt1n3/+OV5++WWsX78egFTUkcDga77xN5M/UQc0ugR8IVqgceWFX375hS3aLB+gampqYLFYJB1qoE5dYWEhUlNTkZiY6CXqmhN+pW2oPWU2RdS53W62PdqXWlibtl9WVhZw+FWr1SIpKcnLkQtE1NXX18PtdvudbSzfb2pqKtavX4/8/Hz069dP0amzWCxITk72G5bnrzW5qKPzWl1djYaGBkkStJJTRwnd5NSlp6cjPj7e634qKChATU0Nc1Pob/o9b7jhBkRHR/tdOUReMLikpESyCLnaAwYdl8fjYYOczWZDYmIi+4yaqAMgyalriqgjMcI7dXQN8L/HsWPH8N///heAslNH++JFXXFxMQYPHsxceN6pUxN1ffv2RVhYmOIkCl7MkyMGeIdf+cFcSdQNHjwYWq2WrbwANIq6hoYGyfVB/RiF+CMiIliOHiDNXSNxR25heHg4TCYTqqqqkJ2dDa1WKxF1Go1GNfzq8Xh85tTRubdarZJtUF+p5NSpPazZ7XasW7dOItLNZjPb1vjx4/HCCy9g165diI+P9+l+RUREBOXU0XHodDqYTCavz/FOXTA5dTabTYRfBcERjKijsMmBAwfg8Xjw8ssvK64X+t1337GblwZho9EYcqfuhx9+ANCYMwP4F3X8wKAmQHhRl5CQ4CXqSGTQcclzlOiG5V/nSyz4espsCVFH9eoA9YExUFH30ksvMQH9xhtvsHwh3qlbsGAB9u7dK/kenZOysrKAw68GgwEZGRmSiQFAYOFXOs5AJznQ5y+77DI263fo0KGKnfORI0dQWlrKRL2/bQKQPHUD/kWd/EnebDYjOjqa5dSlpaUpuogkligs+/vvv6N79+4YNGgQgEan9rbbbsNHH33k8zqk7VI7eKeOf12OUvmLhoYGiYvU0NCAkpISJiB4SNQBjdeHwWBg12Igoo4Gf/7Bga4Xm82GJUuWYPny5XjnnXdYXTIlp05J1FGeF7mXlZWVqK+vVy0+nJ2dzZxRpXIn/KoBvIiVh1/5wVxJ1PXr1w9FRUWSpH/KwVR6oK6pqWHbjYiIkOTUqTl1ZrMZ4eHh+O233+B0OjFx4kTs3r0bbrcbVVVViI+PV3Xq6P4hcR6oqCOnjha3591etWv322+/xYQJEyTRIV4Ujxo1CiaTid0PcqdOo9FIvhesU6fRaBAWFqb4MBho+NXj8cDlcrEHQSplJJy6CxiPx4Ovv/464NCSP2hwIqHmCxokyTHYvHmzVyXuuro63HDDDcwNKC0tRXx8PBISErychfLycsXjKCwsxCOPPOJz4LHb7diwYQMAqIZfAXVRpySS3G438vLyAhJ1JLrURB2fU8F3ZGrCtq6uDlarFR06dEBiYiLKy8uZG6bRaJrl1Pl7ygxU1L311ltYunQpAODw4cM4dOgQzpw5I8mpe+qpp1geEX9sQOBOXU1NDQwGA9LT09lv++GHH2LBggUBOXXBirqGhgZotVpccsklrAxFVlaWYudMgsnf7Fslp47OA/1NISd/Tp3RaERcXBwqKyuZqFMSnDSIUxL7kSNH0LdvXwwYMAAxMTHQ6XS4++67kZ+fj23btqm2XUksBuLUKYk6NaeOwoby4yRhUV1dzXK5lNokp6amxitvixd19fX1uP3223HrrbdKajEqTZRQEnV0bPx1l5+fD7fb7VWnrrKyEgcOHMCAAQMAQNWpo/vMYrGguroaBoMBWq1WUtJELuqqq6slog6A5PwCYNcTf/1Tv0Nlc8xms5dTJxd19Fly6rZs2QKtVou7774bFosFOTk5bF3ahoYGFqXgRR3dBzTpRB5+5UUdfz3zTp1er5fcI2rjAvXJ/DjAiyH5DFI6t3Qu+XMabE4diTYAPkUdH341m8147rnnJJ+ja4geBOm+E06dH1wuFzp37oyPP/64tZsSNMuXL8fNN9+MlStX+v1sIIVnjx07JhkwfMF3EtnZ2Th79qxXB19VVQWPx8NCN6WlpUhKSkJMTIxE0LhcLnTv3h3Lli3z2s/KlSvx5ptv+sz92bp1K2prayU3Ii8a1Zw6Pgzw4Ycf4tVXX2XvFxUVwW63B+XUyUNJSqKOFwBqoo62R6LO5XIxJyc2NrZZTh2FevhcJ55ARZ3VamWz/uj4Nm/eLCkgq3ScfPjVl1PHu5JyUff1119j4cKFaGhogF6v9xt+BfwXL163bh1uvfVWtu7owIEDATS6dBqNRtENI1Hnb1USuVPXqVMn/PLLLzh79mzATh0NSEajkS39VFpaiuTk5ICcOipS+6c//Qnz5s0DAAwaNAhhYWE4fPgwAOAf//iH10on8gGpurpa0jcEIur4kL+SqOvYsaPXQMU7ddXV1QgPD2eOnj9RV11dzZw6fo1nGuj57+/fv5/9OyoqSjX8ajQavUQdf19TgXB5+PX111+HRqPBbbfdBsBb1DmdTrjdbtZ3XXXVVZg9ezb7vfmcOnn4taKiAk6n0+fMTbqe6HrQarWsb6QJFHKnTimnrm/fvli+fDnLqXM4HMjKymKuYE5ODjweDzp06AC73Y6//e1v+OMf/ygJv9J9TikEcqeORIyaU0czQel4jUajqqij7/D7MJvN2LBhA3bu3On1ebr+evbsCUAq6tTCr76cOl7UyT8nd+oOHz6M+vp6Lw3CizqTySREXaDQjCYSHqFk586d2Lp1a8i3S1DIkbeKlSgsLERcXBx27Njh83PHjh3DjTfeCKBRqGVnZ6uWSiguLkZkZCQiIyNx4MAB5OXlsQFq7969GDVqFOvo5KKOX4+QXq+srJTM4Fu0aBHGjRvHwndKNbUmT56Mq6++GocOHYJOp5OU6ZA7dRqNxkvU0QBTW1uL1157DS+99BITOtR2yk8hUccLoUDDr8E6ddQBJycnszYWFRXB7XYjPj6+2eHXmJgYeDwexST3QESdx+ORiDo6bl7U8QP/F198gZycHOzYscOvU7dq1SrMmzdPIur0er1E1BUXF7MBuk+fPkGFX91uN/7xj3/g7Nmzks9t3boVq1evRkNDA4xGo0TUAVB0w5rq1L300kswGo144IEHfIo6j8cjKYMCnBN1RUVFqKmpQWJiok+n7vTp0xJRMGTIEDz22GOsLZmZmcyhf+6553D//fdLrnGlgevIkSPs30116mJjY5moS05OZs4ahdaURB3lpPkTdWfOnEFmZiabVAB4O3X8eXrrrbfw2WefwWw2B+XU8fc13Qt88WGbzYbXXnsN999/P5vgIhd1/Mxb4NyygHT/8Tl1cqeOZjL7qlsmd+piYmIk4Vdy6qiYMSDNqaPfgN4zGo3MMe3duzd7MKZQdHJyMux2OwoKCnD27Fkmuvh1XJVEHe/U8Q4foO7UhYeHe4m6devW4cUXX5SIOhJYZrMZ48aNw6WXXup1nuiYlESd3Knzl5dM7aTt+sup++qrrwA05vnx0D7lTp0IvwYAP2CEkueeew5PPPFESLe5dOlSJry2bNkCwHtQ2b17NyueCoANppQDpURVVRVKSkpw9dVXw2w249ChQ7j//vsxa9Ysxc8XFxcjJSUFffv2xa5du1BWVsY6u+uuuw5btmxhs6Oowzt79izS0tIkHQvgHcakY9u4cSOrqyUXdaWlpfjmm2/w008/oaKiAvHx8cjKygLQeLPLc+q6du2K/Px8SYFPyu/Jy8vDgQMHUFxcjPfeew/33XcfaxPNEk1ISIDT6ZSca7pmgs2po8FGbQYsDchJSUlsECQR0hxRR+FX6oiVOiV/om7Hjh2oqalh4WmPx8N+m02bNimKui1btuCf//wnHnjgAb+ibs2aNViyZAn7nWw2G8upKykpQUNDg+RaGDBggJdTd+ONN+Ltt9+WHA/9BmvXrsVzzz3HHKmlS5diyZIlzLUgp65z586YMWMGpk6dCuBcGIUXPPTAE4xTZzAYkJycjKlTp+L48ePsfFRVVUkW+ibIHabcKIPBgLi4OLbvpKQkxRAPXUMulwtnzpxRLYXQvXt3r5zAxYsXM/eObzsJy8OHD7NrSEnUTZ8+nT1w0jY8Hg8aGhowZMgQvP3227jiiivYyiqxsbFM1NGAT7NfgXPhV3rdn6g7efIkunbtygZWQDpRwmazMZEFAGPGjMGMGTOYgOJREnV0TSmJOr5OXV5eHqqrq3HDDTewz/kTdfR/XtSp5dQRgTh1dP3zD9Q0KzY8PBwxMTHsWlMKvxJbtmxh7VATdUDjb8b3b7yoi4uLg8lkCiinzmQySXLqDAYDO97w8HCvlJ1PP/0Ub731FvtObW2tRASqER8fL8kL5+/DpuTUBRJ+JaeOcnfpO4TcqaNjEk5dAJCo27x5s2r9rqZQWloa1GLb69evx/jx433ms/3yyy/4/vvvcfr0aeY8yZfceumll/DII4+w//P1hN544w3FY6Sn7169eiEzMxOnTp1CTk4OE2ZyiouL0aFDB/Tv358Jr7q6OuzatYt1dhQypQ7v5MmT6Natm5dTJxdH/Hfpb/nA/c477wBofLInUUeLWnfr1s1L1PXu3ZtVdgcab0gSdTQAhYWF4aGHHsIHH3yAnJwc6HQ69hn6mzo+j8fjJUYrKysVq7XLw69UlNJf+JUXddRuEnVWqxWZmZkYM2aMaqFfu92OJ554grmOFH6lwVmpU5KLOiqjUFtbi+LiYgwfPpwVy62pqUFlZSWKi4vRv39/ZGdns3NBv1ePHj2Qm5uLnJwcVFdX+w2/1tTUoKamRtIRUvgVaBSLfCh14MCBrF4XHePatWvZZB+5U0fXDYnVDz/8EB999BGrY2axWFjh1c8++4xNADEajV7uZlOcOhokKdGdxDL95mqiTu7UkRAjp04p/NqlSxcAjfedWimEHj16sH4kLS0NAHDXXXdhwoQJkvMHNA7iQGNfQdXy5aKupqYGS5culZRFamhoYPeF2WzGgw8+iMjISLYEmNlsRmxsrKTkhJJTR6/7EnU2mw0FBQXo2rUrEyaAt1NH29Zqtay+m9Lar4E4dTExMRJRRzl19H5KSgrbnj9Rx59H2p5a+JXwJeroc3T9R0dHs2OkiRJmsxmXXnoptm7dCrfb7VPUXXXVVez7vXv3ZvX7SNSRKK+srJTkXjocDtbfxcbGwmg0ei0Txodf6bwkJydLRJ0/py4nJ4dFfugY6fz4crg0Gg1mz57NxpBQ5tSphV/NZjNqampYCoD8WOQ5dXT+LkhR97e//Q2jR4/GjBkzQrLQOom6Rx99FDfeeKNEEPA5YUuWLAkqTFtaWori4mJ8+umnigVQt2/fjqKiIixfvhzvvfceNm/ejA0bNrCbYc2aNV4XTl5eHlwulyT/jFwvh8MBl8uFPXv24OzZs+zCJlG3YcMGzJo1i1XLp+/k5+fjt99+g8FgQL9+/ZCZmYnDhw+jqKgIRUVFijlLvKij/bvdbkmIlwQZ5dvl5eWha9euqk5daWkp7HY7HA6HVw6d3Knj8wjloi4rK4uV73C73aivr0evXr0AND5pjhgxAoWFhYiOjoZer8fatWuRnp6OUaNGsZDGzp07kZqaylw1uairqKhg1x4vRvl/q4Vf09LSoNFofIZfY2NjYTAYWG4QibqEhAR4PB789NNPOH36NHbu3IkPP/xQcTvZ2dn497//zUpukFPna3Hy+vp6aDQa1qlrNBoWmjl79iw8Ho9ERB48eBA2m42FKUls0G86aNAgnDx5EidPnpTUyyotLVV06vyJukOHDknueRIfVC/xyJEjcDgcbNu8qCsoKGBlKOh3pOWp+JU+lGpWUTiKrxVI94XVasXzzz/PHm7kyJ06wFvUkVCVizrqC2hwJlFHQtGXUzd06FBotVrk5OT4dOpycnLgcrnQ0NCA8ePHIyEhgTkgfNtJ/NTV1bHfQy7qyFGWh1/53DT6mwoLm81mxMXFITo6WvIw0RSnjsRFly5dfDp11L6ePXuyNgXi1PHfpXu9W7du7P7kc+pISPkSdfRvuTCj64Fy6pTCr4QvUUfv0SxjfqYx79SNHz8eFRUVrP6ekqg7ePAgPvnkEzYG9u7dGxqNBrGxsV5OXWVlpaR/4526mJgYGI3GgJy6pKQkdm9STh3dI2azWVHU2e121sZARR1BzqOSqKutrcWECRPY5KNAnDp/4dfi4mLJihk8cqeOb08gtBtRt2fPHhQVFWHTpk3o06dPSBYbT09Px9mzZ3H06FEUFhZKZqG8+OKLyMzMxM8//4w//vGPLMmYx+12Y//+/fB4PHjxxRcxc+ZMiWvxyiuv4JdffpEMXna7Hddccw1efvllvPvuu3j33XclDldeXh6uv/56Fm/ftWsXsrOzmeuyevVqJCYmIisri4nQCRMm4IEHHmDuIM3s+v3339GjRw82FX/t2rVMVL377rvo3bs31q9fj4EDB8JoNKJLly4stEvfl0Oijqbq869HREQgLCyMXfwulwvbtm2Dx+NB165dvZw6XtTdcsstmDlzJgoLC5lL1a1bN4kwstvtyM7OxpgxY+ByuXDq1CnExcWhf//+iIuLw/DhwwE0Opg0+JGoW7x4MbZt24b9+/fDZDLB4XCgtrYWV1xxBe655x6MGzcOQGOYkRw1wFvU8eFFXsjxoVY1py4mJgYxMTE+w6/UOer1esTGxkqcOqDx9+/QoQNGjx7NQmVAo3D/61//6tUW4FydOn9OXXh4uCRPk0QdHQddgwCYYKRZriTGSawMGjQI+fn5KCwslIg6PvxaV1fHRERNTY1X0V3KqQPOXYuUm9mvXz9ce+21eOWVV+DxeNhTL22bD7/u3LkTHo8HnTp1kog6i8UiEXVqJTboHPLHGRcXh5qaGixatEh1wpI8pw5oHJRra2vZvavm1FVUVLCneuDc7FeCnDqHw8EeSIDGayg9PR2xsbGoqKhQdeq6d+/OQoU2mw033HADZs2aJaktR/vjxQmtByyfOMFfGzSw8aKOziOJGxIVcXFxiImJkThyTXHqqM/x5dRRva9HH30UixcvZp9RcuqUig/zglWr1SIuLo79jnxOXVFREQwGAxMK/HHLt68mzNRmv/LXiS9Rx4sHs9ksOSe8Uzds2DCEh4fj559/VsypAxrzi7VaLbv2qU+NjY1lIooXdTxOpxPV1dXsPJpMJq9lwpREXUJCAju35NTx4Vde1FmtViaGyX2uqamRiEB/UN/I5ymSqDtz5gzWrVvHjIvmzn4NDw9ngk5p3WG5U0dccE7dtm3bcM011wAArr32WtWJCA0NDbBYLJI/aqSnp6O8vBy1tbUYMmQIPvjgA9TW1mLDhg146qmnADTW4nK73fjyyy+9cmjmzp2LgQMH4pdffsGcOXPw/vvv44MPPmCfo1IfvMOxefNmWK1WHDx4EEeOHGEDH9A4YJAgo7ybiRMn4q9//Suz+bds2YLevXuzqe0ejwe7d+/G//73P7aP7OxsFBYWorCwEPfddx8A4Morr4TdbsfXX3/NzqfVasWKFStw2WWXAQAyMzNZx6XT6XyKuv79+3u9Hh0djbi4OMmam7RoO4VfT58+jUmTJjGnEGgc6Pfu3cvqRs2fPx/z5s1D//79JW7hoUOH4HA4cOWVV7JzFB8fj9TUVFRUVLBEWL7wb2JiIpKSktiqDy6XCyaTCaNGjcKgQYPwyiuv4M4778TatWsBNIaMKRwFqIs6rVYryQUMRNRFRUV5CVseXtRR28kBGTVqFHQ6HT755BOMHj0avXv3xqFDh9hnv/76a7z66quoqqqStMVgMKC2thYej8evUyfvNEjU0W9A1yAANpOMRJ08dWDQoEGSFQVIPPHhV+CcCFQqzmwwGBATEwOz2czSAW6//XYMGzYMADBr1izs3bsXv//+O7vXlJy6vXv3IikpCQMGDGC/WUVFhcSpq6qqCsipo9+jT58+sFqtKC8vVy1wLBeogHdYjAYj+QBdXl7OBkJqB4kEk8mEiIgIr7bR9pKTkxEZGSkpRyGH3Ldjx46xfEJ+ofGGhgYWUouPj8c777yD77//Hrfeeiu0Wi0WLVqEPn36MFHOizp+WS9eHAGNvynlp5nNZlx//fWYMmWKxJGjc2WxWAJ26nJzc9lDAH2fJlfQ9Uuzivv164chQ4ZIfptgwq9A471BNcQAaU4d9ZH8A5Jc1NHDtbwUCcHn1DUl/Ao0CsDi4mKEh4d7CV26LoxGI0aNGoUNGzaohl95McX/nybuUGkUwHu2PIVf+WuXH5P52a80UYLue17UGQwG1fArP97wk0GCcerouuOvv4iICHg8Hi9XXe065CdK8KJu4cKFuPHGGyXhVyIjI+PideqqqqrYBR0TEyOJ2/MsWLCAOSIxMTHo2LGj6jb5JZMWLFgAq9WKb775Bq+99hr69++PcePGYfXq1dDpdKitrWUVyAHg119/xb/+9S8AYE99aWlpXkVXAamoozDQrl27UFhYiNLSUva0w4u6nJwcLFq0CCUlJdixY4ck1NmnTx920ZPj4Ha7odfrkZWVhQMHDuCHH36ARqPBrbfeiocffhivv/46rrvuOtx333144403mGDzeDwSUQc0CpZRo0Z55dUdO3YMpaWl6NChA5KSkiRJx8XFxYiKimK16Kiz2rBhA/R6PTIyMnDbbbfhnnvuwcqVK7Fz504mkEpKSpCfn89uluuuuw7/+Mc/kJqaKhFGe/bsgUajYSHtgoICSaVxuj748FZERAQ6deok6VBNJhM2bdqEPXv2MBFlNBqZI8GLuoiICBgMBibqjh07Bo1Gg86dO8PlcjFXj8/3qqurQ2pqqsRip04mLi4uKFFHwrdr166YPn06XC4XxowZgz59+uDEiRPsuE6dOgWPx4Pt27dL2pKUlMQ6x0CcOh41p85kMjGnrm/fvl75N3q9nuVh8ccWERHBwjP0RMwXZQYgcZ0MBgM0Gg26du3KHOR58+ZhzZo1ABoT3bVaLXbv3q3o1CUnJ6OkpAQ7d+7EoEGD2ExmKpgaiFMnL6dB12xWVhabwCEvecOfUxrYeacOOCfqaN1g6ovovPCL21M7aGBMTEyERqPxqt/mcDhQXl6O5ORkdq7dbrfiYED94unTp9mDDv3eHo8HNpuNXYvx8fF44IEHcN1110Gj0cBsNiM7OxvV1dVM6CuJOr4+Ir9SQW1tLSumOm3aNPzzn/+UOHJ8+DUYp46W9qPvUx+Um5sLjUajmnDuK/yqVNIEUBZ1vFPHu5sAvAoT04MAHxW4//772cN5c8OvQKOoc7lcSEtL83Lqamtr2XXRvXt3NplMLacOaHyQ41MN6HqklBElKPxKnyWnmtJblOrUGQwGlqYAeJc0kU+UUMotdrvd7F4KRAxpNBoWHuZFHbULkE5CUiqpopZT99e//hXffvutxKkj0tPTvbZF1wnVtiQuOKeOt7qpgrUSc+bMQXV1NfvDdzZyKOnXYDBg/PjxGDt2LF544QWsXr0aDz30EC6//HK43W5ccskluOOOO/DYY49hypQpsFqtWL16NdLT05GRkYGvv/4a4eHhGDNmDBN1/EUuF3Xx8fESm5oWfs7NzWXuS05ODt5++22kp6czQUcXNe/U0VOKVqtFv379cMkllyA7OxvvvfcerrnmGmRkZOCNN95A37598fXXX+O2227D3LlzcezYMfTp0wcAmMNFoq5jx44YOHCgpBRITk4OevXqBaPRyJLIhw4dyuoVlZSUIDIykv0uHTt2RHx8PHbu3InMzEy2jM0777yDqKgobNiwAfn5+YiPj5eEkHQ6HRvgUlJSvERdjx49WA05AH5FndlsliyfA6jfHDTQ8R2tRqORlDV57733cMMNN7DQVFxcHBISEiTry9bV1aFr166w2WzsmuWdusrKShw+fBgLFiyQzEwuKSlh7gggFXVGoxFPPvkkEhMTMWHCBPTu3Rsul4uF3OnBYMuWLSguLmYdU2JiIhOWzXXq6F7q168fTp48yUJMdL7o/EdHRyMjI0Myq6u0tBQdO3aEx+NBXl4e+45c1PHQPTRs2DCUlZXBaDRKBrXw8HD06tULe/bsYfcd79Rdc801cDqdWLNmDQYPHsx+R4vFwpYuoofDQHPqCgoKkJSUhISEBHbOfTl1dM7loo4GJTp+uhdJSJGo4506+UxReduoHeTUUdhR6XqnFRD4Glhms5nNVrXZbBKnjodPICdRqubUycOvRqOR9WdKAxbvlPAuVSCijnJr5aIOAHPzqf3yc6Hk1BkMBsnqAHJRZzKZ2O9H4VeaKME/8FKbeFFHvw3f18yZMwf33HMPAPXwq9lsRlhYGDQajd9BnpytUaNGScajkpIS1NTUsGuNZmNSWR86Hjm9evWSlI8ioRYTE+NX1NF9QNcwXQ9KOXXkysnDr2pOXU5ODiIiIrxKfOn1ekyaNEmxlIkSaqKOrlf+YVmpD1XKqePbKRd1sbGxioWvz1v4lXK8Wothw4axp4QffvgBI0eOVPwcdfz8HzVIPPTo0QNarRYvvPACdDodUlJSMGPGDOZgDR06FJ988gmWLVuGH374ATfffDO2bduGESNGYODAgbBYLOjbty86d+7MLsRLLrkEERERGDhwIBN1eXl5OHz4MO6//35JO+hH5EXd3r17kZubi4ceeoh9btSoUQAgcepI1L322mv461//iksvvRSbN2/G9u3bWeiVMJlMeOKJJ9ig9u677+K9995jORI0ay4zM5PNhCVBcPDgQXg8Hhw5coSdl8WLF+OTTz4BcM6pow49NjYWjzzyCBwOB+tsgcbOasyYMdiwYQMKCgpYXTCgscPq2LEjuzFSU1NRUlLCBsA9e/Zg8ODBkkFGTdRRB0xOnfw8KEGf45064FyturVr1+LgwYN4/PHH2cBgNptx+eWXs3QAmqBB55JEqdVqlTh1b7/9Np566incdNNNqK2txd///necOHFC4tQlJyczR8doNKJv374oLS1Fjx49mBN2+PBhydJFW7duRXFxMS677DLcfvvtkok61Ak31amj6/TRRx8F0PhEqdFo2MBE541WLuDFN38dnDp1in3Wl6ijznXEiBEA4BXSAhrDvF9++SVKSkpw+eWXs+3ZbDYMGTKE3TODBg1iq3TwD1TkvAWaU5efn4+0tDRERUWxBwdfoo4GMXn4FTgnPlJSUliYn35/Cr+qOXV82+j3pHJGnTp1kog6NafCbDYzoUNOHQCW29ijRw/ceOON7H7nv0fQg19eXh47Vn/hV+oj+e0oTZTgX/cn6s6ePcseyvgHGmLkyJHs91Jy6jwej8QlttlsEkEtF3WRkZGqTh2VfeKRi7qysjJW75Mg4UPbU5r9qtFoEB0drShi5JAYGT16tOScUm4c3bcUdldy6uTlNngCcerk4Vf6m86tkqijMVwtp04+UeLEiRPIysqSLEVHx/DNN9+wPsAfs2fPxtSpU9mx0/6U1rX2J+romuGLXMvDrx06dGCOrPycUfv5hyG+/qIvAhZ1t912m6TyvhL+lphqDoMHD0ZKSgpGjx6NQ4cO4eabb272NunmIFEzcuRIHDhwAGfPnkVkZCSGDRsGjUaDyy67DBqNBlOnTsWiRYvw448/YseOHRg+fDhbBqZfv37M+QOAxx57DHPmzGGzzACwJa3uv/9+aDQaSeJzRkYGE3V9+/ZlHcjtt9/Ons7o4uSdupycHMTFxeEvf/kLZsyYgYcffhj//ve/cfvtt0vqJBG0ZJDRaMSwYcNw3333sc4hPj4ekZGRTNTV19ezp5MTJ07AbDZLjjE+Pp4JYypKTB16TEwMnnrqKQwfPpxNYCCuuOIKbNmyBWVlZUzUhYWF4Y477mCzKYHGwc7tdqO0tBS1tbXYuXMnhg8fzkKi1Ab+9wTUnTr6W03UKTl1QKP437BhAx599FGMGDECY8aMkVj7o0aNwtatW+F0OtnAQwKGBBEl7pJTRyE7i8WC7du346WXXmLL7RC8uJQLDnKLNm/ejMrKSlitVlx66aXYvn07W0bq008/lYhm3qnzeDySHLlAnDqg8emfquTL2yl37Hr27MnELQCWx+RwOLycOqXyIPQb86JOzqBBg1BWVobo6Ghcf/31qKmpYS6cyWTCgw8+CKDxwSwhIQEVFRUSEcaXU/Dl1PHh17S0NMlgXFZWprpKB93jdCz8wE3noHv37l5CpKioCHFxcex7fOK9klOXnZ2NRx55BA899BAGDhyIiIgIn04d0Hjt0nVIOXXAuWXKYmNjsXLlSq8UFjVRd/nllwNovEZ0Oh2+//57/OUvf5G01WAwsHMld6CoHbxLJHfqbDYbfvzxR69jKSkpkRT6BcAeKp5++mmWhylvPyBd55SgPENqu1r4lQZ3PqcuUKcuKSmJ7Vuj0UgmQajVqQMa7y9/oVfgnHgbNWqU5JzScdL1R06dkqjjxyg5vFBTeiACzk2UoM/yDzlardarpAm1ITo6mpUbcjqdPnPq8vPz0alTJ0mUA/AtSJWYOXMmxowZoyrqeJQeMJTCr5s3b/Z6n37PlJQU9juvWbOGhd6VnLpAXTogCFG3atUq/OMf/8Ajjzzi1YG5XC58/PHHXnk0oeY///kPNm3ahCVLlqg+GQSDRqPBqFGjvMqOkMhJS0vDtm3bJIPYpEmT2ALQI0aMYKKuf//+rPMzmUyYMmUKnn76aXTr1k0i6gYOHIiOHTuia9euGDp0KBMHw4cPx7Fjx2CxWFiR4c6dO6Njx47o168f0tPTcdNNN+GBBx5Aenq6xKnjnTCj0YjHH38cn376qaKFDjTa/Pfff7/X+xqNBnfeeScmTpzIBmNygHJyctCtWzevp0N+IJA7dXq9Hlu2bPGaOTxx4kSEhYVBp9OxatoZGRl45513JCVbSDBOmjQJ//3vf2G323HttddCo9Gw/fCdjslkgk6nQ3V1tcSpGz58OPr06cN+52Cdupdeegl5eXk4e/YsPvroI5ZXRNsfPXo0ampqcODAAbZfuaiTT5Tgc0L5nCy+s+ZzPuWdpkajwcyZM/Haa6/h73//OwBgypQpqKurw44dO9igwn+Pz6m788470blzZ3ZtBuLUAY0DNs1wpppwclFH+/nggw/w6aefsu+mpqZ6fZY6cqUSRXSP9+jRAwkJCYqijkTrhAkTEB8fj5qaGrYEU3h4OKZNm4bs7Gx0794dCQkJcLvdklA5j6+cOj78Sk4dIR/wCZvNxq5TefiVPwfdu3dn9wOV93C5XOjSpYti+FXJqaPBY+HChQAQtFNHS0YB55w6tYFaLuoopE6ijtZr/eabb9iEGt6pU9qOUviVP18k6qZOnYprrrlGcv94PB6JqKPv06ojzz//vM8wVlNFHd+PUPi1oaEhYKcuMTGRnQ+6r/jtKeXU0TkJRNQRycnJiuMltdGXU6eW5gT4d+pItCk5dSTqeKeO1kHmRR2/uoJ8wgY5qySQmyvqCDoWefiVR82pk68owdeGra+vl4g63qlbunQp3njjDQDKTl2LiLoJEybg119/xTfffIPJkyczZb9o0SJkZWXh8ccfx6233hrwjtsKa9euZU/zSlx++eWSTiYiIgKTJ0+G0WjE4MGDmftwySWXMBcrKSmJiZ+srCxW2Z2KDAPA448/jpkzZ7LvXHfddQAarXLKqyCHYty4cRg8eDD69OmDd955h1nwlFPHi7pAmDZtGl577TXF99566y3cfPPNLL/uyJEj2L9/PxN1cvgp4HJRBygvZdazZ0/U1taivr6e1Ruj5X34zw8aNAgffvghCgsL8dhjj6FLly5sEXCy2vlOR6PRICUlBZ9//jnLRTObzRg+fDgOHjzIjklN1PXq1Qt6vd7LmRg4cCA2bdqEdevWsVmDvFM3dOhQGAwGbNq0iXX8KSkpMJlMKC4uhsPhQF1dnST8WlFRwUQbOWEzZsxg5wPw7dQBwPPPP48777wTH3zwAYBG8Qs0Cmxy/PjOlsTWihUrmNiip3l/Th39niRmunTpwsrakDiRO3VpaWnsfNG5otwxXtTJZ8zxrg7Q+Ls+/PDD7GGHZ/DgwTAYDLj55ptZYVt6sjaZTNBoNOjbty+Ac9eMfCUF+X555OFXJacOUA7B8k4dn6fDPzQCYNc0Vc0nsdOlSxef4VdecB47dkxSziMyMpI9LAQafuUf0BoaGlTvE/pccnIyjh07hvXr16OmpgZ9+/Zls5VNJpMknMkLJEItp46/ZkePHs1eLykpYcWN+clGVqtVMrGDP2d0nfmaRUiDP+/+BOrU8dswGAys5qZc1IWHh0uu87KyMolTxzu4tD0q3ixvb6Ci7tChQ6wMB50TEo56vZ71nb5y6gJ16pREHZkfaqKOQsx03mmdWAq/ejweliohz6kDzv1eJOr4KAd/DMEiz6njnTq6d5WcOofD4RV+5a9Tt9stCb/yTh1NcgKkheDpWAOd+QoEOVFi4MCB2L59O06ePIlhw4ahS5cumDdvHu69916cPn1aUuftQub555/HF198AYPBgO7du+PIkSMYO3YsEwN8LgeV35g5cybOnDnDEk0ffPBB3HzzzWxgpwkYv/76K7p164bMzEwm9F588UVWZJUgpy4nJydoURcIMTExiIuLw5NPPokhQ4Zg9+7diqKO79giIyPZwCnvpORoNBrWEcbExEjCdERYWBjuvvtuvPbaa/B4PJgwYYIkVMz/TSxZsgT79+9n7hUvOpU6eJ5rr72WlUmRM2DAAEluBp9TZzKZMGbMGCxbtkziENJED5rR3KtXL0n4lZxBEnWffPKJJPTry6kDGs8hrSASHh6OrKwsdi34cup4UUM5ZWqirqCgADabjbnw8npqgHr4FfAu5kkCKzExEVqtVrIqhPw7fKdM/YycxMRE5OTkYOrUqaxtJLDkx0P3pdpqL/4mSrhcLhQVFXk5dfw+eficOn5Qpe/yTh19hhd1mZmZEoESERGBpKQk9nneqTt27BhbvxJo/O1IVAUafuUHMafT6VfUjRkzBqdPn8aECRNw9dVXY+LEiZgwYQIGDRrk9V25UOe3w/+bT1QHwNw/k8kkyU/iB1p+zWR+H/4EJBGoU1dfX8+ubblTR30ZIXeVO3ToIEm0Ly0tRWJiomKuJW2PUhKa6tT17t2b5UNS28jNSklJYX0pbd9isbDP0bHNmTNHdfv+JkpQ7pvSRAmdTsecOv68l5eXS0KtdH3q9Xp2TmmMkYs6Oja6lprq1On1eoSFhUnOC0HtCiSnzuVySWb6U5uUnDq73c7SOKg/jIyMbFmnDmi0IT/88EPk5+fj+PHjqKqqws8//4ynnnpKsbO/UOnUqZMkX61nz57QaDRISkqCwWCQ2MBdunTBTTfdhM8++wzDhg2TODFAY9iREmbpRtVoNDh58iRuv/129n+540ULO58+fZrlBIaazMxMFBcXw+l0oqysjK2xyhMWFsYuPCWnLhDGjRvHiv8qMWnSJMyfPx8PP/wwe03JqQMaB5qrr74aFRUVbIYfQU/PaoMVlSoJBPl0+Yceeghbt25l9fB4Ubdz505otVoMHjyYLWheWFgoEXVms5ktak74E3VAo1M1cOBAdO7cGRqNhs1MlucXAY2dRFhYGFu5Ii4ujpXVUQrzREREMMfTl6jr1asXDAYDE5S8oDeZTOy4wsPDmaiLiopCVFQUrFarVz4d3QeBplhkZGRAo9Gw75HAkv/OvFOn9OTrr6RJaWkpXC4X0tPTvUJBSmVNlJw64NwATtcanVuDwYCIiAiJU8eHX6lf4NelBRoHmKNHj0pcUbmYViIiIoK1mw+/8u6dErS9++67D4899hjefvttrF69GuHh4Vi2bBnuuecer3OpFH71N/sVOHfeyPGYPXs2AGVRJw+/8m0IlVNH+5A7dfK+hv8tALDyTJS6ROFXX04duUHy+7Jnz55M2AcKnXdqP//wSOejurqafU6r1cLj8Si644Q/p85sNgfl1AHnRB3dI3R9GgwGDB06FAcPHmQGAOUw19TUSJw6+XUQLPRb0vXDh199TTaTz36l9vN6QC2nzuFwsGuMRJ3ZbG7ZnLo5c+agc+fO+Pjjj/Gvf/0LpaWlmDJlCq666ipWs+piR6PRICMjw6ug5N///nekpaXhzTff9JrBMmjQIK9CvrQtX7Ob+E5g0KBBzWu4ChSupH0pOXXAuU5BPlEiUFasWMEq1Suh0WjwzDPPsNAdcG6AVhKP1OHJO28+Mbi50ABIf99www3o0qULm0xkNpvRoUMHFBUVYdeuXejXrx9bFglo7BR4UacklpKSkqDValm+lRIajQZvvfUWq5koF3XygY3CWNHR0UhNTUVubi66deuGTZs2KYo6gia7KLVz+PDhKC4uZsfDuw58Ajjv1EVFRSE5ORlFRUWqTl2webP0PcolUxN1J06cQGpqqlen78+pI1eTd+roWpM7dbSWpjynDjh3fq6++mps3ryZXdfPP/88pk2bpurU0TFSH0KvWa1W5Obmqoo6X06dUviVd+/Uvgc0utcLFy7EzJkzvX4r+Xf5CR/y7fBt5Mu4zJw5k70/b948LF++HI899hg7ZiIQp45vTyBOHR9+VhN1ak5dp06dvJy6lJQUOBwOdr79hV/5a1Pe3tdee011iUA15E4dL+po+x6PJ6h7jvoytYkSERERqK6uhsvlUp0oQTl11L+VlZUpijq9Xg+NRoM+ffpIRDjdd0lJSRg2bBiuvPLKkDh1Op2O/b78AwT9Tvv375cUf6f28E4dHQ+vB3Q6HRITEzF69GgMGzZM4tTR56mGIG+YtEj4dcWKFXjjjTdw7Ngx3HfffYiIiMDHH3+M++67D1dccYXqUjkXG/fff7/XzNyhQ4ciLy9PMrOTmDVrlmRprkChi16v10vETijp2rUrwsPD8eKLLwLwfvokaPBvqlPXFOLj4xEbG+vlbgFgjiIvSoBG5yM8PFwyg7ep8OFXoPHJdty4caxul9lsljh1FAbhzwuJoKKiIsVwilarRWpqqurgSowaNQo33XQTgMYZ3FQTEJAOorRMDy1ZlpaWhl9//VU1zEPnb8CAAey3V3PkqeYS4D1A8aJuyJAhmDVrFi6//HI2iYhEHT3E0OebKurUwq8U1qGZpfKQl7+JEkqiLiMjAyaTCaWlpZIJZPQkLw+/Aufu3cjISElppnvvvRd9+/Zl11Tnzp0lTp0cui4OHz4Ml8vlFX4lfOXU8SVHgnHqtFqtV2K6Uts+++wzHD9+3EuIAuqzX7VaLU6ePIl33nmHvd+nTx9MmTJFMsOdKC4uRlhYGOt7lJw6pX0R9HlyjDweDyspQ9shUUduv1pOHXDuwYqHRFRhYSFcLhcqKipYCgKg7NSptbcp0DGS8OVz/vjjUIsIKKHm1FHbzWYzuxfVJkrQ7Ff67UpLSyX1KHlRJ9++y+ViD3CJiYm49tpr8dNPP7Hfrbmijs4Ff61R+x999FE88cQTku/xEyXou0pOncFgwK+//soEKjl19Hl+NYwWdeoOHTqEP/7xj16D6Pz58/Haa6/h1ltvxVtvvRXwji9UZs+ejcmTJ3u9rlZjxp8jpwZ1An369AnJTGAlHn30UaxevRr33Xcfdu7cqRqapE4nKioKGRkZElHRUkyaNIk9tctRc+qSkpJQUVHBlrZqDkrVysnZpNdTUlKQk5OD7OxsJur4xGN/Th3QKCCC6WjHjBmDs2fPsjw3/trgXZDo6GikpaVJ1o/ds2eP4jGOHz/ea6KEEvR5uVjiE5yNRiNeffVVxMXFeYk6eqJVyqkLBH9OHdB4fgCwNUfp32qf12g0bLmpgoIChIWFseK+QKP7l5CQgFmzZmHKlCnseyTq+EGMoPPjS2yRmFdynQh6jXLNlJw6jUYT0CxW+m00Gk1Aoq5Dhw4+62bRdzMyMiRpG/LrkRgzZgzuv/9+dg116dJFcfvkYMjDr+Rq8/vgt0//1mq1XtcVDf40sN5666347rvvmDttNBrhdrthsVh8hl+pvUqRExJRRUVFqKiogMfjYRPq9Hq9T1EXisgCnRMSdUrhV/5zgUDXaNeuXSXnlPbBizo6ProfdDoddDodc+roO6WlpapOHcE7dXSv88LJVwHlQJCLOj78ylcQUFoSTe7UuVwuL6dOvi/eqaNlS+n+bYpTF7CU9SU8/vznPyM9PR233norq0skaFnoom+p0CvQWLeNJn/4qsrNh1/T0tKQn5+vWH4ilIwYMYLNDpZDok7u1AHqA1WwyJ06QFnUWSwWhIWFsQkzvFNH57asrEw1LzI9PV1STy4Q+KdwfkAnpw44J+qARtezurqa5WoRlE83YsSIgEQdvSd3adXWYOzWrRv+97//sQE6JSUFpaWlLRZ+BRqd9O+++w45OTmsg05OTlYtPgycc2rKysqQkpICrVbLjjUhIYGdJ95xpxlskZGRrNwFwSfbKxEREcHyhpTClny7gMZVHQwGg2Sg5p/01fpu/vegmcIRERFM1KmdjzvvvNNvlX76rrzmIy+4eNHWrVs3LFq0yOc2gXPFd+Wijp/56MupUxoc6fOrVq1C79698cUXX+D9999nE3PoOqqsrPQZfqUJSL5EXWFhIcuVpcG+tUUdv/1g7rn4+HiUlZWx65jCqYmJiSgqKoLJZGKzV+maVwu/UrtcLpdkogSJQiUnUE3UNdepMxgMkpw6JacO8M6rU8qpk7dN3ia5U1dWVtZsp65pR63AddddxxZvF7Q81Am0pKgLFN6pA5SLxJ5PUlJSJLMIWwJ5Th0gFXUmk4l1AJMmTWKDNN8pJCUlsXICoXLq5PCJz/zTJ4VfgcZEfb5IJjFp0iR88MEHuOaaa9gA7EvUxcTE4IsvvmCztgk+/MrTrVs31NfX4/jx42yiEf/5UIdfgXOlg7p3786WgqJ7SU3wk6ij1SSAc797QkIChg0bhu3bt6OoqAjl5eUoKyuTdO78LDbg3L2rdn3+/e9/Z2FRX+HXsLAw6PV6FBYWIj4+XiLeqH2+BgN+MOZDZv5y6gYOHCgpaq0EfVdN1DXn3pSLuuLiYomo85VTp3Q+6NgpnNajRw9WVoo/Brvdjri4ODzwwAMYN24cW+2FtjF9+nR8+eWXrGwVj9lsRnR0NIqKiiQhQ2qTvHQIraLTqVMn1VzmYODz/a666ipJ2J//LYLta/j+z2AwMNFtMBig0+mYqKPPqU2UCA8PZ78riSqTyaTo1JEjS6KOn+TDH0OonDqlnDqgMSVj6dKleOGFF3DgwAHFnDrAt6gjp04efpXfv60i6gDlXAJByxATE4NXX33Vq7p/a0AXYDAFMVsSjUaDrKwsVSckFPgKv5rNZmg0GowYMQKXX365ZCWW8PBwVoiUVvDwJer+9Kc/KeZiBopcFPBOHQ1Wai7hgAED2JqeHo9H0VGQc8stt3i9Jq8vRdBgtW/fPkRGRrLPNdWpo/Puy6nTarUoLCxEREQEbr/9dkRFRUnKaShBhUSpRh3Q2Dn3798f/fv3x+zZs7F7926MHDkSs2fPxtKlS9kDbmRkJJYvX86KlAON514+W5KHyngAjfmSjz76qGoRWMrnk/+Gau4oD73H/y68U9ccV5ty9OTXNZ3j5rhPSk4dP1PcV0kTX04d0FgY/d5775WkGfG5imazmeX68WE5vV6PXr16sfJFSqSmpqKwsJAJFRJ1y5Yt85osR/v87rvvQhJd4Itfy1fkaKpTJ8doNEKn0zF3WqfTSRxr2r7ZbPYqaaLT6RAfHw+LxSJJEaFrUS2njiacyNvBfy5YqO300MT/zvz1bLPZkJOTw5bqVBN1vsKv5NTJJ0qcl/CroG2h0Wgwa9as1m4GAG+nri0wceLEJuUqBopS+DUtLU1SXLJTp07Yvn275HsajQaxsbGorq5GeHg4q/yvJogHDx7crBxAeX6RmlPnD41Gg5UrV3qtAxoIak5d165dodFosHfvXklJn6bm1FFZE19OHXAuFBYdHY2oqCjJzEslaMmfgoICyXJTfN00KsT8+eefw2azsaKvGRkZXqFKWp4wENLT01ULhVPbrFarl9MTiFPHT07gX/Pn1AWCyWTycumAlnPq+IiFr5ImSueDPp+WlsaKG/OkpqYiMjISNTU1ijN2gcAEBE2cIqFCrhWlZvCMGzcObrc7ZH2Yr/MeKlFnMBhYn0ZOHcH3b7TaEO/UmUwmxMfH49SpUxIBGkhOnbzaBP3WzS1pAjReQ/zsfMo9bWhoQENDA2w2G3PZ5CtKELyLHKhTx/eBWq229Zw6wcUJn1PXVpg/f36Lbl/JqdPpdOjYsSMLnahBs3b5ch8tJYjlDh3v1NEqHv5CaYQ8rBooUVFRign7JpMJ6enpOH36NHr06MGun6aGXwHp8lj+QkkZGRlIS0uTLCavBHXivFMnJzo6mg3aALBt2zbodDqvKvdA44ouvLPUHOj3lIu6YJw6fgCKiIjA2bNnvV4Pll69eikKklCLOqfTiZMnT0pClME6dTTQ3n333Yr702g06NmzJ3bv3q0q6gJZbJ2cuoqKCtWZ+/L9hgoSG0rioKkTJeRQnUUSdfy6tvy1FBcX55VTx69wwYu6QHLqWsqpAxrvgZqaGrZMHZWFIkFXX18Ph8MBj8ejOFECCM6pI1FH5ZeoDULUCc4rbdGpa2ko8Vc+0zMzM5OtEKFGXFwcu7nl7lSokQ9w1LmSU3fkyBHFotKhJDIyUjVh/7LLLsPZs2dhNBq9zkVTRV1BQQGbXeeLuXPnor6+njneaiKGOvaSkhJVUQc0hsxI1G3duhXp6emKA3evXr1CVjCcflc1UReIUycv9xGK8OvcuXMVX6fftDnh16ioKFaM+MSJE7Db7cwpBYJ36rp3747Vq1fj2muvVd0niTr++7wjFIgAS0lJwd69e1FeXu5zTdWWwJeYplnPHo+n2fm7ZrPZy6mLjIyUnB9y6viSJjqdjgkZXtRR+odaTl1ZWZlXVYZQijraVlJSEvLy8iQVBGw2G5ss4XA4VMOvlGNot9v9OnXy8CvQmI6hVMtWjaBWlBAIlGhrOXXng969e+Obb77xCkf27NnTb4cdGxvLPiN3p0KNWviVxGj37t1bNEwNNE6c4Z88eebNmwcAOHDgACIjIyUJyk0Jn0RGRqK2tjYg0WA2m5GQkBCQU3fq1CkA8CnqevTogbCwMJjNZpw+fdprDeGWQM2pU3KS5ag5dTabjc2EDTV0jpvr1JWUlODmm29myyfyok6ppAnlcCntV6PR4A9/+INP54xy3JScukDFA+/UtSVRp9Fo2LGEwqnr3bs3evbsyc6L/Dq6//77MWPGDElJE8qpAxBwTh0tQSa/9kMRflUSdbRtfj3oQEQdPdTybeePRcmp48fSn3/+WbFMmhrCqRM0G1r/tKlPRu0RjUaDSZMmeb3+/PPPe62QIGfy5MleCcQtJerkrgXv1J0vZs6cif/7v/9TfG/AgAG46667kJqaioSEBPZUCzTdqQOCc5kCyanLzc0F4FvUTZ8+HUlJSVi1ahWys7NDUuTaH2pOXTCzX5WW0MrKymqWa6NGKJy66Oho7N+/H/v27cMPP/yADh06SEJwSk4d7bOp+1USdcGWzkhNTUV1dTXy8/NbTdSpHX94eDjq6uqaLerMZjMefPBBPPjgg7j//vsBeD/s0/KXCxYsYDl1vKijNiQkJLBUFrWJEhaLRbWIeFPHozFjxnityJOcnMzy/pScOrvdrlrShGa/V1dXKzp1LpcLdrsder2eLUXYnAeqi2cUFrQYSUlJrV7GpK1AxWh9cd9997F/t3T4lYrnqjl154OIiAifZRk++ugjAEBNTQ3GjBmDvXv3AmiaqCN3LBhR52/2a6Ci7oorrsAVV1yBPXv2IDs7+7w6dXKRQMscNWX2K4CA8yyDJVQ5dbR6R21trWTyCr8PpRzOpu531KhRGDlyJCtNBJw7b4E6QjRB5/Dhw15tbmnGjRuHl19+WfWaDIVTZzQavRavB9T7NnLqHA6HYk4dn4umllPnS9Q11anjl6zkc5D379+PLl264J///CeARlFJD/Dk1Ck9UPhz6oDGupYdO3ZkId7mjAci/CpoNvfffz82bdrU2s1ol7T0RAmgsYNRKmnS1oiMjMTAgQOb5dTREn2UixMI/pw6k8nE1sWUz7RTggbO1nTqAO9VD+SozX4FICnBEkpC5dTxyPON1ERdc5y69PR0bN68WVJnkuqyBePUAUBubu55d+qioqIwe/Zsv4Wom+POxsfHK870VHOdKKeOHC56GKY28A/HSk6dw+FQFHXNLT7Mw5eE6t69O3Q6HQYMGMAeeqjcidypo/W6tVotjEajqqij47LZbOjSpQscDgesVmuzRJ1w6gTNJjw8/Ly4EhciLR1+BaDo1J3P8Guw0KDclCftpszQDSSnDmgs9B1I/iHdC62ZUwfAbwFuJVFHExBaStSFKqcOaHSfCgsLccUVV0je79GjBwYNGuQ1IzXYWYT+oFmdgYoHfqWX8y3q/BEKp+7TTz+VfJ/uX39OnVr4lX+AUpooYbVa4XK5Qh5+VdoW3zd89tln+Prrr3HzzTez+8Vut0tmvwLn1jHmZ/+qOXWAtHi9CL8KBO2Ulg6/AtLlwdqyU0dQB96UASY8PBz9+/eXVPv3h5K44aEOndYC9Qc5dOdD1Ply6vr16ydZD1aOUvj1xIkTAFou/EqDWCicuoEDB2LDhg1e719zzTW45pprvF5/5plnJIWEQ0F4eHjADx/x8fHQ6/WSBezbCnQtNEfUyUuLBOLU+SppoibqaLvyJciI5k6UUNqW/IGP/k+iTj5Rgj4jn3Wt5tQBkIT2hVMnELRTzpdT15oTJYKlOeFXANi9ezfcbnfAn/fn1FGIJVBRd9lll6FXr14+BVWo8OXUrV692ud3lcTssGHDsHPnTq8yEaGCcjxD4dT16dMnqO/98Y9/bPI+1QjGqQsLC0OHDh1w9uzZNifq/N0DTcFfTp28pInSRAnaDu+Q03ZpZuz5duqAc/eMWviVviNfTUcuNPnPZ2RkICwsDG63W+TUCQTtlfPt1BmNRsli1W2R5oq6YI8vKSnJK8mbZ8+ePQAQcHJ7nz59cPjw4fPihvpy6vyhNPv1P//5D8rKylq0zA2fY9QU6IEkkJVQWprw8PCgxAPl1bVVUdccp05OsOFXeU4dOXVqQsifqAuFUxeoqJNPlKDPyGfj+3LqwsPD2YTD5oRf25yos1qtuPzyyxEZGYns7Gz2+rJlyzB8+HCMHz8+qCRogaAtExcXB41G06LOGe/U9evXD6NGjWrx2nTNgTq6UHTKgfCHP/wBhw4dUhUalOvSqVOn89KeYPDl1PlDKfyq1+v9zt5uLvfee6/i0liBctlll+F///sfRowYEcJWNQ2TyRTUdUp5dW1N1IUi/Con2IkSiYmJuPvuu9nDE12H8vNLOXVqoi6UEyX8hV8pIqDm1MmLgPvKqTMYDGylmQsq/BoeHo7Vq1dj9uzZ7DWHw4GFCxdi06ZN2LVrF+bPn4/333+/FVspEISGG264AT///LNkVl2omTVrFsvXmDRpkmJ9vbZEUlISwsLCWlxcEGFhYejatavq+ytXrmxx96qp0MzmpjhfVNU/FAvGB8Mrr7zSrO9rtVrcc889IWpN8wgPD4fT6Qz48+TUna9rO1CCLc8SCIGUNKEJBnq9HmFhYfjwww/Z+/TA25adOsLhcHhNlOBFXSBOnV6vR3p6On777bcLS9TpdDqvhMvjx4+jb9++MBgMGDlyJP72t7+pfp8W2iX4hZ8FgraGwWDwmr0XatrKABgovXr1wtmzZxUXhG8N4uLimuSEnQ9MJlOT26bRaFjhcEHTCA8PZ4XEA6EtO3VUoiVUkGAJ1KmTo9PpEBcX5+UeyidKyPORz0dOnfz/oXbqLvjZr1VVVRI17mvB9AULFuC55547H80SCAQtRFsRdG2dKVOmSGbNBcvNN9/cJsKY7RWTyRSUU9e5c2cYDIYWdeabQnh4eEhDr0DgxYfVRB3Q6GjyJg2/3YqKCkkNTqKl6tQp7YNoaGiA2+2W7PPhhx9meYGBzH7V6/WsuHm7dOqKiopwyy23eL2+atUqr6eYuLg4iePma42+OXPm4PHHH2f/t1gsooaaQCC4IBk6dCiGDh3a5O/Tah6CphEeHs6WigqEGTNm4JJLLjlv+aKB0pKizp9TR+FXJRITE1FSUuK13bCwMBQWFipORgpl+NVfTh1Bbi2/zxkzZnhtx59TN3ToUHTr1q1ZE4laTdSlpKRg8+bNAX02KysLhw4dgt1ux65du3wWxlRS7gKBQCAQhJro6GgvJ8kXRqMRgwYNarkGNZH+/ftjyJAhId2mv9mvfJ06X04dhVmJsLAwdO7cGbm5uYrLD/br1w9/+tOfQlJSKFCnrq6uDoC6OxioUzdhwgRWK7KptMnw6/XXX4+9e/fi6NGjmDlzJu666y7MmjULY8eOhclkwuLFi1u7iQKBQCC4yHnhhRdgt9tbuxnNZtq0aZg2bVpItxlI+NXhcHiFLXkSExNx+vRpr9e7d++O3NxcRacuKioK//3vf5vR8nMEmlNHTp0vUafRaLxWOeFFXaic0jYp6r7//nuv11riohMIBAKBoKm0xTI3bYVAwq/kcqqJoXvuuQfjxo3zer1Hjx5Yt25di9eCVAu/ygVYbW0tAPXjoCXD5PCfD1VIvk2KOoFAIBAIBO2XQIoPUz6imqAZPXo0Ro8e7fV69+7dAbT8codqTp1Go4HRaGSi1F/49f/+7/8URV1LOHVtrviwQCAQCASC9k0gTh2JumBnqra2qAOkeXVKEyV4MjMz8Ze//MXr9ZZw6oSoEwgEAoFAEFKSk5NhMplUCy3rdDq/4Vc1zreoU3LReFHnz6lTQzh1AoFAIBAI2jyjRo3C2bNnVZdA5J26YF2qzMxM6HS6Vsupk7/mb6KEGsKpEwgEAoFA0ObRaDQ+l0NrTvhVp9PhkUcewTXXXNOsNvoj0PCrv4kSalw0s18FAoFAIBBcuDQn/Ao0fw3hQKBJHkqTPUjoabXaJodfhVMnEAgEAoGg3cM7U6FY0qslGDVqFNasWYPMzEyv98ipi4qK8jtRQg2RUycQCAQCgaDdExcXx/7d1pZNI7RaLa699lrF98ipi46ObrZTp9FofC5/GtQ2Q7IVgUAgEAgEggDh8+3aqlPnC3LqIiMjmagLVpiRmAvl8QunTiAQCAQCwXmlvYs6o9EIg8EAk8mEqqoqAOo1+Xyh0+lC6lQKUScQCAQCgeC80t5FnclkQnh4OAwGA8rLywE05tcFi16vD1k+HSBEnUAgEAgEgvMML+raak6dL4xGI0wmE/R6PSorKwE0TdQJp04gEAgEAkG75kJw6kwmEwwGA9xuN3Q6nWI9O3/o9Xoh6gQCgUAgELRfeFerPYs6EmRRUVHQaDRBb0en04U0/Nr+zqRAIBAIBIJ2DS+A2mP49brrrkNqaip27doFoGmhV0A4dQKBQCAQCC4g2qNTN3HiRDzzzDPMZWuqqAu1UydEnUAgEAgEglajPYo6gg+/NvX7wqkTCAQCgUBwQdCeRZ1w6gQCgUAgEFz0REZGAmifOXWEcOoEAoFAIBBc9MTExAAQTt0F7dTt3r0bo0ePxtixYzF16lQ4HA4AwLJlyzB8+HCMHz8eeXl5rdxKgUAgEAgEzUGIuovAqUtPT8cPP/yAjRs3IisrCytWrIDD4cDChQuxceNGzJ8/H/Pnz2/tZgoEAoFAIGgGd955J4D2LeqaG3694J26lJQUmM1mAI0nS6fT4fjx4+jbty8MBgNGjhyJAwcOqH6/oaEBFotF8kcgEAgEAkHbYvbs2WhoaGhS0d62gnDqAuTMmTP46aefMHHiRFRVVSE6Opq953K5VL+3YMECxMTEsD8dO3Y8H80VCAQCgUAQBBqNJqQuVWvQXKfuz3/+M+64446QtafVPM+ioiLccsstXq+vWrUKOp0Od9xxBz766CPo9XrExcVJHDetVqu63Tlz5uDxxx9n/7dYLELYCQQCgUAgCDnNdeqmT58eyua0nqhLSUnB5s2bvV53uVyYNGkSnn32WfTo0QMAkJWVhUOHDsFut2PXrl0YMGCA6naNRmOTFtUVCAQCgUAgCAZy6vhoYmvS5rITly9fjq1bt8JqtWL+/Pl44IEHcOutt2LWrFkYO3YsTCYTFi9e3NrNFAgEAoFAcJHTXKcu1LQ5UTd9+nRFO3LatGmYNm1aK7RIIBAIBAKBwJu2Jura7EQJgUAgEAgEgrZMcydKhBoh6gQCgUAgEAiagHDqBAKBQCAQCC4AoqOjodVqERsb29pNASBEnUAgEAgEAkGT+MMf/oDffvtNOHUCgUAgEAgE7RmdTodBgwa1djMYQtQJBAKBQCAQXAAIUScQCAQCgUBwASBEnUAgEAgEAsEFgBB1AoFAIBAIBBcAGo/H42ntRrQkHo8HVqsVUVFR0Gg0rd0cgUAgEAgEghbhghd1AoFAIBAIBBcDIvwqEAgEAoFAcAEgRJ1AIBAIBALBBYAQdQKBQCAQCAQXAELUCQQCgUAgEFwACFEnEAgEAoFAcAEgRJ1AIBAIBALBBYAQdQKBQCAQCAQXAELUCQQCgUAgEFwACFEnEAgEAoFAcAEgRJ1AIBAIBALBBYAQdQKBQCAQCAQXAELUCQQCgUAgEFwACFEnEAgEAoFAcAEgRJ1AIBAIBALBBYAQdQKBQCAQCAQXABe8qPN4PLBYLPB4PK3dFIFAIBAIBIIW44IXdVarFTExMbBara3dFIFAIBAIBIIW44IXdQKBQCAQCAQXA0LUCQQCgUAgEFwACFEnEAgEAoFAcAEgRJ1AIBAIBALBBYAQdQKBQCAQCAStwKeffoqvv/46ZNsTok4gEAgEAoGgFfj444/x+eefh2x7QtQJBAKBQCAQtAIulwsulytk2xOiTiAQCAQCgaAVcDqdcDqdIdueEHUCgUAgEAgErYAQdQKBQCAQCAQ++O233+B2u1u7GX4R4VeBQCAQCAQCFcrLy3HZZZfhp59+au2m+EU4dQKBQCAQCAQq1NbWwuPxwGKxtHZT/OJyuYSoEwgEAoFAIFDC4XAAAOx2eyu3xD9Op1OEXwUCgUAgEAiUIDHXXkSdcOoEAoFAIBAIFGhPTt1FMVFi9+7dGD16NMaOHYupU6fC4XBg2bJlGD58OMaPH4+8vLzWbqJAIBAIBII2SHsSdXKnzmKxYM6cOVi6dGmTxF6bFHXp6en44YcfsHHjRmRlZWHFihVYuHAhNm7ciPnz52P+/Pmt3USBQCAQCARtkPYcfv3111/x4osvYvr06di5c2fQ22uToi4lJQVmsxkAoNfrcezYMfTt2xcGgwEjR47EgQMHWrmFAoFAIBAI2iLtyamTh18rKirYv6uqqoLeXpsUdcSZM2fw008/YdSoUYiOjmav+7IkGxoaYLFYJH8EAoFAIBBcHJCoa2hoaOWW+Efu1FVWVrJ/19bWBr29NivqLBYL7rjjDnz00UdITk6WiDOtVqv6vQULFiAmJob96dix4/lorkAgEAgEgjZAewq/yuvUVVZWIikpCQBQU1MT9PbapKhzuVyYMWMGnn32WfTo0QNZWVk4dOgQ7HY7tmzZggEDBqh+d86cOaiurmZ/xKQKgUAgEAguHtpT+FVep66yshIdOnSAwWBoklOnC2XjQsXy5cuxdetWWK1WzJ8/Hw888ABmzZqFsWPHwmQyYfHixarfNRqNMBqN57G1AoFAIBAI5FRWVmLKlClYvnw54uPjz9t+25uo4526iooKxMXFISIi4sIRddOnT8f06dO9Xp82bVortEYgEAgEAkGwnDx5Ej///DNycnLOq6hr7+HX5oi6Nhl+FQgEAoFA0L6hsGIoV0wIhPbm1MnDryTqLpicOoFAIBAIBO0bIep843a74fF4FJ26yMhI4dQJBAKBQCAILT/++CPWrFkT9PdI1IVyGaxAIDHX1kuaKIne5oZf22ROnUAgEAgEgrbBm2++CYfDgeuuuy6o7wmnzjd0Xug8eTweVFZWIj4+XoRfBQKBQCC4UMjNzUVmZqZkhQE16urq0KNHD2RnZ7dIW2w2GxNKwSBEnW/k56e+vh4NDQ1iooRAIBAIBBcSubm5OH36NIqKivx+tqKiAsePH8fx48dbpC3tTdS1hdmvK1euxObNm31+hs4L/U2rSYicOoFAIBAI2jmvvvoqK+dFIioQMdXSy2I1NDQ0S9Sdz5w6XoA2RdRZrVaUlpY2ux0vvfQS3nvvPZ+f4cWu2+2WiDrh1AkEAoGgSfz73//GggULWrsZFz2HDx/Gvn37AJwTaoG4XPSZlnKmmurUyZ2oQJg2bRp++OGHoPcFAJs2bUJycjKqqqoANO18zJs3D1OnTm3S/nnsdrvfc8aLXafT6SXqRE6dQCAQCILml19+wS+//NLazbjosdvtqKurY/8GLgynLhhR9/3332Pnzp1B7wsA8vLyYLVaUVZWBqBpoq64uBglJSVN2j+Pw+Hwe8748+JyuUISfhWzXwUCgeAip76+Hm63u7WbcdHjcDhQX1/P/s3/7e97QMuJOpvNBq1WG/T3mhJ+tdvt7BwEi81mAwBYLBYATTsfdXV1TFg3B7vd7ldU+nPqRPhVIBAILjJOnz6NN954o1nbsNlsbb6m18WAw+FggqIpoq6thV+Ddeo8Hk9IRV1TzkdtbW2T988TrFPndDpRV1cHnU4Hg8HAwq8ejyeo/QpRJxAIBO2Yb7/9Fo8++mjQnT+PzWZr8+UfLgZI1Hk8nqBy6i6U8KvT6YTH42lVUVdXVxcSURdITp08/FpfX4/w8HAAQEREBDweDzumQBGiTiAQXNQUFhbi2WefbZYoak2o02/OgC6curaB3W6H2+2WCIJAxFRbnSgRrKij9re2UxeK8Ks/p65Pnz744osv2P+dTidsNhtMJhMAIDIykrUnGISoEwgEFzXr16/H/Pnz2UDQ3qCBrDkDkRB1Lc+SJUswceJEn58hEVBfX99mcurILZK3o76+HldddRVOnTql+t1gc+qaK+roe8116pxOZ5NELI8/py4nJ0dSV9DpdHo5dQCCngErRJ1AILioIVHU3E68taCBvDkhIyHqWp7s7Gzs3r3b52foGqyrq1MVdcuWLcPixYsVv9cSv6FaO/Lz8/Hzzz9jz549qt9tj04dPRw1NwTrz6mjHDrC5XJJnDoSdcKpEwgEgiCggaC95pRR+4Woa9s0NDT4FTd0DdbV1bF/y78zbdo03HnnnZLXWnKihNpDD4kNXw53a4k6+n5Tw6/NaQPhS9R5PB643W7JPuROnQi/CgQCQRMQok6IuvMBP9mgtLQU8fHxyMnJkXzGn1OnFsYk0dSc39DpdCouM9YeRR2/vWBzZck9a25ena/wK50XuagTTp1AIBA0k/Yu6mggb+ogRDlTQtS1LLxTV1RUhMrKSq98NH85dceOHVPcdiicuhUrVmDAgAFsW2+++SZKSkrYdaEm6qxWq+o2z3dOndJM0WDSKlwuV0jSGVwuF5vwogRdB/w+lGa/AiKnTiAQCIKivYu65jp1DoeD1QdrD7jdbnzxxRftbrYyP9lAaVAHlJ063uWi/LX4+HjF7zVHmFdWVsJms8Fms6Gurg6PPPIIVq5cya4vt9stKVDdEk5dcwUVL+o0Gg0A6X29du1a/O1vf1P9Pv9gxP872GvN3yQXOi/8PuROXVRUFAAEvbpFmxR1VqsVl19+OSIjI5GdnQ2gMTl0+PDhGD9+PPLy8lq5hQKBoL3y8ssvY+XKlez/F7uo4wftYJZzai127tyJqVOnYuvWra3dlKDgw6+8I8fD59QpCQMSdTTwE75E3enTp/Haa6/5bR+/DbomSOjJPwN4O3U5OTkoKCiQbDMU4dfs7Gy8/vrrPr9Dx823lZwu/r5et24dPv74Y9Vt8SKL2lBaWoqoqCgcPnw4oGMA/Is6Oh++RF1ERASGDRsm6asCoU2KuvDwcKxevRq33HILgMYTs3DhQmzcuBHz58/H/PnzW7mFAkHbxe1246233rqowmnHjx8PWNR8+OGHWL16Nft/exd1zQ2/8gNhe7hmaF3PQ4cOAQD+/Oc/S+p9tVUaGhpYgjwN9vJwob+cun379rH3lb6ndA1/9913eOyxx/y6TSQ0yK0DGkUdf00oiTpy6u6++27MmzdPss1QhF+XLVuGuXPnqn7n4Ycfxl133cXaTtBEA/6cWCwWVFRUqLaHz1+jc5yXl4fa2tqgzCR/6/YGEn4FgOnTp2Pt2rVs+bBAaJOiTqfTISkpif3/+PHj6Nu3LwwGA0aOHIkDBw6ofrehoQEWi0XyRyC4kFi/fr1PAXL48GE8/PDDF9UC7SNHjsQnn3wS0GerqqoknT9fBuH6669nA2d7IVROHdAyoq6urg5vvfVWyMKlVVVVAM6JurVr12Lbtm0h2XZLwuem+Qu/quXUUShO/j1fEyX8CQz5voN16miMLS4uRnV1tWSboXDqSkpKUFtbq3r9HD16FGfPngXg36mzWCzweDyoqKhQ3JaSU0fHFMxDXyjCrwAwZcoUuFyuoNy6Ninq5FRVVSE6Opr935fqX7BgAWJiYtifjh07no8mCgTnhcrKSlx55ZUSp0npM0BjJ3uxUFFRwQZ7f6iJutzcXKxZswZjxoxpiSa2GG1d1P344494+OGHceLEiZBsj65vCofV19c3aeHz8w0/izSQ8KtSSROr1Yrk5GQ0NDRIxkFfTl2gkyh49zAQUUcJ/BR+raio8DqeUIi64uJiuN1u1eWySktLmTjyJ+qoreT2ylHKqaN+JRhRF6hTJxd1cqcuNTUVnTp1Up0go0S7EHVxcXESx02r1ap+ds6cOaiurmZ/RP6d4EKCBi9fybP0ZFlUVHRe2tTaOJ1Oyaw1X9TX10ucCOCckKEO32Kx+Cyo2lQo9BZqmivq+O+1hKij67C8vDwk2yNRR06dzWZrE6Lu5MmTmDhxourgT+eWX60gkIkSvDAgUSf/rq+cOmoP/94NN9yAtWvXSj7Hu33Bhl/dbjcqKiq8hBdtM1hR53Q62Xeor1ObBUpOHhBY+BVQF3X8dSR36oK5NwLNqZOHX+VOHQAkJycH9YDeLkRdVlYWDh06BLvdji1btmDAgAGqnzUajYiOjpb8EQguFKjTUgsfAOeeLNu7qJOHctSgzjaQTpfOjZJTx5dm2LFjR6DNDJh7770XDz74YMi329Zz6mhACpWoo98wLy8PVqs1KKcuGEc3WPbs2YPvvvtO9YHLV/i1rKwMtbW1fkVdTU0NOnTowD5DBOLU0f7dbje+++47/Pzzz4qfC9Sp4ydKWK1Wr2K6QPA5dfz1R9vyJepcLhfKy8sVnToSdfw2SdSVlpYq7l/JqWtK+JV36pTCxkoiV8mpA4AOHToEJep0AX/yPHP99ddj7969OHr0KGbOnIlZs2Zh7NixMJlMXkukCAQXCxeLqKuqqkJqairWr1+P4cOH+/xsMBMd6Nzwg498aSGgZcTN6dOnW7TifyjCry3RPhqUQ+nUmc1m1NXVYd++ffB4PAGLuj/96U/Q6XQtMrGCrhm1tvhy6iZNmoQxY8b4zKmjQT9Yp04u+Kqrq+HxeHD69Gm43W5oNBpoNBrJNkiIBJpTR/1RqMKvtK2oqCh2/Sid1/Lycng8noDDr/6cOtqOVqsNiVMHNJ6DvXv34t1338V///tf9pocNaeuQ4cOQeX5tllR9/3333u9Nm3atFZoiUDQdqCOhhd1b7zxBo4cOYJ33nkHwIUh6mgwyc/P9/vZlnDq6LXFixfDarXioYceCrjtatjtdp9ivKm09Zy6UDt1lZWV6NevH3bu3MlWZAhU1J0+fVp1QG8uJB78iTolp660tBQlJSWKJU3os7RdEnXyfCx+H0rtovfoGjx16hQ6deqETp06YevWrZJtUJqAPPx65MgRbNiwAffdd5/EqaPfVh5+ba6oq6+vZ/elklNHgs+XU9eU8Gt8fHxIcuro3+vXr8fHH3/MRJ0vp05J1F1w4VeBoCU4ffp00IUdWxslp+7333/H9u3b2f/pybI9T5QIpghpMKKO8rECFXVLly7F0qVLA2y1MuXl5XA4HLDb7SETNjyhLNjaHkRdVVUV0tPTJdsMVNSVlZUhLy+vRX8Htbb4mijR0NDgVU5D7tTR9dnc8Csv6vLz89nMYaXwa1VVlWQ/n3/+OWbNmiU5ztraWhbODLVTx4dJlUQdv1/5ZAq5U+fxeAJy6vR6PWJiYpo8+/Xpp5/GwYMH2f8dDgcro0IOqJqos9lsXuFXyqkLdPa4EHWCi5Y77rjDZ/2jtoiSqJMn/l8ITl0wQoWOPVROXVRUFHuttLS02Un4AwcOxEcffYSGhgYWLgoF1dXVKCsrY229WHLqKisrkZqaCuDcfRDosdNgvnfv3pC0hYd32ZTwFX612WyS8L8vUdfUiRL0N50zeV6ZUkkTt9stEUAWiwX19fVwOp2ora2FwWAA0PiALG8T0PQ6dbQt/qHbl1MHSMUo4O3U1dXVMQfSl1NnNpsRHh7ulVMnP7c7duzAp59+KnnN6XTiX//6lyTS6HA42MMkiTml80EPfkpOXUNDg8/l2HiEqBNctBQXF6smzLZVlESd3W6XdKYkXCoqKtpFMVklggkp0jGGKqcuOjqavVZSUhL02os8NTU1yM/PZ6E1u90etPhyOBz48MMPvc7FE088gT/+8Y9+z9Xu3buxZs0a1e23R1EXHx8Ps9kclFNXV1fHzlFLirpgwq/8Awkv6pRy6ug6VAq/NsWpIxITEwEoFx8GgMLCQvZvPhRaW1uLlJQUAOdEXajDr3y0Qem88qLOYrHA6XQyUSQXdXR+DQaDz4kSZrMZZrPZr1P36aef4vnnn5e8Rm3kJ3mRU0f/BpTPB/2+ShMlAOCHH37AyZMnFdvNI0Sd4KKlqqqq3RWnVsqps9vtks60urqadWjtLbxMtKZTFxsbC5vNBo/H02ynjnICGxoa2KAQrLjZvXs3/vSnP+GSSy6RHGNhYSHy8/P9nquhQ4fi+uuvV91+qEXdvHnzsHDhQrbt6upqaDSakIZfY2NjgxZ19FmNRtMioi7QiRJK4Vebzcauv7CwMMU6dXKnrrk5dUSnTp1Yu+hzaqKO+kuLxYLa2lrmmJ46dUpyPERzRR31XxqNxmf4lT+u2NhYANLwq8fjYfd+ly5dfIZfIyIiJE4dfU9+bm02m1eb1ESd3KnzJeqUSpoAjbPnH374YcV28whRJzgv7Nu3D19//XVrN4Ph8XhQWVnZLkTd559/Do1GI8kZqaioYGE8uairqqpCz549ATQvBLtr1y506tSpWU4VT1FRESZOnBjQ9loqpy4QUUdOXW1tbbML2/KijtoXrLih/R85cgTffPMNe91qtaK0tJRdB20l/LpmzRpWAZ8G5S5duoRE1DmdTlitVsTFxQUt6mgg79+/P44ePer387///jtWrFgRcNt8OXX80mB8Dbb6+np4PB5JeC06Olox/Er3ja+cukBmv1ZUVCAhIQE6nY61R74N/pooKipCWFijVKA2Wq1WRaeOnzkLqIdf33rrLYwaNQo//fST5PWGhgZWh5ZEXVxcHKKiovyGX0nUxcXFAZCKuk6dOqFPnz4AgG7duvkNvwbi1PFCnP8+/x1AKuroHPPng86tP6euuroa1157rWK7eYSoE5wX3n33XcyePfu87nPHjh34/PPPFd+j8EageQqtCS1AnZubK3GlqNNREnW9evUC0LzJErt27UJeXl5AA2Cg2/vuu+8CWlnAl6g7fvy4JOwRTEkTfqIEDT58+NVgMCA8PBw2m425AL6WKPJHKJw6al9ERIRkEXur1coGNaPRqHiuAkkvsNlsiuUf1MjJycGPP/6o+n5FRQULE9H116dPn5CIOhLlJOpoIHc6nX7bTgN5p06d2PXlcrnw7bffKn5+yJAhuOmmmwJumy+nTl7AV166hE/ij42N9ZlTR0toKuXUud1uLwEld+oqKyuRnJzMHDo+1w84F37V6/UAGp06cv6pjSTq5E4dfZ9Qc+p+/vlnbNmyBX/+85+92kq1Zevr63Hq1CkkJSUhMjJS1amj86Hm1DU0NLBlxACga9euPsOvcqfOl6irqamR9A3+wq9KTp3RaASg7tTFxcUxAT5hwgTFdvMIUSc4L1RVVYV8xtnPP/+MrKws1Sr9//3vf/Hcc8+ptgdASJy6f/7zny0SziF69OgBANi/f7+kI6eOgp6sqXOpqqpC9+7dodfrcebMmSbvl1ZjobIRzYU60kAWp/aVJ7Z69WrMnTuXDRhNcercbrdXyMpqtcJkMsFkMsFmszHBFIhgUENJ1AVb1oTOwfjx4yVrnFosFnYO4uLiFM9VICtj2Gw2NpDKz+H+/fu9BO2iRYswc+ZM1e2Vl5ezsHBLiTp5+BXw79aRqEtLS2O/xebNm3HjjTcyp4loyn3ja6IEf17lEyXoPeqLaOYlL+pmzpyJnTt3IiwsDGazGSaTSdGpk++Lf48Pv8bHx2Px4sWYPn26JCxMn7PZbEwsFRYWIioqStJGi8WCmpoa5tTxIVr5Kgl0zDx0b8kLjNvtdsTExABoXNP3gw8+wM0334yIiAhVp65z587suIBzTp3JZIJWq/W6dzt37iwp9MzjK6dOfl7JleR/h0CdOv580GQTNacuLCwMSUlJyMzMRPfu3b3aLEeIOsF5oaqqCtXV1QHnVgTC8ePHkZOTo7rygMViURUQ9HpzRZ3H48H8+fMlYZpVq1bh1ltv9frsjz/+iIKCAtVtqQ321Mnt27dP8hRMn5c/iVdXVyMhIQFdunRp1nqbJOpCtWYnibpAKvorOXW5ubk4ePAg+z51oMGKOgp3UBkEfnag0Whkoo5/mm9qCJZEnc1ma3L4lRd1e/fuZf/nXWZ/oo6uISWojILBYJCcw4KCAgwaNAi//PKL5PNWq1X1N3S5XKiqqmLFbWnw7tWrF6s71hzovo2Li0NERETQos5oNCI+Pt5rjVH5d8nhl7smvgjGqePDr3KnOSYmRuLU1dTU4P3338fy5csRFRUFjUbDii/z2yTkIkYp/BofH4+RI0eiV69eXqKOnLqIiAjExsbC5XJ5rc5QXV0Nm83GRB1wbsJFIE5dcXExwsPDFde+pWP88MMPcdlll+Gf//wnIiMjFc+rxWLxmglNok6v10Ov13uJNyqHoxSl4We/0m+jNhGLjpMXm3yZF6K+vp6NUUrhV71eD61Wq+rUAUDPnj0xefJkaDQar/fkCFEnOC/wMzJDhb/VFSwWCxtg1NpTU1MT8HR7JaqqquB0OiVhzlWrVnmtqwgAt912GxYtWqS4ncrKSqSlpUnCawR1fPv37/cp6qgzbmhoQGxsLLKysnD8+PEmH1tLibpAnDqlpa+effZZPPjgg5LfDgh+RQlKPOY7bCLUoo7CPs0Jv9bX10Oj0WDcuHFwOp347bffAHiLOiWHiESdL8FLVewNBgMWL16MIUOGAGh0Xzwej8SFARrPhcViUbyv+N/25MmTKCsrQ2xsLMsLaq5bx4s6ubAJRNQlJibCaDR6Lbguv3bIEfW1zjjQmD9IdQx95dT5Cr/Kf5uYmBiJk0QPnkVFRUxc8U4SIBVN8u0pTZQg4WM0Gtn9I1/71WQyMWeInDqC+rvY2Fjcc889ACB5WCLUcurIYWtoaJC8Rw9W5F5NnjwZOp1ONfxaW1vrFX71JeqMRiMTn0qijsKvdG3xhoHSRAn5dpR+ez5/Tyn8qtVqodVq2XaURN2aNWvw0ksveb2uhBB1gvMCDcShrObO54goUV1d7VXuQ94e4Jw4cLvdyMnJwdy5c9kN+9133+HYsWOqbaCBn5+QcOjQIa88LJqYoTZxoby8HA0NDYphH2o/OXXUaSmJOjqumJgYdO/evVmCjNoS6vBrU526iooKlJSUsO9TJxhs8WFyF+SlGwAohl8B9cXE/cE7dTS4NCX8ajKZ0K9fP+h0OmRnZ8PtdksGkNjYWMXrnIQ5H56XQwO40WjEb7/9ht9//x11dXVMgMl/L3oQUhrA+GMjUZeYmIiEhAQAzRd1fNkZs9kseS9QUWcwGLxmliqF1oDGQd5XPuW7776Lf/3rX5Lv+BN18okS8mtQnlPHRxNIXPE5X0CjUKQcuEDDr0CjyFFz6kwmExP4clFHQj8iIgJvv/02brrpJibu/IVfaZWIzMxMtj/CbrdLHOPLL78cAFRFXV1dnaqoMxgMTNSlpaUBaLxu5KFkHrlTR6LOZDKpOnWbN2/G8OHD4XA4FH97/oFfKfyq0+mg0+lUw6+0f8qr80fAoq6lllYRXBzQwBDKvDp/oo5uWqX3+desViu++OILmEwm9O3bF88//zy2bNkCAHjooYfw7rvvqraBhArduB6PBwcPHoTL5ZJ0ArW1tXC5XKqijjpCpY6G3jt58iRKS0vRoUMHSYkIPpTE5xxlZWXh5MmTirkj/nC73cjPz0diYqJEGK5cuRKHDx8OentA05w6foCgNSapoyVRF0xJE3+irqXCr/zTfFOcuvDwcOh0OpjNZtTW1noNcPHx8Yqirry8nDmTaueHF3WUn3r27FnWTvnvxa/56XK5sGjRIjZ403fCwsJw8uRJlJeXIyEhgTl1zS2ITcdIeU9K7VKDF3VyISMfsPlVCOTXiHybx44dk9zvSu2Qr5/KCyj57xIXF4eamhqvXDsAEqdOLurUJrsoFR/2Jep4p45EHblwBP2OERERMJlM+Prrr1nKib/wK91XJOr44yBRR9D+fTl19MAgnyjBO3UklKKjo1n+aDBOXXJysqqo27BhA7Zv347q6mq/M3SVRJ1Wq4VOp2PXTTAhfyUCFnXDhw8P2RO7oGU4c+YMdu7ceV73WVNT4yX4lQbtlhB1gYRf/bWHPrd3715ERUVh3rx50Gq1LGzpr5adXNTl5+ezz/Odu7+lu6hjUxN1lEtx+vRpREREIC4uTjJRAjhXEwxo7Ni6d+8Ou92O/v37Y/LkyUGJu+LiYjgcDowdOxYFBQWsfY8++ig++OCDgLfD09yJEtXV1aioqGDfpw400OLDNAuNZv0F4tSRIApG1H333XfQaDQoKytjg5+SqDty5AiSkpL81hLk14MkB0E+IKnl1JWVlSEjI4Ntx9f2aRYeAMlSWnKnjk8G3717Nx588EH8/vvvAM7di3369JE4denp6dBoNMw5VOLMmTMYMWKETyeX7gWDwdCiTh3ldgG+S8WUlZUxh10pZYDwFX6VX4NxcXGS2bBKTp0vUefLqfN4PBJRZzKZ4HK5JO6hkqiTO/68qCPoGlUKC/Mihq53EnU0KWT+/PmoqqqSiDr6jSMiIlj04/XXX2elYGpraxEZGYnw8HCf4Vfavz+njiZKkNilzyQkJKi6ufxqGv6cOqUVJXQ6nSSnTsmpC4aARd2VV16J4cOHY8eOHc3a4cVEfX19k4TwF1984dUx8DNo1Ljnnntw+eWXIzc3N+h9NpV58+bh5ptvZv8vKChAcnIy1q9fz17jB8/zHX4FlMN9clFXWFiI7t27Y86cOejSpQuOHz8Ot9sNi8WiOhED8BZ1/Jp/dIPn5+ez/TVF1NXV1TF3qbi4GCaTCfHx8YrhV2prdHQ0srKyAABHjx7FqlWrAipcSVDo9YorrgAAdk1ZLJYmTy5RCr8+/PDDePvtt70+q+bUOZ1Olqem5NT98MMP+PnnnxX3T9cezZbjB1QaPOROXdeuXQEEJ+rmz58PoPGcud1umM1mSWFjEkt79uxBWVkZjh49itOnT6tOIuLXg1QTdbGxsbDb7ZLBwu12o7Kykok6XjzwJR54p45/359TV11dza4FGpDoO0OGDEFubi5z6vR6PVJTU32Kuu3bt2Pbtm3Izs5W/Qy5lhqNhgkKEhP+6vSVlpZ6iTpfTh2JA3+iDmgU6IHm1PECyu12Kwp0OlZAGvonp46ug4MHD2L06NGoq6tTXMCe/z+tL+twOCQ5dfSeUvi1b9++ABqFC4V3gXMONO2T2kTfJ5Ry6qgPpPuwrq4O+/btw7PPPosNGzYwUUeCkvZTU1ODU6dOYdasWdi4cSO73slZkzt1fPiVjq1Pnz7MqfMVfqVcQzqWmJgYVaeOX03D36oXgYRfz5tT9+677+Kxxx7DlVdeGVRBxouZd999F4MHDw6qoGdRURGmTp2K1atXS17/z3/+w/IL1KCL4aGHHgq+sU0kLy9PMkCcPHkSTqcTn332GXuNF0X+nDp+NqKc/fv3o7i4mOXJ8aJO/rTLd5by6eT0GnVCFosFBQUFbBZV9+7dcfz4cVitVskTsxJ8LbPa2lovUbd//3506tQJ69atA9D4+yrl6MhrIvHU19cHLOqoY4iKikLnzp2h0+kwYsQIvPHGG3jvvfcCfiijwXfAgAHsHNG5aK6oo9/D4/FgyZIl+PLLL70+qybqgHOdqNypa2howLXXXourrrpKcf/UudJgwnfa1NGTqKN1WsnVCyanjs4xX6KC/p2cnMx+YzrHx48fR+/evSWFhXlIyAC+nTr6LFFVVQW32+3l1BUUFKBz587MXVMSdUpOXU1NDex2OzsX1dXVrB00mFVUVMBsNiMrK4sJQ0pM79Spk89SIVTrLC8vD19++aWiA8+7liTEKfzmT3gXFBQgLS0NBoMBLpeLOVSAslNH4oC2W1dXh3HjxrEHHKfTya7lo0ePNqlOHeD90Em/pRJyp27Pnj3YvHkzioqK/Dp1drudtY22oyTqeKeOBNaUKVMkou7IkSMAwK4t4Jyo85dTJ78P6+vrmfNXV1cHg8EAq9XKUmCAc6KOX+eYjkUu6siFlIu6559/Hp999hkTor7Cr9QH0LmMjo5WnShB97HcqaPzwYs6tYkSOp0OVqsVYWFhkvPcFIKaKDFnzhy89957uO222/Dmm282a8cXA0eOHIHVapXUlvIHJaDKxc/mzZtx/PhxnyUB6EJZv359UMVSyVrPzc31ElS//fYbbrvtNtXtVVZWSp7kqf0rVqxg2+I7LTouetKT8+9//xsjRoxQfG/gwIHIysrCkCFDkJSUxG6q/fv3IzY2VvKEz09UqKysRHZ2NqKjo3Hw4EG2ZAwN2OTUyUUdX8tu0aJFmDNnjleb+Lyr4uJiHD58mN2UdXV1WLx4MdxuN5uFaLfbFYWbv/AribrS0lKEh4crirr6+no24EZGRkKn0+GFF17AG2+8gZkzZ2LQoEF46qmnFM+tnIKCAphMJjb9n9bNdLlcrP35+fnYuHFjQNurq6tjHTad17Nnz6KyshL79u3zur7koo4X1zRQyJ06/tqdMmUKRo4cKdkmda5K4VcSdXz4tbq6miVYB+rU8dc6/Ts6OlpSOJaOgwaDLVu2eC1ezhOIqKOBjG8nuUhyp668vBxut5vdq/IBnNrGO3UUjrzjjjskTh2/FihtOyEhAR07dkRZWRny8/OZ6OrYsWNAou7AgQOYMmUKnnzySZ/ngkRdTEwMtFqtz9+ovr4e5eXlyMjIYEKGF1dK7haJOro38/LysHHjRtbPVFZWsuvWn1PHP3TydepoOzy8qOOFNuAt6uj8V1VVSUTd8ePH2fXFizU6Ft6ZpvfkxYdJPDudTixbtkwiNhoaGhAXF8fuG0A5/Kom6mJjY1mZHV7UUZsiIyMlx06ijj/HaqJu+PDhePXVV9G/f3/odDp2vqn9Wq0WERERfsOvHo9H8pCs5tTRMcqdOjrHShMl1MKvJpMpoLIlvgh69uuMGTPw1Vdf4fHHH8fYsWPxxBNPYNmyZc0qndAW4QeZY8eOob6+HrNnz8bcuXMD3gY90cmXQpFTV1fHOgq6uOVPqSQKjh49ig8++ECx4C7d2A0NDQE7C3v37kX37t1x9OhRXHLJJfj0008l7//888/4/PPPVcOGlZWVzBEAzom6yspKbNiwgbULACsWun37dmRkZEiexIht27Zh7969qvlfNTU1yM7ORm1tLRv4N2/ejIaGBpw4cQKvvPIK9u/fLxFOJBxsNhv++c9/onfv3liyZAk6duwIQFnUnTx5kv0GFosFP/74I77//nuv9pSVlbFOuLi4GCdPnkTv3r3Z9/7f//t/ACCZQat0Lv2JOmqbx+Px69Tp9Xo2QD/xxBMYMmQItFot7r77bmzZsiWg0h/V1dWIjY1lAwU/gFAbX331Vdx+++2q23j33Xfx2muvoaGhAQcOHAAAZGVlsUFs//79ABp/H7nIl4s6EpQ8Sk4d5el8+eWX2Lp1q+Q+VhJ1/JM4IA2/WiwWxMfHw2AwBCzqfv31V/ZvugZjYmLYuUtMTPQSdZs2bQKgHubzJeqo3f379wcAdp6Bcw9QJMzpXModJTWnjq6vqqoqvPrqqwAa16HlJ0ooOXXx8fFMSFqt1oCdOuovKXz+0UcfeaWv8KFoGjTDw8PZBBI16PrKyMhg94bdbg/IqZPfm/JUkrS0NBw5cqRJdeoAb6eOBDodG4+8pAndA1VVVZLw65///Gc2VvHhV7moIyGm5tQBjSJIo9F4OUh0r8nb6i/8WlJSgg4dOrA21NXVScrm8A8X/HHzk0fkTl1ERASqq6tZOZRZs2ZBq9VKcur49vMPWgRdDyTqAEjSWdRy6gi5U0d9Z0lJCTuXviZK1NTUNDufDghS1FVWVuL555/H3XffjaSkJGRkZGDNmjW4/fbb0bNnT58FLts6c+fOxW233QYA+OWXX2AymTB06FAUFhbisssuw+uvv46vvvoKa9asCXibtFSOP1H34osvon///jh9+jQb8HlRV1RUxC76119/Hffdd59ipfjKykpWV8hX7tr777+Pm2++GR6PB/v27QPQ2IlXVVV5Fcel/aqV9aCnVerwCgsLkZmZCZPJxCx66rSysrJQVlbGzoeS23v48GG4XC6sX78ekyZN8jnzjG4qCv+Wl5fjmWeeweeffy4RR1VVVWzAWL58OQuVJCYmsie80tJS5srQBAMaIClBX+mclpaWol+/fgAaxVpOTg4bYH/55RcUFhZCo9FIzp/SDEB/s19jYmJYx8CLOpfLxQQ1PSnyycs8l156qURg+aK6uhoxMTGSjleeuH38+HHFENm2bdtQWVmJBx54AI899hj+/e9/Y9iwYQAazy2Jun379rFp+nQdEvKJEkrnRV7SRGmmIi/ui4uLERERwZwjPqdOSdTROVCbeacEL1p4UUfiMikpCVarFW63WxJ+BZom6kg8DRw4EAkJCRJRSaJO7tTR+eLr/PGirlOnTl5O3RtvvAGgUcAoOXX0Gu/UEXS+abtqrj85dVSHz2QyYdmyZarnghcmlEgvh/ov6iN4UccLmUBy6ugabGhowKZNm9hDyWWXXYa8vLyAV5Qgh5BEhi+njp8MkpiYyCbuUEkTOv+UW0b7OnXqFHuPP0Y1p44vuSMXdQTvdAHeok6n0yEsLMyvU1dcXIzk5GRJuJbvE5VEXUREBOrq6tg1rOTUAWAPv3yb6XzzJUGio6O9+hQ6NxEREey8WCwWhIWFISIiQnKNKKUJqTl1ZWVl7B5QCr9STp3b7W52Ph0QhKibNWsWOnXqhA8++ABz585Fbm4ulixZggMHDrD494IFC5rdoPNFXV0dHn74YeYWrVq1Cl999RXq6urwyiuvIDU1Fbt378ayZctQXV2NNWvWIDc3F8eOHQsotOlyuXDmzBkMHjwYu3btkgiCQ4cOSW5k6lwXLlyoKOp4Abdq1SoAYPkwPLQ8FKC+5qPH48Err7yCr7/+GuvXr2dig8Sc/KmROkV+/c+//OUvuP3227Fnzx52HPQ3OV6pqansu7TNbt26oby8HL/++isMBgO++uoryROa3W5nT+avvPIKVq5cyZbfkrs0UVFRXgN4Xl4ebDYbzp49y27YsLAwVFZWIjc3F+np6UhKSsLEiRMBNHZ20dHRbFDlnTqgca1SoPHGLi8vR3l5OTweDytb4vF4UFpail69ekGr1eLs2bPIy8tjeWgk6jt16oTKykrWWTXFqQsPD2cPTXz4lR8syKnjk5d5Bg0aBJ1Ox47LFxaLBdHR0azjVRJ1OTk5knpaQOP1dfXVV+PDDz9kr/E5cz169GDXw/79+zFs2DDExMSwAZKQO3W+RB1/HZSXl+Opp55iYoAfLMghoI7TV/jV4/Ggvr4e0dHRqoJBCV788aKOINeqpqbGy7VS24eaqNNqtUhJSYHBYIBWq8Xo0aOZ6wd4h1/VnLqGhgYYjUY2kF1yySVM1Ol0OhQVFaGgoADR0dGsIDEdn5pTR+4gf8wdO3ZEQ0ODYt/k8Xhw6tQphIWFwe12s3tVfk74nDoSMeHh4Yq/0bFjx5CWloYPPviAibr09PSgnTremQQar5sxY8Zg2rRpAIAuXbowF0mj0fh06oxGI5soQdecr5w6/gFt586dLF+als3irzf6rM1mQ0FBgVdaQkPDufWigwm/EiTq6PeknDhCo9F4rRLhS9TxD4yBiDrg3LlSyqkDgMGDB3u1WS6igcbxQ96n0PZoGTag8Rqn1ARexCnlyavl1DmdTibqfIVfgXOTPJpDwKJu9erVePXVV3HixAk89NBDEqveZDJh+PDhePDBB5vdIF/87W9/w+jRozFjxowmr8VIhIeH49tvv8WSJUtYgrvdbscnn3yC7777Dk8//TTi4uKYiKInYKvViqNHj/pdUzE/Px8OhwOPPvooNBoNvvrqKwCNCn/cuHH497//zT5LF8J///tfJmp4Uff7778jNjYWXbp0Ya/v3r1bsj/KE6MZjwcPHsT1118vmYVK3zt27Bji4uLwr3/9i4k1uQAj6PX169ejd+/e2LZtG95++20sWbIEb7/9Nvu8P1EXFhaGzp07o7i4GFu3bsVf//pXeDweyYSQ48ePs4ud2k3nWW6Vy5c0As4l7549e5YNqOnp6UzUjRgxAoWFhfjoo48ANHYu0dHR7Hsk6mgQpJC41WpFaWkpC1+sWrUK/fr1w7x581jduKSkJOzcuRNut5s5dRTyobVbKZ+nuaLOZDKxkib8fUDhGDVRFx4ejn79+gVU9qa6uhrR0dHQ6XQwGAxeoo4KNcvbXFZWhtraWhYKARpdOMoF6tGjBxs09u/fj0GDBmHAgAFea+fyZVqUJqtoNBpYrVasXr3aqwZYeno6Bg0aBKDxN66ursY111yD3bt3Izk5mXWivKjjE8f5wSwmJiYgUXfmzBkcPnyYzZ4DpDl1BA2IxcXFknIjgLpTJ5/9arPZYLVaERUVJXFwR48eje3bt0tWroiMjJTkLvHnlg9f86Lu0ksvRXV1Nc6ePYvMzEz2vaFDh0rC5L6cOiq7A0idOjpXckpKSmCz2dig3LNnT0kNNULJqVMTdeT8PfTQQzh58iRbWowXdU1x6vjrLSwsDBkZGaitrWXrlioVLKbjMJvNTGTQNSfvc/mBnXcju3TpwsRNTEyMV100ei8/Px9Op5O1Uymnjs5hIOFXgkQRuYVyp462569OXW5uLjIzMyVOnb/wK12b/PXGizraFt33fJvtdjvcbrff8KuSU0f9mPxaVIogkVNHAs1gMLBjofveV/gV8D1JJlACFnVHjx7Fn//852bPzGgqe/bsQVFRETZt2oQ+ffoozpgLBo1Gg8mTJ+Obb77B7t274XK5WCw+KSkJM2bMQO/evSXhDOL222/H2LFjfdb9Ipdm2LBhuOqqq1hu1ZEjR1BaWipxvkpKSpCamoq6ujoWmuRF3a5duzBkyBBWXgE459T9/e9/R0JCAv7xj3/AbrczUbdixQqsWbMGV111lUQ4LVmyBMnJyVi4cCHWr1+PzZs3A1AXdfQEtWzZMhw5cgR///vfATTePEeOHJFMRqDtpKamIiUlRbLN2NhYJCUl4cSJE6itrcWNN96IIUOGSNaVpKK2ycnJrDMgUUcd6iOPPIIbbrhBcXkdEmd5eXns8507d0ZlZSVOnTqFLl26QKvVIjExEUuXLsWHH36I6Oho9luQqDMYDEhOTsahQ4fYtkmIlZeXY/369TCZTJg/fz7y8vKQlJSETp064ccffwQAiXMXERHBXIu4uDh06NBBMfzqr6SJXNTFx8dLhBbg36kDGkNFO3bs8Os2WywWtj9KyqZ9Wa1W5Ofns46ND3FSSLG2tlbi1mzatAnl5eWsCG1paSmOHz+OPn364LLLLvPKf5N3oLQP6iRTU1OxceNG3HDDDV73aGRkJNtPcXExNm7ciB9//BE//fQTG5Bo8FELvxLR0dGq607yPPvss7j33ntRU1PDRAy/ugdB1e/p2ho+fDh7L5jwq8ViQVRUFGJjY9kANGrUKNhsNuzZswcvv/wyNm3ahISEBIkzyZ9bNadu8uTJACDpT4DGEhPyuoH8ILtlyxbs27cPffr0AQAWguUnSgBQLGtCAmz06NEAGsW/kqhTyqlTC7/SfeZwOPDWW28xAR2oU0fXhFL4lYiPj0d0dDRqa2vZai/k8srbbTQaJc6RklOn0+nYQvQAJL87T2xsLKqqqiTChO57GnvkTl2g4Vd/Th1dw3Knjtrpa5kwp9OJ06dPo1u3btDpdNDr9QE5ddQW+g3kTh2NP0pOHbWHD78qOXX8ueHDr0pOnS9RR9c71ckDEFD4FTjPos7fGngtzbZt23DNNdcAAK699lrFNTIBsIKB/B81Jk+ejKKiIrzxxhswmUyYNm0aHA4HPvvsM5jNZvTq1Qsul4slrvbr1w9hYWHYvXs3rFarl7tAobnHHnuMuZadO3fG9OnT8euvv+LOO+9k5WDoxgMaRd2YMWMQFhbGcr9I1Hk8HmzduhUjRoxAly5dADR23vv378fvv/+Ol156CfX19UxQdOjQAVFRUfjtt99gNpsxYcIEPPDAA7BarXC5XFi6dCmmT5+O//u//4NWq2VixZdTp9fr2YD766+/Ii0tDZdffrmkfIeSU0c3Kom6KVOmYMaMGZg8eTKGDBmCcePGYcOGDfB4PHj//fexcOFCJCQksPyryMhIdo6p85o2bRomTpzIZmPykDjjnbpOnTqhrKwMZ86cYecPAG699VZ0794dUVFRKC4uRlhYGOusgMbcIaXZiBQ+vvXWW/HKK68AaHQDJ06ciKKiIuh0OnTs2BERERHIz89HbGwsExIxMTHo1KkTcwBXrFiBW265BYD/kiZms9kr/ApIQ7mBiLobbrgBhw4dwtdff636GeBc+BXwnmnH52LK20wuTG1tLTumuLg49O/fH/Hx8azT+u233+B0OtG7d2+MGTMGZ8+eZaVKgMb7mF9LkhfpQKNAoLB5YWGhZBmjyMhIREdHw2QyoaioSOJMktjjRZ1Wq5UIBLmoo1CXEk6nE263G0VFRaisrJR06r7Cr3TvyEXdX//6V7z33nuSfagVH46OjpY4df369YNGo8H27dvx5JNPYuXKlUhMTPQqNaHk1NHApdfr0bNnT+Z4dOvWDQBYf0hQmRa+0PZdd92FYcOGsb6PRBSdD7pmlepKUhoIibqePXt6DaR0DEpOXUZGhld9zsLCQsTGxmLkyJEoLS1l7aEB259TZzQaJUV+6ffk+53ExER2v1VVVbHrWy4w6RzTbEyn08muWf586PV6aDQayYQIOkYeqkvIp/VQ/T5y0H05dWrhVxLSTXXqyEkm5E5dXl4enE4nMygoN7CoqIgdoy+njr/eeFFHfb+SU0fHLHfqfIVf5U6dPDJE/+ZdVQq/0jhC9xPg7dTx4Vda+xU4z6KutamqqmKDTExMjOoqAgsWLEBMTAz7wyfsyhkxYgQyMjLw1VdfYfDgwXj55Zfx008/4eqrrwYANotx+PDh6Ny5M4YNGya5kCl/xe1246677kJkZCT69OmD1157DceOHUN6ejpMJhOmT5+OZ599FitXrsSzzz4LoDEfiYQSLW7MO3GUpHz8+HGUlpZi5MiRTJTcc889aGhowAMPPIDk5GTcfPPNTCjExcUhKSkJBQUFyMzMxKJFi1BRUYFnnnkG69evR1FREWbMmIG4uDiMGjWK7U9J1FHOxmWXXeZ1PtLS0iSfpbIHZWVliuFXWuHgs88+w1dffQW9Xo9x48ahsLAQv/32Gx577DFs27YNl1xyCXMHpk2bhgMHDsDpdErWfOTry/GTB3gn4uTJk4iMjERCQgKys7PhcrkUOyG6plJSUiQPLrzLxHPy5Ens27cPo0ePxuOPP459+/bhxhtvZOIsMzMTOp2OOQe8qIuNjcWtt96K77//HidOnMCDDz6Ir776CvX19azjoeXECBoAwsPDWQdCTh0gzRkLRNT94Q9/wI033oiZM2fizTfflLhjfB0omiQAeDt1gDTPU8mpq6mpQV1dHa6//nr8+9//ZgKNjoEeynr16sVKj/D5YDabTRI2pH3Tb5iRkSGZAc6HOCMjI6HRaNChQwcUFxdLavPxieY0UYIv5xFs+HXcuHF45ZVXUFZWBovFgpqaGsTGxkKr1SqKOrlTR7UnNRoN6urqsG7dOsl5oONXyqmLiorCTTfdxPKszGYzunbtKplcQIV/NRqNl3PDz34lpy4xMREajQbXXXcdALB7sWvXrpIBJy0tTeLUVVVV4cSJE/jTn/7EXIeMjAxERUWxc6vT6RAeHq5YH+z777/H4MGDcckllwBoFKi8U7du3Tq8+OKLinXqTCYTBg0ahL1790qu56KiIqSmprLi6IE6dR6Phy1XRQn6wDlBwQv8xMREFvasqalh96XcdSU3VMmpq6ysZH0PiQB/oo6uKd711Ov16NixI7u3bDabZCIViTqNRsNEi7xOXWRkpF+nrmvXrjAYDJKHZMJkMvnMqSMzgx4WwsPDUVxcjPr6eja+yMu48K/JnTpKD6Frmk9noDariTpf4VfeGaR7Q8mp440AcupIwLV5p661iYuLYz9oVVWVZNo3z5w5c1BdXc3++KpgHhYWhg0bNuCRRx7B448/jg4dOmD8+PHsfXoy7dGjB1atWoV//vOf6NmzJ/R6PYYMGcLCPhs2bMAnn3yChx56CMnJyXj66aexatUqPPPMMwAaO5HnnnsOzz33HFwuFzp27Air1YrFixdj6dKlKCkpQVJSEgtbpKeno6KiAh6PB1u2bIFGo8GwYcNw9dVXY+LEiZgxYwauvfZa7Ny5E3fffTe6du0qqVhPF1pmZiYyMzMxf/58vPnmm/jb3/6G7t27Y+jQoQAaXRug8YZRmihBomzy5MlIS0tjZQ1I1PFUVlYy14hEXVlZGex2O06ePKk4M3rUqFHQ6/W4/fbb0dDQgOzsbCxbtgzDhg1DWloapk+fDpvNhg8//JAdX1RUFOvgqqqqWMhU/oR28OBBREdHIy4ujn1XqRO66667MHnyZK+aWCTq5EsRrV69Gh6PhzkKAwYMgF6vR+/evdG7d2+Js0G/B+/UzZgxAzqdDqNHj5bMzOMHAb6zoQ5SKfwKQJKL4i+nDmgUD++//z7GjRuHRx55RDLhZsqUKZg9ezYAZadOLurodzh16hTmzJnDJgcB556kJ06ciD/96U/se1QQ+csvv0RsbCw6dOiAhIQE9OvXTxJGpTpYdFwk4FNSUiROJSEXdUCjK1dQUICdO3fiyiuvBACv8CuFttVEnb+JEidOnMDBgwdRWloKq9XKZh+bTCafOXXHjh1DbGwshgwZgpkzZ2L8+PGora2VlAkhfIm6MWPGSK7dPn36SOpiJiQkeCWwq+XUpaWlsUlCN910E/R6vcSx4wec9PR0iaijfpYGL6BR8MoLQSvNJG5oaMB3332Hm266CZmZmdizZw+uvPJKiaj75ptv8P7770vOBT9RYtCgQaiurpa4vUVFRUhJSWHhZLqn/c1+pQGXliKTT5Tg+0jeqQPODcqZmZmSWeZ0jnmnLi4uDmFhYSgqKpKsVyo/Nv5vgj7PF37X6/UYMWIEc/74kCodI7n+VAtNnlMXGRnJlu1SE3WTJ0/GkSNHFPt0fxMlcnJyEBYWxvIrzWYzE3q0ekUg4VfqX+g8/fLLL1i+fLlXjTc+/OpvooRS+FU+UYIeGkjU0f0MeDt1vKiLi4uDRqNpWzl1rc2wYcNYVf4ffvjBq7AoYTQa2aK9/OK9amRlZeH1119nTgsPPTn06NEDAwYMQGpqKiZOnIh77rkH119/PX799Vfk5OTgk08+QY8ePfDSSy9h48aNeP7553H99dfj/vvvl2zvgQcewJQpU/D000+z/z/11FOwWCxITk5mF3Xv3r3hcDhYnkr//v0RExODSy+9FN9++y0MBgNWrVqFDz74AE8++aTk6SQ2NpZdaORqPPLII5g2bRoTl3Th//nPf8aiRYvQu3dvRVFHLtB1112H/Px8XH311Zg/fz5mzJghmTpO+R0kMCinDgBmz56NdevW4c477/Q6v1FRUXjzzTdx7Ngx3HDDDejbty/i4uIwZcoU5OXlYezYsbj77rsxc+ZMfPvttwAaB0g+EX3UqFGYOHEixowZA+DcgH7o0CHExMTgyiuvRK9evdC1a1dFp27SpEn46quv8Mgjj0heJ9FKnQ+xbt065jrKWbJkCV5++WUA5zrluLg4iVMXFxeHRx55BJmZmaxMRF5eHurr69nTOt/ZKIk6XtTInTpfJU2IDh064OOPPwbQWNfs2WefRU5ODnJzc1k5CZooASiLut9//50N+F9//TVefPFF5OTkMFFXWVkpKbNAREVFYcSIETh16hR69erFrsVRo0ZJUiqURF10dDTi4+MRGxvrJVz5AYbeS0lJwa+//gqLxYJZs2ahZ8+eLOdGXraEBhJ5+NVfSROqcVhWVgar1cpEtdFoRHV1NTQajSQ0zIu6lJQUGI1GvPvuu+jUqRM7x/J9+RJ1cqgP6dWrF5KTk9l9KHeygcaB0e12s7Db008/zUo2XXrppaisrGSTfuROXWpqqkTUkbjgxfb06dO9wvxRUVFeovXnn3+G1WrFTTfdBKDxAY3Wd6W20hrManXq6FrkHWQSdZ07d8abb77JSlb5c+pI4JGokzt1JJqSk5MxbNgwyTXeo0cPdk3z6TlKTp3BYEB8fDzKy8vZ9Uttkzt18odL+cxcAGz1GIIXdZGRkcyp4wUin1PndDoRGRnJjldN1EVERCg+INN3fNWpO3nyJDp16sSOMzw8PCBRp+bU0bkfMGAApkyZ4vU9nU6nmFOn5NT5C78CYCtTUD1Xup/j4uK8nDo+/Pr/2zvz+Kiq8/9/Zp/JZLbsLCHsq4CgohQQl7ogKi64UCu2Vq1bv1ZrrfZL3ZBSbbXVulb7xeKOewsq7igKitRaEFCWBMKShOzrZJLM/P7I7zk59869M3cmEyYJz/v14gUkM/eeu53zuZ/nOc/x+XywWq0KUSc72Idl+HXKlCkoKCjArFmzsGXLFsV6oz3FsGHDcNddd+Gcc84RP7v22mvx+OOPY+HChfB4PBg7dixeeOEFLFy4MG4laLvdjhUrVoip8C0tLSIPRC3qgM6ZhG+//bZYf1PGZrPhiiuuQCAQUIQKZaeO8o+sViuef/55bNiwAQsWLBCf9fl8uPrqq+HxeMSNX1tbK95GZJEGdDqbixYtQkFBgRA9JpNJTEagiQrDhg0T33nooYdw/fXXa4o6APj5z3+Ot99+O6pmndlshsViwVNPPQWLxSJCaLR4M9DZEQ0fPhz/+te/RJh9/PjxsFqt2LFjB7xeL44//nhs3boVO3fu1LT19aBzKos6p9OJ/fv3Y8KECZrXesqUKaKcCXU28vWgjvjee+/FunXrcMUVVwDozENrbm4W+V7xRB3NfgW6RB2F1+I5dURmZiaKiorw1ltvYfHixXjrrbdQXV2Nbdu2iSXWtMKvdAy7d+/G+PHj4XA4xHWvqqoSjg3lI2oJzNNPPx0AFDlaY8eOxa5duxShItqXLOouuOAC3HzzzVGCRs+p27VrFzIyMnDCCSdg27ZtwmHVE3XyhAFKWne73aiqqoqaGNXW1oaWlhbs2rULzc3NCIfDOHjwoHDq5JlzREZGBjIyMlBXVycEF/1cduqam5tFvpTeRAmtF1Zy+6dMmYIPPvhAuHhaTp1cwJsEhywe3G63ODdjxoyJGX6ll8J4g5Is6sLhMDo6OvDZZ59h4MCBov8j5JAXrTOrF34dMGAAcnNzFUKKRB3QWYaJXsTizX6NJ+roxffZZ5/Fb37zG8XzNnz4cFFvTM6V05ooYbVahbOZmZmpWCLKaPhVxmazKcyOYDAojoWK0tOKCfI5BrqcOvm50hN1sQrkxnLqPv30U6xfv15EM+j4SNRRvc9EcurivcDqhV8TnSghi98//elPIsUhJycHNpsNOTk5YrKMHH6lY/H5fLDZbOIloqOjQ1wHcm+Bw0zUAZ3rn3766ad47rnnNC98qjGbzbj99tsVnS8xcuRIbNmyBQ8++CB+8pOf4KqrrjK8XZ/PpwhTAJ2i7phjjoHNZhN5NqtWrcL+/fs1XUQZcupsNhtcLpci/GoE+UGm/MDZs2fjzTffhNPp1OxASLTRsdTU1GDjxo0YOXIkfD6fwsm75pprYu7/9NNPj8qFIMxmM/Lz8/H9998jIyND5OUQ1PHQ+czPzxeCLJ5LGwsSrdQui8UizicNnLGQRZ0cfpVxuVzIy8tDaWkpmpubxX0mdzZyCQJZ1NlsNng8HiHqvF5vQqKOjoMm7hw8eFCsDlJcXIxIJKI5UUJ+gaBrTYnZVVVVwqkjUad2GABtUTd8+HAEg0FxPMFgUFPUzZgxAzfddFPUMWqJOjqfF198cdTnKaGbZvlqOXU+nw8mkwkzZ87Ejh07MH36dEUen1yvjzhw4AAyMzOFqJMHBHpRkfM4CRKO4XAYjY2NWLp0qQhdyu4U5SzV1NRoDgAkjCZNmoQjjjhCMTFEK/wqizotrFYr1q9fj8suu0yRFD548GDU1NSIvEE6L3ppMYQs6q644gpcddVVKC4uxsiRI6NelOTwa11dHdra2hRrNsuCx2Qyibw6QhZ1Mok4dVo5dSTq1GFgedt+v18h6rTCryQGgK77Ti3q1GFYQquemc1mw6RJk+B2u0XJHtmpo9mv8jNJoT85n4xQizpyumIVyNXKqaPafMcffzzWrFmjyB13uVyor69HRkaG6F8Tmf2arKjzer0IhUJiYmUkEkFTUxOcTifMZnNUTh21adOmTairqxP91IIFC/CHP/wBLpdL5MFrTZTQcuromtISYcBhKOp6G263G9deey2efPJJRcKkEcaMGSNChkCnqBs9ejSqqqrEjLgnnngCAwcO1F0LlSDh4ff7YTKZosKv8VAPeCtWrMCGDRvw/PPP67pSubm5sFgsIqRIou6oo44SvzebzZg4caIhERQLCvXQYKgVPiBRl5ubi6uuugpnnHFGQkJbDYmXrKwseDweBAIBcV7VjoIWalHn8Xg0SwDQephaou7zzz8Xi7yrZ79S28hN9fl8hnLqZCZMmCA6mZKSEjHAkSuq5dTJom7EiBHw+XxiQKeVTyikJJ8HmSOPPBI33nijyHUCIDp6emuXnTratyzc6EWEfqbn1AEQjqgMDT5aTh116LTNiy66CK+99ho2btyoyJMiQSMn51dWVoo6V+3t7QpRR39ribqMjAyRk9rQ0IDS0lJs2rQJjY2N6OjoUDh1bW1tqKqq0hwAxo8fj2OOOUZUCiDkWYl6Tp0eU6ZMgdPphMfjgcVigcvlwqhRo9De3q54LoH4g5Icyt62bRvWrVuH4uJizXCeOvwKdJ5fdZ6ZPPuXJqAEg0HU1tZqijq92a+PPvooDh48GOXU6eXU0X7l543uI+oTCRJTek4d3Xfq8KteTh1NBpKx2WywWq14+umncf311yucOo/Ho+nU0b7lNaMJ9T6NOHWyswkoRR3QWVLphhtuUHwe6HwW6FwkE37VQ6+kCd2z5eXlGDRoED744AM0NzeL7dH+aFlG+j/l/ZIDOWXKFNx0001wOp3CWdeaKOH1ehVOnSzqrFarOK5UiDpr/I8wPcGzzz4Ll8uF4447Drt37xai0OPxiBtm06ZN+OUvfylmDuoRCAQUsyNjTTnXQh3KCgaD+Nvf/oYf/ehHuo6oxWJBfn4+AoEAAoEASkpKsG3bNsybN0/8fuLEiYok+WShjpnaGU/UGV20Phbk1Pn9flGrjPaRqFNnt9tRXFys+cDS0kmyqCOx8MADD4ii1WqnDui87uSIJevUEfIyZlQCRHbq9u7di3A4jNzcXDFxgEQd8e233yIcDmPMmDEiWV+r0zWZTHjggQcUP6NBfdeuXZg5c6Zu+JWgY5w6dSo+/vhj8TuaFAB0JvuHQiFRIkdGFnUjRozQFHXysc2ZMwculwvvvfceJk+eDEC7/Ay1TZ6VTfco7YPaKrvZGRkZ4rlvaGhAXV0dwuGwWGlDPbgfPHhQ061xOp2axaX1JkrQv40sT2QymcSLIxXUBjqfz/r6erhcrrjb8Xg8QuxUVlaipKQEPp9PuLcy6vAr0OkI0jkwm8349a9/LSbBjBkzBg899BBCoZBwUow6dVVVVaKo/gknnCA+pxV+pbZoOXV0rQOBgCI/+eDBg8jNzUVFRYVihQPqU9ROHW1TL/xqNpvh8/lQW1sLk8mESCQiRMv8+fNFviS1PTMzE1VVVWKihPo8ywvXE1T1gKC2xbrGWVlZohIDoMwdAzrXopZfium4KHx+4YUX4phjjonarl74VSsSoG6zXvgV6HyZbWxsFCkUtD25zbJTp56ZTu2iWbxA1z2ndupI0ANQvKhZLBbFRMfuwk5dmhg2bBgKCgrEJAj5TVkevGhR5liYTCYMGjRIiIZzzjkHTz/9tBB38aAbXBYdY8aMgdvtjllseuDAgULUff3112hqahJOHdCZtHz99dcbakMs6CGRRQahDr8m6pjqkZOTIxYmpwT9ZESdXFVfS5zTIufNzc3C/aRCrOoaVHJJE6Czo5BFXUNDA1pbWxMWdSaTSdR8A7qcOq2JEvLkI7WoIxdLnkQSr9OVP1dQUIAXXngBxxxzDOrr68W5W7p0KT744ANFfiP9jgYAapPsYAwcOBA33nijptNMTkqsiRLyc+hwODB79my8++67CIfDuPfee8V1UiOXRJBz6uI5dURjY6MQPrRyjFynTn0OjKA3UcKIUydDqzLIye50HPFCr4Ay/Ep5ipWVlZpOnTr8Kh8Lcd999ykmh3R0dOAPf/iD2F4sUSfPfiVnuba21vBECfkay6sI0HmSnbry8nLk5+dHhV/VTp3RnDqgSwDIzpD6HFGb5fCreluyqKNt3H777VEvZDabTZH3p0VOTo6i3yKnjlAbCLJTZ7FY8NJLLynSMtTHQ/dOc3OzwlnTQxZS6vAr0LXqT21trUIkyscpO6iffvqpoj+RX94orzQvL0+4dLHCr1R82Wq1iuPi8Gs/4MQTTxTJ9YTZbMb//u//Yv369YY6SqAzBEsDrN/v152YoAV1IHJNP/lNXI8ZM2bg6KOPxujRoxEOh2GxWBQVvU0mU9zJI0YgRyOWU0eCSF1qJVlMJhO2bNmCSy65BF6vF9nZ2cjNzYXX6zW0D9mpi0VhYaFw6jIzM/HjH/8Y9913n1hrlpBzJeV6jdQZ+3w+8Xmjou7II4/ElVdeiXPPPVfUfRw/fjzWr18vtgloi7qcnBxRC5LQEnXxOl2Z4cOH45133sFXX30lllwCOgsVX3HFFfj9738vPnvqqafirbfeEi8RsqgzQm5uLg4ePKgZfqW6buocyFNPPRWffvopNm7ciFtvvRUrVqzQ3DbNfgViO3XqnDqio6NDOE0k6rTCcIkMAPGcukRFncViETXsEhV1FFKWRU+s8Gt7e7tiRrBe+G/MmDEAgL/85S+wWCwoKirS3C45WmqnDuiqt0n7p5y6SCQihCX9ngZ0k8kUFbajnLrvv/8e1dXVqKioEIO9VvhVL6dOb/Yr0PV80vnXEnUkFuTZr+ptOZ1OcX5PO+00PPbYY6Icl4zNZoPT6YzZp+fk5Ig1soFoUaeV2yofgx707CQzUULr3zSWkKirqamJEolaL2aNjY1iprXZbBb3ksvlEs8sRc5kp04r/Eo19mSxx6KuH3DTTTdpLkV2zz33iAkTRvjNb36Dm266Kak20A1OuXnyMkux+Mtf/oJ7770XV1xxBXbs2IEvv/wyJTelGrVTpyXq3G431q1bl9JZ0fRmfdZZZ4kSNS+++KIhoSrXqYtFUVERGhsbUVlZiYyMDNx7770IhUJ4/PHHo0TdhAkT8PHHH4tORRYdXq9XvCEbFVIOhwN/+9vfFOEQOQymNVHC4/HA6/WKGWxyGyoqKmCz2RS5g4mKOhmn04klS5bgnXfewUMPPaR4y7fZbJgzZ06U0DUq6nJycnRFnclkgtPpjJpoM3v2bASDQTz11FMAlCFreeKT7NQlklMnQyVCUiXqZKeORAmVYJDbFg+5nAy9+NFLl5H2ZGZmoqGhATU1NYpcxFhOnXqWop6oy8/Ph8/nQ01NDW688UaUlJRoln2hcilyTh291Gg5dTSrkUq/aLWDzonaqTvrrLOwZMkSVFRUiP6kra0taqJEojl1QFff0l1Rpw6/Xn311ZpuHE3Ei0V2djZCoZDYXjxRR22RUxG0IOeM7te2tjbU1dUlJOq0cupkp05vZrAcfgW6CobLAtfpdIrcYhJ15NTRijXq8CuJOrnofbzzawTOqesnaOWkGIU6vtzcXDgcDkWtJaPI09RTjVrUyeEX+d9auRipgOoKAsbzFI06dTQwhsNhZGRkID8/H+PHj8euXbuiRJ3JZMLs2bPFz2RB5fP5hKgzKmwIGlhMJhPOPvtske9G9wWJumAwCK/Xi1GjRonvUBuys7NRVVWFAQMGKAZSo+FXQFvUxcuPlFeIsFqtCTl1NTU1wpGTw6/0t1rUTZo0CRkZGXjuuecAdIo6u90Or9crZoOGw2HDOXWxRF1TUxPMZrPIT0qFU0f3hzzTk9wyo6Ju8ODB4rPkjCUTfqW2kNuh5X5TTp06d1Fv4DOZTBgzZgy+/PJLxXOiBYk6ck5oH2qnTl2jkWarA8q+R+3UBQIBVFVV4eDBg/jyyy/R3t4unLr29vaEnTqtY1Y7dbJo0RJ1WrNfqc3q8KsW5NTFgvqFyspKkR8uC6JknTo6JrmsEJUPioWeU6cWdTU1NWhvb9fMj5SfYaAz1/Dxxx/XFPh2ux0ulwtnnnkmjj32WHzzzTdiFr1W+JWculTCTh0jHrTMzEz4/X5DoddDiTr8Kk85T6T23KFEnVOnhyyg5bfWHTt2iMGFci/UkGA0m82K0gvJirpAIKCYVEA5gBkZGSI8UVBQgGeffRZ/+ctfAHQNLFSkduDAgeLYyfEyysKFC/HII4+IDtfItSVHmWacJiLqgM7ZbWqnDoBmKR+r1YpjjjlGuAWNjY3wer0oKCgQoXm5LbQ9LVFnsVgU7p6W+KWVX4DUOnWyqCOHyuhzdP/99+P//u//AHS9kNA1SEbUTZw4EUVFRZr5puTUqdejjnVPjR07FmazWbEEohYkGNW1B/WcOlnUabVDy6k7cOAA2tvbhduqDr8ayanTK2kCdD3/dP7jOXUdHR1obGyMGX6NJTCMOHXUl9ALqdGcunhOHRB9j1ZUVMQVdfLxyOfH7XbDZDIl5dTRc6llLtDKEU899RTOOecc2Gw20Y+ow68WiyXKqUsFLOoY8aB5PB788Ic/7Jbr1xOonTqgq5Pr7aIunlPndDpF6El+a5VnkOl1pHIVeq0Bxijyguta5zMjI0OEyoqKihS5klqiTh6QEnF8R4wYgWuvvVYMUkaubW5uLt566y3MmTMnKVEHdC0FBnSdu/vvv18zL5XKDRE+nw8TJ07EuHHjxHOk59TR30cffTROO+00RWeuJep+8pOfiH+nOqeO9keDr1HxTWtLA8DZZ5+NO++8U+RQGhV17e3tIqn8T3/6U1ThcYJy6ow6dQBw/vnn49prr4373KmdOkLt1Mn1DAFlDTJZiGrl1BF03mNNlHA6ncjOzhbfmz59Oi688ELNlBPCSPhVnihBx6c1UYJeVOJNjNOrJ0rQ8ZBoT1VOHbVTbmN7e3vcyImeU0crvchOnXo2rfwMy6KOXGX5mZHLTKn3T9dQL/xqtVpx0kknpUzccfiVEQ+ax+PBs88+m+bWRKMuaQJ0PkQ1NTUJOUGHkhkzZuDSSy/VLNyshlZTkN9ayUEZMGCAKHWhRhZ18ptusk4ddUj33nuvYuq+3NGpl02bOnUqfvCDH4iBXXbqEgm9yuTn52P79u2GBTstPm+325MSdT6fD9OmTcPq1auF+ySvvCJDom7o0KEoKSmB1+sV4dj3338fQPySJueee65YEougcyYvTj58+HCYzWZFGQ/570ReaNSiLjs7G83NzQk7dTI5OTm44447RMFfozl1AMTM4RNOOEHXHSI3TV5Dl0qn6HH22Wfj7LPPjtsOEozxnDpyC0n00DOiVTeOvgNonwutiRJyTt0jjzwiPjtu3Di89NJLYm3mWBMljDh11HfW1tZqhl+pHEcsUXfbbbeJtaH10HLq6JzIERZCnv0aD61STvFqhurl1AGd95O8PKb8cgdA020HuurB6jl1Mh6PR/Q18soRFH694IILMH36dNx///2KHNPuwE4do3AYeiMZGRk48sgjNesb9Vanbty4cVi+fHncGoNA18oKWqGIY445RjfEIIs62dXprqi75ZZbxFq7crusVmtUmGT27Nn47LPPxDZkUZfIJAkZeb3SREjEqZMX4qacF3XBXi1OPfVULF68WIg++q7JZNIMv8pv+bHuVTrHcm6Z3+8XLpa68HSiE5LU4Ve61jT4duc5outs1KkDOkWd3++PGe4jQUVOHc3OT0UyuVGnzuFwiOXggC53TH1vauXUydhsNvj9fiHqyKmjc+Z0OpGbmxtVkilWwd+CggJkZWWJe0Mrp07t1MXLqYt1PWjZvFhkZGQo8jdlp87j8UQ59wMGDIDP5zNUfkvr3MYrL6Xn1FF7SNTTajqycaD1DAcCAVgslqioht5zec899+CJJ54Q+5dz6iwWC5YuXYqzzz4bJpPJ0FhhBBZ1jCL82lv5+uuvFWvw9nZRlwixRN2SJUvw5JNPan6POnOHwwGPx4N77rlHsR2jqEWdGtre4MGDdUMEFHaRw6/JOnVaid9GcDqdhkUdFQOlfyeyj0WLFomwj/xdrfCrw+EQM/diLW2oJ+quvfZahEKhKKcu0SKlWVlZKC8vF7UM6Xp1x6kj6JwbEZp0joqLi6OWSlRjt9sRiUTEKhLyklrdRT37lVA7dWpxpC4ATqidOro+dD3z8vIUyfIUfrPZbKKIuxaxRN1Pf/pTrFu3TgjKWE6der1VGafTaSj8ahS5Vp0s6rSezXPPPRc7d+409Kyr3bAhQ4bEXQoylqiTv1tTU4M9e/YoZmFr5dRR+Dk7O9uQUzdo0CAxAUyeKEHXvydgUccoJkr0FeTFvPs6tEIBDXIk6mw2GyZMmCAq5quRnTqgc5ZuR0dHwrkZtIC13sBC51prmTMilU4dhZNIcBjlwQcfxHXXXWfos/JyeomIOoLaqLV0mbqkCRAdwlFD5zgrK0t8h4SBPBhRyZVEnbqLLroIra2tWL58uaZT153BvKCgAH/5y18M5eLKTp3slmpB56uiogI+ny9mflmi6Dl1cv4cOXVA1+xYtWNKyOFzoGtwnzJlCjwej3Ci5GWr6Jx//vnnuivvxBJ1LpcLo0ePxsCBA2E2mxUimdpNom7y5MmiX9By6uhzqRB1NBMeiC/q1O2OhdqpO+KII+J+J1b4VTYx2tvbEQqFFDPw5WfX5XIhKysLf/jDHwBEizq9nDp1W9Th156Ac+oYDBo0CNdddx1mzZqV7qYYpj85ddOmTcN3330nirmSqMvOzo450YAGfdkBSsbCN5lMGDZsmK5oo0FAnU8nM2nSJNx7772YNWuWaE+you66667Dzp07dcWsHqeddlpCn6dlm5JpJ7mJ6lqBlPwsh26A6Bl0augce71eeDweBINBTbFJuTyJirrCwkKce+65ePjhhxWlNCorK4VQTBaTyaRYzzMWck5dvOtL55CWRNMTVMmgN/sV6BSRJpMJFoslStTphV/puNTCo6ioCEOHDhUvAVarNWrZKnUpH5khQ4bguuuui1mzdOzYsThw4IDmzFwSqG63G8OGDcOOHTs0J0pQ3m4qhIbaqVPX3ksW9bk1sga3EafOYrGI45evhfwMWywWRYmpgoICxQuBnlOnboscfk02khEPFnUMLBYLHn744XQ3IyHUi3n3deQyMhSqifcGq3bqusPatWt1O10jos5qteKWW24R/3e5XEl3WoFAAMuWLUvqu4mQk5MDr9eblKDRmpHt8XjEjF+1U6eeQaeGCpXSOsMNDQ2697bL5UqqyPe5556LV155RdQSpPUqD+UzRO5IMBg0FH4FOpfY6kmnjvINaVJKeXk57Ha74jqSqNNrg9qpy8zMFIW4hw8frihrobXAvB42m81Q36zOSVM7dVarFaNGjcKOHTuinkv5XkpV+LWiogKRSAThcFiRU9cdZOE0cODAuLUIgfgTJYDOkOru3bthMpkUs2nVs9ZlHnjgAVFsGDCW66pVp64nYFHH9En6k1OnhirNH0pRF2tfRsKvajIzM5N26g4Vcm25RCHnRXbTsrOzRaeurqMYL/wKdJ5ncupo4NciWVFH4c6Kigo4HA74/X6Ul5enZBFxo8gD+7hx42J+Vg6/ZmVlJVS/MB5yTp3b7UYwGMTAgQOxd+9eVFRURE1uqaurEyVOAG2nzmq1CqfcZDLh9ddfx7HHHqsIM2uFX3sCk8kEh8OB+vp6sezd6NGj8fbbb0f1F7IgTFX4dfPmzUL0xAq/JoLsnO3du9fQyxgJJ6vVGvV5uheHDBmC3bt3Kwprq/enRl1KxahTR9eec+oYRgUJjf4o6oDOEGw8UUerKPT0OcjLy8OMGTPiFnSVcbvdvV7UjRkzJmboKxZOpxOXXnqpImXh+uuvxxtvvAEgekCIF34FOpPZR40aJYqA63HZZZfhjDPOSLjNlO9DeU5+vx+hUOiQPkPyQHb99dfH/Kws6vx+P7xer5h40l3kdWXpPqXZteTUyW2or68XBYKBaKduzpw5ipVnAGDu3LlReYNWqzUhp647OJ1ONDQ0CKFGubs0KYKQl4RMRZuOPvpofPvtt9i6dSuA1Iu6RNIF6Ni1joteEui6a61oI+83FkZz6tSzX3sCduqYPgkJmp56MNLNFVdcEXeav3qJq57C4XBg7dq1CX0nJyfHUImLdPK73/1OtwagEZYvX674f3Z2tqKYrPz3j370I1GgWY+NGzciEonglVdeUYR21CxZsiSp9srXg0Qd/ftQ8tOf/hRnnXVW3EGe7muaKHHGGWeIfLTuIjt1dB4KCwuxbt06XadOrjmodm/GjRuHO++8M+5+bTabWNGjJ506oLON9fX14lgWLlyI1tZWzJs3T/G5VDt1CxYswK233oo//vGPALrOYarCr4n0d3Q8WsclO3VAtKiL5dTptS1e+JUnSjCMDokWX+1r/OIXvzD0Ob/f3+OiLhlWrFiR1KzSQ4nVau2xjlUt6hYtWmToe5TXQ7lQqUQWdXa7PW2ijpYZiwe1KxgMwu/3Y/LkycJt6i52ux2NjY0Kpy43Nxc2mw3l5eVR60zX1dUpnLpk8xD1lq3qCZxOJyoqKoRbaLFYcPXVV0d9TnbqUtEmh8OBn//857j77rvF/4HUOnVGiSXq6Brn5OTA4/GIiWrJ7G/IkCHIyMiIucKF1ooSPQGLOqZP0t9FnVEOhVOXDHK9p8OR7qxN/Ne//jVl1eVlvF6vmAyQTqfOKHK7Uv2CIM9+JVHn8XhEPT95pQegy6nTC78aJVbifqpxOp2IRCJxhVqqw6+A9izSVIm6ZJy6WOFXj8eDVatWRZVISUTUjRgxAg0NDTFTA9QTJXoqytTrcuoaGhpw7LHHIjMzU7H+5UsvvYTp06fjpJNOQmlpaRpbyPQG8vPzo6qvH44EAoF+MwO4P5FI6EZNvELFyWI2m0V4qC+IOvkcpFrUybNfZVFHs5q1wq/yZJdkn7lYJTZSjVEBKvejqWqTHGpNVUmTZF6UjIRfvV4vZs2aFRU6TdSVjZfreajq1PU6UedyubBy5UrMnz9f/KytrQ0PPPAA1qxZg8WLF2Px4sVpbCHTG7j22muxZs2adDcj7dx33324/fbb090MRkV3w3Q9BYVgZVHX29pIqNfbTCXq2a9Ap+igFSBIiMjh11Q4dfJAfiicOiD+UlqyeE6VeyTPKk9VTl13nLpY4Ve9diUT7o3XlsMy/Gq1WqMcmO3bt2PChAmw2+2YMWMGbr75Zt3vt7a2ikRUoKv4ItO/kDvYw5mpU6emuwmMBn1J1PVWp64nw69as189Ho8o/B1v9mtfcOqo7Yn0Ed0pQi2jtYZqb82piyfqUvUMH6qJEr3OqdOitrZWofxjzVhbunQpfD6f+EPTlRmGYQ4VLOq6z6EQdR0dHQqnTk/Utba2xpz9ahR5HOtpUUerOqTjxU8WSh6PBzabTYS2k6U7s1+1BNSkSZNw33336a7W0ZNOXb8saVJWVqYIsRL//Oc/o0ohBAIBheMW62TcdtttuOmmm8T/6+vrWdgxDHNIGTduHB544AFMmzYt3U1R0JdEnTx490T4lcqjyGtfU/hVLlorTy7pbvj11FNPFf/u6fDrli1bAKRf1Pn9fnz//fcJFS/XIhmRRedYS0BbrVb8+te/1v1uqlct6vfh14KCAsO1r0aOHIktW7YgFAphw4YNmDRpku5njVRuZxiG6UksFgtuvPHGdDcjir4k6np69mtjYyOAznIUY8aMwdixYxEMBgFAUVLG6XSiubk5JU5dTk6OWJasp506YtCgQYdkPzKyqLNYLDFLfRgl1Tl18Zg3bx6ef/75lD0fh3X49YwzzsC7776LK6+8Ek8//TRsNht++ctfYvbs2Vi0aJHhmk8MwzBMF31J1JnNZjHwpdqp83g8IvqTk5ODbdu2YdiwYSL8Ki/eLjtEVqsVN9xwA0488cSk902RpJ4Ozd96662YM2eOoTy5Cy64IKX7lvPnUhVm7M7s12QEVCAQwIIFCxL+Xqy29OvwayzeeuutqJ9dfPHFuPjii9PQGoZhmP6BLOool6y35f3J2O12dHR0dHvmpBrZ+ZNdnFiijs7TX/7yl27te/HixZg3b16PO2hLly41/NnnnnsOTzzxRMr2LYuoVImXQ+3UpRq1qOt34VeGYRjm0EKiLp0rSiQCuWOpWO9VRhZ18uBKyfxyDnd3CklrYTabe12upc1mi7nEVXdItahL1ezXQ40cfu2XOXUMwzDMoYVEndPpFMKmt4u6nijErCfqtM5FqktbHG6kOvzaX5y6wyr8yjAMw6SeE088EQ8++CCGDx8Ok8nU65fbs9vtPbKGcLzSInIOX6pLWxwumEwmRCKRXuHU9fRMYyMcqokS6T9ShmEY5pDgcrnwP//zP+L/F110EY477rg0tig2DoejR0SdnlMHAJs3b1aIut5ac7C3k5GRgaamppSJuqlTp+LnP/85RowYYfg7vc2pi0Qi6Ojo4PArwzAMk3qWLVuW7ibERJ6lm0r0JkoAwIQJE6LaIP/NGCPVos7v9+Pxxx9P6Dux6tQdaqgNbW1tPRp+7ZUlTRiGYRimp8KvsZw6NZxTlxwZGRkA0hv6tFgsMJlMvULU0XmgZUzZqWMYhmEOK6644ooeWRHI6XTCbrcjFArFHfDZqUsOEnU95UgZxWaz9YqcOrrPqMA1izqGYRjmsOKaa67psW37fD4cPHgw7uDKOXXJ0ZtEXW9w6uilgFYy4fArwzAMw6QICsGyU9czsKhTMmTIEADAjh07APScU8eijmEYhjnsoLImnFPXM/QmUdcbwq8jR44EAGzZsgUAO3UMwzAMkzKMOnWpXlHicIFEXapXA0mU3uLUZWRkoLCwECtXrgQAFBUV9ch+WNQxDMMwhx0k6ow6dSzqEoNEHU0MSBe9RdQBwOjRo/HRRx/B4XBg0qRJPbIPFnUMwzDMYUeiOXUcfk2MG2+8EXl5eRg4cGBa2zF37lxMnz49rW0gxowZg0gkgqlTp/bI8ncAz35lGIZhDkPYqetZjjrqKJSXl6e7GXjkkUfS3QTB6NGjAQDHHntsj+2DnTqGYRjmsCPRnDp26pjuQqJu2rRpPbYPFnUMwzDMYQc7dcyhZvr06Zg/fz5OPfXUHtsHh18ZhmGYw45AIGBoCSnOqWNShd/vx8svv9yj+2BRxzAMwxx2XHDBBcjLy+OSJky/oteFXzdu3IhZs2Zh9uzZuPDCC9HW1gYAeOmllzB9+nScdNJJKC0tTXMrGYZhmL6Mx+PBmWeeGfdz7NQxfYleJ+oGDRqE1atXY82aNRg5ciTeeOMNtLW14YEHHsCaNWuwePFiLF68ON3NZBiGYQ4DZs6ciauvvlrk4DFMb6bXibqCggJRtJCW99i+fTsmTJgAu92OGTNmYNOmTbrfb21tRX19veIPwzAMwyTD0KFD8dhjj6V9ZQSGMUKvvUv37NmD999/H2eeeSZqa2vFOn0A0NHRofu9pUuXwufziT+FhYWHorkMwzAMwzBpJW0TJcrKyjB//vyon//zn/+E1WrFpZdeimXLlsFmsyEQCCgct1gL4d5222246aabxP/r6+tZ2DEMwzAM0+9Jm6grKCjA2rVro37e0dGBc845B7fffrso1Ddy5Ehs2bIFoVAIGzZsiLlmmsPh4FlKDMMwDMMcdvS6kiYrVqzA559/joaGBixevBjXXHMNLrroIvzyl7/E7Nmz4XQ6sXz58nQ3k2EYhmEYpldhikQikXQ3oiepr6+Hz+dDXV2dIi+PYRiGYRimP9HvRV0kEkFDQwM8Hg9MJlO6m8MwDMMwDNMj9HtRxzAMwzAMczjQa0uaMAzDMAzDMMZhUccwDMMwDNMPYFHHMAzDMAzTD2BRxzAMwzAM0w9gUccwDMMwDNMPYFHHMAzDMAzTD2BRxzAMwzAM0w9gUccwDMMwDNMPYFHHMAzDMAzTD2BRxzAMwzAM0w9gUccwDMMwDNMPYFHHMAzDMAzTD2BRxzAMwzAM0w9gUccwDMMwDNMPYFHHMAzDMAzTD+j3oi4SiaC+vh6RSCTdTWEYhmEYhukx+pyoe+GFF5Cbm2v48w0NDfD5fGhoaOjBVjEMwzAMw6SXPiXqwuEwXnnlFRQWFqa7KQzDMAzDML2KPiXqnn/+ecyfPx9ms36zW1tbUV9fr/jDMAzDMAzT3+kzoq6jowMrVqzARRddFPNzS5cuhc/nE3/Y1WMYhmEY5nCgz4i6Z599FhdeeGFMlw4AbrvtNtTV1Yk/paWlh6iFDMOkkk2bNiEcDqe7GQzDMH2GPiPqtmzZguXLl+P000/H9u3bceONN2p+zuFwwOv1Kv4wDNO3qKysxJFHHomPP/443U1hGIbpM1jT3QCj3HvvveLfRx99NP785z+nsTUMw/QkjY2NCIfDqKurS3dTGIZh+gx9xqmT+eqrr9LdBIZhepC2tjbF3wzDMEx8+qSoYximf8OijmEYJnFY1DEM0+sgMRcKhdLcEoZhmL4DizqGYXod7NQxDMMkDos6hmF6HeTQsahjGIYxDos6hmF6HezUMQzDJA6LOoZheh2cU8cwDJM4LOoYhul1sFPHMAyTOCzqGIbpdbCoYxiGSRwWdQzD9Dp4ogTDMEzisKhjGKbXwTl1DMP0Fdra2vD4448jHA6nuyks6hiG6X1w+JVhmL7Chg0bcM011+Dbb79Nd1NY1DEM0/tgUccwTF+htbUVANDc3JzmlrCoYximF8KijmGYvgKlibS0tKS5JSzqGIbphVAnyTl1DMP0dsipY1HHMAyjATt1DMP0FdipYxim1/LNN9/ghRdeSGsbWNQxDNNXIFEXDAbT3BIWdQzDqFi+fDkWLVqU1jZwSROGYfoK7NQxDNNrCYVCaX/jZKeOYZi+AufUMQzTa2FRxzAMYxx26hgmTXz66ae9oup3b6Y3iDpeJoxhmL4CizqGSQP79u3D8ccfjzVr1qS7Kb2atrY2BINBRCKRtLYB4Jw6hmF6PyzqGCYNNDQ0KP5mtAmFQgiHw2l1yTj8yjBMX4Fy6tId4QBY1DGHEfTgsfsTm94wPT8ZUXf11Vfj2Wef7akmMQzDaMJOHcOkARJ19DejTV8VdR988AE2bNjQU01iGIbRhEUdw6SBZJ26JUuW4PHHH++JJvVKeoOoS2aZsGAwiPb29qT32dHRkfR3GSZRdu7cqfj/n//8Zzz44INpag3THbikSRJs3LgRs2bNwuzZs3HhhRdyrg2TMMk6dW+99RY+/PDDnmhSr4Serb7m1HVH1G3fvh2ZmZk4cOBAUt9X09zcjMsvvxy1tbUp2V53efPNN7FgwYJ0N8Mwe/bs6ZZA7+2UlJRg5MiR+Oabb8TP3n77bbz77rtpbBWTLOzUJcGgQYOwevVqrFmzBiNHjsQbb7yR7iYxfYxknbqmpqbD6iWiN3RQh1rU7du3D8FgEPv27Uvq+2q2bduGZcuWYePGjSnZXnfZuHEjPvjgg3Q3wxAdHR0YP348Xn/99XQ3pcegl4fq6mrxs2Aw2Gf7maVLl+KTTz5JdzPSRm/oMwlruhtglIKCAvFvm80Gq1W76a2trQonpr6+vsfbxvQNyHlK1Kk7XEXd4eTU0TE3NTUl9X011O/0Fqeura2tzzhfra2taGpqUgie/gbdH/ILZktLC8zmPuOzKPjtb38LAGktg5QoTU1NcLvdKdlWbxJ1fe4O2rNnD95//32ceeaZmr9funQpfD6f+FNYWHiIW8j0Vrrj1B1OM2Z7k6gzet47OjrQ3t6etHChe6OxsTGp76upq6sDwKIuGQ6HwtN0f6hF3eHUz6STDRs2IDc3N2XPJ5c0SZL6+npceumlWLZsGWw2m+ZnbrvtNtTV1Yk/paWlh7iVidHQ0IA9e/akuxn9hquuuko3/y3ZnLre4tSFw2H8/e9/Tyihf+bMmXjppZcS2k9vEnVGzztd02SvEzt1vYdkJsn0NbScumAwaOiYV65ciRUrVvRY27pDeXl5uptgiP3796OlpQVVVVUp2R47dUnQ0dGBSy65BLfffjtGjx6t+zmHwwGv16v405v585//jLlz56a7Gf2G559/HmvXrtX8XbJOXXNzc68YYDZt2oQrrrjCcNmOSCSCL7/8Et99911C+yFhlM4OKlG3hgQoh1+1aWtr6xUvJkY4nJ06I8f85JNP4q9//avm7/x+P5577rnUNNIgcsh1/fr1h3TfyZJqEcaiLglWrFiBzz//HIsXL8YJJ5yQsPvQW6murk7Z28LhTjgcRnNzs+7AnIxTFwqF0N7e3isGGOowjOaJ0iCRaEfT25w6I3k6qRJ1yYZfly1bhrvvvlv8nwZt+jvdkFPXF3Ke2KmLTVNTk+aYEYlEUFdXh9/85jepa6gB5H5i3bp1h3TfyZLqF1cWdUmwYMECVFVV4eOPP8bHH3+Miy66KN1NSgmtra1obm5OdzP6BS0tLYhEIrrnMxmnjgRibxhgEs37IpcoUXHWW0RdRkYGIpGIoXAznZt0OXXvv/++YkZ+b3TqgM4Xn97O4SDqupNTpzeJhJ6TgwcPpqiVxpD7ib179x7SfSdLqkVYInXqIpEIHn300R6bxNlnRF1/pbW1tVeo+/4AiR09UZfM7Fca5HuDU5eom9TXRR3NTDNy7rvr1HV3okRra6viu90VdV988QWefvrppL6rBV3TvpBXdziEX+n+oGOMRCIJibqqqqoo1zVdYlgev7o7lj300EOorKzsbpPi0l2n7tZbb1U484mIxKqqKlx33XVYuXJlUvuOB4s6Ff/9739x9dVXH7L9tba2IhQK9alq9h0dHYhEIvj888/x5Zdfprs5AhJgqXTqaFtGv1NTU9Njb6vU/oaGBkOf766oS3eduoyMDPHveKQ7p661tVVxXbo7+/X555/H0qVLk/quzJIlS/DnP/9ZnMO+IOoSnfncF1E7dYkI2cbGRrS3t0e9gBwqEdze3o7//ve/4v/UT/h8vm71GXV1dbjhhhuwevXqbrcxHt0tsH7vvffijjvuEP8PhULIyMhAW1tb3LGc+vGeclRZ1AH4/e9/jyeffBIAsGbNGjzxxBMpS5iOR2+aCm2UcePG4bnnnsNdd92FP/zhD3E/39HRcUhEazynLpmcukSdusWLF/dY5f7DKfwaCoUOqVPX3Zw6tajrrlMXCoVSMkivWrUKa9asSaruX7roS07d7bffjmuuuSbh76lz6kgMGXXqAETl1R0qEbxq1SocddRR4lmhtgcCgaT6jGAwiGXLlontHYrj6M6Lq1ZFjVAoBJ/PByB+v0n9eEVFhfgu3ev//ve/cf7553cr95VFHYBXX31VLM9CFzlZFf2rX/0KTz31lOHP0wXuK3l14XAYO3bsQHFxMRobGw11vL/4xS/ws5/9rMfbZlTUJZNTZ3SAqa6uRk1NjeHtJwK1u6ecuqeffhpvvfWWEODpDr+SU2fkeqW7pAkVzKWctVSIOvVxP/PMMwkPQlVVVYpBoy84denOqZs3b54itBaLr776SrHUVzyKi4tx9913Rzl19Kx1R9TJ935PCuLa2lq0t7eLe5zanpWVlZRIeu+993D55Zfj22+/BXBornt3wq+ffvopgM5VrojW1lYh6uJtk46PNMZll12GG264AQDw5Zdf4rXXXutWvUwWdeh8OEgI0N/JiroPPvhAt6SGFr1pIWCZcDismVTd1NSESCSCpqYmNDU1GRokvv/+e+zevbsnmhnVNqD7Tl0oFMJpp52GHTt2JDxRorW1tcfEUE87dQ8//LAij6u3iLq+4NTR/ul+6W74Ve3U7d27FwsXLkx4DeLq6uo+K+rS5dRt3boV//73vw19tqamJqEX8pUrV+KOO+5AcXExgMSdunA4LO4x9WQJ+bupWsNYC7rX4zl14XAYmzZtirs9qm1HbT4U1707Th0th5aZmanYXqKijpy63bt3i/GR+vjurKbCog5AZWWleDDpgtAJT5RQKJTQQ95bRd0tt9yCCy64IOrnNFg1NTWhubnZ0CBRV1d3SI7P6ESJeB3nwYMH8e677+K///2v2FYiRXD1RGNxcXG3wvo9nVPX2NioECHpzqlLR/i1O04d0HVt6uvrkZeXh4aGhqTapHbq6LlLRGiHw+FeJ+p27twZNxUj3U5dXV2d4bzYmpqahO4ZGqxpMoBaXMQr4SM/k7Gcuv379wMAHn/8ccyePdtw+4ygvtdlUSe375133sGRRx4ZN3JBY21ZWRmA3u/Uff3111HfTUbUkXHU2Ngoxi46t92J9hz2oq6lpUUIFKD7Tl0oFEroIe+tom7jxo3ibVKGBpfGxkbDKy3U1dUdEtcnVTl1cpg2GadOb/snnngiHn/8cUPbidWunnLq1KIu3U4diToj5743zH4FlKKuqKhI/BsAVq9ejffee8/Q9tSijrabyIBXV1eHcDisEHU96YJcffXVMQtj19XVYfz48XFn/aXbqUtU1CXyEq/nrsnPWqx7WB5bYuXU7du3DwCwa9cubNu2Leq7ifL3v/8djz32mKKt9KzohV9LSkoQDofjvoSSqCPHrrfn1NF3khV16py6pqamqHPJTl03oAdD7dR1R9Ql49T1tpy6kpISzQGOBqhEwq+1tbWHRLSmavar7OglmlOnF36NRCLYv39/t+qW9XROXW8TdYmEX9Ndp04WhVQEltadphehBx54AA8++KDh9sjHnYyoo76ttbW1x526jo4OPPHEEyI0pcX27dsRCoWEI6NHOp06eikrLy+Pu/9IJJKwU6cnxNQCQQ95X+qBX8upa2trQ2NjI7744gvk5uYmXQz7zTffxIsvvghAea9XVVXphl/pOsfrR9Ih6rrj1IVCIZhMJsV3u5NT19jYKJ5vDr+mALWoo78P5/Bre3s7SktLNUWdHH41IupogOsN4Vc9p27z5s145ZVXoj4nizqj1fj1nDpa3aE7HVYsN+nll1/GwoULFT8jgWa0IGZjY6O4viaTKW2iLhKJiBIBQGcidbz1kdOdUyc7dcFgEO3t7RgyZAiAruvQ3Nxs+DkgUUf3nCzqLr/8ckNrf9LAcCjCr+pQnBY7d+5UfFYPtaj761//ikWLFqWimXGRRQ8JIz2am5vR1taWcqcuVh8h35+xnDrKT6PxaNeuXWhpaUn6pbK1tVW0ndpaUlKCgQMH4qOPPgIQHX4lURcvMqIWdb09p45cOT2nLl6/Sfuuq6tDKBTi8GuqodwGtaV6qJw6ugG6K3qCwWDKBuH9+/ejo6MjpqijGVDxBgla+qY3hV/Vnebs2bNxwQUXiAFULlIsvxkbdYxCoVDUJBPqTHtK1F144YV45plnNPdp5Ny3traio6NDdCYej6fHhfg//vEPPP/881HnlXKuKPx688034+abb465LT1RV1tbixtvvDHutUtlTh252VqizuhzoC4WLIu69957D5999lncbdCgL4dye0rU0TGr75kNGzbg+OOPRzgcFqIuXiV9dfj1f/7nf7BkyZJUN1kTWdTFC8HSs5LIurp6oi5Rpy4QCOjm1FkslqjyICSYEinnpG6nWtSR87pt2zZYLJaoPkO9z5qaGs18yr7o1Pl8PnR0dIi6dOFwGH6/H0D8qJt8fBUVFWhubo4SdezUdQMSdanMqUuHU3f11Vfjyiuv1P397bffLsq2xKOkpARAp3gIhULYsWOH+B11enR+4g0S9PlDGX4NBoOanYeeU2e32wFEd0Lqa5lIaQ31Z1Mh6noy/EqdCnV2Pp+vR4V4JBLBtddei0suuQT/+7//q/gdtYGcOqAz/BOro6O2qgfXdevW4S9/+Qu2b98esz2pcupkt5Ny6mjwT9Spk/+W65qFQiFDYTRZ1PW0U0ftUfd99957Lz799FNs2rQpaaeOOBS1Q5MRdYDx9Bn5Hna73ZpOXSyBSOdgyJAhugLR7/dHTfDq7iQEWdTRvU7np6ysDC6XCy6XS/GiL4dfOzo6kJWVpSjYS/S1nDp1/hxtKzs7G0D8+1sef+SxNhKJiPuAnbpuoBZ1qZj9msxEie7m1JWWloqEWDXt7e34wx/+gB/96EfiwQE6wyHz58+P6kToRotEIvj73/+OyZMniweVBhc6P6kUdStXrsSzzz4b93N6yAOy1v70Zr+OGjUKQGcYVv25ZJw6eRtETzp18jVoaGjAPffcg46ODtTW1sJisSQk6giPx9Ojoo7eUAEo7kmg6zyTUwd0njfK6dFCz6mj6xevk5QH12QKZWs5dQMGDACgfGFMVtTJTl1ra6shUacVfu2p0Jbecz5+/HgAnUXdk3XqaACNVR7jgQceiHKqk0FuWyKizmifX11djTFjxgAAcnNzk3bqCgsLdZ06v98fNcFLDscmA0VbZLdZFnVOpxNOpxMA8NZbb+Gee+5RhF/JGFCXigmHw8IgUM8ITobm5ma8/PLLcT+XCqeOvk/PflZWFgDj9zcAMRmR1iyP5dTRSk7xOOxFHT0YZKF3x6mLRCIJ51ikyqlrbGzUTUDetWsX2traUFVVhXvvvVf8/KOPPsKrr74adawk6oDOGnPNzc1i29R509/xRB2JmY6ODvHZyspKnHXWWVED01NPPdWt2aGyMNG6BnpO3cCBAwF0DRpaOXVAYqJOvY9Uijr1m+B3330n/v3RRx/hd7/7HTZv3oza2lrk5eUlJeq8Xm+PijrqzHJycqLOlZaoGzlyJP71r3/pbk9vooRRUSe3IVFHKBwOizbLoi4nJ0ex7ZaWloRFnbxd+rlRUdddpy4SieChhx4ydD70RB3tVxZ1iTp1w4cPB4CYRX5ffvllvP7663HbGQ86jry8vJSLunA4jJqaGpx//vmYO3cuRo4cKa6N0YgAPaeDBw+Ouqe1nLpUijqgU2zQ/UwrK9TV1QmnDgBefPFFhagLBoPi2pGgJaqrq0WqCgmW7rx4rFy5EhdeeGGU4NU7nmRFHYVaZafO5XLB4/EkJeqAzmsbS9Sde+65mDdvXtz2HfaiTl48mDpdi8WSlKijm7G5udnwMh9qUUdVtROlqakJ5eXlmgWDt27dCqDzgZKFH017Vw/ocqFg6tjos+rBhDokveLC8ufpGDdv3oyVK1eKej9EZWVlt0IsTU1NIpSqJ+rMZnNUx0bXLZ5Tl0j4lf6m76dS1MkrFwBQrMNInUFJSQlqa2tRUFCA1tbWmPfjF198EeVMe73ehDq8uro6nHrqqXFnNhLUmY0dOzZK1NE5ksOvF110EdavX695fwOpcepIRMrX/LnnnsOjjz4q/r9p0yaYTCbs2rVL/Exuf2Njo7j3vF4vLBaLOJ5kcuq0nLqeDL9u3LhRTErYvXs3brjhBrzzzjtoaWmJ6WDqiToa4D766CPRhyTq1BH/+c9/dL/T1NSU9MxOGdrGhAkTNJeDkkk0/FpfX49wOIwpU6Zg5cqV8Pl8CIVCmDRpkuJlNp5TZzKZkJubG9VXyk5dT4Rfgc7+he5h+VmXRV1FRYXILQY6nw/qo8jhIqjfMZlMUftKBrrn440jqXLqmpubRXvtdju8Xq+hlxaz2YyMjAxFP9LQ0BBzokRra6sY32LBok4Sdc3NzWhubsbgwYPR3NycsMCgi0sJlPGQ3/BbWlrw3Xff4YgjjkhK2FHNOK2bYcuWLfB6vRgxYoTiJtYTdXv27BFJ3mpRp+6Q29vbcckll2Do0KGa7dIqZkv7U3ea8soeydDY2Ii8vDwA+qLO6/VGiQj6/9tvv42f/vSnitBFc3NzQkVw5fDrf//7X2RlZaG8vFxT1O3YsUPUfjKC/F353pQdDBJ133zzDdra2sRSNnoJ0i0tLZg5c6ZY+5hI1Knbvn073nvvvZh1ymSKi4uRlZWF3NxcXadOFnUnnHACamtr8d1336G9vT3KRYkn6uLN+guFQiJ8Ip/bV155RRH2pfSA77//XvxMbj/NfgUAp9MJh8MhRLUcfq2rq4sZTtYTdc3NzQiHwz0m6t555x0sXboUra2tiud02rRpWLx4seKz8ouCXk5dQ0MDrFYr6urqEIlEMHbs2ISdOjq/6pdAmebm5m6VCyLIdRowYIBibNAiUaeOrgfdZ3a7HaFQCMXFxYpnOF5OXUZGBjweT9Q+Zacu1eFXugZVVVXi3/ILlhx+VadTtLa2iuNT759E3eDBg6OOIxnomhgtK6L3uba2Ns0XVFrHXCv8arfbDTl1JM5ycnIUs/obGxtj1qkLBoPiHMfisBd1VVVV4iEjUUf1peJZuGrkm9GIOFF/nvandUFff/11/PjHP9bdFnXAWjfi1q1bMX78eGRkZCjaRVP21aKusbFRhCTjOXXt7e346quvAGh3RvLn1UUr1WUq5JU9kqGxsRG5ubkA9EWdx+OJ6jSoXQcOHMDTTz8txCbNfiWrPVGnrri4GKFQCAcPHtQUdcuXL8evfvUrw8endoQIeUkguofeeecdAMCRRx6pOEY1e/bsQXt7u0KkAPoTJd59910RRpOhgZruk3js2rULw4cPF6JHRiv8Om3aNJhMJqxbtw7PP/88Jk6cqBAVqXDqqB+Qzy2V7iEo1O1wOMTPjIg6EnY0iPz4xz/GggULdMWA2q2igYLOc6I5dXrul5qGhgaEw2GUlJSItm3fvh3ffvstnnrqKeHWPf/88zCbzVHtUQ+SDQ0NOOWUU3Dw4EF88803+OEPf2jYqZNFXUFBAb744gvNew9IrVPn8/kQCATi3jM1NTXCYVKHO7Wg6yGLumAwGOWkx3Pq3G433G53VL8dy6lLJl/tzTffVEzQoWPQ6hdkp04t6ugFV2v/JOooxC63ORnomsV7IY3n1J144okiJ1bre1oTJcipM3J/2+12ZGdnKyJccvhVz6mT+x09DntRV1lZKUQchV/z8/MBxA8TqNFzUvSQBwM530brRlu9ejVefvll3fAT7U9P1I0bNy5K1Ok5dS0tLSIfiISfLOosFov4bHt7u+iktELWRp26jo4OVFdXdzv8asSpC4fDisG/tbUVF198sXCr6IGi8CuJukSdOnlpJy1RV1xcjGAwmFContYbbGhowKpVq7B161Y0NzcLV4sGjvXr18NsNmPSpEmiDVpQ/qR69RC9iRJXXXWVZs0welbi1fYiiouLMWzYsJiiTnbqvF4vjjjiCKxbtw579+5FbW2t4lzKOXVLlizBggULAGiLuuuuuw5/+9vfFPsMhUIIBAKK7wDKcCrQJerkc6MW2/Q7u90ujk8eZDs6OvDxxx8D0H/503PqZBEV776pqqoSb/a0n3hOHT2bO3fuFOdh7dq1iEQi2Ldvn6hJRiVVHnnkEdEeQFvUeTweZGVlYdKkSSI8tXDhQkVYW0Y9qSMYDOLSSy+F3+/HY489pnnOUunUJSLqaKxoamrCRx99hOzsbF0nUkvUabU5Xk4dibr29nbFZ2M5dUa2LfPtt9/inHPOwQMPPKD4npxTJ+NyucS9pnY4KysrxQu8ev+VlZWw2WzCRDDSxkgkgquuukqRdkKkwqk7ePCgbskg+p6WqHM4HAmJupycHMUYKIdf2anrBgcPHhSijpy6goICAN0TdUYcJ7Woo+9oDaYlJSUIhbSrsXd0dIibU72QcyQSSVjUBYNB4XiRiJTDr9SRAZ2DBE3l1mqbVk4ddXqyU1dbW4twONyj4ddgMAiv1wtAea2CwSA8Hg8mTpwIQOlwJOLUyWJRTmaXi37KwrC4uFgU2jVCKBQS57qxsRE33ngjnnjiCTQ3N4uBgtoeiUQwfPhwIVT0RB29KaoHML2cusrKSrz33ntR+VWJOnWJiDo65iOPPBLffvutOJey+KLj6+jowLZt28RMcLq35eP78MMPsW7dOsU+W1tbxbnSc+oikYjYrrqaPNAphMmpczgcMJlMIsQm34/BYDBuTUU9USeXnonnRuzfv1+kUdBzTEW0//nPf2rmyGmJOppA5Pf78dprrwHoGtT+9Kc/obW1VbdOHYk6gsJT77//Pr744gvFZ1tbW/Hoo49GzVJvbW2F3+/HZZddhvvvvx/5+fmKaxSJRIRTZ/QFSY9ERR2lNzQ3N+Ptt99GY2NjlFNFaIk6eR/0whbPqcvMzBSfVU/kMpvN8Hg8us6h1rbvv/9+/PSnP1X8jGaQqvs+I05dJBLBqFGjcMQRRyAjI0NxPtTPenV1NQKBgOIeidcftra24sknn8SZZ54Z9Ts6x/FEXSynTs5vVL8EqUVdXV2d6EMTceocDgeys7MV4wE5dQ6HAw0NDVEmAjt1BohEIjh48CCGDRsGoPMCdXR0CNFSV1eH3/3ud1FCSY/uirpYTh05KlqV9eV9qYUV5QYOGjRIIepaW1sVy5TIyE4dITt18luV7NTpiTpy9tThV3pLqa2tFeeYiuAmQyxRF4lEhFNH+yHoYSERITt1zc3Nhp06eZuyOxfLqaPfA52FWvWcWNq+LOqoaGVLS4u4BnLKwIQJE0RHG0/UqQkEAiJ/S95/U1MTqqqqsHHjRsXnExF1LS0tKC0tjRJ1bW1t2LBhgyh7QB3Y/PnzAXSWgKipqRHnUr5v5eOTJyRoOXUNDQ1R93woFNIU/LJTJx+bllOXk5MjRB29UaudOkAZnoon6tSzX2UXKFa4saWlBQcOHIiabdje3o5t27Zh3rx5mrOJZVFHbYtEIrDZbJg6dapwYagdVVVV2L17tyKn7v/+7//EihcNDQ3ivAIQg155eXmUG/Hee+/huuuuEw4MHTs9n3feeSfuvvtuNDY2KvpBcj/b29u7XUWgvr4eXq8XgUAg7trWNTU1oi9samrC2rVrAejnb1ZXV8Nms4m0ApvNpvgsCQWj4VdA+QyEQiHYbDZkZGToLm+o5bJ99dVXiuc5EomIfE96/qlNck6djNPpFH0N0JlesGnTJjidTsV1Vh9bTU0NsrKyhEiNd/xA1/ioNZElFU6dnNOudl1lNxQAHn74YTEj1aiok3PqAMBs7pRh5PKTqaS+jw6JU3fxxRdjy5Yt3dlEWqGTSEn+1GHRSd25cyfuueeehBbhJhIRdVarVZFErR6AI5GIGHy1BmH5wVYLK7opPR4PXC6XpqOnDnmSoyXPtJFFnZxrIIs6rTfU2tpaIZLV4VfqmGfPno3f/OY34jvJunVNTU26OXXUudEboTp053Q6RUcpO3UtLS2ag72a9957T5HsrOfU0TaCwaAIVba0tKCsrAzTpk3D7373O919yKKuoaFBuLvNzc3i53IHOn78eNEJ6HVycvkaGTnPNBwO4ze/+Y2iDiLl7BGJiLrVq1ejvb0dJ5xwAhwOh7jf//73v2PatGn4yU9+ItqwZ88ePPzwwwA6hWZ1dXVMp45+rp59LIs6ea1FIhQKiYFFXd6EtiGHe+T90b9zc3NFn6IWdfL5p8FffQzq9sh/64m6mpoazfqU1E9oiTq679avXx/1PS2nDgCGDh0Kr9crft/Q0CCe67179yru9b///e/4xz/+IT6nduqoAr/aCaN8Ofn5A7qeT7/fj0suuQSA8j6T29ndEKzs1AGxczFra2uRlZUFl8uFqqoqkVusJ7Ypf5vy8CinjqB+Jt5ECbfbrXDqqqqqMHfuXBw8eBB2ux1utzshp662tlbRX+7YsUOkGai3E8upkwUHHYvD4RDX0+v1Ru2fnDpZ1MV7eZafJbWTRtersrISgwcP1p1cE8upq6ysFKJNT9SRAKfKEkByOXVA19hMTp1sKskcEqduxYoVOOmkk3SFXSQSSTiEeSihJE0SdeRykNujF5rSI9mcOr/fr3Dq1A9NeXm5+JmWU0f7MpvNMUWd7NTJnaKWU+dyucSDNmzYMOzbt09cT7VTR+g5dSSS1aKuvr4edXV1KCkpwQcffCC+k4yoC4fDaGpqQlZWFsxmc9Q26FxrOXUULlPnpYVCIUXINlZnc8MNN+D+++9X7C9WTp0spoLBoLhOTz31lO4+WltbFcn85MLKok526mRRZ8SpkzsM6tSampqwf/9+3HfffXjppZcAdIor9SxXes7l+yocDmuGw1asWIGJEydi7NixCqeuoqICOTk52LRpE0pKSjB06FAUFhbCarUC6BR51dXV4nmUnzEa+Onnek5dJBLRdeq0BD+JtHA4jNLSUlgsFpjNZs3wK+VTxXPq5NCv1r1OogeInight7uurg4XXXQRxo0bF+XwkgusFnXyrL5Yom7Hjh2K8zt8+HBkZmYqnt2xY8cC6Lzmsqirq6sTL3j19fUKUSe7dvFEXVtbG8LhsAhXAV01JeX7TD6HsmP45JNPJhyOTUTUkauXkZGBjz/+WFwrPWFZXFwsVhkBEFWewsjLo5xTB3Te399++y3eeustbNmyRTh1VHfVqKiTrzW9vGRkZIhSNhQ9UefUUd8uh1/lY5GdukAgoOvUJRJ+lfsydV4dXa/du3dj3759utokFArBYrHo5tTRxA21fqG2ZWRkwGq1KkpBUU6dkdndsqijcDrl1GnNwgeUfVwsuh1+nTx5Mk488UTNMhwVFRXi4eiN6Ik6OsndEXV6wuS0004Tb+pqUade1YKQY/ZaTh1d/KKioihhRTcldT5qUef3++OKugkTJqCpqQmVlZVobW1ViDp53UM9p44efDn8arPZAHSKm/r6+m4VfwW6OnO/368IPxBqUafl1KlFHTksRjtbOUFYniih5dTJExNkQV9RUYFQKIQNGzZEzUhVJ/NThXe1U3fEEUfg5JNPxoknnqgr6iKRCL744gsUFxeL79LLjNVqFZ1sY2OjOJf0jE+ZMiXqPqSOrKamRhzL6NGjcfrppys+FwwG8a9//QsXXHABAChEXWNjI/x+P4444gjF4EdkZWUpypmonTq6X+XK7OqSJiTQYok6+i6VIaFt7tu3DwUFBcjMzEwo/KrOqSstLRVCVaufUCe/RyIRhUNG1NXVCddNPbgVFxfDZrOJ1BKivb1dPKcbNmyIcjoaGxthtVpRXFys2BeJOjqfDQ0NyMvLQyAQ0BV11G61U0eow69Us0trzVoSdU6nE9nZ2XGdurfffhtXXXWV5ktwLBIRdXRsbrcbn376qeg/9ETdjh07MHLkSPF/tahLNvwqT54hpw7ovLfUL6Ja266pqVHch5s3b0Zubi6KiooUddjMZrNw6uj80NgplzQBtJ06v99vyKmTP7N48WLMnTtX8R15fFTnxtL1otQivWvR1tYGr9crQvcysqjTc+rsdrtCxNLPEsmpo/ArOa/k1OmJOjIf4tEtUWcymfD000/jpJNOwoknniiKt8p0N3G1J5Fr5JhMJtGZZGRkwOv1Cjcl1pqTDQ0NmDFjBvbs2RNX1IVCIbz77rsiQdioU0ftOOaYY2KGX4cOHYqDBw9izZo1GDBgAFpbWzWdOprJ5nK5MHjwYMUAR2v3OZ1O8aDR2z6JDFnUUa4aoO3UVVRUKGYX0zmjpbm0XgbkcxeJRPDHP/4Rn3zySdTnZKjzHjJkSNSEECBa1P3+978X14EeFnpIqWNobW017NSpRV1ra2vMnDpZ1JE4Ix566CFMmzYNF154IYDOGZcvvvgiWltb4Xa7YbPZxD1JTp3s4BUUFOD999/HoEGDdEXdJ598guOOOw779+/HUUcdBaBL1NntdnHttUTd1KlTUVJSoni25c5v3759qK+vx86dO6PWG969ezcaGxtx/PHHA4gWdXLnroaOkc6dOqdODknpOXVa4gjovC4ZGRmK4tQtLS3iGEnU0TnVEnWUhyiLOrvdHuXUlZWVRS0hpm6L/G85t1Et6o444ggAELNSieLiYgwZMiRq4JFFXXNzc9TSW42NjRg+fDhaW1tRWloqBm+1U0dh1cGDB4vwa05OjpiFWl5eLopkx3LqFi9ejDPOOANAl1NHxy9PnJIFw6BBg+I6ddQXJbowejxRFw6HMXLkSLz99ttoaGhAZmameIkcMWIEvF5vTFFH/R6QuFMXDoexc+dO5OfnK+51uiZ1dXXCqaPfJRN+3bx5s5jkIM/uzMvLEzl1JEjo5cvlcsFisYiX9USdOjoeq9Wq+Mynn36KNWvWKPoaWdTJ9Srb29vF80F9sZ4ol3No5e1FIhFUVlbGder0RB1NBIqleyinTu3UUVSAfp4Wpy4SicBiseC5557DySefjJNOOilK2MmVonsbFRUVMJvNyM7ORkZGhrgRXC4XvF5vlFP3wgsv4NVXX1Vso6SkBJ9//jk2bdoUV9TRw6deGJnqCskTJRoaGsQbRElJCXw+HyZNmhQz/JqTk4NgMIhdu3ahrKwM+/fvVzh1LpdLiDAaoOSOGuga/GnJE6CrhhC9SZNIU5HMjAAAR7lJREFUI6jdaqcuEolgz549GD16tOJzNHAAiHKj1Ofu4MGDuOWWWzB79mw8//zzUZ8l6FoNGTIEDocDixYtwk033RR1XPQgL1u2DE888QSArofFZrPBZrNFhbzoDTperks8py4rK0s4L++++65wa2RBP2zYMPz6178G0Pmw/+c//8HYsWOxYMECtLS0wOFwwO12i32RqPP7/eJZk0uB6Ik62dmZM2cOAIh8RPltX84po+s/depUNDQ0RE0+oJmW+/btw9tvvw2gSygSdK/RveV0OhMWdWoXjo5PHujkz+Tk5Iikd3kWaW1traImod1uFyJMbittZ//+/Rg4cCCcTqdm+FVL1GmFX8vKysSLUTxRJ7fZ6/Uqjrmurk44bR9++KFiG/LsYpn29naUlZWJ+oVqh6+xsVEUgt23bx/y8/Px8MMPY8GCBZqijgQWpVmQO9fW1ibOrZ5T19rairVr1+Kzzz5DOByOKqtD+6HzSKhFnfqcAF19EfW1N9xwA2bPno1Vq1aJ80MzeYm2tjaUl5dj4MCBuqKuoqICO3fuxNatW8U5oGdl+PDh8Pv9qK2txTvvvBNVv7CsrEzXqTObzXC73TCbzbr9zOeff47S0lKcd955iudTFnVqp86oqGtvb1esrHPEEUeIHGz6Tn5+Purq6hTCg5w6Ejj0N/WZDodDnEMjTl0gEFAc/3fffYempibFpAh69ux2u+IlRxbT5NTpibq2tjbRxmAwiNLSUoRCIdTX16OtrS0hp+6aa67B3//+d/j9flEyK1YKkVzSBOh06mjmvJ5T197ejo6OjkM3+9VsNuO5557DD3/4Q5x00kkxF17uTVAOj8ViQUZGRpRTR04e3RiPPPKISAAm6KLX19fHFXV0kdSiLhAIRDl148ePxwsvvACgU7AUFRWhqKgoplOXnZ2NYDCoWMZF7dQBnQ8FDVB6ok526iiEQ2/SslNH26P9yVRVVaGlpQVDhw5VJAVTkWC32y0Wega6RIV8M8vnMdZCzXv27IHdbkd+fr7oAN544w3xe7nsBLFx40ZEIhGFrS0LIlkQA/pv0FQvSs5nk3Pqamtr0dbWhpycHIRCIfzpT3/Cm2++ibvvvhuAUtStWbMGTz31FI477ji0t7dj+fLlYpsVFRUi949EHYVf3W63EBLyG6SeqNuyZQsmTpyI9vZ2nHbaaQA6O2KHw6Hr1EUiEXi9XjEwyfdifX29EO9lZWViHc6srCwEg0HxMkLbou0n49QRalEnD3Q0G7KpqUmIlJqaGnGvNzY24sILL8SQIUNECgHVlQuFQvjtb3+rmB3a1NQkXoRcLpemU0eivbGxMe7s17y8PM3cTyDaqaNnODs7O2oVBzqeTz75RPE7EnVqN4icumHDhiEzMzOqplhjY6N4adu3bx/cbjeuu+66qBdAmtU6ePBglJaWor6+XqRZEPRsq2e/ymzatAn19fX4+uuvFSKIXlBof7FEnXwOaWCXnbpIJIJHHnkEn3zyibgvn3zySVx99dWKtuzZswfhcBjDhw+H2+2G1WqNEgXkDB08eFCE7KnPIFG3detWzJkzR5EfS32nnqgrLCyEy+USJXC0eP7551FYWIgZM2bohl/VTl288CsVP6bPt7a2Yvv27cKpk4VhXl4eampqFBO25PAr0NX3yOHXYDAIk8mkOVFC7dTJbl5zc7PoN+QJCfTs5efnK0SX7MoaEXWyU3f00Ufj4YcfFt+jMc+IUzdixAhcfvnliuOm791yyy1RiwbEyqkLhbRXtqFr1ONOnezCmc1mPPvss0LYaRUG7C4333wzZs2ahUsuucRwba9YVFRUCCGh5dQRdGOUlZVFDY56ok69ZujDDz8sPqvl1Mk5dU1NTdi7d6/IlyGXZ/To0airq4uayq126mSR1dDQAIvFApfLJR52OZSkFnX0XfVECaDLqcnKylKIH7VTR+2TQ6LyzFsavHNycrB9+3YAnfcPOT1yJ03/PuOMM/Dhhx/qvsXu3r0bQ4YMgdlsxp133okzzzwTxcXFQmipw69AZziRHj56WORVDEiUyeHXlpYWMctNff7ltslOHXUU2dnZCIVC+PTTT3H66aeLWZ5y+DUzMxM/+9nPMGPGDNTU1ESFdOlNnI6L3iwzMjJEJyNfGxoM1fct1S60WCziGcjMzITb7dYVdXQMFHKRJ3s0NDQIsd/Q0CBmAjc0NGDJkiUoKirCtm3bxL1G59nhcIj6fomKOvm+lQszU3upBIss6uTltsgZevPNNwFA4dQtW7ZMsYyXOvyq5dTJtQJj5dS1t7eL3E8joo7uURoEgM5yGCTqHA4H6uvrFedDT9SRG1VQUIDs7GzFiwhNNpKdOvl5oL6CJkyRU/f9998jHA5HVeCnZ1vLqSMBSLPw1bOp5SLbQOLhV+qLampqhMgHusTe/v37o8Jb1L8NGzYMJpNJs1Yd9W20f7VT5/P5hKnx2muvYevWraiurhbnQiv8arfbsWTJEixcuDCmqFu5ciUuuOACmM1mWK1WOByObjt1srvV3NyMbdu2oaOjQ9Opy8vLQ2NjI8LhsK5TR9dJDr8CnX2SuiYljVVqp472J0dx5AkP9Ozl5eUpRJd8rYyEX8mpq62tRUVFBdauXSv66gEDBsDlcsV06qifpf5TPm5q144dO6Ima6hLmpCok3MPTSaT5uz+Hnfq1HFjEnannHIKTj755JgLMCfK119/jbKyMnz66acYP348XnnllW5vs6KiQoSHtJw6oqamBpFIBAcOHNAVdXV1deKCZ2Zm4pFHHsEtt9wCoDMv4Be/+AU+//xzsT2g60Kpc+qoHbKzlZmZiR/84AcAEFXtuqmpCWazGX6/X+HUHThwQHS+JpMpaVE3ePBgWCwWhahzu93iBqPv1NTUYO3atRgyZAhWrVqlK+ooFyU3N1e8zZ944omYNm2aaJ+6Peeccw7q6+vx5ZdfQgt5vdo77rgDf/7znwFACDB6yOQBpqOjQ2xPy6mjAUKeFfnMM8/gBz/4AUKhENrb23HOOedEiTxAmVNHHQx1WM3NzfD5fKIjlK897Z8GlKqqKnFc1E75BUS+Z+UOlLBarbBarZqibvz48QAgZgxTfpBcS0u9TBat1+pyuRROXUNDA3w+n8gvoll69fX1oq2XXnqpuNdkpw7oKsgbS9R5vV5R04naRjQ3N0fNXg0Gg7pOHQDRqdKqCA6HQ4iwYDCoOL6qqipUV1dj4MCBUU4d/ZsGCbWoI6eO8o3os0ZEXVtbmxA+8n2Qm5srRB2FirZt24YTTzwR33//PWpqanSdurKyMuTn50eJOmoLOXUVFRUKUed2uxEOh0V6CIk66gOPPfZYxb7o2ZafObfbDZPJJHIBiZdffhk2m028MNB+9cKv5eXlaGtrw8yZM4Uoz83N1XTqqL8dPHiwEHtlZWUiv5jYtWsXLBaLOH4tUUdOnRxaVjt1dNxr1qzB+PHj8atf/Qo7duyA3+9XvJjQtXG73bjkkkswffp0XVEXiURQVlammPjidrvR1NQkzlEwGNTMqaP9yPmi4XAYr732mqI+XXNzMz7//HNYrVZMmjRJ3J8kxORUiuOOOw6XXnoppk+fDiA6/Co7ddRW9bHRuc3KyhLPDr34Al2rtwwdOlTh1FFfmZubqxBdcpiX+px4EyWALoG+YcMGIepyc3M1Z7JqOXVaok5+eVTnddJECRK6NFGC9k2T9tLi1K1atUpcDLHB/y/sTj31VJx//vnd2byCdevW4dRTTwUAnH766UIgqaHq5vIfPWRR53K5xI2gFnXV1dWihIQRp87v96O0tBR//OMfAXQtnUSdc7ycOrq4crK32+1Gfn4+Ro8erahzBXSJPhJO6vArdap0E8qhJHlGm7xPCr9arVa43W4EAgHs2rVLTChwu90K+3rEiBEAIJbaoqVhHA6HEAFqkZqTk4Pq6mqYTCasXr0aDz74oGgfQQPNzJkzEQgEohLvCQpREyNGjIDP58NXX32FYDCIm2++GUOHDsW4cePEZ2w2mxDIWoKIrofb7YbFYkFbWxt2796NtrY27Nu3DzU1NXjzzTcV5Vhou/IaoHQ9KTzX3NysqOtETh2tQAAoRZ0csqHOgAZjciBkp06dwKtO7K+qqkJFRYU4F2azGXl5eWKGNDlWVqtV06kzmUwYOnRolFPn9XrFSwKtHywvffPVV1+JZ0B26oAuVy2WqDObzYrZ9PLM1ubmZoXooTa1tbWJqv9yuBLoCh/Tkl2yU6cWdTRQ602UoM4ZUIo62l5LS4vCaZMFsBq1U7dnzx7YbDbF8eXl5UWJuvfffx8ff/wxnnvuOQDQFHVUdDw/Px85OTkKUUfnZsCAATCZTIhEIornga7NwYMHxQQIEsznnXcepk6dqtiXlqgzmUzIzc2N+uw333yDE044QZFnBOiLukgkguLiYnz22WdikkhBQYFmTh0N7GPGjBE/p/tQvo7FxcUoLCwU4pv6vLVr1yIcDuOtt94SYo7EnezUDRs2DH6/H+FwGFarVUxuaWpqws6dOzFixAhFdIuujXyO7Xa7ZjSC8hTle4jWf5XvaXU+bHt7u3hmAoGAeBbPO+88nH/++bj11lvFd5ubm/HRRx9h2rRpivFEzqkjCgoKsHz5cvh8PvzjH//AueeeC6CzrzGZTOJekftVtaiTJ1CMHTsWr776KmbPni2O/7vvvkNubi5+8IMf6Dp1WqJu4MCB4jhjOXV0Xqgf27t3r5gTkJ2dLSY9qL9H5zmWqJNXWNESdXa7HSaTCdnZ2cjMzEQgEBAvItSXpMWpmzNnjuZOzGYznnnmGVFpORXU1taKE+bz+XRnNS1duhQ+n0/8USf1y6idOno4nE5nlFOn1QkA2qJOPTDRm4CeqMvKyhIJ70CXs6MWdUCnuFGLOvq90+lEW1ubuBnKyspELSU6RqBTZAaDQQwaNChqYWi1U0dWcFZWFg4cOCAehPz8fDFYtrS0YPLkyTCZTCJnxePxCPfMZDIpQlayqAM6HwSaOWWz2TTDr5mZmfjhD38YU9TJg57JZMJRRx2Fr776CqtWrcJXX32FFStWiPprQGepllhOHeFyuWCz2RAKhYRA37t3rzjP6oK7cj4m0HU9s7Ky0NbWhubmZvGWRuevpaUFGRkZotMPBAJob2/Hnj17ovJw5IkSchu1wq9AtKijt15y6gDgpZdewtVXXy06X+qY1YMGOQ1FRUUKUUeOMOWGNDQ0iHCcPENt//79cDgcYpKILOriOXXy/i0Wizj/5AjTiwVBzxmFhWtraxWDwIEDBxTOh7xWazAYVAxAFD7TC7/Kok5ec1V26sitALpEXU1NDX7+858rxJXaqdu9ezcKCwsVb+n5+fnCeaRjoJD36tWrAWiLuvLycnR0dGiGX+k6e71e8Zyow69Alwvm8XhwxBFHID8/H7fffrvivnO5XJqiDugU0bfddpv4P4VizzzzTLEPOfxP55Gg+4pmY5eWlsLlciEQCIilwqiN8gokJOrk38sD565duxQLywcCAbzxxhuYNWsW1q1bh7lz54pajVrh16FDh4rzVlRUhNWrV2P69OloamoSEzBkZKeOoH5GDV0nWdTRC7n8fMpOHQlcemYopzcUCgl3UxZLjY2N+Oijj3DSSScB6LyG6pw6Qr4XFy5cKAQfpS5RPyY7deSCE/KyaSaTCeeddx5cLpfCqRszZgzGjBkjnr/du3cjGAzCYrEgKysrStRZrVbFOdISdZFIRPGyJ7uAb7/9Nvx+P2w2m5i8IJOoqGtubo5a8kt2T6+44grMmTMH2dnZok/XEnWHzKmLueH/79ip68gkSyAQECeKcsy0uO2221BXVyf+aC0lQqhFHdB5U1JSJ9A1xVq9pBOhFnUmkylqMoPaqZNLZthsNmRlZSESiYi3SLVTJw92M2fOxH//+9+oCvlyojx1YgcOHFA4dXSM8gAVa/brCSecgIsuuggAFG97QOckhNtvvx0AxOzL4cOHK0IBckiU3vra29vFWqsk6mT3Re1ekKjLyMjAqaeeii+//DLKUm9tbUVZWVlUbbNx48Zhx44d4vNHHXWUeJicTify8vJE56zl1BFOp1O8QdO1LC0tFe1UL2Lv8/nEtTSZTIrwK9DZ2ZKAI8FFtQEJ+uyBAwcwdOhQsdSa2qmTz1ssUSeLEK2k7eOPPx4DBw4Uog7oCu+ow69AZ4iOxBoV9CVRV1VVhY6ODjGIyS7q/v37FYNYsqKuoKBA3Lf0vMkDMtA1EObn58NkMkU5dUCnsCfIqVN/BlCW89GaKCHXOayvr9fMqZND5CTq/vOf/+Bvf/ubIgym5dQNGTJEXBeLxYKcnBwh6oqKimAymYSo+/LLL5GRkYHc3NwoUUf3u1b4VQ6NxxJ11I95vV4UFhairKwMkydPVty/o0aNQnFxMcxmc9T9OG7cOPj9frG9E088EQAwd+5c8TO1UycPZtRvkGjs6OiA2+2Gz+dDbW0t6urqxCCodupoQhP1sfILZHFxseIekvsZesbpBYKep8zMTBGGdrlc4rwNGjQIp5xyCiZMmIDKykpF/jZBjqB8jvXCr1qiTh1+pe+r6+XRM0PpH3QPHH300Yqi1V988QUqKyuFqNMqaULoiQt1Prr8sqwXfpX7f1nUVlZWoqCgQMz6/vrrrzFs2DB89913ojqDOqcuEAgo7kPax69+9Svcd999ADrvl0gkgoKCAlitViFsMzIysHbtWnGdtGrOxRN1NNbKok5uB9CVUwcAd911F8444wyFnqHVjdTrRcvnMxY9uvaryWQSeVLd5bjjjhMuzerVqzFjxgzNz1FVZ/mPFpScrSXqgC7FTYmgdOHjiTq73R5V94Y6BHniQ0dHh3jDp5uafq8XfgU6ixebTCZFaRUKW6lFHYVf1U6dWtTV1tZi0aJFqKysFG13Op0488wzFUs0yX8XFBSIDqylpQU2mw0TJ04UbdISdZTjBEDh1MnumfpmlkXdKaecgnA4HFW+gcSFOvyWmZkpXDCHwwGz2SweisLCQvj9fuGoJerUlZaWaq7OAXTeOyTq5DcwenDr6uoUoVKaJCN3RvI5ycnJEf+ntzj1CgKyYIgXfi0rK4Pf79fsmGVRR4K/qalJkfMCdIoCOnetra1ob28XrgW5IPQmvGfPHvEc7d+/XyHckhV1gwcPVjh1NptNhAIJcgI8Hg+8Xi/q6uqi3rzVoo4mHRAmkwk2mw3bt28XKQd64VetUjKyUycLbxJ1JBLUb/Lyv9Wizm63IxAIoKqqSlybrKwsITwjkYhI9lcPAnT/5uXlCVG3b98+1NbWKkQdPedaoo62oXbg6Njsdrt4FimfV4tAIACHw4Gf/exnuPLKKzFixIgop04r/Er3IPVjQOd9S8vI0bM3ePDgKFEHdM64lesPErt27VI4t7LYoHxiNR6PB9dff72oVEDPKd2L9PzLBgKhF35NRNSpnXSbzQaz2Qyn0ymO+0c/+hGefvpp4YKR0TF79mzFPqgWqJwnpyfq9MSFOsolT0CLFX6Vj59WVGlqahLPTEtLi3BZi4uLhXhUz36lZduIhoYGtLe3Y/Xq1fj0008BdD1rDocDeXl5+Pbbb2EymXDttdcCUOZf6zl1NptNTD5UT0xzuVzi2Gg8Va9/qz5/8nWVnbpHH31Usd5uWp26VDNlyhQUFBRg1qxZ2LJlS7fz9cxmM6qqqnDllVcC6Oq86ALRjUkhnUREnQyVDwGUJT9qa2vFYEAdAf2ebjotUTdw4ECcfPLJeOaZZ8S26Pfq4rkUflXn1FFnOGDAAGHhL1myBB9++KEi/CpDD578RiFXxbfZbIrk55aWFuzdu1d0buQW0fmSRZ3aqdMSdU6nE0VFRRg9enTUWrwk6tSDOoUPZBfMarVi9uzZePLJJ+Hz+RTJqbR/QNlpUakB2amTw69qp87j8YiBpaCgQFxPWdTRfmSnTu4c5HOSnZ0t/q8WD/J5M+rU0exHLWiiBKAUdUVFRXC5XOJ7eXl5qKioEC4dAJFTR8dOYbJgMBjXqSNhG0/UkRDIycnBvn37MG/ePGzYsAGFhYVRzx4NhOTikFMnf06+Z8mpk9dcpOr9JSUlGDhwYFQqARAdfgWMiTq32y3uHRos3nvvPcUSbG1tbVGizuFwICsrS9z3mZmZyMvLUwh9Eify5Az52DIzM4XgOPvss3HzzTcn7NTpiTqfzyfq4KmFjExWVhYGDx6Mk08+GX/7298U24wl6ug8yrMj3W43BgwYgLKyMtGPjhs3ToRfnU6nEJryGs3Uv9TV1aG6ulrh1D377LOihJVcekme5evxeDBkyBDMmjULQLSoy8nJiSvqknXqqO9WO3W0TRJ1hYWFuOyyy8S26b4hUUfnds+ePYqXPXVJE+qvgdQ5dXJKgtx+SlOhCFQ4HBbHWV5eDqfTCY/HI2Zj0/bUTh3QeW0PHDgQtaawzWZDQUGBSCu68847AXT107JTJ3/XYrGIihJq9xXodO7kklPy92kb6r5KHlepLyktLcV1112H119/PSGnzhr3E72IP/3pTynfJr1F3nDDDRg0aJCork83Jj3kiYi6HTt24LXXXsMtt9wiJiUASlH3s5/9DGvWrBFvmACiliuRRZ082F166aVYuHCh6OzJ4aAHTRZ1gwYNEmEwGux37NiBvLw8RekKoLPjoE5JT9TJYoNEXSgU0nTqaEYkba+lpUUxcGg5dRkZGairqxMlN0iQ0XUaO3asIqTe0dEhzi85QwTtUxZ1JpNJJMavXLlSnHM59wPovP6y4KPJD/RwyuFXWQTQGxy5WAUFBdi8eTPMZrO4p8LhsMIZ1nLq9ESdHF6RiSXqZLcQgJj9qMX48ePFMZKos1gs8Hg8WLt2rXA78vPzFZOSAIjwK+WoyDlENKDu379fsR4pnXfapzzAaZGVlQW/3w+32413330XbW1tsNlsmDlzprgfCXmbJOrMZjMKCgqEQ1ZUVCTeimn2q+zU0SSZ2tpacX+R60x1LmM5dTSQ6Tl1NCCR8L/55pvF/UypCPv370dRUZG438jdlwVaXl4etm7dKl4SSNTRANTR0QGXyyWOzeVyiZmG//nPf1BTUyOWdIvn1MUTdX6/H3fffTeuuOKKmNcyEAhETbQzEn4FoCiHROdqwIABOHDggELUbdu2DTU1NfD7/eKel6sy0Dml9BrZqcvKyhLjwc6dO2E2mxEOhzFx4kQcOHAADodDIZqBrhnQdK/k5OSIc64WAFpOnVz8XKaqqgo2m03RX7vdbjGJT/4+bZNEnezwklPn9/sxefJkAJ3PaXFxMUpLSxWikfomcolIsNXX1+uKi/PPP18Raow1UaK2tlbR98ttDYVCCqcO6BrXysvLRfiVCv263e4oUUcvVGVlZaiurhbCmM4v1TUFOvtIt9uNPXv2iFQXcuq+/vprTJ06FR9++KFCkJ111lmaOfs5OTli7NBz6tSiTsupo9m/Bw4cEPvpV05dT3PMMcfg3nvvFUszqUUdDVRqUUcPLJU0sdvtGDFiBKZMmQKgs1OiTlC+od98803U1tYqwq9qaJ1KumkJeivctm0bAOVECaDzYTGbzWhvb0dJSYk4FpvNBqvVipKSEnGTqEWdHH6V0RJ1codms9lwxhlnYPHixaIIsixUaCDUEnVqp+6JJ57A+PHj8eijj4rBkKDBGQCWLFmCQYMGYffu3cIlkqGcELVgkrdFqJ06+W2Twq8kBIYNG6YIv8o4HA7xZmmxWESnkZmZGeX+0d9q4ak+J2qnTkv4yBMl1Mc6fPhwRfgollO3dOlSsdKGnFPndrsxdepUsW9yHSoqKhQFrrWcOqDTLTCZTKivr9d0tOR1l2Nx0kkniYr61Dm3tbVhyJAhUQOsllPX0NCgOPasrCzRzlhOHdA1UJNTl5+fjx//+MeieHUy4VdCXj9ZbndxcTHC4XBU+FV+s6fyQABEWop6AggARd0tEnUAxGoONIi43W5Np47+bcSpM5lMomC6HgsWLMCll16q+JmR8CvQ+UzIDrnb7cbAgQMRDAbx7bffwuVyYejQoSL86vf7EQgEYLPZFKKOnmF6PtR5mfTc7dy5E5MmTcIbb7wh8ozVxw9oO3VEd506mnkuH7NcfFi9TRJB9FzIoq6wsBCDBg2CzWZDdnY2HA4HDh48qLiv1KJOjirpiYsFCxaIMCZ9h9ojr9YCQNOZp7bSi5A8rtHxVFRUKFY8ojFYLerUEyHkNYVpX9QXyLnC9DJKom7lypUAugpO0zk+44wz8Nvf/jbqHOTm5kblbMqiTs6pI7Ry6ihXmCY2yuczFizqdKBBnTpHuqHUCwDrhV/pZqUSGIR6QA6Hw1Fvq4S6KC1Bn6ebWe3U1dbWis6pvLxc0flkZGQgHA6L45LbU1VVJWod0dsKEcupAyDeIhctWiRmQLa3tyvCjLJT5/F4xEAkb1Nuz/XXX4/S0lLF4EdviqtWrcKiRYtQXl6Ozz77LMqlAzo7JSqVoSXq5LdEdU4dnTOalWu328VDNm3aNEX4VYbcHqDz3pHDSfKDHC/8KteKy87OFg99rPCr3mQPLVGn59TJyOFX9X0bS9TR/S47dVQigLZL0LkiJzGeqDv33HPx6KOPRrVnyJAhuk5dZmamSKJvbGyE1+sV38/KyhIdu1ZOHdXuk49HLn/0wgsvoLKyUszolSfi0PFRSROtiRJEKBRCR0eHGAxo3zSpRR1+lZ8ZcuqAzkkHgwcPxnHHHSd+rxZ1VqtVDOYy77zzjnCfaPtqoWo2m3HgwAGYTKaoa0A5q3r9mZqrrroqys3TEnUmkynq2spiidpJ4vyzzz7D8OHDRVWBiooKMYs/Ly8P33zzjRAP1L8WFxfD7XZHbZfOQ2lpKbKysjBv3jzxGS1RR22gtB0jos5oTp36eunNfqVt6jl1lBZjsVhEGRZqg7wPeeIPfV/O7TWCOvza3t4u0gS0XraNOHXUn6trwqlFHRkXFGWrrq5GOBzWderU0Fjz9ddfA+iaxKEWZGpI1LW1tYll/OLl1GmFX0kAHzhwoH/m1B1q6CTL6wDShVev6QdEizrq8Cjvg7ahTubfvXs3rFar6CBkoSFPLJA7ULqZyVGorq4Wa7vSz6dNmxZV3RvoepsmUSd3IOTUad04dD60cuoApWsnL+KsDjMaCb8CnWHWSCSC3bt3azp1a9asEcfyySef6Io6Oj+JOnXy2qR0fFTC49hjj0VFRYXiQZUHXHpgR40aJb6vJ+r0wq8AFPedHH6le0H+vNPp1A2/Dh8+HJWVlaJzLisr03XqZGKJOuoMy8vLFcupyaKMHAAAYl1EQHkv0++NOnVy24Cu61RUVBQ18Os5dSQ+AW2nTh1+1XLq5Fmjr776atT9o+XUyW6qllNHg458jHTPDRo0KCqnTv4cCYaRI0eitLRUJLvTccltUw/ggUAAI0eOxNq1a8V50XLqqMzN/v37dSdAuFwuw6JOC7qe8jJYVPtMhtpO15ycOgBYv349RowYIc5RcXGxohQT0CW65HWNhw8fHrUfqicZiUTENuj4tETd+PHjsWnTJhHalEWdXvg1EadOhpx0dZ06+h2JOj2nDuh8QR01apSmqJPHE/p+PKdOjTxRgp51ElXqKIzcfnVOHaAURpRTB0DUDNUTdeTUhcNhRekx2anTEnVy+BWAKHNkVNTJebfxwq9U1guIjsbIix6wU9cNxo8fj5UrV+K4447D+++/jxdeeAGLFy8G0FX9/t133xV5Y7QGp9qpI1E3duxYABC5bPJyMUBXJyq/gcvhSvkiWywWuN1u1NXV4eDBg9i6datCxNEanTTzWO3UAV2zek855RTce++9OP3004Wo0xJARpw6Qp79Q/vLzMxETU0N9u7dC4vFIqqrW61WRcdH5+/4448H0Gk9q0VdfX09ampqMH78eDidTjQ0NGiKOvpedXW1prslDz5qp44EiDyjjxJ0acak7H5R50DhVwAYPXq0+L46IZh+rufUARDL59BsR9o+fY7OG5VHiRV+BToHt7a2NlRVVRly6uRBQy3qAoEALBYLKioqxOAhl6kAuso90OfpfGs5dbKrZgRqz5lnnombb74Zc+bMiRJ1tFau3W5XTJSgZXlooJFFncPhUISzZKdOFnUE1fpT52TKoi4SiaC6uhoejwcul0s8v2qnjsLWBOWXWq1WxUuBfD9QG0kwqGuh0edpe/LfdP+MHz9eTDwjsaqVU0f7Urv/MnJZj2TQcuq0BjJqO5XlkZ265uZm4dQBnc8ptemYY47BhAkT8Pjjj8NkMimcOnXolVC/0MYSdYBy8o0sFpLJqausrITJZMJrr72mKepowp388klto2up59QBwNNPP42HH35YtEF+WVCXRrFard126oAuI0FL1FH7Keyr5dQBUIRff/zjH+Oyyy6Lmv1aUFAAi8WiWLJ07dq1oji33W6PKeoCgQCam5vFixXNBO4JUUe1YIGuFSUI2amLt2+ARZ0uJpMJc+fOhclkwtSpU3HxxReL/JBgMIjXXnsNp512Gvbu3Ss6+6qqqqi3Lxr46c3Q7XYjKysLM2fOVOxPa3apugSIDIkbSvo/6aSTFION0+kUVdu1RB05dXa7HbfccgsGDBiA6upqBIPBbos62cmg/U2dOhW7du3CqlWrMHnyZDidTlitVnzwwQe45JJLxHfVM7PUoo4scXpzJXEcy6mrqqpK2qmj79HxDRo0SJwDuZRJdnY2LBaLorBuKpw62U0BlKKO7hV1OR4tpw7ovBdpAkei4Vf1/Wc2m5GbmytEHdVtovueQpEkjgOBQEqdOtrGyJEj8cc//hEDBw6MEnXl5eXiGsuijpw6On8kBkgA0uQFs9mscOrk8Ctx8803AwD+/e9/A4iePU3XvKysTLgIVJxVPg9tbW2KgtU2m01sg4qzGnHq1Ouvym1Qi/7MzEzYbDaMGzdO1JwktJw6+o7efoDO51OvhqgRtCZKxBJ1NOmGZv9Tu4cPHy6uF5XwAYDHH38cmzdvxuzZsxXlk9TlTGTkOm8ANF9O9PD5fOIlVj0gx3LqNmzYgPPOO0/kDQaDwSjhIRfhp+eZtun1ekWKgHzf1NfXo6KiQog6i8WiqCWo59TZ7Z0Fybvj1KlFndaLLH2GhKRWTh21jfro/fv345tvvkFTU5PCqfN6vZg8ebKiwPLixYtx1113Aeh8xmKFX8877zzMmzdP9CuJOHXV1dXi5dBkMsXNqZPboOXUUVkuvfJAMizqEkBe1okGocbGRiEoKisrNXPqvF6vYvHeBx54AL/61a+wZs0arFq1CoC+U6cVfgW6BqkPPvgAY8aMEZXu5bZOmjQJABR5OmpRR1DNKr3wK3XicmduJPxKDxglcJP7SRx//PEK0UmlA8ipo6RY+bhpxmtWVlZMUSc7dbFy6miBbEA5+5WORT6+sWPHimskr5Tgdrvh8XjgcDjE7Dsjok6v+DC1T0vUyeV35DdZvZy63NxcuN1u7Nq1S1FqJR6xwq9A50BSXl4uEtHl5YEyMzNhMpkUaQV0TrWcumTDr/J9rOXU0QDs9/tF+JWcOrnmHZUqkQVEQUGBwlHTcupoYpV67V7ZqQM6n2UacKhNaqdOFnUUCgagCL3T3+o81NNOOw1//vOfo1bVoDZQbqi8X5PJhNNOOw2nn366qJlH6xjriTr6Pz2fapYvX44bb7xR83dGMOrU0XNRUFCAQCAgjknOaRs6dKgIwWm5h1SyIxwOo6SkRNepU79wx3PqZMxmM7KzszVLu8TKqTvvvPPw+uuvK9xbtfCgEC/Qla9H19jr9Yp7Ug6/kkhUv9TJ+bsE9Sv00gZ0LTavftb0iOfU6eXUkaiT81DVok5OK6JJbLKoc7vdopAy3RfyJBkj4Ve6BnQ+jYo6oGt94IKCAlRXV2Pjxo3Izc1FOBzWvKfp/pLzqYHO9Zr3799vWEizqEsAWdTJM+TorUcWdVSGo6SkBDk5OYpckQULFmDChAk4/vjjccYZZwDQd+q0wq9Al2OlXtaFcLlcOPfcczF9+nRFTT/6jHpWGok6Padu9OjR+Pe//61YszGRnLqioiIxKMr5PmooZDxo0CBYrdao9SepQy0pKUEgEMDo0aPF59UYderkhyVW+BXoqoYPKJ06t9stZrhSByOHX8kVUbdNnv2qFmOnnnoq5s6dC6DLmaCCl9RWWXToOXUmk0lMlqBBIpHwq56oo1p1VDKCjhPoGvDIlaJl+2i7hNVqFTUj1b+L1zagK42AtiUTDAajnLq6ujoRFqaOfP78+XjnnXeiQuR//OMfcf3114t90cAgn2e3242vvvoKX3zxhaJdalEHdA6Ifr8/quA50OnUyQO43W5XrEFKP6NtkmNL4s/j8eCXv/yl5ps8bYvOj/ws/Otf/xL9Q2FhoSjhMWLECDidzqhwLr0gnnDCCVH7ATqfX60QsFHUOXUNDQ2agxk9D1lZWVi4cKFoD+2b8uOob9QTdU1NTSK8ZdSpo77BiKijtmrVM4vl1NELoyz01cJD7ovpnqJtym2TXwbIPVJXXIgXfpVFnVaOox7q2a9A7PCrllMn50YTlENsNisljCzqMjMzxfWnkLicr2i324UZojdLm8Ki1E8nIupoHKAi2P/973+j3FMZykGWXXwSncXFxYZD3n2qTl260RN1JCgOHjwoHjy6MDU1NRg5cqRm6EkmmfBrbW0tdu3ahRtuuAGA8kZxOp3w+/34/PPPFd/LyMhAQUFBlMjJyspCTU2N7kxRAKJMCxErp47eqmRXYObMmXjppZcUTp2al19+GXV1dcLqr6ysjAq/Ap2dXVZWlni7jiXqamtrY4o6dWFTeT/0PZrFJIu68vJysfA5CQWHwyFCOvJ6nfGcOq231uuuu078e86cOXj11VeRn5+vmChBbp3cVq1jHTduHNasWSMG7VhFYYnMzEw0NzejtbVVV9Tt2bMHPp8vStTR316vFz6fT1GnT30vOxwOVFVVadb90oOuneyuaH1XFnXhcBiVlZUYMWIERo8eLWaxO51OnHrqqaItxPnnnw+Hw4EXXnhBseQWXVMSFnROAX2nDuh8xv/3f/9XTMRQizo9p476BFnU0fbkvB091KJOK79UzZgxY1BfXx91TklsUFmlVEP3Bg3YDQ0NmiKR+tmsrCz8/ve/Fz8fMGAATCaTEPsnn3wy/vGPf2iWjSKnjo5Jb51wdU6d1WoVzrwR8vPzNUPSLpcLVqtV8Tu73a4odCzfE/ILDKB8jrScOnmb8t/ysRCxwq9UegsAJk6cKCJARlDXqQOM5dTJ44eeU0eRAHksDgQCouSO2+0W9StHjBiBTz75RDHJkdZ33blzp246gXwciYRfgS5RV1hYiK+//jrq+VaTlZWlCFcDwKRJk1BWVoaSkhJ26nqCeKJOduqArocuJydHd0Ajkgm/lpSUoL29XbguFEKS26rG7XZrvpFmZ2cjEongwIEDhm8edZ06wul0inbLD+0555yDyZMna4aI5PZRJ07nRMupAzrP1ezZszFt2jRFQVtC/p6W0FGHWOXvqGe/UnHScePGicT1cDgsOlPZqXvttdewbNkyUXUciJ9TpzdBhbDb7TjvvPOivis7dQUFBSIZX83111+Pb7/9FosXL9ZcfUELuldpbU016vCr/B3ZsVPnIqm3RaLOaOgV6HQxV61apXjDVpfhkfcp3zdHHnkkLrroIvzoRz+K+rx8Xujf8+bNw0033SR+rhZ1MmpRJ28vEAggLy9PkdxP0EQJuifjhV+BzkHAyDkjUacOv8YjlkjuzmSIWOTn54tcJ3KtYuXUqcXJsGHDMGzYMHH+Tz75ZFitVk1hSDl1JAL0BnatfOL8/HxN902Lhx56CEuXLo36ucvlwpdffomzzz5b/GzcuHEKx5aEwPfffy+efxm6/9VOnSzq5PCr+piIWCVNKKcO6HS1169fH/uAJbScOhJWRnPq1LNwga7+3OPxKLahduo8Hg8WLVqE+fPnRzmdtC9aKSYWyTh18prUBw4ciHLi1cjVAqiPJIeRnboeIp6oUydA0oWRRZ1Rp85qtYrwqyzWCK/XK2bWyqE0eqPQEwi//e1vowooA10P8759+2IWDJWJFX4l5HZcfPHFuPjiiw1tGzAm6kaMGCFCX2rU4Wg1tFKCllOnnihBDyjNYg4EAiKfsry8XJFTN2rUKJHrp5UoLG9XnihhdLBV59TR9+bNm4ft27dr5rvMmjULJ598MtauXSvWUI6HfB9oiYeCggKUl5ejsLBQ3D9qUTdgwADxfOi92DidTpSVlRm+74CuYtcyJpNJrJ5A5QjUos7pdIqQvRZ0L8hJySeddJII4wBd105L1MULv8poOXVjx47Fl19+adipU69CowVtSyv8mijffvutZsmNVJGXl4fy8nIEAgHY7XYEg0HNl0waONUD9a9//Wtcfvnl4v8DBw7Ejh07NF04OfyqnoUvo1XO6Z133jGUwgAoZ8OqUUc/fvnLX+KII47A+vXrcfvttwtRN3ToUM2XluOPPx7PPPOMOB9GnToj4Vf1RIlkiOfUJZJTJyNPhigsLMT333+PqqqqKFEHAHfccYc4NrlgtdGoAB2HUafO5/MpitWPHDkSwWBQFPeWj1PmhBNOUIhZoFNb0AoVRvKgARZ1CSGLOrmW1YABA4SVr+XUyYVX9USd2qnLzs5GeXk5ampqRNK5jM/nE/l2cigtnlMn52HIyKKOhEs8YoVfCaNCRQutJctkURdvll08UUfbk8/VkUceiZtuukmcJ73acX6/H6WlpRg4cCD+/e9/w+124+yzz44SVHpOnTy5wYhTJ6Pn1MkrWGjx4osvoqKiQpThiAflNwLa9+3AgQNRV1eHffv2KWZ3A133/l133SVChLGcOkA5ECWL1WpFR0eHWOyb7iHa9xFHHBEzyVsdYtUiEadOHX6VGTNmDMaOHYuGhgbh1I0ZM0aIulg5dUDn/a/1gqZ1TImGX/XQSnNINXS8dPxaDkVhYSFefPFFnHbaaYqfezyeqLCo3ssC9dkHDhxAfn5+VH6Wuj3y9VOXpEoVJpMJp5xyCsaPHy9Eneyyqnnsscdw2mmnRc22juXUqfN7gfgTJZLNk9SqU5doTp3ZbBaurXq7hYWFGD16NFpbW9HQ0KCYOKbuZ7KzsxUlYxIRqok4dSaTCTk5OaIUCvWN8iQNrXv6rLPOwllnnaVoe05ODoYNGyYKnBuBw68JoHbqqJBwdna2yO1JNvyqdupowKiqqtIcUGVxIw/k6pmQRqGHmRa/NkI8p85kMhm+EbXQqmovnz+95dUI+Xt6A5nP54tavuv+++9XrFkLAAsXLlR05HIxU8qfvOGGGxR5cEDXuZBFHVX0p+3X19cr1oONhyzqFi5cKJYtikdOTo5hQQd0ztyjBHQ9UQd0zlim86GeKOHxeMRLR6ycOqCr5lh3oHuS9qV26miheT2oLbGegVQ5dUOHDsXWrVuRl5cnnLpBgwaJe0XPqaO/58yZIybSxCLWRIneDLVTrw+56KKLEu7nZGRRFyunqqioCC6X9uLtPQXdRxUVFTEnD7ndblxyySWiTzDi1OnlF1oslqjvmc3mbjl1kyZNwtKlSzFlypSkc+qA6OeR7o1XXnkF9913H4YOHYpAIACTyYSRI0dqpvnI47S8LyMk4tQBnVEMEnW0T9kljAdd89zcXPF9zqnrAdSi7oILLsD777+PYcOGaYq6RMKvVNWbBkoaMCorKzWFIG3P4XAoHsR4Tp0eWrZ7POKJOiqKmyxa4VcKmarbrIW83JneMdFsLjXqwf0f//iHCHfLbfN4PBg8eLDum6zW7Ff5eOT8Q6PnXQ6/Xn755ViwYIGh7yXDj3/8YwDaAysNhO3t7bo5dTJ6zwBtWysvMlHonlSLORrI4om6nnLq3G637iBit9vR1tYmwsUUetTLqaNtXnXVVVH15fS2nyqn7lBCLxTdEW6xkHPqYom6M844Azt37jQ8MztVbQPiizpCPUufnjVKSZB/p9Vv5uTkYNCgQYr+mgqah8PhpEWdzWbDrbfeqrifQ6EQwuEwgsFgXKdOPQlMnkhD/3c6nZg8ebIYgwsKCvCf//wnSoQvWLAAv/jFL6L2ZYREnDqg09Fua2uLmkFOaQBygXMtRo0ahQsuuADHHHOMOC526noAueZUXV0d/H4/Tj75ZABdFmuy4dfjjjsOVVVVwtUw6tSRU0RQB5jo27jT6RTHoJW7oYUcrtAr19EdtEQdED1Qx0LdKahRO3WEXJpGC9lF/Prrr/HTn/5U83OyU2cymWCz2XQncBg9X8le42S4/PLL8dlnnylCsYTcWRkRderPEJQXlipRJ5cEkAvFvvnmm7jssstift+IU5fMRIlY9yqtKUn5YyTq6JnSy6kzCs0qTnSiRLqhUiuUz5pq5Jy6WKLOZDLFnR2Zami9acrXjYeeU2ez2cT4IOdiqrnmmmtEIXsZelaTFXUytA1a0guI7sNkUSfngdLzRFEp9fd++9vf4oMPPoi5//nz5+O6664Tz21POnXUN1JOID3Dt956K5544gmceeaZMb+fkZGBFStWICcnR4g6vfQANSzqEoAKeJKokx0yOvGyIJLDr0VFRfjNb34TsxQA1d4BuhKB44k6dWmKZJ06AHjmmWcAQHOhei3kIpR6Tl130BN1dN6NVK6PJzBnzJiBY489Nurn8USdXJyVcjW0kEUdbVfeptbM23iYzWZkZWUZErXdxWQy4Qc/+IGm4+rxeMS9KS8fZLFYNEXdrFmz8Nhjj0XlbKonoXQHGgzpvMppCmeffXbc2aLyRAk95NCI3u/UTl2sa0VOXWtrq1gtwsjsV6P01fAr5ctt3LixR7ZvNPyaLtxut+YMUS3UTh2ZCFqzubXuRb2qCJQS0Z00GvX+L7zwQlx55ZUAovs86kdra2sV4x4dH4136vHNarUavq+POeYYAMbNC9p/ok6d3G4SeQMGDMBVV12V0L5JW1BR+3jwRIkEcTqdqK+vVxQ2BbpOPBUXBJThV4vFgj/84Q9xt5+Tk4Pzzz8fxx9/PB5//HFUVlZG1ScClE6dTLI5dUBnUeC1a9fqFuHUwmazob29vUdFnfph9fl8UeJIj3ii7re//a3mz+OF4fTWxlQzaNAgjBw5UrhQdrtdcV7kwSSRwfaTTz7RvC8OJSaTCQMHDsT27dvFtSJXQ2+5qquvvjrq5/QSkSqnTl5/N9HF5Y2EX3Nzc/HSSy9p5rORI6sWh7FKgNhsNrS0tKC9vR1OpxODBw9GS0tL3NmvRhkyZAhqa2v7XPjV5XLhkUceSag/SoSMjAw0NDSgvLy814q6mpqabjl1WqIukWXcJkyYgM8++yylTh0AbN68GYB2oXSr1Yra2tqoNBWgqxhvd15MXnzxRXzxxRcJpQZ1x6mj/2/evNlQfVA1iebksahLEKfTKerNyAMGhS5paRBAGX41itVqxSuvvCIWIa6qqhILyMvQQ6sWdd1x6oCu5byMkg6njvKOjDyU8cKvehh16uIdo8/nw/bt2xXblb9z8skn47jjjsP69esTytnRuifSgVrUAcCGDRuSWv8zFc5jd0WdkfAr0LU8mJoLLrgABQUFIlRi1KmjHBun04kHH3wQ4XAYjz32mOK7yYq6u+66C5FIRKxT21ecOgC49tpre2zbbrdbrArTG0Wdeh1cI59VRwbkftlIKoAamliViLOkhyyGqNyHVv9pt9tRU1OjEPN0zw4bNgxWq9VweQ8tvF4vTjnllIS+Q05dR0dHt5y6ZEQdrVhFq+7Eg0VdguiJOpo2r14PFEhM1Mn7ATovpFbujp5TdyjzrQBtUae3XFWixAq/GhUNyeb3WSwWRfFgNUadOjVqh9FkMuHDDz/Eq6++GrOeVW+FOit5oOhOh9tdSNSR8OkJpy4WgUBAUUzWaE6dLOrUzlx3w68mk0nkcwJ9x6nraeTz0J2lzXoK6luM9DEFBQV49dVX8cMf/hAARAqE0fCrHiTq5CURk0UeI6gAsVb/arfbo2bG0vNYVFSEvXv3Gq4RmCrIqYtEIkk7dYCx5RnVJJo2waIuQZxOpygIKQ8YTqcTHo9HvA0DnQp78ODBSVnX8qCiVRsqnqjrqRljamI5dT01UWLy5MmGk1yTdeoA4IorrtDNgdRb8DweaqeO2kazTPsa5HB0Z4WB7du3GyqiawS1U5dou4w6dUYhMRWrHWqnjggEAooq8/SSYXR5KjV9Lfza09B5GDBgQMyC1OkiEVEHIGrFCa/Xq+nUJeKik6iTly5LFq1Ef617cdSoUdiwYYNmTp3T6Tzkgo7239LSImrmxUPt1I0fP16s+JMMa9asMewms6hLEJfLpenUAVAUJAaAyy67THNpFyPInTvZrzK05NDEiROj2qf+fk/Sk+HXCRMm4Mwzz8S4ceMUP9fLg9OiO67h448/rvs7rRp6RlDPfu3r0Btooo6YTCrq0xE0+zVdTp0WDofDsFMnh1YXLlwo1qQlPvnkk4RqDcr0tYkSPc28efNQW1uLn/3sZykpfJ1qEhV1atTHlIxTR8+3emxLFVp94bRp07BhwwZNpy5d9y45dVar1ZCoy87OVrzAL1iwAOecc07SJb6OP/54w59lUZcgTqdTrAMab8CwWq1J5wnFc+pourve9/pD+NXn8+Ff//pXt7aRqvIqapLNkTA6waOvcO6556K5ufmQvUTEw2q1wmq1wul0wul0JuySG5n9mig33HBDzCLBdrtdDJryeXQ6nVGTYY4++uik28FOnZLc3FxFZKW3QXlxyV4vr9erWHEkGafOZDJhzJgxmDNnTlJtiIfWsdHs1Pb2dvGznurHjUJOXTgcNuS20SQyOj6z2XzI6hyyqEsQp9OJgwcPAkjNskax9kMksjSPViX7nqQnnbpU0J3wayxGjBiB77//PuHlgvLy8nplUnayDB8+HL/73e/S3QyBzWYTJV+SOc894dTdc889MX9vs9nEkn89KY7ZqetbpMKpk9MaCgsLMWLEiIRLB23bti2p/RtB616kmphbt24VP+sNTh09o0bDv2PHjk1LX8+iLkHknLVUTPPWg4pGRiKRhEWdvJJCT9OTOXWpoCff8JJZ//HVV19NqOglkxi0BNs111yD+fPnJ/z9VOfUGcFmsyESifT4fnmiRN+iu6LO4/Eoao7m5uamJDculWj1y1TaSK7LdqjTitTI7TQanXn55ZdjrjPdU7CoSxC6qZKZmpwIJpNJ7CuREC6FnQ4VNFD0RPg1FaTbtlfTG3N3+hOU8+J2u5MaDHvCqTO6z57eL4df+xaJlDTRYubMmSmZtdpTUKFyNWazGYsWLVKkGqTbKJCfS6Njf7xC5z0Fi7oEIfEily3oKZxOJ7KzsxNKrjzllFOETXwoOFzDr0zvhGa/Jku6nDr1/nsCDr/2Lbrr1N10002pbE5KePjhhzFp0iTMnTs3pou1ePFixf/T/XKejFOXLvqMqNu4cSN++ctfwmw2Iz8/H88991xawljr168HgENSgsLpdCYUegWAY489VnPZq56it4s6l8sFu91ueN08pm/jcDi61fGzU8f0Fror6noj1113HYDOlZNCoZDh7x3qUl16+we013zuTfSZkW7QoEFYvXo11qxZg5EjR+KNN95ISzso3q+1wHmqoSWDejO9XdQFAoFDskYq0zu45557ujVxoydmv8ZD69npCdip61t0d/ZrbyYnJyeh+7C3OHXZ2dlpyZNLhN7dOgm5Sr28OLWa1tZWUa0aSH19nTfeeAPNzc1J15tJhMmTJ+O4447r8f10By1RR51Qb3jDvPLKK6NqfTH9l6OOOqpb30+3U9eTYnLKlCmYM2cOi7o+Qn906oicnBzFOB2P3pJT19tDr0AfEnXEnj178P7772PRokWav1+6dCnuuuuuHtu/x+NJuip0orz++uuHZD/dwWq1wmw2K8KbDocDb7zxBk488cQ0tqyTzMzMXrNOKtP7sdlsGDBgQFR9uJ7eJ9BVY6+nOOqoo/DWW2/12PaZ1NKfRd3gwYPR3Nxs+PO9xaljUZcEZWVlmqUI/vnPf8JqteLSSy/FsmXLdPPpbrvtNkWCaH19PQoLC3usvYc7VEJCzbx589LQGobpHiaTCXv37j0kTjxBTt2hDPkyvZ/uzn7tzSxZsiQhUfeDH/wAl112WdpmlLJT1w0KCgqwdu3aqJ93dHTgnHPOwe233x5znT55MW+m59ETdQzTVznUk2ro+ektq3IwvYOjjz4aV111VVL1MHs7ubm5CX1+9OjRePrpp3umMQboS05dn5kosWLFCnz++edYvHgxTjjhBLz00kvpbhKDzgGJRR3DJE868viY3o/f78cTTzzBJkUvgJ26HmDBggVYsGBBupvBqGCnjmG6Bzt1DNO7YaeOOWxgUccw3YNFHcP0bjIyMnDnnXdi7ty56W5KXPqMU8f0TljUMUz34IkSDNO7MZlMuOOOO9LdDEOwU8d0CxZ1DNM92KljGCZVsKhjugWLOobpHjxRgmGYVMGijukWLOoYpnuwU8cwTKrgnDqmW0yfPh1erzfdzWCYPgvn1DEMkypY1DHd4mc/+1m6m8AwfRp26hiGSRUcfmUYhkkjnFPHMEyqYFHHMAyTRtipYxgmVbCoYxiGSSPs1DEMkypY1DEMw6QRcup4ogTDMN2FRR3DMEwa4fArwzCpgkUdwzBMGuHwK8MwqYJFHcMwTBphp45hmFTBoo5hGCaNsFPHMEyqYFHHMAyTRux2O/x+PwYMGJDupjAM08fhFSUYhmHSiMViQUlJCS+3xzBMt2FRxzAMk2Z8Pl+6m8AwTD+Aw68MwzAMwzD9ABZ1DMMwDMMw/QAWdQzDMAzDMP0AFnUMwzAMwzD9AFMkEomkuxE9SSQSQUNDAzweD0wmU7qbwzAMwzAM0yP0e1HHMAzDMAxzOMDhV4ZhGIZhmH4AizqGYRiGYZh+AIs6hmEYhmGYfsBhvaIETaJgGIZhGIbp7cSb9HlYi7rKykrk5eWluxkMwzAMwzBxqauri7lO9GEt6ux2OwCgtLSUF9PuY9TX16OwsJCvXR+Fr1/fha9d34avX9/G4/HE/P1hLerIwvR6vXxz91H42vVt+Pr1Xfja9W34+vVPeKIEwzAMwzBMP4BFHcMwDMMwTD/gsBZ1DocDd9xxBxwOR7qbwiQIX7u+DV+/vgtfu74NX7/+DS8TxjAMwzAM0w84rJ06hmEYhmGY/gKLOoZhGIZhmH4AizqGYRiGYZh+wGEt6m6++WbMmjULl1xyCUKhULqbw2jQ0NCAY489FpmZmdi8eTMA4KWXXsL06dNx0kknobS0FACwZcsWzJw5E9OnT8f777+fziYz/5+NGzdi1qxZmD17Ni688EK0tbXxtetDbN68GTNmzMDs2bMxd+5cNDY28vXrY7zwwgvIzc0FwP3mYUPkMOXf//535JJLLolEIpHIPffcE3nuuefS3CJGi7a2tkhFRUXksssui2zatCkSCoUi06ZNi7S2tkbWrl0bufLKKyORSCQyb968yPfffx+pq6uLTJ8+Pc2tZiKRSOTAgQORpqamSCQSidx2222RFStW8LXrQ4RCIfHvO++8M7J8+XK+fn2Ijo6OyHnnnReZMmUK95uHEYetU7du3TqceuqpAIDTTz8dn3/+eZpbxGhhtVrFmyYAbN++HRMmTIDdbseMGTOwadMmAMCBAwcwatQoeL1eZGdno7KyMl1NZv4/BQUFyMjIAADYbDZ8//33fO36EDabTfy7ubkZQ4YM4evXh3j++ecxf/58mM1m7jcPIw5bUVdbWyuWSPH5fKiurk5zixgjyNcNADo6OgAAEakyD1/P3sWePXvw/vvvY+bMmXzt+hjvvfcepkyZgo8++gg2m42vXx+ho6MDK1aswEUXXQSA+83DicNW1AUCAdTX1wPovOGzsrLS3CLGCPJ1AwCLxQIAMJu7bmW+nr2H+vp6XHrppVi2bBny8vL42vUxTjnlFHz99deYP38+1qxZw9evj/Dss8/iwgsvFNeG+83Dh8NW1B133HF49913AQCrV6/GjBkz0twixggjR47Eli1bEAqF8Nlnn2HSpEkAOkN927dvR319Paqrq5GTk5PmljIdHR245JJLcPvtt2P06NF87foYra2t4t8+nw+ZmZl8/foIW7ZswfLly3H66adj+/bt+Nvf/sbX7jDhsF5R4uabb8YXX3yBIUOGYNmyZbDb7eluEqPBGWecgf/85z8oKirCz3/+czidTjz44INwOp1Yvnw5CgsLsWXLFlx11VXo6OjA3XffjVNOOSXdzT7seeGFF3D99ddj4sSJAIBrrrkGkUiEr10fYeXKlfjjH/8Is9mM3NxcPP300/jnP//J16+PcfTRR+Orr77Ciy++yNfuMOCwFnUMwzAMwzD9hcM2/MowDMMwDNOfYFHHMAzDMAzTD2BRxzAMwzAM0w9gUccwDMMwDNMPYFHHMAzDMAzTD2BRxzAMwzAM0w9gUccwDMMwDNMPYFHHMAzDMAzTD2BRxzAMwzAM0w9gUccwDMMwDNMPYFHHMAzDMAzTD/h/cG6zYDatjxEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADwA0lEQVR4nOydd3wUxfvHP5dKD1WaVJEqvQmhCyJFUXoRFBBQBIHgVwSpIlWko4LSlY4UKaIgvShVpIcmvQVIAunJ/v7Ib5bZvdl2t5dLwvN+ve6V3N7uzOzs7sxnn3nmGYckSRIIgiAIgiCINI+PtwtAEARBEARB2AMJO4IgCIIgiHQCCTuCIAiCIIh0Agk7giAIgiCIdAIJO4IgCIIgiHQCCTuCIAiCIIh0Agk7giAIgiCIdAIJO4IgCIIgiHTCcynsJElCREQEKDYzQRAEQRDpiedS2EVGRiIoKAiRkZHeLgpBEARBEIRtPJfCjiAIgiAIIj1Cwo4gCIIgCCKdQMKOIAiCIAginUDCjiAIgiAIIp1Awo4gCIIgCCKV8PPPP+O7775z+XiH9BzG/IiIiEBQUBDCw8ORLVs2bxeHIAiCIAgCAOBwOADA5ZBsZLEjCIIgCIJIJ5CwIwiCIAiCSCeQsCMIgiAIgkgnkLAjCIIgCIJIJ6RKYRcZGYmaNWsiS5YsOHXqFABg5cqVqFWrFho1aoTr168DAM6cOYM6deqgVq1a2L59uzeLTBAEQRCEAQkJCbROu4dJlcIuY8aM2LRpE9q2bQsAiI+Px9SpU7F7926MHTsWY8eOBQAMGzYMCxcuxLZt2zBy5EhvFpkgCIIgCAP8/f0xbtw4bxcjXZMqhZ2fnx/y5Mkjfw8NDUW5cuUQEBCA4OBg/PvvvwCA27dv4+WXX0a2bNmQK1cuPHjwwFtFJgiCIAjCBCtWrPB2EdI1ft4ugBkeP36siDeXmJgIQBnjJSgoCA8fPkTu3Lmdjo+NjUVsbKz8PSIiwoOlJQiCIAhCC9aHE54hVVrs1OTIkUMhxnx9fQEAPj7Piv/48WPkzJlTePyECRMQFBQkfwoVKuTZAhMEQRAEIYSEnWdJE8KuRIkSOHPmDOLi4rB//35UqFABAJAvXz6EhoYiIiJC01oHAEOHDkV4eLj8YZMvCIIgCIJIWUjYeZZUOxTbvHlznDhxAufPn0efPn0wcOBA1K9fHxkyZMCSJUsAAOPHj0f37t2RmJiIL7/8UjOtwMBABAYGplTRCYIgCIJQwdynSNh5FlorltaKJQiCIAiPk5SUBF9fXxQqVAjXrl3zdnFSLbRWLEEQBEEQqR6y2KUMJOwIgiAIgvA4SUlJAEjYeRoSdgRBEARBeByy2KUMJOwIgiAIgvA4JOxSBhJ2BEEQBEF4HBJ2KQMJO4IgCIIgPA4Ju5SBhB1BEARBEB6HhF0yYWFhiI+P91j6JOwIgiAIgnCbmJgYzJw5UzP+Ggm7ZHLnzo0ePXp4LH0SdgRBEARBuM2MGTMwYMAA/Pnnn8LfSdg9Y9OmTR5Lm4QdQRAEQRBuEx0dDQCaw4xM2LF4ds8znlz0i4QdQRAEQRAe5zlcwVQTvi6ioqJw+/Zt29ImYUcQBEEQaZBt27bh1q1b3i6GE0Y+doTSatm8eXMUKFDAtrRJ2BEEQRBEGuSNN95Aw4YNvV0MGaPF60nYPYOvi927dwv3cTgcWLp0qeW0SdgRBJHukSQJly5d8nYxCMJ27BzCcxcm7LQg37pnSJKEBw8eaE40YXz//feW0yZhRxBEumfu3LkoUaIE/vvvP28X5bnk8uXLiIqK8nYx0iVGYspuJk+ejEmTJunuY5fFLiIiAuHh4ZaOSStIkoRWrVrhtddes/0akrAjCCLd888//wAAHj165OWSPJ+89NJLaN26tbeLkS4xIwru3LkDh8OBCxcuuJ3fkCFD8Pnnn+uWxS5hlzNnTmTPnt3SMd5m+fLl2Lp1q+F+kiTJL5p+fn6a+7ki+kjYEQSR7mEdSkpbN4hnHDhwwNtFSJeYuaf37dsHANi4caNXy2JV2KXFeHedO3dG8+bNDffj60JP2Lnil0jCjiCI5wYSdkR6Q+uevn37NrZt2wbgmTjw8fFBaGgoRo0alWLl46HJE8/g/Q19fX1tTZuEHUEQ6R7qULxPehPVW7duxfbt2z2ahyRJmDJlCh4/fozQ0FDhPlr12qRJE7zxxhsAnokIh8OB9u3b48svv/RIeWlWrHkkSZLri1nstOonKSkJO3fuNJ02CTuCINI9NBRLmOXo0aOmOtHmzZujSZMmHi3LhQsX8L///Q/NmjVDyZIlsWrVKqd9tO7pO3fuyP/zFjtvklaEXVJSEu7du2e437Fjx2T/Xavwwo5Z7ERDzw6HA/Pnz0ejRo1w6NAhU2mTsCMIIt1Dws772F339+7dw5o1a9xKY968eRgwYIBiW7Vq1dCoUSOX04yOjrYtrAfr6K9fvw4A+Pfff5320apXZgVaunSpwmKnZVV7+vQpfvnlF1vKndYtdpMmTULevHnlJdK0qFq1KipVquTSpCz+HmHXKiEhQbgvC2nz8OFDU2mTsCMIIt1Dws772F337dq1Q7t27dxKo0+fPpg5c6ZNJUomU6ZM+Pjjj03tu3HjRt0QPOy+DQwMBADExcU57WMk7AYMGCC8/9UiKyQkBG3atMH9+/dNlV2ElaHYa9euuZyPXZw9exbnzp1z2r5nzx4A4voW8eOPP1rOWzQUGx8fj9jYWKd9jepVTZoRdlevXkWePHnQoEEDNGjQAPfv38fKlStRq1YtNGrUSH6jIQiCUEPCzvvYXfd37961NT0Rf/31FxYtWoSnT59aOm758uWm9mvVqhVq166t+Tu7b1n/ptfpq2FiwdfXV7YO+fj4yPurrYqsPrWsRmawMiu2SJEiLudjF2XLlkWZMmWctlu1LGrtv2PHDuzdu9fweDYUGx8fjw8//NByPmq059imQurXry+b3uPj4zF16lTs3bsXhw8fxtixYzFv3jwvl5AgiNQICbv0w4MHD/DTTz95ZFjv6tWriu+vvvoqAGD06NFOv+kRHx+P3377TZ68oIcZgRofHw8AiImJkbcZ3dNM2DkcDuG+amFnxzPyvE6e0Dqvxo0b6/7O6ov5Pt69exeLFi3S3C/dWewAYP/+/ahbty6GDRuGCxcuoFy5cggICEBwcLDQ94ARGxuLiIgIxYcgCIKwxr1797Bu3TqXjrVLVH/88ccYNGiQPDnAilh444038N5772n+XqxYMeF2qyuWREVFoVmzZsJhPjV65Vf/xg8NWhFi/OQJLYsdw47rlF6EXUotgcaEnZa1NN0Ku/z58+PixYvYs2cP7t27hw0bNiBbtmzy73qBDCdMmICgoCD5U6hQoZQoMkEQqQSy2NlD69atXV5Bwq66Z0uTsWtqpfPdtm0blixZYks5zGAmPpm6sz5+/Ljmb/xQLD8hQgRfL1Ysdu6Q3taK1SrvnTt38M0337iUJl/PaoudSNjpTXjRIs0Iu8DAQGTOnBkOhwNt2rTB8ePHFZY3vQdo6NChCA8Plz/kj0cQzxck7OyBD6FhFVHdS5Jk2VdO3bml5tUJzIQX4c9nw4YNqFKlCnbt2gXAuaO3Q9h50mInOvbx48dO5dBDkiQsWLDALV8/dzF6aejZsyc+/fRT+buVCTh6wo4fauf3t3pN0oywi4yMlP/fs2cPWrZsiTNnziAuLg779+9HhQoVNI8NDAxEtmzZFB+CIJ4fWGPq6aGgsLAw/PTTTx7Nw5u4YnHRE9ULFixAvnz55HAOVsqg1flevHgRT5480U3j8OHDKeKTbVV0siHf27dv4+TJk6hatarid5Gw0xKPfN4iEegJi506rStXriBHjhzy8L2ZPLZu3YqePXs6zTSNiorymIgfM2aMcFkvrfzU99etW7cM84iNjYUkScI6YNfFaBZuurPY7du3D1WrVkXdunVx8+ZNdOnSBQMHDkT9+vUxfPhwDB8+3NtFJAgilZJSwu6DDz5A165dhbMX0wNWhN3du3fhcDjk0BEiDh48CMB8fK6IiAgcPnxYURZ1mV5++WW0bNlSN50aNWqgT58+pvI0w+XLl4XbRfUVHR1tGGjW4XAIA9+ySRR82nYNxar3tQNWL7/++is2bNhgKm02A1k9Ezlz5sz46KOPnPZft24dzp4961Y5R48eLRRxWnVkVWBOmTIFGTJkwBdffKGogytXrgB4Vuf89WWk66HYZs2a4ejRo9i7dy+WLFkCPz8/dOzYEQcPHsTOnTvJb44g0iD37t1D1apV8eDBA4/mk1LCjr3Jp0dhJ0mSpUkEbOLAhg0bdNMEzK+I0KZNG/leYZ2rqPPdvXs3Zs+enSLO+hs2bMBLL72Eo0ePOv0mEgD9+/dHrVq1XBpqjI+Px/Lly3H37l2cPn0agDlhJwp3oq4bO54RddoswO/ChQvx9ttvm0qblVV0r4nCyLRu3Rply5Y1VT4Wo69kyZL49ttvDfe/desWHA6H0+RMq9fuf//7HwBgzZo1ui9HImEHpOPJEwRBpD/WrVuHY8eOYfPmzR7NJ6WEXUBAAID0KeyWLl0q/y+ardmiRQtcunTJ6Ti9oVij4UQA6NSpE4YMGQIAOHPmjLydiSb2t2XLlpg6dar8e//+/S2tr+kqFy5cACAOuCvqxC9evAhAPOwm8r/i+fPPP9G5c2fky5cPNWrU0NwPeFYvVsOd2DHBgfkIqn3GrAi7WbNmOf3mzlDspk2b8MILL2DZsmUIDQ3FwIEDNfdl5Txx4gQAOC3l5qr/n4+Pj7AO2DatoVgSdgRBEBp4elYeE3YiJ2g7iI2N9VjaRvCL0Kvr8fz589iyZQsmTpzodJzekCHrqPWE3YoVKzB58mQAyo5NbbHbvHkzBg8erDhWJDTdZefOnVi/fr38XW8ygkiIGDnK82maQV13hQsXxs8//ywHAC5WrJhctsuXLxtOnnDl5efmzZtYt26dfE6zZ8/GvXv3nF5wrAg7Ee5MqHjzzTcBAH///bdhPoxMmTIBUPr4u1MOXmTz6A3FsuOsQMKOIAiv42lLmqcsdtWrV1csH6UWdpIk2erwXbRoUWTPnt229KwgcsZnsMlrougEesLOjMVOCzMWpt69e1tKywyNGjXCO++8I3/Xs6bwZduwYQMcDofsO6Yn0M+ePYvffvvNVHnU9Xr9+nUMHToUDRo0AAA0aNBAHib+6quvNIWdVYsd7yfYtGlTtG7dGiNHjpS35c2b1yWLnd4+ds6UNXOeGTNmBOA8WUL0TDscDkybNk03PS1hx6ChWIIgnit27Njh9OZsFk8JuyNHjih8ddTC7r333hPOtjPi4cOH8sQCALhx4wYiIyNx584dS8O8J0+exOrVqy3nL0JP2DFE52pG2Kl/a926NcaMGWOqXHZYYd1Jg4lS0b3F19mCBQsAPPM7Ewm7QYMGAUiepfnzzz+byl8rjAwrzw8//ID58+c77cOf8yeffIJTp05pnoeIWrVqybNBtdaXdWcoVoQdz++MGTMsl0Ut7LQE5uzZs3XTo6FYgiDSPWaHGOLi4tC4cWP069fPpXy85WPH+6VZoUWLFvIaoidOnEChQoVcCtNUsWJFtG/fXv7+77//CmdbmoHvzOwQdkuXLpX90iRJwunTp+WwGOvWrcPo0aPlWYN62GER1bKUmEFvaJPfxiZ9sDriRc/ixYvdzp+fbJCUlCTf61ozjvmwMbNmzZLju1p5RphI1UKd96NHjxTfg4OD8euvvwrLpQULUJ0S/P777wCchZ1WHfH30VdffeX0++nTp3H+/HnN/LRmxRrlq4aEHUEQqZ7w8HAA2pYBI7SEXa9evTBlyhRTaezcuVM485HHLh87vvE3OxP14cOH6NSpk+6C9RUqVEClSpVcKhMvoPTWvpwyZYri/EXCLjExEd26dcP+/fvlfapVq+a0qkXx4sUNy2WHxc6dIT5msTMSdmFhYYrf+Dp6//33Xc7f4XDg9OnTKFq0qDwhICkpSbNe2EvHiy++iBUrVjjtZ6U+33//fTRu3FjzBU0dfLpOnTqK7wcOHMCAAQMU24zEi1lLrjuwMrBYh2rBpeU6wC9+MGLECOE+VapU0cyPfOwIwsvEx8cr3uTi4uJcjqf08OFDw6CqzzOsw8qSJYtLx7POSi16fvzxRzkUgRGNGjVCtWrVdPfxxOQJs2/pCxYswIoVK7B161aX8ilYsCC6dOmi+buZodg///wT//vf/zBnzhx5m6j8apEjSZIsrqxaVe0Qdu5Y7PSEHV9n6iF0u2ZOOxwO2YrFDzNq1SOb6QkkhyFRWzyt1P++ffuwY8cOTeGhttCJrKv+/v6W8nfVHcMd+HJHRESYWirOCjQUSxCphHbt2iFr1qzy98GDB6Ns2bIudTS5cuUyHYvJ01y/fl3ouB0eHo69e/d6JE/WYE2bNk0xGYGxbNkyAK4LO5Z+3bp1NfdJSkrCTz/95JZQCAwMBOC+sHNlWScmKkWdQ0REhOGw8K1bt+R6VrNr1y6F/xCrK4fDobAosnr+9NNP5aEoUX2qLTlJSUnInTu3XFYRT58+FXZs165dc1vc/fLLLy4fq9fp8stpqa+p0TCmlfwzZ86s2MYPxRqhFlt2zhzXup94Lly4gL/++st0/t5YFpDV0Zo1axAUFISbN2/amj5zORC9YOzdu1d+9sxeGxJ2BOEi6sCrx44dAyBe39HhcGDbtm266aWWNYzr16+PZs2aKbZ9++23yJ49O+rVqwcA2LJli+wPZRfx8fEICQmRJyOcOnVK9nFhMOFkFTOd3Pr169G1a1csWbIECxYsUBxj1q+HWR/Uwi4mJkY3UK8r5ZUkCUlJSYiMjESDBg3kYWqRsBs0aBC6detmOn81X3/9teJ7UlKSbB1isy8BpfVl+/bt8r6AskNmQ+t8emy2r5ZPWL169YRr1QYHB2P8+PEmz0TMBx98YGq/kydPOm3Ts9ixEBvXr1+XO29WD3ZZdR0Oh3CGq5l7SOtYq7jru7p27Vr5f1E98pZks3nZJZz5MrHrr7ZE2oWW5VhrZRMtSNgRhM2oH07WiZmJdJ4aEAlMtRWtRYsWTv5Q6s7aKmrhU758eTRt2hRJSUno0aMHACBHjhyG6ym6CutohwwZgp49e8pLVwFQhHEQERsbi8jISM2h2BEjRuDtt98WBrFVs3nzZsOOY/Dgwfj222/h6+uLXbt2Yffu3Vi4cCEAsbBz99qoO9OkpCTZisGLLXb+PEyc83UishKx4S2tzo29OInYt2+fXvE1sTqkduTIEadtRnHhAMirRPDYKexEq0iYte6YGYo9deqUrtO/2gJrla+//lp2YxGV24zlj2fWrFnIlCmTy3WsrgNWR3nz5nUpPbMYuQTQUCxBpDCsgVc/nGz71atXPRIw1W6MhjomTJgg/8+WjdqxYweyZ88uh0xwBa3ZjRUqVJBDRUyYMEHXD0zN+PHjERQUZKpBzJAhA4DkZc4AZSPKL3mWlJSE3bt3K46tV68esmXLJlus1P5TbJH7+Ph4TJ8+XXNFhDlz5jitcyoq+9SpU2Xn7KCgIEUZRb5bdvsE8c75vJAU5cOGrR48eIDY2FgcPXoUW7ZsUewjSZKhsNODXTOr8OVlLw9aXLp0STjr16r/E8PTws6sxU793LF7lad8+fIoXbq0ewU1oH///gCs1aPWvj/++COAZ/eSuxZFVkfsWfMURi+tJOwIwkXu3r2LPHny4OrVq7r7aXWWly9fxooVK+Tv7GE8efIkSpQoYVs5RYiGL10lPj4ef//9t1MHNGzYMPn/MmXKAHhmtTEbVJXBi0gtQam2djDLXmJiomLYOzEx0ck/64svvkBERIRTgzh37lxFfnXq1HEa5mXWp6ioKEU4iqlTp6JBgwaKsCEsmj1DXWfM0rNlyxYMGjQIjRo1wpIlS5zO1Uo4F9bZMLHBBJ1ohqf6XjXrgB4dHY25c+cKrTpM2PEWFqPQIzExMahWrZq8kgQjLCxMHuZyxfpz/Phxy8cAynphFk8tSpQoIXzmzQg70VJhnhR2Zn3sHA4HRo8erdjWoEEDdOzY0bA+7MaM5VON1v3GRh1E96geq1evFoor9fJ1nsLopcZs/iTsCI8ybdo0t6w43mDHjh148OCBU3wlNaxDVTcaDRs2RKdOneTv6o52zZo1NpX0GYcPH4bD4ZCHL4HkUARWHI3DwsIUlpR//vkHNWvWNCU2mH+UluO7EZIkOZXVyJ/utddeg7+/v2w9+/DDDzXfqNWdnFpY7N+/38kaw6xvatHAZtHyjvHqfNSdNhvG+uSTT+RtoqCxRuXmYY28+v7SW8aK0ahRI8O8geR6+vDDD51eFvihWB6jjkmrg+VDXvTt29dU2ezAqiVTZLFj/pdWQ6akBh+7x48fY+bMmU7bV65caWjBtBs9X0UttOqc3YdWhV379u2d/EmBZ8+UO7OnzeDq86PGLWHHOzwShIiQkBBZaKQV2MPl7++PmJgY9O/fX+jzxDoF9obHhIla3Kgbn3bt2mnmzdYmNOLp06f47rvvUL58eURGRgqH9qwGPe3WrRtatGghn3/16tUBiP2D1Ni51A9DHQZBDRN0zHl/5cqVmvuKhqrUqM+BNaJaYlEvbpmZTtuM6NbroNl1MiPs1ALmyJEjsqUmIiJCs8PQckB3VdhpDTXx2931B7SCHcKOtQ0JCQmmrWSAfcLu1KlTOHDggGKbXhw7HlfjQnoCOy126rSspBkWFia0gO7evRu9evUynY4rGA3FpojFrnPnzoZro3k60juRevH0guuegg1pBQQEYMmSJZg9e7YwHIJ6CEwLK6InOjra1Fth//790bdvX5w6dQrt2rUzFEFm0JqNaFT+xMREj7zJagkfrTZFr1E00w6pz6FixYoYNGiQ5pJgektImem0zayPqteQs+uiLrfoeomGfceMGQNJkhAUFISxY8c6/f7uu+9i0qRJwrzXrVsnfL6NLLYNGzYUbs+VK5f8v6etIjx6wk5kyRLdC+y5iY+P17zPRNvtjMf2ww8/OOVn5p63amFXD9vazWeffWbJX9Io7Igrwk7ruQ4JCTGdhqsYtRspYrHbuHEjRo8ejU8++UQ4i2TRokWyDw7x/MEC7opmynmTbt26KYZK1TCBkJiYKK/XWbBgQQDJvmTsXmeNvNFbllVr1rp16wzT5Geubtu2zRZhp7VklVFH++TJE7ctduqh2KSkJMvxqvTK6YqwA4Dp06drNqaiNNULvOuJNzPnp9eQs9/eeOMNxXYrfkBsX/VkBgC6a5V+/PHHwhUxjPxStQJ4sxUogNQj7ESz2PWEnVm/Nnbd1CLJnQDlIh9IM2Uxso46HA5cvHhR/j5x4kTXCmiCy5cv4+uvvzYMXbN9+3bs3bsXmzdvRqlSpZx+HzVqlCya+WXTzKIl7DwxKqHG6B5IEYtd06ZNsWfPHqxbtw6tW7dGdHQ04uLi8N1336FEiRIICQlBhw4d3MmCSMOwt0G7hN1///2nu7LDoEGD8Prrr2P58uW6fmxLly5VTG74559/sGnTJvk761h69+6NRYsWAUgWZ9euXUP+/PnlQK9qi51WR221QejQoQP69OmDqlWrIi4uDqNHj0Z0dDTCwsKQJUsWnDp1yqlD0mu4jOLnMdRBThlG5Q8PD5f3YXWwYMECTJs2TXFskyZNnIaMWLmPHDmiGKI+d+6crjWBn6UKJFs/RCKIlYf3l7x8+bJwDVL1TFeGFWHHymx0TwBK0ZeQkICpU6cK83ZltqXZDoDtp85DL7QIw1NhZ1z109RCr/70hiJF4T1EQpBd68TERFMWO619hgwZolkWI1wVdmZWvzh06JD8vyeDA5t1QwkNDUW9evXw77//Cn9nbTYAjBs3DoB1i53IUOXpiRMAsGrVKt3fzZZBPMZggYoVK+LQoUNo3rw5Xn31VTx48ADx8fEYOHAg+vfvr4jMTzxfsLemmJgYjB49GiNGjICvr69sjTHTSGzcuBEdOnRAVFQUihYtCkC7YZw+fToA4I8//pD3mzZtGpo3by58s2OwtTP1lnVJSEjArVu3ACR3et26dTMcik1KSoKPj49Lb3qscVq9ejXGjBmDHDlyoHTp0nj69ClWrFjh1MHoBeN84403cP36deTOnRv//fefZl1oNX5GPnbh4eFOVpaePXsCSK7TkJAQxMTEYPv27YiKilJYZ1hD9dNPPymOL1eunG6eaj9F3trI6l2LihUrCrdrvQxorb0qqi/+ngfMC7vx48dj1KhRwjysdigTJkzAuXPnTK2moLWMl6tx4VIj8fHx+Oabb2wRjOrA3cCz9sKsCNfaR73MmhVE/qF2ucLwbY2dS+WpsfoCo/Vs8aMXs2bNwsyZMy0LO1F9poSwM6qDFFt5Ijw8HAsWLMDNmzcRGhqKx48fY8eOHRg2bBiJOi+xa9cuhUVj3bp1mg/k2LFjFcu5MP766y84HA6hZUOLqKgoNG/eHGfPnsXWrVvlWYPXrl3DmDFj5GFNX19f05HiJ06ciJiYGKE1xchZ+dKlSwgJCUGPHj1QtWpVhaDQQyTs4uPj5Yfq8ePHqFSpkiz09KKFFylSRDg8FRQUJAtRPd599135f9YxnT171mnoTD1DU23ZrFWrFj788ENFLKpDhw5h2rRpuHz5Mr777juXh8AiIiLkhjApKUkxdMMcy9lf3ip47do1OQiw1YaX1b0IIyGtNdyhZYESrXYAiMvMrpFVYac1hOnqEJDZVUFY6Bozk0vSKsePH8ewYcM8NozIu26Ysdhp3evuCAeRELHrGtodA1ELq+XVenkTuaW4K+xCQ0PlmJ3eJEWGYocOHYoiRYpg0aJFGD9+PO7fv4927dqhcePGiqjthDV++uknlwPZvvrqq2jYsCFatWoFIHkNutatW2P06NHCh33kyJFo0KABDh8+rBh+mTdvHgCgePHihnlKkoQjR47gjz/+wNatWxESEoLmzZs7NaRxcXGydUttoQGSXxKePn2K77//Xp6JyMSg2uk6MTERAQEBusMXLGacn58fjh07hpEjRwqdyBnDhg1D/fr1heuhHjlyRG4cFi9erIhhpiWI9u7di2vXrmHu3LlOv0VERGDs2LFYuHChvEamHrt27ZLf6EWWGPXQpHoixI0bN+Rn0uFw4MiRI6hVqxZCQkLw0ksvoW/fvrKl0ypXrlyRG8LExES8/PLL8m+sU2DCM1OmTJAkCSdPnkSxYsXkWFlWrQt6+7tqVdCyvGoJK1G4EyvC7rfffsOcOXMwf/58bN68WbiPO5aC999/33AfNkGAz8NTyyV5i1dffdWj6TNXBz0xZUbYuRMGSX2PxsXFKYYk3cHOSR56uGuxY24eamEXGxuLHDlyWEo7Jf08rZAiFrv169dj5syZuHDhAnr37o3MmTNj0aJF6N27Nxo2bGhpbUTiGV27dkX9+vU1f3/8+LHmMAuzvl2+fBlLly6VLW5hYWHw9fVFnz59sGXLFqeHqEaNGqhatar8ne8cHQ6HPNmgW7duyJUrl8Ii9OOPP6J69ery8A17g924caMij/j4eLkzjIqKwpIlSxAXFyeXJXv27MiSJQs++ugjRERE6Pp/sKCzRrOyAaXoee+99+T/1R3mhAkTsGfPHqHAmTx5suZyUPfu3RPGYWMNjNYwaebMmfHJJ5+YGoJZv349bty4ofm7WtiJGqYzZ87I//NBhvWOMUPXrl1lMazuYNiKEey6Z86cGcuXL0fFihUVjZRVYafXCbA1UZs1a2aps9C637TWiRVNwOGF3UcffWToh9avXz988MEHmjMBL1265PJyTVbC3fDXrUOHDunKYpdSmBXgnogW4Ml1pnl/ZE9itV7UFrvg4GBMmzbNaYKL1Rc9SZJSrbAz/ZInuUFSUpLmbz/88IMUGBgozZo1y50sTDF48GCpTp06UufOnaXY2FjD/cPDwyUAUnh4uEv5hYaGSn369JESExN199OrH55NmzZJUVFR0tOnT6X79+9LACT+0sTGxkrz5s2ToqOjJQCSr6+vBEBavXq1VKdOHalAgQLS+PHjJUmS5GPZ54UXXpAASH379lVs79OnjzR69GgJgJQxY0Z5+/jx4yUAUqVKlZzS+vPPP+X/q1evLkmSJJ0+fVpOu2DBghIAqVSpUk7Hsg8rO/957733pN9//91p+82bN4VpSJIk3b59WwIgZcmSRa4nrTzZ57XXXlN8v379uqnj2GfOnDmav02fPl2qV6+eYlurVq0kAFLDhg2Fx5QuXdp03gCkTz75xPS+27Zt0/09ODjYUt5mP1WqVBFery1btkgApN69e0uDBw922sfPz890Hj4+PlKxYsV09wkJCfHI+Rl9WLlEz09q/pQsWVL+v3Dhwk7PCn2MP6NGjZLbaP6zYsUKaePGjfJ3q8+9tz89evRIkXys1svUqVNN7ffgwQNL6fbt29dj7aO7n4kTJ5rSFG4JOyO2bNkiZc2a1ZNZSMeOHZO6dOkiSZIkffXVV9LPP/9seIyrwi40NFQKCwuTmjRpIgGQbt++7bRPXFycdPv2bemvv/6SAEiff/65dODAAencuXNyeUeMGCFdunRJSkpKkg4cOCBftGrVqiku4vbt26Xr169LEydOlABIy5cv17zgRYoUkXr27Kn5+wcffKD5m4+Pj0s3mSSZF0WufN566y3h9uLFi0tXrlyRAEhBQUFSQkKCtHfvXpfyuHfvnul9Z8yYoflbvnz5pOrVqwt/a9CggS310adPH9P7/vrrrx69Nlbvk2XLlkkApEGDBunep2Y/+fPn9/p5paePkVCmj/KzZs0ap20jRoyQoqKihPvzwk7vxTc1fnr16pUi+fAvF2Y+06ZNM7Xf6tWrLaX70UcfSe+8847X6130GTdunCmt4tElxZo1a4Zdu3Z5MgscPHgQr7/+OoDk2X/qcAqukJiYiO3bt8trF+7cuRPvvfceXn75ZeTKlUseqnvw4AGioqLw6NEjJCUlISEhAUWLFkX+/PnltSMnTpyI2rVro3Tp0jh69Ci6dOmCsWPH4qWXXoKPjw9q164t58vWk2Q0btwYhQoVwueffw4ged1LLf777z/dJYrYosgiXB0a8HR8OvVQLuPy5cuoUqWK/H3KlCmoW7euS3mIlo/RQs/X5M6dO5p+pXY9A1bCS2jN5PQWbCg2ICDAFp+dlFyd4HnAU6FL0iuiWdt6kyd41xWtfVIrKTEbFLDuCmI29IpW4HU9UiJmnSukmrVi+Q7YEzx+/FgOdRAUFCS8iLGxsYiIiFB8tHj99dfh5+eHJk2aoGLFipg7d67mgt1DhgxB5syZkTNnThQpUgSjRo2SZ+v179/faf9q1arpxmEz4vLlyy4f6wmsPoh16tSxLW/m4B0eHi4LX1fQioUkYvjw4S7nYwdqX5EXX3xRc193hQ+bPGMXTNjFx8fb0mim1VVNUiup1acotSJax1hv8gQ/yevChQseK1flypVtTzOlRL+nhJ3V9ua7774zXCfcSv5Dhw61lL8eKRbuxNvkyJFDFmqPHz9Gzpw5nfaZMGECgoKC5E+hQoU001PPAv3www+F+2XKlEkRcuLGjRvCEB6eeNDSKmyma2qqk99++83bRVBQoUIFzd+WL1+u+N6nTx/Fd37Sh7tWMTar2ggWW1CPVatWyRNE7BJ2ZGGyFxJ21siQIYPTtsTERBw9etQLpXkGi8lpJ6IIBp7A6jNtZkk+wHMWR7Or/dSrV8+2PFONxc7TvPrqq/j9998BJE87Dw4Odtpn6NChCA8Plz96M4hmzZqFy5cvIzo6WjjjslWrVmjatKncqQYHB+PgwYPykN6JEycU69exgJb8TcjPPtViypQp8PPzc3kYT2t5KDVawVrtIm/evOjfvz9y5swpxzXMkyePR/NMy7DwLmZQNyz8d3eWJwLMX6N+/foZ7tOhQwd88803AJIFhB0NLVns7IWEnTX8/PxQrVo1xbaZM2fqRjNICVIq5pwnsCrsBg8ebGo/Tw2rmnVFsvOamG73LM0eSKV4clbsrVu3pMGDB0vly5eXAEhhYWGSJEnS7t27JQDS1atXhccByU7z8fHx0sGDB+UZpVmyZJH++ecf6fXXX1c4RUZGRkoHDx6Uvz98+FBRBgBS3rx5nZwp69WrJ3344YcSkDxRg23v37+/0767du2SgGTn3V27dkkJCQmSJEnSt99+a5tz53vvvaf4Xrp0afk8Jk2aJAGQmjVrptgnKCjI406nbGJK06ZNNffx9/c3nZ7WxA4AUp06dVwuJ7t3zHzUs8JcnUDiTjnmz59v+7UqUKCAx+8H/pMlSxb5/3bt2qVo3qnlExAQ4PUypKXP/fv35X4kNX169+7t9TKkts/AgQM9km7OnDmF29nkSvbho0m4+/n8888NNYskeXhWbGrFlVmxO3bskMqXL68IYaIXzuTJkydOInP//v2KEClMWPGwCxgfH+907OXLl6V58+ZJAKThw4dLp06dkn+/evWqFBsbK7Vu3VoCnENjVKlSRUpKSpI++eQT6dKlS4q0ExMTLc241PqEhYVJV65cUdzwtWvXlvM5dOiQBECqWLGi4rgrV64IQ2CoP6KQKPznxRdf1PyNCfMOHTpo7lO0aFHT5zp79mzhdn9/f2ndunUu1yF/D1gpw+uvv+6SsNOaiSZJkvTxxx8bHv/333+bzqtw4cKm9ps1a5Zwux33qOhTo0YNCUieIa11XVPTp0iRIran6XA4vH5eaekTFhYmRUZGer0c6g97yU/pDwvtxD5Hjx71el14+pMrVy7h9k8//VTxfc+ePbbl+dlnn2lqDp40PxSbUjRq1AgnT55UOEzqOU9mzpzZyVRbu3ZtxZCsyETLnHLVQRZr166NYsWKoVevXpAkCWPHjlXMzCpSpAgCAgKwbNky3L59WxiV2+FwYMaMGU5+hD4+PmjUqJFim5ng0vzi0ACQM2dOFC1aVBFwd/LkyfL/r7zyCnLlyuUU2DV//vy6EwEYefPm1f2dDcmLYEGCs2fPLvx97dq1psrAyJ8/v+I7G2ZOSEhIsRlV/P21ceNGl4Y49ZaeMuMcbKXOXnrpJVP78c8F+/+LL75A+fLlTedlBen/Hd4zZcrk0UXOUzNSGpup6W0cDkeqHPY063dmFxkzZgTg3JcZTZpkrhlpGa1h0UyZMim+q/tyd3hufOzSG1OnTkWBAgVcPj4wMBD58uVD06ZNASR3+Nu2bRPO4uLhb75OnTrhrbfewq5du3Dz5k3ExcUJb+KaNWtqdgiDBg1ChQoVFD6PmTNnxoMHDxASEoKBAwcqyszyX7p0qWaDyURZhgwZcPPmTblRYej5H7A0+br97LPPACTPdm3durXcqatnlObIkcPJn0YtUtix8+fPTxFhlz9/frRo0QIBAQHIly8fAgMDXfI703MAzpIli+6xxYsXV1yrli1bKsLH8KLR39/ftLMxnyYTr76+vh4TXewe9vf3FzrFE2Ls7LDSGj4+PikuoszgiqO+1suuGdizavVeSA8vUFrtrbpfsvMFgIRdGqVv376KyReuwpZTevPNN+U4f3o0atQI1apVQ0hIiLx+ZP369VGgQAH4+/vrPogvvPACunfvrtg2depUxXqqPP7+/pg2bZpC9LFOPyEhAY8ePcJbb70FAIp9ChcujD179iAyMhIFChRQrP83ffp0lCxZEm+99RaGDRuGjh07YvXq1fIkgLfffhvff/89evbsKR9TqFAhREdH48svvwTwrLFRN1ILFy50WnezVKlSqF69uvydiYO3335bbvD5GIVWYOXQmzhz69YtFChQAI8fP5aXjTMr7PiZc3pia8SIEU7bKlasKIfySUhIUDRaBQsWVAheSZLkmeIOh8NU4z9r1ixNYWdHR5ovXz6nbeza+fn5udXJpRSpxbqWGi1WdrFp0ybd3x0Oh23CbsqUKbakAyS3l2ZCdfC48yKq1WYakRpFsVW0nkO1sLPzBei5CXdC2EP27Nlx+PBhfPPNN4aL0l+7dg1Xr16Vv9+9e1deE9QKmzZtwokTJwA8Exjx8fHImjWrXAa2kDWbvVu3bl35QWFre168eBEDBgyAv78/NmzYgHHjxmH58uVo27atnH6zZs3Qp08fecgUSA4XkiFDBrlxGjduHCpUqOBktSlZsqTie2BgIDJkyCAHoQaePeQBAQF45513MG7cOOzcuVP3/Hfv3q1Y/D0kJEROAwDKlCmjezyQ3Iiw8oqGqkULgfOCWK/RyZQpk9OwQs6cOTFz5ky88sormDJlilMDzaddvXp1fPTRRwCSG3IzgqRfv36K/ey22BUpUsRp27vvviuX0epi4c8b/MtMerbYGQU89/HxsU3Y2inUXRki1hJ2ly5dMpUfYF3ke8Ji9+abb3o8aD6PlshSj47RUCyRJihUqJCwg7RK9uzZZcHGbn4WdmHy5MkYPXo0XnrpJdy6dQv79u1zOp6trqDnu1WgQAFIkiSHIWBvUzVq1HCyVtWpUwf//PMPfHx8UKpUKQDJYUPKlCkjN0T9+vVzCjDaunVruXEODAyEv78/hg0bhoCAAMyfPx8jR44Ulq1evXpo3ry5/J35nbzwwgsAtBtLtW8j45VXXsHZs2flsgNw8p0ElEOsfB2ILKzqoZaoqCgAyYGd27VrpyijJElyrMI+ffrgxRdflBtah8Oh6MBEAqpDhw4AlA0mf7zoLX/EiBGoUaOG03YzlCxZEvHx8Rg4cKBcNrWITw/YufoPfw3SgrBbuXKlS8cZWZR8fHxMixOjmJB2hppxRdhpiYXMmTMrvrdp00aYH5A6hJ2/v3+KxrfUEuTqfsUb4U5I2BGmmTJliqaocBcW249ZBHLlyoVRo0bB4XAgf/78Qn+v3bt3Y9y4cZbyYQ8d7+Mn4sSJE3jy5IlT41ajRg0ULlxY/n779m2sXr1afsjVD3GPHj0wZswY3eXe1Kb7nTt3YvHixZoNQs2aNTXTKl26tGISSaFChZCYmKiIN8dPQuAbIVFwZNZ5M6ug2imaL2PevHllqyELFM7eXh0OhzyBBUgesmbXgAlZNmwuEnZJSUmKzpYNmfIdLC9MtSba8B2Kn5+fkzgpWLAgwsPDTQVe9hZMAKsJCwtDkyZNFNvWrFljKbZar169dH/nLSJpQdi1b9/eqc1iFlo9jDpjh8NhWpzo+Tc3b97cVp9cV4aItfJXt316lkVRfRUrVkxzf7uFXdeuXYXLvHkSLZHlSWFHFjvCdgYPHqwrKtyhXLlySEpKUgz1GFGjRg0MGzbMcl6SJDnNzFWTIUMGRcPGnJLV1qF8+fIphhm1GqwePXpoitArV64gNDRU/v7SSy+hW7duLnecvPAEksXPrFmz5O985y3yseNXtOAbpUuXLmH69OlOaTOGDx+OAgUKYMeOHRg1apTieB8fH8VsaX5CDluqjdWhSNip/TxZ4G++/GXLlpX/F1kX1Gh1gFrBvbWWgurcuXOKrV379ttvY+LEicLfcubMif/973+KbUYdAW8xZmnokZLCTuQP6QrsxYFhptxmLHZm0RseXL16Nfr27Ws6LSNcmdSh5yvGW/9F++lZ7A4cOIDdu3cL07Zb2E2fPt305Cy70BJ26vvLznMlix2R5kjNM6VeeeUVSJKkaOh4zPjJqMPMMPLmzYsSJUo4bbfbOf2vv/7CoUOHFBZCdWMoSRK+//57+Ts7X0mSULx4cadOipXR19dX/q1Ro0ZOVgqHw6GwlPTq1UtupNQNIS9GWCfl5+en6LCWLFmCL774AgMHDpStVKIwKWr4e0yvA2TXk58AU7BgQeG+mTNndhKDvMh0FSZeefz9/YXlvnbtGgDnZ8ioI1D7xhr5GPLX1dPDXnb5nqnvBfU9365dO6djjMSRlbZKz2Ln6+uLXLly2bY2s51tqK+vr2Iykd71EInlfPnyac7StVJOM0LV19c3xSfzqF8YGOr7y85rQhY7gkhBzLxJtWjRwmmoTA93GqqTJ0/ir7/+UmyrUaMGatasqZgc4ufnh549ewqX4gOSw+WYKaNR4+VwODBkyBB5ofT69evLdaZuuPm6ZNZF3mLXt29f+Pn54auvvkLmzJkxZswY3L9/32mYVascDD1rL+vE+A7X19cXV69exfnz5zFnzhx5u7qx7devn2yFNMM777yDJUuWOA0ZiupUq3PVWv/aqCMIDAxUxGRkwk5L4PHCnrlH2LEWJvPN9ATq+0s9xLhixQqnY/hnT1S3VqxiRsJOnZ872CUiWPxRPj2rQ7F6WCkn/yxr5ePn55fiwo5FB1CjFnZ2zgAmYUcQKciIESMMH+CsWbPqBlFWwzdoa9eutVSe8uXLa04q4C12fn5++PHHH4WTUwDjoTmzjdaHH34IQNmgs0ZK3SAzYbdy5Uo5f95SpbaG+fj4OM3k1ioXn7+WrxoP3yn7+PigSJEiKFmypKLM6sZ21qxZTkOcejgcDnTt2tXJx1EkKKxasUQdQcWKFWUhpa57Jui0JiTx9VG0aFH8999/TqGAzPDrr7/ir7/+wu7du9G9e3ccPHgQXbt2xXfffWc5LSPU94J6prePj4+Tnxl/n+zduxdjxozRTVMPM8LOrs7fiu+fHkYvbGxCCPvdavmtlJEXSnxUAx5vWOz8/f2FvrjqUQ0aiiWINMrw4cNtWdyehzWWlSpVQuvWrW1LlzWUWlYeEVqCgjVaeo2XJEmYNGmS03a1xY6lwbb7+vrKMwb9/Pzw8ssvA4DmcLgobXdRCzuGnrADki1QnTt3NpWHVuc4depUbN++XbHNqrBjE1LUaFmKmLCLiYlRbO/WrRsAZafl4+ODwoULO137hIQEnDt3TrdcLVu2RI0aNVCvXj0sWLAAZcqUwZIlS+QXAMD9oVg2VGYk7ADneuDPqUiRImjRooXm70boCTurs0qNQpDYJSJE5eG3WXlxEeGqxU4rFJc3hJ2WmDU7FCsKRaW3P0AWO4JIF7Rt21bh82YHZsSYq2laQWsoljVevCXF398fr776Km7cuIHGjRsbpq3VADocDqxevVoRg1APvrPgy8n/3759e+GxanFpFOtRJEBee+01+fvbb79tOAucvw6DBg0S+unxgkmdJ7OQ8jOYAciTZvgOXeua+/r6mhLfVuncubM8XO3r66s70xwAFi9eDMCcsDNCfS1dtThpwcoompnOo+Wnq07HCBbUXAuRxW7OnDly+mZdMLSwYuHj72GtoO92Czv+udNCKz+zws6VyUdksSOIdMDq1avlmci//fabYUR8s8yYMQPbtm2zJS3AtQaeWYHYkDFbto0XfGzVFBaPT2sCgxq+AVSXrW3btqZnX/MdEJ8O36i/+eabumVgx6lXZ1Gny9LMkyePYgYxY926dShdurRuefm1exs0aKBZLq3wPMwiorbY5ciRAwkJCejYsaNTuT0h4gBni12nTp3kZ0GSJPTo0UP32DfeeAOA8znyPnYTJkwwVRZ3LMBmRAzbR++czGDmOWzfvr1iCFHkR6u2ogPJkyFYTE5Wp0bRANwpJ6NDhw6YNm0aAO0ZxnYGjAaATz/91HAfsxY7rf0kScL169dx+/ZtxXay2BFEGiRv3rxOa8+aoWnTpk5DQq7yySefGIoERubMmTF69GjdfVwRdvXq1YMkSShbtixu374tCz1+Jmzx4sUhSZJTCBcj+I6YfzM2W85ffvkFgwYN0myUzXQirAwLFiyQ124WobagZsyY0dC3UYtSpUqhd+/eALQtRbywUwfaZRMi4uLi5GX9GOpzZnVTq1Ytp86J586dOxbPIhle2M2fP1+2Fk6dOtXJ4rp//37NdPQsdmZDZLjjZmHmXmFldNeFQMvHjp/5qxbib775puKFAHhW5gEDBjilz5dXjWiFmfnz5+PAgQPCdMzg4+OjiIephV3C7sGDB/JLgVG5RJi12EmShBdffNFSWB+z90fqjzBJEOkMVzs6b/HkyROP58E3bh9//DEiIyN1xZARamHHfPXMdihVq1ZF1apV8eDBAwDOse1EnUjOnDkVy8AxMdCkSRPdCQZ2D40zvzqtoR5JkhTCju+ImTUrNjYWGzZs0C2T2pqjhVawaLMMHz5cYckaNGiQblnUqDtg5qsJ2CfsZs6ciTt37shrIwPJ1+H+/fvw9fXFiy++iBs3bmgez+4nMx33/fv3MXjwYCxZssTpN73hcYZoJRz1cazORKFg+P21juMRWSGtCjuRBZHx33//aebtCmbTcXco1pXlC8liRxBEimHnlP7MmTNj7NixbgXA5RtAvgG2Kp7YeaktaKJlosLCwhSzi7V8CNWoy6S2eGzbts1pEoUeTMRqiRZe2KnzZkNdbB1mQHtJrLSykLu6nHny5MHChQsBmBd2RoKrf//+iuG7rVu3yqFyfHx8DPOxYrHLnTu3ItwOD389+eXx+GdJ9Fyp7wMzK2+IMHtPWBV2r776KgDxqjvMmn/37l3TabpTNt5qyQd+Z5gditUafaGhWIIgUgWpLbj0/fv35f/5hlVrVQkttDo4Mw74vFVMD6O6e/311005czP4mcQi+KFYnrx588plYcIuPj4ev/zyi0vldhcrs2L5sjC/TIa6/gMDA+U6MrtofIUKFTT3ZfnxwXwdDocinI9RPlYsdkDykLloti1/rvxMeqOXJHVd8/e9KMSI1ouB3gxgHqvCrmLFipAkCZUqVdLcT70uttEzyoJ6i/LTgxd2LVu2dJr9btZiZ3U7YBxXlEHCjiAIt2nYsKG3iwAgeW1UfvYeAHzzzTeoXbs2Fi5caDgzVY1eI68OdKvmk08+QWBgoHDI5fHjxzhy5AgAY4udVfiZxCK0/BX//fdfp23qFT94PG2xc2X2au/evZ0mGIkmTxhZNdXkyJEDsbGxTmWKjIzEli1bACRfR7aUHvDsOvr5+RmuwcvqUs8i89NPPym+iwSAmaFYM/DX9uzZszh8+LDid3ZuzF+vQ4cO+P7773Hw4EFT6bu68oSeQK1cubKlPPjA3Fr5mSmX+nn15MoTZtMiHzuCINzi+vXryJUrl7eLAeDZGrHt2rXDrl278PDhQ9SvXx8ffPCBS+npNfL//fefU1gQntdee81pdikjKChIth7abfnSs9jt2LEDlStXFoo7/lzVTvMi1OVev369pdiIRnzzzTeaoWQYpUqVwvnz5/HKK6+gaNGiGDBggOFQGC/sRHV05swZzfzU58wmm6h/lyQJb731FgYPHozevXsjc+bMujMtzQjMLl266JaFbWMWtjx58mDjxo1466230LBhQ8PwMDy8ECxYsKDTbHQmcN9++2154gobLjWDlXvezIoyABQr6pjB1RcW/hqLcHflCTvaAxJ2BEG4hXpGXWogT548aNGiBZYuXepWQ6nXKLsrZu0SdOpVEdhwlWjSAhuuEnVKWhYILdTl1/LFA4CBAwfi2rVrmsO6IvihTS2OHj2K2NhYZMmSRTM2m/oa+vv76w7F8hNgXEWSJAQEBGDKlCmm9m/cuDG++OILDBgwAF988YWpY/jzypQpE6KiouBwOFC1alVs2LABzZs3h5+fHyIjI5ElSxbFWs1AspWNPbt6Q7EiMmfOjAcPHrg8e9tVi51eudTXWX1OpUqVws2bN+XJYK4MhZr53V2L3fz58+UIAa5Cwo4giHSJHYvIe3K4UeSnVL16dXz++eeGx86cORM5cuRAvnz5nOLV9e7dG82aNVMI7sDAQMWECL5urK5+wLBSNywOmd3WycyZMxsOiYvKqTUUq7Wwu1mMrDlasLWPrSAKmM3y50PVqK2KDH6N3E2bNin818zcC+682Fi5d/QsdmaHfvfs2YPatWtDkiT5mousr0+ePHF7spP6nrISwub+/fvInTs3Nm/ejJUrV5o+Tg0JO4Ig0iWuBk/l0Quz4C6i8pldEUNrAXKWnnqo9fr164iKinLKm8eqiDUTxDU1ILp2oqHYEydOGMYUM2vNseOlwgiRsDO6hloWtooVK2qmLcLd50F0/Kuvvorz58/j0aNHiu18XaoFp9nh37p16xruY7YOrQzFvv/++5aEHQsQPm/evOdD2F29ehXVq1dHuXLlACRH5M+TJw9WrlyJ6dOnI2PGjFi8eLGtPh4EQaRd7BR2nsCO8plFvWasO8LuxIkTuHPnDurVq2e5HP/880+Kr+kpql8WIJyPaacWN+7klRLCLkOGDAgPD1fkazSj8pVXXjGVttE1cvf8ROVk1jc9i5iVEEhWy2j2Jc7oGrMy5siRAwsXLsTNmzctlQOwPnvfqQxuHZ3C1K9fH2vWrJG/x8fHY+rUqdi7dy8OHz6MsWPHyrGDCIJ4vhk7dizi4+Mtr1rBk16EnZohQ4Y4+eaZPdeKFSu6LIKM1kL1NMzHr3nz5rLvmRXsstitXbvWtHVWi127dsn+gGZEidbSd2rKli2rKdrduVf5IM1W0klpYWf1mVfnw8rItqtnOs+ZM8fSRBNXSFPhTvbv34+6deti2LBhkCQJoaGhKFeuHAICAhAcHCycrk8QxPNJ8eLFsWrVKrcCHdu9KoReHinJ6NGj5Y7HbLw9q0yfPl2xEoO3KViwIN555x35u1VRB8Bwlq5ZYde6dWtMnDjRcv48/JKAdt6np0+fdmlVBCP42cauCjs7rL0tWrSQJ5J06tQJjRs3BgAUKVJEUbagoCDh8UZlFwXE5mnUqBGqVKliveAWSDMWu/z58+PixYvIlCkTevXqhXXr1iFfvnwKk6VWDKDY2FiF43BERITHy0sQRPrBE0NrLI5W27ZtbU/bFewWdmZCpqQ15s6dixkzZmj+bnVmsV140heUx53zEgU61mPkyJH48ssv3V73WQ0f53DZsmWIj4/HgQMH8Morr2DHjh1yuv/88w+KFi3qdLz6GhvNKM6YMSMkSUKVKlVw/PjxFFmxJdVZ7O7cuYM6deo4fZ4+fYrMmTPD4XCgTZs2OHHiBHLkyKEQaVpqfsKECQgKCpI/5IdHEIS3CQoKgiRJaNmypbeLAiDtLBHmKnaILV9fX91ZuHb42J07dw69e/eWv9esWRMhISG6x6SEZdlOzNSPqC6NlkZzBX9/f9SvXx+5cuVSWGSZBc+IPn36KL4bXYOU8DFNdRa7fPnyKdZbZERGRsr/79mzB2XKlEGJEiVw5swZxMXF4fDhw5r+G0OHDlU8GBERESTuCIIgOFKLKDh16hQePnyoGdw5NWOHsCtVqpRihYtDhw4ZHpPWRLmZgMyiuuRFkUggnTt3DleuXEGzZs1sEfL3799HSEgIli5d6lQuRqNGjSBJEubPn28qEHpKXKtUJ+y02LdvH4YPH45MmTKhWLFi8iLhAwcORP369ZEhQwYsWbJEeGxgYKDpNewIgiDUiIZk0gupzdrDIh/88ccftqbbo0cPW9MTkZKzYoHkJfQePHjgNBEmtaO1nBePkcVOJOxKlSolL3NmxzXInTs35s6di4cPH2Lz5s2a5QKAnj17omfPnoZpkrDjaNasGZo1a+a0vWPHjujYsaMXSkQQxPPAn3/+aUsoDCDZohAXF2dLWoR5Ukpo2SXszB7PltAbO3asW/mZxS7xX7x4ccN9RP6KvLBLKStlxowZ0aJFCydh5yrPpY8dQRBEaqJhw4YuL52kplSpUihfvrwtaRGpl5SePJFarK1myZcvH86ePau7HCE7J37yBC+KUvKctSZm6qEOGeOp2eci0ozFjiAIgnh+YGvd8kGEUzt6Frv79+87hb7QwqowTGvCDkgO1yJaq5ehVZcZMmRATEyMYR3ZKa55cWnGKvvff/9pXmsSdgRBEMRzSYUKFXDq1CmULVvW20UxjV6nz5aL8gR2iIVWrVqhU6dOuvvYbYnUE6RaddmnTx/MmDHDlBXt119/da+A/w+flxkRrRcUnYQdQRAE8dzCJlKkFeyKY2dVBNohFtavX+92GlbRKzcLIK226k2dOhUzZswwXIPVzlBCNWvWlP8nHzuCIAgiVdO0aVNvFyHdYNfkiSFDhljaf9KkSShWrJhbeZrhgw8+kGPL2oFeTLcPP/wQc+bMwRtvvKHYzoSRK35vrlK7dm3s2bMHgPvXmIQdQRAE4VHmzp2Le/fuebsYqY4ff/wRixYtsnSMXcJOz/dMRLt27XD58mW38jRDgQIFsHfvXsurSGjBRM6RI0ecfvP390ffvn01hZCesBsyZAi2b99uSxkZrBxsZq6rgYZpKJYgCILwKP7+/qad+p8nzMQkU5PScezSOkzkVK5c2fKxWgsSAHB7HV49OnbsiBw5csjrzZqFZsUSBEEQRBrDTmGXNWtWFCxY0O10UhM5c+ZUxKNlVi+rfmsnTpxI8dWj2DUNDAx0KyC0SNitXr3a1mtNwo4gCIIgbMBI2GXKlEnX0sTz6NEj28qVWggLC1N8ZyKHF3ZHjx41HOa0K2C4K3hi8kTbtm3dSlMNCTuCIAiCsAEjYffkyRPTwiAlFov3NiKRU6VKFS+UJOWgyRMEQRAEkUYwEnZpMZCwJ1m5ciVGjx7t7WKYwi6/SavCrn379pbzIIsdQRAEQdgATZ6wxksvvYRRo0Z5uximKFKkCACgbt26bqVjVtgtWbIEpUqVQvHixXHo0CHMmDHDdB4k7AiCIAjCBrp27Yrjx4+jXbt23i4KYTOFCxdGdHQ0MmTI4NLxVmfFdu3aVf7/v//+s5QXCTuCIAiCsIHMmTNj7ty53i4G4SFcFXU85GNHEARBEASRTkgJP0sSdgRBEARBEOkEEnYEQRAEQRAexI5hXLOQjx1BEARBEIQHWb16NTZu3JgieTmk53BedkREBIKCghAeHo5s2bJ5uzgEQRAEQRC2QEOxBEEQBEEQ6QQSdgRBEARBEOkEEnYEQRAEQRDpBBJ2BEEQBEEQ6QQSdgRBEARBEOmE53JWrCRJiIyMRNasWVMkCjRBEARBEERK8FwKO4IgCIIgiPQIDcUSBEEQBEGkE0jYEQRBEARBpBNI2BEEQRAEQaQTSNgRBEEQBEGkE0jYEQRBEARBpBNI2BEEQRAEQaQTSNgRBEEQBEGkE0jYEQRBEARBpBNI2BEEQRAEQaQTSNgRBEEQBEGkE0jYEQRBEARBpBNI2BEEQRAEQaQTnkthJ0kSIiIiIEmSt4tCEARBEARhG8+lsIuMjERQUBAiIyO9XRSCIAiCIAjbeC6FHUEQBEEQRHqEhB1BEARBEEQ6gYQdQRAEQRBEOiFVCrvIyEjUrFkTWbJkwalTpwAAK1euRK1atdCoUSNcv34dAHDmzBnUqVMHtWrVwvbt271ZZIIgCIIgCK+TKoVdxowZsWnTJrRt2xYAEB8fj6lTp2L37t0YO3Ysxo4dCwAYNmwYFi5ciG3btmHkyJHeLDJBEARBEF7C4XBgwoQJ3i5GqiBVCjs/Pz/kyZNH/h4aGopy5cohICAAwcHB+PfffwEAt2/fxssvv4xs2bIhV65cePDggTC92NhYREREKD4EQRAEQaQfpk6davmY2NhYD5TEu6RKYafm8ePHyJYtm/w9MTERABRx6IKCgvDw4UPh8RMmTEBQUJD8KVSokGcLTBAEQRBEqiY0NBQZMmTAjh07vF0UW0kTwi5HjhwKK5uvry8AwMfnWfEfP36MnDlzCo8fOnQowsPD5Q/z0SMIgiAI4vnkwoULAIBDhw55uST24uftApihRIkSOHPmDOLi4nD48GFUqFABAJAvXz6EhoYib968ePjwIXLnzi08PjAwEIGBgSlZZIIgCIIgiBQn1Qq75s2b48SJEzh//jz69OmDgQMHon79+siQIQOWLFkCABg/fjy6d++OxMREfPnll14uMUEQBEEQhHdJtcJuy5YtTts6duyo+F62bFns27cvpYpEEARBEEQqxeFwAADu3buHqKgoFC1a1LsF8hKpVtgRBEEQBEGYhU2ozJ8/P5KSkhQTLPX2T2+kickTBEEQBEGkPq5evYrHjx97uxgKkpKSvF0Er0LCjiAIgiAIlyhWrBiqV6/u7WK4BRvCTS+QsCMIgiAIwmUuXrzo7SIQHCTsCIIgCIIg0gkk7AiCIAiCIDzE1atXsXXr1hTLj2bFEgRBEASR5kmtvnJVq1bFw4cPU2wWLlnsCIIgCIKwzPTp071dhDSB1jr2noKEHUEQBEEQlhk0aJC3i+AW3o5jN2PGDFStWtX2dGkoliAIgiCINI+3hZpVBg4c6JF0yWJHEARBEESaJa0JOkC/zPfv38ft27ddTpuEHUEQBEGkcurUqYPvvvvO28VIlaTFlSb0yvzCCy+gQIECLqdNwo4gCIIgUjn79+9H3759vV2MVENCQgKePHkCwHWLnTctfZ7Mm4QdQRAEYRs9evRA6dKlvV0MIp3Tvn17ZM2aFcAzkZRaw52I8KSwo8kTBEEQhG0sXLjQ20UwRYcOHeDn54eff/7Z20UhXGDdunXy/2nRx86Tw8dksSMIgiBw69atNNlBusqqVauwbNkybxcj1XLjxo004bvWqFEjt+9bb1j6aCiWIAiC8Bj3799HwYIFMXv2bK/k36NHD7z++uteyZtwJioqCoUKFcK4ceO8XRSZqKgoFClSBP/++69i+86dO9PkCwkvmu0uPwk7giAIm4mLi8Pw4cMRHR3t7aKY4tGjRwCAw4cPeyX/hQsX4o8//vBK3oQz7L7966+/bEtz/fr1uHbtmsvHnz9/HteuXRPODOZF0g8//GA5bU9a7M6fPy/czos59n9UVJQtrgEk7AiCIGxm/fr1GDduHBYsWODtohDpkGbNmmHmzJkeS58JJR8f+yTCO++8g7p167p8vJ74YsJIkiT07t3b5Tz0ePToETZs2CD87dChQ4iPjxf+pjWRiBd2rL5HjBiBd999V97+zz//uFRWEnYEQRA2wxrqxMREL5eESK1MmDDBZUvRb7/9hgEDBthcomcw0WGnsAOSh/zdRTRsyQs7T9GtWze8/fbbTtsfPHiAWrVqYcSIEZbS462M7P/Hjx8r9nF1IhIJO4IgCA+RFn1/rHDv3j1vFyHN4kmLGwCcOHECEyZMcOlYJjQ8NUQ5d+5cy+vMsrLoCTtPTva4e/euMH82bH3x4kVL6Yksdmoh7Wr9pxlhd/XqVeTJkwcNGjRAgwYNcP/+faxcuRK1atVCo0aNcP36dW8XkSAIL3PmzBlvFwGA9+NpHT16FOfOnfNoHleuXEHevHmxfPlyj+aTXkhISEDZsmVx8OBBAJ6/Rxo0aIBhw4bp7nP79m3ExsY6bbcjLtylS5ecLNYs3Q8//BDTp0+3lJ4ZYZcSL1LqPFytI5HF7rkTdgBQv3597Nq1C7t27UL27NkxdepU7N69G2PHjsXYsWO9XTyCILzI7t27Ua5cOWzdutXbRZHxlsWuWrVqKFOmjEfzuHXrFgDgyJEjHs0nvRAeHo6zZ8/KM009LezMDKMWKFAA3bp1AwDExMTIE1jcHYqNjIxEiRIlnGbVuvM86Ak7JiBTIjyLVh5Wz01ksVPfE8+FsNu/fz/q1q2LYcOG4cKFCyhXrhwCAgIQHBzsNAWaJzY2FhEREYoPQRDpixs3bgAALl++7OWSeN9iR6Q+mPiw229NC19fXwDJMy312LZtGwDgs88+w+uvv46wsDC3y8qsgGrR7ylhx4SRp4RddHS0/CKjZbFzR9h9/vnnAJzr29X6TzPCLn/+/Lh48SL27NmDe/fuYcOGDciWLZv8u56T8oQJExAUFCR/ChUqlBJFJggiBWGNYGoKqupJi93mzZtx8+ZNt9KQJAkvvPACNm/ebFOplCQkJCAmJkYz7/Tkg/jkyRPcvXtXDh2jRj3c5mqn/dNPP5najwm7Dh066O7HrgELRRIfHy/3p0y0/Pbbb4iMjDRdxpR+Flk+6vvp1KlTwv137NiBlStXmr7/3nnnHflZ88RQ7Jw5cwA8h0OxgYGByJw5MxwOB9q0aYPjx48rLG/sJhYxdOhQhIeHyx/yxyOI9EdqEnZGb/E3b96UJx6sXbsWa9assZxHy5Yt0ahRI9cLieS6un//Pr766isA9lsaX3/9dWTMmFH4m4+PD0aPHm1rft7i8uXLyJo1K/Lly6dpOEhISADwrK9idZ2UlGRJ4Hbt2tXUfiyfvXv36u6nFkUOh0NhsZMkCc2aNUObNm1Ml5E/Nx4r53nz5k3F/q5Y7MqXL6/4fuzYMdy8eRONGzdGx44dTZdlx44dTnmpWbdunWzVM4PoPOyy5qYZYce/LezZswctW7bEmTNnEBcXh/3796NChQqaxwYGBiJbtmyKD0EQ6YvUIOxu3LiByZMnGwqkF198EXnz5gUAtG3bFu3atXMpPzZTz1U8HY5l586dur/Pnz/fo/mboVatWujVq5dbaVy9elX+/+nTp06/P3r0CFu2bAHg3Hn7+vqiSZMmbuUvggk7SZIwcOBAzYlFImsX7/PF/rcSQJqlZfb+io+Px7hx4xAXFwcgub5efPFFTJ06Vd7HjLAzEo5Vq1ZF2bJlTZUJSBbss2bNgp+fn7xNz2L35ptv4u7du3j48KFh2up0rl279vwNxe7btw9Vq1ZF3bp1cfPmTXTp0gUDBw5E/fr1MXz4cAwfPtzbRSQIwgCr1gkrpAZh161bNwwZMkQOVurpoUZ3LWzuCDtRR3v27Fn5/0yZMhmmoRXU1V2io6MxYcIEU/fCoUOH8OOPP7qVn1EH3KVLF/Tp00exL3/teIuQXbB84uLiMGPGDPTo0UPxu95MUn4oVl2HGTJkwNKlS52OOXTokFPaWrNi1fz8888YPny4PMP6yZMnAIC///5b3scOYQdA18f+/v37+PTTT+UQJm+99RY++eQThbBT1wd/He/fv498+fIhf/78wvQlSZJ9gdXpFClSRHMotkuXLvjmm2+MTk0mzQi7Zs2a4ejRo9i7dy+WLFkCPz8/dOzYEQcPHsTOnTvJb44g0gC+vr5yB+cO9+/fx/r16xXbUoOwY07jKTV5wi5h54oAFR3DW0PMLKfGLDR2M336dAwbNgx//vmn029JSUm2Wyr1rkOhQoUUM7VFws4TsOeA+TiqhbZ6+JKPBcfqJzExEZ06dVIcFxsbi/HjxzvlV6tWLc20jWDPjZn99YSou9d1165d+OabbzB37lxFufQsdjys/HFxcRg0aBBy5Mih+P37779HoUKFcPv2bVNDseweWbZsGT799FPT55FmhB1BEOkDV9ZyVNO+fXu88847mDRpklNoBm8KO3UnqW68w8PDTQ3TmMXTwm7VqlWy+EpMTMSvv/7qVn5qRMIuISEBbdq0sRzwVZSuqKOvWbOmKWuiFfSuA7PQMOycFatn8WQ+fQz1ObPf9YTd6dOnsXbtWqe0tc537969cDgc8tC0WYudmVm4enVsJCQ/++wzU89KhgwZADjPJBZZ7KKjo/HgwQNFunz+06dPd1pJgq3F/OjRI2FZn7vJEwRBEAy2NNHnn3+OS5cuAUgdwk4t6NQdWd68eZErVy7b8rNb2PHp/fPPP+jQoQMmT54MAJg3bx7eeustHDhwQHGMO4iEybVr1/DLL79g5MiRbqcv4siRI7ZbCtUdst6KD3Za7IYMGaL5m1pUaQk79XXkhR0TOgyjwMXbt28H8CxQuNnJEyw/vUmQemkYDcXOmDHDVFpax6stdpIkIVOmTMiTJw8KFizoVA4zmLHYpXsfO4IgCAbf4LFOhm3z5vqsRh2ZKMq/K/Ad7MmTJ3H69GnhfkaLiOtZ7NgkAGZ1YLN42UQ2O+pZJOxYHR48eBCtWrVyOw+z2OFvyJg9e7bmvlaFXUxMjObs5+PHj2seZ2SxUwf15f3i2G+BgYGKY4yWGlPPhjUrdNh+esJOzydQS9iZEYqAc7nV6agtdvxzxd83RufLpys6DzbBRl0uq5CwIwhCl4sXLxoKhJSGF3bquGCpwWLnikiwYgHj069YsSJeeeUV4X6VKlXStU6py8l3JFrDY6ycauFgFyz9q1evYuPGjW6loa5T0bAiY8CAAS7lBTjXUebMmQ33NdtpT58+XXN2sV4a6utz7do12drK/y4aimXb1MKOCRwjYae1EoRZi53VZcOMnnmzda2Vjr+/v6IclStXtnQ8fywrj2hf9UILJOwIgvAIL7/8MipVquTtYijgO1J14NfU4GPniuixUm6WvpmGXy9dPQGqrld1Xp6yjKrL+95779kmIj/88EPN39zxH1TXjZ4Pn5GwCw0NlS2wN27cwNChQ10qk/r67Ny5E8HBwfJ3rTrlh2K1LF5mLXZqi7BIlP3999/4+eefdfPTOpYvsx1oCVG+XHrlMHo544WdmRc5h8OB8PBww/3UkLAjCCLNwQs79XCencLunXfeMR1K6fbt2zh27BgAZ/+lJ0+eyH6BWvChQtQUK1YMkyZNAgB8+eWXqFu3LgD7hJ2eFUSrs3VH2FnpHJcsWYJz587J38PCwgxX3GD1oq4fV53z9Y4JCQlxStcdYVeyZEnZAvvRRx8Z5v/pp59iyZIl2Lx5MxwOhzyEbiSGtSY28MLOSMBpoRZ2Bw8e1Ny3Zs2a8nOjVzd694zRvWjVYqc3pKv3PBm1PWyJNYfDgV9++cWwPD4+PujXr5/hfk7HWT6CIIg0w8qVK52ir6cH+IaWCTtX14s8efIkPv74Y/n7H3/8Iae5fv16p4XMtWjQoIH8v1rYValSBS+88ILu8XrX6erVq/J6kqNGjVJ0EEbodXpmhJ0dQ7GhoaHCtEWI0uXLV7hwYbz44otO+4wbN05hkQKSZy46HA55GS69+lKfZ0JCAho2bGgY427atGlCi93OnTuFy3DZvVbsN998g/feew+LFy8GADx48AAAdK3sN27ccKpnVsc3b950WbRr+dipr4sW6qHYpKQkjB49Gk+ePHFrKNYsZoSdO5ZDNqlk3759psKXOBwO3Llzx3A/NSTsCCIdM3DgQM31EtMyfEOr9hXiG9c1a9YYLoXUqVMnfPvtt5AkCVeuXMHrr79uSsydPn1a4RNz+fJlpzKxTkAtbOzCLmEn6pC0hJ2ZdNX07t1b8Z3vHFnMMIZoQoUkSUhKSsJff/2lCEXxzz//yDHihg8frvAhAyAPY7El2/TqS22Z3Lp1K3bt2mVqVQp1HQUEBKBRo0bCmI1sGM5MOBcrVkRWp6z+tF4Uzp8/j0KFCqFw4cLC3xs1aoSwsDDd/N2ZPKG1djDgfA3279+PMWPGKMIa2SnsRDOCRdtFrh8i9IIf83zwwQem9nM4HC4F8SZhRxDpmNSwbqonEA3FqjuTw4cPo127doZDHizK/e3bt+VjzXS6r7zyCmrXri1/54WOWWsWLwZdwZM+durJE1o+dtOmTbNcBv672u9NS9h9++23ePXVVxXbK1WqhObNmxvma2bCgvo3kYBYsWKFU2wyEUx8aq0dava5NLLu8WVm5WV5a+WhZQHiz5e9DLkq7PReGEaMGCE8FnA+X3Z8fHy8S8LOKDyLlrBjqGfcA8nWtpSChB1BEE6khLCLiYlJcQFpJOz279+PGjVqmErr2rVrAICCBQvKswBF632KePLkCcaOHYszZ84oOgmtGGFqXnrpJVP5aOGOxe7kyZMuDcXGx8dj9+7dloZizQaqBeC00gHb/8qVK6bzY1gRdnrBYU+cOIGYmBh06tQJOXLkkAPNqvNhsPsnY8aMwrxEdbd7927ddUiNMCvstHwmRddENJSsVy6tyRM8t2/fFh4rOp6fEMXKt2zZMqfjXG1/1NZ8rckT/L3h6rrOruDj4+NSzEUSdgThYe7du2dqeSVPoG6o3F31YM+ePfDx8VEMh2XMmNHQyduIxMREwwXjefiGVj0Um5iYaMoSVrBgQXz11VeKbawhVwu7AQMGyMN5akaOHOkUb82ssDMiIiJCscC8Gr6DvXbtmuxfxSPqXDdv3oyKFSvKS27xlo0lS5bg5MmTiskT586dk9ftHDNmDBo0aIDr16+bPo/ExET88ssvppaOEl07SZKchln14H20gGdhTqwIO/575cqVFdeyRYsWwvwY7P5RB/hl+4quSYMGDbBw4UL5+8OHD3UnHQDK82H7sry16piPyWbE/v37NfN99OiRZnn0hmL1LFBqq5xI2AHJK0nwaJ1rUlISmjZtaiiQd+zYgQEDBuhaBb0BWewIIhVQvnx5DBs2TLEtb968Th2BiKpVq5qaKcXYvHmzU9wjILkxW7t2reyXxLadO3cOuXLlMhXWITExUQ5Iy/P9999DkiSnt262eLerzJw5E40aNdIMtCtJEooVK4bff/8dgP7kCUmSNC0NPLdu3XIaFmJp/PHHH4qgsDNnzkS7du3kvNS+NOqOmgm7xMRES4LE4XDA4XDg6NGjAIC6deuiWLFiuvszihQpguLFizvtI+r0mM8f+8t3ZO+99x5q1qypsJqUKVMGmzZtAgBZaP7vf/8zfV6HDh1CmzZtMHHiRKf8eLRCO1y6dEmxyLxZ1NdFb2jTx8cHhw4dks9Lbdni61Edp05dx2x4X2SxmzdvHgYOHCgsA7/8WMuWLXH37l3N8gLK68+eSSOLnZawsyJmHA4HGjZsqPk7yzs8PNzpWdGzQKl93NhzLEmSYmb0119/LTxOBGsz9Pjjjz8wc+ZMwyHdlCYsLMylGKIk7Aji//n+++9x/vx53X14sSTi1KlTwuWE1NaoLVu2OL2NHTt2TLPBnzdvnpNvT8uWLVGhQgWnfVesWIG2bdvi119/lcvavn17uQwstAAALF68WBiGY8SIEcibN6+mE7HWrLFjx46hXLlywsZbr3FkVpo7d+7A4XBg1apVit+TkpJw9epVNG3aFC+++KKiw3ZV2IngLW8iC2JAQACOHTuG9u3bK7brCTuzMwJ5VqxYASB5uJRHHRJFbYkQnTc/3MosMMxyNnPmTPk3/q+Pj49mgGJ3lsL69ttvcffuXc17IXv27MLtVoa/3n//fTmCv9raYWSxa9myJaZMmYKYmBinfdXCjrfq1qpVS7GvnrADtNdLHjVqlPy/kbVOC1YuqzNbrQo7keBQW+zu3LmDoKAgxT56q6+oLX1MFM6bNw+dO3fWPM7T4U68JeymTJni0nEk7IhUTXx8vMKRfd++fR6LeP/RRx+hSZMmuvu0bdvW9DI1esyaNQuA85CfSDTevXsXffr0QZ8+fXDlyhW0aNFCIZzYFHoGWz8yKipKbvDWrl0rW6dYI5eQkID3338f77//vnxsrVq1MHv2bHmITr1cjjoIsHrIZNKkSThz5gzu3LmDuLg4uYNt06aNrpM9a+yZeFWvOMBf85s3byqGgUTCTi1W+YY5Pj5e04fOzNvxiRMnnAQW89NTl9fVe1WrI2KzFY3242GTC3766SfUqVMHv/zyi0Lc87CONHv27IazYl3h3r17aNOmjUd9MhcvXiz7wFkVdgEBAQCAd9991+m8ectTlixZkCVLFs20mNVMvXKD3fzxxx9O24yGYu0ILG3Wx04Em8UsQktYMaFsdJy7aA0hp5ahWbOQsCNSNZ9++ilefvllJCUl4caNG6hbty7Gjh1rez6ssdObig/A0lCpmri4OHnoizWAx44dwyeffCLvo25AHj16JPuvMWvgli1bFMMS5cqVUxzDhnMCAgIUDZQ6bSY6eEvgoUOH0L9/f6GvWVRUlNzZJSQk4OnTp3LH6XA4sH37doVFb+rUqWjRogVOnz6NX375BYMHD9atGx5RTDEevsO+cOECAGWnoB624/dv1aqVbqdsBiNBxVvsXEE91MRwxXrGwt2wIdQ2bdo4WUTZ9WY+mNmyZTMt7PLnz29YBp4bN26kWEfJLJIMI2HHhNgff/zhZFnq0KGD/L/Id46HHcsvRZVSGA3Far1s2HFN1LNireJqLMq0JuyKFi3q0nFm3RFI2BGpglatWqFr165O25nDdnx8vNxY2hUTLCkpCb/99huAZ2+EdgcP5fn8889RsmRJRcPatm1bzJo1SzEUNnHiRLlj79ChA9atWwcgeViHla9ixYqKtEUzBtXCjv///PnziqC8Dx8+RM+ePeXvrDy8H03lypXl/EeOHIksWbLI1yQsLAxNmjSRFyVPSkqShwX1ZsExmLBjf9lQYFBQkCKaPoMX4Mwnihd2aoHOCzs9i4EZzDTyzD+Rn2RilW+++cZpm3oSjtkhpvfff1/o7M5g58TSDwwMNFx5gmHVKvnkyRNbOmIzTuX//fef4ruRjx0TYhEREXjzzTcVv/PWXLP1bmWigl0YWexEsfUAa+JFa18zFjs9tCx2Zo/TwupQrDo9s/HpzOKq8NV7hnlI2BG6/PHHH4Ydc4MGDSxb0YYMGaIQDRs3bpSjw4uIi4uTG12zs4RiYmKQLVs2TUvRwoUL0axZMxQqVEieNefn54fo6Gj07dsXDx8+hMPhMDw30UMvapjYxID79+/LDY06ir8kSRg6dKg864ufEZk1a1bNjql69epO2/QsdnPnzsWCBQsAJDd6s2fPlr/7+vrKxzGhBiTHdmP5s/ratm2bIk8mkCVJQo4cOQBAdrrnYWU5f/48rl27Jgs6Zj10OByIiIiQ61Yd4oAXOCyWnJ51Mjw8HDdv3sSiRYucyuIKRh0Jy4cNubuCKDJ948aNFd/1ZszyLF68WL6+Ilh9sevg6+ur6WOnHg5m+6lDgGjBryIgInfu3KbS4Z/rJUuWmDpGr4NPTEy0vCKGEXa4bVjFyGInmqB07do1t8LXWP1di7Zt2+K///6zHOLDbotdYmIiJEnCpUuXADi7WriLp9ZZZpCwS8dUrVoVzZo10/z98ePHcmP83XffOUWAB4DXX3/dqTNRs3v3bowcORKhoaGmG/fJkydj165dpvYFkjscPlglT1RUFObPn+/UWfz444+IjIzE1KlT5W0ffvghli5dCuDZkOWNGzdka9XNmzdx/PhxfPfdd7IliC3Vw8OGrC5cuICgoCBs2bJF0eENGDDA6c2YOYbz1jUmUNgSSfwDf+vWLcVQTqZMmTQ7irCwMIwfP15RBzExMYq6Yr8dOHBA4e/mcDgUloXExER5ViagHE5Sd4xqp3ZWvj59+sihN2bMmOFUXha4tXTp0ihSpIjckPft2xdAsjDirXTqYTHeEsacs/m3fXVD37lzZ0yZMgXdu3d3KotVQkND02TgZyNRAzyrZz1hJzr24sWLpuMGxsbG6go7swKDn1zw3nvvmTpGrw4SEhJ0O1y+XGYtQO5MNHEVVyZPFClSBHv37jW9v1ba7HxdmcHMKFq0KAYNGmTpmNmzZ+v+7orFzh1ruxGe8hNnkLBLhwQHB2Pt2rU4duyYPNQoolWrVnJj3LdvXzkC/G+//Ybdu3fL+125cgVXr16Fw+GQ16gUUbJkSdSoUQOLFi0SvuH88ssv+Pnnn1GoUCHT58IaiLi4OHm2KS9W7ty5g2rVquGDDz7A5s2bATxrdEQPz9y5c9GtWzcA2rOz2ExE3sIRFRWlsI4wgcBE2l9//aWIoD9r1izMmzcPc+bMkbextUIXLlwoD1OyMrChO97p//r16woB4e/vr9vJfvHFF4pZnerYasz6pbay7du3T3fIiK9vIydmls727dvlRetF+Pj4KMSj6FrxDStbJ1X0m9pCIUmSk3A4fvy4MHyLK0yaNMlWYeeuv58aNvFFjZnOhA1hOxwOOfSIGWGnnuxihB2WMa0Zp3oYiVu9vF2xskyePNnyMe5iZLGzA620Wf2aCTGih5WYlgBkdxUtzM6S5y12opiQdkEWu+eIpUuXaoa7AJJjORn5HrBAnv369ZO3/fzzz8JZgEyk8RMCli1bhmbNmqFBgwZyIx8dHS3vq1c+Rvfu3eWI3pIkISIiAvv370ebNm3w7rvvKmI1AeaceePi4jBv3jwASqHx2muvyTMU33zzTQQHB8PPzw83btxwWt+PWdmYBUrL3C8KttuhQwdFPLGwsDCcPHlSHqZNSkoSNgT8dWBDk/7+/qbejq9evapIc8OGDU7O4GrMxKgTsWHDBlP7Gfl4mPWNSUxMRLVq1XSP01v9gb9nmNWTD7Ggnt1qJIqtohVvzRXU/pLu8tprrwm3m1lNgwn3v//+G/379zeVX2JiomlLPUPvPjHb6WXKlMlSnoCxxc5M8FyjdLwNa7eTkpKQJ08ej+RhZLFzF2/NQuUtdqIwUHaRaix2nlSv7vLpp5+ibt266NKli0vLb7iDJEmYNWuWk9+JmujoaM3Gb/LkyShcuDC6deumGLZiwUqB5JAWJUqUwPLlyxEbG6uwdgDJ1plWrVrJb2v88Nm7776LLFmyKN6iTp8+Le/LL6vSpUsX+X/easdCYuzfvx9nzpzB5MmTsX37ds03t+joaOzYsQM+Pj4ICgrSHHadPn26kx/Sw4cPUaZMGcUbOe8MzxrfrFmzOoX6YMFgP/jgAwwYMEDefv/+fbkzdjgcGDFihOkliiIjI7Fnzx7FNj8/P1StWlWOC5aYmIi8efPqpsP8rsw+1B07dkyx504ttrUwEnZm/R/VIsOqsONRWyiY/x9PQECArf5Odg7TeHLCDo+VSR88Rtc0MTFRNzaZCDssdmrLsxn0hEdoaKhhQOC0QGJiIhITE3Hw4EGPTd7QEnZWrYTuRBnwBPyKJXa+vKnxZNoAAMkkJUqUkC5evGh29xTj2LFjUpcuXSRJkqSvvvpK+vnnnw2PCQ8PlwBI4eHhlvJKSEiQdu/eLSUlJUkJCQmSJEnSjRs3JADSu+++K40fP15q0qSJ9PjxY0mSJOno0aNSVFSUJEmS1K1bNwmANH78eAmAlCdPHik8PFzq16+fBEDxkSRJunfvnvy9Tp060sCBAyUAUkhIiNS/f3/Fvh9//LH8/fLly07p8Z+kpCRJkiTdfax8njx5ItxepUoVKWPGjKbSCAoKkv+Pj4+XfvrpJ6d9Dhw4IP8fHBzs0jmcOnXKtvOuVKmSy8cGBgbaVg67Prly5UrR/Bo0aKD4XqdOHad93n//fVNpFS9eXIqJiZGKFCmiuU+ZMmWk7t27a/7++eefe63u69ev7/Xrn9Kf27dva/7mcDg8kufvv/9uW9p695q3P507d5YmTpzo0Txeeukl4fYJEyZ4/fzd+Xz99dcSAKlv377Sb7/95vXyqD9btmwxpVVMC7s+ffpIefLkkQ4dOmT2kBRhzpw50uLFiyVJkqQjR45IH3/8seExesIuLCxMWrZsmXT//n0pLi5OSkxMlH799VepQoUKUu/evSUAUrNmzSQAUvv27eUK9/PzU1yAGTNmSACkt99+W5IkSapQoYLTRRo6dKjw4i1fvtzShbZyY1SvXl0qVKiQbTfazZs3bb1xIyIipDFjxujuExQUJD18+NBy2mvXrvX6g0kf8adcuXIuH5snTx5p2rRpuvsMHDhQKlu2rObvo0aN0j0+d+7cHjv3evXqeb3+U/pjd7tBn2efDh06SB988IFH89AStu+9957Xz9+dz6RJkyQA0ocffiht2rTJ6+VRf2wXdpIkSePHj5cyZ84srVu3zsphHmXcuHFyeUJDQ6VOnTo57RMTEyOFh4fLn+vXr0uAs7BLSkqS8uXL5/WLV7NmTa+Xweznr7/+sjW9xo0be/2cAEgXL170ehmep0+BAgVcOm7UqFGSj4+P2/mPGzdO93dPtgvBwcG2pdWmTRuvX0szHzbSQR/PfHr06OH1MqTFDxtR6927t7Ru3Tqvl0f9MSvsLDl3DB06FHPnzkXnzp3dis9kJzly5JBn+z1+/Bg5c+Z02mfChAkICgqSP1qzMh0Oh8vO53by119/Cbd36tQphUuSTL58+TR/q1mzpq15bd++3db0XCF79ux46aWXvF0MW6hatarbaQQEBGDNmjU2lEYbs/50aipXrmzL7D+jpZ88GWjWzhly6sXp1bz66qu25eUOUhpboimtYbYfY8vNEcmwZ9FohnRqx7LXbpcuXbB27VqEhISgfv36+Oyzz7By5UrbVgOwyquvvipPCti2bZtwwe2hQ4ciPDxc/ly/fl0zvWrVqsnxy3r16oWyZcsqAqzyy8owWPiMESNGKJyIO3fu7CQQKleu7LQczc6dO51mxvFBOseNG4d169ahZMmSTnm/8sorTtu+//57zfNzhaZNm9qaXmolW7ZsANJXp8Pi45lB9FIEJM+e5ifYeAJXnYmNJqyYha0RqkVqEnb87Gw1RjNFvREwV0RajAOYlmDhPYzua1dCxqRn+HWn07KwszQU+/DhQ2ns2LFS3rx5pfz580udO3eWXnnlFcnPz09yOBxStmzZrCRnG4MHD5bq1Kkjde7cWYqNjTXc32jyRGxsrLR//37FtqdPn0qJiYlSUlKSbOpOSkqS4uLiJEmSpAcPHiiOP3LkiPwdgJQ/f35p3LhxUkREhCRJknThwgV5+CcyMlI6cuSIwuQaFhYmHT58WN5fkiRp4cKFEpDsHLt7927p4sWL0rlz55zMtdHR0VK1atWk999/X3Nyg5XPxo0bvWJ29vf3T9H8XnzxRQmAlDVrVvm66X1y5swp5ciRw3T6rg7vLl68WCpWrJjp/Xln/JkzZ5o+bu7cudIPP/zgtP38+fO69RESEuKV+wMwnixk9vP999/r/l6iRAmPnUOVKlWctlWtWlVzf717YfDgwbp51a5d22vXiv9cvXrV62VIzx9fX18JgJQlSxbd/bp06eLVchYuXNjrdcV/hg0bJgHJvoJLly71ennUH9t97AYMGCBlyZJFKly4sDR79mwpJiZG/i06Olo6cOCANGfOHLPJeRVXZ8Uynjx5Is+KNcOdO3fkmbJq+HQeP34stWzZUurbt69w3507d0oAFL+zSQQdOnSQgOSOXJKS/QVFM2CtTrYAICUkJEj379+XVq5cKd27d0+eRKL+fPbZZ4Zp6c1KU3dYS5culRo0aCBt3rxZsb1t27by/2pfkjlz5kgvvPCCZh4dO3ZUfC9Xrpx8PpUrV5aA5EZRkiRp0KBBuueSP39+3bzUn1u3brn0MIeHh1vy8WrSpIn8/6pVq0wft379euEEk9OnT0uSJElvv/228Ljdu3e7dF52fJ4+fWpLOkePHtX9vXTp0oZptGrVSjFjXf3RmklYsWJFp21qP1t+wlPRokU18xg5cqRuGWvVquW1a8V/rAry/Pnze73MKfUR3Q+ufoxePK1MslizZo3t55o7d263fEzr1q1ra3lYH/buu+9KCxYs8Pq9oP7Y7mO3adMmTJs2DRcvXsTHH3+s8EnJkCEDatWqJS8HlN7JnDmzpSGNvHnzysseqeHTCQoKwq+//qpYrYCncOHCAJSxpnLkyIGwsDAsX74cCxYskJex4mPg8VSqVEmznG3bttUsY+7cudG+fXvkyZNH0x9Kb6UBls4PP/wAAAgJCXH6ncXKY7z77rvYuXMnypcvr9g+ZcoUeZkz9dB4gwYNNBe5BoAWLVoovi9dulT2E2TXiA2NsYDCWgQGBmoOdYiutysBVYHkmITqxd/14MvEVrsw2g9ILh8bjmW+Wm+++SbKlCkj/y+CuRZoDeV6kkyZMrm9ckPLli1RoUIF3X3MDMX6+Piga9eumr9r1Y9oKFbdvvDtLT+Mqd7PyMdOUrkZ5MqVS3d/T6EuhxFabZM3qFevnkfTV99r7gT9FfVTOXLkwMiRIwHAyS3IalruEh0d7Va7YZcrBoMNv6b1oVjTwu78+fP44IMPFIFviZSlUKFCKFq0qCLwLpDcYTgcDnTv3t3Qp4IJjqCgIJw5c0bu+A8ePIjVq1fj0qVLWLt2Lfr3748WLVoI/frUDc+GDRvkBcuZv+E777zjdNzevXvRs2dPRERE4Ouvv0ZkZKQsGgDtINjqxsfPz0/uzPmOTJIklC1b1skRvmHDhvL/6vqpWLGinIb6QVY3qBUqVEBwcDCKFi0KIHk5MPXz8OOPPwJ4JsL5hcozZsyoKY70JjlYFXZ8A8zWpwWA27dvK/ZTi88MGTLIYjYgIACSJGHjxo1yPWg17Ky+zS7ebjfuNu5srVw9f0Qzwk7rZYqRNWtW4XaRvxmrazZhik+X31/tI2X08qAWVFrLj9mBXuBlq0Jt2rRpCA0Ntb0jdwWjiTZq9F6mRajvIaPveoie2Q0bNshpWBF2nvAzTUhI0HwuzGC32GTrij83kydSi9Pt84y/vz+uXLmCOnXqWDqO77DYgxwQEIAyZcrI64myyRvFixdH69atMXPmTGzatAnnz593Sm/q1Kn49ddf5WPeeustfP311wCS10GNiYnBL7/8AkmSsGrVKowaNQrAM4tF1qxZ4ePjgyxZsqBWrVpyulpLuKgbUl9fX9k6XLlyZezfv19h9VCLtz///FO27Kl/8/HxkTuLixcvokuXLpg7d678G8+qVauwb98+ec3Y27dvy8Lu7NmzSExMRPv27QEkr/8pSZLCguPv74/169cLOwZe8H3zzTdO51uqVCmnY4DkyO0sT/6cGHxe+fLlU6wmou4gMmbMKF8j0dqKRsLOE8ssmXmRdHe1GVZuthYx4Lx0npn2z+Fw6IoZLUd1PYvdyy+/7PSbXcKudevWhpZKhtYEqtKlS2seo1cXx48fN5Uvw9fXFyVKlLAsqjyB1TJ89tlnlvZX15uVlUnUz6DovnU4HPJ9YGXyhCeEXWJioqGVWQ++TF9++aXiN3deAp4bix2Rdjl79izKlSsH4FkjwRasnzNnDv7++29LD3jOnDnRsmVL/P77705v/D4+PoqGr127dhg1ahTOnDkjFCf8sPPQoUPl//mlq0QWuyZNmkCSJGTKlAm1a9dWNH4iqyVr4AICApyWB6tbty6A5DVGf/rpJ/Tu3RsAZNHJQkSIho8mTJiAIkWKoHTp0vDx8ZEbGtbA8rOdWccfGRmJffv24bfffnMq84YNGxASEiKLR3bcjh075PV6+Xp45513nIaM+cY8MDAQW7ZswbVr1wBAMUs7f/78aNmypfydF3aiRs1I2Nltzf/2229NiUW9We6AcQPP8uCvL7PKMsx2anrlFYk0QL+uRUJN7yVGz2KvntnMW8t5RFYcrTVH+bWLCxYsqPjNE8aA1DBiZFXY6YlfEep7SC3s9OpA9OKqxsfHR345sOIe4imLnTuuFHyZ1PXmzr2SlJSE1atXu3y8tyFh9xyQJUsWHDp0SI6PJ0mS/Hbj7++P6tWru5TuCy+8oBjm1MLhcBh2Ii1atECFChXw+uuvA1AOIQYEBGD27NmySDLqMIyEHRNy6t/UAqBhw4aIjo6WG2a1sBszZgxat26tEGFqYSfC398fwcHBCisIy4OVoUiRIopj8uTJ4zRcy/Lg19EFnC12zZo1k2M38o3d1q1bsXr1anlINmPGjLoNvZblgNW3XTENT5w4gbt37+Kjjz5SbO/du7e8SD2P2sLJ8/777yvuJT3468vqVuRSoAVvsevevbvT7+yFQY3o+VMLO62h2Js3byqO0xJ2c+fOxfLlyxXnyFvLeUTCTut+5jvlGjVqKH7zxBq4rliFR4wYYWsZrAxfAsl1tGTJEty4ccNUWDB3hJ26jRK1ld4Wdmq/TneEHX9+6npzp7yJiYnYu3evy8ebgbnrWMGsbyoJu+eELFmyODW8qYW4uDhs2LABALBx40ahr93HH3+M/PnzAzBu3EWdG3vItTq+mzdv4tSpU07bM2TIgJCQEJQtW9YpfhhzQFbn061bN3z77be6ZWScOXMG586dwzvvvIPTp09bEkesHtQLsPOLtouGsYHkwKT58+dHhgwZ5FiIGTNm1K1bLUFdsGBBLFiwADNmzDBddj1Kliwp+37yE2d8fHyEwzbFixcXppOYmIgFCxZodoTserJz5gUT28Y6HdFwqUioseMcDofCZaJs2bLyPaj2bcyVKxcuXLig2MbqWnS+ejHgtM41Z86c8Pf3lzuG1q1byy9RakR5aok0fl/1cZ4QdlYnXQDWLWxGWBV2bFJNwYIFTdWJOz516vrRstix/azUjV3CbuzYsYrvdlnsGGz0yR2LcUrEWXTlJYWEHZFm8Pf3lx/CwMBAzZl6zDnfrLArVaoUypYtC+CZJYz5Y+3bt0+xmkKBAgU0nf/Lly+P06dPm2rQHQ4HFi9ebNp3qUyZMvIQNSurWVg9qB3ReQueVsPN1yFrCI3Oj12jOnXq4ODBg4oVSbp3767o2IOCglC8eHEMHz7czKkI8wEgBx/XQ8uNwMfHR54YwcPelNkQKOv8RBY71umoh0vXrFmD8ePHK7bxkyccDodiyF+SJLkc6s42MTHRaZurwk7LX4nlzc5x9uzZmiLQrMUuS5YsCouP2vrjaseqnrnOc+nSJcvp2T2EyJ6p7t27O71UieCvrSvCTv1Sode5mxV27B6yIuzsGlq3OpO7R48emr+Jri07Z1F5zd4LW7duNbWfO7iy4oxZwUnCjkgzzJ49Gz///LNm6BgGE3YffvghTp8+DeDZrFP20AcHB3t8NQWGu+E4tGAdQJs2bXDlyhV5e3R0ND744AMAzg03+16lShV525gxY1C6dGnF7DTR8CDLr2XLlnj11Vfx77//Og0t9e/fH8HBwXj8+DEuXbrk9HZuBr5B5kMhaAl6I//Q1q1by//nypVLrivWsLI6MSvsoqOj0aZNG6H1lxd2WkND6g4nKSnJaZta2PFl0wvno9VxsfRYOnx+ZnyJRGLiypUrusLOjIgRLX3lzmoIooll7vrlqZ8Fdr9kz57dMAoBYF3Yqfdxx2InEgK8xc5M+RlW9uVhbRFDfY9mzJhRcxlNQL/O+PuYlY89syJhZ1ac8qMenoKEHUEg2QrUuXNnw/2YJYkXBW3atMG+fftM+QQakT9/fkvWtdDQUKehNjvgG3y+sYyOjsbMmTNx4MABp04tS5YsuHDhgjxTGQBq166Ns2fPymnExMTgwIEDhvnnzp0bJUqUUGybOXMm9u3bZ6r806dPF25XN+SHDx8GoN3B8b5i//vf/1CoUCHFpJzhw4fLYi5Tpkzw8fHBiBEj8Oeff2LixInyBADeUsXyEoXC4WeWq2EdprqsehY7PWHHxBI/87dixYpo1KiRqCo0XyLU6fP3S9u2bQ07DPY7H38yd+7cCmuLnrA7cuQIunTp4pSuKM6int8XexnTWlaNuXTwuGux27Nnj2KNXbVAN1pyUcsPbO3atcL9RUKmfv368v9aFrtSpUo5/SYK4eOqxc5VgawOZ6K+F318fFCjRg3FRC4ePQslf20rV66MWbNmYfTo0U6/ifb3Nq4M95KwI55b6tevj99//x3vvvuuvM3hcCA4ONiWkBw3b97Ev//+a3r/fPnyac6ItIp6li2Db3RjYmKQMWNGTef4l19+WffNNTAwMEUaQDbTUr0QudVrxJ/75MmTce3aNUWwdIfDIU+gYNagL7/8EqVKlcKQIUPkIXg+bAwrAxMZordrtbDz8/PT7ITq1KljSdgxwcTiSKpF5/r162VrNKNBgwaoUaOG0JVBz2LH0tSa+cofp47DyFvX1ENqWmJVna8aPWE3ffp0+Pv7a76giYLdunsvaw2Ts7KvX7/e9PHs/8KFCyssyUbs2rVL/l/rHhPVpdHkCfU9zF5Y+fibDFeFnfo49fVgdWIU4F6EWjT369dP12LnCb9PV+HblKxZsyrWpNeChB3xXNOkSROPPcRG8crsYuzYsU6WwYMHD+Lhw4dyORh8Y6meJZtaYQ1v5cqVdffTsoJZgdWP3jCfn58fGjRoACB5dYFMmTLJnS+bHcsLdNFQq1ZZ58yZI58vu3eY8O7WrZtTJzRlyhRs375dDiGSJ08e2crqcDiQNWtWxb1Rv3597Ny5E0ByoO/vv/9eeP6sYxCJHWZpdTgcTlYodpza/y4gIACzZs0CoAyfkilTJoUFRuTryLar0RN2L774IuLi4jQnzIgwEnZbtmzRtIACyqFLwFkkZ8iQwSnUi/p40f9aqIUbC/6u9btWOfXKozUU27hxYzx9+hRTpkxxOs4VYTdgwAA5VipDS9hpiRa9556/H1k6ej52VvwE58+fb3pfV2CxX4Hka8rKree6Q8KOINI4w4cPd7LKZMyYUY5bpzcUmxZgDVnOnDkhSRIKFCgg3M8OYccadLP+W/nz58fTp0/x0ksv4enTp5gwYQKioqKEM6fVeYjKGhAQ4GSxy5QpEyRJQv369Z06nBdeeAGvvfYaHA4H5s2bhxUrVsi+paJ6MHLiN2M94y196nAtWsIOAPr164cTJ07g7bffBpAs1J8+fYrvv/9eIZhEeYosoWZCcOgJmDFjxii+Gwm76tWr6w5JavlKisSeCKvCjmfTpk346quvTO1rJOzYULjD4dAV+Fr1z54dvcktakJCQkxb7LTQOyeR+4TeSjlWhB0//O4J+CU0JUlyKr8IEnYEkc7RGor1lLATBfK1ish3z2xjpdfgjR49WjecT2BgIDJmzIhhw4aZyovvbJhfXsaMGXUdyPUsdux3Pm2zztO9evVCwYIFdeu9WbNmiu8sIDmDzdJmaYg6dL7Ta9++vWJoiLdOiahYsSIcDgfefPNN2YIXEBCgWJJQ1KkmJCQ4lcXVNZUZHTt2VHw3eiFgs6f1fudhzxp/36r34e8z/rytWuxEVjL2+6hRoxTr1poVSPxQrLru9e4xFpZHNOFFi6SkJMOVNNxpV0TCTs9iZ0VYp/RqW2ZeXM22GSTsCCKNkhaHYvmGlQ2nsc7ru+++053VqDdEMWrUKMOZdVFRUZpr9TLMvDVr4evra0nY8RMHzIhbvbTVYWXq1KmjiAfJfM+0fOz4crEZvbxlRk8Q8mzcuBHBwcHy92zZsgFQWix5EhIS5LIsXLgQQPJsU7bmtBGtW7fG0aNHheehLrsWRq4V6voWzaLm6/Pdd9/FuHHjZMs6n7ZVEaM3/Jk5c2aFBfq1117TDQ3C0BN2RjNQX375ZUvPhsh/VCsAsyvCjn/R4u9fVl41qU3YnTx5EoDYYrdw4ULZ7YZBFjuCSOekxaFYX19frF69Gvv27UPVqlXx559/yuEQ3nrrLWG090qVKuHbb791KSaeq7jiQ8kPhRkJu02bNmHevHnyb2YWQu/Rowc6derkNNlEq7yiSRR65dM7Z9ahWO3sRo0ahXnz5qFcuXJCYRcfHy8LwcePHwMAcuTIgYULF+qGnGDl79GjhyJ0j6iMWp0hi23p4+ODW7du6Z4Hq7dPP/1UMYFJlOfSpUsVv4mGYs3GouOFHbOEMvjzOn78OCZPnowff/xRXj5QC/4+1RuiX7x4seZvIkQxBrNnz+50X6ndIdjvfFxMs/mKlhRj6RlZpY3w9fUVXms7YQHYeWHHyh8YGOi0XCQJO4JI5/CWEb7xdCU+kidR+6q0bdtWLnvDhg0NA5Q6HA589NFHbg/RWcEVYSfqZHr37i13yHyn3qJFC0U8xowZMxpaLHLkyIFly5ZZqocOHTooBMGECRM0Z2jrnbOepU+PTJkyoVevXnA4HJpDsRs2bMC5c+dkYcfEAKtPq2utimYdqzly5IhsMXU4HDh27JjTPqJQIR9//LEstox87ESWI6v3FS/s2CQEli9/Xvny5YOfnx8cDodweJI/jrfYiUKPMLp166YIZ2RUdtGElpw5c8rHtWrVCpIkOfkz8hbsSpUqAYAiWDyb0CRC9MxZtdjlzZvXSTSz4/kg9kYsX77caZvZ5TolSXJ66RK1ByTsCCIdc/HiRc3Asu4EeNXD1ckLBw8eRL9+/QDYs1TPjz/+6HYaRtg1FDt37lz53BkpKbxXrFihyL9ly5aaMRXVYTx4XLXY8YgEKVsEvlSpUujRowdeffVVxXD8hQsXcPDgQUv5mAnSW7VqVYXQESHa7ufnZ1rYidJRp8liKPJoWezYiwDzq0tKShIOkfPHaFlmzQ7F2hEeyshKyefJhlb5chUtWlQzbT2LnVlh16NHD9SuXdtpu6+vr6WZwGq/VkB7fWg1fN0wK53I9YSEHUGkY1566SWnjrJ48eLo2rUrjh8/7tG8XfGFsWPiBaNnz55up+EJjCZPMOxch9LOoSIzQ7HuhPkZMmQIxo0bh3379uG1114DoOx8CxcujIMHDyo6tJdfflmOQchjRoQy+HsuT548TkO3/DkVKVJE/l9k7eI7ez7dcePGAYBsceKP1xN26rKo0+V9yLJly4YHDx5g4MCBTufJ16OWHyR/b2r5TKaEsNNb9ozlx5dL70WVF15a8QaNtvn4+AhfOnx9fS2ttiGqK1fqr3PnzlixYoXsD8xPOCNhRxDPGZcuXcKSJUvktWdTE+44SKck7M3drGXq+PHjWLRokXwMe9vWC0htp8Vuz549+O+//2xJy8xQrDsdfebMmTFs2DAEBwdj69atmDNnjuGqDVr069cPn3/+OV5//XXNsjL4zvDevXvyZAv+nJhVk598oCXsRPfyW2+9BUmSFC9VImGnfsExEspqi1GuXLnkezMxMVE42YcXRV988YVTmg6HAz179oSvr6/TCh6emDCgjvtnRtjx5dBbw1pksVPnq+bJkyeK7w6HQygerVrs3BF2ah+7Dh06yN/5QPMk7AiCSDWwRspOa5UnGDNmDK5du2Z6qaVKlSrJvlh+fn546aWXcOzYMXz88cfC/atXry4cfmMMHTrUaehWj2zZsqFw4cKm99dDPauQRy1ERMNOVvD390ffvn1dtgBmyZIFEyZMEFqn1PeY1j3Hn1Pjxo0V2wCgXbt2Tsfw+ZmZbQvo+9ixffilEvl0RS8BLD1+KJaHFyN8HEF+35o1a8rD4DypxWJnVtjxljYzwo4PBMwfJxJ2fn5+blvszML72OnBLwWpBwk7giA8jp1DsZ7E19cXhQoVsnQMs3rUrVsXQHKAXi3B8vfff6Nt27aaaY0fP17oyJ0SiDqm7t27I0OGDLI4cjgcOH36tHD2cmqBhVhhmIljJxpenThxIqKiohT7alnsjNIX/c9/5ycL8CuKiGYG8ys1hISEIGPGjAqBpnXvmbG6uiLsBgwYIIeq0UvTjLBj9O/fX/5f6yXr0KFDiiXk1OnwIpxN1pIkSRh+xQ6LnTuYvZeMApEz0oywu3r1KvLkyYMGDRqgQYMGuH//PgBg5cqVqFWrFho1aoTr1697uZQEkX5hwWbNzvTiMVo2yCr//vuvpfV6PUnx4sURExPj8rBiambBggWIjo6W12bNlCkTypYt6xSGwdvwfnh58+bF1atX5e9aPpm80FEPFwKQg1Lz+Pr6mn5JEQ2TqkWOyJI9e/Zs7Nq1C19//bUcWJqHf5aaNm2KqKgo3SFJK7gi7GrWrKlYRcEoTTMWO+aDmSVLFier2YoVK/Dbb7+hZs2airTU14Vd0+DgYGzZskX+TSSutYSdp3zsrF4jNnHGrP+051f6tpH69esrph/Hx8dj6tSp2Lt3Lw4fPoyxY8cqYkMRBGEfpUuXxpMnTwzDk4iw22L3yiuv2JKOXZgduk2rhISEoHv37i5d+5Tg+vXrimFLfhJExowZERISgvDwcMUx/FCskasALxasCjseLYsdn1bGjBlRv3591K9fX5iu1ZVLrOCKj51RPbhisfPx8cG1a9eQKVMmpxiPb731lizERMKOwc4lW7Zs8pCt1lCsVsw7K/VhRayp9zWqwxMnTuDChQuK+1qPNGOxA4D9+/ejbt26GDZsGCRJQmhoKMqVK4eAgAAEBwenmjd4gkivuNqxMx8mtbM2kbooXLiwcG1Sh8OhGPZKbWTJkkURF1DNN998oxkmh195wqiD9fPzk8NvtG/f3nI5tSZPWHnhYVYkV4cJ7RiKHTFihHB7165dnbbxPoH8X1GefBDvQoUKIVeuXAgICIAkSXIYHNGkFj4ddd3yq1+IljjTGt60KnLdnTyhR9GiRYUThbRIMxa7/Pnz4+LFi3LAy3Xr1iFfvnwKfwqtN5jY2FjFxYuIiPB4eQmCeEbTpk2RmJjoVrgMwvPYNcM2LcAPhxpZ4XiLXfbs2U0JMTMdvSuTil599VVMmjRJc4KOFmbKbFbYffnll8idOzcGDBig2L548WIsXrzY0mob/L7MV1Cv7rSEnfoYJhL5GaeiMmit1GPHDGGzQ7Hvvvuu23nxpDphd+fOHaFz8caNG+U3xjZt2uDgwYPo1KmTQqRpXYgJEyZgzJgxnikwQRCmIFFHpCa0/LMOHz6s+fJv5R42I+xc8T318fHBZ599Znp/hpnJE0bruuqlq7W/FR87JuxE9SwSZ2Z87LT2Z2gJO6vtlZWhWD7t6Oho+Pv7Y8eOHZby0yPVCbt8+fJh3759TtsjIyPl//fs2YMyZcqgRIkSOHPmDOLi4nD48GGhoymQHEIgJCRE/h4REWF55htBEASRPuEtZ9WqVXP6fcmSJbb6b4uGCz0NWztYK4AxAKfhdj2xYlbIqC126nPl02GuHqLZwMHBwdizZ49CFJmx2PH5iYRdTEyMqfMwwspQrCici50RA1KdsNNi3759GD58ODJlyoRixYph7Nix8PPzw8CBA1G/fn1kyJABS5YsER4bGBiY7p2bCYIgCPPo+WepKVeuHGbMmGEp/S+++MIwJmFKBu6eMmUK6tevj3z58gl/X758uTB2HwC88847Ttu6du2KPXv24K233nL6rVixYujVqxcAZ/GqPlf+O7PYPX361CnNsWPH4qOPPlLMVBVdQ4bat0+UNyAWka5gxWKn5w9qB2lmbKRZs2Y4evQo9u7diyVLlshqvGPHjjh48CB27txJVjiCIAjCMqzvqFq1qm1pfvzxx6ZnznrCYqeeTZolSxZ06tRJc/+OHTtqDsX+8MMPTvtnz54dq1evdsoHAC5fvoyhQ4cCMF55gj93JhILFizolKYoxqSZoVg+fZFANRJ2Z86ccdr24MEDjB8/Xvc4NVOmTJHX9xYJO5EPoaukGYsdQRAEQZhl9uzZuiFBqlWrhtDQUADJsQjv3r2LF154IaWKB8BzFru9e/fasiKJHWJDy8fO19cXiYmJimvUuHFjS3XBhpdFZVRbCiMiIoRrwiYkJOjmUaZMGWG+H3zwAYYNG6aZP79typQpCAkJkYd9Resf2wkJO4IgCCLdYTRrdP78+YolmlJS1DHxwoYe7VoWjsFCg7iLncKOnXPevHkBACVKlMD58+fdslZWrlwZgYGBiI2NdcqHnxULOFswGWqLncPhcGnWs56wy5AhgyIQtpk1jt0hzQzFEgRBEIRdZMyYEaVKlfJK3qwTL1iwIHbv3o3hw4d7pRxmsVPY1axZE8eOHZOHhd0dhn711VeFZRTNihXBhB3z3ZsyZYocq1APM6Fh1MPDAQEBuHbtmsejdJCwIwiCIAgvUa9evRRbk9QqdljsRH6ElStXloWXuytosHTMzIoVwYQduwY9e/bElStXDPPVs9idO3dOsfwXLy4LFSqkG87FDkjYEQRBEAThhJ1DsWwIVr3dXYsdE3ZmZsUyevTogaVLlwJ45mPHLHZm49fp1UmpUqVQqVIl+buZYdbnMtwJQRAEQaR1XnvtNXzyySfeLoYp7BB2AQEBWL9+PRo0aKDYrie8rMCEmJlZsYz58+fLQajVQ7FmhZ1oKLZYsWIKa5+dVjgrkLAjCIIgiBRi+/bt3i6CZdwVKK1atXLaxoSRp4ZijYQjE3LqoVhXLXYOhwMnTpzAkydPTJbcc9BQLEEQBEF4Ga3Awd7Ezthqatq0aYPMmTMjODjYrXSMLHZaQ5xMyNlpscuWLRsKFCig2KZXBk9BFjuCIAiC8DJnzpxBVFSUt4uhwJPCrnjx4rZYt5jA0vKx0xJV6t/t9LHzNiTsCIIgCMLL5MiRAzly5PB2MRR4UtjZhXooVh3HTs+Hb9KkSWjdujUAe4ZitfaxYrGjlScIgiAIgvAIaUnYqTEz6/azzz6T/7djKFaNt4ZiyceOIAiCIJ5T6tSpg9GjRwt/S0vCTi2erK7DO3DgQMVxRpix2FmBWRjtiGlIwo4gCIIgnlP27t2rWFqNJy0IO/Xs2qZNm6JKlSro2LEjAPPC7t133zW0rLFhWz5fPaxY7Bo2bIjx48dj0KBBhvsaQcKOIAiCINIponVJzZIWhJ16BYucOXPi6NGj8izjEiVK2JbX2rVrZZFmt8XOx8cHQ4cORcaMGd1KByAfO4IgCIJIt2zatAmxsbEuHZuaBR1DLx7egQMHUK5cOY/myxDVFRNpdog1K5CwIwiCIIh0ir+/f6pdi9YOmGVOdI61atWyLZ/ChQsrvpsRvS1atMB3332Hnj172lYOMziklJ6ukQqIiIhAUFAQwsPDkS1bNm8XhyAIgiBSHQcPHsRnn32GPXv2pFrrXWxsLDZv3qzwf7Obx48fw9/fH5kzZ1Zs5+vk9u3bqSbINAk7EnYEQRAEQViEF3a3bt1C/vz5vViaZ9DkCYIgCIIgCIv89ttvaNSokbeL4QQJO4IgCIIgCIs0bdoU2bNnB5DyQYj1IGFHEARBEASRTkh1wi4yMhI1a9ZElixZcOrUKXn7ypUrUatWLTRq1AjXr18HkLxocp06dVCrVi1s377dW0UmCIIgCOI5xFvLhumR6oRdxowZsWnTJrRt21beFh8fj6lTp2L37t0YO3Ysxo4dCwAYNmwYFi5ciG3btmHkyJHeKjJBEARBEM8hqXG2cKoTdn5+fsiTJ49iW2hoKMqVK4eAgAAEBwfj33//BZA8vfjll19GtmzZkCtXLjx48MAbRSYIgiAI4jkmNVns0kSA4sePHyvCkrAI03xFBgUF4eHDh8idO7fT8bGxsYrI2xERER4sLUEQBEEQhHfwmrC7c+eOYriVsXHjRuTMmVOxLUeOHAoxxtaG45f0ePz4sdNxjAkTJmDMmDF2FJsgCIIgCAJA6vSx85qwy5cvH/bt22dq3xIlSuDMmTOIi4vD4cOHUaFCBTmN0NBQ5M2bV9NaBwBDhw5FSEiI/D0iIgKFChVy/yQIgiAIgnhuKVmyJAAgQ4YMXi7JM1LlyhPNmzfHiRMnUKRIEfTp0wfvv/8+VqxYgRkzZiBDhgxYsmQJChUqhDNnzqB3795ITEzEl19+iSZNmphKn1aeIAiCIAjCXRISEnD8+HFUr17d20WRSZXCztOQsCMIgiAIIj2S6mbFEgRBEARBEK5Bwo4gCIIgCCKdQMKOIAiCIAginUDCjiAIgiAIIp1Awo4gCIIgCCKd8FzOipUkCZGRkciaNWuqXOeNIAiCIAjCFZ5LYUcQBEEQBJEeoaFYgiAIgiCIdAIJO4IgCIIgiHQCCTuCIAiCIIh0Agk7giAIgiCIdAIJO4IgCIIgiHQCCTuCIAiCIIh0Agk7giAIgiCIdAIJO4IgCIIgiHQCCTuCIAiCIIh0Agk7giAIgiCIdAIJO4IgCIIgiHTCcynsJElCREQEaJlcgiAIgiDSE+lC2C1fvhx58uQxvX9kZCSCgoIQGRnpwVIRBEEQBEGkLGle2CUlJWHNmjUoVKiQt4tCEARBEAThVdK8sFu2bBnatm0LH580fyoEQRAEQRBukabVUGJiIlatWoUOHTro7hcbG4uIiAjFhyAIgiAIIr2RpoXdTz/9hPbt2xta6yZMmICgoCD5Q8O2BEEQBEGkR9K0sDtz5gyWLFmCN954A6GhoRg0aJBwv6FDhyI8PFz+XL9+PYVLmrqIi4tDaGiot4tBEARBEITNOKR0EvOjWrVqOHLkiKl9IyIiEBQUhPDwcGTLls3DJUt99OvXD3PmzEFSUhIcDoe3i0MQBEEQhE2kaYsdj1lRRwBHjx4FAIrjRxAEQRDpjHQj7AjrJCUlebsIBEEQBEHYCAm75xiy2BEEQRBE+oKE3XMMCTuCIAiCSF+QsHuOIWFHEARBEOkLEnbPMeRjRxAEQRDpCxJ2zzFksSMIgiCI9AUJu+cYEnYEQRAEkb4gYfccQ8KOIAiCINIXJOyeY8jHjiAI4vkmLCwMUVFR3i4GYSMk7J5jyGJHEATxfJM7d27UqlXL28V47ggPD8e1a9c8kjYJu+cYEnb6SJKEf/75x9vFIAiC8CgnT570dhGeO2rVqoUiRYp4JG0Sds8xNBSrz8qVK1GpUiX8/fff3i4KQRAEkY44e/asx9ImYfccQxY7fa5cuQIAuH37tpdLQhAEQRDmIGH3HEPCTh+Hw+HtIhAEQRCEJUjYPceQsNOHCTuqJ4IgCCKtQMLuOYZ87PTx8Ul+PKieCIIgiLQCCbt0yIMHD3Dnzh3D/cgSpQ9Z7AiCIIi0hp+3C0DYT548eQAYCxISLPqQsCMIgiDSGmSxe44hwaIPCTvrdOzYEatWrfJ2MQjCKzx9+hSXLl3ydjFsR5IkJCYmersYaRKHw4GhQ4emaJ4k7J5jyHfMHGlZ2A0ZMgRjx45NsfxWrlyJDh06YN68eXK4GOL5JCwsDA6HA0ePHvV2UVKMt99+GyVKlDC1748//oi7d+96uET2MGTIEPj50QCfq0ycODFF8yNh9xyTlgVLSsAmT6Tlepo8eTJGjhyZ4vn26dMHLVq0SPF8GZMmTaJwNV7m1KlTAOCyBVeSJCxbtgzx8fF2FsujHDhwwNR+kiShV69e6Nq1q4dLZA+LFy/2dhHSNCndFpGwS0XkzZsXn332mcfzoSFGc6TWelq+fDm2bt3q7WIYEh0d7ZF0Fy5ciDfffFN3n3nz5nkk7+eBVatW4cyZM26n4+5zc+DAAXTp0gUzZ850uywphdkOnI2WPH361JPFIZ5TSNilIu7du4evv/7a4/mwBpeGYvVJrcKuc+fOaN68ubeL4TV69OiBTZs26e5D93ayQHM4HJZ9ozp06IBXXnnFtnK4aq2IiooCADx+/Ni2sngas21FamtTjEhr5U1tkMWOSDEkSUJkZCTWrFnj7aKkStjDSCIh5UlISHBrKTe6ZsB3330HAIiLizN9DKs3b3TkUVFRmD59upx3ehYTae3c0lp5n3dI2D2H8Jaojz/+GO3atUNERISXS5X68IbF7vr162jbtq2lzjg9MnDgQBQoUMDl40nYWb9vf/31V/j6+not/8mTJ2PQoEE4dOiQbWVIraS1+5OEnTF615QsdgQA4M6dOzh+/LhH0ubfiNmsrLTS0Jw6dQo3b95Mkby8IezGjx+PtWvX4vTp0ymWp6dwpzHbvn27W3lTR2SN69ev46233rItvYcPH6Jdu3YAzN8HzCeTTZZIi5NfzJY5rd2faa28Kc2+ffvg6+uLCxcueLsoANKBsDt69Cjq1q2L+vXro3379mlqBpUeFSpUQJUqVTyaR1JSkvzAsgbp9OnTWLBggWK/p0+f4tatW7ppnTp1CufOnfNMQf+fDz74AOXLl0exYsU8mg/DG8KOGtBk3I2ZZXT8ggULEBgY6FYe7jB79my3hpqtYOalzS4L8TfffIMrV65gwYIFCAsLs3SsWhSlxLMQHx+PkiVL4u+//9bcZ8yYMciWLZut+aaVF2mGt9ulEydOwOFw4J9//vFqObTYvXs3AGgKO7LYWaRgwYLYtm0bdu/ejRIlSmD9+vXeLpIt3L9/3+N5SJLkJOyqV6+Onj17KvZr2LAhChYsqJtW+fLlUaZMGVP59uzZE3/99Zfl8s6fPx8ALIn3a9euWc6H4UlhFxkZiXXr1hnm/bzirrAz8hX76quvUny4e926dXjy5AkSExPRv39/dOnSxeW0bt26hS1btii2RUZGon///oiNjVVsNyMiWGgfd/n000/Rtm1bW4WLJ5+FBw8eIDQ0FJMmTdLcZ/To0YiMjJS/P3361O37k92XERERKdLWM548eeJ0f2gRHR2NGzduAIDX/R4PHz4MAKk2JiJrS/z9/QEA58+f99iImxnSvLDLly8fMmXKBCC5UkVBFGNjYxEREaH4PM+IBAvbJnro2UNlFwsWLEC3bt1sTVPEtm3bUKRIEZdEJODZOHb9+/dH69atFR2Gp/JKi7CO00p9PH78GEeOHFEcp3V8Stfzo0eP0Lp1awwYMEAWPY8ePXI5vddee80pTuC3336L2bNnY/PmzQCsdcZ2CTsgeeILL+zSyktKfHy84WxrAMiSJQs+/PBDt/Ji1+TUqVN44YUX3ErLClmzZkW1atVM7du2bVsUKlQIgPcjKaT2e4gJu4CAAABA6dKlFSNuZLFzkWvXrmH79u1o2bKl028TJkxAUFCQ/GE36/MK3+CrG//U/gBZga18cPbsWcN94+LiMGbMGIUVx5MWu3v37gFI7gR50uN1cAVXhF2rVq1QvXp1AMYWu5TuoJiV+f79+3LeMTExLqcnGsbVul9T0mJnJc/UAF9XEyZMwJtvvmnKpcTdSALerB8WONoI3s/VFWEXGRlpeyzL1PriqxZ2DLVbU0qRLoRdREQEunbtioULF8qmUJ6hQ4ciPDxc/ly/ft0LpdTmxo0blv1R1GzevBkPHjywdAzvY8f+2t3AewpJkuQ4V1pkyZIFgLkgoEuXLsXo0aOxfPlyeZuesJs6dapbwwJGolEk7J48eaL4HhUVlaLDOCkJE7xWGnK+w3I1bEdSUpJHfN94wW6HsBPdH2zb5cuX0aJFC7mzMdMZ2/0i4c5Qpbc6bzaRzKhdAaw9t1aOV5OQkJCiDvl8uURltCLssmXLhvLlywNInpzzyy+/uF9AAzZv3uyViWfsxU09YsjcmshiZ5HExER06dIFI0eORMmSJYX7BAYGIlu2bIqPq/z999/49NNPXT5eRKFChVC8eHHLxzkcDlmItGzZUp6FZuY4IG1b7BYtWoTMmTPjxIkTuHjxonAfJuzUgkgE64h4C5qe+Bo8eDBq1apludzqtNUNpVaDv2PHDmTNmlXRaDVu3Fh3GOfHH390uXzehl0PKx0JX3fsuLFjxwrX49Sq5y+//BIFChSQXRJWr16Nffv2mS6DlbJ5StiNHz8eW7ZskS3VKWUdEp1jaufq1avy/3Za6I3SMPr9+vXrePPNNzF8+HCUKlXKyWXDEyxevBg+Pj5ye8lfQ1eHYi9dugQgua1q06aN0+9hYWG6vsZWadmypa3Btc1i5SVKjSdeZNK8sFu1ahUOHDiAsWPHokGDBli5cqVH83vzzTfxzTff2J6uVb8/djNMmzZN3mZ1QWkzwu7hw4eW0kwpduzYAQCoXLkyXn75ZeE+zPfSjLDT8zvUevDcifnF0taybKivA5u1FxoaKm87ePCgbh69evVyuXx6ZTPLzZs34XA4XFrey4qwi4qKwmuvvSb7rI0aNQrh4eEAkoVav379nI7RSnfPnj0Angn89u3bo27duk77rVmzBhUrVtQs09atW4Vr5dplsROhvl+t+NjZ0bnwdeqKj503ZsUGBwc75W93Xbjy+9SpU7Fp0yYsWbIEwLM2TJIk/P777x6pm19//RXAM99Pdy12PFp9U7du3dC6dWvD4z0doeD48eOyCHUFI2Gn9wx44iUozQu7Tp06ISwsDLt27cKuXbvQoUMHj+aXWixa/FCTVWsb//ZlJOyMZsOmFOoH2syQMdvHzFCsngXEE8KOlU0tnoyc/e0aKv/+++8VIkPNjRs34Ofn59bbNGvsXHnZsuJjd/DgQfz555/y9y+//FLxu9qPkU/X1SG1QYMG4eTJk5q/9+jRQzFrleWzYcMGj1vsXPGxc6dzqVSpEpo3by4cbtYqqx7q8nuizd27d6/TfWElH637RmTt4jlz5gx++OEHw/uauRSxNoYND//6669o2rSpR6I/sGFE0bPn7uQJrePu3Lkjp3/z5k1cvnxZuB8/wuEJcVelShWUKFHC5eNZW2flZVirD7CDNC/snlf4B43dGFY7fZHFTp2G3VYFVx9KdcNg5lzZMa4M5yUlJcmTLyRJwjfffIOsWbMq9rXDYpeQkIBFixZh2LBhivy1ymXU+Tx48ABffPGF4TkvW7YMgHbomP/++w8AdN+mjx07hrVr1+rmA7h2za1Y7IzWEhXlryXszJbV6Dqo70/RMCU/UWffvn0ICAhwy9lcPYvbSmds1T+X559//sHWrVs1h2LHjRvnFFpmzpw52Lhxo6n07e7Ir127hnr16mH8+PG25se3lez8Z82apQh7Ubt2bfTu3dswDyay2DVlgpE553si7AfLU+Tfyv53VYRo3YP8vfriiy/ipZdectonMjJSbqf69OljayBtu2D1YnYEht9GFrsUQpIkzaHR1GaxA549iGaFnbs+djVq1FDErLPSELraaKofGDPnKnrIihcvjo8//thpu7pT/Oqrr/DVV1/J20aNGuU0pGvXUGz37t0xYcIExe9WBAdfrqFDh2L8+PE4f/68bv6sEdcSdmauU9WqVdG2bVvD/VzpDNgxZkKCsGFXK7Dz0xJSRudvh7Djt82ePRvx8fGm3SnMWOzY33PnzsHhcODvv/9GSEiIQmjcunULx44dMx0CQw+toVgATsGg+/Xrh1atWgnT8bS/L3tetGJcWhm6XrhwoTxphw8Vxc7/k08+QY0aNeTtbB+jzpxZ7Nh9xHzsMmfODODZrHpXSUhIQIYMGfDbb7/J21h7Jnpe9V4S1q9fjy+++EI3P1eHps+fP49s2bIpwsuYCUkDJFvyv/76a1P7GvH7779j4MCBim0rV650MnxYEWkk7FKY4cOHIygoSDiEZ6WxCQsLg8PhwIwZM9wqz7Jly+TI1gy+c7Aq7BiiNzIz53f48GFFSIDFixe7lKcRjx49wokTJwA4D6cZlfPOnTv47LPPnLZfuXIF3377rdN2dafI13dSUpLc6D18+FAWA3ZZ7Hi0GlC9odh+/frhxIkTSExMND0b1EjY2YkrDRfrXF588UU8fvwYBw4ckANUq3FH2GXJkkU+/urVq9i1a5fidy2M7j/17yLRw/IoVaqUPFxt9p7S8wlVw56h/fv3Y9q0aYpJVuXLl0fVqlVN5WmE3ZMnrLRJMTExpgPCiq7tL7/8glmzZuked/LkSadje/ToIVwhSDTxwKgMPOz5ZPcD72NnByxQ8dSpU53y1HNdEF3Xd955B+PHj9e1NhuNRGjdL+7EO61du7awD3CFpk2bKvrx0NBQdOzYEaNHj1bsRxa7VMrff/8tm+jZW1JMTIzhkloimDVj4MCBCA8PV7wdWaFLly5o0KCBYhv/QLgq7PR87EQ3m9YN+O+//1rKk89H9PvWrVsBAE2aNEHlypUBWLfYDRw40Clek1oci2D1wM9CS0pKkhu9XLlyyQ7Xnpw8oa5r9v3tt9922vevv/5C5cqVMXbsWN1OMCwsDBkyZMDZs2flsrtjsTOLK2nxnUtcXByCg4PxwQcfCPd1xV2ALxMbyv3jjz+Ev4sQ1fO1a9eQNWtW3Lx5U74/Re4A6mvLh7Pw9fXFhg0bdAV3p06d5KFTPV82o5cEwN7JUXrnaAZ3LHSDBw9GlSpV8P333xvuy8qmtYwYq5+wsDAUKVJE3l6xYkVhXDJ2rbTEnOi8tO6vzZs348qVKxg5cqQiTSaaRPW6b98+TJ8+XZieFVwVdgw9HzVXhV2GDBk00/QmzLVA7cJgZXSChF0Kwjey7CK1bdvWpUkEvKn/vffeQ7NmzUwdZ8XZWW2xY2/nZtDzsRPdoOoHnr1NWbmZjZzW58+fj+bNm2Pfvn2KN/CJEycq9nNlEsHYsWM1f1NbQHhhl5iYqBBxrFxmhd3x48dRsmRJxVCNqxY7UaPL6p8PxCyq38OHDyM2NharVq1KlRa7GzduwOFw4Pz580Jrsprz589j7969LpVJ1PHqWZyOHj2KHDlyyFZ8FiaDP2br1q148uQJfv/9dzlNdh+ZFT2XL1/G22+/7WQJ4FmxYoX8P//saU2eUD9znppZ6K7Fzh1hx2aLf/TRR6aP0XohZeexZ88ep+Falo+oDvlrYTR5RFQ/jx49QsuWLRV+rUzQ6QmgunXrYtCgQcJz0UJkDdUair1y5YopYadn/DDysdPqQ+xczzk2NtaltWZFZVe/uOntC4jvAa007ICEnQq+ktnNxkfgNjvt+vfff1c4DLOgyGYa1XHjxhnuwzfSvLCzEnNLz8dOdLOpH76lS5cKt+thdBOzgLuPHj1S1NXkyZMV+6mF3ZkzZxTf+Qdp2bJlOH78uG7e6geP91tLTEwULlVnVthNnjwZoaGhiobPaEaUuqx6VtGMGTMCSL6GevcnL96NLHZ2YrbhOnDgAADIFluGVh2VLl0a9erVMxQEkiRhzpw5imEdI4u0uv7mzp2Lx48fKzo59THMLyo+Pl6+vtmzZ3daW1SvDWDnYlaw6tWtujPmXwb37dtnephq8uTJTnV8+fJlp4CznhqKVbNhwwY4HA6FpZY9A+6kq/7diqUN0BZ2ouNF6bD+gg86rvbJs0sEiGJcalnsihcvbmkijgij+hD9Hh4errCiaxEdHS184VUzYMAAVKpUSbe/Ul/z06dPC9t5tQi2OrkkISFBvn9J2KUA/IVh//MX24z59PLly2jatKm8gDK/v5mLyPx81EyePFme9u6Oj52ocXHFYsfQu5mTkpKQlJSEa9eu4eeffzb0m+Gn3JvpABnlypVTfOePvX//PqpUqWKq7tlxakdovYfbCFZv/P5WLXaiqO3MkZrF8eOFnQh+GDw1Wuy0ni07Gr5+/frJLyLqcxaJYfW9x/Z5+PCh4jnj731e2PHXITw8XLGiid75sPTM+g3y+RvNiuVnOzZp0sS0Y7nIR7hWrVpOAWf5+8uda2Z0LPO15OvITmHHsGpB5K/FP//8o9vWiSzybBvfTqg7f7tEgEjUszZBb5b57du3kSdPHnTq1Anbtm0znZ+W76+esBP5QovIlCmTMPixun1mrjlGdZiQkIDZs2cjISFBM9yTlrXNrI8dP7JGwi4F4C8MawjNmtIZokbZyoOp1fAMGTJEdna1Y/KEno+d6AbNnTu3MB09YVe5cmXkzJkTzZo1w7vvvmt4/uxhNHoDE50rs7JduHBBGDtNL291p8jjrsWO1Q+fhlY9W3kzfuONNwAARYsWVRyr/l+9bc6cOXJZRDOE7cZMR3r37l3Zoqbe36gurHTA9+/fR0BAgHAJPyOHdwBOyzsZWeyA5HuZ+Uypj1FjdQaxaMhPq/5cWX8XeBZiQ/2ypIYJRV6kGJWZ7f/bb7+ZvvdFgsmKL5YdFjtRGsziDAANGjSQJ2OI0pk7d67ie0JCgpwm366wF0z1tZMkCf/9958pS5VZWL5NmzZ1+o3l++233+LBgwdYsWIF3njjDc2ZxVrHa7mYWPHpFiEKncPOR69vu3//vtNw78qVK9G/f38sXbpUc3lB9UuolXb79u3b8prWZo+xCgk7FXwlszd7qxY7kRXErjculjZ/I7GH38fHx1SjbSbciaiDUceiYvnrdUYnT55EeHi4PD3f6AHQ8vNQN44iYde3b18A0Az1YWUolv+uZbEzK6R5i92dO3fw9OlTOf0uXbpYLitD1NjrDcWyNO/cuSNfDzbUwU/CsYqRGDFzLlOmTJGtE1aFnRVES7AlJSXhzp07ihUq1HlqWbJFFru4uDjF/cNbf0Vp8/BWtTt37si+fDExMcJ6NuNj99133ynSvnbtmqUJJ+y81OehhoUHAvTPcdKkSYrvv//+O5o1ayaH/FF3llozjPlzVwu7FStWYP/+/YptkiShT58+Tm4bambNmoU2bdrIKzGo0xBx9+5dpyUdWT6xsbFOAYXV7jZxcXHyefEvgOp+g/2Nj49H0aJFMWrUKGF5JEmyvBKR6OWVTw9wfuFWz4Q9c+YMVq1apZmOGWHHRqXc9QVVGwlEfdvff//t1K8xP9qYmBjNEQ1W3v/++08xMmfGYqe+F4zat0WLFimiUJiBhJ0K/sK4Kuz0ZhWZeSPfuXOn5m9qE/DZs2dRunRpAMk3spWH4c8//7TkYydi0qRJps5J3WmHhoYqfBcZ7gi7mzdvav7G562HqDNRT55g6DWEPPz9kD9/ftSpU0dOn1/ndseOHfISQu4KO9Hx/PmrO8IuXbrIHbh634iICF3RJxL8PFat1HYLOxZsWYukpCSFRU1UBlav6mWH+PuUWbbUFjt152fkusDyz58/P4oVKwaHw4GMGTMKXwJEFjv1s8Y6HleDy7LzMhs82WgoVj0bVUu4Gfll8Z2uOo1OnTqhTp06im0JCQmYN28e+vTpo1v+FStW4JdffhH6oWmJzWLFijntyz8z77zzjm6eDx8+lNMWtSvqOmHi5/Dhw8L0Fi5ciHz58sHhcMiB1o1QT1DjYeditFLOK6+84rT6Ex8TVj2LVCTsmIuJu889ewZZ+2R2sgL7/bvvvtNs29g++/fvR6FChZy267Fw4UKntCIjIzFo0CA8evQICxcuVNRr9+7dFUvfmYGEnQr+xmUXVWRK5/fbtWuX4g1YpPLddT5l6N2cRhak8+fPo3HjxnLQ1+HDh8u/FSpUCMuXL7e8zMn27dtN7Staauf333932s/sUKxeXCCtIVK9hbTVgsiMsLM6FMvugRMnTgjLz1af4MthJl22XjDfGOjdg4DzvcLPtLx3757CnSAoKAjdu3fXLAd7TrSWbuPPZdGiRXIw09DQUOG6lFYsXIDxUKzRTLjQ0FD88MMPim1awk7tl2ZmKFYtiPT8GvViQorcC0QWO4b6HFy1yFoVdoC14eZs2bIJjxWlsXr1anlyDX8+Vl7a3GmD2Trh6vxEdWPFf/XevXu6w7zqOmH9Dbs2anjxrOWz7QpaPsFa3wEohh0LFCgg///jjz/KM/ndHYoFlC/JwLP2Wd2PG/VX7Pd///1X09dVKw2t7U+ePMFXX32FyMhIJzGelJSEOXPmYPr06ahXrx569OjhZFV++PChpdBEJOxUGFnsGOyme/z4MRo2bIhevXrB4XDgwIEDmkOW/F9X0fMFMxqK3bFjB3bs2KEw6/L7jxs3zvTNz0hMTHR5Vix76+Rxx2LHtmkJLr2ZpUaTDlwVdgcOHJBnKvN1LcpPPQSzY8cOOBwOeUa1Gr23Z717UP2/mrx58zot26NeOqxnz57y/0yIaQ0rq98+WZzIkiVLolatWk77jxgxwqVyu4po2TQtYaeGvwb8hBR+/4MHDyqO0RNYbJKF1nN85MgRxffGjRvL/58+fVrxmzoNVy12TLDy4sVISOlZjI2sPqLl5OLi4nDmzBmEhITI23jhZOa+EA3hehIjSzbP3bt3dX0g1f0HuxZmwoG4EhqqZMmSwu1Gwk6E2i+V0atXL/l/9fXbs2ePYojTDOo4l+x5VF8HvZch9e9a7gda95vevTVixAjhcbzhgB3PfPv4+h0yZIhm2mpI2KmwOhTL9mfhCYKDg/H66687pcs/mCVKlHCyEJjFisVO/dCJHnCtDsxs42fkY6eGbxiio6PhcDgUazZqCTv18IToXIwsdiI2bNiANWvWOPknqS12ouERMw1mcHCw0GdE1KDw5U5KSpJnnWktjK2uo6SkJDldUafC5y8S1VrHieADtbJreuzYMeG+//77r2xVVHP+/Hn8/fffuh0Ef69/+eWXpspnBZG/mZaPnd5+rO7VFjs+viD73Qit+uCtH0CyDytj5syZit/U94e7Fjsz6wIzrAg79ferV69i4MCBiu3/+9//UK5cOaEPNJ+2Gl4c2DVqYhYrFrvIyEjZ39WKsNOy2PHti147pVVvLF6fGvU9ZFddqtOpX7++5kozWqjbVLXFjtXDuHHjdCd98GXR8kXVOm+zw7w88fHx8stT9uzZASQLu2HDhikmb1h5fknYqbA6eYJ9N3IsZvvnyJEDly5dwuDBg10qn54Pldpip35ojTp7tY+WaGFwkf+TumE+fvy45tAd39gxccF3+qKhYEmSnKaz6wV8tPKG+vbbb6Ndu3aGws6doViG3lAo4GyxYw+y2bdDveFMdTos4Lb6HGrXrm1Ydq3f9PbRE2Q1a9bU/A0wHr53J7AtoL02Jj9z1ozFjpVTPXlC7VPjiRAzItFlJKDMwjqdIUOG6IbC4NEbWjMSBwMGDMCMGTPk+h8zZowsWvl65dPRekZE/k/uOuWzNIxegqxc56ioKNn3T0/Ysd9Y28lbURctWiTss1hbI1rXWb06jxHqc9KqS7P3CcOOkSy+Tb1165Y8c5u1haxOpk2bhq5du2qmxT8nZoWdWR960e+8sGNhe9auXYsJEyYI+0YzkLBToWex429i5sPA9tfz31IfC7hmHueP0xqK5SdeJCYmYsWKFXIwTzPCjqVfuHBh5MmTx2l/9Q2tHoo9f/48qlSpgkWLFgn9E/jGmDVOos7RTKOtxhWLnfpY0fekpCShxc6qoDCy2PGxjRYtWiTP7tXqINQd5D///CNbcETCjs8/R44cAOA0FHr06FHDsmv9ZqXDVN+LZi12KWVtkSQJZcuWlb9rXes333zTaTWChIQExfOtvn5m3rytig8z1jSrFrv33nvPqSwiK7EarckTiYmJiI+Px44dOwzTYOnobfPmUGxUVJThMKiV+uYt6GYsdmx/Puh59+7d5aXFRCtKiO4RrXAeWqjPqWXLlsL9ypQpo5kGm/3M4+5z7evrqzhnPoyTKGyZ3rXh/du0DDZaz4HRvSXKNz4+3imuKJsNz/ufkrBzA7VfByAWdmx5MLa/luM4Qz0zz9V1RocMGYJ///1X+CD4+voq4vkkJSXJPjsRERHCm5SfMcVb7LT46aefFN/VFrtNmzbJ/7PZujx8Y8zqjD8XduPzD0BiYqKpRtIVix2DH4JWrymrZbHjOXr0KC5evKgbRsJI2LGJBECyr9WWLVsAJIcnEaFuRK5fvy7H0jIS8WonbDPEx8frhvKxIkaMXoRE6VvNwx0kSZJDwgDawu7IkSMYOXIk2rVrJ3ec/JC4CHeGYrXQGpLjsSpo2AxtvbKYXTmFbRPFG9Pq1I3qyezL386dOxETE2Orxc4MVix2Y8aMkf/Xs3aqh2LV99mqVavgcDgU/Y2rRgQR6uutNaSp1WYBykliDBaL0wp3796VDSxqix2P3kIDIng3E7MWO94vVM+Sa2SxUw8b825KVgwJ5uI1PEeIAhTzv6lvDrNDquq03HnYhg4dKozKrQ5hMWHCBDkESGJiovCG42fa8BY7Lf6vvXOPr6I4+/jvnJMT5JYAKYEQLlK5FRVeLkICiSFBIhTCRUFEBGkp5aIVK6DQF9AXVECo2mqVqn3BCqjwCgj1AgXeGgxQfdFSUAGpoFCllFJICgIx2fePdJbZPTO7s5dzSfJ8Px8+5OzZMzs7O5ffPvPMMxMmTDB8Ngs7PmSGqHHzeWBTLXwjYWnx5XX69GmlTpI9G3PwTycsXbo0Iv6TncXu/Pnz6NmzJwBg1KhR0jhOdsJOBrOcmOEDopqxm4rlLc18/DYZmqahRYsWeiw+83f8/yqYX4S8WOyiMVAXFxcbPls9r2PHjmHPnj3654qKCst25LewU61Lbn3srESTLE2ZOBGtHpWlL0pbZrGzKq+CggLMmDFDX40dK8zPuaKiQmoB4gM+O/GxM8MW1/D+rgcPHvTN0u1XQGTRThFOycnJ0VfChkIhQ5sTWefcuGzYhTsxf66oqDBsXWhG1WLH7oUXliTsPCDaUoxfsGAu3Oeff97VdcxRsZ2QnJwsbKjmbXX4t8Bvv/3W1g9QFtjXCvNUrJ3lgF9NyaYe7Sx2mZmZEXGgZFPR58+f17eOsqKkpATf//73Db8FIAzqKbPYsbrA55WJrT/96U9o06aNNM9e/cLssJuKZc/s0KFDSs9d0zShzyXgzmJnZ+EWpQ9ErgoFIleD+oF5ha+VUBP5jKla7GRtMhpi1e0UpJXFVJTmn//8Z+GqysrKStsXDh47ESGbihWV3T/+8Y+YTeMzzMKOBYq2w4mwk9Uzvr4+9NBDESFl3OKXsBNtkegUPrzJhQsXDFucibb9U7XY8ahuo8k+V1RU6DMtIkQvdZs3b9afDxPkonblxBhEws6ESGRYrRR121k4jRfHIxN2Vj4fly9fthV2bqisrDRUVrsl6ubQDywNhshiJ/osuv9NmzahQYMG9pkGsHz5ckPgTKuGLlsVKwraeebMGVy4cAHdunVDjx49DOfzjsrRFnZ24U78DPmgYrE7e/as4Z7dCjsRbMowmtiFwzF/VhWCTrbC8orbQdlqQZZsNwzZln6iPkhWF+3ya3bXsPpd48aNbeMZeiElJcXQnwCRg/hPfvITpbRUFk/YCTvzi6hf9+7nFmZeCQQC0j5HZLGziqQgQ9XVgJ0nizbAYPt68/DTrQyRAHQyZpCPnQn+QU6fPh2AcSWqLEq6U2RhPVTYsmWL1MdOxqVLlxwFGFXFPMVr3ipHBZGYNlds0bSGF1QFICCPY7d3715cuHDBkJdvvvlGj3hvjpvHOxrH22LntN5aiTa2bZwTKxMLWK2SfqwtLSKsnpdopbjV+VZT6LI0/cBNm/n2228N5d+nTx9DexfFAJQh8j8KBALCfXsBsWM/H9OxvLwcb7zxBg4dOmS7krFRo0bo37+/cl6dYp4tYflTwSzuZcLu7NmzEbuIyJ6pWcT4JciiMYa4hXf7McP7K3uZihUtksjOzo7Yro6dd/z4cV/6dtGLedwXT9x+++22+/ElKnwnxqaeeIudX8JO1WInmv46e/Ys1q1bF3HcKi+XL1+WdqBeOHDggGdLoN1ULBDZSXod7Nm2NQwr87nMYgdU+aiJwr0A/jotO0XVx84PRowYgWHDhsVkKjZe2Fl0eewsdlZbNzFkccS84GRwZz5Q33zzjaH8jxw5YljtvmPHDuU0ZRa7ZcuWCc+XxT5klJeXY/jw4ejUqZPBUiISH9G2jIrEpGpMyPnz5yMtLU3/LPNP7NSpE2bPnm17XeDKqkqGX8KOF0zxxkrY8SuvRX2dqvgy//abb77Bnj17MGfOHMNxVq9PnDjhi7ATvRTEXditXbsWBQUFUnGnaVqE2TpRsKoEsiX8blAVdsxqaEYUtNZqADx79qzBQXf58uUq2VTCvPejU8rLy3V/O9lUrLkD8ypMzG/YZmd587Vk1lBN06R5sWrg0X7xUfWxU4X/rWiQ2LdvnyNhZw6TYFV3/RB2TzzxhKffO5mKtVs8ES+cDO7XX389gKp2Z36u5l1JVJEJO6sB2gr+fnh/K5Gwc7qLgVNEoZ1ULXZJSUm226NVVlYK/X9VLWh+CTsn21pFG6d7dfMv72597KZNmwYg8hmx8cMcw9ItZmEOJMhUbNeuXZGfny90bD516pQeRyvRsFqJNWPGDMtNwP26Ho+s4YqicluFrsjPz8cf//hH/XO9evUUcxgbunXrBkBusXOykboKjzzyiHJ6slWxgHthpzId54VoCjtR8OmkpCRP04d25e+V1q1be/r9xo0bpd85nYqNF/xWgnYwi7bZYgfAsALYCTJhpzpAm+GFE99fmKf5AeDpp592dQ0VWLBvM6piKikpKSIguxlZ+1ANV+TXi4YTS3u0Ua03FRUVQiEm2weWx/wM7fx5o9n2nfSDURF2gUAAK1euREFBAfLz84XRrWMVS8gp5res4uJiPbyDOYI84P4+jh07huXLl9tOY8rSFx1fvXq1ZVp8J6Cyx2A8YA1pzZo1huPmDsxJ/DUVrBqNlcWuvLzcMmZTvLCbinUqlvjzzbEMgapO1osAi7aw8/oiY7VyWCTsEtFi58RKzMpLJOzcIgu55Iew49N1EiPRD2R9qarFLhQKCYO085in/hiqFrtEcGfwGycWO5HYtxsv2W+dEA1hxyzaTvqwqPQ+mqYhFAph9erV6N+/PwoKCiLEXSK+0QKRjbFfv35Ru9bUqVOlG7wzoiWAY7kaT5XBgwfr+2qaHafNnTU/rewHbi12s2bNkm6JFc867rfFzg6vwo75JYrwY1ASObe7IT8/P+KYOX///Oc/E7Z/U6Vhw4YAqgKb+9UHVVZWCmNMup2K5UUNP3AnirCzWyHJMAs7J2JC1YKWSIse/EK13lRUVAi3OAsEArbt1I2w85tu3bqhQ4cOjtKOariTYDCI1atX484770RBQQG2b9+u+24kKqp74fmFaC49FtdPRIud1QIGswDmdwXwA6tGYxUXz8p5PJ5WG7NlpEePHvpelID/wu7EiROOVhqb+eCDD6TfJYLFjiEaCMxlKdrPtrqRkZEBoCquo1+DVWVlpVB07dy501V6fFq8sDNb+6ONLHanW2GnuugCUJ+5UM1LdeEf//iHI4udaNo1EAhId85gOHkWQPSmYs1+mHZEbSpWv0AwiFWrVuGmm25CQUGBvpeln8ycORO5ubkYO3as4wdhJhobdFthN40XLaffRBR2qnTs2NH3Fb5uhY5VQOZEsth9+OGHBqt5NN4so+V/k2jCrk+fPoZj8ZrmiqbVvVmzZggEAvj66699uz/VPY9V4Rfg8WmvXLnSVXpukbVzVSuZF2Gnih+LFZkV1yktW7b0fG0zn3zyibLF7ttvvxX2Te+//77hZVeEU8OKyracTgkEAokh7EQb3q9atQoDBgxA//79DZude+Wjjz7CyZMnsXPnTnTu3Bn/8z//4ym9RBN2/NYwfpKIU7GqNGrUyPdgy26FHb8Jt5l4rvwWlQ/vQO63xQ6InnXZj7z6Key6d+9uOFYThV1ycjKaNm2KkydP+vZcRdNhXoj1lKsMrytOzf67frkN8Ozdu9dzGir7EYvgdxvyC03TlC12Fy5cQFZWVsRxkc+8V6LVF4TD4fgLuzfffBOpqanGC/1b3BUWFvqyTxxj9+7dKCwsBAAMHDhQuNrw0qVLKC0tNfyTkWjCLlpUZ4udpmm+R0CPhtCJJunp6Zbf2731V6f7FTk+O8XPwdI8xR6vhWB2bdiL8AsGg8jIyMDJkyd9G6zy8vJ8SYcR65hqrVq1Eh73OmaYhV2iRoxwa4mKRgQGJ5axWI6x0RJ2SUlJjupZVITdoEGDhJ1OMBjEyy+/jGHDhvl2rbNnz+r7rKWmpgrj7CxatAipqan6P1kDBaq/sFPdE7C6Czu/n1N1WzVm579ntxdjdRJ2fgzgflm3AoFAxEDstu7cddddnvJiNxXlpU4HAgE0b97c16lYv6fqRXHdosk999wjPM6/RIkWh9hhrk+JuMoecP8CEw1h169fP+VV3n77Y1tRWVnp24seL1wTYirW8oL/ttyJ9gx1Q+PGjXUL3NmzZ9GkSZOIc+bMmYNz587p/6xWolZ3YXfNNdconVedhZ15f1o/UIlplEhYbR+nQqII2U6dOtme48eKPrcrL83ceuutuOGGGwzH3Jal1wHPbiqqa9eueOCBB1ylHQwG0aRJE2zYsMEy1Es8+M1vfoPmzZtbDth9+/b1/bqy8ub7omuvvdZzuom60CGRhJ0TRFvTRYvKykrHL82/+tWvhMf5PishpmLtCAQC6NWrly9pZWVl6avQtmzZImzQderUQUpKiuGfjOou7FQFW3UWdtGYiq1uONpeRnBuoljsOnbsaHuOHzELZf5BTvuhyZMnY8yYMYZj8RJ2rOM3u70w6tevjyVLlihb8XkCgYBrn6poU79+fdSpU8cy5FE0/NRkLwf8mOHmBcLrS1qsiFc9Hzx4sKffx1LYHThwwLEvqWwGkwn+QCCAgwcPYvXq1cpW6sSLoumQbt26oXnz5sjNzcUnn3zi2X/vzTff9Clnavhd6VQ74+q8eCIaFrvqhhNhJxrkEkXYqQwWfiyUSU5Oxm233RZxPDs723Pa8bbYtWnTRvg9C2rrxjcqGAx6EnZTpkxx/VszZuEaDoeRlJSE06dPS/uxaAg7FYudmzKrLsLObagyr2PN/fff7+n3TvYz9oobdwPRLCNgrBfMAKS6CKbaCzugahPpnTt3YvXq1Z7fMsPhMJ566il/MqaA347Xqvcfa4vd22+/rXzud77zHcvvnZi777vvPuXrimjfvr3+dyIFnXUi7EQdq1th5/eAqSKK5s2b58u1RMLObQgHHrdt2KuPGBM8svJhi8r4evvoo48qpR0MBj2tOn3uuedc/9aM+RmFw2GEw2FcvHhRas2NxvSfTNjxe+fWZGHnxvILVFlYVafGb7rppohj1aV83FK3bl1hHyKqb6ovkTVC2PnN9OnT450F14TDYZSUlNieF2uLXc+ePZX9fdg+lTKcWOuefPJJ5XPN/PCHP0Rubq7+OZE6GCciUyTG+H2DneD39Fwsff1EnafXBQyA+3vwutq3devWqKysxMiRIy3P4+tKQUGB/vfdd99t+Rvzvtix4K677oqoY3/4wx8Mn0OhkHDKk+83orFSWTTQpqeno23btvrnmizs3L7UJSUlCbchVMXvQO925e12izu/Yfnk269qvSZhV8NITk5W2gEgKSkJ//Ef/xH9DHHXW7JkiXTPQx47YReNAJ4izNNRidLgneKnddZvS28sQoUwi5ZZgG3fvh3t2rXznH6sw24AVb7FTz75pJLA58/h63NRUZH0N/HaNWXs2LE4ePCg4Zh5QRgL2GqGv7dGjRr5lqeHHnooIn2GuT3UZB+7Z555BnPnznX8u6SkJMty4X1WRf2B3+Vj14+r1v3bbrsNn376KXr06OFHtiIQ5ZOEXS0lOTlZqWLGelqRNU6VvPHCLi8vL2KlWayEndmB3O8ORtZJdunSxdfrqFhn7QT3L3/5SwD+C7toW+zy8vKwYMEC4bX8Ei/xWMizcOFCtGjRwvHvVOuzSv/AW6r8IhwO27azYDAozB//Oz9XxbJ0RQNtnTp1DHlREXbml4nqIuyaNWuGn/3sZ45/J7OwMm655RbLtuj3S4Zfwu61115Dp06dlC2Zn3/+uaOFYKJ6QVOxHlm3bl28s+CKcDisXDFjuQBBZFaWwfvHNGzYMMLvwipcjZ8Eg0FDh+RXBzx79mwsXLhQ6E8CADfeeKNtGk4sXSrCzq7OsO/9nopt1qwZAHGYCD9WzmdmZup/i3bEAYDf//73nq/jB2PGjEGHDh2UznViPZZZ7KzSUOlDPv/8c9x5553K+VBBpf8KBAK2lp1oWBxFfZf5RUfluYwaNUr4G5UV4rFg3Lhx0u9k/Xdqairy8/OF34ksdrL+KxYWO5UXBytatGhhyKdqXWvbtq2jF2Oaio0CI0eO9HVlV6xITk5WbgixsnwBVyq/irBLlBW70bLYLVq0CHPnzpWmx78Bypz7nQg7lQUCVve2YMEC/fnx0/x+WH2HDh2K4uJivP/++4bjy5cvx7Zt2ww+YU5488038fDDD+PZZ5/Vj8ksdrGI9P/MM8/YntO/f3/Lun/dddfpf7sVdvwA61XYmdPzA5UZh2AwmDDCrlWrVhF7o9vBv7gmJSXpfYzflnq3WC08kd3f5cuXDeXAbyNmttiZ0y8qKrLsz7w8S5FV267t2PVrZuEbLbcFlk++bFRnB0jYWRAvPxMvqE7FAv5Z7KzM8z//+c+xdOlSfcCyajRs2Xe842c9+OCDACJ97PzwpZo5c6b+t0xM8YN769athec4FXZ2eyhbPZd58+bpdYpfmq8q7ESrURmhUAi5ubkRdTYrKwsNGzbE6NGjla4BGFdAZ2dn46GHHjKEymBlxvLNrhktP78+ffrof/MLFcLhMI4cORJRfnbtlq8vboWdahqqz1Y1eLTqc1SdimXPjH/RCIVCyMnJwYgRIxy9dPTp00dqbQKurAatX7++QaBs3LgRq1evjsibHeyc4cOHo6ysTPcHTNTAxDyqwo5vU2aL3dSpUw2/tbNi8fXh+9//vqP8iqYumc+kDPM9Tps2zdH5fsHumxen//u//6v02+qnXGKI1wf26quv+pQTdeIh7Hj/LHOcnY4dOxrEjIovRbwtdnyIEz8tEq1atcLSpUv1z7Ky4O9f5lPhRIxUVFRYOspb5cX8Pe+UbjV4Mv+radOmGaZDZemar2/l1wQAGzZswH/+538ajvEroEWDBStL8xSHGz+/q6++2vaczMxMHDp0CBs2bDAc379/P6655pqIZxgKhfQ8vfXWWxHp8QOcW+sxX85Waaj2Iap93BdffKF0nqz/4oUx//3atWv1v0OhEHbu3In169cr53/8+PEoKSnB/PnzpedMmjQJK1aswKBBgwxtc9iwYWjSpIn+zKZMmeJI2NWrVw9XXXWV/vKhGgMt2js5WK3Wlt1fRUWFtD9g4WlUEPVr/DXfeOMNpXSs0rv33nul5998880R92FX3tESduFwGJs3b8ZvfvMb/ZhqGCESdhZ4fWCyt9QDBw54SheQx8BKSkqKuTMuX06pqan461//ijvuuANA5DSgVZkyx1KzsIul5XTfvn0GS46fws7cYahY7LwIO3a9iooKJCcnY/Hixcp5M8PKhI9lZfWbG264AS+99BKefPJJyxcImbBjn0XCLhgMYvjw4Rg7dqw0XZHVl5WZ+VpuhN2RI0dszykvL0eHDh0wfPhwAFVt9p///KfuS2WOJcjnq1evXkLhx3BrseOn+e0sdvzUrwx+b1SrlaiqVniZxY6fyuZ97Pj2yZefap/x0ksvAbgSO1NkEQqHw5gwYQICgYDlS+fgwYMdCTvzy5KqxS6awcV//etfW85MWLV5/t75utugQQPpdyq4rfeAc3eRd955x/Y3Ml9dvwkGgxgyZIhh1mHSpElqv41KjmoI0XhgPXv2dLWfoJn09HTd8Ry4En2+rKxMOd9btmzB5MmTDcfeffddx3kxT/W0aNECzZs3BxAZ1DI9PV2aDtthgLe21KtXD3PnzsUDDzyAXbt2OcqXqpWAp0uXLspWDafIxIsZfvCQdYIqKxJZ3plwYVPMIlSFHb/LgZVvkaZpGD9+PJKTky0HIpnvpZXFjp1r5Tsoem5sGpnVQVa2bqZiVdqYWdCmp6cbxI+5XPg8i54Hf023wi4tLU2aBj/tHwwGlfwCO3furP89YMAA4Tn9+vUTCjvRi29ycrL03gYNGqTnjT0zPl3+OTod0K+77jrs2bNHOO3Gp2U3bSirF/yOSOY6z6aTMzIylPLqdSW52Z+1ffv2uhWrsrLSF2HH59HcTkXtzaotqo5nomfjR4gq8z2bF7n4rRPYVLUoXbLY+YDTB7ZmzRrMmDFD+v2SJUuEc+SHDx92nDczL774IoCqN09VK9O1114bsV0La4RWAsyM6E153rx5WLRoEbp27Wo4V/TGsXz5cvz2t7/VN4RnDbRZs2Z49tln0aRJEyxZsgTZ2dn47LPPlPPFxKVTeItdNIWdLG22YwAg78RTUlKgaZphoDbDOjWVN3w7ccPyLhMf/fv3N5zPWz5UhJ0Tix27bmZmpnQKTTQADRkyBG+99Za+KpHdM1/Gqs9bRTjYuTqILHZm/z8ePyx2POY0+PwEAgGlKT++r5GFzNmyZYujxRgyq9j3vvc9PW8ii52blYo8vXv3llqIGaIYm3z5ysqahQvi0+MF3o4dO7By5UqlfJrbqp3PmBne1YSl161bN/3vOXPmuCo/2b173d1FtU1evHgR+/fvNxzzQ9jx/cP48ePxgx/8wFX+VGGzXXy67KVU9Vok7CxwWrlHjx6NZcuWSb/PzMwUBg92u1ULPwjk5eVh3rx5mDNnjnTvOas0GKwROnnjFVluGjVqhNmzZ1s6iD/++ON4+eWXMXnyZIwbN05f8cOE3d133x0hXPgYUCI/JFm+nGBlGTE7/p48edIyBhwv0lSFXbt27aBpGjRNkwo7dtyq42KDnsobvqqw4+HLlw8ZsmTJEkyYMEH/rGqxe/DBB/Wg2VbCjr/+f/3Xf1nm23z+oEGD9HyLrAR+BqG2W3Xu1GLH583JYCJrB+Y0+BV3qn0fbzGTxdVLTk5WtoomJydLX0zvu+8+FBYWokePHkKLHV/P3VpR7Oq51XaHmqZF/J6tuA4Gg/i///s/bNy4UU+PTzc/P185qDJ/n+vXr8f8+fMt79csRs3PvbKy0pCXoqIix9vd5efnG3xerdqUVV0QzWaxe1MJA2W22vkhUPny7tq1a9RjwLLnwz+nvXv3OgrLRMLOAqeVwu0D9zqYTJ8+HeFwGAsWLEBqaqqjWDkyYSdCZgFzO3U5c+ZMQxwsZuFgHZzdDhpsakYGy9eiRYuU88T/TmSxM1sxmjVrhsceeyxC8DF40a46FcvDVpSeOXPGcJx1NlaBWFne/bTYAVem0GT1/Sc/+Ynhs9USfT7dxYsX69YEu8UTXjALO77j9vN6dmFUYmWxk2FlsXMT7sTK/0xWv5j1g80QhMNhab1q1aoVtmzZYthb043Fbv369dLvRP2XnbCzckngn2ePHj0wbNgwqZVaBL+ymsHqa8OGDTFixAgEg0GlRWmMUCiEHTt24Oc//zmAqnIzt4m0tDTlOlZaWop33nnHcVDojz/+GF9++aXh2Pjx4yNmZZzEQHUbQN3qXvl6JXrp8HtVvegaV199tTTuqQgSdhb4LexUp0Sc8sQTT7j+rZMVQKJ8vvvuu47jOMmuzQRAYWEhnn/+ecu9LJ2kP3v2bMuto1544QXDZyuhKguL8Ktf/Up43MoKoyKCH3vsMVy8eDFCJLDOfdWqVfoUlezafuzuwJcJW6Ulqs8ZGRkRkdhVLHZ2x/v166cPyF7fmM2DGL9IwM9pFeYeIcMcJohfFevVx65Vq1b6326nYlXgLWZWwm758uURxzRN039jXrFsh0jY8fVcln9N0zBixAhpunbXt5oNEVnsRMj8Ss0UFhZK9/3etWsXPv74Y/2zLK0ZM2ZEzGyEQiHk5+frcVpFwi4QCAifGWCcVj548CAaNmwY4UPJ0uH9NIuLiw3fde7c2VBPgaqyke3M4UXYvfPOO7a/lcG3C6tFWX7BxmAvO9qQsLNA1kjdTp3KkHXS7Pjtt98u/N6qor/44ot4++23ba/Np3H77bdbdkyiTi8lJcXxajTZAMAsdldddRUmTZrkKp4db51Tidi9Zs0aTJw4URjcVNM0w7MZNWoUBg8eLExHZbrLadwy9htRZ8XKsG7dutKI9ezaPXv2tL3O+PHjLcWvSFSI7ln0YmAl7GR1gV2P1YnBgwfrA3LTpk2l6algHsSaNGmiW0SZUPAjpISdS4TZGsOXsd1UrJWw27NnjyHskFUYCh7eJ9DNVKxVezXv92pm/PjxANRDHbEV9PwMgx9TsaxO3HLLLcL7ER1TsdjxqFjsvve972HLli3S77Ozs5XE+7Jly5CTk2M4ZraG81OxfD85btw4LFiwAG+99ZZh/17eT9putwx+QQ3fr8rgF+OYf+cmuD37TYsWLVBUVITevXtH/ObixYuWC2/4eiWypv3lL3+xzZcT2NS5l3BkJOwcMmXKlIiGoopTix2r0Lm5uY7SA6oif+fl5RmO2U0NvfLKK45M+qJ8qLxxywY8s4+dG2bPni3Ml6zxjRkzBuYdJmSWEbaZvBMLaygUwgMPPBCRLvvODcuWLbO1BgFV9//5558bYufx8FOmbdu2tVyYIhLvovonGpithJ1ZpJmDCDM/NfZ8NmzYILViqCIaxMw+fW6sglZbMalgt3MC39Fb1Z3evXsbyvWpp54CEGnZN7s68BYC1fvnBzo3Zcaewbhx4yJepKxgsdb4Ps0PYccE4/XXXy8UcazcZfHUZMJOVNdE5TVw4MCI8z/66CPbfDspe7MPl0zYJScnY968eRg0aJBBwKn0W1arW62EneiFykk/KRs7QqEQNm3ahD179gAAunfvbvhOlqevvvrKUK9EdcKPxY88ZLGLMqKH/dxzz1lGKQeA//7v/zaYq+3gO8cTJ05g27ZtAOwbwtatWy1jk5krodlPS5Q2PxV03333GXYNsHMslp1jxuyDxWADl98bzavw+uuv63HRWEdi9rFj9+bEkjh69Gj8+Mc/Nvye4VbYTZs2Tdlq1bZtW6kzepcuXQyLHKywEnZ8eYgGGCthZ159bSfshg8frhQc2ArRIMaOeXGLeOGFF5R3YhBhZ7E7ffq0/reTfI4cORKapuGnP/0pgCuLHMyDqNfFE0DVlNfWrVuVfnvnnXdGPG9VysrKABjvYdasWfrfXoVd3bp1he2GlTsfW4zHfB8rV67ELbfcYvDNs/KjXLFiBQCjSFUJbWR3v6KVu6LxRWVa0epaJSUlOHz4sPC58v2qE5xY7GR9s7mv5S3aoVAIxcXFESvs69ati4yMDMOzsIoWwYeC8gKr02SxixIy3ySrkCZAlUOwTLyI4BtKZmamvhKUbwhmJ1OgagWRVWwyvjJ/8MEHjvPy5JNPYsWKFXp8KxUhotKhPvjgg8LG7YfFzi2DBg3CqlWrAMh97FjH4iRo8eDBg6V+U24HH79WZYVCITz//PP4+9//rh97+umn8cgjjwjPZfgp7MwDpLlemIWdH7ix2M2dO9cQjFdEUlKSp11TysvLLX3s+L1EvQjQAwcO4Pjx4xHt2eviCaAqcr8snh1fzwAYdkNxWqeZAON/x/fLbtsIHyTdStjx6bMZCN4CmpaWhqNHj2Lw4MF4/fXXLduPKH2+bqr0u3b3a/VSLrPYOUmL0adPH7Rv314o7Nw+EycvwDKLqVUagUAAffv21VfYy6ZiH330UWndBsTCTrTXtV05MB9lEnZRQibs3FZQp7/jGx7vT8EHu1ShQYMGUj8rK4sdUPX2cOzYMQDWDZo5oHvphNxY7ESrxlSFV79+/YTHZT52TtM3p+eXxc6vgJjBYBDhcNhgTbjnnnuErgYia5JI6Ip8ZHjBwPvxXbx4MaIumAcEZp2z8v9zChOTfD0TDQDnzp3Tp/ZvvPFG3fIqw+tzOXfunKU156WXXtKDknsRdo0bN0bLli0jjvP+o7I2avaVY/kQDWBmrEKFOGXXrl1SFwPA/bNg5du+fXthOxdZnSZOnIi1a9caZnICgYDUsmzlYydKX9UX1+33ToWdyjjGXkJ4H0gn1+AxC2E7w4oIL4uiWH6Liopsy9GMaPcWVRHuZSrW/1gCNYhobQ5uB+sAe/XqhR07dkTkw25DdzN8hZs1a5ZBJKpsj6Ly1sOu4WVwY9NY5lWVVpSUlEQ0lLp16yq97cg2lJaFO2GD2FNPPWUI02KHbLB2WlbBYDAi5pSZ7Oxs7N69G4B9/TWvSGOIhLXImspb7Lp27Yp9+/YZ9jVkMGF36tQppKWl6WVqJeBZ2gMGDMBnn32mLOyWLFkitG7z3H///UhPTze8FIji5qWkpOgWOJWQMV4tqefOnZOm1b59ewSDQWRmZuJvf/tbVLYN/O53vyu9PuPIkSOG79gzzMrKijh38+bNugVMhmxa2I7s7GxkZ2dLv3fbD+Xn52Pfvn3o0qUL0tPT8de//tXwvSjodygU0oNeM6zanlXe+AUNKuczvNQ90apYr8yaNQvDhg0z7I7EX88J5rq+bNkyNGjQwFEMSy/thT1ruzRUow+oPKuCggLLPW3tIGFnAXtQjz32GFq3bu3rGydQ5Tj+yiuvRBxv2bIlTpw4gZ07d2LHjh2ew1Xwv3/88cctz7WqdHwHM3bsWHz11Vf6bhGyfTid8OCDD+KNN97wvCKxbt26KC0tFX4XCARsOxbRVGzLli31GGtjx47FqFGjlPdslAk7p53NVVddhQsXLkQ8I/6zqvk+NTVVamURdcZMdPPPhrfYFRcX48yZM8LI/KycZBu887ApV/6enFjr2EIVu2v88Ic/FH5nngpjn0Vvz0uWLEFJSQk2bdqknD8rMjMzlaft/Yq3d+utt+L1118XXlOFcDiMEydOCGNcDhkyxPb3c+bMQe/evX21yALe+iFmbdq8eXPEFotOYkPKYC+uItHr1mLnxMfOjKZpGDBgADp27GjwqfZCMBjUxwaVPNilZf79vHnzlISdilHCDlWjhWicFo01KuWwfft2xdyJoalYC9iDuv766zF27FjcfPPNEedYLUm34uTJk/jLX/4SsRUTIzMzU2kVkQp33XWX9DvZVKwI/v5XrVqFHTt26G/sfgi7xYsX49NPP3X9e4YsrhugFk5BNBU7efJkQ9kkJycrWxadCLs//vGP0nRYWVuVcXl5uXQVNQ+/KsxMZmZmxDGRNZW32KWkpEinnlTfeIEqH78lS5Y42tLuu9/9rlBQOoHljUW3Z3nu0KEDALHYfeCBB9CrVy9P12UcOnQIw4YNk9YVc7v0y2LHW//dioPMzEzX+QmHw8J+1Sui/DgdLDMzM/XtnRhWQl8V5ot34cKFiO9EPnZ+WOys0qisrERaWhoOHjwobPt+4dUqaF6IkZ2djYkTJyr91k395F2hAPvnILuvmTNnGuq4Xz7SVpCws0AlaGZhYaErMdOsWTPbPfSKiorwox/9SLnyirh8+TKeffZZ5fNlle706dOWK3CdBhiNJuvXr8eOHTuE3/HCRNYQ2fMMhUK6n40Xce1k8YSVUBBZs8yUl5fjd7/7nXKeZNcZNmyY4RgbhGQWOyvYamMVUd20aVM88MADjjq/Q4cOWW5crkJycjKOHj2q13E2cI8cORJ//vOfccMNN3hK344OHTogEAjoVi5ZXfnFL36BgoKCqAwOdmnyvk1sQZVTFi5c6Op3ThFZNK2mblVRtdhZ9RdM2In6Sq9Tsfn5+Zg5c6b0ezMtW7Z0vDOPV5z2pSzv5vA8u3btsg375MZiJ1s8ISvDoUOHIjU1VXpfS5cuNQRIjoWwo6lYC1T244wmdevWNeyK8Pzzz6Nr166O0rAbdGWV0Vz5rDab59OJRaWVwYJoNm7cWBqSxonFjkVonzNnDu677z7X+fJzKpZPT0RGRobSM7A7h9/TErgi7GQWOysmTJhgCKtSv359nD9/3jaPqvjVPq+++mp9FS4TdoFAANdff70v6aswd+5c3H///RHHWVnn5OR4nqaRYTddx9izZ4/r0A5z587V40FGE1Gd4Nvfpk2bXMVD9MNix17oRX2zaJbGibB7++23UadOHXTp0sUQ0kPG8ePHlfLsB1b1a/bs2VJXpwYNGuC5557DyJEjHV3vzJkzuu+nG4MDE5J2FjsW01D08ud2KtYrZLGzgD0Uv6xQXh/opEmTfJv6YbB7VI1nZpdOvIRdSkqKbRR0AErCmHekT0pKwmOPPWZrXQWqLIWscd977736NL3K4gmVcpMtNhg6dKh+/ddee01pCt/pc2LCnvelYtOWTkORfPjhh44XAMUKpyuevfLiiy8ahFogEBBOK/u1EtoKVifMW+yZrbe9e/eW7hudKNgJu6KiIssZCBlsLPAi7FgaVu1G1HZli52AyD5m3LhxemBq/vtEQHRvixYtslztOmXKFMc+7nzwajdj+HvvvQfgyk4bGRkZluer+sLHoi2TsLOABcG020JMFjajOuG14fuxH6lb9uzZY9g30Yrx48fj0UcftTyHt9g5YcSIEXrk+EGDBqGwsBCAfxY72WA6YcIEVFRUYMSIEUhLS/PF2drMxIkTsW3bNn0664svvsDKlSsBOBd2HTp0cByyJ1bEegCcOHGiUqgQUWxBv2H3zvwKgSoBs2HDhqhf229Ews6PF3TRqlgRVhu2s7h3VtP7ov7UynJsF8Q3EYRdPPJgFT5IxvTp0wFAXyyXn58PTdNsF/WpTjHbba/nB9Va2O3duxe5ubnIy8vDbbfd5imgnwgW6d3OkXvz5s344osvbNNLhMZlRnUq1m06saB3797CuFw8TMxVVlbqlj3ZPboVdsCVECo9evTQj8l87Pj0Vcpv3bp1ehBlM6pbfpnzpEowGDQs9GndurU+NdyoUSNHaRHOYVbZaCJybg+FQnHpt+xcP+wQCTs/7kPFYvfVV1/ht7/9rfT7Nm3a4OjRo9KV2UBkf/DBBx9YpinrY8zfxxO/Q6rIGD58uO7X68bHbt68ea7yOHfuXOmOJDzbt2+PWG3tN9Va2GVmZmLLli1499130a5dO2zcuNHX9FWFXb169Vw7E8cbZl72akGJp7BTgYkPlTAFXnwrs7KyoGmaYcsvv+LYpaen6x2WFSodqB8dfXJyMp599lndclcbSfQpSTckQltW8Q+zgg3kAwcO1P/2o86rWOwyMjJsg6xfffXVlvkx+/T27NnTUjRYBT0GEkPYMZzULxWDiTmG4oYNGyJegEXCThR70Qu33HILzp49azgmutf09HTdjSVaVOvFE3ynGg6HfV/k8Itf/AJLlizxtE2QKvfcc4+nfSbd0qhRI18cPFu3bq3vUJGIsA5PZcrYSXgOFeyE3XXXXYcDBw74ci3Rdazy5JWpU6f6kk515Qc/+AF+9KMfxTsbvhAri4oKXvfdFK0u9QM/fOzskJW/3bZY/P+y7+OJmzyoGEyKi4uls3VWFrtt27Z5Xk2fqFRrYcf48ssvsW3bNsydO1f4/aVLl3Dp0iX9syx4rZmsrCypf8nvfvc7PWq6Kt26dZN+9/TTTztKK9o4bYTr16/Hvn37opQb7zgRdqzT9utFQdbp2nXGbomlsKvtxMIRWoU2bdooWTes8CtupgqjR4/2La277747YmFBtITd+PHj8emnn2LMmDG+pquCF9eKRGrvftevcDhsu+hJJOzq16/vOf6liJEjR+Jvf/sbdu7c6XvaqlQLYXfy5EnhUudNmzYhKSkJ48aNw4oVK6QPd9GiRY62H1GB31dRhUR4C1bl8ccfV4oaz5OWlqbkBB4v2KKGgoICHD16FIB8Gi1aFjtR59qmTRssXLgQw4cP9+VasuuYcRIAmHBG586dY+ITx/Pxxx9HxPlySqwsdhcuXHC84MaKZ555JuIYP2Xqp6ipW7euYbVpolAdhF08LcKxvP9169Zh79696NmzZ9zG/Woh7Jo3b64vPeapqKjA8OHDMX/+fMNKLjNz5swxxIYqLS21XDpe25k1a1a8s+A7rVu31htZmzZtsH37dmmsO7+FnZX/SzSmr1U6sV/+8pe256xevTpiWyDCHtUV2n7ih+XBHGk/WjjZC9otqqtXawrxEHb8AjEV4iHsEkHQxoNqIexkrF27Frt27UJZWRkWLlyIqVOnCk38derUsXVmJaoPJ06c8NxgrayL0ZqKTZRpOwBKcfnM2ykRNZPZs2ejYcOGuo9voswuLFy40LUvGwk7Z9875ejRo45XLrNZgry8PF/zYsWvf/1rLF26NGbXc8LWrVujZmCq1sJuzJgxcfF1IOJLNPczBPy32DGshN2mTZuqZbywmsjGjRs9O+9XJ9iWUvPnzweQOMJO5jOtQrR87BIVt/v8ukW2L7QV6enpKCsr8+wy4IScnBzk5OTE7HpmrNrSgAEDonbdai3sCCIasA3f27Zt60t6rHFbdb5FRUUoKiry5Xrm6xLOMO+0UFtIpFWxXiGLnbPvY0UsRV08iXd5k7AjCBN9+/bF3r17LVcxO8FuE2mCSARI2FVfqouwI2JD4jj9EEQC0b17d986QxWLXTSgzpxwAgm76ovVdmPAlWf7+eefxyI7xL+hVbEEUUNhewzyW3LFgpowQFcHvvjiixpR1iwESU14IWAvUbVF2K1ZswaHDx+Wfs+eqV/uJYQ18W5DJOwIIsrUr18fZ8+eRUpKSryzQkSB6rqdoJnp06fj0qVLKCwsjHdWfCM1NbVGiG47GjRogO7du0u/j7fQqG2wGKnR3jpMBk3FEkQMSE1Npc6VSGjq1auHhx9+2PfV4PFizZo1WLduna+7XFRXqO+JLRkZGSgrK4tb1A4SdlFm586dePXVV+OdDYLQcbprCkFUR8aMGYPmzZvjpZdeUt5GsqZCwi72xHMFME3FRpl4xtAhai9paWlYuHBhxPGysjIK1k3UKpKSkpQCctdkqpuwKyoqQklJSbyzUW0hYUcQNZDTp08Lj9eWOFIEQVyhugm7TZs2xTsL1RqaiiUIgkhQarulifCH6ibsCG+QxY4gCCJB2b9/P44ePap0bk5ODt57770o54iIJ6NHj0bHjh0d/46EXe2ChB1BEESC0qZNG+V9a9955x3pFDxRM3C7EO/NN9/E66+/7nNuCD/JysryLe5iQKsNQX5MlJaWIjU1FefOnaPYYg6pSdHpCYIgCKKmQT52BEEQBEEQNQQSdgRBEARBEDUEEnYEQRAEQRA1BFo8QTiiXr16yM7Ojnc2CIIgCIIQQMKOcMT58+fjnQWCIAiCICTQVCxBEARBEEQNgYQdQRAEQRBEDYGEHUEQBEEQRA2BhB1BEARBEEQNgYQdQRAEQRBEDaFWbimmaRrKysrQsGFD2hyZIAiCIIgaQ60UdgRBEARBEDURmoolCIIgCIKoIZCwIwiCIAiCqCGQsCMIgiAIgqgh0JZiJtjCCoIgCIIgiERCZdEnCTsTp0+fRnp6eryzQRAEQRAEYeDcuXNISUmxPIeEnYnk5GQAwPHjx20Lr7ZQWlqKVq1aUZlwUJlEQmUSCZVJJFQmRqg8IqEykdOwYUPbc0jYmWAmzpSUFKpQJqhMIqEyiYTKJBIqk0ioTIxQeURCZeIOWjxBEARBEARRQyBhRxAEQRAEUUMgYWeiTp06eOihh1CnTp14ZyVhoDKJhMokEiqTSKhMIqEyMULlEQmViTdoSzGCIAiCIIgaAlnsCIIgCIIgaggk7AiCIAiCIGoIJOwIgiAIgiBqCCTsTMycORO5ubkYO3YsLl++HO/sxJS9e/ciNzcXeXl5uO2221BeXo727dujX79+6NevH37/+98DAD755BPk5OQgOzsb27Zti3Ouo8uxY8fQtGlTvQz+/ve/47XXXkN2djYKCgpw/PhxALWrTN5//329PDp27Iif/vSntbKelJWVoXfv3mjQoAEOHDgAAMp141//+heGDRuGnJwcLF68OG734DfmMjl//jwKCwtx4403Ij8/H8eOHQMATJgwATfccAP69euHpUuXAqg9ZQJAub3UljK5fPmyXh69e/dGt27dANSueuIrGqHz4YcfamPHjtU0TdMeeeQRbfXq1XHOUWz5+uuvtfPnz2uapmlz5szR1q5dq/Xo0SPivGHDhmmHDx/Wzp07p2VnZ8c6mzHl6NGj2q233qp/vnz5starVy/t0qVL2nvvvadNmjRJ07TaVSY8EydO1P7whz/UynpSXl6unTp1Srvrrru0/fv3O6obTzzxhPbCCy9omqZpN998s3b8+PG43YefmMvk4sWL2okTJzRN07QtW7Zo06ZN0zRN07/nqS1lommacnupTWXCePnll7WHH35Y07TaVU/8hCx2HLt370ZhYSEAYODAgdi1a1eccxRbmjdvjnr16gEAwuEwkpKS8K9//Qt5eXm44447cObMGQDA119/jfbt2yMlJQVpaWk4ffp0PLMddUpKSpCbm4uf/exnOHz4MK699lokJyejb9++2L9/P4DaVyYA8O2332LPnj3Izc2tlfUkKSkJTZs21T9/9tlnynWD72sGDBiAPXv2xOUe/MZcJnXq1EFmZiaAK30KULXDz6RJkzBgwADs27cPAGpNmQBQbi+1qUwY69atw6hRowDUrnriJyTsOM6ePatvX5Kamqo3uNrGl19+iW3btmHIkCEoKSnBu+++i4EDB+Lhhx8GAGhchJyaXk4ZGRk4cuQIiouLcerUKbzxxhuGLW4qKioA1K4yYezYsQN5eXkIBoO1vp4Axv4DsK4bta2vKS8vx4IFC3DvvfcCAJYtW4bdu3fj6aefxuTJkwHUrv5Xtb3UpjIBqqZojx8/js6dOwOgeuIWEnYcjRs3RmlpKYCqytOkSZM45yj2lJaWYty4cVixYgXC4TDS0tIAAKNGjcKf/vQnAEAweKXa1PRyqlOnDurXr49AIIBbb70VH330kV5HACAUCgGoXWXC4N+sa3s9AYz9B2BdN2pbX/PjH/8YU6ZMwTXXXAPgSn3p1KkTgCoRXJvKRLW91KYyAYBNmzZh6NCh+ufaXk/cQsKOIysrC1u3bgUAbNmyBX379o1zjmJLRUUFxo4di/nz56NDhw64fPkyLl26BAAoLi5Gu3btAFRN2X722WcoLS3FmTNn8J3vfCee2Y4qZWVl+t/FxcUYMmQIPvnkE1y+fBklJSXo0qULgNpVJkDVNOzu3btx4403Uj35N+3atVOuG3xfs23bNmRnZ8cz61HlkUceQdu2bTF69Gj9GBuYT506hUuXLiEUCtWaMnHSXmpLmTD4l0WgdtcTT8TVwy8BmTFjhpaTk6Pdcccd2qVLl+KdnZiyZs0arUmTJlpeXp6Wl5envfrqq1r37t213Nxc7aabbtK+/PJLTdM07eOPP9b69u2rZWVlaVu3bo1zrqPLW2+9pXXv3l3LycnRxo0bp5WXl2uvvPKKlpWVpfXr169WlommadrWrVu1qVOnapqmaSdPnqy19WTQoEFaRkaGlpWVpa1YsUK5bpSWlmpDhw7V+vTpoy1atCiet+A7fJk8+uijWlJSkt6nzJ49W9M0TSsqKtLLZPv27Zqm1Z4yWbx4sXJ7qS1lsmLFCq20tFTr1q2b4ZzaVk/8grYUIwiCIAiCqCHQVCxBEARBEEQNgYQdQRAEQRBEDYGEHUEQBEEQRA2BhB1BEARBEEQNgYQdQRAEQRBEDYGEHUEQBEEQRA2BhB1BEARBEEQNgYQdQRAEQRBEDYGEHUEQBEEQRA2BhB1BEARBEEQNgYQdQRAEQRBEDeH/AcVoLOI6td4PAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -568,7 +569,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 53, "id": "0f69e3a8", "metadata": { "scrolled": false @@ -576,7 +577,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAFzCAYAAAAuddgzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOv0lEQVR4nO2df3hdVZnv39PQpqU/IkmOTdsTTQcEZTqioHjrWGhGLfiAhCcNU1t/AFd5RiU0RyBzBTKmZ55iUYG0Auro9Slyc9NOQsLVO8MIRE5KFcdhoD4WOnIVUygpHX6aVqApJ133D2YfztlZe+/1c+999vl+nmc90JNz9l577b3fd73rfdf7phhjjAAAAAAAAAAAWGNW1B0AAAAAAAAAgKQDwwsAAAAAAAAALAPDCwAAAAAAAAAsA8MLAAAAAAAAACwDwwsAAAAAAAAALAPDCwAAAAAAAAAsA8MLAAAAAAAAACwDwwsAAAAAAAAALHNC1B2oNI4fP04HDx6khQsXUiqViro7AABQVTDG6MiRI7R06VKaNQtrhw7QTQAAEA0yegmGlyQHDx6k5ubmqLsBAABVzYEDByiTyUTdjdgA3QQAANEiopdgeEmycOFCInpzcBctWhRxbwAAoLo4fPgwNTc3F2UxeBPoJgAAiAYZvQTDSxInhGPRokVQbgAAEBEIpysHugkAAKJFRC8hQB4AAAAAAAAALAPDCwAAAAAAAAAsA8MLAAAAAAAAACwDwwsAAAAAAAAALAPDCwAAAAAAAAAskyjDa8uWLfTBD36QFi5cSG9/+9vp4osvpieffLLsO4wx2rRpEy1dupTmzZtHq1evpieeeCKiHgMAAAAAAACqgUQZXrt27aIrr7yS/vVf/5UeeOABKhQKtGbNGnr11VeL3/nmN79Jt956K91+++30yCOPUFNTE3384x+nI0eORNhzAEAlMT09TWNjY7Rjxw4aGxuj6enpqLsEAAAAAA/iordTjDEWyZlD4IUXXqC3v/3ttGvXLjrnnHOIMUZLly6lbDZL/+N//A8iIpqamqLFixfTN77xDfqbv/mbwGMePnyY6urqaHJyErVSAKhCRkZGqKuri5599tniZ5lMhrZt20bt7e0R9qw6gAzmg3EBAAA+tvW2jPxNlMfLzeTkJBER1dfXExHR+Pg4HTp0iNasWVP8Tm1tLZ177rn08MMPc48xNTVFhw8fLmsAgOpkZGSEOjo6yoQ3EdHExAR1dHTQyMhIRD0DAAAAgJu46e3EGl6MMbr66qvpIx/5CK1YsYKIiA4dOkRERIsXLy777uLFi4t/c7Nlyxaqq6srtubmZrsdBwDEkunpaerq6iJekIDzWTabRdghAAAAEAPiqLcTa3h1dnbSb37zG9qxY8eMv6VSqbJ/M8ZmfOZw3XXX0eTkZLEdOHDASn8BAPFm9+7dM1bMSmGM0YEDB2j37t0h9goAAAAAPOKot08I7UwhctVVV9FPfvITeuihhyiTyRQ/b2pqIqI3PV9Lliwpfv7888/P8II51NbWUm1trd0OAwBiz3PPPWf0ewAAAACwRxz1dqI8Xowx6uzspJGREXrwwQdp+fLlZX9fvnw5NTU10QMPPFD87NixY7Rr1y768Ic/HHZ3AQAVROlijYnvAQAAAMAecdTbiTK8rrzySurv76eBgQFauHAhHTp0iA4dOkSvv/46Eb0ZYpjNZunrX/863XPPPfT444/TZZddRieeeCJt2LAh4t4DAOLMqlWrKJPJeIYlp1Ipam5uplWrVoXcMwAAAAC4iaPeTpTh9d3vfpcmJydp9erVtGTJkmL7x3/8x+J3/vZv/5ay2Sx9+ctfpg984AM0MTFB999/Py1cuDDCngMA4k5NTQ1t27aNiGbuE3X+vXXrVqqpqQm9bwAAAEAlY6POVhz1dqLreNkAtVIAqG549UCam5tp69atqOMVApDBfDAuAIBKxXadLdt6W0b+wvCSBMoNADA9PU27d++m5557jpYsWUKrVq2CpyskIIP5YFwAAJWIU2fLbY44Hqm7777biHFkU2/D8LIIlBsAwCQw4uSADOaDcQEAVBrT09PU0tLimfI9lUpRJpOh8fHxWOtFGfmbqD1eAABQSYyMjFBLSwu1trbShg0bqLW1lVpaWmhkZCTqrhnDRtw+AACAyieOdbZsA8MLAJBo4jrxd8Ir3EpnYmKCOjo6EmF8VYNhCQAAQI041tmyDQwvAEBiievEf3p6mrq6umbEtBNR8bNsNhsbI1GFajAsAQAAqBPHOlu2geEFAEgkcZ74Jz28ohoMSwAAAHrEsc6WbWB4AQASR9wn/kkPr0i6YQkAAECfONbZsg0MLwBA4oj7xD/p4RVJNywBAACYob29ne6++25atmxZ2eeZTMZYKvk4cULUHQAAANPEfeLvhFdMTExwvXJOCt2owit0U9wn3bAEAABgjvb2dmpra6uK0iowvAAAiSPuE38nvKKjo4NSqVSZ8RV1eMXIyAh1dXWVeQwzmQxt27ZNeOUx7oYlAACAeFFTU0OrV6+OuhvWQaghACBxVMKG3TiGV5hKSFKNcfsAAABAECnGW44EnshUpwYARIdjRBAR16MUl9hx1bA+kd/JHHt6eppaWlo898Y5Xqrx8XFhg4nnPWtubqatW7cqjz1kMB+MCwAARIOM/IXhJQmUGwCVg42JfxwQCQeUDRkcGxuj1tbWwHPn83mpcBDd/WJuIIP5YFwAACAaZOQv9ngBABJLEjfsOp4895qZEw549913ExEFfsdtfNlKSFItcfsAAABAEDC8AACJJkkT/6D6ZKlUirq6uor/9vpONpultra2MgM07glJAAAAgEoHyTUAAKBCEKlP9uyzzyrVMKuEhCQAAABAJQPDCwAAKgSTdcfcx0ImQgAAAMAuMLwAALFmenqaxsbGaMeOHTQ2NkbT09NRdykyTIb58Y4VxxT3AAAAQFJAVkNJkDkKgPAwUcw3STgp3/0KEztGU1DxYr+08KYzEZoEMpgPxgUAAKIBWQ0BABWPSPY+m8ZXHI0PJxywo6ODUqkUtz6ZEy7o952gkMEkJSQBAAAA3ESl4xFqCACIHUHZ+4iIstmstbDDkZERamlpodbWVtqwYQO1trZSS0sLjYyMWDmfDCLhgAgZBAAAAPhEqeMRaigJwjkAsI+tYr4ieHnaHG9RXAwXkdW6OHrtdIEM5oNxAQCAYGzoeIQaAgAqGlvFfIMQqZPFq4EVBSLhgAgZBAAAAN4kDjoeoYYAVCG8TIFxyh4YVTFfkTpZvBpYcRq7qMAYeLNlyxb64Ac/SAsXLqS3v/3tdPHFF9OTTz5Z9h3GGG3atImWLl1K8+bNo9WrV9MTTzwRUY8BACB5qOp4k8DjBUCVwcsU2NDQQEREL730UvGzKLMHOsV8gzLzmS7mq+JpQ+ZFjEEQu3btoiuvvJI++MEPUqFQoBtuuIHWrFlD+/bto/nz5xMR0Te/+U269dZb6c4776RTTz2VNm/eTB//+MfpySefpIULF0Z8BQAAUPlEFU1TCjxeAFQRTmyze8XnpZdeKjO6iN7KHhhFQomoivnKetq8xjPKsQsbjEEwP/3pT+myyy6jP//zP6czzjiDtm/fTs888ww9+uijRPTmKuvWrVvphhtuoPb2dlqxYgX96Ec/otdee40GBgYi7j0AACSD3/3ud0LfMx1NUwoMLwCqBL/YZh5hZA/0I4rMfI6nzW3sOaRSKWpubqZVq1ZFnnkxDmAM1JicnCQiovr6eiIiGh8fp0OHDtGaNWuK36mtraVzzz2XHn74Ye4xpqam6PDhw2UNAAAAn+npafr+978f+D0b0TSlwPACoEoIim3mEUa8sx/t7e20f/9+yufzNDAwQPl8nsbHx62Fr8l42uIQKx41GAN5GGN09dVX00c+8hFasWIFEREdOnSIiIgWL15c9t3FixcX/+Zmy5YtVFdXV2zNzc12Ow4AABXM7t27aWJiIvB7V1xxhdXkWdjjBUCVoBOzbDPeOYiwM/M5njb3nqVly5bRFVdcQVNTUzQ2NiYkwImiHTvbyMbLJzG9vSydnZ30m9/8hn7+85/P+Jvb2HeybPG47rrr6Oqrry7++/DhwzC+AADAA1F99a53vctqP2B4AVAl6MQs24x3jiPt7e3U1tZWNBJ+97vf0Q9+8APq7e0tfqexsVHoWEkeO5k9cUjAQXTVVVfRT37yE3rooYcok8kUP29qaiKiNz1fpWP6/PPPz/CCOdTW1lJtba3dDgMAQEKIKluyG4QaAlAlBO1f4lG6p6nacDxttbW1tGnTphkhdS+++KLv722NXZzStovuiXvxxRerOgEHY4w6OztpZGSEHnzwQVq+fHnZ35cvX05NTU30wAMPFD87duwY7dq1iz784Q+H3V0AAEgcMnu4bQLDC4AqwW//Eg+b2QPjituoOXbsmFBCkrAyL46MjFBLSwu1trbShg0bqLW1lVpaWowaLjKGncieuFtuuYW+8pWvVHUCjiuvvJL6+/tpYGCAFi5cSIcOHaJDhw7R66+/TkRULNr59a9/ne655x56/PHH6bLLLqMTTzyRNmzYEHHvAQCg8okqW/IMGJBicnKSERGbnJyMuisAKDE8PMwymQwjomJraGhgDQ0NZZ81Nzez4eHhqLsbGrxxaWxsLPu3V0un00bGrlAosHw+zwYGBlg+n2eFQqGsf6lUasa5U6kUS6VSRu4VbwwymUzgsXm/c8Ygn88LjWE+nxfqYyXKYK9r3r59e/E7x48fZ729vaypqYnV1tayc845h+3du1f4HJU4LgAAEDZ++koVGfmbYkwwtzQgojc3MNfV1dHk5CQtWrQo6u4AoAQvyQERVW3iA6cWlao47O/vp2XLlmmNnd8eqLa2NmppafHMIOgUlB4fHw88r1eCC68xcFYCg1L4ex13x44dQl6bgYEBWr9+feD3IIP5YFwAADZIYlIk09ckJX+VzbsqBauKACSLQqEwY/VLtol6a7wI8mblcjkj/fDyaA0ODvqOQSqVYs3NzWUeOFHg8QoHjAsAwDSqURDVhoz8xR4vAEBVo1LfzMHEZlyRIsROXHoQfulyHY8WL8HFX//1X1urxxWXDc0AAADE8dMZ1ZAUyRYwvAAAVY1qnS1Tm3FFihC//PLLQsfySoMrYtyJoDJWsdnQDAAAQAgRnVGaFClO2XbjDgwvAEBVI1qzI51Ol/07k8kE7nsSQdSYqa+vV/Ya6Xj1SlGtb+IUpV62bFnZ56bGEAAAgDlEFgSdKIgwsu0mCRRQBgBUNU4o3MTEBHd1z0lc8fvf/54efvhh4xuMRY2Zrq4u2rRpE6VSqbJ+iniNVL16pefIZDJa4YDuotRJ2aQNAABJQ1Rn/PjHP6Zt27bN0J1OOCIW1mYCwwsAUNU4oXAdHR2+Rs2cOXNo9erVxs8vavjdcMMNtGLFCm7mw61bt/oqN1VPlXN+IjPhgE5RagAAAPFFVGf87//9vz3DEZ36hG1tbVhgKwGhhgCAqifKUDiZPVDt7e20f/9+yufzNDAwQPl8nsbHxwP7F5Tgwg+EAwIAQHUhkhQpnU7TCy+84HkMnaRMSQaGFwAAECkbNabOLWr4OV6j9evX0+rVq4VWEv2MOz/S6TT9/ve/h9EFAAAVhG6yC5EFwU9/+tNCx9INdU8aKKAsCYpUAgBsYbtQJa9IcxD5fD5W4YGQwXwwLgAAIr6cz2QytG3bNulFNN6xmpubaevWrVRfX0+tra2Bx4ibDrGBjPyF4SUJlBsAycS20RMXnOscHh6m22+/PfD7AwMDtH79+hB6JgZkMB+MCwDAqb3lnto7XiqVsHEv3Tg9PU0tLS2B+5PHx8dD16Vh63MZ+YtQQwBA1VNN6XCdUMW1a9cKfV8nMQcAAIBwkK29JYpXeHtcazTGXZ/D8AIAVDXOCqE7/M5JhxsXYW0akc3TfrXBAAAAxAeZ2lumiFuNxkrQ5zC8AABVi60VQufYOpubbRPX1UoAAADyiCax+NnPfmZUL0WZmKoUm/rcJDC8AABVi60VwriHOjjEbbUSAACAGqJh4Zs3bzaul1Sy7ZomCo+fCiigDACoGPw2+apspBVdIZRJh+u1udkJdYibQdPe3k5tbW1VkVgEAACSihM+7pXsgkdc9ZIKNvS5DWB4AQAqAq8UuevXr6cdO3Yopc4VXSEU/V5QqEMqlaJsNkttbW2xMmyc1UoAAACViRM+3tHRQalUSsj4irNeksW0PrcF0slLgpS9oFqIU3p1Ly+SF0Gpc51rm5iYoK985Sv04osvGkmHOzY2JlTXpK+vjxYvXhz5uFYikMF8MC4AACK1eo1E8a+3FTQniTK9vYz8hccLADADkwUYdfHzInnht4onqpRUEkyIhjB85StfKf6/6LjGyRAGAIBKo1pkqDt8fN++fbR58+bA30UZghd0b0TmJH4ev1gljGJAisnJSUZEbHJyMuquAGCF4eFhlkqlGBGVtVQqxVKpFBseHg61P/l8fkZfZFo+nw+8Nl5rbm6WvlaVvoqM6/DwMMtkMmW/y2QyWveiUCiwfD7PBgYGWD6fZ4VCQflYYQIZzAfjAoA3NmRopSCql0p1ZZgE3RvZOQnveKX63Ibuk5G/MLwkgXIDSaZQKLCGhgZfI6G5uTnUSfrAwICW4TUwMFC8Nrcwdrd0Os36+/uVhbFzDlHjTmRcbRjClTwJgQzmg3EBgE/cFhPDJkgvRaHXHYLuzeDgoK/e9uq7l3FlS/dVreG1a9cuduGFF7IlS5YwImL33HNP2d+PHz/Oent72ZIlS9jcuXPZueeeyx5//HGpc0C5gSSTy+VitzJmyuMV1qqfo0hkjS/euYOMRRWFWemTEMhgPhgXAGZiQ4ZWIl56KUq5L3Jv0um0Mb1tU/fJyN9E1fF69dVX6YwzzqDbb7+d+/dvfvObdOutt9Ltt99OjzzyCDU1NdHHP/5xOnLkSMg9BSB+TE9PFwvqBhFmLPiqVauooaFB+nepVIqam5tp1apVRBReqlmv2lgq5zZdl6RSCkwCAIAJKqW2k23iWLNR5N688MILQscK0ttx0n2JMrw+8YlP0ObNm7kPEGOMtm7dSjfccAO1t7fTihUr6Ec/+hG99tprNDAwEEFvQVRMT0/T2NiY0crtSWD37t308ssvC33XRjpWr/tyzz330EsvvSR1LN5G2jBTzba3t9P+/fspl8tJ/c59btPGIiYhAIBqolJqO4WBo5fy+TwNDAxQPp+n8fHxyOp3mRzzIL0dJ91XNVkNx8fH6dChQ7RmzZriZ7W1tXTuuefSww8/TH/zN3/D/d3U1BRNTU0V/3348GHrfQX2iFO2vrghKgQbGhqKXiRTeN2XdevW0datW31/u2DBAnrb294247dbt24tu6dBxSWdVLOmrm16etrT+y56btPGIiYhAIBqolJqO4VFnGo2io55Op0OLPkSpLfjpPsS5fHy49ChQ0REtHjx4rLPFy9eXPwbjy1btlBdXV2xNTc3W+0nsIdTC8q96uFUbh8ZGYmoZ/FAVAhu3LjRaDpWr/vy7LPP0i233BLokfzTn/5Ed955Z+AqnpNqlugtj5iDbKrZIK/pyMgILVu2TDhMwuvcjrHo7m9pv0vDKYPAJAQAUE2YlqHAHKL35jvf+U7x3+6/E4np7VjpPuWdZDGHXMk1fvGLXzAiYgcPHiz73he+8AV23nnneR7n6NGjbHJystgOHDiADcwVCDbYBiOSka+hocHoGIlkGhRpTuZCEYJSzar8XiT1rd+Yep27UCh4JjxR2RAc5+xWoiCJBB+MCwB84phYwhZxLBPi1yfRe6Ort23rvqrNaliK2/B66qmnGBGxxx57rOx7F110Efvc5z4nfFwot8ok7nUs4kJQRj7TCko3Y6HqfVNVTrqpb3ltdHTU81x+x1KpM1Z6DZU6CYEM5oNxAcAb3Yl7JRDHMiEifRK9N7pGpU3dB8OLzTS8jh8/zpqamtg3vvGN4mdTU1Osrq6Ofe973xM+LpRbZSJaC0rGcxI3TK10hamgdGt0OX0LY1VPxGva2Ngo3G+V2l1Oy+VyWtdcyZMQyGA+GBdQrYjqvjh6g0wRxzIhMn0K697Y0n1Va3gdOXKE7dmzh+3Zs4cREbv11lvZnj172NNPP80YY+ymm25idXV1bGRkhO3du5etX7+eLVmyhB0+fFj4HFBulUnSPV6mV7rCEoImPF6y16h6baa8c6XKh9f3sMJiK3USAhnMB+MCqpE4ennCJo5bKeLYp9K+mdZ9VWt4eU2MLr30UsbYWwWUm5qaWG1tLTvnnHPY3r17pc4B5VaZJGFvixdxXOkSRWRfmVerqalhQ0NDUufTUdImvHNOS6fTnues1EWCsAw5yGA+GBdQbVSy7jNJHHVGHPtkk6otoLx69WpibxqTZe3OO+8kojczoGzatImee+45Onr0KO3atYtWrFgRbadBKJjMaBcn4lQUUAW/+xLEjh07qKOjQ/j7ulktTWU7SqfT9Oyzz3qWL4hT2ltRRkZGqKWlhVpbW2nDhg3U2tpKLS0tVZ8pFIBqxXa9zErXfSaJo86IY5/iQqIMLwD8iFvldhOKKU5FAVWYnp6m+vp66urqosbGxrK/NTc3U3d3N2UymRmfDw8P0yWXXCJ1Hl0lHZT6VpTvfe97NGfOHM+/xyrtrQAo0wAAKCWMhZhK130miaPOiGOfYoMdp1tyQThH5ROHvS28kLf6+nrppAmVnDSENwaNjY0sm82W3RcT98tU2ENQ1segJpKOv5LCYqOI44cM5oNxAXEgrPC/StZ9JijVi6Ojo6HqDBGdXEl6zARVu8crDKDcgC5BGev86jq5qdQ46rBj800q6eHhYdbQ0KBkeInei7ilfPdStFE8f5DBfDAuIGrCXIipVN1nAt6ipaOTbOsMmX3ScdNjNoHhZREoN6CDaMFgUaFUiatKUXhJTCpp3aLPoiuwOmlvTXp1/RRtFKvOkMF8MC4gasI0hipR95nAb9Gy1ACT1Rm65/aas1Ry6RIZYHhZBMoN6CCTklxUaVTaqlIUK5UmlbRuWnmZ61IxoEymVw5S8pdddlno9xIymA/GBURN2Asxlab7dBFZtMxkMmx0dNT4VgqdBdM4bO+wDQwvi0C52SXpL6hsSnLRCWslrSpFFZtvSkmrppUPYwXWZAinrmfP1jVDBvPBuICoiWJRrZJ0ny6q46syr3L/ZnR0NPR7W0nIyN8TCICYMDIyQl1dXWWZijKZDG3bti30jINeTE9P0+7du+m5556jJUuW0KpVq6RS0Mtm8BFNtdre3k5tbW1afQuLqLIdOVktec/Y1q1bhZ8xlX6FUbIgKHNjKpWibDZLbW1tQn0IyhoWRCWXaQAAyONkfp2YmODKoVQqRZlMhlatWmXsnJWk+3RRSdGuMq/i/aa+vt5oH8NGd+5mFNtWYNLAqqIdKqEQookQLlkvQhJXj0TD/qampqx4P3W9qiJFn2tqakJfgTW92qxbMNrWNUMG88G4gDhQbeF/YSIr41X3ZKlm7Y3rnMVk+L0XCDW0CJSbeaJItiCLScNweHg4UHjF4ZptEqScu7u7lQRlWKGqQf0fHBwMPWTWdAinzl62vr4+a9cMGcwH4wLiQjWF/4WJzF5llXmVTnh5FCnrRQjap5zL5YzoaRheFoFyM09YceGqL7INw9AvJXm1rAx6rUKtW7dOaVzCWNUKOl+UkwvT75GIZ0/XuFMBMpgPxgXEiaTv144KUY+iij5QXWyLMmW9H7KGpM58AYaXRaDczBNGsgWdF9mWYVgoFFgul2P19fWxmbyr4qVkg5Rv6d9zuRxbtmxZoIDnGblRharGaXJhI72yasFom+EmkMF8MC4AVAcii34q8yrR39ics5jU5bKGpM58AYaXRaDczGPb46X7Its2DOM2eTeVvlwmXFA2rrz0WYhbqGqU91N3fwWv77z769caGhqsXjNkMB+MCwDVQ5CesenxGh0dtbb/2qQuV9mnrDpfgOFlESg389gshGjiRQ4rFDJqVLyCsgYTzwBQiSsvNXLjdH/CDncU7YPIiqRf3wuFAuvr6xMa51wuN+PYJo1RyGA+GBcQNXFaRKwW/KJNZOdVURelltHlIs+azj5l2fkCDC+LQLnZwVYmJBOT8qiFURioeAVVN+K6x0tFOJber6jqgpkaQ1MTldJjjY6OShXRFOm7yJ4vnrfLtDEKGcwH4wKiJA6LTtVG0JirzKuCwstN389SvdXT0yOky7PZrNCzFuY+ZRheFoFys4eNZAWqk3L3hHhoaCixKXJVvYI6q0mlxpNMOACvL3HweKmMocmJis6xZPouq5Rt7L2DDOaDcQFRUQnlYJKG6JirzKu8kn81NDQYvZeyYexBcwPesxbWPmUYXhaBcrMLzwMg6xUo/b5oeFTpSyazZ6kSE2G4UTVcdOs89ff3S53fEa6yq1pheCRlx9B0eQKdY6n0XeQ9sLX3DjKYD8YFREHc9thWA7JjLjuHCsOQVq0X5q6RKfKsyRh42OMVQ6DcwkV2JZ/3fZkXNUjgRFGfyTRuIdzf3y8kkHp6esquW9fjlU6nhUPYiPxX26Iu2injWTU5UREJ90yn02xqasrzGNlsVrjvpec1FV9vc2WxmsC4gCiIQ8RBtWFzzMMwpFW2Kagm3yo9p6Ozcrmc8fkCDC+LQLmVY3Mzreyqi26ih2pYueMZpo2NjVICkOhN43dwcFA5fto9/qL3Lig8IiqPpIwiNKk0RY/lGLluRIp5qypxW3vvIIP5YFxAWKjsy7G9xzYuhJFgxOa+5jAMaZVF2+bmZqVFQi9MzxdgeFkEyu0tdPeV+AknFVd60AqK2/PlfsmSvnKn6tr3Gv9UKsW6u7uV4qd593FwcFApjKCUKLJqFQoFNjo6OqO2iVffTSpN2f1xKtkkVRccRN8nXhZEPyCD+WBcQBio7supVL0pA29s6uvrWS6XM6qLZOYqsjrRplHn9KWzs1PoHKpRNqLPWlTZdmF4SQLl9iY6McAiBpvsCyb6/b6+Ps+XTDZczNYEX2dPm1c2O5lJtsxEvrm5mQ0NDXFXjrq7u4W9aaY9QWEhMwlxlG8UHq/S+6WSTVJlFbBQKAQWxHbefZn3BzKYD8YF2EZl8S4JkSIiBI2NycQUovuaebo5aHHclh5WMdjd57Cxn9vUXA6Gl0Wg3PRC8kQNNlEjyFkRMRHuILNC7yfMdF5kE3vaeL+VCUmTEYyOcJyammJ9fX2ss7OT9fX1FfcUie4fGxgYiE1aeFFUJiGlIZpB3xNJB6+SLtdRZqLjnc1mlccol8tJ9UkEyGA+GBdgE9V9OdWQ1VBmYdPUWATta3aiUWTviQ3jRmUbSNAc0sT+LJOZhWF4WQTKTX1FRMZgU4kB1p3gidYp8hNmvMyHoi+yrT1tqVRKODa6v79fOnbfr6aGzLMSN4+XnwGtU8MslUqxtrY23+8tWLBA+BmSVWqO4WrDKHJjw5iuRBm8a9cuduGFF7IlS5YwImL33HNP2d+PHz/Oent72ZIlS9jcuXPZueeeyx5//HGpc1TiuIDKQXVfTtKNLsbkxsak989rn1LQ4l6Q8WTSuJHVlapRU7LPmunMjTC8LALlpj6Zko1LNlXfQUTQOATVfJg1a5bSuZ0XOajKvGj/ZcdH1JNVOsnWMX5Ls0CKrp6ZWmkzEToQtBKmuzDgt5ct6Bny6q9MWKetMEA3NozpSpTB9957L7vhhhuKyUzchtdNN93EFi5cyIaHh9nevXvZunXr2JIlS9jhw4eFz1GJ4wIqB9koFNMh+HFGtrSKycVDnr6TnWvl/yu7cV9fX3Hx1WsLgaxBIqsrRc+ho+dtJFKD4WURKDf7dZ8cg21wcFBrcis6aXXjVTxQtw8NDQ1GPEMy96C0pdNpKaNGxAMokgxDpvi07kqbSuiAV7Fsv+dIt4aZ6jPkpwympqZ8DWwVj7Js4gve2JoOW6l0GUxUbngdP36cNTU1sZtuuqn42dGjR1ldXR373ve+J3zcSh8X4E8UiYNKiVtEQpyQ1ce2w+Vlwsi9DBAnLF73mRPtS2dnZ2jPddQLgjC8JIFyU59MhWFc8JrsKo1pb5tfcybzsmlSVSb+2WxW2qjxM4REz5vP56VCA1TDCFRCB1Trvo2OjobyfPi9H35jEHSPw9xPZ7rGWqXLYKJyw+upp55iRMQee+yxsu9ddNFF7HOf+5zncY4ePcomJyeL7cCBAxU9LsAbk3tRVIlDofq4IjtnsG2cmpo7mdiTFkeDPeoQeBheklS60vdCtbK5zGRKxINSWuxVx6ugE+5gSmjJCDfZUECVPsoaQKX3mvcb2X1j7lAGk2nhVUIHdNLrj46Ohmacu1uQMhC5x2ErQ5M1UypdBhOVG16/+MUvGBGxiYmJsu9dccUVbM2aNZ7H6e3t5d6zSh0XwMf0XhQTfTG1iOJF1N49FURqIoZlnOpGq5jsbxwNdni8KoxKV/o8VFfTVCfxfnuoSs+tYwB5vTAiAj2KMDIiuVBAlT1epb+VVWo6ceRuo9LGSq2sINX1ag4MDGiFwtbU1CgbfSLKQLROXpjKMIq0vXGEiG94HTx4sOx7X/jCF9h5553neRx4vJKPjb0outguVB8H754bUdnlt00hbEPZRLRKkM6RGZcwDHbRPkYdAg/DS5JKV/pudFfTVCZTQSnQ3YkZZASE3wsjKtBFs72ZbrKhgCIrbE4bGhoSeBrk7q9KKnNbwlY2dEDXq5mXyMLIu3aVwtOmJ1nd3d2+57Lx7pug0mUwkZlQQzeVPi5gJnEM02LM3rsfJ+9eaZ9kDMFCocByuRyrr68v+42ucWpqriUTreLWmzrjYttgFz2n08coQ+BheEmSJOUW1WpaoVBg9913H1u4cGHgua+99lojE3pRgS6a7c2d3dApGCw7mXYrT1nhJJIIpLu7O/B+8AS6iGAV8WCG8WzJTlBUvZql/VY5Rum95I2vcy9lQ3hVFLLfPWtrawv8fVSr0pUug4n4yTW+8Y1vFD+bmppCcg1QcbUNeYjKp7h691QNQZPGqY681YlWcetN3XEJc7FOpI9RhcDD8JIkScpN9OXr6+sz9qIEebvcTaagr9cLY7t+WGNjIxscHFS6Pp5C8XKN+3meeCts6XS62C+Z+5HJZDyLLzrNyXbU39/PLr/8cu65VQS6KrKhAzreKp2U8u77wbuvuolIRLI4ijyjXl7SqFelK1EGHzlyhO3Zs4ft2bOHERG79dZb2Z49e9jTTz/NGHsznXxdXR0bGRlhe/fuZevXr0c6+SrGkQtr164NVY6ahief6uvrWS6X006+ZZu4GII25K2oDuBdY1zGRef6SvsYRQg8DC9JkqTcVFbsdVa1dZIZ+LXrr7/e94WREegqY8LzmuXzeeECxEQkndyCdx9UE6SojLnX7xyl2t/fL3Qckyu1Qd63UmWvsvnYbfzI7hOTUUgi91JVIYu+D6X7AkWvOQylW4ky2GvML730UsbYWwWUm5qaWG1tLTvnnHPY3r17pc5RieMCZiKzeBeHSa4XQfqloaGhTEbFzbunYwgGLZSK6mmb8lZE//P0SNwMZB5R9BGGl0WSpNxMrPqLYjNFe319vW9/ZAS6yph4CUCZWhpe2PIu2E6ZL7pPzrRwDpq0lBqsQWMrUsNExXg1cc06CllmccHd1zgo3STJYJNgXCofWXli08Os4wkoFApCtTBVIgjCmtCrGoJB+4pkIhRsj4mfvvSKsoibgcwjij7C8LJIkpSbTnIE2VUWWYMmlRJPsR6kgGSEl+qY8ASgrtC0udqlamCKtvr6+shSyDqhl17nLY3v5k0O3CuxQciGl+oK+0KhwPr6+pSfLZl77+5rHJRukmSwSTAulY3KYphugXMvdPdwyiSoKg35ilPacRX97beY56fHveYvYchbx8B2yr3cddddvmVf4mYg84DHK2EkTbmpJkeQfWhlVtndWQ1F+uYnlGUFus6YlNYPm5qa0lIkNoVHGCnz161bZzRrkCgiBmtDQ4Pv/VXx6OoYQ6LoGnmFQoGNjo76Jrbx62sclG7SZLApMC6VjcpimI0FDhOZjt17fkXlRZRpx3nXIaO/daJIvOYCsovGqh5KBxGDO24GMo8o+gjDyyJJVG4qCSFkhb6MUnFnfpMxgLwmfLICXXVM3ALLK9OhiCKxudpl2+NF9KbnaGhoKPQUsrrXpiqURbyl6XRaqIA0D92wRtlnmjcGcVC6SZTBJsC4VDYqi2GmFzhMRFnoGpBRpB33QmbeYEKnuu+nqLzl6VnZ/fgiBrdj3Dnp6ONgIAddT1h9hOFlkaQqt9LVElMr96XHHB0dDZyU1tfXs9HR0RlCfXh4WHgFrbOz03c/joxAl+2/l8Dq7u7mCsVcLue7OmUiVNFrBUw3pFJGkYSZQpYxc948lUmNjLdURjHqJvIwuXck6lXppMpgXTAulY3MxN3WAocJj7YJAzJsneGH6LzBhN7xqpflJ2+9MhDLyGPRKBH3d4ISUEWN6L0z8bzB8LJINSg3Eyv3pmoUOYyOjkoJMK9Jrc4LNjwsXrC4tC1cuJD9y7/8CxsdHWUDAwMsl8sJZylU9S6IhAwMDQ15HpeI2Ny5c7UVydq1a0NXmqa8eaphPKKeJRnFKDspKz2urNFWU1MTWHA7ylXpapDBKmBcKhvRxTCbCxwmoiziYECaRmTeYMPj5eAlb53tGLrjq9v3bDbLXdyNg/Ec1A/d/YwOMLwsUinKTfWhD3Il85pXUV2eECCiGQkNRCZssh4a3uRTVwiIZmryag0NDdKrUyreBZGQAZFsRoODg9qKxLnusGPzde6T03Tq15VuWPZLEiOqGGVWU93vk4pSFfH2RaVYK0UGhw3GxT62n3kRj7nNBQ4THq84GJBRoBNFIqIHeM+eifvFmJ63jtd3U8aMbUxmjYbhZZFKUG6qDz3vd25XcpAAFVldb2xsZNdffz3r6enhhhb69U8m6YXJ+GfG7O+L8hK+Qd4FXkik3zmCEkuUFvnt7u42dm1hCV0Rz2TQGLife1WloaIYdRRsX1/fjOdHRalGmQo4iEqQwVGAcbFLWJNJ3nnS6TTXq2AaU3s4bRuQbp3nRJPEISzRa6GU9//Ov1X1o6l94Ca9dbZK4JjGdNZoGF4WibtyU61NFLQHZOPGjUIr97ZDAk0kvVAVAmFkAiwVYGGOh5+wGRoamnHvM5kMW7dundSxwwgpETH8naQfska8itKQVYxek7ugDJ/OfZuamlI22oKewbgQdxkcFRgXe4Q9mYwyTMvUHk5bBmSQzjNlDKveA7+FUtMh2qY8Xib2fA8MDFgtgWMaU2PnAMPLInFWbiKTTt5KvkicsGhNrc9+9rNSLytPmAetLDoCsbOzU1lIqAgB2x6vUgEmgkqWO9HmFjY8JTQ8PMwWLFigdVzTyAhTFQ+vrfp1+Xzed89d6SZqv03WXkabaOilCcVoe9IYZxkcJRgXO1TSZNIUpgwE07JAROeZMIZ1vZtBia1MjYnJLLOyEUU8HWbSEFQdI9Hfms4aDcPLIjrKzfaERMUwsDVxl21Oso5cLie8smjKEBI1BsLKBNjT0xP4fJjax6QqbFSNPtshbKLCNJvNFsfReSdt1OESVYw7d+70Nfr8wmabm5t99w6K3ps4TFhEgIHBB+NiB9Mr45VCFF43kUy8orJM1RgOw7tZugfYr1ixTH9NhDB6yW+/0PzSsXZyA+jMA3R0iMxv4fGqIFSVWxgTkrBC4aJqbmFqyhCSMQZsepnczSvTYT6fZ2vXrrV6bj9hI5slT/S47mtUUfgyxrh7bPv7+4V+d9ddd0n1TyQdsMz4ucfHKdRt4nkLKnEgcp2899ZkOBYMDD4YFzvYrKcI3iJojqSy0CprDIfh3fQLlVSdE5oMYfSKbgky7gqFAmtsbBS6L7y9yM51qOoQ2d+a9BYyBsPLKirKLawJiez+qkptpcJUZDOraeE8ODgolHTEr4n0z/186O7ncs4punrlhaqnUXRTtsoChWgWQb/rFPV41dXVSffPa7/Dxo0b2aJFi4THsL+/39j9KG2XX365dmhNWOFYMDD4YFzsUK0erzARmSOFkSTI9r0WDZU0ZTCZJMi4k9VDbv2io0NUf2vSWwjDyyKyyi2sCcnw8DBbtmyZ9gSsEppbmHoJBNGEBLJjrzvR5e3F8WvpdJp1dXVpj1vpBl8dYaPqWe3u7i47jltROAkvePfJr186BqmjQAuFArv++uuVjiE6bqWlGkT3TPKeBfd5bHm6ZZRPmJNTGBh8MC52ML0yHjeiTOThnF9kjqSysCwbFt7T0yN0XBXvpmikSJyfJ79nRVYPufWLjg7R+a0pbyEML4vIKrcwJiRhhr/FoeVyuRlj4Jf1z9SKhoPORNepaeX0V1TQq7T6+nrPNLs6wkbV8Azy3onscfJasVIdo4GBASOZIUWVpYl31dZeR53rCjMcCwYGH4yLPWzoER5hG0EyEQa2+iYqv4JKpajILb9x8Gsq8zVZOV1pHlQVPVR6n2T3Z5ciuk3AS/+YeLZheFlEVrnZnpCIrqLMmjXL2uQs7GZiw2gYKVy9+l7af5v78tatWxf47KgIG9W9daUJInQyJ7n7oTNGXslcVBtPWcqGQYo0G3sd/VpQwhd4vKIH42IX03pE5Piqe35EZLvMFgibe9Rl5kiDg4PCukYm7b2o7NTxRsnq+ij2DOpmE1TVQ3mJjIhENOPZFN1b5qV/YHjFHNser9IHwK8woKzHZO7cuUXBoTr5iktTEX5hpnCV6b9tb0Wpd81kaluv1OciTcf4KFVGugZwJpMxWgPN3T/GzNdZK22lSkRkr6POPkin+a2GhxWOBQODD8ZFDxFZaNrrUxp+7PXemMpMp7qfxvYedZk5kuh3c7lc4L0qFApsdHSU1dfXC+sMneuNwuMl87yaMK5VU9KL1ACTeTZl9I+pRQUYXhZR3eMlMiEJmqTV19ezXC7HTSkt2nSTQsSpRemK16154fTfRKIOP2HT0NDgKVRUBY5NY0Lmnut4C1OpFMvlcsLfFzUWecaQrbFwh1z4rch7/U1mDJxx85p8hBWOBQODD8ZFHd77sWzZMq0snyrn9HrnZGsxBb23psL7TCyoyMyRZMLR/HSbig7T9W6GvcdLRr+bNK5VxtbZPjI8PCz8G9HQUxGdZeK6YXhZRCerod+EJOx9WmvXrmVr1671DUF0Ju5h9Um2mXDF66xg6hog2Ww2Eg+kyDkHBwd9n+Uo7nc6nS67P6oer5qaGjY0NCSsxHt6eoop20U9OibCIGXHI+h55v1NxXsru3poMhyLMRgYXmBc1BCVaaYK6Mqcs7Q5x/F7v0WNJBnZJ9o3E/cgaNFGN8ohlUp51jwMGgcThrfofc9ms1rGvoxBYSMBXGl4vUgYYCaTKR5ftBbYZz7zGaHv8RJS2bhuGF4WMVnHy/FgmarDY7o5QiquxpcJYa/rYi5VhLlcTjpbYdRj6NUc48R9rbrP6cKFC5V/u3HjRm5/bMeUO8+ZjEfHZggpr286qHpvbcbL+wEDgw/GRR4ZmSa6Ch6kV1TlaJAXx0bIns0sfyLj5l60EZH5QREkKhEmfX19xuSZ34Ktu28qIW9TU1O+cwu3QSGrB2URjapwanuZ1p28Eiw2rhuGl0V0lFuhUGC5XG5GTLHoxsAw26xZs9i1114b2z1hJooYeq0IEZFyiIlI3HgqlYq10VXaTBsTOoYXb+XKREy5zL4kUY9OWMXMTW3AVvHeRlUwFgYGH4xLOSILALIyjScT3ItvQZ4GkxPL0uPKJKkQlX2iKdxNhf3LJAUxsWdVpJkwhryus7+/n/X19XmWi5ENeVNJNGE7AZyMLsxkMmznzp1G50dez6bp64bhZREd5VZpad9lCruG3TZt2jRDOIuutMuuOKoI2iDviKg7PepWOskIy5jwal5KSMVoUPFilT4/pid0RG++b9lsluVyOe0sTSrIJuzhnTuMdNgwMPhgXN5CNJpBVaaVyg/ZFOeiqa9Lm0ipDVkjSUT2hZk0R/f+Njc3h6JXTe9ZNRXyJju/dAwK2x6vsKI/ZMcNHq8KQlW5hbHno1pbJpPhFiX2MphMJhTww887EpUwUmmO4IlDn72EqTtluw0vlgyqe6ec50w2XMQkqpMtmymnS4GBwQfj8iYy+1tUZZpT/09lIfXKK6+Ukgmi33WSDZiWfTKLU2EsvPidy6SOUqkrqYIJA0Blfukcz7ZxrZsFWqWJzNlMXzcMLwHuuOMO1tLSwmpra9mZZ57JHnroIaHfqSq3OExaq63xXj6ZrDk6L6GDlyKyLYzq6+uN1W5zVsZEBBUvi6Jo6+3tNeLpseXFkv2uShhk6XMWVpZAmb57Tba8FjNs9BUGBh+Mi7z3QFUOyxTz1WkyXpxSY9C07BM10MJYePHDhF6tr69nN998s7YeEsVEyJvM/NLLAPcL39TN7mkiC7TseyPy3JnUsTC8Ati5cyebPXs2+8EPfsD27dvHurq62Pz589nTTz8d+FtV5RZ1mFacm83izqnUm/WaRkdHjRSwNRnaZUMYOaFqJo85Ojoa2Gd3eIrjfZLZvzgwMKBUgZ43cbDlxeLt0fSbXKhmvvQLZTKdJdAL0cnWsmXLAt9Bk945GBh8MC5q3gMZOSwb1qcjx2W9OLZlhp+BppuW26SnTFevyu6X08WEx0tmful1P3jPTUNDw4zkao6+k71nulmgg5pqAhRT7wsMrwDOPvts9sUvfrHss3e/+93sq1/9auBv4fEy09LpdFG5XHDBBZH3R7SZTihgShg5WQhFQg6c74rWEHMbFkNDQzMM2ObmZjY4OFgmiGUnJ3nFTINe9Xecjcv9/f1GlLlXds+gyUWhUGB9fX3Kz5mJSYnKMZxEMT09Paynp4eNjo4KTbaC7pkuMDD4YFzUvQciclglkYVs4034VEKiTIf8mUpjz8OGp0xVrzq1EU3v//FDxEuXTqd99Zhof71Sqzv9KJX3vb29nsY00cwcAH73rHQxVibUVqSZWNgz8b7A8PJhamqK1dTUsJGRkbLPN27cyM4555zA3+vu8aqk5Bqm29q1a2c82Kqhf1E1kx6v0mfj7/7u74z0TVZhDA0NBX63dMLBU2iNjY3smmuumfH5ggULhPve0NDACoXgulK8ULygY5tQ4iJj5Cf8ZSdqQc+ZjKJQmdjYSIltatECBgYfjIvehDmoNEipUWRjIdVJp80j6rBjU2nsva7LT+eo4DYiZEMHw04qIuOl48luUeNtamrK8/zue6ySdp93z0wd26951R0NExhePkxMTDAiYr/4xS/KPr/xxhvZqaeeOuP7R48eZZOTk8V24MABZeVWaVkNTTe3Yqm0hCO2khmIep6C2sDAgNKK7/DwsG/6e6K39m/Zen6dyvWl70lQOKPp+js8ZJ9RL4NJZqIW9JzJGFJBModXqFNkMqQy8YTHyy4YF7MTZhEvj0l5GLQw4RVpEJRAQGclX0QWqHoZTWXz4/WZFwXhp79k9z2Z2Css0m8ZfaZqnJuel5aOo6ljB+0fz2QyMyJuws60CcPLB8fwevjhh8s+37x5MzvttNNmfL+3t5d7o1WVW1tbm7EHPOo2b9486d+orJTFpenuD+IJBZMePxWPl+k+qDTH21VKUNy17LOjqsRlz+M1eZKZqPltZJZZIQ7KjFjanPdSNJuiTEps7PEKB4zLm4TlHRJJSJDNZlldXZ20TOadixdp4LXSr7IflXcMEcNItdaXjXA+P/nI+/+g50Jm/49uyGSpl+7666/33R/tJVNl9yvZWvx2dJfItgcR/eHcH5EIHZWxNwEMLx9kQw1NerwGBweNP+BRtqVLl7Le3t5Ab4nXSyS6UjZ37tzIr7XUI8MjaOMxTyAPDg4aEXqlQlh2xTcOXseguHDemOrW3xHFZIhgUDjJggULPDcyi9wrdximTGITr7h9ryYauuMcG1kN7YNxeYswktJ4GTfOeURX+3ky2dkPo1JcV2c/aimihpFKGnvGzBewFZGPPK+JiNfQb6+rM+Y6IZO6SZjc/fXz1Jb+zVaSGOf4It8tTYoxNDTkeX9k5yphhOGWAsMrgLPPPpt96UtfKvvsPe95j9XkGoVCwVMYJqXNnTtXyAsmu1J2/fXXR3pdTjIKL/xWukRW4HSbW7jIrPhG7XUMMmi9UO237D4jkyGCzr1xPyv19fVs3bp1xsL7TGe15DXRd9JvM7cqMDD4VPu4uCeVU1NT1kKPvN7jXC5XtgAmIrtLZbLsBNxt1JjYj+ogYxipeBl1PV6qRsTo6KjUc+G3cOoYyDo1F3XC8WT0mdcza0M/OOMr8t2enh6hxDAqOt90tIUfMLwCcNLJ//CHP2T79u1j2WyWzZ8/n+3fvz/wt8hqaK6JrpTZTt0r+gLL7KFxPgvD2O7u7ub2S2RlL8oyB5lMZsYqr6gyVN1jIevxEg3X81tZC5oQTk1NCXmyRMP7bCnT0tbT0yP0vf7+fqnxFqHaDQwvqnlcbGTG8zuXqUWS0oUJnQm444UxsR/VQdYwUg1zU9mPp2NE+Bkrblk9NDRkbBHLyzulE3Eiqs/CzC+QTqelyiAQeScMKb0XXp5fk+OkgzXD6+abb1buVNy444472Dvf+U42Z84cduaZZ7Jdu3YJ/Q51vMy1bDYrlUgh6sQkCxcuZNdff31RycUhTI/I29MiYszICEdTyTVEVnlFJk0ymaBUVr5EV58bGhp8Ny4HXZtMSEbUz5ruvg4TuGXwv/3bvxk/RyVSrYaXrcx4PIIiV2QXSZyFCV1d4njbZH4T5C0JI429iqdM14jwkkm2s+/xxlt1QV5Gn4U9T3Gig2TmbSJzAp16r6bLAPGwZnitW7eOXXzxxTMO/PLLL7Nvfetbcr2sUODxMtuccDyRQq1RG16lraGhQVrR2WyqE1wR4eiEWnZ3d0v1ycvrV3pvw4qNl52AiTxvpaFFMsdwX5vookx/f3/gRMi2t0t0McRmiIdbBr/vfe9j3/nOd4yfp9KoRsPLdGa8IMNBVOaLLpI4cjuK+YGIzggyjExkkvPT/+79Vffdd5+2gSqzR8vGeJc+Y6KRA7yxF9VnYT5b7ugblcVRk15GmWddF6uhht/+9rfZe97zHrZnzx722GOPscsvv5ydfPLJ7O///u+VOltpqCq3pCXWMNHcSSH8BLjfhuEkNC9Bs2rVKqHf66zoBAnHwcHBQMXU1tbmqzx599bUpMnZ5O43PrxwTL/jBSl3v5oostcmE9ITNBGyuRjg3q8VVvY4N24Z/Kc//Ylt2LCBbdiwgb366qtWzlkJRGF46aYr10V3n1ApQd7pQqEgXJtw48aNgd8plW1hR8TIGKNehlF3d7dwpELQc8L7u02dr1uTUKa5kx7pnks2SYzos+VetJNZxEun054ZNmWvWTQTr+zY28aq4VUoFNg111zDampq2OLFi9nOnTvZG2+8MeN7R48elT10RaCi3OISkhbXFqQU4+btMi0UeJl8GhoapJSO7opO0Kpj0PPb3NwsvZldZ9JUqqidvYJB/RMVviYmczLHkPUeidyroPdF9n3yMjTDyB7nxksG33777ez9738/+/GPf8zGx8e5v02qXmIsfMNLNkTYhpFmKjOeV5rq0kUEmb3GIpPH0oRNYXolVBZFRPc+8RZdVELJRZKE+DWRupSy+/FUx9o5j848prGxkVtzUQTR63MnHRF93v0Kf5c+PyrePVNjHwbWDK/e3l528skns89//vNs165d7Pzzz2dXXHEFO3bs2IzvnnnmmTM+e/LJJ2VOF0tUlFvSwgxNF9IN2uwahtHa0NDAFi5cGPpYlq66OUJPJiudyRUd3WxCMsafjCB2Px8mU+/yMDGZkz2GrPcoqHyB37F4K9WOka/ivQrb68GTwbt372af/vSn2SmnnMI6OjrYihUrWH19PfvQhz5U9tuk6iXGwjW8ZEOE/TLDBaXq9kNUNpWmrHYfX6SAfTqdFq7BeeKJJ0rLI9N6zkt/+O1HFUW2rIVsKHmhUGDLli3Tuv7R0VE2Ojrqa4DJ7sdTaU6UgO791TEiVMPCdX6nM49Qbe532PYCoBtrhtc3v/lN9tJLL5V9tmnTJnbWWWexP/zhD4wxxv7v//2/7Fvf+hY77bTT2MTERNl33/ve98qcLpaoKLekJNaQrU8i2np6ejwnbLZfVuc6VIpB67ZsNjvjemUEdFgrOqbrrcgaTqUTlDBS74bt8fIbF1Xl4TXRdYozOxMTd2iP7vnDMMLcMvj0009nq1evZnfffXfZ+d544w22b98+xljy9RJj9gwvXlZOUQ+zSBiwu/kZB159Cdqj6n4PnOPLFGQVbWeffbbQ99wZP03p1csvv9w31X3QeAa9vzIeFJVQch2drxLCbTNpkXOPTcxjdBZZVcPCZX/H0yHLli1juVyumHbfdPSSyf2GOoSeTv6+++5jp5xyCmOMsT/84Q/sjjvuYCeddBJbtWoVW758OVu1ahVbt24de//732/idJGSZI9XY2Mj27lzJ7coZGNjY1kMr4lYZXfjhR+YNlrdL71ozL6NNjo6qvWshLWiY9LjJTO5cCuasFLvmkgcYXq1UAW3F1Uk3Efn/F4pnv0SkKjglsG/+c1vAn+TdL3EmB3Di3dPRQtz53I5Lc+Fe5Egm83OCOHLZDLsmmuukTquM1FztkyYluuixcV5Ne789Kronpv+/n4hg0oki5+OThaNaHDLZV2d74TkyWSWtJU12bk2k/MY2cgSPx0gMofgPSfpdHpG6GNYW0Ki9mx5Ebrh9eqrr7JnnnmGHT9+vPhZaXr2Z599lu3evZu98sorJk4XKTp7vPweyrlz5worNFMP786dO7nCWDQ0QGU106/xzqFbw+ukk05il112Gevv75+hgHp7e0Mbb17TVWphreiYymCn480rFArKK5MqK4UmEkfIHMOmpyiMdNtBStdEiJODqAx+9dVX2QsvvFAVeokx84ZXpe+ttWFUBbWGhgYhL5zf++fIgv7+ftbX11fUXaolHHgTZ9H9w7w+ii7EqYaSq84p3PdbdD6V90la5Nf80pu7dY7JxXedyBLH+ySrZ5xn0mvxY3Bw0PqWEBXPVphh8KEaXn19fWzu3Lls1qxZbO7cuewDH/gA+8IXvsBuv/129vDDDycuy5SqchOZhDmpU8PwwvAy0MhmmbOx/8odH666Yhq0EbVQKIRq6PoJEhXjwm/Pgg1MGCKq3jwd76qOcWEi9E7kGCqbz0UxlTlS5xyl5zJxTSIyuNr0EmNmDS8khFJrjl4VNVpl3j+RzMjuY5kwnr30ftBCnIqhKBP6uWzZsqInVOf6nAVonlHhd33/+I//6Pl33sJa0JiJZvPTiSzR1Ydex1QZd9k99SZ0r62i6oyFbHg1NTWxa665hj3xxBPswQcfZH19fezSSy9lZ5xxBpszZw6rqalh73rXu9gll1yie6pYoKPcRCZhtsMSeeENsud2XnybfZVJMKHycsYl/NMR4rzMhl5NJBzEBrqGiKg37zOf+Uwxg57uxEE3DEFmxczruyKJMHjPhQlDxWSYqO45nGdVd6FARAZXm15izKzhFRf5WGmtVBYPDw9LeV38KBT8Czc7rTRTomnjubSPQVkHRTKslhp0hUKB9fb2Ssl6E0kriPiesgsvvLDYR3efS+WyjE4MWrx0vEa2I0tUFtuiXIjp6OhQCnv306s29oOFanjV19ezp556ivu3Y8eOsT179rDt27dzEwlUIrrKLWgiZzMRR1DtIdkkCjb7KhLP7ri4VV4g2b7fcsstrKenh1188cWRCB+/FlaSDcb0XPeyE3TZ8IVUKsUymcyMpBFhXKPK6loY3ijTiVF0zuG0XC6nfC7GxGRwteklxswaXklJCBW1LO7q6jLy/ol6j0r3DZs2nkv7KGJ4Od8LipQYHpar17Vo0aLi8W0sEDh942V/5RlVMvoiyFALM7JEZrHN1kLMSSedFPgd2cU6ESPRxuJ1qIbXF7/4RbZz507dw1QMtlP22hQkQQ9WnDxeIo2XnMLWODsriaK/u/LKK1l/f7/R2hV+exZMTNJtUyiIFyBV9XLpCk8VA0rVaxUnb1RYHi8T90lEBlebXmIMHq+4NEcWv/baa6yurs7I+yeqR3p6eoq/MW08O32UXTDyMzaCDDheK80GaXOBQKU2pQhBhlpYkSXO3kGRa7M1zueff76R96MUFdllYvE6VMNr8+bN7LTTTmP333+/7qEqAtuGl0giDhUBIvJAySZRsLXHSyZ7k+44ywph0dogpjfVXnnllVICSiZNcJAiMLVBVWSPgk5raGjQUowqBpTKvkhnLFU3n8tgKjGKyDlk7pXOOUVkcLXpJcbM7/GKMuNrEppoiZJ0Oh34LqgYXqZ0j1tGqOzd4ukQ1flD6XFtLxDoLEjp4JVgRURmio4JL0mG7iKh87yYvg8yOlDVSNTVhaEaXitWrGCzZ89mqVSKLV26lF100UXsa1/7GhsZGSnW9koSYRSpVMmw426qyRdU6jaYftHWrl0rLDicOG8Vw0C270GbX1U21Yq2zs5OYQElkyY4yMNjaoNqoVBgixYtMvqc8JqqolQN+5PxKKkmCdFV/ibCV0TOEdZ1icjgatNLjJnVTTr1rSo5E2IUTSTcVSXU0ITu4e1pEjXIgybLKkaTWwaLXGNNTY3yGOgs7rqRnaeo6l7V+y6ywBi0gCezV12mhRkWaVMvORhJJz81NcUeffRR9sMf/pBt3LiRnXPOOextb3sbmzVrlonDx4owDC/G1DO5mVjBDnJ1uwWIqZdNNv2vIwTc8eEyhsHw8LCwhy2o+W2q1T22aLZD0aQkft9xBLBXfRyVCbvJsgN+TdU7pBqSJ7q6ls1mlRShqfBRExkaRc4hs1dD9V6JyuBq0kuMmdNNg4ODQrI4lUqxhoYGz+dq06ZN0u/v3LlzQ5ETcWoiEz2R5Br19fXcsDWdRVz3/iOT16XimZBJWuG07u5u5THo6+sTfW0871veI2OiuzYq75rc/RHVvar33U/niC7glc4PebXDTPXHb8x1Fhxs6yXGDBleXuzfv9/m4SMhLMOLsfKXVvQhNbWC7bU647UK4yS5cFzjd911l5Uq5TbGQbdWWH19PRsdHfVNXS8zIeUJnqDaME5iibAyD8kIxEKhYMy4DWqqq1WqSShUwzpExpeIlGqu+N0H0/sVeOe47LLLrN4rXRmcRL3EmN64yOoap5VGHJSGReVyOeV3/vTTTxf6nuj+qTg3mUllkOHjVStPpixLKpVimzZt4mZmldEtIuGTMotxXnVHHYaGhrgRFc6YqC5k63i8RM/Z3d1d9juRsRZJOME7v27KepUFPJkyOe5nUXU+q7PgUDEer2oiTMOrFJ7wDLuCt+wqjImQSdUmaxjohmT4vayqrm9emIffeIblVZIVUrbj8Euff5V07zJ9dF/v1NSUrzJLpcTrs5S2hoYGLU9ulNjO1hiVDI47OjUmVSala9euNR71UE1NZVLpF6Hh6AZepl+ZxUVev2RleFD4ZKFQkKrRec0113iG3Yl42t1bEkQNAdVJuOw2htIyAKJjLZId1q3zTGTZVFnAU/Fu6s5nRbZcuJ/7itnjVW1EqfRlEibYOJfKZIr38IdpiIkKTl0j0U9QiQodt0LlCR4vJdPQ0KBdSNL0dctev24rVV68++t+DhsbG4urqP39/b4e2lLPo2gYhfM8id6Xnp6e4nF1wkzigM19ZTC8+KiMi409umjBza+eph+qqbJldUNjY2NZ6RlZGR6kd0WNi0WLFhVDBd1/k3lu3YmXRMZRdRKukjSk1EMoM9Yyz1ChUDBWV04W0futmpvAC962mDjoJRheklSD0veapKq+sCorTaYazzCQCaM0UU1eVOiMjo4GGtJ+Xscwx1VGQIfl8fILjzCxwZxX18WvOYazjDctjNpeqpjYHG7CK18NMlgF2XGxkZUWLbg1Njay+++/33otxFKZodJP1XpZIvJJ1Li46667jD2jpR6iQqHgGyEiMgn3yjyounXB0V+mx1r22fELE1UNVw8ju64ocdBLMLwkqSSlr/KS6E5SgzwgYRfmdE/GgzIFeXn6dASGKaGjstppswUV5Ba9flPNy8jWVdzNzc2eq64iYyNz/1VDHm3v3/JajPHaHG6zX5Ukg8NEdlzCWhBBK286IcRRFLZ2wvREZXgulwt8z0WfPdH9oqLjXigUAkNrRSbhfsdQ3dvo6C9ZnSWy+FkoFIRLEniFiepmOA4ju64oUeslGF6SVIrSV3lJdJJAiAoBWWXvZM5SCQN0h0uoZgoyITBMHMPWREnHIBIVvKKhnM3NzWxwcFDJUOM9e6pjlk6niyuYQWG2Iv0Rvf8qST5MpfwPundefXFvDrdNpcjgsJEdlygm8WjeLUod4NecbIky4fgic40gz77uXITXgrL+OkajV92xvEICGtHm1heivwta7Jbdw8nTo7pZFv364uh8VUMojKRRIsDwskglKH3Vl0QnOYOs10ZEeJf2l/fCOoLZ71hOViPdEC6vMMSgFf+gY9ioSC9aDd5RNLrpXmWMT56BwMvcJ6Pk/e6dzuSyr69Pygvlbm6FKHL/ZT1ephSiF6Krr37760xTCTI4CuDxinebNWuW799FCsDLJqUw1datW8cYE5/EiyxmehlWjjyzYXj5eaMcPTI0NDRjjOvr6630x2k8/SU6H/Nb7JaNYOL1w3T4u0g5IpkFXZuLjjLA8LJI3JW+6kuik/JbZdVD1PtRekzeyoZIRiMi8Yx/fkJsaGiIW4sjm83OWGnxWoXRWZ0RnSjJ7KPr7+9no6Oj7OKLL1ZWGrIZJEWvX0TJBz17upNLlY3pfs9S0PWLLEw43rj77rvPd++libh5E/sCTBN3GazDHXfcwVpaWlhtbS0788wz2UMPPST8W+zxqvwmkqkuiuy1RG8trpTubQrK6OqVcCtosTSqa4yq8fSXiJHtl1Ze5v3206Oq4e8i6Cwc2l50lAWGl0XirvRVXxKZCapb2KpsTJTxfvghugIoalR6ue1FVo5K09vaWIURmZQ7mfdEk6GopDo3KXhFrtkxVHjeuaBnb+fOnVrXpBqGKbJ67YXpMgw690XGY2jj/vOIuwxWZefOnWz27NnsBz/4Adu3bx/r6upi8+fPZ08//bTQ71XGZXBw0Nj7b7vV19ezBQsWRN4PFVkgungjIjeiChF1L66ozDVEa1T19/cb7XsqlYrk2RGdd/B0mMiislftNpn7Q+SvR1VrXAah40mLYxIqGF4WibvSV31JRH+3aNEidtddd5Vl8VF9uJ36Ij09Paynp8e3CLEXpsNlvLwUouEVfn8zsQojut8migmVasV3GWQ8ZjLpc4NaTU2NlCEksnLth2ptJV4Lqqnjh8z7Fcb9Zyz+MliVs88+m33xi18s++zd7343++pXvyr0e5VxqaRww2XLlkmFewWF9om88yb67exfEf2+6X3SJltp30TnDD09PUU5bTpqI5fLBcpKR27zCizbbqOjo2x0dFQoxLFUl4mGCPrNK1Tuj87zJrvwpnNcm144VWB4WSTuSj8Mj5fTdL04JjxDMqt/9fX1SpkFTSk6U6sw3d3dvudwxs/vezZamELOwc8Qi2qCouPt4l1bUEiPSFN9T6Os/eJF3GWwClNTU6ympoaNjIyUfb5x40Z2zjnncH9z9OhRNjk5WWwHDhyQHpckJ9gQLRZrszkyf2pqStjjErSA4Twron3QNUC9+iYjXx29Lvq8bdy4MfA7pcmzShNf8CJywg5d1MlUKxsC7DWvMGWc2EoFr+NJs+WF0wGGl0XirvRVXxKVlN86XhxT8bkywn/dunVKmQVNT050JqiyLvahoSHtlb5MJlPMLGlS8OoSZLibvm/ZbFZIIZqOLdc1IHXvj4j3NMz7H3cZrMLExAQjIvaLX/yi7PMbb7yRnXrqqdzf9Pb2cu9FUj1esu0v//Iv2Tvf+c7I+0FE7PLLLxf+rmmPl2pW4KC+qewhEjWARBeaeAu1vMW4qNLwMyZvJKi+k+7nxqTBZCMVPDxeQJhKUPqqL4nK3hKVSZ2J+NxSb4Bo+EkqxS+CG7RPyPTkpL+/X3isVPuiunpW2jo7O4uKK041OBgTM9xN3zcnvLavr491dXUZ2esogqlJg44SEvWyhkElyGBZHMPr4YcfLvt88+bN7LTTTuP+xoTHy0QJETRzzdYer8svv1w5eZbTeDpZJqoilUqxTCYTaAzIePe99I/b+FItaqzaFi1aVPTGyepsVXnP8+6Y1NumCw/rGIa2vHA6wPCySKUofdWXRHVvicykTne1QrWPpWEfovuEGDOf/SudTisLq7BWz3jjb6viuyyihrtq/S1ec4f2ZDIZrdojMpgyIHXDLnhZPUXvv8laK5Uig2VQCTV0ozIuMLzi1UQMLxMecJXf8IwbFWPOy/vnGAOyWWTdk2yenpLdH2iiOXpe1kgw5fFyMKm3TdfM0jEMgxwFMqV+TADDyyKVpPRVX5LS34lWO5eZ1OnE58rWpZARUF6IpqyXURRhuedVV8/8VppMGxuyx5QZA5HnpfTvos9WmJ4+lTBgE8+9V19k77/pLJ+VJINlOPvss9mXvvSlss/e8573ILlGlbXSaAXeu2ZKHribVxIKr0m66X1Tznl0DA+/SIgo7qWjI2QMDJX7m06nix42Hjb0timCDEO/vvMWA50Wdj0vGF4WSarS98JGLK3qMU15nmSMRBOGnpdAzmQybHR0VDp9fhirZ2EJLJVJuazhHuQhdYQ873t+m9jDDGcYGhrSetai2IPHmJ1aK0mVwU46+R/+8Ids3759LJvNsvnz57P9+/cL/V5lXJKcXCOMprJoE9QGBgYC5aIJveSWbY4cFKlBGZSpT7blcjltw7K/vz8wEiKKlPKOUSTjeVLZ9hFV4WA/RA0+r+/5vQci2SzDDIOH4WWRpCp9L2zE0qoe09TqrKiRGHaBUZlq7TKrZ7IKUjcVuiiqk3IVw909aRgdHS3u1yoti1D6PdGUxiY8SUHjpPocOuMrWx/PjcqKqa1aK0mWwXfccQd75zvfyebMmcPOPPNMtmvXLuHfwuMVfvNbtFFtuVxOSC4ODg5qp7zv6+szVsxetfHkgIrhISqvdZpq5Etp2KFbjsoYHaLPTxw8WrqRDia8l2EuOsLwskiSlb4XNhIrqBxTd3VW9iUMe1IiM54yq2cyISGZTCYUIWWieKLOYoCIUhDda2AzZW3QynZvb29RYQ8NDc24poaGhhmTBRHlVzoZ4BWuFjmGDW85Y9Upg0VQ3eNlI2ytUtqCBQvY6Ogo993xa9lsdoaxUigUtCb/pckn/L4jm6bcr4nILltRH+7mlgOihoczJqJFl/3Kyng1p86ojvHJ0+1Bekj1mYra+6Ub6WB60dv24ihjMLysUq1K30ZiBdlj6igaFSNR1dDTUVIyxqGMG19kpS5Mt7zupFwny56IUohD/SoV49RtMKkoP5EJj8j7ZKvWSrXK4CBUx0XFu5CU5o4OKH13eDKzoaHB95nXMWRTKfF0604/da9fdD9ZGPeCJwecfjmLYLyFWqI3vTyi+9G95GJQ33QNXV4SEBH5rDMPiSLxlUrBaDemF73DqOcFw8si1az0o06soKPUVIxE0Zefl+ltcHBQayXZK0xOddyDVi2DJhSmsZlgpbu72/O8osaMaPrhdDqtlLRG5D7qGKeqHkWZ1e0gBSo6hvB4mUFnXGT3N1Z68/MIBL0DIpmBVffnyMhF3YVI593187ronqOrq8tYyDavnzyPvsg1y6TBd/pmaj9kX19fYMZdE55NE2F2MjpLNjTS737HqXaqKDC8LAKlHy0iSs3kvhaRkDav9PQ6K8l+iSGCwghkYsbr6+utxYT7CW1Vo0JkBdZP2YieV3T1NJvNCo1FGElEVK7TbeCbKiUxPDzMli1b5vs77PEyi+64uN9XR65ls1mp2kpxbAsWLBDSB6b2JcpMQkvlr8x7K7oQ6RfOH+R1kU3tXtqcdN5BEReqUR6ynqvSaAaZws8mQzudJhNNoRsOrGp0yOgslXBUPy+UqbHGHq+EAKUfPaJZ6kydS2d/m+oG2XxAalyvc4vEjJv2Wopet7sfNhOs9PX1ca9N1JgRNbxElFqYSURkr7NU+akqO7cCFVHCOvtDIYP52BwXR26UJqRxktR0dnZKPzP19fWst7dXamGqoaGBtbe3s4ULFwp9f/bs2eycc85h999/v/F9vV5eZp7h6rVP0q2nVMK0gvRTd3e353lFjEwVg9t9XcPDw4G/kZUDsotENTU1bGhoSOoeO2NQmsxERT7qtNIFWFXDSyXMTkZnmVywKz1m0MKdyL0LM9wShpdFoPTjAS9LnS1jQnd/m+wGWZHiv36ZoKIWQKL9sJ1ghbc6J6p0nY3UfspOZCUtqiQiKhNI1fAOFa8Z6niZJ6pxUTXYncUl0Umb22tSX1/P1q1bZ9SLr+plFvEO+C166eyrDNJPXucVvW/pdNpXBvmVRRGRByJFo92oPHOOnBK9x6Xh96JyzV0DTbeVyladRVwZZHWW6vvvGMJe6NaJM7kALwIML4tA6Vcnup4imUmtTGy9I1Rtpe6WRbYfNhOs+K3OiRgzJrJ56qygO+Oj0gcVo01FgbonTTKGrSqQwXyiGhfVUCgnTLdUtvb29s4Iw/IKU3PegcHBQWNefJX3VXfBS9Sb4ScXZfdK5/N5YU9lNptVloO68s8LlUUix1hWkVGiv1FJ3OH1bPP0dWmykaBwRVWdL3vPVBfsgvqmctx0Os3NOBoGMLwsAqUPVJAR3IzJr7zKKBOboYYqilZ20iATguDnGRSZSOh6O01k9lPtg6zRpjKBdtd8s5XJsBTIYD5RjotIOBlvksTbH+uOZgha5U+n02W1+HSQXbDQXfCSCdNy9kzpoOI18fJMesmg0vsnGrItKw90PF4qi1Iyck23vpqowV4oFDy9QiILc14619bcw++e6Nxj0Vp0toHhZREofaCCqIKVjUOXXXVy7x8wXe8jjIm3SgiCW8CrTiRkhbupFV/VPsgabTJ7CXghQrZWuEuBDOYT5bgEJVDwau49RG55JDupMyHPhoaGuMfmTWZ1n3eZ6/MLSRaRDbL7hHhGZtB5wg6HE7ke3cU3mfuUz+eln1leVmSZZ1hFxvuFxcqUNHDuhWiyEHfzmwfohNpHAQwvi0DpA1VENuc6gkRW6KiuOpne/xXGxFsnzKSUMBKNxEF5yF6n6OTJy0i1fb2QwXyiHBedVW8/eST7ruvKs+HhYU8DkldyQ3ehSTZroMgCEs/4VE2AIBO2pZoAojTxhQyiGY5lElH5Lb6JyjWZZ7ampoa99tpr2npI1/guDdsViSjJZDJl3unzzz9f6X0PmgeYCPcPCxheFoHSB6rIGiUyQkcn5azJyX8YE2+dMJMoqCTl4VC6l0B2Rdb29UIG84lyXEzW3SmVESrvuqqMUcm+p7PQpBKeWWrAyewtkx1Hd6hcY2Mjy2aznomsVA270j6ryAXdDMcyi1Kick12rFV0k8qiockslrlcTtm7KfuO6ob7hwUML4tA6QNVVFZHZYSOyAqgSQXgJfxtT7xljUxnL0mUVIry4KGi5G1eL2QwnyR4vNzySCeMSUaeie4ddVb6S3+nstCkaqiUhnfJ7C0T1T2f+MQnpPpjotByqXzQ9fbEIcOx7L2VDbsX9XK6MfmOOglXVH6rMg8IIzpFFxheFoHSB6qoro7KrsqprkLJKIAg4d/d3T1j1bSmpoZ1d3crjR3v/DJGpum9bCpUgvIwia3rhQzmE/UeL50ir37ySLWIr4w8k5mUlspn1QQHspNg1dByp6+i35dNh+5co06hZa+xjSuie91sXLNOBk2TXmmdguphLDhGoWtheFkESr+6MPkCh7Xfx+mzaEYpWQUQJPy7u7t9r9GU0JUxMuMc1gfkgAzmE/W4iC6GiE7aHHmkWs/HnXHTD5lJaWlRWz/5w9sTpnI+nuySjZ4Q0T2qnkWZELWg5pQYSAJB2Q1l9b2Ml5M3bxE1voPqtsne60wmw3K5XGhGEO+9bGxsNJIV1A8YXhaJWrmB8FB16QcdUzbFt6rhJ6PcRRWASBiFSWUj0h9nfO677z7fyUPcsiABNSCD+cRhXLxkZunEyykOL7IApbIPqvQ4orJa1uMlmkjCRD1CnodAJXoiSPd0dHQojzWR/4Rd5hgyWRTjjkyGzFJ0DKdcLsd9BwcHB4Xeu6GhId/nRNS72dnZGfp9C3ovTUXc8IDhZZE4KDdgH92imEHHFtn/omv4ySh3G8cUnRCYQjWUE1QWkMF84jIuoqFYQQtQJhI2yCwoie7xcgxHnfMPDg6yWbNmBR6jsbGRuz9VJLSTt7fVT/fIRki4m1ehZRXdYGPR0xQmssSqpHvXCed0R6MELfz69Tmuela2ZI9pYHhZJC7KDdhDduOy6jn8hLeo4ed3HBHlLJvK11ScuE4dL92+2Ti3TZKw8msSyGA+lTYuQRPSsBd5RLMayvbLXbTe8Sjo9l8ktLOxsZFt3LiR9fX1sbvuuqvsv+6i06Ojo9rjrLPH2GkXXnihr+4bHBw0Lg9l0rHLGoSFQoGNjo6ynp4e1tPTw0ZHR5XSveu+B6UeLRFD0GtM4lAihYdMKKWNvsHwskilKTcgT9QrOqKGH0+AupVAkHKWjXuGxytcZOr0VItxBhnMpxLHxe+5jWKRx6uOV+l+Ldl+uYvW+4Viy/Zfx9Bxy5FCQa0IttOcBTy/hCMmmnv8TIT/i8hYlSgYGUNNZPxramqMeBR19UUcS6TIeARtzAFgeFmkEpUbkCNqz4mOccMTfCZTe4t60aJYDYvrSpwqooo+zmE5NoAM5pO0cYlqkSfIQ2GqX6b6PzU1pZzcgqcrVPtZmthB1+ulq/NEkYkskY2CkTXUZIxVnsEj+ltT85Y4lUiRLTthY+4Gw8siSVNuYCZRe050V3p5SsCER6S0qK6X8JeJI9chqhpiYSHj9bS1F1G0n2F72iCD+SRtXOK6yBOWYSHaf92FOp7BILLfzUsnhm2Y+o2VSCi+yDFl5wSyhlqhUJjhGfVq2WyWa/CIGm4m5y268t+U/pB95uDxqjCSptzATKL2nMQxnI+3uuUO+Shd7bK5Ghbk4YnTSpwqMvHqspMRU0TlaYMM5pPEcQlaSAljkcevXybktF8TCQU3EZLp1hWli2yyngST9aJ0riNIPskYU7JRMLKGmozO9woVDEpfT/RmyGxcIj5M6g8bGZxlgeFlkSQqNzCTKD0npoqRmgwp8OtLNpvlrlbZ8IaYSDpSCZicvPT19RkfB5tZP4OADOaT1HEJWkiJaqHFb3+VqPciqIlMRHWTYgTpikKhwPr6+oSNgig8Xu7rEJFPojLW0W+i18+Y/HYF0e97GU4yCwFhLUD66WDT+kPmmbN1/TC8LJJU5ZZUdCbgUXpO/Aw/UQHT09OjPdkOI8NjJfbFNrYmLyY8UlHfB8hgPkkelyA5HtVCi3Pe/v7+skyBJowh0YmoiXMFRUfIRIHohoiq6LrS6xCVTzLjJloDy3nubHm8eEXBZUJfw9KRft4sG/rDRgZnWWB4WSTJyi1pmHBl21boQatCPMMvSAm4m85kW1aBmMBrTKLoS1SITHRUNtSb8EjJ3Acb7w9kMB+Mizy25LvIRFCkjpfT0un0jPTvDjrecZlJrkwUSNDC4bp163zlU3d3t/Q+Otn9WKOjo1L12IIKC7szRMoYaiLPi5e3S2WRrnRRVvQdkEm57+fNUt2LFnR+kQzONudzMLwsAuVWGUQZCiXTxyDDUDaJhJ8ysxk7bTNTkjMmUWebDJugiY6sAe6l9GWRCdGxsQcMMpgPxkUO23sUTUQt8Jq7jzrecVm9IBMFwvtuQ0ODb8r00mPJpqXv7u5mjMnpLJksjnmPOmV+1y+zXSFIp3vdJ53Cyrz74ZVKX7SsSZA3SzQMt1SPy6T897o/vL81NjZKl9TxomoNr82bN7OVK1eyefPmsbq6Ou53nn76aXbhhReyE088kTU0NLCrrrqKWxneCyi3+BN1KJQIJgxDmRouqtccppfJ1kpZJSOyv0XUADc1TroTPd2FD8hgPhgXccJamPOaMOrUy+LtZ1VZgNEpKSLqNSj9bi6X8+1jLpeTyjrIux6VDISihotjCMhcv+x2Bdnvy6ZRV3m+ZN4VkyHyzv3xO7/z3JTeC979CdoD5xjtOlSt4fW1r32N3Xrrrezqq6/mGl6FQoGtWLGCtba2sscee4w98MADbOnSpayzs1P4HFBu8SfuIWkmDUNHyPT09Fi5ZpWQCRVXvsiYZDKZRNXpEkUkxEIlvbWqZ1A0nt7E880DMphPEsfFRmhQ2Atz7mswsSfL3cegBZjLLruM3XXXXeyWW25h119/Pbc+mUjf3YaRjAEmO+Yqk3inHzb3Y+nef50xd2PS0OGN0dTUlNR9E/U21tfXS+0XFO23ihfOabr7v6rW8HLYvn071/C699572axZs9jExETxsx07drDa2lphZZVE5ZY04h6SZkPQ27xm0ZAJndAd0TFxVk1FwzeqhVJlLZOBTBUTYVSq54cM5pO0cbEVChj1wpzJjKWlfVTJ/ug3nn7flz2WypirjJM7q6GJ/VhE8UrDXort1P2yukT0Pnvt8XPukWzKf7/7K3qMdDqtdY9heHkYXn/3d3/H3vve95Z99vLLLzMiYg8++CD3WEePHmWTk5PFduDAAeHBBdFgQrHa3IRpw0iyPZkQDXkTEYS6YxJ2tslKS00vu+Kritd9kA3dkSVpBoYpkjQuNkMBo16YM+mlcPcxaE+w6HgGhXeJTnp1xlzV41V6DTL7sYKOHcdFPVseL6ddfPHFUvdNRPc0NDQIh/2pGJaqXjj38yMLDC8Pw+uKK65gH//4x2d8PmfOHE8h29vby71BSVBuSUV34ml707UNIymMybaXUjcRuiM7JmEZQ7afBVvIbuxWhXcfbC8CJMnAMElSxsV2KGDUHi/VPVmqfZQdT9nwLpF7ozLmsuOUTqdn7NeXydjnt+8urmHsImM0d+5c7edM5r4FRUME7W9UCQP165PMMXQWWxJleHkZPqXtkUceKfuNn+G1Zs2aGZ/Pnj2b7dixg3t+eLwqE9WJZxibrm0ZSWFNtt2Y8jDGbf9WJWTG9CNsz6CD7XuZFAPDNEkZlzD23EQta4L2ZG3cuJGl02nfCbVoH2XH04QXxX1vVMdcNnmQ6qJY3KNk/AgydEwV85a9bzzdI5sgS2eRotQLJ5qABB6v/+KFF15g//Ef/+HbXn/99bLfmAw1dJMU5VYNqGQICmvTtS0jKYrJtqnQnagMRx6VkBlThDhOBnTvJWQwn6SMSxihgHGQNarh204LysTmvPudnZ1S42li3xDv3gQZUU5ab7fMGhoaksreq3L/dJ+5sCMjRMZIxtBRaUFjzdM9KuOsmrm31IgaHBwM/L6uPk+U4aVCUHKNgwcPFj/buXMnkmskGBsZgkyFoNgyksKebJsctyi9NKVjJpp5TOdZqLS9Y354pfC1cS8hg/kkZVzCksNRyZpSgmRAd3e378RXJjGG6Hja8HiJ9CuTyXALJ2cyGTY4OFgcp/vuu8/Xg8FbFAsaZ51nLuzICC8jr3SMZA0dlabyrqiOs4nSOarvkihVa3g9/fTTbM+ePSyXy7EFCxawPXv2sD179rAjR44wxt5KJ//Rj36UPfbYY8XK5UgnDxiLZtN1EibfpkN3wh4TnlBXKfKoe05TK6RB42d6fP2uxca9hAzmk5RxCTMUMM7yV8brXnodQfWygsZTxDsQdKypqSnPcR0aGpI+pkqmO2fyLiJrVZ+5sCMjZI080bH67Gc/K/S9np4erXdF593mPeOyHuuhoSGWTqfLfmNqsaVqDa9LL73U9wVk7E3j7IILLmDz5s1j9fX1rLOzkx09elT4HElRbmAmYXu8kkQcQndUCArnsfEs2FwhDZpkmDb4otgHBxnMJ0njUqnyxCSi+iiXyyknw3BaaZifjGeBd2+8vFbOQoxKX0sn5LIZcEXlk8gzF0VkhIOKkSdq6Ohch+zihal3W9VjbWuxpWoNrzBIknID5cRh03UlE4fQHRlsZO/SPafOMxY0yeju7jZqJEW1Dw4ymE/SxqXS5IlpbNdoKm2OYaRj7DU3NwfKGN09R/l8XriPTkSTjHzye+aiiIxwKBQKyvUZRQ1K1eQnKgt5pt7tOHmsYXhZJGnKDZSDlVY94iQIg1Ddy6DzLNjyqooYkTU1NVKTkKiuJQjIYD5JHJdKkiemMbHXSlamydTgc9+bqampQENHN8Oec16bXhyv/aphR0Y4yO7X80psEmToyM59dKMdTL7bcZATMLwskkTlBsqp9pXWakF0Rdk9WdB5FmztIzQ1SZOZIERViBYymA/GJVmYrPcl0lKp1Iz9LzJyIgxDsXTfVpCRYEo+RREZ4aBi8HnJcBHjRHTuE6esv3GptSkjf08gAEAZ7e3t1NbWRrt376bnnnuOlixZQqtWraKampqouwYMsmTJEqHvDQ4OUk1NjZFnQfScot9zeO6551S6o3UcW9cCACCqqamhbdu2UUdHB6VSKWKMFf/m/rcJGGP0wgsvUDqdphdffJF7/FQqRZlMhlatWjXjb6Kyo76+nl555RWp/rvP297eTnfffTd1dXXRs88+W/xeJpOhrVu3Unt7O42NjQkdO0g+7d69u+wcMn0mItq6dauSvpienqauri6pcUqn09x7Q/Tm87R69Wrf34vOfYLGhDFGBw4coN27dweeU4eRkRHq6OiYMUYTExPU0dFBd999N7W3t1s7vzIWDcBEglVFAJJBFHv6bJ0zCo9XVHsiIYP5YFwqFz9vhG4xWtmWzWaVwu1l9ofxju/V/M7rN26m5FMUkREy4+m+dzKohuiFHe3A62ecvG6MIdTQKlBuACSHKPb02TinSFhSTU2NcSMpivGDDOaDcVEnyj0iounOvSaeogaMTBihSri9jKHjdXxeRkTnvCr3yCt1vYx8kknmYfIZUkmuIrNwphOiF+b+Xq9+ii48mN5j7AUML4tAuQGQLKLY02cjq1NQbRMn45hpIyns8YMM5oNxUSPKPSK6CQr8Fj6I3vQuuZNfiC6+qBg6MgsxXscXLcYedI/8klLIyKeoPPuyHi+ZPphIjBHGmPj1U3RcTO8x9gKGl0Wg3ABIHlGseOuekzexaGhoYA0NDZ6TDFtGUpjjBxnMB+MiTxR16BxMhUrJvNNheKhNyxiVexSUlMKpWybbh6BxM52pT8SjKXvvTD53Np8lnaQmpQ0erwQA5QYAiJqglcDSlW63Ao1D6l0dIIP5YFzkiHqPiMlwLZl3OgwPtUx/RPZpydwjW/c1aNx0PKdeY+Bl3OjcO5PPnc1nycS+5Uwmgz1eSQDKDQAQBY5y7u/v992vEfam4rCBDOaDcZEjzH0qPKIqx8BYfBZfgowVlXtk875OTU2xvr4+1tnZyfr6+tjU1FTxOlQ9p0FjwPt7Op1m2WxW6d6JPneiiTpsPUsye9y8DNOGhobQ0srD8LIIlBsAIGxki2janDBGDWQwH4yLHFEaPoxFb/hFjYixonKPbN1XLwNpcHBQ2cMmarCZNG5kPElR1i4V7Wcul5sRXi9j+JpCRv7OIgAAALHFqVUiW0vGRG2v6elpGhsbox07dtDY2BhNT09rHxOAOBB1HbpVq1ZRJpMp1ntyk0qlqLm52bMuUyXjV6PK+SybzdLb3/52oeOV3iMb99VLBk9MTNBf//VfC9e0KkV0DKanp4s1uNavX0+rV6/WqinqPHdBpFKp4vn9sKUjRN+Pr371qzRv3jzud9zjGBdgeAEAQExRKaLpoDthHBkZoZaWFmptbaUNGzZQa2srtbS00MjIiNZxAYgDURs+ToFk51zucxOpF9+NO6IFeIlI+h6Zvq8iBpII7oUwmSLEJil97vwQOb9NHSH6fjz88MORjKMOMLwAACCmBClnHu6JhcqKpN8Kb0dHB4wvUPHEwfBpb2+nu+++m5YtW1b2eSaTobvvvpva29utnTtKRL3xzz//vPQ9Mn1fVWQwD/dCmOgYmIhccNPe3k7ZbFbr/GHoCJH3I8pxVMZOtGNyQRw9ACAsZItoumPaVTJtRZ3tLQjIYD4YFzWiqOPnJi7JLsJCdn+byj0ydV9VChmLyMuo9/jpnF8k1bvJjIJ+70fU4+ggI39TjCnEsFQxhw8fprq6OpqcnKRFixZF3R0AQIIZGxuj1tZW4e83NzfT1q1bqb29vbgi6Rbxzqqv14q66Dnz+TytXr1auG+mgAzmg3FRZ3p6mnbv3k3PPfccLVmyhFatWhWLEL+49kuX6elpamlpoYmJCW64XiqVokwmQ+Pj48XrVRkLE+MnI4NTqVTZ9fjJWpUxMInO+UXHJJfL0de+9jVjfeYR9Tg6SMlfiwZgIsGqIgAgLESKaKbTadbf31+2EqjjtYo621sQkMF8MC7JQqcuVCUQRjFnEwTJYEeWDg0NKXnloirgXXp+2Xsg4wUM4z7G4VlCOnmLQLkBAMJERanohF/EJXTDC8hgPhiX5BD1hDws4hDmKYKoDJYNGR0eHuamQg+z/pTKPZBJSR9WWHrUzxIML4tAuQEAwkZWqeh4rURXeLHHS4zNmzezlStXsnnz5rG6ujrud55++ml24YUXshNPPJE1NDSwq666qlicVZRKGxfAJ+57LE1TKfvbTE/svYzrMD1FDrL3QGSPVxSLdFE+SzLy9wQCAAAQa9rb26mtrU14v4JOLRsnK1hHR4fnnoWkprm2wbFjx+iSSy6hlStX0g9/+MMZf5+enqYLLriA0uk0/fznP6eXXnqJLr30UmKM0W233RZBj0GUyKQZj2KPpWmcGlVxR1YG+xFUJsSpodXW1haKnJW9B46OWLt2rdD3w8ooWCnPEgwvAACoAGSUilPLJmjDsVctGyeNb1dXV9kkMJPJFJN3ADFyuRwREd15553cv99///20b98+OnDgAC1dupSIiG655Ra67LLL6MYbb0SijCqjItNjVwmmJvamjOsok6+0t7dTLpej3t7ewO/aKkJeqaCOFwAAJAwTtWza29tp//79lM/naWBggPL5PI2Pj8PoMswvf/lLWrFiRdHoIiI677zzaGpqih599FHP301NTdHhw4fLGqh8dLzVoDIwYVzHocD9DTfcQJlMxvPvtouQVyowvAAAIIGYKM7qrPCuX7+eVq9ejfBCCxw6dIgWL15c9tlJJ51Ec+bMoUOHDnn+bsuWLVRXV1dszc3NtrsKQsDxVrsXTBwwma18fve73wl9z8u4jkuBe2eBL5VKRVaEvBKB4QUAAAnFhtdqenqaxsbGaMeOHTQ2NkbT09MGe1wZbNq0qTjZ8Gr//u//Lnw83iSbMeY5+SYiuu6662hycrLYDhw4oHQtIF6Y8FZXItUiV0ZGRgLD85xQ8Onp6Rnj4bc/zPksm80Gjp+p8TaxwFdtYI8XAAAkGJMbjkdGRrj7vrZt21ZVCrazs5M+9alP+X6npaVF6FhNTU30q1/9quyzV155hd54440ZnrBSamtrqba2VugcoLKotj2W1SJXHKMpCMYYvf766/Sxj32s+JkzHvX19dr7w0yPt8nEI9UADC8AAACBOOEt7pVWJ7ylmlY3GxsbqbGx0cixVq5cSTfeeGNxwkL0ZsKN2tpaOuuss4ycA1Qe1TKZtS1XokxA4SYoqUYpL730Utm/nfEQMdyIvPeH2RrvMDMKxumeqpBiXvksAZfDhw9TXV0dTU5OItsUAKAqmJ6eppaWFs9JgxMaMz4+bl0BVpoMfuaZZ+jll1+mn/zkJ/Stb32Ldu/eTUREp5xyCi1YsICmp6fpfe97Hy1evJi+9a1v0csvv0yXXXYZXXzxxVLp5CttXACwLVfi5knbsWMHbdiwQfn3qVSKGhsb6YUXXgj8bj6fn2EIxUmOi+I2sl588UX6yle+Ept76iAlfy3UEUs0KFIJAKg28vl8bAplVpoMvvTSSwPH6umnn2YXXHABmzdvHquvr2ednZ3s6NGjUueptHEBwKZc8SpQnEqlWCqVCrVAsYPo9Qa1dDqtVOA+LnJctNAxr2i11zVHdU8dZOQvkmsAAADwBbWF1LnzzjuJMTajla5Gv+Md76B/+qd/otdee41eeukluu2227B/CyQeW3LFVAIK0wRlrBTl05/+NBHJJ18RHceJiQlriU5E0+B7ZW7kEeU9VQGGFwAAAF9QWwgAYBpbckWmQHGYiGSsFKGtrU0pk6DoOH7lK1+xUh9MNA2+n+HsRVT3VAUYXgAAAHxBbSEAgGlsyZU4e+j90q8PDg4Kj4dKqRBRj5t7D5mJ+mAyXkiZJCRuKiHqAoYXAAAAX6q1thAAwB625ErcPfReRtMll1wiNR6yBe79xtsPE6F8Ml5IHeOpEqIuYHgBAAAIBIUyAQCmsSFXKsFD72U0yY6HbCFkr+On02nf3+mG8sl4IVWMpzjcU1GQTl4SpOwFAFQzUddQgQzmg3EBlYxpueLsJyKisvA2xxiL+2KRyHjopMt3H39iYoI+85nPBPZrYGCA1q9fL309Y2Nj1NraGvi9fD5Pq1atopaWFpqYmBDa5xWHeyojf2F4SQLlBgAA0QEZzAfjAkA5PMOkubmZtm7dGmujSwSvQsiqRoiMYaRSKNmpIeZlTLlriHkZzjzicE9heFkEyg0AAKIDMpgPxgWAmUTtobeBjULIsoaRCrJeSC/D+ZZbbqF0Oh2rewrDyyJQbgAAEB2QwXwwLgBUB7a8U2GEZ8p6ISvFcJaRvyeE1CcAAAAAAACACxkDw1a6fCfxBm/fmKlQvvb2dmpraxO+VicJSZKA4QUAAAAAABJLnD0nskkybKbLlzWMVEiiMSUDQg0lQTgHAABEB2QwH4wLAHx0sv+JoGPUqSTJCGM/FpBDRv6ijhcAAAAAAEgcjmHjTkQxMTFBHR0dNDIyon38lpYWam1tpQ0bNlBrayu1tLQIHXd6epq6urq4xpNf0WIUtK9sYHgBAAAIRLZQJwAARImqYSOKrlG3e/duz8yETh+9ihajoL0YcdRbMLwAAAD4orOqCwAAUaBj2ARhwqjTTZLR3t5O+/fvp3w+TwMDA5TP52l8fBxG138RV70FwwsAAIAntkN1AADABray/xGZMepMJMlwElWsX7+eVq9ejfDC/yLOeguGFwAAAC62Q3UAAMAWNrP/mTDqVq1aRZlMZsY+LYdUKkXNzc20atUq6f5VM3HXWzC8AAAAcLEZqgMAADaxadiY8lYhSYZ54q63YHgBAADgYjNUBwAAbGLTsDFl1CFJhnnirrdgeAEAAOBiM1QHAABsY8uwMWnUIUmGWeKut1BAWRIUqQQAVAtxLNQJGcwH4wKANzpFjv3gFWdubm6mrVu3wnCKiCC9RfSm4b1//35jektG/p5g5IwAAAAiwdaEguitVd2Ojg5KpVJlSgx7EAAAlYKT/c807e3t1NbWZk0GA3n89JbD66+/Tj/+8Y8jMY4RaggAABVKGHVKsAcBAAC8QUr3+OHorfr6eu7fX3755cjSyiPUUBKEcwAA4oBTp8Qtwh1PlGmjyKZnTQbIYD4YFwAAeAsn5NArw6HJUHkZ+QvDSxIoNwBA1ISpUOIGZDAfjAsAALzF2NgYtba2Bn4vn89rh6HKyF+EGgIAQIUR9zolAAAAQJTENa08kmsAAECFEVeF4hCXsEQAAADVSVzTyifG47V//376/Oc/T8uXL6d58+bRySefTL29vXTs2LGy7z3zzDP0yU9+kubPn0+NjY20cePGGd8BAIA4E1eFQhROwg8AAADAD1NFrk2TGI/Xb3/7Wzp+/Dj9wz/8A51yyin0+OOP0xVXXEGvvvoq3XzzzUT05irsBRdcQOl0mn7+85/TSy+9RJdeeikxxui2226L+AoAAEAMR6EE1dcKW6F4JfyYmJigjo4OZEEEAADgicloidiWQ2EJ5pvf/CZbvnx58d/33nsvmzVrFpuYmCh+tmPHDlZbW8smJyeFjjk5OcmISPj7AABgg+HhYZZKpVgqlWJEVGzOZ8PDw6H2p1AosEwmU9YXd7+am5tZoVDQOg9kMB+MCwCgkhkeHp6hQzKZjLYu4x23ubnZqI6Ukb+JCTXkMTk5WZbD/5e//CWtWLGCli5dWvzsvPPOo6mpKXr00Ue5x5iamqLDhw+XNQAAiJq41ddCwg8AAAAqONESbh3iREvohKq3t7fT/v37KZ/P08DAAOXzeRofH48s+iIxoYZunnrqKbrtttvolltuKX526NAhWrx4cdn3TjrpJJozZw4dOnSIe5wtW7ZQLpez2lcAAFChvb2d2traYpHIIu4JPwAAAMSP6elp6urq4obNM8YolUpRNpultrY2rbBD3ZTxpoi9x2vTpk2USqV827//+7+X/ebgwYN0/vnn0yWXXEJf+MIXyv7G22Tn3Fge1113HU1OThbbgQMHzF0cAABo4iiU9evX0+rVqyPLHhjnhB8AAADiSbVFS8Te49XZ2Umf+tSnfL/T0tJS/P+DBw9Sa2srrVy5kr7//e+Xfa+pqYl+9atflX32yiuv0BtvvDHDE+ZQW1tLtbW1ap0HAIAqIa4JPwAAANhDNyFGtUVLxN7wamxspMbGRqHvTkxMUGtrK5111lm0fft2mjWr3KG3cuVKuvHGG4sPBxHR/fffT7W1tXTWWWcZ7zsAAFQLsc0gBQAAwAojIyPU1dVV5rHKZDK0bds24T1UtqMl4lZXMvahhqIcPHiQVq9eTc3NzXTzzTfTCy+8QIcOHSrbu7VmzRo6/fTT6bOf/Szt2bOHfvazn9G1115LV1xxBS1atCjC3gMAQOUTt4QfAAAA7GAqIYbNeltxrCuZYryYkArkzjvvpMsvv5z7t9JLfOaZZ+jLX/4yPfjggzRv3jzasGED3XzzzcLhhIcPH6a6ujqanJyEsQYAABxsrjBCBvPBuAAAwmJ6eppaWlo892Y5oeXj4+NCst8x4oiIGy2hsnDnVVdS55heyMjfxBheYQHlBgAA0QEZzAfjAgAIi7GxMWptbQ38Xj6fF84myAtbbG5upq1bt0obSKYNwyBk5G/s93gBAAAAAAAA4oGNhBgmy6PIZEoMO808DC8AAAAAAACAELYSYpiqtxXnTImJSa4BAAAAAAAAsIvNhBgmiHNdSRheAAAAAAAAACGc8iFENMP4ikP5kDgbhjC8AAAAAAAACInp6WkaGxujHTt20NjYGE1PT0fdJWniXD4kzoYhDC8AAAAAAABCII61pVRpb2+n/fv3Uz6fp4GBAcrn8zQ+Ph6Lmo1xNQyRTl4SpOwFAIDogAzmg3EBIP6EWVsKvInNupIOqONlESg3AACIDshgPhgXAOJN2LWlQHjIyF+EGgIAAAAAAGARmdpSILmgjhcAAABhwgjbAACApCFaM+pnP/sZ5GuCgeEFAABAiJGREerq6ipbtc1kMrRt2zbsSwAAAB9Ea0Zt3ry5+P+Qr8kDoYYAAAACcTaFu0NlJiYmqKOjoyIzcgEAQFgE1ZbiAfmaPGB4AQAA8GV6epq6urpmZOIiouJn2Wy2ImvRAABAGPjVlvIC8jV5wPACAADgCzaFAwCAPl61pfyAfE0WMLwAAAD4IropXPR7AABQrbiLDvf09Aj9DvI1GcDwAgAA4IvopnDR71UL+/fvp89//vO0fPlymjdvHp188snU29tLx44dK/veM888Q5/85Cdp/vz51NjYSBs3bpzxHQBAcqipqaHVq1fT+vXr6aMf/ajQbyBfkwGyGgIAAPDF2RQ+MTHB3eflFP5ctWpVBL2LL7/97W/p+PHj9A//8A90yimn0OOPP05XXHEFvfrqq3TzzTcT0Zv75y644AJKp9P085//nF566SW69NJLiTFGt912W8RXAACwDeRrdQGPFwAAAF/8NoU7/966dSvqzbg4//zzafv27bRmzRr6sz/7M7rooovo2muvLctQdv/999O+ffuov7+f3v/+99PHPvYxuuWWW+gHP/gBHT58OMLeAwDCAPK1uoDhBQAAIBCvTeGZTIbuvvtu1JkRZHJykurr64v//uUvf0krVqygpUuXFj8777zzaGpqih599FHP40xNTdHhw4fLGgCgMoF8rR4QaggAAECI9vZ2amtro927d9Nzzz1HS5YsoVWrVmElVpCnnnqKbrvtNrrllluKnx06dIgWL15c9r2TTjqJ5syZQ4cOHfI81pYtWyiXy1nrKwAgXCBfqwMYXgAAAIRxNoVXM5s2bQo0eh555BH6wAc+UPz3wYMH6fzzz6dLLrmEvvCFL5R9l1fThzHmW+vnuuuuo6uvvrr478OHD1Nzc7PoJQAAYgjka/KB4QUAAABI0NnZSZ/61Kd8v9PS0lL8/4MHD1JrayutXLmSvv/975d9r6mpiX71q1+VffbKK6/QG2+8McMTVkptbS3V1tbKdx4AAEBkwPACAAAAJGhsbKTGxkah705MTFBrayudddZZtH37dpo1q3xr9cqVK+nGG28shhYRvZlwo7a2ls466yzjfQcAABAdMLwAAAAACxw8eJBWr15N73jHO+jmm2+mF154ofi3pqYmIiJas2YNnX766fTZz36WvvWtb9HLL79M1157LV1xxRW0aNGiqLoOAADAAjC8AAAAAAvcf//99Pvf/55+//vfUyaTKfubU6+npqaG/vmf/5m+/OUv01/+5V/SvHnzaMOGDcU6XwAAAJJDivGqtQFPDh8+THV1dTQ5OYnVSAAACBnIYD4YFwAAiAYZ+Ys6XgAAAAAAAABgGYQaSuI4CFGsEgAAwseRvQjWKAe6CQAAokFGL8HwkuTIkSNERKiXAgAAEXLkyBGqq6uLuhuxAboJAACiRUQvYY+XJMePH6eDBw/SwoULfYtbeuEUuTxw4EBVxuHj+nH9uP7qvX4i/TFgjNGRI0do6dKlM1KzVzPQTXrg+nH9uH5cfxh6CR4vSWbNmjUjO5UKixYtqsqH2wHXj+vH9Vfv9RPpjQE8XTOBbjIDrh/Xj+vH9asgqpewXAgAAAAAAAAAloHhBQAAAAAAAACWgeEVMrW1tdTb20u1tbVRdyUScP24flx/9V4/EcYgrlT7fcH14/px/bj+MK4fyTUAAAAAAAAAwDLweAEAAAAAAACAZWB4AQAAAAAAAIBlYHgBAAAAAAAAgGVgeAEAAAAAAACAZWB4hcx3vvMdWr58Oc2dO5fOOuss2r17d9RdMsJDDz1En/zkJ2np0qWUSqXo//yf/1P2d8YYbdq0iZYuXUrz5s2j1atX0xNPPFH2nampKbrqqquosbGR5s+fTxdddBE9++yzIV6FGlu2bKEPfvCDtHDhQnr7299OF198MT355JNl30ny9X/3u9+l9773vcXCgytXrqR/+Zd/Kf49ydfOY8uWLZRKpSibzRY/S/IYbNq0iVKpVFlramoq/j3J154UoJeS+WxCN0E3lQLdFBPdxEBo7Ny5k82ePZv94Ac/YPv27WNdXV1s/vz57Omnn466a9rce++97IYbbmDDw8OMiNg999xT9vebbrqJLVy4kA0PD7O9e/eydevWsSVLlrDDhw8Xv/PFL36RLVu2jD3wwAPsscceY62treyMM85ghUIh5KuR47zzzmPbt29njz/+OPv1r3/NLrjgAvaOd7yD/elPfyp+J8nX/5Of/IT98z//M3vyySfZk08+ya6//no2e/Zs9vjjjzPGkn3tbv7t3/6NtbS0sPe+972sq6ur+HmSx6C3t5f9+Z//OXvuueeK7fnnny/+PcnXngSgl5L7bEI3QTc5QDfFRzfB8AqRs88+m33xi18s++zd7343++pXvxpRj+zgVnDHjx9nTU1N7Kabbip+dvToUVZXV8e+973vMcYY++Mf/8hmz57Ndu7cWfzOxMQEmzVrFvvpT38aWt9N8PzzzzMiYrt27WKMVd/1M8bYSSedxP7n//yfVXXtR44cYe9617vYAw88wM4999yickv6GPT29rIzzjiD+7ekX3sSgF6qnmcTugm6CbrpTaK8doQahsSxY8fo0UcfpTVr1pR9vmbNGnr44Ycj6lU4jI+P06FDh8quvba2ls4999zitT/66KP0xhtvlH1n6dKltGLFioobn8nJSSIiqq+vJ6Lquv7p6WnauXMnvfrqq7Ry5cqquvYrr7ySLrjgAvrYxz5W9nk1jMHvfvc7Wrp0KS1fvpw+9alP0R/+8Aciqo5rr2Sgl6rr2YRugm4qpRrGII666QTlXwIpXnzxRZqenqbFixeXfb548WI6dOhQRL0KB+f6eNf+9NNPF78zZ84cOumkk2Z8p5LGhzFGV199NX3kIx+hFStWEFF1XP/evXtp5cqVdPToUVqwYAHdc889dPrppxeFU5KvnYho586d9Nhjj9Ejjzwy429Jv/8f+tCH6K677qJTTz2V/vM//5M2b95MH/7wh+mJJ55I/LVXOtBL1fNsQjdBN7lJ+v2Pq26C4RUyqVSq7N+MsRmfJRWVa6+08ens7KTf/OY39POf/3zG35J8/aeddhr9+te/pj/+8Y80PDxMl156Ke3atav49yRf+4EDB6irq4vuv/9+mjt3ruf3kjoGn/jEJ4r//xd/8Re0cuVKOvnkk+lHP/oR/bf/9t+IKLnXnhSgl94iqc8mdBN0kxdJHYO46iaEGoZEY2Mj1dTUzLCSn3/++RkWd9Jwssj4XXtTUxMdO3aMXnnlFc/vxJ2rrrqKfvKTn1A+n6dMJlP8vBquf86cOXTKKafQBz7wAdqyZQudccYZtG3btqq49kcffZSef/55Ouuss+iEE06gE044gXbt2kXf/va36YQTTiheQ5LHoJT58+fTX/zFX9Dvfve7qrj/lQz0UnU8m9BN0E3QTfHRTTC8QmLOnDl01lln0QMPPFD2+QMPPEAf/vCHI+pVOCxfvpyamprKrv3YsWO0a9eu4rWfddZZNHv27LLvPPfcc/T444/HfnwYY9TZ2UkjIyP04IMP0vLly8v+nvTr58EYo6mpqaq49o9+9KO0d+9e+vWvf11sH/jAB+jTn/40/frXv6Y/+7M/S/wYlDI1NUX/8R//QUuWLKmK+1/JQC8l+9mEbpoJdBN0U+S6STktB5DGSdv7wx/+kO3bt49ls1k2f/58tn///qi7ps2RI0fYnj172J49exgRsVtvvZXt2bOnmJL4pptuYnV1dWxkZITt3buXrV+/npu2M5PJsNHRUfbYY4+xv/qrv6qIlKVf+tKXWF1dHRsbGytLW/raa68Vv5Pk67/uuuvYQw89xMbHx9lvfvMbdv3117NZs2ax+++/nzGW7Gv3ojRzFGPJHoNrrrmGjY2NsT/84Q/sX//1X9mFF17IFi5cWJRrSb72JAC9lNxnE7oJuskNdFP0ugmGV8jccccd7J3vfCebM2cOO/PMM4tpXSudfD7PiGhGu/TSSxljb6bu7O3tZU1NTay2tpadc845bO/evWXHeP3111lnZyerr69n8+bNYxdeeCF75plnIrgaOXjXTURs+/btxe8k+fr/+3//78VnOp1Os49+9KNFxcZYsq/dC7dyS/IYOLVPZs+ezZYuXcra29vZE088Ufx7kq89KUAvJfPZhG6CbnID3RS9bkoxxpi6vwwAAAAAAAAAQBDY4wUAAAAAAAAAloHhBQAAAAAAAACWgeEFAAAAAAAAAJaB4QUAAAAAAAAAloHhBQAAAAAAAACWgeEFAAAAAAAAAJaB4QUAAAAAAAAAloHhBUBCGBsbo1QqRX/84x+j7goAAABARNBNAJSCAsoAVCirV6+m973vfbR161YiIjp27Bi9/PLLtHjxYkqlUtF2DgAAQFUC3QSANydE3QEAgBnmzJlDTU1NUXcDAAAAKALdBMBbINQQgArksssuo127dtG2bdsolUpRKpWiO++8syyc484776S3ve1t9E//9E902mmn0YknnkgdHR306quv0o9+9CNqaWmhk046ia666iqanp4uHvvYsWP0t3/7t7Rs2TKaP38+fehDH6KxsbFoLhQAAEDFAN0EgD/weAFQgWzbto3+3//7f7RixQr6+7//eyIieuKJJ2Z877XXXqNvf/vbtHPnTjpy5Ai1t7dTe3s7ve1tb6N7772X/vCHP9DatWvpIx/5CK1bt46IiC6//HLav38/7dy5k5YuXUr33HMPnX/++bR3715617veFep1AgAAqBygmwDwB4YXABVIXV0dzZkzh0488cRiCMdvf/vbGd9744036Lvf/S6dfPLJRETU0dFB/+t//S/6z//8T1qwYAGdfvrp1NraSvl8ntatW0dPPfUU7dixg5599llaunQpERFde+219NOf/pS2b99OX//618O7SAAAABUFdBMA/sDwAiDBnHjiiUXFRkS0ePFiamlpoQULFpR99vzzzxMR0WOPPUaMMTr11FPLjjM1NUUNDQ3hdBoAAECigW4C1QoMLwASzOzZs8v+nUqluJ8dP36ciIiOHz9ONTU19Oijj1JNTU3Z90oVIgAAAKAKdBOoVmB4AVChzJkzp2zjsQne//730/T0ND3//PO0atUqo8cGAACQfKCbAPAGWQ0BqFBaWlroV7/6Fe3fv59efPHF4sqgDqeeeip9+tOfps997nM0MjJC4+Pj9Mgjj9A3vvENuvfeew30GgAAQJKBbgLAGxheAFQo1157LdXU1NDpp59O6XSannnmGSPH3b59O33uc5+ja665hk477TS66KKL6Fe/+hU1NzcbOT4AAIDkAt0EgDcpxhiLuhMAAAAAAAAAkGTg8QIAAAAAAAAAy8DwAgAAAAAAAADLwPACAAAAAAAAAMvA8AIAAAAAAAAAy8DwAgAAAAAAAADLwPACAAAAAAAAAMvA8AIAAAAAAAAAy8DwAgAAAAAAAADLwPACAAAAAAAAAMvA8AIAAAAAAAAAy8DwAgAAAAAAAADLwPACAAAAAAAAAMv8f4sElJ74uem+AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAF3CAYAAABaJvEbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACWN0lEQVR4nO2deXhb5ZX/z7WIncVLI1l4k4kZls7Q0FDosKRjcAqkUAJmFJOQsCTQQimYWBDcQmpqi4alkOCkpZQpwy+h4zqObQlCGaYpAjk1DbQpJNMA7ZSCQxzH2amdVcHK+/uDXlXLlfTe/Ur6fp7nPImlq/e+99XVOfe873nPERhjjAAAAAAAAAAA6Eqe2R0AAAAAAAAAgFwAzhcAAAAAAAAAGACcLwAAAAAAAAAwADhfAAAAAAAAAGAAcL4AAAAAAAAAwADgfAEAAAAAAACAAcD5AgAAAAAAAAADgPMFAAAAAAAAAAYA5wsAAAAAAAAADADOFwAAAAAAAAAYQMY4X7/5zW/o6quvpsrKShIEgV588cXIe59++il997vfpbPPPpsmTZpElZWVdPPNN9POnTtj2qirqyNBEGLk+uuvN/hKAAAAAAAAALlIxjhfhw8fpmnTptFTTz2V8N6RI0fonXfeoQcffJDeeecd8vv99Je//IWuueaahGNvu+02Gh4ejsh//Md/GNF9AAAAAAAAQI5zktkd4OXKK6+kK6+8UvK9kpISevXVV2Ne+/GPf0znn38+bd++nU455ZTI6xMnTqTy8nLF/Thx4gTt3LmTioqKSBAExe0AAACQD2OMDh48SJWVlZSXlzHzh7oD2wQAAOYg1y5ljPMll5GRERIEgT73uc/FvP6LX/yCOjo6qKysjK688kpqbW2loqKipO2EQiEKhUKRv4eGhuiss87Sq9sAAAA4GBwcJJfLZXY3LMPOnTupurra7G4AAEDOwmuXstL5OnbsGN1///00f/58Ki4ujrx+ww030Kmnnkrl5eX07rvv0gMPPED/+7//m7BqFs2jjz5KXq834fXBwcGYtgEAAOjP6OgoVVdXp5w0y0XE8YBtAgAAY5FrlwTGGNO5T5ojCAK98MILdO211ya89+mnn9J1111H27dvp76+vpRG6O2336Yvf/nL9Pbbb9O5554reUz8ypc4wCMjIzBwAABgMKOjo1RSUgIdHAfGBQAAzEGu/s2qla9PP/2U5syZQwMDA/T666+nHYBzzz2Xxo0bRx988EFS56ugoIAKCgr06C4AAAAAAAAgh8ga50t0vD744AMKBoPkcDjSfua9996jTz/9lCoqKgzoIQAAAAAAACCXyRjn69ChQ/TXv/418vfAwABt2bKF7HY7VVZWUkNDA73zzjv08ssvUzgcpl27dhERkd1up/z8fPrwww/pF7/4BX3961+n0tJSev/992nx4sX0pS99ib7yla+YdVkAAAAAAACAHCFjnK8//OEPNGPGjMjf9957LxERLViwgNra2uill14iIqJzzjkn5nPBYJDq6uooPz+fXnvtNVq5ciUdOnSIqqur6aqrrqLW1lay2WyGXQcAAAAAAAAgN8kY56uuro5S5QZJlzekurqaNmzYoHW3AAAAAAAAAIALVKgEAAAAAAAAAAPImJUvAAAAmUc4HKb+/n4aHh6miooKqq2tRag3AAAAIspNGwHnCwAAgC74/X5qamqiHTt2RF5zuVy0cuVKcrvdJvYMAACA2eSqjUDYIQAAAM3x+/3U0NAQY1SJiIaGhqihoYH8fr9JPQMAAGA2uWwj4HwBAADQlHA4TE1NTZKJkMTXPB4PhcNho7sGAADAZHLdRsD5AgAAoCn9/f0Js5nRMMZocHCQ+vv7DewVAAAAKyDHRoTDYerr66M1a9ZQX19fVjhkcL4AAABoyvDwsKbHWZnf/OY3dPXVV1NlZSUJgkAvvvhizPuMMWpra6PKykqaMGEC1dXV0XvvvRdzTCgUorvvvptKS0tp0qRJdM0116R8MAEAgEyGV/evW7eOampqaMaMGTR//nyaMWMG1dTUZHxIIpwvAAAAmlJRUaHpcVbm8OHDNG3aNHrqqack33/88cfpySefpKeeeoo2bdpE5eXldPnll9PBgwcjx3g8HnrhhReoq6uL3njjDTp06BDNmjUrK2Z4AQAgHl7dv2LFiqzcEyawdNWJQQyjo6NUUlJCIyMjVFxcbHZ3AADAcoTDYaqpqaGhoSHJmH5BEMjlctHAwIDslMJW1sGCINALL7xA1157LRF9tupVWVlJHo+Hvvvd7xLRZ6tcZWVl9MMf/pC+9a1v0cjICDmdTvqv//ovmjt3LhER7dy5k6qrq+mVV16hr33ta1zntvK4AABANOlsBBGRzWZLOgGlxobogVz9i5UvAAAAmmKz2WjlypVE9JmRjEb8e8WKFZYwmnoyMDBAu3btopkzZ0ZeKygooEsuuYQ2btxIRERvv/02ffrppzHHVFZW0tSpUyPHSBEKhWh0dDRGAAAgE+CxEalW/jN93zCcLwAAAJrjdrupt7eXqqqqYl53uVzU29ub1TVcRHbt2kVERGVlZTGvl5WVRd7btWsX5efn0+TJk5MeI8Wjjz5KJSUlEamurta49wAAoB+pbITH4+FqI1P3DcP5AgAAoAtut5u2bdtGwWCQOjs7KRgM0sDAQE44XtHEz+wyxhJeiyfdMQ888ACNjIxEZHBwUJO+AgCAUSSzEfX19Vyfz9R9wyeZ3QEAAADZi81mo7q6OrO7YQrl5eVE9NnqVvRDwp49eyKrYeXl5XT8+HH65JNPYla/9uzZQ9OnT0/adkFBARUUFOjUcwAAMAYpG1FbW0sulyvtvuHa2lqDeqktWPkCAAAAdODUU0+l8vJyevXVVyOvHT9+nDZs2BBxrM477zwaN25czDHDw8P07rvvpnS+AAAgW8n2fcNwvgAAAACFHDp0iLZs2UJbtmwhos+SbGzZsoW2b99OgiCQx+OhRx55hF544QV69913aeHChTRx4kSaP38+ERGVlJTQN77xDVq8eDG99tprtHnzZrrxxhvp7LPPpssuu8zEKwMAAPPI5n3DCDsEAAAAFPKHP/yBZsyYEfn73nvvJSKiBQsW0OrVq+k73/kOHT16lO6880765JNP6IILLqBf//rXVFRUFPlMe3s7nXTSSTRnzhw6evQoXXrppbR69eqMndUFAAAtcLvdVF9fT/39/TQ8PEwVFRVUW1ub8boRdb5kgloqAABgHtDB0mBcAADAHFDnCwAAAAAAAAAsCMIOAQAgwwiHw1kXhgEAACA3yTWbBucLAAAyCL/fT01NTbRjx47Iay6Xi1auXJnRG5ABAADkHrlo0xB2CAAAGYLf76eGhoYYI0VENDQ0RA0NDeT3+03qGQAAACCPXLVpcL4AACADCIfD1NTUJFlwUnzN4/FQOBw2umsAAACALHLZpsH5AgCADKC/vz9hdjAaxhgNDg5Sf3+/gb0CAACQS4TDYerr66M1a9ZQX1+fYucol20a9nwBAEAGMDw8rOlxAAAAgBy03J+VyzYtY1a+fvOb39DVV19NlZWVJAgCvfjiizHvM8aora2NKisracKECVRXV0fvvfdezDGhUIjuvvtuKi0tpUmTJtE111yT0usGAACrUFFRoelxAAAAAC9a78/KZZuWMc7X4cOHadq0afTUU09Jvv/444/Tk08+SU899RRt2rSJysvL6fLLL6eDBw9GjvF4PPTCCy9QV1cXvfHGG3To0CGaNWtWVsaTAgCyi9raWnK5XCQIguT7giBQdXU11dbWGtwzAAAA2Ywe+7Ny2aZljPN15ZVX0tKlSyWXNRljtGLFCvre975Hbrebpk6dSs8//zwdOXKEOjs7iYhoZGSEnnvuOVq+fDlddtll9KUvfYk6Ojpo69atFAgEkp43FArR6OhojAAAgNHYbDZauXIlEVGCsRL/XrFiRVbXRgEAAGA8euzPymWbljHOVyoGBgZo165dNHPmzMhrBQUFdMkll9DGjRuJiOjtt9+mTz/9NOaYyspKmjp1auQYKR599FEqKSmJSHV1tX4XAgAAKXC73dTb20tVVVUxr7tcLurt7c3amigAAADMQ6/9Wblq07Ii4cauXbuIiKisrCzm9bKyMvr4448jx+Tn59PkyZMTjhE/L8UDDzxA9957b+Tv0dFROGAAANNwu91UX19P/f39NDw8TBUVFVRbW5uVs4MAAADMR8/9Wblo07LC+RKJX7ZkjCWNJeU9pqCggAoKCjTpHwAAaIHNZqO6ujqzuwEAACAHEPdnDQ0NSe77EgSBXC6X4v1ZuWbTsiLssLy8nIgoYQVrz549kdWw8vJyOn78OH3yySdJjwEAAAAAAAD8g1zen6UHWeF8nXrqqVReXk6vvvpq5LXjx4/Thg0baPr06UREdN5559G4ceNijhkeHqZ33303cgwAAAAAAAAgllzdn6UHGRN2eOjQIfrrX/8a+XtgYIC2bNlCdrudTjnlFPJ4PPTII4/QGWecQWeccQY98sgjNHHiRJo/fz4REZWUlNA3vvENWrx4MTkcDrLb7XTffffR2WefTZdddplZlwUAAAAAAIDlyaT9WeFw2LL9zBjn6w9/+APNmDEj8reYBGPBggW0evVq+s53vkNHjx6lO++8kz755BO64IIL6Ne//jUVFRVFPtPe3k4nnXQSzZkzh44ePUqXXnoprV692jJfBgAAAAAAAFYlE/Zn+f1+ampqikmP73K5aOXKlZZYoROY1M45kJTR0VEqKSmhkZERKi4uNrs7AACQU0AHS4NxAQCAzxyvhoaGhMQg4t40PUIk5erfrNjzBQAAAAAAAMhdwuEwNTU1SWZkFF/zeDwUDoeN7loMcL4AAAAAAAAAKQmHw9TX10dr1qyhvr4+052YePr7+2NCDeNhjNHg4CD19/cb2KtE4HwBAAAAAAAAkuL3+6mmpoZmzJhB8+fPpxkzZlBNTQ35/X6zuxZheHiY67jXXnvNVMcRzhcAAAAAAABAEnEfVfyq0tDQEDU0NFjGAauoqOA6bunSpaY6jnC+AAAAAAAAAAlkyj4qIqLa2lpyuVwJhaClMNNxhPMFAAAAAAAASCBT9lERfZYGf+XKlUREaR0wMx1HOF8AAAAAAACABHj3UfEepzdut5t6e3upqqoq7bFmOY5wvgAAAAAAAAAJ8O6j4j3OCNxuN23bto1aWlq4jh8aGtK5R7HA+QIAAAAAAAAkkG4flSAIVF1dTbW1tQb3LDU2m43q6uq4jvV4PIbu/YLzBQAAAAAAQBahVU2uVPuoxL9XrFhBNptNXYdNZN++fYYm34DzBQAAAAAAQJagdU2uZPuoXC4X9fb2ktvt1qLbmrNnzx5ZxxuVfAPOFwAAAAAAAFmAXjW5xH1UwWCQOjs7KRgM0sDAgGUdLyJ5+9CMTL5xku5nAAAAAAAAAOhKuppcgiCQx+Oh+vp6RWGCcvZRpetnf38/DQ8PU0VFBdXW1uoStijuVxsaGpIcEymMyNqIlS8AAAAAAAAynEyoyaV1SGQqover8WJE1kY4XwAAAAAAAJB2iSrMwOo1ufQKiUwFb90vI7M2wvkCAAAAAAA5j5GrMnpg5Zpc6UIiifRLeOF2u+njjz8mr9cr+b7RWRvhfAEAAAAAgJzGqFUZPVfWrFyTy+yQSJvNRt///vfJ5/ORy+WKec/orI1wvgAAAGhCJofrAAByF6NWZfReWbNyTS6rhERaIWsjnC8AALAwmeLQZHq4DgAgdzFiVcaolTWr1uSyUkikmLVx3rx5VFdXZ7gzCucLAAAsSqY4NGZsogYAAK3Qe1XG6P1OVljdiSddSCQRmRYSaTRwvgAAwIJkikNj5iZqAADgIV0Egd6rMmbsd1K7uqN11AVP2vfrr7/elJBIo4HzBQAAFiOTHBqzN1EDAEAqeCII9E5UYZX9TrzoFXXhdrvpvvvuS/r+smXLLDOxqCdwvgAAwGJkkkOTaQ8VAIDcgTeCgDdRBREpWg2y0n6ndOgZdXH8+HFavXp1ymOsMrGoJ1nlfNXU1JAgCAly1113ERHRwoULE9678MILTe41AADEkkkOTSY9VAAAcge5EQTpElUQkeLVICungI9Gz6gLv99PVVVVtHfv3qTHiBOLfX19stvPJLLK+dq0aRMNDw9H5NVXXyUiouuuuy5yzBVXXBFzzCuvvGJWdwEAQBJeR+X99983PQMizyZql8tl+kMFACC3UBJBkCxRBRGpWg2ycgr4aNREXaTaIyaupu3bt4+rH3PmzNEt/NASGYRZFtPU1MROO+00duLECcYYYwsWLGD19fWq2hwZGWFExEZGRjToIQAgmxgbG2PBYJB1dnayYDDIxsbGFLfjcrmYIAiMiNKKy+ViPp9P46vhx+fzMUEQkvbX4XBo1j/oYGkwLgDE0tnZyaU/Ozs7U7Yj6uNknxcEgVVXV3Ppe5/Pl9BWdXW1qfo7GqVjJnVdol1KN36pxlXNuEjZY6l+lpaWsu7ublXjJlf/Zq3zFQqFmMPhYA8//HDktQULFrCSkhLmdDrZGWecwb75zW+y3bt3p2zn2LFjbGRkJCKDg4MwcACABFIZH6XtpXJo4o2UWkOlFp/PxxwOh+79g5MhDcYFZCpaTVrFEwwGuR7yg8GgIe2I6HW9WpxPybWKtiqZ3vd6vbIdL7lObfx1er3eBHuczD6J0tzcrHiM4Xz9nbVr1zKbzcaGhoYir3V1dbGXX36Zbd26lb300kts2rRp7Atf+AI7duxY0nZaW1slvyQYOACASDrjo8YB450xlGuotEbL2eFUwMmQBuMCMhGtJ62iSRdBwKuTtFpB04N0jpXc8ZU7Zjx63263K3K+0jm16ZwtJdLT06Poe4Dz9XdmzpzJZs2alfKYnTt3snHjxqX8kWPlCwCQCr2dDtHAtLS0qDJUesM7Y9re3q7KAYOTIQ3GBWQaek1aSZ0j/jxyzqH1ypdWpHOslI6vnDHjHRs1IuXUypmYlCPFxcWK7BOcL8bYtm3bWF5eHnvxxRfTHnv66aezxx57jLttGDgAQDRGGWYrz77K6V/8A4JcoIOlwbiATMKolXLG1O+z0moFTUvSOVbd3d2qxpd3zHj1vt1u597DnM52Jrt2rcTr9cr+PuTq36zKdiiyatUqOvnkk+mqq65Kedz+/ftpcHAQKZABAIoxKi281VO6yzmvFvViAACZi5G1DJNlMHS73Vyft1qmQp508HfddRfX+La1tUlm/OMdM16939TURESJ45cKqfT7qa5dK370ox/pnwFRtntnccLhMDvllFPYd7/73ZjXDx48yBYvXsw2btzIBgYGWDAYZBdddBGrqqpio6Oj3O1jdhEAEI2ccDueDc/JYvitOPsa3285GRqV9hc6WBqMC8gkrL6SL4VVMhXqEeqnNBqBR++7XK6kmQbFJBi8YaFGhDmSxGpbOnJ+5SsQCND27dvp1ltvjXndZrPR1q1bqb6+ns4880xasGABnXnmmfTmm29SUVGRSb0FAGQ6PHWubDYb3XPPPWkLc/r9/qRFPK02+xqPzWajefPmcc9IMg1ntgEAmYXVV/KlULuCphVqoyikUBqNkMouiRw9epTWrVsnOX67d+8mn8+XtLB1/Njqce1S6H4eWa4dwOwiMAWjU9MaTaZfn5y08JRkVo93c7RVZl/jURqHL3dmGzpYGowLyCSstpKfSTaId/XH6XTK0slKxlwcN4/Hw4qLi7ntXbJ20o2/mpUvOWOh98oXnC+ZwMABo9EzFa8VyJbrk7oOm83GZejkbj5PZajMeIhQWkTTCCOXK2BcQKahRSbCaJTqvkyzQd3d3Vy2paenR9akoCgtLS1c42dGKRS54e3RUl1dzbq7u1PW+zIqHB7Ol0xg4ICRGJGK10yy7fqijX97ezu386FVxkQjHyKUXKsZRi5XwLiATESrlXylui/TbBBPhEG6SAleSTV+SiMdtEjHzxtp4nK5mNfrTXDG9fjO4XzpDAwcMAojU/GaQbZfn5wN5VpsPjfyIUJtjRUjjVyugHEBmYra1Xqlui/TbBBPhIHNZksoFCy3VmS8dHd3y+6HEhsmh2TOtpSzxft5NeH7cL50BgYOGIVVCztqBa7vH9endiyMrpmjtsaKkUYuV8C4ACOw2t4oNbov02yQVnZCrv6Od+jU7LvScizV3ota3sty9e9JBACwJEbVjzKLbL8+MQvi0NCQZAZAQRDI5XJFapjIOTYeOTVz6urqlF0Qqaux4nQ6qb29naqqqqi2tta0rIwAAGX4/X5qamqK0TUul4tWrlxpeMY/ETW6L9NskNr+ipkJGxoaSBAEbj0eDofpuuuuI5/PR263W9F4pLNhSrDZbKrsmdrPqyHrUs0DkC1kYipeOWT79dlsNmpvb0/qTBH9IzW82jTyRj1EpHvQkUIQBBIEgZ555hm64YYbqK6uDo4XABmG3++nhoaGhN+/2QXTeXXaa6+9RmvWrIkpKJxpNkiL/rrdburt7U1I7c6Dx+OhcDgsezyUlkIJh8PU19eX8L0pRev2VKF4jS1HQWgHMAqrpeLVmmy/vlT7opKF3SmNQzcqfIZ3b5rc/sshE3Vwa2trwriUlZVF3j9x4gRrbW1lFRUVbPz48eySSy5h7777rqxzZOK4gMzAynujlITAiYkkMs0GKelvstC6UCjE2tvb2bXXXis7bFBu+CKvDYjuq9frTZlARW7IoN7JqLDnS2dg4ICRaJ2K12pk6/Wl2xe1aNGipAZDSRy6UQ8RvA867e3tuu0JyUQd3Nrayr7whS+w4eHhiOzZsyfy/mOPPcaKioqYz+djW7duZXPnzmUVFRVsdHSU+xyZOC4gM7Dq3qixsTEWCASY3W6X5UBE25dUNoiIYhI4hEIhU/a7xTslvDbT5/OxqqqqmOOqqqpYc3Oz4oQZLS0tbGxsTNa48YwTTxIn8XxS/VeSmVHL5ww4XzoDAweMxqpFdbXC7OvTegO5nExQWs68GeHIqnHytBrnTNTBra2tbNq0aZLvnThxgpWXl7PHHnss8tqxY8dYSUkJe+aZZ5K2eezYMTYyMhKRwcHBjBsXkBlokY1VCal0hhYZV0VdJdWWw+FIqAcVX1vLiFpgvH2Lt5k+n0/x2PDaLS3LBKhN4pTMzhm1agvnS2cy0fCDzMdqGaa0xqzr0yIUIb7vgUBAtcHQ8nq0dmTlOHni2Hg8HuZ0OjV5cMlEHdza2somTpzIKioqWE1NDZs7dy778MMPGWOMffjhh4yI2DvvvBPzmWuuuYbdfPPNKduUuqcyaVxAZmDGylcq3azFw3p8n6VWl4zW31JjkKofyVaXxsbGUhYSVivR161FxkE1TnQ6R8qoexfOl85kouEHACQ6ST09PapDEXp6ehKcCiUhMFruKzDCkeVx8tLNTCt9cMlEHfzKK6+w3t5e9sc//pG9+uqr7JJLLmFlZWVs37597Le//S0jIjY0NBTzmdtuu43NnDkzaZtY+QJGYfTeqFRhYkSU1rGw2+1syZIlXPo3frVOrjOg174wnn4kO6+cCUAtHR2pa0hni9SkredxpIxatUWqeQAAiEMqRbLNZpPMRMgYI0EQyOPxUH19fdLsTN/5znfoiSeeSHj9wIEDsvrGNEoDL6Jn+txwOEz9/f0UCoVo9erVRES0Z88eqqioiEkfL2ZGkxpfEd5xzgauvPLKyP/PPvtsuuiii+i0006j559/ni688EIiSsxyKY5PMgoKCqigoECfDgMQRaoU5Uoz2RH9Q58MDw9HdAgRJS1nIb62f//+lO0eOHCAnE4nVx/iM/fJzeiqtf6W04/BwUH68Y9/THfeeSdt3LgxMo6vv/66qnPb7fa0dizddUvZ3NLSUrrxxhupvr4+Yi/0SOMvthkOh2n37t1cnzE8o6UqVy8HycRZVwByGTUhKslCEbq7uzWfrdN6v4TW8IZoKgkjkRPykS06+LLLLmN33HGH4rDDeLJlXIB10TKsOZk+8Xq9mujTjo4ORat1SjK66qG/Ozo6uM8dvxetqKhI1di1traylpYWxdfNY3NF26HHyteNN97IGhoaWGlpKdfxZuz5Qp0vAEDGwVuvQ01RYCLpGjLhcJjuvPNORe2l4uSTT9a8TaXEj29vb69kjZ8dO3Yk1PhRUgvMKkVMjSIUCtGf/vQnqqiooFNPPZXKy8vp1Vdfjbx//Phx2rBhA02fPt3EXgIQi9vtpm3btlEwGKTOzk4KBoM0MDAgu8Byqpphra2tmvS1qqpKUe1EpSsgcj+Xzobt3btXVlvRHDx4UFZf4nnuuee4V/Hir5vX5or14fbu3UsulyvlKr9cOjo6qLe3l/bt28d1/PXXX2985IUqVy8HwewiAOYiJ0mG2lk1qRUZOW3K2f9lROYsHqTGN35mNV6iZw6VzBxn+8rX4sWLWV9fH/voo4/YW2+9xWbNmsWKiorYtm3bGGOfpZovKSlhfr+fbd26lc2bNw+p5kFWomWCBSmJX9GSu1ont4aVkj1fPDZMzsqXHhIIBNLurXM4HAnXLcc+imOXbP+1kSI3NX48SLihMzBwAJiH3HodagyY0+lkoVAooQ9ynIvW1taEhBypDJHZtc20CNFUYnzlGLtM1MFi3a5x48axyspK5na72XvvvRd5XyyyXF5ezgoKCtjFF1/Mtm7dKuscmTguIPfQIszM4XDIKquhpCCvVtkOlSZ60iMcT450dHSkdb4KCgpYIBCIGU+lk28+n487TFBvUTIRCudLZ2DgADAHufU6tFDmUkqY1ygWFxfLdmT0ypzFQygU4nYUpWTJkiVsbGyMe+Y4l7IdGgHGBchBjkOiZQZVpXuqoqW5uVnXsho+n0/S8cjLy5N1PrlRBNH6X6sVwvjoC16b2N7ershOKnEaxX1jam2QVqLENsH50hkYOADMQU69DjkrOOmMYXw9k46ODi4DoabOCk8YnpYPRFrNOsbX4Un1HSh9UIIOlgbjAniRE7qtRS3EaLRY0Yl2ULQuq9HT05Py3LzhaVpEEfDo0XQSCARixigUCnElIpEbNRJtJ+WEbcbbOy1ruKkRuROhcL50BgYOAHPgnTEVs1zxKtnJkyez4uLilErY4XDIanPu3LmqFH+6zFlaPhBpaeyinVWpPjqdTubxeFQ9KEEHS4NxATzICd2WG+bNg5KHcylRUxQ3mdPW3d3NvTLFc41a6P909RKV9DWZUxf9vSrJOimeT07YZnwfk606miW89xmcL52BgQPAHHhnTOWES2gtpaWlrLu7W3VoTSqFr+UDkR6b36MNaigUYu3t7ayxsZG1t7dL7qGTC3SwNBgXkA45odtyw7zloMWKjtLU7skmrpqbm2Xr52ROnNaJnuSG4/HYglRhm2NjY6yqqkpV39M5jfF9HBsb06zMgJbCe5/B+dIZGDgAzCHdjKnScAktRW3tknQPNFo/EOm5qdvr9WoariQCHSwNxgWkQ07otpxjlSD1cF5YWMitX5ScV6tV/s7OTubz+RIclKqqKubz+RRPviXT33L1dHxIdzInUQ/n0ePxJJzX4/EkOI/RfZQaS6sIVr4sAgwcAPLRKjafZ9XHzCxRYj+6u7tlh9bwzFZq/UCkxeZ3JeOjxgGDDpYG4wLSwft77+zslHWsUqLtgtfrVRyqxnsurVb5063QqFnBkdKNHo+H67ONjY0R+5rK8Uk3CabWLki1newZwCp7vNTeZ3C+dAYGDgB5aL0/SSoe3OFwxIQvaLGnQK3SFlMKS8XVi32Ofp0nAYXWD0S8zpzT6WTNzc2aPLyozegIHSwNxgWkQ4+VL6/Xq7pfvI6RmskbrSblXC5X2j1JdrtdkQ2KXjUS8fl83J9XGvKn5VjJ0e9613xLJ2JGYt6SBamA86UzMHAA8KPl/qR0M2TRbaXLWGWEiFkXU8XVy10N1Hrli8dRja53NjY2xgKBgKzi0Wr7GA90sDQYF5AO3tBtceWEJxTM5XKpzjIoZxJI6aq5Vqv8ra2t3MfJ3dcWrxPlOKXRyS54zpXKSdJiApNHv5sVpZIuMZSSTLxy9W8eZRFtbW0kCEKMlJeXR95njFFbWxtVVlbShAkTqK6ujt577z0TewxA9hIOh6mpqYkYYwnvia95PB4Kh8Oq2iIiEgQh0pbf76d77rlHXec1YHh4mNxuN23bto2CwSB1dnZSMBikgYEBcrvdZLPZqK6ujubNm0d1dXVks9nStllbW0sul4sEQZB8XxAEqq6uptraWq4+2mw2WrlyZeSz8W0JgkDPPPMM5efnUzgcpv7+ftqzZw81NTVF3o//DC/Dw8PcxwIA1JPu905EtGLFCrLZbGSz2ej2229P2+aOHTuov79fVb94dUF7ezu53e6Y18LhMPX19dGaNWuor6+Pjh8/HvO3aF8qKipU9dFms1FPTw+XvRL71dvbS1VVVWmPTaa3+/v7aceOHWk/zxijFStWEBFxfWfiZwYHByW/u1T3CS8836lcG8BjI3koLS2lpqYmstvtVF9fn9RG64os187itLa2si984QtseHg4Inv27Im8/9hjj7GioiLm8/nY1q1b2dy5c1lFRQUbHR3lPgdmFwHgQ8tVGjkhMFaJH1eTCjkVPGmClbSZavZP6n2HwyEZOsm73wErX9qCcQG88M72G7HvizHltoKniLEY4q42xK27u5sxxlhLSwvX8S0tLYyx2KQTop5OZrviV6F4x18MVwwEArKv68Ybb0yajVZpmnte/S5n5UvcSy1Gi9x0003cn12+fDkLBAKK9r/xktNhh62trWzatGmS7504cYKVl5ezxx57LPLasWPHWElJCXvmmWe4zwEDBwAfWhpu3ra0CIdTK2r3NPGgVahENHI3RIuvxRcdDYVCKWvlEH32gKQ07Tx0sDQYFyAHnrBnvTMeRveFNxxSRE4tqegQM7n6PF6v8jo4gUAg4Tqbm5tT6sZ4R0Du+C9ZskSV7bLZbKy5uTnhu/F6vdy2Ve6er9LSUq524/cWzp49m/u6xOyUWtesiybnna+JEyeyiooKVlNTw+bOncs+/PBDxhhjH374ISMi9s4778R85pprrmE333xz0jaPHTvGRkZGIjI4OAgDBwAHZqx8qRGHw5HS+PMUftRKkfOgVQbJdOdIN/MZb2j1fmCDkyENxgUwpq1eUOIUKUXOir7cVazofqYrpEz02d6yjo4OyfEbGxtLawscDkfC53icRanaV7zj7/P5WFFRkSa2MNoBk5ONMLr/vPchbybH6Elanu8gWgKBgG4160Ry2vl65ZVXWG9vL/vjH//IXn31VXbJJZewsrIytm/fPvbb3/6WEREbGhqK+cxtt93GZs6cmbTNZJsrYeAASI0awx2vuEOhUNq2lK56ibONqYy/aFB52zIDPZwxJY6U3qFKcDKkwbgALTPLRrepdZiznP5L1axqb29XpOtFPZUsIRPvNaVbQYv/vBxnMd4u8oy/1una8/LyWCgUku3kit+VnPtQiY2RMxnrcrm4VyvVrODmtPMVz6FDh1hZWRlbvnx5xPnauXNnzDHf/OY32de+9rWkbWDlC2QDRqySSKHEcCdT3M3NzSnbUlJbJT7OXiosxGazsblz53K1t2DBAl3HNlVooB4FjeXuOWCMYc+XSWBcchs9w6rUhDnLtT3RxwcCARYIBCKf7enpUbVvK3rCR801yXW+lERuiGMl7hdLVqRYr3Ttt9xyC3e/W1paIv2Vex8qmaSVk7lSTtHrlpYWw0qgZLXzxRhjl112GbvjjjsUhx3GAwMHMg29HszVnD+ZkUunuKVqTVVXV7Pu7m5ZKdClzq/V7GF0zTG9xzHaKeU1dqmIf1DinTEsKSlhHR0dLBAI6J6eGjpYGoxL7pLuAVyLsColE3hqbI+aZA/JJH7CR8k1hUKhBEdIygYodRZE8Xg8CddfWlrKPB5PTF/1CskfP348+/nPf851bGdnJ1cZkmT3odxJWt5rFveJyV0pU2K/4XxFcezYMVZVVcW8Xm8k4cYPf/jDyPuhUAgJN0BWo/cmU15SGTnxvY6OjpRGTVTcoVAopi25s6HRdaui+6ClodcjHEeJYyjnoUvqYaeqqooVFxdrbtjVFGaFDpYG45K7GJUYQw48tkcqvFxc6dFS32i1N83n83EniFi4cKHmDpLU2DU2Nmqun0UpKSnh1udy7KfUfShnkpanDpk4wTc2NhapuSZ3jOWQ087X4sWLWV9fH/voo4/YW2+9xWbNmsWKiorYtm3bGGOfpZovKSlhfr+fbd26lc2bNw+p5kHWYsRsqFqUzG4GAoGIwVaaWj5e+esxe6jV2GrhGEaPmdQMb7qMhlqLmtTU0MHSYFxyF6NSwvPCY3scDkfaNPFaiFYTjUomwMSVKt6IAF4pLCzkdgL1lsLCQtnjkuw+lLMSybsXTk5ijug25NrvnHa+xLpd48aNY5WVlcztdrP33nsv8v6JEydYa2srKy8vZwUFBeziiy9mW7dulXUOGDiQKVhxNjQapas5WqSTj1f+HR0duhgmLcZWC8cwfsyiQyv02jOg17hAB0uDccldrKTr1STE0ELy8vJi/lZbgkO8JiUP8an6lS2i5Lq0ug9TrZYpKSugpp9y9e9JlEV0dXWlfF8QBGpra6O2tjZjOgSAifBWj5dbZV4LwuEwNTU1EWNM9mcPHDig+vwVFRWR//v9fvJ4PKrblEKLsdWijfgxGxoaooaGBurt7aWSkhLasWOH6nPwIAgCuVwuqq2tNeR8AOQCtbW15HK5aGhoSFKnGvW78/v91NTUZJg+kaKiooKef/552rNnD1VUVFBtbS3ZbDZFbYXDYerv76ennnqK9u/fr6pfJ06cUPV5qyL3upxOJw0NDVFfX1/K70Yc++Hh4aTfo9vtpvr6+pjjpk+fTv39/TRnzhzF1ySi57NRVjlfAFgZHmWiJdEOhhbHqSH+2sPhsCkGOv4hxO/3U0NDgyInkIcPPvhAdRt6fD+MMRIEgW6//XZZ1y4IguKxEgSBiIhWrFih630PQDaSyn7YbDZauXIlNTQ0JPxG9fzdRffpgw8+oLa2Nt10KS9DQ0Nks9lo3rx5qtqxgiOZjezdu5duvPFGIiJyuVy0cuVKcrvdMcdIjX2yY202G9XV1UU+d9ppp2n2nen6bCRzlS/nQWgHUIIZGQeNLJCZCqlrnzx5suHhEckKWOp9Xi1CXrTcL6BUiouLVYXeaBH+wxh0cDIwLtkLr/1Qkz5diz5ZRZTsbYveb6R0LzFEnkjtx1OaJEzLWmfY82VBYOCAXMzMOGhkgcxU51erDAsLC1W3Ef8QoleK3nhRk1ZdpK2tzRKGkuizzFYdHR3cmbCKiooS6qmpATpYGoxLdqKkbpLeNR21LuqrtcjdU2RlR9LqwrPnK1XG3GhHR2mSMC0nUpHt0KLAwAE5WCHjoJGzodGoVYhOp5N1dHQoKp4cLXa7nQUCgYQU9Xol2ZCS6CKUcvH5fJokGdHKMIn3a3d3t67GLBnQwdJgXLIPK9gPuX3SU1wuV8rVdyXjYXVH0upy1VVXadJOMBhUlDhG6wQvSp+N4HzpDAwckINVslAZMRsaj9KVpfhaJloYeqk6JGak6pUbamrVBwPxfm1ubub+TrV6SIQOlgbjkn1YxX4o6ZPWUlpayrq7uzWN5jDTkRT7bJWJNaWilePT2dkpu2SCViuWxcXFCcWr5SJX/+YRAEA3rJJxUNyUOm/ePKqrqzMk4YHSayotLaXe3l5yu93U39+vyebZ1tbWhHb27dunul257Nixg2bPnk09PT1pjw2Hw7ITYhiF+N0+/vjj1NPTQyUlJSmPZ4zR4OAg9ff3G9E9ALICq9gPs84Vzb59+yIZ7Hp7e6mqqirmfZfLFbEbvGhlX5QgJkJ59tlnqbm52fDz5+Wpf/yvrq4mp9OpQW8+S27Bm+Digw8+oN7eXpo9e7Ym39/Bgwdp5cqVdODAAcOSQSHbIQA6YmbGQbXZFdV+Xuk1tbe3RwyoWYZeb+bNm0eCIFBDQ4Pk++FwmL75zW+qTm+sF9HfbUNDA4VCoUgGq1Rk6/cJgB5oYT+0zrJ78sknK/4sDxMnTqQjR44kff/222+n3bt3J6QYV3JdQ0NDarurmKqqqkj2PrfbTZMmTTK0DNL//M//UH9/Py1dulTR5wVBoBUrVpDdblfdl9LSUpo+fTrZbDZyuVxpHarW1lZNnEcRcYLT4/FQfX29MQ6YovW1HAahHUAOZmUcTJYdq7u7myv8UIvsjOmuPZlEh9CYFeJis9lSvm+325nb7VZ9HqlQB5/PJyu7YVFREddxCxcuZI2Njar6m+x+NTI8CjpYGoxL9qHUfohh5h6PhzmdTi49zhOaLlc36SXr16+XNYZS1+Xz+VImgtBb4r+HRYsWGXZucR90IBBQ3MasWbNYMBhkoVAo7T3qcDgkQ0WjxeFwsObmZtXFrNWKUhuFPV86AwMH5JIuRp3XIZJ7PiUGINXnlcTUy92z5HQ6Y66/u7s7rSOUDSJ+D0r2eD3xxBNpnVwx46IWzuyiRYtYe3s76+joiNyvRk4yQAdLg3GxDlrusU1mP0Tp7u5OOD5dkg6p9N7pJuuslH69qKgopv+pHCypvb6zZs0y/Rqis8d6PB5T+lBZWRlxjJS24XK5WHNzc9p9eD6fz3THikc8Ho+i3ymcL52BgQNKSJZxsLm5WdP6X3I3EMcb4lAoxJUWNj5zYKqHCznZ+qIVn1WTTegh4nUqMU4dHR3cm9DV1AxL5gTHO456lzWADpYG42INkj3wR69yp3LOpN5L5VBF2wtenRk9GWIlPcu7ii/KokWLJJMpRTsEZl+TXqL1taltT+pZJjpzoFXqVaaT+AlgXuB86QwMHFBKvFHt6enRvP6XkpUN0RD39PRwh2HEG8l0DiNveIP4sBEIBDI+C5RR0t7eHpmZ5ikp4PP5dOmH1+tlPT09upc1gA6WBuNiPjyOjMPhSJhkiZ7AiP/9VFVVMa/Xy5qamiTbi46gkJv5LRAIWKq+1YIFC0zvQ6aIw+HQpP4l0Wd1NNXeBw6HI+WkrFlbCJSIktBDOF86AwMHtECv+i28qVq1lnQO49jYWNpVHYfDIfnwDkku8atR4oNauhXJ7u5uruKYckXOvkKlQAdLg3ExF7PTlispndHS0mK6DhNFK0fCSvK1r31N8zbtdjubO3eu5itfDz74YML+QLmyZMmSpDrfrNBKJaIk9BDOl87AwAEtUJugIFnYipmzS6kcRh7nq7Cw0HJhIlbrD09/o2ukmTUL6fV6daslBx0sDcbFXDJpZl8UKzlf2Sh6THBlgogruaIN6ujoMDW5iRKRG60B50tnYOCAFsgtJhhNqkyEoVBI9eyVWgkEAgl9ttKDCe8Ma2tra0auwonZpVLtJTRihVTN3sVUQAdLg3ExF7OiDpRKXl4emz17tun9gGSvZJrDFS0Oh0PWBCKKLIOcIRwOU19fH61Zs4b6+vooHA6b3SVulNZv8fv91NDQkFAHY2hoiGbPnk2VlZW0d+9ezfqphDlz5pDf7495zQr1nQRBIEEQ6P/9v/9HDocj5bEOh4OmTp1KJ06cMKh3/zivWHxTKYwx2r9/v+Q90tDQQH6/X5e6cvHs2LEjcj4AsoFUNseI35SWnDhxgnw+n9ndAFnM6OioYecqLCzUtL39+/dTX1+fpm3GoHCSJ2fB7KI10KIOlZkoSc2tx54CvcLq4vd/WWHly+l0RtIyp0s6YVamrJ6eHtbc3Kxb+9HZKpXsEVF6Pi1DEKGDpcG46Eu6dOwdHR3M6XRmXKiylr91s/sAyU255ZZbdLn/WlpauPUDwg51BgbOXMbGxpjX65X8oUil1dZz479a0jkA8Y6kmoKITqeTrV27VjITnZglS0vlFf3QbWb2wviwh/i0zPGpb6uqqlhra6vivqoNszAq+5hYgNWo70GL4soi0MHSYFzSE70HJb5WXSqslI4dAskVEUP/U01SV1VV6TaR2NDQwK1b4HzpDAyceUg9LEv9GMW06VZeGUvlRIoSXwRTrfMiPmQkK0apx8PFLbfcYsl9U2Ja5/j7Sc0GaZfLpbqIpFEb4MXv36jxltq7qBToYGkwLqnhrZUVj9lZDCEQq4jD4TB0ElV8lktWP5JI331lcmp+wfnSGRg4c9DCOdC62KuI3BU2OU6klkUwW1paUvaRp1/ZIlpnVhQEIa0zzfsdGXH94j2g9YpnMpFKwqIU6GBpMC7S8Ex0ib9hKdugdJLC6XSypqYm2YWDzZZsTPkO4ZNktmDRokUxBcIDgQCbPHmyIX0KBoOSEydqJzrlnJ8HOF86AwNnPFrOPKrdgxIdtrJ8+XLmdrtlFRyW60jpFYaWrI+8DyqQf4jD4WA+n09VtjPxvlQTWsp7HpfLxQKBQKQwsxHOF2/9MR6gg6XBuCQiZ0IpmW1Q87s26vcFgaiRe++9l3m93qSrWvHPC2ZETURPcgcCAcMminmjNuB86QwMnPHo8UNXsgclVdhKtCRbYVPiROq1EpJuFVDqWsX9YcFgkC1atMgw5WtVsdvtMfWs1N6nYl0UtatRyVb1xNfiZwzNmOlWEwIMHSxNro1LuogDpRED8bZBzWSUGftc1Uh80XZI9su9996b9rkk/nnByLIKUs9qbW1tpp5fCjhfOpNrBs4K6PFDl7sHRa4hl5pFVfJwrmcYWrpVwPiHm1AoFJPVyyjlZ0WRKiIcCoUUP7wUFhbGJAJR2z8ph8pK4URqQoChg6XJ1nGRcrLSZbtVU+9QTMIhrgyb/VuBQPSS+vp67uea6OcFI1a+ojPzRv/+77vvPsPGR06UFJwvnclWA2dlzF75UhP2GH0eudnljAhDI0q/H0cMRcy0WVw9RWpVs729XVWbojOihfOVCaI0BBg6WJpsHBc5ez1Eh765uVlV9rNcn1iCWFO+8pWvaL4FQUmCqej9wnper/hbNjPZjZzJQThfOpONBs7qaJkYQMkDnxrnz+PxRK5B7gNBc3OzIUkR7HZ7UiXT09OTkVXqJ0yYoFvb8fcQbzgqT7sulyvnMqvJDQGGDpYmE8clVegg0rtDIJ9l8xPrUxpVnzGVdHZ2Mp/Pp2vCC6fTaVqtTVGamppk6bKcdr4eeeQR9uUvf5kVFhYyp9PJ6uvr2Z///OeYYxYsWJAwyBdccAH3OTLRwGUDoiFW82NUGuqkNuzR5/MpcuDisx3qqYgEQYjs5zJjeV9ruf/++3U/h5iFCQ+I6kRuCDB0sDSZNi6pQgfVhA1CINkk0ZEpVgiDnTt3rq42r7i4mB08eND0SUiv1ytLn+W08/W1r32NrVq1ir377rtsy5Yt7KqrrmKnnHIKO3ToUOSYBQsWsCuuuIINDw9HZP/+/dznyDQDl02oXWGorq5WtMdEzcqXuErS0dGh6PPibLARYX9qalxZTYxI2d7R0WG6gdBbBEFg48eP1/UcWPnShkwal3STFnrfc/Fi9moCBBIv0ZlpOzo62C233GJ6n4iMScpihfIMLpdLVoRUTjtf8ezZs4cREduwYUPktQULFrD6+nrFbWaSgct0pEJSol/jfcBubGxMm946VfiLFvHNSvcDzZo1K+HckydP1jWsTg8ltnDhQkPPZ8ReuWXLlpk+tnqK3it62POlLZkyLlYqWjx58mT2la98xfR+QCDRkiwzLcRYkTMxCOcrig8++IAREdu6dWvktQULFrCSkhLmdDrZGWecwb75zW+y3bt3J23j2LFjbGRkJCKDg4OyBhgoI102K8b4V6TS/YB4zqU2vCwXVkmIYtPRd3Z2svXr17Nly5axO++8k5WUlBgSohe9V07P82RqApL47yCZoXe5XLrt90O2Q+3JlHExskYQBJKJkk1RKJksckLi4Xz9nRMnTrCrr76a/du//VvM611dXezll19mW7duZS+99BKbNm0a+8IXvsCOHTsm2U5ra6vkl2J1A5fJJHN04h/Yuru7uZbAe3p6VJ9LPFbpTFS27w8qLCxMSL/e3NxsSt0Y8Xtrbm42fVysJvX19Qnfic1mizis0au/alcP29vbI+Ey8Y6q0hBgxjLHyTCaTBkXuVlfIRCIMslVJ66lpYUFAgEWCAQiRZmVTMZi5UsBd955J5syZQobHBxMedzOnTvZuHHjkj4IYOUrlnSFLbVoP9WPRAxV6unp4XZknE5npHZLfDhhKmdKKqudEkVgs9lYKBSKtJHN+wtEB8xsx0errIGTJ082fUyNkOiJBvE33tjYqKrNhoaGhO+gqKiItba2qtIbmeJkGI2VxkW8hzo6OiJOeDAYZD09Pabf6xAIJHtFrA0WCARYS0tLxBGTq3vkhsTD+WKMNTY2MpfLxT766COu408//XT22GOPcR1rJQNnNDzheWrhDUlRmgkrur+8mYPEAsNqQrCiZ1CyPZNXZWVl1sy4WXVfV3V1dSQVr5YlGHp6egwJj21ublasI3JZB6dCr3GRO+Hm8/lYVVWV5Pduxko4BALJHbnvvvskJ9UdDgebNWsWdztyn2tz2vk6ceIEu+uuu1hlZSX7y1/+wvWZffv2sYKCAvb8889zHZ+rhl9OeJ4a1KZ1Tydif7u7u7n37Hg8HtUbX+Njh81eGYKkFzVZKomITZw4kS1atEh18eV4WbJkSST5TCYXv04VDpyKXNXB6dBjXOROuK1du9b0+woCgegr2bp9IlrgfMng29/+NispKWF9fX0xqeSPHDnCGGPs4MGDbPHixWzjxo1sYGCABYNBdtFFF7Gqqio2OjrKdY5cNPy8oYBahCAasRlbEATDV56iV76yee9XNklzc7Mm9+PixYs1XU0SC1DGtzlp0iTTx0zudSjRGbmog3nQelzSTbh1d3dHQnuWLFnCLr74YtPvKQgEAlErSp5pc9r5SjaQq1atYowxduTIETZz5kzmdDrZuHHj2CmnnMIWLFjAtm/fzn2OXDT8WmUV5MFKaYj1+BFn2/VZWex2u+qi3IsXL9YkVKqwsND08bCiKNEZuaiDedBqXMbGxlggEEi7oooJJAgEks2iZ8KNkyiLYIylfH/ChAm0fv16g3qTPQwPD2t6XCpsNhs9+eSTNGfOnLTHnThxIu13bgVWrFhBNpuNiIj6+/tpx44dJveID5fLRU8++STde++9GdPnaI4ePUqMMRIEQdF9whij5cuXa9KXQ4cOadJOtqGFzgDa4ff7qampiev3ngm6FwBgLBMnTqQjR46Y3Q1N0NM+5enWMsgaKioqND0uHU6nM+0x4XA48mBtVZxOJ/X29pLb7Y68lgkPm42NjRQMBunDDz8kp9NJ55xzjtldUsTRo0eJiGjy5Mkm9wQkQyudAdTj9/upoaEhIydaAADWIFscLyJ97ZMs50urWWCQWdTW1pLL5Urq6AiCQNXV1VRbW6v4HOFwmPr6+mjNmjX02muvcX3G4/FQVVWV4nPqzfLly2McLyL1P+bi4mLdr3n27Nl04MABOu2002jGjBn08ssv63o+vcnLwxyTFXE6nWl1xqZNmwzqTW4TDodp0aJFWM0CAFieeJsuRhZphRbPtOmQ9VSyadMm+vd//3caHR2Nef2TTz6hZcuWadoxYB1sNhutXLmSiCjBARP/jg6tk4vf76eamhqaMWMGzZ8/n5YuXcr1uVmzZtG2bdsoGAySx+NRdG492b9/f8Jr6RzZdDz33HP0/PPPq+1aUqqrq2nfvn2WnwH3er3k9Xq5jt23b5/OvQFKuOGGG9LqjNtvv51++tOfGtSj3GXu3Lk0NDRkdjcAACAtnZ2dMc994XBY0/YZY6qeaXmQ5Xx1dXXRV7/6Vbrwwgtpy5YttHnzZrr11lvpX//1XyMhPiA7cbvd1Nvbm7Dq4nK5EkLrUhG9wtXX10e9vb2qHvRtNhvV1dVRe3s7+Xw+Ki0tVdSOFGpDGqXCJ202G7W3tyuaYW5ubqaGhgbas2ePqn6l4t///d/pzjvvtPwM+BlnnEFnnHGG2d0AKqivr097zBtvvEFvvPEG3XDDDVkVzmIlTj/9dPL5fGZ3AwAA0lJfX09z586l2tpa6u3t1eUcDoeDyz6pQk4WJMY+y4QkZgArKytjXV1d7NNPP0047tixY3KbzghyPdNWKBRi7e3trLGxkbW3t7NQKMT9WamaMWqK8Xo8noRzqKnLFC9Op5N1dXWx8ePHK/q8WFk9EAhECpT29PQkLUCaTIqLi1lXVxcLBoOso6ODfetb31J9bUVFRTF/Z1rx05aWFrZw4ULu4ydMmGB6nyH/EKfTKUt3PPXUU+xLX/oSW7duHfvjH//IiBJ1cDbYnJ/85CespqaGFRQUsHPPPZf95je/4f6sEtt09dVXm34vQCAQCK+I2aP1LkskNxOvrqnmW1tb2Wmnnca+8Y1vsA0bNrArrriC3Xbbbez48eMJx5577rkJr/3f//2fnNNZklx2vuQW3Iz/rB6pibu7u2POo/UPsrKy0nRlo3WdKCJira2tLBgMMo/HY/r1ZbOIxbmRljtReHVHf38/u+GGG9jpp5/OGhoa2FlnncWIiH35y1+OOS7TbU5XVxcbN24ce/bZZ9n777/Pmpqa2KRJk9jHH3/M9Xm5tunIkSOm3wMQCAQiV4LBIOvs7NT1HJ2dnbL0t67O1+OPP872798f81pbWxs777zz2EcffcQYY+yXv/wle+KJJ9jnP/95NjQ0FHPsF7/4RTmnsyS56nylc568Xm9MQTpxZqKzs5MFAgHdalvZbDbW09MTc17U0UovLpeLhUIhjJVO0tLSwoLBIBsbG0s6aTF9+nTT+2mmiMV6UzlgZ511Fqurq2O9vb0R/SLq4N///veMseyxOeeffz674447Yl7753/+Z3b//fdLHn/s2DE2MjISkcHBQUbEb5vuuusu0+8BCAQCkStiJJGe57DUylcy1q9fz04//XTGGGMfffQR+8lPfsImT57Mamtr2amnnspqa2vZ3Llz2Ze+9CUtTmcqueh88To04ky21MOm3uLz+SIOH1Zz+ESvhy+s8iTOmkVPRni9Xtmhp9kq8UXI4/njH/+Y8Fq8Ds4GmxMKhZjNZmN+vz/m9UWLFrGLL75Y8jOtra2SY8prmy6//HLTv38IBAKRK+LEpl7PmalsUjJMcb4OHz7Mtm/fzk6cOBF5bcOGDZH/79ixg/X397NPPvlEi9OZSrY4X9EPg8FgkIVCoZi/o288r9dr+o8tnRQXFzO73W56PyAQotiVr+jfXCb8lswQObOMog7+6KOPssbmDA0NMSJiv/3tb2Nef/jhh9mZZ54p+Rm1K1/XXnut6d87BAKB8Er8ZF1zc7Mu5+EJh49Hrm9wEqlkxYoV9MADD9Dx48cpPz+fpk6dSueccw6dc845NG7cOJo2bRpVVVVZuh5TruH3+6mpqSkmw6DNZotJ1+lyuSLp5VtbWw3vo1ziyx8AYCZLly6lpUuXUmlpKd144400efJk+tnPfoZ03kmQU3z86aefJqLPsvRlm82Jz7DKUhSSLygooIKCAsXnuvbaa+nFF19U/HkAADASFpUCPhwO05o1azRt32azUVdXF3f2bjWodr5++MMf0l133UW33nor7d69m/73f/+XtmzZQs8++yz96U9/onA4TP/0T/9E55xzDnV3d2vRZ8BJOBym/v5+Gh4eppNPPpmIiF5++WVasWKF5LHR7Nixg2bPnk0Oh8OIrgJgOYqKiig/P1+yXhsv+/btk/y9gVjkFB8Xx/PNN9+kw4cPZ4XNKS0tJZvNRrt27Yp5fc+ePVRWVqbLOadMmaJLuwDkAkVFRXTw4EGzu5FznDhxgoiI+vv7Na9FumbNGmpoaNC0zaTIXluLw263sw8//FDyvePHj7PNmzezVatWSaYFz0QyJezQjH1XEEg2SUNDA/P5fKb3I5sl3Z4vKSZPnsyIpHVwJtuc888/n33729+Oee1f/uVfkibciEeubRobG0OoNgSiUAoLC03vQy6K0+lkY2NjmmY75M28q6X+Ve183XHHHayrq0ttMxmDVZyv+D1b0Q8veqV1h0BySVpbWyO/Jzyk6iPpsh1KceuttzIi83Ww1oip5p977jn2/vvvM4/HwyZNmsS2bdvG9Xkltgl7ECEQSKZJMBjUNNthIBBQqrYV61/VztfSpUvZ5z//efbrX/9abVMZgRWcr1T1tpBqHQLRRkTHAL8pfSS+TAQvLS0tjIjYCy+8oL1yNZmf/OQnbMqUKSw/P5+de+65MUlE0qHENo2NjUVq0UEgED7BZJy50tnZycbGxjTLGiy3ppcW+le18zV16lQ2btw4JggCq6ysZNdccw37/ve/z/x+f6T2VzZhtvOVbFVLfG3hwoWm/zAgkGwQMSQuEAiY3pdsFbm1VBhjkSLLuWJzeFFqmxApAYHIEzxnmSui3bjuuus0bc9I/ZtHKtm6dSsdOnSI/vCHP9APfvADqqmpob6+Prr11lvp9NNPV9s8iCIcDlNTUxMxxhLeE19bvXq1wb0CIHPIy+NXeYwxGhwcpL6+Pv06lOPIyXIo8uabbxIRUV9fH2yOBrjdburt7SWXy2V2VwDICC677DIqLS01uxs5icPhoNraWvL7/dTT06OqLUEQqLq6mmprazXqHT+qsx0SEeXn59O5555L5557bszrH3/8sRbNZz3RWQkrKiqotraWbDZbwnF6ZHcBIJcQMyXJYWBgQIeeACJ5WQ7jOeecc+jiiy+OeQ02Rxlut5vq6+upv7+fXnzxxUiZEQBAIrt376Zvfetb9PDDD5vdlZwjFArRa6+9Rk1NTbI+JwhCzMKFWMJDTF1vOKrX2nIMrcMOU+3fEhGTa1xxxRWmL/dCIJkgWodRISxLexGzVpmtg7MFLcdFyi5VV1frVtQUAoFA9JLi4mJJfaY2w2E0hhdZBsrx+/3U0NCQEEY4NDREs2fPpptvvpn+/Oc/07vvvktHjhwxqZcAZB7xvym92oufTePl9ttvp97eXjpw4IDarmUsN9xwgzkzjiAt0Sth8REZF154Id1+++0J9e/y8/Pp+PHjJvUYAACkGR0dJb/fTzabLW2EmVEITOunlCxndHSUSkpKaGRkhIqLixW3Ew6HqaamBmGEAGQQeXl5MaGL1dXVtGLFCtq6dSu1tbWZ17EMJBgMUl1dnezPaaWDsw0jxyUcDlNfX19kP2RdXR3V1dXRCy+8QHfeeSft3btX1/MDAIAcOjs7ad68ebq1L1f/wvmSiVYG7qGHHqLW1lYNewYAMII77riDTjrpJDrttNPozjvvjMz4jx8/XvMVt2ylurqaBgYGFM08wvmSxirjEg6Hqa2tjZYuXWpaHwAAIBqlk328yNW/CDs0mHA4TF6vl37wgx+Y3RUAgAKeeeaZyP+XL19OK1euJLvdDsdLBt/4xjfM7gLQCZvNRpdeeimcL2AISkO/QW4gCAK5XC5TMhqmQnWqecBPb28vTZo0CY4XAFnCjh07aPbs2bRu3Tqzu5JRtLW1UU1NDfn9frO7AnSgtraWXC5XJKMYAFoj3ls33nijyT0BVidZRkMxfHrNmjXU19dH4XDYuE5pluojR1CaUQpZoiCQ7JXi4mLT+5BpIggCEwRBdsYpZDuUxmrjIhZvjs8UisyhEC3E4XCwwsJC0/sBsbY0Nzcn1U/pMo3LwfAiy5nK008/TaeeeiqNHz+ezjvvPOrv79ftXD09PfTEE0/o1j4AwFxGR0dpwoQJZnfDMOx2u+o22N9DhTwej7EzjsAQxOLNVVVVMa+7XC7q6uqSVfAcgGiKi4tp//79dOjQIbO7AixOV1dXxL6IK1333HMPzZ49OyHh3dDQEDU0NBgSkZGTCTfWrl1LN910Ez399NP0la98hf7jP/6D/vM//5Pef/99OuWUU1J+Vu6munA4TJ/73OegJACIo6ioiA4ePGh2NwAnF1xwAV1++eWRTcuXXXaZZm3L2QxtlcQSVsOq4xIOhyVT1l9//fW0du1as7sHAMhygsEgHThwgJqamtJmGBf3iMlNCCVb/ypaX8twzj//fHbHHXfEvPbP//zP7P7770849tixY2xkZCQig4ODspYWA4GA6cuuEIgV5N5772XBYJB1dnYyr9dren8gysTlcrHFixczm82mWZudnZ3c+ttq4XVWIdPGpbOzU9Y9ct1115l+70MguSiZHirs8XhkX0MwGJSlzxB2mIbjx4/T22+/TTNnzox5febMmbRx48aE4x999FEqKSmJSHV1tazziXVQAMh12tvb6cCBAzRnzhx69tlnze4OUMiOHTto+fLlmoYKVlRUaNYWyAzkfOder5e6u7upubk55XEOh0NttwAAcbAMD5D7xS9+IfsahoeHderNZ+Sc87Vv3z4Kh8NUVlYW83pZWRnt2rUr4fgHHniARkZGIjI4OGhUVwHIOjweD/X19aG4OCCiz0I8qqurLZcGGOhPbW1twn4wKaqqquh73/seERE9/vjj1NPTQ06nM+aY6upq8vl8tHv3bmpvb1fUn1zaswnSM27cOLO7kBPomRFVEARyOp2Kir7rPSGYc86XSPwXzhiTvAkKCgqouLg4RuSgZ1E3ADIJxhgNDg5iNThHidev4t/J0gCD7MZms9GPfvSjtMf96Ec/irk/GhoaaHh4mILBIHV2dlIwGKSBgQFyu91ks9no7rvvJpfLJbs/R48elf0ZLYHzZx3y8vKoqanJ7G7kBHqtqon25YYbbpD9OSMmBHPO+SotLSWbzZawyrVnz56E1TAtqKuro/Hjx2veLgAAZAoOh0My611vby+53W6TegXMxu12k8/nkwwXdDgc5PP5JO8Pm81GdXV1NG/ePKqrq4txzmw2G61cudKyNcbiJxqcTid1d3fTwYMHKRgM0qJFi0zqmT7cdNNNdMUVV5jdDVmcOHGCli9fTl/5ylfM7kpO4PF4FE2YEH3mLN13330JnxftS319vay2iAyaEJS3RTY7OP/889m3v/3tmNf+5V/+RTLhRjxKNjW3traavuEQArGKBAKBhPoauSK5XA8sEAhEEq4Eg0E2NjYmW3cr1cG5QCaPy9jYGAsEAqylpYW1tLSwQCCg+P4QkarjYyXxeDwJv4OxsTFL91mJzJw5k9ntds3bzfQkEJB/iPg7CAaDzOPxsNLSUlmf93q9kc/H2xfxN8VzvxhZ5ysnna+uri42btw49txzz7H333+feTweNmnSJLZt27a0n1Vi4MbGxtikSZNMv8EhEDNFEARWXV3NxsbGmM/nM70/EGNFTkZDrXVwLoBxSUR8IOvo6GA33XST5ve00smUaF0YTTAYNP13qrWMHz/e9D5ArCni7yAUCkUcLyXtFBYWppys6enp4WqnqqoKzpfe/OQnP2FTpkxh+fn57Nxzz2UbNmzg+pxSA4eHTQjkHzNUjDHFihaSmSI3da/WOjjbwbikRmvHRnxonDt3bsKsel5enqLfhNz0+7kovCteRUVFpvc1k2XcuHGGnGfWrFnM6XSqbsfr9Ur+7uWsgAuCwARBUOSAwfnSGTUGzufzYRYIkvNit9uZ1+tFDbwcEqlZfjN0cDaDcUmNnPAjHvH5fMzn86lqL341OBtXviDSYnXncMKECbq2zztBwStSq19Kfp/JVqXTgTpfFsbtdvNXvwYgSzlw4AC1trbSnDlzyOFwWHZjPNCO66+/HhkNgamIiTiI1Ke39nq9VF9fT01NTaqytcWns54+fXpCGn2QnRw8eNDsLqRE7+yfJ06c0LS9Q4cOxWRSDofDin6f7O9Zmfv7+zXtXzxwvgwmPz+fVq1ahQdOkPMcOHCA9u/fn/EFHMFnnHTSSUnfW7ZsGfn9fgN7A0Aibrebent7ueqLJcPlctH3vvc96u/vV1yvUCqdtd/vp9NOO01RTSIAANFrr70W+b+a3ycRiixnJaIBkEqNKZVyFwCgP0VFRWZ3IaMZGxtL+b7H46FwOGxQbwCQxu1207Zt2yJ1wuQUZRYEgVauXEk2m03xw1l8OutwOEwPPfQQzZ49G8XndcLtdqOOWg6wadOmyP/VOk8ospylxBuAYDBI27Zto5/97GdYFQPABFKt3JiFFfukBKNCOQDgIbpOmFiUOZ3dja9Lx/twFh9GGN2O3++nKVOmUGtrq7ILSUJ1dTU1NzdTaWmp6rbOP/98DXpkLnl5eaYX0bYKdrs9a58x33jjjUiEhRrnyYgiy0i4IRMjNjVbvT4JBAKRFrNKShQWFuq+QVoLaWlpQZ0vncC4KEfcmJ9sc350llaRdAk84tNox9/3apN1xMvChQtZR0dHzDlCoZDqTHJyay5ZURwOh+l90ENKS0uZ1+tlnZ2dbOHChVyf8Xq9rK2tzZT+ap1kQ0rEbIVqEuwg26EFMcrARdcnaW9vZx0dHZHitCguCDFD8vLyWENDg+n9sKK0tLSwYDBoWgbH+AckI4ycWlFa0BJOhjQYF3VITXpWV1envEeTOW3pUlZrWUxZaR/liBapwM2SiRMnmt4HPcTpdLJQKBT5nnnLFHR2drKxsTHTHFKn08l9L86ePZstW7aMzZw5k7t9tfVEk6WsTwecL50x28ClUvbijSNnFgQCkSMtLS2m98GKIqaM1jqddTaL0poqZutgq4JxUY846SlndVaJ06ZFSnlxwkdpH+UIb01GpUWn9ZSmpibT+6CHdHd3K7qn2tvbWSgUYl6v15R+z5o1S9bxLpdLUV8DgQALBAKssLBQ1rmMisiA8yUTKxg4HmWv5cwaBCIKnC9piS6WqnU4UTaLkpoqVtDBVgTjYh5ynTYtiinH1wjj6aNS/Z3u4be4uJh5PB4WCATYsmXLTNcrosyZMydj60lWV1ez5ubmpM9x8ZEDcib+MiEyIl7krtTZ7XbZ54h3aOUA50tnrGLgeJS9FuEGEEi0/PCHPzT1fpoxY4bl7mm73S5Z3DEb9koYJdHOazqsooOtBsYlc9Bi5UvOb0bNeV0ul6yJ3KqqKuZwOCyjo+12u6IHcTNk7ty5Cc90PT09ksfGRw6MjY2pXs267rrrdL0+m82m+LNG3FNKQ+EZg/OlO5lm4JKtkjU3N5uuaCCQZJJqlsvhcFhuA3Vzc3PChMjPf/5z0/uVKSJnFj/TdLBRYFwyBzXhyUpWi9Wc98ILL5TdP7P1SaZK/PfKE8FUXV3Nenp6NIl0UuMcGXFPtLa26rpqpzQUnjE4X7qTiQYu2SoZsirmnmSCYRQziyWbxbPqNcTPruq98lVQUGD6NWslWPlSD8Yls+CJTJGbyEOr86oVQRCYw+FQ9HzR0tLC1q9fzx5//HF27bXXsssvv9x0/WSkPPHEE2zZsmWssbGR3XXXXab3RwtxuVyaJOu69tprde+r0skNOF86k20GbmxsjAUCAe5leafTyTweDwsGg6ynp8dyKxCQzBaHw8GWLFnClixZgrC9HBDs+dIOjEvmkWr/tpJEHnLOa0QoXiAQYMFgkHk8Hi59nmwVR68VGYj2Yrfb2fr161kgEGCdnZ2stbU1I2253LBeufo3Oyp4AsXYbDay2Wx04MCBtMe2t7fT3XffTTabjYiIwuEw3XPPPXp3EeQQ+/fvp0ceecTsbgADWbFiRUSnAJBLuN1uqq+vp/7+fhoeHqaKigqqra2N/B5SvacWHpuvlj179tC8efOorq6Oli1bRg8//HDSgtKCIND1119Pc+bMIcZYzHvhcFj3vgJtOHDgAPX399Oll15K77zzDi1btszsLilieHhY1/bhfAHum6ysrCxG8ff399OOHTv06hYAWUNRUREdPHjQ7G5Yjvvuu4/cbrfZ3QDANGw2G9XV1cl+TynhcJiampo0bTMZFRUVkf/bbDb6/ve/T1OnTqWmpqaYZ4fq6mpavnw53XvvvQmOFzCOvLw8OnHihOp2li5dSkuXLtWgR+YRfe/qQZ6urYOMgPcmiz9O75kBALIF0fEqLCyk4uJiWZ8955xzdOiRNejq6sKsNgBRhMNh6uvrozVr1lBfX5/mvw8jJk0FQaDq6mqqra1NeM/tdtO2bdsoGAxSZ2cnBYNB+utf/0pDQ0OmT+Y6HA5yuVym9sFM7r33XlPOm5dnHVck1b2rJda5YmAatbW15HK5SBAEyfeT3Yx6zQyI/SgsLNSlfQDM4vDhwzQ6Okper5euuuqqtMfb7Xbavn27AT2Tj81mo8WLF6fUHekYHByk/v5+jXsGQGbi9/uppqaGZsyYQfPnz6cZM2ZQeXk53XPPPZo5YuvWrVPdRktLC3m9XhIEIeG3L/6dKpxYXNGbN28eHThwgE477TTTtzAIgkA/+9nP6MMPPySn02lqX+Rgs9kU699o5s6dS0888QR5vV4NeiWPEydOkNfrNd3x5bl3NUP2Ts0cJ1s3NSfLgJQquxJP2lqxNoNUu0Sf1bWI3/hbXV3Nuru702ZKKioqYg888ICqTZUlJSWmb+yEyJPoe8mqmQ/TSWFhIddxauu26P09CILAmpubVWVPk1ssNlt1sFowLpkNT3F2NXWIxHOo/d3bbDbW09MTaU9NUhCzCtLHpyuP7rMWNdji9aSeOnjx4sWq24muVcmT3l4P6ezsjMnM3d7ervs54xO5qElog2yHOpPNBk6JIuVx2tK1K5UKn1cBKvmB5uXlsaamJhYMBllHR4fhSgaiThwOR9L7Kptk7dq1rLOz0/R+pBIxW+HatWtZcXGxojb0ziqVK2BcMhfeB141qea1fKiOL+4rVcrGyP4okfb2dsk+q9G5Z511luSzjh6TaGK9Vi3GMP5+MqIcQbzE24FQKKRLTS+n08k6OjpYIBBg69evZ0uWLGE33ngjW7JkCQsEAorq5zEG50t3st3AKVGkPE6b3HZ5FWBHR4fsdPeLFi2S7eRBrCU+ny9SJqGlpYW1tLSwZcuWmd4vLaW9vT1j7k+ljpfL5dK9nkqugHHJXOT+zpXUIdJSl6gp9KxHf5RIshV3tf2qrKxkCxcuZI2Njay9vZ2FQiFVRbXjxW63M6/Xy3p6elS3l2pyPdlzXXNzs+bfhdPpTLiXAoGAbt+91+tN6rQqXV2G86UzMHDSKJ39SgavAlyyZAn3g1/8ErPL5YqEN2Zq+JrZYlah3/HjxyfUDqmqqjK17lxVVRWbO3cuKyoq0qS9mTNnskAgkNX3p9frla0boIOlwbhkLkpWW+SuGMs5h9Pp1KUPaq9ZS0nWdy0dJaJ/PMxrHWKp1ta1t7fHPKdJPcMle67r7u7WtPaax+OJ+Q56eno0s6NKRMnqMpwvnYGBMwatFWCyH5gWe1biFVpHRwc766yzTFMcWkp+fr7pfZDzfZp17okTJ7Kvf/3rurQtGtlsdMDk7vdiDDo4GRiXzEXJaktHR4cu5xBtmNrfb6oJ2bGxMUP29EgJz6qdFnvjos8nPsw3NzfrEkqnVvdKrXKlWwHq6enRrC/RjrAeK2t63CPxwPnSGRg44zAi7lj8kfX09KiKnY7+sWqpuK0s48ePN70PUlJcXGzqrJnWIt7/Zq3q2e123X6DSmbOoYOlwbhkLkomG9vb2zU9R7QN43XUkv1+Uz3My92rq6XukbNnTst9WoIgRJKPmaHDpSQQCLBgMMg8Ho/iserp6eFeJU0m0U5Od3e3qjG22+2aOrdy7BOcL52BgTMWo5IqRO8Ba2lpkf2jF5WUHpuIxThrozfAZrJMmDDB9D5oKYIgMJfLxdavX5+QHVSuyA0XWbBggeb3npo9I9DB0mBcMhu5YWlyV76iz5Euq7EcR433OuRcW3RUSrw9VfOwLyebndlhkXqJ6AjyJnhJ9T3Ht8GbxTfZPRe/lUBOW3qMlZzIjJx1vgYGBtitt97Kampq2Pjx49k//dM/se9///ssFArFHCc1wD/96U+5zwMDZzxKnSKlP7KxsTFWVVXF/Vk909R6vd6I4pNSdlrGXUOsL8FgUPHegaKiIrZw4UJF550wYULCypua1UWlGdsYgw5OBsYl8/H5fNwPoEr3W/FmNVZTfkatnisuLmYej4cFg0F25MgR1t7eHklg8fOf/5yrjcbGRhYIBFggEEgIfeTZo252QhA9RKmTEn+vaRFyKCYOEb8DOQk24q/D5XKljQyx2Wysra1N1XWnImedr//5n/9hCxcuZOvXr2cffvghW7duHTv55JPZ4sWLY44jIrZq1So2PDwckSNHjnCfBwbOPOTORMlRNPE/Mp64Y9E4aJWmVqr/8bNOoVAoxhCtXbtWs1UJs5JnQPhFTIfr8XhMCa38yle+onrlzel0qqpVBB0sDcYlOwiFQmlXd9RmGuRNkCW3/IweDkv8BKNa51TqmkpLSxPsuZqVGKsKj5MiJdGT01on2xBFjl158MEHY+5fXsdNTGDFc6zD4cCeL6U8/vjj7NRTT415jYjYCy+8oLhNGDjzUJKOt7u7O62yif+RpVtZKCoqMtT4iEYkWRy9VrU+IBC9xel0JkQjyAU6WBqMS/aQygapWTVWQnxJj1S1kKwQqqckJDJaohNNJNsPlWkirgIqLccS/Qxi9rWI33H0b4D3vuvs7JQVOSLndwbnK4rvfe977Lzzzot5jegfKam//OUvs5/+9KcsHA4nbePYsWNsZGQkIoODg7IGGGgHz6ZksYCeOIPFqyziY91THZuqNpEeWRpTKQxx1au7u1v30EwIRK1o8dAIJ0MajEt2IXfVych+JMuEZ3Sonh4hkdFtWDn0UBAE7v1vc+fOVTRBG+3Iml0UO16iHWy5CWJ8Pl/arSVy9yXD+fo7f/3rX1lxcTF79tlnY17/wQ9+wDZu3Mg2b97Mli1bxiZOnMh+8IMfJG2ntbVV8ouBgTMHOXHocpStVlmeUvVRqaRbKo/uvxVmHrUSOZt31YiY0MRKhiUbpbi4OGZiRClwMqTBuGQfWtfPlEu6Sb94J8eIEjHREu98aBUSKdrUUCiUNvGIy+WK7CtLVbxXS4medNVrvOO/Yys6ouJzmJIEMbyhirz7vrLO+Urm/ETLpk2bYj4zNDTETj/9dPaNb3wjbfvLli1jxcXFSd/Hypf1SDUjGG2s5NYRET/Hc6z4EJnMKGqRpVFUGLxKYsmSJeyuu+4yXSFqJYFAQNdaMC0tLUk3YWMFUV9JV0MmFXAypMG4ABEtnLZ0k5fJVgZSTZBqrUfS2eFolBaylpt4ZGxsjHm9Xk0nD1M5mXqFAsY7slac2I2vVSbne5ITqshD1jlfe/fuZX/6059SytGjRyPHDw0NsTPPPJPddNNNKcMJRd544w1GRGzXrl1c/YGBswZSxkWtwyO2pUQZSj1MalFI0ufzWVLp6S3iPjzeYp9K208Gz6RPKpk6darpY2hlkVNvJx7oYGkwLoAxZQVzpVATBZJsglTrPVRystEpWbkRH7zlhIBqXaBZXIFL5WSqtVfRIpVITO74GVWTMv77l/M9yUnSwUPWOV9y2LFjBzvjjDPY9ddfzz3T8+Mf/5iNHz+eHTt2jOt4GDhrojT9dvwPWWnYhNrZlWRKkDFrLvcbIT6fT3Fq9HTi9XoT7iHRodfiAeHOO+80ffysLkprfUEHS4NxAXLDBFOhdmVAaoJUK1umRHcoydIX/XDPs5qo5b4oOd+ZFpEa6fYT8hRAttlsrKenJzJWixYt0s1+OJ3OpN8Bz2oonC+NEEMNv/rVr7IdO3bEpJIXeemll9jPfvYztnXrVvbXv/6VPfvss6y4uJgtWrSI+zwwcNZDrcKLV+RK92xJGQQ1xoY3njlbxW63s8mTJ2vertSql9bFvCdOnGj6+GWKyJm9Zgw6OBkYl9xGaZhgMrTY/5ysj2psmRJHUsnkbLKHey3GLP48TU1NsvavxaPW+Wpvb095rWNjY1yrWfGOuJ4Txz09PbK+m3gQdqgRq1atSjp4Iv/zP//DzjnnHFZYWMgmTpzIpk6dylasWME+/fRT7vPAwFkPtT9wKUUu9TDOm1kofrZMTsFmsT/xRlLrJB5aS15enmX7Fi/Nzc0J33Wm9D0bhde4iUAHS4NxyW3kOkvpVgiUJDHgId2esPiH/PjVKrkZH5VOzoqRJ3JQEuki2qP47yNdqGE0cgoUK/kOvV4vV3vxNRz12jIxd+5c7vsu2X2Ola8MAwbOeqj5gadS5PE/Wt79R/EPk0piwJPFkls1I19zc3PGODDRxsZq6XOlxIxiykaKVAhoKqCDpcG45DZyax3x7AuTm8SAF96kWXKdECmUTs7KXZFXeq5kSUvk7NvjXZlS8h2OjY3JKoAc3Sav0xb/eZ7jePYxphpHOF8ZBgyc9eBVeO3t7ayjoyPyr1xFrnYDMm/2o1QzbqJhsko2vvisS6Wlpab3Sc53lAn76ZYsWWJ6H/QUuQ9x0MHSYFxyG15d5vV6Ze0L06vemFFp9JVMzipZ0WNMeVhl9DOD0n17cid5eb9DuTZSXE3r6emRPe5SJV+Ki4uTnie6xmn8fZRuHHn3diPs0CLAwFkPvcIjtD6PlnUlzFyxaWlpSWowQ6EQlwPGu5pTWlqqa4rixsZG2Z/Ny8szdLzFOm+ZsrIoV/QuZpkrYFxyGx775HK5FO0LM7vemBrkOA9qV/QYU7ZFQLRHHR0dKbc3pNOVPMWDRenu7ua6HqWRRbzbNEQRJ52j77V0NU6JEsNSXS5XpP5Zqs+VlJRw9Yt3BRTOl87AwFkTvcIjtDyPXOctncEza69SOmXEG2owYcKElO87HA7W09Ojy143uYYhWu655x7Dxtput7NAIBCZpctWB4xIPyOXK2BcQDr7xKublYTcWRU5q1FarOgxJn+LgFx7lOr7GRsbY4FAIGWooJwJL6OiQ6SuScm55djIVBOpek8KwvmSCQycddErPELL8/A6b1LncDgcrLW1VdPaZtH9F2eL1Kwgjo2NaRYSmWoszJKrrrrK1L7Ez/LJicU3Q+QYQr3CO8xmypQpCdf63e9+N+aYjz/+mM2aNYtNnDiRORwOdvfdd7NQKCTrPJk2LkAfUtknrTO8ZQrpVqOS1bZSg+gEaVlsmff70TJTpd7ZllM9V5hV41TJpD2cL52BgbM2RoVHqNkUnM55413REjeOin2RuzfopptuYkuWLGEtLS0sEAhEnDmlK3tKnCSHw5EQJpGsYHV0KMLjjz9uilLWSsQVrY6OjqQx7alEfFhQmuVKD5k1a5bkfa31bHum6eApU6awhx56KKb8ycGDByPvj42NsalTp7IZM2awd955h7366qussrKSNTY2yjpPpo0L0I9kdlDLh/JMw6jJ2fhz6qFr030/cpxsnmcmOaGUgiDIWslL9VyhJGGHElGbUZMxOF+6AwMH4pGbmYix5MZR7l6uaMUld5ZIKlba5/MlvR6v1yvZ36DKwsSBQEC2w2yVhCNqxOfzKQ7pEGcKjagBJyc2Xuq+1npPZqbp4ClTprD29vak77/yyissLy+PDQ0NRV5bs2YNKygoSHmNx44dYyMjIxEZHBzMqHEBxmPU/mirYuTeNT32ZfN+P3KSr/A+u/BMrkYnweCxS6mek/RyXJNJe3u7qvsCzpfOZJrhB/qiNDNRMpQ8jIvKWG1sdnSfo41UMgUtlZlIibS0tKQNZYw3mJnufIlGlLd8gZSIs5961oArLS1lq1evTumA8TwQaLknM9N08JQpU1h5eTmz2+1s2rRpbOnSpTEhhQ8++CD74he/GPOZAwcOMCJir7/+etJ2W1tbJb+PTBkXYA5G7Y/OdbTeKyXn++Fxsh0OR9JnFyKKTLYGAgEWCAQi/1+/fj1raWlhDQ0NCcm1pCJ4kvWhoaEhEnGTrP9G2mS1obZwvnQm0ww/0I90CkLJLKLSGGfRKVG7Byi+z0Yl9aiqqpJcWUu2CpfswTPTpL29XZWxiF55VJNERM39kuqBIJ0Tb0R4h9k8+eSTrK+vj/3v//4ve/bZZ1lpaSn7xje+EXn/tttuY5dffnnC5/Lz81M+EGDlCyjFjBC8XEPr/UoOhyNpWnUp5Baz5pX4iJnS0tKke+ak7rP4z0vZfi0cV5fLxXp6erjL36gNtYXzpTOZZviBfugRP69U6YgPaVrFSItK0KzkEuLKWqqZuWyQjo4OxWGDUs6MaAjXr19vSM21VA9sUoY3mZMtByvoYB7nf9OmTZKf7e3tZUTE9u3bxxj7zPmaOXNmwnHjxo1ja9as4e6TFcYFZA6ZnD4+E9B65cvhcMje3pDMydZjL1UyB0zu1gSXy6VqG4Moc+fOZYwx1tXVpWlWw2TA+dIZGDggokfmqLGxMUUPzaKDp6TSfbI+a208IImybNkyRen0i4uL04a7Njc3c7U1adIklp+fz31up9OZtki51uG40VhBB+/du5f96U9/SilHjx6V/OyOHTsYEbG33nqLMaY87DAeK4wLAOAz1IT+8QpviZt4J1vPLILJEmbxTuRqNblaWFgYsa3pzqfFii+cL52BgQMiemWOkhtS53Q6Yx6CtQgVbG9vZ01NTbopaMg/RFzl4y2OSZQ6ZISnmKpaSXVPp5sAUDvTmOk6+Je//CUjIvbxxx8zxv6RcGPnzp2RY7q6utIm3Ign08cFgGwjXdKI7u5u5vV62aRJkxTrYiX6VM+JVSmHUMn5Uq1W8Uq6WqI2m4319PRo8l3D+dIZGDggolfmKLmzUlLKw0q1scwSMYV+upVAh8PBnnjiCXbnnXdyZ/bTQx588EGu4y655BLTxzbVaq7ehVwzSQdv3LiRPfnkk2zz5s3so48+YmvXrmWVlZXsmmuuiRwjppq/9NJL2TvvvMMCgQBzuVxINQ9AhpPO+dIiSkWJPg2FQrruEY5+9rF6giytyirA+dIZGDgQjR6Zo+TMEjU3NydtJz7WOpv2SvFIZ2cnV7ra6O9Iz8yB6YT3nGpmSbWS6DDX6JCWUCjEnfRFaXapTNLBb7/9NrvgggtYSUkJGz9+PPv85z/PWltb2eHDh2OO+/jjj9lVV13FJkyYwOx2O2tsbGTHjh2Tda5MGhcAsh2j90zz6lMjJ2al9iVbTbQqKA7nS2dg4EA8WmeO4qndlJeXx7q6ulT1MT7rULbJ/fffn3Yly+FwcGVo4hGn05n1Dm70jKbUOMnZr+j1ehX9PqCDpcG4AGAdjN4zzbOCY1T2Yr1Ei1BEJePGg1z9KzDGGAFuRkdHqaSkhEZGRqi4uNjs7gCLEA6Hqb+/n4aHh6miooJqa2vJZrMpbs/v91NDQwMREUn9RLu7u+m6665T1cfp06fT008/Tffcc4/ifhqBIAiSY6AVwWCQ6urqYl6LHquTTz6ZFi5cSENDQ5L9EASBXC4XPfnkkzRnzhwikv7OMh1BEIiIqLe3l4iIGhoaVF2ny+Wibdu2yf6dQAdLg3EBwDqsWbOG5s+fr7odl8tFR48epQMHDqS0PwMDAyl1aTgcppqaGtqxY0fSY4qLi+ngwYNElJ02LB6Hw0G7d+9W9awmIlv/auLy5RCYXQRGYUQtFj2zHmkh9fX1CWOgZZw8EV/YQU9Pj+Rn48NLs3mvnXjvaRlOo2TWETpYGowLANZB7cpXY2NjJDuhFtsbePuTLlQwmyJmlEZfSCFX/55EAABL4na7qb6+XtMVtXgqKio0aysap9NJe/fuVd3OSy+9RGvXriWn0xkzBuvWraPbb7+d9u/fr/oc6cbA7/cnXR10uVy0YsUKcrvdRERUX19PJSUl1NfXR0RENpuNHnroIdmziHa7nQ4cOJD0b72x2+20Zs0astlstGfPnph7r6+vL+XsqRyGh4c1aQcAAKxEbW0tuVyupBET6Zg9e3YkIsPtdlNvby81NTXF6N54+5MKXl17xhln0LZt22IiP4goYgemT59OGzdupHXr1tGKFSt0j0zRiwkTJtD3vvc98zqgmduXI2B2EWQTPPvL5IrT6WRHjhxhwWCQzZw5U1VbqTJGjo2NsUAgwFpaWtiNN96oadsi6WLku7u7Y47Val9dIBCISWQRCAQMnRFMNZOq5WopVr60A+MCgLVQmsAplc2TKozNUzBbj9I4Ru8l593zxdsHLaOIkHBDZ2DggNHwKFY1yDUQhYWFaY8RCy22t7cb8pCuxCHgKU6ZKvwiPvmEVg6slOE1MnPWwoULU95jWmwkV1PrCzpYGowLANZDSSi6HKdAqv1UhY61Lo0Tn1XZTPF4PCwYDLK1a9fqaoOkgPOlMzBwwEh4Fase56murmbd3d2R1SWxblayTHfxik0QBNbV1aXJTFi6fVlyHQKn08m6u7tTOrW8bYp1mbQyIMnKBzQ3NxtmxFLdY2pXS9WUYWAMOjgZGBcArIkYpZGuDIfcor/JJv2S6Vg9SuOI16elDZT7zBC9F16us4s6XxkCDBwwCrmKVS1yV9jSFWoUZ5buu+8+1co4nYIMhULcCtvpdLK1a9emdWp5V9O0LiAp9d2qMW633HKL4r60trZK3g9yVvrivxe1SWOgg6XBuABgbdJFmUSHsadDTmRGfB+0TuQlZ/KzurqaNTc3p3QCxYnRjo4OrmLQYtkdJREoqPOVIcDAASNQqliVnEdpSKOcGPLm5mZFK2C81ym3MDWPU8vbph7OV/w1Kw31s9vtms1IxjunPp+PFRcXc322vb1ds7BZ6GBpMC4AWB+tnB81e7i03sogZ6JSPBfPOPBeo9PpZKFQSJGtM2vlC9kOAbAg/f39KTPKMcZocHCQ+vv7E2pU8eL3+yWzJ61cuVLT7EnDw8P0+OOP09KlS+npp5+mDRs20IsvvsjdzxUrVqTN8Mjbl0WLFtGaNWskszMxxkgQBPJ4PFRfX8+VrcrpdNLFF1/MdW5epL5bpVkBDxw4oFmWxKGhIWpoaIhkn+zv76fR0VGuz5aVldG8efM06QcAAGQqWmUxlmN/47HZbIqfG6TgzZp86aWXRq6TZxyGhoa42t27dy89/fTTsrLwivXRamtruT+jJXC+ALAgahQrD2IR53inQnzA7u3tTeuA8Spc8bj8/HzyeDxUVlbG5Xw5HA762c9+xuUI8vbl1FNPleXUrly5khoaGpKm0927dy/dcsst5HA4khbBJPrM2IXDYa4+ikR/t3qVBJCDeG3XX389nThxQtZnrdB/AACwAlo4P3Ltr56IE5XJbGsyRyfVOPj9fvJ4PNx9+PDDD7mPFQSBiPgmdvUiz5Sz6kRNTQ0JghAj999/f8wx27dvp6uvvpomTZpEpaWltGjRIjp+/LhJPQZAGj0VazgcpqampqSrP0REHo8nrbMgKlxRkcUjCAJVV1cnKFzePq9du5bL8ZLTF6fTydWe6PiI9VWqqqqSHrtz507av39/ZOUs/ryCINCaNWsoGAxSZ2cntbe3c/UhepzSXZ+RyHW8pO4BAAAAytm7d29KxyGZ/dWDdevW0dGjR5P2g0ieoyNODu/bt4+7D6eddhr3sS6Xi2uCWVc0CXa0CFOmTGEPPfQQGx4ejsjBgwcj74+NjbGpU6eyGTNmsHfeeYe9+uqrrLKykjU2NnKfA3H1wAj0SgvLmLb1PpRkT5JzbXJi03n6ovTaeZKLOBwOrlh+pd+t0poxZovWiWGgg6XBuACQG/AkltAjKZeSvjgcDln9UJJcqrq6moVCIeZwOFIeZ7fbIxmbtSanE25MmTKFtbe3J33/lVdeYXl5eWxoaCjy2po1a1hBQQH3gMHAAaPQKy0s7+ZY3ixASjYQ81ybkjT76fqi1PHhddrWr1/P5Swq/W6V1IyJbttox8vr9aa7fWQDHSwNxgWA7IfHOZGbsl7PvrhcLl0SeUXbNfF5Id2xejqjOe98lZeXM7vdzqZNm8aWLl3KQqFQ5P0HH3yQffGLX4z5zIEDBxgRsddff12yzWPHjrGRkZGIDA4OwsABwzAzLaycLEBKsielujY1afbT9UWJ48PrsE6ePJl5vV7ulTol3+3Y2Bjzer1pa8aI11RdXc16enoSzqVF/TUtjS4vcDKkwbgAkP3oYb+t1BdeWxttL3mcQIfDoYs9EsnpbIdNTU107rnn0uTJk+n3v/89PfDAAzQwMED/+Z//SUREu3btorKyspjPTJ48mfLz82nXrl2SbT766KPk9Xp17zsAUsjJjBQOh7mOS5fFT0kWICUbiJNdG9Fn+zel+sbiMhIq2Swr7uOSyvS4YsUKyThw3n1qn3zyCbW2tsa0mSx7pNKsV+vWraO2trakyT1EomPt3W43/fu//zv19fVRX18fEX32nemh28Tzrly50rTNzAAAkI3onYxLDnr0hdfWtre309133002m436+vrSZjrcv3+/quzQmqObG6gRra2tab3fTZs2SX62t7eXERHbt28fY4yx2267jc2cOTPhuHHjxrE1a9ZItoGVL5AJyA3R6+npSbpSYlSseDLUzKbJGQc5q3XpwhWTidbjKScePn4VTWps7HY7y8vL03TFS+3KbDqwwiMNxgWA7CfbV76UbA3QeiuFErIu7HDv3r3sT3/6U0o5evSo5Gd37NjBiIi99dZbjDFlYYfxwMABqyE3RC/VviG9H5x5UKpI1YQq8sCzyZnXWCiF19i1t7fHnC/V2GjpeJWWlsaEeusBdLA0GBcAsh+eiUCx6HCm9kXu1gArOKRZ53yp4Ze//CUjIvbxxx8zxv6RcGPnzp2RY7q6upBwA2Qs6VZC4h/80zkQ3d3dJl+RMkUqdxyU4vP5uPZa6aX4lTimPGMjlalRqeg94wodLA3GBYDcgCfzbbrkVFbvi5w90Xpmh+YlZ52vjRs3sieffJJt3ryZffTRR2zt2rWssrKSXXPNNZFjxFTzl156KXvnnXdYIBBgLpcLqeZBxiLHUTHKQVGLEkVq5MxXIBBQ5JRoEfKg5Dp5PxMIBFgwGGRXXHGFKudLz9AOxqCDk4FxASB3SJf51sgtBHr1ZWxsjAUCAdbS0sJaWlpSponXKzs0LznrfL399tvsggsuYCUlJWz8+PHs85//PGttbWWHDx+OOe7jjz9mV111FZswYQKz2+2ssbGRHTt2jPs8MHDASshZCbHC0jwvchWpkTHfSvd/aTGuRsTDy031a/T9Ax0sDcYFgNyCp/6kUROqevRF7l52PbJD8yJX/+ZRlnDuuefSW2+9RX/729/o6NGj9Oc//5na2tpo4sSJMcedcsop9PLLL9ORI0do//799OMf/5gKCgpM6jUA6uDNDFRRUWGpLEnpEDMSVlVVxbyerDK9nHGQQzgcpr6+PlqzZg319fVROBwmm81GK1euJKJ/ZPZLhSAIVF1dLSt7ZDLEc7MkmQ4ZY7RixQqy2WyRvr///vtcbYtjI2bD5Lm2eBwOhybXCQAAIDUbN26kvXv3Jn2fMUaDg4PU39+fcX3x+/3U0NCQkMVwaGiIGhoayO/3J3zG7XbTtm3bKBgMUmdnJwWDQRoYGJDMNmw2WeN8AZCLpHtQjn7w18tB0Qs5ilTOOPDi9/uppqaGZsyYQfPnz6cZM2ZQTU0N+f3+pM6h1HmJKOIQGUV035cuXZry2PixketcRrN//35at26dsk4DAADgxkoTqlr2JRwOU1NTU9JyM0REHo+HwuFwwvti2Zt58+ZRXV2ddcud6LYGl6UgtANYDd4QPStsStUTLWO+eTMnRqer93q9skIelBSm5k2ewRsSmWpskoV8FBYWmhrmAh0sDcYFgNzCSlsJtOyLla6Ll5zd82UUMHDAivDGOpu9KVUpvI6KFjHfahKTqOknT0Yotfux4sVutzOv15u0n/HXw5tsxEopfXMFjAsAuYWVJlS17IsV6nbJBc6XzsDAAatipINiJHIdFSUrStHoPeumph4Zr1FKJ0VFRbIdPznnt1Ixy1wB4wJA7qH1hKoa+6mmL9HnbW9v57IzXq9X1rXpCZwvnYGBA9mAWgfFKPQunCyFng6G2nT/Wq98yR1PK4SDQAdLg3EBIDfRakJVaUSG2r5IfcZms3HZLatMGsvVvwJjSdJmAUlGR0eppKSERkZGqLi42OzuAJC1hMNhqqmpSch2JCIIArlcLhoYGNB0U21fXx/NmDEj7XHBYJDq6uoMbVsck6GhoaQZD5XCM57pzp+sjXA4TP39/TQ8PEwVFRVUW1ur+DuDDpYG4wJA7qJWx4rZBeP1uph0SSrLsBZ9SXZeHpQ+A2hpj0Rk61/d3MAsBbOLACRHyxU1s1ZZeGLXXS4XCwQCsq9Ti1W1VKEdRMSKi4tVrYKlG0+5oSVazKZGAx0sDcYFAKAEtREZep2XV1paWrjtsNb2SCRn63wBAMwlVWp2JZiVRjdVqnVBEIgxRkePHqXLLrtM8jqlaoOJaJHuP1UNtO7ubpo5cybXOZKRbjzl1GBTUqsFAACAcfT39yeNMCEi3eqFpTsvL0uXLuV63rCUPVLl6uUgmF0EIBE99maZvb9IaobM4XAknRkUBIE1NzennFXTclVNXGXs6Ohg7e3trKmpiTmdTtWziPHjmWw1M90qp16zqdDB0mBcAABKMCuRklYJpHieN/Re3UPCDZ2BgQMgFr2UmhXS6EY7GIFAQFGIRLxBSBc2GO/gpQqJkHIQ1Riu+PFUE6Khl/MMHSwNxgUAIAfRvrW0tOiiq9OhRwKpZM8Fek/mIuwQAGAoeoUspAv/IyJasWKFrhXsbTYb1dXV0bx588hmsykKkWB/30js8XgoHA4nDduz2+1ERLR///6Y15OFRCQLoVCC1HiqDdEwK2wUAABAaqK3CSxdujTlsYIgUHV1NdXW1mrah9raWnK5XAn2PRqHw0GCIKQ8JppkzxtWs0dwvgAAqtBTqcnZX8RDqv1Y6VCjlOMNgtvtpm3btlEwGKTOzk4KBAI0YcKEpJ8l+ofzJl5HU1OT7AxRDoeDCgsLE1632+0x45mqffZZxERMf6TQYn8bAAAAbZEzcafnRGf0BGsybr31VslngHQMDw/H2Pvdu3dzfc4oewTnCwCgCr0fsuMdlWAwSAMDA7IdL7UJQbRQytEOnJxVtXjnTclG5YaGBjpw4AAdOnQo4b341Tae9tOtZqab1dRrNhUAAIA0cifulE508lJfX09z5sxJ+v6yZcuIiCLPAC0tLVztfvDBBzH2/p577knpPBpujxQFN+YwiKsHIBYr7M1KhxYJQdJdJ48kiyeXu+G5o6ND9rlLSkq44+R5++PxeLjGnTctPQ/QwdJgXAAA6eDd+yQnfbtSfD4fq6qqkrWHa2xsLGniK/F4h8Mhy06rsUci2PMFADAUK+zNSkW6EDoiShtCR5T6OtORblZNzuqh3+8nj8cj6/xERCMjI0nfY3Era7z9+cUvfiE5bmK4RygUora2Ns3CRgEAACiHN3z+rLPOorq6Ot3sthj6ODQ0lPK4eNu0bt26hEiN+OOj/5Ui/prMsEdwvgAAqtF6b5aWaJkQJNl1VldXU3Nzs+TGYB4HlDdEb9++fdTQ0ED79u1L21cliIa5traWSktL0x6/d+/ehHGLD+9sbW0lxhh5vV5VYaMAAADUYYW9uEr2LIt7uJqamlIeV1xcnNI5E8/f3t5uqj2C8wUA0ASt9mZpjdYJQZJd5+OPP67YAeVZPVy+fDndc889spNsyEE0uDabjW688Uauz0SPW7KN3Dt37qS2tjYqKCjQdTYVAABAcuTuxVWTpCoZSvYsV1RUcH1udHSUq72ysjKaN2+eafYIzhcAQDOik0hY5SFbj5k+m81GtbW1VFFRQcPDw9Tf3x9JI6/UAU23euh0OjVJKy+FVFhkfX0912fFcdMqvBMAAIA+yNkmoDZJVTLkZA6Otk1apoE3Pcuu4t1lOQo2NQOQWahJCBJdZDl687Ga4sM8/ZU6J28SDLmSbLOx3HHTu4ilCHSwNBgXAAAvUjasuro6Yge0SFKVDDnFlaPPxfs5p9NpeAIwufoXzpdMYOAAyDyUZN1L5mA1NzfrZpRSIcdgyZFog6tm3Hidw5aWFlWGDzpYGowLAEAOySb6xIm3VA6RGgeGN3Nw/IQmz+ecTidbu3at5ll20wHnS2dg4ADITNLN9MUfqySlvJ5p9bVIdR9toDo6OrhSCfOOmxznUM0qIXSwNBgXAIAWGBHFkGxiTxSv1ytpm9J9TrQvzc3N3PZeC+TqX4ExHXdvZyGjo6NUUlJCIyMjVFxcbHZ3AAAyCIfD1N/fT8PDw1RRUUG1tbUJ+9LC4TDV1NSo2l8VDAaprq5OZW8TERNaEJGixBtiTL/cDJRyxm1oaCht35T2gwg6OBkYFwCAFqxZs4bmz5+f9rjOzk6aN2+e4vP4/X5qamqKsbXV1dW0YsWKlHZB6nPRiPZl7dq15HQ6U9otrZCrf+F8yQQGDoDspq+vj2bMmKGqDbVGKRXpDE8qeAybGuQ4h4IgkMvlooGBAVkGETpYGowLAEALeG2gFpOMPBN7Uhw/fpxcLhft3btX8n2l9kUpcvUvsh0CAEAUWmRU0jOTkphR0ev10uTJk9Me73Q6qaOjw5DU/8kyNkrBZNRXAwAAYAxy09GrQWmG5I0bNyZ1vIisb1+yxvnq6+uLFDiNl02bNkWOk3r/mWeeMbHnAAArocZx0tIopWLdunXU1tZGn3zyScq+iPrthhtuMCz1v+gctrS0cB2vZfpgAAAA6pCTjt4stK7faTRZ43xNnz6dhoeHY+Sb3/wm1dTU0Je//OWYY1etWhVz3IIFC0zqNQDAaqSb9RMxyyilqqcVTVVVlaI9VVLnk1tk02az0aWXXsrVvun1VgAAAMSQru6knhEUPOhRv9NIssb5ys/Pp/Ly8og4HA566aWX6NZbb014SPrc5z4Xc+yECRNM6jUAwGqkm/UTBIGam5tNM0r9/f1c+71Wr16tui9qimzW1taSw+FIe9y+fftU9REAAID2iFEMwWCQOjs7DQld58XI0Eg9yBrnK56XXnqJ9u3bRwsXLkx4r7GxkUpLS+lf//Vf6ZlnnqETJ04kbScUCtHo6GiMAACym3Szfo8//rhpRok3jGLPnj2qziMmz4h39IaGhqihoSGtA7Zu3Trav39/2vPccccdXKtpAAAAjEXpniy9yYTQyFRkbbbDr3/960RE9Morr8S8vnTpUrr00ktpwoQJ9Nprr9H3v/99euCBB5LuT2hrayOv15vwOjJKAZD9KM3EpCdGZKJKl24/XSYpuen6A4EAd5gisvpJg3EBAOQaStPVa03WpZpP5vxEs2nTpph9XTt27KApU6ZQd3c3zZ49O+Vnly9fTg899BCNjIxIvh8KhSgUCkX+Hh0dperqahg4ALIQKzpb8aSrp6VFil21Dp7cdP0tLS30gx/8gOtYOBnSYFwAALmIFey2XP17kgF9UkVjYyNdf/31KY+pqamJ+XvVqlXkcDjommuuSdv+hRdeSKOjo7R7924qKytLeL+goIAKCgpk9RkAkHlIzaC5XC5auXKlJWLcRcRwi4aGBhIEIcYB0yrcQm0mKatmmAIAAJBdiKGRmYTlna/S0lIqLS3lPp4xRqtWraKbb76Zxo0bl/b4zZs30/jx4+lzn/ucil4CADIZcX9T/EqSuL/JCtmdohH3pEk5i1qEW6jNJCU3w1SmGU4AAABAKZYPO5TLa6+9Rpdddhm9//779C//8i8x7/3yl7+kXbt20UUXXUQTJkygYDBIixcvpoULF0Y27qUDoR0AZBdq9zeZiV7hFmpDG+Xs+XI4HLR7927ufkMHS4NxAQAAc5Crf7Mu2+Fzzz1H06dPT3C8iIjGjRtHTz/9NF100UX0xS9+kVauXEkPPfQQLV++3ISeAgCsQLrU7YwxGhwcpP7+fgN7xYdemajUZpISP5+uVhoR0c9+9jPLObUAAACAXmSd89XZ2Um//e1vJd+74ooraPPmzXTw4EE6fPgwbd26lZqamuikkywffQkA0Am1+5uyFbVFNsXPu1wuyfddLhf5fD5LhXMCAAAAegOvAwCQ06jd35TNuN1uqq+vVxzaGP35oaEh2rt3LzmdTqqqqrJkJkkAAABAb+B8AQBymtraWnK5XGn3N9XW1prQO/NRm0kqEzNRyeHhhx+m//7v/6YtW7ZQfn4+/e1vf0s4Zvv27XTXXXfR66+/ThMmTKD58+fTsmXLKD8/P3LM1q1bqbGxkX7/+9+T3W6nb33rW/Tggw9yhW4CAADIHLIu7BAAAOSgdn8TyG2OHz9O1113HX3729+WfD8cDtNVV11Fhw8fpjfeeIO6urrI5/PR4sWLI8eMjo7S5ZdfTpWVlbRp0yb68Y9/TMuWLaMnn3zSqMsAAABgEFj5AgDkPHqnbs92rFDk0iy8Xi8REa1evVry/V//+tf0/vvv0+DgIFVWVhIR0fLly2nhwoX08MMPU3FxMf3iF7+gY8eO0erVq6mgoICmTp1Kf/nLX+jJJ5+ke++9V3L1KxQKUSgUivw9Ojqq/cUBAEAGkGk2CCtfAABAnzlg27Zto2AwSJ2dnRQMBmlgYACOVxr8fj/V1NTQjBkzaP78+TRjxgyqqakhv99vdtcswZtvvklTp06NOF5ERF/72tcoFArR22+/HTnmkksuoYKCgphjdu7cSdu2bZNs99FHH6WSkpKIVFdX63odAABgRTLRBsH5AgCAv6NX6vZsRSxOHZ+qXyxObWXjZxS7du2isrKymNcmT55M+fn5tGvXrqTHiH+Lx8TzwAMP0MjISEQGBwd16D0AAFiXTLVBcL4AAADIJhwOU1NTk2SSEvE1j8dD4XDY6K6ppq2tjQRBSCl/+MMfuNuTChtkjMW8Hn+MOIbJEm4UFBRQcXFxjAAAQK6QyTYIe74AAADIRk5x6kzLdtjY2EjXX399ymNqamq42iovL6ff/e53Ma998skn9Omnn0ZWt8rLyxNWuPbs2UNElLAiBgAAILNtEJwvAAAAssnm4tSlpaVUWlqqSVsXXXQRPfzww5GN4ESfJeEoKCig8847L3LMkiVL6Pjx45H087/+9a+psrKS28kDAIBcIpNtEMIOAQAAyAbFqT9j+/bttGXLFtq+fTuFw2HasmULbdmyhQ4dOkRERDNnzqSzzjqLbrrpJtq8eTO99tprdN9999Ftt90WCRWcP38+FRQU0MKFC+ndd9+lF154gR555JGkmQ4BACDXyWQbJDCpYEmQlNHRUSopKaGRkRHE2AMAcpZwOEw1NTVpi1MPDAxomrjEajp44cKF9Pzzzye8HgwGI6Eu27dvpzvvvDOhyHJ0dsOtW7fSXXfdRb///e9p8uTJdMcdd9D3v/99bufLauMCAAB6YpYNkkKu/oXzJRMYOAAA+Awx0xQRxRg/0WHo7e3VPFU/dLA0GBcAQK5hhg2SQq7+RdghAAAARYjFqauqqmJed7lchhk9AAAAuUmm2iCsfMkEs4sAABBLOBym/v7+SFKJ2tpa3cI8oIOlwbgAAHIVI22QFHL1L7IdAgAAUIVYnBoAAAAwmkyzQQg7BAAAAAAAAAADgPMFAAAAAAAAAAYA5wsAAAAAAAAADADOFwAAAAAAAAAYAJwvAAAAAAAAADAAOF8AAAAAAAAAYABINS8TsSza6OioyT0BAIDcQ9S9KFEZC2wTAACYg1y7BOdLJgcPHiQiourqapN7AgAAucvBgweppKTE7G5YBtgmAAAwF167JDBMH8rixIkTtHPnTioqKiJBEGR/fnR0lKqrq2lwcJCrCjaIBeOnDoyfOjB+6lE7howxOnjwIFVWVlJeHiLnRWCbzAXjpw6Mnzowfuow2i5h5UsmeXl55HK5VLdTXFyMH4gKMH7qwPipA+OnHjVjiBWvRGCbrAHGTx0YP3Vg/NRhlF3CtCEAAAAAAAAAGACcLwAAAAAAAAAwADhfBlNQUECtra1UUFBgdlcyEoyfOjB+6sD4qQdjaE3wvagD46cOjJ86MH7qMHr8kHADAAAAAAAAAAwAK18AAAAAAAAAYABwvgAAAAAAAADAAOB8AQAAAAAAAIABwPkCAAAAAAAAAAOA82UwTz/9NJ166qk0fvx4Ou+886i/v9/sLplOW1sbCYIQI+Xl5ZH3GWPU1tZGlZWVNGHCBKqrq6P33nsvpo1QKER33303lZaW0qRJk+iaa66hHTt2GH0phvCb3/yGrr76aqqsrCRBEOjFF1+MeV+r8frkk0/opptuopKSEiopKaGbbrqJ/va3v+l8dfqTbvwWLlyYcD9eeOGFMcfk8vg9+uij9K//+q9UVFREJ598Ml177bX0f//3fzHH4B7MLGCXpIFtkgdskzpgm5STaXYJzpeBrF27ljweD33ve9+jzZs3U21tLV155ZW0fft2s7tmOl/4whdoeHg4Ilu3bo289/jjj9OTTz5JTz31FG3atInKy8vp8ssvp4MHD0aO8Xg89MILL1BXVxe98cYbdOjQIZo1axaFw2EzLkdXDh8+TNOmTaOnnnpK8n2txmv+/Pm0ZcsW+tWvfkW/+tWvaMuWLXTTTTfpfn16k278iIiuuOKKmPvxlVdeiXk/l8dvw4YNdNddd9Fbb71Fr776Ko2NjdHMmTPp8OHDkWNwD2YOsEupgW3iB7ZJHbBNysk4u8SAYZx//vnsjjvuiHntn//5n9n9999vUo+sQWtrK5s2bZrkeydOnGDl5eXssccei7x27NgxVlJSwp555hnGGGN/+9vf2Lhx41hXV1fkmKGhIZaXl8d+9atf6dp3syEi9sILL0T+1mq83n//fUZE7K233ooc8+abbzIiYn/+8591virjiB8/xhhbsGABq6+vT/oZjF8se/bsYUTENmzYwBjDPZhpwC4lB7ZJObBN6oBtUofV7RJWvgzi+PHj9Pbbb9PMmTNjXp85cyZt3LjRpF5Zhw8++IAqKyvp1FNPpeuvv54++ugjIiIaGBigXbt2xYxbQUEBXXLJJZFxe/vtt+nTTz+NOaayspKmTp2ac2Or1Xi9+eabVFJSQhdccEHkmAsvvJBKSkpyYkz7+vro5JNPpjPPPJNuu+022rNnT+Q9jF8sIyMjRERkt9uJCPdgJgG7lB7YJm2AXtAG2CY+rG6X4HwZxL59+ygcDlNZWVnM62VlZbRr1y6TemUNLrjgAvr5z39O69evp2effZZ27dpF06dPp/3790fGJtW47dq1i/Lz82ny5MlJj8kVtBqvXbt20cknn5zQ/sknn5z1Y3rllVfSL37xC3r99ddp+fLltGnTJvrqV79KoVCIiDB+0TDG6N5776V/+7d/o6lTpxIR7sFMAnYpNbBN2gG9oB7YJj4ywS6dxH85QAsEQYj5mzGW8FquceWVV0b+f/bZZ9NFF11Ep512Gj3//PORzaRKxi2Xx1aL8ZI6PhfGdO7cuZH/T506lb785S/TlClT6L//+7/J7XYn/Vwujl9jYyP98Y9/pDfeeCPhPdyDmQPskjSwTdoDvaAc2CY+MsEuYeXLIEpLS8lmsyV4xnv27EnwxHOdSZMm0dlnn00ffPBBJLNUqnErLy+n48eP0yeffJL0mFxBq/EqLy+n3bt3J7S/d+/enBvTiooKmjJlCn3wwQdEhPETufvuu+mll16iYDBILpcr8jruwcwBdkkesE3KgV7QHtimRDLFLsH5Moj8/Hw677zz6NVXX415/dVXX6Xp06eb1CtrEgqF6E9/+hNVVFTQqaeeSuXl5THjdvz4cdqwYUNk3M477zwaN25czDHDw8P07rvv5tzYajVeF110EY2MjNDvf//7yDG/+93vaGRkJOfGdP/+/TQ4OEgVFRVEhPFjjFFjYyP5/X56/fXX6dRTT415H/dg5gC7JA/YJuVAL2gPbNM/yDi7xJ2aA6imq6uLjRs3jj333HPs/fffZx6Ph02aNIlt27bN7K6ZyuLFi1lfXx/76KOP2FtvvcVmzZrFioqKIuPy2GOPsZKSEub3+9nWrVvZvHnzWEVFBRsdHY20cccddzCXy8UCgQB755132Fe/+lU2bdo0NjY2ZtZl6cbBgwfZ5s2b2ebNmxkRsSeffJJt3ryZffzxx4wx7cbriiuuYF/84hfZm2++yd5880129tlns1mzZhl+vVqTavwOHjzIFi9ezDZu3MgGBgZYMBhkF110EauqqsL4/Z1vf/vbrKSkhPX19bHh4eGIHDlyJHIM7sHMAXYpObBN8oBtUgdsk3IyzS7B+TKYn/zkJ2zKlCksPz+fnXvuuZE0mLnM3LlzWUVFBRs3bhyrrKxkbrebvffee5H3T5w4wVpbW1l5eTkrKChgF198Mdu6dWtMG0ePHmWNjY3MbrezCRMmsFmzZrHt27cbfSmGEAwGGRElyIIFCxhj2o3X/v372Q033MCKiopYUVERu+GGG9gnn3xi0FXqR6rxO3LkCJs5cyZzOp1s3Lhx7JRTTmELFixIGJtcHj+psSMitmrVqsgxuAczC9glaWCb5AHbpA7YJuVkml0S/t5pAAAAAAAAAAA6gj1fAAAAAAAAAGAAcL4AAAAAAAAAwADgfAEAAAAAAACAAcD5AgAAAAAAAAADgPMFAAAAAAAAAAYA5wsAAAAAAAAADADOFwAAAAAAAAAYAJwvAAAAAAAAADAAOF8AZAl9fX0kCAL97W9/M7srAAAAABHBNgEQj8AYY2Z3AgAgn7q6OjrnnHNoxYoVRER0/PhxOnDgAJWVlZEgCOZ2DgAAQE4C2wRAak4yuwMAAG3Iz8+n8vJys7sBAAAARIBtAiAWhB0CkIEsXLiQNmzYQCtXriRBEEgQBFq9enVMaMfq1avpc5/7HL388sv0+c9/niZOnEgNDQ10+PBhev7556mmpoYmT55Md999N4XD4Ujbx48fp+985ztUVVVFkyZNogsuuID6+vrMuVAAAAAZA2wTAOnByhcAGcjKlSvpL3/5C02dOpUeeughIiJ67733Eo47cuQI/ehHP6Kuri46ePAgud1ucrvd9LnPfY5eeeUV+uijj2j27Nn0b//2bzR37lwiIrrlllto27Zt1NXVRZWVlfTCCy/QFVdcQVu3bqUzzjjD0OsEAACQOcA2AZAeOF8AZCAlJSWUn59PEydOjIRz/PnPf0447tNPP6Wf/vSndNpppxERUUNDA/3Xf/0X7d69mwoLC+mss86iGTNmUDAYpLlz59KHH35Ia9asoR07dlBlZSUREd133330q1/9ilatWkWPPPKIcRcJAAAgo4BtAiA9cL4AyGImTpwYMW5ERGVlZVRTU0OFhYUxr+3Zs4eIiN555x1ijNGZZ54Z004oFCKHw2FMpwEAAGQ1sE0gl4HzBUAWM27cuJi/BUGQfO3EiRNERHTixAmy2Wz09ttvk81mizku2igCAAAASoFtArkMnC8AMpT8/PyYzcha8KUvfYnC4TDt2bOHamtrNW0bAABA9gPbBEBqkO0QgAylpqaGfve739G2bdto3759kRlCNZx55pl0ww030M0330x+v58GBgZo06ZN9MMf/pBeeeUVDXoNAAAgm4FtAiA1cL4AyFDuu+8+stlsdNZZZ5HT6aTt27dr0u6qVavo5ptvpsWLF9PnP/95uuaaa+h3v/sdVVdXa9I+AACA7AW2CYDUCIwxZnYnAAAAAAAAACDbwcoXAAAAAAAAABgAnC8AAAAAAAAAMAA4XwAAAAAAAABgAHC+AAAAAAAAAMAA4HwBAAAAAAAAgAHA+QIAAAAAAAAAA4DzBQAAAAAAAAAGAOcLAAAAAAAAAAwAzhcAAAAAAAAAGACcLwAAAAAAAAAwADhfAAAAAAAAAGAA/x8S5DxZ4F4k9gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -612,7 +613,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 54, "id": "89b0bec7", "metadata": {}, "outputs": [], @@ -631,7 +632,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 55, "id": "fe855878", "metadata": {}, "outputs": [ @@ -657,10 +658,10 @@ "## Resulting lagged parent (super)sets:\n", "\n", " Variable $X$ has 1 link(s):\n", - " ($Z$ -1): max_pval = 0.00019, min_val = 0.167\n", + " ($Z$ -1): max_pval = 0.00125, min_val = 0.072\n", "\n", " Variable $Y$ has 1 link(s):\n", - " ($Z$ -1): max_pval = 0.00002, min_val = 0.188\n", + " ($Z$ -1): max_pval = 0.00001, min_val = 0.099\n", "\n", " Variable $Z$ has 0 link(s):\n", "\n", @@ -686,10 +687,10 @@ "## Significant links at alpha = 0.01:\n", "\n", " Variable $X$ has 1 link(s):\n", - " ($Z$ -1): pval = 0.00019 | val = 0.167\n", + " ($Z$ -1): pval = 0.00125 | val = 0.072\n", "\n", " Variable $Y$ has 1 link(s):\n", - " ($Z$ -1): pval = 0.00002 | val = 0.188\n", + " ($Z$ -1): pval = 0.00001 | val = 0.099\n", "\n", " Variable $Z$ has 0 link(s):\n" ] @@ -702,13 +703,13 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 56, "id": "d75d0ee1", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6/klEQVR4nO3deZRkdX3//9fn3ltVvXfPxmxswgBhG3H7wi+gcOIv4oqaiETFBFH8ERQUMS4J/kYNKibyBf2d5Lh9BaIYAQ1EjWgUxUg0SA6gYkY2wRGYYbbet6q69/3743b39Cw9UzVdVffeus/HOXOmpuv2rU/3dPV93fdnc2ZmAgAAueUl3QAAAJAswgAAADlHGAAAIOcIAwAA5BxhAACAnCMMAACQc4QBAAByjjAAAEDOEQYAAMg5wgAAADlHGAAAIOcIAwAA5BxhAACAnCMMAACQc4QBAAByjjAAAEDOEQYAAMg5wgAAADlHGAAAIOcIAwAA5BxhAACAnCMMAACQc4QBAAByjjAAAEDOBUk3oNnMLP4TRbL4A7uedG7mLyfP8+YeAwCQJ20VBmYv/FEYKoqiuX/XYzYYOM+T7/uEAwBA23NW79UyhaIoUhiGCqvVhp/beZ4C35dHMAAAtKnMhgEzmwsArfoSPM9TUCjMdSkAANAOMhkGwjBUtVJpWQjYk+f7KhQKVAoAAG0hU2EgiiJVKhVZFCXdFElSEATyg4BQAADItEyEATNTtVptypiARiiWSnQdAAAyK/VhwMxUKZcVpaQasJCgUFAQtNXkDABATqQ6DFgUqVwuJzY2oF5+ECig2wAAkDGpDQNRFKk8PZ10M+rG4EIAQNaksqPbzDIZBCQpCkNVUzq2AQCAfUldGJgdI5BlYbWqMAyTbgYAADVJXRioVqupHyxYiywMegQAQEpZGGjWksJJqWRo8CMAIL9SEwbaoXtgT2bWVuEGANCeUhMG2rWPvdrCvRMAADgYqQgDZqZqpZJ0M5qG6gAAIM1SEQbatSowi+oAACDN0hEGcnDn3O6BBwCQXYmHAYuiXNw1R4QBAEBKJR4G8jIXP8pJ6AEAZE8uwkC1WtUJJ56o91xxxV7PXXrppTrhxBO1devWpreDMAAASKNchIEgCPTeK67QjTfeqB07dsx9/O///u912+23619vv12HHHJI09uRlyoIACBbEg0DZtayu+Xzzz9fS5cu1ec+9zlJ0j9/7Wv6xNVX69Zbb9UxxxzTkjYYYQAAkEJB0g1olWKxqPdcfrk+cfXVeu5zn6tLLrlEX/rSl/R/nXZay9pAJwEAII2cJdiRHUVRS7cqnpqa0vHHH6+t27bp6quv1qXvfGfLXluSPM9TsVRq6WsCAHAguakMSFJHR4dedOaZevLJJ1seBAAASKtExww451r+mg8++KBe8IIXtPx1JUkJfL0AABxI4rMJWmlyclIPPfSQnvOc5yTy+kQBAEAaJV4ZaGV14Be//KXCMNRzTjmlZa85n/Nylb0AABmR+NXJa+EF8oH771dPT4/WrVvXstecr5VfKwAAtUp0NoEUb1JUaePti+crdXQkMk4CAID9SfxWNS+lc8/zCAIAgFRK/Eqclwuk5/tJNwEAgH1KRRgICoWkm9F0PmEAAJBSiYcBqf0vlEEQ5KYCAgDInlSEgXavDvhBrhZ6BABkTCrCgNS+1QGfqgAAIOVSEwaccyoUi0k3o6GccwqoCgAAUi41YUCKqwPtVFIvFItUBQAAqZeqMCDNDLZrg7UHCsUiKw4CADIhdVcr55yKGe8u8IOgbcdAAADaT+rCgDQTCEqlpJtxUDzPY5wAACBTUhkGpPiimrVA4Ps+4wQAAJmT+EZFB2JmKpfLsihKuin7FRQK8n2fIAAAyJzUhwEpDgTValVhtZp0U/apWCyy9wAAILMyEQZmRVGkSrmstDTZDwKWGgYAZF6mwoAUVwlmQ0FSPM9ToVBoiymQAABkLgzMMjOF1arCMGxZpcDzPAWFAusHAADaSmbDwCwzi4NBGDZlTIFzbm7dALoDAADtKPNhYD4zUzQ+qKjYM9edUC/nnJznyfM8+Z5HVwAAoO211+o44zvlnnlMweHr5YodknZVDqIokmZyj0mau8d3Lg4A8/4AAJAnbRMGbHxQ9sxv43+UJ6VCHAZmL/D08wMAsG9tcYW0iSHZlkcV3/NLqkwl2h4AALIk82HAJkdkWx7RXBCQZOXJ5BoEAEDGZDoM2NSobPPDc2MB5pSpDAAAUKvMhgGbGpsJAvuYMVCZTM0qhQAApF0mw4BNT8g2PyRF4b4PiEIpTOc+BgAApE3mwoCVJ2VP/2bhIDCrwrgBAABqkakwYJXpmSBQw10/4wYAAKhJZsKAhZW4ayCs1HY8lQEAAGqSiTBgURgPFqxn/QCmFwIAUJPUhwGzKF5HYHq8vk+kmwAAgJqkOgyYmWzrb6XJkfo/OSzLauxSAAAgz1IbBsxMtmOTNLbz4E8yPdG4BgEA0KZSGwY0tFkafmZx56i3awEAgBxKZRiwkW2ynU8u/jxUBgAAOKDUhQEbH5Rte7wxJ6MyAADAAaUqDFgUyka2SXKNOWF1WsayxAAA7JezFO7oY1EoTY3KJoaliZFFLS3s1vyBXGdfA1sHAEB7SVVlYJbzfLmuAXnLj5A79ETJLaJSQFcBAAD7lcowsJupUWkRxQsGEQIAsH+pDwN2MAsOzUdlAACA/QqSbsAB1RMGuvrlVjxLmhiWTc6ON5iSRaGc5zevjQAAZFiqw4CF1bru7F1nn1xQlPpWyPWtkJlJ5YlFdTMAANDuUh0G6t6TYI9ZA845qdTdwAYBANB+Uj1moK7xAp4vFbua1xgAANpUqsOApkZrP7ajN64EAACAuqQ2DFhYlcq1LzbEwkIAAByc1IaBuqoC0l7jBQAAQG1SGwZsaqz2g71AKnY2rzEAALSx1IaBuioDnYwXAADgYKUyDFgUSVP1rS8AAAAOTirDQLzQUB0LBREGAAA4aOkMA/V0EfgFqdDRvLYAANDmUhkGjPECAAC0TOrCgJlJdcwkcB29TWwNAADtL3VhQOVJKQprP569BwAAWJT0hYF6FxtiPwIAABYldWGgrvECxU45L3VfAgAAmZK+K2k9Kw/SRQAAwKKlKgxYtSJVyzUf7+giAABg0VIVBuLFhupAZQAAgEVLVxgo1xsGqAwAALBYqQoDNj1R+8GFDjnPb15jAADIiVSFgbq6CegiAACgIVITBiysc/AgYQAAgIZITRhQPV0EEuMFAABokBSFAWYSAACQhNSEAasnDBRKDB4EAKBBUhMG6uomoCoAAEDDpCIMWFiVqtM1H++KhAEAABolFWGg/sGDhAEAABolHWGAlQcBAEhMKsJAXSsPBiU5P2heYwAAyJlUhAGVJ2s/lqoAAAANlXgYMDOpMlXz8aw8CABAYyUeBlQtSxbVfjxhAACAhko+DNTTRSDRTQAAQIMlHwYqdYSBoCjnF5rXFgAAcijxMGDl2scL0EUAAEDjJR4G6qkMOLoIAABouETDgJnVN2aAZYgBAGi4ZCsDYVWKwtqPL3Y2ry0AAORUsmGgnsGDclJQbFpTAADIq2TDQD2DB4OinHPNawsAADmV7JiBeioDhVLzGgIAQI4lXBkgDAAAkLSExwxM13yoCwgDAAA0Q2JhwMzifQlqRWUAAICmSK4yEJYlWe3HUxkAAKApkgsDlTqqAhKVAQAAmiS5MFCtfbyAnCd5QfPaAgBAjiUYBuoZL9DBGgMAADRJcgMI66kM0EUAAEDTZGPMAIMHAQBomkyMGXBUBgAAaJpEwkDdawxQGQAAoGmSqQyEVcmi2o+nMgAAQNMkEwbqGTwoURkAAKCJEgoDdXQR+AU5L9ktFAAAaGfprwzQRQAAQFMlM4CwWqn9YLoIAABoqoQGENYTBorNawcAAEhwNkGNnF9oYkMAAED6KwM+GxQBANBMyYSBqPbKgKgMAADQVC0PA2ZGZQAAgBRpfWXAIsms9uOpDAAA0FStDwP1VAUkKgMAADRZAmGgjvECni/nWH0QAIBmSndlgKoAAABNl+7KAOMFAABoutbfetdTGfCoDAAAmsvM4pluZpod3u4kybn4sXNyM4/bVcuvtlZXNwGVAQBAY8xe9KMokkWRIjNZFNX0uc45Oc+TN/u357VVQEigMlBPNwGVAQDA4kRRpDAMFVbruP7swcxkYaj50cHzPPlB0BbBoPVX2yis+VBHGAAAHAQzU1itKgzDuAugCaIoUlQuS5J8358LBlnU+qut1VaSkSR5fvPaAQBoO2amMAxVrdS5ps0ihWGoMAzleZ4KhYJcxkJBqisDcoQBAEBtZkNAsyoBtYiiSNPT0/KDQEEQZKb7IIEwUE9lIFvJCgDQemamSrmsqJ7rS5OF1arCalWFYlG+n/4b2wS6CagMAAAaI4oilaenk27GgirlsqIMVAlaf+tNZQAA0ABhtZrqIDArrFZVKZcT7b44kAR2LayjMsAAQgDAPlSrVVVaPEhwMWYrGGkNBC0NA7MrPNWMTYoAAHsIq9WWzxZoBDNLbSBo7dW2npkEEt0EAIDdRFGUqYrAnswslUGmtVfbetYYkOgmAADMmb2zzrrFrobYDCmuDLiZPwCAvJudPtguKpVKqqZCprcy0AZrPQMAGiMMw1RdPBshTTMM0lsZYI0BAEg9CyuyeseD1fsaKe1nX6zZHRTTINWVAQBAypUnFT35P4p2Pi2rNqeMH4XNDRtJSnr55FmtXYGwrq+XLgIASD3nS1EoG9kqG9kq1z0g17dCrtTdkNObmaopG2zXSLPVgaSXLG7xcsT1rDHQvFYAABpkjyqujQ/JxoekUre8vhVSV/+ixn9FTdyCOC2qlUrewkA9SAMAkHoLTQGfHle0bVzyC3GloHeZ3EFMFw/buItglpnJzBIdNN/iboL2TncAkDsHWik2rMgGn5YNbZHrWRoHg0Kp5tOnZYBdsyXdVZDeUXoUBgCg5cxMFlZllWnZ9IRsclQ2PqRodIei4a2KBjcr2vGkom2/U/jMbxVtfbzGE0ey0e2KntqoaNvvZOXJGj6lNUEgiiI9+5RT9DdXXrnbx7///e+rr79f3/iXf2lJG5LkrIWdMTa2U/bMo7UdXOqWd+iJzW0QAOSAmcVTu8NqfKceVqUofqywGv975rHCquoc7X3wOnvl9R0idfTss0QetnAzoq985St6zxVX6KHf/EZLlizRL3/5S/3ff/zH+uAHP6jL3/3upr++c06ljo6mv86Cr9/aMLBD9sxjtR1MGACABaX2An8wil3y+g/Za7BhpVxu2ZiBarWqk9ev1/lvepP+4i/+QmeedZZe9cpX6rrrrmvJ60tSqaMjsXEDrQ0DoztkW2sNAz3yDj2huQ0CgBSzKJKqZak6Hc/hr5bjvyvT8cfr3e8l7YKSXP8hcj1L5Jyncrnc0jUGvvjFL2rDhz+sNWvW6IjDD9fNN9/c0n78HIWB7bKtv63t4I4eeWsJAwDal5nNXOzLcxf7+PHMxT5s3/n1++UHcn0rVCn1t3Ra4djYmA47/HAdffTR+vFdd6m7uzFrJdSqVCrJJbTgXktmE5iZfvOb3+jen/xIv/j5f2pyalonrHuW3nbea1QsFhb4LEYQAsg+i0KpMi2bvZuff7Fv0op9mRdF8Z8Wu/w975Ek7di+PZGR/abkrnwtCQN/+qd/qttuu03OOR111FHq7e3VF2/5pvp6e3T+a17WiiYAQFNZFEmVKVllSirP/j0Z99ujZq53uVz/SrmgIDc93bLKwEc+8hF997vf1Y/vukuveOUrdcMNN+jiiy9uyWvPaut1BoaGhnTbbbfp6quv1sUXX6z+/n5J0tq1a/XbTU81++UBoKHMopk7/fkX/SmpOp100zLNdQ/IDazefQ2CFl0cr7/+en36M5/RHXfcofXr1+ud73iH/ve11+qtb32rCoWFqtftpemdE7OllnvvvVdvfvOb9YY3vKG2T2T7YgAJMjNZZSqeYz+0RdHWJxQ+9RtFv/uloqcfkm37nWz4GWlimCCwGJ298lYfK2/FkXstRuS14Drwve99T+++/HJ96f/8H536v/6XJOkv//IvNTo6qq9+9atNf/352roy0Nvbq8svv1z/8i//otGREZ28fn1tn8hqhQBaxKJQKk/KpifivytTUmWK30PNVOqSt2SNXEfPgod4vi81cZOi++67T286/3x97GMf02te85q5j/f19ekvL75Yn7rmGp1//vktGT/gJbw3QUtnE5x/3rl68pltuuuuu7R27Vpd9LpX6P+97G37PpiphQCawMzivv3pcWl6Ig4Alamkm5UfhZK8gdU1bWBkZpqeysf/TVAoKAiS2y6ota9cTwWk3ebPAmi52al7Vp7YdeEvT3DHXyvP3+uP28fHNDUmG9t5wHO5gdXxhkU1lsOdc3LOtf2uhZLkJTSlcFaLY0gdaSAH//kAGsvCqlSOL/o2HQcARTmdq78QL5D8IN5N0N/1WH4gN/O3/EDygpov2pGZtGAYcPHmRAMrD2rXQs/3FTaxqyAtkhwvIKU6DFAZALAwi6K4f3/urn88v/P2m3CBr4fz/H0vdtzVH48LqGOXwj0FQdD2YSAImvP/UlcbWvEiDz/8sD772c/qv+69V4cedvjcx7/5g/9QuVLRO958rlYfsnz3TyIMAJjHokiaHpdNjcmmxuK7/jSvt99IXiAFRbmgKBWK8bK9QVGa+ZP0hUR7lriLnfKWrt3v4MBaOefk+37L9ihIgp/gWIFZLWnBRRddpMcee0yHHnqoTjghHhT4vOc9T1u3btXnb/mWtu4Y1Oc//te7fxLdBECumUXxHf/sxX9qXG178Xfergt7UJQKe1zsD6K83lJupn1+QW7JarnuJQ0NKEEQtG0Y8FNQFZBaFAaeeOIJveENb9Bf/3V8wR8cHNSNN94oSXrb296mJ556cu9PojIA5IqZxf39k7N3/uPt9XvAL8y7yJfii3xh5oLfpPJ9y/iB3MAqub5DmrK2vvM8eb7f0k2LWiXJGQTztaQVL3rRi/SpT31Kn/rUp/b5/Efe/fa9P0hlAGhr8cV/ct6d/1h7XPy9QCp2yBU6dv1d6Ij78tuUK5TkBlY19TUKQaDpNgsDaRgrMKsl6wxUq1X96Ec/0vDOHbLtT+z23CHLluiM55+yz2+IO+oFqflGAVicufn9U2OyydH4zj/K8C9350nFzt0v+sWOeMAemiIMQ1XK7TFI1PM8FYopGO8xo7VbGFcrst/dX/Px7lnPS39fGYAFWViRTYzIJkfiO/8sXvydF9/ZFzt2+1t+ITW/yPOkWqmomvHZBc45FUulVP38tHjRoTq/cLoKgEyZK/1PjsgmRuIFfrLEC6RSl1ypS67YGV/00zBaH3P8IFAURYoS2OK4UdJUEZjV2jBQ78CSdug/BNqcRZE0NborAGRly97ZMn+pS67ULZW6uNvPAOecCsWiyi3c3riRCsVi4qsN7kt6Fx2SCANASlm1vOviPzWajSpeoUOu1CWVuuO/Cx1c+DNqtsxeLpfjMJoRhWKxJZseHYyWhgHnnMx5tV/ks9i/CLShufL/xHDc/1+eTLpJ++cX5u72XakrrgAw/qitOOdULBZVqVQyMeWwWCqlsiIwq/VzXfyg9iVDw2wPEgGyzKIw3oBmNgCk9f3ovLm7/fjOv4sR/TnhnFOhUFDoeapW0tk95TxPxRSOEdhT68OAF0iqMQywwQjQUhZWZOPDsslhaXJMqVzxz3lSR7dcR49cR29815/yX7RoHuecgiCQNxMI0jSwMCgU5Pt+Jn4+EwgDdZTqMlD6AbLOwmp89z8+GE//Sxvn4jv/2Yt/qSsTv1zRWp7nqVgqKQxDVSuVRAcX+kGQqgWFapFMN0GtqAwATWFROBMAhqTJUaWrAuDiC35Hj1zn7MU/vX2tSBff9+V53lwoaCXP81QoFJqyJHOzJdRNUBuLqvXOPwCwAIsiaXJE0figNDmSrhkAc3f+PfHjDP4yRXrMdh34vi+LIoVh2LSNjpznyff9zHQHLCSBygDdBECrmEXS5KhsfEg2MZye6brFrl0X/45uRvqjKZxzcr4vz/cVmCmaCQYWRYvqRnCeJ9/zUrPjYCO0PAw4L6i9IEk3AVA3M4tnAYwPxgEgDVN0PV+us0+uq1/q6GnrTXuQTs65uTt4KX6fzP6J5oeD+SHBOTnN7JronJzntc3Ff0+p7iZI7VQmIGXMTJoejysA40PpCNKFDrmuPrnOfgb9IXWcc3M/k2ldCKiV0t1NkIY7GiDFrDwpG9sZB4DElwF28V1/V19cBSiUEm4PgFqluzKQhrsbIGUsCuMugNGdyW8E5AVzF3919tL3D2RUytcZIAwA0mw3wIRsbEdcBUhyIGCxc6b/vy8eCEj5H8i8dK8zYJHMIuYYI7csrMbdAGM7pMr07s+ZqVqtypuZ2tQ0zkkdvbvK/0Gxea8FIBHp7iaQpGpFou8RORLPBhiVje6MZwPMm38zOjau/++Gf9ZPfn6f7ntwo3YMDqmzo0OfeP9leucFb2hcI5yT6+yX6x6QOvuY9w+0OWctXrPRzGSP/3fNC564NcfHq5ABbc6q5bgKMLpjwcGAf/Wx/60vfO02nXXWWXr+85+vI488Uv/6r/+qB/7753rkP769yBa4uN+/e0lcBaD/H8iN1q8z4JzML0rV6QMfLNW+wyGQQWaRNDGiaGzHzLLA+/fEk0/pjDPO0Fe+8hXdd999et7znqcnnnhC9/z07oNvREevXPeAXFc/8/+BnErmnR8QBpBvVp6KBwOODdY1a+aItWv0D/90s5YsWSIz00MPPXRwDSh1xxWA7gECAICkwkDte41bdZr9CdAWzKJ4UaDRHdL0+EGd46NXXKJ1Rx6mx3//tK75/I31fXKxK774dw8wCBDAbpIZFeTX8YuIygAyzsKqoqEtip78H9n2TQcdBCSpq7NTF5//er3ij15Y2ycUOuQGVstbe7z8NcfK6z+EIABgL4lUBlxQrH1/AsIAMsrKk7KRbbLxwdbuEBiUZioAS+SKHa17XQCZldyYgVoRBpAhZhZvEzyyTZoaa+lru55lcr3L4kWBWAgIQB2SCQN+7WMGFFVlUcg0J6SaRWE8LXBke+2DYw9SFEWamJra/WPO11TXMnWVupr62gDaUzJjBurts6Q6gJSyalnRzqfj8QA7n2p6EPjtpid17Jnn6JUXvHO3j2/ZskXd3d0677zzmvr6ANpT6mcTSIrDQLGzOW0B6jS3T8DINtnEUOteuLNXt999vwZHx/TP//zPkqTVq1frda97nY477jj9+te/1lVXXaVrrrlGhx56aOvaBSDzkhlA6DyZF9Q+v5rKAFLAzOKpgSPbWrdboF+Q610m17NULiiqo3dA1WpVGzdulKS5vyVp06ZNkqRCoc6wDSD3klttJChKZcIA0s/Cqmx0h2x0+4LLBDeWi1cD7F0arw44bzDgn/3Zn+mOO+7Q9ddfv9dn+b6vDRs2aOXKlS1oI4B20vK9CWZFmx+SJoZrO7h3hbxDntXcBgF7sGpZNrw13jGwFW+TQimeEdCzlFUBAbRUgpWBOnYibPKgLGA+q0zPhICdUu0rYhwc5+L1AHqWSaUupgQCSERiYcAVSiw8hFSxypRs6Jl4kaBm8wtyvcvj8QBUAQAkLLnfQoU6VkarlmVm3DWhKaw8KRt+RjY+1PwXK3bJ9a2IVwjk5xlASmQjDFgkRaHEHRQayKYnFA0/U/vYlUVwXQNyfSvoCgCQStkYMyDFXQWEATSATY8rGnpGmhxp7gt5fjwgsG85mwMBSLXkxgx4niwo1j4eoDotsdQqFsGmxuIQMDXa3BcKSnFXQM8SltEGkAnJ3moXOmoPA+VJqXtJc9uDtmNm0tSYoqEti9o6uCYdvfL6VkidvXQFAMiU5MNAjaVaK0+KX6+oVbx74Kii4S3SdDNXC3RxBaBvhRxLZgPIqETDQF3TC5v6Cx3tYm4L4aEtcTWpWfxgZmrgcqYGAsi85CsDtapMyiySc8lstIj0s6kxRYNPNzc4BiW5gZUzUwP5WQTQHrITBqT4Tq/U3Zy2ILOsPKlocHNzZwcUOuIQ0MX6AADaT8JhoM7phdMThAHMsWpZNrRlZtngJil2yutfKXX1EwIAtK1kxwy4+qYXMogQ0swugsPPyEa2q2l7B5S65PWvYmYAgFxIfuRTXdMLGUSYZxZFspFtsuFn4lUpm6HULW9gldTRQwgAkBvJh4FiZ+19vdMT7FGQQ2YmG9spG9oihZXmvEhHr7yBlXIdPc05PwCkWOJhwBU7ay/0RtX4YsDSrrlgZtLEsKKhzVKlSdtYd/bJ618p18FYFAD5lXgYULHOJYbLE4SBHGj6NMGu/jgEsMQ1AKQhDNS5atv0pNQ10JSmIHnNnibougfk+leyWiAAzJN4GHCeLyt0SJWpmo638gQzCtpQs6cJuu4l8ToB9a5tAQA5kHgYkBR3FdQYBphR0F4siuJpgsNb1ZRpgp198pasphIAAPuRijDgSp2yWjeUK0+xLHEbmBscuPOp5swQKHXJW7KG2QEAUINUhIH6BhGaVJ6SGPiVWVaeUrTzSWlqrPEnL5TkDaxmxUAAqEMGw4DirgLCQOZYFMbjAka2Nf7kfkFuYJVcz1JCAADUKR1hIChKni9FYU2H2/SEXG+T24SGMTPZ+KBs59PxWhGN5Lx4dkDfCjmPriMAOBipCAPOOVmxs/ayMYMIM8OmJ+IugYavF+Dk+pbHQcBPxY8xAGRWen6LFrvqCAOTzW0LFs3Cqmxws2xsR8PP7bqXyC1ZLcfiUwDQEKkJA67UVfvEsrAiq1bkgkIzm4SDYGay0R2yoc01d/vUjGmCANAUqQkDB7cscX9z2oKDYlNj8VTBRldumCYIAE2VsjDgVPPCM+UJqYswkAZWrcgGn5aNDzb2xEFJ3hKmCQJAs6UmDDjPk5W6pOnaVh+yaZYlTppZJBvZHm8tbFHjTuy8eJpg33IWlwKAFkhNGJAklbprDgMMIkyWTY0p2vH7hm8tHA8OXMN4EABooVSFAdfRIxvZWtvB5UmWJU6ARaFs59ONnyVQ7JS3dC3jAgAgAakKA6rrQmBxdaDU3bTmYHc2Maxox5ON3UvA8+UGVsv1LmNcAAAkJF1hIChJXlD7KnWTo4SBFrCwItvxlGxiqKHndb3L4iDAokEAkKhU/RZ2zsk6eqQaLzo2OSI3sKq5jcqxXcsIP9XYNQNK3XGXAPtLAEAqpCoMSDPjBmq9A50alZlRXm4Cq5YVbf+9NDXauJN6gdzSNfEgQf7PACA1UhcG6ir7R2E8+4BBZw0TryC4XTa4uaHTBV3fini6oOc37JwAgMZIXxio98I+OUoYaBArTynasamxmwp19MhbeqhcsaNx5wQANFTqwoDz/HgHwxrXEbDJEbklq5vcqvZmFsmGt8qGnlHNK0AeiF+Qt3QtqwcCQAakLgxIkko9tS8qNDXKegOLYNPj8diAylSDzujk+g+Jtxb2+D8BgCxIZRhwHT2y0W21HWyRNDUudfY2t1FtxqJQNrRFNlLj97kWpW55yw+TK9AlAABZksowUP+4gRHCQB1scjReSrhabswJnRcvIczCQQCQSekMA4UOyS/UvNKdTY7IaW2TG5V98VLCT8nGdjbupJ198pYdKhcUG3dOAEBLpTIMOOdknX1SrevfT43Joog+6v2wqXFF23/XuGqA58stPVSue4BqAABkXCrDgCS5zr46NsOxeHGcrv6mtimLzCweGzD8TMPO6bqXyC1dyzLCANAm0vvbvKuvrsNtclSOMLAbq0wp2rZJKjdo3QC/IG/ZYXJ1/t8AANIttWHABSVZoaP2KW+TI81tUIaYmWxsh2zn0w1bRdD1LpdbspoVBAGgDaU2DEiSOvtqDwPTY7IozP3FysJKvG5Ao8JRUIqnC7LKIwC0rVSHAdfVLxvZWvsnTI5K3QNNa0/a2cRwHARq3QL6AFz/ShYPAoAcSHUYUEd9awfY5IhcDsNAPGXw6ToGXB5AsVPe8sPlip2NOR8AINVSHQacH8hK3fHOhLXI4bgBm55QtO13UnV68SdzTm5gdbzDINMFASA3Uh0GJMXTBWsNA+UJWVjNxZQ3M5MNPyMb2tKYE5a642pAodSY8wEAMiP1ncGus85pbDmoDlhlWtGWRxoUBJzckjXyVq0jCABATqX/FrqjR3JezVPkbGpUrmdpkxuVjHjK4E7ZzqcaM2Ww0BFXA0pdiz8XACCzUh8GnPNknb3SxHBtnzDRnpUBC6vx5kK1fh8OIF43YA0zBQAA6Q8D0szSxLVeBCuTsmpFLig0t1EtZJOj8b4CYQOmDPqFuBrALo8AgBnZuC3srHOZ4TYZN2BmioaeUfTMY40JAl398tYcRxAAAOwmE5UBFTslP6j5gmhTI3K9y5rcqOaysBpXAyZHF38y58ktOzTeYIgpgwCAPWQiDMRbGvfXvqVxxisDNjWuaNsTUlhZ/MmYMggAOIBMhAGpzi2NK9OyypRcoaO5jWowM5ONbo9nCzSAG1gt138I1QAAwH5lJgyo3vUGxgelgdXNaUsTWBQq2r6pMbMFgpK8FUcwZRAAUJPMhAFXqG9LYxsflMtIGIiXFH5CqpYXfS6mDAIA6pWZMCApXpp4uMYtjafGUj/FcG4RoR1PSrLFncwL4q2Gu+qceQEAyL1M3T667iX1fcLEUFPa0QgWhbLtm2Q7fq9FB4HOPnlrjyMIAAAOSrYqAx29kudLUVjT4TY+KNe3osmNqp+Vp+JugRq7PBbm5JauletdxiBBAMBBy1QYcM7JugbqmGI4LItCOc9varvqEY0NxtWAxe4tEBTlrTiSQYIAgEXLVDeBVGdXgVnD1vJfLIsiRdt/L9v+u8UHga5+eauPJQgAABoiU5UBSfEgQufiC30NbHww8V0MrTIddwuUJxd9LrdkjVzfCroFAAANk7kw4Dw/Xo2w1sGBE0Myi+RcMkUQGx+K1w9YbDXAL8TdAh3djWkYAAAzMtdNINXZVRCFjVnfv05mpmjw6bgisNgg0NEbbzBEEAAANEEmw4C6B+o63MYHm9OOhV4vrCra+lvZ8NZFn8sNrJK38ig5P3NFHABARmQyDDi/EE8zrNX4oKzGMQaLZeUpRZsfWXw1wgvkrTxa3sAqxgcAAJoqs7ebrnuJbKqWC66Til2ysBpvg7yvIxp0sW3Y+IBSdzw+IMWrJwIA2kdmw4C6l0g7Nu3zKfMKsp6lss5+WaFDZpJVqlKluuDpPM+T8zx5zsl5npxzNYcEM5MNbZENP3NQX8p8rv+QeLdBqgEAgBbJbBhwhZKs2CWVJyRJ5hcV9a1U1NEnmz9zIKqteyCKIimKNH9tQ8/z5AdBHBQWuDhbFCra9jtpcuRgv5SZF/PlLT+cJYUBAC3nrFWd6U0QDW5WGEWKOvplTV5l0PN9+b6/WzCwypSirY9LlenFnbzYJe+QI+WCYgNaCgBAfTJZGTAzhdWqqh0DLXvNKAwVhaGccyoUi/I8TzY+tOgg4HqXyy1dk9g6CAAAZKoyYGaKokiVcjnppsjzPAWFQry88MEseey8uFugzmmSAAA0WmbCwGwISFtzfd+T2/a4XD07EAZFeYccJVfsaF7DAACoUSbCQBiGqagGLMRJ8rc/LhfW0MbOXnnLj2ARIQBAaqQ6DJiZqtWqwurCUwLTwxTs+J1cdeExBEwbBACkUWrDgJmpUqkoCsMDH5wWZvIHfy+vssfuhM6TW36YvHr2VAAAoEVSGQYyGQRmmckf3CRvdgxBUJR3yLPkip3JtgsAgAWkMgxUq1VVK5Wkm3HwolDBjsflip3xssKMDwAApFjqwkAUhiqneLBgrVxUVaGzW57H+gEAgHRL1ZXKzNoiCEiSeYHCLHZzAAByJ1VhIM3TBw9GWK0SCAAAqZeaMBBFUbxZUJupViqpWygJAID5UhMGMj1gcD9ml1AGACCtUhEG2rUqMKtdgw4AoD2kIgy0+8XSzLK5ZgIAIBcSDwN5KaMzkBAAkFaJh4E8BAEpP18nACB7Eg8D1qKL5He/+111dnUt+OdN55/f1Nc3M2YVAABSKfEVCKenp1sSCCYnJzU8PLzbx8Iw1P9z8cX6xS9+oTu+8x2ddNJJTW1DoViU7/tNfQ0AAOqV6KL5ZtayykBnZ6c6O3dtFhSGod5y4YUtCwJS3FVAGAAApE0ud9CZDQI//OEPWxYEJNFNAABIpWTHDCRwcQzDUBe+9a364Q9/qO/827/p5JNPbt2LEwYAACmUaBho9aVxNgjceeed+s6//ZvWr1/f0tcnCgAA0ijRbgLnXMteazYI/OAHP0gkCEhS675aAABql/jUwlYIw1Bvfdvb9IMf/ED/9u1v69nPfnYyDWlh+AEAoFZtP4AwiiK99W1v07e+9S199aabtGrVKm3ZsmW3Y1asWNGSUf4eYQAAkEKJrzNQnp5u6up8P//5z3XmWWft95jNTz+tgYGBprVhFusMAADSKPEwUK1UVK1Wk2xCy5Q6Olo6TgIAgFokPmbA8xJvQks45wgCAIBUSvxK7HISBvISegAA2ZP4Fco5Jy8H/eh+0PZjNQEAGZV4GJCkoM0vlJ7nURkAAKRWKq5Qnue1dXUgKBSSbgIAAAtKRRiQ2rc6QFUAAJB2qblKtWt1gKoAACDtUhMGJKlQKLTV9LugUKAqAABIvVRdqZxzKhSLSTejITzPY7VBAEAmpCoMSPFFNOuBYDbUtFOVAwDQvlIXBiTJ9/1MDygkCAAAsiSVYUCK+9uzOPiuWCoxTgAAkCmpvv0OgkBOUqVSSbopB+ScU7FUoiIAAMicxHctrEUURSpPTyfdjAV5vt92MyEAAPmRiTAgSWamSqWiKAyTbspuCoUC+w4AADItM2FgVhRFqlQqsihKtB1BEMgPAqoBAIDMy1wYmBWGoaqVilrdfLoEAADtJrNhQIq7DiyKFIahwiZ2Hzjn5AeBfN8nBAAA2k6mw8B8ZqYoihRWq4oa0IXgnJPv+/J8n6mCAIC21jZhYL7ZLymKornqQRRFsvjJ3Y51zsV/PE/ezN+zHwMAIA/aMgwAAIDaUf8GACDnCAMAAOQcYQAAgJwjDAAAkHOEAQAAco4wAABAzhEGAADIOcIAAAA5RxgAACDnCAMAAOQcYQAAgJwjDAAAkHOEAQAAco4wAABAzhEGAADIuSDpBsxXfM6F8oKinOfLeb78wq7HzvN2Pef78oKivLnn/L2ec54vz3NynpPve3J7PPY8J893c8fs9znn5AeefM/J95yKM4+DuX/7u57zdx0XzDvW39dj5+Q5J99JBd+bexz4nnyn+N+eU8Fz+3gcP1/wvLnHvnNyTvKc5Jxmzi85Sb7n5Enx1+Jp7rHnJN/Nfxyfw5lJFslFVWm3x1H8J1r4OWeRFIa7HkdVKQplUSRVy7IwlKIo/li1IovC+HGlIs0+nj129rhKedfnRKGiSlUWRrIoUlSuKgrjz7EwUlSpKgp3PbaZx2GlKpt3XFiuznscyiJTFNrMv2c+P7L4udBkoSkKI4WVaOacprASznzOrs+LzBSaqRyZQtMej/f8d/w4Uvw4NM08t+vxZ+2JRN+XjcL7m/c37+/0vr+pDAAAkHOEAQAAco4wAABAzhEGAADIOcIAAAA5RxgAACDnCAMAAOQcYQAAgJwjDAAAkHOEAQAAco4wAABAzhEGAADIOcIAAAA5RxgAACDnCAMAAOQcYQAAgJwjDAAAkHOEAQAAco4wAABAzhEGAADIOcIAAAA5RxgAACDnCAMAAOQcYQAAgJwjDAAAkHfWpqampmzDhg02NTWVdFP2kua2mdG+xUhz29pJmr/PaW6bGe1bjDS3bbGcmVnSgaQZRkZG1N/fr+HhYfX19SXdnN2kuW0S7VuMNLetnaT5+5zmtkm0bzHS3LbFopsAAICcIwwAAJBzhAEAAHKubcNAqVTShg0bVCqVkm7KXtLcNon2LUaa29ZO0vx9TnPbJNq3GGlu22K17QBCAABQm7atDAAAgNoQBgAAyDnCAAAAOdd2YeC9732vXvjCF+pNb3qTyuXybs9NTk7qla98pc4880z98R//sXbu3Jmq9s36xCc+oec///mJt6lareqCCy7QC1/4Qr3rXe9qWXtqbd+sVn+/5luobWn4WWtHvL8b1ybe3weWp/d3W4WB+++/X1u2bNFPfvITnXDCCfr617++2/N33HGHTjrpJP34xz/W61//en35y19OVfskaXR0VA8++GAq2vStb31Lhx56qH7yk59oYmJCP/3pT1vWrlraJ7X++1Vr25L+WWtHvL8b2ybe3wfftqR/1pqhrcLAz372M73kJS+RJL30pS/d64f7mGOO0cTEhCRpaGhIK1asSFX7JOnTn/603vGOd6SiTbW0N8n2Sa3/fs23v7Yl/bPWjnh/N7ZNvL/3L2/v7yDpBjTS0NCQ1qxZI0nq7+/fq3Rz9NFH68EHH9RJJ50k55zuueeeVLVveHhYv/rVr3TllVemok1DQ0Nz62/vq71Jty+J71etbUv6Z60d8f5ubJt4fx9825L+WWuGTFYGtmzZojPOOGOvP2amkZERSfF/5NKlS3f7vBtvvFFnnXWWHnzwQX3kIx/RRz/60VS177rrrtM73/nOprRpIUuWLFmwTft7Lg3tS+L7Nd/+2taqn7V2xPu7cXh/H7y8vb8zGQZWrVqlu+++e68/L3/5y/Xv//7vkqTvfe97Ov300/f63Nn/0IGBAQ0NDaWqfY8++qg+9rGP6aUvfakeeeQRXX311U1p33ynnXbagm3a33Otsr82JPH9qrVtUmt+1toR7+/G4f3dnLZJbfj+Tm735Oa44oor7IwzzrA3vvGNNj09bWZmb3/7283MbHh42F7+8pfbmWeeaaeffro99NBDqWrffM973vMSa9NseyqViv35n/+5nXHGGXbppZe2rD21tm++Vn6/5luobWn4WWtHvL8X3ybe37XL0/ub5YgBAMi5THYTAACAxiEMAACQc4QBAAByjjAAAEDOEQZy4IYbbtDAwEBDzvXEE0/IOacgCPTUU0/t9tzmzZsVBIGcc3riiSd2e+4b3/iGzjrrLPX396unp0fr16/XRz/60bmFPBrZRgCLd+SRR8o5p6997Wt7PXfiiSfKOacbbrhht4/ff//9Ovfcc7Vy5Up1dHTo2GOP1UUXXaSHH35Y0q7fHw888EALvgLUgzCAg7JmzRr90z/9024fu/HGG7V27dq9jv2bv/kbnXfeeXrBC16gO+64Qw8++KCuueYa/eIXv2iLNb2BZqtUKom87mGHHabrr79+t4/913/9l7Zs2aLu7u7dPv7tb39bp512mqanp3XTTTdp48aN+vKXv6z+/n596EMfamWzcTCSntuIA7vjjjvs9NNPt/7+flu6dKm94hWvsEcffdTMzH70ox+ZJBscHJw7/v777zdJ9vjjj889P//Phg0bzMxs586d9uY3v9kGBgass7PTXvrSl9rDDz+837Y8/vjjJsmuvPJKO+aYY3Z77rjjjrMPfehDc69tZnbPPfeYJLvuuuv2eb7Zdl9//fXW399f9/cGyKowDO3qq6+2o48+2orFoh122GF21VVXzb3Hbr75ZjvzzDOtVCrZl770JQvD0D7ykY/Y2rVrrVgs2rOf/Wy744475s43PT1t73jHO2zVqlVWKpXsiCOOsI9//ONzz2/YsMEOO+wwKxaLtnr16gOuLXDEEUfYBz7wASuVSrZp06a5j1900UV26aWXWn9/v11//fVmZjY+Pm7Lly+317zmNfs81+z7fPZru//++w/um4amoTKQAePj43rPe96je++9V3feeac8z9NrX/taRVF0wM/9wz/8Q1133XXq6+vT5s2btXnzZr33ve+VJF1wwQX67//+b33zm9/Uz372M5mZXv7yl9d0F3LOOedocHBQd999tyTp7rvv1s6dO/WqV71qt+Nuuukm9fT06JJLLtnneegaQF598IMf1Cc/+Ul96EMf0v/8z//oq1/9qlauXDn3/Pvf/35ddtll2rhxo84++2x9+tOf1jXXXKNPfepT+uUvf6mzzz5b55xzjh555BFJ0mc+8xl985vf1C233KKHHnpIX/nKV3TkkUdKkr7+9a/r2muv1ec+9zk98sgjuv3223XyyScfsI0rV67U2WefrRtvvFGSNDExoZtvvlkXXnjhbsd973vf0/bt2/W+971vn+fhfZ4BSacR1G/r1q0myX71q18dsDJgtu+77ocfftgk2X/+53/OfWz79u3W2dlpt9xyy4KvPT/Zv/vd77a3vOUtZmb2lre8xS6//PK9XvtlL3uZrV+//oBfE5UB5MnIyIiVSiX7whe+sNdzs++xPatpa9assY997GO7fewFL3iBXXLJJWZmdumll9of/dEfWRRFe53zmmuusWOPPdbK5XLNbTziiCPs2muvtdtvv92OPvpoi6LIbrzxRnvOc55jZrZbZeCTn/ykSbKdO3fu95xUBtKLykAGPPbYY3rjG9+oo446Sn19fXrWs54lSdq0adNBn3Pjxo0KgkCnnnrq3MeWLVum4447Ths3bpQkvexlL1NPT496enp04okn7nWOt771rbr11lu1ZcsW3XrrrXvdLUiSmck5d9DtBNrRxo0bNT09rRe/+MULHvP85z9/7vHIyIiefvrpvdbHP/300+ferxdccIEeeOABHXfccbrsssvm1tWXpHPPPVeTk5M66qijdNFFF+m2225TtVqVJH384x+fe5/39PTs9XvlFa94hcbGxvQf//Ef+tKXvrTg+xzZRhjIgFe96lXasWOHvvCFL+iee+6Z2y6zXC7L8+L/wvlvxlrK/Au9eedfvL/4xS/qgQce0AMPPKDvfOc7ex170kkn6Q/+4A/0hje8Qccff7xOOumkvY459thj9dhjjyU2AApIo87OzgMes+cAPUl7Bev579fnPve5evzxx/W3f/u3mpyc1Otf/3q97nWvkxQPBHzooYf0D//wD+rs7NQll1yiF73oRapUKrr44ovn3ucPPPDA3La9s4Ig0Jvf/GZt2LBB99xzj970pjft1a5jjz1WkvSb3/ymtm8AUocwkHI7duzQxo0bdeWVV+rFL36xjj/+eA0ODs49v2LFCknxtL5Ze07bKRaLCsNwt4+dcMIJqlaru+3DvWPHDj388MM6/vjjJUlr167VunXrtG7dOh1xxBH7bN+FF16ou+66a593C5L0xje+UWNjY/rHf/zHfT7fFrt9AXU65phj1NnZqTvvvLOm4/v6+rRmzZq5MTqzfvrTn869X2ePO++88/SFL3xBN998s77xjW/MTd/t7OzUOeeco8985jO666679LOf/Uy/+tWvtHTp0rn3+bp16xQEwV6vf+GFF+rHP/6xXv3qV2vJkiV7Pf+Sl7xEy5cv19/93d/ts/28z9Nv7/91pMqSJUu0bNkyff7zn9fq1au1adMmfeADH5h7ft26dTrssMP04Q9/WFdddZUeeeQRXXPNNbud48gjj9TY2JjuvPNOPfvZz1ZXV5eOOeYYvfrVr9ZFF12kz33uc+rt7dUHPvABrV27Vq9+9atrbt9FF12kc889d8EBQqeeeqre97736YorrtBTTz2l1772tVqzZo0effRRffazn9UZZ5yhd73rXQf1vQGyqqOjQ+9///v1vve9T8ViUaeffrq2bdumX//61wt2HfzVX/2VNmzYoKOPPlqnnHKKrr/+ej3wwAO66aabJEnXXnutVq9erVNOOUWe5+nWW2/VqlWrNDAwoBtuuEFhGOrUU09VV1eXvvzlL6uzs3PBkL+n448/Xtu3b1dXV9c+n+/u7tYXv/hFnXvuuTrnnHN02WWXad26ddq+fbtuueUWbdq0aZ/rFSBFkhywgNp8//vft+OPP95KpZKtX7/e7rrrLpNkt912m5mZ3X333XbyySdbR0eHvfCFL7Rbb711t0F8ZmYXX3yxLVu2bJ9TC/v7+62zs9POPvvsmqcWLjQAaM8BhLNuvvlme9GLXmS9vb3W3d1t69evt49+9KNMLURuhWFoV111lR1xxBFWKBTs8MMPt49//OMLvsfmTy0sFAp7TS38/Oc/b6eccop1d3dbX1+fvfjFL7b77rvPzMxuu+02O/XUU62vr8+6u7vttNNOsx/84Af7bd/sAMKFzB9AOOvee++1P/mTP7EVK1ZYqVSydevW2dvf/nZ75JFHzIwBhGnGFsYAAOQcYwYAAMg5wgAAADlHGAAAIOcIAwAA5BxhAACAnCMMAACQc4QBAAByjjAAAEDOEQYAAMg5wgAAADlHGAAAIOf+fwpDRhpUR+yMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5FklEQVR4nO3de5hkVX3v/8/ae1dV3+aKI3eHyADhjiIHfgGBJx5FUVETQQWMCuIhKCpiUBP4jRJUTCCg50l+KoRLBCOiB+INjaIYUYJ6ABUzcvHIIVFGGJhbT3dX1d7r+/tjd/V0M7eq6arae9d+v56nn6mpqq5afalen1rru9ZyZmYCAAClFWTdAAAAkC3CAAAAJUcYAACg5AgDAACUHGEAAICSIwwAAFByhAEAAEqOMAAAQMkRBgAAKDnCAAAAJUcYAACg5AgDAACUHGEAAICSIwwAAFByhAEAAEqOMAAAQMkRBgAAKDnCAAAAJUcYAACg5AgDAACUHGEAAICSIwwAAFByhAEAAEqOMAAAQMlFWTeg18ws/fBell6x+Ubnpv9xCoJg5jIAAGUyUGGg1fH7JJH3fub/nWgFAxcECsOQcAAAGHjOOu0tc8h7ryRJlMRx1x/bBYGiMFRAMAAADKjChgEzmwkA/foSgiBQVKnMTCkAADAIChkGkiRR3Gz2LQQ8WxCGqlQqjBQAAAZCocKA917NZlPmfdZNkSRFUaQwiggFAIBCK0QYMDPFcdyTmoBuqNZqTB0AAAor92HAzNRsNORzMhqwLVGloigaqMUZAICSyHUYMO/VaDQyqw3oVBhFipg2AAAUTG7DgPdejXo962Z0jOJCAEDR5HKi28wKGQQkySeJ4pzWNgAAsDW5CwOtGoEiS+JYSZJk3QwAANqSuzAQx3HuiwXbUYSiRwAApJyFgV5tKZyVZoGKHwEA5ZWbMDAI0wPPZmYDFW4AAIMpN2FgUOfY4z6enQAAwM7IRRgwM8XNZtbN6BlGBwAAeZaLMDCoowItjA4AAPIsH2GgBO+cBz3wAACKK/MwYN6X4l2zJwwAAHIq8zBQlrX4viShBwBQPKUIA3Ec66CDD9b7Lrxwi9vOP/98HXTwwXryySd73g7CAAAgj0oRBqIo0vsvvFA33nijnn766Znr//Zv/1a33X67/uX22/Xc5z635+0oyygIAKBYMg0DZta3d8tnnnmmli5dqs985jOSpH/+whf08csv16233qr99tuvL20wwgAAIIeirBvQL9VqVe+74AJ9/PLL9cIXvlDnnXeerrvuOv0/xxzTtzYwSQAAyCNnGU5ke+/7elTx1NSUDjzwQD351FO6/PLLdf673tW355akIAhUrdX6+pwAAOxIaUYGJGloaEjHn3CC/uu//qvvQQAAgLzKtGbAOdf353zwwQd11FFH9f15JUkZfL0AAOxI5qsJ+mlyclIPPfSQXvCCF2Ty/EQBAEAeZT4y0M/RgZ/9/OdKkkQvOOKIvj3nbC4oVfYCABRE5r1T0McO8oH779fY2JhWrFjRt+ecrZ9fKwAA7cp0NYGUHlLUHODji2erDQ1lUicBAMD2ZP5WtSxD50EQEAQAALmUeU9clg4yCMOsmwAAwFblIgxElUrWzei5kDAAAMipzMOANPgdZRRFpRkBAQAUTy7CwKCPDoRRqTZ6BAAUTC7CgDS4owMhowIAgJzLTRhwzqlSrWbdjK5yziliVAAAkHO5CQNSOjowSEPqlWqVUQEAQO7lKgxI08V2A7D3QKVaZcdBAEAh5K63cs6pWvDpgjCKBrYGAgAweHIXBqTpQFCrZd2MnRIEAXUCAIBCyWUYkNJOtWiBIAxD6gQAAIWT+UFFO2JmajQaMu+zbsp2RZWKwjAkCAAACif3YUBKA0Ecx0riOOumbFW1WuXsAQBAYRUiDLR479VsNJSXJodRxFbDAIDCK1QYkNJRglYoyEoQBKpUKgOxBBIAgMKFgRYzUxLHSpKkbyMFQRAoqlTYPwAAMFAKGwZazCwNBknSk5oC59zMvgFMBwAABlHhw8BsZqZkcqMsGpqZTuiUc04uCBQEgcIgYCoAADDwBmp3HKtPyMafUbR0T7ko3cWwNXLgvZemc49JmnmP71waAGZ9AABQJgMTBnx9QsmGpyRJljTloookzXTwzPMDALB1A9FD+vqkkvVPzvzfkmaGrQEAoFgKHwZ8Y24QkCSLCQMAALSr0GHAN6emg8CzaiAJAwAAtK2wYcA360rW/X6mKHA2S5q52aUQAIC8K2QYsLixzSCQ3sGnHwAAYIcKFwYsbiheu3qHnT11AwAAtKdQYcCSWPG637f1rt+S7M4uAACgSAoTBswnitetlnzS3icwMgAAQFsKEQbM+7RGIGn/7AH2GgAAoD25DwNmpmTDk7K4s2F/agYAAGhPrsNAGgTWyBpTnX+yT2TtTikAAFBiuQ0DZiY//oysvmnnH6NJESEAADuS2zDgJ9bLT26c12NYXO9SawAAGFy5DAN+cqP8pnXzfpxO6wwAACij3IUBX59QsvHprjwWYQAAgB3LVRgw8/OeGpgjiSkiBABgB5zl8EQfMy9rTMkaU/KNSWkeewaEi3dVUB3uYusAABgsuRoZaHEuUFAbUbhgqaKlu8/rsZgqAABg+3IZBmaz5vxWBLC8EACA7ct/GNiZDYdmfz4jAwAAbFeUdQN2xBqTbd/XVYcVLthF1piUb0yln5s0Zd7LBbnPPQAAZCLXYcB80tE7e1cdkgsjueEFCoYXyMykuCEpdzWSAADkRr7DQLOzKYKgMjTn/845qVLrZpMAABg4uR4776hewAVSVO1dYwAAGFC5DgO+gzDgKrV0JAAAAHQkt2HAfNLRZkOOjYUAANgp+Q0DHe4vEFSHdnwnAACwhRyHgQ7rBcJK7xoDAMAAy3EYaH9kwFWHqBcAAGAn5TIMmPnOwkCFKQIAAHZWPsNAh+cJUC8AAMDOy2kY6KBeIKBeAACA+chpGOhsioB6AQAAdl7uwoCZdTQyQL0AAADzk7swoKQpWfsHC7kKWxADADAfuQsDnWxBLEmO8wgAAJiX3IWBjnYeDCtyLndfAgAAhZK7nrSzegFGBQAAmK9chQHzieSTtu/voloPWwMAQDnkKwx0eDgR9QIAAMxfvsJA3NnOg4QBAADmr7hhIKzIBblqPgAAhZSr3rSjnQcZFQAAoCtyEwY6Lh5kJQEAAF2RnzDQ4UmFrCQAAKA78hMGYlYSAACQhRyFgU6KByOKBwEA6JLc9KidTBMwRQAAQPfkIgykxYNx2/dnigAAgO7JRxjodLMhVhIAANA1xQwDjAwAANA1+QgDnSwrDCK5IOxdYwAAKJl8hIGk2fZ9mSIAAKC7Mg8DZibFHYQBpggAAOiqzMNAuorA2r47ywoBAOiuzMOAdTAqIDFNAABAt2UfBjqoF1AQUjwIAECXZR8GOqkXqDBFAABAt2UeBtTJSgKKBwEA6LpMw4CZdTYyQBgAAKDrsh0ZMJ9+tMlFlR42BgCAcsp2ZKDDlQQKot40BACAEss2DHS0kiCSc653jQEAoKSynSbo4IAiFzIqAABALxRmZIAwAABAb2RcMxC3f2fCAAAAPZFZGDCz6XMJ2uNCVhIAANAL2Y0M+KSz+zMyAABAT2Q3MpB0MEUgagYAAOiVDEcGOggDzkku+52TAQAYRMUYGQjZYwAAgF7J7u12B2HABRQPAgDQK9mNDHS0koB6AQAAeqUw0wQAAKA3MgkDZiYl7S8tZGQAAIDeyWZkwLwka/vuhAEAAHonm5GBDvcYYJoAAIDeyWZkoJMwEIRy7DEAAEDPZDMywEoCAAByI6ORgQ7OJQgIAwAA9FJGqwlYSQAAQF5kMzLgffv3DagXAACglzKqGehgZCAIe9gSAACQ0chABzUDjjAAAEAv9T0MmFlHYcAxTQAAQE/1v6e19ncelCQxTQAAQE/1Pwx0MkUgEQYAAOixDKYJOqkXcHLO9a4xAAAgi5GBTpYVMioAAECv5XqagGWFAAD0Xt+39+tkjwFxQBEAoMfMLF3pZqZWibuTpOlpaleCKev+7/XLNAEAIAOtTt97L/Ne3kzWZp/knJMLAgWtf4NgoAJCrkcGmCYAAMyX915JkiiJ2z8x99nMTJYkmh0dgiBQGEUDEQz6PzJgnEsAAOgtM1MSx0qSJJ0C6AHvvXyjIUkKw3AmGBRRBmGg/R+Ko2YAANABM1OSJIqbzb4+b5IkSpJEQRCoUqkUbvfcfI8MFHzYBQDQP60Q0KuRgHZ471Wv1xVGkaIoKsz0Qf9rBjr5ITEyAADYATNTs9GQ76RAvceSOFYSx6pUqwrD/Ne/MTIAACgs770a9XrWzdimZqMhX4BRgnwfVMTIAABgG5I4znUQaEniWM1GI9Ppix3JIAy0PzKQ5xQFAMhOHMdq9rlIcD5aIxh5DQR9DQMdfxMYGQAAPEsSx31fLdANZpbbQNDf3rbjMMDIAABgM+99oUYEns3Mchlk+hwGOqz0ZGQAADCt9c666Oa7G2Iv5HtkAAAAbV4+OCiazWaulkLmd2TAFX+vZwBAdyRJkqvOsxvytMIgvwWEBAEAyD3ziazTKeBOnyOn8+zz1TpBMQ9yPDJAGACAvLO4qea63yue2CBL2j+VthO+R4+bB1lvn9zS/x0I20YYAIDcc4FkJj81Lj81rqA6rGBoVEFU7crDm5ninBXbdVNrdCDrLYtzHAYAALn3rFFc35iUb0zKRRWFQ2NylaF51X/5Hh5BnBdxs0kY2CYGBgAg97bV0VvcVDy+VgpChbVRBbWRnTrWNxngKYIWM5OZZVo03+eF/J2kO9IAAOTejvaD8YmSyQ1pXcGm9bKksyH/vBTY9VrWX2efCwjbvytRAAD6z8xk3suSWD5uyDfr8o1JJfVNSibHFU9sULxpveLxtWpufFrx+NPtPrJ8fZOa659UPL5WPt7x6gDrUwfpvdfhRxyhv7r44jnXf/vb39bCRYv05f/1v/rShiw56+NkjJ/apGTDU23d10VVRUv36HGLAGDwmVm66ZslaUfv/cxltZYGei/zSec7xc6Dq9TSuoKoutUh8qSPhxHddNNNet+FF+qhX/1KS5Ys0c9//nP995e+VB/60Id0wXvf2/Pnd86pNjTU8+fZ5vMTBgCgePLawe8MF1YUDm9ZbNhsNPpWMxDHsQ497DCdecYZestb3qITTjxRr37Vq3T11Vf35fklqTY0v2LL+ehzGBhXsmFNW/d1UU3R0t173CIAyK+0Q09kSSLz8fS/iTR9ubM6rAIIQoVDY2mxoXNqNBp93WPg2muv1coPf1h77LGHlj/vebrlllv6WuVPGNgKV6kpWkIYADC4zCzt7FsfSTz9/+nOPufv6HvGBQqHRpW4SL6PeWd8fFx7P+952nffffX9u+7S6Oho/55cUq1W26kVF93Ql6WFZqZf/epX+vGP7tbP/vePNTk1pQP3309nn/lGVavd2ZgCAPLILC3Gs2T6Hf10p5++wx/8ZXM7ZXqpnfX5TfIF73ufJOnpNWsyWfdvyq54vi9h4E//9E912223yTmn5z//+VqwYIH+8aZbtHDhAp3x+tf1owkA0FNmNt3pN+f8S4ffmaA2onB4gVwQytfrPT/3oOUjH/mIvvnNb+r7d92lV77qVbrhhht07rnn9uW5WwZ6n4F169bptttu0+WXX661a9fq0Ucf1f33369ly5bp/zz2+HY+k8WFAPLHzOTjppL6pOKJDWpufEaNdb9Xc+0Tijc8pWTTOvmpcVmzThDoQFAdVmXRcxWNLpYLpt+V96lzvP766/XJT31KX/rSl3TYYYfpXe98p/7uqqv6tpIhD3oeBlpDLT/5yU/05je/WW9605t6/ZQAMG+td/q+MalkcqPi8WfUXP/krE5/7XSnP0WnPw+uUlO0cJmisSVy4dzB6qAPYeBb3/qW3nvBBbruH/9RR/+3/yZJ+vM//3Nt3LhRn//853v+/LMN9MjAggULdMEFF+inP/2pfvjDu/XEE0/0+ikBoCNmXr5ZTzfVGV+r5vqn1Fz7xMwGOcnkRvnGVMe752HbXFhRtGAXVRbsoiCqbPU+QY/n7e+77z6dceaZ+uhHP6rXvva1M9cvXLhQf37uubriyiv7trSx11/rjvR1NcEZb3qjfvvEat11113ac889dfYZp+mS979n6w1jaSGAHpiZ248b6bx+3KCT76cgUjSyoK0DjMxM9ampPjUsW1GloijK7rig3B5UZIO2fhZA37WW7vm4KUsasrgpi5sauPX5veKc5IK003bBnMsuCGZut2ZDvjGxg8cKFA4vmNlDoL2nd3LODfyphZIUZLSksCW3YUAl+OED6C7zfuYdv4/Tzr+0a/W3ZaYjD9N/g0DOhem/s69vdfxtSCRpO2EgGBpVOLRgp9bQB2GoJB78kZss6wWkfoeBTr5YwgCA7UiH+6eH+eO08y9tIV8POviOnn4bj+kqQ4pGFm5RGNiJKIoGPgxEUVSOMPDwww/r05/+tO6998faa++9Z67/6je/rUajofPOfot23/W5z/oswgCAzcxMNn2KXhoAGlk3qX9cIBeEcmEoBdH05fRfBWHmHcmzl4K7sKJwZKGCSm3+j+ycwjDsWyFfFsIMawVa+tKCc845R7/+9a+111576aCDDpIkHXnkkXryySd17U236Kk1T+vTf3f53E9iZAAotVbnPzsADC433dGHckEkF6b/ajoAOJftfPIOtdoXBAqHFyqoDnc1oERRNLBhIMzBqIDUp9UEy5cv12mnnaa//Mu/3OK2t7/97Vq/5ve649abntUyp8qy5b1uGoCcmBn2b9blm613/gP0psAF6bv52e/oW5d7NHzfL639GIKh0Z4Fl34fWtQvWR5ONFtfRgaOP/54XXHFFbriiiu2evvKD1yw5ZWMDAADbXPn35CP67LmgHT+M51+ZXPnH1YyO4CmH1wYKRxe0NPnqESR6gMWBvJQK9DSl5GBOI71ve99T+vXrVWy8ek5tz33Obvo2KOP2uo3JFq2PDffKADzs3l9f+udf73Yod+5LTv81jt99ESSJGo2BmO6KAgCVarV3PRxfd10yHyieM1/tn3/aNnz8j9XBmCbzCfyzXq6e1/cKOgyP7dlhx9VCj+0X1Rxs6m44KsLnHOq1mq5+v3pcwljh1+4GecVAQUy8+6/OTW9fW/BDnpxgVxUURBVZzr+fFTroyWMInnv5X0Rg2UqTyMCLfndZ0Aq9hAiUBJmNl30NyXfnJIK80fayUWVOZ0/HX/+OedUqVbVqNcLuTNhpVrNfLfBrcl+ceP2FPAHDZSB+US+kXb+RSn8S4f3p9/xR9X0/3T8hdQaZm80GrLChM80CIQZH0i0LX0NA+me1q79Tr6Q84vA4GlV/vvGlKxZz//wfxAqiCpyYXXm3T/1R4PFOadqtapms1mIJYfVWi2XIwIt/R8ZcIFk7f3gzDwlA0BGzPz08H9aAJjbcO7cTKcfRNOdPxX9peCcU6VSURIEipv5DKguCFTNYY3As/U/DARh+/uHF2j4BxgEc4f/61k3ZxucXKWadvyVWjrsn/M/tOgd55yiKFIwHQjyVFgYVSoKw2LUofQ9DDgXtD27aHl9JwIMEPNevjkpX5/M7Za/LqoqqNTkotr0kH/+/7iiv4IgULVWU5IkipvNTIsLwyjK1YZC7chgZKCDOZOynkAG9JiZT0cAGpO5HAFwUXVWAMj/ECvyIwxDBUEwEwr6KQgCVSrF3G0ym5qBdjEyAHRNugRwSkl9Utacyro5c6RFfrXpzp9iP8xPa+ogDEOZ90qSpGcHHbkgUBiGhZkO2Jb+TxMEHUwT5GjuByiimT0AGpNpEWBOlgC6sCJXqU3P+1fp/NETzqWnQQZhqMhMfjoYmPfzmkZwQaAwCHJz4mA3MDIADJjW0b9pAJjMx34dLlBQqSmoDqXz/gUcRkWxOedm3sFL06+T6Q8/OxzMfr04J6e08w+ckwsGdwvqnNcMEAaAdmwOAFPTASD7144LI7nKkILKEEV/yB3n3MzvZF43AuqnDFYTtP9NZzUBsH0+bso3JtIpgBwU3LpKTUFlKJ37D/O9wSmAzXI+MpD9Hzcgb8y8fH1Svj6R/U6ALkg7/2otXfPP3D9QSNQMAAWQTgM05eubMi8EnCn+qw6x4Q8wIDJZTdC26eIO/tigrMwn8vVJJfUJyc89w93MFMexgumlTb00M/xfHWKrX2AA9X9Mr9NhRKYKUDJmJt+cUjz+jJrrfq9kcsNMENi4cVyXX/lJvfL1p2vP/Q/V2G77aJfl++vvP3tdl1vhFFSHFI0tUWXJbqos2EXh0ChBABhQzvq8Z6OZKX7qcbU7zBku3k1Bdai3jQJywJJYvtEaBdh6CP7A/3uprr3xZp144ol60YtepH322Uf/8i//ovvv+9966L575t0GVxlSUB1OawCY/wdKI4PVBE4KQymJd3xnaYuhUWCQbN4VcKKtbYEf+7//qeOOO0433XST7rvvPh155JF67LHHdO89Ox8E0vn/4XQJIOv/gVLKZO2PC0JZm2HACnBONdApS5pK6hPy9c72BFj+vL30D9dcryVLlsjM9NBDD+3U87uoOj0CQA0AgIzCgIJIUpuHozAygAFhZumugPWJnT4d8MMfukj7/sE+euzx/9Tf/c//r6PPdWFFQW1YQXWYAABgjkzGBF0Hlc/tjiAAeWU+UTK5MS0G3LRuXscEj4wM63+c9Rad/LL/3tb9XRgpHF6gyqLnqrJomcKhMYIAgC1kNDLQQRhgNQEKyrf2BahP9PeJg1BBdVhhbVgurPT3uQEUUkY1Ax08LSMDKJDWKYHJ1Pi8RgB2RlAbUVAbYSMgAB3L/ciAzMvMs8wJudbaIjiZGu/53hjee01MTs69TlLDVTUSVXv63AAGU+5rBiRJrChATlkSK55Yn9YDTKzveRD4P4/9X/3hkX+kU047c871q1ev1ujoqN7whjf09PkBDKYMVxO0z3wsJ+Y+kQ+bzwkYnz4noD9cpaav/utdWrd+g/75n/9ZkrT77rvr9a9/vQ444AD98pe/1GWXXaYrr7xSe+21V9/aBaD4sqkZcC7dlrjd9dXUDSAHZpYGTm3q32mBQaiwNpIuBwwjDY2OKY5jrVq1SpJm/pWkxx9/XJJUqRCcAXQmuwPHw0hqs8CKFQXIknkvX9+kZGpT307SDKpDCqoj08cCby4GfOMb36g77rhD119//RafE4ahVq5cqV133bUvbQQwOPp+NkFLvO73ssbkju8oyQ2NKVr4nB63CJjLkkTJ1Mb+LQ0MonQUoMamQAD6K7ORARdG7Z/IzjQB+siSWMnUeJ9CQHo6YFAblYtYEgggG9lOE7SJaQL0gyWxksmN8m2OWM2LCxQOjaYhgMOBAGQsw5GBDoqcfCwz410TesLHTfmp8b6EABdWFAyNpgWB/D4DyIlMpwnaZpYWbjnmUdE9Pm4qmdwoa/Z+eWA6FTDGVACAXCrENIGkdOMhiqrQBT5uTIeANk/O3FnOKaiNKKyNdhZ+AaDPshsZcEHaubdZD5BuPMRWq9h5vllXMjkui3scAoJQ4dBYuiqAbbQBFECmb1dcWGm7ONDiplTrcYMwcNLdAqdHAnp8cJCLagqHRrfYGwAA8i7bMBBV2p6v7fcJcCi2zacHbkyDZA+lpwWOKojY+Q9AMWU7kdnJ8kLCANowEwImN/Z2y+CZpYEjbBAEoPAynyZoW9JkeSG2yzfrSiY29DYEBJHC4TGWBgIYKBmHgQ6fPm5IFQoHMFe6RHBDT1cHuDBSMLRAQXWIEABg4GQ8TdDZHKvFTTnCAKb1Y8dAF1YUDo/JVQgBAAZXtiMDzklBJPn2zh6gbgBSeopgMrVRfmpTz54jDQELWBkAoBQy3wnFhZGMMIA2mHn5qU1KpsbTXSl7wEXVNAREVUIAgNLIPgx0uLyQIsLyMTP5+oSSyY3pttQ94KJaWhjINBSAEspBGOhgV0Hz6Y6FbO1aCukywSnFExvbnkrqlKvUFA4vUNDJ7yEADJjse9UO/whb3GSf9xJItw7e0LMNg1xlKB0JIAQAQPZhwHW4a5vFDak23KPWIGu9XiYYVIcVDI2xWyAAzJJ9GHBBOuyfUERYZr1eJhhUh9PCQEaVAGALufjL6KKqjDBQSmZeyeS4/NR4Tx4/rQlYyEgAAGxHfsJAfaK9O7Mt8UDYXBy4oe1jrDvhworCkYWsDgCANuQmDHQkaXZceIj8sKSpeNP63ozyBJGikQXsGAgAHShkGLBmo/MAgcyZ92ldQL0HOwe6IF0iWBshBABAh3IRBhSEknNt7ypnCXUDRWJm8o1JJRMbur9pkHMKh8YUDI2mxagAgI7lIgw459K6gTaXk1mTMFAUPm4omVjfk/0CgqFRhUML5AJCAADMRy7CgKTOwgAjA7lnPpmeEmizMLQDLBMEgO7KzV/TjmoAvJf5RC4Ie9cg7JTN5whs6PphQiwTBIDeyE0Y0E7sROiq7ESYJ75ZT6cE2twzol0sEwSA3spNGOh4RUHckAgDuWA+UTKxofu7BwahopGFLBMEgB7LTxhwQVo30Obac3YizJ6ZyU9tSo8WVjenBFy6THBolBAAAH2QmzAgpXPChIFi8M264k3ru360cFAdVjiykHoQAOij3IUBTW5s784x2xJnId04aEPXVwm4MFI4soi6AADIQL7CQNRhRxA3JDqPvvGNKcWb1nV34yDn0hUC7BwIAJnJVRhQGEkuaLuz8c26QsJAz6UFguvlG1NdfdygNqJweCGbBgFAxnIVBpxzad1Am1Xp1piURhb2uFXltXkb4fVd3TPARZV0SoDzJQAgF3IVBiR1FgaaU9QN9IglseKJ9W3vCtkWF6T7BVSH+ZkBQI7kMgy0zSzdfIipgq5JdxDcpGSiu8sFg6HRdAthDhMCgNzJXxjosIjQGlMUEXaJJU3Fm9Z19VAhF1UVjS6SC9lCGADyKn9hIAiksCIl7XVI1pyUtKi3jRpw6eZB49ObB3UJuwcCQGHkLgxI03UD7YaBRp26gXnwcUPJpnVdPU8gGBpTODzGlAAAFEQuw0BQqSmZGm/z3iZr1uWqQz1t06Ax8+kRw1ObuvaY6ZTAYo4WBoCCyeVf7U4LAq05JREG2pZuJbxO8kmXHtGlqwTYOAgACimXYUBhRQoCybe3+ZA1pqTRHrdpAJj59HTBLm4l7Co1RSOL5ULOEgCAosplGEg3HxqW1dsbwk73G/DMUW+HbzYUb1rbvdEA9gwAgIGRyzAgSUF1SEmbYUDSdN3AcA9bVExmNl0b0G4Nxo5xsiAADJbchoFOO3ZrTEmEgTksiRWPr217ZcYOBaGikUUKqM8AgIGS3zAQRunBRW0uebMuH6JTZOkughNKJjaoW7sIBrWRdDSAqRgAGDi5DQNSOhzt29wIx+K6zPvSn4BnPkl3EezWmQJBpGh0kQJ2eQSAgZXrMOCqw1IHu+JZc0quNtLDFuWbb0ylSwbbPAJ6R9LNgxZQIAgAAy7fYaDS2dy0NaekEoaBbi8ZdGFF4ehiBRHnCQBAGeQ7DASBXFSTxe0NefvGlMpW3+7jhuLx7i0ZDIcXKhgaZTQAAEok12FAklx1qO0woLgh80kplrx1+3AhthIGgPLKfbVdx0sMm4O/qsCSWPHGNV0LAuHwQkULdiEIAEBJ5f6vf3pOgVO7S+SsMSXVBnNvYjOTb0wq2bRe3Vgy6MJI4egSagMAoOTyHwacS6cKGpNt3X9Q6wbSJYPruzbyEdRGp/cNoDYAAMou92FAUkdhQElz4OoGfLOeFgl2Y8mgCxSNLVbQ4UoNAMDgyn3NgJRuPtSJtoNDzrXOFYg3Pt2VIOAqQ6osei5BAAAwRyFGBhRWJBe03SFaY0oaGutxo3rLvFe8aW2XdhJ0CkcXccIgAGCrChEG0rqB9o809s1i1w10c+8AlgwCAHakMD1ER0caJ7EsbsoVrEo+PWBo0/QBQ/MXDi9QMDTGaAAAYLsKEwY63W/ANyYURot61JruS6cF1nVntUAQpUWCUXX+jwUAGHjFCQOdHmlcn5BGihEGfNxUPP5MV6YFOGoYANCpwoQBqcMjjZv13C8xTKcFJpRMrJ//g7lA0ehiBVVWCgAAOlOot4+dHk9sXTrFrxfMvJJN67oSBNIlg8sIAgCAnVKokQFXGepoiaGvTygYXtDjVnXOkqbi8bWyNqc8ticcWaSgNkKRIABgpxUrDDgnVxuWTbW3qsAakzLv5YL8DIAk9YnunC0QhIrGllAkCACYt/z0km0KOp0qyMluhGameNM6JZvWab5BwFWGVFm4jCAAAOiKQo0MSK0lhu2fYujrEwqGsj3F0JJ4elqgOe/HCocXKhgaZVoAANA1xQsDLujo4CJrTMjMMus8fWNS8aZ1ks13WiBQNLpUQYXRAABAdxVumkDqcKrArGvH/nbCzBRPbJg+bXC+0wK1dFqAIAAA6IFChoG8LzE07xWPPyM/NT7vxwqHFygaW5rr/RIAAMVWzDAQhHKVWtv39/V0qqAfLGmqueGp+Z826AJFC3ZROLyA+gAAQE8VrmagxdVG2+5wXVSV+UTaxrvrbnW2vjGpeHyd5r1aIKoqGlvCaAAAoC8KGwaC2rD89kbhK0NSdVgKa0okxY2mpG1X8wdBIBcECpyTC4J0T4M2Q4KZKZnc2JVpgWBojNEAAEBfFTYMuLAiRVUpbmy+MqrJRzVZVEt3KpTaLt7z3kvea/ZRQUEQKIyiNChso3M284rHu3DaoHOKRpewpTAAoO8KGwakdFWBd4F8WJ0bALrEey/fSMNGEIYKw3BOMLAkVnPjM5Kf37bCLqyk0wJhoX8cAICCctavyrouMjMlcaw4nv/e/p1yzqlSrSoIAiWTG5W0eYritgS10ekjh5kWAABko1BhwMzkvVez0djxnXssCAJFUaRkYv1OThE4RWOLFVSHu942AAA6UZgw0AoBeWtuEIbS5DqpkxMIg1CVBUvTugcAADJWiDCQJEkuRgO2xZmXq29oq1jRVWqKRpfk6iRFAEC55ToMmJniOFaSQW1Ax5Kmgsb2lxaybBAAkEe5DQNmpmazKZ8kO75zXsR1Bc2tbX3sFI4uVlijPgAAkD+5XMtWyCAgSVFN5hO5ZNbOiEGoaGypgoj6AABAPuUyDCRJUrwgMM0qw5Ilcj6e3lZ4KfUBAIBcy900gU8SNXJcLNgW83JJQ5XRRQoIAgCAnMtVT2VmxQ8CkuQCWTSkpKCjGwCAcslVGMjz8sGdkcQxgQAAkHu5CQPe+/SwoAETN5u52ygJAIDZchMG4ua2jxcustYWygAA5FUuwsCgjgq0DGrQAQAMhlyEgUHvLM2ssEslAQCDL/MwUJZhdAoJAQB5lXkYKEMQkMrzdQIAiifzMGB96iS/+c1vanhkZJsfZ5x5Zk+f38xYVQAAyKXMdyCs1+t9CQSTk5Nav379nOuSJNH/OPdc/exnP9Md3/iGDjnkkJ62oVKtKgzDnj4HAACdyvRsAjPr28jA8PCwhoc3nxqYJInedtZZfQsCUjpVQBgAAORNLg8q6rVWEPjud7/btyAgiWkCAEAuZVszkEHnmCSJzjr7bH33u9/VN77+dR166KH9e3LCAAAghzINA/3uGltB4M4779Q3vv51HXbYYX19fqIAACCPMp0mcM717blaQeA73/lOJkFAkvr31QIA0L7Mlxb2Q5IkOvvtb9d3vvMdff1rX9Phhx+eTUP6GH4AAGjXwBcQeu919tvfrq9+9av6/M03a7fddtPq1avn3GfZsmV9qfIPCAMAgBzKfJ+BRr3e0935fvzjH+uEE0/c7n2e+N3vtHjx4p61oYV9BgAAeZR5GIibTcVxnGUT+qY2NNTXOgkAANqRec1AEGTehL5wzhEEAAC5lHlP7EoSBsoSegAAxZN5D+WcU1CCefQwGvhaTQBAQWUeBiQpGvCOMggCRgYAALmVix4qCIKBHh2IKpWsmwAAwDblIgxIgzs6wKgAACDvctNLDeroAKMCAIC8y00YkKRKpTJQy++iSoVRAQBA7uWqp3LOqVKtZt2MrgiCgN0GAQCFkKswIKWdaNEDQSvUDNIoBwBgcOUuDEhSGIaFLigkCAAAiiSXYUBK59uLWHxXrdWoEwAAFEqu335HUSQnqdlsZt2UHXLOqVqrMSIAACiczE8tbIf3Xo16PetmbFMQhgO3EgIAUB6FCAOSZGZqNpvySZJ1U+aoVCqcOwAAKLTChIEW772azabM+0zbEUWRwihiNAAAUHiFCwMtSZIobjbV7+YzJQAAGDSFDQNSOnVg3itJEiU9nD5wzimMIoVhSAgAAAycQoeB2cxM3nslcSzfhSkE55zCMFQQhiwVBAAMtIEJA7O1viTv/czogfdelt44577OufQjCBRM/9u6DgCAMhjIMAAAANrH+DcAACVHGAAAoOQIAwAAlBxhAACAkiMMAABQcoQBAABKjjAAAEDJEQYAACg5wgAAACVHGAAAoOQIAwAAlBxhAACAkiMMAABQcoQBAABKjjAAAEDJRVk3YLbqC85SEFXlglAuCBVWNl92QbD5tjBUEFUVzNwWbnGbC0IFgZMLnMIwkHvW5SBwCkI3c5/t3uacwihQGDiFgVN1+nI08/9w823h5vtFs+4bbu2ycwqcU+ikShjMXI7CQKFT+v/AqRK4rVxOb68Ewczl0Dk5JwVOck7Tjy85SWHgFEjp1xJo5nLgpNDNvpw+hjOTzMv5WJpz2acfftu3OfNSkmy+7GPJJzLvpbghSxLJ+/S6uCnzSXq52ZRal1v3bd2v2dj8OT6Rb8ayxMu8l2/E8kn6OZZ4+WYsn2y+bNOXk2Ysm3W/pBHPupzIvMknNv3/6c/3lt6WmCwx+cQrafrpxzQlzWT6czZ/njdTYqaGNyWmZ11+9v/Ty17p5cQ0fdvmy5+2xzJ9XXYLr29e37y+8/v6ZmQAAICSIwwAAFByhAEAAEqOMAAAQMkRBgAAKDnCAAAAJUcYAACg5AgDAACUHGEAAICSIwwAAFByhAEAAEqOMAAAQMkRBgAAKDnCAAAAJUcYAACg5AgDAACUHGEAAICSIwwAAFByhAEAAEqOMAAAQMkRBgAAKDnCAAAAJUcYAACg5AgDAACUHGEAAICyswE1NTVlK1eutKmpqaybsoU8t82M9s1Hnts2SPL8fc5z28xo33zkuW3z5czMsg4kvbBhwwYtWrRI69ev18KFC7Nuzhx5bptE++Yjz20bJHn+Pue5bRLtm488t22+mCYAAKDkCAMAAJQcYQAAgJIb2DBQq9W0cuVK1Wq1rJuyhTy3TaJ985Hntg2SPH+f89w2ifbNR57bNl8DW0AIAADaM7AjAwAAoD2EAQAASo4wAABAyQ1cGHj/+9+vF7/4xTrjjDPUaDTm3DY5OalXvepVOuGEE/TSl75UzzzzTK7a1/Lxj39cL3rRizJvUxzHeutb36oXv/jFes973tO39rTbvpZ+f79m21bb8vC7Noh4fXevTby+d6xMr++BCgP333+/Vq9erR/84Ac66KCD9KUvfWnO7XfccYcOOeQQff/739dpp52mz33uc7lqnyRt3LhRDz74YC7a9NWvflV77bWXfvCDH2hiYkI/+tGP+taudton9f/71W7bsv5dG0S8vrvbJl7fO9+2rH/XemGgwsA999yjl73sZZKkl7/85Vv8cu+3336amJiQJK1bt07Lli3LVfsk6ZOf/KTe+c535qJN7bQ3y/ZJ/f9+zba9tmX9uzaIeH13t028vrevbK/vKOsGdNO6deu0xx57SJIWLVq0xdDNvvvuqwcffFCHHHKInHO69957c9W+9evX6xe/+IUuvvjiXLRp3bp1M/tvb629Wbcvi+9Xu23L+ndtEPH67m6beH3vfNuy/l3rhUKODKxevVrHHXfcFh9mpg0bNkhKf5BLly6d83k33nijTjzxRD344IP6yEc+oksvvTRX7bv66qv1rne9qydt2pYlS5Zss03buy0P7cvi+zXb9trWr9+1QcTru3t4fe+8sr2+CxkGdtttN919991bfJx88sn613/9V0nSt771LR177LFbfG7rB7p48WKtW7cuV+179NFH9dGPflQvf/nL9cgjj+jyyy/vSftmO+aYY7bZpu3d1i/ba0MW36922yb153dtEPH67h5e371pmzSAr+/sTk/ujQsvvNCOO+44O/30061er5uZ2Tve8Q4zM1u/fr2dfPLJdsIJJ9ixxx5rDz30UK7aN9uRRx6ZWZta7Wk2m/Znf/Zndtxxx9n555/ft/a0277Z+vn9mm1bbcvD79og4vU9/zbx+m5fmV7fbEcMAEDJFXKaAAAAdA9hAACAkiMMAABQcoQBAABKjjBQAjfccIMWL17clcd67LHH5JxTFEX67W9/O+e2J554QlEUyTmnxx57bM5tX/7yl3XiiSdq0aJFGhsb02GHHaZLL710ZiOPbrYRwPzts88+cs7pC1/4wha3HXzwwXLO6YYbbphz/f33369TTz1Vu+66q4aGhrT//vvrnHPO0cMPPyxp89+PBx54oA9fATpBGMBO2WOPPfRP//RPc6678cYbteeee25x37/6q7/SG97wBh111FG644479OCDD+rKK6/Uz372s4HY0xvotWazmcnz7r333rr++uvnXPfv//7vWr16tUZHR+dc/7WvfU3HHHOM6vW6br75Zq1atUqf+9zntGjRIl1yySX9bDZ2RtZrG7Fjd9xxhx177LG2aNEiW7p0qb3yla+0Rx991MzMvve975kkW7t27cz977//fpNkv/nNb2Zun/2xcuVKMzN75pln7M1vfrMtXrzYhoeH7eUvf7k9/PDD223Lb37zG5NkF198se23335zbjvggAPskksumXluM7N7773XJNnVV1+91cdrtfv666+3RYsWdfy9AYoqSRK7/PLLbd9997VqtWp77723XXbZZTOvsVtuucVOOOEEq9Vqdt1111mSJPaRj3zE9txzT6tWq3b44YfbHXfcMfN49Xrd3vnOd9puu+1mtVrNli9fbh/72Mdmbl+5cqXtvffeVq1Wbffdd9/h3gLLly+3D37wg1ar1ezxxx+fuf6cc86x888/3xYtWmTXX3+9mZlt2rTJnvOc59hrX/varT5W63Xe+truv//+nfumoWcYGSiATZs26X3ve59+8pOf6M4771QQBHrd614n7/0OP/eP/uiPdPXVV2vhwoV64okn9MQTT+j973+/JOmtb32rfvrTn+orX/mK7rnnHpmZTj755LbehZxyyilau3at7r77bknS3XffrWeeeUavfvWr59zv5ptv1tjYmM4777ytPg5TAyirD33oQ/rEJz6hSy65RP/xH/+hz3/+89p1111nbv/ABz6gd7/73Vq1apVOOukkffKTn9SVV16pK664Qj//+c910kkn6ZRTTtEjjzwiSfrUpz6lr3zlK/riF7+ohx56SDfddJP22WcfSdKXvvQlXXXVVfrMZz6jRx55RLfffrsOPfTQHbZx11131UknnaQbb7xRkjQxMaFbbrlFZ5111pz7fetb39KaNWt00UUXbfVxeJ0XQNZpBJ178sknTZL94he/2OHIgNnW33U//PDDJsl++MMfzly3Zs0aGx4eti9+8YvbfO7Zyf69732vve1tbzMzs7e97W12wQUXbPHcr3jFK+ywww7b4dfEyADKZMOGDVar1eyaa67Z4rbWa+zZo2l77LGHffSjH51z3VFHHWXnnXeemZmdf/759sd//Mfmvd/iMa+88krbf//9rdFotN3G5cuX21VXXWW333677bvvvua9txtvvNFe8IIXmJnNGRn4xCc+YZLsmWee2e5jMjKQX4wMFMCvf/1rnX766Xr+85+vhQsX6g/+4A8kSY8//vhOP+aqVasURZGOPvromet22WUXHXDAAVq1apUk6RWveIXGxsY0Njamgw8+eIvHOPvss3Xrrbdq9erVuvXWW7d4tyBJZibn3E63ExhEq1atUr1e10te8pJt3udFL3rRzOUNGzbod7/73Rb74x977LEzr9e3vvWteuCBB3TAAQfo3e9+98y++pJ06qmnanJyUs9//vN1zjnn6LbbblMcx5Kkj33sYzOv87GxsS3+rrzyla/U+Pi4/u3f/k3XXXfdNl/nKDbCQAG8+tWv1tNPP61rrrlG995778xxmY1GQ0GQ/ghnvxjbGebf1ot3dud97bXX6oEHHtADDzygb3zjG1vc95BDDtEf/uEf6k1vepMOPPBAHXLIIVvcZ//999evf/3rzAqggDwaHh7e4X2eXaAnaYtgPfv1+sIXvlC/+c1v9Nd//deanJzUaaedpte//vWS0kLAhx56SH//93+v4eFhnXfeeTr++OPVbDZ17rnnzrzOH3jggZlje1uiKNKb3/xmrVy5Uvfee6/OOOOMLdq1//77S5J+9atftfcNQO4QBnLu6aef1qpVq3TxxRfrJS95iQ488ECtXbt25vZly5ZJSpf1tTx72U61WlWSJHOuO+iggxTH8ZxzuJ9++mk9/PDDOvDAAyVJe+65p1asWKEVK1Zo+fLlW23fWWedpbvuumur7xYk6fTTT9f4+Lj+4R/+Yau3D8RpX0CH9ttvPw0PD+vOO+9s6/4LFy7UHnvsMVOj0/KjH/1o5vXaut8b3vAGXXPNNbrlllv05S9/eWb57vDwsE455RR96lOf0l133aV77rlHv/jFL7R06dKZ1/mKFSsURdEWz3/WWWfp+9//vl7zmtdoyZIlW9z+spe9TM95znP0N3/zN1ttP6/z/Nvyp45cWbJkiXbZZRd99rOf1e67767HH39cH/zgB2duX7Fihfbee299+MMf1mWXXaZHHnlEV1555ZzH2GeffTQ+Pq4777xThx9+uEZGRrTffvvpNa95jc455xx95jOf0YIFC/TBD35Qe+65p17zmte03b5zzjlHp5566jYLhI4++mhddNFFuvDCC/Xb3/5Wr3vd67THHnvo0Ucf1ac//Wkdd9xxes973rNT3xugqIaGhvSBD3xAF110karVqo499lg99dRT+uUvf7nNqYO/+Iu/0MqVK7XvvvvqiCOO0PXXX68HHnhAN998syTpqquu0u67764jjjhCQRDo1ltv1W677abFixfrhhtuUJIkOvroozUyMqLPfe5zGh4e3mbIf7YDDzxQa9as0cjIyFZvHx0d1bXXXqtTTz1Vp5xyit797ndrxYoVWrNmjb74xS/q8ccf3+p+BciRLAsW0J5vf/vbduCBB1qtVrPDDjvM7rrrLpNkt912m5mZ3X333XbooYfa0NCQvfjFL7Zbb711ThGfmdm5555ru+yyy1aXFi5atMiGh4ftpJNOantp4bYKgJ5dQNhyyy232PHHH28LFiyw0dFRO+yww+zSSy9laSFKK0kSu+yyy2z58uVWqVTsec97nn3sYx/b5mts9tLCSqWyxdLCz372s3bEEUfY6OioLVy40F7ykpfYfffdZ2Zmt912mx199NG2cOFCGx0dtWOOOca+853vbLd9rQLCbZldQNjyk5/8xP7kT/7Eli1bZrVazVasWGHveMc77JFHHjEzCgjzjCOMAQAoOWoGAAAoOcIAAAAlRxgAAKDkCAMAAJQcYQAAgJIjDAAAUHKEAQAASo4wAABAyREGAAAoOcIAAAAlRxgAAKDk/n+M3fx5NcJowgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -734,12 +735,12 @@ "source": [ "#### Comparison with ParCorrOLS\n", "\n", - "In the time-dependent heteroskedasticity case, we also expect degraded performance of the standard ParCorr test. This is also what we see in the plot below, the link from $Z$ to $X$ is not discovered." + "In the time-dependent heteroskedasticity case, we also expect degraded performance of the standard ParCorr test." ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 57, "id": "a7cbc1ca", "metadata": {}, "outputs": [], @@ -756,13 +757,13 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 58, "id": "5ca025b7", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArnUlEQVR4nO3df5QcVZ338c+tqu6eSUISfkRCMCZKAgZCAIUDzwaEXc4ahAXEZwEF3IVofHhA8AeI7BE2gARwVx6Qc9YjwiHJsqghKKyKCIILa1aWdY9EiGb54cHDgmQ1vwiQyXR31ff5YzLDJJPJdM10d93qer/OmUNnuqb7O5MU9Zl7v/eWMzMTAAAorCDrAgAAQLYIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAUXZV1Aq5lZ30eSyPo+8faTzm3/j1MQBAOPAQAoko4KA/0X/iSOlSTJwJ/T6A8GLggUhiHhAADQ8ZylvVp6KEkSxXGsuF5v+mu7IFAUhgoIBgCADpXbMGBmAwGgXd9CEASKSqWBKQUAADpBLsNAHMeq12ptCwE7C8JQpVKJkQIAQEfIVRhIkkS1Wk2WJFmXIkmKokhhFBEKAAC5loswYGaq1+st6QlohnKlwtQBACC3vA8DZqZatarEk9GA4USlkqKooxZnAAAKwuswYEmiarWaWW9AWmEUKWLaAACQM96GgSRJVO3tzbqM1GguBADkjZcT3WaWyyAgSUkcq+5pbwMAALviXRjo7xHIs7heVxzHWZcBAEBDvAsD9Xrd+2bBRuSh6REAAMmzMNCqLYWzUstR8yMAoLi8CQOdMD2wMzPrqHADAOhM3oSBTp1jr7fx3gkAAIyGF2HAzFSv1bIuo2UYHQAA+MyLMNCpowL9GB0AAPjMjzBQgN+cOz3wAADyK/MwYElSiN+aE8IAAMBTmYeBoqzFTwoSegAA+VOIMFCv13XwIYfo85ddNuS5Sy65RAcfcoj+8Ic/tLwOwgAAwEeFCANRFOnyyy7T8uXLtWHDhoHP//3f/73uf+AB/fMDD+gd73hHy+soyigIACBfMg0DZta235bPO+887bXXXrr99tslSd/+znd04003aeXKlZo9e3ZbajDCAADAQ1HWBbRLuVzW5z/3Od1400163/vep4suukh33XWX/tcxx7StBiYJAAA+cpbhRHaSJG29VfG2bds0Z84c/eGPf9RNN92kSz796ba9tyQFQaBypdLW9wQAYCSFGRmQpK6uLn3g+OP1yiuvtD0IAADgq0x7BpxzbX/PNWvW6Kijjmr7+0qSMvh+AQAYSearCdqpp6dHzz33nI444ohM3p8oAADwUeYjA+0cHfjVM88ojmMdcfjhbXvPwVxQqOwFAMiJzK9OQRsvkKuffloTJkzQrFmz2vaeg7XzewUAoFGZriaQ+m5SVOvg2xcPVunqyqRPAgCA3cn8V9WiDJ0HQUAQAAB4KfMrcVEukEEYZl0CAAC75EUYiEqlrMtouZAwAADwVOZhQOr8C2UURYUZAQEA5I8XYaDTRwfCqFAbPQIAcsaLMCB17uhAyKgAAMBz3oQB55xK5XLWZTSVc04RowIAAM95EwakvtGBThpSL5XLjAoAALznVRiQtjfbdcDeA6VymR0HAQC54N3Vyjmncs6nC8Io6tgeCABA5/EuDEjbA0GlknUZoxIEAX0CAIBc8TIMSH0X1bwFgjAM6RMAAORO5jcqGomZqVqtypIk61J2KyqVFIYhQQAAkDvehwGpLxDU63XF9XrWpexSuVzm3gMAgNzKRRjolySJatWqfCk5jCK2GgYA5F6uwoDUN0rQHwqyEgSBSqVSRyyBBAAgd2Ggn5kprtcVx3HbRgqCIFBUKrF/AACgo+Q2DPQzs75gEMct6Slwzg3sG8B0AACgE+U+DAxmZop73pBFXQPTCWk55+SCQEEQKAwCpgIAAB2vo3bHsZ43pE2vKtr3ALmob4+C/pGDJEmk7bnHJA38ju9cXwAY9AEAQJF0TBhIet5QsulVSZLVeuWivi2N+y/wzPMDALBrHXGFTLa9qWTjq29/op7dSgMAAPIm92Eg6X1LyYZX1Df438fqvdkVBABAzuQ6DFjvViUb/luDg4AkGSMDAAA0LLdhwKo9ijf890BT4A5qvd7sUggAgO9yGQastk3x+pclG2bpoCVSEre3KAAAcip3YcBqvbsPAv3oGwAAoCG5CgNWr/UFgQZ+66dvAACAxuQmDFhcV7zhZSlpbMthqzEyAABAI3IRBixJ+poF0/y2z8gAAAAN8T4MmJmSja9ItW3pvo6eAQAAGuJ1GDAzJZt+L+t9K/0Xx3VZ3Py7GAIA0Gm8DQNmpuT1/5H1bBn9a6QcTQAAoIj8DQNvbpC9tWlsL0IYAABgRF6GgeStzUq2/HHMr8PIAAAAI/MuDCQ9byjZ/FpTXsuqhAEAAEbiVRiwJJFt3SzJNecF45qMbYkBANgtZx7e0ceSRFbdKtv2Vt9KgjEsEwz2eZeCyvgmVgcAQGfxamSgnwsCBV0TFE7eV+E7ZmpMIwVMFQAAsFtehoHBrLdH0ugHL2giBABg93IQBkax4dDgrycMAACwW1HWBYwkTRhwlfEK9txvoNegr9+gKksSucD73AMAQCa8DgOWxKk2DnKV8XJhSW78ZGn8ZJnZ9q/3rkcSAABv+B0GUk4RuMq4Hf/snFTubmZJAAB0HK/Hzq13a+MHu0AqdbWuGAAAOlTHhAFXGdc3EgAAAFLxNgxYEqfabMixsRAAAKPibxhIM0Wgof0CAACgMf6GgWpP4wcHoRRVWlcMAAAdzOMwkKJfoEy/AAAAo+VlGDBLUt1TgCkCAABGz8sw0BcEGt8oiOZBAABGz8swkGaKoK9foNy6YgAA6HB+hoFU+wuMp18AAIAx8C4MmFmqlQSO7YYBABgT78KA6r2SJQ0fThgAAGBsvAsDaTcbUon9BQAAGAv/wkCazYaiipzz7lsAACBXvLuSpttsiLsUAgAwVl6FAYvrUlxv+HjHLYsBABgzv8JArfFdByXCAAAAzeBVGEizBbEkiTAAAMCYeRUGUo0MRGW5wKvyAQDIJa+uplZLsdkQowIAADSFN2EgdfMgKwkAAGgKf8IAzYMAAGTCmzCglGGA5kEAAJrDmzBgaVYShGW5IGxdMQAAFIg/YSDFyAD9AgAANI8XYcCSWIprDR9PvwAAAM3jRxhI2y/AyAAAAE3jRRhIu/MgIwMAADSPF2Eg1chAWKJ5EACAJvIjDNR7Gz6WUQEAAJor8zBgZlK92vDxrCQAAKC5Mg8DimuSWePHMzIAAEBTZR4GLMWogMQ0AQAAzZZ5GFCt8X4BhZFcGLWuFgAACijzMJBmZMCVultYCQAAxeRBGGAlAQAAWco0DJiZVEvRM8BKAgAAmi7bkYEklixu+HAXlVtYDAAAxZRtGEgxRSBJCkutqQMAgALLdpogzbLCsCTnXOuKAQCgoLINAymWFTJFAABAa2Q8TZBuZAAAADRfbqYJXEQYAACgFTILA2bWd1+CRoVMEwAA0ArZjQzE9VSHMzIAAEBrZBgGUowKSPQMAADQItlNE6QJAy6QgrB1xQAAUGD5GBmI2GMAAIBWyW5koN54GHBMEQAA0DI5GRlgJQEAAK2Si54BRgYAAGidTMJA6j0GGBkAAKBlshkZSGLJrOHDGRkAAKB1sgkDafcYYMMhAABaJptpgjRhIIjkXLb3UwIAoJNlc5VNsayQUQEAAForm5GBpPH7EtAvAABAa2XUMxA3fixhAACAlspoNUGakQHuSQAAQCtlNE2QYmQgiFpXCAAA8H9kgLsVAgDQWm0PA327DzY+MuAYGQAAoKXaPzJgiaTGdx8UPQMAALRU+8NAmn4BiWkCAABazO8w4AJ2HwQAoMXa3zMQ0zwIAIBP/B4ZCGkeBACg1dp/tU2z4RAjAwCAFjOzvpVuZgPt7U6SnOt77Jzc9sedqu1hwNJsRcyyQgBAk/Rf9JMkkSWJEjNZkjT0tc45uSBQ0P/fIOiogOD1yAA9AwCAsUqSRHEcK66nuP7sxMxkcazB0SEIAoVR1BHBoP1hwBpLYRLTBACA0TEzxfW64jjumwJogSRJlFSrkqQwDAeCQR55HQaU0x8qACAbZqY4jlWv1dr6vnEcK45jBUGgUqkkl7PrV/t7Bhqcn5EksccAAKBB/SGgVSMBjUiSRL29vQqjSFEU5Wb6IIORgRR/SYQBAMAIzEy1alVJml82Wyyu1xXX6yqVywpzsK0+0wQAgNxKkkTV3t6syxhWrVpVkoNRgoxuVNQYtiIGAAwnrte9DgL94npdtWo10+mLkWSwAyE9AwCAsanX66q1uUlwLPpHMHwNBG292vb9EOgZAACMXlyvt321QDOYmbeBoL1X2zT9AtLAVpAAAEh9v2HnaURgZ2bmZZDxOwzQQAgA2K7/N+u8G+tuiK3Q3qtt6mUfjAwAAN5ePtgparWaV0sh/R0ZcPnf6xkA0BxxHHt18WwGn1YYtDkMpPimmSIAAMjfefax6r+Dog/avJqAZYUAgHSSOM66hJbJevvkfm2+4qb5hpkiAICiMzPVPWu2ayZfRgfaPE3Q1ncDAORc0sJbEPvChymQloYBM9P3vvc9XXjhhTryyCP1jukz9c4jjtONt31j5C9mYAAACi/u4CmCfmaWeeBx1sIKvv3tb+vcc8/VIYccove///066KCD9Otf/1orVqzQhrVPaVx39/BfXKooesd7WlUaACAHtvX0ZF1CW2R9d8OWjgz85je/0fTp0/Xss8/qmmuu0aJFi3T66adv31N6pDkghgYAoMisTXPpSZLosMMP15euumqHz//kJz/RxEmT9N3vfa8tNWSppWFg6tSpeu2117TPPvvo3e9+t1atWtXKtwMAdJB2XSCDINAXLr9cd9xxhzZt2iRJeuaZZ3Tueefp2muv1f/+yEdaXkPWKyZaGgY++clPasmSJVq4cGEr3wYA0IHa+dvyRz/6Ue299976+te/rldeeUVnfOQjOudjH9PnPvvZtrx/1n0DLe0Z6Ld+/XpNmTJF999/v2q1ms466yyt/81TmjRxj+G/qNytaMrMVpcGAPBUtVpt62/Md955pxZfc42mTZumGe96l1asWNHWefxKV1dmO++ysw8AwE9t/k35ox/9qLZu3Soz0/Lly9vf0JfhyABhAADgpXZfGj/3+c9LkjasX59JZ3+Wiws9DgOsJgCAImvnVeDaa6/Vj3/8Yz3x+OOqx7GWLVvWxnfvk+XN+VoaBqrVqk455RTNnDlzyHMzjjxBZ1xw8bDbTBIFAKDg2nRxXLp0qb5222267777NG/ePH364ov1/265RTUPdgZsl5Y2ED7yyCNasGCBlixZonHjxunUU09VkiR68MEH9cYbb+hv//Zv9ciKu/Sn848ZWlhlnMJ9ZrSqNACA5+q1WsvvS/Dwww/rrLPP1vJly/ThD39YkrRlyxYd9N736qYbb9Rf//Vft/T9B+va3UZ8LdbSkYH+ZSHlclmVSkWPPPKIHn30UVUqFZXLZUkafilFZ29FDQAYQdDieftf/vKXOve887RkyZKBICBJEydO1P+98EJ99eab27Ydcqu/15G0dGSgt7dXp5xyip544oldPv+n84/WPy/7ukql0tAnWVoIAIVmZurdti3rMtoiKpUURVFm79+WfQb6JT1blGx8tbGDS12K3vHu1hYEAPBa77Ztmd/Epx3KlYqCILue/va+c5pmEMv+/s4AgGxlPXzeLlmuJJDavrQwxdsVIAkCAHYvy6HzdomiqFhhINU3SxgAgMJzzmV6a992CD0IPP5OE7CcAACgzh4dCD0YFZB8DgOMDAAAJLkg6NjeAV+CTpvDQJqeARoIAQB9Sp5cNJvJh16Bfm1uIEz3TRdhOQkAYGQuCFTavlldJwiCwItegX7+ThNITBUAAAaEYejNsPpYOOdUKpe9GRWQfA8DNBECAAYJoyjTzXmawbcgIPkeBugbAAAM4uNv1WmUymUvw4zXPQNMEwAAduacU7lSkfPworo7pXLZ2z0T2r/pUJoVBUl77hYFAMgX55zK5XJulhyWKxVvg4DU9pEBSSmSnBEGAADDcM6pVCop2tWdbz3hgkCVri4vpwYGa39bZhBKcb2xYxN6BgAAw3POKdreVFiv1ZR4dN2ISiWFYZiL/oa2hwHnwsbXCBgjAwCAkQVBoHKlojiOVa/VMt2nJowirzYUakQ2IwONYpoAAJBCGIYKgmAgFLRTEAQqlUq5a2yUPA8D9AwAANLqnzoIw1CWJIrjWHHcmuuJCwKFYZib6YDhZBAG0qwm8GfuBwCQL845uTBUEIaKzJRsDwaWJGOaRnBBoHD7dsJ5DgCDtb9nIEjRM8DIAACgCZxzA7/BS333vun/SAaHg8EhwTk5bb9ronNyQdAxF/+deT1NQBgAALSCc27gwu7z+v92aX+Xg0vRM8BqAgAAWs7rTYfoGQAAoPXaHgYc0wQAAHglg5GBFGHAxtbxCQAARuZ3GJAa37oYAACMSgYNhIFS3co4bu8OUgAAFE37ewack8LGVzQaYQAAgJbKZgPlMMXtJpkmAACgpTIJA46RAQAAvJHRyECKjQ8JAwAAtFRGIwONTxMwMgAAQGvlYGSAngEAAFopm5GBIEUYSPpuNwkAAFrD/5EBib4BAABayP+lhZKMqQIAAFomm2kC59JtS8zIAAAALZPNyIDE8kIAADyRWRhwAcsLAQDwQXYjAxHLCwEA8EF2IwNhueFjGRkAAKB1MhwZaDwMKK7JzFpXCwAABZbdyECaMGAmGRsPAQDQChmODKTba4AVBQAAtEZ2IwMuSLX5kNUJAwAAtEJ2IwNKOVVQ721dIQAAFFimYSDNVIHVCAMAALRCtiMDaZYXEgYAAGiJjEcG0k0TGCsKAABouvz0DEhSrdqaQgAAKLDc9AxIktW2tagQAACKK9uRgdTLC+kbAACg2bIdGVDKqQKaCAEAaLrMw0CaJkKrbeMeBQAANFnmYcCVKo0fnMR9HwAAoGk8CANdqY6niRAAgObKPAwoSjEyINE3AABAk2UeBlwQpO4bAAAAzZN5GJDS9Q2wLTEAAM3lRxiIUvQN1HtZUQAAQBN5EQaUZkWBxO2MAQBoIi/CQPoVBYQBAACaxYswoDCSXOOl0EQIAEDzeBEGnHPppgoYGQAAoGm8CANSuqkCRgYAAGgej8JAum2JLa63rhgAAArEozDAtsQAAGTBmzCQenkhfQMAADSFN2HAuUBK1TdAGAAAoBm8CQOS5MrdDR9rdaYJAABohtyGAdXYlhgAgGbIbxiQ6BsAAKAJvAoDCktSEDZ8uFW3trAYAACKwasw4JxL1zfQ+1YLqwEAoBi8CgNSyibC3q30DQAAMEbehQGVUvQNWCKx+RAAAGPiXRhw5ZQ7EfbSNwAAwFj4FwaCUIoa342QvgEAAMbGuzAgpewbqNI3AADAWOQ+DMhMqva0rhgAADpc/sOAmCoAAGAsvAwDisrpNh+iiRAAgFHzMgw45+Qq4xs+3qo9MktaWBEAAJ3LyzAgKVUYkEzWS98AAACj0SFhQLIqfQMAAIyGv2EgKvX1DjSIvgEAAEbH2zAgpRwdqPbIkrh1xQAA0KE6Jwyor5EQAACk43kYGJfqePYbAAAgPb/DQBCmuoshfQMAAKTndRiQJNeVYnSgto2+AQAAUvI+DARp+waYKgAAIBXvw4DK4yTnGj6cqQIAANLxPgw45+TKjU8VEAYAAEjH+zAgpVxiWO+VxfXWFQMAQIfJRxjoom8AAIBWyUUYUFThlsYAALRILsJA6lsaMzIAAEDDchEGpJR9A3FNVq+2rhgAADpIZ4YBSdbzRosqAQCgs+QnDKS8pXGyjTAAAEAjchMGpFHc0pglhgAAjChfYaB7j1TH27Y3W1QJAACdI19hoDxOco2XbEwVAAAwonyFAefkuhofHbBtb3EXQwAARpCrMCBJrntCiqONPQcAABhB/sJAZYKkFHcxZIkhAAC7lb8wEASp7lVg296UmbWwIgAA8i13YUBSqr4BWcK9CgAA2I2choE0fQOsKgAAYHfyGQbCSCqPa/h463mDqQIAAIaRyzAgSUGKDYhcqSJLYpnZLj8AACiyKOsCRst1TZBe/59dPmculLr2kCoTZFG576JfrUmqDft6QRDIBYEC5/qaFJ2Tc42vWgAAIK/yGwaislSqSLVeSZIFkWzcZCWlnXYpTJKGXi9JEilJNHiLoiAIFEZRX1AgGAAAOpSzHI+Tx2+sVxwnsvJ4WYptikcjCEOFYUgwAAB0nFyGATNTXK+rXm//XQmdcyqVywqC3LZbAACwg1yFATNTkiSqVatZl6IgCFQqleQIBQCAnMtNGOgPAb6VG0aRoihi6gAAkFu5CANxHHsxGjAc55zKlQqBAACQS16HATNTvV5XnEFvwGiUKxV6CQAAueNtGDAz1Wo1JXE88sEeKZXLCsMw6zIAAGiYl7/G5jUISFKtWs1l3QCA4vIyDMRxnOsLatXDRkcAAIbjXRhI4lj12vDbBudFtbeXQAAAyAWvwoCZqerxqoE0+psfAQDwnVdhwOflg6MR1+uKczzdAQAoBm/CQJIkfTcL6jD1Wo3pAgCA17wJA53QJ7Ar/VsoAwDgKy/CQKeOCvTr1KADAOgMXoSBTr9Ymlmul0oCADpb5mGgKMPoNBICAHyVeRgoQhCQivN9AgDyJ/MwYG26SP74xz9W97hxw36ce955LX1/M2NVAQDAS5nfqKi3t7ctgaCnp0evv/76Dp+L41j/58IL9atf/UoP/ehHmjt3bktr4CZGAAAfRVm+uZm1bWSgu7tb3d3dA3+O41gXLFzYtiAg9U0VEAYAAL7JNAxkpT8I/PSnP21bEJDENAEAwEvZ9gxkcHGM41gLP/EJ/fSnP9WPHnxQhx56aPvenDAAAPBQpmGg3ZfG/iDw2GOP6UcPPqh58+a19f2JAgAAH2U6TeCca9t79QeBRx99NJMgIEnt+24BAGhc5ksL2yGOY33ik5/Uo48+qgd/+EMddthh2RTSxvADAECjOr6BMEkSfeKTn9QPfvADfeueezR16lStW7duh2OmTJnSli7/gDAAAPBQ5vsMVHt7W7o733/8x3/o+BNO2O0xr/3+95o8eXLLaujHPgMAAB9lHgbqtZrq9XqWJbRNpaurrX0SAAA0IvOegSDIvIS2cM4RBAAAXsr8SuwKEgaKEnoAAPmT+RXKOaegAPPoYdTxvZoAgJzKPAxIUtThF8ogCBgZAAB4y4srVBAEHT06EJVKWZcAAMCwvAgDUueODjAqAADwnTdXqU4dHWBUAADgO2/CgCSVSqWOWn4XlUqMCgAAvOfVlco5p1K5nHUZTREEAbsNAgBywaswIPVdRPMeCPpDTSeNcgAAOpd3YUCSwjDMdUMhQQAAkCdehgGpb749j8135UqFPgEAQK54/et3FEVykmq1WtaljMg5p3KlwogAACB3Mr9rYSOSJFG1tzfrMoYVhGHHrYQAABRHLsKAJJmZarWakjjOupQdlEol7jsAAMi13ISBfkmSqFaryZIk0zqiKFIYRYwGAAByL3dhoF8cx6rXamp3+UwJAAA6TW7DgNQ3dWBJojiOFbdw+sA5pzCKFIYhIQAA0HFyHQYGMzMlSaK4XlfShCkE55zCMFQQhiwVBAB0tI4JA4P1f0tJkgyMHiRJIut7codjnXN9H0GgYPt/+z8HAEARdGQYAAAAjWP8GwCAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOCirAsYrHzEQgVRWS4I5YJQYentxy4I3n4uDBVEZQUDz4VDnnNBqCBwcoFTGAZyOz0OAqcgdAPH7PY55xRGgcLAKQycytsfRwN/Dt9+Lnz7uGjQseGuHjunwDmFTiqFwcDjKAwUOvX9OXAqBW4Xj/ueLwXBwOPQOTknBU5yTttfX3KSwsApkPq+l0ADjwMnhW7w477XcGaSJXJJXdrhcdL3kQz/nLNEiuO3Hyd1KYllSSLVq7I4lpKk73P1miyJ+x7XalL/4/5j+4+rVd/+miRWUqvL4kSWJEqqdSVx39dYnCip1ZXEbz+27Y/jWl026Li4Wh/0OJYlpiS27X/e/vWJ9T0Xmyw2JXGiuJZsf01TXIu3f83bX5eYKTZTNTHFpp0e7/znvseJ+h7Hpu3Pvf34G/a7TM/LZuH85vzm/Pb3/GZkAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAorMOtW3bNlu8eLFt27Yt61KG8Lk2M+obC59r6yQ+/5x9rs2M+sbC59rGypmZZR1IWmHLli2aNGmSXn/9dU2cODHrcnbgc20S9Y2Fz7V1Ep9/zj7XJlHfWPhc21gxTQAAQMERBgAAKDjCAAAABdexYaBSqWjx4sWqVCpZlzKEz7VJ1DcWPtfWSXz+Oftcm0R9Y+FzbWPVsQ2EAACgMR07MgAAABpDGAAAoOAIAwAAFFzHhYHLL79cxx13nM4991xVq9Udnuvp6dFf/MVf6Pjjj9ef//mfa+PGjV7V1+/GG2/UkUcemXlN9Xpd559/vo477jh95jOfaVs9jdbXr90/r8GGq82Hf2udiPO7eTVxfo+sSOd3R4WBp59+WuvWrdPPfvYzHXzwwbrvvvt2eP6hhx7S3Llz9cQTT+iss87S3Xff7VV9kvTGG29ozZo1XtT0gx/8QO985zv1s5/9TFu3btXPf/7zttXVSH1S+39ejdaW9b+1TsT53dyaOL9HX1vW/9ZaoaPCwJNPPqkPfvCDkqSTTjppyD/u2bNna+vWrZKkzZs3a8qUKV7VJ0lf+9rXdPHFF3tRUyP1Zlmf1P6f12C7qy3rf2udiPO7uTVxfu9e0c7vKOsCmmnz5s2aNm2aJGnSpElDhm4OOOAArVmzRnPnzpVzTk899ZRX9b3++ut69tlnddVVV3lR0+bNmwf2395VvVnXl8XPq9Hasv631ok4v5tbE+f36GvL+t9aK+RyZGDdunU69thjh3yYmbZs2SKp7y9yr7322uHrli9frhNOOEFr1qzRtddeq+uuu86r+m699VZ9+tOfbklNw9lzzz2HrWl3z/lQXxY/r8F2V1u7/q11Is7v5uH8Hr2ind+5DANTp07VqlWrhnycfPLJeuSRRyRJDz/8sObPnz/ka/v/QidPnqzNmzd7Vd+LL76oJUuW6KSTTtILL7ygm266qSX1DXbMMccMW9PunmuX3dWQxc+r0dqk9vxb60Sc383D+d2a2qQOPL+zu3tya1x22WV27LHH2jnnnGO9vb1mZvapT33KzMxef/11O/nkk+3444+3+fPn23PPPedVfYO9//3vz6ym/npqtZr91V/9lR177LF2ySWXtK2eRusbrJ0/r8GGq82Hf2udiPN77DVxfjeuSOc32xEDAFBwuZwmAAAAzUMYAACg4AgDAAAUHGEAAICCIwwUwLJlyzR58uSmvNbvfvc7OecURZFeffXVHZ577bXXFEWRnHP63e9+t8Nz3/3ud3XCCSdo0qRJmjBhgubNm6frrrtuYCOPZtYIYOxmzpwp55y+853vDHnukEMOkXNOy5Yt2+HzTz/9tM4880ztu+++6urq0oEHHqhFixbp+eefl/T2/z9Wr17dhu8AaRAGMCrTpk3TP/7jP+7wueXLl2v//fcfcuyXvvQlnX322TrqqKP00EMPac2aNbr55pv1q1/9qiP29AZarVarZfK+06dP19KlS3f43L//+79r3bp1Gj9+/A6f/+EPf6hjjjlGvb29uueee7R27VrdfffdmjRpkq6++up2lo3RyHptI0b20EMP2fz5823SpEm211572SmnnGIvvviimZn9y7/8i0myTZs2DRz/9NNPmyR76aWXBp4f/LF48WIzM9u4caN9/OMft8mTJ1t3d7eddNJJ9vzzz++2lpdeeskk2VVXXWWzZ8/e4bmDDjrIrr766oH3NjN76qmnTJLdeuutu3y9/rqXLl1qkyZNSv2zAfIqjmO76aab7IADDrByuWzTp0+366+/fuAcW7FihR1//PFWqVTsrrvusjiO7dprr7X999/fyuWyHXbYYfbQQw8NvF5vb69dfPHFNnXqVKtUKjZjxgy74YYbBp5fvHixTZ8+3crlsu23334j7i0wY8YMu/LKK61SqdjLL7888PlFixbZJZdcYpMmTbKlS5eamdlbb71l++yzj334wx/e5Wv1n+f939vTTz89uh8aWoaRgRx466239PnPf16/+MUv9NhjjykIAp1xxhlKkmTEr/2TP/kT3XrrrZo4caJee+01vfbaa7r88sslSeeff77+8z//U9///vf15JNPysx08sknN/RbyGmnnaZNmzZp1apVkqRVq1Zp48aNOvXUU3c47p577tGECRN00UUX7fJ1mBpAUf3N3/yNvvKVr+jqq6/Wb37zG33rW9/SvvvuO/D8F7/4RV166aVau3atFixYoK997Wu6+eab9dWvflXPPPOMFixYoNNOO00vvPCCJOm2227T97//fd1777167rnn9E//9E+aOXOmJOm+++7TLbfcottvv10vvPCCHnjgAR166KEj1rjvvvtqwYIFWr58uSRp69atWrFihRYuXLjDcQ8//LDWr1+vK664Ypevw3meA1mnEaT3hz/8wSTZs88+O+LIgNmuf+t+/vnnTZL927/928Dn1q9fb93d3XbvvfcO+96Dk/1nP/tZu+CCC8zM7IILLrDPfe5zQ977Qx/6kM2bN2/E74mRARTJli1brFKp2B133DHkuf5zbOfRtGnTptmSJUt2+NxRRx1lF110kZmZXXLJJfZnf/ZnliTJkNe8+eab7cADD7RqtdpwjTNmzLBbbrnFHnjgATvggAMsSRJbvny5HXHEEWZmO4wMfOUrXzFJtnHjxt2+JiMD/mJkIAd++9vf6pxzztF73vMeTZw4Ue9+97slSS+//PKoX3Pt2rWKokhHH330wOf23ntvHXTQQVq7dq0k6UMf+pAmTJigCRMm6JBDDhnyGp/4xCe0cuVKrVu3TitXrhzy24IkmZmcc6OuE+hEa9euVW9vr0488cRhjznyyCMHHm/ZskW///3vh+yPP3/+/IHz9fzzz9fq1at10EEH6dJLLx3YV1+SzjzzTPX09Og973mPFi1apPvvv1/1el2SdMMNNwyc5xMmTBjy/5VTTjlFb775pv71X/9Vd91117DnOfKNMJADp556qjZs2KA77rhDTz311MDtMqvVqoKg769w8MnYyDD/cCfv4Iv3nXfeqdWrV2v16tX60Y9+NOTYuXPn6r3vfa8+9rGPac6cOZo7d+6QYw488ED99re/zawBCvBRd3f3iMfs3KAnaUiwHny+vu9979NLL72kL3/5y+rp6dFZZ52lv/zLv5TU1wj43HPP6R/+4R/U3d2tiy66SB/4wAdUq9V04YUXDpznq1evHrhtb78oivTxj39cixcv1lNPPaVzzz13SF0HHnigJOm//uu/GvsBwDuEAc9t2LBBa9eu1VVXXaUTTzxRc+bM0aZNmwaenzJliqS+ZX39dl62Uy6XFcfxDp87+OCDVa/Xd7gP94YNG/T8889rzpw5kqT9999fs2bN0qxZszRjxoxd1rdw4UI9/vjju/xtQZLOOeccvfnmm/r617++y+c74m5fQEqzZ89Wd3e3HnvssYaOnzhxoqZNmzbQo9Pv5z//+cD52n/c2WefrTvuuEMrVqzQd7/73YHlu93d3TrttNN022236fHHH9eTTz6pZ599VnvttdfAeT5r1ixFUTTk/RcuXKgnnnhCp59+uvbcc88hz3/wgx/UPvvso7/7u7/bZf2c5/4b+rcOr+y5557ae++99c1vflP77befXn75ZV155ZUDz8+aNUvTp0/XNddco+uvv14vvPCCbr755h1eY+bMmXrzzTf12GOP6bDDDtO4ceM0e/ZsnX766Vq0aJFuv/127bHHHrryyiu1//776/TTT2+4vkWLFunMM88ctkHo6KOP1hVXXKHLLrtMr776qs444wxNmzZNL774or7xjW/o2GOP1Wc+85lR/WyAvOrq6tIXv/hFXXHFFSqXy5o/f77++Mc/6te//vWwUwdf+MIXtHjxYh1wwAE6/PDDtXTpUq1evVr33HOPJOmWW27Rfvvtp8MPP1xBEGjlypWaOnWqJk+erGXLlimOYx199NEaN26c7r77bnV3dw8b8nc2Z84crV+/XuPGjdvl8+PHj9edd96pM888U6eddpouvfRSzZo1S+vXr9e9996rl19+eZf7FcAjWTYsoDE/+clPbM6cOVapVGzevHn2+OOPmyS7//77zcxs1apVduihh1pXV5cdd9xxtnLlyh2a+MzMLrzwQtt77713ubRw0qRJ1t3dbQsWLGh4aeFwDUA7NxD2W7FihX3gAx+wPfbYw8aPH2/z5s2z6667jqWFKKw4ju3666+3GTNmWKlUsne96112ww03DHuODV5aWCqVhiwt/OY3v2mHH364jR8/3iZOnGgnnnii/fKXvzQzs/vvv9+OPvpomzhxoo0fP96OOeYYe/TRR3dbX38D4XAGNxD2+8UvfmEf+chHbMqUKVapVGzWrFn2qU99yl544QUzo4HQZ9zCGACAgqNnAACAgiMMAABQcIQBAAAKjjAAAEDBEQYAACg4wgAAAAVHGAAAoOAIAwAAFBxhAACAgiMMAABQcIQBAAAK7v8DYIJInlt1bIkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArpUlEQVR4nO3df5TcdX3v8dfn+2NmJwlJ+FUgFENNAg0/Ali5cBsQTjkVRAX1Fj0FbBHFiyAogkhP4UQoILZyQc5pjwjlRyleA1i4/kIqWKhUSu2RCLQpBA8eThWOBgghZnbm++N9//juzO5ms8kmuzvf78zn+ThnD5Odyc5nl/1mXvP5vr6fjzMzEwAA8FZQ9gAAAEC5CAMAAHiOMAAAgOcIAwAAeI4wAACA5wgDAAB4jjAAAIDnCAMAAHiOMAAAgOcIAwAAeI4wAACA5wgDAAB4jjAAAIDnCAMAAHiOMAAAgOcIAwAAeI4wAACA5wgDAAB4jjAAAIDnCAMAAHiOMAAAgOcIAwAAeI4wAACA5wgDAAB4Lip7ALPNzIqPPJcVnxi907mR/zgFQdC9DQCATwYqDHRe+PMsU57n3T/viE4wcEGgMAwJBwCAgedsR18tKyjPc2VZpixNZ/xruyBQFIYKCAYAgAHVt2HAzLoBoFffQhAEiuK4e0oBAIBB0JdhIMsypUnSsxCwpSAMFccxMwUAgIHQV2Egz3MlSSLL87KHIkmKokhhFBEKAAB9rS/CgJkpTdNZ6QTMhFq9zqkDAEDfqnwYMDMl7bbyiswGTCaKY0XRQF2cAQDwRKXDgOW52u12ad2AHRVGkSJOGwAA+kxlw0Ce52q3WmUPY4dRLgQA9JtKnug2s74MApKUZ5nSinYbAADYmsqFgU5HoJ9laaosy8oeBgAAU1K5MJCmaeXLglPRD6VHAACkioWB2VpSuCxJH5UfAQD+qkwYGITTA1sys4EKNwCAwVSZMDCo59jTHu6dAADAzqhEGDAzpUlS9jBmDbMDAIAqq0QYGNRZgQ5mBwAAVVaNMODBO+dBDzwAgP5VehiwPPfiXXNOGAAAVFTpYcCXa/FzT0IPAKD/eBEG0jTVQQcfrM9cfPGE+y644AIddPDB+tWvfjXr4yAMAACqyIswEEWRLrn4Yt1555169dVXu5//q7/6K93/wAP6fw88oN/6rd+a9XH4MgsCAOgvpYYBM+vZu+UzzzxTu+22m26++WZJ0v/9+tf1heuu07333qtly5b1ZAxGGAAAVFBU9gB6pVar6TMXXaQvXHed3va2t+m8887Tbbfdpv959NE9GwMnCQAAVeSsxBPZeZ73dKvi4eFhLV++XL/69a913XXX6YJPfrJnzy1JQRCoVq/39DkBANgeb2YGJGloaEjvOO44/fd//3fPgwAAAFVVamfAOdfz53z22Wd15JFH9vx5JUklfL8AAGxP6VcT9FKz2dRzzz2nI444opTnJwoAAKqo9JmBXs4O/PTpp5VlmY44/PCePedYLvAqewEA+kTpnYEgCHq2bv+ap57SvHnztHTp0tl/sjyXsmG5LFVxHYFTntWUz1mggFAAAKiQUq8mkIpNipJB2744aSrI2pIkF8ZyQSjLM1lWfJ8uqiuat7CUzgQAAFsqPQz0+vLCWTcSBFxUVzRnF7lwdPLFslTp5jdlafH9BrWGgnqjCAwEAwBASUoPA2am1vBwmUOYOXmuoP3mNt/5m5nSTRu6gUCSFIQKaw0FtaFx4QEAgF4oPQxIxUZC6SCcKkg2K8gSxfP32OaLumWpko3rt3qfC2MF9YaCeIjCIQCgJyrxNjQMw4EIAy5Liyn/7by7d2EkF8bdDsFYliXKNifKtFEuriusNeTiOqcRAACzphJhwDmnKI4HIBCYXBBO6ZEuCLcaBsZ9taSlNGlJzhX9gtoQ/QIAwIyrRBiQBmV2wMnyqV0mOdXHFQ825a3Nylub6RcAAGZcZV5NnHOKazUl7XbZQ9lpFkayLJFl6XY7A9ubFZhUnikb3qRseJNcFI/OGDj6BQCAnVOJAuFYSZIoS9Oyh7FzdvZqghkQxENFKKBfAADYQZULA2amdrsty/Oyh7JzdmCdgVnhAgW1IQW1RlFUJBgAALajcmFA6v+1B4KsLSVNSVtfgbB3AxnpF9QbUy42AgD8U8kwIPXvyoRBECiu1WRmyppvypKWNO5HXM6P20W1kRkD+gUAgPEqGwak/gsEYRgqird96Z9lqbJ2U3l7WNqRKwpmUPc0QlTjNAIAoNphQOqfDkEUxwrDcMovrmYmSxPl7abyZHiL2YMeoV8AAFAfhAFppIGfppW9yqBWqykId/6cvJnJkpaydrM4rVACF0TFMsi1IfoFAOCZvggDHXmeK2m3VZUhh1GkKJrZd9SW58VsQXu494XDEUW/oKGgVqdfAAAe6KswIBXvojuhoCxBECiO41nfSKjbL2g1JSvjNIlTUKvTLwCAAdd3YaDDzJSlqbIs69lMQRAEiuJYQY93Eyz6BW3l7eGieFjGFQkuKGYL6kMKwrj3zw8AmDV9GwY6zKwIBlk2K50C55zCKNqhcuBsMjPlybDyVlOWljM74sJodBlk+gUA0Pf6PgyM1TmFkOd5ce59J65AcM7JBYGCIFAYBLN+KmA6LM9GZguasqyccqWLakXxMB6qRFgCAOy4gQoDW9OZOcjzvHv5nknqvmw5VwSAMR/9KM8S5a0iGJTXLxhZ1Ih+AQD0lYEPA74Z7Rc0lbdbKq1fUG8oHFm/AABQbYSBAWaWK2+3itMI9AsAAJMgDHiiEv2CuF6cSqBfAACVQhjwUN5ZBrk9XE6/wDkFcWd/hG3v5QAAmH2EAY+N7xeUtGV0ECqoDdEvAIASEQYgqSr9gnh046QKX9IJAIOGMIAJin5BU3lrWJaX1y8Iaw25uM5pBACYZYQBTMrMZFlajX5BvSEX0i8AgNlAGMCUFP2CVrGwUVJevyDsXKZIvwAAZgxhADus6BeMXKaYlrTNchiPLoNMvwAApoUwgGkpTiMMK2s3pTwrZQz0CwBgeggDmBFFvyDpzhiojF8r50ZXO6RfAABTRhjAjDMzWdJS1m7KklY5g6BfAABTRhjArLI8V54MK281ZVlJ/YIoHp0xcPQLAGBLhAH0TBX6BcVlikNyEf0CAOggDKDnuv2CVrO4TLGUfkEwutphGBEMAHiNMIBSVaZfUG+MLIPMNssA/EMYQGVYPmb9gtL6BbWRGQP6BQD8QRhAJVmWKussg1xWv6BzGiGqcRoBwEAjDKDSimWQk2J/hAr0C4Io7v3zA8AsIwygb1ShX+DCaPQyRfoFAAYEYQB9qegXNEf6BSVtsxzVRoJBnX4BgL5GGEDf6/YLWs1ytlmWU1Cr0y8A0LcIAxgYRb+gPXJFwrCksvoFDQX1IQUh/QIA/YEwgIFkZqPLIKftUsZAvwBAvyAMYOBZno1Zv6DEfkG9oSAe4jQCgMohDMAreZYob3W2WS6rXzCyqBH9AgAVQRiAl0b7BU3l7ZZK6RcERb8gHNkfAQDKQhiA98xy5e1WcRqh9H5BQy7gMkUAvUUYAMaoRL8grhezBTHbLAPoDcIAMIm8swxye7icfoFzCuLO/ggxwQDArCEMANsxvl8wXM4gglBBbYh+AYBZQRgAdkDRLygWNSqvXxCPWb+AfgGA6SMMADup6Bc0lbWapW2zTL8AwEwgDADTZGayLK1Gv6DekAvpFwDYMYQBYAYV/YJWsbBRUl6/IOycRqBfAGAKCAPALBntFzRlaVLKGFwYjy6DTL8AwCQIA0APFKcRhpW16RcAqB7CANBDRb8g6c4YqIzDz7nRqxHoFwAQYQAojZnJkpaydlOWtMoZRLdf0JAL2WYZ8BVhAKgAy3PlybDyVlOWldQviMasX+DoFwA+IQwAFVOFfkFxmeKQXES/APABYQCoqG6/oNUsLlMspV8QKKiN7I8QRgQDYEARBoA+UIV+gQsiBfWRYBDQLwAGCWEA6DOWj1m/oLR+QW1kxoB+ATAICANAH7MsVdZZBrmsfkHnNEJU4zQC0KcIA8AAKJZBTor9ESrQLwiiuPfPD2CnEQaAAWNmxWWK7eHy+gVhNGabZfoFQNURBoABVmyz3OkXpKWMoegXNBTU6vQLgIoiDACe6PYLWs1ytlmWU1Cr0y8AKogwAHim6Be0R2YMhiWV1S9oFJcqhvQLgLIRBgCPdfsFraYsbZcyBvoFQPkIAwAkVahfUG8oiIc4jQD0EGEAwAR5lihvdbZZLqtfMLKoEf0CYNYRBgBMarRf0FTebqmUfkFQ9AvCkf0RAMw8wgCAKTHLlbdbxWmE0voF8eiKhwGXKQIzhTAAYId1+wWtpiwvqV8Q14vZgphtloHpIgwA2GnFNsvpyGmE4XL6Bc4piDv7I8QEA2AnEAYAzIjx/YLhcgYRhApqQ/QLgB1EGAAw44p+wcj+CGX2CzqXKdIvALaJMABgVlmeKW81lbWbpW2zTL8A2DbCAICeqEy/oHM1Qki/AOggDADoOTOTJa3iVEJSXr8g7CyDTL8AniMMACiV5XmxP0K7KUuTUsbgorjYH4F+ATxFGABQGcVphGH6BUCPEQYAVE7RL0i6GyepjH+mnBvZTbG4TJFggEFGGABQaZ1+QdZuypJWOYPo9gsaciHbLGPwEAYA9I1uv6DVlGUl9wtqQ3KOfgEGA2EAQF+yLFXWuUyxpH5BEA8pqDfYZhl9jzAAoK91+wWtZnGZYin9gmDM+gX0C9B/CAMABkYV+gUuiBTUO9ss0y9AfyAMABhIlufd1Q7L6xfURvoFdfoFqDTCAICBN9ovaEp5Ccsgyymo1Ue2WaZfgOohDADwRrHNcjJmm+Vy+wVBFPf++YGtIAwA8JKZjSyDPFxevyCMRi9TpF+AEhEGAHjP8qy72qFlaSljoF+AMhEGAGCMbr+g1Sxnm2X6BSgBYQAAtqLoF7RHZgzK7Bc0iksVQ/oFmD2EAQDYjm6/oNWUpe1SxkC/ALOJMAAAO6Aa/YJ6MVsQD3EaATOCMAAAOynPEuWtzjbLZfULRlY7jGKCAXYaYQAApmm0X9BU3m6plH5BUPQLwpH9EYAdQRgAgBlklitvt4rTCKX1C+LRGYOAyxSxfYQBAJglRb+gqbw1LMtL6hfE9WK2IK5zGgGTIgwAwCwrtllOR5dBLqNf4JyCeEhBvSEX0i/AeIQBAOihbr+g1VSeDJcziCBUUBuiX4AuwgAAlKToF4zsj1Bmv6DeKC5TpF/gLcIAAFSA5ZnyVlNZuynlWSljoF/gL8IAAFTI+H5BUyrjn2jnRlc7pF/gBcIAAFSUmcmSVnEqocR+QdgNBvQLBhVhAAD6gOV5sT9CuylLk1LG4KK4mDGgXzBwCAMA0GeK0wjDpfYLgniomC0YgH6BmcnMJLPu2pFOkka+L+dc33+P20MYAIA+VfQLku7GSeX0C4LR1Q7DqNIvmp0X/TzPi5kWM1k+tTUfnHNyQaCg898gqPT3uqMIAwAwADr9gqzdlCWtcgbR6RfUG5XaZjnPc2VZpiyd2VUggyBQGEUDEQwIAwAwYLr9glZTlpXVL6iNzBgMybne9wvMTFmaKssy9eJlLgzDbjDoR4QBABhglqXKOssgl9kvqDfkotqsv4M2M2VZpjQpJwQFQaA4jvuuYEkYAAAPdPsFnWWQB7Bf0AkBVXhZC6NIUVTtDsVYhAEA8EwV+gUuiBTUO9ssT69fYGZK2m3lUywD9lJcqykMq9OfmAxhAAA8Znne3U2x3H5BQ0GtvsP9gjzP1W6VVJicon6YJSAMAAAkje0XNKVS3mU7BbV6MVswhX5BlqZKSuoG7KggCBTXZr8zsbMIAwCAcYptlpPujIFUYr+g3lAQxhPuTtO0tJLgznLOqVav5iJNhAEAwKTMbOQyxWFZWvJ0vHNy8ZAUN5Rl5VwZMV1VDQSEAQDAlFiedVc7tGxmF/DZFhfGckEoy7NuryEPa1Lc6NkYZlIYhoprtbKHMQ5hAACww/IsUd7qLIM8O/0CF9UVzdll3G6JlqVKN78pS1t9HQjiOFYYVWcXSMIAAGCnFf2C9ki/oKWZ6he4qK5o3sKtTqebmdJNG4pAUNtF6rMFfjpq9XplViwkDAAAZoRZrrzdGtlmuT2trxXP32PcjMCE58pSJRvXKw9jKZ4zrecqS5X6A9WZowAA9DXnAoX1hsJ6Y1r9AhfG2wwCxWOi4nFZKpt4sUFf6OygWIVFiQgDAIAZ54JQ4dBchUNzlY+9THEK/YKprkjoglAqaaGkmZImSSV2PSQMAABmVRDFCqJY1thlSv0Cm+KGSsXjyp9in46qzA4QBgAAPeGck4vrCuK6bM7k/QLLElmWbrczYFki28qCRP0mTZLSwwAFQgBAqYp+QbNY2Cgv+gU+XE0wVn1oqNRTBYQBAEAlFNssp0p/84aUpwO9zsCWyt7dsP/jFABgIDjnFESxagv2UFCfI0tbSjauV7LxVaWbNijZ+KqSjetnPAjkea7DDj9cf3755eM+//3vf1/zFyzQN/7hH2bkebY3hjIRBgAAlRPNmS83dzflYaw8S5Ulw8qztPhzbZcZnREIgkCfveQS3XLLLXr99dclSU8//bTOOPNMXXnllfpfH/jAjD3XZPKS91rgNAEAoJKSdrtnGxKlaapDV6zQmWecoT/90z/Vcccfr/e+5z268cYbe/L8Urm9AcIAAKCS2u12T98x33rrrVr1+c9r0aJFWvyWt2j16tU9PY9PGAAAYAvtVqun59I3bdqk/d7yFi1ZskSPPfqo5s6d27PnlqR6vS5X0pURdAYAAJXU63eqF33mM5KkV9evL6XZX+Y7c8IAAKCSejlhfuWVV+p73/ueHnv0UaVZpjvuuKOHz14oc50BwgAAoJp69OJ4++2368s33aT77rtPK1as0CfPP1//54YblCT9ve/BjiAMAAAqKehBGHjooYf06Ysu0m1/+7c66n/8D0nSJz7xCb355pv62te+NuvPPxYzAwAAbCGY5fP2P/nJT3TGmWfqmmuu0fve977u5+fPn69PnHuuvnT99T27tHG2v9ft4WoCAEAlmZlaw8NlD6MnojhWFJW3dyAzAwCASnLOlTp13ktByZstEQYAAJVV9vR5r5QdeggDAIDKKnPqvFeiKCIMAAAwGedcqVv79kJYgcBDGAAAVNogzw6EFZgVkAgDAICKc0EwsN2BqgQdwgAAoPLiirxozqQqdAU6CAMAgMpzQaC4Vit7GDMmCIJKdAU6CAMAgL4QhmFlptWnwzmnuFarzKyARBgAAPSRMIpKX6BnuqoWBCTCAACgj1TxXfWOiGu1SoaZ6o0IAIBtcM6pVq/LVfBFdVviWq2yayawUREAoC+ZmZIkUd6jnQWno1avV3JGoIMwAADoW2amLMuUJknZQ9kqFwSq9cFpDcIAAKDv5XmuNEmU53nZQ+mK4lhhGFY+CEiEAQDAAOnMEpT50hZGUaUWFJoKwgAAYKCUdeogCALFcdx3xUaJMAAAGFBmJstzZVmmbJZKhi4IFIZh35wOmAxhAAAw8MxM+UgwsDyf1mkEFwQKR5YT7ucAMBZhAADgHTPrfuRjw8HYl0Tn5DSya6JzckEwMC/+WyIMAADguf5rOQAAgBlFGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzUdkD6BUzm/Q+51wPRwIAQLUMZBgwM+V5LjOT5Xn39rYEQSAXBAqckwsCOecICQAALzjb3qtkn8jzXHmWKcuy7b7wT1UQBAqjqAgKBAMAwIDq6zBgZsqyTFmazlgAmEwQhgrDkGAAABg4fRkGzExZmipN054/t3NOca2mIKB7CQAYDH0VBjpdgKTdLnsoCoJAcRzLEQoAAH2ub8JAJwRUbbhhFCmKIk4dAAD6Vl+EgSzLKjEbMBnnnGr1OoEAANCXKh0GzExpmioroRuwM2r1Ol0CAEDfqWwYMDMlSaI8y8oeyg6JazWFYVj2MAAAmLJKvo3t1yAgSUm73ZfjBgD4q5JhIMuyvn5BbVew6AgAwGQqFwbyLFOaJGUPY9rarRaBAADQFyoVBsxM7QpfNbAjOuVHAACqrlJhoMqXD+6MLE2V9fHpDgCAHyoTBvKR3QUHTZoknC4AAFRaZcLAIPQEtqazhDIAAFVViTAwqLMCHYMadAAAg6ESYWDQXyzNrK8vlQQADLbSw4Av0+gUCQEAVVV6GPAhCEj+fJ8AgP5TehiwHr1Ifu9731NjzpxJP84488xZfX4z46oCAEAllb5RUavV6kkgaDabeuONN8Z9Lssy/e9zz9VPf/pTPfjd7+qQQw6Z1TGwiREAoIqiMp/czHo2M9BoNNRoNLp/zrJMHzn77J4FAak4VUAYAABUTalhoCydIPCDH/ygZ0FAEqcJAACVVG5noIQXxyzLdPZHP6of/OAH+u53vqNDDz20d09OGAAAVFCpYaDXL42dIPDII4/ou9/5jlasWNHT5ycKAACqqNTTBM65nj1XJwg8/PDDpQQBSerddwsAwNSVfmlhL2RZpo9+7GN6+OGH9Z1vf1uHHXZYOQPpYfgBAGCqBr5AmOe5Pvqxj+lb3/qWvnb33dp77731yiuvjHvMnnvu2ZOWf0AYAABUUOnrDLRbrVldne/f/u3fdNzxx2/zMS//8pdauHDhrI2hg3UGAABVVHoYSJNEaZqWOYSeqQ8N9bQnAQDAVJTeGQiC0ofQE845ggAAoJJKfyV2noQBX0IPAKD/lP4K5ZxT4MF59DAa+K4mAKBPlR4GJCka8BfKIAiYGQAAVFYlXqGCIBjo2YEojsseAgAAk6pEGJAGd3aAWQEAQNVV5lVqUGcHmBUAAFRdZcKAJMVxPFCX30VxzKwAAKDyKvVK5ZxTXKuVPYwZEQQBqw0CAPpCpcKAVLyI9nsg6ISaQZrlAAAMrsqFAUkKw7CvC4UEAQBAP6lkGJCK8+39WL6r1ev0BAAAfaXSb7+jKJKTlCRJ2UPZLuecavU6MwIAgL5T+q6FU5HnudqtVtnDmFQQhgN3JQQAwB99EQYkycyUJInyLCt7KOPEccy+AwCAvtY3YaAjz3MlSSLL81LHEUWRwihiNgAA0Pf6Lgx0ZFmmNEnU6+FzSgAAMGj6NgxIxakDy3NlWaZsFk8fOOcURpHCMCQEAAAGTl+HgbHMTHmeK0tT5TNwCsE5pzAMFYQhlwoCAAbawISBsTrfUp7n3dmDPM9lxZ3jHuucKz6CQMHIfzufAwDABwMZBgAAwNQx/w0AgOcIAwAAeI4wAACA5wgDAAB4jjAAAIDnCAMAAHiOMAAAgOcIAwAAeI4wAACA5wgDAAB4jjAAAIDnCAMAAHiOMAAAgOcIAwAAeI4wAACA56KyBzBW7YizFUQ1uSCUC0KF8ehtFwSj94WhgqimoHtfOOE+F4QKAicXOIVhILfF7SBwCkLXfcw273NOYRQoDJzCwKk2cjvq/jkcvS8cfVw05rHh1m47p8A5hU6Kw6B7OwoDhU7FnwOnOHBbuV3cHwdB93bonJyTAic5p5GvLzlJYeAUSMX3Eqh7O3BS6MbeLr6GM5Msl8tTadztvPjIJ7/PWS5l2ejtPJXyTJbnUtqWZZmU58Xn0kSWZ8XtJJE6tzuP7TwuaY/+nTxTnqSyLJflufJ2qjwr/o5lufIkVZ6N3raR21mSysY8LmunY25nstyUZzby55G/n1txX2ayzJRnubIkH/mapizJRv7O6N/LzZSZqZ2bMtMWt7f8c3E7V3E7M43cN3r7K/bzUo/LmcLxzfHN8V3d45uZAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAPEcYAADAc4QBAAA8RxgAAMBzhAEAADxHGAAAwHOEAQAAfGcDanh42FatWmXDw8NlD2WCKo/NjPFNR5XHNkiq/HOu8tjMGN90VHls0+XMzMoOJLNh48aNWrBggd544w3Nnz+/7OGMU+WxSYxvOqo8tkFS5Z9zlccmMb7pqPLYpovTBAAAeI4wAACA5wgDAAB4bmDDQL1e16pVq1Sv18seygRVHpvE+KajymMbJFX+OVd5bBLjm44qj226BrZACAAApmZgZwYAAMDUEAYAAPAcYQAAAM8NXBi45JJLdOyxx+qMM85Qu90ed1+z2dR73vMeHXfccfrDP/xDvfbaa5UaX8cXvvAFvf3tby99TGma6qyzztKxxx6rT33qUz0bz1TH19Hrn9dYk42tCr9rg4jje+bGxPG9fT4d3wMVBp566im98sor+uEPf6iDDjpI991337j7H3zwQR1yyCF67LHH9MEPflB33XVXpcYnSW+++aaeffbZSozpW9/6ln77t39bP/zhD7V582b96Ec/6tm4pjI+qfc/r6mOrezftUHE8T2zY+L43vmxlf27NhsGKgw88cQTeuc73ylJOumkkyb8ci9btkybN2+WJG3YsEF77rlnpcYnSV/+8pd1/vnnV2JMUxlvmeOTev/zGmtbYyv7d20QcXzP7Jg4vrfNt+M7KnsAM2nDhg1atGiRJGnBggUTpm6WLFmiZ599Vocccoicc3ryyScrNb433nhDzzzzjC6//PJKjGnDhg3d9be3Nt6yx1fGz2uqYyv7d20QcXzP7Jg4vnd+bGX/rs2GvpwZeOWVV3TMMcdM+DAzbdy4UVLxP3K33XYb9/fuvPNOHX/88Xr22Wd15ZVX6qqrrqrU+G688UZ98pOfnJUxTWbXXXeddEzbuq8K4yvj5zXWtsbWq9+1QcTxPXM4vneeb8d3X4aBvffeW48//viEj5NPPln/+I//KEl66KGHtHLlygl/t/M/dOHChdqwYUOlxvfCCy/ommuu0UknnaR169bpuuuum5XxjXX00UdPOqZt3dcr2xpDGT+vqY5N6s3v2iDi+J45HN+zMzZpAI/v8nZPnh0XX3yxHXPMMXb66adbq9UyM7OPf/zjZmb2xhtv2Mknn2zHHXecrVy50p577rlKjW+s3/u93yttTJ3xJElif/Inf2LHHHOMXXDBBT0bz1THN1Yvf15jTTa2KvyuDSKO7+mPieN76nw6vlmOGAAAz/XlaQIAADBzCAMAAHiOMAAAgOcIAwAAeI4w4IE77rhDCxcunJGv9fOf/1zOOUVRpF/84hfj7nv55ZcVRZGcc/r5z38+7r5vfOMbOv7447VgwQLNmzdPK1as0FVXXdVdyGMmxwhg+vbff3855/T1r399wn0HH3ywnHO64447xn3+qaee0mmnnaa99tpLQ0NDOuCAA3TOOefo+eeflzT678eaNWt68B1gRxAGsFMWLVqkv/u7vxv3uTvvvFP77rvvhMf++Z//uT70oQ/pyCOP1IMPPqhnn31W119/vX76058OxJrewGxLkqSU591vv/10++23j/vcv/7rv+qVV17R3Llzx33+29/+to4++mi1Wi3dfffdWrt2re666y4tWLBAV1xxRS+HjZ1R9rWN2L4HH3zQVq5caQsWLLDddtvN3v3ud9sLL7xgZmb/9E//ZJLs9ddf7z7+qaeeMkn24osvdu8f+7Fq1SozM3vttdfswx/+sC1cuNAajYaddNJJ9vzzz29zLC+++KJJsssvv9yWLVs27r4DDzzQrrjiiu5zm5k9+eSTJsluvPHGrX69zrhvv/12W7BgwQ7/bIB+lWWZXXfddbZkyRKr1Wq233772dVXX909xlavXm3HHXec1et1u+222yzLMrvyyitt3333tVqtZocddpg9+OCD3a/XarXs/PPPt7333tvq9botXrzYrr322u79q1atsv32289qtZrts88+211bYPHixXbZZZdZvV63l156qfv5c845xy644AJbsGCB3X777WZm9pvf/Mb22GMPe9/73rfVr9U5zjvf21NPPbVzPzTMGmYG+sBvfvMbfeYzn9GPf/xjPfLIIwqCQO9///uV5/l2/+7v//7v68Ybb9T8+fP18ssv6+WXX9Yll1wiSTrrrLP07//+7/rmN7+pJ554Qmamk08+eUrvQk455RS9/vrrevzxxyVJjz/+uF577TW9973vHfe4u+++W/PmzdN555231a/DqQH46s/+7M/0xS9+UVdccYX+8z//U1/72te01157de//3Oc+pwsvvFBr167ViSeeqC9/+cu6/vrr9aUvfUlPP/20TjzxRJ1yyilat26dJOmmm27SN7/5Td1zzz167rnn9Pd///faf//9JUn33XefbrjhBt18881at26dHnjgAR166KHbHeNee+2lE088UXfeeackafPmzVq9erXOPvvscY976KGHtH79el166aVb/Toc532g7DSCHferX/3KJNkzzzyz3ZkBs62/637++edNkv3Lv/xL93Pr16+3RqNh99xzz6TPPTbZf/rTn7aPfOQjZmb2kY98xC666KIJz/2ud73LVqxYsd3viZkB+GTjxo1Wr9ftlltumXBf5xjbcjZt0aJFds0114z73JFHHmnnnXeemZldcMEF9gd/8AeW5/mEr3n99dfbAQccYO12e8pjXLx4sd1www32wAMP2JIlSyzPc7vzzjvtiCOOMDMbNzPwxS9+0STZa6+9ts2vycxAdTEz0Ad+9rOf6fTTT9db3/pWzZ8/X7/zO78jSXrppZd2+muuXbtWURTpqKOO6n5u991314EHHqi1a9dKkt71rndp3rx5mjdvng4++OAJX+OjH/2o7r33Xr3yyiu69957J7xbkCQzk3Nup8cJDKK1a9eq1WrphBNOmPQxb3/727u3N27cqF/+8pcT1sdfuXJl93g966yztGbNGh144IG68MILu+vqS9Jpp52mZrOpt771rTrnnHN0//33K01TSdK1117bPc7nzZs34d+Vd7/73dq0aZP++Z//Wbfddtukxzn6G2GgD7z3ve/Vq6++qltuuUVPPvlkd7vMdrutICj+F449GKcyzT/ZwTv2xfvWW2/VmjVrtGbNGn33u9+d8NhDDjlEv/u7v6s//uM/1vLly3XIIYdMeMwBBxygn/3sZ6UVoIAqajQa233MlgU9SROC9djj9W1ve5tefPFF/cVf/IWazaY++MEP6o/+6I8kFUXA5557Tn/913+tRqOh8847T+94xzuUJInOPffc7nG+Zs2a7ra9HVEU6cMf/rBWrVqlJ598UmecccaEcR1wwAGSpP/6r/+a2g8AlUMYqLhXX31Va9eu1eWXX64TTjhBy5cv1+uvv969f88995RUXNbXseVlO7VaTVmWjfvcQQcdpDRNx+3D/eqrr+r555/X8uXLJUn77ruvli5dqqVLl2rx4sVbHd/ZZ5+tRx99dKvvFiTp9NNP16ZNm/Q3f/M3W71/IHb7AnbQsmXL1Gg09Mgjj0zp8fPnz9eiRYu6HZ2OH/3oR93jtfO4D33oQ7rlllu0evVqfeMb3+hevttoNHTKKafopptu0qOPPqonnnhCzzzzjHbbbbfucb506VJFUTTh+c8++2w99thjOvXUU7XrrrtOuP+d73yn9thjD/3lX/7lVsfPcV59E/+vo1J23XVX7b777vrqV7+qffbZRy+99JIuu+yy7v1Lly7Vfvvtp89//vO6+uqrtW7dOl1//fXjvsb++++vTZs26ZFHHtFhhx2mOXPmaNmyZTr11FN1zjnn6Oabb9Yuu+yiyy67TPvuu69OPfXUKY/vnHPO0WmnnTZpQeioo47SpZdeqosvvli/+MUv9P73v1+LFi3SCy+8oK985Ss65phj9KlPfWqnfjZAvxoaGtLnPvc5XXrpparValq5cqV+/etf6z/+4z8mPXXw2c9+VqtWrdKSJUt0+OGH6/bbb9eaNWt09913S5JuuOEG7bPPPjr88MMVBIHuvfde7b333lq4cKHuuOMOZVmmo446SnPmzNFdd92lRqMxacjf0vLly7V+/XrNmTNnq/fPnTtXt956q0477TSdcsopuvDCC7V06VKtX79e99xzj1566aWtrleACimzsICp+f73v2/Lly+3er1uK1assEcffdQk2f33329mZo8//rgdeuihNjQ0ZMcee6zde++940p8Zmbnnnuu7b777lu9tHDBggXWaDTsxBNPnPKlhZMVgLYsEHasXr3a3vGOd9guu+xic+fOtRUrVthVV13FpYXwVpZldvXVV9vixYstjmN7y1veYtdee+2kx9jYSwvjOJ5waeFXv/pVO/zww23u3Lk2f/58O+GEE+wnP/mJmZndf//9dtRRR9n8+fNt7ty5dvTRR9vDDz+8zfF1CoSTGVsg7Pjxj39sH/jAB2zPPfe0er1uS5cutY9//OO2bt06M6NAWGVsYQwAgOfoDAAA4DnCAAAAniMMAADgOcIAAACeIwwAAOA5wgAAAJ4jDAAA4DnCAAAAniMMAADgOcIAAACeIwwAAOC5/w+lCf3e14IMSwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -799,6 +800,14 @@ "metadata": {}, "outputs": [], "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "243f8968", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/tutorials/causal_discovery/tigramite_tutorial_latent-pcmci.ipynb b/tutorials/causal_discovery/tigramite_tutorial_latent-pcmci.ipynb index 776ed7c5..36ad3667 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_latent-pcmci.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_latent-pcmci.ipynb @@ -15,6 +15,8 @@ "source": [ "TIGRAMITE is a time series analysis python module. It allows to reconstruct causal graphical models from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results.\n", "\n", + "The following Nature Review Earth and Environment paper provides an overview of causal inference for time series in general: https://github.com/jakobrunge/tigramite/blob/master/tutorials/Runge_Causal_Inference_for_Time_Series_NREE.pdf\n", + "\n", "This tutorial explains the **Latent-PCMCI (LPCMCI) algorithm**, which is implemented as the function `LPCMCI.run_lpcmci`. In contrast to the [PCMCI](https://github.com/jakobrunge/tigramite/blob/master/tutorials/tigramite_tutorial_basics.ipynb) and [PCMCIplus](https://github.com/jakobrunge/tigramite/blob/master/tutorials/tigramite_tutorial_pcmciplus.ipynb) algorithms, respectively implemented as `PCMCI.run_pcmci` and `PCMCI.run_pcmciplus`, LPCMCI allows for unobserved (aka latent) time series.\n", "\n", "**Note:**\n", @@ -589,7 +591,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABc8AAAHqCAYAAADSwLYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1gU1/fG36UXRbCANOm9KKgURUWxF+wae2/RGDX2xBYTe4uxJHaNYsNeUFEEGwiKIggivfcund35/cFv5uvKArvLLgt4P8/D8yS7d2YOuDtz73vPeQ+LoigKBAKBQCAQCAQCgUAgEAgEAoFAIBAYpCQdAIFAIBAIBAKBQCAQCAQCgUAgEAhNDSKeEwgEAoFAIBAIBAKBQCAQCAQCgfANRDwnEAgEAoFAIBAIBAKBQCAQCAQC4RuIeE4gEAgEAoFAIBAIBAKBQCAQCATCNxDxnEAgEAgEAoFAIBAIBAKBQCAQCIRvIOI5gUAgEAgEAoFAIBAIBAKBQCAQCN9AxHMCgUAgEAgEAoFAIBAIBAKBQCAQvoGI5wQCgUAgEAgEAoFAIBAIBAKBQCB8w3cnnlMUhcLCQlAUJelQCAQCgUAgEAgEAoFAIBAIBAKB0ET57sTzoqIitGnTBkVFRZIOhUAgEAgEAoFAIBAIBAKBQCAQCE2U7048JxAIBAKBQCAQCAQCgUAgEAgEAqE+iHhOIBAIBAKBQCAQCAQCgUAgEAgEwjc0e/Hc19cXbm5u6NOnD27duiXpcAgEAoFAIBAIBAKBQCAQCAQCgdACkJF0AA2hrKwMe/fuhZeXF+Tk5CQdDoFAIBAIBAKBQCAQCAQCgUAgEFoIzTrz/NWrV1BUVMSIESMwevRopKenSzokAoFAIBAIBAKBQCAQCAQCgUAgiJm8vDz4+vqK9RrNWjzPyMhAXFwc7ty5g/nz52Pz5s01xpSXl6OwsJDrh0AgEAgEAoFAIBAIBAKBQCAQCM2X7du3Y8CAASgoKBDbNZq1eK6qqgoXFxfIycmhX79+CA8PrzFm+/btaNOmDfOjq6srgUgJBAKBQCAQCAQCgUAgEAgEAoEgCiiKws2bN1FVVYWnT5+K7TrNWjx3cHBgBPN3797B0NCwxph169ahoKCA+UlKSmrsMAkEAoFAIBAIBAKBQCAQCAQCgSAiPn36hKioKEhLS+Phw4diu06zbhjarl07uLu7o3fv3pCSksKpU6dqjJGXl4e8vLwEoiMQCAQCgUAgEAgEAoFAIBAIBIKouXnzJpSVlfHDDz/g0aNHYrsOi6IoSmxnb4IUFhaiTZs2KCgogIqKiqTDIRAIBAKBQCAQCAQCgUAgEAgEggA4OTlBW1sbM2fOhLu7O6KiomBsbCzy6zRr2xYCgUAgEAgEAoFAIBAIBAKBQCB8P6SlpeH169cYOXIkXF1dISMjI7bscyKeEwgEAoFAIBAIBAKBQCAQCAQCoVlw+/ZtSEtLY9iwYWjdujV69uwpNt9zIp4TCAQCgUAQOWlpaYiNjZV0GAQCgUAgEAgEAoFAaGHcunULvXr1Qrt27QAAgwYNgo+PDyoqKkR+LSKeEwgEAoFAEDlTpkyBq6srysvLJR0KgUAgEAgEAoFAIBBaCEVFRXjy5AlGjhzJvDZw4EB8+fIFAQEBIr8eEc8JBAKBQCCIlE+fPuHp06dISkrCmTNnJB0OgUAgEAgEAqEFQVGUWAQyAoHQPHjy5AkqKirg7u7OvGZnZ4cOHTqIxbqFiOcEAoFAIBBEyrFjx9CuXTuMHj0a27ZtE0vpHIFAIBAIBALh++T58+dwdnZGeHi4pEMhEAgSwM/PD3p6ejA0NGRek5KSwsCBA3Hv3j2RX4+I5wQCgUAgEERGaWkpzpw5g9mzZ2Pr1q1ISkrCuXPnJB0WgUAgEAgEAqGFEBoaCgCIi4uTcCQEAkES+Pr6ok+fPjVeHzt2LEJCQhAZGSnS6xHxnEAgEAgEgsi4evUq8vLyMH/+fFhZWWHcuHH4888/UVlZKenQCAQCgUAgEAgtgIiICABAUlKShCMhEAiNTV5eHkJCQuDq6lrjvSFDhqB169a4fPmySK9JxHMCgUAgEAhC8+XLF+zbt4/Z3T969CgGDBgAY2NjAMCGDRsQHx+P8+fPSzJMAoFAIBAIBEILgRbPk5OTJRwJgUBobF68eAGKonhmnisoKGDkyJG4dOkSKIoS2TWJeE4gEAgEAkFozp49i19++QXm5ubo0aMHAgICsHDhQuZ9GxsbDBo0CP/9958EoyQQCAQCgUAgtBSIeE4gfL/4+flBR0cHBgYGPN//4YcfEBERgbCwMJFdk4jnBAKBQCAQhObmzZtwdXXFhQsXICMjAxsbG4wYMYJrzMiRI/H8+XPk5+dLJkgCgUAgEAgEQougoKAAaWlpkJOTI7YtBMJ3iJ+fH1xdXcFisXi+P2DAAKipqeHSpUsiu2aLEM8vXryIDh06SDoMAoFAIBC+K/Lz8+Hr64vx48dj8uTJePbsGT58+ABZWVmuccOHD0dVVRUePHggoUgJBAKBQCAQCC0BOuu8Z8+eJPOcQPjOKCgoQHBwME/LFho5OTmMGTMGly9fFpl1S7MXzzkcDjw9PaGrqyvpUAgEAoFA+K64f/8+qqqq4O7uXuc4XV1ddOnSBXfv3m2kyAgEAoFAIBAILRFaPHdzc0NSUpJIfY0JBELT5uXLl+BwOHWK5wAwceJExMTE4O3btyK5brMXzz08PDBu3DhISfH+VcrLy1FYWMj1QyAQCAQCoeHcvHkT3bp1g46OTr1jhw8fzojtBAKBQCAQCASCMEREREBPTw9mZmYoLS1FXl6epEMiEAiNhJ+fHzQ1NWFsbFznuL59+6JDhw64evWqSK7brMVzNpuNK1euYOLEibWO2b59O9q0acP8kAx1AoFAIBAaTnl5Oby8vDBq1Ci+xo8YMQJ5eXl49eqVeAMjEAgEAoFAILRYPn36BAsLC0bbIdYtBML3Q31+5zQyMjLo0aMH3r17J5LrNmvx/Pz585gwYUKtWecAsG7dOhQUFDA/pKEEgUAgEAgNx8fHB1++fMHIkSP5Gt+tWzdoaGgQ6xYCgUAgEAgEgtBERETAwsKCqXwkGg+B8H0QFhaGN2/e1GvZQmNpacnYPDWUZi2eh4eH49y5cxg8eDCioqKwfPnyGmPk5eWhoqLC9UMgEAgEQnNi//798PLyknQYXNy8eRNGRkawsrLia7yUlBSGDRuGO3fuiDkyAoFAIBAIBEJLpKysDLGxsbCwsEDHjh0hLS1NMs8JhBZIdnY2UlJSmP8PCAhA7969YW1tXaf7yNdYWFggOTkZRUVFDY6nWYvnO3fuxKNHj/DgwQOYmJhg//79kg6JQCAQCASRUlZWhl9//RV///23pENh4HA4uH37NkaNGlVvydzXjBgxAp8+fUJ0dLQYoyMQCAQCgUAgtESioqLA4XBgYWEBaWlpaGlpkcxzAqEFMnXqVOjo6KBPnz7YunUr+vfvDysrK/j6+kJVVZWvc1hYWACotnpqKM1aPP+aN2/eSDoEAoFAIBBEzrNnz1BaWoqAgABQFCXpcAAA9+7dQ3p6OsaNGyfQcf3794eMjAyePHkipsgIBAKBQCAQCC0V2oKBFsV0dHRI5jmB0AL5+PEjBgwYAHl5eWzevBl9+vTBw4cP+RbOAcDc3BxAtWtJQ2kx4jmBQCAQCC0RLy8vsFgs5OXlISoqStLhAKiu/OrRowecnJwEOq5Vq1bo1KkTYmNjxRQZgUAgEAiE5kBubi7Wr1+P8vJySYdCaEZERESgQ4cOaNeuHQAinhMILZGysjKkpKTghx9+wKNHj1BUVIS7d+9CSUlJoPPQa09R+J4T8ZxAIBAIhCaMl5cXk+Ht7+8v4WiAly9f4uXLl1izZo1Qx+vr6yM+Pl60QREIBAKBQGhWbN26Fdu3b8eLFy8kHQqhGREREcFkkwKArq4usW0hEFoY8fHxoCgKRkZGAAAlJSWBrEK/xsLCgojnBAKBQOBNUVER0tPTJR0GoYHExcUhMjISkyZNgoWFBQICAiQdEnbt2gVLS0sMHz5cqONbunh+9+5dzJ49u8lY7BAIBAKB0NRISkrC0aNHAQBBQUESjobQnIiIiGAsW4D/ZZ6TeReB0HKIiYkBABgaGjb4XJaWlsS2hUAgEAi8WbhwIUaMGCHpMAgCkpKSgmvXrjH/7+XlBRkZGbi5ucHZ2Zkv8fzZs2fYvn27WOILDw/H7du3sWrVKkhJCTeFaOni+bVr13D69Gl4eXlJOhQCgfCdcefOHTg4OGDhwoU4c+YMcnJyJB0SgQAAiI6ORkFBAfP/W7duRevWrdGtWzcinhP4hs1m4/Pnz1ziua6uLkpKSpCfny+5wAgEgkiJiYmBvLw8tLW1G3wuCwsLxMbGoqysrEHnIeI5gUAgtDByc3Ph6emJ8PBwkoXRzPj7778xbtw4XLlyBQDw4MED9OzZEyoqKnBycsKHDx9QXFxc5zn++OMP/PbbbyIXTfLy8rBp0yZoa2tj8uTJQp9HX18fmZmZKCkpEWF0TQe6LHDjxo2N8v1LTk7GvHnziGcsgVAPlZWVGDVqFHx8fCQditjw8PBAYmIiXrx4gdmzZ2Ps2LGSDolAQEhICGxtbWFtbY1nz54hKioKp06dwvr169G3b18inhP4JiYmBmVlZbCysmJe09HRAQBi3VILV65caRKVqwSCIMTExMDAwEDoZK2vsbCwAIfDaXDvMCKeEwgEQgvDw8MDFRUVKCkpIdYtzYzAwEBISUlhzpw5+PDhA3x8fDBkyBAAgJOTEzgcTp2LzOzsbPj4+IDD4eDevXsiiens2bPo2bMn2rdvD09PT2zcuBFycnJCn09fXx8AkJCQIJL4mhIURSEiIgJDhgzB27dvcevWLbFfc9u2bThx4gTCwsLEfi0CoTlz8uRJ3Lp1C8eOHZN0KGLj5cuXmDZtGsLCwnDixAk8e/YMmZmZAp3D09MTy5cvF1OEhO+NvLw8jBkzBmZmZjA0NETfvn0xfPhwaGpqYtGiRejevTuSkpKQkZEh6VAJzYAPHz4AADp37sy8RovnpGkob1avXo2NGzdKOowWycePH2FoaIjc3FxJh9LiiI2NFYllCwCmUqWhvudEPCcQCIQWxunTp2FmZgbgf35hhKYPh8PBmzdvsG7dOujq6sLV1RXFxcWMeG5paYnWrVvXmT1y8+ZNUBQFU1NT3L59u8HxrFy5EjNnzoSamhr++ecfJCYmYv78+Q06Ly2et0TrltTUVBQWFmLhwoXo168fNm7cCA6HI7brZWZm4vTp0wCqS+IJBAJviouLsWXLFrRq1QpeXl6oqKiQdEgiJykpCUlJSejZsycAMH0pBN1IPXjwIA4ePIi8vDyRx0j4vuBwOJg6dSry8vJw/fp1+Pj4YPPmzYiJicHvv/8OBQUFdO/eHQDxPZcEaWlp6NevX7OyOwkJCYGGhgbU1dWZ1zQ1NSEtLd3sMs8TExPRo0cPZGVlie0aZWVlSExMhJ+fX72VqwTB8ff3R1xcHAIDAyUdSr0kJiaitLRU0mHwTUxMDNMstKG0a9cO6urqjO85RVG4f/8+2Gy2QOch4jmBQCA0c9LS0pj/DgkJQXBwMDZv3gygeQlqwcHBWLhw4XdrNRMZGYmioiL07dsXnp6eKC8vh5aWFmxsbAAA0tLScHBwqFM8v3r1Knr37o0ZM2bgwYMH9Xq7hYSEYMKECTUyJsrKyjBp0iTs27cPBw8exN27dzFv3jzo6uo2+PfU0tKCjIxMixTP6YwGCwsL/P777wgNDeXysBc1hw4dgrS0NFRUVJrVd51AaGz++usv5OTk4Ny5cygsLMTz588lHZLI8ff3BwA4OzsDANTV1eHs7CzQRmpubi5evnwJDoeDJ0+eiCVOwvfDrl274OXlBQ8PDxgYGEBaWhobNmxAbm4uZs2aBQDQ09ND+/btiXguAQIDA/H06VOEhIRIOpRa+XZN8OHDB66sc6B6fqypqdnsMs9v3boFf39/sT6P4uLiQFEUKioq8PTpU7Fd53uFTlJ79+6dhCOpm4qKCtjZ2eGvv/6SdCh8weFwEBsbKzLxHKhOQqPXaefPn8ewYcMEXqMR8ZxAIBCaMd7e3tDS0sLy5cvBZrNx+vRpqKurY+zYsdDS0mpWmee///47/v33X6Smpko6FIlALxy7du0KS0tLeHl54cSJE2CxWMwYJycnBAQE8NxgyMnJwZMnTzB+/Hi4u7ujuLi4zony58+fMXDgQFy9ehU3btzgem/9+vW4ffs2rl27hp9++klEv2E10tLS6NSpU4sVz+Xl5WFgYICePXuif//+2L9/v1iuVVxcjMOHD2Pu3LmwsLBosI8fgdBSycnJwc6dO7Fo0SKMGjUKOjo6uHPnjqTDEjmvXr2CkZERNDQ0mNfc3d3x6NEjnhupbDYbt27d4sq8evDgATgcDrS0tPDw4cNGiZvQMqmoqMDevXuxePFiDB48mOs9FRUV5r9ZLBa6d+9OxHMJQIvNTW0+RlEU7ty5AzMzM8yZM4frPdo//1t0dHSanXhOb1C+fftWbNeg54Zqamqkkb0YoBNX3r9/L9lAviI1NbVGPC9fvkRubm6TirMu0tLSUF5eLlLx3MLCAhERESguLsbatWsBQOAqbSKeEwgEQjPm+PHjaN++Pf7++2+4u7vj/PnzmD59OmRlZWFkZNRsxPOUlBTcvXsXQNPfvRcXQUFBMDMzg6qqKgCgd+/ejGULjZOTEzIyMngudG7dugUOh4MxY8bAysoKhoaGtU4KEhIS0L9/f7Rr1w52dnZcQhKHw8HFixexaNEijB49WmS/39fo6+s3ucWaoBQWFmLw4MFci7Xw8HCYmppCRkYGADBt2jT4+/uLZUPo1KlTKCgowPLly2FsbEwyzwmEWtixYwc4HA5+/fVXsFgsjBgxArdv325xVU4vX75Ejx49uF5zd3dHSUkJzyap58+fx6hRo3D+/Hnmtbt376Jr166YMGECHjx40OL+RoTGw8vLC9nZ2XxZvdHiOfm8NS70/KUp9aBJSUnB4MGD4e7ujvz8fNy8eZPZ4CsoKEBCQkKNzHMA0NXVRVJSEvLy8jB+/HhMmzatsUMXCDabDV9fXwDiFc+jo6OhpKSEH374AV5eXuQ7JmKaYub5tm3b0L9/fy57uvv37wNouOd3Y0H/XUXleQ5Ui+eRkZHYvn07srOzMXXqVNy/fx9VVVV8n6NZi+dv375Fr1690KdPH0yYMAGVlZWSDolAIBAajdzcXNy6dQvr1q3D/fv38eLFC+Tk5DClsEZGRs1GUDt58iQUFBTQpk0bBAcHSzociRAYGMh4f9aGk5MTAMDV1RVdu3aFm5sbrl27BoqiGMuWjh07gsViwd3dnadAVFlZiUGDBkFGRgbe3t744Ycf8OjRI8YH79WrV0hPT8e4cePE84uiZYjn79+/x8OHD7lK/iIiIpimNAAwYsQIyMjI4ObNm0JfZ/ny5fjhhx+4mqklJSVh7969+OGHH6Cnp0fEcxGTkJBAhMMWAofDwblz57BgwQLGI3fEiBGIi4tjvC9bAsXFxXj37l0N8dzc3BzGxsY1NlLZbDa2bdsGANi9ezc4HA6qqqrg5eWF4cOHMxuDzWWhTWh6nDt3Dl26dGGs5+rCwcEB2dnZTUrE/R5oiuL5gQMHEBgYiFu3buHq1avIy8tjbGV4NQul0dHRQWhoKOzs7ODp6dnkK2fevXuHgoIC9OvXD8HBwWKbb0RFRcHY2BhDhw5FXFwcPn/+LJbrfI9QFIXo6GhYWloiOjoaRUVFkg4JQLVVT05ODtd34P79+5CXl0dkZKTAPt+SgBbPDQwMRHZOS0tLVFRUYMeOHVi+fDl+/vln5OXl4eXLl3yfo1mL59ra2nj48CH8/PxgbGzcoMUpgUAgNDcuX74MNpuNKVOmYODAgQgMDMTZs2dhaWkJADA2Nm4WmedsNhsnTpzApEmT0K1btya1e99YVFRU4P379/WK5+3bt8exY8cwbtw4ODg4gMPhYNy4cejZsyceP36M8ePHM2Pd3d2RmppaI6MlODgYkZGROHfuHLS1teHu7o7S0lKmfNTT0xNaWlqMUC8OWoJ4Tsf/+PFj5rVvxXM1NTX069dPaN/ztLQ0/P3337h27RqsrKxw4cIFbNy4EWZmZigrK8Nvv/0GoPq7npGR0WQm7s2d1atXY8iQIRgxYkSza0BG4CYkJASZmZkYNmwY81rfvn2hrKzcoqxb3rx5AzabzTQLpaEz7e/cucMlzly7dg2fP3/G3r178fHjR9y/fx+vXr1Cfn4+hg0bht69e0NBQQEPHjxo7F+F0ALIycnBnTt3MGPGDL7Gk6ahkqEpiueJiYmwt7eHu7s7nJycoKioyMxPP3z4AFlZWZiZmdU4TldXF5mZmdDQ0MDvv/+OrKwslJSUNHb4fOPj4wMlJSX8+OOPyMrKEpvlTHR0NExMTNC3b1/IyckR6xYRkp2djaKiIowbNw4URTGbO5KGnrdeuHABQPV6JTw8HNOmTUN5eXmT+r7XRkxMDLS1taGoqCiyc9Lrs3bt2mH9+vWwt7eHpqamQNYtzVo879ixI5SUlAAAsrKyTJk0gUAgfA+cOXMGQ4cOZfxNzczMMH36dOZ9IyMj5ObmIi8vT1IhIjw8HHfv3q1T1PPy8kJSUhIWLFgAOzu771I8Dw0NRUVFBRwcHOodO2/ePOzduxdHjx7F06dP8ejRI5SUlEBaWhpjxoxhxrm4uEBNTa3GpMDPzw/KyspwdHQEUP25MTY2xp07d8DhcHDt2jWMHTsWUlLimyLo6+sjMzOzSS9s6oMWz319fVFZWYmcnBxkZmYym1c0Y8aMgZ+fH7KzswW+xpkzZyAnJ4fw8HD06dMHU6dOxa5du7B8+XJERUXB3NwcAGBiYgIAzWKzrKlTVVWFR48eYdiwYXj37h2srKzw66+/4tmzZ6ioqEB2djZu3ryJjRs34sqVKxK9vxLq5+HDh1BWVubKyFZQUMDAgQMF9rpsTG7fvo2jR4/yPf7Vq1dQUVGpcf8B/reRSld1URSFbdu2YcCAAVi+fDmcnZ2xa9cu3L17FxoaGujatSsUFRXRu3dvntmbbDabuQcRCLy4dOkSKIrC5MmT+Rqvrq6OTp06EfG8kWmK4nlycjJ0dHQAAHJycujVqxdjOxUSEgJLS0vIycnVOG7atGn4559/8Pz5c/Tu3RtAtRDfVPHx8UGvXr2YRBVxWbfQmefKysro06cPI577+PjAzc2t2fnENyXois8RI0ZAVla2yaxfExMToampiVu3bqGwsBBeXl6QlpbG0qVLATQP65bY2FiRWrYAgKamJhwdHbF//36oqKhASkoKI0aMwK1bt/iv/KBaAAkJCVSPHj2oioqKGu+VlZVRBQUFzE9SUhIFgCooKJBApAQCgSAaPn78SAGgrl27VuuYwMBACgAVFBTUiJFx4+TkRAGgZGVlqb59+1Jv3rypMWb48OGUvb09RVEU5eHhQQGgcnJyGjtUiXLkyBFKRkaGKi0tFer4qqoqKiMjo8brU6ZMoTp37sz12rBhw6gBAwZwvbZixQpKU1OTevnyJQWA8vPzEyoOfnn27BkFgAoPDxfrdcTJzJkzqdatW1MAqGfPnlHPnz+nAFAfPnzgGpeenk6xWCzq1KlTAp2fzWZTBgYG1IwZMyiKoigOh0O9ePGCSkhIqDE2OzubAkBdvXpV6N+HUA39HfD396fy8/OpJUuWUO3ataMAUAoKChQACgDzmpSUFDVw4ECqsLBQ0qETeNC3b19q2LBhNV4/deoUxWKxeN43JU1RURHVoUMHSllZmSopKeHrmGHDhlEDBw7k+V5lZSWlpqZGubi4UK9fv6bu3LlDAaB8fX0piqKoGzduUAAoVVVVavbs2cxx+/bto+Tl5ani4mKu89Hzj86dOwv9zCK0bLp3706NGDFCoGPGjh1Lubq6ijyWiooKau/evdTLly9Ffu7mDIfDoRQUFChjY2NKTk6OYrPZkg6JoiiK6tSpE7V+/Xrm/3fs2EEpKytT5eXllKOjIzVt2rR6zxEXF0cBoB48eCDOUIWmvLycUlJSonbt2kVxOBxKQ0OD+u2330R+nbKyMorFYlEnTpygKOp/9/SNGzdSUlJSFADqr7/+Evl1vxf+++8/CgBVVFRE2dnZUXPmzJF0SFRBQQEFgNq5cycFgDpz5gw1fPhwqk+fPhSHw6GUlZWp3bt3SzrMenFwcKBmzpwp9uvcvXtXoPVos848B6obdk2bNg2nT5+GrKxsjfe3b9+ONm3aMD+6uroSiJJAIBBEy9mzZ9GuXTsMHz681jHGxsYAhM9G/fz5M968eSPUsUB1Y5/AwEBs2rQJ+/fvR0pKChYvXsy1u5uQkID79+9jwYIFAAA7OzsATavxSmMQFBQEW1tbKCgoCHW8tLQ04+f7Ne7u7ggJCWGypNlsNldWDs2IESOQlpaG9evXQ0NDo0bpv6jR19cHgGZt3RIfH49Bgwahbdu2ePz4MSIiIiAlJQVTU1OucRoaGnBxccH169cFOr+Pjw/i4uIwb948ANX2Cz179kSnTp1qjG3bti1UVVX58j339vYWW7Y01QI8wr28vNC2bVt0794dbdq0wd9//43MzEwEBwdj27Zt+O+//xAfH8/48x4+fBiPHz/G5cuXJR064Ru+fPmCFy9eYNCgQTXeGzBgACiKgr+/f6PFEx4ezpe10oEDB5CXl4fi4mK+Suw5HA78/f1r+J3TyMjIwMPDAzk5OXB0dMTkyZPRs2dP5jng7u4OMzMz5Ofnc80pBg0ahPLycjx79ozrfGFhYQCqs9fWrFlTb3yE74uIiAgEBQVxVULyQ/fu3fH27VtwOByRxZKQkABXV1f88ssvWLRoUYt4RomKnJwclJWVwcXFBRUVFVx9VSQFm81Gamoqk3kOAG5ubiguLkZAQABCQ0N5+p1/i7a2NqSkpJpURv3XvH79GiUlJejXrx9YLBbs7e3F0u8pNjYWFEUx68EhQ4agvLwcW7duxW+//YY+ffrA29tb5Nf9XoiOjoaGhgZatWqFLl26NIm1K23Z0rNnT/Tp0wcnT57EkydPMHToULBYLJibmzeLzPOYmBgYGRmJ/Tr9+vWDkpIS35WIzVo8p71+N27cWGOxSrNu3ToUFBQwP8S7kkAgNGcqKytx69YtnDlzBpMnT+ZZukijpqYGNTU1ocXz9evXY8CAAcjMzBTq+OfPn4PD4WDatGlYvHgx9u/fj9evX+PFixfMmC1btqBdu3ZMaa+JiQmUlJSaxASkMQkKCqrX71wYBg8eDFlZWcbb98OHDygsLESfPn24xvXs2RNqamrw8/PD2LFjIS0tLfJYvkZLSwsyMjLNXjw3MjJCv3794O3tjYiICBgaGkJeXr7G2DFjxuDRo0coLCzk+/zHjx+HhYVFrYLY17BYLL6ahmZnZ2PQoEFYvHgx33Hwy71796Crq4uysjKu13NyclBQUCDy64mKb/9mDx48wMCBA7m+A1JSUrCzs8Py5csxdepU6OnpAQA6deqEhQsXYuDAgTh16lSjxk2oHz8/P6ZB8rdoa2ujVatWiIyMbLR43Nzc8Ouvv9Y5JicnB7t378bixYvRuXNnXL16td7zfv78Gbm5uXVueg4ePBihoaG4dOkS7O3tsXPnTrBYLADVn++NGzeibdu26N+/P3OMhYUFdHV1a/ieh4WFQVNTE3v27MHBgwdblHc8oeFcvHgRqqqqGDFihEDH2draoqioSGRr9adPn6JLly5ITk7G9u3b8eHDB/j6+ork3C0B2q6Dvm80BaE5MzMTVVVVXOK5nZ0d2rRpg+PHj6OkpAS2trb1nkdWVhba2tpN4nfihY+PD1RVVdGlSxcAQNeuXfH27VuRb+7Q8xva2s/MzAwbNmzAgwcPsGXLFgwaNIixHiQITkxMDLMxYWdnh7CwMIn/Len7Z6dOnTB16lQ8f/4cpaWlGDp0KIDqJuKfPn2SZIj1UlBQgJycHJHbtvBCUVERAwcO5Hse06zF8ytXruDVq1fYunUrXF1deWb9yMvLQ0VFheuHQCAQmhsVFRX47bffoKWlhVGjRkFHRwfLly+v9zh+BLXaiI6ORn5+PlauXCnU8T4+PujUqRPz8BsyZAisra2xa9cuAMDHjx9x9uxZbNy4Ea1atQJQnUHdVHbvG4svX74gPDxcLOK5iooK+vbty+yoP3v2DPLy8jWuJSsry0ysxo0bJ/I4vkVaWhqdOnVqtuJ5VVUVkpKSoK+vjwEDBiAwMBABAQE8/YYBYPTo0aioqMD06dMxadIkDB06FOHh4bWePysrCzdu3MC8efMYgas++PmuP3r0CBRF4eLFiwgICODrvPwSEBCAlJQUrs0xABg1ahRGjRol0muJinfv3sHExIRp6JqZmYk3b95gyJAhAp1n9uzZ8Pf3bxbZPN8TDx8+hJ6eHiMcfA2dgdVYi8ji4mKkp6fj6tWrYLPZtY7btWsX2Gw21q9fjwkTJuDOnTsoLS2t89yBgYEAUG/PDGlpaUycOBG+vr41hPbJkycjIyMDrVu3Zl5jsVjo27cvXr58yTU2LCwM1tbWWLJkCUaMGIFZs2YhPz+/zmsTvh8eP36MAQMG8NxIrgsrKysA1XNDUfD777/D2NgY79+/x5o1a2BtbY0DBw6I5NwtgaYontMxfS2eS0tLc+k8/GSeA4Cenp7Ef6dNmzZh5MiRNXre+Pj4oG/fvswmfdeuXZGRkYHU1FSRXj8qKgqKiorQ1NQEUH1P//333zFw4EAAQP/+/fHlyxe8fv1apNf9XoiOjmayo+3s7FBRUSHxeWBiYiKkpKSgqamJcePGQU5ODrq6usz91cLCAhEREU26Cic2NhYAGiXzHKiuvnv16hWysrLqHdusxfNJkyYhJycHvr6+8PX1xcSJEyUdEoFA+A4JDw/H/PnzxbbbnJycDFdXV+zatQvTpk1DSEgI3r59CwMDg3qPNTIyEirznKIoxMbGokuXLvjvv/+YZj2C4OPjw5QkAtWTtpUrV+Lu3bv4+PEj1q9fD319fcyfP5/ruO+taaiHhwc4HA5fzUKFwd3dHb6+vsjPz4efnx+cnJx42sPMnTsX/fv3R69evcQSx7fo6+s3W/E8JSUFbDYbBgYGGDBgANhsNvz9/ZlO7t+ip6eHyZMnIzo6GhkZGfD398c///xT6/nPnTsHFouFadOm8R2TsbFxvQ38vLy8YGNjgy5dumDZsmUinTzTk92vS4AzMzPx8uVL+Pr6ws/PT2TXEhX0Imf58uUoKSnBo0ePAIBnpnJduLu7o23btjh9+rTIYyQIz6NHjzBo0KBaN6DMzMwaLfOcFnHS09Px/PlznmNSU1Nx8OBBLF++HOrq6hg/fjxf1i0hISEwNDRscIKQjIxMjdccHBwQEhLCVVESGhoKa2trsFgsHD58GDk5OTWy0wnfJ1++fEFQUBD69u0r8LG6urpo1aqVSMTzqqoqBAYGYvz48VBTUwOLxcKyZctw584doRNKWhrJycmQkZGBqakpVFRUmsR8jJd4DlRX7VRWVqJjx448LQp5IYx4zmazRboR6O3tjdu3b6Nbt254//49UlNTsXbtWrx69Qr9+vVjxtnb2wMQfdPQ6OhoGBsb1/oMtLe3h5qaGh4/fizS634v0H9fAExFhKTXr4mJidDW1oaMjAxUVVXx008/YfHixcxnwMLCAnl5eUJXlTcGtG7RmOL5/fv30aZNm3rHNmvxnEAgECRNamoqBg8ejOPHj4tlt/nVq1ewt7dHUlISnj9/jn379vFVskgjrHienZ2NoqIi/Prrr3BxccGiRYtQXl4u0PEhISFck0OgetNTW1sbM2fOxO3bt/HHH3/UsJ6xs7PDp0+fUFxcLHDczY2///4bCxYswKxZs2BtbS2Wa7i7u6OqqgpeXl549uxZDb9zGldXV3h7e/MUUMRBcxbP4+LiAFT/DgYGBkx1RW3iOQBcuHABYWFh8PHxwbRp03D9+nWe3q5sNhuHDh3C+PHj0b59e75jMjExQWpqaq3fGw6Hg4cPH2LYsGGMhdLFixf5Pn990PcZWoAGwIh+pqam2Lp1K/N6dnY25s+fL/IsK0GJi4uDkpISMjMzsX37dnh5ecHe3h4aGhoCnUdeXh5Tp07FuXPnJF6yS6gmISEBkZGRTIYdLxpTPE9MTAQAtG7dGleuXOE5Zu3atVBSUmKqvUxMTPiybvnw4QPf2ZiC4uDggMrKSoSEhAAASkpKEBMTwzyvdHV10aVLF9y/f18s1yc0L168eIGqqiqhxHMWiwVLS0uRiOehoaEoKSmBs7Mz89rkyZPRrl07/P333w0+f0sgKSkJWlpakJaWhr6+vsSztIFq8VxOTq7G3IdeSwiy/hFGPD98+DBsbGxElliQkpKCadOmoX379nB2doaBgQGOHDmCZcuWYe7cucw4XV1dtG/fXuTieVRUFM/KKxppaWnGepAgGAUFBcjOzmbEcxUVFabSRZIkJSVx9Xjcs2cPV28Sep0i6Qz5uoiJiYGKigratWvXKNdr164dBg8eXKcVLg0RzwkEAkFIioqKMHToUFRUVACo9h0VNStWrECnTp0QHBwMR0dHgY83NjZGSkpKvWXf30JnkRobG+Po0aOIjY3FvHnz8OXLF76Op30lv11AycnJYfny5Xjz5g3s7Ox4VgzZ29uDoih8+PBBoJibExRFYfPmzVi6dCl++eUXnDhxgm97DkHR1dWFnZ0ddu3ahZycnFrF88amOYvndNx0884BAwYAQK22Ld8ybtw4pKSkMHYLX3Pz5k3Ex8fzZcv0NfQEnv7ufktwcDCysrIwePBguLq6YvTo0Vi7di1KSkoEuk5txMbGwszMDO/fv2cyWu7evQsHBwds374dT548wcuXL1FaWoqRI0fi+PHjAjdRFTVxcXGwsLDAmjVrsGvXLty7d09gyxaa2bNnIyMjg68GjwTx8/DhQ0hJScHNza3WMWZmZsjJyUFOTo7Y40lISICUlBTmzJkDT09PVFVVcb3/9OlT/Pfff9i1axdX9tP48ePrtG6hKAohISECiUqCYGtrCzk5OeZeRZd7f73ZO3ToUHh5edVpR0P4Pnj69Ck6duwIMzMzoY63srKq09KMX/z9/SEjI4Nu3boxrykqKmLhwoU4depUk+7DwYu4uDiR36eSk5OZDO+mYHEC/C+mb+fDlpaW0NHREcjeUE9PDykpKQJtaPv6+iI5ORm5ubl8H1MbHA4HaWlpcHR0xPPnz7Fq1Sr88ccfSEpKwu7du7kqQFksFrp27SrypqFfZ0bXxoABA/D69etm952QNLyyo5tC5XRiYiKzNuGFkZERpKWlm7R4/vnz5zorJiQJEc8JBAJBCNhsNsaPH4+4uDh4e3tDTU2tXssEQSkqKsKbN28wf/58dOjQQahz0A/12gS12qDHGxoawtraGsePH8e1a9dgY2PDV8MlHx8fmJqa1ii9BIB58+bBzc0NBw8ehJRUzceQlZUVZGVlJT4BESfHjx/Hli1bsH37duzevZvn30GUuLu74/3795CRkeHKxJIk+vr6yMzMFJl425jEx8ejY8eOUFRUBACMHTsWbdu2rTPz/Gt69uwJdXV1eHp61nhv//796NWrF7p27SpQTPQCqbaS9AcPHqB169ZMA9Ldu3cjOzsbc+bMaXCWVVFREbKyshgLpsePH6OiooLJdB81ahSsra2xZcsWzJgxA+/evYOmpqbEv+NxcXEwMDDAmjVroKmpiYKCAgwePFioc3Xu3Bn29vakcWgT4d69e3BycoKqqmqtY2iBrzGyz+lS6ilTpiArK4vrOVpeXo6FCxfCxcUFs2bN4jqOtm6pzRYlPT0dWVlZYss8l5eXR5cuXRAUFASg2u8c4N4oHDp0KLKzs/HmzRuxxEBoPvj6+qJv375Cix60eM6rKksQ/P390aVLF+YZTfPjjz+irKxMpFVX4obD4aB3795wdHRERkaGyM7blMXzb2GxWHj9+jXWr1/P97n09PTA4XCQkpLC9zH0JqEorH1ycnJQWVkJLS0tKCoq4vfff8eqVatqtYawt7cXaeZ5eXk5EhMT68w8B6p9z9lsdpO01mvK0OL515sT9vb2ePPmDfLy8iQVVo3M82+Rk5ODsbFxk24aSlvDNUWIeE4gEAhC8OjRIzx8+BCXLl2CjY0NTExMRJ55/vLlS7DZbPTp00foc9DiuaDWLbGxsWjfvj3joTpz5kx8+PABurq66Nu3L9NgrzZov3NeqKio4PHjx3BxceH5vpycHKysrCQurImLoKAg/PTTT1i0aBHWrl3bKDvr7u7uAIBu3bpBWVlZ7NfjB319fQBoltnn8fHxXD0HBgwYgOzsbKbxbX1IS0tjzJgxuHbtGpdwHRQUhJcvXwqcdQ4AHTp0QOvWrREdHQ0Oh4O5c+di2LBhTGWMl5cX+vfvD1lZWQDV94azZ8/i0qVL2LFjh8DX+xr6/tKjRw/Y2tri0aNHePHiBYqKijB8+HBISUlhw4YN8Pb2hqenJy5cuIDBgwdL/DtOi+dKSkr4559/0KdPHzg5OQl9vqlTp+L+/ftc/tCExqewsBAPHz7E2LFj6xxHiwqNIZ4nJCRAT08PXbt2haGhIZd1y86dOxEbG4t//vmnxkaqqakpunTpgpMnT/I8L12hJS7xHAC6d+/OiEphYWEwMDDgutc5OjpCTU2NWLd85xQWFuLt27dCWbbQWFpaori4mLE5EhZ/f3+eiQKamppwcXHB3bt3G3T+xiQgIADJycnIyMjA4MGDRZYhzEs8l3QTwdrEcwDQ0tKCkpIS3+fS09MDwP8cMyUlhRHahbG7/Bbalk5LS4uv8Z07d0ZaWhpfFQYUReH69et12mnGxcWBw+HUm3luZGQEAwODZm/d0tif3ejoaKiqqqJt27bMazNnzgRFUdi9e3ejxkLD4XCQlJRUZ+Y58L+moU0RDoeDjx8/wsbGRtKh8ISI5wQCgSAEJ06cQOfOnZksRVNTU5GL535+fujYsSNMTU2FPoempiYUFRUFzqKIjY1lfJxpjIyM4OvriwEDBmDLli21TlRSUlIQGRlZq3jOD3Z2dozHaksiOzsbY8eOhZ2dHfbv399o17Wzs4OJiYnQWbXiwNraGgoKCvVuxDRF4uPjGfGfRtBNkLFjxyI+Pp6rTPfAgQMwNDRkNjsEgcViwdjYGNHR0fjtt99w6tQpPHr0CMuXL0deXh4CAgJq/PuPHz8eGzduxK+//orbt28LfE0aulLFyMgIAwcOhLe3N+7cuQMtLS106dKF+X1Hjx6No0ePYvTo0bC3t0dYWBgj7jc2VVVVSExMZO5zgwcPhq+vb4M8/3v06IHKyso6LacKCwslLlC0dO7evYvy8nKMGzeuznFKSkrQ09NrVPGcxWJhwoQJuHbtGnx8fLB27Vps27YNK1euhJWVFc9jV65ciXv37vHM7A4JCUGrVq1q3I9EiYODAyIjI5Gfn4+wsLAaGWEyMjIYPHgwEc+/c54/fw42m90g8Zz+DjTE9zwzMxMxMTG1VtkNGzYMPj4+AtsZSgpPT09oamrixYsXiI+Px8iRIxu8QUtRFJKTk5kMVT09PXz58kWiGbNA3eK5oNACIr8Z9XR1jYKCgkgyzwUVz83NzQHwt5kbEBCAsWPH4sKFC7WOoauh68s8B6qzz5tz09CbN2/C1NS0UZtgxsTE1NiY6NixI5YvX44DBw4gLS2t0WKhyczMREVFRZ2Z50DTFs/j4uJQUlJCxHMCgUBoKWRkZOD27duYO3cuI5iZmpqK3LbF19cXffr0aVBmMovFgpGRUQ0PyYKCAsydO7fW7B5e4jkASElJYf369QgNDa3V2/fp06cAqhtQCouRkVGzzEiuj1mzZqG0tBRXr16FvLx8o12XxWLh3bt3+PXXXxvtmvWhpqaG2bNn4+DBg83OuoWXeC4offr0Qbt27ZjNg5iYGFy5cgVLly6FtLS0UOc0NjbGlStXGDugw4cP48iRI5g1axY4HA7PzZNNmzZh1KhRmDp1KgoLC4W6bkxMDFq1aoX27dtj4MCBSE1NxalTpzBs2DDm/iUtLY3r169jwYIFAKo3dCorK0XibysMSUlJYLPZXBUEDaVz586QkZGp1b6iqqoKRkZGjbpx9j1y9epVODg41Jt9BVRbtzRG+fLXPqQTJkxAbm4u3NzccObMGUyfPh0bNmyo9dgffvgBZmZm2Lx5c433aL9zcVp/OTg4AADevHnDUzwHqq1b3rx5g/T0dLHFQWjaPH36FDo6OlwewIKiq6uLVq1aNei5EBAQAACMRdm3DB06FKWlpXxZEEoaiqLg6emJMWPGoHPnzrh79y5evHiBc+fONei8+fn5KCkp4co8B/gXmsUBLeiLSjxXUlJChw4d+P6dAgMDoaWlBTs7O5GJ5ywWCx07duRrvCCVUJcvXwZQ3dujNqKjo6GoqAhNTc16zzdixAh8+vQJf/31F1+xNiWKi4vx008/ITo6ulHjj46O5nmvW7VqFWPTIw4oisLZs2d5bjAmJSUBAF+Z58nJySgqKhJ5fJWVlcjPzxf6+NDQUAAg4jmBQJAscXFxuHr1Kg4fPow///yTLHAawLlz5yAtLY0pU6Ywr5mYmCArK0tkWRtfvnzBmzdvGiRA04waNQoXLlzgEsr/+OMPnDx5Ert27eJ5TExMDE/xHKgW/RwcHLBz506e7z9//hxWVlZC+7QD1Q/+rKysZieq1kVRURHu3buHP/74o96sAHGgrKzcoKxacfDLL78gNzcXp0+flnQofFNZWYmkpKQGi+eysrIYNWoULl26hDlz5sDS0hLt2rWr4XksCCYmJsjPz8ePP/6IFStWYP78+ViwYAFu3boFS0tLnhNqKSkp7Nq1C0VFRXj+/LlQ142NjYWRkRFYLBZcXFwgLy+PwsJCDB8+vNZjOnfuzGzqSIK4uDgAEKl4rqCgABsbGyaD7VtCQ0ORnZ2NvXv3SizjvqVTVFQELy8vjB8/nq/xZmZmYs88r6qqQkpKCiNQ2dnZ4datWwgODkZqaiqOHTtWpx2BtLQ0Nm7ciHv37tVoMvzhwwexNQulMTU1hYqKCh49eoTk5GSe4vmgQYPAYrFq9WYntHyePn0KV1fXBid8WFpaNijz3N/fH5qamrUKSBYWFtDX128WlRJBQUFISkpiqmh69uwJCwuLBj83aZGtKYnn2dnZqKioEJl4Dgjm5R4YGAgHBwcYGxuLxLYlJSUF6urqjFVefSgpKaFTp071Po84HA6uXr0KJSUleHt7czVqLi0txYkTJ7Bs2TIcPXoURkZGfG2sDh8+HKtWrcKyZctw4sQJvuJtKuzcuROZmZkYP348Dh8+LHQSiKDwyjwHgDZt2mDdunU4fvy4yJPqgOpN7JkzZ8LW1hZz587l8vSn1/n1rTHpKgdxzL/379+Pzp07C923IjQ0FG3btuVr00cSEPGcQPhOGDlyJCZMmIDly5dj06ZN2Ldvn6RDapZQFIUTJ05g7NixUFNTY16nrVVE9aB89eoVqqqqGuR3TrN69Wqoqqpi3bp1AMDszuvr6+Ps2bM1Jhrl5eVITk6uVTxnsVhYs2YNnj17xmT4fE1QUBAcHR0bFDO96KEn+C2BkJAQUBTVZBp2NgUMDQ0xceJE7NmzB1VVVZIOhy+Sk5PB4XBEYpMwYcIExMXF4cGDB/j9998RERHB9BkQhokTJ2L9+vX466+/GAHj4MGDGDNmDBYtWlTrcUZGRtDV1cWTJ0+Euu7Xm22Kioro3bs35OXl4ebmVusxrVq1gomJiUTFcxaLxYgGoqJ79+61Zp4HBARASkoKqampuHr1qkivS6iGX8sWGjMzM8TExIj1/pOamgo2m80l5rm7u8POzo7vjPGJEyfCwsICW7ZsYV4rLy/Hp0+fxOp3DlRvsHXv3h3//fcfAN4ZYR06dICjo2O9gmR6ejoqKyvFEidBcuTl5eHdu3cNsmyhsbKyarB47uzsXKuIz2KxMHToUNy7d6/JW2hdvXoVHTp0QK9evZjXrK2tmca9NMnJydiwYQOXkFoXycnJAP4nnqurq0NBQUGiFZ/fxiQK+BXPORwOgoKCGPFcVJnn/Fq20Jibm9dbCfXy5UukpqZi8+bNyMvL49qsX7duHRYsWAAvLy9YW1vznf3MYrGwc+dOLF68GPPnz4eHh4dAcQtDYmJig79/8fHx2L17N3755RccOHAApaWl+Oeff0QUYU3OnTuHn3/+GfPnz0dycnKtVTaLFy+GpqYmtm7dKvIYTp8+DW1tbezfvx+3bt2CmZkZkwySlJQERUVFtGvXrs5zWFtbw9jYGCNHjsSNGzdEGt+7d++QmJgo9Nw+NDQUNjY2jdIPTBiIeE4gfCfEx8dj27ZtKC8vx4IFC3Dx4sUGd7P/Hnnx4gU+f/6MuXPncr1Ol9uJSjz39fWFuro6szvcEFq3bo0//vgDHh4eeP36NVatWoWOHTvi8ePHKCsrw5kzZ7jG002DahPPgerNGFNT0xrZ56Wlpfjw4QO6d+/eoJhpkaGhTaOaEsHBwZCXl4eFhYWkQ2lSrF69GvHx8VwN9Joy9OJSFBnLAwYMwOvXrxEXF4c1a9ZwbcgJg62tLf7880+uCgM5OTlcu3YNS5YsqfU4FosFNzc3+Pj4CHVdOvOcZvXq1dixY0e9zWnt7OzEKp4fOXIEx44d4/leXFwctLS0RG6f1K1bN4SHh6O4uLjGe69fv4adnR0GDRqEffv2NXnhpjni6emJ7t278725ZWZmhsrKSmbxKQ5o8aYhGzV09vn9+/eZTevw8HBUVVWJXTwHqq1b0tPTISMjAzMzM55jhgwZgkePHtX6uf7y5QvMzc1x6tQpcYbabPj48SMsLS2btdcwzcuXL0FRlMjE8/DwcKHWKJWVlQgKCqo3SWHYsGGIi4trFMsmYfnasuVrKzcbGxuEhYVxfc8uXryIP/74o04P7K9JTk6GlJQUYylCbyRLMvNckuL558+fUVhYCAcHBxgZGSEzM7PBlhbCiOf8VEJduXIF2traWLZsGVRVVRnrltLSUpw9exarVq1CZGQkrl+/jtGjR/N9bRaLhYMHD2LKlCmYN28esrKyBIpdEOgErYbe+1atWoW2bdti/fr10NLSwowZM7B//36xNG3ncDhYsGABrl27hvfv36N///619vZSVFTEzJkz8eDBA5HO80pLS+Hh4YHp06dj6dKl+Pz5M6SkpJiN7cTEROjq6tYrPCsqKiIoKAj9+vXDmDFjsHz5cpHFSfd/E7YKLTQ0lGd1W1OBiOcEwndAUVERioqKoK+vDxaLhSlTpiA5ORnPnj2TdGjNjhMnTsDIyKhGRnjr1q3RsWNHkTUN9fPza3D569fMnDkTnTt3xsSJE3Hz5k3s2rULRkZGGDt2LA4dOsS1SPm6+V9tSEtLY9WqVbh58yZXhsb79+/BZrMZj1Rh0dHRAYvFanHiuY2NDd8lnN8LXbp0waBBg7Bz585msaFHi+f8+CnXB4vFgoODA+Tk5Bp8robSr18/hISEIDs7W6DjqqqqkJCQwHW/6N+/P5YtW1bvsfb29nj//r1Q/+5VVVXYuXNnrSW6z58/x5IlS/D333/zfD8uLk6kli003bt3B4fD4bkpEBAQACcnJ6xYsQLBwcHkGSxivnz5gvv37/Nt2QKAEYLFad1CP8caes8YP348bG1t8fPPP4PD4TCNaRtjoUk/001NTWu9X9nb26OgoICrjPxrbt68iYKCApE3V2+OUBSFpUuXIiIiAqNHj661WqW5EBMTAwUFBZFUZFlZWaGkpESo+d+HDx9QUlJSr3jet29fKCgoNGnrluDgYMTHx9eoorG2tkZ+fj7TkBIA8/nZvHkzX5ZgycnJ0NTU5NpobwriuYyMDNTV1UV2Tj09PSQmJtY7x6DtsLp168ZYcTTUukVY8byuSig2mw1PT09MmDABsrKy6N+/PyOeX7lyBfn5+Zg3b57QMUtJSeHAgQNgsVh8VahTFMVsnAmCv78/2Gw2goODhQ0V3t7e8PT0xM6dO9GqVSsA1WJ6ZmZmjaQwUZCeno6ysjIcPXoUgYGB8Pb2rnND3NHREVlZWSL9TtHPUNreUU1NDaNHj4aHhwcoikJSUhLf8wxVVVV4enrizz//xIEDB0SykUhRFJNEWFtftLooKytDVFRUk/U7B1qAeL5y5Ur06tULU6ZMIf6RhBZFbm6uyIRDeoKlra0NAHB2doaBgQHfGQqEaiIjI3Hp0iXMmzePZ6m1qampSBaFxcXFCAwMFIllC420tDT27duHhIQEODs7Y+LEiQCAJUuWICoqCo8ePWLGxsbGQlZWlvm81MbkyZMhLy+PO3fuMK8FBgZCXl6+wQ8+WVlZaGlptTjx3N7eXtJhNEl+++03fPjwAf/++6+kQ6mX+Ph4sWQsSxo6Y1DQJmpJSUmoqqqqs1KlNuzs7PDlyxehSqTfvXuHtWvX8izRLSgowLRp0yAvL49Pnz7xnB+KSzy3srKCgoJCDd/z3NxcREZGwsnJCQMGDICVlRWxTxMxXl5eKCsr49uyBaieFykrK4tVPE9ISEDbtm2ZBb6wSEtL4/DhwwgMDMSJEycQEhICIyMjtG7dWkSR1g5dTVaXUE9XytW2CKfnnC3Jjk1Ybt68CR8fH1y5cgVWVlYYOnSoWPxxG4u0tDRoamqKJOHD0tISAISybgkICICsrCy6du1a5zhFRUX069cP9+7dEyrGxsDT0xPt2rWrsRagv4NfW7cEBQVh0KBBiI+Px8mTJ+s9d3Jycg1f5KYgnmtpaQndMJ0Xenp6qKioQEZGRp3jAgMDYW5ujjZt2jDieUOtW4S1bamrEur58+dIT0/HhAkTAFT3mnj9+jXy8vLw77//on///g1q2AsA7dq1w+LFi3Ho0CHk5ubWOTYgIAAuLi4C25PQmxURERFCxVhcXIwFCxagb9++NfqPjRs3DkuXLoW9vT1mzZoFPz8/oa7xLYL2yaE3nF+/fi2S6wPVli0uLi5MtTtQvRaPjIxk7FIE6anFYrEwc+ZMAA3/vANARkYGioqKMGTIEPj7+wvcB+7Tp09gs9lEPBcX7969Q3p6Op4/fw5LS0t4enpKOiQCQWT8+OOPGDBggEjKaOgsIPohzmKxMHnyZHh6eqK8vLzB5/8e4HA4mDNnDjp16oSlS5fyHGNqaiqSxY+/vz+qqqpE0iz0a/r164dTp07hv//+YxY4PXv2RJcuXXDo0CFmXExMDPT19eudwCopKcHV1ZVrdzkoKAh2dnYiya7u1KlTixHPy8rKEB4eTsTzWnBxccH8+fOxevVqiS7e+CE+Pl4k2XVNDR0dHZiamgps3UJnZwmzYLOzswMgXNMiukLmn3/+qZFVtnjxYuTl5eHEiROoqqriKeaJSzyXlZVFly5damSS0otFJycnsFgsLF++HHfu3BHJgoVQTUREBDQ0NAT6d5WSkoKpqanYxXNReeu7uLhg5syZWLt2LXx9fRvFsgWo3mQwNzdHz549ax2jr68POTk5nn/LzMxMeHt7Q0lJibFn+F4pKyvDL7/8gqFDh2L8+PG4d+8e2rVrhyFDhjSb3h/fIoxQWBu6urpo3bq1UOJ5YGAgOnfuDAUFhXrHDhs2DM+fP8fs2bPRq1cvmJqawsnJCe7u7ti6datEvflpy5ZRo0bVmE/r6+tDWVmZEc+zs7MRFxeHGTNmYMqUKdi6dStKS0trnHP48OFM1UpycnINexQ9PT3Ex8dLzE6MV0wNhd9GqK9fv2Y2CNu2bYs2bdo06NlcVVWFjIyMepOQvoWuhKptA/Ly5cvo1KkT01dq0KBB4HA42L9/P/z9/bFgwQKhY/6aX375BWw2GwcOHKhzHD0P27RpE65du8b3+enkgvDwcKHi27JlC1JTU/Hvv//W2LA7duwY9uzZAzs7Ozx58gQ///yzUNf4Fvp35Xd+oa6uDn19/RpNvq9cuSJUVUNiYiIeP36M2bNnc73u5uaGDh06wMPDA4mJiQJXuGlqakJRUVEkc1FaA1m6dCk4HA68vb0FOj40NBRA41TTCUuzFs/9/f0xcOBAAMDgwYPx6tUrCUdEIIiGkpIS3LlzB58/fxZJGQ2def71xHbKlCnIz89v0iWLX7Nq1SpcunRJYtc/evQoXr58iRMnTkBRUZHnGBMTE3z+/FmoiWdaWhpmz56Nbt26YeTIkVBXVxeLN/asWbO4RC4Wi4WffvoJ9+/fZz5rsbGxfGeRDh48GH5+foy/L92tXhS0JPE8NDQUbDabiOd1sGvXLrRp0wYLFixo0l7Q4hJdmwL9+vUTuGloTEwMpKWlhbKkaN++PXR0dIQWz6WkpBAXF8eULQPV3q8XLlzAkSNHMHz4cABg7C1oSkpKkJ6eLlS2PD907969Rub569ev0a5dO+b+O3nyZCgrK0v0udbSoLNfBcXMzEys3sfCLGjrYteuXQCqN51sbW1Fdt76CAkJqbN3goyMDExMTHj+La9cuQIWi4Xp06d/9+L5vn37kJSUxFSetGvXDn///TdiYmKa7WaasN89XrBYLFhaWgolrAUFBfHdc2fUqFEwNDTEx48f0alTJ4wYMQKWlpbgcDjYunUr+vbty2WN0ph8+PAB0dHRPKtopKSkYGVlxQhN9EZtt27dsHnzZmRlZeHw4cNcxxQWFuLevXs4ePAgFixYgMTExBpCdffu3ZGbmysxCyFxiOd0okNd4nlZWRlCQkKYtQuLxYKxsXGDbFsyMjLA4XAE3lCqqxKqqqoK165dw4QJExjBWFdXF5aWlti2bRs0NDQwcuRIoWP+GnV1dSxcuBAHDx5EQUFBreOSkpKgqqqKH374AdOnT+drLsdms/HmzRtoaGjg06dPAs/33717h3379mHTpk1cGdg0bdq0wdKlS3Hy5En88ccfCAkJEYl/e1xcHNTV1evt5fM1jo6OXJnniYmJmDhxIpycnPjKSF+7di0sLCywatUq/P7771BSUqphSycjI4OJEyfCw8MDGRkZAs81WCwWDA0NG2xTBFSL5ywWC66urrCyshLYuiU0NBR6enpQUVFpcCziQiTieX5+Pi5fvox9+/Zh//79uHTpksBp+sJel/7jtmnThmdpSXl5OQoLC7l+CISmzsOHD1FSUgJZWVkuSwxhSU1NhaqqKpSUlJjXLCwsYGdn12ysWzw8PITu/t1QIS4hIQFr167FwoUL67RSMTU1RVFRUb3lgbzYtGkTbty4gS5dumDr1q14+PBho3WanjJlCjQ1NbFjxw4AgonnQ4YMQUVFBZ4+fYq8vDxERUU1uFkoTadOnZp8FjK/BAcHQ1paukmXokmaNm3a4N9//8XDhw/F4lcoKlpq5jlQLZ5//vxZIHErNjYWnTp1ErraxN7eXmjx3M7ODnZ2djhy5AiA6nv1okWLMGnSJEyZMgVt2rSBvr5+DfFclE1fedGtWzdERUUhPz+feS0gIACOjo7MfV1RURHDhw8nVZMipCHieUREBC5cuIC5c+di1apVIo1LlJnnANChQwds374dQHXPiMZCTk6Op2Xd15ibm/MUzy9cuIAhQ4agc+fOSE1NBZvNFleYTZoPHz7gzz//xNKlS7kar9L/jt/eq5oLosw8B/7XNFQQCgsL8enTJ77noFpaWoiMjMTr169x4cIF7N27F6dOncLdu3fh5+eH+Ph42Nvbi9R2gV88PT2hpqYGNzc3nu9bW1szmedv3ryBqqoqjI2NYWRkhBkzZuCvv/7iWvu8f/8eQHUz75MnTyIyMrKGUO3m5gZdXV2cOHFCPL9UPYhDPFdVVYWKikqda4mAgABUVlZyJf4YGxs3aCOLV9IaP7BYrFqbhvr6+iIrK4ux3aQZNGgQ2Gw2Zs+eLdKeSqtWrUJZWVmtfWOAajFYT08PJ0+ehIWFBYYNG1ZvL5eIiAgUFxdjypQpKCoqqrVHRm0sWLAAlpaWWLlyZb1j6e/P06dPBboGLwRZG9M4ODggODiYqWK5desWZGVlYWxsjL59++LOnTsoKytDUVERTyeAK1euAADOnTuHkydPYsKECTzt3yZPnoy0tDRQFCWQbQuNkZFRDfHcy8sLp0+fFug8nz9/RqdOnaCgoIAhQ4YI3DA1NDS0ya+TGyyenzx5Eg4ODggICACHwwGbzWYaIvHjudUQ1NTUGDE8Pz8fbdu2rTFm+/btaNOmDfMjzAeKQGhsrl27BhsbGwwZMgS3b99u8PlSUlJ4PsCnTJmCu3fvci3wmyJsNhvp6elCCSzz58/HDz/8UOv7FRUVOH/+fJ3NZFatWgVVVVXs3LmzzmuZmpoCgMDWLRkZGTh37hzWrFmDEydOYMWKFY26IJaXl8eqVatw/vx5xMXFCTRBMDU1hYGBAby8vJhsFVFmniclJTWLJpLf8uXLF65NlODgYFhaWvJVSvw9M2zYMEyfPh1z5szBqFGj8OLFiyaVhc5ms5GSktJi5xK0VZQgC42YmJgGZXDb2dnh3bt3Av87x8bGwsjICD/++CPu3buHmJgYTJ8+HW3atGHEdACwsbGpIUgJ6l0pKLR48/btWwDVtl+vX7+Gk5MT17jx48cjJCSkWXsdNyXS09OFEs+trKyQnZ2NqVOn4s6dO9i3bx9KSkpEEhNFUSLPPAeAefPm4erVqxg6dKhIz9tQeInnMTExCAgIwJQpU6CjowM2my1UkkFzJysrC+7u7jA1NcXvv//O9V779u2hqanZbMVzUWaeAxAq8/ft27egKEokCRzOzs4IDg6Guro6Nm3a1ODzCQJFUbh69SpGjhxZqxhqbW2N8PBwsNlsBAUFoVu3bszG7PDhw5GcnMzVWyA4OBgKCgr4888/ce7cOUhJSdXI2pWWlsbs2bPh4eGBL1++iO8X5AFFUWIRz4Fq65bavLVLS0uxZMkSWFtbMzZyAG8xURCEFc+B2iuhrly5AkNDwxp+/mPGjIGysnKDGoXyQlNTE+PHj8eNGzdqHZOUlARdXV0oKSnhzp07MDY2hqurK9avX19rL8LAwECwWCxMmzYNgGC+57m5uQgKCsKaNWv42ijQ1taGmZmZwBWVvBCm6tTR0RGlpaXMRteNGzfg5uYGHx8fDBo0CO7u7lBUVISKigrU1dW59JiMjAzExcUxFjVv3rzB/v37eV7HycmJSeoRZq7B6/P+119/YcOGDQKdJyoqirmvDBkyBOnp6QgJCeEaU1FRgVmzZvF0DAkLC2v54vmuXbsQHByM/fv3Y+XKlVi5ciUOHDiAN2/e1Cs0NRQnJyemyd3Dhw95+vCtW7cOBQUFzA9pUkNo6pSXl+POnTsYN24c3N3d4e/vj+zs7AadMzU1lafv2rhx41BeXi6SHVlxkpmZyXj0Cfq3CAwMxJUrV/D8+XOe71+/fh3Tpk2rtUleeXk57t27h59++qneMiJDQ0OwWCyBm4YeOnQIMjIyIvOqE4Z58+ahbdu2WLVqFb58+cK3fzGLxcKQIUPg5eWFwMBArmY7DaVTp06oqKhAZmamSM7XmGzYsIFphghUlxkSyxb+OH78OI4fP47IyEj06tUL69atk3RIDNnZ2eBwOOjYsaOkQxELHTp0gK2trUC+57SILSx2dnbIyspCWlqaQMfRov3kyZOhoqKCQYMG4fnz5zh37hxUVVWZcba2tkx5O01cXBzTlFgcmJqaolWrVsyGYlRUFPLy8mqI54MHD4aSkhKuXr0qlji+N9LS0oT6bo4aNQre3t7IyMjA/fv3weFwanxmhCU3NxfFxcUizTwHqq0bxo0bJ9JMQ1Fgbm6O5ORkFBUVMa95eHigVatWGDFiBCOOfW/WLRUVFRg7dixKS0tx69YtnqX/vO5VzYHS0lLk5eWJ9H5qYGCA3NzcOi0jviUoKAjKysoiszxUV1fHgAEDGK/jxiI8PByRkZF1Nj62trZGaWkp4uLialjVODs7A6i2t6UJDg6Gra0tZGRkMHXqVKSkpDC2Zl8za9YsFBcXMxmvgsJms7m++/ySn5+PkpISsYjn48aNw5kzZ3Dq1Kka761duxbR0dHw8PDgupcaGxsjKSmJp3c8P6SmpkJGRgYdOnQQ+Fhzc/MameeVlZU1LFtoXFxckJeXJ5ZkgJ49e+LDhw+1/h2+3hjW1NTE06dP8eeff2L37t0YPnw4z6SIoKAgWFpawsbGBvLy8gJVmNCJBnRTYX5wc3OrIZ4Lk5QjTOa5nZ0dpKWlERgYiJycHDx79gyjR4+GoqIiPD094enpiXPnzuHff/9FYWEhV9Z+QEAAgGq9U1paGl27dkWbNm14XofuZcdisYT6DhkZGSE+Pp6r58aHDx+QkpIi0LP6a/HcxcUFysrKNaxbzp8/jzNnzmDMmDFctlh5eXlITk5u0n7ngAjEcxaLxXN38suXL2K3HLCzs0PHjh3Rq1cvhIeHY+zYsTXGyMvLQ0VFheuHQGjKPH78GIWFhRg7diyGDRsGDofTYF/y2jLP9fT00KlTpxrC8u3bt5uUYPX1zfXbHcz6oD2zV69ezfNhSf9t6Y24bwkICEBJSQkGDBhQ77UUFBSgp6cnkHheXFyMI0eOYO7cuVBTU+P7OFGjrKyM5cuXMw1fBJkgDBkyBHFxcfDw8ED37t3rLevmF1psaI6+558/f0ZaWhr27NmDyspKfPjwgYjnfCInJ4c5c+bg48ePmDFjBm7evCnwOZ4/fy5wuSE/0Bs5GhoaIj93U2HgwIG4dOkSlixZUm9GNEVRDc48p4UOQRo2VlRUICkpCYaGhlBSUsKsWbMQExODNWvW1LDWsrW1RWpqKtfGa1xcHPT09Optiiws9ELn/v37KCwsZMr+v82IVFJSItYtIoKiKKEzz2VlZdG/f3+oq6vD2toaMjIyCA4OFklc9PNL1OJ5U4W2Ivl6HnT16lWMGjUKSkpK3614vmzZMgQEBODGjRu1ZgbyqpJpDqSnpwOASDPP6WcKXSXED0FBQbC3txfpfd3Q0BDx8fGNajPk6ekJFRUV9O/fv9YxdHbmw4cPkZaWhm7dujHv0U2TvxXPv56DduzYkedcXU9PDwMHDhTauuXgwYOwtLQUWJyk7wfiEM83bNiAhQsXYu7cubh48SLz+sOHD3Hw4EHs3LmzRrYrnQQkyOfva1JTU6GpqSnUesjMzAxZWVlcdsQ+Pj7Izc3FhAkTeB4jrk1UBwcHVFVV1Vr5TWee00hLS2PdunW4desWvL29eTYRDQwMRPfu3SEtLc1YpvEL/Vzh5XVeG25uboiJiWGsezIzM2FhYVGjsv/WrVvo2rUrysrKapyjvLwcKSkpAm9QKCkpwdbWFq9fv8bdu3fB4XDg7u4OoPpvNXbsWEybNg3z58+Hvr4+V+JKQEAAtLS0+K50Xb16NW7evCmQJzuNsbExKisrmSTj7OxsJqHlW9uq3NxcnhXhHA4HUVFRTBW+nJwcBg0ahFOnTjF/UzabjV27dqFfv36QlpbGhAkTGEsbWt9p8Znne/bsQZ8+fTB27FgsXboUS5cuxZgxY+Dq6oq9e/eKIsZ6r//8+XNcuHABcnJyYr8egSBurl27BjMzM1haWqJjx45wdHRssHVLbZnnANCrVy+8ePGC67WDBw+KRXgSFlo8l5KSYnz7+KGoqAh5eXmYNWsWAgICaohwHA4HDx48gJSUFFfDua/x9vZG+/bt0blzZ76uaWpqKlAJ/pkzZ1BQUIBly5bxfYy4WLx4MZOxKcgEoW/fvpCTk0N4eLjI/M6B/5WeNUfxPDExEYqKiti9ezeePHmC8vJyIp4LiJSUFHr27ImoqCiBs3/WrFmDtWvXijwm2mqgJYvnGzduxJo1a3DlyhWYmZnh119/rXVsbm4uCgsLG5R5bmBgAGlpaYHum4mJieBwOIzAsnbtWvz555/YsmVLjbF0Q8WvMzobo+nr/Pnz8fr1axgYGGDv3r2wsLDgyoinGT9+PN69eyeSZk3fM3l5eaioqGiwgCcvLw8rKyuhbOJ4QS/YRW3b0lShxXPadiAtLQ2hoaEYNmwYgOrmmPLy8t9VJfCzZ89w9OhRHDhwAD169Kh1nK2tLeLj45tdf66GWFTUBn1vry3ru6KiAgsXLuTySw4KChKZbSCNgYEBKisrG7Vx6NWrV+Hu7g55eflax2hoaKBdu3bMWu3bubezszMjnpeUlCAiIqKG3UdtzJ07F/7+/vj48SPevHmDcePG4dixY3wde+PGDSQnJwucrS9O8ZzFYuHw4cOYPn06pk2bhl69esHZ2RkTJ07EwIED8dNPP9U4hhbPhX0u15a0xg/0PfTrhILLly/DxMSkUS09gWohU0FBAYGBgTXe+/LlC/Ly8ng+24YOHYphw4ZhzZo1XF7epaWl+PDhA/M9tbCwEFg819LS4un7XRuurq5gsViMML1t2zZERkbil19+YYTbiooKrFixAsHBwTwTdhISEkBRlFCJIg4ODggMDMTNmzfh7Oxca3Vcv379uDLkaRtsfpOR27RpwwjzgkLP4enPOz1flpeX5xLPS0tLYWxszHNzLSUlBWVlZVwbG3/88QcSEhKwbds2AMDNmzcRGRmJP//8E1evXsXr168xd+5czJo1C0OGDIGGhgZXL5CmSIPF8+HDhyM8PBwrV65Enz590Lt3b6xatQrh4eE8y4EIhOZCWloaJk2ahNWrVzfaNSsrK3Hr1i2MHTuWuVmOGDECDx8+5NlIgh84HE6djXxcXFwQHByM4uJiANWZ0M+fP0dWVlaT8ZpOTU1lMvkEEc/pxdns2bMxcOBArFu3jqskKTg4GFlZWZg9ezbev3/P04Pz8ePHcHNz4zt7wMTEhO/MczabjX379mH8+PFNogGhiooKVq1aBUNDQ4GqdJSVlZlsT1EuXFRVVdGqVatmK56vWLGCyYplsVh8b8AQ/oeNjQ04HI5Ak+vY2Fj4+/sjMzNT5JY/34N43rp1a2zevBmJiYn45ZdfsGvXrlqbbdFZkg2xapKVlYW+vr5AFTv0wpxeyGhoaGD9+vU8kyiMjY2hoKDAldHZGOL55MmTERMTg4kTJyIiIqLWZtNDhgxhSngJwkNnSYnCUsnOzk5kmecJCQmQl5eHurq6SM7X1FFRUYGWlhYjnnt7e4PFYjFZtHRZ+feSeV5ZWYlFixbB2dkZCxcurHMsvdFH++M2F+jvnijF83bt2qF169a1irChoaH4999/sXv3bgDVfvIJCQkiTeAA/pdIImwGsqBERETg48ePdVq2ANXfI2tra7x9+xYaGho1RGdnZ2e8e/cOZWVl+PDhAzgcDt8JHO7u7mjfvj0GDx6M7t274+bNm3z1sSsoKGAEe9qyjF9Eef/mhZSUFE6ePIkNGzbAwMAAlpaWmDVrFuP//i0dO3aEkpKS0E1DG9JAl87cpcXziooK3Lhxg6dli7iRlZWttWkuvcauLTN69+7dSEhIwKFDh5jX3r9/j6qqqgaJ5/Tfh1/atm0Le3t7PHnyBPHx8Th69CgzPztz5gyAarvIuLg4GBsb8/ysN6RPjqOjI8LDw/HgwQOMGjWq1nFubm4ICwtDRkYGqqqqEBgYWMPqT1zQlZi0eP7hwwcoKChg6NChXP/2T58+RV5eHs9qfV5VARYWFli3bh127NiBjx8/YseOHXB1dYWTkxN69OiB/fv349y5c/D19cWGDRvw/v37Jp8MLZLaemlpaTg7O2Ps2LEYN24cnJ2dxVYKSyCIG4qicPr0aVhaWsLT0xMHDhxAVlZWo1zb19cXubm5XBZE7u7u+PLlS62e3PWRk5ODysrKWh/ivXr1Yhr9AoCfnx8qKirA4XC4SsYkSWpqKjp27CiweE6Lrp06dcKOHTsQGRnJlVHv5eUFFRUVphmQt7c31/F5eXkICgqqs3TyWywtLfH582e+Njvevn2L2NhYLF68mO/zi5t169bh48ePAh83ZMgQADWzXxoCi8VCp06dahXumioFBQUoLCyEjY0NNm/ejPT0dJiYmKB169aSDq3ZQXvfCeIDe+HCBWYxJMxnuS4yMjLQqlUrKCkpifS8TREFBQVs3rwZbdq0wa5du3iOuXz5MvT09BjRR1gErdiJjY2FtLQ0X+WsMjIysLKyanTxHKhuVnXkyBGkpKRgz549PMcoKytj2LBhxPe8gdDiiyisI+zt7REaGspkpTUE2hO2sUUPSfJ109BHjx7B3t4e7du3Z97X1dVtseJ5cXExQkJCGNuK/fv349OnTzh69Gi9SRjm5uaQlpZudtYtqampkJeX51lZIywsFguGhoa1iue0qHnq1CkUFhYiKCgIgGjnoACYxJbG8j2n/fAHDhxY71h6ftS9e/ca9xdnZ2dUVlbi7du3CA4OhqysLKysrPiKQU5ODitWrICqqirOnz+PvXv34v379/Wua3x8fFBVVQUVFRWBxfPs7GyoqqqKtYeDtLQ0Nm3ahHPnzuHkyZPYv39/rYkQLBYLRkZGEhHPlZSU0KlTJ0Y89/b2Rn5+PiZOnCjU+RoKnTn9LV+vsXlhYWGB+fPn448//kBOTg6A6uoQeXl5xprD0tISWVlZfPczE0Y8B/7ne75p0yaoqanh2LFj+OGHH7BlyxZkZ2dj69atmDZtGn799Vc8fvy4xmZZbGwsZGRkhKqMcHBwAEVRKCsrq1M879u3L4BqLSgsLAwlJSWNJp7LysqiU6dOXOK5paUlevTogTdv3jCJh3fv3gVQXU31rTVTVFQUpKWla8yt161bBwMDAwwZMgRv3rzhsgVevHgxIiIiEB0djfXr1zeLflKiMab9f3j5GhEIzY3Dhw9j9uzZGDFiBJP9ceHChUa59pkzZ2BiYsLV8dva2hp6enq4d++eUOekSxprs22xsLCAmpoaY93ytX1JU2nUSE9C7OzsEBERwbeFQ2JiIqSkpJhjJ0+ejE2bNqGkpARAtXjev39/6OjooEuXLjV2Un19fcHhcPjyO6fp1q0b43FdH3STlK//vSUNi8WCgoKCwMctWLAA9+/fr/VzJiydOnVqdpnnX08o58+fDwsLC6aBE0EwWrVqBUNDQ77FBIqicOHCBUycOBHy8vIib76WkZHx3WSQAtXC7rJly3Dy5MkaDT3Ly8tx5coVTJkypcF9DkxMTAQWz/X09CAjI8PXeBsbG+azcPv2bRQUFDTqfbdDhw51+lCOHj0ab9++5Vn9ROAP2ndZFIsve3t7VFRUCNTIrDYSEhK+G79zGrrhHYfDgbe3dw0hsCVnns+fPx9dunSBo6Mj/v33X2zZsgVLly7lq/JMXl4e5ubmza5paFpaGrS0tES+QVSXeB4TEwNlZWWUlpbi1KlTCAoKQrt27US+KaqoqAhNTc1Gyzx/8uQJ+vTpA0VFxXrH0gIkrw0DW1tbKCoqwt/fH8HBwbC2tq7TBuZb1q1bh9DQUEyZMgU9evRARUVFvclLDx48gJmZGQYMGCCweJ6VlSVUc01xYmxsjEePHgmUGU3TEPEcqLZuefLkCTZv3oz169fD3NxcYo0UHR0dERsbWyORMCkpCSwWq87fc/PmzWCz2RgxYgQ8PT3x4sUL2NnZMdnFdM8bfv7GFEU1SDxPT0/HuXPnsHHjRigrK+P3339Heno6+vTpg7y8PGzZsgXjx49H69ata1jXxsXFoVOnTnzPOb/G3NwcrVu3hpWVVZ1e7ZqamrCwsICPjw8CAgIgIyPDt9WSKDAyMuISz21tbeHo6IiSkhJ8/PgRFEXh3r17sLCwQFZWVo0+RVFRUTAwMKixAaagoIBjx44hKSkJdnZ2XJoKi8ViNo2bCyIVzydPnoz9+/fXOUaY7rYE/nj58iWcnZ1RUVEh6VCEJjMzE/v370fnzp3h5uYm1mtVVlZiz549NbqCX716FcOHD8e5c+dgZmaGkSNH4uTJk2L/7GZnZ8PT0xMLFizgmoCyWCy4uLgwWRWCUp8XoZSUFFxcXJimoQ8fPoSrqyuApieed+nSBWw2m+9s0sTERGhrazMPu61btyI7Oxt//fUXcnNz8fr1ayZjeuDAgXj06BGXVY23tzeMjY0FWvjS3ez5+feKiIiAnp6eUM09mhpKSkrM31KUNHfxXFZWFq9evcLhw4clHFXz5Wvhsz7evn2LyMhIzJgxAxYWFiIvf8/IyGjRli28WLJkCeTl5bFv3z6u1728vJCXl4cpU6Y0+BomJiaIiYnhuylbbGysQN6Ttra2CAsLQ35+Pn788UcMGTKEr8y+xoJu9tbc7BqaEmlpaVBRURFJVUjnzp3BYrFEYt3y9u1bvjM+Wwrm5ub4/Pkz3r17h8zMzGYpnj98+BC7du0SaO7/4sULeHh4YNmyZVBRUcHChQuhqqrKsxdDbTTHpqF0c0RRU1/muZWVFSZOnIiDBw8iICAA3bp1E0uFh4GBQaOI5+Xl5Xjx4gX69evH13haPP+6WSiNrKwsunfvzojnDem5Y2trCzk5uRrZx1+vlyiKwsOHDzFo0CB069YNb9++Fcj6Mzs7m6s6pSmwYcMGxnJxw4YNPBtJ8qK8vBw5OTkNEs+7d++OoKAgHD16FGpqati/f7/Eqpdoi5Vv17WJiYnQ0tKqs1pAXV2dqaobP348rl69yrXZY2JiAikpKb7E89TUVJSUlAglnru4uEBOTg5GRkaYN28egOrNkTlz5iA8PByLFi2Cvr4+lJWVMXnyZJw+fZprPironPNrpKWl8eOPP+KXX36pd2y/fv3g4+MDf39/dO7cuVGrXOlKC1pnsbW1RdeuXSEtLY3Xr18jLCwMiYmJ2Lp1K6SkpBjdiObz58+1bg706dMHZ86cwenTp5t9FZ5IxfPbt29j8+bNWLp0aY3JBpvNxpkzZ5gdJoLoefjwIQICAvD27VtJhyIUz58/h7a2NtauXQs5OTn4+PjUyHQTJWfOnMGqVatw9uxZ5rWCggK8fPkSQ4cOZV6bM2cOwsLChBavBYkHAGbMmFHjPTs7O3z48EGobu8pKSlgsVh1ZmO5uLggICAAMTExiIyMxLRp0wA0PfHc2tpaoKahdLk0jaGhIRYtWoQdO3bg4sWL4HA4GDx4MABg0KBByMjI4BLpHj9+LJBlC1C9w2pra8tX1kVERAS5J9ZDcxXPZWRkmO+cqqpqi9ggkRSCiOcXLlyAuro63NzcYG1tLXIxMjMz87sTz1VVVbFkyRIcPXqUKb0FgPPnz8Pe3h6WlpYNvoapqSkqKir4/q4LI56XlpZi0qRJyMvLw9GjR5vUBN7IyAjy8vJEPG8AaWlpIhPwWrVqBVNT0waL5/Hx8YiPj2fKsb8XzM3NUV5ejmPHjkFZWblG5ZWOjg5SUlKaTF8dXhw5cgRr1qzBn3/+ydd4NpuNpUuXolu3bti7dy8eP36MsLAw+Pr6CtRDxtbWFqGhoc0q2YzOPBc1hoaGiI+P57n2iY6OhrGxMZYtW4a4uDg8ePBA5JYtX8fRGLYtAQEBKCsr41s8d3JygoeHBwYNGsTzfWdnZ7x48QJhYWENEs/l5eVhZ2fH5X2cnJwMLS0tXL58GUC1P3dCQgIGDx6Mbt26oaioSKBqsqaYeU6vvdetW4edO3di48aNfB1HaxcNqcTdunUr8vLykJGRAV9fX2atKgkMDAzQvn37Gr7nSUlJfFnnDRo0CK9evUJYWBg2btyIRYsWMe/Jy8vDyMiIL/Gc9tQWRjxXUlLC9u3bceLECS6xf8uWLZg3bx5+++035rU5c+YgOTmZqxq9oVZ/O3bswKxZs+od169fP0RHR+PevXuNZtlCQ2eeR0dHo7S0FLa2tlBSUoKNjQ0CAgJw7949KCsrY/jw4bC3t8ezZ8+4jo+Kiqrz32bGjBktoveXSMXzQYMG4dmzZ7hx4wbGjBmD0tJSVFRU4OjRozA2NsaKFSsk5tf0PUBn4wrrjS1pLl++DB0dHaSlpeH+/fsAanpQi4qKigpmQnzlyhXm9cePH4PNZnNl0A4YMAA6Ojo4deqUWGIBqnfsjx07hnHjxvHcebezs0NJSYlADdVoUlNToaGhUWepUa9evVBcXIydO3dCSkoKo0ePhry8fJMTz5WUlGBmZiaQeP5t1vhvv/0GiqLwyy+/wMbGhvEv69mzJ5SUlBjbmoSEBERFRQlk2UJDZwzUBxHP60dPTw/Z2dmM1U5zICEhATo6Os2qDK0pY2tri/T09Hp7T1RVVeHSpUuYNGkSZGRkGPFclCLE95h5DgDLli0DRVFYtmwZ2Gw28vPzcefOHUydOlUk56ezVfh5xlEUhZiYGBgZGfF9ftqT/cGDB/jjjz+anI2GtLQ0LC0tm5R4zuFwhNqwlxTp6ekizX61s7PDu3fvGnQOPz8/sFgs9OrVS0RRNQ/Mzc0BAP/99x9cXV1r2EXo6OigsrKy0foJCUN4eDh0dHSwYcMGHD9+vN7xp06dwrt373Dw4EHGxqq+Mn1e2NraoqCggGnG1xwQZ+Z5ZWUlYz/5NbR43q1bN/Ts2ROA6P3OaRor8/zp06dQU1PjW2CSkpLCpEmTap1rOjs7IzMzE5WVlQ22f3B0dOQST69cuYKMjAwsWLAAiYmJePjwIeTl5dGnTx/mWoJYt2RlZTW5zHOgOiFqy5YtGDduHF69esXXMfTntSEbSlJSUiLtIdAQWCwWT9/zbxPU6sPKygpbtmypse7lt2no58+feXpq88uKFSuYynqajh074tixY1yfvW7dusHW1pbrvt+QzHNB6NOnD1gsFnJychpdPDc2NkZxcTEeP34M4H/zZicnJ7x+/Rr37t1D//79IS8vj969e3OJ51VVVYiJiRH4edccEal4DlSXOgYEBCA2NhZOTk4wMDDApk2bMG/ePCQkJAhUukYQDHrR5efnJ+FIeLN9+3Y8ePCg1vf9/PzQv39/tG3bFh06dICdnZ3YxPOzZ88iMTERK1euxIsXLxhrEy8vL5ibmzMNYoDqRe3MmTNx8eJFLgGvqqoKHh4eGDdunEC767x4+vQpoqKisHDhQp7vd+nSBQCEWsilpKTUu/vdtWtXKCgo4NSpU3B0dISamhrU1dUbJJ7//fffmDVrVoMbblVWViIzM5OZhHTp0oVv8TwhIaHGg71Dhw5YtWoVysvLuSoM5OXl4erqihs3bsDb2xuHDh2ClJSUUBlj3bp1Q3h4OIqLi2sdU1ZWhtjYWCKe1wP979ecFpKCTigJdUOXJteXff706VOkp6czNiI2NjYoKioSaeXC9yqed+jQAceOHYOHhwemTp2KixcvoqqqCj/88INIzt+pUyfIycnx9SzNzc1FYWGhQAuZDh06QFNTE926dcPSpUsbEqrYEEelRENYtmxZnVZcFEXBx8enyWQPp6WlibTZlL29Pd6/f9+gDQRfX1/Y2tqibdu2IourOaCtrQ0lJSWUlpbytEeikxaa6nO9tLQUMTEx2LRpE5YsWYKFCxfi4sWLtY7Pz8/H+vXrMW3atAb3N6Gfd83JukVcmee0SPZt1ndxcTHS0tJgbGwMAFi9ejUUFRXFJjYZGBggNTWVse0oKiqCoaEh32Iqv/j4+KBv374N7iFCQ38WpaWlG9zU28HBAdHR0cjNzQVQbXHat29fqKioYPr06bh37x569+4NJSUlqKmpwcjISCDxPDs7u8llnn+NnZ0dQkJC+Hre1WeX2hxxdHREYGAgVzIKv5nn9WFhYcFXf5HPnz/DwMCA8UsXFywWCz/++CNu3ryJT58+IS8vD/n5+Y3SZL5du3aM5tPYvbLohJQbN25AQ0OD+T46OjoiIiICr169wvDhwwFUJ10mJiYiISEBQLXeUlVVRcRzYSgoKMCpU6eQkpKCqKgo5Ofn48mTJ1i/fj1at24t6ssR/p+ysjJmF/7FixcNFixFzYcPH7B+/Xr8/PPPPB88WVlZCAsL49oRHDhwILy9vUVeukhnnY8fPx7r16+HjIwMrl27Boqi8ODBA56LxVmzZqGwsBCzZ8/G1q1bsXXrVpiammLKlCl48uQJ+vfv36BFwL///gsLCwu4uLjwfL9t27bQ09MTSjznp2mJnJwcHB0dwWazmfK/hojnISEhWLFiBc6cOYPFixc36N+QbgJG/w78TmDYbDaSk5N5ipgrVqzAqFGjMH36dK7Xhw8fjoCAAAwcOBB79uyBq6sr1NTUBI65e/fu4HA4df57RUVFgcPhEPG8Huh/v+Zk3cKr4oEgPMbGxnw1/3z8+DEjkAJgmiuJSpCkKAqZmZnfVcPQr5kyZQquXLmCa9eu4aeffkL//v1Flm0oLS0NIyMjvsRzWkgRNAvo+vXruHnzZpOtCBFHpYSw0MkBPj4+KCws5Dnm4cOHcHNzw5MnTxo5Ot6I0rYFqJ5rFBcXIyoqChRF4ebNm0wzLX7x9fWtken2PSAlJQUzMzMAqFM8b6q+55GRkaAoClZWVvjrr78wZcoUTJ48Gb/88gvP9dXZs2dRUFCAHTt2NPjaurq6aNOmTbMRz8vKypCbmyuWzHM9PT2wWKwa4jn9PaTFHnd3d2RnZ4vt2Uw/a+Lj4wFUe9vHxcXV8PxtCMXFxQgICODbsoUf1NXVYWhoCAsLC74akNaFo6MjACAwMBCJiYkICAjAnDlzcPbsWTx79gze3t5c1iLdunUTOPO8KYvnXbp0wZcvX/h6BqSmpkJBQaHJZI6LAgcHB+Tm5jK/P0VRSEpKEkmikKWlJZKSkurVHIRtFioMM2fOhJaWFv7880+m6qQxMs+BaicPTU3NRrseDX09etOfxtHRERRFgcPhMEmHtF5F3wPpqgQingvIunXroKenhzNnzmDbtm3IysrC+PHj0b9/f7H7RX/vfPr0CRwOBz/++COKi4u5fBpfvHghcR/0P//8E6qqqvj8+TNjyfI1dOlHnz59mNcGDBhQw4M6Li6uzmxefqCzzjdu3Ag1NTUMHDgQV69eRWhoKFJSUniK54aGhliyZAnevXuHI0eOYM+ePXB0dMS7d+8QGhoKFouF/v37CyU2Z2Zm4vr16zUahX6LsCXE/Hb8pm+EDRXPq6qqMHv2bJibm+PYsWM4fvx4gxYU3+7g0xOY+vwH09PTUVVVxfPBrqysjBs3btTw6l2wYAEiIyMRHx+PrKwsLr8zQbCysoKCgkKd9z26RI2I53Wjra0NFovF7G43B0jmuWiRkZGBlZVVveL5q1ev0LNnT+Y+qqurCxUVFZGJ53l5eaisrPwuM89pxo4di9u3b0NJSanWSilhMTEx4cu2RVjx3MnJqUEepOLGxsYGX758aRIbhS9evEBOTg7YbHat1Yx//fUXgOr5Z1NAHLYtAPD69WssWLAAo0ePxoYNG/g+nvY7/x7Fc6B6bqOrq8uI6F/ToUMHyMrKNlnxnLbBtLCwgJSUFM6ePYsDBw7g4MGD6Nu3b4258cWLFzFkyBCRZJqyWCyB+nxImm8TXESJgoICtLW1a1im0AIenXkOQKyN9eiMUzoO2h5VlPe+ly9forKyUuT9EZYsWYK5c+c2+DxGRkZo27YtXr9+DU9PT8jLy2PEiBHo27cvVq5cCQA1xPPg4GC+KnfKy8tRVFTUJG1baGgrHX4qnwMCAmBsbNyk+qo0FLppKG3dk52djbKyMpFknvfv3x/t27fHyJEj69R4GlM8l5eXx9q1a+Hh4cFoAY2ReQ5UN6oNCAho9M9Pq1atoKGhATabzSWem5mZoU2bNrCzs2Pu8+3bt4eVlRWePXuGz58/Y/HixRg4cCCXc0NLRaTi+c2bN3Hw4EF8/vwZ8+fPh7KyMs6cOYP58+ejb9++uHXrligvR/gKWhyYPn06lJWVmQd7aWkpxo4dK9CEX9RERETg6tWr2LFjB5ycnLB3794aY/z8/GBkZMRkowDVHtSKiorMTSs5ORk2NjYNEmIjIyOxefNmTJgwAVZWVgCquz+/ePECJ0+ehJKSEnr37s3z2L///huRkZFIS0tDQUEBLl68iC5dukBHRwePHz9GYWEhBg8eLHCJr7e3N6qqqjB58uQ6x9HiuaBZafzYtgDA1KlTMWvWLMYzUFjxfM+ePXj//j1OnTqFefPmYfPmzVi/fj2uXbsm8LkA3uI5gBrea99CCxCCiJhSUlIwNTWFnp4e2rdvL3SGooyMDOzs7OoVzzt06IB27doJdY3vBVlZWWhpaTUJQYkfqqqqkJKSQsRzEWNjY1NnJl5FRQWCgoIY71OgWoSwtrbmEiEuXrwo9GY+fT/8nsVzoHqBnJubi9GjR4v0vCYmJnxnnqupqbWorC7gf5USTUE0u379OnR0dNCpUyeemeWRkZGMDV9DbetEQWlpKQoKCkRq29KuXTvo6elh4cKFOHPmDBwcHODn58f3HIz2O69tTtnS2bp1K65fv85TAJCSkoKOjk6TFc/Dw8Ohra3N3GNYLBZ+/vln+Pn54dOnT1i3bh0zNjY2Fq9fvxaZhRVQ7TXbXDLP6Tm6ODLPAd7NOqOjo9G6detGy1TW1taGrKysWMXzp0+fQkNDQ+QJNcuXL8fPP//c4PN87Xt99epVDB48mGmEu23bNvj7+3MlJHXr1g0lJSV8/Y2ys7MBoElnnqurq0NLS6te8Tw5ORmenp4i2bBoSrRt2xbm5uaMH7Ywa+za0NLSgpeXF8LCwjB27FhUVFTUGFNVVYXY2NhGE88BYO7cudDQ0MDWrVvRunXrRluvKykpSWwNSVfzfC2eS0lJYfny5fjll1+4xvbu3Rve3t4YMWIENDQ0cPny5Ra1YVQbIhXPw8PDMX369BqC09atW3HgwAFMnDgRhw4dEuUlCf/Px48foauri3bt2qFnz55MptCpU6eQmZkpcKmpKNm2bRu0tbUxc+ZMrFixAr6+vlyZ8UD1ROTrrHOgOuOA/mIC1ROA4uJi+Pv7CxWHt7c3HB0doaqqit27dzOvjxw5EjIyMjh06BD69etXo7ERPxgbG+PixYt49+6dwB54AQEBMDU1rXfSYGdnh9zcXIHsYb71C68Lc3NznDp1ivn+CiOef/78GZs3b8bKlSsZEX7jxo1wdnau0y+yLlJTUyErK8s8tDp06ABnZ2f8+++/dR4nyge7MNTXNJQ0C+UffX39WpvJcDgc7NmzB7a2tsjPz2/cwHiQmpoKDodDxHMRY2Njg48fP9Zq1/Tu3TuUl5ejR48eXK9/7SMdFBSEyZMnw8nJCb/88ovAVUwZGRkAiHgOoM4G1MJiamqK+Ph4ngunr2msxk2NjY6OjkgrJYSFoijcuHEDo0aNgpubG3x8fGqM+fvvv6Guro5BgwY1CfE8LS0NgOgFPBcXF6ioqODp06fYvHkzUlNTER0dzdex36vfOY2hoSFjocWLpiyef/z4kUmw+ZoePXpgzZo1+O+//xjR+NKlS1BSUoK7u7vIrm9hYYGoqChUVVWJ7Jzigv7uicvfuTbxvDEze6WlpaGnp4fY2FgUFhbi7du3MDAwYOx9RIGPjw/69evXpMUnR0dH+Pn5ISAgAOPHj2del5GRqeE3b29vDxaLxZd1C904uClnngP89dw6dOgQlJSUMHv27MYJqhGZNGkSrl69ii9fvjBahCgyz4HqzZabN2/i6dOnPDce4uPjUVVV1ajiuYKCAlavXo2SkhIYGBg06e+mqKDFc7r3Bs2mTZuYflI0vXr1Qnx8PLKzs3Hnzp0Wl9BSGyIVz+v6UM2dOxc3btzA+vXrRXKtt2/folevXujTpw8mTJjQ5Dy+G5uwsDBmoufq6ornz5+jtLQUu3fvhpKSEuLj4xvU9EhYoqOj4eHhgdWrV0NeXh6jR4+Gvr4+9u3bx4zJyclBaGgoz9LWgQMH4tmzZ7h9+zY8PT3RrVs3BAUFCdyg6ty5cxgyZAicnZ3x6tUrrpu9qqoqBg0aBA6Hw1VyJii9e/eGpqYmbty4IdBxAQEBfDW5oUuIBbFuoSe1wpSqq6urM2IRv9y5cwfS0tLYvHkz8xqLxYKZmRnTfVxQaNuZr+8vq1evxrNnzxAQEFDrcYmJiVBRUUGbNm2Eum5D6d69O6Kjo5GXl8fzfSKe88+IESNw7969Gt672dnZcHd3x6pVqxAaGoqXL19KKML/IelNm5aKra0tSkpKarVrevXqFRQUFJjKFBpra2tERESgqqoKq1atgpWVFbZv344jR47A1tZWoIoGIp6LFxMTE7DZ7Bol+t/SUsVzulJC0uL5mzdvkJycjDFjxsDNzQ2hoaFcG+kFBQU4c+YMFixYAGtr6yYhntPWEaIWz//991/ExMSgZ8+e6NmzJ6SlpZms0/r4Xv3O+aUpi+fh4eE1bP1o5s+fD0VFRRw4cABAdTWTu7s7lJWVRXZ9c3NzVFZWMh7bDaWiokJsjX1TU1MhLy8vVH8gfqhLPG9MDAwMEBcXhxcvXoDNZmPBggXIy8tjhN+GUFBQgDdv3ojU71wcODg4oLi4mLFsqQsVFRWYmZnxJZ43h8xzoH7xvLi4GMeOHcPcuXNbZJ+/6dOno7i4GNeuXUNiYiLk5eVF+m/m5uaGf//9F//991+NREna0q8xxXOg+n6voaHBiMotHWNjY0hLS/OlTwwYMAA9e/bE9evXG/1+LElE3jC0LoYMGcL3pLM+tLW18fDhQ/j5+cHY2Bg3b94UyXmbKx8/fmRKfvv06YMvX75g9erVSEhIwMaNG1FRUcFkSYiDpKQkTJ48mWuiV1FRgZ9//hkdOnRgdhFlZGTw888/4/Lly8yuJS+/c5oBAwagrKwMkydPRt++fbFt2zYUFhYKvFjbtm0bhg8fjjt37vAUUydNmgQpKSmmEYIwSElJYdSoUbhx4wbfmQilpaV4//49X+K5trY22rdvL5B43pCO3+rq6igsLGS6y/NDZmYmNDU1azSm0dbWbrB4/jXu7u4wMzPDzp07az1O0r7TdOY9r34DbDYbkZGRRDznkylTpqCsrIzL+ic7Oxv29vYICAjA/fv30bFjR4GrPsQB7c0uqmwMQjV0FsTdu3dx8uRJLF68mOt58+rVK3Tv3h1ycnI1jquoqMBff/0FPz8/7Ny5E6tXr8aHDx9QUFCAgwcP8h1DRkYG5OTkmFJlgmihGw3V93xvqeI5gCYhnt+4cQPt2rVDr169GP/dr7PPT506hfLycixcuBAmJiaIj4+XeAILnSggStsWoLo/SqtWrQBUi0Fdu3blax2TkJDwXfud80NTFc/LysoQExPDM/McANq0aYNFixbhn3/+wcuXLxEWFoZJkyaJNAbaJ74htiD5+fk4ePAghgwZwsQsDuhGveLKyjQ0NERmZia+fPnCvCYJ8dzQ0BBxcXHw9fWFlpYWhg8fDqDawqqhvHr1ChwOp8nfL2jf668tW+qia9eufPVcozcgmrp4bmdnh9TU1FqrsunGwT/99FMjR9Y46Ovro1+/fjh9+jSSkpKgq6sr8u/99OnTYWlpia1bt3K9/vnzZygqKjZ63xolJSXcu3cP27dvb9TrSooFCxbgxo0bUFBQqHds+/bt8eLFC576XUumUcVzoLqMRxR07NiRaQ4iKytbawlxeXk5CgsLuX5aGl++fEFcXBwz0evWrRuUlJRw6NAhDB8+HKNGjQKAehssNoQHDx7g4sWLcHZ2RkhICEpLSzFq1Cg8efIEp06d4hJT58yZg7Zt22LkyJHIzc2Fn58fDAwMeAqd1tbW6NixI8rLy3Ho0CGmBLQ+v+uvqaioQHR0NIYMGVLr52TSpEmIiIhocDOI0aNHIz4+nq+GIkC1sFpVVQVnZ+d6x7JYLIGbhtKCtbCZ5wAEyqrIyMjgmZWpra2NtLQ0oTJfeInnUlJSWLVqFW7dusW1uPh6AS9p8dzExAQqKio8rVvi4+NRXl4Oc3NzCUTW/NDR0YGbmxvOnTvHvLZjxw7k5eUhODgYQ4YMQY8ePZpM5rmamlqLzDqRJBoaGlBXV8fy5csxf/58nDx5kplcUxSFV69e1bBsAcA8F9etWwdXV1dmg9TExAQzZszAmTNnUF5ezlcM9P3teyjdlARaWlpQUlKqs2mot7c34uPjRTaXbGp8XSkhKW7cuAF3d3fIyMhAS0sLFhYWjO/5ly9fcPDgQUyYMAFaWlp8VwuIm7S0NMjJyYndIsXV1RVPnz6tN0Hie/c75wdaPBeV7YWo+PTpEzgcTq2Z5wDw888/o7y8HBMnTmSqV0WJtrY2lJSUGiTMLlmyBCtXrkRVVRXc3Nxw/vx5FBUViTDKanjN0UUJvVFK32PKy8uRlJTU6JmgBgYGiI2NZSpKjI2NISUlJRLf848fP0JZWbnJZ7e2b98eS5cuZRqE1oetrS3CwsLq/Y5nZ2dDXl5epNUb4oCubAwJCanxHofDwYEDBzBmzJgW3TRx1qxZ8PPzg6+vr1jW2FJSUvj111/h5eXFVbXw+fNn5jvX2HTt2pVn4+uWiIaGRr1VJd87jf8JFDGJiYl4/PgxswP8Ldu3b0ebNm2Yn5aYDRgeHg7gf82m5OTkGBFh3bp10NPTA4vFEqvveWxsLDQ0NKClpYXevXvD1dUVfn5+uHv3bo1s7tatW+Px48dISkqCm5sbHjx4UOtuO4vFwrp167B3715YWlpCTU0NJiYmAjV8i4qKApvNrjPLl8ViiaQUyNXVFaqqqox1C0VRmDdvXq270AEBAVBSUmL+7erDzs6Ob2EeqJ7UCrugpMVzQXzPMzMzmeO+RltbG1VVVUI1IK1tYj516lRoampi9+7duH//Pnr16oUOHTow1gqSFs+lpKTQtWtXHDt2DGvWrMHly5eZhQvt300yz/ln+vTp8PX1RXx8PFJTU3H48GGsWLGC+Tfu0aMHAgMDJZ4BKenPXUuFxWLh2rVr8PLyQl5eHn7//XecP38eGRkZSExMRGpqKlezUJoOHTpAQ0MDlZWV2LVrF5fwPW/ePOTk5PBduZaZmUksW8SIlJQUjI2Na808z8vLw6xZs9C/f3+MGzeukaNrHKytrZkNf0kQERGBT58+cTWDdXNzw5MnT0BRFGbNmoXs7GymCT2/1QLiJj09HR07dhT7xparqyvS0tLq/X0vXryIrl27frd+5/ygo6OD8vJyxrKhqUCvqeoSzzU1NTFjxgykpKRg7NixQvVKqgspKSmYmZkJLcyWl5fj9u3b2LBhA7y9vXHkyBGUlpbC09NTpHEC/8s8Fxd0UhOdABYXFweKoiRi20Lbq/Tt2xfy8vIwNDQUiXj+6dMnmJubN4uN+b/++gsuLi58jbWxsUFRURFTkVkbWVlZ6NChQ5P//Q0NDdGqVSue6/CHDx8iKioKy5cvb/zAGpExY8agdevWePPmjdg0tYkTJ8LU1BR//PEHAKCkpASvX79udMsWAoEXTV48T09Ph4uLS42f3NxcFBYWYtq0aTh9+jRkZWV5Hr9u3ToUFBQwP4I0W2wufPz4ESwWi0uImzdvHhYsWIAePXpAQUEB2traXJnnFRUVGDt2rEjKzYDqyYylpSV8fX3h4OCAT58+4dGjR+jfvz/P8TY2NvDx8UFycjIiIyPrLPlYunQpli5dyvw/3e2bXxpTqJSVlcXw4cMZ8fzs2bM4ceIEDh06BA8PjxrjAwIC0L17d76br9nZ2SExMRE5OTl8jU9JSanhF84vwojndWWe0/EISm3iuby8PJYtW4ZTp05h2LBhqKqqApvNxl9//QWgaYiYv/76K2xtbXHx4kX88MMPGDBgAMrLyxEREQFlZeUWuZknLkaPHg1lZWWcP38ef/zxBxQVFbFixQrm/R49eqC0tJRnRkhjkpiYCD09PYnG0FJxcXFhyoXnzZsHWVlZHDlyhKk4qK2Cp2/fvpgxYwZjpURjbm6OXr164dixY3xdv7b7G0F0mJiY1CpMLlmyBF++fMGpU6ckkn3UGNAb6aGhoWI5f3BwcK19OJ4+fYrRo0dDTU2Na+7m5uaGuLg4LFmyBJ6enjh79ixTNaWtrQ0FBQWJi+dpaWkit2zhBT++5yEhIXjw4EGLF1Eaio6ODgA0OeuWjx8/Qltbu97mZ6tWrULr1q3F1hjQzMxM6DWaj48PioqKmE2wTp06oV+/fjh79qwoQwQg/sxzDQ0NKCoqMmtYemNRErYtQHVSFJ3w1ZB/o6+JiIhokZWotN1efc8zWjxv6khJSaFz5848K8DPnDkDa2trvirJmzNKSkqYOHEiAPH1dpKWlsb69etx69YtHDlyBDY2NggPD8e0adPEcj0CQRCa/OqjY8eOePHiRY2fNm3aYMqUKdi4cWOdO1Hy8vJQUVHh+mlphIWFwcDAgKvcacKECfjnn3+Y/zcyMuISz0NCQnD9+nWcPHlSJDHQHqStW7fGw4cPkZyczDML8GtsbGzw9OlTjB8/HsOGDeP7Wt27d8f79+9RUVHB1/iIiAi0b9++0R7Mo0ePRlhYGJ48eYKlS5dixowZmDx5MhYtWsTl0UtRFPz9/fnyO6ehm4bym32enJwstD8Y/fcSVeY5ILh4XlZWhtzc3Fon5osWLcLKlSvh6+uLV69eYcGCBThy5AjS0tKQm5srcfHczc0Nt27dQmJiIvz9/fH+/XssWbKEmSg39SyLpkSrVq0wduxY/PPPPzh+/DjWrFnD1b/A3t4e8vLytfqel5SUNErT5KawafM9oKamhlmzZuHIkSN48uQJTE1N0b59e55jPTw8cPr0aZ7vzZ8/Hz4+Pnxl+mZkZPC8vxFEh6mpKU/blqtXr8LDwwOHDx9u0ZuOdKWEOHzP4+Pj4ezsjC1btnC9XlZWhunTp6Nfv37o0KEDnj17xmW15+rqCikpKRw5cgTr16/HmDFjmPfoaoG6rHYaA3Fnv9Lw43u+a9cu6OvrY8KECWKPpzlDW1TQmd5NhbqahX6NiYkJ8vPzedqFiQJzc3OhhdmbN2/CyMiIy7d9xowZ8PPzE7nFkri/eywWC4aGhsy6Jzo6GoqKio3yff8aOgNeW1ub+eyam5s3OPOcoihERES0yEpUehOqPvE8Ozu71vlbU4NX09CCggLcunUL06dP/y7WdTNnzgQg3t5OkydPhoGBARYvXgwdHR2EhIRg5MiRYrsegcAvTV48r40rV67g1atX2Lp1K1xdXXH58mVJhwQAePHiRaPvjH3dLLQ2vu1WHhwcDAACNbesi9jYWGZiISUlxbffr7W1Na5cuSLQQ9PBwQHl5eV8Z2Y19qRk0KBBUFBQwIgRI6Cmpoa//voLhw8fhqqqKqZPn84IeMnJyUhNTRVol9rExARt27bFjh07UFJSUu/49+/f820J8y3y8vJo06YN3+I5RVG1iufq6uqQkZERWDynm4DVJp63atUKu3fvRp8+fcBisbB8+XKUlJTg119/BYAmlQHs5OSEf/75BydOnMCVK1da5ERZ3EyfPh0pKSlo3749lixZwvWevLw8unXrVqvv+aBBg5gKBXFCxPPG4+eff0ZOTg7OnDlTp4DBYrFqXdCMHTsWampqOHHiRL3XI5nn4sfCwgJJSUk1+tNs3boVI0aMwOTJkyUUWeMhrqah69evR0VFBW7evMk17zt//jwuXLiAkydPws/Pr8acQVVVFf3794e7uzt+//33Guetq1qgsUhPT280Mc3V1RW+vr6gKAopKSm4ePEiiouLAVRXYV66dAkrV67ku6Lwe6Vdu3YwNzdvEr1Kvubjx4+1Ngv9FnFWwJiZmSEzM7PWShGauLg42NvbM2s8NpuNW7duYfTo0VzPvTFjxqBVq1ZcvWMaSnl5OXJycsSaeQ5UC//nzp3Df//9h+joaBgZGTV69VHbtm3RunVruLq6Mn9Xc3NzxMXF8d03hRdZWVnIy8trkWsCFosFGxubFpN5DlSL55GRkVxrcE9PT1RUVHwX8xOgutL38OHDXPZuokZWVhYeHh44f/48nj59SixbCE2GZiueT5o0CTk5OfD19YWvry9TQiJp6C+6MPYUwhIWFlbvRM/Q0JDL8zw4OBgyMjKIjo5ucNZHQUEBcnJymJI2cdOlSxfIyMjw7XseHh7eqJMSZWVlDBo0CKWlpThz5gzatGkDVVVV/Pfff3jx4gU2btwIoNqyBQAcHR35PreUlBSuXr2KV69eYdiwYVzd57+lqKgI4eHhTHd0YVBXV+dbPC8oKEBFRQVPcUlKSgqampq1fi/S0tKwf//+GpnBqampAGoXz79FW1sbU6dOZbJMm5qIOXPmTCxZsgTFxcUtcqIsblxdXdGjRw/s2LGDZ2OhHj161Jp5/unTJzx8+JDL6kVQDh06hNevX9f6fkFBAQoLC5vc566lYmxsjJEjR4LD4Qid/aeoqIhp06bhxIkT+PPPP/Hff//h48ePNcZRFEXE80bA1tYWALjE47KyMoSHh2P48OHfRVaXtbU1nj9/ztUsq6EEBgbi4sWLmDhxIhISEvDhwwfmvUuXLqFfv36YPXt2rYLUvXv3cPPmTUhLS9d4rymI541l2wL8z/d85MiR0NfXx+TJk9GtWzeEhYVh7969aNu2LWbNmtUosTR3evbsiRcvXkg6DIaysjLExMTwlXkubugGdfVln/v4+ODdu3dYsmQJKIrC69evkZGRgVGjRnGNU1ZWxoQJE3D27FlwOByRxJieng4AYt+4WrlyJWbPno05c+bg3r17jW7ZAlQLwXv27OGaQ5qZmYHD4TSoRwVtLdoSbVsA8CWeN7fMcw6HwzVHOXfuHPr37y90pXdzg8Vi4ccffxT7v5mTkxOmTJnSYm36CM0T8mkUMbSwIkhDy4aQn5+PlJQUvjLPs7OzmWyut2/fYty4cWjVqhXfzdJqgy4BbCzxXFFRETY2Nnz5nrPZbERGRja6ULlnzx5cv34dffv2ZV7r3bs3duzYgW3btuHff/+Fv78/9PX1BV7w9evXD48ePcLbt28xcODAWgX04OBgUBRVw+dXEAQRz+lGnbXZGujo6PD0tqysrMT48eOxYsUK+Pj4cL0nqHgOVPtQAtWCvbizYYRh3759WLNmTYtteCdOpKWl8fLlS8yYMYPn+z179kRycnKN3hZ0U7I+ffrg77//5rK04hcOh4M1a9bg0KFDtY5JTEwE0PQ2bVoyq1evhqKiIvr16yf0OZYvXw4zMzPs378f06dPh5OTUw1bsC9fvqC0tJSI52LG3NwcMjIyXOJueHg42Gw2OnfuLMHIGo+ffvoJWlpacHBwwOLFi5Gfn9+g81EUhZUrV8LGxganT5+GiooKbt26BaD6uf306dN6E1BkZGRq3bgwMTFBYmIiysrKGhSnsLDZbGRmZjZa5rmLiwtatWqFsLAw7N69G4GBgZCVlUX37t1x4sQJLF26FEpKSo0SS3OnZ8+eCAsLa/BnnF9ycnLqtHyMjIwEh8PhO/NcnNCZlvWJ5+/evYOioiK8vLxw/fp13LhxAxoaGjwtIWfMmIG4uDg8f/5cJDHS5xH3ZgOLxcI///wDV1dXxMfHM7Ypjc38+fNhb2/P/D8teNdn3fL06VPMmjULLi4u0NXVxbVr15j3IiIiIC0tLZENgcbAxsYGnz59qjM7vzllnltbW0NeXh5Hjx4FRVGIj4/Hs2fPiB83gfCdQMRzEVJSUsI0q2ss8ZyeVNUnDtPCdlxcHCoqKhAaGooePXpg6NChtYrnpaWlKCgoqDcGulSwscRzoNq6hZ+/cUJCAsrKyho9i8TY2JhnOdOqVauwZMkS/Pjjj/Dw8BDI7/xrevbsicePH+PNmzc4fvw4zzGBgYFQVlZu0O8uiHhOj6tNXNLW1uaZef7bb78hICAA6urquHTpEtd7qampUFBQ4PK2rg8LCwuMGjUKnTp1apJl07KystixYwcpQRMDtAXSt9nn9CbM+vXr8dNPP2HJkiUC36MTExNRUlLCVIx8S1lZGZMpSsTzxsPZ2RkFBQUNWkzr6+vj5cuXyM7OxsuXL/HlyxfG2oymvvsbQTTIy8vD3NycSzwPCQkBi8US2oKsuWFkZIQ3b95g3759OHfuXK2bhd9SVFTE0wLj1q1beP78Ofbs2QNFRUUMGTKEEc89PT0hJSXF5WMuKCYmJqAoissasDHJysoCh8NpNPG8devWiI+PR1RUFJYtW4bu3bvj9evXmD59Otq3b4/Fixc3ShwtARcXF1AUVetzVZRQFAV7e3vs3buX5/scDgc3btwAIH4xmB/opvL1CbPv37/HqFGjMGLECPz888/w9PSEu7s7zyqRXr16wcTEpM4kAEG4ePEiXFxcmOav4kRWVhaenp4YPnw4Bg8eLPbr8UP79u3Rtm3bOv+N2Gw2Jk2ahOfPn0NfXx9ycnLw8PBg3v/06ROMjIwgJyfXGCE3OjY2NmCz2bX+jTgcDnJycpqNeK6goIB///0XZ86cwbJly3DhwgUoKyuL1cKEQCA0HYh4LkKCg4PBZrOhr6/faOI5nclbn1hDCwuxsbEIDw9HRUUF7O3tMWrUKLx586ZGpiYALF68GG5ubvXGEBsbi1atWjVqyVX37t0RHh5ep20J8L9yuKZikcFisXDgwAGMGTMGGRkZDerK7eDggAkTJuDw4cM8SzCDgoJgb2/PcwLNL8KI57VlnvMSz+/evYtdu3Zhx44dmD9/Pq5fv86VnZCamgotLS2BS/WPHz/e4IoKQvNDXV0dxsbGNQQkWjzX1tbGvn37oKqq+n/s3XdYFGfXBvB7qQIiKkpVkA6CIKJYYwcVNZrYY4sajT3RWKJJ1BiNSawxxhI19hp7V1CxolJEekd6VaRI353vD76Zl3WXZRcWFuT8rovrfTM7O/sgsDtzz3nOg5s3b8p0bLa9VUxMDLKzs7nt8fHxMDMzg4aGBmbOnIkWLVrUW/sAUkFVVVVux+rWrRs0NTXx8OFDoe3Vzawh8tOpUyeR8NzKykpsq6aPlYqKCr799lusXbsWnp6e1S6QzufzMW7cOPTp00copGAYBmvXroWbmxvc3d0BAKNGjUJAQACSkpJw5swZuLu7o3Xr1jUeq5WVFQAorHULuzZKfb7v6urqCp1baWhoYN++fUhKSqrVv2VTY2lpibZt29ZL65a4uDgkJiaKvT7z9fVF79698fPPP2P27Nlo2bJlnY9HGjY2NhIrzwUCAV69eoXOnTtj586dePv2LV6/fl1lkMfj8bB06VJcuHBBqJVnTbx58wZ37tzBxIkTa3UcWbRo0QJXr17F4MGD6+01JeHxeNX+jB4+fIiMjAwcP34cx48fx7Rp03Dv3j2uTeXHulgoi73pXVXrlnfv3oHP5zeati1AxQyOPXv2YOfOnVi/fj23ngAh5ONH4bkcPX/+HJqampg2bRr8/PzkshBndZKTk9GsWbNqT9bbtGmD5s2bIy4uDgEBAeDxeOjcuTM8PDygqqrKVSGxSkpKcP78efj7+1e7MntcXBzMzc3rtRepq6srBAIB9u7dK9Inu7KwsDA0b968XqoipKWsrIxjx47ht99+w5QpU2p1rIULFyI2Nha3bt0SeezFixe16ncOyN62RUVFBa1atRL7+IfheV5eHqZNm4aRI0fiu+++w8SJE/Hu3TvcuXOH2+fVq1c1+tm1adOmyUzxJ8J69eolEp6zv3fGxsZQUVGBra1ttVOhPxQWFsb13avcMurixYtIT0/HwYMHce/ePURHR9fqhhVRLFVVVfTq1avK8Jwqz+ueo6MjgoKCuHOowMDAJvt+PnDgQBQVFUlcawEA1q9fjzt37qB58+bYt28ft/3JkycICgri2pkBwLBhw6CiooI9e/bg0aNHtV4zyNDQEFpaWjKF5/LquQyAK/5oCP1mm0JPfnni8Xjo06dPvSwa6uPjAwAii/EGBwejR48eeP/+Pe7fv49//vmnzsciLVtbW4lVzXFxcSgoKEDnzp3RoUMHbNiwAfr6+hLbmE2fPh2tW7fGtm3bajW2c+fOgWEYjBs3rlbHaeyq+xmdOXMGpqam3PpWgwcPxrt37+Dv7w+govL8Yw7PdXR0YGJiUmV4npWVBQCNpvKcNXfuXGzfvh1lZWWYOXOmoodDCKknFJ7L0bNnz+Di4oKePXsiJyen1nf1pZGcnIx27dpVe8LO4/G4RUMDAgJga2sLLS0t6OjoYMCAASJVul5eXsjLy4OSkhKuXLki8dhseF6f7O3t8eWXX2L58uVwcXER6ZXNCg8Ph62tbYO7oGnWrBlWrlxZ6wql7t27w8XFRWQKZmZmJhISEuQWnktzIygzMxN6enpV/lsbGxsjLy+Pmy3w/Plz5OTkYPPmzeDxeLC3t4eDgwPXuuX27du4ffs2vv7661p9D6RpYRduqxzOpKSkQENDg2v/U12lkDhhYWHo0qUL2rRpIzTF/M6dO+jbty9mzpyJAQMGUGXyR6Bv3754/Pix0I3ZjIwMKCsrQ1dXV4EjaxocHR2Rn5+PhIQEMAyDV69eNdnw3MnJCa1ataryHAcAbty4gfXr12P9+vWYP38+Dh8+jMLCQgDA33//DSsrK6FZhC1btkT//v2xefNmqKurY9SoUbUaI4/Hg6WlpdTh+fv372FoaMgt7F1b0dHR0NLSqre2LUS+evfujefPn6OsrKxOX4cNz2NjY1FUVMRtv3//PlRUVODr64v+/fvX6RhkZWNjg5iYGJSXl4t9/OXLlwAqFjEEgKVLlyIpKQnq6upVHlNDQwMLFy7EoUOHhGbRyer06dMYNGhQkz/nYcNzhmFQWloqNHu2vLwc58+fx/jx47lrI1dXV2hra8PLywsFBQVITEz8aBcLZUlaNJT9HWxMleesb7/9FtnZ2Q3ufYMQUncoPJej58+fo0ePHujatSuA+ul7zobn0jA3N+cqzysvePLZZ5/B29tbqML43LlzsLW1hZubW4MMz5WUlHDo0CH4+PhAU1MTgwYNws6dO0X2+9inw/F4PCxcuBA3b94UunBlf/dqs1goUBGel5aWcgvNSpKRkSHxJJqtCmOrgP38/KCjo8NN+QaAiRMn4vLly8jJycHChQsxYMAATJo0qVbfA2laLCwsUFpayrVqASp+54yNjbmLFzY8l2V2UFhYGOzt7dGjRw8uPC8qKsKDBw8wZMgQ+X4TRKH69u2L3NxcoQrFjIwMtG3blpt9QOqOo6MjACAoKAhJSUl49+5dkw3PlZWV0b9/f9y/f1/s48nJyZgyZQpGjBiB1atX4+uvv0Zubi7Onj2L9PR0nD9/HvPnzxf5vR01ahTKy8sxbNgwmdYUqYqVlZXU4fndu3eRmZmJ7777jqs6rI2oqChYWlo2uCIJIp3evXujqKiIC4Lrio+PD2xtbSEQCIQqhQMCAuDo6CgxcFYUW1tblJWV4fXr12IfDwwMhJGRkdC5tzRtzNi+/Lt3767RuFJSUvDgwYN6bdnSUNnY2CA/Px+GhoZo1qwZ2rVrx63/cO/ePWRnZwvN7lFVVUX//v3h5eUl9bpljZ2k8LyxVp6zqE0XIU0LXQXKSWpqKpKSktC9e3e0adMGZmZmDTI8j4qKQmBgoFB4Pm7cOGhpaeHXX38FAJSWluLSpUsYO3YsRo0ahQcPHiAnJ0fsMfl8Pl6/fl3v4TmrR48eePLkCZYvX45vvvkGO3bs4B5jGAbh4eENYuGfujRx4kTo6uoKnQT7+vqiTZs26NChQ62OzZ6QS9O6JTMzU2JLA3HheZcuXYQu6idMmID3799j+PDheP36Nf7++2+6ICYyMTMzAwChxetSU1OFpvTb2NigoKCA65VbHYZhEBYWho4dO6J79+548eIFBAIBHj16hOLiYgrPPzKurq5QU1MTat1S3fsbkR9jY2O0atUKwcHB3CLsTTU8B4ABAwbAx8eHqyavbNmyZVBVVcXRo0ehpKQEc3NzDBkyBHv27MGBAwegoqKCL7/8UuR5o0aNgqqqKqZOnSqXMcoSnl+7dg0mJiZgGAbff/99rV87OjqaFuBuxLp06YJmzZrVaeuW9+/fIygoCLNmzQIg3Lrlw4KihsTGxgYAqmwLEhgYyFWdy6JNmzaYMWMGdu3aJVSFL62zZ89CVVWVFklERWutb775BnPnzsX+/fvRokULfPHFFygrK8OZM2dgYWEh8vs1ePBgPHnyhFuYnP05f6w6deqE5ORksVlCdnY2eDwehdCEkEaBwnM5YftR9ujRA0BFxW9DC88tLCwQHx+PoqIioQ9yXV1drFy5Ert370Z8fDzu37+Pd+/eYezYsRg5ciT4fD5u3Lgh9pgpKSkoKytTWHgOVFRf//7771i5ciWWLFmCrVu3AqhYRCo3N/ejv6PfrFkzzJ49G//++y/S09MBVPRk7tatW62DZ1nC85pUnrOzNFiWlpbo2rUrfHx88N133330Pzsif+wNo8rhOVt5zmIvVKRt3ZKSkoL8/Hx07NgRPXr0QG5uLiIjI3H79m0YGxt/9DfomhoNDQ1069ZNKDyv7v2NyA+Px+P6nr969QqtWrVqUOuW1LeBAweitLQUT58+Fdru7e2NM2fO4Pfffxdaa2Tu3Ll48eIFNm/ejMmTJ4td/LB9+/ZITk6WW/hlZWWF5ORkvH//XuJ+DMPgxo0bGDNmDH799Vf8+++/It+XJPPmzRNaFwWoCM8rz2AjjYuamhpcXV3rNDz39fUFn8+Hu7s7TE1NufC8qKiIa8nWEBkbG0NTU7PKc5WahudARYuXnJwcbNy4Uebnnj59Gh4eHg1mYVVF0tbWxo4dO7Bu3TrMmjULJ0+ehL+/P1atWoWLFy9iwoQJItdigwcPRmlpKf755x8YGRnJZfZPQ9apUycAousNABWV561bt6a1ggghjQKF51XIy8tDQkKC1Ps/f/4cxsbGXEDTrVs3BAQEVNmnTh4EAgFSUlJkqjxnfXiy9c0336BNmzb48ccfce7cOVhaWsLR0RHt2rWDi4tLla1b2MVE2WpPReHxeNi0aRNWr16NZcuWYfHixdwUsaYQwH777bdo3rw5Ro8ejaKiIvj6+ta63zkg38pzDQ0NtGrVCsnJycjMzERiYqJIeA4Ac+bMQceOHfHTTz/VfOCkydLQ0ICRkZHQQscpKSkwMjLi/tvc3BzKyspSh+dhYWEAgI4dO3I3pZ4/f447d+7A3d2dZkd8hPr27YtHjx6BYRgwDIOEhASqPK9HlcNzJyenJv031rFjR+jp6Qn1PS8vL8fixYvRo0cPTJs2TWj/4cOHo127dsjLy+PaM4gjaY0SWfXq1QtARaAvyatXr5CSkoLhw4djzpw56Nq1K+bPn19t6A4Ab9++xd69e3Hq1CluW2FhIZKTkyk8b+T69OmDx48fi7RSu3nzJs6fP1/r4/v4+EBbW5tbW4cN8YKCgsDn8+Hi4lLr16gLSkpKsLGxwdmzZ3H06FGEhIRw/0aZmZlITU2Fs7NzjY5tYWGBNWvW4LfffhNaBL06eXl5ePHiRa3XSvhYde/eHRs2bMDWrVuRk5MjdkFmOzs7GBkZwc/Pr0lco9rY2EBFRUVs65asrKxG27KFENL0UHhehTVr1qB///5S98R9/vw5t5I2UBGeFxYWIjw8XG5jevv2LYqLi7n/zsrKQllZmczhuYWFhUi1gJaWFtatW4eTJ0/i9OnTGDt2LHdRNWrUKNy8eVNoERQWW91Z2/Yg8sDj8bBx40bs2bMHu3fvxpQpU6CmpqbQqvj6oq+vjytXriAoKAjDhw9HdnZ2rfudAxW93JSUlORSeQ5UVNGkpKRwq8yLC89nz56N0NBQaGlp1WzQpMkzMzPj3psYhhGpPFdTU4OFhYVM4bmGhgZMTU2ho6MDOzs7nD9/HiEhIdSy5SPVt29fZGRkIDo6Gr/88gv8/PwwcuRIRQ+ryXB0dERUVBSeP3/epFu2ABXnNgMHDhTqe753716EhITgr7/+EulnrqKigh9//BFffPFFjatSZWVtbQ1LS0tcu3ZN4n7Xrl2DtrY2PvnkEygrK2PPnj2IiIiApaUl9u/fL7HghK1Qr9wbOzY2FgAoPG/k3NzckJGRgQMHDnDbQkJC8Pnnn2PSpEkIDQ2t1fF9fHzg6uoKZWVlODg4cMcLCAiAiooKHBwcanX8ujRnzhzk5ORg+vTp6NSpE5YsWQKgouocEC2GksX3338PZ2dnTJ8+Xer2Lex5E1tNTEQtX74c7u7ucHZ2FvvvxOPxMHjwYAD46BcLBSrOuW1sbMT+HWdnZzfKxUIJIU1Tow/PT506VSd3LH18fPD69WvuxFwSPp8PX19frmULUNHDj8fjya11C8Mw6NWrF9avX89tS05OBgCpw3NTU1PweLwqpyfOnDkT1tbWKCgowJgxY7jto0aNQn5+Pk6cOIGTJ09ixYoVXCVmXFwcjI2N0axZs5p+a3I3d+5c3L59G3w+H3Z2dlBRUVH0kOqFi4sLjh07xl1gyyM8V1JSQtu2basNz4uLi5GXl1dtZWbl8LxVq1YKn7FAPk7s4sgA8O7dOxQXFwuF58D/Fg2VRnh4OGxtbblppT169MC1a9eELoDIx6VXr15QUlLC/PnzsXbtWmzcuBHjx49X9LCaDEdHRwgEAiQlJTX58Byo6Hvu6+uLvLw8HD9+HKtXr8asWbPE3oAGgK+//honTpyot/HxeDyMGDEC165dk1h0cv36dbi7u0NNTQ1AxQ308PBwDBgwAHPmzEGfPn3A5/PFPpdt6xEWFobS0lIA4PqsU3jeuPXv3x9z587FwoUL8eLFCxQWFmLChAmwtLSEhYUFZs2aVeXvRXUYhoGPjw969uwJALC3t0dCQgLy8vIQEBAABweHBnUN86G5c+ciKioK7969w4YNG/Dnn3/i7t27CAwMRPPmzWtVIKSqqoojR44gPj4eP/74o1TPYc+baJ2BqikpKeHGjRt4+PBhlbN72HPHplB5DlS8R8fExIhsp8pzQkhj0qjDc4FAgHPnzqF9+/ZyPW5ZWRm3SFXlabJVCQkJwfv374Uqz7W1tWFnZye38DwuLg6RkZFCx5M1PFdXV0ffvn0xbNgwsY+rqKhgz549+OKLL4SmMHbq1AlmZmaYNWsWJk+ejF27dmH8+PEoLi5GXFxcg6zsHjRoEIKDg3Hu3DlFD6VejRkzBjt27MBnn30mt/68enp61Ybn7OPVvWa7du2QkpLC9TtvylPxSd0xNzfn2rawPfYrt20BZAvP2cVCWZXXttDV1ZXHkEkD06JFCzg7O+Pu3btYtGgRVq1apeghNSn29vbc5wOF5xV9z/l8Pnr27ImpU6di5MiR2LJli6KHJWT48OFITk5GUFCQ2MezsrLw/PlzDB8+XGi7mZkZN+vx+fPnYgMWoCI8b9++PcrKyrgKxujoaLRo0YLCl4/Ajh074OzsjDFjxmD27NmIj4/HmTNncPDgQbx48QI7d+6s0XFjY2ORnZ3NhedslXlYWBj8/f0bbL/zD+no6GDVqlUYMGAAZs6ciYcPH8LJyUlk5omsOnbsiA0bNmD79u1StSuNiIiAsbExtLW1a/W6HztlZWU0b968yseHDBkCAwMD9O7dux5HpTgWFhZiCxKzs7Pp/ZsQ0mg06vD85MmTGDt2rMQTh5KSEuTl5Ql9VSc0NBQlJSXQ0tISmiZbldu3b0NTU1Ok0rdbt25ce4ra8vLy4sbGSk5OhqqqqkwfOt7e3pgxY0aVjw8cOBAnTpwQCjV5PB4uXryIGzduIDs7Gy9evEB0dDR++umnBhueAxVVzpaWlooeRr375ptvcOHCBbkdT09Pj1uItCpseC5t5bm4xUIJkRczMzOkpaWhsLCQC8/FVZ6/fv1abDuqyhiGQWhoqFB4zt4odXd3l/PISUOyePFiLF26FDt27KAbffVMS0sLlpaWUFZWpgV5URE8WFhYIDc3F1euXMGJEyca3CJzffv2RfPmzats3XLz5k0wDAMPDw+xj7u5uQGoaKXxodLSUvj6+mLOnDng8Xhc6xZ2sVD6+2z81NXVce7cOZSWluLkyZP4888/0bFjR/Tq1QuLFi3CDz/8ILQQuLR8fHwA/O+mt62tLZSUlODv74+QkJBGE54DFRXN//77L96+fYvr16/XuN/5h+bMmQMVFRVcvXq12n0jIyO5RddJzenp6SEtLa3eWmspmoWFBRISEkRac2VlZVHbFkJIo9Fow3M+n4+zZ8+KXYijsk2bNkFHR4f7kqZK3d/fH0pKSpgxYwbu379fbd/zK1euwM3NDRoaGkLbbW1tERUVJXXfdEm8vLygpKSEtLQ0vH37FkBFeN6uXbtaVx1Iw8nJCcOGDYOuri4cHBzwyy+/YOvWrQgMDGyw4TmRD3Nz8yorwVjSVp4bGxsjNTUVKSkpDXaBJtL4se9Jr1+/llh5LhAIpPrdzsnJEQrw7O3tsWjRIsycOVPOIycNybRp07B169Z6+YwlopycnGBnZ9egWyrUFx6Ph6dPnyIiIqLB9t5XU1PDkCFDqgzPr1+/jm7dulV5k71169YwNTUVG54HBASguLgY7u7usLa25vo9s+E5+Ti0a9cO169fx9atW/HVV19x2zdu3Ah9fX2MHTsWBQUFMh3Tx8cHNjY2aN26NYCKRcUtLS1x5swZlJWVNbpz0Q4dOmDbtm0AatfvvLIWLVqgf//+uHLlSrX7RkRENIk+3US+LCwsUF5ejsTERKHt1LaFENKYNPgrwvT0dPTp00fk6/jx4xg/fny1F7WrVq1Cbm4u95WUlFTta/r5+cHW1hYjR45ERkaGxEU/s7Ky4OPjg08//VTkMSsrK+Tm5iI7O7v6b1QCPp+Pe/fucSubs9XnbHiuCN999x169eqF4uJiCs8/cnZ2doiMjIRAIKhyn4yMDACo9gSocvUvVZ6TusK+J8XFxSElJQVt27bleuyy2MoptnXLw4cP0adPH5EWRez6DpXDc2VlZezcuZN69hNSh3777TccOXJE0cNoMPT09CS2AWgIRowYgefPnyMrK0toe3Z2Nq5evYrRo0dLfH6XLl3EhudPnjyBhoYGnJ2d4ezszFWeR0VFUXj+kenatSuWLl0qNJugefPmuHz5MmJiYjBhwgSJC8tWlpKSguPHj4u0q3RwcMCjR4+gpKQER0dHuY6/Pnz11Vc4efKkXNfh+PTTT+Ht7S1xhjafz0d0dDRVnhOZWVhYAIBQ65bCwkIUFhZS5TkhpNFo8OG5gYEBHj9+LPIVFhaGo0ePYujQoYiOjuZWH/+Quro6WrRoIfRVHX9/f3Tt2hW9e/eGqqqqxNYtN27cAMMwIj0cgf8tpsIuaFRTgYGBePv2LRYsWAAVFRWEhIQAUGx4rqysjCNHjsDJyUlooVTy8bGzs0NRUZHEXoiZmZlo1aqVSED5ITY8b9OmDUxMTOQ6TkJYhoaGUFdXR3x8PFJTU0WqzoGKGz0tW7ZEZGQkGIbB8uXL8eTJEyxYsEBov7CwMKipqdFNQkLqmYWFRaNqqUDAhZQ3b94U2r57924AFe0hJOnSpQtevnwpMmPzyZMncHV1haqqKjp37ozAwEDk5eUhPT2dwvMmwtHREefOncPt27excOFCqWb1Ll68GJqamlizZo3Qdnt7ewAV57eampp1Mt66xOPxMGnSJLn2HR85ciTKyspw586dKvdJSEhASUkJVZ4TmZmYmEBZWVkoPGeLC6nynBDSWDT48Lwqv//+O+7cuYNbt27BysoK27dvl8txS0tLERQUBBcXF2hpaaF79+4Sw/MrV66ge/fuYqehsndZo6KiajUmLy8vaGlp4ZNPPoGVlVWDqDwHKr6/wMDAJtlXvClhV4KXNAMjIyNDqgVK2fCcFgsldUlJSQkdOnTgKs8/7HcOVFx8souG3r59Gy9evMDXX3+Nc+fO4b///uP2CwwMhI2NDVRUVOrzWyCEkEZHX18frq6uQq1bioqKsGvXLsyYMaPaCsMuXbogJydH6GY9wzB48uQJt7Ces7MzCgoKcPv2bQCg8LwJcXd3xz///IN9+/Zh8ODBXB99ca5cuYILFy7gzz//RKtWrYQeYxcNbWwtW+qSqakpOnXqJLF1S0REBABQeE5kpqqqClNTU6HwPD4+HgAUmmUQQogsGm14Xpmfn5/cjsUuFsqeUA0YMADe3t5iW1YUFxfj9u3bYlu2AICmpibatWtX68pzLy8v9OvXD2pqanBwcEBoaCgYhlF4eE6ahvbt20NTU1NieJ6ZmVntYqFARcV5s2bNqGULqXPm5uYSw3MAXHj+888/o0ePHtizZw/GjBmD+fPnIzQ0FFOmTMGBAwcwZMiQeh49IYQ0Tp9//jkuXryIW7duAQCOHTuG7OzsKmeIVsYugFi5dUtsbCwyMzOFwnMAOHv2LID/zfIkTcPMmTNx4cIF5Ofnw8PDAw4ODjhw4ACKi4u5ffLz87FgwQIMGzZMbGsTNjynmS3CPv30U9y4cQN8Pl/s45GRkdDQ0KBrT1IjFhYWQuG5n58fNDU1qQ0QIaTR+CjCc3liFwtlF2EZMGAA3rx5g+DgYJF979+/j/fv31cZngMVJ/W1Cc+Liorw6NEjDB48GEDFVMOQkBC8ffsWxcXFdAJD6pySkhJsbW3lUnnO4/Fw9epVfPPNN/IcIiEizMzMEB8fX214/uLFCzx79gxr164Fj8fD7t27wTAMHBwccPPmTRw6dAh//PFHPY+eEEIapyVLlmDo0KEYM2YMnjx5gq1bt+Lzzz+XapaioaEhDAwMhMLzJ0+egMfjoWfPngAqpvgbGxvj+vXraN26NbcQJGk6PvvsMzx//hwPHz6ElZUV5syZA1NTU8yZMwdubm4wMzPD27dvsXv3brGzHG1sbPDNN99gzJgxChh9wzVy5Ei8efMGPj4+Yh+PiIiAjY0NLaJNakRceO7s7EwzOwkhjQZ9+n3Az88PdnZ20NLSAgD07NkT6urqYlu3XL16FWZmZkILyX3IysqqVm1bnj59ipKSEi48d3BwQHZ2NndhQeE5qQ+2trbcdE1xpK08B4DBgwfT4jCkzpmbmyMmJgaZmZlie54DFRfQAoEArq6uXHW5np4eTp48iUWLFiEiIgJffvkltRgihBApqaqq4uzZs3BxccHAgQMRFRWFZcuWSf18tu856/Hjx7C3txdqvdG5c2cUFRVRy5YmjMfj4ZNPPsGlS5cQGRmJsWPH4tGjR2jevDkWL16MR48eoUOHDmKfq6ysjB07dtA11Ae6desGfX39Klu3REZGUpUwqTE2PGdbLfn5+dFMZEJIo0Lh+Qf8/f2FeuA1a9YMvXv35norshiGwZUrV/Dpp59KDFasrKwQExMj1cI24nh5eUFPT4+bYsgucsNOh6UTP1If7OzsEB4eXuXvsbSV54TUF3NzcxQVFYFhmCorzzt37gxlZWX8/PPPQu/j7u7u2LlzJy1iRAghNaChoYGrV6/CwcEBgwcPlmlh+S5dunAFIllZWThz5gw8PDyE9mFbt1B4ToCK34O///4b4eHhuHjxItasWUMtWWpASUkJI0aMwPnz51FSUiLyeEREBPU7JzVmaWmJ9+/fIzMzEzk5OYiJiaHwnBDSqFB4Xgm7WOiHb+SfffYZ7t69i5ycHG6bj48PUlJSMGrUKInHtLa2xvv375GWllajMT1//hx9+vThgh1LS0uoqanh9u3bUFZWlrral5DasLOzw9u3b5GVlSXymEAgQFZWFoXnpEExMzPj/n9V4bmFhQUyMzMxdOjQ+hoWIYQ0CTo6Onjx4oXQ4qHS6NKlC9LT05GWloZff/0VALB8+XKhfSg8J6RuLFq0CElJSfjxxx+Ftr979w4ZGRlUeU5qzMLCAkDFOhbsDVIKzwkhjQmF55WEhISgtLRUZPX1MWPGoLy8HJcvX+a2HTt2DO3bt0e/fv0kHpM9sa9p65aQkBA4Ojpy/62iogJbW1uEhobCyMgIysrKNTouIbKws7MDALF9z9+8eQOBQEA3ckiDIk14DoD65RJCSB1RVlaGurq6TM9hg/ELFy5g9+7dWLFihUirN7aqmKpgCZEvJycnbNq0CVu2bIGnpye3PTIyEgD9zZGaMzc3B1ARnvv5+aF58+a04DMhpFGh8LySDxcLZRkaGqJPnz7477//AAAlJSU4c+YMJk+eXO2iKebm5lBSUqrRoqGZmZnIysriWraw2NYt1LKF1BdLS0soKyuLDc8zMzMBgCrPSYOio6MDXV1dqKmpQVdXV9HDIYQQIgVTU1O0atUKy5cvR6tWrbBkyRKRfTp06IC7d+/is88+U8AICfm4LVmyBG5ubpg2bRo345QNzynsJDWlpaUFAwMDLjx3cXGhxWcJIY0KvWNVMmXKFPj7+0NTU1PksXHjxsHT0xM5OTm4fv06cnJyMHXq1GqPqaamhg4dOtQoPA8NDQUAkfCc/W8Kz0l9UVNTg6WlpdjwnP3dbt++fX0PixCJzMzMYGRkRAt+EkJII8Hj8dClSxcUFRVh3bp10NLSErvfwIEDoaqqWs+jI+Tjp6SkhCNHjqC8vBwjRoxAWFgYIiIi0L59+yr/HgmRBrtoKC0WSghpjCg8r0RDQ0Ok6pxVuXXL0aNH0bVrV3Ts2FGq41pZWdWobUtISAjU1dW5HmEsqjwnimBrays2PL9x4wZsbGxgYmKigFERUjU7OzuR909CCCEN24ABA+Dg4IBZs2YpeiiENEmGhoa4evUqcnJy4OTkhCNHjlDLFlJrFhYWeP78OV6/fi3SJpcQQho6Cs+lZGRkhN69e+Off/7BjRs3pKo6Z1lZWdWo8jwkJAR2dnZQUVER2k7hOVEEOzs7RERECG1jGAbXrl3D8OHDFTQqQqq2Y8cOHD9+XNHDIIQQIoPVq1cjMDCQKssJUaAePXogKCgIP/74I7Kzs7n1CAipKQsLCy4TocpzQkhjQ+G5DMaNGwcfHx8wDIOJEydK/Txra2vExMSAz+fL9HohISEiLVuAilYEY8eOxaBBg2Q6HiG1YWdnh6SkJBQUFHDbXr58ibS0NIwYMUKBIyNEvNatW8PAwEDRwyCEECIDHo8HZWVlRQ+DkCavWbNmWLt2LVJTU7Fu3TpFD4c0cuxsUB0dHZoZSghpdBp1eO7t7Y1BgwahX79+uHz5cp2/3pgxY8Dj8TB06FCZFke0srJCaWkpkpKSpH4OwzBVhufKysr477//4OTkJPXxCKktOzs7ABCqPr9+/TpatGiBPn36KGpYhBBCCCGEkDqiq6sLDQ0NRQ+DNHJsYE6LhRJCGqNG+65VXFyMrVu34ubNm3jw4AFGjRpV569pbGyMrVu3ynznnV2ZXFLrltDQUPTr1w/5+fkAgOTkZOTl5YkNzwlRBLbXYeW+59euXcOQIUNoajUhhBBCCCGEELHY8JxathBCGqNGG54/ffoUGhoaGDlyJD777DOkp6fXy+suWbJE5gUuTExMoKqqKnHRUE9PTzx8+BAXLlwAUNGyBfhff3NCFE1bWxtWVlY4ePAgysrKkJGRAV9fX2rZQgghhBBCCCGkSm3atMGsWbNkan9LCCENRaMNzzMyMhAfH4+rV69izpw5VVaDl5SUIC8vT+irvqmoqMDc3ByRkZFV7hMWFgYAOHr0KICK8Lx58+YwMTGplzESIo0DBw7gyZMnWLZsGW7evAkAGDZsmIJHRQghhBBCCCGkoeLxeDhw4AAtPksIaZRUFD2A6qSnp2Ps2LEi2+fNm4c+ffpATU0NAwcOxKZNm8Q+f9OmTfj555/repjVcnV1xaNHj6p8PDQ0FNra2rh//z6Sk5MREhICe3t76gdGGpS+fftix44dWLhwIdq3b4/u3bujbdu2ih4WIYQQQgghhBBCCCFy1+CTWQMDAzx+/Fjka+jQoVy19suXL2Fubi72+atWrUJubi73JcuinfLk7u6OwMBAZGRkiDzGMAzCwsKwYMECqKur48SJE1UuFkqIos2fPx8zZ85EUlIShg8frujhEEIIIYQQQgghhBBSJxp85XlVdHV18emnn6Jv375QUlLCv//+K3Y/dXV1qKur1/PoRLm5uQEAvLy8MHnyZKHH0tLS8O7dO/To0QOjR4/GkSNHEB8fj6lTpypiqIRIxOPxsHv3bpiZmeHrr79W9HAIIYQQQgghhBBCCKkTPIZhGEUPoj7l5eVBR0cHubm5aNGiRb2+trOzMxwdHXHkyBGh7V5eXnBzc0NUVBSio6O5al5PT08MHjy4XsdICCGEEEIIIYQQQgghpBG0bfmYuLu7486dO/jwfkVoaCjU1dVhbm4Od3d36OnpAQC1bSGEEEIIIYQQQgghhBAFofC8Hrm7uyM9PR3BwcFC28PCwmBrawtlZWWoqKhgypQpMDQ0hL6+voJGSgghhBBCCCGEEEIIIU0bhef1qHfv3tDQ0MCdO3eEtoeGhsLe3p777w0bNuDp06fg8Xj1PURCCCGEEEIIIYQQQgghoPC8XjVr1gz9+vUTCs8ZhkFYWBg6duzIbdPQ0ECHDh0UMEJCCCGEEEIIIYQQQgghAIXn9c7d3R0PHz5EUVERACAjIwM5OTlCleeEEEIIIYQQQgghhBBCFIvC83rm7u6OkpISPHz4EEBFyxYAQpXnhBBCCCGEEEIIIYQQQhSLwvN61rFjR9jZ2eHXX3/lWraoqanB3Nxc0UMjhBBCCCGEEEIIIYQQ8v8oPK9nPB4Pf/75Jx4+fIgTJ04gNDQUtra2UFFRUfTQCCGEEEIIIYQQQgghhPw/SmwVwM3NDePGjcOyZctgYGBALVsIIYQQQgghhBBCCCGkgaHKcwXZtm0bCgoK8OrVK1oslBBCCCGEEEIIIYQQQhoYCs8VpF27dli7di0AWiyUEEIIIYQQQgghhBBCGppG27ZFIBBgxowZiIuLA4/Hw6FDh2BhYaHoYcnk22+/haamJoYNG6booRBCCCGEEEIIIYQQQgippNFWngcGBqKkpASPHj3CTz/9hF27dil6SDJTVVXFggULoKGhoeihEEIIIYQQQgghhBBCCKmk0Vaet2vXDgDAMAzevXuHtm3bit2vpKQEJSUl3H/n5eXVy/gIIYQQQgghhBBCCCGENF6NNjxv06YNlJSUYGdnh5KSEjx58kTsfps2bcLPP/9cz6MjhBBCCCGEEEIIIYQQ0pjxGIZhFD0ISdLT0zF27FiR7fPmzcO9e/dw8OBBBAQE4I8//sDp06dF9hNXed6+fXvk5uaiRYsWdTp2QgghhBBCCCGEEEIIIY1Tg688NzAwwOPHj0W237x5E61atQIAtGzZEu/evRP7fHV1dairq9flEAkhhBBCCCGEEEIIIYR8ZBp8eF4Vd3d3HDt2DP369UNJSQm2bdum6CERQgghhBBCCCGEEEII+Ug0+LYt8sYwDPLz86GtrQ0ej6fo4RBCCCGEEEIIIYQQQghpgJpceE4IIYQQQgghhBBCCCGEVEdJ0QMghBBCCCGEEEIIIYQQQhoaCs8JIYQQQgghhBBCCCGEkA9QeE4IIYQQQgghhBBCCCGEfIDCc0IIIYQQQgghhBBCCCHkAxSeE0IIIYQQQgghhBBCCCEfoPCcEEIIIYQQQgghhBBCCPkAheeEEEIIIYQQQgghhBBCyAcoPCeEEEIIIYQQQgghhBBCPkDhOSGEEEIIIYQQQgghhBDyAQrPCSGEEEIIIYQQQgghhJAPUHhOCCGEEEIIIYQQQgghhHygyYXnDMMgLy8PDMMoeiiEEEIIIYQQQgghhBBCGqgmF57n5+dDR0cH+fn5ih4KIYQQQgghhBBCCCGEkAaqyYXnhBBCCCGEEEIIIYQQQkh1KDwnhBBCCCGEEEIIIYQQQj5A4TkhhBBCCCGEEEIIIYQQ8gEKzwkhhBBCCCGEEEIIIYSQD1B4TgghhBBCCCGEEEIIIUREREQEiouLFT0MhaHwnBBCCCGEEEIIIYQQQoiQsrIyuLi4YP/+/YoeisJQeE4IIYQQQgghhBBCCCFESGxsLAoLCxEUFKToodTYjz/+iNDQ0Bo/X0WOYyGEEEIIIYQQQgghhBDyEYiIiAAAhIeHK3gkNVNSUoKNGzdCU1MT9vb2NTpGo6889/b2xqBBg9CvXz9cvnxZ0cMhhBBCCCGEEEIIIYSQRq9yeM4wjIJHI7uMjAwAQEpKSo2P0agrz4uLi7F161bcvHkTampqih4OIYQQQgghhBBCCCGEfBTYivO3b98iKysLenp6Ch6RbNLT0wEAqampNT5Go648f/r0KTQ0NDBy5Eh89tln3D8IIYQQQgghhBBCCCGEkJqLiIiAq6srgMbZuoXNimtTed6ow/OMjAzEx8fj6tWrmDNnDtatWyeyT0lJCfLy8oS+CCGEEEIIIYQQQgghhIjHMAwiIiIwYsQIKCsrN+rwvMlWnrds2RJ9+vSBmpoaBg4ciLCwMJF9Nm3aBB0dHe6rffv2ChgpIYQQQgghhBBCCCGENA7p6enIy8uDo6MjLC0tG3V4np6eDj6fX6NjNOrw3NXVlQvMX758CXNzc5F9Vq1ahdzcXO4rKSmpvodJCCGEEEIIIYQQQgghjQYbltvZ2cHOzq5Rh+d8Ph+ZmZk1OkajXjBUV1cXn376Kfr27QslJSX8+++/Ivuoq6tDXV1dAaMjhBBCCCGEEEIIIYSQxiciIgKqqqowMzODnZ0djh07pughySw9PR1t27ZFVlYWUlNTYWhoKPMxGnXlOQAsWLAADx8+hLe3t9jKc0IIIYQQQgghhBBCCCHSi4iIgKWlJVRVVWFnZ4fk5GTk5+crelgySU9PR5cuXQDUfNHQRh+eE0IIIYQQQgghhBBCCJGf8PBw2NnZAQD3vxEREYockszS09Ph6OgIZWXlGi8aSuE5IYQQQgghhBBCCCGEEE5ERARsbW0BgPvfxtT3nGEYpKenw9jYGAYGBhSeE0IIIYQQQgghhBBCiDzk5eVh3LhxuH37tqKHUu/y8/ORnJzMhebNmzdH+/btG1V4np+fj6KiIhgYGMDY2LjGbVsa9YKhhBBCCCGEEEIIIYQQIk/FxcUYPXo07t+/j/T0dAwZMkTRQ6pXkZGRAP5XcQ5UtG5pTOF5eno6AMDAwABGRkZUeU4IIYQQQgghhBBCCCG1UV5ejokTJ+LZs2dYvHgxHj9+jJiYGEUPq16xvc0/lvC8NpXnFJ4TQgghhBBCCCGEEEIIgJUrV+L69es4d+4cfvvtN+jo6ODw4cOKHla9ioiIgLGxMbS1tbltdnZ2iI2NRWlpqQJHJj2qPCeEEEIIIYQQQgghhBA5YRgGp0+fxuLFi+Hh4QENDQ1MnDgRR44cAZ/PV/Tw6k3lxUJZHTt2BJ/PR3R0tIJGJZv09HRoaGigRYsWMDIywps3b1BcXCzzcSg8J4QQQgghhBBCCCGENHlJSUlITU1Fv379uG1ffvklkpOTce/ePQWOrH6FhYWJhOeOjo5QUlLC06dPFTQq2aSnp8PAwAA8Hg/GxsYAgLS0NJmPQ+E5IYQQQgghhBBCCCGkyWOD4R49enDbunfvDhsbmybTuqWkpATR0dFwcHAQ2q6jowNXV1d4enoqaGSyYcNzADAyMgKAGrVuofCcEEIIIYQQQgghhBDS5Pn4+MDCwgJ6enrcNh6Phy+//BIXLlxAZGQkGIZR4AjrXlRUFMrLy0XCcwAYPHgw7t69C4FAoICRyaZyeM5Wntdk0VAKzwkhhBBCCCGEEEIIIU2ej48PevbsKbJ96tSpaNasGWxtbWFqaopFixY1moUzZRUSEgIAsLe3F3nMzc0Nb9++xcuXL2t07IiICHTo0KFe+qZXDs91dHSgoaFBleeEEEIIka/IyEgkJiYqehiEEEIIIYQQUqeKiorw8uVLseG5sbExXr9+jStXrmD06NHYtWsXbt68qYBR1r3Q0FAYGRmhVatWIo/16NEDWlpa8PLyqtGx//rrLyQkJOCvv/6q7TCrlZaWxoXnPB4PRkZGTbfy/NSpU2jbtq2ih0EIIYR8dEaPHo1x48Z99FMTCSGEEEIIIU2bn58fysvL0atXL7GP6+joYOTIkdi5cyc6deqE06dP1/MI60dISIjYli0AoKamhn79+tWo73lBQQGOHTsGPT09HD58GPn5+bUdapX4fD4yMzO58ByouAHSJCvPBQIBzp07h/bt2yt6KIQQQshHJTw8HBEREXjx4gWePHmi6OEQQgghhBBCSJ3x8fGBlpZWlcFxZZMmTcKVK1fw/v37ehhZ/QoJCRHbsoU1ePBgPH78GEVFRTId99SpU3j//j0uXLiA9+/f4/jx47UdapWys7MhEAiEwnMjI6OmGZ6fPHkSY8eOhZJSo/9WCCGEkAblwoULaN68OWxsbLB161ZFD4cQQgghhBBC6szTp0/h6uoKFRWVavedMGECCgsLcfXq1XoYWf0pLCxEXFycxBsIbm5uKCkpwePHj6U+LsMw2LNnDzw8PNC7d2+u9U1dzXBOT08HAJHK8ybXtoXP5+Ps2bOYMGFClfuUlJQgLy9P6IsQQggh1bt48SI8PDywbNkyXL58uV4WdSGEEEIIIYSQ+sYwTJWLhYpjbm6O7t2749SpU3U8svoVHh4OhmEkhuf29vYwMDCQqe+5n58fXr58iXnz5gEAFixYgLCwMHh7e9d2yGKJC8/ZynNZA/tGHZ4fP34c48ePl1h1vmnTJujo6HBf1N6FEEIIqV5CQgL8/f3x+eefY8qUKWjbti22b9+u6GERQgghhBBCGrjAwECEh4crehjVys7Oxp49e/D27VvEx8cjMzOzyn7n4kyaNAk3b95ETk5OHY6yfoWEhAAAOnbsWOU+PB4PgwcPlqnv+d69e2FqaoohQ4YAAAYMGAA7Ozv8/ffftRtwFdjwXF9fn9tmbGyM9+/fy1xY3ajD87CwMBw9ehRDhw5FdHQ0lixZIrLPqlWrkJuby30lJSUpYKSEEEJI43Lx4kWoqanBw8MDzZo1w4IFC3D48GG8efNG0UMjhBAiB7QQNCGEkLoyceJEDB06tE4XhJSHgwcPYv78+TAxMcGcOXMAAD169JD6+ePGjUN5eTkuXrxYV0Osd6GhoejQoQOaN28ucb8hQ4bg5cuXuHDhQrXHLC4uxqlTpzB79mwoKysDqAjgFyxYgEuXLiE5OVkuY68sPT0drVq1grq6OrfNyMgIAGTue96ow/Pff/8dd+7cwa1bt2BlZSW2Ik5dXR0tWrQQ+iKEEEKIZBcuXICbmxu0tbUBAPPnzwfDMDhy5IiCR0YIIaS24uPj0bZtW+zatUvRQyGEEPKRiY2NRWRkJBITE/HDDz8oejgSvXz5El26dME333wDX19fdOrUCbq6ulI/38jICP379290rVuKi4tx7Ngx8Pl8kceqWyyUNXHiREycOBHjx4/HmTNnJO4bHh6OoqIiDBo0SGj7tGnToKmpiX379sn2DUghPT1dqGULAJiYmAAA4uLiZDpWow7PK/Pz81P0EAghhJCPQkZGBh4/fozPP/+c29amTRv06tULDx8+VODICJGev78/nj17puhhENIg+fj44M2bN1i0aBGWLFki9uKZEEIIqYkbN25AVVUV69evx65du+Dj46PoIVUpICAAn3zyCTZu3Ijk5GTcv39f5mN8+eWX8PLywoMHD4S2l5WVQSAQyGuocnX27FlMmzYNe/bsEXksJCREYr9zloqKCo4dO4ZJkybhiy++wMmTJ6vc99WrV+DxeCLH1dbWxrRp0/DPP/+gpKRE9m9EgqrC81atWiEgIECmY3004TkhhBBCai47OxubN2/G+vXrsWjRIvB4PHz66adC+/Tq1QtPnz6lqf4NVFBQENavX6/oYTQYy5cvx8yZMxU9DEIapJCQELRr1w5///03du7cifHjx9N7O/novX37ln7PCakH169fR79+/bB69Wp069YNs2bNkmswWlRUJJfj5OXlITo6Gs7OzgAqglxZqs5ZU6ZMQZ8+ffDVV19xY0tJSYGtrS1mzZoltC/DMAgICFD4exHbq3zVqlVC7a3z8vKQlJQkVXgOVATohw8fxsSJEzFnzpwq2/QEBQXBwsJCbCuYBQsWIDMzE+fPn6/Bd1I1ceE5j8dD165dZS7ApvCcEEIIITh27BhWrlyJffv2wdfXF7Nnz0abNm2E9unVqxeysrIQGxuroFESSY4dO4a1a9ciISFB0UNROIZhEBQUhPDwcPp9JUSM4OBgODg4YP78+Th06BAuXLiA0NBQRQ+LkDpTUlICMzMz/P7774oeCiEftffv38Pb2xseHh5QVlbGgQMHEB0djYMHD8rl+EFBQdDV1cXp06drfaxXr14BABee15SSkhL279+PxMRErF+/Hm/evIG7uzvS09Nx+PBhvHjxgtv3xIkTcHFxwa1bt2r1mrXBMAy8vLzw9ddfQ1tbG4sWLeIeY88FpGnbwlJWVsamTZtQWFiIc+fOid0nKCgIjo6OYh+zs7PDwIEDhVrJeXp6YvXq1Zg1axZGjRpVo9kLSUlJMDY2Ftnu4uICf39/mY5F4TkhhBBCEBMTA3t7e6SkpCA+Ph579+4V2YddPOfp06f1PTwiheDgYAAV1T5NXXp6Ore47bVr1xQ8GkIanpCQEHTq1AkAMH78eGhqauLGjRsKHhUhdSciIgJ5eXnYsGED0tLSFD0cQj5a9+7dQ0lJCYYPHw4A6NSpE7p16ybx+uHdu3d48uSJVMfft28fioqKMG/evFovMvny5Uuoq6vDzs6uVscBAFtbW6xZswabN29G//79kZWVBT8/Pzg4OOC7774DwzBIS0vD4sWLASj2/DQkJATp6ekYO3Ysdu7cicuXL3MLnoaEhEBJSQm2trYyHdPExAQDBw7EoUOHRB5jGAavXr2qMjwHgIULF8LHxwfe3t6YOXMm3N3dcezYMYSGhsLLywuXLl2SaTx8Ph8JCQkwNzcXeczFxQUpKSlIT0+X+ngUnhNCCCEEsbGxsLCwkLhPq1at0LFjRwrPGygKz/+H/bewtrbG1atXFTwaQhqW/Px8vH79mpuS3axZMwwcOBA3b95U8Mg+fkFBQSgsLFT0MJqkkJAQAICamhp+/PHHavefM2cO5s+fX9fDIuSjc/36dVhaWsLa2prb1rlzZ7x8+bLK5yxatAgDBw6ssuUHq7CwECdOnMD8+fOhqamJmTNn1qqneEBAADp16gRVVdUaH6Oy5cuXo2PHjkhISMCtW7dgZ2eHLVu24PHjx7h48SLmzp0LNTU1TJo0CTdu3KiydUtubi4yMzPlMiZxPD090axZM/Tp0wdjxozByJEjMXbsWOjr6+P777+HhYUFNDQ0ZD7ujBkz8OjRI8TExAhtT09PR3Z2NpycnKp87siRI9G+fXsMHDgQ586dw8GDB5GYmIhnz57B2dlZ5pueycnJKC8vh5mZmchjXbt2BQCZqs8pPCeEEEIIYmJiYGlpWe1+bN9z0rC8ffsWqamp6NatG+7du9fkw5ng4GBoampi4cKFePDgAfLy8hQ9JEIaDHZKduV+psOGDcPjx4/pb6UOZWdno0uXLhg7diwt0KoAwcHBaN++PX755RccOnSo2sXifHx8aNFpQmTEMAxu3LgBDw8Poe3Ozs6IiIgQ26s8LCwMJ06cQGlpKby8vCQe/7///kNubi6WLVuGQ4cOwdPTE7t3767xeF++fFnrli2Vqamp4e7du3j16hW6dOkCABgyZAiGDBmCGTNm4MqVK9i7dy8mT56M169fIzIyUuxxpk6dCmNjY0yZMkXm9iLS8PT0xCeffIJmzZqBx+Ph2LFj2LNnDxYtWoRp06bh119/rdFxP/vsM7Ro0QJHjhwR2h4UFAQAEivPVVRU8Msvv2DUqFEICgrCzJkzwePxAACGhoYyh+dxcXEAILby3NTUFK1bt6bwnBBCCCHSKy8vR0JCQrWV50BFeB4SEoLc3Nx6GBmRFltp/f3336O4uBj37t1T8IgUKygoCPb29vj0009RXl6O27dvK3pIhDQY7JTsytPUhw0bhvLycty9e1eBI/u4eXt7g8/n4/bt2/j+++8VPZwmJzg4GJ06dcLXX38NOzs7LF26tMqqT4ZhEBcXh9jYWIUv6kdIYxISEoKkpCSuZQurc+fOEAgE3PlqZWvXroWJiQmsrKyqnT25f/9+DB48GGZmZnB3d8fChQuxYsUKZGdnyzzW4uJihIaGciG3vLRt21ak2nnLli0oKCjApEmTMHr0aAwYMADq6upiZ3wVFRXB09MTgwcPxpMnT9C1a1fs379fbuMrKSnBgwcPMHjwYG6bjo4O5syZgx9//BHbt2/H2LFja3RsTU1NTJgwAUeOHBG6SRwUFITmzZujQ4cOEp8/ffp0XLx4UWQ/Q0NDpKamyjSW+Ph48Hg8mJqaijzGLhpK4TkhhBBCpJaYmIjy8nKpw3OGYfD8+fN6GBmRVnBwMFRVVTFy5EhYWlo2+T7fwcHBcHR0hKmpKTp16kStWwipJCQkBJaWlkJTss3MzGBjY0N9z+vQvXv3YG1tja1bt2LLli04evSooofUpLB9/lVUVLBlyxY8ePAADx48ELtvZmYmCgsLkZeXh5ycnHoeqXgCgQCDBw/Go0ePFD0UQqp048YNaGpqol+/fkLbHRwcoKysjMDAQKHtgYGBOHfuHNauXYtPP/1UYiuTsLAwPHnyBLNnz+a2rVmzBmVlZTh79qzMYw0JCQGfz5dr5XlVHBwc8PLlS27RVE1NTfTv31/sZ+7jx49RXFyMzZs3Izo6Gj179sSdO3fkNpanT5+iqKgIbm5ucjtmZTNmzEBSUhLu37/PbXv16hU6deoEJaWaRdA1rTw3MjKCurq62MddXFzg5+cn9fEoPCekkTlw4ADi4+MVPQxCyEeE7UsnTdsWa2trtG7dWq6tWzIyMrBhwwaq7qqFkJAQ2NnZQVVVFcOHD8f169eb7L9neXk5wsLCuMUQR44ciRs3blCbBEL+X3BwsFDLFpaHhwdu3rzZ4N478vLyUFpaquhh1Nq9e/cwcOBAfPPNN5g5cyZmz55N5/T1JDc3F4mJidzv/dChQ2FmZoaTJ0+K3Z+d7v/h/1ek1NRU3L17V64hGiHydv36dQwePFgksNTQ0ICtra1IeL5mzRpYWVlh6tSpGD58ONLS0qrsjX7gwAG0adMGo0aN4ra1bdsWQ4cOxbFjx2Qe68uXL6GkpMSdL9Y1R0dHoZvWw4YNw8OHD1FQUCC03+3bt2FkZAR7e3uoqKigc+fOiIiIkNs4PD090bZtW4n9x2ujR48esLGxEaqWDwoKktiypTpGRkbIyclBcXGx1M+Jj48X27KF5eLigtTUVKlDeQrPCWlE4uPjMXv2bJEeUoQQUhuxsbFQUVGBiYlJtfvyeDy59z2/ePEifvrppzpdGOdjx05HB4ARI0YgOTmZ6y/Y1MTExKCkpETo3+PNmzfUu5aQ/xcSEiI2PB82bBhSUlK4hRUbioEDB+KXX35R9DBqJSUlBZGRkRg4cCB4PB527twJADQrpp6wv9Ps5wKPx8PEiRNx7tw5sTdmYmNjuf/fUMLzqKgoAKiyRzIhipaTk4OnT5+KtGxhfbhoaEBAAK5evYp169ZBRUUFffr0QYsWLcS2bklNTcXhw4cxbdo0kWB+6tSpePbsGaKjo2Uab0BAAOzs7KCpqSnT8+TFw8MDpaWlIq0W79y5A3d3d67ft52dHaKiolBeXi6X1/X09MSgQYNqXAVeHR6PhyVLluC///5DaGgoSktLER4eXquw3tDQEEDFwqPSio+PF7tYKEvWRUMpPCekEWGnI1GVCiFEnmJjY2FqagoVFRWp9u/VqxeePXsmt0pe9iI1KytLLsdrahiGEQrD+vbti+bNm1fbN/Jjxd40YEMSV1dX6OrqSqzWKy4uplZEpEnIzMxEZmam2Eq7vn37QlNTs0G1bikuLsbLly8b/c1Advp6//79AQBaWlro3bs3PD09FTiqpiMkJATKysqwtbXltk2aNAk5OTliPxvi4uKgp6eHVq1aUXhOiJTu3LkDPp+PYcOGiX3c2dkZQUFB3PXDv//+CyMjI0yYMAEAoKqqCnd3d5Hz15KSEowZMwaamppYuXKlyHFHjhyJFi1a4Pjx4zKNV96LhcrKysoKFhYWQn3PU1NTERwcjCFDhnDb7OzsUFpaKpcMKC4uDv7+/nXWsoU1Y8YMdOjQAWvXrkV4eDjKy8trVXnOhueytG6Ji4uTWHluYmICXV1dCs9J7V24cAGbN29W9DBIJadPnwZA4TkhRL5iYmKkatnC6tWrF/Lz8+VWnUjhee0kJiYiLy+PC8PU1NTg5ub2US6SmZ6eXu1Nm+DgYBgYGKBt27YAAGVlZVhZWSExMbHK5xw5cgR9+vRBUVGRXMdLSEPDvm+LqzxXV1fHwIEDce7cOaEKt+LiYsyePVsh7ykREREQCASN/tz33r17cHR05N6XAMDNzQ3e3t4fRUuahi44OBjW1tZCFasODg7o2LEjd31VGRu6mJubN5jwnA3No6OjIRAIFDwaQkRdv34djo6OaN++vdjHO3fujMLCQkRHR6O0tBSnT5/G5MmToayszO0zfPhwvHjxQuiaYPHixQgICMCFCxegp6cnclwNDQ2MGzcOx44d49qOlZSUSDynKy8vx6tXrxQangMV1eeV+7x7enqCx+MJLebJLu4dHh5eq9diGAZz5sxB+/btMW7cuFodqzpqampYu3Ytzp8/j8OHDwMQf94hLTY8l3bR0MLCQmRkZEisPJd10VAKz0mV/vvvP/z+++8Nru9hUxUZGYnAwEDY2dk1+gsIQkjDEhsbK9Vioaxu3bpBTU1NbotWsT3XKTyvmeDgYAAQqiTt1q0bAgMDP6rP8NLSUtja2mLHjh0S96vcwoZV3UJDYWFhKC8vl/qknJDGJCcnhwtoQ0JCoK6uXuUN02+//RaBgYH46quvIBAIUF5ejokTJ+LAgQNYuHBhraaNx8fHo6ysTKbnsGF/XFxco30/YxgGd+/excCBA4W2u7m5oaCggFpK1QN2sdDKeDweJk2ahEuXLqGwsFDosYYYnkdFRUFTUxNFRUVITk5W9HAIESIQCHDz5s0qW7YAFeE5ULFI6K1bt/DmzRtMnTpVaJ9hw4aBYRjcvHkTCQkJWL9+Pf755x/s2bMHrq6uVR57ypQpiI+Px5MnT3D16lWYmZlh5syZVe4fERGB4uJihYfn48ePR2JiIn777TcAFf3OXVxc0KZNG24fIyMjaGtr1zo8P3ToEO7evYt//vkH2tratTqWNCZPngwbGxvs2LEDHTp0gI6OTo2PpaurC1VVVakrz9m8TFJ4Dsi2aCiF56RK2dnZePPmDQW1DcSZM2egra2NefPmISUlBSUlJYoeEiHkI8AwDGJjY2WqPNfU1ET37t2FVlGvzeuzF6YUntdMSEgIdHR0hCp9HB0dkZeXJ7HaurEJDAxEbm4uDhw4IDFEExeeGxgYSOyTyFb0paSkyGewhDQggwYNgouLC5KSkrjFhatq0zVo0CAcPXoUR48exZIlSzB79mxcv34dGzduRExMDM6cOVOjMfD5fDg7O2P+/PkyPY+9Ofj+/XtkZ2fX6LUVLT4+HomJiSLhubOzM3R1dal1Sx1jGKbKRXInTpyI9+/f49q1a0Lb6yI8LywsrFXFeFRUFNzd3QFQ6xbS8Pj6+iI7OxseHh5V7qOrq4v27dvj5cuXOHbsGJycnETO1/T19dGtWzfMnj2ba/uxdOlSiUE4UNF2zMTEBBMmTMCnn36KoqIiiaHo3bt3oaamJjGQrw99+vTBTz/9hB9++AFXrlyBp6cn93fO4vF4sLOzq9WioampqVi6dCmmT58u1BKmLqmoqODnn38GgFovTsrj8aothKmMzTAltW0BKsLztLQ0qY7bqMNzf39/fPLJJ+jXrx/Gjx8vcyUDkYw9QfX19VXwSAjDMDh16hRGjx4NOzs7MAzzUQUihBDFSUtLQ1FRkUyV50BF39YHDx7UeupwRkYG3r9/D4DC85piQwF2YSEAXF/Bht4n+NKlS3B2dpZqAVofHx8AFdVCVZ2bFBQUIC4uTqSvorThOVXzkY9NSUkJXr16hfDwcPTo0QN3796tdur0pEmTsHv3buzcuROHDx/G4cOHsXr1anh4eGDDhg01Wu/i9evX3M0vWW68hoSEwNjYGEDDWbhRVvfu3YOSkhL69u0rtF1ZWRmDBg2i8LyOpaWl4e3bt2L7/FtaWqJbt244deoUt624uBgpKSlceJ6YmFjrnIFhGNja2uLAgQM1ej7b79jd3R1qamoUnpMG58aNG2jVqhV69OghcT9nZ2d4e3vj6tWrIlXnrA0bNmDRokW4ePEisrOzsXXr1mpfX0lJCXPmzMH79+9x+PBhbNq0CfHx8VW2xbp16xY++eQTaGlpVf/N1bF169Zh1KhRGDduHLKzs8WG27a2trWqPF+0aBHU1dWxbdu22gxVZuPGjcOgQYOq7IMvC1nDc3V1da7dS1WGDBmClJSUavcDGnl4bmxsjNu3b+PBgwewtLTEpUuXFD2kjwobnr948ULBIyHBwcGIiIjAhAkTuKknNCOAKEpsbCzdrPyIsP3GZQ3PBwwYgDdv3tS67zn7+s2aNaPwvIbEVVq3a9cOLVu25Ko2G6KjR49i7NixSEpKwqBBg6o9j/Px8UH37t1hbGyMI0eOiN2H/X0U17YlKytLbOhXVFSEhIQEAFR5Tj4+bH/kkydPwtDQEHFxcVL1HZ07dy7+/fdfnDx5EpMnTwYA/PTTT4iIiMD58+dlHgd70W9vb4/Zs2dLvb5ASEgIRo4cCaDqc9+3b9/iyJEjDbaty71799C1a1exU9bd3Nzg6+uLnJwcBYysaajqc4E1ceJE3LhxA/n5+QAqbvQAFRWLZmZm4PP5SEpKqtUY4uLikJSUJHV7gA/Fx8eDz+fDzs4OlpaWFJ6TBuf69esYOnRolbOaWJ07d8aLFy9QVlaGL774Quw+7u7u2LJlC0aPHg1dXV2px7Bq1SpkZ2dj+vTpsLGxAZ/PF/u5UVxcjAcPHtRbBXZ1lJSUcPToUVhZWUFbWxs9e/YU2cfOzg7h4eE1+px78eIFLly4gG3btqF169byGLLUlJSU4OXlha+//rrWx5IlPI+Li4OpqSmUlCRH3lpaWjAyMpLqmI06PDcwMICmpiaAipV5xf2hlpSUIC8vT+iLVI9hmGorz7Ozs2t9B4xI58yZM2jVqhXc3NxgYmICJSUlCs9JvWMYBtu3b4eVlRUmTZpUo8oz0vCw/carm9b2oR49ekBNTQ3e3t5yef0uXbpQeF4DZWVliIiIEAnDeDweOnXq1GArz3ft2oXp06fjyy+/REJCAkaMGIExY8Zgz549VT7n2bNn6N27N6ZMmYJTp06JtC8rKirC5cuXoaSkxC2uxDIwMIBAIEBmZqbIcWNjY8EwDHg8HlWek48Oe54+YMAAeHt7Y82aNVwYXp0ZM2Zg0qRJ3H/36NEDbm5u+OWXX2TufR4WFgZtbW2cO3cOycnJWLduXbXPYVtP9e7dG61bt66y8nzPnj348ssvG+T7XWxsLC5dulRlH2A3NzcIBALcu3evnkfWdAQHB0NTU7PK3rcjR45EaWkpNyOC/T2zsLDgzo1qO+shICAAQM3brbDPs7a2hrW1NYXnpEFJT0+Hv7+/xJYtLLbv+eDBg6Wq9pWFkpISlwlaW1sDqGh39KFHjx6hqKgIQ4cOlevr14a2tjbu37+PBw8eQFVVVeRxOzs75OXlSR0eV/bLL7/AxsYGEydOlMdQFcbIyEjqtYni4+NlvratTqMOz1mJiYnw8vLCiBEjRB7btGkTdHR0uK+qVv4lwgoLC7kFFPz9/cWeID99+hSRkZG4ceOGAkbYtNy5cwfDhw+HmpoaVFVV0b59ewrPSb0qLy/HokWLsHTpUowZMwYXL17EsmXL6uW1k5KSKFStQ7GxsTA2NoaGhoZMz9PQ0EDPnj1r3fc8NjYWhoaGMDExoZ9zDURGRqKsrExsRZ2jo2ODDJOSk5OxaNEiLF68GPv374eWlhbOnDmDRYsWYf78+fj1119FKmvS0tKQkJCAnj17Yvr06cjJyeF61MbExGD69OnQ19fHb7/9hgkTJoj8PhsYGACA2NYtbAjh5ORElefkoxMeHg5dXV20bdsWzZs3x88//4x27drV+Hhr1qxBSEgIVFVVoaysDENDQ7x586ba54WFhaFjx46wtbXFmjVrsGXLFvTo0QOjRo3C8uXLxV5rhIaGAgAcHBxgbm5e5bnvzZs3AQAnT56s8fdVFxiGwZw5c2BgYIDvvvtO7D6mpqawsrKi1i1y5ufnh7/++gsPHjzAixcvYG9vX2UFoqWlJczMzHD79m0AFUG5mpoajIyMuKIleYXn4oI8aURFRaF58+YwNDSEjY1NgwnPi4uLG/QMN1I/vLy8wOPxpAqju3btCiUlJXz55Zd1OiYjIyNoamqK/Zu7desWjIyMpJqFVZ/atm1b5QKmbFGIrIWrAQEBuHbtGn788UcoKyvXeoyKJGvleXWLhcqq0YfneXl5mDp1Kg4dOiT2Ds2qVauQm5vLfdV2ylVTwVade3h4oLCwEGFhYSL7+Pv7A4BUfUpJ7cTHx8PGxob7bzMzMwrPSb2aN28e9u7di3379uG///7DX3/9hR07dmD79u11+ropKSlwcXFBly5dGm2v04YuNjZW5pYtLHn0PWcXK23bti2F5zXAnkR37NhR5DFHR0dERUWhuLi4voclETujbeXKlVyfdiUlJWzfvh0///wzfvjhB3z//fdCAfqzZ88AAD179oSdnR26deuGw4cPY+/evXBycoK3tze+++47REREiA3QqgvPW7Vqhc6dO1PleSOQmZmJPn36cMEqkSwiIkJkJkZt9OnTB97e3vj333/x888/Iz09XaqfBRueA8Dy5cuxadMm2Nvbo6SkBFu2bIGXl5fIc0JCQqCkpARbW1uYmZmJPQ/IycmBj48P2rZti1OnTtV6HQ55OnToEO7du4d9+/ZJ7Kvr7u5O4bkcMQyDL7/8EosXL0b//v1x9uzZKlu2ABUztYYMGYI7d+4AqDgvMTMzg5KSElRVVWFiYiKX8FxVVRXp6ek1mgkfFRUFa2tr8Hg82NjYIDExEYWFhRKfs2LFCvz00081HbJE79+/x7Zt22Bubg4nJyduFiFpmkJDQ2FiYoI2bdpUu2/79u0RHh5e51XQPB4P1tbWYsPz27dvw93dXWitoIbO3NwcqqqqMi8aumHDBlhYWDT6qnPgfy0Yq2sfyzAM4uPjKTyvjM/nY/LkyVizZg03LeND6urqaNGihdCXIrx69Yrrn9YYsOG5u7s7lJSUxLZuYXu2PXnypMH2GPwYFBQU4M2bN+jQoQO3jcJzUt9u3bqFpUuXYs6cOQCA+fPnY8WKFfjuu+/qrHVTWVkZxo8fD3V1dWhoaGDAgAGN6n20sYiJiYGlpWWNnjtgwADk5OTUqrqZDe+bYnielZWFkSNH1ur7jo6ORqtWrcResHTq1Al8Pr/BtVfz8/ODoaGhSI9BHo+HNWvWYNu2bfjjjz/w/fffc4/5+PigXbt23MKB06dPx7Vr1zBv3jxMnToVoaGhWLt2rdCN5sr09fUBiA/Po6KiYGNjg3bt2lHleSOwbNkyPHnyhBa0l1J4eLhcw3MA6NevH2bMmIGlS5cCQLWfzQzDCI1DVVUVK1aswMGDB3Hz5k107NgRR48eFXlecHAwrKys0KxZsyrPfb28vCAQCPDnn38iKSkJjx8/rv03KAfp6en47rvvMH36dLi5uUnct3///oiLi0NGRkY9je7j9vjxY4SGhuLWrVsICQnB6dOnq20TNGTIEMTExCAuLg5xcXFC0/3Nzc1rFZ4zDIOAgACuv3JNqs/Z8BwA9zknKbAuLCzE7t27ceXKlRqMWLKsrCxYW1tj5cqVXFZQ21mIpHGr/PspDfZGUF2ztrZGdHS00Lbk5GSEhoY2qJYt0lBRUYGVlZVM5/RBQUG4ePEifvjhh2p70TcGbJuf6j4rs7OzUVBQQG1bKjt79iyePn2KX375Bf3798eZM2cUPSSEh4dj48aNItvHjh2L2bNnK2BENcOG5x06dEDHjh1FFg1lGAb+/v5wdnZGRkYGBbl1iF3EjMJzoih8Ph9paWkiH0BsZWhdtYVYuXIlXrx4gbNnz+LevXtQUVHBgAEDqDJUzmpTed69e3c0a9ZM7EVTbm6uVFP5Y2JiuPD8zZs3DapqsK49ePAA165dw+nTp2t8jOjoaFhZWYl9jJ2O2tBat/j7+8PFxaXKx5csWYJff/0VW7Zs4S4Snj17JrSA0uTJkzFmzBjcuHEDe/fuRfPmzSW+ppqaGnR1dcVO94yMjIS1tTWMjY2RlpZG6zk0YPfv38exY8cAVH/xRACBQIDIyEi5h+csTU1N6OnpVRueJycno6CgQOwMGR6Ph2nTpuHixYsiFbkhISHc+5i5uTkSExNF2rvcunULHTt2xIQJE2BqaooTJ07U7puSk9WrV0NVVRVbt26tdl/2exQ305dIxufzRa5T9+zZA2tra7i7u8Pe3h4TJkyotnXrwIEDoaKigtu3b8s9PE9OTkZ2djZX+VmTliviwnNJx7l58ybev3+PyMjIWn2mJSYmitzgP3DgAN6+fYvw8HAcPnwYXbp0qfX6N6RxkzU8ry/iKs/v3LkDHo+HwYMHK2hUNccuGioNPp+PFStWoEOHDpgyZUodj6x+sOF5da1b2JyMKs8rmTRpEt68eQNvb294e3tjwoQJih4Szp8/jx9//FGoPUxycjJiYmJw9+7dRhP6sOF5mzZt4OrqKlLdk5KSgoyMDCxcuBAAtW6pS2x4bmpqym0zMzPj7qgRUtcyMzPB5/O5ik9Wq1at0LJlyzppp3LlyhVs374dW7duRc+ePdGuXTvcv38fRUVFWL9+vdxf72N1//59sVPhWW/fvkVOTk6Nw/NmzZqhZ8+eIhdNt2/fhrW1NcaMGSPx+WzAzrZt4fP5yMnJqdFYGiM2KKmr8FxbWxvm5uYNqh8pe/O9a9euEvdbunQp2rdvjx9++AFlZWXw8/NDjx49uMdbtmyJc+fOYdiwYVK/toGBgUjlOcMwiIyM5CrP+Xw+hbINVElJCebOnYtPPvkE1tbW9HOSQkJCAoqKiuosPAcqijuqC8/Z9zpx4TlQcTOspKQE586dE9oeEhLCtdswMzMDn88XusZiGAa3bt3CsGHDoKSkhEmTJuG///5DaWlpLb4jYUFBQTLPenvz5g1OnjyJZcuWQVdXt9r9LSwsoKqq2uTC89TUVIwaNapWs68uX76M7t2748iRIwAqzlnPnTuHuXPnylTZ2qJFC/Ts2RO3bt2Se3jO9jvv378/DAwMZA7P2UUC2XBSV1cXurq6Eo9z9uxZqKmpoaSkpMazNhmGgbu7O0aMGMHNMufz+di7dy8mTZrEzVrs378/vL29aSZ6EyUQCBAdHd1gw/OUlBShzOTWrVvo1q2bVO/NDY204TnDMFi0aBE8PT3x999/i21v3RixM1arWzSUDc+p8ryBY6f73r17l9v24MEDABVVTw2lGqI62dnZ0NDQgKamJlxdXREUFISioiLucbbfubu7O2xtbSk8r0OvX7+GioqK0PR29i4aVZ+T+sB+QH3YYgGouOCri/D80KFD6NmzJxYtWsRtMzExwddff41Tp041uRtHEyZMkKp6rbLQ0FAMHz4cQ4cOxeXLl8Xuw1541bRtC1DRuuXBgwc4ffo0vL29sXLlSgwdOhQMw8DX11dixVNsbCwAcJXnwP9u3jYFYWFhUFZWxtOnT2u8Jkt0dLTEn19DWzQ0MTER2dnZEivPgYq2e+vXr8fFixfxzz//oKioSKjyvCYMDQ1FwvPs7Gzk5OTAxsaGu0HYWAodmpo//vgDcXFx2LNnDwwMDCg8lwJ7kd0QwnMNDQ2hQpDK2rVrh0GDBgm1bsnMzERWVpZQ5TkAoXOO4OBgpKamctPvJ0+ejJycHNy6das23xKnvLwcw4YNw7fffivT8w4fPgyGYTBjxgyp9ldVVYW1tXWT6+N/6dIlXLlyBZs3b67xMZ4/fw6gYm2e4OBg/Pvvv1BWVsb06dNlPtaQIUNw69YtFBYWioTnOTk5Nb65HxAQAD09PRgZGcHGxkbmti1s24nK4aSkRUMLCwtx7do1fPXVVwBkX2CQ9eDBA0RGRuLFixfcja3r168jMTER8+fP5/br378/UlNTG0zf8wcPHuCrr77CwoULsWLFCpGZCQ1FSUkJjhw50qhmXJaUlGDixIlCN/qSkpJQUlLSYMNz4H8tjsrLy+Hl5dXoWraw7OzskJaWhtzcXIn7/frrr9izZw/27dsHDw+Pehpd3Wvbti2UlZWrrTyPi4tDy5Yt0bJlS7m+PoXnclZVeN6xY0d8/vnnOHr0aKO4K5udnc31T+3WrRv4fD4CAwO5x/39/aGnpwdjY2P06tWLwvM6lJCQgPbt2wutjkzhOalP7Pvah5XnQO2rcary4sUL9O/fX6RqaObMmXj//j3Onj0r99dsqFJTU3H27Fns3btX6s+P9+/fY/z48TA3N8eoUaMwfvx4sRXoXl5eaNGiBRwdHWs8vk8//RQMw2DSpEkYMGAAtm3bhs2bN+P48eMoLCzkAnJxxIXnTanveWhoKCZOnAh1dfUa/U7n5eUhMzOzyspzoKLveUOqPGdvvlcXngMVQZiDgwOWLl0KNTU1dOnSpVavLa7ynA0xrK2t0a5dOwCgvucN1F9//YX58+fD3t4e+vr6FJ5LITw8HJqamtW2rKgNacNzOzs7KClVfek5bdo0PHjwgDu3DQkJAfC/liYmJibg8XhC5763bt2CpqYmPvnkE27fTp06ya1Y6datW0hNTcXDhw+lDrgEAgH27duHsWPHcp9r0rC3t29ylefsrLW///4bmZmZNTqGn58fhg4dCktLS4wdOxZ79+7FhAkT0Lp1a5mPNWTIEG7WQuUZeWyQXtPrroCAAHTp0oVbwFDWyvPKn1MsSce5ceMGCgsL8e2336J58+Y1Ds/3798PKysreHh4YNWqVSgtLcXff/8NV1dXodljffr0gZKSUr21bgkMDKxydgnDMPj2229x/fp1PH78GP/884/Q+ikNycGDB/Hll1/i0aNHih4K8vLycPr0aYwfPx7jxo1DSUmJ2P2OHj2KM2fO4MKFC9w2cb+fDQV7fsyO8dGjR8jJycHw4cMVOawaY2+ES1o09MSJE/jxxx/x888/czfQPhZKSkrQ19evNjyPiYmRe9U5QOG53LEVml5eXlzI8eDBA/Tr1w/Tpk1DWFgYN3WrIascnnfq1Anq6upCd239/PzQtWtX8Hg89O7dG8HBwTVaOZxU7/Xr10L9zoGKAEBdXZ3Cc1IvUlJSoKysDD09PZHH6iI8T0lJQWpqKlxdXUUeMzU1hbu7Ow4cOCDX12zILl68CKDiREDaC+uFCxfi9evX+O+//3Dq1CkMHDgQo0aNEmnBdePGDbi5udVqOp+TkxPevXuHvLw8REVFIT4+HsuWLUPnzp0BVCyYXZWYmBi0bNkSrVu3bnLheXl5OSIjI9GjRw94eHjUaN0WtpJGUnju6OiI9PT0GgcT8ubv7w8jIyOub6EkysrK+PXXX1FaWgpnZ2eoq6vX6rUNDAxETrgjIyPB4/FgaWmJNm3aQE1NjSrPG6CioiJkZWVxN10oPJdOREQEbGxsJIbWtdWhQwckJSWJ9CKvjA3PJfn888+hpaWF48ePA6gIz9XV1bkQU01NDe3btxc657h16xYGDhwo9N4wcuRIPHz4sDbfEmf//v1o0aKFTAtj37t3D9HR0Zg3b55Mr9WxY8cmFZ4zDANvb2/MnTsXysrK2LJli8zHEAgE8Pf3R9++fXHu3DmkpaUhISFB5n97VpcuXbjr38q9csXNepCFv78/d/OXrTyXpZguKioK+vr60NHR4baxlefijnP27Fk4OzvDysoKtra2NQrP37x5g/Pnz2POnDn4/fffER8fj++++w537tzBggULhPZt0aIFXFxcuNn2dendu3dwcXHB5MmTxd7Q8vX1RWBgIA4cOIDAwECsWbMGPj4+KC4urvOxyUIgEGDHjh0AoPDFr/38/KCvr49JkyYhNjYWV65cweLFi0X24/P5+OOPPwAIjzkqKgqqqqpVzixSpNatW0NXV5cLz8+dO4f27dujW7duCh5ZzdjY2EBVVbXKwtW4uDjMnTsXU6dOxU8//VTPo6sfhoaG1YbnPj4+dfIzrtPwnK0uakpSUlLQq1cvpKenIywsDGlpaYiKikL//v0xePBgGBoacj3ZGrLK4bmqqiq6d++OCxcugGEYrl8pewHTq1cvCASCBjslqrFLSEgQ+TBSUlJChw4dKDwn9SI1NRWGhoZiL77ZBbzKysrk9nrse4m48BwAvvrqK/j4+NRoerNAIICbm5vYBS4bqgsXLqBfv37Q1tbmgnRJ/vvvPxw+fBh79uyBnZ0d1NTUcP78eVhaWmLt2rXcftnZ2Xj+/LlcpvPxeDxoa2vDysqKq97V09ODgYGBxPA8NjaWaznSunVrKCkpNZnwPDY2FmVlZejYsSPGjx8PX19fmS/M2anc1YXnABpM9Xl1i4V+aMSIERg9ejTGjh1b69cWV3keGRkJU1NTaGhogMfjwdjYmCrPGyD2Z8K+v1B4Lp3w8PA6bdkCVITn5eXlVfYgZRgGYWFhVfY7Z2lpaWHs2LHYsGEDOnTogHXr1sHOzg4qKircPmZmZty5b35+Ph4/fiwy/d7S0hLp6elC7SZrIjU1FdevX8e6devQrFkzqatq9+7dC3t7e/Tu3Vum17O3t0dWVlaT+QwMCwtDVlYWxowZg0WLFuHvv/+W+XuPjY1Fbm4uunbtCmtra5w5cwZLliyp8vyxOkpKSnBzc4Oenp7QItStW7dGixYtatSWJC0tDWlpaVx4bm1tjcLCQpk+Z9hFrSuzsbFBXl6eyPvg+/fvce3aNYwfPx6AbAsMVr4BduzYMQgEAkyfPh0ODg6YMWMGdu3aBV1dXe7YldVX3/OEhAQIBAKcO3cOS5YsEXm9ffv2wcTEhHtfGDBgAIqLi7n2Pg3FjRs3EB0dDT09PYVnKOfPn4eOjg5ev34Nf39/7N69G//88w/++ecfkf1iYmLg7u4OPz8/bntUVBQsLS2FZsk3JOyioQKBABcuXMCYMWNkWg+hIdHU1MSIESPE5ol8Ph/Tpk1DmzZtsGvXrkb7PVbHyMhIYniemZmJ8PBw9O3bV+6vXafh+WeffVaXh29wysrKkJGRgQkTJkBNTQ13797l7sD27dsXKioqmDx5Mk6dOiXXhWzqQuXwHACWL1+Ohw8f4s6dO0hOTkZmZiY3Xcva2hqtW7em1i11RFzlOSB8AUFIXUpJSRHbsgWoCM8FAgESExOrPU5RUZHE/tesFy9ewNjYWGyPdaCiTUjbtm1rVH0eExMDLy8v7N+/X+bnKkJ2djYePHiASZMmwcPDQ6rw/MKFC3B1dcW0adO4bZqamli4cCFu377NVdXeuXMHDMPUad8/JyenasNztqpQSUkJurq6TSo4ACqqDUeMGAENDQ2ZW7dER0dDV1cXrVq1qnIfCwsLaGhoNIjwnGEY+Pn5yRSe83g8XLx4EcuWLav16xsaGqKgoEBozYSoqCihUMLY2JgqzxugD9uH6evrIzs7W2K1c1PHMEy9hecAqmzdkpGRgXfv3lUbngPAL7/8gnXr1mHKlCmYMWMGNmzYIPS4ubk5d+77559/AqioNBc3HmnOSyQ5cuQI1NTUMGPGDLELY4uTmpqKS5cuybxYJfC/xVSbSvX5/fv3oaqqil69emHp0qVQUlKSufqcDfDYz5Rhw4Zh27ZttQqN1q1bJ3J+yePx4OzsLPW1bmlpKfc58/LlSwAQqjwHIFPf8w8/pwDA1tYWgGg/8xs3bqCoqAjjxo0D8L/wvLpQ++DBg2jZsiV2794NgUCA/fv3Y/To0dyswJ9//hmampqYPXs2mjVrJvL8fv36ISUlRWyrvoMHD8ptNgi7PsyaNWuwc+dOofWA3r17h1OnTmH27NlckOvo6IiWLVvWW0sZaW3fvh2urq6YMmWKwivPnzx5gj59+nDFerNmzcK8efOwcOFC7ufGMAw2bdqEwYMH4+uvv0Zqaip3w1Tc72dDwobnT58+RXp6ulyKMRRpxowZePXqFffewtqyZQuePn2Ko0ePokWLFgoaXd0zNDTkfvfev3+Pw4cPC81Cefz4MQBw7dzkqdbh+fjx48V+jRs3Dm/fvpXHGBuNjIwMMAwDS0tL9O7dG15eXnjw4AFsbGxgYGAAoKKfX3Z2Nv7991+pjllWVibXik5pfRieDx8+HL169cLq1au5N3j2REVJSQk9e/ak8LwOFBUVISMjQ+w0KArPSX2pLjwHpJvK6urqit9//73a/V68eCGxakhNTQ3Tp0/H0aNHq+zJVxV2RtT169cb/E1MALhy5QoEAgFGjx6N0aNHIyAgoNpAwNfXV+zCihMmTECzZs24aoWbN2+ic+fOVd6kkIfOnTtLHZ4DFQvBNJXwPDQ0FK1bt4a+vj6aN2+OESNGyNy6JTo6WmLVOVDR+qRz5864d+9ebYYrF4mJiXjz5o1M4bk8sedilSv1IiMjuTADqKhspsrzhoe9oVE5PGcYpkktMCyrrKwsvH37ts7Dc/YctarwvPKNwuq0b98eq1atwoYNG7B161aRvrRmZmaIi4tDSkoKNm3ahMWLF8PExERkH0njkYZAIMDBgwcxbtw4tGzZEv3795eq7/np06ehpqaGqVOnyvyalpaWUFFRaTLhube3N7p37w5NTU3o6upi8eLF+Ouvv0RC5Zs3b8LHx0fsMfz8/GBubl6j/uZVsba2FrkhAwBubm7w9vaW6rr8+++/h56eHlauXAkvLy+0bNmSu6ljZmYGFRUVqfueMwyDqKgooc8poOL3RU1NTWQW5t27d2FnZ8edW9nZ2SE3N1dk1lVlAoEAf/zxB1q2bIkFCxaga9euCAsLw5w5c7h9jI2NERYWhnXr1ok9hqS+52vXrpU6+6hOYmIiVFRUsGbNGvz4449Yvnw5Nm/eDIZhcPz4cZSWlmLmzJnc/srKyujXr1+DmnH66tUr3Lt3j5sl8fr1a4W11istLYWvr6/ITJkdO3agZ8+eGDBgAGbNmoVDhw4hMDAQq1at4tphsDevGkt4fv78eRgaGtZ68XlFGzZsGPT19XHo0CFu28uXL/HTTz9hxYoVdRIaNySV27asXLkSM2bMELrGefjwIczMzOpkrZdah+deXl6YPn06FixYIPKlpaUljzE2GpWrYgYNGgRvb2/cvXsX/fv35/bp1KkTpk+fjnnz5mHZsmUoLy9HUlIS5s+fj06dOuHNmzdCx/ziiy+4O8f16cPwnMfjYdOmTQgICMDPP/8MAwMDocClV69e8PHxwbt37+p9rB8zNiSTVHneGBagJY1bampqlQEru5itpEUhgYo7wyEhIbh+/brE/QQCAXx9faudcvvVV18hJycH69evlzz4D/j7+0NDQwN5eXkNrgpFnAsXLqBPnz7Q19eHh4cHVFVVcenSpSr3f/v2LWJjY8X2eWvRogXGjRuHf//9F+Xl5bh161adr8Du5OSEpKQksTfTi4uLkZyczLVtAT6+8Pz58+fYsWMH7t27JxLysW0M2Aq50aNHIzAwUKbvX5rwHKioUrl+/XqtwiR5kGWx0LrAhufsSXd5eTliYmKEQgmqPG+YUlJSoKOjw7VS0NfXBwBq3SIBW5Fa1+G5pqYm9PT0JIbnampqclm8y9zcHFlZWVi0aBG0tLTE9nRt164dlJWVa/V+5+3tjdjYWMyePRtARUsKafqeBwYGonPnzkK9qaWlpqYGa2vrGrWka2wEAgEePHggjIlhIAAA84tJREFUdI28atUqGBsbY+rUqVxA7enpiZEjR2LgwIG4e/euyHHYNbjqg5ubG/Lz86Vq/+Ht7Y127drh77//xvbt27nFQoGKdqjm5uZSh+cZGRnIz88XCSdVVVVha2srMqvs1atXQotrs3//klq33LlzB1FRUThz5gzu3LmDrKwsWFtbY+DAgUL7mZqaVrn2iI6ODrp06SJybl1UVISUlBS5vVcnJSVxf+Pr16/H6tWrsWLFCnz77bfYt28fRo0aJXLNMmDAADx79qzB9D3fsWMH2rVrhzFjxnDXO5Wrz48ePYoVK1bIfNz8/Hyp12ZgBQQEoLi4WCQ8V1NTg6enJ3bs2IErV65g1qxZ6NatGwYMGIB27dpBT08Pfn5+KCkpwevXrxt8eJ6Tk4Njx47h888/r9M1QOqDiooKpk6dihMnTqCkpAQFBQWYOHEi7O3t8fPPPyt6eHXO0NAQGRkZePz4MXbv3g0VFRWcOnWKe/zhw4d10rIFkEN43r9/fzRv3hz9+vUT+urfvz+cnZ3lMcZGgw3PjYyMMHjwYOTn5yM6Ohr9+vUT2u/QoUPYvn07duzYAScnJ1hYWODs2bOIjo7G3r17uf2io6Nx/vx5eHp61mv1OVvJUzk8BypazwwdOhRBQUFwcXERmhI3evRoMAyDjh074vz58xToyklCQgKAqsPzgoICkRsuDMMoZLZCXbh9+zbGjBmD7t27o3379li5ciX9bimApMpzVVVVmJiYVFt5zlYS+fr6orCwsMr9IiMjkZ+fX+0iHzY2Nvj999/x66+/couLScPPzw8eHh7o0KGDxBC6IcjLy4Onpyc+//xzABXh96BBgySOm60Cqerfb+bMmYiLi8O2bduQnZ2NYcOGyX3clTk5OQGA2JP5gIAAMAwjFP62adPmowrPV69ejSVLlmDQoEFo27Ytdu7cyT32YQ9g9gJKlvVipA3Pv/jiC2hrawudY9SUQCDA8uXLaxRM+fn5Sb1YaF1gX5etwHv9+jXKysqELvrYynP6rGlYkpOTuX7nAIXn0ggPD4eysrLQDcq60qFDB4nhuY2NjVDv8ppiq8ovXryIDRs2iA2pVVRU0L59+1rNzjx//jwsLCy4QMnV1RXq6urV3nSXZmFUSZrKoqGhoaHIzs7GgAEDuG3NmzfH8ePH4e/vjw0bNiAqKgrjx4+Hm5sb+vfvj5EjRwotSMnn8xEQEFBv4bmLiwtatWoFT09PifsVFxcjODgY3377LeLi4rB69WosXbpUaB920VBpsPuJCyc7deqEkJAQ7r8FAgGCg4O5cy+gonWbqqqqxPB8586dcHZ2Rq9eveDm5oaIiAj4+PjIHDL2799fZNFQ9u9QXu/ViYmJXEUpj8fDxo0bsXv3buzatQshISH4+uuvxY6rpKSEm8HAMAxevnxZ7UySulBQUICTJ09i4cKFUFVVRYcOHaCrq8uF5wzDYMOGDTh8+LDMx/7rr7/Qq1cvmXKAJ0+eQENDQ2xup6amhkWLFiE2Nha///479u7dCx6PBx6Ph27dusHX1xexsbEQCAQNPjwHKhbBbewtW1gzZszA27dvcfXqVSxYsAApKSk4c+ZMlTe3PiZGRkYQCAT44osv0K1bNyxfvhwXLlxASUkJcnNz8erVqzqrvq91eM4uZCbOrVu3anv4RiU1NRVqampo06YNXFxcuBO6D/99eDwevv32W9y7dw/a2tpYv3494uPj8eWXX+Kvv/7i2hD89ddfUFFRQWFhodCiDHUtNzcX5eXlXI+zyn799VcAEDlRYU/2unXrhrFjx2LWrFn1MtaP3evXr6GkpCQ2uGQvID68ONi1axfatWvHLSTXmG3evBm+vr5wcHDA8OHD8ccff2DFihUUatSjoqIi5OTkVBmeAxWVYNWF5xEREQAqWlE9e/asyv3YRXOkuRhatmwZZsyYgVmzZuHJkyfV7i8QCBAQEAAXFxeMHj2aa4nSULGtZSqvH/LZZ5/h4cOHIjfNWL6+vtDR0akyLPnkk09gaWmJn376CS1btkSPHj3qZOwsa2trqKuri23dsn37dlhaWgpNn/zYKs+joqKwcuVKREREYOzYsdi8eTP4fD74fD4iIiKEwnMLCwvo6OhIHZ6/e/cO2dnZUgVjWlpamDlzJg4cOFDryitvb29s2bIFN27ckPm5si4WKm8tW7aEmpoaF56z7eY6d+7M7WNsbMy975GGg8Jz2UVERHCtHeqapPD81atXcqt+Z899nZycJF5rSBqPNJKSkmBra8sVCjVr1qzavucCgQDh4eFStaepir29fZMIz729vaGmpibSPqF79+5Ys2YNNmzYADc3NxgaGuL06dO4cOECevfujeHDh3PniVFRUSgoKKi38FxZWRkDBw6sNjwPDAxEeXk5unXrBj09PWzcuFGk/ZC1tbXUleeRkZFQUlISO3PDwcEBISEh3HVRbGws3r9/LxSeq6iowMrKqsrwPDo6Gjdv3sTixYu533ctLa0atcJxdnZGcnIycnNzuW3sIqvyrDz/sFXTvHnzcPHiRXz99dcYPHiwyHM6deqE1q1bc3+/x48fR5cuXXDw4EG5jEkWAQEBKC0t5YpXeDweXF1dud9rX19fREdHIysrS+jfURrBwcF4//69TNXnT58+haurK1RVVavcp0WLFlixYoXQjIauXbvCz8+P+z1uyOE5e57ctm3bj6alSceOHeHq6opvvvkGR48exZ49exr0z0Ce2EKYtLQ07N+/H5MnT8a7d+9w+/ZtPH36FAKBoOFWnpP/SUlJgZGREXg8HlRUVDBw4EBYW1tX2e6gb9++ePbsGb7//ntoa2tjyZIlyMjIwIkTJ/Du3Tv8+++/WLZsGZo3b16v7QXYqeUfVp4DFR+K169fx4IFC0Qea9euHS5dusTdLc3Ly6vzsX7sEhIS0K5dO7EfaLa2tlBXVxcJDc+cOYPMzEx4eHiIDdgYhoGnp6fE6t+GIigoCDNnzsTBgwexd+9e/Pnnn9iyZUuV/faI/H24SJs40obn+vr6aN26tUhVSmUvXryAra2tVFOeeTwe9u7dix49euCzzz6rtk9xTEwM8vPz0bVrV4wePRopKSkyVfnWt9u3b6Nz585Cax6MGjUKfD6/ypvTvr6+6Nq1a5XVQjweDzNnzkRpaSnc3d3lUgkoiYqKChwcHETCc3Zm1bJly7hFnYCPKzwvLCxEcnIy7OzsYGNjg+XLlyM5ORmenp6Ii4tDSUkJ7O3tuf15PB5cXFykvlnO3iCVpvIcAObPn483b97I3Ff9Q8eOHQMAmVubZGdnw8fHp9qWTHWJx+PBwMCAC889PT3h7OwsVCzABrTU97xh+XAGlIaGBrS1tSk8rwLDMPDy8qq3m1VVhdVJSUnw8fGR2ywnAwMDTJs2Df/884/QZ4e045FWeno61+aJVV3f88TERBQWFtYqPO/YsSMyMjKqvEH+sbh//z569OgBDQ0NkcdWr14NV1dXFBQU4OrVq9DR0YGGhgYuX74Me3t7TJ48WaiwrHKgV9fc3Nzw4sULiaGmr68vVFVV4ejoWOU+NjY2eP36tVTr9kRFRaFDhw5iK0o7deqEvLw8bhFN9lyrcngO/G/RUHF27dqFNm3aYOLEidWOpTrsIqZswQwArq1jRkaGXApWKleeV/bpp59i7969Ys9/lZSUuL7nr1+/xsKFC6GioiKX2Xiy8vPzg4aGhtD7BFvFzfZtZ8/N2RsP0mJvvEkqUqqMYRg8efJEpGWLNLp164bs7Gx4enpCW1ubu6HdEGlqasLCwgJjxoyR+LnR2MyYMQOpqamYPn16jdbZaKzYv/8VK1bA0dER9vb26NSpE06fPo2HDx/CwMCgzmbcyTU8P3/+vDwP1+h82Bd4x44dMv2b2NjYYOTIkdi2bRsOHjyI0tJSLFq0CH369JEYNsmbpPAcADw8PMRWpQMVF6afffYZGIZR+MrRH4PXr1+LXSwUqKgKGDBgAK5du8Zty8nJgY+PD77//nvk5uZi9OjRQlWG5eXlmD9/Ptzd3bF58+Y6H39tZGRkICsrS+jkc/Hixfjtt9+wfv16XL16VYGjazrY1awlLSppYWGB2NhYiTMC2Crbvn37VhueyxKuqamp4fz581BTU8O0adMknpizQXmXLl3Qu3dvtG7dukG3bklMTBRZIEpfXx+GhoZVzizx9fWttuXNtGnToK6uLlTRXpecnJxEwvOtW7eibdu2mD59utB2Njz/GGaXsBc9bLjdrVs3ODg44ODBg1UuoOfi4iL1DZ0Pj18dS0tLDB06FH/99VeN/30LCwu58xr2Yl1aP/30E5SUlMROqa5PBgYGSEtL424ku7u7Cz3OBrTU97xh+bDyHKh4P6TwvGLavZmZmdCCgP7+/ggNDa23C+oOHTogKSkJ5eXlQttPnDiBZs2aYcyYMXJ5HR6PhyNHjlR7nsCuC1RTVYXnkvqes+FkbcNzAB919Xl5eblIv/PKVFRU4OXlhdDQUKEFxTU1NXH06FEkJyfjhx9+gJ+fH6ytrWvUX76m3N3dwefzJS4+6evrCycnJ4ntE6ytrSEQCKpdLwiA2MVCWQ4ODgDA9T0PCgqCvr6+SJBpa2srNjzPz8/HoUOH8PXXX6NZs2bVjqU67Dgrvxb7PfL5fLHr38iCz+cjJSVFpPJcGmzf88mTJ6Nly5Y4fPgwAgIC6nV2P1ARnjs7OwsVr7i6uiI7OxvR0dE4ffo0d24syyxyPp/PVYFL05cfAOLi4pCRkVGj8Jyd8XH27FlYW1sLtfNtiDw9PfHHH38oehhyNX36dPz555/YtWuXoodSr/T19fH8+XOh/u4TJ07E5cuXcevWLfTt27fOfh/lGp5/8cUX2L59u8R9PoYL4qp8WBVjYmLCfahJ67vvvkNoaCjWrFmDiRMnwtDQEP369cOTJ0/qrY91deF5ddiq0apWRifSS0hIENvvnDV8+HA8fPiQq/L38vKCQCDAvHnzcPnyZfj6+mLAgAHYv38/EhIS8Pnnn2P//v2ws7PD6dOnG/TfI3tx0qlTJ6HtK1euhLm5udCqyqTuSFt5npeXJ7HNQXh4OGxtbdGvX78qF+0pLi7Gq1evZK5MbdOmDY4ePYr79+9jy5YtVe7n5+fH9RZUUVHByJEjxYbnu3fvhp2dHW7evCnTOOSNnc30IRMTE24x4cpSU1ORmppabXhubGyMpKQkTJgwQW5jlcTJyQmhoaFcqJKRkYHDhw/jm2++EblYa9u2LUpLS5Gfn18vY6tLH1aG83g8zJo1C5cvX8aDBw+go6Mj0vu7a9euSEpKQmZmplTHb9u2rUzBwcKFC+Hv789ND5bVlStXuDUJZAmXAwMD8c8//2DdunVV3nyvL4aGhkhPT0dwcDAyMjLg5uYm8jiPx2sQlecxMTFST+3/mJWXlyM9PV3kc4jC8wr79+/H69evhdZUOHLkCIyMjER+v+tKhw4dUF5ezt1wByqu+Y4dO4bRo0dDW1u7XsZReTyZmZk1mmXJMAwyMjJEwvPu3btDXV1d7MKVQEXgraWlJbYqVlrW1tZQVlb+qBcN3bZtG969eyfxBr6WlpbIvz9QEc5u2LABf/75J/777796a9nCMjMzg4WFBe7cuVPlPtIUMbCzzqQJbqOioqpsx2BiYgJtbW0uPH/16pVI1TlQUXmelpYmUjF/9uxZFBQUYO7cudWOQxpaWlowNTUVqTxnM4Xavl+np6ejvLy8RuF5//79UVZWBh8fHxw7dgwTJ05E+/bt6736nJ0hWhn7+7Jx40ZuQWRdXV2ZKs/j4+NRUlICW1tbqSvP2dnrH7ZPkoa+vj7at2+PN2/eNIp2IWZmZvX+OVTXNDQ0sHjxYm4h9abE1dVV6AbUxIkTUVhYiMDAwDpr2QLIOTy/cuUK1q1bh8WLF4uEcnw+H4cPH5b7iu/Lli3DJ598gsmTJ6O0tFSux5ZVVUGHLPr27YuuXbuisLAQ33zzDYCKnukFBQUICAiQxzCrxYbnurq6NXq+kpISunfvLvUbN6mapMpzoCI8Lysr4/rv3bp1Cx07doSJiQl69uyJq1evQkNDA3PnzkWHDh1w9+5dXLlyBVu2bEFERITMK3LXp+DgYGhqaort8efi4lJvfw9NXUpKCrS1tSWecLA/o6pat/D5fERFRXHheUlJidjw7tWrVygrK6tRW4eBAwdixYoVXDWSOB/2Wx49ejTCwsJEFm06cOAAkpKS4OHhgUmTJiksnElNTRV708LU1JRbTLgydrZPdRdtQEVIXV9VIk5OTigpKeFCwJ07d0JFRQXz5s0TOy4AUrduKS4uxsWLF8Hn8+U3YDmJiopCy5YthW5ET5kyBTweD3v27IG9vb3Iz4D9/axcfe7n58f1v69M2sVCKxs6dCh0dXWlXpPmzz//xNKlS7l/32PHjqFnz57o37+/1JXnDMNg8eLFsLGxEdvyrb6xbVvu3LkDDQ0NkYorVVVV6OvrKzw8FwgE+PTTT+UWajRm6enpEAgEVHkuBvseqKuri7///hu5ubkoKSnByZMnMWXKlHqbos4WelRulfLy5UuEhYUpZDo5Ox5xn5XVeffuHUpLS0XC22bNmqF///5Vvn+yi4XKushiZWpqarCysvpoK88jIiKwZs0aLF26VGitCVl8++236NGjB9LS0uo9PAcqWrdU1fc8Ly8PkZGR1Z6HseujVVekUV5ejtjY2CrDSR6Px/U9BySH54BwOxWgovf3oEGDRN5ba+PDKvfY2Fj06tULQO3Dc/a8oyY3qOzt7WFmZoYffvgBffv2hbKyMmbPno1Tp07J3Fu8pnJychATEyPye6unpwdTU1McPXoUDg4OcHR0hJWVlUyV5+x7xsyZMxEdHS1V66cnT57A3t4erVq1ku0b+X/s99EYwnPycTM3N0f37t0BoE772ss1PB8yZAgePnyIixcv4vPPP0dRURFKS0uxZ88eWFpaYunSpXKtdHv58iXS09Px6NEjdOzYEefOnZPbsWuiqqBDFjweD1u3bsXq1au5i+iuXbtCU1NTqNVBXS5yl52djRYtWtRqgaEePXrg2bNnDbqyuaErLS1FamqqxMpzMzMz2Nvb4/r162AYBrdu3RLqK+nm5oZ79+4hLS0NR44cwYsXL+Dh4YHBgwejdevWOH36dD18JzUTFBQEe3t7sRd+Li4uClslvan5sB2VONWF5wkJCVw1hKOjI3R0dERat7x//x5r1qxB8+bNJfaJlGT9+vVwcnLClClTRGbqsIuFVj5hHTJkCLS1tXHq1Cmhsb58+RIHDhzA0aNH4enpCXNzc6xcubJee3Hn5eWhoKBA7GdKVZXnvr6+0NfXl+tFkDywP88zZ85g7ty52LZtG+bMmSP2ZJ0Nz9mbuJIIBAJ8+eWX+Pzzz/Hff/8JPbZ+/Xq0atUK3bp1w+TJk+u19RmLDbcrB+Rt2rTh2mmJm9pvbm6Oli1bcuF5eXk5PvvsM4wYMQL6+vqYNWsWXr58KXR8WSgrK6Nz585S3ThlGAabN2/G9u3bMW/ePGRkZOD27duYOnUq2rVrh+TkZKk+48+ePYtHjx7hzz//lLggVX1hw3NPT0/07dtX7FR19vtTpIsXLyI8PLzKPrVNCfuzoMpzUbdu3UJeXh7Onj2L4uJi7Nu3D9evX8fbt29F2mLVJbbQo3J4fuzYMejr69db9Xtl7MKiNWndwra/EVf5PGzYMDx8+BAFBQUij7HheW19rIuG8vl8zJgxA6ampli/fn2Nj6OsrIxDhw7BzMxM7OKQdc3NzQ0xMTHYuXMntm/fjn379nHnnP7+/mAYRqoiBg8PD9y+fVuk1VFlr1+/RllZmcRwslOnTggODsa7d++QkJAgNjwX104lMTER3t7emDJlSrVjlYWdnR0X0peXlyM+Pp67SV25tVRNsOe+Nak8V1JSQlRUFH755Rdu26xZs1BSUoITJ07UalzSYgu/xP1+sIVDbJFFTcLzFi1a4PPPPwcAqWYY1rTfOYv9Pig8Jw3B7NmzYWpqKnPnD1nIfcFQJycnPHv2DHFxcejRowfMzMywdu1azJ49GwkJCUK9aWrLx8eH61U5dOhQPH36VGSfkpIS5OXlCX3VhYKCAuTl5dU6PAcqqs83btzI/beqqip69+7NXfyHhoaibdu2cHZ2xm+//VbtQn2yys7OrnHLFlbPnj3x5s0bmRe6IP+TlJQEhmEkVp4DFdXn169fx6tXr5CamoqhQ4eK7KOnp4dp06Zx0wTV1NQwZswYnDlzRij8kGbhmvoSFBRUZYjapUsX5Ofn0+9XPfiwHZU4rVq1QsuWLat8L2JPom1tbaGsrIxPPvlEKMx8+/YtBg8ejKdPn+Ly5csS+0RKoqamhn///RdRUVE4dOiQ0GPR0dHIz88XqjzX0NDAmDFjcOLECe7v4PLly1BVVYWHhwemTp2KqKgofPvtt9i9ezfMzMwwZ84c3L17V+LFjjywVa9VtW1JSkoSuXnEThVuaH0HW7VqBRMTE/zyyy+4cuUKVqxYIXTxUpksledr167FmTNnYGpqir/++ovb/u7dO2zZsgW9evWCk5MTHj16pJBFhquaaj1r1iwA4vvifrho6I0bN5CcnIxTp05h4cKFuH//Prp06YLJkycjIiJC5vAcqLiZ8WEPenHCwsKQkpKCL7/8Evv378egQYOgpKSE8ePHo127digpKZHqJsdvv/0GDw8PhQRo4hgaGiIjIwMPHz4U6XfOMjY2lvrmQF1gGAYbN26EhoYGMjIy6q0qrqFi3w+p8lzUqVOn4OTkhIEDB2LatGlcmOfq6lqr3tuy0tTUhJ6eHheel5eX49SpU5g0aVKdL0wtjpGREVRUVGq0aKik8NzDwwOlpaUiPa8ZhkFYWJhc/s0dHBwQGBj40RUg7dixA8+fP8ehQ4fELhQqCxsbG8TFxYm0dqwPAwcORIsWLfDNN99gzZo1mDdvHnbv3g2g4jxMS0tLqpsoHh4eyMnJEepPXVxcLHTDh50ZKSmcdHBwQEREBBfMirt20tLSgo2NDS5evMhtO3XqFDQ0NOS+/o2trS1iY2NRWlrKrYPg6OgITU3NWr9fJyYmonnz5jXuc//he5GRkRG30Gh9/L35+fmhefPmYn+e3bt3B4/Hw6RJkwBUrFMjy3VueHg47OzsYG5ujjZt2lTbASAoKAihoaG1Cs/ZSl95d5YgpCZmzpyJuLi4Ws3+qo7cj5ybm4t///0XKSkpiI6Oxrt373D37l2sXr1a7n2G3r17hxYtWgAAdHR0xC5CsWnTJujo6HBftelDJ4mkoEMe+vXrh0ePHiEtLQ0jRoyAkZERrK2t8csvv8DKykpo0cjakkd4zt49rWnrlh07dqB3794f3YmjLNipppIqzwFgxIgRyMzMxMaNG6GpqSn1VJWJEyciPj6eW917yZIlMDQ0bBC9hsvLyxEWFlblSXGXLl0AQOqF9UjNSROeAxUVs5LCc01NTS746Nu3L54+fYrc3Fz8999/+OSTTxATE4P79+9j4MCBtRqvo6MjJk2ahPXr16OoqIjbXnmx0MqmTJmC6OhoruXJpUuXMGjQIO6zpXXr1ti4cSNev36NpUuXwsvLC4MHD0a7du1Epr/KE9s3tqrK85KSEqGAmWEY+Pn5SVXtpAgHDx7EhQsXuJvoWlpaYvdjP3uqC8+PHDmCDRs24Pfff8eOHTvw9OlT7me8b98+lJSU4ODBgzhw4ACWLFmC58+f13trt6oqwwcPHozvv/+eqw76UNeuXYW+l65du2LixIn45ZdfEBUVhX379uH+/fvIzc2tUbWPk5MTYmNjq32vv337Npo1a4bdu3dj165dCA0NhYeHB3R1dblzqeqqs+Pi4hAYGIgZM2bIPM66YmBgAD6fj+Li4ioDfVNTU9y6dQvKysrQ0tLCTz/9VK9jvHXrFl6+fMnd9JGl+qwxycvLw8KFC8VW8VaWnJwMdXV1tG7dWmi7vr4+srKymuwstIKCAly9epULW5YvX46MjAzcuXOnXqvOWR06dODCak9PT2RkZCikZQtQUZ1sYmJSq/D8w0UXgYo1LCwsLHDjxg2h7ampqcjLy5NLeP6xFiBt3boVs2fP5lp4NFYtW7ZEZmYmysrKkJ+fj9mzZ+Pnn3/G27dv4evriy5dukjVLqlbt25o06aN0O/SsmXL0LlzZ65Xf1RUFDQ0NCTOKOzUqRNKS0tx/vx5qKmpwdbWVux+69evx5UrV3Dt2jVuPYJRo0Zx57vyYmdnBz6fj5iYGG6xUEtLS7nc7ExKSoKJiYlci0RmzJiB4OBgqRZvrS1fX1+4uLiIDfe+/vprPHjwgKuqt7KyQlZWltQ3z9mbdzwej+sAIE5hYSG+//57uLi4wNbWFsOHD6/x9zNgwAA8ePAAzs7ONT4GIfLC4/HqNDgHADBy9P333zM6OjqMubk5s2/fPqagoICZPn06o6enx7x48UKeL8UwDMPs3r2bOXLkCMMwDOPr68ssWLBAZJ/i4mImNzeX+0pKSmIAMLm5uXIdy7179xgATFRUlFyPy3r8+DEDgDEzM2P09fWZhIQEhmEYpqCggBkxYgTTunVrblttjRo1ivHw8Kj1cWxsbJj58+fX6Lnjxo1jADC+vr61HkdjdfDgQQYAU1xcLHG/srIyplWrVgwAZsSIEVIfv7y8nNHX12eWLFnCrFq1igHAAGBu375d26HXWlhYGAOAuXfvXpX7mJqaMsuWLavHUTVNZmZmzMqVK6vdb+zYscygQYPEPjZ79mzG2dmZ++/nz58zABg1NTUGAOPq6spERETIbczR0dGMsrIys3XrVm7b0qVLmQ4dOojsW15ezhgaGjKLFi1isrOzGWVlZWbv3r1VHlsgEDC+vr5M8+bNmd9//11uY/7QkSNHGABMYWGhyGMBAQEMAKHP1ZiYGAYAc+PGjTobU31p2bKl2H/bpKQkZtOmTYyzszMDgJk1axYjEAiY8vJyxtTUlJk+fTpTXFzMGBgYMF999RX3vBcvXjAAmGfPntXb9/Du3TsGAHPy5EmZn3v27FluvDwejzlw4IDIPgUFBcyZM2eYkpISmY/P/v48ffpU4n5ubm7MkCFDuP++cuUKExcXxzAMw6SmpjIAmCtXrkg8xpYtWxh1dXUmPz9f5nHWlWfPnjEAGAMDA0YgEIjdJyMjgzl69Cizd+9eZsaMGYyysjITHR1dL+MTCARM7969me7duzO5ubkMAOb48eP18tr17dixYwwA5u7duxL3W758OWNhYSGy/cKFCwwAJjMzs66G2KCdPHmSAcDEx8dz28aMGcOoqakxb968qffxjB8/nhkwYABz7do1xtjYmHF0dKzyb6w+DBo0iBk7dqzMz9u2bRujqalZ5dgXLlzImJqaCj3u6enJAJDL+0ROTg4DgDl8+HCtj9VQvH//ngHAXbd/TNLT0xltbW1m8eLFjKmpKbN06VKpnztlyhTGycmJYRiGSUxMZFRVVRkAzH///ccwDMPMmzePcXR0lHiMrKwsBgCjq6vLdO7cucr9BAIB4+bmxnTo0IF5+vQpA4C5du2a1GOVVkZGBgOAOXfuHLN3715GWVmZKS0tZXr27MlMnz69VscePXq00HmJPKSkpDAAmEuXLsn1uOKYmpoy3333nVT7sueufn5+1e7L5/MZLS0tZvPmzQzDMMwvv/zCtGzZkuHz+UL7lZeXMw4ODoy6ujqzfv36ajMGQogwuUbzly5dws6dOxEVFYU5c+ZAS0sLhw8fxpw5czBgwABcvnxZni+HHj16cKtd3759W+y0E3V1dbRo0ULoqy7UdeV5t27doKGhgbS0NFy5coW7K6mlpYUjR46gefPmmDhxokif35qQR+U5AIl3PavDVrAePXpUaHtDXBSutkJCQjBs2DCRO8sJCQkwMjKqtoWFiooK16pFXMuWqigrK2P8+PH4+++/sWnTJmzZsgVt27bFo0ePZP8m5IxdNV7SdEwXF5cmVXleXFyMSZMm4cqVK/X2mgzDSL2Wg7m5eZVVG+xUQlaXLl3w1VdfYc2aNYiOjsbz58+5fozyYGlpiVmzZuHXX39FXl4eHjx4gMuXLwu1bGEpKyvjiy++wOnTp3Hp0iXw+Xx8+umnVR6bx+Oha9euQgs01YXU1FS0atVK7NRm9v2/ct9z9m9BEYtnyVvbtm1FKs/5fD569+7NzbY6d+4c9u3bBx6PB2VlZcyfPx+nTp3C9u3bkZGRgWXLlnHP7dy5MzQ1NfH48eN6+x7YSuGatFVhf4YLFiyAtrY2Jk6cKLKPlpYWxo8fX6O1STp27AiV/2PvrsOiTL8+gH9nAAkJQZQURUoBERWVtEBFbAm7c401Vl1717VjXTt2XXsNbFGwCxUVmzIICRUQpZGaud8/eGd+jtQAA0Ocz3VxXbtPnsFh5nnOc+5zy8qW2LolKysLd+/eRc+ePYXL+vbtK+wjrKWlBVlZ2VInDT179ix69OgBZWXlMsdZWQStGLp3715s9Vrjxo0xcuRITJ48GTt27ICWllaFevSWhb+/P+7fv4/FixdDVVUV2trahSY1ri0E1/Cl9aWOi4srsvJSUBlcV1u3HD9+HLa2tiIjFLdt2wY/P79CVfpVoVmzZrh79y769OkDKysrXLx4UaptxL6vhC+L+Ph4aGtrFxu7m5sboqOjRfpHh4aGQl5eXvgZWRENGjSAubk5AgICKnys6kLw7yCJ3091o6WlhcWLF2PHjh2Ijo4u0whANzc3vHz5Eh8+fMDq1auhqqoKS0tL4Vw8xbV/+56mpia0tbXx5cuXIvudC3A4HOzYsQOfPn3CwIEDoampWWzrsopo1KgRNDQ08Pr1a0RERMDAwEA4EbekKs8lSUdHBw0aNKj0eQY+f/6M6Ohosa/TjY2NAYg38iwuLg6ZmZnCkS+2trZISUkpdO3w5MkTBAcHw8fHB0uXLi13m0xC6iqJJs9DQ0MxatSoQkOVVqxYgc2bN2Pw4MHYvn27xM7Xpk0baGtrw8nJCaGhoXB3d5fYscvq48ePUFNTK3YoekXVq1cPmzdvxoULF4QtUQQEEz8GBgZi8eLFFT6XpJLndnZ2ePnyJTIzM8u8b2RkpHAiP8FQ+/T0dJiamkr0PSRtaWlpGDRoEC5fvlzoQcPbt2+FEzGWZsCAAeByuSKThYpDMLHi8uXL8csvv8DR0bFaJM9fvXoFHR2dEt+Hbdu2xbNnz+pEax/GGMaPH4/jx4/D29u7ys775csX5OTkiJ08j4mJKbI1xuvXr0WGkcrKyuKff/7B4sWLhReHkrZ06VJkZGTA1NQUXbp0gby8PObPn1/ktiNGjMDnz5+xZMkS2NraQkdHp9TjlyV5/ubNmyIn+CxJSe1yNDQ0UL9+fWFrJ6Dgb0ZXV1fYM7wmKyp5fuPGDeHkVidOnIC7u7vItcaECRMgIyODRYsWoV+/fiIPY+Tk5NCxY0exkucfPnzAuXPnKvwaKpI8b9asGdTV1fH06VOMHDlS4tcV8vLyaNGihUjyPDc3F9euXRN+nt69exc5OTnFPpDlcrnCvuDFiY+Px4MHD4ptTyMtOjo6UFdXFzsuRUVFLFq0CP/991+ltmoSOHXqFAwNDdGnTx8ABb1937x5U+nnrWqMMVy/fh0ASk1wxsXFFfl5WJeT5ykpKfDz8yv0cE1HR6fC7c/Ky9bWFpqamjhw4AAuXbpUaa0yxVXR5HlxunTpAgUFBfj5+QmXhYaGCud1kQR7e/si5/KqqWpz8hwAZs6cKUzqliV53qNHD3C5XOzZswf//vsv5s2bh9GjR+PSpUtIS0vDmzdvxGrPJig2Kil5DhRckyxYsAAJCQkYMmRIpUzizeFw0KJFC4SFhSEiIgJGRkYAxJ+jIjs7u9iJRWNiYiT+ucLhcGBubo6QkBCJHvdHgiIXcd8f6urqaNiwoVjtmwSJf0GhkmD+ox9zC5cvX4aamhq6du1altAJIf9PosnzkqoLJkyYgLNnz2LRokWSPCU2btwIf39//Pfff+WqwJIUcfsCV8SkSZOK7c9pZ2eHFStWYOPGjSIJlfKQZOU5j8crc3VwcnIykpOTMXPmTCQlJQkvTlesWIHIyMhyV7NXN4wxTJgwAfHx8VBSUsKLFy9E1j9//lzsHmKenp4IDQ0VO9ku0KFDByQkJGDZsmUAACcnJzx8+FDqE4cGBQWVOglQu3btkJqaKvEJc6uj5cuX4+jRo7CwsMDz58+r7LxlGVFjZWUFPp+PV69eiSxPSkpCUlJSsT0YK4u+vj5WrlyJ9u3b4/LlywgODi704FGgdevWsLCwQHx8PAYMGCDW8S0tLREaGirWaJgxY8Zg9uzZxa7PzMzEv//+K/Ig6MOHD8X+3jkcDgwMDEQS8uL8zdQUmpqahZLnR44cgZmZWbEVOxoaGhg+fDgYY0U+JHF0dMS9e/dKfNjG4/Hg4eEBLy+vCk8I+/btWzRu3Lhck1oJRjcABT0wK4OVlZXI3+qOHTvQo0cP7NmzB0DBaL4mTZqU+Herr69fYuX5+fPnweVy0bdvX8kFLgH16tXDp0+fxP5bBwquYfX09LB8+XLw+XycOXMG7u7u5UrMlebp06ewtbUVXlObmprWysrzkJAQfPr0CQoKCqX+Hj98+ECV5z/w9fVFXl6eVAuHfjRw4EDEx8dj9OjR1WLiakNDQyQlJZXaU/9HpSXPFRUV0bVrV5Fe1ZKaLFTAzs4OwcHBSEtLk9gxxXHz5k1MmjRJ4oUpUVFRkJOTE6s4oSZSUFDArl274ObmVqZ7sYYNG8LW1hYrV66Empoapk2bhsGDByMnJwdHjx5FXFycWCMzLS0tAZSePAeABQsWYNy4cfj555/FjrOsWrZsidevXyM8PLzMyfOZM2fCxsam0PX1t2/f8PnzZ4lXngOAhYVFpVeeP3nyBA0aNCjT+8PExESsyvPQ0FAoKiqiadOmAArmAmzZsqXIZLRAwbVd9+7dpTKJMyG1QSV3VBfVq1cv3L59uypPWWVKSnRUlenTp0NJSQkHDx4UWX7o0CH8999/Yh2Dx+Ph69evEkmeW1hYoH79+mVOdguG7/bv3x/W1tY4dOgQwsLC8Ndff0FZWblGV2DxeDykpKQgPj4eGzduxMmTJ7F//360bdtWJHmekZGBt2/fFprcsDgcDqfcbS++r1R1cnJCTk4Onjx5Uq5jScqrV6+KnC3+e4LfjWB2+drq+PHjWL58OVavXo2ZM2fi9evXIhNhStqVK1cwbtw4ZGVllThp5Y/atGkDOTm5Qn/vgr/Xqk6eAwUTL/n4+KBnz54l3shzOByMGDECAMqUPM/JySl1giHGGEJDQ0t86PHPP/9gwoQJIlUvpbXLqc3J8x8rzzMzM3HmzBmMGDGixH/H5cuXY8+ePUVORubo6IikpKQSk5CbNm3Cw4cPkZeXV+GH0MVNFiouT09PDBs2rNL+TVu3bo1Xr14JJ1o8ceIEFBQUMHPmTDx79gxXrlwp9e+mSZMmJVaenz17Fp06dULDhg0lHn9FlXWosry8PJYuXYoTJ07A3Nwc7u7uOHPmDE6fPi3RuHg8Hl68eCHSYkqQPK9to6yuXr0KBQUF9O7du8TkOWOs2AIVZWVlKCkp1cnk+YULF9CuXbsSJxKs6wTtbMr6kCshIaHE5DlQcE/r7+8vTG6HhoaKtKerKDs7OzDG8PjxY4kdUxzHjh3DP//8I/Fr66ioKDRt2lRilfnVUc+ePXHp0qUyPzhyc3MDYwzz5s2DsrIymjRpAkdHR6xduxYAxKo8F0xSKk7yXEFBAf/++2+FrlFK06JFC7x+/RqRkZHCEaba2tpISEgocYLnDx8+YP/+/fjw4UOh0YKC643KGNFibm6OsLCwYgtiEhISkJiYWKFzBAYGwsbGpkzvD3GT54L2mN9Plujk5ARfX19hMcjXr1/x6NEjkXZ8hJCyqdLkOQCxk4E1jbh9gSuTsrIyvLy8cODAAeEXU2JiIqZMmYKRI0cWmhm+KMnJyWCMSSR5Lisriw4dOgh7WopLkIxq3rw5Ro8eDR8fH4wfPx7NmjXD/Pnz8ebNmxp7E9mxY0eoq6tDR0cH8+fPx6xZs+Du7g5ra2uR5PnLly/BGKvy2autra2hrKws1dYtaWlpeP/+falJo8aNG0NfX7/W9z3/448/0L9/fyxYsADW1tbg8/mV1ms7MTERI0aMwP79++Hp6Yn379+Dw+GUehMJFFyMt2nTplCVw+vXr8HhcCr1Il0Sfv75Z1y6dEnsh1CCKp/S/i0SExORlpaGqKioYivIBA83v0+elzaa6fvkeXp6OqKiooQx1XQ6Ojp49+4dkpKSABRUMGdmZmLYsGEl7qerq4tJkyYVuc7W1hZcLrfY1i1hYWFYunQpPD09AYjXY7Ik4vQpLcnEiRPFfuhdHlZWVsjIyMD79+/x/v17PHr0CLt27UKrVq3Qr18/hIWFlXqDpa+vX2zyPCUlBTdv3sTAgQMrI3ypGDNmDDp27AhjY2Pcv38fXbp0wf379yV6jjdv3iArK0vkWtnMzAyZmZnCh5m1xbVr19CpUye0aNGixOSmoH1YcUliLS0tYVLjxIkT0NfXh6enJ3bu3CkcPVXTHThwADdv3hT+f25uLvz8/Eqcn4OUP3leWuU5AOGIGhsbG+zcuRNfvnyRaOW5mZkZ1NXVq7x1i+BB//79+yV63KioqFrbsqWiRo4ciZEjR2LatGnCZUOGDBE+xBfnWmLIkCF49uxZtXlY3bJlS2RmZiIjI0Ok8lxQpFeczZs3Q0lJCbq6ujh16pTIOsFIt8qqPM/Ozi52/g03Nzfo6OjAxcUFe/fuLdfoxGfPnhU591JJjI2NxW7b8uPDu0mTJiEmJkY45+D169fB5/MpeU5IBVR58ry2qoq2LeIYM2YMoqKihAmCzZs3g8vlonv37hg6dGip/ToFyQpJJM8B4KeffsKNGzfKVJ0VGRkJNTU1qKurY+jQoeDz+QgICMC2bdtgZWWF9PT0YnuhlQWPx4Ofn1+JT8BjYmLE+tISx7dv3/Ds2TP8/PPP8PHxwd27d/Hnn38CKEhav3nzRtgf/tmzZ6hXr55EL8TFISsrCzs7O6kmzwXJyNIqz4H/9T2vrd69e4ewsDCMGTMGHA4HlpaW4HK5hVr8SAJjDFOnTgVQ0CLj2rVrWLRoERo3bix2T8SiJgl+/fo1DA0NoaCgIPGYJUlJSQlubm5ib9+4cWNoamqWmjz/fqTMjy1tgIIkq2Ckh+BYfD4fnz59KnE00/fJc0HSvbZUnk+ZMgWysrIYMWIE+Hw+Dh8+DAcHhzK3pfqeqqoqWrduXWTyPD8/H2PGjEGzZs2wf/9+yMvLV6hNBmOswpXnlU1Qnfby5Ut4e3tDQUEBHh4eOHnyJDIyMsDlcuHs7FziMQSV50U9zL506RLy8vLK1BqlupOTk0NAQAAuXrwIe3t7YU9icR7mnzt3rtCDxaIIvs++f3AuSJzUptYt2dnZuHPnDrp3745mzZrhw4cPRc6XAfyv2rC4a2xBKwDGGFasWAF1dXV8+vQJM2fOhIeHR6W9hqry7NkzjB8/HmPHjkVeXh4A4M6dO0hLS6PkeSl0dHRQr149REVFIT8/H35+fqWOUuDxePj8+bOwJVBxmjVrhsePH8PMzEyY9JTkNTuXy4WtrW2VThqal5eHoKAgaGlp4b///kN2drbEjv3+/XtKnhfDwMAAhw4dEpnfxMPDA1wuFw0bNhRr8l9ZWVmx7puqyveJ3O+T50DxbbaSk5Oxe/duTJs2DZ6enjh9+rTIPbrgmrcyRtsI/naLat2Sn5+PoKAgDBw4EIwxTJo0CTt37izT8VNSUhAXF1fm63QTExN8/vwZqampxW4jGOH64+dP27Zt4eTkhC1btgAo6HduYWEh9bkoCKnJKHkuAXw+Hx8/fpR62xagYIhO8+bNsX//fqSkpGDHjh346aefcPLkSejp6aF///6Fesl+T9LJcw8PD/Tv3x/Tp09HcnKyWPtERkaiefPm4HA40NLSwpAhQzB06FC4uroKq0IrOmlXfn4+Ro4cCTc3N1y8eLHY7UaOHIkJEyZU6FwCERERYIzBy8sLffr0gZOTk3B4lbW1NRhjCAoKAlBws9SqVatKmcilNE5OTrh//75YvZwrw+PHjyEjIyPW8Nd27drh6dOn1WokwpcvXyRWjejj4wN5eXnhXAeKiopo0aJFoeR5Wft5FuXEiRM4ffo0du7cieHDh+O///5DampqmR4K2traIjw8XPg5AhS8l6v6IVBVEDzMECd5zuVyIScnJzJBo8DRo0ehoqICJycn4bESExPB4/FKrTz//Pkzvn37hqCgIHC5XIkOGZcmPT09/Pfff7h69Spmz56Nq1evYuTIkRU+rqDv+Y/OnTuHx48fY9++fahfvz6MjY3LnKjMzMzE0aNHkZeXh6SkJKSkpFSo8ryyaWtro1GjRnj58iVOnDiB3r17Q1lZGYaGhjh//jw2btwIdXX1Eo+hr6+P7OxsfPnyRWQ5n8/Hli1b4ODgUKtv0hwcHJCQkCDWvBuzZs3CkiVLSt3u6dOnMDIyQoMGDYTLmjdvDhkZmRrdsu5HDx48wLdv39C9e3cYGhqCMVZs/3xB8rykyvOEhATcunULISEh2LJlC+7du4fVq1cjODi4Wl0flBWfz8e0adOgr6+PmJgYnDhxAkBByxYDAwOxWjTUZVwuF02bNsXBgwfRvHlzuLm5lTqPxOfPn8Hn88UacWdtbQ0fHx8EBARg/fr15W6fWBx7e3sEBASUWOQjSa9fv0Zubi5WrVqFlJQUiUyeLRAVFSUcCUBKp6WlBRcXlxp7/dy0aVNhezRB4YMgeV5cAdyOHTuQn5+Pn3/+GZ6envj06ZPIw6PY2Fg0bty4UopxdHV1oaamVuSkoREREcjLy8O0adNw48YNdO/eXWSyYHEIkvIWFhZl2k/Q8qakQr74+HikpKQU+V6ZOXMm/P398ezZM1y+fLnYSeAJIeKh5LkEJCUlIT8/v1pUnnM4HIwZMwYnT57E2rVrkZOTgzlz5kBVVRXnz5/H58+foa+vj379+uHo0aOFLsgknTzncDjYsWMHsrKyMHfuXLH2iYyMFD6lBgqqYI8ePQpAMjeRubm5GDJkCE6ePAlFRcViexF/+PAB/v7+ErthFSRjiqpGtLCwgKysrDAp+vz5c6m1OHJyckJqamqltQYpSUhICJYuXQoPDw+xetK2bdsWX79+LXaYnTTMmjULrq6uErnZ8fHxgYuLi0g1yo8tfu7duwcNDY0K3eQkJSVh+vTp8PT0FLat8PT0xIkTJ/DLL7+IfRxbW1sAEFZYJiYm4vbt29VuwkBJESd5/vbtWxgaGqJly5aFkueMMRw9ehSDBg2CjY2N8FjiTNQqmBQoJiYGQUFBMDExgaKiYkVeTrXSo0cPLF26FFu3boWMjIzwfVkRDg4OCA8PL1T1dObMGVhbWwt7pYvbY/J7u3btwvDhw9GzZ0/hzV51rjzncDiwsrLC2bNn8ezZMwwePFi4rnPnziVOcCsgSGb+mPT09vZGYGAgVq5cKdmgqxnB511pbRWSk5MRHR0Nf3//UuerePbsWaHvfjk5OTRv3rxWVZ5fu3YNWlpaaNWqVamtNT58+AAZGZlik5mC5PmWLVtgaWmJrl27Aihoe5GRkYFPnz5VxkuoEgcOHMDDhw9x+PBh9OrVC+vXrwefz8eFCxfQr1+/ajEpZ3VnYWGBoKAgODs74/fff8f58+dLnNdHkNgTJ3kuYGtri3nz5on0G5YEOzs7pKamVrhgSFyC+yFPT084Ojpi3759EjluamoqkpOTqfK8jA4ePIjDhw9LO4xykZGRgZmZGbS0tKCsrAzgf39TRVWeZ2VlYcuWLRg3bhy0tLRgZ2cHHR0dnDx5UrhNTExMpbRsAQquiczNzYtMngsS34ICFRcXF9y9exc5OTliHz8kJARcLrfM8z8JkuclXZMKCu+KKqDp378/DAwMMGXKFHz69ImS54RUECXPJUCcREdVGj16NLKysrBu3TpMmDBBOLO5iYkJQkNDsX79eiQlJWH48OHYsWOHyL6JiYngcDilVpyVhZ6eHjZu3Ih9+/bh2rVrpW4fERFR7PD8evXqwcjIqEIJ7ZEjR8LHxwenT5+GnZ1dkdWgAHD69GkwxhAfHy9sp1IRb9++hZqamsgEnQIKCgpo2bIlXrx4gZycHISEhFR5v3OBjh07Qk5Orspbt3z9+hX9+/eHoaEh9u7dK9Y+jo6OUFVVxbZt2yo5OvFER0fj2LFjyMjIEJnMsTy+fv0Kf3//Qolna2trvHz5UpicP3z4MPLy8oQtm8rjzp07+PLlCzZt2iSyXDBpobiaNWuGxo0bC1u3nDp1ClwuF4MGDSpXXNWdpaUl3r59K7yA9vX1haOjo8iDkzdv3sDU1FQ4QeP3njx5gnfv3mH48OGwtLRERESE2BO1Cm4gYmJiEBwcXGtatnxv2bJlGDBgAEaNGiXWsOXSODg4AIBI9XlOTg4uXrwo8h4VTNBYFmfPnoW1tTWCg4OFrSIENz3VleA9qaSkhN69e5d5f0FV+fd9z7Ozs7FgwQL069cPXbp0kVSo1ZKGhgZatmxZavJccI2Rk5NT4vcqn8/H8+fPi+yJamZmVquS51evXoWLiwu4XC6aNGkCDodT7PdXXFwctLW1i51oUEtLC2/evIGPjw9+/vlnYUJZUAVcUyv2v379il9//RUjRoxAp06d8OuvvyIoKAjr169HTEwMtWwR04EDB/Dx40fs378fS5YsQYsWLbBs2bJity9P8ryydOjQAVwut1Drlvz8fEyePLnMvdxL8/z5cxgZGUFVVRVjx47F9evXK3wtC0D4t03J87LR1tYWFkrURNbW1iJz8ZQ0wfO5c+eQlJQkLNjhcrlwd3cXad0SGxtbqaPZLCwsimzbEhYWBnV1dWHlvIuLC7Kysgq1qSxJSEgIjIyMylw1r66ujoYNG5ZYeX7p0iXo6ekVOdpRVlYWM2bMQGBgIJSUlODo6Fim8xNCRFHyvIIEPRbV1NQkPlyvvAwMDNCtWzfIyspi/vz5Iuu0tbUxc+ZMPHjwACNGjMD69euFfSYZYzhw4ABsbGwgKysr0ZgmTJiAbt26YezYsYWGeH8vLy8PMTExJfa2NTMzK3cVRnZ2Nry9vbF27Vr069cPrVu3LjZ57u3tLXzwIJjEtCIEE8gVVykkqCgODg5Gfn6+1CrPFRUV0b59+ypNnufn52Pw4MFISUnB+fPnhVUKpWnQoAHmzZuHnTt3CifWkaa//voL9erVA1B037yy8PPzA4/HQ58+fUSWW1tbIzMzUziM8PTp05gyZQo0NDTg5eVVpkoIgcTERMjKylZ49AyHw4GdnZ3wgvL48ePo3r27xEayVDeWlpbg8XjC5Mzy5ctx//59kcqVN2/ewMzMDK1bt0ZQUJBIO6SjR49CS0sLXbt2haWlJRhjCAsLE1ZaNm7cuNhz6+npgcPhIDo6GkFBQbUyeS4jI4OzZ8/in3/+kcjx9PX1YW5uLjIR540bN5Ceni4ysaWJiQmio6PF/luKj49HQEAAZs6ciadPn8LKygotW7aEkpKSROKuLIL+qH379i1XrI0bN4asrKxI5fn27dsRFxeHdevWSSzO6szBwaHUNl0vXryAgoICdHR0SiwgCA8PR3p6epHf/aampjU2Cfyj169f4/nz58IKuHr16kFPT6/EyvOSetxqaWkhIyMD6urqGD58uHB58+bNISsrW2VVu5K2YcMG5OTkYP369QCATp06oUOHDli8eDFUVVXRuXNnKUdYM6ipqQknUZSRkcHvv/8OPz+/YnuJC5LnpfU8rwoqKipo1apVoc+Y58+f4++//4avr69Ez/f8+XNh4Y6npyeUlJRw8ODBCh9X8LdNyfO6ZcuWLTh+/LjIMsFIoR89fPgQJiYmIvf/np6eiIuLw/3793H69Gk8e/asUpPn5ubmCAsLK9S2VDAZp+D+vXXr1mjYsCGuX78u9rFDQkJEHiSUhZmZWbFzXTHGcO7cOQwYMKDY/ML48eOhpKSErl27Vvv5pwip7ih5XkHbtm3D2bNnceDAAaipqUk7HKE///wTR44cKXF408KFCxEXFyccEnbhwgUEBARg1apVEo+Hw+Hg0KFD+PbtG8aPH19sD8rY2FjweLxSk+flvYkUXMAJLg5bt26NyMhIpKWliWwn+LIWPAEv66Shhw8fFpk1Hfhf8rw41tbWePXqFQIDA8HlcqWaDOvatSuuX78u0cmCSnLq1Clcv34dJ0+eLPPF9axZs9CgQQP8/vvvlROcmL58+YJ//vkHc+fORf369REWFlah4/n4+KBdu3aFEtqCHqcvXrzArVu38OXLF0yaNAne3t549eoVpk+fXuLEMkVJSEhA48aNJTIE3NbWFo8ePUJMTAz8/f0xZMiQCh+zuhL0LgwODsajR4/w+PFjABDe6Obl5SEyMlKYPM/KyhI+iOPxeDh+/DgGDx4MWVlZYa/C4OBgfPz4scRKS6Ag4aSjo4PAwEAkJSXVyuS5gCRbE8yePRvnzp0TfoecOXMGJiYmIn0oTU1NwRgT+6HphQsXwOFw0KdPHzRp0gQPHz4sU0WStAgqnIcOHVqu/WVkZKCnpyesPP/y5QtWrVqFyZMnl3lock1lb2+P4ODgEj9zX7x4ASsrK3Tv3h1Xr14tdrunT58CQLHJ86ioqGIn1axJVqxYAX19fZFWTM2aNSs2ef727dsSEyaCJOekSZNEHgLJyclVeKSiND148AC9evUSFnFwOBz8+uuv4PP56NWrl/BBPSkbT09PtGrVCkuXLi1yfUJCAtTV1cVqHVgVHB0dCxWzCK4xJPneZozhxYsXwvsjFRUVeHh44PDhwxWeNyAqKgpKSkpFjrwltVeDBg0KFc9oaWkV2fP88ePH6NChg8gyBwcHaGlpoVu3bvDw8ICpqSmmTp1aafFaWFggOzu70HdRWFiYSD9xwYTq3yfPGWMIDAzE+fPn8e+//+LmzZsixwgJCSlzv3MBd3d3XLhwociHDi9evEBMTEyJk7Orq6vD29sbq1evLtf5CSH/Q8nzCnj8+DHmzp2L2bNnl/ihJQ2tW7cW6WFaFHNzcwwaNAhr165Fbm4uFi1aBGdnZ+HkhJKmp6eHffv24fz589i9e3eR2wgm3ioped6iRQu8f/++XIndH48vSET+2Lf45MmTqFevHiZMmAAVFZUyVZ6npKRg1qxZ+Pvvv0X6m757967U5Pm3b9/g7e0t9arFUaNG4evXrzh16lSVnO/SpUuwtrYW9iotC2VlZSxduhSHDh0qslddZXr9+rXw33jnzp1gjGHGjBlo2bJlhSrPc3Nz4efnV+Sw7MaNG0NXVxcvXryAt7c3jI2NYW1tDRsbG2zduhX//vsvtLS04OXlJUzGlCYxMbHEKueysLW1RXp6OpYvXw55eXn0799fIsetjho0aAB9fX0EBwdjy5YtaN68Odq2bSu8sY2KikJ+fr6wbQvwvxYOPj4+iI+Px6hRowBAOFljcHAwPnz4INYoAAMDA1y6dAkAanXyXJJGjhwJbW1tbNiwAfn5+Th//jwGDRokkqAX9CoXt+/52bNn0alTJ+FNoqysLFRVVSUfvIRZWlri2bNnFWr/oK+vL0yer1y5EjweD7/99pukQqz2HBwcwBgr8WHJixcvYG1tjR49euDVq1fFTpb27NkzNG3aVFgl+z0zMzPweLxqNb9Hebx+/RrHjh3DokWLRJKTxSXPBaM6evbsWewxW7duDTMzs0IFC0DFii2kSTCB/I+f6/3798fgwYMxZcoUKUVW83G5XCxfvhw3btwo8u82Pj6+WrRsEejcuTPCw8OF7dyA/yXPJdnK6f3790hNTYW1tbVw2ZAhQ/Du3btCLefKSjBZKPXoJ9ra2oWSwLm5uXjx4kWh5LmMjAxWrVqFSZMm4cWLF7h3716ljvIXJMi/v5fk8/l4/fp1oX7i3bt3x+PHj5GSkgIAWLt2LTp06IABAwZgwoQJ6N+/v/Bhd3JyMj59+lTu5PnYsWMhKytb5CjMc+fOQU1NrdSRSL179xaONiSElB8lz8spJycHgwcPRtu2bbF27Vpph1NuixYtQnh4ONzd3REaGoo1a9ZU6vn69++Pn376CXPmzMGhQ4cKJcAjIiIgIyNTYsW8mZkZGGNlrgYHCpLncnJywsRUy5YtISsrW6h1i7e3N1xdXaGmpgZjY+MynWvdunVITk5Gfn6+cPKdlJQUJCYmlpo8B4Bbt25Jrd+5gKmpKZydnYt9yCFJPB4Ply9fhpubW7mPMWnSJBgYGGDJkiUSjKxkkZGRMDc3R+PGjTFs2DBs3boV48aNQ6NGjWBubl6h5Pndu3eRlpZWbFLL2toajx8/xpkzZzB48GDhDcnkyZMRExODlStX4tmzZxgxYoRY55Nk8tzGxgZcLhf79++Hm5tbtRqRUxksLS1x7do1nDx5EjNmzICTk1OhG1szMzM0atQIOjo6ws+aLVu2wM7OTqS/sWAC0g8fPog1h4aBgQE+fPgAJSWlEh84kv+Rl5fHrFmzcPjwYZw8eRJJSUmFevJra2tDWVlZrMREWloabty4IdL2pSZp06ZNhRIa+vr6iI2NRUREBHbs2IEFCxZI7LOkJjAxMYGmpmaxfc9zc3MRGhoKa2truLi4AECxQ72fPn1aZL9zAMJrh5qYCP6eoOp87NixIsuLS56fPn0aXC63xL8vExMTvH79usjWLjU1ef7x40ckJycXSp7LyMjg+PHjtX4+gcrWr18/yMvLC0eLfS8+Pr5atGwR6NSpE4CCuWmAggcrDx48gIyMjEST54L7le/vP5ydnYVVqxXx/v17atlCABTdtiUoKAg5OTlo3759oe3Hjx+PHTt2CAtQKpOenh5UVVVFkucxMTHIysoqlDx3cXEBn8/H7du3ERERgT/++AMzZsxAfHw8Hj9+jIyMDOG9gOB45U2eC1qS7d69G/n5+SLrzp07hz59+kBOTq5cxyaElA0lz8vpwYMHeP/+PXbu3Fmjh062a9cOrq6uuHjxIjw8PIr84pK0P//8E87Ozhg9ejT09PQwb948YW/ZyMhIGBgYlPglIHjqXJ4+loLqB0E7BHl5ebRo0UIkeR4dHY2HDx/Cy8sLAGBkZCR25XlcXBw2b96MX3/9FYqKisKqFkEFY0nJcw0NDeFDA2n1O//elClTcP/+feEs3iXJzc0t97DOJ0+eICkpCb169SrX/kBBC4sVK1bg3LlzVdYuISAgAIwxzJo1C8HBwcjMzMScOXMAQFh5Xt7fyfXr16Gjo1PsxaK1tTWuX7+O5ORk4ftUQF9fH3PnzsWCBQvw9u1bkdEPxUlISJDYzaKysjJatWoFxlitbtkiYGlpiSdPnkBBQQFjx46Fg4MDoqKi8OnTJ7x58wb169cXJsIFcyy8evUKt2/fxsyZMwsdKyQkBB8/fhSr8lwwkZSFhQW4XPo6F9fkyZOhoKCASZMmQV9fHzY2NiLrORwOTE1Nxao89/X1RV5eXq0eYVGSJk2aIC4uDgsXLoSWlhZmzZol7ZCqFIfDgb29fbHJ89DQUOTl5cHa2hpaWlpo3bp1kX3PGWN49uxZsd/9Ojo6UFZWrpGJYIHiqs6Bgl7IHz9+LDTPgLe3N1xcXIqsxheHmZlZuUcqSpPguqu8PXJJyWRkZGBsbFxk8rm6VZ5raWmhZcuWuH37NoCCe5SPHz/Czc0N79+/L9c8N0V5/vw5tLS0hG2CgILWRwMHDsTJkycr1LpFcO9FSFHJ88ePH0NWVlZk1IM0cDicQpOGClpwft+2BSh44GtkZIRr165h6tSp0NLSwpo1a6ClpYV27dpBS0sLly9fBlCQPJeRkSkxB1CaadOm4cOHDzh//rxwWWRkJF69elXtuh8QUpvR3XY53bhxA5qamlL/oJeE5cuXw9TUtFJ6nRdFUVERFy9exJs3bzB+/Hj89ddf2LVrF4CCL4LSKig1NTWhrq5erpvIoo7/46ShJ06cgLy8PPr27QsAZao8/+2336CsrIyFCxfCxsZGmMgVXKAL2gEUR/B+qg7J8/79+0NbWxt79uwpcbunT59CUVERioqKMDAwwKBBg4Qzo4vD19cXDRo0gK2tbYXiHTp0KFq1aoUFCxZUuD+jOAIDA2FkZIQVK1bg1atXSE5OFr63zM3NkZaWhk+fPpXr2OHh4bCwsChxclmgIDFQXLsOCwsL4XDD0kiy8hwoaN2ipKSE3r17S+yY1ZUguTF27FioqanBwcEBQMGw6jdv3ohMEiz4rNm6dSv09PQKVTxbWFgIq3jFbdvyfQxEPGpqavjpp5+QkZGBAQMGFPngwcTERKyqvnPnzqFt27bCBxl1jb6+PiIjI3Hy5EmsWrWq2k+SWhns7e3x8OHDQhVhQEHLFg6HI/yc7tGjB65du1boOyoyMhKpqanFVp5zOBxYWloKq0NropUrVxZZdQ4UJCIYYyKTz378+BH+/v6FHhCXhWCkorgtmKqLoKAg1K9fn6p1K5GpqWmNSJ4DBa1bBJXngmrWMWPGgM/nC9tRVtT3/c6/5+XlhXfv3hUaoSsuxhiioqLovUwA/C95/v19YmBgIKysrKCoqCjFyAqYm5uLVJ6HhoZCSUmpyHk3XFxcsG/fPly9ehXbt29H/fr1ARS0hnJ1dYWfnx+AgtawJiYmFZpHwdraGg4ODtixY4dw2fnz5yEvL19iWzNCiGTV2OT506dP4eTkhM6dO8PLywt5eXlVev4bN26gW7dutaLar0OHDnj9+nWFnoiWh6mpKdavX49Ro0Zh7dq1yMrKEit5zuFw0KJFC4kmz4OCgsDn88EYw969ezFo0CBhz1ojIyPExsaWWt0RFhaGAwcOYNmyZVBVVYWtra1I8lxbWxsqKiolHkOQFK0OD2Xk5OQwYcIEHDp0CBkZGcVud+zYMWhqamLDhg3o06cPzp49W6bqb19fX/Ts2ROysrIVildGRgZr1qzBnTt3SpyUTVICAwNF+vN9f1EkqFAob+uWyMjIEm80BO+P71u2/EgwPFCcPvCSTp4vWbIEvr6+wgvJ2szR0RGGhobCKnJdXV00a9YM9+/fLzRJcOvWrREbG4sjR45g6tSphUbYCJLgWVlZYrdtAajfeXnMnDkTxsbGwp7zPxKn8jwnJwe+vr51uuqnSZMm4PP5sLa2FrtNVG3TtWtXZGRk4MqVK4XWvXjxAiYmJlBWVgZQ0Cf106dPhT6Xr127Bg6HU+KDc0dHR9y7d0+ywVehq1evYuzYsUUmEARVqd+3bjl16hRkZWUr9PclGKlY0yr2g4ODaURRJatpyfM3b94gPj4eDx48gJmZGezt7QFI7r39/PnzIu89unXrBg0NDZw8ebJcx01KSkJmZiYlzwmAgrZ4PB4PX79+FS57/PhxlYx8F0fbtm0RFBQknJskLCwMLVu2LPKz2MXFBdnZ2fDw8ECfPn1E1vXq1QtBQUGIi4tDSEiIRIpcpk2bhlu3buH06dOIjo7G2bNn4eLiUmpugRAiOTX2qkxPTw9XrlzBnTt3YGxsjHPnzlXZudPS0hAYGAhnZ+cqO2dlk+YkLkuWLMGXL1+we/dusZLnQMENUVnbtjDGik2eZ2ZmIiIiArdu3cK7d+9EJmMyNjYGn88vsh/n9y5fvgx5eXlMnjwZAGBnZ4fY2Fh8+PChUBKtOBMmTMDevXurTZ/oiRMnIjMzE8eOHStyPWMMZ8+excCBAzFjxgxs27YNurq6xW7/o4SEBDx58qRC/c6/5+bmBkdHRyxcuLBM1e9FzWBekry8PDx79qzYiz1DQ0PIy8uXK3nOGENERESJfwfGxsZYv359kROkCaiqqqJJkyalJs9zcnKQkpIi0R6f+vr6pU5eU1sYGRkhMjISRkZGwmUODg548OAB3rx5IzK5kaAND4fDwaRJkwody8zMTNhSSpzKc8F7pDo8bKtpdHR08O7du2L/hk1MTPDx48cSHxyeOXMG6enp8PDwqKwwq70WLVqAy+Xizz//rLOJvvbt28PW1hbr1q0rtE4wWaiAo6MjlJSUcOjQIeGyvLw8rF+/Hu7u7iU+xHR0dERsbCyio6MlGn9VSE1NxefPn9GiRYsi1+vr64PL5YpcZ3l7e6NHjx5QV1cv93k1NTWhoaFR45LnRU0WSiTL1NQUMTExIq3tsrOzkZKSUi2T50BB3/P79+/DwcEBWlpaUFFRkUjf88+fP+PDhw9FVp4LWrd4e3uXa1Sn4G+akucEgPBeQ3DflZ6ejtDQ0EKThUrL0KFDUa9ePeGoa0HyvCiurq6YOHEitm7dWmhd9+7dweVycfnyZYSEhJS73/n33N3dYWZmBg8PDzRr1gz+/v51uniDEGmosXc62trawuHBcnJyxVat5uTkIC0tTeSnou7evQsej4du3bpV+FikIAE0ZswYrFy5EikpKWInz9+8eVOmC7mkpCRkZGQUmTwHgFevXmHPnj1o2bIlnJychOuNjY0BoNS+52FhYWjRooWwB37Hjh0BAI8ePRI7ed6kSROMHz9e7NdU2QwMDODm5oZdu3YV+bsOCgpCZGSkcDIvGRkZDB48GN7e3kUOYf+RoFLP1dVVIvFyOBysWbMGz58/F7tK5smTJ9DW1sb+/fvFPk9ISAiys7OLTbzJyMjAzMysXMnz5ORkpKWllfh3wOFwMG/evFKrxS0sLBAcHFziNp8/fwaAOjXJX2VzcHDA06dPER8fL5I8NzU1haKiIoYPHw5NTc1C+ykoKAhbO4mTPLe0tMTdu3dp8rhKIPi8Lqll15YtW+Ds7FzsjVVdYG5ujqSkpDp9PcThcLBgwQL4+/sLWyoABQ9Cf0yeKyoqYt68edi8ebNwZMPRo0cRFRVV6oTXgpZQ0qw+F8xl4e/vX6b9BH9HguupH9WrVw96enqIiooCUDB/zP379yvUsgUo+LepaZOG5ufnIzQ0lJLnlczU1FRYrCCQmJgIANUuea6jowNTU1P4+PggKCgI9vb2wrk5yps8z8/Px6pVq9C7d2/htWxxI1+8vLwQHh5ertYtgr9p6nlOgP8lzwWV3c+ePQNjrNokz9XV1TFq1Cjs2rULOTk5CA0NLfYaT1lZGX///bfIPAECGhoa6NixI44cOYLExESJJM/r1auHV69e4fXr1/Dz88OBAwcwcuTICh+XECK+Gps8F4iJicH169cLDZcRWLNmDdTU1IQ/RfWsKqsbN27AwMBApNKQVMzixYuRnp4OAGIlz1u0aIG0tLQyVQwL+gL+eHwtLS00btwY165dw9mzZzFp0iSRSnxdXV3Iy8uX2vf8x6fTurq6MDAwQEBAAN69e1flbXEkZcqUKXj+/DmePHlSaN3Zs2ehqqqKrl27CpcNHToUiYmJwsmNSuLr64v27dtLNHHr6OiI3r17Y+3atWJtL0hwT5o0Sex2L4GBgeByuUVW6QiYm5uXK3le3Pu0PAQTUJZEcLNIyXPJsbe3B4/HAyA6SbCsrCyuX7+ODRs2FLuvYGinOG1bAMDJyUmqI4dqK8FDjOISE48ePcKjR4/w888/V2VY1VJFKoNri759+8Lc3Fzkeyc6OhqpqamFRob8+uuv0NXVxezZs8Hj8bB69Wr069ev2AmiBTQ1NdGyZUupJs+Dg4Nx4sSJMj1sBkpPngMFyTVBleru3btRr149iUzEW9OS5+Hh4cjJyaHkeSUTfDd//xkvSOhVt+Q5UFB9fvz4cfD5fOGDNDMzs3Inzy9duoQlS5aAMQZPT08cP3682L/Prl27omHDhvj777/LfJ6oqCioqanR9wQB8L+/rZiYGAAFLVvq169frYoQZsyYgYSEBGzfvh0pKSmFJgsVl6urq3CuAkkkz4GCBLqZmRlcXV0xevToCvVRJ4SUXbVPnsfHx8PR0bHQz9evX5GWloaRI0di//79hXrHCixcuBCpqanCn+8nIyqvGzduwNnZmRIWEtSsWTNhxbW4lecASq2q/Z4gKVnU0MHWrVtj79694HK5hXrgcrlcGBkZiVV5/uOXv62tLc6fP4/09PQamzx3dXWFgYEBdu/eXWjd2bNn0bt3b2G1PQDY2NjAyMgIx48fL/G4+fn5uHLlisRatnzPzc0NwcHBYlW/R0dHo2HDhujRowc8PDzEqqwJDAyEpaVliT29zc3NhbO0l4Ukk+cWFhaIiopCZmZmsdsIHkBJsm1LXWdpaSmcM+HHv3t7e/sSbyJbt24NNTU14f5EOjQ0NNCwYcNi+55v27YNhoaGdWJSXFI6LpeLX3/9FRcvXkRQUBCAgpYtQOG2SoqKiti0aRMuXbqE8ePH4+3bt1i6dKlY53F0dCxz1bckCSZAu3HjRplG/oWHh6Nhw4YlfvYZGhoiKioKS5cuxapVqzBv3jyJtLArz0hFaRK8fyh5XrkaNWoENTW1IpPn1fF6qEuXLuDxeNDQ0BDeA1Wk8nzfvn1o164dfH19sWHDBgwePLjYbeXk5LBw4ULs3r1brM8fPp+P0NBQPH36FE+ePKGWLURIWVkZDg4OmDdvHoKCghAYGIh27doJWxZWB+bm5nBxccHvv/8OAOVO7Pfq1QtAwd+PoCCDEFKzVfvkuba2Nu7du1foR01NDcOHD8eyZctKTErKy8tDVVVV5KciEhMTERQUVKv6nVcXa9asgbe3NzQ0NErd1sTEBMbGxvjjjz/E7m0dGRkJDQ2NIm/GWrduDR6PBy8vryLPb2RkVGLl+efPn/Hly5dC/TxtbW2FyZea+sUpIyODSZMm4dixY0hJSREuj4qKwsuXL4UtWwQ4HA6GDBmC06dPlzjJ6uvXr5GSklIpw/1NTU2Rn58vVm/Y6OhoGBoa4sSJEzAxMUHfvn2Rm5srsk1KSorIawkMDCx1cpuWLVsiKSlJ2BZFXJGRkRKr0hFUOpRUAS+oPG/UqFGFz0cKyMjIwNbWFtra2mX+zvn5559x69YtejhbDZiYmBSZmPj06RO8vb0xY8aManXDR6Rr6NChMDAwwJw5c7B582bs2bMHjRs3LrKKdeDAgXBxccHBgwfh6uoKGxsbsc7h5OSEkJAQkcnWqpKfnx/U1dURExNTakHB9969e1di1TlQUEQREBCAlStXYv369VixYkVFwwVQkDxPTU0t89wm0hIUFAQtLS36Tq5kRbU9+fDhA7hcbpFt1aRN0Pdc0LIFKLjWTUhIQGpqapmO9enTJ+HDO3HNmjUL9vb2GDNmjHAukOTkZBw8eLDQtf7kyZNhYWEBGxsbnDp1SmJVt6R28PHxQZMmTeDi4oLbt29Xm5Yt35s5cyYyMjIgJydX7k4D7dq1g6amJkxNTYst8iSE1CzVPnleHG9vbzx48AArVqxAly5dcOLEiSo5761btwCgTvf3rCzq6urw9PQUa1tZWVn8888/8Pf3F3sYYUmTkQrabwgm+/yRsbFxiclzQYVxUZXnQMFFek1u8zNu3Djk5eXh8OHDwmXnzp2DvLy88Mn694YOHYqUlJQS26AIbliKm0CsIkprufC96OhoNG3aFMrKyjhw4ABiY2OF1XVAQY/Xzp07o3v37uDz+cjKykJQUFCpyXPBML+ytm6JiopC8+bNJZI8FcRQUuuWxMREqKmp0dA/CZs5cybmz59f5v1UVVVLbAdEqk6bNm1w5syZQqNo9uzZg3r16mHs2LFSioxUR3Jycli6dClu3ryJJUuW4Pnz5xg2bFiRn+UcDgdbt26FmZkZ/vjjD7HP4ejoCAB48OCBxOIWV1paGu7du4dff/0VMjIyuHHjhtj7hoeHl1pA0Lp1a8jIyODgwYOYN2+exB4gCqp0a0rrluDgYGH7LlK5fkye3717F23bti12Hi1p0tPTQ/fu3eHu7i5cVlTrGXEcPnwYcnJyGDp0qNj7yMjI4MCBA4iPj8fcuXPx77//wtTUFGPGjMHixYuF2z148AB79+7FqlWr8OzZMwQHB2Pv3r1lio/Uburq6rh27RoaN26Mz58/l3o/JQ1ubm4wMjKCqalpuT8PuFwupk2bVuG5Owgh1QirY1JTUxkAlpqaKvY+ubm5LCkpieXk5LCJEyeyli1bVmKEpCwmTpzIVFRUWFxcXKnbdunShXl5eRW5Ljs7m128eJHx+fwi12/fvp3Jycmx/Pz8Itfv3r2bycjIsJycHJHl3759Y3JycszQ0LDU+Ko7Dw8PZm5uLvwdOTk5sT59+hS7vaWlJRsyZEix69esWcPU1NSK/Z1XBI/HY/Ly8mzLli2lbmtiYsLmzJkj/P82bdqwgQMHCv//9u3bDAADwP755x92//59BoA9ffq0xOPm5OQwWVlZtnPnzjLF7uLiwtzd3cu0T0kMDQ3Z3Llzi13/yy+/MFNTU4mdj5DaIjU1lQ0bNowBYBMmTGDHjh1jo0ePZvXr12dTp06VdnikmqqM77Tvj62rq8vmz59faecozpkzZxgAFhERwezs7JiHh4fY+2ppabHff/+9xG34fD5LTk6uYJSFZWdnMxkZGbZnzx6JH7syGBsbs1mzZkk7jDph+fLlrFGjRowxxvLz85mGhgZbsmSJlKMSX1paGgPAjhw5IvY+fD6fmZmZseHDh5frnNu3bxdeE48YMYItWrSIcTgcdvPmTZafn8/atGnD2rVrV+z9EiEC8fHxbMGCBSwtLU3aoRTp9u3b7MKFC9IOgxBSjdTYyvOq1KdPH2hqakJeXh7//PMPtWypRtavXw9lZWVMnTq11H6WJVWey8vLo3fv3sVWOhkbGyMvL6/YnvlhYWEwMjIS6f0NAAoKCmjTpo2w8qkmmzJlCkJDQ+Hh4QETExP4+/vDw8Oj2O3Hjx+PkydPFtsz+N27dzAxMamU9hRcLhfGxsalVuPw+Xxh5bnAqFGjcPHiRXz58gUAsGvXLpiZmWHUqFGYP38+fH19IS8vX2o/0nr16sHExKTMfc9Lep+Wh4WFRYlzAyQmJtJkoYQUQVVVFUeOHMG///6L//77D0OHDsXz588xbdo0rFy5UtrhkWqqMlsucTgcODk5SWXSUD8/P5iamqJ58+ZwdnbGrVu3xGqbJ5jcvbS2LRwOBw0aNJBQtP8jLy8PQ0PDck3gXdUyMzMRERFB/c6riKmpKT5//ozk5GQ8ffoUX79+Rc+ePaUdlthUVFSgo6NTpsrzBw8e4M2bNxg3bly5zvnTTz9hw4YN8Pf3x+HDh7FixQp07twZo0ePxsaNG/H8+XNs376dWpqRUmlpaWHNmjVQUVGRdihF6ty5M/r27SvtMAgh1Qglz0vx6tUrXL16FYsXL8b+/fuxY8cOLFy4UNphkf/XoEEDbN26FRcuXMDDhw+L3S43NxdxcXHlTkoKbvqK6/FZ1GShAv/88w/+/PPPcp23OunatSscHR3x9u1b9OzZE2fOnCk0uer3Jk+eDG1tbSxbtqzI9W/fvq3USVRNTU2LTdwLJCQkIDc3F82aNRMuGzZsGBhjOHbsGBISEnDmzBlMmTIFGzduBIfDwZo1a9CmTRux+teZm5uLNQGpgKBPuyST55aWlqW2baHkOSFF43A4GDduHKKiovDhwwe8fPkS69atk8icBISUh6OjIwIDA/Ht27cqOydjDJcvXxa2aXNxccGXL1/E+n4TXDdJc94XZ2dneHt7F5rPpLoJDQ0FY4yS51VEcA367t07XL58GWpqasJ2izWFqalpmVoS7du3D4aGhujSpUu5zsflcjF37lxhCykul4sDBw4gNTUVCxYswNixY2vc75AQQggRByXPv/P69WvMmzdPpIJ527Zt0NPTw2+//YYxY8Zg6tSp0NXVlWKU5EeDBg2Cvr6+SD/uH8XExIDP55c7KWlgYAAZGZli+56XlDy3srIS9p6uybhcLvz9/REUFITt27dj4MCBJVbYKSoq4rfffsPx48fx4sWLQuvfvXtXqcnz4ib7+55gQtHvK88bN26MXr164eDBg/j3338hKyuL0aNHo1GjRli/fj34fL7Y/fmcnJzw8OFDZGVlibV9bGwseDyexCvPY2Nji51QKiEhAVpaWhI7HyG1kZaWFn33k2rB0dEReXl5CAwMrLJzhoaGIjY2Vpg8t7W1haKiolh9zwXXTaVVnlem6dOn49OnTzhz5ozUYhDHq1evwOFwasU1Y00geKAjSJ67uLhUy37nJfmxb3tJTp06hcOHD2P8+PHgciWXAmjatCn+/vtvtGzZEmvWrJHYcQkhhJDqhJLn34mMjMTGjRuxa9cuAMCXL19w5MgRTJ06lWZJrsa4XC6GDx+OEydOFFtVFBkZCQDlTkrKycmhWbNmRVZ3ZGRkIDY2ttjkeV02ZswYGBsbi0wmBACpqalISEio1Eo0U1NTREdHIycnp9htikqeA8Do0aPx5MkT/PnnnxgyZIiwynTs2LGYO3cuRo8eLVYMzs7OyM3Nxf3798XavqLv06JYWFgAKH7iUqo8J4SQmqNVq1ZQVVUtsXVLfn6+2JXpKSkpWLp0KZKTk4vdxs/PD4qKiujcuTOAglYoTk5OuH79eqnHf/fuHdTV1aGhoSFWPJXB0tISXbt2xbZt26QWgzju3buHVq1aoX79+tIOpU4QtD159OgRHj16VKNatgiYmZnh7du3pbau3L59O7y8vODp6Yl58+ZJPI7BgwcjNDSUijEIIYTUWpQ8/46bmxumTp2KX375BWFhYdi7dy8YY5g4caK0QyOlGDlyJL5+/QpfX98i10dGRkJGRgZNmjQp9zns7Oxw586dQstfv34NAJQ8L4KcnBxWrFgBX19fkRt9QTuVyq48Z4wV22oHKEieq6qqFuqz2qdPH6irq+Pr16/46aefhMu5XC42bNiAdu3aiRWDhYUFtLS0xKrOAwrep1wuFwYGBmJtL44WLVqAy+UW2bqFMUbJc0IIqUFkZGRgb29fYvJ82bJl6NSpk1jHO3bsGFauXImePXsWOUIpLS0Nhw4dQteuXaGgoCBc7uzsDH9/f0RFReHNmzeIiYkp8vjh4eFSbdkiMGPGDDx48ABPnz6VdijFunXrFrp27SrtMOoUU1NTHDx4EHw+v0Ymz01NTZGZmYm4uLhit/njjz8wY8YMzJ49G4cPHy40PxMhhBBCSkfJ8x9s2LABzZo1w/Dhw7Fjxw4MGzYMjRo1knZYpBQWFhZo06aNSOuWjIwMYeI0MjISTZs2rdBwTBcXFzx//lw4kaSAYELIFi1alPvYtZmXlxcsLS2xdetW4TJB8ryyK88BiAxnjYuLE2mh8v79e5F+5wLy8vKYNGkSOnfuLHaLlqJwOBy4uLiIVZ0HFLxPmzRpItEbG0VFRRgZGeHVq1eF1iUnJyM/P5+S54QQUoM4Ojri/v374PF4Ra4/d+4cnjx5UmI1ucCVK1eEc4S4ubkhPT1duO7r169wcXFBTEwMli9fLrJfjx49kJWVhebNm6NFixYwMjLCx48fCx0/PDxcqi1bBPr27YumTZuWqfr877//xvr16ysxqv+JiopCdHQ0unXrViXnIwVMTU2RlpYGc3NziRYuVBU7OztwuVxcvny5yPUHDhzAb7/9hpUrV+LPP/+UaLsWQgghpC6hb9AfKCkp4b///kNwcDBiY2Px888/SzskIqaRI0fi4sWLSE5ORmxsLNq0aQNjY2O0bNkSp0+frnArDGdnZzDGcOvWLZHlYWFh0NfXr7azhUsbl8tF//79cevWLfD5fAAFCe3GjRtDTU2t0s6rpaUFZWVlYaI+Ly8P7dq1w8qVK4XbREdHF2rZIrB27Vrcvn27wnE4Ozvj2bNn+Pr1a6nbRkZGSrRli0CXLl1w7ty5QomWxMREAKBhtoQQUoM4OjoiLS0NwcHBhdbFxcUJH+o/evSoxOPk5eXh5s2bGDVqFK5cuYKgoCA4ODhg0aJFOHbsGLp164bIyEjcvHkTNjY2IvtaW1vj9u3buHLlCq5cuQIej4crV64UOse7d++qRfJcVlYWU6dOxbFjx4TffaXx9vbGunXrin1IkZWVhQULFiAzM7PC8d26dQtcLlfsEQNEMgSFFq6urlKOpHw0NTXRpUsXnD59utC6u3fvYtKkSZg4cSIWLVokhegIIYSQ2oOS50Vo27Ytdu3ahalTp8La2lra4RAxDR06FPn5+Vi/fj06deqE/Px8HD16FHZ2dkhNTYWdnV2Fjq+vrw9TU9NCLThKmiyUFOjWrRuSkpKEN/qVPVkoUFD1/f1ESjdv3kRiYiKuXbsm3Kak5LmkFPfQpSiVlTyfMGECYmNjcfXqVZHlggQCVZ4TQkjN0aFDB8jJyRXZuuX69evgcDhQVVXFw4cPRdbNmTNHZCTUw4cPkZ6ejh49eqBDhw64fv06mjZtikOHDmHYsGFISEjAnTt30LZt2yLj6Ny5M3r06CHc38/PT2R9RkYG4uPjq0XbFqDgu5AxhlOnTom1/cePH/H169dCv0eBq1evYt26dUU+NCirmzdvok2bNoXayJHKJbgWrYktWwTc3d1x48YNkZEmERERGDhwIBwdHbFjxw5wOBwpRkgIIYTUfJQ8L8b48eOxY8cOaYdBykBbWxs9evTA2rVrISsrizt37mDo0KHYt28fPn/+jD/++KPC53B2dqbkeTnY2dlBXl5emEB++/ZtldxMm5iYCCvPT548CQB49uwZUlNTwRirkuS5gYEBTE1NxWrdUlnJ8/bt28PKygr//POPyPKEhAQAlDwnhJCaRFFRETY2NkUmz69evYq2bdvCyckJAQEBwuWxsbH466+/MH/+fOHkgleuXEHDhg2FyfEOHTrAx8cHcXFxSExMREREhHDS6dK4urri2rVryM/PFy4TtM6rDpXnAKChoYFmzZoJJ+cujaANzaVLl4pcL/j9/vjvcO/evTLdQwgesFO/86rXo0cPbN26tUa3yxk4cCB4PB4uXLgAoOD9NH78eKirq+PUqVOQk5OTcoSEEEJIzUfJc1KrzJ8/H927d8edO3dEehdKquLC2dkZ7969Q2xsLAAgNzcX4eHhlDwvhaKiIuzs7HDz5k0wxvD27dtKrzwHIKw8z8vLw9mzZ+Hl5QU+nw9/f38kJycjIyOjyJ7nkubs7Fxq8jwlJQVfv36tlOQ5h8PBxIkT4ePjg/j4eOHyxMREyMnJUaUbIYTUMI6OjvD39xcmwgGAz+fj+vXr6NGjB+zs7PDo0SNhu7SLFy8CAJ4/f467d+8CKEi0d+/eHTIyMoWO36hRIygpKYkdj6urK1JSUvD48WPhsvDwcADVJ3kOAE2bNkV0dHSp22VmZiI1NRXKysqlJs/9/f1Flq9ZswYzZ87Ehw8fxIrp3bt3+PjxIyXPpUBBQQEzZsyo0JxI0qajowMHBwfhiIqLFy/izp072Lp1KzQ0NKQcHSGEEFI7UPKc1Cpdu3bF1atXoaurW2nH53A4wurze/fugcfjwdzcvFLOV5t069YNd+7cQUJCAlJTU6skeW5iYoJPnz7hwoUL+Pr1KxYsWAB9fX3cvn0b79+/B4BKrzwHCiabDQ8PL/GGPSoqCgAqJXkOAMOHD4esrCwOHDggXJaYmIjGjRvTcF5CCKlhHB0d8eHDB5HvlVevXuHz58/o3r07bG1tkZqaitevXwMAfHx80KVLF5ibm2PTpk1ISkrCkydP0KNHD4nE0759e2hoaIi0bnn37h0aNGiAhg0bSuQckmBgYICYmJhSt/v06RMAYNiwYXj16pWwaEIgLy8PT548gZmZGZ4/f46MjAwAQHZ2Nm7dugUej4d///1XrJhu3boFGRkZODk5lfHVEFLA3d0dV69exdevX/Hrr7+iW7du6NWrl7TDIoQQQmoNSp4TUgYaGhpo06YNbty4gaSkJIwePRoODg6wt7eXdmjVXrdu3ZCamooTJ04AQJW0bREk6NesWQNjY2NYW1uja9euuHXrljDhUBXJ8x8fuhRFMIy8spLn6urq8PT0xN69e4WViAkJCdSyhRBCaiAHBwcAoi1Drl69CiUlJdjb26NDhw7gcDh4+PAhMjMzcfPmTfTr1w9z5syBj48Pdu/eDcaYxJLnMjIy6NGjBy5fvixcFhQUBGNj42r1gFbc5LmgZcvYsWMhIyMDX19fkfWvXr3Ct2/fMHfuXPB4POHkrP7+/vj27Rvs7e3xzz//iLSxKc6tW7dgY2NDE8+Tchs0aBByc3MxePBghIWFYcOGDdXq744QQgip6Wp88vzYsWNo1KiRtMMgdYig7/mIESOQnZ2N48eP1+jhnlWlffv2UFJSwp49ewBUzTBuQYL+6dOn8PT0BIfDQZcuXfD8+XO8fPkSioqKVfL5oa6uDisrq2InHQMKkucqKiqVWqE3ceJERERECHvPJyYmQktLq9LORwghpHI0bNgQ5ubmIi1Drl27hs6dO0NeXh4qKiqwtLREQEAArl+/jpycHPTt2xfDhw+HpqYmfv/9d1haWkJPT09iMfXq1QtPnjxBYmIifHx8cPToUXh6ekrs+JJgYGCA+Ph45OTklLidIHlubm4OBwcHYdsbgYCAAMjJyWH48OFQV1cXPsS4fPkydHV1sXXrVsTFxRWaRPVHjDHcvn2bWraQCjEwMBBO+jtixIhiJ/klhBBCSPnU6OQ5n8/HqVOn0KRJE2mHQuoQZ2dnfPr0CVevXsXRo0ehr68v7ZBqhHr16sHJyQlhYWEwMDCAoqJipZ9TQ0NDmIwW3MB36dIFjDEcOXIEBgYGVVaZY2xsLGzNUhTBZKGVGY+joyPatm2LuXPnIi8vT9i2hRBCSM3j6OgoTNp++/YN/v7+6N69u3C9nZ0dHj58CB8fH7Ro0QLGxsZQUFDA1KlTwePxJFZ1LtCzZ08AwLZt2zBixAgMGDAAc+fOleg5KkowH05cXFyJ23369An169eHiooKevfujRs3buDbt2/C9QEBAWjbti0UFRXh4OAgkjx3dXVFu3btYGNjg927dwMAcnJysHHjRnh5eaFDhw7Q0dFBs2bN0KpVKyQkJFDynFTYkCFDoKCggJUrV0o7FEIIIaTWqdHJ86NHj8LDwwNcbvEvIycnB2lpaSI/hFSEk5MTtLW18ccff4jcpJLSdevWDUDVtGwRMDExEbZsAQBDQ0MYGBggIiKiSiYLFTA0NBQreV6ZOBwO9uzZg1evXuGvv/6iti2EEFKDOTk5ITQ0FMOGDUPfvn2Rk5Mjcl1ia2uLkJAQnDt3Dn369BEu/+mnn2BkZAQvLy+JxqOlpYW2bdti5cqV0NXVxcGDB0u8RpcGQfK8tElDP378CF1dXXA4HPTu3Rvfvn3D7du3hesDAgJgZ2cHoOAhRkBAACIjIxEaGgpXV1cAwJQpU+Dn54fTp0/DxsYGCxcuRFJSElq1aoXJkydj+PDh6NKlC2bOnInOnTtXzgsmdcaMGTMQHh5eJe0ICSGEkLqmxvaa4PF48Pb2xrlz5/Dnn38Wu92aNWuwfPnyKoyM1HZKSkqIiYmBnJyctEOpcQSVVVUxWajA77//Dg6HI6zoFrRuOXToUJXeYDRv3hzR0dHg8XiQkZEptD4yMhL9+/ev9DhsbGwwa9Ys/Pbbb2CMUdsWQgipoVxdXeHi4oJPnz5BUVER06dPh4WFhXC9nZ0dGGP48uUL+vbtK1yupaWF8PDwSolp0KBBiIiIwLlz56Cqqlop56gIwWjV0vqeC5LnQEHrlubNm2PXrl1wdXVFYmIioqKiRJLnmZmZWL9+PbhcLlxcXAAUVALPmTMHHh4eaNu2LZ4+fQorK6tKfHWkLpOVlZVoGyZCCCGE/E+1T57Hx8fDw8Oj0PKJEyfCy8ur1IqWhQsXYs6cOcL/T0tLozYvpMIocV4+bdu2hb6+Ptq3b19l5xQMI/+eNJLnhoaGyM/PR1xcXKHz8ng8vH//vtIrzwX++OMPnDlzBu/fv6fKc0IIqaE0NTVx7dq1YtebmpqiQYMG4HA4VTax+cKFCzFjxoxqmTgHAAUFBWhpaZUpec7hcLB+/Xp4eHjg+PHjUFJSAlBQ2Q8UPJSWl5fHv//+Czs7O6irqwMA6tevj61btyIpKQk///wzXTsSQgghhNRQ1T55rq2tLewj+L1ff/0Vz58/x5EjR/Du3TvMnj0bf/31V6Ht5OXlIS8vXxWhEkJKISMjg/DwcNSrV0+qcQgq4I2MjKrsnIaGhgAKKsx/TJ7HxcUhPz+/ypLn9evXx549e9CzZ08a3ksIIbUUl8tFnz59oKqqWmUTm3O53GqbOBcwMDAQK3nerl074f+7u7vD09MTM2bMQL9+/aCrqyssxpGXl0eHDh3g7+8vbNkiMHr0aMm/AEIIIYQQUqWqffK8OOvWrRP+t42NTZGJc0JI9VMdHmY1a9YMDx48gI2NTZWds2nTpuBwOIiKiio0MVhkZCQAVFnyHAB69OiBqKgoSp4TQkgtdvjwYWmHUO2ImzwXVJ4LbN++HRYWFti/fz/c3d1FJvh2dHQsMnlOCCGEEEJqvuo1i085PXnyRNohEEJqGDs7uyodQq2goABdXd0iJw2NjIwEh8Op8kR2s2bNRG7+CSGEkNrOwMCgxAlD09PTkZGRUSh53rhxY2zbtg0AhP3OBUaMGIHx48ejbdu2kg+YEEIIIYRIVY2tPCeEkJqmefPmwirz70VGRkJfX79aVOUTQgghtVnTpk0RExMDxliRD5A/fvwIAIWS5wAwePBgcLlcdO/eXWS5ubk59u7dWzkBE0IIIYQQqaoVleeEEFITGBoaFlt5XpUtWwghhJC6ysDAANnZ2UhKSipyfUnJcw6HAy8vL+GkoIQQQgghpPaj5DkhhFQRQ0PDYivPKXlOCCGEVD4DAwMAKLbvuSB5rqOjU2UxEUIIIYSQ6ouS54QQUkWaN2+OhIQEZGVliSyn5DkhhBBSNX5Mnj979gz29vbIyMgAUJA8V1NTQ/369aUWIyGEEEIIqT4oeU4IIVXE0NAQAPD+/XvhsrS0NCQlJVHynBBCCKkCmpqaUFRUFCbPt2/fjoCAANy8eRNAQfK8qJYthBBCCCGkbqLkOSGEVBFB8vz71i2CHuiUPCeEEEIqH4fDgYGBAaKjo5GVlYWTJ08CAPz8/ABQ8pwQQgghhIii5DkhhFQRXV1d1KtXT2TSUEEinZLnhBBCSNUwMDBATEwMzp07h4yMDPTu3Ru+vr5gjFHynBBCCCGEiKDkOSGEVBEul4tmzZqJVJ5HRkaifv36aNSokRQjI4QQQuoOQfL80KFDcHR0xLRp0xATE4OwsDBKnhNCCCGEEBGy0g6AEELqkubNmxeqPG/evDk4HI4UoyKEEELqDgMDA5w4cQJZWVnYs2cPunTpAgUFBfj5+VHynBBCCCGEiKDKc0IIqUKGhoZFJs8JIYQQUjUMDAyQkZEBOTk5eHp6QlFREV26dMHRo0eRnZ1NyXNCCCGEECJEyXNCCKlChoaGiIyMBGMMACXPCSGEkKrWtGlTAMCAAQOgpqYGAOjVqxeePXsGAJQ8J4QQQgghQpQ8J4SQKtS8eXNkZGTgy5cv4PF4eP/+PSXPCSGEkCpkamoKWVlZTJgwQbisV69ewv+m5DkhhBBCCBGo0cnz27dvw9nZGZ07d8b58+elHQ4hhJTK0NAQAPDkyRPs2rULubm5lDwnhBBCqpCenh4SExPh4uIiXGZiYgIjIyMAgI6OjrRCI4QQQggh1UyNnTA0Ozsbf/75J/z8/FCvXj1ph0MIIWIRJM979eoFLpeLnj17wsnJScpREUIIIXWLurp6oWVubm44ceIE5OXlpRARIYQQQgipjjhM0Hi3hrl58yZ2796N1NRUKCkpYdeuXdDW1i60XU5ODnJycoT/n5aWhiZNmiA1NRWqqqpVGTIhhAAAVq9eDXV1dQwaNAhaWlrSDocQQgghAL5+/YrIyEjY2NhIOxRCCCGEEFJN1Njk+bFjx7Bp0ybcv38fN27cwPnz57F79+5C2/3+++9Yvnx5oeWUPCeEEEIIIYQQQgghhBBSnGqfPI+Pj4eHh0eh5T/99BOePHmCv/76Czk5OejevTvu3r1baDuqPCeEEEIIIYQQQgghhBBSVtW+57m2tjbu3btXaPmXL19w6NAhAMDz58+LnXBPXl6e+hYSQgghhBBCCCGEEEIIKZNqnzwvTsOGDdGvXz906tQJXC4X+/btk3ZIhBBCCCGEEEIIIYQQQmqJat+2RdLS0tKgpqZGbVsIIYQQQgghhBBCCCGEFIsr7QAIIYQQQgghhBBCCCGEkOqmzlWeM8aQnp4OFRUVcDgcaYdDCCGEEEIIIYQQQgghpBqqc8lzQgghhBBCCCGEEEIIIaQ01LaFEEIIIYQQQgghhBBCCPkBJc8JIYQQQgghhBBCCCGEkB9Q8pwQQgghhBBCCCGEEEII+QElzwkhhBBCCCGEEEIIIYSQH1DynBBCCCGEEEIIIYQQQgj5ASXPCSGEEEIIIYQQQgghhJAfUPKcEEIIIYQQQgghhBBCCPkBJc8JIYQQQgghhBBCCCGEkB9Q8pwQQgghhBBCCCGEEEII+QElzwkhhBBCCCGEEEIIIYSQH1DynBBCCCGEEEIIIYQQQgj5QZ1LnjPGkJaWBsaYtEMhhBBCCCGEEEIIIYQQUk3VueR5eno61NTUkJ6eLu1QCCGEEEIIIYQQQgghhFRTdS55TgghhBBCCCGEEEIIIYSUpsYkz58+fQonJyd07twZXl5eyMvLw4kTJ2BnZ4du3bohNjZW2iESQgghhBBCCCGEEEIIqSVqTPJcT08PV65cwZ07d2BsbIxz585h06ZNuHPnDlasWIEVK1ZIO0RCCCGEEEIIIYQQQgghtUSNSZ5ra2tDSUkJACAnJ4e3b9/CwsIC9erVg4ODA4KCgorcLycnB2lpaSI/hBBCCCGEEEIIIYQQQkhJakzyXCAmJgbXr1+Ho6MjVFVVhct5PF6R269ZswZqamrCnyZNmlRVqIQQQgghhJA6jjGG9+/f49u3b9IOhRBCCCGElFGNSp6npaVh5MiR2L9/Pxo3bixSRS4jI1PkPgsXLkRqaqrwh3qjE0IIIYQQQiTl9evX2Lx5M/h8vsjya9euYdCgQdDS0oKhoSF0dXUxY8YMvHr1SkqREkIIIYSQspKVdgDi4vF4GD58OJYtWwZTU1Pk5eUhNDQUubm5CAwMhJWVVZH7ycvLQ15evoqjJYQQQgghhNR2V65cgZeXF9LS0qCiooLx48cDAKKjozFw4ECYmJhg0qRJ6NChAwICArB//35s374dp06dgru7u5SjJ4QQQgghpeEwxpi0gxDHsWPHMH36dLRq1QoA8NNPP4Exhi1btkBBQQGHDh0SqyVLWloa1NTUkJqaKtL2hRBCCCGEEELEtX37dsycOROurq5QVVXF5cuX8fr1azRu3Bh9+vTBy5cvERoaKnLPkZeXh379+iE8PByhoaGQk5OT4isghBBCCCGlqTHJc0mh5DkhhBBCCCGkIi5evIi+ffti1qxZ2LhxI5KTk9GiRQv06NED/fr1w9ChQ3Hu3Dn079+/0L6vXr2CtbU1du3ahcmTJ0shekIIIYQQIi5KnhNCCCGEEEKImPLz89G6dWtoaWnhxo0b4HA4AIBDhw5h9OjRUFFRQY8ePXDq1KlijzFixAjcvHkT4eHhUFJSqqrQCSGEEEJIGdWoCUMJIYQQQgghRJoOHjyI0NBQrF+/Xpg4B4CRI0fC2dkZXC4X27ZtK/EYf/zxBz5//lzqdoQQQgghRLqo8ryCGGO4ffs2Ll26hGXLllE1OyGEEEIIIbVUVlYWTExM4OTkhOPHjxdan5mZiaSkJDRt2rTUY02fPh3//fcfXr9+DS0trcoIlxBCCCGEVBAlz8vo9u3bePfuHdTV1cHn87Ft2zbcu3cPHA4H3bt3x8WLF2niH0IIIYQQQmqhNWvW4LfffkNYWBiMjIwqdKzExERYWVnBwsICV69ehYyMjISiJIQQQgghkiIr7QBqkmfPnsHZ2Rl8Pl+4rEOHDvDx8YGioiJcXV0xY8YM7Nq1S2QIJyGEEEIIIaTmYYzhxo0buHr1Kh48eIDHjx9jypQpFU6cA0Djxo1x/PhxODs7Y9myZVi1apUEIiaEEEIIIZJEledi4vF4sLOzQ3Z2NgIDA5GVlYWMjAzo6+sLE+X79u3D+PHjsX79esybN6+yXgIhhBBCCCGkEvF4PJw6dQpr167FixcvoK+vD3t7ezg4OGDChAkSneRz3bp1WLBgAXx8fNCnTx+JHZcQQgghhFQcVZ6Lac+ePQgMDMT9+/chLy8PeXl5qKuri2wzbtw4REREYP78+WjcuDFGjx4tpWgJIYQQQggh5cEYw6BBg3DhwgV0794dN2/eRJcuXSptZOn8+fPx4MEDeHl54ZdffsH8+fOhoqJSKecihBBCCCFlQ5XnYoiPj4eZmRkGDx6Mv//+u8RtGWOYNGkS9u3bh5MnT2LQoEGSCJsQQgghhBBSBfbs2YMpU6bg1KlTcHd3r5JzZmRkYOXKldi8eTPU1NSwYsUKTJgwAVwut0rOTwghhBBCikbJ82Lw+Xw8fvwYV65cgbe3Nz5//ozXr19DQ0Oj1HPweDwMGzYM586dw8WLF9G9e3dJvgRCCCGEEEIqzatXr/Dlyxd07dpV2qFUufDwcLRu3RojRozAnj17qvz8MTExWLx4MY4cOQI7Ozvs2bMHLVu2RGBgIPz9/eHu7i6RfuuEEEIIIUQ8lDwvQmJiIjw9PXH37l2oqanBxcUFc+bMgb29vdjnyc3NRZ8+fRAWFoaoqCjIylKHnOqGMYbk5GSxHogQQgghhNQFYWFhsLe3R0ZGBm7evAknJydph1Rl8vPz0alTJyQmJuLFixdQVlaWWix37tzBlClTEB4eDiUlJaSlpQEAmjdvjkePHkFTU1NqsRFCCCGE1CU0DvAHz58/h42NDV6/fg1fX18kJSXh1KlTZUqcA0C9evWwevVqxMXFwc/Pr5KiJeXh7++PyZMnw9DQEA0bNsTt27elHRIhhBBCiNQlJiaid+/e0NPTg4ODA9zd3RETE1Nou4cPH2LatGmIjo6WQpSVIzs7G5MmTcKjR49w6NAhqSbOAaBz58548eIFNmzYgLlz5yIgIADv3r1Deno6Bg4ciJycHKnGRwghhBBSV1Dl+XcuXrwILy8vmJub4+zZs2jSpEmFz2djYwNtbW1cvHixwsciFfflyxfo6OjAwMAAbm5uOHv2LPr06YNdu3ZJOzRCCsnLy8P8+fOhra2NX3/9VdrhEEIIqcW+ffuGrl27Ijo6Go8ePYKSkhJsbGygoaEBX19fZGRkIDo6Gps2bYKvry9kZGTQvHlz+Pv7Q0tLS9rhV8j79+/h4eGB4OBg7N69G2PGjJF2SMUKCAhA165d4e7ujrlz50JeXh6NGzemSnRCCCGEkEpCvUS+Y2pqitGjR2PTpk1QVFSUyDEnT56MKVOmICYmBgYGBhI5Jim/06dPg8fj4f79+9DS0oKsrCxOnDiBHTt20IRMpFr59u0bBg8eDB8fH8jKysLd3R3GxsbSDosQQkgttWrVKrx69Qp3794VXrOeP38e9vb20NHREW5nZmaGY8eOwcbGBp06dYKrqytu374NNTU1aYVeIa9evULXrl2hqqqK+/fvo127dtIOqUR2dnY4ePAghgwZgqNHjwIA5OXlcffuXXTo0EHK0RFCCCGE1D5UeV7JMjIyoKuri1mzZuGPP/6o9PORknXp0gXy8vK4cuUKgIJ+kl26dMGjR4/ohoNIVXZ2Ni5fvgw5OTkoKipi+fLlCAwMxH///Yfp06ejc+fOwptkQgghRJIyMjJgYGCAMWPGYNOmTSLrQkJCEBoaioYNG0JTUxMWFhaQkZEBAAQFBaFTp05o1aoVLl26BBUVlVLP9fTpU1haWkJeXr5SXktZ5ObmokOHDuDz+bh9+3aNmgcnJiYGiYmJyM3NxcyZM5GWlobnz59DSUlJ2qERQgghhNQqVGpbyZSVlTF8+HDs3bsXeXl50g6nTvvw4QPu3r2LoUOHCpc5ODigYcOGOHfunPQCIwTAjh07MHDgQPTp0wfOzs549eoVrl+/joEDB+L333/HsWPH8OLFC2mHSQghpBb6999/kZ6ejlmzZhVaZ2FhAU9PT3Tr1g1WVlbCxDkAtGrVCr6+vnj58iW6dOmChISEEs/z6NEj2NjYYMGCBZJ+CeWyZs0aBAcH4+DBgzUqcQ4ABgYGsLGxgb29PQ4fPoyYmBjMnz9f2mERQgghhNQ6VHleBV6+fAlra2ucOXMGAwcOrJJz1lV5eXn4+PEjmjZtWmjdpk2bsGjRIiQkJIgMLR47diwePXqE0NDQSokpNDQUqamp6NixI7WGIUVijMHS0hLm5ubYsmULsrKyoKmpiQYNGgAA8vPzYWFhASMjI/j6+ko3WEIIIbVKXl4ejI2N0alTJxw+fLhcx3j58iV69eoFRUVF7Nq1C8HBwbh58yYsLS2xdu1aAAXfdd26dcO9e/fA4XDw5s0bGBoaSvKllDlmGxsbLFy4sFaMDt22bRt+/vlnXLlyBT169JB2OIQQQgghtQZl8qpA69at4eTkhMmTJyMwMFDa4dRqq1evRsuWLfHx48dC644ePYrevXsX6snZv39/hIWF4e3btxKNJTc3F0uXLoWVlRXs7e3RtGlTzJkzp8jYSN0WGBiI0NBQTJgwAbq6ujA2NhYmzgFAVlYWq1atgp+fH7y9vVHHnnkSQgipRCdPnkRMTAzmzZtX7mO0bt0aDx48gJycHHr27InFixcjKSkJ69atw4EDBwAAV65cwe3bt3HkyBFoampiyZIlEnoFZZeXl4cxY8agZcuWUo1DkqZNm4bu3btj4sSJ4PF40g6HEEIIIaTWoOR5FTlz5gyaN2+OLl26wM/PT9rh1Eo5OTnYuXMnvn37hnXr1omse/fuHZ4+fSrSskWgR48eUFRUxPnz5yUWy7t379CxY0esXbsWy5Ytw927dzFgwAAcPHgQffr0QXZ2tsTORSQnPz8fsbGxVX7e/fv3Q09PDy4uLsVu4+7ujl69emHw4MHo1KkTbt26VYUREkIIqW0YY8jJycGGDRvQs2dPWFlZVeh4zZo1w+PHjxEQEIDk5GQ8fPgQY8eOxdSpUxEUFIQFCxbA0dERXl5e+P3333H06FE8e/ZMQq+mbLZv346XL19i3759qFevnlRikDQul4tVq1YhJiYG165dk3Y4hBBCCCG1BiXPq4impiZu3rwJFxcX9O3bF/v375d2SLWOt7c3EhMTMXz4cPz999/49OmTcN2xY8egoqKC3r17F9pPSUkJPXr0kFjfc8YYRo8ejbS0NDx69AjLli2Dk5MTtm3bhuvXryMkJKRC1V2k8mzZsgWmpqaIiYmpsnNmZ2fj2LFjGDVqlEgf2R9xOBxcunQJFy9eRFZWFrp16ybR9+zXr18lcixCCCHVW2JiIszMzCArKwsFBQW8ePFCYr2yVVVVYWtrCwUFBQAFSWojIyM4OTnh5cuXWLduHTgcDsaNG4cWLVpg3rx5iIuLQ1paGvh8fqHj5eTk4MaNG/j1119hb2+PpUuXIjc3t0IxJiQk4Pfff8eUKVNgY2NToWNVNzY2NrCwsMC+ffukHQohhBBCSK1ByfMqpKSkhNOnT2PChAkYN24cVqxYQe0XJIQxhi1btqBnz57Yvn075OXlsX79egBAQEAANm3aBE9PTygqKha5v7u7Ox48eICWLVtiwoQJ8PHxKXcs58+fR0BAAHbv3o22bduKrGvTpg02bdqE7du34/Tp0+U+B6kcx44dQ3Z2NlasWFGu/Xk8Hs6fP49du3aJfXN/7tw5pKamYsyYMaVuy+Fw0Lt3bzx58gS2trb4+++/yxXn9zIyMjBs2DBoaWnh6dOnFT4eIYSQ6u2vv/7Cx48fsWPHDhw6dAh3795Ft27dKuVcSkpKOHXqFHg8Hvr16wd7e3sABe3I1q1bh5s3b6JJkyZQU1ODvr4+goODhfumpKSgY8eOcHFxwaFDh9CoUSOsXbsWHTt2FNlO4M2bN9i7d2+RSfjvLViwALKysuX+rq/OBA8mzp8/Tw/FCSGEEEIkhdUxqampDABLTU2VWgx8Pp+tWLGCAWCTJk1i+fn5UoulpsrPz2fbtm1j4eHhjDHGHjx4wACwS5cuMcYY++2335iCggI7duwYq1+/PnNycirx35zP57Pjx4+zKVOmMEtLSwaALVq0iPH5/DLFlZeXx1q0aMG6d+9e4rnc3d2Zmpoae//+fZmOTypPREQEA8A6derEZGRk2Nu3b8XeNz8/n+3YsYMZGxszAIzD4TAbGxv27t27Uvft0aMHc3BwKHO8u3fvZlwul3369KnM+wqEhYUxc3NzpqyszAwMDFjnzp3L/J4nhBBSc3z9+pWpqKiw+fPnV+l5o6KiWEZGRqHlQUFBzNfXlx0/fpy1bt2aaWtrs/DwcJaVlcUcHR2ZhoYGu3//vvC76dmzZ8zc3JzVq1ePLV++nGVnZzPGGPP19WWqqqoMAPPw8GBZWVlFxhEQEMAAsF27dlXei5WyhIQEJisry7Zt2ybtUAghhBBCagVKnkvRvn37GIfDYXv27JF2KDXOokWLGACmpKTENm/ezLy8vJixsTHj8XiMsYKbQ8FNVPfu3VlmZqbYx+bz+WzDhg0MABs5ciTLyckRe9+///6bAWBPnz4tcbvk5GSmq6vLhgwZIvaxSeVau3YtU1RUZElJSUxPT48NHTqUMcYYj8djx48fZ48ePSp23zVr1jAul8sGDx7MHj58yB4/fsyMjY2ZsrIyO378uMi2WVlZbNKkSczJyYm1bt2acTgctnfv3jLH+/XrVyYvL8/+/PPPMu2Xl5fHLl++zEaOHMkUFRVZy5YtWWhoKPPz82MA2NmzZ8scCyGEkJph+fLlTEFBgcXHx0s7lELi4+OZqakpa9asGXN1dWVKSkosICCg0Hbfvn1jCxYsYLKysszExIT98ssvjMvlsj59+rD//vuPKSoqMltbW5aYmCiyX3Z2Nmvbti1r06ZNrS9cGTBgAGvTpg1jjLEvX76wUaNGsUWLFrH09HQpR0YIIYQQUvPUmOR5Wloa69ChA6tfvz4LCgpijDF2/PhxZmtry7p27cpiYmLEOk51Sp4zxtjQoUOZvr4++/btm7RDqTEuXLjAALBly5ax6dOnMwAMANuyZYvIdn///TebMGFCuX+3x44dY/Xq1WO9e/dmeXl5pW6fmZnJdHR0hEnX0uzbt48BYA8fPixXfESy2rVrxzw8PBhjjO3Zs4dxOBx29OhRZm9vzwAwHR2dIj834uLiWP369dmsWbNElqelpbFhw4YxDofDjh07xhgrSFz369ePKSkpsREjRrBp06ax5cuXF1shVxpPT09mZWVV6nZpaWns+PHjbOTIkUxTU5MBYGZmZmzFihUsLS1NuF3Pnj2ZsbFxmR4YEUIIqRnS09OZhoYGmz59urRDKVZMTAwzMDBgsrKyzM/Pr8RtQ0JCWOfOnRkA9uuvvwoT4o8fP2ZaWlrM2NiYRUVFMcYKCiOGDRvG5OXlWWBgYGW/DKkTXCvv3buXNW3alDVo0IApKCgwPT09duzYMRplRgghhBBSBjUmeZ6Xl8cSExPZ6NGjWVBQEMvNzWUdOnRgOTk57N69e2zixIliHae6Jc/fvn3LZGRk2F9//SXtUGqEiIgIpqamxvr16yesMr9z5w4bP368SBJQUi5fvsxkZWXZpEmTSr3RWL16NZOTk2MRERFiHTs/P5+1atWKOTo60k2MlAlatpw4cYIxxlhubi4zMjJiAJi5uTk7evQoq1+/Pvv5558L7TtixAjWqFEjlpycXGgdj8djo0aNYjIyMuzs2bNswoQJTFZWlvn6+kokbh8fHwaAvXjxotht+Hw+s7W1ZQCYlZUVW7BgAQsMDCzyPRcUFMS4XC7bvHmzROIjhBBSfWzYsIHJycmx6OhoaYdSog8fPrDHjx+LtS2fzy+yBV5kZCQzMjJienp6LCQkhC1btkzke762y8vLY1paWgwA69ChA3v//j2LiopiAwcOZADY4cOHpR0iIYQQQkiNUWOS5wKC5HlISAgbO3ascLmtrW2R22dnZ7PU1FThT2xsbLVKnjPG2Pjx41njxo1pKGUx4uPj2a5du9iYMWOYrq4ua968eZGJysoiqBBfu3Ztsdt8/vyZqaqqFplcLcmVK1cYAHbmzJmKhkkqQNCy5ft+rAEBAWznzp3CKuyNGzcyLpfLnjx5ItxG0Gv/n3/+KfbYeXl5zNPTk3E4HAaAHTx4UGJx5+bmskaNGrE5c+YUu82dO3cYAHbhwgWxjjlp0iSmqqrKgoODJRUmIYQQKXv//j1r2LAhGz9+vLRDqTIfP35krVq1YioqKgwAW716tbRDqlKHDh1iS5YsKTSarGvXrqxHjx5SiooQQgghpObhMMZYZU5IKmljxozB3LlzkZaWBm9vb2zevBkA0KFDBzx+/LjQ9r///juWL19eaHlqaipUVVUrO1yxREdHw8TEBMuXL8fChQulHU61whiDjY0NXr16BSsrK3Ts2BGzZ8+GiYlJlcaxbNkyrFixAitXrsTMmTOhrKwssn7OnDnYu3cvIiIi0KhRozId29XVFREREXj58iWUlJQkGXaNlJ6ejvfv36NVq1ZVds527dqhefPmOHnyZLHb5OXlwcbGBnJycjh37hyCg4OxcOFCcLlcPH78GDIyMsXum5ubixkzZsDa2ho//fSTRGOfNWsWjh07hpUrV0JBQQFmZmbo0KGDcP3AgQPx5s0bhISEgMPhlHq8tLQ0ODo6Ii0tDQ8fPoS2trZE4yWEEFK10tPT4eDggIyMDDx+/BiamprSDqnKfP36FYMHD0bLli2xZcsWsb4Ha7tdu3ZhxowZSEhIQMOGDaUdDiGEEEJItVdjk+cyMjLYsGED9u3bBwCws7NDQEBAoe1zcnKQk5Mj/P+0tDQ0adKkWiXPAWDGjBk4cuQI4uLiUL9+fWmHU208evQItra28PX1Ra9evaQWB2MM8+bNw9atW6GsrIyff/4ZM2bMQMOGDfH+/XuYmZlhyZIlWLp0aZmPHRISgg4dOsDOzg4XLlyo0wn09PR0dOvWDc+ePcO+ffswevToSj9nREQEjI2NceLECXh5eZW47cOHD2Fvbw/Bx6aGhgZ8fX3RsWPHSo+zOCEhIXBwcEBqaioAgMPhwNfXF66uroiMjISxsTF2796NSZMmiX3M2NhYdOzYEfr6+rh9+3adfk8SQkhNxuPxMGDAANy5cwcBAQGwsLCQdkhEyhISEqCrq4s9e/ZgwoQJ0g6HEEIIIaTa40o7gPIyNjZGaGgocnNzcf/+fVhZWRW5nby8PFRVVUV+qqPZs2cjJSUFfn5+0g6lWtm1axeaNWuGnj17SjUODoeDjRs3IiIiAqNGjcL69evRtGlT/PLLL5gzZw7U1dUxZ86cch3bwsICvr6+CAgIQN++fZGVlSXh6GuGnJwcDBw4EG/fvsWgQYMwZswY7N69u9LP+99//0FZWRm9e/cudVtbW1v4+Pjg7NmziIyMxOfPn6WaOAcK3j8pKSng8/nIysqCm5sbhg0bhqioKGzbtg0aGhoYOXJkmY7ZpEkTXLx4ESEhIZg+fXolRU4IIaSyLV26FL6+vjhx4gQlzgkAQEtLC507d4a3t7e0QyGEEEIIqRFqVOW5m5sbXrx4gaZNm2Ly5MlQUFDAli1boKCggEOHDqFJkyalHiMtLQ1qamrVrvIcANq2bQtTU1McP35c2qFUC1+/foWenh5+++03LFiwQNrhiPj8+TO2bNmC7du3IzU1Fbt27cKUKVMqdMy7d+/Czc0NHTt2xMWLF6GoqCihaKs/Ho+HIUOGwMfHB1euXEGnTp0wa9YsbN26FcOGDYOuri5UVVUxePBgmJqaSuy8jDGYmJjA0dERBw4ckNhxpSk5ORk2NjZQVVVFREQEZsyYgVWrVpXrWBs3bsTixYsRHx8PdXV1CUdKCCGkMt2/fx9OTk5YvXp1tbuOItK1e/duTJ8+HfHx8XWqjQ8hhBBCSHnUqOS5JFTn5PmqVauwdu1aJCYm1qnEaXE2b96M+fPnIy4uDo0bN5Z2OEVKS0vD7du30bt37xJ7Xovr7t27cHV1hYuLC06fPg05OTkJRFm9JSYmYtiwYbh9+zbOnDmDfv36AShIbK9duxanTp1Ceno6YmNjMWDAABw7dkxi5w4ICIC9vT1u3LiBbt26Sey40vbixQvY2dkhPz8f79+/h56eXrmOEx8fDz09PezcuROTJ0+WcJSEEEIqS1ZWFqytrdGwYUPcu3dPItcopPZITEyEjo4Odu/ejYkTJ0o7HEIIIYSQao2S59XImzdv0KJFC5w7dw79+/eXdjhSxRhDy5Yt0aZNG4kmS2sCPz8/9OvXD0OGDMHBgwfB5Yp2Vzp58iQcHBygq6srpQgl58GDB/Dy8kJeXh6OHz+Orl27FrvtggULcODAAXz69EliE3799NNPuHTpEt6/f1/o91zT+fr6IjY2tsJJ7169eiE9PR337t2TUGSEEEIq2y+//IIdO3bgxYsXaNGihbTDIdWQs7MzZGRkcPXqVWmHQgghhBBSrdWubFENZ2ZmBgsLC5w+fVraoUjFt2/fcPLkSRw9ehRr167FmzdvKtwKpSbq1asXjhw5gv/++w+//PKLyLobN27Ay8sLGzdulFJ0khMcHIwuXbqgWbNmeP78eYmJcwDo2rUrEhIS8ObNG4mcPycnBydOnMDw4cNrXeIcKGhzJYlq8ZEjR+L+/fuIiIiQQFSEEEIqU3Z2No4cOYK//voLK1eupMQ5KZaXlxdu3ryJpKQkaYdCCCGEEFKt1b6MUQ3n4eGBCxcuIDc3V9qhVLmdO3fCy8sLw4cPx6JFi9C2bVt06tRJ2mFJxeDBg7F161Zs3rwZJ06cAFBwQ/zTTz8BAC5fvizN8CqMMYbZs2ejWbNmuHHjhlhV9A4ODpCVlcWtW7ckEsOlS5eQnJxc5sk065oBAwZAWVkZR44ckXYopBKEh4djwIABmDx5Mvbs2YPw8HBph0QIKYeYmBgMGzYMjRo1wsiRI9GzZ0/Mnj1b2mGRamzAgAHg8Xjw8/OTdiiEEEIIIdUatW2pZoKCgmBlZQVfX1/06tVL2uFUKXt7e2hqagonTJWXl6/TPToZYxg+fDh8fHzw9OlTHD16FKtXr8ayZcuwdOlSvH//Hk2bNpV2mOVy8eJF9O3bFxcuXEDfvn3F3s/e3h5NmjQRPlCoiIEDByI2NhZPnjyp8LFqu7Fjx8Lf3x/v3r2TWMscIn3fvn2DnZ0dkpKS0LBhQ4SEhEBBQQGxsbE0QSwhNUhubi4cHBzw4cMHTJ06Fe7u7mjZsqW0wyI1QPv27WFsbFznWiQSQgghhJQFVZ5XM5aWljA1NcWpU6ekHUqV+vjxIwICAuDh4QElJSUoKSnV6cQ5AHA4HOzZswe6urro168f1qxZg/nz52P69OmQkZGp9pVCJ0+exNatWwstz83NxS+//AIXFxf06dOnTMfs0qULbt++jYo+80tOTsalS5eo6lxMI0eOREREBB4+fCjtUIgEzZo1C2/evIGvry9evnyJqKgoZGZmwsfHR9qhEUJK8ON34KJFi/Dy5UtcuHABS5YsocQ5EZubmxuuXLmC/Px8aYdCCCGEEFJtUfK8muFwOPD09MSZM2eQkZEh7XDEFhkZifnz5+Pbt2/l2v/cuXOQlZUtUxVyXaCiooKTJ08iOjoa+vr6WLx4MRo0aAB7e/tq3brF29sbgwcPxqxZs/Dy5UuRdTt37kR4eDg2bdpU5irmrl27IjExEWFhYRWKz8fHB3l5efD09KzQceqKLl26oEmTJvjzzz+lHQqRkCNHjuDvv//Gjh07YGVlBQBo0qQJ7Ozs6uy8G4RUd58/f8acOXOgqKiITp064cqVK7h06RL+/PNPrFu3DjY2NtIOkdQwbm5uSE5OxqNHj6QdCiGEkCr0/v17+Pr6YvPmzdi4cSNycnKkHRIh1Rolz6uhiRMnIj09HQcOHJDI8XJyciq1h/q3b98wcOBAbNiwAb/++mu5jnHmzBl069aNWgUUwcrKCnfu3MHly5ehqKgIoGBS0Rs3bpTr35UxhiVLluDt27eSDhUA4OfnhxEjRmDo0KEwMTHBvHnzhOvevXuH3377DRMnTkSrVq3KfGx7e3vIyclVuO/5mTNnYG9vL1avdQJwuVysXbsWp0+fxpkzZ6QdDqmgmJgYTJkyBaNGjcLYsWNF1rm7u+PKlStIT0+XUnSEkB9FRUVh0aJFaN68Of7991/MmDEDOTk5cHV1Rb9+/dC7d2/MmjVL2mGSGsjGxgaamprw9fWVdiikmmKMYfXq1bhy5Uqx23z9+hWHDx8uNCqGx+OBz+dXdoiEEDHl5eXhxIkTcHJygqGhIXr37o2FCxdi0aJFcHNzQ1pamrRDJKT6YnVMamoqA8BSU1OlHUqJBg8ezJo3b87y8/NL3O7Lly9szJgx7OzZs4zH44ms4/F47MCBA6xx48bMycmJ5eXlVUqs48aNY4qKimz69OkMALty5UqZ9k9KSmIyMjJs9+7dlRJfbfTs2TMGgN24caPM+96/f58BYL1795ZoTHw+n3l7ezNFRUXWr18/lpuby86ePcsAsMuXL7O0tDRmbm7OzMzMWEpKSrnP4+DgwNzd3cu9f3p6OlNQUGAbN24s9zHqIj6fz/r168e0tLRYUlJShY8XGhrKPn36JIHISFkNGjSI6erqsrS0tELrIiMjGQB2/PhxKURGCGGMsU+fPrEbN26wbdu2MRcXFwaAqaiosLlz5wo/f/l8Prt27RqbNm0a+/z5s5QjJjXZiBEjmLW1tbTDINXUtm3bGADWqFEjlpycXOQ2Q4YMYQDY2rVrhcvS09OZra0t09fXZ+vXr2fJycksLCyMzZgxg2lpabEDBw5U0SsgpO6ZOnUqGzJkiMiy3NxcZm5uzgCwzp07s+PHj7Po6GjG4/HYnTt3mJqaGmvbti2Lj4+XUtSEVG+UPK+mHj9+zACw06dPl7jdsmXLGIfDYQCYhYUF27p1K9uzZw/bsmULs7e3FyZJZWRk2NKlSyUS25s3b9izZ89YQkIC27dvHwPADhw4wHg8HuvevTvT0dEpU3Jt3759jMPhUCKtDPh8PtPW1mZz584t876TJk1icnJyDAALCAiQSDxRUVGsd+/eDABzd3dn3759E8bp6OjIWrVqxQYNGsRUVFRYWFhYhc61ZMkSpqmpWehhkbhOnjzJALCIiIgKxVEXffz4kTVo0ICNGDGiQse5c+eO8HNLV1eXeXl5sS9fvkgoSlISPz8/BoAdO3as2G3atWvHPDw8qjAqQghjBd+ZM2bMYAAYACYnJ8ccHR3ZgQMHWEZGhrTDI7XU0aNHGQAWFxcn7VBINePv789kZWXZqFGjWP369dmsWbMKbXP79m0GgNnb2zMul8uuXbvGcnNzWa9evZiysjIbPnw4q1evHlNQUBAm4Tt37sxkZWXZ1atXpfCqCKndHj58yAAwGRkZkfur69evl1jo+PLlS6atrc0sLCxYTk5OVYVLSI1ByfNqzMnJiTk4OBS7PiMjgzVs2JDNmDGD3bt3j/Xq1YsBYBwOhykqKrI2bdqwmzdvMsYYW7FiBeNyuez27dsVimnr1q2My+UKb+wAsPHjxwvXx8XFMXV1dWHlsTj69OnDHB0dKxRXXTRmzBhmYWFRpn2ysrKYmpoaW7hwIbOwsGA9evSocBxnz55lSkpKTF9fn509e7bQesEXOIAi15eV4Iv/1atX5dp/6NChVGFVAQcOHGAAmIGBAdPU1GSNGjVib968EXv/9PR0ZmhoyBwcHNjJkyfZggULWIMGDdigQYMYn8+vxMhJdnY2MzY2Zl27di3xd7169WqmpKTEMjMzqzA6QsiaNWuE1ZuvX78W+zqKkIpISkpiXC6X7d27V9qhkGrkw4cPTFtbm3Xq1Inl5uaytWvXMhkZGRYSEiLcJi8vj1lZWbGOHTuyvLw81rNnT9awYUPm4eEhkhz/9OkTW7NmDTt8+DDLzs5meXl5zM3NjamoqLCXL19K6yUSUuvweDzWoUMHZmZmxjgcDjt48KBw3dSpU5mBgUGJ9wAvX75kMjIyIqNICCEFKHlejZ07d44BYA8fPixy/bZt25iMjAyLiooSLsvLyyvyAzE/P5917tyZ6evrl6vlQn5+Pps5cyYDwGbPns0eP37Mzp49y44ePSqsMha4cOECk5OTYy4uLqW250hNTWX16tVjmzZtKnNMdd3x48cZABYeHi72PseOHWMA2Nu3b4UV2P7+/uWOYe/evYzL5TJPT88iW0AILF26lG3durXc5/leVlYWU1JSYgsXLizzvtnZ2UxFRYX98ccfEomlLuLz+WzXrl1s8eLFbPXq1ax+/fps9erVYu8/ZcoUpqSkJPK+PX36NAPA9uzZU+q5L1++XKtbFOTl5bHY2FiJPUjIyspi9+7dY35+fmzatGlMVlZW5Ma3KG/evGEA2JkzZyQSAyGksKioKNalSxc2b9489uLFC3bkyBEGgC1btkzaoZE6yN7eng0aNEjaYZBqpE+fPkxXV1fYwkHwAN7FxUV4jbJ9+3bG4XDY48ePGWMFD2KaNWvGALAjR46UePz09HTWpk0bpqenx16/fl25L4aQOkJQ5HT37l1mb2/P+vfvzxgrSKrr6OgUOXrkR3PmzGFKSkosJiamkqMlpGah5Hk1xuPxmLGxMevQoUOhD6+8vDxmaGhYqJdVSWJjY5m6ujqbOHFimeLg8/ls6NChjMvlsu3bt4u1z61bt1iDBg2YhYUFCwkJKTYRtGLFCiYnJ8diY2PLFBNhLCUlhenq6jJjY2ORByglcXV1Zfb29oyxgveXlZUV69q1a5nPnZmZyVasWMEAsClTppTam1/SFixYwJSUlMrc6ufSpUsMAAsODq6kyOqegQMHCt9Tpbly5QoDwHbu3Flo3eTJk5miomKxid3U1FRhT83u3bvX2ir1qVOnMgCsadOmbOzYsWzu3LmsR48eTFdXl/35559lPp6zs7PISKHffvtNrP0sLS3L9P1CCBFfdnY2s7GxYVpaWqxhw4bCv88xY8bU2s82Ur2tXLmSqaioFCqIIXXTvXv3ipz/xMfHhwFgZmZmzNbWlqmoqIiMQGaMsfDwcObr6yvWeT5+/MjMzc2Zurp6hUdHE1LXpaWlMW1tbTZ48GDGGGMbN25kCgoKLD09XTjnmThFc6mpqUxHR4daOBLyA0qeV3P37t1jenp6TE1NjR05ckR4UyWoOn769GmZjrdp0yYmIyNTpjYL69evZwCYt7d3mc4VGhrKDA0NGQCmrq7Ounbtyvz8/ITrExISmLKyMps9e3aZjkv+JzIykhkZGTFdXd1SE8IfPnxgXC5XpLpXMLph+fLlwvdWTk4O++WXX1jLli1Z37592dy5c9mmTZvYzp072Z49e9jQoUNZ/fr1hRVy0rjR//r1K2vQoAGbPn16mfYbP348MzU1peSEBAlGH4hTDW5qaipSsfS9zMxMZm5uziwsLNjHjx9F1gUGBjIjIyOmoqLCfvnlFwZAZBhibXHjxg3h6J5Zs2YxKysr1qxZM9avXz9mbW1d5nZDgomF9+zZw2JjY8v0vbdlyxYGgJ08ebKsL4MQUoopU6YweXl59uTJE5abm8suXbrE1q5dS21aiNQIRhzRZNGEz+ezTp06sdatWxeaX4jP57P9+/ez2bNns7Fjx7KJEydWeDRgcnIyc3Z2ZnJycuzQoUMVOhYhddnKlSuZgoICi46OZowxFhERIbyW/+WXX5iWlpbYBW+CuTCK649OSF1EyfMa4OvXr2zYsGHCPsPOzs6sadOmzNnZuczH+vbtG2vSpInwiWRpbt26xbhcLluwYEGZz8VYwe/74sWLbMWKFcze3p4pKCgI29BMmzaNqamplauNDPmfT58+MSsrK6ahoVEo6fi99evXM3l5eZacnCxcxufz2cqVKxkANmrUKBYVFcUcHByYnJwcGzduHHNzc2OGhoZMWVmZycrKCiemXblyJXv37l0VvLrirVmzhsnJyYk98eeTJ0+YkpISW7x4cSVHVrd8/PiRAWCHDx8ucbv379+X2gokJCSE6erqMj09PfbkyROWk5PDlixZwmRkZFi7du2ErV6GDRvGNDQ0WEJCgkRfiyQdPHiQTZ8+XewHNenp6axZs2asS5cuRU6Ge+jQIQagTK95zJgxzMDAgOXl5Ym9jwCfz2eDBw9mioqKLDAwsMz7E0KKdvDgQQaA/fPPP9IOhRARDg4OEpkLh9RsglGCFy9erLJz5ubmsnHjxjEOh0PJOkLKIT8/nzVp0qTQSJDWrVuzoUOHMkNDQzZ58mSxjyd4iNaxY0dJh0pIjUXJ8xrE19eXLViwgLm7u7P27duz+/fvl+s4e/fuZQDY8+fPi92Gz+ezsLAw1rhxY9atW7dyJV9+9O3bN+bg4MAaNWrELl++zGRlZdn69esrfFxS0GNQQ0Oj2JY8fD6ftWzZstiHJkePHmX16tVjXC6X6enpsYCAgCK3KyqpJy2ZmZlMR0eHjRgxotRto6KimJaWFmvfvj3LyMiogujqlnbt2pX6QE6QMCrtYdmHDx9Y+/btmaKiImvRogWTlZVlv//+u0hFZmJiImvYsCEbOnSoROKXtI8fPzJlZWUGgP31119i7TN16lSmpKRU7MMgwUOKo0ePinW8hIQEVq9ePbZu3Tpxwy4kKyuLdejQgenq6lLfQ0Ik4PHjx0xRUZHas5Bq6d9//2UcDkdYtUjqHj6fz9q1a8fs7Oyq/DOKx+MxV1dX1rBhQ3oPElJGFy9eZACE8w8ILF++XFgAV9YHU97e3gwAzUlAyP+j5HkdlJeXx0xNTZmbm5vI8uzsbLZp0ybWtm1bYVsOPT09iVZ3fv78mRkbGwur6Km3ouRs3ryZcblcFhQUVGjdzZs3GQB28+bNYve/d+8emzJlinBioJpg165djMPhsPPnzxe7zdevX1mLFi1Y8+bNq3Wlck3222+/sQYNGpTYcmDcuHGsVatWYh0vKyuLjRkzhtna2rIXL14Uuc3hw4cZALHnYSiv3bt3szVr1ojcRGZnZ7M1a9awu3fvFrnP2LFjmYaGBpswYQKTk5Mrsr3Wu3fv2KZNm9jo0aNZ+/btGQC2bdu2EmOxtLRkY8eOFSvuFStWMEVFRfblyxexti/Op0+fWJMmTZicnBxzdXVlf//9N8vJyanQMQmpi6Kjo5mWlhazs7Ojax9SLaWlpbH69evTpOp1mGAC91u3bknl/ElJSczAwIB16NCBZWdnSyUGQmqCHwva+vbty9q0aVPooVdQUBADUOp9WlG+ffvG1NTU2JIlSyocLyG1ASXP66gTJ04wAKxPnz5szZo1bOfOnaxp06ZMRkaGDRkyhG3cuJFdvHixwomXorx9+5aZmJiwU6dOSfzYdVlOTg4zMjJivXr1KrTO3d2dmZub17pKt7y8PDZo0CAmIyNTZNsQPp/P3NzcWMOGDcvU55+UTWBgIANQ4mRPzZs3L3OP+pLw+Xw2e/ZsBoCtWrWqUt7biYmJTFFRkQFgc+bMYXw+n6WlpYlMwung4MAuXbokPP+TJ08Yh8Nh27dvZ9nZ2axt27bMxMSERUZGsosXL7IlS5YwKysrBoApKCiw9u3bszFjxrDdu3eXOrJj9uzZTF9fv9TXmpuby3R0dNikSZMk9nvYtm0b69q1K+NyuWzVqlUSOS4hdUVqaipr1aoVa9asGT3EJdXa2LFjmaGhYbUaaUiqBp/PZ61bt2bdunWTahyPHz9m9erVY7NmzZJqHIRI0s2bN8VuNVqSFy9esNGjRzNFRUW2c+dOxhhjMTExjMvlst27dxfaXjD6fNy4ceU638SJE1nTpk3pO4EQRsnzOovH47ENGzYwZ2dnYXuBQYMGsbCwMGmHRirg1KlTDAC7evWqcFlsbCyTkZGp9ApdacnLy2Njx44tsgr57NmzDAA7d+6clKKrG3g8HtPS0mLz5s0rcn1sbCwDIPEHZnw+n/3xxx8MAJs3b57EE+iLFy9m9evXF84LMG3aNNahQwemoqLCbt26xS5cuMBsbW0ZANa6dWt27Ngx5uTkxCwsLIStrt68eSMcyQNA2G7m9OnTLDMzs0zx+Pr6MgClfk4LJvkpahRKRfXr169c820QUpe5u7szVVVVFhISIu1QCCnR3bt3pVp5TKTn/PnzDAC7c+eOtENhq1evZnJycjVqNCwhxTl+/DjjcDisQYMG7Nq1a+U6RlRUFOvZs6dw9H6/fv0YAPbvv/+y3377jSkrK7O0tLQi901MTCx321J/f/9q87lAiLRR8pyw/Px8qoSqJfh8PrO3t2ctWrQQ/psuWbKEKSsr1+r3PJ/PZ3PmzGEA2J49exhjBa0/mjZtynr16lXrKu6ro3HjxrEWLVoU+bs+cuQIA8ASExMr5dybN29mAAq17zl//jxbvHgxCw4OLvMxU1JSmJqaGps7dy5jjLHt27czAExTU1OkDQufz2e3bt1iPXr0ECbIv394xRhjAQEB7MSJEywyMrJC78WMjAwmJyfHtm7dWuw2+fn5rEWLFqxnz57lPk9J1q1bx+r/X3v3HRXV1bUB/GHoSBEQC0pTEQu22BXUKFhRULGhMZrYe32jxkgglkSNEbHEXl9LLBGDxl5j19gQo4gNsYuIRoFhZn9/5HW+IKAIMwzo81vLteK9556zh+hx7r7n7lOokFb2wSD6GBw8ePC99isg0ie1Wi1ly5aVLl26ZDiXlpamh4goL7yudd6oUSN9hyIi/5RctLCwkO+++07foRDlyq5du8TY2Fi6du0qzZs3F0NDQ5k7d262r1er1bJkyRKxtLQUZ2dnWbdunSiVSlGr1dK/f38xMDAQa2trrb1tmtn4bm5uGTYiJfoYMXlO9IGJioqSYsWKSdmyZeXy5ctSrFgxGThwoL7D0jm1Wi1DhgwRAwMDWbdunQQHB4uJiYlcvXpV36F9FHbt2iUApGPHjhlWN/Tu3VsqVqyos7HVarX4+vqKu7u7ph73jRs3pFChQppNcqpVqyZ79+7Ndp9TpkwRExMTuXv3rubYzp075fr161lec+rUqUzLB2lTo0aNpE2bNlmeX758uQCQ06dP62T8I0eO6LR/og+JWq2WunXrSs2aNfnKMxUY8+bNEwASEhKieeB74MABKV68uIwbN07P0ZEubNu2TQDInj179B2KRt++fcXR0fG96zQT5QdqtVr27dsnhQoVkpYtW0pqaqoolUoZNmyYAJDOnTu/c1HR0aNHxcfHRwBIr169MuSvVCqV9OzZUwBkur+StkycOFGsra3l5cuX2Wq/efNmmTRpks7iIdIXJs+JPkCxsbHi7u4upqamAiBHK28LIpVKJd27dxdjY2MxNTWV8ePH6zukj8qmTZukUKFCUrly5XR1/dzd3WXAgAE6HfvChQuiUCgkLCxMk0x3cnKSR48eyZYtW6Ru3bpStGhRSUhI0FwTFRUlderUkWPHjqXr6++//xYHBwfp37+/TmPOiUmTJomVlVWmN5PJycni4uIiHTp00Nn4ycnJYmpqKrNmzcp1XyqVSrZv385Nwf4nNTWVezN8YDZv3pzvElJE2TF58mRNSbSwsDAxNDQUZ2dnMTAwkCNHjug7PNIitVotderUkfr16+erNzUvXLggAGT9+vX6DoUo2168eCFhYWFStWpVzd5Iby4qWrt2rdjb24uDg4MsXrxYli9fLuPHj5cvv/xShg8fLsHBwZqkecWKFeW3337Lcry0tDS5du2aTj9TTEyMAJD58+enO56amirHjx9PN2/cvn1bUxL4bQn92NhYvsVKBc57J89fvnwpd+7cyXBcX8m5UaNGiZeXlwQFBWlWHL4Nk+f0sXj48KHUq1dP/Pz89B1KnkpNTRV/f38pU6ZMjuu7Uc5dvHhRypQpI/b29nLkyBGJj4/Ps5ufPn36iK2trUyfPl0AyI4dOzTn4uPjxdraWnr37i0iIs+fP5cKFSoIAHFwcJAbN26IyD8J3REjRoihoaFWNvbRthMnTmRZjzY8PFwUCoVER0frNAZvb28JDAzMdT+vy/kEBgZ+UOUAduzYId988817XaNWq6V79+6iUCjk999/11FklJeUSqV4eHhIs2bN9B0KUY68LokGQEaNGiXJyclSp04d8fDwyPYKRMrfrl69Kj169MjwnSm/aNSokXh7e+s7DMoH8tODnayo1Wpp3bq1GBkZSfv27SUyMjLLBPH9+/elQ4cOmjm2VKlSUqtWLalQoYI4OjpKjRo1ZMOGDfnmrbUuXbpoVsAnJCTI1q1bpXz58gJARo8eLWq1WtRqtfj5+Ymjo6O4u7tL69atM+1rx44dAkBcXV0lLCyM9+tUYLxX8nzDhg1SqlQpqVKlilSuXFmOHz+uOVe9enWtB/cuf/75p3Tr1k1E/lmN99///ved1zB5Th8TtVr9QSWlskutVnM1qx49efJEGjZsKKamptK9e3cBIPfu3dP5uPfu3dOsdujVq1eG8/Pnz9dsevPZZ59JoUKF5PDhw1K6dGmpVKmSxMXFib+/vxgYGMj06dN1Hm9OpKWlSbly5aRIkSLpytAkJCRIsWLFpGfPnjqPYdy4cVK8ePFc3cgolUopV66cVKxYURQKhfTr109nN0YqlSpHfYeFhckXX3wh8fHxmmPXrl2TAQMGyJ9//pnpNQ8ePBA7OzsB8F6ryBcsWKBZYWRjYyN//fXXO69Rq9Vy5MgR+eKLL6RMmTLSsWNHmT9/vty6dSvb4+al/fv3S6NGjbJ8a0GlUsmqVaskODi4QNwkv8uiRYsEQJZ/VogKgk2bNqXbdD06OlpMTU01+4FQwXT9+nXp1q2bKBQKKVGihISHh+fLeXfjxo0CQM6dO6fvUEiPEhISxNPTU3r06JFhseSDBw/y9M/ugQMHsiy3snDhQgHw1pXib7p165b8/fff2gpPZ9RqtSxatEisra3F3NxcAEjTpk1l/PjxAkCCg4Nl3bp1AkC2bNkia9asEQAZ3u598uSJODo6SsOGDSUoKEgMDQ3F1tZWRowYka3vvkT69F7J86pVq2omi1OnTknFihU1Cetq1appP7p3mDt3rqxYsUJERE6fPi2DBg165zVMnhMR6V5ycrIEBQUJAPHw8MizccPCwsTDwyNdeZbXVCqV1K9fXwoXLiwAZPXq1SIicvnyZbGxsRFjY2OxtraWrVu35lm8OfHo0SPx8fERhUIh48aNk27duom5ublYWFhoVtDr0uvaqLl5TXTlypWa2umLFy8WADJx4kQtRiny9OlTmTx5shQpUkTKly8vhw8fzva1v/32mwAQc3NzsbKykhkzZsjo0aPFxMREk+TO7AFdly5dxN7eXmxsbLKsDXz//n3x9PSUXr16ydWrV+XMmTNiamoq/fv3l2fPnkmFChXEw8NDEhMTs4zv4cOHmleCXV1dZcCAAVKvXj0xNDQUMzOzfLV6PTY2VgICAgSAlClTRgBIaGhoupvdQ4cOSc2aNTUrsP744w89Rpx7arVaPD09pV27dvoOhUjrfvjhB1EoFNz7ogBKSkqScePGiampqTg6OsrcuXPl1atX+g4rS0qlUkqVKiU+Pj75Ok7SHZVKJX5+fmJtbS0mJibSvHlzef78uVy/fl38/PwEgDg7O8vQoUPl6NGjOo3l9QbgxYoVy/CmRmxsrBQqVEjzhuuHKi4uTsaMGSORkZGa73FTp07VfGfu2LGjiPzz/83T01N8fHzSXd+1a1cpXLiwxMXFiYjIzZs3ZfTo0WJvby8AxM/PjyvRKd96r+T5mxu+PX78WBo2bCghISF6WXk+efJk+fXXX0Xkn1pMXbt2zdAmOTlZnj17pvkVFxfH5DkRUR5QqVQyY8YMWbNmTZ6O+7YVKFFRUWJiYiJ9+vRJd3z//v3SsmVLuXz5sq7D04q0tDQZN26c5uHElClT5Pbt23kydkJCghgYGMjy5ctzdL1SqZSyZctK27ZtNcemTJmiWa2iDcuXLxdra2tNUrpevXoCQPr37y9JSUlvvfbq1atiY2Mj/v7+8uTJExk8eLAoFAqxsLCQkJAQOXbsmBgZGUloaGi66yIiIjQPZQYMGCAlS5bM9M2fjh07ip2dnZQoUUIUCoXY2trKJ598okkMXL16VQoXLiw+Pj5Zlkbo1KmT2NnZye7du9O90vvs2TNp06aNGBsba74f6VN0dLQUKVJEnJycZM2aNaJWq2XSpEkCQIYNGybffvuteHp6CgCpWbOmHDx4UDw8PKR9+/b6Dj1XXpdXyk8PMYi0RalUiru7u3Tq1EnfodB7ePjwobi5uYmZmZl88803BSZBtWfPHjEzM5MWLVowgf4R+u6778TAwEC2b98ue/fuFUtLS/Hw8BAzMzMpVaqUzJ07VwYNGiQlS5YUADJ27FidvHWdnJws5cuXl9q1a0vz5s0FgAwePFgiIiLk6NGj4uXlJa6uru/8jvmhCg4OFmdn53RvGm/atEkAyMqVK+X8+fOaN/IyqxaRnJwsq1atkkKFComfnx/roVO+9F7J88aNG8v58+fTHUtJSZEuXbqIoaGhVgPLjnnz5mlWnp86dSrTlefBwcGalUz//sXkORHRx+nu3bv5poZgbj179kwvr1pXrlw5x6trli9fnqGchVqtloCAALGzs9OsRsmpyMhIUSgU8tlnn2m+xKelpUl4eLgUKlRIGjVqlGVZp+fPn0ulSpXEw8Mj3feE69evy/379zW/HzdunJiYmGgetty6dUscHR2lZcuWolar5eTJk5kmT19vILl27Vp59eqVzJ07V3x9fTPU19+/f79YWFhI48aNM9yIbdiwQQBk+VAqJSVFOnbsKIaGhvLLL79k86emfdevXxdHR0fx9PSUx48fpzv3008/CQCxsrKSbt26SUREhObv5IIFC8TAwEDnG2DpUt++fcXJyemjLJtGH4e5c+eKQqHIk7edKPfS0tLEx8dHHBwcCuTcumfPHjE3N5dmzZrJgwcP9B0O5ZGtW7eKgYGBfPvtt5pjZ86ckYoVK8qYMWPk+fPnmuNqtVqmTZsmCoVCfH195dGjR1qNJTQ0VIyMjOTixYuiUqlk1qxZmvIlAEShUMjBgwe1OmZB8+b9iFqt1ixeef2rY8eOb71v2bFjhxgZGcmXX36ZL0tJ0cftvZLncXFxWdat1ccrtm/WPM/sRpIrz4mIiLRrwIABUr58+QzHly5dKnXr1pWePXvKrFmz5MCBA/L06VMR+afczJw5c6REiRISEBCQ4drHjx9LyZIlpVGjRjlOOp45c0YKFSok/v7+mfbxxx9/iJmZmXTq1CnDA5SrV69KtWrVxNLS8p2brr58+VLKli0rNWvWlDZt2ohCoRB7e3tNvXG1Wi2VKlVKtzIzISFBihcvLm3bts3WDcHhw4fF2tpa6tSpo7kJfPjwoTg4OEi7du3e2odSqZSAgABxdHTUy4Oi2NhYcXNzk7Jly2b5vTEuLi7ThxgvX76UIkWKyJAhQ3Qdpk68ePFCrKys3nvTWKKC5MWLF5o6tR+6c+fO5csNxN/HhAkTRKFQpNsrpaDZt2+fWFhYaMp0dOrUSe7evavvsEgHEhISpF+/fgJA2rRp817fY/bs2SNFihQRe3t7mTBhglb2XLpy5YqYmppmKMeXmpoq9+/fl6ioKD5IzEJycrJcunRJTpw4IYcOHZLU1NR3XvO6tOObb3gS6dt7Jc/zo1GjRomXl5cEBQVl2EAiM6x5TkRElDv//e9/BUC6TZN+/vlnASBNmjSRmjVriqmpqWalibOzsxgZGYmRkZH4+flleZOxf/9+MTAwkPHjx2d5sxQZGSkuLi5SokQJqVKlivj4+EjXrl1l6NChUqJECalVq9ZbX0ffvHmzGBgYyIgRIyQ+Pl7u3Lkjq1evFktLS3F3d8/2xmT79u0ThUIh1atXl59//jnDCvEZM2aIiYmJPHnyROLj48Xf319sbGzSbUD6LqdPnxY7OzsxMDAQd3d3qVChgtjb26dbBZ+VI0eOaDbIzQtKpVLWrFkjvr6+YmBgIM7OznLz5s0c9TVx4kQpVKhQpnsX5Hev36y4fv26vkMh0qlx48aJlZXVW/dnKOjUarW4ublJxYoVs5X0yY8iIyMFgEydOlXfoeRafHy8rF+/XsaMGSNFihSRDh066Dsk0rIjR45IsWLFxMrKSubMmZOjxRR37tyRYcOGiaWlpRgbG8v06dNzHI9arZamTZtK6dKlC8TGnh+KiRMniqGhoVy8eFHfoRBp5Dh5vnHjRm3GkWeYPCciIsqduLg4MTExEWdnZ5kyZYr8+OOPAkCGDBmiWRGtVColKipKVq9eLWPGjJHZs2enS7ZnJTQ0VABItWrV5Pfff9f09+rVKxkyZIgAkJYtW0pwcLAMHDhQOnbsKI0aNZKKFStKgwYNsrXKKDw8PEM5t65du753rcqEhIQsV4Dfv39fDA0NpXbt2prNaHNSRuXOnTuybNkyGTZsmDRt2lQiIiKydZ1KpRInJycZOHDge4/5vtRqtfTq1UsAiJeXlyxevDhX37Pu378vJiYmBTLZ4+3tLU2bNtV3GEQ6Fx8fL8bGxvLjjz/qOxSdOXfunObfiH9/zr///ltmzZqVYZ67du2arFu3Lq/DzNK9e/fE3t7+vVfvFgRr164VABIZGanvUEiLGjduLFWrVpU7d+7kuq+nT59q9q3JaZWE9evXCwDZvn17ruOh7EtJSZHy5cuLl5cXy7dQvpHj5LmJiYnMnDnzrW3y4x90Js+JiIhy7+zZs9KrVy8xMzPLkDjPrT/++EO8vLwEgNjZ2UmRIkXE0tJSTE1NJTw8XCvjHD9+XCIjI2X79u1y9OhRnXxn6dq1q5QoUUJ++OEHvazOHD16tDg4OOh846XZs2cLgBxvIpuZvn37irW1dYEql3DlypW31qMn+tD06NFDnJ2dP9jyGcHBwWJjYyN9+/YVKysruXv3rrx69Up8fX0FQLpazCIirVu3FoVCka23g3RNrVZL69atpVixYtl6cF3QqNVq8fX1FRcXF64I/kBcvXpVs/G6tiiVSqlfv764ubm9d/7n+fPnUrJkSfH399daPJR9e/fuFQCybNkyfYdCJCIiBiIiyIGdO3eiU6dO+PzzzxEWFgYDAwPNOZVKhVWrVuH777/HX3/9lZPudSYpKQk2NjZ49uwZrK2t9R0OERFRgfbkyROcPn0azZo1S/ddILdEBDt27MDZs2dhYGAAhUIBPz8/VKpUSWtj6JparQYAKBQKvYx/+vRp1KpVC7t374aPj49Oxti3bx+aNWuGoUOHYubMmVrr99mzZ/jkk09gb2+PP/74AyYmJlrrWxciIyMxYMAAKJVK3LhxA+bm5voOiUjnoqOjUb9+fSQnJ+OLL77AV199BRcXF32HpTXVqlVDpUqVMGfOHHh4eKBJkyZ4/vw59u3bh/r16+PChQu4ffs2zM3NER0drfn3adasWRg2bJheY1+8eDH69OmDrVu3ok2bNnqNRVeuXbsGT09PjBgxAlOnTtV3OJRL48aNw88//4y7d+9q9d/Q69evo2rVqujYsSOWLl2aZbu0tDQ8evQIJUqUAACMHTsWYWFhuHz5MlxdXbUWD2Vft27dsGvXLly5cgV2dnb6Doc+drnJvJ87d05KlSolAQEB8vLlS0lJSZF58+aJq6ur2NraysSJE7WS4dcmrjwnIiKij4FarZYyZcpI7969tdZnSkqKzJo1SwYMGCCBgYFSuHBh8fHx0cnq9lOnTomxsbGMHDlS631rg1qtllOnTknnzp015YRebxpL9LF4+vSpTJo0Sezt7cXS0lIuXLig75C04vr16wJAU25ryZIlAkBMTU1l586dcu3aNVEoFDJ//nwREenVq5c4OjpKq1atpGbNmpn2ee7cOenUqVO299bIqdjYWLG0tJQvv/xSp+PkB6GhoaJQKKR///7vtacI5S9KpVKKFy8ugwYN0kn/S5cuFQCyZcuWTM+npKSIn5+fAJAGDRrItGnTxNjYWEJCQnQSD2XPvXv3xNraWry9vTPso6PrtyqJ3pTrDUPv3LkjVapUkSpVqoijo6M4ODjI5MmT37tuaF5h8pyIiIg+FuPHjxdbW9tsbar+LnFxcVKvXj0xNjaWqlWriq+vr/Tt21ceP36shUgzN2vWLAEgmzdvzlU/q1ev1lrCSqVSybfffiuurq4CQIoVKyarVq3Kl+UKifLKs2fPpFq1auLq6vpBlAmZOXOmmJqaau5pVSqVjBgxQnbt2qVpExgYKO7u7hIXFyfGxsbyww8/yMaNGwWAXL58WdPu2bNnMnz4cFEoFAJAevToobO4X29w6Orqmm/vx7VJqVTKjBkzxM7OTszNzWXy5Mn6DolyICIiQgDI2bNnddL/6zJGTk5OGTaVT01NlYCAADExMZHJkydL8+bNRaFQSOnSpeXVq1c6iYey7+DBg+Lk5CRWVlaycOFCmT9/vnh5eYmBgYF069ZN4uLi9B0ifSRylTxPTEyU0NBQsbe3F3Nzc7GwsMj3qw2YPCciIqKPxYULFwSAbNu2LVf97N27VxwcHKRUqVJy/PhxLUX3bmq1WgIDA8XExCTHG3atW7dOAIizs7NWvv9FRkYKAPnyyy9lz549XP1E9D+3bt2SokWLire3t1Ye2OlTw4YNpXXr1m9tc/z4cQEgNWvWFCsrK0lMTJRXr16JjY2NTJgwQUREnjx5IuXKlRMLCwv54YcfZMKECWJpaam1Ot2pqanpfv96g8PczvkFzdOnT2X48OECQHbv3q3vcAq0tLQ0SUtLy9Mx27RpIzVq1NDpGLGxsWJmZiZjx47VHEtNTZXAwEAxNjZO93fm3r178uDBA53GQ9mXmJgoPXv2FABiaGgoLVq0kJCQEClatKhYWFjIpEmTMsyFRNqW4+T52LFjxcbGRkqXLi0LFiyQFy9eyOeffy5FixaVkydPajNGrWLynIiIiD4WarVaKlasKJ06dcrx9d9//70oFArx8fHRy4rSlJQU8ff3FxMTk/dOCEVFRUmhQoWkdevWWitj0KxZM6lVqxZXmhNl4siRI2JiYiIBAQFy+/ZtfYeTIw8fPhSFQiGLFi16Z1tvb28BIKNGjdIc6927t7i6ukpKSop8+umnYm9vL1euXBERkZiYGAEg69evz3Wchw8fFjMzM/n5559FRCQpKUkcHR0lICAg130XRGq1Wry8vKR8+fIF/uFNXnv27JmEhYWJv7+/FC5cOE//jYuPj09XAkmXQkJCxNjYWC5fviz37t0Tb29vMTIyyrKcC+Uv58+fT/dQIzExUUaPHi2GhoZSr169DKVdiLQpx8nz8uXLy4oVKzI8lZwwYYIUKlQo305ATJ4TERHRx2T27NliaGj43q+2JiYmSkBAgACQ8ePH5/lKtH9LSUnRvFY9b968bMWSmJgo7u7uUrlyZXnx4oUsXLgw1ysyL1++LABk1apVOe6D6EO3adMmKVKkiJiYmMjw4cPl0aNH6c4nJibKyJEjpWvXrhIQECA9evTIV8nOJUuWiIGBQbZWnu7cuVNsbW3TPSg4cOCAAJCGDRuKsbGxHDx4MN01tWvXlrZt2+Y6znbt2om5ubkAkODgYBk9erSYm5t/1Amkc+fOiUKhkOnTp+s7FK27d++elCxZUurWrSs///yzPH36VCv9Pnr0SKpXry4mJibSuHFj6du3rwCQffv2aaX/+Pj4DKVS/m3IkCGaNzd07dWrV1KmTBmpWbOmlChRQkqUKCF//PGHzscl3Tp69Ki4uLhI4cKFJSIiQt/h0Acqx8nztz2JXLRokZiamkp4eHhOu9cZJs+JiIjoY5KUlCTW1tYybty4bF+ze/ducXFxERsbm3xzI5KSkqK5qa9Zs6acOHEiy7bJycnSokULsbGxkZiYGBH557trixYtxNHRURISEnIUw6BBg6Ro0aKSnJyco+uJPhZJSUny3XffibW1tTg7O8vFixdF5J/yGrVr1xZra2tp3Lix+Pr6CoB8M8+IiDRo0EAaNWqU4+tVKpU4OTkJAFmyZEmG82FhYWJsbCxPnjzJ8Ri3bt0ShUIh8+bNkylTpggAAcCa3/JPMtbS0vKD2kBUrVZLu3btxMHBQVq2bCkKhUIsLCxk586duer3/v374unpKUWLFtWU31Wr1eLp6amVBzxPnjwRBwcHqVevXqYlzqKiosTQ0FCmTZuW67Gya/v27QJAvL295d69e3k2LulWQkKCtGnTRszMzOT+/fv6Doc+QLneMDQr27dvFysrK111n2NMnhMREdHHZvjw4WJvby8vX758a7tnz55Jnz59BIB8+umncv369TyKMPuOHj0q1apVEwDi6uoqnTt3lvDwcM3meKmpqdKuXTsxNTXNUPv2zp07YmlpKV9//fV7j5uYmCiFChWSiRMnauVzEH0M4uLipGrVqmJtbS3r16+XGjVqiK2trZw5c0bTxtPTU7p27arHKP/fH3/8oZVk/saNG2XOnDmZnrt3754oFApZsGBBjvsfP368WFtby/Pnz0VEZMWKFdKhQwc+2JN/HtA4ODhI5cqVJSQkRA4dOqTXN6e04XUt+w0bNojIP6u5W7ZsKZaWlun+Lr2Phw8fioeHhzg6Oqbb4Fbkn8WQBgYGcu3atVzF3a9fP7G0tBRDQ8MM/3aq1Wrx9fWVsmXL5vmf2/Pnz7NG9gfoyZMnYmVlJV999ZW+Q6EPkM6S5yKS44lcl5g8JyIioo9NbGysGBgYvLWG744dO6RUqVJiaWkp8+fPF5VKlYcRvp+0tDTZtGmTjBw5Uho0aCDGxsZiZ2cnU6ZMkS5duoixsbFERkZmeu2wYcPEzs4u3Wvkf/75p3Tp0kXWrFmT5UZ+s2bNEiMjI7l7965OPhPRhyopKUlatWolAMTe3l7Onj2b7vzkyZPFwsLiraUd8krbtm2lQoUKOp//mjVrluPV7cnJyeLg4CBDhgzRblAfkIMHD0rbtm3FxsZGAOSbhzM58fDhQylSpIgEBgamO/7ixQupVauWFCtW7L0fdKvVaunQoYPY29tr3s76t5cvX4q9vb0MGzYsx3EfP35cDAwMJDw8XEJCQkShUMjhw4c15yMiIgSAbN26NcdjEL3pq6++EktLy1y92UOUGZ0mz/MjJs+JiIjoY9S2bVvx9PTMUHovMTFRvvzySwEgPj4+BbJe7u3bt2XgwIFiYmIihoaGsnHjxizbXr9+XVPuQEREqVRK1apVxcrKSgCIpaWljBkzJt3PKSEhQVxcXCQoKEjnn4XoQ6RUKiUsLEwuXbqU4dy1a9cEgKxbt04Pkf2/6OhoASBLly7V+VjLly8XAHLjxo33vnbVqlUCIMNqYcooLS1NFi9erLVNWvWhe/fuYmdnl2kpigcPHkiZMmXE3d1drl69mu0+16xZIwDkl19+ybLN+PHjxcrK6p15E7VaLZcuXZLvvvtO+vfvL7t375aUlBSpXr26VK9eXdLS0kSpVIqXl5c4OzvL4sWLZfr06eLq6irNmzfn5tukVQ8ePBBzc3MJDg7O9jXJyckSGxuru6Dog8DkOREREdFHYO/evQJAJk2apPke9Pvvv2tWmy9YsKDA38TGxcXJ6dOn39muY8eO4u7uLiqVSmbNmiUGBgZy6tQpuXbtmowbN04AaGrEK5VK8fX1FVtb21y/wk5Ematdu7YEBAToNYYvvvhCHB0d86SExPPnz8XOzk4GDx783tfWrVtXfHx8dBDVh0mtVktgYKDY29sXuFrIt2/fFoVC8da95K5duyblypUTa2tr+fXXX9/Z5927d8XW1lY6d+781nZ37twRIyMj6d27t1y6dCnT7wcnTpyQ8uXLax48u7m5CQCxsbERAwODdHuT3Lx5U4oXLy4AxNraWjw9PeWvv/56Z7xE72vYsGFia2ubrZzfw4cPpV69emJsbJyjh5n08WDynIiIiOgjoFarpU+fPmJoaCiWlpbStGlTASC+vr4FcrV5bhw7dkwAyPz588XKykoGDhyY7vyMGTMEgMybN0+GDh0qhoaGsnfvXj1FS/ThmzlzppiYmMjTp0/1Mv6dO3fE2NhYpk+fnmdjhoaGiqmp6XttWnj69GkBkK0kKf2/hw8fioODg/j7+xeoh8QTJ04US0tLzZ4eWXn27Jm0b99eAEhQUJAEBwfLnDlzJCoqKl271NRUadWqlRQrVkweP378zvFDQkLE3NxcAEjp0qVl0aJFmp/fhQsXxNbWVmrXri2RkZHy6tUrUavVcvz4cRk8eHCmf5dSU1Mz3TiUSJvi4uLExMREevToIbt3786yhMvly5eldOnSUrRoUbG1tZWhQ4fmcaRUkBiIiOAjkpSUBBsbGzx79gzW1tb6DoeIiIgoT8XHx2PBggXYvn07+vXrh969e8PAwEDfYeW5Bg0a4OjRoyhatCj++usv2Nraas6JCEaMGIHZs2dDRDB37lwMHDhQj9ESfdji4+Ph5OSEpUuXomfPnnk+fv/+/bF+/XrcunUrz+4RExMT4eLigr59+2L69OnZuuaLL77A3r17ERsbCyMjIx1H+GHZvHkzOnTogE2bNqF9+/b6DuedlEolXFxc4O/vj/nz57+zvYggLCwMy5Ytw6NHj/Do0SMAwMSJEzFu3DjcvHkTQUFBOHv2LLZs2YLWrVtnK45Xr15h//79WL16NdauXYu2bdti7NixaN++PYoXL479+/ejcOHCufmoRFr3/fffY/LkyXjx4gUAoGrVqggICECLFi1w/fp17NmzB5s3b0bJkiWxbds2LF++HNOnT8ft27dhb2+v5+gpP2LynIiIiIg+Olu2bEG7du2wYsUK9OjRI8N5tVqNwYMHw87ODpMmTdJDhEQfl8aNG+Pvv//GtGnTUKdOHVhYWOTJuGfPnkWNGjXw008/YdiwYXky5msTJkzArFmzcPPmTRQpUuStbZ88eYJSpUppkqH0/po0aYKUlBQcOXJE36G806ZNmxAYGIjz58+jSpUq7319amoqQkNDMXXqVFSuXBmxsbEoVqwY1qxZg9q1a+copoiICPTu3RuPHz+Gh4cHDh06hKJFi+aoLyJdU6vViImJwcmTJ7Fjxw5s27YNz549AwBUrlwZzZs3x4QJE2BjY4NHjx7BxcUF48aNwzfffKPnyCk/YvKciIiIiD5KV69ehbu7+0e58p4ov/n9998RFBSExMREGBkZoV+/fggPD9fp308RQcOGDZGQkIBz587B2NhYZ2Nl5vHjx3B1dcXw4cPf+ZBu+vTpmDBhAu7cuQMHB4c8ivDD8vqh6enTp1GjRg2djPHkyRO8evUKpUqVylU/vr6+ePnyZa4T/SdOnEC/fv1Qo0YNzJo1C1ZWVrnq78GDBwgPD0f//v1z/RmJ8lJqairOnDmD0qVLo1ixYhnODx48WPMGUl49vKWCg8lzIiIiIiIi0ju1Wo1Lly5h06ZNCAkJwerVq9GtWzedjbd27VoEBQVh9+7d8PHx0dk4bzNmzBgsWLAAhw8fRtWqVTNto1Kp4O7uDi8vL6xcuTKPI/xwqFQqlClTBo0bN8by5cu11q+IYMeOHVi6dCkiIiKgVCrRokULDBw4EK1atYKhoeF79RcTE4Ny5cph5cqV+Oyzz7QWJxFl7fr163B3d0d4eDhL9VEGCn0HQERERERERKRQKFC5cmV8++236NatGwYNGoRbt25l+/rDhw9jwoQJiI+Pz7JNcnIyLl68iF9++QVjxoxB+/bt9ZY4B4Cvv/4a7u7uaNq0KS5cuJBpm99//x03btzAoEGD8ji6D4uhoSEGDRqEtWvX4uHDh1rrd8mSJWjVqhWuXLmCadOmYenSpXj8+DHatm2boyTcnDlzYG9vj44dO2otRiJ6u9KlS6Nz584YP348Nm7cqO9wKJ/hynMiIiIiIiLKVxITE1G1alW4ublh796971y9m5KSggoVKuDGjRswMTFBz549MX78eLi4uGjabN++HV27dkVSUhKAf5Ile/fuhaurqy4/yjslJCTA19cXt27dwm+//YYaNWrAxMQEz58/x/79+xESEgKFQoGTJ0+yzFQuJSQkoFSpUhg/fjwmTJiglT59fHygUCiwc+fOdP9/pk6diokTJ+LmzZsoWbJktvqKiYlBpUqV8M0337D2MlEeS0xMRN++fbFhwwb06dMHs2bNYgkXAsCV50RERERERJTPFC5cGCtXrsShQ4fwySefICAgAAMHDsSff/6Zafs5c+bg9u3bOHHiBEJDQ/Hrr7+iQoUKmDp1KlJTU7Fo0SK0bdsWjRs3xh9//IHHjx8jNjZW74lzALCzs8Pu3bvh4uKC+vXrw9TUFMWKFYO9vT38/f3x9OlT/PDDD0yca4GdnR0+++wzzJ8/H0qlMtf9JSYm4uDBgwgICMjw/2fQoEEwNzfH3Llzs93fqFGjUKJECYwePTrXsRHR+ylcuDDWr1+PRYsWYfXq1SzfQhpceU5ERERERET50vr167Fr1y7cv38f0dHRiIuLw8iRI/Htt99qVgQ+efIEZcuWRdeuXTFv3jwAwIsXLxASEoKffvoJxYsXR3x8PAYNGoSwsLD3rkGdV16+fInDhw8jPj4ed+7cgb29PZo3b46yZcvqO7QPSlRUFCpXrowVK1agR48euerrdd38uLi4TDfQHDVqFJYtW4a4uDgUKlQIADRt30y279y5Ey1atMAvv/zCki1EejZp0iT88MMPePToEczMzPQdDukZk+dERERERESU7ymVSkyfPh2hoaEoVaoU/vOf/6Bbt274+uuvsXTpUly7dg1FixZNd82FCxcwduxY+Pj4YMSIEVy9TQCANm3aIDY2FlFRUVAocv5CfpcuXRATE4MzZ85kev7WrVsoU6YMwsLCMHDgQHz77bcIDQ3F7NmzMWTIEE07pVKJqlWromjRoti/fz//nBLpWXR0NCpVqoStW7eiTZs2+g6H9KxAJM+fP38OHx8fXLp0CcePH4enpyeAf1YhzJo1C+bm5lixYgWcnJze2ReT50RERERERAXXlStX8J///AeRkZGwsrLC33//jdDQUIwbN07foVEBcezYMdSvXx+bNm1C+/btc9RHamoqHBwcMGrUKEycODHLdl26dMHp06fRsGFDLFu2DNWqVUNMTAyioqI0ZYMmTpyIyZMn48yZM6hWrVqO4iEi7apQoQLq1q2LZcuW6TsU0rMCUfPc3NwckZGRCAwM1BxTKpWYOXMmDh48iO+++w7fffedHiMkIiIiIiKivODh4YGIiAjExsZi4MCBaNWqFYYPH67vsKgAqVevHj799FNMmTIFb1tPqFar0a5dO8yePTvDuYMHDyIpKQlt27Z961gjR45EbGwsVq9ejVWrVuHgwYOws7ND3759ISKYP3++JqfBxDlR/tGhQwdERERoZX8EKtgKRPLcyMgIDg4O6Y693oXaxMQEDRo0wMWLF/UUHREREREREeU1V1dXTJkyBRERETA3N9d3OFTAjB8/HmfOnMHu3buzbLNu3Tps2bIFw4cPx86dO9Odi4iIgLOzM6pWrfrWcWrXro3vv/8eu3btQvfu3WFtbY0FCxZg9+7d6NGjBwYNGoRhw4bxzQmifKZ9+/Z4+vQpDhw4oO9QSM+M9B1ATiUmJqYru6JSqTJtl5KSgpSUFM3vk5KSdB4bEREREREREeVfTZs2Ra1atRAcHIxy5cppSqi8lpqaim+++QZ+fn5QqVQICgrCmTNn4OrqChHB1q1b4e/vn6365F999VW637ds2RKfffYZVq1ahe7du2PmzJmsc06Uz1SvXh2urq7YtGkTfH199R0O6VG+Sp7fv38/XWmW17Zu3Qo7O7t0x2xtbdMlwrPaMX3q1KkICQnRbqBEREREREREVGAZGBhgypQp8PPzg5ubGypXrozu3btjxIgRMDY2xpIlS3Djxg1ERETA0dERNWvWRLt27dCsWTMcOXIEcXFx8Pf3z/H44eHhaNiwIT7//PNcbVpKRLphYGCA9u3b47///S/mzp2bZd6RPnwFYsPQ13r27InRo0fD09MTSqUS3t7eOHToEE6dOoWVK1diwYIFGa7JbOW5k5MTNwwlIiIiIiIi+sglJSVh165d2Lp1K9asWYOaNWti0aJFaNasGXx9fbFy5UoAwPnz5+Hl5QUbGxvUq1cPzZo1Q+/evblinOgDdvToUTRo0ACHDh2Ct7e3vsPRGrVajfv378PR0VHfoRQIBSZ53qpVK5w7dw4uLi7o168fevbsiXXr1iEsLAxmZmZYuXIlnJyc3tlPUlISbGxsmDwnIiIiIiIiIo0TJ04gKCgIN27cgJGREa5cuQI3NzfN+dTUVJiYmOgxQiLKS2q1GqVKlULnzp3x008/6TucXFOr1di8eTO+++47REVFISoqChUqVNB3WPlegUmeawuT50RERERERESUmefPn2Ps2LFwc3PD6NGj9R0OEelZv379sHfvXsTExOT7N01EJMsYExMT8emnn+LcuXPw9fXFyZMnMXjwYEyaNCmPo8xbDx48wNChQ9GvXz80adIkR32wsBYREREREREREQArKyvMnTuXiXMiAgD4+/sjNjYWly9f1ncobzV27FhUrVoVDx8+zPR8SEgIYmJicOTIEezatQuBgYFYu3YtPuQ11dHR0ahbty5++eUXdO/eHU+fPs1RP0yeExEREREREREREb2hSZMmsLCwQEREhL5DydKlS5cwY8YMXL58Ga1atcLz58/TnY+OjkZ4eDgmTJiA+vXrAwC6du2K69ev4+TJk/oIWecOHjyI+vXrw8rKCseOHcPLly8xbNiwHPXF5DkRERERERERERHRG8zMzNC8eXNs3bpV36FkSkQwcuRIuLm54ejRo4iJiUFAQACSk5M154cNGwZXV1eMGDFCc13jxo1RvHhxrF279p1jvHz5Umfx64JKpUK3bt1QrVo1HD58GHXr1kVYWBhWrVqVo/+PTJ4TERERERERERERZcLf3x8nTpzA/fv39R1KBtu3b8euXbswY8YM1KpVC7/99huOHj2KmjVrYtq0aVi4cCH27NmDn376CaampprrDA0N0aVLF6xfvx4qlSrL/uPj41GyZElMmzYtLz6OVuzatQvx8fGYMWMGbGxsAAA9evSAn58f+vXrl2Vpm6xww1AiIiIiIiIiIiKiTDx69AjFixfHwoUL8eWXX+o7HA2lUglPT0+UKlUKe/bs0WwWevToUcyaNQu//fYbkpOT0bx5c/z+++8ZNhM9efIk6tSpgz179qBp06aZjhEUFIS1a9fC2toasbGxKFKkiM4/V2517NgRV65cwfnz59N95rt376JGjRooXrw49u3bB1tb22z1x5XnRERERERERERERJlwcHBA/fr1813d8ylTpuDatWv46aef0iWJ69evj19++QUPHjzA+vXrsXz58gyJcwCoVasWypQpgzVr1mTa/6FDh7B27VpMmzYNarUa33//vc4+i7Y8fvwYERER+OKLLzJ8ZkdHR+zevRu3b9/OtDZ8Vpg8JyIiIiIiIiIiIsqCv78/du/enW/qf+/ZswchISGYOHEiqlSpkmkba2trdOrUCcWLF8/0vIGBAYKCgrBhwwY8efIk3bm0tDQMGTIEderUwahRozB69GjMmTMHcXFxWv8s2rRmzRqICLp165bpeU9PT+zatQvR0dHw9/fHq1ev3tknk+dEREREREREREREWWjbti2Sk5Oxfft2fYeC+Ph4BAUFwcfHBxMmTMhVX4MHDwYAhIaGpju+YMECXLhwAeHh4VAoFBg5ciSsra0REhKSq/F0SUSwZMkStG3bFg4ODlm2q1GjBrZt24akpCQ8e/bsnf2y5jkRERERERERERHRW9StWxd2dnZ6TaArlUo0adIEN27cwNmzZ9+aJM6u77//Ht988w0uXbqEcuXK4fTp02jUqBGCgoKwaNEiTbvZs2djxIgROHv2bJar3fXpzz//RI0aNRAZGYnWrVu/s71arYZC8e515UyeExEREREREREREb3F4sWL0bdvX9y8eRPOzs55Pr6IoH///li6dCkOHDiABg0aaKXf5ORkeHh4oHr16pg9ezbq1KkDFxcX7N+/H+bm5pp2KSkpqFmzJgwNDXHy5EmYmJhoZXxtGThwILZs2YLbt2/DyMhIa/2ybAsRERERERERERHRW3Tp0gWFChXCsmXL9DL+zJkzsXDhQixcuFBriXMAMDMzw9SpUxEREQEvLy+YmZkhIiIiXeIcAExNTbFq1SpER0fnu/ItCQkJWLFiBfr27avVxDnA5DkRERERERERERHRW1laWqJr165YsmQJVCpVno69ZcsWjBkzBuPGjUOvXr203n+XLl1Qu3ZtJCUlYfv27ShWrFim7apVq4Zvv/0W33//PY4ePar1OHJq0aJFSEtLw4ABA7TeN8u2EBEREREREREREb3DyZMnUadOHWzfvh0tW7bMkzFPnz6Nhg0bws/PD+vWrctWne6cePLkCV68eAEXF5e3tktLS4O3tzceP36M6OhoGBsb6ySe7FIqlXBzc0OzZs2wdOlSrffP5DkRERERERERERHRO4gIqlWrhrJly2LTpk06H+/27dtZ1iDXp9OnT6NWrVrYvXs3fHx89BrL2rVrERQUhAsXLqBy5cpa759lW4iIiIiIiIiIiIjewcDAAL1798bWrVvx4MEDnY6VlJQEPz+/LGuQ61ONGjXg7OyMiIgIvcYhIpg5cyZ8fHx0kjgHuPJc3+EQERERERERERFRAfH06VOUKFECoaGh+M9//pPr/hITExEZGYnk5GQolUo8evQIN27cwIkTJxAfH49jx46hYsWKWohcu4YMGYKIiAjcunULBgYGeolh165daN68ObZt24ZWrVrpZAwmz4mIiIiIiIiIiIiyqXv37jh58iSuXLmSq8SxiMDHxwf79u0DABgZGcHW1hZubm5wc3PD0KFDUb9+fW2FrVV79uyBr68v/vzzT1SvXj3Px1+xYgX69euH2rVr48CBAzqrBc+yLURERERERERERETZ1KdPH8TExODQoUO56mfp0qXYt28fduzYAbVaDaVSiYcPH+LEiRNYt25dvk2cA0CjRo1gY2OT56VbkpKSMHToUPTs2RPdunXDrl27dJY4B7jyXN/hEBERERERERERUQEiIvDw8EDt2rWxevXqHPVx9+5dVKxYEe3atcOyZcu0HGHeCAoKQnR0NM6dO6fzsY4dO4YFCxZgw4YNUCqVCAsLQ//+/XVeMoYrz4mIiIiIiIiIiIiy6fXGoRs3bsTTp09z1MfgwYNhZmaGH3/8UcvR5R1/f3+cP38eN2/e1Ok4P//8M+rXr4/Dhw9j/PjxuH79OgYMGJAntdaZPCciIiIiIiIiIiJ6D59//jlUKlWOVp5v2rQJv/76K8LDw2FnZ6eD6PJGy5YtYWxsjK1bt773tUuXLkW1atWQmJiY7vijR48QHx+v+f2iRYswYMAADB06FDExMfj6669RqlSp3IaebSzbQkRERERERERERPSeOnTogKNHj6J169ZwcnJC/fr14ePjk25F9N9//w0LCwvNsadPn6JChQqoV68eNm/enCerp3WpRYsWSE5OxoEDB7J9zcGDB+Hj44O0tDSMGTMG06ZNAwC8fPkSVapUQWxsLGrWrIlPPvkECxcuxMCBAzFnzhy9/KwKxMrzM2fOwNvbG40aNUKnTp2gVCoBAOvXr0e9evXQpEkTxMXF6TlKIiIiIiIiIiIi+lhMnToVXl5euHDhAubNm4dmzZrh008/xYkTJ3Ds2DF07doVhQsXRvfu3ZGSkgIAGDVqFJKTkzF37twCnzgHgC+++AIHDx7EmjVrstX+1q1bCAwMhLe3N77++muEhYVpyr4EBwcjPj4ec+fOhZubGzZu3IghQ4YgPDxcbz+rArHy/P79+7C2toaFhQXGjx+P6tWrIyAgAF5eXjh8+DBOnTqFFStWYOHChe/siyvPiYiIiIiIiIiISJtEBL///ju++uorREVFAQDKlCmDgIAAzJkzB/Xr18egQYMQGBiIhQsXok+fPnqOWDtEBN27d8dvv/2Gc+fOoXTp0lm2ffXqFerVq4ekpCScOnUKZmZmcHd3R+PGjTFixAjUrVsXU6dOxX/+8588/ARvVyCS5/8WHByMatWqwcPDAzNmzMDSpUsBAPXq1cOxY8feeT2T50RERERERERERKQLKpUKW7ZsgYWFBZo3bw6FQoHDhw+jbdu2SExMROPGjbFv374PYtX5a0lJSahWrRqKFi2Kw4cPw9jYONN2s2fPxsiRI/Hnn3+iSpUqAIAlS5agd+/ecHZ2RpEiRXDixAkYGRnlZfhvVSDKtrx2+/Zt7NmzB35+fkhMTEyX/FapVJlek5KSgqSkpHS/iIiIiIiIiIiIiLTN0NAQHTp0QMuWLaFQ/JN69fb2xpEjRxAYGIjFixd/UIlzALC2tsbatWtx5swZTJo0KdM2SqUSP/74I7p27apJnANAz5494enpibt372Lp0qX5KnEOAPkqmvv37yMwMDDD8a1bt8LIyAifffYZli1bBmNjY9ja2qZLhBsaGmba59SpUxESEqKzmImIiIiIiIiIiIjepmLFitiwYYO+w9CZOnXqYPjw4Zg9eza++uorWFhYpDu/bt063L59O0NJFkNDQ2zatAk3btxA1apV8zLkbCkQZVtUKhUCAgIwfPhwNG3aFMA/Tyu8vb1x6NAhnDp1CitXrsSCBQsyXJuSkqIpyA/88xqBk5MTy7YQERERERERERERacn169dRpkwZLF++HJ9//rnmuIigSpUqcHZ2xrZt2/QY4fsrEMnztWvXYvDgwahcuTIAYMCAAejcuTPWrVuHsLAwmJmZYeXKlXBycnpnX6x5TkRERERERERERKR9zZo1w99//40jR45ojm3btg1+fn44dOgQvL299Rjd+ysQyXNtYvKciIiIiIiIiIiISPs2btyIjh074uLFi/D09ISIwNvbG2q1GkeOHClw9d4L1IahRERERERERERERJQ/+fv7o1ixYli4cCFEBIMHD8aRI0cQHBxc4BLnQD7bMJSIiIiIiIiIiIiICiZjY2P06tUL8+fPR0pKChYuXIjFixejefPm+g4tR1i2hYiIiIiIiIiIiIi0IjY2FmXLlgUALF68GF9++aWeI8o5rjwnIiIiIiIiIiIiIq0oU6YMQkNDUbZsWXTt2lXf4eQKV54TEREREREREREREb2BG4YSEREREREREREREb2ByXMiIiIiIiIiIiIiojcweU5ERERERERERERE9AYmz4mIiIiIiIiIiIiI3sDkORERERERERERERHRGwxERPQdRF4SETx//hxWVlYwMDDQdzhERERERERERERElA99dMlzIiIiIiIiIiIiIqJ3YdkWIiIiIiIiIiIiIqI3MHlORERERERERERERPQGJs+JiIiIiIiIiIiIiN5gpO8A8pPXm4kSERERERERERER0YfLysoKBgYGb23D5Pm/PH78GEWLFtV3GERERERERERERESkQ8+ePYO1tfVb2zB5/i8mJiYAgLi4uHf+4IiIciopKQlOTk6ca4hIZzjPEJGucZ4horzAuYaIdMnKyuqdbZg8/5fXy/Stra05KRORznGuISJd4zxDRLrGeYaI8gLnGiLSF24YSkRERERERERERET0BibPiYiIiIiIiIiIiIjewOT5v5iamiI4OBimpqb6DoWIPmCca4hI1zjPEJGucZ4horzAuYaI9M1ARETfQRARERERERERERER5SdceU5ERERERERERERE9AYmz4mIiIiIiIiIiIiI3sDkORERERERERERERHRG5g8/5fRo0fD29sb3bp1Q2pqqr7DIaIC7vnz56hTpw4sLS0RFRUFAFi/fj3q1auHJk2aIC4uDgAQHR0NLy8v1KtXD3v27NFnyERUwJw5cwbe3t5o1KgROnXqBKVSyXmGiLQqKioKDRo0QKNGjdC6dWu8ePGC8wwR6cTatWvh4OAAgPdNRJR/cMPQ/zl79ix+/PFHrF69GpMnT4abmxuCgoL0HRYRFWBpaWl4+vQpxowZg9GjR8PDwwNeXl44fPgwTp06hRUrVmDhwoUICAjA9OnTUaxYMbRo0QJHjx7Vd+hEVEDcv38f1tbWsLCwwPjx41G9enXMmDGD8wwRaY1SqYSxsTEAICQkBKVLl8acOXM4zxCRVqnVanTs2BE3btzAiRMneN9ERPkGV57/z7Fjx9CsWTMA4CRMRFphZGSkWTkBADExMahUqRJMTEzQoEEDXLx4EQBw7949uLu7w9raGvb29nj8+LG+QiaiAqZ48eKwsLAAABgbG+Pq1aucZ4hIq14nzgHg5cuXcHZ25jxDRFq3Zs0aBAYGQqFQ8L6JiPIVJs//JzExEdbW1gAAGxsbJCQk6DkiIvrQ/HueAQCVSgUA+PcLQJx/iCgnbt++jT179sDLy4vzDBFp3e7du1G9enXs378fxsbGnGeISKtUKhV++eUXdO7cGQDvm4gof2Hy/H9sbW2RlJQE4J+J2s7OTs8REdGH5t/zDAAYGhoCABSK/5+KOf8Q0ftKSkrCZ599hmXLlqFo0aKcZ4hI63x9fXH27FkEBgbi4MGDnGeISKtWr16NTp06aeYR3jcRUX7C5Pn/1K1bF7t27QIA7Ny5Ew0aNNBzRET0oSlbtiyio6ORmpqKI0eOoEqVKgD+KbsQExODpKQkJCQkoEiRInqOlIgKCpVKhW7dumHixIkoV64c5xki0rqUlBTNf9vY2MDS0pLzDBFpVXR0NFauXIkWLVogJiYGCxcu5DxDRPkGNwz9l9GjR+PEiRNwdnbGsmXLYGJiou+QiKiAa9WqFc6dOwcXFxf069cPZmZmCAsLg5mZGVauXAknJydER0ejb9++UKlUCA0Nha+vr77DJqICYu3atRg8eDAqV64MABgwYABEhPMMEWlNZGQkpk+fDoVCAQcHByxfvhxbt27lPENEOlGzZk2cPn0a69at4zxDRPkCk+dERERERERERERERG9g2RYiIiIiIiIiIiIiojcweU5ERERERERERERE9AYmz4mIiIiIiIiIiIiI3sDkORERERERERERERHRG5g8JyIiIiIiIiIiIiJ6A5PnRERERERERERERERvYPKciIiIiIiIiIiIiOgNTJ4TEREREREREREREb2ByXMiIiIiIiIiIiIiojcweU5ERERERERERERE9AYmz4mIiIiIiIiIiIiI3vB/y6OKLM9M+b4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABc8AAAHqCAYAAADSwLYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1gU1/fG36UXRbCANOm9KKgURUWxF+wae2/RGDX2xBYTe4uxJHaNYsNeUFEEGwiKIggivfcund35/cFv5uvKArvLLgt4P8/D8yS7d2YOuDtz73vPeQ+LoigKBAKBQCAQCAQCgUAgEAgEAoFAIBAYpCQdAIFAIBAIBAKBQCAQCAQCgUAgEAhNDSKeEwgEAoFAIBAIBAKBQCAQCAQCgfANRDwnEAgEAoFAIBAIBAKBQCAQCAQC4RuIeE4gEAgEAoFAIBAIBAKBQCAQCATCNxDxnEAgEAgEAoFAIBAIBAKBQCAQCIRvIOI5gUAgEAgEAoFAIBAIBAKBQCAQCN9AxHMCgUAgEAgEAoFAIBAIBAKBQCAQvoGI5wQCgUAgEAgEAoFAIBAIBAKBQCB8w3cnnlMUhcLCQlAUJelQCAQCgUAgEAgEAoFAIBAIBAKB0ET57sTzoqIitGnTBkVFRZIOhUAgEAgEAoFAIBAIBAKBQCAQCE2U7048JxAIBAKBQCAQCAQCgUAgEAgEAqE+iHhOIBAIBAKBQCAQCAQCgUAgEAgEwjc0e/Hc19cXbm5u6NOnD27duiXpcAgEAoFAIBAIBAKBQCAQCAQCgdACkJF0AA2hrKwMe/fuhZeXF+Tk5CQdDoFAIBAIBAKBQCAQCAQCgUAgEFoIzTrz/NWrV1BUVMSIESMwevRopKenSzokAoFAIBAIBAKBQCAQCAQCgUAgiJm8vDz4+vqK9RrNWjzPyMhAXFwc7ty5g/nz52Pz5s01xpSXl6OwsJDrh0AgEAgEAoFAIBAIBAKBQCAQCM2X7du3Y8CAASgoKBDbNZq1eK6qqgoXFxfIycmhX79+CA8PrzFm+/btaNOmDfOjq6srgUgJBAKBQCAQCAQCgUAgEAgEAoEgCiiKws2bN1FVVYWnT5+K7TrNWjx3cHBgBPN3797B0NCwxph169ahoKCA+UlKSmrsMAkEAoFAIBAIBAKBQCAQCAQCgSAiPn36hKioKEhLS+Phw4diu06zbhjarl07uLu7o3fv3pCSksKpU6dqjJGXl4e8vLwEoiMQCAQCgUAgEAgEAoFAIBAIBIKouXnzJpSVlfHDDz/g0aNHYrsOi6IoSmxnb4IUFhaiTZs2KCgogIqKiqTDIRAIBAKBQCAQCAQCgUAgEAgEggA4OTlBW1sbM2fOhLu7O6KiomBsbCzy6zRr2xYCgUAgEAgEAoFAIBAIBAKBQCB8P6SlpeH169cYOXIkXF1dISMjI7bscyKeEwgEAoFAIBAIBAKBQCAQCAQCoVlw+/ZtSEtLY9iwYWjdujV69uwpNt9zIp4TCAQCgUAQOWlpaYiNjZV0GAQCgUAgEAgEAoFAaGHcunULvXr1Qrt27QAAgwYNgo+PDyoqKkR+LSKeEwgEAoFAEDlTpkyBq6srysvLJR0KgUAgEAgEAoFAIBBaCEVFRXjy5AlGjhzJvDZw4EB8+fIFAQEBIr8eEc8JBAKBQCCIlE+fPuHp06dISkrCmTNnJB0OgUAgEAgEAqEFQVGUWAQyAoHQPHjy5AkqKirg7u7OvGZnZ4cOHTqIxbqFiOcEAoFAIBBEyrFjx9CuXTuMHj0a27ZtE0vpHIFAIBAIBALh++T58+dwdnZGeHi4pEMhEAgSwM/PD3p6ejA0NGRek5KSwsCBA3Hv3j2RX4+I5wQCgUAgEERGaWkpzpw5g9mzZ2Pr1q1ISkrCuXPnJB0WgUAgEAgEAqGFEBoaCgCIi4uTcCQEAkES+Pr6ok+fPjVeHzt2LEJCQhAZGSnS6xHxnEAgEAgEgsi4evUq8vLyMH/+fFhZWWHcuHH4888/UVlZKenQCAQCgUAgEAgtgIiICABAUlKShCMhEAiNTV5eHkJCQuDq6lrjvSFDhqB169a4fPmySK9JxHMCgUAgEAhC8+XLF+zbt4/Z3T969CgGDBgAY2NjAMCGDRsQHx+P8+fPSzJMAoFAIBAIBEILgRbPk5OTJRwJgUBobF68eAGKonhmnisoKGDkyJG4dOkSKIoS2TWJeE4gEAgEAkFozp49i19++QXm5ubo0aMHAgICsHDhQuZ9GxsbDBo0CP/9958EoyQQCAQCgUAgtBSIeE4gfL/4+flBR0cHBgYGPN//4YcfEBERgbCwMJFdk4jnBAKBQCAQhObmzZtwdXXFhQsXICMjAxsbG4wYMYJrzMiRI/H8+XPk5+dLJkgCgUAgEAgEQougoKAAaWlpkJOTI7YtBMJ3iJ+fH1xdXcFisXi+P2DAAKipqeHSpUsiu2aLEM8vXryIDh06SDoMAoFAIBC+K/Lz8+Hr64vx48dj8uTJePbsGT58+ABZWVmuccOHD0dVVRUePHggoUgJBAKBQCAQCC0BOuu8Z8+eJPOcQPjOKCgoQHBwME/LFho5OTmMGTMGly9fFpl1S7MXzzkcDjw9PaGrqyvpUAgEAoFA+K64f/8+qqqq4O7uXuc4XV1ddOnSBXfv3m2kyAgEAoFAIBAILRFaPHdzc0NSUpJIfY0JBELT5uXLl+BwOHWK5wAwceJExMTE4O3btyK5brMXzz08PDBu3DhISfH+VcrLy1FYWMj1QyAQCAQCoeHcvHkT3bp1g46OTr1jhw8fzojtBAKBQCAQCASCMEREREBPTw9mZmYoLS1FXl6epEMiEAiNhJ+fHzQ1NWFsbFznuL59+6JDhw64evWqSK7brMVzNpuNK1euYOLEibWO2b59O9q0acP8kAx1AoFAIBAaTnl5Oby8vDBq1Ci+xo8YMQJ5eXl49eqVeAMjEAgEAoFAILRYPn36BAsLC0bbIdYtBML3Q31+5zQyMjLo0aMH3r17J5LrNmvx/Pz585gwYUKtWecAsG7dOhQUFDA/pKEEgUAgEAgNx8fHB1++fMHIkSP5Gt+tWzdoaGgQ6xYCgUAgEAgEgtBERETAwsKCqXwkGg+B8H0QFhaGN2/e1GvZQmNpacnYPDWUZi2eh4eH49y5cxg8eDCioqKwfPnyGmPk5eWhoqLC9UMgEAgEQnNi//798PLyknQYXNy8eRNGRkawsrLia7yUlBSGDRuGO3fuiDkyAoFAIBAIBEJLpKysDLGxsbCwsEDHjh0hLS1NMs8JhBZIdnY2UlJSmP8PCAhA7969YW1tXaf7yNdYWFggOTkZRUVFDY6nWYvnO3fuxKNHj/DgwQOYmJhg//79kg6JQCAQCASRUlZWhl9//RV///23pENh4HA4uH37NkaNGlVvydzXjBgxAp8+fUJ0dLQYoyMQCAQCgUAgtESioqLA4XBgYWEBaWlpaGlpkcxzAqEFMnXqVOjo6KBPnz7YunUr+vfvDysrK/j6+kJVVZWvc1hYWACotnpqKM1aPP+aN2/eSDoEAoFAIBBEzrNnz1BaWoqAgABQFCXpcAAA9+7dQ3p6OsaNGyfQcf3794eMjAyePHkipsgIBAKBQCAQCC0V2oKBFsV0dHRI5jmB0AL5+PEjBgwYAHl5eWzevBl9+vTBw4cP+RbOAcDc3BxAtWtJQ2kx4jmBQCAQCC0RLy8vsFgs5OXlISoqStLhAKiu/OrRowecnJwEOq5Vq1bo1KkTYmNjxRQZgUAgEAiE5kBubi7Wr1+P8vJySYdCaEZERESgQ4cOaNeuHQAinhMILZGysjKkpKTghx9+wKNHj1BUVIS7d+9CSUlJoPPQa09R+J4T8ZxAIBAIhCaMl5cXk+Ht7+8v4WiAly9f4uXLl1izZo1Qx+vr6yM+Pl60QREIBAKBQGhWbN26Fdu3b8eLFy8kHQqhGREREcFkkwKArq4usW0hEFoY8fHxoCgKRkZGAAAlJSWBrEK/xsLCgojnBAKBQOBNUVER0tPTJR0GoYHExcUhMjISkyZNgoWFBQICAiQdEnbt2gVLS0sMHz5cqONbunh+9+5dzJ49u8lY7BAIBAKB0NRISkrC0aNHAQBBQUESjobQnIiIiGAsW4D/ZZ6TeReB0HKIiYkBABgaGjb4XJaWlsS2hUAgEAi8WbhwIUaMGCHpMAgCkpKSgmvXrjH/7+XlBRkZGbi5ucHZ2Zkv8fzZs2fYvn27WOILDw/H7du3sWrVKkhJCTeFaOni+bVr13D69Gl4eXlJOhQCgfCdcefOHTg4OGDhwoU4c+YMcnJyJB0SgQAAiI6ORkFBAfP/W7duRevWrdGtWzcinhP4hs1m4/Pnz1ziua6uLkpKSpCfny+5wAgEgkiJiYmBvLw8tLW1G3wuCwsLxMbGoqysrEHnIeI5gUAgtDByc3Ph6emJ8PBwkoXRzPj7778xbtw4XLlyBQDw4MED9OzZEyoqKnBycsKHDx9QXFxc5zn++OMP/PbbbyIXTfLy8rBp0yZoa2tj8uTJQp9HX18fmZmZKCkpEWF0TQe6LHDjxo2N8v1LTk7GvHnziGcsgVAPlZWVGDVqFHx8fCQditjw8PBAYmIiXrx4gdmzZ2Ps2LGSDolAQEhICGxtbWFtbY1nz54hKioKp06dwvr169G3b18inhP4JiYmBmVlZbCysmJe09HRAQBi3VILV65caRKVqwSCIMTExMDAwEDoZK2vsbCwAIfDaXDvMCKeEwgEQgvDw8MDFRUVKCkpIdYtzYzAwEBISUlhzpw5+PDhA3x8fDBkyBAAgJOTEzgcTp2LzOzsbPj4+IDD4eDevXsiiens2bPo2bMn2rdvD09PT2zcuBFycnJCn09fXx8AkJCQIJL4mhIURSEiIgJDhgzB27dvcevWLbFfc9u2bThx4gTCwsLEfi0CoTlz8uRJ3Lp1C8eOHZN0KGLj5cuXmDZtGsLCwnDixAk8e/YMmZmZAp3D09MTy5cvF1OEhO+NvLw8jBkzBmZmZjA0NETfvn0xfPhwaGpqYtGiRejevTuSkpKQkZEh6VAJzYAPHz4AADp37sy8RovnpGkob1avXo2NGzdKOowWycePH2FoaIjc3FxJh9LiiI2NFYllCwCmUqWhvudEPCcQCIQWxunTp2FmZgbgf35hhKYPh8PBmzdvsG7dOujq6sLV1RXFxcWMeG5paYnWrVvXmT1y8+ZNUBQFU1NT3L59u8HxrFy5EjNnzoSamhr++ecfJCYmYv78+Q06Ly2et0TrltTUVBQWFmLhwoXo168fNm7cCA6HI7brZWZm4vTp0wCqS+IJBAJviouLsWXLFrRq1QpeXl6oqKiQdEgiJykpCUlJSejZsycAMH0pBN1IPXjwIA4ePIi8vDyRx0j4vuBwOJg6dSry8vJw/fp1+Pj4YPPmzYiJicHvv/8OBQUFdO/eHQDxPZcEaWlp6NevX7OyOwkJCYGGhgbU1dWZ1zQ1NSEtLd3sMs8TExPRo0cPZGVlie0aZWVlSExMhJ+fX72VqwTB8ff3R1xcHAIDAyUdSr0kJiaitLRU0mHwTUxMDNMstKG0a9cO6urqjO85RVG4f/8+2Gy2QOch4jmBQCA0c9LS0pj/DgkJQXBwMDZv3gygeQlqwcHBWLhw4XdrNRMZGYmioiL07dsXnp6eKC8vh5aWFmxsbAAA0tLScHBwqFM8v3r1Knr37o0ZM2bgwYMH9Xq7hYSEYMKECTUyJsrKyjBp0iTs27cPBw8exN27dzFv3jzo6uo2+PfU0tKCjIxMixTP6YwGCwsL/P777wgNDeXysBc1hw4dgrS0NFRUVJrVd51AaGz++usv5OTk4Ny5cygsLMTz588lHZLI8ff3BwA4OzsDANTV1eHs7CzQRmpubi5evnwJDoeDJ0+eiCVOwvfDrl274OXlBQ8PDxgYGEBaWhobNmxAbm4uZs2aBQDQ09ND+/btiXguAQIDA/H06VOEhIRIOpRa+XZN8OHDB66sc6B6fqypqdnsMs9v3boFf39/sT6P4uLiQFEUKioq8PTpU7Fd53uFTlJ79+6dhCOpm4qKCtjZ2eGvv/6SdCh8weFwEBsbKzLxHKhOQqPXaefPn8ewYcMEXqMR8ZxAIBCaMd7e3tDS0sLy5cvBZrNx+vRpqKurY+zYsdDS0mpWmee///47/v33X6Smpko6FIlALxy7du0KS0tLeHl54cSJE2CxWMwYJycnBAQE8NxgyMnJwZMnTzB+/Hi4u7ujuLi4zony58+fMXDgQFy9ehU3btzgem/9+vW4ffs2rl27hp9++klEv2E10tLS6NSpU4sVz+Xl5WFgYICePXuif//+2L9/v1iuVVxcjMOHD2Pu3LmwsLBosI8fgdBSycnJwc6dO7Fo0SKMGjUKOjo6uHPnjqTDEjmvXr2CkZERNDQ0mNfc3d3x6NEjnhupbDYbt27d4sq8evDgATgcDrS0tPDw4cNGiZvQMqmoqMDevXuxePFiDB48mOs9FRUV5r9ZLBa6d+9OxHMJQIvNTW0+RlEU7ty5AzMzM8yZM4frPdo//1t0dHSanXhOb1C+fftWbNeg54Zqamqkkb0YoBNX3r9/L9lAviI1NbVGPC9fvkRubm6TirMu0tLSUF5eLlLx3MLCAhERESguLsbatWsBQOAqbSKeEwgEQjPm+PHjaN++Pf7++2+4u7vj/PnzmD59OmRlZWFkZNRsxPOUlBTcvXsXQNPfvRcXQUFBMDMzg6qqKgCgd+/ejGULjZOTEzIyMngudG7dugUOh4MxY8bAysoKhoaGtU4KEhIS0L9/f7Rr1w52dnZcQhKHw8HFixexaNEijB49WmS/39fo6+s3ucWaoBQWFmLw4MFci7Xw8HCYmppCRkYGADBt2jT4+/uLZUPo1KlTKCgowPLly2FsbEwyzwmEWtixYwc4HA5+/fVXsFgsjBgxArdv325xVU4vX75Ejx49uF5zd3dHSUkJzyap58+fx6hRo3D+/Hnmtbt376Jr166YMGECHjx40OL+RoTGw8vLC9nZ2XxZvdHiOfm8NS70/KUp9aBJSUnB4MGD4e7ujvz8fNy8eZPZ4CsoKEBCQkKNzHMA0NXVRVJSEvLy8jB+/HhMmzatsUMXCDabDV9fXwDiFc+jo6OhpKSEH374AV5eXuQ7JmKaYub5tm3b0L9/fy57uvv37wNouOd3Y0H/XUXleQ5Ui+eRkZHYvn07srOzMXXqVNy/fx9VVVV8n6NZi+dv375Fr1690KdPH0yYMAGVlZWSDolAIBAajdzcXNy6dQvr1q3D/fv38eLFC+Tk5DClsEZGRs1GUDt58iQUFBTQpk0bBAcHSzociRAYGMh4f9aGk5MTAMDV1RVdu3aFm5sbrl27BoqiGMuWjh07gsViwd3dnadAVFlZiUGDBkFGRgbe3t744Ycf8OjRI8YH79WrV0hPT8e4cePE84uiZYjn79+/x8OHD7lK/iIiIpimNAAwYsQIyMjI4ObNm0JfZ/ny5fjhhx+4mqklJSVh7969+OGHH6Cnp0fEcxGTkJBAhMMWAofDwblz57BgwQLGI3fEiBGIi4tjvC9bAsXFxXj37l0N8dzc3BzGxsY1NlLZbDa2bdsGANi9ezc4HA6qqqrg5eWF4cOHMxuDzWWhTWh6nDt3Dl26dGGs5+rCwcEB2dnZTUrE/R5oiuL5gQMHEBgYiFu3buHq1avIy8tjbGV4NQul0dHRQWhoKOzs7ODp6dnkK2fevXuHgoIC9OvXD8HBwWKbb0RFRcHY2BhDhw5FXFwcPn/+LJbrfI9QFIXo6GhYWloiOjoaRUVFkg4JQLVVT05ODtd34P79+5CXl0dkZKTAPt+SgBbPDQwMRHZOS0tLVFRUYMeOHVi+fDl+/vln5OXl4eXLl3yfo1mL59ra2nj48CH8/PxgbGzcoMUpgUAgNDcuX74MNpuNKVOmYODAgQgMDMTZs2dhaWkJADA2Nm4WmedsNhsnTpzApEmT0K1btya1e99YVFRU4P379/WK5+3bt8exY8cwbtw4ODg4gMPhYNy4cejZsyceP36M8ePHM2Pd3d2RmppaI6MlODgYkZGROHfuHLS1teHu7o7S0lKmfNTT0xNaWlqMUC8OWoJ4Tsf/+PFj5rVvxXM1NTX069dPaN/ztLQ0/P3337h27RqsrKxw4cIFbNy4EWZmZigrK8Nvv/0GoPq7npGR0WQm7s2d1atXY8iQIRgxYkSza0BG4CYkJASZmZkYNmwY81rfvn2hrKzcoqxb3rx5AzabzTQLpaEz7e/cucMlzly7dg2fP3/G3r178fHjR9y/fx+vXr1Cfn4+hg0bht69e0NBQQEPHjxo7F+F0ALIycnBnTt3MGPGDL7Gk6ahkqEpiueJiYmwt7eHu7s7nJycoKioyMxPP3z4AFlZWZiZmdU4TldXF5mZmdDQ0MDvv/+OrKwslJSUNHb4fOPj4wMlJSX8+OOPyMrKEpvlTHR0NExMTNC3b1/IyckR6xYRkp2djaKiIowbNw4URTGbO5KGnrdeuHABQPV6JTw8HNOmTUN5eXmT+r7XRkxMDLS1taGoqCiyc9Lrs3bt2mH9+vWwt7eHpqamQNYtzVo879ixI5SUlAAAsrKyTJk0gUAgfA+cOXMGQ4cOZfxNzczMMH36dOZ9IyMj5ObmIi8vT1IhIjw8HHfv3q1T1PPy8kJSUhIWLFgAOzu771I8Dw0NRUVFBRwcHOodO2/ePOzduxdHjx7F06dP8ejRI5SUlEBaWhpjxoxhxrm4uEBNTa3GpMDPzw/KyspwdHQEUP25MTY2xp07d8DhcHDt2jWMHTsWUlLimyLo6+sjMzOzSS9s6oMWz319fVFZWYmcnBxkZmYym1c0Y8aMgZ+fH7KzswW+xpkzZyAnJ4fw8HD06dMHU6dOxa5du7B8+XJERUXB3NwcAGBiYgIAzWKzrKlTVVWFR48eYdiwYXj37h2srKzw66+/4tmzZ6ioqEB2djZu3ryJjRs34sqVKxK9vxLq5+HDh1BWVubKyFZQUMDAgQMF9rpsTG7fvo2jR4/yPf7Vq1dQUVGpcf8B/reRSld1URSFbdu2YcCAAVi+fDmcnZ2xa9cu3L17FxoaGujatSsUFRXRu3dvntmbbDabuQcRCLy4dOkSKIrC5MmT+Rqvrq6OTp06EfG8kWmK4nlycjJ0dHQAAHJycujVqxdjOxUSEgJLS0vIycnVOG7atGn4559/8Pz5c/Tu3RtAtRDfVPHx8UGvXr2YRBVxWbfQmefKysro06cPI577+PjAzc2t2fnENyXois8RI0ZAVla2yaxfExMToampiVu3bqGwsBBeXl6QlpbG0qVLATQP65bY2FiRWrYAgKamJhwdHbF//36oqKhASkoKI0aMwK1bt/iv/KBaAAkJCVSPHj2oioqKGu+VlZVRBQUFzE9SUhIFgCooKJBApAQCgSAaPn78SAGgrl27VuuYwMBACgAVFBTUiJFx4+TkRAGgZGVlqb59+1Jv3rypMWb48OGUvb09RVEU5eHhQQGgcnJyGjtUiXLkyBFKRkaGKi0tFer4qqoqKiMjo8brU6ZMoTp37sz12rBhw6gBAwZwvbZixQpKU1OTevnyJQWA8vPzEyoOfnn27BkFgAoPDxfrdcTJzJkzqdatW1MAqGfPnlHPnz+nAFAfPnzgGpeenk6xWCzq1KlTAp2fzWZTBgYG1IwZMyiKoigOh0O9ePGCSkhIqDE2OzubAkBdvXpV6N+HUA39HfD396fy8/OpJUuWUO3ataMAUAoKChQACgDzmpSUFDVw4ECqsLBQ0qETeNC3b19q2LBhNV4/deoUxWKxeN43JU1RURHVoUMHSllZmSopKeHrmGHDhlEDBw7k+V5lZSWlpqZGubi4UK9fv6bu3LlDAaB8fX0piqKoGzduUAAoVVVVavbs2cxx+/bto+Tl5ani4mKu89Hzj86dOwv9zCK0bLp3706NGDFCoGPGjh1Lubq6ijyWiooKau/evdTLly9Ffu7mDIfDoRQUFChjY2NKTk6OYrPZkg6JoiiK6tSpE7V+/Xrm/3fs2EEpKytT5eXllKOjIzVt2rR6zxEXF0cBoB48eCDOUIWmvLycUlJSonbt2kVxOBxKQ0OD+u2330R+nbKyMorFYlEnTpygKOp/9/SNGzdSUlJSFADqr7/+Evl1vxf+++8/CgBVVFRE2dnZUXPmzJF0SFRBQQEFgNq5cycFgDpz5gw1fPhwqk+fPhSHw6GUlZWp3bt3SzrMenFwcKBmzpwp9uvcvXtXoPVos848B6obdk2bNg2nT5+GrKxsjfe3b9+ONm3aMD+6uroSiJJAIBBEy9mzZ9GuXTsMHz681jHGxsYAhM9G/fz5M968eSPUsUB1Y5/AwEBs2rQJ+/fvR0pKChYvXsy1u5uQkID79+9jwYIFAAA7OzsATavxSmMQFBQEW1tbKCgoCHW8tLQ04+f7Ne7u7ggJCWGypNlsNldWDs2IESOQlpaG9evXQ0NDo0bpv6jR19cHgGZt3RIfH49Bgwahbdu2ePz4MSIiIiAlJQVTU1OucRoaGnBxccH169cFOr+Pjw/i4uIwb948ANX2Cz179kSnTp1qjG3bti1UVVX58j339vYWW7Y01QI8wr28vNC2bVt0794dbdq0wd9//43MzEwEBwdj27Zt+O+//xAfH8/48x4+fBiPHz/G5cuXJR064Ru+fPmCFy9eYNCgQTXeGzBgACiKgr+/f6PFEx4ezpe10oEDB5CXl4fi4mK+Suw5HA78/f1r+J3TyMjIwMPDAzk5OXB0dMTkyZPRs2dP5jng7u4OMzMz5Ofnc80pBg0ahPLycjx79ozrfGFhYQCqs9fWrFlTb3yE74uIiAgEBQVxVULyQ/fu3fH27VtwOByRxZKQkABXV1f88ssvWLRoUYt4RomKnJwclJWVwcXFBRUVFVx9VSQFm81Gamoqk3kOAG5ubiguLkZAQABCQ0N5+p1/i7a2NqSkpJpURv3XvH79GiUlJejXrx9YLBbs7e3F0u8pNjYWFEUx68EhQ4agvLwcW7duxW+//YY+ffrA29tb5Nf9XoiOjoaGhgZatWqFLl26NIm1K23Z0rNnT/Tp0wcnT57EkydPMHToULBYLJibmzeLzPOYmBgYGRmJ/Tr9+vWDkpIS35WIzVo8p71+N27cWGOxSrNu3ToUFBQwP8S7kkAgNGcqKytx69YtnDlzBpMnT+ZZukijpqYGNTU1ocXz9evXY8CAAcjMzBTq+OfPn4PD4WDatGlYvHgx9u/fj9evX+PFixfMmC1btqBdu3ZMaa+JiQmUlJSaxASkMQkKCqrX71wYBg8eDFlZWcbb98OHDygsLESfPn24xvXs2RNqamrw8/PD2LFjIS0tLfJYvkZLSwsyMjLNXjw3MjJCv3794O3tjYiICBgaGkJeXr7G2DFjxuDRo0coLCzk+/zHjx+HhYVFrYLY17BYLL6ahmZnZ2PQoEFYvHgx33Hwy71796Crq4uysjKu13NyclBQUCDy64mKb/9mDx48wMCBA7m+A1JSUrCzs8Py5csxdepU6OnpAQA6deqEhQsXYuDAgTh16lSjxk2oHz8/P6ZB8rdoa2ujVatWiIyMbLR43Nzc8Ouvv9Y5JicnB7t378bixYvRuXNnXL16td7zfv78Gbm5uXVueg4ePBihoaG4dOkS7O3tsXPnTrBYLADVn++NGzeibdu26N+/P3OMhYUFdHV1a/ieh4WFQVNTE3v27MHBgwdblHc8oeFcvHgRqqqqGDFihEDH2draoqioSGRr9adPn6JLly5ITk7G9u3b8eHDB/j6+ork3C0B2q6Dvm80BaE5MzMTVVVVXOK5nZ0d2rRpg+PHj6OkpAS2trb1nkdWVhba2tpN4nfihY+PD1RVVdGlSxcAQNeuXfH27VuRb+7Q8xva2s/MzAwbNmzAgwcPsGXLFgwaNIixHiQITkxMDLMxYWdnh7CwMIn/Len7Z6dOnTB16lQ8f/4cpaWlGDp0KIDqJuKfPn2SZIj1UlBQgJycHJHbtvBCUVERAwcO5Hse06zF8ytXruDVq1fYunUrXF1deWb9yMvLQ0VFheuHQCAQmhsVFRX47bffoKWlhVGjRkFHRwfLly+v9zh+BLXaiI6ORn5+PlauXCnU8T4+PujUqRPz8BsyZAisra2xa9cuAMDHjx9x9uxZbNy4Ea1atQJQnUHdVHbvG4svX74gPDxcLOK5iooK+vbty+yoP3v2DPLy8jWuJSsry0ysxo0bJ/I4vkVaWhqdOnVqtuJ5VVUVkpKSoK+vjwEDBiAwMBABAQE8/YYBYPTo0aioqMD06dMxadIkDB06FOHh4bWePysrCzdu3MC8efMYgas++PmuP3r0CBRF4eLFiwgICODrvPwSEBCAlJQUrs0xABg1ahRGjRol0muJinfv3sHExIRp6JqZmYk3b95gyJAhAp1n9uzZ8Pf3bxbZPN8TDx8+hJ6eHiMcfA2dgdVYi8ji4mKkp6fj6tWrYLPZtY7btWsX2Gw21q9fjwkTJuDOnTsoLS2t89yBgYEAUG/PDGlpaUycOBG+vr41hPbJkycjIyMDrVu3Zl5jsVjo27cvXr58yTU2LCwM1tbWWLJkCUaMGIFZs2YhPz+/zmsTvh8eP36MAQMG8NxIrgsrKysA1XNDUfD777/D2NgY79+/x5o1a2BtbY0DBw6I5NwtgaYontMxfS2eS0tLc+k8/GSeA4Cenp7Ef6dNmzZh5MiRNXre+Pj4oG/fvswmfdeuXZGRkYHU1FSRXj8qKgqKiorQ1NQEUH1P//333zFw4EAAQP/+/fHlyxe8fv1apNf9XoiOjmayo+3s7FBRUSHxeWBiYiKkpKSgqamJcePGQU5ODrq6usz91cLCAhEREU26Cic2NhYAGiXzHKiuvnv16hWysrLqHdusxfNJkyYhJycHvr6+8PX1xcSJEyUdEoFA+A4JDw/H/PnzxbbbnJycDFdXV+zatQvTpk1DSEgI3r59CwMDg3qPNTIyEirznKIoxMbGokuXLvjvv/+YZj2C4OPjw5QkAtWTtpUrV+Lu3bv4+PEj1q9fD319fcyfP5/ruO+taaiHhwc4HA5fzUKFwd3dHb6+vsjPz4efnx+cnJx42sPMnTsX/fv3R69evcQSx7fo6+s3W/E8JSUFbDYbBgYGGDBgANhsNvz9/ZlO7t+ip6eHyZMnIzo6GhkZGfD398c///xT6/nPnTsHFouFadOm8R2TsbFxvQ38vLy8YGNjgy5dumDZsmUinTzTk92vS4AzMzPx8uVL+Pr6ws/PT2TXEhX0Imf58uUoKSnBo0ePAIBnpnJduLu7o23btjh9+rTIYyQIz6NHjzBo0KBaN6DMzMwaLfOcFnHS09Px/PlznmNSU1Nx8OBBLF++HOrq6hg/fjxf1i0hISEwNDRscIKQjIxMjdccHBwQEhLCVVESGhoKa2trsFgsHD58GDk5OTWy0wnfJ1++fEFQUBD69u0r8LG6urpo1aqVSMTzqqoqBAYGYvz48VBTUwOLxcKyZctw584doRNKWhrJycmQkZGBqakpVFRUmsR8jJd4DlRX7VRWVqJjx448LQp5IYx4zmazRboR6O3tjdu3b6Nbt254//49UlNTsXbtWrx69Qr9+vVjxtnb2wMQfdPQ6OhoGBsb1/oMtLe3h5qaGh4/fizS634v0H9fAExFhKTXr4mJidDW1oaMjAxUVVXx008/YfHixcxnwMLCAnl5eUJXlTcGtG7RmOL5/fv30aZNm3rHNmvxnEAgECRNamoqBg8ejOPHj4tlt/nVq1ewt7dHUlISnj9/jn379vFVskgjrHienZ2NoqIi/Prrr3BxccGiRYtQXl4u0PEhISFck0OgetNTW1sbM2fOxO3bt/HHH3/UsJ6xs7PDp0+fUFxcLHDczY2///4bCxYswKxZs2BtbS2Wa7i7u6OqqgpeXl549uxZDb9zGldXV3h7e/MUUMRBcxbP4+LiAFT/DgYGBkx1RW3iOQBcuHABYWFh8PHxwbRp03D9+nWe3q5sNhuHDh3C+PHj0b59e75jMjExQWpqaq3fGw6Hg4cPH2LYsGGMhdLFixf5Pn990PcZWoAGwIh+pqam2Lp1K/N6dnY25s+fL/IsK0GJi4uDkpISMjMzsX37dnh5ecHe3h4aGhoCnUdeXh5Tp07FuXPnJF6yS6gmISEBkZGRTIYdLxpTPE9MTAQAtG7dGleuXOE5Zu3atVBSUmKqvUxMTPiybvnw4QPf2ZiC4uDggMrKSoSEhAAASkpKEBMTwzyvdHV10aVLF9y/f18s1yc0L168eIGqqiqhxHMWiwVLS0uRiOehoaEoKSmBs7Mz89rkyZPRrl07/P333w0+f0sgKSkJWlpakJaWhr6+vsSztIFq8VxOTq7G3IdeSwiy/hFGPD98+DBsbGxElliQkpKCadOmoX379nB2doaBgQGOHDmCZcuWYe7cucw4XV1dtG/fXuTieVRUFM/KKxppaWnGepAgGAUFBcjOzmbEcxUVFabSRZIkJSVx9Xjcs2cPV28Sep0i6Qz5uoiJiYGKigratWvXKNdr164dBg8eXKcVLg0RzwkEAkFIioqKMHToUFRUVACo9h0VNStWrECnTp0QHBwMR0dHgY83NjZGSkpKvWXf30JnkRobG+Po0aOIjY3FvHnz8OXLF76Op30lv11AycnJYfny5Xjz5g3s7Ox4VgzZ29uDoih8+PBBoJibExRFYfPmzVi6dCl++eUXnDhxgm97DkHR1dWFnZ0ddu3ahZycnFrF88amOYvndNx0884BAwYAQK22Ld8ybtw4pKSkMHYLX3Pz5k3Ex8fzZcv0NfQEnv7ufktwcDCysrIwePBguLq6YvTo0Vi7di1KSkoEuk5txMbGwszMDO/fv2cyWu7evQsHBwds374dT548wcuXL1FaWoqRI0fi+PHjAjdRFTVxcXGwsLDAmjVrsGvXLty7d09gyxaa2bNnIyMjg68GjwTx8/DhQ0hJScHNza3WMWZmZsjJyUFOTo7Y40lISICUlBTmzJkDT09PVFVVcb3/9OlT/Pfff9i1axdX9tP48ePrtG6hKAohISECiUqCYGtrCzk5OeZeRZd7f73ZO3ToUHh5edVpR0P4Pnj69Ck6duwIMzMzoY63srKq09KMX/z9/SEjI4Nu3boxrykqKmLhwoU4depUk+7DwYu4uDiR36eSk5OZDO+mYHEC/C+mb+fDlpaW0NHREcjeUE9PDykpKQJtaPv6+iI5ORm5ubl8H1MbHA4HaWlpcHR0xPPnz7Fq1Sr88ccfSEpKwu7du7kqQFksFrp27SrypqFfZ0bXxoABA/D69etm952QNLyyo5tC5XRiYiKzNuGFkZERpKWlm7R4/vnz5zorJiQJEc8JBAJBCNhsNsaPH4+4uDh4e3tDTU2tXssEQSkqKsKbN28wf/58dOjQQahz0A/12gS12qDHGxoawtraGsePH8e1a9dgY2PDV8MlHx8fmJqa1ii9BIB58+bBzc0NBw8ehJRUzceQlZUVZGVlJT4BESfHjx/Hli1bsH37duzevZvn30GUuLu74/3795CRkeHKxJIk+vr6yMzMFJl425jEx8ejY8eOUFRUBACMHTsWbdu2rTPz/Gt69uwJdXV1eHp61nhv//796NWrF7p27SpQTPQCqbaS9AcPHqB169ZMA9Ldu3cjOzsbc+bMaXCWVVFREbKyshgLpsePH6OiooLJdB81ahSsra2xZcsWzJgxA+/evYOmpqbEv+NxcXEwMDDAmjVroKmpiYKCAgwePFioc3Xu3Bn29vakcWgT4d69e3BycoKqqmqtY2iBrzGyz+lS6ilTpiArK4vrOVpeXo6FCxfCxcUFs2bN4jqOtm6pzRYlPT0dWVlZYss8l5eXR5cuXRAUFASg2u8c4N4oHDp0KLKzs/HmzRuxxEBoPvj6+qJv375Cix60eM6rKksQ/P390aVLF+YZTfPjjz+irKxMpFVX4obD4aB3795wdHRERkaGyM7blMXzb2GxWHj9+jXWr1/P97n09PTA4XCQkpLC9zH0JqEorH1ycnJQWVkJLS0tKCoq4vfff8eqVatqtYawt7cXaeZ5eXk5EhMT68w8B6p9z9lsdpO01mvK0OL515sT9vb2ePPmDfLy8iQVVo3M82+Rk5ODsbFxk24aSlvDNUWIeE4gEAhC8OjRIzx8+BCXLl2CjY0NTExMRJ55/vLlS7DZbPTp00foc9DiuaDWLbGxsWjfvj3joTpz5kx8+PABurq66Nu3L9NgrzZov3NeqKio4PHjx3BxceH5vpycHKysrCQurImLoKAg/PTTT1i0aBHWrl3bKDvr7u7uAIBu3bpBWVlZ7NfjB319fQBoltnn8fHxXD0HBgwYgOzsbKbxbX1IS0tjzJgxuHbtGpdwHRQUhJcvXwqcdQ4AHTp0QOvWrREdHQ0Oh4O5c+di2LBhTGWMl5cX+vfvD1lZWQDV94azZ8/i0qVL2LFjh8DX+xr6/tKjRw/Y2tri0aNHePHiBYqKijB8+HBISUlhw4YN8Pb2hqenJy5cuIDBgwdL/DtOi+dKSkr4559/0KdPHzg5OQl9vqlTp+L+/ftc/tCExqewsBAPHz7E2LFj6xxHiwqNIZ4nJCRAT08PXbt2haGhIZd1y86dOxEbG4t//vmnxkaqqakpunTpgpMnT/I8L12hJS7xHAC6d+/OiEphYWEwMDDgutc5OjpCTU2NWLd85xQWFuLt27dCWbbQWFpaori4mLE5EhZ/f3+eiQKamppwcXHB3bt3G3T+xiQgIADJycnIyMjA4MGDRZYhzEs8l3QTwdrEcwDQ0tKCkpIS3+fS09MDwP8cMyUlhRHahbG7/Bbalk5LS4uv8Z07d0ZaWhpfFQYUReH69et12mnGxcWBw+HUm3luZGQEAwODZm/d0tif3ejoaKiqqqJt27bMazNnzgRFUdi9e3ejxkLD4XCQlJRUZ+Y58L+moU0RDoeDjx8/wsbGRtKh8ISI5wQCgSAEJ06cQOfOnZksRVNTU5GL535+fujYsSNMTU2FPoempiYUFRUFzqKIjY1lfJxpjIyM4OvriwEDBmDLli21TlRSUlIQGRlZq3jOD3Z2dozHaksiOzsbY8eOhZ2dHfbv399o17Wzs4OJiYnQWbXiwNraGgoKCvVuxDRF4uPjGfGfRtBNkLFjxyI+Pp6rTPfAgQMwNDRkNjsEgcViwdjYGNHR0fjtt99w6tQpPHr0CMuXL0deXh4CAgJq/PuPHz8eGzduxK+//orbt28LfE0aulLFyMgIAwcOhLe3N+7cuQMtLS106dKF+X1Hjx6No0ePYvTo0bC3t0dYWBgj7jc2VVVVSExMZO5zgwcPhq+vb4M8/3v06IHKyso6LacKCwslLlC0dO7evYvy8nKMGzeuznFKSkrQ09NrVPGcxWJhwoQJuHbtGnx8fLB27Vps27YNK1euhJWVFc9jV65ciXv37vHM7A4JCUGrVq1q3I9EiYODAyIjI5Gfn4+wsLAaGWEyMjIYPHgwEc+/c54/fw42m90g8Zz+DjTE9zwzMxMxMTG1VtkNGzYMPj4+AtsZSgpPT09oamrixYsXiI+Px8iRIxu8QUtRFJKTk5kMVT09PXz58kWiGbNA3eK5oNACIr8Z9XR1jYKCgkgyzwUVz83NzQHwt5kbEBCAsWPH4sKFC7WOoauh68s8B6qzz5tz09CbN2/C1NS0UZtgxsTE1NiY6NixI5YvX44DBw4gLS2t0WKhyczMREVFRZ2Z50DTFs/j4uJQUlJCxHMCgUBoKWRkZOD27duYO3cuI5iZmpqK3LbF19cXffr0aVBmMovFgpGRUQ0PyYKCAsydO7fW7B5e4jkASElJYf369QgNDa3V2/fp06cAqhtQCouRkVGzzEiuj1mzZqG0tBRXr16FvLx8o12XxWLh3bt3+PXXXxvtmvWhpqaG2bNn4+DBg83OuoWXeC4offr0Qbt27ZjNg5iYGFy5cgVLly6FtLS0UOc0NjbGlStXGDugw4cP48iRI5g1axY4HA7PzZNNmzZh1KhRmDp1KgoLC4W6bkxMDFq1aoX27dtj4MCBSE1NxalTpzBs2DDm/iUtLY3r169jwYIFAKo3dCorK0XibysMSUlJYLPZXBUEDaVz586QkZGp1b6iqqoKRkZGjbpx9j1y9epVODg41Jt9BVRbtzRG+fLXPqQTJkxAbm4u3NzccObMGUyfPh0bNmyo9dgffvgBZmZm2Lx5c433aL9zcVp/OTg4AADevHnDUzwHqq1b3rx5g/T0dLHFQWjaPH36FDo6OlwewIKiq6uLVq1aNei5EBAQAACMRdm3DB06FKWlpXxZEEoaiqLg6emJMWPGoHPnzrh79y5evHiBc+fONei8+fn5KCkp4co8B/gXmsUBLeiLSjxXUlJChw4d+P6dAgMDoaWlBTs7O5GJ5ywWCx07duRrvCCVUJcvXwZQ3dujNqKjo6GoqAhNTc16zzdixAh8+vQJf/31F1+xNiWKi4vx008/ITo6ulHjj46O5nmvW7VqFWPTIw4oisLZs2d5bjAmJSUBAF+Z58nJySgqKhJ5fJWVlcjPzxf6+NDQUAAg4jmBQJAscXFxuHr1Kg4fPow///yTLHAawLlz5yAtLY0pU6Ywr5mYmCArK0tkWRtfvnzBmzdvGiRA04waNQoXLlzgEsr/+OMPnDx5Ert27eJ5TExMDE/xHKgW/RwcHLBz506e7z9//hxWVlZC+7QD1Q/+rKysZieq1kVRURHu3buHP/74o96sAHGgrKzcoKxacfDLL78gNzcXp0+flnQofFNZWYmkpKQGi+eysrIYNWoULl26hDlz5sDS0hLt2rWr4XksCCYmJsjPz8ePP/6IFStWYP78+ViwYAFu3boFS0tLnhNqKSkp7Nq1C0VFRXj+/LlQ142NjYWRkRFYLBZcXFwgLy+PwsJCDB8+vNZjOnfuzGzqSIK4uDgAEKl4rqCgABsbGyaD7VtCQ0ORnZ2NvXv3SizjvqVTVFQELy8vjB8/nq/xZmZmYs88r6qqQkpKCiNQ2dnZ4datWwgODkZqaiqOHTtWpx2BtLQ0Nm7ciHv37tVoMvzhwwexNQulMTU1hYqKCh49eoTk5GSe4vmgQYPAYrFq9WYntHyePn0KV1fXBid8WFpaNijz3N/fH5qamrUKSBYWFtDX128WlRJBQUFISkpiqmh69uwJCwuLBj83aZGtKYnn2dnZqKioEJl4Dgjm5R4YGAgHBwcYGxuLxLYlJSUF6urqjFVefSgpKaFTp071Po84HA6uXr0KJSUleHt7czVqLi0txYkTJ7Bs2TIcPXoURkZGfG2sDh8+HKtWrcKyZctw4sQJvuJtKuzcuROZmZkYP348Dh8+LHQSiKDwyjwHgDZt2mDdunU4fvy4yJPqgOpN7JkzZ8LW1hZz587l8vSn1/n1rTHpKgdxzL/379+Pzp07C923IjQ0FG3btuVr00cSEPGcQPhOGDlyJCZMmIDly5dj06ZN2Ldvn6RDapZQFIUTJ05g7NixUFNTY16nrVVE9aB89eoVqqqqGuR3TrN69Wqoqqpi3bp1AMDszuvr6+Ps2bM1Jhrl5eVITk6uVTxnsVhYs2YNnj17xmT4fE1QUBAcHR0bFDO96KEn+C2BkJAQUBTVZBp2NgUMDQ0xceJE7NmzB1VVVZIOhy+Sk5PB4XBEYpMwYcIExMXF4cGDB/j9998RERHB9BkQhokTJ2L9+vX466+/GAHj4MGDGDNmDBYtWlTrcUZGRtDV1cWTJ0+Euu7Xm22Kioro3bs35OXl4ebmVusxrVq1gomJiUTFcxaLxYgGoqJ79+61Zp4HBARASkoKqampuHr1qkivS6iGX8sWGjMzM8TExIj1/pOamgo2m80l5rm7u8POzo7vjPGJEyfCwsICW7ZsYV4rLy/Hp0+fxOp3DlRvsHXv3h3//fcfAN4ZYR06dICjo2O9gmR6ejoqKyvFEidBcuTl5eHdu3cNsmyhsbKyarB47uzsXKuIz2KxMHToUNy7d6/JW2hdvXoVHTp0QK9evZjXrK2tmca9NMnJydiwYQOXkFoXycnJAP4nnqurq0NBQUGiFZ/fxiQK+BXPORwOgoKCGPFcVJnn/Fq20Jibm9dbCfXy5UukpqZi8+bNyMvL49qsX7duHRYsWAAvLy9YW1vznf3MYrGwc+dOLF68GPPnz4eHh4dAcQtDYmJig79/8fHx2L17N3755RccOHAApaWl+Oeff0QUYU3OnTuHn3/+GfPnz0dycnKtVTaLFy+GpqYmtm7dKvIYTp8+DW1tbezfvx+3bt2CmZkZkwySlJQERUVFtGvXrs5zWFtbw9jYGCNHjsSNGzdEGt+7d++QmJgo9Nw+NDQUNjY2jdIPTBiIeE4gfCfEx8dj27ZtKC8vx4IFC3Dx4sUGd7P/Hnnx4gU+f/6MuXPncr1Ol9uJSjz39fWFuro6szvcEFq3bo0//vgDHh4eeP36NVatWoWOHTvi8ePHKCsrw5kzZ7jG002DahPPgerNGFNT0xrZ56Wlpfjw4QO6d+/eoJhpkaGhTaOaEsHBwZCXl4eFhYWkQ2lSrF69GvHx8VwN9Joy9OJSFBnLAwYMwOvXrxEXF4c1a9ZwbcgJg62tLf7880+uCgM5OTlcu3YNS5YsqfU4FosFNzc3+Pj4CHVdOvOcZvXq1dixY0e9zWnt7OzEKp4fOXIEx44d4/leXFwctLS0RG6f1K1bN4SHh6O4uLjGe69fv4adnR0GDRqEffv2NXnhpjni6emJ7t278725ZWZmhsrKSmbxKQ5o8aYhGzV09vn9+/eZTevw8HBUVVWJXTwHqq1b0tPTISMjAzMzM55jhgwZgkePHtX6uf7y5QvMzc1x6tQpcYbabPj48SMsLS2btdcwzcuXL0FRlMjE8/DwcKHWKJWVlQgKCqo3SWHYsGGIi4trFMsmYfnasuVrKzcbGxuEhYVxfc8uXryIP/74o04P7K9JTk6GlJQUYylCbyRLMvNckuL558+fUVhYCAcHBxgZGSEzM7PBlhbCiOf8VEJduXIF2traWLZsGVRVVRnrltLSUpw9exarVq1CZGQkrl+/jtGjR/N9bRaLhYMHD2LKlCmYN28esrKyBIpdEOgErYbe+1atWoW2bdti/fr10NLSwowZM7B//36xNG3ncDhYsGABrl27hvfv36N///619vZSVFTEzJkz8eDBA5HO80pLS+Hh4YHp06dj6dKl+Pz5M6SkpJiN7cTEROjq6tYrPCsqKiIoKAj9+vXDmDFjsHz5cpHFSfd/E7YKLTQ0lGd1W1OBiOcEwndAUVERioqKoK+vDxaLhSlTpiA5ORnPnj2TdGjNjhMnTsDIyKhGRnjr1q3RsWNHkTUN9fPza3D569fMnDkTnTt3xsSJE3Hz5k3s2rULRkZGGDt2LA4dOsS1SPm6+V9tSEtLY9WqVbh58yZXhsb79+/BZrMZj1Rh0dHRAYvFanHiuY2NDd8lnN8LXbp0waBBg7Bz585msaFHi+f8+CnXB4vFgoODA+Tk5Bp8robSr18/hISEIDs7W6DjqqqqkJCQwHW/6N+/P5YtW1bvsfb29nj//r1Q/+5VVVXYuXNnrSW6z58/x5IlS/D333/zfD8uLk6kli003bt3B4fD4bkpEBAQACcnJ6xYsQLBwcHkGSxivnz5gvv37/Nt2QKAEYLFad1CP8caes8YP348bG1t8fPPP4PD4TCNaRtjoUk/001NTWu9X9nb26OgoICrjPxrbt68iYKCApE3V2+OUBSFpUuXIiIiAqNHj661WqW5EBMTAwUFBZFUZFlZWaGkpESo+d+HDx9QUlJSr3jet29fKCgoNGnrluDgYMTHx9eoorG2tkZ+fj7TkBIA8/nZvHkzX5ZgycnJ0NTU5NpobwriuYyMDNTV1UV2Tj09PSQmJtY7x6DtsLp168ZYcTTUukVY8byuSig2mw1PT09MmDABsrKy6N+/PyOeX7lyBfn5+Zg3b57QMUtJSeHAgQNgsVh8VahTFMVsnAmCv78/2Gw2goODhQ0V3t7e8PT0xM6dO9GqVSsA1WJ6ZmZmjaQwUZCeno6ysjIcPXoUgYGB8Pb2rnND3NHREVlZWSL9TtHPUNreUU1NDaNHj4aHhwcoikJSUhLf8wxVVVV4enrizz//xIEDB0SykUhRFJNEWFtftLooKytDVFRUk/U7B1qAeL5y5Ur06tULU6ZMIf6RhBZFbm6uyIRDeoKlra0NAHB2doaBgQHfGQqEaiIjI3Hp0iXMmzePZ6m1qampSBaFxcXFCAwMFIllC420tDT27duHhIQEODs7Y+LEiQCAJUuWICoqCo8ePWLGxsbGQlZWlvm81MbkyZMhLy+PO3fuMK8FBgZCXl6+wQ8+WVlZaGlptTjx3N7eXtJhNEl+++03fPjwAf/++6+kQ6mX+Ph4sWQsSxo6Y1DQJmpJSUmoqqqqs1KlNuzs7PDlyxehSqTfvXuHtWvX8izRLSgowLRp0yAvL49Pnz7xnB+KSzy3srKCgoJCDd/z3NxcREZGwsnJCQMGDICVlRWxTxMxXl5eKCsr49uyBaieFykrK4tVPE9ISEDbtm2ZBb6wSEtL4/DhwwgMDMSJEycQEhICIyMjtG7dWkSR1g5dTVaXUE9XytW2CKfnnC3Jjk1Ybt68CR8fH1y5cgVWVlYYOnSoWPxxG4u0tDRoamqKJOHD0tISAISybgkICICsrCy6du1a5zhFRUX069cP9+7dEyrGxsDT0xPt2rWrsRagv4NfW7cEBQVh0KBBiI+Px8mTJ+s9d3Jycg1f5KYgnmtpaQndMJ0Xenp6qKioQEZGRp3jAgMDYW5ujjZt2jDieUOtW4S1bamrEur58+dIT0/HhAkTAFT3mnj9+jXy8vLw77//on///g1q2AsA7dq1w+LFi3Ho0CHk5ubWOTYgIAAuLi4C25PQmxURERFCxVhcXIwFCxagb9++NfqPjRs3DkuXLoW9vT1mzZoFPz8/oa7xLYL2yaE3nF+/fi2S6wPVli0uLi5MtTtQvRaPjIxk7FIE6anFYrEwc+ZMAA3/vANARkYGioqKMGTIEPj7+wvcB+7Tp09gs9lEPBcX7969Q3p6Op4/fw5LS0t4enpKOiQCQWT8+OOPGDBggEjKaOgsIPohzmKxMHnyZHh6eqK8vLzB5/8e4HA4mDNnDjp16oSlS5fyHGNqaiqSxY+/vz+qqqpE0iz0a/r164dTp07hv//+YxY4PXv2RJcuXXDo0CFmXExMDPT19eudwCopKcHV1ZVrdzkoKAh2dnYiya7u1KlTixHPy8rKEB4eTsTzWnBxccH8+fOxevVqiS7e+CE+Pl4k2XVNDR0dHZiamgps3UJnZwmzYLOzswMgXNMiukLmn3/+qZFVtnjxYuTl5eHEiROoqqriKeaJSzyXlZVFly5damSS0otFJycnsFgsLF++HHfu3BHJgoVQTUREBDQ0NAT6d5WSkoKpqanYxXNReeu7uLhg5syZWLt2LXx9fRvFsgWo3mQwNzdHz549ax2jr68POTk5nn/LzMxMeHt7Q0lJibFn+F4pKyvDL7/8gqFDh2L8+PG4d+8e2rVrhyFDhjSb3h/fIoxQWBu6urpo3bq1UOJ5YGAgOnfuDAUFhXrHDhs2DM+fP8fs2bPRq1cvmJqawsnJCe7u7ti6datEvflpy5ZRo0bVmE/r6+tDWVmZEc+zs7MRFxeHGTNmYMqUKdi6dStKS0trnHP48OFM1UpycnINexQ9PT3Ex8dLzE6MV0wNhd9GqK9fv2Y2CNu2bYs2bdo06NlcVVWFjIyMepOQvoWuhKptA/Ly5cvo1KkT01dq0KBB4HA42L9/P/z9/bFgwQKhY/6aX375BWw2GwcOHKhzHD0P27RpE65du8b3+enkgvDwcKHi27JlC1JTU/Hvv//W2LA7duwY9uzZAzs7Ozx58gQ///yzUNf4Fvp35Xd+oa6uDn19/RpNvq9cuSJUVUNiYiIeP36M2bNnc73u5uaGDh06wMPDA4mJiQJXuGlqakJRUVEkc1FaA1m6dCk4HA68vb0FOj40NBRA41TTCUuzFs/9/f0xcOBAAMDgwYPx6tUrCUdEIIiGkpIS3LlzB58/fxZJGQ2def71xHbKlCnIz89v0iWLX7Nq1SpcunRJYtc/evQoXr58iRMnTkBRUZHnGBMTE3z+/FmoiWdaWhpmz56Nbt26YeTIkVBXVxeLN/asWbO4RC4Wi4WffvoJ9+/fZz5rsbGxfGeRDh48GH5+foy/L92tXhS0JPE8NDQUbDabiOd1sGvXLrRp0wYLFixo0l7Q4hJdmwL9+vUTuGloTEwMpKWlhbKkaN++PXR0dIQWz6WkpBAXF8eULQPV3q8XLlzAkSNHMHz4cABg7C1oSkpKkJ6eLlS2PD907969Rub569ev0a5dO+b+O3nyZCgrK0v0udbSoLNfBcXMzEys3sfCLGjrYteuXQCqN51sbW1Fdt76CAkJqbN3goyMDExMTHj+La9cuQIWi4Xp06d/9+L5vn37kJSUxFSetGvXDn///TdiYmKa7WaasN89XrBYLFhaWgolrAUFBfHdc2fUqFEwNDTEx48f0alTJ4wYMQKWlpbgcDjYunUr+vbty2WN0ph8+PAB0dHRPKtopKSkYGVlxQhN9EZtt27dsHnzZmRlZeHw4cNcxxQWFuLevXs4ePAgFixYgMTExBpCdffu3ZGbmysxCyFxiOd0okNd4nlZWRlCQkKYtQuLxYKxsXGDbFsyMjLA4XAE3lCqqxKqqqoK165dw4QJExjBWFdXF5aWlti2bRs0NDQwcuRIoWP+GnV1dSxcuBAHDx5EQUFBreOSkpKgqqqKH374AdOnT+drLsdms/HmzRtoaGjg06dPAs/33717h3379mHTpk1cGdg0bdq0wdKlS3Hy5En88ccfCAkJEYl/e1xcHNTV1evt5fM1jo6OXJnniYmJmDhxIpycnPjKSF+7di0sLCywatUq/P7771BSUqphSycjI4OJEyfCw8MDGRkZAs81WCwWDA0NG2xTBFSL5ywWC66urrCyshLYuiU0NBR6enpQUVFpcCziQiTieX5+Pi5fvox9+/Zh//79uHTpksBp+sJel/7jtmnThmdpSXl5OQoLC7l+CISmzsOHD1FSUgJZWVkuSwxhSU1NhaqqKpSUlJjXLCwsYGdn12ysWzw8PITu/t1QIS4hIQFr167FwoUL67RSMTU1RVFRUb3lgbzYtGkTbty4gS5dumDr1q14+PBho3WanjJlCjQ1NbFjxw4AgonnQ4YMQUVFBZ4+fYq8vDxERUU1uFkoTadOnZp8FjK/BAcHQ1paukmXokmaNm3a4N9//8XDhw/F4lcoKlpq5jlQLZ5//vxZIHErNjYWnTp1ErraxN7eXmjx3M7ODnZ2djhy5AiA6nv1okWLMGnSJEyZMgVt2rSBvr5+DfFclE1fedGtWzdERUUhPz+feS0gIACOjo7MfV1RURHDhw8nVZMipCHieUREBC5cuIC5c+di1apVIo1LlJnnANChQwds374dQHXPiMZCTk6Op2Xd15ibm/MUzy9cuIAhQ4agc+fOSE1NBZvNFleYTZoPHz7gzz//xNKlS7kar9L/jt/eq5oLosw8B/7XNFQQCgsL8enTJ77noFpaWoiMjMTr169x4cIF7N27F6dOncLdu3fh5+eH+Ph42Nvbi9R2gV88PT2hpqYGNzc3nu9bW1szmedv3ryBqqoqjI2NYWRkhBkzZuCvv/7iWvu8f/8eQHUz75MnTyIyMrKGUO3m5gZdXV2cOHFCPL9UPYhDPFdVVYWKikqda4mAgABUVlZyJf4YGxs3aCOLV9IaP7BYrFqbhvr6+iIrK4ux3aQZNGgQ2Gw2Zs+eLdKeSqtWrUJZWVmtfWOAajFYT08PJ0+ehIWFBYYNG1ZvL5eIiAgUFxdjypQpKCoqqrVHRm0sWLAAlpaWWLlyZb1j6e/P06dPBboGLwRZG9M4ODggODiYqWK5desWZGVlYWxsjL59++LOnTsoKytDUVERTyeAK1euAADOnTuHkydPYsKECTzt3yZPnoy0tDRQFCWQbQuNkZFRDfHcy8sLp0+fFug8nz9/RqdOnaCgoIAhQ4YI3DA1NDS0ya+TGyyenzx5Eg4ODggICACHwwGbzWYaIvHjudUQ1NTUGDE8Pz8fbdu2rTFm+/btaNOmDfMjzAeKQGhsrl27BhsbGwwZMgS3b99u8PlSUlJ4PsCnTJmCu3fvci3wmyJsNhvp6elCCSzz58/HDz/8UOv7FRUVOH/+fJ3NZFatWgVVVVXs3LmzzmuZmpoCgMDWLRkZGTh37hzWrFmDEydOYMWKFY26IJaXl8eqVatw/vx5xMXFCTRBMDU1hYGBAby8vJhsFVFmniclJTWLJpLf8uXLF65NlODgYFhaWvJVSvw9M2zYMEyfPh1z5szBqFGj8OLFiyaVhc5ms5GSktJi5xK0VZQgC42YmJgGZXDb2dnh3bt3Av87x8bGwsjICD/++CPu3buHmJgYTJ8+HW3atGHEdACwsbGpIUgJ6l0pKLR48/btWwDVtl+vX7+Gk5MT17jx48cjJCSkWXsdNyXS09OFEs+trKyQnZ2NqVOn4s6dO9i3bx9KSkpEEhNFUSLPPAeAefPm4erVqxg6dKhIz9tQeInnMTExCAgIwJQpU6CjowM2my1UkkFzJysrC+7u7jA1NcXvv//O9V779u2hqanZbMVzUWaeAxAq8/ft27egKEokCRzOzs4IDg6Guro6Nm3a1ODzCQJFUbh69SpGjhxZqxhqbW2N8PBwsNlsBAUFoVu3bszG7PDhw5GcnMzVWyA4OBgKCgr4888/ce7cOUhJSdXI2pWWlsbs2bPh4eGBL1++iO8X5AFFUWIRz4Fq65bavLVLS0uxZMkSWFtbMzZyAG8xURCEFc+B2iuhrly5AkNDwxp+/mPGjIGysnKDGoXyQlNTE+PHj8eNGzdqHZOUlARdXV0oKSnhzp07MDY2hqurK9avX19rL8LAwECwWCxMmzYNgGC+57m5uQgKCsKaNWv42ijQ1taGmZmZwBWVvBCm6tTR0RGlpaXMRteNGzfg5uYGHx8fDBo0CO7u7lBUVISKigrU1dW59JiMjAzExcUxFjVv3rzB/v37eV7HycmJSeoRZq7B6/P+119/YcOGDQKdJyoqirmvDBkyBOnp6QgJCeEaU1FRgVmzZvF0DAkLC2v54vmuXbsQHByM/fv3Y+XKlVi5ciUOHDiAN2/e1Cs0NRQnJyemyd3Dhw95+vCtW7cOBQUFzA9pUkNo6pSXl+POnTsYN24c3N3d4e/vj+zs7AadMzU1lafv2rhx41BeXi6SHVlxkpmZyXj0Cfq3CAwMxJUrV/D8+XOe71+/fh3Tpk2rtUleeXk57t27h59++qneMiJDQ0OwWCyBm4YeOnQIMjIyIvOqE4Z58+ahbdu2WLVqFb58+cK3fzGLxcKQIUPg5eWFwMBArmY7DaVTp06oqKhAZmamSM7XmGzYsIFphghUlxkSyxb+OH78OI4fP47IyEj06tUL69atk3RIDNnZ2eBwOOjYsaOkQxELHTp0gK2trUC+57SILSx2dnbIyspCWlqaQMfRov3kyZOhoqKCQYMG4fnz5zh37hxUVVWZcba2tkx5O01cXBzTlFgcmJqaolWrVsyGYlRUFPLy8mqI54MHD4aSkhKuXr0qlji+N9LS0oT6bo4aNQre3t7IyMjA/fv3weFwanxmhCU3NxfFxcUizTwHqq0bxo0bJ9JMQ1Fgbm6O5ORkFBUVMa95eHigVatWGDFiBCOOfW/WLRUVFRg7dixKS0tx69YtnqX/vO5VzYHS0lLk5eWJ9H5qYGCA3NzcOi0jviUoKAjKysoiszxUV1fHgAEDGK/jxiI8PByRkZF1Nj62trZGaWkp4uLialjVODs7A6i2t6UJDg6Gra0tZGRkMHXqVKSkpDC2Zl8za9YsFBcXMxmvgsJms7m++/ySn5+PkpISsYjn48aNw5kzZ3Dq1Kka761duxbR0dHw8PDgupcaGxsjKSmJp3c8P6SmpkJGRgYdOnQQ+Fhzc/MameeVlZU1LFtoXFxckJeXJ5ZkgJ49e+LDhw+1/h2+3hjW1NTE06dP8eeff2L37t0YPnw4z6SIoKAgWFpawsbGBvLy8gJVmNCJBnRTYX5wc3OrIZ4Lk5QjTOa5nZ0dpKWlERgYiJycHDx79gyjR4+GoqIiPD094enpiXPnzuHff/9FYWEhV9Z+QEAAgGq9U1paGl27dkWbNm14XofuZcdisYT6DhkZGSE+Pp6r58aHDx+QkpIi0LP6a/HcxcUFysrKNaxbzp8/jzNnzmDMmDFctlh5eXlITk5u0n7ngAjEcxaLxXN38suXL2K3HLCzs0PHjh3Rq1cvhIeHY+zYsTXGyMvLQ0VFheuHQGjKPH78GIWFhRg7diyGDRsGDofTYF/y2jLP9fT00KlTpxrC8u3bt5uUYPX1zfXbHcz6oD2zV69ezfNhSf9t6Y24bwkICEBJSQkGDBhQ77UUFBSgp6cnkHheXFyMI0eOYO7cuVBTU+P7OFGjrKyM5cuXMw1fBJkgDBkyBHFxcfDw8ED37t3rLevmF1psaI6+558/f0ZaWhr27NmDyspKfPjwgYjnfCInJ4c5c+bg48ePmDFjBm7evCnwOZ4/fy5wuSE/0Bs5GhoaIj93U2HgwIG4dOkSlixZUm9GNEVRDc48p4UOQRo2VlRUICkpCYaGhlBSUsKsWbMQExODNWvW1LDWsrW1RWpqKtfGa1xcHPT09Optiiws9ELn/v37KCwsZMr+v82IVFJSItYtIoKiKKEzz2VlZdG/f3+oq6vD2toaMjIyCA4OFklc9PNL1OJ5U4W2Ivl6HnT16lWMGjUKSkpK3614vmzZMgQEBODGjRu1ZgbyqpJpDqSnpwOASDPP6WcKXSXED0FBQbC3txfpfd3Q0BDx8fGNajPk6ekJFRUV9O/fv9YxdHbmw4cPkZaWhm7dujHv0U2TvxXPv56DduzYkedcXU9PDwMHDhTauuXgwYOwtLQUWJyk7wfiEM83bNiAhQsXYu7cubh48SLz+sOHD3Hw4EHs3LmzRrYrnQQkyOfva1JTU6GpqSnUesjMzAxZWVlcdsQ+Pj7Izc3FhAkTeB4jrk1UBwcHVFVV1Vr5TWee00hLS2PdunW4desWvL29eTYRDQwMRPfu3SEtLc1YpvEL/Vzh5XVeG25uboiJiWGsezIzM2FhYVGjsv/WrVvo2rUrysrKapyjvLwcKSkpAm9QKCkpwdbWFq9fv8bdu3fB4XDg7u4OoPpvNXbsWEybNg3z58+Hvr4+V+JKQEAAtLS0+K50Xb16NW7evCmQJzuNsbExKisrmSTj7OxsJqHlW9uq3NxcnhXhHA4HUVFRTBW+nJwcBg0ahFOnTjF/UzabjV27dqFfv36QlpbGhAkTGEsbWt9p8Znne/bsQZ8+fTB27FgsXboUS5cuxZgxY+Dq6oq9e/eKIsZ6r//8+XNcuHABcnJyYr8egSBurl27BjMzM1haWqJjx45wdHRssHVLbZnnANCrVy+8ePGC67WDBw+KRXgSFlo8l5KSYnz7+KGoqAh5eXmYNWsWAgICaohwHA4HDx48gJSUFFfDua/x9vZG+/bt0blzZ76uaWpqKlAJ/pkzZ1BQUIBly5bxfYy4WLx4MZOxKcgEoW/fvpCTk0N4eLjI/M6B/5WeNUfxPDExEYqKiti9ezeePHmC8vJyIp4LiJSUFHr27ImoqCiBs3/WrFmDtWvXijwm2mqgJYvnGzduxJo1a3DlyhWYmZnh119/rXVsbm4uCgsLG5R5bmBgAGlpaYHum4mJieBwOIzAsnbtWvz555/YsmVLjbF0Q8WvMzobo+nr/Pnz8fr1axgYGGDv3r2wsLDgyoinGT9+PN69eyeSZk3fM3l5eaioqGiwgCcvLw8rKyuhbOJ4QS/YRW3b0lShxXPadiAtLQ2hoaEYNmwYgOrmmPLy8t9VJfCzZ89w9OhRHDhwAD169Kh1nK2tLeLj45tdf66GWFTUBn1vry3ru6KiAgsXLuTySw4KChKZbSCNgYEBKisrG7Vx6NWrV+Hu7g55eflax2hoaKBdu3bMWu3bubezszMjnpeUlCAiIqKG3UdtzJ07F/7+/vj48SPevHmDcePG4dixY3wde+PGDSQnJwucrS9O8ZzFYuHw4cOYPn06pk2bhl69esHZ2RkTJ07EwIED8dNPP9U4hhbPhX0u15a0xg/0PfTrhILLly/DxMSkUS09gWohU0FBAYGBgTXe+/LlC/Ly8ng+24YOHYphw4ZhzZo1XF7epaWl+PDhA/M9tbCwEFg819LS4un7XRuurq5gsViMML1t2zZERkbil19+YYTbiooKrFixAsHBwTwTdhISEkBRlFCJIg4ODggMDMTNmzfh7Oxca3Vcv379uDLkaRtsfpOR27RpwwjzgkLP4enPOz1flpeX5xLPS0tLYWxszHNzLSUlBWVlZVwbG3/88QcSEhKwbds2AMDNmzcRGRmJP//8E1evXsXr168xd+5czJo1C0OGDIGGhgZXL5CmSIPF8+HDhyM8PBwrV65Enz590Lt3b6xatQrh4eE8y4EIhOZCWloaJk2ahNWrVzfaNSsrK3Hr1i2MHTuWuVmOGDECDx8+5NlIgh84HE6djXxcXFwQHByM4uJiANWZ0M+fP0dWVlaT8ZpOTU1lMvkEEc/pxdns2bMxcOBArFu3jqskKTg4GFlZWZg9ezbev3/P04Pz8ePHcHNz4zt7wMTEhO/MczabjX379mH8+PFNogGhiooKVq1aBUNDQ4GqdJSVlZlsT1EuXFRVVdGqVatmK56vWLGCyYplsVh8b8AQ/oeNjQ04HI5Ak+vY2Fj4+/sjMzNT5JY/34N43rp1a2zevBmJiYn45ZdfsGvXrlqbbdFZkg2xapKVlYW+vr5AFTv0wpxeyGhoaGD9+vU8kyiMjY2hoKDAldHZGOL55MmTERMTg4kTJyIiIqLWZtNDhgxhSngJwkNnSYnCUsnOzk5kmecJCQmQl5eHurq6SM7X1FFRUYGWlhYjnnt7e4PFYjFZtHRZ+feSeV5ZWYlFixbB2dkZCxcurHMsvdFH++M2F+jvnijF83bt2qF169a1irChoaH4999/sXv3bgDVfvIJCQkiTeAA/pdIImwGsqBERETg48ePdVq2ANXfI2tra7x9+xYaGho1RGdnZ2e8e/cOZWVl+PDhAzgcDt8JHO7u7mjfvj0GDx6M7t274+bNm3z1sSsoKGAEe9qyjF9Eef/mhZSUFE6ePIkNGzbAwMAAlpaWmDVrFuP//i0dO3aEkpKS0E1DG9JAl87cpcXziooK3Lhxg6dli7iRlZWttWkuvcauLTN69+7dSEhIwKFDh5jX3r9/j6qqqgaJ5/Tfh1/atm0Le3t7PHnyBPHx8Th69CgzPztz5gyAarvIuLg4GBsb8/ysN6RPjqOjI8LDw/HgwQOMGjWq1nFubm4ICwtDRkYGqqqqEBgYWMPqT1zQlZi0eP7hwwcoKChg6NChXP/2T58+RV5eHs9qfV5VARYWFli3bh127NiBjx8/YseOHXB1dYWTkxN69OiB/fv349y5c/D19cWGDRvw/v37Jp8MLZLaemlpaTg7O2Ps2LEYN24cnJ2dxVYKSyCIG4qicPr0aVhaWsLT0xMHDhxAVlZWo1zb19cXubm5XBZE7u7u+PLlS62e3PWRk5ODysrKWh/ivXr1Yhr9AoCfnx8qKirA4XC4SsYkSWpqKjp27CiweE6Lrp06dcKOHTsQGRnJlVHv5eUFFRUVphmQt7c31/F5eXkICgqqs3TyWywtLfH582e+Njvevn2L2NhYLF68mO/zi5t169bh48ePAh83ZMgQADWzXxoCi8VCp06dahXumioFBQUoLCyEjY0NNm/ejPT0dJiYmKB169aSDq3ZQXvfCeIDe+HCBWYxJMxnuS4yMjLQqlUrKCkpifS8TREFBQVs3rwZbdq0wa5du3iOuXz5MvT09BjRR1gErdiJjY2FtLQ0X+WsMjIysLKyanTxHKhuVnXkyBGkpKRgz549PMcoKytj2LBhxPe8gdDiiyisI+zt7REaGspkpTUE2hO2sUUPSfJ109BHjx7B3t4e7du3Z97X1dVtseJ5cXExQkJCGNuK/fv349OnTzh69Gi9SRjm5uaQlpZudtYtqampkJeX51lZIywsFguGhoa1iue0qHnq1CkUFhYiKCgIgGjnoACYxJbG8j2n/fAHDhxY71h6ftS9e/ca9xdnZ2dUVlbi7du3CA4OhqysLKysrPiKQU5ODitWrICqqirOnz+PvXv34v379/Wua3x8fFBVVQUVFRWBxfPs7GyoqqqKtYeDtLQ0Nm3ahHPnzuHkyZPYv39/rYkQLBYLRkZGEhHPlZSU0KlTJ0Y89/b2Rn5+PiZOnCjU+RoKnTn9LV+vsXlhYWGB+fPn448//kBOTg6A6uoQeXl5xprD0tISWVlZfPczE0Y8B/7ne75p0yaoqanh2LFj+OGHH7BlyxZkZ2dj69atmDZtGn799Vc8fvy4xmZZbGwsZGRkhKqMcHBwAEVRKCsrq1M879u3L4BqLSgsLAwlJSWNJp7LysqiU6dOXOK5paUlevTogTdv3jCJh3fv3gVQXU31rTVTVFQUpKWla8yt161bBwMDAwwZMgRv3rzhsgVevHgxIiIiEB0djfXr1zeLflKiMab9f3j5GhEIzY3Dhw9j9uzZGDFiBJP9ceHChUa59pkzZ2BiYsLV8dva2hp6enq4d++eUOekSxprs22xsLCAmpoaY93ytX1JU2nUSE9C7OzsEBERwbeFQ2JiIqSkpJhjJ0+ejE2bNqGkpARAtXjev39/6OjooEuXLjV2Un19fcHhcPjyO6fp1q0b43FdH3STlK//vSUNi8WCgoKCwMctWLAA9+/fr/VzJiydOnVqdpnnX08o58+fDwsLC6aBE0EwWrVqBUNDQ77FBIqicOHCBUycOBHy8vIib76WkZHx3WSQAtXC7rJly3Dy5MkaDT3Ly8tx5coVTJkypcF9DkxMTAQWz/X09CAjI8PXeBsbG+azcPv2bRQUFDTqfbdDhw51+lCOHj0ab9++5Vn9ROAP2ndZFIsve3t7VFRUCNTIrDYSEhK+G79zGrrhHYfDgbe3dw0hsCVnns+fPx9dunSBo6Mj/v33X2zZsgVLly7lq/JMXl4e5ubmza5paFpaGrS0tES+QVSXeB4TEwNlZWWUlpbi1KlTCAoKQrt27US+KaqoqAhNTc1Gyzx/8uQJ+vTpA0VFxXrH0gIkrw0DW1tbKCoqwt/fH8HBwbC2tq7TBuZb1q1bh9DQUEyZMgU9evRARUVFvclLDx48gJmZGQYMGCCweJ6VlSVUc01xYmxsjEePHgmUGU3TEPEcqLZuefLkCTZv3oz169fD3NxcYo0UHR0dERsbWyORMCkpCSwWq87fc/PmzWCz2RgxYgQ8PT3x4sUL2NnZMdnFdM8bfv7GFEU1SDxPT0/HuXPnsHHjRigrK+P3339Heno6+vTpg7y8PGzZsgXjx49H69ata1jXxsXFoVOnTnzPOb/G3NwcrVu3hpWVVZ1e7ZqamrCwsICPjw8CAgIgIyPDt9WSKDAyMuISz21tbeHo6IiSkhJ8/PgRFEXh3r17sLCwQFZWVo0+RVFRUTAwMKixAaagoIBjx44hKSkJdnZ2XJoKi8ViNo2bCyIVzydPnoz9+/fXOUaY7rYE/nj58iWcnZ1RUVEh6VCEJjMzE/v370fnzp3h5uYm1mtVVlZiz549NbqCX716FcOHD8e5c+dgZmaGkSNH4uTJk2L/7GZnZ8PT0xMLFizgmoCyWCy4uLgwWRWCUp8XoZSUFFxcXJimoQ8fPoSrqyuApieed+nSBWw2m+9s0sTERGhrazMPu61btyI7Oxt//fUXcnNz8fr1ayZjeuDAgXj06BGXVY23tzeMjY0FWvjS3ez5+feKiIiAnp6eUM09mhpKSkrM31KUNHfxXFZWFq9evcLhw4clHFXz5Wvhsz7evn2LyMhIzJgxAxYWFiIvf8/IyGjRli28WLJkCeTl5bFv3z6u1728vJCXl4cpU6Y0+BomJiaIiYnhuylbbGysQN6Ttra2CAsLQ35+Pn788UcMGTKEr8y+xoJu9tbc7BqaEmlpaVBRURFJVUjnzp3BYrFEYt3y9u1bvjM+Wwrm5ub4/Pkz3r17h8zMzGYpnj98+BC7du0SaO7/4sULeHh4YNmyZVBRUcHChQuhqqrKsxdDbTTHpqF0c0RRU1/muZWVFSZOnIiDBw8iICAA3bp1E0uFh4GBQaOI5+Xl5Xjx4gX69evH13haPP+6WSiNrKwsunfvzojnDem5Y2trCzk5uRrZx1+vlyiKwsOHDzFo0CB069YNb9++Fcj6Mzs7m6s6pSmwYcMGxnJxw4YNPBtJ8qK8vBw5OTkNEs+7d++OoKAgHD16FGpqati/f7/Eqpdoi5Vv17WJiYnQ0tKqs1pAXV2dqaobP348rl69yrXZY2JiAikpKb7E89TUVJSUlAglnru4uEBOTg5GRkaYN28egOrNkTlz5iA8PByLFi2Cvr4+lJWVMXnyZJw+fZprPironPNrpKWl8eOPP+KXX36pd2y/fv3g4+MDf39/dO7cuVGrXOlKC1pnsbW1RdeuXSEtLY3Xr18jLCwMiYmJ2Lp1K6SkpBjdiObz58+1bg706dMHZ86cwenTp5t9FZ5IxfPbt29j8+bNWLp0aY3JBpvNxpkzZ5gdJoLoefjwIQICAvD27VtJhyIUz58/h7a2NtauXQs5OTn4+PjUyHQTJWfOnMGqVatw9uxZ5rWCggK8fPkSQ4cOZV6bM2cOwsLChBavBYkHAGbMmFHjPTs7O3z48EGobu8pKSlgsVh1ZmO5uLggICAAMTExiIyMxLRp0wA0PfHc2tpaoKahdLk0jaGhIRYtWoQdO3bg4sWL4HA4GDx4MABg0KBByMjI4BLpHj9+LJBlC1C9w2pra8tX1kVERAS5J9ZDcxXPZWRkmO+cqqpqi9ggkRSCiOcXLlyAuro63NzcYG1tLXIxMjMz87sTz1VVVbFkyRIcPXqUKb0FgPPnz8Pe3h6WlpYNvoapqSkqKir4/q4LI56XlpZi0qRJyMvLw9GjR5vUBN7IyAjy8vJEPG8AaWlpIhPwWrVqBVNT0waL5/Hx8YiPj2fKsb8XzM3NUV5ejmPHjkFZWblG5ZWOjg5SUlKaTF8dXhw5cgRr1qzBn3/+ydd4NpuNpUuXolu3bti7dy8eP36MsLAw+Pr6CtRDxtbWFqGhoc0q2YzOPBc1hoaGiI+P57n2iY6OhrGxMZYtW4a4uDg8ePBA5JYtX8fRGLYtAQEBKCsr41s8d3JygoeHBwYNGsTzfWdnZ7x48QJhYWENEs/l5eVhZ2fH5X2cnJwMLS0tXL58GUC1P3dCQgIGDx6Mbt26oaioSKBqsqaYeU6vvdetW4edO3di48aNfB1HaxcNqcTdunUr8vLykJGRAV9fX2atKgkMDAzQvn37Gr7nSUlJfFnnDRo0CK9evUJYWBg2btyIRYsWMe/Jy8vDyMiIL/Gc9tQWRjxXUlLC9u3bceLECS6xf8uWLZg3bx5+++035rU5c+YgOTmZqxq9oVZ/O3bswKxZs+od169fP0RHR+PevXuNZtlCQ2eeR0dHo7S0FLa2tlBSUoKNjQ0CAgJw7949KCsrY/jw4bC3t8ezZ8+4jo+Kiqrz32bGjBktoveXSMXzQYMG4dmzZ7hx4wbGjBmD0tJSVFRU4OjRozA2NsaKFSsk5tf0PUBn4wrrjS1pLl++DB0dHaSlpeH+/fsAanpQi4qKigpmQnzlyhXm9cePH4PNZnNl0A4YMAA6Ojo4deqUWGIBqnfsjx07hnHjxvHcebezs0NJSYlADdVoUlNToaGhUWepUa9evVBcXIydO3dCSkoKo0ePhry8fJMTz5WUlGBmZiaQeP5t1vhvv/0GiqLwyy+/wMbGhvEv69mzJ5SUlBjbmoSEBERFRQlk2UJDZwzUBxHP60dPTw/Z2dmM1U5zICEhATo6Os2qDK0pY2tri/T09Hp7T1RVVeHSpUuYNGkSZGRkGPFclCLE95h5DgDLli0DRVFYtmwZ2Gw28vPzcefOHUydOlUk56ezVfh5xlEUhZiYGBgZGfF9ftqT/cGDB/jjjz+anI2GtLQ0LC0tm5R4zuFwhNqwlxTp6ekizX61s7PDu3fvGnQOPz8/sFgs9OrVS0RRNQ/Mzc0BAP/99x9cXV1r2EXo6OigsrKy0foJCUN4eDh0dHSwYcMGHD9+vN7xp06dwrt373Dw4EHGxqq+Mn1e2NraoqCggGnG1xwQZ+Z5ZWUlYz/5NbR43q1bN/Ts2ROA6P3OaRor8/zp06dQU1PjW2CSkpLCpEmTap1rOjs7IzMzE5WVlQ22f3B0dOQST69cuYKMjAwsWLAAiYmJePjwIeTl5dGnTx/mWoJYt2RlZTW5zHOgOiFqy5YtGDduHF69esXXMfTntSEbSlJSUiLtIdAQWCwWT9/zbxPU6sPKygpbtmypse7lt2no58+feXpq88uKFSuYynqajh074tixY1yfvW7dusHW1pbrvt+QzHNB6NOnD1gsFnJychpdPDc2NkZxcTEeP34M4H/zZicnJ7x+/Rr37t1D//79IS8vj969e3OJ51VVVYiJiRH4edccEal4DlSXOgYEBCA2NhZOTk4wMDDApk2bMG/ePCQkJAhUukYQDHrR5efnJ+FIeLN9+3Y8ePCg1vf9/PzQv39/tG3bFh06dICdnZ3YxPOzZ88iMTERK1euxIsXLxhrEy8vL5ibmzMNYoDqRe3MmTNx8eJFLgGvqqoKHh4eGDdunEC767x4+vQpoqKisHDhQp7vd+nSBQCEWsilpKTUu/vdtWtXKCgo4NSpU3B0dISamhrU1dUbJJ7//fffmDVrVoMbblVWViIzM5OZhHTp0oVv8TwhIaHGg71Dhw5YtWoVysvLuSoM5OXl4erqihs3bsDb2xuHDh2ClJSUUBlj3bp1Q3h4OIqLi2sdU1ZWhtjYWCKe1wP979ecFpKCTigJdUOXJteXff706VOkp6czNiI2NjYoKioSaeXC9yqed+jQAceOHYOHhwemTp2KixcvoqqqCj/88INIzt+pUyfIycnx9SzNzc1FYWGhQAuZDh06QFNTE926dcPSpUsbEqrYEEelRENYtmxZnVZcFEXBx8enyWQPp6WlibTZlL29Pd6/f9+gDQRfX1/Y2tqibdu2IourOaCtrQ0lJSWUlpbytEeikxaa6nO9tLQUMTEx2LRpE5YsWYKFCxfi4sWLtY7Pz8/H+vXrMW3atAb3N6Gfd83JukVcmee0SPZt1ndxcTHS0tJgbGwMAFi9ejUUFRXFJjYZGBggNTWVse0oKiqCoaEh32Iqv/j4+KBv374N7iFCQ38WpaWlG9zU28HBAdHR0cjNzQVQbXHat29fqKioYPr06bh37x569+4NJSUlqKmpwcjISCDxPDs7u8llnn+NnZ0dQkJC+Hre1WeX2hxxdHREYGAgVzIKv5nn9WFhYcFXf5HPnz/DwMCA8UsXFywWCz/++CNu3ryJT58+IS8vD/n5+Y3SZL5du3aM5tPYvbLohJQbN25AQ0OD+T46OjoiIiICr169wvDhwwFUJ10mJiYiISEBQLXeUlVVRcRzYSgoKMCpU6eQkpKCqKgo5Ofn48mTJ1i/fj1at24t6ssR/p+ysjJmF/7FixcNFixFzYcPH7B+/Xr8/PPPPB88WVlZCAsL49oRHDhwILy9vUVeukhnnY8fPx7r16+HjIwMrl27Boqi8ODBA56LxVmzZqGwsBCzZ8/G1q1bsXXrVpiammLKlCl48uQJ+vfv36BFwL///gsLCwu4uLjwfL9t27bQ09MTSjznp2mJnJwcHB0dwWazmfK/hojnISEhWLFiBc6cOYPFixc36N+QbgJG/w78TmDYbDaSk5N5ipgrVqzAqFGjMH36dK7Xhw8fjoCAAAwcOBB79uyBq6sr1NTUBI65e/fu4HA4df57RUVFgcPhEPG8Huh/v+Zk3cKr4oEgPMbGxnw1/3z8+DEjkAJgmiuJSpCkKAqZmZnfVcPQr5kyZQquXLmCa9eu4aeffkL//v1Flm0oLS0NIyMjvsRzWkgRNAvo+vXruHnzZpOtCBFHpYSw0MkBPj4+KCws5Dnm4cOHcHNzw5MnTxo5Ot6I0rYFqJ5rFBcXIyoqChRF4ebNm0wzLX7x9fWtken2PSAlJQUzMzMAqFM8b6q+55GRkaAoClZWVvjrr78wZcoUTJ48Gb/88gvP9dXZs2dRUFCAHTt2NPjaurq6aNOmTbMRz8vKypCbmyuWzHM9PT2wWKwa4jn9PaTFHnd3d2RnZ4vt2Uw/a+Lj4wFUe9vHxcXV8PxtCMXFxQgICODbsoUf1NXVYWhoCAsLC74akNaFo6MjACAwMBCJiYkICAjAnDlzcPbsWTx79gze3t5c1iLdunUTOPO8KYvnXbp0wZcvX/h6BqSmpkJBQaHJZI6LAgcHB+Tm5jK/P0VRSEpKEkmikKWlJZKSkurVHIRtFioMM2fOhJaWFv7880+m6qQxMs+BaicPTU3NRrseDX09etOfxtHRERRFgcPhMEmHtF5F3wPpqgQingvIunXroKenhzNnzmDbtm3IysrC+PHj0b9/f7H7RX/vfPr0CRwOBz/++COKi4u5fBpfvHghcR/0P//8E6qqqvj8+TNjyfI1dOlHnz59mNcGDBhQw4M6Li6uzmxefqCzzjdu3Ag1NTUMHDgQV69eRWhoKFJSUniK54aGhliyZAnevXuHI0eOYM+ePXB0dMS7d+8QGhoKFouF/v37CyU2Z2Zm4vr16zUahX6LsCXE/Hb8pm+EDRXPq6qqMHv2bJibm+PYsWM4fvx4gxYU3+7g0xOY+vwH09PTUVVVxfPBrqysjBs3btTw6l2wYAEiIyMRHx+PrKwsLr8zQbCysoKCgkKd9z26RI2I53Wjra0NFovF7G43B0jmuWiRkZGBlZVVveL5q1ev0LNnT+Y+qqurCxUVFZGJ53l5eaisrPwuM89pxo4di9u3b0NJSanWSilhMTEx4cu2RVjx3MnJqUEepOLGxsYGX758aRIbhS9evEBOTg7YbHat1Yx//fUXgOr5Z1NAHLYtAPD69WssWLAAo0ePxoYNG/g+nvY7/x7Fc6B6bqOrq8uI6F/ToUMHyMrKNlnxnLbBtLCwgJSUFM6ePYsDBw7g4MGD6Nu3b4258cWLFzFkyBCRZJqyWCyB+nxImm8TXESJgoICtLW1a1im0AIenXkOQKyN9eiMUzoO2h5VlPe+ly9forKyUuT9EZYsWYK5c+c2+DxGRkZo27YtXr9+DU9PT8jLy2PEiBHo27cvVq5cCQA1xPPg4GC+KnfKy8tRVFTUJG1baGgrHX4qnwMCAmBsbNyk+qo0FLppKG3dk52djbKyMpFknvfv3x/t27fHyJEj69R4GlM8l5eXx9q1a+Hh4cFoAY2ReQ5UN6oNCAho9M9Pq1atoKGhATabzSWem5mZoU2bNrCzs2Pu8+3bt4eVlRWePXuGz58/Y/HixRg4cCCXc0NLRaTi+c2bN3Hw4EF8/vwZ8+fPh7KyMs6cOYP58+ejb9++uHXrligvR/gKWhyYPn06lJWVmQd7aWkpxo4dK9CEX9RERETg6tWr2LFjB5ycnLB3794aY/z8/GBkZMRkowDVHtSKiorMTSs5ORk2NjYNEmIjIyOxefNmTJgwAVZWVgCquz+/ePECJ0+ehJKSEnr37s3z2L///huRkZFIS0tDQUEBLl68iC5dukBHRwePHz9GYWEhBg8eLHCJr7e3N6qqqjB58uQ6x9HiuaBZafzYtgDA1KlTMWvWLMYzUFjxfM+ePXj//j1OnTqFefPmYfPmzVi/fj2uXbsm8LkA3uI5gBrea99CCxCCiJhSUlIwNTWFnp4e2rdvL3SGooyMDOzs7OoVzzt06IB27doJdY3vBVlZWWhpaTUJQYkfqqqqkJKSQsRzEWNjY1NnJl5FRQWCgoIY71OgWoSwtrbmEiEuXrwo9GY+fT/8nsVzoHqBnJubi9GjR4v0vCYmJnxnnqupqbWorC7gf5USTUE0u379OnR0dNCpUyeemeWRkZGMDV9DbetEQWlpKQoKCkRq29KuXTvo6elh4cKFOHPmDBwcHODn58f3HIz2O69tTtnS2bp1K65fv85TAJCSkoKOjk6TFc/Dw8Ohra3N3GNYLBZ+/vln+Pn54dOnT1i3bh0zNjY2Fq9fvxaZhRVQ7TXbXDLP6Tm6ODLPAd7NOqOjo9G6detGy1TW1taGrKysWMXzp0+fQkNDQ+QJNcuXL8fPP//c4PN87Xt99epVDB48mGmEu23bNvj7+3MlJHXr1g0lJSV8/Y2ys7MBoElnnqurq0NLS6te8Tw5ORmenp4i2bBoSrRt2xbm5uaMH7Ywa+za0NLSgpeXF8LCwjB27FhUVFTUGFNVVYXY2NhGE88BYO7cudDQ0MDWrVvRunXrRluvKykpSWwNSVfzfC2eS0lJYfny5fjll1+4xvbu3Rve3t4YMWIENDQ0cPny5Ra1YVQbIhXPw8PDMX369BqC09atW3HgwAFMnDgRhw4dEuUlCf/Px48foauri3bt2qFnz55MptCpU6eQmZkpcKmpKNm2bRu0tbUxc+ZMrFixAr6+vlyZ8UD1ROTrrHOgOuOA/mIC1ROA4uJi+Pv7CxWHt7c3HB0doaqqit27dzOvjxw5EjIyMjh06BD69etXo7ERPxgbG+PixYt49+6dwB54AQEBMDU1rXfSYGdnh9zcXIHsYb71C68Lc3NznDp1ivn+CiOef/78GZs3b8bKlSsZEX7jxo1wdnau0y+yLlJTUyErK8s8tDp06ABnZ2f8+++/dR4nyge7MNTXNJQ0C+UffX39WpvJcDgc7NmzB7a2tsjPz2/cwHiQmpoKDodDxHMRY2Njg48fP9Zq1/Tu3TuUl5ejR48eXK9/7SMdFBSEyZMnw8nJCb/88ovAVUwZGRkAiHgOoM4G1MJiamqK+Ph4ngunr2msxk2NjY6OjkgrJYSFoijcuHEDo0aNgpubG3x8fGqM+fvvv6Guro5BgwY1CfE8LS0NgOgFPBcXF6ioqODp06fYvHkzUlNTER0dzdex36vfOY2hoSFjocWLpiyef/z4kUmw+ZoePXpgzZo1+O+//xjR+NKlS1BSUoK7u7vIrm9hYYGoqChUVVWJ7Jzigv7uicvfuTbxvDEze6WlpaGnp4fY2FgUFhbi7du3MDAwYOx9RIGPjw/69evXpMUnR0dH+Pn5ISAgAOPHj2del5GRqeE3b29vDxaLxZd1C904uClnngP89dw6dOgQlJSUMHv27MYJqhGZNGkSrl69ii9fvjBahCgyz4HqzZabN2/i6dOnPDce4uPjUVVV1ajiuYKCAlavXo2SkhIYGBg06e+mqKDFc7r3Bs2mTZuYflI0vXr1Qnx8PLKzs3Hnzp0Wl9BSGyIVz+v6UM2dOxc3btzA+vXrRXKtt2/folevXujTpw8mTJjQ5Dy+G5uwsDBmoufq6ornz5+jtLQUu3fvhpKSEuLj4xvU9EhYoqOj4eHhgdWrV0NeXh6jR4+Gvr4+9u3bx4zJyclBaGgoz9LWgQMH4tmzZ7h9+zY8PT3RrVs3BAUFCdyg6ty5cxgyZAicnZ3x6tUrrpu9qqoqBg0aBA6Hw1VyJii9e/eGpqYmbty4IdBxAQEBfDW5oUuIBbFuoSe1wpSqq6urM2IRv9y5cwfS0tLYvHkz8xqLxYKZmRnTfVxQaNuZr+8vq1evxrNnzxAQEFDrcYmJiVBRUUGbNm2Eum5D6d69O6Kjo5GXl8fzfSKe88+IESNw7969Gt672dnZcHd3x6pVqxAaGoqXL19KKML/IelNm5aKra0tSkpKarVrevXqFRQUFJjKFBpra2tERESgqqoKq1atgpWVFbZv344jR47A1tZWoIoGIp6LFxMTE7DZ7Bol+t/SUsVzulJC0uL5mzdvkJycjDFjxsDNzQ2hoaFcG+kFBQU4c+YMFixYAGtr6yYhntPWEaIWz//991/ExMSgZ8+e6NmzJ6SlpZms0/r4Xv3O+aUpi+fh4eE1bP1o5s+fD0VFRRw4cABAdTWTu7s7lJWVRXZ9c3NzVFZWMh7bDaWiokJsjX1TU1MhLy8vVH8gfqhLPG9MDAwMEBcXhxcvXoDNZmPBggXIy8tjhN+GUFBQgDdv3ojU71wcODg4oLi4mLFsqQsVFRWYmZnxJZ43h8xzoH7xvLi4GMeOHcPcuXNbZJ+/6dOno7i4GNeuXUNiYiLk5eVF+m/m5uaGf//9F//991+NREna0q8xxXOg+n6voaHBiMotHWNjY0hLS/OlTwwYMAA9e/bE9evXG/1+LElE3jC0LoYMGcL3pLM+tLW18fDhQ/j5+cHY2Bg3b94UyXmbKx8/fmRKfvv06YMvX75g9erVSEhIwMaNG1FRUcFkSYiDpKQkTJ48mWuiV1FRgZ9//hkdOnRgdhFlZGTw888/4/Lly8yuJS+/c5oBAwagrKwMkydPRt++fbFt2zYUFhYKvFjbtm0bhg8fjjt37vAUUydNmgQpKSmmEYIwSElJYdSoUbhx4wbfmQilpaV4//49X+K5trY22rdvL5B43pCO3+rq6igsLGS6y/NDZmYmNDU1azSm0dbWbrB4/jXu7u4wMzPDzp07az1O0r7TdOY9r34DbDYbkZGRRDznkylTpqCsrIzL+ic7Oxv29vYICAjA/fv30bFjR4GrPsQB7c0uqmwMQjV0FsTdu3dx8uRJLF68mOt58+rVK3Tv3h1ycnI1jquoqMBff/0FPz8/7Ny5E6tXr8aHDx9QUFCAgwcP8h1DRkYG5OTkmFJlgmihGw3V93xvqeI5gCYhnt+4cQPt2rVDr169GP/dr7PPT506hfLycixcuBAmJiaIj4+XeAILnSggStsWoLo/SqtWrQBUi0Fdu3blax2TkJDwXfud80NTFc/LysoQExPDM/McANq0aYNFixbhn3/+wcuXLxEWFoZJkyaJNAbaJ74htiD5+fk4ePAghgwZwsQsDuhGveLKyjQ0NERmZia+fPnCvCYJ8dzQ0BBxcXHw9fWFlpYWhg8fDqDawqqhvHr1ChwOp8nfL2jf668tW+qia9eufPVcozcgmrp4bmdnh9TU1FqrsunGwT/99FMjR9Y46Ovro1+/fjh9+jSSkpKgq6sr8u/99OnTYWlpia1bt3K9/vnzZygqKjZ63xolJSXcu3cP27dvb9TrSooFCxbgxo0bUFBQqHds+/bt8eLFC576XUumUcVzoLqMRxR07NiRaQ4iKytbawlxeXk5CgsLuX5aGl++fEFcXBwz0evWrRuUlJRw6NAhDB8+HKNGjQKAehssNoQHDx7g4sWLcHZ2RkhICEpLSzFq1Cg8efIEp06d4hJT58yZg7Zt22LkyJHIzc2Fn58fDAwMeAqd1tbW6NixI8rLy3Ho0CGmBLQ+v+uvqaioQHR0NIYMGVLr52TSpEmIiIhocDOI0aNHIz4+nq+GIkC1sFpVVQVnZ+d6x7JYLIGbhtKCtbCZ5wAEyqrIyMjgmZWpra2NtLQ0oTJfeInnUlJSWLVqFW7dusW1uPh6AS9p8dzExAQqKio8rVvi4+NRXl4Oc3NzCUTW/NDR0YGbmxvOnTvHvLZjxw7k5eUhODgYQ4YMQY8ePZpM5rmamlqLzDqRJBoaGlBXV8fy5csxf/58nDx5kplcUxSFV69e1bBsAcA8F9etWwdXV1dmg9TExAQzZszAmTNnUF5ezlcM9P3teyjdlARaWlpQUlKqs2mot7c34uPjRTaXbGp8XSkhKW7cuAF3d3fIyMhAS0sLFhYWjO/5ly9fcPDgQUyYMAFaWlp8VwuIm7S0NMjJyYndIsXV1RVPnz6tN0Hie/c75wdaPBeV7YWo+PTpEzgcTq2Z5wDw888/o7y8HBMnTmSqV0WJtrY2lJSUGiTMLlmyBCtXrkRVVRXc3Nxw/vx5FBUViTDKanjN0UUJvVFK32PKy8uRlJTU6JmgBgYGiI2NZSpKjI2NISUlJRLf848fP0JZWbnJZ7e2b98eS5cuZRqE1oetrS3CwsLq/Y5nZ2dDXl5epNUb4oCubAwJCanxHofDwYEDBzBmzJgW3TRx1qxZ8PPzg6+vr1jW2FJSUvj111/h5eXFVbXw+fNn5jvX2HTt2pVn4+uWiIaGRr1VJd87jf8JFDGJiYl4/PgxswP8Ldu3b0ebNm2Yn5aYDRgeHg7gf82m5OTkGBFh3bp10NPTA4vFEqvveWxsLDQ0NKClpYXevXvD1dUVfn5+uHv3bo1s7tatW+Px48dISkqCm5sbHjx4UOtuO4vFwrp167B3715YWlpCTU0NJiYmAjV8i4qKApvNrjPLl8ViiaQUyNXVFaqqqox1C0VRmDdvXq270AEBAVBSUmL+7erDzs6Ob2EeqJ7UCrugpMVzQXzPMzMzmeO+RltbG1VVVUI1IK1tYj516lRoampi9+7duH//Pnr16oUOHTow1gqSFs+lpKTQtWtXHDt2DGvWrMHly5eZhQvt300yz/ln+vTp8PX1RXx8PFJTU3H48GGsWLGC+Tfu0aMHAgMDJZ4BKenPXUuFxWLh2rVr8PLyQl5eHn7//XecP38eGRkZSExMRGpqKlezUJoOHTpAQ0MDlZWV2LVrF5fwPW/ePOTk5PBduZaZmUksW8SIlJQUjI2Na808z8vLw6xZs9C/f3+MGzeukaNrHKytrZkNf0kQERGBT58+cTWDdXNzw5MnT0BRFGbNmoXs7GymCT2/1QLiJj09HR07dhT7xparqyvS0tLq/X0vXryIrl27frd+5/ygo6OD8vJyxrKhqUCvqeoSzzU1NTFjxgykpKRg7NixQvVKqgspKSmYmZkJLcyWl5fj9u3b2LBhA7y9vXHkyBGUlpbC09NTpHEC/8s8Fxd0UhOdABYXFweKoiRi20Lbq/Tt2xfy8vIwNDQUiXj+6dMnmJubN4uN+b/++gsuLi58jbWxsUFRURFTkVkbWVlZ6NChQ5P//Q0NDdGqVSue6/CHDx8iKioKy5cvb/zAGpExY8agdevWePPmjdg0tYkTJ8LU1BR//PEHAKCkpASvX79udMsWAoEXTV48T09Ph4uLS42f3NxcFBYWYtq0aTh9+jRkZWV5Hr9u3ToUFBQwP4I0W2wufPz4ESwWi0uImzdvHhYsWIAePXpAQUEB2traXJnnFRUVGDt2rEjKzYDqyYylpSV8fX3h4OCAT58+4dGjR+jfvz/P8TY2NvDx8UFycjIiIyPrLPlYunQpli5dyvw/3e2bXxpTqJSVlcXw4cMZ8fzs2bM4ceIEDh06BA8PjxrjAwIC0L17d76br9nZ2SExMRE5OTl8jU9JSanhF84vwojndWWe0/EISm3iuby8PJYtW4ZTp05h2LBhqKqqApvNxl9//QWgaYiYv/76K2xtbXHx4kX88MMPGDBgAMrLyxEREQFlZeUWuZknLkaPHg1lZWWcP38ef/zxBxQVFbFixQrm/R49eqC0tJRnRkhjkpiYCD09PYnG0FJxcXFhyoXnzZsHWVlZHDlyhKk4qK2Cp2/fvpgxYwZjpURjbm6OXr164dixY3xdv7b7G0F0mJiY1CpMLlmyBF++fMGpU6ckkn3UGNAb6aGhoWI5f3BwcK19OJ4+fYrRo0dDTU2Na+7m5uaGuLg4LFmyBJ6enjh79ixTNaWtrQ0FBQWJi+dpaWkit2zhBT++5yEhIXjw4EGLF1Eaio6ODgA0OeuWjx8/Qltbu97mZ6tWrULr1q3F1hjQzMxM6DWaj48PioqKmE2wTp06oV+/fjh79qwoQwQg/sxzDQ0NKCoqMmtYemNRErYtQHVSFJ3w1ZB/o6+JiIhokZWotN1efc8zWjxv6khJSaFz5848K8DPnDkDa2trvirJmzNKSkqYOHEiAPH1dpKWlsb69etx69YtHDlyBDY2NggPD8e0adPEcj0CQRCa/OqjY8eOePHiRY2fNm3aYMqUKdi4cWOdO1Hy8vJQUVHh+mlphIWFwcDAgKvcacKECfjnn3+Y/zcyMuISz0NCQnD9+nWcPHlSJDHQHqStW7fGw4cPkZyczDML8GtsbGzw9OlTjB8/HsOGDeP7Wt27d8f79+9RUVHB1/iIiAi0b9++0R7Mo0ePRlhYGJ48eYKlS5dixowZmDx5MhYtWsTl0UtRFPz9/fnyO6ehm4bym32enJwstD8Y/fcSVeY5ILh4XlZWhtzc3Fon5osWLcLKlSvh6+uLV69eYcGCBThy5AjS0tKQm5srcfHczc0Nt27dQmJiIvz9/fH+/XssWbKEmSg39SyLpkSrVq0wduxY/PPPPzh+/DjWrFnD1b/A3t4e8vLytfqel5SUNErT5KawafM9oKamhlmzZuHIkSN48uQJTE1N0b59e55jPTw8cPr0aZ7vzZ8/Hz4+Pnxl+mZkZPC8vxFEh6mpKU/blqtXr8LDwwOHDx9u0ZuOdKWEOHzP4+Pj4ezsjC1btnC9XlZWhunTp6Nfv37o0KEDnj17xmW15+rqCikpKRw5cgTr16/HmDFjmPfoaoG6rHYaA3Fnv9Lw43u+a9cu6OvrY8KECWKPpzlDW1TQmd5NhbqahX6NiYkJ8vPzedqFiQJzc3OhhdmbN2/CyMiIy7d9xowZ8PPzE7nFkri/eywWC4aGhsy6Jzo6GoqKio3yff8aOgNeW1ub+eyam5s3OPOcoihERES0yEpUehOqPvE8Ozu71vlbU4NX09CCggLcunUL06dP/y7WdTNnzgQg3t5OkydPhoGBARYvXgwdHR2EhIRg5MiRYrsegcAvTV48r40rV67g1atX2Lp1K1xdXXH58mVJhwQAePHiRaPvjH3dLLQ2vu1WHhwcDAACNbesi9jYWGZiISUlxbffr7W1Na5cuSLQQ9PBwQHl5eV8Z2Y19qRk0KBBUFBQwIgRI6Cmpoa//voLhw8fhqqqKqZPn84IeMnJyUhNTRVol9rExARt27bFjh07UFJSUu/49+/f820J8y3y8vJo06YN3+I5RVG1iufq6uqQkZERWDynm4DVJp63atUKu3fvRp8+fcBisbB8+XKUlJTg119/BYAmlQHs5OSEf/75BydOnMCVK1da5ERZ3EyfPh0pKSlo3749lixZwvWevLw8unXrVqvv+aBBg5gKBXFCxPPG4+eff0ZOTg7OnDlTp4DBYrFqXdCMHTsWampqOHHiRL3XI5nn4sfCwgJJSUk1+tNs3boVI0aMwOTJkyUUWeMhrqah69evR0VFBW7evMk17zt//jwuXLiAkydPws/Pr8acQVVVFf3794e7uzt+//33Guetq1qgsUhPT280Mc3V1RW+vr6gKAopKSm4ePEiiouLAVRXYV66dAkrV67ku6Lwe6Vdu3YwNzdvEr1Kvubjx4+1Ngv9FnFWwJiZmSEzM7PWShGauLg42NvbM2s8NpuNW7duYfTo0VzPvTFjxqBVq1ZcvWMaSnl5OXJycsSaeQ5UC//nzp3Df//9h+joaBgZGTV69VHbtm3RunVruLq6Mn9Xc3NzxMXF8d03hRdZWVnIy8trkWsCFosFGxubFpN5DlSL55GRkVxrcE9PT1RUVHwX8xOgutL38OHDXPZuokZWVhYeHh44f/48nj59SixbCE2GZiueT5o0CTk5OfD19YWvry9TQiJp6C+6MPYUwhIWFlbvRM/Q0JDL8zw4OBgyMjKIjo5ucNZHQUEBcnJymJI2cdOlSxfIyMjw7XseHh7eqJMSZWVlDBo0CKWlpThz5gzatGkDVVVV/Pfff3jx4gU2btwIoNqyBQAcHR35PreUlBSuXr2KV69eYdiwYVzd57+lqKgI4eHhTHd0YVBXV+dbPC8oKEBFRQVPcUlKSgqampq1fi/S0tKwf//+GpnBqampAGoXz79FW1sbU6dOZbJMm5qIOXPmTCxZsgTFxcUtcqIsblxdXdGjRw/s2LGDZ2OhHj161Jp5/unTJzx8+JDL6kVQDh06hNevX9f6fkFBAQoLC5vc566lYmxsjJEjR4LD4Qid/aeoqIhp06bhxIkT+PPPP/Hff//h48ePNcZRFEXE80bA1tYWALjE47KyMoSHh2P48OHfRVaXtbU1nj9/ztUsq6EEBgbi4sWLmDhxIhISEvDhwwfmvUuXLqFfv36YPXt2rYLUvXv3cPPmTUhLS9d4rymI541l2wL8z/d85MiR0NfXx+TJk9GtWzeEhYVh7969aNu2LWbNmtUosTR3evbsiRcvXkg6DIaysjLExMTwlXkubugGdfVln/v4+ODdu3dYsmQJKIrC69evkZGRgVGjRnGNU1ZWxoQJE3D27FlwOByRxJieng4AYt+4WrlyJWbPno05c+bg3r17jW7ZAlQLwXv27OGaQ5qZmYHD4TSoRwVtLdoSbVsA8CWeN7fMcw6HwzVHOXfuHPr37y90pXdzg8Vi4ccffxT7v5mTkxOmTJnSYm36CM0T8mkUMbSwIkhDy4aQn5+PlJQUvjLPs7OzmWyut2/fYty4cWjVqhXfzdJqgy4BbCzxXFFRETY2Nnz5nrPZbERGRja6ULlnzx5cv34dffv2ZV7r3bs3duzYgW3btuHff/+Fv78/9PX1BV7w9evXD48ePcLbt28xcODAWgX04OBgUBRVw+dXEAQRz+lGnbXZGujo6PD0tqysrMT48eOxYsUK+Pj4cL0nqHgOVPtQAtWCvbizYYRh3759WLNmTYtteCdOpKWl8fLlS8yYMYPn+z179kRycnKN3hZ0U7I+ffrg77//5rK04hcOh4M1a9bg0KFDtY5JTEwE0PQ2bVoyq1evhqKiIvr16yf0OZYvXw4zMzPs378f06dPh5OTUw1bsC9fvqC0tJSI52LG3NwcMjIyXOJueHg42Gw2OnfuLMHIGo+ffvoJWlpacHBwwOLFi5Gfn9+g81EUhZUrV8LGxganT5+GiooKbt26BaD6uf306dN6E1BkZGRq3bgwMTFBYmIiysrKGhSnsLDZbGRmZjZa5rmLiwtatWqFsLAw7N69G4GBgZCVlUX37t1x4sQJLF26FEpKSo0SS3OnZ8+eCAsLa/BnnF9ycnLqtHyMjIwEh8PhO/NcnNCZlvWJ5+/evYOioiK8vLxw/fp13LhxAxoaGjwtIWfMmIG4uDg8f/5cJDHS5xH3ZgOLxcI///wDV1dXxMfHM7Ypjc38+fNhb2/P/D8teNdn3fL06VPMmjULLi4u0NXVxbVr15j3IiIiIC0tLZENgcbAxsYGnz59qjM7vzllnltbW0NeXh5Hjx4FRVGIj4/Hs2fPiB83gfCdQMRzEVJSUsI0q2ss8ZyeVNUnDtPCdlxcHCoqKhAaGooePXpg6NChtYrnpaWlKCgoqDcGulSwscRzoNq6hZ+/cUJCAsrKyho9i8TY2JhnOdOqVauwZMkS/Pjjj/Dw8BDI7/xrevbsicePH+PNmzc4fvw4zzGBgYFQVlZu0O8uiHhOj6tNXNLW1uaZef7bb78hICAA6urquHTpEtd7qampUFBQ4PK2rg8LCwuMGjUKnTp1apJl07KystixYwcpQRMDtAXSt9nn9CbM+vXr8dNPP2HJkiUC36MTExNRUlLCVIx8S1lZGZMpSsTzxsPZ2RkFBQUNWkzr6+vj5cuXyM7OxsuXL/HlyxfG2oymvvsbQTTIy8vD3NycSzwPCQkBi8US2oKsuWFkZIQ3b95g3759OHfuXK2bhd9SVFTE0wLj1q1beP78Ofbs2QNFRUUMGTKEEc89PT0hJSXF5WMuKCYmJqAoissasDHJysoCh8NpNPG8devWiI+PR1RUFJYtW4bu3bvj9evXmD59Otq3b4/Fixc3ShwtARcXF1AUVetzVZRQFAV7e3vs3buX5/scDgc3btwAIH4xmB/opvL1CbPv37/HqFGjMGLECPz888/w9PSEu7s7zyqRXr16wcTEpM4kAEG4ePEiXFxcmOav4kRWVhaenp4YPnw4Bg8eLPbr8UP79u3Rtm3bOv+N2Gw2Jk2ahOfPn0NfXx9ycnLw8PBg3v/06ROMjIwgJyfXGCE3OjY2NmCz2bX+jTgcDnJycpqNeK6goIB///0XZ86cwbJly3DhwgUoKyuL1cKEQCA0HYh4LkKCg4PBZrOhr6/faOI5nclbn1hDCwuxsbEIDw9HRUUF7O3tMWrUKLx586ZGpiYALF68GG5ubvXGEBsbi1atWjVqyVX37t0RHh5ep20J8L9yuKZikcFisXDgwAGMGTMGGRkZDerK7eDggAkTJuDw4cM8SzCDgoJgb2/PcwLNL8KI57VlnvMSz+/evYtdu3Zhx44dmD9/Pq5fv86VnZCamgotLS2BS/WPHz/e4IoKQvNDXV0dxsbGNQQkWjzX1tbGvn37oKqq+n/s3XdYFGfXBvB7qQIiKkpVkA6CIKJYYwcVNZrYY4sajT3RWKJJ1BiNSawxxhI19hp7V1CxolJEekd6VaRI353vD76Zl3WXZRcWFuT8rovrfTM7O/sgsDtzz3nOg5s3b8p0bLa9VUxMDLKzs7nt8fHxMDMzg4aGBmbOnIkWLVrUW/sAUkFVVVVux+rWrRs0NTXx8OFDoe3Vzawh8tOpUyeR8NzKykpsq6aPlYqKCr799lusXbsWnp6e1S6QzufzMW7cOPTp00copGAYBmvXroWbmxvc3d0BAKNGjUJAQACSkpJw5swZuLu7o3Xr1jUeq5WVFQAorHULuzZKfb7v6urqCp1baWhoYN++fUhKSqrVv2VTY2lpibZt29ZL65a4uDgkJiaKvT7z9fVF79698fPPP2P27Nlo2bJlnY9HGjY2NhIrzwUCAV69eoXOnTtj586dePv2LV6/fl1lkMfj8bB06VJcuHBBqJVnTbx58wZ37tzBxIkTa3UcWbRo0QJXr17F4MGD6+01JeHxeNX+jB4+fIiMjAwcP34cx48fx7Rp03Dv3j2uTeXHulgoi73pXVXrlnfv3oHP5zeati1AxQyOPXv2YOfOnVi/fj23ngAh5ONH4bkcPX/+HJqampg2bRr8/PzkshBndZKTk9GsWbNqT9bbtGmD5s2bIy4uDgEBAeDxeOjcuTM8PDygqqrKVSGxSkpKcP78efj7+1e7MntcXBzMzc3rtRepq6srBAIB9u7dK9Inu7KwsDA0b968XqoipKWsrIxjx47ht99+w5QpU2p1rIULFyI2Nha3bt0SeezFixe16ncOyN62RUVFBa1atRL7+IfheV5eHqZNm4aRI0fiu+++w8SJE/Hu3TvcuXOH2+fVq1c1+tm1adOmyUzxJ8J69eolEp6zv3fGxsZQUVGBra1ttVOhPxQWFsb13avcMurixYtIT0/HwYMHce/ePURHR9fqhhVRLFVVVfTq1avK8Jwqz+ueo6MjgoKCuHOowMDAJvt+PnDgQBQVFUlcawEA1q9fjzt37qB58+bYt28ft/3JkycICgri2pkBwLBhw6CiooI9e/bg0aNHtV4zyNDQEFpaWjKF5/LquQyAK/5oCP1mm0JPfnni8Xjo06dPvSwa6uPjAwAii/EGBwejR48eeP/+Pe7fv49//vmnzsciLVtbW4lVzXFxcSgoKEDnzp3RoUMHbNiwAfr6+hLbmE2fPh2tW7fGtm3bajW2c+fOgWEYjBs3rlbHaeyq+xmdOXMGpqam3PpWgwcPxrt37+Dv7w+govL8Yw7PdXR0YGJiUmV4npWVBQCNpvKcNXfuXGzfvh1lZWWYOXOmoodDCKknFJ7L0bNnz+Di4oKePXsiJyen1nf1pZGcnIx27dpVe8LO4/G4RUMDAgJga2sLLS0t6OjoYMCAASJVul5eXsjLy4OSkhKuXLki8dhseF6f7O3t8eWXX2L58uVwcXER6ZXNCg8Ph62tbYO7oGnWrBlWrlxZ6wql7t27w8XFRWQKZmZmJhISEuQWnktzIygzMxN6enpV/lsbGxsjLy+Pmy3w/Plz5OTkYPPmzeDxeLC3t4eDgwPXuuX27du4ffs2vv7661p9D6RpYRduqxzOpKSkQENDg2v/U12lkDhhYWHo0qUL2rRpIzTF/M6dO+jbty9mzpyJAQMGUGXyR6Bv3754/Pix0I3ZjIwMKCsrQ1dXV4EjaxocHR2Rn5+PhIQEMAyDV69eNdnw3MnJCa1ataryHAcAbty4gfXr12P9+vWYP38+Dh8+jMLCQgDA33//DSsrK6FZhC1btkT//v2xefNmqKurY9SoUbUaI4/Hg6WlpdTh+fv372FoaMgt7F1b0dHR0NLSqre2LUS+evfujefPn6OsrKxOX4cNz2NjY1FUVMRtv3//PlRUVODr64v+/fvX6RhkZWNjg5iYGJSXl4t9/OXLlwAqFjEEgKVLlyIpKQnq6upVHlNDQwMLFy7EoUOHhGbRyer06dMYNGhQkz/nYcNzhmFQWloqNHu2vLwc58+fx/jx47lrI1dXV2hra8PLywsFBQVITEz8aBcLZUlaNJT9HWxMleesb7/9FtnZ2Q3ufYMQUncoPJej58+fo0ePHujatSuA+ul7zobn0jA3N+cqzysvePLZZ5/B29tbqML43LlzsLW1hZubW4MMz5WUlHDo0CH4+PhAU1MTgwYNws6dO0X2+9inw/F4PCxcuBA3b94UunBlf/dqs1goUBGel5aWcgvNSpKRkSHxJJqtCmOrgP38/KCjo8NN+QaAiRMn4vLly8jJycHChQsxYMAATJo0qVbfA2laLCwsUFpayrVqASp+54yNjbmLFzY8l2V2UFhYGOzt7dGjRw8uPC8qKsKDBw8wZMgQ+X4TRKH69u2L3NxcoQrFjIwMtG3blpt9QOqOo6MjACAoKAhJSUl49+5dkw3PlZWV0b9/f9y/f1/s48nJyZgyZQpGjBiB1atX4+uvv0Zubi7Onj2L9PR0nD9/HvPnzxf5vR01ahTKy8sxbNgwmdYUqYqVlZXU4fndu3eRmZmJ7777jqs6rI2oqChYWlo2uCIJIp3evXujqKiIC4Lrio+PD2xtbSEQCIQqhQMCAuDo6CgxcFYUW1tblJWV4fXr12IfDwwMhJGRkdC5tzRtzNi+/Lt3767RuFJSUvDgwYN6bdnSUNnY2CA/Px+GhoZo1qwZ2rVrx63/cO/ePWRnZwvN7lFVVUX//v3h5eUl9bpljZ2k8LyxVp6zqE0XIU0LXQXKSWpqKpKSktC9e3e0adMGZmZmDTI8j4qKQmBgoFB4Pm7cOGhpaeHXX38FAJSWluLSpUsYO3YsRo0ahQcPHiAnJ0fsMfl8Pl6/fl3v4TmrR48eePLkCZYvX45vvvkGO3bs4B5jGAbh4eENYuGfujRx4kTo6uoKnQT7+vqiTZs26NChQ62OzZ6QS9O6JTMzU2JLA3HheZcuXYQu6idMmID3799j+PDheP36Nf7++2+6ICYyMTMzAwChxetSU1OFpvTb2NigoKCA65VbHYZhEBYWho4dO6J79+548eIFBAIBHj16hOLiYgrPPzKurq5QU1MTat1S3fsbkR9jY2O0atUKwcHB3CLsTTU8B4ABAwbAx8eHqyavbNmyZVBVVcXRo0ehpKQEc3NzDBkyBHv27MGBAwegoqKCL7/8UuR5o0aNgqqqKqZOnSqXMcoSnl+7dg0mJiZgGAbff/99rV87OjqaFuBuxLp06YJmzZrVaeuW9+/fIygoCLNmzQIg3Lrlw4KihsTGxgYAqmwLEhgYyFWdy6JNmzaYMWMGdu3aJVSFL62zZ89CVVWVFklERWutb775BnPnzsX+/fvRokULfPHFFygrK8OZM2dgYWEh8vs1ePBgPHnyhFuYnP05f6w6deqE5ORksVlCdnY2eDwehdCEkEaBwnM5YftR9ujRA0BFxW9DC88tLCwQHx+PoqIioQ9yXV1drFy5Ert370Z8fDzu37+Pd+/eYezYsRg5ciT4fD5u3Lgh9pgpKSkoKytTWHgOVFRf//7771i5ciWWLFmCrVu3AqhYRCo3N/ejv6PfrFkzzJ49G//++y/S09MBVPRk7tatW62DZ1nC85pUnrOzNFiWlpbo2rUrfHx88N133330Pzsif+wNo8rhOVt5zmIvVKRt3ZKSkoL8/Hx07NgRPXr0QG5uLiIjI3H79m0YGxt/9DfomhoNDQ1069ZNKDyv7v2NyA+Px+P6nr969QqtWrVqUOuW1LeBAweitLQUT58+Fdru7e2NM2fO4Pfffxdaa2Tu3Ll48eIFNm/ejMmTJ4td/LB9+/ZITk6WW/hlZWWF5ORkvH//XuJ+DMPgxo0bGDNmDH799Vf8+++/It+XJPPmzRNaFwWoCM8rz2AjjYuamhpcXV3rNDz39fUFn8+Hu7s7TE1NufC8qKiIa8nWEBkbG0NTU7PKc5WahudARYuXnJwcbNy4Uebnnj59Gh4eHg1mYVVF0tbWxo4dO7Bu3TrMmjULJ0+ehL+/P1atWoWLFy9iwoQJItdigwcPRmlpKf755x8YGRnJZfZPQ9apUycAousNABWV561bt6a1ggghjQKF51XIy8tDQkKC1Ps/f/4cxsbGXEDTrVs3BAQEVNmnTh4EAgFSUlJkqjxnfXiy9c0336BNmzb48ccfce7cOVhaWsLR0RHt2rWDi4tLla1b2MVE2WpPReHxeNi0aRNWr16NZcuWYfHixdwUsaYQwH777bdo3rw5Ro8ejaKiIvj6+ta63zkg38pzDQ0NtGrVCsnJycjMzERiYqJIeA4Ac+bMQceOHfHTTz/VfOCkydLQ0ICRkZHQQscpKSkwMjLi/tvc3BzKyspSh+dhYWEAgI4dO3I3pZ4/f447d+7A3d2dZkd8hPr27YtHjx6BYRgwDIOEhASqPK9HlcNzJyenJv031rFjR+jp6Qn1PS8vL8fixYvRo0cPTJs2TWj/4cOHo127dsjLy+PaM4gjaY0SWfXq1QtARaAvyatXr5CSkoLhw4djzpw56Nq1K+bPn19t6A4Ab9++xd69e3Hq1CluW2FhIZKTkyk8b+T69OmDx48fi7RSu3nzJs6fP1/r4/v4+EBbW5tbW4cN8YKCgsDn8+Hi4lLr16gLSkpKsLGxwdmzZ3H06FGEhIRw/0aZmZlITU2Fs7NzjY5tYWGBNWvW4LfffhNaBL06eXl5ePHiRa3XSvhYde/eHRs2bMDWrVuRk5MjdkFmOzs7GBkZwc/Pr0lco9rY2EBFRUVs65asrKxG27KFENL0UHhehTVr1qB///5S98R9/vw5t5I2UBGeFxYWIjw8XG5jevv2LYqLi7n/zsrKQllZmczhuYWFhUi1gJaWFtatW4eTJ0/i9OnTGDt2LHdRNWrUKNy8eVNoERQWW91Z2/Yg8sDj8bBx40bs2bMHu3fvxpQpU6CmpqbQqvj6oq+vjytXriAoKAjDhw9HdnZ2rfudAxW93JSUlORSeQ5UVNGkpKRwq8yLC89nz56N0NBQaGlp1WzQpMkzMzPj3psYhhGpPFdTU4OFhYVM4bmGhgZMTU2ho6MDOzs7nD9/HiEhIdSy5SPVt29fZGRkIDo6Gr/88gv8/PwwcuRIRQ+ryXB0dERUVBSeP3/epFu2ABXnNgMHDhTqe753716EhITgr7/+EulnrqKigh9//BFffPFFjatSZWVtbQ1LS0tcu3ZN4n7Xrl2DtrY2PvnkEygrK2PPnj2IiIiApaUl9u/fL7HghK1Qr9wbOzY2FgAoPG/k3NzckJGRgQMHDnDbQkJC8Pnnn2PSpEkIDQ2t1fF9fHzg6uoKZWVlODg4cMcLCAiAiooKHBwcanX8ujRnzhzk5ORg+vTp6NSpE5YsWQKgouocEC2GksX3338PZ2dnTJ8+Xer2Lex5E1tNTEQtX74c7u7ucHZ2FvvvxOPxMHjwYAD46BcLBSrOuW1sbMT+HWdnZzfKxUIJIU1Tow/PT506VSd3LH18fPD69WvuxFwSPp8PX19frmULUNHDj8fjya11C8Mw6NWrF9avX89tS05OBgCpw3NTU1PweLwqpyfOnDkT1tbWKCgowJgxY7jto0aNQn5+Pk6cOIGTJ09ixYoVXCVmXFwcjI2N0axZs5p+a3I3d+5c3L59G3w+H3Z2dlBRUVH0kOqFi4sLjh07xl1gyyM8V1JSQtu2basNz4uLi5GXl1dtZWbl8LxVq1YKn7FAPk7s4sgA8O7dOxQXFwuF58D/Fg2VRnh4OGxtbblppT169MC1a9eELoDIx6VXr15QUlLC/PnzsXbtWmzcuBHjx49X9LCaDEdHRwgEAiQlJTX58Byo6Hvu6+uLvLw8HD9+HKtXr8asWbPE3oAGgK+//honTpyot/HxeDyMGDEC165dk1h0cv36dbi7u0NNTQ1AxQ308PBwDBgwAHPmzEGfPn3A5/PFPpdt6xEWFobS0lIA4PqsU3jeuPXv3x9z587FwoUL8eLFCxQWFmLChAmwtLSEhYUFZs2aVeXvRXUYhoGPjw969uwJALC3t0dCQgLy8vIQEBAABweHBnUN86G5c+ciKioK7969w4YNG/Dnn3/i7t27CAwMRPPmzWtVIKSqqoojR44gPj4eP/74o1TPYc+baJ2BqikpKeHGjRt4+PBhlbN72HPHplB5DlS8R8fExIhsp8pzQkhj0qjDc4FAgHPnzqF9+/ZyPW5ZWRm3SFXlabJVCQkJwfv374Uqz7W1tWFnZye38DwuLg6RkZFCx5M1PFdXV0ffvn0xbNgwsY+rqKhgz549+OKLL4SmMHbq1AlmZmaYNWsWJk+ejF27dmH8+PEoLi5GXFxcg6zsHjRoEIKDg3Hu3DlFD6VejRkzBjt27MBnn30mt/68enp61Ybn7OPVvWa7du2QkpLC9TtvylPxSd0xNzfn2rawPfYrt20BZAvP2cVCWZXXttDV1ZXHkEkD06JFCzg7O+Pu3btYtGgRVq1apeghNSn29vbc5wOF5xV9z/l8Pnr27ImpU6di5MiR2LJli6KHJWT48OFITk5GUFCQ2MezsrLw/PlzDB8+XGi7mZkZN+vx+fPnYgMWoCI8b9++PcrKyrgKxujoaLRo0YLCl4/Ajh074OzsjDFjxmD27NmIj4/HmTNncPDgQbx48QI7d+6s0XFjY2ORnZ3NhedslXlYWBj8/f0bbL/zD+no6GDVqlUYMGAAZs6ciYcPH8LJyUlk5omsOnbsiA0bNmD79u1StSuNiIiAsbExtLW1a/W6HztlZWU0b968yseHDBkCAwMD9O7dux5HpTgWFhZiCxKzs7Pp/ZsQ0mg06vD85MmTGDt2rMQTh5KSEuTl5Ql9VSc0NBQlJSXQ0tISmiZbldu3b0NTU1Ok0rdbt25ce4ra8vLy4sbGSk5OhqqqqkwfOt7e3pgxY0aVjw8cOBAnTpwQCjV5PB4uXryIGzduIDs7Gy9evEB0dDR++umnBhueAxVVzpaWlooeRr375ptvcOHCBbkdT09Pj1uItCpseC5t5bm4xUIJkRczMzOkpaWhsLCQC8/FVZ6/fv1abDuqyhiGQWhoqFB4zt4odXd3l/PISUOyePFiLF26FDt27KAbffVMS0sLlpaWUFZWpgV5URE8WFhYIDc3F1euXMGJEyca3CJzffv2RfPmzats3XLz5k0wDAMPDw+xj7u5uQGoaKXxodLSUvj6+mLOnDng8Xhc6xZ2sVD6+2z81NXVce7cOZSWluLkyZP4888/0bFjR/Tq1QuLFi3CDz/8ILQQuLR8fHwA/O+mt62tLZSUlODv74+QkJBGE54DFRXN//77L96+fYvr16/XuN/5h+bMmQMVFRVcvXq12n0jIyO5RddJzenp6SEtLa3eWmspmoWFBRISEkRac2VlZVHbFkJIo9Fow3M+n4+zZ8+KXYijsk2bNkFHR4f7kqZK3d/fH0pKSpgxYwbu379fbd/zK1euwM3NDRoaGkLbbW1tERUVJXXfdEm8vLygpKSEtLQ0vH37FkBFeN6uXbtaVx1Iw8nJCcOGDYOuri4cHBzwyy+/YOvWrQgMDGyw4TmRD3Nz8yorwVjSVp4bGxsjNTUVKSkpDXaBJtL4se9Jr1+/llh5LhAIpPrdzsnJEQrw7O3tsWjRIsycOVPOIycNybRp07B169Z6+YwlopycnGBnZ9egWyrUFx6Ph6dPnyIiIqLB9t5XU1PDkCFDqgzPr1+/jm7dulV5k71169YwNTUVG54HBASguLgY7u7usLa25vo9s+E5+Ti0a9cO169fx9atW/HVV19x2zdu3Ah9fX2MHTsWBQUFMh3Tx8cHNjY2aN26NYCKRcUtLS1x5swZlJWVNbpz0Q4dOmDbtm0AatfvvLIWLVqgf//+uHLlSrX7RkRENIk+3US+LCwsUF5ejsTERKHt1LaFENKYNPgrwvT0dPTp00fk6/jx4xg/fny1F7WrVq1Cbm4u95WUlFTta/r5+cHW1hYjR45ERkaGxEU/s7Ky4OPjg08//VTkMSsrK+Tm5iI7O7v6b1QCPp+Pe/fucSubs9XnbHiuCN999x169eqF4uJiCs8/cnZ2doiMjIRAIKhyn4yMDACo9gSocvUvVZ6TusK+J8XFxSElJQVt27bleuyy2MoptnXLw4cP0adPH5EWRez6DpXDc2VlZezcuZN69hNSh3777TccOXJE0cNoMPT09CS2AWgIRowYgefPnyMrK0toe3Z2Nq5evYrRo0dLfH6XLl3EhudPnjyBhoYGnJ2d4ezszFWeR0VFUXj+kenatSuWLl0qNJugefPmuHz5MmJiYjBhwgSJC8tWlpKSguPHj4u0q3RwcMCjR4+gpKQER0dHuY6/Pnz11Vc4efKkXNfh+PTTT+Ht7S1xhjafz0d0dDRVnhOZWVhYAIBQ65bCwkIUFhZS5TkhpNFo8OG5gYEBHj9+LPIVFhaGo0ePYujQoYiOjuZWH/+Quro6WrRoIfRVHX9/f3Tt2hW9e/eGqqqqxNYtN27cAMMwIj0cgf8tpsIuaFRTgYGBePv2LRYsWAAVFRWEhIQAUGx4rqysjCNHjsDJyUlooVTy8bGzs0NRUZHEXoiZmZlo1aqVSED5ITY8b9OmDUxMTOQ6TkJYhoaGUFdXR3x8PFJTU0WqzoGKGz0tW7ZEZGQkGIbB8uXL8eTJEyxYsEBov7CwMKipqdFNQkLqmYWFRaNqqUDAhZQ3b94U2r57924AFe0hJOnSpQtevnwpMmPzyZMncHV1haqqKjp37ozAwEDk5eUhPT2dwvMmwtHREefOncPt27excOFCqWb1Ll68GJqamlizZo3Qdnt7ewAV57eampp1Mt66xOPxMGnSJLn2HR85ciTKyspw586dKvdJSEhASUkJVZ4TmZmYmEBZWVkoPGeLC6nynBDSWDT48Lwqv//+O+7cuYNbt27BysoK27dvl8txS0tLERQUBBcXF2hpaaF79+4Sw/MrV66ge/fuYqehsndZo6KiajUmLy8vaGlp4ZNPPoGVlVWDqDwHKr6/wMDAJtlXvClhV4KXNAMjIyNDqgVK2fCcFgsldUlJSQkdOnTgKs8/7HcOVFx8souG3r59Gy9evMDXX3+Nc+fO4b///uP2CwwMhI2NDVRUVOrzWyCEkEZHX18frq6uQq1bioqKsGvXLsyYMaPaCsMuXbogJydH6GY9wzB48uQJt7Ces7MzCgoKcPv2bQCg8LwJcXd3xz///IN9+/Zh8ODBXB99ca5cuYILFy7gzz//RKtWrYQeYxcNbWwtW+qSqakpOnXqJLF1S0REBABQeE5kpqqqClNTU6HwPD4+HgAUmmUQQogsGm14Xpmfn5/cjsUuFsqeUA0YMADe3t5iW1YUFxfj9u3bYlu2AICmpibatWtX68pzLy8v9OvXD2pqanBwcEBoaCgYhlF4eE6ahvbt20NTU1NieJ6ZmVntYqFARcV5s2bNqGULqXPm5uYSw3MAXHj+888/o0ePHtizZw/GjBmD+fPnIzQ0FFOmTMGBAwcwZMiQeh49IYQ0Tp9//jkuXryIW7duAQCOHTuG7OzsKmeIVsYugFi5dUtsbCwyMzOFwnMAOHv2LID/zfIkTcPMmTNx4cIF5Ofnw8PDAw4ODjhw4ACKi4u5ffLz87FgwQIMGzZMbGsTNjynmS3CPv30U9y4cQN8Pl/s45GRkdDQ0KBrT1IjFhYWQuG5n58fNDU1qQ0QIaTR+CjCc3liFwtlF2EZMGAA3rx5g+DgYJF979+/j/fv31cZngMVJ/W1Cc+Liorw6NEjDB48GEDFVMOQkBC8ffsWxcXFdAJD6pySkhJsbW3lUnnO4/Fw9epVfPPNN/IcIiEizMzMEB8fX214/uLFCzx79gxr164Fj8fD7t27wTAMHBwccPPmTRw6dAh//PFHPY+eEEIapyVLlmDo0KEYM2YMnjx5gq1bt+Lzzz+XapaioaEhDAwMhMLzJ0+egMfjoWfPngAqpvgbGxvj+vXraN26NbcQJGk6PvvsMzx//hwPHz6ElZUV5syZA1NTU8yZMwdubm4wMzPD27dvsXv3brGzHG1sbPDNN99gzJgxChh9wzVy5Ei8efMGPj4+Yh+PiIiAjY0NLaJNakRceO7s7EwzOwkhjQZ9+n3Az88PdnZ20NLSAgD07NkT6urqYlu3XL16FWZmZkILyX3IysqqVm1bnj59ipKSEi48d3BwQHZ2NndhQeE5qQ+2trbcdE1xpK08B4DBgwfT4jCkzpmbmyMmJgaZmZlie54DFRfQAoEArq6uXHW5np4eTp48iUWLFiEiIgJffvkltRgihBApqaqq4uzZs3BxccHAgQMRFRWFZcuWSf18tu856/Hjx7C3txdqvdG5c2cUFRVRy5YmjMfj4ZNPPsGlS5cQGRmJsWPH4tGjR2jevDkWL16MR48eoUOHDmKfq6ysjB07dtA11Ae6desGfX39Klu3REZGUpUwqTE2PGdbLfn5+dFMZEJIo0Lh+Qf8/f2FeuA1a9YMvXv35norshiGwZUrV/Dpp59KDFasrKwQExMj1cI24nh5eUFPT4+bYsgucsNOh6UTP1If7OzsEB4eXuXvsbSV54TUF3NzcxQVFYFhmCorzzt37gxlZWX8/PPPQu/j7u7u2LlzJy1iRAghNaChoYGrV6/CwcEBgwcPlmlh+S5dunAFIllZWThz5gw8PDyE9mFbt1B4ToCK34O///4b4eHhuHjxItasWUMtWWpASUkJI0aMwPnz51FSUiLyeEREBPU7JzVmaWmJ9+/fIzMzEzk5OYiJiaHwnBDSqFB4Xgm7WOiHb+SfffYZ7t69i5ycHG6bj48PUlJSMGrUKInHtLa2xvv375GWllajMT1//hx9+vThgh1LS0uoqanh9u3bUFZWlrral5DasLOzw9u3b5GVlSXymEAgQFZWFoXnpEExMzPj/n9V4bmFhQUyMzMxdOjQ+hoWIYQ0CTo6Onjx4oXQ4qHS6NKlC9LT05GWloZff/0VALB8+XKhfSg8J6RuLFq0CElJSfjxxx+Ftr979w4ZGRlUeU5qzMLCAkDFOhbsDVIKzwkhjQmF55WEhISgtLRUZPX1MWPGoLy8HJcvX+a2HTt2DO3bt0e/fv0kHpM9sa9p65aQkBA4Ojpy/62iogJbW1uEhobCyMgIysrKNTouIbKws7MDALF9z9+8eQOBQEA3ckiDIk14DoD65RJCSB1RVlaGurq6TM9hg/ELFy5g9+7dWLFihUirN7aqmKpgCZEvJycnbNq0CVu2bIGnpye3PTIyEgD9zZGaMzc3B1ARnvv5+aF58+a04DMhpFGh8LySDxcLZRkaGqJPnz7477//AAAlJSU4c+YMJk+eXO2iKebm5lBSUqrRoqGZmZnIysriWraw2NYt1LKF1BdLS0soKyuLDc8zMzMBgCrPSYOio6MDXV1dqKmpQVdXV9HDIYQQIgVTU1O0atUKy5cvR6tWrbBkyRKRfTp06IC7d+/is88+U8AICfm4LVmyBG5ubpg2bRo345QNzynsJDWlpaUFAwMDLjx3cXGhxWcJIY0KvWNVMmXKFPj7+0NTU1PksXHjxsHT0xM5OTm4fv06cnJyMHXq1GqPqaamhg4dOtQoPA8NDQUAkfCc/W8Kz0l9UVNTg6WlpdjwnP3dbt++fX0PixCJzMzMYGRkRAt+EkJII8Hj8dClSxcUFRVh3bp10NLSErvfwIEDoaqqWs+jI+Tjp6SkhCNHjqC8vBwjRoxAWFgYIiIi0L59+yr/HgmRBrtoKC0WSghpjCg8r0RDQ0Ok6pxVuXXL0aNH0bVrV3Ts2FGq41pZWdWobUtISAjU1dW5HmEsqjwnimBrays2PL9x4wZsbGxgYmKigFERUjU7OzuR909CCCEN24ABA+Dg4IBZs2YpeiiENEmGhoa4evUqcnJy4OTkhCNHjlDLFlJrFhYWeP78OV6/fi3SJpcQQho6Cs+lZGRkhN69e+Off/7BjRs3pKo6Z1lZWdWo8jwkJAR2dnZQUVER2k7hOVEEOzs7RERECG1jGAbXrl3D8OHDFTQqQqq2Y8cOHD9+XNHDIIQQIoPVq1cjMDCQKssJUaAePXogKCgIP/74I7Kzs7n1CAipKQsLCy4TocpzQkhjQ+G5DMaNGwcfHx8wDIOJEydK/Txra2vExMSAz+fL9HohISEiLVuAilYEY8eOxaBBg2Q6HiG1YWdnh6SkJBQUFHDbXr58ibS0NIwYMUKBIyNEvNatW8PAwEDRwyCEECIDHo8HZWVlRQ+DkCavWbNmWLt2LVJTU7Fu3TpFD4c0cuxsUB0dHZoZSghpdBp1eO7t7Y1BgwahX79+uHz5cp2/3pgxY8Dj8TB06FCZFke0srJCaWkpkpKSpH4OwzBVhufKysr477//4OTkJPXxCKktOzs7ABCqPr9+/TpatGiBPn36KGpYhBBCCCGEkDqiq6sLDQ0NRQ+DNHJsYE6LhRJCGqNG+65VXFyMrVu34ubNm3jw4AFGjRpV569pbGyMrVu3ynznnV2ZXFLrltDQUPTr1w/5+fkAgOTkZOTl5YkNzwlRBLbXYeW+59euXcOQIUNoajUhhBBCCCGEELHY8JxathBCGqNGG54/ffoUGhoaGDlyJD777DOkp6fXy+suWbJE5gUuTExMoKqqKnHRUE9PTzx8+BAXLlwAUNGyBfhff3NCFE1bWxtWVlY4ePAgysrKkJGRAV9fX2rZQgghhBBCCCGkSm3atMGsWbNkan9LCCENRaMNzzMyMhAfH4+rV69izpw5VVaDl5SUIC8vT+irvqmoqMDc3ByRkZFV7hMWFgYAOHr0KICK8Lx58+YwMTGplzESIo0DBw7gyZMnWLZsGW7evAkAGDZsmIJHRQghhBBCCCGkoeLxeDhw4AAtPksIaZRUFD2A6qSnp2Ps2LEi2+fNm4c+ffpATU0NAwcOxKZNm8Q+f9OmTfj555/repjVcnV1xaNHj6p8PDQ0FNra2rh//z6Sk5MREhICe3t76gdGGpS+fftix44dWLhwIdq3b4/u3bujbdu2ih4WIYQQQgghhBBCCCFy1+CTWQMDAzx+/Fjka+jQoVy19suXL2Fubi72+atWrUJubi73JcuinfLk7u6OwMBAZGRkiDzGMAzCwsKwYMECqKur48SJE1UuFkqIos2fPx8zZ85EUlIShg8frujhEEIIIYQQQgghhBBSJxp85XlVdHV18emnn6Jv375QUlLCv//+K3Y/dXV1qKur1/PoRLm5uQEAvLy8MHnyZKHH0tLS8O7dO/To0QOjR4/GkSNHEB8fj6lTpypiqIRIxOPxsHv3bpiZmeHrr79W9HAIIYQQQgghhBBCCKkTPIZhGEUPoj7l5eVBR0cHubm5aNGiRb2+trOzMxwdHXHkyBGh7V5eXnBzc0NUVBSio6O5al5PT08MHjy4XsdICCGEEEIIIYQQQgghpBG0bfmYuLu7486dO/jwfkVoaCjU1dVhbm4Od3d36OnpAQC1bSGEEEIIIYQQQgghhBAFofC8Hrm7uyM9PR3BwcFC28PCwmBrawtlZWWoqKhgypQpMDQ0hL6+voJGSgghhBBCCCGEEEIIIU0bhef1qHfv3tDQ0MCdO3eEtoeGhsLe3p777w0bNuDp06fg8Xj1PURCCCGEEEIIIYQQQgghoPC8XjVr1gz9+vUTCs8ZhkFYWBg6duzIbdPQ0ECHDh0UMEJCCCGEEEIIIYQQQgghAIXn9c7d3R0PHz5EUVERACAjIwM5OTlCleeEEEIIIYQQQgghhBBCFIvC83rm7u6OkpISPHz4EEBFyxYAQpXnhBBCCCGEEEIIIYQQQhSLwvN61rFjR9jZ2eHXX3/lWraoqanB3Nxc0UMjhBBCCCGEEEIIIYQQ8v8oPK9nPB4Pf/75Jx4+fIgTJ04gNDQUtra2UFFRUfTQCCGEEEIIIYQQQgghhPw/SmwVwM3NDePGjcOyZctgYGBALVsIIYQQQgghhBBCCCGkgaHKcwXZtm0bCgoK8OrVK1oslBBCCCGEEEIIIYQQQhoYCs8VpF27dli7di0AWiyUEEIIIYQQQgghhBBCGppG27ZFIBBgxowZiIuLA4/Hw6FDh2BhYaHoYcnk22+/haamJoYNG6booRBCCCGEEEIIIYQQQgippNFWngcGBqKkpASPHj3CTz/9hF27dil6SDJTVVXFggULoKGhoeihEEIIIYQQQgghhBBCCKmk0Vaet2vXDgDAMAzevXuHtm3bit2vpKQEJSUl3H/n5eXVy/gIIYQQQgghhBBCCCGENF6NNjxv06YNlJSUYGdnh5KSEjx58kTsfps2bcLPP/9cz6MjhBBCCCGEEEIIIYQQ0pjxGIZhFD0ISdLT0zF27FiR7fPmzcO9e/dw8OBBBAQE4I8//sDp06dF9hNXed6+fXvk5uaiRYsWdTp2QgghhBBCCCGEEEIIIY1Tg688NzAwwOPHj0W237x5E61atQIAtGzZEu/evRP7fHV1dairq9flEAkhhBBCCCGEEEIIIYR8ZBp8eF4Vd3d3HDt2DP369UNJSQm2bdum6CERQgghhBBCCCGEEEII+Ug0+LYt8sYwDPLz86GtrQ0ej6fo4RBCCCGEEEIIIYQQQghpgJpceE4IIYQQQgghhBBCCCGEVEdJ0QMghBBCCCGEEEIIIYQQQhoaCs8JIYQQQgghhBBCCCGEkA9QeE4IIYQQQgghhBBCCCGEfIDCc0IIIYQQQgghhBBCCCHkAxSeE0IIIYQQQgghhBBCCCEfoPCcEEIIIYQQQgghhBBCCPkAheeEEEIIIYQQQgghhBBCyAcoPCeEEEIIIYQQQgghhBBCPkDhOSGEEEIIIYQQQgghhBDyAQrPCSGEEEIIIYQQQgghhJAPUHhOCCGEEEIIIYQQQgghhHygyYXnDMMgLy8PDMMoeiiEEEIIIYQQQgghhBBCGqgmF57n5+dDR0cH+fn5ih4KIYQQQgghhBBCCCGEkAaqyYXnhBBCCCGEEEIIIYQQQkh1KDwnhBBCCCGEEEIIIYQQQj5A4TkhhBBCCCGEEEIIIYQQ8gEKzwkhhBBCCCGEEEIIIYSQD1B4TgghhBBCCCGEEEIIIUREREQEiouLFT0MhaHwnBBCCCGEEEIIIYQQQoiQsrIyuLi4YP/+/YoeisJQeE4IIYQQQgghhBBCCCFESGxsLAoLCxEUFKToodTYjz/+iNDQ0Bo/X0WOYyGEEEIIIYQQQgghhBDyEYiIiAAAhIeHK3gkNVNSUoKNGzdCU1MT9vb2NTpGo6889/b2xqBBg9CvXz9cvnxZ0cMhhBBCCCGEEEIIIYSQRq9yeM4wjIJHI7uMjAwAQEpKSo2P0agrz4uLi7F161bcvHkTampqih4OIYQQQgghhBBCCCGEfBTYivO3b98iKysLenp6Ch6RbNLT0wEAqampNT5Go648f/r0KTQ0NDBy5Eh89tln3D8IIYQQQgghhBBCCCGEkJqLiIiAq6srgMbZuoXNimtTed6ow/OMjAzEx8fj6tWrmDNnDtatWyeyT0lJCfLy8oS+CCGEEEIIIYQQQgghhIjHMAwiIiIwYsQIKCsrN+rwvMlWnrds2RJ9+vSBmpoaBg4ciLCwMJF9Nm3aBB0dHe6rffv2ChgpIYQQQgghhBBCCCGENA7p6enIy8uDo6MjLC0tG3V4np6eDj6fX6NjNOrw3NXVlQvMX758CXNzc5F9Vq1ahdzcXO4rKSmpvodJCCGEEEIIIYQQQgghjQYbltvZ2cHOzq5Rh+d8Ph+ZmZk1OkajXjBUV1cXn376Kfr27QslJSX8+++/Ivuoq6tDXV1dAaMjhBBCCCGEEEIIIYSQxiciIgKqqqowMzODnZ0djh07pughySw9PR1t27ZFVlYWUlNTYWhoKPMxGnXlOQAsWLAADx8+hLe3t9jKc0IIIYQQQgghhBBCCCHSi4iIgKWlJVRVVWFnZ4fk5GTk5+crelgySU9PR5cuXQDUfNHQRh+eE0IIIYQQQgghhBBCCJGf8PBw2NnZAQD3vxEREYockszS09Ph6OgIZWXlGi8aSuE5IYQQQgghhBBCCCGEEE5ERARsbW0BgPvfxtT3nGEYpKenw9jYGAYGBhSeE0IIIYQQQgghhBBCiDzk5eVh3LhxuH37tqKHUu/y8/ORnJzMhebNmzdH+/btG1V4np+fj6KiIhgYGMDY2LjGbVsa9YKhhBBCCCGEEEIIIYQQIk/FxcUYPXo07t+/j/T0dAwZMkTRQ6pXkZGRAP5XcQ5UtG5pTOF5eno6AMDAwABGRkZUeU4IIYQQQgghhBBCCCG1UV5ejokTJ+LZs2dYvHgxHj9+jJiYGEUPq16xvc0/lvC8NpXnFJ4TQgghhBBCCCGEEEIIgJUrV+L69es4d+4cfvvtN+jo6ODw4cOKHla9ioiIgLGxMbS1tbltdnZ2iI2NRWlpqQJHJj2qPCeEEEIIIYQQQgghhBA5YRgGp0+fxuLFi+Hh4QENDQ1MnDgRR44cAZ/PV/Tw6k3lxUJZHTt2BJ/PR3R0tIJGJZv09HRoaGigRYsWMDIywps3b1BcXCzzcSg8J4QQQgghhBBCCCGENHlJSUlITU1Fv379uG1ffvklkpOTce/ePQWOrH6FhYWJhOeOjo5QUlLC06dPFTQq2aSnp8PAwAA8Hg/GxsYAgLS0NJmPQ+E5IYQQQgghhBBCCCGkyWOD4R49enDbunfvDhsbmybTuqWkpATR0dFwcHAQ2q6jowNXV1d4enoqaGSyYcNzADAyMgKAGrVuofCcEEIIIYQQQgghhBDS5Pn4+MDCwgJ6enrcNh6Phy+//BIXLlxAZGQkGIZR4AjrXlRUFMrLy0XCcwAYPHgw7t69C4FAoICRyaZyeM5Wntdk0VAKzwkhhBBCCCGEEEIIIU2ej48PevbsKbJ96tSpaNasGWxtbWFqaopFixY1moUzZRUSEgIAsLe3F3nMzc0Nb9++xcuXL2t07IiICHTo0KFe+qZXDs91dHSgoaFBleeEEEIIka/IyEgkJiYqehiEEEIIIYQQUqeKiorw8uVLseG5sbExXr9+jStXrmD06NHYtWsXbt68qYBR1r3Q0FAYGRmhVatWIo/16NEDWlpa8PLyqtGx//rrLyQkJOCvv/6q7TCrlZaWxoXnPB4PRkZGTbfy/NSpU2jbtq2ih0EIIYR8dEaPHo1x48Z99FMTCSGEEEIIIU2bn58fysvL0atXL7GP6+joYOTIkdi5cyc6deqE06dP1/MI60dISIjYli0AoKamhn79+tWo73lBQQGOHTsGPT09HD58GPn5+bUdapX4fD4yMzO58ByouAHSJCvPBQIBzp07h/bt2yt6KIQQQshHJTw8HBEREXjx4gWePHmi6OEQQgghhBBCSJ3x8fGBlpZWlcFxZZMmTcKVK1fw/v37ehhZ/QoJCRHbsoU1ePBgPH78GEVFRTId99SpU3j//j0uXLiA9+/f4/jx47UdapWys7MhEAiEwnMjI6OmGZ6fPHkSY8eOhZJSo/9WCCGEkAblwoULaN68OWxsbLB161ZFD4cQQgghhBBC6szTp0/h6uoKFRWVavedMGECCgsLcfXq1XoYWf0pLCxEXFycxBsIbm5uKCkpwePHj6U+LsMw2LNnDzw8PNC7d2+u9U1dzXBOT08HAJHK8ybXtoXP5+Ps2bOYMGFClfuUlJQgLy9P6IsQQggh1bt48SI8PDywbNkyXL58uV4WdSGEEEIIIYSQ+sYwTJWLhYpjbm6O7t2749SpU3U8svoVHh4OhmEkhuf29vYwMDCQqe+5n58fXr58iXnz5gEAFixYgLCwMHh7e9d2yGKJC8/ZynNZA/tGHZ4fP34c48ePl1h1vmnTJujo6HBf1N6FEEIIqV5CQgL8/f3x+eefY8qUKWjbti22b9+u6GERQgghhBBCGrjAwECEh4crehjVys7Oxp49e/D27VvEx8cjMzOzyn7n4kyaNAk3b95ETk5OHY6yfoWEhAAAOnbsWOU+PB4PgwcPlqnv+d69e2FqaoohQ4YAAAYMGAA7Ozv8/ffftRtwFdjwXF9fn9tmbGyM9+/fy1xY3ajD87CwMBw9ehRDhw5FdHQ0lixZIrLPqlWrkJuby30lJSUpYKSEEEJI43Lx4kWoqanBw8MDzZo1w4IFC3D48GG8efNG0UMjhBAiB7QQNCGEkLoyceJEDB06tE4XhJSHgwcPYv78+TAxMcGcOXMAAD169JD6+ePGjUN5eTkuXrxYV0Osd6GhoejQoQOaN28ucb8hQ4bg5cuXuHDhQrXHLC4uxqlTpzB79mwoKysDqAjgFyxYgEuXLiE5OVkuY68sPT0drVq1grq6OrfNyMgIAGTue96ow/Pff/8dd+7cwa1bt2BlZSW2Ik5dXR0tWrQQ+iKEEEKIZBcuXICbmxu0tbUBAPPnzwfDMDhy5IiCR0YIIaS24uPj0bZtW+zatUvRQyGEEPKRiY2NRWRkJBITE/HDDz8oejgSvXz5El26dME333wDX19fdOrUCbq6ulI/38jICP379290rVuKi4tx7Ngx8Pl8kceqWyyUNXHiREycOBHjx4/HmTNnJO4bHh6OoqIiDBo0SGj7tGnToKmpiX379sn2DUghPT1dqGULAJiYmAAA4uLiZDpWow7PK/Pz81P0EAghhJCPQkZGBh4/fozPP/+c29amTRv06tULDx8+VODICJGev78/nj17puhhENIg+fj44M2bN1i0aBGWLFki9uKZEEIIqYkbN25AVVUV69evx65du+Dj46PoIVUpICAAn3zyCTZu3Ijk5GTcv39f5mN8+eWX8PLywoMHD4S2l5WVQSAQyGuocnX27FlMmzYNe/bsEXksJCREYr9zloqKCo4dO4ZJkybhiy++wMmTJ6vc99WrV+DxeCLH1dbWxrRp0/DPP/+gpKRE9m9EgqrC81atWiEgIECmY3004TkhhBBCai47OxubN2/G+vXrsWjRIvB4PHz66adC+/Tq1QtPnz6lqf4NVFBQENavX6/oYTQYy5cvx8yZMxU9DEIapJCQELRr1w5///03du7cifHjx9N7O/novX37ln7PCakH169fR79+/bB69Wp069YNs2bNkmswWlRUJJfj5OXlITo6Gs7OzgAqglxZqs5ZU6ZMQZ8+ffDVV19xY0tJSYGtrS1mzZoltC/DMAgICFD4exHbq3zVqlVC7a3z8vKQlJQkVXgOVATohw8fxsSJEzFnzpwq2/QEBQXBwsJCbCuYBQsWIDMzE+fPn6/Bd1I1ceE5j8dD165dZS7ApvCcEEIIITh27BhWrlyJffv2wdfXF7Nnz0abNm2E9unVqxeysrIQGxuroFESSY4dO4a1a9ciISFB0UNROIZhEBQUhPDwcPp9JUSM4OBgODg4YP78+Th06BAuXLiA0NBQRQ+LkDpTUlICMzMz/P7774oeCiEftffv38Pb2xseHh5QVlbGgQMHEB0djYMHD8rl+EFBQdDV1cXp06drfaxXr14BABee15SSkhL279+PxMRErF+/Hm/evIG7uzvS09Nx+PBhvHjxgtv3xIkTcHFxwa1bt2r1mrXBMAy8vLzw9ddfQ1tbG4sWLeIeY88FpGnbwlJWVsamTZtQWFiIc+fOid0nKCgIjo6OYh+zs7PDwIEDhVrJeXp6YvXq1Zg1axZGjRpVo9kLSUlJMDY2Ftnu4uICf39/mY5F4TkhhBBCEBMTA3t7e6SkpCA+Ph579+4V2YddPOfp06f1PTwiheDgYAAV1T5NXXp6Ore47bVr1xQ8GkIanpCQEHTq1AkAMH78eGhqauLGjRsKHhUhdSciIgJ5eXnYsGED0tLSFD0cQj5a9+7dQ0lJCYYPHw4A6NSpE7p16ybx+uHdu3d48uSJVMfft28fioqKMG/evFovMvny5Uuoq6vDzs6uVscBAFtbW6xZswabN29G//79kZWVBT8/Pzg4OOC7774DwzBIS0vD4sWLASj2/DQkJATp6ekYO3Ysdu7cicuXL3MLnoaEhEBJSQm2trYyHdPExAQDBw7EoUOHRB5jGAavXr2qMjwHgIULF8LHxwfe3t6YOXMm3N3dcezYMYSGhsLLywuXLl2SaTx8Ph8JCQkwNzcXeczFxQUpKSlIT0+X+ngUnhNCCCEEsbGxsLCwkLhPq1at0LFjRwrPGygKz/+H/bewtrbG1atXFTwaQhqW/Px8vH79mpuS3axZMwwcOBA3b95U8Mg+fkFBQSgsLFT0MJqkkJAQAICamhp+/PHHavefM2cO5s+fX9fDIuSjc/36dVhaWsLa2prb1rlzZ7x8+bLK5yxatAgDBw6ssuUHq7CwECdOnMD8+fOhqamJmTNn1qqneEBAADp16gRVVdUaH6Oy5cuXo2PHjkhISMCtW7dgZ2eHLVu24PHjx7h48SLmzp0LNTU1TJo0CTdu3KiydUtubi4yMzPlMiZxPD090axZM/Tp0wdjxozByJEjMXbsWOjr6+P777+HhYUFNDQ0ZD7ujBkz8OjRI8TExAhtT09PR3Z2NpycnKp87siRI9G+fXsMHDgQ586dw8GDB5GYmIhnz57B2dlZ5pueycnJKC8vh5mZmchjXbt2BQCZqs8pPCeEEEIIYmJiYGlpWe1+bN9z0rC8ffsWqamp6NatG+7du9fkw5ng4GBoampi4cKFePDgAfLy8hQ9JEIaDHZKduV+psOGDcPjx4/pb6UOZWdno0uXLhg7diwt0KoAwcHBaN++PX755RccOnSo2sXifHx8aNFpQmTEMAxu3LgBDw8Poe3Ozs6IiIgQ26s8LCwMJ06cQGlpKby8vCQe/7///kNubi6WLVuGQ4cOwdPTE7t3767xeF++fFnrli2Vqamp4e7du3j16hW6dOkCABgyZAiGDBmCGTNm4MqVK9i7dy8mT56M169fIzIyUuxxpk6dCmNjY0yZMkXm9iLS8PT0xCeffIJmzZqBx+Ph2LFj2LNnDxYtWoRp06bh119/rdFxP/vsM7Ro0QJHjhwR2h4UFAQAEivPVVRU8Msvv2DUqFEICgrCzJkzwePxAACGhoYyh+dxcXEAILby3NTUFK1bt6bwnBBCCCHSKy8vR0JCQrWV50BFeB4SEoLc3Nx6GBmRFltp/f3336O4uBj37t1T8IgUKygoCPb29vj0009RXl6O27dvK3pIhDQY7JTsytPUhw0bhvLycty9e1eBI/u4eXt7g8/n4/bt2/j+++8VPZwmJzg4GJ06dcLXX38NOzs7LF26tMqqT4ZhEBcXh9jYWIUv6kdIYxISEoKkpCSuZQurc+fOEAgE3PlqZWvXroWJiQmsrKyqnT25f/9+DB48GGZmZnB3d8fChQuxYsUKZGdnyzzW4uJihIaGciG3vLRt21ak2nnLli0oKCjApEmTMHr0aAwYMADq6upiZ3wVFRXB09MTgwcPxpMnT9C1a1fs379fbuMrKSnBgwcPMHjwYG6bjo4O5syZgx9//BHbt2/H2LFja3RsTU1NTJgwAUeOHBG6SRwUFITmzZujQ4cOEp8/ffp0XLx4UWQ/Q0NDpKamyjSW+Ph48Hg8mJqaijzGLhpK4TkhhBBCpJaYmIjy8nKpw3OGYfD8+fN6GBmRVnBwMFRVVTFy5EhYWlo2+T7fwcHBcHR0hKmpKTp16kStWwipJCQkBJaWlkJTss3MzGBjY0N9z+vQvXv3YG1tja1bt2LLli04evSooofUpLB9/lVUVLBlyxY8ePAADx48ELtvZmYmCgsLkZeXh5ycnHoeqXgCgQCDBw/Go0ePFD0UQqp048YNaGpqol+/fkLbHRwcoKysjMDAQKHtgYGBOHfuHNauXYtPP/1UYiuTsLAwPHnyBLNnz+a2rVmzBmVlZTh79qzMYw0JCQGfz5dr5XlVHBwc8PLlS27RVE1NTfTv31/sZ+7jx49RXFyMzZs3Izo6Gj179sSdO3fkNpanT5+iqKgIbm5ucjtmZTNmzEBSUhLu37/PbXv16hU6deoEJaWaRdA1rTw3MjKCurq62MddXFzg5+cn9fEoPCekkTlw4ADi4+MVPQxCyEeE7UsnTdsWa2trtG7dWq6tWzIyMrBhwwaq7qqFkJAQ2NnZQVVVFcOHD8f169eb7L9neXk5wsLCuMUQR44ciRs3blCbBEL+X3BwsFDLFpaHhwdu3rzZ4N478vLyUFpaquhh1Nq9e/cwcOBAfPPNN5g5cyZmz55N5/T1JDc3F4mJidzv/dChQ2FmZoaTJ0+K3Z+d7v/h/1ek1NRU3L17V64hGiHydv36dQwePFgksNTQ0ICtra1IeL5mzRpYWVlh6tSpGD58ONLS0qrsjX7gwAG0adMGo0aN4ra1bdsWQ4cOxbFjx2Qe68uXL6GkpMSdL9Y1R0dHoZvWw4YNw8OHD1FQUCC03+3bt2FkZAR7e3uoqKigc+fOiIiIkNs4PD090bZtW4n9x2ujR48esLGxEaqWDwoKktiypTpGRkbIyclBcXGx1M+Jj48X27KF5eLigtTUVKlDeQrPCWlE4uPjMXv2bJEeUoQQUhuxsbFQUVGBiYlJtfvyeDy59z2/ePEifvrppzpdGOdjx05HB4ARI0YgOTmZ6y/Y1MTExKCkpETo3+PNmzfUu5aQ/xcSEiI2PB82bBhSUlK4hRUbioEDB+KXX35R9DBqJSUlBZGRkRg4cCB4PB527twJADQrpp6wv9Ps5wKPx8PEiRNx7tw5sTdmYmNjuf/fUMLzqKgoAKiyRzIhipaTk4OnT5+KtGxhfbhoaEBAAK5evYp169ZBRUUFffr0QYsWLcS2bklNTcXhw4cxbdo0kWB+6tSpePbsGaKjo2Uab0BAAOzs7KCpqSnT8+TFw8MDpaWlIq0W79y5A3d3d67ft52dHaKiolBeXi6X1/X09MSgQYNqXAVeHR6PhyVLluC///5DaGgoSktLER4eXquw3tDQEEDFwqPSio+PF7tYKEvWRUMpPCekEWGnI1GVCiFEnmJjY2FqagoVFRWp9u/VqxeePXsmt0pe9iI1KytLLsdrahiGEQrD+vbti+bNm1fbN/Jjxd40YEMSV1dX6OrqSqzWKy4uplZEpEnIzMxEZmam2Eq7vn37QlNTs0G1bikuLsbLly8b/c1Advp6//79AQBaWlro3bs3PD09FTiqpiMkJATKysqwtbXltk2aNAk5OTliPxvi4uKgp6eHVq1aUXhOiJTu3LkDPp+PYcOGiX3c2dkZQUFB3PXDv//+CyMjI0yYMAEAoKqqCnd3d5Hz15KSEowZMwaamppYuXKlyHFHjhyJFi1a4Pjx4zKNV96LhcrKysoKFhYWQn3PU1NTERwcjCFDhnDb7OzsUFpaKpcMKC4uDv7+/nXWsoU1Y8YMdOjQAWvXrkV4eDjKy8trVXnOhueytG6Ji4uTWHluYmICXV1dCs9J7V24cAGbN29W9DBIJadPnwZA4TkhRL5iYmKkatnC6tWrF/Lz8+VWnUjhee0kJiYiLy+PC8PU1NTg5ub2US6SmZ6eXu1Nm+DgYBgYGKBt27YAAGVlZVhZWSExMbHK5xw5cgR9+vRBUVGRXMdLSEPDvm+LqzxXV1fHwIEDce7cOaEKt+LiYsyePVsh7ykREREQCASN/tz33r17cHR05N6XAMDNzQ3e3t4fRUuahi44OBjW1tZCFasODg7o2LEjd31VGRu6mJubN5jwnA3No6OjIRAIFDwaQkRdv34djo6OaN++vdjHO3fujMLCQkRHR6O0tBSnT5/G5MmToayszO0zfPhwvHjxQuiaYPHixQgICMCFCxegp6cnclwNDQ2MGzcOx44d49qOlZSUSDynKy8vx6tXrxQangMV1eeV+7x7enqCx+MJLebJLu4dHh5eq9diGAZz5sxB+/btMW7cuFodqzpqampYu3Ytzp8/j8OHDwMQf94hLTY8l3bR0MLCQmRkZEisPJd10VAKz0mV/vvvP/z+++8Nru9hUxUZGYnAwEDY2dk1+gsIQkjDEhsbK9Vioaxu3bpBTU1NbotWsT3XKTyvmeDgYAAQqiTt1q0bAgMDP6rP8NLSUtja2mLHjh0S96vcwoZV3UJDYWFhKC8vl/qknJDGJCcnhwtoQ0JCoK6uXuUN02+//RaBgYH46quvIBAIUF5ejokTJ+LAgQNYuHBhraaNx8fHo6ysTKbnsGF/XFxco30/YxgGd+/excCBA4W2u7m5oaCggFpK1QN2sdDKeDweJk2ahEuXLqGwsFDosYYYnkdFRUFTUxNFRUVITk5W9HAIESIQCHDz5s0qW7YAFeE5ULFI6K1bt/DmzRtMnTpVaJ9hw4aBYRjcvHkTCQkJWL9+Pf755x/s2bMHrq6uVR57ypQpiI+Px5MnT3D16lWYmZlh5syZVe4fERGB4uJihYfn48ePR2JiIn777TcAFf3OXVxc0KZNG24fIyMjaGtr1zo8P3ToEO7evYt//vkH2tratTqWNCZPngwbGxvs2LEDHTp0gI6OTo2PpaurC1VVVakrz9m8TFJ4Dsi2aCiF56RK2dnZePPmDQW1DcSZM2egra2NefPmISUlBSUlJYoeEiHkI8AwDGJjY2WqPNfU1ET37t2FVlGvzeuzF6YUntdMSEgIdHR0hCp9HB0dkZeXJ7HaurEJDAxEbm4uDhw4IDFEExeeGxgYSOyTyFb0paSkyGewhDQggwYNgouLC5KSkrjFhatq0zVo0CAcPXoUR48exZIlSzB79mxcv34dGzduRExMDM6cOVOjMfD5fDg7O2P+/PkyPY+9Ofj+/XtkZ2fX6LUVLT4+HomJiSLhubOzM3R1dal1Sx1jGKbKRXInTpyI9+/f49q1a0Lb6yI8LywsrFXFeFRUFNzd3QFQ6xbS8Pj6+iI7OxseHh5V7qOrq4v27dvj5cuXOHbsGJycnETO1/T19dGtWzfMnj2ba/uxdOlSiUE4UNF2zMTEBBMmTMCnn36KoqIiiaHo3bt3oaamJjGQrw99+vTBTz/9hB9++AFXrlyBp6cn93fO4vF4sLOzq9WioampqVi6dCmmT58u1BKmLqmoqODnn38GgFovTsrj8aothKmMzTAltW0BKsLztLQ0qY7bqMNzf39/fPLJJ+jXrx/Gjx8vcyUDkYw9QfX19VXwSAjDMDh16hRGjx4NOzs7MAzzUQUihBDFSUtLQ1FRkUyV50BF39YHDx7UeupwRkYG3r9/D4DC85piQwF2YSEAXF/Bht4n+NKlS3B2dpZqAVofHx8AFdVCVZ2bFBQUIC4uTqSvorThOVXzkY9NSUkJXr16hfDwcPTo0QN3796tdur0pEmTsHv3buzcuROHDx/G4cOHsXr1anh4eGDDhg01Wu/i9evX3M0vWW68hoSEwNjYGEDDWbhRVvfu3YOSkhL69u0rtF1ZWRmDBg2i8LyOpaWl4e3bt2L7/FtaWqJbt244deoUt624uBgpKSlceJ6YmFjrnIFhGNja2uLAgQM1ej7b79jd3R1qamoUnpMG58aNG2jVqhV69OghcT9nZ2d4e3vj6tWrIlXnrA0bNmDRokW4ePEisrOzsXXr1mpfX0lJCXPmzMH79+9x+PBhbNq0CfHx8VW2xbp16xY++eQTaGlpVf/N1bF169Zh1KhRGDduHLKzs8WG27a2trWqPF+0aBHU1dWxbdu22gxVZuPGjcOgQYOq7IMvC1nDc3V1da7dS1WGDBmClJSUavcDGnl4bmxsjNu3b+PBgwewtLTEpUuXFD2kjwobnr948ULBIyHBwcGIiIjAhAkTuKknNCOAKEpsbCzdrPyIsP3GZQ3PBwwYgDdv3tS67zn7+s2aNaPwvIbEVVq3a9cOLVu25Ko2G6KjR49i7NixSEpKwqBBg6o9j/Px8UH37t1hbGyMI0eOiN2H/X0U17YlKytLbOhXVFSEhIQEAFR5Tj4+bH/kkydPwtDQEHFxcVL1HZ07dy7+/fdfnDx5EpMnTwYA/PTTT4iIiMD58+dlHgd70W9vb4/Zs2dLvb5ASEgIRo4cCaDqc9+3b9/iyJEjDbaty71799C1a1exU9bd3Nzg6+uLnJwcBYysaajqc4E1ceJE3LhxA/n5+QAqbvQAFRWLZmZm4PP5SEpKqtUY4uLikJSUJHV7gA/Fx8eDz+fDzs4OlpaWFJ6TBuf69esYOnRolbOaWJ07d8aLFy9QVlaGL774Quw+7u7u2LJlC0aPHg1dXV2px7Bq1SpkZ2dj+vTpsLGxAZ/PF/u5UVxcjAcPHtRbBXZ1lJSUcPToUVhZWUFbWxs9e/YU2cfOzg7h4eE1+px78eIFLly4gG3btqF169byGLLUlJSU4OXlha+//rrWx5IlPI+Li4OpqSmUlCRH3lpaWjAyMpLqmI06PDcwMICmpiaAipV5xf2hlpSUIC8vT+iLVI9hmGorz7Ozs2t9B4xI58yZM2jVqhXc3NxgYmICJSUlCs9JvWMYBtu3b4eVlRUmTZpUo8oz0vCw/carm9b2oR49ekBNTQ3e3t5yef0uXbpQeF4DZWVliIiIEAnDeDweOnXq1GArz3ft2oXp06fjyy+/REJCAkaMGIExY8Zgz549VT7n2bNn6N27N6ZMmYJTp06JtC8rKirC5cuXoaSkxC2uxDIwMIBAIEBmZqbIcWNjY8EwDHg8HlWek48Oe54+YMAAeHt7Y82aNVwYXp0ZM2Zg0qRJ3H/36NEDbm5u+OWXX2TufR4WFgZtbW2cO3cOycnJWLduXbXPYVtP9e7dG61bt66y8nzPnj348ssvG+T7XWxsLC5dulRlH2A3NzcIBALcu3evnkfWdAQHB0NTU7PK3rcjR45EaWkpNyOC/T2zsLDgzo1qO+shICAAQM3brbDPs7a2hrW1NYXnpEFJT0+Hv7+/xJYtLLbv+eDBg6Wq9pWFkpISlwlaW1sDqGh39KFHjx6hqKgIQ4cOlevr14a2tjbu37+PBw8eQFVVVeRxOzs75OXlSR0eV/bLL7/AxsYGEydOlMdQFcbIyEjqtYni4+NlvratTqMOz1mJiYnw8vLCiBEjRB7btGkTdHR0uK+qVv4lwgoLC7kFFPz9/cWeID99+hSRkZG4ceOGAkbYtNy5cwfDhw+HmpoaVFVV0b59ewrPSb0qLy/HokWLsHTpUowZMwYXL17EsmXL6uW1k5KSKFStQ7GxsTA2NoaGhoZMz9PQ0EDPnj1r3fc8NjYWhoaGMDExoZ9zDURGRqKsrExsRZ2jo2ODDJOSk5OxaNEiLF68GPv374eWlhbOnDmDRYsWYf78+fj1119FKmvS0tKQkJCAnj17Yvr06cjJyeF61MbExGD69OnQ19fHb7/9hgkTJoj8PhsYGACA2NYtbAjh5ORElefkoxMeHg5dXV20bdsWzZs3x88//4x27drV+Hhr1qxBSEgIVFVVoaysDENDQ7x586ba54WFhaFjx46wtbXFmjVrsGXLFvTo0QOjRo3C8uXLxV5rhIaGAgAcHBxgbm5e5bnvzZs3AQAnT56s8fdVFxiGwZw5c2BgYIDvvvtO7D6mpqawsrKi1i1y5ufnh7/++gsPHjzAixcvYG9vX2UFoqWlJczMzHD79m0AFUG5mpoajIyMuKIleYXn4oI8aURFRaF58+YwNDSEjY1NgwnPi4uLG/QMN1I/vLy8wOPxpAqju3btCiUlJXz55Zd1OiYjIyNoamqK/Zu7desWjIyMpJqFVZ/atm1b5QKmbFGIrIWrAQEBuHbtGn788UcoKyvXeoyKJGvleXWLhcqq0YfneXl5mDp1Kg4dOiT2Ds2qVauQm5vLfdV2ylVTwVade3h4oLCwEGFhYSL7+Pv7A4BUfUpJ7cTHx8PGxob7bzMzMwrPSb2aN28e9u7di3379uG///7DX3/9hR07dmD79u11+ropKSlwcXFBly5dGm2v04YuNjZW5pYtLHn0PWcXK23bti2F5zXAnkR37NhR5DFHR0dERUWhuLi4voclETujbeXKlVyfdiUlJWzfvh0///wzfvjhB3z//fdCAfqzZ88AAD179oSdnR26deuGw4cPY+/evXBycoK3tze+++47REREiA3QqgvPW7Vqhc6dO1PleSOQmZmJPn36cMEqkSwiIkJkJkZt9OnTB97e3vj333/x888/Iz09XaqfBRueA8Dy5cuxadMm2Nvbo6SkBFu2bIGXl5fIc0JCQqCkpARbW1uYmZmJPQ/IycmBj48P2rZti1OnTtV6HQ55OnToEO7du4d9+/ZJ7Kvr7u5O4bkcMQyDL7/8EosXL0b//v1x9uzZKlu2ABUztYYMGYI7d+4AqDgvMTMzg5KSElRVVWFiYiKX8FxVVRXp6ek1mgkfFRUFa2tr8Hg82NjYIDExEYWFhRKfs2LFCvz00081HbJE79+/x7Zt22Bubg4nJyduFiFpmkJDQ2FiYoI2bdpUu2/79u0RHh5e51XQPB4P1tbWYsPz27dvw93dXWitoIbO3NwcqqqqMi8aumHDBlhYWDT6qnPgfy0Yq2sfyzAM4uPjKTyvjM/nY/LkyVizZg03LeND6urqaNGihdCXIrx69Yrrn9YYsOG5u7s7lJSUxLZuYXu2PXnypMH2GPwYFBQU4M2bN+jQoQO3jcJzUt9u3bqFpUuXYs6cOQCA+fPnY8WKFfjuu+/qrHVTWVkZxo8fD3V1dWhoaGDAgAGN6n20sYiJiYGlpWWNnjtgwADk5OTUqrqZDe+bYnielZWFkSNH1ur7jo6ORqtWrcResHTq1Al8Pr/BtVfz8/ODoaGhSI9BHo+HNWvWYNu2bfjjjz/w/fffc4/5+PigXbt23MKB06dPx7Vr1zBv3jxMnToVoaGhWLt2rdCN5sr09fUBiA/Po6KiYGNjg3bt2lHleSOwbNkyPHnyhBa0l1J4eLhcw3MA6NevH2bMmIGlS5cCQLWfzQzDCI1DVVUVK1aswMGDB3Hz5k107NgRR48eFXlecHAwrKys0KxZsyrPfb28vCAQCPDnn38iKSkJjx8/rv03KAfp6en47rvvMH36dLi5uUnct3///oiLi0NGRkY9je7j9vjxY4SGhuLWrVsICQnB6dOnq20TNGTIEMTExCAuLg5xcXFC0/3Nzc1rFZ4zDIOAgACuv3JNqs/Z8BwA9zknKbAuLCzE7t27ceXKlRqMWLKsrCxYW1tj5cqVXFZQ21mIpHGr/PspDfZGUF2ztrZGdHS00Lbk5GSEhoY2qJYt0lBRUYGVlZVM5/RBQUG4ePEifvjhh2p70TcGbJuf6j4rs7OzUVBQQG1bKjt79iyePn2KX375Bf3798eZM2cUPSSEh4dj48aNItvHjh2L2bNnK2BENcOG5x06dEDHjh1FFg1lGAb+/v5wdnZGRkYGBbl1iF3EjMJzoih8Ph9paWkiH0BsZWhdtYVYuXIlXrx4gbNnz+LevXtQUVHBgAEDqDJUzmpTed69e3c0a9ZM7EVTbm6uVFP5Y2JiuPD8zZs3DapqsK49ePAA165dw+nTp2t8jOjoaFhZWYl9jJ2O2tBat/j7+8PFxaXKx5csWYJff/0VW7Zs4S4Snj17JrSA0uTJkzFmzBjcuHEDe/fuRfPmzSW+ppqaGnR1dcVO94yMjIS1tTWMjY2RlpZG6zk0YPfv38exY8cAVH/xRACBQIDIyEi5h+csTU1N6OnpVRueJycno6CgQOwMGR6Ph2nTpuHixYsiFbkhISHc+5i5uTkSExNF2rvcunULHTt2xIQJE2BqaooTJ07U7puSk9WrV0NVVRVbt26tdl/2exQ305dIxufzRa5T9+zZA2tra7i7u8Pe3h4TJkyotnXrwIEDoaKigtu3b8s9PE9OTkZ2djZX+VmTliviwnNJx7l58ybev3+PyMjIWn2mJSYmitzgP3DgAN6+fYvw8HAcPnwYXbp0qfX6N6RxkzU8ry/iKs/v3LkDHo+HwYMHK2hUNccuGioNPp+PFStWoEOHDpgyZUodj6x+sOF5da1b2JyMKs8rmTRpEt68eQNvb294e3tjwoQJih4Szp8/jx9//FGoPUxycjJiYmJw9+7dRhP6sOF5mzZt4OrqKlLdk5KSgoyMDCxcuBAAtW6pS2x4bmpqym0zMzPj7qgRUtcyMzPB5/O5ik9Wq1at0LJlyzppp3LlyhVs374dW7duRc+ePdGuXTvcv38fRUVFWL9+vdxf72N1//59sVPhWW/fvkVOTk6Nw/NmzZqhZ8+eIhdNt2/fhrW1NcaMGSPx+WzAzrZt4fP5yMnJqdFYGiM2KKmr8FxbWxvm5uYNqh8pe/O9a9euEvdbunQp2rdvjx9++AFlZWXw8/NDjx49uMdbtmyJc+fOYdiwYVK/toGBgUjlOcMwiIyM5CrP+Xw+hbINVElJCebOnYtPPvkE1tbW9HOSQkJCAoqKiuosPAcqijuqC8/Z9zpx4TlQcTOspKQE586dE9oeEhLCtdswMzMDn88XusZiGAa3bt3CsGHDoKSkhEmTJuG///5DaWlpLb4jYUFBQTLPenvz5g1OnjyJZcuWQVdXt9r9LSwsoKqq2uTC89TUVIwaNapWs68uX76M7t2748iRIwAqzlnPnTuHuXPnylTZ2qJFC/Ts2RO3bt2Se3jO9jvv378/DAwMZA7P2UUC2XBSV1cXurq6Eo9z9uxZqKmpoaSkpMazNhmGgbu7O0aMGMHNMufz+di7dy8mTZrEzVrs378/vL29aSZ6EyUQCBAdHd1gw/OUlBShzOTWrVvo1q2bVO/NDY204TnDMFi0aBE8PT3x999/i21v3RixM1arWzSUDc+p8ryBY6f73r17l9v24MEDABVVTw2lGqI62dnZ0NDQgKamJlxdXREUFISioiLucbbfubu7O2xtbSk8r0OvX7+GioqK0PR29i4aVZ+T+sB+QH3YYgGouOCri/D80KFD6NmzJxYtWsRtMzExwddff41Tp041uRtHEyZMkKp6rbLQ0FAMHz4cQ4cOxeXLl8Xuw1541bRtC1DRuuXBgwc4ffo0vL29sXLlSgwdOhQMw8DX11dixVNsbCwAcJXnwP9u3jYFYWFhUFZWxtOnT2u8Jkt0dLTEn19DWzQ0MTER2dnZEivPgYq2e+vXr8fFixfxzz//oKioSKjyvCYMDQ1FwvPs7Gzk5OTAxsaGu0HYWAodmpo//vgDcXFx2LNnDwwMDCg8lwJ7kd0QwnMNDQ2hQpDK2rVrh0GDBgm1bsnMzERWVpZQ5TkAoXOO4OBgpKamctPvJ0+ejJycHNy6das23xKnvLwcw4YNw7fffivT8w4fPgyGYTBjxgyp9ldVVYW1tXWT6+N/6dIlXLlyBZs3b67xMZ4/fw6gYm2e4OBg/Pvvv1BWVsb06dNlPtaQIUNw69YtFBYWioTnOTk5Nb65HxAQAD09PRgZGcHGxkbmti1s24nK4aSkRUMLCwtx7do1fPXVVwBkX2CQ9eDBA0RGRuLFixfcja3r168jMTER8+fP5/br378/UlNTG0zf8wcPHuCrr77CwoULsWLFCpGZCQ1FSUkJjhw50qhmXJaUlGDixIlCN/qSkpJQUlLSYMNz4H8tjsrLy+Hl5dXoWraw7OzskJaWhtzcXIn7/frrr9izZw/27dsHDw+Pehpd3Wvbti2UlZWrrTyPi4tDy5Yt0bJlS7m+PoXnclZVeN6xY0d8/vnnOHr0aKO4K5udnc31T+3WrRv4fD4CAwO5x/39/aGnpwdjY2P06tWLwvM6lJCQgPbt2wutjkzhOalP7Pvah5XnQO2rcary4sUL9O/fX6RqaObMmXj//j3Onj0r99dsqFJTU3H27Fns3btX6s+P9+/fY/z48TA3N8eoUaMwfvx4sRXoXl5eaNGiBRwdHWs8vk8//RQMw2DSpEkYMGAAtm3bhs2bN+P48eMoLCzkAnJxxIXnTanveWhoKCZOnAh1dfUa/U7n5eUhMzOzyspzoKLveUOqPGdvvlcXngMVQZiDgwOWLl0KNTU1dOnSpVavLa7ynA0xrK2t0a5dOwCgvucN1F9//YX58+fD3t4e+vr6FJ5LITw8HJqamtW2rKgNacNzOzs7KClVfek5bdo0PHjwgDu3DQkJAfC/liYmJibg8XhC5763bt2CpqYmPvnkE27fTp06ya1Y6datW0hNTcXDhw+lDrgEAgH27duHsWPHcp9r0rC3t29ylefsrLW///4bmZmZNTqGn58fhg4dCktLS4wdOxZ79+7FhAkT0Lp1a5mPNWTIEG7WQuUZeWyQXtPrroCAAHTp0oVbwFDWyvPKn1MsSce5ceMGCgsL8e2336J58+Y1Ds/3798PKysreHh4YNWqVSgtLcXff/8NV1dXodljffr0gZKSUr21bgkMDKxydgnDMPj2229x/fp1PH78GP/884/Q+ikNycGDB/Hll1/i0aNHih4K8vLycPr0aYwfPx7jxo1DSUmJ2P2OHj2KM2fO4MKFC9w2cb+fDQV7fsyO8dGjR8jJycHw4cMVOawaY2+ES1o09MSJE/jxxx/x888/czfQPhZKSkrQ19evNjyPiYmRe9U5QOG53LEVml5eXlzI8eDBA/Tr1w/Tpk1DWFgYN3WrIascnnfq1Anq6upCd239/PzQtWtX8Hg89O7dG8HBwTVaOZxU7/Xr10L9zoGKAEBdXZ3Cc1IvUlJSoKysDD09PZHH6iI8T0lJQWpqKlxdXUUeMzU1hbu7Ow4cOCDX12zILl68CKDiREDaC+uFCxfi9evX+O+//3Dq1CkMHDgQo0aNEmnBdePGDbi5udVqOp+TkxPevXuHvLw8REVFIT4+HsuWLUPnzp0BVCyYXZWYmBi0bNkSrVu3bnLheXl5OSIjI9GjRw94eHjUaN0WtpJGUnju6OiI9PT0GgcT8ubv7w8jIyOub6EkysrK+PXXX1FaWgpnZ2eoq6vX6rUNDAxETrgjIyPB4/FgaWmJNm3aQE1NjSrPG6CioiJkZWVxN10oPJdOREQEbGxsJIbWtdWhQwckJSWJ9CKvjA3PJfn888+hpaWF48ePA6gIz9XV1bkQU01NDe3btxc657h16xYGDhwo9N4wcuRIPHz4sDbfEmf//v1o0aKFTAtj37t3D9HR0Zg3b55Mr9WxY8cmFZ4zDANvb2/MnTsXysrK2LJli8zHEAgE8Pf3R9++fXHu3DmkpaUhISFB5n97VpcuXbjr38q9csXNepCFv78/d/OXrTyXpZguKioK+vr60NHR4baxlefijnP27Fk4OzvDysoKtra2NQrP37x5g/Pnz2POnDn4/fffER8fj++++w537tzBggULhPZt0aIFXFxcuNn2dendu3dwcXHB5MmTxd7Q8vX1RWBgIA4cOIDAwECsWbMGPj4+KC4urvOxyUIgEGDHjh0AoPDFr/38/KCvr49JkyYhNjYWV65cweLFi0X24/P5+OOPPwAIjzkqKgqqqqpVzixSpNatW0NXV5cLz8+dO4f27dujW7duCh5ZzdjY2EBVVbXKwtW4uDjMnTsXU6dOxU8//VTPo6sfhoaG1YbnPj4+dfIzrtPwnK0uakpSUlLQq1cvpKenIywsDGlpaYiKikL//v0xePBgGBoacj3ZGrLK4bmqqiq6d++OCxcugGEYrl8pewHTq1cvCASCBjslqrFLSEgQ+TBSUlJChw4dKDwn9SI1NRWGhoZiL77ZBbzKysrk9nrse4m48BwAvvrqK/j4+NRoerNAIICbm5vYBS4bqgsXLqBfv37Q1tbmgnRJ/vvvPxw+fBh79uyBnZ0d1NTUcP78eVhaWmLt2rXcftnZ2Xj+/LlcpvPxeDxoa2vDysqKq97V09ODgYGBxPA8NjaWaznSunVrKCkpNZnwPDY2FmVlZejYsSPGjx8PX19fmS/M2anc1YXnABpM9Xl1i4V+aMSIERg9ejTGjh1b69cWV3keGRkJU1NTaGhogMfjwdjYmCrPGyD2Z8K+v1B4Lp3w8PA6bdkCVITn5eXlVfYgZRgGYWFhVfY7Z2lpaWHs2LHYsGEDOnTogHXr1sHOzg4qKircPmZmZty5b35+Ph4/fiwy/d7S0hLp6elC7SZrIjU1FdevX8e6devQrFkzqatq9+7dC3t7e/Tu3Vum17O3t0dWVlaT+QwMCwtDVlYWxowZg0WLFuHvv/+W+XuPjY1Fbm4uunbtCmtra5w5cwZLliyp8vyxOkpKSnBzc4Oenp7QItStW7dGixYtatSWJC0tDWlpaVx4bm1tjcLCQpk+Z9hFrSuzsbFBXl6eyPvg+/fvce3aNYwfPx6AbAsMVr4BduzYMQgEAkyfPh0ODg6YMWMGdu3aBV1dXe7YldVX3/OEhAQIBAKcO3cOS5YsEXm9ffv2wcTEhHtfGDBgAIqLi7n2Pg3FjRs3EB0dDT09PYVnKOfPn4eOjg5ev34Nf39/7N69G//88w/++ecfkf1iYmLg7u4OPz8/bntUVBQsLS2FZsk3JOyioQKBABcuXMCYMWNkWg+hIdHU1MSIESPE5ol8Ph/Tpk1DmzZtsGvXrkb7PVbHyMhIYniemZmJ8PBw9O3bV+6vXafh+WeffVaXh29wysrKkJGRgQkTJkBNTQ13797l7sD27dsXKioqmDx5Mk6dOiXXhWzqQuXwHACWL1+Ohw8f4s6dO0hOTkZmZiY3Xcva2hqtW7em1i11RFzlOSB8AUFIXUpJSRHbsgWoCM8FAgESExOrPU5RUZHE/tesFy9ewNjYWGyPdaCiTUjbtm1rVH0eExMDLy8v7N+/X+bnKkJ2djYePHiASZMmwcPDQ6rw/MKFC3B1dcW0adO4bZqamli4cCFu377NVdXeuXMHDMPUad8/JyenasNztqpQSUkJurq6TSo4ACqqDUeMGAENDQ2ZW7dER0dDV1cXrVq1qnIfCwsLaGhoNIjwnGEY+Pn5yRSe83g8XLx4EcuWLav16xsaGqKgoEBozYSoqCihUMLY2JgqzxugD9uH6evrIzs7W2K1c1PHMEy9hecAqmzdkpGRgXfv3lUbngPAL7/8gnXr1mHKlCmYMWMGNmzYIPS4ubk5d+77559/AqioNBc3HmnOSyQ5cuQI1NTUMGPGDLELY4uTmpqKS5cuybxYJfC/xVSbSvX5/fv3oaqqil69emHp0qVQUlKSufqcDfDYz5Rhw4Zh27ZttQqN1q1bJ3J+yePx4OzsLPW1bmlpKfc58/LlSwAQqjwHIFPf8w8/pwDA1tYWgGg/8xs3bqCoqAjjxo0D8L/wvLpQ++DBg2jZsiV2794NgUCA/fv3Y/To0dyswJ9//hmampqYPXs2mjVrJvL8fv36ISUlRWyrvoMHD8ptNgi7PsyaNWuwc+dOofWA3r17h1OnTmH27NlckOvo6IiWLVvWW0sZaW3fvh2urq6YMmWKwivPnzx5gj59+nDFerNmzcK8efOwcOFC7ufGMAw2bdqEwYMH4+uvv0Zqaip3w1Tc72dDwobnT58+RXp6ulyKMRRpxowZePXqFffewtqyZQuePn2Ko0ePokWLFgoaXd0zNDTkfvfev3+Pw4cPC81Cefz4MQBw7dzkqdbh+fjx48V+jRs3Dm/fvpXHGBuNjIwMMAwDS0tL9O7dG15eXnjw4AFsbGxgYGAAoKKfX3Z2Nv7991+pjllWVibXik5pfRieDx8+HL169cLq1au5N3j2REVJSQk9e/ak8LwOFBUVISMjQ+w0KArPSX2pLjwHpJvK6urqit9//73a/V68eCGxakhNTQ3Tp0/H0aNHq+zJVxV2RtT169cb/E1MALhy5QoEAgFGjx6N0aNHIyAgoNpAwNfXV+zCihMmTECzZs24aoWbN2+ic+fOVd6kkIfOnTtLHZ4DFQvBNJXwPDQ0FK1bt4a+vj6aN2+OESNGyNy6JTo6WmLVOVDR+qRz5864d+9ebYYrF4mJiXjz5o1M4bk8sedilSv1IiMjuTADqKhspsrzhoe9oVE5PGcYpkktMCyrrKwsvH37ts7Dc/YctarwvPKNwuq0b98eq1atwoYNG7B161aRvrRmZmaIi4tDSkoKNm3ahMWLF8PExERkH0njkYZAIMDBgwcxbtw4tGzZEv3795eq7/np06ehpqaGqVOnyvyalpaWUFFRaTLhube3N7p37w5NTU3o6upi8eLF+Ouvv0RC5Zs3b8LHx0fsMfz8/GBubl6j/uZVsba2FrkhAwBubm7w9vaW6rr8+++/h56eHlauXAkvLy+0bNmSu6ljZmYGFRUVqfueMwyDqKgooc8poOL3RU1NTWQW5t27d2FnZ8edW9nZ2SE3N1dk1lVlAoEAf/zxB1q2bIkFCxaga9euCAsLw5w5c7h9jI2NERYWhnXr1ok9hqS+52vXrpU6+6hOYmIiVFRUsGbNGvz4449Yvnw5Nm/eDIZhcPz4cZSWlmLmzJnc/srKyujXr1+DmnH66tUr3Lt3j5sl8fr1a4W11istLYWvr6/ITJkdO3agZ8+eGDBgAGbNmoVDhw4hMDAQq1at4tphsDevGkt4fv78eRgaGtZ68XlFGzZsGPT19XHo0CFu28uXL/HTTz9hxYoVdRIaNySV27asXLkSM2bMELrGefjwIczMzOpkrZdah+deXl6YPn06FixYIPKlpaUljzE2GpWrYgYNGgRvb2/cvXsX/fv35/bp1KkTpk+fjnnz5mHZsmUoLy9HUlIS5s+fj06dOuHNmzdCx/ziiy+4O8f16cPwnMfjYdOmTQgICMDPP/8MAwMDocClV69e8PHxwbt37+p9rB8zNiSTVHneGBagJY1bampqlQEru5itpEUhgYo7wyEhIbh+/brE/QQCAXx9faudcvvVV18hJycH69evlzz4D/j7+0NDQwN5eXkNrgpFnAsXLqBPnz7Q19eHh4cHVFVVcenSpSr3f/v2LWJjY8X2eWvRogXGjRuHf//9F+Xl5bh161adr8Du5OSEpKQksTfTi4uLkZyczLVtAT6+8Pz58+fYsWMH7t27JxLysW0M2Aq50aNHIzAwUKbvX5rwHKioUrl+/XqtwiR5kGWx0LrAhufsSXd5eTliYmKEQgmqPG+YUlJSoKOjw7VS0NfXBwBq3SIBW5Fa1+G5pqYm9PT0JIbnampqclm8y9zcHFlZWVi0aBG0tLTE9nRt164dlJWVa/V+5+3tjdjYWMyePRtARUsKafqeBwYGonPnzkK9qaWlpqYGa2vrGrWka2wEAgEePHggjIlhIAAA84tJREFUdI28atUqGBsbY+rUqVxA7enpiZEjR2LgwIG4e/euyHHYNbjqg5ubG/Lz86Vq/+Ht7Y127drh77//xvbt27nFQoGKdqjm5uZSh+cZGRnIz88XCSdVVVVha2srMqvs1atXQotrs3//klq33LlzB1FRUThz5gzu3LmDrKwsWFtbY+DAgUL7mZqaVrn2iI6ODrp06SJybl1UVISUlBS5vVcnJSVxf+Pr16/H6tWrsWLFCnz77bfYt28fRo0aJXLNMmDAADx79qzB9D3fsWMH2rVrhzFjxnDXO5Wrz48ePYoVK1bIfNz8/Hyp12ZgBQQEoLi4WCQ8V1NTg6enJ3bs2IErV65g1qxZ6NatGwYMGIB27dpBT08Pfn5+KCkpwevXrxt8eJ6Tk4Njx47h888/r9M1QOqDiooKpk6dihMnTqCkpAQFBQWYOHEi7O3t8fPPPyt6eHXO0NAQGRkZePz4MXbv3g0VFRWcOnWKe/zhw4d10rIFkEN43r9/fzRv3hz9+vUT+urfvz+cnZ3lMcZGgw3PjYyMMHjwYOTn5yM6Ohr9+vUT2u/QoUPYvn07duzYAScnJ1hYWODs2bOIjo7G3r17uf2io6Nx/vx5eHp61mv1OVvJUzk8BypazwwdOhRBQUFwcXERmhI3evRoMAyDjh074vz58xToyklCQgKAqsPzgoICkRsuDMMoZLZCXbh9+zbGjBmD7t27o3379li5ciX9bimApMpzVVVVmJiYVFt5zlYS+fr6orCwsMr9IiMjkZ+fX+0iHzY2Nvj999/x66+/couLScPPzw8eHh7o0KGDxBC6IcjLy4Onpyc+//xzABXh96BBgySOm60Cqerfb+bMmYiLi8O2bduQnZ2NYcOGyX3clTk5OQGA2JP5gIAAMAwjFP62adPmowrPV69ejSVLlmDQoEFo27Ytdu7cyT32YQ9g9gJKlvVipA3Pv/jiC2hrawudY9SUQCDA8uXLaxRM+fn5Sb1YaF1gX5etwHv9+jXKysqELvrYynP6rGlYkpOTuX7nAIXn0ggPD4eysrLQDcq60qFDB4nhuY2NjVDv8ppiq8ovXryIDRs2iA2pVVRU0L59+1rNzjx//jwsLCy4QMnV1RXq6urV3nSXZmFUSZrKoqGhoaHIzs7GgAEDuG3NmzfH8ePH4e/vjw0bNiAqKgrjx4+Hm5sb+vfvj5EjRwotSMnn8xEQEFBv4bmLiwtatWoFT09PifsVFxcjODgY3377LeLi4rB69WosXbpUaB920VBpsPuJCyc7deqEkJAQ7r8FAgGCg4O5cy+gonWbqqqqxPB8586dcHZ2Rq9eveDm5oaIiAj4+PjIHDL2799fZNFQ9u9QXu/ViYmJXEUpj8fDxo0bsXv3buzatQshISH4+uuvxY6rpKSEm8HAMAxevnxZ7UySulBQUICTJ09i4cKFUFVVRYcOHaCrq8uF5wzDYMOGDTh8+LDMx/7rr7/Qq1cvmXKAJ0+eQENDQ2xup6amhkWLFiE2Nha///479u7dCx6PBx6Ph27dusHX1xexsbEQCAQNPjwHKhbBbewtW1gzZszA27dvcfXqVSxYsAApKSk4c+ZMlTe3PiZGRkYQCAT44osv0K1bNyxfvhwXLlxASUkJcnNz8erVqzqrvq91eM4uZCbOrVu3anv4RiU1NRVqampo06YNXFxcuBO6D/99eDwevv32W9y7dw/a2tpYv3494uPj8eWXX+Kvv/7i2hD89ddfUFFRQWFhodCiDHUtNzcX5eXlXI+zyn799VcAEDlRYU/2unXrhrFjx2LWrFn1MtaP3evXr6GkpCQ2uGQvID68ONi1axfatWvHLSTXmG3evBm+vr5wcHDA8OHD8ccff2DFihUUatSjoqIi5OTkVBmeAxWVYNWF5xEREQAqWlE9e/asyv3YRXOkuRhatmwZZsyYgVmzZuHJkyfV7i8QCBAQEAAXFxeMHj2aa4nSULGtZSqvH/LZZ5/h4cOHIjfNWL6+vtDR0akyLPnkk09gaWmJn376CS1btkSPHj3qZOwsa2trqKuri23dsn37dlhaWgpNn/zYKs+joqKwcuVKREREYOzYsdi8eTP4fD74fD4iIiKEwnMLCwvo6OhIHZ6/e/cO2dnZUgVjWlpamDlzJg4cOFDryitvb29s2bIFN27ckPm5si4WKm8tW7aEmpoaF56z7eY6d+7M7WNsbMy975GGg8Jz2UVERHCtHeqapPD81atXcqt+Z899nZycJF5rSBqPNJKSkmBra8sVCjVr1qzavucCgQDh4eFStaepir29fZMIz729vaGmpibSPqF79+5Ys2YNNmzYADc3NxgaGuL06dO4cOECevfujeHDh3PniVFRUSgoKKi38FxZWRkDBw6sNjwPDAxEeXk5unXrBj09PWzcuFGk/ZC1tbXUleeRkZFQUlISO3PDwcEBISEh3HVRbGws3r9/LxSeq6iowMrKqsrwPDo6Gjdv3sTixYu533ctLa0atcJxdnZGcnIycnNzuW3sIqvyrDz/sFXTvHnzcPHiRXz99dcYPHiwyHM6deqE1q1bc3+/x48fR5cuXXDw4EG5jEkWAQEBKC0t5YpXeDweXF1dud9rX19fREdHIysrS+jfURrBwcF4//69TNXnT58+haurK1RVVavcp0WLFlixYoXQjIauXbvCz8+P+z1uyOE5e57ctm3bj6alSceOHeHq6opvvvkGR48exZ49exr0z0Ce2EKYtLQ07N+/H5MnT8a7d+9w+/ZtPH36FAKBoOFWnpP/SUlJgZGREXg8HlRUVDBw4EBYW1tX2e6gb9++ePbsGb7//ntoa2tjyZIlyMjIwIkTJ/Du3Tv8+++/WLZsGZo3b16v7QXYqeUfVp4DFR+K169fx4IFC0Qea9euHS5dusTdLc3Ly6vzsX7sEhIS0K5dO7EfaLa2tlBXVxcJDc+cOYPMzEx4eHiIDdgYhoGnp6fE6t+GIigoCDNnzsTBgwexd+9e/Pnnn9iyZUuV/faI/H24SJs40obn+vr6aN26tUhVSmUvXryAra2tVFOeeTwe9u7dix49euCzzz6rtk9xTEwM8vPz0bVrV4wePRopKSkyVfnWt9u3b6Nz585Cax6MGjUKfD6/ypvTvr6+6Nq1a5XVQjweDzNnzkRpaSnc3d3lUgkoiYqKChwcHETCc3Zm1bJly7hFnYCPKzwvLCxEcnIy7OzsYGNjg+XLlyM5ORmenp6Ii4tDSUkJ7O3tuf15PB5cXFykvlnO3iCVpvIcAObPn483b97I3Ff9Q8eOHQMAmVubZGdnw8fHp9qWTHWJx+PBwMCAC889PT3h7OwsVCzABrTU97xh+XAGlIaGBrS1tSk8rwLDMPDy8qq3m1VVhdVJSUnw8fGR2ywnAwMDTJs2Df/884/QZ4e045FWeno61+aJVV3f88TERBQWFtYqPO/YsSMyMjKqvEH+sbh//z569OgBDQ0NkcdWr14NV1dXFBQU4OrVq9DR0YGGhgYuX74Me3t7TJ48WaiwrHKgV9fc3Nzw4sULiaGmr68vVFVV4ejoWOU+NjY2eP36tVTr9kRFRaFDhw5iK0o7deqEvLw8bhFN9lyrcngO/G/RUHF27dqFNm3aYOLEidWOpTrsIqZswQwArq1jRkaGXApWKleeV/bpp59i7969Ys9/lZSUuL7nr1+/xsKFC6GioiKX2Xiy8vPzg4aGhtD7BFvFzfZtZ8/N2RsP0mJvvEkqUqqMYRg8efJEpGWLNLp164bs7Gx4enpCW1ubu6HdEGlqasLCwgJjxoyR+LnR2MyYMQOpqamYPn16jdbZaKzYv/8VK1bA0dER9vb26NSpE06fPo2HDx/CwMCgzmbcyTU8P3/+vDwP1+h82Bd4x44dMv2b2NjYYOTIkdi2bRsOHjyI0tJSLFq0CH369JEYNsmbpPAcADw8PMRWpQMVF6afffYZGIZR+MrRH4PXr1+LXSwUqKgKGDBgAK5du8Zty8nJgY+PD77//nvk5uZi9OjRQlWG5eXlmD9/Ptzd3bF58+Y6H39tZGRkICsrS+jkc/Hixfjtt9+wfv16XL16VYGjazrY1awlLSppYWGB2NhYiTMC2Crbvn37VhueyxKuqamp4fz581BTU8O0adMknpizQXmXLl3Qu3dvtG7dukG3bklMTBRZIEpfXx+GhoZVzizx9fWttuXNtGnToK6uLlTRXpecnJxEwvOtW7eibdu2mD59utB2Njz/GGaXsBc9bLjdrVs3ODg44ODBg1UuoOfi4iL1DZ0Pj18dS0tLDB06FH/99VeN/30LCwu58xr2Yl1aP/30E5SUlMROqa5PBgYGSEtL424ku7u7Cz3OBrTU97xh+bDyHKh4P6TwvGLavZmZmdCCgP7+/ggNDa23C+oOHTogKSkJ5eXlQttPnDiBZs2aYcyYMXJ5HR6PhyNHjlR7nsCuC1RTVYXnkvqes+FkbcNzAB919Xl5eblIv/PKVFRU4OXlhdDQUKEFxTU1NXH06FEkJyfjhx9+gJ+fH6ytrWvUX76m3N3dwefzJS4+6evrCycnJ4ntE6ytrSEQCKpdLwiA2MVCWQ4ODgDA9T0PCgqCvr6+SJBpa2srNjzPz8/HoUOH8PXXX6NZs2bVjqU67Dgrvxb7PfL5fLHr38iCz+cjJSVFpPJcGmzf88mTJ6Nly5Y4fPgwAgIC6nV2P1ARnjs7OwsVr7i6uiI7OxvR0dE4ffo0d24syyxyPp/PVYFL05cfAOLi4pCRkVGj8Jyd8XH27FlYW1sLtfNtiDw9PfHHH38oehhyNX36dPz555/YtWuXoodSr/T19fH8+XOh/u4TJ07E5cuXcevWLfTt27fOfh/lGp5/8cUX2L59u8R9PoYL4qp8WBVjYmLCfahJ67vvvkNoaCjWrFmDiRMnwtDQEP369cOTJ0/qrY91deF5ddiq0apWRifSS0hIENvvnDV8+HA8fPiQq/L38vKCQCDAvHnzcPnyZfj6+mLAgAHYv38/EhIS8Pnnn2P//v2ws7PD6dOnG/TfI3tx0qlTJ6HtK1euhLm5udCqyqTuSFt5npeXJ7HNQXh4OGxtbdGvX78qF+0pLi7Gq1evZK5MbdOmDY4ePYr79+9jy5YtVe7n5+fH9RZUUVHByJEjxYbnu3fvhp2dHW7evCnTOOSNnc30IRMTE24x4cpSU1ORmppabXhubGyMpKQkTJgwQW5jlcTJyQmhoaFcqJKRkYHDhw/jm2++EblYa9u2LUpLS5Gfn18vY6tLH1aG83g8zJo1C5cvX8aDBw+go6Mj0vu7a9euSEpKQmZmplTHb9u2rUzBwcKFC+Hv789ND5bVlStXuDUJZAmXAwMD8c8//2DdunVV3nyvL4aGhkhPT0dwcDAyMjLg5uYm8jiPx2sQlecxMTFST+3/mJWXlyM9PV3kc4jC8wr79+/H69evhdZUOHLkCIyMjER+v+tKhw4dUF5ezt1wByqu+Y4dO4bRo0dDW1u7XsZReTyZmZk1mmXJMAwyMjJEwvPu3btDXV1d7MKVQEXgraWlJbYqVlrW1tZQVlb+qBcN3bZtG969eyfxBr6WlpbIvz9QEc5u2LABf/75J/777796a9nCMjMzg4WFBe7cuVPlPtIUMbCzzqQJbqOioqpsx2BiYgJtbW0uPH/16pVI1TlQUXmelpYmUjF/9uxZFBQUYO7cudWOQxpaWlowNTUVqTxnM4Xavl+np6ejvLy8RuF5//79UVZWBh8fHxw7dgwTJ05E+/bt6736nJ0hWhn7+7Jx40ZuQWRdXV2ZKs/j4+NRUlICW1tbqSvP2dnrH7ZPkoa+vj7at2+PN2/eNIp2IWZmZvX+OVTXNDQ0sHjxYm4h9abE1dVV6AbUxIkTUVhYiMDAwDpr2QLIOTy/cuUK1q1bh8WLF4uEcnw+H4cPH5b7iu/Lli3DJ598gsmTJ6O0tFSux5ZVVUGHLPr27YuuXbuisLAQ33zzDYCKnukFBQUICAiQxzCrxYbnurq6NXq+kpISunfvLvUbN6mapMpzoCI8Lysr4/rv3bp1Cx07doSJiQl69uyJq1evQkNDA3PnzkWHDh1w9+5dXLlyBVu2bEFERITMK3LXp+DgYGhqaort8efi4lJvfw9NXUpKCrS1tSWecLA/o6pat/D5fERFRXHheUlJidjw7tWrVygrK6tRW4eBAwdixYoVXDWSOB/2Wx49ejTCwsJEFm06cOAAkpKS4OHhgUmTJiksnElNTRV708LU1JRbTLgydrZPdRdtQEVIXV9VIk5OTigpKeFCwJ07d0JFRQXz5s0TOy4AUrduKS4uxsWLF8Hn8+U3YDmJiopCy5YthW5ET5kyBTweD3v27IG9vb3Iz4D9/axcfe7n58f1v69M2sVCKxs6dCh0dXWlXpPmzz//xNKlS7l/32PHjqFnz57o37+/1JXnDMNg8eLFsLGxEdvyrb6xbVvu3LkDDQ0NkYorVVVV6OvrKzw8FwgE+PTTT+UWajRm6enpEAgEVHkuBvseqKuri7///hu5ubkoKSnByZMnMWXKlHqbos4WelRulfLy5UuEhYUpZDo5Ox5xn5XVeffuHUpLS0XC22bNmqF///5Vvn+yi4XKushiZWpqarCysvpoK88jIiKwZs0aLF26VGitCVl8++236NGjB9LS0uo9PAcqWrdU1fc8Ly8PkZGR1Z6HseujVVekUV5ejtjY2CrDSR6Px/U9BySH54BwOxWgovf3oEGDRN5ba+PDKvfY2Fj06tULQO3Dc/a8oyY3qOzt7WFmZoYffvgBffv2hbKyMmbPno1Tp07J3Fu8pnJychATEyPye6unpwdTU1McPXoUDg4OcHR0hJWVlUyV5+x7xsyZMxEdHS1V66cnT57A3t4erVq1ku0b+X/s99EYwnPycTM3N0f37t0BoE772ss1PB8yZAgePnyIixcv4vPPP0dRURFKS0uxZ88eWFpaYunSpXKtdHv58iXS09Px6NEjdOzYEefOnZPbsWuiqqBDFjweD1u3bsXq1au5i+iuXbtCU1NTqNVBXS5yl52djRYtWtRqgaEePXrg2bNnDbqyuaErLS1FamqqxMpzMzMz2Nvb4/r162AYBrdu3RLqK+nm5oZ79+4hLS0NR44cwYsXL+Dh4YHBgwejdevWOH36dD18JzUTFBQEe3t7sRd+Li4uClslvan5sB2VONWF5wkJCVw1hKOjI3R0dERat7x//x5r1qxB8+bNJfaJlGT9+vVwcnLClClTRGbqsIuFVj5hHTJkCLS1tXHq1Cmhsb58+RIHDhzA0aNH4enpCXNzc6xcubJee3Hn5eWhoKBA7GdKVZXnvr6+0NfXl+tFkDywP88zZ85g7ty52LZtG+bMmSP2ZJ0Nz9mbuJIIBAJ8+eWX+Pzzz/Hff/8JPbZ+/Xq0atUK3bp1w+TJk+u19RmLDbcrB+Rt2rTh2mmJm9pvbm6Oli1bcuF5eXk5PvvsM4wYMQL6+vqYNWsWXr58KXR8WSgrK6Nz585S3ThlGAabN2/G9u3bMW/ePGRkZOD27duYOnUq2rVrh+TkZKk+48+ePYtHjx7hzz//lLggVX1hw3NPT0/07dtX7FR19vtTpIsXLyI8PLzKPrVNCfuzoMpzUbdu3UJeXh7Onj2L4uJi7Nu3D9evX8fbt29F2mLVJbbQo3J4fuzYMejr69db9Xtl7MKiNWndwra/EVf5PGzYMDx8+BAFBQUij7HheW19rIuG8vl8zJgxA6ampli/fn2Nj6OsrIxDhw7BzMxM7OKQdc3NzQ0xMTHYuXMntm/fjn379nHnnP7+/mAYRqoiBg8PD9y+fVuk1VFlr1+/RllZmcRwslOnTggODsa7d++QkJAgNjwX104lMTER3t7emDJlSrVjlYWdnR0X0peXlyM+Pp67SV25tVRNsOe+Nak8V1JSQlRUFH755Rdu26xZs1BSUoITJ07UalzSYgu/xP1+sIVDbJFFTcLzFi1a4PPPPwcAqWYY1rTfOYv9Pig8Jw3B7NmzYWpqKnPnD1nIfcFQJycnPHv2DHFxcejRowfMzMywdu1azJ49GwkJCUK9aWrLx8eH61U5dOhQPH36VGSfkpIS5OXlCX3VhYKCAuTl5dU6PAcqqs83btzI/beqqip69+7NXfyHhoaibdu2cHZ2xm+//VbtQn2yys7OrnHLFlbPnj3x5s0bmRe6IP+TlJQEhmEkVp4DFdXn169fx6tXr5CamoqhQ4eK7KOnp4dp06Zx0wTV1NQwZswYnDlzRij8kGbhmvoSFBRUZYjapUsX5Ofn0+9XPfiwHZU4rVq1QsuWLat8L2JPom1tbaGsrIxPPvlEKMx8+/YtBg8ejKdPn+Ly5csS+0RKoqamhn///RdRUVE4dOiQ0GPR0dHIz88XqjzX0NDAmDFjcOLECe7v4PLly1BVVYWHhwemTp2KqKgofPvtt9i9ezfMzMwwZ84c3L17V+LFjjywVa9VtW1JSkoSuXnEThVuaH0HW7VqBRMTE/zyyy+4cuUKVqxYIXTxUpksledr167FmTNnYGpqir/++ovb/u7dO2zZsgW9evWCk5MTHj16pJBFhquaaj1r1iwA4vvifrho6I0bN5CcnIxTp05h4cKFuH//Prp06YLJkycjIiJC5vAcqLiZ8WEPenHCwsKQkpKCL7/8Evv378egQYOgpKSE8ePHo127digpKZHqJsdvv/0GDw8PhQRo4hgaGiIjIwMPHz4U6XfOMjY2lvrmQF1gGAYbN26EhoYGMjIy6q0qrqFi3w+p8lzUqVOn4OTkhIEDB2LatGlcmOfq6lqr3tuy0tTUhJ6eHheel5eX49SpU5g0aVKdL0wtjpGREVRUVGq0aKik8NzDwwOlpaUiPa8ZhkFYWJhc/s0dHBwQGBj40RUg7dixA8+fP8ehQ4fELhQqCxsbG8TFxYm0dqwPAwcORIsWLfDNN99gzZo1mDdvHnbv3g2g4jxMS0tLqpsoHh4eyMnJEepPXVxcLHTDh50ZKSmcdHBwQEREBBfMirt20tLSgo2NDS5evMhtO3XqFDQ0NOS+/o2trS1iY2NRWlrKrYPg6OgITU3NWr9fJyYmonnz5jXuc//he5GRkRG30Gh9/L35+fmhefPmYn+e3bt3B4/Hw6RJkwBUrFMjy3VueHg47OzsYG5ujjZt2lTbASAoKAihoaG1Cs/ZSl95d5YgpCZmzpyJuLi4Ws3+qo7cj5ybm4t///0XKSkpiI6Oxrt373D37l2sXr1a7n2G3r17hxYtWgAAdHR0xC5CsWnTJujo6HBftelDJ4mkoEMe+vXrh0ePHiEtLQ0jRoyAkZERrK2t8csvv8DKykpo0cjakkd4zt49rWnrlh07dqB3794f3YmjLNipppIqzwFgxIgRyMzMxMaNG6GpqSn1VJWJEyciPj6eW917yZIlMDQ0bBC9hsvLyxEWFlblSXGXLl0AQOqF9UjNSROeAxUVs5LCc01NTS746Nu3L54+fYrc3Fz8999/+OSTTxATE4P79+9j4MCBtRqvo6MjJk2ahPXr16OoqIjbXnmx0MqmTJmC6OhoruXJpUuXMGjQIO6zpXXr1ti4cSNev36NpUuXwsvLC4MHD0a7du1Epr/KE9s3tqrK85KSEqGAmWEY+Pn5SVXtpAgHDx7EhQsXuJvoWlpaYvdjP3uqC8+PHDmCDRs24Pfff8eOHTvw9OlT7me8b98+lJSU4ODBgzhw4ACWLFmC58+f13trt6oqwwcPHozvv/+eqw76UNeuXYW+l65du2LixIn45ZdfEBUVhX379uH+/fvIzc2tUbWPk5MTYmNjq32vv337Npo1a4bdu3dj165dCA0NhYeHB3R1dblzqeqqs+Pi4hAYGIgZM2bIPM66YmBgAD6fj+Li4ioDfVNTU9y6dQvKysrQ0tLCTz/9VK9jvHXrFl6+fMnd9JGl+qwxycvLw8KFC8VW8VaWnJwMdXV1tG7dWmi7vr4+srKymuwstIKCAly9epULW5YvX46MjAzcuXOnXqvOWR06dODCak9PT2RkZCikZQtQUZ1sYmJSq/D8w0UXgYo1LCwsLHDjxg2h7ampqcjLy5NLeP6xFiBt3boVs2fP5lp4NFYtW7ZEZmYmysrKkJ+fj9mzZ+Pnn3/G27dv4evriy5dukjVLqlbt25o06aN0O/SsmXL0LlzZ65Xf1RUFDQ0NCTOKOzUqRNKS0tx/vx5qKmpwdbWVux+69evx5UrV3Dt2jVuPYJRo0Zx57vyYmdnBz6fj5iYGG6xUEtLS7nc7ExKSoKJiYlci0RmzJiB4OBgqRZvrS1fX1+4uLiIDfe+/vprPHjwgKuqt7KyQlZWltQ3z9mbdzwej+sAIE5hYSG+//57uLi4wNbWFsOHD6/x9zNgwAA8ePAAzs7ONT4GIfLC4/HqNDgHADBy9P333zM6OjqMubk5s2/fPqagoICZPn06o6enx7x48UKeL8UwDMPs3r2bOXLkCMMwDOPr68ssWLBAZJ/i4mImNzeX+0pKSmIAMLm5uXIdy7179xgATFRUlFyPy3r8+DEDgDEzM2P09fWZhIQEhmEYpqCggBkxYgTTunVrblttjRo1ivHw8Kj1cWxsbJj58+fX6Lnjxo1jADC+vr61HkdjdfDgQQYAU1xcLHG/srIyplWrVgwAZsSIEVIfv7y8nNHX12eWLFnCrFq1igHAAGBu375d26HXWlhYGAOAuXfvXpX7mJqaMsuWLavHUTVNZmZmzMqVK6vdb+zYscygQYPEPjZ79mzG2dmZ++/nz58zABg1NTUGAOPq6spERETIbczR0dGMsrIys3XrVm7b0qVLmQ4dOojsW15ezhgaGjKLFi1isrOzGWVlZWbv3r1VHlsgEDC+vr5M8+bNmd9//11uY/7QkSNHGABMYWGhyGMBAQEMAKHP1ZiYGAYAc+PGjTobU31p2bKl2H/bpKQkZtOmTYyzszMDgJk1axYjEAiY8vJyxtTUlJk+fTpTXFzMGBgYMF999RX3vBcvXjAAmGfPntXb9/Du3TsGAHPy5EmZn3v27FluvDwejzlw4IDIPgUFBcyZM2eYkpISmY/P/v48ffpU4n5ubm7MkCFDuP++cuUKExcXxzAMw6SmpjIAmCtXrkg8xpYtWxh1dXUmPz9f5nHWlWfPnjEAGAMDA0YgEIjdJyMjgzl69Cizd+9eZsaMGYyysjITHR1dL+MTCARM7969me7duzO5ubkMAOb48eP18tr17dixYwwA5u7duxL3W758OWNhYSGy/cKFCwwAJjMzs66G2KCdPHmSAcDEx8dz28aMGcOoqakxb968qffxjB8/nhkwYABz7do1xtjYmHF0dKzyb6w+DBo0iBk7dqzMz9u2bRujqalZ5dgXLlzImJqaCj3u6enJAJDL+0ROTg4DgDl8+HCtj9VQvH//ngHAXbd/TNLT0xltbW1m8eLFjKmpKbN06VKpnztlyhTGycmJYRiGSUxMZFRVVRkAzH///ccwDMPMmzePcXR0lHiMrKwsBgCjq6vLdO7cucr9BAIB4+bmxnTo0IF5+vQpA4C5du2a1GOVVkZGBgOAOXfuHLN3715GWVmZKS0tZXr27MlMnz69VscePXq00HmJPKSkpDAAmEuXLsn1uOKYmpoy3333nVT7sueufn5+1e7L5/MZLS0tZvPmzQzDMMwvv/zCtGzZkuHz+UL7lZeXMw4ODoy6ujqzfv36ajMGQogwuUbzly5dws6dOxEVFYU5c+ZAS0sLhw8fxpw5czBgwABcvnxZni+HHj16cKtd3759W+y0E3V1dbRo0ULoqy7UdeV5t27doKGhgbS0NFy5coW7K6mlpYUjR46gefPmmDhxokif35qQR+U5AIl3PavDVrAePXpUaHtDXBSutkJCQjBs2DCRO8sJCQkwMjKqtoWFiooK16pFXMuWqigrK2P8+PH4+++/sWnTJmzZsgVt27bFo0ePZP8m5IxdNV7SdEwXF5cmVXleXFyMSZMm4cqVK/X2mgzDSL2Wg7m5eZVVG+xUQlaXLl3w1VdfYc2aNYiOjsbz58+5fozyYGlpiVmzZuHXX39FXl4eHjx4gMuXLwu1bGEpKyvjiy++wOnTp3Hp0iXw+Xx8+umnVR6bx+Oha9euQgs01YXU1FS0atVK7NRm9v2/ct9z9m9BEYtnyVvbtm1FKs/5fD569+7NzbY6d+4c9u3bBx6PB2VlZcyfPx+nTp3C9u3bkZGRgWXLlnHP7dy5MzQ1NfH48eN6+x7YSuGatFVhf4YLFiyAtrY2Jk6cKLKPlpYWxo8fX6O1STp27AiV/2PvrsOiTL8+gH9nAAkJQZQURUoBERWVtEBFbAm7c401Vl1717VjXTt2XXsNbFGwCxUVmzIICRUQpZGaud8/eGd+jtQAA0Ocz3VxXbtPnsFh5nnOc+5zy8qW2LolKysLd+/eRc+ePYXL+vbtK+wjrKWlBVlZ2VInDT179ix69OgBZWXlMsdZWQStGLp3715s9Vrjxo0xcuRITJ48GTt27ICWllaFevSWhb+/P+7fv4/FixdDVVUV2trahSY1ri0E1/Cl9aWOi4srsvJSUBlcV1u3HD9+HLa2tiIjFLdt2wY/P79CVfpVoVmzZrh79y769OkDKysrXLx4UaptxL6vhC+L+Ph4aGtrFxu7m5sboqOjRfpHh4aGQl5eXvgZWRENGjSAubk5AgICKnys6kLw7yCJ3091o6WlhcWLF2PHjh2Ijo4u0whANzc3vHz5Eh8+fMDq1auhqqoKS0tL4Vw8xbV/+56mpia0tbXx5cuXIvudC3A4HOzYsQOfPn3CwIEDoampWWzrsopo1KgRNDQ08Pr1a0RERMDAwEA4EbekKs8lSUdHBw0aNKj0eQY+f/6M6Ohosa/TjY2NAYg38iwuLg6ZmZnCkS+2trZISUkpdO3w5MkTBAcHw8fHB0uXLi13m0xC6iqJJs9DQ0MxatSoQkOVVqxYgc2bN2Pw4MHYvn27xM7Xpk0baGtrw8nJCaGhoXB3d5fYscvq48ePUFNTK3YoekXVq1cPmzdvxoULF4QtUQQEEz8GBgZi8eLFFT6XpJLndnZ2ePnyJTIzM8u8b2RkpHAiP8FQ+/T0dJiamkr0PSRtaWlpGDRoEC5fvlzoQcPbt2+FEzGWZsCAAeByuSKThYpDMLHi8uXL8csvv8DR0bFaJM9fvXoFHR2dEt+Hbdu2xbNnz+pEax/GGMaPH4/jx4/D29u7ys775csX5OTkiJ08j4mJKbI1xuvXr0WGkcrKyuKff/7B4sWLhReHkrZ06VJkZGTA1NQUXbp0gby8PObPn1/ktiNGjMDnz5+xZMkS2NraQkdHp9TjlyV5/ubNmyIn+CxJSe1yNDQ0UL9+fWFrJ6Dgb0ZXV1fYM7wmKyp5fuPGDeHkVidOnIC7u7vItcaECRMgIyODRYsWoV+/fiIPY+Tk5NCxY0exkucfPnzAuXPnKvwaKpI8b9asGdTV1fH06VOMHDlS4tcV8vLyaNGihUjyPDc3F9euXRN+nt69exc5OTnFPpDlcrnCvuDFiY+Px4MHD4ptTyMtOjo6UFdXFzsuRUVFLFq0CP/991+ltmoSOHXqFAwNDdGnTx8ABb1937x5U+nnrWqMMVy/fh0ASk1wxsXFFfl5WJeT5ykpKfDz8yv0cE1HR6fC7c/Ky9bWFpqamjhw4AAuXbpUaa0yxVXR5HlxunTpAgUFBfj5+QmXhYaGCud1kQR7e/si5/KqqWpz8hwAZs6cKUzqliV53qNHD3C5XOzZswf//vsv5s2bh9GjR+PSpUtIS0vDmzdvxGrPJig2Kil5DhRckyxYsAAJCQkYMmRIpUzizeFw0KJFC4SFhSEiIgJGRkYAxJ+jIjs7u9iJRWNiYiT+ucLhcGBubo6QkBCJHvdHgiIXcd8f6urqaNiwoVjtmwSJf0GhkmD+ox9zC5cvX4aamhq6du1altAJIf9PosnzkqoLJkyYgLNnz2LRokWSPCU2btwIf39//Pfff+WqwJIUcfsCV8SkSZOK7c9pZ2eHFStWYOPGjSIJlfKQZOU5j8crc3VwcnIykpOTMXPmTCQlJQkvTlesWIHIyMhyV7NXN4wxTJgwAfHx8VBSUsKLFy9E1j9//lzsHmKenp4IDQ0VO9ku0KFDByQkJGDZsmUAACcnJzx8+FDqE4cGBQWVOglQu3btkJqaKvEJc6uj5cuX4+jRo7CwsMDz58+r7LxlGVFjZWUFPp+PV69eiSxPSkpCUlJSsT0YK4u+vj5WrlyJ9u3b4/LlywgODi704FGgdevWsLCwQHx8PAYMGCDW8S0tLREaGirWaJgxY8Zg9uzZxa7PzMzEv//+K/Ig6MOHD8X+3jkcDgwMDEQS8uL8zdQUmpqahZLnR44cgZmZWbEVOxoaGhg+fDgYY0U+JHF0dMS9e/dKfNjG4/Hg4eEBLy+vCk8I+/btWzRu3Lhck1oJRjcABT0wK4OVlZXI3+qOHTvQo0cP7NmzB0DBaL4mTZqU+Herr69fYuX5+fPnweVy0bdvX8kFLgH16tXDp0+fxP5bBwquYfX09LB8+XLw+XycOXMG7u7u5UrMlebp06ewtbUVXlObmprWysrzkJAQfPr0CQoKCqX+Hj98+ECV5z/w9fVFXl6eVAuHfjRw4EDEx8dj9OjR1WLiakNDQyQlJZXaU/9HpSXPFRUV0bVrV5Fe1ZKaLFTAzs4OwcHBSEtLk9gxxXHz5k1MmjRJ4oUpUVFRkJOTE6s4oSZSUFDArl274ObmVqZ7sYYNG8LW1hYrV66Empoapk2bhsGDByMnJwdHjx5FXFycWCMzLS0tAZSePAeABQsWYNy4cfj555/FjrOsWrZsidevXyM8PLzMyfOZM2fCxsam0PX1t2/f8PnzZ4lXngOAhYVFpVeeP3nyBA0aNCjT+8PExESsyvPQ0FAoKiqiadOmAArmAmzZsqXIZLRAwbVd9+7dpTKJMyG1QSV3VBfVq1cv3L59uypPWWVKSnRUlenTp0NJSQkHDx4UWX7o0CH8999/Yh2Dx+Ph69evEkmeW1hYoH79+mVOdguG7/bv3x/W1tY4dOgQwsLC8Ndff0FZWblGV2DxeDykpKQgPj4eGzduxMmTJ7F//360bdtWJHmekZGBt2/fFprcsDgcDqfcbS++r1R1cnJCTk4Onjx5Uq5jScqrV6+KnC3+e4LfjWB2+drq+PHjWL58OVavXo2ZM2fi9evXIhNhStqVK1cwbtw4ZGVllThp5Y/atGkDOTm5Qn/vgr/Xqk6eAwUTL/n4+KBnz54l3shzOByMGDECAMqUPM/JySl1giHGGEJDQ0t86PHPP/9gwoQJIlUvpbXLqc3J8x8rzzMzM3HmzBmMGDGixH/H5cuXY8+ePUVORubo6IikpKQSk5CbNm3Cw4cPkZeXV+GH0MVNFiouT09PDBs2rNL+TVu3bo1Xr14JJ1o8ceIEFBQUMHPmTDx79gxXrlwp9e+mSZMmJVaenz17Fp06dULDhg0lHn9FlXWosry8PJYuXYoTJ07A3Nwc7u7uOHPmDE6fPi3RuHg8Hl68eCHSYkqQPK9to6yuXr0KBQUF9O7du8TkOWOs2AIVZWVlKCkp1cnk+YULF9CuXbsSJxKs6wTtbMr6kCshIaHE5DlQcE/r7+8vTG6HhoaKtKerKDs7OzDG8PjxY4kdUxzHjh3DP//8I/Fr66ioKDRt2lRilfnVUc+ePXHp0qUyPzhyc3MDYwzz5s2DsrIymjRpAkdHR6xduxYAxKo8F0xSKk7yXEFBAf/++2+FrlFK06JFC7x+/RqRkZHCEaba2tpISEgocYLnDx8+YP/+/fjw4UOh0YKC643KGNFibm6OsLCwYgtiEhISkJiYWKFzBAYGwsbGpkzvD3GT54L2mN9Plujk5ARfX19hMcjXr1/x6NEjkXZ8hJCyqdLkOQCxk4E1jbh9gSuTsrIyvLy8cODAAeEXU2JiIqZMmYKRI0cWmhm+KMnJyWCMSSR5Lisriw4dOgh7WopLkIxq3rw5Ro8eDR8fH4wfPx7NmjXD/Pnz8ebNmxp7E9mxY0eoq6tDR0cH8+fPx6xZs+Du7g5ra2uR5PnLly/BGKvy2autra2hrKws1dYtaWlpeP/+falJo8aNG0NfX7/W9z3/448/0L9/fyxYsADW1tbg8/mV1ms7MTERI0aMwP79++Hp6Yn379+Dw+GUehMJFFyMt2nTplCVw+vXr8HhcCr1Il0Sfv75Z1y6dEnsh1CCKp/S/i0SExORlpaGqKioYivIBA83v0+elzaa6fvkeXp6OqKiooQx1XQ6Ojp49+4dkpKSABRUMGdmZmLYsGEl7qerq4tJkyYVuc7W1hZcLrfY1i1hYWFYunQpPD09AYjXY7Ik4vQpLcnEiRPFfuhdHlZWVsjIyMD79+/x/v17PHr0CLt27UKrVq3Qr18/hIWFlXqDpa+vX2zyPCUlBTdv3sTAgQMrI3ypGDNmDDp27AhjY2Pcv38fXbp0wf379yV6jjdv3iArK0vkWtnMzAyZmZnCh5m1xbVr19CpUye0aNGixOSmoH1YcUliLS0tYVLjxIkT0NfXh6enJ3bu3CkcPVXTHThwADdv3hT+f25uLvz8/Eqcn4OUP3leWuU5AOGIGhsbG+zcuRNfvnyRaOW5mZkZ1NXVq7x1i+BB//79+yV63KioqFrbsqWiRo4ciZEjR2LatGnCZUOGDBE+xBfnWmLIkCF49uxZtXlY3bJlS2RmZiIjI0Ok8lxQpFeczZs3Q0lJCbq6ujh16pTIOsFIt8qqPM/Ozi52/g03Nzfo6OjAxcUFe/fuLdfoxGfPnhU591JJjI2NxW7b8uPDu0mTJiEmJkY45+D169fB5/MpeU5IBVR58ry2qoq2LeIYM2YMoqKihAmCzZs3g8vlonv37hg6dGip/ToFyQpJJM8B4KeffsKNGzfKVJ0VGRkJNTU1qKurY+jQoeDz+QgICMC2bdtgZWWF9PT0YnuhlQWPx4Ofn1+JT8BjYmLE+tISx7dv3/Ds2TP8/PPP8PHxwd27d/Hnn38CKEhav3nzRtgf/tmzZ6hXr55EL8TFISsrCzs7O6kmzwXJyNIqz4H/9T2vrd69e4ewsDCMGTMGHA4HlpaW4HK5hVr8SAJjDFOnTgVQ0CLj2rVrWLRoERo3bix2T8SiJgl+/fo1DA0NoaCgIPGYJUlJSQlubm5ib9+4cWNoamqWmjz/fqTMjy1tgIIkq2Ckh+BYfD4fnz59KnE00/fJc0HSvbZUnk+ZMgWysrIYMWIE+Hw+Dh8+DAcHhzK3pfqeqqoqWrduXWTyPD8/H2PGjEGzZs2wf/9+yMvLV6hNBmOswpXnlU1Qnfby5Ut4e3tDQUEBHh4eOHnyJDIyMsDlcuHs7FziMQSV50U9zL506RLy8vLK1BqlupOTk0NAQAAuXrwIe3t7YU9icR7mnzt3rtCDxaIIvs++f3AuSJzUptYt2dnZuHPnDrp3745mzZrhw4cPRc6XAfyv2rC4a2xBKwDGGFasWAF1dXV8+vQJM2fOhIeHR6W9hqry7NkzjB8/HmPHjkVeXh4A4M6dO0hLS6PkeSl0dHRQr149REVFIT8/H35+fqWOUuDxePj8+bOwJVBxmjVrhsePH8PMzEyY9JTkNTuXy4WtrW2VThqal5eHoKAgaGlp4b///kN2drbEjv3+/XtKnhfDwMAAhw4dEpnfxMPDA1wuFw0bNhRr8l9ZWVmx7puqyveJ3O+T50DxbbaSk5Oxe/duTJs2DZ6enjh9+rTIPbrgmrcyRtsI/naLat2Sn5+PoKAgDBw4EIwxTJo0CTt37izT8VNSUhAXF1fm63QTExN8/vwZqampxW4jGOH64+dP27Zt4eTkhC1btgAo6HduYWEh9bkoCKnJKHkuAXw+Hx8/fpR62xagYIhO8+bNsX//fqSkpGDHjh346aefcPLkSejp6aF///6Fesl+T9LJcw8PD/Tv3x/Tp09HcnKyWPtERkaiefPm4HA40NLSwpAhQzB06FC4uroKq0IrOmlXfn4+Ro4cCTc3N1y8eLHY7UaOHIkJEyZU6FwCERERYIzBy8sLffr0gZOTk3B4lbW1NRhjCAoKAlBws9SqVatKmcilNE5OTrh//75YvZwrw+PHjyEjIyPW8Nd27drh6dOn1WokwpcvXyRWjejj4wN5eXnhXAeKiopo0aJFoeR5Wft5FuXEiRM4ffo0du7cieHDh+O///5DampqmR4K2traIjw8XPg5AhS8l6v6IVBVEDzMECd5zuVyIScnJzJBo8DRo0ehoqICJycn4bESExPB4/FKrTz//Pkzvn37hqCgIHC5XIkOGZcmPT09/Pfff7h69Spmz56Nq1evYuTIkRU+rqDv+Y/OnTuHx48fY9++fahfvz6MjY3LnKjMzMzE0aNHkZeXh6SkJKSkpFSo8ryyaWtro1GjRnj58iVOnDiB3r17Q1lZGYaGhjh//jw2btwIdXX1Eo+hr6+P7OxsfPnyRWQ5n8/Hli1b4ODgUKtv0hwcHJCQkCDWvBuzZs3CkiVLSt3u6dOnMDIyQoMGDYTLmjdvDhkZmRrdsu5HDx48wLdv39C9e3cYGhqCMVZs/3xB8rykyvOEhATcunULISEh2LJlC+7du4fVq1cjODi4Wl0flBWfz8e0adOgr6+PmJgYnDhxAkBByxYDAwOxWjTUZVwuF02bNsXBgwfRvHlzuLm5lTqPxOfPn8Hn88UacWdtbQ0fHx8EBARg/fr15W6fWBx7e3sEBASUWOQjSa9fv0Zubi5WrVqFlJQUiUyeLRAVFSUcCUBKp6WlBRcXlxp7/dy0aVNhezRB4YMgeV5cAdyOHTuQn5+Pn3/+GZ6envj06ZPIw6PY2Fg0bty4UopxdHV1oaamVuSkoREREcjLy8O0adNw48YNdO/eXWSyYHEIkvIWFhZl2k/Q8qakQr74+HikpKQU+V6ZOXMm/P398ezZM1y+fLnYSeAJIeKh5LkEJCUlIT8/v1pUnnM4HIwZMwYnT57E2rVrkZOTgzlz5kBVVRXnz5/H58+foa+vj379+uHo0aOFLsgknTzncDjYsWMHsrKyMHfuXLH2iYyMFD6lBgqqYI8ePQpAMjeRubm5GDJkCE6ePAlFRcViexF/+PAB/v7+ErthFSRjiqpGtLCwgKysrDAp+vz5c6m1OHJyckJqamqltQYpSUhICJYuXQoPDw+xetK2bdsWX79+LXaYnTTMmjULrq6uErnZ8fHxgYuLi0g1yo8tfu7duwcNDY0K3eQkJSVh+vTp8PT0FLat8PT0xIkTJ/DLL7+IfRxbW1sAEFZYJiYm4vbt29VuwkBJESd5/vbtWxgaGqJly5aFkueMMRw9ehSDBg2CjY2N8FjiTNQqmBQoJiYGQUFBMDExgaKiYkVeTrXSo0cPLF26FFu3boWMjIzwfVkRDg4OCA8PL1T1dObMGVhbWwt7pYvbY/J7u3btwvDhw9GzZ0/hzV51rjzncDiwsrLC2bNn8ezZMwwePFi4rnPnziVOcCsgSGb+mPT09vZGYGAgVq5cKdmgqxnB511pbRWSk5MRHR0Nf3//UuerePbsWaHvfjk5OTRv3rxWVZ5fu3YNWlpaaNWqVamtNT58+AAZGZlik5mC5PmWLVtgaWmJrl27Aihoe5GRkYFPnz5VxkuoEgcOHMDDhw9x+PBh9OrVC+vXrwefz8eFCxfQr1+/ajEpZ3VnYWGBoKAgODs74/fff8f58+dLnNdHkNgTJ3kuYGtri3nz5on0G5YEOzs7pKamVrhgSFyC+yFPT084Ojpi3759EjluamoqkpOTqfK8jA4ePIjDhw9LO4xykZGRgZmZGbS0tKCsrAzgf39TRVWeZ2VlYcuWLRg3bhy0tLRgZ2cHHR0dnDx5UrhNTExMpbRsAQquiczNzYtMngsS34ICFRcXF9y9exc5OTliHz8kJARcLrfM8z8JkuclXZMKCu+KKqDp378/DAwMMGXKFHz69ImS54RUECXPJUCcREdVGj16NLKysrBu3TpMmDBBOLO5iYkJQkNDsX79eiQlJWH48OHYsWOHyL6JiYngcDilVpyVhZ6eHjZu3Ih9+/bh2rVrpW4fERFR7PD8evXqwcjIqEIJ7ZEjR8LHxwenT5+GnZ1dkdWgAHD69GkwxhAfHy9sp1IRb9++hZqamsgEnQIKCgpo2bIlXrx4gZycHISEhFR5v3OBjh07Qk5Orspbt3z9+hX9+/eHoaEh9u7dK9Y+jo6OUFVVxbZt2yo5OvFER0fj2LFjyMjIEJnMsTy+fv0Kf3//Qolna2trvHz5UpicP3z4MPLy8oQtm8rjzp07+PLlCzZt2iSyXDBpobiaNWuGxo0bC1u3nDp1ClwuF4MGDSpXXNWdpaUl3r59K7yA9vX1haOjo8iDkzdv3sDU1FQ4QeP3njx5gnfv3mH48OGwtLRERESE2BO1Cm4gYmJiEBwcXGtatnxv2bJlGDBgAEaNGiXWsOXSODg4AIBI9XlOTg4uXrwo8h4VTNBYFmfPnoW1tTWCg4OFrSIENz3VleA9qaSkhN69e5d5f0FV+fd9z7Ozs7FgwQL069cPXbp0kVSo1ZKGhgZatmxZavJccI2Rk5NT4vcqn8/H8+fPi+yJamZmVquS51evXoWLiwu4XC6aNGkCDodT7PdXXFwctLW1i51oUEtLC2/evIGPjw9+/vlnYUJZUAVcUyv2v379il9//RUjRoxAp06d8OuvvyIoKAjr169HTEwMtWwR04EDB/Dx40fs378fS5YsQYsWLbBs2bJity9P8ryydOjQAVwut1Drlvz8fEyePLnMvdxL8/z5cxgZGUFVVRVjx47F9evXK3wtC0D4t03J87LR1tYWFkrURNbW1iJz8ZQ0wfO5c+eQlJQkLNjhcrlwd3cXad0SGxtbqaPZLCwsimzbEhYWBnV1dWHlvIuLC7Kysgq1qSxJSEgIjIyMylw1r66ujoYNG5ZYeX7p0iXo6ekVOdpRVlYWM2bMQGBgIJSUlODo6Fim8xNCRFHyvIIEPRbV1NQkPlyvvAwMDNCtWzfIyspi/vz5Iuu0tbUxc+ZMPHjwACNGjMD69euFfSYZYzhw4ABsbGwgKysr0ZgmTJiAbt26YezYsYWGeH8vLy8PMTExJfa2NTMzK3cVRnZ2Nry9vbF27Vr069cPrVu3LjZ57u3tLXzwIJjEtCIEE8gVVykkqCgODg5Gfn6+1CrPFRUV0b59+ypNnufn52Pw4MFISUnB+fPnhVUKpWnQoAHmzZuHnTt3CifWkaa//voL9erVA1B037yy8PPzA4/HQ58+fUSWW1tbIzMzUziM8PTp05gyZQo0NDTg5eVVpkoIgcTERMjKylZ49AyHw4GdnZ3wgvL48ePo3r27xEayVDeWlpbg8XjC5Mzy5ctx//59kcqVN2/ewMzMDK1bt0ZQUJBIO6SjR49CS0sLXbt2haWlJRhjCAsLE1ZaNm7cuNhz6+npgcPhIDo6GkFBQbUyeS4jI4OzZ8/in3/+kcjx9PX1YW5uLjIR540bN5Ceni4ysaWJiQmio6PF/luKj49HQEAAZs6ciadPn8LKygotW7aEkpKSROKuLIL+qH379i1XrI0bN4asrKxI5fn27dsRFxeHdevWSSzO6szBwaHUNl0vXryAgoICdHR0SiwgCA8PR3p6epHf/aampjU2Cfyj169f4/nz58IKuHr16kFPT6/EyvOSetxqaWkhIyMD6urqGD58uHB58+bNISsrW2VVu5K2YcMG5OTkYP369QCATp06oUOHDli8eDFUVVXRuXNnKUdYM6ipqQknUZSRkcHvv/8OPz+/YnuJC5LnpfU8rwoqKipo1apVoc+Y58+f4++//4avr69Ez/f8+XNh4Y6npyeUlJRw8ODBCh9X8LdNyfO6ZcuWLTh+/LjIMsFIoR89fPgQJiYmIvf/np6eiIuLw/3793H69Gk8e/asUpPn5ubmCAsLK9S2VDAZp+D+vXXr1mjYsCGuX78u9rFDQkJEHiSUhZmZWbFzXTHGcO7cOQwYMKDY/ML48eOhpKSErl27Vvv5pwip7ih5XkHbtm3D2bNnceDAAaipqUk7HKE///wTR44cKXF408KFCxEXFyccEnbhwgUEBARg1apVEo+Hw+Hg0KFD+PbtG8aPH19sD8rY2FjweLxSk+flvYkUXMAJLg5bt26NyMhIpKWliWwn+LIWPAEv66Shhw8fFpk1Hfhf8rw41tbWePXqFQIDA8HlcqWaDOvatSuuX78u0cmCSnLq1Clcv34dJ0+eLPPF9axZs9CgQQP8/vvvlROcmL58+YJ//vkHc+fORf369REWFlah4/n4+KBdu3aFEtqCHqcvXrzArVu38OXLF0yaNAne3t549eoVpk+fXuLEMkVJSEhA48aNJTIE3NbWFo8ePUJMTAz8/f0xZMiQCh+zuhL0LgwODsajR4/w+PFjABDe6Obl5SEyMlKYPM/KyhI+iOPxeDh+/DgGDx4MWVlZYa/C4OBgfPz4scRKS6Ag4aSjo4PAwEAkJSXVyuS5gCRbE8yePRvnzp0TfoecOXMGJiYmIn0oTU1NwRgT+6HphQsXwOFw0KdPHzRp0gQPHz4sU0WStAgqnIcOHVqu/WVkZKCnpyesPP/y5QtWrVqFyZMnl3lock1lb2+P4ODgEj9zX7x4ASsrK3Tv3h1Xr14tdrunT58CQLHJ86ioqGIn1axJVqxYAX19fZFWTM2aNSs2ef727dsSEyaCJOekSZNEHgLJyclVeKSiND148AC9evUSFnFwOBz8+uuv4PP56NWrl/BBPSkbT09PtGrVCkuXLi1yfUJCAtTV1cVqHVgVHB0dCxWzCK4xJPneZozhxYsXwvsjFRUVeHh44PDhwxWeNyAqKgpKSkpFjrwltVeDBg0KFc9oaWkV2fP88ePH6NChg8gyBwcHaGlpoVu3bvDw8ICpqSmmTp1aafFaWFggOzu70HdRWFiYSD9xwYTq3yfPGWMIDAzE+fPn8e+//+LmzZsixwgJCSlzv3MBd3d3XLhwociHDi9evEBMTEyJk7Orq6vD29sbq1evLtf5CSH/Q8nzCnj8+DHmzp2L2bNnl/ihJQ2tW7cW6WFaFHNzcwwaNAhr165Fbm4uFi1aBGdnZ+HkhJKmp6eHffv24fz589i9e3eR2wgm3ioped6iRQu8f/++XIndH48vSET+2Lf45MmTqFevHiZMmAAVFZUyVZ6npKRg1qxZ+Pvvv0X6m757967U5Pm3b9/g7e0t9arFUaNG4evXrzh16lSVnO/SpUuwtrYW9iotC2VlZSxduhSHDh0qslddZXr9+rXw33jnzp1gjGHGjBlo2bJlhSrPc3Nz4efnV+Sw7MaNG0NXVxcvXryAt7c3jI2NYW1tDRsbG2zduhX//vsvtLS04OXlJUzGlCYxMbHEKueysLW1RXp6OpYvXw55eXn0799fIsetjho0aAB9fX0EBwdjy5YtaN68Odq2bSu8sY2KikJ+fr6wbQvwvxYOPj4+iI+Px6hRowBAOFljcHAwPnz4INYoAAMDA1y6dAkAanXyXJJGjhwJbW1tbNiwAfn5+Th//jwGDRokkqAX9CoXt+/52bNn0alTJ+FNoqysLFRVVSUfvIRZWlri2bNnFWr/oK+vL0yer1y5EjweD7/99pukQqz2HBwcwBgr8WHJixcvYG1tjR49euDVq1fFTpb27NkzNG3aVFgl+z0zMzPweLxqNb9Hebx+/RrHjh3DokWLRJKTxSXPBaM6evbsWewxW7duDTMzs0IFC0DFii2kSTCB/I+f6/3798fgwYMxZcoUKUVW83G5XCxfvhw3btwo8u82Pj6+WrRsEejcuTPCw8OF7dyA/yXPJdnK6f3790hNTYW1tbVw2ZAhQ/Du3btCLefKSjBZKPXoJ9ra2oWSwLm5uXjx4kWh5LmMjAxWrVqFSZMm4cWLF7h3716ljvIXJMi/v5fk8/l4/fp1oX7i3bt3x+PHj5GSkgIAWLt2LTp06IABAwZgwoQJ6N+/v/Bhd3JyMj59+lTu5PnYsWMhKytb5CjMc+fOQU1NrdSRSL179xaONiSElB8lz8spJycHgwcPRtu2bbF27Vpph1NuixYtQnh4ONzd3REaGoo1a9ZU6vn69++Pn376CXPmzMGhQ4cKJcAjIiIgIyNTYsW8mZkZGGNlrgYHCpLncnJywsRUy5YtISsrW6h1i7e3N1xdXaGmpgZjY+MynWvdunVITk5Gfn6+cPKdlJQUJCYmlpo8B4Bbt25Jrd+5gKmpKZydnYt9yCFJPB4Ply9fhpubW7mPMWnSJBgYGGDJkiUSjKxkkZGRMDc3R+PGjTFs2DBs3boV48aNQ6NGjWBubl6h5Pndu3eRlpZWbFLL2toajx8/xpkzZzB48GDhDcnkyZMRExODlStX4tmzZxgxYoRY55Nk8tzGxgZcLhf79++Hm5tbtRqRUxksLS1x7do1nDx5EjNmzICTk1OhG1szMzM0atQIOjo6ws+aLVu2wM7OTqS/sWAC0g8fPog1h4aBgQE+fPgAJSWlEh84kv+Rl5fHrFmzcPjwYZw8eRJJSUmFevJra2tDWVlZrMREWloabty4IdL2pSZp06ZNhRIa+vr6iI2NRUREBHbs2IEFCxZI7LOkJjAxMYGmpmaxfc9zc3MRGhoKa2truLi4AECxQ72fPn1aZL9zAMJrh5qYCP6eoOp87NixIsuLS56fPn0aXC63xL8vExMTvH79usjWLjU1ef7x40ckJycXSp7LyMjg+PHjtX4+gcrWr18/yMvLC0eLfS8+Pr5atGwR6NSpE4CCuWmAggcrDx48gIyMjEST54L7le/vP5ydnYVVqxXx/v17atlCABTdtiUoKAg5OTlo3759oe3Hjx+PHTt2CAtQKpOenh5UVVVFkucxMTHIysoqlDx3cXEBn8/H7du3ERERgT/++AMzZsxAfHw8Hj9+jIyMDOG9gOB45U2eC1qS7d69G/n5+SLrzp07hz59+kBOTq5cxyaElA0lz8vpwYMHeP/+PXbu3Fmjh062a9cOrq6uuHjxIjw8PIr84pK0P//8E87Ozhg9ejT09PQwb948YW/ZyMhIGBgYlPglIHjqXJ4+loLqB0E7BHl5ebRo0UIkeR4dHY2HDx/Cy8sLAGBkZCR25XlcXBw2b96MX3/9FYqKisKqFkEFY0nJcw0NDeFDA2n1O//elClTcP/+feEs3iXJzc0t97DOJ0+eICkpCb169SrX/kBBC4sVK1bg3LlzVdYuISAgAIwxzJo1C8HBwcjMzMScOXMAQFh5Xt7fyfXr16Gjo1PsxaK1tTWuX7+O5ORk4ftUQF9fH3PnzsWCBQvw9u1bkdEPxUlISJDYzaKysjJatWoFxlitbtkiYGlpiSdPnkBBQQFjx46Fg4MDoqKi8OnTJ7x58wb169cXJsIFcyy8evUKt2/fxsyZMwsdKyQkBB8/fhSr8lwwkZSFhQW4XPo6F9fkyZOhoKCASZMmQV9fHzY2NiLrORwOTE1Nxao89/X1RV5eXq0eYVGSJk2aIC4uDgsXLoSWlhZmzZol7ZCqFIfDgb29fbHJ89DQUOTl5cHa2hpaWlpo3bp1kX3PGWN49uxZsd/9Ojo6UFZWrpGJYIHiqs6Bgl7IHz9+LDTPgLe3N1xcXIqsxheHmZlZuUcqSpPguqu8PXJJyWRkZGBsbFxk8rm6VZ5raWmhZcuWuH37NoCCe5SPHz/Czc0N79+/L9c8N0V5/vw5tLS0hG2CgILWRwMHDsTJkycr1LpFcO9FSFHJ88ePH0NWVlZk1IM0cDicQpOGClpwft+2BSh44GtkZIRr165h6tSp0NLSwpo1a6ClpYV27dpBS0sLly9fBlCQPJeRkSkxB1CaadOm4cOHDzh//rxwWWRkJF69elXtuh8QUpvR3XY53bhxA5qamlL/oJeE5cuXw9TUtFJ6nRdFUVERFy9exJs3bzB+/Hj89ddf2LVrF4CCL4LSKig1NTWhrq5erpvIoo7/46ShJ06cgLy8PPr27QsAZao8/+2336CsrIyFCxfCxsZGmMgVXKAL2gEUR/B+qg7J8/79+0NbWxt79uwpcbunT59CUVERioqKMDAwwKBBg4Qzo4vD19cXDRo0gK2tbYXiHTp0KFq1aoUFCxZUuD+jOAIDA2FkZIQVK1bg1atXSE5OFr63zM3NkZaWhk+fPpXr2OHh4bCwsChxclmgIDFQXLsOCwsL4XDD0kiy8hwoaN2ipKSE3r17S+yY1ZUguTF27FioqanBwcEBQMGw6jdv3ohMEiz4rNm6dSv09PQKVTxbWFgIq3jFbdvyfQxEPGpqavjpp5+QkZGBAQMGFPngwcTERKyqvnPnzqFt27bCBxl1jb6+PiIjI3Hy5EmsWrWq2k+SWhns7e3x8OHDQhVhQEHLFg6HI/yc7tGjB65du1boOyoyMhKpqanFVp5zOBxYWloKq0NropUrVxZZdQ4UJCIYYyKTz378+BH+/v6FHhCXhWCkorgtmKqLoKAg1K9fn6p1K5GpqWmNSJ4DBa1bBJXngmrWMWPGgM/nC9tRVtT3/c6/5+XlhXfv3hUaoSsuxhiioqLovUwA/C95/v19YmBgIKysrKCoqCjFyAqYm5uLVJ6HhoZCSUmpyHk3XFxcsG/fPly9ehXbt29H/fr1ARS0hnJ1dYWfnx+AgtawJiYmFZpHwdraGg4ODtixY4dw2fnz5yEvL19iWzNCiGTV2OT506dP4eTkhM6dO8PLywt5eXlVev4bN26gW7dutaLar0OHDnj9+nWFnoiWh6mpKdavX49Ro0Zh7dq1yMrKEit5zuFw0KJFC4kmz4OCgsDn88EYw969ezFo0CBhz1ojIyPExsaWWt0RFhaGAwcOYNmyZVBVVYWtra1I8lxbWxsqKiolHkOQFK0OD2Xk5OQwYcIEHDp0CBkZGcVud+zYMWhqamLDhg3o06cPzp49W6bqb19fX/Ts2ROysrIVildGRgZr1qzBnTt3SpyUTVICAwNF+vN9f1EkqFAob+uWyMjIEm80BO+P71u2/EgwPFCcPvCSTp4vWbIEvr6+wgvJ2szR0RGGhobCKnJdXV00a9YM9+/fLzRJcOvWrREbG4sjR45g6tSphUbYCJLgWVlZYrdtAajfeXnMnDkTxsbGwp7zPxKn8jwnJwe+vr51uuqnSZMm4PP5sLa2FrtNVG3TtWtXZGRk4MqVK4XWvXjxAiYmJlBWVgZQ0Cf106dPhT6Xr127Bg6HU+KDc0dHR9y7d0+ywVehq1evYuzYsUUmEARVqd+3bjl16hRkZWUr9PclGKlY0yr2g4ODaURRJatpyfM3b94gPj4eDx48gJmZGezt7QFI7r39/PnzIu89unXrBg0NDZw8ebJcx01KSkJmZiYlzwmAgrZ4PB4PX79+FS57/PhxlYx8F0fbtm0RFBQknJskLCwMLVu2LPKz2MXFBdnZ2fDw8ECfPn1E1vXq1QtBQUGIi4tDSEiIRIpcpk2bhlu3buH06dOIjo7G2bNn4eLiUmpugRAiOTX2qkxPTw9XrlzBnTt3YGxsjHPnzlXZudPS0hAYGAhnZ+cqO2dlk+YkLkuWLMGXL1+we/dusZLnQMENUVnbtjDGik2eZ2ZmIiIiArdu3cK7d+9EJmMyNjYGn88vsh/n9y5fvgx5eXlMnjwZAGBnZ4fY2Fh8+PChUBKtOBMmTMDevXurTZ/oiRMnIjMzE8eOHStyPWMMZ8+excCBAzFjxgxs27YNurq6xW7/o4SEBDx58qRC/c6/5+bmBkdHRyxcuLBM1e9FzWBekry8PDx79qzYiz1DQ0PIy8uXK3nOGENERESJfwfGxsZYv359kROkCaiqqqJJkyalJs9zcnKQkpIi0R6f+vr6pU5eU1sYGRkhMjISRkZGwmUODg548OAB3rx5IzK5kaAND4fDwaRJkwody8zMTNhSSpzKc8F7pDo8bKtpdHR08O7du2L/hk1MTPDx48cSHxyeOXMG6enp8PDwqKwwq70WLVqAy+Xizz//rLOJvvbt28PW1hbr1q0rtE4wWaiAo6MjlJSUcOjQIeGyvLw8rF+/Hu7u7iU+xHR0dERsbCyio6MlGn9VSE1NxefPn9GiRYsi1+vr64PL5YpcZ3l7e6NHjx5QV1cv93k1NTWhoaFR45LnRU0WSiTL1NQUMTExIq3tsrOzkZKSUi2T50BB3/P79+/DwcEBWlpaUFFRkUjf88+fP+PDhw9FVp4LWrd4e3uXa1Sn4G+akucEgPBeQ3DflZ6ejtDQ0EKThUrL0KFDUa9ePeGoa0HyvCiurq6YOHEitm7dWmhd9+7dweVycfnyZYSEhJS73/n33N3dYWZmBg8PDzRr1gz+/v51uniDEGmosXc62trawuHBcnJyxVat5uTkIC0tTeSnou7evQsej4du3bpV+FikIAE0ZswYrFy5EikpKWInz9+8eVOmC7mkpCRkZGQUmTwHgFevXmHPnj1o2bIlnJychOuNjY0BoNS+52FhYWjRooWwB37Hjh0BAI8ePRI7ed6kSROMHz9e7NdU2QwMDODm5oZdu3YV+bsOCgpCZGSkcDIvGRkZDB48GN7e3kUOYf+RoFLP1dVVIvFyOBysWbMGz58/F7tK5smTJ9DW1sb+/fvFPk9ISAiys7OLTbzJyMjAzMysXMnz5ORkpKWllfh3wOFwMG/evFKrxS0sLBAcHFziNp8/fwaAOjXJX2VzcHDA06dPER8fL5I8NzU1haKiIoYPHw5NTc1C+ykoKAhbO4mTPLe0tMTdu3dp8rhKIPi8Lqll15YtW+Ds7FzsjVVdYG5ujqSkpDp9PcThcLBgwQL4+/sLWyoABQ9Cf0yeKyoqYt68edi8ebNwZMPRo0cRFRVV6oTXgpZQ0qw+F8xl4e/vX6b9BH9HguupH9WrVw96enqIiooCUDB/zP379yvUsgUo+LepaZOG5ufnIzQ0lJLnlczU1FRYrCCQmJgIANUuea6jowNTU1P4+PggKCgI9vb2wrk5yps8z8/Px6pVq9C7d2/htWxxI1+8vLwQHh5ertYtgr9p6nlOgP8lzwWV3c+ePQNjrNokz9XV1TFq1Cjs2rULOTk5CA0NLfYaT1lZGX///bfIPAECGhoa6NixI44cOYLExESJJM/r1auHV69e4fXr1/Dz88OBAwcwcuTICh+XECK+Gps8F4iJicH169cLDZcRWLNmDdTU1IQ/RfWsKqsbN27AwMBApNKQVMzixYuRnp4OAGIlz1u0aIG0tLQyVQwL+gL+eHwtLS00btwY165dw9mzZzFp0iSRSnxdXV3Iy8uX2vf8x6fTurq6MDAwQEBAAN69e1flbXEkZcqUKXj+/DmePHlSaN3Zs2ehqqqKrl27CpcNHToUiYmJwsmNSuLr64v27dtLNHHr6OiI3r17Y+3atWJtL0hwT5o0Sex2L4GBgeByuUVW6QiYm5uXK3le3Pu0PAQTUJZEcLNIyXPJsbe3B4/HAyA6SbCsrCyuX7+ODRs2FLuvYGinOG1bAMDJyUmqI4dqK8FDjOISE48ePcKjR4/w888/V2VY1VJFKoNri759+8Lc3Fzkeyc6OhqpqamFRob8+uuv0NXVxezZs8Hj8bB69Wr069ev2AmiBTQ1NdGyZUupJs+Dg4Nx4sSJMj1sBkpPngMFyTVBleru3btRr149iUzEW9OS5+Hh4cjJyaHkeSUTfDd//xkvSOhVt+Q5UFB9fvz4cfD5fOGDNDMzs3Inzy9duoQlS5aAMQZPT08cP3682L/Prl27omHDhvj777/LfJ6oqCioqanR9wQB8L+/rZiYGAAFLVvq169frYoQZsyYgYSEBGzfvh0pKSmFJgsVl6urq3CuAkkkz4GCBLqZmRlcXV0xevToCvVRJ4SUXbVPnsfHx8PR0bHQz9evX5GWloaRI0di//79hXrHCixcuBCpqanCn+8nIyqvGzduwNnZmRIWEtSsWTNhxbW4lecASq2q/Z4gKVnU0MHWrVtj79694HK5hXrgcrlcGBkZiVV5/uOXv62tLc6fP4/09PQamzx3dXWFgYEBdu/eXWjd2bNn0bt3b2G1PQDY2NjAyMgIx48fL/G4+fn5uHLlisRatnzPzc0NwcHBYlW/R0dHo2HDhujRowc8PDzEqqwJDAyEpaVliT29zc3NhbO0l4Ukk+cWFhaIiopCZmZmsdsIHkBJsm1LXWdpaSmcM+HHv3t7e/sSbyJbt24NNTU14f5EOjQ0NNCwYcNi+55v27YNhoaGdWJSXFI6LpeLX3/9FRcvXkRQUBCAgpYtQOG2SoqKiti0aRMuXbqE8ePH4+3bt1i6dKlY53F0dCxz1bckCSZAu3HjRplG/oWHh6Nhw4YlfvYZGhoiKioKS5cuxapVqzBv3jyJtLArz0hFaRK8fyh5XrkaNWoENTW1IpPn1fF6qEuXLuDxeNDQ0BDeA1Wk8nzfvn1o164dfH19sWHDBgwePLjYbeXk5LBw4ULs3r1brM8fPp+P0NBQPH36FE+ePKGWLURIWVkZDg4OmDdvHoKCghAYGIh27doJWxZWB+bm5nBxccHvv/8OAOVO7Pfq1QtAwd+PoCCDEFKzVfvkuba2Nu7du1foR01NDcOHD8eyZctKTErKy8tDVVVV5KciEhMTERQUVKv6nVcXa9asgbe3NzQ0NErd1sTEBMbGxvjjjz/E7m0dGRkJDQ2NIm/GWrduDR6PBy8vryLPb2RkVGLl+efPn/Hly5dC/TxtbW2FyZea+sUpIyODSZMm4dixY0hJSREuj4qKwsuXL4UtWwQ4HA6GDBmC06dPlzjJ6uvXr5GSklIpw/1NTU2Rn58vVm/Y6OhoGBoa4sSJEzAxMUHfvn2Rm5srsk1KSorIawkMDCx1cpuWLVsiKSlJ2BZFXJGRkRKr0hFUOpRUAS+oPG/UqFGFz0cKyMjIwNbWFtra2mX+zvn5559x69YtejhbDZiYmBSZmPj06RO8vb0xY8aManXDR6Rr6NChMDAwwJw5c7B582bs2bMHjRs3LrKKdeDAgXBxccHBgwfh6uoKGxsbsc7h5OSEkJAQkcnWqpKfnx/U1dURExNTakHB9969e1di1TlQUEQREBCAlStXYv369VixYkVFwwVQkDxPTU0t89wm0hIUFAQtLS36Tq5kRbU9+fDhA7hcbpFt1aRN0Pdc0LIFKLjWTUhIQGpqapmO9enTJ+HDO3HNmjUL9vb2GDNmjHAukOTkZBw8eLDQtf7kyZNhYWEBGxsbnDp1SmJVt6R28PHxQZMmTeDi4oLbt29Xm5Yt35s5cyYyMjIgJydX7k4D7dq1g6amJkxNTYst8iSE1CzVPnleHG9vbzx48AArVqxAly5dcOLEiSo5761btwCgTvf3rCzq6urw9PQUa1tZWVn8888/8Pf3F3sYYUmTkQrabwgm+/yRsbFxiclzQYVxUZXnQMFFek1u8zNu3Djk5eXh8OHDwmXnzp2DvLy88Mn694YOHYqUlJQS26AIbliKm0CsIkprufC96OhoNG3aFMrKyjhw4ABiY2OF1XVAQY/Xzp07o3v37uDz+cjKykJQUFCpyXPBML+ytm6JiopC8+bNJZI8FcRQUuuWxMREqKmp0dA/CZs5cybmz59f5v1UVVVLbAdEqk6bNm1w5syZQqNo9uzZg3r16mHs2LFSioxUR3Jycli6dClu3ryJJUuW4Pnz5xg2bFiRn+UcDgdbt26FmZkZ/vjjD7HP4ejoCAB48OCBxOIWV1paGu7du4dff/0VMjIyuHHjhtj7hoeHl1pA0Lp1a8jIyODgwYOYN2+exB4gCqp0a0rrluDgYGH7LlK5fkye3717F23bti12Hi1p0tPTQ/fu3eHu7i5cVlTrGXEcPnwYcnJyGDp0qNj7yMjI4MCBA4iPj8fcuXPx77//wtTUFGPGjMHixYuF2z148AB79+7FqlWr8OzZMwQHB2Pv3r1lio/Uburq6rh27RoaN26Mz58/l3o/JQ1ubm4wMjKCqalpuT8PuFwupk2bVuG5Owgh1QirY1JTUxkAlpqaKvY+ubm5LCkpieXk5LCJEyeyli1bVmKEpCwmTpzIVFRUWFxcXKnbdunShXl5eRW5Ljs7m128eJHx+fwi12/fvp3Jycmx/Pz8Itfv3r2bycjIsJycHJHl3759Y3JycszQ0LDU+Ko7Dw8PZm5uLvwdOTk5sT59+hS7vaWlJRsyZEix69esWcPU1NSK/Z1XBI/HY/Ly8mzLli2lbmtiYsLmzJkj/P82bdqwgQMHCv//9u3bDAADwP755x92//59BoA9ffq0xOPm5OQwWVlZtnPnzjLF7uLiwtzd3cu0T0kMDQ3Z3Llzi13/yy+/MFNTU4mdj5DaIjU1lQ0bNowBYBMmTGDHjh1jo0ePZvXr12dTp06VdnikmqqM77Tvj62rq8vmz59faecozpkzZxgAFhERwezs7JiHh4fY+2ppabHff/+9xG34fD5LTk6uYJSFZWdnMxkZGbZnzx6JH7syGBsbs1mzZkk7jDph+fLlrFGjRowxxvLz85mGhgZbsmSJlKMSX1paGgPAjhw5IvY+fD6fmZmZseHDh5frnNu3bxdeE48YMYItWrSIcTgcdvPmTZafn8/atGnD2rVrV+z9EiEC8fHxbMGCBSwtLU3aoRTp9u3b7MKFC9IOgxBSjdTYyvOq1KdPH2hqakJeXh7//PMPtWypRtavXw9lZWVMnTq11H6WJVWey8vLo3fv3sVWOhkbGyMvL6/YnvlhYWEwMjIS6f0NAAoKCmjTpo2w8qkmmzJlCkJDQ+Hh4QETExP4+/vDw8Oj2O3Hjx+PkydPFtsz+N27dzAxMamU9hRcLhfGxsalVuPw+Xxh5bnAqFGjcPHiRXz58gUAsGvXLpiZmWHUqFGYP38+fH19IS8vX2o/0nr16sHExKTMfc9Lep+Wh4WFRYlzAyQmJtJkoYQUQVVVFUeOHMG///6L//77D0OHDsXz588xbdo0rFy5UtrhkWqqMlsucTgcODk5SWXSUD8/P5iamqJ58+ZwdnbGrVu3xGqbJ5jcvbS2LRwOBw0aNJBQtP8jLy8PQ0PDck3gXdUyMzMRERFB/c6riKmpKT5//ozk5GQ8ffoUX79+Rc+ePaUdlthUVFSgo6NTpsrzBw8e4M2bNxg3bly5zvnTTz9hw4YN8Pf3x+HDh7FixQp07twZo0ePxsaNG/H8+XNs376dWpqRUmlpaWHNmjVQUVGRdihF6ty5M/r27SvtMAgh1Qglz0vx6tUrXL16FYsXL8b+/fuxY8cOLFy4UNphkf/XoEEDbN26FRcuXMDDhw+L3S43NxdxcXHlTkoKbvqK6/FZ1GShAv/88w/+/PPPcp23OunatSscHR3x9u1b9OzZE2fOnCk0uer3Jk+eDG1tbSxbtqzI9W/fvq3USVRNTU2LTdwLJCQkIDc3F82aNRMuGzZsGBhjOHbsGBISEnDmzBlMmTIFGzduBIfDwZo1a9CmTRux+teZm5uLNQGpgKBPuyST55aWlqW2baHkOSFF43A4GDduHKKiovDhwwe8fPkS69atk8icBISUh6OjIwIDA/Ht27cqOydjDJcvXxa2aXNxccGXL1/E+n4TXDdJc94XZ2dneHt7F5rPpLoJDQ0FY4yS51VEcA367t07XL58GWpqasJ2izWFqalpmVoS7du3D4aGhujSpUu5zsflcjF37lxhCykul4sDBw4gNTUVCxYswNixY2vc75AQQggRByXPv/P69WvMmzdPpIJ527Zt0NPTw2+//YYxY8Zg6tSp0NXVlWKU5EeDBg2Cvr6+SD/uH8XExIDP55c7KWlgYAAZGZli+56XlDy3srIS9p6uybhcLvz9/REUFITt27dj4MCBJVbYKSoq4rfffsPx48fx4sWLQuvfvXtXqcnz4ib7+55gQtHvK88bN26MXr164eDBg/j3338hKyuL0aNHo1GjRli/fj34fL7Y/fmcnJzw8OFDZGVlibV9bGwseDyexCvPY2Nji51QKiEhAVpaWhI7HyG1kZaWFn33k2rB0dEReXl5CAwMrLJzhoaGIjY2Vpg8t7W1haKiolh9zwXXTaVVnlem6dOn49OnTzhz5ozUYhDHq1evwOFwasU1Y00geKAjSJ67uLhUy37nJfmxb3tJTp06hcOHD2P8+PHgciWXAmjatCn+/vtvtGzZEmvWrJHYcQkhhJDqhJLn34mMjMTGjRuxa9cuAMCXL19w5MgRTJ06lWZJrsa4XC6GDx+OEydOFFtVFBkZCQDlTkrKycmhWbNmRVZ3ZGRkIDY2ttjkeV02ZswYGBsbi0wmBACpqalISEio1Eo0U1NTREdHIycnp9htikqeA8Do0aPx5MkT/PnnnxgyZIiwynTs2LGYO3cuRo8eLVYMzs7OyM3Nxf3798XavqLv06JYWFgAKH7iUqo8J4SQmqNVq1ZQVVUtsXVLfn6+2JXpKSkpWLp0KZKTk4vdxs/PD4qKiujcuTOAglYoTk5OuH79eqnHf/fuHdTV1aGhoSFWPJXB0tISXbt2xbZt26QWgzju3buHVq1aoX79+tIOpU4QtD159OgRHj16VKNatgiYmZnh7du3pbau3L59O7y8vODp6Yl58+ZJPI7BgwcjNDSUijEIIYTUWpQ8/46bmxumTp2KX375BWFhYdi7dy8YY5g4caK0QyOlGDlyJL5+/QpfX98i10dGRkJGRgZNmjQp9zns7Oxw586dQstfv34NAJQ8L4KcnBxWrFgBX19fkRt9QTuVyq48Z4wV22oHKEieq6qqFuqz2qdPH6irq+Pr16/46aefhMu5XC42bNiAdu3aiRWDhYUFtLS0xKrOAwrep1wuFwYGBmJtL44WLVqAy+UW2bqFMUbJc0IIqUFkZGRgb29fYvJ82bJl6NSpk1jHO3bsGFauXImePXsWOUIpLS0Nhw4dQteuXaGgoCBc7uzsDH9/f0RFReHNmzeIiYkp8vjh4eFSbdkiMGPGDDx48ABPnz6VdijFunXrFrp27SrtMOoUU1NTHDx4EHw+v0Ymz01NTZGZmYm4uLhit/njjz8wY8YMzJ49G4cPHy40PxMhhBBCSkfJ8x9s2LABzZo1w/Dhw7Fjxw4MGzYMjRo1knZYpBQWFhZo06aNSOuWjIwMYeI0MjISTZs2rdBwTBcXFzx//lw4kaSAYELIFi1alPvYtZmXlxcsLS2xdetW4TJB8ryyK88BiAxnjYuLE2mh8v79e5F+5wLy8vKYNGkSOnfuLHaLlqJwOBy4uLiIVZ0HFLxPmzRpItEbG0VFRRgZGeHVq1eF1iUnJyM/P5+S54QQUoM4Ojri/v374PF4Ra4/d+4cnjx5UmI1ucCVK1eEc4S4ubkhPT1duO7r169wcXFBTEwMli9fLrJfjx49kJWVhebNm6NFixYwMjLCx48fCx0/PDxcqi1bBPr27YumTZuWqfr877//xvr16ysxqv+JiopCdHQ0unXrViXnIwVMTU2RlpYGc3NziRYuVBU7OztwuVxcvny5yPUHDhzAb7/9hpUrV+LPP/+UaLsWQgghpC6hb9AfKCkp4b///kNwcDBiY2Px888/SzskIqaRI0fi4sWLSE5ORmxsLNq0aQNjY2O0bNkSp0+frnArDGdnZzDGcOvWLZHlYWFh0NfXr7azhUsbl8tF//79cevWLfD5fAAFCe3GjRtDTU2t0s6rpaUFZWVlYaI+Ly8P7dq1w8qVK4XbREdHF2rZIrB27Vrcvn27wnE4Ozvj2bNn+Pr1a6nbRkZGSrRli0CXLl1w7ty5QomWxMREAKBhtoQQUoM4OjoiLS0NwcHBhdbFxcUJH+o/evSoxOPk5eXh5s2bGDVqFK5cuYKgoCA4ODhg0aJFOHbsGLp164bIyEjcvHkTNjY2IvtaW1vj9u3buHLlCq5cuQIej4crV64UOse7d++qRfJcVlYWU6dOxbFjx4TffaXx9vbGunXrin1IkZWVhQULFiAzM7PC8d26dQtcLlfsEQNEMgSFFq6urlKOpHw0NTXRpUsXnD59utC6u3fvYtKkSZg4cSIWLVokhegIIYSQ2oOS50Vo27Ytdu3ahalTp8La2lra4RAxDR06FPn5+Vi/fj06deqE/Px8HD16FHZ2dkhNTYWdnV2Fjq+vrw9TU9NCLThKmiyUFOjWrRuSkpKEN/qVPVkoUFD1/f1ESjdv3kRiYiKuXbsm3Kak5LmkFPfQpSiVlTyfMGECYmNjcfXqVZHlggQCVZ4TQkjN0aFDB8jJyRXZuuX69evgcDhQVVXFw4cPRdbNmTNHZCTUw4cPkZ6ejh49eqBDhw64fv06mjZtikOHDmHYsGFISEjAnTt30LZt2yLj6Ny5M3r06CHc38/PT2R9RkYG4uPjq0XbFqDgu5AxhlOnTom1/cePH/H169dCv0eBq1evYt26dUU+NCirmzdvok2bNoXayJHKJbgWrYktWwTc3d1x48YNkZEmERERGDhwIBwdHbFjxw5wOBwpRkgIIYTUfJQ8L8b48eOxY8cOaYdBykBbWxs9evTA2rVrISsrizt37mDo0KHYt28fPn/+jD/++KPC53B2dqbkeTnY2dlBXl5emEB++/ZtldxMm5iYCCvPT548CQB49uwZUlNTwRirkuS5gYEBTE1NxWrdUlnJ8/bt28PKygr//POPyPKEhAQAlDwnhJCaRFFRETY2NkUmz69evYq2bdvCyckJAQEBwuWxsbH466+/MH/+fOHkgleuXEHDhg2FyfEOHTrAx8cHcXFxSExMREREhHDS6dK4urri2rVryM/PFy4TtM6rDpXnAKChoYFmzZoJJ+cujaANzaVLl4pcL/j9/vjvcO/evTLdQwgesFO/86rXo0cPbN26tUa3yxk4cCB4PB4uXLgAoOD9NH78eKirq+PUqVOQk5OTcoSEEEJIzUfJc1KrzJ8/H927d8edO3dEehdKquLC2dkZ7969Q2xsLAAgNzcX4eHhlDwvhaKiIuzs7HDz5k0wxvD27dtKrzwHIKw8z8vLw9mzZ+Hl5QU+nw9/f38kJycjIyOjyJ7nkubs7Fxq8jwlJQVfv36tlOQ5h8PBxIkT4ePjg/j4eOHyxMREyMnJUaUbIYTUMI6OjvD39xcmwgGAz+fj+vXr6NGjB+zs7PDo0SNhu7SLFy8CAJ4/f467d+8CKEi0d+/eHTIyMoWO36hRIygpKYkdj6urK1JSUvD48WPhsvDwcADVJ3kOAE2bNkV0dHSp22VmZiI1NRXKysqlJs/9/f1Flq9ZswYzZ87Ehw8fxIrp3bt3+PjxIyXPpUBBQQEzZsyo0JxI0qajowMHBwfhiIqLFy/izp072Lp1KzQ0NKQcHSGEEFI7UPKc1Cpdu3bF1atXoaurW2nH53A4wurze/fugcfjwdzcvFLOV5t069YNd+7cQUJCAlJTU6skeW5iYoJPnz7hwoUL+Pr1KxYsWAB9fX3cvn0b79+/B4BKrzwHCiabDQ8PL/GGPSoqCgAqJXkOAMOHD4esrCwOHDggXJaYmIjGjRvTcF5CCKlhHB0d8eHDB5HvlVevXuHz58/o3r07bG1tkZqaitevXwMAfHx80KVLF5ibm2PTpk1ISkrCkydP0KNHD4nE0759e2hoaIi0bnn37h0aNGiAhg0bSuQckmBgYICYmJhSt/v06RMAYNiwYXj16pWwaEIgLy8PT548gZmZGZ4/f46MjAwAQHZ2Nm7dugUej4d///1XrJhu3boFGRkZODk5lfHVEFLA3d0dV69exdevX/Hrr7+iW7du6NWrl7TDIoQQQmoNSp4TUgYaGhpo06YNbty4gaSkJIwePRoODg6wt7eXdmjVXrdu3ZCamooTJ04AQJW0bREk6NesWQNjY2NYW1uja9euuHXrljDhUBXJ8x8fuhRFMIy8spLn6urq8PT0xN69e4WViAkJCdSyhRBCaiAHBwcAoi1Drl69CiUlJdjb26NDhw7gcDh4+PAhMjMzcfPmTfTr1w9z5syBj48Pdu/eDcaYxJLnMjIy6NGjBy5fvixcFhQUBGNj42r1gFbc5LmgZcvYsWMhIyMDX19fkfWvXr3Ct2/fMHfuXPB4POHkrP7+/vj27Rvs7e3xzz//iLSxKc6tW7dgY2NDE8+Tchs0aBByc3MxePBghIWFYcOGDdXq744QQgip6Wp88vzYsWNo1KiRtMMgdYig7/mIESOQnZ2N48eP1+jhnlWlffv2UFJSwp49ewBUzTBuQYL+6dOn8PT0BIfDQZcuXfD8+XO8fPkSioqKVfL5oa6uDisrq2InHQMKkucqKiqVWqE3ceJERERECHvPJyYmQktLq9LORwghpHI0bNgQ5ubmIi1Drl27hs6dO0NeXh4qKiqwtLREQEAArl+/jpycHPTt2xfDhw+HpqYmfv/9d1haWkJPT09iMfXq1QtPnjxBYmIifHx8cPToUXh6ekrs+JJgYGCA+Ph45OTklLidIHlubm4OBwcHYdsbgYCAAMjJyWH48OFQV1cXPsS4fPkydHV1sXXrVsTFxRWaRPVHjDHcvn2bWraQCjEwMBBO+jtixIhiJ/klhBBCSPnU6OQ5n8/HqVOn0KRJE2mHQuoQZ2dnfPr0CVevXsXRo0ehr68v7ZBqhHr16sHJyQlhYWEwMDCAoqJipZ9TQ0NDmIwW3MB36dIFjDEcOXIEBgYGVVaZY2xsLGzNUhTBZKGVGY+joyPatm2LuXPnIi8vT9i2hRBCSM3j6OgoTNp++/YN/v7+6N69u3C9nZ0dHj58CB8fH7Ro0QLGxsZQUFDA1KlTwePxJFZ1LtCzZ08AwLZt2zBixAgMGDAAc+fOleg5KkowH05cXFyJ23369An169eHiooKevfujRs3buDbt2/C9QEBAWjbti0UFRXh4OAgkjx3dXVFu3btYGNjg927dwMAcnJysHHjRnh5eaFDhw7Q0dFBs2bN0KpVKyQkJFDynFTYkCFDoKCggJUrV0o7FEIIIaTWqdHJ86NHj8LDwwNcbvEvIycnB2lpaSI/hFSEk5MTtLW18ccff4jcpJLSdevWDUDVtGwRMDExEbZsAQBDQ0MYGBggIiKiSiYLFTA0NBQreV6ZOBwO9uzZg1evXuGvv/6iti2EEFKDOTk5ITQ0FMOGDUPfvn2Rk5Mjcl1ia2uLkJAQnDt3Dn369BEu/+mnn2BkZAQvLy+JxqOlpYW2bdti5cqV0NXVxcGDB0u8RpcGQfK8tElDP378CF1dXXA4HPTu3Rvfvn3D7du3hesDAgJgZ2cHoOAhRkBAACIjIxEaGgpXV1cAwJQpU+Dn54fTp0/DxsYGCxcuRFJSElq1aoXJkydj+PDh6NKlC2bOnInOnTtXzgsmdcaMGTMQHh5eJe0ICSGEkLqmxvaa4PF48Pb2xrlz5/Dnn38Wu92aNWuwfPnyKoyM1HZKSkqIiYmBnJyctEOpcQSVVVUxWajA77//Dg6HI6zoFrRuOXToUJXeYDRv3hzR0dHg8XiQkZEptD4yMhL9+/ev9DhsbGwwa9Ys/Pbbb2CMUdsWQgipoVxdXeHi4oJPnz5BUVER06dPh4WFhXC9nZ0dGGP48uUL+vbtK1yupaWF8PDwSolp0KBBiIiIwLlz56Cqqlop56gIwWjV0vqeC5LnQEHrlubNm2PXrl1wdXVFYmIioqKiRJLnmZmZWL9+PbhcLlxcXAAUVALPmTMHHh4eaNu2LZ4+fQorK6tKfHWkLpOVlZVoGyZCCCGE/E+1T57Hx8fDw8Oj0PKJEyfCy8ur1IqWhQsXYs6cOcL/T0tLozYvpMIocV4+bdu2hb6+Ptq3b19l5xQMI/+eNJLnhoaGyM/PR1xcXKHz8ng8vH//vtIrzwX++OMPnDlzBu/fv6fKc0IIqaE0NTVx7dq1YtebmpqiQYMG4HA4VTax+cKFCzFjxoxqmTgHAAUFBWhpaZUpec7hcLB+/Xp4eHjg+PHjUFJSAlBQ2Q8UPJSWl5fHv//+Czs7O6irqwMA6tevj61btyIpKQk///wzXTsSQgghhNRQ1T55rq2tLewj+L1ff/0Vz58/x5EjR/Du3TvMnj0bf/31V6Ht5OXlIS8vXxWhEkJKISMjg/DwcNSrV0+qcQgq4I2MjKrsnIaGhgAKKsx/TJ7HxcUhPz+/ypLn9evXx549e9CzZ08a3ksIIbUUl8tFnz59oKqqWmUTm3O53GqbOBcwMDAQK3nerl074f+7u7vD09MTM2bMQL9+/aCrqyssxpGXl0eHDh3g7+8vbNkiMHr0aMm/AEIIIYQQUqWqffK8OOvWrRP+t42NTZGJc0JI9VMdHmY1a9YMDx48gI2NTZWds2nTpuBwOIiKiio0MVhkZCQAVFnyHAB69OiBqKgoSp4TQkgtdvjwYWmHUO2ImzwXVJ4LbN++HRYWFti/fz/c3d1FJvh2dHQsMnlOCCGEEEJqvuo1i085PXnyRNohEEJqGDs7uyodQq2goABdXd0iJw2NjIwEh8Op8kR2s2bNRG7+CSGEkNrOwMCgxAlD09PTkZGRUSh53rhxY2zbtg0AhP3OBUaMGIHx48ejbdu2kg+YEEIIIYRIVY2tPCeEkJqmefPmwirz70VGRkJfX79aVOUTQgghtVnTpk0RExMDxliRD5A/fvwIAIWS5wAwePBgcLlcdO/eXWS5ubk59u7dWzkBE0IIIYQQqaoVleeEEFITGBoaFlt5XpUtWwghhJC6ysDAANnZ2UhKSipyfUnJcw6HAy8vL+GkoIQQQgghpPaj5DkhhFQRQ0PDYivPKXlOCCGEVD4DAwMAKLbvuSB5rqOjU2UxEUIIIYSQ6ouS54QQUkWaN2+OhIQEZGVliSyn5DkhhBBSNX5Mnj979gz29vbIyMgAUJA8V1NTQ/369aUWIyGEEEIIqT4oeU4IIVXE0NAQAPD+/XvhsrS0NCQlJVHynBBCCKkCmpqaUFRUFCbPt2/fjoCAANy8eRNAQfK8qJYthBBCCCGkbqLkOSGEVBFB8vz71i2CHuiUPCeEEEIqH4fDgYGBAaKjo5GVlYWTJ08CAPz8/ABQ8pwQQgghhIii5DkhhFQRXV1d1KtXT2TSUEEinZLnhBBCSNUwMDBATEwMzp07h4yMDPTu3Ru+vr5gjFHynBBCCCGEiKDkOSGEVBEul4tmzZqJVJ5HRkaifv36aNSokRQjI4QQQuoOQfL80KFDcHR0xLRp0xATE4OwsDBKnhNCCCGEEBGy0g6AEELqkubNmxeqPG/evDk4HI4UoyKEEELqDgMDA5w4cQJZWVnYs2cPunTpAgUFBfj5+VHynBBCCCGEiKDKc0IIqUKGhoZFJs8JIYQQUjUMDAyQkZEBOTk5eHp6QlFREV26dMHRo0eRnZ1NyXNCCCGEECJEyXNCCKlChoaGiIyMBGMMACXPCSGEkKrWtGlTAMCAAQOgpqYGAOjVqxeePXsGAJQ8J4QQQgghQpQ8J4SQKtS8eXNkZGTgy5cv4PF4eP/+PSXPCSGEkCpkamoKWVlZTJgwQbisV69ewv+m5DkhhBBCCBGo0cnz27dvw9nZGZ07d8b58+elHQ4hhJTK0NAQAPDkyRPs2rULubm5lDwnhBBCqpCenh4SExPh4uIiXGZiYgIjIyMAgI6OjrRCI4QQQggh1UyNnTA0Ozsbf/75J/z8/FCvXj1ph0MIIWIRJM979eoFLpeLnj17wsnJScpREUIIIXWLurp6oWVubm44ceIE5OXlpRARIYQQQgipjjhM0Hi3hrl58yZ2796N1NRUKCkpYdeuXdDW1i60XU5ODnJycoT/n5aWhiZNmiA1NRWqqqpVGTIhhAAAVq9eDXV1dQwaNAhaWlrSDocQQgghAL5+/YrIyEjY2NhIOxRCCCGEEFJN1Njk+bFjx7Bp0ybcv38fN27cwPnz57F79+5C2/3+++9Yvnx5oeWUPCeEEEIIIYQQQgghhBBSnGqfPI+Pj4eHh0eh5T/99BOePHmCv/76Czk5OejevTvu3r1baDuqPCeEEEIIIYQQQgghhBBSVtW+57m2tjbu3btXaPmXL19w6NAhAMDz58+LnXBPXl6e+hYSQgghhBBCCCGEEEIIKZNqnzwvTsOGDdGvXz906tQJXC4X+/btk3ZIhBBCCCGEEEIIIYQQQmqJat+2RdLS0tKgpqZGbVsIIYQQQgghhBBCCCGEFIsr7QAIIYQQQgghhBBCCCGEkOqmzlWeM8aQnp4OFRUVcDgcaYdDCCGEEEIIIYQQQgghpBqqc8lzQgghhBBCCCGEEEIIIaQ01LaFEEIIIYQQQgghhBBCCPkBJc8JIYQQQgghhBBCCCGEkB9Q8pwQQgghhBBCCCGEEEII+QElzwkhhBBCCCGEEEIIIYSQH1DynBBCCCGEEEIIIYQQQgj5ASXPCSGEEEIIIYQQQgghhJAfUPKcEEIIIYQQQgghhBBCCPkBJc8JIYQQQgghhBBCCCGEkB9Q8pwQQgghhBBCCCGEEEII+QElzwkhhBBCCCGEEEIIIYSQH1DynBBCCCGEEEIIIYQQQgj5QZ1LnjPGkJaWBsaYtEMhhBBCCCGEEEIIIYQQUk3VueR5eno61NTUkJ6eLu1QCCGEEEIIIYQQQgghhFRTdS55TgghhBBCCCGEEEIIIYSUpsYkz58+fQonJyd07twZXl5eyMvLw4kTJ2BnZ4du3bohNjZW2iESQgghhBBCCCGEEEIIqSVqTPJcT08PV65cwZ07d2BsbIxz585h06ZNuHPnDlasWIEVK1ZIO0RCCCGEEEIIIYQQQgghtUSNSZ5ra2tDSUkJACAnJ4e3b9/CwsIC9erVg4ODA4KCgorcLycnB2lpaSI/hBBCCCGEEEIIIYQQQkhJakzyXCAmJgbXr1+Ho6MjVFVVhct5PF6R269ZswZqamrCnyZNmlRVqIQQQgghhJA6jjGG9+/f49u3b9IOhRBCCCGElFGNSp6npaVh5MiR2L9/Pxo3bixSRS4jI1PkPgsXLkRqaqrwh3qjE0IIIYQQQiTl9evX2Lx5M/h8vsjya9euYdCgQdDS0oKhoSF0dXUxY8YMvHr1SkqREkIIIYSQspKVdgDi4vF4GD58OJYtWwZTU1Pk5eUhNDQUubm5CAwMhJWVVZH7ycvLQ15evoqjJYQQQgghhNR2V65cgZeXF9LS0qCiooLx48cDAKKjozFw4ECYmJhg0qRJ6NChAwICArB//35s374dp06dgru7u5SjJ4QQQgghpeEwxpi0gxDHsWPHMH36dLRq1QoA8NNPP4Exhi1btkBBQQGHDh0SqyVLWloa1NTUkJqaKtL2hRBCCCGEEELEtX37dsycOROurq5QVVXF5cuX8fr1azRu3Bh9+vTBy5cvERoaKnLPkZeXh379+iE8PByhoaGQk5OT4isghBBCCCGlqTHJc0mh5DkhhBBCCCGkIi5evIi+ffti1qxZ2LhxI5KTk9GiRQv06NED/fr1w9ChQ3Hu3Dn079+/0L6vXr2CtbU1du3ahcmTJ0shekIIIYQQIi5KnhNCCCGEEEKImPLz89G6dWtoaWnhxo0b4HA4AIBDhw5h9OjRUFFRQY8ePXDq1KlijzFixAjcvHkT4eHhUFJSqqrQCSGEEEJIGdWoCUMJIYQQQgghRJoOHjyI0NBQrF+/Xpg4B4CRI0fC2dkZXC4X27ZtK/EYf/zxBz5//lzqdoQQQgghRLqo8ryCGGO4ffs2Ll26hGXLllE1OyGEEEIIIbVUVlYWTExM4OTkhOPHjxdan5mZiaSkJDRt2rTUY02fPh3//fcfXr9+DS0trcoIlxBCCCGEVBAlz8vo9u3bePfuHdTV1cHn87Ft2zbcu3cPHA4H3bt3x8WLF2niH0IIIYQQQmqhNWvW4LfffkNYWBiMjIwqdKzExERYWVnBwsICV69ehYyMjISiJIQQQgghkiIr7QBqkmfPnsHZ2Rl8Pl+4rEOHDvDx8YGioiJcXV0xY8YM7Nq1S2QIJyGEEEIIIaTmYYzhxo0buHr1Kh48eIDHjx9jypQpFU6cA0Djxo1x/PhxODs7Y9myZVi1apUEIiaEEEIIIZJEledi4vF4sLOzQ3Z2NgIDA5GVlYWMjAzo6+sLE+X79u3D+PHjsX79esybN6+yXgIhhBBCCCGkEvF4PJw6dQpr167FixcvoK+vD3t7ezg4OGDChAkSneRz3bp1WLBgAXx8fNCnTx+JHZcQQgghhFQcVZ6Lac+ePQgMDMT9+/chLy8PeXl5qKuri2wzbtw4REREYP78+WjcuDFGjx4tpWgJIYQQQggh5cEYw6BBg3DhwgV0794dN2/eRJcuXSptZOn8+fPx4MEDeHl54ZdffsH8+fOhoqJSKecihBBCCCFlQ5XnYoiPj4eZmRkGDx6Mv//+u8RtGWOYNGkS9u3bh5MnT2LQoEGSCJsQQgghhBBSBfbs2YMpU6bg1KlTcHd3r5JzZmRkYOXKldi8eTPU1NSwYsUKTJgwAVwut0rOTwghhBBCikbJ82Lw+Xw8fvwYV65cgbe3Nz5//ozXr19DQ0Oj1HPweDwMGzYM586dw8WLF9G9e3dJvgRCCCGEEEIqzatXr/Dlyxd07dpV2qFUufDwcLRu3RojRozAnj17qvz8MTExWLx4MY4cOQI7Ozvs2bMHLVu2RGBgIPz9/eHu7i6RfuuEEEIIIUQ8lDwvQmJiIjw9PXH37l2oqanBxcUFc+bMgb29vdjnyc3NRZ8+fRAWFoaoqCjIylKHnOqGMYbk5GSxHogQQgghhNQFYWFhsLe3R0ZGBm7evAknJydph1Rl8vPz0alTJyQmJuLFixdQVlaWWix37tzBlClTEB4eDiUlJaSlpQEAmjdvjkePHkFTU1NqsRFCCCGE1CU0DvAHz58/h42NDV6/fg1fX18kJSXh1KlTZUqcA0C9evWwevVqxMXFwc/Pr5KiJeXh7++PyZMnw9DQEA0bNsTt27elHRIhhBBCiNQlJiaid+/e0NPTg4ODA9zd3RETE1Nou4cPH2LatGmIjo6WQpSVIzs7G5MmTcKjR49w6NAhqSbOAaBz58548eIFNmzYgLlz5yIgIADv3r1Deno6Bg4ciJycHKnGRwghhBBSV1Dl+XcuXrwILy8vmJub4+zZs2jSpEmFz2djYwNtbW1cvHixwsciFfflyxfo6OjAwMAAbm5uOHv2LPr06YNdu3ZJOzRCCsnLy8P8+fOhra2NX3/9VdrhEEIIqcW+ffuGrl27Ijo6Go8ePYKSkhJsbGygoaEBX19fZGRkIDo6Gps2bYKvry9kZGTQvHlz+Pv7Q0tLS9rhV8j79+/h4eGB4OBg7N69G2PGjJF2SMUKCAhA165d4e7ujrlz50JeXh6NGzemSnRCCCGEkEpCvUS+Y2pqitGjR2PTpk1QVFSUyDEnT56MKVOmICYmBgYGBhI5Jim/06dPg8fj4f79+9DS0oKsrCxOnDiBHTt20IRMpFr59u0bBg8eDB8fH8jKysLd3R3GxsbSDosQQkgttWrVKrx69Qp3794VXrOeP38e9vb20NHREW5nZmaGY8eOwcbGBp06dYKrqytu374NNTU1aYVeIa9evULXrl2hqqqK+/fvo127dtIOqUR2dnY4ePAghgwZgqNHjwIA5OXlcffuXXTo0EHK0RFCCCGE1D5UeV7JMjIyoKuri1mzZuGPP/6o9PORknXp0gXy8vK4cuUKgIJ+kl26dMGjR4/ohoNIVXZ2Ni5fvgw5OTkoKipi+fLlCAwMxH///Yfp06ejc+fOwptkQgghRJIyMjJgYGCAMWPGYNOmTSLrQkJCEBoaioYNG0JTUxMWFhaQkZEBAAQFBaFTp05o1aoVLl26BBUVlVLP9fTpU1haWkJeXr5SXktZ5ObmokOHDuDz+bh9+3aNmgcnJiYGiYmJyM3NxcyZM5GWlobnz59DSUlJ2qERQgghhNQqVGpbyZSVlTF8+HDs3bsXeXl50g6nTvvw4QPu3r2LoUOHCpc5ODigYcOGOHfunPQCIwTAjh07MHDgQPTp0wfOzs549eoVrl+/joEDB+L333/HsWPH8OLFC2mHSQghpBb6999/kZ6ejlmzZhVaZ2FhAU9PT3Tr1g1WVlbCxDkAtGrVCr6+vnj58iW6dOmChISEEs/z6NEj2NjYYMGCBZJ+CeWyZs0aBAcH4+DBgzUqcQ4ABgYGsLGxgb29PQ4fPoyYmBjMnz9f2mERQgghhNQ6VHleBV6+fAlra2ucOXMGAwcOrJJz1lV5eXn4+PEjmjZtWmjdpk2bsGjRIiQkJIgMLR47diwePXqE0NDQSokpNDQUqamp6NixI7WGIUVijMHS0hLm5ubYsmULsrKyoKmpiQYNGgAA8vPzYWFhASMjI/j6+ko3WEIIIbVKXl4ejI2N0alTJxw+fLhcx3j58iV69eoFRUVF7Nq1C8HBwbh58yYsLS2xdu1aAAXfdd26dcO9e/fA4XDw5s0bGBoaSvKllDlmGxsbLFy4sFaMDt22bRt+/vlnXLlyBT169JB2OIQQQgghtQZl8qpA69at4eTkhMmTJyMwMFDa4dRqq1evRsuWLfHx48dC644ePYrevXsX6snZv39/hIWF4e3btxKNJTc3F0uXLoWVlRXs7e3RtGlTzJkzp8jYSN0WGBiI0NBQTJgwAbq6ujA2NhYmzgFAVlYWq1atgp+fH7y9vVHHnnkSQgipRCdPnkRMTAzmzZtX7mO0bt0aDx48gJycHHr27InFixcjKSkJ69atw4EDBwAAV65cwe3bt3HkyBFoampiyZIlEnoFZZeXl4cxY8agZcuWUo1DkqZNm4bu3btj4sSJ4PF40g6HEEIIIaTWoOR5FTlz5gyaN2+OLl26wM/PT9rh1Eo5OTnYuXMnvn37hnXr1omse/fuHZ4+fSrSskWgR48eUFRUxPnz5yUWy7t379CxY0esXbsWy5Ytw927dzFgwAAcPHgQffr0QXZ2tsTORSQnPz8fsbGxVX7e/fv3Q09PDy4uLsVu4+7ujl69emHw4MHo1KkTbt26VYUREkIIqW0YY8jJycGGDRvQs2dPWFlZVeh4zZo1w+PHjxEQEIDk5GQ8fPgQY8eOxdSpUxEUFIQFCxbA0dERXl5e+P3333H06FE8e/ZMQq+mbLZv346XL19i3759qFevnlRikDQul4tVq1YhJiYG165dk3Y4hBBCCCG1BiXPq4impiZu3rwJFxcX9O3bF/v375d2SLWOt7c3EhMTMXz4cPz999/49OmTcN2xY8egoqKC3r17F9pPSUkJPXr0kFjfc8YYRo8ejbS0NDx69AjLli2Dk5MTtm3bhuvXryMkJKRC1V2k8mzZsgWmpqaIiYmpsnNmZ2fj2LFjGDVqlEgf2R9xOBxcunQJFy9eRFZWFrp16ybR9+zXr18lcixCCCHVW2JiIszMzCArKwsFBQW8ePFCYr2yVVVVYWtrCwUFBQAFSWojIyM4OTnh5cuXWLduHTgcDsaNG4cWLVpg3rx5iIuLQ1paGvh8fqHj5eTk4MaNG/j1119hb2+PpUuXIjc3t0IxJiQk4Pfff8eUKVNgY2NToWNVNzY2NrCwsMC+ffukHQohhBBCSK1ByfMqpKSkhNOnT2PChAkYN24cVqxYQe0XJIQxhi1btqBnz57Yvn075OXlsX79egBAQEAANm3aBE9PTygqKha5v7u7Ox48eICWLVtiwoQJ8PHxKXcs58+fR0BAAHbv3o22bduKrGvTpg02bdqE7du34/Tp0+U+B6kcx44dQ3Z2NlasWFGu/Xk8Hs6fP49du3aJfXN/7tw5pKamYsyYMaVuy+Fw0Lt3bzx58gS2trb4+++/yxXn9zIyMjBs2DBoaWnh6dOnFT4eIYSQ6u2vv/7Cx48fsWPHDhw6dAh3795Ft27dKuVcSkpKOHXqFHg8Hvr16wd7e3sABe3I1q1bh5s3b6JJkyZQU1ODvr4+goODhfumpKSgY8eOcHFxwaFDh9CoUSOsXbsWHTt2FNlO4M2bN9i7d2+RSfjvLViwALKysuX+rq/OBA8mzp8/Tw/FCSGEEEIkhdUxqampDABLTU2VWgx8Pp+tWLGCAWCTJk1i+fn5UoulpsrPz2fbtm1j4eHhjDHGHjx4wACwS5cuMcYY++2335iCggI7duwYq1+/PnNycirx35zP57Pjx4+zKVOmMEtLSwaALVq0iPH5/DLFlZeXx1q0aMG6d+9e4rnc3d2Zmpoae//+fZmOTypPREQEA8A6derEZGRk2Nu3b8XeNz8/n+3YsYMZGxszAIzD4TAbGxv27t27Uvft0aMHc3BwKHO8u3fvZlwul3369KnM+wqEhYUxc3NzpqyszAwMDFjnzp3L/J4nhBBSc3z9+pWpqKiw+fPnV+l5o6KiWEZGRqHlQUFBzNfXlx0/fpy1bt2aaWtrs/DwcJaVlcUcHR2ZhoYGu3//vvC76dmzZ8zc3JzVq1ePLV++nGVnZzPGGPP19WWqqqoMAPPw8GBZWVlFxhEQEMAAsF27dlXei5WyhIQEJisry7Zt2ybtUAghhBBCagVKnkvRvn37GIfDYXv27JF2KDXOokWLGACmpKTENm/ezLy8vJixsTHj8XiMsYKbQ8FNVPfu3VlmZqbYx+bz+WzDhg0MABs5ciTLyckRe9+///6bAWBPnz4tcbvk5GSmq6vLhgwZIvaxSeVau3YtU1RUZElJSUxPT48NHTqUMcYYj8djx48fZ48ePSp23zVr1jAul8sGDx7MHj58yB4/fsyMjY2ZsrIyO378uMi2WVlZbNKkSczJyYm1bt2acTgctnfv3jLH+/XrVyYvL8/+/PPPMu2Xl5fHLl++zEaOHMkUFRVZy5YtWWhoKPPz82MA2NmzZ8scCyGEkJph+fLlTEFBgcXHx0s7lELi4+OZqakpa9asGXN1dWVKSkosICCg0Hbfvn1jCxYsYLKysszExIT98ssvjMvlsj59+rD//vuPKSoqMltbW5aYmCiyX3Z2Nmvbti1r06ZNrS9cGTBgAGvTpg1jjLEvX76wUaNGsUWLFrH09HQpR0YIIYQQUvPUmOR5Wloa69ChA6tfvz4LCgpijDF2/PhxZmtry7p27cpiYmLEOk51Sp4zxtjQoUOZvr4++/btm7RDqTEuXLjAALBly5ax6dOnMwAMANuyZYvIdn///TebMGFCuX+3x44dY/Xq1WO9e/dmeXl5pW6fmZnJdHR0hEnX0uzbt48BYA8fPixXfESy2rVrxzw8PBhjjO3Zs4dxOBx29OhRZm9vzwAwHR2dIj834uLiWP369dmsWbNElqelpbFhw4YxDofDjh07xhgrSFz369ePKSkpsREjRrBp06ax5cuXF1shVxpPT09mZWVV6nZpaWns+PHjbOTIkUxTU5MBYGZmZmzFihUsLS1NuF3Pnj2ZsbFxmR4YEUIIqRnS09OZhoYGmz59urRDKVZMTAwzMDBgsrKyzM/Pr8RtQ0JCWOfOnRkA9uuvvwoT4o8fP2ZaWlrM2NiYRUVFMcYKCiOGDRvG5OXlWWBgYGW/DKkTXCvv3buXNW3alDVo0IApKCgwPT09duzYMRplRgghhBBSBjUmeZ6Xl8cSExPZ6NGjWVBQEMvNzWUdOnRgOTk57N69e2zixIliHae6Jc/fvn3LZGRk2F9//SXtUGqEiIgIpqamxvr16yesMr9z5w4bP368SBJQUi5fvsxkZWXZpEmTSr3RWL16NZOTk2MRERFiHTs/P5+1atWKOTo60k2MlAlatpw4cYIxxlhubi4zMjJiAJi5uTk7evQoq1+/Pvv5558L7TtixAjWqFEjlpycXGgdj8djo0aNYjIyMuzs2bNswoQJTFZWlvn6+kokbh8fHwaAvXjxotht+Hw+s7W1ZQCYlZUVW7BgAQsMDCzyPRcUFMS4XC7bvHmzROIjhBBSfWzYsIHJycmx6OhoaYdSog8fPrDHjx+LtS2fzy+yBV5kZCQzMjJienp6LCQkhC1btkzke762y8vLY1paWgwA69ChA3v//j2LiopiAwcOZADY4cOHpR0iIYQQQkiNUWOS5wKC5HlISAgbO3ascLmtrW2R22dnZ7PU1FThT2xsbLVKnjPG2Pjx41njxo1pKGUx4uPj2a5du9iYMWOYrq4ua968eZGJysoiqBBfu3Ztsdt8/vyZqaqqFplcLcmVK1cYAHbmzJmKhkkqQNCy5ft+rAEBAWznzp3CKuyNGzcyLpfLnjx5ItxG0Gv/n3/+KfbYeXl5zNPTk3E4HAaAHTx4UGJx5+bmskaNGrE5c+YUu82dO3cYAHbhwgWxjjlp0iSmqqrKgoODJRUmIYQQKXv//j1r2LAhGz9+vLRDqTIfP35krVq1YioqKgwAW716tbRDqlKHDh1iS5YsKTSarGvXrqxHjx5SiooQQgghpObhMMZYZU5IKmljxozB3LlzkZaWBm9vb2zevBkA0KFDBzx+/LjQ9r///juWL19eaHlqaipUVVUrO1yxREdHw8TEBMuXL8fChQulHU61whiDjY0NXr16BSsrK3Ts2BGzZ8+GiYlJlcaxbNkyrFixAitXrsTMmTOhrKwssn7OnDnYu3cvIiIi0KhRozId29XVFREREXj58iWUlJQkGXaNlJ6ejvfv36NVq1ZVds527dqhefPmOHnyZLHb5OXlwcbGBnJycjh37hyCg4OxcOFCcLlcPH78GDIyMsXum5ubixkzZsDa2ho//fSTRGOfNWsWjh07hpUrV0JBQQFmZmbo0KGDcP3AgQPx5s0bhISEgMPhlHq8tLQ0ODo6Ii0tDQ8fPoS2trZE4yWEEFK10tPT4eDggIyMDDx+/BiamprSDqnKfP36FYMHD0bLli2xZcsWsb4Ha7tdu3ZhxowZSEhIQMOGDaUdDiGEEEJItVdjk+cyMjLYsGED9u3bBwCws7NDQEBAoe1zcnKQk5Mj/P+0tDQ0adKkWiXPAWDGjBk4cuQI4uLiUL9+fWmHU208evQItra28PX1Ra9evaQWB2MM8+bNw9atW6GsrIyff/4ZM2bMQMOGDfH+/XuYmZlhyZIlWLp0aZmPHRISgg4dOsDOzg4XLlyo0wn09PR0dOvWDc+ePcO+ffswevToSj9nREQEjI2NceLECXh5eZW47cOHD2Fvbw/Bx6aGhgZ8fX3RsWPHSo+zOCEhIXBwcEBqaioAgMPhwNfXF66uroiMjISxsTF2796NSZMmiX3M2NhYdOzYEfr6+rh9+3adfk8SQkhNxuPxMGDAANy5cwcBAQGwsLCQdkhEyhISEqCrq4s9e/ZgwoQJ0g6HEEIIIaTa40o7gPIyNjZGaGgocnNzcf/+fVhZWRW5nby8PFRVVUV+qqPZs2cjJSUFfn5+0g6lWtm1axeaNWuGnj17SjUODoeDjRs3IiIiAqNGjcL69evRtGlT/PLLL5gzZw7U1dUxZ86cch3bwsICvr6+CAgIQN++fZGVlSXh6GuGnJwcDBw4EG/fvsWgQYMwZswY7N69u9LP+99//0FZWRm9e/cudVtbW1v4+Pjg7NmziIyMxOfPn6WaOAcK3j8pKSng8/nIysqCm5sbhg0bhqioKGzbtg0aGhoYOXJkmY7ZpEkTXLx4ESEhIZg+fXolRU4IIaSyLV26FL6+vjhx4gQlzgkAQEtLC507d4a3t7e0QyGEEEIIqRFqVOW5m5sbXrx4gaZNm2Ly5MlQUFDAli1boKCggEOHDqFJkyalHiMtLQ1qamrVrvIcANq2bQtTU1McP35c2qFUC1+/foWenh5+++03LFiwQNrhiPj8+TO2bNmC7du3IzU1Fbt27cKUKVMqdMy7d+/Czc0NHTt2xMWLF6GoqCihaKs/Ho+HIUOGwMfHB1euXEGnTp0wa9YsbN26FcOGDYOuri5UVVUxePBgmJqaSuy8jDGYmJjA0dERBw4ckNhxpSk5ORk2NjZQVVVFREQEZsyYgVWrVpXrWBs3bsTixYsRHx8PdXV1CUdKCCGkMt2/fx9OTk5YvXp1tbuOItK1e/duTJ8+HfHx8XWqjQ8hhBBCSHnUqOS5JFTn5PmqVauwdu1aJCYm1qnEaXE2b96M+fPnIy4uDo0bN5Z2OEVKS0vD7du30bt37xJ7Xovr7t27cHV1hYuLC06fPg05OTkJRFm9JSYmYtiwYbh9+zbOnDmDfv36AShIbK9duxanTp1Ceno6YmNjMWDAABw7dkxi5w4ICIC9vT1u3LiBbt26Sey40vbixQvY2dkhPz8f79+/h56eXrmOEx8fDz09PezcuROTJ0+WcJSEEEIqS1ZWFqytrdGwYUPcu3dPItcopPZITEyEjo4Odu/ejYkTJ0o7HEIIIYSQao2S59XImzdv0KJFC5w7dw79+/eXdjhSxRhDy5Yt0aZNG4kmS2sCPz8/9OvXD0OGDMHBgwfB5Yp2Vzp58iQcHBygq6srpQgl58GDB/Dy8kJeXh6OHz+Orl27FrvtggULcODAAXz69EliE3799NNPuHTpEt6/f1/o91zT+fr6IjY2tsJJ7169eiE9PR337t2TUGSEEEIq2y+//IIdO3bgxYsXaNGihbTDIdWQs7MzZGRkcPXqVWmHQgghhBBSrdWubFENZ2ZmBgsLC5w+fVraoUjFt2/fcPLkSRw9ehRr167FmzdvKtwKpSbq1asXjhw5gv/++w+//PKLyLobN27Ay8sLGzdulFJ0khMcHIwuXbqgWbNmeP78eYmJcwDo2rUrEhIS8ObNG4mcPycnBydOnMDw4cNrXeIcKGhzJYlq8ZEjR+L+/fuIiIiQQFSEEEIqU3Z2No4cOYK//voLK1eupMQ5KZaXlxdu3ryJpKQkaYdCCCGEEFKt1b6MUQ3n4eGBCxcuIDc3V9qhVLmdO3fCy8sLw4cPx6JFi9C2bVt06tRJ2mFJxeDBg7F161Zs3rwZJ06cAFBwQ/zTTz8BAC5fvizN8CqMMYbZs2ejWbNmuHHjhlhV9A4ODpCVlcWtW7ckEsOlS5eQnJxc5sk065oBAwZAWVkZR44ckXYopBKEh4djwIABmDx5Mvbs2YPw8HBph0QIKYeYmBgMGzYMjRo1wsiRI9GzZ0/Mnj1b2mGRamzAgAHg8Xjw8/OTdiiEEEIIIdUatW2pZoKCgmBlZQVfX1/06tVL2uFUKXt7e2hqagonTJWXl6/TPToZYxg+fDh8fHzw9OlTHD16FKtXr8ayZcuwdOlSvH//Hk2bNpV2mOVy8eJF9O3bFxcuXEDfvn3F3s/e3h5NmjQRPlCoiIEDByI2NhZPnjyp8LFqu7Fjx8Lf3x/v3r2TWMscIn3fvn2DnZ0dkpKS0LBhQ4SEhEBBQQGxsbE0QSwhNUhubi4cHBzw4cMHTJ06Fe7u7mjZsqW0wyI1QPv27WFsbFznWiQSQgghhJQFVZ5XM5aWljA1NcWpU6ekHUqV+vjxIwICAuDh4QElJSUoKSnV6cQ5AHA4HOzZswe6urro168f1qxZg/nz52P69OmQkZGp9pVCJ0+exNatWwstz83NxS+//AIXFxf06dOnTMfs0qULbt++jYo+80tOTsalS5eo6lxMI0eOREREBB4+fCjtUIgEzZo1C2/evIGvry9evnyJqKgoZGZmwsfHR9qhEUJK8ON34KJFi/Dy5UtcuHABS5YsocQ5EZubmxuuXLmC/Px8aYdCCCGEEFJtUfK8muFwOPD09MSZM2eQkZEh7XDEFhkZifnz5+Pbt2/l2v/cuXOQlZUtUxVyXaCiooKTJ08iOjoa+vr6WLx4MRo0aAB7e/tq3brF29sbgwcPxqxZs/Dy5UuRdTt37kR4eDg2bdpU5irmrl27IjExEWFhYRWKz8fHB3l5efD09KzQceqKLl26oEmTJvjzzz+lHQqRkCNHjuDvv//Gjh07YGVlBQBo0qQJ7Ozs6uy8G4RUd58/f8acOXOgqKiITp064cqVK7h06RL+/PNPrFu3DjY2NtIOkdQwbm5uSE5OxqNHj6QdCiGEkCr0/v17+Pr6YvPmzdi4cSNycnKkHRIh1Rolz6uhiRMnIj09HQcOHJDI8XJyciq1h/q3b98wcOBAbNiwAb/++mu5jnHmzBl069aNWgUUwcrKCnfu3MHly5ehqKgIoGBS0Rs3bpTr35UxhiVLluDt27eSDhUA4OfnhxEjRmDo0KEwMTHBvHnzhOvevXuH3377DRMnTkSrVq3KfGx7e3vIyclVuO/5mTNnYG9vL1avdQJwuVysXbsWp0+fxpkzZ6QdDqmgmJgYTJkyBaNGjcLYsWNF1rm7u+PKlStIT0+XUnSEkB9FRUVh0aJFaN68Of7991/MmDEDOTk5cHV1Rb9+/dC7d2/MmjVL2mGSGsjGxgaamprw9fWVdiikmmKMYfXq1bhy5Uqx23z9+hWHDx8uNCqGx+OBz+dXdoiEEDHl5eXhxIkTcHJygqGhIXr37o2FCxdi0aJFcHNzQ1pamrRDJKT6YnVMamoqA8BSU1OlHUqJBg8ezJo3b87y8/NL3O7Lly9szJgx7OzZs4zH44ms4/F47MCBA6xx48bMycmJ5eXlVUqs48aNY4qKimz69OkMALty5UqZ9k9KSmIyMjJs9+7dlRJfbfTs2TMGgN24caPM+96/f58BYL1795ZoTHw+n3l7ezNFRUXWr18/lpuby86ePcsAsMuXL7O0tDRmbm7OzMzMWEpKSrnP4+DgwNzd3cu9f3p6OlNQUGAbN24s9zHqIj6fz/r168e0tLRYUlJShY8XGhrKPn36JIHISFkNGjSI6erqsrS0tELrIiMjGQB2/PhxKURGCGGMsU+fPrEbN26wbdu2MRcXFwaAqaiosLlz5wo/f/l8Prt27RqbNm0a+/z5s5QjJjXZiBEjmLW1tbTDINXUtm3bGADWqFEjlpycXOQ2Q4YMYQDY2rVrhcvS09OZra0t09fXZ+vXr2fJycksLCyMzZgxg2lpabEDBw5U0SsgpO6ZOnUqGzJkiMiy3NxcZm5uzgCwzp07s+PHj7Po6GjG4/HYnTt3mJqaGmvbti2Lj4+XUtSEVG+UPK+mHj9+zACw06dPl7jdsmXLGIfDYQCYhYUF27p1K9uzZw/bsmULs7e3FyZJZWRk2NKlSyUS25s3b9izZ89YQkIC27dvHwPADhw4wHg8HuvevTvT0dEpU3Jt3759jMPhUCKtDPh8PtPW1mZz584t876TJk1icnJyDAALCAiQSDxRUVGsd+/eDABzd3dn3759E8bp6OjIWrVqxQYNGsRUVFRYWFhYhc61ZMkSpqmpWehhkbhOnjzJALCIiIgKxVEXffz4kTVo0ICNGDGiQse5c+eO8HNLV1eXeXl5sS9fvkgoSlISPz8/BoAdO3as2G3atWvHPDw8qjAqQghjBd+ZM2bMYAAYACYnJ8ccHR3ZgQMHWEZGhrTDI7XU0aNHGQAWFxcn7VBINePv789kZWXZqFGjWP369dmsWbMKbXP79m0GgNnb2zMul8uuXbvGcnNzWa9evZiysjIbPnw4q1evHlNQUBAm4Tt37sxkZWXZ1atXpfCqCKndHj58yAAwGRkZkfur69evl1jo+PLlS6atrc0sLCxYTk5OVYVLSI1ByfNqzMnJiTk4OBS7PiMjgzVs2JDNmDGD3bt3j/Xq1YsBYBwOhykqKrI2bdqwmzdvMsYYW7FiBeNyuez27dsVimnr1q2My+UKb+wAsPHjxwvXx8XFMXV1dWHlsTj69OnDHB0dKxRXXTRmzBhmYWFRpn2ysrKYmpoaW7hwIbOwsGA9evSocBxnz55lSkpKTF9fn509e7bQesEXOIAi15eV4Iv/1atX5dp/6NChVGFVAQcOHGAAmIGBAdPU1GSNGjVib968EXv/9PR0ZmhoyBwcHNjJkyfZggULWIMGDdigQYMYn8+vxMhJdnY2MzY2Zl27di3xd7169WqmpKTEMjMzqzA6QsiaNWuE1ZuvX78W+zqKkIpISkpiXC6X7d27V9qhkGrkw4cPTFtbm3Xq1Inl5uaytWvXMhkZGRYSEiLcJi8vj1lZWbGOHTuyvLw81rNnT9awYUPm4eEhkhz/9OkTW7NmDTt8+DDLzs5meXl5zM3NjamoqLCXL19K6yUSUuvweDzWoUMHZmZmxjgcDjt48KBw3dSpU5mBgUGJ9wAvX75kMjIyIqNICCEFKHlejZ07d44BYA8fPixy/bZt25iMjAyLiooSLsvLyyvyAzE/P5917tyZ6evrl6vlQn5+Pps5cyYDwGbPns0eP37Mzp49y44ePSqsMha4cOECk5OTYy4uLqW250hNTWX16tVjmzZtKnNMdd3x48cZABYeHi72PseOHWMA2Nu3b4UV2P7+/uWOYe/evYzL5TJPT88iW0AILF26lG3durXc5/leVlYWU1JSYgsXLizzvtnZ2UxFRYX98ccfEomlLuLz+WzXrl1s8eLFbPXq1ax+/fps9erVYu8/ZcoUpqSkJPK+PX36NAPA9uzZU+q5L1++XKtbFOTl5bHY2FiJPUjIyspi9+7dY35+fmzatGlMVlZW5Ma3KG/evGEA2JkzZyQSAyGksKioKNalSxc2b9489uLFC3bkyBEGgC1btkzaoZE6yN7eng0aNEjaYZBqpE+fPkxXV1fYwkHwAN7FxUV4jbJ9+3bG4XDY48ePGWMFD2KaNWvGALAjR46UePz09HTWpk0bpqenx16/fl25L4aQOkJQ5HT37l1mb2/P+vfvzxgrSKrr6OgUOXrkR3PmzGFKSkosJiamkqMlpGah5Hk1xuPxmLGxMevQoUOhD6+8vDxmaGhYqJdVSWJjY5m6ujqbOHFimeLg8/ls6NChjMvlsu3bt4u1z61bt1iDBg2YhYUFCwkJKTYRtGLFCiYnJ8diY2PLFBNhLCUlhenq6jJjY2ORByglcXV1Zfb29oyxgveXlZUV69q1a5nPnZmZyVasWMEAsClTppTam1/SFixYwJSUlMrc6ufSpUsMAAsODq6kyOqegQMHCt9Tpbly5QoDwHbu3Flo3eTJk5miomKxid3U1FRhT83u3bvX2ir1qVOnMgCsadOmbOzYsWzu3LmsR48eTFdXl/35559lPp6zs7PISKHffvtNrP0sLS3L9P1CCBFfdnY2s7GxYVpaWqxhw4bCv88xY8bU2s82Ur2tXLmSqaioFCqIIXXTvXv3ipz/xMfHhwFgZmZmzNbWlqmoqIiMQGaMsfDwcObr6yvWeT5+/MjMzc2Zurp6hUdHE1LXpaWlMW1tbTZ48GDGGGMbN25kCgoKLD09XTjnmThFc6mpqUxHR4daOBLyA0qeV3P37t1jenp6TE1NjR05ckR4UyWoOn769GmZjrdp0yYmIyNTpjYL69evZwCYt7d3mc4VGhrKDA0NGQCmrq7Ounbtyvz8/ITrExISmLKyMps9e3aZjkv+JzIykhkZGTFdXd1SE8IfPnxgXC5XpLpXMLph+fLlwvdWTk4O++WXX1jLli1Z37592dy5c9mmTZvYzp072Z49e9jQoUNZ/fr1hRVy0rjR//r1K2vQoAGbPn16mfYbP348MzU1peSEBAlGH4hTDW5qaipSsfS9zMxMZm5uziwsLNjHjx9F1gUGBjIjIyOmoqLCfvnlFwZAZBhibXHjxg3h6J5Zs2YxKysr1qxZM9avXz9mbW1d5nZDgomF9+zZw2JjY8v0vbdlyxYGgJ08ebKsL4MQUoopU6YweXl59uTJE5abm8suXbrE1q5dS21aiNQIRhzRZNGEz+ezTp06sdatWxeaX4jP57P9+/ez2bNns7Fjx7KJEydWeDRgcnIyc3Z2ZnJycuzQoUMVOhYhddnKlSuZgoICi46OZowxFhERIbyW/+WXX5iWlpbYBW+CuTCK649OSF1EyfMa4OvXr2zYsGHCPsPOzs6sadOmzNnZuczH+vbtG2vSpInwiWRpbt26xbhcLluwYEGZz8VYwe/74sWLbMWKFcze3p4pKCgI29BMmzaNqamplauNDPmfT58+MSsrK6ahoVEo6fi99evXM3l5eZacnCxcxufz2cqVKxkANmrUKBYVFcUcHByYnJwcGzduHHNzc2OGhoZMWVmZycrKCiemXblyJXv37l0VvLrirVmzhsnJyYk98eeTJ0+YkpISW7x4cSVHVrd8/PiRAWCHDx8ucbv379+X2gokJCSE6erqMj09PfbkyROWk5PDlixZwmRkZFi7du2ErV6GDRvGNDQ0WEJCgkRfiyQdPHiQTZ8+XewHNenp6axZs2asS5cuRU6Ge+jQIQagTK95zJgxzMDAgOXl5Ym9jwCfz2eDBw9mioqKLDAwsMz7E0KKdvDgQQaA/fPPP9IOhRARDg4OEpkLh9RsglGCFy9erLJz5ubmsnHjxjEOh0PJOkLKIT8/nzVp0qTQSJDWrVuzoUOHMkNDQzZ58mSxjyd4iNaxY0dJh0pIjUXJ8xrE19eXLViwgLm7u7P27duz+/fvl+s4e/fuZQDY8+fPi92Gz+ezsLAw1rhxY9atW7dyJV9+9O3bN+bg4MAaNWrELl++zGRlZdn69esrfFxS0GNQQ0Oj2JY8fD6ftWzZstiHJkePHmX16tVjXC6X6enpsYCAgCK3KyqpJy2ZmZlMR0eHjRgxotRto6KimJaWFmvfvj3LyMiogujqlnbt2pX6QE6QMCrtYdmHDx9Y+/btmaKiImvRogWTlZVlv//+u0hFZmJiImvYsCEbOnSoROKXtI8fPzJlZWUGgP31119i7TN16lSmpKRU7MMgwUOKo0ePinW8hIQEVq9ePbZu3Tpxwy4kKyuLdejQgenq6lLfQ0Ik4PHjx0xRUZHas5Bq6d9//2UcDkdYtUjqHj6fz9q1a8fs7Oyq/DOKx+MxV1dX1rBhQ3oPElJGFy9eZACE8w8ILF++XFgAV9YHU97e3gwAzUlAyP+j5HkdlJeXx0xNTZmbm5vI8uzsbLZp0ybWtm1bYVsOPT09iVZ3fv78mRkbGwur6Km3ouRs3ryZcblcFhQUVGjdzZs3GQB28+bNYve/d+8emzJlinBioJpg165djMPhsPPnzxe7zdevX1mLFi1Y8+bNq3Wlck3222+/sQYNGpTYcmDcuHGsVatWYh0vKyuLjRkzhtna2rIXL14Uuc3hw4cZALHnYSiv3bt3szVr1ojcRGZnZ7M1a9awu3fvFrnP2LFjmYaGBpswYQKTk5Mrsr3Wu3fv2KZNm9jo0aNZ+/btGQC2bdu2EmOxtLRkY8eOFSvuFStWMEVFRfblyxexti/Op0+fWJMmTZicnBxzdXVlf//9N8vJyanQMQmpi6Kjo5mWlhazs7Ojax9SLaWlpbH69evTpOp1mGAC91u3bknl/ElJSczAwIB16NCBZWdnSyUGQmqCHwva+vbty9q0aVPooVdQUBADUOp9WlG+ffvG1NTU2JIlSyocLyG1ASXP66gTJ04wAKxPnz5szZo1bOfOnaxp06ZMRkaGDRkyhG3cuJFdvHixwomXorx9+5aZmJiwU6dOSfzYdVlOTg4zMjJivXr1KrTO3d2dmZub17pKt7y8PDZo0CAmIyNTZNsQPp/P3NzcWMOGDcvU55+UTWBgIANQ4mRPzZs3L3OP+pLw+Xw2e/ZsBoCtWrWqUt7biYmJTFFRkQFgc+bMYXw+n6WlpYlMwung4MAuXbokPP+TJ08Yh8Nh27dvZ9nZ2axt27bMxMSERUZGsosXL7IlS5YwKysrBoApKCiw9u3bszFjxrDdu3eXOrJj9uzZTF9fv9TXmpuby3R0dNikSZMk9nvYtm0b69q1K+NyuWzVqlUSOS4hdUVqaipr1aoVa9asGT3EJdXa2LFjmaGhYbUaaUiqBp/PZ61bt2bdunWTahyPHz9m9erVY7NmzZJqHIRI0s2bN8VuNVqSFy9esNGjRzNFRUW2c+dOxhhjMTExjMvlst27dxfaXjD6fNy4ceU638SJE1nTpk3pO4EQRsnzOovH47ENGzYwZ2dnYXuBQYMGsbCwMGmHRirg1KlTDAC7evWqcFlsbCyTkZGp9ApdacnLy2Njx44tsgr57NmzDAA7d+6clKKrG3g8HtPS0mLz5s0rcn1sbCwDIPEHZnw+n/3xxx8MAJs3b57EE+iLFy9m9evXF84LMG3aNNahQwemoqLCbt26xS5cuMBsbW0ZANa6dWt27Ngx5uTkxCwsLIStrt68eSMcyQNA2G7m9OnTLDMzs0zx+Pr6MgClfk4LJvkpahRKRfXr169c820QUpe5u7szVVVVFhISIu1QCCnR3bt3pVp5TKTn/PnzDAC7c+eOtENhq1evZnJycjVqNCwhxTl+/DjjcDisQYMG7Nq1a+U6RlRUFOvZs6dw9H6/fv0YAPbvv/+y3377jSkrK7O0tLQi901MTCx321J/f/9q87lAiLRR8pyw/Px8qoSqJfh8PrO3t2ctWrQQ/psuWbKEKSsr1+r3PJ/PZ3PmzGEA2J49exhjBa0/mjZtynr16lXrKu6ro3HjxrEWLVoU+bs+cuQIA8ASExMr5dybN29mAAq17zl//jxbvHgxCw4OLvMxU1JSmJqaGps7dy5jjLHt27czAExTU1OkDQufz2e3bt1iPXr0ECbIv394xRhjAQEB7MSJEywyMrJC78WMjAwmJyfHtm7dWuw2+fn5rEWLFqxnz57lPk9J1q1bx+r/X3v3HRXV1bUB/GHoSBEQC0pTEQu22BXUKFhRULGhMZrYe32jxkgglkSNEbHEXl9LLBGDxl5j19gQo4gNsYuIRoFhZn9/5HW+IKAIMwzo81vLteK9556zh+hx7r7n7lOokFb2wSD6GBw8ePC99isg0ie1Wi1ly5aVLl26ZDiXlpamh4goL7yudd6oUSN9hyIi/5RctLCwkO+++07foRDlyq5du8TY2Fi6du0qzZs3F0NDQ5k7d262r1er1bJkyRKxtLQUZ2dnWbdunSiVSlGr1dK/f38xMDAQa2trrb1tmtn4bm5uGTYiJfoYMXlO9IGJioqSYsWKSdmyZeXy5ctSrFgxGThwoL7D0jm1Wi1DhgwRAwMDWbdunQQHB4uJiYlcvXpV36F9FHbt2iUApGPHjhlWN/Tu3VsqVqyos7HVarX4+vqKu7u7ph73jRs3pFChQppNcqpVqyZ79+7Ndp9TpkwRExMTuXv3rubYzp075fr161lec+rUqUzLB2lTo0aNpE2bNlmeX758uQCQ06dP62T8I0eO6LR/og+JWq2WunXrSs2aNfnKMxUY8+bNEwASEhKieeB74MABKV68uIwbN07P0ZEubNu2TQDInj179B2KRt++fcXR0fG96zQT5QdqtVr27dsnhQoVkpYtW0pqaqoolUoZNmyYAJDOnTu/c1HR0aNHxcfHRwBIr169MuSvVCqV9OzZUwBkur+StkycOFGsra3l5cuX2Wq/efNmmTRpks7iIdIXJs+JPkCxsbHi7u4upqamAiBHK28LIpVKJd27dxdjY2MxNTWV8ePH6zukj8qmTZukUKFCUrly5XR1/dzd3WXAgAE6HfvChQuiUCgkLCxMk0x3cnKSR48eyZYtW6Ru3bpStGhRSUhI0FwTFRUlderUkWPHjqXr6++//xYHBwfp37+/TmPOiUmTJomVlVWmN5PJycni4uIiHTp00Nn4ycnJYmpqKrNmzcp1XyqVSrZv385Nwf4nNTWVezN8YDZv3pzvElJE2TF58mRNSbSwsDAxNDQUZ2dnMTAwkCNHjug7PNIitVotderUkfr16+erNzUvXLggAGT9+vX6DoUo2168eCFhYWFStWpVzd5Iby4qWrt2rdjb24uDg4MsXrxYli9fLuPHj5cvv/xShg8fLsHBwZqkecWKFeW3337Lcry0tDS5du2aTj9TTEyMAJD58+enO56amirHjx9PN2/cvn1bUxL4bQn92NhYvsVKBc57J89fvnwpd+7cyXBcX8m5UaNGiZeXlwQFBWlWHL4Nk+f0sXj48KHUq1dP/Pz89B1KnkpNTRV/f38pU6ZMjuu7Uc5dvHhRypQpI/b29nLkyBGJj4/Ps5ufPn36iK2trUyfPl0AyI4dOzTn4uPjxdraWnr37i0iIs+fP5cKFSoIAHFwcJAbN26IyD8J3REjRoihoaFWNvbRthMnTmRZjzY8PFwUCoVER0frNAZvb28JDAzMdT+vy/kEBgZ+UOUAduzYId988817XaNWq6V79+6iUCjk999/11FklJeUSqV4eHhIs2bN9B0KUY68LokGQEaNGiXJyclSp04d8fDwyPYKRMrfrl69Kj169MjwnSm/aNSokXh7e+s7DMoH8tODnayo1Wpp3bq1GBkZSfv27SUyMjLLBPH9+/elQ4cOmjm2VKlSUqtWLalQoYI4OjpKjRo1ZMOGDfnmrbUuXbpoVsAnJCTI1q1bpXz58gJARo8eLWq1WtRqtfj5+Ymjo6O4u7tL69atM+1rx44dAkBcXV0lLCyM9+tUYLxX8nzDhg1SqlQpqVKlilSuXFmOHz+uOVe9enWtB/cuf/75p3Tr1k1E/lmN99///ved1zB5Th8TtVr9QSWlskutVnM1qx49efJEGjZsKKamptK9e3cBIPfu3dP5uPfu3dOsdujVq1eG8/Pnz9dsevPZZ59JoUKF5PDhw1K6dGmpVKmSxMXFib+/vxgYGMj06dN1Hm9OpKWlSbly5aRIkSLpytAkJCRIsWLFpGfPnjqPYdy4cVK8ePFc3cgolUopV66cVKxYURQKhfTr109nN0YqlSpHfYeFhckXX3wh8fHxmmPXrl2TAQMGyJ9//pnpNQ8ePBA7OzsB8F6ryBcsWKBZYWRjYyN//fXXO69Rq9Vy5MgR+eKLL6RMmTLSsWNHmT9/vty6dSvb4+al/fv3S6NGjbJ8a0GlUsmqVaskODi4QNwkv8uiRYsEQJZ/VogKgk2bNqXbdD06OlpMTU01+4FQwXT9+nXp1q2bKBQKKVGihISHh+fLeXfjxo0CQM6dO6fvUEiPEhISxNPTU3r06JFhseSDBw/y9M/ugQMHsiy3snDhQgHw1pXib7p165b8/fff2gpPZ9RqtSxatEisra3F3NxcAEjTpk1l/PjxAkCCg4Nl3bp1AkC2bNkia9asEQAZ3u598uSJODo6SsOGDSUoKEgMDQ3F1tZWRowYka3vvkT69F7J86pVq2omi1OnTknFihU1Cetq1appP7p3mDt3rqxYsUJERE6fPi2DBg165zVMnhMR6V5ycrIEBQUJAPHw8MizccPCwsTDwyNdeZbXVCqV1K9fXwoXLiwAZPXq1SIicvnyZbGxsRFjY2OxtraWrVu35lm8OfHo0SPx8fERhUIh48aNk27duom5ublYWFhoVtDr0uvaqLl5TXTlypWa2umLFy8WADJx4kQtRiny9OlTmTx5shQpUkTKly8vhw8fzva1v/32mwAQc3NzsbKykhkzZsjo0aPFxMREk+TO7AFdly5dxN7eXmxsbLKsDXz//n3x9PSUXr16ydWrV+XMmTNiamoq/fv3l2fPnkmFChXEw8NDEhMTs4zv4cOHmleCXV1dZcCAAVKvXj0xNDQUMzOzfLV6PTY2VgICAgSAlClTRgBIaGhoupvdQ4cOSc2aNTUrsP744w89Rpx7arVaPD09pV27dvoOhUjrfvjhB1EoFNz7ogBKSkqScePGiampqTg6OsrcuXPl1atX+g4rS0qlUkqVKiU+Pj75Ok7SHZVKJX5+fmJtbS0mJibSvHlzef78uVy/fl38/PwEgDg7O8vQoUPl6NGjOo3l9QbgxYoVy/CmRmxsrBQqVEjzhuuHKi4uTsaMGSORkZGa73FTp07VfGfu2LGjiPzz/83T01N8fHzSXd+1a1cpXLiwxMXFiYjIzZs3ZfTo0WJvby8AxM/PjyvRKd96r+T5mxu+PX78WBo2bCghISF6WXk+efJk+fXXX0Xkn1pMXbt2zdAmOTlZnj17pvkVFxfH5DkRUR5QqVQyY8YMWbNmTZ6O+7YVKFFRUWJiYiJ9+vRJd3z//v3SsmVLuXz5sq7D04q0tDQZN26c5uHElClT5Pbt23kydkJCghgYGMjy5ctzdL1SqZSyZctK27ZtNcemTJmiWa2iDcuXLxdra2tNUrpevXoCQPr37y9JSUlvvfbq1atiY2Mj/v7+8uTJExk8eLAoFAqxsLCQkJAQOXbsmBgZGUloaGi66yIiIjQPZQYMGCAlS5bM9M2fjh07ip2dnZQoUUIUCoXY2trKJ598okkMXL16VQoXLiw+Pj5Zlkbo1KmT2NnZye7du9O90vvs2TNp06aNGBsba74f6VN0dLQUKVJEnJycZM2aNaJWq2XSpEkCQIYNGybffvuteHp6CgCpWbOmHDx4UDw8PKR9+/b6Dj1XXpdXyk8PMYi0RalUiru7u3Tq1EnfodB7ePjwobi5uYmZmZl88803BSZBtWfPHjEzM5MWLVowgf4R+u6778TAwEC2b98ue/fuFUtLS/Hw8BAzMzMpVaqUzJ07VwYNGiQlS5YUADJ27FidvHWdnJws5cuXl9q1a0vz5s0FgAwePFgiIiLk6NGj4uXlJa6uru/8jvmhCg4OFmdn53RvGm/atEkAyMqVK+X8+fOaN/IyqxaRnJwsq1atkkKFComfnx/roVO+9F7J88aNG8v58+fTHUtJSZEuXbqIoaGhVgPLjnnz5mlWnp86dSrTlefBwcGalUz//sXkORHRx+nu3bv5poZgbj179kwvr1pXrlw5x6trli9fnqGchVqtloCAALGzs9OsRsmpyMhIUSgU8tlnn2m+xKelpUl4eLgUKlRIGjVqlGVZp+fPn0ulSpXEw8Mj3feE69evy/379zW/HzdunJiYmGgetty6dUscHR2lZcuWolar5eTJk5kmT19vILl27Vp59eqVzJ07V3x9fTPU19+/f79YWFhI48aNM9yIbdiwQQBk+VAqJSVFOnbsKIaGhvLLL79k86emfdevXxdHR0fx9PSUx48fpzv3008/CQCxsrKSbt26SUREhObv5IIFC8TAwEDnG2DpUt++fcXJyemjLJtGH4e5c+eKQqHIk7edKPfS0tLEx8dHHBwcCuTcumfPHjE3N5dmzZrJgwcP9B0O5ZGtW7eKgYGBfPvtt5pjZ86ckYoVK8qYMWPk+fPnmuNqtVqmTZsmCoVCfH195dGjR1qNJTQ0VIyMjOTixYuiUqlk1qxZmvIlAEShUMjBgwe1OmZB8+b9iFqt1ixeef2rY8eOb71v2bFjhxgZGcmXX36ZL0tJ0cftvZLncXFxWdat1ccrtm/WPM/sRpIrz4mIiLRrwIABUr58+QzHly5dKnXr1pWePXvKrFmz5MCBA/L06VMR+afczJw5c6REiRISEBCQ4drHjx9LyZIlpVGjRjlOOp45c0YKFSok/v7+mfbxxx9/iJmZmXTq1CnDA5SrV69KtWrVxNLS8p2brr58+VLKli0rNWvWlDZt2ohCoRB7e3tNvXG1Wi2VKlVKtzIzISFBihcvLm3bts3WDcHhw4fF2tpa6tSpo7kJfPjwoTg4OEi7du3e2odSqZSAgABxdHTUy4Oi2NhYcXNzk7Jly2b5vTEuLi7ThxgvX76UIkWKyJAhQ3Qdpk68ePFCrKys3nvTWKKC5MWLF5o6tR+6c+fO5csNxN/HhAkTRKFQpNsrpaDZt2+fWFhYaMp0dOrUSe7evavvsEgHEhISpF+/fgJA2rRp817fY/bs2SNFihQRe3t7mTBhglb2XLpy5YqYmppmKMeXmpoq9+/fl6ioKD5IzEJycrJcunRJTpw4IYcOHZLU1NR3XvO6tOObb3gS6dt7Jc/zo1GjRomXl5cEBQVl2EAiM6x5TkRElDv//e9/BUC6TZN+/vlnASBNmjSRmjVriqmpqWalibOzsxgZGYmRkZH4+flleZOxf/9+MTAwkPHjx2d5sxQZGSkuLi5SokQJqVKlivj4+EjXrl1l6NChUqJECalVq9ZbX0ffvHmzGBgYyIgRIyQ+Pl7u3Lkjq1evFktLS3F3d8/2xmT79u0ThUIh1atXl59//jnDCvEZM2aIiYmJPHnyROLj48Xf319sbGzSbUD6LqdPnxY7OzsxMDAQd3d3qVChgtjb26dbBZ+VI0eOaDbIzQtKpVLWrFkjvr6+YmBgIM7OznLz5s0c9TVx4kQpVKhQpnsX5Hev36y4fv26vkMh0qlx48aJlZXVW/dnKOjUarW4ublJxYoVs5X0yY8iIyMFgEydOlXfoeRafHy8rF+/XsaMGSNFihSRDh066Dsk0rIjR45IsWLFxMrKSubMmZOjxRR37tyRYcOGiaWlpRgbG8v06dNzHI9arZamTZtK6dKlC8TGnh+KiRMniqGhoVy8eFHfoRBp5Dh5vnHjRm3GkWeYPCciIsqduLg4MTExEWdnZ5kyZYr8+OOPAkCGDBmiWRGtVColKipKVq9eLWPGjJHZs2enS7ZnJTQ0VABItWrV5Pfff9f09+rVKxkyZIgAkJYtW0pwcLAMHDhQOnbsKI0aNZKKFStKgwYNsrXKKDw8PEM5t65du753rcqEhIQsV4Dfv39fDA0NpXbt2prNaHNSRuXOnTuybNkyGTZsmDRt2lQiIiKydZ1KpRInJycZOHDge4/5vtRqtfTq1UsAiJeXlyxevDhX37Pu378vJiYmBTLZ4+3tLU2bNtV3GEQ6Fx8fL8bGxvLjjz/qOxSdOXfunObfiH9/zr///ltmzZqVYZ67du2arFu3Lq/DzNK9e/fE3t7+vVfvFgRr164VABIZGanvUEiLGjduLFWrVpU7d+7kuq+nT59q9q3JaZWE9evXCwDZvn17ruOh7EtJSZHy5cuLl5cXy7dQvpHj5LmJiYnMnDnzrW3y4x90Js+JiIhy7+zZs9KrVy8xMzPLkDjPrT/++EO8vLwEgNjZ2UmRIkXE0tJSTE1NJTw8XCvjHD9+XCIjI2X79u1y9OhRnXxn6dq1q5QoUUJ++OEHvazOHD16tDg4OOh846XZs2cLgBxvIpuZvn37irW1dYEql3DlypW31qMn+tD06NFDnJ2dP9jyGcHBwWJjYyN9+/YVKysruXv3rrx69Up8fX0FQLpazCIirVu3FoVCka23g3RNrVZL69atpVixYtl6cF3QqNVq8fX1FRcXF64I/kBcvXpVs/G6tiiVSqlfv764ubm9d/7n+fPnUrJkSfH399daPJR9e/fuFQCybNkyfYdCJCIiBiIiyIGdO3eiU6dO+PzzzxEWFgYDAwPNOZVKhVWrVuH777/HX3/9lZPudSYpKQk2NjZ49uwZrK2t9R0OERFRgfbkyROcPn0azZo1S/ddILdEBDt27MDZs2dhYGAAhUIBPz8/VKpUSWtj6JparQYAKBQKvYx/+vRp1KpVC7t374aPj49Oxti3bx+aNWuGoUOHYubMmVrr99mzZ/jkk09gb2+PP/74AyYmJlrrWxciIyMxYMAAKJVK3LhxA+bm5voOiUjnoqOjUb9+fSQnJ+OLL77AV199BRcXF32HpTXVqlVDpUqVMGfOHHh4eKBJkyZ4/vw59u3bh/r16+PChQu4ffs2zM3NER0drfn3adasWRg2bJheY1+8eDH69OmDrVu3ok2bNnqNRVeuXbsGT09PjBgxAlOnTtV3OJRL48aNw88//4y7d+9q9d/Q69evo2rVqujYsSOWLl2aZbu0tDQ8evQIJUqUAACMHTsWYWFhuHz5MlxdXbUWD2Vft27dsGvXLly5cgV2dnb6Doc+drnJvJ87d05KlSolAQEB8vLlS0lJSZF58+aJq6ur2NraysSJE7WS4dcmrjwnIiKij4FarZYyZcpI7969tdZnSkqKzJo1SwYMGCCBgYFSuHBh8fHx0cnq9lOnTomxsbGMHDlS631rg1qtllOnTknnzp015YRebxpL9LF4+vSpTJo0Sezt7cXS0lIuXLig75C04vr16wJAU25ryZIlAkBMTU1l586dcu3aNVEoFDJ//nwREenVq5c4OjpKq1atpGbNmpn2ee7cOenUqVO299bIqdjYWLG0tJQvv/xSp+PkB6GhoaJQKKR///7vtacI5S9KpVKKFy8ugwYN0kn/S5cuFQCyZcuWTM+npKSIn5+fAJAGDRrItGnTxNjYWEJCQnQSD2XPvXv3xNraWry9vTPso6PrtyqJ3pTrDUPv3LkjVapUkSpVqoijo6M4ODjI5MmT37tuaF5h8pyIiIg+FuPHjxdbW9tsbar+LnFxcVKvXj0xNjaWqlWriq+vr/Tt21ceP36shUgzN2vWLAEgmzdvzlU/q1ev1lrCSqVSybfffiuurq4CQIoVKyarVq3Kl+UKifLKs2fPpFq1auLq6vpBlAmZOXOmmJqaau5pVSqVjBgxQnbt2qVpExgYKO7u7hIXFyfGxsbyww8/yMaNGwWAXL58WdPu2bNnMnz4cFEoFAJAevToobO4X29w6Orqmm/vx7VJqVTKjBkzxM7OTszNzWXy5Mn6DolyICIiQgDI2bNnddL/6zJGTk5OGTaVT01NlYCAADExMZHJkydL8+bNRaFQSOnSpeXVq1c6iYey7+DBg+Lk5CRWVlaycOFCmT9/vnh5eYmBgYF069ZN4uLi9B0ifSRylTxPTEyU0NBQsbe3F3Nzc7GwsMj3qw2YPCciIqKPxYULFwSAbNu2LVf97N27VxwcHKRUqVJy/PhxLUX3bmq1WgIDA8XExCTHG3atW7dOAIizs7NWvv9FRkYKAPnyyy9lz549XP1E9D+3bt2SokWLire3t1Ye2OlTw4YNpXXr1m9tc/z4cQEgNWvWFCsrK0lMTJRXr16JjY2NTJgwQUREnjx5IuXKlRMLCwv54YcfZMKECWJpaam1Ot2pqanpfv96g8PczvkFzdOnT2X48OECQHbv3q3vcAq0tLQ0SUtLy9Mx27RpIzVq1NDpGLGxsWJmZiZjx47VHEtNTZXAwEAxNjZO93fm3r178uDBA53GQ9mXmJgoPXv2FABiaGgoLVq0kJCQEClatKhYWFjIpEmTMsyFRNqW4+T52LFjxcbGRkqXLi0LFiyQFy9eyOeffy5FixaVkydPajNGrWLynIiIiD4WarVaKlasKJ06dcrx9d9//70oFArx8fHRy4rSlJQU8ff3FxMTk/dOCEVFRUmhQoWkdevWWitj0KxZM6lVqxZXmhNl4siRI2JiYiIBAQFy+/ZtfYeTIw8fPhSFQiGLFi16Z1tvb28BIKNGjdIc6927t7i6ukpKSop8+umnYm9vL1euXBERkZiYGAEg69evz3Wchw8fFjMzM/n5559FRCQpKUkcHR0lICAg130XRGq1Wry8vKR8+fIF/uFNXnv27JmEhYWJv7+/FC5cOE//jYuPj09XAkmXQkJCxNjYWC5fviz37t0Tb29vMTIyyrKcC+Uv58+fT/dQIzExUUaPHi2GhoZSr169DKVdiLQpx8nz8uXLy4oVKzI8lZwwYYIUKlQo305ATJ4TERHRx2T27NliaGj43q+2JiYmSkBAgACQ8ePH5/lKtH9LSUnRvFY9b968bMWSmJgo7u7uUrlyZXnx4oUsXLgw1ysyL1++LABk1apVOe6D6EO3adMmKVKkiJiYmMjw4cPl0aNH6c4nJibKyJEjpWvXrhIQECA9evTIV8nOJUuWiIGBQbZWnu7cuVNsbW3TPSg4cOCAAJCGDRuKsbGxHDx4MN01tWvXlrZt2+Y6znbt2om5ubkAkODgYBk9erSYm5t/1Amkc+fOiUKhkOnTp+s7FK27d++elCxZUurWrSs///yzPH36VCv9Pnr0SKpXry4mJibSuHFj6du3rwCQffv2aaX/+Pj4DKVS/m3IkCGaNzd07dWrV1KmTBmpWbOmlChRQkqUKCF//PGHzscl3Tp69Ki4uLhI4cKFJSIiQt/h0Acqx8nztz2JXLRokZiamkp4eHhOu9cZJs+JiIjoY5KUlCTW1tYybty4bF+ze/ducXFxERsbm3xzI5KSkqK5qa9Zs6acOHEiy7bJycnSokULsbGxkZiYGBH557trixYtxNHRURISEnIUw6BBg6Ro0aKSnJyco+uJPhZJSUny3XffibW1tTg7O8vFixdF5J/yGrVr1xZra2tp3Lix+Pr6CoB8M8+IiDRo0EAaNWqU4+tVKpU4OTkJAFmyZEmG82FhYWJsbCxPnjzJ8Ri3bt0ShUIh8+bNkylTpggAAcCa3/JPMtbS0vKD2kBUrVZLu3btxMHBQVq2bCkKhUIsLCxk586duer3/v374unpKUWLFtWU31Wr1eLp6amVBzxPnjwRBwcHqVevXqYlzqKiosTQ0FCmTZuW67Gya/v27QJAvL295d69e3k2LulWQkKCtGnTRszMzOT+/fv6Doc+QLneMDQr27dvFysrK111n2NMnhMREdHHZvjw4WJvby8vX758a7tnz55Jnz59BIB8+umncv369TyKMPuOHj0q1apVEwDi6uoqnTt3lvDwcM3meKmpqdKuXTsxNTXNUPv2zp07YmlpKV9//fV7j5uYmCiFChWSiRMnauVzEH0M4uLipGrVqmJtbS3r16+XGjVqiK2trZw5c0bTxtPTU7p27arHKP/fH3/8oZVk/saNG2XOnDmZnrt3754oFApZsGBBjvsfP368WFtby/Pnz0VEZMWKFdKhQwc+2JN/HtA4ODhI5cqVJSQkRA4dOqTXN6e04XUt+w0bNojIP6u5W7ZsKZaWlun+Lr2Phw8fioeHhzg6Oqbb4Fbkn8WQBgYGcu3atVzF3a9fP7G0tBRDQ8MM/3aq1Wrx9fWVsmXL5vmf2/Pnz7NG9gfoyZMnYmVlJV999ZW+Q6EPkM6S5yKS44lcl5g8JyIioo9NbGysGBgYvLWG744dO6RUqVJiaWkp8+fPF5VKlYcRvp+0tDTZtGmTjBw5Uho0aCDGxsZiZ2cnU6ZMkS5duoixsbFERkZmeu2wYcPEzs4u3Wvkf/75p3Tp0kXWrFmT5UZ+s2bNEiMjI7l7965OPhPRhyopKUlatWolAMTe3l7Onj2b7vzkyZPFwsLiraUd8krbtm2lQoUKOp//mjVrluPV7cnJyeLg4CBDhgzRblAfkIMHD0rbtm3FxsZGAOSbhzM58fDhQylSpIgEBgamO/7ixQupVauWFCtW7L0fdKvVaunQoYPY29tr3s76t5cvX4q9vb0MGzYsx3EfP35cDAwMJDw8XEJCQkShUMjhw4c15yMiIgSAbN26NcdjEL3pq6++EktLy1y92UOUGZ0mz/MjJs+JiIjoY9S2bVvx9PTMUHovMTFRvvzySwEgPj4+BbJe7u3bt2XgwIFiYmIihoaGsnHjxizbXr9+XVPuQEREqVRK1apVxcrKSgCIpaWljBkzJt3PKSEhQVxcXCQoKEjnn4XoQ6RUKiUsLEwuXbqU4dy1a9cEgKxbt04Pkf2/6OhoASBLly7V+VjLly8XAHLjxo33vnbVqlUCIMNqYcooLS1NFi9erLVNWvWhe/fuYmdnl2kpigcPHkiZMmXE3d1drl69mu0+16xZIwDkl19+ybLN+PHjxcrK6p15E7VaLZcuXZLvvvtO+vfvL7t375aUlBSpXr26VK9eXdLS0kSpVIqXl5c4OzvL4sWLZfr06eLq6irNmzfn5tukVQ8ePBBzc3MJDg7O9jXJyckSGxuru6Dog8DkOREREdFHYO/evQJAJk2apPke9Pvvv2tWmy9YsKDA38TGxcXJ6dOn39muY8eO4u7uLiqVSmbNmiUGBgZy6tQpuXbtmowbN04AaGrEK5VK8fX1FVtb21y/wk5Ematdu7YEBAToNYYvvvhCHB0d86SExPPnz8XOzk4GDx783tfWrVtXfHx8dBDVh0mtVktgYKDY29sXuFrIt2/fFoVC8da95K5duyblypUTa2tr+fXXX9/Z5927d8XW1lY6d+781nZ37twRIyMj6d27t1y6dCnT7wcnTpyQ8uXLax48u7m5CQCxsbERAwODdHuT3Lx5U4oXLy4AxNraWjw9PeWvv/56Z7xE72vYsGFia2ubrZzfw4cPpV69emJsbJyjh5n08WDynIiIiOgjoFarpU+fPmJoaCiWlpbStGlTASC+vr4FcrV5bhw7dkwAyPz588XKykoGDhyY7vyMGTMEgMybN0+GDh0qhoaGsnfvXj1FS/ThmzlzppiYmMjTp0/1Mv6dO3fE2NhYpk+fnmdjhoaGiqmp6XttWnj69GkBkK0kKf2/hw8fioODg/j7+xeoh8QTJ04US0tLzZ4eWXn27Jm0b99eAEhQUJAEBwfLnDlzJCoqKl271NRUadWqlRQrVkweP378zvFDQkLE3NxcAEjp0qVl0aJFmp/fhQsXxNbWVmrXri2RkZHy6tUrUavVcvz4cRk8eHCmf5dSU1Mz3TiUSJvi4uLExMREevToIbt3786yhMvly5eldOnSUrRoUbG1tZWhQ4fmcaRUkBiIiOAjkpSUBBsbGzx79gzW1tb6DoeIiIgoT8XHx2PBggXYvn07+vXrh969e8PAwEDfYeW5Bg0a4OjRoyhatCj++usv2Nraas6JCEaMGIHZs2dDRDB37lwMHDhQj9ESfdji4+Ph5OSEpUuXomfPnnk+fv/+/bF+/XrcunUrz+4RExMT4eLigr59+2L69OnZuuaLL77A3r17ERsbCyMjIx1H+GHZvHkzOnTogE2bNqF9+/b6DuedlEolXFxc4O/vj/nz57+zvYggLCwMy5Ytw6NHj/Do0SMAwMSJEzFu3DjcvHkTQUFBOHv2LLZs2YLWrVtnK45Xr15h//79WL16NdauXYu2bdti7NixaN++PYoXL479+/ejcOHCufmoRFr3/fffY/LkyXjx4gUAoGrVqggICECLFi1w/fp17NmzB5s3b0bJkiWxbds2LF++HNOnT8ft27dhb2+v5+gpP2LynIiIiIg+Olu2bEG7du2wYsUK9OjRI8N5tVqNwYMHw87ODpMmTdJDhEQfl8aNG+Pvv//GtGnTUKdOHVhYWOTJuGfPnkWNGjXw008/YdiwYXky5msTJkzArFmzcPPmTRQpUuStbZ88eYJSpUppkqH0/po0aYKUlBQcOXJE36G806ZNmxAYGIjz58+jSpUq7319amoqQkNDMXXqVFSuXBmxsbEoVqwY1qxZg9q1a+copoiICPTu3RuPHz+Gh4cHDh06hKJFi+aoLyJdU6vViImJwcmTJ7Fjxw5s27YNz549AwBUrlwZzZs3x4QJE2BjY4NHjx7BxcUF48aNwzfffKPnyCk/YvKciIiIiD5KV69ehbu7+0e58p4ov/n9998RFBSExMREGBkZoV+/fggPD9fp308RQcOGDZGQkIBz587B2NhYZ2Nl5vHjx3B1dcXw4cPf+ZBu+vTpmDBhAu7cuQMHB4c8ivDD8vqh6enTp1GjRg2djPHkyRO8evUKpUqVylU/vr6+ePnyZa4T/SdOnEC/fv1Qo0YNzJo1C1ZWVrnq78GDBwgPD0f//v1z/RmJ8lJqairOnDmD0qVLo1ixYhnODx48WPMGUl49vKWCg8lzIiIiIiIi0ju1Wo1Lly5h06ZNCAkJwerVq9GtWzedjbd27VoEBQVh9+7d8PHx0dk4bzNmzBgsWLAAhw8fRtWqVTNto1Kp4O7uDi8vL6xcuTKPI/xwqFQqlClTBo0bN8by5cu11q+IYMeOHVi6dCkiIiKgVCrRokULDBw4EK1atYKhoeF79RcTE4Ny5cph5cqV+Oyzz7QWJxFl7fr163B3d0d4eDhL9VEGCn0HQERERERERKRQKFC5cmV8++236NatGwYNGoRbt25l+/rDhw9jwoQJiI+Pz7JNcnIyLl68iF9++QVjxoxB+/bt9ZY4B4Cvv/4a7u7uaNq0KS5cuJBpm99//x03btzAoEGD8ji6D4uhoSEGDRqEtWvX4uHDh1rrd8mSJWjVqhWuXLmCadOmYenSpXj8+DHatm2boyTcnDlzYG9vj44dO2otRiJ6u9KlS6Nz584YP348Nm7cqO9wKJ/hynMiIiIiIiLKVxITE1G1alW4ublh796971y9m5KSggoVKuDGjRswMTFBz549MX78eLi4uGjabN++HV27dkVSUhKAf5Ile/fuhaurqy4/yjslJCTA19cXt27dwm+//YYaNWrAxMQEz58/x/79+xESEgKFQoGTJ0+yzFQuJSQkoFSpUhg/fjwmTJiglT59fHygUCiwc+fOdP9/pk6diokTJ+LmzZsoWbJktvqKiYlBpUqV8M0337D2MlEeS0xMRN++fbFhwwb06dMHs2bNYgkXAsCV50RERERERJTPFC5cGCtXrsShQ4fwySefICAgAAMHDsSff/6Zafs5c+bg9u3bOHHiBEJDQ/Hrr7+iQoUKmDp1KlJTU7Fo0SK0bdsWjRs3xh9//IHHjx8jNjZW74lzALCzs8Pu3bvh4uKC+vXrw9TUFMWKFYO9vT38/f3x9OlT/PDDD0yca4GdnR0+++wzzJ8/H0qlMtf9JSYm4uDBgwgICMjw/2fQoEEwNzfH3Llzs93fqFGjUKJECYwePTrXsRHR+ylcuDDWr1+PRYsWYfXq1SzfQhpceU5ERERERET50vr167Fr1y7cv38f0dHRiIuLw8iRI/Htt99qVgQ+efIEZcuWRdeuXTFv3jwAwIsXLxASEoKffvoJxYsXR3x8PAYNGoSwsLD3rkGdV16+fInDhw8jPj4ed+7cgb29PZo3b46yZcvqO7QPSlRUFCpXrowVK1agR48euerrdd38uLi4TDfQHDVqFJYtW4a4uDgUKlQIADRt30y279y5Ey1atMAvv/zCki1EejZp0iT88MMPePToEczMzPQdDukZk+dERERERESU7ymVSkyfPh2hoaEoVaoU/vOf/6Bbt274+uuvsXTpUly7dg1FixZNd82FCxcwduxY+Pj4YMSIEVy9TQCANm3aIDY2FlFRUVAocv5CfpcuXRATE4MzZ85kev7WrVsoU6YMwsLCMHDgQHz77bcIDQ3F7NmzMWTIEE07pVKJqlWromjRoti/fz//nBLpWXR0NCpVqoStW7eiTZs2+g6H9KxAJM+fP38OHx8fXLp0CcePH4enpyeAf1YhzJo1C+bm5lixYgWcnJze2ReT50RERERERAXXlStX8J///AeRkZGwsrLC33//jdDQUIwbN07foVEBcezYMdSvXx+bNm1C+/btc9RHamoqHBwcMGrUKEycODHLdl26dMHp06fRsGFDLFu2DNWqVUNMTAyioqI0ZYMmTpyIyZMn48yZM6hWrVqO4iEi7apQoQLq1q2LZcuW6TsU0rMCUfPc3NwckZGRCAwM1BxTKpWYOXMmDh48iO+++w7fffedHiMkIiIiIiKivODh4YGIiAjExsZi4MCBaNWqFYYPH67vsKgAqVevHj799FNMmTIFb1tPqFar0a5dO8yePTvDuYMHDyIpKQlt27Z961gjR45EbGwsVq9ejVWrVuHgwYOws7ND3759ISKYP3++JqfBxDlR/tGhQwdERERoZX8EKtgKRPLcyMgIDg4O6Y693oXaxMQEDRo0wMWLF/UUHREREREREeU1V1dXTJkyBRERETA3N9d3OFTAjB8/HmfOnMHu3buzbLNu3Tps2bIFw4cPx86dO9Odi4iIgLOzM6pWrfrWcWrXro3vv/8eu3btQvfu3WFtbY0FCxZg9+7d6NGjBwYNGoRhw4bxzQmifKZ9+/Z4+vQpDhw4oO9QSM+M9B1ATiUmJqYru6JSqTJtl5KSgpSUFM3vk5KSdB4bEREREREREeVfTZs2Ra1atRAcHIxy5cppSqi8lpqaim+++QZ+fn5QqVQICgrCmTNn4OrqChHB1q1b4e/vn6365F999VW637ds2RKfffYZVq1ahe7du2PmzJmsc06Uz1SvXh2urq7YtGkTfH199R0O6VG+Sp7fv38/XWmW17Zu3Qo7O7t0x2xtbdMlwrPaMX3q1KkICQnRbqBEREREREREVGAZGBhgypQp8PPzg5ubGypXrozu3btjxIgRMDY2xpIlS3Djxg1ERETA0dERNWvWRLt27dCsWTMcOXIEcXFx8Pf3z/H44eHhaNiwIT7//PNcbVpKRLphYGCA9u3b47///S/mzp2bZd6RPnwFYsPQ13r27InRo0fD09MTSqUS3t7eOHToEE6dOoWVK1diwYIFGa7JbOW5k5MTNwwlIiIiIiIi+sglJSVh165d2Lp1K9asWYOaNWti0aJFaNasGXx9fbFy5UoAwPnz5+Hl5QUbGxvUq1cPzZo1Q+/evblinOgDdvToUTRo0ACHDh2Ct7e3vsPRGrVajfv378PR0VHfoRQIBSZ53qpVK5w7dw4uLi7o168fevbsiXXr1iEsLAxmZmZYuXIlnJyc3tlPUlISbGxsmDwnIiIiIiIiIo0TJ04gKCgIN27cgJGREa5cuQI3NzfN+dTUVJiYmOgxQiLKS2q1GqVKlULnzp3x008/6TucXFOr1di8eTO+++47REVFISoqChUqVNB3WPlegUmeawuT50RERERERESUmefPn2Ps2LFwc3PD6NGj9R0OEelZv379sHfvXsTExOT7N01EJMsYExMT8emnn+LcuXPw9fXFyZMnMXjwYEyaNCmPo8xbDx48wNChQ9GvXz80adIkR32wsBYREREREREREQArKyvMnTuXiXMiAgD4+/sjNjYWly9f1ncobzV27FhUrVoVDx8+zPR8SEgIYmJicOTIEezatQuBgYFYu3YtPuQ11dHR0ahbty5++eUXdO/eHU+fPs1RP0yeExEREREREREREb2hSZMmsLCwQEREhL5DydKlS5cwY8YMXL58Ga1atcLz58/TnY+OjkZ4eDgmTJiA+vXrAwC6du2K69ev4+TJk/oIWecOHjyI+vXrw8rKCseOHcPLly8xbNiwHPXF5DkRERERERERERHRG8zMzNC8eXNs3bpV36FkSkQwcuRIuLm54ejRo4iJiUFAQACSk5M154cNGwZXV1eMGDFCc13jxo1RvHhxrF279p1jvHz5Umfx64JKpUK3bt1QrVo1HD58GHXr1kVYWBhWrVqVo/+PTJ4TERERERERERERZcLf3x8nTpzA/fv39R1KBtu3b8euXbswY8YM1KpVC7/99huOHj2KmjVrYtq0aVi4cCH27NmDn376CaampprrDA0N0aVLF6xfvx4qlSrL/uPj41GyZElMmzYtLz6OVuzatQvx8fGYMWMGbGxsAAA9evSAn58f+vXrl2Vpm6xww1AiIiIiIiIiIiKiTDx69AjFixfHwoUL8eWXX+o7HA2lUglPT0+UKlUKe/bs0WwWevToUcyaNQu//fYbkpOT0bx5c/z+++8ZNhM9efIk6tSpgz179qBp06aZjhEUFIS1a9fC2toasbGxKFKkiM4/V2517NgRV65cwfnz59N95rt376JGjRooXrw49u3bB1tb22z1x5XnRERERERERERERJlwcHBA/fr1813d8ylTpuDatWv46aef0iWJ69evj19++QUPHjzA+vXrsXz58gyJcwCoVasWypQpgzVr1mTa/6FDh7B27VpMmzYNarUa33//vc4+i7Y8fvwYERER+OKLLzJ8ZkdHR+zevRu3b9/OtDZ8Vpg8JyIiIiIiIiIiIsqCv78/du/enW/qf+/ZswchISGYOHEiqlSpkmkba2trdOrUCcWLF8/0vIGBAYKCgrBhwwY8efIk3bm0tDQMGTIEderUwahRozB69GjMmTMHcXFxWv8s2rRmzRqICLp165bpeU9PT+zatQvR0dHw9/fHq1ev3tknk+dEREREREREREREWWjbti2Sk5Oxfft2fYeC+Ph4BAUFwcfHBxMmTMhVX4MHDwYAhIaGpju+YMECXLhwAeHh4VAoFBg5ciSsra0REhKSq/F0SUSwZMkStG3bFg4ODlm2q1GjBrZt24akpCQ8e/bsnf2y5jkRERERERERERHRW9StWxd2dnZ6TaArlUo0adIEN27cwNmzZ9+aJM6u77//Ht988w0uXbqEcuXK4fTp02jUqBGCgoKwaNEiTbvZs2djxIgROHv2bJar3fXpzz//RI0aNRAZGYnWrVu/s71arYZC8e515UyeExEREREREREREb3F4sWL0bdvX9y8eRPOzs55Pr6IoH///li6dCkOHDiABg0aaKXf5ORkeHh4oHr16pg9ezbq1KkDFxcX7N+/H+bm5pp2KSkpqFmzJgwNDXHy5EmYmJhoZXxtGThwILZs2YLbt2/DyMhIa/2ybAsRERERERERERHRW3Tp0gWFChXCsmXL9DL+zJkzsXDhQixcuFBriXMAMDMzw9SpUxEREQEvLy+YmZkhIiIiXeIcAExNTbFq1SpER0fnu/ItCQkJWLFiBfr27avVxDnA5DkRERERERERERHRW1laWqJr165YsmQJVCpVno69ZcsWjBkzBuPGjUOvXr203n+XLl1Qu3ZtJCUlYfv27ShWrFim7apVq4Zvv/0W33//PY4ePar1OHJq0aJFSEtLw4ABA7TeN8u2EBEREREREREREb3DyZMnUadOHWzfvh0tW7bMkzFPnz6Nhg0bws/PD+vWrctWne6cePLkCV68eAEXF5e3tktLS4O3tzceP36M6OhoGBsb6ySe7FIqlXBzc0OzZs2wdOlSrffP5DkRERERERERERHRO4gIqlWrhrJly2LTpk06H+/27dtZ1iDXp9OnT6NWrVrYvXs3fHx89BrL2rVrERQUhAsXLqBy5cpa759lW4iIiIiIiIiIiIjewcDAAL1798bWrVvx4MEDnY6VlJQEPz+/LGuQ61ONGjXg7OyMiIgIvcYhIpg5cyZ8fHx0kjgHuPJc3+EQERERERERERFRAfH06VOUKFECoaGh+M9//pPr/hITExEZGYnk5GQolUo8evQIN27cwIkTJxAfH49jx46hYsWKWohcu4YMGYKIiAjcunULBgYGeolh165daN68ObZt24ZWrVrpZAwmz4mIiIiIiIiIiIiyqXv37jh58iSuXLmSq8SxiMDHxwf79u0DABgZGcHW1hZubm5wc3PD0KFDUb9+fW2FrVV79uyBr68v/vzzT1SvXj3Px1+xYgX69euH2rVr48CBAzqrBc+yLURERERERERERETZ1KdPH8TExODQoUO56mfp0qXYt28fduzYAbVaDaVSiYcPH+LEiRNYt25dvk2cA0CjRo1gY2OT56VbkpKSMHToUPTs2RPdunXDrl27dJY4B7jyXN/hEBERERERERERUQEiIvDw8EDt2rWxevXqHPVx9+5dVKxYEe3atcOyZcu0HGHeCAoKQnR0NM6dO6fzsY4dO4YFCxZgw4YNUCqVCAsLQ//+/XVeMoYrz4mIiIiIiIiIiIiy6fXGoRs3bsTTp09z1MfgwYNhZmaGH3/8UcvR5R1/f3+cP38eN2/e1Ok4P//8M+rXr4/Dhw9j/PjxuH79OgYMGJAntdaZPCciIiIiIiIiIiJ6D59//jlUKlWOVp5v2rQJv/76K8LDw2FnZ6eD6PJGy5YtYWxsjK1bt773tUuXLkW1atWQmJiY7vijR48QHx+v+f2iRYswYMAADB06FDExMfj6669RqlSp3IaebSzbQkRERERERERERPSeOnTogKNHj6J169ZwcnJC/fr14ePjk25F9N9//w0LCwvNsadPn6JChQqoV68eNm/enCerp3WpRYsWSE5OxoEDB7J9zcGDB+Hj44O0tDSMGTMG06ZNAwC8fPkSVapUQWxsLGrWrIlPPvkECxcuxMCBAzFnzhy9/KwKxMrzM2fOwNvbG40aNUKnTp2gVCoBAOvXr0e9evXQpEkTxMXF6TlKIiIiIiIiIiIi+lhMnToVXl5euHDhAubNm4dmzZrh008/xYkTJ3Ds2DF07doVhQsXRvfu3ZGSkgIAGDVqFJKTkzF37twCnzgHgC+++AIHDx7EmjVrstX+1q1bCAwMhLe3N77++muEhYVpyr4EBwcjPj4ec+fOhZubGzZu3IghQ4YgPDxcbz+rArHy/P79+7C2toaFhQXGjx+P6tWrIyAgAF5eXjh8+DBOnTqFFStWYOHChe/siyvPiYiIiIiIiIiISJtEBL///ju++uorREVFAQDKlCmDgIAAzJkzB/Xr18egQYMQGBiIhQsXok+fPnqOWDtEBN27d8dvv/2Gc+fOoXTp0lm2ffXqFerVq4ekpCScOnUKZmZmcHd3R+PGjTFixAjUrVsXU6dOxX/+8588/ARvVyCS5/8WHByMatWqwcPDAzNmzMDSpUsBAPXq1cOxY8feeT2T50RERERERERERKQLKpUKW7ZsgYWFBZo3bw6FQoHDhw+jbdu2SExMROPGjbFv374PYtX5a0lJSahWrRqKFi2Kw4cPw9jYONN2s2fPxsiRI/Hnn3+iSpUqAIAlS5agd+/ecHZ2RpEiRXDixAkYGRnlZfhvVSDKtrx2+/Zt7NmzB35+fkhMTEyX/FapVJlek5KSgqSkpHS/iIiIiIiIiIiIiLTN0NAQHTp0QMuWLaFQ/JN69fb2xpEjRxAYGIjFixd/UIlzALC2tsbatWtx5swZTJo0KdM2SqUSP/74I7p27apJnANAz5494enpibt372Lp0qX5KnEOAPkqmvv37yMwMDDD8a1bt8LIyAifffYZli1bBmNjY9ja2qZLhBsaGmba59SpUxESEqKzmImIiIiIiIiIiIjepmLFitiwYYO+w9CZOnXqYPjw4Zg9eza++uorWFhYpDu/bt063L59O0NJFkNDQ2zatAk3btxA1apV8zLkbCkQZVtUKhUCAgIwfPhwNG3aFMA/Tyu8vb1x6NAhnDp1CitXrsSCBQsyXJuSkqIpyA/88xqBk5MTy7YQERERERERERERacn169dRpkwZLF++HJ9//rnmuIigSpUqcHZ2xrZt2/QY4fsrEMnztWvXYvDgwahcuTIAYMCAAejcuTPWrVuHsLAwmJmZYeXKlXBycnpnX6x5TkRERERERERERKR9zZo1w99//40jR45ojm3btg1+fn44dOgQvL299Rjd+ysQyXNtYvKciIiIiIiIiIiISPs2btyIjh074uLFi/D09ISIwNvbG2q1GkeOHClw9d4L1IahRERERERERERERJQ/+fv7o1ixYli4cCFEBIMHD8aRI0cQHBxc4BLnQD7bMJSIiIiIiIiIiIiICiZjY2P06tUL8+fPR0pKChYuXIjFixejefPm+g4tR1i2hYiIiIiIiIiIiIi0IjY2FmXLlgUALF68GF9++aWeI8o5rjwnIiIiIiIiIiIiIq0oU6YMQkNDUbZsWXTt2lXf4eQKV54TEREREREREREREb2BG4YSEREREREREREREb2ByXMiIiIiIiIiIiIiojcweU5ERERERERERERE9AYmz4mIiIiIiIiIiIiI3sDkORERERERERERERHRGwxERPQdRF4SETx//hxWVlYwMDDQdzhERERERERERERElA99dMlzIiIiIiIiIiIiIqJ3YdkWIiIiIiIiIiIiIqI3MHlORERERERERERERPQGJs+JiIiIiIiIiIiIiN5gpO8A8pPXm4kSERERERERERER0YfLysoKBgYGb23D5Pm/PH78GEWLFtV3GERERERERERERESkQ8+ePYO1tfVb2zB5/i8mJiYAgLi4uHf+4IiIciopKQlOTk6ca4hIZzjPEJGucZ4horzAuYaIdMnKyuqdbZg8/5fXy/Stra05KRORznGuISJd4zxDRLrGeYaI8gLnGiLSF24YSkRERERERERERET0BibPiYiIiIiIiIiIiIjewOT5v5iamiI4OBimpqb6DoWIPmCca4hI1zjPEJGucZ4horzAuYaI9M1ARETfQRARERERERERERER5SdceU5ERERERERERERE9AYmz4mIiIiIiIiIiIiI3sDkORERERERERERERHRG5g8/5fRo0fD29sb3bp1Q2pqqr7DIaIC7vnz56hTpw4sLS0RFRUFAFi/fj3q1auHJk2aIC4uDgAQHR0NLy8v1KtXD3v27NFnyERUwJw5cwbe3t5o1KgROnXqBKVSyXmGiLQqKioKDRo0QKNGjdC6dWu8ePGC8wwR6cTatWvh4OAAgPdNRJR/cMPQ/zl79ix+/PFHrF69GpMnT4abmxuCgoL0HRYRFWBpaWl4+vQpxowZg9GjR8PDwwNeXl44fPgwTp06hRUrVmDhwoUICAjA9OnTUaxYMbRo0QJHjx7Vd+hEVEDcv38f1tbWsLCwwPjx41G9enXMmDGD8wwRaY1SqYSxsTEAICQkBKVLl8acOXM4zxCRVqnVanTs2BE3btzAiRMneN9ERPkGV57/z7Fjx9CsWTMA4CRMRFphZGSkWTkBADExMahUqRJMTEzQoEEDXLx4EQBw7949uLu7w9raGvb29nj8+LG+QiaiAqZ48eKwsLAAABgbG+Pq1aucZ4hIq14nzgHg5cuXcHZ25jxDRFq3Zs0aBAYGQqFQ8L6JiPIVJs//JzExEdbW1gAAGxsbJCQk6DkiIvrQ/HueAQCVSgUA+PcLQJx/iCgnbt++jT179sDLy4vzDBFp3e7du1G9enXs378fxsbGnGeISKtUKhV++eUXdO7cGQDvm4gof2Hy/H9sbW2RlJQE4J+J2s7OTs8REdGH5t/zDAAYGhoCABSK/5+KOf8Q0ftKSkrCZ599hmXLlqFo0aKcZ4hI63x9fXH27FkEBgbi4MGDnGeISKtWr16NTp06aeYR3jcRUX7C5Pn/1K1bF7t27QIA7Ny5Ew0aNNBzRET0oSlbtiyio6ORmpqKI0eOoEqVKgD+KbsQExODpKQkJCQkoEiRInqOlIgKCpVKhW7dumHixIkoV64c5xki0rqUlBTNf9vY2MDS0pLzDBFpVXR0NFauXIkWLVogJiYGCxcu5DxDRPkGNwz9l9GjR+PEiRNwdnbGsmXLYGJiou+QiKiAa9WqFc6dOwcXFxf069cPZmZmCAsLg5mZGVauXAknJydER0ejb9++UKlUCA0Nha+vr77DJqICYu3atRg8eDAqV64MABgwYABEhPMMEWlNZGQkpk+fDoVCAQcHByxfvhxbt27lPENEOlGzZk2cPn0a69at4zxDRPkCk+dERERERERERERERG9g2RYiIiIiIiIiIiIiojcweU5ERERERERERERE9AYmz4mIiIiIiIiIiIiI3sDkORERERERERERERHRG5g8JyIiIiIiIiIiIiJ6A5PnRERERERERERERERvYPKciIiIiIiIiIiIiOgNTJ4TEREREREREREREb2ByXMiIiIiIiIiIiIiojcweU5ERERERERERERE9AYmz4mIiIiIiIiIiIiI3vB/y6OKLM9M+b4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -661,7 +663,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8UAAAJlCAYAAADzWVA2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVGUlEQVR4nO3df3RU9b3v/1d+NOFnRhJCwo/Y67nYemJ1VUkivwY5BmjCAdQL1HXJErNcBPrD6j02Vy+ttd61PLLu6uq5xSV6Kippz1VPUWobvKYh5BQNJEr45ZFFF9Zee41AgjRkJuJ1Asnn+4dfpoRMQmYyO3vPfJ6PtWYtkr3ZeX9mz37Pfs1nz0yKMcYIAAAAAAALpbpdAAAAAAAAbiEUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDHjA66+/rq9+9au69tpr9dxzz7ldDgCM2J133qlJkyZp1apVbpcCACPW1tamhQsXqrCwUDfeeKNeeeUVt0tCHKUYY4zbRQA2u3DhggoLC/X73/9eWVlZuvnmm/XOO+8oOzvb7dIAIGa///3v9emnn+oXv/iFXn31VbfLAYAROXXqlDo6OvT1r39dp0+f1s0336zjx49r/PjxbpeGOGCmGHDZ/v37df3112v69OmaOHGili5dqvr6erfLAoAR+bu/+ztNnDjR7TIAIC6mTp2qr3/965KkKVOmKDs7W52dne4WhbghFAMO6uvr03XXXaeHH3643+/r6+uVkZGhV155RSdPntT06dPDy2bMmKETJ06MdqkAMCzD6WsAkEii7WsHDhxQX1+fCgoKRrNMOIhQDDgoNTVVGzdu1DPPPKOzZ89Kkt59912tXr1aTzzxhFavXq1I72BISUkZ7VIBYFiG09cAIJFE09f+8pe/aO3atXr22WfdKhcOIBQDMXr//feHtV5FRYUmT56sJ598Uh9//LH+/u//Xnfffbeqq6slSdOnT+83M/zxxx9r6tSpjtQMAEOJV18DAK+IZ18LhUK68847tXHjRs2dO9epkuECQjEQg3379unmm29WY2PjFddNT0/Xww8/rCeffFJLly7VzTffrCeffDK8vKSkREePHtWJEyfU3d2tN954Q9/4xjecLB8ABohnXwMAL4hnXzPGqLKyUrfddpvuvvtuJ8uGC/j0aSBGP//5z/X9739fv/3tb1VaWjrkup9++qlyc3M1c+ZMvf322wM+qbC2tlbV1dXq6+vTQw89pPXr1ztZOgBEFM++9o1vfEOHDh3SuXPnlJ2drddee03FxcVOlg8AA8Srr+3du1cLFizQjTfeGP7dv/zLv+iGG25wrHaMHkIxMIijR48Oq9GNGzdO586dG3KdyspK/epXv9JVV12lDz/8UGPGjIlXmQAwbPQ1AMmGvoZ4SHe7AMCrvvKVr+gPf/jDoMt37dqlBx98UJs3bx5yOz/60Y/0v//3/9bbb7+tRYsW6fnnn9d3v/vdeJcLAFdEXwOQbOhriAsDIGr79+8348aNM88999yQ623dutWMHTvWtLS0GGOMefzxx83VV19tenp6RqNMABg2+hqAZENfw3Bx+TQQg56eHu3Zs0dLliwZdJ26ujrdcccdevnll/Wf/tN/kiQFg0F9+ctf1k9/+lPde++9o1UuAFwRfQ1AsqGvYbgIxYADDh48qFtvvVX/+I//qAceeKDfskcffVT/+q//qj/84Q9KS0tzqUIAiA59DUCyoa/hIkIxAAAAAMBafE8xAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKB5Cd3e3brnlFk2YMEFHjx7tt+zChQuqrKyU3+8f8BHuAAAAAIDEQCgewtixY/X6669r1apVA5bt3LlTM2bMUFNTkz777DM1Nze7UCEAAAAAYCTS3S7Ay9LT05WbmxtxWUtLi5YtWyZJKisrU3Nzs+bOnTtgvVAopFAoFP7ZGKOenh5NnjxZKSkpzhQOAA6irwFINvQ1wG7MFMeoq6tLWVlZkiSfz6fOzs6I623atEk+ny98u+qqqzRlyhR1d3ePZrkAEDf0NQDJhr4G2I1QHKNJkyYpGAxK+iIgZ2dnR1xv48aNCgQC4VtbW9tolgkAcUdfA5Bs6GuA3bh8OkazZ8/Wrl27tGDBAtXX1+vee++NuF5mZqYyMzNHuToAcA59DUCyoa8BdmOm+AqWLl2qXbt2qaqqSjU1NdqwYYMkafny5Wpra5Pf79fYsWM1Z84clysFAAAAAEQrxRhj3C7CJsFgUD6fT4FAIPyeZABIZPQ1AMmGvgbYhZliAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKB4lW7ZsUWFhoYqLi90uBQDigr4GINnQ1wA7pRhjjNtF2CQYDMrn8ykQCCgrK8vtcgBgxOhrAJINfQ2wCzPFAAAAAABrEYoTUEdHh8rLy5WTk6Py8nJ1dHS4XRIAAAAAJCRCcQKqrKxUQ0ODOjs71dDQoMrKSrdLAgAAAICERChOQPv371dvb68kqbe3V62trS5XBAAAAACJiVCcgEpKSpSWliZJSktL4xMSAQAAACBGhOIEVFNTo8WLFysnJ0eLFy9WTU2N2yUBAAAAQEJKd7sARC8vL091dXVulwEAAAAACY+ZYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1B8BdXV1fL7/aqoqFBPT0/493v27FFBQYEWLlyo0tJSFysEAAAAAMSKUDyEw4cPq729XU1NTSosLNSrr77ab/ldd92lPXv2qLGx0aUKAQAAAAAjQSgeQktLi5YsWSJJKisrU3Nzc7/lO3bskN/v1+bNmwfdRigUUjAY7HcDgERGXwOQbOhrgN0IxUPo6upSVlaWJMnn86mzszO8rKioSMePH1djY6N+97vf6eDBgxG3sWnTJvl8vvCtoKBgVGoHAKfQ1wAkG/oaYDdC8RAmTZoUfqWwq6tL2dnZ4WUTJkxQRkaGMjIytGLFCr377rsRt7Fx40YFAoHwra2tbVRqBwCn0NcAJBv6GmA3QvEQZs+erV27dkmS6uvrNW/evPCySy+raWpq0syZMyNuIzMzU1lZWf1uAJDI6GsAkg19DbAboXgIN910k/Lz8+X3+3Xs2DGtXLlSGzZskCRt375dJSUlmjt3rqZPn64FCxa4XC0AAAAAIFopxhjjdhE2CQaD8vl8CgQCvAoJICnQ1wAkG/oaYBdmigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqF4lGzZskWFhYUqLi52uxQAiAv6GoBkQ18D7JRijDFuF2GTYDAon8+nQCCgrKwst8sBgBGjrwFINvQ1wC7MFAMAPKGjo0Pl5eXKyclReXm5Ojo63C4JAABYgFAMAPCEyspKNTQ0qLOzUw0NDaqsrHS7JAAAYAFCMQDAEdHO/O7fv1+9vb2SpN7eXrW2to5GmQAAwHKEYgCAI6Kd+S0pKVFaWpokKS0tjQ+6AQAAo4JQDABwRLQzvzU1NVq8eLFycnK0ePFi1dTUjEKVAADAdoRiAIAjop35zcvLU11dnc6cOaO6ujrl5eXFrRY+xAsAAAyGUAwAcISXZn75EC8AADAYR0Px66+/rq9+9au69tpr9dxzzzn5pwAAHuOlmd9oLuW2ZVbZlnECAHAljoXiCxcu6MEHH9S//du/6dChQ/of/+N/qLOz06k/BwCwiJMf4uXkrHK0QdTJ4JqIs+cEeQCAExwLxfv379f111+v6dOna+LEiVq6dKnq6+ud+nNAVDixAhKbkx/i5eRXQ0UbRKNZP1G/AiuauhMxyAMAvC/qUNzX16frrrtODz/8cL/f19fXKyMjQ6+88ook6eTJk5o+fXp4+YwZM3TixIkRlgvEBydWo4sXIRBvTn6IV7TbjubxHW0QjWZ9J2fPvTJj7ZUgDwBILlGH4tTUVG3cuFHPPPOMzp49K0l69913tXr1aj3xxBNavXq1JMkYM+D/pqSkjLBceE2ihh0b3l/opboT9UUIL92H6M/JD/GKdtvRPL6jDdzRrO/k7LlXZqydfMECAJCY4tLrTQzOnz9vrrnmGvPYY4+ZtrY2M336dPOd73yn3zr79u0zd9xxR/jn+++/37z44oux/DlXff/73zfz5883a9asMaFQKPz78+fPm3vuucfMnz/f3H///cPeXiAQMJJMIBBwotyI2tvbTVlZmcnOzjZlZWWmvb09btsuKyszaWlpRpJJS0szZWVlrtQR7bajqTuadb0k2rqd3D/Z2dlGUviWk5MTt207KVH3/Whzo695STSP74vHWU5OzrCOs2jWd/LxGs0Yo60jlueR4d5/HMOIle19DXBbNOel8ej1MYViY4z553/+Z5OdnW1uuOEGs3z5cnPhwoV+y8+fP29mzpxpPv74YxMMBs3MmTPNmTNnYv1zrjh06JCpqKgwxhjz+OOP9wv1v/71r80Pf/hDY4wx69atM/v27RvWNt1osol6ohSNWAPgcE6sEjXQRVu3V/ZPtOGcMO8+208evRK8og2M0YhmjNEeN07WHcsLFk70Eid5qWcmE9v7GhBvTk5gxeN8LcWYCNc5D8Onn36q3NxczZw5U2+//bbGjx8/YJ3a2lpVV1err69PDz30kNavXx/Ln3LN008/rQkTJmjt2rU6ePCgtm3bpqeeekqS9NBDD2nZsmVasGCBduzYoQ8//FDV1dUDthEKhRQKhcI/B4NBFRQUKBAIKCsra0T1ff7555K+uKTdfPECR/jnvr4+SV9csj516tTwpe6SlJ2drRMnToQvZx/s/w21LCUlRX19fVqxYoUaGxvV19en1NRULVq0SDt37gyve2lt06ZNG1DHyZMnZYzpt83hjOny2vLz8yOOMZYxXf73b7/9du3evbvfGGtra69Y93DGdOrUKVVVVenAgQMqLi7Ws88+q7y8vKjqHmxZtHUPdR9GM6ZItXV0dGj9+vU6cOCAZs2apeeee055eXnDrvu3v/3toPtp+fLl/dYvLS1VbW3tsOseatmlj++0tDQtXrxYdXV1sl20fW24vUqKrR8NtSyW/R7tsvb2dq1bt04HDx5UUVFR+DhO5DEN1qsuH2OkupcvX97veaG0tFQ7d+50ZUzLli0bUMvF/jDSuk+fPq2qqiq1traqqKhIzz//vHJzc0d9P0Vb96U9lr72V/S12M/BGJO9Y7r4/BfpPHY4/Xjnzp2Djmmo3HB5bfHoazF/+vR9990nSTpz5kz4/T2XW7Fihd5//3198MEHCReIJamrqyvcCH0+X7+vlBpq2aU2bdokn88XvhUUFDhf+GWKi4uVmvrFrk5NTdWsWbPitu2tW7dq0aJFys7OVmlpqbZu3TrsOoqKiuJWR1FR0aiNMZ7fuV1VVaXGxkadPXtWu3fvVlVV1ZDrd3R0aPny5Zo2bZpWrFgx5Hsmoq3bycdJXl6edu7cqRMnTqi2tnbIDzlqbW0NN7m+vj4dOHBgyG1fvv7BgwfjVvfF+9CJ960mMi/0NS/Jy8tTbW2tTpw4oZ07d8b1+5i94uIYT548ecVjeOvWrSotLR3W84LTLq1l0aJFQ9Zy4MCBqHpJVVWVdu/erbNnz6qxsVHr1q0bdN2Ojg6tWLFiWL07WtHWfWnP5MPK/oq+BkQvmvPYaHvV5ef2Q+WGuJyvmRg88sgjZvLkyebIkSNm8uTJ5qmnnoplM5739NNPm1/84hfGGGNaW1vNd7/73fCyhx56yLz55pvGGGNeeeUV85Of/CTiNj7//HMTCATCt7a2NtfeU+zEpWleqcMrY7y0luFcHuKlS5y9ch+OxvsRuWxwZLzQ14B4i7b3JOrbh7xyub/XDLev8TyC4bDlbQ1O9sHRPi+NOhRv3brVjB071rS0tBhjvniv7dVXX216enriXpzbLn9P8UsvvRRedvl7ipubm4e1Td6jkvyc/BAvr7zHdTQ+NC3RPojIZvQ1JAMnP8TLyd7tZM+02WB9zUsfYukVtgTAaCTqC/xOvu/X670nqlD8xhtvmIyMDLNjx47w7wKBgLnqqqvM888/H/fivODyT59ev369MeaLDxJbu3atmT9/vvne97437O1x8jh8ido0nfwkWq+EOq/UES2vvKiQbOhrsJGTL8gl6vNfMhmsr3npCi+vsOVqBSevBByNGVcnPsXZ60E3GsMOxQcOHDDjx483P/vZzwYs+9GPfmSuvfbaAZ9AjYG8fvLopSfiRG2aNlzinKjhMlEfU17n9b4GuC1RXwC1WbxmihP1E9C9EgCdnIX20td5OnnliVeuavG6mL+SCbHx+smjl56IE/XA9EpwdZKXHifRsGHfuMHrfQ1INIn6/JdMButrTr7AMRovqidaAPTSthP1O+m98vkHXkcoHmVeP3n00hOxzQem1xEucSmv9zUg0fD857549bVoni+dPAdL1ADo5Cx0ol4K7+QLMzaf3xGKR5nXTx69csAbY/eBCSQSr/c1INHw/Oc+N/qak+8VTdQA6KWZ4kQ9LhO17tGWYsz//w3IGBXBYFA+n2/QL4N3W0dHhyorK9Xa2qri4mLV1NQk5XduAogfr/c1AIiWG30t2nOw8vJyNTQ0qLe3V2lpaVq8eLHq6upGvG4stTgl2jqiWd8rY4Q3EIpHGSePAJINfQ1AskmEvpaTk6POzs5+P585cybiugRAYGjpbhcAAAAAIDolJSX9Zn+Li4sHXTcvL2/ImWHAdqluFwAAAAAgOjU1NVq8eLFycnK0ePFi1dTUuF0SkLCYKQYAAAASDLO/QPwwUwwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxaNky5YtKiwsHPLj8gEgkdDXACQb+hpgpxRjjHG7CJskwpfBA0A06GsAkg19DbALM8UAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQPITq6mr5/X5VVFSop6en37I9e/aooKBACxcuVGlpqUsVAgAAAABGglA8iMOHD6u9vV1NTU0qLCzUq6++OmCdu+66S3v27FFjY6MLFQIAAAAARopQPIiWlhYtWbJEklRWVqbm5uYB6+zYsUN+v1+bN28edDuhUEjBYLDfDQASGX0NQLKhrwF2IxQPoqurS1lZWZIkn8+nzs7OfsuLiop0/PhxNTY26ne/+50OHjwYcTubNm2Sz+cL3woKChyvHQCcRF8DkGzoa4DdUowxxu0i3NTe3q5Vq1YN+H15ebkKCgq0du1aHThwQDU1NXrqqacibuOZZ55RZmam7r333gHLQqGQQqFQ+OdgMKiCggIFAoFw6AaAREJfA5Bs6GuA3dLdLsBt+fn52rt374DfHz58WD/96U+1du1a1dfXa968ef2WB4PBcJNsamrSt771rYjbz8zMVGZmZvwLBwCX0NcAJBv6GmA3Lp8exE033aT8/Hz5/X4dO3ZMK1eulCRt2LBBkrR9+3aVlJRo7ty5mj59uhYsWOBmuQAAAACAGFh/+fRoCwaD8vl8XI4DIGnQ1wAkG/oaYBdmigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqF4lGzZskWFhYUqLi52uxQAiAv6GoBkQ18D7JRijDFuF2GTYDAon8+nQCCgrKwst8sBgBGjrwFINvQ1wC7MFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLULxILq7u3XLLbdowoQJOnr06IDlFy5cUGVlpfx+vx544AEXKgQAAAAAjBSheBBjx47V66+/rlWrVkVcvnPnTs2YMUNNTU367LPP1NzcPMoVAgAAAABGKt3tArwqPT1dubm5gy5vaWnRsmXLJEllZWVqbm7W3LlzB6wXCoUUCoXCPweDwfgXCwCjiL4GINnQ1wC7MVMco66uLmVlZUmSfD6fOjs7I663adMm+Xy+8K2goGA0ywSAuKOvAUg29DXAbtbPFLe3t0e8RLq2tlbZ2dmD/r9JkyaFX0Xs6uoadN2NGzfqwQcfDP9sjFFPT48mTpw4wsoBwB30NQDJhr4G2M36UJyfn6+9e/dG/f9mz56tXbt2acGCBaqvr9e9994bcb3MzExlZmaOtEwA8Az6GoBkQ18D7Mbl00NYunSpdu3apaqqKtXU1EiSNmzYIElavny52tra5Pf7NXbsWM2ZM8fFSgEAAAAAsUgxxhi3iwAAAAAAwA3MFAMAAAAArGX9e4q9xBij7u5ut8sAEMHEiROVkpLidhkJh74GeBd9LTb0NcC7Yu1rhGIPOXPmjKZMmeJ2GQAiOH369JDfXY7I6GuAd9HXYkNfA7wr1r5GKPaQjIwMSVJbW1v4O5CTTTAYVEFBQVKPUbJjnDaMUfrrOC8en4iODX1NsuN4YIzJg742MvS15GHDGCU7xjnSvkYo9pCLU/1ZWVlJ+4C9yIYxSnaM04YxSuISwxjZ1NckO8bJGJMHfS029LXkY8MYJTvGGWtf44O2AAAAAADWIhQDAAAAAKxFKPaQzMxM/fjHP1ZmZqbbpTjGhjFKdozThjFK9ozTKbbcfzaMkzEmD1vG6RRb7j8bxmnDGCU7xjnSMaYYY0ycawIAAAAAICEwUwwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIPqa6ult/vV0VFhXp6etwuJ+7+/Oc/Kzc3VwsXLtTChQv1ySefuF1SXHV3d+uWW27RhAkTdPToUUnSr371K82ZM0e33Xab2traXK5w5CKN8dprrw3v04aGBpcrHLmDBw/K7/fr1ltv1Te/+U2dP38+6fbjaEr2viYld2+jr9HXMBB9LbHR1+hrERl4wqFDh0xFRYUxxpjHH3/cvPjiiy5XFH8ffvihWblypdtlOOb8+fPm9OnT5p577jHvvfee6enpMSUlJSYUCpm9e/eaqqoqt0scscvHaIwxs2bNcrmq+Dp16pQ5d+6cMcaYjRs3mu3btyfdfhwtNvQ1Y5K7t9HXkgN9LX7oa4mPvpYc4t3XmCn2iJaWFi1ZskSSVFZWpubmZpcrcsa+ffvk9/v1gx/8QCbJPvg8PT1dubm54Z//+Mc/6vrrr1dGRobmzZun9957z8Xq4uPyMUrSp59+qltvvVVr1qxRZ2enS5XFT35+vsaNGydJ+tKXvqT3338/6fbjaLGlr0nJ29voa/Q19EdfS3z0NfpaJIRij+jq6lJWVpYkyefzJcWD9XJTp07VBx98oLfeekunT5/Wa6+95nZJjrp0n0pSb2+vi9U4Z9++fXrzzTdVVlamxx57zO1y4uajjz7S7t27NX/+fCv2oxNs6GuSXb2NvpbY6GsjR19LPvS1xBavvkYo9ohJkyYpGAxK+uLgzM7Odrmi+MvMzNT48eOVkpKilStX6siRI26X5KhL96kkpaWluViNc3JyciRJq1evTpp9GgwGdffdd2vbtm2aMmWKFfvRCTb0Ncmu3kZfS1z0tfigryUf+lriimdfIxR7xOzZs7Vr1y5JUn19vebNm+dyRfHX3d0d/vdbb72lmTNnuliN82bOnKljx46pp6dH+/bt04033uh2SXHX09OjUCgkKXn2aW9vryoqKvToo4/qK1/5ihX70Sk29DXJrt5mw/FAX8NQ6GvJx4bjgb52ZSkmmd4kkOCqq6v1zjvv6Oqrr9a2bduUkZHhdklxVVdXp0ceeUTjxo3TNddcoxdeeEHp6elulxVXS5cu1ZEjR/TlL39ZGzZs0JgxY7R582aNGTNGv/zlL1VQUOB2iSN26RjvuOMObd++XePHj1dmZqZeeOGFhB/jyy+/rPvuu0833HCDJOnb3/62jDFJtx9HS7L3NSn5ext9jb6G/uhriY++Rl+7HKEYAAAAAGAtLp8GAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1C8RC6u7t1yy23aMKECTp69Gi/ZRcuXFBlZaX8fr8eeOABlyoEAAAAAIwEoXgIY8eO1euvv65Vq1YNWLZz507NmDFDTU1N+uyzz9Tc3OxChQAAAACAkSAUDyE9PV25ubkRl7W0tGjJkiWSpLKyMkIxAAAAACSgdLcLSFRdXV3KysqSJPl8PnV2dkZcLxQKKRQKhX82xqinp0eTJ09WSkrKqNQKAPFEXwOQbOhrgN2YKY7RpEmTFAwGJX0RkLOzsyOut2nTJvl8vvDtqquu0pQpU9Td3T2a5QJA3NDXACQb+hpgN0JxjGbPnq1du3ZJkurr6zVv3ryI623cuFGBQCB8a2trG80yASDu6GsAkg19DbAbl09fwdKlS3XkyBEdP35cGzZsUEtLi37+859r+fLl+s1vfiO/36+bbrpJc+bMifj/MzMzlZmZOcpVA4Bz6GsAkg19DbBbijHGuF2ETYLBoHw+nwKBQPg9yQCQyOhrAJINfQ2wC5dPAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqE4lGyZcsWFRYWqri42O1SACAu6GsAkg19DbBTijHGuF2ETYLBoHw+nwKBgLKystwuBwBGjL4GINnQ1wC7MFMMAAAAALAWoRgAAAAAYC1CMQDAEzo6OlReXq6cnByVl5ero6PD7ZIAAIAFCMUAAE+orKxUQ0ODOjs71dDQoMrKSrdLAgAAFiAUAwA8Yf/+/ert7ZUk9fb2qrW11eWKAACADQjFAABPKCkpUVpamiQpLS2Nr0QBAACjglAMAPCEmpoaLV68WDk5OVq8eLFqamrcLgkAAFgg3e0CAACQpLy8PNXV1bldBgAAsAwzxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKL6C6upq+f1+VVRUqKenJ/z7PXv2qKCgQAsXLlRpaamLFQIAAAAAYkUoHsLhw4fV3t6upqYmFRYW6tVXX+23/K677tKePXvU2NjoUoUAAAAAgJEgFA+hpaVFS5YskSSVlZWpubm53/IdO3bI7/dr8+bNbpQHAAAAABghvpJpCF1dXZo2bZokyefzqbOzM7ysqKhIx48flyTdfvvtmj9/vmbNmjVgG6FQSKFQKPxzMBh0uGoAcBZ9DUCyoa8BdmOmeAiTJk0KN8Wuri5lZ2eHl02YMEEZGRnKyMjQihUr9O6770bcxqZNm+Tz+cK3goKCUakdAJxCXwOQbOhrgN0IxUOYPXu2du3aJUmqr6/XvHnzwssufQWxqalJM2fOjLiNjRs3KhAIhG9tbW3OFg0ADqOvAUg29DXAboTiIdx0003Kz8+X3+/XsWPHtHLlSm3YsEGStH37dpWUlGju3LmaPn26FixYEHEbmZmZysrK6ncDgERGXwOQbOhrgN1SjDHG7SJsEgwG5fP5FAgEaLgAkgJ9DUCyoa8BdmGmGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFI+SLVu2qLCwUMXFxW6XAgBxQV8DkGzoa4CdUowxxu0ibBIMBuXz+RQIBJSVleV2OQAwYvQ1AMmGvgbYhZliAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUdD8Z133qlJkyZp1apVTv4ZAAAAAABi4mgovv/++/XLX/7SyT8BAEBcdXR0qLy8XDk5OSovL1dHRwe1OMiGMTqJ+w8ARs7RUPx3f/d3mjhxopN/AsPg5BMmT8ZIZjy+7VRZWamGhgZ1dnaqoaFBlZWV1OIgG8boJO4/AEPhXGZ4og7FfX19uu666/Twww/3+319fb0yMjL0yiuvxK04xEc0T5jRHjhObpuDGG7jZNNO+/fvV29vrySpt7dXra2t1OIgG8boJO4/wC5OnqvbLOpQnJqaqo0bN+qZZ57R2bNnJUnvvvuuVq9erSeeeEKrV6+Oe5EYmWieMKM9cJzctpOBG3aK9nHCyWbyiGbfl5SUKC0tTZKUlpam4uLi0SpzVGvxSt/00v2diKK9/7yy3wHExslzdauZGJw/f95cc8015rHHHjNtbW1m+vTp5jvf+U7EdX//+9+blStXxvJnPOH73/++mT9/vlmzZo0JhULh358/f97cc889Zv78+eb+++8f9vYCgYCRZAKBQL/ft7e3m7KyMpOdnW3KyspMe3t73MZQVlZm0tLSjCSTlpZmysrKBl03OzvbSArfcnJyXNt2NOtHU4fTnNyXXpGoY4z2ceKlx5WXDdbXvCSafXnx8Z2Tk+P649vJWrzy+HZyjF7pVU7WEe3955X97nWJ0Ne8YjQe324fw17i5Lm6k7y+L2MKxcYY88///M8mOzvb3HDDDWb58uXmwoULEddL5FB86NAhU1FRYYwx5vHHHzcvvvhieNmvf/1r88Mf/tAYY8y6devMvn37hrXNwZpsLCdsw31QRfOEGe2B4+S2nQzc0dyH0d7fTu5Lr/BKgzUmuvsw1seJF8KRlyXCyWO0+94pXjrmo7lPvFR3NEbjuXU463upZ3rlWPC6ROhrXhHruWOiHTvR8FI/8cq5jJOPk3hIMcaYWGaYP/30U+Xm5mrmzJl6++23NX78+AHrfOMb39ChQ4d07tw5ZWdn67XXXkuoy6KefvppTZgwQWvXrtXBgwe1bds2PfXUU5Kkhx56SMuWLdOCBQu0Y8cOffjhh6qurh6wjVAopFAoFP45GAyqoKBAgUBAWVlZ4d/n5OSos7Mz/HN2drZOnjypi7snNTVVfX19kqTbb79du3fvVl9fn1JTU7Vo0SL99re/lSSlpKRIUsT/d6VlKSkpOnXqlKqqqnTw4EEVFRXp2WefVX5+vlJSUsLrpqamynzxgkr4/w1n2SeffKJ169bpwIEDmjVrlp5//nnl5uYOWlukWvLy8iKOafny5WpsbAzfJ6Wlpdq5c+egtUW6D2trayPWPdT9fek2L/6cn58ffmvBxX154sSJqOq+0n4a6b6ItOzi/X3gwAEVFxcPeX9PnTp1wBhPnjw5osderHUvW7Zs2Ps+lvtbkjIzM4W/Gm5fi9Xnn38uKfLxNdzH1OXLIj1OamtrR+34crp/D7XMjT4Yj7pjGdPly6ZNmxaxH0f6fytWrBhyjCPp35HqOHXq1Kg+9iL1wbS0NC1evFh1dXWyXbR9zYk+NRrPmdEuG05t0Zz3GGO0YsWKfsfOokWLtHPnzoh/P9Kxc/H82MkxRVrW0dGh9evXq7W1VUVFRXruueeUl5c37HP1wfpramqqli9f3m/9S5+jBjtfG875sZcee5EeJydPnhz0/0V6nFy8DwereyTnazF/+vR9990nSTpz5kz4vSyXq6+v1yeffKLPPvtMH3/8cUIFYknq6uoKN0Kfz9cvtA617FKbNm2Sz+cL3woKCiKud+l7glJTU1VUVDRoXa2treEHQV9fnw4cOBD94AaRl5en2tpanTp1SrW1tcrLy4v7tk+cODGsbV9c/+TJk1dcf+vWrSotLVV2drZKS0u1devWIbcdzX0Y7f1dVFSk1NQvDq3U1FTNmjVr0HUPHDjQb9sHDx4cctvR6Ojo0IoVKzRt2jStWLHiiu8bq6qqUmNjo86ePavdu3erqqpq0HWjGaPTorkPo32cILLh9jUvuXTfL1q0yLV972T/vnjM5+fnD+uY37p1qxYtWhQ+Hp577jlX6nZScXFxv14Vz+fWaHqPl3rmxWMhJydHixcvVk1NjWu1eEki9jWviPbxffmxM9SxFs0x7LSqqirt3r1bZ8+eVWNj45DnSdH2k8vXH6qfOHmuHu2548X1p06dquXLlw+5vpOPk7gYch55EI888oiZPHmyOXLkiJk8ebJ56qmnYtmM5z399NPmF7/4hTHGmNbWVvPd7343vOyhhx4yb775pjHGmFdeecX85Cc/ibiNzz//3AQCgfCtra1tyPcUO3EZMgaK5j700iXlTl5eE8ullF54DyDHw+gbbl/DQE4+Xr2ybS9dau2Vt/h45fJFDI6+Fjsn39fupWPHyc+68cq5jJf64GjfJ1GH4q1bt5qxY8ealpYWY8wX77W9+uqrTU9PT9yLc9vl7yl+6aWXwssuf09xc3PzsLYZj/eoeKlBJKpo7sPRCIBONAgvfRCDDe+VsRnvvRs+Jx+vTr5X1Csv3HrpA6voPcmNvuacRD12nAyAXrlPnPxQ3GiN9n0SVSh+4403TEZGhtmxY0f4d4FAwFx11VXm+eefj3txXnD5p0+vX7/eGPPFp0+vXbvWzJ8/33zve98b9vZoshgJJ1+l9Mqn3PIhMInH9r7mlZlRr8w0OHkMe2WMSH70NW/0tWg5+UGqXgmuTkrUGe54PF6HHYoPHDhgxo8fb372s58NWPajH/3IXHvttYN+AjX+yvYmi5HhkiN4kRt9zUsnbF55zHrlmHfy/rDlRTMvPb5tZfv5mlf6WrSiqTtRx+ikRJ3hjse+jPkrmRAb25ssRsYrzSdaiRrmMTxu9DUvnczYEtSGyytXnSQyW8bpZbafryVqX4um7kQdIwaKx76M+dOnAYy+vLw81dXV6cyZM6qrq4vrJw46qaamRosXLx7Wp50m6hgxuvbv36/e3l5JUm9vr1pbW12r5dJvD0hLS0u4b1qINyeP4Wh6SSLz0uMbdkrUvhZN3Yk6RgwUj31JKAbgOIIu4s1LJzO2BDUvsKWXeOnxDTslal+Lpu5EHSMGise+TDHm//8GZIyKYDAon8836JfBA0CicaOvdXR0qLKyUq2trSouLlZNTU3SBiTYh8e3+zhfA+xCKB5lNFkAyYa+BiDZ0NcAu3D5NAAAAJDEOjo6VF5erpycHJWXl6ujo8PtkgBPIRQDAAAASayyslINDQ3q7OxUQ0ODKisr3S4J8BRCMQAAAJDE+ERzYGiEYgAAACCJ8YnmwNAIxQAAAEAS4+uHgKGlu10AAAAAAOdc/I5vAJExUwwAAAAAsBaheJRs2bJFhYWFvIcDQNKgrwFINvQ1wE4pxhjjdhE24cvgASQb+hqAZENfA+zCTDEAAAAAwFqEYgAAAACAtQjFAAAAwDB0dHSovLxcOTk5Ki8vV0dHh9slAYgDQjEAAAAwDJWVlWpoaFBnZ6caGhpUWVnpdkkA4oBQDAAAAAzD/v371dvbK0nq7e1Va2ura7Uwaw3ED6EYAAAAGIaSkhKlpaVJktLS0lz96iZmrYH4IRQDAAAAw1BTU6PFixcrJydHixcvVk1NjWu1eGnWGkh06W4XAAAAACSCvLw81dXVuV2GpC9mrRsaGtTb2+v6rDWQ6JgpBgAAABKMl2atgURHKAYAAAAc4OSHYV2ctT5z5ozq6uqUl5cXt20DtiEUAwAAAA7gw7CAxEAoBgAAABzAh2EBiYFQPITq6mr5/X5VVFSop6en37I9e/aooKBACxcuVGlpqUsVAgAAwKu89BVOAAZHKB7E4cOH1d7erqamJhUWFurVV18dsM5dd92lPXv2qLGx0YUKAQAA4GV8GBaQGPhKpkG0tLRoyZIlkqSysjJt27ZNa9as6bfOjh079M4772jVqlV64IEHIm4nFAopFAqFfw4Gg84VDQCjgL4GINk41de89BVOAAbHTPEgurq6lJWVJUny+Xzq7Ozst7yoqEjHjx9XY2Ojfve73+ngwYMRt7Np0yb5fL7wraCgwPHaAcBJ9DUAyYa+BtgtxRhj3C7CTe3t7Vq1atWA35eXl6ugoEBr167VgQMHVFNTo6eeeiriNp555hllZmbq3nvvHbAs0iuPBQUFCgQC4dANAImEvgYg2dDXALtZf/l0fn6+9u7dO+D3hw8f1k9/+lOtXbtW9fX1mjdvXr/lwWAw3CSbmpr0rW99K+L2MzMzlZmZGf/CAcAl9DUAycYLfa2jo0OVlZXav3+/SkpKVFNTw3cPA6OEy6cHcdNNNyk/P19+v1/Hjh3TypUrJUkbNmyQJG3fvl0lJSWaO3eupk+frgULFrhZLgAAABIY32kMuMf6y6dHWzAYlM/n43IcAEmDvgYg2bjR13Jycvp9hk1OTo7OnDkzKn8bsB0zxQAAAIDL+E5jwD2EYgAAAMBlfKcx4B7rP2gLAAAAcBvfaQy4h5liAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxaNky5YtKiwsVHFxsdulAEBc0NcAJBv6GmCnFGOMcbsImwSDQfl8PgUCAWVlZbldDgCMGH0NQLKhrwF2YaYYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigfR3d2tW265RRMmTNDRo0cHLL9w4YIqKyvl9/v1wAMPuFAhAAAAAGCkCMWDGDt2rF5//XWtWrUq4vKdO3dqxowZampq0meffabm5uZRrhAAAAAAMFLpbhfgVenp6crNzR10eUtLi5YtWyZJKisrU3Nzs+bOnTtgvVAopFAoFP45GAzGv1gAGEX0NQDJhr4G2I2Z4hh1dXUpKytLkuTz+dTZ2RlxvU2bNsnn84VvBQUFo1kmAMQdfQ1AsqGvAXazfqa4vb094iXStbW1ys7OHvT/TZo0KfwqYldX16Drbty4UQ8++GD4Z2OMenp6NHHixBFWDgDuoK8BSDb0NcBu1ofi/Px87d27N+r/N3v2bO3atUsLFixQfX297r333ojrZWZmKjMzc6RlAoBn0NcAJBv6GmA3Lp8ewtKlS7Vr1y5VVVWppqZGkrRhwwZJ0vLly9XW1ia/36+xY8dqzpw5LlYKAAAAAIhFijHGuF0EAAAAAABuYKYYAAAAAGAt699T7CXGGHV3d7tdBoAIJk6cqJSUFLfLSDj0NcC76Guxoa8B3hVrXyMUe8iZM2c0ZcoUt8sAEMHp06eH/O5yREZfA7yLvhYb+hrgXbH2NUKxh2RkZEiS2trawt+BnGyCwaAKCgqSeoySHeO0YYzSX8d58fhEdGzoa5IdxwNjTB70tZGhryUPG8Yo2THOkfY1QrGHXJzqz8rKStoH7EU2jFGyY5w2jFESlxjGyKa+JtkxTsaYPOhrsaGvJR8bxijZMc5Y+xoftAUAAAAAsBahGAAAAABgLUKxh2RmZurHP/6xMjMz3S7FMTaMUbJjnDaMUbJnnE6x5f6zYZyMMXnYMk6n2HL/2TBOG8Yo2THOkY4xxRhj4lwTAAAAAAAJgZliAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUe0h1dbX8fr8qKirU09Pjdjlx9+c//1m5ublauHChFi5cqE8++cTtkuKqu7tbt9xyiyZMmKCjR49Kkn71q19pzpw5uu2229TW1uZyhSMXaYzXXntteJ82NDS4XOHIHTx4UH6/X7feequ++c1v6vz580m3H0dTsvc1Kbl7G32NvoaB6GuJjb5GX4vIwBMOHTpkKioqjDHGPP744+bFF190uaL4+/DDD83KlSvdLsMx58+fN6dPnzb33HOPee+990xPT48pKSkxoVDI7N2711RVVbld4ohdPkZjjJk1a5bLVcXXqVOnzLlz54wxxmzcuNFs37496fbjaLGhrxmT3L2NvpYc6GvxQ19LfPS15BDvvsZMsUe0tLRoyZIlkqSysjI1Nze7XJEz9u3bJ7/frx/84AcySfbB5+np6crNzQ3//Mc//lHXX3+9MjIyNG/ePL333nsuVhcfl49Rkj799FPdeuutWrNmjTo7O12qLH7y8/M1btw4SdKXvvQlvf/++0m3H0eLLX1NSt7eRl+jr6E/+lrio6/R1yIhFHtEV1eXsrKyJEk+ny8pHqyXmzp1qj744AO99dZbOn36tF577TW3S3LUpftUknp7e12sxjn79u3Tm2++qbKyMj322GNulxM3H330kXbv3q358+dbsR+dYENfk+zqbfS1xEZfGzn6WvKhryW2ePU1QrFHTJo0ScFgUNIXB2d2drbLFcVfZmamxo8fr5SUFK1cuVJHjhxxuyRHXbpPJSktLc3FapyTk5MjSVq9enXS7NNgMKi7775b27Zt05QpU6zYj06woa9JdvU2+lrioq/FB30t+dDXElc8+xqh2CNmz56tXbt2SZLq6+s1b948lyuKv+7u7vC/33rrLc2cOdPFapw3c+ZMHTt2TD09Pdq3b59uvPFGt0uKu56eHoVCIUnJs097e3tVUVGhRx99VF/5yles2I9OsaGvSXb1NhuOB/oahkJfSz42HA/0tStLMcn0JoEEV11drXfeeUdXX321tm3bpoyMDLdLiqu6ujo98sgjGjdunK655hq98MILSk9Pd7usuFq6dKmOHDmiL3/5y9qwYYPGjBmjzZs3a8yYMfrlL3+pgoICt0scsUvHeMcdd2j79u0aP368MjMz9cILLyT8GF9++WXdd999uuGGGyRJ3/72t2WMSbr9OFqSva9Jyd/b6Gv0NfRHX0t89DX62uUIxQAAAAAAa3H5NAAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYqH0N3drVtuuUUTJkzQ0aNH+y27cOGCKisr5ff79cADD7hUIQAAAABgJAjFQxg7dqxef/11rVq1asCynTt3asaMGWpqatJnn32m5uZmFyoEAAAAAIwEoXgI6enpys3NjbispaVFS5YskSSVlZURigEAAAAgAaW7XUCi6urqUlZWliTJ5/Ops7Mz4nqhUEihUCj8szFGPT09mjx5slJSUkalVgCIJ/oagGRDXwPsxkxxjCZNmqRgMCjpi4CcnZ0dcb1NmzbJ5/OFb1dddZWmTJmi7u7u0SwXAOKGvgYg2dDXALsRimM0e/Zs7dq1S5JUX1+vefPmRVxv48aNCgQC4VtbW9tolgkAcUdfA5Bs6GuA3bh8+gqWLl2qI0eO6Pjx49qwYYNaWlr085//XMuXL9dvfvMb+f1+3XTTTZozZ07E/5+ZmanMzMxRrhoAnENfA5Bs6GuA3VKMMcbtImwSDAbl8/kUCATC70kGgERGXwOQbOhrgF24fBoAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAADAAR0dHSovL1dOTo7Ky8vV0dHhdkkAIiAUAwAAAA6orKxUQ0ODOjs71dDQoMrKSrdLAhABoRgAAABwwP79+9Xb2ytJ6u3tVWtrq8sVAYiEUDxKtmzZosLCQhUXF7tdCgDEBX0NQLKJd18rKSlRWlqaJCktLY1+CXhUijHGuF2ETYLBoHw+nwKBgLKystwuBwBGjL4GINnEq691dHSosrJSra2tKi4uVk1NjfLy8uJYKYB4SHe7AAAAACAZ5eXlqa6uzu0yAFwBl08DAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1B8BdXV1fL7/aqoqFBPT0/493v27FFBQYEWLlyo0tJSFysEAAAAAMSKUDyEw4cPq729XU1NTSosLNSrr77ab/ldd92lPXv2qLGx0aUKAQAAAAAjQSgeQktLi5YsWSJJKisrU3Nzc7/lO3bskN/v1+bNm90oDwAAAAAwQuluF+BlXV1dmjZtmiTJ5/Ops7MzvKyoqEjHjx+XJN1+++2aP3++Zs2aNWAboVBIoVAo/HMwGHS4agBwFn0NQLKhrwF2Y6Z4CJMmTQo3xa6uLmVnZ4eXTZgwQRkZGcrIyNCKFSv07rvvRtzGpk2b5PP5wreCgoJRqR0AnEJfA5Bs6GuA3QjFQ5g9e7Z27dolSaqvr9e8efPCyy59BbGpqUkzZ86MuI2NGzcqEAiEb21tbc4WDQAOo68BSDb0NcBuhOIh3HTTTcrPz5ff79exY8e0cuVKbdiwQZK0fft2lZSUaO7cuZo+fboWLFgQcRuZmZnKysrqdwOAREZfA5Bs6GuA3VKMMcbtImwSDAbl8/kUCARouACSAn0NQLKhrwF2YaYYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUj5ItW7aosLBQxcXFbpcCAHFBXwOQbOhrgJ1SjDHG7SJsEgwG5fP5FAgElJWV5XY5ADBi9DUAyYa+BtiFmWIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtx0JxW1ubFi5cqMLCQt1444165ZVXnPpTAAAAAADExLFQnJ6erp/97Gc6duyYdu/erX/4h3/QuXPnnPpzAAAAAADLdHR0qLy8XDk5OSovL1dHR0fU23AsFE+dOlVf//rXJUlTpkxRdna2Ojs7nfpzAAAAAADLVFZWqqGhQZ2dnWpoaFBlZWXU24g6FPf19em6667Tww8/3O/39fX1ysjIiHiZ9IEDB9TX16eCgoKoCwQAAACQHOIxq+fGtr1Sh1fG6CX79+9Xb2+vJKm3t1etra1RbyPqUJyamqqNGzfqmWee0dmzZyVJ7777rlavXq0nnnhCq1ev7rf+X/7yF61du1bPPvts1MV5QXV1tfx+vyoqKtTT0xP+/YULF1RZWSm/368HHnjAxQoBAACAxBCPWT03tu2VOqLdtg0huqSkRGlpaZKktLQ0FRcXR72NmC6frqio0OTJk/Xkk0/q448/1t///d/r7rvvVnV1db/1QqGQ7rzzTm3cuFFz586N5U+56vDhw2pvb1dTU5MKCwv16quvhpft3LlTM2bMUFNTkz777DM1Nze7WCkAAADgffGY1XNj216pI9pte+WFAifDeU1NjRYvXqycnBwtXrxYNTU1UW8jplCcnp6uhx9+WE8++aSWLl2qm2++WU8++WS/dYwxqqys1G233aa77747lj/jupaWFi1ZskSSVFZW1i/4DrUMAADEX7QnVdGs7+S2vSRR68bIeOly3njM6rmx7WjG6aUxeuWFAifDeV5enurq6nTmzBnV1dUpLy8v6m2kGGNMLH/8008/VW5urmbOnKm3335b48eP77d87969WrBggW688cbw7/7lX/5FN9xwQyx/zhVPPPGECgsLdccdd+iDDz7Qo48+qpdeekmStH79en3nO9/R17/+de3evVv/9m//pieeeGLANkKhkEKhUPjnYDCogoICBQIBZWVlDVj/888/l/TFZerGGF3cPampqerr65MkpaSkSFLcl6WkpOjUqVOqqqrSgQMHVFxcrGeffVb5+flKSUkJr3tpbRf/X7TLRnNM8ax7OGOKdB/m5eUl9JiScT9FU3dmZqbwV4nW17z82ErGMbW3t4d7YFFRkbZu3ar8/PxB/9/p06dVVVWl1tZWFRUV6fnnn9eUKVMi1nb77bdr9+7d6uvrU2pqqhYtWqTf/va3g45p2bJlamxsDK9fWlqq2traiHUvX758wLo7d+4ctO6harm87k8++UTr1q1Ta2uriouL9dxzzyk3N9eV/XRp3WlpaVq8eLHq6upku2j7WrTc7oORjoWdO3cO+piK13EZqbaL50kHDx5UUVFRTOdJV6r7wIEDmjVr1pB1R3t8RdNPLvbBgwcPatasWVfsg9HUdrGfXOyxV+on0dTt5PPVtGnTwm+9laTs7GydOHEiqn1xpf00ZswYxSrmT5++7777JElnzpwJv1pxqfnz56uvr09HjhwJ3xIpEEvSpEmTFAwGJUldXV3Kzs4e1rJLbdq0ST6fL3wb7MPGLr76NG3aNK1YseKKr2avWLFiWOteuv7UqVOvuH5VVZUaGxt19uxZ7d69W1VVVVfc9vLly12v++K6+fn5w9p2NKKtO5r7MNq6R+P+duI+RHIZbl/zkovHznD7yXCPs4vrXzzWli9fPqzjcjh1xFKLF1zaAxsbG6/4PFJVVaXdu3eH11+3bt2g67a2toZPhvr6+nTgwIEht33xgz4vrn/w4MG4rBttLevWrQuPcffu3UOOUYquH0fbuy+t281ZI69JxL4WjWgf304el3l5eaqtrdXJkydVW1s75KxetI/vvLw87dy5UydOnLjitqMVzX14cYynTp2Kex0Xtz3cMW7dulWlpaXKzs7WokWLtHXr1kHXjeW8dLjnmsXFxUpN/SJ6pqamqqioaMhtjzoTg0ceecRMnjzZHDlyxEyePNk89dRTsWzG8w4dOmQqKiqMMcY8/vjj5qWXXgov+/Wvf21++MMfGmOMWbdunWlubo64jc8//9wEAoHwra2tzUgygUCg33plZWUmLS3NSDJpaWmmrKxs0LqiWTfa9bOzs42k8C0nJydu23ay7mi33d7ebsrKykx2drYpKysz7e3tcdt2NPehl+6TaNaP5v6LZX1423D7mpd45djx0nEZjWi2He3ziA09M1GfW22SiH0tUc9louGlx6uTtXjlPGk0nqNycnI8ee4YdSjeunWrGTt2rGlpaTHGfBEWr776atPT0xP34rzg+9//vpk/f75Zs2aNCYVCZv369cYYY86fP2/Wrl1r5s+fb773ve8Ne3uBQCBik42m+XjphMMrdTt5wuGlbXvl/vbSiX006xPmnTFYX/PSvvTKseOl49KpE2ovnlQNZ30nt+2l59Zox2mrwfqak6Lta04eO05uOxrRPr6jEetzlBPj9Er4d/I5KlqjfZ9EFYrfeOMNk5GRYXbs2BH+XSAQMFdddZV5/vnn415cMhqsySbqCYdX6vbSK6BOnih55f720om9V+4Tm8Wjr0W7PtseyCsv4DkZLhOVl55bMTxuhGInz2Wi5ZXj0snHt5eOHSf3ZTS8dJ402vfJsEPxgQMHzPjx483PfvazAct+9KMfmWuvvdZcuHAhrsUloyvNqLj9ana0vFJ3or4C6qX7xCthPlFn6WwWjytgol3fydkxW45Lr1weiYGcfExheNwIxU6+sJWoEnUWOlpe2ZdeyhijfZ/E9J5ixM6NJouBOIkYGS+d2Htlls5miTBTbINEfXEQ8KJEmCnmuBwZLz2PsC8HGu37hFA8ygjFwNASdZbOZvG4Aiba9dk3I8d9CAzOzfcUc0yODu5vXCrm7ylGbILBoHw+X9y+9w4A3EZfA5Bs6GuAXWL+nmIAAAAAABIdoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBaheJRs2bJFhYWFKi4udrsUAIgL+hqAZENfA+yUYowxbhdhk2AwKJ/Pp0AgoKysLLfLAYARo68BSDb0NcAuzBQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoXgI1dXV8vv9qqioUE9PT79le/bsUUFBgRYuXKjS0lKXKgQAAAAAjASheBCHDx9We3u7mpqaVFhYqFdffXXAOnfddZf27NmjxsZGFyoEAAAAAIwUoXgQLS0tWrJkiSSprKxMzc3NA9bZsWOH/H6/Nm/ePNrlAQAAAADiIN3tAryqq6tL06ZNkyT5fD51dnb2W15UVKTjx49Lkm6//XbNnz9fs2bNGrCdUCikUCgU/jkYDDpYNQA4j74GINnQ1wC7WT9T3N7ervnz5w+4GWPCDbGrq0vZ2dn9/t+ECROUkZGhjIwMrVixQu+++27E7W/atEk+ny98KygocHxMAOAk+hqAZENfA+yWYowxbhfhRYcPH9ZPf/pT/a//9b/0j//4j/qbv/kb/ef//J/Dy4PBoLKysiRJa9as0be+9S0tWLBgwHYivfJYUFCgQCAQ/v8AkEjoawCSDX0NsJv1M8WDuemmm5Sfny+/369jx45p5cqVkqQNGzZIkrZv366SkhLNnTtX06dPjxiIJSkzM1NZWVn9bgCQyOhrAJINfQ2wGzPFoywYDMrn8/HKI4CkQV8DkGzoa4BdmCkGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFo2TLli0qLCxUcXGx26UAQFzQ1wAkG/oaYKcUY4xxuwibBINB+Xw+BQIBZWVluV0OAIwYfQ1AsqGvAXZhphgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKB9Hd3a1bbrlFEyZM0NGjRwcsv3DhgiorK+X3+/XAAw+4UCEAAAAAYKQIxYMYO3asXn/9da1atSri8p07d2rGjBlqamrSZ599pubm5lGuEAAAAAAwUuluF+BV6enpys3NHXR5S0uLli1bJkkqKytTc3Oz5s6dO2C9UCikUCgU/jkYDMa/WAAYRfQ1AMmGvgbYjZniGHV1dSkrK0uS5PP51NnZGXG9TZs2yefzhW8FBQWjWSYAxB19DUCyoa8BdrN+pri9vT3iJdK1tbXKzs4e9P9NmjQp/CpiV1fXoOtu3LhRDz74YPhnY4x6eno0ceLEEVYOAO6grwFINvQ1wG7Wh+L8/Hzt3bs36v83e/Zs7dq1SwsWLFB9fb3uvffeiOtlZmYqMzNzpGUCgGfQ1wAkG/oaYDcunx7C0qVLtWvXLlVVVammpkaStGHDBknS8uXL1dbWJr/fr7Fjx2rOnDkuVgoAAAAAiEWKMca4XQQAAAAAAG5gphgAAAAAYC3r31PsJcYYdXd3u10GgAgmTpyolJQUt8tIOPQ1wLvoa7GhrwHeFWtfIxR7yJkzZzRlyhS3ywAQwenTp4f87nJERl8DvIu+Fhv6GuBdsfY1QrGHZGRkSJLa2trC34GcbILBoAoKCpJ6jJId47RhjNJfx3nx+ER0bOhrkh3HA2NMHvS1kaGvJQ8bxijZMc6R9jVCsYdcnOrPyspK2gfsRTaMUbJjnDaMURKXGMbIpr4m2TFOxpg86Guxoa8lHxvGKNkxzlj7Gh+0BQAAAACwFqEYAAAAAGAtQrGHZGZm6sc//rEyMzPdLsUxNoxRsmOcNoxRsmecTrHl/rNhnIwxedgyTqfYcv/ZME4bxijZMc6RjjHFGGPiXBMAAAAAAAmBmWIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhR7SHV1tfx+vyoqKtTT0+N2OXH35z//Wbm5uVq4cKEWLlyoTz75xO2S4qq7u1u33HKLJkyYoKNHj0qSfvWrX2nOnDm67bbb1NbW5nKFIxdpjNdee214nzY0NLhc4cgdPHhQfr9ft956q775zW/q/PnzSbcfR1Oy9zUpuXsbfY2+hoHoa4mNvkZfi8jAEw4dOmQqKiqMMcY8/vjj5sUXX3S5ovj78MMPzcqVK90uwzHnz583p0+fNvfcc4957733TE9PjykpKTGhUMjs3bvXVFVVuV3iiF0+RmOMmTVrlstVxdepU6fMuXPnjDHGbNy40Wzfvj3p9uNosaGvGZPcvY2+lhzoa/FDX0t89LXkEO++xkyxR7S0tGjJkiWSpLKyMjU3N7tckTP27dsnv9+vH/zgBzJJ9sHn6enpys3NDf/8xz/+Uddff70yMjI0b948vffeey5WFx+Xj1GSPv30U916661as2aNOjs7XaosfvLz8zVu3DhJ0pe+9CW9//77SbcfR4stfU1K3t5GX6OvoT/6WuKjr9HXIiEUe0RXV5eysrIkST6fLykerJebOnWqPvjgA7311ls6ffq0XnvtNbdLctSl+1SSent7XazGOfv27dObb76psrIyPfbYY26XEzcfffSRdu/erfnz51uxH51gQ1+T7Opt9LXERl8bOfpa8qGvJbZ49TVCsUdMmjRJwWBQ0hcHZ3Z2tssVxV9mZqbGjx+vlJQUrVy5UkeOHHG7JEdduk8lKS0tzcVqnJOTkyNJWr16ddLs02AwqLvvvlvbtm3TlClTrNiPTrChr0l29Tb6WuKir8UHfS350NcSVzz7GqHYI2bPnq1du3ZJkurr6zVv3jyXK4q/7u7u8L/feustzZw508VqnDdz5kwdO3ZMPT092rdvn2688Ua3S4q7np4ehUIhScmzT3t7e1VRUaFHH31UX/nKV6zYj06xoa9JdvU2G44H+hqGQl9LPjYcD/S1K0sxyfQmgQRXXV2td955R1dffbW2bdumjIwMt0uKq7q6Oj3yyCMaN26crrnmGr3wwgtKT093u6y4Wrp0qY4cOaIvf/nL2rBhg8aMGaPNmzdrzJgx+uUvf6mCggK3SxyxS8d4xx13aPv27Ro/frwyMzP1wgsvJPwYX375Zd1333264YYbJEnf/va3ZYxJuv04WpK9r0nJ39voa/Q19EdfS3z0Nfra5QjFAAAAAABrcfk0AAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAACIysKFC/Vf/st/cbuMARYuXKiUlBSlpKToyJEjkqTKysrw737zm9+4Wh8AwJsIxQAAIGlUVVXp1KlT+trXviZJ2rx5s06dOuVyVQAAL0t3uwAAAIB4GTdunPLz88M/+3w++Xw+FysCAHgdM8UAACBmv/vd7zR//nxdddVVysnJ0bJly/SnP/2p3zrd3d2qqKjQ+PHjNXXqVP3P//k/r3gJ9ooVK8KXPV9+q62tdXhUAACbEIoBAEDMzp07pwcffFCtra1qbGxUamqq7rzzTvX19YXXefDBB7Vv3z7V1taqoaFBTU1NOnTo0JDb3bZtm06dOqU//vGPkqQ33nhDp06d0qlTp7R06VJHxwQAsAuXTwMAgJitXLmy38/PP/+8pkyZomPHjulrX/uauru79Ytf/EIvvfSSSktLJX0ReKdNmzbkdnNyciRJLS0tSklJ0fz58zVx4kRnBgEAsBozxQAAIGZ/+tOftGbNGv3N3/yNsrKydM0110iSPvroI0nS//k//0fnz59XSUlJ+P/4fD599atfHdb2//3f/13/4T/8BwIxAMAxzBQDAICYLV++XAUFBdq6daumTZumvr4+fe1rX1NPT48kyRgjSUpJSen3/y7+/kr+/d//XTfeeGN8iwYA4BLMFAMAgJj85S9/0R/+8Ac98sgjKi0t1d/+7d/q7Nmz/db5j//xP+pLX/qS9u/fH/5dMBgMv1f4Sv785z8Pe1YZAIBYMFMMAABiMmnSJOXk5OjZZ5/V1KlT9dFHH+m//bf/1m+diRMn6p577tF//a//VdnZ2ZoyZYp+/OMfKzU1dcDscSR9fX36v//3/+rjjz/W9OnTh/V/AACIBjPFAAAgJqmpqfrXf/1XHTx4UF/72tf0D//wD/rJT34yYL1/+qd/0pw5c7Rs2TItWrRI8+bN09/+7d9qzJgxV/wb999/v/bt26frrrtu2JdcAwAQDWaKAQBAVPbs2RP+96JFi3Ts2LF+yy8PrxMnTtSLL74Y/vncuXP67//9v2v9+vVX/Fvl5eVqa2sbWcEAAAyBmWIAAOCow4cP6+WXX9af/vQnHTp0SBUVFZKk22+/Pe5/6+mnn9aECRP03nvvSZK+9a1vacKECXH/OwCA5JFiuBYJAAA46PDhw1q3bp2OHz+ujIwMzZo1S//0T/+kG264Ia5/58SJE/p//+//SZKuvvpqZWRk6PTp0woGg5KkqVOnavz48XH9mwCAxEcoBgAAAABYi8unAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABY6/8DPCeZA3//0j0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8UAAAJlCAYAAADzWVA2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVGUlEQVR4nO3df3RU9b3v/1d+NOFnRhJCwo/Y67nYemJ1VUkivwY5BmjCAdQL1HXJErNcBPrD6j02Vy+ttd61PLLu6uq5xSV6Kippz1VPUWobvKYh5BQNJEr45ZFFF9Zee41AgjRkJuJ1Asnn+4dfpoRMQmYyO3vPfJ6PtWYtkr3ZeX9mz37Pfs1nz0yKMcYIAAAAAAALpbpdAAAAAAAAbiEUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDHjA66+/rq9+9au69tpr9dxzz7ldDgCM2J133qlJkyZp1apVbpcCACPW1tamhQsXqrCwUDfeeKNeeeUVt0tCHKUYY4zbRQA2u3DhggoLC/X73/9eWVlZuvnmm/XOO+8oOzvb7dIAIGa///3v9emnn+oXv/iFXn31VbfLAYAROXXqlDo6OvT1r39dp0+f1s0336zjx49r/PjxbpeGOGCmGHDZ/v37df3112v69OmaOHGili5dqvr6erfLAoAR+bu/+ztNnDjR7TIAIC6mTp2qr3/965KkKVOmKDs7W52dne4WhbghFAMO6uvr03XXXaeHH3643+/r6+uVkZGhV155RSdPntT06dPDy2bMmKETJ06MdqkAMCzD6WsAkEii7WsHDhxQX1+fCgoKRrNMOIhQDDgoNTVVGzdu1DPPPKOzZ89Kkt59912tXr1aTzzxhFavXq1I72BISUkZ7VIBYFiG09cAIJFE09f+8pe/aO3atXr22WfdKhcOIBQDMXr//feHtV5FRYUmT56sJ598Uh9//LH+/u//Xnfffbeqq6slSdOnT+83M/zxxx9r6tSpjtQMAEOJV18DAK+IZ18LhUK68847tXHjRs2dO9epkuECQjEQg3379unmm29WY2PjFddNT0/Xww8/rCeffFJLly7VzTffrCeffDK8vKSkREePHtWJEyfU3d2tN954Q9/4xjecLB8ABohnXwMAL4hnXzPGqLKyUrfddpvuvvtuJ8uGC/j0aSBGP//5z/X9739fv/3tb1VaWjrkup9++qlyc3M1c+ZMvf322wM+qbC2tlbV1dXq6+vTQw89pPXr1ztZOgBEFM++9o1vfEOHDh3SuXPnlJ2drddee03FxcVOlg8AA8Srr+3du1cLFizQjTfeGP7dv/zLv+iGG25wrHaMHkIxMIijR48Oq9GNGzdO586dG3KdyspK/epXv9JVV12lDz/8UGPGjIlXmQAwbPQ1AMmGvoZ4SHe7AMCrvvKVr+gPf/jDoMt37dqlBx98UJs3bx5yOz/60Y/0v//3/9bbb7+tRYsW6fnnn9d3v/vdeJcLAFdEXwOQbOhriAsDIGr79+8348aNM88999yQ623dutWMHTvWtLS0GGOMefzxx83VV19tenp6RqNMABg2+hqAZENfw3Bx+TQQg56eHu3Zs0dLliwZdJ26ujrdcccdevnll/Wf/tN/kiQFg0F9+ctf1k9/+lPde++9o1UuAFwRfQ1AsqGvYbgIxYADDh48qFtvvVX/+I//qAceeKDfskcffVT/+q//qj/84Q9KS0tzqUIAiA59DUCyoa/hIkIxAAAAAMBafE8xAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKB5Cd3e3brnlFk2YMEFHjx7tt+zChQuqrKyU3+8f8BHuAAAAAIDEQCgewtixY/X6669r1apVA5bt3LlTM2bMUFNTkz777DM1Nze7UCEAAAAAYCTS3S7Ay9LT05WbmxtxWUtLi5YtWyZJKisrU3Nzs+bOnTtgvVAopFAoFP7ZGKOenh5NnjxZKSkpzhQOAA6irwFINvQ1wG7MFMeoq6tLWVlZkiSfz6fOzs6I623atEk+ny98u+qqqzRlyhR1d3ePZrkAEDf0NQDJhr4G2I1QHKNJkyYpGAxK+iIgZ2dnR1xv48aNCgQC4VtbW9tolgkAcUdfA5Bs6GuA3bh8OkazZ8/Wrl27tGDBAtXX1+vee++NuF5mZqYyMzNHuToAcA59DUCyoa8BdmOm+AqWLl2qXbt2qaqqSjU1NdqwYYMkafny5Wpra5Pf79fYsWM1Z84clysFAAAAAEQrxRhj3C7CJsFgUD6fT4FAIPyeZABIZPQ1AMmGvgbYhZliAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKB4lW7ZsUWFhoYqLi90uBQDigr4GINnQ1wA7pRhjjNtF2CQYDMrn8ykQCCgrK8vtcgBgxOhrAJINfQ2wCzPFAAAAAABrEYoTUEdHh8rLy5WTk6Py8nJ1dHS4XRIAAAAAJCRCcQKqrKxUQ0ODOjs71dDQoMrKSrdLAgAAAICERChOQPv371dvb68kqbe3V62trS5XBAAAAACJiVCcgEpKSpSWliZJSktL4xMSAQAAACBGhOIEVFNTo8WLFysnJ0eLFy9WTU2N2yUBAAAAQEJKd7sARC8vL091dXVulwEAAAAACY+ZYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1B8BdXV1fL7/aqoqFBPT0/493v27FFBQYEWLlyo0tJSFysEAAAAAMSKUDyEw4cPq729XU1NTSosLNSrr77ab/ldd92lPXv2qLGx0aUKAQAAAAAjQSgeQktLi5YsWSJJKisrU3Nzc7/lO3bskN/v1+bNmwfdRigUUjAY7HcDgERGXwOQbOhrgN0IxUPo6upSVlaWJMnn86mzszO8rKioSMePH1djY6N+97vf6eDBgxG3sWnTJvl8vvCtoKBgVGoHAKfQ1wAkG/oaYDdC8RAmTZoUfqWwq6tL2dnZ4WUTJkxQRkaGMjIytGLFCr377rsRt7Fx40YFAoHwra2tbVRqBwCn0NcAJBv6GmA3QvEQZs+erV27dkmS6uvrNW/evPCySy+raWpq0syZMyNuIzMzU1lZWf1uAJDI6GsAkg19DbAboXgIN910k/Lz8+X3+3Xs2DGtXLlSGzZskCRt375dJSUlmjt3rqZPn64FCxa4XC0AAAAAIFopxhjjdhE2CQaD8vl8CgQCvAoJICnQ1wAkG/oaYBdmigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqF4lGzZskWFhYUqLi52uxQAiAv6GoBkQ18D7JRijDFuF2GTYDAon8+nQCCgrKwst8sBgBGjrwFINvQ1wC7MFAMAPKGjo0Pl5eXKyclReXm5Ojo63C4JAABYgFAMAPCEyspKNTQ0qLOzUw0NDaqsrHS7JAAAYAFCMQDAEdHO/O7fv1+9vb2SpN7eXrW2to5GmQAAwHKEYgCAI6Kd+S0pKVFaWpokKS0tjQ+6AQAAo4JQDABwRLQzvzU1NVq8eLFycnK0ePFi1dTUjEKVAADAdoRiAIAjop35zcvLU11dnc6cOaO6ujrl5eXFrRY+xAsAAAyGUAwAcISXZn75EC8AADAYR0Px66+/rq9+9au69tpr9dxzzzn5pwAAHuOlmd9oLuW2ZVbZlnECAHAljoXiCxcu6MEHH9S//du/6dChQ/of/+N/qLOz06k/BwCwiJMf4uXkrHK0QdTJ4JqIs+cEeQCAExwLxfv379f111+v6dOna+LEiVq6dKnq6+ud+nNAVDixAhKbkx/i5eRXQ0UbRKNZP1G/AiuauhMxyAMAvC/qUNzX16frrrtODz/8cL/f19fXKyMjQ6+88ook6eTJk5o+fXp4+YwZM3TixIkRlgvEBydWo4sXIRBvTn6IV7TbjubxHW0QjWZ9J2fPvTJj7ZUgDwBILlGH4tTUVG3cuFHPPPOMzp49K0l69913tXr1aj3xxBNavXq1JMkYM+D/pqSkjLBceE2ihh0b3l/opboT9UUIL92H6M/JD/GKdtvRPL6jDdzRrO/k7LlXZqydfMECAJCY4tLrTQzOnz9vrrnmGvPYY4+ZtrY2M336dPOd73yn3zr79u0zd9xxR/jn+++/37z44oux/DlXff/73zfz5883a9asMaFQKPz78+fPm3vuucfMnz/f3H///cPeXiAQMJJMIBBwotyI2tvbTVlZmcnOzjZlZWWmvb09btsuKyszaWlpRpJJS0szZWVlrtQR7bajqTuadb0k2rqd3D/Z2dlGUviWk5MTt207KVH3/Whzo695STSP74vHWU5OzrCOs2jWd/LxGs0Yo60jlueR4d5/HMOIle19DXBbNOel8ej1MYViY4z553/+Z5OdnW1uuOEGs3z5cnPhwoV+y8+fP29mzpxpPv74YxMMBs3MmTPNmTNnYv1zrjh06JCpqKgwxhjz+OOP9wv1v/71r80Pf/hDY4wx69atM/v27RvWNt1osol6ohSNWAPgcE6sEjXQRVu3V/ZPtOGcMO8+208evRK8og2M0YhmjNEeN07WHcsLFk70Eid5qWcmE9v7GhBvTk5gxeN8LcWYCNc5D8Onn36q3NxczZw5U2+//bbGjx8/YJ3a2lpVV1err69PDz30kNavXx/Ln3LN008/rQkTJmjt2rU6ePCgtm3bpqeeekqS9NBDD2nZsmVasGCBduzYoQ8//FDV1dUDthEKhRQKhcI/B4NBFRQUKBAIKCsra0T1ff7555K+uKTdfPECR/jnvr4+SV9csj516tTwpe6SlJ2drRMnToQvZx/s/w21LCUlRX19fVqxYoUaGxvV19en1NRULVq0SDt37gyve2lt06ZNG1DHyZMnZYzpt83hjOny2vLz8yOOMZYxXf73b7/9du3evbvfGGtra69Y93DGdOrUKVVVVenAgQMqLi7Ws88+q7y8vKjqHmxZtHUPdR9GM6ZItXV0dGj9+vU6cOCAZs2apeeee055eXnDrvu3v/3toPtp+fLl/dYvLS1VbW3tsOseatmlj++0tDQtXrxYdXV1sl20fW24vUqKrR8NtSyW/R7tsvb2dq1bt04HDx5UUVFR+DhO5DEN1qsuH2OkupcvX97veaG0tFQ7d+50ZUzLli0bUMvF/jDSuk+fPq2qqiq1traqqKhIzz//vHJzc0d9P0Vb96U9lr72V/S12M/BGJO9Y7r4/BfpPHY4/Xjnzp2Djmmo3HB5bfHoazF/+vR9990nSTpz5kz4/T2XW7Fihd5//3198MEHCReIJamrqyvcCH0+X7+vlBpq2aU2bdokn88XvhUUFDhf+GWKi4uVmvrFrk5NTdWsWbPitu2tW7dq0aJFys7OVmlpqbZu3TrsOoqKiuJWR1FR0aiNMZ7fuV1VVaXGxkadPXtWu3fvVlVV1ZDrd3R0aPny5Zo2bZpWrFgx5Hsmoq3bycdJXl6edu7cqRMnTqi2tnbIDzlqbW0NN7m+vj4dOHBgyG1fvv7BgwfjVvfF+9CJ960mMi/0NS/Jy8tTbW2tTpw4oZ07d8b1+5i94uIYT548ecVjeOvWrSotLR3W84LTLq1l0aJFQ9Zy4MCBqHpJVVWVdu/erbNnz6qxsVHr1q0bdN2Ojg6tWLFiWL07WtHWfWnP5MPK/oq+BkQvmvPYaHvV5ef2Q+WGuJyvmRg88sgjZvLkyebIkSNm8uTJ5qmnnoplM5739NNPm1/84hfGGGNaW1vNd7/73fCyhx56yLz55pvGGGNeeeUV85Of/CTiNj7//HMTCATCt7a2NtfeU+zEpWleqcMrY7y0luFcHuKlS5y9ch+OxvsRuWxwZLzQ14B4i7b3JOrbh7xyub/XDLev8TyC4bDlbQ1O9sHRPi+NOhRv3brVjB071rS0tBhjvniv7dVXX216enriXpzbLn9P8UsvvRRedvl7ipubm4e1Td6jkvyc/BAvr7zHdTQ+NC3RPojIZvQ1JAMnP8TLyd7tZM+02WB9zUsfYukVtgTAaCTqC/xOvu/X670nqlD8xhtvmIyMDLNjx47w7wKBgLnqqqvM888/H/fivODyT59ev369MeaLDxJbu3atmT9/vvne97437O1x8jh8ido0nfwkWq+EOq/UES2vvKiQbOhrsJGTL8gl6vNfMhmsr3npCi+vsOVqBSevBByNGVcnPsXZ60E3GsMOxQcOHDDjx483P/vZzwYs+9GPfmSuvfbaAZ9AjYG8fvLopSfiRG2aNlzinKjhMlEfU17n9b4GuC1RXwC1WbxmihP1E9C9EgCdnIX20td5OnnliVeuavG6mL+SCbHx+smjl56IE/XA9EpwdZKXHifRsGHfuMHrfQ1INIn6/JdMButrTr7AMRovqidaAPTSthP1O+m98vkHXkcoHmVeP3n00hOxzQem1xEucSmv9zUg0fD857549bVoni+dPAdL1ADo5Cx0ol4K7+QLMzaf3xGKR5nXTx69csAbY/eBCSQSr/c1INHw/Oc+N/qak+8VTdQA6KWZ4kQ9LhO17tGWYsz//w3IGBXBYFA+n2/QL4N3W0dHhyorK9Xa2qri4mLV1NQk5XduAogfr/c1AIiWG30t2nOw8vJyNTQ0qLe3V2lpaVq8eLHq6upGvG4stTgl2jqiWd8rY4Q3EIpHGSePAJINfQ1AskmEvpaTk6POzs5+P585cybiugRAYGjpbhcAAAAAIDolJSX9Zn+Li4sHXTcvL2/ImWHAdqluFwAAAAAgOjU1NVq8eLFycnK0ePFi1dTUuF0SkLCYKQYAAAASDLO/QPwwUwwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxaNky5YtKiwsHPLj8gEgkdDXACQb+hpgpxRjjHG7CJskwpfBA0A06GsAkg19DbALM8UAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQPITq6mr5/X5VVFSop6en37I9e/aooKBACxcuVGlpqUsVAgAAAABGglA8iMOHD6u9vV1NTU0qLCzUq6++OmCdu+66S3v27FFjY6MLFQIAAAAARopQPIiWlhYtWbJEklRWVqbm5uYB6+zYsUN+v1+bN28edDuhUEjBYLDfDQASGX0NQLKhrwF2IxQPoqurS1lZWZIkn8+nzs7OfsuLiop0/PhxNTY26ne/+50OHjwYcTubNm2Sz+cL3woKChyvHQCcRF8DkGzoa4DdUowxxu0i3NTe3q5Vq1YN+H15ebkKCgq0du1aHThwQDU1NXrqqacibuOZZ55RZmam7r333gHLQqGQQqFQ+OdgMKiCggIFAoFw6AaAREJfA5Bs6GuA3dLdLsBt+fn52rt374DfHz58WD/96U+1du1a1dfXa968ef2WB4PBcJNsamrSt771rYjbz8zMVGZmZvwLBwCX0NcAJBv6GmA3Lp8exE033aT8/Hz5/X4dO3ZMK1eulCRt2LBBkrR9+3aVlJRo7ty5mj59uhYsWOBmuQAAAACAGFh/+fRoCwaD8vl8XI4DIGnQ1wAkG/oaYBdmigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqF4lGzZskWFhYUqLi52uxQAiAv6GoBkQ18D7JRijDFuF2GTYDAon8+nQCCgrKwst8sBgBGjrwFINvQ1wC7MFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLULxILq7u3XLLbdowoQJOnr06IDlFy5cUGVlpfx+vx544AEXKgQAAAAAjBSheBBjx47V66+/rlWrVkVcvnPnTs2YMUNNTU367LPP1NzcPMoVAgAAAABGKt3tArwqPT1dubm5gy5vaWnRsmXLJEllZWVqbm7W3LlzB6wXCoUUCoXCPweDwfgXCwCjiL4GINnQ1wC7MVMco66uLmVlZUmSfD6fOjs7I663adMm+Xy+8K2goGA0ywSAuKOvAUg29DXAbtbPFLe3t0e8RLq2tlbZ2dmD/r9JkyaFX0Xs6uoadN2NGzfqwQcfDP9sjFFPT48mTpw4wsoBwB30NQDJhr4G2M36UJyfn6+9e/dG/f9mz56tXbt2acGCBaqvr9e9994bcb3MzExlZmaOtEwA8Az6GoBkQ18D7Mbl00NYunSpdu3apaqqKtXU1EiSNmzYIElavny52tra5Pf7NXbsWM2ZM8fFSgEAAAAAsUgxxhi3iwAAAAAAwA3MFAMAAAAArGX9e4q9xBij7u5ut8sAEMHEiROVkpLidhkJh74GeBd9LTb0NcC7Yu1rhGIPOXPmjKZMmeJ2GQAiOH369JDfXY7I6GuAd9HXYkNfA7wr1r5GKPaQjIwMSVJbW1v4O5CTTTAYVEFBQVKPUbJjnDaMUfrrOC8en4iODX1NsuN4YIzJg742MvS15GHDGCU7xjnSvkYo9pCLU/1ZWVlJ+4C9yIYxSnaM04YxSuISwxjZ1NckO8bJGJMHfS029LXkY8MYJTvGGWtf44O2AAAAAADWIhQDAAAAAKxFKPaQzMxM/fjHP1ZmZqbbpTjGhjFKdozThjFK9ozTKbbcfzaMkzEmD1vG6RRb7j8bxmnDGCU7xjnSMaYYY0ycawIAAAAAICEwUwwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIPqa6ult/vV0VFhXp6etwuJ+7+/Oc/Kzc3VwsXLtTChQv1ySefuF1SXHV3d+uWW27RhAkTdPToUUnSr371K82ZM0e33Xab2traXK5w5CKN8dprrw3v04aGBpcrHLmDBw/K7/fr1ltv1Te/+U2dP38+6fbjaEr2viYld2+jr9HXMBB9LbHR1+hrERl4wqFDh0xFRYUxxpjHH3/cvPjiiy5XFH8ffvihWblypdtlOOb8+fPm9OnT5p577jHvvfee6enpMSUlJSYUCpm9e/eaqqoqt0scscvHaIwxs2bNcrmq+Dp16pQ5d+6cMcaYjRs3mu3btyfdfhwtNvQ1Y5K7t9HXkgN9LX7oa4mPvpYc4t3XmCn2iJaWFi1ZskSSVFZWpubmZpcrcsa+ffvk9/v1gx/8QCbJPvg8PT1dubm54Z//+Mc/6vrrr1dGRobmzZun9957z8Xq4uPyMUrSp59+qltvvVVr1qxRZ2enS5XFT35+vsaNGydJ+tKXvqT3338/6fbjaLGlr0nJ29voa/Q19EdfS3z0NfpaJIRij+jq6lJWVpYkyefzJcWD9XJTp07VBx98oLfeekunT5/Wa6+95nZJjrp0n0pSb2+vi9U4Z9++fXrzzTdVVlamxx57zO1y4uajjz7S7t27NX/+fCv2oxNs6GuSXb2NvpbY6GsjR19LPvS1xBavvkYo9ohJkyYpGAxK+uLgzM7Odrmi+MvMzNT48eOVkpKilStX6siRI26X5KhL96kkpaWluViNc3JyciRJq1evTpp9GgwGdffdd2vbtm2aMmWKFfvRCTb0Ncmu3kZfS1z0tfigryUf+lriimdfIxR7xOzZs7Vr1y5JUn19vebNm+dyRfHX3d0d/vdbb72lmTNnuliN82bOnKljx46pp6dH+/bt04033uh2SXHX09OjUCgkKXn2aW9vryoqKvToo4/qK1/5ihX70Sk29DXJrt5mw/FAX8NQ6GvJx4bjgb52ZSkmmd4kkOCqq6v1zjvv6Oqrr9a2bduUkZHhdklxVVdXp0ceeUTjxo3TNddcoxdeeEHp6elulxVXS5cu1ZEjR/TlL39ZGzZs0JgxY7R582aNGTNGv/zlL1VQUOB2iSN26RjvuOMObd++XePHj1dmZqZeeOGFhB/jyy+/rPvuu0833HCDJOnb3/62jDFJtx9HS7L3NSn5ext9jb6G/uhriY++Rl+7HKEYAAAAAGAtLp8GAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1C8RC6u7t1yy23aMKECTp69Gi/ZRcuXFBlZaX8fr8eeOABlyoEAAAAAIwEoXgIY8eO1euvv65Vq1YNWLZz507NmDFDTU1N+uyzz9Tc3OxChQAAAACAkSAUDyE9PV25ubkRl7W0tGjJkiWSpLKyMkIxAAAAACSgdLcLSFRdXV3KysqSJPl8PnV2dkZcLxQKKRQKhX82xqinp0eTJ09WSkrKqNQKAPFEXwOQbOhrgN2YKY7RpEmTFAwGJX0RkLOzsyOut2nTJvl8vvDtqquu0pQpU9Td3T2a5QJA3NDXACQb+hpgN0JxjGbPnq1du3ZJkurr6zVv3ryI623cuFGBQCB8a2trG80yASDu6GsAkg19DbAbl09fwdKlS3XkyBEdP35cGzZsUEtLi37+859r+fLl+s1vfiO/36+bbrpJc+bMifj/MzMzlZmZOcpVA4Bz6GsAkg19DbBbijHGuF2ETYLBoHw+nwKBQPg9yQCQyOhrAJINfQ2wC5dPAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqE4lGyZcsWFRYWqri42O1SACAu6GsAkg19DbBTijHGuF2ETYLBoHw+nwKBgLKystwuBwBGjL4GINnQ1wC7MFMMAAAAALAWoRgAAAAAYC1CMQDAEzo6OlReXq6cnByVl5ero6PD7ZIAAIAFCMUAAE+orKxUQ0ODOjs71dDQoMrKSrdLAgAAFiAUAwA8Yf/+/ert7ZUk9fb2qrW11eWKAACADQjFAABPKCkpUVpamiQpLS2Nr0QBAACjglAMAPCEmpoaLV68WDk5OVq8eLFqamrcLgkAAFgg3e0CAACQpLy8PNXV1bldBgAAsAwzxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKL6C6upq+f1+VVRUqKenJ/z7PXv2qKCgQAsXLlRpaamLFQIAAAAAYkUoHsLhw4fV3t6upqYmFRYW6tVXX+23/K677tKePXvU2NjoUoUAAAAAgJEgFA+hpaVFS5YskSSVlZWpubm53/IdO3bI7/dr8+bNbpQHAAAAABghvpJpCF1dXZo2bZokyefzqbOzM7ysqKhIx48flyTdfvvtmj9/vmbNmjVgG6FQSKFQKPxzMBh0uGoAcBZ9DUCyoa8BdmOmeAiTJk0KN8Wuri5lZ2eHl02YMEEZGRnKyMjQihUr9O6770bcxqZNm+Tz+cK3goKCUakdAJxCXwOQbOhrgN0IxUOYPXu2du3aJUmqr6/XvHnzwssufQWxqalJM2fOjLiNjRs3KhAIhG9tbW3OFg0ADqOvAUg29DXAboTiIdx0003Kz8+X3+/XsWPHtHLlSm3YsEGStH37dpWUlGju3LmaPn26FixYEHEbmZmZysrK6ncDgERGXwOQbOhrgN1SjDHG7SJsEgwG5fP5FAgEaLgAkgJ9DUCyoa8BdmGmGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFI+SLVu2qLCwUMXFxW6XAgBxQV8DkGzoa4CdUowxxu0ibBIMBuXz+RQIBJSVleV2OQAwYvQ1AMmGvgbYhZliAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUdD8Z133qlJkyZp1apVTv4ZAAAAAABi4mgovv/++/XLX/7SyT8BAEBcdXR0qLy8XDk5OSovL1dHRwe1OMiGMTqJ+w8ARs7RUPx3f/d3mjhxopN/AsPg5BMmT8ZIZjy+7VRZWamGhgZ1dnaqoaFBlZWV1OIgG8boJO4/AEPhXGZ4og7FfX19uu666/Twww/3+319fb0yMjL0yiuvxK04xEc0T5jRHjhObpuDGG7jZNNO+/fvV29vrySpt7dXra2t1OIgG8boJO4/wC5OnqvbLOpQnJqaqo0bN+qZZ57R2bNnJUnvvvuuVq9erSeeeEKrV6+Oe5EYmWieMKM9cJzctpOBG3aK9nHCyWbyiGbfl5SUKC0tTZKUlpam4uLi0SpzVGvxSt/00v2diKK9/7yy3wHExslzdauZGJw/f95cc8015rHHHjNtbW1m+vTp5jvf+U7EdX//+9+blStXxvJnPOH73/++mT9/vlmzZo0JhULh358/f97cc889Zv78+eb+++8f9vYCgYCRZAKBQL/ft7e3m7KyMpOdnW3KyspMe3t73MZQVlZm0tLSjCSTlpZmysrKBl03OzvbSArfcnJyXNt2NOtHU4fTnNyXXpGoY4z2ceKlx5WXDdbXvCSafXnx8Z2Tk+P649vJWrzy+HZyjF7pVU7WEe3955X97nWJ0Ne8YjQe324fw17i5Lm6k7y+L2MKxcYY88///M8mOzvb3HDDDWb58uXmwoULEddL5FB86NAhU1FRYYwx5vHHHzcvvvhieNmvf/1r88Mf/tAYY8y6devMvn37hrXNwZpsLCdsw31QRfOEGe2B4+S2nQzc0dyH0d7fTu5Lr/BKgzUmuvsw1seJF8KRlyXCyWO0+94pXjrmo7lPvFR3NEbjuXU463upZ3rlWPC6ROhrXhHruWOiHTvR8FI/8cq5jJOPk3hIMcaYWGaYP/30U+Xm5mrmzJl6++23NX78+AHrfOMb39ChQ4d07tw5ZWdn67XXXkuoy6KefvppTZgwQWvXrtXBgwe1bds2PfXUU5Kkhx56SMuWLdOCBQu0Y8cOffjhh6qurh6wjVAopFAoFP45GAyqoKBAgUBAWVlZ4d/n5OSos7Mz/HN2drZOnjypi7snNTVVfX19kqTbb79du3fvVl9fn1JTU7Vo0SL99re/lSSlpKRIUsT/d6VlKSkpOnXqlKqqqnTw4EEVFRXp2WefVX5+vlJSUsLrpqamynzxgkr4/w1n2SeffKJ169bpwIEDmjVrlp5//nnl5uYOWlukWvLy8iKOafny5WpsbAzfJ6Wlpdq5c+egtUW6D2trayPWPdT9fek2L/6cn58ffmvBxX154sSJqOq+0n4a6b6ItOzi/X3gwAEVFxcPeX9PnTp1wBhPnjw5osderHUvW7Zs2Ps+lvtbkjIzM4W/Gm5fi9Xnn38uKfLxNdzH1OXLIj1OamtrR+34crp/D7XMjT4Yj7pjGdPly6ZNmxaxH0f6fytWrBhyjCPp35HqOHXq1Kg+9iL1wbS0NC1evFh1dXWyXbR9zYk+NRrPmdEuG05t0Zz3GGO0YsWKfsfOokWLtHPnzoh/P9Kxc/H82MkxRVrW0dGh9evXq7W1VUVFRXruueeUl5c37HP1wfpramqqli9f3m/9S5+jBjtfG875sZcee5EeJydPnhz0/0V6nFy8DwereyTnazF/+vR9990nSTpz5kz4vSyXq6+v1yeffKLPPvtMH3/8cUIFYknq6uoKN0Kfz9cvtA617FKbNm2Sz+cL3woKCiKud+l7glJTU1VUVDRoXa2treEHQV9fnw4cOBD94AaRl5en2tpanTp1SrW1tcrLy4v7tk+cODGsbV9c/+TJk1dcf+vWrSotLVV2drZKS0u1devWIbcdzX0Y7f1dVFSk1NQvDq3U1FTNmjVr0HUPHDjQb9sHDx4cctvR6Ojo0IoVKzRt2jStWLHiiu8bq6qqUmNjo86ePavdu3erqqpq0HWjGaPTorkPo32cILLh9jUvuXTfL1q0yLV972T/vnjM5+fnD+uY37p1qxYtWhQ+Hp577jlX6nZScXFxv14Vz+fWaHqPl3rmxWMhJydHixcvVk1NjWu1eEki9jWviPbxffmxM9SxFs0x7LSqqirt3r1bZ8+eVWNj45DnSdH2k8vXH6qfOHmuHu2548X1p06dquXLlw+5vpOPk7gYch55EI888oiZPHmyOXLkiJk8ebJ56qmnYtmM5z399NPmF7/4hTHGmNbWVvPd7343vOyhhx4yb775pjHGmFdeecX85Cc/ibiNzz//3AQCgfCtra1tyPcUO3EZMgaK5j700iXlTl5eE8ullF54DyDHw+gbbl/DQE4+Xr2ybS9dau2Vt/h45fJFDI6+Fjsn39fupWPHyc+68cq5jJf64GjfJ1GH4q1bt5qxY8ealpYWY8wX77W9+uqrTU9PT9yLc9vl7yl+6aWXwssuf09xc3PzsLYZj/eoeKlBJKpo7sPRCIBONAgvfRCDDe+VsRnvvRs+Jx+vTr5X1Csv3HrpA6voPcmNvuacRD12nAyAXrlPnPxQ3GiN9n0SVSh+4403TEZGhtmxY0f4d4FAwFx11VXm+eefj3txXnD5p0+vX7/eGPPFp0+vXbvWzJ8/33zve98b9vZoshgJJ1+l9Mqn3PIhMInH9r7mlZlRr8w0OHkMe2WMSH70NW/0tWg5+UGqXgmuTkrUGe54PF6HHYoPHDhgxo8fb372s58NWPajH/3IXHvttYN+AjX+yvYmi5HhkiN4kRt9zUsnbF55zHrlmHfy/rDlRTMvPb5tZfv5mlf6WrSiqTtRx+ikRJ3hjse+jPkrmRAb25ssRsYrzSdaiRrmMTxu9DUvnczYEtSGyytXnSQyW8bpZbafryVqX4um7kQdIwaKx76M+dOnAYy+vLw81dXV6cyZM6qrq4vrJw46qaamRosXLx7Wp50m6hgxuvbv36/e3l5JUm9vr1pbW12r5dJvD0hLS0u4b1qINyeP4Wh6SSLz0uMbdkrUvhZN3Yk6RgwUj31JKAbgOIIu4s1LJzO2BDUvsKWXeOnxDTslal+Lpu5EHSMGise+TDHm//8GZIyKYDAon8836JfBA0CicaOvdXR0qLKyUq2trSouLlZNTU3SBiTYh8e3+zhfA+xCKB5lNFkAyYa+BiDZ0NcAu3D5NAAAAJDEOjo6VF5erpycHJWXl6ujo8PtkgBPIRQDAAAASayyslINDQ3q7OxUQ0ODKisr3S4J8BRCMQAAAJDE+ERzYGiEYgAAACCJ8YnmwNAIxQAAAEAS4+uHgKGlu10AAAAAAOdc/I5vAJExUwwAAAAAsBaheJRs2bJFhYWFvIcDQNKgrwFINvQ1wE4pxhjjdhE24cvgASQb+hqAZENfA+zCTDEAAAAAwFqEYgAAAACAtQjFAAAAwDB0dHSovLxcOTk5Ki8vV0dHh9slAYgDQjEAAAAwDJWVlWpoaFBnZ6caGhpUWVnpdkkA4oBQDAAAAAzD/v371dvbK0nq7e1Va2ura7Uwaw3ED6EYAAAAGIaSkhKlpaVJktLS0lz96iZmrYH4IRQDAAAAw1BTU6PFixcrJydHixcvVk1NjWu1eGnWGkh06W4XAAAAACSCvLw81dXVuV2GpC9mrRsaGtTb2+v6rDWQ6JgpBgAAABKMl2atgURHKAYAAAAc4OSHYV2ctT5z5ozq6uqUl5cXt20DtiEUAwAAAA7gw7CAxEAoBgAAABzAh2EBiYFQPITq6mr5/X5VVFSop6en37I9e/aooKBACxcuVGlpqUsVAgAAwKu89BVOAAZHKB7E4cOH1d7erqamJhUWFurVV18dsM5dd92lPXv2qLGx0YUKAQAA4GV8GBaQGPhKpkG0tLRoyZIlkqSysjJt27ZNa9as6bfOjh079M4772jVqlV64IEHIm4nFAopFAqFfw4Gg84VDQCjgL4GINk41de89BVOAAbHTPEgurq6lJWVJUny+Xzq7Ozst7yoqEjHjx9XY2Ojfve73+ngwYMRt7Np0yb5fL7wraCgwPHaAcBJ9DUAyYa+BtgtxRhj3C7CTe3t7Vq1atWA35eXl6ugoEBr167VgQMHVFNTo6eeeiriNp555hllZmbq3nvvHbAs0iuPBQUFCgQC4dANAImEvgYg2dDXALtZf/l0fn6+9u7dO+D3hw8f1k9/+lOtXbtW9fX1mjdvXr/lwWAw3CSbmpr0rW99K+L2MzMzlZmZGf/CAcAl9DUAycYLfa2jo0OVlZXav3+/SkpKVFNTw3cPA6OEy6cHcdNNNyk/P19+v1/Hjh3TypUrJUkbNmyQJG3fvl0lJSWaO3eupk+frgULFrhZLgAAABIY32kMuMf6y6dHWzAYlM/n43IcAEmDvgYg2bjR13Jycvp9hk1OTo7OnDkzKn8bsB0zxQAAAIDL+E5jwD2EYgAAAMBlfKcx4B7rP2gLAAAAcBvfaQy4h5liAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxaNky5YtKiwsVHFxsdulAEBc0NcAJBv6GmCnFGOMcbsImwSDQfl8PgUCAWVlZbldDgCMGH0NQLKhrwF2YaYYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigfR3d2tW265RRMmTNDRo0cHLL9w4YIqKyvl9/v1wAMPuFAhAAAAAGCkCMWDGDt2rF5//XWtWrUq4vKdO3dqxowZampq0meffabm5uZRrhAAAAAAMFLpbhfgVenp6crNzR10eUtLi5YtWyZJKisrU3Nzs+bOnTtgvVAopFAoFP45GAzGv1gAGEX0NQDJhr4G2I2Z4hh1dXUpKytLkuTz+dTZ2RlxvU2bNsnn84VvBQUFo1kmAMQdfQ1AsqGvAXazfqa4vb094iXStbW1ys7OHvT/TZo0KfwqYldX16Drbty4UQ8++GD4Z2OMenp6NHHixBFWDgDuoK8BSDb0NcBu1ofi/Px87d27N+r/N3v2bO3atUsLFixQfX297r333ojrZWZmKjMzc6RlAoBn0NcAJBv6GmA3Lp8ewtKlS7Vr1y5VVVWppqZGkrRhwwZJ0vLly9XW1ia/36+xY8dqzpw5LlYKAAAAAIhFijHGuF0EAAAAAABuYKYYAAAAAGAt699T7CXGGHV3d7tdBoAIJk6cqJSUFLfLSDj0NcC76Guxoa8B3hVrXyMUe8iZM2c0ZcoUt8sAEMHp06eH/O5yREZfA7yLvhYb+hrgXbH2NUKxh2RkZEiS2trawt+BnGyCwaAKCgqSeoySHeO0YYzSX8d58fhEdGzoa5IdxwNjTB70tZGhryUPG8Yo2THOkfY1QrGHXJzqz8rKStoH7EU2jFGyY5w2jFESlxjGyKa+JtkxTsaYPOhrsaGvJR8bxijZMc5Y+xoftAUAAAAAsBahGAAAAABgLUKxh2RmZurHP/6xMjMz3S7FMTaMUbJjnDaMUbJnnE6x5f6zYZyMMXnYMk6n2HL/2TBOG8Yo2THOkY4xxRhj4lwTAAAAAAAJgZliAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUe0h1dbX8fr8qKirU09Pjdjlx9+c//1m5ublauHChFi5cqE8++cTtkuKqu7tbt9xyiyZMmKCjR49Kkn71q19pzpw5uu2229TW1uZyhSMXaYzXXntteJ82NDS4XOHIHTx4UH6/X7feequ++c1v6vz580m3H0dTsvc1Kbl7G32NvoaB6GuJjb5GX4vIwBMOHTpkKioqjDHGPP744+bFF190uaL4+/DDD83KlSvdLsMx58+fN6dPnzb33HOPee+990xPT48pKSkxoVDI7N2711RVVbld4ohdPkZjjJk1a5bLVcXXqVOnzLlz54wxxmzcuNFs37496fbjaLGhrxmT3L2NvpYc6GvxQ19LfPS15BDvvsZMsUe0tLRoyZIlkqSysjI1Nze7XJEz9u3bJ7/frx/84AcySfbB5+np6crNzQ3//Mc//lHXX3+9MjIyNG/ePL333nsuVhcfl49Rkj799FPdeuutWrNmjTo7O12qLH7y8/M1btw4SdKXvvQlvf/++0m3H0eLLX1NSt7eRl+jr6E/+lrio6/R1yIhFHtEV1eXsrKyJEk+ny8pHqyXmzp1qj744AO99dZbOn36tF577TW3S3LUpftUknp7e12sxjn79u3Tm2++qbKyMj322GNulxM3H330kXbv3q358+dbsR+dYENfk+zqbfS1xEZfGzn6WvKhryW2ePU1QrFHTJo0ScFgUNIXB2d2drbLFcVfZmamxo8fr5SUFK1cuVJHjhxxuyRHXbpPJSktLc3FapyTk5MjSVq9enXS7NNgMKi7775b27Zt05QpU6zYj06woa9JdvU2+lrioq/FB30t+dDXElc8+xqh2CNmz56tXbt2SZLq6+s1b948lyuKv+7u7vC/33rrLc2cOdPFapw3c+ZMHTt2TD09Pdq3b59uvPFGt0uKu56eHoVCIUnJs097e3tVUVGhRx99VF/5yles2I9OsaGvSXb1NhuOB/oahkJfSz42HA/0tStLMcn0JoEEV11drXfeeUdXX321tm3bpoyMDLdLiqu6ujo98sgjGjdunK655hq98MILSk9Pd7usuFq6dKmOHDmiL3/5y9qwYYPGjBmjzZs3a8yYMfrlL3+pgoICt0scsUvHeMcdd2j79u0aP368MjMz9cILLyT8GF9++WXdd999uuGGGyRJ3/72t2WMSbr9OFqSva9Jyd/b6Gv0NfRHX0t89DX62uUIxQAAAAAAa3H5NAAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYqH0N3drVtuuUUTJkzQ0aNH+y27cOGCKisr5ff79cADD7hUIQAAAABgJAjFQxg7dqxef/11rVq1asCynTt3asaMGWpqatJnn32m5uZmFyoEAAAAAIwEoXgI6enpys3NjbispaVFS5YskSSVlZURigEAAAAgAaW7XUCi6urqUlZWliTJ5/Ops7Mz4nqhUEihUCj8szFGPT09mjx5slJSUkalVgCIJ/oagGRDXwPsxkxxjCZNmqRgMCjpi4CcnZ0dcb1NmzbJ5/OFb1dddZWmTJmi7u7u0SwXAOKGvgYg2dDXALsRimM0e/Zs7dq1S5JUX1+vefPmRVxv48aNCgQC4VtbW9tolgkAcUdfA5Bs6GuA3bh8+gqWLl2qI0eO6Pjx49qwYYNaWlr085//XMuXL9dvfvMb+f1+3XTTTZozZ07E/5+ZmanMzMxRrhoAnENfA5Bs6GuA3VKMMcbtImwSDAbl8/kUCATC70kGgERGXwOQbOhrgF24fBoAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAADAAR0dHSovL1dOTo7Ky8vV0dHhdkkAIiAUAwAAAA6orKxUQ0ODOjs71dDQoMrKSrdLAhABoRgAAABwwP79+9Xb2ytJ6u3tVWtrq8sVAYiEUDxKtmzZosLCQhUXF7tdCgDEBX0NQLKJd18rKSlRWlqaJCktLY1+CXhUijHGuF2ETYLBoHw+nwKBgLKystwuBwBGjL4GINnEq691dHSosrJSra2tKi4uVk1NjfLy8uJYKYB4SHe7AAAAACAZ5eXlqa6uzu0yAFwBl08DAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1B8BdXV1fL7/aqoqFBPT0/493v27FFBQYEWLlyo0tJSFysEAAAAAMSKUDyEw4cPq729XU1NTSosLNSrr77ab/ldd92lPXv2qLGx0aUKAQAAAAAjQSgeQktLi5YsWSJJKisrU3Nzc7/lO3bskN/v1+bNm90oDwAAAAAwQuluF+BlXV1dmjZtmiTJ5/Ops7MzvKyoqEjHjx+XJN1+++2aP3++Zs2aNWAboVBIoVAo/HMwGHS4agBwFn0NQLKhrwF2Y6Z4CJMmTQo3xa6uLmVnZ4eXTZgwQRkZGcrIyNCKFSv07rvvRtzGpk2b5PP5wreCgoJRqR0AnEJfA5Bs6GuA3QjFQ5g9e7Z27dolSaqvr9e8efPCyy59BbGpqUkzZ86MuI2NGzcqEAiEb21tbc4WDQAOo68BSDb0NcBuhOIh3HTTTcrPz5ff79exY8e0cuVKbdiwQZK0fft2lZSUaO7cuZo+fboWLFgQcRuZmZnKysrqdwOAREZfA5Bs6GuA3VKMMcbtImwSDAbl8/kUCARouACSAn0NQLKhrwF2YaYYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUj5ItW7aosLBQxcXFbpcCAHFBXwOQbOhrgJ1SjDHG7SJsEgwG5fP5FAgElJWV5XY5ADBi9DUAyYa+BtiFmWIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtx0JxW1ubFi5cqMLCQt1444165ZVXnPpTAAAAAADExLFQnJ6erp/97Gc6duyYdu/erX/4h3/QuXPnnPpzAAAAAADLdHR0qLy8XDk5OSovL1dHR0fU23AsFE+dOlVf//rXJUlTpkxRdna2Ojs7nfpzAAAAAADLVFZWqqGhQZ2dnWpoaFBlZWXU24g6FPf19em6667Tww8/3O/39fX1ysjIiHiZ9IEDB9TX16eCgoKoCwQAAACQHOIxq+fGtr1Sh1fG6CX79+9Xb2+vJKm3t1etra1RbyPqUJyamqqNGzfqmWee0dmzZyVJ7777rlavXq0nnnhCq1ev7rf+X/7yF61du1bPPvts1MV5QXV1tfx+vyoqKtTT0xP+/YULF1RZWSm/368HHnjAxQoBAACAxBCPWT03tu2VOqLdtg0huqSkRGlpaZKktLQ0FRcXR72NmC6frqio0OTJk/Xkk0/q448/1t///d/r7rvvVnV1db/1QqGQ7rzzTm3cuFFz586N5U+56vDhw2pvb1dTU5MKCwv16quvhpft3LlTM2bMUFNTkz777DM1Nze7WCkAAADgffGY1XNj216pI9pte+WFAifDeU1NjRYvXqycnBwtXrxYNTU1UW8jplCcnp6uhx9+WE8++aSWLl2qm2++WU8++WS/dYwxqqys1G233aa77747lj/jupaWFi1ZskSSVFZW1i/4DrUMAADEX7QnVdGs7+S2vSRR68bIeOly3njM6rmx7WjG6aUxeuWFAifDeV5enurq6nTmzBnV1dUpLy8v6m2kGGNMLH/8008/VW5urmbOnKm3335b48eP77d87969WrBggW688cbw7/7lX/5FN9xwQyx/zhVPPPGECgsLdccdd+iDDz7Qo48+qpdeekmStH79en3nO9/R17/+de3evVv/9m//pieeeGLANkKhkEKhUPjnYDCogoICBQIBZWVlDVj/888/l/TFZerGGF3cPampqerr65MkpaSkSFLcl6WkpOjUqVOqqqrSgQMHVFxcrGeffVb5+flKSUkJr3tpbRf/X7TLRnNM8ax7OGOKdB/m5eUl9JiScT9FU3dmZqbwV4nW17z82ErGMbW3t4d7YFFRkbZu3ar8/PxB/9/p06dVVVWl1tZWFRUV6fnnn9eUKVMi1nb77bdr9+7d6uvrU2pqqhYtWqTf/va3g45p2bJlamxsDK9fWlqq2traiHUvX758wLo7d+4ctO6harm87k8++UTr1q1Ta2uriouL9dxzzyk3N9eV/XRp3WlpaVq8eLHq6upku2j7WrTc7oORjoWdO3cO+piK13EZqbaL50kHDx5UUVFRTOdJV6r7wIEDmjVr1pB1R3t8RdNPLvbBgwcPatasWVfsg9HUdrGfXOyxV+on0dTt5PPVtGnTwm+9laTs7GydOHEiqn1xpf00ZswYxSrmT5++7777JElnzpwJv1pxqfnz56uvr09HjhwJ3xIpEEvSpEmTFAwGJUldXV3Kzs4e1rJLbdq0ST6fL3wb7MPGLr76NG3aNK1YseKKr2avWLFiWOteuv7UqVOvuH5VVZUaGxt19uxZ7d69W1VVVVfc9vLly12v++K6+fn5w9p2NKKtO5r7MNq6R+P+duI+RHIZbl/zkovHznD7yXCPs4vrXzzWli9fPqzjcjh1xFKLF1zaAxsbG6/4PFJVVaXdu3eH11+3bt2g67a2toZPhvr6+nTgwIEht33xgz4vrn/w4MG4rBttLevWrQuPcffu3UOOUYquH0fbuy+t281ZI69JxL4WjWgf304el3l5eaqtrdXJkydVW1s75KxetI/vvLw87dy5UydOnLjitqMVzX14cYynTp2Kex0Xtz3cMW7dulWlpaXKzs7WokWLtHXr1kHXjeW8dLjnmsXFxUpN/SJ6pqamqqioaMhtjzoTg0ceecRMnjzZHDlyxEyePNk89dRTsWzG8w4dOmQqKiqMMcY8/vjj5qWXXgov+/Wvf21++MMfGmOMWbdunWlubo64jc8//9wEAoHwra2tzUgygUCg33plZWUmLS3NSDJpaWmmrKxs0LqiWTfa9bOzs42k8C0nJydu23ay7mi33d7ebsrKykx2drYpKysz7e3tcdt2NPehl+6TaNaP5v6LZX1423D7mpd45djx0nEZjWi2He3ziA09M1GfW22SiH0tUc9louGlx6uTtXjlPGk0nqNycnI8ee4YdSjeunWrGTt2rGlpaTHGfBEWr776atPT0xP34rzg+9//vpk/f75Zs2aNCYVCZv369cYYY86fP2/Wrl1r5s+fb773ve8Ne3uBQCBik42m+XjphMMrdTt5wuGlbXvl/vbSiX006xPmnTFYX/PSvvTKseOl49KpE2ovnlQNZ30nt+2l59Zox2mrwfqak6Lta04eO05uOxrRPr6jEetzlBPj9Er4d/I5KlqjfZ9EFYrfeOMNk5GRYXbs2BH+XSAQMFdddZV5/vnn415cMhqsySbqCYdX6vbSK6BOnih55f720om9V+4Tm8Wjr0W7PtseyCsv4DkZLhOVl55bMTxuhGInz2Wi5ZXj0snHt5eOHSf3ZTS8dJ402vfJsEPxgQMHzPjx483PfvazAct+9KMfmWuvvdZcuHAhrsUloyvNqLj9ana0vFJ3or4C6qX7xCthPlFn6WwWjytgol3fydkxW45Lr1weiYGcfExheNwIxU6+sJWoEnUWOlpe2ZdeyhijfZ/E9J5ixM6NJouBOIkYGS+d2Htlls5miTBTbINEfXEQ8KJEmCnmuBwZLz2PsC8HGu37hFA8ygjFwNASdZbOZvG4Aiba9dk3I8d9CAzOzfcUc0yODu5vXCrm7ylGbILBoHw+X9y+9w4A3EZfA5Bs6GuAXWL+nmIAAAAAABIdoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBaheJRs2bJFhYWFKi4udrsUAIgL+hqAZENfA+yUYowxbhdhk2AwKJ/Pp0AgoKysLLfLAYARo68BSDb0NcAuzBQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoXgI1dXV8vv9qqioUE9PT79le/bsUUFBgRYuXKjS0lKXKgQAAAAAjASheBCHDx9We3u7mpqaVFhYqFdffXXAOnfddZf27NmjxsZGFyoEAAAAAIwUoXgQLS0tWrJkiSSprKxMzc3NA9bZsWOH/H6/Nm/ePNrlAQAAAADiIN3tAryqq6tL06ZNkyT5fD51dnb2W15UVKTjx49Lkm6//XbNnz9fs2bNGrCdUCikUCgU/jkYDDpYNQA4j74GINnQ1wC7WT9T3N7ervnz5w+4GWPCDbGrq0vZ2dn9/t+ECROUkZGhjIwMrVixQu+++27E7W/atEk+ny98KygocHxMAOAk+hqAZENfA+yWYowxbhfhRYcPH9ZPf/pT/a//9b/0j//4j/qbv/kb/ef//J/Dy4PBoLKysiRJa9as0be+9S0tWLBgwHYivfJYUFCgQCAQ/v8AkEjoawCSDX0NsJv1M8WDuemmm5Sfny+/369jx45p5cqVkqQNGzZIkrZv366SkhLNnTtX06dPjxiIJSkzM1NZWVn9bgCQyOhrAJINfQ2wGzPFoywYDMrn8/HKI4CkQV8DkGzoa4BdmCkGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFo2TLli0qLCxUcXGx26UAQFzQ1wAkG/oaYKcUY4xxuwibBINB+Xw+BQIBZWVluV0OAIwYfQ1AsqGvAXZhphgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKB9Hd3a1bbrlFEyZM0NGjRwcsv3DhgiorK+X3+/XAAw+4UCEAAAAAYKQIxYMYO3asXn/9da1atSri8p07d2rGjBlqamrSZ599pubm5lGuEAAAAAAwUuluF+BV6enpys3NHXR5S0uLli1bJkkqKytTc3Oz5s6dO2C9UCikUCgU/jkYDMa/WAAYRfQ1AMmGvgbYjZniGHV1dSkrK0uS5PP51NnZGXG9TZs2yefzhW8FBQWjWSYAxB19DUCyoa8BdrN+pri9vT3iJdK1tbXKzs4e9P9NmjQp/CpiV1fXoOtu3LhRDz74YPhnY4x6eno0ceLEEVYOAO6grwFINvQ1wG7Wh+L8/Hzt3bs36v83e/Zs7dq1SwsWLFB9fb3uvffeiOtlZmYqMzNzpGUCgGfQ1wAkG/oaYDcunx7C0qVLtWvXLlVVVammpkaStGHDBknS8uXL1dbWJr/fr7Fjx2rOnDkuVgoAAAAAiEWKMca4XQQAAAAAAG5gphgAAAAAYC3r31PsJcYYdXd3u10GgAgmTpyolJQUt8tIOPQ1wLvoa7GhrwHeFWtfIxR7yJkzZzRlyhS3ywAQwenTp4f87nJERl8DvIu+Fhv6GuBdsfY1QrGHZGRkSJLa2trC34GcbILBoAoKCpJ6jJId47RhjNJfx3nx+ER0bOhrkh3HA2NMHvS1kaGvJQ8bxijZMc6R9jVCsYdcnOrPyspK2gfsRTaMUbJjnDaMURKXGMbIpr4m2TFOxpg86Guxoa8lHxvGKNkxzlj7Gh+0BQAAAACwFqEYAAAAAGAtQrGHZGZm6sc//rEyMzPdLsUxNoxRsmOcNoxRsmecTrHl/rNhnIwxedgyTqfYcv/ZME4bxijZMc6RjjHFGGPiXBMAAAAAAAmBmWIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhR7SHV1tfx+vyoqKtTT0+N2OXH35z//Wbm5uVq4cKEWLlyoTz75xO2S4qq7u1u33HKLJkyYoKNHj0qSfvWrX2nOnDm67bbb1NbW5nKFIxdpjNdee214nzY0NLhc4cgdPHhQfr9ft956q775zW/q/PnzSbcfR1Oy9zUpuXsbfY2+hoHoa4mNvkZfi8jAEw4dOmQqKiqMMcY8/vjj5sUXX3S5ovj78MMPzcqVK90uwzHnz583p0+fNvfcc4957733TE9PjykpKTGhUMjs3bvXVFVVuV3iiF0+RmOMmTVrlstVxdepU6fMuXPnjDHGbNy40Wzfvj3p9uNosaGvGZPcvY2+lhzoa/FDX0t89LXkEO++xkyxR7S0tGjJkiWSpLKyMjU3N7tckTP27dsnv9+vH/zgBzJJ9sHn6enpys3NDf/8xz/+Uddff70yMjI0b948vffeey5WFx+Xj1GSPv30U916661as2aNOjs7XaosfvLz8zVu3DhJ0pe+9CW9//77SbcfR4stfU1K3t5GX6OvoT/6WuKjr9HXIiEUe0RXV5eysrIkST6fLykerJebOnWqPvjgA7311ls6ffq0XnvtNbdLctSl+1SSent7XazGOfv27dObb76psrIyPfbYY26XEzcfffSRdu/erfnz51uxH51gQ1+T7Opt9LXERl8bOfpa8qGvJbZ49TVCsUdMmjRJwWBQ0hcHZ3Z2tssVxV9mZqbGjx+vlJQUrVy5UkeOHHG7JEdduk8lKS0tzcVqnJOTkyNJWr16ddLs02AwqLvvvlvbtm3TlClTrNiPTrChr0l29Tb6WuKir8UHfS350NcSVzz7GqHYI2bPnq1du3ZJkurr6zVv3jyXK4q/7u7u8L/feustzZw508VqnDdz5kwdO3ZMPT092rdvn2688Ua3S4q7np4ehUIhScmzT3t7e1VRUaFHH31UX/nKV6zYj06xoa9JdvU2G44H+hqGQl9LPjYcD/S1K0sxyfQmgQRXXV2td955R1dffbW2bdumjIwMt0uKq7q6Oj3yyCMaN26crrnmGr3wwgtKT093u6y4Wrp0qY4cOaIvf/nL2rBhg8aMGaPNmzdrzJgx+uUvf6mCggK3SxyxS8d4xx13aPv27Ro/frwyMzP1wgsvJPwYX375Zd1333264YYbJEnf/va3ZYxJuv04WpK9r0nJ39voa/Q19EdfS3z0Nfra5QjFAAAAAABrcfk0AAAAAMBahGIAAAAAgLUIxQAAAAAAaxGKAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABYi1AMAAAAALAWoRgAAAAAYC1CMQAAAADAWoRiAAAAAIC1CMUAAAAAAGsRigEAAAAA1iIUAwAAAACsRSgGAAAAAFiLUAwAAAAAsBahGAAAAABgLUIxAACIysKFC/Vf/st/cbuMARYuXKiUlBSlpKToyJEjkqTKysrw737zm9+4Wh8AwJsIxQAAIGlUVVXp1KlT+trXviZJ2rx5s06dOuVyVQAAL0t3uwAAAIB4GTdunPLz88M/+3w++Xw+FysCAHgdM8UAACBmv/vd7zR//nxdddVVysnJ0bJly/SnP/2p3zrd3d2qqKjQ+PHjNXXqVP3P//k/r3gJ9ooVK8KXPV9+q62tdXhUAACbEIoBAEDMzp07pwcffFCtra1qbGxUamqq7rzzTvX19YXXefDBB7Vv3z7V1taqoaFBTU1NOnTo0JDb3bZtm06dOqU//vGPkqQ33nhDp06d0qlTp7R06VJHxwQAsAuXTwMAgJitXLmy38/PP/+8pkyZomPHjulrX/uauru79Ytf/EIvvfSSSktLJX0ReKdNmzbkdnNyciRJLS0tSklJ0fz58zVx4kRnBgEAsBozxQAAIGZ/+tOftGbNGv3N3/yNsrKydM0110iSPvroI0nS//k//0fnz59XSUlJ+P/4fD599atfHdb2//3f/13/4T/8BwIxAMAxzBQDAICYLV++XAUFBdq6daumTZumvr4+fe1rX1NPT48kyRgjSUpJSen3/y7+/kr+/d//XTfeeGN8iwYA4BLMFAMAgJj85S9/0R/+8Ac98sgjKi0t1d/+7d/q7Nmz/db5j//xP+pLX/qS9u/fH/5dMBgMv1f4Sv785z8Pe1YZAIBYMFMMAABiMmnSJOXk5OjZZ5/V1KlT9dFHH+m//bf/1m+diRMn6p577tF//a//VdnZ2ZoyZYp+/OMfKzU1dcDscSR9fX36v//3/+rjjz/W9OnTh/V/AACIBjPFAAAgJqmpqfrXf/1XHTx4UF/72tf0D//wD/rJT34yYL1/+qd/0pw5c7Rs2TItWrRI8+bN09/+7d9qzJgxV/wb999/v/bt26frrrtu2JdcAwAQDWaKAQBAVPbs2RP+96JFi3Ts2LF+yy8PrxMnTtSLL74Y/vncuXP67//9v2v9+vVX/Fvl5eVqa2sbWcEAAAyBmWIAAOCow4cP6+WXX9af/vQnHTp0SBUVFZKk22+/Pe5/6+mnn9aECRP03nvvSZK+9a1vacKECXH/OwCA5JFiuBYJAAA46PDhw1q3bp2OHz+ujIwMzZo1S//0T/+kG264Ia5/58SJE/p//+//SZKuvvpqZWRk6PTp0woGg5KkqVOnavz48XH9mwCAxEcoBgAAAABYi8unAQAAAADWIhQDAAAAAKxFKAYAAAAAWItQDAAAAACwFqEYAAAAAGAtQjEAAAAAwFqEYgAAAACAtQjFAAAAAABrEYoBAAAAANYiFAMAAAAArEUoBgAAAABY6/8DPCeZA3//0j0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -806,8 +808,8 @@ "Found nothing\n", "\n", "ER-01:\n", - "Marked: (0,-1) oL> (0, 0) ==> (0,-1) -L> (0, 0) \n", "Marked: (1,-1) oL> (1, 0) ==> (1,-1) -L> (1, 0) \n", + "Marked: (0,-1) oL> (0, 0) ==> (0,-1) -L> (0, 0) \n", "Writing: (0,-1) oL> (0, 0) ==> (0,-1) -L> (0, 0) \n", "Update: Marking (0, -1) as anc of (0, 0)\n", "Writing: (1,-1) oL> (1, 0) ==> (1,-1) -L> (1, 0) \n", @@ -1006,9 +1008,9 @@ "with rule list: [['APR'], ['ER-08'], ['ER-02'], ['ER-01'], ['ER-00-d'], ['ER-00-c'], ['ER-03'], ['R-04'], ['ER-09'], ['ER-10'], ['ER-00-b'], ['ER-00-a']]\n", "\n", "APR:\n", + "Marked: (1,-1) -!> (1, 0) ==> (1,-1) --> (1, 0) \n", "Marked: (1,-2) -!> (2, 0) ==> (1,-2) --> (2, 0) \n", "Marked: (2,-1) -!> (2, 0) ==> (2,-1) --> (2, 0) \n", - "Marked: (1,-1) -!> (1, 0) ==> (1,-1) --> (1, 0) \n", "Writing: (1,-1) -!> (1, 0) ==> (1,-1) --> (1, 0) \n", "Writing: (1,-2) -!> (2, 0) ==> (1,-2) --> (2, 0) \n", "Writing: (2,-1) -!> (2, 0) ==> (2,-1) --> (2, 0) \n", @@ -1106,7 +1108,13 @@ "ER-00-b:\n", "Found nothing\n", "\n", - "ER-00-a:\n", + "ER-00-a:\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Found nothing\n", "\n", "Orientation phase complete\n", @@ -1210,13 +1218,7 @@ "(0,-4) independent (1, 0) given () union {(0, -5), (1, -1)}\n", "(0,-4) independent (2, 0) given () union {(0, -5), (2, -1), (1, -2)}\n", "(1,-4) independent (0, 0) given () union {(1, -5), (0, -1)}\n", - "(1,-4) independent (2, 0) given () union {(1, -5), (2, -1), (1, -2)}\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "(1,-4) independent (2, 0) given () union {(1, -5), (2, -1), (1, -2)}\n", "(2,-4) independent (0, 0) given () union {(0, -1), (2, -5)}\n", "(2,-4) independent (1, 0) given () union {(1, -1), (2, -5)}\n", "Writing: (1,-4) oL> (0, 0) ==> (1,-4) (0, 0) \n", @@ -1278,10 +1280,10 @@ "with rule list: [['APR'], ['ER-08'], ['ER-02'], ['ER-01'], ['ER-00-d'], ['ER-00-c'], ['ER-03'], ['R-04'], ['ER-09'], ['ER-10'], ['ER-00-b'], ['ER-00-a']]\n", "\n", "APR:\n", + "Marked: (1,-1) -!> (1, 0) ==> (1,-1) --> (1, 0) \n", "Marked: (1,-2) -!> (2, 0) ==> (1,-2) --> (2, 0) \n", "Marked: (2,-1) -!> (2, 0) ==> (2,-1) --> (2, 0) \n", "Marked: (0,-1) -!> (0, 0) ==> (0,-1) --> (0, 0) \n", - "Marked: (1,-1) -!> (1, 0) ==> (1,-1) --> (1, 0) \n", "Writing: (0,-1) -!> (0, 0) ==> (0,-1) --> (0, 0) \n", "Writing: (1,-1) -!> (1, 0) ==> (1,-1) --> (1, 0) \n", "Writing: (1,-2) -!> (2, 0) ==> (1,-2) --> (2, 0) \n", @@ -1394,7 +1396,13 @@ "ER-00-d:\n", "Found nothing\n", "\n", - "ER-00-c:\n", + "ER-00-c:\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Found nothing\n", "\n", "ER-03:\n", @@ -1530,7 +1538,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6dUlEQVR4nO3dd3xk53kf+t8502eAqRj0un2Xy+WyiyIpkZJYRIoSVSixqNBK7DgqcSLFn5t2o9jXMhXf2NdRIsnX9o0sOYm6SIoUxSb2JnZu7+jAoEwFBtPPe/+YHRCLndOAM6fMPN/PRx9xMQPMu+8O5jznfZ/nfTjGGAMhhBBCiATe6AEQQgghxPwoYCCEEEKILAoYCCGEECKLAgZCCCGEyKKAgRBCCCGyKGAghBBCiCwKGAghhBAiiwIGQgghhMiigIEQQgghsihgIIQQQogsChgIIYQQIsuyAUOlUsE3v/nNTf2M4eFh7Nq1C/v378f+/fvxk5/8RKPRWY8W81nzJ3/yJ+A4DocOHdLk51mRFvN54403Yt++fdi/fz+uvfZavP3229oMzoI2O5/5fB633347duzYgf379+Pmm2/G2NiYdgO0GC3en//iX/wLDA8Pt/zvulJafsYahlnUW2+9xfbv37+pnzE0NMQOHjyo0YisTYv5ZIyxN954g918881scHCwpedWi/lMJpOr/33//feziy++eJOjsq7Nzmcul2O//vWvmSAIjDHG/tt/+2/shhtu0Gp4lqPF+/PZZ59lk5OT9DmqkFafsUay5ArDkSNHcOutt2J6ehr79+/HN77xDaOHZGlazWehUMCXv/xlfPe73wXHcRqP0jq0ms9gMLj63+l0GjxvyV/XTdNiPt1uN2655ZbV9+V73vMenDlzRuuhWoJW78/3ve996O/v13h0zalZrll2owewEXv27MHHP/5x7Nq1C1/5ylc29bPuueceCIKAK6+8Evfddx+i0ahGo7QOrebzP/7H/4jPfvazGBkZ0XB01qPl+/Pzn/88nn76aQDAo48+qsXwLEfL+az59re/jdtuu02Tn2U1jZhPIq1Z5tyytyyvv/46LrvssvO+fu2116Kjo6Pu/yYnJ8957nPPPYd33nkHb775JiKRCL7whS/oNXzT2ex8vvzyy3jttdfwpS99Sc9hm5YW708A+OEPf4jJyUn82Z/9Gf74j/9Yj6GbklbzCQB//ud/jpMnT1p/P3kTtJxPoozYnFsJxxhjRg9CrXK5jFAohIWFBbjdbk1+5uzsLHbs2IGlpSVNfp6VaDGf3/rWt/Dtb38bTqcTADA1NYWuri78/d//PT784Q9rOVzTa8T7EwA8Hg+mpqYQiUQ0+5lWoOV8/pf/8l/w4x//GE8++eQ5Wz6tROv35/DwMB5++GHs3btXg9E1p0Z9JujNkisMU1NTaG9v39TEZ7NZpFKp1T//6Ec/wsUXX6zB6KxHi/n8N//m32BmZgZjY2MYGxtDf38/HnvssZYLFgBt5jOTyWBmZmb1z/fffz8ikQjC4bAWQ7QULeYTAP7qr/4KP/rRj/DEE0+0bLAAaDefRLlmmXNLBgz9/f3Yt28fdu7ciX/37/7dhn7G3Nwcrr/+euzbtw8XXnghnn32Wfzwhz/UeKTWoMV8kndpMZ/pdBq33347LrzwQlx00UX4zne+g4cffrglk0m1mM+pqSl8/etfRyqVwvXXX4/9+/fjyiuv1Hik1qDV7/uXv/xl9Pf3Y2pqCh/60Iewbds2DUfZXJrlM9aSWxKEEEII0ZclVxgIIYQQoi8KGAghhBAiiwIGQgghhMiigIEQQgghsihgIIQQQogsChgIIYQQIosCBkIIIYTIooCBEEIIIbIoYCCEEEKILAoYCCGEECKLAgZCCCGEyKKAgRBCCCGyKGAghBBCiCwKGAghhBAiiwIGQgghhMiigIEQQgghsuxGD6ARKpUK8vk88vk8BEEAAPA8D5fLBbfbDbu9Kf/aDVMul5HP51EoFM6bT4/HA5vNZvAIraVcLiOXy6FYLJ4zn263G263m+ZTpVKptPr+ZIwBAGw22+p88jzdFynFGDvn/UnzuTmMsdX3Z20+OY4Dz/PweDxwuVyWms+muXKWSiUkk0kkk0mUSiXJ59rtdgSDQYRCIbhcLp1GaC3FYhGJRAKpVArlclnyuQ6HY3U+nU6nTiO0lkKhgEQigXQ6LTufTqdzdT4dDodOI7SWfD6/Op+VSkXyuU6nE+FwGMFgkG4W6mCMIZfLIZFIIJPJrAaxYtxuN0KhEILBIAW3dTDGsLKygkQigaWlJdn59Hg8CIVCCAQCpp9PjtVCSIsqFouIxWLIZDIb+n6fz4eenh643W6NR2ZNhUIBs7OzWF5e3tD3t7e3o7u7mwKxs3K5HGZnZ7GysrKh7/f7/ejp6aHA4ayVlRXMzs4il8tt6PuDwSC6u7spcDhreXkZs7OzKBQKqr+X4ziEQiF0dXWZ/kKnl0wmg1gshmKxqPp7OY5DJBJBZ2enaVcdLBswMMaQSCQQi8WgxV+hs7MT0WgUHMdpMDrrYYxhcXERc3Nzm/5ZHMehq6sLkUikZedTEAQsLCxgYWFh0z+L4zj09PQgFAq19HzOzc0hHo9v+mfxPI/e3l4EAoGWnc9KpYLZ2VmkUqlN/yybzYa+vj74/f7ND8yiyuUyZmZmNnzjupbD4UBfXx/a2to0GJm2LBkwCIKAiYmJDd8Fi/F4PBgaGmq5u49KpYLx8fEN3wWL8fl8GBwcbLm7j3K5jLGxMeTzeU1/rt/vR39/v2nvPhqlWCxibGxsQ3dtUoLBIPr6+louaCgUChgdHZXdGlMrEomgu7u75eYzl8thbGxMdmtMLTPexFouYBAEAWNjY5pf3GpcLhdGRkZaJmioVCoYHR3V/OJW4/F4MDw83DJBQ7lcxpkzZzS/uNX4fD4MDQ21TNBQLBZx5swZzS9uNX6/HwMDA6b6UG6kfD6P0dFRzS9uNaFQCL29vS0zn7lcDmfOnNFklbuejo4OdHV1mWY+LfWpwxjD5ORkw4IFoBp9j4+PN+wNYCaMMYyPjzcsWACqv1ATExMtMZ+CIGB0dLRhwQIAZLNZTE9Pt8R81oLZRgULQHXPeXZ2tmE/30zK5XJDgwUASCaTmJ+fb9jPN5NisYjR0dGG/i4uLi5qsg2nFUsFDKlUCktLSw1/nVwup8nes9ktLi42NPiqyWazSCQSDX8do83Pz28oeUytdDqNdDrd8NcxWiwWk6140kItm72ZMcYwPT3d0GChZmFhQZfPFSMxxjA1NSVbAaGFWCzW0Js6NSwTMBSLRczMzOj2evPz8xvOxLaCfD6vSYKjUrFYTJeLqVFWVlawuLio2+vNzMzocjE1ytLSEpLJpG6vNzU1pcvF1CjpdFrXoGhyclKXi6lREomErkHR1NSUKVYVLRMwzM/P6z5hsVhM19fTk57BAlCNyJt5qVLv90qtCqMZMcZ0n89KpWKqpV8tGTGftXNxmlGtYkdP+XzeFKuKlggYyuWyIZOVzWYtcVfMVEbyxWLRkCXYdDptibtitfOZz+cNWYJNJpOWuCtWO58rKyuG/N7F43FL3BWrnc9MJtPQPBAxi4uLprgrlqN2PlOplCHvEzMEtBsKGL773e9iZGQEbrcbl156KZ5//nmtx3WOVCpl2BvPCnvvSwffwYk/+T+RPXVS0fON/DtZ4a4j+dILOHXf/4Xc+Jii5xv1i8wY06SOvtEWH38UZ/7qL5CfmVb0fKPms1KpaFJH32ix+3+Ose/8VxQVrjAZNZ+lUgnZbNaQ11Zj+n/+ABN/9zcopZR9Nhk1n7lczvBtctUBw09+8hP8y3/5L/Hv//2/x1tvvYVrr70WH/7whzExMdGI8QGAoQlJlkiGYgypl1/E4a/8M0WBA82nDEFA4tmncfAP/4miwMHIv5PWZ5E0AqtUsPj4ozjwT78gGzgwxmg+ZbBSCfMPPYh3vvhZ2cBBEARDExCt8PsuFPKI/eKneOcLd8sGDqVSydBVZ6PnU/U5DFdeeSUuueQSfO9731v92u7du3H77bfjvvvu03yAjDEcPXrU0KXCAQhgJs76XTlzBlP/8PfnfC141dXou+fz8G3bfs7XBUHAkSNH9BzeOTiOQ3+pANbA0sPNWjp0ELM//dG7X+A4hN93Hfru/hw8Q8PnPLdcLuPYsWP6DnANm82GnuwyIJh3ayL12u8w/9CD736B59HxoRvRe+c9cPf2nfPcQqGAkyeVrZQ1gtPpRGfK3KuK8eeeQfzJx1f/zDkciN58C3o/fTec0eg5z11ZWcGZM2f0HuIqj9uNSEK/ZOCNWHj0ESRfemH1z7zLhc6PfAw9d3wGjmDonOdmMpmG3hzLaW9vx9DQkGGvrypgKBaL8Hq9+NnPfoaPf/zjq1//oz/6I7z99tt49tlnNR+g0R8gAIAHfo6VF54zdgwbtD5wMPoDBADK/9//i+LRw4aOYUPqBA5LS0sYHx83dFj5//xnEBYsmFBaJ3BIpVKYmpoydFgr/+5fAyYOaMXUCxzi8bih50xwALJ//EeABXIZ1qsXOMzNzRmabGy327Fr1y7jXl/NkxcXF1GpVNDV1XXO17u6uhqWhWtEss55fOY701up1MsvIvXyi6uBQ6WzS/6bGoxrbzd6CBvDGBLPPo3Ec8+sBg6lduPPz+fa/YAVAwZBwOLjj2LxycdXA4eSw/hup1xbO1jC+AQztWpbFQuPPrIaOJQMToplAOByA3nrlagLhQJiv/gp5h9+cDVwMPp6VC6XV1tkG2FDSY/rB9vIv4Apsmyb4Fjj1Msv4vBX/xDpA28bPRTrz+fZwOHQl/8A2TOnjR4NYPVjzM8GDof++e8jP6vfWSuiLD6ftcDh4D//JyiaIWnb4vNZCxwO/fN/itKy+XMyGknVv2RHRwdsNtt5qwnz8/PnrTpoxRRnaFugdE1O+Nr3o/eez6McjiBt4B4cAOvPJ8+j4wM3oPeue7Di8SKt44FidZlhFW4TOLsd0Zs+jJ7P3I0MxyOtc437eaw+n04nOm/9KHruuBOJYhHQ8UCxuiw+n7zHg66PfQLdn/gU5peWAQtUejWKqoDB6XTi0ksvxRNPPHFODsMTTzyBj33sY5oPDoA5mkBlzZ85LaYWKHiHRwDAFEe2MgtkTte1JlBw9/UDAEom+LswC5QC1rM2UHCd3SpzmKBMlFn0LnJtoOAMhwEADoNr9zkAKJjjWGO11gYKDn8AAGDPGft3sdvtht5Eq66S+MlPfoLPfe5z+Ju/+RtcddVV+Nu//Vv83d/9HQ4fPtyQ7E0zVEkM8hyYSc7yrmfl9ElM/n9/e87X1gcKNWaokhhgFbCieQ9wWjr4DmZ+9D/f/UKdQKHGDFUSfYUcmGCCrTsRqVdfxtwDv1z9c71AocboJGen04kukwcM8Wd+i8XHH139c71AocboJGeP242OjPEnFEqZf+QhJNcktdcLFGqMTnI2ukpC9e37Zz7zGcTjcfzpn/4pZmdnsXfvXjzyyCMN+0twHAePx2PYASBOpxP+HTsMeW2lOP7diDN87fvRe/fn4B3ZUve5PM/D5XIZVkvsdrvh37rVkNdWqlK7YPA8Ih/4EPru+ux5gUKN3W6H3W43LBnK6/XCv3u3Ia+tVOFsXoJUoFDjdDrBcZxhuUterxcBk/++Z09UA1SpQKHG7XbrObTzeH0+BLZtM3QMctJvvApAOlCo8Xg8eg7tPF6v19DX39B6/5e+9CV86Utf0nosotrb2w0LGNqtkNHPcbKBwlp+v9+w0iBLzCfPI/KhGyUDhbX8fr9hp2daYT45hx3RW25D72fugqurW/q5HIf29nbDTly0wnzyTie6Pv4pyUBh9bk8D5/PR5+fEmweL3ruvEcyUKix2+2G3nC1tRlbsad6S8IIlUoFx44dM+SuY/v27XC5XLq/rhpqq1SKxSJOnDjRwBGJ27VrlznyUiSonc98Po9Tp041cET1cRyHXbt2wWbyqhO185nNZjE6OtrAEdVns9mwa9cucyRaS1A7n0YdNuR0OrF9+/amm89kMonpaWXHnGvJ4/Fgq8Grs5ZoPmWz2RAMBnV/3ba2NtMHC4D6ShKn0wm/X//zAwKBgOmDBUD9fLrdbkOWCsPhsOmDBUD9fHq9XkN+7yKRiOkvboD6+Wxvbzfk965Z5zMQCIDn9b90RiIR3V9zPUsEDAAQjUZ1f/M1qlTUDDo7O3WdT47j0NnZqdvr6a27W3qpXWs8z6Ojo0PX19QLx3G6z6fdbjfFB3IjcByHnp4eXV/T6XQiFArJP9GCeJ7X/drgdrsRCEhvl+jBMgGD0+lEb2+vbq/X2dlpeIJLI7ndbl3f9D09PZZYrdkor9eL6Lpz/Bupr68PDodDt9fTW3t7u64XnP7+fkus1mxUIBDQdVVxYGDAkLtwvYTDYfh8Pl1ei+M4DAwMmGK1xlL/osFgUJckGo/Ho+uHv1EikYgub/q2tramvdtYKxqN6pKVHggETHG30Wg9PT1wOht/VHQ4HDY8mUwPvb29umxNNPvNFnC2iV5/vy5BUXd3t2lutiwVMNQirUZe5FwuF4aHh00RzTUax3EYHBxs6EXO6/VicHCwJeaT53kMDw839Je7ra0NfX198k9sAjzPY2RkpKErKYFAQPfleqPY7XaMjIw0dCUlHA63xM0WADgcDoyMjDQ0aIhGo6baKrNElcR6giBgampK89Irr9eLoaGhpl6arKdSqWBiYkLz0qu2tjYMDg429dJkPeVyGePj48jltG24EwgE0NfX13LzWSqVMDY2pnkpWygUQm9vb0sEs2sVi0WMjo6iVNL28LSOjg50dXW13Hzm83mMjo6iovGR911dXaYLviwZMADVUphkMonZ2dlNl1vWEvI6Ojpa7s1ewxhDPB7H3NycJvPZ3d2NcDjcsvMpCAIWFxcxP7/5LpI8z6OnpwfBYLCl53N+fh6LGvRFsNls6O3tbYltHTGVSgVzc3OanB9it9vR19dniTMXGqVcLiMWiyGlwdHmDocD/f39uuVIqGHZgKGmVCohFoshnd7Y8aNtPi+6u6Jwe1v3zb5WsVjE7OwsljbYI8Hf5kNXVxdcHmNPJDOLfD6PWCyG5eWN9SMJtPvQ1d0Dp8vYE/vMIpfLYXZ2dkM9UTiOQ7Ddh86eXjhM0EbbDLLZLGKx2IZWwziOQzjQhmh3L+z25k3AVWNpaQmxWGxDq2E8zyMSiSAajZp2FdHyAUNNuVxGMplEMplEsViUfK7D4UAwGEQoFIKjnAebOwmuYwhos0bdsB5KpRKSySRSqZTsfDqdztX5tBeWwBbHwEVHwPmaP9FRqWKxiEQigXQ6LbsU7HK5EAqFEAwGYcsmwJIz4DpHwHlb9454vUKhsDqfcsdyu93u1fnkM3NgSwvgOreCczd/oqNSuVwOyWQS6XRadmnd4/EgFAohEAiAS04DuXR1Pl10kwBUV2tzuRwSiQSWlpYk57PW+qA2n2YNFGqaJmBYSxAE5PN55PP51aZVtR4Kbrf7nBwFll8Gmz7bjMkXBhcdAmejaHmtSqWCfD6PQqEgP5/ZFFjs7CmS7R3gOobA8a2VEyKnUqkgl8uhWCyeM59utxtut/ucDw22tAg2f7Z5UKALXHgAnMk/VPRWLpdX35+1jzObzQa32w2Xy3XufKZiYPGzpx6GesGFesFxNJ9rlcvl1fen3HwKiSkgOQOAAxfuA4I9dNO1TqlUQj6fX51PjuPA8zw8Hg9cLpel5qspAwY1WGEFbOrQu1+wOc7eHQcNG5OVsVwGbGZN90a7E1znFnAe/U+WbAZsOQE2t+bYaYe7Op90d7whLDMPtjD27hecXnBdW8A56e54I1hyBiwx9e4X3G3V96eDttCaEYXW6+/WKiWw2AkIC6NggrZZry1h/d1auQg2cwzC4gSYgS3KLWv9fJbyYNNHwRLTYIzmU7X181lcAZs6XF15aO17p41ZP5/5ZbDJQ9XAjOaz6VDAILYcmVmovvHzG0v+a1li85mOgU0fBiuoT1ZraXW3HxhYcroaOBS1Ld1sevXen4yBxSfAZo6BlYzpQmhZ9d6fTABbGAOLnQQrS+c/EWuhgEFq/7JcAJs+CiE+SXdzSkntrxdz1bu55AzdfSgl9f4sZKvzmd58KWzLkHp/5pfApg5V80ZoPpWRen+upKo3XcvGtH4n2qOAQUkCWWoWLDnT+LE0A9kEMlbd80zP6TIcy5ObTyaALY4DS5s/n6AlyM2nUAGbHwVWUroMx/LkEpqFMtj8abCctofsEWOYv9dww8lkqNoc4Lq2UtKeUnIfyA4XlbSpIRfQOr3VJDMqaVNG7v3pbgcXHQbnbO5eCJqRm09vAFzHMDiHOXohkM1p+RUGjuOk3/SVMhh9GCsnd4Erl8AoI105uQ/kcoGCBTXk7ojLBQoW1JB7f5aKFCw0kZYPGADIXOQYMD+q21CsrlrTLrFqwwSgVgdP5Mku+VYg0HaZcrIBWBFCZkGfsTQDuRuEUg5CNqXLUEjjUcAAVD9EOA4Qu7PIJiFQtq9ytVUbsVrszDwEQfp0PnJW7VAX3gbYRY4zTk6vHgBFZNQCBt4OiB3QtjhB86lUbT5tDvHgdoFuuJoFBQwAuPYouIF9QN8F735Arxc7Vf/r5HyBLnCD+4D+PeLPmTuj33gsjON4INBdnc8+kflkDFgc03VclsXz1dMIB/cBPTvrP4dVgOS0vuOyKt4GLtxfnc+ubfWfUylBSFGSczOggAEAF+4D5zh75Gmor/6TCssQ8htrINRq+MgAOLsTPG8H/J31n7SSglDM6zswi+I7BsHZHODtTsAXrv+kpUUIZW3bFTcjjrdV3582O3iXF3CLNJ1LxWiVQQHO7qwer83bwHsDgFh+UmKS5rMJUMCwDh/qFV9amzut72CaQWRQfN94jlZtVOschmiOyDy9P1Xr2iryAKOl9I0Qm08mAGuPkCaWRAFDPR3D9b9eLkBYokNI1OB5Hgj313+wuAIhRydpqsHzdiDQVf/BXAZCkU7SVIO3O4G2SP0Hl+OUu6QS7/QAYiXo6RjlLlkcBQx18O0RwC5SCkR7xarxwW7AJnLkB90Vqxful1i1oflULToC0VUbWgVTr1MklwGgijOLo4BBTNeW+l8XylTGthHRkfpfpzI21XieByID9R8s5iBk0/oOyOL4s4mQdeWXIeSz+g7I4ni7HWiP1n8wm6TcJQujgEEE724HXL76D1IZm2q8LyReZhmnMja1+ECXeFngAlWgqCaVu0SrYOp1DIlXnNF8WhYFDFLEyoQYAxbH9R1LMxBLiBIqAK3aqBcVWQWrlCBQrw5VeJ6vXuTqKeUhZJP6DsjipCvOshCoC7AlUcAggXe4AG+o/oNLCxDKlMCjBu/yAWI9JFKztMqgEu8LAA6Rw8biVMamFt/eIX44Fu29q1atOBPJXaJzWCyJAgY5XRIJUfOUEKWa2KoNlbFtTDeVsWmqU2wVrAwhNavvWJqBZMVZXNehkM2jgEGGfBlbTt8BWRyVsWmLd3olytjmqIxNJd7TLnH4EOUuqcW3h6nirIlQwKCEZBkbrTKoJlnGRglRqondFVPjtI0RzV2ixmkbIpG7RBVn1kIBgwLVw4ckythWqIxNjWoZW3f9B/NLEAp0+JAavN0BtHfUf5Aap6nGO92AN1j/QWqcphrvbqOKsyZBAYNCfFCijI3u4tQL9QEcHcGtmY5hapymJbFzWABK2NuI7u31v06N0yyFAgY1xA4fqhQhZOb1HYvFVcvYBus/WMpRGZtK1DhNW9Q4TVvVxmliFWfUOM0qKGBQgfcFxcvYFunwIbV4f1S8jI0qJlSjxmkao8Zp2uqUqjij96cVUMCgllQ3tuS0vmNpBp1ihw+VIaTo8CHVqHGaZqq5SyKrNtQ4TTVqnGZ9FDCoxLskythS1I1NLd7jlyhjo8OH1KLGadrigz3ihw/RXbF61DjN0ihg2AjJMrYxPUfSHKTK2BKT+o6lGVDjNG11SjROW1rUdywWR43TrI0Chg3g7Q6gTayMLUFlbCrxTjfgCdR/kA4fUo0ap2lLsnHa4jjNp0rUOM26KGDYqOiweBkbJUSpJ7pqAypj2whqnKYt0SOjqXHahlDjNEuigGGDqocP9dZ/ML8MIZ/Vd0AWx9vtgD9a/0EqY1ONGqdpi3dT4zQtUeM0a6KAYTOCPeJlbJQQpV5kSHzVhuZTvS6RvXeAGqdtBDVO0xY1TrMcChg2oXr40FD9B0t5CMtUxqZG9fCh/voPFrJUxqZStYxN5AhuapymGjVO0xY1TrMeChg2iW/vkDh8aEzXsTQDPkRlbJqiMjZtUeM0bVHFmaVQwKAF0YSoMoTkrL5jaQbR4fpfpzI21aQbp61Q4zSVqHGatqQbp1HFmdlQwKAB3iNVxjZFCTwq8W1hKmPTEDVO0xg1TtMWNU6zDAoYtCK2ysAYEKcyNtWkythStGqjGjVO0ww1TtNWNXdJpOKMGqeZCgUMGuGdbsAbrP9ghsrY1JIuY5uhVQaVqHGatqhxmrb4UB81TrMAChi0JHYkLwAs0JteNanDhyihVD1qnKYtapymLbGKM2qcZhoUMGhIshvbSpoOH1KJtzsBX7j+g8uLEMolfQdkcdXGae31H6TGaapR4zRtVSvOqHGamVHAoLXwgEQZGyXwqNY5DNEyNiqzVK9T4vAhKmNTjxqnaYsap5kaBQwaq5axiRw+VFyBkKMyNjV43i5expbLUBmbStQ4TVvV3CVqnKYVapxmbhQwNAAf7AZsYocPUUKUaqE+OnxIS9Q4TVtRapymKWqcZloUMDSKWBlbuQghs6DvWCxOvowtpet4rI4ap2mLGqdpixqnmRcFDA3C+0JUxqYh3t8J2KiMTTPUOE1b1DhNW9Q4zZQoYGgksQQeVqEyto3oFDt8qERlbCpR4zRtUeM0bVHjNHOigKGBeJcPcEuVsdEqgxq8N0BlbBqixmnaosZpGqPGaaZDAUOjiR2WA0YJkBshdfhQYkrfsTQDapymLWqcphlqnGY+FDA0GG93Am2R+g9m41TGphLv9AAef/0HqYxNNWqcpi1qnKYtapxmLhQw6CE6AtHDh6iMTT3Jw4foQ0Q1apymLWqcpi1qnGYaFDDooFrG1lP/QSpjU42324F2kTK2bBJCqaDvgCyOGqdpixqnaYsap5kHBQx6CfVSGZuWOiTK2GjVRj2pxmn0/lRP8vChMV2H0hSocZopUMCgE9kytmxS3wFZXLWMra/+g4UshDyVsakh2Tgtl6YyNpUkG6ctUeM0tahxmjlQwKAjyTI22ntXjQ/1ipex0ZG86kk2TqNVBtWocZq2qHGa4Shg0JtUGRslRKnXMVz/6+UChKW4rkOxOvnGaRl9B2Rx1DhNW9Q4zXgUMOiM97RLHD5E3djU4tvDgN1V/0HaK1ZNunEardqoRo3TtEWN0wxFAYMRRBOiBCA+oe9YmoFYQpRQgZCc0XcszYAap2mGGqdpixqnGYsCBgNUy9gC9R/MzFMCj0q8uw1wiZSxJWnVRq1q4zSxw4eojE0tapymMWqcZhgKGIwiemQ0KGFvI7qpjE1TomVs1DhtQ6hxmmaocZpxKGAwCM/bAX9n/QdXUhCKeX0HZHHyZWy0aqMGNU7TFjVO0xY1TjMGBQxGigxKJERRAo9qkmVsNJ+qSTVOo6V09ahxmraocZruKGAwULWMTeTwoeIKhBwdPqSG9OFDGQhFKmNTQ7Jx2jI1TlOLGqdpixqn6Y8CBoPxwR7xw4cogUe9cD+VsWmJGqdpixqnaYsap+mKAgYzEEuIojI21XieByID9R8s5iBk0/oOyOKocZq2qHGatqhxmr4oYDAByTK2OJWxqcUHugCbo/6DC1SBoho1TtMWNU7TllTjtAV6f2qJAgazEE3gqQB0+JB6UZEPkUoJQprK2NSgxmnaosZp2pLMXVpJU8WZhihgMAne7QPcIocPpWZplUEl3hcAnJ76D8apjE0t6TI22ntXixqnaUyycRqt2miFAgYzETsymsrYNobK2LQltgpWKUNIxfQdSzOgxmmaocZp+qCAwUSqhw9RGZtWeKeXytg0JN04jcrY1KLGadqixmmNRwGD2XRKlbFRAo9qYnfFYMD8mJ4jaQ7UOE1b1DhNW9Q4raEoYDCZahlbd/0H80sQClTGpgZvdwDtHfUfzCZo1UYlapymrWrjNLHDh6hxmlrUOK2xKGAwo1AfwImUsVFClHodw+JlbDFKiFKNGqdpq3t7/a9T47SNocZpDUMBgwlVy9gG6z9YylEZm0rSZWzLEPLL+g7I4qhxmraquUuh+g9S4zTVqHFa41DAYFK8P0plbBri6fAhbVHjNG1J5S5R4zT1qHFaQ1DAYGZiR0ZTGdvGiJWxlQoQlhO6DsXqqHGatqhxmraocVpjUMBgYrwnQGVsGuLbI+JlbAtjuo6lGVDjNI1R4zRtSTZOo/ncCAoYzE7y8KFJfcfSDMTOnRfKVMa2EdQ4TTPUOE1bVHGmPQoYTI53egCPSBkbHT6kGu9upzI2DVHjNG1R4zSNhfrEc5dolUE1ChisQPTwIVAZ20aIHj7EgPi4vmNpBlKN01K0aqMaNU7TDDVO0xYFDBbA2+2AP1r/QSpjU413uMTL2DILVMamkmTjtCQ1TlOLGqdpixqnaYcCBquIDIkfPkQJZuqJ7b0DNJ8bQY3TtEWN07RFjdM0QQGDRVQPHxLpxlbIUhmbStUyNpGEqFwaQjGn74AsjhqnaYsap2mLGqdpgwIGC+FDVMamKSpj0xY1TtMWNU7TFjVO2zQKGKwmOlz/6+UihKVFXYdiddXDh8TK2FYgrFAZmxryZWx0+JAa1DhNW9Q4bfMoYLAYvi0s0Y1tnJbWVOKDEmVs87T3rppk4zRaZVCNGqdpixqnbQoFDFYkWcY2q+9YmkFU7AjuIoTMvL5jsThqnKYtapymLWqctjkUMFiQZBlbaoZWGVTifUHAIVLGtkhlbGpR4zRtUeM0jVHjtA2jgMGqpA4for4I6omWsVWA5LS+Y2kGko3T6PAh1ahxmmaocdrGUcBgUdUytnD9B5cXIZRL+g7I4niXRBlbKgZBqOg7IIuTbpxGqzZqUeM0bVHjtI2hgMHKOochWsZGb3r1JMvYaCldNWqcpi1qnKYtqcZpVHFWFwUMFsbzdvEytlyGythU4u0OoI3K2LRCjdO0RY3TtCXZOI0qzuqigMHqQn10+JCWosPiZWyUEKUeNU7TllTu0iI1TlONGqepQgGDxcmXsaV0HY/VVQ8f6q3/YH4ZQj6r74AsjhqnaYt3uACvSOO0JWqcphY1TlOHAoYmwPs7ARuVsWkm2ENlbFqixmna6qLGaZqixmmKUcDQLETL2EpUxqZSddVmqP6DpTyELJWxqUGN07RFjdO0RY3TlKOAoUnwXipj0xLf3iF++BA1/lGNGqdpjBqnaYsapylCAUMzkSxjm9J3LM1ANCGqDIGO4FaPGqdphhqnaYsapylDAUMTqZaxiRw+RGVsqvEeiTK2BJWxqUWN07RFjdM0Ro3TZFHA0Gw6JRJ46ENEPbFVBiYA8Ql9x9IMqHGatqhxmmaocZo8ChiaDG+3A+0iZWzZJIRSQd8BWRzvdAPeYP0HM/NUxqYSNU7TFjVO0xY1TpNGAUMz6pAoY6PDh9QTO5IXABZoqVI1ycOHxnQdSlOgxmnaosZpoihgaELVMjaRbmyFLIQ8lbGpUS1j66r/4EqaDh9SSbJx2hI1TlOr2jitvf6DqRjlLqlEjdPEUcDQpPhQr3gZGx3Jq154QKKMjVZtVKPGadqSzF0a03MkzYEap9VFAUMz6xiu//VyAcJSXNehWF21jE3k8KHiCoRcRt8BWRw1TtMWNU7TFjVOq48ChibGt4cBu6v+g7RXrBof7AZsYocP0aqNatQ4TVvUOE1b1DjtPBQwNDuxpTWhAiFJ3dhUEytjKxchZBb0HYvFUeM0bVHjNG1R47TzUcDQ5Hh3m/jhQ0k6fEgt3heSOHxoguZTJWqcpjFqnKYtapx2DgoYWgGVsWmLyti0RY3TNEON07QlW3HWYo3TKGBoAbzDJVPG1poJPBvFu3yAW6qMjVYZ1KDGadqixmnakqw4a7FVBgoYWoVkGdu7CVGMMV2GY3liqwxg5yyl03wqpLBxGs2nQgobp9F8KqSwcVqzzycFDC1C8vChs2VsLLMANnNU34FZFG93Am2R+g8uxyGUCmDpObDZE/oOzKJkG6dVSmCpWTCqnlBEunHaFIRKGSwxDUZ5IorINk4rlyDEJ8GavL8Mx5o9JCKrBEEAxt6s3rWdhwPAAN4OfuQSvYdmSYIgAKNvAKjzK8Rx1RwRhxv84D7dx2ZFQrkMjL9Z/8HafLrawPfv0XdgFiUU88DkgfoP1ubTGwTfs0PfgVmUkM8C04frP8jx1c/Vtgh40dVH66MVhhbC8zwQGRB59OxFr24wQeqplrH11H+Q0XyqJdk4jeZTNcnGaTSfqkk2TqvNY5PPJwUMLYYPdAE2h/gTmND0+3CaCvWKl7EBACXsqSPVOA2oVqIQ5aQapwHVtuJEObGKs5omDxhEUj9JM2KVMlhqFqjINPdhTPpDmwAAWKUEJGekP3Sb/ANES6xcBBLT79791kMBmGKsVDgnYbT+k2g+lWLFnPx8Nvn7k1YYWsnSIrAmQ1oUfYgok54H0jLnBNCKjSKMsWowuyRzWia9NxVhjIElp4FlmZ4xNJ+KMCaAxSeBbFLmic09nxQwtBAu2A2ubw/gEOkvUUPLvopw4T5wvbvEa95rmvxDRAscx4HvGALXvV28XwdAc6kQx3HgO7eA69xKW2Ya4DgeXPd2cNFh8f4nQNO/PylgaDGcuw1c/17A3yn+JPoQUYzz+KvzKVZiCTT9h4iWOF8I3MCFgC9U/wmM0YqNClx7pDqfYiWr9N5UjOM4cP5OcAN7xZMfm/yzkwKGFsTxNvDRYXA9O+snQNKHiCqczQ6+ayu4rm31T4Rr8g8RrXE2B7iubeA6t9S/O6b3pyqc3QmuZye4jqHz747pvaka53CD690NLtyP8w7Da/L3JgUMLYzzBqp3H23rjo1u8jd9o3Bt4erdx/pSNppP1TiOA9feUV29WX8MN82nahzHgQt0geu/YN2BTrRisxEcx4EL9YLr3wM4Pe8+0OTvzaarkigWi8jlcsjn88jn8xCEatIZz/Nwu91wu93weDxwOp3gqBIAnM0OrmsbmDcOtjhWzfhfc9dRKBSQz+eRy+VQKBRQqVSq+6M8D5fLBY/HszqfpHo3h+7twNIC2OJE9QPk7IcIY2z1/VmbT0EQVuez9t50u900n2dxDhfQuwtIz4ElJqsVFIIA2KrzWSgUVn/fxebT4/HA4ZAoJW4hnNMD9O0BkjNgyRkArPr+5GxgjK1+buZyORSLxdX5tNls58yn3d50l44N4Vw+oO8CsMQUkI6d89lZm8/a+3P9fNZ+1600n01x0qMgCEin00gkEsjlcoq+x+VyIRKJIBAIwGaTSApqIaxcBJs/A6E9ikyJQyKRQD6vrOe72+1enU+ep4UrAGClfHU+A31IF8qIx+MoFouKvtfr9SIcDsPv99N8nsWKK2BzZ1DpGEY6m0c8HkepJFMifJbP51udT7pRqGL5ZbD5Myh3bkcqs4REIoGywkZ0bW1tiEQiaGtro/k8i+UyYPNnUOrejVQqhUQigUpFWQK53+9HOByGz+cz9XxaOmBgjCGdTmN2dlbxP8x6HMehu7sb4XDY1P9QemCMIZlMIhbbeMdFnufR09ODYDBI88kY4vE45ubmNrzsa7PZ0Nvbi0AgoPHorIcxhoWFeczPy5ReSrDb7ejr60N7u0i30RYiCALm5+awGJcpvZTgdDrR19cHn0+kb0ULqVQqiMVmkUymNvwzXC4X+vv74fF45J9sAMsGDKVSCdPT01heXtbk53m9XvT19cHlkik5bFLFYhHT09PIZrOa/Ly2tjb09fW17FJwoVDA1NSU4hUvOX6/H729vZZZutRaLpfD1NQUCoWCJj8vGAyip6enZVcXV1ZWMDk5qXiFRk44HEZ3d3fLroYtLy9jampK8QqNnI6ODnR2dppuPi0ZMBQKBYyOjmr2j1PD8zyGh4fh9Xo1/blml8vlMDY2tuFVGjE2mw0jIyNwu0W6vDWpbDaL8fHxDa/SiHE4HBgeHm65oHZpaQkTExOaJ+e5XC4MDw+3XFCbTqcxOTmp+c91u90YHh5uuaA2kUhgZmZG85/r8/kwODhoqqDWcgFDoVDAmTNnNL+41XAch5GRkZYJGnK5HEZHRzW/uNXwPI8tW7a0TNCQzWYxNjbWsMxzu92OLVu2tExS5NLSEsbHxxv28x0OB7Zu3doyF7lUKoWpKZnjjTfB5XJhy5YtprrINVI8HsfsrILTczfI6/VieHjYNCsN5hiFQoIgNOROeC3GGMbHxzVfvTCjSqXSkDvhtfT4NzOLUqmE8fHxhpaplcvlhv+bmUWhUMDExERDX0OPfzOzqG3rNFKhUMDk5GRLzOfy8nJDgwWgunU0PT3d0NdQw1IBQywW02zPTUqlUsH09HTTv+lnZmZ0CYzK5XLDf7GMxhjD1NSULhfyQqGA+fn5hr+OkWrzqcfvYC6Xw+LiYsNfx0iCIDRkG6Ke5eVlJJMyPRcsrlKpNDz4qkmn08hkMrq8lhzLBAzZbBaJREK311taWkI6ndbt9fSWyWR0/fulUiksLS3p9np6S6VSmiWMKrG4uIiVlRXdXk9vi4uLmiWMKjE3N6e4hNiK5ufnFZf0amF2dlbX19NbLBbTdRVay4TKzbBMwGDEHdX8/HxTrjIwxgybz2Zk1HwuLGy8vNDMBEEw5O/WrKsMlUoF8U2UTm4EY0zXGzw9lUol3VdQBEEwxaqNJQKGQqGg691bTbFYNOR11SpnMqiouBurnTymt9oJh2ZXSiUhqLg7Wl5e1mWrbL2lpSVL3MWVEnEwFXdH6XTakByNdDptirs4OcX4IpiKnKBkMmnIjU8ikbBErk1xYR5MxTiNCoTi8bjhN7CqA4bnnnsOt912G3p7e8FxHB544IEGDOtcRkaqVoiSc2OnceSffR5zv/yposDByL+TGaJkOcuHD+LIH34BCw8/oChw0PvubS0rzGf6tZdx5Eu/h/gTv1EUOBj1/mSMIZVKGfLaaiSeegJH/8XvI/HsU4oCB6Pms3YCr9ktPPwAjn/tS0i98oJs4GDkykm5XDZ8W1d1wJDNZnHRRRfhv//3/96I8Yi+plGssMIAAOVMGjM//HtFgYORfyetDtpqtFIijqm//65s4MAYMzSXwCrvz+L8HCa+8//IBg6CIBi6CmWV+SxMT2H8//mWbOBQLpcNXYWySp5NbuwMRr/1p7KBQ7FYNLTiy+j53NQ5DBzH4f7778ftt9+u4ZDOJQgCjhw50rCfr0T4zAkI83OGjkFKcXEB6VdeOOdrdn8AnbffgY4P3wbbmmNGy+Uyjh07pvcQzxE+9DaEZfMmQBZmppB587VzvuYIR9D1ic8gcuMt4NecgVAoFHDy5Em9h7iK4zgEXnsJMPFSem78DJYPvnPO15ydXei+426Er78B3JozEFZWVnDmzBm9h7jKbrOh7cVnDHt9JVZOHkf2+Lmfia6+fnR/+rMIXfN+cGvOQGj0ORZynA4HvM8/ZdjrK7F85CByZ06d8zXP8BZ03/lZBK54L7g1ZyA0+hwLOV6vF1u2bDHs9U0fMORyOZw+fbphP18J/rGHUTD5m17M+sBheXkZY2Njxg7qJz9E6eDbxo5hgxzhCLo+eSciN3wYvNPZsFPz1Kh89y8hzJinVluN9YFDo07NU6P05/8nsGKNlYb11gcOCwsLmJsz9man9I0/Bix6Dsv6wGF2dtbQLUie57Fnzx7jXt+wV1bIFAf+WPgo3nO2Ku7/KUp5EyQduqx76mMpEcfU332nulXx6wdR1qi3waa4zdmoRon1WxVlA5JHz2PSxj9KrG5V/NEfIPHc0+aYT6d1Pz9Xtyq+/mWkXnnR8OuRIAiGJj6aPmAwBc7601TOpLH4yEPIjRq33LuKt34Xy1IijoVfP4j8rAnu7E1ybOxmFOfnMP/rB1FcNEGpaBPMZ2FqEgsP/RLljAmSDptgPnOjp7Hw0P2oWCTHpVFMf4C6KVokV0wQpW+CM9qFrjvuQvj6G7CcyyHR4ON2ZZXMu9+uhKu3H92fuQeha65DKpNB0uijW81wF7kJ7uEt6PnMZxG48r2IJxJALGbsgCw+n97tO9F95+fgv+Ty6vkgRp/XYfH5bLtgH7rv/BzaL7yoekyzwZVJRl4TTR8wmKEzH5dOGT2EDVkbKPBnO/K5zFAXnTJ/qWo9awOFWmKZGd6fSBi3p7oZawOFWmKZ0U21OI4DzHBXvgFrA4XaRcXo+bTxHEpFE2zbbcDaQKHG6N93o/89VQcMy8vLOHXq3YzS0dFRvP322wiHwxgcHNR0cEC1O5/dbjf0QJXIv/wP6Gw377770oG3cOo//h+rf64XKKw+5nSC4zjD9sF4nkfXn/01Ij4TXGhFJF98DmP/95+t/rleoFBjdBdOu8OBgb/7EQJu87ZoXnzsYUx+79urf64XKNR4DM4fcDhdGPrRw2hzmfdeKvazH2H2f31/9c/1AoUao+fT62vD7gceN3QMcqa//7eYf/Dnq3+uFyjUGD6fBndRVv1b8frrr+P6669f/fPXvvY1AMAXvvAF/MM//INmA1vL6/Ua13zD7sT/eH0SI2EvrhgIYjjkNcc2SR1SgUINx3HweDyG1fOWeAf+7tUJbO/w4YqBEPoDbtPOp1SgUMPzPFwuFwoGJT+uCHb8zStj2BVtwxUDIfT4zRvYSgUKNQ6Hw9AbhGSZxwMvj2JPVzuuGAihs828ga1UoFDjcrkMvUEw+gKrhlSgUGP038fo199UWaVejCxdmyq78Xby3SmK+py4YiCEPV3tsJkkeW9l9DRWTh6XDBTWMrJ07WTBheNrYr+edheuGAhhZ7QNvEnmc/noYRTnY5KBwlrz8/OG9ck4kHVhYk3sNxDw4IrBILZFfKYJxDJvvQ4hn5cMFNYysnTtdxknFgrvzttIyIsrBs11o5B65UVwDodkoLDW1NSUYSdYbt++3fBlfDmJZ5+CIxyRDBTWGhsbM+wAup07d8Kh4DO+USwRMDDGcPz4cQPuOjg8uuhAmZ3/S9nmtOHS/iAu7g3A7ZC/qJhJpVLB8ePH9T/nnePxyLwdAs6fT7/bjsv7g9jXE4DLbq2sasMOw+JteHjOBtSZz7DHgcsHgtjb7YfDZq35LBaLOHHihO6vK/AOPDLHod58Rn1OXD4Qwp6uNtgtlvVv1Fk2Pp8PIyMjur9uoxl1lo3f72/Itr8alggYABhyAEmGc+O5eenpcfAcLuzx4/KBIEIeYxNS1DDiLm6RufHKovR8uuw89vcEcGl/AH4T78uvZ8Rd3PrVr3o8Dh4X9wZxaX8APqd59+XXM+Iubv3qVz21G4X9vQF4LHSjcPr0ad2P3B4cHITf79f1NfXAGMPJkyd1P3J7y5YthucwWCZgEAQBp06d0u0fyWaz4am4A0slZdPDAdgRbcN7Bs29j1xTqVRw8uRJ3VZt7HYHfjPHo6BwUYPngN2d7bhy0Nz7yDWlUgknT57UbdXG7nTioRmgUmf1qx4bz+GCrna8ZzCEsNf8gW2xWMTJkyd123u3u9x4cEoAq7O6UE/tRuHKwZCpE05r8vn8Ocnqjdbe3o7BwUHTbONoLZvNYnR0VLfXCwaD6O/v1+31xFgmYAD0XVobGhqC3e3F2zNpvD6VQrao/ISvbR0+vG8kYvoLnZ5LayMjI4DDhTem0nhrJoVcSfmFdXdnG64diZj+Qqdnrs22bdtQhA1vTKXx9mwahbKy+eQA7O3245qRsOkvdHrl2nAch+3btyNbAV6fTOFALINSRdnHIs8B+3sDeO9Q2NSVFYB+q7Q8z2PHjh2w2809H5sVi8WwuLjY8Nex2+3Yvn07bAryqRrNUgEDACwuLiLW4INdIpEIenp6Vv9cFgQcmVvGa5NJLGSVr3BY4UI3NzeHhQYf7NLZ2YnOzs7VP5cqAg7FMnh1MoVkTtmhLhwHXNjtx9XD5r7QTU9PN7zldG9vL8Lh8OqfC2UBB2bTeG0qhUxe2YqRFS50jDFMTk42vEKqv78fwWBw9c/5UgVvzaTxxlQKywpvFOw8h0v7gnjPUMi0WxWMMYyNjTW8I+fQ0BDa29sb+hpmIAgCRkdHG7rVw3EchoeH4fP5GvYaalguYAAam5UeCoXQ29tbdymNMYax5ApenUhhNKmsLNHsFzrGGGKxWMPyGaLRKDo7O0Xn81Q8i1cnUphMK/uls3EcLur1m/ZCxxjD9PR0w/IZuru70dHRUfcxQWA4vriMVyeSmF1SVuZp5zlc2h/EewbNeaFjjGFiYgJLS43pbro++FqrIjAcmVvCqypuFJw2HlcMBHH5QBAuu/nmUxAEjI+PNyxoGBgYQCAQaMjPNqNKpYLR0VHk83nNfzbHcRgcHDRV8GXJgAFozHJlZ2cnotGoon23+eUCXptM4vDcEgQFM2jjOOzv9eMqE17oGGNYXFzUfLlS6uK23mwmj1cnkzi2sAwl70g7z+Gy/iCuNOGFjjGG+fl5TVduOI5Db28vQqGQotefSlfn8+SisguDy8bjcpNe6BhjmJ2dRSKh3QmhHMehv79f0cVt9UZhMoXRhLIbBY+Dx3sGw7ikL2C6KhVBEDA9PY10WrsTLXmex8DAgKkubnqpVCqYmprSNKi12WwYGhoyPMlxPcsGDABQKBQwNTW16SUhl8uFvr6+Df3jLBfKeGM6hTen0ihU5PeRzXyhy+VymJqa2vQhRG63G/39/Rs6BTGdL+H1yRTenkmjpCASM/OFbmVlBVNTU5tO1PV6vejr69tQPXtipYjXJlM4MJtBRcGvupkvdMvLy5iamtp0om5bWxv6+vo2VM++sFzAq5NJHJpbUhTY+pw2vHcojIt6/aYrx8xkMpient50B0a/34/e3t6mz1mQwhhDOp3GzMzMphOfg8Egenp6TJGzsJ6lAwag+g+VSqUQj8dVLws5nU5EIhGEQiHwm/xlzpUq+N1EEq9PpVC28IWOMYZEIoFEIqE6cHC5XKvzudns6OVCGS9PJPH2dNrSFzpBEJBIJBCPx1FS2YTH4/EgEokgEAhsej4z+RJeHEvgQCyj6ELX5rThqqEw9vcGTHNAGVC9m6vNp9rAwev1IhKJwO/3b3o+kytFvDCWwOE5ZXeVfrcd1wyHsbfLb5oDyoDqfC4uLiKRSKgOHHw+Hzo6OlpyVUFMuVxenU+1gUNbWxui0ahp8hXqsXzAsFYul0MqlUIul0MulzuvJIvjOLjdbng8HgQCAXi92p/etlwo4+XxBN6esfYdHWMMuVwO6XQaKysryOfzovPp9XoRCATg8Xg0n890voSXVF7o3jscxkU95rrQMcaQzWaRyWSwsrKCQqFQdz49Hs8586m1xNkL3RGLX+gYY1heXkYmk0Eul6t7s8Dz/Op8BoPBhpw4uLBcwPOjcZxQuPUT9jpw7XAEuzrbTFVyyBjD0tLS6nzWu1lYO5+hUMjwRkhmJggClpaWsLS0hJWVlbqrjDab7Zz5NPIER6WaKmBYizGGUqm0GuXxPA+Hw6HbL2n67B3dQYtf6GqMnk+1F7qA246rhyPY29VuqgtdjdHzubBcwHOjccU5Dma90NUIgoBSqbQahNlsNtjtdt3GOpvJ47kzccXJ0J1tTlw7EjHVEd5rGT2fzWbtfHIctzqfVtO0AYNZJFaKeGE0jiPzyk6tM/uFzmjzZ+/oVF3oRiLYFTXnhc5oG7nQvW8kgq0mvdAZbSKVw3NnFjGVVrY92ut3430jEQyHzZXcRkg9FDDoRO2FLuJ14Bq60ImaOXuhG6MLnSY2dKHbEsFwiC506zHGMJpYwXOjccQUlrcOBj14/5YI+gLW6e5IWg8FDDpTf6Fznb3QmadbnplMJKsfzEovdH1+N66lC11dtQvds2fimFtWdqEbCnrwPrrQ1cUYw4nFLJ4/E8fiirJKma0RL9430oGudnOfEktaEwUMBhlPruC5M3FMZ5Rd6LaEvbhxRyeCHvMnxuiNMYYziep8Kr3Q7Yy24UPbo2g32ZkYZsAYw/GFZbwwmlB8odvb3Y4PbI3C6zRPxY9ZCKx6ANQLowmk8soqZS7pC+B9WyJwm6iCihAKGAyk9kJn5zlcMxzG5QMhUyZGGq12oXt+NIG4ggud08bj/VsiuLgvAJ5Wb86j9kLncfC4fmsUF3a302pYHRWB4WAsgxfHElgqyJeEtjlt+ND2KHbStiQxCQoYTEDthS7qc+KmnZ3op2XgugTGcHhuCS+MxpFW0Fuhp92Fm3Z2orvd/F1GjVARGA7MZvDSuLIL3UDQg5t3dCLio7K7esoVAW/OpPHKeBIrJfmzD7aGvbiBVheJCVDAYCJqL3T7e/24bksH3CY7MdIsqhe6NF4cS8g2EeIAXDYQxLXDETjt5jkPw0xKFQFvKbzQ8Rxw1VAYVw2GYDfR+SJmUiwLeH0qhd9NJmW7jdLqIjEDChhMqHahe2EsIdtW2+uoLlvuNml9vBmUKgLemk7jpfEE8jIfzH6XHTfsiGJ7R5tOo7Oe2oXulYkEijJtoEMeB27a0UllgxLypQp+N5nEa5Pyp8RGfU7cvLOTkkyJIShgMLF8qYJnz8Tx1ox8k5jhkBc37Ywi5KFlYDHZYhlPnVpUdJzvjg4fPrQ9Cr8JO4yaRSZfwpOnFnBiQb5U+IKudnxgWwd8TkoyFZPMFfH48QVFZ2Jc3BvA+7dEaHWR6IoCBguYTufw6PF52Ra7dp7De4fCuHKQli2ljCVW8NiJeSRz0ol8ThuHa0ciuLQ/SEmREk4uLuOJEwvIyOQ3uO08rt/agX09m+/l0KwYYzg6v4zfnlqQXV30OW344DZaXST6oYDBIioCw+tTKbwwGpft4tjhrSZFDgRp2VJMuSLg5YkkXhlPyvb86G534WZKipRULAt4YSyO16ZSskeh9wfcuHlnJzp8dNaAmHypgmfOLOLtmYzsc0fCXtxESZFEBxQwWEwqV8ITJ+ZxOiG/bLmvx4/rt3aYro22mcSzRTx6Yh6TKekW6RyAS/uDuHYkAhclRYqaWyrg0eNzmJU54ZDngCsHQ3jvUNhUTdfMZiqdw2MKVxevHg7jCkqKJA1EAYMF1cownzy5IJv973XY8IFtHbigi2rjxTDGcDC2hKdPLyBXkk6KbHfZccP2KHZEKSlSjMAY3ppO47kzcRQq0vMZdDtw084oRsLmbelrtIrA8NpkEi+MJWSTIjt8Tty8oxP9tLpIGoACBgvLlyt47kwcb07LJ0UOhTy4aUcnwl5KihSzUqzg6dMLOBiTT4rc1uHDDdujCFBSpKilQhm/PbmAYwvyjdf2dLbhA9uiaKOTN0WlciU8fmIeZxSsLl7U48d1tLpINEYBQxOYyeTx6PF5zMucFmnjOVw1GMJ7hkKw87QMLGY8WU2KTKxIJ0U6bByuHY7gsv4gdRaVcDqexWMn5pGROVvEZedx3ZYO7O+lpEgxjDEcO7u6qKTk+oPbOrCHVheJRihgaBLC2aTI58fiKMnUxoe9Dtyyq4tOipRQFgS8Mp7EyxNJVGSWgTvbXLh1Vxc1DJJQrAh4cSyBVyeTskmRfX43btndhQitholSs7o4HPLgw7u6aDWMbBoFDE0mnS/hiRMLOBWXro3nOOB9IxG8ZzBEdx8SEitFPHZ8HuMySZE2nsMHt3Xg4t4AzaeE+eUCHj0+jxmZpmsOG4ebdnRib7dfp5FZ00w6j98cn5NNinTbedyyq4tyb8imUMDQhGptdZ88uSB79v9IyIuP7OmiA3UksLNHdv/21CJyMkci74y24cM7O+lAHQmMMbw9k8YzZ+KyRyJf2N2OG3Z0wkmVFKLUlFxf1h/EdVsjtCVJNoQChiZWKAt4fjSON6ZSkPpH9jlt+OiebgyF6PheKblSBc+cXsQ7s9K18QG3HR+7oAe9fjq3QcpyoYzfnlrA0XnppMiI14mPXdCNzjba8pGSzpfw+IkFnJZZXexqc+H2C7oRoi0fohIFDC0gtpTHb47Ny7bQvno4jKuHw3SqoYzJVPXkTanOojwHvH9LB64YCNIWhYwzZ5MipRqu2XkOH9oexUV0SqSk2uriEyfmJUuunTYeN+/sxJ6udh1HR6yOAoYWITCGl8eTeGE0LrnaMBj04LY93Win8jZJFYHhudE4fjeRlHze1ogXt+7qhtdJWxRSShUBT51alO2bsruzDTfv7ITLTvMppVCu4LHj8zgis3qzv9ePD26L0uFZRBEKGFrMRCqHh47EJHMbPA4bbtvdhS0ROkxHzul4Fg8fnZPMbWh32fHRPd10VLcCR+eX8OixeckDn4IeB26/oJuO6pbBGMOB2QyeOLkgeeBT1OfExy7oQYePtiiINAoYWtBKsYJfH43JHi995WAI7xuJ0FGzMpYKZfzqcAyTafFKCg7AtSMRvGcoRFs+MpK5Ih48HENM4nhpngM+sC2KS/uoKkXOwnIBDx6OYVFiC83Bc7hxRycu7KGqFCKOAoYWxRjDq5MpPHtmEVKJ1b1+Nz52QTfVcMsQBIYXxxN4cSwh+bzhkAcf2d1NJxrKKAsCnjkdx+tTKcnnbe/w4ZZdXXSioYxiRcCTJxdwQCZh94Kudty0oxNO6pdC6qCAocXNpPN44Mis5Cl8LjuPW6mGW5GxxAoeOhqTPIXP57Thtt3dGA5TVYqck4vL+PXROeQlyi/9Ljs+dkE3+uggMlmHYhk8dmJe8nC3sNeBj13Qgy6qSiHrUMBAkC9V8MjxOZxYkC7HurQ/iOuphltWtljGQ0fmMJaU3vJ571AI1wxH6FhpGel8Cb86HMO0xGFPHAe8fySCK+kgMlmJlSIeODyL+WXxLQobz+FD2zqwnw4iI2tQwEAAVLco3pxO46lTi6hIvCWohlsZxhhemUjiudG45FHI/QE3PrqnG37a8pFUERheGI3jZZmqlC1hLz6yuwteOohMUrki4KnTi7JHS++KtuHmXZ1wU1UKAQUMZJ3YUh4PHo4hmRNvvEQ13MpNpXJ4ULYqhcetu7qxrYOqUuScOVuVsiJRldJ29iCyQTqITNax+SX85vi85ImbAbcdt1/Qgx46iKzlUcBAzlMoC3jsxDyOzEm3eb6ox48Pbacabjm5UgW/Pjon29/j8oEgrtvSQVUpMpYLZfzqSAwTEv09OFQPInsvHUQmK5Ur4cHDs5iVqUq5bmsHLu+ng8haGQUMpC7GGA7EMnjihHwN9+17e6izoAzGquf9P31auiqlp92F2/f2UFWKDIExvDRWrUqRO4jsYxd0U68UGRWB4dkzi3h1MiX5vK0RH27b3UW9UloUBQxE0kK2gAcPSddwu+08PnlhLx1MpMBsJo8HDs9KHoPc5rThU/t66WAiBcaTK3joSEzyGOSA245PX9RHQa0CpxaX8bBMVUqHz4k79vVSUNuCKGAgskoVAU/I1HDbeA637e7Crk7Ka5CTL1fwm2PzOL4gfmyv08bh9gt66LRNBVaKZTx8dA5nJA4ic9t5fOrCXvRTUCsrky/hV0dimEqLV6W0OW24Y18futqp9LKVUMBAFDt8toa7KFHDff1WarikRK3F85OnFlER2aPgOODmHZ24qDeg8+ishzGG300k8axEVQoFtcoJAsMLY3G8NC5elUJBbeuhgIGoUq3hjmFeovPlpX0BfHB7lJLNFJhbLuDBQ7NISFSlvHcojGtHwhSEKTCdzuHBwzFkJKpSPrC1A5dTUKuI3EFkFNS2FgoYiGqlioCHjsRwYlE86397hw8f3dNNFRQK5MsVPHBoFmNJ8az/C7raccuuLqqgUGClWMbPD85iRuKgp0v7g/jgtg4KahXI5Ev42YEZLGTF85goqG0NFDCQDREYw1OnFiXP+u/1u/GpC3voEB0FKgLDb47P4VBMvJR1KOTBx/f20CE6CigJand0+HAbBbWK5MsV3H9oFuMSQe3e7nZ8eCcFtc2MAgayKa9NJvHbU4uijwc9Dnx6Xy/ClKEuizGGF8akG1hFz2ao08mQ8gTG8NtTi3iDglpNKAlqh0Me3E5BbdOigIFs2rH5JTx8dE70vAaPo5qhTs2BlHlnNo1Hj8+LJu+1u+y4Y18vOqk5kCKvTibxlERQGzob1NJx5/IoqG1tFDAQTUylc/j5gRnR+m07z+G2Pd3YSR0vFTkTz+KBw7OiFSlOG4+P7+3GSJgy1JU4Nr+Eh47OiVakeBw2fOrCHgpqFXpnJo1HT1BQ22ooYCCaSawU8dN3ZpDKi2f8f2h7FJf1B/UblIXNLRXwswPToocS8Rxw884u7Ovx6zwya5pM5fCLgxTUakUuqHXZeHx8bw+1cW8iFDAQTWWLZfz8wIzkufSX9wfxgW0dlFGtQPpshvqiRIb6NcNhXD1MGepKxFeK+Ok705InbVJQq1xsKY+fH5iRDGo/vLMLF1JQ2xQoYCCaK1YE/OpIDKckMtR3Rtvwkd1dlKGuQL5UwS8PzUo2W9rX48dNOzopQ10BRUHtQBAf2EpBrRJKgtprR8J47xAFtVZHAQNpCIExPHlyAW9Op0Wf0+d345MX9sLrpIxqORWB4ZFjczgs0UF0JOTF7Xu74aIMdVnFioBfHY5JdhDdGW3Dbbu7YKegVhYFta2BAgbSMIwxvDpZ7dAoJuRx4NMX9SLkoQx1OYwxPD8qfVxvZ5sTd+zrQ7uLygTlKAlq+wPVoNZD3RlllQUBvzk2Lx3Uhr24/YIeuOwUhFkRBQyk4Y7OVcsuKyJvNa+j2p2x10/dGZV4eyaNxyQy1P1nM9SjlKEuS0lQG/Y48OmL+hD0UJmgHMYYnhuN42XJoNaFO/b1UlBrQRQwEF0oyVC/Y18vhkKUUa3E6bMZ6iWxDHU7jzsv6kMPBWGKHJlbwq8lglqf04a79/cj4qOVMCVkg1q3Hfdc3E8tsi2GAgaim8VsET87IJ6h7rBx+MxFfeinWnhFYkt5/OzAjGhjILedx90X91MtvEITZ4PagkhQ2+a04Z5L+mn7TCG5oDboceCei/tppcFCKGAguloulPHzgzOIiWSou2w87txPd8ZKpXLVDPX4Sv0Mda/Dhrsv7kcH3Rkrspgt4qcHppERCWr9LjvuuYTujJWSC2ojXgfuvrgfPjqa2xIoYCC6K5YFPHhkFqfjK3Ufd9t53HVxP7rozliRfKmCXxyaxaRIhnqb04Z7Lu6no48VWi6U8bMDM5gTaeEedDtwzyV0Z6xUNaidRnyl/oFuUZ8Td+3vp2opC6CAgRhCEBgePhrDkfnluo97HDbcc3EfOnwUNChRFgTcf0g8CPO77Lj74n5K3FOoWBbw0wPTmErXb5Ed9laX0+nOWJlcqYIfvT2NeZEgrKvNhbv298FN1SimRrUtxBA8z+Eju8WP4a19wCREltrJuew8j49f0IPhUP38j0yhjB+9PYWMxLHd5F1OO487JCp3Eisl/PjtaayILLWTc3kcNtx5UZ/o1tjccgE/PSCeP0LMgQIGYhie5/DRPd3YGqnfQClbrAYNqRxd5JSw23h88sJeDIgkjabzZfz47WksF8SPRSbvctlt+PS+XtGtsYVsET95Zxr5EgUNSnidNty1vw9hkVWumUwePzswjWKFggazooCBGMrGc/j4Bd0YFimnXKI7Y1UcNl7yTItErnZnTEGDEm6HDZ+5qA9R2TtjChqU8DntuOvifgRFkkan0nn84uAMShQ0mBIFDMRw1TvjHgwExe+Mf0R3xoq57LzknfHiShE/fmeG7owV8jptuHN/H8JeqTvjGbozVqjdZcddF/fBL5I0Op7M4YFDsygLNJ9mQwEDMQWHjccdF/aiT+TOOEl3xqq4HdWLnNid8fxyAT95Z5rujBXyOe24a7/MnfEBujNWKuB24K79fWgTqYw4nVjBg4djqAiUk28mFDAQ03DaedxxUS+626XujKeRoztjRTxng4aIyJ3x7FKhemdMiWaKyN4Zp3K4n+6MFQt5nbhzfz+8IpURJxezePhoDAIV8pkGBQzEVNx26T3j+eWziWZ0Z6yIz2nHnfvFyymn0nn8nPaMFQu4HbjrYvE74zN0Z6xKh8+JO/f3wS3SjOro/DIeOTYHqv43BwoYiOm8e2dcP2iILRXws3fozlipdpcdd+3vg99d/854IpXDL+nOWLGQ5+xBQxJ3xg8djUGgoEGRzjYX7tzfJ9rB8lBs6WxfCppPo1HAQEypumfch5DInfF0hu6M1Qi4Hbh7v/jphKOJFTxAd8aKRXxO3LW/Dx5H/Y/QY/PL+DXdGSvW3e7Gp/f1wmnj6j7+9kwGT55apPk0GAUMxLTazt4ZB6TujA/OokxBgyJBjwN37u+DT2Q5/dRiFg8doTtjpaJtLnzmIvE748NzS3j0ON0ZK9UX8OBT+/pg5+sHDW9MpfDMmTjNp4EoYCCm5nc7cJfUnXGS7ozViHiduPMiiTvjheqdMSWaKdPd7sZn9vWJ3hm/M5vBkycX6CKn0GDQg09d2AubSNDwu4kkXhhL6DwqUkMBAzG9oKdagiV6ZxzP4ld0Z6yYkjvjx+jOWLHegBt37OuDQ+zOeDqNp0/TcrpSw2EvPn5BD0SmEy+OJfDyOAUNRqCAgVhC2FvbM64fNBxfWKbEKBW62934zEV9cNrqfwS8M5vBc2fiOo/KugaCHnxS4s741ckUXp1M6TsoC9vW4cPHLugBJxI0PHsmjndm0voOilDAQKyjw+eSLMF6ZzaDN6fpQ0SpXr8bd+zrFb0zfnkiiSNzSzqPyrqGw158Yq/4nfHTpxdxOp7Vd1AWtjPahtt2d0NkOvHYiXlMibR0J41BAQOxlK7acrrInfGTpxYwlqjf4pmcbyDowSf39Yommj1ybA6zmfotnsn5tkZ8uF1iOf1Xh2NYzFIHVqX2dLXjll1ddR8TGPDLQ7NIU58Z3VDAQCynx+/GHRf1wlEn0Ywx4IHDs0jm6ENZqeGQ+J1xWWD4xcEZ6uOhwo5oG27bU//OuFAR8IuD1MdDjQt7/LhpR2fdx1ZKFfzi4Cz18dAJBQzEkvoDHty2u7vuY/mygF8cmKU+CSpsifhw0876H8rLxUr1YCf6UFZsd2c7rtvaUfexZK6EBw5Tkq4aF/cFcNVgqO5j88sF/PoonXmhBwoYiGXtiLbh2pFI3ccWV4r41REqD1Tjop4ALusP1n1sJpPHb6hyQpUrBoLY291e97Gx5AqeOr2o84is7X1bItgW8dV97PjCMl6iyomGo4CBWNp7h0LYFW2r+9jpeBbPU6a/Kh/Y2oHhkLfuY4fnlijTXwWO43Dzjk70inRgfX0qhXdmKUlXKY7jcNueLnSI9Jl5fjSB4wvLOo+qtVDAQCyN4zjcursLXW31O1y+PJHE4bmMzqOyLp7ncPsF3aJHcj9Dmf6q2G08PrG3R/TgsceOU6a/Gi67DZ+8sEe0UurhozHMLxd0HlXroICBWJ7DxuOTF/aINgP6zbF5yvRXwe2w4VMX9tatRGGoZvrHKdNfsTaXHZ/Y21O3EoUy/dULeZy4fW/9MxpKFYafH5zBSpGSdBuBAgbSFPxuBz5xIWX6ayXic+KjF9RPKi1UBPycMv1V6fG7RcsDKdNfveGQFx/aFq37WCZfxv2H6Lj4RqCAgTSN/oCHMv01tDXiw/WU6a+ZPV3tkpn+j1CmvyqX9AWwv9df97HJdA5PnKQkXa1RwECaCmX6a+uKgSAu6BLP9H+aMv1Vkcr0P7awjJfGkzqPyLo4jsMN2zsxEPDUffztmQzeouOjNUUBA2k6lOmvHY7j8OGd4pn+r02lcIAy/RVbzfT3imX6xynTXwUbz+Hje7vhd9dPKn3i5ALGknTyq1YoYCBNhzL9tVXL9G8T6Rb62PEFTKUp018pl92GT+6jTH+teJ12fOpCiZNfD80ilaOkUi1QwECaEmX6a6vNZccnL6zfc6LCGH55kDL91aBMf211trnwEYmTX39+cAaFMuUvbRYFDKRpUaa/tnr8bnx4l/iZ/r88OIsSJZUqRpn+2toZbcM1w+G6jy1mi3joaIzylzaJAgbS1CjTX1sXdPlFM/3nlgv49THK9FdDLtP/yZMLOo/I2q4eDoue/HpqMYvnR+nk182ggIE0Pcr015Zkpv/8Ml6mTH/Fapn+/YH6SaVvzaTx5nRK30FZGMdxuGV3FzpFTn59aTyJI3NLOo+qeVDAQJpeLdO/p73+h8hrUykcjNHx0UrJZfo/NxrHqUXK9FfKxnP4xN4eyUz/CTo+WjGnzMmvjxybw9wSJZVuBAUMpCXYbTw+eWGvaKb/EyfmKZNaBblM/0eOzSNLSXuKeZ3VpFKxTP+Hj8SQp3btigXcDnx8r/jJrw8djdEhbhtAAQNpGVKZ/sUKw8NHY9QOWwWpTP+VUgWPHKNDstToksj0zxTKlM+g0kDQg5t21E/SXcwW8Sx1slWNAgbSUqQy/afSefxugvbf1ZDK9D8dz+KdWdrqUUMq0/9QbAnH5mn/XY2LesVPfn1tKoWxBB3qpAYFDKTlXNDlx0U99TPTnx+NI7ZEnS3VuKQvgJ0imem/PbWA5Aqdd6HG1cNhDAbrH3f86PF5aqKm0vVbO9Atkr/062NzVFqtAgUMpCV9cFsUQff5J0EKDHj4yBztb6rAcRxu2tEJX538kFKF4aGjc1S6qgLHcbh1dxdcdfJD8mUBj1Dpqio2nsNHdnfX3YpcKpTxOG31KEYBA2lJTjuPj+zpQp3tdyyuFPEM7W+q4nXaRNs3z2TyeJm2elQJuB24cXv9rZ4ziRVqqqRSh8+J60TOYzkyt0SllgpRwEBaVn/Ag6uG6h9C9Drtb6q2NeLDxb2Buo+9OBbHbIa2etTY09WOXZ31t3qeOrWIOG31qHJpX0C0Kd1jJ+axRFs9sihgIC3t6uEIukQOeaH9TfWu39ZRt+mXwKpNlejoaOVqWz31SoHLAsPDR+joaDVqWz31SoELZQG/PkpbPXIoYCAtzcZzuG0P7W9qxWnjcdue7rqllvGVEp2qqZLHYcOtu+tv9cwuFfDSeELnEVlbu8uOm3bWr5IaS67gjWna6pFCAQNpebS/qa1evxtXD9UvDXxzOo0z1FpclZGwD5f21d/qeWk8gZk0bfWosbuzXfSo+GdOL2IxS6dAiqGAgRDI729mqHWzKlcNhUWP4n7k2BxytNWjynVbOxDxnr/Vwxjw0NEYirTVo8oN26Nod51/FHdZYHjoyBxt9YiggIEQKNjfpFI2VaS2epaLFTx2nE6BVMNh4/GR3d11jzpO5kp4+hRt9ajhltjqmVsu4IUxqpKqhwIGQs5qd9lFj5IdT+Zof1OlsNeJD2yrv9VzbGEZh2mrR5UevxtXD0fqPvbWTBqnaatHleGQF5eLnAL5yngSU9Tw6zwUMBCyxu4u2t/U0sW9AWwJ19/qeeLEAtK01aPKVYMh9Pnrt8J+5NgcVoq01aPG+7dE0OE7v+sqA/Dw0TkUyrTVsxYFDISsQ/ub2uE4Drfs6oLHUWerp0KlbGrxPIeP7O6q29UyW6zg0eM0n2rYbTxuE9nqSeVLeOoUVUmtRQEDIevQ/qa22lx23Lyz/nxOpHJ4dTKl74AsLuR14oMiDb9OLGZxMEZbPWp0tbvwvpH6Wz3vzGZwcnFZ5xGZFwUMhNRB+5va2hltw97u+ls9z52JY36ZtnrUuKjHj60RX93Hnjy5gFSOtnrUuGIwhP5A/a2e3xybR7ZIp0ACFDAQIur9WyLo8NL+plY+tD0Kv/v8rZ4KY3joSAxlgeZTqepWTyc8jvNPgSxWBDx8NAaBtiYU47lqgypnna2elVIFvzlGVT0ABQyEiLKfPbWQ9je14bbb8JHd3XUfW8gW8fwonVqohs9px4dFTi2cSufxKjX8UiXoceBDIg2/TsWzODCb0XlE5kMBAyES5PY3qZRNncGgB1cO1m/49buJJKbStNWjxo5oG/b1+Os+9txoHAtU1aPKhd1+7OgQ2eo5RVU9FDAQIkNqf/PxE/PUUEmla0fCiNYpZQOAx47PQ6AqFFU+uC2KQJ2tHoEBjx9foKV0FTiOw807O+Gr0/CrVGF4ssV7y1DAQIgMqf3NdL6Ml6kBkCp2vrrVY6vToWohW8TrUyn9B2VhLnu1NLDOzhkm0zkcoqoJVbxOOz4sUtVzcjHb0lUTFDAQokDQ48AHRErZXplIIp4t6jwia+tsc+HakfoNql4Yi1PvDpX6gx5cMVB/q+ep04vUu0OlbR0+0a2eJ04utGzvDgoYCFHooh5/3VP2BFZtUEVLv+pcPhCqe8pescLwW+qNoNrVI2H46xw4litV8OwZmk+1rt/aUbcKJZMv46Wx1lxVpICBEIU4jsNNOztRZyUdE6kctcFWycZzor07ji8sU0KpSk4bL5rl//ZMBtOUUKqKx2HD9VvrJzy/OplsyWPiKWAgRIXONhcuEznQ6benFpGnpV9VBoIeXChyoNMTJxYooVSlHdE2bBM50OmxE5RQqtaF3f66Cc/VVcXWSyilgIEQla4ZjtTtNbFSquC5UTo2Wq3rt3bUbSueypfw8jidJaDWh7ZH67YVn18u4o3plP4DsjCOq66C1TuLZTKVw6EWW1WkgIEQlVx2Hh8Uadv85nQas5m8ziOyNq/Tjuu21p/PVyYSiK9QQqkaQY8DVw/XTyh9fjSOpQIdc6xGtM2Fy/vrJ5Q+faq1EkopYCBkA3ZG20TbNj92Yh4CY2CM4cjcUsstW26EVELp48erCaXC2fkk8q4YCNU91rxYYfjt2bMEKgLDUZpPRa4erp9QurImobRcEXBsvrnnkwIGQjaA4zjcuKOz7tJvbKmAZ04v4n+9NYVfHYmhQPvwsjiOw40iCaXjqRyeH03gh29M4qEjMQrAFLDxHG7cUT8B8tjCMl4aS+D7r0/giRY/iEgpp106ofR3E0n8/WsTTb8lSQEDIRsU9Dhw1VD9pd9XJ1OYSle3JqhJlTJdbS5c1hes+9hL4wnElgpgqN4lE3mDIa94h9DROBazReTLFQrAFNre4RPtEPr06UWkcqWm/12ngIGQTbhyMIiw1yH5nHypuT9EtHTNSP2E0rUK5dbZM94ssYTSGoEBJaqcUITjONwgklBak6eAgRAixs7zuKgnIPmcPF3gFHPZedG74ppm/1DWktdhw67ONsnnNPtdsZYCbju2iTSnAqp5IeUm3oKUDuUJIaKWCmU8fXpRNhGPPpCVSeVK+O2pBZxclD6wiQIGZRazRTx5ch5jSekDm/LliuyqDgFiS3k8cWIB0zJVUPmygDZbc96LN+ffihAdMMYUHdREKwzKCIwp2r6hLQllBMYUBVe0ZaaMwKAogbmZA1oKGAjZIL/bgTv29eIju7sk94kpSU+ZsNeJuy/uw407onU7g9a0auMftTrbXPj8JQO4fmuH5L47naapTK/fjXsvG8DVw+G6BznVNPN8UsBAyCZwHIe93X78/pVD2Bmtv1fczB8gWuM4Dpf0BfFPrhgSPeeiRAGYYjzP4crBEL54+WDdI44BCsDUsPM8rh2J4N7LBtHd7qr7nGaeTwoYCNGAz2nHx/f24PYLus/rcEcBg3qBs6s3t+7qgmvdfnAzfyA3StjrxD0X99fN8qcATL3a6s37t0TOW21o5t/3pg8Y2NkT94g2aD6l7epsxz+9YhDb12RSS21J0HyK4zgOF/b48cUrBjEU8qx+XeoDmeZTHMdxuLQ/iC9ePnjOqZpSARjNpzie53DVUBj3XjaI6Jo27WK/77W5tPJ8NlVqbLlcRiaTQS6XQy6XQ6FQOOcfx+VywePxwOPxwO/3w+GQrp9vdeVyGel0Gvl8HisrKygWi6vzyXHcefNptzfV22nDfE47PrG3B4diS3jy5LsdF0ul0ur7szafNbX59Hq9q/Nps9nEXqKlBNwO3HlRH96cTuPp04urH8jFYvGc3/f18+l2u895f9J8VoW9TtxzST9+N5HE86Px1fdnoVA4Zz5LpdLq9/A8vzqfXq8X7e3t4Pmmv99UpLPNhXsvG8QLY3G8Mp5cnc9cLofl5eWmmk+OWTncOWtlZQXxeBzpdFrV97W3tyMSicDn84GrdyZti1peXkYikUAmk1H1fYFAAOFwGD6feJ1yq0nlihibSyCIPJaXlxV/H8dxCAQCiEQi8Hg88t/QIuLZAmYWk2gTcshmpcsv1+I4DqFQCOFwGG53/b38VhRbyiOeSMFTWcHKyori7+N5fnU+Xa76e/mtaCq1guWlDBzFLHI56XLWtXieRzgcRjgchtN5fg8Qs7B0wFCpVDA7O4tUKrWpn9Pe3o7e3t6WX3Eol8uYmZlRHSisFwgE0NPT0/IrDsViETMzM6oChXpCoRC6u7tb/g65UChgenpa1YWtno6ODnR2dlrijq6R8vk8pqamkM9vrrtqZ2cnOjo6Wn4+V1ZWMD09jUKhsOGfwXEcurq6EIlETHkTa9mAYXl5GZOTk6hUtKnJ5nkefX19CASkT+1rVplMBlNTUxAEbRJ2bDYb+vv70d4ufWpfs0omk5iZmdFsv9Jut2NgYKBlV2/i8ThiMe0aTzkcDgwODrbk6g1jDAsLC5ifn9fsZ7pcLgwMDLTk6g1jDHNzc1hcXNTsZ7rdbgwODpputcGSAUM6ncbk5GRDfnZ3dzc6Ojoa8rPNKpFIYGZmpiE/u6+vD6FQ/V7yzWphYQFzc3MN+dmDg4Pw+/0N+dlm1IgP4xqO4zA0NIS2Numjk5sJYwwzMzNIJpOa/2ye5zE8PAyvt345bDNijGFycnLTq7L12Gw2jIyMmCoIs9waUiaTaViwAACxWAzxeHO3KF2rdifcKNPT05veMrKSxcXFhgULADAxMYGlJemjqJvJ/Px8Q4IFoPphPz4+rioXwsoaGSwAgCAIGBsbU7V3b2WNDBaA6pb76OjoprY4tGapgKFYLDY0WKiZnZ1tiTd9Pp/H9PR0w19ns/t6VpHNZhGLxRr+OpOTk+dkXDerpaUlLCwsNPQ1GGOYmJhAuVxu6OuYQSqValiwUCMIAiYmJjTb2jSzeDzesGChplKpYGJiwjSlmJYJGBhjmJqa0m3iJicnm/pNLwiCLsEX8G4kbpY3fSNUKhVMTU3p8lqCIOj6u2CEcrms23zWkqebWbFY1O3vWCqVdAmcjVQoFBq6krj+tbTMN9kMywQMyWRy09nRahSLxYbf3RgpHo/retefz+eRSCR0ez29LSws6HrXn81mVZcRW0ksFtMsoVmJdDrd1Fs9s7Ozut4AJRIJXT+v9TY9Pa1rwL6wsLDpahYtWCJgYIw1bB9TSjweb8pVBqPmc3FxsSnviiuViiF5LwsLC005n+Vy2ZC8FyN+J/RQKBQMCYaadT5rB6/pzQw3XJYIGLLZ7DmnuOlFEARL3MXlpiaROXBA8fMzmYyud281pVLJEndx2dOnsXzsmOLnp9NpQy7chULBErk2S0ePInvmjOLnG/XBmM1mTXEXJyfzzjvIqdiuMWo+M5mMJXJtUm+8gYKK7QWjkuKTyaQhn9trqQoY7rvvPlx++eVob29HZ2cnbr/9dhw/frxRY1tlZJZ9o5OEtFCcn8ehr34Fh7/2rxQFDkb+naxQMZGbmMCBf/YHOPpv/w2WFby/jZxPK7w/sydP4J0v/h6O/6dvYGV0VPb59P6UljlwAG99/nM4ed+fywYOjDFD59MKN1yp372CN+++C6f/8i9lAwcjbyIZYw1PspSjKmB49tln8eUvfxmvvPIKnnjiCZTLZdx4440NL0sysuwpl8tZZtk3/cYbZwOHr4kGDowxQ/cWrbSvmXzpJRz4g9+XDBwEQTD0Lt8y88kY4k8/jbd/717JwKFSqRh6V2qFFRsAQKWChUcfPRs43CcaOJRKJUO3Va3y/mTlMuZ+9WA1cPirv0Jhvn7gkM/nDb0eGP3+3NTBTQsLC+js7MSzzz6L973vfVqOa1WlUsHRo0cb8rOVsv36YeSPHDF0DFIquRyKdSLjwKWXYeDee+Hft2/1a8ViESdOnNBzeOf7X/8TpQae/bBZlWwWxToJr6H3vhcD9/4e2nbuXP1aLpfD6dOn9RzeeSrf+e8QTPzBXM5kUFq/LM5xiFx3HQa+cC+8IyOrX15eXsbY2Ji+AzxnWByKf/GfDXt9JUqpFMrrV0JsNkRvuBH9n/scPP39q19u5CF3Sth5Hrn//C3DXl+JUiKB8ro7d85uR+etH0H/Z++Bq7Nr9evxeNzQihq3241t27YZ9vqbOuy/tjQTDoc1GUw9ZqjfLzKGnIEfYhuVfuN1pN94/ZzAwRTzWS4jb8H5TL70EpIvvXRO4GCG+Szk8ihbbT7PrjjEn3nmnMDB6BwCxhjyqRSYBbYmzlGpYOHR32DhicfPCRyMns+yICA3PQ1YIJdhLVYuY+7BBzD/64fPCRyM/n03+vU3HDAwxvC1r30N11xzDfbu3avlmM5hiioFizelWhs4hL/4ewAMbmriMNf56GqtDRwCn/+C0cMBXBaez3WBQ9vd9xg9InBOJ6yxCVnHusDBc8cdRo8InMsFZrGAoWZ94GD/6EeNHQ9jYIwZ1phqwwHDV77yFRw4cAAvvPCCluMxJ4vkMEiy2eCMRmH3+gDDl6+tP5+cwwFXZyfsXg+wtLlulJvWBO9P3umEq7MTvMsFGFAR1WxsLhdcnVFwDgdgdOVHE7w/bV4vXNEoWIt34N3Q3/6rX/0qfvWrX+G5555D/5r9skYwRUvfojWjYwDn7W0uLS0B4+OGDokVrHtB4BwOdN16K/ruqS5RplIp4wMGE2yLbBTvcqH79tvRe+ddcIbD1ZI1g0tvmdEX2E2web3o+dSn0HPHp+Hw+6snBBo9nxYOAO1+P3o//Rl0f+ITsPt81fyFTbar3wyO4wxte60qYGCM4atf/Sruv/9+PPPMMxhZk6zUKC6Xq+GvIccbDMJx+eVGD0NUKZNBdn0Wv0gSlBk6n7V1RuEx8XwWEwmsrEtk5BwOdN5y63lJUKaYz/5+IBo1ehiiCvPzyK0LUnmXC10f+xj67robzjU5UEbPJ8/z8O/cafSmnaT8zAzy63rArA8UaoyeT4fNhuD+/YaOQU5uchKFdUdZrw8Uaoy+Hhn976mqSuJLX/oS/vf//t948MEHsXNNpnggEGhoX/kTJ04YcnATUP0A2b17t6FRnZz0m2/g8L/6V9U/iAQKax09etSwA0AcDsc57x0zWnz6aZz4T98AcP6KwnqMMRw5csSwUiujs6aViP3qQZz5y78EcP6KwnpGV0W1tbVheHjYsNdXYuof/xETf/93AMQDhZpSqaTLWTliAoEABgYGDHt9Jca++x3M/OQnAMQDhRqjq6IikQh6enoMe31VKwzf+973AADXXXfdOV///ve/j3vvvVerMZ3H5/MZFjB4vV5TBwurFAQKNT6fz7ADQLxeryGvq5ZcoLD6PI6Dx+MxrN7cV+dDzYzkAoUam80Gl8tlWDa4Vd6fcoFCjd1uh91uN6wbp1XmUy5QqHG73eA4zrAbhEbemCuxqXMY9LKysoIzKo6W1dLAwAACgYAhr61UYX4OQrEkGyjULC0tYdygPIbh4WG0tbUZ8tpK5aamwDsdkoHCWqlUSrfOiutt27bN8GVKOStjY7D7/ZKBwlpG1rrv2LEDTqe5q06yp07B2dkpGSisNTc3Z0gjPY7jsHPnTthNnii4fPw43P39koHCWjMzM4Yct83zPHbt2gWeN66jgyV6SXi9XkM+FO12O/wKfymN5OrsUhwsANVlV4cBpaIul8sSd8Se/n7FwQIA+P1+Q5Jzjfq9UMs7PKw4WACAYDBoyKpee3u76YMFAPBt26Y4WAAae06OlEAgYPpgAQDadu5UHCwA1W0BI4TDYUODBcAiAQMARA1I6uro6LDGdoRKHMfRfGqI53lDPkQ6Ojp0f0092Gw2Qy5yzTqfDocDwWBQ99dt1vl0uVy6r5JyHGdY4LeWZQIGv9+P9vZ23V7P4/EYFknqIRQK6bq/6PP5DPnQ0ktHR4euGdSBQMASq18b1dXVpesqWDgctsTq10Z1d3frugoWjUYtsfq1UX19fbre7Xd3d5ti9csyAQPHcejr69PlTc9xHPr7+5vybrhGz78jz/NNP588z+uWDW6z2dDb26vLaxlFz/l0OBzo7u7W5bWMYrfbG35mTo3b7UZnZ6cur2UUh8Oh2++g1+s1xeoCYKGAAai+6QcHBxt+4env7ze83lYPTqcTg4ODDX+dwcFBQ3Im9OZ2uxv+ocxxHIaGhsxxoFmDeb3ehpeQ8TyPoaEhw/eG9dDe3t7wC7len9FmEAgEGr4K7XA4MDAwYJr5tNxvic/nw9DQUMMm0ApVEVpqb29vWNBQu7iZvSpCS8FgEH19fQ352TzPY3h42DKlalpoZN25zWbDyMhIUy+drxeNRhsWNNjtdoyMjJhi6VwPHMehu7u7YUGD0+nEyMiIqW62LFFWWU8ul8PU1JRm9dp2ux0DAwNNvY8pZWVlBZOTkyhp1CTG6XSiv7+/pS5uay0vL2Nqakqz+neXy4WBgYGWuritlclkMD09rdmBYx6PBwMDAy1zcVsvmUxidnZWs+Z+Pp8P/f39prq46YUxhkQigVgsptn5DO3t7ejr6zNdlYllAwag2slyYWFh0zXG4XAYXV1dLbHMK0UQBMzNzVXP89+EaDSKaDTaEsu8UiqVCmKxGJLJ5KZ+TldXV9NWmKhRLpcxOzuLdDq94Z9RuysMh8MtP5+lUgkzMzPV/jIbxPM8enp6DCuFNZNisYjp6Wlks9kN/4xafpLf7zflfFo6YKgpFotIJpNIJBKK70B4nkcoFEIoFGrZuzYxhUIBiUQCyWRS8R0Iz/MIh8MIhUItkf+hRj6fX51Ppb9utdLCUCjUsnfBYnK5HOLxONLptOL5tNvtq/PZinfBYhhjWFlZQSKRUBWIORwORCIRBINB090FG4kxhmw2i0Qioeo0XZfLhXA4jGAwaOob16YIGGoEQUA2m0Uul0Mul0M+n1+94PE8D5fLBY/HA4/Hg7a2tpa/A5YjCAKWl5eRz+frzqfb7V6dT5/PR/MpozaftfdnoVA4Zz49Hs/qnLa1tZnyDsNMKpXKefNZ+ziz2WznvT9pPqWVy+Vzft/Xz2dtLj0ej3WOzDdQqVQ653pULBbBGAPHcavz6Xa74fV64fF4LDGfTRUwEEIIIaQx6JaQEEIIIbIoYCCEEEKILAoYCCGEECKLAgZCCCGEyKKAgRBCCCGyKGAghBBCiCwKGAghhBAiiwIGQgghhMiigIEQQgghsihgIIQQQogsChgIIYQQIosCBkIIIYTIooCBEEIIIbIoYCCEEEKILAoYCCGEECLLbvQACCGkxnXp74Pjbav/szmcq//N2x3vPmazgbc7wa8+5jzvMY63gec58DYePM+B4znYbDy4s/9dfYxT9Zjt7P+cdh42noN99b/5dx+zvfvfLjt/3vec82eOA89xcNi41f+2cYDdxsPG4exj7/63jefg4M8+jwccPL/639Xv5cBxAM+h/n8D4GrPr/332edwHHfOcznGwAllgAkAYwAT1vxZAFeRe2zd14UKmCAA5SJYpQIIAli5WP1/oVJ9vFQCav9dLr37PUIFrFR9LoQKhHIJrCJU/ycIEIplCJXK6n8zQYBQefe/a8+tlMpga54nnP1+VhFQKVbABAahwiAUKxAqDKwiQBBY9bEKA6swVErvPnbun999nsAYigJDhTFUGFBZ/TNQYaj7mID1z2Orz/0bNmbsL+ZZtMJACCGEEFkUMBBCCCFEFgUMhBBCCJFFAQMhhBBCZFHAQAghhBBZFDAQQgghRBYFDIQQQgiRRQEDIYQQQmRRwEAIIYQQWRQwEEIIIUQWBQyEEEIIkUUBAyGEEEJkUcBACCGEEFkUMBBCCCFEFgUMhBBCCJFFAQMhhBBCZFHAQAghhBBZFDAQQgghRBYFDIQQQgiRRQEDIYQQQmRRwEAIIYQQWRQwEEIIIUQWBQyEEEIIkUUBAyGEEEJkUcBACCGEEFkcY4wZPQhCCNFaoVDAfffdh3/7b/8tXC6X0cM5h5nHBtD4NsPMY9ssChgIIU0pk8kgEAggnU7D7/cbPZxzmHlsAI1vM8w8ts2iLQlCCCGEyKKAgRBCCCGyKGAghBBCiCwKGAghTcnlcuEb3/iGKRPPzDw2gMa3GWYe22ZR0iMhhBBCZNEKAyGEEEJkUcBACCGEEFkUMBBCCCFEFgUMhJCm8q//9b/Gtddei3vuuQfFYvGcx3K5HD7ykY/g/e9/P2644QYkEglTja/mvvvuw2WXXWb4mMrlMu69915ce+21+KM/+iPdxqNkbDV6z9V6YuMzw3tNaxQwEEKaxltvvYVYLIbnn38ee/bswc9//vNzHv/Nb36DvXv34tlnn8WnP/1p/OM//qOpxgcAS0tLOHTokCnG9NBDD6G/vx/PP/88VlZW8NJLL+k2LrmxAfrP1XpS4zP6vdYIFDAQQprGyy+/jBtvvBEAcPPNN593gdu+fTtWVlYAAKlUCtFo1FTjA4D/+l//K7785S+bYkxKxmvU2AD952o9qfEZ/V5rBLvRAyCEEK2kUin09vYCAAKBwHnLwFu3bsWhQ4ewd+9ecByH3/3ud6YaXzqdxsGDB/Ef/sN/MMWYUqnUaj+EeuM1cmxGzNV6UuMz+r3WCLTCQAixnFgshmuuuea8/zHGkMlkAFQ/zMPh8Dnf94Mf/ADXXXcdDh06hD/5kz/Bn/7pn5pqfH/913+Nr3zlKw0Zk5hQKCQ6JqnHjB6bEXO1ntT49Hqv6YkCBkKI5XR3d+OFF14473+33HILHn/8cQDAY489hquvvvq87619qAeDQaRSKVON79SpU/jmN7+Jm2++GSdPnsS3vvWthoxvrfe85z2iY5J6TA9Sr2/EXKkZH6DPe01XjBBCmsjXv/51ds0117C7776bFQoFxhhjf/AHf8AYYyydTrNbbrmFvf/972dXX301O378uKnGt9all15q2Jhq4ymVSuzzn/88u+aaa9hXv/pV3cajZGxr6TlX64mNzwzvNa3R0dCEEEIIkUVbEoQQQgiRRQEDIYQQQmRRwEAIIYQQWRQwEEIIIUQWBQyEENIC7r33XnAchz/8wz8877EvfelL4DgO99577+rXYrEYvvrVr2LLli1wuVwYGBjAbbfdht/+9rerzxkeHsZf//Vf6zB6YgYUMBBCSIsYGBjAj3/8Y+RyudWv5fN5/OhHP8Lg4ODq18bGxnDppZfiqaeewl/8xV/g4MGDePTRR3H99dcbehQzMRYdDU0IIS3ikksuwZkzZ/DLX/4S99xzDwDgl7/8JQYGBrBly5bV59VWHF599VX4fL7Vr19wwQX44he/qPu4iTnQCgMhhLSQ3/u938P3v//91T//j//xP84JAhKJBB599FF8+ctfPidYqAkGg3oMk5gQBQyEENJCPve5z+GFF17A2NgYxsfH8eKLL+Kzn/3s6uOnTp0CYwy7du0ycJTEjGhLghBCWkhHRwduvfVW/OAHPwBjDLfeeis6OjpWH68d/stxnFFDJCZFKwyEENJivvjFL+If/uEf8IMf/OC8nITt27eD4zgcPXrUoNERs6KAgRBCWszNN9+MYrGIYrGIm2666ZzHwuEwbrrpJnznO99BNps973ubousi2RAKGAghpMXYbDYcPXoUR48ehc1mO+/x7373u6hUKrjiiivwi1/8AidPnsTRo0fx7W9/G1dddZUBIyZmQDkMhBDSgvx+v+hjIyMjePPNN/HNb34TX//61zE7O4toNIpLL70U3/ve93QcJTETam9NCCGEEFm0JUEIIYQQWRQwEEIIIUQWBQyEEEIIkUUBAyGEEEJkUcBACCGEEFkUMBBCCCFEFgUMhBBCCJFFAQMhhBBCZFHAQAghhBBZFDAQQgghRBYFDIQQQgiR9f8DeG/LvyohqB4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5/0lEQVR4nO3dd5xr13Uf+t856MAM6vQ+tzdeXnZRJCVSErtoUYUSiwqtxI6jEidS8p6d5MWxY5n6+NmOrViSP7ZeZNlJ1EVRLGKT2IvYeXl7mz6DKagz6MDZ7w9cDOfOxWkzB6cA6/v56CPOAHew774YnHX2XmsvjjHGQAghhBAigTd6AIQQQggxPwoYCCGEECKLAgZCCCGEyKKAgRBCCCGyKGAghBBCiCwKGAghhBAiiwIGQgghhMiigIEQQgghsihgIIQQQogsChgIIYQQIosCBkIIIYTIsmzAUKlU8LWvfW1TP2NkZAS7du3CgQMHcODAAfzwhz/UaHTWo8V81vzxH/8xOI7DoUOHNPl5VqTFfN5www3Yv38/Dhw4gGuuuQZvvfWWNoOzoM3OZz6fx+23344dO3bgwIEDuOmmmzA+Pq7dAC1Gi/fnv/k3/wYjIyMt/7uulJafsYZhFvXmm2+yAwcObOpnDA8Ps3feeUejEVmbFvPJGGOvv/46u+mmm9jQ0FBLz60W85lIJFb/+/7772cXXXTRJkdlXZudz1wuxx5++GEmCAJjjLH/8T/+B7v++uu1Gp7laPH+fOaZZ9jU1BR9jiqk1WeskSy5wnDkyBHceuutmJmZwYEDB/BHf/RHRg/J0rSaz0KhgC9+8Yv41re+BY7jNB6ldWg1n8FgcPW/U6kUeN6Sv66bpsV8ut1u3HLLLavvy/e85z04c+aM1kO1BK3en+973/swMDCg8eiaU7Ncs+xGD2Aj9uzZg49+9KPYtWsXvvSlL23qZ91zzz0QBAFXXHEF7rvvPnR2dmo0SuvQaj7/y3/5L/j0pz+N0dFRDUdnPVq+Pz/72c/iqaeeAgA8+uijWgzPcrScz5pvfOMbuO222zT5WVbTiPkk0pplzi17y/Laa6/h0ksvPe/711xzDTo6Our+b2pq6pznPvvss3j77bfxxhtvIBKJ4HOf+5xewzedzc7nSy+9hFdffRVf+MIX9By2aWnx/gSAf/qnf8LU1BT+9E//FP/hP/wHPYZuSlrNJwD82Z/9GU6ePGn9/eRN0HI+iTJic24lHGOMGT0ItcrlMkKhEBYXF+F2uzX5mXNzc9ixYweWl5c1+XlWosV8fv3rX8c3vvENOJ1OAMD09DS6u7vxne98BzfffLOWwzW9Rrw/AcDj8WB6ehqRSESzn2kFWs7nX/zFX+AHP/gBnnzyyXO2fFqJ1u/PkZERPPTQQ9i3b58Go2tOjfpM0JslVximp6fR3t6+qYnPZDJIJpOrX3//+9/HRRddpMHorEeL+fyDP/gDzM7OYnx8HOPj4xgYGMBjjz3WcsECoM18ptNpzM7Orn59//33IxKJIBwOazFES9FiPgHgr/7qr/D9738fTzzxRMsGC4B280mUa5Y5t2TAMDAwgP3792Pnzp34j//xP27oZ8zPz+O6667D/v37ccEFF+CZZ57BP/3TP2k8UmvQYj7Ju7SYz1Qqhdtvvx0XXHABLrzwQnzzm9/EQw891JLJpFrM5/T0NL761a8imUziuuuuw4EDB3DFFVdoPFJr0Or3/Ytf/CIGBgYwPT2ND33oQ9i2bZuGo2wuzfIZa8ktCUIIIYToy5IrDIQQQgjRFwUMhBBCCJFFAQMhhBBCZFHAQAghhBBZFDAQQgghRBYFDIQQQgiRRQEDIYQQQmRRwEAIIYQQWRQwEEIIIUQWBQyEEEIIkUUBAyGEEEJkUcBACCGEEFkUMBBCCCFEFgUMhBBCCJFFAQMhhBBCZFHAQAghhBBZdqMH0AiVSgX5fB75fB6CIAAAeJ6Hy+WC2+2G3d6Uf+2GKZfLyOfzKBQK582nx+OBzWYzeITWUi6XkcvlUCwWz5lPt9sNt9tN86lSqVRafX8yxgAANpttdT55nu6LlGKMnfP+pPncHMbY6vuzNp8cx4HneXg8HrhcLkvNZ9NcOUulEhKJBBKJBEqlkuRz7XY7gsEgQqEQXC6XTiO0lmKxiHg8jmQyiXK5LPlch8OxOp9Op1OnEVpLoVBAPB5HKpWSnU+n07k6nw6HQ6cRWks+n1+dz0qlIvlcp9OJcDiMYDBINwt1MMaQy+UQj8eRTqdXg1gxbrcboVAIwWCQgts6GGPIZrOIx+NYXl6WnU+Px4NQKIRAIGD6+eRYLYS0qGKxiGg0inQ6vaE/7/P50NvbC7fbrfHIrKlQKGBubg4rKysb+vPt7e3o6emhQOysXC6Hubk5ZLPZDf15v9+P3t5eChzOymazmJubQy6X29CfDwaD6OnpocDhrJWVFczNzaFQKKj+sxzHIRQKobu72/QXOr2k02lEo1EUi0XVf5bjOEQiEXR1dZl21cGyAQNjDPF4HNFoFFr8Fbq6utDZ2QmO4zQYnfUwxrC0tIT5+flN/yyO49Dd3Y1IJNKy8ykIAhYXF7G4uLjpn8VxHHp7exEKhVp6Pufn5xGLxTb9s3ieR19fHwKBQMvOZ6VSwdzcHJLJ5KZ/ls1mQ39/P/x+/+YHZlHlchmzs7MbvnFdy+FwoL+/H21tbRqMTFuWDBgEQcDk5OSG74LFeDweDA8Pt9zdR6VSwcTExIbvgsX4fD4MDQ213N1HuVzG+Pg48vm8pj/X7/djYGDAtHcfjVIsFjE+Pr6huzYpwWAQ/f39LRc0FAoFjI2NyW6NqRWJRNDT09Ny85nL5TA+Pi67NaaWGW9iLRcwCIKA8fFxzS9uNS6XC6Ojoy0TNFQqFYyNjWl+cavxeDwYGRlpmaChXC7jzJkzml/canw+H4aHh1smaCgWizhz5ozmF7cav9+PwcFBU30oN1I+n8fY2JjmF7eaUCiEvr6+lpnPXC6HM2fOaLLKXU9HRwe6u7tNM5+W+tRhjGFqaqphwQJQjb4nJiYa9gYwE8YYJiYmGhYsANVfqMnJyZaYT0EQMDY21rBgAQAymQxmZmZaYj5rwWyjggWguuc8NzfXsJ9vJuVyuaHBAgAkEgksLCw07OebSbFYxNjYWEN/F5eWljTZhtOKpQKGZDKJ5eXlhr9OLpfTZO/Z7JaWlhoafNVkMhnE4/GGv47RFhYWNpQ8plYqlUIqlWr46xgtGo3KVjxpoZbN3swYY5iZmWlosFCzuLioy+eKkRhjmJ6elq2A0EI0Gm3oTZ0algkYisUiZmdndXu9hYWFDWdiW0E+n9ckwVGpaDSqy8XUKNlsFktLS7q93uzsrC4XU6MsLy8jkUjo9nrT09O6XEyNkkqldA2KpqamdLmYGiUej+saFE1PT5tiVdEyAcPCwoLuExaNRnV9PT3pGSwA1Yi8mZcq9X6v1KowmhFjTPf5rFQqplr61ZIR81k7F6cZ1Sp29JTP502xqmiJgKFcLhsyWZlMxhJ3xUxlJF8sFg1Zgk2lUpa4K1Y7n/l83pAl2EQiYYm7YrXzmc1mDfm9i8VilrgrVjuf6XS6oXkgYpaWlkxxVyxH7Xwmk0lD3idmCGg3FDB861vfwujoKNxuNy655BI899xzWo/rHMlk0rA3nhX23pffeRsn/vj/QebUSUXPN/LvZIW7jsSLz+PUff8NuYlxRc836heZMaZJHX2jLT3+KM781Z8jPzuj6PlGzWelUtGkjr7Rovf/BOPf/BsUFa4wGTWfpVIJmUzGkNdWY+Z/fQ+T//B3KCWVfTYZNZ+5XM7wbXLVAcMPf/hD/Nt/+2/xn/7Tf8Kbb76Ja665BjfffDMmJycbMT4AMDQhyRLJUIwh+dILOPylf6UocKD5lCEIiD/zFN75vX+hKHAw8u+k9VkkjcAqFSw9/igO/svPyQYOjDGaTxmsVMLCgw/g7c9/WjZwEATB0AREK/y+C4U8oj/9Ed7+3N2ygUOpVDJ01dno+VR9DsMVV1yBiy++GN/+9rdXv7d7927cfvvtuO+++zQfIGMMR48eNXSpcKBSBgrmyFKtJ3vmDKb/8TvnfC945VXov+ez8G3bfs73BUHAkSNH9BzeOTiOw0CxAFZqXOnhZi0fegdzP/r+u9/gOITfdy367/4MPMMj5zy3XC7j2LFj+g5wDZvNht7MCiCYd2si+epvsPDgA+9+g+fR8aEb0HfnPXD39Z/z3EKhgJMnla2UNYLDbkd3OmnY6ysRe/ZpxJ58fPVrzuFA5023oO+Td8PZ2XnOc7PZLM6cOaP3EFd5HA5EUuZeVVx89BEkXnx+9Wve5ULXhz+C3js+BUcwdM5z0+l0Q2+O5bS3t2N4eNiw11cVMBSLRXi9Xvz4xz/GRz/60dXv//7v/z7eeustPPPMM5oP0OgPEACo/O1/R2F8zNAxbNT6wMHoDxAAKH39v6G0ZMGEvTqBw/LyMiYmJgwdVv4//QcIFsi1OU+dwCGZTGJ6etqwIbFyCbk/+Kphr78Z9QKHWCxm6DkTLJ1G7k/+s2Gvvxn1Aof5+XlDk43tdjt27dpl3OurefLS0hIqlQq6u7vP+X53d3fDsnCNSNY5jwUSd8QkX3oByZdeWA0cKl3d8n+owayQCFUXY4g/8xTizz69GjiU2o0/P9+iswkIApYefxRLTz6+GjiUHNTtdKNqWxWLjz6yGjiUDE6KtezvOgChUED0pz/CwkMPrAYORl+PyuXyaotsI2wo6XH9YBv5FzDDG874EWxe8qUXcPjLv4fkM08ZPRTrOxs4HPri72LltVeMHo31nQ0cDv3r30H2yCGjR2N5tcDhnX/9L1A4c9ro4VheLXA49K//JYozxq1+mYGqFYaOjg7YbLbzVhMWFhbOW3XQihnO0DZ+BJsXvub96LvnsyiHI0gbuAfXFHgeHR+4Hn133YOsx4u0jgeKNSPObkfnjTej91N3I83xWNa5xr3ZcE4num79LfTecSfixSKWdTxQrBnxHg+6P/Ix9HzsE1hYXkHGApVejaIqYHA6nbjkkkvwxBNPnJPD8MQTT+AjH/mI5oMDYIomUGYIWjaqFih4R0YBwBRHtlp2PtcECu7+AQBAyQRZ4BysuQq2NlBwnd0qc1igTNSs1gYKznAYAOAwuHbfsr/rODdQcPgDAAB7ztjkd7vdbuicqq6S+OEPf4jPfOYz+Lu/+ztceeWV+Pu//3v8wz/8Aw4fPtyQ7E0zVEkMcgwomDerP3v6JKb+v78/53vrA4UaM1RJDAplsJIJclNELL/zNma//7/e/UadQKHGDFUS/YUcmGDekCH5ykuY//nPVr+uFyjUGJ3k7LDb0ZM199kBsad/haXHH139ul6gUGN0krPH4UBHxtylqguPPIjE88+ufl0vUKgxOsnZ6CoJ1bfvn/rUpxCLxfAnf/InmJubw759+/DII4807C/BcRw8Ho9hB4A4nU4Eduww5LWV4vh3I87wNe9H392fgXd0S93n8jwPl8tlWC2x2+2Gf+tWQ15bqcrK2VUDnkfkAx9C/12fPi9QqLHb7bDb7YYlQ3m9Xvh37zbktZUqzFW3bKQChRqn0wmO4wzLXfK1tSFgYBa6EpkT1QBVKlCocbvdeg7tPF6/H4GdOw0dg5zU69U8JKlAocbj8eg5tPN4vV5DX39D6/1f+MIX8IUvfEHrsYhqb283LGBob2835HVV4TjZQGEtv99vWGmQJeaT5xH50A2SgcJafr/fsNMzrTCfnMOOzltuQ9+n7oKru0f6uRyH9vZ2w05ctMJ88k4nuj/6CclAYfW5PA+fz0efnxJsHi9677xHMlCosdvtht5wtbW1GfK6Naq3JIxQqVRw7NgxQ+46tm/fDpfLpfvrqqG2SqVYLOLEiRMNHJG4Xbt2mSIvRYra+czn8zh16lQDR1Qfx3HYtWsXbDab7q+thtr5zGQyGBvT/9wTm82GXbt2mX7fXe18GnXYkNPpxPbt25tuPhOJBGZmlB1zriWPx4OtBq/OWqL5lM1mQzAY1P1129raTB8sAOoTi5xOJ/x+/c8PCAQCpg8WAPXz6Xa7DVkqDIfDpg8WAPXz6fV6Dfm9i0Qipr+4Aerns7293ZDfu2adz0AgAJ7X/9IZiUR0f831LBEwAEBnZ6fub75GlYqaQVdXl67zyXEcurq6dHs9vfX0SC+1a43neXR0dOj6mnrhOE73+bTb7ab4QG4EjuPQ29ur62s6nU6EQiH5J1oQz/O6XxvcbjcCAentEj1YJmBwOp3o6+vT7fW6uroMT3BpJLfbreubvre31xKrNRvl9XrRue4c/0bq7++Hw+HQ7fX01t7erusFZ2BgwBKrNRsVCAR0XVUcHBw05C5cL+FwGD6fT5fX4jgOg4ODplitsdS/aDAY1CWJxuPx6Prhb5RIJKLLm76tra1p7zbW6uzs1CUrPRAImOJuo9F6e3vhdDb+qOhwOGx4Mpke+vr6dNmaaPabLeBsE72BAV2Cop6eHtPcbFkqYKhFWo28yLlcLoyMjJgimms0juMwNDTU0Iuc1+vF0NBQS8wnz/MYGRlp6C93W1sb+vv75Z/YBHiex+joaENXUgKBgO7L9Uax2+0YHR1t6EpKOBxuiZstAHA4HBgdHW1o0NDZ2WmqrTJLVEmsJwgCpqenNS+98nq9GB4ebuqlyXoqlQomJyc1L71qa2vD0NBQUy9N1lMulzExMYFcLqfpzw0EAujv72+5+SyVShgfH9e8lC0UCqGvr68lgtm1isUixsbGUCqVNP25HR0d6O7ubrn5zOfzGBsbQ0XjRl/d3d2mC74sGTAA1VKYRCKBubm5TZdb1hLyOjo6Wu7NXsMYQywWw/z8vCbz2dPTg3A43LLzKQgClpaWsLCwsOmfxfM8ent7EQwGW3o+FxYWsKRBXwSbzYa+vr6W2NYRU6lUMD8/r8n5IXa7Hf39/ZY4c6FRyuUyotEokhocbe5wODAwMKBbjoQalg0YakqlEqLRKFKp1Ib+fJvPi57uTri9rftmX6tYLGJubg7LG+yR4G/zobu7Gy6PsSeSmUU+n0c0GsXKysaOxw20+9Dd0wuny9gT+8wil8thbm5uQz1ROI5DsN2Hrt4+OKiNNoDqmRfRaHRDq2EcxyEcaENnTx/s9uZNwFVjeXkZ0Wh0Q6thPM8jEomgs7PTtKuIlg8YasrlMhKJBBKJBIpF6b4PDocDwWAQoVAIjnIebP4kuI5hoM0adcN6KJVKSCQSSCaTsvPpdDpX59NeWAZbGgfXOQrO1/yJjkoVi0XE43GkUinZpWCXy4VQKIRgMAhbJg6WmAXXNQrO27p3xOsVCoXV+ZQ7ltvtdq/OJ5+eB1teBNe1FZy7+RMdlcrlckgkEkilUrJL6x6PB6FQCIFAAFxiBsilqvPpopsEoLpam8vlEI/Hsby8LDmftdYHtfk0a6BQ0zQBw1qCICCfzyOfz682rar1UHC73efkKLD8CtjM2WZMvjC4zmFwNoqW16pUKsjn8ygUCvLzmUmCRc+eItneAa5jGBzfWjkhciqVCnK5HIrF4jnz6Xa74Xa7z/nQYMtLYAtnmwcFusGFB8GZ/ENFb+VyefX9Wfs4s9lscLvdcLlc585nMgoWO3vqYagPXKgPHEfzuVa5XF59f8rNpxCfBhKzADhw4X4g2Es3XeuUSiXk8/nV+eQ4DjzPw+PxwOVyWWq+mjJgUIMVsmDTh979hs1x9u44aNiYrIzl0mCza7o32p3guraA8+h/smQzYCtxsPk1x0473NX5pLvjDWHpBbDF8Xe/4fSC694Czkl3xxvBErNg8el3v+Fuq74/HbSF1owotF5/t1YpgUVPQFgcAxO0zXptCevv1spFsNljEJYmwQxsUW5Z6+ezlAebOQoWnwFjNJ+qrZ/PYhZs+nB15aG17502Zv185lfApg5VAzOaz6ZDAYPYcmR6sfrGz28s+a9lic1nKgo2cxisoD5ZraXV3X5gYImZauBQ1LZ0s+nVe38yBhabBJs9BlYypguhZdV7fzIBbHEcLHoSrCyd/0SshQIGqf3LcgFs5iiE2BTdzSkltb9ezFXv5hKzdPehlNT7s5Cpzmdq86WwLUPq/ZlfBps+VM0boflURur9mU1Wb7pWjGn9TrRHAYOSBLLkHFhitvFjaQayCWSsuueZmtdlOJYnN59MAFuaAJY3fz5BS5CbT6ECtjAGZJO6DMfy5BKahTLYwmmwnLaH7BFjmL/XcMPJZKjaHOC6t1LSnlJyH8gOF5W0qSEX0Dq91SQzKmlTRu796W4H1zkCztncvRA0Izef3gC4jhFwDnP0QiCb0/IrDBzHSb/pK2Uw+jBWTu4CVy6BUUa6cnIfyOUCBQtqyN0RlwsULKgh9/4sFSlYaCItHzAAkLnIMWBhTLehWF21pl1i1YYJQK0OnsiTXfKtQKDtMuVkA7AihPSiPmNpBnI3CKUchExSl6GQxqOAAah+iHAcIHZnkUlAoGxf5WqrNmK12OkFCIL06XzkrNqhLrwNsIscZ5yYWT0AisioBQy8HRA7oG1pkuZTqdp82hziwe0i3XA1CwoYAHDtneAG9wP9e9/9gF4veqr+98n5At3ghvYDA3vEnzN/Rr/xWBjH8UCgpzqf/SLzyRiwNK7ruCyL56unEQ7tB3p31n8OqwCJGX3HZVW8DVx4oDqf3dvqP6dSgpCkJOdmQAEDAC7cD85x9sjTUH/9JxVWIOQ31kCo1fCRQXB2J3jeDvi76j8pm4RQzOs7MIviO4bA2Rzg7U7AF67/pOUlCGVt2xU3I463Vd+fNjt4lxdwizSdS0ZplUEBzu6sHq/N28B7A4BYflJ8iuazCVDAsA4f6hNfWps/re9gmkFkSHzfeJ5WbVTrGoFojsgCvT9V694q8gCjpfSNEJtPJgBrj5AmlkQBQz0dI/W/Xy5AWKZDSNTgeR4ID9R/sJiFkKOTNNXgeTsQ6K7/YC4NoUgnaarB251AW6T+gysxyl1SiXd6ALES9FSUcpcsjgKGOvj2CGAXKQWivWLV+GAPYBM58oPuitULD0is2tB8qtY5CtFVG1oFU69LJJcBoIozi6OAQUz3lvrfF8pUxrYRnaP1v09lbKrxPA9EBus/WMxByKT0HZDF8WcTIevKr0DIZ/QdkMXxdjvQ3ln/wUyCcpcsjAIGEby7HXD56j9IZWyq8b6QeJlljMrY1OID3eJlgYtUgaKaVO4SrYKp1zEsXnFG82lZFDBIESsTYgxYmtB3LM1ALCFKqAC0aqNep8gqWKUEgXp1qMLzfPUiV08pDyGT0HdAFiddcZaBQF2ALYkCBgm8wwV4Q/UfXF6EUKYEHjV4lw8Q6yGRnKNVBpV4XwBwiBw2FqMyNrX49g7xw7Fo7121asWZSO4SncNiSRQwyOmWSIhaoIQo1cRWbaiMbWN6qIxNU11iq2BlCMk5fcfSDCQrzmK6DoVsHgUMMuTL2HL6DsjiqIxNW7zTK1HGNk9lbCrxnnaJw4cod0ktvj1MFWdNhAIGJSTL2GiVQTXJMjZKiFJN7K6YGqdtjGjuEjVO2xCJ3CWqOLMWChgUqB4+JFHGlqUyNjWqZWw99R/ML0Mo0OFDavB2B9DeUf9BapymGu90A95g/QepcZpqvLuNKs6aBAUMCvFBiTI2uotTL9QPcHQEt2Y6RqhxmpbEzmEBKGFvI3q21/8+NU6zFAoY1BA7fKhShJBe0HcsFlctYxuq/2ApR2VsKlHjNG1R4zRtVRuniVWcUeM0q6CAQQXeFxQvY1uiw4fU4v2d4mVsVDGhGjVO0xg1TtNWl1TFGb0/rYACBrWkurElZvQdSzPoEjt8qAwhSYcPqUaN0zRTzV0SWbWhxmmqUeM066OAQSXeJVHGlqRubGrxHr9EGRsdPqQWNU7TFh/sFT98iO6K1aPGaZZGAcNGSJaxjes5kuYgVcYWn9J3LM2AGqdpq0uicdrykr5jsThqnGZtFDBsAG93AG1iZWxxKmNTiXe6AU+g/oN0+JBq1DhNW5KN05YmaD5VosZp1kUBw0Z1joiXsVFClHqiqzagMraNoMZp2hI9Mpoap20INU6zJAoYNqh6+FBf/QfzKxDyGX0HZHG83Q74O+s/SGVsqlHjNG3xbmqcpiVqnGZNFDBsRrBXvIyNEqLUiwyLr9rQfKrXLbL3DlDjtI2gxmnaosZplkMBwyZUDx8arv9gKQ9hhcrY1KgePjRQ/8FChsrYVKqWsYkcwU2N01SjxmnaosZp1kMBwybx7R0Shw+N6zqWZsCHqIxNU1TGpi1qnKYtqjizFAoYtCCaEFWGkJjTdyzNoHOk/vepjE016cZpWWqcphI1TtOWdOM0qjgzGwoYNMB7pMrYpimBRyW+LUxlbBqixmkao8Zp2qLGaZZBAYNWxFYZGANiVMammlQZW5JWbVSjxmmaocZp2qrmLolUnFHjNFOhgEEjvNMNeIP1H0xTGZta0mVss7TKoBI1TtMWNU7TFh/qp8ZpFkABg5bEjuQFgEV606smdfgQJZSqR43TtEWN07QlVnFGjdNMgwIGDUl2Y8um6PAhlXi7E/CF6z+4sgShXNJ3QBZXbZzWXv9BapymGjVO01a14owap5kZBQxaCw9KlLFRAo9qXSMQLWOjMkv1uiQOH6IyNvWocZq2qHGaqVHAoLFqGZvI4UPFLIQclbGpwfN28TK2XJrK2FSixmnaquYuUeM0rVDjNHOjgKEB+GAPYBM7fIgSolQL9dPhQ1qixmna6qTGaZqixmmmRQFDo4iVsZWLENKL+o7F4uTL2JK6jsfqqHGatqhxmraocZp5UcDQILwvRGVsGuL9XYCNytg0Q43TtEWN07RFjdNMiQKGRhJL4GEVKmPbiC6xw4dKVMamEjVO0xY1TtMWNU4zJwoYGoh3+QC3VBkbrTKowXsDVMamIWqcpi1qnKYxapxmOhQwNJrYYTlglAC5EVKHD8Wn9R1LM6DGadqixmmaocZp5kMBQ4PxdifQFqn/YCZGZWwq8U4P4PHXf5DK2FSjxmnaosZp2qLGaeZCAYMeOkchevgQlbGpJ3n4EH2IqEaN07RFjdO0RY3TTIMCBh1Uy9h66z9IZWyq8XY70C5SxpZJQCgV9B2QxVHjNG1R4zRtUeM086CAQS+hPipj01KHRBkbrdqoJ9U4jd6f6kkePjSu61CaAjVOMwUKGHQiW8aWSeg7IIurlrH113+wkIGQpzI2NSQbp+VSVMamkmTjtGVqnKYWNU4zBwoYdCRZxkZ776rxoT7xMjY6klc9ycZptMqgGjVO0xY1TjMcBQx6kypjo4Qo9TpG6n+/XICwHNN1KFYn3zgtre+ALI4ap2mLGqcZjwIGnfGedonDh6gbm1p8exiwu+o/SHvFqkk3TqNVG9WocZq2qHGaoShgMIJoQpQAxCb1HUszEEuIEioQErP6jqUZUOM0zVDjNG1R4zRjUcBggGoZW6D+g+kFSuBRiXe3AS6RMrYErdqoVW2cJnb4EJWxqUWN0zRGjdMMQwGDUUSPjAYl7G1ED5WxaUq0jI0ap20INU7TDDVOMw4FDAbheTvg76r/YDYJoZjXd0AWJ1/GRqs2alDjNG1R4zRtUeM0Y1DAYKTIkERCFCXwqCZZxkbzqZpU4zRaSlePGqdpixqn6Y4CBgNVy9hEDh8qZiHk6PAhNaQPH0pDKFIZmxqSjdNWqHGaWtQ4TVvUOE1/FDAYjA/2ih8+RAk86oUHqIxNS9Q4TVvUOE1b1DhNVxQwmIFYQhSVsanG8zwQGaz/YDEHIZPSd0AWR43TtEWN07RFjdP0RQGDCUiWscWojE0tPtAN2Bz1H1ykChTVqHGatqhxmrakGqct0vtTSxQwmIVoAk8FoMOH1OsU+RCplCCkqIxNDWqcpi1qnKYtydylbIoqzjREAYNJ8G4f4BY5fCg5R6sMKvG+AOD01H8wRmVsakmXsdHeu1rUOE1jko3TaNVGKxQwmInYkdFUxrYxVMamLbFVsEoZQjKq71iaATVO0ww1TtMHBQwmUj18iMrYtMI7vVTGpiHpxmlUxqYWNU7TFjVOazwKGMymS6qMjRJ4VBO7KwYDFsb1HElzoMZp2qLGadqixmkNRQGDyVTL2HrqP5hfhlCgMjY1eLsDaO+o/2AmTqs2KlHjNG1VG6eJHT5EjdPUosZpjUUBgxmF+gFOpIyNEqLU6xgRL2OLUkKUatQ4TVs92+t/nxqnbQw1TmsYChhMqFrGNlT/wVKOythUki5jW4GQX9F3QBZHjdO0Vc1dCtV/kBqnqUaN0xqHAgaT4v2dVMamIZ4OH9IWNU7TllTuEjVOU48apzUEBQxmJnZkNJWxbYxYGVupAGElrutQrI4ap2mLGqdpixqnNQYFDCbGewJUxqYhvj0iXsa2OK7rWJoBNU7TGDVO05Zk4zSaz42ggMHsJA8fmtJ3LM1A7Nx5oUxlbBtBjdM0Q43TtEUVZ9qjgMHkeKcH8IiUsdHhQ6rx7nYqY9MQNU7TFjVO01ioXzx3iVYZVKOAwQpEDx8ClbFthOjhQwyITeg7lmYg1TgtSas2qlHjNM1Q4zRtUcBgAbzdDvg76z9IZWyq8Q6XeBlbepHK2FSSbJyWoMZpalHjNG1R4zTtUMBgFZFh8cOHKMFMPbG9d4DmcyOocZq2qHGatqhxmiYoYLCI6uFDIt3YChkqY1OpWsYmkhCVS0Eo5vQdkMVR4zRtUeM0bVHjNG1QwGAhfIjK2DRFZWzaosZp2qLGadqixmmbRgGD1XSO1P9+uQhheUnXoVhd9fAhsTK2LIQslbGpIV/GRocPqUGN07RFjdM2jwIGi+HbwhLd2CZoaU0lPihRxrZAe++qSTZOo1UG1ahxmraocdqmUMBgRZJlbHP6jqUZdIodwV2EkF7QdywWR43TtEWN07RFjdM2hwIGC5IsY0vO0iqDSrwvCDhEytiWqIxNLWqcpi1qnKYxapy2YRQwWJXU4UPUF0E90TK2CpCY0XcszUCycRodPqQaNU7TDDVO2zgKGCyqWsYWrv/gyhKEcknfAVkc75IoY0tGIQgVfQdkcdKN02jVRi1qnKYtapy2MRQwWFnXCETL2OhNr55kGRstpatGjdO0RY3TtCXVOI0qzuqigMHCeN4uXsaWS1MZm0q83QG0URmbVqhxmraocZq2JBunUcVZXRQwWF2onw4f0lLniHgZGyVEqUeN07Qllbu0RI3TVKPGaapQwGBx8mVsSV3HY3XVw4f66j+YX4GQz+g7IIujxmna4h0uwCvSOG2ZGqepRY3T1KGAoQnw/i7ARmVsmgn2Uhmblqhxmra6qXGapqhxmmIUMDQL0TK2EpWxqVRdtRmu/2ApDyFDZWxqUOM0bVHjNG1R4zTlKGBoEryXyti0xLd3iB8+RI1/VKPGaRqjxmnaosZpilDA0Ewky9im9R1LMxBNiCpDoCO41aPGaZqhxmnaosZpylDA0ESqZWwihw9RGZtqvEeijC1OZWxqUeM0bVHjNI1R4zRZFDA0my6JBB76EFFPbJWBCUBsUt+xNANqnKYtapymGWqcJo8ChibD2+1Au0gZWyYBoVTQd0AWxzvdgDdY/8H0ApWxqUSN07RFjdO0RY3TpFHA0Iw6JMrY6PAh9cSO5AWARVqqVE3y8KFxXYfSFKhxmraocZooChiaULWMTaQbWyEDIU9lbGpUy9i66z+YTdHhQypJNk5bpsZpalUbp7XXfzAZpdwllahxmjgKGJoUH+oTL2OjI3nVCw9KlLHRqo1q1DhNW5K5S+N6jqQ5UOO0uihgaGYdI/W/Xy5AWI7pOhSrq5axiRw+VMxCyKX1HZDFUeM0bVHjNG1R47T6KGBoYnx7GLC76j9Ie8Wq8cEewCZ2+BCt2qhGjdO0RY3TtEWN085DAUOzE1taEyoQEtSNTTWxMrZyEUJ6Ud+xWBw1TtMWNU7TFjVOOx8FDE2Od7eJHz6UoMOH1OJ9IYnDhyZpPlWixmkao8Zp2qLGaeeggKEVUBmbtqiMTVvUOE0z1DhNW7IVZy3WOI0ChhbAO1wyZWytmcCzUbzLB7ilytholUENapymLWqcpi3JirMWW2WggKFVSJaxvZsQxRjTZTiWJ7bKAHbOUjrNp0IKG6fRfCqksHEazadCChunNft8UsDQIiQPHzpbxsbSi2CzR/UdmEXxdifQFqn/4EoMQqkAlpoHmzuh78AsSrZxWqUElpwDo+oJRaQbp01DqJTB4jNglCeiiGzjtHIJQmwKrMn7y3Cs2UMiskoQBGD8jepd23k4AAzg7eBHL9Z7aJYkCAIw9jqAOr9CHFfNEXG4wQ/t131sViSUy8DEG/UfrM2nqw38wB59B2ZRQjEPTB2s/2BtPr1B8L079B2YRQn5DDBzuP6DHF/9XG2LgBddfbQ+WmFoITzPA5FBkUfPXvTqBhOknmoZW2/9BxnNp1qSjdNoPlWTbJxG86maZOO02jw2+XxSwNBi+EA3YHOIP4EJTb8Pp6lQn3gZGwBQwp46Uo3TgGolClFOqnEaUG0rTpQTqzirafKAQST1kzQjVimDJeeAikxzH8akP7QJAIBVSkBiVvpDt8k/QLTEykUgPvPu3W89FIApxkqFcxJG6z+J5lMpVszJz2eTvz9phaGVLC8BazKkRdGHiDKpBSAlc04ArdgowhirBrPLMqdl0ntTEcYYWGIGWJHpGUPzqQhjAlhsCsgkZJ7Y3PNJAUML4YI94Pr3AA6R/hI1tOyrCBfuB9e3S7zmvabJP0S0wHEc+I5hcD3bxft1ADSXCnEcB75rC7iurbRlpgGO48H1bAfXOSLe/wRo+vcnBQwthnO3gRvYB/i7xJ9EHyKKcR5/dT7FSiyBpv8Q0RLnC4EbvADwheo/gTFasVGBa49U51OsZJXem4pxHAfO3wVucJ948mOTf3ZSwNCCON4GvnMEXO/O+gmQ9CGiCmezg+/eCq57W/0T4Zr8Q0RrnM0BrnsbuK4t9e+O6f2pCmd3guvdCa5j+Py7Y3pvqsY53OD6doMLD+C8w/Ca/L1JAUML47yB6t1H27pjo5v8Td8oXFu4evexvpSN5lM1juPAtXdUV2/WH8NN86kax3HgAt3gBvauO9CJVmw2guM4cKE+cAN7AKfn3Qea/L3ZdFUSxWIRuVwO+Xwe+XweglBNOuN5Hm63G263Gx6PB06nExxVAoCz2cF1bwPzxsCWxqsZ/2vuOgqFAvL5PHK5HAqFAiqVSnV/lOfhcrng8XhW55NU7+bQsx1YXgRbmqx+gJz9EGGMrb4/a/MpCMLqfNbem263m+bzLM7hAvp2Aal5sPhUtYJCEABbdT4LhcLq77vYfHo8HjgcEqXELYRzeoD+PUBiFiwxC4BV35+cDYyx1c/NXC6HYrG4Op82m+2c+bTbm+7SsSGcywf07wWLTwOp6DmfnbX5rL0/189n7XfdSvPZFCc9CoKAVCqFeDyOXC6n6M+4XC5EIhEEAgHYbBJJQS2ElYtgC2cgtHciXeIQj8eRzyvr+e52u1fnk+dp4QoAWClfnc9AP1KFMmKxGIrFoqI/6/V6EQ6H4ff7aT7PYsUs2PwZVDpGkMrkEYvFUCrJlAif5fP5VueTbhSqWH4FbOEMyl3bkUwvIx6Po6ywEV1bWxsikQja2tpoPs9iuTTYwhmUenYjmUwiHo+jUlGWQO73+xEOh+Hz+Uw9n5YOGBhjSKVSmJubU/wPsx7Hcejp6UE4HDb1P5QeGGNIJBKIRjfecZHnefT29iIYDNJ8MoZYLIb5+fkNL/vabDb09fUhEAhoPDrrYYxhcXEBCwsypZcS7HY7+vv70d4u0m20hQiCgIX5eSzFZEovJTidTvT398PnE+lb0UIqlQqi0TkkEskN/wyXy4WBgQF4PB75JxvAsgFDqVTCzMwMVlZWNPl5Xq8X/f39cLlkSg6bVLFYxMzMDDKZjCY/r62tDf39/S27FFwoFDA9Pa14xUuO3+9HX1+fZZYutZbL5TA9PY1CoaDJzwsGg+jt7W3Z1cVsNoupqSnFKzRywuEwenp6WnY1bGVlBdPT04pXaOR0dHSgq6vLdPNpyYChUChgbGxMs3+cGp7nMTIyAq/Xq+nPNbtcLofx8fENr9KIsdlsGB0dhdst0uWtSWUyGUxMTGx4lUaMw+HAyMhIywW1y8vLmJyc1Dw5z+VyYWRkpOWC2lQqhampKc1/rtvtxsjISMsFtfF4HLOzs5r/XJ/Ph6GhIVMFtZYLGAqFAs6cOaP5xa2G4ziMjo62TNCQy+UwNjam+cWthud5bNmypWWChkwmg/Hx8YZlntvtdmzZsqVlkiKXl5cxMTHRsJ/vcDiwdevWlrnIJZNJTE/LHG+8CS6XC1u2bDHVRa6RYrEY5uYUnJ67QV6vFyMjI6ZZaTDHKBQSBKEhd8JrMcYwMTGh+eqFGVUqlYbcCa+lx7+ZWZRKJUxMTDS0TK1cLjf838wsCoUCJicnG/oaevybmUVtW6eRCoUCpqamWmI+V1ZWGhosANWto5mZmYa+hhqWChii0ahme25SKpUKZmZmmv5NPzs7q0tgVC6XG/6LZTTGGKanp3W5kBcKBSwsLDT8dYxUm089fgdzuRyWlpYa/jpGEgShIdsQ9aysrCCRkOm5YHGVSqXhwVdNKpVCOp3W5bXkWCZgyGQyiMfjur3e8vIyUqmUbq+nt3Q6revfL5lMYnl5WbfX01symdQsYVSJpaUlZLNZ3V5Pb0tLS5oljCoxPz+vuITYihYWFhSX9Gphbm5O19fTWzQa1XUVWsuEys2wTMBgxB3VwsJCU64yMMYMm89mZNR8Li5uvLzQzARBMOTv1qyrDJVKBbFNlE5uBGNM1xs8PZVKJd1XUARBMMWqjSUChkKhoOvdW02xWDTkddUqp9OoqLgbq508prfaCYdmV0omIKi4O1pZWdFlq2y95eVlS9zFleIxMBV3R6lUypAcjVQqZYq7ODnF2BKYipygRCJhyI1PPB63RK5NcXEBTMU4jQqEYrGY4TewqgOGZ599Frfddhv6+vrAcRx+/vOfN2BY5zIyUrVClJwbP40j/+qzmP/ZjxQFDkb+ncwQJctZOfwOjvze57D40M8VBQ56372tZYX5TL36Eo584bcRe+KXigIHo96fjDEkk0lDXluN+K+fwNF/8zuIP/NrRYGDUfNZO4HX7BYf+jmOf+ULSL78vGzgYOTKSblcNnxbV3XAkMlkcOGFF+Jv//ZvGzEe0dc0ihVWGACgnE5h9p++oyhwMPLvpNVBW41Wiscw/Z1vyQYOjDFDcwms8v4sLsxj8pv/XTZwEATB0FUoq8xnYWYaE//967KBQ7lcNnQVyip5NrnxMxj7+p/IBg7FYtHQii+j53NT5zBwHIf7778ft99+u4ZDOpcgCDhy5EjDfr4S4WOHICTNeydXXFpE6uXnz/me3R9A1+13oOPm22Bbc8xouVzGsWPH9B7iOcIHX4dg4g+Swuw00m+8es73HOEIuj/2KURuuAX8mjMQCoUCTp48qfcQV3Ech+CrL6pa8tdbbuIMVt55+5zvObu60XPH3Qhfdz24NWcgZLNZnDlzRu8hrrJxHNpfetaw11cie/I4MsfP/Ux09Q+g55OfRujq94NbcwZCo8+xkOMUBHhfecGw11di5cg7yJ05dc73PCNb0HPnpxG4/L3g1pyB0OhzLOR4vV5s2bLFsNc3fcCQy+Vw+vTphv18Jbi//waKk+OGjmGj1gcOKysrGB8fN3RM7L//GcoxayaYOcIRdH/8TkSuvxm809mwU/PUKP+3PwTT6Mhkva0PHBp1ap5SrFxG+b/+X4a9/matDxwWFxcxPz9v2HhYOoXyn/+xYa+/WesDh7m5OUO3IHmex549e4x7fcNeWSEzHPhjdKLJZpyzVXH/j1DKWmPJ1axK8Rim/+Gb1a2Khx9AOW/+JE4zW79VUbZo4GMWq1sVv/+7iD/7FMoGJOM2k9Wtiq9+EcmXXzA8KVYQBEOvR6YPGIg2yukUlh55ELl1S8OGsG78taoUj2Hx4QeQO3bU6KE0heLCPBYefgCFdUvDZGMK01NYfPBnKE039qTMVpEbO43FB+9HZT5q9FAMZfoD1M3QItkEQ9gUZ2c3uu+4C+HrrsdKLod4g4/blWXx+XT1DaDnU/cgdPW1SKbTSJro6FYrco9sQe+nPo3AFe9FLB5HKtraH8qb5d2+Ez13fgb+iy+rng/SpOd16KVt73703PkZtF9wYfWYZoMrk4y8Jpo+YDBDZz6Os+ZCzNpAgT/bkc9lgrpozqIRw9pAoZZYZob3p1WtDRRqiWVGN9Uyww3KRq0NFGp/D6Pn02azwbzpuNLWBgo1Rv++G/3vqTpgWFlZwalT7y4bjo2N4a233kI4HMbQ0JCmgwOq3fnsdrthe0cCA7r+9G/Q1W7ebovLB9/Eqf/yf69+XS9QWH3M6QTHcYbtgzHOhr5v/E9EfOa90CZeeBbj/++frn5dL1CoMboLJ7M5Mfq9nyHgNm+L5qXHHsLUt7+x+nW9QKHGs6aixwicx4ftP3wEbS7z3ktFf/x9zP3v765+XS9QqDF6Pn09vdjz88cNHYOcme/+PRYe+Mnq1/UChRqj59PoLsqqfytee+01XHfddatff+UrXwEAfO5zn8M//uM/ajawtbxer2HNN5YEFx55bQqjYS8uHwxiJOQ17V2IVKBQw3EcPB6PYfW80YoTD78yie0dPlw+GMJAwG3a+ZQKFGp4nofL5ULBoGS9qaIDj7w8jl2dbbh8MIRev3kDW6lAocbhcBh6g3Aqa8fDL41hT3c7Lh8MoavNvIGtVKBQ43K5DL1BMPoCq4ZUoFBj9N/H6NffVFmlXowsXXsl48VC9t1KjU6fE5cPhrCnux023hwXuuzYaWRPHpcMFNYyqnSNMeCFZS+ShXfns7fdhcsHQ9jZ2QbeJPO5cvQwigtRyUBhrYWFBUN6SQgMeDrlQbb07jbTYMCDy4eC2BbxmSYQS7/5GoR8XjJQWMuo0rWyAPwq4UZJePcjcTTkxeVD5rpRSL78AjiHQzJQWGt6etqwEyy3b99u+DK+nPgzv4YjHJEMFNYaHx837AC6nTt3wqHgM75RLBEwMMZw/Phx3e86UmUezyXq/+O0OW24ZCCIi/oCcDvkLypmUqlUcPz4cd3PeV8q2fBysv6ilt9tx2UDQezvDcBlt1bOiFGHYUVLDryWrD9XYY8Dlw0Gsa/HD4fNWvNZLBZx4sQJ3V93uuTCW8n6j3X6nLhsMIQ93W2wKwh6zMSos2x8Ph9GR0d1f91GM+osG7/f35BtfzUsETAAMOQAkiMFH86kpYMUB8/hgl4/LhsMIuQxNiFFDSPu4t7K+TC9Ij2fLjuPA70BXDIQgN/E+/LrGXEXt371qx6Pg8dFfUFcMhCAz2neffn19L6Lq7f6VU/tRuFAXwAeC90onD59Wvcjt4eGhuD3+3V9TT0wxnDy5Endj9zesmWL4TkMlgkYBEHAqVOn9PtH4m14MuZEvqzsLpwDsKOzDe8ZMvc+ck2lUsHJkyd1W7URbA48vmBDWVD2duM5YHdXO64YMvc+ck2pVMLJkyd1W7Up21x4fL66LaGEjeewt7sd7xkKIew1f2BbLBZx8uRJ3fbeC3YPnpwTFB8RUrtRuGIoZOqE05p8Pn9Osnqjtbe3Y2hoyDTbOFrLZDIYGxvT7fWCwSAGBgZ0ez0xlgkYAH2X1oaHh2F3e/HWbAqvTSeRKSo/cXJbhw/vG42Y/kKn59La6Ogo4HDh9ekU3pxNIldSfmHd3dWGa0Yjpr/Q6Zlrs23bNhRhw+vTKbw1l0JBRWC7r8ePq0fDpr/Q6ZVrw3Ectm/fjkwFeG0qiYPRNEoV5YHtgb4A3jscNnVlBaDfKi3P89ixYwfsdnPPx2ZFo1EsLTX+iHu73Y7t27fDpiCfqtEsFTAAwNLSEqINPtglEomgt7d39euyIODI/ApenUpgMaN8hcMKF7r5+XksNvhgl66uLnR1da1+XaoIOBRN45WpJBI5ZUfXchxwQY8fV42Y+0I3MzPT8JbTfX19CIfDq18XygIOzqXw6nQS6byyFSMrXOgYY5iammp4hdTAwACCweDq1/lSBW/OpvD6dBIrCm8U7DyHS/qDeM9wyLRbFYwxjI+PN7wj5/DwMNrb2xv6GmYgCALGxsYautXDcRxGRkbg8/ka9hpqWC5gABqblR4KhdDX11d3KY0xhvFEFq9MJjGWUFaWaPYLHWMM0Wi0YfkMnZ2d6OrqEp3PU7EMXplMYiql7JfOxnG4sM9v2gsdYwwzMzMNy2fo6elBR0dH3ccEgeH40gpemUxgbllZmaed53DJQBDvGTLnhY4xhsnJSSwvLzfk568PvtaqCAxH5pfxioobBaeNx+WDQVw2GITLbr75FAQBExMTDQsaBgcHEQgEGvKzzahSqWBsbAz5fF7zn81xHIaGhkwVfFkyYAAas1zZ1dWFzs5ORftuCysFvDqVwOH5ZUX7yDaOw4E+P6404YWOMYalpSXNlyulLm7rzaXzeGUqgWOLK1DyjrTzHC4dCOIKE17oGGNYWFjQdOWG4zj09fUhFAopev3pVHU+Ty4puzC4bDwuM+mFjjGGubk5xONxzX4mx3EYGBhQdHFbvVGYSmIsruxGwePg8Z6hMC7uD5iuSkUQBMzMzCCVSmn2M3mex+DgoKkubnqpVCqYnp7WNKi12WwYHh42PMlxPcsGDABQKBQwPT296SUhl8uF/v7+Df3jrBTKeH0miTemUyhU5PeRzXyhy+VymJ6e3vQhRG63GwMDAxs6BTGVL+G1qSTemk2dUw8vxswXumw2i+np6U0n6nq9XvT392+onj2eLeLVqSQOzqVRUfCrbuYL3crKCqanpzedqNvW1ob+/v4N1bMvrhTwylQCh+aXFQW2PqcN7x0O48I+v+nKMdPpNGZmZjbdEdjv96Ovr6/pcxakMMaQSqUwOzu76cTnYDCI3t5eU+QsrGfpgAGo/kMlk0nEYjHVy0JOpxORSAShUAj8Jn+Zc6UKfjOZwGvTSUWVAGa90DHGEI/HEY/HVQcOLpdrdT43mx29UijjpckE3ppJWfpCJwgC4vE4YrEYSipbDXs8HkQiEQQCgU3PZzpfwgvjcRyMphVd6NqcNlw5HMaBvoBpDigDqndztflUGzh4vV5EIhH4/f5Nz2ciW8Tz43Ecnld2V+l323H1SBj7uv2mOaAMqM7n0tIS4vG46sDB5/Oho6OjJVcVxJTL5dX5VBs4tLW1obOz0zT5CvVYPmBYK5fLIZlMIpfLIZfLnVeSxXEc3G43PB4PAoEAvF7tT29bKZTx0kQcb81a+46OMYZcLodUKoVsNot8Pi86n16vF4FAAB6PR/P5TOVLeFHlhe69I2Fc2GuuCx1jDJlMBul0GtlsFoVCoe58ejyec+ZTa/GzF7ojFr/QMcawsrKCdDqNXC5X92aB5/nV+QwGgw05cXBxpYDnxmI4oXDrJ+x14JqRCHZ1tZmq5JAxhuXl5dX5rHezsHY+Q6GQ4Y2QzEwQBCwvL2N5eRnZbLbuKqPNZjtnPo08wVGppgoY1mKMoVQqrUZ5PM/D4XDo9kuaOntH947FL3Q1Rs+n2gtdwG3HVSMR7OtuN9WFrsbo+VxcKeDZsZjiHAezXuhqBEFAqVRaDcJsNhvsdrtuY51L5/HsmZjiZOiuNieuGY2Y6gjvtYyez2azdj45jludT6tp2oDBLOLZIp4fi+HIgrJT68x+oTPawtk7OlUXutEIdnWa80JntI1c6N43GsFWk17ojDaZzOHZM0uYTinbHu3zu/G+0QhGwuZKbiOkHgoYdKL2QhfxOnA1XehEzZ690I3ThU4TG7rQbYlgJEQXuvUYYxiLZ/HsWAxRheWtQ0EP3r8lgv6Adbo7ktZDAYPO1F/oXGcvdObplmcmk4nqB7PSC12/341r6EJXV+1C98yZGOZXlF3ohoMevI8udHUxxnBiKYPnzsSwlFVWKbM14sX7RjvQ3W7uU2JJa6KAwSATiSyePRPDTFrZhW5L2IsbdnQh6DF/YozeGGM4E6/Op9IL3c7ONnxoeyfaTXYmhhkwxnB8cQXPj8UVX+j29bTjA1s74XWap+LHLARWPQDq+bE4knlllTIX9wfwvi0RuE1UQUUIBQwGUnuhs/Mcrh4J47LBkCkTI41Wu9A9NxZHTMGFzmnj8f4tEVzUHwBPqzfnUXuh8zh4XLe1Exf0tNNqWB0VgeGdaBovjMexXJAvCW1z2vCh7Z3YSduSxCQoYDABtRe6Tp8TN+7swgAtA9clMIbD88t4fiyGlILeCr3tLty4sws97ebvMmqEisBwcC6NFyeUXegGgx7ctKMLER+V3dVTrgh4YzaFlycSyJbkzz7YGvbielpdJCZAAYOJqL3QHejz49otHXCb7MRIs6he6FJ4YTwu20SIA3DpYBDXjETgtJvnPAwzKVUEvKnwQsdzwJXDYVw5FILdROeLmEmxLOC16SR+M5WQ7TZKq4vEDChgMKHahe758bhsW22vo7psuduk9fFmUKoIeHMmhRcn4sjLfDD7XXZcv6MT2zvadBqd9dQudC9PxlGUaQMd8jhw444uKhuUkC9V8JupBF6dkj8lttPnxE07uyjJlBiCAgYTy5cqeOZMDG/OyjeJGQl5cePOToQ8tAwsJlMs49enlhQd57ujw4cPbe+E34QdRs0inS/hyVOLOLEoXyq8t7sdH9jWAZ+TkkzFJHJFPH58UdGZGBf1BfD+LRFaXSS6ooDBAmZSOTx6fEG2xa6d5/De4TCuGKJlSynj8SweO7GARE46kc9p43DNaASXDAQpKVLCyaUVPHFiEWmZ/Aa3ncd1Wzuwv3fzvRyaFWMMRxdW8KtTi7Kriz6nDR/cRquLRD8UMFhERWB4bTqJ58disl0cO7zVpMjBIC1biilXBLw0mcDLEwnZnh897S7cREmRkoplAc+Px/DqdFL2KPSBgBs37exCh4/OGhCTL1Xw9JklvDWbln3uaNiLGykpkuiAAgaLSeZKeOLEAk7H5Zct9/f6cd3WDtO10TaTWKaIR08sYCop3SKdA3DJQBDXjEbgoqRIUfPLBTx6fB5zMicc8hxwxVAI7x0Om6rpmtlMp3J4TOHq4lUjYVxOSZGkgShgsKBaGeaTJxdls/+9Dhs+sK0De7upNl4MYwzvRJfx1OlF5ErSSZHtLjuu396JHZ2UFClGYAxvzqTw7JkYChXp+Qy6HbhxZydGw+Zt6Wu0isDw6lQCz4/HZZMiO3xO3LSjCwO0ukgagAIGC8uXK3j2TAxvzMgnRQ6HPLhxRxfCXkqKFJMtVvDU6UW8E5VPitzW4cP12zsRoKRIUcuFMn51chHHFuUbr+3pasMHtnWijU7eFJXMlfD4iQWcUbC6eGGvH9fS6iLRGAUMTWA2ncejxxewIHNapI3ncOVQCO8ZDsHO0zKwmIlENSkynpVOinTYOFwzEsGlA0HqLCrhdCyDx04sIC1ztojLzuPaLR040EdJkWIYYzh2dnVRScn1B7d1YA+tLhKNUMDQJISzSZHPjcdQkqmND3sduGVXN50UKaEsCHh5IoGXJhOoyCwDd7W5cOuubmoYJKFYEfDCeByvTCVkkyL7/W7csrsbEVoNE6VmdXEk5MHNu7ppNYxsGgUMTSaVL+GJE4s4FZOujec44H2jEbxnKER3HxLi2SIeO76ACZmkSBvP4YPbOnBRX4DmU8LCSgGPHl/ArEzTNYeNw407urCvx6/TyKxpNpXHL4/PyyZFuu08btnVTbk3ZFMoYGhCtba6T55clD37fzTkxYf3dNOBOhLY2SO7f3VqCTmZI5F3drbh5p1ddKCOBMYY3ppN4ekzMdkjkS/oacf1O7rgpEoKUWpKri8dCOLarRHakiQbQgFDEyuUBTw3FsPr00lI/SP7nDb81p4eDIfo+F4puVIFT59ewttz0rXxAbcdH9nbiz4/ndsgZaVQxq9OLeLognRSZMTrxEf29qCrjbZ8pKTyJTx+YhGnZVYXu9tcuH1vD0K05UNUooChBUSX8/jlsQXZFtpXjYRx1UiYTjWUMZWsnrwp1VmU54D3b+nA5YNB2qKQceZsUqRUwzU7z+FD2ztxIZ0SKam2uvjEiQXJkmunjcdNO7uwp7tdx9ERq6OAoUUIjOGliQSeH4tJrjYMBT24bU8P2qm8TVJFYHh2LIbfTCYkn7c14sWtu3rgddIWhZRSRcCvTy3J9k3Z3dWGm3Z2wWWn+ZRSKFfw2PEFHJFZvTnQ58cHt3XS4VlEEQoYWsxkMocHj0Qlcxs8Dhtu292NLRE6TEfO6VgGDx2dl8xtaHfZ8Vt7euiobgWOLizj0WMLkgc+BT0O3L63h47qlsEYw8G5NJ44uSh54FOnz4mP7O1Fh4+2KIg0ChhaULZYwcNHo7LHS18xFML7RiN01KyM5UIZvzgcxVRKvJKCA3DNaATvGQ7Rlo+MRK6IBw5HEZU4XprngA9s68Ql/VSVImdxpYAHDkexJLGF5uA53LCjCxf0UlUKEUcBQ4tijOGVqSSeObMEqcTqPr8bH9nbQzXcMgSB4YWJOF4Yj0s+byTkwYd399CJhjLKgoCnT8fw2nRS8nnbO3y4ZVc3nWgoo1gR8OTJRRyUSdjd292OG3d0wUn9UkgdFDC0uNlUHj8/Mid5Cp/LzuNWquFWZDyexYNHo5Kn8PmcNty2uwcjYapKkXNyaQUPH51HXqL80u+y4yN7e9BPB5HJOhRN47ETC5KHu4W9Dnxkby+6qSqFrEMBA0G+VMEjx+dxYlG6HOuSgSCuoxpuWZliGQ8emcd4QnrL573DIVw9EqFjpWWk8iX84nAUMxKHPXEc8P7RCK6gg8hkxbNF/PzwHBZWxLcobDyHD23rwAE6iIysQQEDAVDdonhjJoVfn1pCReItQTXcyjDG8PJkAs+OxSSPQh4IuPFbe3rgpy0fSRWB4fmxGF6SqUrZEvbiw7u74aWDyCSVKwJ+fXpJ9mjpXZ1tuGlXF9xUlUJAAQNZJ7qcxwOHo0jkxBsvUQ23ctPJHB6QrUrhceuuHmzroKoUOWfOVqVkJapS2s4eRDZEB5HJOrawjF8eX5A8cTPgtuP2vb3opYPIWh4FDOQ8hbKAx04s4Mi8dJvnC3v9+NB2quGWkytV8PDRedn+HpcNBnHtlg6qSpGxUijjF0eimJTo78GhehDZe+kgMlnJXAkPHJ7DnExVyrVbO3DZAB1E1sooYCB1McZwMJrGEyfka7hv39dLnQVlMFY97/+p09JVKb3tLty+r5eqUmQIjOHF8WpVitxBZB/Z20O9UmRUBIZnzizhlamk5PO2Rny4bXc39UppURQwEEmLmQIeOCRdw+228/j4BX10MJECc+k8fn54TvIY5DanDZ/Y30cHEykwkcjiwSNRyWOQA247PnlhPwW1CpxaWsFDMlUpHT4n7tjfR0FtC6KAgcgqVQQ8IVPDbeM53La7G7u6KK9BTr5cwS+PLeD4ovixvU4bh9v39tJpmwpki2U8dHQeZyQOInPbeXzigj4MUFArK50v4RdHophOiVeltDltuGN/P7rbqfSylVDAQBQ7fLaGuyhRw33dVmq4pEStxfOTp5ZQEdmj4Djgph1duLAvoPPorIcxht9MJvCMRFUKBbXKCQLD8+MxvDghXpVCQW3roYCBqFKt4Y5iQaLz5SX9AXxweyclmykwv1LAA4fmEJeoSnnvcBjXjIYpCFNgJpXDA4ejSEtUpXxgawcuo6BWEbmDyCiobS0UMBDVShUBDx6J4sSSeNb/9g4ffmtPD1VQKJAvV/DzQ3MYT4hn/e/tbsctu7qpgkKBbLGMn7wzh1mJg54uGQjig9s6KKhVIJ0v4ccHZ7GYEc9joqC2NVDAQDZEYAy/PrUkedZ/n9+NT1zQS4foKFARGH55fB6HouKlrMMhDz66r5cO0VFASVC7o8OH2yioVSRfruD+Q3OYkAhq9/W04+adFNQ2MwoYyKa8OpXAr04tiT4e9Djwyf19CFOGuizGGJ4fl25g1Xk2Q51OhpQnMIZfnVrC6xTUakJJUDsS8uB2CmqbFgUMZNOOLSzjoaPzouc1eBzVDHVqDqTM23MpPHp8QTR5r91lxx37+9BFzYEUeWUqgV9LBLWhs0EtHXcuj4La1kYBA9HEdCqHnxycFa3ftvMcbtvTg53U8VKRM7EMfn54TrQixWnj8dF9PRgNU4a6EscWlvHg0XnRihSPw4ZPXNBLQa1Cb8+m8OgJCmpbDQUMRDPxbBE/ensWybx4xv+Htnfi0oGgfoOysPnlAn58cEb0UCKeA27a2Y39vX6dR2ZNU8kcfvoOBbVakQtqXTYeH93XS23cmwgFDERTmWIZPzk4K3ku/WUDQXxgWwdlVCuQOpuhviSRoX71SBhXjVCGuhKxbBE/entG8qRNCmqViy7n8ZODs5JB7c07u3EBBbVNgQIGorliRcAvjkRxSiJDfWdnGz68u5sy1BXIlyr42aE5yWZL+3v9uHFHF2WoK6AoqB0M4gNbKahVQklQe81oGO8dpqDW6ihgIA0hMIYnTy7ijZmU6HP6/W58/II+eJ2UUS2nIjA8cmwehyU6iI6GvLh9Xw9clKEuq1gR8IvDUckOojs723Db7m7YKaiVRUFta6CAgTQMYwyvTFU7NIoJeRz45IV9CHkoQ10OYwzPjUkf19vV5sQd+/vR7qIyQTlKgtqBQDWo9VB3RlllQcAvjy1IB7VhL27f2wuXnYIwK6KAgTTc0flq2WVF5K3mdVS7M/b5qTujEm/NpvCYRIa6/2yGeidlqMtSEtSGPQ588sJ+BD1UJiiHMYZnx2J4STKodeGO/X0U1FoQBQxEF0oy1O/Y34fhEGVUK3H6bIZ6SSxD3c7jzgv70UtBmCJH5pfxsERQ63PacPeBAUR8tBKmhGxQ67bjnosGqEW2xVDAQHSzlCnixwfFM9QdNg6furAfA1QLr0h0OY8fH5wVbQzktvO4+6IBqoVXaPJsUFsQCWrbnDbcc/EAbZ8pJBfUBj0O3HPRAK00WAgFDERXK4UyfvLOLKIiGeouG487D9CdsVLJXDVDPZatn6Huddhw90UD6KA7Y0WWMkX86OAM0iJBrd9lxz0X052xUnJBbcTrwN0XDcBHR3NbAgUMRHfFsoAHjszhdCxb93G3ncddFw2gm+6MFcmXKvjpoTlMiWSotzltuOeiATr6WKGVQhk/PjiLeZEW7kG3A/dcTHfGSlWD2hnEsvUPdOv0OXHXgQGqlrIAChiIIQSB4aGjURxZWKn7uMdhwz0X9aPDR0GDEmVBwP2HxIMwv8uOuy8aoMQ9hYplAT86OIPpVP0W2WFvdTmd7oyVyZUq+P5bM1gQCcK621y460A/3FSNYmpU20IMwfMcPrxb/Bje2gdMXGSpnZzLzvP46N5ejITq53+kC2V8/61ppCWO7Sbvctp53CFRuRPPlvCDt2aQFVlqJ+fyOGy488J+0a2x+ZUCfnRQPH+EmAMFDMQwPM/ht/b0YGukfgOlTLEaNCRzdJFTwm7j8fEL+jAokjSaypfxg7dmsFIQPxaZvMtlt+GT+/tEt8YWM0X88O0Z5EsUNCjhddpw14F+hEVWuWbTefz44AyKFQoazIoCBmIoG8/ho3t7MCJSTrlMd8aqOGy85JkW8VztzpiCBiXcDhs+dWE/OmXvjCloUMLntOOuiwYQFEkanU7l8dN3ZlGioMGUKGAghqveGfdiMCh+Z/x9ujNWzGXnJe+Ml7JF/ODtWbozVsjrtOHOA/0Ie6XujGfpzlihdpcdd13UD79I0uhEIoefH5pDWaD5NBsKGIgpOGw87rigD/0id8YJujNWxe2oXuTE7owXVgr44dszdGeskM9px10HZO6MD9KdsVIBtwN3HehHm0hlxOl4Fg8cjqIiUE6+mVDAQEzDaedxx4V96GmXujOeQY7ujBXxnA0aIiJ3xnPLheqdMSWaKSJ7Z5zM4X66M1Ys5HXizgMD8IpURpxcyuCho1EIVMhnGhQwEFNx26X3jBdWziaa0Z2xIj6nHXceEC+nnE7l8RPaM1Ys4HbgrovE74zP0J2xKh0+J+480A+3SDOqowsreOTYPKj63xwoYCCm8+6dcf2gIbpcwI/fpjtjpdpddtx1oB9+d/0748lkDj+jO2PFQp6zBw1J3Bk/eDQKgYIGRbraXLjzQL9oB8tD0eWzfSloPo1GAQMxpeqecT9CInfGM2m6M1Yj4Hbg7gPipxOOxbP4Od0ZKxbxOXHXgX54HPU/Qo8trOBhujNWrKfdjU/u74PTxtV9/K3ZNJ48tUTzaTAKGIhptZ29Mw5I3Rm/M4cyBQ2KBD0O3HmgHz6R5fRTSxk8eITujJXqbHPhUxeK3xkfnl/Go8fpzlip/oAHn9jfDztfP2h4fTqJp8/EaD4NRAEDMTW/24G7pO6ME3RnrEbE68SdF0rcGS9W74wp0UyZnnY3PrW/X/TO+O25NJ48uUgXOYWGgh584oI+2ESCht9MJvD8eFznUZEaChiI6QU91RIs0TvjWAa/oDtjxZTcGT9Gd8aK9QXcuGN/Pxxid8YzKTx1mpbTlRoJe/HRvb0QmU68MB7HSxMUNBiBAgZiCWFvbc+4ftBwfHGFEqNU6Gl341MX9sNpq/8R8PZcGs+eiek8KusaDHrwcYk741emknhlKqnvoCxsW4cPH9nbC04kaHjmTAxvz6b0HRShgIFYR4fPJVmC9fZcGm/M0IeIUn1+N+7Y3yd6Z/zSZAJH5pd1HpV1jYS9+Ng+8Tvjp04v4XQso++gLGxnZxtu290DkenEYycWMC3S0p00BgUMxFK6a8vpInfGT55axHi8fotncr7BoAcf398nmmj2yLF5zKXrt3gm59sa8eF2ieX0XxyOYilDHViV2tPdjlt2ddd9TGDAzw7NIUV9ZnRDAQOxnF6/G3dc2AdHnUQzxoCfH55DIkcfykqNhMTvjMsCw0/fmaU+Hirs6GzDbXvq3xkXKgJ++g718VDjgl4/btzRVfexbKmCn74zR308dEIBA7GkgYAHt+3uqftYvizgpwfnqE+CClsiPty4s/6H8kqxUj3YiT6UFdvd1Y5rt3bUfSyRK+HnhylJV42L+gO4cihU97GFlQIePkpnXuiBAgZiWTs623DNaKTuY0vZIn5xhMoD1biwN4BLB4J1H5tN5/FLqpxQ5fLBIPb1tNd9bDyRxa9PL+k8Imt735YItkV8dR87vriCF6lyouEoYCCW9t7hEHZ1ttV97HQsg+co01+VD2ztwEjIW/exw/PLlOmvAsdxuGlHF/pEOrC+Np3E23OUpKsUx3G4bU83OkT6zDw3FsfxxRWdR9VaKGAglsZxHG7d3Y3utvodLl+aTODwfFrnUVkXz3O4fW+P6JHcT1Omvyp2G4+P7esVPXjsseOU6a+Gy27Dxy/oFa2UeuhoFAsrBZ1H1TooYCCW57Dx+PgFvaLNgH55bIEy/VVwO2z4xAV9dStRGKqZ/jHK9FeszWXHx/b11q1EoUx/9UIeJ27fV/+MhlKF4SfvzCJbpCTdRqCAgTQFv9uBj11Amf5aific+K299ZNKCxUBP6FMf1V6/W7R8kDK9FdvJOTFh7Z11n0snS/j/kN0XHwjUMBAmsZAwEOZ/hraGvHhOsr018ye7nbJTP9HKNNflYv7AzjQ56/72FQqhydOUpKu1ihgIE2FMv21dflgEHu7xTP9n6JMf1WkMv2PLa7gxYmEziOyLo7jcP32LgwGPHUff2s2jTfp+GhNUcBAmg5l+muH4zjcvFM80//V6SQOUqa/YquZ/l6xTP8YZfqrYOM5fHRfD/zu+kmlT5xcxHiCTn7VCgUMpOlQpr+2apn+bSLdQh87vojpFGX6K+Wy2/Dx/ZTprxWv045PXCBx8uuhOSRzlFSqBQoYSFOiTH9ttbns+PgF9XtOVBjDz96hTH81KNNfW11tLnxY4uTXn7wzi0KZ8pc2iwIG0rQo019bvX43bt4lfqb/z96ZQ4mSShWjTH9t7exsw9Uj4bqPLWWKePBolPKXNokCBtLUKNNfW3u7/aKZ/vMrBTx8jDL91ZDL9H/y5KLOI7K2q0bCoie/nlrK4LkxOvl1MyhgIE2PMv21JZnpv7CClyjTX7Fapv9AoH5S6ZuzKbwxk9R3UBbGcRxu2d2NLpGTX1+cSODI/LLOo2oeFDCQplfL9O9tr/8h8up0Eu9E6fhopeQy/Z8di+HUEmX6K2XjOXxsX69kpv8kHR+tmFPm5NdHjs1jfpmSSjeCAgbSEuw2Hh+/oE800/+JEwuUSa2CXKb/I8cWkKGkPcW8zmpSqVim/0NHoshTu3bFAm4HPrpP/OTXB49G6RC3DaCAgbQMqUz/YoXhoaNRaoetglSmf7ZUwSPH6JAsNbolMv3ThTLlM6g0GPTgxh31k3SXMkU8Q51sVaOAgbQUqUz/6VQev5mk/Xc1pDL9T8cyeHuOtnrUkMr0PxRdxrEF2n9X48I+8ZNfX51OYjxOhzqpQQEDaTl7u/24sLd+ZvpzYzFEl6mzpRoX9wewUyQz/VenFpHI0nkXalw1EsZQsP5xx48eX6Amaipdt7UDPSL5Sw8fm6fSahUoYCAt6YPbOhF0n38SpMCAh47M0/6mChzH4cYdXfDVyQ8pVRgePDpPpasqcByHW3d3w1UnPyRfFvAIla6qYuM5fHh3T92tyOVCGY/TVo9iFDCQluS08/jwnm7U2X7HUraIp2l/UxWv0ybavnk2ncdLtNWjSsDtwA3b62/1nIlnqamSSh0+J64VOY/lyPwylVoqRAEDaVkDAQ+uHK5/CNFrtL+p2taIDxf1Beo+9sJ4DHNp2upRY093O3Z11d/q+fWpJcRoq0eVS/oDok3pHjuxgGXa6pFFAQNpaVeNRNAtcsgL7W+qd922jrpNvwRWbapER0crV9vqqVcKXBYYHjpCR0erUdvqqVcKXCgLePgobfXIoYCBtDQbz+G2PbS/qRWnjcdte3rqllrGsiU6VVMlj8OGW3fX3+qZWy7gxYm4ziOytnaXHTfurF8lNZ7I4vUZ2uqRQgEDaXm0v6mtPr8bVw3XLw18YyaFM9RaXJXRsA+X9Nff6nlxIo7ZFG31qLG7q130qPinTy9hKUOnQIqhgIEQyO9vpql1sypXDodFj+J+5Ng8crTVo8q1WzsQ8Z6/1cMY8ODRKIq01aPK9ds70e46/yjussDw4JF52uoRQQEDIVCwv0mlbKpIbfWsFCt47DidAqmGw8bjw7t76h51nMiV8NQp2upRwy2x1TO/UsDz41QlVQ8FDISc1e6yix4lO5HI0f6mSmGvEx/YVn+r59jiCg7TVo8qvX43rhqJ1H3szdkUTtNWjyojIS8uEzkF8uWJBKap4dd5KGAgZI3d3bS/qaWL+gLYEq6/1fPEiUWkaKtHlSuHQuj312+F/cixeWSLtNWjxvu3RNDhO7/rKgPw0NF5FMq01bMWBQyErEP7m9rhOA637OqGx1Fnq6dCpWxq8TyHD+/urtvVMlOs4NHjNJ9q2G08bhPZ6knmS/j1KaqSWosCBkLWof1NbbW57LhpZ/35nEzm8MpUUt8BWVzI68QHRRp+nVjK4J0obfWo0d3uwvtG62/1vD2XxsmlFZ1HZF4UMBBSB+1vamtnZxv29dTf6nn2TAwLK7TVo8aFvX5sjfjqPvbkyUUkc7TVo8blQyEMBOpv9fzy2AIyRToFEqCAgRBR798SQYeX9je18qHtnfC7z9/qqTCGB49EURZoPpWqbvV0weM4/xTIYkXAQ0ejEGhrQjGeqzaoctbZ6smWKvjlMarqAShgIESU/eyphbS/qQ233YYP7+6p+9hipojnxujUQjV8TjtuFjm1cDqVxyvU8EuVoMeBD4k0/DoVy+DgXFrnEZkPBQyESJDb36RSNnWGgh5cMVS/4ddvJhOYTtFWjxo7Otuwv9df97Fnx2JYpKoeVS7o8WNHh8hWzymq6qGAgRAZUvubj59YoIZKKl0zGkZnnVI2AHjs+AIEqkJR5YPbOhGos9UjMODx44u0lK4Cx3G4aWcXfHUafpUqDE+2eG8ZChgIkSG1v5nKl/ESNQBSxc5Xt3psdTpULWaKeG06qf+gLMxlr5YG1tk5w1Qqh0NUNaGK12nHzSJVPSeXMi1dNUEBAyEKBD0OfECklO3lyQRimaLOI7K2rjYXrhmt36Dq+fEY9e5QaSDoweWD9bd6fn16iXp3qLStwye61fPEycWW7d1BAQMhCl3Y6697yp7Aqg2qaOlXncsGQ3VP2StWGH5FvRFUu2o0DH+dA8dypQqeOUPzqdZ1WzvqVqGk82W8ON6aq4oUMBCiEMdxuHFnF+qspGMymaM22CrZeE60d8fxxRVKKFXJaeNFs/zfmk1jhhJKVfE4bLhua/2E51emEi15TDwFDISo0NXmwqUiBzr96tQS8rT0q8pg0IMLRA50euLEIiWUqrSjsw3bRA50euwEJZSqdUGPv27Cc3VVsfUSSilgIESlq0cidXtNZEsVPDtGx0ardd3WjrptxZP5El6aoLME1PrQ9s66bcUXVop4fSap/4AsjOOqq2D1zmKZSuZwqMVWFSlgIEQll53HB0XaNr8xk8JcOq/ziKzN67Tj2q315/PlyThiWUooVSPoceCqkfoJpc+NxbBcoGOO1ehsc+GygfoJpU+daq2EUgoYCNmAnZ1tom2bHzuxAIExMMZwZH655ZYtN0IqofTx49WEUuHsfBJ5lw+G6h5rXqww/OrsWQIVgeEozaciV43UTyjNrkkoLVcEHFto7vmkgIGQDeA4Djfs6Kq79BtdLuDp00v4329O4xdHoijQPrwsjuNwg0hC6UQyh+fG4vin16fw4JEoBWAK2HgON+yonwB5bHEFL47H8d3XJvFEix9EpJTTLp1Q+pvJBL7z6mTTb0lSwEDIBgU9Dlw5XH/p95WpJKZT1a0JalKlTHebC5f2B+s+9uJEHNHlAhiqd8lE3lDIK94hdCyGpUwR+XKFAjCFtnf4RDuEPnV6Cclcqel/1ylgIGQTrhgKIux1SD4nX2ruDxEtXT1aP6F0rUK5dfaMN0ssobRGYECJKicU4TgO14sklNbkKWAghIix8zwu7A1IPidPFzjFXHZe9K64ptk/lLXkddiwq6tN8jnNflespYDbjm0izamAal5IuYm3IKVDeUKIqOVCGU+dXpJNxKMPZGWSuRJ+dWoRJ5ekD2yigEGZpUwRT55cwHhC+sCmfLkiu6pDgOhyHk+cWMSMTBVUviygzdac9+LN+bciRAeMMUUHNdEKgzICY4q2b2hLQhmBMUXBFW2ZKSMwKEpgbuaAlgIGQjbI73bgjv19+PDubsl9YkrSUybsdeLui/pxw47Oup1Ba1q18Y9aXW0ufPbiQVy3tUNy351O01Smz+/GvZcO4qqRcN2DnGqaeT4pYCBkEziOw74eP37nimHs7Ky/V9zMHyBa4zgOF/cH8S8uHxY956JEAZhiPM/hiqEQPn/ZUN0jjgEKwNSw8zyuGY3g3kuH0NPuqvucZp5PChgI0YDPacdH9/Xi9r0953W4o4BBvcDZ1Ztbd3XDtW4/uJk/kBsl7HXinosG6mb5UwCmXm315v1bIuetNjTz73vTBwzs7Il7RBs0n9J2dbXjX14+hO1rMqmltiRoPsVxHIcLev34/OVDGA55Vr8v9YFM8ymO4zhcMhDE5y8bOudUTakAjOZTHM9zuHI4jHsvHULnmjbtYr/vtbm08nw2VWpsuVxGOp1GLpdDLpdDoVA45x/H5XLB4/HA4/HA7/fD4ZCun2915XIZqVQK+Xwe2WwWxWJxdT45jjtvPu32pno7bZjPacfH9vXiUHQZT558t+NiqVRafX/W5rOmNp9er3d1Pm02m9hLtJSA24E7L+zHGzMpPHV6afUDuVgsnvP7vn4+3W73Oe9Pms+qsNeJey4ewG8mE3huLLb6/iwUCufMZ6lUWv0zPM+vzqfX60V7ezt4vunvNxXpanPh3kuH8Px4DC9PJFbnM5fLYWVlpanmk2NWDnfOymaziMViSKVSqv5ce3s7IpEIfD4fuHpn0raolZUVxONxpNNpVX8uEAggHA7D5xOvU241qVwRR+YS6OWrHx5KcRyHQCCASCQCj8cj/wdaRCxTwOmFJDqRRSYjXX65FsdxCIVCCIfDcLvr7+W3ovnlPKaWkgizLLLZrOI/x/P86ny6XPX38lvRdDKLxWQa/koGuZx0OetaPM8jHA4jHA7D6Ty/B4hZWDpgqFQqmJubQzKZ3NTPaW9vR19fX8uvOJTLZczOzqoOFNYLBALo7e1t+RWHYrGI2dlZVYFCPaFQCD09PS1/h1woFDAzM6PqwlZPR0cHurq6LHFH10j5fB7T09PI5zfXXbWrqwsdHR0tP5/ZbBYzMzMoFAob/hkcx6G7uxuRSMSUN7GWDRhWVlYwNTWFSkWbmmye59Hf349AQPrUvmaVTqcxPT0NQdAmYcdms2FgYADt7dKn9jWrRCKB2dlZzfYr7XY7BgcHW3b1JhaLIRrVrvGUw+HA0NBQS67eMMawuLiIhYUFzX6my+XC4OBgS67eMMYwPz+PpaUlzX6m2+3G0NCQ6VYbLBkwpFIpTE1NNeRn9/T0oKOjoyE/26zi8ThmZ2cb8rP7+/sRCtXvJd+sFhcXMT8/35CfPTQ0BL/f35CfbUaN+DCu4TgOw8PDaGuTPjq5mTDGMDs7i0QiofnP5nkeIyMj8Hrrl8M2I8YYpqamNr0qW4/NZsPo6KipgjDLrSGl0+mGBQsAEI1GEYs1d4vStWp3wo0yMzOz6S0jK1laWmpYsAAAk5OTWF6WPoq6mSwsLDQkWACqH/YTExOqciGsrJHBAgAIgoDx8XFVe/dW1shgAahuuY+NjW1qi0NrlgoYisViQ4OFmrm5uZZ40+fzeczMzDT8dTa7r2cVmUwG0Wi04a8zNTV1TsZ1s1peXsbi4mJDX4MxhsnJSZTL5Ya+jhkkk8mGBQs1giBgcnJSs61NM4vFYg0LFmoqlQomJydNU4ppmYCBMYbp6WndJm5qaqqp3/SCIOgSfAHvRuJmedM3QqVSwfT0tC6vJQiCrr8LRiiXy7rNZy15upkVi0Xd/o6lUkmXwNlIhUKhoSuJ619Ly3yTzbBMwJBIJDadHa1GsVhs+N2NkWKxmK53/fl8HvF4XLfX09vi4qKud/2ZTEZ1GbGVRKNRzRKalUilUk291TM3N6frDVA8Htf181pvMzMzugbsi4uLm65m0YIlAgbGWMP2MaXEYrGmXGUwaj6Xlpaa8q64UqkYkveyuLjYlPNZLpcNyXsx4ndCD4VCwZBgqFnns3bwmt7McMNliYAhk8mcc4qbXgRBsMRdXG56CumDBxU/P51O63r3VlMqlSxxF5c5fRorx44pfn4qlTLkwl0oFCyRa7N89CgyZ84ofr5RH4yZTMYUd3Fy0m+/jZyK7Rqj5jOdTlsi1yb5+usoqNheMCopPpFIGPK5vZaqgOG+++7DZZddhvb2dnR1deH222/H8ePHGzW2VUZm2Tc6SUgLxYUFHPryl3D4K/9OUeBg5N/JChUTuclJHPxXv4ujf/gHWFHw/jZyPq3w/sycPIG3P//bOP5f/wjZsTHZ59P7U1r64EG8+dnP4OR9fyYbODDGDJ1PK9xwJX/zMt64+y6c/su/lA0cjLyJZIw1PMlSjqqA4ZlnnsEXv/hFvPzyy3jiiSdQLpdxww03NLwsyciyp1wuZ5ll39Trr58NHL4iGjgwxgzdW7TSvmbixRdx8Hd/RzJwEATB0Lt8y8wnY4g99RTe+u17JQOHSqVi6F2pFVZsAACVChYfffRs4HCfaOBQKpUM3Va1yvuTlcuY/8UD1cDhr/4KhYX6gUM+nzf0emD0+3NTBzctLi6iq6sLzzzzDN73vvdpOa5VlUoFR48ebcjPVor/P/8bBR3KDzeqksuhWCcyDlxyKQbvvRf+/ftXv1csFnHixAk9h3e+7/wDSia+M65kMijWSXgNvfe9GLz3t9G2c+fq93K5HE6fPq3n8M5T+Zu/hmDAlp1S5XQapfXL4hyHyLXXYvBz98I7Orr67ZWVFYyPj+s7wLXDEgQU//IvDHt9JUrJJMrrV0JsNnRefwMGPvMZeAYGVr/dyEPulOCzWRS++beGvb4SpXgc5XV37pzdjq5bP4yBT98DV1f36vdjsZihFTVutxvbtm0z7PU3ddh/bWkmHA5rMph6zFC/n5+dRd7AD7GNSr3+GlKvv3ZO4GCG+cxNT6NkwQqUxIsvIvHii+cEDqaYz4kJCCYYhypnVxxiTz99TuBgdA6BUKkgZ8Hf9eqKwy+x+MTj5wQORs9nuVi05HyychnzD/wcCw8/dE7gYPTvu9Gvv+GAgTGGr3zlK7j66quxb98+Lcd0DjNUKVhkR0LU2sAh/MlPAkYfhWvx+VwbOAQ+/gnAREe3Ws66wMF3228B1P1w49YFDq6bbwZavAncZqwPHGwf/CBgYBM4xhgYY4Y1ptrwO+lLX/oSDh48iOeff17L8ZBGsdng7OyELRAADM60hfmasKnGORxwdXXB5m8HiubPBDc73umEq6sLfHs7YOLtFauwuVxwdXWC9/kAq60+mZDN64WrsxOCx9PS788NBQxf/vKX8Ytf/ALPPvssBtbslzWCGVr6mrDLqHLr9jaXl5eBiQmjR2VZnMOB7ltvRf891SXKZDIJ6HQiYTPiXS703H47+u68C85wuFqy1uSnLjaSzetF7yc+gd47PgmH3189IdAkpwRakd3vR98nP4Wej30Mdp+vmr9gYK8hjuMMbXutKmBgjOHLX/4y7r//fjz99NMYXZOs1CguEyxPtu/dC7eJO1iW0mlk1mfxiyRBmaHzmf/CC1ExcblVMR5Hdl0iI+dwoOuWW89LgjLDfAYuuQTMxPXuhYUF5NYFqbzLhe6PfAT9d90N55ocKKPnk7fZELjsMlMvguVnZ5Ffl4S9PlCoMXo+HR4PgpddZugY5OSmplBYd5T1+kChxujrkdH/nqqqJL7whS/g//yf/4MHHngAO9dkigcCgYb2lT9x4oQhBzcB1Zatu3fvNjSqk5N643Uc/nf/rvqFSKCw1tGjRw07AMThcJzz3jGjpaeewon/+kcAzl9RWI8xhiNHjhhWamV01rQS0V88gDN/+ZcAzl9RWM/oqqi2tjaMjIwY9vpKTP/zP2PyO/8AQDxQqCmVSrqclSMmEAhgcHDQsNdXYvxb38TsD38IQDxQqDG6KioSiaC3t9ew11e1wvDtb38bAHDttdee8/3vfve7uPfee7Ua03l8Pp9hAYPX6zV1sLBKQaBQ4/P5DDsAxOv1GvK6askFCqvP4zh4PB7D6s19dT7UzEguUKix2WxwuVyGZYNb5f0pFyjU2O122O12w7pxWmU+5QKFGrfbDY7jDLtBaOSNuRKbOodBL9lsFmdUHC2rpcHBQQQCAUNeW6nCwjyEYkk2UKhZXl7GhEF5DCMjI2gzukpDRm56GrzTIRkorJVMJnXrrLjetm3bDF+mlJMdH4fd75cMFNYystZ9x44dcDqdhry2UplTp+Ds6pIMFNaan583pJEex3HYuXMn7Cav0lg5fhzugQHJQGGt2dlZQ47b5nkeu3btAs8b19HBEr0kvF6vIR+KdrsdfoW/lEZydXUrDhaA6rKrw+Fo4Ijqc7lclrgj9gwMKA4WAMDv9xuSnGvU74Va3pERxcECAASDQUNW9drb200fLACAb9s2xcEC0NhzcqQEAgHTBwsA0LZzp+JgAahuCxghHA4bGiwAFgkYAKCzs1P31+zo6LDGdoRKHMfRfGqI53lDPkQ6TJyIuxk2m82Qi1yzzqfD4UAwGNT9dZt1Pl0ul+6rpBzHGRb4rWWZgMHv96O9vV231/N4PIZFknoIhUK67i/6fD5DPrT00tHRoWsGdSAQsMTq10Z1d3frugoWDoctsfq1UT09PbqugnV2dlpi9Wuj+vv7db3b7+npMcXql2UCBo7j0N/fr8ubnuM4DAwMNOXdcI2ef0ee55t+Pnme1y0b3Gazoa+vT5fXMoqe8+lwONDT06PLaxnFbrc3/MycGrfbja6uLl1eyygOh0O330Gv12uK1QXAQgEDUH3TDw0NNfzCMzAwYHi9rR6cTieGhoYa/jpDQ0OG5Ezoze12N/xDmeM4DA8Pm+JAs0bzer0NLyHjeR7Dw8OG7w3rob29veEXcr0+o80gEAg0fBXa4XBgcHDQNPNpud8Sn8+H4eHhhk2gFaoitNTe3t6woKF2cTN7VYSWgsEg+vv7G/KzeZ7HyMiIZUrVtNDIunObzYbR0dGmXjpfr7Ozs2FBg91ux+joqCmWzvXAcRx6enoaFjQ4nU6Mjo6a6mbLEmWV9eRyOUxPT2tWr2232zE4ONjU+5hSstkspqamUNLoxECn04mBgYGWurittbKygunpac3q310uFwYHB1vq4rZWOp3GzMyMZgeOeTweDA4OtszFbb1EIoG5uTnNmvv5fD4MDAyY6uKmF8YY4vE4otGoZucztLe3o7+/33RVJpYNGIBqJ8vFxcVN1xiHw2F0d3e3xDKvFEEQMD8/Xz3PfxM6OzvR2dnZEsu8UiqVCqLRKBKJxKZ+Tnd3d9NWmKhRLpcxNzeH1CaOFa/dFYbD4Zafz1KphNnZ2Wp/mQ3ieR69vb2GlcKaSbFYxMzMDDKZzIZ/Ri0/ye/3m3I+LR0w1BSLRSQSCcTjccV3IDzPIxQKIRQKtexdm5hCoYB4PI5EIqH4DoTneYTDYYRCoZbI/1Ajn8+vzqfSX7daaWEoFGrZu2AxuVwOsVgMqVRK8Xza7fbV+WzFu2AxjDFks1nE43FVgZjD4UAkEkEwGDTdXbCRGGPIZDKIx+OqTtN1uVwIh8MIBoOmvnFtioChRhAEZDIZ5HI55HI55PP51Qsez/NwuVzweDzweDxoa2tr+TtgOYIgYGVlBfl8vu58ut3u1fn0+Xw0nzJq81l7fxYKhXPm0+PxrM5pW1ubKe8wzKRSqZw3n7WPM5vNdt77k+ZTWrlcPuf3ff181ubS4/FY58h8A5VKpXOuR8ViEYwxcBy3Op9utxterxcej8cS89lUAQMhhBBCGoNuCQkhhBAiiwIGQgghhMiigIEQQgghsihgIIQQQogsChgIIYQQIosCBkIIIYTIooCBEEIIIbIoYCCEEEKILAoYCCGEECKLAgZCCCGEyKKAgRBCCCGyKGAghBBCiCwKGAghhBAiiwIGQgghhMiigIEQQgghsuxGD4AQQmpcl/wOON62+j+bw7n637zd8e5jNht4uxP86mPO8x7jeBt4ngNv48HzHDieg83Ggzv739XHOFWP2c7+z2nnYeM52Ff/m3/3Mdu7/+2y8+f9mXO+5jjwHAeHjVv9bxsH2G08bBzOPvbuf9t4Dg7+7PN4wMHzq/9d/bMcOA7gOdT/bwBc7fm1/z77HI7jznkuxxg4oQwwAWAMYMKarwVwFbnH1n1fqIAJAlAuglUqgCCAlYvV/xcq1cdLJaD23+XSu39GqICVqs+FUIFQLoFVhOr/BAFCsQyhUln9byYIECrv/nftuZVSGWzN84Szf55VBFSKFTCBQagwCMUKhAoDqwgQBFZ9rMLAKgyV0ruPnfv1u88TGENRYKgwhgoDKqtfAxWGuo8JWP88tvrcv2Pjxv5inkUrDIQQQgiRRQEDIYQQQmRRwEAIIYQQWRQwEEIIIUQWBQyEEEIIkUUBAyGEEEJkUcBACCGEEFkUMBBCCCFEFgUMhBBCCJFFAQMhhBBCZFHAQAghhBBZFDAQQgghRBYFDIQQQgiRRQEDIYQQQmRRwEAIIYQQWRQwEEIIIUQWBQyEEEIIkUUBAyGEEEJkUcBACCGEEFkUMBBCCCFEFgUMhBBCCJFFAQMhhBBCZFHAQAghhBBZFDAQQgghRBYFDIQQQgiRxTHGmNGDIIQQrRUKBdx33334wz/8Q7hcLqOHcw4zjw2g8W2Gmce2WRQwEEKaUjqdRiAQQCqVgt/vN3o45zDz2AAa32aYeWybRVsShBBCCJFFAQMhhBBCZFHAQAghhBBZFDAQQpqSy+XCH/3RH5ky8czMYwNofJth5rFtFiU9EkIIIUQWrTAQQgghRBYFDIQQQgiRRQEDIYQQQmRRwEAIaSr//t//e1xzzTW45557UCwWz3ksl8vhwx/+MN7//vfj+uuvRzweN9X4au677z5ceumlho+pXC7j3nvvxTXXXIPf//3f1208SsZWo/dcrSc2PjO817RGAQMhpGm8+eabiEajeO6557Bnzx785Cc/OefxX/7yl9i3bx+eeeYZfPKTn8Q///M/m2p8ALC8vIxDhw6ZYkwPPvggBgYG8NxzzyGbzeLFF1/UbVxyYwP0n6v1pMZn9HutEShgIIQ0jZdeegk33HADAOCmm2467wK3fft2ZLNZAEAymURnZ6epxgcAf/M3f4MvfvGLphiTkvEaNTZA/7laT2p8Rr/XGsFu9AAIIUQryWQSfX19AIBAIHDeMvDWrVtx6NAh7Nu3DxzH4Te/+Y2pxpdKpfDOO+/gP//n/2yKMSWTydV+CPXGa+TYjJir9aTGZ/R7rRFohYEQYjnRaBRXX331ef9jjCGdTgOofpiHw+Fz/tz3vvc9XHvttTh06BD++I//GH/yJ39iqvH99V//Nb70pS81ZExiQqGQ6JikHjN6bEbM1XpS49PrvaYnChgIIZbT09OD559//rz/3XLLLXj88ccBAI899hiuuuqq8/5s7UM9GAwimUyaanynTp3C1772Ndx00004efIkvv71rzdkfGu95z3vER2T1GN6kHp9I+ZKzfgAfd5rumKEENJEvvrVr7Krr76a3X333axQKDDGGPvd3/1dxhhjqVSK3XLLLez9738/u+qqq9jx48dNNb61LrnkEsPGVBtPqVRin/3sZ9nVV1/NvvzlL+s2HiVjW0vPuVpPbHxmeK9pjY6GJoQQQogs2pIghBBCiCwKGAghhBAiiwIGQgghhMiigIEQQgghsihgIISQFnDvvfeC4zj83u/93nmPfeELXwDHcbj33ntXvxeNRvHlL38ZW7ZsgcvlwuDgIG677Tb86le/Wn3OyMgI/vqv/1qH0RMzoICBEEJaxODgIH7wgx8gl8utfi+fz+P73/8+hoaGVr83Pj6OSy65BL/+9a/x53/+53jnnXfw6KOP4rrrrjP0KGZiLDoamhBCWsTFF1+MM2fO4Gc/+xnuueceAMDPfvYzDA4OYsuWLavPq604vPLKK/D5fKvf37t3Lz7/+c/rPm5iDrTCQAghLeS3f/u38d3vfnf16//5P//nOUFAPB7Ho48+ii9+8YvnBAs1wWBQj2ESE6KAgRBCWshnPvMZPP/88xgfH8fExAReeOEFfPrTn159/NSpU2CMYdeuXQaOkpgRbUkQQkgL6ejowK233orvfe97YIzh1ltvRUdHx+rjtcN/OY4zaojEpGiFgRBCWsznP/95/OM//iO+973vnZeTsH37dnAch6NHjxo0OmJWFDAQQkiLuemmm1AsFlEsFnHjjTee81g4HMaNN96Ib37zm8hkMuf92aboukg2hAIGQghpMTabDUePHsXRo0dhs9nOe/xb3/oWKpUKLr/8cvz0pz/FyZMncfToUXzjG9/AlVdeacCIiRlQDgMhhLQgv98v+tjo6CjeeOMNfO1rX8NXv/pVzM3NobOzE5dccgm+/e1v6zhKYibU3poQQgghsmhLghBCCCGyKGAghBBCiCwKGAghhBAiiwIGQgghhMiigIEQQgghsihgIIQQQogsChgIIYQQIosCBkIIIYTIooCBEEIIIbIoYCCEEEKILAoYCCGEECLr/wf29r/tWkZSLwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1562,7 +1570,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABFIElEQVR4nO3deXxcdb0//tfnc2bLTDLZl6bZum9py6IsZRcqCAVEtisiq3r5iqgg4lW54nJBwR+KetHrxnZduChehCubFhGKrIUChZQuNOmWttm3SWY55/P74yRp0ybpnOTMnDMzr+fjkQfpLOe8O2Q6r3zO5/P+CKWUAhEREeUs6XQBRERE5CyGASIiohzHMEBERJTjGAaIiIhyHMMAERFRjmMYICIiynEMA0RERDmOYYCIiCjHMQwQERHlOIYBIiKiHMcwQERElOMYBoiIiHIcwwAREVGOYxggIiLKcQwDREREOY5hgIiIKMcxDBAREeU4hgEiIqIcxzBARESU4xgGiIiIchzDABERUY5jGCAiIspxDANEREQ5jmGAiIgox3mcLiDVjHgc0V07MLS9BYneXqh4DEYiASEkhNcL6fPCVzkDeXUN8BSXQAjhdMlERERplVVhQCmFyKYN6H1jLYZatmJw6xZE9+wGDMN8gBD7vhQApQBljD5f5gURqKtHcNYc5M2ag8KjV8BbVOzMX4aIiChNhFJKOV3EdA1ub0HXc8+g8+9/Q7y9DZDDVz8MY/InTkTTAF0HhEDB8iNQctKpKDxmBbS8oH1FExERuUTGhgGl6+j46xNo+8ufMbS9xQwAU/3wn8zwcYXHg8KjVqDygo8jOHuO/echIiJySEaGgZ61r2Dnr36GaOvO9J54OBiUnHYGqi+5HN6S0vSen4iIKAUyKgwMtmzFznt+jr43X0/dSEAypITweFB14SWoOOd8SL/fmTqIiIhskBFhQOk6dv/Pb7D7D78DhAQM3emSTELAW1KKWf92C0LzFjhdDRER0ZS4Pgwk+vvQfOdt6HtjrdOljE9KCCFR+9kvoPTU052uhoiIyDJXh4FY215s/sZXEN3T6twlAQsqL/g4ZnziCvYqICKijOLaMDC0fRs2/fuXkejtyYggMKLk1A+j7rPXQ2ia06UQERElxZXtiBN9vdj8ra9mXBAAgM7VT2P3//zG6TKIiIiS5rowoAwDzT/4LuKdHRkXBEbsfui36HnlRafLICIiSorrwsDu//mNOVkwQ4MAAEAINP/ge+nvg0BERDQFrgoDPa++lB1D7ErBiEWx5dZvQB8adLoaIiKiSbkmDBjxGLbd/UNzE6FsYBiI7tyBtkf/5HQlREREk3JNGOh85mkkurvMnQSzhVLY88gfoA9GnK6EiIhoQq4IAyqRwO6Hfpc9owL7MQYH0f7EY06XQURENCFXhIHOZ/+GeEd7do0KjFAKe/70EOcOEBGRa7kiDOz+4++zclRghN7fh85n/up0GURERONyPAzE2vYitrs1O0cFRkiJXrfurUBERDnP8TDQ/+7bTpeQeoaB/nfegsrk3glERJS1PE4XMND0DqBpgJ76bYnXtnfhgc3NaOruRXs0hjuPWo5TZlSk/LwAYEQGEN25A4HaurScj4iIKFmOjwz0vb0uLUEAAIZ0HfMLC/CVZQvTcr4D9Tetd+S8REREk3F0ZMCIDiG6c0fazndcZRmOqyxL2/nG0DRENr0HfPhMZ85PREQ0AUdHBvRIDjXjMQzoAwNOV0FERHQQR8OAEY06efr0UgpGdMjpKoiIiA7i+JyBnJLNyyeJiChjORoGpN/v5OnTSwjIQJ7TVRARER3E2TCQl0MfjlJCCwadroKIiOggjq4m0AJ58M+oRrR1V1rOF0kksH1g3x4BOyODeK+nD2GvBzOCKQ4muo7g3PmpPQcREdEUON50KH/pYYju3ZOWXgPvdvfiMy/sawv8g/UbAQBn187At45oTPn5Q4tTfw4iIiKrnA8DixrR8fTjaTnXB8pK8Pq5K9NyrgPJvCACNew+SERE7uP4aoLQ4iVOl5B6QiB/cSOEdPzlJiIiOojjn06+iir4yiuyegtjACg4/EinSyAiIhqX42FACIHKCz6e1WvwtbwgSk89w+kyiIiIxuV4GACAkg+thKeo2OkyUkMIVJx3IbRcWkZJREQZxRVhQHp9qLrwEqfLSAkZCKD8zHOdLoOIiGhCrggDAFB62hnQwoVOl2EvIVFxzvnQQiGnKyEiIpqQa8KA9PtRd83nnS7DPlKDr7IKFeee73QlREREk3JNGACAohUnoOK8iwBk+MoCISA8Hsz5+rehBTkqQERE7uaqMAAA1ZdeifzGpUAmr8lXCvVf/DICtWwyRERE7ue6T1yhaWj48s3wFBZlaCAQqDjvIhSvONHpQoiIiJLiyk9bb2ER5t5yG7RQfsYFgqLjT0L1pVc6XQYREVHShFLu7fYT3d2Kzf/+ZcQ62gHDcLqcQyo/52OYecVn2HaYiIgyiqvDAADEe7qx9Y7vYOCdt50uZXxCAgKoufoalCydA+EPQgTyAX8I8AchBIMBERG5m+vDAAAoXceuB36NvX/+IyA1wEj9dsdJEQKecCFmfeUbyF/cCKO9BejZM+Z+MxTkQwTM/8LjM+uXGkSW78dARESZISPCwIjI5o3Y8aufYmDDu+YHrVOlSwkhJSrOuxCVH7sYWl4QAKDiUahtbx7iuR4ACtB8QMlMiLwCCM2b+pqJiIgmkFFhAACUUuh5cQ123PtzxNvaAKSxfCkBw0DxCSej+rJPmbstHsDYswXo77B2XI8P8AXNywr+kPm9x8eRAyIiSouMCwMjjHgM7Y8/irbHH0Vsz+7UXT4YGYGQEli0HHMvvRwFixZP+HAVHYDa8c70zys9gD8I+IIQ/iDgD0H4uNkRERHZL2PDwAilFAa3bELnc39H1z9WI9HTDWiaufpgqn81qQHKfL6avRCti47ChplLEM/LxyWH16CuaPIPZWPXBmCwd2rnnoAoqYUonmHrMYmIiIAsCAP7U7qO/nfXo/eN1zDUshWDze8j3tG+7wFSmq2CIaBGLi/sFxqE1wvvjBoMzajDnqIZ2DizEUMFY7dW/kBNEU6bVz55HZEeqNb37PuLBYsgqubxsgEREaVEVoWB8eiDgxjasQ1D25qR6OuFiseh4nFzEqDXC+n1wSitwI5gGTYYedjRG5v0eIUBD645pmHSD2allHmpIBaZ/l/A44OoaYTQPNM/FhER0TiyPgwk46WWTjz7fvKT/q78YB0q8/2TPkb1d0Dt2TLd0iBmLjb7FhAREaUIO+IAmF9u7cN2U1v/oR8UKhleRjgNQkJJbXrHICIiOgSGAQAlQR/Kgr6kH7+xPYkwYMeSR2UA29+GsX8jIyIiIpsxDAybVx5K+rF7+2PoHoxP+hghJFCzBIANk/7aW2Ds2gAjA/ZnICKizMMwMGx+mcVLBUmMDkivHyiunmpJYw32Ai1vwIjaMCmRiIhoPwwDw6oK/CjwJ3+Nf2PbQFKPE0VVZt8COxg6sGM9jK5d9hyPiIgIDAOjhBCYV5b8pYIdPYOIxBKHPq7UIAqrplPawTp3wNjxLgy3bNhEREQZjWFgP1YuFSgAmzuSGx1AYaW51bGdov1AyzoYQ8lMZiQiIpoYw8B+aovy4Pck/5IkfalA85iBwG6GDux8F0bHdvuPTUREOYNhYD+aFJhbmvylgq1dEcQSyc3wF4VV9o8OjOhuhbHtLRiJyVc4EBERjYdh4ABW5g3ohkJzV3Kz+4XHC4TH2dMgvxSwo9VwfMi8bNDfOf1jERFRTmEYOMDskhA0mXxvgJYkwwAAiKIZGNN3wB+CqJgF1B0GhIonepoFCtizGcbuTexJQERESWMYOIDPI9FQHEz68cmODACA8Pj2jQ5IDaJyLoSQkFJCVs0DKmZZLXd8A13mKIEdGyUREVHWYxgYh5V5Ax2ROHqHkr9WPzI6ICrmQHjHbnYkC8qBuuWAlnxr5AkZCWD7ehidO6Z/LCIiymoMA+NoKM6z9PiWrsGkHyu8fojqhRChonHvl14/RP1ycy6BHbp2mZML45NvzUxERLmLYWAcRXlehC10I7RyqQAARF7B5PcLAVk5B6icC1v2NogPAdvWwejZO/1jERFR1mEYGIcQAnUWRgeauyJQyoZdCg8g80uA+uWAx3/oByejvXm4c+GhOycSEVHuYBiYQH1R8pMIB2I62iOpGYaXHh9E3TIgXGHPAaP9QPMbXIJIRESjGAYmYGVkAACaO1M3c18IAVneAMxYaE/jIjW8BLF1I5cgEhERw8BECgNeFOd5k3681XkDUyGDYaDhcCBgbbvlCUW6zW2RB/vsOR4REWUkhoFJ1FsYHdjWPQjdsH/ewIGk1CBnLgbK6uw5oKEDu5pg7NnCUQIiohzFMDCJOgvzBuK6wq7eoRRWM5YsrALqlgFa8qMXk+rvGN4FkaMERES5hmFgElZGBoD0XCrYn/QGIOoPA/LL7DmgkQB2cpSAiCjXMAxMIuTzoCyUfDdAK/sU2MXsSTAbqLZpciGwb5SAcwmIiHICw8Ah1BclPzqws3cI0YSewmomJvPCQMMRQF6hPQc0EpxLQESUIxgGDqHOwqZFSgHbu5NvTWw3KSVk9QKgYg4gbOhcCAyPErwBI9Jjz/GIiMh1GAYOoc7CyAAANFvYpyBVZEEpUH844E9+w6VJGTrQ+h6MXe/BMJwZ+SAiotRhGDiEPK+Gyvzk2wGnsvmQFVLzQNYsAUptWoIIAIM9QPPrMHrb7DsmERE5jmEgCVZWFbRHYuiLuqf3vyyqAuoOs29/A6WAtq0wtq+HkeBOiERE2YBhIAn1FuYNAM6sKpiM9A7vb1A0w76DxiLmioOuXfYdk4iIHMEwkISawjxL8/G2uuRSwf6EEJCltUDtMvtGCQCgcweMlnUwou77OxMRUXIYBpLg90hUFwSSfvzOnvR1IrRK+gKQ9cvtHSVIxIAd62G0bU3JVs5ERJRaDANJsjJvoHsojoGYe+YNjCclowS9bVDNr8MY6LLvmERElHIMA0mysk8BgLTuUzBV+0YJqu07qKEDuzfB2PEujETcvuMSEVHKMAwkaWZhAJqFiQOZEAZGyNIa+0cJov1ms6KO7bx0QETkcgwDSfJqEjMLk583sMvF8wbGMzpKUFJj74G7W6Fa3oAx2GvvcYmIyDYMAxZYmTfQ2jcEIwN/I5bF1UCDjd0LAUBPALs2wNi1AYbu7rkURES5iGHAAivzBmK6QvtAZjblkZrX7F5o5x4HADDYCzTz0gERkdswDFhQHQ7AK7Nz3sB4ZEEp0HAkECyy8ajKvHTQ/AaMgW4bj0tERFPFMGCBJgVqLGxclOlhABjeCXHGfGDGAkBq9h3YSAC7N5ptjeNR+45LRESWMQxYVB3O3kmEk5HBQnMnxIJyew8ciwDb3oSx930YhmHvsYmIKCkMAxZVWNjBsD0Sw1A8e7b8lVJCVswCahvtXYYIAH3t5o6IPXvtPS4RER0Sw4BFFSGfpce39mXP6MAI6QuayxBL6wDYOMFQGUB7M4yWN2EM9dt3XCIimhTDgEVFeV54tdyZRDgZWVQFzDoCCBbae+BEFNj5LoydTdwmmYgoDRgGLBJCoDyU/BB5Ns0bGI+UGuSMBcDMRYDmtffgQ33mNsmcT0BElFIMA1NQkZ/8pYK9GdprwCoZKICoPwwotnGfgxF97UDzWhhdrexPQESUAgwDU2BlEmFfNIHBLJpEOBkhBGRJjdnBMBC29+BKAZ3bzf4E/Z32HpuIKMcxDEyBlcsEALC3P7fW0UvNCzlzIVC9CNCsTbg8JCMB7NkMY9ubMIb67D02EVGOYhiYgnILlwmA3AsDI2ReAWTDYeaqAzvbGgNAPArsbIKx4x0YsUF7j01ElGMYBqYg4NFQGPAk/fi9/bkxb2AisqjKbGscKrH/4NEBYPvb5iZIXHlARDQlDANTVG5h3kDbQG6ODOxPSglZNReoXQp4k2/pnLTBXnPlwZ7NMIzcmKNBRGQXhoEpqrAwb6BtIAbD4Cx4AJC+PMi6peaOiDIFP379ncDW12G0tXA5IhFRkhgGpsjK8kLdUOgcjKewmswjC0ohGo4ECithaxdDAIACeveY7Y07d3A5IhHRITAMTJGV5YUA0JajkwgnI4SALKsHGo6weZvkYcoAunZBbV0Lo2sXQwER0QQYBqaoKM8Lr0z+N9pcXVGQDKlp5jbJtUsBXwrmEygD6NwBtfV1GN27GQqIiA7AMDBFUgiUWdi0aC8nER6S9OVB1i4FZiywv7UxACgd6NgG1fw6jJ49DAVERMMYBqbByqWCXF9eaIUMFpqtjUvrAJGCH1FDB9pbGAqIiIYxDEwD2xKnjhBiuD/BEUBhFeyfZIixoYD7HhBRDmMYmAYrvQYAc4khWSOlhCyrM7dKzi9NzUkM3dz3YOtaGJ07uCSRiHIOw8A0VFiYMwAAXYMMA1MlpQZZOQeoPxzIK0zNSYZXH6B5LYz2bQwFRJQzGAamIeDVEPYn35a4K8JeA9MlPV7I6gVA3TLAH0rNSZQCenYDW9fCaGtmR0MiynoMA9NkZd5AFxsP2UZ6A5A1S4CZSwBvIEVnUUDvXjMU7Hkfhp5I0XmIiJzFMDBNVjoR8jKB/WQgBFm3DKiaD3hs3i55f/3tZkfDXe/BiHOZKBFlF4aBabIyibBrMM4Z6ykiQ0WQ9YcBlXMBLYWhYLAH2PYmjO3rYQz1p+48RERplPwFbxqXlcsEcV2hP6ajwMI8A7JG5pcA+SUw+jqAjm2AnqJLM7EIsPNdGB4/UFprnpeIKEPxU2maivO88EiBRJK7EnYNxhkG0kAWlAIFpTB6281QYKToen8iCuzZDKPNAxRVAYVVkKnYjZGIKIX4r9Y0WW1L3BXhvIF0kuEyyFlHAOUNgExhCDMSQOcOc1nini0wUjUiQUSUAvwV1QZFAS929yU3qYwrCpwhwxVAuAJGXzvQsT11lw+UAvo7gP4OGP58oKwOMpCfmnMREdmEYcAGBQELvQYYBhwlC8qAgjIY/Z3m5YNECkdqov3D8wp8QPFMiIIyCJGCtspERNPEMGADK42HOnmZwBVGJxoOdAMdLUAqlwsmYkDbVqj2FqiCcqCkBlLTUnc+IiKLGAZsEA4kv91u9/DyQv6G6A4yVASEimAM9gFtW4H4UOpOpgygdw/QuwdGoMC8hJCqLopERBYwDNjAyshA3ODyQjeSeQVA3TKzd0Bbs7l0MJWG+oAd78DQvOYqhHClpVUISim0tLTgzTffRCQSwYIFC3DEEUeksGAiymb8RLJB2MKcAQDo4fJC15KBfKC2EUZsEGhvAQZ7U3tCPW5OaOzYASNUBJTWQXon713xwx/+ELfddhva29vH3P7YY49h1apVKSyWiLIVlxbaIOjVoFkY9u+Lsce920lfHmT1QqDh8OGtk1N9WUcBA11md8Ntb8HobRu3W2U0GsW//du/YeXKlXjsscewa9cu9Pf3o6GhAf/85z9TXCMRZSuGARsIISytKOiLMgxkCql5za2TZx0JFFYBIg1vmfiQOeFw62swdm+Csd88hkQigVgshrq6OjQ1NeGXv/wlQqEQ56AQ0bRwrNomYb8H3UkuG+xnGMg4UkqgrA6qtBaqZw/QvQtI9S6Gani0YKDLXJ5YWIm8cCU+9KEP4fbbbwcAHHPMMfjGN76R2jqIKOtxZMAmVuYNMAxkLiEEZFEVZMMRwIwFgC+YnhMnYubcgq2v4Yl7f4SWTRtwxRVXpOfcRJT1ODJgEysrCvqiegoroXSRwUIgWGhuadzeAkS603JeTzyCGgHISFdazkdE2Y9hwCZWeg1wAmF2kV4/MGM+DMMAunYCvXsBIw2B74AJhioagWEY3CiJiCxjGLCJlaWC/dEEGw9lISklUFoLlNaaWyh37jB3NUyXSDewdS2MvDBQUg0ZKEjfuYkoo/FXCJtYuUyQMBSGEkYKqyGnyYJSyPrlQE0jkBe29dhD0Sj+9+lnsal525jb33pvM/7y9+eR6OsAdjbB2LoWxt6t5mUMIqJJMAzYxGrjIS4vzA3SHzT7Fcw6EiiaYcs2yp/52m244LNfwfOvrhtz++N/fwHnfPpL+Or37zZvMHSgr83sXdD8Boz2Fm6tTETjYhiwid+jwa8l/3JyRUFukVKDLK2FnDX9VQivvvUubrzxRsTjcaxZswYAsGnTJsTjcXzyk5/EK2++c/CT9DjQswdofgNGyzoYHdthGPwZJCIT5wzYKBzwoG0guV0JOTKQu0ZXIehxoGMH0N9hbmKUpDn1Nbj33nvx+OOPH3Tfzp07cd7KEyY/QCIGdLcC3a0wvAGgoBworICU3EmRKFcJNV7PU5qSh97cifc7k9vg5viGEhw/qzTFFVEmUEpBDXQBXbuS2iBp+649uOcPj6Knr/+g+8pLinH1xeegorTEeiG+PDMYhMsZDIhyDMOAjZ58bw/W7UpuY5vDqsM4Y0FliiuiTGPocaBzF9Dfnp7liRPxBoD8MqCoAtKGeQ5E5G58l9uowJ98r4FInI2H6GBS8wLl9UB5PYzBXnN54tDBIwApFx8CunYAXTtgePxAfglQNANS4z8ZRNmI72wbBb3JD60Oxbm0kCYn88LAzMUwDN28xt/bZk4ETLdEdN8cA80LBIuAoipIX176ayGilGAYsFHAm/xqAvYZoGRJqQElNUBJDYxoxBwtGOw5qANhWuhxc7liXxsMIYFAAVBYAeQVsvMhUQZjGLBRwGMhDPAyAU2B9AeBGfP3m3TYCsQGnClGGWYoGewBABi+IJBfCoQrIDVOQCTKJAwDNsqzcpmAIwM0DUIIiPwSIL/EvIzQs9u8jJBIbmlrSsQiQGcE6NxuXk4IFQGFvJxAlAkYBmwU8CQfBmK6Ad1Q0CT3J6DpkVIDimcCxTPN1sNdO4GBbsDJpkJ63AwnvcOXE0ZHDcq4bJFcJ97bg+ju3VCxGIxYDFAGhNcH6fXCU1gIf2UVRJaPdjEM2MjKZQIAiCZ0BH38X0D2kV4/UDEbAMz5Bd27gEiPs8sUlQFE+82vjhZz1CCvAAhXQgTyuWEXpY1SCgObNiKyZRMGm5sR2fo+BpvfR6J38iXhwuNBoKYWwdlzkFffgLyGWQg3LoMWCqWp8tTjJ5GN/BbDwFDCQNCXomIo50l/EKicCwAwhvrNpkaDvZa6HaaEHgf6O4H+TigIKK8fCBaazY6m0aaZaCKR5q3oePYZdKx+GrG2NgCA0DQoPbmQrBIJDDZvxeC2FvMGw4DweFB09LEo/dBpKPrg0ZC+zP7HnE2HbHbX81uSng9w2RG1qC4MpLgiorGMSK85YjDYB8Btb39hdkIMFpnhwOt3uiDKUIn+frQ98X9o++tTGNrWAkgJGDYHYU0DdB0ykIeSE09GxVmrkL9gkb3nSBOGAZv914vN6B5Kbi34hcuqMac0e4aZKLOYKxK6zcmH0QHnRwzGI6QZDkLFQEEZpCezf/ui1FO6jr2P/x923P9r6AMD6VuCOxwMSk48GbVXfwb+yqr0nNcmDAM2u++1bdjdl9z+8WcvrsSSSnv3uieaKiPSawYDN1xKmMhIOAgWAvllkD6OrNE+3a+9gm0/+08M7dzhXBFSg5ACVRdcjOqLPg4tmBmXvhgGbPbgup1o7kpus6KV88pxZE1RagsimgJjaMDsOjjo8OTDQxEC8ATMCYn5pZyQmKPiXZ14/87b0fPaq6m5HDAVQsBTUIBZX7wRxSuOd7qaQ2IYsNkj77Riw97kesmfMKsExzVw50JyNyM2CPTsASLdzvYxSJbmA/zB4dGDEnO/B8pa/RuasOlbNyPe2wskOSEwbYQAlMKMf/kEaj55hauXJ3I1gc0sdSFk4yHKANKXB5Q3AIDZ4Kh3L9DXAcQG4b4JiAD0GBCJmeGlvcXsc+DxA4F8IFQC5BWwdXKW6HjuWbx/+61QSrljNOBAw79rtz74Wwxu3YI5X/0GtIA7L21xZMBmf9/cjpe3dyX12MOrC3H6gooUV0SUGkopqEi3GQ4G+wHlst/KJiM95tyDvAIgWAzhD/LyQobZ8+gjaPnpj50uI3lSIjR/IRZ857vwFBQ4Xc1BODJgs0N1FIxG+tG1eyf8wRBiFVxJQJlLCAERKjZn+mP4ckL3HmCw2/2XE4wEMNRnfnXtggKgpAfwBczNl0JFEH7OP3Cr9mf+lllBAAAMAwMbN2DjLV/Dwjt+COlx18cvRwZs9s/mTjy3tWPMbUopvPbEH/HKYw9i58b1GHnJA8EQvnDd53DzzTcjPz/fiXKJUsIwDGCgE+hrB4YGMmvUYH9SA7wBs51yXhgIFkJq7vpHPNdE3t+Cd77wWai4A9t520EIVH70Y6j/12udrmQMhgGbvbytC3/f0j7mto2vrsG9X7kKH/vYx7Bq1SosWrQIPT09eO655/CjH/0Iy5Ytw3PPPQePy5IikV2MeBTo3WPumRAfcrqcaRKA5jVHEUYmKvrzuedCGiT6+rD+2k8j1t7uzjkCFsz5ytdResqpTpcximHAZmt3dOOvm9rG3PbqXx7Cn+68GV1dXXjwwQfxyiuvoKysDNdffz2am5uxYsUKPPjgg7j44osdqpoofZRSUIN9w6MGve6/pJAsIQGPd3gkIWTORwhwsqJdlGFg4ze+ip7X12Z8EAAA4fViyY9+iuDsOU6XAoBzBmw33pyBgtJyAEB9fT16e3tRs2Ap9jRvwmuvvYZnnnkGRx11FP7v//6PYYByghACIhgGgmbDLcMwzH4GfR3mNXw9Q4d/lQHEo+ZXpAfoNm82IADNY65o8OcB/nwgrwDC48+aOQlKT5g7/aWwQ2TbU0+YfQSyhNJ1bLn9VjT+169d8XPAMGAzzzhhYN4HT8CZ13wFiXgMH/jIBSgoKcdD37sJLZvfAgAEg0EkEg5uN0vkICmlOQlxZCKiYQADXUB/BzDU7+xWzLZQZsDR4+bOjWgbuRVKSHNlg8dnjij4g0AgBPhCmTWikIhC7WwCimYARVUQNl8yMRIJ7PrdA7Ye03GGgcGWZnS/9E8UH3uc09UwDNhtvDCgaR6ccNHVo39+5/mn8cbTj+DOO+/Erl278NJLL+HWW29NZ5lEriWlBApKzS8M9zYY6DK/hvozd+RgPMow+yLoMTMo7NevzIAwJzB6vPvCgi9oXoLwBdwVFgwdUAZU105zqWlprdkR0qbfeDv+vnp0t8GsIiV2/uZ+FB2zwvHRAYYBmx1qaeHGV5/H779zPS6++GJcd911WLVqFcLhMK6++upJn0eUq6TUgIIy8wvDIwdD/ebIweDInINsnPqkzFGRWGK4wVPPmHsNABCauUGOx2d2XvT4AZ8f8OYBvrz0rXzYv2W1Hofa+77ZtbK0DiJvemvqla5j128fGO3ml1UMA5Etm9Gz9lUUfeAoR0thGLDZeCMDIzavfQH/ffP/w5kfOQP33XcfrrzySqxevRpPPfUUCgsL01glUeaSUprzDYbnHCiloOJDw+Ggz/zgzPhLC0lSOpDQJ5yEaQYGYU5ulJ7huQteQPMDXh/g9ZsBwhuY3mqI8faviA5A7WqCChVDlNZCeKfWea9zzXOI7m6dem1uJyV2/fYBhoFso00w1PP+updx/9evwcrTTsVDDz2Ea6+9Fr/97W9x33334cQTT0xzlUTZQwgB4csDSmpGbxudlDjQZfY5SAxl32+VyVLKDA2GDiSiwASbqprz84UZHqQ0Rx2kti9EjHyNjkJ4AY/fnB8w2ez+gS6ogW6owkqI4moIi6MVXS/+0z2bD6WCYaC/6V3Ee3vgDTv3SyGXFtpsV88QHnh9+5jbunbvwA+vOgunnHgC/vznP+OLX/wifv7zn4/eHw6Hcc899+D8889Pd7lEOcNIxM1GSJFuIDo4PPeA//yllZBAsAgIFkGGy5J6yhsfvwDxrs7U1uUC8275jqMTCTkyYLPx5gy8s+Zv8Hs0PPLII+jt7cVJJ52Ek046afT+u+++G7/4xS8YBohSSHq8QGGl+TXMiMeASCcQ6TUvL2Tt/AOXUMOdKQc6oYQA8ksmnTgX3bsn7UHgj9t24jfN29ARjWFWfhDXL5yHw4uLUntSTUPfO+sZBrKJNs4EX4/Xh0Qigdtvv33c5/T29qKkpCTFlRHRgaTXBxRWmV/DjEQciHSZkxNjg0A8lrntlF1M7d0CdLcCpTVAXuG4oaDvnfVpremvrXvwww2bcNPi+VhWVIj/3b4L1699Cw8edxSq8lK426Cuo++tdak7fhIYBmw23u8US08+Axte+jvu+unPD7qvwO9BRUUFbrrpptQXR0SHJD1eIFxhfg1TSkFFI+Y8hMF+ID5oLgfkVdbpiUWgWjeam0OV1kIExu7R0v/ueghNg9LTE8Z+37Id59TMwLk11QCAGxbNw8sdnXh4+05cOz+1nQIHtmyGEYtB+lLXuGkyDAM2G+/fhlBhCa747i8Put2nSdxwojtaURLRxIQQEIGQ2RCoeN/thq6bXRMHe4BoxJygp8cZEqwa6oPa+a658qCkxpwQCiDR0wOVpomDccPAht5+XDarfsztR5WW4O3ungmeZSNdhx6JMAxkCyv/BLigAyURTYPUNCBUZH7txzAMIDYARPqA6IC5OZMeG38JHu0z0AU10AVVUAZRPBP6UPpWgXTH4tCVQskBH8alfi9eak/P/hlG1LlNvBgGbGZlcQazAFF2klKaQ9+BgxvuGHrcXO4Y7R+ekzA03K5YBycvDutrhxrqh3JgE6sDf0lTCmnrDpiuyyHjYRhwEEcGiHKP1LzjjiYAIyMKEbPDYmzA3PQoETebKOXKqIIvD6JoBpBfAi0vlLbTFvm80IRAR3RsAOmMxVHi86alBulP4STFQ2AYsJmVES3BsQEi2o85opBvfo3DDAuDZmCIRYbDQswcWTD04X+AMnR0IVBghoDgvpUFMhBIW8Mhr5RYGM7HKx2dOLmyfPT2Vzo6cWJFcj0RpksG/Gk5z3gYBmxmKQwwCxCRBWZYGJ7IOAGlFJQeNyc0xofMr0TM/BoZYTAMuCY0hIohimYctJIAAIINs9CRxlI+Xl+Lb77dhIXhMJYWhfHIjl3YMxTFx2pnpvzc3pJSeELjh8B0YBiwmbLwBmMWICK7CSEgPD6zbfAhKKXM6/KjgWFkpCGxb7TBMMxmQcqwd+ShoByiqGp05cC4D2lcltY2xCtnVKInnsA9W5rRHo1idkEIPzxiGWaksscAAGgawssPT+05DoFhwGbWRgYYB4jIOUIICK/f3LDIgtHRh3jUDBB730/+yR4fkF8GWVpzyIcG586D8HigEunbeOqCupm4oC71IwFjGAYKGhvTe84DMAzYzNLSwpRVQUSUOvuPPqiE/9D/7nn8EIWVQLjc3NgoSdLrRWjBIvS/8/a06nU9pZC/ZKmjJTAM2MzSvk9MA0SU6SZb5RAoMENAqHjKI6Hhww5Hf9M72btrIQAtPx95dfWHfmAKjdNJn6aDIwNElFPUgR/SAsgvhahZAjlzEcQhNiM6lIozV0HILP6oEgJV513g+N8xi19hZ3DOABHllJGRAakBRTMg6pdDVs6B8NvTI8BXWobyM84ylxhmIen3o/LcjzldBsOA3RIWhrI0hgEiynRCQpQ1QNQfBllaa84lsNmMi/4FWTmWKiWqPno+PPnOLSkcLcXpArJNTE9+aMCnZeEPNxHlFBHIhyissDQx0Cp/RSXKPny6OfqQRYTHg8rzLnC6DAAMA7aL68mPDHg1vvxERMmY+YnLoAUCWdWtbeall8NbWOh0GQAYBmwXsxAGfAwDRERJ8ZdXYM7XvpEd20NLiaJjVmDGhf/idCWj+GlkszgvExARpUTRBz6ImsuvcrqM6ZES/opKzPnyV101iZxhwGZWRgZ4mYCIyJoZF1+CoqOPydjVBcLjwfxv3QotlL4dGZORma+mizEMEBGljpASs2/6GvLqGzIrEAgBoWmY+9V/N2t3mQx6JTODlQmEnDNARGSdJ5SPxXf+2NzIyEVD7ROSEtLnw4Jbb0fxscc5Xc24+GlkM84ZICJKPS0YxIL/+B7KTvuw06VMTkp4i0uw6Ac/QfiwI5yuZkIMAzbjZQIiovSQPh9m3XAT6j/3BbMHgea+PgQFS5eh8We/RGjOXKdLmRQ3KrIZwwARUfoIIVC56lyEly5Hyy9+ht61r5pzCZzc2EgIeArCqL36Myg77cMQLgwpB2IYsBkvExARpV9efQMW3no7ul97Fdt+9hMM7dyR/iKkBiEFZlxwMWZc9HFowWD6a5gihgGbsekQEZFzij7wQRT+4l60PfkX7PzNA4h3dZqXD/RJtlqeDiHNnRulhpITT0btVZ+Cv6IyNedKIYYBm0UTvExAROQkoWmoOOsclH9kFfrWv42Ov69Gxz+egRGJmHMLDBuCgRCAUshfsgRlp65EyfEnwlMQnv5xHSKUyobeju6glMIdz25Gsi/op46qQ1nIn9KaiIgIMOJx9Kx9FZ3P/wMD723AUOuufaMFmma2OR75GiElhJBQhj56uydciLxZs1F01NEoPfEU+MrLHfjb2I8jAzYajBtJBwEACHr58hMRpYP0elF8zAoUH7MCAGAkEoju3IHBlmZEWpoR3d0KFYvBiMWgDB3S54fweuEJhxGsb0Be/Szk1TfAU1Dg8N8kNfhpZKNIPJH0YwWAPC8vExAROUF6PMirb0BefQNKnC7GBfhpZKNILPnrUHlezVWbVBARUe5iGLBRJJ58GAj63L/ulIiIcgPDgI0shQEvwwAREbkDw4CNBixcJuDIABERuQXDgI0GOTJAREQZiGHARpZGBhgGiIjIJRgGbMQJhERElIkYBmxkZWkhRwaIiMgtGAZsZG1kgP2eiIjIHRgGbKIbytIEwhBHBoiIyCUYBmzSG41bejznDBARkVswDNikezD5MODVBAIevvREROQO/ESySc9Q8psUFfq93JeAiIhcg2HAJlZGBsIBTh4kIiL3YBiwSfdQ8mGgMOBNYSVERETWMAzYhCMDRESUqRgGbNLDkQEiIspQDAM2GEroGIwbST++kCMDRETkIgwDNugZTH4lAQCEOTJAREQuwjBgAyuTBzUhkM+GQ0RE5CIMAzawMnmwIOBhjwEiInIVhgEbWJs8yPkCRETkLgwDNrAyMsCVBERE5DYMAzawMjIQ9nNkgIiI3IVhYJqUUui2sC9BUR5HBoiIyF0YBqapP6ZDN1TSjy8N+lJYDRERkXUMA9NkZb4AwDBARETuwzAwTVZ6DBT4PfB5+JITEZG78JNpmnosjAxwVICIiNyIYWCauqyEgRDDABERuQ/DwDTt6Y8m/diyIFcSEBGR+zAMTENcN9AxEEv68bxMQEREbsQwMA17+6NIflEhLxMQEZE7MQxMw+6+5C8RBDwSQS93KyQiIvdhGJgGK2GgNOjjboVERORKDAPTsKd/KOnH8hIBERG5FcPAFCV0A+2cPEhERFmAYWCK2gZisLAlAcMAERG5FsPAFO3uS/4SAQCU5zMMEBGROzEMTJGVyYN5Xg1hvyeF1RAREU0dw8AUWQkDVQV+riQgIiLXYhiYAt1QaBuwEAby/SmshoiIaHoYBqagbSBqafJgZQHDABERuRfDwBTssXCJAACqCgIpqoSIiGj6GAamwGob4sIAJw8SEZF7MQxMgZVlhZWcPEhERC7HMGCRbijstdB5kJcIiIjI7RgGLOqIxKBbmD1YxcmDRETkcgwDFlntPMhlhURE5HYMAxZZmTzo90gU5XlTWA0REdH0MQxYZGVZYWU+Jw8SEZH7MQxYYCiFPf0WwgDnCxARUQZgGLCgIxJDwsLkwZlhriQgIiL3YxiwwGrnwZrCvBRVQkREZB+GAQusTB4szvMin9sWExFRBmAYsMDKskKOChARUaZgGEiSbihLlwlqijhfgIiIMgPDQJJae4cQtzB5sJYjA0RElCEYBpLU0j2Y9GODXg3FbDZEREQZgmEgSdu6Ikk/tqYowGZDRESUMRgGkpAwDOzs5eRBIiLKTgwDSdjVM2Sp2RDnCxARUSZhGEiClfkCXilQwZ0KiYgogzAMJGFbV/JhoDocgCY5X4CIiDIHw8AhxHUDu6zMFyjiJQIiIsosDAOHsLNnCLrifAEiIspeDAOHsK07+SWFmhSYWcjOg0RElFkYBg6hxcJ8gZnhALwaX1IiIsos3FZv2IstnWjrj6KhJIRZJUEU+D2IJQy0WticqKE4mMIKiYiIUoNhYFjY78E/3u/Au3v7AQBlIR9Kgl5YaC/AMEBERBmJYWBYVcHYa/3tAzG0D8SSfr7fI1FVwP4CRESUeXiBe1hx0AuvNvX+AHVFeZDsL0BERBmIYWCYFAKV0+gcGE0YeL9jAHHdsLEqIiKi1ONlgv1U5vuxoyf5CYP729Y9iG3dg9CEQE1RALOKg5hTFkJ5iJcOiIjI3TgysJ/Kgun3CNCVQkvXIJ7b2oH+aMKGqoiIiFKLYWA/dk4AXLWoCrNKQrYdj4iIKFUYBvZTGvTZssnQqXPLsLiywIaKiIiIUo9hYD+aFKgI+aZ1jGPrivHB2mKbKiIiIko9hoEDHNhvwIplM8I4cXapjdUQERGlHsPAASqnOG9gblkIZ8yvgBDsNUBERJmFYeAA5VO4TFBTGMC5i6vYdIiIiDISw8ABSoPWwkB5yIcLllZzt0IiIspY/AQ7QMCrIeTTknps2O/BRctnIuBN7vFERERuxDAwjmRGB0I+DRcfNhMFfjZxJCKizMYwMI5DhYE8r8S/LJ9p+ZICERGRGzEMjKN0kkmEfo/ExctnonwamxoRERG5CcPAOEqD3nFv92kCFy2rnlYvAiIiIrdhGBjHeMP/HilwwbKZmFmY50BFREREqcMwMI4CvwdebV/PAE0KnL90BuqKGASIiCj7MAyMQwgxOjogBXDeEu5ASERE2Stn1sUppaASCah4HEY8DiElhNcL6fVCaAf3CSgN+rCnL4pzFldhblm+AxUTERGlh1BKKaeLsFusox2R97ci0rwVka1bMbB5MwabW2BEh8Z9vLe0DKG5cxCcPRvBhlkIzp6Ft0QYhQUhLKkKp7l6IiKi9MqaMDDU2or21avR9vRTGGxpMW8UApAS0PVDH0AICE2DSiTMP3o8KD52Bco/vBLFRx8D6edSQiIiyk4ZHQbiPT1of2Y12p56Cv1NTeYHv1Lmlx00DdB1yEAApaecgvLTVqLwyCO5MyEREWWVjAwDRiyG1ocfxvb77oURjZo3pvivITQNStcRWrgQsz//BRQsWZLS8xEREaVLRoUBpRQ6/vEPNN/9n4i1taU8AIxLSsAwUPqhD6H+X69BoKoq/TUQERHZKGPCQKS5GVu+fwf61q835wI4XbaUEFJi5iWXoObyKyA9ObMwg4iIskxGhIH2Z5/F5lv/A4auJzcZMJ2EQMGSJVjw7e/AV1rqdDVERESWuToMKKWw/d57seP++9wxGjARTYM3HMbi/+9OhObOdboaIiIiS1wbBlQigS0/uBN7//IXp0tJjpSQPh8Wfe92FB5+uNPVEBERJc2VYUAphc3f+x7annrSvaMB45ESQgg0/vgnKGhsdLoaIiKipLhyb4I9f/4z2p58IrOCAAAYBpRS2HDz1xHr7HS6GiIioqS4Lgz0rV+P93/8I6fLmDrDQLy3F+99499HuxkSERG5mavCQKyzExtu/nrmjQgcSNfRt349mn/+X05XQkREdEiuCgObv/ddxHt7AcNwupTpUwqtDz2ErldecboSIiKiSbkmDPQ1vYvul192Xx+B6ZAS2371S7hwjiYREdEo14SB7ffdZ24MlE0MAwPvvYee115zuhIiIqIJuSIM9G/ciO6XXsquUYERUmL7ffc6XQUREdGEXBEGdjxwf/aNCowwDPStX4+edeucroSIiGhcjocBPRJB5wsvZOeowDChaWj/21+dLoOIiGhcjoeBvqam7Fg9MAml6+h54w2nyyAiIhqX4/vu9r39lnmJIMUjAw9s245/tLejZXAQfimxNBzG/5vVgPpgMKXnHTG0YwfiPT3wFham5XxERETJcnxkoGfdurSMDKzr6cHHqqvxi8OW466ljdCVwvVvr8dgGi9P9K1fn7ZzERERJcvRMKASCfS/805aOg7+YGkjzqqqxOxQCPPy8/G1+fOwJxrFe339KT83YM4b6H3rrbSci4iIyApHw0Civx9GLObIuQeGRwTC3vRcKVFKIdbWlpZzERERWeFoGDCiUUfOq5TCj7e8j2XhMGaHQuk5qWHAiA6l51xEREQWODqB0IjHHTnvDzZvwZaBAfzssOVpPa8edWYUhIiIaDKOjgxIny/t5/zB5s1Y09GBnyxbhgq/P63n1gLpPR8REVEyHB0ZkIFA2s6llMIPtmzBc+0d+M/ly1Cdl75zAwCkhExz+CAiIkqGoyMDnoICaGm6Zn/n5i14es9efHPhAgQ1DR2xGDpiMUTTtbRQCOTV1qbnXERERBY4OjIghEB4+XJ0vfRSynsN/G9rKwDgc2+9Peb2r82fj7OqKlN6bgCArqNg6bLUn4eIiMgixzsQhpcNh4EUe+HEE1J+jklJiYJFi5ytgYiIaByOdyAML12a9XsTAEBw9mxoaWp9TEREZIXjYSC0YAGE1+t0GSklNA2Fhx/hdBlERETjcjwMSK8XFWd8BJCOl5IyStdRceaZTpdBREQ0Lld8As/8xCecLiF1NA0lJ5yA0OzZTldCREQ0LleEgcCMGSg//XRzK+Nso+uouexyp6sgIiKakCvCAADUXPrJ7JtIqGkoOuYY5M+f73QlREREE3JNGMirqUHFmWcBQjhdin2UQt3VVztdBRER0aRcEwYAYNbnP4+8hoasuVww6/OfR/78BU6XQURENClXhQEtEMCi274Lze/P7BECIVG2ciWqPnqe05UQEREdkqvCAAAEqqsx/5ZvAko5XcrUaBryGuox58YvQ2RyoCEiopzhujAAAMXHHIO6f/1Xp8uwTtPgCYXM0Y007shIREQ0Ha4MAwBQc8kn0HDddeYfMuE3bE2Dr6wMy/7r5whUVztdDRERUdKEUu4ej29/ZjU23XYblK67d+mhEAjNm4dFt98BX0mJ09UQERFZ4vowAAADmzah6av/hlhHh7sCgRCAUqg4axVmf/GLkD6f0xURERFZlhFhAADivb3Y9qtfYs+jj5r7GOi6swUJAV9pKRquvRZlHzrV2VqIiIimIWPCwIjI1q3Y+p8/Qc9rr5mhIN0jBVJCer2ouexyzLjwQnMZJBERUQbLuDAwouvll7H1Jz/G0PbtZpOiVI8UjF4SOAt1V38KvtLS1J6PiIgoTTI2DACAMgz0vv0W2v/2N7SvXg19YMDeYDA88hCcOxcVp5+B0lNOgb+83J5jExERuURGh4H9GfE4ul97De1//Su6XnrRDAaA+Rv9oeYYCAEhpbliYfjPgZoalJ92GspOPQ15tbWp/wsQERE5JGvCwP6UUoh3diLS3IzI1vcxuLUZA5s3Id7dDSMeh4rHIaSE8HohfX4EamsQmj0bwVmzkdfQgLz6es4FICKinJGVYYCIiIiS59oOhERERJQeDANEREQ5jmGAiIgoxzEMEBER5TiGASIiohzHMEBERJTjGAaIiIhyHMMAERFRjmMYICIiynEMA0RERDmOYYCIiCjHMQwQERHlOIYBIiKiHMcwQERElOMYBoiIiHKcx+kC9uc7/CpIjw9CahBSg+bd972Qct99mgbp8UGO3qcddJ+QGqQUEFJA0yTEAd9LKSA1MfqYSe8TAppHQpMCmhTwDX/vGf2ztu8+bd/jPPs9VhvveyEghYAmAK8mR7/3aBKagPlnKeCVYpzvzfu9Uo5+rwkBIQApACEwfHxAANCkgATMv4vE6PdSAJrY/3vzGEIpQBkQRgIY871hfhkT3yeUAej6vu+NBGDoUIYBJGJQug4YhnlbIg5l6Ob38Tgw8v3IY0ceF4/te46hw4gnoHQDyjBgxBIwdPM5SjdgxBMw9H3fq+Hv9XgCar/H6bHEft/rUIaCoavhPw8/31DmfbqC0hUM3YAeN4aPqaDH9eHn7HueoRR0pRAzFHSFA74/8M/m9wbM73WF4fv2ff9fqtnR96Vd+P7m+5vvb/e+vzkyQERElOMYBoiIiHIcwwAREVGOYxggIiLKcQwDREREOY5hgIiIKMcxDBAREeU4hgEiIqIcxzBARESU4xgGiIiIchzDABERUY5jGCAiIspxDANEREQ5jmGAiIgoxzEMEBER5TiGASIiohzHMEBERJTjGAaIiIhyHMMAERFRjmMYICIiynEMA0RERDmOYYCIiCjHMQwQERHlOIYBIiKiHMcwQERElOtUlhoaGlK33HKLGhoacrqUg7i5NqVY33S4ubZs4ubX2c21KcX6psPNtU2XUEoppwNJKvT29qKwsBA9PT0Ih8NOlzOGm2sDWN90uLm2bOLm19nNtQGsbzrcXNt08TIBERFRjmMYICIiynEMA0RERDkua8OA3+/HLbfcAr/f73QpB3FzbQDrmw4315ZN3Pw6u7k2gPVNh5trm66snUBIREREycnakQEiIiJKDsMAERFRjmMYICIiynFZFwZuvPFGnHDCCfjEJz6BWCw25r7BwUGsWrUKJ510ElauXInOzk5X1Tfiu9/9Lj7wgQ84XlMikcAVV1yBE044AV/4whfSVk+y9Y1I9+u1v4lqc8PPWjbi+9u+mvj+PrRcen9nVRh44403sHv3bjz//PNYvHgx/vjHP465/4knnkBjYyP+8Y9/4KKLLsJ///d/u6o+AOjr68P69etdUdNjjz2GmpoaPP/884hEIvjnP/+ZtrqSqQ9I/+uVbG1O/6xlI76/7a2J7++p1+b0z1oqZFUYePHFF/HhD38YAHDGGWcc9MM9b948RCIRAEB3dzfKy8tdVR8A/OhHP8K1117ripqSqdfJ+oD0v177m6w2p3/WshHf3/bWxPf35HLt/e1xugA7dXd3o7q6GgBQWFh40NDNnDlzsH79ejQ2NkIIgZdfftlV9fX09ODtt9/GzTff7Iqauru7R/tvj1ev0/U58XolW5vTP2vZiO9ve2vi+3vqtTn9s5YKGTkysHv3bhx//PEHfSml0NvbC8D8H1lSUjLmeffffz9OPvlkrF+/Ht/61rfw7W9/21X13XXXXfjc5z6XkpomUlxcPGFNk93nhvqceL32N1lt6fpZy0Z8f9uH7++py7X3d0aGgaqqKqxZs+agrzPPPBNPP/00AOCpp57Ccccdd9BzR/6HFhUVobu721X1bd68GbfeeivOOOMMbNq0Cd/73vdSUt/+jjnmmAlrmuy+dJmsBider2RrA9Lzs5aN+P62D9/fqakNyML3t3O7J6fGl770JXX88cerSy65REWjUaWUUp/5zGeUUkr19PSoM888U5100knquOOOU++9956r6tvfkUce6VhNI/XE43F12WWXqeOPP15dd911aasn2fr2l87Xa38T1eaGn7VsxPf39Gvi+zt5ufT+ZjtiIiKiHJeRlwmIiIjIPgwDREREOY5hgIiIKMcxDBAREeU4hoEccN9996GoqMiWYzU3N0MIAY/Hg507d465r7W1FR6PB0IINDc3j7nv4Ycfxsknn4zCwkLk5+dj2bJl+Pa3vz3ayMPOGolyzRVXXAEhBK655pqD7vvsZz8LIQSuuOKK0dt2796N6667DrNnz4bf70dtbS3OPvtsrF69evQxDQ0NuOuuu9JQPbkBwwBNSXV1NR544IExt91///2YOXPmQY/9+te/josvvhgf/OAH8cQTT2D9+vW488478eabb2ZFT28iN6itrcWDDz6IwcHB0duGhobw+9//HnV1daO3NTc348gjj8QzzzyDO+64A2+//TaefPJJnHLKKY61/iXnMQxkgCeffBLHH388ioqKUFpailWrVmHLli0AgGeffRZCiDFNL9atWzf62/mzzz6LK6+8Ej09PRBCQAiBb37zmwCArq4uXHbZZSguLkYwGMRHPvIRbNq0KamaLr/8ctx7771jbrvvvvtw+eWXj7ntlVdewW233YY777wT3//+97FixQo0NDRg5cqVePjhhw96PBFNzRFHHIG6ujr86U9/Gr3tT3/6E2pra3H44YeP3jYyUvDKK6/gggsuwPz587FkyRLccMMNeOmll5wonVyAYSADDAwM4IYbbsCrr76K1atXQ0qJ8847D4ZhHPK5K1aswF133YVwOIzW1la0trbixhtvBGAOLb722mt49NFH8eKLL0IphTPPPBPxePyQxz3nnHPQ1dWFNWvWAADWrFmDzs5OnH322WMe99vf/hb5+fn47Gc/O+5xeGmAyD5XXnnlmJB+zz334Kqrrhr9c2dnJ5588klce+21CIVCBz2f78fclVUbFWWr888/f8yff/3rX6OiogLvvvvuIZ/r8/lQWFgIIQSqqqpGb9+0aRMeffRRvPDCC1ixYgUA84O7trYWjzzyCC688MJJj+v1enHppZfinnvuwfHHH4977rkHl156Kbxe75jHbdq0CbNnzz7odiKy3yc/+Ul89atfHZ3b88ILL+DBBx/Es88+C8Bs8auUwsKFC50tlFyHIwMZYMuWLbjkkkswe/ZshMNhzJo1CwCwbdu2KR+zqakJHo8HRx999OhtpaWlWLBgAZqamgAAH/nIR5Cfn4/8/HwsWbLkoGNcffXV+MMf/oDdu3fjD3/4w5jfQEYopSCEmHKdRJS8srIynHXWWbj//vtx77334qyzzkJZWdno/SMNZ/mepANxZCADnH322aitrcUvf/lLVFdXwzAMNDY2IhaLIT8/H8C+NzmApIb5J+pCvf+H969+9avRyUjj/Wbf2NiIhQsX4uMf/zgWLVqExsZGrFu3bsxj5s+fjzVr1iAej3N0gCgNrrrqqtHd/u6+++4x982bNw9CCDQ1NeGjH/2oA9WRW3FkwOU6OjrQ1NSEm2++GaeeeioWLVqErq6u0fvLy8sBmMv6Rhz4gezz+aDr+pjbFi9ejEQiMWYf7o6ODmzcuBGLFi0CAMycORNz587F3LlzUV9fP259V111FZ599tlxRwUA4JJLLkF/fz9++tOfjnt/Vuz2ReQiZ5xxBmKxGGKxGE4//fQx95WUlOD000/H3XffjYGBgYOey/dj7mIYcLni4mKUlpbiF7/4BTZv3oxnnnkGN9xww+j9c+fORW1tLb75zW9i48aN+Mtf/oI777xzzDEaGhrQ39+P1atXo729HZFIBPPmzcO5556LT3/601izZg3efPNNXHrppZg5cybOPffcpOv79Kc/jba2NnzqU58a9/6jjz4aN910E770pS/hpptuwosvvoiWlhasXr0aF154Ie6///6pvTBENC5N09DU1ISmpiZomnbQ/T/96U+h6zqOOuooPPzww9i0aROamprw4x//GMcee6wDFZMbMAy4nJQSDz74INauXYvGxkZcf/31+P73vz96v9frxe9//3ts2LABy5cvx+23347/+I//GHOMFStW4JprrsHFF1+M8vJy3HHHHQCAe++9F0ceeSRWrVqFY489FkopPP7445aG8z0eD8rKyuDxTHzF6fbbb8fvfvc7vPzyyzj99NNHlzEtW7aMSwuJUiAcDiMcDo9736xZs/D666/jlFNOwZe+9CU0NjZi5cqVWL16NX72s5+luVJyC25hTERElOM4MkBERJTjGAaIiIhyHMMAERFRjmMYICIiynEMA0RERDmOYYCIiCjHMQwQERHlOIYBIiKiHMcwQERElOMYBoiIiHIcwwAREVGO+/8BRglNqnKhpdIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABFH0lEQVR4nO3dd3wc1b0+/uec2aZdadWLZTV3G8s2JaEY0wIOzUAI7YYQapLLN4QkEEIaN6RcSCA/EpJckptGuylcEnIJJLTEhIAJ1WDAIHDBkrus3lbaMnN+f4wkW7Yk70izO7O7z/v10gt5y8zHi9b76Mw5nyOUUgpERESUs6TTBRAREZGzGAaIiIhyHMMAERFRjmMYICIiynEMA0RERDmOYYCIiCjHMQwQERHlOIYBIiKiHMcwQERElOMYBoiIiHIcwwAREVGOYxggIiLKcQwDREREOY5hgIiIKMcxDBAREeU4hgEiIqIcxzBARESU4xgGiIiIchzDABERUY5jGCAiIspxDANEREQ5jmGAiIgoxzEMEBER5TiGASIiohzncbqAVDPicUR3bsfQthYkenuh4jEYiQSEkBBeL6TPC1/lDOTVNcBTXAIhhNMlExERpVVWhQGlFCIb30Xv62sx1LIFg1s2I9q6GzAM8wFC7P1SAJQClDH6fJkXRKCuHsFZc5A3aw4Kj1oOb1GxM38ZIiKiNBFKKeV0EdM1uK0FXc8+jc5//B3x9jZADl/9MIzJnzgRTQN0HRACBcsOR8kJJ6Pw6OXQ8oL2FU1EROQSGRsGlK6j42+Po+2vf8bQthYzAEz1w38yw8cVHg8Kj1yOyvM/huDsOfafh4iIyCEZGQZ61r6MHb/6GaK7dqT3xMPBoOSU01B98WXwlpSm9/xEREQpkFFhYLBlC3bc/XP0vfFa6kYCkiElhMeDqgsuRsXZ50H6/c7UQUREZIOMCANK17H7f3+D3X/4HSAkYOhOl2QSAt6SUsz6ys0IzVvgdDVERERT4vowkOjvQ/Mdt6Lv9bVOlzI+KSGERO1nPo/Sk091uhoiIiLLXB0GYm17sOkbX0a0dZdzlwQsqDz/Y5jx8cvZq4CIiDKKa8PA0Lat2PgfX0KitycjgsCIkpM/jLrPXAehaU6XQkRElBRXtiNO9PVi07e+mnFBAAA6Vz+F3f/7G6fLICIiSprrwoAyDDT/4LuId3ZkXBAYsfvB36Ln5RecLoOIiCgprgsDu//3N+ZkwQwNAgAAIdD8g++lvw8CERHRFLgqDPS88mJ2DLErBSMWxeZbvgF9aNDpaoiIiCblmjBgxGPYetcPzU2EsoFhILpjO9oe+ZPTlRAREU3KNWGg8+mnkOjuMncSzBZKofXhP0AfjDhdCRER0YRcEQZUIoHdD/4ue0YF9mEMDqL98UedLoOIiGhCrggDnc/8HfGO9uwaFRihFFr/9CDnDhARkWu5Igzs/uPvs3JUYITe34fOp//mdBlERETjcjwMxNr2ILZ7V3aOCoyQEr1u3VuBiIhynuNhoP+dt5wuIfUMA/1vvwmVyb0TiIgoa3mcLmCg6W1A0wA99dsSr23vwv2bmtHU3Yv2aAx3HLkMJ82oSPl5AcCIDCC6YzsCtXVpOR8REVGyHB8Z6HtrXVqCAAAM6TrmFxbgy0sXpuV8++tvWu/IeYmIiCbj6MiAER1CdMf2tJ3v2MoyHFtZlrbzjaFpiGx8D/jwGc6cn4iIaAKOjgzokRxqxmMY0AcGnK6CiIjoAI6GASMadfL06aUUjOiQ01UQEREdwPE5Azklm5dPEhFRxnI0DEi/38nTp5cQkIE8p6sgIiI6gLNhIC+HPhylhBYMOl0FERHRARxdTaAF8uCfUY3orp1pOV8kkcC2gb17BOyIDOK9nj6EvR7MCKY4mOg6gnPnp/YcREREU+B406H8JYciuqc1Lb0G3unuxaef39sW+AfrNwAAzqqdgW8d3pjy84cOSf05iIiIrHI+DCxqRMdTj6XlXB8oK8Fr56xMy7n2J/OCCNSw+yAREbmP46sJQocsdrqE1BMC+Yc0QkjHX24iIqIDOP7p5Kuogq+8Iqu3MAaAgsOOcLoEIiKicTkeBoQQqDz/Y1m9Bl/LC6L05NOcLoOIiGhcjocBACj50Ep4ioqdLiM1hEDFuRdAy6VllERElFFcEQak14eqCy52uoyUkIEAys84x+kyiIiIJuSKMAAApaecBi1c6HQZ9hISFWefBy0UcroSIiKiCbkmDEi/H3VXf87pMuwjNfgqq1BxznlOV0JERDQp14QBAChafhwqzr0QQIavLBACwuPBnK9/G1qQowJERORurgoDAFB9yRXIb1wCZPKafKVQ/4UvIVDLJkNEROR+rvvEFZqGhi/dBE9hUYYGAoGKcy9E8fLjnS6EiIgoKa78tPUWFmHuzbdCC+VnXCAoWnECqi+5wukyiIiIkiaUcm+3n+juXdj0H19CrKMdMAynyzmo8rM/ipmXf5pth4mIKKO4OgwAQLynG1tu/w4G3n7L6VLGJyQggJqrrkbJkjkQ/iBEIB/whwB/EEIwGBARkbu5PgwAgNJ17Lz/19jz5z8CUgOM1G93nBQh4AkXYtaXv4H8QxphtLcAPa1j7jdDQT5EwPwvPD6zfqlBZPl+DERElBkyIgyMiGzagO2/+ikG3n3H/KB1qnQpIaRExbkXoPKjF0HLCwIAVDwKtfWNgzzXA0ABmg8omQmRVwCheVNfMxER0QQyKgwAgFIKPS+swfZ7fo54WxuANJYvJWAYKD7uRFRf+klzt8X9GK2bgf4Oa8f1+ABf0Lys4A+Z33t8HDkgIqK0yLgwMMKIx9D+2CNoe+wRxFp3p+7ywfAIRDS/CL0nrMIxx30QBQsXTfhwFR2A2v729M8rPYA/CPiCEP4g4A9B+LjZERER2S9jw8AIpRQGN29E57P/QNc/VyPR0w1omrn6YKp/NakBykA0rwBdK05H64IPYLc0LwVcfFgN6oom/1A2dr4LDPZO7dwTECW1EMUzbD0mERERkAVhYF9K19H/znr0vv4qhlq2YLD5fcQ72vc+QEqzVTAE1MjlhX1Cg/B6YcxZiI7G5dheNQet2oGthD9QU4RT5pVPXkekB2rXe7b9vRAsgqiax8sGRESUElkVBsajDw5iaPtWDG1tRqKvFyoeh4rHzUmAXi+k14dERTW2FszApqjE9p6hSY9XGPDg6qMbJv1gVkqZlwpiken/BTw+iJpGCM0z/WMRERGNI+vDQDJebOnEM+8nP+nvig/WoTLfP+ljVH8HVOvm6ZYGMfMQs28BERFRirAjDoD55dY+bDe29R/8QaGS4WWE0yAklNSmdwwiIqKDYBgAUBL0oSzoS/rxG9qTCAN2LHlUBrDtLRj7NjIiIiKyGcPAsHnlB04WnMie/hi6B+OTPkYICdQsBmDDpL/2Fhg734WRAfszEBFR5mEYGDa/zOKlgiRGB6TXDxRXT7WksQZ7gZbXYURtmJRIRES0D4aBYVUFfhT4k7/Gv6FtIKnHiaIqs2+BHQwd2L4eRtdOe45HREQEhoFRQgjMK0v+UsH2nkFEYomDH1dqEIVV0yntQJ3bYWx/B4ZbNmwiIqKMxjCwDyuXChSATR3JjQ6gsNLc6thO0X6gZR2MoWQmMxIREU2MYWAftUV58HuSf0mSvlSgecxAYDdDB3a8A6Njm/3HJiKinMEwsA9NCswtTf5SwZauCGKJ5Gb4i8Iq+0cHRnTvgrH1TRiJyVc4EBERjYdhYD9W5g3ohkJzV3Kz+4XHC4TH2dMgvxSwo9VwfMi8bNDfOf1jERFRTmEY2M/skhA0mXxvgJYkwwAAiKIZGNN3wB+CqJgF1B0KhIqTL3JCCmjdBGP3RvYkICKipDEM7MfnkWgoDib9+GRHBgBAeHx7RwekBlE5F0JISCkhq+YBFbOslju+gS5zlMCOjZKIiCjrMQyMw8q8gY5IHL1DyV+rHxkdEBVzILxjNzuSBeVA3TJAS7418oSMBLBtPYzO7dM/FhERZTWGgXE0FOdZenxL12DSjxVeP0T1QohQ0bj3S68fon6ZOZfADl07zcmF8Zg9xyMioqzDMDCOojwvwha6EVq5VAAAIq9g8vuFgKycA1TOhS17G8SHgK3rYPTsmf6xiIgo6zAMjEMIgToLowPNXREoZcMuhfuR+SVA/TLA4z/4g5PR3jzcufDgnROJiCh3MAxMoL4o+UmEAzEd7ZHUDMNLjw+ibikQrrDngNF+oPl1LkEkIqJRDAMTsDIyAADNnambuS+EgCxvAGYstKdxkRpegrhrA5cgEhERw8BECgNeFOd5k3681XkDUyGDYaDhMCBgbbvlCUW6zW2RB/vsOR4REWUkhoFJ1FsYHdjaPQjdsH/ewP6k1CBnHgKU1dlzQEMHdjbBaN3MUQIiohzFMDCJOgvzBuK6ws7eoRRWM5YsrALqlgJa8qMXk+rvGN4FkaMERES5hmFgElZGBoD0XCrYl/QGIOoPBfLL7DmgkQB2cJSAiCjXMAxMIuTzoCyUfDdAK/sU2MXsSTAbqLZpciGwd5SAcwmIiHICw8BB1BclPzqwo3cI0YSewmomJvPCQMPhQF6hPQc0EpxLQESUIxgGDqLOwqZFSgHbupNvTWw3KSVk9QKgYg4gbOhcCAyPErwOI9Jjz/GIiMh1GAYOos7CyAAANFvYpyBVZEEpUH8Y4E9+w6VJGTqw6z0YO9+DYTgz8kFERKnDMHAQeV4NlfnJtwNOZfMhK6TmgaxZDJTatAQRAAZ7gObXYPS22XdMIiJyHMNAEqysKmiPxNAXdU/vf1lUBdQdat/+BkoBbVtgbFsPI8GdEImIsgHDQBLqLcwbAJxZVTAZ6R3e36Bohn0HjUXMFQddO+07JhEROYJhIAk1hXmW5uNtccmlgn0JISBLa4HapfaNEgBA53YYLetgRN33dyYiouQwDCTB75GoLggk/fgdPenrRGiV9AUg65fZO0qQiAHb18No25KSrZyJiCi1GAaSZGXeQPdQHAMx98wbGE9KRgl626CaX4Mx0GXfMYmIKOUYBpJkZZ8CAGndp2Cq9o4SVNt3UEMHdm+Esf0dGIm4fcclIqKUYRhI0szCADQLEwcyIQyMkKU19o8SRPvNZkUd23jpgIjI5RgGkuTVJGYWJj9vYKeL5w2MZ3SUoKTG3gN374JqeR3GYK+9xyUiItswDFhgZd7Arr4hGBn4G7EsrgYabOxeCAB6Atj5Loyd78LQ3T2XgogoFzEMWGBl3kBMV2gfyMymPFLzmt0L7dzjAAAGe4FmXjogInIbhgELqsMBeGV2zhsYjywoBRqOAIJFNh5VmZcOml+HMdBt43GJiGiqGAYs0KRAjYWNizI9DADDOyHOmA/MWABIzb4DGwlg9wazrXE8at9xiYjIMoYBi6rD2TuJcDIyWGjuhFhQbu+BYxFg6xsw9rwPwzDsPTYRESWFYcCiCgs7GLZHYhiKZ8+Wv1JKyIpZQG2jvcsQAaCv3dwRsWePvcclIqKDYhiwqCLks/T4XX3ZMzowQvqC5jLE0joANk4wVAbQ3gyj5Q0YQ/32HZeIiCbFMGBRUZ4XXi13JhFORhZVAbMOB4KF9h44EQV2vANjRxO3SSYiSgOGAYuEECgPJT9Enk3zBsYjpQY5YwEwcxGgee09+FCfuU0y5xMQEaUUw8AUVOQnf6lgT4b2GrBKBgog6g8Fim3c52BEXzvQvBZG1y72JyAiSgGGgSmwMomwL5rAYBZNIpyMEAKypMbsYBgI23twpYDObWZ/gv5Oe49NRJTjGAamwMplAgDY059b6+il5oWcuRCoXgRo1iZcHpSRAFo3wdj6BoyhPnuPTUSUoxgGpqDcwmUCIPfCwAiZVwDZcKi56sDOtsYAEI8CO5pgbH8bRmzQ3mMTEeUYhoEpCHg0FAY8ST9+T39uzBuYiCyqMtsah0rsP3h0ANj2lrkJElceEBFNCcPAFJVbmDfQNpCbIwP7klJCVs0FapcA3uRbOidtsNdcedC6CYaRG3M0iIjswjAwRRUW5g20DcRgGJwFDwDSlwdZt8TcEVGm4MevvxPY8hqMthYuRyQiShLDwBRZWV6oGwqdg/EUVpN5ZEEpRMMRQGElbO1iCABQQG+r2d64czuXIxIRHQTDwBRZWV4IAG05OolwMkIIyLJ6oOFwm7dJHqYMoGsn1Ja1MLp2MhQQEU2AYWCKivK88Mrkf6PN1RUFyZCaZm6TXLsE8KVgPoEygM7tUFteg9G9m6GAiGg/DANTJIVAmYVNi/ZwEuFBSV8eZO0SYMYC+1sbA4DSgY6tUM2vwehpZSggIhrGMDANVi4V5PryQitksNBsbVxaB4gU/IgaOtDewlBARDSMYWAa2JY4dYQQw/0JDgcKq2D/JEOMDQXc94CIchjDwDRY6TUAmEsMyRopJWRZnblVcn5pak5i6Oa+B1vWwujcziWJRJRzGAamocLCnAEA6BpkGJgqKTXIyjlA/WFAXmFqTjK8+gDNa2G0b2UoIKKcwTAwDQGvhrA/+bbEXRH2Gpgu6fFCVi8A6pYC/lBqTqIU0LMb2LIWRlszOxoSUdZjGJgmK/MGuth4yDbSG4CsWQzMXAx4Ayk6iwJ695ihoPV9GHoiRechInIWw8A0WelEyMsE9pOBEGTdUqBqPuCxebvkffW3mx0Nd74HI85lokSUXRgGpsnKJMKuwThnrKeIDBVB1h8KVM4FtBSGgsEeYOsbMLathzHUn7rzEBGlUfIXvGlcVi4TxHWF/piOAgvzDMgamV8C5JfA6OsAOrYCeoouzcQiwI53YHj8QGmteV4iogzFT6VpKs7zwiMFEknuStg1GGcYSANZUAoUlMLobTdDgZGi6/2JKNC6CUabByiqAgqrIFOxGyMRUQrxX61pstqWuCvCeQPpJMNlkLMOB8obAJnCEGYkgM7t5rLE1s0wUjUiQUSUAvwV1QZFAS929yU3qYwrCpwhwxVAuAJGXzvQsS11lw+UAvo7gP4OGP58oKwOMpCfmnMREdmEYcAGBQELvQYYBhwlC8qAgjIY/Z3m5YNECkdqov3D8wp8QPFMiIIyCJGCtspERNPEMGADK42HOnmZwBVGJxoOdAMdLUAqlwsmYkDbFqj2FqiCcqCkBlLTUnc+IiKLGAZsEA4kv91u9/DyQv6G6A4yVASEimAM9gFtW4D4UOpOpgygtxXobYURKDAvIaSqiyIRkQUMAzawMjIQN7i80I1kXgFQt9TsHdDWbC4dTKWhPmD72zA0r7kKIVxpaRWCUgotLS144403EIlEsGDBAhx++OEpLJiIshk/kWwQtjBnAAB6uLzQtWQgH6hthBEbBNpbgMHe1J5Qj5sTGju2wwgVAaV1kN7Je1f88Ic/xK233or29vYxtz/66KNYtWpVCoslomzFpYU2CHo1aBaG/fti7HHvdtKXB1m9EGg4bHjr5FRf1lHAQJfZ3XDrmzB628btVhmNRvGVr3wFK1euxKOPPoqdO3eiv78fDQ0N+Ne//pXiGokoWzEM2EAIYWlFQV+UYSBTSM1rbp086wigsAoQaXjLxIfMCYdbXoWxeyOMfeYxJBIJxGIx1NXVoampCb/85S8RCoU4B4WIpoVj1TYJ+z3oTnLZYD/DQMaRUgJldVCltVA9rUD3TiDVuxiq4dGCgS5zeWJhJfLClfjQhz6E2267DQBw9NFH4xvf+EZq6yCirMeRAZtYmTfAMJC5hBCQRVWQDYcDMxYAvmB6TpyImXMLtryKx+/5EVo2vovLL788PecmoqzHkQGbWFlR0BfVU1gJpYsMFgLBQnNL4/YWINKdlvN64hHUCEBGutJyPiLKfgwDNrHSa4ATCLOL9PqBGfNhGAbQtQPo3QMYaQh8+00wVNEIDMPgRklEZBnDgE2sLBXsjybYeCgLSSmB0lqgtNbcQrlzu7mrYbpEuoEta2HkhYGSashAQfrOTUQZjb9C2MTKZYKEoTCUMFJYDTlNFpRC1i8DahqBvLCtxx6KRvF/Tz2Djc1bx9z+5nub8Nd/PIdEXwewownGlrUw9mwxL2MQEU2CYcAmVhsPcXlhbpD+oNmvYNYRQNEMW7ZR/vTXbsX5n/kynntl3ZjbH/vH8zj7U1/EV79/l3mDoQN9bWbvgubXYbS3cGtlIhoXw4BN/B4Nfi35l5MrCnKLlBpkaS3krOmvQnjlzXdwww03IB6PY82aNQCAjRs3Ih6P4xOf+ARefuPtA5+kx4GeVqD5dRgt62B0bINh8GeQiEycM2CjcMCDtoHkdiXkyEDuGl2FoMeBju1Af4e5iVGS5tTX4J577sFjjz12wH07duzAuSuPm/wAiRjQvQvo3gXDGwAKyoHCCkjJnRSJcpVQ4/U8pSl58I0deL8zuQ1uVjSUYMWs0hRXRJlAKQU10AV07Uxqg6RtO1tx9x8eQU9f/wH3lZcU46qLzkZFaYn1Qnx5ZjAIlzMYEOUYhgEbPfFeK9btTG5jm0OrwzhtQWWKK6JMY+hxoHMn0N+enuWJE/EGgPwyoKgC0oZ5DkTkbnyX26jAn3yvgUicjYfoQFLzAuX1QHk9jMFec3ni0IEjACkXHwK6tgNd22F4/EB+CVA0A1LjPxlE2YjvbBsFvckPrQ7FubSQJifzwsDMQ2AYunmNv7fNnAiYbono3jkGmhcIFgFFVZC+vPTXQkQpwTBgo4A3+dUE7DNAyZJSA0pqgJIaGNGIOVow2HNAB8K00OPmcsW+NhhCAoECoLACyCtk50OiDMYwYKOAx0IY4GUCmgLpDwIz5u8z6XAXEBtwphhlmKFksAcAYPiCQH4pEK6A1DgBkSiTMAzYKM/KZQKODNA0CCEg8kuA/BLzMkLPbvMyQiK5pa0pEYsAnRGgc5t5OSFUBBTycgJRJmAYsFHAk3wYiOkGdENBk9yfgKZHSg0ongkUzzRbD3ftAAa6ASebCulxM5z0Dl9OGB01KOOyRXKdeG8Port3Q8ViMGIxQBkQXh+k1wtPYSH8lVUQWT7axTBgIyuXCQAgmtAR9PF/AdlHev1AxWwAMOcXdO8EIj3OLlNUBhDtN786WsxRg7wCIFwJEcjnhl2UNkopDGzcgMjmjRhsbkZky/sYbH4fid7Jl4QLjweBmloEZ89BXn0D8hpmIdy4FFoolKbKU4+fRDbyWwwDQwkDQV+KiqGcJ/1BoHIuAMAY6jebGg32Wup2mBJ6HOjvBPo7oSCgvH4gWGg2O5pGm2aiiUSat6DjmafRsfopxNraAABC06D05EKySiQw2LwFg1tbzBsMA8LjQdFRx6D0Q6eg6INHQfoy+x9zNh2y2Z3PbU56PsClh9eiujCQ4oqIxjIiveaIwWAfALe9/YXZCTFYZIYDr9/pgihDJfr70fb4X9D2tycxtLUFkBIwbA7CmgboOmQgDyXHn4iKM1chf8Eie8+RJgwDNvvvF5rRPZTcWvALllZjTmn2DDNRZjFXJHSbkw+jA86PGIxHSDMchIqBgjJIT2b/9kWpp3Qdex77C7bf92voAwPpW4I7HAxKjj8RtVd9Gv7KqvSc1yYMAza799Wt2N2X3P7xZx1SicWV9u51TzRVRqTXDAZuuJQwkZFwECwE8ssgfRxZo726X30ZW3/2Xxjasd25IqQGIQWqzr8I1Rd+DFowMy59MQzY7IF1O9DcldxmRSvnleOImqLUFkQ0BcbQgNl1cNDhyYcHIwTgCZgTEvNLOSExR8W7OvH+Hbeh59VXUnM5YCqEgKegALO+cAOKl69wupqDYhiw2cNv78K7e5LrJX/crBIc28CdC8ndjNgg0NMKRLqd7WOQLM0H+IPDowcl5n4PlLX6323Cxm/dhHhvL5DkhMC0EQJQCjP+7eOo+cTlrl6eyNUENrPUhZCNhygDSF8eUN4AAGaDo949QF8HEBuE+yYgAtBjQCRmhpf2FrPPgccPBPKBUAmQV8DWyVmi49ln8P5tt0Ap5Y7RgP0N/66964HfYnDLZsz56jegBdx5aYsjAzb7x6Z2vLStK6nHHlZdiFMXVKS4IqLUUEpBRbrNcDDYDyiX/VY2Gekx5x7kFQDBYgh/kJcXMkzrIw+j5ac/drqM5EmJ0PyFWPCd78JTUOB0NQfgyIDNDtZRMBrpR9fuHfAHQ4hVcCUBZS4hBESo2Jzpj+HLCd2twGC3+y8nGAlgqM/86toJBUBJD+ALmJsvhYog/Jx/4FbtT/89s4IAABgGBja8iw03fw0Lb/8hpMddH78cGbDZv5o78eyWjjG3KaXw6uN/xMuPPoAdG9Zj5CUPBEP4/LWfxU033YT8/HwnyiVKCcMwgIFOoK8dGBrIrFGDfUkN8AbMdsp5YSBYCKm56x/xXBN5fzPe/vxnoOIObOdtByFQ+ZGPov7fr3G6kjEYBmz20tYu/GNz+5jbNryyBvd8+Up89KMfxapVq7Bo0SL09PTg2WefxY9+9CMsXboUzz77LDwuS4pEdjHiUaC31dwzIT7kdDnTJADNa44ijExU9Odzz4U0SPT1Yf01n0Ksvd2dcwQsmPPlr6P0pJOdLmMUw4DN1m7vxt82to257ZW/Pog/3XETurq68MADD+Dll19GWVkZrrvuOjQ3N2P58uV44IEHcNFFFzlUNVH6KKWgBvuGRw163X9JIVlCAh7v8EhCyJyPEOBkRbsow8CGb3wVPa+tzfggAADC68XiH/0UwdlznC4FAOcM2G68OQMFpeUAgPr6evT29qJmwRK0Nm/Eq6++iqeffhpHHnkk/vKXvzAMUE4QQkAEw0DQbLhlGIbZz6Cvw7yGr2fo8K8ygHjU/Ir0AN3mzQYEoHnMFQ3+PMCfD+QVQHj8WTMnQekJc6e/FHaIbHvycbOPQJZQuo7Nt92Cxv/+tSt+DhgGbOYZJwzM++BxOOPqLyMRj+EDp5+PgpJyPPi9G9Gy6U0AQDAYRCLh4HazRA6SUpqTEEcmIhoGMNAF9HcAQ/3ObsVsC2UGHD1u7tyItpFboYQ0VzZ4fOaIgj8IBEKAL5RZIwqJKNSOJqBoBlBUBWHzJRMjkcDO391v6zEdZxgYbGlG94v/QvExxzpdDcOA3cYLA5rmwXEXXjX657efewqvP/Uw7rjjDuzcuRMvvvgibrnllnSWSeRaUkqgoNT8wnBvg4Eu82uoP3NHDsajDLMvgh4zg8I+/coMCHMCo8e7Nyz4guYlCF/AXWHB0AFlQHXtMJealtaaHSFt+o234x+rR3cbzCpSYsdv7kPR0csdHx1gGLDZwZYWbnjlOfz+O9fhoosuwrXXXotVq1YhHA7jqquumvR5RLlKSg0oKDO/MDxyMNRvjhwMjsw5yMapT8ocFYklhhs89Yy51wAAoZkb5Hh8ZudFjx/w+QFvHuDLS9/Kh31bVutxqD3vm10rS+sg8qa3pl7pOnb+9v7Rbn5ZxTAQ2bwJPWtfQdEHjnS0FIYBm403MjBi09rn8T83/T+ccfppuPfee3HFFVdg9erVePLJJ1FYWJjGKokyl5TSnG8wPOdAKQUVHxoOB33mB2fGX1pIktKBhD7hJEwzMAhzcqP0DM9d8AKaH/D6AK/fDBDewPRWQ4y3f0V0AGpnE1SoGKK0FsI7tc57nWueRXT3rqnX5nZSYudv72cYyDbaBEM97697Cfd9/WqsPOVkPPjgg7jmmmvw29/+Fvfeey+OP/74NFdJlD2EEBC+PKCkZvS20UmJA11mn4PEUPb9VpkspczQYOhAIgpMsKmqOT9fmOFBSnPUQWp7Q8TI1+gohBfw+M35AZPN7h/oghrohiqshCiuhrA4WtH1wr/cs/lQKhgG+pveQby3B96wc78UcmmhzXb2DOH+17aNua1r93b88MozcdLxx+HPf/4zvvCFL+DnP//56P3hcBh33303zjvvvHSXS5QzjETcbIQU6Qaig8NzD/jPX1oJCQSLgGARZLgsqae8/rHzEe/qTG1dLjDv5u84OpGQIwM2G2/OwNtr/g6/R8PDDz+M3t5enHDCCTjhhBNG77/rrrvwi1/8gmGAKIWkxwsUVppfw4x4DIh0ApFe8/JC1s4/cAk13JlyoBNKCCC/ZNKJc9E9rWkPAn/cugO/ad6KjmgMs/KDuG7hPBxWXJTak2oa+t5ezzCQTbRxJvh6vD4kEgncdttt4z6nt7cXJSUlKa6MiPYnvT6gsMr8GmYk4kCky5ycGBsE4rHMbafsYmrPZqB7F1BaA+QVjhsK+t5en9aa/rarFT98dyNuPGQ+lhYV4v+27cR1a9/EA8ceiaq8FO42qOvoe3Nd6o6fBIYBm433O8WSE0/Duy/+A3f+9OcH3Ffg96CiogI33nhj6osjooOSHi8QrjC/himloKIRcx7CYD8QHzSXA/Iq6/TEIlC7NpibQ5XWQgTG7tHS/856CE2D0tMTxn7fsg1n18zAOTXVAIDrF83DSx2deGjbDlwzP7WdAgc2b4IRi0H6Ute4aTIMAzYb79+GUGEJLv/uLw+43adJXH+8O1pREtHEhBAQgZDZEKh47+2GrptdEwd7gGjEnKCnxxkSrBrqg9rxjrnyoKTGnBAKINHTA5WmiYNxw8C7vf24dFb9mNuPLC3BW909EzzLRroOPRJhGMgWVv4JcEEHSiKaBqlpQKjI/NqHYRhAbACI9AHRAXNzJj02/hI82mugC2qgC6qgDKJ4JvSh9K0C6Y7FoSuFkv0+jEv9XrzYnp79M4yoc5t4MQzYzMriDGYBouwkpTSHvgMHNtwx9Li53DHaPzwnYWi4XbEOTl4c1tcONdQP5cAmVvv/kqYU0tYdMF2XQ8bDMOAgjgwQ5R6peccdTQBGRhQiZofF2IC56VEibjZRypVRBV8eRNEMIL8EWl4obact8nmhCYGO6NgA0hmLo8TnTUsN0p/CSYoHwTBgMysjWoJjA0S0D3NEId/8GocZFgbNwBCLDIeFmDmyYOjD/wBl6OhCoMAMAcG9KwtkIJC2hkNeKbEwnI+XOzpxYmX56O0vd3Ti+IrkeiJMlwz403Ke8TAM2MxSGGAWICILzLAwPJFxAkopKD1uTmiMD5lfiZj5NTLCYBhwTWgIFUMUzThgJQEABBtmoSONpXysvhbffKsJC8NhLCkK4+HtO9E6FMVHa2em/NzeklJ4QuOHwHRgGLCZsvAGYxYgIrsJISA8PrNt8EEopczr8qOBYWSkIbF3tMEwzGZByrB35KGgHKKoanTlwLgPaVya1jbEK2dUoieewN2bm9EejWJ2QQg/PHwpZqSyxwAAaBrCyw5L7TkOgmHAZtZGBhgHiMg5QggIr9/csMiC0dGHeNQMEHveT/7JHh+QXwZZWnPQhwbnzoPweKAS6dt46vy6mTi/LvUjAWMYBgoaG9N7zv0wDNjM0tLClFVBRJQ6+44+qIT/4P/uefwQhZVAuNzc2ChJ0utFaMEi9L/91rTqdT2lkL94iaMlMAzYzNK+T0wDRJTpJlvlECgwQ0CoeMojoeFDD0N/09vZu2shAC0/H3l19Qd/YAqN00mfpoMjA0SUU9T+H9ICyC+FqFkMOXMRxEE2IzqYijNWQcgs/qgSAlXnnu/43zGLX2FncM4AEeWUkZEBqQFFMyDql0FWzoHw29MjwFdahvLTzjSXGGYh6fej8pyPOl0Gw4DdEhaGsjSGASLKdEJClDVA1B8KWVprziWw2YwL/w1ZOZYqJao+ch48+c4tKRwtxekCsk1MT35owKdl4Q83EeUUEciHKKywNDHQKn9FJco+fKo5+pBFhMeDynPPd7oMAAwDtovryY8MeDW+/EREyZj58UuhBQJZ1a1t5iWXwVtY6HQZABgGbBezEAZ8DANEREnxl1dgzte+kR3bQ0uJoqOXY8YF/+Z0JaP4aWSzOC8TEBGlRNEHPoiay650uozpkRL+ikrM+dJXXTWJnGHAZlZGBniZgIjImhkXXYyio47O2NUFwuPB/G/dAi2Uvh0Zk5GZr6aLMQwQEaWOkBKzb/wa8uobMisQCAGhaZj71f8wa3eZDHolM4OVCYScM0BEZJ0nlI9D7vixuZGRi4baJyQlpM+HBbfchuJjjnW6mnHx08hmnDNARJR6WjCIBf/5PZSd8mGnS5mclPAWl2DRD36C8KGHO13NhBgGbMbLBERE6SF9Psy6/kbUf/bzZg8CzX19CAqWLEXjz36J0Jy5TpcyKW5UZDOGASKi9BFCoHLVOQgvWYaWX/wMvWtfMecSOLmxkRDwFIRRe9WnUXbKhyFcGFL2xzBgM14mICJKv7z6Biy85TZ0v/oKtv7sJxjasT39RUgNQgrMOP8izLjwY9CCwfTXMEUMAzZj0yEiIucUfeCDKPzFPWh74q/Y8Zv7Ee/qNC8f6JNstTwdQpo7N0oNJcefiNorPwl/RWVqzpVCDAM2iyZ4mYCIyElC01Bx5tkoP30V+ta/hY5/rEbHP5+GEYmYcwsMG4KBEIBSyF+8GGUnr0TJiuPhKQhP/7gOEUplQ29Hd1BK4fZnNiHZF/STR9ahLORPaU1ERAQY8Th61r6Czuf+iYH33sXQrp17Rws0zWxzPPI1QkoIIaEMffR2T7gQebNmo+jIo1B6/EnwlZc78LexH0cGbDQYN5IOAgAQ9PLlJyJKB+n1ovjo5Sg+ejkAwEgkEN2xHYMtzYi0NCO6exdULAYjFoMydEifH8LrhSccRrC+AXn1s5BX3wBPQYHDf5PU4KeRjSLxRNKPFQDyvLxMQETkBOnxIK++AXn1DShxuhgX4KeRjSKx5K9D5Xk1V21SQUREuYthwEaRePJhIOhz/7pTIiLKDQwDNrIUBrwMA0RE5A4MAzYasHCZgCMDRETkFgwDNhrkyAAREWUghgEbWRoZYBggIiKXYBiwEScQEhFRJmIYsJGVpYUcGSAiIrdgGLCRtZEB9nsiIiJ3YBiwiW4oSxMIQxwZICIil2AYsElvNG7p8ZwzQEREbsEwYJPuweTDgFcTCHj40hMRkTvwE8kmPUPJb1JU6PdyXwIiInINhgGbWBkZCAc4eZCIiNyDYcAm3UPJh4HCgDeFlRAREVnDMGATjgwQEVGmYhiwSQ9HBoiIKEMxDNhgKKFjMG4k/fhCjgwQEZGLMAzYoGcw+ZUEABDmyAAREbkIw4ANrEwe1IRAPhsOERGRizAM2MDK5MGCgIc9BoiIyFUYBmxgbfIg5wsQEZG7MAzYwMrIAFcSEBGR2zAM2MDKyEDYz5EBIiJyF4aBaVJKodvCvgRFeRwZICIid2EYmKb+mA7dUEk/vjToS2E1RERE1jEMTJOV+QIAwwAREbkPw8A0WekxUOD3wOfhS05ERO7CT6Zp6rEwMsBRASIiciOGgWnqshIGQgwDRETkPgwD09TaH036sWVBriQgIiL3YRiYhrhuoGMglvTjeZmAiIjciGFgGvb0R5H8okJeJiAiIndiGJiG3X3JXyIIeCSCXu5WSERE7sMwMA1WwkBp0MfdComIyJUYBqahtX8o6cfyEgEREbkVw8AUJXQD7Zw8SEREWYBhYIraBmKwsCUBwwAREbkWw8AU7e5L/hIBAJTnMwwQEZE7MQxMkZXJg3leDWG/J4XVEBERTR3DwBRZCQNVBX6uJCAiItdiGJgC3VBoG7AQBvL9KayGiIhoehgGpqBtIGpp8mBlAcMAERG5F8PAFLRauEQAAFUFgRRVQkRENH0MA1NgtQ1xYYCTB4mIyL0YBqbAyrLCSk4eJCIil2MYsEg3FPZY6DzISwREROR2DAMWdURi0C3MHqzi5EEiInI5hgGLrHYe5LJCIiJyO4YBi6xMHvR7JIryvCmshoiIaPoYBiyysqywMp+TB4mIyP0YBiwwlEJrv4UwwPkCRESUARgGLOiIxJCwMHlwZpgrCYiIyP0YBiyw2nmwpjAvRZUQERHZh2HAAiuTB4vzvMjntsVERJQBGAYssLKskKMCRESUKRgGkqQbytJlgpoizhcgIqLMwDCQpF29Q4hbmDxYy5EBIiLKEAwDSWrpHkz6sUGvhmI2GyIiogzBMJCkrV2RpB9bUxRgsyEiIsoYDANJSBgGdvRy8iAREWUnhoEk7OwZstRsiPMFiIgokzAMJMHKfAGvFKjgToVERJRBGAaSsLUr+TBQHQ5Ak5wvQEREmYNh4CDiuoGdVuYLFPESARERZRaGgYPY0TMEXXG+ABERZS+GgYPY2p38kkJNCswsZOdBIiLKLAwDB9FiYb7AzHAAXo0vKRERZRZuqzfshZZOtPVH0VASwqySIAr8HsQSBnZZ2JyooTiYwgqJiIhSg2FgWNjvwT/f78A7e/oBAGUhH0qCXlhoL8AwQEREGYlhYFhVwdhr/e0DMbQPxJJ+vt8jUVXA/gJERJR5eIF7WHHQC6829f4AdUV5kOwvQEREGYhhYJgUApXT6BwYTRh4v2MAcd2wsSoiIqLU42WCfVTm+7G9J/kJg/va2j2Ird2D0IRATVEAs4qDmFMWQnmIlw6IiMjdODKwj8qC6fcI0JVCS9cgnt3Sgf5owoaqiIiIUothYB92TgBctagKs0pCth2PiIgoVRgG9lEa9NmyydDJc8twSGWBDRURERGlHsPAPjQpUBHyTesYx9QV44O1xTZVRERElHoMA/vZv9+AFUtnhHH87FIbqyEiIko9hoH9VE5x3sDcshBOm18BIdhrgIiIMgvDwH7Kp3CZoKYwgHMOqWLTISIiykgMA/spDVoLA+UhH85fUs3dComIKGPxE2w/Aa+GkE9L6rFhvwcXLpuJgDe5xxMREbkRw8A4khkdCPk0XHToTBT42cSRiIgyG8PAOA4WBvK8Ev+2bKblSwpERERuxDAwjtJJJhH6PRIXLZuJ8mlsakREROQmDAPjKA16x73dpwlcuLR6Wr0IiIiI3IZhYBzjDf97pMD5S2diZmGeAxURERGlDsPAOAr8Hni1vT0DNClw3pIZqCtiECAiouzDMDAOIcTo6IAUwLmLuQMhERFlr5xZF6eUgkokoOJxGPE4hJQQXi+k1wuhHdgnoDToQ2tfFGcfUoW5ZfkOVExERJQeQimlnC7CbrGOdkTe34JI8xZEtmzBwKZNGGxugREdGvfx3tIyhObOQXD2bAQbZiE4exbe1IpRGApgcVU4zdUTERGlV9aEgaFdu9C+ejXannoSgy0t5o1CAFICun7wAwgBoWlQiQQAQPkDKD3ySJR/eCWKjzoa0s+lhERElJ0yOgzEe3rQ/vRqtD35JPqbmswPfqXMLztoGqDrkIEASk86CeWnrEThEUdwZ0IiIsoqGRkGjFgMux56CNvuvQdGNGremOK/htA0KF1HaOFCzP7c51GweHFKz0dERJQuGRUGlFLo+Oc/0XzXfyHW1pbyADAuKQHDQOmHPoT6f78agaqq9NdARERko4wJA5HmZmz+/u3oW7/enAvgdNlSQkiJmRdfjJrLLof05MzCDCIiyjIZEQban3kGm275Txi6ntxkwHQSAgWLF2PBt78DX2mp09UQERFZ5uowoJTCtnvuwfb77nXHaMBENA3ecBiH/H93IDR3rtPVEBERWeLaMKASCWz+wR3Y89e/Ol1KcqSE9Pmw6Hu3ofCww5yuhoiIKGmuDANKKWz63vfQ9uQT7h0NGI+UEEKg8cc/QUFjo9PVEBERJcWVexO0/vnPaHvi8cwKAgBgGFBK4d2bvo5YZ6fT1RARESXFdWGgb/16vP/jHzldxtQZBuK9vXjvG/8x2s2QiIjIzVwVBmKdnXj3pq9n3ojA/nQdfevXo/nn/+10JURERAflqjCw6XvfRby3FzAMp0uZPqWw68EH0fXyy05XQkRENCnXhIG+pnfQ/dJL7usjMB1SYuuvfgkXztEkIiIa5ZowsO3ee82NgbKJYWDgvffQ8+qrTldCREQ0IVeEgf4NG9D94ovZNSowQkpsu/cep6sgIiKakCvCwPb778u+UYERhoG+9evRs26d05UQERGNy/EwoEci6Hz++ewcFRgmNA3tf/+b02UQERGNy/Ew0NfUlB2rByahdB09r7/udBlERETjcnzf3b633jQvEaR4ZOD+rdvwz/Z2tAwOwi8lloTD+H+zGlAfDKb0vCOGtm9HvKcH3sLCtJyPiIgoWY6PDPSsW5eWkYF1PT34aHU1fnHoMty5pBG6UrjurfUYTOPlib7169N2LiIiomQ5GgZUIoH+t99OS8fBHyxpxJlVlZgdCmFefj6+Nn8eWqNRvNfXn/JzA+a8gd4330zLuYiIiKxwNAwk+vthxGKOnHtgeEQg7E3PlRKlFGJtbWk5FxERkRWOhgEjGnXkvEop/Hjz+1gaDmN2KJSekxoGjOhQes5FRERkgaMTCI143JHz/mDTZmweGMDPDl2W1vPqUWdGQYiIiCbj6MiA9PnSfs4fbNqENR0d+MnSpajw+9N6bi2Q3vMRERElw9GRARkIpO1cSin8YPNmPNvegf9athTVeek7NwBASsg0hw8iIqJkODoy4CkogJama/Z3bNqMp1r34JsLFyCoaeiIxdARiyGarqWFQiCvtjY95yIiIrLA0ZEBIQTCy5ah68UXU95r4P927QIAfPbNt8bc/rX583FmVWVKzw0A0HUULFma+vMQERFZ5HgHwvDS4TCQYs8ff1zKzzEpKVGwaJGzNRAREY3D8Q6E4SVLsn5vAgAIzp4NLU2tj4mIiKxwPAyEFiyA8HqdLiOlhKah8LDDnS6DiIhoXI6HAen1ouK00wHpeCkpo3QdFWec4XQZRERE43LFJ/DMj3/c6RJSR9NQctxxCM2e7XQlRERE43JFGAjMmIHyU081tzLONrqOmksvc7oKIiKiCbkiDABAzSWfyL6JhJqGoqOPRv78+U5XQkRENCHXhIG8mhpUnHEmIITTpdhHKdRddZXTVRAREU3KNWEAAGZ97nPIa2jImssFsz73OeTPX+B0GURERJNyVRjQAgEsuvW70Pz+zB4hEBJlK1ei6iPnOl0JERHRQbkqDABAoLoa82/+JqCU06VMjaYhr6Eec274EkQmBxoiIsoZrgsDAFB89NGo+/d/d7oM6zQNnlDIHN1I446MRERE0+HKMAAANRd/HA3XXmv+IRN+w9Y0+MrKsPS/f45AdbXT1RARESVNKOXu8fj2p1dj4623Qum6e5ceCoHQvHlYdNvt8JWUOF0NERGRJa4PAwAwsHEjmr76FcQ6OtwVCIQAlELFmasw+wtfgPT5nK6IiIjIsowIAwAQ7+3F1l/9Eq2PPGLuY6DrzhYkBHylpWi45hqUfehkZ2shIiKahowJAyMiW7Zgy3/9BD2vvmqGgnSPFEgJ6fWi5tLLMOOCC8xlkERERBks48LAiK6XXsKWn/wYQ9u2mU2KUj1SMHpJ4EzUXfVJ+EpLU3s+IiKiNMnYMAAAyjDQ+9abaP/739G+ejX0gQF7g8HwyENw7lxUnHoaSk86Cf7ycnuOTURE5BIZHQb2ZcTj6H71VbT/7W/oevEFMxgA5m/0B5tjIASElOaKheE/B2pqUH7KKSg7+RTk1dam/i9ARETkkKwJA/tSSiHe2YlIczMiW97H4JZmDGzaiHh3N4x4HCoeh5ASwuuF9PkRqK1BaPZsBGfNRl5DA/Lq6zkXgIiIckZWhgEiIiJKnms7EBIREVF6MAwQERHlOIYBIiKiHMcwQERElOMYBoiIiHIcwwAREVGOYxggIiLKcQwDREREOY5hgIiIKMcxDBAREeU4hgEiIqIcxzBARESU4xgGiIiIchzDABERUY5jGCAiIspxHqcL2JfvsCshPT4IqUFIDZp37/dCyr33aRqkxwc5ep92wH1CapBSQEgBTZMQ+30vpYDUxOhjJr1PCGgeCU0KaFLAN/y9Z/TP2t77tL2P8+zzWG2874WAFAKaALyaHP3eo0loAuafpYBXinG+N+/3Sjn6vSYEhACkAITA8PEBAUCTAhIw/y4So99LAWhi3+/NYwilAGVAGAlgzPeG+WVMfJ9QBqDre783EoChQxkGkIhB6TpgGOZtiTiUoZvfx+PAyPcjjx15XDy29zmGDiOegNINKMOAEUvA0M3nKN2AEU/A0Pd+r4a/1+MJqH0ep8cS+3yvQxkKhq6G/zz8fEOZ9+kKSlcwdAN63Bg+poIe14efs/d5hlLQlULMUNAV9vt+/z+b3xswv9cVhu/b+/1/q2ZH35d24fub72++v937/ubIABERUY5jGCAiIspxDANEREQ5jmGAiIgoxzEMEBER5TiGASIiohzHMEBERJTjGAaIiIhyHMMAERFRjmMYICIiynEMA0RERDmOYYCIiCjHMQwQERHlOIYBIiKiHMcwQERElOMYBoiIiHIcwwAREVGOYxggIiLKcQwDREREOY5hgIiIKMcxDBAREeU4hgEiIqIcxzBARESU4xgGiIiIchzDABERUa5TWWpoaEjdfPPNamhoyOlSDuDm2pRifdPh5tqyiZtfZzfXphTrmw431zZdQimlnA4kqdDb24vCwkL09PQgHA47Xc4Ybq4NYH3T4ebasombX2c31wawvulwc23TxcsEREREOY5hgIiIKMcxDBAREeW4rA0Dfr8fN998M/x+v9OlHMDNtQGsbzrcXFs2cfPr7ObaANY3HW6ubbqydgIhERERJSdrRwaIiIgoOQwDREREOY5hgIiIKMdlXRi44YYbcNxxx+HjH/84YrHYmPsGBwexatUqnHDCCVi5ciU6OztdVd+I7373u/jABz7geE2JRAKXX345jjvuOHz+859PWz3J1jci3a/XviaqzQ0/a9mI72/7auL7++By6f2dVWHg9ddfx+7du/Hcc8/hkEMOwR//+Mcx9z/++ONobGzEP//5T1x44YX4n//5H1fVBwB9fX1Yv369K2p69NFHUVNTg+eeew6RSAT/+te/0lZXMvUB6X+9kq3N6Z+1bMT3t7018f099dqc/llLhawKAy+88AI+/OEPAwBOO+20A364582bh0gkAgDo7u5GeXm5q+oDgB/96Ee45pprXFFTMvU6WR+Q/tdrX5PV5vTPWjbi+9vemvj+nlyuvb89Thdgp+7ublRXVwMACgsLDxi6mTNnDtavX4/GxkYIIfDSSy+5qr6enh689dZbuOmmm1xRU3d392j/7fHqdbo+J16vZGtz+mctG/H9bW9NfH9PvTanf9ZSISNHBnbv3o0VK1Yc8KWUQm9vLwDzf2RJScmY591333048cQTsX79enzrW9/Ct7/9bVfVd+edd+Kzn/1sSmqaSHFx8YQ1TXafG+pz4vXa12S1petnLRvx/W0fvr+nLtfe3xkZBqqqqrBmzZoDvs444ww89dRTAIAnn3wSxx577AHPHfkfWlRUhO7ublfVt2nTJtxyyy047bTTsHHjRnzve99LSX37OvrooyesabL70mWyGpx4vZKtDUjPz1o24vvbPnx/p6Y2IAvf387tnpwaX/ziF9WKFSvUxRdfrKLRqFJKqU9/+tNKKaV6enrUGWecoU444QR17LHHqvfee89V9e3riCOOcKymkXri8bi69NJL1YoVK9S1116btnqSrW9f6Xy99jVRbW74WctGfH9Pvya+v5OXS+9vtiMmIiLKcRl5mYCIiIjswzBARESU4xgGiIiIchzDABERUY5jGMgB9957L4qKimw5VnNzM4QQ8Hg82LFjx5j7du3aBY/HAyEEmpubx9z30EMP4cQTT0RhYSHy8/OxdOlSfPvb3x5t5GFnjUS55vLLL4cQAldfffUB933mM5+BEAKXX3756G27d+/Gtddei9mzZ8Pv96O2thZnnXUWVq9ePfqYhoYG3HnnnWmontyAYYCmpLq6Gvfff/+Y2+677z7MnDnzgMd+/etfx0UXXYQPfvCDePzxx7F+/XrccccdeOONN7KipzeRG9TW1uKBBx7A4ODg6G1DQ0P4/e9/j7q6utHbmpubccQRR+Dpp5/G7bffjrfeegtPPPEETjrpJMda/5LzGAYywBNPPIEVK1agqKgIpaWlWLVqFTZv3gwAeOaZZyCEGNP0Yt26daO/nT/zzDO44oor0NPTAyEEhBD45je/CQDo6urCpZdeiuLiYgSDQZx++unYuHFjUjVddtlluOeee8bcdu+99+Kyyy4bc9vLL7+MW2+9FXfccQe+//3vY/ny5WhoaMDKlSvx0EMPHfB4Ipqaww8/HHV1dfjTn/40etuf/vQn1NbW4rDDDhu9bWSk4OWXX8b555+P+fPnY/Hixbj++uvx4osvOlE6uQDDQAYYGBjA9ddfj1deeQWrV6+GlBLnnnsuDMM46HOXL1+OO++8E+FwGLt27cKuXbtwww03ADCHFl999VU88sgjeOGFF6CUwhlnnIF4PH7Q45599tno6urCmjVrAABr1qxBZ2cnzjrrrDGP++1vf4v8/Hx85jOfGfc4vDRAZJ8rrrhiTEi/++67ceWVV47+ubOzE0888QSuueYahEKhA57P92PuyqqNirLVeeedN+bPv/71r1FRUYF33nnnoM/1+XwoLCyEEAJVVVWjt2/cuBGPPPIInn/+eSxfvhyA+cFdW1uLhx9+GBdccMGkx/V6vbjkkktw9913Y8WKFbj77rtxySWXwOv1jnncxo0bMXv27ANuJyL7feITn8BXv/rV0bk9zz//PB544AE888wzAMwWv0opLFy40NlCyXU4MpABNm/ejIsvvhizZ89GOBzGrFmzAABbt26d8jGbmprg8Xhw1FFHjd5WWlqKBQsWoKmpCQBw+umnIz8/H/n5+Vi8ePEBx7jqqqvwhz/8Abt378Yf/vCHMb+BjFBKQQgx5TqJKHllZWU488wzcd999+Gee+7BmWeeibKystH7RxrO8j1J++PIQAY466yzUFtbi1/+8peorq6GYRhobGxELBZDfn4+gL1vcgBJDfNP1IV63w/vX/3qV6OTkcb7zb6xsRELFy7Exz72MSxatAiNjY1Yt27dmMfMnz8fa9asQTwe5+gAURpceeWVo7v93XXXXWPumzdvHoQQaGpqwkc+8hEHqiO34siAy3V0dKCpqQk33XQTTj75ZCxatAhdXV2j95eXlwMwl/WN2P8D2efzQdf1MbcdcsghSCQSY/bh7ujowIYNG7Bo0SIAwMyZMzF37lzMnTsX9fX149Z35ZVX4plnnhl3VAAALr74YvT39+OnP/3puPdnxW5fRC5y2mmnIRaLIRaL4dRTTx1zX0lJCU499VTcddddGBgYOOC5fD/mLoYBlysuLkZpaSl+8YtfYNOmTXj66adx/fXXj94/d+5c1NbW4pvf/CY2bNiAv/71r7jjjjvGHKOhoQH9/f1YvXo12tvbEYlEMG/ePJxzzjn41Kc+hTVr1uCNN97AJZdcgpkzZ+Kcc85Jur5PfepTaGtrwyc/+clx7z/qqKNw44034otf/CJuvPFGvPDCC2hpacHq1atxwQUX4L777pvaC0NE49I0DU1NTWhqaoKmaQfc/9Of/hS6ruPII4/EQw89hI0bN6KpqQk//vGPccwxxzhQMbkBw4DLSSnxwAMPYO3atWhsbMR1112H73//+6P3e71e/P73v8e7776LZcuW4bbbbsN//ud/jjnG8uXLcfXVV+Oiiy5CeXk5br/9dgDAPffcgyOOOAKrVq3CMcccA6UUHnvsMUvD+R6PB2VlZfB4Jr7idNttt+F3v/sdXnrpJZx66qmjy5iWLl3KpYVEKRAOhxEOh8e9b9asWXjttddw0kkn4Ytf/CIaGxuxcuVKrF69Gj/72c/SXCm5BbcwJiIiynEcGSAiIspxDANEREQ5jmGAiIgoxzEMEBER5TiGASIiohzHMEBERJTjGAaIiIhyHMMAERFRjmMYICIiynEMA0RERDmOYYCIiCjH/f99Z06q8+cA3AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1685,7 +1693,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLWElEQVR4nO3deXRkZ3ku+mfvmqtUk0rzLPXgdrtx224bz9gODhgPBzOFBNtgCPEhGIdcyF13ZViLG84hzs3JygVuAhlOGA45QIKxIQYCGBPbeLbxQDfd7m63hlZJKk2lKtU87e/+US25pZZqV0lVeyg9v7V6WVJ9Vfu1pF169t7ffj9JCCFAREREVIGsdwFERERkfAwMREREpIqBgYiIiFQxMBAREZEqBgYiIiJSxcBAREREqhgYiIiISBUDAxEREaliYCAiIiJVDAxERESkioGBiIiIVJk2MJRKJXzuc5/b8vOz2Sxuv/127N27FxdddBFuuukmjI+P169AIhPY7n4EAH/wB3+AoaEhSJKEI0eO1KkyouZSj31Nb6YNDIcPH8YDDzywrde45557cPz4cbzyyiu49dZbcc8999SpOiJzqMd+9N73vhdPPvkkBgcH61QVUfOpx76mN1MGhqNHj+KWW27B1NQULrroInzmM5+p+TWcTiduvvlmSJIEALjiiiswOjpa71KJDKse+xEAvOUtb0FfX1+dqyNqHvXa1/Rm1buArdi/fz/e9a53Yd++ffjEJz5Rl9f84he/iNtuu60ur0VkBo3Yj4joXM2yr5nyDAMAvPjii7j00kvP+fq1116Ltra2Df9NTk5u+Fp/8Rd/gZMnT5r++hJRreq5HxHR5jbb18xEEkIIvYuoVbFYRDAYxPz8PJxO57Ze66//+q/x7W9/Gz/72c8QCATqUyCRCdRzPwKAoaEh/OAHP8CBAwfqUB1R86j3vqYXU16SCIfD8Hq92/7G/83f/A2+9a1vMSzQjlSv/YiIKmuWfc2UlyT6+vpw4YUX4rzzzsOf/MmfbOk1wuEwPv3pTyMWi+GGG27ARRddhMsvv7zOlRIZVz32IwC499570dfXh3A4jBtvvBG7d++uY5VE5levfU1vprwkQURERNoy5RkGIiIi0hYDAxEREaliYCAiIiJVDAxERESkioGBiIiIVDEwEBERkSoGBiIiIlLFwEBERESqGBiIiIhIFQMDERERqWJgICIiIlUMDERERKSKgYGIiIhUMTAQERGRKgYGIiIiUsXAQERERKqsehfQCKVSCdlsFtlsFoqiAABkWYbD4YDT6YTV2pT/20R1VSwWkclkkMvlIIQAUN6PnE4nnE4nLBaLzhUSGZsQAoVCAdlsFvl8HkIISJIEWZbhcrngcDggy+Y5bm+av5yFQgFLS0tYWlpCoVCoONZqtSIQCCAYDMLhcGhUIZHxZbNZLC0tIRaLoVQqVRxrt9sRDAYRDAYZwonOEEIgnU4jGo0ikUisHrRuxuVyIRgMwu/3Gz6ES2Ll0MGk8vk8IpEIlpeXt/R8j8eD7u5uOJ3OOldGZB6ZTAYzMzNIp9Nber7f70dXVxdsNludKyMyj+XlZUQiEeTz+ZqfK0kSQqEQOjo6DHvWwbSBQQiBaDSKSCSCevwvdHR0oL29HZIk1aE6InNQFAVzc3NYWFjY9mvJsozu7m4EAgHuR7SjFItFTE9Pb/nA9Ww2mw29vb1oaWmpQ2X1ZcrAoCgKTp8+jWQyWdfXdblcGBwc5OlV2hEKhQLGx8eRy+Xq+rp+vx+9vb2GPUoiqqdMJoPx8XHVS3i1MuJBrOkCg6IoGB8f3/KpUzUOhwPDw8MMDdTUCoUCRkdHVef7bFVLSwsGBwcN9WZHVG+ZTAajo6N1Ocu9kba2NnR2dhpmPzLVIYAQApOTkw0LCwCQy+UwMTHRsF8AIr0pioKxsbGGhQUASCaTmJqaatjrE+ktn89jbGysoX8rFhYWsLi42LDXr5WpAkMsFkMikWj4djKZDObn5xu+HSI9zM7ObmlSVq1isVhdrukSGY0QAuFwWPUOiHqIRCLIZrMN3041TBMY8vk8pqenNdve3NwcMpmMZtsj0kIymdT0iGVqagrFYlGz7RFpIRqNNvRM93rhcNgQZ71NExjm5uY0/4ZFIhFNt0fUaFr/TpdKpbrcgUFkFIqiYHZ2VtNtZrNZxONxTbe5EVMEhmKxqMs3K5VK1X0GOVG9iBpPh6bTaV1ObUajUU1O3RJtRa37USwW0+X32QhzGbYUGL70pS9heHgYTqcThw4dwi9+8Yt617VGLBbT7XRMNBrVZbtEahb/81Gc+h/3IxOerG68Tm84iqIY4uiIaCNT//J1nP6nv0chtlTVeL32o0wmo/tl8poDw7/+67/iD//wD/Gnf/qnePnll3HttdfiHe94B06fPt2I+gBAk4mORtw2USVCUbD46CM4fM+HVYODEIL7EdEGlGwWke/+G1790B2qwaFQKOh61lnv/ajmPgyXX345LrnkEnz5y19e/dr555+P22+/Hffff3/dCxRC4NixY7qe0uyHAqHhBBeiasRffgmzDz3wxhdkGaEb3oqe37kTrr7+NWPz+TxOnDihcYVvsNls6IxXdwRHpKX5H/8QS08/tfq57HCi49b/gu73vR+2QHDN2OXl5YYeHKvxer0YHBzUbfs1BYZ8Pg+3243vfOc7eNe73rX69U9+8pN45ZVX8Pjjj9e9wFwuh5MnT9b9dWvyvQeQfvIJfWsgqtYGwSEej2NysrpLF42S/swfA6mUrjUQVWuj4DA7O6vrLfdWqxX79u3Tbfs1XZJYWFhAqVRCZ2fnmq93dnY2bPa1IW7J8hivpzfRpja4VGGE/Ujy+vUugahqSu7cSxV670fFYlHX2yu3NOlxfZvKlTW+G8EI957C4EuOEm3oTHA48vsfRVrH06irrNyPyHxWgsOR3/89FJI7ey5OTQsmtLW1wWKxnHM2YW5u7pyzDvViiB7adV5UhEgLksWCthvfju7f/gBSdgfiMzP6FmSAsxxEtZJdLnS9893ofPd7MZdIAks7dy5OTYHBbrfj0KFDeOSRR9bMYXjkkUfwzne+s+7FATDGIlCp+q6KSdRIZwcFZ3cPACBngNsaBdtEk4mcHRRsvvLlNGtG3xbNVqtV14Pomv8af+pTn8Jdd92FSy+9FFdeeSX+8R//EadPn8bHPvaxRtQHu90OWZZ1vUti4N3vg7j5Nt22T7SR+EsvIvLAv65+vlFQWOFyubQubw2bzYbz/uz/1rUGoo3M/ehhLJ01qX2joLDC7XZrXd4aeu/HNQeG97///VhcXMRnP/tZzMzM4MCBA/jRj37UsFs9JEmCy+VCSqfZ1Xa7Hb69e3XZNlEl+cVyy+VKQWGFzWaDxWJBSafLay6XC/7zztNl20SVxF98HkDloLBC7z/YegeWmvsw6GFhYUG3dR1CoRC6u7t12TZRJQv/+SgSr7xcMSicLRwOIxaLNb6wDfT29iIYDKoPJNJY+BtfgyiV0FUhKJzt5MmTujVv2rVrl66hxRSBoVQq4bXXXtPljok9e/bA4XBovl0iNbXenZTJZHDq1KkGVrQxWZaxb98+yLIplq6hHabW/WhpaQlTU1MNrGhjLpcLu3bt0ny7ZzPFHmyxWBAIBDTfbktLC8MCGVatk59cLpcuRyetra0MC2RYte5Hfr9fl9/nUCik+TbXM81e3N7ervns0EbdKkqkl66uLk23Z7FY0NbWpuk2iRpJlmXN/zY4nU74/fo3PjNNYLDb7ejpUb9OWy8d7e26T3AhqjePx6PpkUpvb68xbo0mqqPW1lZ4PB5NtiVJEvr7+w3Rk8gUcxhWCCFw+vTphq/Y5XK5MOiVIZXygNUByeYEbGf+a3VA4ulVMjFFUXDq1KmGT9wKBgPoklMApLX7kM1R3o8M8AZItFWFQgEnT55s+C3/3d3dhrgcAZgsMADlN7uJiYmG3WbpcDgwMjICuZSHMvv6xoOsdsDmhGR1nPUm6OQbIJlGoVDA6OgoCoVCQ17f6/ViYGAAIh2DiIY3GCEBNjskK4MEmVcmk8HY2FjDQkN7e7uhLo2bLjAA5dAQDoexXOfOcW63G4ODg7CcWTuitDABZKrYhs0FuXMEksQzD2QexWIR4+PjyGbr270uEAigt7cXkiRBCAElchIoqp/NkNwByKF+1XFERpLNZjE2Nlb3HiednZ1ob2+v62tulykDA1C+PLG0tISZmZlt324pSRI6OjrQ1ta25uhG5LNQZlWW1pZkyJ27Idl4NwWZj6IomJ+fr8uSvbIso6enB36/f81+pKRjEIsqS2tb7eX9SOYCVWQ+xWIRkUikLn1ObDYb+vr6NJsjUQvTBoYVhUIBkUgE8S32ym9paUF3d/emt08qi6ch0pVfW2rth+wJbGn7REaQyWQQiUS2fKkvEAigq6trwwmOQojy5b1ChTMZkgypfRiyQ99OdkTbkUgkEIlEtjQ/SJZlhEIhtLe3G/Y2ZNMHhhXFYhFLS0tYWlpCPp+vONZmsyEQCCAYDMJut1ccKwo5KJET6gW4fOXgYNAfNFE1crkclpaWEIvFUFRZXdLhcCAYDCIQCKjeCSEyy1AWJlS3L3nbIQe0vfWTqJ6EEMhkMohGo0gkEhUvVawsfRAMBnXr71CLpgkMZ1MUBdlsFtlsdnUyiizLcDgccDqdq3MUqn69aBgiVcWSprIFUvsIZLtzK2UTGUqpVEImk0Eul1u97CfLMpxOJ5xOZ01vbkIIKHOngHxGfbDNCaljGLLM2zHJ/AqFArLZLPL5/GpXSVmW4XK54HCYa5JvUwaGehPFPJSZEwCq+1ZJ/i7IPmNNViHSm8gmoMyPVzlagtQ2ANnla2RJRFQDY5//MAjJaofU0lr1eBGPoDR7StcluYkMx9ECOKqdyCUgFiZQWpzkfkRkEAwMVZJ87YAkAc4WSL3nA3aVLpD5NMT0MShZfZblJjIaSZIg+8v3lEveNkjd5wFqlx3SMYjICSjFyvOSiKjxeEmiBkpiHpI7AMliK3++PAcRn1V9ntTSBjnIJbKJAECJRyD5OiBJMhRFgViaAtIx1edJwV7INZzpI6L6YmDYJiWfgZgfAxSVph1WO6T2XZDZV5/oHEomDrEwCdV5Qo4WSG2Dhp9NTtSMGBjqQFEUiMXTQFZtjQsJUmsfezYQbUApFSHmR4GCyj3skly+i8LOng1EWmJgqCMlFYWITqkPdPnLwYFHSUTnUGIzEIkF1XGSrx2ynz0biLTCwFBnSjEPMTcKlFQW9ZGt5aMkG3s2EK2n5FIQ8+OAULlDgj0biDTDwNAgpWgYqKLZE3s2EG1MURSIhXEgp3ankVSe1+DyalEW0Y7FwNBASiYBsTgBqH2L7e5yH31eoiA6h5JYhIhNqw/0BCEFergfETUIA0ODKUoRYm4cKKi0xJVkSG1DkJ3GW6GMSG9KIVe+1KdUXt8CFhukjhHI1sprxBBR7RgYNKLE5yCW2bOBaKvKPRvCgMrqsQB7NhA1AgODhpR8BmJuDBBqPRsc5UWs2LOB6BxKOg6xWEXPBmcLpBB7NhDVCwODxmrr2dAP2ePXpC4iM1FKxfIliqJazwbLmZ4NKq3ciUgVA4NOlGS03BJXDXs2EG1KWZqBSFbTs6FjdR0LItoaBgYd1dazYQSyzaFNYUQmwp4NRNpgYDCA6ns2dEP2tWlQEZG5sGcDUeMxMBiEkklALExAdSIXezYQbUpZXoCIz6gPZM8GopoxMBhIuWfDGFDIVh4oyZDahyA72LOBaD32bCBqDAYGA1LisxDLc6rj2LOBaGPs2UBUfwwMBlVTz4aOEcgWTuQiWo89G4jqh4HBwMo9GyaAbFJlpAQp1A/ZzZ4NROspxSLEPHs2EG0XA4MJVN2zwe2HFGTPBqKNsGcD0fYwMJgEezYQbV/1PRtckDqG2LOB6CwMDCaiKEp5md9qejYEuiF72bOBaD1FUSDmx4B8uvJASSrPa2DPBiIADAymVHXPBoenvGQ2L1EQnUNZnoeIR9QHeoKwtPY1viAig2NgMKnaejYMQ3a4tSmMyESUQra8H7FnA5EqBgaTq7png7cNcoA9G4jWUxQFIhoGMlX0bGjthexhzwbamRgYmkC5Z8NoFRO5HJDa2bOBaCNKKlYODqo9G7yQQgO81Ec7DgNDkygvvjMB5NizgWirqu7ZIFvKl/rYs4F2EAaGJlN9z4ZAuSUuj5KIzlF1zwZ/J2RfhwYVEemPgaEJ1dSzoXMXJ3IRbUDJpspLZrNnAxEABoamVV58ZwpIx1THSoEeyN5Q44siMpmaeja0DUJ2smcDNS8GhianZJYhFk6DPRuItq76ng2tsLT2Nr4gIh0wMOwA7NlAtH1KPlueEKmorCDLng3UpBgYdhAlHoFYnlcdJ3nbIQe6NKiIyFzKPRsmgcyy6liptQ+yJ6hBVUTaYGDYYZR8uny2QXUil7O81C8nchGdgz0baCdiYNiBaurZ0DYA2eXTpC4iMyn3bDgFFPOVB8qWcsM0u1ObwogahIFhB1OSixBL0+oD2bOBaFOlpWkguag6TvJ3Qfa1a1ARUWMwMOxwVfds4EQuok2VezaMAWpvp3ZX+WwDwzeZEAMD1dazIdgDuYU9G4jWq61nwxBkZ4s2hRHVCQMDrWLPBqLtY88GalYMDLQGezYQbV/VPRus9vIlCqtNm8KItoGBgTakxCIQCfZsINqq2no29EP2BBpfFNE2MDDQppRcunxNlj0biLas+p4NvvLS87zURwbFwEAVlXs2jAO5lMpI9mwg2gx7NlAzYGCgqrBnA9H2sWcDmRkDA1VNKeYhZk8BSrHyQPZsINqUkk2Wz9qxZwOZDAMD1aS2ng29kFtaG18UkcmUezaMAvlM5YHs2UAGwsBAW6Jk4hALk1Dv2dACqW2QR0lEG6i6Z0NLCJZgT+MLIqqAgYG2rNyzYRQo5CoPlOTyXRR29mwgWq+2ng27IFt5NxLpg4GBtq3qng2+dsh+9mwgWk9RFIjFSSCr1rNBgtTax54NpAsGBqoL9mwg2j4ltXSmZ4MKl6/c7ImX+khDDAxUN7X1bBiE7PJqURaRqSjFQvkSBXs2kMEwMFDdKYlFiBh7NhBtRyk6BaSiquPYs4G0wsBADcGeDUTbV33PBnd5MTiGb2ogBgZqGPZsINq+6ns2yGd6Nni0KYx2HAYGajglHS/PAFddfKcFUog9G4g2oizPQcRn1QeyZwM1CAMDaUIpFctHSao9Gyxneja4tCmMyETYs4H0xMBAmlKWZiCSC6rjJF8HZH+nBhURmUu5Z8NpIJtQGcmeDVRfDAykOSWXgpgfZ88Gom1gzwbSGgMD6YI9G4i2Tynmy+3ZS4XKA9mzgeqAgYF0pSQWIGIz6gM9QUiBHh4lEW2APRtICwwMpDulkCsfJbFnA9GWKdkExMIEezZQwzAwkCGUezaEgXRcdSx7NhBtrLyC7DhQYM8Gqj8GBjIU9mwg2r5qezZILW2Qg90aVETNgIGBDEcpnunZUGTPBqKtUvKZ8gqyqj0bHOUJkezZQCoYGMiw2LOBaHvYs4HqiYGBDK36ng0uSB1D7NlAtAElFYWITqkPdPnLwYGX+mgDDAxkeOXFd8aAfLryQEkqz2tgzwaic1Tfs8FavtRnY88GWouBgUxDWZ6HiEfUB3qCsLT2Nb4gIhMqRcNAakl1HHs20HoMDGQqSiELMTfGng1E26BkEhCL7NlAtWFgINNRFKXcQz9TRc+G1l7IHvZsIFqPPRuoVgwMZFpKKg4RraZngxdSaIBHSUQbUOKzEMtzquPYs4EYGMjUqu7ZIFvKp1bZs4HoHEo+U77UJ9izgTbHwEBNoeqeDf5OyL4ODSoiMpeaejaE+iG7/ZrURcbBwEBNQ8mmyktms2cD0ZYpySjEUhU9G9x+SEH2bNhJGBioqbBnA9H21dazYQSyzaFNYaQrBgZqStX3bGiFpbW38QURmYwQAsrSVHU9GwLdkL1tGlRFemJgoKal5LNnFt9hzwairVIyCYiFCajejcSeDU2PgYGaWm09G/oge4IaVEVkLuWeDWNAIVt5oCRDah+C7GDPhmbEwEA7gpKKlYMDezYQbRl7NuxsDAy0Y5R7NpwCivnKA2VL+V5zOxffIVqvpp4NHSOQLbwbqVkwMNCOU1qaBpKLquPYs4FoY+WeDRNANqkykj0bmgkDA+1IVfdssLvKZxt4iYLoHOzZsLMwMNCOVVPPhrYhyM4WbQojMpGaejZ07uLdSCbGwEA7Hns2EG2PoigQsekqezb0QPaGNKiK6o2BgQgrPRtGAUVlIpfFfqZng02bwohMpOqeDQ5P+awdL1GYCgMD0Rnlng2TQGZZdSx7NhBtrLaeDcOQHW5tCqNtY2AgWoc9G4i2T4lHIJbnVcdJ3nbIgS4NKqLtYmAg2gB7NhBtn5JPn+nZoLaCrKO8H7Fng6ExMBBVUH3Phi7IvnYNKiIyF0VRyvMaclX0bGjrh+xizwajYmAgUqFkk2d6NqgtvsOeDUSbqb5nQwBSsJf7kQExMBBVodyzYRTIZyoPZM8Gok2xZ4O5MTAQ1aDqng0tIViCPY0viMhkFEUpn2lIx1THSsEeyC3s2WAUDAxENaq6Z4PVDql9F2QrJ3IRradkliEWToM9G8yDgYFoC6rv2SCd6dkQ0KIsIlNhzwZzYWAg2oZyz4ZJ9YEuH6TWfh4lEW2APRvMgYGBaJuUYqF8iYI9G4i2rPqeDU5IHcOQZV7q0xoDA1GdlKJTQCqqOo49G4g2VlvPhgHILp8mdVEZAwNRHbFnA9H2KclFiKVp9YHs2aApBgaiOmPPBqLtq7png8V2ZgVZ9mxoNAYGogZhzwai7WHPBmNhYCBqIPZsINo+9mwwBgYGogZTFAVi8TSQTaiMZM8Gos3U1LOhYxiynT0b6o2BgUgjSmoJIhpWH8ieDUSbUmIRiEQVPRt87ZD97NlQTwwMRBpSigWIuVNVLL7Dng1Em1FyaYh59mzQGgMDkQ7Ys4Foe8o9G8aBXEplJHs21AsDA5FOlGyi3KRGtWeDu9xHn5coiM6hJBYhYuzZoAUGBiIdKUoRYn68ip4N8pmeDR5N6iIyE6WYh5g9BSjFygPZs2FbGBiIDEBZnoOIz6qOk1raIAe7NaiIyFxq69nQC7mltfFFNRkGBiKDYM8Gou1TMnGIhUmo92xogdQ2yEsUNWBgIDIQ9mwg2r5yz4ZRoJCrPJA9G2rCwEBkQEoqChGdUh/o8peDA4+SiM7Bng31xcBAZFBVL74jW8tHSTb2bCBajz0b6oeBgcjgStEwkFpSHbdRzwYhFEgSzz7QzlZbz4ZByC7v6lfKfyIF9yMwMBCZgpJJQCzW1rNBZBIQmTjk1j5tiiQyuKp7NniCkAI9kGUZyvI8IEmQvW2NL9DgGBiITKI8kWscKFTRs6G1r3yLmVKC3LUXks2hSY1ERldTz4ZATzmoy1bI3edB2uFzhRgYiExGic9BLKv3bFghuf2QQwMNrIjIXGrp2bBC8ndC9nU0rigT2NlxiciEZH8HpM7dgGyparxIxyHyKksCE+0gsizDEuqHFBoAIFX1HJFYgFDrkdLkmu4MQz6fRyaTQTabRTabLSdJISDLMpxOJ5xOJ1wuF+x2OySpul8UIiOqvmcDAJcPlrbBql5XCIFcLodsNotMJoNcLgdFUSBJ0up+5HK54HK5YLPZtvl/QaQvpVQsN0xT69kAQPJ1QPZ3VvW6QojVfSibzSKfz6/uRxaLBS6Xa3VfspqkCVtTBAZFURCPxxGNRpHJqFzfPcPhcCAUCsHv98Niqe5IjciIlGS0fHpVhdyxC5Jj8wY1pVIJS0tLiEajyOfzVW3b7XYjFArB6/WyFwSZmrI0A5FcqDxIkstzGSyb/4HP5/Or+1GpVN0ZCZ/Ph9bWVng8HkMfyJo6MAghEI/HMTMzU/UPZj1JktDV1YXW1lZD/6CIKlGKeYjIicp3UThbYGkfPufLQggsLCxgbm4OW307sFqt6Onpgc/HJYTJvJRcEmJurOIYydsGOXDuei6lUgmzs7OIRtWXrd+Mw+FAX18fXC7Xll+jkUwbGAqFAqamppBMJuvyem63G729vXA4OJuczKfqswztI5DOWvEym80iHA4jm63PHAe/34/u7m7TnGIlOpuyNA2RXKw8SJLOnGV443JcMplEOBxGsahy50WV2tra0NHRYbizdqYMDLlcDmNjY3X74ayQZRlDQ0Nwu9lXnMxDlIpQ5k4BxSouIzjc5dAgSUgmk5iYmNjyWYXN2O12DA0NwW7nEsJkHiKfgTI/pr74GwCppRVysBcAEI1GMT1dRW+HGnk8HgwMDBjqkrnpAkMul8Po6OiWL0GokSQJw8PDDA1kOqJUBIo5iEIWKLzx3/X3m8vtQ0gVJYyPjzesFpvNhpGREU6KJFMRQpT3l8L6/Si7rrW0BLl7L6LxBGZmZhpWj9vtxtDQkGHONJgqMCiKgpMnT6JQUOmtv00WiwV79uzhaVVqCuuDRL4kcGo2VvczC+s5nU7s2rWLc4PI9N4IElmIQg4oZJEqyZiY3fp8hWr5/X709/c3fDvVMEZsqVIkEml4WADKk1empqYa/oZKpAXJYoXk8EBuCUEKdGN6OafJ73Y2m8X8vPpKgURGJ0kSJIsNktML2dsG4e/G1OKyJtuOx+NYXtZmW2pMExhSqdS2Zp/WKpFIIB6Pa7Y9Ii1Eo1Gk02nNtjc3N1f1rc5EZhGJROo+h66Sek6o3A7TBIa5uTldtsmzDNQshBC6HPEvLKjc205kIoVCAUtL6qvH1pOiKJpvcyOmCAy5XA6plNqypPWXz+d12S5RNQpLUSiF6hosAcDy8rIuRynxeFyTS4lEW5Gfn4NQFPWBZ2h5pvtsi4uLuh/A1hwYnnjiCdx2223o6emBJEn43ve+14Cy1tLrB6T3tokqWX75RRz9/Q9j4Sc/gFLFH2Q9f5eNcHREtJG5hx/C8U99HLFnn1QNDkII3fajYrGIRKKKNvANVHNgSKVSOHjwIP72b/+2EfVsuk298AwDGVlhYR6TX/4ijv7+3RWDgxBC07kL63E/IiPLjI9i7C8/qxoc8vl8w27pr4ae+zCwzdsqJUnCQw89hNtvv72OJa2lKAqOHj3asNev5NFwAS8vllBQBGQAFqUID974ZXnjZjGx7vMyqxCwQoENCmwof2yFAptQYIU48/Xyx1bxxse21XFnPWfl62eNW3lt47T1IC1lJyeQePWlNV+ztbWj632/g9bfeDvks3ogZLNZvP7661qXuEqWZXifeRwSpwSRwSSPHkZmdO2+4RoaQddv3wn/m6+CdFYPhFgshnA4rHWJq9xuN0ZGRnTbvuEbDeRy6iuINcKj4QKemyviQLcPB3v9eHUqjiMzy8jX8i3T6PZzWSnBmc/AmU/DlU/Dtebj9AYfZ+DKpWERO3up1ma0csYh8p1vrQkOet+poCgKFn7xGBDjpQkyvpUzDq7hXeh6/53wX34VJEnSfT+qVwv3rTJ8YNDr9M/LiyUc6Pbhj2/cC0mScPP5nbj/keM4NptAyWBHSYpsQdrZgrSzpabn2Qq5DULF2rCx+liu/LG9mNMqB9E2rA8O4uI3610S4HQBYGAg88iMncLYX/75anAo9VW3RHyjKIoCIYRuzdAMHxj0UlQEDvb6V38wkiThYF8Av57Vd9JJPRVsDhRsDix7glU/x1bMw5uOwZuJw5eJw5eOwbfyeToGb2YZVkX/+4WprLAwj/kffB++nn5A0vnilUHa2xLVKjN2CvM/+B7sd31U71J0ZfjAoFuSkiW8OhXHzed3QpIkCCHwajgGCSszFnamgtWOqK8DUV/HpmPc2QR86Th8mRi86djqxyvhwpVP8yyFBpz9g+h6/50IXHUtoktLQAN73lelyFsryXxaDhxE1/vvhPdNBzE1NQXofMePnq3WDR8Y9Fpu+uKQBc/NLOP+R47jYF8Ar4ZjOBJJIJiYRyhxdvOb8g9PSOs/l1CSLCharChZrCjKNhQt1vI/2YaSxYqCxQpIzXfUlXZ6kXZ6EUHfho9bS4U1QcK7JlDE0ZKJw8azFFt2dlBYmbBliGXbl3iLMplHywUXouu374L3TQdXv6b3fqT3CrA1B4ZkMrlmtvXY2BheeeUVtLa2YmBgoK7FAYDVaoXVatW84cxb+8ozzF+ZT+LobAJ2q4zbLujC7xy6rG7bEEKgpAjkSwKFkoJ8SUGhpKBQEht+nN/osaKCbLGEVK6IRK6EZK5Y/pcvIlesvhmJlooWG5a87Vjytm86ptVtQ4/fhV6/E70r/w244HNy9cMViz//KU5/8a9XP98oKKxwuVxal7eGw+HAge/8UNcaiDYS/so/YP7fv7v6+dlnFNbTez/SexXlmgPDiy++iBtuuGH180996lMAgA996EP42te+VrfCzuZ2u3VZfOOtfTbcstuL3bt3N+T1JUmC1SLBagHQgJsj80UFyXw5QCRWgsSmH5eQyBWRyhUNccklmi4gmi7gyMzan3uLw4o+v/ONMBEo/7fVbd+xqyJWCgorLBYLbDabbh0X9X6jI1JTKSis0Dsw6L19UyxvHY/HMTk5qcu2u7q60NbWpsu29aAIgXS+tGGoWM4WEU3nsZDKYzGVQzRVQMkgvz4um4xu39oQ0eN3obPFAVluziCROPwKivF4xaBwttnZWd1WjxwaGkJLS2138RBpIfr4z2FrDVUMCmcbHx9HMplscFUbO++882Cz6XeW1RSBQQiB48ePa35ZQpIk7Nu3DxYLWyNtRFEEYtlCOUAkc2eCRPnfSqhI5vXt9WCTJXT53ggRK5c3unxO2CzNN3+kkkKhgOPHj2u+Xbvdjj179uzYM0DUXJLJJMbHxzXfrs/na8hl/1oYftIjUP7DHQqFMDs7q+l2g8Egw0IFsiyh1W1Hq9sOtG989JgtlM4KEHkspHJrQ0U6j5LSuMxaUAQmYxlMxtY2XJEloNPrxHCrGyNtHoyEPBhqdcNpa96ft81mg8/n0/zyXltbG8MCNQ2PxwO73Y58vvqF3+rBCGe6TXGGASg3rHj99dc1+yFZLBbs2bMHVqspMpVpKUIgnimsCRVzyRym4hlMxTKIZ7U7qyRJQJ/fhV1nAsRImwcDAResTXQmolAo4OTJk1BqWJ1vO1wuF0ZGRhgYqKmkUimMjY1ptr1AIIC+vo3vOtOSaQIDAGQyGZw6dUqTbQ0ODsLr9WqyLdpcMlfEVDyD6Xj2TIgo/3chpU1wtMkSBlrdGAl5sKvNg10hD7r9Tsgm/gO4tLRUvp+8wSRJwu7du3W/FY2oESKRCBYWFhq+HavVij179hjibLepAgMALCwsIBKJNHQboVAI3d3dDd0GbU+2UML0chbT8QzCsfJ/p+JZzCayaOAVDgDlCZbDrZ7VSxm72jxo85jnLg0hBKamphCLxRq6nd7eXgSD1XcRJTITRVEwNjbW0PUlJEnC0NAQPB5Pw7ZRC9MFBgCYm5vD3NxcQ147GAyip6fHNG/+tFahpGA2kUM4llkNEVPxDGbiWRQamCS8DitGzpyBWPmv32XcnhFCCExOTjZsPkN3dzdCoVBDXpvIKEqlEsbGxhqyKJQkSRgYGDDUmW5TBgYAiEajmJ6erutrdnR0oL29nWGhCSmKODM3YuWsRAZj0TSmYpmG9Z0Iue3Y1ebBeR0t2N/lQ3/QZahLGUIIRCIRLC4u1u01JUlCb28vAoFA3V6TyMhKpRLC4TASifqtM2SxWDA4OGi4/iWmDQxAeenrcDi87VNCDocDvb29hvvhUONlCyWMRdMYXUjh1GIKowspzCUbs6R6i8OK/Z1e7O/yYn+XD71+pyHCaSqVQjgc3nZTJ4/Hg97eXt3b1xJpTQiBeDyO6enpbU8oDgQC6O7uNsSchfVMHRiA8g8qFothcXGx5tNCdrsdoVAIwWAQMlfSozMS2SJGF98IEKOLKcQy9e+Q6HdacX6XDxecCRBdXoduAUJRFCwuLiIajdYcHFwuF9ra2uDz+QwRgIj0UiwWsbCwgGg0WnNwaGlpQXt7u2HmK2zE9IHhbJlMBrFYDJlMBplMBuv/1yRJgtPphMvlgt/vh9vt5hscqRJCIJoulEPEmQAxuphCus5NqVrdNpzf6cUFXT7s7/Khw6v93QVCCKRSKcTjcWQymQ1DuCzLcDqdcLvdCAQCcDqdmtdJZGSKoiCRSCCRSCCdTm/YDsBiscDlcsHtdiMYDOrawbFaTRUYziaEQKFQWE15sizDZrMxIFBdCCEQSeRWz0CcWkhhPJpGvlS//gZtHjv2d/mwv8uLC7q8CHn0CRD5fH41fHM/IqqdoigoFAoQQkCSJFgsFlP2+GnawECktZIiMBXP4NRCavXf6aV03SZVdnod2H/WJYyAge/CIKLmw8BA1EDJXBGvzSZwdDaBo5FlnF6q3z3bPX4n9nd6cUG3D2/q9sFtN98RCxGZBwMDkYaWswUcm03gaKQcIKbi9bl/2yJJ2NfpxaH+AC7pC+gy/4GImhsDA5GOYpkCjkaWVwNEJFGfWzr7Ay5cciY87GrzGKr/AxGZEwMDkYEspvJvBIjZZcwnt79mht9pxcV95fBwoNvX1CtyElHjMDAQGdh8Modfn3UGIpreXj8Im0XCgS7f6tmHoJtNloioOgwMRCaxcivn2Zcwtrv890jIjUv6gzjUF8BA0MXbJYloUwwMRCYlhMBkLIOXwjG8NBnD6wupbb1eyG3HJf0BHOoP4PxOL2wWdj8lojcwMBA1iVimgJfPhIfDM8vbaiLltMq4sNePQ30BXNQbgNfJWzaJdjoGBqImlC8qOBJZxi8nY3g5HNvWWhiSBJzf6cXVwyG8eTAID/s9EO1IDAxETU4RAmOLqdXwMLGN5lFWWcLFfX5cNRzCxX0B2HnZgmjHYGAg2mHmk7nVeQ9HZxMoKVt7C3DZLLhsIIirh1txQZcPsswJk0TNjIGBaAdL50s4PBPHLydjeCUcQ3KLK3AGXDZcOdSKq4ZbMRLy8G4LoibEwEBEAMqLZ52cT+KXkzG8FI5hZnlrbau7vA5cNRzC1SMhdPu49DVRs2BgIKINTcczeHEyhmfGFrc872Ek5MbVwyFcMdTKJlFEJsfAQESqwrEMnh5bxFNjUcwna1/vQpKAC7p8uGq4FW8eCHJlTSITYmAgoqoJIXByIYWnRhfx7HgUiVztnSZtsoSL+wK4argVF/FOCyLTYGAgoi0pKgqOzCzj6bEoXji9hFyx9kZRbpsFbx4M4tpdbdjX0cLJkkQGxsBARNuWLZTwUjiGp8YW8aupZZS28LbS63firXs7cM1ICC0OXrIgMhoGBiKqq+VsAc9PLOGpsUUcn0vW/Hy7RcaVQ61469527GrjLZpERsHAQEQNM5/M4ZmxKJ4aW8RkrPY7LQaDbtx4XjuuGg7BZbM0oEIiqhYDAxFp4vRSGk+PLeLpsSgWUvmanuu0yrh6JIQb93ZgsNXdoAqJqBIGBiLSlCIETswl8fRY+U6LWrtL7m7z4K17O3DFUBAOK886EGmFgYGIdJMvKXh+IoqfHZ/Hifna5ju47Ra8ZVcb3rqnHb0BV4MqJKIVDAxEZAinl9J49MQ8nhxdRKZQ21mH8zu9eOvedlw2EISNfR2IGoKBgYgMJVso4ZnxKB49MYfRxXRNz/U6rLh+dxt+Y287Or1cx4KonhgYiMiwRhdSePTEHJ4ej9bcGOpN3T7ceF4HLu7zwyrzrAPRdjEwEJHhpfNFPDm6iEdPzNd8e2bQZcPb9nXgrXs72BCKaBsYGIjINIQoL8H9sxPzeG48ioJS/duX0yrjN/a24x3ndyLkcTSwSqLmxMBARKaUyBbxxOgCHj0+h0ii+hU0LZKEK4dbcesFXRgIsqcDUbUYGIjI1IQQOBpJ4NETc3jhdKymdSwO9vhx64Eu7O/0sgU1kQoGBiJqGrFMAY+/Po+fn5zHfLL6bpLDITduu6Ablw0EYZEZHIg2wsBARE1HUQRenY7jR0dn8evIctXPa29x4Jb9nbhudxu7SBKtw8BARE1tbDGFH/w6gmcnoqj23a7FYcXbzuvA2/Z1wOe0NbZAIpNgYCCiHWEukcOPjkbw2OsLyJeq6+lgt8i4bncbbt7fyUZQtOMxMBDRjrKcLeBnx+fwk9fmkMgVq3qOJAFvHgji1gu6sKutpcEVEhkTAwMR7Ui5YglPnFrED38dwVyy+tsy93d5cesFXTjY4+edFbSjMDAQ0Y6mKAIvTC7h4SMRjC6mqn5ef8CFWy7owlXDrWw9TTsCAwMREcr9HF6bTeDhX0fwylS86ud1tDjw7oM9uGY4BJm3ZFITY2AgIlpncimNHx6N4KnRaNWNoLp9Trz3YA8uH2qFzEsV1IQYGIiINrGYyuPHx2bx85NzyBSqu7OiP+DC+y7qxaH+AOc4UFNhYCAiUpHOF/HoiXn8x7FZxDKFqp4zEnLjfRf14cIeH4MDNQUGBiKiKhVKCp4aK99ZMRXPVvWcve0t+K2Le7G/y9fg6ogai4GBiKhGihB4djyK7746jZnl6oLDBV0+vO/iXuxtZx8HMicGBiKiLSopAk+NLeK7r05VvdjVxb1+vPeiXgyHPA2ujqi+GBiIiLapWFLw+KkFPPSraUTT1c1xuGwgiPce7EF/0N3g6ojqg4GBiKhO8iUFj56Yw/cPz2A5q952WgJw5XAr3nOwF90+rlVBxsbAQERUZ9lCCT89PocfHJlBMl9SHS9LwFt2teFdF/agvcWhQYVEtWNgICJqkHS+hB8fi+CHR2eRKagHB4ss4Ybdbbj9wh60uu0aVEhUPQYGIqIGS+aK+MGvI/jJa7PIFdUbQNlkCTee14F3vqkbPqdNgwqJ1DEwEBFpJJ4p4OFfz+CR1+ZQUNTfet12C95zYQ9+c18HF7gi3TEwEBFpLJrO4/uHZ/Dzk/MoVREcun1O3HlpPy7q5ZLapB8GBiIincwnc3joV9N44tQCqsgNuLDHhzsvHUBfwNX44ojWYWAgItLZzHIWD746hafHolB7Q5Yl4Ma9HXjPwV54nVZN6iMCGBiIiAwjHMvg314O48XJmOpYj92C9xzsxY3ntXN+A2mCgYGIyGB+PbOMb7x4GqeXMqpje/1O3HnpAA72+jWojHYyBgYiIgNSFIH/fH0e33llqqqukQd7/bjz0n70+jm/gRqDgYGIyMDS+SIe+tU0fvzanOodFRZJwo3nteM9B3vR4uD8BqovBgYiIhOYWc7imy9O4pfhmOrYFrsF772oF2/d2wGLzNswqT4YGIiITOTwdBz/8uIkJmPVzW+467IBXNjD+Q20fQwMREQmU1IEfn6yPL8hmVOf33Bxnx93HOpHD+c30DYwMBARmVQqX8SDr07jp6/NoaTyVm6RJLxtXwfedWEP5zfQljAwEBGZ3MxyFv/y4mm8HI6rjm1xWPH+i3txw552yGwzTTVgYCAiahK/mo7jGy+cxlQ8qzp2b3sLPnrlENtMU9UYGIiImkhJEXj0xBweeGUKyXyp4liLLOG/HOjGO9/UDbuF3SKpMgYGIqImlMwV8eCvpvFIFfMbun1O/O4Vg9jf5dOoOjIjBgYioiY2Fc/gf784iVem1Oc3XL+7DR841M9JkbQhBgYioh3g5XAMX3t+AvPJfMVxPqcVH7xsAFcOtULipEg6CwMDEdEOkS2U8OCvpvGjoxGodJnGwR4/Pnz5IDq8Dm2KI8NjYCAi2mHGF1P4p2fHMbaYrjjOYZXx3oO9uOn8TraYJgYGIqKdSFEEfnJ8Fv/28hRyRaXi2KFWNz565RBGQh6NqiMjYmAgItrBFpI5fPW5CbysMilSkoCb9nXifRf1wmmzaFQdGQkDAxHRDieEwHMTS/j68xOIZyuvTdHmsePDlw/i4r6ANsWRYTAwEBERgHLvhm+/FMbPT86rjr1iqBUfvGwAAZdNg8rICBgYiIhojddmE/jnZ8dVW0y77Rbccagf1+1u47oUOwADAxERnaNQUvDwkRl87/AMiir3YO7r9OJ3rxhEL5fPbmoMDEREtKmpeAb//OwEXptNVBxnlSXcfmEP3nmgm7dgNikGBiIiqkgRAo+/voD//ctJpFUWtNrV5sHHrxlBt8+pUXWkFQYGIiKqSixTwP964TSeHY9WHGe3yLjj0n7cuLed7aWbCAMDERHV5OVwDF99bgILqcrrUhzs8eOeq4YQdNs1qowaiYGBiIhqli2U8MCrU/iPY7Oo9FekxW7BR64YwhVDrdoVRw3BwEBERFt2aiGJLz05hpnlyrdgXjMSwofePACPnUtnmxUDAxERbUuuWMK3fhnGT4/PVRwXctvxsauHcUG3T6PKqJ4YGIiIqC5enYrjH54eQyxTqDjuHed34v2X9MFukTWqjOqBgYGIiOommSviK8+O49mJpYrj+gIufPzqYQxxBUzTYGAgIqK6EkLg6bEovvrcBNKFzfs2WGQJ7z3Yg9su6IbMZk+Gx8BAREQNsZjK4e+fGsOvI5W7RO5tb8HvXzOMTi+bPRkZAwMRETWMIgR+8tosvv3LMAoV1qRwWGV88LIBXL+7jc2eDIqBgYiIGi4cy+BLT45iPJquOO6SvgB+78oh+LlstuEwMBARkSaKJQUP/moa3z8yU7HZk89pxUevGMKlA0HtiiNVDAxERKSpE3MJfOnJMcwlcxXHXb+7DXddNgCXzaJRZVQJAwMREWkuWyjhGy9O4j9Pzlcc195ix73X7sLe9haNKqPNMDAQEZFuXgrH8I9Pj2E5W9x0jEWS8NuH+nDz+Z2cEKkjBgYiItLVcraA//nMOF6cjFUcd2l/AP/16mGuR6ETBgYiItKdEAKPn1rAN144jUxB2XRce4sDn7xuF0bYIVJzDAxERGQYc4kc/v6pUbw2l9x0jFWWcNdlA7hxbzsvUWiIgYGIiAxFUQQeOjyNB1+dRqU/UFcOteKjVw7xLgqNMDAQEZEhHZ6O4++eHK04IbLb58Qnr9uFgaBbw8p2JgYGIiIyrKV0Hv/fE6cqXqKwW2R8+PJBXLe7TcPKdh4GBiIiMrSSIvBvL4fx8K8jFcddt6sNd18+AIeVlygagYGBiIhM4aVwDF9+chSp/OZLZvcHXPjkdbvQ43dpWNnOwMBARESmMZ/M4YtPnMKphdSmY5xWGR+9cghXDYc0rKz5MTAQEZGpFEsKvvlSGD8+Nltx3I1723HXZQOwWWSNKmtuDAxERGRKz09E8Q9PjyNT2PwSxXDIjT94yy50ep0aVtacGBiIiMi0IstZfOHxU5hYSm86xm2z4L9ePYzLuFz2tjAwEBGRqeWLCv7XC6fxc5WVL2/e34nfvqQPVpmXKLaCgYGIiJrCk6ML+OdnJ5Arbr4WxZ52D/7gLbsQ8jg0rKw5MDAQEVHTCMcy+MLjr2Mqnt10TIvDinuvGcHBXr+GlZkfAwMRETWVbKGErzw3gSdHFzcdIwF4/yV9uO2CLi5gVSUGBiIiajpCCDz2+gK+9vwECqXN/8xdOdSKe64aYnfIKjAwEBFR05qIpvGFx19HJJHbdMxg0I1P3bAb7S2c11AJAwMRETW1dL6Ef3pmDM9NLG06xuuw4pPX7cL+Lp+GlZkLAwMRETU9IQR+dGwW3/zlJDb7qydLwF2XDeBt53VwXsMGGBiIiGjHODwdxxefOFVxAavrd7fhw5cPsqX0OvxuEBHRjvGmHj/++y370RfYfDXLx15fwH/7yWtYSucBAIoi8D+fGUdR2by/w07AMwxERLTjZAol/P1To3jhdGzTMQGXDf/H9bvx/MQSfng0gk9cO7KjV8BkYCAioh1JEQLfOzyDB16Z2nSMRZJQOvNnclebB599x/k7dn4DL0kQEdGOJEsS3n1hDz59w264bBv/OSyddUx9aiGFk/NJrcozHAYGIiLa0Q71B/Hn79iPLq96H4YfHZvVoCJjavrAIIQAr7oQbQ/3I2p2fQEX/tst+3Gwp/L6Ei+cXsJ8cvMmUJtZ2YfMvB811RyGYrGI5eVlZDIZZDIZ5HK5NT8ch8MBl8sFl8sFn88Hm82mY7VExpTP57G8vIxsNot0Oo18Pr/6mCRJcDgccLvdq/uRxcKWutQ8SorA//n9wxU7Q956QRc+cKi/4utkMhkkk8nVv0eFQmH1MVmW4XQ64XK54Ha74fV6IZtgye2mCAzpdBqLi4uIx+M1Pc/r9SIUCsHj8ezYSSxEQPnoJ5FIIBqNIpms/hqtJEnw+/0IhUJwuTa/TY3ILL776hS+++p0xTFuuwV/+56DcNrWhmVFURCPxxGNRpHJZKrepizLaG1tRWtrK+x2+5bq1oKpA0OpVMLMzAxisdi2Xsfr9aKnp4dnHGhHyufzmJqaQiqV2tbrhEIhdHR08IwDmVY0ncfnH3sdY4vpNZMdN/K7VwzirXs7Vj9Pp9OYmppCLlf75YoVkiShs7MToVDIkAexpg0MyWQSk5OTKJU279ZVC1mW0dvbC7+f66PTzhGNRjEzM1O366pWqxUDAwNwu911eT0iPeSKJYwupHB8PokTc0mcmE8iva4zZF/Ahf/ntgsAALOzs1hYWKjb9p1OJwYGBgx3tsGUgSEej2NycrIhr93V1YW2traGvDaRUQghMDc3h/n5+bq/tiRJGBgYgNfrrftrE+lBEQLhWAbHZhN4bTaBY7MJLGeL+JMb98JXjGN5ebnu27RYLBgeHobT6az7a2+V6QLD8vIyTp8+3dBtdHd3IxTaud28qPnNzc1hbm6uodsYGhpCS0tLQ7dBpAchBKbjGSwvRFDKphu2HYvFgpGRETgcxlh22/jTMs+Sz+cbdmbhbDMzMzVNWCEyk2Qy2fCwAACnT59GsVhs+HaItCZJEhzFdEPDAlCep3f69GnD3IppmsAghEA4HNbsGzc5OQllhy80Qs2nVCohHA5rsi1FUTA1NWWYNzuiesnlcpid1aaBUy6X0yTgV8M0gWFpaQnpdGPT3Nny+XxDru8S6Wl2dlbTo/5EItGQ67tEetI6CM/PzyObzWq2vc2YIjAIIeo6A7Vai4uLPMtATaNUKmFpaUnz7eqx7xI1SiaT0fTgdUU0GtV8m+uZIjCkUqk13ea0stKEg8iIEq8dR/LEyarHLy0t6XJ5YKXTHZERLT3/ArKRSNXjFxcXG1jN5paWlurWRmCragoM999/Py677DJ4vV50dHTg9ttvx/HjxxtV26rtNmbaDj2OyIiqkTp1Ci/d9SEc/b/+pKrgoOfvsp77MFEl0WeewQvv+S2c/Kv/gazKvAQ9DyKFELpf3qspMDz++OO499578eyzz+KRRx5BsVjE2972tm13iFPT6NevJJPJcNIWGdrCY4+pBgdFUbbVgW679DiFS1QtUSxi5rsP4YV3v69icMhms7r+PdD7TN22+jDMz8+jo6MDjz/+ON7ylrfUs65VpVIJx44da8hrV+37DyN7+Ii+NRCtU0wmkJ8/d35A2/XXY+B3P4yWvXtWv5ZKpTA2NqZleWtIkoTM5+4HFIZvMpb84iKK647cJasVXe+8Df0f+iCcnZ2rX19cXMTMzIzWJa5yOp3YvXu3btu3bufJK6dmWltb61LMRvQ8KlpRUBSkdXyzJarFwmOPYeGxx9YEB733IyEEsqkUlIg2t6IRbcfKGYfI9x9eExz03o/03v6WA4MQAp/61KdwzTXX4MCBA/WsaQ1D3KXARanIhM4ODoEPf0jvciDZjdGtjqha64OD/V3v0rceISCE0G1hqi0Hhk984hP41a9+hSeffLKe9RBRHUl2O+wd7ZCdDiBZ0LcYzgUik7K43XB0dEKyWQH9T3rrZkuB4b777sO///u/44knnkBfX1+9a1rDEEvl6nBLJ9F2SHY7um9/J/o/eCcc7e3le7iTSV1rEjn9G88Q1cLq86Hvjg+g533vgdXjKc9f0HE/kiRJ12WvawoMQgjcd999eOihh/DYY49heHi4UXWtMsKiG55AANbL36x3GURr5ObnkR5dO7dmfVBYofeKd5IkwT8yAmjwnkFUi/TEBHLr5taUg8LvoOd974XV41n9ut5/j/Tej2sKDPfeey+++c1v4vvf/z68Xi8iZ5pd+P1+uFyuhhQoyzLsdrsujZtWtr/nvnt1TXVEG4n88Ec48dn/DqAcFHredTv67rpjTVBYofcbjcvlwsgX/l9dayDayKkvfBFT3/w2gHPPKKzXqL9z1XK73bpuv6bA8OUvfxkAcP3116/5+le/+lXcfffd9arpHB6PR7fA4Ha7GRbIsNSCwgpZluF0OnXrR6/3Gx1RJWpBYYXT6YQkSbr1YtA7sGyrD4NW0uk0RkdHddl2f38//H6/LtsmqiQ9MVGejFUhKJwtGo1ienq6wVVtbM+ePbqfziXaSOLYa3AN9FcMCmebnp7WZV0HWZaxb98+yLJ+KzqYYi0Jt9utyylVq9UKn8+n+XaJquEeHKw6LABAIBDQ5c3G4/EwLJBhec/fV3VYAIBQKNTAajbX2tqqa1gATBIYAKC9hjfGemlra+PlCGoasizr8manx75L1CgOhwMtLS2ablOSpIY2SKyWaQKDz+eD1+vVbHsul0u3JEnUKO3t7bDb7ZptLxAIaP7mStRovb29mh7td3V1abrfbsY0gUGSJPT29mrSl0GSJPT19fHsAjUdWZbR39+vybasViu6u7s12RaRlmw2G3p6ejTZltvtNsTZBcBEgQEovwENDAw0/A95X18fr7lS03K5XOjt7W3oNmRZxuDgoDEarxE1gN/vb/hZaJvNhv7+fsMcvJoqMADlCVSDg4MN+wbyrgjaCYLBYMOOkGRZxtDQkO63gBE1kiRJ6OrqalhosNvtGB4ehs1AaxmZ4rbKjWQyGYTD4bqt3mW1WtHf3w9PDbNlicwukUggHA6jVCrV5fWcTif6+/t5ho52DCEEotEoIpFI3fozeL1e9Pb2wmrd1oLSdWfawACUV7Kcn5/H/Pz8tl6ntbUVnZ2dPH1KO1KpVMLMzAxisdiWX0OSJHR2diIUChnm9CmRlvL5PKamppBKpbb8GhaLBT09PfD5fIbcj0wdGFbk83ksLS0hGo1WfaQkyzKCwSCCwaDubXOJjCCTySAajSIWi1V9pGS1WtHa2opgMGioU6dEehBCIJVKIRqNYnl5uernORwOtLa2IhAIGPrAtSkCwwpFUZBKpZDJZJDJZJDNZqEoCoByQHA4HHC5XHC5XGhpadG9CQaREZVKJSSTSWSz2dX9aOVtQpbl1X3I5XLB4/EY8kiISG+FQmHN36N8Pg8hBCRJgsVigcvlgtPphNvthsvlMsV+1FSBgYiIiBqDh9hERESkioGBiIiIVDEwEBERkSoGBiIiIlLFwEBERESqGBiIiIhIFQMDERERqWJgICIiIlUMDERERKSKgYGIiIhUMTAQERGRKgYGIiIiUsXAQERERKoYGIiIiEgVAwMRERGpsupdABHRCseh34MkW1b/WWz21Y9lq+2NxywWyFY75NXH7Oc8JskWyLIE2SJDliVIsgSLRYZ05uPyY1JNj1nO/LNbZVhkCdbVj+U3HrO88bHDKp/znDWfSxJkSYLNIq1+bJEAq0WGRcKZx9742CJLsMlnxsmATZZXPy4/V4IkAbKEjT8GIK2MX/n4zBhJktaMlYSApBQBoQBCAEI563MFUkntsXVfV0oQigIU8xClEqAoEMV8+b9Kqfx4oQCsfFwsvPEcpQRRKI+FUoJSLECUlPI/RYGSL0IplVY/FooCpfTGxytjS4UixFnjlDPPFyUFpXwJQhFQSgJKvgSlJCBKChRFlB8rCYiSQKnwxmNrP39jnCIE8opASQiUBFBa/RwoCWz4mIL148Tq2L8X4/rumGfwDAMRERGpYmAgIiIiVQwMREREpIqBgYiIiFQxMBAREZEqBgYiIiJSxcBAREREqhgYiIiISBUDAxEREaliYCAiIiJVDAxERESkioGBiIiIVDEwEBERkSoGBiIiIlLFwEBERESqGBiIiIhIFQMDERERqWJgICIiIlUMDERERKSKgYGIiIhUMTAQERGRKgYGIiIiUsXAQERERKoYGIiIiEgVAwMRERGpkoQQQu8iiIjqLZfL4f7778cf//Efw+Fw6F3OGkauDWB922Hk2raLgYGImtLy8jL8fj/i8Th8Pp/e5axh5NoA1rcdRq5tu3hJgoiIiFQxMBAREZEqBgYiIiJSxcBARE3J4XDgM5/5jCEnnhm5NoD1bYeRa9suTnokIiIiVTzDQERERKoYGIiIiEgVAwMRERGpYmAgoqbyR3/0R7j22mtxxx13IJ/Pr3ksk8ng1ltvxXXXXYff/M3fRDQaNVR9K+6//35ceumlutdULBZx991349prr8UnP/lJzeqpprYVWn+v1tusPiP8rtUbAwMRNY2XX34ZkUgEv/jFL7B//3488MADax7/j//4Dxw4cACPP/44fuu3fgvf+MY3DFUfACQSCRw5csQQNT388MPo6+vDL37xC6TTaTz99NOa1aVWG6D992q9SvXp/bvWCAwMRNQ0nnnmGbztbW8DANx0003n/IHbs2cP0uk0ACAWi6G9vd1Q9QHAF77wBdx7772GqKmaevWqDdD+e7Vepfr0/l1rBKveBRAR1UssFkNPTw8AwO/3n3MaeNeuXThy5AgOHDgASZLw3HPPGaq+eDyOw4cP48/+7M8MUVMsFltdD2GjevWsTY/v1XqV6tP7d60ReIaBiEwnEongmmuuOeefEALLy8sAym/mra2ta5739a9/Hddffz2OHDmCP//zP8dnP/tZQ9X3+c9/Hp/4xCcaUtNmgsHgpjVVekzv2vT4Xq1XqT6tfte0xMBARKbT1dWFJ5988px/N998M376058CAH7yk5/g6quvPue5K2/qgUAAsVjMUPW9/vrr+NznPoebbroJJ0+exF/+5V82pL6zXXHFFZvWVOkxLVTavh7fq1rqA7T5XdOUICJqIp/+9KfFNddcIz7wgQ+IXC4nhBDinnvuEUIIEY/Hxc033yyuu+46cfXVV4vjx48bqr6zHTp0SLeaVuopFArigx/8oLjmmmvEfffdp1k91dR2Ni2/V+ttVp8Rftfqja2hiYiISBUvSRAREZEqBgYiIiJSxcBAREREqhgYiIiISBUDAxHRDnD33XdDkiR87GMfO+exj3/845AkCXfffffq1yKRCO677z6MjIzA4XCgv78ft912Gx599NHVMUNDQ/j85z+vQfVkBAwMREQ7RH9/P7797W8jk8msfi2bzeJb3/oWBgYGVr82Pj6OQ4cO4ec//zn+6q/+CocPH8aPf/xj3HDDDbq2YiZ9sTU0EdEOcckll2B0dBQPPvgg7rjjDgDAgw8+iP7+foyMjKyOWznj8Pzzz8Pj8ax+/YILLsBHPvIRzesmY+AZBiKiHeTDH/4wvvrVr65+/pWvfGVNCIhGo/jxj3+Me++9d01YWBEIBLQokwyIgYGIaAe566678OSTT2J8fBwTExN46qmncOedd64+/vrrr0MIgX379ulYJRkRL0kQEe0gbW1tuOWWW/D1r38dQgjccsstaGtrW318pfmvJEl6lUgGxTMMREQ7zEc+8hF87Wtfw9e//vVz5iTs2bMHkiTh2LFjOlVHRsXAQES0w9x0003I5/PI5/N4+9vfvuax1tZWvP3tb8ff/d3fIZVKnfPcplh1kbaEgYGIaIexWCw4duwYjh07BovFcs7jX/rSl1AqlfDmN78Z3/3ud3Hy5EkcO3YMX/ziF3HllVfqUDEZAecwEBHtQD6fb9PHhoeH8dJLL+Fzn/scPv3pT2NmZgbt7e04dOgQvvzlL2tYJRkJl7cmIiIiVbwkQURERKoYGIiIiEgVAwMRERGpYmAgIiIiVQwMREREpIqBgYiIiFQxMBAREZEqBgYiIiJSxcBAREREqhgYiIiISBUDAxEREan6/wEaALSig22kTgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLSklEQVR4nO3deXQkZ30u/qeq95Z6U2vfpVk8njEe22PjHdvBMcbLtdkTbIMhxCEYh1zIPfdkOYcTbojzy83JBX4JZLkBfMkFkhgbwhLAmHgZ78YLM8x4Ni2jrbX1ot63eu8fPZJHGqmrW+qupfV8zpkzkvrtru9oVK2nqt76vpIQQoCIiIioDFnvAoiIiMj4GBiIiIhIFQMDERERqWJgICIiIlUMDERERKSKgYGIiIhUMTAQERGRKgYGIiIiUsXAQERERKoYGIiIiEgVAwMRERGpMm1gKBaL+PznP7/p52cyGdx5553YvXs3LrroItx8880YGxurXYFEJrDV/QgAfu/3fg+Dg4OQJAmHDx+uUWVEjaUW+5reTBsYDh06hIcffnhLr3Hffffh2LFjeO2113Dbbbfhvvvuq1F1ROZQi/3ove99Lw4ePIiBgYEaVUXUeGqxr+nNlIHhyJEjuPXWWzE1NYWLLroIn/3sZ6t+DafTiVtuuQWSJAEArrjiCoyMjNS6VCLDqsV+BABve9vb0NvbW+PqiBpHrfY1vVn1LmAz9u7di3e9613Ys2cPPvnJT9bkNb/0pS/h9ttvr8lrEZlBPfYjIjpXo+xrpjzDAAAvv/wyLr300nO+fu2116K1tXXdPxMTE+u+1p//+Z/jxIkTpr++RFStWu5HRLSxjfY1M5GEEELvIqpVKBQQCAQwPz8Pp9O5pdf6q7/6K3z729/Gz372M/j9/toUSGQCtdyPAGBwcBA/+MEPcMEFF9SgOqLGUet9TS+mvCQxOTkJj8ez5W/8X//1X+Nb3/oWwwJtS7Xaj4iovEbZ10x5SaK3txcXXnghzjvvPPzRH/3Rpl5jcnISn/nMZxCNRnHDDTfgoosuwuWXX17jSomMqxb7EQDcf//96O3txeTkJG688Ubs3LmzhlUSmV+t9jW9mfKSBBEREWnLlGcYiIiISFsMDERERKSKgYGIiIhUMTAQERGRKgYGIiIiUsXAQERERKoYGIiIiEgVAwMRERGpYmAgIiIiVQwMREREpIqBgYiIiFQxMBAREZEqBgYiIiJSxcBAREREqhgYiIiISBUDAxEREamy6l1APRSLRWQyGWQyGSiKAgCQZRkOhwNOpxNWa0P+s4lqqlAoIJ1OI5vNQggBoLQfOZ1OOJ1OWCwWnSskMjYhBPL5PDKZDHK5HIQQkCQJsizD5XLB4XBAls1z3N4wvznz+TwikQgikQjy+XzZsVarFX6/H4FAAA6HQ6MKiYwvk8kgEokgGo2iWCyWHWu32xEIBBAIBBjCic4QQiCVSiEcDiMej68ctG7E5XIhEAjA5/MZPoRLYvnQwaRyuRxCoRCWlpY29fympiZ0dXXB6XTWuDIi80in05iZmUEqldrU830+Hzo7O2Gz2WpcGZF5LC0tIRQKIZfLVf1cSZIQDAbR3t5u2LMOpg0MQgiEw2GEQiHU4p/Q3t6OtrY2SJJUg+qIzEFRFMzNzWFhYWHLryXLMrq6uuD3+7kf0bZSKBQwPT296QPXs9lsNvT09KC5ubkGldWWKQODoig4ffo0EolETV/X5XJhYGCAp1dpW8jn8xgbG0M2m63p6/p8PvT09Bj2KImoltLpNMbGxlQv4VXLiAexpgsMiqJgbGxs06dO1TgcDgwNDTE0UEPL5/MYGRlRne+zWc3NzRgYGDDUmx1RraXTaYyMjNTkLPd6Wltb0dHRYZj9yFSHAEIITExM1C0sAEA2m8X4+HjdfgCI9KYoCkZHR+sWFgAgkUhgamqqbq9PpLdcLofR0dG6/q5YWFjA4uJi3V6/WqYKDNFoFPF4vO7bSafTmJ+fr/t2iPQwOzu7qUlZ1YpGozW5pktkNEIITE5Oqt4BUQuhUAiZTKbu26mEaQJDLpfD9PS0Ztubm5tDOp3WbHtEWkgkEpoesUxNTaFQKGi2PSIthMPhup7pXmtyctIQZ71NExjm5uY0/4aFQiFNt0dUb1r/TBeLxZrcgUFkFIqiYHZ2VtNtZjIZxGIxTbe5HlMEhkKhoMs3K5lM1nwGOVGtiCpPh6ZSKV1ObYbDYU1O3RJtRrX7UTQa1eXn2QhzGTYVGL785S9jaGgITqcTBw4cwNNPP13rulaJRqO6nY4Jh8O6bJdIzeJ/Po5T//NBpCcnKhuv0xuOoiiGODoiWs/UPz+E0//4d8hHIxWN12s/SqfTul8mrzow/Mu//At+//d/H3/8x3+MV199Fddeey3e+c534vTp0/WoDwA0mehoxG0TlSMUBYuPP4ZD931ENTgIIbgfEa1DyWQQ+s6/4vUP36UaHPL5vK5nnfXej6ruw3D55ZfjkksuwVe+8pWVr51//vm488478eCDD9a8QCEEjh49quspzd5iAcgaY5Yq0bLYq69g9tGH3/yCLCN4w9vR/Zt3w9Xbt2psLpfD8ePHNa7wTTabDR2xyo7giLQ0/+MfIvLsMyufyw4n2m/7L+h63wdg8wdWjV1aWqrrwbEaj8eDgYEB3bZfVWDI5XJwu934t3/7N7zrXe9a+fqnPvUpvPbaa3jyySdrXmA2m8WJEydq/rrVKP7N/0J2bFTXGogqtk5wiMVimJio7NJFvaT+26cAA8z0JqrEesFhdnZW11vurVYr9uzZo9/2qxm8sLCAYrGIjo6OVV/v6Oio2+xrQ9ySxTc5MpMzlyoW//PxleBQcLn1rorIVJRs6VLF3A/+fSU46P37qFAorCyRrYdNTXpcW2w9/wFGuPdU/wqINuFMcDj8ux9D8vVX9a6GyJSWg8Ph3/1t5KYm9S5HV1WdYWhtbYXFYjnnbMLc3Nw5Zx1qxQg9tPWvgKh6ksWC1hvfga7f+CCSdgeWZmb0LonIdGSXC513vBsd734v5uIJJCPbdy5OVYHBbrfjwIEDeOyxx1bNYXjsscdwxx131Lw4AIZYBMoIoYWoUmcHBWdXNwAgy9saiapydlCweX0AAGta38nvVqtV199HVf82/vSnP4177rkHl156Ka688kr8wz/8A06fPo2Pf/zj9agPdrsdsizrepfEwAO/D2Tr33ufqBqxV15G6OF/Wfl8vaCwzOVyaV3eKjabDed9/i91rYFoPXM/+j4iB59a+Xy9oLDM7dZ3LpDe+3HVgeEDH/gAFhcX8bnPfQ4zMzO44IIL8KMf/ahut3pIkgSXy4VkMlmX11djt9vh271bl20TlZNbLLVcLhcUltlsNlgsFhSLRS1LXOFyueA77zxdtk1UTuzlFwGUDwrL9P6FrXdgqboPgx4WFhZ0W9chGAyiq6tLl20TlbPwn48j/tqrZYPC2SYnJxGNRutf2Dp6enoQCATUBxJpbPIbX4coFtFZJiic7cSJE7o1b9qxY4euocUUgaFYLOKNN97Q5Y6JXbt2weFwaL5dIjXV3p2UTqdx6tSpOla0PlmWsWfPHsiyKZauoW2m2v0oEolgamqqjhWtz+VyYceOHZpv92ym2IMtFgv8fr/m221ubmZYIMOqdvKTy+XS5eikpaWFYYEMq9r9yOfz6fLzHAwGNd/mWqbZi9va2jSfHVqvW0WJ9NLZ2anp9iwWC1pbWzXdJlE9ybKs+e8Gp9MJn0/9ckm9mSYw2O12dHerX6etlfa2Nt0nuBDVWlNTk6ZHKj09PYa4NZqollpaWtDU1KTJtiRJQl9fnyFu7zfFHIZlQgicPn267it2uVwuDHhkSMUcYHVAsjkB25m/rQ5IPL1KJqYoCk6dOlX3iVuBgB+dchKAtHofsjlK+5EB3gCJNiufz+PEiRN1v+W/q6vLEJcjAJMFBqD0Zjc+Pl632ywdDgeGh4chF3NQZk+uP8hqB2xOSFbHWW+CTr4Bkmnk83mMjIwgn8/X5fU9Hg/6+/shUlGI8HrtdCXAZodkZZAg80qn0xgdHa1baGhrazPUpXHTBQagFBomJyextLRU09d1u90YGBiAxWIBABQXxoF0BduwuSB3DEOSeOaBzKNQKGBsbAyZTG271/n9fvT09ECSJAghoIROAAX1sxmS2w852Kc6jshIMpkMRkdHa97jpKOjA21tbTV9za0yZWAASpcnIpEIZmZmtny7pSRJaG9vR2tr66qjG5HLQJlVWVpbkiF37IRk490UZD6KomB+fr4mS/bKsozu7m74fL5V+5GSikIsqiytbbWX9iPZsuU6iLRWKBQQCoVq0ufEZrOht7dXszkS1TBtYFiWz+cRCoUQ22Sv/ObmZnR1dW14+6SyeBoiVf61pZY+yE3+TW2fyAjS6TRCodCmL/X5/X50dnauO8FRCFG6vJcvcyZDkiG1DUF2cBluMq94PI5QKLSp+UGyLCMYDKKtrc2wtyGbPjAsKxQKiEQiiEQiyOXKr/tgs9ng9/sRCARgt9vLjhX5LJTQcfUCXN5ScDDofzRRJbLZLCKRCKLRKAqFQtmxDocDgUAAfr9f9U4IkV6CsjCuun3J0wbZr+2tn0S1JIRAOp1GOBxGPB4ve6lieemDQCCgW3+HajRMYDiboijIZDLIZDIrk1FkWYbD4YDT6VyZo1Dx64UnIZIVLGkqWyC1DUO2OzdTNpGhFItFpNNpZLPZlct+sizD6XTC6XRW9eYmhIAydwrIpdUH25yQ2ocgy7wdk8wvn88jk8kgl8utdJWUZRkulwsOh7km+TZkYKg1UchBmTkOoLJvleTrhOw11mQVIr2JTBzK/FiFoyVIrf2QXd56lkREVTD2+Q+DkKx2SM0tFY8XsRCKs6d0XZKbyHAczYCj0olcAmJhHMXFCe5HRAbBwFAhydsGSBLgbIbUcz5gV+kCmUtBTB+FktFnWW4io5EkCbKvdE+55GmF1HUeoHbZIRWFCB2HUig/L4mI6o+XJKqgxOchuf2QLLbS50tzELFZ1edJza2QA1wimwgAlFgIkrcdkiRDURSIyBSQiqo+Twr0QK7iTB8R1RYDwxYpuTTE/CigqDTtsNohte2AzL76ROdQ0jGIhQmozhNyNENqHTD8bHKiRsTAUAOKokAsngYyamtcSJBaetmzgWgdSrEAMT8C5FXuYZfk0l0UdvZsINISA0MNKckwRHhKfaDLVwoOPEoiOocSnYGIL6iOk7xtkH3s2UCkFQaGGlMKOYi5EaCosqiPbC0dJdnYs4FoLSWbhJgfA4TKHRLs2UCkGQaGOimGJ4EKmj2xZwPR+hRFgVgYA7JqdxpJpXkNLo8WZRFtWwwMdaSk4xCL44Dat9juLvXR5yUKonMo8UWI6LT6wKYAJH839yOiOmFgqDNFKUDMjQF5lZa4kgypdRCy03grlBHpTclnS5f6lPLrW8Big9Q+DNlafo0YIqoeA4NGlNgcxBJ7NhBtVqlnwySgsnoswJ4NRPXAwKAhJZeGmBsFhFrPBkdpESv2bCA6h5KKQSxW0LPB2QwpyJ4NRLXCwKCx6no29EFu8mlSF5GZKMVC6RJFQa1ng+VMzwaVVu5EpIqBQSdKIlxqiauGPRuINqREZiASlfRsaF9Zx4KINoeBQUfV9WwYhmxzaFMYkYmwZwORNhgYDKDyng1dkL2tGlREZC7s2UBUfwwMBqGk4xAL41CdyMWeDUQbUpYWIGIz6gPZs4GoagwMBlLq2TAK5DPlB0oypLZByA72bCBaiz0biOqDgcGAlNgsxNKc6jj2bCBaH3s2ENUeA4NBVdWzoX0YsoUTuYjWYs8GotphYDCwUs+GcSCTUBkpQQr2QXazZwPRWkqhADHPng1EW8XAYAIV92xw+yAF2LOBaD3s2UC0NQwMJsGeDURbV3nPBhek9kH2bCA6CwODiSiKUlrmt5KeDf4uyB72bCBaS1EUiPlRIJcqP1CSSvMa2LOBCAADgylV3LPB0VRaMpuXKIjOoSzNQ8RC6gObArC09Na/ICKDY2Awqep6NgxBdri1KYzIRJR8prQfsWcDkSoGBpOruGeDpxWynz0biNZSFAUiPAmkK+jZ0NIDuYk9G2h7YmBoAKWeDSMVTORyQGpjzwai9SjJaCk4qPZs8EAK9vNSH207DAwNorT4zjiQZc8Gos2quGeDbCld6mPPBtpGGBgaTOU9G/yllrg8SiI6R8U9G3wdkL3tGlREpD8GhgZUVc+Gjh2cyEW0DiWTLC2ZzZ4NRAAYGBpWafGdKSAVVR0r+bshe4L1L4rIZKrq2dA6ANnJng3UuBgYGpySXoJYOA32bCDavMp7NrTA0tJT/4KIdMDAsA2wZwPR1im5TGlCpKKygix7NlCDYmDYRpRYCGJpXnWc5GmD7O/UoCIicyn1bJgA0kuqY6WWXshNAQ2qItIGA8M2o+RSpbMNqhO5nKWlfjmRi+gc7NlA2xEDwzZUVc+G1n7ILq8mdRGZSalnwymgkCs/ULaUGqbZndoURlQnDAzbmJJYhIhMqw9kzwaiDRUj00BiUXWc5OuE7G3ToCKi+mBg2OYq7tnAiVxEGyr1bBgF1N5O7a7S2QaGbzIhBgaqrmdDoBtyM3s2EK1VXc+GQcjOZm0KI6oRBgZawZ4NRFvHng3UqBgYaBX2bCDauop7NljtpUsUVps2hRFtAQMDrUuJhiDi7NlAtFnV9Wzog9zkr39RRFvAwEAbUrKp0jVZ9mwg2rTKezZ4S0vP81IfGRQDA5VV6tkwBmSTKiPZs4FoI+zZQI2AgYEqwp4NRFvHng1kZgwMVDGlkIOYPQUohfID2bOBaENKJlE6a8eeDWQyDAxUlep6NvRAbm6pf1FEJlPq2TAC5NLlB7JnAxkIAwNtipKOQSxMQL1nQzOk1gEeJRGto+KeDc1BWALd9S+IqAwGBtq0Us+GESCfLT9Qkkt3UdjZs4Forep6NuyAbOXdSKQPBgbasop7NnjbIPvYs4FoLUVRIBYngIxazwYJUksvezaQLhgYqCbYs4Fo65Rk5EzPBhUub6nZEy/1kYYYGKhmquvZMADZ5dGiLCJTUQr50iUK9mwgg2FgoJpT4osQUfZsINqKYngKSIZVx7FnA2mFgYHqgj0biLau8p4N7tJicAzfVEcMDFQ37NlAtHWV92yQz/RsaNKmMNp2GBio7pRUrDQDXHXxnWZIQfZsIFqPsjQHEZtVH8ieDVQnDAykCaVYKB0lqfZssJzp2eDSpjAiE2HPBtITAwNpSonMQCQWVMdJ3nbIvg4NKiIyl1LPhtNAJq4ykj0bqLYYGEhzSjYJMT/Gng1EW8CeDaQ1BgbSBXs2EG2dUsiV2rMX8+UHsmcD1QADA+lKiS9ARGfUBzYFIPm7eZREtA72bCAtMDCQ7pR8tnSUxJ4NRJumZOIQC+Ps2UB1w8BAhlDq2TAJpGKqY9mzgWh9pRVkx4A8ezZQ7TEwkKGwZwPR1lXas0FqboUc6NKgImoEDAxkOErhTM+GAns2EG2WkkuXVpBV7dngKE2IZM8GUsHAQIbFng1EW8OeDVRLDAxkaJX3bHBBah9kzwaidSjJMER4Sn2gy1cKDrzUR+tgYCDDKy2+MwrkUuUHSlJpXgN7NhCdo/KeDdbSpT4bezbQagwMZBrK0jxELKQ+sCkAS0tv/QsiMqFieBJIRlTHsWcDrcXAQKai5DMQc6Ps2UC0BUo6DrHIng1UHQYGMh1FUUo99NMV9Gxo6YHcxJ4NRGuxZwNVi4GBTEtJxiDClfRs8EAK9vMoiWgdSmwWYmlOdRx7NhADA5laxT0bZEvp1Cp7NhCdQ8mlS5f6BHs20MYYGKghVNyzwdcB2duuQUVE5lJVz4ZgH2S3T5O6yDgYGKhhKJlkacls9mwg2jQlEYaIVNCzwe2DFGDPhu2EgYEaCns2EG1ddT0bhiHbHNoURrpiYKCGVHnPhhZYWnrqXxCRyQghoESmKuvZ4O+C7GnVoCrSEwMDNSwllzmz+A57NhBtlpKOQyyMQ/VuJPZsaHgMDNTQquvZ0Au5KaBBVUTmUurZMArkM+UHSjKktkHIDvZsaEQMDLQtKMloKTiwZwPRprFnw/bGwEDbRqlnwymgkCs/ULaU7jW3c/EdorWq6tnQPgzZwruRGgUDA207xcg0kFhUHceeDUTrK/VsGAcyCZWR7NnQSBgYaFuquGeD3VU628BLFETnYM+G7YWBgbatqno2tA5CdjZrUxiRiVTVs6FjB+9GMjEGBtr22LOBaGsURYGITlfYs6EbsieoQVVUawwMRFju2TACKCoTuSz2Mz0bbNoURmQiFfdscDSVztrxEoWpMDAQnVHq2TABpJdUx7JnA9H6quvZMATZ4damMNoyBgaiNdizgWjrlFgIYmledZzkaYPs79SgItoqBgaidbBnA9HWKbnUmZ4NaivIOkr7EXs2GBoDA1EZlfds6ITsbdOgIiJzURSlNK8hW0HPhtY+yC72bDAqBgYiFUomcaZng9riO+zZQLSRyns2+CEFergfGRADA1EFSj0bRoBcuvxA9mwg2hB7NpgbAwNRFSru2dAchCXQXf+CiExGUZTSmYZUVHWsFOiG3MyeDUbBwEBUpYp7NljtkNp2QLZyIhfRWkp6CWLhNNizwTwYGIg2ofKeDdKZng1+LcoiMhX2bDAXBgaiLSj1bJhQH+jyQmrp41ES0TrYs8EcGBiItkgp5EuXKNizgWjTKu/Z4ITUPgRZ5qU+rTEwENVIMTwFJMOq49izgWh91fVs6Ifs8mpSF5UwMBDVEHs2EG2dkliEiEyrD2TPBk0xMBDVGHs2EG1dxT0bLLYzK8iyZ0O9MTAQ1Ql7NhBtDXs2GAsDA1EdsWcD0daxZ4MxMDAQ1ZmiKBCLp4FMXGUkezYQbaSqng3tQ5Dt7NlQawwMRBpRkhGI8KT6QPZsINqQEg1BxCvo2eBtg+xjz4ZaYmAg0pBSyEPMnapg8R32bCDaiJJNQcyzZ4PWGBiIdMCeDURbU+rZMAZkkyoj2bOhVhgYiHSiZOKlJjWqPRvcpT76vERBdA4lvggRZc8GLTAwEOlIUQoQ82MV9GyQz/RsaNKkLiIzUQo5iNlTgFIoP5A9G7aEgYHIAJSlOYjYrOo4qbkVcqBLg4qIzKW6ng09kJtb6l9Ug2FgIDII9mwg2jolHYNYmIB6z4ZmSK0DvERRBQYGIgNhzwairSv1bBgB8tnyA9mzoSoMDEQGpCTDEOEp9YEuXyk48CiJ6Bzs2VBbDAxEBlXx4juytXSUZGPPBqK12LOhdhgYiAyuGJ4EkhHVcev1bBBCgSTx7ANtb9X1bBiA7PKsfKX0K1JwPwIDA5EpKOk4xGJ1PRtEOg6RjkFu6dWmSCKDq7hnQ1MAkr8bsixDWZoHJAmyp7X+BRocAwORSZQmco0B+Qp6NrT0lm4xU4qQO3dDsjk0qZHI6Krq2eDvLgV12Qq56zxI23yuEAMDkckosTmIJfWeDcsktw9ysL+OFRGZSzU9G5ZJvg7I3vb6FWUC2zsuEZmQ7GuH1LETkC0VjRepGEROZUlgom1ElmVYgn2Qgv0ApIqeI+ILEGo9Uhpcw51hyOVySKfTyGQyyGQypSQpBGRZhtPphNPphMvlgt1uhyRV9oNCZESV92wA4PLC0jpQ0esKIZDNZpHJZJBOp5HNZqEoCiRJWtmPXC4XXC4XbDbbFv8VRPpSioVSwzS1ng0AJG87ZF9HRa8rhFjZhzKZDHK53Mp+ZLFY4HK5VvYlq0masDVEYFAUBbFYDOFwGOm0yvXdMxwOB4LBIHw+HyyWyo7UiIxISYRLp1dVyO07IDk2blBTLBYRiUQQDoeRy+Uq2rbb7UYwGITH42EvCDI1JTIDkVgoP0iSS3MZLBv/gs/lciv7UbFY2RkJr9eLlpYWNDU1GfpA1tSBQQiBWCyGmZmZiv9j1pIkCZ2dnWhpaTH0fxRROUohBxE6Xv4uCmczLG1D53xZCIGFhQXMzc1hs28HVqsV3d3d8Hq5hDCZl5JNQMyNlh0jeVoh+89dz6VYLGJ2dhbhsPqy9RtxOBzo7e2Fy+Xa9GvUk2kDQz6fx9TUFBKJRE1ez+12o6enBw4HZ5OT+VR8lqFtGNJZK15mMhlMTk4ik6nNHAefz4euri7TnGIlOpsSmYZILJYfJElnzjK8eTkukUhgcnIShYLKnRcVam1tRXt7u+HO2pkyMGSzWYyOjtbsP2eZLMsYHByE282+4mQeoliAMncKKFRwGcHhLoUGSUIikcD4+PimzypsxG63Y3BwEHY7lxAm8xC5NJT5UfXF3wBIzS2QAz0AgHA4jOnpCno7VKmpqQn9/f2GumRuusCQzWYxMjKy6UsQaiRJwtDQEEMDmY4oFoBCFiKfAfJv/r32fnO5bRDJgoSxsbG61WKz2TA8PMxJkWQqQojS/pJfux9l1rSWliB37UY4FsfMzEzd6nG73RgcHDTMmQZTBQZFUXDixAnk8yq99bfIYrFg165dPK1KDWFtkMgVBU7NRmt+ZmEtp9OJHTt2cG4Qmd6bQSIDkc8C+QySRRnjs5ufr1Apn8+Hvr6+um+nEsaILRUKhUJ1DwtAafLK1NRU3d9QibQgWayQHE2Qm4OQ/F2YXspq8rOdyWQwP6++UiCR0UmSBMlig+T0QPa0Qvi6MLW4pMm2Y7EYlpa02ZYa0wSGZDK5pdmn1YrH44jFYpptj0gL4XAYqVRKs+3Nzc1VfKszkVmEQqGaz6Erp5YTKrfCNIFhbm5Ol23yLAM1CiGELkf8Cwsq97YTmUg+n0ckor56bC0piqL5NtdjisCQzWaRTKotS1p7uVxOl+0SVSIfCUPJV9ZgCQCWlpZ0OUqJxWKaXEok2ozc/ByEoqgPPEPLM91nW1xc1P0AturA8NRTT+H2229Hd3c3JEnCd7/73TqUtZpe/0F6b5uonKVXX8aR3/0IFn7yAygV/ELW82fZCEdHROuZ+/6jOPbpTyD6/EHV4CCE0G0/KhQKiMcraANfR1UHhmQyif379+Nv/uZv6lHPhtvUC88wkJHlF+Yx8ZUv4cjv3ls2OAghNJ27sBb3IzKy9NgIRv/ic6rBIZfL1e2W/krouQ8DW7ytUpIkPProo7jzzjtrWNJqiqLgyJEjdXv9ch6fzOPVxSLyioAMwKIU0IQ3f1jevFlMrPm8xCoErFBggwIbSh9bocAmFFghzny99LFVvPmxbWXcWc9Z/vpZ45Zf2zhtPUhLmYlxxF9/ZdXXbK1t6Hzfb6Ll194B+aweCJlMBidPntS6xBWyLMP73JPLuwqRYSSOHEJ6ZPW+4RocRudv3A3fW6+CdFYPhGg0isnJSa1LXOF2uzE8PKzb9g3faCCbVV9BrB4en8zjhbkCLujyYn+PD69PxXB4Zgm5ar5lGt1+LitFOHNpOHMpuHIpuFZ9nFrn4zRc2RQsYnsv1dqIls84hP7tW6uCg953KiiKgvkffLf8WhdEBrF8xsE1tAOdH7gbvsuvgiRJuu9HtWrhvlmGDwx6nf55dbGIC7q8+MMbd0OSJNxyfgcefOwYjs7GUTTYe54iW5ByNiPlbK7qebZ8dp1QsTpsrDyWLX1sL2S1ykG0BWuDg9h/qd4lEZlOevQURv/iT1eCQ6GnX9d6FEWBEEK3ZmiGDwx6KSgC+3t8K/8xkiRhf68fv5rVd9JJLeVtDuRtDiw1BSp+jq2QgycVhScdgzcdgzcVhXf581QUnvQSrIr+9wtTSX5hHvM/+B48TR7AH9S7HCJTSo+ewvwPvgvbne8HnMZcSVILhg8MuiUpWcLrUzHccn4HJEmCEAKvT0YhYXtfhs1b7Qh72xH2tm84xp2Jw5uKwZuOwpOKrny8HC5cuRTPUmjA2TeAzg/cDf9V1yIciSBax573RI2q+YL96PzA3fC8ZT+mpqYAne/40bPVuuEDg17LTV8ctOCFmSU8+Ngx7O/14/XJKA6H4gjE5xGMn938pvSfJ6S1n0soShYULFYULVYUZBsKFmvpj2xD0WJF3mIFJFO0wqhKyulByulBCL3rPm4t5lcFCc+qQBFDczoGG89SbNrZQWF5whaXbSeqTvO+C9H5G/fA85b9K1/Tez/SewXYqgNDIpFYNdt6dHQUr732GlpaWtDfX/vrO1arFVarVfOGM2/vLc0wf20+gSOzcditMm7f14nfPHBZzbYhhEBREcgVBfJFBbmignxRQb4o1v04t95jBQWZQhHJbAHxbBGJbKH0J1dAtlB5MxItFSw2RDxtiHjaNhzT4rah2+dCj8+JnuW//S54nVz9cNniz3+K01/6q5XP1wsKy1wufU+jOhwOXPDoT3StgWg9k1/9e8z/+3dWPj/7jMJaeu9Heq+iXHVgePnll3HDDTesfP7pT38aAPDhD38YX//612tW2Nncbrcui2+8vdeGW3d6sHPnzrq8viRJsFokWC0A6nBzZK6gIJErBYj4cpDY8OMi4tkCktmCIS65hFN5hFN5HJ5Z/f/e7LCi1+d8M0z4S3+3uO3bdlXEckFhmcVigc1m063jot5vdERqygWFZXoHBr23b4rlrWOxGCYmJnTZdmdnJ1pbW3XZth4UIZDKFdcNFUuZAsKpHBaSOSwmswgn8yga5MfHZZPR5V0dIrp9LnQ0OyDLjRkk4odeQyEWKxsUzjY7O6vb6pGDg4Nobq7uLh4iLYSf/DlsLcGyQeFsY2NjSCQSda5qfeeddx5sNv3OspoiMAghcOzYMc0vS0iShD179sBiYWuk9SiKQDSTLwWIRPZMkCj9WQ4ViZy+vR5ssoRO75shYvnyRqfXCZul8eaPlJPP53Hs2DHNt2u327Fr165tewaIGksikcDY2Jjm2/V6vXW57F8Nw096BEq/uIPBIGZnZzXdbiAQYFgoQ5YltLjtaHHbgbb1jx4z+eJZASKHhWR2dahI5VBU6pdZ84rARDSNiejqhiuyBHR4nBhqcWO4tQnDwSYMtrjhtDXu/7fNZoPX69X88l5rayvDAjWMpqYm2O125HKVL/xWC0Y4022KMwxAqWHFyZMnNftPslgs2LVrF6xWU2Qq01KEQCydXxUq5hJZTMXSmIqmEctod1ZJkoBenws7zgSI4dYm9PtdsDbQmYh8Po8TJ05AqWJ1vq1wuVwYHh5mYKCGkkwmMTo6qtn2/H4/envXv+tMS6YJDACQTqdx6tQpTbY1MDAAj8ejybZoY4lsAVOxNKZjmTMhovT3QlKb4GiTJfS3uDEcbMKO1ibsCDahy+eEbOJfgJFIpHQ/eZ1JkoSdO3fqfisaUT2EQiEsLCzUfTtWqxW7du0yxNluUwUGAFhYWEAoFKrrNoLBILq6uuq6DdqaTL6I6aUMpmNpTEZLf0/FMpiNZ1DHKxwAShMsh1qaVi5l7GhtQmuTee7SEEJgamoK0Wi0rtvp6elBIFB5F1EiM1EUBaOjo3VdX0KSJAwODqKpqalu26iG6QIDAMzNzWFubq4urx0IBNDd3W2aN39aLV9UMBvPYjKaXgkRU7E0ZmIZ5OuYJDwOK4bPnIFY/tvnMm7PCCEEJiYm6jafoaurC8EgW1FTYysWixgdHa3LolCSJKG/v99QZ7pNGRgAIBwOY3p6uqav2d7ejra2NoaFBqQo4szciOWzEmmMhlOYiqbr1nci6LZjR2sTzmtvxt5OL/oCLkNdyhBCIBQKYXFxsWavKUkSenp64Pf7a/aaREZWLBYxOTmJeLx26wxZLBYMDAwYrn+JaQMDUFr6enJycsunhBwOB3p6egz3n0P1l8kXMRpOYWQhiVOLSYwsJDGXqM+S6s0OK/Z2eLC304O9nV70+JyGCKfJZBKTk5NbburU1NSEnp4e3dvXEmlNCIFYLIbp6ektTyj2+/3o6uoyxJyFtUwdGIDSf1Q0GsXi4mLVp4XsdjuCwSACgQDkChrf0PYQzxQwsvhmgBhZTCKarn2HRJ/TivM7vdh3JkB0ehy6BQhFUbC4uIhwOFx1cHC5XGhtbYXX6zVEACLSS6FQwMLCAsLhcNXBobm5GW1tbYaZr7Ae0weGs6XTaUSjUaTTaaTTaaz9p0mSBKfTCZfLBZ/PB7fbzTc4UiWEQDiVL4WIMwFiZDGJVI2bUrW4bTi/w4N9nV7s7fSi3aP93QVCCCSTScRiMaTT6XVDuCzLcDqdcLvd8Pv9cDqdmtdJZGSKoiAejyMejyOVSq3bDsBiscDlcsHtdiMQCOjawbFSDRUYziaEQD6fX0l5sizDZrMxIFBNCCEQimdXzkCcWkhiLJxCrli7/gatTXbs7fRib6cH+zo9CDbpEyByudxK+OZ+RFQ9RVGQz+chhIAkSbBYLKbs8dOwgYFIa0VFYCqWxqmF5Mqf05FUzSZVdngc2HvWJQy/ge/CIKLGw8BAVEeJbAFvzMZxZDaOI6ElnI7U7p7tbp8Tezs82NflxVu6vHDbzXfEQkTmwcBApKGlTB5HZ+M4EioFiKlYbe7ftkgS9nR4cKDPj0t6/brMfyCixsbAQKSjaDqPI6GllQARitfmls4+vwuXnAkPO1qbDNX/gYjMiYGByEAWk7k3A8TsEuYTW18zw+e04uLeUni4oMvb0CtyElH9MDAQGdh8IotfnXUGIpzaWj8Im0XCBZ3elbMPATebLBFRZRgYiExi+VbOsy9hbHX57+GgG5f0BXCg14/+gIu3SxLRhhgYiExKCIGJaBqvTEbxykQUJxeSW3q9oNuOS/r8ONDnx/kdHtgs7H5KRG9iYCBqENF0Hq+eCQ+HZpa21ETKaZVxYY8PB3r9uKjHD4+Tt2wSbXcMDEQNKFdQcDi0hF9MRPHqZHRLa2FIEnB+hwdXDwXx1oEAmtjvgWhbYmAganCKEBhdTK6Eh/EtNI+yyhIu7vXhqqEgLu71w87LFkTbBgMD0TYzn8iuzHs4MhtHUdncW4DLZsFl/QFcPdSCfZ1eyDInTBI1MgYGom0slSvi0EwMv5iI4rXJKBKbXIHT77LhysEWXDXUguFgE++2IGpADAxEBKC0eNaJ+QR+MRHFK5NRzCxtrm11p8eBq4aCuHo4iC4vl74mahQMDES0rulYGi9PRPHc6OKm5z0MB924eiiIKwZb2CSKyOQYGIhI1WQ0jWdHF/HMaBjzierXu5AkYF+nF1cNteCt/QGurElkQgwMRFQxIQROLCTxzMginh8LI56tvtOkTZZwca8fVw214CLeaUFkGgwMRLQpBUXB4ZklPDsaxkunI8gWqm8U5bZZ8NaBAK7d0Yo97c2cLElkYAwMRLRlmXwRr0xG8czoIn45tYTiJt5WenxOvH13O64ZDqLZwUsWREbDwEBENbWUyePF8QieGV3EsblE1c+3W2RcOdiCt+9uw45W3qJJZBQMDERUN/OJLJ4bDeOZ0UVMRKu/02Ig4MaN57XhqqEgXDZLHSokokoxMBCRJk5HUnh2dBHPjoaxkMxV9VynVcbVw0HcuLsdAy3uOlVIROUwMBCRphQhcHwugWdHS3daVNtdcmdrE96+ux1XDAbgsPKsA5FWGBiISDe5ooIXx8P42bF5HJ+vbr6D227B23a04u272tDjd9WpQiJaxsBARIZwOpLC48fncXBkEel8dWcdzu/w4O2723BZfwA29nUgqgsGBiIylEy+iOfGwnj8+BxGFlNVPdfjsOL6na34td1t6PBwHQuiWmJgICLDGllI4vHjc3h2LFx1Y6i3dHlx43ntuLjXB6vMsw5EW8XAQESGl8oVcHBkEY8fn6/69syAy4ab9rTj7bvb2RCKaAsYGIjINIQoLcH9s+PzeGEsjLxS+duX0yrj13a34Z3ndyDY5KhjlUSNiYGBiEwpningqZEFPH5sDqF45StoWiQJVw614LZ9negPsKcDUaUYGIjI1IQQOBKK4/Hjc3jpdLSqdSz2d/tw2wWd2NvhYQtqIhUMDETUMKLpPJ48OY+fn5jHfKLybpJDQTdu39eFy/oDsMgMDkTrYWAgooajKAKvT8fwoyOz+FVoqeLntTU7cOveDly3s5VdJInWYGAgooY2upjED34VwvPjYVT6btfssOKm89px0552eJ22+hZIZBIMDES0LczFs/jRkRCeOLmAXLGyng52i4zrdrbilr0dbARF2x4DAxFtK0uZPH52bA4/eWMO8WyhoudIEvDW/gBu29eJHa3Nda6QyJgYGIhoW8oWinjq1CJ++KsQ5hKV35a5t9OD2/Z1Yn+3j3dW0LbCwEBE25qiCLw0EcH3D4cwspis+Hl9fhdu3deJq4Za2HqatgUGBiIilPo5vDEbx/d/FcJrU7GKn9fe7MC793fjmqEgZN6SSQ2MgYGIaI2JSAo/PBLCMyPhihtBdXmdeO/+blw+2AKZlyqoATEwEBFtYDGZw4+PzuLnJ+aQzld2Z0Wf34X3XdSDA31+znGghsLAQESkIpUr4PHj8/iPo7OIpvMVPWc46Mb7LurFhd1eBgdqCAwMREQVyhcVPDNaurNiKpap6Dm725rx/ot7sLfTW+fqiOqLgYGIqEqKEHh+LIzvvD6NmaXKgsO+Ti/ed3EPdrexjwOZEwMDEdEmFRWBZ0YX8Z3Xpype7OriHh/ee1EPhoJNda6OqLYYGIiItqhQVPDkqQU8+stphFOVzXG4rD+A9+7vRl/AXefqiGqDgYGIqEZyRQWPH5/D9w7NYCmj3nZaAnDlUAves78HXV6uVUHGxsBARFRjmXwRPz02hx8cnkEiV1QdL0vA23a04l0XdqOt2aFBhUTVY2AgIqqTVK6IHx8N4YdHZpHOqwcHiyzhhp2tuPPCbrS47RpUSFQ5BgYiojpLZAv4wa9C+Mkbs8gW1BtA2WQJN57Xjjve0gWv06ZBhUTqGBiIiDQSS+fx/V/N4LE35pBX1N963XYL3nNhN359TzsXuCLdMTAQEWksnMrhe4dm8PMT8yhWEBy6vE7cfWkfLurhktqkHwYGIiKdzCeyePSX03jq1AIqyA24sNuLuy/tR6/fVf/iiNZgYCAi0tnMUgaPvD6FZ0fDUHtDliXgxt3teM/+HnicVk3qIwIYGIiIDGMymsa/vjqJlyeiqmOb7Ba8Z38PbjyvjfMbSBMMDEREBvOrmSV84+XTOB1Jq47t8Tlx96X92N/j06Ay2s4YGIiIDEhRBP7z5Dz+7bWpirpG7u/x4e5L+9Dj4/wGqg8GBiIiA0vlCnj0l9P48RtzqndUWCQJN57Xhvfs70Gzg/MbqLYYGIiITGBmKYNvvjyBX0xGVcc22y1470U9ePvudlhk3oZJtcHAQERkIoemY/jnlycwEa1sfsM9l/Xjwm7Ob6CtY2AgIjKZoiLw8xOl+Q2JrPr8hot7fbjrQB+6Ob+BtoCBgYjIpJK5Ah55fRo/fWMORZW3cosk4aY97XjXhd2c30CbwsBARGRyM0sZ/PPLp/HqZEx1bLPDig9c3IMbdrVBZptpqgIDAxFRg/jldAzfeOk0pmIZ1bG725rxsSsH2WaaKsbAQETUQIqKwOPH5/Dwa1NI5Iplx1pkCf/lgi7c8ZYu2C3sFknlMTAQETWgRLaAR345jccqmN/Q5XXit64YwN5Or0bVkRkxMBARNbCpWBr/9+UJvDalPr/h+p2t+OCBPk6KpHUxMBARbQOvTkbx9RfHMZ/IlR3ndVrxocv6ceVgCyROiqSzMDAQEW0TmXwRj/xyGj86EoJKl2ns7/bhI5cPoN3j0KY4MjwGBiKibWZsMYl/fH4Mo4upsuMcVhnv3d+Dm8/vYItpYmAgItqOFEXgJ8dm8a+vTiFbUMqOHWxx42NXDmI42KRRdWREDAxERNvYQiKLr70wjldVJkVKEnDzng6876IeOG0WjaojI2FgICLa5oQQeGE8godeHEcsU35titYmOz5y+QAu7vVrUxwZBgMDEREBKPVu+PYrk/j5iXnVsVcMtuBDl/XD77JpUBkZAQMDERGt8sZsHP/0/Jhqi2m33YK7DvThup2tXJdiG2BgICKic+SLCr5/eAbfPTSDgso9mHs6PPitKwbQw+WzGxoDAxERbWgqlsY/PT+ON2bjZcdZZQl3XtiNOy7o4i2YDYqBgYiIylKEwJMnF/B/fzGBlMqCVjtam/CJa4bR5XVqVB1phYGBiIgqEk3n8X9eOo3nx8Jlx9ktMu66tA837m5je+kGwsBARERVeXUyiq+9MI6FZPl1KfZ3+3DfVYMIuO0aVUb1xMBARERVy+SLePj1KfzH0VmU+y3SbLfgo1cM4orBFu2Ko7pgYCAiok07tZDAlw+OYmap/C2Y1wwH8eG39qPJzqWzzYqBgYiItiRbKOJbv5jET4/NlR0XdNvx8auHsK/Lq1FlVEsMDEREVBOvT8Xw98+OIprOlx33zvM78IFLemG3yBpVRrXAwEBERDWTyBbw1efH8Px4pOy4Xr8Ln7h6CINcAdM0GBiIiKimhBB4djSMr70wjlR+474NFlnCe/d34/Z9XZDZ7MnwGBiIiKguFpNZ/N0zo/hVqHyXyN1tzfjda4bQ4WGzJyNjYCAiorpRhMBP3pjFt38xiXyZNSkcVhkfuqwf1+9sZbMng2JgICKiupuMpvHlgyMYC6fKjruk14/fvnIQPi6bbTgMDEREpIlCUcEjv5zG9w7PlG325HVa8bErBnFpf0C74kgVAwMREWnq+FwcXz44irlEtuy463e24p7L+uGyWTSqjMphYCAiIs1l8kV84+UJ/OeJ+bLj2prtuP/aHdjd1qxRZbQRBgYiItLNK5NR/MOzo1jKFDYcY5Ek/MaBXtxyfgcnROqIgYGIiHS1lMnjfz83hpcnomXHXdrnx+9cPcT1KHTCwEBERLoTQuDJUwv4xkunkc4rG45ra3bgU9ftwDA7RGqOgYGIiAxjLp7F3z0zgjfmEhuOscoS7rmsHzfubuMlCg0xMBARkaEoisCjh6bxyOvTKPcL6srBFnzsykHeRaERBgYiIjKkQ9Mx/O3BkbITIru8Tnzquh3oD7g1rGx7YmAgIiLDiqRy+P+fOlX2EoXdIuMjlw/gup2tGla2/TAwEBGRoRUVgX99dRLf/1Wo7LjrdrTi3sv74bDyEkU9MDAQEZEpvDIZxVcOjiCZ23jJ7D6/C5+6bge6fS4NK9seGBiIiMg05hNZfOmpUzi1kNxwjNMq42NXDuKqoaCGlTU+BgYiIjKVQlHBN1+ZxI+PzpYdd+PuNtxzWT9sFlmjyhobAwMREZnSi+Nh/P2zY0jnN75EMRR04/fetgMdHqeGlTUmBgYiIjKt0FIGX3zyFMYjqQ3HuG0W/M7VQ7iMy2VvCQMDERGZWq6g4P+8dBo/V1n58pa9HfiNS3phlXmJYjMYGIiIqCEcHFnAPz0/jmxh47UodrU14ffetgPBJoeGlTUGBgYiImoYk9E0vvjkSUzFMhuOaXZYcf81w9jf49OwMvNjYCAiooaSyRfx1RfGcXBkccMxEoAPXNKL2/d1cgGrCjEwEBFRwxFC4ImTC/j6i+PIFzf+NXflYAvuu2qQ3SErwMBAREQNazycwhefPIlQPLvhmIGAG5++YSfamjmvoRwGBiIiamipXBH/+NwoXhiPbDjG47DiU9ftwN5Or4aVmQsDAxERNTwhBH50dBbf/MUENvqtJ0vAPZf146bz2jmvYR0MDEREtG0cmo7hS0+dKruA1fU7W/GRywfYUnoNfjeIiGjbeEu3D3926170+jdezfKJkwv4Hz95A5FUDgCgKAL/+7kxFJSN+ztsBzzDQERE2046X8TfPTOCl05HNxzjd9nwX6/fiRfHI/jhkRA+ee3wtl4Bk4GBiIi2JUUIfPfQDB5+bWrDMRZJQvHMr8kdrU343DvP37bzG3hJgoiItiVZkvDuC7vxmRt2wmVb/9dh8axj6lMLSZyYT2hVnuEwMBAR0bZ2oC+AP33nXnR61Psw/OjorAYVGVPDBwYhBHjVhWhruB9Ro+v1u/A/bt2L/d3l15d46XQE84mNm0BtZHkfMvN+1FBzGAqFApaWlpBOp5FOp5HNZlf95zgcDrhcLrhcLni9XthsNh2rJTKmXC6HpaUlZDIZpFIp5HK5lcckSYLD4YDb7V7ZjywWttSlxlFUBP7b9w6V7Qx5275OfPBAX9nXSafTSCQSK7+P8vn8ymOyLMPpdMLlcsHtdsPj8UA2wZLbDREYUqkUFhcXEYvFqnqex+NBMBhEU1PTtp3EQgSUjn7i8TjC4TASicqv0UqSBJ/Ph2AwCJdr49vUiMziO69P4TuvT5cd47Zb8Dfv2Q+nbXVYVhQFsVgM4XAY6XS64m3KsoyWlha0tLTAbrdvqm4tmDowFItFzMzMIBqNbul1PB4Puru7ecaBtqVcLoepqSkkk8ktvU4wGER7ezvPOJBphVM5fOGJkxhdTK2a7Lie37piAG/f3b7yeSqVwtTUFLLZ6i9XLJMkCR0dHQgGg4Y8iDVtYEgkEpiYmECxuHG3rmrIsoyenh74fFwfnbaPcDiMmZmZml1XtVqt6O/vh9vtrsnrEekhWyhiZCGJY/MJHJ9L4Ph8Aqk1nSF7/S78f7fvAwDMzs5iYWGhZtt3Op3o7+833NkGUwaGWCyGiYmJurx2Z2cnWltb6/LaREYhhMDc3Bzm5+dr/tqSJKG/vx8ej6fmr02kB0UITEbTODobxxuzcRydjWMpU8Af3bgb3kIMS0tLNd+mxWLB0NAQnE5nzV97s0wXGJaWlnD69Om6bqOrqwvB4Pbt5kWNb25uDnNzc3XdxuDgIJqbm+u6DSI9CCEwHcvg9NQ0PKLyuQrVslgsGB4ehsNhjGW3jT8t8yy5XK5uZxbONjMzU9WEFSIzSSQSdQ8LAHD69GkUCoW6b4dIa5IkwVFI1jUsAKV5eqdPnzbMrZimCQxCCExOTmr2jZuYmICyzRcaocZTLBYxOTmpybYURcHU1JRh3uyIaiWbzWJ2VpsGTtlsVpOAXwnTBIZIJIJUKqXZ9nK5XF2u7xLpaXZ2VtOj/ng8Xpfru0R60joIz8/PI5PJaLa9jZgiMAghajoDtVKLi4s8y0ANo1gsIhKJaL5dPfZdonpJp9OaHrwuC4fDmm9zLVMEhmQyuarbnFaWm3AQGVH8jWNIHD9R8fhIJKLL5YHlTndERhR58SVkQqGKxy8uLtaxmo1FIpGatRHYrKoCw4MPPojLLrsMHo8H7e3tuPPOO3Hs2LF61bZiq42ZtkKPIzKiSiRPncIr93wYR/77H1UUHPT8WdZzHyYqJ/zcc3jpPe/Hib/8n8iozEvQ8yBSCKH75b2qAsOTTz6J+++/H88//zwee+wxFAoF3HTTTVvuEKem3q9fTjqd5qQtMrSFJ55QDQ6KomypA91W6XEKl6hSolDAzHcexUvvfl/Z4JDJZHT9faD3mbot9WGYn59He3s7nnzySbztbW+rZV0risUijh49WpfXrpT4+jeQ1WhmOVGlCok4cvPnzg9ovf569P/WR9C8e9fK15LJJEZHR7UsbxVJkpD+sz8HmL3JYHKLiyisOXKXrFZ03nE7+j78ITg7Ola+vri4iJmZGa1LXOF0OrFz507dtm/dypOXT820tLTUpJj16HlUtCw9NYWMjm+2RNVYeOIJLDzxxKrgoPd+JIRAanQM4Nk6MoHlMw6h731/VXDQez/Se/ubPsMghMAdd9yBSCSCp59+utZ1rUgkEhgbG6vb61ci9fkHkRlhYCBzar3+enjf925EdW4xG/7Y7zAwkCktn3GwveMmJHReXG3fvn26LUy16TMMn/zkJ/HLX/4SBw8erGU9RFRDkt0Oe3sbLB4PkM/rXQ6RKVncbjjaOwC3GzDAWW+9bCowPPDAA/j3f/93PPXUU+jt7a11TasYY6lc4y0zSlSOZLej68470Pehu+Foayvdwz09rXdZRKZi9XrRe9cH0f2+98Da1FSav6BjYJAkSddlr6sKDEIIPPDAA3j00UfxxBNPYGhoqF51rTDCohvet1wAVxtXsCRjyc7PI7XmUtnaoLBM7xXvJElC4PK38pIEGU5qfBzZ0Oq7IkpB4TfR/b73wtrUtPJ1vX8f6b0fVxUY7r//fnzzm9/E9773PXg8HoTONLvw+XxwuVx1KVCWZdjtdl0aNy1v/7w//O+6pjqi9YR++CMc/9yfASgFhe533Ynee+5aFRSW6f1G43K5MPzF/6VrDUTrOfXFL2Hqm98GcO4ZhbXq9XuuUm63W9ftVxUYvvKVrwAArr/++lVf/9rXvoZ77723VjWdo6mpSbfA4Ha7GRbIsNSCwjJZluF0OnXrR6/3Gx1ROWpBYZnT6YQkSbr1YtA7sGypD4NWUqkURkZGdNl2X18ffD6fLtsmKic1Pl6ajFUmKJwtHA5jWqd5DLt27dL9dC7ReuJH34Crv69sUDjb9PS0Lus6yLKMPXv2QJb1W9HBFGtJuN1uXU6pWq1WeL1ezbdLVAn3wEDFYQEA/H6/Lm82TU1NDAtkWJ7z91QcFgAgGAzWsZqNtbS06BoWAJMEBgBoq+KNsVZaW1t5OYIahizLurzZ6bHvEtWLw+FAc3OzptuUJKmuDRIrZZrA4PV64fF4NNuey+XSLUkS1UtbWxvsdrtm2/P7/Zq/uRLVW09Pj6ZH+52dnZrutxsxTWCQJAk9PT2a9GWQJAm9vb08u0ANR5Zl9PX1abItq9WKrq4uTbZFpCWbzYbu7m5NtuV2uw1xdgEwUWAASm9A/f39df9F3tvby2uu1LBcLhd6enrqug1ZljEwMGCQxmtEtefz+ep+Ftpms6Gvr88wB6+mCgxAaQLVwMBA3b6BvCuCtoNAIFC3IyRZljE4OKj7LWBE9SRJEjo7O+sWGux2O4aGhmCz2ery+pthitsq15NOpzE5OVmz1busViv6+vrQVMVsWSKzi8fjmJycRLFYrMnrOZ1O9PX18QwdbRtCCITDYYRCoZr1Z/B4POjp6YHVuqUFpWvOtIEBABRFwfz8PObn57f0Oi0tLejo6ODpU9qWisUiZmZmEI1GN/0akiSho6MDwWDQMKdPibSUy+UwNTWFZDK56dewWCzo7u6G1+s15H5k6sCwLJfLIRKJIBwOV3ykJMsyAoEAAoGA7m1ziYwgnU4jHA4jGo1WfKRktVrR0tKCQCBgqFOnRHoQQiCZTCIcDmNpaani5zkcDrS0tMDv9xv6wLUhAsMyRVGQTCaRTqeRTqeRyWSgKAqAUkBwOBxwuVxwuVxobm7WvQkGkREVi0UkEglkMpmV/Wj5bUKW5ZV9yOVyoampyZBHQkR6y+fzq34f5XI5CCEgSRIsFgtcLhecTifcbjdcLpcp9qOGCgxERERUHzzEJiIiIlUMDERERKSKgYGIiIhUMTAQERGRKgYGIiIiUsXAQERERKoYGIiIiEgVAwMRERGpYmAgIiIiVQwMREREpIqBgYiIiFQxMBAREZEqBgYiIiJSxcBAREREqhgYiIiISJVV7wKIiJY5Dvw2JNmy8sdis698LFttbz5msUC22iGvPGY/5zFJtkCWJcgWGbIsQZIlWCwypDMflx6TqnrMcuaP3SrDIkuwrnwsv/mY5c2PHVb5nOes+lySIEsSbBZp5WOLBFgtMiwSzjz25scWWYJNPjNOBmyyvPJx6bkSJAmQJaz/MQBpefzyx2fGSJK0aqwkBCSlAAgFEAIQylmfK5CKao+t+bpShFAUoJCDKBYBRYEo5Ep/K8XS4/k8sPxxIf/mc5QiRL40FkoRSiEPUVRKfxQFSq4ApVhc+VgoCpTimx8vjy3mCxBnjVPOPF8UFRRzRQhFQCkKKLkilKKAKCpQFFF6rCggigLF/JuPrf78zXGKEMgpAkUhUBRAceVzoCiw7mMK1o4TK2P/Tozpu2OewTMMREREpIqBgYiIiFQxMBAREZEqBgYiIiJSxcBAREREqhgYiIiISBUDAxEREaliYCAiIiJVDAxERESkioGBiIiIVDEwEBERkSoGBiIiIlLFwEBERESqGBiIiIhIFQMDERERqWJgICIiIlUMDERERKSKgYGIiIhUMTAQERGRKgYGIiIiUsXAQERERKoYGIiIiEgVAwMRERGpYmAgIiIiVQwMREREpEoSQgi9iyAiqrVsNosHH3wQf/iHfwiHw6F3OasYuTaA9W2FkWvbKgYGImpIS0tL8Pl8iMVi8Hq9epezipFrA1jfVhi5tq3iJQkiIiJSxcBAREREqhgYiIiISBUDAxE1JIfDgc9+9rOGnHhm5NoA1rcVRq5tqzjpkYiIiFTxDAMRERGpYmAgIiIiVQwMREREpIqBgYgayh/8wR/g2muvxV133YVcLrfqsXQ6jdtuuw3XXXcdfv3Xfx3hcNhQ9S178MEHcemll+peU6FQwL333otrr70Wn/rUpzSrp5Lalmn9vVpro/qM8LNWawwMRNQwXn31VYRCITz99NPYu3cvHn744VWP/8d//AcuuOACPPnkk3j/+9+Pb3zjG4aqDwDi8TgOHz5siJq+//3vo7e3F08//TRSqRSeffZZzepSqw3Q/nu1Vrn69P5ZqwcGBiJqGM899xxuuukmAMDNN998zi+4Xbt2IZVKAQCi0Sja2toMVR8AfPGLX8T9999viJoqqVev2gDtv1drlatP75+1erDqXQARUa1Eo1F0d3cDAHw+3zmngXfs2IHDhw/jggsugCRJeOGFFwxVXywWw6FDh/Anf/InhqgpGo2urIewXr161qbH92qtcvXp/bNWDzzDQESmEwqFcM0115zzRwiBpaUlAKU385aWllXPe+ihh3D99dfj8OHD+NM//VN87nOfM1R9X/jCF/DJT36yLjVtJBAIbFhTucf0rk2P79Va5erT6mdNSwwMRGQ6nZ2dOHjw4Dl/brnlFvz0pz8FAPzkJz/B1Vdffc5zl9/U/X4/otGooeo7efIkPv/5z+Pmm2/GiRMn8Bd/8Rd1qe9sV1xxxYY1lXtMC+W2r8f3qpr6AG1+1jQliIgayGc+8xlxzTXXiA9+8IMim80KIYS47777hBBCxGIxccstt4jrrrtOXH311eLYsWOGqu9sBw4c0K2m5Xry+bz40Ic+JK655hrxwAMPaFZPJbWdTcvv1Vob1WeEn7VaY2toIiIiUsVLEkRERKSKgYGIiIhUMTAQERGRKgYGIiIiUsXAQES0Ddx7772QJAkf//jHz3nsE5/4BCRJwr333rvytVAohAceeADDw8NwOBzo6+vD7bffjscff3xlzODgIL7whS9oUD0ZAQMDEdE20dfXh29/+9tIp9MrX8tkMvjWt76F/v7+la+NjY3hwIED+PnPf46//Mu/xKFDh/DjH/8YN9xwg66tmElfbA1NRLRNXHLJJRgZGcEjjzyCu+66CwDwyCOPoK+vD8PDwyvjls84vPjii2hqalr5+r59+/DRj35U87rJGHiGgYhoG/nIRz6Cr33tayuff/WrX10VAsLhMH784x/j/vvvXxUWlvn9fi3KJANiYCAi2kbuueceHDx4EGNjYxgfH8czzzyDu+++e+XxkydPQgiBPXv26FglGREvSRARbSOtra249dZb8dBDD0EIgVtvvRWtra0rjy83/5UkSa8SyaB4hoGIaJv56Ec/iq9//et46KGHzpmTsGvXLkiShKNHj+pUHRkVAwMR0TZz8803I5fLIZfL4R3veMeqx1paWvCOd7wDf/u3f4tkMnnOcxti1UXaFAYGIqJtxmKx4OjRozh69CgsFss5j3/5y19GsVjEW9/6VnznO9/BiRMncPToUXzpS1/ClVdeqUPFZAScw0BEtA15vd4NHxsaGsIrr7yCz3/+8/jMZz6DmZkZtLW14cCBA/jKV76iYZVkJFzemoiIiFTxkgQRERGpYmAgIiIiVQwMREREpIqBgYiIiFQxMBAREZEqBgYiIiJSxcBAREREqhgYiIiISBUDAxEREaliYCAiIiJVDAxERESk6v8BlmqhRA28HXYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1740,7 +1748,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5c0lEQVR4nO3dd5Qk13Uf/u+rzt0znSbHndm8i93FgkgkAZAAAwACBAkGkAgMEG3JMoNlk/LvOMjWT/qJgqxj6UiUScqSbImSLWYiEkQiMgESRFwsNu/O7MSe0HFC53q/P3p7MKFC10x1he77OYeH2Ome6bdve7puvffuvYxzzkEIIYQQokAwewCEEEIIsT4KGAghhBCiigIGQgghhKiigIEQQgghqihgIIQQQogqChgIIYQQoooCBkIIIYSoooCBEEIIIaooYCCEEEKIKgoYCCGEEKKKAgZCCCGEqLJtwFAul/H1r399Sz9jaGgIe/fuxeHDh3H48GF8//vf12l09qPHfFb9wR/8ARhjOHr0qC4/z470mM/rr78ehw4dwuHDh3HNNdfg9ddf12dwNrTV+czlcrj11luxe/duHD58GDfeeCNGR0f1G6DN6PH+/Df/5t9gaGio6X/Xa6XnZ6xpuE299tpr/PDhw1v6Gdu2beNvvvmmTiOyNz3mk3POX3nlFX7jjTfywcHBpp5bPeYzmUyu/Pe9997LL7nkki2Oyr62Op/ZbJb/9Kc/5aIocs45/6u/+iv+wQ9+UK/h2Y4e789nnnmGj4+P0+dojfT6jDWTLVcYjh07hptvvhmTk5M4fPgwfv/3f9/sIdmaXvOZz+fxpS99Cd/61rfAGNN5lPah13yGw+GV/06n0xAEW/66bpke8+n1enHTTTetvC/f+c534ty5c3oP1Rb0en++5z3vQX9/v86ja0yNcs1ymj2Azdi/fz8+9rGPYe/evfjyl7+8pZ911113QRRFXHnllbjnnnvQ0dGh0yjtQ6/5/K//9b/iM5/5DIaHh3Ucnf3o+f783Oc+h6eeegoA8Mgjj+gxPNvRcz6rvvGNb+CWW27R5WfZTT3mkyhrlDm37S3Lyy+/jMsuu2zD16+55hq0t7dL/m98fHzNc5999lm88cYbePXVV9HW1obPf/7zRg3fcrY6ny+++CJ+/etf44tf/KKRw7YsPd6fAPCP//iPGB8fxx/90R/h3//7f2/E0C1Jr/kEgD/+4z/G6dOn7b+fvAV6ziepjdyc2wnjnHOzB6FVqVRCJBLB3NwcvF6vLj9zenoau3fvxsLCgi4/z070mM8/+ZM/wTe+8Q243W4AwMTEBLq6uvB3f/d3+NCHPqTncC2vHu9PAPD5fJiYmEBbW5tuP9MO9JzP//7f/zu+973v4Yknnliz5dNM9H5/Dg0N4aGHHsKBAwd0GF1jqtdngtFsucIwMTGB1tbWLU380tISUqnUyp+/+93v4pJLLtFhdPajx3z+h//wHzA1NYXR0VGMjo6iv78fjz76aNMFC4A+85nJZDA1NbXy53vvvRdtbW2IRqN6DNFW9JhPAPjzP/9zfPe738Xjjz/etMECoN98kto1ypzbMmDo7+/HoUOHsGfPHvyn//SfNvUzZmZmcN111+HQoUM4ePAgnnnmGfzjP/6jziO1Bz3mk7xNj/lMp9O49dZbcfDgQVx88cX45je/iYceeqgpD5PqMZ8TExP42te+hlQqheuuuw6HDx/GlVdeqfNI7UGv3/cvfelL6O/vx8TEBD7wgQ9g586dOo6ysTTKZ6wttyQIIYQQYixbrjAQQgghxFgUMBBCCCFEFQUMhBBCCFFFAQMhhBBCVFHAQAghhBBVFDAQQgghRBUFDIQQQghRRQEDIYQQQlRRwEAIIYQQVRQwEEIIIUQVBQyEEEIIUUUBAyGEEEJUUcBACCGEEFUUMBBCCCFEFQUMhBBCCFFFAQMhhBBCVDnNHkA9lMtl5HI55HI5iKIIABAEAR6PB16vF05nQ/6166ZUKiGXyyGfz2+YT5/PB4fDYfII7aVUKiGbzaJQKKyZT6/XC6/XS/OpUbFYXHl/cs4BAA6HY2U+BYHui2rFOV/z/qT53BrO+cr7szqfjDEIggCfzwePx2Or+WyYK2exWEQymUQymUSxWFR8rtPpRDgcRiQSgcfjMWiE9lIoFJBIJJBKpVAqlRSf63K5VubT7XYbNEJ7yefzSCQSSKfTqvPpdrtX5tPlchk0QnvJ5XIr81kulxWf63a7EY1GEQ6H6WZBAucc2WwWiUQCmUxmJYiV4/V6EYlEEA6HKbiVwDnH8vIyEokEFhYWVOfT5/MhEokgFApZfj4Zr4aQNlUoFBCLxZDJZDb1/YFAAD09PfB6vTqPzJ7y+Tymp6exuLi4qe9vbW1Fd3c3BWIXZLNZTE9PY3l5eVPfHwwG0dPTQ4HDBcvLy5ienkY2m93U94fDYXR3d1PgcMHi4iKmp6eRz+c1fy9jDJFIBF1dXZa/0Bklk8kgFouhUCho/l7GGNra2tDZ2WnZVQfbBgyccyQSCcRiMejxV+js7ERHRwcYYzqMzn4455ifn8fMzMyWfxZjDF1dXWhra2va+RRFEXNzc5ibm9vyz2KMoaenB5FIpKnnc2ZmBvF4fMs/SxAE9Pb2IhQKNe18lstlTE9PI5VKbflnORwO9PX1IRgMbn1gNlUqlTA1NbXpG9fVXC4X+vr60NLSosPI9GXLgEEURYyNjW36LliOz+fDtm3bmu7uo1wu4/z585u+C5YTCAQwODjYdHcfpVIJo6OjyOVyuv7cYDCI/v5+y9591EuhUMDo6Oim7tqUhMNh9PX1NV3QkM/nMTIyoro1plVbWxu6u7ubbj6z2SxGR0dVt8a0suJNrO0CBlEUMTo6qvvFrcrj8WB4eLhpgoZyuYyRkRHdL25VPp8PQ0NDTRM0lEolnDt3TveLW1UgEMC2bduaJmgoFAo4d+6c7he3qmAwiIGBAUt9KNdTLpfDyMiI7he3qkgkgt7e3qaZz2w2i3Pnzumyyi2lvb0dXV1dlplPW33qcM4xPj5et2ABqETf58+fr9sbwEo45zh//nzdggWg8gs1NjbWFPMpiiJGRkbqFiwAwNLSEiYnJ5tiPqvBbL2CBaCy5zw9PV23n28lpVKprsECACSTSczOztbt51tJoVDAyMhIXX8X5+fnddmG04utAoZUKoWFhYW6v042m9Vl79nq5ufn6xp8VS0tLSGRSNT9dcw2Ozu7qcNjWqXTaaTT6bq/jtlisZhqxpMeqqfZGxnnHJOTk3UNFqrm5uYM+VwxE+ccExMTqhkQeojFYnW9qdPCNgFDoVDA1NSUYa83Ozu76ZPYdpDL5XQ54FirWCxmyMXULMvLy5ifnzfs9aampgy5mJplYWEByWTSsNebmJgw5GJqlnQ6bWhQND4+bsjF1CyJRMLQoGhiYsISq4q2CRhmZ2cNn7BYLGbo6xnJyGABqETkjbxUafR7pZqF0Yg454bPZ7lcttTSr57MmM9qXZxGVM3YMVIul7PEqqItAoZSqWTKZC0tLdnirphrjOQLhYIpS7DpdNoWd8Va5zOXy5myBJtMJm1xV6x1PpeXl035vYvH47a4K9Y6n5lMpq7nQOTMz89b4q5Yjdb5TKVSprxPrBDQbipg+Na3voXh4WF4vV5ceumleO655/Qe1xqpVMq0N54d9t4X3nwDp/7gv2DpzOmanm/m38kOdx3JF57HmXv+P2TPj9b0fLN+kTnnuuTR19v8Y4/g3J//KXJTkzU936z5LJfLuuTR11vs3h9h9Jt/iUKNK0xmzWexWMTS0pIpr63F5P/5Dsb+9q9RTNX22WTWfGazWdO3yTUHDN///vfxb//tv8V//s//Ga+99hquueYafOhDH8LY2Fg9xgcAph5IssVhKM6RevEXeOvL/6qmwIHmU4UoIvHMU3jzt/9FTYGDmX8nvWuR1AMvlzH/2CM48i8/rxo4cM5pPlXwYhGzD96PN77wGdXAQRRFUw8g2uH3XcznEPvxD/DG5+9UDRyKxaKpq85mz6fmOgxXXnkl3vGOd+Db3/72ytf27duHW2+9Fffcc4/uA+Sc4/jx46YuFQ5ABLfwqd/lc+cw8Q9/t+Zr4Xddhb67PofAzl1rvi6KIo4dO2bk8NZgjKG/mAevY+rhVi0cfRPTP/ju219gDNH3XIu+Oz8L37ahNc8tlUo4ceKEsQNcxeFwoGdpERCtuzWR+vWvMPvg/W9/QRDQ/oHr0Xv7XfD29q15bj6fx+nTta2U1YPb7UZnytqrivFnn0b8icdW/sxcLnTceBN6P3Un3B0da567vLyMc+fOGT3EFT6vF20J4w4Db8bcIw8j+cLzK38WPB50fvij6Lnt03CFI2uem8lk6npzrKa1tRXbtm0z7fU1BQyFQgF+vx8//OEP8bGPfWzl67/zO7+D119/Hc8884zuAzT7AwQAcN+PsPz8s+aOYZPWBw5mf4AAQOl//U8Ujr9l6hg2RSJwWFhYwPnz500dVu6//RHEORseKJUIHFKpFCYmJkwd1vJ/+l3AwgGtHKnAIR6Pm1pnggFY+ve/A9jgLMN6UoHDzMyMqYeNnU4n9u7da97ra3ny/Pw8yuUyurq61ny9q6urbqdwzTiss0HAejW9a5V68RdIvfiLlcCh3Nml/k11xlpbzR7C5nCOxDNPIfHs0yuBQ7HV/Pr5rDUI2DFgEEXMP/YI5p94bCVwKLrM73bKWlrBE+YfMNOqulUx98jDK4FD0eRDsRwAPF4gZ78UdTGfR+zHP8DsQ/evBA5mX49KpdJKi2wzbOrQ4/rB1vMvYIlTtg1Q1jj14i/w1ld+G+kjr5s9FPvP54XA4eiXfgtL586aPRrA7mXMLwQOR//1byI3bVytFVk2n89q4PDmv/4XKFjh0LbN57MaOBz91/8SxUXrn8moJ03/ku3t7XA4HBtWE2ZnZzesOujFEjW0bZC6piZ6zXvRe9fnUIq2IW3iHhwA+8+nIKD9fR9E7x13YdnnR9rAgmKSrLAKtwXM6UTHDR9Cz6fvRIYJSBuc476B3efT7UbnzR9Bz223I1EoAAYWFJNk8/kUfD50ffTj6P74JzG7sAjYINOrXjQFDG63G5deeikef/zxNWcYHn/8cXz0ox/VfXAArNEEasn6J6flVAMF/9AwAFiiZCu3wclpSasCBW9fPwCgaIG/C7dBKqCU1YGC58JWmcsCaaLcpneRqwMFdzQKAHCZnLvPACBvjbLGWq0OFFzBEADAmTX37+J0Ok29idacJfH9738fn/3sZ/HXf/3XeNe73oW/+Zu/wd/+7d/irbfeqsvpTStkSQwKDNwitbylLJ89jfH/9TdrvrY+UKiyQpbEAC+DF6xbwGnhzTcw9d3/8/YXJAKFKitkSfTls+CiBbbuZKReehEz9/1k5c9SgUKV2Yec3W43uiweMMSf/jnmH3tk5c9SgUKV2YecfV4v2jPmVyhUMvvwg0iuOtQuFShUmX3I2ewsCc2375/+9KcRj8fxh3/4h5iensaBAwfw8MMP1+0vwRiDz+czrQCI2+1GcPduU167Vkx4O+KMXvNe9N75WfiHt0s+VxAEeDwe03KJvV4vgjt2mPLatSpXLxiCgLb3fQB9d3xmQ6BQ5XQ64XQ6TTsM5ff7Edy3z5TXrlX+wrkEpUChyu12gzFm2tklv9+PkMV/35dOVQJUpUChyuv1Gjm0DfyBAEI7d5o6BjXpV14CoBwoVPl8PiOHtoHf7zf19Te13v/FL34RX/ziF/Uei6zW1lbTAoZWO5zoZ0w1UFgtGAyalhpki/kUBLR94HrFQGG1YDBoWvVMO8wncznRcdMt6P30HfB0dSs/lzG0traaVnHRDvMpuN3o+tgnFQOFlecKAgKBAH1+KnD4/Oi5/S7FQKHK6XSaesPV0mJuxp7mLQkzlMtlnDhxwpS7jl27dsHj8Rj+ulpozVIpFAo4depUHUckb+/evdY4l6JA63zmcjmcOXOmjiOSxhjD3r174bB41onW+VxaWsLIyEgdRyTN4XBg79691jhorUDrfJpVbMjtdmPXrl0NN5/JZBKTk7WVOdeTz+fDDpNXZ23RfMrhcCAcDhv+ui0tLZYPFgDtmSRutxvBoPH1A0KhkOWDBUD7fHq9XlOWCqPRqOWDBUD7fPr9flN+79ra2ix/cQO0z2dra6spv3eNOp+hUAiCYPyls62tzfDXXM8WAQMAdHR0GP7mq1eqqBV0dnYaOp+MMXR2dhr2ekbr7lZeatebIAhob2839DWNwhgzfD6dTqclPpDrgTGGnp4eQ1/T7XYjEomoP9GGBEEw/Nrg9XoRCilvlxjBNgGD2+1Gb2+vYa/X2dlp+gGXevJ6vYa+6Xt6emyxWrNZfr8fHevq+NdTX18fXC6XYa9ntNbWVkMvOP39/bZYrdmsUChk6KriwMCAKXfhRolGowgEAoa8FmMMAwMDllitsdW/aDgcNuQQjc/nM/TD3yxtbW2GvOlbWloa9m5jtY6ODkNOpYdCIUvcbdRbT08P3O76l4qORqOmHyYzQm9vryFbE41+swVcaKLX329IUNTd3W2Zmy1bBQzVSKueFzmPx4OhoSFLRHP1xhjD4OBgXS9yfr8fg4ODTTGfgiBgaGiorr/cLS0t6OvrU39iAxAEAcPDw3VdSQmFQoYv15vF6XRieHi4risp0Wi0KW62AMDlcmF4eLiuQUNHR4eltspskSWxniiKmJiY0D31yu/3Y9u2bQ29NCmlXC5jbGxM99SrlpYWDA4ONvTSpJRSqYTz588jm9W34U4oFEJfX1/TzWexWMTo6KjuqWyRSAS9vb1NEcyuVigUMDIygmJR3+Jp7e3t6Orqarr5zOVyGBkZQVnnkvddXV2WC75sGTAAlVSYZDKJ6enpLadbMgAdLW60RyMQgtb6BzIK5xzxeBwzMzNbn0/G0BVwItreAaFFOU+8UYmiiPn5eczObr2LpCAwdPsdCHf2QvCb3x3TDKIoYnZ2FvM69EVwCAJ6/AJCPYNgHnML4ZilXC5jZmZGl/ohTocDvT6gtW87mMsaS+dGK5VKiMViSOlQ2tzlcqG/v9+wMxJa2DZgqCoWi4jFYkinN1d+tMXjRBdbgoeVAYcLbPAQmNBcKwyrFQoFTE9PY2GTPRJavU50YRFuJgIuL9jAwaa741gtl8shFothcXFz/UhCXie6sAAn44AnANa3v6nnM5vNYnp6elM9URhjCHkc6EIGDgbAH4LQs0f/QdrI0tISYrHYplbDGGOIeAV08IXKfLa0QeiydhXXeltYWEAsFtvUapggCGhra0NHR4dlVxFtHzBUlUolJJNJJJNJFAoFxee6XC6E/B6Ei0m4+dplORbtB4sYl41hVcViEclkEqlUSnU+3W43wj4XQoUkXFhbIpl1DIEFGzedslaFQgGJRALpdFp1Kdjj8SDsdSJUTMDJ1y5zsq6dYE26arNaPp9fmU+1stxerxdhj4BQIQEH1vakYT17wPyNf4BUTTabRTKZRDqdVl1a9/l8CLuBUD4Bga29fLD+i8A81rszNhLnHNlsFolEAgsLC4rzWW19EIlETKvvoEXDBAyriaKIXC6HXC630rSq2kPB6/XC4XCALybAZySq8zEBbNvFYI7GTVnTqlwuI5fLIZ/Py89nZhZ8bnTjN9OqzQblchnZbBaFQmHNfHq9Xni9XgiCAJ6cBk+Mb/xmpwds8CAYs/YHi5FKpdLK+7P6ceZwOOD1euHxeCAIAsT4OJCa3vjNbn/lItfEqzbrlUqllfen7HzOjgALEuXlfcFKEEbzuaJYLCKXy63MJ2MMgiDA5/PB4/HYaq4aMmCoBeccfOo4kJNYKg52QugYMnxMdsY5Bx8/ChQlljYjvRCi6j0ZyNu4KIKPHwFKG1d3WNsgWNjYwkZ2x8sl8LE3AHHj3R7r3A7W2phFsOqFlwrgY0cAvrGLMOveDRYIGz8oUndNe5vCGANrG5B+MDMHXrBuO2srUpzPVAxc4sJH5DFBAJMJsnhyCrxsTndMu2IOJ1hEOh2VJybAxY0XPiKPOd2ATNDKE+OmdRsl9dW0AQMAMG8rEJAqKMSll4OJMn8I8EoU1uIieNL4Zi2219IGuCVO8YslcKnldaIs1Ak4JU7xlwpAesb48dgcC/cADolCUIUssLD1bBZiPU0dMAAAiw6gkli5zlISPLe5TIFmxRgDax+UfjAzB17Qty5Bo1NctUnHwEvmtNi1K8YEsDaZVZvUFHhZ37oEjY4JDpVVG33rEhDzUcDg9lbuPCTwOC2tacU8gcqdsQQep1UbrZg/BPgkTvFzDp6gVRvNAlFA6hS/WAZPThk/HrsLdgAuiUqx5SKt2jSgpg8YAFTSKKVO8ecWgaWk8QOyucreu8SqzXIKPKtvdc5mILvKsDAPntdej6CZVVZtZFbB0rPgRTq7pEVl1Ub6/cmTU+AlWrVpJBQwAGAOV2U/TkLlAA8diNKCuTxASLoTJq3aaMc8fkDmFD+Pjxk8GvtjvlbAH5Z4hIMnJowejv35w3R2qUlQwFAV6gYcEp3xinkgI5FvTBTJrtrkl4DFrZejbTYs2g9I1V7IZsCXN1fltJnJrtosJsClUq2JLOWMs1k6u9RAKGC4oJLGJneAZ5IO8GhUSWOTrphJqzbaMae7EtRK4PExWrXRiLl9gEwFUloF0455WyrnQyTQqk3joIBhtdZ2+TQ2OhClXagLcEqs2lAa26awSA8gUBqbXlikT3rVJrcALKcMH4/dVTJQZDLOspRx1ggoYFhFPY2Nig9pwZhwIW11Iyo+pB0THAqrYFR8SCvmVDi7RKsMmjGXUsYZrYI1AgoY1qmksUm0EOZ0IGpTWiiNTVeKaWwx48djd+FuQKpvTDFHZ5c2QfHsEmWc2R4FDBJk064ojU0z5VWbGfAiFR/SorJqo1QymtLYtFBctUnS2SWtKhlnMmeX4nR2ye4oYJCgnMZGxYe0Yr4gpbHpKRABvC0bv85FWrXZjNYOwOXb+PVykUpwb4bs2aU8kJk1fjxENxQwyKiksUkc4MmmKY1tE+TT2OLg+SVjB2Nzyqs2s9Q4TSNqnKYvxcZpCTq7ZGcUMMhQTmOjA1FaVdLYOiQf4/N0IEorapymM6XGaVSCWztqnNaQKGBQwMJyaWzLwGLc+AHZnHIaG63aaEWN0/Sj2DhtgRqnaUWN0xoTBQwKmMMJFpUrPkRpbFoxp7tyKl0CrdpoR43T9EWN0/RFjdMaDwUMaoKdgMuz8eulAqWxbQIL98iksWWBBUpj04oap+mLGqfpixqnNRYKGFQoFh9KTVMam0ZMcFS2JiRQCW7tqHGavqhxmr6ocVpjoYChFoEI4JFIY6PiQ5ujVHwoRas2mlHjNF1R4zR9UeO0xkEBQw1U09iKlMamhdJ88tQ0eIlWbbSgxmn6osZp+qLGaY2DAoYaMZ9CGlucig9p5g/Lp7El6UCUZq3tgFui+JBYAk9SGptm1DhNV9Q4rTFQwKCB7IGopQR4btHw8diZ4qpNZpbS2DSqzKdMWiA1TtOMGqfpS7lx2iRlnNkEBQwaKBYfoqU1zZi3pdKcSgKlsWkn3zhNpBLcm0GN0/QV7JDOOCtTxpldUMCgkXzxoUVgOWX4eOxOOY2Nig9pRY3T9EON0/SlvmpDZ5esjgIGjZjTJX8girqxacZcSsWHaNVGK2qcpi9qnKYzapxmaxQwbEaoS6b4UI7S2DaBRfrk09iWKI1NKxbto8ZpOlJsnEZnlzShxmn2RgHDJlQO8Mh0Y0tSGptWzOEEC8ut2kzQqo1GzOmhxmk6Ym5fpQW2BJpP7ahxmn1RwLBZcmlsZerGtimyaWx5ID1r/Hhsjhqn6auyakON0/RCjdPsiQKGTVJcWktRGptWleJDCqs2lMamCTVO0xc1TtMXNU6zJwoYtsKnlMZGxYc0a2kD3P6NXxfLtGqzGdQ4TVfUOE1f1DjNfihg2ALFVYaFOUpj00i1+BClsWlCjdP0RY3T9EWN0+yHAoYtYp5A5c5YAh3g0Y75g4A/tPEBTmlsm0KN0/RFjdP0RY3TbIUCBh1UurFJFR9Kgy9njB+QzcndFWMxDp5fMnYwNkeN0/Sl3jiNzi5pQY3T7IUCBh0wl1IaGxUf0qpSfIjS2PRCjdN0ptg4jVZtNKPGabZBAYNOKI1NX7JpbNkMkKU0Nq2ocZp+qHGavqhxmn1QwKAT5nDKl4ymNDbNKI1NX9Q4TV/UOE1f1DjNHihg0FOoE3DKpLFlZowfj81V0tikVm2ywMK88QOyOWqcpi/lxml0dkkrapxmfRQw6IgxAaxNrvjQFBUf0kg5jW2CDkRpRI3T9KXcOI1WwbSixmnWRwGD3gJRwBPY+HWxDJ6kYk6aKaWxpWnVRjNqnKYrapymL2qcZm0UMOhM+QDPLBUf0qiyaiOTxpacAi9R8SEtqHGavqhxmr6ocZq1UcBQB8zXWkm92oC6sW2KPwx4JYoPcZFWbTaDGqfpixqn6YoyzqyLAoY6kU27WqQ0Nq0UV20yc5TGphE1TtMXNU7TFzVOsy4KGOqkksZGB6L0wrwtlfMhG1DJ6E2hxmn6osZp+lJsnEZnl8xCAUMdyaexLVAa2yZUMlCkig8lwbMLho/HzlQbpxUojU0LapymL+XGaVPUOM0kFDDUEXMqdGOjVQbNKI1NX4qN0yiNTTNqnKazQEQh44xKcJuBAoZ6C3fLp7EtUBqbVizSK5PGtggsJY0fkM1R4zR9UeM0/ahnnFHjNKNRwFBnlTQ26samF+ZQWLVJUPEhrahxmr6ocZq+qHGatVDAYITWDsAllcZWpANRmxHqlk5jK+aBDKWxaVVJY5NYtaE0tk1RbJxGxYc0k8tAocZpxqOAwQCUxqYvxTS2BJXg1qrSOE2pBDet2mih2DgtQasMWlHGmXVQwGAUfwjwtm78OhUf2hzZNDYqPrQp1DhNV9Q4TV+UcWYNFDAYhDEG1k7Fh/SiuGqTjoGXKI1NC2qcpi9qnKYvapxmDRQwGIjS2PTF/KFKAaL1OKfiQ5tBjdP0pdg4LWb8eOyOGqeZjgIGg1X23qXS2FLgWUpj00q++NA8eJ6KD2lBjdP0pdw4bZoap2lEjdPMRwGDwSppbF2Sj9EBHu0qaWztko/x+JjBo7E/apymM2qcpi9qnGYqChhMIF98aAlYTBg/IJurFB+STmPjlMamGTVO049y47RZOrukEWNMvjgWZZzVHQUMJqikscl1Y6MDPFoxp5tWbXREaWz6km+cBioZvRl+apxmFgoYzBLqki4+RN3YNqWyaiOVxrZMaWybQGls+qLGafqhxmnmoYDBJIrd2CiNTTP1Ety0aqMFNU7Tl3LjNCrBrRVlnJmDAgYztSilsVE3Ns2CHYBLovhQuUBpbJtBjdN0pXh2iRqnaUaN04xHAYOJlIsPzVAam0bqqzaUxqYFNU7Tl2LjNCo+pBk1TjMeBQwmY76gQhobHYjSLBBRSGOjVRvNqHGavuQap5XyQJoap2lFjdOMRQGDBcinscXB80vGDsbmlFdtZsELOWMHZHPUOE1fio3T6OySZtQ4zVgUMFhAJY2tQ/IxPk9La1oxb2tlpWEDKj60KdQ4TV/UOE1f1DjNMBQwWIRyGhsVH9KqcpZBJo0tR2lsWlDjNH1R4zR9UeM041DAYBHM6a6cSpdAaWzaMbdXftWG5lMzSmPTFzVO05li4zQ6u6QXChgshIV7ZNLYspTGtgks2id9ICq3SGlsm0CN0/RFjdP0o9w4jTLO9EIBg4VQGpu+FNPYqAS3ZtQ4TV/UOE1f1Dit/ihgsJrWDsDl3fj1chFIUfEhzUJdMqs2eSBDqzZaUeM0fVHjNH1R47T6ooDBYpQORPHUNHiJig9pUVm1kTkQRas2mlHjNH0pN06jDCmtqHFafVHAYEX+MKWx6am1HXBLFB8SS+BJSmPTjBqn6Uq+cVqWGqdtAjVOqx8KGCxIMe0qM0tpbBqpp7FR8SEtqHGavpTPLlHxIa2ocVr9UMBgUczbUmlOJYHS2LRj/jDgC258gItUgnszqHGavmQbpxWpcdpmUOO0uqCAwcJkiw8tp8CzVHxIK0pj0w81TtMXNU7TF2Wc1QcFDBZWSWOTO8BDB6K0ouJD+qLGaTqjxmn6UmicRhlnm0MBg8WxiEzxofwSsERpbFqxtn6ASazaZNOUxrYJ1DhNP9Q4TV/qGWd0dkkrChgsTjGNLT5BaWwaMaen0mJYAh2I0o4ap+mLGqfpjBqn6YoCBjsIyqWx5YH0rPHjsTkW7pFJY1sGFuPGD8jmqHGavqhxmn6ocZq+KGCwASYI8sWHkpOUxqaRcvEhSmPTihqn6Ysap+mLzi7phwIGu2hpA9z+jV8Xy+ApKj6kWagTcEqksVHxoU2hxmn6YlG5VRtqnLYZ1DhNHxQw2IRyN7YYpbFpxJigcCCK0ti0YoKjsjUhgdLYtGMOF5Xg1hE1TtMHBQw2wvzByiGe9TilsW1KIELFh/QUpMZpuqLGabqixmlbRwGDzcgVd6E0Nu2UV21mwYuUxqYFNU7TFzVO0xc1Tts6Chhshnn8lYIkEmhpTTvmU0hji9OqjWbUOE1f1DhNX4qN0yjjTA0FDDYkeyAqmwGylMamldxdHJYS4LlFYwdjc9Q4TV/UOE1fyiW4KeNMDQUMNkRpbPqqFB+SK8FN86kVNU7TFzVO0xk1Tts0ChhsqpLGJlV8KAsszBs/IJtTLj6UMnw8dqecxkbFh7Sixmn6ocZpm0cBg00pp7FN0IEojZjTBRbpkXyssspAB6K0YC4vNU7TERUf0hc1TtscChjsTCmNjYoPaRfqlkljywEZWrXRihqn6Ysap+mLGqdpRwGDjSkWH0pOURqbRoppbElatdGKGqfpixqn6Ysap2lHAYPd+cOAt2Xj1ymNbXPk0tjKJSrBvRnUOE1X1DhNX9Q4TRsKGGxOsfgQdWPTjDEmXxwrRWlsWlHjNH1R4zR9UcaZNhQwNADmbQECUmlsdIBnU/whhTQ2WrXRjBqn6Ysap+lKuXEanV1ajQKGBsHaZNLYlpKUxqaRYtrVwhx4gdLYtKDGafqixmn6ooyz2lHA0CCU09hoaU0rSmPTFzVO0xk1TtMXNU6rCQUMDUS+G9sisJQ0fkA2x6IyaWzLafBsxvgB2Rw1TtMPNU7TFzVOqw0FDA2EOVyV/TgJ1I1NO+byVJrVSKC0K+2ocZq+qHGazqhxmioKGBpNqFs6ja2YBzKUxqYVC8us2lAa26ZQ4zR9UeM0/VDjNHUUMDQYxTS2xBSlsWlUSWNTOhBFqzZaUBqbvqhxmr4UG6fRWRsKGBqSbBobFR/aFKU0tgylsWlFjdP0RY3T9CXbOI0yzihgaETK3dhi4CVKY9OiksYmV3yIVm20ojQ2fVHjNH1R4zR5FDA0KOYPAT65NDY6wKNZIEppbHqixmn6osZpulJunNa8GWcUMDQw+eJD8+B5Kj6khfKqzQwVH9KIGqfpixqn6Ys5nJUDzxKaedWGAoYGVklja5d8jMfHDB6N/TFfsJJ6tQEHT1AxJ82ocZq+qHGavkLUOG09ChgaXKX4kHQaG6dubJrJrjIsUhqbVtQ4TV/UOE1fyo3TmvPsEgUMDY453fLFhyjtSrNKGhsVH9ILNU7TGTVO0xdlnK1BAUMTqJSMlkpjW6Y0tk2gNDZ9UeM0/VDjNH1R47S1KGBoApUDUXJpbJNUfEgj5nTLl+CmVQbNqHGavqhxmr6ocdrbKGBoFsEOwCVRfKhcANJvd2OjD+cahRXS2BbmVv5I81mbWhun0XzWptbGaTSftam1cVqjzycFDE2CMUH2TV/txsYzc+BTxw0emT2prtqUS+DpGfDpUwaPzJ5UG6eJ5cr7dOaswSOzJ9XGaWK58j6dGzF4ZPak2jitXIIYH2/47DPGGz0kIis455WAQOo0v+AAxDIgOCEMv8P4wdkQ5xx8/ChQlDjNX51PlxfC4CHjB2dDXBTBx49USm6vV51PbwuEvv3GD86GeLkEPvZGZd7Wq86nPwyhZ7fxg7MhXiqAjx0BpGowVOeztR1C53bjB2cQWmFoIooHoqofKk1akGQzKvMp0y2Q5lMzpTS2lfmk8zY1U2qcRu9P7ZQapzXL+5MChibDvK1AICL/BC42/D6crvxhwNsq/3iDf4DorqVNuvhQFV3gtAl1ShcfqqIKkJqwcI90xlkVb+z5VPibk0bDqxXf1FL/OJc+MEXW4OVipY+EUsEmusDVjJcKlVoBSgWbKACrGS/mKxVIlQo20fuzZryQrWSZiAoFmxr8/UkrDM1kYR5ITVcCAiX0IVKb9OyFRkkK80krNjXhnFeC2VUZJtJPbOw7OL1wzivltRcTKk+k3/VacC5WUihVb7Yaez4pYGgiLNwN1rdfukvgavShXBMW7QPr3au85As0/IeIHhhjENq3gXXvkk5XraK5rAljDELndrDOHdLpqlUNfkesF8YEsK6dYB1D0kXbqhr8/UkBQ5Nh3haw/ouAoHShHAD0IaIB8wXB+g/IFsoB0PAfInpigQjYwAH5czac04qNBqy1DWzgoHS5aIDemxowxsCCnZX3p1TTNKDhPzspYGhCTHBA6BgC69kjfTdHHyKaMIcTQtcOsK6d0geiGvxDRG/M4arczXVul747pvenJszpBuvZA9a+bePdMb03NWMuL1jvvgsZPevOejX4e5MChibG/KHK3UfLuuY/Df6mrxfWEq3cfaxvgU3zqRljDKy1vbJ6sz4LheZTM8YYWKirsrroCax6hFZsNoMxBhbpBevfvzarp8Hfmw2XJVEoFJDNZpHL5ZDL5SCKlUNngiDA6/XC6/XC5/PB7XaDUSZAJVe7aye4Pw4+P1pJs1p115HP55HL5ZDNZpHP51Eulyv7o4IAj8cDn8+3Mp/kQq52965Ko5/5scoHyIUPEc75yvuzOp+iKK7MZ/W96fV6aT4vYC4P0LsXSM9UTvxzXnl/Oirzmc/nV37f5ebT5/PB5VI4F9FEmNsH9O0HklOVQ5FA5f3JHOCcr3xuZrNZFAqFlfl0OBxr5tPpbLhLx6YwTwDou6hyIDIdW/PZWZ3P6vtz/XxWf9ftNJ8NUelRFEWk02kkEglkswopWat4PB60tbUhFArB4VA4FNREeKkAPnsOYmsHMkWGRCKBXC5X0/d6vd6V+RQEWrgCAF7MVeYz1Id0voR4PI5CQSHFbRW/349oNIpgMEjzeQEvLIPPnEO5fQjppRzi8TiKxWJN3xsIBFbmk24UKnhuEXz2HEqdu5DKLCCRSKBUUkgZXKWlpQVtbW1oaWmh+byAZzPgs+dQ7N6HVCqFRCKBcrm2A+TBYBDRaBSBQMDS82nrgIFzjnQ6jenp6Zr/YdZjjKG7uxvRaNTS/1BG4JwjmUwiFotB3OTepiAI6OnpQTgcpvnkHPF4HDMzM5te9nU4HOjt7UUoJNEtr8lwzjE3N4vZWZXUSwVOpxN9fX1obVUottUkRFHE7MwM5uPxTf8Mt9uNvr4+BAIB9Sc3uHK5jFhsGslkatM/w+PxoL+/Hz6fQvEyE9k2YCgWi5icnMTiokLRHA38fj/6+vrg8Uh0dGwChUIBk5OTWFpaUn9yDVpaWtDX19e0S8H5fB4TExM1r3ipCQaD6O3ttc3Spd6y2SwmJiaQz+d1+XnhcBg9PT1Nu7q4vLyM8fHxmldo1ESjUXR3dzftatji4iImJiZqXqFR097ejs7OTsvNpy0Dhnw+j5GREd3+caoEQcDQ0BD8fr+uP9fqstksRkdHN71KI8fhcGB4eBher0rdhwaztLSE8+fPb3qVRo7L5cLQ0FDTBbULCwsYGxvT/XCex+PB0NBQ0wW16XQa4+Pjuv9cr9eLoaGhpgtqE4kEpqamdP+5gUAAg4ODlgpqbRcw5PN5nDt3TveLWxVjDMPDw00TNGSzWYyMjOh+casSBAHbt29vmqBhaWkJo6OjdTt57nQ6sX379qY5FLmwsIDz58/X7ee7XC7s2LGjaS5yqVQKExMTdfv5Ho8H27dvt9RFrp7i8Timp6fr9vP9fj+GhoYss9JgjVHUSBTFutwJr8Y5x/nz53VfvbCicrlclzvh1Yz4N7OKYrGI8+fP1zVNrVQq1f3fzCry+TzGxsbq+hpG/JtZRXVbp57y+TzGx8ebYj4XFxfrGiwAla2jycnJur6GFrYKGGKxmG57bkrK5TImJycb/k0/NTVlSGBUKpXq/otlNs45JiYmDLmQ5/N5zM7O1v11zFSdTyN+B7PZLObn5+v+OmYSRbEu2xBSFhcXkUwmDXkts5TL5boHX1XpdBqZTMaQ11Jjm4BhaWkJiYRKIxUdLSwsIJ1OG/Z6RstkMob+/VKpFBYWFgx7PaOlUindDozWYn5+HsvLy4a9ntHm5+d1OzBai5mZmZpTiO1odna25pRePUxPTxv6ekaLxWKGrkLreaByK2wTMJhxRzU7O9uQqwycc9PmsxGZNZ9zc5tPL7QyURRN+bs16ipDuVxGfAupk5vBOTf0Bs9IxWLR8BUUURQtsWpji4Ahn88bevdWVSgUTHldrUqZDMoa7saqlceMVq1waHXFVBKihrujxcVFQ7bK1ltYWLDFXVwxEQfXcHeUTqdNOaORTqctcRenphCfB9dwJiiZTJpy45NIJGxx1qYwNwuuYZxmBULxeNz0G1jNAcOzzz6LW265Bb29vWCM4b777qvDsNYyM1K1Q5S8PHIWR//lZxH78fdrChzM/DtZIUpWs3j0CI7+5ucw++B9NQUORt+9rWaH+Uz96kUc/Ve/gfnHflZT4GDW+5NzjlQqZcpraxH/+WN460u/icTTT9YUOJg1n9UKvFY3+8C9OP5v/zWSLz6vGjiYuXJSKpVM39bVHDAsLS3h4osvxv/4H/+jHuORfU2z2GGFAQBKmTQm/+HvagoczPw76VVoq96KiTjG/+abqoED59zUswR2eX8WZmM4/1d/rho4iKJo6iqUXeYzPzmOkT+7RzVwKJVKpq5C2eWcTXbkHM798R+oBg6FQsHUjC+z53NLdRgYY7j33ntx66236jiktURRxLFjx+r282sROXsK4mzM1DEoKczNIfXi82u+5gyG0PXx29Bx00fgWFVmtFQq4cSJE0YPcY3Im69DXLTGqV8puckJZF759ZqvuaJt6P7k7Wi/4SYIq2og5PN5nD592ughrmCMIfjSC0DJ+C2RWmVHR7Bw5PU1X3N3dqPn03ei7X0fBFtVA2F5eRnnzp0zeIRvczocCDz/lGmvX4ulUyexdGLtZ6KnbwC9t38GkWveC7aqBkK961iocbtc8D37c9NevxYLR99E9tyZNV/zDW9Hzx2fRfjKd4OtqoFQ7zoWavx+P7Zv327a61s+YMhmszh79mzdfn4t2CMPIvfMk6aOYbPWBw6Li4sYHR01dUziP38HxTdfN3UMm+WKtqH7ttvRfn0lcKhX1Twtin/1ZxCnzPsQ24r1gUO9quZpkf//fg9YtsdKw3rrA4e5uTnMzMyYOqb87/0uYNM6LOsDh+npaVO3IAVBwP79+817fdNeuUaWKPhj41K8a7YqfvIDFHMWOHRo46qPxUQc4//zwlbFQ/ehpFNvg61gFm1UU4v1WxUlEw6Prmfn+axuVRz78m8i8cyTlphPO39+rmxV/LsvIvXiL0y/HomiaOrBR8sHDJbA7D9NpUwacz99AMvnzF2tAQBYpMzpVhQTccw+dD9yUxaowtYA81mYjWH2wftQsEKqaAPMZ25iHDMP3IuSFQ4dNsB8Zs+dxcwDP0HZJmdc6sXyBdQt0SLZBqlWStydXej+VGXZdzGbRbLO5XZVWeGuZws8ff3ouf0ziF5zLVKZDJIml27lNp9P39B29NzxGYTfeRXiiQQQM/e8kN3n0797L3rv+CyCl15eqQ9idhBWsPd8thw4hN47P4fWgxdXyjSbnJlk5jXR8gGDJTrzpa2fuiZldaAgXOjI57FCXnTS+qmqUlYHCtWDZZZ4fybM21PditWBQvVgmdlNtRhjQMYCd+WbsDpQqF5UzJ5PgTGgYP623WasDhSqzP59N/vfU3PAsLi4iDNn3j5ROjIygtdffx3RaBSDg4O6Dg6odOdzOp2mFlTp+Op/QWerdffdM2+8htO/9/+s/FkqUFh5zO0GY8y0fTBBENBzz1+iLWCBC62M5PPP4Nx/+6OVP0sFClVmd+F0ulwY+F/fRchr3RbNcz97CGPf+suVP0sFCiuPmXx+wOX2YNsPfooWj3XvpaZ/8M+Y+qe/X/mzVKBQZfZ8BlpasP/Bx00dg5qJ//U/MXPfj1b+LBUoVJk9n2Z3Udb8W/Hyyy/juuuuW/nzV7/6VQDA5z//efzDP/yDbgNbze/3m9d8w+nG/355HMNRP64YCGMo4rfGNokEpUChijEGn89nWj5vUXDhb18aw672AK4YiKA/5LXsfCoFClWCIMDj8SBv0uHHZdGJv/7lKPZ2tOCKgQh6gtYNbJUChSqXy2XqDUKyJOC+F0ewv6sVVwxE0Nli3cBWKVCo8ng8pt4gmH2B1UIpUKgy++9j9utvKa3SKGamrk2UvHg9+fYUdQTcuGIggv1drXAI1rjQLY+cxdKpk4qBwmpmpq6dzntwclXs19PqwRUDEezpaIFgkflcPHYU+dkZxUBhtdnZWdP6ZBxZ8mBsVew3EPLhisEwdrYFLBOIZV59GeVcVjFQWM3M1LVfZdyYy789b8MRP64YtNaNQurFX4C5XIqBwmoTExOmVbDctWuX6cv4ahJPPwlXW5tioLDa6OioaQXo9uzZA1cNn/H1YouAgXOOkydPmnDXwfDIvAslvvGXssXtwKX9YVzSG4LXpX5RsZJyuYyTJ08aX+edCXh41gkRG+cz6HXi8v4wDvWE4HHa61S1acWwBAcemnEAEvMZ9blw+UAYB7qDcDnsNZ+FQgGnTp0y/HVFwYWHZxik5rMj4MblAxHs72qB02an/s2qZRMIBDA8PGz469abWbVsgsFgXbb9tbBFwADAlAIkGebFs7PK0+MSGA72BHH5QBgRn7kHUrQw4y5unnvxy3nl+fQ4BRzuCeHS/hCCFt6XX8+Mu7j1q19SfC4Bl/SGcWl/CAG3dffl1zPjLm796peU6o3C4d4QfDa6UTh79qzhJbcHBwcRDAYNfU0jcM5x+vRpw0tub9++3fQzDLYJGERRxJkzZwz7R3I4HHgy7sJCsbbpYQB2d7TgnYPW3keuKpfLOH36tGGrNk6nCz+bEZCvcVFDYMC+zlZcOWjtfeSqYrGI06dPG7Zq43S78eAUUJZY/ZLiEBgu6mrFOwcjiPqtH9gWCgWcPn3asL13p8eL+ydEcInVBSnVG4UrByOWPnBalcvl1hxWr7fW1lYMDg5aZhtHb0tLSxgZGTHs9cLhMPr7+w17PTm2CRgAY5fWtm3bBqfXj9en0nh5IoWlQu0Vvna2B/Ce4TbLX+iMXFobHh4GXB68MpHGa1MpZIu1X1j3dbbgmuE2y1/ojDxrs3PnThTgwCsTabw+nUa+VNt8MgAHuoO4ejhq+QudUWdtGGPYtWsXlsrAy+MpHIllUCzX9rEoMOBwbwjv3ha1dGYFYNwqrSAI2L17N5xOa8/HVsViMczPz9f9dZxOJ3bt2gVHDeep6s1WAQMAzM/PI1bnwi5tbW3o6elZ+XNJFHFsZhG/Hk9ibqn2FQ47XOhmZmYwV+fCLp2dnejs7Fz5c7Es4mgsg5fGU0hmayvqwhhwsDuIq4asfaGbnJyse8vp3t5eRKPRlT/nSyKOTKfx64kUMrnaVozscKHjnGN8fLzuGVL9/f0Ih8Mrf84Vy3htKo1XJlJYrPFGwSkwXNoXxju3RSy7VcE5x+joaN07cm7btg2tra11fQ0rEEURIyMjdd3qYYxhaGgIgUCgbq+hhe0CBqC+p9IjkQh6e3sll9I45xhNLuOlsRRGkrWlJVr9Qsc5RywWq9t5ho6ODnR2dsrO55n4El4aS2E8XdsvnYMxXNwbtOyFjnOOycnJup1n6O7uRnt7u+Rjoshxcn4RL40lMb1QW5qnU2C4tD+Mdw5a80LHOcfY2BgWFhbq8vPXB1+rlUWOYzMLeEnDjYLbIeCKgTAuHwjD47TefIqiiPPnz9ctaBgYGEAoFKrLz7aicrmMkZER5HI53X82YwyDg4OWCr5sGTAA9Vmu7OzsREdHR037brOLefx6PIm3ZhYg1jCDDsZwuDeId1nwQsc5x/z8vO7LlUoXt/WmMzm8NJ7EiblF1PKOdAoMl/WHcaUFL3Scc8zOzuq6csMYQ29vLyKRSE2vP5GuzOfp+douDB6HgMsteqHjnGN6ehqJhH4VQhlj6O/vr+nitnKjMJ7CSKK2GwWfS8A7B6N4R1/IclkqoihicnISaR37TAiCgIGBAUtd3IxSLpcxMTGha1DrcDiwbds20w85rmfbgAEA8vk8JiYmtrwk5PF40NfXt6l/nMV8Ca9MpvDqRBr5svo+spUvdNlsFhMTE1suQuT1etHf37+pKojpXBEvj6fw+lQaxRoiMStf6JaXlzExMbHlg7p+vx99fX2bymdPLBfw6/EUjkxnUK7hV93KF7rFxUVMTExs+aBuS0sL+vr6NpXPPreYx0vjSRydWagpsA24HXj3tigu7g1aLh0zk8lgcnJyyx0Yg8Egent7G/7MghLOOdLpNKamprZ88DkcDqOnp8cSZxbWs3XAAFT+oVKpFOLxuOZlIbfbjba2NkQiEQhb/GXOFsv41VgSL0+kULLxhY5zjkQigUQioTlw8Hg8K/O51dPRi/kSXhxL4vXJtK0vdKIoIpFIIB6Po6ixqZHP50NbWxtCodCW5zOTK+IXowkciWVqutC1uB1417YoDveGLFOgDKjczVXnU2vg4Pf70dbWhmAwuOX5TC4X8PxoAm/N1HZXGfQ6cfVQFAe6gpYpUAZU5nN+fh6JREJz4BAIBNDe3t6UqwpySqXSynxqDRxaWlrQ0dFhmfMKUmwfMKyWzWaRSqWQzWaRzWY3pGQxxuD1euHz+RAKheD361+9bTFfwovnE3h9yt53dJxzZLNZpNNpLC8vI5fLyc6n3+9HKBSCz+fTfT7TuSJe0Hihe/dQFBf3WOtCxznH0tISMpkMlpeXkc/nJefT5/OtmU+9JS5c6I7Z/ELHOcfi4iIymQyy2azkzYIgCCvzGQ6H61JxcG4xj+dG4jhV49ZP1O/CNUNt2NvZYqmUQ845FhYWVuZT6mZh9XxGIhHTGyFZmSiKWFhYwMLCApaXlyVXGR0Ox5r5NLOCY60aKmBYjXOOYrG4EuUJggCXy2XYL2n6wh3dmza/0FWZPZ9aL3QhrxNXDbXhQFerpS50VWbP59xiHs+OxGs+42DVC12VKIooFosrQZjD4YDT6TRsrNOZHJ49F6/5MHRnixvXDLdZqoT3ambPZ6NZPZ+MsZX5tJuGDRisIrFcwPMjcRybra1qndUvdGabvXBHp+lCN9yGvR3WvNCZbTMXuvcMt2GHRS90ZhtLZfHsuXlMpGvbHu0NevGe4TYMRa11uI0QKRQwGETrha7N78LVdKGTNXXhQjdKFzpdbOpCt70NQxG60K3HOcdIYhnPjsQRqzG9dTDsw3u3t6EvZJ/ujqT5UMBgMO0XOs+FC511uuVZyViy8sFc64WuL+jFNXShk1S90D1zLo6ZxdoudNvCPryHLnSSOOc4Nb+E587FMb9cW6bMjjY/3jPcjq5Wa1eJJc2JAgaTnE8u49lzcUxmarvQbY/6cf3uToR91j8YYzTOOc4lKvNZ64VuT0cLPrCrA60Wq4lhBZxznJxbxPMjiZovdAe6W/G+HR3wu62T8WMVIq8UgHp+JIFUrrZMmXf0hfCe7W3wWiiDihAKGEyk9ULnFBiuHori8oGIJQ9Gmq16oXtuJIF4DRc6t0PAe7e34ZK+EARavdlA64XO5xJw3Y4OHOxupdUwCWWR481YBr8YTWAhr54S2uJ24AO7OrCHtiWJRVDAYAFaL3QdATdu2NOJfloGliRyjrdmFvD8SBzpGnor9LR6cMOeTnS3Wr/LqBnKIseR6QxeOF/bhW4g7MONuzvRFqC0OymlsohXp9L45fkklovqtQ92RP34IK0uEguggMFCtF7oDvcGce32dngtVjHSKioXujR+MZpQbSLEAFw2EMY1Q21wO61TD8NKimURr9V4oRMY8K5tUbxrMAKnheqLWEmhJOLliRR+NZ5U7TZKq4vECihgsKDqhe750YRqW22/q7Jsuc+i+fFWUCyLeG0yjRfOJ5BT+WAOepz44O4O7GpvMWh09lO90P1yLIGCShvoiM+FG3Z3UtqgglyxjF+NJ/HrcfUqsR0BN27c00mHTIkpKGCwsFyxjGfOxfHalHqTmKGIHzfs6UDER8vAcpYKJTx5Zr6mcr672wP4wK4OBC3YYdQqMrkinjgzh1Nz6qnCF3W14n072xFw0yFTOclsAY+dnKupJsYlvSG8d3sbrS4SQ1HAYAOT6SweOTmr2mLXKTC8e1sUVw7SsqWS0cQyHj01i2RW+SCf28FwzXAbLu0P06FIBafnF/H4qTlkVM43eJ0CrtvRjkM9W+/l0Kg45zg+u4ifn5lTXV0MuB14/05aXSTGoYDBJsoix8sTKTw/Elft4tjurxyKHAjTsqWcUlnEi2NJ/PJ8UrXnR3erBzfSoUhFhZKI50fj+PVESrUUen/Iixv3dKI9QLUG5OSKZTx9bh6vT2VUnzsc9eMGOhRJDEABg82kskU8fmoWZxPqy5aHeoK4bke75dpoW0l8qYBHTs1iPKXcIp0BuLQ/jGuG2+ChQ5GyZhbyeOTkDKZVKhwKDLhyMIJ3b4taquma1Uyks3i0xtXFq4aiuIIORZI6ooDBhqppmE+cnlM9/e93OfC+ne24qIty4+VwzvFmbAFPnZ1Dtqh8KLLV48QHd3VgdwcdipQjco7XJtN49lwc+bLyfIa9LtywpwPDUeu29DVbWeT49XgSz48mVA9FtgfcuHF3J/ppdZHUAQUMNpYrlfHsuThenVQ/FLkt4sMNuzsR9dOhSDnLhTKeOjuHN2PqhyJ3tgfwwV0dCNGhSFkL+RJ+fnoOJ+bUG6/t72zB+3Z2oIUqb8pKZYt47NQsztWwunhxTxDX0uoi0RkFDA1gKpPDIydnMatSLdIhMLxrMIJ3bovAKdAysJzzycqhyMSy8qFIl4PhmqE2XNYfps6iCs7Gl/DoqVlkVGqLeJwCrt3ejsO9dChSDuccJy6sLtaScv3+ne3YT6uLRCcUMDQI8cKhyOdG4yiq5MZH/S7ctLeLKkUqKIkifnk+iRfHkiirLAN3tnhw894uahikoFAW8YvRBF4aT6oeiuwLenHTvi600WqYLC2ri0MRHz60t4tWw8iWUcDQYNK5Ih4/NYczceXceMaA9wy34Z2DEbr7UJBYLuDRk7M4r3Io0iEwvH9nOy7pDdF8KphdzOORk7OYUmm65nIw3LC7Ewe6gwaNzJ6m0jn87OSM6qFIr1PATXu76OwN2RIKGBpQta3uE6fnVGv/D0f8+PD+Liqoo4BfKNn98zPzyKqURN7T0YIP7emkgjoKOOd4fSqNp8/FVUsiH+xuxQd3d8JNmRSytKRcX9YfxrU72mhLkmwKBQwNLF8S8dxIHK9MpKD0jxxwO/CR/d3YFqHyvUqyxTKePjuPN6aVc+NDXic+elEPeoNUt0HJYr6En5+Zw/FZ5UORbX43PnpRNzpbaMtHSTpXxGOn5nBWZXWxq8WDWy/qRoS2fIhGFDA0gdhCDj87MavaQvuqoSiuGopSVUMV46lK5U2lzqICA967vR1XDIRpi0LFuQuHIpUarjkFhg/s6sDFVCVSUXV18fFTs4op126HgBv3dGJ/V6uBoyN2RwFDkxA5x4vnk3h+JK642jAY9uGW/d1opfQ2RWWR49mROH41llR83o42P27e2w2/m7YolBTLIp48M6/aN2VfZwtu3NMJj5PmU0m+VMajJ2dxTGX15nBvEO/f2UHFs0hNKGBoMmOpLB48FlM82+BzOXDLvi5sb6NiOmrOxpfw0PEZxbMNrR4nPrK/m0p11+D47AIeOTGrWPAp7HPh1ou6qVS3Cs45jkxn8PjpOcWCTx0BNz56UQ/aA7RFQZRRwNCElgtl/PR4TLW89JWDEbxnuI1KzapYyJfwwFsxjKflMykYgGuG2/DObRHa8lGRzBZw/1sxxBTKSwsMeN/ODlzaR1kpauYW87j/rRjmFbbQXALD9bs7cbCHslKIPAoYmhTnHC+Np/DMuXkoHazuDXrx0Yu6KYdbhShy/OJ8Ar8YTSg+byjiw4f3dVNFQxUlUcTTZ+N4eSKl+Lxd7QHctLeLKhqqKJRFPHF6DkdUDuxe1NWKG3Z3wk39UogEChia3FQ6h/uOTStW4fM4BdxMOdw1GU0s48HjMcUqfAG3A7fs68ZQlLJS1JyeX8RPj88gp5B+GfQ48dGLutFHhchUHY1l8OipWcXiblG/Cx+9qAddlJVC1qGAgSBXLOPhkzM4NaecjnVpfxjXUQ63qqVCCQ8em8FoUnnL593bIrh6qI3KSqtI54p44K0YJhWKPTEGvHe4DVdSITJVieUC7ntrGrOL8lsUDoHhAzvbcZgKkZFVKGAgACpbFK9OpvHkmXmUFd4SlMNdG845fjmWxLMjccVSyP0hLz6yvxtB2vJRVBY5nh+J40WVrJTtUT8+vK8LfipEpqhUFvHk2XnV0tJ7O1pw495OeCkrhYACBrJObCGH+9+KIZmVb7xEOdy1m0hlcb9qVoqAm/d2Y2c7ZaWoOXchK2VZISul5UIhskEqRKbqxOwCfnZyVrHiZsjrxK0X9aCHCpE1PQoYyAb5kohHT83i2Ixym+eLe4L4wC7K4VaTLZbx0+Mzqv09Lh8I49rt7ZSVomIxX8IDx2IYU+jvwVApRPZuKkSmKpUt4v63pjGtkpVy7Y52XN5PhciaGQUMRBLnHEdiGTx+Sj2H+9YDPdRZUAXnlXr/T51VzkrpafXg1gM9lJWiQuQcL4xWslLUCpF99KJu6pWioixyPHNuHi+NpxSft6MtgFv2dVGvlCZFAQNRNLeUx/1HlXO4vU4BnzjYS4WJajCdyeG+t6YVyyC3uB345KFeKkxUg/PJZTx4LKZYBjnkdeJTF/dRUFuDM/OLeEglK6U94MZth3opqG1CFDAQVcWyiMdVcrgdAsMt+7qwt5PONajJlcr42YlZnJyTL9vrdjDcelEPVduswXKhhIeOz+CcQiEyr1PAJw/2op+CWlWZXBEPHIthIi2fldLiduC2Q33oaqXUy2ZCAQOp2VsXcrgLCjnc1+2ghku1qLZ4fuLMPMoyexSMATfu7sTFvSGDR2c/nHP8aiyJZxSyUiiorZ0ocjw/GscL5+WzUiiobT4UMBBNKjncMcwqdL68tC+E9+/qoMNmNZhZzOP+o9NIKGSlvHtbFNcMRykIq8FkOov734oho5CV8r4d7bicgtqaqBUio6C2uVDAQDQrlkU8eCyGU/Pyp/53tQfwkf3dlEFRg1ypjPuOTmM0KX/q/6KuVty0t4syKGqwXCjhR29OY0qh0NOl/WG8f2c7BbU1yOSK+OGRKcwtyZ9joqC2OVDAQDZF5BxPnplXrPXfG/Tikwd7qIhODcoix89OzuBoTD6VdVvEh48d6KEiOjWoJajd3R7ALRTU1iRXKuPeo9M4rxDUHuhuxYf2UFDbyChgIFvy6/Ekfn5mXvbxsM+FTx3qRZROqKvinOP5UeUGVh0XTqhTZUh1Iuf4+Zl5vEJBrS5qCWqHIj7cSkFtw6KAgWzZidkFPHR8RrZeg89VOaFOzYFq88Z0Go+cnJU9vNfqceK2Q73opOZANXlpPIknFYLayIWglsqdq6OgtrlRwEB0MZHO4kdHpmTzt50Cwy37u7GHOl7W5Fx8Cfe9NS2bkeJ2CPjYgW4MR+mEei1OzC7gweMzshkpPpcDnzzYQ0Ftjd6YSuORUxTUNhsKGIhuEssF/OCNKaRy8if+P7CrA5f1h40blI3NLOTxwyOTskWJBAbcuKcLh3qCBo/MnsZTWfz4TQpq9aIW1HocAj52oIfauDcQChiIrpYKJfzoyJRiXfrL+8N43852OlFdg/SFE+rzCifUrx6K4qohOqFei/hyAT94Y1Kx0iYFtbWLLeTwoyNTikHth/Z04SAFtQ2BAgaiu0JZxAPHYjijcEJ9T0cLPryvi06o1yBXLOMnR6cVmy0d6gniht2ddEK9BjUFtQNhvG8HBbW1qCWovWY4indvo6DW7ihgIHUhco4nTs/h1cm07HP6gl584mAv/G46Ua2mLHI8fGIGbyl0EB2O+HHrgW546IS6qkJZxANvxRQ7iO7paMEt+7rgpKBWFQW1zYECBlI3nHO8NF7p0Cgn4nPhUxf3IuKjE+pqOOd4bkS5XG9nixu3HepDq4fSBNXUEtT2hypBrY+6M6oqiSJ+dmJWOaiN+nHrRT3wOCkIsyMKGEjdHZ+ppF2WZd5qflelO2NvkLoz1uL1qTQeVTihHrxwQr2DTqirqiWojfpc+NTFfQj7KE1QDeccz47E8aJiUOvBbYd6Kai1IQoYiCFqOaF+26FebIvQiepanL1wQr0od0LdKeD2i/vQQ0FYTY7NLOCnCkFtwO3AnYf70RaglbBaqAa1XifuuqSfWmTbDAUMxDDzSwX88Ij8CXWXg+HTF/ehn3LhaxJbyOGHR6ZkGwN5nQLuvKSfcuFrNHYhqM3LBLUtbgfuekc/bZ/VSC2oDftcuOuSflppsBEKGIihFvMl/OjNKcRkTqh7HAJuP0x3xrVKZSsn1OPL0ifU/S4H7rykH+10Z1yT+aUCfnBkEhmZoDboceKud9Cdca3Ugto2vwt3XtKPAJXmtgUKGIjhCiUR9x+bxtn4suTjXqeAOy7pRxfdGdckVyzjx0enMS5zQr3F7cBdl/RT6eMaLeZL+OGRKczItHAPe1246x10Z1yrSlA7ifiydEG3joAbdxzup2wpG6CAgZhCFDkeOh7DsdlFycd9LgfuuqQP7QEKGmpREkXce1Q+CAt6nLjzkn46uFejQknED45MYiIt3SI76q8sp9OdcW2yxTK++/okZmWCsK4WD+443AcvZaNYGuW2EFMIAsOH98mX4a1+wCRkltrJWk5BwMcu6sFQRPr8RyZfwndfn0BGoWw3eZvbKeA2hcydxHIR33t9EssyS+1kLZ/Lgdsv7pPdGptZzOMHR+TPjxBroICBmEYQGD6yvxs72qQbKC0VKkFDKksXuVo4HQI+cbAXAzKHRtO5Er73+iQW8/JlkcnbPE4HPnWoV3ZrbG6pgO+/MYlckYKGWvjdDtxxuA9RmVWuqUwOPzwyiUKZggarooCBmMohMHzsom4MyaRTLtCdsSYuh6BY0yKRrd4ZU9BQC6/LgU9f3IcO1TtjChpqEXA7cccl/QjLHBqdSOfw4zenUKSgwZIoYCCmq9wZ92AgLH9n/F26M66Zxyko3hnPLxfwvTem6M64Rn63A7cf7kPUr3RnPEV3xjVq9ThxxyV9CMocGj2fzOK+o9MoiTSfVkMBA7EEl0PAbQd70SdzZ5ykO2NNvK7KRU7uznh2MY/vvzFJd8Y1CriduOOwyp3xEbozrlXI68Idh/vQIpMZcTaxjPvfiqEs0pl8K6GAgViG2yngtot70d2qdGc8iSzdGdfEdyFoaJO5M55eyFfujOmgWU1U74xTWdxLd8Y1i/jduP1wP/wymRGn55fw0PEYRErkswwKGIileJ3Ke8azixcOmtGdcU0CbiduPyyfTjmRzuFHtGdcs5DXhTsukb8zPkd3xpq0B9y4/XAfvDLNqI7PLuLhEzOg7H9roICBWM7bd8bSQUNsIY8fvkF3xrVq9Thxx+E+BL3Sd8ZjqSx+QnfGNYv4LhQaUrgzfvB4DCIFDTXpbPHg9sN9sh0sj8YWLvSloPk0GwUMxJIqe8Z9iMjcGU9m6M5Yi5DXhTsPy1cnHEks4z66M65ZW8CNOw73weeS/gg9MbuIn9Kdcc26W7341KFeuB1M8vHXpzJ44sw8zafJKGAgltVy4c44pHRn/OY0ShQ01CTsc+H2w30IyCynn5lfwoPH6M64Vh0tHnz6Yvk747dmFvDISbozrlVfyIdPHuqDU5AOGl6ZSOHpc3GaTxNRwEAsLeh14Q6lO+Mk3Rlr0eZ34/aLFe6M5yp3xnTQrDbdrV58+lCf7J3xG9MZPHF6ji5yNRoM+/DJg71wyAQNvxpL4vnRhMGjIlUUMBDLC/sqKViyd8bxJTxAd8Y1q+XO+FG6M65Zb8iL2w71wSV3ZzyZxlNnaTm9VkNRPz52UQ9kphO/GE3gxfMUNJiBAgZiC1F/dc9YOmg4ObdIB6M06G714tMX98HtkP4IeGM6g2fPxQ0elX0NhH34hMKd8UvjKbw0njJ2UDa2sz2Aj17UAyYTNDxzLo43ptLGDopQwEDsoz3gUUzBemM6g1cn6UOkVr1BL2471Ct7Z/ziWBLHZhYMHpV9DUX9+PgB+Tvjp87O42x8ydhB2diejhbcsq8bMtOJR0/NYkKmpTupDwoYiK10VZfTZe6Mnzgzh9GEdItnstFA2IdPHOqVPWj28IkZTGekWzyTjXa0BXCrwnL6A2/FML9EHVhrtb+rFTft7ZJ8TOTAT45OI019ZgxDAQOxnZ6gF7dd3AuXxEEzzoH73ppGMksfyrUaisjfGZdEjh+/OUV9PDTY3dGCW/ZL3xnnyyJ+/Cb18dDiYE8QN+zulHxsuVjGj9+cpj4eBqGAgdhSf8iHW/Z1Sz6WK4n48ZFp6pOgwfa2AG7YI/2hvFgoVwo70YdyzfZ1tuLaHe2SjyWzRdz3Fh3S1eKSvhDeNRiRfGx2MY+fHqeaF0aggIHY1u6OFlwz3Cb52PxyAQ8co/RALS7uCeGy/rDkY1OZHH5GmROaXDEQxoHuVsnHRpPLePLsvMEjsrf3bG/DzraA5GMn5xbxAmVO1B0FDMTW3r0tgr0dLZKPnY0v4Tk66a/J+3a0Yyjil3zsrZkFOumvAWMMN+7uRK9MB9aXJ1J4Y5oO6daKMYZb9nehXabPzHMjCZycWzR4VM2FAgZia4wx3LyvC10t0h0uXxxL4q2ZjMGjsi9BYLj1om7ZktxP00l/TZwOAR8/0CNbeOzRk3TSXwuP04FPHOyRzZR66HgMs4t5g0fVPChgILbncgj4xMEe2WZAPzsxSyf9NfC6HPjkwV7JTBSOykn/OJ30r1mLx4mPH+iRzEShk/7aRXxu3HpAukZDsczxozensFygQ7r1QAEDaQhBrwsfP0gn/fXSFnDjIxdJHyrNl0X8iE76a9IT9MqmB9JJf+2GIn58YGeH5GOZXAn3HqVy8fVAAQNpGP0hH53019GOtgCuo5P+utnf1ap40v9hOumvyTv6QjjcG5R8bDydxeOn6ZCu3ihgIA2FTvrr64qBMC7qkj/p/xSd9NdE6aT/iblFvHA+afCI7Isxhg/u6sRAyCf5+OtTGbxG5aN1RQEDaTh00l8/jDF8aI/8Sf9fT6RwhE7612zlpL9f7qR/nE76a+AQGD52oBtBr/Sh0sdPz2E0SZVf9UIBA2k4dNJfX9WT/i0y3UIfPTmHiTSd9K+Vx+nAJw7RSX+9+N1OfPKgQuXXo9NIZelQqR4oYCANiU7666vF48QnDkr3nChzjp+8SSf9taCT/vrqbPHgwwqVX3/05hTyJTq/tFUUMJCGRSf99dUT9OJDe+Vr+v/kzWkU6VBpzeikv772dLTg6qGo5GPzSwU8eDxG55e2iAIG0tDopL++LuoKyp70n1nM46cn6KS/Fmon/Z84PWfwiOztqqGobOXXM/NLeG6EKr9uBQUMpOHRSX99KZ70n13Ei3TSv2bVk/79IelDpa9NpfHqZMrYQdkYYww37etCp0zl1xfOJ3FsZsHgUTUOChhIw6ue9O9plf4Q+fVECm/GqHx0rdRO+j87EseZeTrpXyuHwPDxAz2KJ/3HqHx0zdwqlV8fPjGDmQU6VLoZFDCQpuB0CPjEwV7Zk/6Pn5qlk9QaqJ30f/jELJbo0F7N/O7KoVK5k/4PHYshR+3aaxbyuvCxA/KVXx88HqMibptAAQNpGkon/QtljoeOx6gdtgZKJ/2Xi2U8fIKKZGnRpXDSP5Mv0XkGjQbCPtywW/qQ7vxSAc9QJ1vNKGAgTUXppP9EOodfjdH+uxZKJ/3PxpfwxjRt9WihdNL/aGwBJ2Zp/12Li3vlK7/+eiKF0QQVddKCAgbSdC7qCuLiHumT6c+NxBFboM6WWryjL4Q9MifTf35mDsllqnehxVVDUQyGpcsdP3JylpqoaXTdjnZ0y5xf+umJGUqt1oACBtKU3r+zA2HvxkqQIgceOjZD+5saMMZww+5OBCTOhxTLHA8en6HUVQ0YY7h5Xxc8EudDciURD1PqqiYOgeHD+7oltyIX8iU8Rls9NaOAgTQlt1PAh/d3QWL7HfPLBTxN+5ua+N0O2fbNU5kcXqStHk1CXheu3yW91XMusUxNlTRqD7hxrUw9lmMzC5RqWSMKGEjT6g/58K5t0kWIXqb9Tc12tAVwSW9I8rFfjMYxnaGtHi32d7Vib6f0Vs+TZ+YRp60eTS7tC8k2pXv01CwWaKtHFQUMpKldNdSGLpkiL7S/qd11O9slm36JvNJUiUpH16661SOVClwSOR46RqWjtahu9UilAudLIn56nLZ61FDAQJqaQ2C4ZT/tb+rF7RBwy/5uyVTL+HKRqmpq5HM5cPM+6a2e6YU8XjifMHhE9tbqceKGPdJZUqPJZbwySVs9SihgIE2P9jf11Rv04qpt0qmBr06mcY5ai2syHA3g0j7prZ4XzicwlaatHi32dbbKlop/+uw85peoCqQcChgIgfr+ZoZaN2vyrm1R2VLcD5+YQZa2ejS5dkc72vwbt3o4Bx48HkOBtno0+eCuDrR6NpbiLokcDx6boa0eGRQwEIIa9jcplU0Tpa2exUIZj56kKpBauBwCPryvW7LUcTJbxFNnaKtHC6/CVs/MYh7Pj1KWlBQKGAi5oNXjlC0lez6Zpf1NjaJ+N963U3qr58TcIt6irR5NeoJeXDXUJvnYa1NpnKWtHk2GIn5cLlMF8pfnk5ighl8bUMBAyCr7umh/U0+X9IawPSq91fP4qTmkaatHk3cNRtAXlG6F/fCJGSwXaKtHi/dub0N7YGPXVQ7goeMzyJdoq2c1ChgIWYf2N/XDGMNNe7vgc0ls9ZQplU0rQWD48L4uya6WS4UyHjlJ86mF0yHgFpmtnlSuiCfPUJbUahQwELIO7W/qq8XjxI17pOdzLJXFS+MpYwdkcxG/G++Xafh1an4Jb8Zoq0eLrlYP3jMsvdXzxnQGp+cXDR6RdVHAQIgE2t/U156OFhzolt7qefZcHLOLtNWjxcU9QexoC0g+9sTpOaSytNWjxRWDEfSHpLd6fnZiFksFqgIJUMBAiKz3bm9Du5/2N/XygV0dCHo3bvWUOceDx2IoiTSftaps9XTC59pYBbJQFvHQ8RhE2pqomcAqDarcEls9y8UyfnaCsnoAChgIkeW8ULWQ9jf14XU68OF93ZKPzS0V8NwIVS3UIuB24kMyVQsn0jm8RA2/NAn7XPiATMOvM/ElHJnOGDwi66GAgRAFavublMqmzWDYhysHpRt+/WosiYk0bfVosbujBYd6gpKPPTsSxxxl9WhysDuI3e0yWz1nKKuHAgZCVCjtbz52apYaKml0zXAUHRKpbADw6MlZiJSFosn7d3YgJLHVI3LgsZNztJSuAWMMN+7pRECi4VexzPFEk/eWoYCBEBVK+5vpXAkvUgMgTZxCZavHIdGham6pgJcnUsYPysY8zkpqoMTOGcbTWRylrAlN/G4nPiST1XN6fqmpsyYoYCCkBmGfC++TSWX75VgS8aWCwSOyt84WD64Zlm5Q9fxonHp3aNQf9uGKAemtnifPzlPvDo12tgdkt3oePz3XtL07KGAgpEYX9wQlq+yJvNKgipZ+tbl8ICJZZa9Q5vg59UbQ7KrhKIISBceyxTKeOUfzqdV1O9ols1AyuRJeGG3OVUUKGAipEWMMN+zphMRKOsZSWWqDrZFDYLK9O07OLdKBUo3cDkH2lP/rUxlM0oFSTXwuB67bIX3g+aXxZFOWiaeAgRANOls8uEymoNPPz8wjR0u/mgyEfTgoU9Dp8VNzdKBUo90dLdgpU9Dp0VN0oFSrg91ByQPPlVXF5jtQSgEDIRpdPdQm2WtiuVjGsyNUNlqr63a0S7YVT+WKePE81RLQ6gO7OiTbis8uFvDKZMr4AdkYY5VVMKlaLOOpLI422aoiBQyEaORxCni/TNvmVyfTmM7kDB6RvfndTly7Q3o+fzmWQHyZDpRqEfa5cNWQ9IHS50biWMhTmWMtOlo8uLxf+kDpU2ea60ApBQyEbMKejhbZts2PnpqFyDk45zg2s9B0y5aboXSg9LGTlQOl4oX5JOquGIhIljUvlDl+fqGWQFnkOE7zWZOrhqQPlC6vOlBaKos4MdvY80kBAyGbwBjD9bs7JZd+Ywt5PH12Hv/3tQk8cCyGPO3Dq2KM4XqZA6XnU1k8N5LAP74yjgePxSgAq4FDYLh+t/QByBNzi3hhNIG/f3kMjzd5IaJauZ3KB0p/NZbE3/16rOG3JClgIGSTwj4X3rVNeun3pfEUJtKVrQlqUlWbrhYPLusLSz72wvkEYgt5cFTukom6wYhfvkPoSBzzSwXkSmUKwGq0qz0g2yH0qbPzSGWLDf+7TgEDIVtw5WAYUb9L8Tm5YmN/iOjp6mHpA6Wr5UvNs2e8VXIHSqtEDhQpc6ImjDF8UOZAaVWOAgZCiBynIODinpDic3J0gauZxynI3hVXNfqHsp78Lgf2drYoPqfR74r1FPI6sVOmORVQORdSauAtSOVQnhAiayFfwlNn51UP4tEHcm1S2SJ+fmYOp+eVCzZRwFCb+aUCnjg9i9GkcsGmXKmsuqpDgNhCDo+fmsOkShZUriSixdGY9+KN+bcixACc85oKNdEKQ21EzmvavqEtidqInNcUXNGWWW1EjpoOMDdyQEsBAyGbFPS6cNuhXnx4X5fiPjEd0qtN1O/GnZf04frdHZKdQauatfGPVp0tHnzuHQO4bke74r47VdOsTW/Qi7svG8BVQ1HJQk5VjTyfFDAQsgWMMRzoDuI3r9yGPR3Se8WN/AGiN8YY3tEXxr+4YptsnYsiBWA1EwSGKwcj+MLlg5IljgEKwLRwCgKuGW7D3ZcNorvVI/mcRp5PChgI0UHA7cTHDvTg1ou6N3S4o4BBu9CF1Zub93bBs24/uJE/kOsl6nfjrkv6JU/5UwCmXXX15r3b2zasNjTy73vDBwz8QsU9og+aT2V7O1vxL68YxK5VJ6mVtiRoPuUxxnCwJ4gvXDGIbRHfyteVPpBpPuUxxnBpfxhfuHxwTVVNpQCM5lOeIDC8a1sUd182iI5Vbdrlft+rc2nn+Wyoo7GlUgmZTAbZbBbZbBb5fH7NP47H44HP54PP50MwGITLpZw/3+xKpRLS6TRyuRyWl5dRKBRW5pMxtmE+nc6GejttWsDtxMcP9OBobAFPnH6742KxWFx5f1bns6o6n36/f2U+HQ6H3Es0lZDXhdsv7sOrk2k8dXZ+5QO5UCis+X1fP59er3fN+5PmsyLqd+Oud/TjV2NJPDcSX3l/5vP5NfNZLBZXvkcQhJX59Pv9aG1thSA0/P1mTTpbPLj7skE8PxrHL88nV+Yzm81icXGxoeaTcTuHOxcsLy8jHo8jnU5r+r7W1la0tbUhEAiASdWkbVKLi4tIJBLIZDKavi8UCiEajSIQkM9TbjapbAGjMwmEkcPi4mLN38cYQygUQltbG3w+n/o3NIn4Uh5T80m0iFksLSmnX67GGEMkEkE0GoXXK72X34xiCznEEyn4ystYXl6u+fsEQViZT49Hei+/GU2klrG4kIGrsIRsVjmddTVBEBCNRhGNRuF2b+wBYhW2DhjK5TKmp6eRSqW29HNaW1vR29vb9CsOpVIJU1NTmgOF9UKhEHp6epp+xaFQKGBqakpToCAlEomgu7u76e+Q8/k8JicnNV3YpLS3t6Ozs9MWd3T1lMvlMDExgVxua91VOzs70d7e3vTzuby8jMnJSeTz+U3/DMYYurq60NbWZsmbWNsGDIuLixgfH0e5rE9OtiAI6OvrQyikXLWvUWUyGUxMTEAU9Tmw43A40N/fj9ZW5ap9jSqZTGJqakq3/Uqn04mBgYGmXb2Jx+OIxfRrPOVyuTA4ONiUqzecc8zNzWF2dla3n+nxeDAwMNCUqzecc8zMzGB+fl63n+n1ejE4OGi51QZbBgzpdBrj4+N1+dnd3d1ob2+vy8+2qkQigampqbr87L6+PkQi0r3kG9Xc3BxmZmbq8rMHBwcRDAbr8rOtqB4fxlWMMWzbtg0tLcqlkxsJ5xxTU1NIJpO6/2xBEDA0NAS/XzodthFxzjE+Pr7lVVkpDocDw8PDlgrCbLeGlMlk6hYsAEAsFkM83tgtSler3gnXy+Tk5Ja3jOxkfn6+bsECAIyNjWFhQbkUdSOZnZ2tS7AAVD7sz58/r+kshJ3VM1gAAFEUMTo6qmnv3s7qGSwAlS33kZGRLW1x6M1WAUOhUKhrsFA1PT3dFG/6XC6HycnJur/OVvf17GJpaQmxWKzurzM+Pr7mxHWjWlhYwNzcXF1fg3OOsbExlEqlur6OFaRSqboFC1WiKGJsbEy3rU0ri8fjdQsWqsrlMsbGxiyTimmbgIFzjomJCcMmbnx8vKHf9KIoGhJ8AW9H4lZ509dDuVzGxMSEIa8liqKhvwtmKJVKhs1n9fB0IysUCob9HYvFoiGBs5ny+XxdVxLXv5ae5022wjYBQzKZ3PLpaC0KhULd727MFI/HDb3rz+VySCQShr2e0ebm5gy9619aWtKcRmwnsVhMtwPNtUin0w291TM9PW3oDVAikTD089pok5OThgbsc3NzW85m0YMtAgbOed32MZXE4/GGXGUwaz7n5+cb8q64XC6bcu5lbm6uIeezVCqZcu7FjN8JI+TzeVOCoUadz2rhNaNZ4YbLFgHD0tLSmipuRhFF0RZ3cdmJcWSOHKn5+ZlMxtC7t6pisWiLu7ils2exeOJEzc9Pp9OmXLjz+bwtztosHD+OpXPnan6+WR+MS0tLlriLU5N54w1kNWzXmDWfmUzGFmdtUq+8gryG7QWzDsUnk0lTPrdX0xQw3HPPPbj88svR2tqKzs5O3HrrrTh58mS9xrbCzFP29T4kpIfC7CyOfuXLeOur/66mwMHMv5MdMiayY2M48q9+C8f/43/AYg3vbzPn0w7vz6XTp/DGF34DJ//f38fyyIjq8+n9qSxz5Ahe+9xncfqeP1YNHDjnps6nHW64Ur/6JV698w6c/bM/Uw0czLyJ5JzX/ZClGk0BwzPPPIMvfelL+OUvf4nHH38cpVIJ119/fd3TksxMe8pms7ZZ9k2/8sqFwOGrsoED59zUvUU77WsmX3gBR37rNxUDB1EUTb3Lt818co74U0/h9d+4WzFwKJfLpt6V2mHFBgBQLmPukUcuBA73yAYOxWLR1G1Vu7w/eamEmQfurwQOf/7nyM9KBw65XM7U64HZ788tFW6am5tDZ2cnnnnmGbznPe/Rc1wryuUyjh8/XpefXSvHTx9C7tgxU8egpJzNoiARGYcuvQwDd9+N4KFDK18rFAo4deqUkcPb6P/+HxTrWPthq8pLSyhIHHiNvPvdGLj7N9CyZ8/K17LZLM6ePWvk8DYof/N/QLTwB3Mpk0Fx/bI4Y2i79loMfP5u+IeHV768uLiI0dFRYwe4ZlgMhT/9b6a9fi2KqRRK61dCHA50fPB69H/2s/D19698uZ5F7mrhFARk/9ufmPb6tSgmEiitu3NnTic6b/4w+j9zFzydXStfj8fjpmbUeL1e7Ny507TX31Kx/+rSTDQa1WUwUqyQv1/gHFkTP8Q2K/3Ky0i/8vKawMES81kqIWfD+Uy+8AKSL7ywJnCwwnzmszmU7DafF1Yc4k8/vSZwMPsMAeccuVQK3AZbE2uUy5h75GeYe/yxNYGD2fNZEkVkJycBG5xlWI2XSpi5/z7M/vShNYGD2b/vZr/+pgMGzjm++tWv4uqrr8aBAwf0HNMalshSsHlTqtWBQ/QLvwHA5KYmLmvVR9dqdeAQ+tznzR4O4LHxfK4LHFruvMvsEYG53bDHJqSEdYGD77bbzB4RmMcDbrOAoWp94OD8yEfMHQ/n4Jyb1phq0wHDl7/8ZRw5cgTPP/+8nuOxJpucYVDkcMDd0QGnPwCYvnxt//lkLhc8nZ1w+n3Awta6UW5ZA7w/Bbcbns5OCB4PYEJGVKNxeDzwdHaAuVyA2ZkfDfD+dPj98HR0gDd5B95N/e2/8pWv4IEHHsCzzz6L/lX7ZfVgiZa+BXtGxwA27G0uLCwA58+bOiSet+8Fgblc6Lr5ZvTdVVmiTKVS5gcMFtgW2SzB40H3rbei9/Y74I5GKylrJqfecrMvsFvg8PvR88lPoue2T8EVDFYqBJo9nzYOAJ3BIHo/9Wl0f/zjcAYClfMLW2xXvxWMMVPbXmsKGDjn+MpXvoJ7770XTz/9NIZXHVaqF4/HU/fXUOMPh+G6/HKzhyGrmMlgaf0pfplDUFbofNbS2QGfheezkEhged1BRuZyofOmmzccgrLEfPb3Ax0dZg9DVn52Ftl1Qarg8aDrox9F3x13wr3qDJTZ8ykIAoJ79pi9aacoNzWF3LoeMOsDhSqz59PlcCB8+LCpY1CTHR9Hfl0p6/WBQpXZ1yOz/z01ZUl88YtfxD//8z/j/vvvx55VJ8VDoVBd+8qfOnXKlMJNQOUDZN++faZGdWrSr76Ct/7dv6v8QSZQWO348eOmFQBxuVxr3jtWNP/UUzj1//4+gI0rCutxznHs2DHTUq3MPjVdi9gD9+Pcn/0ZgI0rCuuZnRXV0tKCoaEh016/FhP/9E8Y+7u/BSAfKFQVi0VDauXICYVCGBgYMO31azH6rW9i6vvfByAfKFSZnRXV1taGnp4e015f0wrDt7/9bQDAtddeu+brf//3f4+7775brzFtEAgETAsY/H6/pYOFFTUEClWBQMC0AiB+v9+U19VKLVBYeR5j8Pl8puWbByQ+1KxILVCocjgc8Hg8pp0Gt8v7Uy1QqHI6nXA6naZ147TLfKoFClVerxeMMdNuEOp5Y16LLdVhMMry8jLOaSgtq6eBgQGEQiFTXrtW+dkZiIWiaqBQtbCwgPMmnWMYGhpCS0uLKa9dq+zEBAS3SzFQWC2VShnWWXG9nTt3mr5MqWZ5dBTOYFAxUFjNzFz33bt3w+22dtbJ0pkzcHd2KgYKq83MzJjSSI8xhj179sBp8YOCiydPwtvfrxgorDY1NWVKuW1BELB3714IgnkdHWzRS8Lv95vyoeh0OhGs8ZfSTJ7OrpqDBaCy7OoyIVXU4/HY4o7Y199fc7AAAMFg0JTDuWb9XmjlHxqqOVgAgHA4bMqqXmtrq+WDBQAI7NxZc7AA1LdOjpJQKGT5YAEAWvbsqTlYACrbAmaIRqOmBguATQIGAOgw4VBXe3u7PbYjNGKM0XzqSBAEUz5E2tvbDX9NIzgcDlMuco06ny6XC+Fw2PDXbdT59Hg8hq+SMsZMC/xWs03AEAwG0draatjr+Xw+0yJJI0QiEUP3FwOBgCkfWkZpb2839AR1KBSyxerXZnV1dRm6ChaNRm2x+rVZ3d3dhq6CdXR02GL1a7P6+voMvdvv7u62xOqXbQIGxhj6+voMedMzxtDf39+Qd8NVRv4dBUFo+PkUBMGw0+AOhwO9vb2GvJZZjJxPl8uF7u5uQ17LLE6ns+41c6q8Xi86OzsNeS2zuFwuw34H/X6/JVYXABsFDEDlTT84OFj3C09/f7/p+bZGcLvdGBwcrPvrDA4OmnJmwmher7fuH8qMMWzbts0aBc3qzO/31z2FTBAEbNu2zfS9YSO0trbW/UJu1Ge0FYRCobqvQrtcLgwMDFhmPm33WxIIBLBt27a6TaAdsiL01NraWregoXpxs3pWhJ7C4TD6+vrq8rMFQcDQ0JBtUtX0UM+8c4fDgeHh4YZeOl+vo6OjbkGD0+nE8PCwJZbOjcAYQ3d3d92CBrfbjeHhYUvdbNkirVJKNpvFxMSEbvnaTqcTAwMDDb2PqWR5eRnj4+Mo6tQkxu12o7+/v6kubqstLi5iYmJCt/x3j8eDgYGBprq4rZbJZDA5OalbwTGfz4eBgYGmubitl0wmMT09rVtzv0AggP7+fktd3IzCOUcikUAsFtOtPkNrayv6+vosl2Vi24ABqHSynJub23KOcTQaRVdXV1Ms8yoRRREzMzOVev5b0NHRgY6OjqZY5lVSLpcRi8WQTCa39HO6uroaNsNEi1KphOnpaaTT6U3/jOpdYTQabfr5LBaLmJqaqvSX2SRBENDT02NaKqyVFAoFTE5OYmlpadM/o3o+KRgMWnI+bR0wVBUKBSSTSSQSiZrvQARBQCQSQSQSadq7Njn5fB6JRALJZLLmOxBBEBCNRhGJRJri/IcWuVxuZT5r/XWrphZGIpGmvQuWk81mEY/HkU6na55Pp9O5Mp/NeBcsh3OO5eVlJBIJTYGYy+VCW1sbwuGw5e6CzcQ5x9LSEhKJhKZquh6PB9FoFOFw2NI3rg0RMFSJooilpSVks1lks1nkcrmVC54gCPB4PPD5fPD5fGhpaWn6O2A1oihicXERuVxOcj69Xu/KfAYCAZpPFdX5rL4/8/n8mvn0+Xwrc9rS0mLJOwwrKZfLG+az+nHmcDg2vD9pPpWVSqU1v+/r57M6lz6fzz4l801ULBbXXI8KhQI452CMrcyn1+uF3++Hz+ezxXw2VMBACCGEkPqgW0JCCCGEqKKAgRBCCCGqKGAghBBCiCoKGAghhBCiigIGQgghhKiigIEQQgghqihgIIQQQogqChgIIYQQoooCBkIIIYSoooCBEEIIIaooYCCEEEKIKgoYCCGEEKKKAgZCCCGEqKKAgRBCCCGqKGAghBBCiCqn2QMghJAqz6W/CSY4Vv7ncLlX/ltwut5+zOGA4HRDWHnMveExJjggCAyCQ4AgMDCBweEQwC78d+Uxpukxx4X/uZ0CHAKDc+W/hbcfc7z93x6nsOF71vyZMQiMweVgK//tYIDTIcDBcOGxt//bITC4hAvPEwCXIKz8d+V7GRgDBAbp/wbAqs+v/veF5zDG1jyXcQ4mlgAuApwDXFz1ZxGsrPbYuq+LZXBRBEoF8HIZEEXwUqHy/2K58nixCFT/u1R8+3vEMnix8lyIZYilInhZrPxPFCEWShDL5ZX/5qIIsfz2f1efWy6WwFc9T7zw/bwsolwog4scYplDLJQhljl4WYQo8spjZQ5e5igX335s7Z/ffp7IOQoiR5lzlDlQXvkzUOaQfEzE+ufxlef+NR819xfzAlphIIQQQogqChgIIYQQoooCBkIIIYSoooCBEEIIIaooYCCEEEKIKgoYCCGEEKKKAgZCCCGEqKKAgRBCCCGqKGAghBBCiCoKGAghhBCiigIGQgghhKiigIEQQgghqihgIIQQQogqChgIIYQQoooCBkIIIYSoooCBEEIIIaooYCCEEEKIKgoYCCGEEKKKAgZCCCGEqKKAgRBCCCGqKGAghBBCiCoKGAghhBCiigIGQgghhKiigIEQQgghqihgIIQQQogqxjnnZg+CEEL0ls/ncc899+A//sf/CI/HY/Zw1rDy2AAa31ZYeWxbRQEDIaQhZTIZhEIhpNNpBINBs4ezhpXHBtD4tsLKY9sq2pIghBBCiCoKGAghhBCiigIGQgghhKiigIEQ0pA8Hg9+//d/35IHz6w8NoDGtxVWHttW0aFHQgghhKiiFQZCCCGEqKKAgRBCCCGqKGAghBBCiCoKGAghDeV3f/d3cc011+Cuu+5CoVBY81g2m8WHP/xhvPe978UHP/hBJBIJS42v6p577sFll11m+phKpRLuvvtuXHPNNfid3/kdw8ZTy9iqjJ6r9eTGZ4X3mt4oYCCENIzXXnsNsVgMzz33HPbv348f/ehHax7/2c9+hgMHDuCZZ57Bpz71KfzTP/2TpcYHAAsLCzh69KglxvTggw+iv78fzz33HJaXl/HCCy8YNi61sQHGz9V6SuMz+71WDxQwEEIaxosvvojrr78eAHDjjTduuMDt2rULy8vLAIBUKoWOjg5LjQ8A/vIv/xJf+tKXLDGmWsZr1tgA4+dqPaXxmf1eqwen2QMghBC9pFIp9Pb2AgBCodCGZeAdO3bg6NGjOHDgABhj+NWvfmWp8aXTabz55pv4vd/7PUuMKZVKrfRDkBqvmWMzY67WUxqf2e+1eqAVBkKI7cRiMVx99dUb/sc5RyaTAVD5MI9Go2u+7zvf+Q6uvfZaHD16FH/wB3+AP/zDP7TU+P7iL/4CX/7yl+syJjmRSER2TEqPmT02M+ZqPaXxGfVeMxIFDIQQ2+nu7sbzzz+/4X833XQTHnvsMQDAo48+iquuumrD91Y/1MPhMFKplKXGd+bMGXz961/HjTfeiNOnT+NP/uRP6jK+1d75znfKjknpMSMovb4Zc6VlfIAx7zVDcUIIaSBf+9rX+NVXX83vvPNOns/nOeec/9Zv/RbnnPN0Os1vuukm/t73vpdfddVV/OTJk5Ya32qXXnqpaWOqjqdYLPLPfe5z/Oqrr+Zf+cpXDBtPLWNbzci5Wk9ufFZ4r+mNSkMTQgghRBVtSRBCCCFEFQUMhBBCCFFFAQMhhBBCVFHAQAghhBBVFDAQQkgTuPvuu8EYw2//9m9veOyLX/wiGGO4++67V74Wi8Xwla98Bdu3b4fH48HAwABuueUW/PznP195ztDQEP7iL/7CgNETK6CAgRBCmsTAwAC+973vIZvNrnwtl8vhu9/9LgYHB1e+Njo6iksvvRRPPvkk/vRP/xRvvvkmHnnkEVx33XWmlmIm5qLS0IQQ0iTe8Y534Ny5c/jJT36Cu+66CwDwk5/8BAMDA9i+ffvK86orDi+99BICgcDK1y+66CJ84QtfMHzcxBpohYEQQprIb/zGb+Dv//7vV/78v//3/14TBCQSCTzyyCP40pe+tCZYqAqHw0YMk1gQBQyEENJEPvvZz+L555/H6Ogozp8/j1/84hf4zGc+s/L4mTNnwDnH3r17TRwlsSLakiCEkCbS3t6Om2++Gd/5znfAOcfNN9+M9vb2lcerxX8ZY2YNkVgUrTAQQkiT+cIXvoB/+Id/wHe+850NZxJ27doFxhiOHz9u0uiIVVHAQAghTebGG29EoVBAoVDADTfcsOaxaDSKG264Ad/85jextLS04Xsbousi2RQKGAghpMk4HA4cP34cx48fh8Ph2PD4t771LZTLZVxxxRX48Y9/jNOnT+P48eP4xje+gXe9610mjJhYAZ1hIISQJhQMBmUfGx4exquvvoqvf/3r+NrXvobp6Wl0dHTg0ksvxbe//W0DR0mshNpbE0IIIUQVbUkQQgghRBUFDIQQQghRRQEDIYQQQlRRwEAIIYQQVRQwEEIIIUQVBQyEEEIIUUUBAyGEEEJUUcBACCGEEFUUMBBCCCFEFQUMhBBCCFFFAQMhhBBCVP3/2lnhKIwDA7QAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5A0lEQVR4nO39d3Rk13Un+n/vrVwFVEKODXTO3RSTJJISqUBSpChRgRKDJNOascejMJ6xxm95ZvzGY7+R6d8s2z9bY0l+tt/IsudZWYyimCRmUqQYm83O3UAjFgqoCFSuuuf9UV0guvtG4NYNVfuzlpbYqALq9OlC3X3POXtvjjHGQAghhBAigzd7AIQQQgixPgoYCCGEEKKIAgZCCCGEKKKAgRBCCCGKKGAghBBCiCIKGAghhBCiiAIGQgghhCiigIEQQgghiihgIIQQQogiChgIIYQQoogCBkIIIYQosm3AUKvV8PWvf31DP2NsbAw7d+7EwYMHcfDgQfzgBz/QaXT2o8d8NvzxH/8xOI7D4cOHdfl5dqTHfF5//fXYv38/Dh48iGuuuQZvvPGGPoOzoY3OZ7FYxK233ort27fj4MGDuPHGGzE5OanfAG1Gj/fnv/t3/w5jY2Nt/7uulp6fsaZhNvX666+zgwcPbuhnbNq0ib311ls6jcje9JhPxhh79dVX2Y033shGR0fbem71mM9UKrX63/feey+75JJLNjgq+9rofBYKBfazn/2MCYLAGGPsf/7P/8k+/OEP6zU829Hj/fn000+z6elp+hxVSa/PWDPZcoXhyJEjuPnmmzE7O4uDBw/ij/7oj8wekq3pNZ+lUglf/vKX8a1vfQscx+k8SvvQaz7D4fDqf2cyGfC8LX9dN0yP+fR6vbjppptW35fvfve7cebMGb2Hagt6vT/f9773YXh4WOfRtaZWuWY5zR7AeuzevRuf+MQnsHPnTnzlK1/Z0M+66667IAgCrrzyStxzzz3o6enRaZT2odd8/tf/+l/xuc99DuPj4zqOzn70fH9+4QtfwJNPPgkAeOSRR/QYnu3oOZ8N3/jGN3DLLbfo8rPsphnzSeS1ypzb9pbllVdewWWXXXbR16+55hp0d3eL/m96evq85z7zzDN488038dprr6Grqwu/8Ru/YdTwLWej8/niiy/i17/+Nb70pS8ZOWzL0uP9CQD/9E//hOnpafz3//7f8fu///tGDN2S9JpPAPjTP/1TnDx50v77yRug53wSdaTm3E44xhgzexBaVatVRCIRLC4uwuv16vIz5+fnsX37diwvL+vy8+xEj/n8sz/7M3zjG9+A2+0GAMzMzKCvrw//8A//gI985CN6DtfymvH+BACfz4eZmRl0dXXp9jPtQM/5/PM//3N8//vfxxNPPHHelk870fv9OTY2hoceegh79+7VYXStqVmfCUaz5QrDzMwMOjs7NzTxuVwO6XR69c/f+973cMkll+gwOvvRYz7/4A/+AHNzc5icnMTk5CSGh4fx6KOPtl2wAOgzn9lsFnNzc6t/vvfee9HV1YVoNKrHEG1Fj/kEgL/8y7/E9773PTz++ONtGywA+s0nUa9V5tyWAcPw8DD279+PHTt24D//5/+8rp+xsLCA6667Dvv378e+ffvw9NNP45/+6Z90Hqk96DGf5B16zGcmk8Gtt96Kffv24cCBA/jmN7+Jhx56qC0Pk+oxnzMzM/ja176GdDqN6667DgcPHsSVV16p80jtQa/f9y9/+csYHh7GzMwMPvShD2Hr1q06jrK1tMpnrC23JAghhBBiLFuuMBBCCCHEWBQwEEIIIUQRBQyEEEIIUUQBAyGEEEIUUcBACCGEEEUUMBBCCCFEEQUMhBBCCFFEAQMhhBBCFFHAQAghhBBFFDAQQgghRBEFDIQQQghRRAEDIYQQQhRRwEAIIYQQRRQwEEIIIUQRBQyEEEIIUUQBAyGEEEIUOc0eQDPUajUUi0UUi0UIggAA4HkeHo8HXq8XTmdL/rWbplqtolgsolQqXTSfPp8PDofD5BHaS7VaRaFQQLlcPm8+vV4vvF4vzadGlUpl9f3JGAMAOByO1fnkebovUosxdt77k+ZzYxhjq+/PxnxyHAee5+Hz+eDxeGw1ny1z5axUKkilUkilUqhUKrLPdTqdCIfDiEQi8Hg8Bo3QXsrlMpLJJNLpNKrVquxzXS7X6ny63W6DRmgvpVIJyWQSmUxGcT7dbvfqfLpcLoNGaC/FYnF1Pmu1muxz3W43otEowuEw3SyIYIyhUCggmUwim82uBrFSvF4vIpEIwuEwBbciGGPI5/NIJpNYXl5WnE+fz4dIJIJQKGT5+eRYI4S0qXK5jFgshmw2u67vDwQCGBgYgNfr1Xlk9lQqlTA/P4+VlZV1fX9nZyf6+/spEDunUChgfn4e+Xx+Xd8fDAYxMDBAgcM5+Xwe8/PzKBQK6/r+cDiM/v5+ChzOWVlZwfz8PEqlkubv5TgOkUgEfX19lr/QGSWbzSIWi6FcLmv+Xo7j0NXVhd7eXsuuOtg2YGCMIZlMIhaLQY+/Qm9vL3p6esBxnA6jsx/GGJaWlrCwsLDhn8VxHPr6+tDV1dW28ykIAhYXF7G4uLjhn8VxHAYGBhCJRNp6PhcWFpBIJDb8s3iex+DgIEKhUNvOZ61Ww/z8PNLp9IZ/lsPhwNDQEILB4MYHZlPVahVzc3PrvnFdy+VyYWhoCB0dHTqMTF+2DBgEQcDU1NS674Kl+Hw+bNq0qe3uPmq1Gs6ePbvuu2ApgUAAo6OjbXf3Ua1WMTk5iWKxqOvPDQaDGB4etuzdR7OUy2VMTk6u665NTjgcxtDQUNsFDaVSCRMTE4pbY1p1dXWhv7+/7eazUChgcnJScWtMKyvexNouYBAEAZOTk7pf3Bo8Hg/Gx8fbJmio1WqYmJjQ/eLW4PP5MDY21jZBQ7VaxZkzZ3S/uDUEAgFs2rSpbYKGcrmMM2fO6H5xawgGgxgZGbHUh3IzFYtFTExM6H5xa4hEIhgcHGyb+SwUCjhz5owuq9xiuru70dfXZ5n5tNWnDmMM09PTTQsWgHr0ffbs2aa9AayEMYazZ882LVgA6r9QU1NTbTGfgiBgYmKiacECAORyOczOzrbFfDaC2WYFC0B9z3l+fr5pP99KqtVqU4MFAEilUojH4037+VZSLpcxMTHR1N/FpaUlXbbh9GKrgCGdTmN5ebnpr1MoFHTZe7a6paWlpgZfDblcDslksumvY7Z4PL6uw2NaZTIZZDKZpr+O2WKxmGLGkx4ap9lbGWMMs7OzTQ0WGhYXFw35XDETYwwzMzOKGRB6iMViTb2p08I2AUO5XMbc3JxhrxePx9d9EtsOisWiLgcc1YrFYoZcTM2Sz+extLRk2OvNzc0ZcjE1y/LyMlKplGGvNzMzY8jF1CyZTMbQoGh6etqQi6lZksmkoUHRzMyMJVYVbRMwxONxwycsFosZ+npGMjJYAOoReSsvVRr9XmlkYbQixpjh81mr1Sy19KsnM+azURenFTUydoxULBYtsapoi4ChWq2aMlm5XM4Wd8VMYyRfLpdNWYLNZDK2uCvWOp/FYtGUJdhUKmWLu2Kt85nP5035vUskEra4K9Y6n9lstqnnQKQsLS1Z4q5Yidb5TKfTprxPrBDQritg+Na3voXx8XF4vV5ceumlePbZZ/Ue13nS6bRpbzw77L0vv/UmTvzx/4ncqZOqnm/m38kOdx2pF57DqXv+LxTOTqp6vlm/yIwxXfLom23psUdw5i//B4pzs6qeb9Z81mo1XfLomy12748x+c2/RlnlCpNZ81mpVJDL5Ux5bS1m//d3MfX3f4tKWt1nk1nzWSgUTN8m1xww/OAHP8C///f/Hv/lv/wXvP7667jmmmvwkY98BFNTU80YHwCYeiDJFoehGEP6xefx9lf+jarAgeZTgSAg+fSTeOt3/pWqwMHMv5PetUiagdVqWHrsERz617+hGDgwxmg+FbBKBfEH78ebX/ycYuAgCIKpBxDt8PsulIqI/eSHePM37lQMHCqViqmrzmbPp+Y6DFdeeSXe9a534dvf/vbq13bt2oVbb70V99xzj+4DZIzh6NGjpi4VDteqQMkap1TF5M+cwcw//sN5Xwu/5yoM3fUFBLZuO+/rgiDgyJEjRg7vPBzHYbhcAqs0L/Vwo5YPv4X5H37vnS9wHKLvuxZDd34evk1j5z23Wq3i2LFjxg5wDYfDgYHcCiBYd2si/euXEH/w/ne+wPPo/tD1GLz9LngHh857bqlUwsmT6lbKmsHldKIvmzbt9dVIPPMUEk88tvpnzuVCz403YfAzd8Ld03Pec/P5PM6cOWP0EFf5XC50Zay9qrj4yMNIvfDc6p95jwe9H/04Bm77LFzhyHnPzWazTb05VtLZ2YlNmzaZ9vqaAoZyuQy/348f/ehH+MQnPrH69d/93d/FG2+8gaefflr3AZr9AQIAtb/5/6M0OWHqGNbrwsDB7A8QAKj82f+FypIND+yJBA7Ly8s4e/asqcMq/pffh2CDszYXEQkc0uk0ZmZmTBsSq1ZQ+IOvmfb6GyEWOCQSCVPrTLBsFoU/+UPTXn8jxAKHhYUFUw8bO51O7Ny507zX1/LkpaUl1Go19PX1nff1vr6+pp3CNeOwzkVscHBHSvrF55F+8fnVwKHW26f8TU1mh4NQohhD8uknkXzmqdXAodJpfv18m84mIAhYeuwRLD3x2GrgUHFRt9P1amxVLD7y8GrgUDH5UKxtf9cBCKUSYj/5IeIP3b8aOJh9PapWq6stss2wrkOPFw62mX8BK7zhzB/BxqVffB5vf/V3kH76SbOHYn/nAofDX/5trLzystmjsb9zgcPhf/tbyB85bPZobK8ROLz1b/8VSmdOmz0c22sEDof/7b9Geda81S8r0LTC0N3dDYfDcdFqQjwev2jVQS9WqKFt/gg2LnrN+zF41xdQjXYha+IeXEvgeXR/4MMYvOMu5H1+ZA0sKNaKOKcTPTd8BAOfvRNZjseywTnurYZzu9F788cwcNvtSJbLWDawoFgr4n0+9H38k+j/5KcRX15BzgaZXs2iKWBwu9249NJL8fjjj593huHxxx/Hxz/+cd0HB8ASTaCsELSsVyNQ8I+NA4AlSrbadj7XBAreoWEAQMUCp8A52HMVbG2g4Dm3VeayQZqoVa0NFNzRKADAZXLuvm1/13F+oOAKhgAAzoK5h9+dTqepc6o5S+IHP/gBPv/5z+Nv//Zv8Z73vAd/93d/h7//+7/H22+/3ZTTm1bIkhjhGFCy7qn+/OmTmP5//u68r10YKDRYIUtiRKiCVSxwNkXC8ltvYu57//udL4gECg1WyJIYKhXABOuGDOmXX8TCfT9d/bNYoNBg9iFnl9OJ/ry1awcknvoFlh57ZPXPYoFCg9mHnH0uF7pz1k5VjT/8IFLPPbP6Z7FAocHsQ85mZ0lovn3/7Gc/i0QigT/5kz/B/Pw89u7di4cffrhpfwmO4+Dz+UwrAOJ2uxHavt2U11aL49+JOKPXvB+Dd34e/vHNos/leR4ej8e0XGKv14vgli2mvLZatZVzqwY8j64PfAhDd3zuokChwel0wul0mnYYyu/3I7hrlymvrVZpvr5lIxcoNLjdbnAcZ9rZpUBHB0ImnkJXI3eiHqDKBQoNXq/XyKFdxB8MIrRjh6ljUJJ5tX4OSS5QaPD5fEYO7SJ+v9/U11/Xev+XvvQlfOlLX9J7LJI6OztNCxg6OztNeV1NOE4xUFgrGAyalhpki/nkeXR96HrZQGGtYDBoWvVMO8wn53Ki56ZbMPjZO+Dp65d/Lsehs7PTtIqLdphP3u1G3yc+LRsorD6X5xEIBOjzU4bD58fA7XfJBgoNTqfT1Buujo4OU163QfOWhBlqtRqOHTtmyl3Htm3b4PF4DH9dLbRmqZTLZZw4caKJI5K2c+dOS5xLkaN1PovFIk6dOtXEEYnjOA47d+6Ew+Ew/LW10DqfuVwOExPG1z1xOBzYuXOn5ffdtc6nWcWG3G43tm3b1nLzmUqlMDurrsy5nnw+H7aYvDpri+ZTDocD4XDY8Nft6OiwfLAAaD9Y5Ha7EQwaXz8gFApZPlgAtM+n1+s1ZakwGo1aPlgAtM+n3+835feuq6vL8hc3QPt8dnZ2mvJ716rzGQqFwPPGXzq7uroMf80L2SJgAICenh7D33zNShW1gt7eXkPnk+M49Pb2GvZ6Ruvvl19q1xvP8+ju7jb0NY3CcZzh8+l0Oi3xgdwMHMdhYGDA0Nd0u92IRCLKT7QhnucNvzZ4vV6EQvLbJUawTcDgdrsxODho2Ov19vaafsClmbxer6Fv+oGBAVus1qyX3+9HzwV1/JtpaGgILpfLsNczWmdnp6EXnOHhYVus1qxXKBQydFVxZGTElLtwo0SjUQQCAUNei+M4jIyMWGK1xlb/ouFw2JBDND6fz9APf7N0dXUZ8qbv6Oho2buNtXp6egw5lR4KhSxxt9FsAwMDcLubXyo6Go2afpjMCIODg4ZsTbT6zRZwrone8LAhQVF/f79lbrZsFTA0Iq1mXuQ8Hg/GxsYsEc01G8dxGB0dbepFzu/3Y3R0tC3mk+d5jI2NNfWXu6OjA0NDQ8pPbAE8z2N8fLypKymhUMjw5XqzOJ1OjI+PN3UlJRqNtsXNFgC4XC6Mj483NWjo6emx1FaZLbIkLiQIAmZmZnRPvfL7/di0aVNLL02KqdVqmJqa0j31qqOjA6Ojoy29NCmmWq3i7NmzKBQKuv7cUCiEoaGhtpvPSqWCyclJ3VPZIpEIBgcH2yKYXatcLmNiYgKVSkXXn9vd3Y2+vr62m89isYiJiQnUdG701dfXZ7ngy5YBA1BPhUmlUpifn99wuqWTA0Y7HfCGu8EHrfUPZBTGGBKJBBYWFjY8ny6OYbTTAU90AHxH629FiBEEAUtLS4jH4xv+WR4eGO3g4eoZBu8zvzumGQRBQDwex5IOfRF8TmDEz8HVNw7OY24hHLPUajUsLCzoUj8k4OIw5Adc/VvBuayxdG60arWKWCyGtA6lzV0uF4aHhw07I6GFbQOGhkqlglgshkwmo/l7OTAM+HmEUADHBMDhAje6HxzfXisMa5XLZczPz2N5HT0SeDAMBnh0sjw4xgCXF9zIvra741irWCwiFothZUV7eVwHGIY6eARqeXBggCcAbmh3W89noVDA/Pz8unqiuDiGoQAHXy1fbyjnD4EfsHYVwmbL5XKIxWLrWg1z8wxD/vp8AgA6usD3WbuKa7MtLy8jFoutazWM53l0dXWhp6fHsquItg8YGqrVKlKpFFKpFMpl+b4PLpcLvR1uBMspcML5JX256DC4iHHZGFZVqVSQSqWQTqcV59PtdqMv4ERHOQVOOH9ZjusZAxds3XRKtcrlMpLJJDKZjOJSsMfjQb+fh7+Uqgeya3B9W8F1yFf3awelUml1PpXKcnu9Xgz4AG8pffF8DuwA52/9A6RKCoUCUqkUMpmM4tK6z+fFgEeAp5SpB7JrcMN7wHmsd2dsJMYYCoUCkskklpeXZeez0fogEomYVt9Bi5YJGNYSBAHFYhHFYnG1aVWjh4LX64XD4QBbSYItiFTn43hwmw6Ac7RuyppWtVoNxWIRpVJJej6zcbDFyYu/mVZtLlKr1VAoFFAul8+bT6/XC6/XC57nwVLzYMnpi7/Z6QE3ug8cZ+0PFiNVq9XV92fj48zhcMDr9cLj8YDneQiJaSA9f/E3u/31i1wbr9pcqFqtrr4/JeczPgEsi5SX9wXrQRjN56pKpYJisbg6nxzHged5+Hw+eDweW81VSwYMajDGwOaOAkWRpeJgL/ieMcPHZGeMMbDpw0BFZGkzMgg+qtyTgbyDCQLY9CGgevHqDtc1Ci5sbGEju2O1KtjUm4Bw8d0e17sZXGdrFsFqFlYtg00dAtjFXYS5/u3gAmHjB0Warm1vUziOA9c1Iv5gdhGsbG7fc7uRnc90DEzkwkekcTwPTiLIYqk5sJp124NbEedwgouIp6Oy5AyYcPGFj0jjnG5AImhlyWnTuo2S5mrbgAEAOG8nEBA7xc/El4OJPH8I8IoU1mICWMr4Zi2219EFuEVO8QtVMLHldSIv1As4RU7xV8tAZsH48dgcFx4AHCKFoMoFYHnj2SzEeto6YAAALjoCQGQPKZcCK2rPFGhnHMeB6x4VfzC7CFbWty5Bq5NdtcnEwKrmtNi1K47jwXVJrNqk58Bq+tYlaHUc71BYtdG3LgExHwUMbm/9zkMES9DSmlacJ1C/MxbBErRqoxXnDwE+kVP8jIEladVGs0AUEDvFL9TAUnPGj8fugj2AS6RSbK1CqzYtqO0DBgD1NEqxU/zFFSCXMn5ANlffexdZtcmnwQr6VudsB5KrDMtLYCXt9QjaWX3VRmIVLBMHq9DZJS3qqzbi70+WmgOr0qpNK6GAAQDncNX340TUD/DQgSgtOJcHCIl3wqRVG+04jx+QOMXPElMGj8b+OF8n4A+LPMLAkjNGD8f+/GE6u9QmKGBoCPUDDpHOeJUSkBXJNyayJFdtSjlgZePlaNsNFx0GxGovFLJgee1VTtud5KrNShJMLNWaSJLPOIvT2aUWQgHDOfU0NqkDPLN0gEejehqbeMVMWrXRjnO660GtCJaYolUbjTi3D5CoQEqrYNpx3o76+RARtGrTOihgWKuzWzqNjQ5EaRfqA5wiqzaUxrYuXGQA4CmNTS9cZEh81aa4DOTTho/H7uoZKBIZZwXKOGsFFDCsoZzGRsWHtOA4/lza6sWo+JB2HO+QWQWj4kNacU6Zs0u0yqAZ55LLOKNVsFZAAcMF6mlsIi2EGR2IWpcOSmPTlWwaW8z48dhduB8Q6xtTKdLZpXWQPbtEGWe2RwGDCMm0K0pj00x+1WYBrELFh7Sor9rIlYymNDYtZFdtUnR2Sat6xpnE2aUEnV2yOwoYRMinsVHxIa04X5DS2PQUiADejou/zgRatVmPzh7A5bv467UKleBeD8mzSyUgGzd+PEQ3FDBIqKexiRzgKWQojW0dpNPYEmClnLGDsTn5VZs4NU7TiBqn6Uu2cVqSzi7ZGQUMEuTT2OhAlFb1NLYe0cfYEh2I0ooap+lMrnEaleDWjhqntSQKGGRwYak0tjywkjB+QDYnn8ZGqzZaUeM0/cg2TlumxmlaUeO01kQBgwzO4QQXlSo+RGlsWnFOd/1UughatdGOGqfpixqn6Ysap7UeChiUBHsBl+fir1fLlMa2Dlx4QCKNrQAsUxqbVtQ4TV/UOE1f1DittVDAoEC2+FB6ntLYNOJ4R31rQgSV4NaOGqfpixqn6Ysap7UWChjUCEQAj0gaGxUfWh+54kNpWrXRjBqn6Yoap+mLGqe1DgoYVFBMY6tQGpsWcvPJ0vNgVVq10YIap+mLGqfpixqntQ4KGFTifDJpbAkqPqSZPyydxpaiA1GadXYDbpHiQ0IVLEVpbJpR4zRdUeO01kABgwaSB6JySbDiiuHjsTPZVZtsnNLYNKrPp0RaIDVO04wap+lLvnHaLGWc2QQFDBrIFh+ipTXNOG9HvTmVCEpj0066cZpAJbjXgxqn6SvYI55xVqOMM7uggEEj6eJDK0A+bfh47E4+jY2KD2lFjdP0Q43T9KW8akNnl6yOAgaNOKdL+kAUdWPTjHPJFR+iVRutqHGavqhxms6ocZqtUcCwHqE+ieJDRUpjWwcuMiSdxpajNDatuOgQNU7TkWzjNDq7pAk1TrM3ChjWoX6AR6IbW4rS2LTiHE5wYalVmxlatdGIc3qocZqOOLev3gJbBM2ndtQ4zb4oYFgvqTS2GnVjWxfJNLYSkIkbPx6bo8Zp+qqv2lDjNL1Q4zR7ooBhnWSX1tKUxqZVvfiQzKoNpbFpQo3T9EWN0/RFjdPsiQKGjfDJpbFR8SHNOroAt//irws1WrVZD2qcpitqnKYvapxmPxQwbIDsKsPyIqWxaaRYfIjS2DShxmn6osZp+qLGafZDAcMGcZ5A/c5YBB3g0Y7zBwF/6OIHGKWxrQs1TtMXNU7TFzVOsxUKGHRQ78YmVnwoA5bPGj8gm5O6K8ZKAqyUM3YwNkeN0/Sl3DiNzi5pQY3T7IUCBh1wLrk0Nio+pFW9+BClsemFGqfpTLZxGq3aaEaN02yDAgadUBqbviTT2ApZoEBpbFpR4zT9UOM0fVHjNPuggEEnnMMpXTKa0tg0ozQ2fVHjNH1R4zR9UeM0e6CAQU+hXsApkcaWXTB+PDZXT2MTW7UpAMtLxg/I5qhxmr7kG6fR2SWtqHGa9VHAoCOO48F1SRUfmqPiQxrJp7HN0IEojahxmr7kG6fRKphW1DjN+ihg0FsgCngCF39dqIGlqJiTZnJpbBlatdGMGqfpihqn6Ysap1kbBQw6kz/AE6fiQxrVV20k0thSc2BVKj6kBTVO0xc1TtMXNU6zNgoYmoDzddZTry5C3djWxR8GvCLFh5hAqzbrQY3T9EWN03RFGWfWRQFDk0imXa1QGptWsqs22UVKY9OIGqfpixqn6Ysap1kXBQxNUk9jowNReuG8HfXzIRehktHrQo3T9EWN0/Ql2ziNzi6ZhQKGJpJOY1umNLZ1qGegiBUfSoEVlg0fj50pNk4rUxqbFtQ4TV/yjdPmqHGaSShgaCLOKdONjVYZNKM0Nn3JNk6jNDbNqHGazgIRmYwzKsFtBgoYmi3cL53GtkxpbFpxkUGJNLYVIJcyfkA2R43T9EWN0/SjnHFGjdOMRgFDk9XT2Kgbm144h8yqTZKKD2lFjdP0RY3T9EWN06yFAgYjdPYALrE0tgodiFqPUL94GlulBGQpjU2rehqbyKoNpbGti2zjNCo+pJlUBgo1TjMeBQwGoDQ2fcmmsSWpBLdW9cZpciW4adVGC9nGaUlaZdCKMs6sgwIGo/hDgLfz4q9T8aH1kUxjo+JD60KN03RFjdP0RRln1kABg0E4jgPXTcWH9CK7apOJgVUpjU0LapymL2qcpi9qnGYNFDAYiNLY9MX5Q/UCRBdijIoPrQc1TtOXbOO0mPHjsTtqnGY6ChgMVt97F0tjS4MVKI1NK+niQ0tgJSo+pAU1TtOXfOO0eWqcphE1TjMfBQwGq6ex9Yk+Rgd4tKunsXWLPsYSUwaPxv6ocZrOqHGavqhxmqkoYDCBdPGhHLCSNH5ANlcvPiSexsYojU0zapymH/nGaXE6u6QRx3HSxbEo46zpKGAwQT2NTaobGx3g0YpzumnVRkeUxqYv6cZpoJLR6+GnxmlmoYDBLKE+8eJD1I1tXeqrNmJpbHlKY1sHSmPTFzVO0w81TjMPBQwmke3GRmlsmimX4KZVGy2ocZq+5BunUQlurSjjzBwUMJipQy6NjbqxaRbsAVwixYdqZUpjWw9qnKYr2bNL1DhNM2qcZjwKGEwkX3xogdLYNFJetaE0Ni2ocZq+ZBunUfEhzahxmvEoYDAZ5wvKpLHRgSjNAhGZNDZatdGMGqfpS6pxWrUEZKhxmlbUOM1YFDBYgHQaWwKslDN2MDYnv2oTBysXjR2QzVHjNH3JNk6js0uaUeM0Y1HAYAH1NLYe0cfYEi2tacV5O+srDReh4kPrQo3T9EWN0/RFjdMMQwGDRcinsVHxIa3qZxkk0tiKlMamBTVO0xc1TtMXNU4zDgUMFsE53fVT6SIojU07zu2VXrWh+dSM0tj0RY3TdCbbOI3OLumFAgYL4cIDEmlsBUpjWwcuOiR+IKq4Qmls60CN0/RFjdP0I984jTLO9EIBg4VQGpu+ZNPYqAS3ZtQ4TV/UOE1f1Dit+ShgsJrOHsDlvfjrtQqQpuJDmoX6JFZtSkCWVm20osZp+qLGafqixmnNRQGDxcgdiGLpebAqFR/Sor5qI3EgilZtNKPGafqSb5xGGVJaUeO05qKAwYr8YUpj01NnN+AWKT4kVMFSlMamGTVO05V047QCNU5bB2qc1jwUMFiQbNpVNk5pbBopp7FR8SEtqHGavuTPLlHxIa2ocVrzUMBgUZy3o96cSgSlsWnH+cOAL3jxA0ygEtzrQY3T9CXZOK1CjdPWgxqnNQUFDBYmWXwonwYrUPEhrSiNTT/UOE1f1DhNX5Rx1hwUMFhYPY1N6gAPHYjSiooP6Ysap+mMGqfpS6ZxGmWcrQ8FDBbHRSSKD5VyQI7S2LTiuoYBTmTVppChNLZ1oMZp+qHGafpSzjijs0taUcBgcbJpbIkZSmPTiHN66i2GRdCBKO2ocZq+qHGazqhxmq4oYLCDoFQaWwnIxI0fj81x4QGJNLY8sJIwfkA2R43T9EWN0/RDjdP0RQGDDXA8L118KDVLaWwayRcfojQ2rahxmr6ocZq+6OySfihgsIuOLsDtv/jrQg0sTcWHNAv1Ak6RNDYqPrQu1DhNX1xUatWGGqetBzVO0wcFDDYh340tRmlsGnEcL3MgitLYtOJ4R31rQgSlsWnHOVxUgltH1DhNHxQw2AjnD9YP8VyIURrbugQiVHxIT0FqnKYrapymK2qctnEUMNiMVHEXSmPTTn7VJg5WoTQ2Lahxmr6ocZq+qHHaxlHAYDOcx18vSCKClta043wyaWwJWrXRjBqn6Ysap+lLtnEaZZwpoYDBhiQPRBWyQIHS2LSSuotDLglWXDF2MDZHjdP0RY3T9CVfgpsyzpRQwGBDlMamr3rxIakS3DSfWlHjNH1R4zSdUeO0daOAwabqaWxixYcKwPKS8QOyOfniQ2nDx2N38mlsVHxIK2qcph9qnLZ+FDDYlHwa2wwdiNKIc7rARQZEH6uvMtCBKC04l5cap+mIig/pixqnrQ8FDHYml8ZGxYe0C/VLpLEVgSyt2mhFjdP0RY3T9EWN07SjgMHGZIsPpeYojU0j2TS2FK3aaEWN0/RFjdP0RY3TtKOAwe78YcDbcfHXKY1tfaTS2GpVKsG9HtQ4TVfUOE1f1DhNGwoYbE62+BB1Y9OM4zjp4lhpSmPTihqn6Ysap+mLMs60oYChBXDeDiAglsZGB3jWxR+SSWOjVRvNqHGavqhxmq7kG6fR2aW1KGBoEVyXRBpbLkVpbBrJpl0tL4KVKY1NC2qcpi9qnKYvyjhTjwKGFiGfxkZLa1pRGpu+qHGazqhxmr6ocZoqFDC0EOlubCtALmX8gGyOi0qkseUzYIWs8QOyOWqcph9qnKYvapymDgUMLYRzuOr7cSKoG5t2nMtTb1YjgtKutKPGafqixmk6o8ZpiihgaDWhfvE0tkoJyFIam1ZcWGLVhtLY1oUap+mLGqfphxqnKaOAocXIprEl5yiNTaN6GpvcgShatdGC0tj0RY3T9CXbOI3O2lDA0JIk09io+NC6yKWxZSmNTStqnKYvapymL8nGaZRxRgFDK5LvxhYDq1Iamxb1NDap4kO0aqMVpbHpixqn6Ysap0mjgKFFcf4Q4JNKY6MDPJoFopTGpidqnKYvapymK/nGae2bcUYBQwuTLj60BFai4kNayK/aLFDxIY2ocZq+qHGavjiHs37gWUQ7r9pQwNDC6mls3aKPscSUwaOxP84XrKdeXYSBJamYk2bUOE1f1DhNXyFqnHYhChhaXL34kHgaG6NubJpJrjKsUBqbVtQ4TV/UOE1f8o3T2vPsEgUMLY5zuqWLD1HalWb1NDYqPqQXapymM2qcpi/KODsPBQxtoF4yWiyNLU9pbOtAaWz6osZp+qHGafqixmnno4ChDdQPREmlsc1S8SGNOKdbugQ3rTJoRo3T9EWN0/RFjdPeQQFDuwj2AC6R4kO1MpB5pxsbfTirFJZJY1teXP0jzac6ahun0Xyqo7ZxGs2nOmobp7X6fFLA0CY4jpd80ze6sbHsItjcUYNHZk+Kqza1KlhmAWz+hMEjsyfFxmlCrf4+XTht8MjsSbFxmlCrv08XJwwemT0pNk6rVSEkpls++4xjrR4SkVWMsXpAIHaan3cAQg3gneDH32X84GyIMQY2fRioiJzmb8ynywt+dL/xg7MhJghg04fqJbcv1JhPbwf4od3GD86GWK0KNvVmfd4u1JhPfxj8wHbjB2dDrFoGmzoEiNVgaMxnZzf43s3GD84gtMLQRmQPRDU+VNq0IMl61OdTolsgzadmcmlsq/NJ521Uk2ucRu9P7eQap7XL+5MChjbDeTuBQET6CUxo+X04XfnDgLdT+vEW/wDRXUeXePGhBrrAaRPqFS8+1EAVIDXhwgPiGWcNrLXnU+ZvTloNa1R8U0r9Y0z8wBQ5D6tV6n0k5Ao20QVONVYt12sFyBVsogBMNVYp1SuQyhVsovenaqxcqGeZCDIFm1r8/UkrDO1keQlIz9cDAjn0IaJOJn6uUZLMfNKKjSqMsXowuybDRPyJrX0HpxfGWL289kpS4Yn0u64GY0I9hVLxZqu155MChjbChfvBDe0W7xK4Fn0oq8JFh8AN7pRf8gVa/kNEDxzHge/eBK5/m3i6agPNpSocx4Hv3Qyud4t4umpDi98R64XjeHB9W8H1jIkXbWto8fcnBQxthvN2gBveAwTFC+UAoA8RDThfENzwXslCOQBa/kNET1wgAm5kr/Q5G8ZoxUYDrrML3Mg+8XLRAL03NeA4Dlywt/7+FGuaBrT8ZycFDG2I4x3ge8bADewQv5ujDxFNOIcTfN8WcH1bxQ9EtfiHiN44h6t+N9e7WfzumN6fmnBON7iBHeC6N118d0zvTc04lxfc4K5zGT0XnPVq8fcmBQxtjPOH6ncfHRc0/2nxN32zcB3R+t3HhS2waT414zgOXGd3ffXmwiwUmk/NOI4DF+qrry56AmseoRWb9eA4DlxkENzw7vOzelr8vdlyWRLlchmFQgHFYhHFYhGCUD90xvM8vF4vvF4vfD4f3G43OMoEqOdq920F8yfAlibraVZr7jpKpRKKxSIKhQJKpRJqtVp9f5Tn4fF44PP5VueTnMvV7t9Wb/SzNFX/ADn3IcIYW31/NuZTEITV+Wy8N71eL83nOZzLAwzuBDIL9RP/jNXfn476fJZKpdXfd6n59Pl8cLlkzkW0Ec7tA4Z2A6m5+qFIoP7+5BxgjK1+bhYKBZTL5dX5dDgc582n09lyl4514TwBYGhP/UBkJnbeZ2djPhvvzwvns/G7bqf5bIlKj4IgIJPJIJlMolCQSclaw+PxoKurC6FQCA6HzKGgNsKqZbD4GbDOHmQqHJLJJIrFoqrv9Xq9q/PJ87RwBQCsUqzPZ3gI6WIViUQC5bJMitsafr8f0WgUwWCQ5vMcVs6DLZyB0L0J6VwJiUQClUpF1fcGAoHV+aQbhTpWXAGLn0GtdytS2RUkk0lUqzIpg2t0dHSgq6sLHR0dNJ/nsEIWLH4G1f5dSKXTSCaTqNXUHSAPBoOIRqMIBAKWnk9bBwyMMWQyGczPz6v+h7kQx3Ho7+9HNBq19D+UERhjSCWTiC/EUBXW97bgeR4DAwMIh8M0n4whsbSExfgCauv8LXM4HBgcHEQoJNItr80wxrAYj2NxMQ4m1g5bBafTiaGhIXR2yhTbahOCICC+EEMikVj3fLrdbgwNDSEQCCg/ucXVajXEY/NIpFIQbdeugsfjwfDwMHw+meJlJrJtwFCpVDA7O4uVFZmiORr4/X4MDQ3B4xHp6NgGyuUyZmdnkcvllJ+sQkdHB4aGhtp2KbhUKmFmZkb1ipeSYDCIwcFB2yxd6q1QKGBmZgalUkmXnxcOhzEwMNC2q4v5fB7T09OqV2iURKNR9Pf3t+1q2MrKCmZmZlSv0Cjp7u5Gb2+v5ebTlgFDqVTCxMSEbv84DTzPY2xsDH6/X9efa3WFQgGTk5PrXqWR4nA4MD4+Dq9Xoe5Di8nlcjh79iwEnU+gu1wujI2NtV1Qu7y8jKmpKd0P53k8HoyNjbVdUJvJZDA9Pa37z/V6vRgbG2u7oDaZTGJubk73nxsIBDA6OmqpoNZ2AUOpVMKZM2d0v7g1cByH8fHxtgkaCoUCJiYmdL+4NfA8j82bN7dN0JDL5TA5Odm0k+dOpxObN29um0ORy8vLOHv2bNN+vsvlwpYtW9rmIpdOpzEzM9O0n+/xeLB582ZLXeSaKZFIYH5+vmk/3+/3Y2xszDIrDdYYhUqCIDTlTngtxhjOnj2r++qFFdVqtabcCa9lxL+ZVVQqFZw9e7apaWrVarXp/2ZWUSqVMDU11dTXMOLfzCoa2zrNVCqVMD093RbzubKy0tRgAahvHc3Ozjb1NbSwVcAQi8V023OTU6vVMDs72/Jv+rm5OUMCo2q12vRfLLMxxjAzM2PIhbxUKiEejzf9dczUmE8jfgcLhQKWlpaa/jpmEgShKdsQYlZWVpBKpQx5LbPUarWmB18NmUwG2WzWkNdSYpuAIZfLIZlUaKSio+XlZWQyGcNez2jZbNbQv186ncby8rJhr2e0dDqt24FRNZaWlpDP5w17PaMtLS3pdmBUjYWFBdUpxHYUj8dVp/TqYX5+3tDXM1osFjN0FVrPA5UbYZuAwYw7qng83pKrDIwx0+azFZk1n4uLCp0dbUoQBFP+bq26ylCr1ZBIJAx9TcaYoTd4RqpUKoavoAiCYIlVG1sEDKVSydC7t4ZyuWzK62pVzWZR03A31qg8ZrRGhUOrq6RTEDTcHa2srBiyVXah5eVlW9zFVZIJMA13R5lMxpQzGplMxhJ3cUrKiSUwDWeCUqmUKTc+yWTSFmdtyotxMA3jNCsQSiQSpt/Aag4YnnnmGdxyyy0YHBwEx3G47777mjCs85kZqdohSs5PnMbhf/15xH7yA1WBg5l/JytEyUpWDh/C4d/6AuIP3qcqcDD67m0tO8xn+qUXcfjf/CaWHvu5qsDBrPcnYwzpdNqU19Yi8YvH8PaXfwvJp36pKnAwaz4bFXitLv7AvTj67/8tUi8+pxg4mLlyUq1WTd/W1Rww5HI5HDhwAH/zN3/TjPFIvqZZ7LDCAADVbAaz//gPqgIHM/9OehXaarZKMoHpv/umYuDAGDP1LIFd3p/leAxn/+dfKgYOgiCYugpll/kszU5j4i/uUQwcqtWqqatQdjlnU5g4gzN/+seKgUO5XDY148vs+dxQHQaO43Dvvffi1ltv1XFI5xMEAUeOHGnaz1cjcvQtCGnr3smVFxeRfvG5877mDIbQ98nb0HPTx+BYU2a0Wq3i2LFjRg/xPJE3X4WQt+4Hc3F2BtlXf33e11zRLvR/+nZ033AT+DU1EEqlEk6ePGn0EFdxHIfgS88DNesupRcmJ7B86I3zvubu7cfAZ+9E1wc+DG5NDYR8Po8zZ84YPMJ3ODgOHS88bdrrq5E7cRy5Y+d/JnqGRjB4++cQueb94NbUQGh2HQslbkGA76XnlJ9oouXDb6Fw5tR5X/ONb8bAHZ9H+Mr3gltTA6HZdSyU+P1+bN682bTXt3zAUCgUcPr06ab9fDXYt/8a5alJU8ewXhcGDisrK5icnDR1TLU//zqqCXseMHNFu9B/2+3ovr4eODSrap4W5f/2B2A6lUw22oWBQ7Oq5qnFqlWU/8/fN+31N+rCwGFxcRELCwumjYdlMyjf899Me/2NujBwmJ+fN3ULkud57N6927zXN+2VVbJGwR/7Zkqct1Xx0x+iYpMlV6uqJBOY/r/PbVU8dB8qNjjEaWUXblVUbRr4WEVjq+LIV34Lyad/iaoJh3FbyepWxX/4EtIvPm/6oVhBEEw9+Gj5gIHoo5rNYPFnDyD/1htmD6UlVJIJxB+6H8Xj5m6XtYpyPIb4g/ehdMHSMFmf4sw0Fh64F5Vp87YjWknhzGksPPBT1BZiZg/FVJYvoG6NFslWGMP6uXv70P+Z+rLvSqGAVJPL7bY6z9AwBm7/HKLXXIt0Nou0hUq32pFvbDMG7vgcwu++ColkEplYe38ob5R/+04M3vF5BC+9vF4fpEXrdRilY+9+DN75BXTuO1Av02xyZpKZ10TLBwxW6MxnjaBFu7WBAn+uI5/HAnnRdp3PtYFC42CZJd6fsOem2dpAoXGwzOymWnZ9bwLnBwqNv4fZ88nz9m1CtTZQaDD7993sf0/NAcPKygpOnXpn2XBiYgJvvPEGotEoRkdHdR0cUO/O53Q6Tds7EhjQf8830Ntp3W6L2Tdfx8k//D9W/ywWKKw+5naD4zjT9sEY58DQ33wHXQHzL7RSUs89jTP/v/+++mexQKHB7C6czOHG5v99L0Je67ZoXvz5Q5j61l+v/lksUFh9bE1Gjxk4XwA7fvxzdHisey81/8N/wdw/f2f1z2KBQoPZ89kxMIA9Dz5u6hiUzPw//zcW7vvx6p/FAoUGs+fT7C7Kmn8rXnnlFVx33XWrf/693/s9AMBv/MZv4B//8R91G9hafr/ftOYbS4IHD78yjfGoH1eMhDEW8Vv2LkQuUGjgOA4+n8+0fN5YzY2fvTyFbd0BXDESwXDIa9n5lAsUGnieh8fjQcmkw3rTZRce/tUkdvZ04IqRCAaC1g1s5QKFBpfLZeoNwqm8Ez97cQK7+zpxxUgEvR3WDWzlAoUGj8dj6g2C2RdYLeQChQaz/z5mv/6G0iqNYmbq2ss5P+L5dzI1egJuXDESwe6+Tjh4a1zo8hOnkTtxXDZQWMus1DXGgOeX/UiX3pnPgU4PrhiJYEdPB3iLzOfKkcMoxRdkA4W14vG4Kb0kBAY8lfEhX3lnm2kk5MMVo2Fs7QpYJhDLvvYKasWCbKCwllmpa1UB+EXKi4rwzkfieMSPK0atdaOQfvF5cC6XbKCw1szMjGkVLLdt22b6Mr6S5FO/hKurSzZQWGtyctK0AnQ7duyAS8VnfLPYImBgjOH48eOG33VkqjyeTYn/43S4Hbh0OIxLBkPwuuy1T1er1XD8+HHD67wvVRz4VVp8USvodeLy4TD2D4TgcdorecesYlixiguvpMXnKupz4fKRMPb2B+Fy2Gs+y+UyTpw4YfjrzlQ8eCMt/lhPwI3LRyLY3dcBp4qgx0rMqmUTCAQwPj5u+Os2m1m1bILBYFO2/bWwRcAAwJQCJEdKAZzJygcpLp7DvoEgLh8JI+Iz90CKFmbcxb1RCGBmRX4+PU4eBwdCuHQ4hKCF9+UvZMZd3IWrX2J8Lh6XDIZx6XAIAbd19+UvZPRdnNjql5jGjcLBwRB8NrpROH36tOElt0dHRxEMBg19TSMwxnDy5EnDS25v3rzZ9DMMtgkYBEHAqVOnjPtH4h14IuFGsaruLpwDsL2nA+8etfY+ckOtVsPJkycNW7URHC48FnegKqh7u/EcsKu3E1eOWnsfuaFSqeDkyZOGrdpUHR48tlDfllDDwXPY09eJd49GEPVbP7Atl8s4efKkYXvvJacPT8wLqrNNGjcKV45GLH3gtKFYLJ53WL3ZOjs7MTo6apltHL3lcjlMTEwY9nrhcBjDw8OGvZ4U2wQMgLFLa5s2bYLT68cbcxm8MpNGrqy+4uTW7gDeN95l+QudkUtr4+PjgMuDV2cyeH0ujUJF/YV1V28HrhnvsvyFzsizNlu3bkUZDrw6k8Eb8xmUNAS2e/uDuHo8avkLnVFnbTiOw7Zt25CrAa9Mp3EolkWlpj6wPTgYwns3RS2dWQEYt0rL8zy2b98Op9Pa87FRsVgMS0vNL3HvdDqxbds2OFScp2o2WwUMALC0tIRYkwu7dHV1YWBgYPXPVUHAkYUV/Ho6hcWc+hUOO1zoFhYWsNjkwi69vb3o7e1d/XOlJuBwLIuXp9NIFdSVruU4YF9/EFeNWftCNzs72/SW04ODg4hGo6t/LlUFHJrP4NczaWSL6laM7HChY4xhenq66RlSw8PDCIfDq38uVmp4fS6DV2fSWFF5o+DkOVw6FMa7N0Usu1XBGMPk5GTTO3Ju2rQJnZ2dTX0NKxAEARMTE03d6uE4DmNjYwgEAk17DS1sFzAAzT2VHolEMDg4KLqUxhjDZCqPl6fSmEipS0u0+oWOMYZYLNa08ww9PT3o7e2VnM9TiRxenkpjOqPul87BcTgwGLTshY4xhtnZ2aadZ+jv70d3d7foY4LAcHxpBS9PpTC/rC7N08lzuHQ4jHePWvNCxxjD1NQUlpeXm/LzLwy+1qoJDEcWlvGyhhsFt4PHFSNhXD4ShsdpvfkUBAFnz55tWtAwMjKCUCjUlJ9tRbVaDRMTEygWi7r/bI7jMDo6aqngy5YBA9Cc5cre3l709PSo2neLr5Tw6+kU3l5YVrWP7OA4HBwM4j0WvNAxxrC0tKT7cqXcxe1C89kiXp5O4djiCtS8I508h8uGw7jSghc6xhji8biuKzccx2FwcBCRSETV689k6vN5ckndhcHj4HG5RS90jDHMz88jmUzq9jM5jsPw8LCqi9vqjcJ0GhNJdTcKPhePd49G8a6hkOWyVARBwOzsLDKZjG4/k+d5jIyMWOriZpRarYaZmRldg1qHw4FNmzaZfsjxQrYNGACgVCphZmZmw0tCHo8HQ0ND6/rHWSlV8epsGq/NZFCqKe8jW/lCVygUMDMzs+EiRF6vF8PDw+uqgpgpVvDKdBpvzGXOy4eXYuULXT6fx8zMzIYP6vr9fgwNDa0rnz2ZL+PX02kcms+ipuJX3coXupWVFczMzGz4oG5HRweGhobWlc++uFLCy9MpHF5YVhXYBtwOvHdTFAcGg5ZLx8xms5idnd1wR+BgMIjBwcGWP7MghzGGTCaDubm5DR98DofDGBgYsMSZhQvZOmAA6v9Q6XQaiURC87KQ2+1GV1cXIpEI+A3+MhcqNbw0lcIrM2lVmQBWvdAxxpBMJpFMJjUHDh6PZ3U+N3o6eqVUxYtTKbwxm7H1hU4QBCSTSSQSCVQ0thr2+Xzo6upCKBTa8HxmixU8P5nEoVhW1YWuw+3AezZFcXAwZJkCZUD9bq4xn1oDB7/fj66uLgSDwQ3PZypfxnOTSby9oO6uMuh14uqxKPb2BS1ToAyoz+fS0hKSyaTmwCEQCKC7u7stVxWkVKvV1fnUGjh0dHSgp6fHMucVxNg+YFirUCggnU6jUCigUChclJLFcRy8Xi98Ph9CoRD8fv2rt62UqnjxbBJvzNn7jo4xhkKhgEwmg3w+j2KxKDmffr8foVAIPp9P9/nMFCt4QeOF7r1jURwYsNaFjjGGXC6HbDaLfD6PUqkkOp8+n++8+dRb8tyF7ojNL3SMMaysrCCbzaJQKIjeLPA8vzqf4XC4KRUHF1dKeHYigRMqt36ifheuGevCzt4OS6UcMsawvLy8Op9iNwtr5zMSiZjeCMnKBEHA8vIylpeXkc/nRVcZHQ7HefNpZgVHtVoqYFiLMYZKpbIa5fE8D5fLZdgvaebcHd1bNr/QNZg9n1ovdCGvE1eNdWFvX6elLnQNZs/n4koJz0wkVJ9xsOqFrkEQBFQqldUgzOFwwOl0GjbW+WwRz5xJqD4M3dvhxjXjXZYq4b2W2fPZatbOJ8dxq/NpNy0bMFhFMl/GcxMJHImrq1pn9Qud2eLn7ug0XejGu7Czx5oXOrOt50L3vvEubLHohc5sU+kCnjmzhJmMuu3RwaAX7xvvwljUWofbCBFDAYNBtF7ouvwuXE0XOklz5y50k3Sh08W6LnSbuzAWoQvdhRhjmEjm8cxEAjGV6a2jYR/ev7kLQyH7dHck7YcCBoNpv9B5zl3orNMtz0qmUvUPZrUXuqGgF9fQhU5U40L39JkEFlbUXeg2hX14H13oRDHGcGIph2fPJLCUV5cps6XLj/eNd6Ov09pVYkl7ooDBJGdTeTxzJoHZrLoL3eaoH9dv70XYZ/2DMUZjjOFMsj6fai90O3o68KFtPei0WE0MK2CM4fjiCp6bSKq+0O3t78QHtvTA77ZOxo9VCKxeAOq5iSTSRXWZMu8aCuF9m7vgtVAGFSEUMJhI64XOyXO4eiyKy0ciljwYabbGhe7ZiSQSKi50bgeP92/uwiVDIfC0enMRrRc6n4vHdVt6sK+/k1bDRNQEhrdiWTw/mcRySTkltMPtwIe29WAHbUsSi6CAwQK0Xuh6Am7csKMXw7QMLEpgDG8vLOO5iQQyKnorDHR6cMOOXvR3Wr/LqBlqAsOh+SxeOKvuQjcS9uHG7b3oClDanZhqTcBrcxn86mwK+Ypy7YMtUT8+TKuLxAIoYLAQrRe6g4NBXLu5G16LVYy0ivqFLoPnJ5OKTYQ4AJeNhHHNWBfcTuvUw7CSSk3A6yovdDwHvGdTFO8ZjcBpofoiVlKuCnhlJo2XplOK3UZpdZFYAQUMFtS40D03mVRsq+131Zctd1k0P94KKjUBr89m8MLZJIoKH8xBjxMf3t6Dbd0dBo3OfhoXul9NJVFWaAMd8blww/ZeShuUUazU8NJ0Cr+eVq4S2xNw48YdvXTIlJiCAgYLK1ZqePpMAq/PKTeJGYv4ccOOHkR8tAwsJVeu4penllSV893eHcCHtvUgaMEOo1aRLVbwxKlFnFhUThXe09eJD2ztRsBNh0ylpAplPHZ8UVVNjEsGQ3j/5i5aXSSGooDBBmYzBTxyPK7YYtfJc3jvpiiuHKVlSzmTyTwePRFHqiB/kM/t4HDNeBcuHQ7ToUgZJ5dW8PiJRWQVzjd4nTyu29KN/QMb7+XQqhhjOBpfwS9OLSquLgbcDnxwK60uEuNQwGATNYHhlZk0nptIKHZx7PbXD0WOhGnZUkq1JuDFqRR+dTal2POjv9ODG+lQpKxyVcBzkwn8eiatWAp9OOTFjTt60R2gWgNSipUanjqzhDfmsorPHY/6cQMdiiQGoIDBZtKFCh4/EcfppPKy5f6BIK7b0m25NtpWksiV8ciJOKbT8i3SOQCXDodxzXgXPHQoUtLCcgmPHF/AvEKFQ54DrhyN4L2bopZqumY1M5kCHlW5unjVWBRX0KFI0kQUMNhQIw3ziZOLiqf//S4HPrC1G3v6KDdeCmMMb8WW8eTpRRQq8ociOz1OfHhbD7b30KFIKQJjeH02g2fOJFCqyc9n2OvCDTt6MB61bktfs9UEhl9Pp/DcZFLxUGR3wI0bt/dimFYXSRNQwGBjxWoNz5xJ4LVZ5UORmyI+3LC9F1E/HYqUki/X8OTpRbwVUz4UubU7gA9v60GIDkVKWi5V8YuTizi2qNx4bXdvBz6wtQcdVHlTUrpQwWMn4jijYnXxwEAQ19LqItEZBQwtYC5bxCPH44grVIt08BzeMxrBuzdF4ORpGVjK2VT9UGQyL38o0uXgcM1YFy4bDlNnURmnEzk8eiKOrEJtEY+Tx7Wbu3FwkA5FSmGM4di51UU1Kdcf3NqN3bS6SHRCAUOLEM4dinx2MoGKQm581O/CTTv7qFKkjKog4FdnU3hxKoWawjJwb4cHN+/so4ZBMso1Ac9PJvHydErxUORQ0IubdvWhi1bDJGlZXRyL+PCRnX20GkY2jAKGFpMpVvD4iUWcSsjnxnMc8L7xLrx7NEJ3HzKS+TIePR7HWYVDkQ6ewwe3duOSwRDNp4z4SgmPHI9jTqHpmsvB4YbtvdjbHzRoZPY0lyni58cXFA9Fep08btrZR2dvyIZQwNCCGm11nzi5qFj7fzzix0d391FBHRnsXMnuX5xaQkGhJPKOng58ZEcvFdSRwRjDG3MZPHUmoVgSeV9/Jz68vRduyqSQpCXl+rLhMK7d0kVbkmRdKGBoYaWqgGcnEnh1Jg25f+SA24GP7e7HpgiV75VTqNTw1OklvDkvnxsf8jrx8T0DGAxS3QY5K6UqfnFqEUfj8ociu/xufHxPP3o7aMtHTqZYwWMnFnFaYXWxr8ODW/f0I0JbPkQjChjaQGy5iJ8fiyu20L5qLIqrxqJU1VDBdLpeeVOusyjPAe/f3I0rRsK0RaHgzLlDkXIN15w8hw9t68EBqhIpq7G6+PiJuGzKtdvB48Ydvdjd12ng6IjdUcDQJgTG8OLZFJ6bSMiuNoyGfbhldz86Kb1NVk1geGYigZemUrLP29Llx807++F30xaFnEpNwC9PLSn2TdnV24Ebd/TC46T5lFOq1vDo8TiOKKzeHBwM4oNbe6h4FlGFAoY2M5Uu4MEjMdmzDT6XA7fs6sPmLiqmo+R0IoeHji7Inm3o9Djxsd39VKpbhaPxZTxyLC5b8Cnsc+HWPf1UqlsBYwyH5rN4/OSibMGnnoAbH98zgO4AbVEQeRQwtKF8uYafHY0plpe+cjSC9413UalZBculKh54O4bpjHQmBQfgmvEuvHtThLZ8FKQKZdz/dgwxmfLSPAd8YGsPLh2irBQliysl3P92DEsyW2gunsP123uxb4CyUog0ChjaFGMML0+n8fSZJcgdrB4MevHxPf2Uw61AEBieP5vE85NJ2eeNRXz46K5+qmiooCoIeOp0Aq/MpGWft607gJt29lFFQwXlmoAnTi7ikMKB3T19nbhhey/c1C+FiKCAoc3NZYq478i8bBU+j5PHzZTDrcpkMo8Hj8Zkq/AF3A7csqsfY1HKSlFycmkFPzu6gKJM+mXQ48TH9/RjiAqRKTocy+LRE3HZ4m5Rvwsf3zOAPspKIReggIGgWKnh4eMLOLEon4516XAY11EOt6JcuYoHjyxgMiW/5fPeTRFcPdZFZaUVZIoVPPB2DLMyxZ44Dnj/eBeupEJkipL5Mu57ex7xFektCgfP4UNbu3GQCpGRNShgIADqWxSvzWbwy1NLqMm8JSiHWx3GGH41lcIzEwnZUsjDIS8+trsfQdrykVUTGJ6bSOBFhayUzVE/PrqrD34qRCarWhPwy9NLiqWld/Z04MadvfBSVgoBBQzkArHlIu5/O4ZUQbrxEuVwqzeTLuB+xawUHjfv7MfWbspKUXLmXFZKXiYrpeNcIbJRKkSm6Fh8GT8/HpetuBnyOnHrngEMUCGytkcBA7lIqSrg0RNxHFmQb/N8YCCID22jHG4lhUoNPzu6oNjf4/KRMK7d3E1ZKQpWSlU8cCSGKZn+HhzqhcjeS4XIFKULFdz/9jzmFbJSrt3SjcuHqRBZO6OAgYhijOFQLIvHTyjncN+6d4A6CypgrF7v/8nT8lkpA50e3Lp3gLJSFAiM4YXJelaKUiGyj+/pp14pCmoCw9NnlvDydFr2eVu6ArhlVx/1SmlTFDAQWYu5Eu4/LJ/D7XXy+NS+QSpMpMJ8toj73p6XLYPc4Xbg0/sHqTCRCmdTeTx4JCZbBjnkdeIzB4YoqFXh1NIKHlLISukOuHHb/kEKatsQBQxEUaUm4HGFHG4Hz+GWXX3Y2UvnGpQUqzX8/Fgcxxely/a6HRxu3TNA1TZVyJereOjoAs7IFCLzOnl8et8ghimoVZQtVvDAkRhmMtJZKR1uB27bP4S+Tkq9bCcUMBDV3j6Xw12WyeG+bgs1XFKj0eL5iVNLqEnsUXAccOP2XhwYDBk8OvthjOGlqRSelslKoaBWPUFgeG4ygRfOSmelUFDbfihgIJrUc7hjiMt0vrx0KIQPbuuhw2YqLKyUcP/heSRlslLeuymKa8ajFISpMJsp4P63Y8jKZKV8YEs3LqegVhWlQmQU1LYXChiIZpWagAePxHBiSfrU/7buAD62u58yKFQoVmu47/A8JlPSp/739HXipp19lEGhQr5cxY/fmsecTKGnS4fD+ODWbgpqVcgWK/jRoTks5qTPMVFQ2x4oYCDrIjCGX55akq31Pxj04tP7BqiIjgo1geHnxxdwOCadyrop4sMn9g5QER0V1AS127sDuIWCWlWK1RruPTyPszJB7d7+TnxkBwW1rYwCBrIhv55O4RenliQfD/tc+Mz+QUTphLoixhiem5RvYNVz7oQ6VYZUJjCGX5xawqsU1OpCTVA7FvHhVgpqWxYFDGTDjsWX8dDRBcl6DT5X/YQ6NQdS5835DB45Hpc8vNfpceK2/YPopeZAqrw8ncIvZYLayLmglsqdK6Ogtr1RwEB0MZMp4MeH5iTzt508h1t292MHdbxU5Uwih/venpfMSHE7eHxibz/Go3RCXY1j8WU8eHRBMiPF53Lg0/sGKKhV6c25DB45QUFtu6GAgegmmS/jh2/OIV2UPvH/oW09uGw4bNygbGxhuYQfHZqVLErEc8CNO/qwfyBo8MjsaTpdwE/eoqBWL0pBrcfB4xN7B6iNewuhgIHoKleu4seH5mTr0l8+HMYHtnbTiWoVMudOqC/JnFC/eiyKq8bohLoaiXwZP3xzVrbSJgW16sWWi/jxoTnZoPYjO/qwj4LalkABA9FduSbggSMxnJI5ob6jpwMf3dVHJ9RVKFZq+OnhedlmS/sHgrhhey+dUFdBVVA7EsYHtlBQq4aaoPaa8Sjeu4mCWrujgIE0hcAYnji5iNdmM5LPGQp68al9g/C76US1kprA8PCxBbwt00F0POLHrXv74aET6orKNQEPvB2T7SC6o6cDt+zqg5OCWkUU1LYHChhI0zDG8PJ0vUOjlIjPhc8cGETERyfUlTDG8OyEfLne3g43bts/hE4PpQkqURPUDofqQa2PujMqqgoCfn4sLh/URv24dc8APE4KwuyIAgbSdEcX6mmXNYm3mt9V7844GKTujGq8MZfBozIn1IPnTqj30Al1RWqC2qjPhc8cGELYR2mCShhjeGYigRdlg1oPbts/SEGtDVHAQAyh5oT6bfsHsSlCJ6rVOH3uhHpF6oS6k8ftB4YwQEGYKkcWlvEzmaA24HbgzoPD6ArQSpgaikGt14m7LhmmFtk2QwEDMcxSrowfHZI+oe5ycPjsgSEMUy68KrHlIn50aE6yMZDXyePOS4YpF16lqXNBbUkiqO1wO3DXu4Zp+0wlpaA27HPhrkuGaaXBRihgIIZaKVXx47fmEJM4oe5x8Lj9IN0Zq5Uu1E+oJ/LiJ9T9LgfuvGQY3XRnrMpSrowfHppFViKoDXqcuOtddGesllJQ2+V34c5LhhGg0ty2QAEDMVy5KuD+I/M4nciLPu518rjjkmH00Z2xKsVKDT85PI9piRPqHW4H7rpkmEofq7RSquJHh+awINHCPex14a530Z2xWvWgdhaJvHhBt56AG3ccHKZsKRuggIGYQhAYHjoaw5H4iujjPpcDd10yhO4ABQ1qVAUB9x6WDsKCHifuvGSYDu6pVK4K+OGhWcxkxFtkR/315XS6M1anUKnhe2/MIi4RhPV1eHDHwSF4KRvF0ii3hZiC5zl8dJd0Gd7GB0xSYqmdnM/J8/jEngGMRcTPf2RLVXzvjRlkZcp2k3e4nTxuk8ncSeYr+P4bs8hLLLWT8/lcDtx+YEhya2xhpYQfHpI+P0KsgQIGYhqe5/Cx3f3Y0iXeQClXrgcN6QJd5NRwOnh8at8gRiQOjWaKVXz/jVmslKTLIpN3eJwOfGb/oOTW2GKujB+8OYtihYIGNfxuB+44OISoxCrXXLaIHx2aRblGQYNVUcBATOXgOXxiTz/GJNIpl+nOWBOXg5etaZEsNO6MKWhQw+ty4LMHhtCjeGdMQYMaAbcTd1wyjLDEodGZTBE/eWsOFQoaLIkCBmK6+p3xAEbC0nfG36M7Y9U8Tl72zngpX8b335yjO2OV/G4Hbj84hKhf7s54ju6MVer0OHHHJUMIShwaPZsq4L7D86gKNJ9WQwEDsQSXg8dt+wYxJHFnnKI7Y028rvpFTurOOL5Swg/enKU7Y5UCbifuOKhwZ3yI7ozVCnlduOPgEDokMiNOJ/O4/+0YagKdybcSChiIZbidPG47MIj+Trk741kU6M5YFd+5oKFL4s54frlUvzOmg2aqKN4Zpwu4l+6MVYv43bj94DD8EpkRJ5dyeOhoDAIl8lkGBQzEUrxO+T3j+Mq5g2Z0Z6xKwO3E7Qel0ylnMkX8mPaMVQt5XbjjEuk74zN0Z6xJd8CN2w8OwSvRjOpofAUPH1sAZf9bAwUMxHLeuTMWDxpiyyX86E26M1ar0+PEHQeHEPSK3xlPpQv4Kd0ZqxbxnSs0JHNn/ODRGAQKGlTp7fDg9oNDkh0sD8eWz/WloPk0GwUMxJLqe8ZDiEjcGc9m6c5Yi5DXhTsPSlcnnEjmcR/dGavWFXDjjoND8LnEP0KPxVfwM7ozVq2/04vP7B+E28GJPv7GXBZPnFqi+TQZBQzEsjrO3RmH5O6M35pHlYIGVcI+F24/OISAxHL6qaUcHjxCd8Zq9XR48NkD0nfGby8s45HjdGes1lDIh0/vH4KTFw8aXp1J46kzCZpPE1HAQCwt6HXhDrk74xTdGWvR5Xfj9gMyd8aL9TtjOmimTn+nF5/dPyR5Z/zmfBZPnFyki5xKo2EfPr1vEA6JoOGlqRSem0waPCrSQAEDsbywr56CJXlnnMjhAbozVk3NnfGjdGes2mDIi9v2D8EldWc8m8GTp2k5Xa2xqB+f2DMAienE85NJvHiWggYzUMBAbCHqb+wZiwcNxxdX6GCUBv2dXnz2wBDcDvGPgDfns3jmTMLgUdnXSNiHT8ncGb88ncbL02ljB2VjW7sD+PieAXASQcPTZxJ4cy5j7KAIBQzEProDHtkUrDfns3htlj5E1BoMenHb/kHJO+MXp1I4srBs8Kjsayzqxyf3St8ZP3l6CacTOWMHZWM7ejpwy65+SEwnHj0Rx4xES3fSHBQwEFvpayynS9wZP3FqEZNJ8RbP5GIjYR8+tX9Q8qDZw8cWMJ8Vb/FMLralK4BbZZbTH3g7hqUcdWBVa3dfJ27a2Sf6mMCAnx6eR4b6zBiGAgZiOwNBL247MAiXyEEzxoD73p5HqkAfymqNRaTvjKsCw0/emqM+Hhps7+nALbvF74xLNQE/eYv6eGixbyCIG7b3ij6Wr9Twk7fmqY+HQShgILY0HPLhll39oo8VqwJ+cmie+iRosLkrgBt2iH8or5Rr9cJO9KGs2q7eTly7pVv0sVShgvvepkO6WlwyFMJ7RiOij8VXSvjZUap5YQQKGIhtbe/pwDXjXaKPLeXLeOAIpQdqcWAghMuGw6KPzWWL+DllTmhyxUgYe/s7RR+bTOXxy9NLBo/I3t63uQtbuwKijx1fXMELlDnRdBQwEFt776YIdvZ0iD52OpHDs3TSX5MPbOnGWMQv+tjbC8t00l8DjuNw4/ZeDEp0YH1lJo035+mQrlocx+GW3X3olugz8+xEEscXVwweVXuhgIHYGsdxuHlXH/o6xDtcvjiVwtsLWYNHZV88z+HWPf2SJbmfopP+mjgdPD65d0Cy8Nijx+mkvxYepwOf2jcgmSn10NEY4islg0fVPihgILbncvD41L4ByWZAPz8Wp5P+GnhdDnx636BoJgpD/aR/gk76q9bhceKTewdEM1HopL92EZ8bt+4Vr9FQqTH8+K055Mt0SLcZKGAgLSHodeGT++ikv166Am58bI/4odJSTcCP6aS/JgNBr2R6IJ30124s4seHtvaIPpYtVnHvYSoX3wwUMJCWMRzy0Ul/HW3pCuA6Oumvm919nbIn/R+mk/6avGsohIODQdHHpjMFPH6SDunqjQIG0lLopL++rhgJY0+f9En/J+mkvyZyJ/2PLa7ghbMpg0dkXxzH4cPbejES8ok+/sZcFq9T+WhdUcBAWg6d9NcPx3H4yA7pk/6/nknjEJ30V231pL9f6qR/gk76a+DgOXxibz+CXvFDpY+fXMRkiiq/6oUCBtJy6KS/vhon/TskuoU+enwRMxk66a+Wx+nAp/bTSX+9+N1OfHqfTOXXw/NIF+hQqR4oYCAtiU7666vD48Sn9on3nKgxhp++RSf9taCT/vrq7fDgozKVX3/81hxKVTq/tFEUMJCWRSf99TUQ9OIjO6Vr+v/0rXlU6FCpanTSX187ejpw9VhU9LGlXBkPHo3R+aUNooCBtDQ66a+vPX1ByZP+Cysl/OwYnfTXQumk/xMnFw0ekb1dNRaVrPx6aimHZyeo8utGUMBAWh6d9NeX7En/+ApepJP+qjVO+g+HxA+Vvj6XwWuzaWMHZWMcx+GmXX3olaj8+sLZFI4sLBs8qtZBAQNpeY2T/gOd4h8iv55J460YlY9WS+mk/zMTCZxaopP+ajl4Dp/cOyB70n+Kyker5lao/PrwsQUsLNOh0vWggIG0BaeDx6f2DUqe9H/8RJxOUmugdNL/4WNx5OjQnmp+d/1QqdRJ/4eOxFCkdu2qhbwufGKvdOXXB4/GqIjbOlDAQNqG3En/co3hoaMxaoetgdxJ/3ylhoePUZEsLfpkTvpnS1U6z6DRSNiHG7aLH9JdypXxNHWy1YwCBtJW5E76z2SKeGmK9t+1kDvpfzqRw5vztNWjhdxJ/8OxZRyL0/67FgcGpSu//nomjckkFXXSggIG0nb29AVxYED8ZPqzEwnElqmzpRbvGgphh8TJ9F+cWkQqT/UutLhqLIrRsHi540eOx6mJmkbXbelGv8T5pZ8dW6DUag0oYCBt6YNbexD2XlwJUmDAQ0cWaH9TA47jcMP2XgREzodUagwPHl2g1FUNOI7Dzbv64BE5H1KsCniYUlc1cfAcPrqrX3QrcrlUxWO01aMaBQykLbmdPD66uw8i2+9YypfxFO1vauJ3OyTbN89li3iRtno0CXlduH6b+FbPmWSemipp1B1w41qJeixHFpYp1VIlChhI2xoO+fCeTeJFiF6h/U3NtnQFcMlgSPSx5ycTmM/SVo8Wu/s6sbNXfKvnl6eWkKCtHk0uHQpJNqV79EQcy7TVo4gCBtLWrhrrQp9EkRfa39Tuuq3dok2/BFZvqkSlo9VrbPWIpQJXBYaHjlDpaC0aWz1iqcClqoCfHaWtHiUUMJC25uA53LKb9jf14nbwuGV3v2iqZSJfoaqaGvlcDty8S3yrZ365hBfOJg0ekb11epy4YYd4ltRkKo9XZ2mrRw4FDKTt0f6mvgaDXly1STw18LXZDM5Qa3FNxqMBXDokvtXzwtkk5jK01aPFrt5OyVLxT51ewlKOqkBKoYCBECjvb2apdbMm79kUlSzF/fCxBRRoq0eTa7d0o8t/8VYPY8CDR2Mo01aPJh/e1oNOz8WluKsCw4NHFmirRwIFDIRAxf4mpbJpIrfVs1Ku4dHjVAVSC5eDx0d39YuWOk4VKnjyFG31aOGV2epZWCnhuUnKkhJDAQMh53R6nJKlZM+mCrS/qVHU78YHtopv9RxbXMHbtNWjyUDQi6vGukQfe30ug9O01aPJWMSPyyWqQP7qbAoz1PDrIhQwELLGrj7a39TTJYMhbI6Kb/U8fmIRGdrq0eQ9oxEMBcVbYT98bAH5Mm31aPH+zV3oDlzcdZUBeOjoAkpV2upZiwIGQi5A+5v64TgON+3sg88lstVTo1Q2rXiew0d39Yl2tcyVa3jkOM2nFk4Hj1sktnrSxQp+eYqypNaigIGQC9D+pr46PE7cuEN8PqfSBbw8nTZ2QDYX8bvxQYmGXyeWcngrRls9WvR1evC+cfGtnjfnszi5tGLwiKyLAgZCRND+pr529HRgb7/4Vs8zZxKIr9BWjxYHBoLY0hUQfeyJk4tIF2irR4srRiMYDolv9fz8WBy5MlWBBChgIETS+zd3odtP+5t6+dC2HgS9F2/11BjDg0diqAo0n2rVt3p64XNdXAWyXBPw0NEYBNqaUI3n6g2q3CJbPflKDT8/Rlk9AAUMhEhynqtaSPub+vA6Hfjorn7RxxZzZTw7QVULtQi4nfiIRNXCmUwRL1PDL03CPhc+JNHw61Qih0PzWYNHZD0UMBAiQ2l/k1LZtBkN+3DlqHjDr5emUpjJ0FaPFtt7OrB/ICj62DMTCSxSVo8m+/qD2N4tsdVzirJ6KGAgRIHc/uZjJ+LUUEmja8aj6BFJZQOAR4/HIVAWiiYf3NqDkMhWj8CAx44v0lK6BhzH4cYdvQiINPyq1BieaPPeMhQwEKJAbn8zU6ziRWoApImTr2/1OEQ6VC3mynhlJm38oGzM46ynBorsnGE6U8BhyprQxO924iMSWT0nl3JtnTVBAQMhKoR9LnxAIpXtV1MpJHJlg0dkb70dHlwzLt6g6rnJBPXu0Gg47MMVI+JbPb88vUS9OzTa2h2Q3Op5/ORi2/buoICBEJUODARFq+wJrN6gipZ+tbl8JCJaZa9cY/gF9UbQ7KrxKIIiBccKlRqePkPzqdV1W7pFs1CyxSpemGzPVUUKGAhRieM43LCjFyIr6ZhKF6gNtkYOnpPs3XF8cYUOlGrkdvCSp/zfmMtilg6UauJzOXDdFvEDzy9Pp9qyTDwFDIRo0NvhwWUSBZ1+cWoJRVr61WQk7MM+iYJOj59YpAOlGm3v6cBWiYJOj56gA6Va7esPih54rq8qtt+BUgoYCNHo6rEu0V4T+UoNz0xQ2WitrtvSLdpWPF2s4MWzVEtAqw9t6xFtKx5fKePV2bTxA7IxjquvgonVYplOF3C4zVYVKWAgRCOPk8cHJdo2vzabwXy2aPCI7M3vduLaLeLz+aupJBJ5OlCqRdjnwlVj4gdKn51IYLlEZY616Onw4PJh8QOlT55qrwOlFDAQsg47ejok2zY/eiIOgTEwxnBkYbntli3XQ+5A6WPH6wdKhXPzSZRdMRIRLWterjH84lwtgZrAcJTmU5WrxsQPlObXHCit1gQci7f2fFLAQMg6cByH67f3ii79xpZLeOr0Ev7f12fwwJEYSrQPr4jjOFwvcaD0bLqAZyeS+KdXp/HgkRgFYCo4eA7Xbxc/AHlscQUvTCbxnVem8HibFyJSy+2UP1D60lQK//DrqZbfkqSAgZB1CvtceM8m8aXfl6fTmMnUtyaoSZU6fR0eXDYUFn3shbNJxJZLYKjfJRNloxG/dIfQiQSWcmUUqzUKwFTa1h2Q7BD65OklpAuVlv9dp4CBkA24cjSMqN8l+5xipbU/RPR09bj4gdK1StX22TPeKKkDpQ0CAyqUOaEKx3H4sMSB0oYiBQyEEClOnseBgZDsc4p0gVPN4+Ql74obWv1DWU9+lwM7eztkn9Pqd8V6Cnmd2CrRnAqonwuptvAWpHwoTwiRtFyq4snTS4oH8egDWZ10oYJfnFrEySX5gk0UMKizlCvjiZNxTKbkCzYVqzXFVR0CxJaLePzEImYVsqCKVQEdjta8F2/NvxUhBmCMqSrURCsM6giMqdq+oS0JdQTGVAVXtGWmjsCg6gBzKwe0FDAQsk5Brwu37R/ER3f1ye4T0yE9daJ+N+68ZAjXb+8R7Qza0K6Nf7Tq7fDgC+8awXVbumX33amapjqDQS/uvmwEV41FRQs5NbTyfFLAQMgGcByHvf1B/NaVm7CjR3yvuJU/QPTGcRzeNRTGv7pik2SdiwoFYKrxPIcrRyP44uWjoiWOAQrAtHDyPK4Z78Ldl42iv9Mj+pxWnk8KGAjRQcDtxCf2DuDWPf0XdbijgEG70LnVm5t39sFzwX5wK38gN0vU78ZdlwyLnvKnAEy7xurN+zd3XbTa0Mq/7y0fMLBzFfeIPmg+5e3s7cS/vmIU29acpJbbkqD5lMZxHPYNBPHFK0axKeJb/brcBzLNpzSO43DpcBhfvHz0vKqacgEYzac0nufwnk1R3H3ZKHrWtGmX+n1vzKWd57OljsZWq1Vks1kUCgUUCgWUSqXz/nE8Hg98Ph98Ph+CwSBcLvn8+XZXrVaRyWRQLBaRz+dRLpdX55PjuIvm0+lsqbfTugXcTnxy7wAOx5bxxMl3Oi5WKpXV92djPhsa8+n3+1fn0+FwSL1EWwl5Xbj9wBBem83gydNLqx/I5XL5vN/3C+fT6/We9/6k+ayL+t24613DeGkqhWcnEqvvz1KpdN58ViqV1e/heX51Pv1+Pzo7O8HzLX+/qUpvhwd3XzaK5yYT+NXZ1Op8FgoFrKystNR8cszO4c45+XweiUQCmUxG0/d1dnaiq6sLgUAAnFhN2ja1srKCZDKJbDar6ftCoRCi0SgCAek85XaTKZRxZD6FAb7+4aEWx3EIhULo6uqCz+dT/oY2kciVcDqeRg/yyOXk0y/X4jgOkUgE0WgUXq/4Xn47WlguYnopjSjLI5/Pq/4+nudX59PjEd/Lb0cz6TwW01kEazkUCvLprGvxPI9oNIpoNAq3++IeIFZh64ChVqthfn4e6XR6Qz+ns7MTg4ODbb/iUK1WMTc3pzlQuFAoFMLAwEDbrziUy2XMzc1pChTERCIR9Pf3t/0dcqlUwuzsrKYLm5ju7m709vba4o6umYrFImZmZlAsbqy7am9vL7q7u9t+PvP5PGZnZ1Eqldb9MziOQ19fH7q6uix5E2vbgGFlZQXT09Oo1fTJyeZ5HkNDQwiF5Kv2tapsNouZmRkIgj4HdhwOB4aHh9HZKV+1r1WlUinMzc3ptl/pdDoxMjLStqs3iUQCsZh+jadcLhdGR0fbcvWGMYbFxUXE43HdfqbH48HIyEhbrt4wxrCwsIClpSXdfqbX68Xo6KjlVhtsGTBkMhlMT0835Wf39/eju7u7KT/bqpLJJObm5prys4eGhhCJiPeSb1WLi4tYWFhoys8eHR1FMBhsys+2omZ8GDdwHIdNmzaho0O+dHIrYYxhbm4OqVRK95/N8zzGxsbg94unw7Yixhimp6c3vCorxuFwYHx83FJBmO3WkLLZbNOCBQCIxWJIJFq7RelajTvhZpmdnd3wlpGdLC0tNS1YAICpqSksL8uXom4l8Xi8KcECUP+wP3v2rKazEHbWzGABAARBwOTkpKa9eztrZrAA1LfcJyYmNrTFoTdbBQzlcrmpwULD/Px8W7zpi8UiZmdnm/46G93Xs4tcLodYLNb015menj7vxHWrWl5exuLiYlNfgzGGqakpVKvVpr6OFaTT6aYFCw2CIGBqakq3rU0rSyQSTQsWGmq1GqampiyTimmbgIExhpmZGcMmbnp6uqXf9IIgGBJ8Ae9E4lZ50zdDrVbDzMyMIa8lCIKhvwtmqFarhs1n4/B0KyuXy4b9HSuViiGBs5lKpVJTVxIvfC09z5tshG0ChlQqteHT0VqUy+Wm392YKZFIGHrXXywWkUwmDXs9oy0uLhp615/L5TSnEdtJLBbT7UCzGplMpqW3eubn5w29AUomk4Z+XhttdnbW0IB9cXFxw9kserBFwMAYa9o+ppxEItGSqwxmzefS0lJL3hXXajVTzr0sLi625HxWq1VTzr2Y8TthhFKpZEow1Krz2Si8ZjQr3HDZImDI5XLnVXEziiAItriLK8xMI3vokOrnZ7NZQ+/eGiqVii3u4nKnT2Pl2DHVz89kMqZcuEulki3O2iwfPYrcmTOqn2/WB2Mul7PEXZyS7JtvoqBhu8as+cxms7Y4a5N+9VWUNGwvmHUoPpVKmfK5vZamgOGee+7B5Zdfjs7OTvT29uLWW2/F8ePHmzW2VWaesm/2ISE9lONxHP7qV/D27/0HVYGDmX8nO2RMFKamcOjf/DaO/qc/wIqK97eZ82mH92fu5Am8+cXfxPH/9kfIT0woPp/en/Kyhw7h9S98Hifv+VPFwIExZup82uGGK/3Sr/DanXfg9F/8hWLgYOZNJGOs6YcslWgKGJ5++ml8+ctfxq9+9Ss8/vjjqFaruP7665uelmRm2lOhULDNsm/m1VfPBQ6/Jxk4MMZM3Vu0075m6oUXcOi3f0s2cBAEwdS7fNvMJ2NIPPkk3vjNu2UDh1qtZupdqR1WbAAAtRoWH3nkXOBwj2TgUKlUTN1Wtcv7k1WrWHjg/nrg8Jd/iVJcPHAoFoumXg/Mfn9uqHDT4uIient78fTTT+N973ufnuNaVavVcPTo0ab8bLX4f/l/UTIg/XC9aoUCyiKRcejSyzBy990I7t+/+rVyuYwTJ04YObyL/cPfo2LhO+NaLoeyyIHXyHvfi5G7fxMdO3asfq1QKOD06dNGDu8itb/+KwgmbNmpVc1mUblwWZzj0HXttRj5jbvhHx9f/fLKygomJyeNHeDaYQkCyn/x56a9vhqVdBrVC1dCHA70fPh6DH/+8/AND69+uZlF7tTg83mUvvk3pr2+GpVkEtUL7tw5pxO9N38Uw5+7C57evtWvJxIJUzNqvF4vtm7datrrb6jYf2NpJhqN6jIYMVbI3y/OzaFo4ofYemVefQWZV185L3CwwnwWZmZQsWEGSuqFF5B64YXzAgdLzOfZsxAsMA5Nzq04JJ566rzAwewzBEKthoINf9frKw4/x+Ljj50XOJg9n9Vy2ZbzyapVLNx/H+I/e+i8wMHs33ezX3/dAQNjDL/3e7+Hq6++Gnv37tVzTOexQpaCTXYkJK0NHKKf+Qxgdilcm8/n2sAh9KlPAxYq3Wo7FwQOgVs+BlD3w/W7IHDwfOQjQJs3gduICwMHxwc/CJjYBI4xBsaYaY2p1v1O+spXvoJDhw7hueee03M8pFkcDrh7euAIhQCTT9rCek3YNONcLnh6e+EIdgJl658Etzre7Yantxd8Zydg4e0Vu3B4PPD09oAPBAC7rT5ZkMPvh6enB4LP19bvz3UFDF/96lfxwAMP4JlnnsHwmv2yZrBCS18LdhlV74K9zeXlZeDsWbNHZVucy4W+m2/G0F31Jcp0Og0YVJGwFfEeD/pvvRWDt98BdzRaT1lr8aqLzeTw+zHw6U9j4LbPwBUM1isEWqRKoB05g0EMfuaz6P/kJ+EMBOrnF0zsNcRxnKltrzUFDIwxfPWrX8W9996Lp556CuNrDis1i8cCy5Ode/bAa+EOlpVsFrkLT/FLHIKyQuez4IEDqFk43aqcTCJ/wUFGzuVC7003X3QIygrzGbr0UjAL57uX4nEULghSeY8HfR//OIbuuBPuNWegzJ5P3uFA6PLLLb0IVpybQ/GCQ9gXBgoNZs+ny+dD+PLLTR2DksL0NEoXlLK+MFBoMPt6ZPa/p6YsiS996Uv4l3/5F9x///3YseakeCgUampf+RMnTphSuAmot2zdtWuXqVGdksxrr+Lt//Af6n+QCBTWOnr0qGkFQFwu13nvHStaevJJnPhvfwTg4hWFCzHGcOTIEdNSrcw+Na1G7IH7ceYv/gLAxSsKFzI7K6qjowNjY2Omvb4aM//8z5j6h78HIB0oNFQqFUNq5UgJhUIYGRkx7fXVmPzWNzH3gx8AkA4UGszOiurq6sLAwIBpr69pheHb3/42AODaa6897+vf+c53cPfdd+s1posEAgHTAga/32/pYGGVikChIRAImFYAxO/3m/K6WikFCqvP4zj4fD7T8s0DIh9qVqQUKDQ4HA54PB7TToPb5f2pFCg0OJ1OOJ1O07px2mU+lQKFBq/XC47jTLtBaOaNuRobqsNglHw+jzMaSsvqaWRkBKFQyJTXVqsUX4BQrigGCg3Ly8s4a9I5hrGxMXSYnaWhoDAzA97tkg0U1kqn04Z1VrzQ1q1bTV+mVJKfnIQzGJQNFNYyM9d9+/btcLvdpry2WrlTp+Du7ZUNFNZaWFgwpZEex3HYsWMHnBbP0lg5fhze4WHZQGGtubk5U8pt8zyPnTt3gufN6+hgi14Sfr/flA9Fp9OJoMpfSjN5evtUBwtAfdnV5XI1cUTiPB6PLe6IfcPDqoMFAAgGg6YczjXr90Ir/9iY6mABAMLhsCmrep2dnZYPFgAgsHWr6mABaG6dHDmhUMjywQIAdOzYoTpYAOrbAmaIRqOmBguATQIGAOjp6TH8Nbu7u+2xHaERx3E0nzried6UD5FuCx/E3QiHw2HKRa5V59PlciEcDhv+uq06nx6Px/BVUo7jTAv81rJNwBAMBtHZ2WnY6/l8PtMiSSNEIhFD9xcDgYApH1pG6e7uNvQEdSgUssXq13r19fUZugoWjUZtsfq1Xv39/YaugvX09Nhi9Wu9hoaGDL3b7+/vt8Tql20CBo7jMDQ0ZMibnuM4DA8Pt+TdcIORf0ee51t+PnmeN+w0uMPhwODgoCGvZRYj59PlcqG/v9+Q1zKL0+lses2cBq/Xi97eXkNeyywul8uw30G/32+J1QXARgEDUH/Tj46ONv3CMzw8bHq+rRHcbjdGR0eb/jqjo6OmnJkwmtfrbfqHMsdx2LRpkyUKmjWb3+9vegoZz/PYtGmT6XvDRujs7Gz6hdyoz2grCIVCTV+FdrlcGBkZscx82u63JBAIYNOmTU2bQDtkReips7OzaUFD4+Jm9awIPYXDYQwNDTXlZ/M8j7GxMdukqumhmXnnDocD4+PjLb10fqGenp6mBQ1OpxPj4+OWWDo3Asdx6O/vb1rQ4Ha7MT4+bqmbLVukVYopFAqYmZnRLV/b6XRiZGSkpfcx5eTzeUxPT6OiU8VAt9uN4eHhtrq4rbWysoKZmRnd8t89Hg9GRkba6uK2VjabxezsrG4Fx3w+H0ZGRtrm4nahVCqF+fl53Zr7BQIBDA8PW+riZhTGGJLJJGKxmG71GTo7OzE0NGS5LBPbBgxAvZPl4uLihnOMo9Eo+vr62mKZV44gCFhYWKjX89+Anp4e9PT0tMUyr5xarYZYLIZUKrWhn9PX19eyGSZaVKtVzM/PI7OBsuKNu8JoNNr281mpVDA3N1fvL7NOPM9jYGDAtFRYKymXy5idnUUul1v3z2icTwoGg5acT1sHDA3lchmpVArJZFL1HQjP84hEIohEIm171yalVCohmUwilUqpvgPheR7RaBSRSKQtzn9oUSwWV+dT7a9bI7UwEom07V2wlEKhgEQigUwmo3o+nU7n6ny2412wFMYY8vk8ksmkpkDM5XKhq6sL4XDYcnfBZmKMIZfLIZlMaqqm6/F4EI1GEQ6HLX3j2hIBQ4MgCMjlcigUCigUCigWi6sXPJ7n4fF44PP54PP50NHR0fZ3wEoEQcDKygqKxaLofHq93tX5DAQCNJ8KGvPZeH+WSqXz5tPn863OaUdHhyXvMKykVqtdNJ+NjzOHw3HR+5PmU161Wj3v9/3C+WzMpc/ns0/JfBNVKpXzrkflchmMMXActzqfXq8Xfr8fPp/PFvPZUgEDIYQQQpqDbgkJIYQQoogCBkIIIYQoooCBEEIIIYooYCCEEEKIIgoYCCGEEKKIAgZCCCGEKKKAgRBCCCGKKGAghBBCiCIKGAghhBCiiAIGQgghhCiigIEQQgghiihgIIQQQogiChgIIYQQoogCBkIIIYQoooCBEEIIIYqcZg+AEEIaPJf+Fjjesfo/h8u9+t+80/XOYw4HeKcb/Opj7ose43gHeJ4D7+DB8xw4noPDwYM799/1xzhNjznO/c/t5OHgOThX/5t/5zHHO//tcfIXfc95f+Y48BwHl4Nb/W8HBzgdPBwczj32zn87eA4u/tzzeMDF86v/Xf9eDhwH8BzE/xsA13h+47/PPYfjuPOeyzEGTqgCTAAYA5iw5s8CuJrSYxd8XaiBCQJQLYPVaoAggFXL9f8XavXHKxWg8d/VyjvfI9TAKvXnQqhBqFbAakL9f4IAoVyFUKut/jcTBAi1d/678dxapQq25nnCue9nNQG1cg1MYBBqDEK5BqHGwGoCBIHVH6sxsBpDrfLOY+f/+Z3nCYyhLDDUGEONAbXVPwM1BtHHBFz4PLb63L9lk+b+Yp5DKwyEEEIIUUQBAyGEEEIUUcBACCGEEEUUMBBCCCFEEQUMhBBCCFFEAQMhhBBCFFHAQAghhBBFFDAQQgghRBEFDIQQQghRRAEDIYQQQhRRwEAIIYQQRRQwEEIIIUQRBQyEEEIIUUQBAyGEEEIUUcBACCGEEEUUMBBCCCFEEQUMhBBCCFFEAQMhhBBCFFHAQAghhBBFFDAQQgghRBEFDIQQQghRRAEDIYQQQhRRwEAIIYQQRRQwEEIIIUQRBQyEEEIIUcQxxpjZgyCEEL2VSiXcc889+E//6T/B4/GYPZzzWHlsAI1vI6w8to2igIEQ0pKy2SxCoRAymQyCwaDZwzmPlccG0Pg2wspj2yjakiCEEEKIIgoYCCGEEKKIAgZCCCGEKKKAgRDSkjweD/7oj/7IkgfPrDw2gMa3EVYe20bRoUdCCCGEKKIVBkIIIYQoooCBEEIIIYooYCCEEEKIIgoYCCEt5T/+x/+Ia665BnfddRfK5fJ5jxUKBXz0ox/F+9//fnz4wx9GMpm01Pga7rnnHlx22WWmj6lareLuu+/GNddcg9/93d81bDxqxtZg9FxdSGp8Vniv6Y0CBkJIy3j99dcRi8Xw7LPPYvfu3fjxj3983uM///nPsXfvXjz99NP4zGc+g3/+53+21PgAYHl5GYcPH7bEmB588EEMDw/j2WefRT6fxwsvvGDYuJTGBhg/VxeSG5/Z77VmoICBENIyXnzxRVx//fUAgBtvvPGiC9y2bduQz+cBAOl0Gj09PZYaHwD89V//Nb785S9bYkxqxmvW2ADj5+pCcuMz+73WDE6zB0AIIXpJp9MYHBwEAIRCoYuWgbds2YLDhw9j79694DgOL730kqXGl8lk8NZbb+EP//APLTGmdDq92g9BbLxmjs2MubqQ3PjMfq81A60wEEJsJxaL4eqrr77of4wxZLNZAPUP82g0et73ffe738W1116Lw4cP44//+I/xJ3/yJ5Ya31/91V/hK1/5SlPGJCUSiUiOSe4xs8dmxlxdSG58Rr3XjEQBAyHEdvr7+/Hcc89d9L+bbroJjz32GADg0UcfxVVXXXXR9zY+1MPhMNLptKXGd+rUKXz961/HjTfeiJMnT+LP/uzPmjK+td797ndLjknuMSPIvb4Zc6VlfIAx7zVDMUIIaSFf+9rX2NVXX83uvPNOViqVGGOM/fZv/zZjjLFMJsNuuukm9v73v59dddVV7Pjx45Ya31qXXnqpaWNqjKdSqbAvfOEL7Oqrr2Zf/epXDRuPmrGtZeRcXUhqfFZ4r+mNSkMTQgghRBFtSRBCCCFEEQUMhBBCCFFEAQMhhBBCFFHAQAghhBBFFDAQQkgbuPvuu8FxHH7nd37nose+9KUvgeM43H333atfi8Vi+OpXv4rNmzfD4/FgZGQEt9xyC37xi1+sPmdsbAx/9Vd/ZcDoiRVQwEAIIW1iZGQE3//+91EoFFa/ViwW8b3vfQ+jo6OrX5ucnMSll16KX/7yl/gf/+N/4K233sIjjzyC6667ztRSzMRcVBqaEELaxLve9S6cOXMGP/3pT3HXXXcBAH76059iZGQEmzdvXn1eY8Xh5ZdfRiAQWP36nj178MUvftHwcRNroBUGQghpI7/5m7+J73znO6t//l//63+dFwQkk0k88sgj+PKXv3xesNAQDoeNGCaxIAoYCCGkjXz+85/Hc889h8nJSZw9exbPP/88Pve5z60+furUKTDGsHPnThNHSayItiQIIaSNdHd34+abb8Z3v/tdMMZw8803o7u7e/XxRvFfjuPMGiKxKFphIISQNvPFL34R//iP/4jvfve7F51J2LZtGziOw9GjR00aHbEqChgIIaTN3HjjjSiXyyiXy7jhhhvOeywajeKGG27AN7/5TeRyuYu+tyW6LpJ1oYCBEELajMPhwNGjR3H06FE4HI6LHv/Wt76FWq2GK664Aj/5yU9w8uRJHD16FN/4xjfwnve8x4QREyugMwyEENKGgsGg5GPj4+N47bXX8PWvfx1f+9rXMD8/j56eHlx66aX49re/beAoiZVQe2tCCCGEKKItCUIIIYQoooCBEEIIIYooYCCEEEKIIgoYCCGEEKKIAgZCCCGEKKKAgRBCCCGKKGAghBBCiCIKGAghhBCiiAIGQgghhCiigIEQQgghiihgIIQQQoii/w/+wt9bIYfznwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1803,7 +1811,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdEUlEQVR4nO3deZQsaV0n/G9E7vtW+163773dYAOtjQMMtMAcgaZbpPHI2iwNMzraDYOCvkcd32FwxEaPchQFHHUG0HlFHKXZlBYUaGhoF/ZuuuntVt3a19wzI7eI5/2jKvNW1c3MiKyKzIio+n7O6dO3tsznPjcr4xvP83ueRxJCCBARERF1IVvdACIiIrI/BgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6HBsYVFXFe97znhM9xtzcHK677jrccMMNuOGGG/Dxj3/cpNY5jxn92fTud78bkiThoYceMuXxnMiM/nzxi1+Mpz/96bjhhhtw00034Tvf+Y45jXOgk/ZnpVLBbbfdhosXL+KGG27AzTffjMXFRfMa6DBmvD7/y3/5L5ibmzvzv+tGmfkeaxnhUN/+9rfFDTfccKLHmJ2dFQ8++KBJLXI2M/pTCCG++c1viptvvlnMzMyc6b41oz8zmUzrz/fcc4/44R/+4RO2yrlO2p+Kooi/+7u/E5qmCSGE+MM//EPxohe9yKzmOY4Zr8/77rtPLC8v833UILPeY63kyBGGhx9+GLfeeitWV1dxww034F3vepfVTXI0s/qzWq3irrvuwgc/+EFIkmRyK53DrP6Mx+OtP+dyOciyI39dT8yM/vT7/bjllltar8tnP/vZuHTpktlNdQSzXp8/9mM/hqmpKZNbdzqdlmuW2+oGHMdTn/pUvOIVr8B1112Ht771rSd6rNtvvx2apuFZz3oW7r77bgwPD5vUSucwqz//23/7b3j961+P+fl5E1vnPGa+Pt/4xjfiS1/6EgDg3nvvNaN5jmNmfza9//3vx8te9jJTHstp+tGf1N1p6XPH3rJ84xvfwDOf+cyrPn/TTTdhaGio7X/Ly8uHvvcrX/kKvvvd7+Jb3/oWUqkU3vSmNw2q+bZz0v584IEH8G//9m+48847B9ls2zLj9QkAf/7nf47l5WX85m/+Jn75l395EE23JbP6EwB+67d+C48//rjz55NPwMz+JGM69bmTSEIIYXUjetVoNJBIJLC9vQ2/32/KY66vr+PixYsoFAqmPJ6TmNGf733ve/H+978fXq8XALCysoLR0VH82Z/9GV760pea2Vzb68frEwACgQBWVlaQSqVMe0wnMLM/f/d3fxd/9Vd/hX/8x388NOVzlpj9+pybm8NnP/tZXH/99Sa07nTq13vCoDlyhGFlZQWRSOREHV8qlZDNZlsff+xjH8MP//APm9A65zGjP3/lV34Fa2trWFxcxOLiIqampvAP//APZy4sAOb0Zz6fx9raWuvje+65B6lUCslk0owmOooZ/QkA73vf+/Cxj30MX/jCF85sWADM608y7rT0uSMDw9TUFJ7+9Kfj2muvxa/92q8d6zE2Nzfxwhe+EE9/+tPxtKc9Dffddx/+/M//3OSWOoMZ/UlXmNGfuVwOt912G572tKfhGc94Bj7wgQ/gs5/97JksJjWjP1dWVvDOd74T2WwWL3zhC3HDDTfgWc96lsktdQazft/vuusuTE1NYWVlBT/+4z+O8+fPm9jK0+W0vMc6ckqCiIiIBsuRIwxEREQ0WAwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6XJb3YB+UFUVlUoFlUoFmqYBAGRZhs/ng9/vh9t9Kv/afdNoNFCpVFCtVq/qz0AgAJfLZXELnaXRaEBRFNRqtUP96ff74ff72Z89qtfrrdenEAIA4HK5Wv0py7wvMkoIcej1yf48GSFE6/XZ7E9JkiDLMgKBAHw+n6P689RcOev1OjKZDDKZDOr1etfvdbvdiMfjSCQS8Pl8A2qhs9RqNaTTaWSzWTQaja7f6/F4Wv3p9XoH1EJnqVarSKfTyOVyuv3p9Xpb/enxeAbUQmepVCqt/lRVtev3er1eJJNJxONx3iy0IYSAoihIp9PI5/OtENuJ3+9HIpFAPB5nuG1DCIFyuYx0Oo1CoaDbn4FAAIlEArFYzPb9KYlmhHSoWq2GjY0N5PP5Y/18KBTC+Pg4/H6/yS1zpmq1ivX1dRSLxWP9fCQSwdjYGIPYPkVRsL6+jnK5fKyfj0ajGB8fZ3DYVy6Xsb6+DkVRjvXz8XgcY2NjDA77isUi1tfXUa1We/5ZSZKQSCQwOjpq+wvdoOTzeWxsbKBWq/X8s5IkIZVKYWRkxLajDo4NDEIIpNNpbGxswIy/wsjICIaHhyFJkgmtcx4hBHZ2drC5uXnix5IkCaOjo0ilUme2PzVNw/b2Nra3t0/8WJIkYXx8HIlE4kz35+bmJnZ3d0/8WLIsY2JiArFY7Mz2p6qqWF9fRzabPfFjuVwuTE5OIhqNnrxhDtVoNLC2tnbsG9eDPB4PJicnEQ6HTWiZuRwZGDRNw9LS0rHvgjsJBAKYnZ09c3cfqqri8uXLx74L7iQUCmFmZubM3X00Gg0sLi6iUqmY+rjRaBRTU1O2vfvol1qthsXFxWPdtXUTj8cxOTl55kJDtVrFwsKC7tRYr1KpFMbGxs5cfyqKgsXFRd2psV7Z8SbWcYFB0zQsLi6afnFr8vl8mJ+fPzOhQVVVLCwsmH5xawoEApibmzszoaHRaODSpUumX9yaQqEQZmdnz0xoqNVquHTpkukXt6ZoNIrp6WlbvSn3U6VSwcLCgukXt6ZEIoGJiYkz05+KouDSpUumjHK3MzQ0hNHRUdv0p6PedYQQWF5e7ltYAPbS9+XLl/v2ArATIQQuX77ct7AA7P1CLS0tnYn+1DQNCwsLfQsLAFAqlbC6unom+rMZZvsVFoC9Oef19fW+Pb6dNBqNvoYFAMhkMtja2urb49tJrVbDwsJCX38Xd3Z2TJmGM4ujAkM2m0WhUOj78yiKYsrcs93t7Oz0NXw1lUolpNPpvj+P1ba2to5VPNarXC6HXC7X9+ex2sbGhu6KJzM0q9lPMyEEVldX+xoWmra3twfyvmIlIQRWVlZ0V0CYYWNjo683db1wTGCo1WpYW1sb2PNtbW0duxLbCSqViikFjkZtbGwM5GJqlXK5jJ2dnYE939ra2kAuplYpFArIZDIDe76VlZWBXEytksvlBhqKlpeXB3IxtUo6nR5oKFpZWbHFqKJjAsPW1tbAO2xjY2OgzzdIgwwLwF4iP81DlYN+rTRXYZxGQoiB96eqqrYa+jWTFf3Z3BfnNGqu2BmkSqVii1FFRwSGRqNhSWeVSiVH3BWLHpN8rVazZAg2l8s54q641/6sVCqWDMFmMhlH3BX32p/lctmS37vd3V1H3BX32p/5fL6vdSCd7Ozs2OKuWE+v/ZnNZi15ndgh0B4rMHzwgx/E/Pw8/H4/brzxRnz1q181u12HZLNZy154Tph7Lzz4XTz27v8XpSceN/T9Vv6dnHDXkfn6/Xji7v8B5fKioe+36hdZCGHKOvp+2/n8vbj0vt9BZW3V0Pdb1Z+qqpqyjr7fNu75Gyx+4A9QMzjCZFV/1ut1lEolS567F6v/56NY+tM/Rj1r7L3Jqv5UFMXyafKeA8PHP/5x/MIv/AL+63/9r/j2t7+Nm266CS996UuxtLTUj/YBgKUFSY4ohhIC2Qe+hu+/9T8bCg7sTx2ahvR9X8KDP/cfDQUHK/9OZu9F0g9CVbHz+Xvxvf/0Jt3gIIRgf+oQ9Tq2PvMpfPctr9cNDpqmWVqA6ITfd61awcbf/jW++6bX6QaHer1u6aiz1f3Z8z4Mz3rWs/AjP/Ij+NCHPtT63FOe8hTcdtttuPvuu01voBACjzzyiKVDhdPQIGxc9Vu+dAkrH/mzQ5+LP+e5mLz9jQidv3Do85qm4eGHHx5k8w6RJAlT9SpEH5cenlThoQex/tcfu/IJSULyx16Ayde9AYHZuUPf22g08IMf/GCwDTzA5XJhvFQENPtOTWT/7V+w9ZlPXfmELGPox1+MidfcDv/E5KHvrVarePxxYyNl/eD1ejGStfeo4u5Xvozdf/x862PJ48Hwzbdg4lWvg3d4+ND3lstlXLp0adBNbAn4/UilB1cMfBzb9/49Ml+/v/Wx7PNh5CdejvFXvhqeeOLQ9+bz+b7eHOuJRCKYnZ217Pl7Cgy1Wg3BYBD/9//+X7ziFa9off7tb387vvOd7+C+++4zvYFWv4EAAD75Nyjf/xVr23BMR4OD1W8gAND4X/8TtUe+b2kbjqVNcCgUCrh8+bKlzar89m9C23ZgQWmb4JDNZrGysmJps8q/9kuAjQNtJ+2Cw+7urqX7TEgASr/8dsABtQxHtQsOm5ublhYbu91uXHfdddY9fy/fvLOzA1VVMTo6eujzo6OjfavCtaJY5yoh++3pbVT2ga8h+8DXWsFBHRnV/6E+kyIRq5twPEIgfd+XkP7Kl1vBoR6xfv98KRIFnBgYNA07n78XO//4+VZwqHusP+1UCkcg0tYXmPWqOVWxfe/ft4JD3eKiWAEAPj9Qcd4Sda1axcbf/jW2PvupVnCw+nrUaDRaR2Rb4VhFj0cb28+/gC2qbE/BtsbZB76G77/t55D73nesborz+3M/ODx018+idOlJq1sDOH0b8/3g8NDP/wwq64Pba6Ujh/dnMzg8+PP/ETU7FG07vD+bweGhn/9PqBftX5PRTz39Sw4NDcHlcl01mrC1tXXVqINZbLGHtgOWrulJ3vR8TNz+RjSSKeQsnIMD4Pz+lGUM/YcXYeK1t6McCCI3wA3F2rLDKNwJSG43hl/yUoy/+nXISzJyA17jfhWn96fXi5FbfxLjr3wN0rUaMMANxdpyeH/KgQBGX/5TGPupn8ZWoQg4YKVXv/QUGLxeL2688UZ84QtfOFTD8IUvfAEvf/nLTW8cAHscAlWyf+V0J82gEJybBwBbbNkqHFA53daBoOCfnAIA1G3wdxEOWArYzsGg4NufKvPYYJmocOhd5MGg4E0mAQAei9fuSwBQtce2xr06GBQ80RgAwK1Y+3dxu92W3kT3vEri4x//ON7whjfgj//4j/Gc5zwHf/Inf4I//dM/xfe///2+VG/aYZXEjCxB2GQv73bKTz6O5f/1J4c+dzQoNNlhlcS0UCFq9t3AqfDgd7H2sf9z5RNtgkKTHVZJTFYVCM0GU3cdZP/1AWx+8hOtj9sFhSari5y9Xi9GbR4Ydr/8T9j5/L2tj9sFhSari5wDfj+G8tbvUNjN1t9/BpkDRe3tgkKT1UXOVq+S6Pn2/dWvfjV2d3fxG7/xG1hfX8f111+Pv//7v+/bX0KSJAQCAcs2APF6vYhevGjJcxslyVcSZ/Km52PidW9AcP5c2++VZRk+n8+ytcR+vx/Ra66x5LmNUpsXDFlG6j/8OCZf+/qrgkKT2+2G2+22rBgqGAwi+pSnWPLcRlX36xK6BYUmr9cLSZIsq10KBoOI2fz3vfTYXkDtFhSa/H7/IJt2lWAohNj585a2QU/um/8KoHtQaAoEAoNs2lWCwaClz3+s8f4777wTd955p9lt6SgSiVgWGCJOqOiXJN2gcFA0GrVsaZAj+lOWkfrxF3cNCgdFo1HLds90Qn9KHjeGb3kZJl79WvhGx7p/ryQhEolYtuOiE/pT9nox+oqf7hoUWt8rywiFQnz/7MIVCGL8Nbd3DQpNbrfb0huucNjaFXs9T0lYQVVV/OAHP7DkruPChQvw+XwDf95e9LpKpVar4bHHHutjizq77rrr7FGX0kWv/VmpVPDEE0/0sUXtSZKE6667Di6brzrptT9LpRIWFhb62KL2XC4XrrvuOnsUWnfRa39atdmQ1+vFhQsXTl1/ZjIZrK4a2+bcTIFAANdYPDrriMOnXC4X4vH4wJ83HA7bPiwAva8k8Xq9iEYHv39ALBazfVgAeu9Pv99vyVBhMpm0fVgAeu/PYDBoye9dKpWy/cUN6L0/I5GIJb93p7U/Y7EYZHnwl85UKjXw5zzKEYEBAIaHhwf+4uvXUlE7GBkZGWh/SpKEkZGRgT3foI2NdR9qN5ssyxgaGhrocw6KJEkD70+3222LN+R+kCQJ4+PjA31Or9eLRCKh/40OJMvywK8Nfr8fsVj36ZJBcExg8Hq9mJiYGNjzjYyMWF7g0k9+v3+gL/rx8XFHjNYcVzAYxPCRffz7aXJyEh6PZ2DPN2iRSGSgF5ypqSlHjNYcVywWG+io4vT0tCV34YOSTCYRCoUG8lySJGF6etoWozWO+heNx+MDKaIJBAIDffO3SiqVGsiLPhwOn9q7jYOGh4cHUpUei8VscbfRb+Pj4/B6+79VdDKZtLyYbBAmJiYGMjVx2m+2gP1D9KamBhKKxsbGbHOz5ajA0Exa/bzI+Xw+zM3N2SLN9ZskSZiZmenrRS4YDGJmZuZM9Kcsy5ibm+vrL3c4HMbk5KT+N54Csixjfn6+ryMpsVhs4MP1VnG73Zifn+/rSEoymTwTN1sA4PF4MD8/39fQMDw8bKupMkeskjhK0zSsrKyYvvQqGAxidnb2VA9NtqOqKpaWlkxfehUOhzEzM3OqhybbaTQauHz5MhTF3AN3YrEYJicnz1x/1ut1LC4umr6ULZFIYGJi4kyE2YNqtRoWFhZQr5u7edrQ0BBGR0fPXH9WKhUsLCxANXnL+9HRUduFL0cGBmBvKUwmk8H6+vqJl1s2C/KGhobO3Iu9SQiB3d1dbG5umtKfY2NjSCaTZ7Y/NU3Dzs4OtrZOfoqkLMsYHx9HPB4/0/25tbWFHRPORXC5XJiYmDgT0zqdqKqKzc1NU/YPcbvdmJycdMSeC/3SaDSwsbGBrAlbm3s8HkxNTQ2sRqIXjg0MTfV6HRsbG8jljrf9aDgcPvUFeb2o1WpYX19H4ZhnJESjUYyNjQ1k7tkJKpUKNjY2UCwe7zySeDyO0dHRU13g2AtFUbC+vn6sM1EkSWr1pxOW9w5CqVTCxsbGsUbDJElCMpnEyMjImRuV7aRQKGBjY+NYo2GyLCOVSmF4eNi2o4iODwxNjUYDmUwGmUwGtVqt6/d6PB7E43EkEgle2Dqo1+vIZDLIZrO6/en1elv9yQtbe7VaDel0GrlcTnco2OfzIZFIIB6P88LWQbVabfWn3rbcfr+/1Z+8sLWnKAoymQxyuZzu0HogEEAikUAsFmN/tiGEgKIoSKfTKBQKXfuzefRBsz/tGhSaTk1gOEjTNFQqFVQqldahVc0zFPx+P1/kPVJVFZVKBdVqlf1pAlVVoSgKarXaof70+/3w+/22f9Owm0aj0Xp9Nt/OXC4X/H4/fD4f+7NHjUaj9fpkf55cvV5HpVJp9ackSZBlGYFAAD6fz1HTjKcyMBAREZG5GBWJiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLltroBZqvValAUBZVKBZVKBZqmQQgBWZbh9/vh9/sRCATg9XohSZLVzbW9arWKSqUCRVFQrVahqiokSYIsy/D5fAgEAq3+pO6EEK3XZ7M/NU1r9Wfzten3+9mfBgghUK1WW7/vnfozEAjA4/FY3VzbE0K03jcVRUGtVmv1p8vlOtSfbvepu3SYrtmfzdfn0f5s/q47qT8lIYSwuhEnpWkacrkc0uk0FEUx9DM+nw+pVAqxWAwul6vPLXQWVVVb/VmpVAz9jN/vb/WnLHPg6iBVVZHNZrG7u4tarWboZ4LBIJLJJKLRKPvziEaj0erPer1u6GdCoVCrP3mjcFi9Xkcmk0E6nUaj0TD0M+FwGKlUCuFwmP15RK1Wa/WnqqqGfiYajSKZTCIUCtm6Px0dGIQQyOVyWF9fN/wPc5QkSRgbG0MymbT1P9QgCCGQyWSwsbEBTdOO9RiyLGN8fBzxeJz9KQR2d3exubmJ4/6auVwuTExMIBaLmdw65xFCYHt7G1tbW8d+DLfbjcnJSUQiERNb5kyapmFraws7OzvHfgyv14vJyUmEQiETW+ZMqqpic3MT6XT62I/h8/kwNTWFQCBgYsvM49jAUK/Xsbq6imKxaMrjBYNBTE5OwufzmfJ4TlOr1bC6uopSqWTK44XDYUxOTp7ZoeBqtYqVlRXDI156otEoJiYmHDN0aTZFUbCysoJqtWrK48XjcYyPj5/Z0cVyuYzl5WXDIzR6kskkxsbGzuxoWLFYxMrKiuERGj1DQ0MYGRmxXX86MjBUq1UsLCyY9o/TJMsy5ubmEAwGTX1cu1MUBYuLi8cepenE5XJhfn4efr/f1Me1u1KphMuXLx97lKYTj8eDubm5MxdqC4UClpaWjj1K04nP58Pc3NyZC7W5XA7Ly8umP67f78fc3NyZC7XpdBpra2umP24oFMLMzIytQq3jAkO1WsWlS5dMv7g1SZKE+fn5MxMaFEXBwsKC6Re3JlmWce7cuTMTGkqlEhYXF02/uDW53W6cO3fuzBRFFgoFXL58uW+P7/F4cM0115yZi1w2m8XKykrfHt/n8+HcuXO2usj10+7uLtbX1/v2+MFgEHNzc7YZabBHKwzSNK0vd8IHCSFw+fJl00cv7EhV1b7cCR80iH8zu6jX67h8+XLfwgKwV/DX738zu6hWq1haWurrcwzi38wumtM6/VStVrG8vHwm+rNYLPY1LAB7U0erq6t9fY5eOCowbGxsmDbn1o2qqlhdXT31L/q1tbWBBKNGo9H3XyyrCSGwsrIykAt5tVo9UeGfEzT7cxC/g4qinKjwzwk0TevLNEQ7xWIRmUxmIM9lFVVV+x6+mnK5HPL5/ECeS49jAkOpVDpR9WmvCoUCcrncwJ5v0PL5/ED/ftlsFoVCYWDPN2jZbNa0glEjdnZ2UC6XB/Z8g7azs2NawagRm5ubhpcQO9HW1pbhJb1mWF9fH+jzDdrGxsZAR6HNLKg8CccEBivuqLa2tk7lKIMQwrL+PI2s6s/t7e2BP+cgaJpmyd/ttI4yqKqK3d3dgT6nEGKgN3iD1Ny3YpA0TbPFqI0jAkO1Wh3o3VtTrVaz5Hl71cjnofZwN9bceWzQmjsc2l09m4HWw91RsVgcyFTZUYVCwRF3cfX0LkQPd0e5XM6SGo1cLmeLuzg9td0diB5qgjKZjCU3Pul02hG1NrXtLYge2mlVENrd3bX8BrbnwPCVr3wFL3vZyzAxMQFJkvDJT36yD806zMqk6oSUXF54Eg/9pzdg428/big4WPl3skNK1lN86Ht46GfeiK3PfNJQcBj03dtBTujP7L88gIf+85ux8/nPGQoOVr0+hRDIZrOWPHcvdv/p8/j+XT+D9Je/aCg4WNWfzR147W7r0/fgkV/4eWQeuF83OFg5ctJoNCyf1u05MJRKJTzjGc/AH/3RH/WjPR2f0ypOGGEAgEY+h9WP/Jmh4GDl38msjbb6rZ7exfKffEA3OAghLK0lcMrrs7a1gct/+D7d4KBpmqWjUE7pz+rqMhZ+727d4NBoNCwdhXJKnY2ycAmXfuvdusGhVqtZuuLL6v480T4MkiThnnvuwW233WZikw7TNA0PP/xw3x7fiMSTj0Hb2rC0Dd3UtreRfeD+Q59zR2MY/alXYviWn4TrwDajjUYDP/jBDwbdxEMSD34HWtEeVb/tVFZXkP/mvx36nCeZwthPvwZDL7kF8oE9EKrVKh5//PFBN7FFkiRE//XrQGPwUyJGKYsLKHzvO4c+5x0Zw/irX4fUf3gRpAN7IJTLZVy6dGnALbzC7XIhdP+XLHt+I0qPPYrSDw6/J/ompzHxmtcjcdPzIR3YA6Hf+1jo8Xo8CHzlnyx7fiMKDz0I5dIThz4XmD+H8de+AfFn/XtIB/ZA6Pc+FnqCwSDOnTtn2fPbPjAoioInn3yyb49vhHTvZ1C574uWtuG4jgaHYrGIxcVFS9uk/eVHUX/wO5a24bg8yRTGXvkaDL14Lzj0a9e8XtT/8PegrVn3JnYSR4NDv3bN60X1f/w6UHbGSMNRR4PD9vY2Njc3LW1T9dd/CXDoPixHg8P6+rqlU5CyLOOpT32qdc9v2TMbZIsNfxy8Fe+hqYpP/DXqFRsUHTp418d6ehfL/3N/quKzn0TDpLMNTkKy6UE1RhydqmhYUDx6lJP7szlV8fBbfwbp+75oi/508vtna6riF+9E9oGvWX490jTN0sJH2wcGW5Cc302NfA7bf/dplC9ZO1oDALDJNqcnUU/vYuuzn0JlzQa7sJ2C/qxtbWDrM59EzQ5LRU9Bf1ZWlrH56XvQsEPR4SnoT+XSk9j89CegOqTGpV9sv4G6LY5IdsBSq268I6MYe9XesG9RUZDp83a7uuxw13MCvskpjL/m9Uje9AJk83lkLN66VTi8PwNz5zD+2tcj/uznYjedBjasrRdyen8GL16Hide+AdEbf3RvfxCrQ1jN2f0Zvv7pmHjdGxF52jP2tmm2eGWSlddE2wcGW5zMl7P/0rV2DgYFef9EPp8d1kVn7L9UtZ2DQaFZWGaL12faujnVkzgYFJqFZVYfqiVJEpC3wV35MRwMCs2LitX9KUsSULN+2u44DgaFJqt/363+9+w5MBSLRTzxxJWK0oWFBXznO99BMpnEzMyMqY0D9k7nc7vdlm6oMv8r70bQZ99slf/ut/H4r/8/rY/bBYXW17xeSJJk2TyYLLtwze/+EQJe+/Zn5v77cOm3f7P1cbug0GT1KZwejwcXPvrX8LntO+y7/bnPYumDf9D6uF1QaH3N4voBn8+Pi5/4HDwu+/bn+l//Jdb+4sOtj9sFhSar+zMUDuOpn/mCpW3Qs/K//ic2P/k3rY/bBYUmq/vT6lOUe37X/sY3voEXvvCFrY/f8Y53AADe9KY34SMf+YhpDTsoGAxadviGx+vDI1tFRP1ujEZ8iPjc9pgmaaNbUGiSJAmBQMCy9bxurw8PbxYRC7gxGvEj7HXZtj+7BYUmWZbh8/lQtaj4UfL48dB6HomAB6MRH0I2DrbdgkKTx+Ox9AZBc3nw4FoeyaAHoxE/Al77HtPcLSg0+Xw+S28QrL7A9qJbUGiy+u9j9fOfaFnloFi5dE0OJaC4Q62PAx4ZoxE/EkHP3nCbDZQXnkTpsUe7BoWDLF26Fk6i6rqSkoNeF0YjPiQCHtsEh+LDD6G6tdk1KBy0tbVl2TkZWngIddeVUY6wz4XRiB8xv32Cbf5b34BaUboGhYOsXLrWCA9DdV0ZdrbjjUL2ga9B8ni6BoWDVlZWLNvB8sKFC5YP4+tJf/mL8KRSXYPCQYuLi5ZtQHfttdfCY+A9vl8cERiEEHj00UcHftchSRIqkfG2qyQ8soThiA/DYS/cDqsCVlUVjz766MD3eZdlGUp4HGjzJud1SRiJ+DAU8sEl2+ON2SirNsOSXW4oodG2/elzyxiN+JAKeiE7rD9rtRoee+yxgT+v2+NFKTDctj8DHhkjER+SQa9tbhSMsmovm1AohPn5+YE/b79ZtZdNNBrty7R/LxxxpZMkCalUauDP6wqEOy6prGsCa7kKHlzLYylTRrVhg/0iDHK5XEgkEgN/XikQaftmDAA1VWAlW8GDazmsZBXUGjYozjTI7XYjHo8P/on9nfuz2tCwlFHwvfU81nIK6qpz+tPr9SIcDg/8eRu+cMf+VOoaLqcVPLSWx3q+goaD+jMQCFgylG3Fe/YghEIhS4oPh4aGBv6cRzkiMAB7L75B/iO5XC5UPBHd79MEsF2s4aH1Ap7cKaFUdcYSzJGREbjdg5vvdns8h6Z2OlEFsFmo4sH1PBZ2S1Bqzghio6OjkAc40uT1+aC49AugVE1gPV/Fg2t5LKbLqNSd0Z/Nw+0GxecPoCrrX1RbNwrrzRsFZwSHycnJgT5fJBJBJKL//ulEkiQNvD/j8bjlBY+AQ6YkmgY5tDY7O4tAMITtUg1bhSoamvFuivndmIgFELRxwRQw2KG1+fl5eP0BbBer2CrWoPbQn4mgBxNRP/wee/fnIGttzp8/D9ntxVaxip1iFWoPv8WpkBfjUb+tV1YAg6u1kSQJFy5cgJBd2CxUsVuqwejLUwIwFN7rTzuvrAAwsG2iZVnGxYsXB3pDYoWNjQ3s7Oz0/XncbjcuXLgAl4F6qn5zVGAAgJ2dHWz0eWOXVCqF8fHx1seaEEiX94KDUjd+R+GEC93m5ia2+7yxy8jICEZGRlofa5rAbrmGzUK1pzs0J1zoVldX+37k9MTEBJLJZOtjVRPYKVWxVaiiZjA5OOFCJ4TA8vJy31dITU1NHZpSamgadop7v+91g8lBkoCRsA9jER/cNu7PxcXFvp/IOTs7e2pHFw7SNA0LCwt9PV1VkiTMzc0hFNIfnR0ExwUGoL9V6YlEouNwqBAChWoDm4Uq8hXjUw+pkBcTUT+8NrzQCSGwsbHRt6r04eFhjIyMdOzPXKWBzUIFxaqxoXK7X+iEEFhdXe1bVfrY2FjHuUwhBDJKHZuFKsoGp3LsfqETQmBpaQmFQqEvj380fB2kCYFMuY7NQsXwjYIsAaMRP0Yj9ize1TQNly9f7ltomJ6eRiwW68tj25GqqlhYWEClUjH9sSVJwszMjK3ClyMDA9Cf4cqRkREMDw8bmjtVaio2C1WkyzUY6UA7X+iEENjZ2TF9uLLbxe2oUm0viGXKxraRtfOFTgiBra0tU0duJEnCxMSEoWJVIQRK+6/PrGKsP+18oRNCYH19Hem0eTuESpKEqakpQxe349wouGQJYxEfRsI+261S0TQNq6uryJl4zoQsy5ienrbVxW1QVFXFysqKqaHW5XJhdnbWFnULBzk2MABAtVrFysrKiYeEfD4fJicnj/WPU1c1bBWq2CpWDc172vlCpygKVlZWTrwJkd/vx9TU1LF2Qaw29vpzp2SsP+18oSuXy1hZWUGtVjvR4wSDQUxOTh5rPXulru73p7Fga+cLXbFYxMrKyomXV4fDYUxOTh5rPXvzRmG3bOzf1C1LGI/6MRS233LMfD6P1dXVE5/AGI1GMTExceprFroRQiCXy2Ftbe3Ey9Xj8TjGx8dtUbNwlKMDA7D3D5XNZrG7u9vzsJDX60UqlUIikThxhXtD1bCxHxyM9KhdL3RCCKTTaaTT6Z6Dg8/na/XnSSvc66qGjXwF20VnX+g0TUM6ncbu7i7qPR5qFAgEkEqlEIvFTtyftYaG9XwFOyVjFzqPLGHMhhc6VVVb/dlrcAgGg0ilUohGoyfuz0pdxXq+grTBETGvay84pEJe22wABez1587ODtLpdM/BIRQKYWho6EyOKnTSaDRa/dlrcAiHwxgeHrZNvUI7jg8MBymKgmw2C0VRoCjKVduhSpIEv9+PQCCAWCyGYDBo+i9vXd1/Y3b4hU4IAUVRkMvlUC6XUalUOvZnMBhELBZDIBAwvT9Py4VOCIFSqYR8Po9yuYxqtdq2PwOBwKH+NNtpudAJIVAsFpHP56EoStubBVmWW/0Zj8f7suOgUlOxlq8YnvrxuWVMxPy22tkU2J92KRRa/dnuZuFgfyYSCcsPQrIzTdNQKBRQKBRQLpfbjjK6XK5D/WnlDo5GnarAcJAQAvV6vZXyZFmGxzO4X9JaQ8NavoJdh1/omqzuz94vdDLGY3s7HdrpjbnJ6v48LRe6Jk3TUK/XWyHM5XLB7R7cds6lagNr+YrhGoeAR8ZELGCrLbwPsro/T5uD/SlJUqs/nebUBga7qNT33piNFvPZ/UJnNaWmYjWvIKcYe2O2+4XOaqftQme1QqWBtZyCosFVKiGvCxMxP6J++99dEjEwDEivFzq/W8Y4L3QdlaoNrOYqKBjcWZMXuu54oTOPEAL5SgNruQrKBnfWjPjcmIj5EbbxaaNEDAwD1vuFzoXJmB9RXujaKlQaWM0pKPFCd2K80JlLCIGsUsdaroKKwQ3K9naJ9SPoZX+S/TAwWKRQqWM1VzF8oYv63ZhJBOBz22+pjdWOc6GLBzyYTgTgtdnSVjs4zoUuFfRgKh6w3VJhOxBCIF3e68+awUOrhsNeTMYCtlpBRcTAYKHmhW41V4Fi4EInScBEdG8pJkcbrtbrhU6WgMlYAMNh1ou00+uFziVLmIr7WX/TgRACO6Ua1vMV1A1s4e2RJUwnAohzWpJsgoHBBnq90Pk9MmYTQQ4Dd9DrhS7odWE2EeAwcAe9XujCPhdmE0Fbn6FiJU0IbBer2MgbO9SOo4tkFwwMNtLrhW4o5MVk3A/3AI9VdhJNCOz2cKEbCfswEfNzGLgDTRPYLhm70EkAxqI+jEX9tlwmbAeqJrBVrGIzX9E9bZSji2QHDAw21LzQreUqum/MblnCdDyARJDDlp00L3Tr+arusdoel4SZRBDxAIsiO2le6DbyFd3tu31uGTOJAItMu2hoGjbzVWwa2CU24JExw9FFsggDg401NA1r2Qq2DWz+FPG5MZvksGU3dVXDSlYxtPlTPODBdDxgyxNG7aLW0LCcVQxt/pTcL4q028FrdlJtqFjKKIb2xODoIlmBgcEBitUGljJl3SN2JQkY3x+25DBwZ/lKHUsZBVWdehFZAiZiAYywKLKrrFLHcqaMms64ukuWMBWz3zbTdiL2j9RezirGRhcTAe7VQgPDwOAQQghsFqpYNzAM7HfLmEkGEeGwZUeaENjIV7CRr+qe+RH0uDCTDCDEosiOVE1gPV/BZkH/wLKw14WZZBABFkV21NA0rGaNnaHCokgaFAYGh+ll2DIV8mIq5ufa+C4qdRWXM2UUq/rLWkfCXkxwbXxX5VoDlzMKyjr7i0gARiM+jEf9tjp0zW6K1QYuZ8qocHSRbICBwYGayzCXMwrqBoYtp+IBJFkU2ZEQArvlGlayFWNFkfEA4kGe1NeJEALbxRpWc4ruaJjXJWM2yaLIbpqji2v5im5RpN8tYzbJokjqDwYGB1M1gdWcgu2isaLImUSAa+O7aKgaVrIV7Jb1+zPmd2MmEWRRZBc1VcNKRkHGQFFkIrhXZMqiyM56Lork6CKZjIHhFChV94aB9XaL3Fsb78dYlMOW3RQqdVw2XBTpx0iYa+O7ySl1LBkpipQkTMb9GGJRZEdCCGT2RxeNFEVydJHMxMBwSgixtzZ+LWdsbfwchy272iuK3NtrQO8XJOBxYS7JnSK76aUoMuR1YS7JnSK76XV0cTYZhI+jYXRCDAynTK2hYSlTRs7AsOVkjDvH6anU94aB9U4XlQBMxXkuhZ5yTcVSpqx76JosATOJIFIh1op0U9ovitRbcu2SJcwluSEZnQwDwynUKorMKrpbIkf9bswlg5w77qK5ZfeKgbXx8YAHs8kAN9Tponk2xWpW0d0SORX0YjrBlSnd9LLkeiTsxWQ8wClJOhYGhlNM1QTWcgq2dIYt3bKEc6kgIqxU76qhaljN6a+N97pknEsFEeKUT1d1dW+nyIzOzpt+t4xzqRACXk5RdFNtaFg2MLoY9Lgwn+KUD/WOgeEMKNUaWEorKOsURY5H99bFc0i9u0K1gaV0Wfdk0amYHyOc8tG1VxSpdD1wTZKA6XiABZE6jI4uyhIwmwwiyeXB1AMGhjNC7BfxreUrXb8v7HNjPhWEl1MUXWlCYC2nX8QX25/y4fK27jRNYDmr6I7eJIIezCaCnKLQoWoClzNl3dGboZAX0/EAN88iQxgYzphCpYGFdKnr3Yd7v0AqxgIpXTmljsV0uWttg8clYT4V4lbdBqTLNVxOl7vOxfvcMuZTQW7VrUPsn3q7lFW6bvjk9+xP+XCKgnQwMJxBDVXDQrqsuwHMaMSHyRinKPTUGhoW0iXd7aUnYn6McYpCV7Wh4tJOuesUGlelGKfUVFzaLXWdQuOqFDKCgeGMEkJgq1DFSq77FEXI68J8KsQ13DqE2NtnYD3ffYoisj/lw1Up3WlCYDVbwVaxe3/GAx7MJgKc8tGh7k/57OpM+SSDHsxwyoc6YGA440rVBi7tlrruwueSJMwleX6CEflKHQu73aco3LKE+VSQ5ycYkN2f8ul2xod3f8qHG5Hp2y3VsJTRn/I5lwohyFUpdAQDA6GhabicVpDV2fOfa7iNqasaFnbLups9jUV9mOCqFF21hoZLuyXdzZ64EZkxlfreFEW3zZ4kANMJrkqhwxgYCMCVEwZXskrXrZC5htsYIQQ2CntbdXcT3p/y4SFW3Yn9VSkbOqtSuBGZMZoQWMnqby2dCHgwm+QUBe1hYKBDyrUGLu2Wux68xDXcxhX3p3y6rUpxyRLmuSrFEMOrUpIhRPycotCT2V+V0m3HTW5ERk0MDHQVVRNYypSR5hpuUzRUDYtp/R34RsI+TMb9nPLRYXTKZzzqx3iUUxR6qg0Vl3bLKHeZ8pEATMZ5MutZx8BAbfWyhvuaVIhTFDqap4muZruffhn0unANpyh07a1K2Ts/oRuuSjGmp43IUkGelXJGMTBQV0pdxaWd7mu4XbKE80OsUjdib1VKues2yB5ZwvnhEI/LNqCwvyql3nUVhYwLwwy1RhhZleJ3y7gwHGaoPYMYGEiXpgks6azhlgDMp4JIsK5Bl6oJLKbLXVelyBJwLhViXYMB9f0pn24bkTHUGldraFjYLaHYZYqCofZsYmAgw4ys4eaBS8Y0j3heznRflTKbCGAo7BtYu5yqecTzapdVKQy1xgkhsJavYKPLRmQMtWcPAwP1ZG8NdxlKl217h8N7xZAMDfrK+9v2dluVwlNEjStWG1jQ2YhsisV7hhnZiIyh9uxgYKCeaZrAgs6QejzgwXwyyBUUBqiawJM7pa5V/8ng3np4rqDQV1c1PLnTfaOnkbAXUwy1htQaGp7YKXbd6Imh9mxgYKBjEfsbv2x12fgl5HXhmqEQK9QN0ITAUrqM3S5LWSM+N64ZCnETHQMYas3FUEsAAwOd0GahgpVs53ljn1vG+SFWqBth5AArv0fGhSFWqBvBUGsuTQhcTnffn4Wh9nRjYKATy5RrWEiXO+7XwAr13uwUq7icUTp+3eOScH4ozMOBDGKoNY+RUBvwyDjPUHsqMTCQKYrVBp7YKXVcvy1JwHySFepG5ZQ6Lu2WOq5IkSXgmqEQT7w0KFOuYWG33HFFiluWcA1DrWEMtWcTAwOZplJX8fh2qeumRNPxAEYirKg2olxr4IntUtdNiWaTAQyF2J9GMNSai6H27GFgIFPVVQ1P7JS67ks/EvZhKs6KaiNqDQ2Pbxe77rTJMxOMY6g1l5FQO5cMIhViCDsNGBjIdKomsLBb6nrYEivUjWtoGi7tdD9sKRXyYjbBZYJGMNSay0ionYj6McZQ63gMDNQXQggsZxVs61Sonx8Kwc0KdV1GKtSjfjfOpVihboThUJviMkEjGpqGJ3fKKDLUnmoMDNQ3Rrbr9bn3DgbyuVkcpcfIdr0Bj4zzw2F4GcJ0MdSai6H29GNgoL5Ll2tY1KlQPz8UQogV6oZsF6tY0qlQvzAURoAV6roYas0l9o/J3uhyTHbA48L54RBDrQMxMNBAFKoNPKlToX5hKIQIK6oN0atQd0nAhZEwQjxN0BAjofbakTD3ajBIL9R6XRIujkTg414NjsLAQAOj1FU80aVCXZaAC8NhroU3qFxr4PHtUseDgVyyhIvDXAtvVKGyH2o7vCV6XHuhgSMNxuiFWp9bxsVhbvDkJAwMNFB1VcMT2yWUO5x2KUvARd4ZG1Zt7IWwThXqblnCxZEwArwzNmQv1BY7nnbJO+PelPaXXXYKtX63jIsjYW7N7RAMDDRwehXqvDPuzV6FegnFavsQ5tkPDRxON0Yv1HpdMq4d4Z2xUXqh1u+Rce1wmIWlDsDAQJYQYu80wUyHimreGfdGEwKXdjqHMA6n90bVBJ7YKXYMYT73XmjgnbExDVXDY9slKB1CWMDjwsWRENwy+9PO+K9DlpAkCfPJIOKB9kWODU3gsa0iKh3eYOgwWZJwbiiESIf6j7oq8NhWCbUum+vQFXsHpoUR6jDKVW1oeGy7iEaXHSPpCrdLxsXhEPwdRmWa9U2diqLJHhgYyDKSJGE+FUTM3/4i19AEHtsuotpgaDBClpqngra/yNXUvYtcnRc5Q1yyhPPDoY6jXJX63l1zQ2N/GuF27dUrdKr/KNVUPLFTZGiwMQYGshTvjM0lG7kz3mJoMMot798Ze3hnbAaPa39lRIepnGJVxZM7JWjsT1tiYCDL8c7YXM0742CnO+OGtr8ck/1phHv/Itf1znibd8ZGeVsrI9rv9lioNvDkbgkay+tsh4GBbIF3xuZyy3u7Ewa63Bk/zjtjw3TvjGu8M+5Fcw8GT4ctovOVBhZ2y2BNvr0wMJBtuGQJF4bDOnfGLDQzyu2ScWE43LHQrFxT8TjvjA1r3hl7eWdsCr/HhQsjYbg7hIasUmdosBkGBrKVvdDQ7c5Y451xDzwuGRd0Cs14Z2ycT2c4PV9p4NJuiRc5gwIeFy4MhzseRpVR6lhMMzTYBQMD2Y7unXGdd8a98LaG03lnbAaf24WLw53vjHMKh9N7EfS6cGE4hA4vT6TLdSxlFPanDTAwkC15DC3B4p2xUXqFZvlKA5d2eGdslN+zFxp4Z2yOkNeN88NhdDr1eqdUw0qWocFqDAxkW/pLsHhn3AvdO2MWmvUk4HXhIu+MTRP2uXF+KAypQ39uFWtYzVXYnxZiYCBb27szDuneGTM0GMM7Y3MFvW5c0LkzXuadsWERvxvnh0Lo0J3YLFSxnq8MtE10BQMD2R7vjM115c64fX/yzrg3IV/34fRt3hn3JOr34JouoWE9z9BgFQYGcgS/x4WLOkuweJEzbu/OONT1zngtxzdloyI+d9eL3Gahis1CdaBtcrJYwIP5VLDj19dyFewU2Z+DxsBAjqG3BGunVMN2sTbgVjlXyNd9OH2jUEW6xP40Su/OeDVXQU5pfzorXS0R9HYNDUsZBcVq+9NZqT8YGMhRgl4XLgx1vjNezirIV/imbFS4eWfcoT8XM2WU+KZsWCzgwbmhUMevX9rtfMQzXS0Z9GIu2T40CABP7vCcmUFiYCDH0bszvrRb5gmXPYj6Pbgm1f7OWAjgyd0St+TuQbzLcLom9i5yPMfDuFTIi5lEoO3XGprAEzvcyG1QGBjIkcI+N+Y73HmomuAJgj2KBTwd35TrqtjbDZL1IYYlg15Mxfxtv1ZtaLi0wyLdXgyHfRiL+Np+TamrXNkzIAwM5FjxoBcT0fZvypWGhgVu0duTobAPI+H2b8qlmorLfFPuyUjEh2TQ0/ZrhWoDK1kWlfZiIuZHzO9u+7WsUsdGnkWQ/cbAQI42FvUhEWj/ppyrNFjp36OpuB8RX/s35XS5ji1W+hsmSRJmk8GOJ7BuFaus9O+BJEmYT4U6bhm/lq8gU2aRbj8xMJCjSZKEuWQQgQ4nXLLSvzeSJOHcULDjltwrrPTviSxJuGao88ZjrPTvjUuWcH441HGl1GK6jHKN9Uv9wsBAjifLEs4PhTru0cBK/964ZRnnu6xEubRbQoWV/oZ5XHLHlSis9O+dz+3Cua5FpUUW6fYJAwOdCl633HENPCv9e+f3uHAu1X55oCaAJ1jp35OQ1425RPuLHCv9exf1ezAdb1+kW1MFLvGMmb5gYKBTI+xzs9LfRLGAB5Os9DdNMuTtWunPotLeDIe9GAp5236tWFWxzJ1fTcfAQKcKK/3NNcpKf1N1q/TPsNK/J5IkYToRQNjXvn6JO7+aj4GBTh1W+puHlf7mYqW/uWRJwrlUCN4ORaXc+dVcDAx06rDS31ys9DcXK/3NtVdUyp1fB4GBgU4lVvqby+OS97aPZqW/KVjpb66g19XxzAnu/GoeBgY6tVjpb66QT7/SX+ObsmGs9DdXIujFOHd+7SsGBjrVWOlvLr1Kf+7p3xsjlf5k3Ljezq95FumeBAMDnXqs9DeXbqU/i0oNM1bpz/40qlmk23Hn13wVaRaVHhsDA516zTeRYJdK/11uH22YbqV/roIsi0oN06v0X8ooKFRYVGqUS2/n13QZ5Rr78zgYGOhMkKW9N5HOlf6spO6FXqX/5XSZRXs90Kv0X0yzaK8Xeju/LuyWWR9yDAwMdGZ0q/TX9t9EOP9uXLdK/4YmuElWj7pV+tdUgaVMecAtcrZuO79WGhpWORXZMwYGOlO6VfqXaio2Of/ek26V/rlKAzuc6ulJt0r/dLnOTZ16tLfza/ui0q1ilZs69YiBgc6cZKhzZfparsL5zR4Nh72Id6hMX8kq3O+iR+NRX8edSi9nFE719GgqHkCwQxHkYrrMpdU9YGCgM2kqHoDXdfXLX4Dzm72SJAmziUDbIjNNgEsteyRJEuaSQbQrt1E1wf7skSRJmEsF205F1lXBpas9YGCgM8klS5jvMP/O+c3euV1yx/n3Uk3loUo98rplTHeYOstXGjxUqUcBjwtTsfZTZ+lynUstDWJgoDMr7HNjLNp+EyLOb/YuFvBguNNUT76CEqd6epIMejpuQrSS41RPr4bD3o5TPUtphVubG8DAQGfaeNTP+U0TTcYDHQ/9Wtwtc+voHkiShJlEoO1SYCGABU5N9KQ11dNm6kwVnOoxgoGBzjSZ85umcskS5jtMTVQaGlZy7M9edJvqKddUrHOr45543XLHpZaFKqd69DAw0JnH+U1zhXzujksDt4s1Hi3eo6jfg+EOSwPX81WUeLR4T5JBb8et4ldyChRO9XTEwEAEzm+abTzq67gV9+V0GQ0uDezJVCzQcSvuhXSZu0D2aLrLVM8iV0l1xMBABM5vmk2S9qYm2k71aAJLGYX92QNZ3ps6a6fa0LCS5VRPL9xyl6meuor1HKd62mFgINrH+U1z+T2ujrtAZpQ60mVOTfQi5HVjosNUz06JUz29ivo9GAm3XyW1UaiiyKmeqzAwEB3A+U1zDYW8iHY4CnspU+ZUT4/Goj6EOkz1LHKqp2eTcX/nqZ5dTvUcxcBAdES3+U3uAtmbblM9GpcG9qzZn+1OtWxoApc51dMTWdrbwK3dqZY1lVM9RzEwEB3RbX5T4fxmzzwuGbMdpnqK1Qa2eOBXT/weF6Y6TPVklTp2uaqnJ0GvGxOxzlM9WU71tDAwELXB+U1zJYJepDpM9azmKlBqnOrpxVDIi1iHqZ7ljIJqg/3Zi9GID+Euq3p44NceBgaiDji/aa7pRBDedlM9ABbSJU719ECSJMwmgzzwyyTNA6o6TvWwPwEwMBB1xPlNc7lkCXPJUNuvKXUNa5zq6YnHJWO2w9RZsapik1M9PfG5O6/qyVUa2C1xqoeBgagLvflNLmXrTcTvxmik/VTPJqd6ehYPeJDqdOBXrsJVPT1KhbyIdzjwazmroHrGV/UwMBDp6Da/uZRReKBSjyZifgQ87d96ljIc+u3VdDwAr+vq/hRgf/aqeeBXp6me5WzZglbZBwMDkY5u85s1VcN6gUPpvZAlCfPJUNupHqWuYavIofReuOS9qbN2ilWVG2T1yNPlwK+c0jjTqyYYGIgM8Lk7L2XbzFdR4dBvTwJeV8epnrVchRs69Sjs6zzVs5JVuKFTj2JdpnqWM2e34JmBgcigoZC37S57e0O/3DCnV6MRX9tVKHtDvywo7dV41N92FUpDE1hlQWnPpmL+tlMTNVVg44weK87AQGTQ3vxm+6HKQrXBod8eSZKEmQ5Dv1mlzoLSHrlkCdMdXp87pRoLSnvkdsmY7DAKtlGonsmCUgYGoh4Eva6OGzqtZBU0NA799iLicyMVbD/0y4LS3sUDno4bOrEAsnepkLdLwfPZ608GBqIeTcT8bc+aaGiCewkcw2Tc3/asCRaUHs90ItD2WHEWlPau26jiWSwoZWAg6pFLljpu8LJdrKHEod+eeLoM/bKgtHc+t6vjMdgsKO1dwOtiQek+BgaiY4gHPF2Obd4rgBRCIF2qnblhy+MwUlDa7E/SN9KloLS5Q6kQAmkeVGXIeLTzqGKzoFQTAplT3p8MDETH0Nzgpd3Qb7muYjVXwWPbRSyky+A0vD69gtK1fAU/2CzyOGyD5C79mVHqWM9X8PBGAcsZrkYxwiVLmOkwqrhTqmFjvz9P+2oUBgaiY/K5XRiPdBhKL1RRrO4NpTeYGAzpVlC6ka+ivD81we40JuJ3I9nhhNC1XAWVhgZVEwxgBsW6FJSu5iqo7vfnacbAQHQCo1EffB1OtGxSuXLCsE4FpQed9jdlM03FA20LSpsEGMCMkiSpY0Fp02l/bTIwEJ2ALEkY7rAjXNNpfxMxk0uWOi6zbGJ/GueWJSQ6HKbUxP40zuuSEfd37s+9AHZ6+7P9+AoR6ao1NKzmFN2lVXxDNqbaULGcVZBTuq8y4RSPMUpdxXJGQUFn1Y56ii9wZirXGljKKCjVuq/aUTUBWWeUzKk4wkB0AkYuXrzAGSOEsXDFC5xBRvuTr09DjL4+T/PvOwMD0TF53TLOD4Uwlwx2nSc+xe8fpvJ7XLg4HMZMItD2ZNAm7v5oTMDrwnWjYUzG/Gd63t0sIZ8bTxmLYDzavjC36TS/PhkYiE5AkiSkQl780FgE8Q5zxad5TtNskiRhOOzDD41FO+5zwREG4yRJwljUj6eORhD2td/imK9P42RJwkQsgKeMRhD0nL3+ZGAgMoHHJeOaoRDOpYJXnXDHC1zvDo7eHB1tOM1vyP3SHL2Zjl9d5X+Kb4j7Jnhw9ObI19RT3J+nPjA0d4gjc7A/u0sEvXjqWASxwJW7425DlOzPzq6M3kQR8R3sz84/w/7sTJIkjER8eOpo5NCumt2mJNifnTVHb64bjSDguXIp7RRom33p5P48VaskGo0G8vk8FEWBoiioVquH/nF8Ph8CgQACgQCi0Sg8nu7Ljc66RqOBXC6HSqWCcrmMWu3KNseSJF3Vn273qXo5HZvHJeOaVAjpch1LmSs7Pdbr9dbrs9mfTc3+DAaDrf50udoPeZ41XreMC8MhbBdrWMkprRGbWq126Pf9aH/6/f5Dr0/25x6/x4VrR8LYLFSxlqu0LnDVavVQf9brV1b/yLLc6s9gMIhIJAJZPvX3m4bsjTZEsJ6rYKNQbd0gKIqCYrF4qvpTEk6OO/vK5TJ2d3eRy+V6+rlIJIJUKoVQKASpW1XQGVMsFpFOp5HP53v6uVgshmQyiVAo1KeWOU+1rmI7k0OjnEexWDT8c5IkIRaLIZVKIRBovyXtWaTUGkhn86iVciiVSoZ/TpIkJBIJJJNJ+P3td+c8i0rVBrK5LKrFPMrlsuGfk2W51Z8+X/ciwLOkUKkjn8uhUsxBUYxvuy3LMpLJJJLJJLze7vuQWMnRgUFVVayvryObzZ7ocSKRCCYmJs78iEOj0cDa2lrPQeGoWCyG8fHxMz/iUKvVsLa21lNQaCeRSGBsbOzM3yFXq1Wsrq72dGFrZ2hoCCMjI464o+unSqWClZUVVConO/9gZGQEQ0NDZ74/y+UyVldXUa0e/whxSZIwOjqKVCply5tYxwaGYrGI5eVlqKo5R9/KsozJyUnEYjFTHs9p8vk8VlZWoJm0jbHL5cLU1BQikYgpj+c0mUwGa2trps1Xut1uTE9Pn9nRm93dXWxsbJjWnx6PBzMzM2dy9EYIge3tbWxtbZn2mD6fD9PT02dy9EYIgc3NTezs7Jj2mH6/HzMzM7YbbXBkYMjlclheXu7LY4+NjWFoaKgvj21X6XQaa2trfXnsyclJJBKJvjy2XW1vb2Nzc7Mvjz0zM4NoNNqXx7ajfrwZN0mShNnZWYTDYdMf266EEFhbW0MmkzH9sWVZxtzcHILB9qdknkZCCCwvL594VLYdl8uF+fl5W4Uwx40h5fP5voUFANjY2MDu7m7fHt9umnfC/bK6unriKSMn2dnZ6VtYAIClpSUUCoW+Pb7dbG1t9SUsAHtv9pcvX+6pFsLJ+hkWAEDTNCwuLvY0d+9k/QwLwN6U+8LCwommOMzmqMBQq9X6Ghaa1tfXz8SLvlKpYHV1te/Pc9J5PacolUrY2Njo+/MsLy8fqrg+rQqFAra3t/v6HEIILC0todHoft7CaZDNZvsWFpo0TcPS0pJpU5t2tru727ew0KSqKpaWlmyzFNMxgUEIgZWVlYF13PLy8ql+0WuaNpDwBVxJ4nZ50feDqqpYWVkZyHNpmjbQ3wUrNBqNgfVns3j6NKvVagP7O9br9YEEZytVq9W+jiQefS4z601OwjGBIZPJnLg6uhe1Wq3vdzdW2t3dHehdf6VSQTqdHtjzDdr29vZA7/pLpVLPy4idZGNjw7SCZiNyudypnupZX18f6A1QOp0e6Pv1oK2urg40sG9vb594NYsZHBEYhBB9m8fsZnd391SOMljVnzs7O6fyrlhVVUvqXra3t09lfzYaDUvqXqz4nRiEarVqSRg6rf3Z3Hht0Oxww+WIwFAqlQ7t4jYomqY54i5OWVlG/nvfM/z9+Xx+oHdvTfV63RF3caUnn0TxBz8w/P25XM6SC3e1WnVErU3hkUdQunTJ8Pdb9cZYKpVscRenJ//d70LpYbrGqv7M5/OOqLXJfvObqPYwvWBVUXwmk7HkffugngLD3XffjR/90R9FJBLByMgIbrvtNjz66KP9aluLlVX2/S4SMkNtawsPve2t+P47ftFQcLDy7+SEFRPK0hK+959/Fo/86q+gaOD1bWV/OuH1WXr8MXz3LW/Go//9XSgvLOh+P1+f3eW/9z18+41vwON3/5ZucBBCWNqfTrjhyv7LP+Nbr3stnvy939MNDlbeRAoh+l5kqaenwHDffffhrrvuwj//8z/jC1/4AhqNBl784hf3fVmSlcueFEVxzLBv7pvf3A8O7+gYHIQQls4tOmleM/P1r+N7P/szXYODpmmW3uU7pj+FwO6XvoTvvPmOrsFBVVVL70qdMGIDAFBVbN97735wuLtjcKjX65ZOqzrl9SkaDWx++lN7weF970N1q31wqFQqll4PrH59nmjjpu3tbYyMjOC+++7Dj/3Yj5nZrhZVVfHII4/05bGNcv3dZ1F5+GFL29CNqiiotUnGsRufiek77kD06U9vfa5Wq+Gxxx4bZPOu9v/9H9T7uPfDSamlEmptCl4T//7fY/qONyN87bWtzymKgieffHKQzbuK+oE/gmbjN+ZGPo/60WFxSULqBS/A9JvuQHB+vvXpYrGIxcXFwTbwULMk1H7nty17fiPq2SwaR0dCXC4Mv+jFmHrDGxCYmmp9up+b3BnhlmUov/1ey57fiHo6jcaRO3fJ7cbIrT+BqdffDt/IaOvzu7u7lq6o8fv9OH/+vGXPf6LN/ptDM8lk0pTGtGOH9fs1IaBY+CZ2XLlvfgO5b37jUHCwRX82Gqg4sD8zX/86Ml//+qHgYIf+rCoVNJzWn/sjDrtf/vKh4GB1DYEQApVsFsIBUxOHqCq27/0ctr/w+UPBwer+bGgalNVVwAG1DAeJRgObn/oktv7us4eCg9W/71Y//7EDgxAC73jHO/C85z0P119/vZltOsQWqxQcfijVweCQfMubAVh8qInHXvuj9+pgcIi98U1WNwfwObg/jwSH8Otut7pFkLxeOGMSso0jwSHwylda3SJIPh+EwwJD09Hg4P7Jn7S2PUJACGHZwVTHDgxvfetb8b3vfQ/333+/me2xJ4fUMHTlcsE7PAx3MARYPnzt/P6UPB74RkbgDgaAwslOozyxU/D6lL1e+EZGIPt8gAUrok4bl88H38gwJI8HsHrlxyl4fbqCQfiGhyHO+Am8x/rbv+1tb8OnP/1pfOUrX8HUgfmyfrDFkb41Z6ZjAFfNbRYKBeDyZUubJKrOvSBIHg9Gb70Vk7fvDVFms1nrA4MNpkWOS/b5MHbbbZh4zWvhTSb3lqxZvPRWWH2BPQFXMIjxn/5pjL/yVfBEo3s7BFrdnw4OgO5oFBOvejXGfuqn4A6F9uoXTnhc/UlIkmTpsdc9BQYhBN72trfhnnvuwZe//GXMHyhW6hefz9f359ATjMfh+dEftboZHdXzeZSOVvF3KIKyw8ln4ZFhBGzcn7V0GuUjhYySx4ORW269qgjKFv05NQUMD1vdjI6qW1tQjoRU2efD6MtfjsnXvg7eAzVQVvenLMuIXnut1ZN2XVXW1lA5cgbM0aDQZHV/elwuxG+4wdI26FGWl1E9spX10aDQZPX1yOp/z55WSdx55534y7/8S3zqU5/CtQcqxWOxWF/PlX/ssccs2bgJ2HsDecpTnmJpqtOT+9Y38f1f/MW9DzoEhYMeeeQRyzYA8Xg8h147drTzpS/hsf/+LgBXjygcJYTAww8/bNlSK6urpo3Y+PSncOn3fg/A1SMKR1m9KiocDmNubs6y5zdi5S/+Akt/9qcAOgeFpnq9PpC9cjqJxWKYnp627PmNWPzgB7D28Y8D6BwUmqxeFZVKpTA+Pm7Z8/c0wvChD30IAPCCF7zg0Oc//OEP44477jCrTVcJhUKWBYZgMGjrsNBiICg0hUIhyzYACQaDljxvr/SCQuv7JAmBQMCy9eahNm9qdqQXFJpcLhd8Pp9l1eBOeX3qBYUmt9sNt9tt2WmcTulPvaDQ5Pf7IUmSZTcI/bwxN+JE+zAMSrlcxqUetpY10/T0NGKxmCXPbVR1axNara4bFJoKhQIuW1THMDc3h3A4bMlzG6WsrED2eroGhYOy2ezATlY86vz585YPU+opLy7CHY12DQoHWbnW/eLFi/B67b3qpPTEE/COjHQNCgdtbm5acpCeJEm49tpr4bZ5oWDx0Ufhn5rqGhQOWltbs2S7bVmWcd1110GWrTvRwRFnSQSDQUveFN1uN6IGfymt5BsZNRwWgL1hV48FS0V9Pp8j7ogDU1OGwwIARKNRS4pzrfq96FVwbs5wWACAeDxuyaheJBKxfVgAgND584bDAtDffXK6icVitg8LABC+9lrDYQHYmxawQjKZtDQsAA4JDAAwbEFR19DQkDOmI3okSRL700SyLFvyJjI0NDTw5xwEl8tlyUXutPanx+NBPB4f+POe1v70+XwDHyWVJMmy4HeQYwJDNBpFJBIZ2PMFAgHLkuQgJBKJgc4vhkIhS960BmVoaGigFdSxWMwRo1/HNTo6OtBRsGQy6YjRr+MaGxsb6CjY8PCwI0a/jmtycnKgd/tjY2O2GP1yTGCQJAmTk5MDedFLkoSpqalTeTfcNMi/oyzLp74/ZVkeWDW4y+XCxMTEQJ7LKoPsT4/Hg7GxsYE8l1Xcbnff98xp8vv9GBkZGchzWcXj8QzsdzAYDNpidAFwUGAA9l70MzMzfb/wTE1NWb7edhC8Xi9mZmb6/jwzMzOW1EwMmt/v7/ubsiRJmJ2dtceGZn0WDAb7voRMlmXMzs5aPjc8CJFIpO8X8kG9R9tBLBbr+yi0x+PB9PS0bfrTcb8loVAIs7OzfetAJ6yKMFMkEulbaGhe3Oy+KsJM8Xgck5OTfXlsWZYxNzfnmKVqZujnunOXy4X5+flTPXR+1PDwcN9Cg9vtxvz8vC2GzgdBkiSMjY31LTR4vV7Mz8/b6mbLEcsq21EUBSsrK6at13a73Zienj7V85jdlMtlLC8vo27SITFerxdTU1Nn6uJ2ULFYxMrKimnr330+H6anp8/Uxe2gfD6P1dVV0zYcCwQCmJ6ePjMXt6MymQzW19dNO9wvFAphamrKVhe3QRFCIJ1OY2Njw7T9GSKRCCYnJ223ysSxgQHYO8lye3v7xGuMk8kkRkdHz8QwbzeapmFzc3NvP/8TGB4exvDw8JkY5u1GVVVsbGwgk8mc6HFGR0dP7QqTXjQaDayvryOXyx37MZp3hclk8sz3Z71ex9ra2t75MsckyzLGx8ctWwprJ7VaDaurqyiVSsd+jGZ9UjQatWV/OjowNNVqNWQyGaTTacN3ILIsI5FIIJFInNm7tk6q1SrS6TQymYzhOxBZlpFMJpFIJM5E/UcvKpVKqz+N/ro1lxYmEokzexfciaIo2N3dRS6XM9yfbre71Z9n8S64EyEEyuUy0ul0T0HM4/EglUohHo/b7i7YSkIIlEolpNPpnnbT9fl8SCaTiMfjtr5xPRWBoUnTNJRKJSiKAkVRUKlUWhc8WZbh8/kQCAQQCAQQDofP/B2wHk3TUCwWUalU2van3+9v9WcoFGJ/6mj2Z/P1Wa1WD/VnIBBo9Wk4HLblHYadqKp6VX82385cLtdVr0/2Z3eNRuPQ7/vR/mz2ZSAQcM6W+Raq1+uHrke1Wg1CCEiS1OpPv9+PYDCIQCDgiP48VYGBiIiI+oO3hERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREelyW90AIqIm340/A0l2tf5zebytP8tuz5WvuVyQ3V7Ira95r/qaJLsgyxJklwxZliDJElwuGdL+n/e+JvX0Ndf+f163DJcswd36s3zla64rf/a55at+5tDHkgRZkuBxSa0/uyTA7ZLhkrD/tSt/dskSPPL+98mAR5Zbf977WQmSBMgS2v8ZgNT8/uaf979HkqRD3ysJAUlrAEIDhACEduBjDZKq97Ujn9dUCE0DGjUIVQU0DaJR2/u/pu59vV4Hmn9u1K/8jKZC1Pe+F5oKrVGHULW9/zQNWq0BTVVbfxaaBk298ufm96r1BsSB79P2f16oGtSaCqEJaKqAVlOhqQJC1aBpYu9rqoBQBdT6la8d/vjK92lCoKYJqEJAFYDa+hhQBdp+TcPR7xOt7/1jsWjtL+Y+jjAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLkkIIaxuBBGR2arVKu6++2786q/+Knw+n9XNOcTObQPYvpOwc9tOioGBiE6lfD6PWCyGXC6HaDRqdXMOsXPbALbvJOzctpPilAQRERHpYmAgIiIiXQwMREREpIuBgYhOJZ/Ph3e96122LDyzc9sAtu8k7Ny2k2LRIxEREeniCAMRERHpYmAgIiIiXQwMREREpIuBgYhOlV/6pV/CTTfdhNtvvx21Wu3Q1xRFwU/8xE/g+c9/Pl70ohchnU7bqn1Nd999N575zGda3qZGo4E77rgDN910E97+9rcPrD1G2tY06L46qlP77PBaMxsDAxGdGt/+9rexsbGBr371q3jqU5+Kv/mbvzn09c997nO4/vrrcd999+FVr3oV/uIv/sJW7QOAQqGAhx56yBZt+sxnPoOpqSl89atfRblcxte//vWBtUuvbcDg++qobu2z+rXWDwwMRHRqPPDAA3jxi18MALj55puvusBduHAB5XIZAJDNZjE8PGyr9gHAH/zBH+Cuu+6yRZuMtNeqtgGD76ujurXP6tdaP7itbgARkVmy2SwmJiYAALFY7Kph4GuuuQYPPfQQrr/+ekiShH/5l3+xVftyuRwefPBB/Pqv/7ot2pTNZlvnIbRrr5Vts6KvjurWPqtfa/3AEQYicpyNjQ0873nPu+o/IQTy+TyAvTfzZDJ56Oc++tGP4gUveAEeeughvPvd78Zv/MZv2Kp9v//7v4+3vvWtfWlTJ4lEomObun3N6rZZ0VdHdWvfoF5rg8TAQESOMzY2hvvvv/+q/2655RZ8/vOfBwD8wz/8A5773Ode9bPNN/V4PI5sNmur9j3xxBN4z3veg5tvvhmPP/443vve9/alfQc9+9nP7timbl8bhG7Pb0Vf9dI+YDCvtYESRESnyDvf+U7xvOc9T7zuda8T1WpVCCHEz/7szwohhMjlcuKWW24Rz3/+88Vzn/tc8eijj9qqfQfdeOONlrWp2Z56vS7e+MY3iuc973nibW9728DaY6RtBw2yr47q1D47vNbMxq2hiYiISBenJIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYjoDLjjjjsgSRJ+7ud+7qqv3XnnnZAkCXfccUfrcxsbG3jb296Gc+fOwefzYXp6Gi972cvwT//0T63vmZubw+///u8PoPVkBwwMRERnxPT0NP7qr/4KiqK0PlepVPCxj30MMzMzrc8tLi7ixhtvxBe/+EX8zu/8Dh588EHce++9eOELX2jpVsxkLW4NTUR0RvzIj/wILl26hE984hO4/fbbAQCf+MQnMD09jXPnzrW+rzni8K//+q8IhUKtz//QD/0Q3vKWtwy83WQPHGEgIjpD3vzmN+PDH/5w6+P//b//96EQkE6nce+99+Kuu+46FBaa4vH4IJpJNsTAQER0hrzhDW/A/fffj8XFRVy+fBlf+9rX8PrXv7719SeeeAJCCFx33XUWtpLsiFMSRERnyNDQEG699VZ89KMfhRACt956K4aGhlpfb27+K0mSVU0km+IIAxHRGfOWt7wFH/nIR/DRj370qpqECxcuQJIkPPLIIxa1juyKgYGI6Iy5+eabUavVUKvV8JKXvOTQ15LJJF7ykpfgAx/4AEql0lU/eypOXaRjYWAgIjpjXC4XHnnkETzyyCNwuVxXff2DH/wgVFXFv/t3/w5/+7d/i8cffxyPPPII3v/+9+M5z3mOBS0mO2ANAxHRGRSNRjt+bX5+Ht/61rfwnve8B+985zuxvr6O4eFh3HjjjfjQhz40wFaSnfB4ayIiItLFKQkiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhI1/8PYCbQSmD/4PEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcm0lEQVR4nO3deZgsWV0n/G9E7vtW+3arbt/b3UALrS2DDrTAjEADMra+ytYsLTM62g2jwvg+OjqDOGL7+iivooCjzAA6r4ijNJvaggoNDS3K3k03vd3a96rcMyO3iPP+UZV1q+pmZkRWRWZEZH4/z9NP36qsyjj33MyMb5zzOyckIYQAERERUQey1Q0gIiIi+2NgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpMuxgUFVVbzzne8813PMz8/jxhtvxM0334ybb74ZH/nIR0xqnfOY0Z9N73jHOyBJEh5++GFTns+JzOjPF7/4xXjmM5+Jm2++Gbfeeiu+8Y1vmNM4Bzpvf1YqFdx+++24/vrrcfPNN+O2227D0tKSeQ10GDNen//pP/0nzM/PD/173SgzP2MtIxzq61//urj55pvP9RwXLlwQDz30kEktcjYz+lMIIb761a+K2267TczNzQ1135rRn5lM5ujP9957r/ju7/7uc7bKuc7bn4qiiL/+678WmqYJIYT4/d//ffGiF73IrOY5jhmvz/vvv1+srq7yc9Qgsz5jreTIEYZHHnkEL3/5y7G+vo6bb74Zb3/7261ukqOZ1Z/VahV333033vve90KSJJNb6Rxm9Wc8Hj/6cy6Xgyw78u16bmb0p9/vx8te9rKj1+X3fd/34cqVK2Y31RHMen3+wA/8AGZmZkxu3WAalHOW2+oGnMXTn/50/MiP/AhuvPFGvPnNbz7Xc91xxx3QNA3Pec5zcM8992B0dNSkVjqHWf353/7bf8PrXvc6LCwsmNg65zHz9fmGN7wBn/3sZwEA9913nxnNcxwz+7Pp3e9+N17xileY8lxO04v+pM4Gpc8de8nyla98Bd/7vd97zfdvvfVWjIyMtPxvdXX1xM9+/vOfxze/+U187WtfQyqVwhvf+MZ+Nd92ztufDz74IP7lX/4Fd911Vz+bbVtmvD4B4E/+5E+wurqKX//1X8cv/MIv9KPptmRWfwLAb/zGb+CJJ55w/nzyOZjZn2RMuz53EkkIIaxuRLcajQYSiQR2d3fh9/tNec7NzU1cf/31KBQKpjyfk5jRn7/5m7+Jd7/73fB6vQCAtbU1jI+P4/3vfz9e+tKXmtlc2+vF6xMAAoEA1tbWkEqlTHtOJzCzP3/7t38bf/7nf46///u/PzHlM0zMfn3Oz8/jU5/6FG666SYTWjeYevWZ0G+OHGFYW1tDJBI5V8eXSiVks9mjrz/84Q/ju7/7u01onfOY0Z+/+Iu/iI2NDSwtLWFpaQkzMzP4u7/7u6ELC4A5/ZnP57GxsXH09b333otUKoVkMmlGEx3FjP4EgHe961348Ic/jM985jNDGxYA8/qTjBuUPndkYJiZmcEzn/lM3HDDDfgv/+W/nOk5tre38cIXvhDPfOYz8V3f9V24//778Sd/8icmt9QZzOhPusqM/szlcrj99tvxXd/1XXjWs56F97znPfjUpz41lMWkZvTn2toa3va2tyGbzeKFL3whbr75ZjznOc8xuaXOYNb7/e6778bMzAzW1tbwgz/4g7h06ZKJrRwsg/IZ68gpCSIiIuovR44wEBERUX8xMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKTLbXUDekFVVVQqFVQqFWiaBgCQZRk+nw9+vx9u90D+tXum0WigUqmgWq1e05+BQAAul8viFjpLo9GAoiio1Won+tPv98Pv97M/u1Sv149en0IIAIDL5TrqT1nmdZFRQogTr0/25/kIIY5en83+lCQJsiwjEAjA5/M5qj8H5sxZr9eRyWSQyWRQr9c7/qzb7UY8HkcikYDP5+tTC52lVqshnU4jm82i0Wh0/FmPx3PUn16vt08tdJZqtYp0Oo1cLqfbn16v96g/PR5Pn1roLJVK5ag/VVXt+LNerxfJZBLxeJwXCy0IIaAoCtLpNPL5/FGIbcfv9yORSCAejzPctiCEQLlcRjqdRqFQ0O3PQCCARCKBWCxm+/6URDNCOlStVsPW1hby+fyZfj8UCmFychJ+v9/kljlTtVrF5uYmisXimX4/EolgYmKCQeyQoijY3NxEuVw+0+9Ho1FMTk4yOBwql8vY3NyEoihn+v14PI6JiQkGh0PFYhGbm5uoVqtd/64kSUgkEhgfH7f9ia5f8vk8tra2UKvVuv5dSZKQSqUwNjZm21EHxwYGIQTS6TS2trZgxl9hbGwMo6OjkCTJhNY5jxACe3t72N7ePvdzSZKE8fFxpFKpoe1PTdOwu7uL3d3dcz+XJEmYnJxEIpEY6v7c3t7G/v7+uZ9LlmVMTU0hFosNbX+qqorNzU1ks9lzP5fL5cL09DSi0ej5G+ZQjUYDGxsbZ75wPc7j8WB6ehrhcNiElpnLkYFB0zSsrKyc+Sq4nUAggAsXLgzd1YeqqlheXj7zVXA7oVAIc3NzQ3f10Wg0sLS0hEqlYurzRqNRzMzM2Pbqo1dqtRqWlpbOdNXWSTwex/T09NCFhmq1isXFRd2psW6lUilMTEwMXX8qioKlpSXdqbFu2fEi1nGBQdM0LC0tmX5ya/L5fFhYWBia0KCqKhYXF00/uTUFAgHMz88PTWhoNBq4cuWK6Se3plAohAsXLgxNaKjVarhy5YrpJ7emaDSK2dlZW30o91KlUsHi4qLpJ7emRCKBqampoelPRVFw5coVU0a5WxkZGcH4+Lht+tNRnzpCCKyurvYsLAAH6Xt5eblnLwA7EUJgeXm5Z2EBOHhDraysDEV/apqGxcXFnoUFACiVSlhfXx+K/myG2V6FBeBgznlzc7Nnz28njUajp2EBADKZDHZ2dnr2/HZSq9WwuLjY0/fi3t6eKdNwZnFUYMhmsygUCj0/jqIopsw9293e3l5Pw1dTqVRCOp3u+XGstrOzc6bisW7lcjnkcrmeH8dqW1tbuiuezNCsZh9kQgisr6/3NCw07e7u9uVzxUpCCKytremugDDD1tZWTy/quuGYwFCr1bCxsdG34+3s7Jy5EtsJKpWKKQWORm1tbfXlZGqVcrmMvb29vh1vY2OjLydTqxQKBWQymb4db21trS8nU6vkcrm+hqLV1dW+nEytkk6n+xqK1tbWbDGq6JjAsLOz0/cO29ra6uvx+qmfYQE4SOSDPFTZ79dKcxXGIBJC9L0/VVW11dCvmazoz+a+OIOouWKnnyqVii1GFR0RGBqNhiWdVSqVHHFVLLpM8rVazZIh2Fwu54ir4m77s1KpWDIEm8lkHHFV3G1/lstlS953+/v7jrgq7rY/8/l8T+tA2tnb27PFVbGebvszm81a8jqxQ6A9U2B473vfi4WFBfj9ftxyyy34whe+YHa7Tshms5a98Jww91546Jt4/B3/FaUnnzD081b+nZxw1ZH50gN48p7/DmV5ydDPW/VGFkKYso6+1/Y+fR+uvOu3UNlYN/TzVvWnqqqmrKPvta17/xJL7/k91AyOMFnVn/V6HaVSyZJjd2P9f38IK3/8h6hnjX02WdWfiqJYPk3edWD4yEc+gp/7uZ/DL//yL+PrX/86br31Vrz0pS/FyspKL9oHAJYWJDmiGEoIZB/8Ir795v9oKDiwP3VoGtL3fxYP/fS/NxQcrPw7mb0XSS8IVcXep+/Dt/7DG3WDgxCC/alD1OvY+eTH8c03vU43OGiaZmkBohPe71q1gq2/+gt8842v1Q0O9Xrd0lFnq/uz630YnvOc5+B7vud78L73ve/oe0972tNw++2345577jG9gUIIPProo5YOFc6oDaBqjyrVVspXrmDtg+8/8b349z8X03e8AaFLl098X9M0PPLII/1s3gmSJGGmVoWo927p4XkVHn4Im3/x4avfkCQkf+AFmH7t6xG4MH/iZxuNBr7zne/0t4HHuFwuTJaKgGbfqYnsv3wZO5/8+NVvyDJGfvDFmHr1HfBPTZ/42Wq1iieeMDZS1gsetxvj+axlxzdi//Ofw/7ff/roa8njwehtL8PUK18L7+joiZ8tl8u4cuVKv5t4JODxIJWz96ji7n1/g8yXHjj6Wvb5MPZDP4zJH38VPPHEiZ/N5/M9vTjWE4lEcOHCBcuO31VgqNVqCAaD+D//5//gR37kR46+/7M/+7P4xje+gfvvv9/0Blr9AQIA6h/8v6guLVrahrM6HRys/gABgPpv/nfU9xxYsNciOBQKBSwvL1varMov/wI0B9TaXKNFcMhms1hbW7OsSaJRh/KLb7Ps+OfRKjjs7+9bus+EyOeh/NqvWHb882gVHLa3ty0tNna73bjxxhutO343P7y3twdVVTE+Pn7i++Pj4z2rwrWiWOcaDijcaSf74BeRffCLR8FBHRvX/6Uec0IhVEtCIH3/Z5H+/OeOgkM9Yv3++Q7tTUDTsPfp+7D3958+Cg51D+92elbNqYrd+/7mKDjULS6Kdex7HYBWrWLrr/4CO5/6+FFwsPp81Gg0jm6RbYUzFT2ebmwv/wJ2eMFZ34Lzyz74RXz7LT+N7P2ftbopzncYHB6++6dQ/Mo/W90a5zsMDg//zE+i/MjDVrfG8ZrB4aGf+feoXnnK6uY4XjM4PPwz/wG1detGv+ygqxGGkZERuFyua0YTdnZ2rhl1MIsd9tC2vgXnl7z1+Zi64w1oJFPIWzgHNxBkGSP/5kWYes0dKAeCyPdxQ7FBJLndGH3JSzH5qtciL8ko9HmN+6CRvF6MvfzfYfLHX410rYZCHzcUG0RyIIDxH/5RTPzoj2GnUETJASu9eqWrwOD1enHLLbfgM5/5zIkahs985jP44R/+YdMbB8AWN4GyQ2g5q2ZQCM4vAIAttmx1bH8eCwr+6RkAQN0GVeASnDkKdjwo+A6nyjwOWCZqV8eDgjeZBAB4LF6779j3Ok4GBU80BgBwK9YWv7vdbkv7tOtVEh/5yEfw+te/Hn/4h3+I7//+78cf/dEf4Y//+I/x7W9/uyfVm3ZYJTErCaBq36r+8lNPYPV//tGJ750OCk12WCUxqzUg6jaoTWmj8NA3sfHh/331Gy2CQpMdVklMVxUIzb6RIfvPD2L7Yx89+rpVUGiyusjZ43ZjomzvvQP2P/cP2Pv0fUdftwoKTVYXOQc8HoyU7L1UdedvPonMA58/+rpVUGiyusjZ6lUSXV++v+pVr8L+/j5+7dd+DZubm7jpppvwN3/zNz37S0iShEAgYNkGIF6vF7Hrr7fk2EZJ8tXEmbz1+Zh67esRXLjY8mdlWYbP57NsLbHf70f0uussObZRavFw1ECWkfo3P4jp17zumqDQ5Ha74Xa7LSuGCgaDiD7taZYc26jq5sGUTaeg0OT1eiFJkmW1S6FwGDELq9CNKD1+EFA7BYUmv9/fz6ZdIxiNInbDDZa2QU/uqwd1SJ2CQlMgEOhn064RDAYtPf6Zxvvvuusu3HXXXWa3pa1IJGJZYIhEIpYctyuSpBsUjotGo5YtDXJEf8oyUj/44o5B4bhoNGrZ7plO6E/J48boy16BqVe9Br7xic4/K0mIRCKW7bjohP6UvV6M/8iPdQwKRz8rywiFQvz87MAVCGLy1Xd0DApNbrfb0guucDhsyXGbup6SsIKqqvjOd75jyVXH5cuX4fP5+n7cbnS7SqVWq+Hxxx/vYYvau/HGG21Rl9JJt/1ZqVTw5JNP9rBFrUmShBtvvBEul6vvx+5Gt/1ZKpWwuNj/fU9cLhduvPFG28+7d9ufVm025PV6cfny5YHrz0wmg/V1Y9ucmykQCOA6i0dnHXHzKZfLhXg83vfjhsNh24cFoPvCIq/Xi2i0//sHxGIx24cFoPv+9Pv9lgwVJpNJ24cFoPv+DAaDlrzvUqmU7U9uQPf9GYlELHnfDWp/xmIxyHL/T52pVKrvxzzNEYEBAEZHR/v+4uvVUlE7GBsb62t/SpKEsbGxvh2v3yYmOg+1m02WZYyMjPT1mP0iSVLf+9PtdtviA7kXJEnC5ORkX4/p9XqRSCT0f9CBZFnu+7nB7/cjFus8XdIPjgkMXq8XU1NTfTve2NiY5QUuveT3+/v6op+cnHTEaM1ZBYNBjJ7ax7+Xpqen4fF4+na8fotEIn094czMzDhitOasYrFYX0cVZ2dnLbkK75dkMolQKNSXY0mShNnZWVuM1jjqXzQej/eliCYQCPT1w98qqVSqLy/6cDg8sFcbx42OjvalKj0Wi9niaqPXJicn4fX2fqvoZDJpeTFZP0xNTfVlamLQL7aAw5vozcz0JRRNTEzY5mLLUYGhmbR6eZLz+XyYn5+3RZrrNUmSMDc319OTXDAYxNzc3FD0pyzLmJ+f7+mbOxwOY3p6Wv8HB4Asy1hYWOjpSEosFuv7cL1V3G43FhYWejqSkkwmh+JiCwA8Hg8WFhZ6GhpGR0dtNVXmiFUSp2mahrW1NdOXXgWDQVy4cGGghyZbUVUVKysrpi+9CofDmJubG+ihyVYajQaWl5ehKIqpzxuLxTA9PT10/Vmv17G0tGT6UrZEIoGpqamhCLPH1Wo1LC4uol6vm/q8IyMjGB8fH7r+rFQqWFxchGryjb7Gx8dtF74cGRiAg6UwmUwGm5ub515u2SzIGxkZGboXe5MQAvv7+9je3jalPycmJpBMJoe2PzVNw97eHnZ2ds79XLIsY3JyEvF4fKj7c2dnB3sm3BfB5XJhampqKKZ12lFVFdvb26bsH+J2uzE9Pe2IPRd6pdFoYGtrC1kTtjb3eDyYmZnpW41ENxwbGJrq9Tq2traQy+XO9PvhcHjgC/K6UavVsLm5icIZ75EQjUYxMTHRl7lnJ6hUKtja2kKxeLbtcePxOMbHxwe6wLEbiqJgc3PzTPdEkSTpqD+dsLy3H0qlEra2ts40GiZJEpLJJMbGxoZuVLadQqGAra2tM42GybKMVCqF0dFR244iOj4wNDUaDWQyGWQyGdRqne/74PF4EI/HkUgkeGJro16vI5PJIJvN6van1+s96k+e2Fqr1WpIp9PI5XK6Q8E+nw+JRALxeJwntjaq1epRf+pty+33+4/6kye21hRFQSaTQS6X0x1aDwQCSCQSiMVi7M8WhBBQFAXpdBqFQqFjfzZvfdDsT7sGhaaBCQzHaZqGSqWCSqVydNOq5j0U/H4/X+RdUlUVlUoF1WqV/WkCVVWhKApqtdqJ/vT7/fD7/bb/0LCbRqNx9Ppsfpy5XC74/X74fD72Z5cajcbR65P9eX71eh2VSuWoPyVJgizLCAQC8Pl8jppmHMjAQEREROZiVCQiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISJfb6gaYrVarQVEUVCoVVCoVaJoGIQRkWYbf74ff70cgEIDX64UkSVY31/aq1SoqlQoURUG1WoWqqpAkCbIsw+fzIRAIHPUndSaEOHp9NvtT07Sj/my+Nv1+P/vTACEEqtXq0fu9XX8GAgF4PB6rm2t7Qoijz01FUVCr1Y760+VynehPt3vgTh2ma/Zn8/V5uj+b73Un9ackhBBWN+K8NE1DLpdDOp2GoiiGfsfn8yGVSiEWi8HlcvW4hc6iqupRf1YqFUO/4/f7j/pTljlwdZyqqshms9jf30etVjP0O8FgEMlkEtFolP15SqPROOrPer1u6HdCodBRf/JC4aR6vY5MJoN0Oo1Go2Hod8LhMFKpFMLhMPvzlFqtdtSfqqoa+p1oNIpkMolQKGTr/nR0YBBCIJfLYXNz0/A/zGmSJGFiYgLJZNLW/1D9IIRAJpPB1tYWNE0703PIsozJyUnE43H2pxDY39/H9vY2zvo2c7lcmJqaQiwWM7l1ziOEwO7uLnZ2ds78HG63G9PT04hEIia2zJk0TcPOzg729vbO/BxerxfT09MIhUImtsyZVFXF9vY20un0mZ/D5/NhZmYGgUDAxJaZx7GBoV6vY319HcVi0ZTnCwaDmJ6ehs/nM+X5nKZWq2F9fR2lUsmU5wuHw5ienh7aoeBqtYq1tTXDI156otEopqamHDN0aTZFUbC2toZqtWrK88XjcUxOTg7t6GK5XMbq6qrhERo9yWQSExMTQzsaViwWsba2ZniERs/IyAjGxsZs15+ODAzVahWLi4um/eM0ybKM+fl5BINBU5/X7hRFwdLS0plHadpxuVxYWFiA3+839XntrlQqYXl5+cyjNO14PB7Mz88PXagtFApYWVk58yhNOz6fD/Pz80MXanO5HFZXV01/Xr/fj/n5+aELtel0GhsbG6Y/bygUwtzcnK1CreMCQ7VaxZUrV0w/uTVJkoSFhYWhCQ2KomBxcdH0k1uTLMu4ePHi0ISGUqmEpaUl009uTW63GxcvXhyaoshCoYDl5eWePb/H48F11103NCe5bDaLtbW1nj2/z+fDxYsXbXWS66X9/X1sbm727PmDwSDm5+dtM9Jgj1YYpGlaT66EjxNCYHl52fTRCztSVbUnV8LH9ePfzC7q9TqWl5d7FhaAg4K/Xv+b2UW1WsXKykpPj9GPfzO7aE7r9FK1WsXq6upQ9GexWOxpWAAOpo7W19d7eoxuOCowbG1tmTbn1omqqlhfXx/4F/3GxkZfglGj0ej5G8tqQgisra315URerVbPVfjnBM3+7Md7UFGUcxX+OYGmaT2ZhmilWCwik8n05VhWUVW15+GrKZfLIZ/P9+VYehwTGEql0rmqT7tVKBSQy+X6drx+y+fzff37ZbNZFAqFvh2v37LZrGkFo0bs7e2hXC737Xj9tre3Z1rBqBHb29uGlxA70c7OjuElvWbY3Nzs6/H6bWtrq6+j0GYWVJ6HYwKDFVdUOzs7AznKIISwrD8HkVX9ubu72/dj9oOmaZb83QZ1lEFVVezv7/f1mEKIvl7g9VNz34p+0jTNFqM2jggM1Wq1r1dvTbVazZLjdquRz0Pt4mqsufNYvzV3OLS7ejYDrYuro2Kx2JepstMKhYIjruLq6X2ILq6OcrmcJTUauVzOFldxemr7exBd1ARlMhlLLnzS6bQjam1quzsQXbTTqiC0v79v+QVs14Hh85//PF7xildgamoKkiThYx/7WA+adZKVSdUJKbm8+BQe/g+vx9ZffcRQcLDy72SHlKyn+PC38PBPvgE7n/yYoeDQ76u345zQn9kvP4iH/+NPYO/Tf2soOFj1+hRCIJvNWnLsbuz/w6fx7bt/EunP/aOh4GBVfzZ34LW7nU/ci0d/7meQefAB3eBg5chJo9GwfFq368BQKpXwrGc9C3/wB3/Qi/a0PaZVnDDCAACNfA7rH3y/oeBg5d/JrI22eq2e3sfqH71HNzgIISytJXDK67O2s4Xl33+XbnDQNM3SUSin9Gd1fRWLv3OPbnBoNBqWjkI5pc5GWbyCK7/xDt3gUKvVLF3xZXV/nmsfBkmScO+99+L22283sUknaZqGRx55pGfPb0Ti0YegZe17JVfb3UX2wQdOfM8djWH8R38coy/7d3Ad22a00WjgO9/5Tr+beELim1+FVrbvB3NlfQ35r/7Lie95kilM/NirMfKSl0E+tgdCtVrFE0880e8mHpEkCdEvfxFQ7TuUriwtovCtb5z4nndsApOvei1S/+ZFkI7tgVAul3HlypU+t/AqlyQh/KX7LTu+EaXHH0PpOyc/E33Ts5h69euQuPX5kI7tgdDrfSz0eDUNgS8/oP+DFio8/BCUK0+e+F5g4SImX/N6xJ/zryEd2wOh1/tY6AkGg7h48aJlx7d9YFAUBU899VTPnt8I8b7fQ21lydI2nNXp4FAsFrG0tGRpm9Tffica+84sMPMkU5j48Vdj5MUHwaFXu+Z1o/arvwhh0pbJ/XY6OPRq1zyjRKOB2n/9BcuOf16ng8Pu7i62t7cta4/I51C751ctO/55nQ4Om5ublk5ByrKMpz/96dYd37IjG2SPDX+cu1LixFTFR/8CdYcMudpVPb2P1f9xOFXxqY+h7oAiTjs7PVXRcGjwsYvmVMUjb/5JpO//RzQsKMYdJEdTFT9/F7IPftHyolhN0ywtfLR9YCBzNPI57P71J1B+6BtWN2Ug1NP72PnUx1F5zNrpskFR29nCzic/huqpoWE6m8raKrY/cS/qq9ZNRwwS5cpT2P7ER6Fub1ndFEvZfgN1e9wi2Q5tODvv2DgmXnkw7FtUFGR6vN3uoPNNz2Dy1a9D8tYXIJvPI2ujrVudKDB/EZOveR3i3/dc7KfTyG0N94fyeQWvvxFTr3k9orc8+2B/kAHdr6Nfwjc9E1OvfQMi3/Wsg22aLV6ZZOU50faBwQ535rNHaOne8aAgH96Rz2eDddFO7c/jQaFZWGaL1yecOWl2PCg0C8usvqmWU1+bwMmg0Px7WN2fsuzcm1AdDwpNVr/frf737DowFItFPPnk1WHDxcVFfOMb30AymcTc3JypjQMO7s7ndrstmzsSAK5713sR9No3W+W/+XU88Sv/99HXrYLC0WNeLyRJsmweTHa5cd3/+BMEbNyfmQfux5X/59ePvm4VFJqsvgunx+vD5T//BHxu+84u7v7tp7Dy3t87+rpVUDh67NiKHiv4whHc8LG/g8dl3/7c/Is/w8affuDo61ZBocnq/gxPTuIZn/yMpW3Qs/Y//we2P/aXR1+3CgpNVven1XdR7vpT+ytf+Qpe+MIXHn391re+FQDwxje+ER/84AdNa9hxwWDQsptvuIJRPLpdRNTvxnjEh4jPbdurkE5BoUmSJAQCAcvW88rBKB7ZLiIWcGM84kfY67Jtf3YKCk2yLMPn86FqUbGeCETx8GYeiYAH4xEfQj77BrFOQaHJ4/FYeoGg+qJ4aCOPZNCD8YgfAa99r5A7BYUmn89n6QWC1SfYbnQKCk1W/32sPv65llX2i6VL1xLTqGpX34wBj4zxiB+JoAeyTU505cWnUHr8sY5B4Tirlq4JACI+jbq42m9BrwvjER8SAY9tgkPxkYdR3dnuGBSO29nZseReEgKAGp+BeuwdHPa5MB7xI+a3T7DNf+0rUCtKx6BwnFVL1wQkNOLT0I71px0vFLIPfhGSx9MxKBy3trZm2Q6Wly9ftnwYX0/6c/8ITyrVMSgct7S0ZNkGdDfccAM8Bj7je8URgUEIgccee6zvVx3C5UUtPNbyMY8sYTTiw2jYC7eBD0E7UVUVjz32WN/3eReeAGrBVMvHvC4JYxEfRkI+uGR7fDAbZdlmWP4Iqr5Yy4d8bhnjER9SQS9kh/VnrVbD448/3vfjSsE4Kp5wy8cCHhljER+SQa9tLhSMsmovm1AohIWFhb4ft9es2ssmGo32ZNq/G44400mShFSq9Ymml1yRZNvH6prARq6ChzbyWMmUUW3YYb8IY1wuFxKJRN+PK4fibR+rqQJr2Qoe2shhLaug1rC+ONMot9uNeDze/wMHom0fqjY0rGQUfGszj42cgrrqnP70er0Ih1ufuHtFAFC9obaPK3UNy2kFD2/ksZmvoOGg/gwEApYMZVvxmd0PoVDIkuLDkZGRvh/zNEcEBuDgxdfPfyTZ5ULNQImHJoDdYg0Pbxbw1F4Jpap9t+g9bmxsDG53/+a73R4vqtAf3lcFsF2o4qHNPBb3S1Bqzghi4+PjkPs40uTxB05MlbWjagKb+Soe2shjKV1Gpe6M/mze3K5ffMHIiamydo4uFDabFwrOCA7T09N9PV4kEkEkEunrMftFkqS+92c8Hre84BFwyJREUz+H1i5cuIBAMITdUg07hSoamvFuivndmIoFELRxwRTQ36G1hYUFeP0B7Bar2CnWoHbRn4mgB1NRP/wee/dnP2ttLl26BNntxU6xir1i9UQdg55UyIvJqN/WKyuA/tXaSJKEy5cvQ8gubBeq2C/VYPTlKQEYCR/0p51XVgDo2zbRsizj+uuv7+sFiRW2trawt9f7Le7dbjcuX74Ml4F6ql5zVGAAgL29PWz1eGOXVCqFycnJo681IZAuHwQHpW78isIJJ7rt7W3s9nhjl7GxMYyNXa0F0TSB/XIN24VqV1doTjjRra+v9/yW01NTU0gmr06XqZrAXqmKnUIVNYPJwQknOiEEVldXe75CamZm5sSUUkPTsFc8eL/XDSYHSQLGwj5MRHxw27g/l5aWen5HzgsXLgzs6MJxmqZhcXGxp3dXlSQJ8/PzCIXaT5f1k+MCA9DbqvREItF2OFQIgUK1ge1CFfmK8amHVMiLqagfXhue6IQQ2Nra6llV+ujoKMbGxtr2Z67SwHahgmLV2FC53U90Qgisr6/3rCp9YmKi7VymEAIZpY7tQhVlg1M5dj/RCSGwsrKCQqHQk+c/Hb6O04RAplzHdqFi+EJBloDxiB/jEXsW72qahuXl5Z6FhtnZWcRirQtxB5GqqlhcXESlUjH9uSVJwtzcnK3ClyMDA9Cb4cqxsTGMjo4amjtVaiq2C1WkyzVDu+zZ+UQnhMDe3p7pw5WdTm6nlWoHQSxTNnazHDuf6IQQ2NnZMXXkRpIkTE1NGSpWFUKgdPj6zCrG+tPOJzohBDY3N5FOp017TkmSMDMzY+jkdpYLBZcsYSLiw1jYZ7tVKpqmYX19HblczrTnlGUZs7Oztjq59YuqqlhbWzM11LpcLly4cMEWdQvHOTYwAEC1WsXa2tq5h4R8Ph+mp6fP9I9TVzXsFKrYKVYNzXva+USnKArW1tbOvQmR3+/HzMzMmXZBrDYO+nOvZKw/7XyiK5fLWFtbQ61WO9fzBINBTE9Pn2k9e6WuHvansWBr5xNdsVjE2trauZdXh8NhTE9Pn2k9e/NCYb9s7N/ULUuYjPoxErbfcsx8Po/19fVz3xE4Go1iampq4GsWOhFCIJfLYWNj49zL1ePxOCYnJ21Rs3CaowMDcPAPlc1msb+/3/WwkNfrRSqVQiKROHeFe0PVsHUYHIz0qF1PdEIIpNNppNPproODz+c76s/zVrjXVQ1b+Qp2i84+0WmahnQ6jf39fdS7vNVwIBBAKpVCLBY7d3/WGho28xXslYyd6DyyhAkbnuhUVT3qz26DQzAYRCqVQjQaPXd/VuoqNvMVpA2OiHldB8EhFfLaZgMo4KA/9/b2kE6nuw4OoVAIIyMjQzmq0E6j0Tjqz26DQzgcxujoqG3qFVpxfGA4TlEUZLNZKIoCRVGu2Q5VkiT4/X4EAgHEYjEEg0HT37x19fCD2eEnOiEEFEVBLpdDuVxGpVJp25/BYBCxWAyBQMD0/hyUE50QAqVSCfl8HuVyGdVqtWV/BgKBE/1ptkE50QkhUCwWkc/noShKy4sFWZaP+jMej/dkx0GlpmIjXzE89eNzy5iK+W21sylwOO1SKBz1Z6uLheP9mUgkLL8Rkp1pmoZCoYBCoYByudxylNHlcp3oTyt3cDRqoALDcUII1Ov1o5QnyzI8nv69SWsNDRv5CvYdfqJrsro/uz/RyZiMHex0aKcP5iar+3NQTnRNmqahXq8fhTCXywW3u3/bOZeqDWzkK4ZrHAIeGVOxgK228D7O6v4cNMf7U5Kko/50moENDHZRqR98MBst5rP7ic5qSk3Fel5BTjH2wWz3E53VBu1EZ7VCpYGNnIKiwVUqIa8LUzE/on77X10SMTD0SbcnOr9bxiRPdG2Vqg2s5yooGNxZkye6zniiM48QAvlKAxu5CsoGd9aM+NyYivkRtvHdRokYGPqs+xOdC9MxP6I80bVUqDSwnlNQ4onu3HiiM5cQAlmljo1cBRWDG5Qd7BLrR9DL/iT7YWCwSKFSx3quYvhEF/W7MZcIwOe231Ibq53lRBcPeDCbCMBrs6WtdnCWE10q6MFMPGC7pcJ2IIRAunzQnzWDN60aDXsxHQvYagUVEQODhZonuvVcBYqBE50kAVPRg6WYHG24VrcnOlkCpmMBjIZZL9JKtyc6lyxhJu5n/U0bQgjslWrYzFdQN7CFt0eWMJsIIM5pSbIJBgYb6PZE5/fIuJAIchi4jW5PdEGvCxcSAQ4Dt9HtiS7sc+FCImjre6hYSRMCu8UqtvLGbmrH0UWyCwYGG+n2RDcS8mI67oe7j7dVdhJNCOx3caIbC/swFfNzGLgNTRPYLRk70UkAJqI+TET9tlwmbAeqJrBTrGI7X9G92yhHF8kOGBhsqHmi28hVdD+Y3bKE2XgAiSCHLdtpnug281Xd22p7XBLmEkHEAyyKbKd5otvKV3S37/a5ZcwlAiwy7aChadjOV7FtYJfYgEfGHEcXySIMDDbW0DRsZCvYNbD5U8TnxoUkhy07qasa1rKKoc2f4gEPZuMBW95h1C5qDQ2rWcXQ5k/Jw6JIu914zU6qDRUrGcXQnhgcXSQrMDA4QLHawEqmrHuLXUkCJg+HLTkM3F6+UsdKRkFVp15EloCpWABjLIrsKKvUsZopo6Yzru6SJczE7LfNtJ2Iw1tqr2YVY6OLiQD3aqG+YWBwCCEEtgtVbBoYBva7Zcwlg4hw2LItTQhs5SvYyld17/kR9LgwlwwgxKLItlRNYDNfwXZB/4ZlYa8Lc8kgAiyKbKuhaVjPGruHCosiqV8YGBymm2HLVMiLmZifa+M7qNRVLGfKKFb1l7WOhb2Y4tr4jsq1BpYzCso6+4tIAMYjPkxG/ba66ZrdFKsNLGfKqHB0kWyAgcGBmsswVzMK6gaGLWfiASRZFNmWEAL75RrWshVjRZHxAOJB3qmvHSEEdos1rOcU3dEwr0vGhSSLIjtpji5u5Cu6RZF+t4wLSRZFUm8wMDiYqgms5xTsFo0VRc4lAlwb30FD1bCWrWC/rN+fMb8bc4kgiyI7qKka1jIKMgaKIhPBgyJTFkW213VRJEcXyWQMDAOgVD0YBtbbLfJgbbwfE1EOW3ZSqNSxbLgo0o+xMNfGd5JT6lgxUhQpSZiO+zHCosi2hBDIHI4uGimK5OgimYmBYUAIcbA2fiNnbG38PIctOzooijzYa0DvDRLwuDCf5E6RnXRTFBnyujCf5E6RnXQ7unghGYSPo2F0TgwMA6bW0LCSKSNnYNhyOsad4/RU6gfDwHp3F5UAzMR5Xwo95ZqKlUxZ96ZrsgTMJYJIhVgr0knpsChSb8m1S5Ywn+SGZHQ+DAwD6KgoMqvobokc9bsxnwxy7riD5pbdawbWxscDHlxIBrihTgfNe1OsZxXdLZFTQS9mE1yZ0kk3S67Hwl5MxwOckqQzYWAYYKomsJFTsKMzbOmWJVxMBRFhpXpHDVXDek5/bbzXJeNiKogQp3w6qqsHO0VmdHbe9LtlXEyFEPByiqKTakPDqoHRxaDHhYUUp3yoewwMQ6BUa2AlraCsUxQ5GT1YF88h9c4K1QZW0mXdO4vOxPwY45SProOiSKXjDdckCZiNB1gQqcPo6KIsAReSQSS5PJi6wMAwJMRhEd9GvtLx58I+NxZSQXg5RdGRJgQ2cvpFfLHDKR8ub+tM0wRWs4ru6E0i6MGFRJBTFDpUTWA5U9YdvRkJeTEbD3DzLDKEgWHIFCoNLKZLHa8+3IcFUjEWSOnKKXUspcsdaxs8LgkLqRC36jYgXa5hOV3uOBfvc8tYSAW5VbcOcXjX25Ws0nHDJ7/ncMqHUxSkg4FhCDVUDYvpsu4GMOMRH6ZjnKLQU2toWEyXdLeXnor5McEpCl3Vhoore+WOU2hclWKcUlNxZb/UcQqNq1LICAaGISWEwE6hirVc5ymKkNeFhVSIa7h1CHGwz8BmvvMUReRwyoerUjrThMB6toKdYuf+jAc8uJAIcMpHh3o45bOvM+WTDHowxykfaoOBYciVqg1c2S913IXPJUmYT/L+CUbkK3Us7neeonDLEhZSQd4/wYDs4ZRPp3t8eA+nfLgRmb79Ug0rGf0pn4upEIJclUKnMDAQGpqG5bSCrM6e/1zDbUxd1bC4X9bd7Gki6sMUV6XoqjU0XNkv6W72xI3IjKnUD6YoOm32JAGYTXBVCp3EwEAArt5hcC2rdNwKmWu4jRFCYKtwsFV3J+HDKR/exKozcbgqZUtnVQo3IjNGEwJrWf2tpRMBDy4kOUVBBxgY6IRyrYEr++WON17iGm7jiodTPp1WpbhkCQtclWKI4VUpyRAifk5R6MkcrkrptOMmNyKjJgYGuoaqCaxkykhzDbcpGqqGpbT+DnxjYR+m435O+egwOuUzGfVjMsopCj3Vhoor+2WUO0z5SACm47wz67BjYKCWulnDfV0qxCkKHc27ia5nO9/9Muh14TpOUeg6WJVycP+ETrgqxZiuNiJLBXmvlCHFwEAdKXUVV/Y6r+F2yRIujbBK3YiDVSnljtsge2QJl0ZDvF22AYXDVSn1jqsoZFweZag1wsiqFL9bxuXRMEPtEGJgIF2aJrCis4ZbArCQCiLBugZdqiawlC53XJUiS8DFVIh1DQbUD6d8Om1ExlBrXK2hYXG/hGKHKQqG2uHEwECGGVnDzRsuGdO8xfNqpvOqlAuJAEbCvr61y6mat3he77AqhaHWOCEENvIVbHXYiIyhdvgwMFBXDtZwl6F02LZ3NHxQDMnQoK98uG1vp1UpvIuoccVqA4s6G5HNsHjPMCMbkTHUDg8GBuqapgks6gypxwMeLCSDXEFhgKoJPLVX6lj1nwwerIfnCgp9dVXDU3udN3oaC3sxw1BrSK2h4cm9YseNnhhqhwMDA52JONz4ZafDxi8hrwvXjYRYoW6AJgRW0mXsd1jKGvG5cd1IiJvoGMBQay6GWgIYGOictgsVrGXbzxv73DIujbBC3QgjN7Dye2RcHmGFuhEMtebShMByuvP+LAy1g42Bgc4tU65hMV1uu18DK9S7s1esYjmjtH3c45JwaSTMmwMZxFBrHiOhNuCRcYmhdiAxMJApitUGntwrtV2/LUnAQpIV6kbllDqu7JfarkiRJeC6kRDveGlQplzD4n657YoUtyzhOoZawxhqhxMDA5mmUlfxxG6p46ZEs/EAxiKsqDaiXGvgyd1Sx02JLiQDGAmxP41gqDUXQ+3wYWAgU9VVDU/ulTruSz8W9mEmzopqI2oNDU/sFjvutMl7JhjHUGsuI6F2PhlEKsQQNggYGMh0qiawuF/qeLMlVqgb19A0XNnrfLOlVMiLCwkuEzSCodZcRkLtVNSPCYZax2NgoJ4QQmA1q2BXp0L90kgIblao6zJSoR71u3ExxQp1IwyH2hSXCRrR0DQ8tVdGkaF2oDEwUM8Y2a7X5z64MZDPzeIoPUa26w14ZFwaDcPLEKaLodZcDLWDj4GBei5drmFJp0L90kgIIVaoG7JbrGJFp0L98kgYAVao62KoNZc4vE32VofbZAc8LlwaDTHUOhADA/VFodrAUzoV6pdHQoiwotoQvQp1lwRcHgsjxLsJGmIk1N4wFuZeDQbphVqvS8L1YxH4uFeDozAwUN8odRVPdqhQlyXg8miYa+ENKtcaeGK31PbGQC5ZwvWjXAtvVKFyGGrbfCR6XAehgSMNxuiFWp9bxvWj3ODJSRgYqK/qqoYnd0sot7nbpSwB1/PK2LBq4yCEtatQd8sSrh8LI8ArY0MOQm2x7d0ueWXcndLhsst2odbvlnH9WJhbczsEAwP1nV6FOq+Mu3NQoV5Csdo6hHkOQwOH043RC7Vel4wbxnhlbJReqPV7ZNwwGmZhqQMwMJAlhDi4m2CmTUU1r4y7owmBK3vtQxiH07ujagJP7hXbhjCf+yA08MrYmIaq4fHdEpQ2ISzgceH6sRDcMvvTzvivQ5aQJAkLySDigdZFjg1N4PGdIiptPmDoJFmScHEkhEib+o+6KvD4Tgm1Dpvr0FUHN0wLI9RmlKva0PD4bhGNDjtG0lVul4zrR0PwtxmVadY3tSuKJntgYCDLSJKEhVQQMX/rk1xDE3h8t4hqg6HBCFlq3hW09Umuph6c5Oo8yRnikiVcGg21HeWq1A+umhsa+9MIt+ugXqFd/UeppuLJvSJDg40xMJCleGVsLtnIlfEOQ4NRbvnwytjDK2MzeFyHKyPaTOUUqyqe2itBY3/aEgMDWY5XxuZqXhkH210ZN7TD5ZjsTyPchye5jlfGu7wyNsp7tDKi9W6PhWoDT+2XoLG8znYYGMgWeGVsLrd8sDthoMOV8RO8MjZM98q4xivjbjT3YPC02SI6X2lgcb8M1uTbCwMD2YZLlnB5NKxzZcxCM6PcLhmXR8NtC83KNRVP8MrYsOaVsZdXxqbwe1y4PBaGu01oyCp1hgabYWAgWzkIDZ2ujDVeGXfB45JxWafQjFfGxvl0htPzlQau7Jd4kjMo4HHh8mi47c2oMkodS2mGBrtgYCDb0b0yrvPKuBveo+F0Xhmbwed24frR9lfGOYXD6d0Iel24PBpCm5cn0uU6VjIK+9MGGBjIljyGlmDxytgovUKzfKWBK3u8MjbK7zkIDbwyNkfI68al0TDa3fV6r1TDWpahwWoMDGRb+kuweGXcDd0rYxaadSXgdeF6XhmbJuxz49JIGFKb/twp1rCeq7A/LcTAQLZ2cGUc0r0yZmgwhlfG5gp63bisc2W8yitjwyJ+Ny6NhNCmO7FdqGIzX+lrm+gqBgayPV4Zm+vqlXHr/uSVcXdCvs7D6bu8Mu5K1O/BdR1Cw2aeocEqDAzkCH6PC9frLMHiSc64gyvjUMcr440cP5SNivjcHU9y24UqtgvVvrbJyWIBDxZSwbaPb+Qq2CuyP/uNgYEcQ28J1l6pht1irc+tcq6Qr/Nw+lahinSJ/WmU3pXxeq6CnNL67qx0rUTQ2zE0rGQUFKut785KvcHAQI4S9LpweaT9lfFqVkG+wg9lo8LNK+M2/bmUKaPED2XDYgEPLo6E2j5+Zb/9LZ7pWsmgF/PJ1qFBAHhqj/eZ6ScGBnIcvSvjK/tl3uGyC1G/B9elWl8ZCwE8tV/iltxdiHcYTtfEwUmO9/EwLhXyYi4RaPlYQxN4co8bufULAwM5UtjnxkKbKw9VE7yDYJdiAU/bD+W6Kg52g2R9iGHJoBczMX/Lx6oNDVf2WKTbjdGwDxMRX8vHlLrKlT19wsBAjhUPejEVbf2hXGloWOQWvV0ZCfswFm79oVyqqVjmh3JXxiI+JIOelo8Vqg2sZVlU2o2pmB8xv7vlY1mljq08iyB7jYGBHG0i6kMi0PpDOVdpsNK/SzNxPyK+1h/K6XIdO6z0N0ySJFxIBtvegXWnWGWlfxckScJCKtR2y/iNfAWZMot0e4mBgRxNkiTMJ4MItLnDJSv9uyNJEi6OBNtuyb3GSv+uyJKE60babzzGSv/uuGQJl0ZDbVdKLaXLKNdYv9QrDAzkeLIs4dJIqO0eDaz0745blnGpw0qUK/slVFjpb5jHJbddicJK/+753C5c7FhUWmSRbo8wMNBA8LrltmvgWenfPb/HhYup1ssDNQE8yUr/roS8bswnWp/kWOnfvajfg9l46yLdmipwhfeY6QkGBhoYYZ+blf4migU8mGalv2mSIW/HSn8WlXZnNOzFSMjb8rFiVcUqd341HQMDDRRW+ptrnJX+pupU6Z9hpX9XJEnCbCKAsK91/RJ3fjUfAwMNHFb6m4eV/uZipb+5ZEnCxVQI3jZFpdz51VwMDDRwWOlvLlb6m4uV/uY6KCrlzq/9wMBAA4mV/ubyuOSD7aNZ6W8KVvqbK+h1tb3nBHd+NQ8DAw0sVvqbK+TTr/TX+KFsGCv9zZUIejHJnV97ioGBBhor/c2lV+nPPf27Y6TSn4yb1Nv5Nc8i3fNgYKCBx0p/c+lW+rOo1DBjlf7sT6OaRbptd37NV5FmUemZMTDQwGt+iAQ7VPrvc/tow3Qr/XMVZFlUaphepf9KRkGhwqJSo1x6O7+myyjX2J9nwcBAQ0GWDj5E2lf6s5K6G3qV/svpMov2uqBX6b+UZtFeN/R2fl3cL7M+5AwYGGhodKr01w4/RDj/blynSv+GJrhJVpc6VfrXVIGVTLnPLXK2Tju/Vhoa1jkV2TUGBhoqnSr9SzUV25x/70qnSv9cpYE9TvV0pVOlf7pc56ZOXTrY+bV1UelOscpNnbrEwEBDJxlqX5m+katwfrNLo2Ev4m0q09eyCve76NJk1Nd2p9LljMKpni7NxAMItimCXEqXubS6CwwMNJRm4gF4Xde+/AU4v9ktSZJwIRFoWWSmCXCpZZckScJ8MohW5TaqJtifXZIkCfOpYMupyLoquHS1CwwMNJRcsoSFNvPvnN/sntslt51/L9VU3lSpS163jNk2U2f5SoM3VepSwOPCTKz11Fm6XOdSS4MYGGhohX1uTERbb0LE+c3uxQIejLab6slXUOJUT1eSQU/bTYjWcpzq6dZo2Nt2qmclrXBrcwMYGGioTUb9nN800XQ80PamX0v7ZW4d3QVJkjCXCLRcCiwEsMipia4cTfW0mDpTBad6jGBgoKEmc37TVC5ZwkKbqYlKQ8Najv3ZjU5TPeWaik1uddwVr1tuu9SyUOVUjx4GBhp6nN80V8jnbrs0cLdY463FuxT1ezDaZmngZr6KEm8t3pVk0Nt2q/i1nAKFUz1tMTAQgfObZpuM+tpuxb2cLqPBpYFdmYkF2m7FvZgucxfILs12mOpZ4iqpthgYiMD5TbNJ0sHURMupHk1gJaOwP7sgywdTZ61UGxrWspzq6YZb7jDVU1exmeNUTysMDESHOL9pLr/H1XYXyIxSR7rMqYluhLxuTLWZ6tkrcaqnW1G/B2Ph1quktgpVFDnVcw0GBqJjOL9prpGQF9E2t8JeyZQ51dOliagPoTZTPUuc6unadNzffqpnn1M9pzEwEJ3SaX6Tu0B2p9NUj8algV1r9meru1o2NIFlTvV0RZYONnBrdVfLmsqpntMYGIhO6TS/qXB+s2sel4wLbaZ6itUGdnjDr674PS7MtJnqySp17HNVT1eCXjemYu2nerKc6jnCwEDUAuc3zZUIepFqM9WznqtAqXGqpxsjIS9ibaZ6VjMKqg32ZzfGIz6EO6zq4Q2/DjAwELXB+U1zzSaC8Laa6gGwmC5xqqcLkiThQjLIG36ZpHmDqrZTPexPAAwMRG1xftNcLlnCfDLU8jGlrmGDUz1d8bhkXGgzdVasqtjmVE9XfO72q3pylQb2S5zqYWAg6kBvfpNL2boT8bsxHmk91bPNqZ6uxQMepNrd8CtX4aqeLqVCXsTb3PBrNaugOuSrehgYiHR0mt9cySi8oVKXpmJ+BDytP3pWMhz67dZsPACv69r+FGB/dqt5w692Uz2r2bIFrbIPBgYiHZ3mN2uqhs0Ch9K7IUsSFpKhllM9Sl3DTpFD6d1wyQdTZ60Uqyo3yOqSp8MNv3JKY6hXTTAwEBngc7dfyradr6LCod+uBLyutlM9G7kKN3TqUtjXfqpnLatwQ6cuxTpM9axmhrfgmYGByKCRkLflLnsHQ7/cMKdb4xFfy1UoB0O/LCjt1mTU33IVSkMTWGdBaddmYv6WUxM1VWBrSG8rzsBAZNDB/GbrocpCtcGh3y5JkoS5NkO/WaXOgtIuuWQJs21en3ulGgtKu+R2yZhuMwq2VagOZUEpAwNRF4JeV9sNndayChoah367EfG5kQq2HvplQWn34gFP2w2dWADZvVTI26Hgefj6k4GBqEtTMX/Le000NMG9BM5gOu5vea8JFpSezWwi0PK24iwo7V6nUcVhLChlYCDqkkuW2m7wslusocSh3654Ogz9sqC0ez63q+1tsFlQ2r2A18WC0kMMDERnEA94Oty2+aAAUgiBdKk2dMOWZ2GkoLTZn6RvrENBaXOHUiEE0rxRlSGT0fajis2CUk0IZAa8PxkYiM6gucFLq6Hfcl3Feq6Cx3eLWEyXwWl4fXoFpRv5Cr6zXeTtsA2SO/RnRqljM1/BI1sFrGa4GsUIlyxhrs2o4l6phq3D/hz01SgMDERn5HO7MBlpM5ReqKJYPRhKbzAxGNKpoHQrX0X5cGqC3WlMxO9Gss0dQjdyFVQaGlRNMIAZFOtQULqeq6B62J+DjIGB6BzGoz742tzRsknlygnD2hWUHjfoH8pmmokHWhaUNgkwgBklSVLbgtKmQX9tMjAQnYMsSRhtsyNc06B/iJjJJUttl1k2sT+Nc8sSEm1uptTE/jTO65IR97fvz4MANrj92Xp8hYh01Roa1nOK7tIqfiAbU22oWM0qyCmdV5lwiscYpa5iNaOgoLNqRx3gE5yZyrUGVjIKSrXOq3ZUTUDWGSVzKo4wEJ2DkZMXT3DGCGEsXPEEZ5DR/uTr0xCjr89Bfr8zMBCdkdct49JICPPJYMd54gH+/DCV3+PC9aNhzCUCLe8M2sTdH40JeF24cTyM6Zh/qOfdzRLyufG0iQgmo60Lc5sG+fXJwEB0DpIkIRXy4hkTEcTbzBUP8pym2SRJwmjYh2dMRNvuc8ERBuMkScJE1I+nj0cQ9rXe4pivT+NkScJULICnjUcQ9AxffzIwEJnA45Jx3UgIF1PBa+5wxxNc946P3pwebRjkD+ReaY7ezMavrfIf4AvingkeH7059Zg6wP058IGhuUMcmYP92Vki6MXTJyKIBa5eHXcaomR/tnd19CaKiO94f7b/HfZne5IkYSziw9PHIyd21ew0JcH+bK85enPjeAQBz9VTabtA2+xLJ/fnQK2SaDQayOfzUBQFiqKgWq2e+Mfx+XwIBAIIBAKIRqPweDovNxp2jUYDuVwOlUoF5XIZtdrVbY4lSbqmP93ugXo5nZnHJeO6VAjpch0rmas7Pdbr9aPXZ7M/m5r9GQwGj/rT5Wo95DlsvG4Zl0dD2C3WsJZTjkZsarXaiff76f70+/0nXp/szwN+jws3jIWxXahiI1c5OsFVq9UT/VmvX139I8vyUX8Gg0FEIhHI8sBfbxpyMNoQwWaugq1C9egCQVEUFIvFgepPSTg57hwql8vY399HLpfr6vcikQhSqRRCoRCkTlVBQ6ZYLCKdTiOfz3f1e7FYDMlkEqFQqEctc55qXcVOrgi1mEGxWDT8e5IkIRaLIZVKIRBovSXtMFJqDeznS6gX0iiVSoZ/T5IkJBIJJJNJ+P2td+ccRqVqA5l8EbVCGuVy2fDvybJ81J8+X+ciwGFSqNSQK5RQzaehKMa33ZZlGclkEslkEl5v531IrOTowKCqKjY3N5HNZs/1PJFIBFNTU0M/4tBoNLCxsdF1UDgtFothcnJy6EccarUaNjY2ugoKrSQSCUxMTAz9FXK1WsX6+npXJ7ZWRkZGMDY25ogrul6qVCpYW1tDpXK++x+MjY1hZGRk6PuzXC5jfX0d1erZbyEuSRLGx8eRSqVseRHr2MBQLBaxuroKVTXn1reyLGN6ehqxWMyU53OafD6PtbU1aCZtY+xyuTAzM4NIJGLK8zlNJpPBxsaGafOVbrcbs7OzQzt6s7+/j62tLdP60+PxYG5ubihHb4QQ2N3dxc7OjmnP6fP5MDs7O5SjN0IIbG9vY29vz7Tn9Pv9mJubs91ogyMDQy6Xw+rqak+ee2JiAiMjIz15brtKp9PY2NjoyXNPT08jkUj05Lntand3F9vb2z157rm5OUSj0Z48tx314sO4SZIkXLhwAeFw2PTntishBDY2NpDJZEx/blmWMT8/j2Cw9V0yB5EQAqurq+celW3F5XJhYWHBViHMcWNI+Xy+Z2EBALa2trC/v9+z57eb5pVwr6yvr597yshJ9vb2ehYWAGBlZQWFQqFnz283Ozs7PQkLwMGH/fLycle1EE7Wy7AAAJqmYWlpqau5eyfrZVgADqbcFxcXzzXFYTZHBYZardbTsNC0ubk5FC/6SqWC9fX1nh/nvPN6TlEqlbC1tdXz46yurp6ouB5UhUIBu7u7PT2GEAIrKytoNDrfb2EQZLPZnoWFJk3TsLKyYtrUpp3t7+/3LCw0qaqKlZUV2yzFdExgEEJgbW2tbx23uro60C96TdP6Er6Aq0ncLi/6XlBVFWtra305lqZpfX0vWKHRaPStP5vF04OsVqv17e9Yr9f7EpytVK1WezqSePpYZtabnIdjAkMmkzl3dXQ3arVaz69urLS/v9/Xq/5KpYJ0Ot234/Xb7u5uX6/6S6VS18uInWRra8u0gmYjcrncQE/1bG5u9vUCKJ3ubpmm06yvr/c1sO/u7p57NYsZHBEYhBA9m8fsZH9/fyBHGazqz729vYG8KlZV1ZK6l93d3YHsz0ajYUndixXviX6oVquWhKFB7c/mxmv9ZocLLkcEhlKpdGIXt37RNM0RV3HK2iry3/qW4Z/P5/N9vXprqtfrjriKKz31FIrf+Y7hn8/lcpacuKvVqiNqbQqPPorSlSuGf96qD8ZSqWSLqzg9+W9+E0oX0zVW9Wc+n3dErU32q19FtYvpBauK4jOZjCWf28d1FRjuuecePPvZz0YkEsHY2Bhuv/12PPbYY71q2xErq+x7XSRkhtrODh5+y5vx7bf+vKHgYOXfyQkrJpSVFXzrP/4UHv2lX0TRwOvbyv50wuuz9MTj+OabfgKP/erbUV5c1P15vj47y3/rW/j6G16PJ+75Dd3gIISwtD+dcMGV/fI/4WuvfQ2e+p3f0Q0OVl5ECiF6XmSpp6vAcP/99+Puu+/GP/3TP+Ezn/kMGo0GXvziF/d8WZKVy54URXHMsG/uq189DA5vbRschBCWzi06aV4z86Uv4Vs/9ZMdg4OmaZZe5TumP4XA/mc/i2/8xJ0dg4OqqpZelTphxAYAoKrYve++w+BwT9vgUK/XLZ1WdcrrUzQa2P7Exw+Cw7vehepO6+BQqVQsPR9Y/fo818ZNu7u7GBsbw/33348f+IEfMLNdR1RVxaOPPtqT5zZK/rP/D9U+LD88K1VRUGuRjGO3fC9m77wT0Wc+8+h7tVoNjz/+eD+bd633/zHqNr4yVksl1FoUvCb+9b/G7J0/gfANNxx9T1EUPPXUU/1s3jXU3/tdaBZM2RnVyOdRPz0sLklIveAFmH3jnQguLBx9u1gsYmlpqb8NPN4sTUPtd37bsuMbUc9m0Tg9EuJyYfRFL8bM61+PwMzM0bd7ucmdEXK5jOp7/sCy4xtRT6fROHXlLrndGHv5D2HmdXfANzZ+9P39/X1LV9T4/X5cunTJsuOfa7P/5tBMMpk0pTGt2GH9fmVjAxULP8TOKvfVryD31a+cCA526E9lbQ11B65AyXzpS8h86UsngoMt+nN5GZoN2tGVwxGH/c997kRwsLqGQFNVKA58rx+MOPwtdj/z6RPBwer+bNRqjuxP0Whg++Mfw85ff+pEcLD6/W718c8cGIQQeOtb34rnPe95uOmmm8xs0wl2WKXgkBmJto4Hh+QrXwlYvRWuw/vzeHCI/V8/Btho61bHORUcQq/4dwDvfnh2p4KD76UvBYb8JnDncTo4uP7tvwUsvAmcEAJCCMtuTHXmV9Kb3/xmfOtb38IDDzxgZnuoV1wueEdH4YrFAIsrbWG/m7B1TfJ44BsbgysaAWr2rwS3O9nrhW9sDHIkAth4esUpXD4ffGOjkEMhwGmjTzbkCgbhGx2FFggM9evzTIHhLW95Cz7xiU/g85//PGaOzZf1gh1u6WvDu4wad2pus1AoAMvLVrfKsSSPB+Mvfzmm7zgYosxms0CfdiQcRLLPh4nbb8fUq18DbzJ5sGRtwHdd7CVXMIjJH/sxTP74K+GJRg92CLTJLoFO5I5GMfXKV2HiR38U7lDooH7BwnsNSZJk6W2vuwoMQgi85S1vwb333ovPfe5zWDhWrNQrPhsMT0ae8Qz4bXwHy3o+j9LpKv42RVB2uPNZ9FnPgmrj5Va1dBrlU4WMkseDsZe9/JoiKDv0Z+yWWyBsvN69urMD5VRIlX0+jP/wD2P6Na+F91gNlNX9KbtciD372bYeBKtsbKByqgj7dFBosro/PYEA4s9+tqVt0KOsrqJ6aivr00GhyerzkdX/nl2tkrjrrrvwZ3/2Z/j4xz+OG45VisdisZ7eV/7xxx+3ZOMm4OCWrU972tMsTXV6cl/7Kr798z9/8EWboHDco48+atkGIB6P58Rrx472PvtZPP6rbwdw7YjCaUIIPPLII5YttbK6atqIrU98HFd+53cAXDuicJrVq6LC4TDm5+ctO74Ra3/6p1h5/x8DaB8Umur1el/2ymknFothdnbWsuMbsfTe92DjIx8B0D4oNFm9KiqVSmFyctKy43c1wvC+970PAPCCF7zgxPc/8IEP4M477zSrTdcIhUKWBYZgMGjrsHDEQFBoCoVClm0AEgwGLTlut/SCwtHPSRICgYBl681DLT7U7EgvKDS5XC74fD7LqsGd8vrUCwpNbrcbbrfbsrtxOqU/9YJCk9/vhyRJll0g9PLC3Ihz7cPQL+VyGVe62FrWTLOzs4jFYpYc26jqzja0Wl03KDQVCgUsW1THMD8/j7DVqzR0KGtrkL2ejkHhuGw227c7K5526dIly4cp9ZSXluCORjsGheOsXOt+/fXXw+v1WnJso0pPPgnv2FjHoHDc9va2JTfSkyQJN9xwA9w2X6VRfOwx+GdmOgaF4zY2NizZbluWZdx4442QZevu6OCIe0kEg0FLPhTdbjeiBt+UVvKNjRsOC8DBsKvH4+lhi1rz+XyOuCIOzMwYDgsAEI1GLSnOtep90a3g/LzhsAAA8XjcklG9SCRi+7AAAKFLlwyHBaC3++R0EovFbB8WACB8ww2GwwJwMC1ghWQyaWlYABwSGABgdHS078ccGRlxxnRElyRJYn+aSJZlSz5ERmxciHseLpfLkpPcoPanx+NBPB7v+3EHtT99Pl/fR0klSbIs+B3nmMAQjUYRiUT6drxAIGBZkuyHRCLR1/nFUChkyYdWv4yMjPS1gjoWizli9OusxsfH+zoKlkwmHTH6dVYTExN9HQUbHR11xOjXWU1PT/f1an9iYsIWo1+OCQySJGF6erovL3pJkjAzMzOQV8NN/fw7yrI88P0py3LfqsFdLhempqb6ciyr9LM/PR4PJiYm+nIsq7jd7p7vmdPk9/sxNjbWl2NZxePx9O09GAwGbTG6ADgoMAAHL/q5ubmen3hmZmYsX2/bD16vF3Nzcz0/ztzcnCU1E/3m9/t7/qEsSRIuXLhgiw3Nei0YDPZ8CZksy7hw4YLlc8P9EIlEen4i79dntB3EYrGej0J7PB7Mzs7apj8d9y4JhUK4cOFCzzrQCasizBSJRHoWGponN7uvijBTPB7H9PR0T55blmXMz887ZqmaGXq57tzlcmFhYWGgh85PGx0d7VlocLvdWFhYsMXQeT9IkoSJiYmehQav14uFhQVbXWw5YlllK4qiYG1tzbT12m63G7OzswM9j9lJuVzG6uoq6ibtGOj1ejEzMzNUJ7fjisUi1tbWTFv/7vP5MDs7O1Qnt+Py+TzW19dN23AsEAhgdnZ2aE5up2UyGWxubpp2c79QKISZmRlbndz6RQiBdDqNra0t0/ZniEQimJ6ett0qE8cGBuDgTpa7u7vnXmOcTCYxPj4+FMO8nWiahu3t7YP9/M9hdHQUo6OjQzHM24mqqtja2kImkznX84yPjw/sCpNuNBoNbG5uIneObcWbV4XJZHLo+7Ner2NjY+Pg/jJnJMsyJicnLVsKaye1Wg3r6+solUpnfo5mfVI0GrVlfzo6MDTVajVkMhmk02nDVyCyLCORSCCRSAztVVs71WoV6XQamUzG8BWILMtIJpNIJBJDUf/RjUqlctSfRt9uzaWFiURiaK+C21EUBfv7+8jlcob70+12H/XnMF4FtyOEQLlcRjqd7iqIeTwepFIpxONx210FW0kIgVKphHQ63dVuuj6fD8lkEvF43NYXrgMRGJo0TUOpVIKiKFAUBZVK5eiEJ8syfD4fAoEAAoEAwuHw0F8B69E0DcViEZVKpWV/+v3+o/4MhULsTx3N/my+PqvV6on+DAQCR30aDodteYVhJ6qqXtOfzY8zl8t1zeuT/dlZo9E48X4/3Z/NvgwEAs7ZMt9C9Xr9xPmoVqtBCAFJko760+/3IxgMIhAIOKI/ByowEBERUW/wkpCIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdbqsbQETU5LvlJyHJrqP/XB7v0Z9lt+fqYy4XZLcX8tFj3msek2QXZFmC7JIhyxIkWYLLJUM6/PPBY1JXj7kO//O6ZbhkCe6jP8tXH3Nd/bPPLV/zOye+liTIkgSPSzr6s0sC3C4ZLgmHj139s0uW4JEPf04GPLJ89OeD35UgSYAsofWfAUjNn2/++fBnJEk68bOSEJC0BiA0QAhAaMe+1iCpeo+d+r6mQmga0KhBqCqgaRCN2sH/NfXg8XodaP65Ub/6O5oKUT/4WWgqtEYdQtUO/tM0aLUGNFU9+rPQNGjq1T83f1atNyCO/Zx2+PtC1aDWVAhNQFMFtJoKTRUQqgZNEwePqQJCFVDrVx87+fXVn9OEQE0TUIWAKgD16GtAFWj5mIbTPyeOfvYPxZK1b8xDHGEgIiIiXQwMREREpIuBgYiIiHQxMBAREZEuBgYiIiLSxcBAREREuhgYiIiISBcDAxEREeliYCAiIiJdDAxERESki4GBiIiIdDEwEBERkS4GBiIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEgXAwMRERHpYmAgIiIiXZIQQljdCCIis1WrVdxzzz34pV/6Jfh8Pqubc4Kd2wawfedh57adFwMDEQ2kfD6PWCyGXC6HaDRqdXNOsHPbALbvPOzctvPilAQRERHpYmAgIiIiXQwMREREpIuBgYgGks/nw9vf/nZbFp7ZuW0A23cedm7bebHokYiIiHRxhIGIiIh0MTAQERGRLgYGIiIi0sXAQEQD5T//5/+MW2+9FXfccQdqtdqJxxRFwQ/90A/h+c9/Pl70ohchnU7bqn1N99xzD773e7/X8jY1Gg3ceeeduPXWW/GzP/uzfWuPkbY19buvTmvXPju81szGwEBEA+PrX/86tra28IUvfAFPf/rT8Zd/+ZcnHv/bv/1b3HTTTbj//vvxyle+En/6p39qq/YBQKFQwMMPP2yLNn3yk5/EzMwMvvCFL6BcLuNLX/pS39ql1zag/311Wqf2Wf1a6wUGBiIaGA8++CBe/OIXAwBuu+22a05wly9fRrlcBgBks1mMjo7aqn0A8Hu/93u4++67bdEmI+21qm1A//vqtE7ts/q11gtuqxtARGSWbDaLqakpAEAsFrtmGPi6667Dww8/jJtuugmSJOHLX/6yrdqXy+Xw0EMP4Vd+5Vds0aZsNnt0P4RW7bWybVb01Wmd2mf1a60XOMJARI6ztbWF5z3vedf8J4RAPp8HcPBhnkwmT/zehz70IbzgBS/Aww8/jHe84x34tV/7NVu173d/93fx5je/uSdtaieRSLRtU6fHrG6bFX11Wqf29eu11k8MDETkOBMTE3jggQeu+e9lL3sZPv3pTwMA/u7v/g7Pfe5zr/nd5od6PB5HNpu1VfuefPJJvPOd78Rtt92GJ554Ar/5m7/Zk/Yd933f931t29TpsX7odHwr+qqb9gH9ea31lSAiGiBve9vbxPOe9zzx2te+VlSrVSGEED/1Uz8lhBAil8uJl73sZeL5z3++eO5znysee+wxW7XvuFtuucWyNjXbU6/XxRve8AbxvOc9T7zlLW/pW3uMtO24fvbVae3aZ4fXmtm4NTQRERHp4pQEERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQEQ2BO++8E5Ik4ad/+qeveeyuu+6CJEm48847j763tbWFt7zlLbh48SJ8Ph9mZ2fxile8Av/wD/9w9DPz8/P43d/93T60nuyAgYGIaEjMzs7iz//8z6EoytH3KpUKPvzhD2Nubu7oe0tLS7jlllvwj//4j/it3/otPPTQQ7jvvvvwwhe+0NKtmMla3BqaiGhIfM/3fA+uXLmCj370o7jjjjsAAB/96EcxOzuLixcvHv1cc8Thn//5nxEKhY6+/4xnPANvetOb+t5usgeOMBARDZGf+ImfwAc+8IGjr//X//pfJ0JAOp3Gfffdh7vvvvtEWGiKx+P9aCbZEAMDEdEQef3rX48HHngAS0tLWF5exhe/+EW87nWvO3r8ySefhBACN954o4WtJDvilAQR0RAZGRnBy1/+cnzoQx+CEAIvf/nLMTIycvR4c/NfSZKsaiLZFEcYiIiGzJve9CZ88IMfxIc+9KFrahIuX74MSZLw6KOPWtQ6sisGBiKiIXPbbbehVquhVqvhJS95yYnHkskkXvKSl+A973kPSqXSNb87EHddpDNhYCAiGjIulwuPPvooHn30Ubhcrmsef+973wtVVfGv/tW/wl/91V/hiSeewKOPPop3v/vd+P7v/34LWkx2wBoGIqIhFI1G2z62sLCAr33ta3jnO9+Jt73tbdjc3MTo6ChuueUWvO997+tjK8lOeHtrIiIi0sUpCSIiItLFwEBERES6GBiIiIhIFwMDERER6WJgICIiIl0MDERERKSLgYGIiIh0MTAQERGRLgYGIiIi0sXAQERERLoYGIiIiEjX/w8ZcbOWfCHRFgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1844,7 +1852,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJxUlEQVR4nO3dd5QcZ4Eu/KeqOlX3dJqcZ5QsyZbDWsLG4LiLwdj4YhMXTDCw+LLYXvaYvd/ddA/fci7rvRu4wEfYu3vvAoe9pAVMxmCC5YCNMY6yZVlpJE0OHaZzVVe93x89M9JIM109M91d1T3P75w56lBd9Wqmq/upN0pCCAEiIiKiMmS7C0BERETOx8BARERElhgYiIiIyBIDAxEREVliYCAiIiJLDAxERERkiYGBiIiILDEwEBERkSUGBiIiIrLEwEBERESWGBiIiIjIUsMGBsMw8IlPfGLdr8/n87jllltw3nnn4ZJLLsENN9yAkZGR6hWQqAFs9DwCgD/5kz/B8PAwJEnCgQMHqlQyouZSjXPNbg0bGJ5//nl861vf2tA+7rjjDhw6dAjPPPMM3vCGN+COO+6oUumIGkM1zqO3vOUteOSRRzA0NFSlUhE1n2qca3ZryMDw4osv4qabbsLY2BguueQSfOxjH1vzPnw+H2688UZIkgQAeOUrX4ljx45Vu6hEjlWN8wgArr76avT391e5dETNo1rnmt1cdhdgPc4//3zceuut2LVrF+66666q7PMzn/kMbr755qrsi6gR1OI8IqJzNcu51pA1DADw5JNPYt++fec8ftVVV6G9vX3Fn1OnTq24r7/927/F4cOHG759iWitqnkeEdHqVjvXGokkhBB2F2KtisUiotEoZmZm4PP5NrSvf/zHf8TXv/51/PznP0ckEqlOAYkaQDXPIwAYHh7GD3/4Q+zZs6cKpSNqHtU+1+zSkE0So6OjCAaDG/7Ff/KTn8TXvvY1hgXalKp1HhFRec1yrjVkk0R/fz8uuugi7Ny5E3/5l3+5rn2Mjo7iox/9KBKJBK677jpccskluPzyy6tcUiLnqsZ5BAB33nkn+vv7MTo6ite85jXYvn17FUtJ1Piqda7ZrSGbJIiIiKi+GrKGgYiIiOqLgYGIiIgsMTAQERGRJQYGIiIissTAQERERJYYGIiIiMgSAwMRERFZYmAgIiIiSwwMREREZImBgYiIiCwxMBAREZElBgYiIiKyxMBARERElhgYiIiIyBIDAxEREVliYCAiIiJLLrsLUAuGYSCfzyOfz8M0TQCALMvwer3w+XxwuZryv01UVcViEblcDoVCAUIIAKXzyOfzwefzQVEUm0tI5GxCCOi6jnw+D03TIISAJEmQZRmqqsLr9UKWG+e6vWm+OXVdRzweRzweh67rZbd1uVyIRCKIRqPwer11KiGR8+XzecTjcSQSCRiGUXZbj8eDaDSKaDTKEE60QAiBbDaLWCyGVCq1dNG6GlVVEY1GEQ6HHR/CJbF46dCgNE3D5OQk5ufn1/X6QCCAnp4e+Hy+KpeMqHHkcjlMTEwgm82u6/XhcBjd3d1wu91VLhlR45ifn8fk5CQ0TVvzayVJQltbGzo7Ox1b69CwgUEIgVgshsnJSVTjv9DZ2YmOjg5IklSF0hE1BtM0MT09jdnZ2Q3vS5Zl9PT0IBKJ8DyiTaVYLGJ8fHzdF65ncrvd6OvrQ0tLSxVKVl0NGRhM08TJkyeRTqerul9VVTE0NMTqVdoUdF3HyMgICoVCVfcbDofR19fn2KskomrK5XIYGRmxbMJbKydexDZcYDBNEyMjI+uuOrXi9XqxZcsWhgZqarqu49ixY5b9fdarpaUFQ0NDjvqwI6q2XC6HY8eOVaWWeyXt7e3o6upyzHnUUJcAQgicOnWqZmEBAAqFAk6cOFGzNwCR3UzTxPHjx2sWFgAgnU5jbGysZvsnspumaTh+/HhNvytmZ2cxNzdXs/2vVUMFhkQigVQqVfPj5HI5zMzM1Pw4RHaYmppaV6estUokElVp0yVyGiEERkdHLUdAVMPk5CTy+XzNj1OJhgkMmqZhfHy8bsebnp5GLper2/GI6iGdTtf1imVsbAzFYrFuxyOqh1gsVtOa7rONjo46ota7YQLD9PR03X9hk5OTdT0eUa3V+z1tGEZVRmAQOYVpmpiamqrrMfP5PJLJZF2PuZKGCAzFYtGWX1Ymk6l6D3KiahFrrA7NZrO2VG3GYrG6VN0Srcdaz6NEImHL+9kJfRnWFRg+//nPY8uWLfD5fNi7dy8efvjhapdrmUQiYVt1TCwWs+W4RFbmfvULHP2He5EbPVXZ9jZ94Jim6YirI6KVjP37l3HyX/8ZeiJe0fZ2nUe5XM72ZvI1B4ZvfOMb+NM//VP81V/9FZ5++mlcddVVeP3rX4+TJ0/WonwAUJeOjk48NlE5wjQx94sH8Pwd77MMDkIInkdEKzDzeUx++5t49r23WQYHXddtrXW2+zxa8zwMl19+OS699FJ84QtfWHps9+7duOWWW3DvvfdWvYBCCBw8eNDWKs0BmBB17OBCVInk009h6r5vnX5AltF23R+g9x3vgto/sGxbTdPw8ssv17mEp7ndbnQlK7uCI6qnmft/hPivH126L3t96HzDf0LPW98OdyS6bNv5+fmaXhxbCQaDGBoasu34awoMmqbB7/fjP/7jP3DrrbcuPf6Rj3wEzzzzDPbv31/1AhYKBRw+fLjq+12T734L2UcesrcMRJVaITgkk0mcOlVZ00WtZD/2F0AmY2sZiCq1UnCYmpqydci9y+XCrl27bDv+mpokZmdnYRgGurq6lj3e1dVVs97XjhiSFXDenN5Eq1qhqcIJ55EUDNtdBKKKmYVzmyrsPo+KxaKtwyvX1enx7GkqF9f4rgUnjD2Fw5ccJVrRQnA48Md/hKyN1ahLXDyPqPEsBocDf/xB6OnN3RdnTQsmtLe3Q1GUc2oTpqenz6l1qBZHzKFd5UVFiOpBUhS0v+Z16PnDdyLj8SI5MWFvgRxQy0G0VrKqovuNb0LXm96C6VQaiG/evjhrCgwejwd79+7FAw88sKwPwwMPPIA3vvGNVS8cAGcsApWp7qqYRLV0ZlDw9fQCAAoOGNYoOE00NZAzg4I7VGpOc+XsnaLZ5XLZehG95m/je+65B+9+97uxb98+XHHFFfiXf/kXnDx5Eh/60IdqUT54PB7IsmzrKInBN70V4sabbTs+0UqSTz2JyW99Y+n+SkFhkaqq9S7eMm63Gzv/+v+1tQxEK5n+8Q8QP6NT+0pBYZHf76938Zax+zxec2B4+9vfjrm5OXz84x/HxMQE9uzZgx//+Mc1G+ohSRJUVUXGpt7VHo8HofPOs+XYROVoc6Upl8sFhUVutxuKosCwqXlNVVWEd+605dhE5SSffAJA+aCwyO4vbLsDy5rnYbDD7Oysbes6tLW1oaenx5ZjE5Uz+6tfIPXM02WDwplGR0eRSCRqX7AV9PX1IRqNWm9IVGejX/kShGGgu0xQONPhw4dtm7xp27ZttoaWhggMhmHgpZdesmXExI4dO+D1eut+XCIrax2dlMvlcPTo0RqWaGWyLGPXrl2Q5YZYuoY2mbWeR/F4HGNjYzUs0cpUVcW2bdvqftwzNcQZrCgKIpFI3Y/b0tLCsECOtdbOT6qq2nJ10trayrBAjrXW8ygcDtvyfm5ra6v7Mc/WMGdxR0dH3XuH1mqoKJFduru763o8RVHQ3t5e12MS1ZIsy3X/bvD5fAiH7Z/4rGECg8fjQW+vdTtttXR2dtrewYWo2gKBQF2vVPr6+pwxNJqoilpbWxEIBOpyLEmSMDAw4Ig5iRomMABAJBJBMBis+XFUVUVHR0fNj0Nkh66urro0tUWjUYRCoZofh6jeJElCf39/XZomuru7HdM03lCBYTFp1TLZeb1eDA8POyLNEdWCLMsYHh6G2+2u2TGCwWBdawSJ6s3tdmPLli01DQ0dHR2O6LuwqCFGSZzNNE2Mjo5ivsozx/n9fgwNDUHh2hG0CRSLRYyMjCCfr+7sdZFIBH19fQzdtCnk83kcP3686nOcdHV1Oa6muyEDA1AaChOPxzExMbHh4ZaSJKGzsxPt7e38kKNNxTRNzMzMVGXJXlmW0dvbi3A4zPOINpVisYjJycmqzHPidrvR399ftz4Sa9GwgWGRruuYnJxEcp1z5be0tKCnp8cxbUREdsjlcpicnFz3jKqRSATd3d3s4EibWiqVwuTk5LomdpJlGW1tbejo6HDsMOSGDwyLisUi4vE44vE4NE0ru63b7UYkEkE0GoXH46lTCYmcr1AoIB6PI5FIoGixuqTX60U0GkUkEmFQIFoghEAul0MsFkMqlSrbVLG49EE0GrVtfoe1aJrAcCbTNJHP55HP55cWrZJlGV6vFz6fj30UiCpgGAZyuRwKhcJSs58sy/D5fPD5fI7/cCNyAl3Xkc/noWna0qySsixDVVV4vd6Gar5rysBARERE1cVLBCIiIrLEwEBERESWGBiIiIjIEgMDERERWWJgICIiIksMDERERGSJgYGIiIgsMTAQERGRJQYGIiIissTAQERERJYYGIiIiMgSAwMRERFZYmAgIiIiSwwMREREZImBgYiIiCwxMBAREZElBgYiIiKyxMBARERElhgYiIiIyBIDAxEREVliYCAiIiJLDAxERERkiYGBiIiILDEwEBERkSUGBiIiIrLEwEBERESWGBiIiIjIEgMDERERWWJgICIiIksMDERERGSJgYGIiIgsMTAQERGRJQYGIiIissTAQERERJYYGIiIiMgSAwMRERFZYmAgIiIiSwwMREREZImBgYiIiCwxMBAREZElBgYiIiKyxMBARERElhgYiIiIyBIDAxEREVliYCAiIiJLDAxERERkiYGBiIiILDEwEBERkSUGBiIiIrLEwEBERESWGBiIiIjIEgMDERERWWJgICIiIksMDERERGSJgYGIiIgsMTAQERGRJQYGIiIissTAQERERJYYGIiIiMgSAwMRERFZYmAgIiIiSwwMREREZImBgYiIiCwxMBAREZElBgYiIiKyxMBARERElhgYiIiIyBIDAxEREVliYCAiIiJLDAxERERkiYGBiIiILDEwEBERkSUGBiIiIrLEwEBERESWGBiIiIjIEgMDERERWWJgICIiIksMDERERGSJgYGIiIgsMTAQERGRJQYGIiIissTAQERERJYYGIiIiMgSAwMRERFZYmAgIiIiSwwMREREZImBgYiIiCwxMBAREZElBgYiIiKyxMBARERElhgYiIiIyBIDAxEREVliYCAiIiJLDAxERERkiYGBiIiILDEwEBERkSUGBiIiIrLEwEBERESWGBiIiIjIEgMDERERWWJgICIiIksMDERERGSJgYGIiIgsMTAQERGRJQYGIiIissTAQERERJYYGIiIiMgSAwMRERFZYmAgIiIiSwwMREREZImBgYiIiCwxMBAREZElBgYiIiKyxMBARERElhgYiIiIyBIDAxEREVliYCAiIiJLDAxERERkiYGBiIiILLnsLkC1aZqGXC6HfD6PfD4P0zQhhIAsy/D5fPD5fFBVFR6PB5Ik2V1cIscRQqBQKCCfzyOXy6FQKMA0TUiStHQeqaoKVVXhdrvtLi6RIwkhls6hfD4PTdOWziNFUaCq6tK55HI1xlexJIQQdhdio0zTRDKZRCwWQy6Xq+g1Xq8XbW1tCIfDUBSlxiUkcj7DMBCPxxGLxaBpWkWv8fv9aGtrQzAYhCyzwpJI07Sl88gwjIpeEwqF0NraikAg4OgL2YYODEIIJJNJTExMVPyHOZskSeju7kZra6uj/1BEtSKEwOzsLKanp7HejwOXy4Xe3l6EQqEql46oMRiGgampKcRisXXvw+v1or+/H6qqVrFk1dOwgUHXdYyNjSGdTldlf36/H319ffB6vVXZH1EjyOfzGB0dRT6fr8r+wuEwenp6GqaKlaga0uk0RkdHUSwWq7K/9vZ2dHZ2Oq7WriEDQ6FQwPHjx6v2x1kkyzKGh4fh9/urul8iJ0qn0zhx4sS6axVW4/F4MDw8DI/HU9X9EjlRLBbD+Ph41fcbCAQwODjoqCbzhgsMhUIBx44dW3cThBVJkrBlyxaGBmpq6XQaIyMjNdu/2+3G1q1b2SmSmtrc3BwmJiZqtn+/34/h4WHH1DQ4oxQVMk0TIyMjNQsLQKk998SJE1WvvSByCk3TcOLEiZoeQ9f1mtReEDlFOp2uaVgAgGw2i7GxsZoeYy0aKjBMTk5C1/WaH8cwDIyNjfHDjpqOEAKjo6N1eW/n83nMzMzU/DhE9WYYBkZHR+tyrGQyifn5+bocy0rDBIZMJrOh3qdrlUqlkEwm63Y8onqIxWLIZrN1O9709HTFQ52JGsXk5GRda6Gr2aFyIxomMExPT9tyTNYyULMQQthyxT87O1v3YxLViq7riMfjdT2maZp1P+ZKGiIwFAoFZDKZuh9X0zRbjktUCT0eg6lXNsESAMzPz9tylZJMJuvSlEi0HvMzc9D0ys+LetZ0n2lubs72C9g1B4aHHnoIN998M3p7eyFJEr773e/WoFjL2fUHsvvYROXMP/UkDtxxO2Z+8kOYFXwh2/ledsLVEdFK4iMjGE9kMH7spGVwEELYdh4Vi0WkUilbjr1ozYEhk8ng4osvxmc/+9lalGfVY9qFNQzkZPrsDE5+/tM4cMd7ywYHIURd+y6cjecROZYQkGQFergV44ksxo6vHhw0TavpKD0rdp7DwAbnYZAkCffddx9uueWWKhZpOdM08eKLL9Zs/+X8eCSPJ6aK0E0BCYBbFOFH6c1y5iTS0ln/AqVfqQsCbgi4YcINc+G+ueyxxdsuCHhgwrXseevn3DChcEbrTSl38gRSzzy17DF3ewd63vZOtL3mdZDPmAMhn8/jyJEj9S7iElmW0fLofkhgnyCqjIAEuF2Ay73ws/JtcebjigJIEiDLpR9p8V9p1fvC7Ybk9S0/tjDhTiXR0d8Dj/v0rKWJRKJuoyNW4vf7sXXrVtuO7/j5WwuFgi3H/fFIHg+P67ikL4y9AxH87lQCz4wlkXfgr0w2DPj0HPxaDqqehV/LQtVypX/1hX+1LPx6rvTvwvMuYV9SptpYrHGY+OZXlwUHu0cqmKaJmYd+BSTYNLEZSD4fpHAUcigCORiC5FMhqSokr69026eWtlm6fdZ9rw9SnabpX+l6S5JkFENRjCez8KSSaB/ohcel2H4eVWsK9/Vy3rffWeyq/nliqohL+sL4+I27IUkS3nhhD/7bj17EgYl5GA67SDJlBVlvC7LeljW9zlMsLASIlYLGwuOLAWMheHiLhRVPMHKWs4MD9l5md5EgqSoEA0Pj8nghhyOln1Bk6XYpGIQhn/Fvvb7sa02SZOihKMYTGXhSSRRt/sY0TRNCCNsWSnR8YLCLbgrsHYgs/WEkScK+wSien3DGBBrVoLm80FxeJP3Ril/jLmoI55II5ZMIZ5MI55II5xIL/yYRys/Dbdo/XphK9NkZTP/gu4j0DQCyzXPSO2R6WzqD2wM5HF4IAFFIi1/8ZwUDKRSB7NAVFOvBTMSRffoJuC66yO6i2MrxgcGuJOWWJfzuVAJvvLAHkiRBCIEnT8Y3/dW17vJgNtiB2WDHqtsE8qmlALH4E8klloKFX8tu+t9jPfgGhtDzjncj+uqrEIvHgRpPY2uJQyvrz+WC3NYJpbMbSmcXlI5uyJ3dUDq6ILe1Q/YH7C6hoxlzszCf+Q06d+9G6K1vLU3TbPOIH7u+E4EGCAx2LTd9WZcLD48l8d9+9CL2DUbx5Mk4nh2fR2tqFp3paYiz/mjirK6PQpJgyAqKsgtFxQV94d/SfTeKsgu64ip1wmkyGV8QGV8Q49H+FZ93GfoZYSJxVrhIIJRjLcVGnBkUpIWreics2y7iHKJcC5I/AKWzG3JH10Iw6IbcUQoIcmv70nug2YlCHqJQgDAMwDQAw4AwioBhAkax9PjC/dLjpe3krl64evqW7cuYm4X51OPovGA3Qm97+9Ljdp9Hdq8Au+bAkE6nl/W2Pn78OJ555hm0trZicHCwqoUDAJfLBZfLVfcJZ24cLvWafWIqhecn5uF1yXjzxT24/fIrqnYMIQSKpoBumNAMAa1oQjNM6IaJQtFceNxceFycdf/07bxuIlUoln7yOubzpduFolm1slZTUXFjrqUdcy3tq27TFvBgIKJiIKpiIKKiP6JiMOpHWOXqh4vmfvEzjHzqH5burxQUFqk2Vyd7vV7s+c6PbS1DoxJCwDAFiqYJ3RAoGiaK5uK/JkyH9amqlARAlqTSgIVl/0qQJZz178qPnbkPSVpbH65FJ379GLAQGIx4DOZTj6Fz9y6E/vAPz9nW7vPI7lWU1xwYnnzySVx33XVL9++55x4AwHvf+1586UtfqlrBzuT3+21ZfOPGYR/etMuH7du312T/kiTBrUhwKzJq8TYoFA2kC8WlAJHKL97WS7cXHlu6ny8iXSg6YuDbXEbDXEbDM2PL1/MIel0YjJYCxEDUvxQo2gMeW6vq7FQuKCxSFAVut9u2GRft/qBzOiEEDCGgL1woFA0B3TSXwoHTKZIERZYgy6V/F+8vPiYvfsEvhgLYW7W+jBAwkwkYTz2Ozp3nLatROJvdgcHu429oHoZ6SSaTOHXqlC3H7u7uRnv76lfCzcYUApmF2orlQaNUczGTLmAmU8BMWsNcWoPhkLeP6lbQH/FhIHI6RAxEVXQFfVBkh3wwVVnquWegJ5Nlg8KZpqambFs9cnh4GC0t67sCbDZCiFJN4mKNYtGEZhiOqymQz/jSPzMELA8F8tIVf6OaeezX8AZbENpTWYfGkZERpNPpGpdqZTt37oTbbV8ta0MEBiEEDh06VPdmCUmSsGvXLiiKzb3LHcowBRI5DTNprRQk0oVzbqcK9vZFcCsS+sKnA8Ri00Zv2Ae3sjnadhfpuo5Dhw7V/bgejwc7duxo6C+V9VhsSlgWDgwDus3jsmUJcCkyXLIM12q1AgtNA3SudDqNkZGRuh83FArVpNl/LRzf6REofXG3tbVhamqqrseNRqMMC2UosoS2gBdtAS92dQVX3CanG5hdIUgs3p7NaDWtctUNgZFYFiOx5VOqyhLQE/JhW3sAOzpasKOzBdvaAvC5m/fv7Xa7EQqF6t68197e3vRfPuZCc8JiHyStaEA37Otf4JKlhVAgLYUDtyLBJcuQm7TGrV4CgQA8Hg80rfKF36rBCTXdDVHDAJQmrDhy5Ejd/kiKomDHjh1wuRoiUzUsUwgkcvqyIDE5n8doIoeT8RwSufq1ucsSMBj1Y0fHQojoaMFQq7+paiJ0Xcfhw4dhmvXpEKuqKrZu3do0gWFZR+ViqcZAK9a/n4GEUi3BYghYHg5YO1BrmUwGx48fr9vxIpEI+vtXHnVWTw0TGAAgl8vh6NGjdTnW0NAQgsGVr5qpflJ5HacSOZxK5DAaz+Hkwr/T6fpMGe5WJGxpDWBHRwDndQaxoyOAvogKuYE/kOPxeGk8eY1JkoTt27fbPhRtIwyzNGKpoBsoFEvhoF4fmIokwaWcriFwKRLcC+Gg0fsNNIPJyUnMzs7W/Dgulws7duxwRG13QwUGAJidncXk5GRNj9HW1oaenp6aHoM2JqcbGFsIEqfiOZxKZHEqnsPEfL7m1cCqW8H2M5oydnQE0NnibZgPcCEExsbGkEgkanqcvr4+RKOVzyJqNyHE0pDmxYBQj5oDWZLgcclwKzI8igyPazEUNMb7abMyTRPHjx+v6foSkiRheHgYgYAzJthquMAAANPT05ienq7JvqPRKHp7exvmw5+W0w0T48n8QpDILjVtjCVzNe1sFvK5lpoxSj8BRP32TrJSjhACp06dqll/hp6eHrS1tdVk39VimgKForHwY6JQNFDrT8PFUOB2nQ4HyiaZWKkZGYaB48eP12RRKEmSMDg46Kia7oYMDAAQi8UwPj5e1X12dnaio6ODYaEJGabAVKrUN+JUvBQijsymcSqeq1kVc3vAg/M6W3B+dwgX9YYw1Op31FWjEAKTk5OYm5ur2j4lSUJfXx8ikUjV9lkNi30PCkVjofag1DmxVhRJWhYK3Erph58tzccwDIyOjiKVSlVtn4qiYGhoyHHzlzRsYABKS1+Pjo5uuErI6/Wir6/PcX8cqr2cbuDobAaHZ9I4PJ3G4Zk0JlO16R8R9LpwYW8IF/WGcWFvCAMR1RFfIJlMBqOjoxue1CkQCKCvr8/26WuBUmdabaHWYDEgmDX4qJNQqjVYHg6Upp37g1YmhEAymcT4+PiGOxRHIhH09PQ4os/C2Ro6MAClP1QikcDc3Nyaq4U8Hg/a2toQjUYhs1qQFszndRyZyeDlM0JEvAajNSKqGxf2hHBhbxgX9YbQG/bZFiBM08Tc3Bxisdiag4Oqqmhvb0coFLKt/IZZmiJ9sYlBq8G06LIEeFwKPEvhQOGIBFqmWCxidnYWsVhszcGhpaUFHR0djumvsJKGDwxnyuVySCQSyOVyyOVyOPu/JkkSfD4fVFVFOByG3+/nyU6WhBCYy2ilWoiZhdqImTQymlHV47QFPLiw53QNRHfIV9X9V0IIgUwmg2QyiVwut2IIl2UZPp8Pfr8fkUgEPl/9y2kKgYJuIK8byOlGTZoXXLIEr1uB11X6cSsMB1QZ0zSRSqWQSqWQzWZXnA5AURSoqgq/349oNGrrDI6VaqrAcCYhBHRdX0p5sizD7XbzhKeqEEJgYj6/UAtRChFHZzPQqvjF1dniXdaE0dFS/+GJQghomrYUvu06jxZHMCwGhIJuVLXviQTA45KXBQQ2K1C1mKYJXdchhIAkSVAUpSHn+GnawEBUb4YpcDKexeGZNF5eaMo4Ppet2hdbT8i7EB5KTRhOHoVRDaVmhlJAyGtGVdctUWRpIRiUQoKHHRKJLDEwENVQulDEgYl5PD+exHPj8+dMUb0R/REVF/aGcHFvGJf0hxHwNN4Vy5mEKI1iyGmlpoZq1tZ4lMXaAxlelwJXE83eSVQvDAxEdZTM6TgwMY/nxpN4fnwepxLVmfRFkSTs6Q3hsqEoLhuM2tL/Ya2EECgaAjm9iPxCf4RqfBjJEkq1BwvNCx4XJ0EiqgYGBiIbxbManh9fCBAT8xhPVmcCmKGoisuGWnHZUBTndbY45gvTMAXyCwEhpxswqjCToiSVZt/0uV3wuTlygahWGBiIHGQ2XcBz4wtNGBPzmK7CnBAR1Y1XDEZx2VAUl/SF67oip1iYDyGnF5HTqzfc0euS4XO7oLpLNQgMCES1x8BA5GBTqfzpGojxecxmNrZaq0eRcFFfGJcPteIVg1G0BarfcbLUF8FEVisiqxWrUougyBJUtwJ1oRaBSzQT1R8DA1GDWBzKuVQDMT6/4eW/t3cEcPlQKy4fimK4df3zkgghkNeNhZBgbHhWRQmAz61A9ZSaGtjMQGQ/BgaiBiWEwIl4Fk+ciOOJE3Ecmk5vaH/tAQ8uH4risuFWXNgTgttiJIEQArmFkJDTihteJdSjyPB5SrUIXjYzEDkOAwNRk4hnNfz2ZCk8PD2a3NCwRNUt49L+CC4basW+wQhCvtIsdKYQyGmnQ8JGPjwUWSrVIix0WORESUTOxsBA1IQKRQPPjs3jiRMx/PZkHLHs+psuAh4ZN+zqwr7BCILe9c/1IAHwLgQE1e2Ci1MtEzUUBgaiJmcKgSMzGTxxIoYnTsZxfM568qgWj4ILe0O4pC+MnZ0BuNa5OJskAX63C37vQmdFBgSihsXAQLTJTKcKS+Hh+fF5FBc6H4R9LlzcF8YlvSFs7wis+8tdlgC/xwW/pxQSWItA1BwYGIg2sXRex9HZDAzT3NAQy/m8jkSuiO6Qim3tfi4XT9SEGBiINhmx0HExXdCR09e/RPdsRsOzY0k8M1ZaI2Pxg6Q37MM129pxzfZ29EXU6hSaiGzHwEC0CSwuD50uFJEp6OseAjmZyuPZsXk8PZbEaMJ6GuvtHQFcu70DV21rQ2uTr65J1OwYGIiamGGayBSKSBeK0Nc5zNKtyNANgSdPxfGTg9OYWsd01bIEXNQbxjXb23HFltaGX1mTaDNiYCBqMtVocvC45KWOi2dO4CSEwKHpNB48PIOHj81hPl9c877dioRXDEZxzfZ27BuIwuNifweiRsDAQNQEhBDQjFJtwnqbHLxnhASXxSyPAFA0TTwzmsT+I7N4fCSG/DoWlgp4FLxqSyt+/7xOXNAd5IgKIgdjYCBqYBttclBkCS1eFwJet+VU0OXkdQO/ORHH/iOzeOpUAsY6PlYGIipuOL8Lv7+jAy0bmCCKiGqDgYGowWy0yUEC4Pe60OJ1weuq/jwJybyOXx+bw4NHZvHiZGrNr/coMq7e1oYbzu/CeR0trHUgcggGBqIGUK0mhxavG36vq24zLk6nCth/dBYPHZnFSMx6hsmzbW3z44bd3bhmezv8HqUGJSSiSjEwEDmYaQqkC7rtTQ7VMBLLYP+RWew/MouZtLam16puGddu78Drz+/ClrZAjUpIROUwMBA5kG6YSOV0pAv6mleErHWTw0aZQuDgVAr7j8zikaNzSBXWNtJiZ2cLbtjdhSu3tcHnYq0DUb0wMBA5hBACOd1AKq8jv46+CV6Xghavq65NDhulFU08enwOP3lxCgen1tbfIeBR8AfndeCG3V0YiPprVEIiWsTAQGSzxWaHVF5fWgiqUqUmBzcCXpftTQ4bNRLL4P4Xp/Crw7PIrjEw7ekJ4YbdXXjVltaG/z0QORUDA5FNtKKJVF5DplBcU7PD6SYHN7wu2XFNDhuV1w08dHQWPzk4hSMzmTW9NuRz4fqdnXjd7i70hHw1KiHR5sTAQFRHG2l2sGOUg90Oz6Rx/8Ep7D8yi8IaJ4b6vf4wXr+7C68YisLF1TOJNoyBgagODFMgs85mh4DXhZDPDc8m7uCX0Yp48PAsfvLiJE7Ec2t6bavfjTdc0IPXn9/FCaGINoCBgaiGtGKpNmGtzQ6KLCHoc6PF64Yib47ahEoIIfDSVBo/OTiJR47NQTcq/62qbhmv29WF/3RhDzpavDUsJVFzYmAgqrLFZof5nI5Cce3NDkGfB36P84ZDOs18XscvX57BTw5OYTxpvdT2IkWScPX2Ntx6US/ndCBaAwYGoioxzhjtYKyh2WGxE+Nmb3ZYLyEEnhufx/0Hp/DY8dia1rG4dCCCN1/ciwt7QgxoRBYYGIg2SDdMzOfWPtqBzQ7VF89q+PmhGdz/0hSmU4WKX7e9PYA3XdyLV21p49+CaBUMDETrpBUNJHM6straZir0umSEfB6obHaoGcMUeHo0ge8+P4Fnx5IVv64r6MWtF/XiD3Z2cBZJorMwMBCtUaFoIJnV1rRSpITSaIcgmx3q7shsGvc9O45Hjs1VvGhX0OvCGy7oxk0XdCOsumtbQKIGwcBAVKG8biCZ09Y0fwKbHZxjcj6P7z0/gZ+9NA2twoW8PIqM1+zswC0X9XIiKNr0GBiIyhBCLAWFtUwc5HUpCPncbHZwoGRex49fmMQPX5jEfL6y5iRZAq7Y0oY3XdSL8zpbalxCImdiYCBaweLQyGRWq/hqFABa2OzQMPJFA798eQb3PTuOyTV0kLyoN4RbL+rF3oEIwyBtKgwMRGcQQiCrFZHM6dArDAoSgBafGyGfGy4ufNRwDFPg8ZEYvv3sGA6vYe2K4VY/br2oF1dvb+PU07QpMDAQoRQUMoUikjmt4qmbJQkIet0IqW4o/MJoeEIIHJiYx3eeHceTpxIVv6476MU79g7gmu3t7KdCTY2BgTY1Uwik8zrm1zDZkiwBQZ8HQR87MjarE7EsvvPcOPYfnq14Iqi+sA+37RvAq7e2bZrFwWhzYWCgTckUAqm8jvmcDrPCU0CWJIRUN4I+N78QNonZdAHfPzCB+w9OVzyMdrjVj9v2DeDyoSj7OFBTYWCgTcUwS0EhldcqHpOvyBLCqhsBL4PCZpXRirj/xSl8/8AEYlm9otds7wjgXfsGcGk/O0dSc2BgoE3BMAXmcxpSBR2VvuNdsoSw6kHA6+IHPgEoTQO+/8gsvvPsOE4lKltme3dXEO9+xQAu7A3XuHREtcXAQE1tsekhmdMqDgpuRUZYdcPvYVCglZlC4JGjc/jq705hrMKVMi/uC+Nd+wawqytY49IR1QYDAzUlIQTShSKSWa3iTmseRUbY74Hq5mRLVBnDFHjwyAy++rvRihe72jcYwW37BrC9nRNAUWNhYKCmsjjhUjxbQNGo7K3tdckIqx74GBRonXTDxM8PzeAbT49iLqNV9Jorhltx274BDLX6a1w6oupgYKCmkdcNJLKFiqdw9rmVpaBAVA1a0cT9B6fwH8+MIZGz7hwpAbh6ezveubcfvWG19gUk2gAGBmp4WtFAYg2rR6puBWG/B15O30w1ktcN/PCFSXzn2XGkCtbrVcgS8AfndeDtl/ajK8hFrsiZGBioYRUNE4mchkwFH8hAqekh4veyRoHqJqsV8b3nJ/Dd5yaQrSDQumQJ1+/qxNt/rw9tAW8dSkhUOQYGajiLQyTn85WNh3cpEqJ+Lzszkm1SeR33PTeBHxyYQL6CJjO3IuHG87vx1t/rQ9jnrkMJiawxMFDDWOsQSWVhHoUWzqNADpHI6fj2M2P40YuT0CvolBvwKHjH3gHcdEEXF7gi2zEwkOOtdYikJAFh1cMpnMmx5jIFfPPpMfzspemKFjvrC/vwgSuGsY9LapONGBjIsdYzRDLkcyOkergoFDWEqVQe33hqFL94eaaiqcov7Q/jA1cMYzDKoZhUfwwM5EhrHSIZ8LoQUT1wKay2pcYznszha78bxf4js7D6QJYl4Mbzu/GOvf0IsX8D1REDAznKeoZIRvweeDhEkprAiVgW//7kSTw+ErfctsVb6t9w4/ns30D1wcBAjmCaAomchlSFIx84RJKa2bNjSfzvx0YwEstabjsQUfGBK4awdyBah5LRZsbAQLYSQiBTKCKe1WBW8FbkEEnaLAxT4IFD0/j3355EMm8918jegQg+cMUwBiKcMZJqg4GBbKMVDcQylfVTUCQJYT+HSNLmk9GK+PpTo/jhgUnLERWKJOHGC7rwjkv7EWT/BqoyBgaqO8MUSGY1pAoVzLXPIZJEAEodI//t8RP4zQnr/g1Brwu37RvADbu7OGKIqoaBgepmcT6FRLZQ0RAyDpEkOtczown878dGcCKes9x2IKrij64YxqX9kdoXjJoeAwPVRWGh+UGroPnB51bQGvDCzSGSRCsyTIGfvjSFf//tqYoWt3rFYBTvf+UQ+tm/gTaAgYFqyjAFEtkC0hV8qCmyhFa/F6qHHRqJKpEunO7fYDULqiJJeMOebvzhpf1o8brqVEJqJgwMVBNrbX4Iq6XmB/ZTIFq7sUQO/+fxE/jtycr6N7z7FYN43e5Onm+0JgwMVHUFfaH5wbBuflDdCqJsfiCqiqcW+jecqqB/w+6uIO68aiuGWjnNNFWGgYGqxjAF4tkCMhU0P7hkCdGAF34Pq0aJqskwBe4/OIX/+6R1/waXLOHNl/TibZf0w+NiaKfyGBhow0rNDzoSWc2y+UECEFI9CKkcJklUS6m8jq8/NYofvTBl2b+hL+zDnVdtxYW94TqVjhoRAwNtSH6h+UFn8wORI51K5PBvj43gyVMJy22v39mB910+xEmfaEUMDLQuhmkintUqbn5oDXihsvmByDZPnozjC48ex3SqUHa7iOrGH10xjKu3tXG0Ei3DwEBrsjj6IZ4twOqdI6E0S2NIdfODh8gB8rqBr/1uFN99ftyy+fDSgQj++NVb0B3y1adw5HgMDFSxomFiLlNAvoKlp/0eBVG/Fy42PxA5ztHZDD770FEcmc2U3c7rknHbvgH8pz09nHGVGBjI2mKnxnhGg9Wbhc0PRI3BMAV+9MIkvvLbk8hbzMC6tS2Au6/eiu0dLXUqHTkRAwOVpRsm5tJ5yxUlJQBhvwchH5sfiBrJdLqALzxyDE+eTJTdTpaAm/f04LZ9A1DdSn0KR47CwEArEkIglS8NlbR6g/g9LkT9HjY/EDUoIQQePR7D/3r0OBK58qvIdrR48OErt2LfYLROpSOnYGCgc+hFE7OZvOVCUcpC8wMnXyJqDulCEV/6zQn89KVpy22v2tqGD75qGFG/pw4lIydgYKAlQgjML9QqWGnxuhD1eyGzIxRR03lhch6fe+gYTiXKTzEd8Ch43yuHcP1OrkuxGTAwEABAKxqYS1uv/6DIEtrYqZGo6emGiW89M4ZvPj2GosUYzAt6grjzqm0Y4PLZTY2BYZMTQiCZ05C0aLcEgKDXjUiAK0oSbSanEjl87uGjeGEiVXY7lyzh7Zf2462X9HEIZpNiYNjECgu1ClbTOrtkCW0tPvjYM5poUzKFwAOHpvHFx08go5Wfh+W8jhbcc9129LG2oekwMGxCQggkshrm8xXUKvjciPhZq0BEQDyr4V9/PYKHj82V3c6jyPjAFUN4/e4uDrNuIgwMm0xBNzCbyaNolP+zuxQJ7QEfvKxVIKKzPHkyjs8/cgwz6fIdpC8diOBPrt6GtgBHUjQDBoZNwlyoVUhVUKsQUt2IqB5eGRDRqnK6ga8+eQrfPzBRdl2KoNeFD1+1FVdubatf4agmGBg2gbxuYC6dt+zp7FZktLV44XWxVoGIKvPydBqf/NVhjCXzZbe7dns7/vOrt6DFyxFWjYqBoYmZQiCR0ZAqWNcqhFUPwlxVkojWIV808OXfnMQPX5gsu117wIM/vXY7Lu4L16lkVE0MDE1KKxqYTeehW/RV8CzUKnhYq0BEG/TUqQQ+vf8IYtnyFylvvLAH73nFIDwuTiffSBgYmsziGhDxCmZrjHCxKCKqslRex+cfOY5HLEZSDEZV3HPdDmxrD9SpZLRRDAxNxDBNzKYLyOvlx0l7XDLaAz64me6JqAaEENh/dBb//MjxsvM2uGQJ79w7gDdd3MvJnhoAA0OTyGlFzKYLMMv8OSWUahWCrFUgojqYSRfwqQeP4Lnx+bLb7e4K4p7rtqM75KtTyWg9GBganBAC8QqGS3oUGe1BH9xcgpqI6sgUAj88MIkvPXGibJ8qn0vGH71qGK/d2ckLGodiYGhgumFiNpW3XDAqtDBbI09CIrLLyXgW//TLIzg2lym73WWDUdx19VYum+1ADAwNSAiBdKGIeKaAcn88RZLQ1sKVJYnIGXTDxNefGsW3nhkrO9lT2OfCXVdvwyuHW+tXOLLEwNBgDFMglskja7EAjOpW0NbiY0ciInKcg5MpfPJXhzGZKpTd7vqdHfijK7bA7+GwbydgYGggeb00t4JhMWNja8CDFi87NhKRc+V0A//nsRH89KXpstt1Br34L7+/A7u6gnUqGa2GgaEBCCGQzGlI5sp3bHQrMto5CRMRNZAnTsTx/z10FIkyn2+KJOH2ywfxxgt7eCFkIwYGh9MNE3PpPArF8h0bg143IgEuQ01EjSeZ0/HZh4/i8ZF42e1eORzFR67ZzvUobMLA4GCZgo65TAHl/kKyBLS1+OBnx0YiamBCCPzi5Rn8y69HkCsz+VxX0Is/f8152N7RUsfSEcDA4EimEIhlCsgUimW387kVtLV44ZI5twIRNYfJ+Tw+9eARvDCZWnUblyzhg68axut3d7GJoo4YGBymsNCx0Wopaq4DQUTNyjAFvvn0KL72u9GyQ8ev3taGO6/axlEUdcLA4BBCCMzndSQsFo1yyRLagz542bGRiJrc06MJ/NMvDyOZX722tS/sw59ffx6GW7mIVa0xMDiAYQrMpvOWi0YFvC60Brzs2EhEm8ZcRsM//OLlsk0UHkXGH1+5Ba/Z2VnHkm0+DAw204oGplPl51aQJKAt4EXA665jyYiInMEwBb7y25P49rPjZbd7zXkd+M9XboGPNbA1wcBgo3ReR8xiemevS0Z7iw8uLhpFRJvcEyfi+J8PHka6sHpt7FBUxZ9fvxP9EbWOJdscGBhsIBZGQaQtRkGEVTfCKheNIiJaNJ0q4H/8/GW8PJNedRvVLeOuq7bh6u3tdSxZ82NgqLOiYWImnYdWZiImRSp1bPS5Wa1GRHQ23TDxpd+cwPcPTJbd7vXnd+GDVwzDzRraqmBgqKO8bmAmlYdZ5lfudcnoCPqgcG4FIqKyHj02h8/sP4psmQ7j29sD+K+vOQ/dIV8dS9acGBjqQAiBVF5H3GLIZNDnRtTPJggiokqNJ3P4Hz9/GcfmsqtuE/Ao+Mi123EFl8veEAaGGjOFwFy6gKy2en8FCUBbC0dBEBGtR6Fo4F9/bb3y5S0X9uC9lw9ydtx1YmCoId0wMZPKQzdW76/gkiV0BH1cYZKIaIN+dXgGn3v4WNnF+nZ1teD/+YPz0NHirWPJmgMDQ41ktSJm0/myC0epbgXtLT7IMpsgiIiq4WQ8i7/7+cs4Fc+tuk3Q68Kf/f4OXDoQqV/BmgADQ5UJIZDIaZgvs7Y7AERUD0Iq14IgIqq2vG7g848cw68Oz666jQTgPZcN4s0X9/JzuEIMDFVUyRTPsgS0t/igcjlqIqKaEULggUPT+F+PHodmrP41d/W2Ntx9zTbODlkBBoYqKRRLQybLTfHsUUpDJjlrIxFRfRyfy+Dvfv4yxpP5VbfZ2ubHX712FzqD7NdQDgNDFVQyxTMXjiIiskdWK+IzDx3Do8fmVt0m5HPhz19zHi7sDdexZI2FgWEDKp3iuTXgRYvXxXYyIiKbCCHwvecn8MXfnMBqFcGyBHzwimHcdEE3P69XwMCwThVN8SxL6GjxwcspnomIHOHp0QT+/hcvl13A6vqdHfjjK7dySumz8LexDnndwEQyVzYseF0KesIqwwIRkYP8Xn8En7z1IgxGV1/N8oFDM/iLH7yAuUxpdl7DFPjsQ0dRNFf/zN8MWMOwRqmF/grlhHxuRDjFMxGRY2U1A5968AgeG4mtuk2r342/uH4nfn18Dvc9N4H/8vs7NvUKmAwMFRJCIJ7VkMqvPr8Cp3gmImocphD45tNj+L9Pnlp1G0WSYCx8TZ7X0YJ/vGXPpr0YZJNEBUxTYCaVLxsWXLKE7rDKsEBE1CBkScIfXtqPv37tTqirNB8bZ1xTvzyTxktT6XoVz3EYGCzohonJ+RxyZSZjUt0KesJ+rgdBRNSALh9uxT/esge9YeslsL/3/HgdSuRMTR8YhBBYb6tLXjcwmcyWXTwqrLrREeR6ENTcNnIeETWCwagf/3TLhZbrSzw2EsNUavVJoFazeA418nnUVH0YisUi5ufnkcvlkMvlUCgUlv1xvF4vVFWFqqoIhUJwu1dvPkjndcxZdG5sZ38FakKapmF+fh75fB7ZbBaapi09J0kSvF4v/H7/0nmkKKxZo+ZhmAIf/o9nys4M+aaLevG+Vw6V3U8ul0M6nV76PtL1003asizD5/NBVVX4/X4Eg0HIDbDkdlMEhmw2i7m5OSSTyTW9LhgMoq2tDYFAYKkTixACiayG+TL9FWRJQmeQ8ytQ8xBCIJVKIRaLIZ2uvI1WkiSEw2G0tbVBVVcfpkbUKL72u1P46u9Gy24T8Cj40m174TvrO8A0TSSTScRiMeRyq6+WeTZZltHa2orW1lZ4PJ51lbseGjowGIaBiYkJJBKJDe0nGAyit7cX85qBdL78rI1uRUYn14OgJqJpGsbGxpDJZDa0n7a2NnR2drLGgRrWXKaAex94GUdmMss6O67kzqu24obdXUv3s9ksxsbGUCiUr5kuR5IkdHV1oa2tzZEjMRo2MKTTaZw6dQqGsXpnxLXwhqLwBMLwuRSoHgU5zUC+uHzfqltBe9DH9SCoacRiMUxMTFStXdXlcmFwcBB+v78q+yOyQ75o4PB0GgenUjg4mcLBqRQy2vLvg8Gois++5WIAwNTUFGZnV19Ke618Ph8GBwcdV9vQkIEhmUzi1KnVx82uR7B7CD63C50hHyRJghAC0/M55BdmcwypbkRUTsZEzUEIgenpaczMzFR935IkYXBwEMFgsOr7JrKDKQROxLJ4YWIeByZTeGFiHomcjv9+425EzXnMz89X/ZiKomDLli3w+axHbtRLwwWG+fl5nDx5sur7DfYMI+r3IKSeTnTzOQ3xrIa2Fi9a2LmRmsj09DSmp6dreozh4WG0tLTU9BhEdhBCYDSRQ2p2EmYhW7PjKIqCrVu3wut1xrLbDdUQr2la1WsWlgiBnGYsVc0KIZDTipAAhgVqKul0uuZhAQBOnjyJYrF8nyCiRiRJElQjW9OwAJT66Z08edIxQzEbJjAIITA6OlqzX1whM4980cD0fA7zOW2pOSLoY1ig5mEYBkZHy/cArxbTNDE2NuaYDzuiaikUCpiamqrbseoR8CvRMIEhHo8jm61dmtNScRTSSeT0IuJZDTm9CMXQEA04oyqIqBqmpqbqetWfSqVq0r5LZKd6B+GZmRnk82ufLKraXHYXoBJCiKr2QF2NlopDS8WX7suyDLM90hATahBZMQwD8XjcesMqm52dRTgcrvtxiWohl8vV9OJ1NbFYDL29vXU/7pka4pswk8ksm22uXhYn4SByotRLh5B++XDF28fjcVuaBxZnuiNyovgTv0V+crLi7efm5mpYmtXF4/GqTSOwXmsKDPfeey9e8YpXIBgMorOzE7fccgsOHTpUq7It2ejETBthxxUZUSUyR4/iqXe/Fy/+17+sKDjY+V628xwmKif22GP47ZvfhsN//w/IW/RLsPMiUghhe/PemgLD/v37ceedd+Lxxx/HAw88gGKxiNe+9rUbniHOSq33X04ul2OnLXK02QcftAwOpmluaAa6jbKjCpeoUqJYxMS378Nv3/TWssEhn8/b+n1gd03dhuZhmJmZQWdnJ/bv34+rr766muVaYhgGDh48WJN9V+x7P0D++QP2loHoLMV0CtrMuX172q+9FoMfeB9aztux9Fgmk8Hx48frWbxlJElC7hP3AibDNzmLNjeH4llX7pLLhe433oyB974Hvq7T0z/Pzc1hYmKi3kVc4vP5sH37dtuOv6FOj4tVM62trVUpzErsvCpapJsmsjZ+2BKtxeyDD2L2wQeXBQe7zyMhBPKZDMzJ+gxFI9qIxRqHye/9YFlwsPs8svv46w4MQgjcc889uPLKK7Fnz55qlmkZ0zRrtu+KlVkGm8ipzgwOkfe91+7iQPJwiDI1lrODg+fWW+0tjxAQQti2RMG6A8Ndd92F5557Do888kg1y0NEVSR5PPB0dkD2eYH06ku21wX7AlGDUvx+eDu7ILldgP2V3rZZV2C4++678f3vfx8PPfQQ+vv7q12mZRyxVK4NQzqJNkLyeNBzyxsx8J53wdvRgVgsBqTTtpZJFOyfeIZoLVyhEPpveyd63/pmuAKBUv8FG88jSZJsXQBxTYFBCIG7774b9913Hx588EFs2bKlVuVa4oRFNwKRCFyXX2Z3MYiWKczMIHtsed+as4PCIrtXvJMkCeGtW4E6fGYQrUX2xAkUzupbUwoK70DvW98CVyCw9Ljd30d2n8drCgx33nknvvrVr+J73/segsEgJhcmuwiHw1BVtSYFlGUZHo/HlombFo+/4+47uaw1Oc7kj36Mlz/+3wGUgkLvrbeg/923LQsKi+z+oFFVFVs//T9tLQPRSo5++jMY++rXAZxbo3C2Wn3PVcrv99t6/DUFhi984QsAgGuvvXbZ41/84hdx++23V6tM5wgEArYFBr/fz7BAjmUVFBbJsgyfz2fbfPR2f9ARlWMVFBb5fD5IkmTbXAx2B5YNzcNQL9lsFseOHbPl2AMDA5wHnxwpe+JEqTNWmaBwplgshvHx8RqXamU7duywvTqXaCWpgy9BHRwoGxTOND4+XuoTVGeyLGPXrl22rm3UEGtJ+P1+W6pUXS4XQqFQ3Y9LVAn/0FDFYQEAIhF7FlILBAIMC+RYwd27Kg4LANDW1lbD0qyutbXV9oUQGyIwAEDHGj4Yq6W9vZ3NEdQ0ZFm25cPOjnOXqFa8Xi9aWlrqekxJkmo6QWKlGiYwhEIhBIPBuh1PVVXbkiRRrXR0dMDj8dTteJFIpO4frkS11tfXV9er/e7u7rqet6tpmMAgSRL6+vrqMi+DJEno7+9n7QI1HVmWMTAwUJdjuVwu9PT01OVYRPXkdrvR29tbl2P5/X5H1C4ADRQYgNIH0ODgYM2/yPv7+9nmSk1LVVX09fXV9BiyLGNoaMgZE68R1UA4HK55LbTb7cbAwIBjLl4bKjAApQ5UQ0NDNfsFclQEbQbRaLRmV0iyLGN4eNj2IWBEtSRJErq7u2sWGjweD7Zs2QK3g9YyaohhlSvJ5XIYHR2t2updLpcLAwMDCKyhtyxRo0ulUhgdHYVhGFXZn8/nw8DAAGvoaNMQQiAWi2FycrJq8zMEg0H09fXB5drQgtJV17CBASitZDkzM4OZmZkN7ae1tRVdXV2sPqVNyTAMTExMIJFIrHsfkiShq6sLbW1tjqk+JaonTdMwNjaGTCaz7n0oioLe3l6EQiFHnkcNHRgWaZqGeDyOWCxW8ZWSLMuIRqOIRqO2T5tL5AS5XA6xWAyJRKLiKyWXy4XW1lZEo1FHVZ0S2UEIgUwmg1gshvn5+Ypf5/V60draikgk4ugL16YIDItM00Qmk0Eul0Mul0M+n4dpmgBKAcHr9UJVVaiqipaWFtsnwSByIsMwkE6nkc/nl86jxY8JWZaXziFVVREIBBx5JURkN13Xl30faZoGIQQkSYKiKFBVFT6fD36/H6qqNsR51FSBgYiIiGqDl9hERERkiYGBiIiILDEwEBERkSUGBiIiIrLEwEBERESWGBiIiIjIEgMDERERWWJgICIiIksMDERERGSJgYGIiIgsMTAQERGRJQYGIiIissTAQERERJYYGIiIiMgSAwMRERFZctldACKiRd69H4QkK0s/ituzdFt2uU8/pyiQXR7IS895znlOkhXIsgRZkSHLEiRZgqLIkBZul56T1vScsvDjcclQZAmupdvy6eeU07e9Lvmc1yy7L0mQJQluRVq6rUiAS5GhSFh47vRtRZbglhe2kwG3LC/dLr1WgiQBsoSVbwOQFrdfvL2wjSRJy7aVhIBkFgFhAkIAwjzjvgnJsHrurMdNA8I0gaIGYRiAaUIUtdK/plF6XteBxdtF/fRrTANCL20L04BZ1CEMs/RjmjC1IkzDWLotTBOmcfr24raGXoQ4Yztz4fXCMGFoBoQpYBoCpmbANASEYcI0Rek5Q0AYAoZ++rnl909vZwoBzRQwhIAhAGPpPmAIrPicibO3E0vb/rMYsffEXMAaBiIiIrLEwEBERESWGBiIiIjIEgMDERERWWJgICIiIksMDERERGSJgYGIiIgsMTAQERGRJQYGIiIissTAQERERJYYGIiIiMgSAwMRERFZYmAgIiIiSwwMREREZImBgYiIiCwxMBAREZElBgYiIiKyxMBARERElhgYiIiIyBIDAxEREVliYCAiIiJLDAxERERkiYGBiIiILDEwEBERkSUGBiIiIrIkCSGE3YUgIqq2QqGAe++9F3/xF38Br9drd3GWcXLZAJZvI5xcto1iYCCipjQ/P49wOIxkMolQKGR3cZZxctkAlm8jnFy2jWKTBBEREVliYCAiIiJLDAxERERkiYGBiJqS1+vFxz72MUd2PHNy2QCWbyOcXLaNYqdHIiIissQaBiIiIrLEwEBERESWGBiIiIjIEgMDETWVP/uzP8NVV12F2267DZqmLXsul8vhDW94A6655hpcf/31iMVijirfonvvvRf79u2zvUzFYhG33347rrrqKnzkIx+pW3kqKduiev+uzrZa+ZzwXqs2BgYiahpPP/00Jicn8fDDD+P888/Ht771rWXP/+QnP8GePXuwf/9+vO1tb8NXvvIVR5UPAFKpFA4cOOCIMv3gBz9Af38/Hn74YWSzWfz617+uW7msygbU/3d1tnLls/u9VgsMDETUNB577DG89rWvBQDccMMN53zB7dixA9lsFgCQSCTQ0dHhqPIBwKc//WnceeedjihTJeW1q2xA/X9XZytXPrvfa7XgsrsARETVkkgk0NvbCwAIh8PnVANv27YNBw4cwJ49eyBJEn7zm984qnzJZBLPP/88/vqv/9oRZUokEkvrIaxUXjvLZsfv6mzlymf3e60WWMNARA1ncnISV1555Tk/QgjMz88DKH2Yt7a2Lnvdl7/8ZVx77bU4cOAA/uZv/gYf//jHHVW+T33qU7jrrrtqUqbVRKPRVctU7jm7y2bH7+ps5cpXr/daPTEwEFHD6e7uxiOPPHLOz4033oif/exnAICf/vSnePWrX33Oaxc/1CORCBKJhKPKd+TIEXziE5/ADTfcgMOHD+Pv/u7valK+M73yla9ctUzlnquHcse343e1lvIB9Xmv1ZUgImoiH/3oR8WVV14p3vnOd4pCoSCEEOKOO+4QQgiRTCbFjTfeKK655hrx6le/Whw6dMhR5TvT3r17bSvTYnl0XRfvec97xJVXXinuvvvuupWnkrKdqZ6/q7OtVj4nvNeqjVNDExERkSU2SRAREZElBgYiIiKyxMBARERElhgYiIiIyBIDAxHRJnD77bdDkiR86EMfOue5D3/4w5AkCbfffvvSY5OTk7j77ruxdetWeL1eDAwM4Oabb8YvfvGLpW2Gh4fxqU99qg6lJydgYCAi2iQGBgbw9a9/HblcbumxfD6Pr33taxgcHFx6bGRkBHv37sUvf/lL/P3f/z2ef/553H///bjuuutsnYqZ7MWpoYmINolLL70Ux44dw3e+8x3cdtttAIDvfOc7GBgYwNatW5e2W6xxeOKJJxAIBJYev+CCC/D+97+/7uUmZ2ANAxHRJvK+970PX/ziF5fu/9u//duyEBCLxXD//ffjzjvvXBYWFkUikXoUkxyIgYGIaBN597vfjUceeQQjIyM4ceIEHn30UbzrXe9aev7IkSMQQmDXrl02lpKciE0SRESbSHt7O2666SZ8+ctfhhACN910E9rb25eeX5z8V5Iku4pIDsUaBiKiTeb9738/vvSlL+HLX/7yOX0SduzYAUmScPDgQZtKR07FwEBEtMnccMMN0DQNmqbhda973bLnWltb8brXvQ6f+9znkMlkznltU6y6SOvCwEBEtMkoioKDBw/i4MGDUBTlnOc///nPwzAMXHbZZfj2t7+Nw4cP4+DBg/jMZz6DK664woYSkxOwDwMR0SYUCoVWfW7Lli146qmn8IlPfAIf/ehHMTExgY6ODuzduxdf+MIX6lhKchIub01ERESW2CRBRERElhgYiIiIyBIDAxEREVliYCAiIiJLDAxERERkiYGBiIiILDEwEBERkSUGBiIiIrLEwEBERESWGBiIiIjIEgMDERERWfr/AZmvNSbvi+tIAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgwAAAHNCAYAAABy2iODAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJtklEQVR4nO3deZQcZ2Eu/Keqeu/pbfZ9RrvkPZawMXhNMDY2xDZrwCxmcwi2Qw4kX0KSe3Iu3yXOJQkBPpbc5N5gDrlsAcyOwRgsW8bGGFu2ZcuytpE0+9L7WtVV7/dHz4w00kxXz0x3V3XP8ztnjnqprno109X91LtKQggBIiIiojJkqwtARERE9sfAQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUwwMREREZIqBgYiIiEwxMBAREZEpBgYiIiIyxcBAREREphgYiIiIyFTDBgZd1/HJT35yza/P5/O49dZbsX37dlxyySW48cYbMTIyUr0CEjWA9Z5HAPCnf/qnGB4ehiRJOHDgQJVKRtRcqnGuWa1hA8Pzzz+Pb3/72+vax5133olDhw5h//79eP3rX48777yzSqUjagzVOI/e/OY3Y9++fRgaGqpSqYiaTzXONas1ZGB48cUXcfPNN2NsbAyXXHIJ/u7v/m7V+/B4PLjpppsgSRIA4JWvfCWOHTtW7aIS2VY1ziMAuPrqq9Hf31/l0hE1j2qda1ZzWF2AtTjvvPNw2223YefOnbj77rurss/Pfe5zeMMb3lCVfRE1glqcR0R0rmY51xqyhgEAnnrqKezZs+ecx6+66iq0t7cv+3Pq1Kll9/X3f//3OHz4cMO3LxGtVjXPIyJa2UrnWiORhBDC6kKsVrFYRCQSwczMDDwez7r29U//9E/4xje+gV/84hcIh8PVKSBRA6jmeQQAw8PD+NGPfoQLLrigCqUjah7VPtes0pBNEqOjowgEAuv+xX/605/G17/+dYYF2pCqdR4RUXnNcq41ZJNEf38/LrroIuzYsQN//dd/vaZ9jI6O4mMf+xji8Tiuu+46XHLJJbj88surXFIi+6rGeQQAd911F/r7+zE6OorXvOY12Lp1axVLSdT4qnWuWa0hmySIiIiovhqyhoGIiIjqi4GBiIiITDEwEBERkSkGBiIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICIiIlMMDERERGSKgYGIiIhMMTAQERGRKQYGIiIiMsXAQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUw6rC1ALuq4jn88jn8/DMAwAgCzLcLvd8Hg8cDia8r9NVFXFYhG5XA6FQgFCCACl88jj8cDj8UBRFItLSGRvQghomoZ8Pg9VVSGEgCRJkGUZXq8Xbrcbstw41+1N882paRpisRhisRg0TSu7rcPhQDgcRiQSgdvtrlMJiewvn88jFoshHo9D1/Wy27pcLkQiEUQiEYZwonlCCGSzWUSjUaRSqcWL1pV4vV5EIhGEQiHbh3BJLFw6NChVVTE5OYlkMrmm1/v9fvT09MDj8VS5ZESNI5fLYWJiAtlsdk2vD4VC6O7uhtPprHLJiBpHMpnE5OQkVFVd9WslSUJbWxs6OzttW+vQsIFBCIFoNIrJyUlU47/Q2dmJjo4OSJJUhdIRNQbDMDA9PY3Z2dl170uWZfT09CAcDvM8og2lWCxifHx8zReuZ3I6nejr60NLS0sVSlZdDRkYDMPAyZMnkU6nq7pfr9eLoaEhVq/ShqBpGkZGRlAoFKq631AohL6+PtteJRFVUy6Xw8jIiGkT3mrZ8SK24QKDYRgYGRlZc9WpGbfbjU2bNjE0UFPTNA3Hjh0z7e+zVi0tLRgaGrLVhx1RteVyORw7dqwqtdzLaW9vR1dXl23Oo4a6BBBC4NSpUzULCwBQKBRw4sSJmr0BiKxmGAaOHz9es7AAAOl0GmNjYzXbP5HVVFXF8ePHa/pdMTs7i7m5uZrtf7UaKjDE43GkUqmaHyeXy2FmZqbmxyGywtTU1Jo6Za1WPB6vSpsukd0IITA6Omo6AqIaJicnkc/na36cSjRMYFBVFePj43U73vT0NHK5XN2OR1QP6XS6rlcsY2NjKBaLdTseUT1Eo9Ga1nSfbXR01Ba13g0TGKanp+v+C5ucnKzr8Yhqrd7vaV3XqzICg8guDMPA1NRUXY+Zz+eRSCTqeszlNERgKBaLlvyyMplM1XuQE1WLWGV1aDabtaRqMxqN1qXqlmgtVnsexeNxS97PdujLsKbA8MUvfhGbNm2Cx+PB7t278eijj1a7XEvE43HLqmOi0aglxyUyM/erh3D0H+9FbvRUZdtb9IFjGIYtro6IljP2n1/ByX//V2jxWEXbW3Ue5XI5y5vJVx0YvvnNb+LP/uzP8Dd/8zd45plncNVVV+F1r3sdTp48WYvyAUBdOjra8dhE5QjDwNxDD+L5O99rGhyEEDyPiJZh5POY/M638Ox7bjcNDpqmWVrrbPV5tOp5GC6//HJceuml+NKXvrT42K5du3Drrbfi3nvvrXoBhRA4ePCgpVWa/XoRKNijlyrRgsQzT2Pq/m+ffkCW0XbdH6D37e+Et39gybaqquLll1+ucwlPczqd6EpUdgVHVE8zD/wYsV8/tnhfdnvQ+fo/RM9b3gZnOLJk22QyWdOLYzOBQABDQ0OWHX9VgUFVVfh8PvzXf/0XbrvttsXHP/KRj2D//v3Yu3dv1QtYKBRw+PDhqu93NfTP/wsKI8ctLQNRxZYJDolEAqdOVdZ0USvZv/gIYIOe3kSVWC44TE1NWTrk3uFwYOfOndYdfzUbz87OQtd1dHV1LXm8q6urZr2vbTEkix9y1EjmmyrmfvXQYnAoen1Wl4qooRiFUlPF9I9+sBgcrP4+KhaLi0tkW2FNnR7PLmwt/wN2GHtqfQmI1mA+OBz4kw8g8+wzVpeGqCEtBIcDf/JBqGOjVhfHUquqYWhvb4eiKOfUJkxPT59T61AtdphD2/oSEK2epChof80N6PmjdyDjciM5MWF1kYgajuz1ovuWN6LrjW/GdCqNTGzj9sVZVWBwuVzYvXs3HnzwwSV9GB588EHccsstVS8cAFssAmWH0EJUqTODgqenFwBQ4LBGolU5Myg4gyEAgCNnbed3h8Nh6ffRqr+NP/rRj+Jd73oX9uzZgyuuuAL/9m//hpMnT+JDH/pQLcoHl8sFWZYtHSUxdM+fAYXaz71PtBqJp5/C5Le/uXh/uaCwwOv11rt4SzidTuz45KcsLQPRcqZ/8kPE9j2yeH+5oLDA57O2L5DV5/GqA8Pb3vY2zM3N4ROf+AQmJiZwwQUX4Cc/+UnNhnpIkgSv14tMJlOT/ZtxuVwIbd9uybGJylHnSlMulwsKC5xOJxRFga7r9SziIq/Xi9COHZYcm6icxFNPAigfFBZY/YVtdWBZ9TwMVpidnbVsXYe2tjb09PRYcmyicmZ/9RBS+58pGxTONDo6ing8XvuCLaOvrw+RSMR8Q6I6G/3qfRC6ju4yQeFMhw8ftmzypi1btlgaWhoiMOi6jpdeesmSERPbtm2D2+2u+3GJzKx2dFIul8PRo0drWKLlybKMnTt3QpYbYuka2mBWex7FYjGMjY3VsETL83q92LJlS92Pe6aGOIMVRUE4HK77cVtaWhgWyLZW2/nJ6/VacnXS2trKsEC2tdrzKBQKWfJ+bmtrq/sxz9YwZ3FHR0fde4fWaqgokVW6u7vrejxFUdDe3l7XYxLVkizLdf9u8Hg8CIXMm0tqrWECg8vlQm+veTtttXR2dlrewYWo2vx+f12vVPr6+mwxNJqomlpbW+H3++tyLEmSMDAwYIvh/Q0TGAAgHA4jEAjU/DherxcdHR01Pw6RFbq6uurS1BaJRBAMBmt+HKJ6kyQJ/f39dWma6O7utk3TeEMFhoWkVctk53a7MTw8bIs0R1QLsixjeHgYTqezZscIBAJ1rREkqjen04lNmzbVNDR0dHTYou/CgoYYJXE2wzAwOjqKZDJZ1f36fD4MDQ1BUZSq7pfIjorFIkZGRpDPV3f2unA4jL6+PoZu2hDy+TyOHz9e9TlOurq6bFfT3ZCBASgNhYnFYpiYmFj3cEtJktDZ2Yn29nZ+yNGGYhgGZmZmqrJkryzL6O3tRSgU4nlEG0qxWMTk5GRV5jlxOp3o7++vWx+J1WjYwLBA0zRMTk4isca58ltaWtDT02ObNiIiK+RyOUxOTq55RtVwOIzu7m52cKQNLZVKYXJyck0TO8myjLa2NnR0dNh2GHLDB4YFxWIRsVgMsVgMqlp+3Qen04lwOIxIJAKXy1WnEhLZX6FQQCwWQzweR7FYLLut2+1GJBJBOBxmUCCaJ4RALpdDNBpFKpUq21SxsPRBJBKxbH6H1WiawHAmwzCQz+eRz+cXF62SZRlutxsej4d9FIgqoOs6crkcCoXCYrOfLMvweDzweDy2/3AjsgNN05DP56Gq6uKskrIsw+v1wu12N1TzXVMGBiIiIqouXiIQERGRKQYGIiIiMsXAQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUwwMREREZIqBgYiIiEwxMBAREZEpBgYiIiIyxcBAREREphgYiIiIyBQDAxEREZliYCAiIiJTDAxERERkioGBiIiITDEwEBERkSkGBiIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICIiIlMMDERERGSKgYGIiIhMMTAQERGRKQYGIiIiMsXAQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUwwMREREZIqBgYiIiEwxMBAREZEpBgYiIiIyxcBAREREphgYiIiIyBQDAxEREZliYCAiIiJTDAxERERkioGBiIiITDEwEBERkSkGBiIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICIiIlMMDERERGSKgYGIiIhMMTAQERGRKQYGIiIiMsXAQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUwwMREREZIqBgYiIiEwxMBAREZEpBgYiIiIyxcBAREREphgYiIiIyBQDAxEREZliYCAiIiJTDAxERERkioGBiIiITDEwEBERkSkGBiIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICIiIlMMDERERGSKgYGIiIhMMTAQERGRKQYGIiIiMsXAQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUwwMREREZIqBgYiIiEwxMBAREZEpBgYiIiIyxcBAREREphgYiIiIyBQDAxEREZliYCAiIiJTDAxERERkioGBiIiITDEwEBERkSkGBiIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICIiIlMMDERERGSKgYGIiIhMMTAQERGRKQYGIiIiMsXAQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUwwMREREZIqBgYiIiEwxMBAREZEpBgYiIiIyxcBAREREphgYiIiIyBQDAxEREZliYCAiIiJTDAxERERkioGBiIiITDEwEBERkSkGBiIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICIiIlMMDERERGTKYXUBqk1VVeRyOeTzeeTzeRiGASEEZFmGx+OBx+OB1+uFy+WCJElWF5fIdoQQKBQKyOfzyOVyKBQKMAwDkiQtnkderxderxdOp9Pq4hLZkhBi8RzK5/NQVXXxPFIUBV6vd/Fccjga46tYEkIIqwuxXoZhIJFIIBqNIpfLVfQat9uNtrY2hEIhKIpS4xIS2Z+u64jFYohGo1BVtaLX+Hw+tLW1IRAIQJZZYUmkqurieaTrekWvCQaDaG1thd/vt/WFbEMHBiEEEokEJiYmKv7DnE2SJHR3d6O1tdXWfyiiWhFCYHZ2FtPT01jrx4HD4UBvby+CwWCVS0fUGHRdx9TUFKLR6Jr34Xa70d/fD6/XW8WSVU/DBgZN0zA2NoZ0Ol2V/fl8PvT19cHtdldlf0SNIJ/PY3R0FPl8vir7C4VC6OnpaZgqVqJqSKfTGB0dRbFYrMr+2tvb0dnZabtau4YMDIVCAcePH6/aH2eBLMsYHh6Gz+er6n6J7CidTuPEiRNrrlVYicvlwvDwMFwuV1X3S2RH0WgU4+PjVd+v3+/H4OCgrZrMGy4wFAoFHDt2bM1NEGYkScKmTZsYGqippdNpjIyM1Gz/TqcTmzdvZqdIampzc3OYmJio2f59Ph+Gh4dtU9Ngj1JUyDAMjIyM1CwsAKX23BMnTlS99oLILlRVxYkTJ2p6DE3TalJ7QWQX6XS6pmEBALLZLMbGxmp6jNVoqMAwOTkJTdNqfhxd1zE2NsYPO2o6QgiMjo7W5b2dz+cxMzNT8+MQ1Zuu6xgdHa3LsRKJBJLJZF2OZaZhAkMmk1lX79PVSqVSSCQSdTseUT1Eo1Fks9m6HW96errioc5EjWJycrKutdDV7FC5Hg0TGKanpy05JmsZqFkIISy54p+dna37MYlqRdM0xGKxuh7TMIy6H3M5DREYCoUCMplM3Y+rqqolxyWqhBaLwtAqm2AJAJLJpCVXKYlEoi5NiURrkZyZg6pVfl7Us6b7THNzc5ZfwK46MDzyyCN4wxvegN7eXkiShO9973s1KNZSVv2BrD42UTnJp5/CgTvvwMxPfwSjgi9kK9/Ldrg6IlpObGQE4/EMxo+dNA0OQgjLzqNisYhUKmXJsResOjBkMhlcfPHF+PznP1+L8qx4TKuwhoHsTJudwckvfhYH7nxP2eAghKhr34Wz8Twi2xICkqxAC7ViPJ7F2PGVg4OqqjUdpWfGynMYWOc8DJIk4f7778ett95axSItZRgGXnzxxZrtv5yfjOTx5FQRmiEgAXCKInwovVnOnERaOutfoPQrdUDACQEnDDhhzN83ljy2cNsBARcMOJY8b/6cEwYUzmi9IeVOnkBq/9NLHnO2d6Dnre9A22tugHzGHAj5fB5HjhypdxEXybKMwGMPW3Z8ajwCEuB0AA7n/M/yt8WZjysKIEmALJd+pIV/pRXvC6cTktuz9NjCgDOVQEd/D1zO07OWxuPxuo2OWI7P58PmzZstO77t528tFAqWHPcnI3k8Oq7hkr4Qdg+E8btTcewfSyBvw1+ZrOvwaDn41By8WhY+NQuvmiv9q83/q2bh03Klf+efdwjrkjLVxkKNw8S3vrYkOFg9UsEwDEz/8HsAOxFvCJLHAykUgRwMQw4EIXm8kLxeSG5P6bbHW9pm8fZZ990eSHWapn+56y1JklEMRjCeyMKVSqB9oBcuh2L5eVStKdzXyn7ffmexqvrnyakiLukL4RM37YIkSbjlwh78tx+/iAMTSeg2+8wzZAVZdwuy7pZVvc5VLMwHiOWCxvzjCwFjPni4i4VlTzCyl7ODA35vj9VFokbnckMOhUs/wfDi7VIwCEE+4996fdnXmiTJ0IIRjMczcKUSKDqtHSdgGAaEEJYtlGj7wGAVzRDYPRBe/MNIkoQ9gxE8P2GPCTSqQXW4oTrcSPgiFb/GWVQRyiUQzCcQyiYQyiUQysXn/00gmE/CaVg/XphKtNkZTP/wewi1BIBIm9XFIbtxuiCHQvMBIAJp4Yv/rGAgBcOQbbqCYj0Y8RiyzzwJx+ZNwFnNFxuJ7QODVUnKKUv43ak4brmwB5IkQQiBp07GNvzVteZwYTbQgdlAx4rb+POpxQCx8BPOxReDhU/NbvjfYz14BobQ8/Z3IfLqqxCNxRCv8TS2ZEMOB+S2Tiid3VA6u6B0dEPu7IbS0QW5rR2yz291CW1Nn5uFsf836Ny1C8G3vKU0TbPFI36s+k4EGiAwWLXc9GVdDjw6lsB/+/GL2DMYwVMnY3h2PInW1Cw609MQZ/3RxFldH4UkQZcVFGUHiooD2vy/pftOFGUHNMVR6oTTZDKeADKeAMYj/cs+79C1M8JE/KxwEUcwx1qK9TgzKEjzi9Zw2fbmJfn8UDq7IXd0zQeDbsgdpYAgt7YvvgeanSjkIQoFCF0HDB3QdQi9COgGoBdLj8/fLz1e2k7u6oWjp2/JvvS5WRhPP4HO83ch+Na3LT5u9Xlk9Qqwqw4M6XR6SW/r48ePY//+/WhtbcXg4GBVCwcADocDDoej7hPO3DRcqnZ6ciqF5yeScDtkvOniHtxx+RVVO4YQAkVDQNMNqLqAWjSg6gY03UChaMw/bsw/Ls66f/p2XjOQKhRLP3kNyXzpdqFoVK2s1VRUnJhracdcS/uK27T5XRgIezEQ8WIg7EV/2IvBiA8hL1c/XDD30M8x8pl/XLy/XFBY4LW4OtntduOCH/zc0jI0KiEEdEOgaBjQdIGibqBoLPxrwLBZn6pKSQBkSSoNWFjyrwRZwln/Lv/YmfuQpNX14Vpw4tePA/OBQY9FYTz9ODp37UTwj/7onG2tPo+sXkV51YHhqaeewnXXXbd4/6Mf/SgA4D3veQ/uu+++qhXsTD6fz5LFN24a9uCNOz3YunVrTfYvSRKcigSnIqMWb4NCUUe6UFwMEKn8wm2tdHv+scX7+SLShSLs8Pkzl1Exl1Gxf2zpeh4BtwODkVKAGIj4FgNFu99laVWdlcoFhQWKosDpdFo246LVH3R2J4SALgS0+QuFoi6gGcZiOLA7RZKgyBJkufTvwv2Fx+SFL/iFUABrq9aXEAJGIg796SfQuWP7khqFs1kdGKw+/rrmYaiXRCKBU6dOWXLs7u5utLevfCXcbAwhkJmvrVgaNEo1FzPpAmYyBcykVcylVeg2eft4nQr6wx4MhE+HiIGIF10BDxTZJh9MVZZ6bj+0RKJsUDjT1NSUZatHDg8Po6VlbVeAzUYIUapJXKhRLBpQdd12NQXyGV/6Z4aApaFAXrzib1Qzj/8a7kALghdcVNH2IyMjSKfTNS7V8nbs2AGn07pa1oYIDEIIHDp0qO7NEpIkYefOnVAUpa7HbRS6IRDPqZhJq6UgkS6ccztVsLYvglOR0Bc6HSAWmjZ6Qx44lY3RtrtA0zQcOnSo7sd1uVzYtm1bQ3+prMVCU8KScKDr0Cwely1LgEOR4ZBlOFaqFZhvGqBzpdNpjIyM1P24wWCwJs3+q2H7To9A6Yu7ra0NU1NTdT1uJBJhWChDkSW0+d1o87uxsyuw7DY5TcfsMkFi4fZsRq1plaumC4xEsxiJLp1SVZaAnqAHW9r92NbRgm2dLdjS5ofH2bx/b6fTiWAwWPfmvfb29qb/8jHmmxMW+iCpRR2abl3/AocszYcCaTEcOBUJDlmG3KQ1bvXi9/vhcrmgqpUv/FYNdqjpbogaBqA0YcWRI0fq9kdSFAXbtm2Dw9EQmaphGUIgntOWBInJZB6j8RxOxnKI5+rX5i5LwGDEh20d8yGiowVDrb6mqonQNA2HDx+GYdSnQ6zX68XmzZubJjAs6ahcLNUYqMX69zOQUKolWAgBS8MBawdqLZPJ4Pjx43U7XjgcRn//8qPO6qlhAgMA5HI5HD16tC7HGhoaQiCw/FUz1U8qr+FUPIdT8RxGYzmcnP93Ol2fKcOdioRNrX5s6/Bje2cA2zr86At7ITfwB3IsFiuNJ68xSZKwdetWy4eirYdulEYsFTQdhWIpHNTrA1ORJDiU0zUEDkWCcz4cNHq/gWYwOTmJ2dnZmh/H4XBg27ZttqjtbqjAAACzs7OYnJys6THa2trQ09NT02PQ+uQ0HWPzQeJULIdT8SxOxXKYSOZrXg3sdSrYekZTxrYOPzpb3A3zAS6EwNjYGOLxeE2P09fXh0ik8llErSaEWBzSvBAQ6lFzIEsSXA4ZTkWGS5HhciyEgsZ4P21UhmHg+PHjNV1fQpIkDA8Pw++3xwRbDRcYAGB6ehrT09M12XckEkFvb2/DfPjTUppuYDyRnw8S2cWmjbFErqadzYIex2IzRunHj4jP2klWyhFC4NSpUzXrz9DT04O2NntPRW0YAoWiPv9joFDUa7421kIocDpOhwNlg0ys1Ix0Xcfx48drsiiUJEkYHBy0VU13QwYGAIhGoxgfH6/qPjs7O9HR0cGw0IR0Q2AqVeobcSpWChFHZtM4FcvVrIq53e/C9s4WnNcdxEW9QQy1+mx11SiEwOTkJObm5qq2T0mS0NfXh3A4XLV9VsNC34NCUZ+vPSh1TqwVRZKWhAKnUvrhZ0vz0XUdo6OjSKVSVdunoigYGhqy3fwlDRsYgNLS16Ojo+uuEnK73ejr67PdH4dqL6fpODqbweGZNA5Pp3F4Jo3JVG36RwTcDlzYG8RFvSFc2BvEQNhriy+QTCaD0dHRdU/q5Pf70dfXZ/n0tUCpM606X2uwEBCMGnzUSSjVGiwNB0rTzv1ByxNCIJFIYHx8fN0disPhMHp6emzRZ+FsDR0YgNIfKh6PY25ubtXVQi6XC21tbYhEIpBZLUjzknkNR2YyePmMEBGrwWiNsNeJC3uCuLA3hIt6g+gNeSwLEIZhYG5uDtFodNXBwev1or29HcFg0LLy60ZpivSFJga1BtOiyxLgcihwLYYDhSMSaIlisYjZ2VlEo9FVB4eWlhZ0dHTYpr/Ccho+MJwpl8shHo8jl8shl8vh7P+aJEnweDzwer0IhULw+Xw82cmUEAJzGbVUCzEzXxsxk0ZG1at6nDa/Cxf2nK6B6A7WfxldIQQymQwSiQRyudyyIVyWZXg8Hvh8PoTDYXg89S+nIQQKmo68piOn6TVpXnDIEtxOBW5H6cepMBxQZQzDQCqVQiqVQjabXXY6AEVR4PV64fP5EIlELJ3BsVJNFRjOJISApmmLKU+WZTidTp7wVBVCCEwk8/O1EKUQcXQ2A7WKX1ydLe4lTRgdLfUfniiEgKqqi+HbqvNoYQTDQkAoaHpV+55IAFwOeUlAYLMCVYthGNA0DUIISJIERVEaco6fpg0MRPWmGwInY1kcnknj5fmmjONz2ap9sfUE3fPhodSEYedRGNVQamYoBYS8qld13RJFluaDQSkkuNghkcgUAwNRDaULRRyYSOL58QSeG0+eM0X1evSHvbiwN4iLe0O4pD8Ev6vxrljOJERpFENOLTU1VLO2xqUs1B7IcDsUOJpo9k6iemFgIKqjRE7DgYkknhtP4PnxJE7FqzPpiyJJuKA3iMuGIrhsMGJJ/4fVEkKgqAvktCLy8/0RqvFhJEso1R7MNy+4HJwEiagaGBiILBTLqnh+fD5ATCQxnqjOBDBDES8uG2rFZUMRbO9ssc0Xpm4I5OcDQk7ToVdhJkVJKs2+6XE64HFy5AJRrTAwENnIbLqA58bnmzAmkpiuwpwQYa8TrxiM4LKhCC7pC9V1RU4xPx9CTisip1VvuKPbIcPjdMDrLNUgMCAQ1R4DA5GNTaXyp2sgxpOYzaxvtVaXIuGivhAuH2rFKwYjaPNXv+NkqS+CgaxaRFYtVqUWQZEleJ0KvPO1CFyimaj+GBiIGsTCUM7FGojx5LqX/97a4cflQ624fCiC4da1z0sihEBe0+dDgr7uWRUlAB6nAq+r1NTAZgYi6zEwEDUoIQROxLJ48kQMT56I4dB0el37a/e7cPlQBJcNt+LCniCcJiMJhBDIzYeEnFpc9yqhLkWGx1WqRXCzmYHIdhgYiJpELKvitydL4eGZ0cS6hiV6nTIu7Q/jsqFW7BkMI+gpzUJnCIGcejokrOfDQ5GlUi3CfIdFTpREZG8MDERNqFDU8exYEk+eiOK3J2OIZtfedOF3ybhxZxf2DIYRcK99rgcJgHs+IHidDjg41TJRQ2FgIGpyhhA4MpPBkyeiePJkDMfnzCePanEpuLA3iEv6QtjR6YdjjYuzSRLgczrgc893VmRAIGpYDAxEG8x0qrAYHp4fT6I43/kg5HHg4r4QLukNYmuHf81f7rIE+FwO+FylkMBaBKLmwMBAtIGl8xqOzmagG8a6hlgm8xriuSK6g15safdxuXiiJsTAQLTBiPmOi+mChpy29iW6ZzMqnh1LYP9YaY2MhQ+S3pAH12xpxzVb29EX9lan0ERkOQYGog1gYXnodKGITEFb8xDIyVQez44l8cxYAqNx82mst3b4ce3WDly1pQ2tTb66JlGzY2AgamK6YSBTKCJdKEJb4zBLpyJD0wWeOhXDTw9OY2oN01XLEnBRbwjXbG3HFZtaG35lTaKNiIGBqMlUo8nB5ZAXOy6eOYGTEAKHptN4+PAMHj02h2S+uOp9OxUJrxiM4Jqt7dgzEIHLwf4ORI2AgYGoCQghoOql2oS1Njm4zwgJDpNZHgGgaBjYP5rA3iOzeGIkivwaFpbyuxS8alMrfn97J87vDnBEBZGNMTAQNbD1NjkosoQWtwN+t9N0Kuhy8pqO35yIYe+RWTx9Kg59DR8rA2EvbjyvC7+/rQMt65ggiohqg4GBqMGst8lBAuBzO9DidsDtqP48CYm8hl8fm8PDR2bx4mRq1a93KTKu3tKGG8/rwvaOFtY6ENkEAwNRA6hWk0OL2wmf21G3GRenUwXsPTqLR47MYiRqPsPk2Ta3+XDjrm5cs7UdPpdSgxISUaUYGIhszDAE0gXN8iaHahiJZrD3yCz2HpnFTFpd1Wu9ThnXbu3A687rwqY2f41KSETlMDAQ2ZCmG0jlNKQL2qpXhKx1k8N6GULg4FQKe4/MYt/ROaQKqxtpsaOzBTfu6sKVW9rgcbDWgaheGBiIbEIIgZymI5XXkF9D3wS3Q0GL21HXJof1UosGHjs+h5++OIWDU6vr7+B3KfiD7R24cVcXBiK+GpWQiBYwMBBZbKHZIZXXFheCqlSpycEJv9theZPDeo1EM3jgxSn86vAssqsMTBf0BHHjri68alNrw/8eiOyKgYHIImrRQCqvIlMorqrZ4XSTgxNuh2y7Jof1yms6Hjk6i58enMKRmcyqXhv0OHD9jk7csKsLPUFPjUpItDExMBDV0XqaHawY5WC1wzNpPHBwCnuPzKKwyomhfq8/hNft6sIrhiJwcPVMonVjYCCqA90QyKyx2cHvdiDoccK1gTv4ZdQiHj48i5++OIkTsdyqXtvqc+L15/fgded1cUIoonVgYCCqIbVYqk1YbbODIksIeJxocTuhyBujNqESQgi8NJXGTw9OYt+xOWh65b9Vr1PGDTu78IcX9qCjxV3DUhI1JwYGoipbaHZI5jQUiqtvdgh4XPC57Dcc0m6SeQ2/fHkGPz04hfGE+VLbCxRJwtVb23DbRb2c04FoFRgYiKpEP2O0g76KZoeFTowbvdlhrYQQeG48iQcOTuHx49FVrWNx6UAYb7q4Fxf2BBnQiEwwMBCtk6YbSOZWP9qBzQ7VF8uq+MWhGTzw0hSmU4WKX7e13Y83XtyLV21q49+CaAUMDERrpBZ1JHIasurqZip0O2QEPS542exQM7oh8MxoHN97fgLPjiUqfl1XwI3bLurFH+zo4CySRGdhYCBapUJRRyKrrmqlSAml0Q4BNjvU3ZHZNO5/dhz7js1VvGhXwO3A68/vxs3ndyPkdda2gEQNgoGBqEJ5TUcip65q/gQ2O9jHZDKP7z8/gZ+/NA21woW8XIqM1+zowK0X9XIiKNrwGBiIyhBCLAaF1Uwc5HYoCHqcbHawoURew09emMSPXphEMl9Zc5IsAVdsasMbL+rF9s6WGpeQyJ4YGIiWsTA0MpFVK74aBYAWNjs0jHxRxy9fnsH9z45jchUdJC/qDeK2i3qxeyDMMEgbCgMD0RmEEMiqRSRyGrQKg4IEoMXjRNDjhIMLHzUc3RB4YiSK7zw7hsOrWLtiuNWH2y7qxdVb2zj1NG0IDAxEKAWFTKGIRE6teOpmSQICbieCXicUfmE0PCEEDkwk8d1nx/HUqXjFr+sOuPH23QO4Zms7+6lQU2NgoA3NEALpvIbkKiZbkiUg4HEh4GFHxmZ1IprFd58bx97DsxVPBNUX8uD2PQN49ea2DbM4GG0sDAy0IRlCIJXXkMxpMCo8BWRJQtDrRMDj5BfCBjGbLuAHBybwwMHpiofRDrf6cPueAVw+FGEfB2oqDAy0oehGKSik8mrFY/IVWULI64TfzaCwUWXUIh54cQo/ODCBaFar6DVbO/x4554BXNrPzpHUHBgYaEPQDYFkTkWqoKHSd7xDlhDyuuB3O/iBTwBK04DvPTKL7z47jlPxypbZ3tUVwLteMYALe0M1Lh1RbTEwUFNbaHpI5NSKg4JTkRHyOuFzMSjQ8gwhsO/oHL72u1MYq3ClzIv7QnjnngHs7ArUuHREtcHAQE1JCIF0oYhEVq2405pLkRHyueB1crIlqoxuCDx8ZAZf+91oxYtd7RkM4/Y9A9jazgmgqLEwMFBTWZhwKZYtoKhX9tZ2O2SEvC54GBRojTTdwC8OzeCbz4xiLqNW9Jorhltx+54BDLX6alw6oupgYKCmkdd0xLOFiqdw9jiVxaBAVA1q0cADB6fwX/vHEM+Zd46UAFy9tR3v2N2P3pC39gUkWgcGBmp4alFHfBWrR3qdCkI+F9ycvplqJK/p+NELk/jus+NIFczXq5Al4A+2d+Btl/ajK8BFrsieGBioYRV1A/GcikwFH8hAqekh7HOzRoHqJqsW8f3nJ/C95yaQrSDQOmQJ1+/sxNt+rw9tfncdSkhUOQYGajgLQyST+crGwzsUCRGfm50ZyTKpvIb7n5vADw9MIF9Bk5lTkXDTed14y+/1IeRx1qGEROYYGKhhrHaIpDI/j0IL51Egm4jnNHxn/xh+/OIktAo65fpdCt6+ewA3n9/FBa7IcgwMZHurHSIpSUDI6+IUzmRbc5kCvvXMGH7+0nRFi531hTx4/xXD2MMltclCDAxkW2sZIhn0OBH0urgoFDWEqVQe33x6FA+9PFPRVOWX9ofw/iuGMRjhUEyqPwYGsqXVDpH0ux0Ie11wKKy2pcYznsjh678bxd4jszD7QJYl4KbzuvH23f0Isn8D1REDA9nKWoZIhn0uuDhEkprAiWgW//nUSTwxEjPdtsVd6t9w03ns30D1wcBAtmAYAvGcilSFIx84RJKa2bNjCfzvx0cwEs2abjsQ9uL9Vwxh90CkDiWjjYyBgSwlhECmUEQsq8Ko4K3IIZK0UeiGwIOHpvGfvz2JRN58rpHdA2G8/4phDIQ5YyTVBgMDWUYt6ohmKuunoEgSQj4OkaSNJ6MW8Y2nR/GjA5OmIyoUScJN53fh7Zf2I8D+DVRlDAxUd7ohkMiqSBUqmGufQySJAJQ6Rv7HEyfwmxPm/RsCbgdu3zOAG3d1ccQQVQ0DA9XNwnwK8WyhoiFkHCJJdK79o3H878dHcCKWM912IOLFB64YxqX94doXjJoeAwPVRWG++UGtoPnB41TQ6nfDySGSRMvSDYGfvTSF//ztqYoWt3rFYATve+UQ+tm/gdaBgYFqSjcE4tkC0hV8qCmyhFafG14XOzQSVSJdON2/wWwWVEWS8PoLuvFHl/ajxe2oUwmpmTAwUE2stvkh5C01P7CfAtHqjcVz+D9PnMBvT1bWv+FdrxjEDbs6eb7RqjAwUNUVtPnmB928+cHrVBBh8wNRVTw937/hVAX9G3Z1BXDXVZsx1MpppqkyDAxUNbohEMsWkKmg+cEhS4j43fC5WDVKVE26IfDAwSn836fM+zc4ZAlvuqQXb72kHy4HQzuVx8BA61ZqftAQz6qmzQ8SgKDXhaCXwySJaimV1/CNp0fx4xemTPs39IU8uOuqzbiwN1Sn0lEjYmCgdcnPNz9obH4gsqVT8Rz+4/ERPHUqbrrt9Ts68N7LhzjpEy2LgYHWRDcMxLJqxc0PrX43vGx+ILLMUydj+NJjxzGdKpTdLux14gNXDOPqLW0crURLMDDQqiyMfohlCzB750gozdIY9Dr5wUNkA3lNx9d/N4rvPT9u2nx46UAYf/LqTegOeupTOLI9BgaqWFE3MJcpIF/B0tM+l4KIzw0Hmx+IbOfobAaff+Qojsxmym7ndsi4fc8A/vCCHs64SgwMZG6hU2Mso8LszcLmB6LGoBsCP35hEl/97UnkTWZg3dzmxz1Xb8bWjpY6lY7siIGBytJ0A3PpvOmKkhKAkM+FoIfND0SNZDpdwJf2HcNTJ+Nlt5Ml4A0X9OD2PQPwOpX6FI5shYGBliWEQCpfGipp9gbxuRyI+FxsfiBqUEIIPHY8iv/12HHEc+VXke1oceHDV27GnsFInUpHdsHAQOfQigZmM3nThaKU+eYHTr5E1BzShSLu+80J/OyladNtr9rchg++ahgRn6sOJSM7YGCgRUIIJOdrFcy0uB2I+NyQ2RGKqOm8MJnEFx45hlPx8lNM+10K3vvKIVy/g+tSbAQMDAQAUIs65tLm6z8osoQ2dmokanqabuDb+8fwrWfGUDQZg3l+TwB3XbUFA1w+u6kxMGxwQggkcioSJu2WABBwOxH2c0VJoo3kVDyHLzx6FC9MpMpu55AlvO3Sfrzlkj4OwWxSDAwbWGG+VsFsWmeHLKGtxQMPe0YTbUiGEHjw0DS+/MQJZNTy87Bs72jBR6/bij7WNjQdBoYNSAiBeFZFMl9BrYLHibCPtQpEBMSyKv791yN49Nhc2e1cioz3XzGE1+3q4jDrJsLAsMEUNB2zmTyKevk/u0OR0O73wM1aBSI6y1MnY/jivmOYSZfvIH3pQBh/evUWtPk5kqIZMDBsEMZ8rUKqglqFoNeJsNfFKwMiWlFO0/G1p07hBwcmyq5LEXA78OGrNuPKzW31KxzVBAPDBpDXdMyl86Y9nZ2KjLYWN9wO1ioQUWVenk7j0786jLFEvux2125txx+/ehNa3Bxh1agYGJqYIQTiGRWpgnmtQsjrQoirShLRGuSLOr7ym5P40QuTZbdr97vwZ9duxcV9oTqVjKqJgaFJqUUds+k8NJO+Cq75WgUXaxWIaJ2ePhXHZ/ceQTRb/iLllgt78O5XDMLl4HTyjYSBocksrAERq2C2xjAXiyKiKkvlNXxx33HsMxlJMRjx4qPXbcOWdn+dSkbrxcDQRHTDwGy6gLxWfpy0yyGj3e+Bk+meiGpACIG9R2fxr/uOl523wSFLeMfuAbzx4l5O9tQAGBiaRE4tYjZdgFHmzymhVKsQYK0CEdXBTLqAzzx8BM+NJ8tut6srgI9etxXdQU+dSkZrwcDQ4IQQiFUwXNKlyGgPeODkEtREVEeGEPjRgUnc9+SJsn2qPA4ZH3jVMF67o5MXNDbFwNDANN3AbCpvumBUcH62Rp6ERGSVk7Es/vmXR3BsLlN2u8sGI7j76s1cNtuGGBgakBAC6UIRsUwB5f54iiShrYUrSxKRPWi6gW88PYpv7x8rO9lTyOPA3VdvwSuHW+tXODLFwNBgdEMgmskja7IAjNepoK3Fw45ERGQ7BydT+PSvDmMyVSi73fU7OvCBKzbB5+KwbztgYGggea00t4JuMmNjq9+FFjc7NhKRfeU0Hf/n8RH87KXpstt1Btz4i9/fhp1dgTqVjFbCwNAAhBBI5FQkcuU7NjoVGe2chImIGsiTJ2L4/x45iniZzzdFknDH5YO45cIeXghZiIHB5jTdwFw6j0KxfMfGgNuJsJ/LUBNR40nkNHz+0aN4YiRWdrtXDkfwkWu2cj0KizAw2FimoGEuU0C5v5AsAW0tHvjYsZGIGpgQAg+9PIN/+/UIcmUmn+sKuPFXr9mOrR0tdSwdAQwMtmQIgWimgEyhWHY7j1NBW4sbDplzKxBRc5hM5vGZh4/ghcnUits4ZAkffNUwXreri00UdcTAYDOF+Y6NZktRcx0IImpWuiHwrWdG8fXfjZYdOn71ljbcddUWjqKoEwYGmxBCIJnXEDdZNMohS2gPeOBmx0YianLPjMbxz788jER+5drWvpAHf3X9dgy3chGrWmNgsAHdEJhN500XjfK7HWj1u9mxkYg2jLmMin986OWyTRQuRcafXLkJr9nRWceSbTwMDBZTizqmU+XnVpAkoM3vht/trGPJiIjsQTcEvvrbk/jOs+Nlt3vN9g788ZWb4GENbE0wMFgondcQNZne2e2Q0d7igYOLRhHRBvfkiRj+5eHDSBdWro0dinjxV9fvQH/YW8eSbQwMDBYQ86Mg0iajIEJeJ0JeLhpFRLRgOlXA//zFy3h5Jr3iNl6njLuv2oKrt7bXsWTNj4Ghzoq6gZl0HmqZiZgUqdSx0eNktRoR0dk03cB9vzmBHxyYLLvd687rwgevGIaTNbRVwcBQR3lNx0wqD6PMr9ztkNER8EDh3ApERGU9dmwOn9t7FNkyHca3tvvxl6/Zju6gp44la04MDHUghEAqryFmMmQy4HEi4mMTBBFRpcYTOfzPX7yMY3PZFbfxuxR85NqtuILLZa8LA0ONGUJgLl1AVl25v4IEoK2FoyCIiNaiUNTx7782X/ny1gt78J7LBzk77hoxMNSQphuYSeWh6Sv3V3DIEjoCHq4wSUS0Tr86PIMvPHqs7GJ9O7ta8P/8wXZ0tLjrWLLmwMBQI1m1iNl0vuzCUV6ngvYWD2SZTRBERNVwMpbFP/ziZZyK5VbcJuB24M9/fxsuHQjXr2BNgIGhyoQQiOdUJMus7Q4AYa8LQS/XgiAiqra8puOL+47hV4dnV9xGAvDuywbxpot7+TlcIQaGKqpkimdZAtpbPPByOWoiopoRQuDBQ9P4X48dh6qv/DV39ZY23HPNFs4OWQEGhiopFEtDJstN8exSSkMmOWsjEVF9HJ/L4B9+8TLGE/kVt9nc5sPfvHYnOgPs11AOA0MVVDLFMxeOIiKyRlYt4nOPHMNjx+ZW3CboceCvXrMdF/aG6liyxsLAsA6VTvHc6nejxe1gOxkRkUWEEPj+8xP48m9OYKWKYFkCPnjFMG4+v5uf18tgYFijiqZ4liV0tHjg5hTPRES28MxoHJ966OWyC1hdv6MDf3LlZk4pfRb+NtYgr+mYSOTKhgW3Q0FPyMuwQERkI7/XH8anb7sIg5GVV7N88NAMPv7DFzCXKc3OqxsCn3/kKIrGyp/5GwFrGFYpNd9foZygx4kwp3gmIrKtrKrjMw8fweMj0RW3afU58fHrd+DXx+dw/3MT+Ivf37ahV8BkYKiQEAKxrIpUfuX5FTjFMxFR4zCEwLeeGcP/ferUitsokgR9/mtye0cL/unWCzbsxSCbJCpgGAIzqXzZsOCQJXSHvAwLREQNQpYk/NGl/fjb1+6Ad4XmY/2Ma+qXZ9J4aSpdr+LZDgODCU03MJnMIVdmMiavU0FPyMf1IIiIGtDlw634p1svQG/IfAns7z8/XocS2VPTBwYhBNba6pLXdEwmsmUXjwp5negIcD0Iam7rOY+IGsFgxId/vvVC0/UlHh+JYiq18iRQK1k4hxr5PGqqPgzFYhHJZBK5XA65XA6FQmHJH8ftdsPr9cLr9SIYDMLpXLn5IJ3XMGfSubGd/RWoCamqimQyiXw+j2w2C1VVF5+TJAlutxs+n2/xPFIU1qxR89ANgQ//1/6yM0O+8aJevPeVQ2X3k8vlkE6nF7+PNO10k7Ysy/B4PPB6vfD5fAgEApAbYMntpggM2WwWc3NzSCQSq3pdIBBAW1sb/H7/YicWIQTiWRXJMv0VZElCZ4DzK1DzEEIglUohGo0ina68jVaSJIRCIbS1tcHrXXmYGlGj+PrvTuFrvxstu43fpeC+23fDc9Z3gGEYSCQSiEajyOVWXi3zbLIso7W1Fa2trXC5XGsqdz00dGDQdR0TExOIx+Pr2k8gEEBvby+Sqo50vvysjU5FRifXg6AmoqoqxsbGkMlk1rWftrY2dHZ2ssaBGtZcpoB7H3wZR2YySzo7Lueuqzbjxl1di/ez2SzGxsZQKJSvmS5HkiR0dXWhra3NliMxGjYwpNNpnDp1Crq+cmfE1XAHI3D5Q/A4FHhdCnKqjnxx6b69TgXtAQ/Xg6CmEY1GMTExUbV2VYfDgcHBQfh8vqrsj8gK+aKOw9NpHJxK4eBkCgenUsioS78PBiNefP7NFwMApqamMDu78lLaq+XxeDA4OGi72oaGDAyJRAKnTq08bnYtAt1D8Dgd6Ax6IEkShBCYTuaQn5/NMeh1IuzlZEzUHIQQmJ6exszMTNX3LUkSBgcHEQgEqr5vIisYQuBENIsXJpI4MJnCCxNJxHMa/t+bdqHVSCKZTFb9mIqiYNOmTfB4zEdu1EvDBYZkMomTJ09Wfb+BnmFEfC4EvacTXTKnIpZV0dbiRgs7N1ITmZ6exvT0dE2PMTw8jJaWlpoeg8gKQgiMxnM4MTqOsLT6EROVUhQFmzdvhtttj2W3G6ohXlXVqtcsLBICOVVfrJoVQiCnFiEBDAvUVNLpdM3DAgCcPHkSxWL5PkFEjUiSJHj1bE3DAlDqp3fy5EnbDMVsmMAghMDo6GjNfnGFTBL5oo7pZA7JnLrYHBHwMCxQ89B1HaOj5XuAV4thGBgbG7PNhx1RtRQKBUxNTdXtWPUI+JVomMAQi8WQzWZrtn81FUMhnUBOKyKWVZHTilB0FRG/PaqCiKphamqqrlf9qVSqJu27RFaqdxCemZlBPl/b2oxKOKwuQCWEEFXtgboSNRWDmoot3pdlGUZ7uCEm1CAyo+s6YrGY+YZVNjs7i1AoVPfjEtVCLper6cXrSqLRKHp7e+t+3DM1xDdhJpNZMttcvSxMwkFkR6mXDiH98uGKt4/FYpY0DyzMdEdkR7Enf4v85GTF28/NzdWwNCuLxWJVm0ZgrVYVGO6991684hWvQCAQQGdnJ2699VYcOnSoVmVbtN6JmdbDiisyokpkjh7F0+96D178y7+uKDhY+V628hwmKif6+OP47ZveisOf+kfkTfolWHkRKYSwvHlvVYFh7969uOuuu/DEE0/gwQcfRLFYxGtf+9p1zxBnptb7LyeXy7HTFtna7MMPmwYHwzDWNQPdellRhUtUKVEsYuI79+O3b3xL2eCQz+ct/T6wuqZuXfMwzMzMoLOzE3v37sXVV19dzXIt0nUdBw8erMm+KyXu+yoKdepZTlSpYjoFdebcvj3t116Lwfe/Fy3bty0+lslkcPz48XoWbwlJkpD7H38PMHuTzahzcyiedeUuORzovuUNGHjPu+HpOj3989zcHCYmJupdxEUejwdbt2617Pjr6vS4UDXT2tpalcIsx8qrogW5sTHkLfywJVqN2YcfxuzDDy8JDlafR0IIZI+PAKytowawUOMw+f0fLgkOVp9HVh9/zTUMQgjccsstiMViePTRR6tdrkXpdBojIyM1238lsp+8F/ljDAzUmNqvvRbBt7wRcYunmI1+4I8ZGKghLdQ4OG94LdIWL652/vnnW7ZEwZprGO6++24899xz2LdvXzXLQ0RVJLlccHV2QAkEAG3lJduJaGWKzwd3Zxfg8wE2qPW2ypoCwz333IMf/OAHeOSRR9Df31/tMi1hj6VyueAUNRbJ5ULPrbdg4N3vhLujA9FoFBgft7pYRA3FEQyi//Z3oPctb4LD7y/1X7AwMEiSZOkCiKsKDEII3HPPPbj//vvx8MMPY9OmTbUq1yI7LLoRvPACeDvarS4G0RKFmRlkz2oqOzsoLLB6xTtJkhC5/DI2SZDtZE+cQGFy6aiIUlB4O3rf8mY4/P7Fx63+PrL6PF5VYLjrrrvwta99Dd///vcRCAQwOT/ZRSgUgtfrrUkBZVmGy+WyZOKmhePv+Phfcllrsp3JH/8EL3/ifwAoBYXe225F/7tuXxIUFlj9QeP1erH5s/9iaRmIlnP0s5/D2Ne+AeDcGoWz1ep7rlI+n8/S468qMHzpS18CAFx77bVLHv/yl7+MO+64o1plOoff77csMPh8PoYFsi2zoLBAlmV4PB7L5qO3+oOOqByzoLDA4/FAkiTL5mKwOrCsax6Geslmszh27Jglxx4YGOA8+GRL2RMnSp2xygSFM0WjUYxb1I9h27ZtllfnEi0ndfAleAcHygaFM42Pj5f6BNWZLMvYuXOnpWsbNcRaEj6fz5IqVYfDgWAwWPfjElXCNzRUcVgAgHDYmoXU/H4/wwLZVmDXzorDAgC0tbXVsDQra21ttXwhxIYIDADQsYoPxmppb29ncwQ1DVmWLfmws+LcJaoVt9uNlpaWuh5TkqSaTpBYqYYJDMFgEIFAoG7H83q9liVJolrp6OiAy+Wq2/HC4XDdP1yJaq2vr6+uV/vd3d11PW9X0jCBQZIk9PX11WVeBkmS0N/fz9oFajqyLGNgYKAux3I4HOjp6anLsYjqyel0ore3ty7H8vl8tqhdABooMAClD6DBwcGaf5H39/ezzZWaltfrRV9fX02PIcsyhoaGbDLxGlH1hUKhmtdCO51ODAwM2ObitaECA1DqQDU0NFSzXyBHRdBGEIlEanaFJMsyhoeHLR8CRlRLkiShu7u7ZqHB5XJh06ZNcDqdNdn/WjTEsMrl5HI5jI6OVm31LofDgYGBAfhX0VuWqNGlUimMjo5C1/Wq7M/j8WBgYIA1dLRhCCEQjUYxOTlZtfkZAoEA+vr64HCsa0HpqmvYwAAAhmFgZmYGMzMz69pPa2srurq6WH1KG5Ku65iYmEA8Hl/zPiRJQldXF9ra2mxTfUpUT6qqYmxsDJlMZs37UBQFvb29CAaDtjyPGjowLFBVFbFYDNFotOIrJVmWEYlEEIlELJ82l8gOcrkcotEo4vF4xVdKDocDra2tiEQitqo6JbKCEAKZTAbRaBTJZLLi17ndbrS2tiIcDtv6wrUpAsMCwzCQyWSQy+WQy+WQz+dhGAaAUkBwu93wer3wer1oaWmxfBIMIjvSdR3pdBr5fH7xPFr4mJBlefEc8nq98Pv9trwSIrKapmlLvo9UVYUQApIkQVEUeL1eeDwe+Hw+eL3ehjiPmiowEBERUW3wEpuIiIhMMTAQERGRKQYGIiIiMsXAQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUwwMREREZIqBgYiIiEwxMBAREZEpBgYiIiIyxcBAREREphgYiIiIyBQDAxEREZliYCAiIiJTDqsLQES0wL37g5BkZfFHcboWb8sO5+nnFAWywwV58TnXOc9JsgJZliArMmRZgiRLUBQZ0vzt0nPSqp5T5n9cDhmKLMGxeFs+/Zxy+rbbIZ/zmiX3JQmyJMGpSIu3FQlwKDIUCfPPnb6tyBKc8vx2MuCU5cXbpddKkCRAlrD8bQDSwvYLt+e3kSRpybaSEJCMIiAMQAhAGGfcNyDpZs+d9bihQxgGUFQhdB0wDIiiWvrX0EvPaxqwcLuonX6NoUNopW1h6DCKGoRulH4MA4ZahKHri7eFYcDQT99e2FbXihBnbGfMv17oBnRVhzAEDF3AUHUYuoDQDRiGKD2nCwhdQNdOP7f0/untDCGgGgK6ENAFoC/eB3SBZZ8zcPZ2YnHbfxUj1p6Y81jDQERERKYYGIiIiMgUAwMRERGZYmAgIiIiUwwMREREZIqBgYiIiEwxMBAREZEpBgYiIiIyxcBAREREphgYiIiIyBQDAxEREZliYCAiIiJTDAxERERkioGBiIiITDEwEBERkSkGBiIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICIiIlMMDERERGSKgYGIiIhMMTAQERGRKQYGIiIiMsXAQERERKYkIYSwuhBERNVWKBRw77334uMf/zjcbrfVxVnCzmUDWL71sHPZ1ouBgYiaUjKZRCgUQiKRQDAYtLo4S9i5bADLtx52Ltt6sUmCiIiITDEwEBERkSkGBiIiIjLFwEBETcntduPv/u7vbNnxzM5lA1i+9bBz2daLnR6JiIjIFGsYiIiIyBQDAxEREZliYCAiIiJTDAxE1FT+/M//HFdddRVuv/12qKq65LlcLofXv/71uOaaa3D99dcjGo3aqnwL7r33XuzZs8fyMhWLRdxxxx246qqr8JGPfKRu5amkbAvq/bs620rls8N7rdoYGIioaTzzzDOYnJzEo48+ivPOOw/f/va3lzz/05/+FBdccAH27t2Lt771rfjqV79qq/IBQCqVwoEDB2xRph/+8Ifo7+/Ho48+imw2i1//+td1K5dZ2YD6/67OVq58Vr/XaoGBgYiaxuOPP47Xvva1AIAbb7zxnC+4bdu2IZvNAgDi8Tg6OjpsVT4A+OxnP4u77rrLFmWqpLxWlQ2o/+/qbOXKZ/V7rRYcVheAiKha4vE4ent7AQChUOicauAtW7bgwIEDuOCCCyBJEn7zm9/YqnyJRALPP/88/vZv/9YWZYrH44vrISxXXivLZsXv6mzlymf1e60WWMNARA1ncnISV1555Tk/Qggkk0kApQ/z1tbWJa/7yle+gmuvvRYHDhzAf//v/x2f+MQnbFW+z3zmM7j77rtrUqaVRCKRFctU7jmry2bF7+ps5cpXr/daPTEwEFHD6e7uxr59+875uemmm/Dzn/8cAPCzn/0Mr371q8957cKHejgcRjwet1X5jhw5gk9+8pO48cYbcfjwYfzDP/xDTcp3ple+8pUrlqncc/VQ7vhW/K5WUz6gPu+1uhJERE3kYx/7mLjyyivFO97xDlEoFIQQQtx5551CCCESiYS46aabxDXXXCNe/epXi0OHDtmqfGfavXu3ZWVaKI+maeLd7363uPLKK8U999xTt/JUUrYz1fN3dbaVymeH91q1cWpoIiIiMsUmCSIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICLaAO644w5IkoQPfehD5zz34Q9/GJIk4Y477lh8bHJyEvfccw82b94Mt9uNgYEBvOENb8BDDz20uM3w8DA+85nP1KH0ZAcMDEREG8TAwAC+8Y1vIJfLLT6Wz+fx9a9/HYODg4uPjYyMYPfu3fjlL3+JT33qU3j++efxwAMP4LrrrrN0KmayFqeGJiLaIC699FIcO3YM3/3ud3H77bcDAL773e9iYGAAmzdvXtxuocbhySefhN/vX3z8/PPPx/ve9766l5vsgTUMREQbyHvf+158+ctfXrz/H//xH0tCQDQaxQMPPIC77rprSVhYEA6H61FMsiEGBiKiDeRd73oX9u3bh5GREZw4cQKPPfYY3vnOdy4+f+TIEQghsHPnTgtLSXbEJgkiog2kvb0dN998M77yla9ACIGbb74Z7e3ti88vTP4rSZJVRSSbYg0DEdEG8773vQ/33XcfvvKVr5zTJ2Hbtm2QJAkHDx60qHRkVwwMREQbzI033ghVVaGqKm644YYlz7W2tuKGG27AF77wBWQymXNe2xSrLtKaMDAQEW0wiqLg4MGDOHjwIBRFOef5L37xi9B1HZdddhm+853v4PDhwzh48CA+97nP4YorrrCgxGQH7MNARLQBBYPBFZ/btGkTnn76aXzyk5/Exz72MUxMTKCjowO7d+/Gl770pTqWkuyEy1sTERGRKTZJEBERkSkGBiIiIjLFwEBERESmGBiIiIjIFAMDERERmWJgICIiIlMMDERERGSKgYGIiIhMMTAQERGRKQYGIiIiMsXAQERERKb+fx1tG+b2V9NnAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/tutorials/causal_discovery/tigramite_tutorial_pcmciplus.ipynb b/tutorials/causal_discovery/tigramite_tutorial_pcmciplus.ipynb index a3f5e5c2..0461e9c5 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_pcmciplus.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_pcmciplus.ipynb @@ -14,8 +14,7 @@ "J. Runge (2020), Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets\n", "http://www.auai.org/uai2020/proceedings/579_main_paper.pdf\n", "\n", - "Last, the following Nature Communications Perspective paper provides an overview of causal inference methods in general, identifies promising applications, and discusses methodological challenges (exemplified in Earth system sciences): \n", - "https://www.nature.com/articles/s41467-019-10105-3" + "Last, the following Nature Review Earth and Environment paper provides an overview of causal inference for time series in general: https://github.com/jakobrunge/tigramite/blob/master/tutorials/Runge_Causal_Inference_for_Time_Series_NREE.pdf" ] }, { @@ -849,13 +848,7 @@ " Subset 0: ($X^{1}$ -1) gives pval = 0.97777 / val = 0.001\n", " Non-significance detected.\n", "\n", - " Link ($X^{2}$ -2) -?> $X^{1}$ (13/18):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{2}$ -2) -?> $X^{1}$ (13/18):\n", " Subset 0: ($X^{1}$ -1) gives pval = 0.96279 / val = -0.002\n", " Non-significance detected.\n", "\n", @@ -933,7 +926,13 @@ " Subset 0: () gives pval = 0.00000 / val = 0.996\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{3}$ -1) -?> $X^{2}$ (10/27):\n", + " Link ($X^{3}$ -1) -?> $X^{2}$ (10/27):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: () gives pval = 0.00000 / val = -0.893\n", " No conditions of dimension 0 left.\n", "\n", @@ -1303,13 +1302,7 @@ " Subset 0: ($X^{2}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{3}$ -2) gives pval = 0.22099 / val = -0.055\n", " Non-significance detected.\n", "\n", - " Link ($X^{3}$ -2) -?> $X^{2}$ (5/6):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{3}$ -2) -?> $X^{2}$ (5/6):\n", " Subset 0: ($X^{2}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) gives pval = 0.10135 / val = 0.074\n", " Non-significance detected.\n", "\n", @@ -1392,7 +1385,13 @@ " Subset 0: () gives pval = 0.00000 / val = 0.852\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{4}$ -3) -?> $X^{3}$ (15/27):\n", + " Link ($X^{4}$ -3) -?> $X^{3}$ (15/27):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: () gives pval = 0.00000 / val = 0.838\n", " No conditions of dimension 0 left.\n", "\n", @@ -1712,13 +1711,7 @@ " Subset 0: () gives pval = 0.20119 / val = 0.058\n", " Non-significance detected.\n", "\n", - " Link ($X^{6}$ -2) -?> $X^{4}$ (20/27):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{6}$ -2) -?> $X^{4}$ (20/27):\n", " Subset 0: () gives pval = 0.18668 / val = 0.060\n", " Non-significance detected.\n", "\n", @@ -1931,7 +1924,13 @@ " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.436\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", - " Link ($X^{7}$ -2) -?> $X^{4}$ (15/17):\n", + " Link ($X^{7}$ -2) -?> $X^{4}$ (15/17):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.92613 / val = 0.004\n", " Non-significance detected.\n", "\n", @@ -2163,13 +2162,7 @@ " Subset 0: () gives pval = 0.11534 / val = -0.071\n", " Non-significance detected.\n", "\n", - " Link ($X^{7}$ -2) -?> $X^{5}$ (23/27):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{7}$ -2) -?> $X^{5}$ (23/27):\n", " Subset 0: () gives pval = 0.21199 / val = -0.056\n", " Non-significance detected.\n", "\n", @@ -2399,7 +2392,13 @@ " Subset 0: ($X^{6}$ -1) ($X^{5}$ -2) gives pval = 0.00000 / val = -0.383\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", - " Link ($X^{5}$ -2) -?> $X^{6}$ (3/3):\n", + " Link ($X^{5}$ -2) -?> $X^{6}$ (3/3):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: ($X^{6}$ -1) ($X^{5}$ -1) gives pval = 0.66754 / val = 0.019\n", " Non-significance detected.\n", "\n", @@ -3014,7 +3013,13 @@ " Link ($X^{2}$ 0) o?o $X^{7}$ (28/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", - " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", + " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: () gives pval = 0.54563 / val = -0.027\n", " Non-significance detected.\n", "\n", @@ -3399,13 +3404,7 @@ " Link ($X^{3}$ 0) o?o $X^{4}$ (8/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", - " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.374\n", " No conditions of dimension 1 left.\n", "\n", diff --git a/tutorials/causal_discovery/tigramite_tutorial_regime_pcmci.ipynb b/tutorials/causal_discovery/tigramite_tutorial_regime_pcmci.ipynb index bc65d2de..ef990c83 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_regime_pcmci.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_regime_pcmci.ipynb @@ -7,12 +7,13 @@ "# Regime-PCMCI: Detecting causal regimes from multivariate time series\n", "\n", "Main reference: Elena Saggioro, Jana de Wiljes, Marlene Kretschmer, Jakob Runge; Reconstructing regime-dependent causal relationships from observational time series. Chaos 1 November 2020; 30 (11): 113115. https://doi.org/10.1063/5.0020538\n", - "\n" + "\n", + "The following Nature Review Earth and Environment paper provides an overview of causal inference for time series in general: https://github.com/jakobrunge/tigramite/blob/master/tutorials/Runge_Causal_Inference_for_Time_Series_NREE.pdf" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -64,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -115,7 +116,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -143,7 +144,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -181,7 +182,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -217,7 +218,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": { "scrolled": true }, @@ -274,14 +275,7 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -293,314 +287,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "################# Annealing iteration a = 2 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 490.94465076110276\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 36.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 7 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 488.8982226990487\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 36.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 0 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 503.5399195755775\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 29.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 4 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 498.27206003227985\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 40.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 8 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 517.2240554833973\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 36.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 1 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 506.8945776858816\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 38.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 6 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 497.3406581357441\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 172.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 253.0\n", - "\n", - "###### Optimization step q = 3\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 75.0\n", - "\n", - "###### Optimization step q = 4\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 12.0\n", - "\n", - "###### Optimization step q = 5\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 3 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 490.9369752339443\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 48.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 5 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 511.59244891703486\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 38.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n", - "\n", - "################# Annealing iteration a = 9 ####################\n", - "\n", - "\n", - "###### Optimization step q = 0\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 494.923101079663\n", - "\n", - "###### Optimization step q = 1\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 248.0\n", - "\n", - "###### Optimization step q = 2\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 350.0\n", - "\n", - "###### Optimization step q = 3\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 31.0\n", - "\n", - "###### Optimization step q = 4\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 7.0\n", - "\n", - "###### Optimization step q = 5\n", - "################ Regime k = 0\n", - "################ Regime k = 1\n", - "\n", - "Optimal objective: reached.\n", - "Difference in abs value between the previous and current gamma (shape num_regimesxT) : 0.0\n", - "Two consecutive gammas are equal: (local) minimum reached. Go to next annealing.\n", - "\n" - ] } ], "source": [ diff --git a/tutorials/causal_discovery/tigramite_tutorial_sliding_window_analysis.ipynb b/tutorials/causal_discovery/tigramite_tutorial_sliding_window_analysis.ipynb index 25667844..b2c4a46b 100644 --- a/tutorials/causal_discovery/tigramite_tutorial_sliding_window_analysis.ipynb +++ b/tutorials/causal_discovery/tigramite_tutorial_sliding_window_analysis.ipynb @@ -8,6 +8,8 @@ "\n", "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results.\n", "\n", + "The following Nature Review Earth and Environment paper provides an overview of causal inference for time series in general: https://github.com/jakobrunge/tigramite/blob/master/tutorials/Runge_Causal_Inference_for_Time_Series_NREE.pdf\n", + "\n", "This tutorial explains the function ``PCMCI.run_sliding_window_of`` which is a convenience function that allows to run all PCMCI causal discovery methods on sliding windows across a multivariate time series." ] }, @@ -70,7 +72,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAHVCAYAAACE1E3TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADB80lEQVR4nOyddXgU19fHvwuBoAnu7l7cQ4IUdy0Ub4FCsQJtCVC80B9SpBRa3N0tBGtICAQJDkWCJoEQLEY8Oe8feWc6szuzO7vZ+Pk8z3l25uqZ2Zk7Z86V0RERgWEYhmEYhknXZEppBRiGYRiGYZikh40+hmEYhmGYDAAbfQzDMAzDMBkANvoYhmEYhmEyAGz0MQzDMAzDZADY6GMYhmEYhskAsNHHMAzDMAyTAcjQRh8RISQkBLxUIcMwDMMw6Z0MbfSFhobC3t4eoaGhKa0KwzAMwzBMkpKhjT6GYRiGYZiMQpox+l68eIGCBQvCyckJTk5OePfunRgXGxuLoUOHwsHBARMmTEhBLRmGYRiGYVInacboAwBHR0e4ubnBzc0NBQsWFMOPHTuGEiVKwMPDA+Hh4bh06ZJi/qioKISEhMiEYRiGyXh8/vwZnz9/Tmk1GCZZSVNGn6enJxwcHDBt2jTZ5IvLly+jbdu2AID27durGn0LFy6Evb29KCVLlkwWvRmGYZIKIsKHDx9SWo00h729PfLly5fSajBMspJmjL6iRYvCx8cH7u7uCAwMxKFDh8S4oKAg2NnZAUi4kT9+/KhYhrOzM4KDg0Xx9fVNFt0ZJrXh5+eH4ODglFaD0UhgYCAePnyoGLd27VoUKFCADT8ziYuLQ3R0tMX5P336lKj8DJMSpBmjz9bWFjlz5oROp0OvXr1w69YtMS5v3rxiV21QUJDq25utrS3s7OxkwjAZkZIlS6Ju3boprUaG58WLF1ixYoXJdJUrV0bVqlUV4y5evAggoe1jko98+fKhR48eKa0Gw5hFmjH6pMuquLu7o0KFCuJ+48aNcfr0aQCAq6srmjVrluz6MUxa49mzZymtQoanR48emDhxosl0xgw6Xmc05Th58qTmtPfu3cOuXbuSUBuGMU2aMfouXryIevXqwcHBAf7+/hgwYABGjRoFAOjSpQt8fX3h4OCA7Nmzo0mTJimsLcMw6RkiwpUrVxJdTmK6Bzds2ID169eL+zqdLtH6MElHzZo1MWDAgJRWg8ngpBmjr0OHDvD29oaHhwe2bt0KGxsb/P333wAAGxsbbNmyBR4eHli5cmUKa8owqYNWrVrh119/TWk1DPDx8Unz4wkPHz6Mxo0b49y5cymmw7fffosRI0ZoTn/37l18+vQpCTVKWp4/fw6dTocXL14kuqwTJ04kXqEkgIjwxRdf4MKFC2LYsGHDUr1BnytXLsydOzdJyn79+jXevn2bJGVnRNKM0ZfeiIyMxOvXr61e7q1bt9C6dWvExcVZvezUDBFh+fLlCAsLS2lVUg3//PMPZsyYgWfPnhntAjx06BAaNWpkVtlbt241+iDatGkTPD09FeMqVqwIJycng/BixYqhQYMGZumRUvj5+QEAAgICUlgT7dSqVQtt2rQxK09wcDDOnz+vGBcREYGff/452SYznD17FkDCdS0lOjoaNWvWlI3zNkXnzp0Vw728vKDT6eDl5YX3799brKulEBHu3LmD6dOni2GbN29Odj3M5fPnz5g1a1aSlF28eHEUKVIkScrW58aNG8iSJUu6Xs6Njb4UYsCAAShevLjVy3V2dsb58+fT9UWrxK1bt/DDDz9gzpw5Ka1KqqN8+fL4+++/8enTJ+h0OgNjbOzYsbh69apZZS5dutQgbNu2bZg/fz7evHmD4cOHo3nz5qr5lR7Qb968wfXr143W++zZM9y/f9+kfgcOHMDAgQNNpkss1hpPFxkZaXHeHTt2aE5rjmEEAHny5EHr1q3F/ZCQEERFRQEANm7ciEWLFmHfvn2aynr06JFq3PPnz3Hw4EGzdBPw8/PDvXv3sGTJEovy/+9//0Pp0qVx9uxZXL58GQDQpEkTFCxYEKtXr1bMY63xsHv27IGLi4tBuNp1RUSIj48HkLCEmf7/GR8fnyRjPD9+/Cj+78YwZii/fPnS7HbGGkjPmSk2bdqE2NhYo9dqWoeNvhQiJbuFUprBgwdbvbsiNjYWQOIenumZu3fvwsfHBwCwd+9ek+mJCD179jTLSBg8eDB++eWXJJlFSkTQ6XQoX748atSoIYsLDw83WGS3d+/eZhlD5qLl+nVycsL//vc/TeWVKlUqsSoZJTw8HAAUH36PHz/W/JJob28vemm1PkiJCHv27EGVKlXg7e2tmKZp06bo1auXyXLMCdfK1KlT8erVK3z55Zd4+fKlLG7fvn0gIoN2pXz58gbl/Pnnn7C1tTWr7q+++godO3YU901dV19++SUyZ84MAGjevDnq1KkjxkVFRSFz5szisCcpxnp+4uPjsXXrVtn/Wb9+fWzfvl3cz58/Pzp16mTyeKQeuRcvXmDjxo14+/YtdDodypQpg0aNGiEmJkY1/4oVK8RzEBERgYiICJN1mqJZs2bImjWruP/69WsMHTpUfGZo4c2bN3Bzc9OUdsKECeK6wakRNvpSGSEhIarrDJpDap7Rt23btpRWwWoMHDhQ05IbiSUqKgrr16+3+H+Njo5W7foWyjx69KgYFhoaikOHDqFOnTr47bffLKpTKFso//379/j3338V0+XIkUMx/NGjR3j+/LnRh1aBAgWSdfmlt2/fYty4cQCAQYMGieGvXr2SraV34cIFTJ06VVOZ0s9KWsoXX3yh6Gk5c+YMcubMqZqvcuXKZnX7enl5maXX0qVL8dVXXwFIeHhK+fz5M86cOSO2eZcuXUJERIRZ17mQVuuLpLHxpEpGxoIFC5A9e3a8evXKaFfr3LlzLe7qDg4Ohk6nEz8soHb8Ss4CX19fDB06VLy/jxw5Iov38PCAjY0NHj9+rFjmnj17MGTIEOzbtw8RERF4+/YtvL29MXbsWJN16yO9T9u1a4dvvvnGwGu2YMEC2f6QIUPEMZZSg7VgwYLInz+/rOxHjx4hMDBQDNu/fz8OHDhgoAcRibpcvnxZptecOXOwZcsWTT0GAs2bN0fLli01pV25ciXOnDmjOrwlpWGjzwI+fPggdgOokStXLou8WSVKlJBd6GqoNYypecDv+/fv0123844dOzQtuZFY/ve//2HEiBGaukceP34se0sHgPXr16NVq1aK6QXPXLdu3cSwGTNmiNvOzs4AgO3bt+P9+/cG1x0RydJLadeuHTJlyoQpU6agdu3aqFatmmI6pYft9evXUaVKFZQrV86gTul1HhERodnr5OrqCp1OhxkzZqh+gsvNzQ03btxQLePp06eyfX9/fwQFBaF06dKoWrUqoqKicOrUKTFeqVtszpw5oufVWoSFhSl2Ff7888+K6T98+CCex2vXrllcrykDTd+zLDVMx4wZg7Zt24rGUrNmzZAjRw78+eefZtevf83fvn0bv/76q8H5z5Mnj+aydTodDh8+DAAoXbo0hg0bZlIPSxCuBcE7rfV6BhK8pFu2bBG7nPX1EAxJtRcuoU0ODg5Gjhw5rDZ+TlhmTV8f/Y8ibN26FT179jTQ8fPnz7J2YcWKFahSpYqsDenTpw969+5tUPfPP/8MGxsb7NmzxyydV61apRhuyeQhYXhLeHh4qpqIwkafBbRt2xZNmzY1mkZ4oNy9e9esSRXS9QiNkSNHDoOZmQ8fPlRs9FMLBQsWhL29fUqrkSYRrgslT8Ljx4/x/Plzcb9JkyYyD5QplAyu27dvy/ajo6MxaNAgFCxYEC1atBAbci8vLxw9elR1lvCZM2cAJHh7/P39NesEAHfu3BG3tT5QfXx8VO+hjRs3ol+/fgCAX3/9FfXq1VNM17JlS9U4wPDF6t27d1i8eLG4P2PGDHTo0EHcV3qJmz17NipWrIgHDx6oHwwS1iRNiklZdevWRYECBYym+emnn1TjIiIiNLVVGzZskH0pxMXFBQULFhS9LGreEKnRbAq1a6NVq1aYMWMGsmXLhpEjR6Jdu3awsbHRXK6p8vXTJMZbq8VbWb16dcVwYVLR8uXLZWUJbN26VTFcv26l66xq1aoYOnSouL9r1y7odDpNXaNCufoGrNoxCsehhmAsKn15Ji4uTmZMCsaz4GE2RpMmTbBz505Zm6fFefL06VMMGDDA5P3ZqlWrZJuIogU2+szAz88Pt27dEt3ksbGxsqn1StSqVUucyh4YGGjVBvzYsWOyfaHLCQAaNWpk8IZLRNiyZYtBvrTM6tWrsX///pRWQxNbtmyBTqfT/BBxdXXVlLZy5cooV66cuG9qBrO0e0t/KMHgwYMV80gbbuELEEBCg9m9e3cD3VOCKlWqoGLFijKDS8o333wjO/ZHjx4hJiZGtdsqIiJCsQtI2r0kID1m/Vn5Uo/i8OHDFceDKXHv3j04OjrKvA9KdavpIXDz5k3ZvouLi0GYElJDVp+6devKZpgKREZGip690NBQfPvtt7JJD8IYUcFzou81tQTpMffs2RMODg4GadatW4fTp0+b3f7+888/BuP89Pnw4YPJSSjS4Qe///47YmNjcfz4cYN0wsQR4Zik1470BUHJKNm5c6csr34+tftSMFalL1lAQjvx8OFDbNmyRQwT1oU0Ni5P6AJX81ZmypQJsbGxBrPCS5YsqVqmKWxsbFCqVCmTL1FKeHl54ZtvvkHt2rXFMCLC5s2bDYzbmJgY8Rr66aefsGvXLgQEBOD9+/eqy8VZYz1PLeh0OmzYsMFkOjb6zKBcuXKoU6eOePNkyZIFTk5OojdDDcFlXbhwYbGrRXoxffz40azuFbW3QukAeh8fH4Puo6tXr2Lo0KHo2rWr2JCFh4eb9ZB2cnLCH3/8oRp/9+5d6HS6RC9lcfPmTeh0OplR8v79ewM3+ffff48+ffokqi5LeP78uaqn4/3794qzUNeuXStuh4eHG22gTp48ifbt2xs1aIODgy1a7FXaGOt7obZt2yYO+peif43cvXtXtXw1j4QSFy9exKtXrxTjpHUqXaP63bPC2CEl75GacbFw4UK0adMGv/zyi0HcoEGDDCaNADAYG1WnTh3N1/umTZtUZ37qH6Owpp704Vi4cGEASNSXHayxVJR07KK0HZo7dy769euHx48fKz70tQ4/UUonPT+XL1+GTqfD2LFjZefz0KFDspcSc1GqV3+cpH67WqBAAYMuxsDAQHH5lYcPH8raismTJ2PlypXo0qWLGKb/34eHh+PMmTPIlSuX2cdARNi2bZuBYRYYGIhff/3VoC7hBUDLLGy15XukDBs2DH/88Yf4gqI0NGPQoEFo3bq1apezFpQmjJlqe549eya2w+vXrxfvBf1r1c3NDcOGDTOYvZ01a1aDSRolSpRAwYIFMWHChBT//rV0sXZVKAMTHBxMACg4OFhTegAEgHLmzCluA6CdO3eqphXkzJkzBIDq1q0ri588eTI1aNCAhL9CCDdGlixZCAA1atRIFl6vXj1Znffu3ZPF//PPP2Lcw4cPKTIyUlN9SselxuzZswkAnThxQjWvqTIePnxIpUqVIgDk7u5ukD8+Pp5cXFwoPj5eDPv9998JANWvX1+xzPj4ePr999+pYcOGNGLECM3Hq4Zw/oX6FyxYQAcOHCAioho1aojHt2vXLgoLCyMioqZNm4r69+nTx+g52Lx5MwGgP//8k4iIfvzxRwJAFy5coLdv31KFChVo4MCBiudTuD7UZNCgQUbjleTz589m5zElwnnMlSuXQdybN29o/fr14r70XAvy5MkTsQw1efbsGb18+VI1/ttvvzVZnre3N/Xq1UvUefHixQZpSpQoYfJ4q1evbjR+w4YNsmvA3d1dMd2bN29Uy9i8eTMFBQXR5MmTKSYmRvF45s2bp5r/1atXREQUGxureG0p5dm2bZsYP3LkSAJAt2/fpqCgIIO0zZs3F7cXLFigqkeXLl0U7zkAVKlSJVlapeuHiChfvnxmX5OjRo1K1DUNQHyuGBOhfRPEy8sr0fUKYmtrSwBo6dKlsvMmtAv+/v5ERPTy5Ut6+vQpdevWjQBQwYIFNdcRHh5OREQREREm0+q3N8K9BICuXr1KAChr1qwG/59+ORMnThS3v/rqK5o8ebJifdeuXVP874mInJ2dZWFCm5wtWzZZ+FdffUVAwvW6ZcsWg7Li4+OpS5cuBuHv379XPY7379+rtvdERFFRURQVFWU0jTEAUOPGjU2ns7iGdIClRp9+IzN79mwqWbKkrBz9i6F9+/YEgOrUqWMQnyNHDgJAy5Ytk10spvTQN/rq1q0rK/f+/fuyeDc3NzHu4cOHskZZjaioKHr9+rVB3QIdOnSgokWLivtdu3YlAOTi4qKqt7SMqlWr0r59+4iI6N69ezRw4ECx0QKUjb7t27cTAHJ1dRXDvvnmGwJAuXPnVjwOHx8fg7r//vtvevfunZjmjz/+oPHjxxMR0eXLl2nv3r1iXGBgIE2cOJFiY2Pp0KFDqg2cVE9/f38CQGPGjCEiudEnpFG79oSGRsnoEwzC7NmzG9StdJ5NNcJaJCwszOw8psSYrseOHZMZfUpSuXJlqly5ssl6hIeakjg5Ocn29+7da7Ss8PBwWrp0qUF4sWLFrHJOzp49Sw8fPiQior/++ksxTevWrVXzb968maZPn05AwotmTEyMWfWvWbOGgoOD6ciRI7LwRo0a0cKFCxXzbNmyhYgS2pe+ffsSAOratSvdvXvX4vPQtWtXk+2HqWsrf/78Ztf7xRdfJPo/fP36tdl5Ll26ZJXrRyozZ85UPG/fffcdffz40SA8c+bMmssWjL63b98mSscrV64QYL7RZ4kQEfXr10/x/9ZvS03JypUrFcO3bdumehz79+9XbOsFihQpQjly5CAiomvXrtGNGzcU0/n5+VF8fDxdu3aNvvjiC4qJiRGfKWz0mcAco+/Fixfin6fv6StdujQBIDc3NzG9/sXQrl07oxe00gWqhjTdwIEDacaMGUREVKdOHYNyNm3aRKtXryYiogsXLojh48aNkxl93333HZUoUYKioqLIycmJHj16REREAwYMkOmjr5/avrOzM8XHx6vqLT0PZcqUISIyeAADCUZfr169aMaMGWKY4NVbtWqVGFauXDkCDI0+4U1S/y323bt3BIC6d+9uoJ/UwNm9ezcR/efBuHPnjsn/TdgWzt1XX31FK1asEMMFnQS5ffu2qEN4eDiFhISIRt+qVauISJvRFxgYaNLLB1hm9AkeXGuK1NOsL4sXL6YNGzZYpZ6yZctaTecJEyaI159UChUqZNVzc//+fYvybdq0SWb0Wfs/U5Pjx49btbyGDRsabfdMSUREhEWePmuI8LKX0jJ9+nRZGymVwoULJ6pswegLCAhIVDm//fYbATBot5T+76Qw+ix5MTAmQpuvdByCc0MNpTxxcXGix57oP+fF1q1bRQdLYGAgG31aMcfoc3R0VP2jpa56Af00bdu2NXpBK12g+ri6utKxY8cU03/+/Jlq165ttDz97iKl7pd79+4RAGrVqhURkfgw69+/v+iRFMqTuvaXLFlCT58+lZW1Y8cO6tu3L82ePVvxmIUwwehTOsdKXVyCR3To0KEGcblz56aAgADRADd1ntu0aUOPHz+mBw8eGD13/fv3J8A8o08QIa+a7N+/n2JjYykiIoJKliwp3tTSMrUYfVrFEqMvJcRaRp81pWzZsvTdd9+luB7GROj2P3XqVLLVmSdPHquXGRoaKm5ruZelMmnSpBQz+oSuwfQsERERRJTQW2KN8vSNPuE5JJXEGn1jxoyh+vXrJ+t/Lxi1QIKDAQDFxsaKz/SBAwfSrl27ZNe31FPco0cPAkAXL14kIqKLFy8SkHB9d+rUiQDQ06dP06fRd/36dWrevDm1aNGC+vTpQ9HR0WLcP//8QyVKlCBHR0fRWNGCKaPvzZs3lCtXLpPjFmxsbMRtIqJPnz4ZTf/vv/+avHgEnjx5It5gxtL/+OOPRrsmQkND6ezZsybrlXbJuLu7k52dnap+p0+fNlqWtBtMSX8hzFyjT2lMlSC5c+cWt8+fP2/yeNu0aaPpvxC2b9++rTmtVtm/f7+BATthwgRx+86dO6LRd+7cOdHo0x+HolX0PdUs6UuqVKmS4jpYQ6TecXPvK2EoBUvSSEREBIWEhFitPP3u3bQqwvAGYxIZGSk+34Ww8PBwcVttyMrWrVtFo++HH34Qw4cPHy72mqQro+/Nmzf0+fNnIkoYjCkdb/XPP//Q5MmTzS7TlNEnnFTpYG9TYq1ujsOHD4vbxYoVk+mjJGPGjLHKeJRZs2ZpSkdk2ugbPHiwuK1kOPv5+RHwn9HXokULq96A48aNs0o5X375pbitNKFA/7yYW77wBmhMhGuwZMmSotHHwpKepUyZMuK21naJJXkkIiJCHFLDYp6cPn1a7B43N6+npycBcqNPKunK6JMyc+ZMOnjwoLj/zz//UJkyZah58+a0fPly1XyRkZEUHBwsiq+vLwHKRt+5c+fEE1mgQIEUv1CIjF8gNWrUoJo1ayarTtYwMoH/jD5r6zd27Nhk/5+khm5SidSbycLCwpLcojaRgUWbjBw50qJnnmD0SXuC9MUUac7oe/nyJTVt2lTWvRsaGipOd27fvj1dv35dMa/a26KS0VehQoUUvzCkomVqfFoWYfC5NeX7779P8eNiYWFhYWHRF0u6tKWTMdXEFDqiFFo+3wJCQkLQpUsXrFu3DpUqVVJMs2bNGtja2mL48OEGcVFRUbKvVISEhKBkyZIIDg42+GB7avuGbbZs2RAZGZnSajAMwzAMkwLUrVvX6HfBAZj82EKa+SJHXFwcvv76a8ycOdPA4BM+GA0AHh4eqFChgmIZtra2sLOzk0lagQ0+hmEYhsm4mDL4tJBmjL69e/fi0qVLmDdvHpycnLBnzx6MGjVKjGvYsCGaNm2K4sWLo0WLFimsLcMwDMMwTOoiTXXvWpuQkBDY29unie5dhmEYhmEYY6Sb7l2GYRiGYRjGctjoYxiGYRiGyQCw0ccwDMMwDJMBYKOPYRiGYRgmA8BGH8MwDMMwTAaAjT6GYRiGYZgMABt9DMMwDMMwGQA2+hiGYRiGYTIAbPQxDMMwDMNkAGzMzRAUFARXV1f4+/tDp9OhaNGiaNeuHfLmzZsU+jEMwzAMwzBWwCxP34YNG9CwYUN4eXkhPj4ecXFx8PLyQuPGjbFhw4ak0pFhGIZhGIZJJGZ9e7dy5crw9vZGrly5ZOGhoaGoV68eHj9+bHUFkxL+9i7DMAzDMOkFq357V6fTISwszCA8LCyMjSSGYRiGYZhUjFlj+pYsWQJHR0fUqFEDxYsXBwD4+fnh/v37WLp0aZIoKGXKlCm4cuUKSpUqhU2bNiFr1qwAgNjYWHz77bd4+vQp6tatixUrViS5LgzDMAzDMGkJszx9nTt3xoMHDzBlyhQ4OjqiRYsW+PHHH/HgwQN07tw5qXQEANy8eRMBAQHw8PBAtWrVsH//fjHu2LFjKFGiBDw8PBAeHo5Lly4lqS4MwzAMwzBpDbNn72bOnBlNmjRJCl2McvnyZbRt2xYA0L59e2zatAkDBgwQ4wSjs3379rh06RKaNm1qUEZUVBSioqLE/ZCQkGTQnGEYhmEYJuWxeJ2+AwcOWFMPkwQFBYmTLezt7fHx40dNcVIWLlwIe3t7UUqWLJn0ijMMwzAMw6QCLDb6BgwYgGXLlhlNY8bEYJPkzZtX9MwFBQUhX758muKkODs7Izg4WBRfX1+r6ccwDMMwDJOasdjoO3r0KGbPno3x48cbGHdxcXHYvHkzqlatmmgFBRo3bozTp08DAFxdXdGsWTNNcVJsbW1hZ2cnE4ZhGIZhmIyAxUZfu3bt4O7ujkOHDqFnz56IiIhAdHQ01qxZgwoVKmDSpEno16+f1RStU6cOihQpAgcHBzx48AC9evXCqFGjAABdunSBr68vHBwckD179hQZc8gwDMMwDJOaMWtxZiX8/f3RsWNHAMD79+8RExODiRMnYty4ccidO7dVlEwqeHFmhmEYhmHSC6ZMOrNn70oJDg7Gxo0b4e/vj/DwcOh0Onh5eaFmzZqJKZZhGIZhGIaxMhZ37zo7O6N06dLYvHkzFixYgHfv3qFPnz5o06YNrl27Zk0dGYZhGIZhmMRCFlKlShXasmULxcbGysJnzJhBOXPmpMOHD1tadLIRHBxMACg4ONggDgALCwsLCwsLS5oRU1g8po+IVMe9rV+/HmPHjsWSJUswduxYS4pPFnhMH8MwDMMw6QVTJl2iJ3Ko4eLign79+qXqr16w0ccwDMMwTHrBlEln8Zg+U3To0AFubm5JVTzDMAzDMAxjBklm9AFA3bp1k7J4hmEYhmEYRiNJavQxDMMwDMMwqQM2+hiGYRiGYTIAbPQxDMMwDMNkANjoYxiGYRiGyQCw0ccwDMMwDJPG+f77702mYaNPhdq1a6e0CgzDMAzDMJrImTOnyTRpwujz9vaGg4MDHB0d0bdvX8TExMji3dzcULJkSTg5OaF169ZWqTM1f0mEYRiGYRhGiq2trck0acLoK168OFxdXXHhwgVUqFABhw8fNkjTr18/uLm54dy5c8mvIAMAqFy5ckqrwDAMwzAZEi0fWEsTRl+RIkWQI0cOAECWLFlgY2NjkObAgQNwcHDAihUrVMuJiopCSEiITNRwdHRMvOIZjCT6ol+iSGmdbt26laL1MwzDMBkDTY4XSkO8fPmSmjZtStHR0bLw0NBQioqKoqioKGrfvj1dv35dMf+sWbMIgIEEBwcrpldKy6IuFSpUMBrfo0cPi8v+888/LcqXlP+jv7+/yTSPHj1K8f+FhYWFhSV9y+DBgyk+Pt6kHZWqjL43b95Qs2bNDOTDhw8UHBxMLVq0oEePHhktY/Xq1bRhwwbFuMjISAoODhbF19eXAOsZfQsXLky2P/j777/XnHbq1KmK4du3bzcIq169usU6lStXzmi8lnN68eJFGjlypEF4YGCgybxK5VvyP2oVLWVLjb6mTZsaTVulSpVkuXaSSvLmzZviOrCwJEby5MmT4jqwsCiJ0vN12bJl4nZ4eLgmOytVGX1qxMbGUufOnens2bOK8VKjrX///nThwgVN5QYHBxNgPaMvICDAIKxu3bqKaXPkyGGyvAcPHqjGRUVFadYrPj7eIGzLli1ERHTmzBkxbMeOHbR8+XKDtFOmTDEIq1y5skHY119/rapDoUKFiIioWbNmBnGDBw+mQ4cO0Y0bN2TnPmvWrASAOnbsqOn/0E/j6upqEGZvb08AqFOnTrLwjh07GpTXpEkTatiwoXi+AJCzszO9fv2aXr16pUmnyMhI2U2pb1R3796dAFCrVq1o/fr1Zl9z1pI5c+bQzJkzE1VGoUKFUkz/pJZ27dqluA4ZVYYNG5ZsdU2ePDnFjzc9yaVLl1JcB2tKzpw5rVLOmjVrZPs1a9Y0mWf37t0GYdLntVbShNG3c+dOypcvHzk6OpKjoyPt3r2biIhGjhxJRETr1q2jBg0aUJMmTWjKlCmay7XE6Ktduzblz59fMe7Nmzey/b/++ku1nJiYGPr5558JMLTg69SpY1QHABQREaF6EY0cOZJ+//132cWgn//YsWNiHUK398mTJ8nPz88gLRFR4cKFDS6uDRs2yNLFxsYaGIMvXrwgAOTo6EhERO/evaPTp09Ty5YtKUuWLKLxpI+fnx+9f/+e9u7dSx8+fDB6LpSO09vbW/EcCkYfEVG1atXEcC8vL5o9e7YsbePGjalx48YEgG7evEkA6Pjx46rXSPPmzY3qRETk7e0ti583b55YrpLn1ZQI14q5+ZQaFLXhD1pFMOwTq4s5MmjQIMqVK1eS1/P06VOL8vXu3TtZz0dKSFJ7x54/fy7zaCSl3L9/P8XPZ3qS5GoPlF7aTYmPjw+NHj3arDy5c+c2mWbJkiXidvbs2Q3iPTw8iIhkDoDatWubLHfXrl0GYStWrKA7d+7Q/v37FZ+jSqQJoy+pMGX0DR48mFavXm1wERMpX8j6Y7yMGX1ERBEREbRjxw66cuUKAaAJEybQjh07yM/PT6zn9OnTYp65c+eK2+Hh4bLy9u3bJ26PHz+eiIj8/f0pMDCQiIhOnDhBrVq1EtNI+/5v3LhBAOj169eK+hIRFSlSxOAchIWFyd7Clc6NoKeTk5Plf5ReuTVq1DDZwEhZsmQJbdu2jTZs2EBeXl7k7OxMRESfP38WPbFeXl40Z84cWXmNGzemJk2aEJBg0L59+9ZAp3/++UfslnVwcCAAtHfvXqM6jRs3TgybP38+AanD6Eusp69w4cJW0UWrVK9enYiIqlatqjmPOd7IoUOHKv6PUmnTpo3RMs6fP2/WMR08eFA1zsnJKdnOrTmS1EZfREQEERFdvHiRXr58aRBvY2OjqRzBWyt415Xk3r17idK1efPm4otcYkXaXiel9OnTh0qUKEG+vr7UsmVLq5adXO3B1q1bLdKNiMjDw0MME56FamJnZ2c0Xr89Llu2LAGQ1SEQGxtLjo6OYj79siZNmkRhYWHivpubm0EP38qVK81+jqaJ2bspxZYtWzB69Gg8ffrUovz0/zNHIyIiYGdnZxCfLVs2DBgwQBY2YMAAFC9eXNz/8ssvxe1BgwbJypbO1OnRo4cYr9PpAADFihVDwYIFAQAdO3bEsWPHUKJECdy6dUtMAwB16tQBEaFo0aKqx1KqVCmDsJw5c2Ljxo0G4dWrVxePOym4e/euuP3hwweT6SdPnoyBAwdi+PDhaNSoERYsWAAAyJEjB1q0aCGmq1+/vizfunXrZOepUKFCBmU7OTnh3LlzqFevHmbNmgXA9MLewnWhv50vXz6Tx6LP0KFDZftdunRBZGSk2fmlx2ltli9frild1apVVeOk50mgadOmmsrNmTMnevfujREjRuDt27ea8jRt2hSbNm0ymubjx4+Jmh2udE81atRINX2ePHnMKr9kyZLmqqSJXr16idvVqlWTxUVFRVm1rnfv3iFbtmwAgGbNmhmcM3d3d1kbYGydsn379uHy5ctG64uPj0+EtgmULVvW7DxfffWVbL9w4cI4d+4coqKiZO1+UrB37174+vqiRIkSOH/+PPr165ek9SUFSs9XrTRv3lzcVmrjpZhqJ6XxuXPnltUREREhWzEkc+bM2LJlCwDlRZVtbW2RM2dO8fp3dHRE1qxZMWzYMM36KMFGnwbKlStnEFagQAGDMCJCxYoVDcKzZcuG4OBgjB49GoDhDS78qWqN+pUrV+Dt7S0Li4+Plxk/mTNnxi+//AIAijoACUaOr68vvvjiC8V4Yxw/flxz2syZMwP477iSknz58iE0NBR37tyxKL+gK5BgGH/8+BHu7u7w8/NDjRo1NN1UxYoVw/Xr19G6dWvxGjh16hR++uknAAkP95YtW4rp7e3tDcrQ6XRo3769YtzUqVMV661WrRrGjx8v7teuXRtHjx7VtEAnAFy+fBk1a9Y0CBcaov79+yMiIgJLliwR40JCQvDw4UN06NBB8RgAYOfOndi1a5cYPmHCBDRp0gSLFy9GixYtkDVrVkV99M91+/btjeqvxeDS6XS4desW9u3bh7Vr15pMr6aLEnnz5lXU4erVqwZhmTJlkv0vOp1OfDmSYuyY5s+fL27rv6Ao8eDBA7x//141Xn85IWFZLAC4ePGiaj6hnVFC6bz17t3biJbGUWpnpdjZ2cke+GPGjFFNmzt3bjRu3NhoeUrnf9asWXjx4gVOnTplQlugVq1aJq8d6YumWr379u0DAGTNmhWTJ082Wa812bx5Mw4dOpTocp48eWIFbRIQnBcCbdu2le0n5uVLiqn/LlMmbSbTvn374O3tLSsvW7ZsMkNQWl/RokXh7u6uWJa+QSt1tLDRl4zcu3cPt2/fxrNnz8QwIpI1pF26dJHlWb16Nfbv3y8+VAVq1aqF7du3w9nZWbGuhg0bom7durI/OFOmTMiSJQtev34NX19fAAnG3q1bt4w2fOayf/9+AAk3nZoRt3v3blmDaK0bUCu5cuWSGS/Sh5cpfvnlF8ycORMNGjQAkPAgd3BwEL2twk1u7jG1a9cO//vf/wAAL1++xPnz58W4GTNmiNvScnU6HW7cuIG+ffvKyvrmm28AAL///rtZOhjD0dERjRo1EuuXXltFixYFEWHnzp3Ili2bzBDNnTs3KleurOgNEMro37+/wYvNpUuXMGXKFFy4cMHAQye8vBARoqOjxXB9o69Lly7Inj27WccZFxeHChUqmJUH0N6YCvdErVq1xLAGDRrIDPWgoCB8+vRJ9l+reZSMHV/16tUNrsMsWbKops+VKxfy58+PmTNnGjwklRAMoi+//BIlSpQwmV4r+jpPmzbNamXrs3TpUrPzSK8zpfs8U6ZMKF26NNq1ayeGKRmAP//8M5YtW2ayPqVrS1pvw4YN4eDgIO5/8cUXBh5VY2zatAmjRo2ShW3fvl1z/mzZsqFhw4aKcfPmzdNUxsmTJy2679TqvHnzpsxLu3v3blkatfOzd+9eTXWsXLkSAAyMMgHh5VqtXfj5559RrFgxzJ49G0DCi46a80UJIpL956b47bffNKfVh40+CylcuDBq1aolc+Vnz54dOXLkEBePlnbTCvTq1UvR0/H1119r9tDY29uLhk3RokVlDfQXX3xh1a46aWP077//4sKFCwZp+vXrJ2sQU5JXr17h5cuXmtPb29tjzpw5qm9wwrm0RrePQLZs2VC+fHmZYSTUU65cOezZs0eWvlixYnj48CEmTJggC5caGqZ4+PChbN/Nzc3gOhHeKPWNe6G7euvWrWKY/rAEAGjVqpUmXSZOnAgACA4OhqurK2rUqCHGZcmSBceOHUOZMmXEMMHTcfToUYSHh4sNft68eQEYes4FvvzyS4vvBaUy79y5Aw8PD1nYhg0bsHz5chQrVkyxHCKCvb097OzsxHtJeFMXdOvYsaOYPl++fLh37x6CgoLw/Plzi3TXZ86cOXBycrJKWUps2rQJTZs2hY+Pj2K8tA3JnDkzfv31V8V0wcHBBi/K5mLJ/92nTx9xW3otCvzwww/i9p9//olvv/1Wsb378ssvkTVrVpM6COdDeh6k56hu3boGedzd3XHt2jWj5QooPWP0e5GELnq1Z47aMegbk0p06dJFsSfAUmbMmIHixYvLvLTCvS9QqVIlxTa6T58+ml7Yx44di6CgIFWjT6hP7bz89ttv8Pf3N/v61S+vaNGimD59OoD/hn8oecqFoVjs6Uth8ufPDwCq3VfWwpo3lDmUKVNGsWtCH7UHYHJQsmRJk11C5iDcVNb2Xvr4+GDXrl3iGBJ9F/6tW7dQpUoVcb9y5coyw/TOnTsyN3/27NlVPcWAejeZ1NM3fvx4bNq0STbGBUjoSgwPD5eNLVLyMOl7WQ4fPix6KaV069YNRAQ7OzuZB0o41507d8bz58/Fff2uzH79+mHHjh2YM2cOgIQXMCBh3Ixw723ZssVkF1Xnzp0NwrZv347Y2Fh8//33BnE1a9Y0eJErUqSIgTEuPRYpXbt2BQBxTI5gWO7duxfPnz8XvTHVq1eHvb29zPDVUj6Q4JF//fo1Pn36JAuXeh0Eo154WVy3bp3R8itXriwzGvTvhe7du8PT0xPly5c3KKdIkSKYNGkS3r17p5hXip2dnewaMzbGU59u3bqhTp06ABL+wxs3bohxu3fvxsmTJ8X9SpUqGeQXzk/mzJkRERGB4OBgAAnnQWoIjBkzRvF8DRs2TPzuu/5/M2/ePJlBIh2LLfTKCOdl2LBhil+Vyp8/v+w++O6771THsRGRTAelscL79+9HcHCw+L9oYceOHaovx0SEmJgYVK5c2Wg7lFi8vLywevVqWdiZM2cAaDeAxo0bZ/A1Lp1Opzi0RkD4f/S7mU0xcuRIo/GC0S0Yca9fv8b8+fNx6dIlMe/KlSsRFhamqI9FL7VmT/1IR5iavSsFejNvjMXdu3eP/v77b6vpKSDou23bNquXLeX06dO0ceNG6tWrF4WFhZmd/8OHD3Ty5EkiIoqLi6OqVauSm5tbovWSnmdj/4c1EWZMCjMIrU1cXBydOHFCMa5169YEgD5//iyGaT1uIZ0g+rO+BBYvXkxAwuxvc9Gv4/3792aXIS2rWrVqsrAVK1YQANq5c6fRvH/99RcBoI0bN9KkSZMISFgfzJTegwcPVp3Rp59W4NmzZwQkrFMpxcfHR5bW2dmZAMjWFo2KiqKPHz8aPRa1+qU6AKAGDRoQAIPlah48eKBYTnx8PPXp04fu379Ptra2svKEtSQPHTpEOXLkIBcXF3GWbJ8+fcT8o0aNIvz/DEdhlmOnTp1k9URHR6ueTwCk0+kMjkuaVroKgdr1JM3z8OFDk+dOn+joaOrWrZsYv2HDBgoNDTWYnW/qXpPqsXz5cjFcfz21uXPnElHCag0PHjygo0ePEgBasGCB+KWhXr16EZCwwL8xpDpVqlRJ8TwGBQXR+PHjCUiYPR4REUEnTpwwep3rEx8fT3PmzKFp06YRALp27RoRJSy5JZQhXOOmyhPSHDp0iG7fvk1///23ot5qouVc6Ifpxy1fvlw8J/Pnz9ekr/ABhE2bNtGMGTMIAB05ckRxvbzE4OLiYvbzZdOmTQQkLNVmLuzp00iuXLk0v3lWr17dpIVvCXZ2doiLi8PAgQOtXraUL7/8EsOGDcP+/fsVZxWZIl++fKI3MlOmTHjw4IFVvmV89OhRPHjwINHlmEObNm0AyCd8WJNMmTLJuvekWHLuBV6+fCnrbsuaNauil4US88ZoZfS9yFp16tq1K0qXLm22B3zs2LHidvXq1UVPkTGKFSuGsmXLGoyRUvJy6ZM1a1aDbilTqN3rwrkpXbq0bNJM6dKlVdPv3btXceyTra0tiAjdu3fH58+f0b59e9EDUaRIETG//oz/CxcuYMeOHYp6qSFcb2reIGl+oedEn9OnT6Ndu3bYt2+ftm+N6pElSxZxDK9QZ65cuUzO3NSK/jkQjjlbtmwGzxBh3JvSTG4ldu/ejUWLFgEAzp07p5iGJJ6+7NmzWzShTqfTYebMmZg7dy7OnTunOHFowYIFsLOzM7lagUD37t1lQ1KqVKkCLy8vs3UTWLt2LTZs2KAY9/XXX8v2J0yYgOXLl+Pvv//GlClTNJUvePul7VKOHDnQr18/xS54S2nfvr3Z/1Fi2m0bs3NkUIKCglLFg1Hr7KH0SGLH+1iCs7MzRo8ebXTAfFKxfv16HDhwwKyJKQJaHyLWvKYTU5a/v7/ZXScCRYsWxYsXL2RhSgauPtIH/7179zTVZWtrK5u8ZYrEnt9t27Zh7ty5RtN89dVX8PLywooVKzRdK1rOTeHChXHy5EnZWEBhkLowacrUUA9jS8b88ssvWLhwoUk9lPjyyy9lS1klFrXzMX36dPGlT4k3b94gMjISZcuWVRwq0LRpU5QuXdroxLq2bdvi8ePHuHv3LpYtW2byepFOoCpRogTevn2LzJkzo0CBAsicOTPi4uIAJIybvXHjhkUrNUjJnDmzbKyuviEeFBRkdpnC+f7xxx8Nlihq0KCB5rGLI0aMUI1bt24dfv75Z1mYTqczyxlTtWpVUVd9I2vr1q2K4z+Ti8QYfRnXgjCTzJkzZ2iDK6OSKVMmi9bPswYFCxbEd999Jwu7fv26Vb2do0ePxpQpUxJlUGudwGGMYsWKGRjWw4cPx9ixY9GjR49El69G586dZUuhWBstBpYpypYta7D2m7D8k9Do//777/j8+XOi65LSoUMH2WziwoULY82aNeJENVNYMrlLGDuY1Ms9abmm5s+fb3QCTJEiRVCmTBkQkczTK/wnPXr0wM6dOw3G0wrjQoVxhNLxluY+xAsVKoT8+fODiEQDlYhQpkwZuLu7i/+ftV7u9MvR9wAnpiwgYamgiIgIfPz40aIyBbJnz664HJWlCNd8UvX4mIswzlRt4okx2NNnBW7cuIFXr16ltBoZisePH6eI9y2lqVevnlXLy5kzJxYvXpyoMpJq4lLOnDnxxx9/WL3cO3fuiN2Xx44dM5r2xIkTCA0NNbuOpOwVEAzJYcOGiZNuMmXKpNkj7OrqisOHDyeJbsJxV65cGWvWrDGZTp9WrVrhwIED6N69e1KoJ1KtWjWsXbsWI0eOtPp/JXThq70s1q1bFw8fPrSoa9oYxo7DGi8f1sKYLkSEbNmyJcsar+YwZcoU6HQ6TRMZk4NevXph+/btFi2kzUafFahTp46m8UCM9TBnDSQmeUgNwx8EjOlijgdAbbxlasDX11ecuWwOTk5OSbaEi3Dea9asadQjmC1bNjg6OiI0NBQHDx4UZ7fqdDr07NnTKroMGjQI27Zts0pZ5tC6dWscPnzYqPdc3+AThhpYY2WG1GTgAQmLtXt6ehqEp6b2whS5cuUSv7gEpLzumTJlMhi3qDmvlXVhGCaDcPPmTfz1118prUaqZNCgQciXL59VB3zrU6JEiVTn7c6UKRNcXFxUB9hLcXNzg7e3N0qXLm3Rp8tMsXnzZsTExKjGC+MCrTE8QYpOp0O3bt3MGg5UsmRJEFGiuiSTyxC5ePGiWRMw+vfvj1WrVon7wicxpesjCqQ2g1WNqlWriovsjxs3LoW1MQ/29DFMOqZUqVJJNvSgdu3aqF27Nho0aIDw8PBEff8yvVGlShVN34VOj5j6fF5ykSlTJqOGlzAeL70wfvx4uLi4KI7zkhqE0glMltCsWbNE5c+VK5emlwIHBwfFTxUa4969e4iNjbVUNc3odDrMmzdP8xdKUhNpwuh78eIFGjRoIF4A+/btk830i42NxbfffounT5+ibt26iotbMkxG5O7duwgPD5eFWXvWWd26dRW/1JLRuHHjRqrzvKU29Bf+ZqxH+/btNRmxST1e0lIcHBxk44PVvkVrDHONxIxImjD6gIRvhQrfgdXn2LFjKFGiBDZv3owRI0bg0qVLBt/3BICoqChERUWJ+/qrcjNMekP/g/Rv3rxhj1wSweN6jfPq1asUmwmf0WnYsCHs7OwwZMgQ8bOGqYmGDRtaZOQlBZUrV8ajR49SWo0kI82M6fP09ISDgwOmTZtm8DZz+fJl8XNO7du3x6VLlxTLWLhwIezt7UUxto4Uw6RHihQpYtG6fwyTWEqWLJmoBccZy8mfPz+Cg4OxcuVKzd94T06kC6WnNJ6enrh161ZKq5FkpAmjr2jRovDx8YG7uzsCAwMNvqkZFBQkei/s7e1V1/hxdnZGcHCwKL6+vkmuO8MwyUfDhg0B/PctS4ZhUjdEJPvmckqTP3/+RC9qnZpJVd27AQEB6N27t0H40aNHxW6BXr164fLly7Jp/Xnz5hW7aoOCglS7EGxtbVPlWw7DMNahX79+aNOmjeonvBiGYTIyqcroK1KkCC5evGgQLl0c1d3d3eD7hY0bN8bp06fRokULuLq6Yvjw4UmuK8MwqRM2+BiGYZRJE927Fy9eRL169eDg4AB/f38MGDAAADBq1CgACd9k9fX1hYODA7Jnz44mTZqkpLoMwzAMwzCpDh2lp4WKzCQkJAT29vYIDg7mGY0MwzAMw6Rr0oSnj2EYhmEYhkkcGdrTR0QIDQ1F7ty5U/xbegzDMAzDMElJhjb6GIZhGIZhMgrcvcswDMMwDJMBYKOPYRiGYRgmA8BGH8MwDMMwTAaAjT6GYRiGYZgMABt9DMMwDMMwGQA2+hiGYRiGYTIAbPQxDMMwDMNkANjoYxiGYRiGyQCw0ccwDMMwDJMBYKOPYRiGYRgmA8BGH8MwDMMwTAaAjT6GYRiGYZgMABt9DMMwDMMwGQA2+hiGYRiGYTIAGdroIyKEhISAiFJaFYZhGIZhmCQlQxt9oaGhsLe3R2hoaEqrwjAMwzAMk6RkaKOPYRiGYRgmo5BmjL4XL16gYMGCcHJygpOTE969eyfGxcbGYujQoXBwcMCECRNSUEuGYRiGYZjUSZox+gDA0dERbm5ucHNzQ8GCBcXwY8eOoUSJEvDw8EB4eDguXbqkmD8qKgohISEySWo+fvyIZcuWpZpxg7Gxsbhw4UJKq8EwDGMWQUFBiI6OTpa6YmJiMG3aNISHhydLfclBSEgI5s+fn2qeRUzKkKaMPk9PTzg4OGDatGmyC/fy5cto27YtAKB9+/aqRt/ChQthb28vSsmSJZNc5/Hjx2PSpEl4/fp1ktelhYULF8LJyQnPnz9PaVUYhkkk8fHxWLRoUboyTtTImzcvunXrlix1nThxAgsXLsSaNWuSpb7kYO7cufjll1/g7e2d0qowKUiaMfqKFi0KHx8fuLu7IzAwEIcOHRLjgoKCYGdnBwCwt7fHx48fFctwdnZGcHCwKL6+vkmud2RkJICExjk18OrVKwDIEA8JhknvXLx4ET///DP+97//JUn5MTEx+PDhQ5KUbQmnTp1Klnri4uIAIEm9YuHh4ahYsSLu3buXZHVIiYmJAZC0x8SkftKM0Wdra4ucOXNCp9OhV69euHXrlhiXN29esas2KCgI+fLlUy3Dzs5OJkmNTqdL8joYhsmYxMbGAvjvgW5thg4digIFCiRJ2VLCwsLQu3dvfPr0KcnrMoekbL8fP34MHx8frFq1KsnqUIKNvoxNmjH6pMuquLu7o0KFCuJ+48aNcfr0aQCAq6srmjVrluz6meL27dsYPHhwkt9wJ06cQKVKlUym4xufYdInjx49spoRePz4cc1p/fz8EBUVZXE9Bw4cwLZt27B//37odDqLjuHs2bPw8fExmS48PBzTp09XrUPwvplz/Nu3b8ezZ8/E/ZiYGIwePVrVkDXVBhcrVgx79+7VXL8p2AHBAGnI6Lt48SLq1asHBwcH+Pv7Y8CAARg1ahQAoEuXLvD19YWDgwOyZ8+OJk2apLC2/yHcaCNGjMC2bduS/MabNm0anjx5YnH+S5cuWX2CS2xsbIp0EUVGRuKPP/5gA5dJt+hf21FRUahSpQqmTZuWJOUbo2TJkhg4cGCi69uwYQMA9SEo8fHxYverPl9++SUqVqxosp6//voLCxYswIkTJxTjX7x4AQC4c+eOBq0TGDRoEBwdHcV9Nzc3/PXXX/j9998V0wvnVu2Z8ObNG8yaNQsA4OXlhcmTJxukuXDhgtmTW7g9zNikGaOvQ4cO8Pb2hoeHB7Zu3QobGxv8/fffAAAbGxts2bIFHh4eWLlyZZLrsnTpUhw+fFhTWuGGTi1j+kwZnc2aNcPXX39t1TrHjh2bLF1E+ixbtgzjx4+Hh4eHRfkDAwPh7+9vZa2Y1EpsbGyyPxCvX7+OKlWq4NOnT3BzcwMAcWUBtbHJSixcuBDAf9290uEvicHc8/HPP/9YVI9Su+Tp6SnqIEzUA4BWrVrBxsYmUXULRmOPHj3MOs+mCAsL05zWlNEnpUuXLgbGY0BAAJycnPDLL7+Yp6Qenz9/hk6nUxwvGRERgfnz56sa2UzKExYWBp1OB1dXV03p04zRl5qYMmUKevTooSmtcEOnpbcrLd0jISEhqrOk9XFxcUmsShYhdLVY2tVVuHBhlChRQjEuLCws1Rjy6YnY2Fizv5ATFBRkla/qZMmSBYsXL050OUqUKVMGM2fORHR0tGz2pJOTEx49eoRu3bqhZcuWePHihbi6QP78+c2qQ9q1aK32xtxyhPT6BrSXlxfOnz+vmk8wvCZOnCiGderUCdHR0Vi5ciXOnDkjhqstOdWqVSuzdBUICAgwCNu8ebNiOp1OB51Op2rcEREuX74sM6CICEFBQQbtpdTo8/DwQGBgoFl6C5MEBa+kpQj1btmyxSBu1apV+OWXX8xqw5s3b46DBw+K+7du3YJOp8PLly8TpWdG5fnz50adTML1u2PHDk3lsdFnBteuXcPu3btV4z09PUV3vJubG3bs2CEafdI3JT8/PxQpUkSxsUkspt4ahYZGvzH38PCAk5OTYhyQ0NA+efIEdevWxadPnzBw4MBUOXYSSDDIDh06hPXr14thp0+ftsoMx4kTJ0Kn0yF37tyYMmVKostLKjw8PNLUi4bAwIEDzZ5glTdvXhQpUiRR9QrnSvqwsiYvX77EvHnzMG7cONSvXx+fP3/Gs2fP8PnzZwDAv//+CwAGnuXw8HAxjSnKly+vycPn6uqKAQMGGIQTEQ4fPozy5ctDp9MhICDAYqMvS5YsmDRpkhjepEkTtG7dWjXfmDFjDMoAgJUrV8oMQSkRERFm6aakp/62PtL29O7du+L2y5cv8fDhQ+h0Ojx69EiWp2nTpujQoYMsrGfPnqrtpU6nQ4sWLdCyZUuzjkHQLbHjNxcsWKAaJ3Qdm/OC6+npKfs/BQ/UjRs3LNRQmfPnzyvOfH769Km43b17d9lzILm5f/9+osto3LixUSeTufcoG31m0LBhQ/Tv31813sHBAXPnzgUAtGzZEgMHDhRvTOmb4ZEjR/D27VvZ2yuQ0PBv27bNKroGBATAz8/PIFztBpg4caLRRZudnJxQqVIl3Lx5E66urokaNwgkNIwzZ85MVBlAggHt7u4uC3NwcEDPnj1lYe3atcPUqVMTXd8ff/whbh89ejTR5SWGW7duKXZNnTp1Ci1atMCRI0cSVb45azkWKlQIO3fuTFR9ALBnzx6L8plagoiIFB9cp06dwu3bt8VjTeoxt2vXrgWQ8DCVDjt4//69YvoSJUogV65cquXpN/iC0UhEWL9+PS5fviyLv3PnDtq3b49du3YhLi4Ojx8/FuMyZcqEHj16iB7DcuXKycqPjY3FmjVr4O/vj48fP8LFxUWMVzI8tm7dCkDuSWvXrp2s3YuOjjZ6zo0ZvN99951qnDE+f/6M1atXa0prTDfhWhW6oQHlB7BOp1NsL/W7d6WeWlN6EJFYr3T5Mmn8gwcPjJYhYMwoMqcL2hTWfglt3bo1atasCQcHB9G4un79OipUqCB6xo4cOYIRI0bI8u3Zs0fR67xw4UI4ODhYTc+DBw+iRo0aBvegMU6ePIlPnz5Bp9OJTgWhbdD/P/XR+h+x0WdFjF0sSoNt9dPXr18fgwcPNqvOgIAAFCtWTGzshT++aNGiSbb4tHRxbP23XK1cvnwZ8+bNAwA8fPhQPD/v3r3DtWvXZGljYmJU3+rr1q0rGzwNGI5nSoseLyldunSRGeTCg7BOnTqK3pO3b9/Kfi3By8sL5cqV09yt8+7dO9HLrc/Ro0dx+/Zt1bxv3rzBrl27zJopaQ7Pnj3Dd999h8yZMxvEdejQAbVr10b58uUBJO7hFhoaikaNGuHKlSto2bIlwsLCEBYWpthYr1u3DkOHDjUI16/f1BIm+te2kP/8+fMYMWIEmjZtKov/4osvxO25c+eicuXKqhO3IiIiZOXv2LEDY8aMQYkSJZA/f3507NhRnF1as2ZNRX2AhLZI4PTp0xg9erSsDn2k58DYvXvgwAFx25w1V3/55RdZV6OawS3V5fbt27JxhQAwe/ZsAAmTDJcvXw7gvzGVUtSOQXgJMXbNqcVt2rTJ6NjrdevWoXr16ortszntoTStJeMVAeu+SLm4uBi8vF28eBHz588HANHRIX2Z0eerr75SbDenTZuGixcvwsHBwSDuxYsXKFasmOzzr6YQjHhzxoV36tQJgwYNApAwdwD47/xVr15dMQ97+qzM6dOn8fHjR6MNgzH0L/j4+HjVm0DrgsmnT5+Gl5cXgARPxZs3b3Ds2DGT+aReIX9/f8TFxaF3797o3r27Qdpbt26JDYb+RfX8+XMxrEqVKvD09AQRKY7ZOHLkiLggtIDUAI6Li0PVqlXFmWkODg5o2LChLL2DgwNy5MiheEzm3ISmePnypVmDwZXevo29rVvK8ePHRa/Ghw8fkCtXLmzatAlAgufGzc0NNWvWVO26N0VoaKjifwwYbzz1Uau3W7duqF27tphG2iUTFRWFHj16YMCAAejSpYtZeqtx69YtnD9/Hj/++COAhG5PwcNmisQ8oC5evIirV6+icePGcHNzg6enJ/r27avYWKvpo7X+V69eYdasWQbnXBjnpQXh5cjYMivS8pXaJ2FWfmKNC0vyCRMQzp49i1KlSsnipPrs2rVL5jHUN16cnJywfft2AAkvo0oe7hkzZqjqsWnTJvzwww8A1NtwLYadWpqrV68atHP6bao+wnCB4cOHG01nSkfhv/jtt9+QO3dug2FK8fHx2LRpE7p27aqYz5p4enqiY8eO4uxuKbt378bLly/FblAisnj5IKnnVqBs2bJ48+aNQa+SOeh0OsWxovok9de72OgzQmhoKNq1a4f8+fPLvvVrCumFoX8jSY0KtRsjODjYaPnt2rUzWJZm48aNivVJ+f7778XtDh06YMKECThw4ACOHDliMN6iTp06qFKlCnr27Kl4EUqNgVevXmHZsmUoU6aMQeMkrJ8opVOnTuK28NYmPICkjfW1a9cQGBiIK1euqB6TtdDpdChTpow4GFzL25n+uV6xYgXKly+fKA9bXFyc+P9v27bNoIteeMiuW7dODJs+fbri2BYtBkRoaCjs7Ozw119/WayzPseOHVM9f9u3b0fNmjVx69YtREZGIlu2bFb7fwcNGoQzZ86IHtAlS5YYpHF1dcXZs2fRpUsXXLx40SA+UyZ5k/jo0SPUrFlTfJifPHlStbtGqXv7+vXrimml444sYejQoZg7d65B96c5PQVavPTSNkqpt0LpxUdAbRyYTqdDZGQkli5dqphGOgtRy1JPSuOsq1SpgiJFisDPzw8DBgxAy5Ytxf9CqU0SrsGmTZuiXLlysrjBgwcb/Oda7i3BUaCW9s8//5TFKz0PPnz4oDhMQz9tUFAQIiIiDIyKS5cuic8cS15ohG5TYRKKUG9YWBhKliyJ3377DcOHDzdwOmgx+s6cOSNeCwIuLi6qS9wIbfOkSZMU758VK1bI9nPnzm1SB2PExMSAiGTXYO/evUVP4O3btw0W1o6Pj8fx48dlxyQ9F9OmTRP/d61I/7eQkBBVo1Dz/0sZmODgYAJAwcHBBnFBQUFUoUIFAqAq+hhLK4iLiwutXr2aANCiRYuoc+fO9PnzZ1n+wMBAo3pL69+8ebO4X7RoUaM6du7cWRZXqlQpRR0rVaqk6VgEadeunbi9aNEiWZ2NGzcW454+fWpwnqKjowkANW/e3ODYjB3L9u3bZXGhoaFkb29PN27cMMh35swZ1f9M6b8jImrQoIFinkyZMsnOk5QhQ4YQAHr06JEs/MWLF9SpUyeKjIxUrPuff/4hPz8/mR5z5swhAPTFF18QACpdujSdPHnS4Nh0Oh01bdqUAFB8fDwREW3cuJEA0N9//616vAJ+fn4EgHr37i0LHzNmDAGg5cuXG81/69YtioiIIABUrlw52TEICPsPHz6kGTNmEABydXWljx8/ar63lMiUKRMNGzbM6LU5d+5c1bi8efMahDk4OIjlDxgwQAy/du2a7Fjmz59PUVFRMn169OghK+vUqVNUoEABs+6ls2fPGj0fHh4e9Pfff5OTkxMBoEaNGpks8+3btwb/hVSE9kYpzsbGhgBQ+/btFePXrFkjy2tnZyfbf/v2rUGeQoUKkbOzMwEQf9Wkbt26Zp0/fXn27Jlsf/369Yrpxo4dq3oOlOT+/fua006fPp1KlixJAOjNmze0ePFiio+PF+MnTpxIAChbtmwUExND7969k+kybdo0g+tg5syZsjp69epFP/74o6jbhAkTxLi5c+cSEdEPP/xAAOjSpUtEROTv709v3ryRlaPT6ejq1asUHR2teD5iYmKIiCgwMJAAUNeuXQ10A0D58+cX9//3v/8RADpw4IDsfunZsycBoNevXxMRic8CaVlSpHrUqlXLrOtAQHrepYSGhhqkB0CTJ09WfB4KtoN+OdOnTzdIu3fvXgP9w8PDxf+gdu3a1K1bNzFNnTp1xHTnzp2T5StfvrxBnQ8fPiQANHToUMXzZnAeNaVKpxgz+g4ePGjyQhKMt6ZNm9KxY8c0XXzHjx+nVatWEQAqU6YMAQmG4PPnz8U0I0aMoLi4OFEXADR79mwKCQmhqKgo2cW2cOFCTRc7EVGnTp3MulEslZCQEJnuSjeTIMLxCEafYFQp5e3Tp49Yrv7D7siRI+KFr5/v9OnT4nZMTAwBoIMHD9L169fFm09fxypVqiiew8yZM4vhlStXpoCAADFOMPoePnwoyyMYUNevXxfDwsPDyd/fX6y7ePHiisesRbJly0YAxGtGMPrWrl0r08PLy4t++OEHWZhg9PXq1UsMu379uli21Oi7efMmde7cWTQuBX0Fw6ts2bKyY9C/BnLkyCE+JE6fPk0fPnzQdN0K3Lt3z+i1ZS1RKn/UqFEGYevXr5fpZw2jT02mTZuWqGP+8OGDav7AwEDxvtAXwehTk7/++sugXOl+zZo1E3Xc1apVS1T+p0+fakrXr18/s8o1x+hTktevX4vbgjGWPXt2GjdunME5lL4479q1ixo3bmzQzlWvXl28/m7dukXjx48X4+rXr09E/xl9Z8+elRk/SuLs7Kx4vYSGhtLatWtFY15q9IWFhYnGU758+cT7QjD69u/fT7dv3yYvLy8ikht9UiMKAH3//ff05MkTIiJyc3OjX375RRZv7nVFlGDw/fnnn2KYj48Pubm5KToKhGMvXry4YnnLli2TpTXWJu3Zs8cgTnjuODo6GtQpNfrURHjZIkp4EQQS2mEtsNEHy42+evXqidtSD5Axkb6hlS5dmoAEo08/nXCjSN9+9EX6NmfsYhfo2LGjWTeKpXLkyBGxTrWbSRDB6CtSpAgRkfiQUcorPR59o+/7779X1UfJS9GmTRsCQFWrVjVoAPXrliI1+gRxd3cnIhIb4n///VeWRzD6fvrpJyIiOn/+vGJdasesVUwZfYUKFSIg4cXj8ePHRPSf91dq9EnL/PXXX4mIKCIigooUKUIAKCIiQpa2fv36qsejdkynT5+m9+/fqx7LixcviIjo06dPYn0AqHXr1kSU4D1Nquu3QIECdOXKFVlYly5dDI5FaHjv3r1Lr169Eh9igixevNiqeiX2+pAaGlI5ceKEah6l610qHTp0oIYNG8rC1q1bZ7VjFl6MLZUnT54kyTUi7WFJ7H8xfPhwAkBZs2a1yn/dt29fGjFihCxs/fr1spcS/WtV6X81poPggZIafba2tqTT6cT9kiVL0oULF2jRokUEgHbu3Ck7PuH5d+3aNRo5cqRiPWo6ZMmSxaJzI7T7pkSoV/DQ6ovU6Nu0aRNt3LhRVdfdu3cbxHXu3Jnc3NxkYYLHrnbt2pp0rFatmqxcNvo0kFijr3r16hbfmFI5deqUatzVq1cTVTYR0bNnz+jNmzcGjXNSiouLC02ZMsUgXN84lnZJE5HY8Om/+QkieEkTK2o3M2DoHYiNjSUioh07diimb9euHf3000+iV+LYsWOya0naoPn6+sryCt2dwvEn5pjCwsLowYMHsnMrRT99XFycuN2zZ09yc3OThQkSEhIi2xeMMOEN0xKjb/HixXT79m2jx3PgwAGDcvPmzUtElOhuP1Oib2woGX2rVq2SXSvdu3dPUp1MGWCmROq91ipaX2ZTqwjeLWuL1ECzRMqVK2c0XsvzJ6nFWHskPLOaNWtmshz9rmhTZUtFyQuXGNHqOQ4PDyfgP8eMvixfvtwgTGgP9WX37t2KnlX9NqZw4cIEaDf69GX48OGa7B42+qBs9OmPGUtK2b17d5KVTZR03WDWFulDPjXJ6NGjzT6PREQxMTF09OhRo+mk4yoT+19J37oFOX78OEVGRioay1OnTjUIy5Url0GYfteXh4cHhYWFKeoQEBAgOx5rXX/Scjp06JDk/7l+Y69k9OXPnz/J9WBJnJjbbcvyn1jr3lUa55ZWnktqnmZhHKYW2b17t+LLtL7Y2dkRYHpIhZqkO6Pv+vXr1Lx5c2rRogX16dNHHGhKlDAQvkSJEuTo6EitWrXSXKYxoy85Lyz9sUDWFEvfGljkYu41sXv3blqyZIlZeYyNcUuMqBlJJUqU0JRfvyu9aNGisnF/UpG++d+6dYu2bNmS4v+dNaRLly4GXb4sqV/69u2b4jqkVZGOhU6MKPX4JPcz1lIRvG+JkV27dlFsbKzJdLlz505UPd98840muyfNGH1v3rwRZ7k6OzuLM2KIEoy+yZMnmywjMjKSgoODRRG62lLa6GNJ/WLuGJ5cuXKJs+lSWqpWrZriOqQHUZodz5K6pU+fPimuA4uhZKRn7M6dO1UnSllbPn36ZNIOSjPr9BUpUkRcoDdLliywsbGRxR84cAAODg4Ga/VIWbhwofgxc3t7+yT7YgWT/lD6eoIxwsLCsHjx4qRRxkyEhVqZxPHmzZuUVoExk3379qW0CowClStXTmkVko1Pnz7Bx8cnWeoSFu03ikZHW6rh5cuX1LRpU1n3bmhoKEVFRVFUVBS1b99etjSGFPb0sbCwsLCwsKRH+f33303aUHJ3WSonJCQEgwYNwqZNm5AlSxYxXPpB8q5du+L27duoV6+eQX5bW1vY2tomi64MwzAMwzDJhZbeiDTTvRsXF4evv/4aM2fORKVKlWRx0g+Ge3h4oEKFCsmtHsMwDMMwTIqhZShPmjH69u7di0uXLmHevHlwcnLCnj17MGrUKDGuYcOGaNq0KYoXL44WLVqksLYMwzAMwzDJx/Hjx02m0f3/+LUMSUhICOzt7REcHAw7OztZnCUfp2YYhmEYhkkpTJl0acbTxzAMwzAMw1gOG30MwzAMwzAZADb6GIZhGIZhMgBs9DEMwzAMw2QA2OhjGIZhGIbJALDRxzAMwzAMkwFgo49hGIZhGCYDwEYfwzAMwzBMBoCNPoZhGIZhmAwAG30MwzAMwzAZAKsZfd7e3tYqSpUpU6bAwcEBX3/9NaKjo8Xw2NhYDB06FA4ODpgwYUKS68EwDMMwDJPWsJrR16NHD2sVpcjNmzcREBAADw8PVKtWDfv37xfjjh07hhIlSsDDwwPh4eG4dOlSkurCMAzDMAyT1rAxJ3Hfvn0Vw4kIHz9+tIpCaly+fBlt27YFALRv3x6bNm3CgAEDxLjOnTuLcZcuXULTpk0NyoiKikJUVJS4HxISkqQ6MwzDMAzDpBbMMvrOnj2Lbdu2IVeuXLJwIoK7u7tVFdMnKCgIxYoVAwDY29vLjMygoCDY2dkpxklZuHAh5syZk6R6MgzDMAzDpEbMMvqcnJyQK1cuODo6GsTVqVPHakopkTdvXtEzFxQUhHz58mmKk+Ls7IxJkyaJ+yEhIShZsmQSas0wDMMwDJM6MGtM38GDBxUNPgA4deqUVRRSo3Hjxjh9+jQAwNXVFc2aNdMUJ8XW1hZ2dnYyYRiGYRiGyQikmSVb6tSpgyJFisDBwQEPHjxAr169MGrUKABAly5d4OvrCwcHB2TPnh1NmjRJYW0ZhmEYhmFSFzoiIksyHjhwAL169bK2PslKSEgI7O3tERwcbOD10+l0KaQVwzAMwzCM+Zgy6Sz29A0YMADLli1LVOUMwzAMwzBM8mCx0Xf06FHMnj0b48ePNzDu4uLisHnzZlStWjXRCjIMwzAMwzCJx2Kjr127dnB3d8ehQ4fQs2dPREREIDo6GmvWrEGFChUwadIk9OvXz5q6MgzDMAzDMBZi8Zg+AX9/f3Ts2BEA8P79e8TExGDixIkYN24ccufObRUlkwoe08cwDMMwTHrBlEln1jp9+gQHB2Pjxo3w9/dHeHg4dDodvLy8ULNmzcQUyzAMwzAMw1gZi7t3nZ2dUbp0aWzevBkLFizAu3fv0KdPH7Rp0wbXrl2zpo4MwzAMwzBMYiELqVKlCm3ZsoViY2Nl4TNmzKCcOXPS4cOHLS062QgODiYAFBwcbBAHgIWFhYWFhYUlzYgpLB7TR0Sq497Wr1+PsWPHYsmSJRg7dqwlxScLPKaPYRiGYZj0gimTLtETOdRwcXFBv379xG/ipkbY6GMYhmEYJr1gyqRLss+wdejQAW5ubklVPMMwDMMwDGMGSfrt3bp16yZl8QzDMAzDMAyAcePGmUyTpEaftfD29oaDgwMcHR3Rt29fxMTEyOLd3NxQsmRJODk5oXXr1imkJcMwDMMwTMrQtWtXk2nShNFXvHhxuLq64sKFC6hQoQIOHz5skKZfv35wc3PDuXPnkl9BhmEYhmGYRODo6Jio/JkymTbp0oTRV6RIEeTIkQMAkCVLFtjYGK4pfeDAATg4OGDFihWq5URFRSEkJEQmDMMwDMMwSUHBggU1pRs1ahQ6deqUxNqkEaNP4NWrVzh79iw6d+4sC69fvz4ePXqEc+fO4dSpU/D29lbMv3DhQtjb24tSsmTJ5FA71dGwYcOUVoFJ5ZQqVSpR+QsUKGAlTRiGYdIuFSpUAACULl3aaLq//vor0XVpWXUkVRl9AQEBaN68uYF8/PgRISEhGDRoEDZt2oQsWbLI8uXKlQtZs2ZF1qxZ0bVrV9y+fVuxfGdnZwQHB4vi6+ubHIeV6rhy5UpKq5BueP78eUqrYBGLFy82Gp/YaySxn2KsVatWovIzDMNoYejQoUlafr58+TSnbdy4caLqUuoFNcCqn7hIImJjY6lz58509uxZxXjpFzX69+9PFy5c0FSusS9y9OjRw6LVsF+/fm3V1bXv3r2bJCt2W7tMrdK7d2+Tadzc3KxS16pVqwgA2dnZWf04WrVqRS9evLDoXFr7GjEly5YtMwg7ePCg0TzR0dGayh41ahQBoA4dOsjCW7ZsqSm/o6OjYvjhw4etcuze3t70999/J+v5Tmlp1qxZiuvAwpKcUrZsWbPznD59mho3bmyyLTRX9O+/kSNHEgAqXbq0GFatWjWDfAKJqdvDw8Ok3ZMmjL6dO3dSvnz5yNHRkRwdHWn37t1ERDRy5EgiIlq3bh01aNCAmjRpQlOmTNFcrjGjj4ho5cqVBICqVq2q+aQTWfanZcmSRTE8Li5OMbxx48YWXxhERIsXL07Sm1BJcuXKRTt37lSNnzdvHsXFxVl8DvVl3bp1BIB2795tUX59Q+bbb78Vt6OiosTrxJLzn5znXam+K1euqF5zpnSU5tu7d6/iuWrVqpUm3ZycnBTDjxw5Qv7+/pQ3b17VvAUKFKDp06ebPHbpseTJkydZz31KSHJfX9aSH3/8McV1SG0yZsyYFNfBHAkJCUmResuXL280ft++fQZhAtY0+oiIPn36RE2bNiUAVKpUKfr8+bO4LaTr16+fqj6JqV+L0ZequnfV6N+/Pz58+AA3Nze4ubmhX79+AIC///4bAPDtt9/i6tWruHTpksluK3MgMz9Wcv/+fQDAsmXLAAAjR44EAJw4ccJk3vbt28v269evD0B5Nk6XLl1Qo0YNs3TTZ8qUKYiOjkafPn1k4QMHDkxUuaYwNuZg6tSpmmYfSVEalzl16lT8/vvvGDJkCJYuXYrevXubrScA9O3bV7Zfrlw5cTtr1qzitjljMerUqaMYPm/ePDO1SxwNGzZUvb5XrVplNO+CBQvg6emJy5cvi2H6/6tS2W3atDEIk6bbtm0bvvvuO7G8YsWKiffU8uXLDfK+e/cO8+fPN6qrQO/evTFkyBB8+vTJIO7QoUMGYV9//bWmco1x7NixRJeRmpg6dapi+J49e6xSPn8FyRBzrsPdu3dbpU4bGxu4uLjgzz//FMOqVauGzJkzK6a/evUqAOCPP/5A7ty5LapTqW0wxd27d8Xt/v37W1SvVsxZczhPnjzw9PTE5s2bce/ePXESqpTEPr8ThUmzMB1jytO3YsUKAv7rwjIlDx8+JCKi7du3EwD6448/xLJKliwpplu/fr1B3iVLlsj2P3/+TO/evSMiQ8s/ODhY5nUyJlmzZpXtN2/eXHaM7969k8X/9ddfBIAmTJhAxYoVE8PVPCq5c+cmALRgwQIxrEKFCoppt27datTrJkUtTf/+/alr167ifrly5cTtAQMG0KVLlxT/Sy3nSl82btxIAGjw4MH03XffUVBQkKKuRES//PILAaAcOXIYLbNOnToG+lSqVIni4+Pp0KFDNG7cODF8//794rVXv3592XF7enrS999/LyvH1taWRo8eTUOGDCEgwUP94MEDWX0zZswQ9b927ZrR/6FPnz4m/yfB09epUydZGmn37r1794iIqE2bNrI0hQoVomHDhhEAmjNnDhER/fPPPwSAHj16ZHCOP3/+THXr1jXQw9j5NnUtXL58mYgShpBIw6X/g6Xy8eNHk2mOHTtmVplKHgulY9aS5uuvvzar7vnz54vbu3btEre1DgUwJT/99JNiuPQeT2uSL18+TdeBmly/fl1zWv22XJACBQrI9jNlymS0nCxZshAR0Z9//imGxcTEqP7P0dHRmtpanU4nbh89elQW9+rVK1neNWvWGOSPioqS7d+/f1/cnjt3rtFjOnDggIEuAlJP36RJk8RhQVI5e/YsRUZG0r1792j//v2q9ahhb28vPk8A+b1048YNCgsLE9NGR0fTjh07LLpe0o2nL6VxcnISt7Nmzar6Zkv/77UQ3lhJwdtBRPjmm28MwvXfcnPkyCHOgHRxccHZs2fFODs7O1SsWFGW/sKFC4o6ffvttzh48CCio6Px+fNng3Rqb9dffPGFrL7mzZsDAGbNmiVLd+DAAfTu3RvOzs5imHTgapcuXQAAzZo1w6BBgwzqGz16tGL9+gh6jx07VjVNkyZN0KRJE8W49evXY+vWrZrqEhDebFu0aIE1a9bA3t5eNe3cuXNBRPj8+bMY9uOPP4rbz549A/Df+fbz88ObN28QHh6Ou3fvQqfToXv37pg9e7aYJ1++fFi1ahXevXuHa9eu4ciRI2Jc06ZNUblyZZkO1atXx+rVq9GjRw8AwKBBg1C1alUAgKenJ7Zt24Z58+aJ12X9+vWRJ08eWRnSWbs//PADgIQlkwBgzJgx4lu9QNmyZQFArEeJ6tWrA4CBF+D+/fvicgbCPebk5ITo6GhUqlTJoJwcOXJYfUkDYeC0vhcjsV4nIkLevHlNptNfiQAw7t3R6rVWanv0Mfd+yJEjh7iOWIcOHcRw/Yl1ArVr1zYI++uvv3DmzBn89NNPmr0z3t7e8Pf3N0tXgVatWuH48eMW5QUALy8vi/MCCT0R0l4BczE141OK9P6qVq2auP3LL7/I0hUuXNhoOUrXvo2NjeL/HBISovr/6z/nWrZsKW4L953gBdNf1kTw+EvRP4/SXp78+fMDSLiP9fVxcXFB586d8eOPP6JXr14AjN/f33//PR49eiQLK1WqFGxtbVG9enX06tULT548EeN2796NW7du4c6dO6plBgUFYdiwYbKw3bt3w9XVFXXq1EHOnDnF8CxZsmDAgAHivr4uAHDmzBkAhm2qJkyahekYrZ4+6Vvt7NmziUj5bebff/8lIhLHra1YsUIsq0SJErI3Af28S5cuNfrGEB8fL4uLjY2VDdBXewsbN26c0XPw/v17WXrB07dx40bR09emTRs6efKkePxqZQvhp0+fpsqVK9OlS5fo06dPBICaNm1KRER79uxRrE//mPWPg4goICCAiP7zLgEJXoDmzZsTIPesqqFf5ps3bwzGowkSFRVF06dPp8jISFn+Bg0aGK3D39+fnjx5QkREfn5+NGbMGPH/q1u3rtG8Uq/A+fPnDeLd3d1pwYIFRETk4uJCQMJYqIULF9KHDx+IiOjBgwfi26kpXrx4IY5dHT58uCzuxo0bBPzntVMrz9fXlz59+kR58+al7NmzEyAf0yfw/v17Wr9+Pc2bN088NmdnZwISJu9oQXqdCyj9d8+ePVMtQ0hTq1YtxXAANH78eLPesNevXy8O2Damm62trcE1KGzXrFmTnJycDPIJnvNevXoREVGlSpXEOCWPv7HzYk4apTaqffv2BEC8r/WPQSqLFi1SrZeIZO0qoO7pi4mJMVtXQdatW0dERPXq1TOaThh3paSv/pivf//9V3P9r1+/NtBdeBaYkq5du2o+7pw5c8rSSreF5xgA+vDhA7148ULWjitdo0RyT5/a9aKEg4MDAYbjEaU9B5GRkQQk9GZIETxganVFRUXRx48f6eDBg7I0sbGxYhlK95gUIMHbKeDh4SGmnTRpkhh+8OBBsT4l3r59S48fP1aMU0PwcM6fP99k2gYNGtAPP/wg6qx/TBMmTKALFy7Qli1bxPCLFy+aLJeNPphn9Ako3SxPnz4lov8exlu3bhXTFy9eXJb/33//lbmJTRl9RET169dXjdPXycbGhgDTRp9+14PU6Lt06RIBCV1QJ06cIEBu9KnVL0XoNhOMPqnBBkA2sUOprCVLltDvv/+uerxTpkyhbdu2EQBauXKl0WMlIrp48aJBfWqzO5VYu3at2BVhLgBo2rRpRtNIB0IHBgaaLFOpG5QooStUK8+fPycANHPmTFm4t7c3AaDvvvuOIiIiNJUVFhZGgLLRp0RwcDD9/PPPskbbFFruRWPkyZOHdu3apVouIDf67O3tZXETJ040qG/dunXk4+NjUrfKlSsb6Gns+gdALVq0IAC0fft2IpIbfWvXrpWlbdasmUEZ7du3lw0iN3XupCIdQrBkyRKzjL7bt2/L9nfs2KF4zrNnz07Dhg2z2OgzNiFp7dq1REQmJxYREdWsWZP69u1rEH769GnV/+zMmTPUv39/o+UK+Pj40Pr16yksLIxq1qxp8twPHjzY5H908uRJCgoKopCQEINrSdiWGn1S1M5btmzZiIhk3Zxq14sSQpf0mDFjKGfOnGJa/WvGFLVr1zZZl1JctmzZjOYD5EYfEYnDq6RGX1IgXEvLli0zK5+p8z5lyhQCtBl93L1rBKELQ+jaNMb+/fvFgf7t2rXDoUOHjHbTVKlSBXZ2duK+Tqcze+KIGq9fv8bp06fFco2h370npUmTJiAidO7cGSVKlADwX1edVoSJGfqTIpYsWYK9e/eKk3KUGDhwICZPnix2M+oTHh6O//3vf2Z1xTVr1gyvXr3CqVOnxLARI0YgPDxcU/4RI0ZYvKh3UFCQyQkbUne9lpXclbpBASgOHlajTJkycHV1xYwZMxTjdTodsmXLprk8c7Czs8Nvv/2mOkhcCWPXrBY+ffqEr776ymga4ZoqW7as2A4sWrQIQEJ3vz6tW7dG+fLlxUlc+syYMQPjx4+X5ZUOGzHG4MGDMWvWLPEeGjRokBj37bff4p9//hH3XV1dxe0FCxYAAL788ku8fPlSU136jBo1Cvv27TMrj3DuatWqhfPnzyN79uwAlNcg+/jxI8LCwrBx40aT5amhNsHEWBlKuty5c0c2dOfhw4cAoNguC0Me2rRpo7k9KF++PL755hvkzJkTW7duRa5cuWTxI0aMAACMGzcOS5cuxR9//AFA3lUrxcbGBh06dIC9vb2s3dCqz+DBgxXD9Sf3STl37pzqUCIB6WS8sLAwUdc8efKgZs2amidfJSX618OYMWPQtGlTo8OHrEGbNm2wbt06fP/990lajzHY6DNCxYoVQUSiwWMMYawAAHF8lqmZqEk1W61o0aKaH/o6nU7TeJlatWrh+fPnZs+EFYzZCRMmiPvCb58+fVTPERFh27ZtRsvOnj272bN9gYRGsV27djIds2fPrunhkRjs7e0t0jc5aNu2rerYHHPIkSMHpk6dig0bNlhBK2V8fX0RHBxsEC4Ycj///LNV69uyZQsCAwNRvHhxAAlfG+nYsaMYT0Ti2MaJEycqGgnz5s3DihUrsHLlSly9ehWBgYE4efIkgASj2xjly5fH7Nmzxf9HapzrdDrReMyVK5dsbFD58uUVy7t165bxA0bCS9mSJUtQo0YNxTHKWtuuli1bigttC+dISt68ec2+J0aPHo2ZM2cCSBivNXfuXFl85syZMW3aNFmYvr7SmedqCGNm4+PjDeKkL2SWtOO1a9dGaGgoAgICxDDh/I4cORKTJk0SnQLS8l1cXODi4iJLLyUiIgI+Pj6yMCHdjh07ZOFS40uYaf7ixQts2rQJgOEYOiBhjGSLFi0wZMgQ1fusVq1amDRpEubMmSOGCefwzp07mD59umI+fcxZ1FiKlv9D/8Ute/bs8PT0VLxGrYlOp8O3335rcVt76NAhxbGDwqoQwsuIMTQs38xYg+7du8umwAPyi1PLFwyKFi2quT5hQL6WqfDFihVD9erVTXoahYdTnz59zH77F3BwcECOHDnQrVs3i/IbI7Ge0l9//RWzZ8/G+/fvta1snkSsXLlS9asyyYkl51On02HhwoUAEibfFCtWzNpqGXhIzp8/j1atWqFcuXJW85YL6HQ6ZM2aFQULFkT//v1RqlQpNG/eHI0bN0ZAQACuX79uVnnZsmVDgwYNZGHXrl3DmzdvFNPfvn1b89dJtBof0klaQMKDQmp8AAmeD8FDZ45RU6xYMQQEBCgaiERklRfdwoULi0aEUF758uXx9OlTAAkGxtixY7Fp0yZx4k/fvn1lk+GMkTt3boSGhor7Ql3ffPONOFFMiwF87949TcdiZ2enaFgKdO7cWVy6SFjaq3v37rLB/gLGPPL6ekq96507dza4d4YMGSIuO6bP5s2bVevJnDkzli5dqhqvld27d+P8+fNGvfJubm64dOmSLGzp0qVYtGgRXrx4oZjn+fPnmr+Hm9ro3r27YviAAQPg6OgovpgaxayO5XSGqTF9UooUKWL22AYpsbGxFBoaKgs7d+4cAQljpgSEVbuV+PjxIx07dky1DmFpA4H4+HiTeunz9u1bqlOnjrhcjDm8f/+ePn36ZHY+redQDWF6u3TiDJN4pGNzUjPu7u4E/Lfsi6VI72dh3F7FihWtUqa5zJo1ixo2bKganydPHtl4XSBh+SQpwqSppUuXquoCJExosbe3p549e4pLPEkRBrrv2LFDHNOnv3yRdDtz5syyMpo0aUIAxIXX1VAb06e/YPusWbPo5cuXVLduXbHt1toeK+msn/6LL76QhQlfRRImDxAR1ahRQ0wzdepURb21EhkZSREREeKknLt378ri4+LixMkJ5iDoce/ePQL+G3MuEBgYSACocOHCqmUIY/ISAyBfIsWS/JbokNjnSmri8uXLdP/+fauUxZ4+jdy+fRuBgYEG4a6urnj8+LHJ/JkzZzbwUAhvXlI3tre3N96/f69YRt68eRWXeFDDkrfqQoUK4caNG2bnA/6bNp9SkJW9PBkdodvNGt2+SUnz5s2xePFijBkzxqrlLlu2zKz7TYkJEybIlqrQyuzZs2XL9+ijtMi0GqbuC51Oh6CgIAAQvXtSmjdvDk9PTzRp0gQ5cuTAqVOnjA4f6datGw4ePGi2HlL69etnsDRW69atce7cOQwfPhylSpWCt7e35vISQ40aNeDn5yfzovzwww/ikiSJ9V7a2trK9vXLy5QpEx49eiSOMTQXU704+p5nKdZqU1Oibd62bVuS9DSkBIn9Jq8UNvo0UqhQIRQqVEjcr1evHry9vdG2bVu0bds2UWVLb4j8+fNbbDxlVKOHV/JPGmrXro1ff/01yQc3JxadTocpU6ZYtUwbGxtMnDgx0eUofUkkudByXxQoUEAcHwckvIC+fv3aIF3Tpk0BJHQvCe1MoUKFFF+Ed+3aJVuv0tz7093dHcWKFTMw+gTjSP/lWUqPHj1MTtIRKFeunLh+phSldlS/22z48OEYPny4LKxBgwbo1KmTUWPdUkqXLm3Wmn1ayJMnD4oUKSJbTzQ9kdRfl0qrsNFnIW5ubuLbsaUIHhRreVLSqtE3cOBAxYeHVoTZnJYO/GWU0el0BgPi0zMDBw7EmTNnMG7cOIwfPz6l1TEbfeOqY8eO6N27t8GisFLevXsn2/f09NTsQZs3b564KPuNGzfEgf9Zs2aVTQIwtli9FMHLaGNjIzsWc4xGJQ+jGj4+PoqTSLQsqi1l8uTJePv2LdasWYOsWbNi9uzZqWKGqimyZMmiOpZUYNq0aaqz+pk0ilU6iZOY58+fU4ECBcjR0ZEcHR0N1i+LiYmhIUOGUPPmzWn8+PGayzVnTF9SEBcXRwsWLJB9giUxlClTJt2MYTCH+Ph4OnLkiMkxQwyTXgH+WwvTWJqUaB+ExdP1P9elT3h4OC1btozi4+PFxXsBiGOTO3bsSAAUF8vVemxAwqfRjOULCAhQXFMwqRHG9AmfLUwsOXPmpCZNmlilrMSQ2Osupa7b9ErqXD9CAUdHR7i5ucHNzc1g5s2xY8dQokQJeHh4IDw83GA2T2olU6ZMcHZ2li2zkBgojXr6EotOp0PXrl1T7XIoDJPU3LhxAydOnEhpNYxiqn3Knj07Jk6cCJ1OB1tbWxw/flzmdROW00jMzPqrV6/i7t27RtMULlxYcWZsWiMsLCzNPAuNIaxfyFiHNPOU9PT0hIODA6ZNm2bQeFy+fFkcV9e+fXvVCz0qKgohISEySU9kVKOPYTI6derUSfSi1UmFpWNuO3XqhI8fP4r5lyxZAnd3d8u+N/r/NGjQIN0M7k9LTJo0yeK8a9eu5WebFUkTRl/RokXh4+MDd3d3BAYG4tChQ7L4oKAgcSFLe3t7fPz4UbGchQsXwt7eXhRLv6yQWuEbg2GY1IbWMX2myJYtGxwcHKyhEpOMEJFV1u1jrEOqMvoCAgLQvHlzA/n8+TNy5swJnU6HXr16GawonzdvXtFrFxQUpDqg39nZGcHBwaL4+vom9SExDMOkGpL6iwNKbN26FbNnz1b8wkNKM2/ePNStWzel1QAADB06FMB/C+szTFKgozTgHgoNDRVd+s7Ozqhatarsu4GHDh2Ct7c35s+fjxEjRmD48OHiyunGCAkJgb29PYKDg2XfwU2rlCxZEn5+fuzxYxjGgKtXr6J06dIoXLhwSqtidazlTWSY9E6q8vSpcfHiRdSrVw8ODg7w9/cXB9mOGjUKANClSxf4+vrCwcEB2bNn12TwpUe0fq6JYZiMR8OGDdOlwccwjHbShKcvqUhvnr6wsDA8ffrU4NuaDMMw6ZnixYvj9evX7OljGBOkCU8fo41cuXKxwccwDMMwjCJs9DEMwzAMw2QA2OhjGIZhGIbJAPC3dxmGYZg0zZEjR7Bnz56UVoNhUj08kSMdTeRgGIZhGIZRg7t3GYZhGIZhMgBs9DEMwzAMw2QA2OhjGIZhGIbJAGToMX1EJH7iTfiMD8MwDMMwTHokQxt9DMMwDMMwGQXu3mUYhmEYhskAsNHHMAzDMAyTAWCjj2EYhmEYJgPARh/DMAzDMEwGgI0+hmEYhmGYDAAbfQzDMAzDMBkANvoYhmEYhmEyAGz0MQzDMAzDZADY6GMYhmEYhskAsNHHMAzDMAyTAWCjj2EYhmEYJgPARh/DMAzDMEwGgI0+hmEYhmGYDECaNPpCQ0PRqFEj5MqVC/fu3QMA7NmzB02aNEGrVq3g6+ubwhoyDMMwDMOkLtKk0Zc9e3YcP34cvXv3BgDExMTg999/x4ULFzBv3jzMmzdPUzlEhJCQEBBRUqrLMAzDMAyT4qRJo8/GxgYFCxYU9588eYLq1asja9asaNasGe7evauYLyoqCiEhIaL4+/vD3t4eoaGhyaU6wzAMwzBMipAmjT59goKCYGdnJ+7HxcUpplu4cCHs7e1FKVmyZHKpyDAMwzAMk6KkC6Mvb968CAkJEfczZ86smM7Z2RnBwcGi8Ng/hmEYhmEyCjYprYA1qFChAh48eIDo6Ghcu3YNtWrVUkxna2sLW1vbZNaOSU3ExcWpvhQwDMMwTHomzXr6OnbsiNOnT2PEiBHYsWMHJk6cCEdHR8yYMQMzZsxIafWYVMiNGzdgY2MDb2/vlFbFJJGRkRg/fjzCw8NTWhWGYRgmnZBmPX0nT540CPvqq69SQBMmrXDjxg0AwM2bN1GvXr0U1sY4u3fvxh9//IFq1arhu+++S2l1GIZhmHRAmvX0MYy5CEvz6HS6FNbENLyMEMMwDGNt2OhjMgxp0ehLC7oyDMMwaQM2+pgMQ3x8PIC0YUix0ccwDMNYGzb6mAxDWjSk0pKuDMMwTOqGjT4mw5CWjL60pCvDMAyTNmCjzwhnzpyBTqdDVFSU2XnXr1+PAQMGJIFWjKWkJUMqLXVFMwzDMNbj4sWLuHz5cpKUnWaXbEkOVq9eDQD4+PEjihYtalbeESNGAAB27txpdb0YyxCMvkyZUv+7TloyUBmGYRjr4eDgACBpVnFI/U+/VEBGXj4jODgY58+fT2k1rIK5htTatWtTfKFvc40+IkK3bt1w8+bNJNKIYRiGSauw0WeE1OhlOXPmDEaNGiULi4uLS7L6Bg0ahNatW1ulrLVr18LT09Pi/PHx8Zg3b57sO8tSTp06hdjYWNX85hrvo0aNwq+//qoY16lTJ2zevNms8szB0heNyMhIHD16FJMmTbKyRgzDMIwWLl++jDt37iS6nDFjxsDGxrodsmz0JQN9+vTByJEjDcJv3ryJpUuXmlVWly5dsHbtWnH//fv3sLGxwZ49ezTlP3z4MH777Tdxf9asWShZsiT++usvMSwkJEQ0Ol6+fGm0PH9/f9W4kJAQ/Pjjj6IhNmrUKDRv3hw3b97E9u3bNekrxdvbGzNnzsTcuXMN4v7991906NAB//vf/1TzW9q9+/jxY9mn27755hucPHkSw4YNM6scc0hsV3RG9k4zDMOkJE2bNsUXX3yR6HLWrFljdacOG31GePr0qbidN29e1KpVCzqdDufOncOGDRs0l7N//36sW7fOILxx48aYMmUKDh48CBcXF0RERJgsS/9hHhAQAAA4ffq0GPb48WM4ODiIE1Devn0LnU6HCxcuoEePHnB2dsaLFy8QExODuXPnws/PD6NHj0ZkZCTev38Pe3t7TV6sx48fo0SJEti7d69i/OLFi7FkyRK4ubnJwuvWrYtBgwaZLF+n08m8msKxK3nzPn78CADw9fVVLU+/e9fLywuRkZEm9ahcuTLq168PAKhUqRI2btxoMk9ikU7kePHihaZrAwCuXLmSlGoxDMMwRnjx4oW4PXPmTPTt21dTvrZt26JEiRKa69m5c6dJp4wSbPSpcOzYMdE9S0QICgrC3bt3AQBt2rTBt99+a7W6evXqhY4dOyJHjhzInDmz0bT6Rp/UkHn16hV0Oh1GjhyJixcvwsfHBwDE3+PHj4v5ypYti6tXr8rKyp49Oz58+AAAcHd3N6m34OW7ffu2Jl0tYe3atejbt6/McLxx4wZ0Oh2ePHkihnXo0AEAsGPHDtWyBH3Gjh2LyMhINGnSBD/88INmXaKjo2V1WpOAgACEhYUZhEdGRqJs2bKoUKEC/v33XwDAwoULcezYMcVyWrZsCYA9fQzDMCnBmzdvxO158+Zh3759mvKdOXMG/v7+qsOX9Pn666/Rtm1bcd/b2xvh4eEm87HRp8LDhw/F7bdv3yZbvYKHRw21h/mGDRvwxx9/AAAuXLigqS4/Pz+DMC2eL3Pp0KGD0bF2pti3bx+GDRsmeug8PDwAJBh/AqGhoQCUvYB+fn5YtmyZeO4+fPgguswFg7hx48YmDXlhRnZSULRoUTRq1EjcF3QVPJ2vX79GtWrVAADTpk1D165dASRcL58/fwaQ4LlkGIZhUg5zXrhdXFyg0+nE5xcADB8+XHN+qYFYv359xWFk+rDRp4L0jzt06JBVy/7ll19Qt25dREdHa87j5eWFJk2ayIya1atXy94qlixZYpCvYsWKGDNmjGKZShNVateuDSChS/rNmzcWrVH46tUrlClTBp8+fQKQYIgZG/unFX19lW6uyMhIA8Ovf//+mDRpktGb8cqVK9iwYYPoyVM6N+bOYvb398e+ffs0NwIPHjwQt2fPnq1aphRnZ2fkypULANCkSROz9GMYhmGsizlGn7CkmzBMCwAOHDhgcV1Cb5Ax2OhTwdzusTNnzmiemTp//nyjS2ooGRxNmjSReXLi4uLw/fff4+uvvzZal4+Pj+osImOzk8PCwtClSxc8evTIIO7hw4fw8fFRPUe7d+/Gy5cvsWnTJqO6GUO/e5mI8Pr1a4N0efPmFdc0Evjqq69k+4L3Ust/WqlSJTx+/NhcdWW0bNkSK1euRNmyZdG3b19kypTJ6AQTKcL5FrrZ9dEf83H48OFE6cowDMNYD2kPlMCQIUOM5rl//75FdVnSC8lGnwqmulkBoHnz5oiPj0e5cuXQtm1bNG/e3Gj6p0+fil2TWoiNjcWGDRuMDuLXOsDfEpS8cxEREahatSoqVqwohkmNyuvXr+Pnn3820E3JIP706RPevXuHsLAwnD59Gjt37kR0dDTi4+Ph6OhokF5phnJQUBAuXrwoCztw4AD+/fdf3L9/Hy9evBCNPel/Kp2dfP36dVn+NWvWGNQDKHeHK+Hm5oYJEyYgJiZGDJs6dSqIyKR3t0qVKrJJOaZQM9x5TB/DMEzyM378eIOwrVu3KvaaCe13jx49jJbZvXt31biAgADs2rVLs37pxuh78eIFChYsCCcnJzg5OeHdu3eJKk+L0efp6Ym3b9/i+fPnsnC1NdIqVKiAFi1aaNZh9erV+Pbbb5EjRw7VNOY83J89eybbN7UciNTlfPXqVcTHx8t0ES7Y48eP49SpU7h58yZcXFwUy1LySEZHR6NQoUKoWbMm2rVrh6+//hqdOnVCcHCwQdqXL1+atW5itWrVUKNGDZQtW1ZcbkUwRoH/3pCePHmCBg0ayPIamwGsz5w5c2TjKowZdYsXL4atrS10Oh3u3r2LLFmyQKfTyYxDQD7hxhSpcS1JhmEYRo4wLn3IkCF4+PChWUuxHDlyBEFBQeKzQuqQWbx4sVmffE1Xn2FzdHTE/v37VeOjoqJk1raxWTJajalixYoZhC1btkxTXmMUKVJE00wcLWkE9Kd39+7dW3PeRo0aYfr06bIw6TkSZs9agnSK+9mzZ1XT6RtH0sGv5mLsJjFnTMXs2bPx+fNnLFq0CABga2urmlbqQRw9erQ49lD/ONS6dvWJjIyUTThK67x58wY2NjYoWLBgSqvCMEwqws/PD25ubhg4cGBKq2Ixgjdu69atuHz5Mp48eYIiRYpozp83b1507NgRJ06cQOXKlcXw33//3Sw90o2nD0jwvDk4OGDatGmKRtvChQthb28vSsmSJVXLslb3mLC+m7m8ffvWqFFjyefBEntMal+nsBQ1fdQmfeh7ALXMVFJDf7maxLB48WI8f/5ccSyHFKlxK+3u1vfWaf1es9R7KiwnlJYpVqwYChUqlNJqMCnI27dv4erqmtJqMKmMTp06aVrbVYmVK1eKqzQkNVq9d8KEQWlvmhZOnjwJAOKKDZaQboy+okWLwsfHB+7u7ggMDFSccevs7Izg4GBRjHXjaene1YL0Sw7WRPpVjfRGzZo1FcNT88OgXLly4jIq5qJ2vKY4ePCguF2rVi1ZXEYa0xcYGKi6ViSTvEyZMiVRQw7atWuH9u3bK8bFxsZi1apVVmubUzPx8fFYunSp5jHbP/74o8Ei+OkJpSE/ALBgwQIsWLAAQILBJW33Jk2aBJ1OhwkTJqBjx47JomdyLJtlbN0/6WoeqlA65OTJk/TLL7+YTBccHEwAKDg42CBu1qxZBIAA0IwZM8RtU3L48GHNaZNa/vnnH9l+jhw5UlwnqTx+/DjFdUjPIuDr60ufP382uMYXLVpEJ0+eTNzNZkX09dZKyZIlLcqnxosXLyg+Pt5q5RERnThxgo4cOWLVMlMjdnZ2Zv0XEydOpNq1a4v7BQoUUM2/bt06AkAHDhxItJ7WJCAggAYOHEhRUVGJKic0NJQ+fPhARCS23b/++isRET158oSeP3+umhcAZc2aNVH1p2bKlCmjeF0IbUZ8fDwBoCVLlhAR0efPn2VtYbly5ZJMt3v37tH9+/fp0KFDKd7ma7n30o2nT9oV6u7ujgoVKiSqPJK8MZizYLGxWTbJjfB1BgFzxv8lB5UqVUppFTIEJUuWRJcuXQzCf/rpJ/EN+NSpUya7py3lzZs34pjHpMDUxJv4+HgcPnxYk/fz2bNnKFOmjKbPEJrjcerUqRO6deumKW3z5s2xcuVKzWWb4vnz55qXDNLn1atXss9RWpvly5fj1q1bmtIKXq+kWEA+MSxatAjbt29P9JCRmjVrIn/+/AD+G78sjEGvWLEiypYtmzhF9bh69arBygepFa3eY6H3o1+/frJwS79hrkZcXByaNm2Ka9euoUaNGqhevTrOnTtn1TqSinRj9F28eBH16tWDg4MD/P39zZrNooT0AaG06DHDpCWMLSy9a9cudOjQAfXq1TNrNXitfPPNN/j5558TNfEmMWzfvh09evTQNDxAGGNz7949o+m8vLyQOXNmk8vrnDlzRmZwRUdHY+PGjQYz6QWcnJzg6emJCRMmyMLLli2L3bt3y8I2bNigaX2vvn37YurUqeL3qQVCQkKg0+lw9OhRWfju3bvx119/AQBKly5t1gt0Us4mF8rWYrwnJ4I+5hgWf//9t8G5ko751V9r1Fx9tAx3aNSokcEap/ps3brVqkb23LlzFdcW/fPPP1Xvz/DwcIMVMtQQuoH1jVlj12Xjxo0VlwhbsGCB4pqtN27cQLFixXD58mXMmjVLDDdnNm6KkmQ+zzSAse7d6dOnp7ibloUlMSKgv//+/Xu6f/++yXzm8v79e/Lz8zMIb9OmDQGgkJAQ1bzXrl0zWf+9e/do0qRJNHr0aFm4NJ+rqyv5+vqKcZGRkTRhwgQCQLt375bls7GxoZ9//lkWdvHiRQJAU6ZMkYVHR0fT06dPxf3ff/9drHfevHkUExOjqLP+ub1x4wYBoLJly5pMrx9epkwZg7AcOXIoliOlTp06imUKw1Z69+5NAQEBFBYWJtNBf1uf+Ph42r9/v6wr3N7e3iD9kSNHKE+ePEaPV0Cpe7dmzZpUvnx5ypUrl5h++PDhBmXFxcWZ3S0fFRVF0dHRsjChi1UrwvUFJAxZMUZISAjFx8dT+fLlFf9j/fM+c+ZMgziBZ8+eEQB68uQJASBbW1uKiYmhLVu2EAC6efOmUV1M3W937twhADRt2jSD8GfPntGHDx9o/fr19ObNG6P1aKnTmC5r1641mU/o3hXS5MmTR3YvVa5cmXx8fOjRo0dG6z5y5AhVqFBB1j1848YNMe2NGzfEaxwAdejQQdzu2LFjirf5WtpvNvqgbPRVqVIlxf88FpbECBHR3r17xX3hoS48cIzlU6Ndu3aysqQIY0b1ad26NQGGRt/nz5/p9OnTRGRo7Bw6dIiCgoLI29ub4uPjycfHR1VHaZiwLTTUX331lRi2e/ducnFxIQAUEBCgWJa7uzsBoJ9++kkWPn78eAIgGhVLliyR6bN//37F86V2josUKUJERGFhYeTo6CgaqsaOUcnos7GxEffVxnzVrVvX6Hlr27YtAaA6deqonk/BMJo/fz4BCcbI/v37CQDt27fPoMy3b9+St7c3de/eXQyLj4+nAwcO0KdPnwzSC2TLlk12no2dQ4Fff/2VihUrRgCoTZs2Bsfv5uZGoaGhdPbsWYM4GxsbKleuHIWGhtKaNWvEsXTXrl2TpRs2bBg1b96cNm/ebFDGuHHjRJ30DSQpMTExBIAWLFhA5cqV03Qdt2jRQrbfq1cvcezgxo0bCYDMKAIg/t8uLi6qukjLjIuLo7lz5xrcn15eXgSAxo0bRzNnzjS4V/v06SNunzx5khYtWkRLly6ljh07imW8efOG/vjjD9q+fbvBMRIRbdiwwWTbY2traxC/cuVKWb64uDhZGn2jr2rVqqp1SNtHafuhpJf+NZhaDD1T51B2vCZTpGOMGX0p/cexsCRWhg4dKtvv1q2bpmtbmubRo0cEgG7duiULnz59univREREUEREhCx/bGysGF+8eHECQJcvX5bdYyNGjCAAVKFCBVn9kZGRsv39+/fLPIEA6MWLFwb3qqlj2717N40dO5YA0PXr18VwV1dXWr58OXl4eJCDgwMBMPAANmzYUKyDiGjx4sWysvft20fr16+nY8eOaW5HhgwZQq6urgQkGIEhISEG/4O0HME7WLFiRTGNYPQJ5Xh4eMjyCeHSMqOioig8PFwMa9Wqlbjt7e2teD7r169PRERZsmQRw9avX08AqHDhwjR+/HhatWqV0ePdtWuXuP3gwQOD/27fvn3i/uLFi0XDz9h12qhRI8VwIqK7d+/SmjVrZHG3b9+mJk2aEAC6d++eGD5q1CiDc9G7d29yd3env//+W/V/ISLxmgJAAwcOFMNjY2OpaNGi9L///Y+ISLxHHB0dqWzZsgQkeCwB0ObNm8UypHopXdeCQapvMOmL/rWoj5DO09OTAPmLzooVK8RJiRMnThTTSq8bY3Lv3j0KCgqShQmeQyDBqL958ya1b99elqZ58+YUGBioqKf03EtfZPTl66+/NjD69MvIly8fDRs2TFb+x48fxW19o8/b21vxWhSupdQkpmCjD2z0sWQMKVCggIFBpSQXLlwQtwVvwh9//CG7LyZPnkznzp2jqKgoypo1K+XPn1+Me//+PQGgvXv30rlz58Tw/v3705YtWyggIIDKli1LX3zxhWL9+jPvRo8eLTPSBHF1dZXpFB0dbfS4du/eLT7UlcqTSs2aNSlLliw0btw4IiIqVKgQAQnNZVxcHHXr1k2WfvDgweK2YJCuXr3a5Lk+efKkuP3dd9/J4oiIfv75Z+rRowcB/xl9+mVs3bpV3F6xYgVVrFiRXr58KbZvUjl+/LhRfaSGl7788ccfsn3B6NMqf/75p7h98OBBmYFFRFS9enVZ+j59+hgYwvrnRyl8x44dYhenMfnrr7/M0l9aL1GCUefp6SkajNL4K1euyIwlIhLra9GihTgbVYu8efNGtr9ixQry9/enyZMnG81nara4fvoOHTpQYGAgXbp0SRYu7VZv2rSpZr2Nrc5g7DqTnmN9PQWPszGjDwDlzp1bNU7qFTx48KC4LTX6bt68aZDv06dPFl0vyS2mYKMPbPSxsKhJly5dxG3pOFfhAa304HF0dLS6Hvpv3oKcOXNG3J42bZrRMlq2bGlR3aGhoeK2vrGnJv7+/prSHT16VNweOHCgLE6pHYqNjTVaXs+ePQkAOTk5WXSsUm+cKTHladIXqdGnLz/99JNieNeuXVXzpFQ7vXDhQiJK6FYGQNmzZ09SvWxsbBTDK1WqZDTf3LlzKWvWrHTt2jXat28fRUdH0/3798nb21vxpcfaQ5qMjRtetGiRyfyFCxdWPJfdu3c3afQJSwcpibQtkbZv6UVMwUYf2OhjYUntIh0wLRVzPA+Wyg8//JAix6zfPa9FpF2/qU30PXmJlbdv36bYsUhfNvRF2lWbkaVv376JLuPu3buK4abGJRuTBQsWpPi5SUoxhe7/DZwMSUhICOzt7REcHAw7OztZHH/InmEYhmGYtIQpky7drNPHMAzDMAzDqMNGH8MwDMMwTAaAjT6GYRiGYZgMgFWNvoiICPj7+xuEa/lUEMMwDMMwDJN0WM3o279/PypVqoSOHTuiVq1auHLlihg3aNAga1XDMAzDMAzDWIDVjL758+fjxo0buH37NjZu3Ijhw4dj586dAEzPJmEYhmEYhmGSFhtrFRQTE4OCBQsCAOrXrw93d3f07NkTPj4+vPwJwzAMwzBMCmM1T1+hQoVw584dcT9//vw4c+YM/v33X1k4wzAMwzAMk/xYbXFmPz8/2NjYoEiRIgZxnp6eaNasmTWqsSq8ODPDMAzDMOkFUyZduvoix5QpU3DlyhWUKlUKmzZtQtasWY2mZ6OPYRiGYZj0Qop8kePAgQNJUaxRbt68iYCAAHh4eKBatWrYv39/suvAMAzDMAyTWkkSo2/AgAFYtmyZ0TTWdjBevnwZbdu2BQC0b98ely5dMkgTFRWFkJAQmTAMwzAMw2QEksToO3r0KGbPno3x48cbGHdxcXHYvHkzqlatatU6g4KCxC5ae3t7fPz40SDNwoULYW9vL0rJkiWtqgPDMAzDMExqJUmMvnbt2sHd3R2HDh1Cz549ERERgejoaKxZswYVKlTApEmT0K9fP6vWmTdvXtFzFxQUhHz58hmkcXZ2RnBwsCi+vr5W1YFhGIZhGCa1YrV1+vT54osv4OXlhY4dO6Jx48Z4//49YmJiMHHiRIwbNw65c+e2an2NGzfG0qVLMXjwYLi6uirOFra1tYWtra1V62UYhmEYhkkLJJnRFxwcjI0bN8Lf3x/h4eHQ6XTw8vJCzZo1k6S+OnXqoEiRInBwcECpUqXw448/Jkk9DMMwDMMwaRJKAqZOnUr29vZUrlw5+vvvvyksLIyGDBlChQoVoqtXryZFlRYRHBxMACg4ONggDgALCwsLCwsLS5oRUySJ0VelShXasmULxcbGysJnzJhBOXPmpMOHDydFtWbDRh8LCwsLCwtLehFTJMnizESkurjx+vXrMXbsWCxZsgRjx461dtVmwYszMwzDMAyTXjBl0qXIFzlcXFzQr1+/FF8nj40+hmEYhmHSC6ZMuiRZssUUHTp0gJubW0pUzTAMwzAMkyFJEaMPAOrWrZtSVTMMwzAMw2Q4UszoYxiGYRiGYZIPNvoYhklTZMrEzRbDMIwlcOvJMEyqoXHjxibTNGjQQHN5+fPnx7x58xKjkki5cuU0pStYsKBV6mNSPy1btkxpFVKElF55g7EcNvoYJp1SuXJlcfvw4cOJLu/ChQs4cuQIOnbsCACYOnVqosu0BFdXV81pt27dihkzZqBdu3ay8CVLlphd79OnTzWlq1evntll6xMREZHoMhjrU7t2bdl+mzZtUkYRI2TLls2q5Y0YMcIgrE6dOpryan1RSg4mT54s23/06BE2bNiQQtqkIFZd7TiNwYszs6RnqVy5srh99+5dAkAbN26UpVm+fLnm8qTExcUZ3CdVqlShsmXLWqyvnZ0dNWrUSDHOw8NDpodaGZMmTZLtx8fHizq/e/dODN+zZ4+4vWzZMvrll18IAP3000+K5V68eFFzu7Bq1SqDsLCwMAoLC9OUf9KkSZrrKlCggObzmzt3bqu0bdOnT6eWLVtqStu5c2cCQM7OznT8+PFE121Kfv/9d9n+9u3b6dtvv6WhQ4dapfyrV6/K9i9duiTbr1ixorhdpUoVs8q+fPkyZcmSRTVe7d7QlxcvXlh8fL/99ptB2JgxYwzCnj17Rs+fPycfHx+DuICAAHG7Zs2aSfI/P378WPUcStsKqbi4uMj2iYji4+NV60irdoAp2OgDG30s6VMmT54sbhMRffz4UXZtr1q1StZAC9KzZ0/F8pSQxt+4cYOCg4PFBrlmzZp08uRJk3qWKlWKAFCdOnWoYcOGBIC++uorMV6n08nqUrs/K1SoQPHx8VSoUCFVnYVwHx8f8vb2ptevXxMRkZ+fHwGgs2fPGj12Lef9jz/+MHruunXrRvXr11fNr6Wu7du3U1xcnMzIMCU5c+ZULTcqKkpzOT4+PkREVK1aNcV4wbgrVKgQxcXF0cmTJ8VjKliwIBUtWlS17EePHimG29nZ0bFjx2RhSsd++PBh2YuMtdt0faPv4sWL4narVq1o4cKF4r4xo09fn8KFCxMRyYwZ6XUMgEJDQzXpaOmxuru7U2xsLN2/f18W/uOPP8r2jx49KjuvDg4OBvV/+PCBAFDdunXF8GvXrmnSI3/+/LL98ePHy9qpc+fOKbZb0v9b2G/Tpo24LW2LOnToIKZVMlyFstzd3Wnu3LkEgL744gvV/yY1iSnY6AMbfSzpU2JjY8VtpWtb7VofPXq0uF26dGkKCAigd+/eKd5D0nyhoaFERBQSEkIA6Msvv1R96wZA169fpxkzZlC5cuUISPBQCMaetOyOHTsa6C14LgGQt7c3+fn5UXh4uKjX3bt36fjx46r6GsPT05Py5Mkjpi1XrpwYN2PGDMVjsbGxoS+//JJmzJhBK1asMIjXR2osqKU1Zhheu3aNiEhm+AwZMkTcfv/+PT19+lSWJ0eOHERENGjQIMU6he3du3eL2zdv3qS9e/fK0gpGn6+vL1WuXNngeC9fvkwAaPPmzYrn98GDB6rH9fjxYwOj8NmzZ/Thwwd6+PChLDwmJsYgv/CJT2PXfadOnQgATZ06lQDQrl27DMopVqyYuL1582bZNV6wYEHR0JFe3+fOnaMFCxaIelStWlXxGAsVKiTTBwCVLVtW1NPd3Z2eP38uHt/gwYPFZ5R+WdHR0XTr1i3V/1Jfjh49KtvPnj071axZk8aOHat4rgDIPNS+vr4G/2dERAR9+PBB9OoREX3+/JmABK+wi4sLRUREGFzTY8eOpXr16hno9/79e1nY5MmTiYjoxYsXFBgYSEREb9++NXrv/PrrrwSA+vXrRwCoXr16dOLECdl1LWXKlClG79ng4GDy9fUV4/Tv3/3796ue8+QWU7DRB2Wjb/HixSn+57GwJEaIjD/8pPs9e/YUG77NmzeTt7c3DRgwgC5cuGD0HsqcOTMBCd1C+vdV27Ztxcbx+++/V9SPiKh8+fLifmhoqFinkE54K8+fPz+NGzdO9Ti0oDWP9IGtj9KxnDlzRowXjKAdO3bQ+/fvKSgoyKAMLy8vWf6XL18a1NeuXTtZmitXrhARiQ8+IqJKlSqJ8YJeV69eJSIyMIqyZctGRIZdWiVKlBDPjaOjIxERubq6ikY8EVFUVJRokD958sTgeARPaZcuXYiIyMPDQ9a1LiU+Pp7WrFlD7u7u1KxZMwISvGQAyN/fn7Zt2ybqdu7cOVlewaAUztPt27dpw4YNYpgxo+/x48f07t076tGjBwEQPYePHj2SpQPkRh8R0cuXL8nFxUVMIwwDuHDhgnjeiUh8+N+4cUO8hqQGxYULF0TD6d9//6UzZ84QACpTpoziuXr06BFFRkbKdNO/h27fvq1435cpU0bxfvv06RMBoO+++44+ffqkWO+pU6dMtiP6SI0+IqKnT59SbGysLI3UyNu4cSONHDlSpqNgHHbo0EEME4w+KcIxZM2aVUwnfemLjY2lixcvkpubm3h/CR5opfKIiL755hvF8yXFz8+PXr58STdv3hTTjR49WnaOUlpMwUYflI0+pXE5LCxpRWbOnElE2oy+Dx8+UFRUFP35558EqHtolHj16hV5e3vLwmJjY6lIkSJ0/vx5evPmDQEJ3aYbNmwQG2Fp/VKjT0rz5s0JALVr106x7kuXLtGdO3c060qk3eiTds3pExcXR+Hh4bR161aqU6cOAQneEIEbN24QAHr48KFq+fHx8bRkyRICEjxPSrq9e/dO5oVSQhi32b59exo7diwB/xl9RET9+/cX8+fPn18Ml3YjCjx79kxmYOgjeAgfP35sECd0Pa5fv141vxLx8fHk6elJ0dHR5OHhQUQkehZnzZqlmMfYNW3M6BPo3bs3ASA/Pz/F+OLFi8u8e0oIXsJ//vnHIE44P9OnTydA7hVSOx41o08prXBu9uzZQ0Ryo2/r1q1ERNSiRQuD7nApDx8+pJiYGE116W+roW/0KSHt7t26dSvduXOHSpUqRQ0aNCDgP6MvKChI9NZNmTJFsaxTp06JHkUt93RgYCDpdDr6999/jabTUp7UuzpnzhxZvpQWU7DRB2WjT3gAsrCkRREaoidPnoiTEASENGrX/JYtW5LmhlOpv0KFCor6BAUFEZDgMUyqutUQjL67d+8aTSd4qKRGnzlcunTJoOtOH39/f1UDRRjcP3XqVNq6dSsBCV4NASGsadOmih4tLedCYPXq1QRA5mmUEhUVperdM4fo6GiaPn26zHMjRUlvYayd4FUVJrgosWbNGllaNeLi4sQJS/oIhtb79++N5lc7BilAQjeoFpSOXTBARowYYZD+yJEjZv/PAuvXrzeYwGSMxo0bm0xz584d+vbbb2nu3LkUHR0thjs6OhLwn9FHlDBMpGLFigbXrT6XL1+mZ8+emToczWg5VuH/L168uHgcKd3ma/2f2eiDstG3du1as0/2li1bRM+Gvghvl2lZpF0r1poNpy/CzZ8eRH9AcnKKYPQpMXjwYAIMb33Bu53URt+VK1fI09NT3Be62/SJiIggIGEgubUQzo8p5s2bpymd4E3R78ZKSt2kdOnShYAEQyw+Pp4CAgJk8UJX6apVqxJdn1L5KYEWvT9+/KhqKMfHxyu2+SlFXFycZmNZ6dgFo2/kyJGKeYQu9MTQrFkzat26tdE0fn5+9Pfff1tUvpLRl1II4w6N8erVKwJAK1asEMNS+nmj9X5OF0bf8+fPqUCBAuTo6EiOjo6qb6L6GDP6pO59reLu7k5Eyn++4LUwJVu2bEnxi8bYxSQMjN25c6dsSRBryLlz52STCLSK1Bg1R4QJBEklWv/zxIr+shEAaO7cuarXfVxcHEVFRRmEC91Q169f13T/WIuwsDCDgdUCDx8+lHkEEsvw4cNp0aJFJtPFx8dbxWtlDtL7TCvCpAQ1j9P27dsJSJhRbI36UgN37twxOdY0vXLkyBHauHGjLOzjx48EgE6fPq2YJzAwkE6cOJEc6llMixYtCIDR4QXJRUhIiCbP4b///itrI5Kjrdcipkh7d7wCz58/p169eplMFxkZScHBwaIIs3GUjD5/f3+LT3amTJkU40zlHzlyJHl7e4v7wlt8UsqiRYvMOj5hHazdu3erTptPzMUaHh5uUT6tE2/y5s0rbgvdikkl+gPmhfFftWrVEsP018BSmllpTIRJDvrhxow+Y1jaTckkHun1rBXB6Pvw4YNivPBC5OrqahDn5eVFN27csEhXhrEmgtGXGjx9lpLY54VwL1vjOWqMdPNFDk9PTzg4OGDatGlIOP+GLFy4EPb29qKULFlStbxixYrhxo0bePLkSVKpbIBOp5PtHz161Gplr169WjH8xx9/NKuc7t27I3fu3HB0dEThwoWtoRoAIHfu3ACA7NmzW5R/8uTJ+Pjxo1l5bGxsLKpLC/nz5zcIa9q0KQCgffv2Ypj0P//pp5/MridfvnyK4d98843ZZQFAzpw5LcrHJB4/Pz+8fPnSrDyjRo0CAOTKlUsxvnHjxnjx4gXatm1rENeoUSPNX1ZgmKRE/9mXFrl06ZK4vXfvXrPzHz9+3JrqqJIujL6iRYvCx8cH7u7uCAwMxKFDhxTTOTs7Izg4WBRfX1+j5dapUwcVKlQwWx/9C3j27Nmy/a5du6J169aK+dQ+Jr9v3z7s378fANCvXz8xfNGiRSb1qVGjBkaPHi27KI1RtGhR1biyZcsiJCQERYoUAQC8fftWU5lKRpAxhPKVqFSpkkGYTqdD3rx5DcKnT58OLy8vg/DFixdj9+7dJvX48ccfMWrUKKxfv95kWimHDh0yuA7U/luBIUOGqL6wmAMRoVixYokuh0leihcvjlKlSpmVp0uXLiAiZM2aVTVN6dKlE6sawyQpQruXlo2/Jk2awN3dHd999x369OkDIkLZsmXNKkO4j+/evWuRDh06dDCZJk0ZfQEBAWjevLmBfP78GTlz5oROp0OvXr1w69Ytxfy2traws7OTSVITHh6OWbNmycLs7Ozg6OhokFan06le9N27d0f9+vUNwrV46u7cuQNA3Rugj9L3EtWMsEKFCiE0NBQxMTFGv+/6888/i9vLly83OH794zbmhX306BG2bdsGwPBbmI8ePcL58+fFfSJCo0aNDMqYMmWK6gN2y5Yt+O233wAkeL7++usvFCxYUFUfJRo2bGgQptSwCWFbtmxBtWrVVD13aqTlRpJhGCY94eDggDVr1oj7zs7OAIBatWqJYYMGDVLNrx+XLVs2zc+eiIgITb2DacroK1KkCC5evGggWbJkEdO4u7tb5J2zJtIHsVJ3pZpHT+kB3qJFCwBAfHy8QTq1twhpnSNGjDAod+TIkcbUV8TFxUU1LleuXCa7SgUd9u/fjwkTJuDkyZPw8/NTTLtlyxZVb62AYLD36dNHFl6pUiW0bNlS3Nf3nEn38+TJo1j24MGDZTcpkOBRAYAePXrgq6++EsNDQkKM6nnhwgVxu3jx4gCMG2oLFy7Epk2bjJYpxRqeQYZhGMb6jBgxAkSE27dvW5SfiDS/2GfLlk3TkKU0ZfSpcfHiRdSrVw8ODg7w9/fHgAEDrFr+nDlzZPu9e/c2mr5BgwZG49U8ekrhgnEofbgTEd6+fat6IUm7fxcuXGhUFzX9BPbs2QMXFxcDj5qpfMJ+jRo1FNPkyJEDxYsXR1xcnEE5gwcPFg0kU3UlxujR6XT44YcfFONKlCgBAKhevbqY9tatW9i2bRt27dolphPGIuojvIgIRjsAfP/996hUqRK++eYbsbu4QIECsuPIkSOH7G1v0qRJZh3ThAkTzErPMAyT0owfPx5A0o6zTi2Y0ztDRFiwYAEKFSqkGF+xYkWz608XRl+HDh3g7e0NDw8PbN261eoXzsyZM2X7zZs3N5r+1KlTAKA6zkbN6CtdurSBBzBHjhwA5J4+IKFbVc3gEAbjL1++XDaWTthWG7x99OhRREREyMJsbGxkEw/MQafTif/Fd999hx9++AGdO3eWpRGOV+1YjJUNmG/06Z93tf+oZs2aePHihczA/+KLL8Rz26NHD9U6Nm3aJPsfFy5ciDVr1iB37tx49H/t3XlQ3OX9B/D3LsvNskCAHAQM5CThSOS+CYQbdaxObEyNmlZ7jI4djR3tOFWnP0072rTOaA/tGNumam11xsoRrlwQAgIhJEBIkGAgCXLIsZxLdnl+f/jj+8sGlkACLLv7fs18Z5fd7+5+yEN23/s8z/f5XriAdevWYe/eveju7p522NzKyspgvZMuXrw47f2//vWvDdZFRLQUPfDAAxBC6L33mZs1a9YAAPbu3YuBgYFZPUYIgR/+8Id6c+dv7NR5+umnsWPHjjnVYRahb7HZ2trOeL+zszPKy8ulD+abyWSyaXsDn3322Skf4u+//z7eeustvSHbW31TUCqV0Gg00renSatWrcLly5elI/5uFh8fDzs7O7z//vvSbXfSk2Zvb4/PPvsMb775JpycnHDgwIFpQ9ahQ4dw4sSJKbdfunQJjY2N+Nvf/oYf/OAHc3rt0tJSKJVKPProo3q33/z7vPTSSwafY6YJ8P/+97+h0WhmVcsLL7yAn/zkJ3q3yWQyqZdvJoba+ubbY2NjUVRUNOfwTEREC+/8+fMYHBxEQkICnJ2dUVtbi88++wwA4O/vr7fv5OfUzZ09APTmqMvlcuTl5WFoaGjWdTD0zdFvf/tb7N2795b7RUVFTQkNk3O1ZDKZXjp/4okncPfdd+t9y5nsIVu+fPmU8DaT9evX46WXXoKNjc20gcHHx2fK7ZO9VyqVSnqON998E8Cdhb6qqir4+vriueeem3G/3bt3T3vwiK+vL/z9/bFnzx7pwI2bGaovNjYWarUaGzdunPG1Z3twy82srKykANvR0YGurq7bep5JN/8enp6eePzxx295NOfk40pLS+f8jY+IiBaHnZ2d3ufN1q1bcf/992NkZMTgwafTfb4988wz0vJecrkc1tbWc1pqy/wH0OfZzWuppaSkoKioaFaPnUzoN4eup556SjpwYPJIHUPr6k3nlVdewTvvvIPu7m4888wz87LW2nRzCefiD3/4w5RvL/MpMDAQAKZd+mYmbm5u6O/vN3j/rXpxp3PzEO1c5mwY2neyO39iYgKBgYG4dOkS3nvvPWn5GR7AQURk+mZam3a693m5XC7Nsb+ddW0Z+u5QYWHhrD/kDa1FdGPDenp6oru7e07r2r388svw8/PDnj17Zv2YG9na2mJ4eFjvtjs5UOL1119f8AMK7rrrrtuq7ejRo6isrJz2vueffx4/+9nP7rS021pGxdDvIpfLkZiYiMTEROzdu3fag2WIiMj03fh+fu+992LXrl3T7rdz5050d3fPedoTwNB326qqqtDU1DSnx0wekbpz5069229ccgaAwbleK1aswLJly2Yc7r2dIFRWVjZlTt3kCv7TrTdniCkEEB8fnylDpvfddx8+//zzWS10PRu309PHnjsiIpr0+eefG7zPyspqTtO+bsTQd5tCQ0OnXSx5JiqVSu/DfWRkBB9//DE2b948q8fb2tqip6dn2vvuJDz4+/tPGYrdvHnznJ9r8iwQa9eunXMNxjTTotILbc+ePWhqaprzMkOTw++3MxxNRERLT3p6Ov7617/OeEaqO8XQZ0T29vZ4/PHH5+W5lkKPUUhICOrr62cdYhfTn//8Z72jkhfSXHr67O3t8fvf/37Or+Hn54cDBw7M298PEREZ1wMPPACdTjftyRsaGhpu+9z0N5IJCx5XUqvVUKlUGBgYuOUp2a5cuQJra2ssX758yn1LIXBpNBq88MILeO2116S1/WayFGqeq6Ve82R9hw4dwu7duxf0NZbqvwERES1d7OmbpckzNCxVtra2t9VjRERERJaBoW8evPbaazh27Jixy5iTzz77zOTm3pkKUzighYiILA8XZ54Hv/zlL1FYWGjsMubk/vvvl9YGNCVPPvmksUswaPI8vvOxTiIREdF8Y08fmYylPo/tjTfeQFBQEO69994FfR0esUtERLeDB3LM8kAOoqWgq6sL1tbWcHV1NXYpRERkYtjTR2RCPD09jV0CERGZKM7pIyIiIrIADH1EREREFoChj4iIiMgCWPSBHEIIDA4OQqlUcm01IiIiMmsWHfqIiIiILAWHd4mIiIgsAEMfERERkQVg6CMiIiKyAAx9RERERBaAoY+IiIjIAjD0EREREVkAhj4iIiIiC8DQR0RERGQBGPqIiIiILABDHxEREZEFYOgjIiIisgAMfUREREQWgKGPiIiIyAIw9BERERFZAIsOfUIIqNVqCCGMXQoRERHRgrLo0Dc4OAiVSoXBwUFjl0JERES0oCw69BERERFZCoY+IiIiIgvA0GfA22+/jX/84x/GLoOIiIhoXjD0GfDpp5+ioKDA2GUQERERzQuGPgPkcjkmJiaMXQYRERHRvGDoM0AmkzH0ERERkdlg6DNALpdz/T4iIiIyGwx9BrCnj4iIiMwJQ58BnNNHRERE5oShzwAO7xIREZE5YegzgMO7REREZE4Y+gzg8C4RERGZE4Y+A2QyGYd3iYiIyGww9BnAnj4iIiIyJwx9BjD0ERERkTlh6DOAw7tERERkThj6DGBPHxEREZkThj4DuGQLERERmROzCX2Dg4OIiIiAk5MT6uvr7/j5uDgzERERmROFsQuYL/b29sjJycHzzz8/L88nl8sxNDSES5cuwcrKSm9TKBTSdWtra9jY2EAmk83L6xIREREtBLMJfQqFAh4eHjPuo9FooNFopJ/VarXBfZ2cnPDll19i7dq1t3xtuVwOe3t72Nvbw8HBQe/S3t4ejo6OcHFxgUqlgouLi8Hrnp6eUCqVDJBEREQ078wm9M3G/v378eqrr85q3zfeeAMPP/wwdDrdtJtWq4VOp8P4+DhGR0elbWRkZMrl8PAwLl26hP7+fvT392NgYACDg4PTvq6NjQ08PT2nbB4eHvD09MSqVauwevVqrF69Gs7OzvP5z0NERERmTCbMbOLaY489hn379iEgIGDKfdP19Hl7e2NgYGDRA5RWq4VarcbAwAD6+/vR19eH7u5udHV1oaurS+/65DYwMKD3HEqlEl5eXlIInNy8vb3h5+eHNWvWwM7OblF/LyIiIlqaLKqnz9bWFra2tsYuA8B3w9Fubm5wc3Ob9WM0Gg06Ojpw5coVXLlyBVevXpWuNzU1obi4GB0dHdDpdNJjvLy84OvrCz8/vynbihUrOJRMRERkIcyqpy8zMxNnzpzBXXfdhR//+Md47LHHZtxfrVZDpVIZpadvoeh0Oly9ehWtra1obW3FpUuX9LbOzk5pXycnJ2zcuBGbNm2SLjdt2oT169ezh5CIiMjMmFXomytzDH23Mjw8jNbWVrS0tKC5uRlNTU1oamrChQsX0NPTA+C7NQrXrFkjhcAtW7YgKCgIW7ZsgYODg5F/AyIiIrodDH0WFvpm0tPTgwsXLkghsKmpCefPn0dLSwuEEJDJZFi3bh0CAwMRGBiIoKAgBAYGws/PD1ZWVsYun4iIiGbA0MfQd0sjIyNobGzE2bNnce7cOemyu7sbAODg4IAtW7Zg69atCAkJQUhICAIDA5fM/EkiIiJi6GPouwOdnZ16QbC2thYNDQ3Q6XSwtrZGQECAFAIngyDnChIRERkHQx9D37waHR3F2bNnUVNTI20NDQ3QarVQKBRSEIyMjERkZCT8/f05NExERLQIGPoY+hbc2NiYXhCsqqpCfX09JiYmoFQqERERIYXAiIgIuLu7G7tkIiIis8PQx9BnFENDQ6iursapU6dQUVGBU6dOSXME161bh6ioKCkIBgUFQaGwqCUliYiI5h1DH0PfkiCEwNdffy2FwIqKCtTW1kKr1UKpVCI6OhpxcXGIi4tDeHg45wYSERHNEUMfQ9+SNTo6ipqaGpSWlqK0tBQnT56EWq2GjY0NwsPDpRAYHR0NlUpl7HKJiIiWNIY+hj6TodPpcPbsWSkElpaWorOzE3K5HMHBwYiLi0N8fDwSExOxbNkyY5dLRES0pDD0MfSZLCEEmpub9ULgpUuXIJPJEBwcjKSkJGzfvh3x8fFsXyIisngMfQx9ZqW9vR1Hjx7FkSNHUFJSgitXrsDKygqhoaFISkpCUlISoqOjeTo5IiKyOAx9DH1mSwiBlpYWHDlyBEeOHMHRo0fR1dUFGxsbREZGSiEwIiICNjY2xi6XiIhoQTH0MfRZDCEEGhsbpRB47Ngx9Pf3w9HREYmJiUhLS0Nqaio2bNgAmUxm7HKJiIjmFUMfQ5/F0ul0OHPmDIqLi1FQUICysjJcv34dPj4+SE1NRWpqKpKTk+Hm5mbsUomIiO4YQx9DH/2f4eFhHD9+HIWFhSgsLMT58+chl8sRFhYmhcCIiAhYW1sbu1QiIqI5Y+hj6CMD2tvbUVRUhMLCQhQVFaG3txdKpRJJSUlITU1FWloa1q5da+wyiYiIZmXBQl9oaChCQkKkLSgoaMn1kDD00WzpdDrU1taisLAQBQUFKC8vh1arxfr165GZmYmMjAwkJCTwTCFERLRkLVjoe/rpp1FTU4O6ujqMjo7CxsYGW7ZsQXR0NL7//e8jJiZmIV52Thj66HYNDg7iyJEjyM/PR15eHtrb2+Hg4ICkpCRkZGQgMzMTa9asMXaZRERk5nQ6Hb788ks4OTkhMDBwxn0XfHhXp9OhoaEB1dXVqK6uRnFxMVpaWvDII4/g4MGDRj1KkqGP5sPkUcF5eXnIy8tDWVkZtFot/P39pQAYGxsLW1tbY5dKRERmoK+vDwUFBcjJycHhw4fx7bff4sknn8Rf/vKXGR9nlDl9RUVF2L17N15//XX86Ec/WuyXlzD00UJQq9UoLi6WQmBHRwecnJyQnJwsDQV7e3sbu0wiIjIRQgicP38eubm5yMnJwcmTJ6HT6RAcHIysrCxkZWUhIiICVlZWMz6P0Q7kePfdd/Hee++hqqrKGC8PgKGPFp4QAmfPnpUCYHl5OSYmJhAQECAFwJiYmCU335WIiIxrbGwMx48fR05ODnJzc9Ha2gp7e3skJycjOzsbmZmZc+5AMFroO3v2LBISEtDX12eMlwfA0EeLr6+vD0VFRcjLy0N+fj66urqgUqmQnp6Oe+65B+np6Vi2bJmxyyQiIiO4du0a8vLykJOTg+LiYgwPD8PHxwfZ2dnIysrC9u3bYW9vf9vPv2Ch75133kFYWBiCg4OnnctUUlKCXbt2oaurayFeflYY+siYJiYmUFNTI3XX19TUQC6XIzo6GtnZ2cjOzsbmzZt5dhAiIjM1MTGB6upq6XPg9OnTkMvliIqKkoJeQEDAvH0OLFjoc3V1hVqthkKhwObNmxEaGorQ0FD4+/tjZGQEL774ItauXYv//Oc/C/Hys8LQR0vJjd/wioqKMDIyAl9fXykAJiQk8GAQIiITp1arUVRUhNzcXOTl5aGzsxMuLi5IT09Hdnb2go74LOjwbktLC2pqaqTt9OnT6O/vBwBs2rQJeXl5Rl3WgqGPlqrR0VEcO3YMOTk5yMnJQVtbGxwdHZGamirN5VixYoWxyyQioln46quvpLl5x48fx/Xr17F582ZkZWUhOzsb0dHRUCgUC17Hos/pu3LlCq5fvw5fX995f+59+/ahsrISPj4+OHjwIGxsbGbcn6GPTIEQAvX19cjJycEXX3yBiooKCCEQFhaGe+65B9nZ2di6dSuHgYmIlojr16+jrKxM+uJ+8eJF2NjYYPv27dKw7ULkoFsxm9Ow1dbW4ne/+x0OHTqE1157Db6+vnj44YdnfAxDH5mi7u5u5OfnIycnBwUFBVCr1fDy8pK+MSYnJ8PBwcHYZRIRWZSuri7k5+cjNzdXem9euXKl3nuzk5OTUWs0m9D3xz/+EU5OTtizZw9qampw8OBBvP3223r7aDQaaDQa6We1Wg1vb2+GPjJZ4+Pj0rfJL774Al999RXs7OykQ/qzsrK4JiAR0QIQQqCurk4atq2srIQQAuHh4dL777Zt25bUKMzCDyAvkv7+fqxatQoAoFKp0NvbO2Wf/fv349VXX13s0ogWjI2NDZKSkpCUlIQDBw7gwoUL0nDCU089hZ/+9KcIDg6WDgYJDw+HXC43dtlERCZpZGQER44ckd5nr169CicnJ6SlpeH9999HRkYGli9fbuwyDTKbnr4//elPcHR0xJ49e1BdXY0PPviAPX1k0fr7+6XT9OTl5aG3txceHh7IzMxEVlYWUlNToVKpjF0mEdGS1tbWJi2pcuTIEYyNjWHt2rXSnOq4uLhbHkOwVJhN6Lt5Tp+fnx927do142M4p48shVarRUVFhTQMUV9fD4VCgdjYWGkYYuPGjUtqGIKIyBh0Oh0qKyul3rxz585BoVAgLi5Oer/csGGDSb5fmk3oA3j0LtFsXb58Gbm5ucjNzZW+ufr5+UnncExISICdnZ2xyyQiWhQ3jozk5+fj22+/xbJly5CZmYns7GykpqbCxcXF2GXeMbMKfXPF0Ef03RyVo0ePSr2A7e3tcHBwQEpKCrKyspCZmQkvLy9jl0lENG+EELh48aLUm1daWgqdToegoCC9OdBWVlbGLnVeMfQx9BFJJtcEnOwFLC8vx8TEBLZu3SotOxAWFmZ2b4REZP7Gx8dx4sQJKei1tLTorXaQmZkJHx8fY5e5oBj6GPqIDOrt7cXhw4eRm5uLw4cPo7e3F+7u7sjIyEBWVhbS0tLMYsiDiMxTR0eH9B5WWFiIwcFBeHl5Sb15SUlJFrWuKUMfQx/RrGi1WlRWVkpHsZ07dw5WVlaIiYmRJjf7+/ub5ORmIjIPWq0Wp06dQn5+PvLz83HmzBnIZDJERERIQS8oKMhi36cY+hj6iG5LW1sb8vLykJubi5KSEoyOjmLNmjXSPMDExESL+gZNRMZx7do1HD58GPn5+SgqKsLAwACWLVuGtLQ0ZGRkIC0tDR4eHsYuc0lg6GPoI7pjo6OjOHbsmNQLePnyZdja2iIuLg7p6elIT0/H5s2bLfbbNRHNn8nevLy8POTn56Ourg4ymQxhYWHIyMhAZmYmQkJCOPd4Ggx9DH1E80oIgQsXLuDw4cMoKCjAsWPHMDY2Bi8vL6SnpyMtLQ07duyAq6ursUslIhMxXW+eu7u71JuXmprK3rxZYOhj6CNaUKOjoygtLcXhw4dx+PBhnD9/HnK5HJGRkUhLS0N6ejq/lRORnrGxMZSVlaGoqAgFBQVSb154eDgyMjKQkZGB0NBQnlZyjhj6GPqIFlVbWxsKCgpQUFCA4uJiDAwMwM3NDampqUhLS0NaWhpWrlxp7DKJaBEJIXDu3DkUFhaiqKgIJ06cwNjYGJYvX46UlBSpN8/d3d3YpZo0hj6GPiKjmTwieHIouLq6GkIIBAUFITk5GcnJyYiPj4dSqTR2qUQ0z65du4bi4mIUFhaiuLgYnZ2dsLOzQ0JCAlJSUpCSkoLAwEDOBZ5HDH0MfURLRk9Pj/RNv6SkBO3t7VAoFIiIiJBCYGRkpMmc3JyI/t/w8DBOnDiBoqIiFBYWoqGhAQCwbds2pKamIiUlBTExMTwF5AJi6GPoI1qShBD46quvUFxcjJKSEhw5cgR9fX1wcHBAfHw8kpOTsWPHDgQFBXFeD9ESpNFoUFFRgaNHj+Lo0aOoqKjA+Pg4Vq9eLYW85ORkHoCxiBj6GPqITIJOp8OZM2dQUlKCkpISlJaWYnR0FO7u7ti+fTuSk5ORlJSEdevWcTiIyAjGx8dRVVUlhbzy8nKMjY3B1dUVCQkJSEpKQkpKCjZu3Mj/o0bC0MfQR2SSNBoNTp06hZKSEhQXF6Oqqgo6nQ4rV65EfHw8EhISEB8fz/UBiRaIVqtFTU2NFPLKysowMjICZ2dnxMfHY/v27di+fTuCg4PZG79EMPQx9BGZBbVajZMnT+L48eM4fvw4qqurodVq4e7ujvj4eCkIBgYGcnkYotswNjaGqqoqlJWVobS0FGVlZRgcHISTkxPi4uKkkLd161YoFApjl0vTYOhj6CMyS8PDwzh16hSOHz+OEydOSPOJXFxcEBsbK/UEbt26lQeGEE2jt7cX5eXlKCsrQ1lZGaqqqjA+Pg6lUomoqCgkJiZi+/btCAkJgbW1tbHLpVlg6GPoI7IIY2NjqKysxIkTJ3D8+HGUl5djdHQUdnZ2CA0NRXR0NKKiohAVFYXly5cbu1yiRSWEQFtbmxTwysrKUF9fDwBYuXIl4uLiEBsbi9jYWAQFBbG33EQx9DH0EVmk8fFx1NbW4tSpUygvL0d5eTmuXr0KAPDz85NCYHR0NAICAjhcRWZlaGgINTU1qKioQGVlJSorK3Ht2jUAgL+/vxTwYmNj4evry3mxZoKhj6GPiP5Pe3s7ysvLpSBYW1sLrVYLR0dHREREIDw8HKGhoQgLC4O3tzc/CMkk6HQ6nD9/Xgp3lZWVqK+vx8TEBBwdHREWFoaIiAhERUUhJiaGZ70wYwx9DH1EZMDIyAhqamqkIFhdXS31Bnp4eCA0NFTawsLCePo4MrqJiQm0tLSgtrYWp0+fRlVVFaqqqjA4OAiZTIaAgABERERI2+bNmzlUa0EY+hj6iGgOrl27hpqaGlRXV6O6uhpVVVXo7u4GAKxatUoKgVu3bkVQUBB8fHzYI0gLQqvVoqmpCadPn5ZCXm1tLQYHBwEA3t7eCAkJkQJeaGgoT2lo4Rj6GPqI6A4IIdDe3i6FwMmtr68PAODi4oKgoCAEBwdLlwEBAbC3tzdy5WRKent7UV9fj3PnzuHcuXM4c+YM6urqMDY2BgBYt24d7r77bmnbtm0bh2lpCoY+hj4immdCCFy5cgV1dXU4e/Ys6urqUFdXh+bmZkxMTEAul2P9+vVSAPT394e/vz/Wr1/P5WMs3PDwMBobG1FfXy+FvPr6enR0dAAAFAoFNm3ahG3btkkBLzg4GCqVysiVkylg6GPoI6JFMjIygoaGBikE1tXVoaGhAb29vQAAKysrrF27VgqBk9umTZs4LGdGhBC4du0aLly4gIsXL0qXTU1NaG1thRACMpkMfn5+CAgIQGBgIAICAhAQEMAvBnRHGPoY+ojIiIQQ6O7uRlNTE86fP6+3tbe3S/utXLkSa9eunXZbtmwZ5w0uMRMTE/jmm2/Q2tqK1tZWNDc3S+Hu4sWLGB4eBvBdz52fnx82bNiAjRs3YsuWLQgMDIS/vz8cHR2N/FuQuWHoY+gjoiVqaGhICoPNzc1oaWmRtp6eHmk/Z2dnKQDedddd8PHxgbe3t7R5eHjw3KfzTKfToaurC+3t7fj666+lcDd5/fLly9BoNNL+K1aswMaNG6VwN3np6+vLs1nQojGL0Dc4OIgdO3agoaEBFRUVCAgImNXjGPqIyFQNDAzg0qVLekGwpaUFbW1taG9v1wscNjY2WL16tRQCV69ejeXLl0/Z3NzcLD4c6nQ6fPvtt+jp6UFHRweuXr2Kq1ev4tq1a3rXOzo6oNPppMepVCr4+vpizZo18PX11bu+Zs0aODk5GfG3IvqOWYQ+rVaLvr4+PP/889i3bx9DHxFZNCEEenp60N7ePu125coVdHZ2YnR0VO9xVlZW8PT0xPLly+Hp6Qk3Nze4urpKm4uLi97Prq6uUCqVcHBwgJ2d3ZIZYp6YmMDw8DDUajXUajUGBgb0rg8MDKCnpwc9PT3o7u7Wu+zt7cXNH4tubm5YtWoVvLy84OXlpXfdy8sLvr6+cHV1NdJvSzR7ZnFeIYVCAQ8Pj1vup9Fo9L79qtXqhSyLiMgoZDIZPDw84OHhgbvvvnvafYQQGBoaQmdn57RbV1cXvvnmGzQ1NaGvrw99fX0zvmfKZDI4ODjA0dERjo6OetdtbW1hbW0NhUIBhUKhd33yZ7lcjomJiSmbEEK6rtVqMTY2hrGxMYyOjkrXb/x5ZGQEg4ODU4LbjRwdHeHu7g4PDw+4u7vD19cX4eHhere5u7tj5cqVWLVqFZfXIbNhFqFvtvbv349XX33V2GUQERmdTCaDUqmEUqnEunXrZvUYrVYLtVothcC+vj4MDQ1heHgYIyMj014ODw9Do9FIgU2r1UKr1eL69et6lzqdDlZWVpDL5QY3Kysr2Nvbw87ODiqVCnZ2dlM2e3t7ODs7Q6VSwdnZWe+6SqWCk5MTz6NMFsuk/vK/+eYbPPjgg1Nu/+9//ws3N7dbPv7FF1/Es88+K/2sVqvh7e09rzUSEZkrhUIBNze3Wb3fEtHSY1Khb8WKFSgrK7vtx9va2sLW1nYeKyIiIiIyDWZzmFZmZiYKCwvxxBNP4IMPPjB2OURERERLilkcvXu7ePQuERERWQqLDn1CCAwODkKpVC6ZpQaIiIiIFoJFhz4iIiIiS2E2c/qIiIiIyDCGPiIiIiILwNBHREREZAFMap2+xTR5kAcRERGRKbjVgakMfQb09PTA09PT2GUQERERzcqtlqBj6DPAxsYGANDe3s41/EzM5On12Hamie1nuth2pottZx6USuWM9zP0GTDZPTp5wm4yPWw708b2M11sO9PFtjNvPJCDiIiIyAIw9BERERFZAIY+A2xtbfHyyy/D1tbW2KXQHLHtTBvbz3Sx7UwX284y8DRsRERERBaAPX1EREREFoChj4iIiMgCMPQRERERWQCGPiIiIiILwNBnwL59+xAXF4fdu3djfHzc2OVYvJqaGsTFxSEhIQE7d+7E9evX8a9//QtRUVFISkpCe3s7AKCxsRGxsbGIiopCcXExAGBoaAj33XcfYmNj8Zvf/EZ6Trbx4vroo4/g4eEBAGw7E3Ps2DEkJycjISEBn3/+OdvPRExMTODRRx9FXFwc4uPj0dLSwrazdIKmOH36tNi9e7cQQoj/+Z//Ef/85z+NXBF1dHSI4eFhIYQQL774ovjkk09EeHi40Gg0oqysTDzxxBNCCCHuu+8+cfHiRTEwMCCioqKEEEIcOHBAvPfee0IIIdLS0kR7ezvbeJHpdDrxve99T2zbtk2Mj4+z7UzI6OioyM7OFhqNRggh2H4mpKamRjz00ENCCCEKCwvFz3/+c7adhWNP3zROnTqF1NRUAEB6ejrKy8uNXBGtWLECDg4OAABra2tcvHgRW7ZsgY2NDWJiYnDu3DkAQEdHB9avXw9nZ2csW7YMPT09eu2ZkpKCiooKtvEi+/DDD/Hggw9CLpejubmZbWdCysvLYW9vj3vuuQf3338/qqqq2H4mYvXq1QAAIQT6+/vh4eHBtrNwDH3T6O/vl849qFKp0Nvba+SKaFJbWxuKi4sRGxurd35InU4H4Ls3t0mTbTdde7KNF49Op8Mnn3yChx56CID+/6/J+wG23VLV2dmJ1tZWfPHFF3jyySfxyiuvsP1MhLu7O+RyOfz9/fGLX/wCiYmJbDsLx9A3DVdXV6jVagDffUC5ubkZuSICALVajUceeQQHDx6Ep6en1EYAYGVlBQCQy///T3qy7aZrT7bx4jl06BB27twptc2N//YA226pc3FxQWxsLGxsbJCUlITa2lq2n4koKCiAvb09mpqa8Omnn+Ktt95i21k4hr5pREZGorCwEMB3/2liYmKMXBHpdDrs3r0bv/rVr7BhwwasW7cOjY2NGB8fx8mTJxEUFATgu2Hg5uZmqNVq9Pb2wt3dXa89i4uLERUVxTZeRI2Njfj73/+O9PR0NDc3491332XbmZDw8HA0NjYCAGpra5Gamsr2MyGurq4AvgvvPT09bDtLZ9QZhUvYc889J2JjY8XDDz8sTWAm4/nwww+Fm5ubSEhIEAkJCeLjjz8WH330kYiMjBSJiYmira1NCCFEQ0ODiImJEZGRkaKwsFAIIYRarRb33nuviI6OFvv375eek228+EJCQoQQgm1nYt5++20RFxcnEhISREtLC9vPRGi1WrFr1y4RHx8vIiIixMmTJ9l2Fo7n3iUiIiKyABzeJSIiIrIADH1EREREFoChj4iIiMgCMPQRERERWQCGPiIiIiILwNBHREREZAEY+oiIiIgsAEMfERERkQVg6CMiIiKyAAx9RERERBbgfwFWDxtGbWx9/gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAHVCAYAAACE1E3TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADB80lEQVR4nOyddXgU19fHvwuBoAnu7l7cQ4IUdy0Ub4FCsQJtCVC80B9SpBRa3N0tBGtICAQJDkWCJoEQLEY8Oe8feWc6szuzO7vZ+Pk8z3l25uqZ2Zk7Z86V0RERgWEYhmEYhknXZEppBRiGYRiGYZikh40+hmEYhmGYDAAbfQzDMAzDMBkANvoYhmEYhmEyAGz0MQzDMAzDZADY6GMYhmEYhskAsNHHMAzDMAyTAcjQRh8RISQkBLxUIcMwDMMw6Z0MbfSFhobC3t4eoaGhKa0KwzAMwzBMkpKhjT6GYRiGYZiMQpox+l68eIGCBQvCyckJTk5OePfunRgXGxuLoUOHwsHBARMmTEhBLRmGYRiGYVInacboAwBHR0e4ubnBzc0NBQsWFMOPHTuGEiVKwMPDA+Hh4bh06ZJi/qioKISEhMiEYRiGyXh8/vwZnz9/Tmk1GCZZSVNGn6enJxwcHDBt2jTZ5IvLly+jbdu2AID27durGn0LFy6Evb29KCVLlkwWvRmGYZIKIsKHDx9SWo00h729PfLly5fSajBMspJmjL6iRYvCx8cH7u7uCAwMxKFDh8S4oKAg2NnZAUi4kT9+/KhYhrOzM4KDg0Xx9fVNFt0ZJrXh5+eH4ODglFaD0UhgYCAePnyoGLd27VoUKFCADT8ziYuLQ3R0tMX5P336lKj8DJMSpBmjz9bWFjlz5oROp0OvXr1w69YtMS5v3rxiV21QUJDq25utrS3s7OxkwjAZkZIlS6Ju3boprUaG58WLF1ixYoXJdJUrV0bVqlUV4y5evAggoe1jko98+fKhR48eKa0Gw5hFmjH6pMuquLu7o0KFCuJ+48aNcfr0aQCAq6srmjVrluz6MUxa49mzZymtQoanR48emDhxosl0xgw6Xmc05Th58qTmtPfu3cOuXbuSUBuGMU2aMfouXryIevXqwcHBAf7+/hgwYABGjRoFAOjSpQt8fX3h4OCA7Nmzo0mTJimsLcMw6RkiwpUrVxJdTmK6Bzds2ID169eL+zqdLtH6MElHzZo1MWDAgJRWg8ngpBmjr0OHDvD29oaHhwe2bt0KGxsb/P333wAAGxsbbNmyBR4eHli5cmUKa8owqYNWrVrh119/TWk1DPDx8Unz4wkPHz6Mxo0b49y5cymmw7fffosRI0ZoTn/37l18+vQpCTVKWp4/fw6dTocXL14kuqwTJ04kXqEkgIjwxRdf4MKFC2LYsGHDUr1BnytXLsydOzdJyn79+jXevn2bJGVnRNKM0ZfeiIyMxOvXr61e7q1bt9C6dWvExcVZvezUDBFh+fLlCAsLS2lVUg3//PMPZsyYgWfPnhntAjx06BAaNWpkVtlbt241+iDatGkTPD09FeMqVqwIJycng/BixYqhQYMGZumRUvj5+QEAAgICUlgT7dSqVQtt2rQxK09wcDDOnz+vGBcREYGff/452SYznD17FkDCdS0lOjoaNWvWlI3zNkXnzp0Vw728vKDT6eDl5YX3799brKulEBHu3LmD6dOni2GbN29Odj3M5fPnz5g1a1aSlF28eHEUKVIkScrW58aNG8iSJUu6Xs6Njb4UYsCAAShevLjVy3V2dsb58+fT9UWrxK1bt/DDDz9gzpw5Ka1KqqN8+fL4+++/8enTJ+h0OgNjbOzYsbh69apZZS5dutQgbNu2bZg/fz7evHmD4cOHo3nz5qr5lR7Qb968wfXr143W++zZM9y/f9+kfgcOHMDAgQNNpkss1hpPFxkZaXHeHTt2aE5rjmEEAHny5EHr1q3F/ZCQEERFRQEANm7ciEWLFmHfvn2aynr06JFq3PPnz3Hw4EGzdBPw8/PDvXv3sGTJEovy/+9//0Pp0qVx9uxZXL58GQDQpEkTFCxYEKtXr1bMY63xsHv27IGLi4tBuNp1RUSIj48HkLCEmf7/GR8fnyRjPD9+/Cj+78YwZii/fPnS7HbGGkjPmSk2bdqE2NhYo9dqWoeNvhQiJbuFUprBgwdbvbsiNjYWQOIenumZu3fvwsfHBwCwd+9ek+mJCD179jTLSBg8eDB++eWXJJlFSkTQ6XQoX748atSoIYsLDw83WGS3d+/eZhlD5qLl+nVycsL//vc/TeWVKlUqsSoZJTw8HAAUH36PHz/W/JJob28vemm1PkiJCHv27EGVKlXg7e2tmKZp06bo1auXyXLMCdfK1KlT8erVK3z55Zd4+fKlLG7fvn0gIoN2pXz58gbl/Pnnn7C1tTWr7q+++godO3YU901dV19++SUyZ84MAGjevDnq1KkjxkVFRSFz5szisCcpxnp+4uPjsXXrVtn/Wb9+fWzfvl3cz58/Pzp16mTyeKQeuRcvXmDjxo14+/YtdDodypQpg0aNGiEmJkY1/4oVK8RzEBERgYiICJN1mqJZs2bImjWruP/69WsMHTpUfGZo4c2bN3Bzc9OUdsKECeK6wakRNvpSGSEhIarrDJpDap7Rt23btpRWwWoMHDhQ05IbiSUqKgrr16+3+H+Njo5W7foWyjx69KgYFhoaikOHDqFOnTr47bffLKpTKFso//379/j3338V0+XIkUMx/NGjR3j+/LnRh1aBAgWSdfmlt2/fYty4cQCAQYMGieGvXr2SraV34cIFTJ06VVOZ0s9KWsoXX3yh6Gk5c+YMcubMqZqvcuXKZnX7enl5maXX0qVL8dVXXwFIeHhK+fz5M86cOSO2eZcuXUJERIRZ17mQVuuLpLHxpEpGxoIFC5A9e3a8evXKaFfr3LlzLe7qDg4Ohk6nEz8soHb8Ss4CX19fDB06VLy/jxw5Iov38PCAjY0NHj9+rFjmnj17MGTIEOzbtw8RERF4+/YtvL29MXbsWJN16yO9T9u1a4dvvvnGwGu2YMEC2f6QIUPEMZZSg7VgwYLInz+/rOxHjx4hMDBQDNu/fz8OHDhgoAcRibpcvnxZptecOXOwZcsWTT0GAs2bN0fLli01pV25ciXOnDmjOrwlpWGjzwI+fPggdgOokStXLou8WSVKlJBd6GqoNYypecDv+/fv0123844dOzQtuZFY/ve//2HEiBGaukceP34se0sHgPXr16NVq1aK6QXPXLdu3cSwGTNmiNvOzs4AgO3bt+P9+/cG1x0RydJLadeuHTJlyoQpU6agdu3aqFatmmI6pYft9evXUaVKFZQrV86gTul1HhERodnr5OrqCp1OhxkzZqh+gsvNzQ03btxQLePp06eyfX9/fwQFBaF06dKoWrUqoqKicOrUKTFeqVtszpw5oufVWoSFhSl2Ff7888+K6T98+CCex2vXrllcrykDTd+zLDVMx4wZg7Zt24rGUrNmzZAjRw78+eefZtevf83fvn0bv/76q8H5z5Mnj+aydTodDh8+DAAoXbo0hg0bZlIPSxCuBcE7rfV6BhK8pFu2bBG7nPX1EAxJtRcuoU0ODg5Gjhw5rDZ+TlhmTV8f/Y8ibN26FT179jTQ8fPnz7J2YcWKFahSpYqsDenTpw969+5tUPfPP/8MGxsb7NmzxyydV61apRhuyeQhYXhLeHh4qpqIwkafBbRt2xZNmzY1mkZ4oNy9e9esSRXS9QiNkSNHDoOZmQ8fPlRs9FMLBQsWhL29fUqrkSYRrgslT8Ljx4/x/Plzcb9JkyYyD5QplAyu27dvy/ajo6MxaNAgFCxYEC1atBAbci8vLxw9elR1lvCZM2cAJHh7/P39NesEAHfu3BG3tT5QfXx8VO+hjRs3ol+/fgCAX3/9FfXq1VNM17JlS9U4wPDF6t27d1i8eLG4P2PGDHTo0EHcV3qJmz17NipWrIgHDx6oHwwS1iRNiklZdevWRYECBYym+emnn1TjIiIiNLVVGzZskH0pxMXFBQULFhS9LGreEKnRbAq1a6NVq1aYMWMGsmXLhpEjR6Jdu3awsbHRXK6p8vXTJMZbq8VbWb16dcVwYVLR8uXLZWUJbN26VTFcv26l66xq1aoYOnSouL9r1y7odDpNXaNCufoGrNoxCsehhmAsKn15Ji4uTmZMCsaz4GE2RpMmTbBz505Zm6fFefL06VMMGDDA5P3ZqlWrZJuIogU2+szAz88Pt27dEt3ksbGxsqn1StSqVUucyh4YGGjVBvzYsWOyfaHLCQAaNWpk8IZLRNiyZYtBvrTM6tWrsX///pRWQxNbtmyBTqfT/BBxdXXVlLZy5cooV66cuG9qBrO0e0t/KMHgwYMV80gbbuELEEBCg9m9e3cD3VOCKlWqoGLFijKDS8o333wjO/ZHjx4hJiZGtdsqIiJCsQtI2r0kID1m/Vn5Uo/i8OHDFceDKXHv3j04OjrKvA9KdavpIXDz5k3ZvouLi0GYElJDVp+6devKZpgKREZGip690NBQfPvtt7JJD8IYUcFzou81tQTpMffs2RMODg4GadatW4fTp0+b3f7+888/BuP89Pnw4YPJSSjS4Qe///47YmNjcfz4cYN0wsQR4Zik1470BUHJKNm5c6csr34+tftSMFalL1lAQjvx8OFDbNmyRQwT1oU0Ni5P6AJX81ZmypQJsbGxBrPCS5YsqVqmKWxsbFCqVCmTL1FKeHl54ZtvvkHt2rXFMCLC5s2bDYzbmJgY8Rr66aefsGvXLgQEBOD9+/eqy8VZYz1PLeh0OmzYsMFkOjb6zKBcuXKoU6eOePNkyZIFTk5OojdDDcFlXbhwYbGrRXoxffz40azuFbW3QukAeh8fH4Puo6tXr2Lo0KHo2rWr2JCFh4eb9ZB2cnLCH3/8oRp/9+5d6HS6RC9lcfPmTeh0OplR8v79ewM3+ffff48+ffokqi5LeP78uaqn4/3794qzUNeuXStuh4eHG22gTp48ifbt2xs1aIODgy1a7FXaGOt7obZt2yYO+peif43cvXtXtXw1j4QSFy9exKtXrxTjpHUqXaP63bPC2CEl75GacbFw4UK0adMGv/zyi0HcoEGDDCaNADAYG1WnTh3N1/umTZtUZ37qH6Owpp704Vi4cGEASNSXHayxVJR07KK0HZo7dy769euHx48fKz70tQ4/UUonPT+XL1+GTqfD2LFjZefz0KFDspcSc1GqV3+cpH67WqBAAYMuxsDAQHH5lYcPH8raismTJ2PlypXo0qWLGKb/34eHh+PMmTPIlSuX2cdARNi2bZuBYRYYGIhff/3VoC7hBUDLLGy15XukDBs2DH/88Yf4gqI0NGPQoEFo3bq1apezFpQmjJlqe549eya2w+vXrxfvBf1r1c3NDcOGDTOYvZ01a1aDSRolSpRAwYIFMWHChBT//rV0sXZVKAMTHBxMACg4OFhTegAEgHLmzCluA6CdO3eqphXkzJkzBIDq1q0ri588eTI1aNCAhL9CCDdGlixZCAA1atRIFl6vXj1Znffu3ZPF//PPP2Lcw4cPKTIyUlN9SselxuzZswkAnThxQjWvqTIePnxIpUqVIgDk7u5ukD8+Pp5cXFwoPj5eDPv9998JANWvX1+xzPj4ePr999+pYcOGNGLECM3Hq4Zw/oX6FyxYQAcOHCAioho1aojHt2vXLgoLCyMioqZNm4r69+nTx+g52Lx5MwGgP//8k4iIfvzxRwJAFy5coLdv31KFChVo4MCBiudTuD7UZNCgQUbjleTz589m5zElwnnMlSuXQdybN29o/fr14r70XAvy5MkTsQw1efbsGb18+VI1/ttvvzVZnre3N/Xq1UvUefHixQZpSpQoYfJ4q1evbjR+w4YNsmvA3d1dMd2bN29Uy9i8eTMFBQXR5MmTKSYmRvF45s2bp5r/1atXREQUGxureG0p5dm2bZsYP3LkSAJAt2/fpqCgIIO0zZs3F7cXLFigqkeXLl0U7zkAVKlSJVlapeuHiChfvnxmX5OjRo1K1DUNQHyuGBOhfRPEy8sr0fUKYmtrSwBo6dKlsvMmtAv+/v5ERPTy5Ut6+vQpdevWjQBQwYIFNdcRHh5OREQREREm0+q3N8K9BICuXr1KAChr1qwG/59+ORMnThS3v/rqK5o8ebJifdeuXVP874mInJ2dZWFCm5wtWzZZ+FdffUVAwvW6ZcsWg7Li4+OpS5cuBuHv379XPY7379+rtvdERFFRURQVFWU0jTEAUOPGjU2ns7iGdIClRp9+IzN79mwqWbKkrBz9i6F9+/YEgOrUqWMQnyNHDgJAy5Ytk10spvTQN/rq1q0rK/f+/fuyeDc3NzHu4cOHskZZjaioKHr9+rVB3QIdOnSgokWLivtdu3YlAOTi4qKqt7SMqlWr0r59+4iI6N69ezRw4ECx0QKUjb7t27cTAHJ1dRXDvvnmGwJAuXPnVjwOHx8fg7r//vtvevfunZjmjz/+oPHjxxMR0eXLl2nv3r1iXGBgIE2cOJFiY2Pp0KFDqg2cVE9/f38CQGPGjCEiudEnpFG79oSGRsnoEwzC7NmzG9StdJ5NNcJaJCwszOw8psSYrseOHZMZfUpSuXJlqly5ssl6hIeakjg5Ocn29+7da7Ss8PBwWrp0qUF4sWLFrHJOzp49Sw8fPiQior/++ksxTevWrVXzb968maZPn05AwotmTEyMWfWvWbOGgoOD6ciRI7LwRo0a0cKFCxXzbNmyhYgS2pe+ffsSAOratSvdvXvX4vPQtWtXk+2HqWsrf/78Ztf7xRdfJPo/fP36tdl5Ll26ZJXrRyozZ85UPG/fffcdffz40SA8c+bMmssWjL63b98mSscrV64QYL7RZ4kQEfXr10/x/9ZvS03JypUrFcO3bdumehz79+9XbOsFihQpQjly5CAiomvXrtGNGzcU0/n5+VF8fDxdu3aNvvjiC4qJiRGfKWz0mcAco+/Fixfin6fv6StdujQBIDc3NzG9/sXQrl07oxe00gWqhjTdwIEDacaMGUREVKdOHYNyNm3aRKtXryYiogsXLojh48aNkxl93333HZUoUYKioqLIycmJHj16REREAwYMkOmjr5/avrOzM8XHx6vqLT0PZcqUISIyeAADCUZfr169aMaMGWKY4NVbtWqVGFauXDkCDI0+4U1S/y323bt3BIC6d+9uoJ/UwNm9ezcR/efBuHPnjsn/TdgWzt1XX31FK1asEMMFnQS5ffu2qEN4eDiFhISIRt+qVauISJvRFxgYaNLLB1hm9AkeXGuK1NOsL4sXL6YNGzZYpZ6yZctaTecJEyaI159UChUqZNVzc//+fYvybdq0SWb0Wfs/U5Pjx49btbyGDRsabfdMSUREhEWePmuI8LKX0jJ9+nRZGymVwoULJ6pswegLCAhIVDm//fYbATBot5T+76Qw+ix5MTAmQpuvdByCc0MNpTxxcXGix57oP+fF1q1bRQdLYGAgG31aMcfoc3R0VP2jpa56Af00bdu2NXpBK12g+ri6utKxY8cU03/+/Jlq165ttDz97iKl7pd79+4RAGrVqhURkfgw69+/v+iRFMqTuvaXLFlCT58+lZW1Y8cO6tu3L82ePVvxmIUwwehTOsdKXVyCR3To0KEGcblz56aAgADRADd1ntu0aUOPHz+mBw8eGD13/fv3J8A8o08QIa+a7N+/n2JjYykiIoJKliwp3tTSMrUYfVrFEqMvJcRaRp81pWzZsvTdd9+luB7GROj2P3XqVLLVmSdPHquXGRoaKm5ruZelMmnSpBQz+oSuwfQsERERRJTQW2KN8vSNPuE5JJXEGn1jxoyh+vXrJ+t/Lxi1QIKDAQDFxsaKz/SBAwfSrl27ZNe31FPco0cPAkAXL14kIqKLFy8SkHB9d+rUiQDQ06dP06fRd/36dWrevDm1aNGC+vTpQ9HR0WLcP//8QyVKlCBHR0fRWNGCKaPvzZs3lCtXLpPjFmxsbMRtIqJPnz4ZTf/vv/+avHgEnjx5It5gxtL/+OOPRrsmQkND6ezZsybrlXbJuLu7k52dnap+p0+fNlqWtBtMSX8hzFyjT2lMlSC5c+cWt8+fP2/yeNu0aaPpvxC2b9++rTmtVtm/f7+BATthwgRx+86dO6LRd+7cOdHo0x+HolX0PdUs6UuqVKmS4jpYQ6TecXPvK2EoBUvSSEREBIWEhFitPP3u3bQqwvAGYxIZGSk+34Ww8PBwcVttyMrWrVtFo++HH34Qw4cPHy72mqQro+/Nmzf0+fNnIkoYjCkdb/XPP//Q5MmTzS7TlNEnnFTpYG9TYq1ujsOHD4vbxYoVk+mjJGPGjLHKeJRZs2ZpSkdk2ugbPHiwuK1kOPv5+RHwn9HXokULq96A48aNs0o5X375pbitNKFA/7yYW77wBmhMhGuwZMmSotHHwpKepUyZMuK21naJJXkkIiJCHFLDYp6cPn1a7B43N6+npycBcqNPKunK6JMyc+ZMOnjwoLj/zz//UJkyZah58+a0fPly1XyRkZEUHBwsiq+vLwHKRt+5c+fEE1mgQIEUv1CIjF8gNWrUoJo1ayarTtYwMoH/jD5r6zd27Nhk/5+khm5SidSbycLCwpLcojaRgUWbjBw50qJnnmD0SXuC9MUUac7oe/nyJTVt2lTWvRsaGipOd27fvj1dv35dMa/a26KS0VehQoUUvzCkomVqfFoWYfC5NeX7779P8eNiYWFhYWHRF0u6tKWTMdXEFDqiFFo+3wJCQkLQpUsXrFu3DpUqVVJMs2bNGtja2mL48OEGcVFRUbKvVISEhKBkyZIIDg42+GB7avuGbbZs2RAZGZnSajAMwzAMkwLUrVvX6HfBAZj82EKa+SJHXFwcvv76a8ycOdPA4BM+GA0AHh4eqFChgmIZtra2sLOzk0lagQ0+hmEYhsm4mDL4tJBmjL69e/fi0qVLmDdvHpycnLBnzx6MGjVKjGvYsCGaNm2K4sWLo0WLFimsLcMwDMMwTOoiTXXvWpuQkBDY29unie5dhmEYhmEYY6Sb7l2GYRiGYRjGctjoYxiGYRiGyQCw0ccwDMMwDJMBYKOPYRiGYRgmA8BGH8MwDMMwTAaAjT6GYRiGYZgMABt9DMMwDMMwGQA2+hiGYRiGYTIAbPQxDMMwDMNkAGzMzRAUFARXV1f4+/tDp9OhaNGiaNeuHfLmzZsU+jEMwzAMwzBWwCxP34YNG9CwYUN4eXkhPj4ecXFx8PLyQuPGjbFhw4ak0pFhGIZhGIZJJGZ9e7dy5crw9vZGrly5ZOGhoaGoV68eHj9+bHUFkxL+9i7DMAzDMOkFq357V6fTISwszCA8LCyMjSSGYRiGYZhUjFlj+pYsWQJHR0fUqFEDxYsXBwD4+fnh/v37WLp0aZIoKGXKlCm4cuUKSpUqhU2bNiFr1qwAgNjYWHz77bd4+vQp6tatixUrViS5LgzDMAzDMGkJszx9nTt3xoMHDzBlyhQ4OjqiRYsW+PHHH/HgwQN07tw5qXQEANy8eRMBAQHw8PBAtWrVsH//fjHu2LFjKFGiBDw8PBAeHo5Lly4lqS4MwzAMwzBpDbNn72bOnBlNmjRJCl2McvnyZbRt2xYA0L59e2zatAkDBgwQ4wSjs3379rh06RKaNm1qUEZUVBSioqLE/ZCQkGTQnGEYhmEYJuWxeJ2+AwcOWFMPkwQFBYmTLezt7fHx40dNcVIWLlwIe3t7UUqWLJn0ijMMwzAMw6QCLDb6BgwYgGXLlhlNY8bEYJPkzZtX9MwFBQUhX758muKkODs7Izg4WBRfX1+r6ccwDMMwDJOasdjoO3r0KGbPno3x48cbGHdxcXHYvHkzqlatmmgFBRo3bozTp08DAFxdXdGsWTNNcVJsbW1hZ2cnE4ZhGIZhmIyAxUZfu3bt4O7ujkOHDqFnz56IiIhAdHQ01qxZgwoVKmDSpEno16+f1RStU6cOihQpAgcHBzx48AC9evXCqFGjAABdunSBr68vHBwckD179hQZc8gwDMMwDJOaMWtxZiX8/f3RsWNHAMD79+8RExODiRMnYty4ccidO7dVlEwqeHFmhmEYhmHSC6ZMOrNn70oJDg7Gxo0b4e/vj/DwcOh0Onh5eaFmzZqJKZZhGIZhGIaxMhZ37zo7O6N06dLYvHkzFixYgHfv3qFPnz5o06YNrl27Zk0dGYZhGIZhmMRCFlKlShXasmULxcbGysJnzJhBOXPmpMOHD1tadLIRHBxMACg4ONggDgALCwsLCwsLS5oRU1g8po+IVMe9rV+/HmPHjsWSJUswduxYS4pPFnhMH8MwDMMw6QVTJl2iJ3Ko4eLign79+qXqr16w0ccwDMMwTHrBlEln8Zg+U3To0AFubm5JVTzDMAzDMAxjBklm9AFA3bp1k7J4hmEYhmEYRiNJavQxDMMwDMMwqQM2+hiGYRiGYTIAbPQxDMMwDMNkANjoYxiGYRiGyQCw0ccwDMMwDJPG+f77702mYaNPhdq1a6e0CgzDMAzDMJrImTOnyTRpwujz9vaGg4MDHB0d0bdvX8TExMji3dzcULJkSTg5OaF169ZWqTM1f0mEYRiGYRhGiq2trck0acLoK168OFxdXXHhwgVUqFABhw8fNkjTr18/uLm54dy5c8mvIAMAqFy5ckqrwDAMwzAZEi0fWEsTRl+RIkWQI0cOAECWLFlgY2NjkObAgQNwcHDAihUrVMuJiopCSEiITNRwdHRMvOIZjCT6ol+iSGmdbt26laL1MwzDMBkDTY4XSkO8fPmSmjZtStHR0bLw0NBQioqKoqioKGrfvj1dv35dMf+sWbMIgIEEBwcrpldKy6IuFSpUMBrfo0cPi8v+888/LcqXlP+jv7+/yTSPHj1K8f+FhYWFhSV9y+DBgyk+Pt6kHZWqjL43b95Qs2bNDOTDhw8UHBxMLVq0oEePHhktY/Xq1bRhwwbFuMjISAoODhbF19eXAOsZfQsXLky2P/j777/XnHbq1KmK4du3bzcIq169usU6lStXzmi8lnN68eJFGjlypEF4YGCgybxK5VvyP2oVLWVLjb6mTZsaTVulSpVkuXaSSvLmzZviOrCwJEby5MmT4jqwsCiJ0vN12bJl4nZ4eLgmOytVGX1qxMbGUufOnens2bOK8VKjrX///nThwgVN5QYHBxNgPaMvICDAIKxu3bqKaXPkyGGyvAcPHqjGRUVFadYrPj7eIGzLli1ERHTmzBkxbMeOHbR8+XKDtFOmTDEIq1y5skHY119/rapDoUKFiIioWbNmBnGDBw+mQ4cO0Y0bN2TnPmvWrASAOnbsqOn/0E/j6upqEGZvb08AqFOnTrLwjh07GpTXpEkTatiwoXi+AJCzszO9fv2aXr16pUmnyMhI2U2pb1R3796dAFCrVq1o/fr1Zl9z1pI5c+bQzJkzE1VGoUKFUkz/pJZ27dqluA4ZVYYNG5ZsdU2ePDnFjzc9yaVLl1JcB2tKzpw5rVLOmjVrZPs1a9Y0mWf37t0GYdLntVbShNG3c+dOypcvHzk6OpKjoyPt3r2biIhGjhxJRETr1q2jBg0aUJMmTWjKlCmay7XE6Ktduzblz59fMe7Nmzey/b/++ku1nJiYGPr5558JMLTg69SpY1QHABQREaF6EY0cOZJ+//132cWgn//YsWNiHUK398mTJ8nPz88gLRFR4cKFDS6uDRs2yNLFxsYaGIMvXrwgAOTo6EhERO/evaPTp09Ty5YtKUuWLKLxpI+fnx+9f/+e9u7dSx8+fDB6LpSO09vbW/EcCkYfEVG1atXEcC8vL5o9e7YsbePGjalx48YEgG7evEkA6Pjx46rXSPPmzY3qRETk7e0ti583b55YrpLn1ZQI14q5+ZQaFLXhD1pFMOwTq4s5MmjQIMqVK1eS1/P06VOL8vXu3TtZz0dKSFJ7x54/fy7zaCSl3L9/P8XPZ3qS5GoPlF7aTYmPjw+NHj3arDy5c+c2mWbJkiXidvbs2Q3iPTw8iIhkDoDatWubLHfXrl0GYStWrKA7d+7Q/v37FZ+jSqQJoy+pMGX0DR48mFavXm1wERMpX8j6Y7yMGX1ERBEREbRjxw66cuUKAaAJEybQjh07yM/PT6zn9OnTYp65c+eK2+Hh4bLy9u3bJ26PHz+eiIj8/f0pMDCQiIhOnDhBrVq1EtNI+/5v3LhBAOj169eK+hIRFSlSxOAchIWFyd7Clc6NoKeTk5Plf5ReuTVq1DDZwEhZsmQJbdu2jTZs2EBeXl7k7OxMRESfP38WPbFeXl40Z84cWXmNGzemJk2aEJBg0L59+9ZAp3/++UfslnVwcCAAtHfvXqM6jRs3TgybP38+AanD6Eusp69w4cJW0UWrVK9enYiIqlatqjmPOd7IoUOHKv6PUmnTpo3RMs6fP2/WMR08eFA1zsnJKdnOrTmS1EZfREQEERFdvHiRXr58aRBvY2OjqRzBWyt415Xk3r17idK1efPm4otcYkXaXiel9OnTh0qUKEG+vr7UsmVLq5adXO3B1q1bLdKNiMjDw0MME56FamJnZ2c0Xr89Llu2LAGQ1SEQGxtLjo6OYj79siZNmkRhYWHivpubm0EP38qVK81+jqaJ2bspxZYtWzB69Gg8ffrUovz0/zNHIyIiYGdnZxCfLVs2DBgwQBY2YMAAFC9eXNz/8ssvxe1BgwbJypbO1OnRo4cYr9PpAADFihVDwYIFAQAdO3bEsWPHUKJECdy6dUtMAwB16tQBEaFo0aKqx1KqVCmDsJw5c2Ljxo0G4dWrVxePOym4e/euuP3hwweT6SdPnoyBAwdi+PDhaNSoERYsWAAAyJEjB1q0aCGmq1+/vizfunXrZOepUKFCBmU7OTnh3LlzqFevHmbNmgXA9MLewnWhv50vXz6Tx6LP0KFDZftdunRBZGSk2fmlx2ltli9frild1apVVeOk50mgadOmmsrNmTMnevfujREjRuDt27ea8jRt2hSbNm0ymubjx4+Jmh2udE81atRINX2ePHnMKr9kyZLmqqSJXr16idvVqlWTxUVFRVm1rnfv3iFbtmwAgGbNmhmcM3d3d1kbYGydsn379uHy5ctG64uPj0+EtgmULVvW7DxfffWVbL9w4cI4d+4coqKiZO1+UrB37174+vqiRIkSOH/+PPr165ek9SUFSs9XrTRv3lzcVmrjpZhqJ6XxuXPnltUREREhWzEkc+bM2LJlCwDlRZVtbW2RM2dO8fp3dHRE1qxZMWzYMM36KMFGnwbKlStnEFagQAGDMCJCxYoVDcKzZcuG4OBgjB49GoDhDS78qWqN+pUrV+Dt7S0Li4+Plxk/mTNnxi+//AIAijoACUaOr68vvvjiC8V4Yxw/flxz2syZMwP477iSknz58iE0NBR37tyxKL+gK5BgGH/8+BHu7u7w8/NDjRo1NN1UxYoVw/Xr19G6dWvxGjh16hR++uknAAkP95YtW4rp7e3tDcrQ6XRo3769YtzUqVMV661WrRrGjx8v7teuXRtHjx7VtEAnAFy+fBk1a9Y0CBcaov79+yMiIgJLliwR40JCQvDw4UN06NBB8RgAYOfOndi1a5cYPmHCBDRp0gSLFy9GixYtkDVrVkV99M91+/btjeqvxeDS6XS4desW9u3bh7Vr15pMr6aLEnnz5lXU4erVqwZhmTJlkv0vOp1OfDmSYuyY5s+fL27rv6Ao8eDBA7x//141Xn85IWFZLAC4ePGiaj6hnVFC6bz17t3biJbGUWpnpdjZ2cke+GPGjFFNmzt3bjRu3NhoeUrnf9asWXjx4gVOnTplQlugVq1aJq8d6YumWr379u0DAGTNmhWTJ082Wa812bx5Mw4dOpTocp48eWIFbRIQnBcCbdu2le0n5uVLiqn/LlMmbSbTvn374O3tLSsvW7ZsMkNQWl/RokXh7u6uWJa+QSt1tLDRl4zcu3cPt2/fxrNnz8QwIpI1pF26dJHlWb16Nfbv3y8+VAVq1aqF7du3w9nZWbGuhg0bom7durI/OFOmTMiSJQtev34NX19fAAnG3q1bt4w2fOayf/9+AAk3nZoRt3v3blmDaK0bUCu5cuWSGS/Sh5cpfvnlF8ycORMNGjQAkPAgd3BwEL2twk1u7jG1a9cO//vf/wAAL1++xPnz58W4GTNmiNvScnU6HW7cuIG+ffvKyvrmm28AAL///rtZOhjD0dERjRo1EuuXXltFixYFEWHnzp3Ili2bzBDNnTs3KleurOgNEMro37+/wYvNpUuXMGXKFFy4cMHAQye8vBARoqOjxXB9o69Lly7Inj27WccZFxeHChUqmJUH0N6YCvdErVq1xLAGDRrIDPWgoCB8+vRJ9l+reZSMHV/16tUNrsMsWbKops+VKxfy58+PmTNnGjwklRAMoi+//BIlSpQwmV4r+jpPmzbNamXrs3TpUrPzSK8zpfs8U6ZMKF26NNq1ayeGKRmAP//8M5YtW2ayPqVrS1pvw4YN4eDgIO5/8cUXBh5VY2zatAmjRo2ShW3fvl1z/mzZsqFhw4aKcfPmzdNUxsmTJy2679TqvHnzpsxLu3v3blkatfOzd+9eTXWsXLkSAAyMMgHh5VqtXfj5559RrFgxzJ49G0DCi46a80UJIpL956b47bffNKfVh40+CylcuDBq1aolc+Vnz54dOXLkEBePlnbTCvTq1UvR0/H1119r9tDY29uLhk3RokVlDfQXX3xh1a46aWP077//4sKFCwZp+vXrJ2sQU5JXr17h5cuXmtPb29tjzpw5qm9wwrm0RrePQLZs2VC+fHmZYSTUU65cOezZs0eWvlixYnj48CEmTJggC5caGqZ4+PChbN/Nzc3gOhHeKPWNe6G7euvWrWKY/rAEAGjVqpUmXSZOnAgACA4OhqurK2rUqCHGZcmSBceOHUOZMmXEMMHTcfToUYSHh4sNft68eQEYes4FvvzyS4vvBaUy79y5Aw8PD1nYhg0bsHz5chQrVkyxHCKCvb097OzsxHtJeFMXdOvYsaOYPl++fLh37x6CgoLw/Plzi3TXZ86cOXBycrJKWUps2rQJTZs2hY+Pj2K8tA3JnDkzfv31V8V0wcHBBi/K5mLJ/92nTx9xW3otCvzwww/i9p9//olvv/1Wsb378ssvkTVrVpM6COdDeh6k56hu3boGedzd3XHt2jWj5QooPWP0e5GELnq1Z47aMegbk0p06dJFsSfAUmbMmIHixYvLvLTCvS9QqVIlxTa6T58+ml7Yx44di6CgIFWjT6hP7bz89ttv8Pf3N/v61S+vaNGimD59OoD/hn8oecqFoVjs6Uth8ufPDwCq3VfWwpo3lDmUKVNGsWtCH7UHYHJQsmRJk11C5iDcVNb2Xvr4+GDXrl3iGBJ9F/6tW7dQpUoVcb9y5coyw/TOnTsyN3/27NlVPcWAejeZ1NM3fvx4bNq0STbGBUjoSgwPD5eNLVLyMOl7WQ4fPix6KaV069YNRAQ7OzuZB0o41507d8bz58/Fff2uzH79+mHHjh2YM2cOgIQXMCBh3Ixw723ZssVkF1Xnzp0NwrZv347Y2Fh8//33BnE1a9Y0eJErUqSIgTEuPRYpXbt2BQBxTI5gWO7duxfPnz8XvTHVq1eHvb29zPDVUj6Q4JF//fo1Pn36JAuXeh0Eo154WVy3bp3R8itXriwzGvTvhe7du8PT0xPly5c3KKdIkSKYNGkS3r17p5hXip2dnewaMzbGU59u3bqhTp06ABL+wxs3bohxu3fvxsmTJ8X9SpUqGeQXzk/mzJkRERGB4OBgAAnnQWoIjBkzRvF8DRs2TPzuu/5/M2/ePJlBIh2LLfTKCOdl2LBhil+Vyp8/v+w++O6771THsRGRTAelscL79+9HcHCw+L9oYceOHaovx0SEmJgYVK5c2Wg7lFi8vLywevVqWdiZM2cAaDeAxo0bZ/A1Lp1Opzi0RkD4f/S7mU0xcuRIo/GC0S0Yca9fv8b8+fNx6dIlMe/KlSsRFhamqI9FL7VmT/1IR5iavSsFejNvjMXdu3eP/v77b6vpKSDou23bNquXLeX06dO0ceNG6tWrF4WFhZmd/8OHD3Ty5EkiIoqLi6OqVauSm5tbovWSnmdj/4c1EWZMCjMIrU1cXBydOHFCMa5169YEgD5//iyGaT1uIZ0g+rO+BBYvXkxAwuxvc9Gv4/3792aXIS2rWrVqsrAVK1YQANq5c6fRvH/99RcBoI0bN9KkSZMISFgfzJTegwcPVp3Rp59W4NmzZwQkrFMpxcfHR5bW2dmZAMjWFo2KiqKPHz8aPRa1+qU6AKAGDRoQAIPlah48eKBYTnx8PPXp04fu379Ptra2svKEtSQPHTpEOXLkIBcXF3GWbJ8+fcT8o0aNIvz/DEdhlmOnTp1k9URHR6ueTwCk0+kMjkuaVroKgdr1JM3z8OFDk+dOn+joaOrWrZsYv2HDBgoNDTWYnW/qXpPqsXz5cjFcfz21uXPnElHCag0PHjygo0ePEgBasGCB+KWhXr16EZCwwL8xpDpVqlRJ8TwGBQXR+PHjCUiYPR4REUEnTpwwep3rEx8fT3PmzKFp06YRALp27RoRJSy5JZQhXOOmyhPSHDp0iG7fvk1///23ot5qouVc6Ifpxy1fvlw8J/Pnz9ekr/ABhE2bNtGMGTMIAB05ckRxvbzE4OLiYvbzZdOmTQQkLNVmLuzp00iuXLk0v3lWr17dpIVvCXZ2doiLi8PAgQOtXraUL7/8EsOGDcP+/fsVZxWZIl++fKI3MlOmTHjw4IFVvmV89OhRPHjwINHlmEObNm0AyCd8WJNMmTLJuvekWHLuBV6+fCnrbsuaNauil4US88ZoZfS9yFp16tq1K0qXLm22B3zs2LHidvXq1UVPkTGKFSuGsmXLGoyRUvJy6ZM1a1aDbilTqN3rwrkpXbq0bNJM6dKlVdPv3btXceyTra0tiAjdu3fH58+f0b59e9EDUaRIETG//oz/CxcuYMeOHYp6qSFcb2reIGl+oedEn9OnT6Ndu3bYt2+ftm+N6pElSxZxDK9QZ65cuUzO3NSK/jkQjjlbtmwGzxBh3JvSTG4ldu/ejUWLFgEAzp07p5iGJJ6+7NmzWzShTqfTYebMmZg7dy7OnTunOHFowYIFsLOzM7lagUD37t1lQ1KqVKkCLy8vs3UTWLt2LTZs2KAY9/XXX8v2J0yYgOXLl+Pvv//GlClTNJUvePul7VKOHDnQr18/xS54S2nfvr3Z/1Fi2m0bs3NkUIKCglLFg1Hr7KH0SGLH+1iCs7MzRo8ebXTAfFKxfv16HDhwwKyJKQJaHyLWvKYTU5a/v7/ZXScCRYsWxYsXL2RhSgauPtIH/7179zTVZWtrK5u8ZYrEnt9t27Zh7ty5RtN89dVX8PLywooVKzRdK1rOTeHChXHy5EnZWEBhkLowacrUUA9jS8b88ssvWLhwoUk9lPjyyy9lS1klFrXzMX36dPGlT4k3b94gMjISZcuWVRwq0LRpU5QuXdroxLq2bdvi8ePHuHv3LpYtW2byepFOoCpRogTevn2LzJkzo0CBAsicOTPi4uIAJIybvXHjhkUrNUjJnDmzbKyuviEeFBRkdpnC+f7xxx8Nlihq0KCB5rGLI0aMUI1bt24dfv75Z1mYTqczyxlTtWpVUVd9I2vr1q2K4z+Ti8QYfRnXgjCTzJkzZ2iDK6OSKVMmi9bPswYFCxbEd999Jwu7fv26Vb2do0ePxpQpUxJlUGudwGGMYsWKGRjWw4cPx9ixY9GjR49El69G586dZUuhWBstBpYpypYta7D2m7D8k9Do//777/j8+XOi65LSoUMH2WziwoULY82aNeJENVNYMrlLGDuY1Ms9abmm5s+fb3QCTJEiRVCmTBkQkczTK/wnPXr0wM6dOw3G0wrjQoVxhNLxluY+xAsVKoT8+fODiEQDlYhQpkwZuLu7i/+ftV7u9MvR9wAnpiwgYamgiIgIfPz40aIyBbJnz664HJWlCNd8UvX4mIswzlRt4okx2NNnBW7cuIFXr16ltBoZisePH6eI9y2lqVevnlXLy5kzJxYvXpyoMpJq4lLOnDnxxx9/WL3cO3fuiN2Xx44dM5r2xIkTCA0NNbuOpOwVEAzJYcOGiZNuMmXKpNkj7OrqisOHDyeJbsJxV65cGWvWrDGZTp9WrVrhwIED6N69e1KoJ1KtWjWsXbsWI0eOtPp/JXThq70s1q1bFw8fPrSoa9oYxo7DGi8f1sKYLkSEbNmyJcsar+YwZcoU6HQ6TRMZk4NevXph+/btFi2kzUafFahTp46m8UCM9TBnDSQmeUgNwx8EjOlijgdAbbxlasDX11ecuWwOTk5OSbaEi3Dea9asadQjmC1bNjg6OiI0NBQHDx4UZ7fqdDr07NnTKroMGjQI27Zts0pZ5tC6dWscPnzYqPdc3+AThhpYY2WG1GTgAQmLtXt6ehqEp6b2whS5cuUSv7gEpLzumTJlMhi3qDmvlXVhGCaDcPPmTfz1118prUaqZNCgQciXL59VB3zrU6JEiVTn7c6UKRNcXFxUB9hLcXNzg7e3N0qXLm3Rp8tMsXnzZsTExKjGC+MCrTE8QYpOp0O3bt3MGg5UsmRJEFGiuiSTyxC5ePGiWRMw+vfvj1WrVon7wicxpesjCqQ2g1WNqlWriovsjxs3LoW1MQ/29DFMOqZUqVJJNvSgdu3aqF27Nho0aIDw8PBEff8yvVGlShVN34VOj5j6fF5ykSlTJqOGlzAeL70wfvx4uLi4KI7zkhqE0glMltCsWbNE5c+VK5emlwIHBwfFTxUa4969e4iNjbVUNc3odDrMmzdP8xdKUhNpwuh78eIFGjRoIF4A+/btk830i42NxbfffounT5+ibt26iotbMkxG5O7duwgPD5eFWXvWWd26dRW/1JLRuHHjRqrzvKU29Bf+ZqxH+/btNRmxST1e0lIcHBxk44PVvkVrDHONxIxImjD6gIRvhQrfgdXn2LFjKFGiBDZv3owRI0bg0qVLBt/3BICoqChERUWJ+/qrcjNMekP/g/Rv3rxhj1wSweN6jfPq1asUmwmf0WnYsCHs7OwwZMgQ8bOGqYmGDRtaZOQlBZUrV8ajR49SWo0kI82M6fP09ISDgwOmTZtm8DZz+fJl8XNO7du3x6VLlxTLWLhwIezt7UUxto4Uw6RHihQpYtG6fwyTWEqWLJmoBccZy8mfPz+Cg4OxcuVKzd94T06kC6WnNJ6enrh161ZKq5FkpAmjr2jRovDx8YG7uzsCAwMNvqkZFBQkei/s7e1V1/hxdnZGcHCwKL6+vkmuO8MwyUfDhg0B/PctS4ZhUjdEJPvmckqTP3/+RC9qnZpJVd27AQEB6N27t0H40aNHxW6BXr164fLly7Jp/Xnz5hW7aoOCglS7EGxtbVPlWw7DMNahX79+aNOmjeonvBiGYTIyqcroK1KkCC5evGgQLl0c1d3d3eD7hY0bN8bp06fRokULuLq6Yvjw4UmuK8MwqRM2+BiGYZRJE927Fy9eRL169eDg4AB/f38MGDAAADBq1CgACd9k9fX1hYODA7Jnz44mTZqkpLoMwzAMwzCpDh2lp4WKzCQkJAT29vYIDg7mGY0MwzAMw6Rr0oSnj2EYhmEYhkkcGdrTR0QIDQ1F7ty5U/xbegzDMAzDMElJhjb6GIZhGIZhMgrcvcswDMMwDJMBYKOPYRiGYRgmA8BGH8MwDMMwTAaAjT6GYRiGYZgMABt9DMMwDMMwGQA2+hiGYRiGYTIAbPQxDMMwDMNkANjoYxiGYRiGyQCw0ccwDMMwDJMBYKOPYRiGYRgmA8BGH8MwDMMwTAaAjT6GYRiGYZgMABt9DMMwDMMwGQA2+hiGYRiGYTIAGdroIyKEhISAiFJaFYZhGIZhmCQlQxt9oaGhsLe3R2hoaEqrwjAMwzAMk6RkaKOPYRiGYRgmo5BmjL4XL16gYMGCcHJygpOTE969eyfGxcbGYujQoXBwcMCECRNSUEuGYRiGYZjUSZox+gDA0dERbm5ucHNzQ8GCBcXwY8eOoUSJEvDw8EB4eDguXbqkmD8qKgohISEySWo+fvyIZcuWpZpxg7Gxsbhw4UJKq8EwDGMWQUFBiI6OTpa6YmJiMG3aNISHhydLfclBSEgI5s+fn2qeRUzKkKaMPk9PTzg4OGDatGmyC/fy5cto27YtAKB9+/aqRt/ChQthb28vSsmSJZNc5/Hjx2PSpEl4/fp1ktelhYULF8LJyQnPnz9PaVUYhkkk8fHxWLRoUboyTtTImzcvunXrlix1nThxAgsXLsSaNWuSpb7kYO7cufjll1/g7e2d0qowKUiaMfqKFi0KHx8fuLu7IzAwEIcOHRLjgoKCYGdnBwCwt7fHx48fFctwdnZGcHCwKL6+vkmud2RkJICExjk18OrVKwDIEA8JhknvXLx4ET///DP+97//JUn5MTEx+PDhQ5KUbQmnTp1Klnri4uIAIEm9YuHh4ahYsSLu3buXZHVIiYmJAZC0x8SkftKM0Wdra4ucOXNCp9OhV69euHXrlhiXN29esas2KCgI+fLlUy3Dzs5OJkmNTqdL8joYhsmYxMbGAvjvgW5thg4digIFCiRJ2VLCwsLQu3dvfPr0KcnrMoekbL8fP34MHx8frFq1KsnqUIKNvoxNmjH6pMuquLu7o0KFCuJ+48aNcfr0aQCAq6srmjVrluz6meL27dsYPHhwkt9wJ06cQKVKlUym4xufYdInjx49spoRePz4cc1p/fz8EBUVZXE9Bw4cwLZt27B//37odDqLjuHs2bPw8fExmS48PBzTp09XrUPwvplz/Nu3b8ezZ8/E/ZiYGIwePVrVkDXVBhcrVgx79+7VXL8p2AHBAGnI6Lt48SLq1asHBwcH+Pv7Y8CAARg1ahQAoEuXLvD19YWDgwOyZ8+OJk2apLC2/yHcaCNGjMC2bduS/MabNm0anjx5YnH+S5cuWX2CS2xsbIp0EUVGRuKPP/5gA5dJt+hf21FRUahSpQqmTZuWJOUbo2TJkhg4cGCi69uwYQMA9SEo8fHxYverPl9++SUqVqxosp6//voLCxYswIkTJxTjX7x4AQC4c+eOBq0TGDRoEBwdHcV9Nzc3/PXXX/j9998V0wvnVu2Z8ObNG8yaNQsA4OXlhcmTJxukuXDhgtmTW7g9zNikGaOvQ4cO8Pb2hoeHB7Zu3QobGxv8/fffAAAbGxts2bIFHh4eWLlyZZLrsnTpUhw+fFhTWuGGTi1j+kwZnc2aNcPXX39t1TrHjh2bLF1E+ixbtgzjx4+Hh4eHRfkDAwPh7+9vZa2Y1EpsbGyyPxCvX7+OKlWq4NOnT3BzcwMAcWUBtbHJSixcuBDAf9290uEvicHc8/HPP/9YVI9Su+Tp6SnqIEzUA4BWrVrBxsYmUXULRmOPHj3MOs+mCAsL05zWlNEnpUuXLgbGY0BAAJycnPDLL7+Yp6Qenz9/hk6nUxwvGRERgfnz56sa2UzKExYWBp1OB1dXV03p04zRl5qYMmUKevTooSmtcEOnpbcrLd0jISEhqrOk9XFxcUmsShYhdLVY2tVVuHBhlChRQjEuLCws1Rjy6YnY2Fizv5ATFBRkla/qZMmSBYsXL050OUqUKVMGM2fORHR0tGz2pJOTEx49eoRu3bqhZcuWePHihbi6QP78+c2qQ9q1aK32xtxyhPT6BrSXlxfOnz+vmk8wvCZOnCiGderUCdHR0Vi5ciXOnDkjhqstOdWqVSuzdBUICAgwCNu8ebNiOp1OB51Op2rcEREuX74sM6CICEFBQQbtpdTo8/DwQGBgoFl6C5MEBa+kpQj1btmyxSBu1apV+OWXX8xqw5s3b46DBw+K+7du3YJOp8PLly8TpWdG5fnz50adTML1u2PHDk3lsdFnBteuXcPu3btV4z09PUV3vJubG3bs2CEafdI3JT8/PxQpUkSxsUkspt4ahYZGvzH38PCAk5OTYhyQ0NA+efIEdevWxadPnzBw4MBUOXYSSDDIDh06hPXr14thp0+ftsoMx4kTJ0Kn0yF37tyYMmVKostLKjw8PNLUi4bAwIEDzZ5glTdvXhQpUiRR9QrnSvqwsiYvX77EvHnzMG7cONSvXx+fP3/Gs2fP8PnzZwDAv//+CwAGnuXw8HAxjSnKly+vycPn6uqKAQMGGIQTEQ4fPozy5ctDp9MhICDAYqMvS5YsmDRpkhjepEkTtG7dWjXfmDFjDMoAgJUrV8oMQSkRERFm6aakp/62PtL29O7du+L2y5cv8fDhQ+h0Ojx69EiWp2nTpujQoYMsrGfPnqrtpU6nQ4sWLdCyZUuzjkHQLbHjNxcsWKAaJ3Qdm/OC6+npKfs/BQ/UjRs3LNRQmfPnzyvOfH769Km43b17d9lzILm5f/9+osto3LixUSeTufcoG31m0LBhQ/Tv31813sHBAXPnzgUAtGzZEgMHDhRvTOmb4ZEjR/D27VvZ2yuQ0PBv27bNKroGBATAz8/PIFztBpg4caLRRZudnJxQqVIl3Lx5E66urokaNwgkNIwzZ85MVBlAggHt7u4uC3NwcEDPnj1lYe3atcPUqVMTXd8ff/whbh89ejTR5SWGW7duKXZNnTp1Ci1atMCRI0cSVb45azkWKlQIO3fuTFR9ALBnzx6L8plagoiIFB9cp06dwu3bt8VjTeoxt2vXrgWQ8DCVDjt4//69YvoSJUogV65cquXpN/iC0UhEWL9+PS5fviyLv3PnDtq3b49du3YhLi4Ojx8/FuMyZcqEHj16iB7DcuXKycqPjY3FmjVr4O/vj48fP8LFxUWMVzI8tm7dCkDuSWvXrp2s3YuOjjZ6zo0ZvN99951qnDE+f/6M1atXa0prTDfhWhW6oQHlB7BOp1NsL/W7d6WeWlN6EJFYr3T5Mmn8gwcPjJYhYMwoMqcL2hTWfglt3bo1atasCQcHB9G4un79OipUqCB6xo4cOYIRI0bI8u3Zs0fR67xw4UI4ODhYTc+DBw+iRo0aBvegMU6ePIlPnz5Bp9OJTgWhbdD/P/XR+h+x0WdFjF0sSoNt9dPXr18fgwcPNqvOgIAAFCtWTGzshT++aNGiSbb4tHRxbP23XK1cvnwZ8+bNAwA8fPhQPD/v3r3DtWvXZGljYmJU3+rr1q0rGzwNGI5nSoseLyldunSRGeTCg7BOnTqK3pO3b9/Kfi3By8sL5cqV09yt8+7dO9HLrc/Ro0dx+/Zt1bxv3rzBrl27zJopaQ7Pnj3Dd999h8yZMxvEdejQAbVr10b58uUBJO7hFhoaikaNGuHKlSto2bIlwsLCEBYWpthYr1u3DkOHDjUI16/f1BIm+te2kP/8+fMYMWIEmjZtKov/4osvxO25c+eicuXKqhO3IiIiZOXv2LEDY8aMQYkSJZA/f3507NhRnF1as2ZNRX2AhLZI4PTp0xg9erSsDn2k58DYvXvgwAFx25w1V3/55RdZV6OawS3V5fbt27JxhQAwe/ZsAAmTDJcvXw7gvzGVUtSOQXgJMXbNqcVt2rTJ6NjrdevWoXr16ortszntoTStJeMVAeu+SLm4uBi8vF28eBHz588HANHRIX2Z0eerr75SbDenTZuGixcvwsHBwSDuxYsXKFasmOzzr6YQjHhzxoV36tQJgwYNApAwdwD47/xVr15dMQ97+qzM6dOn8fHjR6MNgzH0L/j4+HjVm0DrgsmnT5+Gl5cXgARPxZs3b3Ds2DGT+aReIX9/f8TFxaF3797o3r27Qdpbt26JDYb+RfX8+XMxrEqVKvD09AQRKY7ZOHLkiLggtIDUAI6Li0PVqlXFmWkODg5o2LChLL2DgwNy5MiheEzm3ISmePnypVmDwZXevo29rVvK8ePHRa/Ghw8fkCtXLmzatAlAgufGzc0NNWvWVO26N0VoaKjifwwYbzz1Uau3W7duqF27tphG2iUTFRWFHj16YMCAAejSpYtZeqtx69YtnD9/Hj/++COAhG5PwcNmisQ8oC5evIirV6+icePGcHNzg6enJ/r27avYWKvpo7X+V69eYdasWQbnXBjnpQXh5cjYMivS8pXaJ2FWfmKNC0vyCRMQzp49i1KlSsnipPrs2rVL5jHUN16cnJywfft2AAkvo0oe7hkzZqjqsWnTJvzwww8A1NtwLYadWpqrV68atHP6bao+wnCB4cOHG01nSkfhv/jtt9+QO3dug2FK8fHx2LRpE7p27aqYz5p4enqiY8eO4uxuKbt378bLly/FblAisnj5IKnnVqBs2bJ48+aNQa+SOeh0OsWxovok9de72OgzQmhoKNq1a4f8+fPLvvVrCumFoX8jSY0KtRsjODjYaPnt2rUzWJZm48aNivVJ+f7778XtDh06YMKECThw4ACOHDliMN6iTp06qFKlCnr27Kl4EUqNgVevXmHZsmUoU6aMQeMkrJ8opVOnTuK28NYmPICkjfW1a9cQGBiIK1euqB6TtdDpdChTpow4GFzL25n+uV6xYgXKly+fKA9bXFyc+P9v27bNoIteeMiuW7dODJs+fbri2BYtBkRoaCjs7Ozw119/WayzPseOHVM9f9u3b0fNmjVx69YtREZGIlu2bFb7fwcNGoQzZ86IHtAlS5YYpHF1dcXZs2fRpUsXXLx40SA+UyZ5k/jo0SPUrFlTfJifPHlStbtGqXv7+vXrimml444sYejQoZg7d65B96c5PQVavPTSNkqpt0LpxUdAbRyYTqdDZGQkli5dqphGOgtRy1JPSuOsq1SpgiJFisDPzw8DBgxAy5Ytxf9CqU0SrsGmTZuiXLlysrjBgwcb/Oda7i3BUaCW9s8//5TFKz0PPnz4oDhMQz9tUFAQIiIiDIyKS5cuic8cS15ohG5TYRKKUG9YWBhKliyJ3377DcOHDzdwOmgx+s6cOSNeCwIuLi6qS9wIbfOkSZMU758VK1bI9nPnzm1SB2PExMSAiGTXYO/evUVP4O3btw0W1o6Pj8fx48dlxyQ9F9OmTRP/d61I/7eQkBBVo1Dz/0sZmODgYAJAwcHBBnFBQUFUoUIFAqAq+hhLK4iLiwutXr2aANCiRYuoc+fO9PnzZ1n+wMBAo3pL69+8ebO4X7RoUaM6du7cWRZXqlQpRR0rVaqk6VgEadeunbi9aNEiWZ2NGzcW454+fWpwnqKjowkANW/e3ODYjB3L9u3bZXGhoaFkb29PN27cMMh35swZ1f9M6b8jImrQoIFinkyZMsnOk5QhQ4YQAHr06JEs/MWLF9SpUyeKjIxUrPuff/4hPz8/mR5z5swhAPTFF18QACpdujSdPHnS4Nh0Oh01bdqUAFB8fDwREW3cuJEA0N9//616vAJ+fn4EgHr37i0LHzNmDAGg5cuXG81/69YtioiIIABUrlw52TEICPsPHz6kGTNmEABydXWljx8/ar63lMiUKRMNGzbM6LU5d+5c1bi8efMahDk4OIjlDxgwQAy/du2a7Fjmz59PUVFRMn169OghK+vUqVNUoEABs+6ls2fPGj0fHh4e9Pfff5OTkxMBoEaNGpks8+3btwb/hVSE9kYpzsbGhgBQ+/btFePXrFkjy2tnZyfbf/v2rUGeQoUKkbOzMwEQf9Wkbt26Zp0/fXn27Jlsf/369Yrpxo4dq3oOlOT+/fua006fPp1KlixJAOjNmze0ePFiio+PF+MnTpxIAChbtmwUExND7969k+kybdo0g+tg5syZsjp69epFP/74o6jbhAkTxLi5c+cSEdEPP/xAAOjSpUtEROTv709v3ryRlaPT6ejq1asUHR2teD5iYmKIiCgwMJAAUNeuXQ10A0D58+cX9//3v/8RADpw4IDsfunZsycBoNevXxMRic8CaVlSpHrUqlXLrOtAQHrepYSGhhqkB0CTJ09WfB4KtoN+OdOnTzdIu3fvXgP9w8PDxf+gdu3a1K1bNzFNnTp1xHTnzp2T5StfvrxBnQ8fPiQANHToUMXzZnAeNaVKpxgz+g4ePGjyQhKMt6ZNm9KxY8c0XXzHjx+nVatWEQAqU6YMAQmG4PPnz8U0I0aMoLi4OFEXADR79mwKCQmhqKgo2cW2cOFCTRc7EVGnTp3MulEslZCQEJnuSjeTIMLxCEafYFQp5e3Tp49Yrv7D7siRI+KFr5/v9OnT4nZMTAwBoIMHD9L169fFm09fxypVqiiew8yZM4vhlStXpoCAADFOMPoePnwoyyMYUNevXxfDwsPDyd/fX6y7ePHiisesRbJly0YAxGtGMPrWrl0r08PLy4t++OEHWZhg9PXq1UsMu379uli21Oi7efMmde7cWTQuBX0Fw6ts2bKyY9C/BnLkyCE+JE6fPk0fPnzQdN0K3Lt3z+i1ZS1RKn/UqFEGYevXr5fpZw2jT02mTZuWqGP+8OGDav7AwEDxvtAXwehTk7/++sugXOl+zZo1E3Xc1apVS1T+p0+fakrXr18/s8o1x+hTktevX4vbgjGWPXt2GjdunME5lL4479q1ixo3bmzQzlWvXl28/m7dukXjx48X4+rXr09E/xl9Z8+elRk/SuLs7Kx4vYSGhtLatWtFY15q9IWFhYnGU758+cT7QjD69u/fT7dv3yYvLy8ikht9UiMKAH3//ff05MkTIiJyc3OjX375RRZv7nVFlGDw/fnnn2KYj48Pubm5KToKhGMvXry4YnnLli2TpTXWJu3Zs8cgTnjuODo6GtQpNfrURHjZIkp4EQQS2mEtsNEHy42+evXqidtSD5Axkb6hlS5dmoAEo08/nXCjSN9+9EX6NmfsYhfo2LGjWTeKpXLkyBGxTrWbSRDB6CtSpAgRkfiQUcorPR59o+/7779X1UfJS9GmTRsCQFWrVjVoAPXrliI1+gRxd3cnIhIb4n///VeWRzD6fvrpJyIiOn/+vGJdasesVUwZfYUKFSIg4cXj8ePHRPSf91dq9EnL/PXXX4mIKCIigooUKUIAKCIiQpa2fv36qsejdkynT5+m9+/fqx7LixcviIjo06dPYn0AqHXr1kSU4D1Nquu3QIECdOXKFVlYly5dDI5FaHjv3r1Lr169Eh9igixevNiqeiX2+pAaGlI5ceKEah6l610qHTp0oIYNG8rC1q1bZ7VjFl6MLZUnT54kyTUi7WFJ7H8xfPhwAkBZs2a1yn/dt29fGjFihCxs/fr1spcS/WtV6X81poPggZIafba2tqTT6cT9kiVL0oULF2jRokUEgHbu3Ck7PuH5d+3aNRo5cqRiPWo6ZMmSxaJzI7T7pkSoV/DQ6ovU6Nu0aRNt3LhRVdfdu3cbxHXu3Jnc3NxkYYLHrnbt2pp0rFatmqxcNvo0kFijr3r16hbfmFI5deqUatzVq1cTVTYR0bNnz+jNmzcGjXNSiouLC02ZMsUgXN84lnZJE5HY8Om/+QkieEkTK2o3M2DoHYiNjSUioh07diimb9euHf3000+iV+LYsWOya0naoPn6+sryCt2dwvEn5pjCwsLowYMHsnMrRT99XFycuN2zZ09yc3OThQkSEhIi2xeMMOEN0xKjb/HixXT79m2jx3PgwAGDcvPmzUtElOhuP1Oib2woGX2rVq2SXSvdu3dPUp1MGWCmROq91ipaX2ZTqwjeLWuL1ECzRMqVK2c0XsvzJ6nFWHskPLOaNWtmshz9rmhTZUtFyQuXGNHqOQ4PDyfgP8eMvixfvtwgTGgP9WX37t2KnlX9NqZw4cIEaDf69GX48OGa7B42+qBs9OmPGUtK2b17d5KVTZR03WDWFulDPjXJ6NGjzT6PREQxMTF09OhRo+mk4yoT+19J37oFOX78OEVGRioay1OnTjUIy5Url0GYfteXh4cHhYWFKeoQEBAgOx5rXX/Scjp06JDk/7l+Y69k9OXPnz/J9WBJnJjbbcvyn1jr3lUa55ZWnktqnmZhHKYW2b17t+LLtL7Y2dkRYHpIhZqkO6Pv+vXr1Lx5c2rRogX16dNHHGhKlDAQvkSJEuTo6EitWrXSXKYxoy85Lyz9sUDWFEvfGljkYu41sXv3blqyZIlZeYyNcUuMqBlJJUqU0JRfvyu9aNGisnF/UpG++d+6dYu2bNmS4v+dNaRLly4GXb4sqV/69u2b4jqkVZGOhU6MKPX4JPcz1lIRvG+JkV27dlFsbKzJdLlz505UPd98840muyfNGH1v3rwRZ7k6OzuLM2KIEoy+yZMnmywjMjKSgoODRRG62lLa6GNJ/WLuGJ5cuXKJs+lSWqpWrZriOqQHUZodz5K6pU+fPimuA4uhZKRn7M6dO1UnSllbPn36ZNIOSjPr9BUpUkRcoDdLliywsbGRxR84cAAODg4Ga/VIWbhwofgxc3t7+yT7YgWT/lD6eoIxwsLCsHjx4qRRxkyEhVqZxPHmzZuUVoExk3379qW0CowClStXTmkVko1Pnz7Bx8cnWeoSFu03ikZHW6rh5cuX1LRpU1n3bmhoKEVFRVFUVBS1b99etjSGFPb0sbCwsLCwsKRH+f33303aUHJ3WSonJCQEgwYNwqZNm5AlSxYxXPpB8q5du+L27duoV6+eQX5bW1vY2tomi64MwzAMwzDJhZbeiDTTvRsXF4evv/4aM2fORKVKlWRx0g+Ge3h4oEKFCsmtHsMwDMMwTIqhZShPmjH69u7di0uXLmHevHlwcnLCnj17MGrUKDGuYcOGaNq0KYoXL44WLVqksLYMwzAMwzDJx/Hjx02m0f3/+LUMSUhICOzt7REcHAw7OztZnCUfp2YYhmEYhkkpTJl0acbTxzAMwzAMw1gOG30MwzAMwzAZADb6GIZhGIZhMgBs9DEMwzAMw2QA2OhjGIZhGIbJALDRxzAMwzAMkwFgo49hGIZhGCYDwEYfwzAMwzBMBoCNPoZhGIZhmAwAG30MwzAMwzAZAKsZfd7e3tYqSpUpU6bAwcEBX3/9NaKjo8Xw2NhYDB06FA4ODpgwYUKS68EwDMMwDJPWsJrR16NHD2sVpcjNmzcREBAADw8PVKtWDfv37xfjjh07hhIlSsDDwwPh4eG4dOlSkurCMAzDMAyT1rAxJ3Hfvn0Vw4kIHz9+tIpCaly+fBlt27YFALRv3x6bNm3CgAEDxLjOnTuLcZcuXULTpk0NyoiKikJUVJS4HxISkqQ6MwzDMAzDpBbMMvrOnj2Lbdu2IVeuXLJwIoK7u7tVFdMnKCgIxYoVAwDY29vLjMygoCDY2dkpxklZuHAh5syZk6R6MgzDMAzDpEbMMvqcnJyQK1cuODo6GsTVqVPHakopkTdvXtEzFxQUhHz58mmKk+Ls7IxJkyaJ+yEhIShZsmQSas0wDMMwDJM6MGtM38GDBxUNPgA4deqUVRRSo3Hjxjh9+jQAwNXVFc2aNdMUJ8XW1hZ2dnYyYRiGYRiGyQikmSVb6tSpgyJFisDBwQEPHjxAr169MGrUKABAly5d4OvrCwcHB2TPnh1NmjRJYW0ZhmEYhmFSFzoiIksyHjhwAL169bK2PslKSEgI7O3tERwcbOD10+l0KaQVwzAMwzCM+Zgy6Sz29A0YMADLli1LVOUMwzAMwzBM8mCx0Xf06FHMnj0b48ePNzDu4uLisHnzZlStWjXRCjIMwzAMwzCJx2Kjr127dnB3d8ehQ4fQs2dPREREIDo6GmvWrEGFChUwadIk9OvXz5q6MgzDMAzDMBZi8Zg+AX9/f3Ts2BEA8P79e8TExGDixIkYN24ccufObRUlkwoe08cwDMMwTHrBlEln1jp9+gQHB2Pjxo3w9/dHeHg4dDodvLy8ULNmzcQUyzAMwzAMw1gZi7t3nZ2dUbp0aWzevBkLFizAu3fv0KdPH7Rp0wbXrl2zpo4MwzAMwzBMYiELqVKlCm3ZsoViY2Nl4TNmzKCcOXPS4cOHLS062QgODiYAFBwcbBAHgIWFhYWFhYUlzYgpLB7TR0Sq497Wr1+PsWPHYsmSJRg7dqwlxScLPKaPYRiGYZj0gimTLtETOdRwcXFBv379xG/ipkbY6GMYhmEYJr1gyqRLss+wdejQAW5ubklVPMMwDMMwDGMGSfrt3bp16yZl8QzDMAzDMAyAcePGmUyTpEaftfD29oaDgwMcHR3Rt29fxMTEyOLd3NxQsmRJODk5oXXr1imkJcMwDMMwTMrQtWtXk2nShNFXvHhxuLq64sKFC6hQoQIOHz5skKZfv35wc3PDuXPnkl9BhmEYhmGYRODo6Jio/JkymTbp0oTRV6RIEeTIkQMAkCVLFtjYGK4pfeDAATg4OGDFihWq5URFRSEkJEQmDMMwDMMwSUHBggU1pRs1ahQ6deqUxNqkEaNP4NWrVzh79iw6d+4sC69fvz4ePXqEc+fO4dSpU/D29lbMv3DhQtjb24tSsmTJ5FA71dGwYcOUVoFJ5ZQqVSpR+QsUKGAlTRiGYdIuFSpUAACULl3aaLq//vor0XVpWXUkVRl9AQEBaN68uYF8/PgRISEhGDRoEDZt2oQsWbLI8uXKlQtZs2ZF1qxZ0bVrV9y+fVuxfGdnZwQHB4vi6+ubHIeV6rhy5UpKq5BueP78eUqrYBGLFy82Gp/YaySxn2KsVatWovIzDMNoYejQoUlafr58+TSnbdy4caLqUuoFNcCqn7hIImJjY6lz58509uxZxXjpFzX69+9PFy5c0FSusS9y9OjRw6LVsF+/fm3V1bXv3r2bJCt2W7tMrdK7d2+Tadzc3KxS16pVqwgA2dnZWf04WrVqRS9evLDoXFr7GjEly5YtMwg7ePCg0TzR0dGayh41ahQBoA4dOsjCW7ZsqSm/o6OjYvjhw4etcuze3t70999/J+v5Tmlp1qxZiuvAwpKcUrZsWbPznD59mho3bmyyLTRX9O+/kSNHEgAqXbq0GFatWjWDfAKJqdvDw8Ok3ZMmjL6dO3dSvnz5yNHRkRwdHWn37t1ERDRy5EgiIlq3bh01aNCAmjRpQlOmTNFcrjGjj4ho5cqVBICqVq2q+aQTWfanZcmSRTE8Li5OMbxx48YWXxhERIsXL07Sm1BJcuXKRTt37lSNnzdvHsXFxVl8DvVl3bp1BIB2795tUX59Q+bbb78Vt6OiosTrxJLzn5znXam+K1euqF5zpnSU5tu7d6/iuWrVqpUm3ZycnBTDjxw5Qv7+/pQ3b17VvAUKFKDp06ebPHbpseTJkydZz31KSHJfX9aSH3/8McV1SG0yZsyYFNfBHAkJCUmResuXL280ft++fQZhAtY0+oiIPn36RE2bNiUAVKpUKfr8+bO4LaTr16+fqj6JqV+L0ZequnfV6N+/Pz58+AA3Nze4ubmhX79+AIC///4bAPDtt9/i6tWruHTpksluK3MgMz9Wcv/+fQDAsmXLAAAjR44EAJw4ccJk3vbt28v269evD0B5Nk6XLl1Qo0YNs3TTZ8qUKYiOjkafPn1k4QMHDkxUuaYwNuZg6tSpmmYfSVEalzl16lT8/vvvGDJkCJYuXYrevXubrScA9O3bV7Zfrlw5cTtr1qzitjljMerUqaMYPm/ePDO1SxwNGzZUvb5XrVplNO+CBQvg6emJy5cvi2H6/6tS2W3atDEIk6bbtm0bvvvuO7G8YsWKiffU8uXLDfK+e/cO8+fPN6qrQO/evTFkyBB8+vTJIO7QoUMGYV9//bWmco1x7NixRJeRmpg6dapi+J49e6xSPn8FyRBzrsPdu3dbpU4bGxu4uLjgzz//FMOqVauGzJkzK6a/evUqAOCPP/5A7ty5LapTqW0wxd27d8Xt/v37W1SvVsxZczhPnjzw9PTE5s2bce/ePXESqpTEPr8ThUmzMB1jytO3YsUKAv7rwjIlDx8+JCKi7du3EwD6448/xLJKliwpplu/fr1B3iVLlsj2P3/+TO/evSMiQ8s/ODhY5nUyJlmzZpXtN2/eXHaM7969k8X/9ddfBIAmTJhAxYoVE8PVPCq5c+cmALRgwQIxrEKFCoppt27datTrJkUtTf/+/alr167ifrly5cTtAQMG0KVLlxT/Sy3nSl82btxIAGjw4MH03XffUVBQkKKuRES//PILAaAcOXIYLbNOnToG+lSqVIni4+Pp0KFDNG7cODF8//794rVXv3592XF7enrS999/LyvH1taWRo8eTUOGDCEgwUP94MEDWX0zZswQ9b927ZrR/6FPnz4m/yfB09epUydZGmn37r1794iIqE2bNrI0hQoVomHDhhEAmjNnDhER/fPPPwSAHj16ZHCOP3/+THXr1jXQw9j5NnUtXL58mYgShpBIw6X/g6Xy8eNHk2mOHTtmVplKHgulY9aS5uuvvzar7vnz54vbu3btEre1DgUwJT/99JNiuPQeT2uSL18+TdeBmly/fl1zWv22XJACBQrI9jNlymS0nCxZshAR0Z9//imGxcTEqP7P0dHRmtpanU4nbh89elQW9+rVK1neNWvWGOSPioqS7d+/f1/cnjt3rtFjOnDggIEuAlJP36RJk8RhQVI5e/YsRUZG0r1792j//v2q9ahhb28vPk8A+b1048YNCgsLE9NGR0fTjh07LLpe0o2nL6VxcnISt7Nmzar6Zkv/77UQ3lhJwdtBRPjmm28MwvXfcnPkyCHOgHRxccHZs2fFODs7O1SsWFGW/sKFC4o6ffvttzh48CCio6Px+fNng3Rqb9dffPGFrL7mzZsDAGbNmiVLd+DAAfTu3RvOzs5imHTgapcuXQAAzZo1w6BBgwzqGz16tGL9+gh6jx07VjVNkyZN0KRJE8W49evXY+vWrZrqEhDebFu0aIE1a9bA3t5eNe3cuXNBRPj8+bMY9uOPP4rbz549A/Df+fbz88ObN28QHh6Ou3fvQqfToXv37pg9e7aYJ1++fFi1ahXevXuHa9eu4ciRI2Jc06ZNUblyZZkO1atXx+rVq9GjRw8AwKBBg1C1alUAgKenJ7Zt24Z58+aJ12X9+vWRJ08eWRnSWbs//PADgIQlkwBgzJgx4lu9QNmyZQFArEeJ6tWrA4CBF+D+/fvicgbCPebk5ITo6GhUqlTJoJwcOXJYfUkDYeC0vhcjsV4nIkLevHlNptNfiQAw7t3R6rVWanv0Mfd+yJEjh7iOWIcOHcRw/Yl1ArVr1zYI++uvv3DmzBn89NNPmr0z3t7e8Pf3N0tXgVatWuH48eMW5QUALy8vi/MCCT0R0l4BczE141OK9P6qVq2auP3LL7/I0hUuXNhoOUrXvo2NjeL/HBISovr/6z/nWrZsKW4L953gBdNf1kTw+EvRP4/SXp78+fMDSLiP9fVxcXFB586d8eOPP6JXr14AjN/f33//PR49eiQLK1WqFGxtbVG9enX06tULT548EeN2796NW7du4c6dO6plBgUFYdiwYbKw3bt3w9XVFXXq1EHOnDnF8CxZsmDAgAHivr4uAHDmzBkAhm2qJkyahekYrZ4+6Vvt7NmziUj5bebff/8lIhLHra1YsUIsq0SJErI3Af28S5cuNfrGEB8fL4uLjY2VDdBXewsbN26c0XPw/v17WXrB07dx40bR09emTRs6efKkePxqZQvhp0+fpsqVK9OlS5fo06dPBICaNm1KRER79uxRrE//mPWPg4goICCAiP7zLgEJXoDmzZsTIPesqqFf5ps3bwzGowkSFRVF06dPp8jISFn+Bg0aGK3D39+fnjx5QkREfn5+NGbMGPH/q1u3rtG8Uq/A+fPnDeLd3d1pwYIFRETk4uJCQMJYqIULF9KHDx+IiOjBgwfi26kpXrx4IY5dHT58uCzuxo0bBPzntVMrz9fXlz59+kR58+al7NmzEyAf0yfw/v17Wr9+Pc2bN088NmdnZwISJu9oQXqdCyj9d8+ePVMtQ0hTq1YtxXAANH78eLPesNevXy8O2Damm62trcE1KGzXrFmTnJycDPIJnvNevXoREVGlSpXEOCWPv7HzYk4apTaqffv2BEC8r/WPQSqLFi1SrZeIZO0qoO7pi4mJMVtXQdatW0dERPXq1TOaThh3paSv/pivf//9V3P9r1+/NtBdeBaYkq5du2o+7pw5c8rSSreF5xgA+vDhA7148ULWjitdo0RyT5/a9aKEg4MDAYbjEaU9B5GRkQQk9GZIETxganVFRUXRx48f6eDBg7I0sbGxYhlK95gUIMHbKeDh4SGmnTRpkhh+8OBBsT4l3r59S48fP1aMU0PwcM6fP99k2gYNGtAPP/wg6qx/TBMmTKALFy7Qli1bxPCLFy+aLJeNPphn9Ako3SxPnz4lov8exlu3bhXTFy9eXJb/33//lbmJTRl9RET169dXjdPXycbGhgDTRp9+14PU6Lt06RIBCV1QJ06cIEBu9KnVL0XoNhOMPqnBBkA2sUOprCVLltDvv/+uerxTpkyhbdu2EQBauXKl0WMlIrp48aJBfWqzO5VYu3at2BVhLgBo2rRpRtNIB0IHBgaaLFOpG5QooStUK8+fPycANHPmTFm4t7c3AaDvvvuOIiIiNJUVFhZGgLLRp0RwcDD9/PPPskbbFFruRWPkyZOHdu3apVouIDf67O3tZXETJ040qG/dunXk4+NjUrfKlSsb6Gns+gdALVq0IAC0fft2IpIbfWvXrpWlbdasmUEZ7du3lw0iN3XupCIdQrBkyRKzjL7bt2/L9nfs2KF4zrNnz07Dhg2z2OgzNiFp7dq1REQmJxYREdWsWZP69u1rEH769GnV/+zMmTPUv39/o+UK+Pj40Pr16yksLIxq1qxp8twPHjzY5H908uRJCgoKopCQEINrSdiWGn1S1M5btmzZiIhk3Zxq14sSQpf0mDFjKGfOnGJa/WvGFLVr1zZZl1JctmzZjOYD5EYfEYnDq6RGX1IgXEvLli0zK5+p8z5lyhQCtBl93L1rBKELQ+jaNMb+/fvFgf7t2rXDoUOHjHbTVKlSBXZ2duK+Tqcze+KIGq9fv8bp06fFco2h370npUmTJiAidO7cGSVKlADwX1edVoSJGfqTIpYsWYK9e/eKk3KUGDhwICZPnix2M+oTHh6O//3vf2Z1xTVr1gyvXr3CqVOnxLARI0YgPDxcU/4RI0ZYvKh3UFCQyQkbUne9lpXclbpBASgOHlajTJkycHV1xYwZMxTjdTodsmXLprk8c7Czs8Nvv/2mOkhcCWPXrBY+ffqEr776ymga4ZoqW7as2A4sWrQIQEJ3vz6tW7dG+fLlxUlc+syYMQPjx4+X5ZUOGzHG4MGDMWvWLPEeGjRokBj37bff4p9//hH3XV1dxe0FCxYAAL788ku8fPlSU136jBo1Cvv27TMrj3DuatWqhfPnzyN79uwAlNcg+/jxI8LCwrBx40aT5amhNsHEWBlKuty5c0c2dOfhw4cAoNguC0Me2rRpo7k9KF++PL755hvkzJkTW7duRa5cuWTxI0aMAACMGzcOS5cuxR9//AFA3lUrxcbGBh06dIC9vb2s3dCqz+DBgxXD9Sf3STl37pzqUCIB6WS8sLAwUdc8efKgZs2amidfJSX618OYMWPQtGlTo8OHrEGbNm2wbt06fP/990lajzHY6DNCxYoVQUSiwWMMYawAAHF8lqmZqEk1W61o0aKaH/o6nU7TeJlatWrh+fPnZs+EFYzZCRMmiPvCb58+fVTPERFh27ZtRsvOnj272bN9gYRGsV27djIds2fPrunhkRjs7e0t0jc5aNu2rerYHHPIkSMHpk6dig0bNlhBK2V8fX0RHBxsEC4Ycj///LNV69uyZQsCAwNRvHhxAAlfG+nYsaMYT0Ti2MaJEycqGgnz5s3DihUrsHLlSly9ehWBgYE4efIkgASj2xjly5fH7Nmzxf9HapzrdDrReMyVK5dsbFD58uUVy7t165bxA0bCS9mSJUtQo0YNxTHKWtuuli1bigttC+dISt68ec2+J0aPHo2ZM2cCSBivNXfuXFl85syZMW3aNFmYvr7SmedqCGNm4+PjDeKkL2SWtOO1a9dGaGgoAgICxDDh/I4cORKTJk0SnQLS8l1cXODi4iJLLyUiIgI+Pj6yMCHdjh07ZOFS40uYaf7ixQts2rQJgOEYOiBhjGSLFi0wZMgQ1fusVq1amDRpEubMmSOGCefwzp07mD59umI+fcxZ1FiKlv9D/8Ute/bs8PT0VLxGrYlOp8O3335rcVt76NAhxbGDwqoQwsuIMTQs38xYg+7du8umwAPyi1PLFwyKFi2quT5hQL6WqfDFihVD9erVTXoahYdTnz59zH77F3BwcECOHDnQrVs3i/IbI7Ge0l9//RWzZ8/G+/fvta1snkSsXLlS9asyyYkl51On02HhwoUAEibfFCtWzNpqGXhIzp8/j1atWqFcuXJW85YL6HQ6ZM2aFQULFkT//v1RqlQpNG/eHI0bN0ZAQACuX79uVnnZsmVDgwYNZGHXrl3DmzdvFNPfvn1b89dJtBof0klaQMKDQmp8AAmeD8FDZ45RU6xYMQQEBCgaiERklRfdwoULi0aEUF758uXx9OlTAAkGxtixY7Fp0yZx4k/fvn1lk+GMkTt3boSGhor7Ql3ffPONOFFMiwF87949TcdiZ2enaFgKdO7cWVy6SFjaq3v37rLB/gLGPPL6ekq96507dza4d4YMGSIuO6bP5s2bVevJnDkzli5dqhqvld27d+P8+fNGvfJubm64dOmSLGzp0qVYtGgRXrx4oZjn+fPnmr+Hm9ro3r27YviAAQPg6OgovpgaxayO5XSGqTF9UooUKWL22AYpsbGxFBoaKgs7d+4cAQljpgSEVbuV+PjxIx07dky1DmFpA4H4+HiTeunz9u1bqlOnjrhcjDm8f/+ePn36ZHY+redQDWF6u3TiDJN4pGNzUjPu7u4E/Lfsi6VI72dh3F7FihWtUqa5zJo1ixo2bKganydPHtl4XSBh+SQpwqSppUuXquoCJExosbe3p549e4pLPEkRBrrv2LFDHNOnv3yRdDtz5syyMpo0aUIAxIXX1VAb06e/YPusWbPo5cuXVLduXbHt1toeK+msn/6LL76QhQlfRRImDxAR1ahRQ0wzdepURb21EhkZSREREeKknLt378ri4+LixMkJ5iDoce/ePQL+G3MuEBgYSACocOHCqmUIY/ISAyBfIsWS/JbokNjnSmri8uXLdP/+fauUxZ4+jdy+fRuBgYEG4a6urnj8+LHJ/JkzZzbwUAhvXlI3tre3N96/f69YRt68eRWXeFDDkrfqQoUK4caNG2bnA/6bNp9SkJW9PBkdodvNGt2+SUnz5s2xePFijBkzxqrlLlu2zKz7TYkJEybIlqrQyuzZs2XL9+ijtMi0GqbuC51Oh6CgIAAQvXtSmjdvDk9PTzRp0gQ5cuTAqVOnjA4f6datGw4ePGi2HlL69etnsDRW69atce7cOQwfPhylSpWCt7e35vISQ40aNeDn5yfzovzwww/ikiSJ9V7a2trK9vXLy5QpEx49eiSOMTQXU704+p5nKdZqU1Oibd62bVuS9DSkBIn9Jq8UNvo0UqhQIRQqVEjcr1evHry9vdG2bVu0bds2UWVLb4j8+fNbbDxlVKOHV/JPGmrXro1ff/01yQc3JxadTocpU6ZYtUwbGxtMnDgx0eUofUkkudByXxQoUEAcHwckvIC+fv3aIF3Tpk0BJHQvCe1MoUKFFF+Ed+3aJVuv0tz7093dHcWKFTMw+gTjSP/lWUqPHj1MTtIRKFeunLh+phSldlS/22z48OEYPny4LKxBgwbo1KmTUWPdUkqXLm3Wmn1ayJMnD4oUKSJbTzQ9kdRfl0qrsNFnIW5ubuLbsaUIHhRreVLSqtE3cOBAxYeHVoTZnJYO/GWU0el0BgPi0zMDBw7EmTNnMG7cOIwfPz6l1TEbfeOqY8eO6N27t8GisFLevXsn2/f09NTsQZs3b564KPuNGzfEgf9Zs2aVTQIwtli9FMHLaGNjIzsWc4xGJQ+jGj4+PoqTSLQsqi1l8uTJePv2LdasWYOsWbNi9uzZqWKGqimyZMmiOpZUYNq0aaqz+pk0ilU6iZOY58+fU4ECBcjR0ZEcHR0N1i+LiYmhIUOGUPPmzWn8+PGayzVnTF9SEBcXRwsWLJB9giUxlClTJt2MYTCH+Ph4OnLkiMkxQwyTXgH+WwvTWJqUaB+ExdP1P9elT3h4OC1btozi4+PFxXsBiGOTO3bsSAAUF8vVemxAwqfRjOULCAhQXFMwqRHG9AmfLUwsOXPmpCZNmlilrMSQ2Osupa7b9ErqXD9CAUdHR7i5ucHNzc1g5s2xY8dQokQJeHh4IDw83GA2T2olU6ZMcHZ2li2zkBgojXr6EotOp0PXrl1T7XIoDJPU3LhxAydOnEhpNYxiqn3Knj07Jk6cCJ1OB1tbWxw/flzmdROW00jMzPqrV6/i7t27RtMULlxYcWZsWiMsLCzNPAuNIaxfyFiHNPOU9PT0hIODA6ZNm2bQeFy+fFkcV9e+fXvVCz0qKgohISEySU9kVKOPYTI6derUSfSi1UmFpWNuO3XqhI8fP4r5lyxZAnd3d8u+N/r/NGjQIN0M7k9LTJo0yeK8a9eu5WebFUkTRl/RokXh4+MDd3d3BAYG4tChQ7L4oKAgcSFLe3t7fPz4UbGchQsXwt7eXhRLv6yQWuEbg2GY1IbWMX2myJYtGxwcHKyhEpOMEJFV1u1jrEOqMvoCAgLQvHlzA/n8+TNy5swJnU6HXr16GawonzdvXtFrFxQUpDqg39nZGcHBwaL4+vom9SExDMOkGpL6iwNKbN26FbNnz1b8wkNKM2/ePNStWzel1QAADB06FMB/C+szTFKgozTgHgoNDRVd+s7Ozqhatarsu4GHDh2Ct7c35s+fjxEjRmD48OHiyunGCAkJgb29PYKDg2XfwU2rlCxZEn5+fuzxYxjGgKtXr6J06dIoXLhwSqtidazlTWSY9E6q8vSpcfHiRdSrVw8ODg7w9/cXB9mOGjUKANClSxf4+vrCwcEB2bNn12TwpUe0fq6JYZiMR8OGDdOlwccwjHbShKcvqUhvnr6wsDA8ffrU4NuaDMMw6ZnixYvj9evX7OljGBOkCU8fo41cuXKxwccwDMMwjCJs9DEMwzAMw2QA2OhjGIZhGIbJAPC3dxmGYZg0zZEjR7Bnz56UVoNhUj08kSMdTeRgGIZhGIZRg7t3GYZhGIZhMgBs9DEMwzAMw2QA2OhjGIZhGIbJAGToMX1EJH7iTfiMD8MwDMMwTHokQxt9DMMwDMMwGQXu3mUYhmEYhskAsNHHMAzDMAyTAWCjj2EYhmEYJgPARh/DMAzDMEwGgI0+hmEYhmGYDAAbfQzDMAzDMBkANvoYhmEYhmEyAGz0MQzDMAzDZADY6GMYhmEYhskAsNHHMAzDMAyTAWCjj2EYhmEYJgPARh/DMAzDMEwGgI0+hmEYhmGYDECaNPpCQ0PRqFEj5MqVC/fu3QMA7NmzB02aNEGrVq3g6+ubwhoyDMMwDMOkLtKk0Zc9e3YcP34cvXv3BgDExMTg999/x4ULFzBv3jzMmzdPUzlEhJCQEBBRUqrLMAzDMAyT4qRJo8/GxgYFCxYU9588eYLq1asja9asaNasGe7evauYLyoqCiEhIaL4+/vD3t4eoaGhyaU6wzAMwzBMipAmjT59goKCYGdnJ+7HxcUpplu4cCHs7e1FKVmyZHKpyDAMwzAMk6KkC6Mvb968CAkJEfczZ86smM7Z2RnBwcGi8Ng/hmEYhmEyCjYprYA1qFChAh48eIDo6Ghcu3YNtWrVUkxna2sLW1vbZNaOSU3ExcWpvhQwDMMwTHomzXr6OnbsiNOnT2PEiBHYsWMHJk6cCEdHR8yYMQMzZsxIafWYVMiNGzdgY2MDb2/vlFbFJJGRkRg/fjzCw8NTWhWGYRgmnZBmPX0nT540CPvqq69SQBMmrXDjxg0AwM2bN1GvXr0U1sY4u3fvxh9//IFq1arhu+++S2l1GIZhmHRAmvX0MYy5CEvz6HS6FNbENLyMEMMwDGNt2OhjMgxp0ehLC7oyDMMwaQM2+pgMQ3x8PIC0YUix0ccwDMNYGzb6mAxDWjSk0pKuDMMwTOqGjT4mw5CWjL60pCvDMAyTNmCjzwhnzpyBTqdDVFSU2XnXr1+PAQMGJIFWjKWkJUMqLXVFMwzDMNbj4sWLuHz5cpKUnWaXbEkOVq9eDQD4+PEjihYtalbeESNGAAB27txpdb0YyxCMvkyZUv+7TloyUBmGYRjr4eDgACBpVnFI/U+/VEBGXj4jODgY58+fT2k1rIK5htTatWtTfKFvc40+IkK3bt1w8+bNJNKIYRiGSauw0WeE1OhlOXPmDEaNGiULi4uLS7L6Bg0ahNatW1ulrLVr18LT09Pi/PHx8Zg3b57sO8tSTp06hdjYWNX85hrvo0aNwq+//qoY16lTJ2zevNms8szB0heNyMhIHD16FJMmTbKyRgzDMIwWLl++jDt37iS6nDFjxsDGxrodsmz0JQN9+vTByJEjDcJv3ryJpUuXmlVWly5dsHbtWnH//fv3sLGxwZ49ezTlP3z4MH777Tdxf9asWShZsiT++usvMSwkJEQ0Ol6+fGm0PH9/f9W4kJAQ/Pjjj6IhNmrUKDRv3hw3b97E9u3bNekrxdvbGzNnzsTcuXMN4v7991906NAB//vf/1TzW9q9+/jxY9mn27755hucPHkSw4YNM6scc0hsV3RG9k4zDMOkJE2bNsUXX3yR6HLWrFljdacOG31GePr0qbidN29e1KpVCzqdDufOncOGDRs0l7N//36sW7fOILxx48aYMmUKDh48CBcXF0RERJgsS/9hHhAQAAA4ffq0GPb48WM4ODiIE1Devn0LnU6HCxcuoEePHnB2dsaLFy8QExODuXPnws/PD6NHj0ZkZCTev38Pe3t7TV6sx48fo0SJEti7d69i/OLFi7FkyRK4ubnJwuvWrYtBgwaZLF+n08m8msKxK3nzPn78CADw9fVVLU+/e9fLywuRkZEm9ahcuTLq168PAKhUqRI2btxoMk9ikU7kePHihaZrAwCuXLmSlGoxDMMwRnjx4oW4PXPmTPTt21dTvrZt26JEiRKa69m5c6dJp4wSbPSpcOzYMdE9S0QICgrC3bt3AQBt2rTBt99+a7W6evXqhY4dOyJHjhzInDmz0bT6Rp/UkHn16hV0Oh1GjhyJixcvwsfHBwDE3+PHj4v5ypYti6tXr8rKyp49Oz58+AAAcHd3N6m34OW7ffu2Jl0tYe3atejbt6/McLxx4wZ0Oh2ePHkihnXo0AEAsGPHDtWyBH3Gjh2LyMhINGnSBD/88INmXaKjo2V1WpOAgACEhYUZhEdGRqJs2bKoUKEC/v33XwDAwoULcezYMcVyWrZsCYA9fQzDMCnBmzdvxO158+Zh3759mvKdOXMG/v7+qsOX9Pn666/Rtm1bcd/b2xvh4eEm87HRp8LDhw/F7bdv3yZbvYKHRw21h/mGDRvwxx9/AAAuXLigqS4/Pz+DMC2eL3Pp0KGD0bF2pti3bx+GDRsmeug8PDwAJBh/AqGhoQCUvYB+fn5YtmyZeO4+fPgguswFg7hx48YmDXlhRnZSULRoUTRq1EjcF3QVPJ2vX79GtWrVAADTpk1D165dASRcL58/fwaQ4LlkGIZhUg5zXrhdXFyg0+nE5xcADB8+XHN+qYFYv359xWFk+rDRp4L0jzt06JBVy/7ll19Qt25dREdHa87j5eWFJk2ayIya1atXy94qlixZYpCvYsWKGDNmjGKZShNVateuDSChS/rNmzcWrVH46tUrlClTBp8+fQKQYIgZG/unFX19lW6uyMhIA8Ovf//+mDRpktGb8cqVK9iwYYPoyVM6N+bOYvb398e+ffs0NwIPHjwQt2fPnq1aphRnZ2fkypULANCkSROz9GMYhmGsizlGn7CkmzBMCwAOHDhgcV1Cb5Ax2OhTwdzusTNnzmiemTp//nyjS2ooGRxNmjSReXLi4uLw/fff4+uvvzZal4+Pj+osImOzk8PCwtClSxc8evTIIO7hw4fw8fFRPUe7d+/Gy5cvsWnTJqO6GUO/e5mI8Pr1a4N0efPmFdc0Evjqq69k+4L3Ust/WqlSJTx+/NhcdWW0bNkSK1euRNmyZdG3b19kypTJ6AQTKcL5FrrZ9dEf83H48OFE6cowDMNYD2kPlMCQIUOM5rl//75FdVnSC8lGnwqmulkBoHnz5oiPj0e5cuXQtm1bNG/e3Gj6p0+fil2TWoiNjcWGDRuMDuLXOsDfEpS8cxEREahatSoqVqwohkmNyuvXr+Pnn3820E3JIP706RPevXuHsLAwnD59Gjt37kR0dDTi4+Ph6OhokF5phnJQUBAuXrwoCztw4AD+/fdf3L9/Hy9evBCNPel/Kp2dfP36dVn+NWvWGNQDKHeHK+Hm5oYJEyYgJiZGDJs6dSqIyKR3t0qVKrJJOaZQM9x5TB/DMEzyM378eIOwrVu3KvaaCe13jx49jJbZvXt31biAgADs2rVLs37pxuh78eIFChYsCCcnJzg5OeHdu3eJKk+L0efp6Ym3b9/i+fPnsnC1NdIqVKiAFi1aaNZh9erV+Pbbb5EjRw7VNOY83J89eybbN7UciNTlfPXqVcTHx8t0ES7Y48eP49SpU7h58yZcXFwUy1LySEZHR6NQoUKoWbMm2rVrh6+//hqdOnVCcHCwQdqXL1+atW5itWrVUKNGDZQtW1ZcbkUwRoH/3pCePHmCBg0ayPIamwGsz5w5c2TjKowZdYsXL4atrS10Oh3u3r2LLFmyQKfTyYxDQD7hxhSpcS1JhmEYRo4wLn3IkCF4+PChWUuxHDlyBEFBQeKzQuqQWbx4sVmffE1Xn2FzdHTE/v37VeOjoqJk1raxWTJajalixYoZhC1btkxTXmMUKVJE00wcLWkE9Kd39+7dW3PeRo0aYfr06bIw6TkSZs9agnSK+9mzZ1XT6RtH0sGv5mLsJjFnTMXs2bPx+fNnLFq0CABga2urmlbqQRw9erQ49lD/ONS6dvWJjIyUTThK67x58wY2NjYoWLBgSqvCMEwqws/PD25ubhg4cGBKq2Ixgjdu69atuHz5Mp48eYIiRYpozp83b1507NgRJ06cQOXKlcXw33//3Sw90o2nD0jwvDk4OGDatGmKRtvChQthb28vSsmSJVXLslb3mLC+m7m8ffvWqFFjyefBEntMal+nsBQ1fdQmfeh7ALXMVFJDf7maxLB48WI8f/5ccSyHFKlxK+3u1vfWaf1es9R7KiwnlJYpVqwYChUqlNJqMCnI27dv4erqmtJqMKmMTp06aVrbVYmVK1eKqzQkNVq9d8KEQWlvmhZOnjwJAOKKDZaQboy+okWLwsfHB+7u7ggMDFSccevs7Izg4GBRjHXjaene1YL0Sw7WRPpVjfRGzZo1FcNT88OgXLly4jIq5qJ2vKY4ePCguF2rVi1ZXEYa0xcYGKi6ViSTvEyZMiVRQw7atWuH9u3bK8bFxsZi1apVVmubUzPx8fFYunSp5jHbP/74o8Ei+OkJpSE/ALBgwQIsWLAAQILBJW33Jk2aBJ1OhwkTJqBjx47JomdyLJtlbN0/6WoeqlA65OTJk/TLL7+YTBccHEwAKDg42CBu1qxZBIAA0IwZM8RtU3L48GHNaZNa/vnnH9l+jhw5UlwnqTx+/DjFdUjPIuDr60ufP382uMYXLVpEJ0+eTNzNZkX09dZKyZIlLcqnxosXLyg+Pt5q5RERnThxgo4cOWLVMlMjdnZ2Zv0XEydOpNq1a4v7BQoUUM2/bt06AkAHDhxItJ7WJCAggAYOHEhRUVGJKic0NJQ+fPhARCS23b/++isRET158oSeP3+umhcAZc2aNVH1p2bKlCmjeF0IbUZ8fDwBoCVLlhAR0efPn2VtYbly5ZJMt3v37tH9+/fp0KFDKd7ma7n30o2nT9oV6u7ujgoVKiSqPJK8MZizYLGxWTbJjfB1BgFzxv8lB5UqVUppFTIEJUuWRJcuXQzCf/rpJ/EN+NSpUya7py3lzZs34pjHpMDUxJv4+HgcPnxYk/fz2bNnKFOmjKbPEJrjcerUqRO6deumKW3z5s2xcuVKzWWb4vnz55qXDNLn1atXss9RWpvly5fj1q1bmtIKXq+kWEA+MSxatAjbt29P9JCRmjVrIn/+/AD+G78sjEGvWLEiypYtmzhF9bh69arBygepFa3eY6H3o1+/frJwS79hrkZcXByaNm2Ka9euoUaNGqhevTrOnTtn1TqSinRj9F28eBH16tWDg4MD/P39zZrNooT0AaG06DHDpCWMLSy9a9cudOjQAfXq1TNrNXitfPPNN/j5558TNfEmMWzfvh09evTQNDxAGGNz7949o+m8vLyQOXNmk8vrnDlzRmZwRUdHY+PGjQYz6QWcnJzg6emJCRMmyMLLli2L3bt3y8I2bNigaX2vvn37YurUqeL3qQVCQkKg0+lw9OhRWfju3bvx119/AQBKly5t1gt0Us4mF8rWYrwnJ4I+5hgWf//9t8G5ko751V9r1Fx9tAx3aNSokcEap/ps3brVqkb23LlzFdcW/fPPP1Xvz/DwcIMVMtQQuoH1jVlj12Xjxo0VlwhbsGCB4pqtN27cQLFixXD58mXMmjVLDDdnNm6KkmQ+zzSAse7d6dOnp7ibloUlMSKgv//+/Xu6f/++yXzm8v79e/Lz8zMIb9OmDQGgkJAQ1bzXrl0zWf+9e/do0qRJNHr0aFm4NJ+rqyv5+vqKcZGRkTRhwgQCQLt375bls7GxoZ9//lkWdvHiRQJAU6ZMkYVHR0fT06dPxf3ff/9drHfevHkUExOjqLP+ub1x4wYBoLJly5pMrx9epkwZg7AcOXIoliOlTp06imUKw1Z69+5NAQEBFBYWJtNBf1uf+Ph42r9/v6wr3N7e3iD9kSNHKE+ePEaPV0Cpe7dmzZpUvnx5ypUrl5h++PDhBmXFxcWZ3S0fFRVF0dHRsjChi1UrwvUFJAxZMUZISAjFx8dT+fLlFf9j/fM+c+ZMgziBZ8+eEQB68uQJASBbW1uKiYmhLVu2EAC6efOmUV1M3W937twhADRt2jSD8GfPntGHDx9o/fr19ObNG6P1aKnTmC5r1641mU/o3hXS5MmTR3YvVa5cmXx8fOjRo0dG6z5y5AhVqFBB1j1848YNMe2NGzfEaxwAdejQQdzu2LFjirf5WtpvNvqgbPRVqVIlxf88FpbECBHR3r17xX3hoS48cIzlU6Ndu3aysqQIY0b1ad26NQGGRt/nz5/p9OnTRGRo7Bw6dIiCgoLI29ub4uPjycfHR1VHaZiwLTTUX331lRi2e/ducnFxIQAUEBCgWJa7uzsBoJ9++kkWPn78eAIgGhVLliyR6bN//37F86V2josUKUJERGFhYeTo6CgaqsaOUcnos7GxEffVxnzVrVvX6Hlr27YtAaA6deqonk/BMJo/fz4BCcbI/v37CQDt27fPoMy3b9+St7c3de/eXQyLj4+nAwcO0KdPnwzSC2TLlk12no2dQ4Fff/2VihUrRgCoTZs2Bsfv5uZGoaGhdPbsWYM4GxsbKleuHIWGhtKaNWvEsXTXrl2TpRs2bBg1b96cNm/ebFDGuHHjRJ30DSQpMTExBIAWLFhA5cqV03Qdt2jRQrbfq1cvcezgxo0bCYDMKAIg/t8uLi6qukjLjIuLo7lz5xrcn15eXgSAxo0bRzNnzjS4V/v06SNunzx5khYtWkRLly6ljh07imW8efOG/vjjD9q+fbvBMRIRbdiwwWTbY2traxC/cuVKWb64uDhZGn2jr2rVqqp1SNtHafuhpJf+NZhaDD1T51B2vCZTpGOMGX0p/cexsCRWhg4dKtvv1q2bpmtbmubRo0cEgG7duiULnz59univREREUEREhCx/bGysGF+8eHECQJcvX5bdYyNGjCAAVKFCBVn9kZGRsv39+/fLPIEA6MWLFwb3qqlj2717N40dO5YA0PXr18VwV1dXWr58OXl4eJCDgwMBMPAANmzYUKyDiGjx4sWysvft20fr16+nY8eOaW5HhgwZQq6urgQkGIEhISEG/4O0HME7WLFiRTGNYPQJ5Xh4eMjyCeHSMqOioig8PFwMa9Wqlbjt7e2teD7r169PRERZsmQRw9avX08AqHDhwjR+/HhatWqV0ePdtWuXuP3gwQOD/27fvn3i/uLFi0XDz9h12qhRI8VwIqK7d+/SmjVrZHG3b9+mJk2aEAC6d++eGD5q1CiDc9G7d29yd3env//+W/V/ISLxmgJAAwcOFMNjY2OpaNGi9L///Y+ISLxHHB0dqWzZsgQkeCwB0ObNm8UypHopXdeCQapvMOmL/rWoj5DO09OTAPmLzooVK8RJiRMnThTTSq8bY3Lv3j0KCgqShQmeQyDBqL958ya1b99elqZ58+YUGBioqKf03EtfZPTl66+/NjD69MvIly8fDRs2TFb+x48fxW19o8/b21vxWhSupdQkpmCjD2z0sWQMKVCggIFBpSQXLlwQtwVvwh9//CG7LyZPnkznzp2jqKgoypo1K+XPn1+Me//+PQGgvXv30rlz58Tw/v3705YtWyggIIDKli1LX3zxhWL9+jPvRo8eLTPSBHF1dZXpFB0dbfS4du/eLT7UlcqTSs2aNSlLliw0btw4IiIqVKgQAQnNZVxcHHXr1k2WfvDgweK2YJCuXr3a5Lk+efKkuP3dd9/J4oiIfv75Z+rRowcB/xl9+mVs3bpV3F6xYgVVrFiRXr58KbZvUjl+/LhRfaSGl7788ccfsn3B6NMqf/75p7h98OBBmYFFRFS9enVZ+j59+hgYwvrnRyl8x44dYhenMfnrr7/M0l9aL1GCUefp6SkajNL4K1euyIwlIhLra9GihTgbVYu8efNGtr9ixQry9/enyZMnG81nara4fvoOHTpQYGAgXbp0SRYu7VZv2rSpZr2Nrc5g7DqTnmN9PQWPszGjDwDlzp1bNU7qFTx48KC4LTX6bt68aZDv06dPFl0vyS2mYKMPbPSxsKhJly5dxG3pOFfhAa304HF0dLS6Hvpv3oKcOXNG3J42bZrRMlq2bGlR3aGhoeK2vrGnJv7+/prSHT16VNweOHCgLE6pHYqNjTVaXs+ePQkAOTk5WXSsUm+cKTHladIXqdGnLz/99JNieNeuXVXzpFQ7vXDhQiJK6FYGQNmzZ09SvWxsbBTDK1WqZDTf3LlzKWvWrHTt2jXat28fRUdH0/3798nb21vxpcfaQ5qMjRtetGiRyfyFCxdWPJfdu3c3afQJSwcpibQtkbZv6UVMwUYf2OhjYUntIh0wLRVzPA+Wyg8//JAix6zfPa9FpF2/qU30PXmJlbdv36bYsUhfNvRF2lWbkaVv376JLuPu3buK4abGJRuTBQsWpPi5SUoxhe7/DZwMSUhICOzt7REcHAw7OztZHH/InmEYhmGYtIQpky7drNPHMAzDMAzDqMNGH8MwDMMwTAaAjT6GYRiGYZgMgFWNvoiICPj7+xuEa/lUEMMwDMMwDJN0WM3o279/PypVqoSOHTuiVq1auHLlihg3aNAga1XDMAzDMAzDWIDVjL758+fjxo0buH37NjZu3Ijhw4dj586dAEzPJmEYhmEYhmGSFhtrFRQTE4OCBQsCAOrXrw93d3f07NkTPj4+vPwJwzAMwzBMCmM1T1+hQoVw584dcT9//vw4c+YM/v33X1k4wzAMwzAMk/xYbXFmPz8/2NjYoEiRIgZxnp6eaNasmTWqsSq8ODPDMAzDMOkFUyZduvoix5QpU3DlyhWUKlUKmzZtQtasWY2mZ6OPYRiGYZj0Qop8kePAgQNJUaxRbt68iYCAAHh4eKBatWrYv39/suvAMAzDMAyTWkkSo2/AgAFYtmyZ0TTWdjBevnwZbdu2BQC0b98ely5dMkgTFRWFkJAQmTAMwzAMw2QEksToO3r0KGbPno3x48cbGHdxcXHYvHkzqlatatU6g4KCxC5ae3t7fPz40SDNwoULYW9vL0rJkiWtqgPDMAzDMExqJUmMvnbt2sHd3R2HDh1Cz549ERERgejoaKxZswYVKlTApEmT0K9fP6vWmTdvXtFzFxQUhHz58hmkcXZ2RnBwsCi+vr5W1YFhGIZhGCa1YrV1+vT54osv4OXlhY4dO6Jx48Z4//49YmJiMHHiRIwbNw65c+e2an2NGzfG0qVLMXjwYLi6uirOFra1tYWtra1V62UYhmEYhkkLJJnRFxwcjI0bN8Lf3x/h4eHQ6XTw8vJCzZo1k6S+OnXqoEiRInBwcECpUqXw448/Jkk9DMMwDMMwaRJKAqZOnUr29vZUrlw5+vvvvyksLIyGDBlChQoVoqtXryZFlRYRHBxMACg4ONggDgALCwsLCwsLS5oRUySJ0VelShXasmULxcbGysJnzJhBOXPmpMOHDydFtWbDRh8LCwsLCwtLehFTJMnizESkurjx+vXrMXbsWCxZsgRjx461dtVmwYszMwzDMAyTXjBl0qXIFzlcXFzQr1+/FF8nj40+hmEYhmHSC6ZMuiRZssUUHTp0gJubW0pUzTAMwzAMkyFJEaMPAOrWrZtSVTMMwzAMw2Q4UszoYxiGYRiGYZIPNvoYhklTZMrEzRbDMIwlcOvJMEyqoXHjxibTNGjQQHN5+fPnx7x58xKjkki5cuU0pStYsKBV6mNSPy1btkxpFVKElF55g7EcNvoYJp1SuXJlcfvw4cOJLu/ChQs4cuQIOnbsCACYOnVqosu0BFdXV81pt27dihkzZqBdu3ay8CVLlphd79OnTzWlq1evntll6xMREZHoMhjrU7t2bdl+mzZtUkYRI2TLls2q5Y0YMcIgrE6dOpryan1RSg4mT54s23/06BE2bNiQQtqkIFZd7TiNwYszs6RnqVy5srh99+5dAkAbN26UpVm+fLnm8qTExcUZ3CdVqlShsmXLWqyvnZ0dNWrUSDHOw8NDpodaGZMmTZLtx8fHizq/e/dODN+zZ4+4vWzZMvrll18IAP3000+K5V68eFFzu7Bq1SqDsLCwMAoLC9OUf9KkSZrrKlCggObzmzt3bqu0bdOnT6eWLVtqStu5c2cCQM7OznT8+PFE121Kfv/9d9n+9u3b6dtvv6WhQ4dapfyrV6/K9i9duiTbr1ixorhdpUoVs8q+fPkyZcmSRTVe7d7QlxcvXlh8fL/99ptB2JgxYwzCnj17Rs+fPycfHx+DuICAAHG7Zs2aSfI/P378WPUcStsKqbi4uMj2iYji4+NV60irdoAp2OgDG30s6VMmT54sbhMRffz4UXZtr1q1StZAC9KzZ0/F8pSQxt+4cYOCg4PFBrlmzZp08uRJk3qWKlWKAFCdOnWoYcOGBIC++uorMV6n08nqUrs/K1SoQPHx8VSoUCFVnYVwHx8f8vb2ptevXxMRkZ+fHwGgs2fPGj12Lef9jz/+MHruunXrRvXr11fNr6Wu7du3U1xcnMzIMCU5c+ZULTcqKkpzOT4+PkREVK1aNcV4wbgrVKgQxcXF0cmTJ8VjKliwIBUtWlS17EePHimG29nZ0bFjx2RhSsd++PBh2YuMtdt0faPv4sWL4narVq1o4cKF4r4xo09fn8KFCxMRyYwZ6XUMgEJDQzXpaOmxuru7U2xsLN2/f18W/uOPP8r2jx49KjuvDg4OBvV/+PCBAFDdunXF8GvXrmnSI3/+/LL98ePHy9qpc+fOKbZb0v9b2G/Tpo24LW2LOnToIKZVMlyFstzd3Wnu3LkEgL744gvV/yY1iSnY6AMbfSzpU2JjY8VtpWtb7VofPXq0uF26dGkKCAigd+/eKd5D0nyhoaFERBQSEkIA6Msvv1R96wZA169fpxkzZlC5cuUISPBQCMaetOyOHTsa6C14LgGQt7c3+fn5UXh4uKjX3bt36fjx46r6GsPT05Py5Mkjpi1XrpwYN2PGDMVjsbGxoS+//JJmzJhBK1asMIjXR2osqKU1Zhheu3aNiEhm+AwZMkTcfv/+PT19+lSWJ0eOHERENGjQIMU6he3du3eL2zdv3qS9e/fK0gpGn6+vL1WuXNngeC9fvkwAaPPmzYrn98GDB6rH9fjxYwOj8NmzZ/Thwwd6+PChLDwmJsYgv/CJT2PXfadOnQgATZ06lQDQrl27DMopVqyYuL1582bZNV6wYEHR0JFe3+fOnaMFCxaIelStWlXxGAsVKiTTBwCVLVtW1NPd3Z2eP38uHt/gwYPFZ5R+WdHR0XTr1i3V/1Jfjh49KtvPnj071axZk8aOHat4rgDIPNS+vr4G/2dERAR9+PBB9OoREX3+/JmABK+wi4sLRUREGFzTY8eOpXr16hno9/79e1nY5MmTiYjoxYsXFBgYSEREb9++NXrv/PrrrwSA+vXrRwCoXr16dOLECdl1LWXKlClG79ng4GDy9fUV4/Tv3/3796ue8+QWU7DRB2Wjb/HixSn+57GwJEaIjD/8pPs9e/YUG77NmzeTt7c3DRgwgC5cuGD0HsqcOTMBCd1C+vdV27Ztxcbx+++/V9SPiKh8+fLifmhoqFinkE54K8+fPz+NGzdO9Ti0oDWP9IGtj9KxnDlzRowXjKAdO3bQ+/fvKSgoyKAMLy8vWf6XL18a1NeuXTtZmitXrhARiQ8+IqJKlSqJ8YJeV69eJSIyMIqyZctGRIZdWiVKlBDPjaOjIxERubq6ikY8EVFUVJRokD958sTgeARPaZcuXYiIyMPDQ9a1LiU+Pp7WrFlD7u7u1KxZMwISvGQAyN/fn7Zt2ybqdu7cOVlewaAUztPt27dpw4YNYpgxo+/x48f07t076tGjBwEQPYePHj2SpQPkRh8R0cuXL8nFxUVMIwwDuHDhgnjeiUh8+N+4cUO8hqQGxYULF0TD6d9//6UzZ84QACpTpoziuXr06BFFRkbKdNO/h27fvq1435cpU0bxfvv06RMBoO+++44+ffqkWO+pU6dMtiP6SI0+IqKnT59SbGysLI3UyNu4cSONHDlSpqNgHHbo0EEME4w+KcIxZM2aVUwnfemLjY2lixcvkpubm3h/CR5opfKIiL755hvF8yXFz8+PXr58STdv3hTTjR49WnaOUlpMwUYflI0+pXE5LCxpRWbOnElE2oy+Dx8+UFRUFP35558EqHtolHj16hV5e3vLwmJjY6lIkSJ0/vx5evPmDQEJ3aYbNmwQG2Fp/VKjT0rz5s0JALVr106x7kuXLtGdO3c060qk3eiTds3pExcXR+Hh4bR161aqU6cOAQneEIEbN24QAHr48KFq+fHx8bRkyRICEjxPSrq9e/dO5oVSQhi32b59exo7diwB/xl9RET9+/cX8+fPn18Ml3YjCjx79kxmYOgjeAgfP35sECd0Pa5fv141vxLx8fHk6elJ0dHR5OHhQUQkehZnzZqlmMfYNW3M6BPo3bs3ASA/Pz/F+OLFi8u8e0oIXsJ//vnHIE44P9OnTydA7hVSOx41o08prXBu9uzZQ0Ryo2/r1q1ERNSiRQuD7nApDx8+pJiYGE116W+roW/0KSHt7t26dSvduXOHSpUqRQ0aNCDgP6MvKChI9NZNmTJFsaxTp06JHkUt93RgYCDpdDr6999/jabTUp7UuzpnzhxZvpQWU7DRB2WjT3gAsrCkRREaoidPnoiTEASENGrX/JYtW5LmhlOpv0KFCor6BAUFEZDgMUyqutUQjL67d+8aTSd4qKRGnzlcunTJoOtOH39/f1UDRRjcP3XqVNq6dSsBCV4NASGsadOmih4tLedCYPXq1QRA5mmUEhUVperdM4fo6GiaPn26zHMjRUlvYayd4FUVJrgosWbNGllaNeLi4sQJS/oIhtb79++N5lc7BilAQjeoFpSOXTBARowYYZD+yJEjZv/PAuvXrzeYwGSMxo0bm0xz584d+vbbb2nu3LkUHR0thjs6OhLwn9FHlDBMpGLFigbXrT6XL1+mZ8+emToczWg5VuH/L168uHgcKd3ma/2f2eiDstG3du1as0/2li1bRM+Gvghvl2lZpF0r1poNpy/CzZ8eRH9AcnKKYPQpMXjwYAIMb33Bu53URt+VK1fI09NT3Be62/SJiIggIGEgubUQzo8p5s2bpymd4E3R78ZKSt2kdOnShYAEQyw+Pp4CAgJk8UJX6apVqxJdn1L5KYEWvT9+/KhqKMfHxyu2+SlFXFycZmNZ6dgFo2/kyJGKeYQu9MTQrFkzat26tdE0fn5+9Pfff1tUvpLRl1II4w6N8erVKwJAK1asEMNS+nmj9X5OF0bf8+fPqUCBAuTo6EiOjo6qb6L6GDP6pO59reLu7k5Eyn++4LUwJVu2bEnxi8bYxSQMjN25c6dsSRBryLlz52STCLSK1Bg1R4QJBEklWv/zxIr+shEAaO7cuarXfVxcHEVFRRmEC91Q169f13T/WIuwsDCDgdUCDx8+lHkEEsvw4cNp0aJFJtPFx8dbxWtlDtL7TCvCpAQ1j9P27dsJSJhRbI36UgN37twxOdY0vXLkyBHauHGjLOzjx48EgE6fPq2YJzAwkE6cOJEc6llMixYtCIDR4QXJRUhIiCbP4b///itrI5Kjrdcipkh7d7wCz58/p169eplMFxkZScHBwaIIs3GUjD5/f3+LT3amTJkU40zlHzlyJHl7e4v7wlt8UsqiRYvMOj5hHazdu3erTptPzMUaHh5uUT6tE2/y5s0rbgvdikkl+gPmhfFftWrVEsP018BSmllpTIRJDvrhxow+Y1jaTckkHun1rBXB6Pvw4YNivPBC5OrqahDn5eVFN27csEhXhrEmgtGXGjx9lpLY54VwL1vjOWqMdPNFDk9PTzg4OGDatGlIOP+GLFy4EPb29qKULFlStbxixYrhxo0bePLkSVKpbIBOp5PtHz161Gplr169WjH8xx9/NKuc7t27I3fu3HB0dEThwoWtoRoAIHfu3ACA7NmzW5R/8uTJ+Pjxo1l5bGxsLKpLC/nz5zcIa9q0KQCgffv2Ypj0P//pp5/MridfvnyK4d98843ZZQFAzpw5LcrHJB4/Pz+8fPnSrDyjRo0CAOTKlUsxvnHjxnjx4gXatm1rENeoUSPNX1ZgmKRE/9mXFrl06ZK4vXfvXrPzHz9+3JrqqJIujL6iRYvCx8cH7u7uCAwMxKFDhxTTOTs7Izg4WBRfX1+j5dapUwcVKlQwWx/9C3j27Nmy/a5du6J169aK+dQ+Jr9v3z7s378fANCvXz8xfNGiRSb1qVGjBkaPHi27KI1RtGhR1biyZcsiJCQERYoUAQC8fftWU5lKRpAxhPKVqFSpkkGYTqdD3rx5DcKnT58OLy8vg/DFixdj9+7dJvX48ccfMWrUKKxfv95kWimHDh0yuA7U/luBIUOGqL6wmAMRoVixYokuh0leihcvjlKlSpmVp0uXLiAiZM2aVTVN6dKlE6sawyQpQruXlo2/Jk2awN3dHd999x369OkDIkLZsmXNKkO4j+/evWuRDh06dDCZJk0ZfQEBAWjevLmBfP78GTlz5oROp0OvXr1w69Ytxfy2traws7OTSVITHh6OWbNmycLs7Ozg6OhokFan06le9N27d0f9+vUNwrV46u7cuQNA3Rugj9L3EtWMsEKFCiE0NBQxMTFGv+/6888/i9vLly83OH794zbmhX306BG2bdsGwPBbmI8ePcL58+fFfSJCo0aNDMqYMmWK6gN2y5Yt+O233wAkeL7++usvFCxYUFUfJRo2bGgQptSwCWFbtmxBtWrVVD13aqTlRpJhGCY94eDggDVr1oj7zs7OAIBatWqJYYMGDVLNrx+XLVs2zc+eiIgITb2DacroK1KkCC5evGggWbJkEdO4u7tb5J2zJtIHsVJ3pZpHT+kB3qJFCwBAfHy8QTq1twhpnSNGjDAod+TIkcbUV8TFxUU1LleuXCa7SgUd9u/fjwkTJuDkyZPw8/NTTLtlyxZVb62AYLD36dNHFl6pUiW0bNlS3Nf3nEn38+TJo1j24MGDZTcpkOBRAYAePXrgq6++EsNDQkKM6nnhwgVxu3jx4gCMG2oLFy7Epk2bjJYpxRqeQYZhGMb6jBgxAkSE27dvW5SfiDS/2GfLlk3TkKU0ZfSpcfHiRdSrVw8ODg7w9/fHgAEDrFr+nDlzZPu9e/c2mr5BgwZG49U8ekrhgnEofbgTEd6+fat6IUm7fxcuXGhUFzX9BPbs2QMXFxcDj5qpfMJ+jRo1FNPkyJEDxYsXR1xcnEE5gwcPFg0kU3UlxujR6XT44YcfFONKlCgBAKhevbqY9tatW9i2bRt27dolphPGIuojvIgIRjsAfP/996hUqRK++eYbsbu4QIECsuPIkSOH7G1v0qRJZh3ThAkTzErPMAyT0owfPx5A0o6zTi2Y0ztDRFiwYAEKFSqkGF+xYkWz608XRl+HDh3g7e0NDw8PbN261eoXzsyZM2X7zZs3N5r+1KlTAKA6zkbN6CtdurSBBzBHjhwA5J4+IKFbVc3gEAbjL1++XDaWTthWG7x99OhRREREyMJsbGxkEw/MQafTif/Fd999hx9++AGdO3eWpRGOV+1YjJUNmG/06Z93tf+oZs2aePHihczA/+KLL8Rz26NHD9U6Nm3aJPsfFy5ciDVr1iB37tx49H/t3XlQ3OX9B/D3LsvNskCAHAQM5CThSOS+CYQbdaxObEyNmlZ7jI4djR3tOFWnP0072rTOaA/tGNumam11xsoRrlwQAgIhJEBIkGAgCXLIsZxLdnl+f/jj+8sGlkACLLv7fs18Z5fd7+5+yEN23/s8z/f5XriAdevWYe/eveju7p522NzKyspgvZMuXrw47f2//vWvDdZFRLQUPfDAAxBC6L33mZs1a9YAAPbu3YuBgYFZPUYIgR/+8Id6c+dv7NR5+umnsWPHjjnVYRahb7HZ2trOeL+zszPKy8ulD+abyWSyaXsDn3322Skf4u+//z7eeustvSHbW31TUCqV0Gg00renSatWrcLly5elI/5uFh8fDzs7O7z//vvSbXfSk2Zvb4/PPvsMb775JpycnHDgwIFpQ9ahQ4dw4sSJKbdfunQJjY2N+Nvf/oYf/OAHc3rt0tJSKJVKPProo3q33/z7vPTSSwafY6YJ8P/+97+h0WhmVcsLL7yAn/zkJ3q3yWQyqZdvJoba+ubbY2NjUVRUNOfwTEREC+/8+fMYHBxEQkICnJ2dUVtbi88++wwA4O/vr7fv5OfUzZ09APTmqMvlcuTl5WFoaGjWdTD0zdFvf/tb7N2795b7RUVFTQkNk3O1ZDKZXjp/4okncPfdd+t9y5nsIVu+fPmU8DaT9evX46WXXoKNjc20gcHHx2fK7ZO9VyqVSnqON998E8Cdhb6qqir4+vriueeem3G/3bt3T3vwiK+vL/z9/bFnzx7pwI2bGaovNjYWarUaGzdunPG1Z3twy82srKykANvR0YGurq7bep5JN/8enp6eePzxx295NOfk40pLS+f8jY+IiBaHnZ2d3ufN1q1bcf/992NkZMTgwafTfb4988wz0vJecrkc1tbWc1pqy/wH0OfZzWuppaSkoKioaFaPnUzoN4eup556SjpwYPJIHUPr6k3nlVdewTvvvIPu7m4888wz87LW2nRzCefiD3/4w5RvL/MpMDAQAKZd+mYmbm5u6O/vN3j/rXpxp3PzEO1c5mwY2neyO39iYgKBgYG4dOkS3nvvPWn5GR7AQURk+mZam3a693m5XC7Nsb+ddW0Z+u5QYWHhrD/kDa1FdGPDenp6oru7e07r2r388svw8/PDnj17Zv2YG9na2mJ4eFjvtjs5UOL1119f8AMK7rrrrtuq7ejRo6isrJz2vueffx4/+9nP7rS021pGxdDvIpfLkZiYiMTEROzdu3fag2WIiMj03fh+fu+992LXrl3T7rdz5050d3fPedoTwNB326qqqtDU1DSnx0wekbpz5069229ccgaAwbleK1aswLJly2Yc7r2dIFRWVjZlTt3kCv7TrTdniCkEEB8fnylDpvfddx8+//zzWS10PRu309PHnjsiIpr0+eefG7zPyspqTtO+bsTQd5tCQ0OnXSx5JiqVSu/DfWRkBB9//DE2b948q8fb2tqip6dn2vvuJDz4+/tPGYrdvHnznJ9r8iwQa9eunXMNxjTTotILbc+ePWhqaprzMkOTw++3MxxNRERLT3p6Ov7617/OeEaqO8XQZ0T29vZ4/PHH5+W5lkKPUUhICOrr62cdYhfTn//8Z72jkhfSXHr67O3t8fvf/37Or+Hn54cDBw7M298PEREZ1wMPPACdTjftyRsaGhpu+9z0N5IJCx5XUqvVUKlUGBgYuOUp2a5cuQJra2ssX758yn1LIXBpNBq88MILeO2116S1/WayFGqeq6Ve82R9hw4dwu7duxf0NZbqvwERES1d7OmbpckzNCxVtra2t9VjRERERJaBoW8evPbaazh27Jixy5iTzz77zOTm3pkKUzighYiILA8XZ54Hv/zlL1FYWGjsMubk/vvvl9YGNCVPPvmksUswaPI8vvOxTiIREdF8Y08fmYylPo/tjTfeQFBQEO69994FfR0esUtERLeDB3LM8kAOoqWgq6sL1tbWcHV1NXYpRERkYtjTR2RCPD09jV0CERGZKM7pIyIiIrIADH1EREREFoChj4iIiMgCWPSBHEIIDA4OQqlUcm01IiIiMmsWHfqIiIiILAWHd4mIiIgsAEMfERERkQVg6CMiIiKyAAx9RERERBaAoY+IiIjIAjD0EREREVkAhj4iIiIiC8DQR0RERGQBGPqIiIiILABDHxEREZEFYOgjIiIisgAMfUREREQWgKGPiIiIyAIw9BERERFZAIsOfUIIqNVqCCGMXQoRERHRgrLo0Dc4OAiVSoXBwUFjl0JERES0oCw69BERERFZCoY+IiIiIgvA0GfA22+/jX/84x/GLoOIiIhoXjD0GfDpp5+ioKDA2GUQERERzQuGPgPkcjkmJiaMXQYRERHRvGDoM0AmkzH0ERERkdlg6DNALpdz/T4iIiIyGwx9BrCnj4iIiMwJQ58BnNNHRERE5oShzwAO7xIREZE5YegzgMO7REREZE4Y+gzg8C4RERGZE4Y+A2QyGYd3iYiIyGww9BnAnj4iIiIyJwx9BjD0ERERkTlh6DOAw7tERERkThj6DGBPHxEREZkThj4DuGQLERERmROzCX2Dg4OIiIiAk5MT6uvr7/j5uDgzERERmROFsQuYL/b29sjJycHzzz8/L88nl8sxNDSES5cuwcrKSm9TKBTSdWtra9jY2EAmk83L6xIREREtBLMJfQqFAh4eHjPuo9FooNFopJ/VarXBfZ2cnPDll19i7dq1t3xtuVwOe3t72Nvbw8HBQe/S3t4ejo6OcHFxgUqlgouLi8Hrnp6eUCqVDJBEREQ078wm9M3G/v378eqrr85q3zfeeAMPP/wwdDrdtJtWq4VOp8P4+DhGR0elbWRkZMrl8PAwLl26hP7+fvT392NgYACDg4PTvq6NjQ08PT2nbB4eHvD09MSqVauwevVqrF69Gs7OzvP5z0NERERmTCbMbOLaY489hn379iEgIGDKfdP19Hl7e2NgYGDRA5RWq4VarcbAwAD6+/vR19eH7u5udHV1oaurS+/65DYwMKD3HEqlEl5eXlIInNy8vb3h5+eHNWvWwM7OblF/LyIiIlqaLKqnz9bWFra2tsYuA8B3w9Fubm5wc3Ob9WM0Gg06Ojpw5coVXLlyBVevXpWuNzU1obi4GB0dHdDpdNJjvLy84OvrCz8/vynbihUrOJRMRERkIcyqpy8zMxNnzpzBXXfdhR//+Md47LHHZtxfrVZDpVIZpadvoeh0Oly9ehWtra1obW3FpUuX9LbOzk5pXycnJ2zcuBGbNm2SLjdt2oT169ezh5CIiMjMmFXomytzDH23Mjw8jNbWVrS0tKC5uRlNTU1oamrChQsX0NPTA+C7NQrXrFkjhcAtW7YgKCgIW7ZsgYODg5F/AyIiIrodDH0WFvpm0tPTgwsXLkghsKmpCefPn0dLSwuEEJDJZFi3bh0CAwMRGBiIoKAgBAYGws/PD1ZWVsYun4iIiGbA0MfQd0sjIyNobGzE2bNnce7cOemyu7sbAODg4IAtW7Zg69atCAkJQUhICAIDA5fM/EkiIiJi6GPouwOdnZ16QbC2thYNDQ3Q6XSwtrZGQECAFAIngyDnChIRERkHQx9D37waHR3F2bNnUVNTI20NDQ3QarVQKBRSEIyMjERkZCT8/f05NExERLQIGPoY+hbc2NiYXhCsqqpCfX09JiYmoFQqERERIYXAiIgIuLu7G7tkIiIis8PQx9BnFENDQ6iursapU6dQUVGBU6dOSXME161bh6ioKCkIBgUFQaGwqCUliYiI5h1DH0PfkiCEwNdffy2FwIqKCtTW1kKr1UKpVCI6OhpxcXGIi4tDeHg45wYSERHNEUMfQ9+SNTo6ipqaGpSWlqK0tBQnT56EWq2GjY0NwsPDpRAYHR0NlUpl7HKJiIiWNIY+hj6TodPpcPbsWSkElpaWorOzE3K5HMHBwYiLi0N8fDwSExOxbNkyY5dLRES0pDD0MfSZLCEEmpub9ULgpUuXIJPJEBwcjKSkJGzfvh3x8fFsXyIisngMfQx9ZqW9vR1Hjx7FkSNHUFJSgitXrsDKygqhoaFISkpCUlISoqOjeTo5IiKyOAx9DH1mSwiBlpYWHDlyBEeOHMHRo0fR1dUFGxsbREZGSiEwIiICNjY2xi6XiIhoQTH0MfRZDCEEGhsbpRB47Ngx9Pf3w9HREYmJiUhLS0Nqaio2bNgAmUxm7HKJiIjmFUMfQ5/F0ul0OHPmDIqLi1FQUICysjJcv34dPj4+SE1NRWpqKpKTk+Hm5mbsUomIiO4YQx9DH/2f4eFhHD9+HIWFhSgsLMT58+chl8sRFhYmhcCIiAhYW1sbu1QiIqI5Y+hj6CMD2tvbUVRUhMLCQhQVFaG3txdKpRJJSUlITU1FWloa1q5da+wyiYiIZmXBQl9oaChCQkKkLSgoaMn1kDD00WzpdDrU1taisLAQBQUFKC8vh1arxfr165GZmYmMjAwkJCTwTCFERLRkLVjoe/rpp1FTU4O6ujqMjo7CxsYGW7ZsQXR0NL7//e8jJiZmIV52Thj66HYNDg7iyJEjyM/PR15eHtrb2+Hg4ICkpCRkZGQgMzMTa9asMXaZRERk5nQ6Hb788ks4OTkhMDBwxn0XfHhXp9OhoaEB1dXVqK6uRnFxMVpaWvDII4/g4MGDRj1KkqGP5sPkUcF5eXnIy8tDWVkZtFot/P39pQAYGxsLW1tbY5dKRERmoK+vDwUFBcjJycHhw4fx7bff4sknn8Rf/vKXGR9nlDl9RUVF2L17N15//XX86Ec/WuyXlzD00UJQq9UoLi6WQmBHRwecnJyQnJwsDQV7e3sbu0wiIjIRQgicP38eubm5yMnJwcmTJ6HT6RAcHIysrCxkZWUhIiICVlZWMz6P0Q7kePfdd/Hee++hqqrKGC8PgKGPFp4QAmfPnpUCYHl5OSYmJhAQECAFwJiYmCU335WIiIxrbGwMx48fR05ODnJzc9Ha2gp7e3skJycjOzsbmZmZc+5AMFroO3v2LBISEtDX12eMlwfA0EeLr6+vD0VFRcjLy0N+fj66urqgUqmQnp6Oe+65B+np6Vi2bJmxyyQiIiO4du0a8vLykJOTg+LiYgwPD8PHxwfZ2dnIysrC9u3bYW9vf9vPv2Ch75133kFYWBiCg4OnnctUUlKCXbt2oaurayFeflYY+siYJiYmUFNTI3XX19TUQC6XIzo6GtnZ2cjOzsbmzZt5dhAiIjM1MTGB6upq6XPg9OnTkMvliIqKkoJeQEDAvH0OLFjoc3V1hVqthkKhwObNmxEaGorQ0FD4+/tjZGQEL774ItauXYv//Oc/C/Hys8LQR0vJjd/wioqKMDIyAl9fXykAJiQk8GAQIiITp1arUVRUhNzcXOTl5aGzsxMuLi5IT09Hdnb2go74LOjwbktLC2pqaqTt9OnT6O/vBwBs2rQJeXl5Rl3WgqGPlqrR0VEcO3YMOTk5yMnJQVtbGxwdHZGamirN5VixYoWxyyQioln46quvpLl5x48fx/Xr17F582ZkZWUhOzsb0dHRUCgUC17Hos/pu3LlCq5fvw5fX995f+59+/ahsrISPj4+OHjwIGxsbGbcn6GPTIEQAvX19cjJycEXX3yBiooKCCEQFhaGe+65B9nZ2di6dSuHgYmIlojr16+jrKxM+uJ+8eJF2NjYYPv27dKw7ULkoFsxm9Ow1dbW4ne/+x0OHTqE1157Db6+vnj44YdnfAxDH5mi7u5u5OfnIycnBwUFBVCr1fDy8pK+MSYnJ8PBwcHYZRIRWZSuri7k5+cjNzdXem9euXKl3nuzk5OTUWs0m9D3xz/+EU5OTtizZw9qampw8OBBvP3223r7aDQaaDQa6We1Wg1vb2+GPjJZ4+Pj0rfJL774Al999RXs7OykQ/qzsrK4JiAR0QIQQqCurk4atq2srIQQAuHh4dL777Zt25bUKMzCDyAvkv7+fqxatQoAoFKp0NvbO2Wf/fv349VXX13s0ogWjI2NDZKSkpCUlIQDBw7gwoUL0nDCU089hZ/+9KcIDg6WDgYJDw+HXC43dtlERCZpZGQER44ckd5nr169CicnJ6SlpeH9999HRkYGli9fbuwyDTKbnr4//elPcHR0xJ49e1BdXY0PPviAPX1k0fr7+6XT9OTl5aG3txceHh7IzMxEVlYWUlNToVKpjF0mEdGS1tbWJi2pcuTIEYyNjWHt2rXSnOq4uLhbHkOwVJhN6Lt5Tp+fnx927do142M4p48shVarRUVFhTQMUV9fD4VCgdjYWGkYYuPGjUtqGIKIyBh0Oh0qKyul3rxz585BoVAgLi5Oer/csGGDSb5fmk3oA3j0LtFsXb58Gbm5ucjNzZW+ufr5+UnncExISICdnZ2xyyQiWhQ3jozk5+fj22+/xbJly5CZmYns7GykpqbCxcXF2GXeMbMKfXPF0Ef03RyVo0ePSr2A7e3tcHBwQEpKCrKyspCZmQkvLy9jl0lENG+EELh48aLUm1daWgqdToegoCC9OdBWVlbGLnVeMfQx9BFJJtcEnOwFLC8vx8TEBLZu3SotOxAWFmZ2b4REZP7Gx8dx4sQJKei1tLTorXaQmZkJHx8fY5e5oBj6GPqIDOrt7cXhw4eRm5uLw4cPo7e3F+7u7sjIyEBWVhbS0tLMYsiDiMxTR0eH9B5WWFiIwcFBeHl5Sb15SUlJFrWuKUMfQx/RrGi1WlRWVkpHsZ07dw5WVlaIiYmRJjf7+/ub5ORmIjIPWq0Wp06dQn5+PvLz83HmzBnIZDJERERIQS8oKMhi36cY+hj6iG5LW1sb8vLykJubi5KSEoyOjmLNmjXSPMDExESL+gZNRMZx7do1HD58GPn5+SgqKsLAwACWLVuGtLQ0ZGRkIC0tDR4eHsYuc0lg6GPoI7pjo6OjOHbsmNQLePnyZdja2iIuLg7p6elIT0/H5s2bLfbbNRHNn8nevLy8POTn56Ourg4ymQxhYWHIyMhAZmYmQkJCOPd4Ggx9DH1E80oIgQsXLuDw4cMoKCjAsWPHMDY2Bi8vL6SnpyMtLQ07duyAq6ursUslIhMxXW+eu7u71JuXmprK3rxZYOhj6CNaUKOjoygtLcXhw4dx+PBhnD9/HnK5HJGRkUhLS0N6ejq/lRORnrGxMZSVlaGoqAgFBQVSb154eDgyMjKQkZGB0NBQnlZyjhj6GPqIFlVbWxsKCgpQUFCA4uJiDAwMwM3NDampqUhLS0NaWhpWrlxp7DKJaBEJIXDu3DkUFhaiqKgIJ06cwNjYGJYvX46UlBSpN8/d3d3YpZo0hj6GPiKjmTwieHIouLq6GkIIBAUFITk5GcnJyYiPj4dSqTR2qUQ0z65du4bi4mIUFhaiuLgYnZ2dsLOzQ0JCAlJSUpCSkoLAwEDOBZ5HDH0MfURLRk9Pj/RNv6SkBO3t7VAoFIiIiJBCYGRkpMmc3JyI/t/w8DBOnDiBoqIiFBYWoqGhAQCwbds2pKamIiUlBTExMTwF5AJi6GPoI1qShBD46quvUFxcjJKSEhw5cgR9fX1wcHBAfHw8kpOTsWPHDgQFBXFeD9ESpNFoUFFRgaNHj+Lo0aOoqKjA+Pg4Vq9eLYW85ORkHoCxiBj6GPqITIJOp8OZM2dQUlKCkpISlJaWYnR0FO7u7ti+fTuSk5ORlJSEdevWcTiIyAjGx8dRVVUlhbzy8nKMjY3B1dUVCQkJSEpKQkpKCjZu3Mj/o0bC0MfQR2SSNBoNTp06hZKSEhQXF6Oqqgo6nQ4rV65EfHw8EhISEB8fz/UBiRaIVqtFTU2NFPLKysowMjICZ2dnxMfHY/v27di+fTuCg4PZG79EMPQx9BGZBbVajZMnT+L48eM4fvw4qqurodVq4e7ujvj4eCkIBgYGcnkYotswNjaGqqoqlJWVobS0FGVlZRgcHISTkxPi4uKkkLd161YoFApjl0vTYOhj6CMyS8PDwzh16hSOHz+OEydOSPOJXFxcEBsbK/UEbt26lQeGEE2jt7cX5eXlKCsrQ1lZGaqqqjA+Pg6lUomoqCgkJiZi+/btCAkJgbW1tbHLpVlg6GPoI7IIY2NjqKysxIkTJ3D8+HGUl5djdHQUdnZ2CA0NRXR0NKKiohAVFYXly5cbu1yiRSWEQFtbmxTwysrKUF9fDwBYuXIl4uLiEBsbi9jYWAQFBbG33EQx9DH0EVmk8fFx1NbW4tSpUygvL0d5eTmuXr0KAPDz85NCYHR0NAICAjhcRWZlaGgINTU1qKioQGVlJSorK3Ht2jUAgL+/vxTwYmNj4evry3mxZoKhj6GPiP5Pe3s7ysvLpSBYW1sLrVYLR0dHREREIDw8HKGhoQgLC4O3tzc/CMkk6HQ6nD9/Xgp3lZWVqK+vx8TEBBwdHREWFoaIiAhERUUhJiaGZ70wYwx9DH1EZMDIyAhqamqkIFhdXS31Bnp4eCA0NFTawsLCePo4MrqJiQm0tLSgtrYWp0+fRlVVFaqqqjA4OAiZTIaAgABERERI2+bNmzlUa0EY+hj6iGgOrl27hpqaGlRXV6O6uhpVVVXo7u4GAKxatUoKgVu3bkVQUBB8fHzYI0gLQqvVoqmpCadPn5ZCXm1tLQYHBwEA3t7eCAkJkQJeaGgoT2lo4Rj6GPqI6A4IIdDe3i6FwMmtr68PAODi4oKgoCAEBwdLlwEBAbC3tzdy5WRKent7UV9fj3PnzuHcuXM4c+YM6urqMDY2BgBYt24d7r77bmnbtm0bh2lpCoY+hj4immdCCFy5cgV1dXU4e/Ys6urqUFdXh+bmZkxMTEAul2P9+vVSAPT394e/vz/Wr1/P5WMs3PDwMBobG1FfXy+FvPr6enR0dAAAFAoFNm3ahG3btkkBLzg4GCqVysiVkylg6GPoI6JFMjIygoaGBikE1tXVoaGhAb29vQAAKysrrF27VgqBk9umTZs4LGdGhBC4du0aLly4gIsXL0qXTU1NaG1thRACMpkMfn5+CAgIQGBgIAICAhAQEMAvBnRHGPoY+ojIiIQQ6O7uRlNTE86fP6+3tbe3S/utXLkSa9eunXZbtmwZ5w0uMRMTE/jmm2/Q2tqK1tZWNDc3S+Hu4sWLGB4eBvBdz52fnx82bNiAjRs3YsuWLQgMDIS/vz8cHR2N/FuQuWHoY+gjoiVqaGhICoPNzc1oaWmRtp6eHmk/Z2dnKQDedddd8PHxgbe3t7R5eHjw3KfzTKfToaurC+3t7fj666+lcDd5/fLly9BoNNL+K1aswMaNG6VwN3np6+vLs1nQojGL0Dc4OIgdO3agoaEBFRUVCAgImNXjGPqIyFQNDAzg0qVLekGwpaUFbW1taG9v1wscNjY2WL16tRQCV69ejeXLl0/Z3NzcLD4c6nQ6fPvtt+jp6UFHRweuXr2Kq1ev4tq1a3rXOzo6oNPppMepVCr4+vpizZo18PX11bu+Zs0aODk5GfG3IvqOWYQ+rVaLvr4+PP/889i3bx9DHxFZNCEEenp60N7ePu125coVdHZ2YnR0VO9xVlZW8PT0xPLly+Hp6Qk3Nze4urpKm4uLi97Prq6uUCqVcHBwgJ2d3ZIZYp6YmMDw8DDUajXUajUGBgb0rg8MDKCnpwc9PT3o7u7Wu+zt7cXNH4tubm5YtWoVvLy84OXlpXfdy8sLvr6+cHV1NdJvSzR7ZnFeIYVCAQ8Pj1vup9Fo9L79qtXqhSyLiMgoZDIZPDw84OHhgbvvvnvafYQQGBoaQmdn57RbV1cXvvnmGzQ1NaGvrw99fX0zvmfKZDI4ODjA0dERjo6OetdtbW1hbW0NhUIBhUKhd33yZ7lcjomJiSmbEEK6rtVqMTY2hrGxMYyOjkrXb/x5ZGQEg4ODU4LbjRwdHeHu7g4PDw+4u7vD19cX4eHhere5u7tj5cqVWLVqFZfXIbNhFqFvtvbv349XX33V2GUQERmdTCaDUqmEUqnEunXrZvUYrVYLtVothcC+vj4MDQ1heHgYIyMj014ODw9Do9FIgU2r1UKr1eL69et6lzqdDlZWVpDL5QY3Kysr2Nvbw87ODiqVCnZ2dlM2e3t7ODs7Q6VSwdnZWe+6SqWCk5MTz6NMFsuk/vK/+eYbPPjgg1Nu/+9//ws3N7dbPv7FF1/Es88+K/2sVqvh7e09rzUSEZkrhUIBNze3Wb3fEtHSY1Khb8WKFSgrK7vtx9va2sLW1nYeKyIiIiIyDWZzmFZmZiYKCwvxxBNP4IMPPjB2OURERERLilkcvXu7ePQuERERWQqLDn1CCAwODkKpVC6ZpQaIiIiIFoJFhz4iIiIiS2E2c/qIiIiIyDCGPiIiIiILwNBHREREZAFMap2+xTR5kAcRERGRKbjVgakMfQb09PTA09PT2GUQERERzcqtlqBj6DPAxsYGANDe3s41/EzM5On12Hamie1nuth2pottZx6USuWM9zP0GTDZPTp5wm4yPWw708b2M11sO9PFtjNvPJCDiIiIyAIw9BERERFZAIY+A2xtbfHyyy/D1tbW2KXQHLHtTBvbz3Sx7UwX284y8DRsRERERBaAPX1EREREFoChj4iIiMgCMPQRERERWQCGPiIiIiILwNBnwL59+xAXF4fdu3djfHzc2OVYvJqaGsTFxSEhIQE7d+7E9evX8a9//QtRUVFISkpCe3s7AKCxsRGxsbGIiopCcXExAGBoaAj33XcfYmNj8Zvf/EZ6Trbx4vroo4/g4eEBAGw7E3Ps2DEkJycjISEBn3/+OdvPRExMTODRRx9FXFwc4uPj0dLSwrazdIKmOH36tNi9e7cQQoj/+Z//Ef/85z+NXBF1dHSI4eFhIYQQL774ovjkk09EeHi40Gg0oqysTDzxxBNCCCHuu+8+cfHiRTEwMCCioqKEEEIcOHBAvPfee0IIIdLS0kR7ezvbeJHpdDrxve99T2zbtk2Mj4+z7UzI6OioyM7OFhqNRggh2H4mpKamRjz00ENCCCEKCwvFz3/+c7adhWNP3zROnTqF1NRUAEB6ejrKy8uNXBGtWLECDg4OAABra2tcvHgRW7ZsgY2NDWJiYnDu3DkAQEdHB9avXw9nZ2csW7YMPT09eu2ZkpKCiooKtvEi+/DDD/Hggw9CLpejubmZbWdCysvLYW9vj3vuuQf3338/qqqq2H4mYvXq1QAAIQT6+/vh4eHBtrNwDH3T6O/vl849qFKp0Nvba+SKaFJbWxuKi4sRGxurd35InU4H4Ls3t0mTbTdde7KNF49Op8Mnn3yChx56CID+/6/J+wG23VLV2dmJ1tZWfPHFF3jyySfxyiuvsP1MhLu7O+RyOfz9/fGLX/wCiYmJbDsLx9A3DVdXV6jVagDffUC5ubkZuSICALVajUceeQQHDx6Ep6en1EYAYGVlBQCQy///T3qy7aZrT7bx4jl06BB27twptc2N//YA226pc3FxQWxsLGxsbJCUlITa2lq2n4koKCiAvb09mpqa8Omnn+Ktt95i21k4hr5pREZGorCwEMB3/2liYmKMXBHpdDrs3r0bv/rVr7BhwwasW7cOjY2NGB8fx8mTJxEUFATgu2Hg5uZmqNVq9Pb2wt3dXa89i4uLERUVxTZeRI2Njfj73/+O9PR0NDc3491332XbmZDw8HA0NjYCAGpra5Gamsr2MyGurq4AvgvvPT09bDtLZ9QZhUvYc889J2JjY8XDDz8sTWAm4/nwww+Fm5ubSEhIEAkJCeLjjz8WH330kYiMjBSJiYmira1NCCFEQ0ODiImJEZGRkaKwsFAIIYRarRb33nuviI6OFvv375eek228+EJCQoQQgm1nYt5++20RFxcnEhISREtLC9vPRGi1WrFr1y4RHx8vIiIixMmTJ9l2Fo7n3iUiIiKyABzeJSIiIrIADH1EREREFoChj4iIiMgCMPQRERERWQCGPiIiIiILwNBHREREZAEY+oiIiIgsAEMfERERkQVg6CMiIiKyAAx9RERERBbgfwFWDxtGbWx9/gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -159,7 +161,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAANUCAYAAADfCiCRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gVNdfAzwLSi0gTkKqIKChFpQmCIAgiIqI0G4o0GyBVkCa9CIrSe+8d6SggSEeQ3ntvuwss226+P86XdzKZTLt37t7d5fyeJ8+9M5PJZFomOS1hjDEGBEEQBEEQBEEQBEEQBEEQBEEQhGNShLoCBEEQBEEQBEEQBEEQBEEQBEEQSQ1SsBAEQRAEQRAEQRAEQRAEQRAEQbiEFCwEQRAEQRAEQRAEQRAEQRAEQRAuIQULQRAEQRAEQRAEQRAEQRAEQRCES0jBQhAEQRAEQRAEQRAEQRAEQRAE4RJSsBAEQRAEQRAEQRAEQRAEQRAEQbiEFCwEQRAEQRAEQRAEQRAEQRAEQRAuIQULQRAEQRAEQRAEQRAEQRAEQRCES0jBQhAEQRAEQRAEQRAEQRAEQRAE4RJSsBAEQRAEQRAEQRAEQRAEQRAEQbgkSStYevXqBWFhYbr05JNPOt6fMQYRERHAGAtiLQmCIAiCIAiCIAiCIAiCIAiCSG6kCnUFAuWFF16A9evX/285ZcqUjveNjIyELFmyQHh4OGTOnDkY1SMIgiAIgiAIgiAIgiAIgiAIIhmS5BUsqVKlcuW1QhAEQRAEQRAEQRAEQRAEQRAEEShJOkQYAMCJEycgT548UKhQIWjUqBGcPn3aNG90dDREREToEkEQBEEQBEEQBEEQRKBERgLUrw8wZ06oa0IQBEEQREKRpBUsZcuWhWnTpsGaNWtg/PjxcPXqVahQoQLcunVLmX/AgAGQJUuW/6V8+fIlcI0JgiAIggg1jAE8fBjqWhAEQTjn+nVvy3r1VYBx47wrkyAIZNAggMWLARo3DnVNnENT0hIEQRBEYCRpBUutWrXg/fffhxIlSkD16tVh5cqVAAAwdepUZf6uXbtCeHj4/9KFCxcSsroEQRAEQSQCvvgCIF06gCNHQl0TgiCSKlu3AkybljDH+v13gFy5AHr18qa8H38E2LULoGVLb8ojCELjxo1Q18Ad168D5M0L0KFDqGtCEARBEEmXJK1gkcmQIQOUKFECTpw4odyeJk0ayJw5sy4RBEEQBPFoMXky/g4dGtp6EASRdHntNYBPPwXYuTP4x/r6a/zt3dub8u7d86YcgiCSPsOHA1y5AjBsWKhrArBmDcDgweRRQxAEQSQ9kpWCJTo6Go4cOQK5c+cOdVUIgiAIgvCQhw9pwE0QyYEHDzA01aVLoa6JN5w6FeoamPPTTwDvvw8QH69fHxYWmvoQhExkZKhrQCSmvtVbbwF07oyKlmAjt4t2hIcDXL0anLoQCUNcHIDJbAIEQRABk6QVLB06dIBNmzbBmTNnYMeOHdCgQQOIiIiATz/9NNRVI5IQ9++HugYEQRCEFefOYUivDz/0tlw7IeP164lL8HD+vLfzMHjNiRNoYX/njv9lREWhYCU62rt6EYmLLl0wNNWrr4a6Jt6QmNoImR49ABYtAli1KnR1+P13gFmzQnf8hCIxPweJlV9/BcicGWDSpMDKuX3bm/oEAmMAH30E0Lx54GXt3w9w4EDg5TglMT67588Ht/w9ewAyZQIYMsT5Po8/DpA7d+J43gj/qFgRIHt2gGPHQl2T0PDgAUC/fgD//RfqmiQdwsMBbt4MdS2IpEKSVrBcvHgRGjduDEWLFoX69etD6tSpYfv27VCgQIFQVy1J8ssvADNmhLoWCcuYMQAZMwKMHx/qmhCEM27eBChZEuDnn0NdE4JIOMaMwd8FC7R1168DfP+99Twq27dbD6KsFCyrVuGcB5984q6uweLuXYACBbBOboiLA7h4Ub1t716APHmw3JMnA64ilCiBc0R89ZX/ZXz6KVqwfvNN4PVJTFy/TgM0zooV+Hv5cmjr4RWJUTgp8847+Lt3L8DhwwnnwXL6NIY3a9o0YY7nBMYAOnUCKFLEOyH2mjXYNvNnOzmQEM/1d9/h7xdf+F/GhAkA2bIB9O3rTZ385dIlgJkzASZOtDbe27bN2nvvwQPs57/0kmZocOwY9ndWrUKF6aOA2+cvIsJd/lat0KCjUyd3+wEAHDrkfh9OUvheJGd4SM9HQemv4qefALp3B3jxxVDXJOnw+OMAOXKQUTbhjCStYJkzZw5cvnwZYmJi4NKlS7Bw4UJ4/vnnQ12tJMnp0wBt2wJ8/HGoa5KwtG6Nvy1ahLYeRGAsW4YDrEeBAQPQsu3770NdE4JIOFQD0s8/R0Wj2SDh/HmA8uUBnnvOvFwrISMX1vhreLBzp7dhCPwNQ/TmmwD58gH8+adxW5kyGHf9/HlvJrvmwqDZswF8Pv/KmD8ff702fFizBmDdOvwfHg5QrlzCxZt/+BCFrzlyoMKLCC4bNqAiIaGYNAktQhM7d+7gO//CCwkn5DtzJmGO44a5c9Fq/eRJgDfesM576BB6JJw7Z53vrbdwYnOuyEpI+vUDaN/e2zL37MH2atw4b8sNBl9+ib8//hjaeojhpsy+fzt3ogX9U08BzJmDdX79dRT0c8LDtf9coFe6NPZ3atfGkH9etW+TJgHUquVfmLatWwGWLPGmHoHy888AWbKgciuU7NyJwmvxfop07Qrw9NPuPGD27cPnJDEKd2NjnX9LfD58Xi5ccJZ/2DAc8waT9esB3n7beZ0Yw3ZexaRJADt2aMtduuC7Hkxv7KgogD59UC7glN27g1efYHHhAr47Tu9TfDx+w7zob4vP99mz/pfjNhyhF9y4ATBlCirtiYQjSStYCO8IJJwHQYSad9/FAdbx46GuSfB5+DDUNUgeHD0KMHYsCTvtePAg8cab5lZoZvfQy/bgn3/MB1UqNm4EKFsWIH9+XPb5ABYvDmzOCX8Fon/9hb/cC8gMfzrgMTHm2/btc17O3bsY/i3QgV9srHp9ZCQKQGvUwAHpiBE4EO7QwV35J09iOfyaOkUM62YmeHkUmDXLqIiYMQNg1y5n+zt5Rs+fB6heHRUJCcXGjShUO3w44Y7pD1YeQ3PmeBMyJD4ehfL8WlSvHniZp0+jUijQMFKcrVu1/3ZK8JdfRqHte+95c2wviI9HL8Hp03G5e3ecpPzECf/LvHtXv/zxx3htuOKdMbK894ItW7T/jRujIcfmzSgE44iGH/yay22fyjN31y6ABg3wfRE5dcpcoP/FFwCrVwOMHu34FP7Ha6/he+GF96sKN88bNzpThWdjDIX1GzZ4Uy8rypbFb9ygQertAwei0nnkSOO2nTvV/abSpfE56dnTvzodOICh67yeK+zmTQyxVr++s/yzZ+PzwvvFVkRFYf/shx+CFxaXMTRA+uMPNNhyQqtWADlzYn9eZMMGfJfKldPWDRqE3mpp0+I75pY1a+z7Rv3743NRsqR6++TJAB98YK7kMVtv1pdWceUK9oGC+X2oXRvfnbfecpa/Wzf8drdqFfixxfPy1/O3aVM0spK/s8GmalWAZs3QiP7YMZp7KKEgBYvHnDgRPA0lY+hKXaqUvSVVKGjbFi2JE0p4QB39Rw/5gy9biLkRgCZVaGJabyhWDDte/gwqHyXy5MF402YhpoLFyZN6jwtVGBf5GxARgXM6mA1s3SK2NxUqOBsUAqD1abVq+J8LRSZNwkHo00+r9zlwwN4yyuk37/x5FNZYKT9UyG3L9Ok4+LxzB8uaMEFvjX78OECaNABt2qjLc+PBUrAgeq688oq7OnN+/BHrnzo1zvcgI4YOiY429lO6dHEmvPjgAxz0Vq3qXz0BAmvDly3DgebVq6hYXLNGb+0cKCdOBDcud9OmKAwWn6OPP8b31qzvGBWF3kwffwyQIQPApk3GPKdPa++a2D8+eNCdoEDF2rXOFWoJPXh2i1kbsmEDCnu9CBkyZQoK5V94wf8y7t/H+z5litZuHj4cWBgpETfjB27U4sZCONgsWgQwapQxfKVsgOO0De7YESBrVmxfOOI1OnkSIEUKTIzh81K2bOK6Jpxx49wbzuzerXlO+kPJktiuX7umrXPbzov3TqVgccKrrwIsXIieu+PGYZt47hzAM89gCLVg4dSq3C1ejfNXrUJhvRfKXivE75pdCDH53Tx5Et+p0qXN5Uj+vm+vvoqh6+rU8W9/M+bMwf6U7MUUH4+efF27AlSpooWMXb/eednidzsh5uNzOsbhHn09eujXHz1qvV+tWu7qc+4cKhOs5qnbvt0+LOLnn2No5bRptf6J+F6lTat5dnPOnwdIn975XFJ58uCYJ5B53s6cAahcGWD5clQCrF2rf0cOHsRfp0YsfBzohUebKCfwt/8+axae1+zZgdfHDbwdGj8eozlkz26dPzqa5KteQAoWD5k0CeDZZwEaNgxO+UuW4GSA//6rWQswho1NoANIL/jlFxyYz50b3OMwhh+qatX8awSio9GVXv6gEImbAwdQeNalCy6PH48Dwu3btTz0USDcIj4/hBEuvFUJNd0QEYGWm04FPkWKYOgWPqBUCX3lskaORGsv3kaYdYRFxYNZnnv3jJZjTr3HREtUAE0QDqAeKF6+jLHWCxXS9i9SxH7ABoAD2RkzUMDMyy5WDC2WBg/WW7L++6+z+nM++QQHxH36oPXnl18CFC6sbeehG7xQUgaqJBAHmV9/bdwufhtSpNDf96tXcTDWp499CA47QVJMDPbJ5G+Rv9+m//5D4Sf3Mn73XRzEtmunWfM9/rh3YZiefRaF7KHwajYLxde1K4Zx5durVNFv37sXBfA8FKB4rUuUwH6DylrYCbdvA9SsiQq177/H50acB0om0D5ITAxavCa0Z6XbtsEKMUSKjOr6xMWh1Xbv3jh+evgQ50bMmhXbMdlS2F+uXcOwwF4qBW7dSph+56lTAFOnaoJXJ3M57diB13DsWPu8Q4fi77vv4q/sLSGOa2/cQEH1zp3eC2y9oGVL92HNXnkFPSh37sT2hYd527gRvZ0mTdK8v3r2RCW3+I7yZ6psWftjmfU5zNaXKOEuPwBa/LdsiW3nP//Y18ktly7pvQq8MPwK5nvkleeG2H8LC8N+S5cueP83btT3j+zg/ddDh1DwLX7XGjcOzNtZ5N49rd5O+pResG4dzkU1cCCOHUaNMs/78CFa1n/0kfncorJihjE01vBynr7EJj84f9582/Xr+EyXL++uzO7d1evlMPm//ILtm1vlhEqudvWqM8PzZs1wjFi3Lnof16yZMOEpO3bUvn+cyEjtXdm5Uz+mSGgj1wsXUGaZEKFWL18GSJcOv4WEETdtBClY/IAx1NrL7rlc2LBwIXZARWu8v/4KfCJFcX/emZswAa3EGjQw3+/OHetJfgES34fFinv30NXyzz/9s6r+9Vd0pa9RQ79+0yZcF0hYmXv3sPzz51EhtmeP/2UlJMG+//7G4hfp2hV/uVVCixYotG3cOPCynZJQ78mmTdh5VLlFkweLt4TqejZqhIPxUMRkPXUKYN68hHueIyMxNnblyu477Fzw50TgKH5zBw0yv7diZ1qVZ+VK8/BC8fHoxWA134J8XTdvtr7W4ve5XTscaJw8abQeU5UxYQJa9j/9NFqcXb2qCcfWrNF7zPBvm9tn7u5dnBRTRq6PHH4jMbVV4jdIVrCIijO336oLF1DYyCe2fvtt7JPJygLx+XVzXV58EZ9XWZBw/ToKXDmvvWbc9/p1tFr1x6tYFu48fIiWhffuuS/LKWaGQqpJw8VwNwsX4u+FC9iuvf66Mf+33zqrw/r1ODcCD+chhlPgwp8PPnBWlj98+inGbO/WzTpfXBwO/L1SxHj1rvp8+rmTOne236dVK7Ta7tUL71+WLLjea6vlZs0wTKJZKBU75PZu5Uq0BuVzOfrL7t34XbT6RjzzDMBnn6nnpRJDeIr3sUkT7CO7DZGyZg16ionCWHG+D7GeThQ9XuC2DROVCv36ARQt6szDfdUq7H+vWIH9pGrVsG394gvNu7JPH8z3xx/WZYnGDWvXoqLEaShE2QBAFRrP50PPgFmz8J6o2s+FCwM3gLh2TR9a8N49bCNz5QqsXJHLl3GeuLAwvTCeMezLDRli3OfoUfzOOunHynlatsRjOVW83L+P31K5X9ihA9avZEnNa5lz6hR60546hcYzcp+xb1/0RCteHKBAAf03d/58fN+9IJhzmIih4cS+k5tQ1mXKoHHEzJnmc4vK4btOnMDn/rffvJEvAGjPyMGDeE/tzsGr8dP582iY7KZfnisXfhPcwj1x5e99IAZBYr3F/Tp2xDFf7tzoPTdmjHW5oryDeyH36oVtrd08aSJuQlkePoz9644d9euffRYN1bZvN0YMkq/dkiUAS5e6qx/n2jX756xOHZRZml0DxrAt4UZ8gcD7IVZGRI8qUVEAbqZ5JwWLHyxZgkJdeeJc8aXJmRMbFQAM+1G1Klqoeg0XFHG3bpX1ZfbsWNdALRf+/Rc7OXZhR1IE8ak6dy7wj5ocm5ZTpQpq362UVXZ06IBh3AoUwDijL79snf/kSbRQDeUkoNHR+Gx61ZmTuX8fw780auRdmYG4ofrLw4c4SGvSxPk+onW5G6pUwc6jyhI7IScqu3vXu85rqAgPx06Dmwkl7Vi5Ui/c9Ie5c1FAxucRkTl5EoUpwfBOfOYZtEh1ExLDSgCnEvL16YNhIwH0FphuJ4z/7TccDIvHOHsWO7/iPZU77126mNdZtIaT8/h82KE1U7SvXYudz+7d0bJaVI7Ex+P+gQxWRozQ/ssCRrGcX3/FXzF0kc+nxeTn9ZHZtw8gc2a1wEJENsqwE3Ax5iz8hs+HgwG3HqR377oP6yNaAIrtWFiY/r6LCjc7oZlMq1aoWOIWz/zZ+u03Lc8337gfDI8YgQJhjvyuhoXpr4dqbo1KldAqNH16VPK5Ydcu/bX47ju0LDT7jsfHo+FPIN+Lr75Cw4kXXrBX5ERE6MPxcJx6kIvPkzggf/NNFHTVqqV+l+0YODCwcDlz5uCv+Ez+9JNmYMJp0wYV9LJgAADr/O23aIVqRTAUoLz+nMGD9cuq6ykr3Z2GNoyPdzc/mJdeOgCaNbATDxErXnkFlelOYvSr3uMffnB2nNOnnQnx7GLcexGPXlWWvJ4LnLdtwzaMz5c1ejQqOa2eE7Hc7t3xey4/i3b7yRbkchtrJxgTvaNr1kTBbc2a5vnFaylfV1VovPnzURnRtCl+e7NmNea5dEn/zPTsad7nVHH5MsCTTwLkzauF7FOFEVQ9Bxs2qI0g//4bvdXEPl2/ftr95uGkALCP16ULQKdOaKgjUqwYGpcsWmR/HvJzxi3jRU/N6GgcX+3ahe14XBy25Z9/jmO/jz4yhv0SQ+rJ7NuHY7hnnsE+q8p74P338VcMYcqxm9fmxg20bLcLRWY271ZEBL5H3EDBH8RvjFl4QTvkkE98jCuXkSeP1t/1x7Dg5k2Ut4j7isfgfZcSJfCZ+/FHLe+aNSjH2LjR2bHOnTN6sqs4ehTlRY0aeRPKyileeVgDGL1ooqJQpjR0qDbfVHg4GiK4jXBz7Rp6C4rhoq1gDKdRSJfOuG3OHONY0sxjnfcrli61vjaRkSjrq1fP3vuds2wZPmvnz2PbahY2msON68+exbluSpdGhW3TpljO0qX4rDqdm4bwj8WL3cnRScHiB2butvLAkoe8MPtI+nzWE07K2DWAI0eiW70s+OP1sgrxIk5+e+oUxprnAhxOqVLYyZHXnzql72gGS8EyahR+4JxaIvpLIG65boRGsbEYBubFF9Gt2O2kuV6xejV2OpwKjOPjrV1XZZYuxU6ql6HjatfW/tu9F7yTbAdjRiHin3+isuPIERQ2nTjhLn6maF0uc+oUCuesOtEqxZtXk7yq6NkTO9w+H1pVZs3qbcxiJ+E03HT0fD5rgR53I2/e3JnVcVQUWpPZWaTWqYMKSVlxFh+Pg7EJE+yPZUeRIihs9De0jRmigk6cbNVfTpxA4YdoecYYPku//ILPeSBzhu3ejYNh0VL222+NHZ3WrXGyRxF/hD92z5/Yia5fXzO0iIvDe1aypNFK1a4ediFDvvgCBcdi3bhluFXZqm2lS+Mz0KmTUdgm5hctmMwGs+L3zul3f9EiHAzIHqRWrF2LbZEbS/F06XDgyoWqViHCxDlbRAXC5ct6y20VZpOviuWLyha+bcIEVNSKREWhciEsDD2ZxAG6LExUKSDkOXxEJeHbb+Pvvn14/e0Gg59/jvtwC18ukFq5EveX27j27fHZd+KxYMX48ShwmTxZW6d6J7t2xcGpyqLfjs2b8Xn68ktcfvddFAjIz3nWrOZeyCrlDgBavjudq8kKfs7R0RjrfeBA/XZ+3qJCFgCFuClS4HeDK7jtjuGUJk2wzbPaz85rW9z377/Ratlf0qZFQzYnIZCuXMGkqoe4zolHRmQkWpSK3zUzj0c3cEGjlRJk9myjQFIWPHPEfvq8eVoYvcaNsU/rL156vprNH/Ddd+glMWGC1qYMG4a/bdrg98ltP8uJUNZNn6FhQ3075YTwcGfHcJJH9MjZuNGZgK9PH30YMz6vgRl582r/169Hpb9qXCLXd+1aHDvky4fXKF8+HGeePo2K/1699IpJs368KFvg9+/nn/UGq06MIp0o/nPnRs+tV1/F78u4cSg4nTzZXC4QrMnXAfB7zpi551Xz5tgOFS/uX/n9++N71KCB/Ts9fLi9wkA0BjMrz8lzrfKWBsD2m899J5bj5N7GxgLkyIHyFrMwfnKdhw7VjMPeegvbe9FL6dAhrIdKiViwoN5AxgyxPNkDPBgE2nbXr4/nLMpB5PHO5MnmEXt49J1Vq7Bfw+/d5cuBfZM4Dx7gMVTer40b4zstGqHZERVlrJf47M2apc/73394nBIlNCVNRAT2dThr1qAyjXucqOTAcXGo+JQNSLp1wz782bN47L/+0vdDvDTAtZvbxwtOnkRDgcQQRcmuLXeq5OOQgsUlBw+av5xuLfcaNsTOizzINkMsX/UwcsWDmSfClCnm1tCi5rxtWxRIf/edOq8ocNi6Fa0zSpXS1gUrLAjvZKsUATduaAKIiAi1NQjHrn6xsahhli3eL13yz5o8Nlbd8ZWF+XJHffVq8w/OqVPOGtIBA+yt1N02bI0bo+BKntBRxdmzKOBOKFTnUrUqCjzsFFiffIKCYlEo9cYbqJisX9/eSnD3buPH0KpBrlEDBxjyZMniJLmM4WDbqWWEU06dwrZsxgx9u9KnD3a4mzbVwiGYncO0aWjVZRd+kLNqFXrTtWxpnqduXRQOHTtmr3z2+bDdKV1a3fa2aIGKS96+OrE8WrQIO82iwtkK3u7we7ZwIb7HXHAnc/CgURgkP7O3bmGIGM6WLShM7dfPmw6o+M56EV6mTx9s48TYyeL9sPLCENdt3+7cy8ipwsasrZfrEBOjvWP+dvTOnMH0339GJayd8sFMqLdrF9Zt0iQUkIkCdLP+RqdO2n+7b5086e3Nm2rrVpXX0e7d9u+o6vj+eGv++CP++mMpzhVFcogwK7jiNG9eFJyK750YMkouV2THDuwfqcJVHT2KbUSdOvrnbe5c5xN47thhfFYLFbJvj0uXxoFTxox4f+yuqepd69vX2MZxw5uhQ9E6OVDs+rvcU+Lbb933OXv1wl/e712+HN/b3bv1+SIizD1Wn3wSlctmyP2zHj2wP2Fmdd+zp/peOBlXVKumGXR9+ql+m9M+q901jIzEdm3xYrVAad48FBjYlSPeS+5h5RbG8DvKv198bBAXhwpVnw8FPOLcRXK4RblPFRuLfdscObCvuGABXldRKcNp3x6TaP0uK2LHjDG2dXfvYj+oenWtPyrf3zNnUHEkx8QX4UpYsVwRxtBDUfy+c8+ukyfx3alWDfuW06e797D2UhgiTxTN4YYlVgrbr77C/oXqnVI9h27bCSfv3uefu+9HmdWjbVsUAEZHO4uBH8hY+913UbBuNr8LgHE8U7eu8/LFccPnn2Ob8eKLemMz0UjG7FzEsFqTJqEQ7PvvjQJc2eDgiy9QKc3fcyf3Up53bO9eawMLL+aes6NVK4yIwrl3DxWNJ08av1ccpyGSxLFAihSoeBD7mLt24XXcvh3bu2bNsP8TH49euRUq6MtLkQKv9/ff6wXKnAsXjMaZqnrya251DuLz4uRcxTZSvKd25TixWOdzJzpBDk8p9qHdtsOB4I8HS3y8Nh9akya4rJJDWRmN8vewdm1UpM2bhzIXUZEbDMT2wY3X6y+/aP1FztKl2JYdPGgMv/nii/h9PXgQFba7d2PI00qV9Pn++MM8KoDPh4YzDRoYvQXlfktUlP4eyKH0AoGPu4JJkSL4rTMz8N66FWVRgc4jxhh+S8zk7WPHYtg9szmKAPwIj8weYcLDwxkAsPDwcNu8584xduMG/2xpiTNlinEb375+vTE/Y/p8U6bY17d7dy1/ihS47tlnzY+rOs7QoeqyxTxvvWUs59QpbV3jxtr6Nm2Mx541y/5c7PD5GDt+nLH4eG1dxozGY50/z9iZM/i/cGHGYmO1bXfuqMtW1VmVXnhB22fnTlz38svW9S5UyLy8e/f0ecPD9ds//VTbtmeP+l4yxtju3bg+Y0bruvzzj7GMAwcYO3sW/588ydiECYzNn29+LJnbt/V1btkS18fEYJKpWVOfPzYW13XvbswbHs7YjBn4q6JWLft7tnmzcT++rUkT63Pj+dq0Ma6zer8YY2zvXvW2Dz8038esvAIFtPVlyjD2yiv4//p16/048fGMxcWZn2fnzvoyfvuNsehoxpo3t762FSsydv++sf4VK6rr4PPp15UpY6z3jRt43FWrGHv40HjMjRvNz+PqVS3fzZvG7U7bxY8+0tZ16eLsXeB5tm/HdgcA6zNmjPX+fFv79tr/HDkYa9qUsY8/ZmzbNsa++05f53r1GPv2W+fvKGffPjw3/r5zTp/WysqWjbErV5yd68yZ6u0ffWSsm9gOHz6sP58yZfT7DxmCbS3ffvo0Y+3aGe/d0087a7fF9PPP6uv2+uva+tatGcudG/+PGmVsl+U0e7Zx3f79+L0y2+evvxirX19fl9GjtetqdTxx+4wZ2v9UqbCcxo2t31m31wyAsQwZGMuf33z73bvOysmZE+9/lSqM9eql3W+r91FOFy7gO8KXy5VjbNEi8+dUTt264fZjx7R1MTH6/pQq/fqr9v+nn4xlAOA3XVy2qoeYVqzQX6O1a3HfCROs92vYUL/M2x4x/fILvkM//KBfnzYt9pdU5S5Zgse/ds24bdIk9TMv3r/ISPNtTu+TnPr2ZWz6dPtnLU0a/bfFKnXubKyDuCz2mZykQYPMt12+rD7v2bP167/+2ryM+HjGHjxwVpevv8bynn9evz5FCv3yf/9p/xs00P4PH679v3kT31PxHO7c0bafP68/h4sXtW1t21rXk/cTly93d63FJLeZTz+NZX7yCS4/+aS27Z133D13APq+pty+Mqbvo9klkZQp9duOH9e3bUOHMvbZZ9pykSKYmjY1lsu/H3L67TfndTMrwy5duKBf/uILY5/z/n38Lu7bh++dWb/e7HqZHVsegzi59uK6r76yrkevXvZlyuucvqM8ie9aYk1z5rjL/+OPjP35p3Y95XGGKpUqxVhEBOZv3drZccS+opiWLjXfZ9gwY7/DybHcvOdOk9u2yCylTKn1WwEY+/13HE/5fIxVqID9JJ8Pk/x9PHQI6yG2NTy9+abxnciXT59H7D+LaeFCY7/D7lrUqWO+TfzmyNuOHNGWo6PV77TI3LnqsuR+oFmbZHcuJ04w1qyZs/O+fBm/f/Hxxm379jF26xa2c5s26eugaq9UdbXKy+ValSrp1+fLp9/n88+1bWPH4jpxXAeA71T27Pp14ljVLO3Yof0fPNi/59/nw+f44UO9rEHuk/Mkjr94f54xTbYHgGPhAQOs+3VikvtadmM5Mb37rn55715sb9q2ZSxLFvP95PZv5Ur7Z8DuOYmPxzHJlSt4bVT5fD7sW2zbpn7GVNy6hfWLjTXPIx6LfwtU21Om1K8/cwavlSzfMOOPP6zfEbGfbEajRtbbZVxkTX7ICpZ797Djc+OGPt+tW9aNmdjQq7avW6e+cXLe48et6yvmTZECO+Nmx127Fgcyv/+uX1+nDnZ8ZeGnVf0ZY+yDD7R1ooJF1SmaM8f+2ouKExXDhmFZXIDPGAp95GOdP68XhMj3KjLSWLZTBQs//x499Ovk50PESsEyZAhj77/PWKdOeP6y4OCTT7RyJk82f9nFDszp0yic/ucfY77Fi7V8W7aY16tKFfuGhSN/TD/7TP/RzZmTsTVrsPNQogQKdcT8S5aYH6tuXVz/9tvqYydmBcuIEdq27dsZi4rSKypV+4jbIiLwmZDvk9gxHjoU31uzMmNiGFuwQBO69expfZ5iGjnS2fvQp4+xnFKl9OVHR6NQoE4d/fp06bR9duxAIako4BGFIjw1aKA+h19+0XfyA1GwZM+u7W91vzhiJ0rsKM6YoW9vN240Ch2cXGOxYwvA2HvvMfbqq9b1mjsXO5BiB4Xnl5XCovIWgLFcuXB9TIy6I8TzmSnOReEPJyZGW3fggLP7YJcqVHCe1+zex8fjwEV8duTvQerU/pV/6JD5ts2b9R38li39O8YXX2j/w8Kwz8LbTVXyV8Fil5y0xap07Jh7BYtZun2bsalTUSlgtX/Hjrhd/G72728uqOEpUyb98o4d+m+q2TPmpO4qhUXXrsb+ml1SKVhGjFC3pXbJn3vAMROm3bjB2Jdf4v8rV9QChYRO8nmKy24VLAMHmm/jygne1+brp0/XG6NYlV+hAvYlnNSldm0sr3hx63yigkVMoqKnRg38LVFCq6fYt+7enbEWLbC/cfkyY//+6/yaNWmiV3x7kTJnRkWg03tul6zaN1Ho5fR5c9rGyQqWxJpUilpZcViypH57q1ZMiVxO4cL6flUgiTHGDh40rpfHv6KC+Jln7MuU14nGPk5SUlCw+Jt42+ZEwQKARj6VK1sLFb1I4vd/9erQXR9/vrNmSVSwAGB/7+ZNbXnHDlQoyvtxhbSqrXnlFfxOv/+++/qMGaPv5wZyLfbvt1awbN+uLT98qG5b4uMZu3SJsb//Nj9O1672dfLyngFoxsIvvWTc1q2b9n/DBn0dnHxLGMPv60svabIqcXu6dObft6pVNZmZvO3+fWO7//LLxnx2/Q85mSnY7BLvQ5cowVjevJqBiZmCRUyibERUsLhNVkZoblORIv7tN26c+hmwe1ZEY1nuIJA+Pcp4VGVZye7M4A4AQ4aY5xGP1agRrtuwQZPlyXWJjcVvOje4LFAA1zdqhAqvXbuM33fGUEloVX/xOCdOqPNwWalTXGRNfsgKFrMH9McfzR9uxqw7EowZFSxjxzL21FPGvKL1B2N4k6tVw/1V1t12SbSS5olbIpQurTVEL75oXX/G9IJQ/hIwplaw5MqFL4A4iJw6FT/YDx5oL3OPHuaKFlEwz3GiYJEtsrZsMZbtRsFiZpk0ciSWdfo0Xktu3W2lYBHT3LlGBUvTpmiFc/Gi3iOKMbQCPnzY+LzJlu2nTuEHa/NmFGC7fWbscFuenDp00B/r7l0UIMhly94wDx/iu2BXPm+UxQ4X3+ZUwfLZZ/bnyxhq8l97DdsHsVMEoLYinDNHa/hVSlnZGgLAaHnUpImxHj4fCvL79jXuv3evs3sodzLt3gmxnGzZcPnePRQ+rFmjfp78fWZy5UKFK2N4nleuGPPs2YPP/rRpmEdWRPF0+jQqZ8Q2GUAbcDh5F8Q8YudMZYnMLaaXLtU8keySrGCpV0+vYDl9GsuMicGBQ3S0/j7K9UyfXl9/1UA2Lg4HawUKaG0yf67EfKqOi0rBIg7yxLoH8lx4oWDhVkOqb0mgSWzb5CS3DwmVgqVgCSSJ7dTu3Yxt3Rr49RE9CFWpYUOjFaZdkt+TL76wV7BYGds4SSqFidv8/grvuFDdTbp4kbGyZc23y23ZY495+yz5k6w81LZtc1eWnYLF50PhYebM2voSJbRr40RR6bS/yhUsdvnMFCxmiTNrlnkeN/2HUCSnHnc8ycYxgSRuZGFmQS2m7793bgUdynTunHHdb7+hQG/pUqOlMwBjzz2Hgq2TJ/37/vuT1q7F48rrGzZEZXaVKmiUUq+e8zJVyiWVh9Gjmvj4wKlXYShSoH3JQJKXz3yePP7tly4d1sNMmSsa8gQztWplvd3M4EQ21OAyBBm+3czjxun9sVLQeJ1atFCvb9gQhdy7dtkbfYvLYt8jkGugSioFS0KlypXV9XaiYPnqK20sK3o2uE1eKli8TLdv4zjrzBnrezljBm4XI63ICpbt2zGPKNtkDK/fkSPWxvJiORMmoIymTBnsC5l9/3mEHgC9ZzQ/ripigyyn+OMPY12sFCxihCYAlO9evIjj52LFNC8Zs/1Nz9951uQHV7DUrx9usEDhiJa4qsSY/XY5RJhZ3nXrtOPKVsZu3C69TBxRwdKwobbezq131Sr9OX/zjX47dz2UEa3dq1XDhiJ9emP5589bW99PmoQvrIibzrSVuz1j+gGyG9f14cPNrTNSpdIrWMRyixbV55XDzohC3IUL/bvfUVH6Rkx0wfPy2RLPX1YGZs6MjTdj1q7fctq0SWtIBw/W19lMwXL5smZlKz/3Zsf580/rephZldepY905klPp0vb36/XXGStYUG2RrQqxFeh9e+opYzmMacJcUTgxbhxaBDoRLjh5Np0IpAYPRmGTP+WLywMGYGcgPBy9MFSKwP793Zdrl1QKFrEjmzWr3ltC9C5s3lx9n2fP1jpCqmOKQoN9+7Dz9M47xnzcsvSDD7TjqBQsdud44AB2atxcm/LlA3t+3Foeu02ffhrc8iklbMqa1bjOzmjBqYFFcklyyDI5+dMOBzvNm2e+betWd2XZKVhOnky483KqYBEH006SV/2GUKYBA9zlr1rVu2OnS6cf3Nslu3cqMaSzZ43rfv1V8/6wei8AUAHTq1fCCi7NkhyhgFJgac4c/fg9MSaVLCGhkpdtqb8KlrRpsR5JQZmrSrJiqH9/DO8rIgtNQ3F/QpG8qH9EROjPwy6pvH8Y04fftUtJ4VvrT+LGujlz2j8PjNl7nckKDMa0CEqizEFGLkc0kjbLkyqVeT3MnkvZgKZsWWNdxD6YaIDt8xm9qH75Rb8s962d4iJr8oMrWADClQ8dY2otqZzPanuTJvqbZ5U/Uya0wD571mhhK7tbJ1TivP22tu6993Dd+vX4AlvtnyWL3sNElVReJk7rd/68s5iPly+jcHDePLS4d1q+lVUnY3oLYTeeMcOHWwva5fiMZkkMZyM3MrLSwOn97tRJv+6VV3C93MgGmsT5BMyS2xjRshBVDN3Fz8/nw49D3bqo1FR5xrh9Dt0kp54MAPYKFjuL6U2b8Dz4fEZe3UP52gRiBeLvMROq/GLFtP/y/ChOUqDhCNwohCtXRgWJymL399/Nz1G2ypQV4ar022+o/BUVLKpQa1bJzNNIlcqVC+79p0RJTKp+gj9GC8k5JQaPFC8Tn8PDabISJK9albB1r15dPYdOoMlKMZ9Uksq7l5L/yW7+KjvvBTfzxFCilJxSYmhLk7qCxSwdPoyRBJ5+2v/5pRLD/Qkk+RPtRk6J0TDmUbh3obgmTq6Z7Ghw6JBeSc1p3x7H6VyBIZdTqpRxHy/OUdWf2L5dHwZNZeRy6JBaISdHAeDzDMt1t8NF1uSHnYJl/377G+s2lnq/fqF/4dy+nIwZ1/OJ5b1KGzeiBYJVGAJVsgsNwlMwQhgwpoV7AHA3IZ5d/Hd/khduvSrPjCxZUBAqT36VGJOdoP+//5zNNyLHTU+syc4Sa8sW/bPvNgSNWZJdNxMi2Sm7A02J9X6rPEn8TWbKPX+/S1Wr6sPWuZ1Q2OnEppQoJXSS5w8DMMY8p/Rop549Q1+HYKfu3YOjuEnIlNTGXck9BSNEJyVKSSGpwueFIi1bRl7XqnT8eOjrQMm/dOJE6OuQ2JLVFBcAjB09al+G3P9LmVK/zJg+bB+fh9uqTB6+PpjnXqkSGn1u347zQ8nbc+VSXx+7SClOCcMTfDSJiIiALFmyAEA4AGTWbeveHWDYMICoqJBULdEwbhzAjRsA3bqFuiZqZswA+Oij0Bz7118Bvv02NMdWUaYMwJ493pf7+OMAw4cDNGvmfdmJlezZARYtAqhcOdQ1CYxlywDq1vW+3MmTk9/zwBhAWFioa5H0oetIEASRfEiRAsDnC3Ut/OeFFwAOHQp1LQiCeNTJlw/gwoVQ14IgCMIZrVoBjBljvn3HDoABAwCWLMHl6dMBGjYESJ3autxy5QC2b/esmpY88QTA7dvelOVUa0IKFhMFC0EQRFInVy6Aa9dCXYukweefA0yaFOpaJH0WLABo0CDUtSAIgiAIgiAIgiAIwi3166PBsVPeegugRQvcLzniVGuSKrjVIAiCIEIFKVecQ8oVbyDlCkEQBEEQBEEQBEEkTdx6L69eDVCyZFCqkqQgDxbyYCEIgiAIgiAIgiAIgiAIgiAI4v9xqjVJEdxqEARBEARBEARBEARBEARBEARBJD9IwUIQBEEQBEEQBEEQBEEQBEEQBOESUrAQBEEQBEEQBEEQBEEQBEEQBEG4hBQsBEEQBEEQBEEQBEEQBEEQBEEQLiEFC0EQBEEQBEEQBEEQBEEQBEEQhEtIwUIQBEEQBEEQBEEQBEEQBEEQBOGSVG53uHv3LqxZswYuXboEYWFhkDt3bqhZsyZkzZo1GPUjCIIgCIIgCIIgCIIgCIIgCIJIdLjyYJk4cSK8+uqrsH37dvD5fBAfHw/bt2+HcuXKwcSJE4NVR4IgCIIgCIIgCIIgCIIgCIIgiERFGGOMOc1ctGhR2LNnD2TMmFG3PjIyEsqUKQPHjx/3vILBJCIiArJkyQIA4QCQOdTVIQiCIAiCIAiCIAiCIAiCIAgixDjVmrjyYAkLC4N79+4Z1t+7dw/CwsLcFOUpo0aNgkKFCkHatGmhTJkysGXLlpDVhSAIgiAIgiAIgiAIgiAIgiCI5I+rOViGDh0Kr7/+OhQvXhzy5s0LAAAXL16EQ4cOwbBhw4JSQTvmzp0Lbdu2hVGjRkHFihVh7NixUKtWLTh8+DDkz58/JHUiCIIgCIIgCIIgCIIgCIIgCCJ54ypEGABAfHw87Ny5Ey5fvgyMMcibNy+8+uqrkDJlymDV0ZKyZctC6dKlYfTo0f9bV6xYMahXrx4MGDDAcl8KEUYQBEEQBEEQBEEQBEEQBEEQhIhTrYkrDxYAgJQpU0L58uXd7hYUYmJiYM+ePdClSxfd+ho1asC2bdsM+aOjoyE6Ovp/yxEREUGvI0EQBEEQBEEQBEEQBEEQBEEQyQ9Xc7CILFy40Mt6+MXNmzchPj4ecuXKpVufK1cuuHr1qiH/gAEDIEuWLP9L+fLlS6iqEgRBEARBEARBEARBEARBEASRjPBbwdKkSRMYPny4ZR6X0cf8JiwszHBceR0AQNeuXSE8PPx/6cKFCwlSP4IgCIIgCIIgCIIgCIIgCIIgkhd+K1iWLVsGvXr1gm+//dagSImPj4cpU6ZAsWLFAq6gFdmzZ4eUKVMavFWuX79u8GoBAEiTJg1kzpxZlwiCIAiCIAiCIAiCIAiCIAiCINzit4KlZs2asHnzZli8eDHUr18foqKiICYmBkaPHg3PPPMMtG/fHho2bOhlXQ2kTp0aypQpA+vWrdOtX7duHVSoUCGoxyYIgiAIgiAIgiAIgiAIgiAI4tEljAUYx+vSpUtQu3ZtAMA5UWJjY6Ft27bwzTffQKZMmTyppBVz586Fjz/+GMaMGQPly5eHcePGwfjx4+HQoUNQoEABy30jIiIgS5YsABAOAOTNQhAEQRAEQRAEQRAEQRAEQRCPOk61JqkCOUh4eDhMmjQJLl26BA8ePICwsDDYvn07lChRIpBiXdGwYUO4desW9OnTB65cuQLFixeHP/74w1a5QhAEQRAEQRAEQRAEQRAEQRAE4S9+e7B07doVRo8eDdmyZYPOnTtD06ZN4auvvoJVq1bBihUr4JVXXvG6rp5DHiwEQRAEQRAEQRAEQRAEQRAEQYg41Zr4PQfLkiVL4Ndff4Xjx49DixYtIEOGDDBlyhRo0aIFVK1aFZYuXepv0QRBEARBEARBEARBEARBEARBEIkavz1YGGMQFham3DZhwgT4+uuvYejQofD1118HVMFgQh4sBEEQBEEQBEEQBEEQBEEQBEGIONWaBDzJvRmrVq2Chg0bQkRERDCK9wRSsBAEQRAEQRAEQRAEQRAEQRAEIRL0EGF21KpVC/76669gFU8QBEEQBEEQBEEQBEEQBEEQBBEygubBkhQgDxaCIAiCIAiCIAiCIAiCIAiCIERC7sFCEARBEARBEARBEARBEARBEASRXCEFC0EQBEEQBEEQBEEQBEEQBEEQhEtIwUIQBEEQBEEQBEEQBEEQBEEQBOESUrAQBEEQRAJw+bJ3ZT39tHdlEQRBEARBEARBEARBJEYqVXKWr1Ch4NbDClKweEgob2RSokgRb8vr2tX/fQsXdv6iBptABKaZMnlXD39ZsQJg2bJQ1yJwwsJCXQPnOG1zvvoquPUgNOrVM9/22GMAx48nWFUIgiAIgiAIIlnx3nuhrgHxqPPCC87ykXyQILxj3TqAY8cA8ucPdU3MIQWLCfHx7vKnSQNw6hRAlSoAGTIEpUo60qb1rqzs2b0rywnPPJOwx7OCMWfX8okngl+XQChTxvsyhw0D6NvXef5y5QDeeQfA5wPYscP7+iQFnnoKoGjRwMsZPNg+z6efApw+rV83bZox3/jxAAMHAnTvHni9CHsWLgS4e1etME2RAhXMzz2X4NUy8MYboa5B0iRv3lDXgCAIgkgulCsX6hokXzZssM+TgiQhSZKkZAxHJE9q1nSWb+PG4NaDcEbOnKGuQeJhypRQ18B/0qQBePZZlLsHg7AwNIgNBOpWAECqVMZ1bjtc5cvjDdm4EYVrwWTXLuO6Nm3M89sJ8xYtUgtm/aFCBYAvvjDf3qgRwNix/pf/448AvXvr1wXayVLt37KlfnnmzMCO4S937mj/v/02YY/dvr35tnTpjOuyZcPfsDCAggW9qUOePMZ1mTP7V9b33zvLJytInbYFqVIBXLgAcPQowOOPG7c3bar9//1367I6drQ/nkpArrpezZsDZMwI8NNPALGxqADbv9++fJk1a1CBlpiR31vOZ5/hB9nJYBsAYNQogOefd3/848fxecmSBeDAAeN2t21V6dLYPpcs6Sz/rl1qBX/t2gD58unXrV3rri6PCrGx1tsD8Zh0wtKl3pb3yisAOXIAbN/ubbmEOV4o2YmEo2fPUNeAsKJyZRxXffBBqGsSHCjcZ/B44w3sl1uNg1evTrj6EN7RvHngZYwZY76tQIHAyycIgEf3WXIiyzDD62v2+ONoVE3gtf30U4B//gE4c0a/LTH2s1q08G8/f5+hZ581rnMrgyUFC/gnePD5AP76y7g+LEytsJk61Vm5o0ej25NVSJ9nntELfb/91mjxPnGifruMqJljDODjj9XH+vRT+zqL5M8PMHQoQKtW6u2zZwPkzu2uTJFUqfQd5a1bA2swGQP47jvjellI+dZb2jULNMTPwoX4O2WKXnCqEr6KgvqGDc0t3ZwKbs2ufefO6ntmdm3Nnhe7/dxy6BDOW/HllwA9egDcuAFw+zbApEnGvNWqmZfz8ssAQ4ZYH6t4cfQEmj5dW3f+vFFh+vbb6v0LF9b+376tdx2uUgUgfXptuU0bvEavvGJdJ5nXX8dnMWdOvcKGY3fdU6XCZ8XqeVm9Wq0krlEDQ8C5UT7fuKEpXOXQgPJHnfPyy/rl+fPV+VRt6tCh6HklevZkzQoweTJAVBQOto8cAZg1S78fYwCvvqott24N8Pff6uMCqNt4AP05ivdbpkIF820i2bNjGIR9++w7Chs34rVbtcq4LV06gBkz9OtSpjQv66WXnNUvOWJ2bzkq5albrMIKuG0T7Ni5E+DaNYCyZb0tt1gxb8vj9OsXuOWQE1KmBGjWzP5bpqJBA+vtTsr87DPnx9uyBaBECW35ySed7+sl4jdOxbx5CVMPr3nttVDXwHv27MFvnhMSu1VnxoxotDBoUGjrEaxQq8ndEl/17alYMeGO/9RT1l71OXL4X/bQof7vqyI2FiAyEuDwYeO2Ll28PZZde370qLfH85patQIfj1v1gz/8MLCyCTTK++cfgCZNQl0T73ntNTQadkJyb+PNkGWTPp/zfc1kBP6ya5dmCOw1SdVIolw5o0H0nDkoNwkGy5YBdOgA0K6deR5RBscRFeFim20m8/rsMxyHOY3Ckz8/9gOmTMF2f8UK4zv7888uo/OwR5jw8HAGAGzPnnCGt0lLjDHDOnm7mKdKFX3ZfH3mzIzt2cOYz6dfJ5Y1dixj164xtnw5Y3FxuP+335ofOzKSsU2btOVffsF9qlXT1s2Zo/2/f99YxsGD2v9t2/R1HjRI+9+jB2OlS1tfCzE1amS8Bp07M9amDWMHDuD6uDj7csqXZ2zhQuP63r3xWg4bxtjff2N5XbvalzdkiHp9gQJYxpkzjGXMqK3v1s14vx88YOzWLfy/dKmxrJs3zY//zz+MDR7M2Pjx+ufk999xe4UKjH31lX6fjz7CPIcOMbZkCf43O0bVqur1P/6o/Z83j7Hbt9X5wsP196xsWX39ABgrVEj7v3Kl+TvBGGNXrzp/ZniaMYOxzz7Tr/P51O+u/AxVr87YuXP6dceOaf/Xr9ef308/MTZ/PmOvvaa9L+Kxhg7Feyw/y/w8L13Sr6tXD48ncu2atr1KFca+/NJ4rRYtUl8L+Zg8nT9vvBbi9jVrrO8L58ABbfvs2er88j3klCmjrStWzPx+zpypP+aMGc7O8coVxipVYqxdO8ZOnTLm278f7118vH79sGH64/H3acMG9TUQ2xfG8JjyuZqdW4oUxnVffWV9bwAYi4rC9XfvMta6Na7LlEnbniaNPn+NGlpZly/rtz39NLa3AIy1bKnlE78NPL3/PrbzTq6/6pkQ3yWnaflyxsaMcZ7/8ceN61KlcnfM7Nnd11P1vojL6dMzVq4cY+PGYZscG8vYk08Gdoz+/c23XbmiXw70WFbPo9sk9l3efFOdR/VuuElnzhjb8kDT8OHYXxDXPfaY8+vSrJn2f/16xrZu1ZaHDjXmV/W55KR6T63uoXjM4cPV+d54w//76STduGFc9+ef+nqK/YSkksT+sFl65png1+OZZ/A7Zrb96FHnZe3d6/ydz5MneOc0fbrzvJcvG79zAIzVro3ncupU6J6Rdu30dRPHC4Emue+fnNLvv2O7IbZfANgfSYi2wsn3b98++3J+/tnd+mDU98EDxj780JvjPP+8/hhNmui3lynjvP1ImdKbOuXO7d+1cpL3hRfU68ePN9+nY0dv7+2jmHr1Ut8nr/t4ZqldO/f7PP+8s3wXL+J5nT7NWOHC2vqpU415veh/J7VUrZrxvN1cBy+vWf78WN7Bg4y9+ipjq1Z5e67i/XeS2rZFGcCGDd5fd1GOEBvL2PbtxjwFC6q/NenS4fITTzg71vHj5nIss3tq127L28qV069Ln14rIybG+hiirMsq9e9vlDemTq1t57IoN4B9luQLV7Ds3q0pWNauZezIEdxudiO2btXK4OtatNCXzdfnyWNc999/+vLGjjXWTVSw/Pab+uHZuJGxLl3wAWMMBUA8z9y5+vy1axvL6NSJsfr1tYdq9WrGJkzQ17VHD8ZGj8b/FStq6+vVY+zTT43XRlSwLF2Kgr+HD/Xn5kTBEhmpvgd9+hiv1Q8/qMsYMQIb0tu39WVly6b95woWxhj79Vdc98UXRkWEirg4/cCIMcZeeslYj59/Vu/PGAqJ//kHBTL37ukH8Q8eqPcpXtx4DJVgpV8/vLf//ovCHI7qWkVE4LY9e1CIePYsLkdHM9a4MWNTpuj3/eMP/X2cOtV4Xk4b3CNHsPz4eKMQzIp58zCP2IGrUUO/b8uWjFWurCku//5bOxfGcP3Nm9bHYYyxdetQ0Ll8ubaubVs8jlieDK9LlSqMNW9uPC+vFSyXLzOWKxc+h4sXM7Z7t7pe4kfH50Nho+qap09vXH/2LL77+/frhWtyio3VlxUb6+wcra5j9erq9RUqGPfx+TTFoQrx2jOmVrBMmKCuY8OGxnX37pnXG4Cxv/4ybo+L0wttevfW7/Pmm8Zz4tsKF0aFzbp1+J5yzBQshw87u/4AegX97NnWec0UAPzZu3uXsaZNUSn78KH5fuK58fp17+68HQHQt+0AeqMDp0k+14cPsW0SMVMsOu1kWylY7t3TL/Pvkr9JpE8fxr7+Gp8R8foXLKjed88e/fLixdp/M8FEoAqW06exrrVqBVaOmA4fNt7X1KnV7ykAY99/rz8+Y/gMlyqF/S1RWCjvz41A7OrkVMFSujQeQ1SQTpyo/R8wQPv/9tvOr8nWrdZGIbKStX9/rMfrrxufryNH0KCAMfcDTZ7cDNLEVLCgtaIfAPuIFy6Ybw8PV69/7jntf1SUd88jT7IAz+x55Ck2Fr91Tsret09dVocOxnVuFCwffmj93VfV2Wles/OvVQvXywqWX36xLi9LFsbeeUf9zLi9VxMm6L/VZsrJWrWwb1q3LmN37mjrrYTQ4nl98YV1PXr18u75S4gksmABrnvmGVwuUsR+//z59csREf4f3yyPSqknJt6XVW1buxbHSE7rY/X+ykZCqnNxomBp2RK/VfL6gQO1/9wgiC+3aKHPy8dMTs4pNlYtVHabcuTw7946yau6HgDWCha5P54UU6AGOiVL6tscK+VD0aIoLxKN18wULOJyypTmRqKBJicKlvr19csvv2ye9+WXGVuxwijXEq/Lnj1oUGt2vokl1atn3vb17as3/nObxo0zGu66uQ5r1pjnlb8JTtLQocyAm/379LHe7qTfmzat/jr4Uw8n6exZ/OVGZLJBMIBmmC/XgSvFxo7V1ol9xhEjsL+SLh3KwDgHDmAf265vpTqmOJ7p29d4TbgDA18uXlwrQ1aw9OihP4ZToxw+vhHh38svvzRucwLYZ0m+cAXL+fOagkUUpIgPlNkDsnUraiHv3NGv53nr1jWukxUs48YZ6yYqWEaNMj++iKiR5cJnnl8eeNvRsiUOTq5eRWHBjh0o8Of7v/ceKgW6dkWhNbfO37/fvmyfT20NyM+5dWvjNRMbORkzBYsMXy92OEQFi8/H2IkT2jNw5w4qlUaOND+XjRuxnLx5cVm0AipSBAfoXHnhBNFCVBbqca5fR+WYeK5vvWU8/8WL1furrpXTOvL8V6/ql7mHjUhcHD4z8+ZhfpWF+uOPW9fPDlmAfuMGPpMnTjg7HzfI2m2fT7sOZvDz+P57/QCEY6VgUQ3I7RQsMTGYzJ4djijEZQyFmqprzr3ZPv1UXU58PGPvvot5evbUyujcWZ2/ShX9cZy8t2K+9u316zdtQgHKmTPW56uCe+hwiw2VgkU8dvPmeP3Xr8dr3Ly5vlNlVW+7Z3nDBsZ27UIlt7iPrGARyyxcWF3WX38Zr2mDBur6qK4/gFFBb5W3cmX1ejPlntgO//GH/jjcECBLFlwWPfCcpKxZ9cuygsWJR4yT+6YS6ObMiZY2qjK5pxFPKk8z8Xiiol7sfNqlevWcvU/yOWzaxFhYmNF6Xr4Wa9dq/zdsUAvoRW8Pq/TPP+r13FIoNta5IFTuRMvXmxsriOvSpDF/tkePxu+s/C3h3wArBUufPs4ULJs3a//r1tX+f/ONPh/vU505o34mxOPLhjR2z7nq3AEYe+UV3Ma9l0eM0PKLbbiqjyG2iR9/bF+P0aO1c1QZ7bg9D3kQe+OG9bkOG+ZMwcKY3sjIafrkE1QU37xpfC5URgdm9eTbz55Fhbldu/Dvv+qyVIJQNwoWTlycXtDRs6e6fTUzqLLygpbXcwXLyZP69aLnkdz2A2D/UnWchw8Z27nT3X2UFSyq4wEY+4l8/dNPa//FdyhFCr23s9jGqpLYz0oKSebkSU1hsXs3ep2OH48W7fXr642kALAtkssTvcGHDTMaApgdX7X9zTeNXqNmZUyejAYK8rYHD/TPmWiYJKd+/dTrs2c3XitVPcQ+k5jktkqOALFnDxou8uVvvtEfQ1aw2LVFqrzbtmH0CSdKYPGbx5Pb/p5dHfn3p2ZNvYIlZ07tv2hE9d13miFcmTI4Lq5UyehZrrJ+FwWS/qRevdTXxCrx7+VPP5nnqVRJH41AjiRgl+Li9P1Cfp+vXdO3gVWqYJ+Jky4drt++XX2fxOWaNZ31mfxJsoGyKjVooB83WSlYGjY0vqeM6fvTqv6m03fJKl2/rl/+91/tvyjzc5LEaCr79xu3Hz9uVLA8/zy+C7K3m5zeeUfdjnF5j5jXzEjC6t0Wx0+i0Z5Z+usvtUzk779R3sgV/3KqUAHbxZ9+wvyDBqHsU5XXiYJFVCKqrk+rVmqPeLeJMVR2iHK95cv1ecz6KfXqaeu4MbfoOT1vHm6TDWg5Dx9ieyPLKK3Oe9Ik7T9XsIiGelzBsmMH1k8ck8l9aFlxxBj2v9u3t75mKgWLz4fGY3byNDPAPkvyhStYwsPD2X//GUP8zJmDgyP5BXYCz9uvn3GdHI5ApWD57jttO/cgsTu+z4cPycqV+FCI+WUrLidwCxbVeb37rnGbmceFWdkxMYwtW6aVGReHQkbxxZVfApWCZf58+xeZMRQa5s2rF+xwt8FAOHBAa8jEht8svJUd69Zp4c/MEO/v9etqi0I7BYvYgDlVsNy9iw23XJZKwSIjN4Tbt6uPK3roJHX4efTsiY30rFl6V0NRwXL6NIag454Q69ZhB0ccAIgdWPkYbq/XjRt4Pzm3bxutcnw+bK9UbYEKXg8zBYsYeo8xzQWTd8affNK6XFnBEihXrmjXm4f9M+scyiHPGEMPQqtr7/beyAM3KwULtwKV2b3b2BZ88IG6PuIy9/5Ik8adgkVUTImK/CtXrK/Jk0/qrcoZw+e7WzetA6UacFuFNXr8cb1iUlawmO179SoqiqZPd3bfVF6ES5eqFSytWuG3sWVL/bfB7BwY07wVnnlG70lg5e6cO7c+pKPdcycOCBnTvruihSxj2J/ImROVf6JnIg+9J1/Te/e08HcAeN7vv6+ul+o8Tp7U6mgWhoynQoUwj+wx6fNhe9arF37vVc8wV6yq6rFwofl1E++P6jz4YIwvq+4JgF7BEh2Nvzlz4rlMnozLr7+uP+6cOSiAFQck4rG8UrDwEKEREdi3EAcYZoNEjjjQlI2JeKpUCc/t8mX9vnKI0MmT7UPwyOchCrJlRAvu9evxexIdrVaw9OhhFFreuWPsb86bhwoA1TMOYBycyXUXhVQclSX3U0/py5E9EuXEv2uq+sjr/FGwMKYJWrilpCwcNzue6r2xeibfegvXnzihXy+GrlRZtebKpW5rzY4jJ1G4P2ECtpEZM2KbZxbeSoavF701atXCd2v4cFQsWClYZG/HHj3UIT+8SKJyMpBUpw6OCTZvNl4PGXmcJHrPyveAX987d3CMvGOHtl/nzur7p7oXYvr8c72CZeBA9FYUlfsyq1Zh+yV+q8TyrbxOeVsPoDekzJbN/Nlx8tyuWIG/NWtiHtl4Rd73u+/0y14oWOyutZhURiZmiu7ff2ds2jR9v8JJHe/dQ+FpeLhewSJ64orjK8bw/ixZYjSavXUL5R5//KFWcp07p/aWc5p++UUzVnOaGMP3xyrc1muv6a+R25BEjBkVLByfD8cKPOqLyO3bmpJfdZ/EZTlyil0qXJixfPmc5RXfN7P04Yf644thsMX+BID5uEbuT1udrz+Jh4w3K3PDBmMEEKs0aZJWT7H9u3pVM0qR+/aLF+M30MobeMsWfUQFsY7c4FzMz/u6qufO7JqJbYeT6+oElSFI5crqvGbPpF095Agrcnnc2yuQ58TqfPl2bsCo2iYqWMQoIEuW4DfWjbLB50NPajH0o+qY4pQLXMHCjdcBjFNwmNUdwCjDEuGePaqkUrAEisNHL3kiKljsCAtz97LyvHPmGNfJ7lryvByM6QVcchx7p2zcqH34xA6FmzLMzkt0DQuEuDjUCIuKKNXxeFIpWHw+/EDLWngreHzBzz4L/Bxkjh7V5loIFqKCJS5Or7QrUwYtCc0e6x07UBAjdhJ5SDa38P1XrXKXX6Vl5oixcpM6/Dx69lRvl8NUyfCP2S+/4DxCVsdImzbg6gaM3ccqKgqFClyZvWcPCuX/+w+fQbljJpf7/fdBqfb/OHfOqEw6dw7vk0phevkydkJbtVKXx4XqZttlZKt+OSQaY9q2IkXUZfh8OHgWBZMff6zfV9UxPXAA24W9e40ekIyhsYGqYyIrWPbu1YckNKs/V6bt3InWUipUVtpWbutZsuitjKtX12+XBwy1aqHA1KyOZu+laMX622+aoli0Yi1YUBsU8fvy66+a8lwVakE0tjhxAhUz0dGoKPrxR1xvFoIrd261tZ4Z3HpYDlEqK1h43TlZsuA2LoA4cAANFwC0cIliSAnG1FZmjBnnBQLQPwvcKvSpp4z5MmbEevHk5JzFPGIcX7lsO4MBWcEizgMnu7ibWcpHRaFCkIcAE6+zz4f9GbPBgpkHi5uwambnDqApWFTYKVhkBYfKw9gsrObnn+vzcUWrvP+vv6IwShTgliiB/Z6mTc3rJ983zt27xmOcP6+F3a1TR59fdR3FEKCil7QMX8+9QsVY1xxVOBtZwRITo713AHqrWzHsqVgG/+7KZfurYLlzB/s2vFxZ8NKpk38KlvPn9V4JXGh8/Lg+/9WrqND86Se919+CBeidzgXw0dF6y23VtZFTixZ6i38uBHz4ENOzzxr3efpp8/tdtKj2/4cf9HlEy2RZ8Hz1qn47/w74fBhFoGRJYz0mTtRb6TttGzJkMN/mdC6Du3f9Ny5jDPtfYhsiW5Ob4fOh94SYd+5c9b0AwDHLhx/iuyIKGPm7I3rmOoXnHznS+v2JisLxuRjeJFAFC2MoQOKGEnFxaJnPv0fyvu3a6Zdly2mrYwFoxiRm/VC750SlYBGjZIhpzBitXD5vppM6is+hOJesKA+5exeV3PXrm95WA7InAQDKdeS6dO/O2IsvOntvfv3V3oMlc2a9ApJjJTiUFSyiJ6yTxJi5gsUtBw+izIWHgeVlTpyIy6Jiwyrx+6raNnOmfln8/rRurY6kwUPb82WxHs8/j8qLihVxnGqG2J/n8OWsWc3rC6D2eDObGkBex/+vX+/OC0jsZ4uhLEVZkDzWEvtbZm2cCr5NpWAxCy2oOl+exEgPqjxiyHM3z+yGDXpZ7xtvWJ+PmFTTA/DUuTOOrUUDH1V5VgoWq3m5nRrh//kntoM7d5qfk6hg8QoxYpHItGnoSSm+o+L3iq+zU7BwA10n9zoqCg0j5L4OKVg8xo2CRRRqOGH9elQGiNq+Zcs0K2jxxvKOu4jPh9bux47pFSyBPASbNuHHTbT6ccuGDeie7eCSeYLckKiEYSJ796ImmX/AzThzBgXWCXUeXiNaL8bH6xUssbHOFDxiODIrra8V3bujUNWth4MYckSGFCzu4AOdL77wvwyvGDMGhSGq+UgCgV+jYCtY/MHq2Y+JQaUJnyfLDp9P71prpWB59ln78n77Dd8nPhmjWedcfv7E9oUTH6+OZyoOePlkxFbwvGbeSiIqqyJ5cuG8eTWBDBdc8W2yB8TPP+NgNF8+dPe2q6PZe8nnX1Jtv3bNmYBJVrBkzmy/D2N6QYGYcufWWwI5aVdU9VQpWESioozWnXJZYsgKjhjG8okntPWnTqF1KN8mDvzi41EQc/OmUWjI5/zgODln0WtENAqQr5mdgkVUhDKmF8SqFCziXG0ff4zeiYyh4Ncf93MzBYub8ALyuYtxlvmkkirsFCxt2uA2UWAoH1ues40jPjeihaW8/9Klxn3j4vDZFD3FVCxYYAxlq1Kw8PC4hw4Z22/VdRSVQ+JgWIavnzYNl3le0dpe9Y7zMLQisbEo2Dt6VC+cUx1PFBbIZVspWC5c0Avx7Vi5EoWuv/+O90Ql9OHvCFfW2l2rGjVwWQ4RJloTi4JMs3qZPfuqJHszyuM0VZhIlVcp3yaGTZLn/bNTsIjldOum31eO9Q+gWY7v2IHv6549KLwWlTxiKlMGhYByeNFq1fCbOWSI3nPLymLeC8RwJi+/7NzAUZxLYcAA8zAocjmiguXWLVwnhvJyCs9vFZbIbB/xm6iqr91z67aOXFG3ZQv2m6Kj1d5/qmP98ANep8GDtb6lXd3lpFKwmO03erRWrhhCk6MywAAwV7AsWaIvIzbWvVLw8mW9MY9qvonu3dUKUFU6ftzeA4Zbnvfoof+GygoW8dnlCpb9+zWvYyf1Ea+PaKzlJbxMrmBxMnerGJlD3jZ5stFrVvz+7N+v76vx1LixvrzSpbG9z5kTZUpOsFKwqEJjiUkMOyUq6VVhq/ny8OH6ZTcKFt73EBk5EqcjEBEVLD/+aN2eWj0f/DxWrjTuN22adTkLFuD+3JOzbFmjgkXsR6ROjfIsMZKBG2JjNQUb7wPI8HJbtkRjuxIlsJ8on8NLL6FnIUf8VqvK43IiuZx06bDPJD4vVauiQQE34r99G58zsxB2dvCyE1LBojr+wIHGdXYKFrO5bay4eVM//QcpWDwmmAoWO8SX5+hR67xibM9HDX7eL7yAFh6BWEYlJ6wULG6u0fTpRiuvYMLraKVgSY4hwsSJ/kS8ULDcvo1hhO7f97+MxA6/RolRwRIM+vZFq6YDB4zb+LUoWtR9uTyEkJlHi8iff6q/TXLnb/VqrQNlJjhV7f/CC87qLB9Ptjzp2BGFR3/+aZyMVlawiB4CTo+pQrSS8xeuDPnyS2yDuQWkHWfP6q3leXrrLeMAiwtR3CDGqvWX27fR0EEMFfjgAQ7wx43Th5lkTB/GQQ7VKuLz4XmKnkEcvr/ZfFEicvzgvXtRiMjLsLJUZMyoYBGPz4UFfHnnTmPI1kCRFSw8vN/Jk0YFJE+yQk+u9/792qTrW7aYH9tOwXLvHg7Wz50zHoMns3biwQO0Ml29Wr9e3l+lYOHYKVhUiAqWevXQe8EK1XXcsQOXX38dPXTM6nD+PAqJuGItKgqF17dva3lUlrwqBYuInYKFT17KmPEZqVlT/czwEJXc86dgQes6mCGXyxEVq6prxddzxb3Ppw8ZJYaYC1TBkiaN3lhgxgx9Hv5ec1QeiCoFy7x5KLA7cQKfEVXYLDcKlsGD9fuqrP7l0DwcMwHcsGFGq/B33tF/J+PjUQHKlcOqcrxq30QFS5kyzsffVt5rjGlWxi++qF+v8mARBWZO4flFBYtseWy2j0rBsnatFgpJrLNYXqNG5vPdqRgxAgVzYnhgjhwSUT4Wt7S3+j6o9lOlNWtQOcOtxrkxkSqvKPhVKa/j4tCoUhaei4gKlvPnvXte//hDL0QVj9+9u36+itmzMfzorFnq90alYBE9uFShfRjTK1j4nCd8mStYRMzuSZEiWIfOnVHB8OefmJ/PwZAzZ+DXS1UPM2MKce6HQYOM/XaV15WoYOGeuHyZG1ZMnIgejo0a4TnJHjVvv43LbmQpVgoWbjw1darWVxOT+B0UvyFW3lpc6ciXnShYihUz9r2t4CGWU6dWb3fa/sfE6EOji/lFz1LVNRS5eBHLkhUsoucsryv3uvr6a+fny7l/H6crMLv//Fhy5B27a2GnYOETtMvlyAoWM/xRFMt14PO1eokTBUv37igTEMXx3CBE9GBUwT3NO3VyXzdeL1KweIwbBYu/2lAz7BokkS1bvD12UoKftz+NZHJGjNns8+nDziVmJRSvo9WAwM6COinBzyOYCpZHAX6NHhUFC2PmnjFvvIHXwirMnhkRETjA48o4N98hjtgZ5nMC3b2LgiMnbc/q1TjAP3zY3fF4KlBAv9yxo/k+8iTbTrHbh8+TceiQ8zJV8Imv/UG+LtyaW1znT9nh4SioEoUG/uDm2GKoFFU8byfw/QPx0N2xw37+FcbUCpYFC9BTRVbycXf8f/81j9/tFlnBcv++NnBWhcAAQOGoKMDh7N6ttwq1m0uPtz/+vk8A9h7GdvsvW2ae1x8FS3w8enFkz24+eafIX3+h4HP5cv36q1ex3Y6PRwGI7CnjFJWCJU8e633cKFhk5YA8yffWrSh8Eq3Tjx3z34hDLFv2cnz1VfP7NXIktvfipKbiPA3inHSiFbAKPkeFuH3OHBTsHj2qtVeffYaCRvkbKStYeOx48bqbzYtmh+hNbqZgmTABQ9Wp7sHZs6gk5vuYKVjE8xHTzz8bt/NwLk7K4fNYqIS5/iCGgitd2vn4++JFNNCSLbHF7d27G70uxEnARe+iIUM0RZsT+HxKYv3tFCx8XkLVHH+cCxf04XP96dM4wU7BcuuWc4t+1XMmJlGJHhWlvX/nzhkNSMT7pfJgERFDDomIbSpj2M/g75aXiOF1u3fH56llS/1k76KCR6xTnTrG9aLQ3ImChYer5c+VeFyO2T157jnz8zp3znsjPn5ccc5Z+ZpMnIhGFypPX3m+Jsb07zKfS8SqXRT7qatX4z0w88qyQqUc4M+caLDh82levmJ+1TfESsHC2zi+vH69flmerwgAFcxuuHIFvfXNxmpi2S1aGA1jzBD3E8P1iXPwWSFOByCXyRUsPh8qdYIhD+PHslKwiEpDjp2ChSs05fvmVMESCCNG4LxyZ854XzZXdlWt6m6/O3cwlKYTL/8rV/y71/yakoLFY9woWKwmzvQHtx2kmTNRo/qo8fvvaLGmmtz7UWfpUu2jyhg26HYh1ELNpUvqDp/IjRvYIVXFiUxqpEmD77g40bIIKVicwa+RmaLqUSIqCt8NLzqO/gzUef7ixQM/vhN4x7J/f7RQ3LNHP6GxSsGydCkOlERFtD/nmJjfS9UAXVwvzjGS2BFDwVl5sFjB9w9EweKU06ftn49g1keemFdEtoKdOhUNVB48QCVQoM81t2p0UwZXipYta5wY2gmHDukn+7ZSsIiTNbshJsZ5KMdgo/JQ81LBIirouDV6MNu8GzewHT92zPjdqljR/XE7dzYaW1y9iophs4nVVQoWM8Q6WglMjh5FhdyXX2KeWbOcn4OIlYJF9GyyqzPfZ98+83zycwWgVrC884718cT9791DL3p/Qw1bld+unSaYatPGu/JFVB4s/nDvHgq7GdPK++477X/GjOr9nN5jTrDeVdE7LNBjqZ4zMdkJY2Ni8N2SPW3sFCyq8LaMGRUswYQfRzRcEFF5nTGm93YB0OZn48s81JSMSsHCmP2clnIqVsyv0/WbHTuM4ap4uDcnxigqBQtj2D/g4dAY07bbRYsJBJWC5eZNVNCqFFOyMqFIEfwvWuFbKVh++02/LCtY/vsP5Wbid69kSW/PmXsEup3LWLxnsbE4n17fvvp+jx2jR+sNXD76CPfjXiDBhNdRVrCI3kkqzBQsly/r5y2VQ3mmTRt8BUswiY9HL2g7461QwK9pMBQsqYBwxIoVAO3bA/z4Y2iO36RJaI4batq0wUQYqVtXv9ysWWjq4YY8eTBZkT07wJgxCVOfYHP5MsD58wAlS4a6Jkmb338HmDcPoF27UNck9KRNC/DKK96U1a8fQLduAJ07u983LMybOtjRrRt+A7JmxeXSpQHOndOOr6pH3brG9pFIvKRMid+v27cBihQJrCzGvKmTFYUKAUyZgt+qxMakSQAtWwIsWoTLNWoAfPIJ/q9XD6BFC4By5RK2Tps3A0ybBtCqlX/X7PnnMf3wg/d14zz2WPDKdsvQoQCPP479/t278bs3Z4535TdrBlC+PMAzzxjP+5dfvDsOJ3t2bMe9YuBA47pcuQBmzDDf5/XXATJkAChe3L581TelbFnjuqJF8XfsWIDevQFy57Yv2w0DB2rfPTucfo937wZ4+WX/66SCMYAXXvC2zJMnAZYvx/YqXTpsu55+2ttjeE2GDJhExPsyZIh6P6f3mNOkCcCsWQCff+5uPzumTQNo2BCge3dt3VtvAaxeHdg3o25dgLZtAQ4cwF8AgGLFrPfh7VKWLPr1ds/5c89hnUP5bT50CGDvXoB331VvT5cO+7BbtwIMGgQwahSuHzIE7ytnxQr9fmZ9myee0P6nSaP9T53afd0TkldfxSRy6hRAVJTxvqsoX169/p139Mt9+gDcuKG11wlFtmwATZuqt8n3cutWgA0bAN57z1nZPp9+uVAh/XK6dAA5cgC89JK2zusx29q1+Ix++KF/+2fKBJAqFcCSJbh86RLAqlXYf7WjVSv98qRJ2E8Kpazl0CGAXr2c1V8kd25932H9eoDJkwF69PC0eiEjRQrzdzU5QwoWhzz3HMAff4S6FgRBJCWeeELf+ZVJnz7h6pKUIUVrcOjaFaBRI2Pn3IqxY3EAPm1a8Ool41YAESg//YTGFGYCkcTG7NmhrkHgTJrkTTl2ghuv+PRTZ/mCofBJl858W/bsADNnanlEQUXKlPj+BoI/g/T8+fVCu0BJKOVuqMiSRWt7SpUC+OILHKRa8cYbAMuWmW8Xr1lYmPE9mT4dYOdOgK+/9q/O/pIQClEAgIwZUYGbyuWo9/JlgCtXUMFnRliYd8oV8X31x/DBjjJlUAjUq5d1PjfvWDCUk08/rQnjAQJXvFsRzPakShWAESPwf+bM3pQ5cSLAZ58BVK7sTXmc554D2L9fv27WLEz+ClEBAObORcOgqlVR2XL7Nn4T/CFvXuvtYWEopA0l3CDAivz5MTVurK3Lkwfg/n00KKtb13mbkikTwI4d2LYldqWKHalTOz+H/PkBPvrIWrEOEDrDaDfkyIFjMafw7+aePag8KlwYl3/6Cd8vlTJaVL55Qc6c3ip58+YFuHDBv/b4scfQ+C6U5MoFMHp04OU89RQ+s8lFwZIU8PrdACAFS8hYsgQtc0RrBYIgHi3efBM72CVKhLomxKNIWJjWMXdKixYAX36ZvIWc3bujUNNri+Rg4WZgllyJjASIjvZOiJWYadAAFZyVKqm3p02L1sKMWStj/GHgQLSA79jR23IJc+yUKwAAX32Fxhxmz4Sd18JHH2FKaPr0AaheHb8rwcYf4aNsXRpsChYE+Pnn4BoVOPEKsOsXdOmCioPly4MjnEjqnD+PbXDt2t6XnTYtjh0SgqxZsW1xS5o0+D0uXBjryylUyJ1Bj8y33wKcOGH0UrAjqfRX06c3/7ZanYPsCeIPSeUaibgdvyQWnFxrK+MDvk1WKlgZsowcaX/MUJMUn0GnNG+O30y3bRcRPPr3xz6MW68jJ5CCJUS8+y5aKCTnxoQgCGtSpCAlK5H0SEzfrWDVJakoV556KtQ1SBxkzIjpUSB1agzbYkWwlPZlygA8fEhC1cRGqlQAH39sXP/ff+jZInoDJCaqVQO4c8dZSJjkiiiATpMm8FCodl5BLVtiOBoeguiDD7Rtf/6J4eh697YuY8AATMkB8dnz6huSLx8mkYTy1koM7NyJIWh/+snbctOmBRg/3v1+nTqhF45Z2C4iaZIrV6hrgIwbB/DaaxjyzQmZMgV2PKdtiZjvmWcCO6bXJKZxZEKQNSt66DgxmBGxC6tP+E/XrpiCQZJWsBQsWBDOnTunW9e5c2cYqArQmwh51BoXgiAIgvCSR/U7+vffaK1mZpWWWAaejzrJUagWauWK1Tvfowd6iH/5ZYJVJ1FTvLizeUdCyeOPh7oGoSVjRpx30OdLmGuRLh1abfp8AA8e6JUKVapgepRImxbgyBFsV4LRtr3zDn6vHyXL5RdfxNBgiYUPPgA4c8ao9EpKiIrYYJDY5zhS0bw5zndTo0Zo61GxIkBMjPNwiT16YHivzz7z73jyHCxmyKFBEwNPPQVw8WLCeeEFC3/69m6UK5s2oaHDyJH4XerePfRh0AjnJGkFCwBAnz594EthJJXxUTFhJAiCIIhHlLx5cVLE+vVDXZPQULEiWhvLbNwI0LOnNnEqQSQ3rCwx8+YFuHo18QgTCMIJwQhRYUeKFI+O158dzz0XvLKXLgWIj3c//w/hLQULhroG/rFwIUCHDsFXWI0bF9zyg0Hq1AATJoS6FoibuaiyZ8eJ7a2wEuBny+bsOHnzovIpderEEz532zacN5KMYKypXBk9TTm3biWee0jYk+Q/95kyZYInn3wy1NUgCIIgCCKBOHYMJx+2c3sfMgRjWtuFPEkuVK2KiUgcJEcPllCxbx8qT4oWtc5HyhXiUSRLFoDwcPv3g0hYwsJIuUL4T/363hoS5cuHoYry5we4dw8nRR83DoBEaYmfGTPQsKppU2f5w8IA1qwJbp3cki8fhuwj3PHEE6GuAeGGMMaS7vCvYMGCEB0dDTExMZAvXz744IMPoGPHjpDaZCbD6OhoiI6O/t9yREQE5MuXD8LDwyEzqQUJgiAIItkRGRl4zGOCcAMX8m/bBlC+fGjrQhBE8ic6GiAuDiBDhlDXhCCIxMrJk5rhUebMALt2AdSq5X5uCCK4tGihzTeUdCW1yY833kAl15kzSdcrjgg+SVrBMnz4cChdujRkzZoVdu7cCV27doV3330XJpj4C/bq1Qt6K8xYScFCEARBEARBeAFXsBw4ELwJ5wmCIAiCIIjkxd27AL16obfKK6+EujYEx+cDuH+fjPYIaxKdgsVMCSKya9cuePnllw3rFy5cCA0aNICbN29CNkWAQvJgIQiCIAiCIILJyJE4R9DAgaGuCUEQBEEQBEEQBBFsEp2C5ebNm3Dz5k3LPAULFoS0adMa1l+6dAmeeuop2L59O5QtW9b2WBEREZAlSxZSsBAEQRAEQRAEQRAEQRAEQRAE4YpEN+1a9uzZIXv27H7tu2/fPgAAyJ07t5dVIgiCIAiCIAiCIAiCIAiCIAiC0JHoFCxO+eeff2D79u1QtWpVyJIlC+zatQvatWsHdevWhfz584e6egRBEARBEARBEARBEARBEARBJGMSXYgwp+zduxfatGkDR48ehejoaChQoAA0atQIOnXqBOnTp3dUBmMMIiMjIVOmTBDGZyQlCIIgCIIgCIIgCIIgCIIgCIKwIckqWAiCIAiCIAiCIAiCIAiCIAiCIEJFilBXgCAIgiAIgiAIgiAIgiAIgiAIIqlBChaCIAiCIAiCIAiCIAiCIAiCIAiXkIKFIAiCIAiCIAiCIAiCIAiCIAjCJaRgIQiCIAiCIAiCIAiCIAiCIAiCcAkpWAiCIAiCIAiCIAiCIAiCIAiCIFxCChaCIAiCIAiCIAiCIAiCIAiCIAiXkIKFIAiCIAiCIAiCIAiCIAiCIAjCJaRgIQiCIAiCIAiCIAiCIAiCIAiCcAkpWAiCIAiCIAiCIAiCIAiCIAiCIFxCChaCIAiCIAiCIAiCIAiCIAiCIAiXkIKFIAiCIAiCIAiCIAiCIAiCIAjCJaRgIQiCIAiCIAiCIAiCIAiCIAiCcAkpWAiCIAiCIAiCIAiCIAiCIAiCIFzySCtYGGMQEREBjLFQV4UgCIIgCIIgCIIgCIIgCIIgiCREklaw9OrVC8LCwnTpySefdLx/ZGQkZMmSBSIjI4NYS4IgCIIgCIIgCIIgCIIgCIIgkhupQl2BQHnhhRdg/fr1/1tOmTJlCGtDEARBEARBEARBEARBEARBEMSjQJL2YAEASJUqFTz55JP/Szly5Ah1lUJCdDTAjBkA166FuiYE5/x5gNu3Q10LgiAIgiAIgiCIxMPDh6GuQdIiPh5g4kSA48dDXRMiObB0KcDu3aGuBUEQRPIiyStYTpw4AXny5IFChQpBo0aN4PTp06Z5o6OjISIiQpeSCz16AHz8MUDZsqGuCQGAiq4CBQCyZQt1TQiCIAiCIAgC4PJlgAEDAG7cCHVNiEeZtWsB0qXDZ5FwxoQJAM2bAxQtGuqaEEmdgwcB6tUDeOWVUNeEIAgieZGkFSxly5aFadOmwZo1a2D8+PFw9epVqFChAty6dUuZf8CAAZAlS5b/pXz58iVwjYPH4sX4e+5caOtBIHv3hroGBEEQBEEQBKHx5psAP/wA0LBhqGsSWiIiALZuBWAs1DV5NPnyS/z94YfQ1iMpsW1bqGuQOPn7b4DSpen6uIG8oAiCIIJDklaw1KpVC95//30oUaIEVK9eHVauXAkAAFOnTlXm79q1K4SHh/8vXbhwISGrG1TMBgiMAfh8CVuXpARjAHfvhroWBEEQBEEQBBFcDh/G3z//DG09Qk3ZsgCvvQYwfXqoa5J4+esvgBdeANiyRb09Jgbg2LEErRKRxAmGQrNSJYB9+wAqVvSmPJ8P4Pp1b8oiCIIgHi2StIJFJkOGDFCiRAk4ceKEcnuaNGkgc+bMupRcMOuwvPEGwEsvYdxWwkibNgBZs6KrupeQRRxBEARBEASRlBk6FGDhwlDXwnuOHsXfmTMT7piRkQA9ewIcOpRwxwyEqlVRIVe5snr7W28BPPccwLx5CVsvp4SHYx2nTUvY4w4fDlCsGMDVq96WGxbmbXn+EhmJysnhw93t9+mnACVK4LyxiZmGDQFy5QJYv946X2wswP37CVMnryE5BUEQRHBIVgqW6OhoOHLkCOTOnTskxz9xInQT9pl9KP/6C+Ns8oEEoWfMGPz98Udvyw2G19C8eTjYuXLF+7ITI+vXA3TogBZyROD06gVQuDDFXScIgiAIL4iMRE+QpGrEtGKF9bhl926Ajh0BGjRIuDolNAnp5d+pE0CfPgDFiyfcMYMJ94L6/nuAuDj7/NHRANu3278vEycCLF/uf734mHjAAIA1a1Cwn5C0b4/j7p49AcaOBfjnn4Q9frD59VcMr9e+vbv9pk1D5eLq1cGpl1csWIC/Q4ZY53vmGYCMGQHu3XN/jJ9+AmjUKHRRRrxSsBw5gvIJL8rz+TB0I0EQRGJg+XKAPXvc75ekFSwdOnSATZs2wZkzZ2DHjh3QoEEDiIiIgE8TuicFqMh49lmAl19O8EMDgPrDRtYJzvH6WgXj2jdsiM9Zhw7el21FbGzCHo/z5psAw4YBjBoVmuMnN3r3BjhzBmDw4FDXxJ5LlwDKl09Yy1KCIIhHgfh4gLZtk6dXglN27EDrazPhlpM+3MOHAFWqoKf4L79o6+/cQat+leHO2LEA336rlT9+PE40HBXl9gy84Z13ANq1M9/+KITJSUgB586d3pd59WrCWNFzgzQVFy8CvPuueltEBCoiAVCgXL48QP/+5u/Y8eM4kXvduv7VMyICoGBBgJYtAW7f9q8Mr1i2DKBVK4AKFQIr5+hRHPv5ayAVHY3Kpn//ReVGIMorAIAHD8y3RUbi8+APwTCoC2bbev48/vojgOvRA2DuXIBNm7ytU0Lz/PMon1izJvCy3ngDIEsWHKuGkhs3ACZPdteuXr2KCtVkNPsAQSR6GPP/e2PHoUPYD/FHtp+kFSwXL16Exo0bQ9GiRaF+/fqQOnVq2L59OxQoUCDox964Ud+I8hi+gbp9nzoFMGOGeYf/yhWARYuM1j+BKFhGjwb4/+lrCI/wQsFy9CiGZpA7h4EMGO7cMXYYJk9GxY2KffsAUqcG6N7d/2MGSqg7WkmN2Fjt+btwAT8MYngEVdvi82G7k1gmPWzXDq0cP/rI/b69ewN06aItz5yJQrBHQVCU3IiKCp1XKJE4YAwH799/H+qaIOvWofX5jh2hron/zJ6NCoHk7JVgR7lyaH09Zw4ui322Fi3Q25MLhVW0aAGQLh3A3r24PHmytu2333Beir59jfu1agUwcqQmVGvRAmDpUvQSEUlIA6mxY1E4VLy4XlEEEPyQRDExaA1/5EjgZd28CbBhgza34ocfooA7PNzaYyKxhF3itG/v3JDq6lWA3LkBcuTwtg7HjwOULKlf17o1wK5d5vv88YdxXXQ0CkwzZ8Z7sGQJrh8xwryca9e0//7MkTl1Kgq+x41zv6/XeBUirGRJNDhTXWMn/PwzwA8/AJQqBVCrFgqN7txR571zB+CLLwA2bzYvz6p9ypkTIF8+TfnglA0bANKkwfP0iiVLANKnx7G0PyRE25BU+7g+H0ZG4PijZJLh38UZMwIvKxCqVQP4/HOA775zvs/776N3YvXqwatXYuLOHYD//vN//7g4+37O0qUAkyb5fwzCGp8vdEbUXtGhA35vgmGMHZBMjD3ChIeHMwBg4eHhrvbbsIExbBa0dc2aGdf5Ay9j0iT19kyZcPtvv+nXFyhgPH5MjLbu0CF1eXv3BlZvn4+x6dPNy0/s8HN/5RVtXVQUY+fO+V9m165auYE8D3z/zp31yzVr+ldeRATunyqVtm7XLut6vvGGN8+1P/DjfvON832GD2fs66/xuUzqHDnC2H//udsnMpKxJ55grEYNXK5fX/8sAjDWvr1xv+nTQ3efVdSo4V99oqK0/S5fxnV8+fPPva8nYeTBA8YOHAj8HYyJYSwsjLG0aRmLj/embgmJz8fYzZuhOfaxY4x98AFj+/aF5vheEmgfxWt4XTJmDP6xAnmHtm9nbNs24/rjxxnr1y9xXdNQwM+/e3fGRo5kLE8exo4e1W8bM0a/z82bjN26pc8jpqefZuzSJcZ+/NH8+vL1S5YYy+GcOsVY3ryMDRvm/Xmr6h4Wxljz5uo6r1qlXu/zMbZgAWPLl7s//sOHjM2YwdjVq4wNHmx+rS5dsn8HmjdnrG5dzJc9O5YzcyZj332nP8fSpY378m3VqpmXf+sWnufDh7js8zF24YI+z4EDztr6mBish9W7d/Omtv3OHet6McbYwoXG8q5fx36w2/Z/7lzGXnsNz69CBfUzvmiRfh95u8zZs9o2Pgbh6fHHtf/HjjH25puMbdrE2JYt+nydOrk7j19/1fZt0SLh2roLFxibP5+xuDj1tQuEQMtr0MC4/9mz6rwvvGB/DHGca1bXGTPMt/H2TyRPHv+vldl1yZzZvzL5Pm+95SzfX385K/fkSRynifu2aeOubirCwzG5Yd68wJ7N2bP1171vX//KEeFl/fRT4GV5UY8sWdzv86j0q9Klw3PdtUtbN2YMY6NG2e8bGclYzpyMvfuudT5+PU+fdle3ffuwHv6OHePiGBs7lrERIxibMMG/MpIC5cphv+nBg9DW4/x5HLPINGvGWOvW1vvyZyR9euxjnTjhXb1U/SunJGkPllChcudkzNtjbN2qXs8t6latsi+jdGn7PJcvO6+TiiVLAD7+GOCFFwIrx0tiY9Ey8/ff/dv/xRcBChRA7w1/GDDAXX7++prhVezegwfxV4yTLHqHONH+XrwIcPasN/Ux4/59/+OZt2uH1qNmYRiOHLF3JYyLA1i8WG9F5wSfL/D3iRMfjxNklihhbUUrs2YNejitXYvLTuMCm7U3ocJfqzHxuZEn0fTHEvJRY9s2bDvPnbPPGx+v9gqqWBHbUG6p6i8XL2K7+PChdTiKxEqzZgDZs9tPkhoM3n4bYP58gFde8aa8s2cB+vUzt3gNBJ8Pvz3c+jEiAr3OeBzuxDoZrj8x161gDL1juMXzmDEA2bLhHBhuiY9HD40KFbTv2LRpABkyYCjbbt28q3dCExmJYYYWL9av79lT7THC2brV3Ivxm2/w2/3VV/r14ncoOhrf52zZzOeaOHXKueeB1Tfu++8xTGZCeW3xdlZFCsUocd48gMcew2/FO++476/17IneqeXLo6eqilmzAPLmxTBPVkyYgF4qhw+jBwsAQNOmOCemCPc0cssbb+B59uiBy199hdaS3Kp23z783uXKZV3Ovn1onW9XD/HZMruu/frhczh+vHp7y5bYDy5VyvpYMg0bAvz9N1ptm82D4OVYV+yTvf8+tn+vv27MN3gwvr/8GRW9tOW6rVrlXT/cLYULA3zwAc4fY8bDh/huJwRr16IXl5uwYvv2qSNxbNqE7SSPgKBqv27f1nsmuX1WvJajBBN/wgru349zthQqpF8fqOV1bCx6iWXJ4mweJE6g1zuhokswFrq5Z5PSM+kla9eiF64VPLoKDw0XGYkeum3aoNeoFcuXY39s6VJn9bl1y1k+TqlSWA/uoeyWiRPxO9q2LYarfOkl+76IHYzhXGBW/dSEZvt27DfZhS4NdhjV/PlxzHLggLbu0iX0DB892tl4izGAmjUBihRx/lzZEch5k4JFYvNmdJfn3L6Nnb6EnoRMNagRkTs3qo8AF6gDmHc4A3V/FQf/CfEh6tlTH4pBxcyZGFv866/9OwYfmPFJ7tzw66/GdYcP47XZvt0oLPf5cJBZu7b7Y3GuXcMG+9IlHBSZuaSrBmvic/3VV8aPovh83L+PA8tChczjkh47Zj5gdsKtWzhhoNuB4YUL+uddpZS4dg1jxebLZ13WyJEA9evjoNkNH32EAgFZ8OMPYhxiLjRwgvwO2rUjnGC2bz6fJiD/5ZfghiMUn1ev2qN9+/xXtiY1KlbEtrNJE/u8r7+OQiX52vDlqVON+4wdix1VJwIG8f45fY695PTpwGIp8/Pv18+b+rjh5En8dTPYtqJsWQwT2by5db6rV1H4auVyHhWFbTW/v/Pm4beHx7j9+GNsS5s2xeWkOsCNisIwF2L73bGj+SBt4UKAGjU04Uvr1qjQ8idMonjfeZiWTz/1VlEZqvvSti3Gra9fX1t3/TqG5vjxR/U5rlsH8Npr9t9+uY/UsqUmEBeVM1Zx2WfPDjxUsFfv7ezZAI0buw9BI05CrhojNGyov1Zu+w+8j3TmjPlz9MMP+GumRJCR6+BvKCWZ/fvxd/Zs/B09Gn+7dsVfrkC3UzJ16ODdO8ND9rZooS7z338DK9/KGEU8nkro4a9xlGj4pFIIvPYahuSrUgV/a9Uy5pk/H8dSAwdq68Rx3E8/YbvKx8P375sbMM2caa0oUcG/e9zAScVzzwE89RSGgDbjv/9wTBdoe12zJl4TNxPRmxkIVqmCSjven1E9d40bW8/nZEcwxiGByjhU+9+7h3P8fPyxu7JWrMBfN2M6J4hhwx97DGUKwTaEBEi40IqffgqQJw+Gx3fCvXvY/qvm81m1Cg2CrUIdiiR0P+fhQ+++//6yfDm2Hc89524/sZ/x2WfG7T4fhl5r2NC6HMbw/ojh8f0dA4oCezfIIYAPHMCQk/7O57RyJZ7DtGn6ufl8vuAYrrklVSrzbU2aoGFWQswTKF53t31MxgD+/BP/+2tgLxPI3HakYAHsFPGG+PXXUQPLrZFKl8ZB74QJWn67BtffF1qENyY3bmDs0Nat9ccNC8NOIu/g2j18jRu7r4PbuHyrV7s/hhv27MFB9OefW+cTlQSiFXVkpPbhCsZHMzJSHa/zhRdQ2Fa+PAowRY4dwwZl9Wq00nrtNfeWsfXrY4P91ltowZI7N3bgGMP4gXxOH/EZ4cIC+bkpWlS/LHagxI+CKGwQP6rPPYfn6a9gkg9MxLieTu5V/vzo7WG1j9WARoRrvs2sXUeN0g/6Hz7Ee8cH4P37OzuOyOnT+vtud843bhgHshcuoPWcSKgVLN99B5AyJVpOL1+OwrE6dczzHzqE1vdexPL1gqgo/AaULh1Y5yIUMU7v3UNBmeydFB+P97tZM/M46GaWaWLMXF6u2bdFNfhq1Qq/j50721Zf90wmdIz8yEiAp5/GdiXQdyOxxffn9O3rXPnD20LeeTWjVCkcPFnFUK9YEdtq3s7K/aVly/CXCyNCRXw8enTZCadXrsTz+ecf7KvxuSS+/x4FMNWq4XJcHG4fN04t/OBeyfLxxOdn0CC09OZtf3w8fm/ldl/8fnjVtt+5o5V76hT2MwYNst5n/34cqHvZnqvicYteTioBLxe2qwQudh6iKot6uwGxU0GQGf70T1X7NGmCFpxOBpvic1a+vOblFIz2y6zMQKzfvSIuTt33k4Vewaqf23JFT2un+44ciYpbK2WIaLCkgjGATJmM6zNmNFcwVKnirH5Wc39s2oT1FifUvn8f+5YqwZ0ofO7RAz0DP/4Y28WMGXFuGNlLMiYGr0/z5nh9IyKwvzRtGrbT8nXevNmZp+Hx45p3sJWF7Ysv4nirb188lt1cMnv24LfqxRfVXm9OJwA+dQoVMnZ5ZM6dw3rK9111nazw952ykwkEgsq7f8ECHG95OU9IiRKoAFRx/jz2s50qBbZvR0ONUM5feuyYO+/jyEjzcQGf49js+sjUr4/jyE6djNtq10ajV5WCVkVCfocePMD2yG1EmJ490QjKCwOaKVNwfiaRbt2ceaqKfc0lS/C+ffih5n10+DDOXz1vnvG6RkVp39ihQwFefRXgzTe17f72Q7zuv6ieh5gYHK+o+pLHjwO8+6653KN2bYAnnlDLjXl0m44dAd57z31fnntBd+miKQru3NHacPFcHnvMvJzZs3Efbhx75gy+P3bjQfE8OHbPqHi/vDKYjYjAvqU/nqN2nj1WkIIF8MOWO7f+Ybl+HRPvDLVsqf5YfPMN/oo3X7byvH0bGxr+gMfHa14NZoSFoRA1Z058ucaMwYaJc+UKWsvnyoX/xbLWrEFLfRG3FhN9++Lk5m4erj17sAFw81E9ckTd2KpwOrm7WBZXCty6hR+uTJmwfiVLYofZS1SDdw63ZraaEKxzZ+zM8QlSzVizRn+sbdvwVxwQbduGrshFi+JgYvZs/ccxVy58tuUG+9o1fJ5U1ovis8Cv8cqVaE1Wt65+EsG1a7GD43ZyMlWHCAAVGoG6UTttoK3y3byJ1tYtWmgC9/791R1DruSy49AhTZirendkj6Tly7FdeOYZ/Xp5kNG3r/POhd2He9s2/8IuiB5dY8bY569RA4Vh/lp4ee3BInaYzEJm2HHhAr4jXg4C169HhaqZldrIkdjWlS+PSlt+HoMGoRJ26FDsSHNrw6go/cCZX8f79/F537ABFdc5c6KAt1UrLa9ZW8UYfhNUyiUnyiovPFgiI/2bQFR81t1Yk8XH4zdn8GBtndu6X7rk3AqYMbSknjbN3THu3sV6du+OHWWnAhifDwXmn3yi3s7bquXLzcuQPZwSq4fKgAGoDLKbCL5OHfz2VqiAfbXnn8dnbt483M4HTuJ5xsbit7NWLQxj0KqV9XXYtw8H3V26oPCeK6H27UNhyoIFmgHBvHkATz6p7fvbb+7OW8XixTgITJEC3fg7dMC+Qpcu1vV+/XXsC5Qvj8txcShk9de72IxAniFxUvewMOOkltzwQfy2cO8qNzAGMGSI/lhOiI/HfrLVOX7xBYYUjYrC5+3vv/XbRYMXp94NgwZh/9FJPePi8JletgwHslZ1ffBA/80Qyw/E+j0QeB2uXEFBQ65cxr66HKLmxg18551O8uvPM9q/P9bNSkFpZggkMns2fu85336LHhrvv49tufyNtprY9cED7F9wL0mZhw/NhUn+hmmzo18//Xtsx7//6vsg8r0Vv7+RkSjAnDIFLelr10bDIR7p4ORJbOfEcJxm91o0YBPzMIb9Xrkee/Zge28Vmmb8ePT+rFgRn8Wff1ZfZ9V7LK9zYoTG95k7V1tXsCA+U3aolNVbt2peluI4ZN067f+qVWhBbRYu2y6qhRlXruA4ySr8FO/3i/1AVZ9OvJ88b0SE8/f+4EFUAKr6Yo0bo6L81VfV+5q10V4ptHw+/NYvXOgs//LlaGzJFaoXLuD4h3sDqujZU99vdvK8msGfHSvvR6eht70OBWsFHy/ZTaz9338oW+HvS58+KJ8R23gn+HxGuZoqfGz//qhAMAt3HBaG76jcBnzyCSps+XjRLDTtvXsA6dNjaH4ATQ4kKjed3ntu8Mpxq2Q8exagVy93YRW7dEEF1LvvGreVKKH111VwQwExchLn7bfRuHPoUFRYuY0OU6IEfg8GDQLo3RvXPfEEyo7OntV/9608WDj8Hnz0ERqFv/GG/T6Rkdifeuop/I5lyGD0DnKC2Fb9/juOm6zaL3Fb69bYt3ztNW2bF/JABzs/uvBJ7gHCmTg5FU9Xr+qXhw7F/cQJLPkV/PRTbblMGf1xypXTtu3dy1iJEvh/yBB9vvh4LV+bNowtW6Y/zuLFxjq6STJ37jD28svq7Xxd2bL69ZcvM9aoEU6GuGaNfqK7n37CCRzTpNEmccPrzNiUKYzdvm2sA9935Upc3rMHJ5aaNYux3r1xYsm4ONy2bp35uYwfz9iGDfgrnnPx4rh96FBtnXxdAfST3PN1P/xgPI4Vt26ZX/uqVbX/zz+Pk8/Wrs3Y0qX2961yZX29ABjr1o2xGzcYW79evU+VKvrl/Plxsj5x3ZgxjE2bpt6fT5L+5pvq7SdPMvbJJ/49d1ao9q9XT/t/44az/dasMebZuNFZnSpVMs8nTth5/DhjL75oPPazz2r/v/nG/pzFSV4B8LrKz5LZue7axdiAAfiOqa5d3rzGdU89pS/P58Nnkm/fsIGx/v219+7vv9X12LIFn+uDB83PTTzu229bX/+YmMCfH3GS+1On9HWoX1/Lt2wZToIbG2tdnjjh7OXL7urC6dBBK8Pn0ybLVXHnjnac0aPx+VFN8iu3DWbbeeKT8qqu78GD6ueGMZwAmq8zawusnk8Axpo2NW57/33763b0qJY/Oto+v0xkJO4rT1IZFWW935EjjE2erB3b6n6JbN2qvjavvea8zrw9r1nTWf4//7S/BwcOGPe7fl2fp3p16+NY3fPBg/Eei/2X8uXty6pXD5e7dNHWzZ9vPIZ4Xf2dsJIzfjwe125CR/7s2F1bednq/RDbt2PHjHlKldL+nzun/X/uOWyzxbx88uCdO/Xr5WWezCZdBmCsZ08s6/x5rOOePVrbzylY0Hz/jRvNr6N8Ddau9a9dtyqTMZyEnK+LiDDuI054/v77eP2c3DfxOBcuuNuHpw0bcP8VK/Trly0zP5/atbV1vJ81fLj6eoj3Vpzc+8oVfdk3bzL2+++MjRunrufHH6vXi9/t//4z1hmAsdSpcYJRvjx7NmNTp6onaX/nHftrzRhj+fJZPyvNmunfmQMHnN1HEb6et3+VK2vrOnY0nmt0tH354vf6zh2cFD4yUj8G4KlTJxwbiVy+bF13ua+XKpX2Pz5e3wcCwO+X+Eyo7l/hwngN/Hm+VSl1aq2+Yp/ZaWrXzlk+xhg7fFj/vjhJGTIwdumStixPoCxewxMn9GMQ+fiq8WT9+vZ1+PJL7XgzZ2rrxfewRg3GevSwPn+zbTVqaP+rVGHsgw+MecTJqc3O5dgxnHyYLzdsaH1cMU2ditePvxPitilTjOfyxBP6dZ06YR9dvG8qVNeF8/jj6vWMoawGwCizkcu8fh37kZ9+itumTzcek09yv2cPvpO83WzWDNefPu3s3q1cydi1a3id//gD82XPrt/v1i39N/raNfN7ULw4PuuM4X0ID9f2EyepZwzHtF98YXwfRNmTyMCB+mPxSe7lsZ6ZnElEHl/wssTrVLo0nsOlS4wtWYLvfdGixm8+z58+vfE4fFuaNNq6CxcYa9FCP5YV6xITg+PJmTOt+6BmzyBj2KcrUoSxkSPN9zfrz4uMHavlmTRJf9wRI7A9zJ+fsRw5GKtQwXr8wtu1HTu0dblzmz+nS5eqz/fzz+3bgtKl9ctiH+y997T/e/ao99+/XzvurVt47kuXomxP/OZ262bc988/GZs3j7HffsP9ypVD+e6CBTjWunYN13fowFiePNbnce+e8TpmyqS+b/I4S/V88OWvvjKWK+/ToYO2LTbWfjJ3cV8u0+PLs2Yxdv+++vqalTNxIl7r/Pn15xEbi/Ig1bOmkhvwunBEOcv48dp6sc8t9iX5urFj9W2YmHifTu4v+XyMVazI2BtvoDxx+XLjeIcxfOe//db6nbbDj12SD3YKlmee0S+3aYP7uVWwWL2sotJh0yb9yyYL350I462S/AI1bqzfvn27sc6yoKRuXf0+2bJp//v00f6vXo0PaHw8DmgBcIAhw/P37m1+rYoVw20NG6of9C1bzM/5+eeNjf+SJeq8s2frO31WChbVR/b2bfN6qAZXAIyFhdnfN5WCRX42/Uljxxo7ufJzLXbSxWS2XpVmzsQP2tdfG6/hwYP6j6NdWefPY74lS1BJZbafqGB5+BA/uj/9pG0/fNj83r72mvo5Y0w/WGzUyNn5i6xejQN3UbDfsqVxn7Rp9csLFlhfI1EpJKZ06dTrxY9V+/bqPO++qxeayuci58+UCe/nv//idp9Pv71OHfPrypj5QNKOu3e1joY4MG7RAgWpfFlUsIjvAGP4jKxYoSmG797FX/GdPndOreywo2NHrQzeFl68qM9z4oS+rrKCzWwAYXZ95GvYujXec9X1zZLFuC5fPizHn2fcart4HUTk6zp3Lg5EeP7x49WdICtE5TOHC2L4t9zJtRM7jT6fuVKucGHr6yMObDnR0Zrwd9gw/ffVirg4THPnOrsHMjdu6LcXKmR9PCf3dNUq7X+JEmpFliigfPppXCcqWOS0YgVjzZtry6lSYaeXfzfu3dPfnyFDMA8Xdpidh5mwmpMhg74etWpp90++Bk7fD1FQpFKwiN90UVD+3HPGd7RfPxxA9OqlX2/WhsrfEznJxjvffqu/HoUKme+7aJH5dZSvwcqVzp7viRNRyatSDlo9gwCokDh3Do2DmjVDAwQn98ju/l28GNj+v/9uXL9wofp8VALjTJlwW0QEY7t343ggLg4V8apjysq211+3rqNKACunEiWcP/Pi/RAV5E6u1ZYtjD32mH7dvHnYZuzdqxf48hSoguXQIX1eLswQ1+XIYV3+iROM5cqFgkfG9MZ1dvXq14+xzp2tFSx25xgfbzSukhWDbu+fv4kxHAMGU8HSv7//9RMVGdwYhyO+l4sXWytYmjYN7BoxxthHH6m32ylY2rRxdhwzBYtYh+hobC/tymrUyPkzlDIl/vKxtN21yJrVvkyfD785J0+atyl//qltkxUsUVHY/xSNaADw3bl+XV2m+A0ZM0avEJOPWby4+txkIwVZlmJ1XcTlw4fx9/XXtbpaCXIBcOwVG6v153fvxv1E4eS2bfo21+fD7yhj+m+XiFMFi5hH9U1nTD/uBmDs+++N96JMGXWb+uuv+rL4+nTp9OtPnNC2iQqW8uW15/Xvv41Kav4cA6Agfs8eHCNxQxfVM8OZNo2xBg1wPK26hhxZflS4MCq8/vgDxwjt2hmP0aoV3ku+PGIEKlXEPFOn6o/D++X9+ml56tfXjPDsFCzTp2N/0Mn31iqplJRWKVs2VMRUr643CAXQjFUYc24o8MUX2n+nxsIAagWLOF4QkZ9p1fOhWqfaJufh8pQffkDjcxXifm++qV83axb2JfmyU0PZJk2MCpbvv8f//NvAEY0kVXVhjLEzZ/TbJkzQtol9F1FW7uQ+VaumzisaHXOFfqVKKPM5eBBldDNnMvbkk+bX3il+7JJ8sFOwyKlKFRR0yg08Y/oXtHRp7RhOrN744EP00PjmG6PmT7Su8jeJgy6x48ET9xrhyxUq6K+ZVdlifRcvxo/bq68ar1Xjxoy99JL+OFYKFr6f2YMuCs6dJKeKKjMFS5cueO3OntWvF4VdcuIfcH/Sk08az98rBcukSYGX4yZxTp3S1nXr5uz5AsD3SRxcv/WWUVgIgB9vjtwJBEClHRdax8VhJ4ULTitWNOa/eRO3iR00Nx3kXbtQU87XjRnj/Jx54gpQ1TbVu2x3HRkzF7qL9RSX+/RBwbVdvW/eNFqBix0/xrCjV7q05uVj9UzL3n4i/IN5+LCxYyxas3Ch/v792rru3XHd11/jcs2ajI0ahf9HjMCPrljeiy9aK1mio7HDIC6rzoe3dwcOaB0l0fNJVLYD6Acb8rVX4eZZsHpuRaW2XV6rY3OFNF9u0EDLf+wY3sNKlbCdXLRIXYZs2SIrnSIi0JqeK2JU9RPXVa6MAhq7aycqCipXRgunqCjNG2n6dLWnmJhq1cLfXr30xxI9KwH0gpyjR9X3Nj4eB19PP42dZJ6/Xz9NcSofX1YKTZig3+6PgsXnw0E5X5a/f+nSoQCID0L/+stYxt27KFT05/nkApLHH1fX89o16/MYMgS9N+LijHlVx/vkE72nBIBz4eHu3fr2UKVgEZOsYHHavlsJ46ySPCgX3xnGrBUsCxc6e24YUytYfD7sO77zDj4rI0ZoecS+dHS08RmKinL+HQ4kMRaYgiU+3vgtNTsOY3oBlbw9TRptmX+rVMnMmymQVLiw+fthldz0d0RFrXje/H9YmN5rgyfZQ9vq+sp1efNNvRUqgPbNDeSZcfN88P9imyqm6dOtlfgAqHyS173wgv/1CiQNGoS/Zl7yVumll4JfP1GQKArrVddHtLAWk5nXqtPEBdhm3mPPPutc2WR3Pc2MrThWhg5iKl7cvccQAHrsWG03M0KUkzh+Z8zcO5Mjfjvr1cM+vio/7+uqxjfyGPK334z7V6qE40pV2aKxkNsk10X0iGcMx79OZEPid6NpU+fvZapUjP3yi/G6xsQYhdmlSqHHpmxMJ5fJvWZFVF6y8vuoihgBgH0Gnw/lTqLgHEBvDCv2LVKkQEObAweM74Ybbz6zdsOsLZH34QwbZn8sud+o6peJ40gA/bhpwwZcZ/YOHDxorWAR33uze+E0mbV5/qR27dCT/u5d5/dOVDjz8ZmTdO8eGvBWqKAZ6oreu2bPg5yiotAYVX5WufGc3bOjejYePECF2tWrxjwqBYvoKX/okPq5VB1L9tgRt4nKHtFjXVUXxhj7+Wf9tokT8Tpcu6bvc7tVsKjqFmhyix+7JB/cKlisLrqoYClVSjuGyppBTtyaWXwY7dzoEyrJ4U2c7vfGG+4e+G++se6EyPuJ9O3r7pycKljef1/TVt+7h2HERIvR5s1x2+nTKPBzYn3jbxKtXwGMIUP8TWIIoIRIHLmD7vT5+vNP47uh0jSLruRW1gkDBmjbucu+StgEgB8CWTDp9JzldZ06uX+nZHdgMblVsHTpgspP0RJBlcyEV3b1fu89fadDTnFx+vCCjNkrDU+fVnuOiXlEJTWAXunLPVheeUVbx5V7ouWWmGQFC0/c80WGu0E/+SQKBK0GMVZCVtFVnF/PCRPQamrHDv020YI/Ls46VKHb59YrBUvBgmjZy5e5gmXDBrUHjSrx0Ha80yWGIWEMLdYBUHDOrfzE+sneWKq6q+ovhpPi6/76CzvoGTP6d105oncGv89y3suX9aE8RKsgURAPYB6+I0UKVNqZnSNXsMTGogKSKxH37GGsbVv1ecgWoHbnrFq/aJFzLyk5id6zZuf100+oxOJWk6pynn4af7dtQ89hs8FnzpzGdU5CwajSkSPW2+VvWurUzsqVwzA4Tapvns+HbZRsJCMn0btSRBZKMaYPk8URB3lyevFFzNOzp3p7IIIrN8nn04cZc5tmzXLWlnLMBHXyM2ylVPjnH++vg78KlnLlzAW8TpI/xzQrZ/BgFACKghiVwgZA7SnjNMkeMVZJNHQSQ9kGI3l1LZNTslOwOO2juE3ceM5LYaM/zwNj3o0pg506ddL+//efeb5jx4x9ZTfPQ6jPU7w/ZtuOHNFHT3Ga3MoqihY1Pi+tW5vn530qAE2oL6eJEzXDRcacKVjM0pAh5pEYxGgBQ4Z4f39EAyy57mZGGSpvdtnYyqvUrBkagM2bh8Y6VnmLFDEqWNassX8mHqUkyi1y5DAaeDOmPRNW5ajGjnFxWogyM0/Wo0fV447lyzVlPB/PidurV9d7rM2apffMsorqYnUequ0cMwWLGJJaVrAMG6Z5e4kGhLduOW8PeDKT3/ib3OLHLskHrxQsYmgXAFSwxMU5H+CcPYsunl6EMvA6Va6sWbn7O3gXk5nLmJMHW/Wgx8TYWw/LqUEDd/l9Pr0FB0+ffKJ3saNkn5YuxWddDmNQooTehdaLxDFzv1elzZutvY1k6xgnSfWh5NaRcpx0q2SlYEnoZCUUc5LksH2MOffKErFzjReFKNmy4T5ix7B2baPXi9vnS0TcPn68Pl6unOQwRGISvZ0AjNa1YnrpJVSE37xpHwbGTbKat8HqWjjJ/+ab1nGjzZLPp7fEUx03Vy7joOCrr8zL5J1hn888/u/cufpjqLwx3Fwruc/Ak6zoEy1kueJD3C5/l3LlslZ8MKYWShcqpPcEHDTIfH4vf5JVGE9/k6hgmT/f3gpNtF4MdfLX0yRYSfXNc2pFPnYshhTbs0d7F1UCqq1bjQqWb7+1jnnNFSxm20uWTJjrE+jzKw7KrZJqXhYxufn+y/GjvUpmbVcwk1f9HrP5Zx6llFj6kIkpybHsE/p+uAlRE4zjM6af8ygxJzNBenJNoWhvrRJjek9Uu2TV7xLn+FUpWI4cQUVMIPUdNgzraxXCPdCUP7/RqOvePfP8v/9uHDsGQ/kjJzsFi5ske8pQwsQVnvKce06SXUQRq7Rsmf4dkr9jsmxAVF4A4LtmhtVxVds5ZqHrefiudeuM4wwxnLGo9G/WDI2c5DFwsK6nKu3cqc3D5QSwz5J88UrBkpxTlSr+WUgEO3HEydOClaKjzUM2+KswohT8tG8fNuR2YRXkJE6c6kWSP2RiWr069NcpMSTGnOfl8/D4fO4tC70crHA3XMbQWi5zZv32IUP8t/JJiBAZXt8/xtwZCcheOk7Svn365cOH0RpMtlR0815dvYqWZnx+HKtz5P/lEG5u0qxZ7pS+PL3zjtEKnIdhcZqmTnWWz2tvTDOP1kc1iRaeST2pFJ5mil5RKeY0tKvsvRuKNH9+YPu7madBNdE0T2bzrSRkGj8+4Y8pT1RKyf/kr0FJck5vvIEhHFXzIQY7MRZaBQtXLtl5s1MKTdq1K/R1EBNj7sJDDR9uvZ3P4RbsensRYt8qyZ6+sne6fE0YQ0Ow3LlxnpXBg4N/DQoU8K6sIkWCX99HLQWiBJQj89gZ+MshIbduRe9Zn08LUbZzp9HDRE6qd/ftt63lXq+84v+zaDaHtioFEtbX7pyd4CJr8oMULPapaFHzkBmhTJxQ1yMUg01KlJJbcjPh3fz5aC3tj3WCHPM00PTee+ZeSAlhkZRYUoUK9gOphExuLOycJjEcT3Jv9/nkf5QouUl377qzMEsqyakHilkKZCLsxJbECY8pUUouyd+5wAJNjIXWiJGHRiYFCyUnKRiC9cQgy0nI9MIL7iIEUHo0kpkht5PUrJm3dbGaU1pMwQqfaZasQhPKya1xtdPklDBs2B5NIiIiIEuWLAAQDgCZQ12dREv16gDr14e6FnquXgWIjwfImzfUNSEIIhQMHw7Qrp27fbZuBahYMTj1kWnQAGDBgoQ5FkEQRGKgfHmAf/4JdS2IYNG2LcCIEaGuBUF4S8aMAPfuJfxxX34ZYPfuhD+uiM8HUKgQwLlzoa0H8Why4wZAjhyhrkXCkTUrwJ07oa4FQRD+4FRrQgoWUrAkSXLmBChWDGDTplDXhCAIgiAIgiAIgiAIgiAIgkhOONWapApuNQgiOFy/jokgCIIgCIIgCIIgCIIgCIIgQkGKUFeAIAiCIAiCIAiCIAiCIAiCIAgiqUEKFoIgCIIgCIIgCIIgCIIgCIIgCJeQgoUgCIIgCIIgCIIgCIIgCIIgCMIlpGAhCIIgCIIgCIIgCIIgCIIgCIJwCSlYCIIgCIIgCIIgCIIgCIIgCIIgXEIKFoIgCIIgCIIgCIIgCIIgCIIgCJeQgoUgCIIgCIIgCIIgCIIgCIIgCMIlpGAhCIIgCIIgCIIgCIIgCIIgCIJwiWcKlj179nhVlGtGjRoFhQoVgrRp00KZMmVgy5YtIasLQRAEQRAEQRAEQRAEQRAEQRDJH88ULO+9955XRbli7ty50LZtW+jWrRvs27cPKlWqBLVq1YLz58+HpD4EQRAEQRAEQRAEQRAEQRAEQSR/whhjzGnmDz/8ULmeMQarVq2Ce/fueVYxp5QtWxZKly4No0eP/t+6YsWKQb169WDAgAGW+0ZERECWLFkAIBwAMge3ogRBEARBEARBEARBEARBEARBJHqcak1SuSl0/fr1MH36dMiYMaN0MAabN292U5QnxMTEwJ49e6BLly669TVq1IBt27YZ8kdHR0N0dPT/liMiIoJeR4IgCIIgCIIgCIIgCIIgCIIgkh+uFCxVqlSBjBkzwuuvv27YVqpUKc8q5ZSbN29CfHw85MqVS7c+V65ccPXqVUP+AQMGQO/evROqegRBEARBEARBEARBEARBEARBJFNczcGyaNEipXIFAGD16tWeVMgfwsLCdMuMMcM6AICuXbtCeHj4/9KFCxcSqooEQRAEQRAEQRAEQRAEQRAEQSQjXHmwJDayZ88OKVOmNHirXL9+3eDVAgCQJk0aSJMmTUJVjyAIgiAIgiAIgiAIgiAIgiCIZIorDxaRhQsXelkPv0idOjWUKVMG1q1bp1u/bt06qFChQohqRRAEQRAEQRAEQRAEQRAEQRBEcsdvBUuTJk1g+PDhlnkYY/4W75j27dvDhAkTYNKkSXDkyBFo164dnD9/Hlq1ahX0YxMEQRAEQRAEQRAEQRAEQRAE8Wjid4iwZcuWwYcffghnzpyBX375RTfnSXx8PEyfPh0GDhwIR48e9aSiZjRs2BBu3boFffr0gStXrkDx4sXhjz/+gAIFCgT1uARBEARBEARBEARBEARBEARBPLqEsQDcTPbv3w916tSBl19+GWbNmgUpU6aEiRMnwuDBgyE8PBy++eYb6N27t5f19ZSIiAjIkiULAIQDQOZQV4cgCIIgCIIgCIIgCIIgCIIgiBDjVGsSkIIFAODSpUtQu3ZtAAC4efMmxMbGQtu2beGbb76BTJkyBVJ00CEFC0EQBEEQBEEQBEEQBEEQBEEQIk61Jn6HCAMACA8Ph0mTJsGlS5fgwYMHEBYWBtu3b4cSJUoEUixBEARBEARBEARBEARBEARBEESixu9J7rt27QoFChSAKVOmQP/+/eHGjRvwwQcfQPXq1WHXrl1e1pEgCIIgCIIgCIIgCIIgCIIgCCJR4beCZcmSJfDrr7/C8ePHoUWLFpAhQwaYMmUKtGjRAqpWrQpLly71sp4EQRAEQRAEQRAEQRAEQRAEQRCJBr/nYGGMQVhYmHLbhAkT4Ouvv4ahQ4fC119/HVAFgwnNwUIQBEEQBEEQBEEQBEEQBEEQhEiCTXJvxqpVq6Bhw4YQERERjOI9gRQsBEEQBEEQBEEQBEEQBEEQBEGIONWa+B0izI5atWrBX3/9FaziCYIgCIIgCIIgCIIgCIIgCIJIIpw5A9C9e6hr4S1BU7AAAJQuXTqYxRMEQRBJlNatQ10DgvCWzz4LdQ0IIuE4eTLUNSAIgiAIgiCIR4d27RLuWBcvBq/sTz4BKFgQ4KefgneMUBBUBQtBEEQgvPNOqGtABItRowD69Al1LZIGFSsm3LGGDjWu27VLnXfgwMCPxxhAdLR1njx59Muffx74cYNBy5ahrgFA2bLBP8adO8E/hkiBAgl7PMIZJtMwEgRBEARBEEFkwYJQ1yDhSZnS/T6FCnlfDzeMHOnffr16qdePHQsweLDf1VEybx7ASy8BbNqkXz9wIEDevAD9+1vvX62af8etVMn9Pv4eKyEhBQsRFBo1CnUNQseRIwATJwJcuhTqmnjH6NGhrgGRHEmTxv0+xYsHdsy33gps/2Dy+OMApUoZ1/ftq84f6LVQkSkTQLZs+nU5cwIsX27MmzGjN8dMndp6e758+uVMmQDy57cv98MP/a+TP5QrB3DlCkCRIgl7XJFcudzlv3ULYNky5/lr1MDr7xaV4s4JDx4APPmkf/sGysGD+uVVq7wpd+tWb8rxh1deCd2xCYIgQs3XX4e6BgTxaFG5cqhrkDx5//1Q10DNrVtoPDd3rvdlx8e73+f0aYD69fXrnnsO4OhRgG7dvKmXFV995d9+ZmPsFi0AUqXSr7tyBeDff/07DgDABx/g/vK72rkz/rZqZb2/W4OrrFkBpk4FaNbM3X4AAPXqWW8/dMi4Tr5ewYYULCa8+GKoa5BwuBXIOOHXX+3zVKjg/XETA889hxbWefJ4b9F85ox6/eLF/gm9nFK1avDK9he3Vv3PP+8879dfA3zxBd7L5Mbzz/sv7JSpUcM+T/v25tvy5nV/TKcTjJkhKgqs6uYPKuWIyMqV1ttr1QLo3du43qzjMmKEeVlPP219LDPCwoweK/nzA9SpY8xbrx5AiRL+HScQUqUCOHVKv65rV4Dvv9evkz1fRF56CS12vObJJ7HtMGPxYuO6H36wHzTExmr/583TP7u3b2v/7ZRVMk88gZ6Chw878yjLkcO/d1C8Nx07Ot8vXTr3x/KKF17QL3ulnC1eHODPP70pyy07d4bmuIkBq/aSIPzhiSdCXYPgcuSIs3zZswM0bBjcugAAvPFG4GU89xxAsWKBl+Mv5cuH7tiPIleuhLoGRK1a3pXlrzdAckNWGISCu3fV6/l30Y2R244dAVdHCfe8mDBBvz4sDKBoUTRg/OWX4BxbPJaTMfmaNcb9nPLkkziuTWhWrtSPT+0oWhTHu7dvY3gwfzyS7HjmGWf5Bgzw/tgcUrCYkNCWr2bIlsRe8+67AHXrOs/vtBHKkQNg7Vrz7U8/DVCzpvPjAtgLLxMjo0cDnDhhbNj9pWBB9fpq1dwJrdzibwMYrBjt48YB/P23u33cdEZGjsR7NmaMu2MkFGnTGtctWaL9f/ttrRPatCnApEn6vOnTe1MPJx//hAgjw5h5x2LqVO3/w4conD92DGDIEIz5+frrzo+zaJH19sGDrWOV1q6tXs/btmbN3Lu+moWEshK02w12ChVy9oykSmV/Tdq2tS9HpGlTgG++0a+TBRIpUuitUf75BzvRjz+urZs+3Sgg55QuDbBtG1p/WcV9LVzYeb1FL4sOHQDWr1cbGtSrB+DzATRvrq3r1w/PyYzdu/XnGxYG8Oyz2nLWrNr/0qXxm+5W8VWsGMBTTznL6/O5K5vTrx+e96BB7vYTFTpt2qB1XHi4f3VwymOP6Ze9/r5WqaL3HHLzrDnlgw+8L1Mk2G27P17AVn3m777TrPFEypRxf5zERI4cKAiXPf0SA2belxyxzU6KNGxobbzj9vuXmNi927mR0fXr7oyYOG69+bJkcX8MmRYtrI0ggs3mzaE7dqhRGZjIuDVsK1nSfFu+fP57wObJA3DzJravRGB8+607Gc7vv2MYJJHvv0fjxwYNvK3bd995W57X/PorwLVrRmPocuWMeb3ysnaKF+0xx0k/bO1aHLs75do1NL4D0I+TAPRG3m3amJdRtqx/3zaZAwesx/czZ6LRqpmcwB8C9f53cn9r18bxaY8e6u3yfW3e3Hy8mzu3s3rZjT2cjk2ctiW7dzvLp4M9woSHhzMAYD//HM6WLWOsWDHGcCjPWEwMY6VKacsJldavZ2zzZsYiIxm7epWxcuWMeTp1si8nJsbZ8c6fZ6xFC2d5X3oJr9uBA9b5MmXSrvHZs9r6nTvx3GJicNvkye6uzalTjLVtm/D3hCdVfe/cYez33/XrzHjzTS3PO+/o9+nTx1kdGFOvj4hgLD4+eOd+8qT2v2FD83zffstYihT6+rZurc47aZL2P2dOdZ66dbX/kZGMDRnCWP36jEVHm18LOR0/ztiUKbiPavvUqerrzFm0yNtrmSaN9faMGe3LmDFD+795M2MrVuivR506uHzqFD4X4rbnn2fswQPGqlZlbNAgxm7edFf/4sW1/zVrqvPUqKH979BBnYcxxmbO1JY/+ADX+Xzmx/7zT8ZeeEFdVrVqxvVffIHb5s9nbOlS9Xt57ZqWv0oV63O3euZ4+2iVR7Wtb1/GHj7E59Rs/02b1OWtX49tOF+uV0/7P2iQeT2aNzffNmkS1kHc36xeV64wduGC9TVr397+moplr1tnPNZff+mXu3TBPKNG4fPl8+HyTz/py42LMx6vYkXjM/Dvv9r2HDm0/6r9VSl/fvzWqciSRctXvry2Xvzuml3f1q2x3ZO3z5/PWGwsY717M7Zli37bwIFaflXbZnb9GWNs4kRtfb58+ueM/2/a1Pl14Sl7duN1kfM89phx3erVmPfVV9X13bOHsdGj8bry7eI3I2NG4/fZaUqTRl/PMWPU9fYnRURo57B8ObbXR45gG+Dknrk5zmuvGe+3k32dXLfTp72rq9mz6eR7+P77zs6PMXX/2eqbE6z06afelZUjB57be+95V+b164xdvIjtJQB+n3/80b97mDat+fbISOM6u+9wYkqXL2Ofyur8Q11Hf1NsLNZfbF+tzlP8/ro5hpv8XjzjjDE2bZqzvB98YFz3ww+BX9dQ39tQJSfvw7lz7sr85hvzbU89hcccNsx9XWvXxn337cNygnVNLl/WL+/bx9iLLwb3Pjj5ro4f7+19v37d+fE5RYoY14ljtkBTrVp6+QaAXhaoSpky6Zc//tjbezNsmL5Mjtj2ZcyojXvk62ZXfq5c3t5Xq/vn5vvHGGNLlphv5+O+yEh7OYqqHozhWObxx7HPGB6urmf+/PoyrlzB8b2T45nVi9OqlX1da9fWPwv8vzhG4lSoYFw3cCAub9iA8h/5mubNq/1v0sT6nmXJoq27dctYZy5r4ixYoN9evLhRdjp1qvG+cO7e1fKZyQUB7MceKhl4qlTG9+DECfMyxPdcvCZOIQ8WQEuWd97Rzwfw2GMYSuHWLfP9PvvMm+Nzq9Fp01C7WakSxt3LlUsdG3DgQIDx4wGOH9fWLVumt8SWrS/NCAtzb4VYooR77xMA1ABXqqTV7dNP9dvfe896/8KF0Z1rzhy0KgmGO2GLFsZ11arha6WKXf74486v36JFmrXe+PHurUvtJnZOkQLraUaLFgCzZxuvO2f2bPN9xXM0c3Ps0AE9nGQvG5WFePr0+np06WJ+bE7GjHiMhQvdhcEpUgSPlTq10dLpu+/QRdHnA7hwAeD+faN1dvbszo9lx5gx9hb/y5djOKbq1c3ziNr/SpXQY0WET+hWuLCWl59HzZoYdmfjRoBOnfQWvzVrqi18RWSrGdki7eBBfRgHt+1LWBh648geR3PnotW3+Iz/8YfmmiofZ8sWgFGj8H+DBuaeejlzav9FjwfRwyBXLnVMT9GLysxbworp0zE8VJo01vN2FCumnm8lLAy/H2+/jecohs17801sK83Ka9dOvY0/D6qQg2fPGudjUnk9iF5DYWHu4sKqQmXJ95Z71LVujdZMZs9YypQYe1dE9o4B0HvriO1bypTOLHjOnTOfiF10nRbDyTh5L378UR2D99lnNYuh117TbxPLDcTDQNxXtLrKkAGvy4oV+vzyfEqitZ0Tt/UdO7DdmzVLW2fXzyhdGuMCL1yIYSwHDgRYulTbPnEiWqa5cf+fPx/bBO6qv2IFWqFbWTzbzSVlZVVYpw62+c89h23AJ5/otx88iO9206bY1sohBM08hTNnxmdnyxa1x6Mdbdp45+nYvTt6o/TurW8brOBWw2J7b9a/kb+VI0eae/uqcPOeiM9XrVrW/bLWrc23TZliDL/kJoSZGF6T19/t+2713ObIgcf4+2+87vPmGfsZZvvJ7Nmj/b9zR78tY0bjvdq40f44KgIJ4Sf2KatXR6vVmBjsq1uhsri8fRvf5R9+MG7zarJduxjkVjidu433Hbdu1Y83Z860zh9MrMY4bmjcWL9s5gUxb57xPgbqzeiF55/4TonfzKROzZrO5tcTsbqeXjwvJUvi+NCKQOaayJ1b79VbsiTA9u0YqcEurFC2bBimSQ6Za4ccIk8OCwygHwOZceKEer0oj+rUCX/FMcXeveh1bueNkCGDcZ0/70/79uhNKbfndergNT55Er9NN28C7N8PsHq1Onz+mTNGTxyv2iQ7xP5YZKR/1+H6dQyZd/WqcZtTb8vBgwGaNAk8Msu6dcZv9rvv2u+XMSN6sPsTPrhaNbzPCxZgH1mFOLH8mDHoBeLE0/app+zDLAcSyl/1nDVpYlzXuTNAdDTKYVKkwGt64ACexz//6EPsjR+P52jWvtk9Y7LcQj6/vXuNEXCsPBTF8baZHHvXLmM/Su4z2tX71VfxHbci4O+0c11M8oN7sIT/vxpT1FCKmGm3RK23rLVzk7p3RwtmM65eZeyzz9R169WLscaNNU32gQOaJfSIEerjRUVp/+/fZ6xlS2f1LFlSO+6pU9ZaP05cHFrCFimi1VFkzhxtv/Bw1HQ+/bSxzI4djfvu2KFt79/f/+svakn37DFu51ZcopWzeC9mz9aW27Qxv48yMTGM9eyJFsi9e5vXb8kSxpYtQ68DxozbU6fWvBRU23maPNk6D2OM/f23etupU3gPnnqKsRs3tPVhYdp/7pkk3j/G8L6XK6e3Qv7+e309fvtNs/R+7jltvWhtqsLJ/RVZs0Zbv3GjVmcrzLwH3KaWLbG8+Hi9N5PqWjOG787Chcbtgwbpte4iGzag18bdu8bzuHABrbD5c6S6jjVq2F9X0fvhrbf0+du3x2VuQQHAWOfO5vdF9GD58EN9nWRPOX5d2rXD5axZ9fnla+qGnTux3PBwbf+tW7X/3boZrxU/Bv//+efqPGb58+Uzr4+4z+nTuG71am3dRx8xVrq01jZxVqwwnr+qHkeP4rZVq3BZtADn3lBiuyYiejxdvYrruJUzAGP79+uP26GDeT2OHTPW87//jPk3b2bsk0+05StX1Netb191nStVsn4uxHOSLYJEDwDRGwUAt82Zoy6T07Gjlp9bRDKm/+7K1wAALZ1kdu1CjzoVYvvAEb0hzDwPRSZM0Nb36IG/5crhtjFjGCtTBq0HOaInS4sWes818bv6xhvm9RWfcc78+Yxt26Ytv/WWu/e6XTusN/d0ZIyx7dvx/tWuzdiXXzL2xBPm10PVV1HVmycrC31epmiJKXqwqDh8mLGUKdFjz6oOv/+O75t8vGHDsJ/HCQ/HPiT3CBK9TFWpRQvMFxmp95CTk1MPFhErbxHxW9G5M+bPkEFfjmq/+fPVx1q61FgPlQeLWbmqJHoK37uH/TdVvgwZ0KPX7prwZW4pyJdTpjTfd+pUvI7c0nLwYNy3fn3zfUTvNJ5kiz6ze8Y5dMj++sh9Wcb0Xo537hi3nz6NbcfjjzO2eLG7+8FThw7uPevE9Prr2v/YWK0NEL2FeeJe2by/I3vVyojbChRQH3/kSPV6s3ZKfrbNkvht5ykuTutHWSWxHRQ9jVQeBowxNmCAcX3+/Bh5YPFibR33+Onf3703x7vvav/dehVMnKhvU+2u58qVWl7R0le0svUnxcXZR3Aw8/wW7wtfnjXLW8/HN94wrrPyOChZ0nnZjOH3rVcvHI+NHKmPZiCPKZwkq3Y2d24sb+hQ99dB7K8xxli2bNb3xJ9rXa0alq3yGGcMvT6GDNHvkz699l/0DhbziF4Y4phdvM78/xNP4P5//WXslzq5n6r19+5p/3v10up4+DAms/ZRvgYHDjCWJw9603Dk8xFlC6okRheIi2Osa1ccb77/vrXsrWdPfTkLFuD6ypX16z/6yPzYK1ca79/Gjdr/HTuMcqcNG9QeLBcvokfA6NHm148xfJbksQpPN2+q99u7F9ft24ffYXHbhx+q742T+8cYRiUQt2XOjN/BmBjGvvvOuI/ZteQeLBzxPRgzRvufLp15Xa3g+0yZov2Pi8NtJ09iVCNRZgmg/462aqWXffC0fLl2jNu3tb7d+PH6vgPHzINFjg7DGMrO3J6rz4fnIY6/za6FGPFBFe1Els2Kcgr+rF26pK0bOdK+ft26MVaokF7mWrSo9v/cOX0dVe2Qql8hRkDiHD+uftY2bMDnVFW+U1w+fskLpwoWUWijakBkN2pVh9Yqde9uX9dmzdzf3OnTtX3efhs7owcP4rbjxzUhm+iyZteJEpFDT/AkKlj49eGNlIyoqOG8/LK+vEKF1AIP8aOk6thXqcLY2rWM/fyz9fUX3eWOHTO/zw8e4HLatNgB5aFYxBf5+nXn90fESsEiI267f98oMJf3nzwZ66pSwlSujB/yNWtwvZnrLReAyR37HTuwc79jh1Z24cLGuvt8+g4oH5jy5d9+Q4HQrVt6Ye29e6iM2bpVfd3s3i1Z+CkqWJwihycyS6NGYdiBJk0YGztWWz94MAqN5XfArBxZ2Jgnj/p52LmTsTNnnJ+HFXwQ/+uvuHzokH7AJgq+RAXLN9/oz4UL8MRORpcuxnNs1w7ziQoW+cMrKlg2b9bW37+P15p/ZDmicNfN/ZVZsQLbDF6/d97RC0TlY3C33fnz1XnefRfDwfz7r36blYJl0SLsPPIOPWP4/NSogR1SM3w+7Hz/84+6LgB4PipatUKhNFc6xsXhd2fCBH0+lYLF50Ohg6j44Hl4B8yubVu/Hju2HNEdecsWbB9Wr8Y2wYxt29Rlnz2L7vU8nJaKlSuxUyUOnhjTf+dkBbQTxPOoVUtbL4ZO5PBn+MgRZ2WL8LJ+/11bJ77DYh6zcxAVLDExjP3xh9GN3uy4336rX86ZE/s2YWH4rTbbz8l1PHsWvwsLF9rntULuR6j6anaorqGVKzsvU1RU3L8f2HmIbea+fdry5csoyDTrb3Fu3dILdGTh+1df2Z9z7dr+KVgY0xsMyfn4/06dcJm/j2nTmtclLg7bWFnwwJg+1ApjeB9k5YVYrhyuVf5+MYZtIG/rfD516Npr1/SCP1FwJRoH8HWygmXoUPy+X71qfj1jYlAwwp/refPM78Hatca+hGgg4/Q96NULlYWq0I+ff47ttCigYUyvYLl92/lxzOomKt14mjfP/PlwksSwZOL7Ex1tDD8aF4dtGs8nhk1VnZM4rhBDL4pJVjzxdOqUMTRbzpzmoVSuX2ds+HBt+eZNvUCvYUOtXlbhSuTziIjQ1pspWFTCJf5sxsUx9sorWv+Df1ecKMVE4xlRwSKGHHKSZMRtcphdbijCadxY2yYa4viT+HPD+93p0+MYXcwj9o3NzqNmTRxvh4dbK8LNUtas6vVbt+I3QFwnCpvk0FFuFSwyouKW95Hk/XLkwPHVH38Yt4lCWjk9+SSW54+CZehQfT1FpYTqvPh/OUzQxYvm+/GxkPjuqBD3mTxZk9XUravOc/YsGmbysb18XPFcihfXyhC/Iar9VOctypoA0PhL3Ld3b/U5qeqtugZyv00OVRQRgX1mcV23bjgOL1UKBbz+wI2M5DrJRpdNmxrrv2CBNj6XFSyM4bf74kX8LxpMTptm3McOs+vWt6+xryPKqPi6vn31+8XH60OY3r2rD4todXwnea5e1dpAOwVLxYpa+8KN7zhcCV2rlv5bIPZn3cD3EZ9nFbNmoYzg5Em9XGvCBKNBxo8/qsvg8jifD5X+4th5507ct1UrlMnwsnifq359LS//Fj/zjLtztWPfPhz/X7igrVOFc+X9dLk+8rW7fl1v9GUHf+evXsVxvXh/eTju9euxL6QyylGFCBO/kRxRwXLkCMoyuVyDFCwBICtYxE6CjCr+nszNm9jxEDtf8lwbPIkfCCcKFjMPFivEF92Krl21fMeOoUBMZREgK1hkLT5PGTM6ryNjqPQRGxfZcufNN9X7xcejouOTT9SDDe4lwRgOXhhT11dUsDCGH1WVppgxFO5ZWTz4i9VgUoavf+wxdVnivq++ap1H7JwxZq5gkYVs+/bphb8isgeL6rhLluDyN99gflGALSpY7DC7ZjzJHTNRu+6UP/80lrtvn9GyUGbsWBRCmQnTxH3FwZSsYOne3fo4XnDlilowx48pCpmaN0dBdevWmqdMnz6MNWigdRrEwYIqXvW4cZhPPG/ZG0O0gHKCOB/MH3/4fSls4fNRNG6My1eu4CBGfNbkQYoIX58/v/Vx7ISkTpGvvRsvOxXiXEZWbSHPw62rGzTA5U6dMPYpfwac1P3QIef127bN3MPFCdu3a/VkzOj98vffKKRSeYmZwffn1pmM6RX/nPh4d+WKjBiB74DYiRWF72I9smdXP5+i4MQpfKDOjTe4AGzAAFw28xLkx+GC81Bw6hQKYNy0r6rvzK5d5vPD8bmlGMM5CkQPI3/hZY8YoRfeuIEP4gBw4GrVRsjndO8etncqBYssxFfVS+zPysJ4/p97vl26hMI+bvWqusZWyAoWxrANky11ly5FoYZ8DNky2QzRMyFdOlwnWkIyhu/CmjV6LzDxOojLvC4qy2gzVHm51fWdO5hEz+8SJfR53Y4zzOolX3N/FCyM6b2+eGrSRK0YdapgUT2fADgnHf8vGiNxxHkeZOwULGK9RK+LPHnQY1L2HM6WDb+tvE8hKr4nT8b+uDzmyZEDjQg4t26hQIFz9y5afov9FLMoB6rzcKJgGTzYugyVoVwgChZu9GaWZEG32T0B0BQsZ86oDTFEZWlcnN6oTzTscJL483XgAMaw37dPP39es2b66212TX0+/ff122/VBk1ievttjBLQpg1+swGMitYtW7R+EE+iTEAWMDudr1b2UhfPg+fh3g7yvj/9pL5vANYRLHLmxH1UChaVYBwAjQSnTjX2XY4etb4n/H+6dHordHmOFTF17Yr7il48KkSP+kmTUDDYrRu+0/J1kY1cVdesZk0c21arprdk5+0z9/pQeTPxxNtcuf8gK1j69FGfk1ndzK6BXEcAxr7+Wl2OF8iGJyKiV4bo3caTOOenSsEiInrk8HFwdDQ+8zt32teT75snj3GbPNeUqu8hK1h4nT78UDOa5MJpPu4VEccZAJqxlcjmzdhHXrZMv95OwcIYXhOx3pyYGLwPXMayfj0aF9q9S2bwfcw8os344AP8Zt+9i9+Gjh1xjFi3rr23uhn8nCIj0culY0c8340bjUbVN27ovfWDyejReq8Z7mkusmuXFnHEK0SFCZfnMqbvU4jPjcqDhTE0dBWNc8XvrNzv4wqtqlX15TvFo2YoaeJGwSIOJFu31ltUqxAbmqtXje56Yh4nA25R6eAUpwqWu3exgy+GkKpTx/hwliql3493MGVrMrcKFpkHDxj75RetPO5Ca4XPh1btO3Zgp7V3b7Wls+pDLlrqcKwGU8HAapJ7s3NIlUpdluhBMn26Og/fbqdg2bfP2QdexErBcu4cukuKjaI86PJSwSLDQyK5ua+i9Z/YEMfHM9avHy4XLeq8PM6WLfih4oMkXrbowssYbhMFIQkJH/SJnmbc4soKMVSVyqpRpWBRceOGc4HzgQP4TojhvELJpUv6Cco53H25SZOEqYd87bm1RyBcuKAX3qiYORM7mbwzGBdn9ISzY9o0/aTtCYWoOGrUKPB3j+9fs6a2LjoalTgbN/pfrhNWr9YUVCdP4rspWuOK+KNgkZVC0dHYwVYJKUV4uzBrlvNjBQOnAnSO6jvDPTRlF/ohQ4Iz8OHl79qFy/Pno4eCG0QFixyOkQt95OMBYHg1jtgvTp0af//5R+/Or7qmonVk6dLqfjH3cpVRGf9YoVKwMIZh0Oz6WHKduCBchTgxKhd6xcdjv1S2hlcdS/Zg4YppxvQepCpBg1ndAbAtk7+hfJtsNW8WYtHpsTiicJYx+xBhZqgULK1aqRUs+/ap6ySndu1QqLNggd6LUBxzuFWwyIoqq2slKnjy5lXn4SF7OKJRAxcOyAqWuDjn31WObOX51lv4vKrOw0mIMFmQ6OQ5cqJgqV5d+1+3rr7sPXsY273buE/DhkYlhYy4jStYzJDH4OIzrfJoyZlTHe7a7PniXu8ZMmjrzCIb2MHzhYWhBbToASVz7pyx/lw4dvYsCvYbN8b/fPvmzfr8pUvjt08MzQOAVtX8f4UK1n2CQ4dQCcINRDp2xGs4ejR+L0RDtUGD0Nualz1mjPkYOlcu3EcVyvHwYf2zxVO9eub1FMc28j3h/9On1yu6RC/ETZswasSXX6IS49Yt3Dc2FtdZ9Yd4GZMmWW93omCx+pbdv68ZeJ07h8oi0dAIAOUMHFnBUqaM/piicsyq3k6fcTFEn2hh7+YdcYIspBURlWaigqVZM/weiGMIWbmnYsECfUhCN9y9i57rKmOm+Hi9wkEVZcDu/nBEpb+MGILYDU4ULG7xV8HSvj2+m1zx7HR/n89oIJrc4dfHTnnqJRs2oAzPrk78vvXtqzeENuP4cXU0mOhofCe5ksztM+VRM5Q0kRUsXNP79tvq/PziutEoc01uXJzewpox7MjWrOksXMSdO1gvN8IIO+GlFU4ULDExqMS5eBE7BjxfoAoWDi9PFb890DJ5mjsXG8eePfWx7b/+2tsPtR23bukH6FYfGL4+ZUp1WQ8fYodnwwbzjyEvo39//XrZ5d4frBQsTuAD3UKF7PPy47z8MobKuH0bhT7vvadZgIqI7uVOETvHnToZr5nbQa0Zy5ZpFkEy4jwOCYnPp7VP48djJ5sPCOz2mzgRB7737qGSVIwx7lTB4pak0Mk5cQI7JaIVRjDp1k27xmFh3j2vjwpXr6Inqr+DH8acDWoTki++UL9348YlbDvjr3WX13Ch3csv2+e1+0bzdS++GJy6MobKW3GOGn/YtUurq6xgkcsW+0uikEy0JH34UDMOEIWxqpCG4nxKchg73n8QwxyKREejAJDPYSD3S2XMFCw8xKzV/EA83J5Zf0lEDP3kBr6PrGARFcs3buB16dHDvjw57I+KceNQeCuHH4uKQgWEOE+FFbLQUmTvXk3RJHuw8PkBxPkDVIgCWgDsf1y/rlew7N6t77ur3k8xicKk2FhUcO/apReqqL6RXilYRI85MwWLPL8cY9hnEOOdiwqWmTPNr6EdkZH4LIheotevG73WrTxYhg/HPCovATvEOY0A0BMsZUr0VMmbF89TFILz+U7FsEaMGY/bqJFxvYy4zU7B8v33+nLEcCPh4ZoH43ffYbjwffvMvUnMPHkWLzaGM5L3HTPG9pL+Ly+PFCDOf2O3T4oU9nnk9557LMhRLUQFLr8fbrAz0uDvEheOcSNZHq4dgLFnn9Xyr16t90I5fBj740WL4nhl5kxU4NsZD6nuKWPanFavvaa38hYNF/0NIy4e10wGxbdnzmxfZzGUrBPk8JPi+FyeE4X3o/gy94KwOy837cb77+PzZWbB7hVWobG2bEGLeNlgSX6/xTkoQmEAKBr+iO0LX+eFkNxfBYvoGSjXy9/7KM5v5Q8PH+K7nCMHjZfNGD4cjaHtQkgnJKrnZtYs79oEt+V42AwlPWQFC2PoKmkmpLP7uKnyiq5y4hwBCUEgD5ZKwcI7UWbwfF4rWKpU8aY8sUwA8xBbjCW8goUxbMg3bNB/rK0GBVYdYTuOHkXLJtm6Vp680R/sJpS2Iy4OFSGyJ4cKfhw+EbMd/ihYGEMNdyBhhwJFnJg3KcPPgQ/mxXmUiODBr7HssUYkDPz6m4W7TGguX0ahoDzvkb/tY1Lnzh0UONh5BzCmTdDMkziBKmPaQHP27GDU1DtEBcv+/fpz2r5dn5evV82ls2KF2nuG76MKJbpwIW7Llk0fboYx9HhzEl7A58N6qrwERcwULIyhsEsVinHhQr1n+fHj+HxYeSN9/jkeI0cO+7qL8LrJIcLceiRxrl1zZ5AhGj74gzi5rBmyguX0aTTK4vNAmiErWDiigkVGzL9gAQp2d+/Ger71lvnzYqdgsRoTuFGwiPM1mSlY+LNghahgSQghkKhgkef74PMGiF5ATp8pWcFy44ZxDC4qWHw+FGrKhokrV+onIOZzzYgeQzLiXIl2YWXFOYcYMypYGDM+W6LnmZjc3C8xhKLT8K48P1ewyG2s1T7vv2+fRwxXBaDJBuS5tUQFC1fCecmDB9iX4Vy+jFEFRMVxkSL6fUSvBHmydaeo7ilj2Ia0bo1C7OhobDOWLtULuANRsPz3nzHEkqpedgqWFSvchyCWPX1lA8i//tLaNt73OXrUPJS4CA9j6abdUME9FwJROMvcvo2KO9GjVMbMI1zk/v3QCetFgxfVJPdOPVisaNPGv3sXDA8W0aPRXx48SLiwW4Q3qJ6b2Fics4bPq+tF+Y7zB37IpItKwWIFv7huFCyi9V5CK1h4bG4eD9oNooKFxxLlnWgzeH6vFSxOrPacIsbNNPMAYUwTOHjpPeOG0aPx+CNGGLfx+hcsGJxj85BpVtaaVixalHDP+bhxOEjl8f/tWLkyYd9BrwiVB4vXXLtmDJeycCF2iIjgMW4cWg2r3GCJ4MPf3erVQ10Ta3w+tGZbvjzUNUm8PHiAghl+T2fM0G+Pj9fH+E2siAqWf//VD07MFCx79zovf98+9HpUCRV8Pgwzc/Mm/u/XD78DwcBKweIlERE4iHN773ndChTA5UOH0FMoEDZscH7OgSpYRCG1GbKCxSmiguX4cW39Bx+YH5Ovf/pp58dhzD4siFcKluzZtf7c/PnqPNybyQonXgleYuXBwseGqvkK7ZAVLCo++sh5eTwfV7DIc2zKtGjBWNmy5nOFcXibz0NWqxQsMqKCRTQ8cyNoPXNG2691a2f78PxcweLzoYJo/Hj7fRo0sM+zbZs+TBhXsMghMuvUwYmDR42yv75ew0O7yuG0vFCw8PCS4hwudjRogIK+YArZrdqPQIXWjOnnP+Lvl0hcnH9zLxw+jKGZvKhjMObItcOJgiXUjBqFCnARXmcvFCw3b+L4Ru4P23H5MmO5c+vD0nrxHCxdah2alUh+8LnAatcOTvnHjqnnZzMjFRCuKVzYv/1KlQJYu9bbuliRNy/ApUsAmTMHVs6SJQCnTwMULWqdr3FjgNmzATp3Dux4nFOnANasAfj8c2/KAwCoXl37z5h5vhdfBLh1C+Dxx707thtatcLrmSWLcdv27QC9egEMGxacY//2G8DIkQBhYf7tX68ewK5d9s+LF3z5JSYiaZAzJyaR+vVDU5dHCXpPEgdW35zEQFgYwI8/hroWiZt06QCKFdOWn31Wvz1FCoD8+RO2TglFjhzO85YsiUlFWBhApUra8g8/BFIra158EeDAgeCVz8mUCaBdO/f7rVgB0K0bwNSpuPz885gCoXJlgFdf1T+nwcJJP9HfvqRIkSLa/0GDALZsAfjuO/P8vXu7K9/unbUaC7z6KsB//zk7DmMAgwcDdO0KkDWr4+olOsaNA2jRAv/zcUrKlO7LcfJsDBsGcPeudjwvyx871lk5xYoB3LmjHk+bHUP83o8cqbWHbt6HggXV5Vnx1FMAFy8CvPaadjyn48UnnrDPI7ff/HyyZTPmfe45TAnNzJkA/fpZy2v8bZdGjwbo2BHb/Jkzne0zf75/x/KKDRsAmjd3/ryrEJ+/UaOM21Om9E8+VqwYwLRpANOn+183Tpo0gZeRHGnd2nybF+OSbNkA1v0fe/cdH0WZ/wH8M5ueEEJCCE2aYAEUEFDsvZxdPNvp6amn3v2s6FkOy529n5Wz62G9s6CIoiI2EBEFBFSKjV5Cek82W57fHw+TnZmd2Z1tmZ3k8369ntfuTn12d3Z25vk+ZW7s6/XvL8sptb/FceOA5cuBffeNPz8nnRT/uuROH34I/O9/wHnnpWb7u+4afr8XCQMsMdi8GWhpMb+IsKK94PzHP4DcXFkA3VkGDEh8G1lZ9grLX3wRuPZa65vqWO28c+Q/hURF+1Oxc6GZSmbBFQCYNEmeSFIpkRtiRQEmTkxeXpIp3Qs4rSSjgIKInNG3L7B9Oy/6u5JvvwXWrQP23tvpnCRu9Ghg+HBZqcXM7NlAQ4MsuHObRx+V1+ypuulK1PHHy5RMmZnAN9/YW7Yzri3ive4aOxb49dfw6cOGAVu3Rs57rPssLATWr7cuoLvuOllx6Mwzw+c99BAwY4YMAkQTDMpHs+DKiy8CV1whK7WlM0WRFTbq6oCffgJOOCE0PRHvvWc+vazMel40Bx0kK/7l5safL1WsFe6SXUHP7jH9229Aa6v1PaSZ114Dnn9eBiWiMX7P++xjvpyT/40eT/yVYe1se8QI+fzLL4EePVKzn2Q6/HBZUTYRo0cDs2bJ506Xj6QTt5YrpAvj+WT2bOCFF1gpkGLTt2/kSjedzdUBlqFDh2LDhg26aTfccAPuvffelOxv4ED7y956KzB9ur41R36+nN5VZWUB48c7nQsia8kIODqBARYi9/r+e9nyMNkFqeScvfd2d3BFW8CbmSkLSjN33BGohUeq447rvHwlW0kJ8MgjTuei65owIXXbfuoped91wQXh86yuifLzZUW4gw+OfX9DhljP69kT+Ogj63mvvhr5/H799bLlyqOPWi9z3nnAH/8oC3Dd4Lrr9K/juU7VrpOKln9PPCErCJ59dvK3Hc2VVwJffQVMnpyc7dktyM3OlikWf/iDTHaorWp+/FG2zPjb38KX6dkzeb1ZpDO1lVA6SdX94s03A4FA6nodmDABWLpUBtDdhAGW5BowQB5rRG7m6gALANx+++24WBPm7JEmVQn++U+Z3Oq662TXBaed5nROUod/it3PXnvJG65IN9Lp6G9/A155Rd58E5G7lJWx9Qqll+HDgYcfDtVEzciQrQJibaVN7lZQkNj648fL7mciXVPFW+BXWho5IGGmokK2rIilQlwyHHusDORZteC/7z55X1VaGnk7doMrnX3/UlAgW/l4vUC/fubLJNpiIJmBJfXz6dUrNffidrpDKyiQ99EAsGJF/Ps65xwZwJsyJf5tJMPq1UBjo6wpDMgWDaNH65f55BPg3Xfl8c7umjpXcbHsxi6e4LId+fnye02VmTPl+f6yy1K3DyKizuD6AEthYSH6WV3tUdwOPhiorOSNNnU9qex2LlX69AE2bWJLFiIiSg5jgV3//o5kgxx09tmyFvqhh8a/jcMPT1p2ElZQkHjQKB6KEr17imjBlXTm8ch7QiFkbwVm+veXLTXXro2vxUh+fmJ57Ez9+wNnnSWDCIWFqd3Xyy/LMW+c/nzsjKVyxBEypauuXLFy8WJ5rFxxhdM5ic9OOwEPPOB0LmLn9mPKqos/Ioqf6wMs9913H+644w4MGjQIp59+Oq677jpkW7SN9Xq98Hq9Ha8bGho6K5uu5OabAaKuhsEVIiIiSpbsbNnnOVE0dlokTJok08iR9lsR3XuvbHWUqjEzUkFR5NgunbUvp4MrXVFXu6caPrxrd0Ofrs44A3jjjVDXeW7x88+ym7+jj3Y6J0Rdj6sDLFdddRXGjx+P4uJifPvtt5g6dSrWrVuH5557znT5e+65B7fddlsn55KIiIiIiIgoMaluNZEoq67SzHSHsTq6WmF+V+D2lgeUHk49Vbbcs9PCK53ssotMRJR8ihDp9Rdz6623Rg2CLF68GBMnTgybPmPGDJx22mmoqqpCb5O+rcxasAwaNAj19fXo2bNn4pknV9Be6KbX0U9ERERE1DU0NYUCAq2tQG6us/npCoQALr4Y2HPP6F2TdSfq/d0ZZwCvv+5sXrSCQeCAA+T4Ne+843Ruui8hgOOOk2OVLFyY3HF/iIiIgDQMsFRVVaGqqiriMkOHDkWuyRX6li1bsNNOO2HRokWYNGlS1H01NDSgqKiIAZZuhgEWIiIiIqLUUwsz993X6ZxQV6be351+uuy2J50IwZYs6UC97+d3QUREqZB2XYSVlpaiNM7BP5YtWwYA6M+ROimCe+4Bpk4Fnn7a6ZwQEREREXVd++/vdA6oO8nIcDoH4Vignx74PRARUSqlXYDFrq+//hqLFi3CYYcdhqKiIixevBhXX301TjrpJAwePNjp7FEa+/vfgb/8BSgudjonRERERERElAzpGGAhIiKirs+1AZacnBy8/vrruO222+D1ejFkyBBcfPHFuP76653OGrkAgytERERERERdR6ZrSzeIiIjIzVx7CTJ+/HgsWrTI6WwQERERERERkcPYgoWIiIic4HE6A0RERERERERE8bj5ZqBPH+DWW53OCREREXVHihBCOJ0JpzQ0NKCoqAj19fXo2bOn09khIiIiIiIiohgFg4CH1UeJiIjIAbwEISIiIiIiIiLXYnCFiIiInMLLECIiIiIiIiIiIiIiohgxwEJERERERERERERERBSjbj0GixACjY2NKCwshKIoTmeHiIiIiIiIiIiIiIhcolsHWIiIiIiIiIiIiIiIiOLBLsKIiIiIiIiIiIiIiIhixAALERERERERERERERFRjBhgISIiIiIiIiIiIiIiihEDLERERERERERERERERDFigIWIiIiIiIiIiIiIiChGDLAQERERERERERERERHFiAEWIiIiIiIiIiIiIiKiGDHAQkREREREREREREREFCMGWIiIiIiIiIiIiIiIiGKUtgGW+fPn48QTT8SAAQOgKApmzpypmy+EwK233ooBAwYgLy8Phx56KFauXOlMZomIiIiIiIiIiIiIqFtJ2wBLc3Mzxo4di2nTppnOv//++/HQQw9h2rRpWLx4Mfr164ejjjoKjY2NnZxTIiIiIiIiIiIiIiLqbhQhhHA6E9EoioJ33nkHp5xyCgDZemXAgAGYMmUKbrjhBgCA1+tF3759cd999+Evf/mLg7klIiIiIiIiIiIiIqKuLm1bsESybt06lJeX4+ijj+6YlpOTg0MOOQQLFy60vR0hBBoaGuCCGBMREREREREREREREaWRTKczEI/y8nIAQN++fXXT+/btiw0bNliu5/V64fV6O143NDRg0KBBqK+vR8+ePVOTWSIiIiIiIiIiIiIi6nJc2YJFpSiK7rUQImya1j333IOioqKONGjQoFRnkYiIiIiIiIiIiIiIuiBXBlj69esHINSSRVVRURHWqkVr6tSpqK+v70ibNm1KaT6JiNxq82aAvScSERERERERERFZc2WAZdiwYejXrx/mzp3bMa29vR3z5s3D/vvvb7leTk4OevbsqUtERKQ3bRowaBBw/fVO54RS4YUXgN/9DmhsdDonRERERERERETulrYBlqamJixfvhzLly8HIAe2X758OTZu3AhFUTBlyhTcfffdeOedd/Djjz/i/PPPR35+Ps4++2xnM05E5HJTpsjHBx90NBuUIn/+MzBnDvDAA07nhIiIiIiIiIjI3dJ2kPslS5bgsMMO63h9zTXXAAD+9Kc/Yfr06bj++uvR2tqKSy+9FLW1tZg0aRI+/vhjFBYWOpVlIqIugV2DdQ91dU7ngIiIiIiIiIjI3RQhum9RWkNDA4qKilBfX8/uwoiIdvB4QkGW7vsP0XUpiny84grgsceczQsRERERERERkZulbRdhRETkDAZVugd+z0REREREREREiWGAhYiIqBtigIWIiIiIiIiIKDEMsGj873/AkUcClZVO58Tad98Bp58O/Pqr0zkhIiIiIiIiIiIiIkpMdTXw73/LR7dJ20HunfCHP8jHqVOB555zNi9WJkyQjytXAqtWOZsXIiIiIiIiIiIiIqJETJ4MfPkl8M47wCefOJ2b2LAFi4maGqdzEN1PPzmdg84VDLI7m3hMn56+wUIiKxUVwOjRwIMPJmd7LS3J2U5Xk47n1HXr5Hf//PNO54SIiIiIiIiIOsuXX8rHTz/VTw8GgR9+AAKBzs+TXQywuJRVwVhbG/D994kXnLW3J7Z+MrW0AMOGAWeeaX+d778HPvggdXmKJhCwX6jb1qbv8i1ZJ4zWVuCCC4CLL07/oKEQgN8feZl164ARI4Bp08zXT8fCYtVjjwETJyanmWNrK/DnPwOzZiW+rXR1552yhd5118W/jcZGYMMG4JVXgIIC2cyU0t+VV8rv/qKLnM4JERERERERkTsFAsA55wD/+pfTOUncP/4BjBkDXHWV0zmxxgCLTZs2AU8+qS80nztXFuBpNTZ2Tn6sCpMPPxwYOxZ4/fX4t718OZCTA9xwg35/TtUCf+89YONG4M037a8zdixw/PHAjz/aX6e9HVi6VEZG7Vi4UObNzLhxslC3ri7yNt54A8jLA3bZRUZop0wBiorCjyutYBC46y7giy8ib1sbJGttjbysXV98AVxzjQwKJdPZZwO9e0cOQFxzDfDbb8AVV4TPO/10Weu9MwKD778vUyyuukoeW/fck/j+H34YeOEF4OSTE99WuvJ6zadPnw7svz+wfXv4vEAA+Oyz0Dl44EBg6FDg3HPl68svT0VO3Ud7LmhocC4fZnw+oLbW6VwQERERERERuZcQwL77Aq+9Blx7bfj8+fOBrVs7P1/r18uy9VjLKO+6Sz4mo+Ksz2e/3DcWDLAAOO88fa14s+DF+PHApZcCf/87MG8eMGoUcPTRsgBP9fHHQM+ewN/+lvIsW/r6a/n47LPxb2PqVPl4//2haZdcIgMG330nx6p5+OHQvE8+iS34EatEDnyrrtSWLpWfkfa7Pucc2crgvvvsbfuAA4CTTpItK4zUwM68ebLg99xzgUcf1S8TCOhb5bz0klymuVl+9tdcA7z6avi2X38duPlm4LDD7OUTSF7rjsMOk999siPg//ufLOx97TXrZWbOtJ43YwawerX8k0ilpibgxBNlamoKTa+slEGXaK2PtH8iW7YAN90kg7d2BIPA5s3yu+9M339vPv3112Ug8+efk79PRTGffsEF8hynnqO0HnoIOOII4Mgj5evOCna7jfYY1B7DgPyuDz889D/S3Bz53PHjj8AvvyQnX0IAgwYBX32VnO0RERERERERdUcffggsWWI+b9484JBDZKXUzrbHHrJs/bbbwudVVKR+/y0tQFkZcOCB9paPpSyVARYA776rrxVv1uqhqko+fvwxcOihsjDXSI0KPvRQ0rMYs2T3S6eO47HffrIw/JprQvOOOgo444zIrS4SkUiAxWz8kU2bZCDlkkv03Sy99ZZ8jHXch82bI8//8EPZTdGUKfrpxi6xtD/cDz+UgYw//jF8e9ruxJySrEJVo2BQts5YuTLycitXAvX1wOzZMvqssiqYTxZtgbS2oHqvvWTQJZZo+gknAHffDfzud/aWP/dcWQCdzK7QmpqAOXMit/wZO9Z8+llnyQL588+3XnflSnluLS+PP4833hh+YfCf/8iWLNrv4z//kY/ffmu9rXTuRi5ezz0H7LmnbOUXq5kzgSeeCL0+6ijg88/lZ7thA9CjhzyuzdTVyf3uums8uZaECF1Etbebt0wiIiIiIiIiIvu2bLGeZxzfJJmEkGU4L71kPr+5WT7ed1/oOSDL4fv2TV2+VF99Jcsy1EqlkXi9MiBkFwMsJiIVYFsV4AYCcsCddGEnwCKE7Lro8cdD0+bNAz76yHqdSAWxyYg2Ll0qWxPV1wP33gusXRs5wCKEbD1jVeD/0Uf676W5GRg8OPTabhdin3wiW6tEOkmZURT9SUMrUmGvGtBTnXGG7AbLzKJFcswCN2hslGMsLFxoPv+11+T4ItFOYvvtJwuDTzgBuOOO5OfTivY7054L1OPinXfsb2v5cvlo97uzat1jZ/waK5MnywDPTTfFtz5gfXwDsqu8adNkcCgQkL9rq5YlX38NnHIKsPfewDffhKbfc4+cZrb8M8/EllerYEEyBAKyC73OHu/o4ovlecwYwLVibCFy2WWh59pzuDrI/OzZsuWiMXClDSybteJTzZghgzDffRc+789/lhdRVl0tEhEREREREVHypLLi6YIFsgznT3+KvmyPHqHnL7+cujxpxfLeP/kktrJWBlhiZBVg+eST2Lajfqnbt8t1YymYtcNOq4+FC+Xg21deGZp26KH292Ech2PVKtl1WiLjv0ycKGu89+0ruwEaOzbye3n3XRl8iFSLWtuvoLEmvd0f11FHyULAv/zF3vKqk0+2Lvg0vi9tXjyaX+b27TKI9NZb4YGXrVtlsGH06PDtRxv/xcoPP1gHQOKlvtdbbpEBvQMOkN1q/fabfrlIrQ+0GhuBxYvlc21kPJXdQj39NPDf/4Zem50LkvVHdcklcvuPPBJ92TPOAEpL4xu7Qj1vxRqo0PJE+BdRAz+ffAJkZgK9esluFP/v/8KX3X9/+XtesiQUfIpGOy6Unc9+9mx7243kllvkAOzG/T34oOxCr3dv2ZUZILusO+GEyAGIZNG2qPrtN+vxjE46yd72tIHLCROASZPk+e/cc8Pfu1UrJwA47TQZAJ88OXye2uro9ttT3/qMiIiIiIiIqKvbsiW8W39tZXnt/bzPJ8svpk9Pzr61ZZZCyPKdSOOttLXJsrZ4euRI1OOPR+5tJdbyPQZYYmRVCKTtpgiQheIHHmjeLKqtTQYiJk8G+vWThfennmo91kEy/PijHBRIWyCZ6GDC//iH/vX558uu0846y3qdhgbZ197338sazVYHrDrIdVNT5ACLnWZd0QrujHmItLxZAa12eSGAZcv0861+sMb91tebb1Pbwsi4jlnB7fr1cnyZOXPM92tm/fpQPseMkQGQSCeaF1+0P0B2czMwYoQc60jbtV5ZmZweLTi5bFmowNqMtms6s0JcIWQTyMpK/fSqKhlVnz9fFgBbDfDV0AAMGQL89a/xja9k1p1gNOoYSldfHX3Zt96Sx87rr8uAxvPPh7fCe/FFfasQQN/KTQh5XoonQKQGWNatk90jGsf1MPPUU7Hvx8wtt8jvBei87r/uvFN+xmo3dkLIz1LbHaF6cXLIIfKc8Yc/hG+nujrUCiQYjD4WT7RWieoF08UXy99VaWnUtxKzZ56R3R2qA8yp7AQ27RwXRERERERERBS/gw8OH49aW1amLTt55RVZfnHBBeFlV9u3Jz5kw957y/HLrdxxhyzT+d//7G/3z3+WZS3xDI2hfe9XXhkaw1e1cqVsgaMtO7eLARYb1q4NPbeKvBkL5adOlV2x/OlPsqmTNor3yivAmjXhg3abdXO1dKns5/7DD2PLs7bbHiHkNm6+OXJ3SnfeGds+7OSpvl7/3q+5Brj1VlnjecIE4Mkno28jkR90NLfcAvTvb7+rMDPa7/7f/wbGj7detqoqFLgwvi9tNznaVgGxBEoAYJddZAsIbWubKVPkeDMLF4a3DqirA4YNk5+DVrQIsjbY0NoKnHMOcP/94dt/+21Z+P7yy+aF4JHGIGlulp9nItH0//1PnjR3310/fcoUGQA95BDZAspqgK8HHzT/LBRFbkP7OcybF/69ak/M338vP4Nk1Q4wevJJ2bpil130eTr/fGDffeXrH36Qwa2iotAyjY1AXp4M9pq54QbrppFqMHTcOPlZqGNRRaP9XIzBWjNWAZSnn5aPsbTYmjdPHhPGiw4rdXXABx/ou2JTW/Cdfro8diIFEH78MTz/paVyTJ2aGtnKY/Bg2Z2W1mefyW3vtZf8viLl97PP5O/PbNypZLvllthb5SR7XDAiIiIiIiIi0tOWYas++CD0XFs2oS2vHTUq9Hz+fNkgQO0BY+lSOd9Y6fzrr/WVlbXbVstqFiywzmusvUEBctzm+fP1Fe4//TR6o4UPPpAV/rW04z8Hg3K4ghtvlMuxBUsKaAsC7RYqffxx6Pl55wH77AM88ICsbX/xxfb3ffzxsnDuuOOsl/F6ZeG8tkXBihXy8aKL9IX1S5bIgq6zzpKFcapffpGFZskkhOwSqE8f+Rm2toZ3PWVnUPCLLgo9b2rSt6zQHvArV8rP2tjt1N//HlrO7AeyfbsMQCVDtC6d+vSRgYympsg/Vm3QRtsaYf58fWspbasXldl4HDNmyO7KDjhAFtYCsmD31Vetg0vRaqUvWAD88Y8yuvvYY3KMkBtukNvftEkW6t90kz4SHWkMH6O//U3fJ2O83n1XPhrHxog01pKW2WcMyBYxjz4qW21onXaa/rX2u1ywQHYHaGyR88IL9vISiRDAl1+GXqst1Nas0S83ZozMu9nYKZ9+aj7+zf33y27ozI4J9Q9JPf989pm9/BYUyM/mtdfsjaMTqdu6uXNjGyD90END7zXan+aWLUBxsTwX33dfaHpbmwxWzZgh9x2pxVdzs/w9qLT/KT/9FOoi8vrr5XYvvFC2gDziCHmxsny53MbNN0fO6w03hE/Tvr9ktvKJ1tXYUUfpj30GWMiutWtlZYxorbqIiIiIiCg+Tz8t7zk7ewzRWMQ71mx3FqmCutpFt51ygUcflY9qQOWEE2QLlxNOCC3z7beyq3dtZWVtuYydSrCJdBWuvo+lS2UF2khdlwOyTCdSL0jacjm7wxdoMcBiQ7QWFGvW6A8yIHww9HXrZOGZ2WDNkWgPyM8/189TD6YbbpCFXSefrJ8/fHhooGLtOh9+KLsT0hbGxjN2hRCR19OeDPfbD8jPl11Raa1aJVsIALJWeTSFhTJAsW6dLHDVFpLvt59sJXHssfp1li2LvQVQJEcfHaq1b2T35PDQQ5GPK21QTHsMnHaavjD6+OP169npMk21554yQGLWfREQ3lTOaM0aGaC58UYZxNK6807ZLdXdd+sj5WbfsdXJ3Ri4SDazLs6eekpOHzNGHktz5oT/llVWBcba8ZSamvQBQsB6sO+lS+3lOxLt8TdrVvg0ddyaSLQRfKNevaKvHwzKc5XV52Z0zjn2ljvwQOt50QIPVvx+fQuqzz6TrQ613Scefrj5fq64wrrFDxAeTFS7i7ztNhlcUmmP/7VrgWnT5IWPcTB6QB+YmTMn+jFz003yYqe8XP4mI42Xkyi1dgog35OxJkpTk+xqz6w2zZIlMuBFBMixjB5+2P54QUREbuT1ysp3P/zgdE7smzZNtiw3drubCKt7KiIntLamtveMSGprw8tKiFLpr3+V95zG7p/tqq1NThmGavVq+b+o9ho0dy6Qk5PYeLHd0SGHWM+78EL5qC0Lu/XW6Ntsa9NXKF29Wt6z3X57+LKxBsWMXdmbsQrUqOUbp5xiPl9b1hJpiAy/H1i0SN8Y4osvzCslRyS6sfr6egFAAPVCfvShpLVsmQibr02HHRZ5vt301ltC+P1CbNsW2nd2duR1li0ToqDA/j6OOEKI//43fPp335kvrzKbN3q0EP/8p/m8GTOEOPVU+/navl2IoqLkfI5m6aWX5Pv45Zfoy5aWhh8rxmVeeCH0fMGC0HK9etnLz1lnCVFTYz2/rCz29yiEEAMH2l/WznQhhNi6VYhXXhHC603Nd5ORkdztaQWDQuTkhM+rrU18P088YT2vrU2IU04xP6YPP9x8nRkz5O/Q+DlH+g1aTQeE+Ne/5Pynnw5NS8ZvzCw/kfLhRIqUn8sui/6e/vpXeexMn57cfP3rX+HTBg3Sv7744sjbWL5ciKlTY9vveefF/p3G+7kvXCjEhRcmZ39vvBF+Lk6Fn36S/6WUHsyOlXQRDApx8slCnHSSfE7uFAwKsWSJEI2NTueEurO77nL+XBcICPHww0J884295bXXUsnw2GNye++9l5ztUWqsXi3EihVO5yL1Kivl8bj//tGX9fmSv3/197VpU/K3TWRGe/8Zj+Jiuf6nn4bPa2kR4tJLhZgzJ/b83HyzfN2zp/P/k+nE5xOitdV8+uWXy/LkaGUJ0cpKtJ+1tjz3lFP0y+y6q/V6DzwQmjZ8eGJlDkIIsWiR9fyFC8O3qWpulvs//3whfvst8n722cfeZxINW7DYMH9+5PnJ6vpkwQLZaqB/fxk9A6J3qbTXXrFH1b74InyaVeT5iiust7NypYwwm/n97+XYG3a1tFh3xZQMW7bIrnbsjLlQVSVbMPz3v/K1Wc0q7Wd+4IFyTI158+yPAzF/fnjXTVrxNJNbs8Z+qwG73WNVVclj7I9/lK1RUiEVXQe1tMjo8xVX6L8/IeSjWeuAWKktEsw8+6wcY8nsmLbqQuuJJ2StwH320U9/7TXr31mklll/+5v8/rTHUip/Y25h1i2hcTysp56S3S5qu/VKBu14PSpjN0jPPht5G+PGyW75YhHpWAUSH7xO1dIimwgno8s7ADjjjOg1Wq69Vv5u4hmETrXbbvI8p+1/Vqu9Xf5vdudatoGAbB6ezFrLblRbK7udnDULqKhI/vZbWiJ3N5hKF18sW+g6VXO3M731FjBxIjBpUufuNxiUrQnnzu3c/XYmIeTvI927+Kupcb7rSjutilPttdeAq6+O/beQyH+u1pVXyke7rZmp8wWDwMiRstsVN99H3HWX7EkkUu8bauv/SN0SA7L3kKys+LqPsSMdzg2qn3+OPi4rdV9qiwDtWMKqhx6S5RvHHBN5G4sXy7FI33gjNC1Vvy03qKuT3ZJv2BA+b4895Lisxv/gl16SLUxPOy16WQIQKhOLRjv+uLG8RDvmiuq554Bt24DrrgtN05ZFmfVkYYd2aAsjs3LTd96RPfu8/bYcPmL6dNmDUyTJOuYYYLGgKKEBh5ct65x9Tp8eCn7Y+WHEY9s2fVcuKqtxYaZNM/9xq5J1gR3txJuoqVNlVznGrtys/PADcPbZsqA1Nzd8vvGEcsEFsXVptXWrLIi0YvekpzVypP1ltYOgaxlvNvv0CfWh+P77sefJCdXV8kbtuefCC9Mvvzx5+8nIsJ4X6U/AitpFkjp+kuqcc2T3gmYijc0EyD+KRPq0tCvdClKMFwDRTJ4M/Otf+mnGLhe7sn79Ih/Pdr3ySuLbMIoUiAbk97ZsWSggngj1OF68WB/YufRS2QT6ssvkuXnqVODNNxPfn5s8/bT8/xwzxumcOCue/+ZYDB4sK9k4cU597jlZ8J/Mrh6s/PijPJYee0z+Z6fStm2ya0btddvLL8vHVatkd4tGGzfKrhpjGTcukuefl91wvPmmHO/w6KNjW//772V3rr/8Ett6dXXyOigVwUArb7wh/z8HD5bXlE1N8W1n1izgoIPsj32ptXEj8M9/Wo/NtmoV0Lu3vgvQ7ipSt7DJlOpzJ6WO9t4wlvEOU6WlRZ5j1HEE7Lr5Ztkl7VNPhc9Tr+20BbxW6upC93nJvK/Uinbv5vMBmzenZt9atbWyEtKQIanbx6efdu0AzoIFsgulRMYRee21ULlksnz/vb4idaLnaLPrDG13d9qCeqPJk+V175lnhqZVVqa+EsTy5bIrrWgBVSvbt8tzQTKuse67T5a7AsAll8ju9/fbL3y5n36S16bGLue3bYttf9HOH2ecIY+JWIdZuPhiYMAA6/lLl9ofr1cr0u9nv/3Cy+tPPVWWtWorjXVGmRiA7t3YKlIXYWqy0y3SwQfH1szJTrrwQpnHZG+XKXXJ2GzOjenSS63n7bWX8/mzk/r1izz/wAOFuOqqxPdz0EHOv9do6eGHhfj3v5O7zaYm2TTV6ffG5N6ksrOs2r2jFXW5p5+297+/fbsQH3+s795J3cayZfpju6kpPJ/vvx/+PtJdba1sWp1Il1ZHHJH69/3OO/L7NjtWEhUMCvHtt0LU18vXFRVCHH107N3Qqd2HAEKUl4fPX7dOHottbfa3+cMPQtTVyefqtqdPt16+uTl8WjAoxOTJQpx4Yvzfs7rvr7+Ob/1164TYuNHesiNH6r/nzz6T0+fOFeLBB5Pb/dqECXIf48aFpp14ovlxVl+vPwZvvz05eVC3t99+8R3b+flyneHDY1tPvS7VvvdUu+ii0Hvcd1/5qO362I4vvght49BD9fOCQdmdanu79fpqdxQHH2w+/9prY/8eAoHI85uahHjxRSGqquxvU3vfEIv6enlOvvfe2NYz8/e/x5YHddkLLrC/jy+/lF0fv/56aNpnn8nuWNXtFRbK6fPmCTF2rL775WiM5wuv1/w86ZRg0Pz/IpLaWiGqq1OSnZi1t4e+p59+EuKZZ+Rvy6ybmmTatMn8v+Dee+P73ajr3HFH+LzZs62vVY0++ii0zKRJseVBCPm97rOPEI8/bp3HmTND09rbhWho0C+3//5yuS+/jH3/sdB2IZ8Kn38e//bb2+U5xez/5aefZBdFzc3yGFqzJvo5PFXU9/fUU/bXaWgIHfsVFaFteL3JyZN2m2q66CJ762p/98GgfhvG3+uf/6yfv3mz+TZLS83vAY88MnIXYV98Ia+h41VSEvn4+/VXITZsEOLGG4W48srw+WqXUgccIF+//748P9ixYYMQd98tzwebN4fy4fPphxwwUqfPn6+ffsEFyblH16Zow2T06GFvOyNGhJ6fdlrs+fj++/jfw/33h57fc09in4ddKTpduoOdAIudNGlS8g9o9UtMxXaZUpNiGXOGyf3JDQGWVKQrr4x9DBAmJm2qqTEfC8wsvfxy6D9bvTn65Rd5IblmTWi5p56Sy65eHfl/X71ofe210DR1G8uWycIx9fWWLeH/w88+G3puJhiMXOhQVRW9UOKZZ4TYaSdZCHD11XJstkQMGCDz++678W9DO3ZUvNavlxe6apBDCPlZtLaG36RF2tfrrwvx3HP6aatWyXGsrLz9dmibGzfqxwmKxYMPhtbbvj18vjpPW+jy9ttC/PijfN7crH//X3+tz4f63CrAcvnlcv633+qna8d0i7Uw25j3eAIsLS2h9e30S282Xpw2Dx9+GHserJgdT1YBlpNO0k/XFtCbFfQFg/IG85hj7OVB2191ou/Bihqsi3W9zz6Tv9FEmd3kP/mk/fWbm/Xr7rmnfr56s3zaaebra/8XrN63NsBSUxN9bIlp0+R4l3feKcTuu5sX/qvve++9Q9OiFehpAyzqZ68tQHv9dVmA1NAgrzkfecR6nD7V9OmykMfvl/lsaYmcB7sBlnXrZIGQuuzuu9v/byos1O/D+B0BoQCL+trjsd6e9rd4771C9OkjC8JU6jiW8QZZPv00PPj++uvmYwxobdtmfp74299kfl54IXzerFnyO9AeKz5f6HPQHg92C1dffFFeQyxbJr+jq66K/P8YTVtbKD8//RR6/te/xr/NaJ56Su5jypTweddfb37M1tdHPibVdcwC59qxVdU0bZr5dj74ILSMOlbLO+/I6ySrAmQt9XgAQtc/xjxqr9eGDg2dq4zLnX9+9P0lQlvAauaxx4S46ab4t3/77dbbv/pqWfHTyt13y/X69w+fp27zoouEuO8++bxvXzmurOqXX+Q11WWXhX5/V18trwMinbubm2VFLfX3ePvtQpx9tnXFEDUvaiF8NF99Fcq7EPLcpm4jWYHjs88OP97//Ofo66m/k+nT9YFONam/v8pKeb9jDLDcdZf5dq0CLOp/g9kxsm5d9P8uY2DSKNJ/aUNDeF6MlYi082bNMj9vW9lpJ7ns4MFyfFV1XZ8vclBJnT5vnnVekpWijeHqtqS93okn2RXDol1PsgIsqUpNTc7ngcl++v3vnc8DU+elAw5wPg9OpfHjnc8Dk3vT4MH2l33lFfl/3dAgxJAhsmBcvdnUtlaz28JCXeYPf5CvtQX7y5bJmkTqa/VGWZsfbYCloiJ8+yefHJpvLFRUa4yVltrLo5pefTXKxcwOauDKeAOmbue888LXqa6WN4pWN5PqzdJhh4W2s2FD9LwEg/qCXiFCN1BqPrSFSKtWmX//ZttV502ZIgsdtddKn3xinp/TT9dv95hjQs99PlnTcenS6O9Lu41IARY17/Pnh14Hg7LQEJAFvF6vrBWnzv/mm9BzqwCLOv+44/TTtYFBNcBSUSEHu7ziCnkj989/hmpRb9woxO9+J8To0XKwd+3nagyw+P2y9likViUbN4bWj3ZDK0T0AIuxpmdrq6zJ+Mc/Rt+2avt2WZhidjydcIJ++i236PevpkMOkdOvvVaIQYPCWydoC+WCQSEuuUSIRx8Nz4u6jLYWXyQVFfob9Ei/CSHk71d7TPfsKcTKlZHXCwRki6GqqvBAn5Y2IGjl8suFuO02+fxPfwr/HI3nwrY2+XmpQVdtoeQPP+jX7d1bv662IMbILFArRHhrF22ApaBAPn72mSzkMDvOjdvMygpfJjdXv8/qavkf9Ze/hJb55htZCPvdd/K1NsDy+OOhwuv/+z9ZWUCdd8cdoec//2z9vWoL4v7v/0LnOrPPSQj97zbSMakNoGrTTTfJlhYffBA5sGr8bM46K3xbxgCLVX7+7//kb7G2Vr/85MmhZdRpQ4eGarCbfQbt7fL8d+GF8vxoXH/tWvla+7mqmpvlf+748fIYfu01Od+sQFhdt7g4NO233+T5WPt+1f9M7XXIaafJ38dDD8nXH38sl1Fb2P7tb7KHgQ8/lO/J7w+tu/vu+hZ58dK27NUGWAD5m4lE+9k//XRovWitk9XfpVm+b7hBPy8YlINoA7L12vHHy4DYkiWywNx4rKgBlu++k+drv1+I//zH/Bg3o23JfNBB+m1rj0Mr2pZbgL5gW502a1b4NCBUiUh97USAxeeTx7+2RW+0yk1ChFqyLVoUmnb11eaftfa6ThsUEUJ+X48+GmrZCeiPM2PrjIwM89+gdhk1AKm+XrhQfgfaylgq9Tr/iiv060yZor+Wfugh/Xdt1gJ10yYZKKqsDE076ij9Z6IdmFu9vlevme22OjHac8/wY13tPScSs9+INvn9+koAxuuBffaRgZnddtNfQ9sNsGivjefOjfw7VVuaXXqpEP/6lzx3RXo/xhaDxnMdoA/kR/o8Nm2S/3MffBD7Z+n361uGCCF/A//6l74y1RdfxPbdMAmxyy6JrW9XDIt2PekeYGFyV4qnyRsTkxsTAyxMnZWef17+X595pv11/H7ZwkG9sF21SgYFtAX6Z50l5wUC+nW1NRO//DJ8vjbA8oc/yAKy0tJQ4ZIxL1ovvxyavmWLvssqLeM27r8/NC8YlIWZZoW4atB30iR9QbC6nT/9KTStrk6+tyFD5LxHHgkPsvz3v0JkZ8ubzEMPDW3niSfk/PJyebF6992hdWpr5Q1QdrZc9quvwvMxcKC8SVRr6UVK6g1PICALjLVdlajp4Yf1r595JvyzOf546308/njo+U8/yZv/00+XQYVI340xwDJ9un7+pZcKMWZM6LX2+FO/15tuCr1+663Qc2OA5aGHZKBNnT9ggBD/+19ovlnXZTvvHP5e1YCBtquqjAx99yhffSUDP0OGyEIw9QZZ+z1rBYPyt6Kurw2wrFkTCnrV1gpx7rnW3RgsWRJ6/vTTsnbe/ffrW08B8thZtEi2prQq/NcWMpr9Ho0BFsA8yLf77rLgVX2tLYQVQl849Mkn5r97IULTtd+JlfXrQ8sa11ePI6MVK6L/lu67L7S81xsKmu60U6jw1pgv9Xz30EPh09XftvZzE8L8XK2eM4SQhV8ejyxg0S5z+eWy8PzDD62/NyFCrROA8BYFxvM1IAOO6vNnn5XLaWuQm33nK1eGttnYGPlYUmmDCIGAvisKlRpg7dkz/Ht9/HEZOFVfqwXGgL5A+ZdfrPNhdU5VBYNC3HqrLLDSbt/qPX30kRDXXac/zrUpNzf0H6K+J61Fi8z3YfV/vmlT5PxoPzP1mFRfmwVY1HTGGfrPoLLSPMirFqaqrxcskEFdbaUQIcy7k9Im9RxcUaE/F6mFuwsWmK933XVyvjbAYkwDBoS6VbrkEv28QYP0FU969tQH8e10vbhwoawEoe3STNuq7MUXox83qttuk4GSm26S/5fG9dRzWW2tDFYvWyZ/r9rgCiD/C7Q1x40BFrUlg1VSAxjqazXAor5+7jnrAIuxgPThh/XHg/qfqr7Oz5f//RdfLK8RZ82S70372Wtb0Grfhza4/I9/hLoaNS6rDb4aAywrVoQXFMfb5abfL88XxuPHeO4GZPBYpVZaWbw4tH+1YpSa2tpky17ttDfflN1Z/vWv8r9dnX7VVfLYXrdObsusm58jj5T70nZpZpVmzw7/D1ArCKiv1QA1IAMcWtr1PvtM/1r9jzH73rT/6Sptga/a1ZXxuNAGWNTAamam+e9v5kz5P7B8eeRuNM0+FzXA8tVXsjDfrOJVtM/W59MHjvfe23pZbZdbffpYL6dtzaF9v9reNI49Njyvo0eb/86s3s+pp8qWY2oQy1iZAQgFWOrrZRDXKs/nnx96PmuW/B2pv59NmyIPL+Hz6YOHQggxapR8rr2X+fzz0Pswu/ZhSn6yK4ZFux4GWJiSmdiCham7JLOLFiamVCWzG3O7SVuTTe1yApDHsLH2qFmKdNHft69+20KEL6PSFtJq04gRQtx8s7x4VguLzZZTLVyon/bGG6EbOuM6p59uXmClbVavTaNHy8I7lXbeIYeEnj/2mJx/xRXh+TMLvs6erb8JHTDAvHDLLKm1Y9XX2psWNZl1z3nrraFuuazypSZjFwZqUmtUNzSE14BVj8uKClkAa/W9RUpHHy2/e/W1NsACyC5HbrnFvBsGbXrmGX3B6m23md8YqsmscE9b4GkWmFGT+l5Vb70lWxholxk8OFT4rk5bsSK81m6kNG2a9TxtbXq1a4+rr5YBqDVrZOHgscear9vaKgvPIwXcIqWbbpIFbmoAU9vl14wZ+t+DWhCi/Ry0hUy33hre4sqsdYKxAAeQhW9erywUXLvWXqGSuj2zVh7GGrNm5wD1N/Dpp6Fpjz6qD4wNGmS+33//O7TN226L/XPXtprTnncB+X7UAhGzz0HbBQ0gj5dIARbt56CtLWo23+uVgc5Ivzf1N6EtFAXM+8DXJrNAExAaX0abD59P5sUqwHLVVXI5bSDNLN1+u9yW369v1WQ3aZkFwwG5fbsVJubMEWHUecYACxAeIDHm7bzz5PgukboJ0a4/c2bsn4Ga1FZHBx4YmlZcHH0MQyH0LRJTkQ46KDw4vXix/r/mpJPk9Hnz5P9QtDw3NIQHf7XLaCsbqEn93Wpb30XbTyCgP1+dd54QihJ5PbXbPvW1sTD98sutAyyA/P86//xQ8NuYtBVzrNLUqTLwcfnloaCkNmkrSahp1Cjz41nbVak2wKL+t2dny8/p++9l4Xz//vK3vW2bzMe6dfL65R//kP9Bo0bJwNHmzfKYP/54WcnBOIbnypXWAWdtd0VPPBGarm3VHUsyC85GG+v2qqsSGw/X6pynbTlbV6efN26c/vXvf29+/GuPYZVZV4nG9YSQ//HqazXwqV3mscdkC+ylS/XTDz88vCJQY6OsuGaWt0MP1bccmjBBhIn2Gba3m7f8MEt/+YvM30cfyXOj1XLaFiyAvBaZMyc0DpGatNenVpVs1Nbs6jWc1TLGVu9q+uUXeTxEe29HHx0+7f335T6NXdQak7EyllmFICAUpFm9WlYwiPe4Z7Kf7Iph0a6HARYmJiYmJqb0TomMb2WnlUQyktpljHG6ys42rrtOX2CrTYccIgtAtDU3tTcQ2lqqkZKdgtgDDwwvlDTWtnrvPXlzFM9npa1hayfZvVkzS35/fAW6atIWgtbWWudLHRsllnTkkfqasMYAS6qStgVAPEkIWfD8yCPWy2Rnhx/3ZrVerdLuu1vP0xZQHnqoDER1xuemTTvtpB/MHdC3UFNb/fzzn7J2tDrdrGBt+XK5vUcfDZ+Xl2cdtNCmaAORqiknx/zG3/j5fvSReUGwWcHM4sXR96sGWLQ1ceM57rQBZjWpNXmtCseMrS+MAUGr9Msv4TVnjfn5xz/s59/43Z9zTuTlp0yxt92zz5ZBl1699ANGG5PZZ2eW1EF74/2OhNAXABtTv36xVUjz++X7amrSt+J76CHzlh7aAW21yW63vtpA8DPPxP9ZJPIZmhW2Jztdfnno+zJ2pQjIc7Dd/uq111nLl8uKHV98EX09ddwhu3lubrZuTRUpGX/Hp52mb6Fw2WX6oI1VilQb306KVDBrVbEh2uejDbAY36NV/gcN0nera5XMKiqorZONSR0zyXjtGG+KdC5zIs2caS+QlpsrK+0YxxJTk3aMIDvftxD6AIvaCs5s3VdeMZ++ZIkQI0fKCiJqSwi7SaUdxzBSeuwx+9u2qtxkTMYAi1VSu5QWIjzwZZYSHfA8nnTFFYn9xzI5m+yKYdGuhwEWJiYmJiamrps6s+tGY3/2gLwpsxpfxO0p1hs1NcUaYEnXpO0SKBkpUncDbkx2CqyskrbPdGN68039a23LNDemAQMS34bdAEssSdstYKRUVGRvuddes64V2h2TtmVDspK25rgTSZXMbWrHn9GmI490/jtMRVq6VD9GUCpTaansttFsnnYMgFSlESNi69rGeO5PVrLbgsaJZNXiWJv3VPzu4klmLTLiTcn4X3QyabtW0yZFkddGZl00ArJrNe3rSy6RFS3s7NMqwNKdUrr8Fpi6ZrJLkQdh99TQ0ICioiIA9QB6Op0dIiIicqmLLgKee87pXBB1LxMnAkuWOJ0LZy1eDOy9t9O5oO7u0kuBJ55I7jZLSoCamuRuk6gr8fuBjAxAUZzOCamGDgXWr3c6F91Pezvw9dfAIYc4nRPqiuxGTRhgYYCFiIiIiIhc6OWXgXPPdToXRETkhGXLgL32cjoXRM6aPBl45x2nc0FdVcoDLK2traipqcHAgQN101euXInRo0fHs8lOxwALERERERERERERERFp2Y2aeOLZ+FtvvYVdd90Vxx13HMaMGYNvvvmmY965rEJFRERERERERERERERdXFwBljvvvBPfffcdVqxYgRdeeAEXXnghXnvtNQBAN+5xjIiIiIiIiIiIiIiIuonMeFby+Xzo06cPAGDixImYP38+Tj31VPz6669QOMIWERERERERERERERF1cXG1YCkrK8P333/f8bp3796YO3cuVq9erZveWZ544gkMGzYMubm5mDBhAr788stOzwMREREREREREREREXUfcQVYXn75ZZSVlemmZWdn47///S/mzZuXlIzZ9frrr2PKlCm46aabsGzZMhx00EE49thjsXHjxk7NBxERERERERERERERdR+KcPmgKZMmTcL48ePx5JNPdkwbOXIkTjnlFNxzzz0R121oaEBRURGAegA9U5tRIiIiIiIiIiIiIiJKe3ajJnG1YNGaMWNGopuIW3t7O5YuXYqjjz5aN/3oo4/GwoULw5b3er1oaGjQJSIiIiIiIiIiIiIiolglHGA5++yz8fDDD0dcJlWNZKqqqhAIBNC3b1/d9L59+6K8vDxs+XvuuQdFRUUdadCgQSnJFxERERERERERERERdW0JB1hmzZqFW2+9FVdeeWVYICUQCGD69OkYOXJkoruJSFEU3WshRNg0AJg6dSrq6+s70qZNm1KaLyIiIiIiIiIiIiIi6poyE93AMcccg/nz5+OEE07Apk2b8NprryEjIwPPP/887r//ftTX1+OKK65IRl7DlJaWIiMjI6y1SkVFRVirFgDIyclBTk5OSvJCRERERERERERERETdR8IBFgAYO3YsFi1ahOOOOw777rsvqqqq4PP5MGXKFFxxxRUoLCxMxm7CZGdnY8KECZg7dy4mT57cMX3u3Lk4+eSTU7JPIiIiIiIiIiIiIiKipARY6uvr8cILL2DLli1oaWmBoihYtGgR9txzz2RsPqJrrrkG5557LiZOnIj99tsPzzzzDDZu3Ii//vWvKd83ERERERERERERERF1TwmPwTJ16lQMGTIE06dPx913343KykqcfvrpOPLII7F48eJk5DGiM888E4888ghuv/12jBs3DvPnz8cHH3yAIUOGpHzfRERERERERERERETUPSnCODJ9jEaOHImpU6finHPOQUZGRsf0W265BQ8//DBeffXVtO2uq6GhAUVFRQDqAfR0OjtEREREREREREREROQwu1GThAMsQggoimI677nnnsPll1+OBx98EJdffnkiu0kJBliIiIiIiIiIiIiIiEir0wIs0Xz44Yc488wz0dDQkMrdxIUBFiIiIiIiIiIiIiIi0rIbNUl4DJZojj32WHzxxRep3g0RERF1IXfc4XQOqKvLy3M6B0REREREpFqwwOkcEMUn5QEWABg/fnxn7IaIiIi6iMMOA6qroy/34YepzccVV6R2+6SnKMCXXwJLlgADBqR2Xx98AMybB9TUAJMnJ2ebAwfGv+60aebTGWy0lpXldA7is2aN0znoeg48MDXb/eIL4Nprk7vNkpLkbo9S46GHnM5B5xszBjjoIKdzEVlbLEF13gABAABJREFUG/Dss527z+zs1G4/2n/ZpEnAIYekNg+RfPMNMGWKc/u3MnNmbMsPGpSSbHRpZ5zRufsbPFjeC1B0d93ldA7IqFMCLERERESxEEIWQq1YAcyYYb3ckUfa215jY3z5eOwx4JFH4ls3kqFDw6fdeGP82yssjH/ddKEoQDAoC0onTAC2bAnNu+UWe9t4+OHI83NzQ8+HDAEOPhgoLgbefjv2/JqxUwjz9tvAvvsCH30k93/aafK7v/TS8GUfeEAGG40GDAD69AH+/e/E8jtzJvDUU8B55yW+HUAWAkVquH7PPYntR/Xyy8ArrwCtrbGtd9xx+teTJwO33aaftvfeoed2Cu03bowtDwDQu7c8DjozeHb11Z23L6O8PPmbTqUvv0zNdoVI/mf36af61y+8oH+9dGly99cZ+vWT55LOdNdd+t+rmTvvjG2b2oK9ceOA118HPJ1YYrLHHp23L6OaGnnNNX9+9GXV30Q8/51nnBF+zFuZOxfYtEk/LScHuOii6Ou+807yPk/jufrBB5OzXZVV0PXii4Fzz5X/q53dKcz554eel5UBl18O9OoVeZ1YA1HTpgE9esjKUtGuY81+6yefLK8VH3oIuOmm6PtL9Lf8u98Bq1YBy5aFz9tzz/BpkVpKB4OJ5aWz7LprbMubfTZmdt5Zfv977aWfnp8fvTumQAC49Vb7eRo7Fnj6aeDQQ+2vY2XIkOj/O53h1FOBnhzlIv2Ibqy+vl4AEEC9kD9jJiYmJiYmpnRIX36p/89+663wZf70JzmvvV2IV18V4tdfQ/P699cvK0T4+uPHC3H33aHX55wTvowQQvj9Qnz8sRC77KKfV1honvf8/PBpN98s86m+/ve/haivF+Kll4SYM0eI++8XIhAQ4sEHhXjxRSHWrhXi5JOF+OtfQ+t89ZUQ338vRFtb+PZ//tk876tWCTF6tBD775/Y97FsWeT5+flCfP11bNscOlT/+ogjwq/VtJ+fnW0KIY+DI44QYued5bScnND87GwhZs0SYvp0633Fk8aNk4933GEvj1amTw8tV1Agpy1YEL6N9naZhBDC5wtNv+uu8GXPO888Hx9+GNrv+eeHph93nPlvwSy98ooQGzfa/yyfflqmWD7bv/xF/3qPPWL/3l54QYhJk4TYujU0bepU821o81deLsQ//hH9+7STh/HjhfjkEyHmzYv/uFu/Xn4/ZvPefNN6vYMPFuKRR8znFRXFfrxHSmbba2sT4osvYtvOH/9oPc/jie97GDZM//qll6Kv8/nnctvPPBOaVl+f2GdkzKvxdVNT5PUbG4W4557Q66++EuKmm8KXu/HG5H63kZLXK8QHH+innXFG6Pkhhwhx6aXxbbuiwvpzbGyU53Wz+ZdcYr0uIMSFF4aer1ol86/9LrTXIZ31OVZWCpGZmZxtLVggxIEHCvHdd0L885/Rl9eyumb4/HMhVq+Wy9TXR/5svvpKiD33tN6Pnffg8wnR0hJ6vffe9tb3eOQy2t/FLbeYX0tq0/jx5tM3bAh/DxdcYL7ssccK8f77QkyZYv+76ts39Fx7veX3678X9bom1al/f3mNbfzO/P7I69XUhJ7/4Q/2jrlAILTtSZOsl91vP/3rsWNFGPV4O/VU+fqzz+S1jrrO4MHW2z/3XHlt/tln1svU1loffzfcED4tLy/ye4/nuzE7hk89NXzaJZeYrz98uBAnnWS+7sknhy//7rvyXsn4/2mV1q7Vv3722dB29947NH3bNvkZGK9Rr75aiE2bzD+vn36S5wM754CvvpL3U+p/uBDyutnOudB4nGmvrx56SP5f7L67fH3ffULce6/1+mPG2NvPWWcJ8eij9vM1Z44Qjz8e3zHEFHuyK4ZFux4GWJKbXn/d+Tyka+rVy/k8MDElO/Xp43wemLpumj9f/5/9/vvhy9xwg34ZbQDD55MFPtOnC9HQIOcb11dvwJqbZQGgEOGFg1raGwNAFr7++c/y4ls7XXsTcsABshBapU5//HH71yu//hp+k11bK8QPP4S299NP+jyMGRO+HbUQas4c84I3tVBn8WIhtm8XoqRE/zmYfU977CHEO+8I0doqxJIl9r7bpUuF2LJFiKuu0k//4YfwPKvzbr5Zf+O9117m29ZqaJA3PtrAW2am9edstr3p04WYNi302nizfO21QjzwgNzXxx/rgx1madkye9/50qVCVFfL5199Ffl9avP+009CzJghC6e3bRPijTfk8f355/oCYuM2tAVFQghxxRXRv8cbbhAiGDTP/3//a77O00+Hf9affx6+nPo7VBQhZs7Uz2tqiv69GZM2n/X1MlBp9v6XLxfif/8L/4wibdts/vDh+tcnnWTxRQshysrsvQd1XytXms/76CN5Xtl339C0t9+Wx08waB5gycsTYp997O8fkIUAkeZrP78nnwwVwgohfyfa83Sk9O23oedDhsigKSALTLdvt/c9GJO2oBaQBcVmy6kBU0AWtgkhP8Mzz5SFP0LIQmtAiN69w9cvLY3+PaoFI+r/kHH+xo0yIPj11/K7O/10Oe/MM+V8v1+I//s/+XmrjIVj2oCi2XF50UX64KpZeuopISZPFmLCBBmc/vJL889NCP1vde5c+R+svv7972VB6tVXxx7wF8I86KSaPFk//d13hdi8WX5n2vV++EFfQP3DD/L8/dhj+t/khRfKoKT2f9cqX9r3qKa//EX//3bqqUL85z/23+vUqeHT47mXNNL+p48fL69frJb3+awLOY2iLWM13yzPxvOUzyeXVe851Os5q/XVNG2aXKatTV6DqYW5Zusdemjo+fPPh89/4onw9YSQx4dZYFv9n9Ous9tuQixcaB4IBfQBluXLQ8/V4INq0yYhrrkm9mPBmLSF9MbKLmp+tAXfVt/n+PHyvGC23Lp1sR+jRx1lvezcufrXy5eHr19ZKT//ujrzPA8ebF6IfcAB+uXV4FhWlv6a3upzAIT4+9/l9bV2mvE61/jeY/3e7rwzfL2vvjLflrYCGSCDRy+/LJf98ks5bcIEea2pLvP++6EgVEGB/H/RXj9pt5eZKcSaNfJcq50eDIaeP/CAXK+uTl6DVlXJewxt0ENboee880IBlGjHSrTPL5I1a+QyPXvq19l7b/lbVV9XVobOQeq0f/0rfHuLFoXm77+//lpjzZrwc60xnXCCvKfUfnbGdO65oecPPyyX7W4BlltucW7fdsWwaNfDAEty00cfOZ+HdE12CiqYmNyW7NYoZ3I+RaoRlq7JGGBpbpaFVtoCguuuC/9vb2jQ34Brabd/2mn6G25Vba1+OS1jQaSW9gZMGwwyUi/c16+3vDyxTVuYbyzw2rDB/L399FPotXb52lpZELFpU2i+tuBQu/wTT4SeV1aGll+8WL/NAQP0NQcBfVDMWLuzpiY8z+q8m2+WQZlrr5UFGl6vvmWK1edt3I5aq9WMWcsA47zZs4UYOFA+P/JI8+3U1MjC1xEjhLj9diE+/TR6/iLRBlh23TW8BYQQ8ns1m240c6bMv3HZ2bPl9gcOlK+vvDL8s9AWTD74YOT9WN0kGgMs77wjX2trkgOy4OSSS2QgZN488+NHZed8YiykMstvc7N83t4uxIknyuCcnX0Ioa+536uXEJddFnrt91sHooSQN9V2z4tCWLdumDs3tM2WlvCgrFmh0i67yMBobq58v2bbnTkzdH779ttQwYFZSz3jueKll8zfc6RaxGr65pvQ8zVr5HpqINysVYJ2v9oCP0AWIlVUhLahTq+qksegcVsrVoSef/qp9XcnhD6fQKglXnGxfG0WDFZZFVyZaWqSeTUGGLXq62Wt8XHjZGBZCH1hfTAoW0uqr596yrqFm5q0ASYts/ekrWynOv54+fqLL/Tv++efhTj7bOv9qgUp6vsQwjpIbKy9bfTGG6FAlPa7VVti2GHMn1qAb5z30EOh35467fXX5euNG8OvI559NvS8qEgu9/e/638HNTWyEoMxD7NmhT5fq9+iljaQ4PfrKx9YHXfRtmlcRi0AtrMNqzyfeWbotdpSM9p+V67UB5cjWbpUX4CuXrtMnSo/lyee0B8nCxbI9Z5/Xl53qC2dVMuX68/5zzwTnse//jU07fnn5fnhk0/k7/Xtt/UBFu2+zf47zM5/2nXMUlWV/rX2P9EsSFRWFj3AsvvuoWnffCNbLhitXCkL4LUB80jH08cfW7+HYFBeq65apf+/s+P22+U21O8uGNQHQw480HpdbcG2lhpIP+wwGbxWr4fVCkcffGAegNVu69hj5fOrrpLXO5G+QyAUDFZfb94cyo9x2fvv17fmN1q/XuZPiND/eWWlbBX43HOh/0wt7fazskLTDz9cvx/1+cMPW3+uKm3rd+29n7Eyhxmzz+iyy+yf2xsbQ+sNGSKnaVvdme3LLMAihBCvvSaDqMGgTOPHy2t29f9gyxYhBg2K/jtQp6nXEOr3bnZvqa0AZpYiBSzdmObPj9wqLJXJrhgW7Xq6coDljTc6d3/jxsk/aqffd7qmzmyiz5SeyayLF7en225zPg/dISWjBdzVVzv/PmJNixeH/2/7fPqC27/9Lbb/fXW93Xazt9ywYfrpxlY0WmrNurvukoEbs2WEkIUFVVWx5duKtquGlStlFyyAENdfb299q/ei0tbCFkLWwDr8cH2B8PbtoeW1AZbNm0M3FcGgLNCYPj10MyeEPsDy8cfmeVCDg2Y3S7EEWHr0kPPHj7deprFR1nx+8MHw7fn9+uBTbW30Qnutjz6SBYrxWLgw+vtLVDAovz+11qdZgGXECFnYftFFsgAhmhkzZMG9ttuy116T89TX778vX198sX5f2i4ggkFZY/fZZ833o67zr38J8d57Mtj03XeyZn7//jIQFinAYYe6j379wrsKVD3zjBAZGfJYvvzy2L4z7U3wSSeF14I1bmv7dlmwet998n3uvXeolqWVxx4L3576uzIWCI8aJa9d3347tL72t9vYaF7gq+ZRfW4VYGlokIVJZseZmrSt8owqK/XLquc8rzdUIN+vn5w3aJAs2ND6+utQDdpgUAYRDjxQthIxfhbRAixCyGW++EKIW28NnRM3bpTHREuL/M1EO09df72cZyy8TZRa8KptvafmY+lSfTdAX38tC3y13bNZvX9jyx0hQi2LBg8OLRcIyP+MSHk75xx5TGlbvqnrGqnnCrXljxDRAyxa2u407ZzHVGowaNUqfcUCIULb0wZltdNXrNBPX7BAiIMOChXof/WVPP6WLpXz1WPB+F7Mfmt+v9x+RYWsLa5t2Wq0ZYv8/LQ1/7UVC8xo96ctzDVbJjc3+ja0ARir84e29nek/1m11a1acUTbhZQdP/4YqtihPb+p9t9f/oeogV0hIp9n1X1HC7AIEf6fZBVgMaO9BjvuuNB51upcqm7nhx9kjX1ji632dhkk0Ab2Ro2SLVBKSmQFF61p0+RxFOv/qlrYP2BA5Pc3Y0Zofk6ODARs3RrbvsyolSi01P1ECrCsXSvvxW68UT+9ttZeq+RI30l7u/xe1M/y//4vNP+UU+Sj2noTCH13mzbJ41dr9Wr9//y//qW//oqkqck8oBLpvZx3Xmi69hpGCNm16l57yfO6HWqXy9oKBNrWCmbd+mrzM2KE/JzUFp6xqK6WXW6q3d2eeGLk869VgMUoEAiv6BIM6q8H9t47vEKcOk8bYHnkEbnuQw/pKytEC7Bo/w+cTna6UI6WvvxSH0jvzGRXDIt2PV01wDJ6tHx/nblPtasFp997uqaHH3Y+D/GkZPUBHG+aNUs//oCbU6y/D20t/XRNDLAkJ0WqfQgk59waqYl6uqZIN27qMtdcE9v/vrqettadmdmzZS1Ts0L9F17Qfzda2pvwWbNCNX9TJRiU3ZMNHixv0hoaZIsRs4ICM2pA5sQTzeerfTQbC020NfK071lbQ9EObYDFit9vHZDS1nKNtp2VK+VNjZ2WQ1u2yG1NmBB92c7QGQEWI7Nzhrbv+1g99JDsIkgtnFJbAandoGkDLMbWa9Go661aFT5PrUmYKPWG+Nln9d1HqS0rVOr7izXAonaT9oc/hKap6++6q7zONqsdHAtjgEUtzNVS56n3EtEYx8cx/mdZBVi0Zs+WwdzZs2WXcNrtPPig+TaCQVmofuqp4QUYqrY2ffdksVLzYSfAEsv2IlUMsGp9maiVK0O/NSHksaQW0mzYIAs8jS0PJk8WYuRI6/8T7fg1jz4aml5dbf8/SAhZoKb+Rs1awBi1tsoglLaw1E5LDNUvv4SWiyWf2lZuRur27r5bP/3xx+1XeNAy66ZQCH3N6lGjrNffuNG8RaiZ006L/Ll98IEcOydSQemcOfK6auFC8/lW/yHGc4f2vFNVpR/vwkxtrb7iQqwBlmiCweiBay1139rKAGpFkJkzI6+rDbBoW6iYaW4Ozdcek5Guqe1SK3Wp112xVCSJprpanne0XZxZUednZydv/5H2c9BBkZdL5HOI5TvRjlVWXy/HENG2rDcGx8ycfbYMpFVVyfN6Mn8Tr7wit3XMMfpzQrRAbTTqWEtajY2y9dC771qvp1akuPLK+PZrZutWeb1qvIdT31+0Ftx22Pk/MQZYzEQbU8qqS1knkva9xZuSHWDRnnft5N+OJP3U3ClSgGXCBOcPwn//O7711NqA0ZabMiVUozPRpN702RnMLFJyw1glVoPfGZO2Sx6rgUWdTsuWRe6+bP585/KmdhtibNKcqnTxxfJ3H6m7Artpv/1kgYh2mhCyZqud9c85x3wQazvJTr+8kWqMxpJuvdW546MrJW23AmbnFzvn8672XR19dOT/7xtvlAW0VrVirajbj1QwEY1VX9NOCQRiKwDQqq6W3QAY+6pWVVbKLpmMhchCyEDFunX6aUuXxvbZaFtWxaO+Prz2VrI0NFgX3HY2bfcJnUUbYHnnHXluMjsO4uX16o87bY2+WL31VmxjGsUjEAgF5378URY8a8e+MIo1wCKEvN7RBoPmzJE3ksZaqvEy9tVtRp13zjn2t9vaqh/bQwjZnz2gL9SPRH3f2sHrnabmw6yf/3h88YUsqE5VECURZkHIYDByoaLaWiWR/1MjbQ8MsdJev0eiBtCByN1PxULd3n//m5ztBYPyv9k4LtmGDbJLod/9Lvz/N17q2DCFhcnZnpkPPpDdkxkDJsuWyZrjW7bI1j/Glmaxuu46Z88f6r61AZbycllQGy3Qry3oE0IG3b/5xnr5r7+W4z5ozZ4tg1Rm45qlE7VW/b77Wi+j5jvSuHnJoO7nsMNStw+1ReDkyaF78EgtLd55J7zCiJpPOwEWbWBQ7cIyUve4sTI7b/7yixA77WQdCEiVTZvkWG9WwYpkUr+DZARY7OynVy/Zqmz0aOvrhmg9CFmNM+dEEkL+ryWyjS+/tNftubaVXKRkNt5ZpPzb+v4SPwTcyyzAcv758obJrD/eVKbmZtkcdPt2eeJVL6gOOyz6usZBZdWm5Q88IAct015sGA+SZDTVAkIXRGaF0wMHykFw7Wxn1KjO/dzVZBwcOFKaPVv2B67tx9YsaQexMwuwaPvrB+x9RrfdJvsvT/T9fvZZ6Kb3gQfC5197bajZfEGBM9+JVqr3NXJk5MEP48m7tusedZrdFkHnniuXb2+XeYt139GWiRZg+fVXfZ+kVmnuXCF++y2+z8hOjQHjeA6dlWIJsD/7rKxdlEiw2lgQF893CoTGR9htt/D+7Z1oItzUpK/dfMYZ9teNFmARIr5a6WqtebNxHOzSDuJLeoGA7EJM221AJNoa9YlQu4ex6p7E7ZwIsGi76OgMahd72q6F3ExbeSVdaIOR335rvsyKFbKFhd3AiMo4CHAgEFv3SyptRRSn/fe/sg97slZfH3+A34x2zK54LF0a3n2XmdtuS+53+/nnsiueZNb27yyBgLy3NRuTzm2am+V9bTIrA8RCPXZfeCH2ddWa+Mk69y1alLxrrFSoqIh87lBbUE+Zktp8PP64LIyNZTymWAUCMgChamyM/R5G/R7jqUxi97yYqGS0Fk5n6nfw5pup3U9RkdzPCSfYW147/o0xxVLGaUzGrk21yWpMpUhJlUjZgt0Ay5Ah9rYXyzAOdqXh6bbzmAVY1NpowaC+NlakpDbXjbfFyeTJ1nm0GiTU+GVrXxubO5v1uayul0iARe0mRdsk75xzwpe79loZhbezzWi1rCOdQOzk1SrFMn6M2mezEJG7cdIWiGibegNyULtFi0Kvzz9ftgKy810HApEDb6++GnkbxouZ1tbIfUN/843sDsOsNkwqk5bddYyD5KrNWK3SRRfJ2nJGseZV/SM0fk/GaVlZodfz5skAitn2tIWT69fLIIu2H9Jon1u0ZSK1WtJ+9pGW+eij+D8vO9+N3feipldflTU8knHsBYNCnHxy9OWuuir0GVRWCvHPf0Ze3irAoK1VbPaehTAfgNKY1q6V5+N16/Q1RE46yf45OJlJ9dFH8n9AOyB7tHTMMeG/y2TYulUGxLTdWsVKG1SkxLS3y8LcOXMS205VlbxIVvth72paW2UQN1rXdskUDMrxNxLtlioWK1bY76873WkrMqQLbYAl2YYOTc621QoOqe4WhtJTICAHNr73XqdzQhS7K66Q9yLx1KZX7wXOPjt5+QkGZUWnVNe4T4XmZllekqxWZpG4ITCgvWckZ3z8sSw7TXUg/ddf5bhHdoNikcoFtV1iapPHE+om2ipZlVNZlVfYLRcYNCj+soVUB1jefVffVS0gRFlZbNe2aXTZ3/nUAMuYMaEAy5Ilofl2WwpoxXOgRKsl9uij4evk5pof4Gb9hZutr6738svx5dmqdrF2UERAdpWk9uFpDDJY/ZAjtR66887owRJA9klvfK9myw0aFBpMy+571/4J7757aLqxpcfChbJw4s479QMeq81hg0E5vsgDD9g/flTG2ujak2e0lgdWrAb00rrgAnufkTqIXSJJy+4xuXy5fpp2IEttOvbYyIMNa4/B446TXd+pTWzNUrQAyx57yGnZ2eHvz6zlw5/+ZJ6v6urQMs89Jwfu1a531FH2Pi9ti4m8PP28r78O7c/4B5PI96P9/ai15LTTm5vDj10hrGsWGL9rIcxbge2zT2z5Uz/D3/8+8nILFoQHK+vqor/3336TF2d/+1toenu7DKDNm2f+eaqsLpIA89py6jw7AZb8/Ng+p2jJqt/7SOtoWwX+8Y/m66eLRYvkd0nUWbze9OmyjKLTBsXTxVNPpS5P99wTOo8nYsMGIf785/CukYiIurJgULa84f88mVH/uxlgISNtd8vvvae/t/b5ZM8WgL5XlBtvFOK11yLflwsRed6558ZWNqBasUJ2J/f885GX147JpqYff7Qeg+WSS0LPtZV+IiVtj0NqHrVlutXVoW777fKAMH++TC+9BEyYEJouRPL3lZsLHHaYflpJSeR1PDF8S3vtZW+5s86Sj3/4A3DTTcB119nfRywWLgR695bPzzwTCAaB66/XL9O3r3wsLQWysoBTTgFmzQrf1q67ApddBlxwgfm+Jk4M/TyWL7eXv4ICmaLZaafQc0UJPZ8xA9hjD/mdrlihX0cIYPJk+flqqesrCvDkk8C119rLq1V+jLT5i8VjjwHjxsnfgZUXXgDuvz/ydo46Cti6Nb482HHhhfrXl10GvPEG8NFH4b+VXXYx38Ypp1jPU+erTj4ZeO01YJ99rJeP9pnvvrt83G23yMuprH7zJSVAbS3w00/An/8MzJ0LlJeH5j/9tHzceefwdf/zH2DYMGDVKuC44+S0ggKgvj6UPwDYd9/Qc+37Cgb1n0u8FAXo1y98en4+0KNH6PXhh8vHf/xDv9zhh8s8jx1rb39ZWbHl77XX7C13wAFAZqb1/GuuCZ+mKPK7uflmoFev0PSsLOD224GDD468zxEj9K/V/478fOvzol3xnjes9Oxpf9nHHgOefVae9486Sn63Dz6Y3Pwk26RJ5r8zolTJzgYyMpzOBdn1+9/La8R165zOScgf/wiMGgVcdVXyt33ddcC8ecD77ye2ncGDgeeek9fWRETdhaLI+0T+zxNRLG6/XZY3LlsGnHBCaPqiRbKsYs4c4G9/k2Vlt94qy1SvuQY49tj49peXJx/PPDM0TVuuEc2YMcCmTeFlegBwzz2yXOPJJ4EzztCXfey/PzB6NPD3v5tv9+yzQ8933TWU15kz9cvdfHPouVn5hzYGUFIC5OREfDthGGCB/GAPOgg491z9dO2HqX1+wgnALbfEt685c4DPPottHbPC1tdfl4/TpsnH5ctl4MJuodSrr8rHjAzgzjuB++6LLU9WohXSKUrogFfNmgU8/7w+KHLiicAXX4ReX3SRLFRWf7za/XzzDXD66bKQPVbBYOh5YaH1cjNmAAMHAv/9r376qFHADz/I73T4cGDAgNA8bcFuvIWXgwebT+/VCxg/PvHtaw0dKk/Mxt+B0bXXAkuXyoL64mJ5w3799cDddwMjR8oTol3GAmM7zjtP/3raNPn9K4r+t7JmjXwsLo59H1ZeecV8+p57hk/TfieBgHycOVPmdfHi0Lx77glf98gjrfPQq5f+N6QN0KrBSrPg8PnnA2vXyu/od78DvvxSFvxkZQF33WW+L+17UBT5/u+4A/jxR+v8xUIN9GgvBlRqAX1ODlBdDdxwA/Dtt8Cnn1oX3qtBGfWPHzD/LPbeWz4aAyRnnikDvdHU1UVfxizAkmyffw4cfzzw1Vexr7tsWfLzE68zzpDn+MJC4OOP5X+BeiwTEbmRogCnniqvrdJFQQGwciXwyCPJ33ZGhqwkYKfSEhERERElrkcPWZ47bpx8PX068M9/ysqAADBkiCwjHjxYTv/pJ1kBPlJQJDfXfPrVVwPffRc+/eWX48t7W5ss41EdeSTQ0AD89a/ytbZhwoIF8vHkk4HNm2UgRjVyJLDffvr8NzXJisknn6zfp/q5WDErO7r77ujvRcUASwTawkXtB/3uu9G/GDM1NdFrKJsxC7CcdJI8IC+7TL4eO1YGSYqK4tumoiTnJtBOQf/558tIqyo7W0YwBw7UL3fIIdbb0Baa77OPDK4MG2a+rLZGvpE2wNK/v/kyDz0k97F5c6jlj5UDDww9nzgx9Dze1lBz51rPs2qtZPYd9OsnP/Nvv40vH8btjx8vT2SVlfKEet99wNSpMugyfHjk9bVBlblzQ0GpG2+0XmfQoNDzQw6Rfww33xxesLz77vJzP+aYUGsRs5YqsXwf2uPwnHP0gbMVK4CLLw4PvAHhrT8AWeP9jTf0x8bll+vXe/dd2bLMrqwsGUxauTL0RxPt/SmKPFb79JGvrQpEjMdSQYH83EePtp8/s9oJqtdeA158MRTwtVJSAtx7bygwotIGNAEZrHr0UflZqMaM0S+zahXw4YeyZcyqVfp5fn/oeaRzmdV5trBQfgdZWUBZmfX6QHJaSI4ZI2sLqxdURuqx+5e/hM8bN07+hgEZkIonSDtiBPD997GvZ5Ts1jNERERERERE3cmf/iRbqtgxe7asYFpZCXz9tax8e8cdQFWV+fIPPaTv+USlrSybkxOq9KrS9lKilZMj96elbcWnLbPWlhcYy41//FGWKWsVFERvfRKtBYtq6tTI29FigCUCbQsBrVi67FINGxZ/TfpIB6QdiRTkXXMN8N57oa6HorFTUJaRoW8BFE/+5syRBYSRAhAqY4sZbeGoNsDy9tuh52qTub59ZaTWLquTgJbdwsQFC2Te1UCBWhhux1dfAaedJpsLFhQAb70lP3NjAXWiEm3GPHQosGWLjC5btaIws+uu8mS8//7h+fn2W1mArnr9ddlqZNGi0DQ7x1x1NbB6dXi3XkOGhJ6PGQM880z4Sd5IbcFix0knxV7gvNtusjWVKtbflNXydvOxZo1sWWL0zDOydZqVoiLZIsmsRYpVwFNr/XrZXZ4akMrPB668Up5vly6VXZYYW+eNHClrbdx2mwy+LVwYmqcNsFgxnk+0PB553NTXh3dNZuzC64ADrLejbeGUiLlzZaul444z/62+955sgfbNN9G3ZawcsMsuwC+/6FtvWdV2iSaWZsVERERERETdjVo5jigZjjsO+N//ZA8e++4ry+Zuvtlea2Sr+/eyMlkupK10bVWeDUQuW49U1jh5snwcPTq28nljuZdaDqIOwZBoJVgGWCLYc0/ZTdWvv4Z/0FYf/MKF8TeRsnLmmfH3kQfom0/Fs+4JJwCXXKKfbqw5noh4DuKJE2UXN5G6UlJpgyiR9q2tlX/++bLQ+NdfY8uXWUQ3XmorqQ8+kN3nfPmlfr4278aC8P33B958UzYXbGiIXJibDqIVsP7rX/Lxyiujb0tR9J/H0KGy1Yi21Zmdk3BJifn3GWn8GyuRjsFUSNbYEHb/rHbbLbymQrzee08GB++8M/qyWVmyD0+zcVPGj5fjBfXsGerL3axVnLY5aaQAy1lnyeMoWndcubmhLsrU2iNXXCHHL9I6/HAZCFy7NnwbEycC27fL4JPxdx+LrKxQyz6zllzDh8v/qz33jB5M++QT8ybBgGzJdeed4eNN2TF2bHiNEyIiIiIiIpKFwC+8ABxxhNM5oe7K2LX//vvLyvjGivjqfb12vL9I5QxWvUYBkQMsTz4pk1klXyOrIToURfZU9NNPoeEFDj1UPsZb3s0ASxSHHCILoYxftlXrkf32kzWCjRKJhGVlyUL2LVtkfmIdayTamBoqY/90kTzwgPn0WGren366/LzsDFadyOcXqXDbON7Ct9/KAZdPP10WGkeKtpq5/no5iNT8+bHn00g9oey8sxwA2tiSYupUWQB+6aX66cbPKp4WV8k0bpw+j9oxQ4zmzJEtvWbM0E8//XTZdDHRfsOvvVa2OjH7jdo1fboMeBpbT6kBAbM8xtKCJRlefFEGKV58Ub6OFnBJtAWL6uab9bUV4vndnnCCDA5GOk5iNWeO7DvzzTcjL2fsTkwrK0seh3bGaFGp3ZBZHbe/+51114ZlZfL703Y7mIhEu+HKytJ3S6jd3pgxMrhiJ5ivDkz39NNARYV10IaIiIiIiKi722ef8N4QiFJt7lzZa8z774f3eKEoshK0WhH/1VflOC9qWbW2G/xTTrHeR6QyikjlmIWFcqwWO+O2asdy0QZO1H3vumuo1c7LL8synHjGuAWAzOiLEBBeUHjEEbJZUqQCuWQbMEA/8Ltdubnyh6HtlsuMOn5BNJs2WRcyan8gaqsDK7EEihIJsBgHslYUWeB6113Ac8/p5+29d2LdaOXlyUGkjGIt3BwzJvo6I0bIcXiysmR/iapkjO2QTD166Ls3e/llWTPfbMyVo4+WXSyZvfdYCratPPCAdXDQriFDZMDT6Kab5HgsZmNvaMeQ6QyDBoWCCUcfHb17wmQdM3fcIVO6jakxYEDkvjOXL5dj31x7bXL3qyjp1ZR76lR5nv/nP8PnHX20DGwOGCCD8nl59vtvVdn53u++W9Zo6dcvtm0TERERERERUeodeaS9HoMA4OyzZVIpCrBtmxznJdL4wvEGWGI1e7YsM50wIfJyffrIruTjxQCLTcYv3uPRj9kRzUMPJTc/sbr5ZuDzz62bRwGyQO200+R4HSrt+w4EgJaWyK06zjkH+M9/ZGuLa65JPN+JePhh4IknzMf2OPpomTpLpO68zNjp9xAIH+chXf3f/8nfwOmnywixdjwUo3QrnI+F1cDm0VrMPP647EZq2rTk58lOQbZVgOWww2Q3VtEGbI+23dJSOVja4MHxbSfVxo4Nb0nn5uPQyl13ARdeqG9lpHr2WRlcPuus0DhD++8vgy3PPhu+fLyfj6IwuEJERERERETUVfXrB/z5z/Gvn8xxWo87LnxapLF148UAS4q9847sxy0dBvHVDu5uJdoAztG6zDriCNkljnYg8GSw0/TLaMoUmYzcUHAa65gp2lY6iQ48nwp9+wI1NeGtibqLaNH3yy+XBdl2fqOpYBVgeeklGfw5//z4tqt+3/PmyZYT0VrRUWopSnj/qariYuCGG/TTjjpK1jwxO2fanUZEREREREREZNc11wALFgC//31ytzt/vuwC7KyzkrtdgAGWlFm4EFiyRI5rki6FTo8+Cmzdqh9wyOjGG4HWVtn6A5AFbLFKZpc4b70FvP565O593EB7DEQavHvNGmDWLOCyy2Lb/qBBsmZ6QUFogO10012DK4C9LricCq4A1vkrLY2vieQNN8jWcmoz0VGjZNdwlLijjpL9ocZzbo5Huvx/EREREREREVHXk52tf92jB/Dxx8nfz0EHyZQKihDpNmJD52loaEBRURHq6+vRs2fPiMuWlAC1tfJ5Mj4xbaFVOn4DlZXA2rXApElO5yR51M+8pESO89GZtm8PdYtTVQX07t25+3fCo4/KYNIXXwCjRzudG2eox9y8ecDBBzubl0hWrADGjZPP0/F85IQzzgiNYwPIFkYvveRcflS1tTLwfNpp0cfWSQX1mB45UrZW1PrxR2DPPWUrOr+/8/NGRERERERERO5www3Ali2yQm4ilTsvuACYPh34+mtg332Tlr2YJHHYmK7tww/luCKzZzudk87Rp0/XCq4AoXEwzAZXp+S76iqgoqL7Ble00j1oMXYs8MILwCefOJ2T9JUu32FxMXDxxc4EV6LZYw8ZdKmsdDonRERERERERJTO7rsPeOWVxHvOeOEFoKHBueAKwC7CbJs0SXbfRO41fbrsaiyZXZjZ1V272emu79uNLrjA6RyQm1j9tp04vxIRERERERFR96QoQGGhs3lgCxaHqK0o7rjD2Xx0JxkZciwIJwr9+/SR4/FMniy7KCOi9LbLLk7ngIiIiIiIiIiI0h1bsDjkzjuBiy4Chg51OifUGRQFmDnT6VyQU0aNcjoHFKsbbwQaG4HHH5evd9vN2fykG7ZOIyIiIiIiIiJiCxbHKAowbBgLqYi6sspKYP162YKJ3KWgAHjsMWDBAuD664Frr3U6R+lhv/3k40UXOZsPIiIiIiIiIqJ0oAiRLkP3dr6GhgYUFRWhvr4ePXv2dDo7REREaa25GVi+XAZaPKyiQURERERERETdHLsIIyIiIlsKCoADDnA6F0RERERERERE6YH1T4mIiIiIiIiIiIiIiGLEAAsREREREREREREREVGMuvUYLEIINDY2orCwEApHmyciIiIiIiIiIiIiIpu6dYCFiIiIiIiIiIiIiIgoHuwijIiIiIiIiIiIiIiIKEYMsBAREREREREREREREcWIARYiIiIiIiIiIiIiIqIYMcBCREREREREREREREQUIwZYiIiIiIiIiIiIiIiIYsQACxERERERERERERERUYwYYCEiIiIiIiIiIiIiIooRAyxEREREREREREREREQxYoCFiIiIiIiIiIiIiIgoRgywEBERERERERERERERxYgBFiIiIiIiIiIiIiIiohgxwEJERERERERERERERBSjbh1gEUKgoaEBQgins0JERERERERERERERC7SrQMsjY2NKCoqQmNjo9NZISIiIiIiIiIiIiIiF+nWARYiIiIiIiIiIiIiIqJ4MMBCREREREREREREREQUIwZYALz88stOZ4GIiIiIiIiIiIiIiFyEARYAra2tTmeBiIiIiIiIiIiIiIhchAEWAMFg0OksEBERERERERERERGRizDAAgZYiIiIiIiIiIiIiIgoNgywgAEWIiIiIiIiIiIiIiKKDQMsYICFiIiIiIiIiIiIiIhiwwALGGAhIiIiIiIiIiIiIqLYMMACBliIiIiIiIiIiIiIiCg2DLCAARYiIiIiIiIiIiIiIooNAyxggIWIiIiIiIiIiIiIiGLDAAsYYCEiIiIiIiIiIiIiotgwwAJACOF0FoiIiIiIiIiIiIiIyEVcHWCZP38+TjzxRAwYMACKomDmzJlxbYctWIiIiIiIiIiIiIiIKBauDrA0Nzdj7NixmDZtWkLbYYCFiIiIiIiIiIiIiIhikel0BhJx7LHH4thjj014OwywEBERERERERERERFRLFwdYEmWRYsW4d5774WiKLaSx+OxvaxxvYyMDNOUmZlpa5rdZTMzM5GVlQWPx9WNlIiIiIiIiIiIiIiI0lK3CrB4vV54vd6O1w0NDQCAhQsXYuHChU5lK6U8Hg+ysrI6UmZmJjIzM5Gdnd0RhDF7rV3euL7xdXZ2ti7l5uZ2PM/JyUFOTo7pc+20zMzucSj26tULeXl5TmeDiIiIiIiIiIiIiBLUPUq1d7jnnntw2223hU0/8sgjkZOTAyFERwIQ8bUxRVsekF2RBYNBBAKBsOfGR+184/Jm66v7MAoGg2GBpXSkBoLUwIz2ufo6KysrLDCjptzc3I5Hdb52mtXyndnCJxAIYLfddmOAhYiIiIiIiIiIiKgLUIRVybzLKIqCd955B6eccorlMmYtWAYNGoRPP/0UAwcO7IRcpo4xSBMIBOD3++Hz+XSPfr8f7e3tHc+Ny2iXMy5rtQ2fz4f29nbT5PV6Laenw9g3aoubnJwc5OXl6R5zc3ORm5uLvLw85OfnIy8vD3l5eSgoKOh4np+f35GM0/Ly8nQtc2pqajB8+HCUlZU5+I6JiIiIiIiIiIiIKBm6VQsWtfVCV+TxeFw33orf748YgLGarqbW1lZ4vV60tbXZSuo6Pp+vIw/qdlMlOzu7IyiTnZ2NXr16oVevXigoKECPHj10j9rnhYWF6NmzJwoLC8Oed9VjmIiIiIiIiIiIiMhNXB1gaWpqwq+//trxet26dVi+fDlKSkowePBgB3NGdqjjwRQUFHTqfgOBQEyBmdbW1o7U0tLSkaymtbS0dLTOUQM49fX1Sct/dna2aeBFfW4VmDF7npubC0VRkpY3IiIiIiIiIiIiou7C1V2EffHFFzjssMPCpv/pT3/C9OnTo67f0NCAoqKiLtFFGKUPIQTa29vDAjHl5eXo1asXMjMz0dzcjObmZjQ1Nekem5ub0djYiKamJjQ0NKCxsRGNjY1oaGhAa2tr0vOakZHREWwpKirSpV69etl6XVBQwCANERERERERERERdTuuDrAkigEW6kyJjsHi9/tNAy/aRzvPGxoa0NzcnLT3pQZp7AZkjK979eqF3NzcpOWHiIiIiIiIiIiIqDO4uoswou4kMzOzYwyXRAUCATQ3N+uCLg0NDaivr0ddXR3q6+t1yThNfR0IBBAIBFBbW4va2tq485Obm4vi4uKYUklJCYqLixmcISIiIiIiIiIiIkcwwELUDamtTnr27Bn3NoQQaGlpiRqEiTZNCIG2tjZs27YN27ZtizkfsQRn1KCMmhicISIiIiIiIiIiongxwEJEcVEUBQUFBSgoKMCAAQPi2kYwGERjY2NHC5hIqaamRve6rq4OwWAw4eBMSUkJevfujd69e+ueW00rLi5GVlZWXO+XiIiIiIiIiIiIug4GWIjIMR6Pp2NMlqFDh8a0brTgjDEgYxWc2bp1K7Zu3RrTvnv27BlTUKakpARFRUVQFCWm/RAREREREREREVH6YoCFiFwpGcGZmpqajlRdXa1LxmlqwAZAx5g169ats73PjIyMjsCLWVCmT58+KC0tRWlpacfz4uJieDyemN4bERERERERERERdQ4GWIio29EGZ4YNG2Z7vUAggNra2ohBGLNATUtLCwKBACorK1FZWRlTPq2CL8ZH9XleXl48HwkRERERERERERHFiAEWIiKbMjIyOoIZsWhra4sYlKmqqkJVVRUqKys7ntfX1yMYDMYclMnPz7cMvpg9FhcXIyMjI9aPgoiIiIiIiIiIqNtjgIWIKMVyc3MxcOBADBw40PY67e3tqK6u1gVd1OfGR/W5z+dDS0sLNmzYgA0bNtjaj8fjQUlJSVjwpaysTJfUab1792ZAhoiIiIiIiIiICAywEBGlpezsbPTv3x/9+/e3tbwQAo2NjREDMsZpdXV1CAaDHfPWrFkTdT+KoqC0tNQ0+GIWlCkqKoKiKIl+HERERERERERERGmHARYioi5AURT07NkTPXv2xPDhw22t4/P5UFNTowu6qM8rKio6UmVlJSoqKlBdXQ0hRMdyK1eujLqPrKwsy+CL2XSOIUNERERERERERG7BAAsRUTeVlZWFvn37om/fvraW9/v9qK6uNg2+mKXGxkb4fD5s2bIFW7ZssbWPHj16WAZf1MCMmufS0lJ2V0ZERERERERERI5hgIWIiGzJzMyMKSDT1tYWMQBjnOf1etHU1ISmpiasW7cu6vY9Hg9KS0s78tSvX7+O58bUp08fZGbyL4+IiIiIiIiIiJInodKmiRMnYsKECR1pzJgxyMrKSlbeiIjIxXJzczFo0CAMGjQo6rLqGDJ2WsZs374dVVVVCAaDHdN++OGHiNtXx44xBl7MgjJ9+vThfxkREREREREREUWVUIBlv/32w9KlS/HKK6+gtbUV2dnZGD16NPbff3+cddZZOOCAA5KVTyIi6sK0Y8iMGDEi6vJ+vx9VVVXYvn07tm/fjvLy8o7nxlRZWYlgMNgxdsyPP/4Ydfu9e/eO2CJGnVdWVsZgDBERERERERGRywkhUFdXh/LycpSXl+Owww6ztZ4ihBCJ7jwQCGDlypVYsmQJlixZgk8++QS//fYbzj33XPznP/+BoiiJ7iIlGhoaUFRUhE8//RQDBw50OjvUxdXU1GD48OEoKytzOitE3UogENAFYyIFZSoqKhAMBmPafklJSdRWMWrKzs5O0bskIiIiIiIiIiKj1tbWjnIgNW3btk33Wk3t7e0d69kNmyQlwGJm7ty5OOecc3D33XfjoosuSsUuEsYAC3UmBliI0l8wGER1dbVlixjt9IqKCgQCgZi2X1JSgn79+ulS//79w6aVlJTA4/Gk6F0SEREREREREbmXWpnWLEhiDKDU19fHtO1evXqhX79+WL16ta3lUxZgAYBnnnkGzz77LBYvXpyqXSSEARbqTAywEHUtwWAQNTU1UbspKy8vR0VFBfx+v+1tZ2ZmdrSGiRaMKSgoSOG7JCIiIiIiIiJKPSEEmpqaIrYwUVOslV5zcnJslbH07dsXubm5MeU7oTFYotl3331xww03pHIXREREjvB4PCgtLUVpaSlGjx4dcVltMCbSBUJ5eTmqqqrg9/uxZcsWbNmyJWo+evToEXZBYHahUFZWhszMlP7tExERERERERHptLe3o6KiwlYXXS0tLba3qygK+vTpY1omYiwXKSoqStkwJgmVtPz73//G3nvvjbFjxyInJydsfmVlJQf/JSKibi+WYIzZhYdZU9dt27ahtbUVTU1N+PXXX/Hrr79G3K6iKCgtLbVVY6NXr15pO34aERERERERETlLCIGampqoZRfl5eWorq6OadtqRVKz8gptWUafPn3SoiJpQjm4+eab0dDQgMzMTIwaNQoTJ07ExIkTMXLkSLS0tGDq1Kk4+OCDk5VXS0888QQeeOABbNu2DaNHj8YjjzyCgw46KOX7JSIiSrbs7GzstNNO2GmnnSIup206G+2CRm06W1lZicrKSvzwww9R82CnVUzfvn2Rl5eXzLdPRERERERERA5paWnp6H0jWjddPp/P9naNXaFbBU/69u2LHj16pPAdJl9CAZba2lr89ttvWLp0aUeaMWMG6urqAAC77747HnzwwWTk09Lrr7+OKVOm4IknnsABBxyAp59+GsceeyxWrVqFwYMHp3TfRERETlEUBYWFhSgsLMQuu+wScdlAIIDq6mpbNUvq6urQ3t6OjRs3YuPGjVHzUVRUZCsYU1paioyMjGS9fSIiIiIiIiKyQa1waaeLroaGhpi2XVJSYqtMoKSkBB6PJ0Xv0FkpGeR+8+bN8Pl8GDZsWLI3HWbSpEkYP348nnzyyY5pI0eOxCmnnIJ77rkn4rrqIPdz5szhIPeUcjU1Ndh5553Rp08fp7NCRGSpra0N27dv76ixYvW8vLwcXq/X9nY9Hg/KysrQt2/fjlor6vP+/fvrphcWFrKLMiIiIiIiIiILQgg0NDRY3rdv27at43llZSWCwaDtbefm5upalBjv4bVjvZoNG9JVZGdn21ouJQGWztLe3o78/Hy8+eabmDx5csf0q666CsuXL8e8efN0y3u9Xl1hUENDAwYNGoS///3vyM3N7bR8ExERuZ0QAm1tbWhqaoqampubY9p2ZmYmevToYSulQ3+rRERERERERMng9/vR3NyMxsbGqPfafr8/pm0XFBR03EsXFhZa3mfn5OSw0iOAf/7zn7aWc3WpRFVVFQKBAPr27aub3rdvX5SXl4ctf8899+C2227rrOwRERF1WYqiIC8vD3l5eVFb5gUCAbS0tKCxsRHNzc2WF4eNjY1ob2+H3+9HXV1dR5ejkeTl5dkKxOTl5XXZ5shERERERESUvoLBIFpbW21VUGxtbY1p2zk5ObbuifPz89ltd4q4OsCiMkbUhBCmUbapU6fimmuu6XittmA57LDD2EUYpRy7CCMiiq65ubmjGbO2ibO2qbP62ufzobW1Fa2traisrIy43YyMjLDmzFZNnd02oB4RERERERF1vubm5qhda6uvY2ltkpWVpbtP1d63Gh/z8/NT+A7JDlcHWNQBc42tVSoqKsJatQAyomfWL1xmZia7GKGUy8zMRFZWlu3++4iIuqPs7GwUFxdj9913j7icEAK1tbWWA/Npk9ridevWrdi6dWvUPBQUFJgO0mccqK+srAxZWVnJeutERERERETkML/f3zEgfKT7zW3btqGpqSmmbffu3dt0AHhjKikpYRddLuLqqEJ2djYmTJiAuXPn6sZgmTt3Lk4++WQHc0ZERESppCgKSkpKUFJSgtGjR0dc1ufzoaKiwtYFcktLC5qbm/Hbb7/ht99+i5qP0tLSiBfGvEAmIiIiIiJyllpBz9hDgtn9YWVlJWIZsjwvLy8sYGIWQCkrK2Ol6y7K1QEWALjmmmtw7rnnYuLEidhvv/3wzDPPYOPGjfjrX//qdNaIiIgoDWRlZWHgwIG2ugNtamoyDbwYp23fvh2BQABVVVWoqqrCjz/+GDUPdgIx/fr1YxNvIiIiIiKiKIQQaGxsDAuaaO/ZtM99Pp/tbXs8Hl330pF6NujRowcr03Vzrg+wnHnmmaiursbtt9+Obdu2YY899sAHH3yAIUOGOJ01IiIicpkePXpgxIgRGDFiRMTlgsEgqqurI7aGUZ/X1tbC5/Nh06ZN2LRpU9Q8FBYWRqz5pKY+ffqwi1MiIiIiIupSWlpabAdNYh0Qvri4WDd+idX9ljosBZEdioilzVMX09DQgKKiInz66acc5J5SrqamBsOHD0dZWZnTWSEiok7k9Xp1NwKRAjJtbW22t6soCvr06WOrVlVRURFrVRERERERkSO8Xm9Ht83RgiaNjY0xbbuwsFDX2sTsuTpQvNnY3ESJYrVHIiIiohTKycnB4MGDMXjw4IjLCSHQ0NAQMRCjpoqKCgSDQVRUVKCiogLff/991Dxogy/qDYY2lZWVoW/fvgzGEBERERFRVNrB4KMFTWpra2Padm5ubtj9i1XQpKCgIEXvkMgeBliIiIiI0oCiKCgqKkJRURF22223iMsGAgHdzUykVF9fD6/Xiw0bNmDDhg1R85GTk9MRbFEfjUEYNfXu3RsejydZHwERERERETmovb0dlZWV2L59OyoqKnSPxi67qqqqYhoMPisryzJQYpxWWFjISl/kGgywEBEREblMRkZGx01INK2trR03QdqxYbQ3SuqNU2NjI7xer+3xYjweD/r06RMxCKMN1mRlZSXj7RMRERERkQ1CCDQ1NZkGTMweY21p4vF4UFZWZitoUlxczKAJdUkMsBARERF1YXl5eRg6dCiGDh0addmWlhbTmmpmr2tqahAMBjte21FSUmKrZUzfvn2Rl5eX4DsnIiIiIup6AoEAampqwq7RrQInsYzzCMjKXMYW7eqjMWjSu3dvDgZP3R4DLEREREQEAMjPz7cdjPH5fB3dB0QLyFRWVnbcCNbU1GD16tVRt9+jRw/LIEyfPn3Qp08flJWVoU+fPigpKeGNHRERERG5VltbW8f4itFamVRWViIYDMa0/YKCAtOAidljcXExuwEmigEDLEREREQUs6ysLAwYMAADBgyIumwwGOyoZWcnIOP1etHU1ISmpib89ttvUbfv8XjQu3dvXdAl0nMGZIiIiIgolbxeLyorK3VJDY4Y0/bt29HQ0BDzPnr37m0aJDFOKysr40DwRCnEAAsRERERpZTH40FpaSlKS0sxevToiMsKIdDQ0BC1RYya1K7K1NerVq2ylR8GZIiIiIjIrpaWFtPgiFUApbGxMeZ9qIPA22ll0qdPH2RmsliXKB3wl0hEREREaUNRFBQVFaGoqAi77LJL1OV9Ph+qq6vDbmrV58ZptbW1cQdk7ARjGJAhIiIiSm9CCDQ3N9tuYVJZWYnm5uaY95OZmam7RrRKaquToqIiDgJP5EIMsBARERGRa2VlZXUMtmmHGpCxCsAYnxsDMnYoioLi4mL07t27o+WOmozT1NfFxcUMyhARERHFoa2tDdXV1aiqqgp7ND5Xr/FiHfgdALKzs3WBEWMlG2Pq1asXAyZE3QADLERERETUbcQTkKmqqrIVjKmoqEBdXR2EEKipqUFNTQ1++eUXW/tRFAUlJSURgzDGaRyAlIiIiLqa1tZWywCJ1WM8rUsAIC8vL2KAxBhAKSwsZMCEiMIwwEJEREREZCErKwv9+/dH//79bS3v9/tRU1PTUSBgLCAwe11fXw8hBKqrq1FdXW07bx6PxzIoo07r3bs3SkpKOlJxcTFycnLi/TiIiIiIbFG74VKvbyIFSLTPW1tb49pfRkZGWOUU42NpaakueMKB34koGRhgISIiIiJKkszMTJSVlaGsrMz2Oj6fL2pQxjitoaEBwWCw43UsCgoKdEEXbTIGZLQpLy8v1o+DiIiIXC4QCKC+vh61tbUdLXQjJe1yPp8vrn1mZWWZBkciTevZsydblxCRIxhgISIiIiJyUFZWVsfgpna1t7eHBWXMAjPGAg+1NmlzczM2bdoUUz5zc3Mtgy+RAjUFBQUs8CAiInJYe3u7aZAkWuBE7f40XtnZ2VGDI8Zp7IqLiNyEARYiIiIiIpfJzs6OaSwZAAgGg6ivr7dV+9SY/H4/2trasHXrVmzdujWmvGZmZqJXr14dqbi42PK12Tx2aUZERCT/xxsbG1FXV2eaamtrLafX1NSgqakpof1HagFr7I5U+zo/P5/BEiLq0hhgISIiIiLqBjweD4qLi1FcXIzhw4fbXk8IgcbGxpiDMtXV1Whvb4ff74+rKzNVbm6u7WCM8XVRUREyM3nLQ0REzlNbkVoFQiIFSerq6lBfX49gMJhwPnr16mW7RaoaMGGFByIia7zbICIiIiIiS4qioGfPnujZsyeGDh1qez0hBFpaWiwLjSK9rq2tRX19PYQQaGtrQ3l5OcrLy+PKf35+PoqKijreg9nzaNMKCwvh8Xji2j8REbmf1+tFQ0MDGhoaUF9fb/o80rz6+nrU1dUhEAgknJfs7OywSgXGZJyvdt1ZVFSEjIyMJHwiRESkYoCFiIiIiIiSTlEUFBQUoKCgAAMHDox5fW1XKNGCMWbz1K5QWlpa0NLSgm3btiX0fgoLC20HZ9SgTI8ePcIec3Nz2VUKEVEnCAaDaG5uRlNTExobGzse7QZEtMt5vd6k5SszMzPmAIk28X+EiCi9MMBCRERERERpx+PxoKioCEVFRRgyZEjM6/v9/o4CMuOj2TSreT6fDwDQ2NiIxsbGhN9XRkYGevToYRp8MT7aXYbdoBGR2wkh0NraqguGJPq8ubk56fns0aOHaVDdzms1aMIxSYiIuhZeiRMRERERUZeTmZmJ3r17o3fv3nFvQwjR0S1MrMEaY2FfS0sLACAQCKC+vh719fXJeqvIzc1Fjx49OloM5efnIz8/v+N5tMdoyzCAQ0Rql43Nzc0dLQPNnkebb1xWPVc2NTUlZXwRMx6PRxeUjtZtpNXrwsJCdq9FRERhXH2lfNddd2H27NlYvnw5srOzUVdX53SWiIiIiIioi1AUBbm5ucjNzUVZWVlC2woEAqZd1VjVvo62TGNjI/x+PwCgra0NbW1tqKqqSsbbDpOVlWUajMnPz0dubi7y8vJMHxOZx0JMImtCCLS3t3f89ltbW3WP8T5vbW2NGBDpLAUFBaYt+aK19LN6zi61iIgolVwdYGlvb8fpp5+O/fbbD88//7zT2SEiIiIiIjKVkZHRUQs6Wbxery74Eqk2eaTa5VaPam1yn8/XMcZNZ8nKygoLvuTk5CA7O7vjMdbnsa6XmZmJrKwsZGZm6pI6LSMjg4W2XVAwGITf7+9IPp8v7HV7e3tH8nq9tl/Hsqz6Wg2AGAMiQgjHPqOcnBzLVnCxPjcGRQoKCuDxeBx7b0RERLFydYDltttuAwBMnz7d2YwQERERERF1spycHOTk5CTUDZoVtYZ8pCCMsdZ8pFr0dpZRx7sBZFDH5/MlZdybVMrIyAgLwkR7bTYtIyMDHo8nLFlNT2ReZwaFgsFgWAoEAqbT7c43WyYQCOiCIFbBETvTnQxcxCtSC7FYn0cLiOTl5bHbQCIiIo1u9a/o9Xrh9Xo7Xjc0NAAAmpub2b0YpVx7e7vTWSAiIiIiskVRlI4ATklJSafsMxAIRAzQWLUEiPY83vW0Be+BQMAyz1bzqGvRBsaMrZ2S/Vp9npWVFTV4kp2dzZZUREREDupWAZZ77rmno9WL1uDBg1FYWOhAjqi7yc/PdzoLRERERERpKSMjAwUFBSgoKHA6K2GEEFFbQZi1ioi2jPo61pYcVvPsrNOZn1mkljR2WtvEso7d1kJ2ljFO6+yWP0REROQeikiz9q+33nqraRBEa/HixZg4cWLH6+nTp2PKlClRW6GYtWAZNGgQ6uvrk9oXMhERERERERERERERdW1p14Ll8ssvx1lnnRVxmaFDh8a1bbWJOxERERERERERERERUSLSLsBSWlqK0tJSp7NBRERERERERERERERkKe0CLLHYuHEjampqsHHjRgQCASxfvhwAMGLECPTo0SPq+oWFhaivr+f4K0REREREREREREREFJO0G4MlFueffz5efPHFsOmff/45Dj300M7PEBERERERERERERERdQuuDrAQERERERERERERERE5weN0BoiIiIiIiIiIiIiIiNyGARYiIiIiIiIiIiIiIqIYMcBCREREREREREREREQUIwZYiIiIiIiIiIiIiIiIYsQACxERERERERERERERUYwYYCEiIiIiIiIiIiIiIooRAyxEREREREREREREREQxYoCFiIiIiIiIiIiIiIgoRgywEBERERERERERERERxYgBFiIiIiIiIiIiIiIiohgxwEJERERERERERERERBQjBliIiIiIiIiIiIiIiIhixAALERERERERERERERFRjBhgISIiIiIiIiIiIiIiihEDLERERERERERERERERDFigIWIiIiIiIiIiIiIiChGDLAQERERERERERERERHFiAEWIiIiIiIiIiIiIiKiGDHAQkREREREREREREREFCMGWIiIiIiIiIiIiIiIiGLEAAsREREREREREREREVGMGGAhIiIiIiIiIiIiIiKKEQMsREREREREREREREREMWKAhYiIiIiIiIiIiIiIKEYMsBAREREREREREREREcWIARYiIiIiIiIiIiIiIqIYMcBCREREREREREREREQUIwZYiIiIiIiIiIiIiIiIYsQACxERERERERERERERUYwync5AVyaEQLCuEr5tG+Av3wB/5RYInxcI+ABPBpTMbGQU90Fm/6HI7DcEmaUDoGTwK6H0ILxt8FdshL98I/zbNyDY1AD42+XMjEx48gqQ0XcwMvsORma/IfDkFzqbYaIdhAgiWFspz7vbNyJQtRXC1w4E/ECGPPd6isvkebffYGSU9IeSkeF0tokAAMG2Fvi3b4S/fAN829ZDtDTK4xcAMrPgyeuBzH5DkNV/iDz35vVwNsNEO4hgEIGacnnuLd8Af9U2zbk3E0pWNjJ690NWP3nsZvTuB8XDcy+lh2Brc8ex6yvfgGBLI+D3AQCUrGwoeYUd593MvoPhyStwOMdEkggGEKguh3/bevjKNyBQs12ee4PquTcHmb37y2O3/1BklJRBUVjPltJDsKVxR3nZevi2bYBoa5bHr6JAycyCp6AImf2HIGtHmZknJ8/pLBMBAEQgAH/VVnnu3bYegdrtED7fjnNvFpTsHGSWDpDHbv+hyCjuw3NvF6cIIYTTmehq/NXlaF32BXxrV0K0t8mJHg8QDIYvrCiAAAABeDKQOWAY8vY6BFmDd4OiKJ2ZbSIIvw/ta5ai7ceFCNZWyImKBxAmx65hnlJQhJzdJyJnz/1500mO8FduQdvyefCtXxMKBlodv9rpGZnIHLAzcscdjMyBw3nupU4n2r1oW/WtPPfWVcmJkc69mmsKT2ExckZPQu4e+8GTm99JOSYK8ZVvQOt3X8C38aeOAmlb597MLGQN2gV5ex2KrAHDOi2/RKqgtxXelYvQ9uMiBBtq5ESb172eolLk7rEvckZPgic7t5NyTCQJIeDfuhat382Db/MvMpAN2Dz3ZiN7yO7IG38oMvsO6rxME+0QbG1G2w8L0bbyGwQba+VEq/IyQH/uLS5D3pj9kTtqHyhZOZ2UYyJJCAHfpp/lde+WtTvOvcqOcl2T41d7XGflIHvn0cgffxgy+wzo1HxT52CAJUmEEPBvW4fWpZ/Bt+GnyBfnkSgKIAQyivsib+LhyB4xljWrKeWCbS3wrvwa3hULILyt8W9IUQDFg5xR+yBn7EHI6FmSvEwSmRBCwL/lV7Qt/Rz+rWsTOPfK9TJKByB3/KHIGrYHFA9rmFBqBVua0Pb9ArStWCBbuMZNATIzkbvHfsgddxAyevRKVhaJTAkh4NuwBq1LP4N/2/rEz719ByF/4hHIGjqStfso5YJN9Wj9fgHavl+4IygY7+2wAmRlIW/MgcgdcwA8BT2TmU2iMEIE0b52JVqXfoZAxeaEz72ZA4Yhb8IRyBq8KysYUcoFGmvRumwe2n74GggGgASKIpXsXOTtdbA897I1N6WYCAbQ/uv3aFn8KQLV2xI+92YN2hV5E49A1k6s3NmVMMCSBMHmBjTN/Z+sPRLvDy2MAkDAU1iMHr/7I7L6Dk7CNon0hBBoX70YLQtmJXyRo6N4ACGQM/Yg5E06hkFCSolgYx2a5r6GwPaNyTv37ghye4pKUXDMOcjs3T/xbRIZCCHQ9v0CtHw1Wx63STv3ygv0vIlHIm/vIxkkpJQI1FWhcc4rCFRu6ThnJkytYNS7Hwp/dy4yissS3yaRgRBBtC79HK3ffiyP22SeexUP8vf9HXL3OphBQkoJf3U5mj56GYHaiuSfe8sGofB3f2TlOEoJEQyg5ZuP0brkUwAWNf3joSiAJwMFB52E3D33Z0E1pYS/YjMaPnwJwfrqJJ571SD3zvLc26Mo8W2S4xhgSZBv0y9onPMKhLcteX8UWjv+JPL3Px654w7mnwYljWj3onneDPh+/T6l+8nosxMKjjkHGYXFKd0PdS/t61eh+dPXAZ8vRedeD6AoyD/wJGSP2ofnXkqaYFsLmj55Hb71q1K6n8wBO6PwmHNYo5qSyvvLCjR9+joQCKTu3OvxoMfhpyFntwnJ3z51W8GWJjR+/Cr8m39N6X6yBu+GHkf9gd3lUtIIIeBdvQTN82YAQZG6c29mJnoceRZyhu+Z/O1TtxVorEPjRy/L1q4plD18T/Q48kyO0UJJIyvEfYXmL9+VDV1TdO5VsnNQeMwfkT109+RvnzoVAyxxEsEgWhfPReviT5IXxYwia8hI9DjqLPaxTgnzV21F80cvI9hUl/pjV/EAmVkoOOIMZA8bndp9UZcnAn60fvMRvCsWdNo+s4bviYJDfw+FfaxTgnzlG9D44UsQLY2dcu5VsnPR45hzkD1419Tui7o84feh+ct34V35TaftM3vkRPQ4eDKUrOxO2yd1Tb7Nv6FxzssQba2pKSDRUjxQcvNReOx5HFuIEibavWj64m20//xdp+0zZ8/9UXDgiVAyMjttn9Q1ta9fjcaPXpGD1qf83KvAU1CEwuPPRxbHFqIEBb2taJr7P7Sv/bET9iZ7L8qbcDjy9/sdFA97f3ErBljiIIJBNM19De2/rOjcHSsKPD17o+i0y9jPJMXNv209Gt97LrldgtmUf8ipyBm1T6fuk7oOEQig6aOX4d/4E+LvLz0OigJPST/0PPkvUHIYZKH4tG/8CY3vv5Dcbmmi2VEBpMfR5yBn13Gds0/qcoTfh4ZZz8G/dR06+9yb2Xcwep58CYMsFDfvbz+g6aOX5YvOPPcCKDzufGQPG9U5+6QuR7S3oX7m07I7xk69Z1OQNWgECk+4kEEWilvb6iVomvtfqIXHnWJHd409T74E2YNGdM4+qcsJtrWg/q1psjvGTi4vyx6+JwqPPZdBFpdiB7ExEkKg+Yu3Oj+4IneOYEMNGt55GsFEBiKnbstfuVkW8DkQXAGAlnlvo/2X5Z2+X3I/EQyi+ZP/wb9xDTq1gA+Q596acjS+/7ysgUUUI9/WtWic/Z8dXXt04vG7Y19Nc19D+7qVnbdf6jJEIIDGD1+Ef1snB1cAQAj4t29Ew/v/gQj4O3ff1CW0b1iDpo9e6dzANtCxv8YPX4Jv0y+dt1/qMoTfh4b3XnAguAIAAr5Nv6Lxo5chgoFO3jd1Bd5fv0fT3P/teNXZ594gGmY9C9+2DZ23X+oygu1tqH/nKQRqKx0pL2v/7Qc0zv0fRKpbfFFKMMASo9aln8G7arFzGRBBBGorZBcjvOChGASb6tD0/n+AgM+RPwtV86dvpLwPVup6Wr/5CL61PziXASEQqNyM5k9e5wUPxSRQV7kjsB1EpxdQq4SQ/V9XbHZm/+RKQgg0z3sHvg0/O3fdIAT8W35D02dvgo3uKRb+qq1o/PAlR695EQyiYfZ0+Gu2O5cHch0hBJo+eR3+8vUOHr8CvnWr0LLgfYf2T27lK9+Axo9egZPXvAgG0DDrWQQaapzJA7mSCAbR+OErCFRtTX2XdhG0//QdWhbNcWz/FD8GWGLQvvZHtC76yOlsACII/+Zf0bzgPadzQi4h/D40zv4PhLfV2RtNmRs0fTAdwcY6h/NBbuH96Tt4l893OhuAEPCtX4m2xZ84nRNyCdHehoZZz0P4nA1sA5AFfe89j2BLo7P5INfw/rAQ3lXfwLFCkg4C7T99h7Zl8xzOB7lFsLUZDe89DwQCcPb4FUDAj8ZZz7H3AbKtdelnaP91hfPXDQDavl+Atk4ce4vcLdBUj4ZZzzlaOA0AEAKi3YuGd59h7wNkW8vXH8C3YXVanHtbF38C78/LnM4GxYgBFpuC7W1o+uwtp7Oh4/3+K/jK2fSRomtbMR/Bmu3OX+wA8oLH146WBbOczgm5QLC1CS1fvut0NnTavvscgepyp7NBLtCy+BMEG2vS59zb1oLmhbOdzgm5QKCxDs1fpVfN5ZZFHyFQX+10NsgFWr7+EKKlMU3OvUEEm+vR+s3HTueEXCBQW5F2x0rzl+8i2NzgdDbIBZq/fBfC25YWBdSy55cqtCz51OmckAv4KzajdennTmdDp+mztxBsa3E6GxQDBlhsav12LoQ3zQ5uRUHz5zMggmlw80BpK9BYi7YlnzmdDT0RhG/9Kvg2/ux0TijNtS76CPCnW80jBc3zZ7K7GorIX7Mdbcvnp8dNpkoE0b5mKXzsppGiaFkwa0e3dmlECDTPT6+AO6Uf//ZNsuVVWp17Bdq+/wr+qq1O54TSmBACTfNmOp2NcIFA2gXcKf20b/pVjlOcDoHtDgKtSz9DoK7K6YxQGhMiiKbP3wKU9CoeFz4vWr7+0OlsUAzS6whKU/7qcrSt+DK9LtQBOSZA9bYd3TcQmWtd8H76HbsAoChomf8OB64lS/7tG9G+Zkn6Hb8iiED5evh+XeF0TihNqWNXAIrTWQmneFg5gyJq3/Qz2n/7Ic0KSSArZ2xYjfb1q53OCaUpIYJomvd22hWSAJAV4754m5UzyFL72h/h3/xLWp57239eBt/WtU7nhNKUCATQ/PlbgJKG170CaOK5lyLwrl4C//ZNaXjuFWj74WuOoekiaXj1mV7SupBkh5aFsxFsbXY6G5SGfJt+gW/9yvT7swAAIRBsrIV3xQKnc0JpSIggWubPTM9Ckh1avnofot3rdDYoDbX/9gP8W35L03NvEIGacnhXLnI6J5SGRCCA5i/eTs9CEkAWUs97B8LvczonlIa8q5cgULE5bc+9/vINaGef6mRC+NrRPH8m0rbMQQ0QBgNO54TSUNv3CxCoq0y/SnGArJyx8Se0r1vldE4oDQW9rek9trWioOnzGQwQukT6llyliUDFZvi3rk3PC/UdRHs7vKu/dToblIbavvs8fQtJdmhbPg8iwIt10vNvWYtA1db0Pve2NqH9l+VOZ4PSUOvSz5C2hSQ7tC75DCKNf1/kjPb1qxCsr07PQhKgo3JG+9ofnc4JpRkhBFrTrUtcE27II3U+768rIJobAKTvuTdQs53dO1MYEQyiJe3PawpaORYLmfCuXgLR1up0NqyJIPzbN8K/bZ3TOSEbGGCJwrtmaVrXoJYE2lZ9y6gm6QSb6nYEB9P7uBDeVvg2/eR0NijNeH9yw7lXgXfNEqczQWnGX7MdgcotSNtCkh2CzfXwb13vdDYozXhXL0n/c6+iyHwSafi3b0KwodrpbEQVqN0Of+UWp7NBaca7enHaV4qD4uF1L4Xxbf4ForXJ6WxEIeAv38CxWChM26pvkO73bFA8aFu91OlckA1pfgflLBHwy0I+F9TwDNZV7SjQIZK8Py9L/wt1AFA8aF/DPwwKET4vfOnY/38YgUDFJl6sk447KmZAXqyzoIQ0gq1N8G1Ynf7nXiHg2/QLgk31TueE0oh3jQuCg8COQmpe91JIoKEW/q3r0r5SHEQQ7WtXIuhN49re1OnaVi92yblXQRvPvaThr96GQNU2p7MRnQjC+9N37B7XBVxwJnRO+/rVEO1tTmfDHtYoIQ0hBNpXL07/C3VA9ou6fjWCbS1O54TSRPtvPwIBv9PZsEdR0P7zd07ngtKECAZlLdR0L6AGZEHJL8shfO1O54TShPfn5e64btjBy7EsaAdZKe4715x7vWuWsHtc6iBbbbugUhwABANo/2WF07mgNBH0tqH91+9dcu4V8K76lt3jUgdXtNpW+dvZPa4LuORocoZsAeCSj0iNavIPgwAEqrYi2FDjdDbsE0H4+IdBO7T//J17bjSFkDfGRAD8W9e5oJsEDb8P7etXO50LShPuqlUvXJZfSiXfhjWAz+t0NmwT3lb4Nv/idDYoTXjXLHVRcFvhdS91aF/7I+CiYHGwqQ7+8o1OZ4PSgBACbauXuCM4CLAFlku4JHrgDH/5Bvf84CAv1oONdU5ng9JAoGKz01mIjccDv9vyTCkhhJDHgmtuNAHRVI9gW7PT2aA04K/Y5J7gILDj3LvJ6VxQGhCBAALVW53ORkwCNdvZXQIBgLxu8LjotlbhuZck0d6GYL2bupqV1+ms1EnAjuteN517ocC/nedeAoLNDe6qFCfkOEKU3tx0NuxUQW8rRHOD09mIWaDKXTfHlBqB6m3uutgJBhGo4hhCBHnedVEtVFWgutzpLFAa8FdvA+CiAEswCH8lrxsICNRVAkG3FZgJBGq2O50JSgP+qq0uO34F/G7o951Szu/G68eA3109JVDK+Cu2uOvcqyjy/4K6PVeMvWIg2loQbGl0OhsUQabTGUhXqSgsW/jrJkz7dDFWbNyO7Q3NeOmik3Hc2F2StwPFA3/1NmTvvEfytkmulOwbzYW/bMLjc7/Bik3bUV7fhJcvmYzjx+2atO0DO2qiiiAUt3TLRykRqE7+xU7qj18FgepyZA0cnsRtkhvJ1ldJPPem+roBYHCbAKTo3NsJx6+/ehsyy3ZK6jbJffyVyT2PpfzYFQKBCp57ycXn3qptyCgqTeo2yV2EEEmv3Lvw183492dLsGKTPHZf/PNJOG7MiOTtQAST/n9B7uSv3ip7HUhirxkpP34hr3uz8wuTuk1KHpZkWkjFxU6L14c9BpbhvtOPSPq2JYFAlQtrwVBSCSGSHiBsbm/HHjuV4b4zjkzqdnUCfgQbalO3fXKFQE150rtYSvnxqygp+c8gdxEBP4J1ye3mI/XXDWptKBc1kaeUCFSXJ73la8qPX4+HrQcpJb0OdMa5N9hYC+FrT9n2yR38bjz3Kh5e9xKCTfUQSe51oKXdh9ED++De0w5P6na1AjXbIdzU6oZSIhXlpik/fhWF5b1pji1YLARqKuTFThJPvkeO3hlHjt45adsLI4SMxFK3JloaAX9yb9iOGj0cR41Ofe38QO12ZBT1Tvl+KH0Faiogu1hKXm2SlB+/IshCPkKgvjrp47al/Lphh0Dtdnjye6R8P5S+/DXlSe/mI+XHb5DnXgICtZVJ32bnnHsFAnWVyOwzMMX7oXQWqHbhuRdix/U6dWep6KLzyFHDcOSoYUnfrk7Aj2BjLcscujl/1dakj/ma8uNXUeBn17hpjS1YLAhfWzLL9zqNaHff2AWUXK4+BtpZk6+7Ez5v0gupO4Nob3M6C+SwZNfi60yu/t+gpBBed57Dgjz3dnvC595jwM3/G5Qcor3V6SzETghe95Krz1+87iVXnsOEcPU1T3fAAIsFEfDDlRGWgN/pHJDDRMDndBbi5ua8U3IIv0uPgSDPvd2ei/9/hYvzTsnh2nOvW/NNyeN37/lLuDjvlBxuPQZc+59BSePma0c3552Sw5XHgBCuvubpDhhgsSKEK+MryW7mRi7k5mPAzXmn5HDpMSBcmm9KIlcfA27OOyWFW49ft+abksjFxwCPX3LrMeDWfFPyuPkYcHPeKTncegy4Nd/dBAMsVjIy5TAAbpPBYXW6OyUzy+ksxM/NeaekcOvxq/DcSy4+Bnj8klvPvcjksdvtufj8pfD47fbcegy4Nd+UPG6+dlQyMpzOAjnMncevwuveNMcAiwUlMwtQ3Bdhce0NMiWPK/8sJHf+0VFS8dxLLuXqYyDDxXmnpFCysp3OQlyUTHfmm5LH1edeN+edksOt5zCX/mdQ8vDcS67mxmNAUdz9u+sGWJppIaOoNOnNr5q87VhXWdfxekN1PX7YXIHi/FzsVNIzKfvIKC5LynbIvTw9igBPBhAMJG2bTW3tWFdZ2/F6Q3U9fti0HcUFeUk7dgHA06s0adsid8oo6g0fFCSzy4+UH7+KAk9x38S3Q66W0bN30rfZGdcNAJDBc2+3l9GrD3ybfwGCwaRtM+XHr8fD616S92xJ1mnn3hTkndwls7gMgYrNgHDZuZfHbreXivt247G7MRXnXkVBRs+S5GyLXCuzpC/a66uSWubbGcdvRq8+SdkOpQYDLBYySvsnPcCyfGM5TnnsjY7Xt7zzBQDgrH1GY9q5xya+A48HGaUDEt8OuZriyYCnVx8Ea8qTts3lG8tx0iP/7Xh984zPAAB/2HcP/Pu845OzE0XhHwYho3f/pN5kAp1z/Gb07peU7ZB7Kdk58PTohWBTXdK2mfLrBgDIzIKnsDg52yLXyijtn9TgCtAJx28wiMzS/olvh1xNyS+EkpMH4W1N2jY749yr5PWAJzc/Kdsi98oo7Q/85LIyB557CTsCxEmu1Lli43acMu3Njte3zJwHADhzn1GYds7vkrIPT1FvtgIgWW66bhWSWakz5cevCMqyEkpbDLBYyEzBgXvgLoNR9fi1Sd9uh2AwJfkm98nsMwDttRVJK6g+cNfBqHnihqRsy4qnqJRdhBEySpIfqEj58SsEz70EAMgoG4hgc33SKmik/LoBMqipuLBbPkquVASJO+f4ZXC7u1MUBRm9+8O/dW3SttkZx25mH1aKox3nsCRX6uysawfq3hSPBxklfRGo2pq0bR6wyyBUPnpN0rYXRlGQWbZT6rZPrpFZmvxKnSk/fgEGt9Mcx2CxoOQXQsnOdTobMcvgD46gXvQm92I9pRQFmX0GOp0LSgOeot6yNpTLsJCPACCz9wAALgpWeDw89xIAIDMFwe3OwEI+AiDPYx4X3dZ6PMgo5bmX1OsGl1EUds9IACCDFW4698KlvzlKOlcGKtjrQNpz19mwEymKgow+O8FdBSUZ7GKJAKjdLLkowAIWkpCk1oZylewcKAVFTueC0kBmnwFJrw2VUsEgMtm1KEEOcu9xWZ/knoIieHLynM4GpYGM0gFJ7+IupXjupR08+T2g5BY4nY2YZBSXsdcBArDjujfoojIHIdh6kAAAnp69XTfQfWbpAPY6kOYYYIkgZ5cxcE0rAMWD7J1HQ8lwX81vSr7M/sOguKnQQQhkDd/D6VxQmsgeMRauCW4rHmSPGMuLHQIAZA3a1V0X64qC7J1HO50LShM5u+4FuOVcpniQves4p3NBaSJ72Ch31aLOyEDW0N2dzgWliZxdxwGKS45fRUH2LuOczgWlieyd94Rryssgx0vM2mkXp7NBaUDxeJAzYox7zr3YcZ1Oac09R5MDsncZ556uakQQOSP3djoXlCaUjAxk7zbeHX8YioKMvkOQ0bO30zmhNJHtposHEUTObhOczgWlCSUrW147uOTcmzV4N3jyC53OCaWJnN0muKf1qwgiZ/eJTueC0oQnNx9ZQ0e55NzrQfbOe8Ljwq6oKTVydp/ontavQvC6lzpkFPZC1k4j3FE5Q/EgZ7cJUDLZ+oqknJF7u+fcqygMsLiAC65CnePJyUP2sNGuuFhXcguQNYjReArJ3m2CO/4whEDOSBaSUIinoCcydxruiot1T2ExMvoOdjoblEZyd+e5l9wpo7gPMsoGwQ0tCDN690Mmx74ijVy3FJSIIM+9pJPRZyA8vUqdzkZ0ioLM/sOQ0ZNjAFBIzqh93FE5gxUzyCBrp+HwFPR0OhvRKR5kDRkJT34Pp3NCUaR/5MBhOSNdUKNE8SBn9wlQ3NLahjpFZukAeNwwAKEnA9nD93Q6F5RmZG2+NL9YVxRk7z6R3YORTuaAYfC4YUyerBxkDx3ldC4ozeSO2htu6O4jZ9Q+TmeB0kzW4N1c0T2ukteDXdSQjqIoyB21T/pXLBICOaPYYwbp5QzfwxXd43p6liCzHyvFUYiieOT1ZNqfe4M7rs8p3THAEkXW4F3hKSxO8x+dQO7ofZ3OBKWh3DEHOJ2FyBQF2buNh8JuEsgga9hoKHlpXktD8bAmFIVRFA9yxx7odDYiUxTk7rEvFBfcEFPnyt5lXPr/J2dmI2fX8U7ngtKMkpGB3D33R3q3wFKQO+YAKG4aL4Y6Rc7uE4E0HzheyclHzvAxTmeD0oySlSPLotK6vAzIG3cwK8VRmNzRk9L82FXgKejJSnEuwau7KBRPBgoOPTV9a1IrCnLHHYyM4j5O54TSUPbue8NT0i99u7nLzEbepGOczgWlISUzC/kHnOh0NiLKnXg4PD1c0FKBOl3u2APh6VmSthfsSk4e8vY+0ulsUBry5OQhf//jnc5GRPn7HQtPXoHT2aA0lDfhcCjp2oWGosDTowh5ex3idE4oDXnyC5G/z9FOZyOi/ANPhJKd43Q2KA3lTzo6fStnKAoyevXZEYAn0svoWYK8CYcjfStnCBQceirHDnKJNC11TS/ZQ3ZH1tCRaVlIreTmI5+FJGRB8XhQcMjktO3mLm/f38GT7q0UyDFZI8Ygo9/Q9Dv3Kgo8PXohd+zBTueE0pSSkYmCQ9K3ckbBgSdxgGWylDNqH2SUDki/AKGiIKO4DLl77ud0TihNKVnZKDj4ZKezYU4IFBxyClsOkqXcsQfCU9Q7Dc+9HmSUDULO7mw5SOY8ufkoOOAEp7NhTggUHH4alAx2p0/m8iceAU9BIdIuyKJ4kDVoF2TvvIfTOSGb0qzUKn0VHHxK+l3sACg48OT0rS1AaSGz3xBk7To+vY5fRYGnpC9yRk1yOieUxhRFkefedBsPQAjkH8xCEoose8huyBo2Or0ChIoHmf2GIHs3FpKQNcXjQcGhv0+/AKEQKDj09xxzkCLKHj4GmQN2Trtzb9bg3ZDFLj4ogrStnCGC6HHY76Gk02+K0k7O6H2Q0Wdg2p17s3cZi+ydRjidE0pjSla2rJScbmUOgGy9kk7leBRRGp390ltGzxLk7XOU09kIUTzIHDgc2buOczon5AL5+x0rA3FpdHIuOORU9kFNUWX07oecdGopoijIGjoKWUN2dzon5AIFB520o0/1NDn3Kgov1MmWrH6DkTN6X6TTsZu9+wRkDdzZ6ZxQmlN2nOfgSZNjF//P3n2Hx3Wc9+L/zinbF70QIMHeOylSItV7sRz3FsfdspO4JU4cJ7m5uUl+uXHi2L5xHDvuie0krnJiy01dokRRlAT23gmSANHr9lPm98eCFEGA5J7F7p6zwPfzPPe5l4udc0bXB4M58868LwBFQfjWN3DspWvyzV4M36I1HnpnE/Cvvhla/Uy3O0IeJ4SC6F1vdbsbrxICQtcRvvl1bveEyoBvwars+72HAoTBjXdBq25wuxvkgHeenjIQvO4O6PNXuj/hEQqUSCWi97+bE3XKiRKKIvLAe+GVhZLQLW+ANmOO292gMhG84V5oMxd6Y+ytrEP4rre52w8qG2pFDaIPvMftblwUuevt0Oqa3e4GlYnwra+H2tji/sumUKDWNSNy+5vd7QeVDa2mEZF73ul2Ny6K3v8uqFV1bneDykTkzrdBrW70xNirNc/1buon8hytoQURDwVZog9+AGq0yu1uUBkQQiB6/7ugVFR7YOwV0Ocs83xdLhqPARYHhFAQvee3R/NSu/T/dUJA6D5Ef+uDLPBJjmhNcxG64y1udwP+1TfDv4KpwSh3QlERvu93oFTWuTv2+oOIPPh+pmUkR3xzliB82xvc7gaCG++Bf8k6t7tBZUSoGipe+34okUoXx14FIhRFxWs/wLSM5Ih/4WqENj/gdjcQuvm34Ju3wu1uUBm58K4vgmFXx16lohrRB97L2hXkSGD59QhuuMvtbiBy51vha2FqMMqd4g+i8vUfhvC7mPlFKFBrGhF94F3M9lKG+L+YQ0L3oeL1H4ZaXV/6CY8QgKqj4g2/C62msbT3pinBv2Q9gre4V/zTt3QDgjc+6Nr9qXwp/iCir/8wlGiVK2Ov0P2Ivv7DUCtqSntvmhICq250daEvsOYWb6U5pbKhBCOoeNPvQ4QiLoy9CkQghMo3/T6UcEVp701TQmD9HQisv8O1+wc33oPgWg+lOaWyoUarUPnG3x9d6Cv92KuEK1Dxxt/nhk7KS2jzA/CvutG1+4dveR0C3NBJeVCr6lD5pt+H0H2lD7IIBWplLSrf+PtQuKGzLAkpvVZFrTzYyRhGHv1PmO0nSnNDIaCEKxB94L3QGltKc0+astKHW5HY8j/ZIorSLvLdBAAJ/9pbEbzhfkbiaVLs2BBij/0nrO6zpbmhEFCi1Yjc/x6otTNKc0+aspJ7tiKx9RcAZPGL2AoBSIng9fcguPEephSlSbGG+zHyq+/A6utESYqACgG1ugHR17wXalV98e9HU5aUEqkdzyCx/dHRKWkJxl4AoRsfRGDtrRx7aVKsgW4M/+o7sId6i//sAgAE1Prm7NgbrS7B/WiqktJGYvtjSL7y5MU5aVEJka01eNsbEXQxuENTg9nTgeFf/hvs2GCJxt5sxpmK17yXm4rKGAMskyBtG8kdTyH50hNFn7Dr81YgcvfbofiDRbsHTS9WXydij/0H7OH+4j27QoHQfQjf/Q4WBaeCkZaF5CuPI71rCy4E8IpFX7QW4dveCKH7i3YPml7MrrMY+c33YMeHijv2+oOI3v8u6LOYHoEKQ1om4lt/ifS+F4p+L/+KGxC+5fVMC0YFY3ScxMij/wGZTBRvc5EQEKEoove/G3rT3OLcg6YdaWQQe+5/kDnUWvR7BdbeitDmByBUrej3oukh03YkO/Zm0kUde5VINSoefC+0hlnFuQdNO3Y6hdjTP0bm2J7i3eTChriNdyN0w70QClMyljMGWArAaD/x6oS9kAt9QgEEELrptxBYfRN3QFHBSSON+HM/g3F0V/Z5K9SkZ/QPhdo4G5F7fyebv52owIy2I4g/+QNII13YhWohAKEgdOsb4Fu6gWMvFZydTiL21I9hnNxf2F19o9fSZi1E9N53QglFC3NdokukT+xD7MkfAqZR+LFX1RC5823wL15buOsSjbKTccQe/z6Ms0eLMvbqc5chcvc7oARChbku0SXSh3cg9szDgG0VfOwVug+Re94J37zlhbsu0Sg7Pozh33wPZsepooy9vkVrEbnrrUyrRAUnpURq/3bEi5H9ZbTGa/T+d8M3e3HhrkuuYYClQOx0Eul9LyK5ewtkKjG5i40u7vmXbURw3W1Qq+oK00miKzDaTyC18xmY545PLtAy2lapbkTwujugL1jFKDwVlZ2MI71/G1J7XwAyqcldTAhAUeFffj38a25hagQqKikljDNHkGx9Gub5UwUZe9X6mQhedyd8C1ZCuFUYl6YFOz6M5J6tSO17ATAMTG6DkQA0DYFVNyKw5hao3JRBRSSlDePUQSRan86mGy3A2KvNmIPgdXdCn7uMmzKoqKyRQaR2P4fU/hcBy8KkN3fqfgTX3IzA6puhhCIF6SPRRKRtI3N8LxKtT8Hq7SjI2KvPXIDgxrugtyzm2EtFZQ31IblrC1L7t2ef20kuowt/EMF1tyGw+iZuyphCGGApMGkaSB9uRXLHM7BHBrIfKgpgX+WPx4U/BlJmJzmrb0Jgzc3ceUolZ/Z2ILVrC4wTe7PPYy4Tn0ueb615HgLr74A2axEnOVRS0sggffgVpHZtgYwPZz+81vMrxOh7qYTwBeBfczP8KzdDCbCgJ5WW0XUGyR3PZE+0AI7HXr1lMYLX3Qlt5nyOvVRSdiaF9P7tSO7aApmMZT+85tj76s9FIITgutuyYy/T4FKJGR2nsmNv26HsB7mMvZd8R5+3HMH1dzAdGJWcnUogtf/F7Lw3nQQgRue1OY69oSiC629HYPn1ENz1TyUkpYRx7hiSrU/DOHss++G11suAS55fAd/CVQhtuBNaA2sTU2nZiRiSe7citft5yExq7FrulVwy9iqRKgQ33InAso0Quq8EPaZSYoClSKS0YQ30wOxsg9nZBqP9ZLY43WVEMAKteR60uiYo/gD8KzYz5ym5zk4nYHWdhdl5BmbnaZhdZ7KpQC6lKFDrmqE1zYUSCEBfdB13/JPrpG3DHuiG2dWWfX47Tr4a7L6ECEWhNc2D1jALSl0T9KZ5HHvJdXYyDrPrTHbe0HEqO/Za5tgvKSq0hlnQmufBrp2F0Mx5UCMshkjukrYFq68z++x2tsFsP5ktDHoZJVIJrXk+7LoW2PUtqJrZwpOu5Do7EYPZ1QbjfBvM86dgdp8bP/aqGrSGFujN89AZrMecxUugcjMcuUxaFqzejuy429kGs+NUtsbbZZRoNfTm+UhUz4TSOBu1M1sgFJ50JXfZ8WEY50+PzntPwuxuz6bAu5SmQ2+cDa15HnrDMzBr0WKoQW6GI3dJy4TZ0w7zfBuM86dhdJyETIyM+55SWQt95nxYdS3QZ8xFqLGJWQamMAZYSkhaFqRlZBeqFRVC0y8W77Q6TyH94s/gv/ktUOsZiSdvkdIGTDP7/EqZfW5V/eLE3Nj9OBCIQFuyiX8wyHOkZb76/KpaduwdDabYqRis4V6o1U1QWMiePObi2GtmUzAJzQdo2sVxtns4AZ+qojLk48kV8hxpjT67ljlu7G0fSuJEXxzrZ1Yh4mdwm7zl1bE3A0Bk572jY6+UEt/f3Y4FtSHc0FLNsZc852pj757zQ9hzfhivXz4DlQHd5Z4SjZUdew1Iw8jWp7hk7LWlxM8PnMfiughWzODGIvIeeWG9wTKza2WaDqFmNxF1DqcwkMxgQV0EPpXrZVMV/5ctIaGqUHwBKKEolEDoYnAFAOyhbsC2kN72P7AHu13sJdF4QigQug9KIAwlGIHQ/ReDK9K2IBPDkH3nYJ3cBcZsyWuEqkH4R8def3DMSRVpZAApYQ10ji5iE3nHxbE3eGHs9V0MrthSwrIlkoaJkRSfXfIeoWpQ/MEJx95YxoRpS+zpGELKsK5yFaLSe3XsjUAJhseMvQnDQtqycbA7hr2dwy73lGi8q429fXEDScPGrw93I8GxlzwmO/b6oYTGj72xtAlbAod7YjjeG3e5p0TjCe3SsTdwMbgCACnTgmFJnOqLw7S5XjZVMcDiEfZgT/b/YWaQeuGnsOODrvaHKFcyOXIxp6TdeQL22YMu94god9ndqQCkDXOgM3vahagMmNaruarjaQMxBlmojMTS2bE2bdnY3TEEw8qz0C1RifUlXh1rd7QP4WhPzMXeEDnTl8jOe4fTJn5zuBsZk2MvlYfBS+a5e84P4dxg0sXeEDmTHA1op00bp/vjsLkpeUpigMUj7KFLTq2k4khv/SlkipF58j55WTDQOnsA1vnj7nSGyKGLARYAsE2Yg12Ql+f+JfKgyxekR1IZJDMMEJL3SSkRS786ziYMC3s6hmBxRx+Vgf5EZsy/X2jrR9tAwqXeEOXOtOWYRereRAaPH+vh2EtlYSg5diPRy+cG0B1Lu9QbotyZtg3DenWcTWQsnBlIMPPLFMQAiwdI04C8rAizjA0g9fxPINOcsJO3XR5gAQDr5E5YXSdL3xkiB6RtjS+kaGZgDXRB2tzRR9420Y7/wUSaQRbyvKRhw7rspXI4bTLIQmWhPzk2wCIBPHOyF2e5m5o8biCZweVDbPtwikEWKguDqbHzWymBbaf70cMgC3lcyhj/zjacMnFmIMkgyxTDAIsH2CN9yE7Px5LDvUg992MGWcjTZHxows+t462wuk6VuDdEuRtzemXM5+lsTRYGWcjDzCukVGKQhbwufoXnczBlYM95BlnI2waS49Mx2hJ46kQPgyzkaf2JiVOJnhlMMshCnjc8QSpcS0q8wCALedyVag0OpQwGWaYYBlg84PLTK2N+NtzLkyzkaTI1csWfWcdfYZCFPOtqRe2lmYY1yCALeZOU8ooBFoBBFvK2qxVWHkwyyELeZUuJ4fTEY+uFIMu5IQZZyJuGrlKrjUEW8jLDspG6Qr2gi0GWOIMs5E3pq9S6GkoZODPIIMtUwQCLB8jYlQMsACCHekaDLJywk7dI2wKuEfyzjr8Cq/t0aTpE5IR19aLg0mCQhbzJlhOdex2LQRbyqqsFWIBskGUvgyzkQbG0iautgdgSeOo4gyzkTUOpq88Jzgwm8QSDLORBsWvMZy8EWXoZZCEPSl9lUxyQrS90lkGWKYEBFg+wrxFgAS4EWX7MIAt5ikzFcvqedexlBlnIc6R57cVnBlnIi6wcn8fBRBopBlnIY5KZqwdYgGwaJgZZyGuudHrlUhaDLORRVzvBckEbgyzkQbH0tecNli2xlUEW8qCMee3nd5BBlimBARYPuNYJlovf40kW8ppkbgEWgEEW8h55jRMsF7/HIAt5jOngWRxgkIU85lonWC5gkIW8ZvgaJwAuuBBkaWeQhTxCSnnNEywXtA0m8eRxBlnIO651guUCy+ZJFvIWW0pkrNzGUgZZyh8DLB5gxwZz/q4c6kZq608gM5ywk/tk8sr1VyaSDbK0Fak3RLmTUl4zRdiY7zPIQh5i5ThRv2AgkUbKYJCF3GfaEplrpEq4FIMs5CXD6dznDZYEnjzeyyALeULCsGA6GEdPDzDIQt4Ry+H04AXmaJClL54pYo+IcpO5Sv2ViTDIUt4YYHGZTCcBI+WszWA3Us8/zCALuS7XFGGXso69DKuHQRZyme18sZlBFvIKJydYLhiIM8hC7kvmeHrlUgNJA/sYZCEPyPUEwAWWlNkgy7Czdz2iQnP67AIMspB35HqC5QLTlth6uo9BFnKdk01FFzDIUr4YYHFZLvVXJiIHu7JBlmsUGCcqJqcnWEZbwTrKdGHkLmnmvgt1TLuLQRbni4REheJkF+qlBuIsfE/uyifAAgD9oydZ8n32iQohlxosl7OkxJPHWJOF3DWcQ/2ViVwIsnDsJTflUoPlcheCLD1MF0YuSjs8wXIBgyzliQEWl+Vaf2XCtoNdSD37A9jxoQL2iCh3+ZxgGW2ZPcnSfqSg/SHKlbTyX2SWRhrmQOekrkGULyklrDx2Q10wmEgj4SDNDVEhJSYR4BtIGtjdPpjXbkCiybJs6ShNzZi2UuKJ4z040RcvcK+IcjOYxwmWC04PJPGbw12OU90QFULGsvP+u2/aEltP9aFjmAFucke+ARYgG2Q53Z+AzQB32WCAxWX5nmC5QMYGkH72B7CHegrUI6LcSMsEJpmmzjq9B+bpPYzMU+nleYLl1fYZmAPn8z4JQ5QvW0pMdsQcSmYwkspw7KWSy7XA/ZUMp03sPDeI1CSvQ+RULGNOauyVEthyqg8HuvI5/U00OUN5nmC5oGMkjV8c6pr0GE7kVL6B7QtsCbzYNoDT/cz8QqWXMSc3Zo6kTZzsi+eVHppKjwEWl03mBMvFa6RiSG35Iaze9gL0iCg3+Z9eGctuPwLr+CuQkn80qHSkgwL3V2SZMAc6IA0ePafSKVQu9FjKwHCSQRYqrXxThF0qYVjY0T6IONPdUQnlU8NiIi+dHUDruUGOvVRSwwV4fnsTGfz8QGfe6caI8uG0/sqV7GgfxJGeEY69VFLpApy6ThgWTvTGeYK7DDDA4jI7NliYC1kWzLZ9LL5MpZNX/ZWJyVg/5HBfwa5HdC0FCbAAgC1hJ2OcrFPJmAWcXGcsGwYn61RChdr9bFoS54dTHHupZAq5qNwxksIgF6mpRKSUBQsQpkwbx3qZ6o5KJ5/6K1dyfjiNOE9hUYnYUsKwCjNPNW2JoSTnDV6nud2B6UxKOekTLEpNM7Q5K6DOWgLhCxSoZ0TXNukTLJoPSv1sKA1zIcLVEEIUpmNE1yClBCZZP0XoASjBCIQ/DKFwrwKVzmQLzSoCCPo0BH0adFUtUK+Irs207Em/aFYHdTRVBFAf9kNVOG+g0smnwP2lgrqKhbVhLKoNoyqoF6hXRNcWz1iwJhGMFgBaqoJYXBfGnOoQNI69VEKTPcES1FXMqQpidnUIUT+XP6l0ClG3qiKgoTroQzSgQeF6medxhHGTkQbMTN7N/Xf8DtSapgJ2iCh3Mp1/HlOlbjbURRshFC7ukQvsye1c0mpnQmi+AnWGyBlrEidVQz4NFUEfA9rkitQkXjQVAdwwuwZBnfMGcsdkUtKtbIxiw6wqLo6QKyazQO1XFbx1dRPCPi4bkTuSmfzf25Y1RLGsIcJ5L7liMim9dEVgUX0EmsqNnOWE/2u5aLInAORgd4F6QuScTOdf4N6O9QGCww+5Q07y9IqcRGCcaLLsSZxgKcROKqJ8pSfx/NkSSLDmCrkoPolFvt54hsEVcs1knt20ZWNkkqe3iCYjOYki4QPJDIMr5JrJnNo2bAmjQHU3qXS4wukimZxcgMU8va9APSHKQyb/AAtSccghBgjJJZM8wWIXsP4QkVOTSfNh2qy5Qu5JW5MbezuGUwXqCZFzk6kf1BlLY4g1V8glkwmwAMDhnkmmhSbKk5QSycmMvSPpSbUnmozJvnMNJLips9wwwOIiOclFOnugEzZPsZBL5GQCLADsrpMF6gmRM9Ke5AmWTArS4kIJlZ6UEtYkdzMleQqAXDKZEyxA9hQAT2GRGyxbTirFHQAc5SI1uWSyAZYTfQmOveSKjCUx2U38bQP5pzUnmgxzEmmdAWAgYcCexMY6Kj0GWFwkU/FX/6FoUFuWQVu0wdE1eIqF3CBtGzBe3UkqQpVQ564B/KGcr2H3tUMa6WJ0j+jqLt1FLQREIAIlWOHoEjzFQm64fI6tq8poTZXcr5HMmJyskysuDbCoikBzRQBNFYGc20sA50d4ioVK7/Id0PVhHzbNrnZU7PtYX3zSAXKifCSMVzdW+FUFyxsiWFQbzrm9aUsc74tf+4tEBZa6bOytC/mwtrnS0bz3VH8CkvNecsGlKcJURaAu7ENFIPd6VpaUGEpyU2c5YbUyF8lkDErtTGhzVkCdtQRC90NaRjZokuPCs3nmIPRVt0KoepF7S3QJIwVoPij1c6A0zIUIV2Xzm1omrLMHcruGtGH3tEFtXlzcvhJdRtoWhB6AEoxA+MMQigJpW6NBk9wm4HYyBiVczby+VFKWlFCEQNCnIujToY8WPrRsG/Ecc6RLAKmMiZCf8wYqrYxloyaoY0ZFAPVhP1RFIG1a6BxO5TjyZtOEza4KcuylkoobFkK6ioW1YSysDaMqmB0/+xMZHO3NbeE5Zdo4O5TE3OrcNyMRFULCsDG7KogldWHMqQ5BVQSGUgaOOQiaHO6JYXljtIi9JBovaWbH3jnVQcyuCiHizy5f9sTSaM8xbWjCsNAdz6Ax4i9mV4nGMW2JioCG6qAP0YAGRQgkMhaGHdTiHkhkUB3yFbGXVEhCMpzrGmmkIfTxA31m15MwT+7O+Tq+6+6HNndlAXtGdHVytIaFUNSxn6fjMFp/lfuFglHo6+7nQgmVlLRtCGX8AU5zqAfSwYRHrWyAEsh9ByDRZF2Ysl0+ZhqWjd6R3NM26qqC2kiAYy+VlGnb0CYYe/eeH0JvPPc802ubK1HDl00qIcOyoSpiXKH67lgavzzclfN1mqJ+PLCksdDdI7qqjGnDp40fe39xsBMdI7lnE3jTihmo5yI1lZA5OvZePl/tHEnhhdP9OV+nuSKAzXNqCt09oquybAl1gpOuR3tGkDJyTx+2uCGCgKZe+4vkOqYIc9FEwRUA0OatdnQd4/gOHnukkhKKOi64AiB7GqB6Ru4XSo5ADnYWsGdE1zZRcAUAlGDE0XXsxHAhukOUMyHGv2QC2YDJhdMsuTAsFrun0psouAJkFz6cODs4uRpwRE7pqjIuuAJkU4VVB3M/DXh+JI1+Fq2lEpsouAIASxuczXv3djI9LpWWpioTznsbI36E9NwXnDuGU4izBiGV2ETBFQCodbhJqC/GeUO5YIDFg5SqBijVue9ukkM9sHvOFrFHRLlTG+c7+r7VfrRIPSFyRugBQM09c6Y0UqwjRJ4R8jnL+hpPM6cveUNNyAefgwBhXyLDhRLyBCEEFtc5O8l6oIuL1OQN82pCjsbek/1xjr3kCUIIx+kWj+eYzpGo2Koc1s/sT2Zg2twYVw4YYPEoda7DUyzHWovUEyJnRHUTcIXTWRORQ12w44PF6xBRjoQQUILO8ktbiaEi9YbImYBPg5OEXynDgslTLOQBihCOit0DwDmeYiGPWFAbhoNa9zjRH0fyssLNRG7QFAWLHAQIbQns5ykW8og5DgMspwcSPL1NnqAqAlWB3E+/Sgn0O0ilS+5hgMWjtJalgJb7L53deRL2SO55KImKRSgqlIZ5jtrYHceK1BsiZ5SAswCLTMUhLe7mI/cpQiDo8BRLIsNTLOQNTtOEnR9JcaGEPCGgqY52UtsSONTNRWryhmUO04Qd6o5x7CVPCPlUzIjmvqnTtCVO9SeK2COi3DmtJdgbz8BmWQjPY4DFo4TuhzZnlaM25vEdReoNkTNq00LAwV5qu6cNMpMqXoeIciRUFSLAWixUnsL+3DdmAEAibXKyTp4Q1FXUh3N/2bQl0D7EeQN5w4pGZ5szDvfEYNoce8l9tSGfowB32rJxlKmWyCMW1jl7ZzvRF+e8lzwh5FMRdFBHyLQlhpLcGOd1DLB4mLZwvaPvm20HIDNMmUDuE/4QlLqW3BtIG1bn8eJ1iMgBNVTh6Pt2cgRScjcfuU9TFfi13CfrEtkgC5EXtFQ5S/dxbijJhRLyhPqwH42R3HdSp0wbJ/u4SE3esHqGswDhvs5hSI695AENYR8qArmf3k4YFjqGuTmD3CeEQJ2DjUUA0BtPc+z1OAZYPEyJVEFtXpR7A8uEeWpv8TpE5IDSvNjR9+3OE5A2c1KT+4Tuh/A5SFcjbdjJWPE6ROSA81MsBifr5AmVAQ1Rf+4LJRnLRncsXcQeEeXO6SmW/V0jHHvJE2ZXBVHlYJF6KGWijXWwyAOEEFhU6+wUy7FevrORN1QFdegOirglDRvxDNfLvIwBFo/TFl3n6Pvm8V1cpCZPUKI1ENG63BsYadg9bcXrEJEDSqjS0fftxBAXSsgTfJoCzcFk3ZISKRZcJg8QQqClKuiozdnBJMde8oTZVUFEfLmfIBxMGdxJTZ4ghMDKGc5Ob+/rZHpc8oaWqiD8Wu7Lmv0JA/0JFgwn9wkhUBvO/fQrkD3FQt7FAIvHKbUzoVQ15vx9mYrBOnekiD0iyp3q9BRLx1EulJAnCF8QUB2cBLBMpmgkTxBCOD7FEk8zpy95Q0PED7+a++vJSNrEYIrPL7lPESKvUyxEXrC4Luxo7O0YTqM3zkVqcp+qCMyvCTtqw1Ms5BU1YR9E7vviMJwykTa5Mc6rGGDxOCEEtEUbHLUxj+3gIjV5gqhtBvy5T3hkYhhyqKuIPSLKjRACitNaLPGhIvWGyJmgT4ODQywwLBsZTtbJAxQhMCuPUyxEXrCoLgJdzX3wbR9OYZBFa8kDdFXBskZnqZZ4ioW8Yn5tyNG8t30ohUSGNQjJfZoiUBN0WouFwW2vYoClDKizFkMEc5/w2INdsHvPFbFHRLkRQnFWRwiA1X60SL0hckYJRgCR+59JaaQgDR7bJfcJIRDiKRYqU80VAUcLJb3xDBdKyBN8qoLFdc4Wqfd3cZGavGFlY9TR2Hu8L444x17ygICmYnZVKOfvS2SfXyIvqIs4C7AMJDIwbbtIvaHJYIClDAhFhbZgnaM2xqFtReoNkTNKwzxAzb1wohzshD3SV8QeEeVGCAVK0Fm6Dys+WJzOEDkU8jkLsKQMC4bFyTq5T1cVNFUEHLU5PZAoUm+InFneEIWDNWoc74tjJM1FanJf2Kc5SrVkS2BXBwOE5A0L65ylCTvZl2ANQvIEv6Yi6s99vcyWQG+Mp1i8iAGWMqHNW+1okdruOQur+0wRe0SUG6HpUBrnO2pjte0vUm+InHGaJkymE7B5ioU8QFUEgr7c5w0AEEtxsk7e0FLpLE1Y50iaO6nJE6J+DXOqc99JbUtgdwdTjJI3rG5ytrHoUPcIA4TkCZUBHQ2R3AuGW1LiSA9rsZA31Dt4doFssXuTG+M8hwGWMiF8QWhzVjpqYxzYylos5Alq0yLAwX4+OdQFe6i7eB0iypFQNYiAsx1RdmygSL0hcsZpsfuUYcFgLRbygJBPQ13IWcqEU/08xULesNJhsfvjfXEMpZimkdxXH/ajKZr7Qp8tgZ3tDBCSNyxyeoqlP45EhvNecl/YpyKg5b48b0ugO8ZNnV7DAEsZ0Raud/R9u78DduepIvWGKHciEIaonemojXVmPwOE5AlqqNLR92UmCTuTKlJviHKnqwp8DibrADDCRT7yiBaHxe67Y2nupCZPaIj4UR/OPUAoAeziKRbyiFUznJ3ePtITY4CQPKEx4necaulwz0gRe0SUGyGE41MsffEM0zt7DAMsZUSJ1kBtXuioTeYgT7GQN6gzlzj6vhzuhRzsKlJviHIndD+E7qwegB0b4NhLnhDxOzsFkDYtZHiKhTygKqg7WigBgFP9LFpL3uB0kfpkfwL9CaZpJPfNqQ6iMuCgfiaAHecYICT3CSGwuC7iqM3p/gRiTDFKHlAZ1KErDrK+AOge4SkWL2GApczoy2509H052A2r41iRekOUOyVaC1Hd5KiNdWYfF6nJE5RItaPvSyMFyVMs5AE+TYGuOj3FwkU+cp8QAvNqcq9lAQC98QyGuZOaPGBOVRA1QWdpGnmKhbxAEQIbZlY5anOsL44BBgjJA2ZXBxH2qTl/XwI43MVTLOQ+RQg0OEjRCAD9iQwyJk+xeAUDLGVGqWqAOsvZSQDj4AuQkr905D51trM6QjI2ANnfUaTeEOVO8QUgfM7S1dhxnmIh9wkhEA06O8WSMW2kDZ5iIffVhnyocLCTGgBO9vEUC7lPCIH1M52lGG0bTKI3zkVqct+C2pDjAGEra7GQByhCYHmDszpYbYNJbs4gT6gO+eBTnZ1i6YpxU6dXMMBShrKnWBz80g33wTp7pHgdIsqREqmGqJ3lqA1rsZBXOD/FkobMJIvUG6Lc+TU1j1osGY695DohBObXOCta2580MJDkIjW5r6UyiDoHtVgAYGf7YHE6Q+SAEAIbZlU5anOyP8EAIXlCS1XQcYrRQ908xULuy55icZaafCBhIM30zp7AAEsZUipqoc5e5qiNcfAFSJunWMh96uwVjr4vE0Owe88WqTdEuVN0P4TfWboai7VYyCOiAWeLfIZlc7JOnlAT8qHK4U7qk30Jjr3kOiEErmt2dorl3HAKXcypTh4wtzqIupCzucMr5waL0xkiB4QQWN7o7BTLuaEUhpI8xULuqw7q8DvcGMd5gzcwwFKm9GU3AiL3//lkfBDWmQNF7BFRbpRQJZT62Y7aWGcPMM0deYIadnaKBWYGMp0oTmeIHPBpKvxa7jmpAWAkZXCRmjzB6SmWoZSBAS6UkAc0VwQwI+Isp/rOjsHidIbIASEENrZUOWpzZjDJhT7yhJkVAVQ6TDF6gKdYyAOEEGh0WItlMGkgxfTOrmOApUwpkSpoc53VszAObYO0zCL1iCh3assKOElzh+QI7O62ovWHKFdC90H4nS308RQLeUU04OwUgGnZnKyTJ1QFddQ63El9oi/OsZdcl08tlvMjabQPM6c6ua+lMoBGhwHCl88Ncuwl1wkhsKKxwlGb88Mp9CeY5o7cVxnQEXB4iqVzhPMGtzHAUsa0pZsAJffdqDIxAvNYaxF7RJQbEYxCaZjrqI3Vtg/S5G5Ucp8aqXLWwDJgJ7kjitynayoCutNTLKzFQt4wr8ZZisaRtIlO7qQmD5gRDaC5wllO9ZfPDsDm2EsuE0Jgo8NaLB3DKbQNsAYhuW9G1I8ahylG93QMcd5LrsueYnE2bxhOmYiluaHeTQywlDElVAFt3hpHbYzD22EnhovUI6LcqS3LHaW5g5GCdfZg8TpElCOh+SACEUdt7NgApM2TAOS+iMNaLJYtEUszuE3uqwjoqHdYMPxEXwwmaxCSB6x3WItlIGngUHesSL0hyt3MSucBwm1n+jn2kuuEEFg+w9kplv6kgbZBBgjJfRUBDUGHG+Pah5IMELqIAZYypy+9AVBzyy3ZNTiCQ6fbcfaZ/ylyr4iuTQTCUBrn5fTddMbAkTMdOPDi0zBHBorcM6JrU8NVY/4djydw6OhxHDt5auJJjbRhjfRf/GcsFsOWLVvw8MMP44UXXsDwMAPfVBq6quQ8WU+lUjh29Ah27d2PjMEdUeS+eTnWYpFSoud8B44ePoydx88WuVdE19YQ8aOlMpjTd9OpJDpOHcOvXtyJRIZjL7lv46zcAoRSSvR3tuPI4cN47uCZIveK6Noawj7U5bg5I5mI49zJY3h8+26kTW6MI3cJITAjx1osUkq0n23DwYMHcbKjp8g9oytxVvWJPEcEwtAWrIN59JUJf37wbCf+7w8fw8vHzuB8f3YBT1EE/uUfzuEjf/IXpewq0TjqrOWwu08DE+zstywbn/+vn+NnW17GvhNtMEYnOYvm/hP2HT4Gv99ZPmCiQhKajoQl8Ff/39/iiWe34vCx47BHd+rdd8dt+MUP/n1cG5mKoa1vCH/wR5/Cr3/9axjGq6cCgsEg/viP/xh/+Zd/CZ/P2Q5tIqciAR+SxsS78zKZDL74+c/iiUd/gyOHDsI0s4t7a9auw84drVAU7s0h90T8GhojfnTFJk79dWDny/ivf/0iDu/dhaGBPgCApuv4zx/8CG9/8xtL2VWicdbPrMTZoYnH3nQqiUe++UXs3/Ys2k8ehRydU3z/+s3Ytf0FCOGgdiFRgc2IBjC7KogzV9jZf7h1Gx7/j6+i7dA+xIcHAQCaz4+f/uzneN0D95Wwp0RjZWuxRLHlZN+EP0/ERvCjr3wOe7Y/j/aTxy5ulPv+Pffj2cd/U8quEo0T8WsI+VQkMhMH/J578jH8xze+gkP7dmNkdMNmMBjCk089hRs3byplVwk8wTIl6IuvB7SJF+Q+/e+P4EBfCu//vY/hpz/9KbZt24Z7770PP/6v/2S6GnKd8AehzFgw4c+e230Q/+cbP8TKG27GF//5S9iyZQu+//3v49jps9j57OMl7inReP/1P7/E17/7fdx251345je/ia1bt+Lv//7v8dgzWzA4NPGJlL/5P3+JV155BZ///Odx4MABDAwMYP/+/fjkJz+Jz33uc/j4xz9e4v8Kmo40VUHQN/Eem6cefxT//Pl/xOYbrseXv/xlPPfcc/jGN76BPbt3Yd/+AyXuKdF4V6vF8rk//0Okh3rxyT/4OH7xi19g27ZtWLVyJf7zhz9mygRyXW3Ih7nVEz+/rU/+Ck/94Nt48K7b8I2vfx3PP/88/umf/gl7Xn4R+46fLm1HiSaw4SqnWP79r/8QYTuFP/3UH+FXv/oVtm3bhvlz5+Db3/9xCXtINLG6sB+NkYk3Zz7z8x/j6f/+Pl5339349re/ja1bt+L//t//iy1PPIr2XmbOIHdlT7FMnKLRNE38+cc+BB0W/uxP/xSPPvootm3bhpqaavzwp8xa5AYGWKYA4Q9mU4VNoGcohttvvx0PPvgg2tvbsXnzZtTV1cE2MjCP7ypxT4nGU2ctmzBA2N0/BAD4kz/5E9TX10PTNKxZk605ZJw7AmkxZQK5q7unFzU1Nfj4xz8OXddRU1ODxYsXA8DF0yyX6+3rw/r167Fw4UJ85jOfwQMPPIAvf/nL+LM/+zN87nOfw7e+9S20tbWV8j+DpqloQMdE+6F7e3qgKAo+/elPo7KyEsFgECtXrgQADCXTXKQm14V8GmZWTvyyOdjXi9/6rd/Cbbfdhs7OTmzevBkVFRVIGSZ64pkS95RovA0zK6FMMPgO9/ciEongk5/8JILBICorK7Fs2TIAwCsseE8eUB/2Y2HtxGkah/t78Za3vAU33ngjenp6sHnzZoRCIQwljSueeiEqpZVXqMUy3N+LhoYGfPSjH4Wqqqirq8OiRYsAAHvaBznvJddF/Bqi/vEb4zKZNGIjw/id3/kdbNy4Ef39/di8eTP8fj8SaRNxphgtOQZYpght4XUQkepxn6+dPxPf+ta3cNNNN+ETn/jEmEU/49A2yCSLJ5K7hO6HOnvluM9XLmiBqipYtWoV3va2t+HZZ5999YdmCta5Q6XrJNEE1q9fj46ODixfvhzvec97cPDgwWu2WTRvLn7961/jwQcfxL59+7Bw4UJ87Wtfw+c+9zm8//3vh23beP7550vQe5ruVEVBJKCP+3z5ylWwbRuLFy/Gb//2b2P79u0Xf2bbEnEWvCcPmF8Thj7BKvWiFavwt3/7t7jjjjvwV3/1V2N+dqw3BsvmQgm5qyKgY2Xj+IW+2UtWYGBgAEuXLsW73vUu7N69++LPBpIGjvbGS9hLooltml014dg7e8lK/Omf/inuvvtufPaznx3zs21t/Rx7yXVVQR0LJggQzlu2Cm1tbVixYgXe+9734vDhwxd/1pfI4NxQqpTdJJpQc2Vg3Ma4YDCEOfMX4iMf+Qjuvfde/PM///OYn7PgfekxwDJFCFWDb80d4z7/0offjP/+Xx/EH79x/M9gZpDZ/1wJekd0dcqM+RCXFQ1fMX82Wv/9H/Grf/oLVEfHT4bs9iOQyZES9ZBovNe97nV46aWX8N8//kHObf7q05/E1z7/GWx57JfYs2cPvvzlL6O2thbpdBqZTHZ3taaxPBqVRtivQ71soeS6jdfj8S3b8KOf/QK6Pj4AE0sZsK5wQouoVHRVwfwJFkr++svfwWe++X285m3vGveztGnj9ECiFN0juqo1TRUI6+qYz1bccAv+8nu/xCe/9L0J2+w4N4gUiy6Ty8I+DddNkCrsE1/8Hj76//4dG+993bifDaVM7OucOHUuUSktb4zCp45dAt1092vwmf94BH/yT9+asM2+80MwLc57yV1+TUX9ZWnuhBD4zs8exZe/92Pcfu8D49qkDBv9CZ7eLiUGWKYQdcZ8qE1j61n4dQ33rV+KBTPqJmxjnTkIq/dcKbpHdEVCKFDnrx/3+fL5Lbh742roEy04Sxvmqd3F7xzRVVx//fW47a57c/5+MBjA+975Nmxesxzp+Aje8Y53wLIsfOxjH8N3v/tdKIqCm2++uYg9JnqVEAKVwfEpGlesWoVbbrtjwoL2EsBwkpN1cl9zRWBcyoRwNIobbr8b9TOaJmxzZiCBBFMmkMt0VcH1LeMzD8xdtgpLN2yesE3asrGzfajYXSO6ppWNFagKXDb2VlZh1Y13oLK2YcI2O9qHEEtz7CV3+VQFK2dEx32+eM11WLru+gnbJE0bh3uY9YXc1xDxQ1fHboyrqa3DLXfdi+raidd7O4fTMLkxrmQYYJli9NV3AIp67S9eIrP7KUjJXzpyl1JRB6V+jqM2cuA87P6OIvWIKDdCTFTJ4uoMw8A7f/sdeOaZZ/Dwww+jp6cHf/EXf4GPfOQjmDVrVhF6STQxv67BrzubN6QMC2nupCaXCSGwuD7iqI0EcKw3zpQJ5Lq51UE0RScuunwlh3ti6GUtIXKZqgjcNLfGURvTlth+lgXDyX1zq0OoDo4/oX01R3tjGGGAkFymKALNFUFHbSwp0TmcLlKP6HIMsEwxSqQK2pKJo+9XIod6WPCePEGduxpQnaVHMk/uYsF7KiumaeK9H/0j/PKxJ/Hwww9jxowZuPfee7F69Wr84z/+o9vdo2moIjD+FMu1DCdY8J7cVxnQ0RSduOD9lfQlMix4T64TQmDT7OpxOdWvZduZfha8J9fNqgxiXnXIUZsTfQmcG2LBe3KXEAJrm8enubsaKYFdLHhPHlAR0BDxOVsv609kWPC+RBhgmYL0xddDhF4tntg1OIKzvWN3jIyk0jh8ruviHwnjwPOwR/pL2k+iywlfEGrLiov/tiwb+463wTDH/kE4eqYDQ7HRPOrpOKzTe0vZTaKLUqkU9u4d//ztO3gYqVQaXT09eOgP/gR3vP5teNfvfQInTrfhA5/4FH7+m8fxox/9CIsWLcJdd92Fvr4+fOYzn7lYh4WolDR1bMF7wzCwf99e2JcdKT929AhiI9naV6YtMZJiwXty34LaMLRLagl1n29HX3fXmO+MDA6ive3kxX8f6RlBhjnVyWXVQR+WN76arsbIpHHm6MFx32s/cQTpVHZhujeewf5O1iAk922eUw31klPcvR1nMdzfO+Y7I4P96O04e/HfW072IW1y7CV31YR8mHtJgDCdSuLMsUPjvtd29BAy6WyR+554Bqf6WceN3CWEQHPl2I1F59pOY7C/b8xnvT1dON/+6th7diAJ22aAsNgYYJmChKZnU4UB+OXL+7HgQ3+Lv//Jk2O+s/tkO677w8/jfV/8fvYDy0Sm9VGmCiPXKU2LIIIVsG0bmz74Z9jwvk9jYCQ+5jsf+sxXMef1v4sDJ88AAOzO47AHuya6HFHRDA0NYc6cObj99tvH/eyeN78TCzfcjH/612/hkceewsKlK/Dc9lYs23QHHn7k1/j+97+PlStX4s4770RXV/bZveuuu9Dc3IxDh8ZP8ImKLTJa8N4wDNy+aQPuvfVGGMbYAMqH3/durF+xGGfPtAEA4mkDGaYKI5f5NAXzarILJY/817/jt29dh1/+cGyh8Je2PIn33L0JX/+HvwYAGJbEke4R7kYl161rqkRQU5BOJvDnb7wVf/e+14/7zhf/4L341IM3XFy83tkxiAHWwiKXRf0a1s3Mbup87D++hv/9plvw8mM/G/OdnU/9Cv/7TbfgV//2JQBALGPhxTPc1EnuWzkjCl0RGBkawO/fdz3+5kNvH/edv3zfG/GRBzYjGc/WYNnbOYwYTwKQywK6irpwNvvAlz/7f/HgjWvxzGO/HvOdn//ov3D/9avwX9/6KgAgY9noHEmVvK/TDQMsU5TavBBKwxz8qvUgVq9ejdbWVrS2tkJRFPzt3/4tWltb8Rd/8Rf42fZXd17b/R0wj7a62GsiQCgK1PnrcLKjG3uPt+Gb3/wmWltb8YEPfADz58+/+Czr/gAe277nYjvz+CuQJndTU+ls3boV3d3deOKJJ9Da2oq77roLd955J1pbW/Hkk0+iu7cPP3nkl2hpacF3vvMdLFmyBADw1re+FW95y1ug6zoeeeSRi8/0hTH60Ucfdfm/jKYjIQQqgj4cOrAfp06ewA9+8AO0trbi7W9/+5h5RDKRwHPPPH2x3SBThZEHzKwMIuxTsfWJX+Pee+9Fa2vrxbH0G9/4BlpbW/HQQw/h+cd+ebFNTzyDrhjzUpO7fJqCDbOqcOrAbgx0d16cFzz44IPYvHkzWltbsXXrViSGh3C49UUAgC2B5071cTcquW5NUyUq/Bp2P/so3vSmN6G1tRUPP/wwAOD73/8+Wltb8Y53vAO7nvnNxTZHeuJoG+BJAHKXX1OxvLECh3a8hOGBfjz99NNobW3F7bffjnvuuefiPGKwtxuHd70CALBsiR1nmSqM3NcYDUBTBJ789SN497vfjdbWVnz3u98FAPz85z9Ha2srXvva1+Kp3/ziYpveeAYx1hIqKmfJ26hsCCHgW3Mnaiu+iva9+/CFL3xh3HdOnDiB2mh4zGfGwRegNs2HUlFXqq4SjaNUNaK6ZSFUVcGPfvQjPP300+O+k0qlUFf1aloFpBOwTu2GtmhjCXtK01ldXXac/OpXvwq/f2yh2nQ6u2h3tv08brntDpw+fRrbtm0DAGzfvh3vfOc7J7xmOp2+eF2iUvNrKhrr6wEA3/ve91BVVTXuO7Zto6a29uK/LVtiJJVBRdBZsWaiQlKEwOK6CCqra3F4b+uE8969e/eioqZ2zGdHe2KoDurwa2qpuko0zsLaMGY3NQIAvvWtbyEcHvt+ZlnZk4KRquqLn/UlDOzpHMY6h7UEiApJUwQ2z6lGpKoGe/funXDs3blzJyKV9WM+e+5UP94a8SOgc+wl98yvDaGpIftsfuUrX4HPN7YmYSqV3fEfra65+FlvIoPjfXEsqouUrqNEl1EVgaaKAKpqatHaOvG898CBA5i/bOWYz84NJrCoPgpVcVoBjnIhJMOvU9qpJx/GX33mH3GmZ2DczwI+DR++/0bcv37ZmM9FVSMCd7wTQuGEh9wj0wl8428+hZ88+QIse3zqulULZuNvPvR2hINjc1Bqy26GUtNcqm7SNCalxN/93d/hmWeeGf8z08DGtSvxj1/6Kr7yla+gtbUVv/7lL/Cz//gW/t9Xv4Xevr7xFxQqVq+/Dp/5zGcQCjkrHEpUKKZl47Nf+Cc8+utfZqt6XmbVmnX40//9f8a9hNZEAlykJtc98nwrvvjZz2DwsjoAABCKRPD2hz6KFeuvH/N5bciH1U0VEIIvm+SevkQGv/dnf439L26Z8OcLV1+H1//uH0FRXk1AIQTwW0tnXEwVQuQGKSX+9ZFn8W//8gXEh8avOYSilXjgvR/F7KVjF/oW1oZw18L6cd8nKqWeWAof+/T/xsEd2yf8+aobbsabHvr4mDmCIoC7Ftaj4pL6hUSlJqXEfz+xBf/6xS8gNjw87udVNbX43U9+GguXjF3vrQn5MKsqWKpuTisMsExx0sgg9eR3IBPjf+GuRl9+I/RlNxapV0S5sdqPwDq959pfvJQegL7uPgidu6nJPdK2kOw8jYXrb8T5rm4AwL9+7u/w0Lt/+6rtlEgN1DB3o5K7RpIZxNLOUi6qikBdNAiFi9TkorRp4aUzAzAdpk5a2hBFc0Xg2l8kKqLtZwZwsNtZAfuqgI7XL5/B3ajkqqGUgYf3nXc89t6zsA7za8PX/iJREbWeG0DbQNJRm+qgjtsX1HHeS65KGhaO98TgdFF/Xk0IUQYIC441WKY4ofvgu+5+x+2MQ9thD7BoOLlLaV4EEXWYLslIwTq5qzgdIsqRUFQEambgxcd+jv/82pfw5H//AB981zuu2c6ODUCaLFxL7ooEdGiqsymiZUuMsOgyucyvqXml7TjWE0PKsIrQI6LcbZiZrWfhxGDKwM6OoSL1iCg3lQEdN7RUX/uLl3n+dD+SHHvJZWuaKhHUnc17B5IGjvbEitQjotwEdRWNUecbi88NJmGxjlvBMcAyDagNs6EtWOeskbSRbv0NpMUiSOQeIZRsTRWH6ers3jOw+84VqVdEuVECYcycuwBve8NrceuNN+SYfkbCGu5l8URylRACVSHnk/VExkSaCyXkshlRv+OUSZaUONQ9wrGXXKWpCm6ZVwun+6H3dw6jO5YuSp+IcrWiMeL4JGDKtPHcqT6OveQqXVVw3cwqx+0Odo9gKOnsxDdRodVH/Ag6rGdl2BIdQ85ObdG1McAyTegrb4EIVzlqI4d7YRx6sTgdIsqRCEahzl3tuJ15YgdkJlWEHhHlTo3WOA4QSiMNO8HdqOQuXVXyOjo+mEjD5kIJuUgIgaX1UegOUyYNJA20D3PeQO5qjPixckbUURsJ4LlTfTCt8TULiUpFCIHb59c6HntPDyRxvC9epF4R5aYxGsC8Gmc1MKUEXjk3AJsnAchFQgi0VAUdb84YSBoYTjFAWEgMsEwTQvPBt+EBx+3MIy/D6msvQo+IcqfMWAhR2eCskZHOBlm40EcuEooKtcJhmjuMpgozuBuV3BX269AdpgqzpcRwgqnCyF0+TcGSBmeL1ABwvDeGRIant8ld65qrUOUwwD2cNtHaPlicDhHlKOrXcOMc56nCtp4eQCzNsZfctXpGBUIOTwIMpUwcclg7i6jQArqKGXnUEjw3mOTmjAJigGUaUetmQlu80WEricxLv4RMJ4rSJ6JcCCGgLdwIKM7yUsv+dtjnjxWpV0S5UfwhKEHnC33mUDekzQkPuUcIgco8UoUlDROJNHdEkbsaIn40RJw9v7bMpltiXmpyk6YI3JpHqrCD3TGcHuA7G7lrSX0Es6uCjtpkLBtPHu/l2Euu0lQFG2ZVOW53uCeGzhGegCV31YV9CPucBQhNW+LMYJKbkguEAZZpRl9+E0S01lEbmRxB+uVfQ0ou9JF7RCAMdd4ax+2s03tgD/cWoUdEuVMiNY4DhLBMWMM9nPCQq7KpwpzVswCAoWQGhsV6LOSuJfUR+ByewoplLBauJdfVhX1Y01ThuN3zp/owxJQf5CIhBG6dV+N47O2KpfHS2YEi9YooN/URPxbWhh23e+XsIBIZznvJPUIIzKoKIqeyr5eIpU10jTBzRiEwwDLNCFWDb+MDcPpbZ3efhnloe5F6RZQbpXE+RNUMZ42khHnkRUiDu0rIPUJRoFY6TxUm0wnYieEi9Igod2G/5jhVGAAMxFmPhdylqwqWNkQctzs/kkLHMIt/krvWNFWiJugsVZhhSzx9opcpP8hVYZ+Gm+c6TxW2r3MEJ1iPhVy2YkYUEYcnATKWjZfO9LMeC7nKr6loyiNVWHcsjRFuzpg0BlimIbV6BrQlNzhuZxzaBqvrdOE7RJSjbKqwDYDqsPByJgnz6Es8hUWuUnxBKEHnu1HtWD/sDAOE5B4hBKpCfsfpaixbYjCR5iksclVd2I8ZUeep7o72xDDCmgDkInU0VZjDmuEYSBrYdmaAYy+5amFtGHOrnaUKA4AtJ/swmORCH7lHUxRsaHEeIOxPGtjbyY1x5K7akA8Rn8PMGQDODCaRMbleNhkMsExT+rLNzouGA0i//CvupiZXCX8I6vx1jtvJwS5YZw8WoUdEuVOi1YDqfMJjDXVD2jx2Tu7RVAXRoPNUYWnDQpyL1OSyxXUR+DVnrz3ZeixDMHgSgFxUE/JhXXOl43bH++I42suTAOSebKqwWgQcjr2GLfHEsR6OveSq2pAPi+udn4A90RfH2UGegCX3XEgV5nRzhmVLnBlIMPvAJDDAMk0JRYV/4wOAcPgIZJLIvPQLLvSRq5T6ORA1zY7b2WcPwh44X4QeEeVGCAVqRb3zhraVDbJwwkMuCvk0+BwulADASCqDjMl5A7lHUxUsbYg6bpc0bBzqHuHYS65aNaMCdWHnAe7tZ/rRl8gUoUdEuQnqKm6ZW+O4XX/SwPOn+zn2kquWN0RR4Xe+MW5n+yCGmW6JXOTTFDRXOj9BmDAsnB9m5ox8McAyjSmV9dBX3ea4nd1/HsbeLUXoEVFuLqYK8zn/o2EefQkyzR195B7FF4ASrnLcTmZSsOODBe8PUa4upApzuiMKyNZjsZiXmlxUG/Khpcr5vKE3nuFuVHKVIgRum1cLXXU2+FoSePpEL9JM+UEuml8bxtI8TgIc643jUE+sCD0iyo2qCFw/uxqqw/rFpi3x0pkBmDbHXnJPdVBHZcBhan0AffEMBpPcnJEPBlimOW3heqgzFzluZ57YCfPc4SL0iCg3Qg9AW7IZcDjhgZmBefhFnsIiVynhKog8AoR2fBB2OlGEHhHlRlUUVIWcF0+0pcRgIsXdqOSqBbVhVAac70Y90Rfnyya5qjKg45a5tY7bjaRNPH+6j2MvueqmudWoDTlf6HvhdD964uki9IgoN5UBHetmOk/TOJw2sbN9iGMvueZCqjCf6nzZ/9xgEimD62VOMcAyzQkh4LvufoiI8yJemR2PwR7uK0KviHKjVNRBnbvGcTsZ64d1ek8RekSUGyEE1Mp6QFEdt7WGeiAtHjsn9/h1FZE8dkRlTBsjTJlALlKEwMoZFY5PAkgA+ztHeBKAXDW3OoQVjc5T3Z0ZTGJf50gRekSUG01RcM+ievgcjr22BJ441oM004ySi+ZUhzC3OuS43dnBJE71c2McuUdVBObUhBzvSbYl0DaQYPYBhxhgIQjdD/+m1zkvvGwaSG9/BNLgrhJyj9K0CErtLMft7PPHYXW3FaFHRLkRigq1ssF5Q2nDGuyGlFzoI/dE/Dr8mvMAYTxtIGWw6D25x6+pWNFY4bhdxrJxoHOYxT/JVRtnVqEx4nfcbkf7IDqYV51cVBnQcfv8OsftRtIWnj7Rx7GXXLW2uRJVeWwu2nN+CP2shUUuCuoqZuVRjyVt2jg3lOQpLAcYYCEA2XosvnV3O24nR/qQZtF7cpEQAurCjUDA+Y4+6/grsId7itArotwovgCUqPPin9LMZE+ycMJDLnm1HovzgiyD8TQM7kYlF9WEfJhX43w36mDKwJHuGMdeco2iCNwxvxYBzdlrvATw9IkeDCZ5ipDcM68mhNVNzgPcZwaTePHMQBF6RJQbVRG4YU41dIeFCG0JbGvrRzzDzUXknuqQDzUhn+N2Q0kDXSPcUJ8rBljoIm3OSqhzVztuZ3edhrH7Kb5skmuEpkNbutl5uiVpwzz0AmSSaRPIPUqwAsIfdtxOphOwY3zZJPcoikB12PlOagmgP56GxeKf5KK51SHU5vGyeX4khdMDTPlB7gn5NNw+vw5Ow9sZS+LxY91IMq86uej6WVWYEXU+d9jfOYJ9ncNF6BFRbiI+DRtanKfWT5s2Xjjdj4zFeS+5p7kygKDuPATQHUvzFFaOGGChMXxr74Socp6yxjy1F+bRV4rQI6LcKOEqqAuuc97QzMA4+DykwbQJ5A4hBNSKOkB1fuzcTgzBSvBlk9zj01RUBJ0vUttSoj+WYsoPco0QAssbo/A7PAkAAKf6E+gc4byB3NNcEcD6PAovxzIWnjjeA5MLfeQSVRG4e2EdgnmMvdvaBnCaNS3IRc0VASyuizhuN5I2sb2tHzZrWpBLFCEwpzoMh6WwAGSL3o+keQrrWhhgoTGEqsF/w+sA3fmuEmP/czDPHS5Cr4hyozbMhdI433nDVCx7koWp7sglQlGgVTUAjvejAvZIH+w0XzbJPSGfhoDuvB6LaUsMxFM8AUuu0VUFq2ZU5DHyAoe6RjCQ5I4+cs/qGRVoqQw4btcbz2DLKda0IPeEfRruWlif19j71Ile9MSYsobcs2JGFHVh55uLeuIZ7Ggf5LyXXOPTFLRUO0+RCwBt/XGkeAL2qhhgoXGUSBV8Gx7Iq23mld/A6msvcI+IcqfOXwcRdn50V470wTr6Mic85Bqh+aBW1ObV1hrqhjT4sknuEEKgMuSH6jAvNQBkTBtDyQzHXnJNRUDHonrnu1ElgH3nh5lXnVwjhMCt82oR8TkPcLcNJvHKucHCd4ooRzMrA9g4q8pxO9OW+M3Rbu6mJtcoQuD6luq8TsCeGUziUHesCL0iyk1FQEd9xPmGelsCp/rjMHgC9ooYYKEJac0LoS3e6LyhbSG97WesC0CuEYqarceST7qlvrOw2vYVoVdEuVGCUSjBqPOGUsIc7IK0+LJJ7lCEQHU4kNdu1GTGRDzNwsvknpkVATTm8bJp2hJ7OoaYV51c49dU3LmgDnnEt3GgawQHu1mHkNyztrkCs6uCjtslDRu/OdKNtMmxl9wR1FXckEc9FgA41D2CNtZyIxfNiPoRzmNzhmFJnO5PMNXdFTDAQlekr7gFSv1s5w0zSaRf+G/IdLLwnSLKgQhEoC2+Ia+2dvthWJ0nCtwjotwp0RoIzflCH2wrG2Rh4XByia4qqAzl8ewCGEkZSPIkALlECIElDdG8XjZTpo29HUOw+LJJLqkL+7F5dk1ebV86M4Azg3xnI3cIIXDnglpU+DXHbQeSBh4/1sOxl1xTH/Fj1YyKvNruaB9kqjtyjRACs6tD0PPYnZE0LJwZTDD7wAQYYKErEooC/6bXQUSdT9hlbADpF3/G3dTkGqWmGeq8tXm1tU7shD1wvrAdIsqREArUqkZAcf6yCTOTTRfGCQ+5JOjTEAk4P0EIAIOJNDImc/uSOzRFYE1TJXyq89ej4bSJg13DHHvJNUvqI1jZ6PwErATw7Mle9MZZT4jc4ddUPLCkIa90Sx3DKTx3qo9jL7lmUV0Yc/OoaSEl8GJbP4ZTPMFN7tBVBXNrw3mdgB1OmTg/nCp8p8ocAyx0VcIXgP+mNwF+53807L52ZHY8ygkPuUZtXgylaVEeLSXMIy/Cjg8WuktEORGqCq26ERDO/0zLTBL2CF82yT0Rv46gL48AIYD+eAom0y2RSwK6ijVNFVDzeNnsiWdwoi9e+E4R5WjjrCrMrXaebsm0JZ443oMYTxGSS6qCOu5bVJ/XQt/R3jh2dQwVvlNEORBCYN3MyrzSjBq2xAun+5Hi5iJySVBXMSfPove98Qx6eQprDAZY6JqUcBX8N74RUJ0vllhnD8PY8zQX+sg16rw1EDXNzhtaJswDz0EmmZua3CE0H9Sqhrza2skR2HHWwiJ3CCFQGfTBl8duVCmzQRaLqe7IJdGAjhV5pvw4M5hkXnVyzYWi9/Vhn+O2ScPCY0e7kTS40EfuaKoI4I75dXm1feXcEA528Z2N3KEIgRtmV6Mi4Hy9LGFYeOFUP2u5kWuiAR0zK51vzgCypwgHEjwBewEDLJQTtaYJvo0P5tXWPLELxv7nGGQhVwihQFu8CSKSRxE6IwVj/7OQqVjhO0aUA8UXhFqR38umHR+CFWOQhdwhhEB1KAAtj+2oli3RF2OQhdxTF/ZjcV0kr7Yn+uI4O8ggC7lDUxTcvbAekTzqCQ2lTDx6tBspBlnIJQvrwtg4qyqvts+f7sfhHr6zkTt0VcFNc2oRyGNz0WDKwNZTfTAYZCGX1IZ9qI8435wBAGcHkxhMMtUdwAALOaDNXAR99e15tTWPvgLj4AuF7RBRjoSqQVt2c16p7pBJwti/BTLNxRJyhxKMQglX5dXWjg/CYqo7comiCFSHA1DEZIIs3JxB7phVFURLnjv6jvXG0T7EwuHkjqCu4t5FDXnVExpIGnjsWDfSJhf6yB3rmiuwpD6cV9stJ/twrJepGskdIZ+Km+bWQs1jc9FA0sALp/uZJpdcMyMaQGWedTTPDCQwxHpCDLCQM9rC66DNX5tXW/PwdhiHtxe2Q0Q5Er4gtOW3AGoefzTS8exJlgwXS8gdSrgKIpDfbmo7NgArwdzU5A5NVVAddp6XGsgGWfpjSdgMspBLFtaF80q3BABHemIsAEquqQrquGthXV41LfoS2SALU9aQG4QQuGVuLWZWBPJq/8yJXpxkPSxySVVQxw0teWTOANCXyGBbWz9MnuAmFwgh0FIdREh3fgIWAM70JzAyzYMsDLCQI0II6GvuhDJjfl7tjQNbYRx9pcC9IsqNEqqEtvRGII/d1EjFsidZMlwsodITQkCtqIPQ83vZtEf6YSeGC9wrotz4NDXvIItpS/TFUwyykCuEEFjeWIGo33ledQA41D2CzhHOG8gdTdEAbp5bm1fb3ngGjx/rYcoacoWqCNyzqB7VQecb4ySAp0704jTrYZFLmioCWNtcmVfbnngGL7YN8AQ3uUIRAnNrQnmdgJUATvcnMJI2C9+xMsEACzkmFAX+G14LkWfxZWPfFhjHdxa4V0S5UaoaoS7YkF/j5DDMA1sgjXRhO0WUAyFEtuh9PqewAFgjfbCTLABK7gjoGiqC+Z0EMC0b/fEUbNZyIxeoisCapsq88qoDwKGuEXTHOG8gdyysDWN9ngt93bE0njjew5Q15Aq/puCBJQ157aa2JfDEsR6cGWT2AXLHgtowFtXll+quO5bG9jP93FxErtBUBfNqQ1Dz2JScDbLEEZ+mQRYGWCgvQvPBf+ObIILRvNobe56GeXJPgXtFlBu1cR6UWcvyaisTQzAPPAdpZgrcK6JrE4oKraoREPn9+baGe2EnWQCU3BH26wj58jsJYFg2+mMMspA7fJqCNc2V0PLItyQBHOgcRm+cQRZyx5qmCiyqzW+hr3MkjadO9MLkQh+5IOrXcP+S+rzGXlsCjx/twTnWwyKXrJpRgeY8U911jqTx0tkBznvJFX5NxdyaEPLI+wIpgVP9ccQz0y/IIqTkbyzlzx7qQWrLD4E8d/T7NtwPbc7KvNpKKSFtC7ZlwbZMwLYhkX2cBQQgsouRiqpBqCqEUCDySQ1FU5KUEtaxl2H3tOXVXkRqoK24DULL4+i6lIC0YZsmpGVAWiaktIELo7EQEIoCRdUhNA1C1SDyXFCnqck2UrAGOrMzmDyolQ1QAvkttkgpIUfHXdsyAWnjwlQiO/YKCJVjL01MSomBRBppw8qrvU9TUBMO5PVMSSkh44Owe9th97XD7j+fTftomYCiAKoOEa6EWjcLSu1MKDVNEHp+p25oahpIZLDn/BDyWWsWAFY3VaI2z5ou0jRgD3bDHuzMPruJYWB0/iBUDdD8UKoaoFTPgFI9AyJUwbGXLrJsiSeO96Ajz7pALZUB3LmgPq/izdmxdwj2wHnY/edhD3YDZhrSsiAUBVA1iFAllJpmKDUzoFQ1Zp9polFtAwk8fqwnr7FXUwRes6QBTXkudEsjA3uoG3KgE/ZgJ2QyBjk6/xWKBvj8UKoas/+negYQiHDspYtM28bWU33oS+RXm2JWZQDXt1TnP++NDYyOvZ2wh7oBM3PJ2KtDRKqgVDdBqWmCUlnPsZfGGExmcGYgvyC1IoD5teG8N9dJIw17oAv2QCfsgU7IVGx03iuzz6kvkM1Oc2HeG8yvXm0hMcBCk2b1n0f6+Z8Aee3oF/Bd/yC0lqU5fVtKCdsyYWXSkLbzxRlF06HqfihqfoWbaGqR0oZ1ZDvsvnN5tRcVddCW3wKRY8omaVuw0knYRtr5wriiQvUHoeh+TtoJAGBnkrAGuvBqZM4ZtaoRij+U03ellLBNY3Jjrz8AReHYS6NBlngaaTPfIIuKmnDuY6EdG4R55GWYZw4AF+poCQWQE6W9yW7QyI7RAqK6EfrijVBnL4Pg80sAeuNp7Ds/nNfIq4hskKUmlFuQRdoWrI7jME/tgRzqRXa8v/DcT9CDS59r3Q+1eTG0+WughPNLEUVTi2nZePxYDzrzTFk3pyqIO+bXQckxyGLHBmAe3wmr4zhgjt7zamMvAEBmN2pUNUKbvxZq80JuMiIAwIm+OJ463pvX2KsrAg8ubURjNLd6cNKyYHUchXV6H+RIX/ZDIa78/nbpc+0LZMfeeWs8seBH7jMsG8+f6sNAMr8gy+yqIDbMqsp93jvcB+P4DtidJwBz9J5XfH4vHXsVKNUzoC1YB2XGfK45EACgP5HBuTzTLapCYH5dGMEcUz1Ky4R19jDM03shYwPZD3Mde/0haLOWQpu3GiLPjaSTxQALFYTV14708w8DVh5/NISAb8NroM2+csqmC4t7ZiZ9hUm5w1uqGjSfH0JR+YdjmpO2DfPINsj+jrzai4p6aMtuvupJFtsyYaWThandIkQ20OIL8IWTYKeTsAYnEWS5xkkWKSVsIwMzk8r7tMylhKpB8wegcHfUtCelRH88hYyZ3990v6ai+hpBFnugE8ah7bDOHr4kaOKUACCBQAT6sk3Q5q+B0HiqZbrriaWxv7N4QRZpGrDOHoRxfBeQjuff0dGXUqV5IfQF66FU1ud/LZoSDMvGY0e70R3PL9Xt3OogbptXd9WTLPZAJ4xjrbA7T159YeSqRsfeYBT6og1QW5ZxZzXhaG8Mz5zoy6utTxV4YEkDZkSvfJJFGmlYZw9mU5lnJpNaLPv7ocxcBG3+OijRmklci6aCjGnjuVO9GErllzZpTlUQ62dVQbnCvFdKCbu/A+axVtjdbZMee0W4EtqiDVBnLuHYS+iLp9E+lN8JWFURmFcTRsh35SCLzKRgtu2HeXJ33tmRsrLZNNRZS7OBwkjVJK6Vx90ZYKFCsXrOIv3CT7OpNvLgW3cPtPlrxn1uWyaMVKIgi3uXE6oK3R/KHpGkaUvaFszDL0AOdObVXkRqsidZ9LG7oqSUMJOxwgRWJqAGo1B9ue3EoqnLTidGgyz5USvqoUyww842jSKOvRr0YIhBwmnOlhIDsRQyeRZQ9qkKqiOBcS+b0kgj0/oorDMHr7JbOk+6H74bXgtt5uLCXZPKUtdICge6RvJqKwCsbKpAfXj833Cr8xQye56a5Avm5TccDbQ0LYRv9R1MfTfNZUwbjx7tRm8ivyDLrIoA7lxYB+2y9yeZSSGz6wnYXacmsbh3Bb4gfOvvhdowp3DXpLJ0uHsEW07159VWUwTuW1yPWZXBcT+zOo7B2Lclvw2jV3Jh7J21FPqKm3POekBTU9q08NzJPgznWQB8ZkU2XdjlpwhlKoHMrsdg95wt/NgbCMN33f1Qa2cW7ppUlnpiaZzPM82oIoB5tWGEL0sXJqWEdfYQjP3PA7aFfDeNjjP6e6DOXQV92U0QJcpgxAALFZTVdRrpbf8z+svhnL7qNuiLNwIY/WUz0rAyxS4KKqAHQlA0RuanM2mZMA9thRzqzqu9CFVCW3ErhC948XpGYiTv34Wc76v7oQWZ63e6s1NxWHk+uwCgRmuhhCoAjI69mVTxx14hoAfDPM0yzdlSoj+WgpFnkEVXszVZLrxs2gOdSL/w39n6FEWc4mqLNkBfc2fJJuzkTZ0jKRycRJBlWWP04m5qaVswDr0I69SeAvZw/F1FMALfhgd4mmWaS5sWfnOkG/15pqyZEfHjnkX10NVskMXqP4/MK7/K7vovytib3VWtLdoIbckN3Bw3zR3oGsHW0/kFWRQB3LOoHnOrs2lypWXCOLgV9tlDheziZQREuAL6+vt5mmWaSxkWtpzsRSyT3xpBY8SPzXNqLp4itHrOIrPjN9lNGUUbewFt6SZoizZwzWGa6x5Jo3MkvyCLEMDcmjCi/uy7vzQzyOx9FnbHsUJ2cfx9K+rgu+7+kqTLZYCFCs46fwLpF3+e945RbdlmaEs3wUwnIa3iLk5fStX9UH2sbzGdScuEefA5yOHe/C4QiEBfeRtsocJKxgrbuatRVOihKI/vTnN2KgZrqCfv9kqkBkowCiMZz6vOSr5UX4Bj7zQ32SCLpghUh/2QJ3fD2PUkAFnU4MoFoqoR/pveCCVSXfR7kXd1DCdxuDv/v/lL6iNo0g1kWh+FHM5/DM9dNn2CvuJmqHNWcuydxpJGNsgymMovyFIX9uHehXVQ2/bAPLRtdONpCcbe6ib4N9wPEYwW/V7kXXvPD+PFMwN5tRUA7lxQh/mBDIydj0HGBlH0Z1dkx15txW0515+lqSk5GmSJ5xlkqQv7sHl2FcTxVphHX8bFlIpFptS1wHfdfRA51vCkqalrJIWukfw2YgoAs2tCiGaGkGn9DWRiBCUZexUV+po7oTUvKu6tGGChYjDbjyHz0iP5LXD4glBvfTvgwhFaRdWhBYJ82ZzGpGlkgywj+eX3RdNioHZWYTuVIy1SxdMA05ydHIGVZ4BQCgUy6E4hZEXzceyd5mxboi+WgmnnEWSREsHjL8J3srXwHbsaIQDdj8Bd74FSUVvae5OnnBtK4mhPfkGWQHoYa88+A2FlShIYvJS2YD20pZs49k5jCcPCrw935ZeyRkrcmtiPmUMnCt+xqxEC8AXhv+VtF0/f0vS0q2MIL58dzKtttTmM34q9BGGbpR97F18PbeF1Jb0neUs8Y+K5k31IGHkEWaTEpsEdqBk8XfB+XZUQEIEI/Le8zbUi4uQ+KSU6R9LoieUXZAnEetBy/MnshvwSj736ilugzVtdtOvzbC0VhTZzEXwbH8SFI4U50/1QNr3BleAKANiWkT05w7jjtCU0PVtPJZzHjuSaWa4FVwDAjA1B5lkDiaYGJRiFGq1z3E5CQAbc2wlqmxlY6fyOG9PUoCgCNZEAtKsUTr4S/8nW0gdXgOxLgZFG6pn/gh0fLP39yTNmVQaxsM75YoPPiGPV2WddCa4AgHliJ8zjO0p+X/KOkK7igSUNF1N2OLFu5GDpgytA9nclk0T6hZ9CpuKlvz95xrrmSlw30/nmoAorhgdG3AmuAIB59GWYp/eW/L7kHWGfhlvm1SKoOVySlRKr+3ahutTBldF7y1Qsm4o3kyz9/ckThBCYEfWjLuy8np8v0Y9Zx58C7NIHVwDAOPA8zCKmg2SAhYpGa1kK34b7c28gFCgbXgMxQbHlUrJNA1aRipJTeRCaL1tPJeRgwh6tA5qKe+Tw2iSM+DBkPjvAacpQQlEo0dx300sgG1xxueB8aWpukZepo0EW1UGQRe84jMDxF4vYq2uQEkgnkN7yI0jOHaa12VUhzK/NPciiWgZWnnsemlWsvOm5MY+8BPPcEdfuT+4L+zQ8sLgBYV/uNaUWx09iaay4edOvSkogFUN6+yOQZgGLklPZuW5mJdY25X6SyW9n8EDsFejSneDKBebBF2B1nXLt/uS+iF/DLfPr4HcQZFkwfASzRk463cZcOFJCJgaRfvmXJU0pTd4ihEBTRQC1odyDLGomgZYTT0PIAhazz4Ox5xlYPWeLcm0GWKiotDkr4Ft/b07fVVbdBlHhfOd1MViZNCxO1qc1ofuhrbwNIpjDhN0fBmavyqYscJu0YSaGeQprmlNDFVAiuRXRlP4IoHijULeZTsLm2DutqYqC2hyDLOpQF0L7nyxBr65BSsjYANLbfsaxd5qbWx3CvJoccpNLiaWdL8GfHnF1ge8CY8/TsAe63O4GuSjizwZZQvq15wMN6R6sH/LA7nspIYd7kdntgb8D5BohBK5vqcKqGdc+iS2kxH2JXQhYKW+MvbuegJ1vWmqaEqJ+DbfOq4VPvfbSbEOiA4v795egV9cgJWT/eRj7trjdE3KREALNlQHUhHLIPmRbaDn5LBTT3U1FF2RafwM7PlTw6zLAQkWnzVsN3/r7rv6lhrkQTQtL06EcMVUYCT0AbeXt1z7JMm+dN4Iro6Rlws4w3dJ0p4YrrxlkkZrftZSMV2KkOPZOdzkFWWwb4QOjBe29QErYnSdhtR1wuyfkslyCLE2Jc6gY6YBnnl9IZPY8xROw01xFQMcDS65+kkWRFm6N7YFwb//0ZSTsjmOwOnkSYDoTQmDz7GqsvkaQZa1sR3W6zxMLfAAAacPYt4Xz3mmuIqDj1vm1Vz3Jotom1vfv8szICwBW235Yvefc7ga5SAiBmZVB1FzjJEtD3xHoiX6PjL0SsM2ijL0MsFBJaPNWwXf9aydOQaP7oa69q/SduhYpYXGRetoTvtEgyxUWqsXsVYDmPP9ksVmpBBdKCGq4EuoV0oVJoUD6PFigUNpMFUYXgyxXqskS6TwIMeKhRZJRmd1PMlXYNCeEwLya8BVrsgRhYW7nrhL36hpGT2FZbR7YGUuuqgzoeHBJIyquUJPlTuUc9HQM3gkOAoBAZt+zrEM4zQkhsGl2NTZcoSZLnWZh1XDxcu/nRUrIwS7YHUfd7gm5rDKg47b5dQhe4RThjeYJKIbX1qYEjL3PcM1hmssGWQJXrMkSspOobN9T4l5dg5Swe8/CLnCaRgZYqGS0lqXwbXr92FQ0igb95re5nvv/SiwjA5u5Jac9ofuhrbgNoqJ+7A/qZkNWNrjTqWuSMFn4kwAooQqolZc9u0JARGvhrQWSV1mZFCfrNBpkCUK/LG1CUGagHtrqUq+uIZ2CccCjfaOSml0VwpL6sXUFNUVgTfIY4NEgnHF4O2Q64XY3yGURv4bXLG1EdXDsCdc1VQrqz3sgNdg4EkiOwDy+0+2OkMuEELhuVhU2z64e83lIV3G/cjpb1N6DjIPbuDmDEPVruH1+LSKXnSJcHbUQ7dgP7723jW7OOO3FvwtUShdqsjRG/WM+11WBWZ27AenN9/rM/ucKujnDm6vaNGVpzQvgv+lN2ZQ0QkDf9DrYvoDb3boqM5V0uwvkAULToS2/BaK6KfvvykYoLSs8t3v6UtJIs54FAQCUQARqVSMwerBcqWyAbXrzJfMCI8VFPgKU0cL3vtG0CX5dRfDYNsDy6tgmYR59BfZQr9sdIQ+YWRnEisYoBABVAGsqbYi2ffDeIsko24Rx6EW3e0EeENJVvGZJw8UdqQtqQlg5sMeziyQAYB59GXZi2O1ukAesbqrArfOy2Qd8qsBrmwXU80e8+95mpGEea3W7F+QBIZ+G2+bXoSKQPUU4vyaElg5vPxvGoW2QfG+b9oQQaIwG0FSRXd9VFYF5GITsPOHdsTcVh3l8R8EuxwALlZzaMAf+W94K34bXQNQ2u92da5K2BdviKRYChKpBW3ojlFnLoS7dDLsMdhpZaQYIKUvxh6BWN0KtbICUXsrgOzFpmZA8QUgAFCFQEw4g4tdRpZiwTu3z7kR9lHn0Fbe7QB7RGA1gVVMFVjZVIth+EJ5KoH45KWGdO8JTLAQA8GsqHljcgLVNFbi5QYN93sOLJAAACesUd1JT1rKGKO5aWIf7lzQgfP6Ap+pljidhndkPaWTc7gh5QEBXcdu8OixriGJ1OAPZe9bbY69lwTzDFKOUVR/xY1ZVEPNrwxCn93h87AXMk3sgC7TeywALuUKtbYbashRWmUwibLM8+knFJxQV2pyVZZO+SJoZSA/vNqTSUnxBCH8IVpmMaZbh1VMKVGpCCESDPlhnDsKzu/8vkBLmmQOQPEFIo+rCftT4FVjtR729SAIAkNl+EgHQVQXrZ1bBbj8Cb0cHkR17zx4smzk6Fd/C2jBmBATszlPeH3ttG1bnCbd7QR7h0xQsb4zCPnfE8wvU2QDhwYIXDKfyVRPyIWClYPd4PDgIAJZRsFosDLCQa6Rtef+XbZRlGPyDQWPYGa8Vmbsyu0wCmVQa0jLLaOxNc+ylMcxy2Z1sGrA6jrndC/IQq+uUh1PbjWWe8VghaHKVlBJmOQS3ASCTgt1zxu1ekIdY5094OrXdqwSsc4fd7gR5iLRtmGcPlcV7m0wMwx7odLsb5CFm+1GUxbxBCJgFGnsZYCHXlNfOZAm7gMWPqLxJ2ypoMaxiK6dgEBVfuZwcBABIWbAju1T+7MFuyKEet7uRGyHKJxhEJWGdPVwGu1CzZKwf9jDrCFGW3X8eSI643Y3cCJFdkCQalQ1alMPYKyEHOllHiC6ye9oAo0ze44WAxbGXRkkpy+d5kBJ295mCpMdlgIVcIaUsu7RbPAVAF9gZ79deuRRrWdAF2bG3nILbKJt0ZlR8ZpvXc6hfQkrYnadYy4IAADJTJmkSLhCCacLoIqu9HFLUjJIS9vkTTNFIAACZHIEc7EJZ7KIGAAjYPP1Ko8yySA826kINN6ZoJABypB8yNuB2NxyQsDqOT/oqDLCQK8qxJoTNBWoaZZdJio9LldOJGyqecgy08dmlC+y+jvJZoB5lD3S53QXyAHuoB+WzwIfsIjWfXRpl958vr7FX2pAjfW73gjzAHux2uwuO2UPl12cqDlluY69lQMYH3e4FeUDZjWNCFKTPDLCQK8oysi0lawEQAJRlyiKmuCOgPJ9dadsceyl7+mqw3BZ8RVku7lDh2SN9KI8UNa+yh3s59hKktCFH+t3uhmNMcUcAYI/0l88JAACAHA3I03QnTQOyXFIzXoJjLwGAPdwHiDIKN8jCjL1l9F9MU0mxFvm+/s1vYcnK1aisa8TmW27D1he2FfT65bj7mwpLSlmUQolf+9a/YfHq61DROAubbrsLW7e9WNDr8xQAAcUbw77+zW9hyao1qKyfgc233o6t2wo89pbhqUcqsFQcMAqfnvEbj2/H8o9/DjXv/j+46c+/jBcOnSrcxQW4UEIAADncV5T4ytd/9RyWffCvUP2mP8SNf/hZvHBg8ukNLjIzAFPcTXsyPlSUee/Xf/08ln3ob1D9lj/GjX/0Obxw4EThLi6U7OIOTXtypK8ohwe//sstWPqBv0TVGz6BGz/x99i6v4BjbyrOFHdUtMB2scdenh4kAJDDvcWZOxRx3itjg5M+CMAAC7miGOm2fvLT/8an/vTP8aef+hRe2vocbrpxM17/5rfizNmzBbtHWZ68oYIqRqDiJ//9P/jUn/9v/Nmn/hAvPfc0btq8Ca976ztw5uy5gt2jHE8uUOEVbez9s/+FP/3UH+OlrVtw0+bNeP2b31bYsZfP77RXjKPmD2/bi09/91f49Btvx7Z/+BhuXDoXb/yH7+Js72BhbiAl7IHOwlyLypo91FPwNB8PP78Dn/7WT/Hpt92HF//5z3DTigV4w1//K852F25RhovUJIuwG/nh53fi09/+H3z6rffixX/6E9y0fAHe8P99DWd7CvTsSrv80pNQURQjPeNPnmvFn3zzYfzp2+/H9i/9OW5cuRBv+Kuv4EwBx14uUlMxToKUZuzlCZbpThboNMjlij7vlfakU9wxwEKuKMYu6i99+St433vejQ+87z1YunQJPv/Zf8CsmTPxjW/9W8HuwRMsVIxn4J+/8jW8792/gw+8591YtmQxvvAPf5d9dv/t3wt3E8k0SwRIq/BB4i99+V/xvve8Cx9473uwdMkSfP6zf599fr/NsZcKJ/vCVtgjAP/yq6147x3X4X13bsTSmQ343Htfi1m1lfjmEy8V7B5yuI9jLxWl0OeXfvY03nvPZrz/vhuxtGUGPveht2BWXTW++ZvnC3QHARkrv9RQVFjZFEuFXTL40s+fxXvv3oT337s5++w+9KbRZ/eFgt2jHNOaUWFJywJSsYJf90v/8zTed++NeP99N2Hp7CZ8/sNvxay6Knzz188V7B52WRWHpmKQZTr2MkUYwUhlT0EXWPHnvZOfOzDAQu4o8FpDJpPBzl27cfedd4z5/O677sD2lwq4UMJFEirwM5DJZLBz9x7cc8ftYz6/+47bsf2lVwp6r7IqkkdFUozndzfuvvPOMZ/ffecd2P7Sy4W7ER9dMjMFzaOeMU3sOtWBu1YvGvP5nasX4qWjbQW7D6RdlCPyVD6kXfhnIGOY2HX8LO5at2zM53etW4bthUpzJwTT1BBQ4GcgY5jYdeIs7lq7ZMznd61dgu2HC5iikalxySr8+JUde8+MH3vXL8P2QycLdBdR8N87Kj/SKuwCdcnGXj67014x5o4lmfcCkJP8u8EAC7mksKtlvX19sCwLDQ0NYz5vqG9AVxePiFMhFfrZ7R99duvHfN7YUI/O7kI/u1ylns6KESB+dewd+/w2NNQXdOyVfHanvUKfYuobTsCybTRURsZ83lgZRddggXe8MsXd9GYXfqG3dzgGy7bRWBUd83lDVRRdg8OFuxFPD057ssDPb+9wfPTZrRjzeUNVFF0DBSzobFvcGDfdFWH8ujD2Nlw29jZWVaBroEBjrwDHXhqdOxZuDCvl2EvTXBE2OJTLvJcBFppSxGW7WyXkuM+IJqVI72rjnl3JZ5fKhwCfXyqyIi2UTTxvKPRduMg3rRXxf/7Ln1Up5bjxeFK4QE1FG3vH34bTBiqoIo5fRX9v49hLkEWZPxR/7OWzS8Ucey+7k8fmvQyw0JRQV1sLVVXR1dU15vOenp5xO6uJJqXAb391tTWjz+7Y3f7dPb1orC/0s8s31+msGAGPi2PvZaetenp6Czr2FnTiRGVJKGpBr1dbEYKqKOgaHLtrr3soNu5Uy6QVuO9UZtTC/+9fVxGBqijovGzXac9QbNzO6kkpQt+pvAhFK+j16irCo8/u2B2nPUMjhX12hcKNHtNdEcfey0+rdBfy+ZXg2EvZuWMBh7CSjb2c81KB5w1ACee9k3x+GWAhdxR4wuvz+bB+3Vo89cyzYz5/6ulnsemGGwp3I07UqRjP7to1ePLZLWM+f+rZLdh0w8aC3ovPLxVa9vldi6eefmbM50898yw23XB94W7ER5c0HYXcEeXTNKyb14yn9x0f8/kz+47jhsVzCnYfQPBlc7oTCgo9iPl0DesWtuDpXYfHfP707sPYtGxege4ii/KSTGVGK+wz4NM1rFvQgqf3HBnz+dO7j2DT0kI9u+C4S0UZv7Jj72w8vevQmM+f3nUYm5bNL9BdOPYSAFVHIecOHHupVIRarLG32PNeAJPsO0ducoUQCqQsbH7GT3zso/jAh34X69etxabrr8e3v/MdnD13Dh/64PsLdg8hGJOc7oRS+GfgDz76e3j/734U161dgxuu34hvf+d72Wf3/e8r3E2E4E4+glCUbMHlAvrExz6CD3z497B+/Tpsun4jvv3v380+vx8o4NjLyfq0JyI1BU+Z8fEHb8ZDX/kJ1s2fiRsWz8a/PfkKzvYO4aG7CxccFOFKjr3TnBACIhSFTBQwRzSAT7zhTnzw/30P6xfNxg1L5+HfHn0BZ3v68dADtxTmBlJCCVcV5lpUtkSoCpAFnje8/nZ88Iv/ifULZ+OGJXPxb49tw9neATx0/00Fu4fgszvtCU0H9ABgpAp63U+88U588AvfxfpFc3DD0nn49qMv4GzPAB56TYHGXmTnDjS9KeEqWGU49irRmoJdi8qUP5QNEhe4hlvR573ApOe9DLCQKxRVhVXgAlhvffOb0N/fj8989h/R2dmFFcuX4WcP/xhzZs8u2D0ULvJNe4VOlQAAb33TG9HXP4DP/OMXcL6rCyuWLcXPf/wDzJndUrB7FKPfVH6EqkHamYJec+Kx90cFHXuLEdik8qJUFT7d51tuXI3+WAL/8NOn0Tk4guUtjfjvP3svZtdXF+YGQkCpnlGYa1FZE5X1kIkRFPIU1ltuuQ59w3H8/Q9/g87+YSyf04T/+auPYHZD4RY3REVtwa5F5UmpLPwz8JZb1qNvJI6//9Fj6Owfyj67/+d3C/fsClGUvxlUfkRFHWTfuYJe8623bkD/cByf+cGv0dk/jBVzmvCzv/kI5jQU7ndFiXLsne6K8fe3+GOvAqWCY+90J4SAiNZADnVf+8sOlGTeG53cO6CQkhW0qPQsIwMznXS7G475wlGeYiFkhvvKrvig4gtCC4bd7ga5zMqky3PsjfAUwHQnpUTyp58HrMLuhioqIaCvuBn6ipvd7gm5zDjWCvPoy+U1d1BUBB74XY6905y0TKR+9VWUW+FifeWt0Oavdbsb5DLj8IuwTu0t+CmsotIDCNxTuFPgVJ5kJoXUo99wuxuO6WvvhjZ7udvdIJdl9j4L6+yhshp7RagCgTvfPalrcKWYXFGe6V4EgysEoDxPgwgWSySU6djLQrWE0d1QFXVud8MZKSGqGtzuBXmAEq0tr+AKABGt4dhLEKoGEa5wuxuOld3fCyqK7NhbPgt8AJ9dyhK+AOALut0NxxQ+vwRAqSi3sVdAVE7+9BVXi8kV5ZjuhQvUdIEocMHPUihGsTEqP0Itv7FX4dhLo9SaptGC4eVDqWp0uwvkAaKyzBYchAKFwUEaJaoagTILtilMb0cowzSHQkApt78XVDTZOWQZjb2jqaGIyi5QLAoTHCyvt1SaMoQQZbfgq2q6210gj1A0n9tdcEYo5XlygQpOCKXsxl6FYy+NUluWltVuKFHVCIWFagmAEoxClFNecmlDbVrgdi/II7TmRWV0AktAqZ0JUYY7v6nwRKQGIlRGJ7CkhDqDYy9lqc2LUDbpGYWA0jiv7N4zqTiU6sbyOoElZUHmvQywkGtUvbwWqbnIRxcIVQPK6BSW6gswzQddxLGXypXSMAcIlE8tKW3+Gre7QB6izV7mdhdy5w9BqZ3ldi/II5TGuUDZbC6SUJn/n0YJIaDOWoZyOQUgwpUFSVNDU4PavAAol02SUrL2Cl0khAKtZVnZnH4VlfVQIpMrcA8wwEIuUlQN5TLZUVSdC9R0kRACqi/gdjdypvj8bneBPKScAhaK7uPYSxcJIaDNW1Mek3UhymtBnYpObV5UPs9uy1KOvXSRUNTsCcJyeCYUDWrTQrd7QR6izlyM8jgFkA0GceylC4Tmg9K8sDzGXt2f3QhFNEqdtaRsTr9qLYUJDjLAQq4RQkDVy2Ohr9x2fFPxKXp5BC2EqjM9GI0hhCibIAvHXrqcNnel9yfrQkBpXgjhD7ndE/IQ4QtAaZjr/YUSKaHOWup2L8hjtJZlZTH2qjMXQZTJHIdKQwQjEDXN8P7GTgl15iK3O0Eeo7UsL4+xd9ZSrjnQGEq0pjxqsQgFanNhNmYwwEKuUsph8UwoLHBP4whFhSiDdAmqv3xO2lDpqGVwqkkorB1E4ykVtdkdcl4udi8l9EUb3O4FeZA2b7W3F0pEtn5FIdIk0NQiKhsgKhu8HSCUEtrc1W73gjwo+1x4fOxtnAsRiLjdE/IYpW4WRLgKng4QytENUESX8Xy65AsbMwqUncbDb6c0HSiK6vkdyro/yKO6NCEt6O1aAELVyyIIRKWnqJrnT7FogRDHXpqQb/298OxCiRBQZi6G2jjX7Z6QB6l1s6DMmO/dRWoJ6CtvcbsX5EFCCPhW3+HdAKEQUFuWZQvrEl1GaZwLUdvs3bEXAtqym9zuBHmQEAL66jvg2XkvBNT5a6BEa93uCHmQOnNJtq6UV8deRYW+dHPhLlewKxHlKVvLwpu/cNlFSM3tbpBHCUWF6uEUMFowzAVquiLNH3S7C1ekaPponS6i8ZTKOmiLN8KTcwehwLfubrd7QR6mr7jZoyewBLT5q7lIQlekVDdmC8h7cW6paNCXc4GaJiaEgL7iVs+uUWsLr4MSqnC7G+RRan0LlCaP1mLR/dCX3OB2L8ijhBDwrbrds5sz9CWbIAKF2zTtxdk9TTNCCGgeTWPk5QVI8gbFH/TkQoniC0JwgZquQiiKZ8c4r/aLvEFKCblkM1Cg49yFpC+/CUq40u1ukIcpwSg0L6aQ8/mhLbre7V6Qx+nLbgJU752A1ZfdyLpXdFVKpBrq/DXw1uYMAQQiUOevdbsj5HH6yls8ueagr7gFokxq05I7lKqG7OYMj429IlwFtcCp7bz3G0rTkqJ5rxC36gtAKPwVoasTQkALeixfrlCgBrhATdem6D7PjXOaP+i5PpH7pJRIGSYGE2l0DycxkJHwXXef2916lRAQkWpoS7mLj65Nm78um1PdQ7tR9ZW3Qng8bS+5T/iD2VNYXiEEREU91Lmr3O4JlQFt4XVAIOShsVdmx15uiqNrUIJRaMsKl8po0oSAUtMMtWWp2z2hMqAvvbAxzkNj7+o7Cr4GzRUM8gQhBPSgdyY7iqp5vjYMeYei+zyVKkwLV0B4cIcLeU927I14Z+zVfFA49tIoKSWSGRMD8RS6hhIYiKeRzJiwpURQ16DNXgZt6Sa3uwlAAJoP/lvfxkUSyolQVfiuf+3oSQD3x19twTpozYvc7gaVCXX2CqhzvFDQWAB6AP4bXsuNGZQTofng2/ggILyxsVNbfD3Uhjlud4PKhDZ/HZSZi+H6vEEIwB+Gb+NrmI6cciJ8Afg3PuiZNQd9xS1Qa5sLfl3ORMgz0uc7oUj3f+GEorK4MjkipUTqbIcnjsdqoQrWriBHUu3tUBX3nxmhatACQY6909zFkyrxNLqGEhhMpJEyrHFp04O+7DOrr7599GXTRULAf/NboERr3O0HlRUlXDm60OfumKc0zvNIoJLKhRAC+qrboNS3wL2FPgEoCvw3vA4iGHWpD1SOlGgt9PX3wu1FamXmYqgL1rvaByovQgj41t4NUd3o4txBAKoO/6bXMy0jOaJUN8K37h63uwF17qqinXplgIU8Qdo2Dv/VX2PH29+J2O59rvVDKAp0FgYnh/qffx673/9+nPrCFwHbvX6owSh3/5Mjtmni4J/9L+x857uROHzMtX4IReXYO41JKZExLQwl0ugeHj2pYphXrEWrKgK6mp3CCiHg3/x6KI3z4MpiiRDw3/xmqA2zS39vKntqbTN8Gx5waaFEQKlrgW/9fTz1So4JRYVv42shamag9GOvAISAb9ProVQ3lvjeNBWoDXOgu7jQpzTOg77qDs57yTGhatngRrTOhbmDAFQV/s1vgFJRW+J701SgNi+EvvoO9+4/a2m2blCRfneElPJK769EJdP5i1/i2Gf+/uK/G177IOZ87Pcg1NId3xWqBj0Q5EsmOWKlUtj1O+9CuqsLAKBVRLH0s59BcPaskvZDC0WheOAEDZWX9h/8ECe/9C8X/930trdg1gfeW9JUG0LVGFyZpgzLRjJjIpUxYTmYjkYDOiKBscFkaRrItD4Kq21/obs5MTGaFmzzG6A2zS/NPWnKsnrOILPjccDKACV6NVNmLoZv9R1Ma0eTIs0MMruegH3+RGluKLJpwXwbXwO1dmZp7klTltV1CsbupwDbLN3Y27Ic+oqbPVd/lsqLzKSQ2fEo7J4zpbmhEIA/BP/G1zKwTZNmth+FsedpQNolG3u1+WuhLdtc1PVeBljIdcbQMFrf8dswBwfHfK5WVmD5F/4RwTnF3xWq+gJQdR8X+Mixtm98E+e+971xn8948xsx633vKvpCtVDUbM0VTtLJoXRPD3a8452wEokxn+u1tVj+//4R/qYZRe+D5g9C4dg7rVh2NqiSzJgw7fymoPXRIDR14rE1s/dZmEdeLvqEXamdCd+Nb4ASqijaPWh6sYf7kNn9JORwb/FuIgQgFOirboPWsqx496FpRUoJ48DzsE7tHR13izj21rXAd919TE1DBWMPdsHY8wxkfKB4NxECUFToq++A2rSwePehacW2bZj7tlyyuaiIY2/jPPjW3QPhCxTtHjS9mL3nYO59FjIxjKI9uyKb0s637h6ojXOLc49LcKs+ua7tG98YF1wBAGtoGPse+j2c+85/oGhxQCGgB8PQfH4u8JFjyTNn0P6DH0z4s86f/g/2feijyPQUb6FE8QWgRaoYXKG8nPryV8YFVwDA6OvDnvc9hPM/fri4Y28oApVj77Rwoa5KfyyF7uEkRlJG3sEVTVUmDK7YqTiSW/8bmRN7Ebj3AxCR6sl2e7zRHU/a8hvhv/NdDK5QQUgpYZ47gtRzP4I6bzW0RRuyPyjC2ChClfDf8jYGV6hgZDKGzEu/gNXVBv8tbwOCkcLfZPR3QVu6Gb7Nb2BwhQpCSgmz7QBSzz8MdfH1UOeuzv6gGGNvpAa+m9/G4AoVjJ0YRubFn8Ee6obv5rcA/mDhbyKy6Rj1lbfCd/1rGVyhgpBSwjixC5nnH4a28jaos0fnpAUde7PXEpUN8N/2jpIEVwCeYCGXjRw+jN0feOiau0z9TTMw+/d/F1Wbri/MYpwQUHU/T61Q3qSUOPjHn8Lgyy9f9XtC01B3z12Y9f53QwuHC3Jvofmg+oNQNL0g16PpZ3DnTuz76Mev+b1ASwvmfOR3UbF+bcHGXs0X4KmVacKybSQyJhJpE3aBppuRgI7oJenBpJQwT+5FuvVRyHQSSt0shF/zEKRlwjq9D8bBFyETQ9lJe759EAKQgDp7GfSlm5gagQrGTgwjs+tJ2J0nAQD+W98GtX427OFeGMd3wu44nn1HzPv3RwCQEMEotIXroc5aypRgVBBSSlin9iKz/znASENpmIvALW+BNA1YZw7CON4KpOK48AzmZXSeoM5aCm3heihR5vynwrBjg9nUdt1tAIDAne+GUt0Ie7Ab5omdsLtOTW7ecGHsDVdCXbAeavMiboijgpDShnl8F4wDWwHLgDpzMfybXgdpZmCe3g/zxE4gPX4DnTPZwIo6ezm0BeuhRKoK0XWi7GntHY/B7j0HAAg88CEokWpY/edhHt+RHZMn/c4mISI10BZdB7VpYWlTnzPAQm6Rto09H/5djBw4mHMbvaEe677774CW5y+JUKD5/FA0nYt7NCl9W57D4b/4i9wbCIH5n/oj1N11O6Rl5nVPRfdD9YdKWpuIph7bNLHrve9D4uSpnNsEWmZhzbe/AZnnIolQFKi+AMfeaca0bfTHUrDyPK0ykbpo8GKBe3ukH6ntv4R1/uTFn6uzFiN05zsv/lvaNqz2ozAOboMczNbKglCyKcSuSLy6qK2o0BashbbkeijhqoL9d9D0JqUN88RuGAeeB0zj4ueBu98LpbL+4r/txDDMk7thnTkI2BZeLSZ+ld+pS55vUVEHfeF1UJrms8YgFYw93JddnB5dIAEAtWUZ/Nc/ePHf0rZhdRyDeewVyJH+7Ie5jL3Z1oCiQZu3Ctr8tRDBaOH/I2hakrYF89gOGIe2AZe8jwUe+PCYU6l2fBDmyd2wzx0ZfWZzCBReOvZWNWYXphvmcN5LBWMPdiOz83HYA50XP9Pmr4Fv3T0X/y1tC9a5IzCPtULGB7MfOhl7NR3avDXQ5q2FCPC0IBWGtEwYh7fDPLR9zLMYfMMfQFxSR9ge6Yd5Yhes9iPZ97Bcgi2XPN9KTTO0RddBqWtxZezlFiZyTdcvf+UouAIAdbfeCn9VNaSUkLYF27IgLRO2bU34iyeEAqFqUFQVQlWz/+YkhybJSiZx6ktfctRGCQRQc9PN0CNVkPboc2sakKYBaVsTtBAQmgZF1SE0DULlwjQVRsdPHnYUXAGA+rvugi9aecnYa8I2TUjLwkQvnEK5MPZmx19w7J2WNEVBXSSI/ngKhnW1F7vcqIqApghI24JxaDvSu58Zs0ACYFzqGKEo0FqWQp21BDIxDLuvHXbvOVg9ZyGHesbPHfQAlPoWqHUzodTOhFLTBMHTglRA9lBPdoGk//y4n13+/CqhCvhW3gq5bDPswR7YA52wB85n2xrpy1tDVNRCqWmCUj0DSvUMiGCUYy8VjLQtmEdehnF4+2jA71XCNzY9jVAUaLOWQJ25ODv2jj63dl8H5Ejf+Iv7AlBqmkf/TxOUynqetqKCsgY6kdnxWPZv/2Uuf36VcBV8q26HXHYT7KFuyIHO0fG3EzAzlzUWENG6V8feqkaIYqTKo2lLWgaMQy/CPNo6PlAybuxVoc1eDrVlGWR8KDvuDpyH3dcOGZugzpA/BKWmGWpNU3bOW1HHsZcKyuo9h0zrY+P/9gsF0HxjPlKiNfCtvQtyxS2wB7uy427/+ezYaxnj2ovKOqg1za/OewOFyRiTL/7mkCuMoWGc+tevOmqjV1dh7oc/BAAQQlxcvAOyEc9XD2NJXMy5x5dKKoJz3/sPpLu6HLWZ/cEPwF9XByA78RGKCkW/7NmVcvTR5fNLxZHu6cGZb33LURv/jEa0vPc9AC4be30YW6Plwi4T8NmlVymKQG0kgIF4GmlzomBy7gK6Brv/PFIvPgK7v3PC71wpN78QAiJcCSVcCcxeDmD0+bWMbJBGKICqAwqDgVQc0jJHF0heufJO0ivkNxeqDrW2GWptc/ZaUmavYZnZ/1vRgNGNRETFYPW1I7Pj8YmDIwDEFfL/jxl7Zy0FkD3BBcvKjr+KCqgaN2JQ0UgzA+PACzCP78SEp1BU7YobKYSmQ62dCdTOzF5LSsC2AXt07FU1QNH47FLRWN1tyOx84tXTKJe56rw3UpVN7zVa40JemDdY5sWxl6nrqFikkYaxdwvMk7sn/oI/eMWxU+g+qPUtUOtbste6MPZeCLKoqifHXgZYyBWnv/51mENDjtrM++hHoUWvfET81V8ub/2S0dRytcL2VxKaNw9Nb3nLFX9+8dn12B8ImnpO/ctXYCWSjtrM/8M/hBq4wqLfpc8sn1+6AiEEqsN+9MfTyEwiyKKcaEVi1xNXPSp+pUW+K/ULmm/c7imiQrO6zyCz64mJd49eoPlyXugQQgBCzS6QEBWRNNIw9j9/5QWSCxwUPxZCyaZ75ulAKjKr8yQyu56ETAxf8TuXn165GiFEdmGP6ZqpyGQ6icy+Z2G1Hbjq95wUnhcXTgxw3ktFZp47CmPXE5Cp+BW/MxXHXgZYqORGDh1C589+7qhNxapVaHjg/iL1iCg3Ukqc/OIXIU1nNVTm/9EnoWgcbsldgzt2oOeJJxy1qd60CbW33lKkHtF0Ylj2pIIrIh2HvfPxa26hYL5o8hKZSSKzbwus0/uv+V0nwUGiUjDbj8HY8xRkMnbN7/L5JS+RqTgye5+Bdfbwtb/sYJGPqNiklLDOHUZmz9NA+tqb4pwsUhMVm50cgbHzSVgdx6753ak4b+CKH5WUtG0c/9wXrl2o6FKKggWf+iMIhWkPyF19W7Zg8OVXHLWpu+ceVK5bV6QeEeXGNk2c+ML/c9RG6DoW/NEfeu7oLZUf07LRH09N6hrq+WM5nU+9UqoEolLKLpAcGV0gSeTUhosk5BV2MgZj91M5LZBcIHwce8l9UkpYbfuR2bsFMHKbd0zFRT4qT3Z8CJldT8Luyr1WJp9f8gIpJcwTu2Hs2zK+TtUVTMV5LwMsVFKdv/glYocOOWrT/OY3IbJ4cZF6RJSbbGH7f3HURg2FMPejHylSj4hy1/HjnyBx6rSjNrN+550ItrQUp0M0bdi2RH885WhfxUS087kt9DHAQm6zE8PZBZLOk84acpGEXCalhHlqD4x9z+W8QHIBF/nIbXZsAJmdT8DuOeOo3VRc5KPyIm0b5omdMA5szdZHcYLPL7nMHupFZsdjsPvaHbWbivMGBlioZIyhIZz+6tcctdGrqzHnQw8VqUdEuTv3ve8h093tqE3LJYXtidyS7u7BmW9/21Eb/4wZFwvbE+VLymxwxbInGV0xUlB7c1swYYowcouUNszju0YXSAzH7bnIR26yh/uQ2fm44wWSi/j8kkukbcE82grj0IvZ4vMOTcVFPiof9mB3dnF6sCuv9nx+yS3SMmEcehHm4ZcAaTu/wBTcFMcAC5XM6a/lUdj+Y1cvbE9UCokzZ9D+gx86ahOaPx9Nb35zkXpElLtTX/6y48L2Cz555cL2RLmQUmIwkYZh5THhvozWdRIix4k7T7CQG+zB7uzi9EBn3tfgIgm5QVomjCMv5b9AMspJoWWiQrH6zyOz83HIoZ68r8HgNrlBmgaMQ9tgHmt1lj7/UooGqHphO0aUA6vnLDI7HoMc6c/7GlNx7GWAhUpi5OAhdP78EUdtKlavZmF7cp2UEqf+iYXtqTwNtu5AzxNPOmpTvXkTam65uUg9oukiljaQMvIvan8ptSv3VEtTcbJO3iUtI7t77+gr+S+QjOKzS6Vm9Z7LLk5PYoEEAKDpECrnvFQ60sjAOLgV5vGdk78Yg9tUYlZXGzK7HoeMO9t8fDnhD7BWJpWUzKSQ2fssrFN7J32tqbixiDMhKjppWTj++c/nV9iefzDIZX3PPovBV5wVtq+/9x5Url1bnA4R5cg2DBzPp7D9Jz/JsZcmJWWYiKWcp0i6klzTg8EXhFCUgt2X6GrswW6ktz8CGR8syPUYYKFSkVLC2PMMzBMFWJwGn10qLauvA5mXfgGZHCnI9fj8UqlI20Zm5+Ow2vYX5oJ8dqmErO42pF/6JZCKF+R6U3Hs5VsoFV22sP1hR22a3/JmRBYtKlKPiHJjJZM49S9fdtRGDYUw9yMsbE/u6/jxT5A8fdpRm1nv+h0EW2YVp0M0LZiWjcFEOq+2voNboLUfGvOZMtwDJZ3bRJ71V6iUREUdtIXrAd1fmAtOwZ185E1CCGjz10Cpn12Y6/HZpRJSqhuhLVhXsNRIU3GRj7xJKAr0heuh1DYX5np8dqmElNqZ0Besy6amK4QpOHdggIWKKq/C9jU1mPPQB4vUI6Lcnf3udx0Xtp/90AfhY2F7clm6uxtt3/43R238TU1oec+7i9Qjmg5sKTEQT+WVKSmQGYGv8yj8O34J/UTrxc/Vnracr8H6K1RKFxZKgvd+AOqcFZO/HhdKqISUilr4b3krfNe/FiIQmdzF+OxSCQlFhb7kegTu/QDUWUsmf70puMhH3qVUNcB/22/Dd939k15g5rNLpSRUDfryGxG4/wNQmxdO/npT8PllgIWK6vRXvw5zeNhRGxa2Jy9ItLWh44c/ctQmtGA+mt70piL1iCh3J//ly7CTTgvb/wEL21PepJQYSqRh2s6jK35NRVV9IyKv+yj0BWvhO/AMfAeeBQCovbkHWBQGWMgFIhCGf8MD8N/+28Ak6lBMxRdN8jYhBLSWpdmF6pmL878Ox15ygRKKwn/Db8F/81sBMYllLQYIqcSEENDmrkTw3g9CmTEv/+vw2SUXKOEq+G96E3w3vXFS15mKzy9rsFDRjBw4iM5HHBa2X7MaDfffV6QeEeVGSomTeRW2/yMIFrYnlw280oreJ59y1KbmxhtRczML21P+4nkWtddVBVVhP4QQkKoKe6gHAoDvxCsQqRjUvnM5X4spwshNMpUALGfzhktNxRdNKhOqCnsShe757JKbZGoEkHbe7YWfm4vIJaoKOZz/2DsVUyxR+ZBxZxvpx1BUQPMVrjMewZVAKgppWTj+hS84K2yvqlj4qT9mcWVyXd8zz2KotfXaX7xE/X33oXLNmiL1iCg3tmHghNPC9j4f5n/yDzj2Ut7ShoWRPIraq0KgOuyHMvrsGcd3w+5tv/hz/bJ6LNfCXdTkFmkaMPY+PbmLcJGaXGKe2AU53Jt3e56+IrfITAqZfVvyv4CqQxSolguRU8aRlyETQ3m3Z3Cb3CJTcRj7n8+7vfAFp+TaA1OEUVF0PvIL54Xt3/wmhBdOPpcf0WRYiQRO/cu/OGqjhsOY+5HfL1KPiHLX/qMfI9mWe0olAGh51+8gOIuF7Sk/pmVjIJHKq211xA9VyU5FZTqBzM4nJtUXBljILcaRlyATI/lfQA9AKHwto9KzkzEYB7dN7iJc5COXGAdfANLOUuJeisFBcosdG4R55OVJXYPzXnJLZu+zgJnJ/wJTdOzlTJ4KzhgczK+w/YceKlKPiHJ39rvfQ6anx1Gb2R/8IHy1tUXqEVFu0t3dOPNv/+6ojb+pCbPezcL2lB8pJQbi6byK2leF/NBV9eK/07uehpzEIgnAhRJyhz0yAPPoK5O6hvAxRQ25w9i3ZXKLJODzS+6wB7thntg9uYswOEguyex5GrCdp9a9FMdecoPVew5W24FJXWOqnr5igIUK7vTXvg5zxNkuvvkf/xi0SKRIPSLKTeL0aXT88IeO2mQL20+uwBdRIZz80r/kUdj+D6EG/EXqEU1lUkoMJtIwbed5z8N+DUHfq1lqrb4OGEedpWWcCGuwUKlJKZHZ89TkF0kYHCQXWD1nYJ11lopxInx+qdSklMjsfhJAHjs8LjFVF/nI28yOE7A7T076Ohx7qdSkbU864wAwdZ9dBliooIYPHEDnI79w1KZi7RrU33dvkXpElJuLhe0tZ4skLGxPXjDw8ivofcpZ/v+am25C7S0sbE/5SWbMvIra+zQF0cCrRQ2ltJF66VfOLiIE9MUbsgUSL/2YqRKoxKyO47C7TjtqozTMgaioG/shF/moxKRtIbP7KWeNFBXavDXAZXnTuUhNpWa1HYDd1+GojTJjHkSkZsxnU3WRj7xLWgaMPQ7HXlWHOnfV+M859lKJmSd2QQ45y/aizlwEEa4c89lUHXu5KkgFIy0LJz6fR2H7P2Zhe3Jf39PPYGjHDkdt6u+/n4XtyXWTKWxPlA/TsjGcdJ5SRhUCVaHAmL/5xvFdYwrb50JfshGB618D3/LNSL38a1gdJwDwBAuVljQzzgvbaz74NjwA4Q/BPLErWz/AzEzZF03yLvP4LsjhPkdttMUb4VtxM7QFa5HZ/RTs3nMAGNym0pKZFDL7HRa29wXh3/gaQPPBPNYK49CLgGUyOEglly1sP+yojb5sM/Ql18OevyY79vafB8DgNpWWTMUcF7YXwSh81z8ICAHj8EswD7+UPfU9RZ9dBlioYDp//ghih484atP8ljcjvHBBkXpElBsrkcCpL3/ZURsWtievaP/hj5A8c8ZRm5Z3vwvBmTOL1COayi6kBssnKUd12A9VeTW4IlMJZHY+6egaIhCGf+0dAAClohbBu94F88whpF95lIt8VFLGYeeF7fVlN0IJZlPi6ouugzZrCTL7n+MiCZWUnYzBOPSCozYiFIW+5AYAgFJZD/+tb4d19jCMfc8CrANAJWQc2Oq4sL1v5a0Xx1l9yQ1QW5bB2Pssg9tUUnZswHFhexGtgbboOgCAUj0D/tvfCev0fhiHt0FoejG6STShzF7nNdv0NXdAaNnMBb4VN0ObswKZXU9N2Xc2BlioIDIDAzj9ta87aqPX1mLOQx8sUo+Icnf2O991Xtj+oYfgq6m59heJiijd1YUz//4dR20Czc2Y9a53FadDNOXFUgYMy3ndlcqQD7o2NqVXevdTjgvb+6+7Z8xitBAC+pzl0JoXAkzXSCVij/Q7LmwvKmqhLVw39rNgBP6Nr4GcZJFxIieMfc8CpuGojb76zjGLeUIIaLOXQW1eAHFZukaiYrEHumCe3OOojVLTBHXuyrGfhSrg3/Q6jr1UMtm6Qc4L2/vW3jVmjBVCQJu3CmrLkkJ3keiKrJ6zjgvbKw1zoM4a+5wqkWr4b34zYDmbg5QLvolSQZz+6tfyKGz/URa2J9clTp9Gx49+5KhNaMECNP3/7d13eBzVvT/+98xs0ao3y3KRbMvdlhsG44LB9N5CgNA7IQmEYAi5uck399587+/mm5tLICSQ3IRAgFBCC4GAbcDGgHED925ZtlwlW1aXVrs75fz+WNlYWLb3rGY0s9b79Tw84NWemY/F6Gj2nDPnffVVzhREJGH7k7+TDrYvY7A9JSlmmGiNyt8Qpwd8SA90XmVnHtwLfavctoxanxL4ysZ3+TXFH+jydSK7HR4kEXITjYGJ5x1zIPrQ6j4ip5kHdsHcvVmqjdp3MLT+w7r8Gq9d6inJBtsHJp57zO3Ief1STzGrK2Ht3yHVRhs4ElrRoC6/xmuXeoqwLMRWye04AEVFYNJ5Xfa9iqIAJ+n1y5B76rbm9eux/91/SrXJnjgRfS5gsD25Kx5s/7h0sP1QBtuTBzQsX46DCySD7c+YgYIzZjhUEZ3MrI6twWQFNBXZoc430ckG2wdPvxSKwltXcpe5rwLWgSqpNlrJaGh9SpwpiChByQbbByYce4CaqKeYO9cfzp5IlK9sAtS8YocqIkqMMHToayQz2zQ//ONnOVIPkQyjcqV0sL1v5GlQswscqsi7+CmVuiUebC8XrgxNw7BHGGxP7ju4YAGaVqyUalN08UXIntD1CmqinmLFYtLB9moggKEP/cCZguik19weg2nJrRpVFQW5GWlH/b7XK1bBqtsndSz/yCnQ8jlIQu4SRgz6mo/lGvkCCIw7y5mCiCQY21ZCtMgH26tZeQ5VRJQYEYsgtu5TuUaBEPxjz3CmICIJ+pZl8sH2Y6ZDDWU5VBFRYkR7K/T1i6TaKKEs+EdPc6gib+MEC3VL9T/eQesWuWD7Add+ExlDyxyqiCgxRjiMqt9KBttnZmLQdxhsT+6LB9vvlmoz8NZbkNa/v0MV0cmsPWagPWZIt8tND3QKtQfiwfbRpILtZ0mfn8hu+uZlEO2SwfZjZkAJcUtccpfV3gJ902KpNkp69uFgeyI36RsWATHJYPtxZ3bKbCNyg9XaIJ/ZllUA37BTHKqIKHGxtQvlg+0nntNrt7DjBAslLdbQgJ1JBNuXMtiePGD3c88hdvCgVJvSu+9isD25LlJTIx9sP6A/Bt50kzMF0UnNtCw0tctvDZYe8CHoP3orxeiq+dKDJF8PtidyQ3LB9oXwDZ104jcSOUxf+0kSwfZndwq2J3KD1VADY/tqqTZqfj9og8pP/EYiB9kVbE/kBrN2N8xdG6XaqH0HQxswwqGKvI8TLJS0qqeTCba/H76MDIcqIkpMeMcOVL/2ulSbjGHD0O+qq5wpiEjCjid/BysSkWoz9KGHGGxP0oQQaAzHIOR2BoNPVY7KXQE6gu0rJIPti0rhK5sgVwCRzeKDJPOTCLY/F4rKj1vkLvPALph7ZIPthxwz2J6opxzueyUFJnYdrkzUk8x925IIth8FrajUoYqIEiMsE7GVH8o1UlQEJvXuzDbe8VNSmtetx/5/ygXb50yahD4XnO9QRUSJiQfbPyEdbF82+yEG25PrGpYtw8GP5fb/z595BvJnTHeoIjqZhWMGYoZcXwkAuRnBo26uhZVssP0lvfpGnbwhHmy/U6qNVjqGwfbkuniwvdy2jFA1BCaew76XXJdcsP1EqHl9HaqIKDHC0KGvlc1s88M/nplt5D5j2yqIZrndXnwjp0DN6n3B9kfiBAtJE6aJbf/zmFwjTcPQR2bzRp1cd3D+fDStlAy2v+RiZI9nsD25y4rFUPnrx6XaqIEAhv7gQYcqopOZaVloaZfbcxcAstIC8GtHb2ugb1spH2w/agq0PAbbk7sYbE+pzKhYAdFSL9XGN+I0qJkMtid3iVg7g+0pZSUVbD+awfbkPtHeGs+9khAPtp/qUEWpgxMsJK367X+gbetWqTYDrrsWGWUMtid3GeEwdjDYnlLU3ldeZbA99Zjm9hgkdwZDwKciI3j0k35WpA3RlXJbfChpGQhOOFuyAiL76ZuXJhdsn8YtccldVrgF+qYlUm0YbE9ekXywfZpDFRElxmphsD2lruSC7c/ttcH2R+IEC0mJ1Tdg5//+UapNoLAApXfd6VBFRInb/exz0OvqpNoMuuceBPK4io/clWywfcnNDLYneRHdQESX2xpMAZCbfvTWYAAQSyrY/gIOkpDrrOY6GFu/lGrDYHvyCn3dQsCUDLafcA6D7cl18WD7NVJt1Pz+DLYn1wkhEFszXz7YfhKD7cl9Zu2uJIPthztUUWrhBAtJqXr699LB9kMeeIDB9uS68PYdqH5dMth++HAUX3WlQxURJW77k7+FFY1KtRn60ENQgwy2JzmWEGgOy28NlpMehNZFmLdZuwd6hdy2jPFge27LSO6KD5IskA+2n3Qeg+3JdeaBnTD3bJFqoxYPgdZvqEMVESVGCIHYKsncICi9PlyZvCEebF8l1UYrGQWtDyvvNqgAAGUeSURBVIPtyV3xYHvJvldR4/e97HsBcIKFJDSvXYf978kF1OacMgl9zj/PoYqIEiOEQOXjjycXbN9FlgBRT2pYugx1Hy+UalNw5kwG21NSWiM6TCG3OViaX0MocPTWYMKyEFnOYHtKTeberckF2xcOdKgiosTEg+3ltmWEqiEwgQPU5D6zah2shhqpNr6yCVBzGWxP7ooH2y+Qa+Tzwz9uliP1EMkwtq1MMtg+36GKUg8nWCghyQTbK5qGoQ8z2J7cd/Cj+WhetUqqTdEllyB73DiHKiJKTLLB9mUMtqck6KaFtqjcdjKqoiAn1PWTUvFg+2qp4/lHnc5ge3KdMGLQ1y6Ua8Rge/KIpILtR06BmpnrTEFECRKxdsTWfybXKMhge/KGeLC9ZGbb6BlQQ5kOVUSUGKu9BfqGz6XaKOnZDLb/Gk6wUEKq//422ioqpNr0v/46BtuT64y2Nuz4XTLB9vc5VBFR4va8/Arad8sF25fcfhvS+vVzqCI6mUQiETQ2NkLXdQgh0BSW24YOAHLSA1DVoxdSxIPt5R4zV0KZCE6YJV0Dkd30TUkE2489g8H25Dor3JxksP0UhyoiSpy+Polg+/KzmNlGrrNa6uWD7bML4BvGzDZyn55UsP05DLb/Gk6w0AnF6htQJR1sX4jSO+9wqCKixCUVbH/vvQy2J9dFqmuw+y/PS7VJGzAAA2+8waGK6GSwatUq3H777SgvL0dGRgby8vIwcOBALF66HLoplzUR9GtI8x+9NRgAxFbOB2IRueMx2J48wGqug1EhGWyf0we+sonOFEQkQV+7MIlg+3OhaAy2J3eZDTUwdkgG2xf0hzZorEMVESVGCIHY6gXywfYTz2OwPbnOPLAL5q5NUm3U4iHQ+jPY/us4wUInVPX00zBbW6XaDPk+g+3JfW3bt2PfG29ItckYMRzFV17hUEVEidv+m9/IB9s/zGB7Or4rrrgCS5cuxZlnnok//vGPeOONNxAKhfDXl1+WOo4CICfU9aols3Y39G2SwfZ9B8E3hNsykrvigyTz5YPtJ57LYHtynbl/J8y9W6XaqMVl8PVnsD25SwgBPZlg+4kMVyb3mfsqYB2okmqjlYyG1qfEmYKIEiQsE7FVH8o1UrX4fS/73qPwkwAdV9Oatdj/3vtSbXImn4I+553rUEVEiRFCYPuvHwekg+1nM9ieXFe/ZCnqPvlUqk3BmWcif9o0hyqik8WePXvw8MMP44EHHsCAAQNwzTXXIDs7G7out+I5My0ArYsBZWFZiCyTu2+AoiA4hcH25D5z7xZYtbuk2jDYnrwg+WD7c5wpiEhCUsH2QydCzS1yqCKixAgjBn3Nx3KNfAH4mdlGHmBUrIBoltvthcH2x9b1vg5EAIRhoPIxBttTajr44UdoXr1aqk3RpZciu7zcmYKIEpRUsH0wiLIffN+hiuhkMmzYMNx3332wLAvl5eW46KKLpI/hU1VkBLu+hdQrVsCqTybYvq90HUR2YrA9pTKj4kuIVgbbU+oR0WSC7dPhHzPDmYKIJOibl8lnto2ZzmB7cp3V3gJ9YxLB9qMYbH8sfIKFjmnf3/+OtoptUm0GfOt6ZAwZ4lBFRIkx2tqw4yn5YPvB933boYqIErfn5VcQ2bNHqg2D7SlRH374If73f/8Xl156adLHyEkPdLmQwoq0IbpKbgU1g+3JK/RNSyDa5bbEZbA9eUFywfY5DLYnT9A3JBFsP+5MZraR65ILti+EbyiD7cl9+pqFgCGZ2TbxXCg+ZrYdCydYqEux+nrs/OMzUm0ChYUoueN2ZwoikrD72Weh18mt4hv07XvhZ7A9uSxSXS0fbD9wIIPtKWGDBw/G3XffjaFDk9tzPz3gQ8DX9TaKsZUfMdieUlI82H6FVBsG25NXxIPtDak2gYnnMNieXGfWVycRbD8AWimD7cldh4Ptk8ps43bk5C7zwE6Yu2WD7cug9R/mUEUnB06wUJd2PCUfbF/2IIPtyX1tlZXY98abUm0yRoxA8RUMtif3bX/iSflg+9kPQQ10HTZOdCxCCOk2qgJkpR0v2H6V1PEYbE9ekHyw/XkMtifXmfurpIPttX5DofVjsD25SwgL+upkgu0ZrkzuY7A9pSphmfFFcTJUDYFJ7HtPhJ8K6ChNa9bgwPtzpNrkTJ6MwnMZbE/uEkJg++PywfZDH2awPbmvfskS1H0qGWx/1pnIn8Z9UEmeYclPsGSHglDVo2+s48H278kdjMH25BHmniSC7QeNhVY4wKGKiBIjTCOJYHsf/BPOdqYgIgnmjnWwGvZLtfENncRge3JdssH2zGwjLzAqVkC0JBFsn8ndXk6EEyzUiTAMVP7Pr6XaKJqGYY8w2J7cV/vhh2heLfeYedFllyJrLB8zJ3dZ0SgqH0si2P7BBx2qiE5mTc3NaG7p/JRqe3s7WluOHdIZ8KlI83c9Ea1v/RJWfY1UDf7RUxlsT64TehLB9v4gAuVnOlIPkQxj2wqI1gapNv6RU6Bm5DpTEFGCRLQdsQ3JBNtPd6YgIgn65qVJBNvPgMJge3KZ1d4CfQOD7Z3CCRbqZN9bf0fbNslg+xu+hfTBg50piChBRmsrqp56SqqNLysLg7/NYHty356XX0Fk716pNvFg+2KHKqKT1R/+8Af0KSzESy/8pdPrL7/wF4wdWooXn/tzl+1yQsFjB9uvXiBVgxLKRHA8V/GR+/TNSyAiksH2Y2Yw2J5cl1SwfUYOfCNPc6giosTpGz6TzmwLjDuLmW3kuniw/ZdSbRhsT16hr/kYMBls7xSf2wWQd8Tq6rDzj3+SahPo0welDLYnD9iVRLB9KYPtyQOSCbYPlZQw2J6S8udnn8X555+P++67D9nZ2QCA3/72t2hubsYf/vAHvPLXF3DLHXd1apMe8MGndb0mJ6lg+1Mv5CAJuc5qPphEsH0Rg+3JE/S1H8sH209gsD25Lx5sv1aqTTzYfoxDFRElJunMtknMbCP3xYPtN0u1YbC9HE6w0GE7nnoaZlubVJuy7z8ALT3doYqIEtO2bRuq33xLqk3GyJEovvxyhyoiStz2J34DKxaTasNge0pWWiiEffv24ZNPPgEAvPvuu4e/tm/fPmRkZXd6vwIgM63rAbnkgu0Hwze4XK5oIpslP0hyLgdJyHVmzQ6Yeyuk2jDYnrwgqWB7RYkPUHM7cnKZuXcrrAM7pdpopWOgFQ50qCKixDDYvmdwgoUAAE2rV+PAnLlSbXJPPRWF557jUEVEiRFCYPuvJYPtFYXB9uQJ9YsXo+5TuT2oC2adhbyppztUEZ3MDNPCQ4/+GL/4+X/gH0dMrBySm5uP2T/6cafXMoJ+aF0MKAvLQmSpbLC9iuDpDLYn98WD7XdLtdEGjYVWwGB7cpcwDcTWyG3LyGB78goj2WD7nD4OVUSUGGEkkdnGYHvyCKPiSwbb9wBOsBCEYWCbbLC9zxcfoOYgCbms9oMP0LxW7jHzvpddhqwxfMyc3GVFo6j89RNSbeLB9t93piA66bVEYpg2YybemZfYCiZFATKO8fSKvvVLWA2ywfanQ8stkmpDZDcG21MqMyq+lA+2H3U6g+3JdSIahr4+mWD7Gc4URCRB35RksD0z28hlVrgF+obFUm2U9BwG2yeBz7gT9r35FsKVlVJt4sH2gxyqiCgx8WD7p6Xa+LKzMejb9zpUEVHi9rz0snSwfekdtyOtmMH2JE83TER0iSf9AGQGA1C7CrZvb00i2D4LwQmzpNoQOUHftFg+2H7sGRwkIddZ4Wbom5dKtVEycuEbwWB7cl9s/SJAlwy2Hz8Lij/oUEVEibGa62BUMNieUlM8s00y2H7SOQy2TwInWHq52MGD2PmnZ6TaBIqKUHr7bQ5VRJS4XX9+Fnq9XLD9oHvvhT8315mCiBIU2bcPu59/QapNqLQEA274lkMV0cmuJSJ3Y60pCjKCXT/oHE0q2P4CDpKQ66zmgzC2rZRqo+QWwVc2waGKiBKnr0km2P5sKBo3rSB3mfXVMKskg+0LB0IrGe1QRUSJEULEt2VksD2lIHN/EsH2/cqg9WOwfTL4E9/LMdieUlVbxTZUv/mmVJvMUaPQ9/LLHKqIKHGVDLanHqSbFqKG5NMrIX+X24CaB3bBqFwtdSytmMH25L6kg+0nngdF4UcmcpdZswPmPtlg+2EMtifXCWFBX5VEsP1EhiuT+xhsT6lKWCZiqz6Ua6Rq7Hu7gZ8WerGmVatxYO48qTa5p52KwnMYkkjuEkJg++OPA5bEIImioIzB9uQB9Z8vRv1ni6TaFJw9C3mnM9iektMm+fSKT1UR8h+94llYJiLL3pc7uaIiOIXB9uQ+c8/mJILty6EV9HeoIqLECNOITw7KYLA9eYSxYy2sRtlg+1MYbE+uiwfbfyzXiMH25BHG1i8hWuR2e/GNOp3B9t3ACZZeyjIMbPufx6TaKD4fhs5msD25r3bePPlg+8svR9ZoPmZO7rKiUVQ+/rhUGzUtDWXff8ChiuhkZ1oW2nW5LWWyjvH0SnLB9lMZbE+uE3o0yWD7mY7UQyTDqPgSoq1Rqk082D7HmYKIEhQPtpdbVIS0DPjHTHemICIJ+qYlEO3MbKPUY4WboW9MJtieCzq7gxMsvVT1G28ivH27VBsG25MXGC0tDLanlLX7ry8hsnefVBsG21N3tEXlnl4JaCqCvqOf9LPaWxFdlUywPVfxkfviwfZyW+JykIS8wGprYrA9pazY+s/kg+3HncXMNnJdPNh+hVQbJacPfGUTnSmISEI8s0022P5cKBqD7buDEyy9UDLB9sG+fVF6x+3OFEQkYdefn4Xe0CDVZtC3vw1/Dlfxkbva9+7FnhdelGoTKi1lsD0lzbIEwlHZp1cCXT69El35EaBHpY4VPPVCDpKQ66ymWgbbU8rS1y6UD7afeA6D7cl1Zt0+mFXrpNow2J68IPnMtnMZbE+uM/dXwdyzRaqN2m8ofP0ZbN9d/Onvhbb/7imY4bBUm7IHH4AWCjlUEVFi2iq2ofqtt6TaZI4ejb6XXepQRUSJ255MsP3DD0H1cyUJJactpkNIvN+vqQh08fSKkVSw/RD4Bo+VakNkt68GSWR+EhhsT95g1myXD7bvPwxacZlDFRElRghLPjeIwfbkEebeLbBqd0m10QaNZbA9uS4ebP+RXKOOYHvqPn5y6GUaV65C7bwPpNrkTjkNBbNmOVMQUYKEZaHy17+WD7af/RCD7cl1dZ8tQv2iz6XaFJ59NvKmTHGoIjrZCSEQltweLDPt6Mk8YZmILntP7uQMtiePMHdvhnVwj1QbbfA4BtuT6+LB9nLbMkLzwT+ewfbkPmP7WgjZYPthDLYn9wk9Bn3NQrlG/iAC5Wc6Ug+RjGSC7f2jpkLNzHWmoF6GEyy9iGUYqHzs11Jt4sH2D3GQhFxXO28eWtbJPWbe94orGGxPrjMjUWx/4jdSbdS0NJQ9yGB7Sl44ZsCSWLTvU5Uus1f0LV/CapAbJPGPmQotl4Mk5C6hRxFbt1CuEYPtySOMrV8kEWw/lcH25DoRDUPf8Jlco7QM+Ecz2J7cp29eAhGRDLYfM4OZbeS6pILtM3LgG8UFnXbhBEsvUv36G9LB9gNvvAHpgxhsT+4yWlpQ9fTvpdr4cnIw6N57HKqIKHF7XnoJkX2SwfZ33oFg374OVUQnOyGEdLh9RtB/1GIKq70VUckV1Ep6FoLjGWxP7tM3Lgakg+1nQgmmO1QRUWLiwfbLpNooGbnwDT/VoYqIEhdb/6l0ZhuD7ckLrOaDDLanlJVMsH1gIoPt7cQJll4iWluLnc/8WapNsG9flNx+m0MVESVu15//LB9sfx+D7cl97Xv3Yncywfbfut6hiqg3iOgmTInHV1RFQShwdCBydOWHDLanlGQ11cKolA227wtf2XiHKiJKnL72Y8CSDbY/l8H25Lp4sP16qTYMticviGe2LUgi2P48BtuT65IJttf6DYXGYHtbsSfoJXYkE2z/g+8z2J5c11pRgeq3/i7VJnP0aPS9lMH25L7tj/8GQjrYfjaD7SlpQgi02vD0irF/J4zKNVLH0YqHwDeIwfbkrqSD7Scx2J7cZ1Zvh7lvm1Qbrf9waMVDHKqIKDHxYHvJcGVF6eh7uR05ucvck2yw/QCHKiJKjDANxFZ+KNdI9cE/icH2duOniF6gceVK1H4g9wOXe/oUFJzFLT7IXcKysD2ZYPuHZ3MlCbmu7rNFqP9cMtj+nHOQN+U0hyqi3kA3LRhm4n2mogDpwc6rnoVlIrr8fbkTqyqCpzPYntxn7t6UXLB9fj+HKiJKjDANxNYkE2w/y5F6iGQY29dANB6QauMbNhlqdqFDFRElRugx6GsXyjVisD15hFHxJUSr3G4v/tGnQ83IdaagXowjkCc5yzBQ+T+PSbVhsD15xYG5c9GyTu4x8+Irr0DWqFEOVUSUGDMSReXjT0i1UUMhBttTt4Uln15JD/ihfu33vb7lC+lg+8DoadByGGxP7ooH238i18ifxmB78gQG21OqEpE26BsWSbVRGGxPHqFvWsxge0pJ8WD7JVJtlIxc+Eae7lBFvRsnWE5y+15/A+EdVVJtBt50I9JLS50piChBRksLdiYRbF96770OVUSUuD1//Sui1dVSbUrvvAPBoiKHKqLewLIE2nVTqk1GsPN2dFZ7C6KrP5Y6hpKehcB4ruIj9yUVbF9+BoPtyXVWW6N8sH1mHoPtyRNi6z+Tzmzzj58FxR9wqCKixFjNB2Fsk8xsyylisD15gr56gXyw/SRmtjmFEywnsWhtLXY984xUm2BxX5TcdqtDFRElbtczz0BvbJRqM/g798Gfne1MQUQJat+zB7tf/KtUm9CgQRhw/XUOVUS9RbsuF4qcHvBBUzs/vRJdkUyw/UUMtifXJRNsr+b2hW8Ig+3JffqaJILtJ5zDQRJynVm3D+ZOyWD7PiXQBnLHAXLXV5ltksH2k87lduTkOrNmB8y9W6XaaP2HQes31KGKiL3CSWzHb5+CGW6XalP24IMMtifXtW7diuq/vy3VJnPMGBRdcokzBRElSAiBysefYLA99TghhPT2YF9/esXYvxPG9rVSx9D6lcE3aIxUGyK7JRts72ewPXmAWV0Js7pSqo02gMH25D4hLMRWyQbbqwhMPJfbkZPr4sH2u6XaaIPKoRUw2J7cJUxDvu9VffBPPMeZgggAJ1hOWo0rVqD2Q7lg+7ypU1FwFrf4IHfFg+0flw62HzqbwfbkvvpFi9CwWG4f1MLzzkXeadzig7pHNy0YVuKDywGfCp/2VZ8pLBPRZe/JnVRVEZxyMQdJyHXJBduPZ7A9uS75YPuznSmISIKxfQ1Ek2yw/SkMtifXxYPt5bbEjQfbM7ON3GdsTSbYfiqD7R3G0ciTkGUYqHzs11JtFL8fQ2f/gIMk5LoDc+agZb1ssP2VyBw10qGKiBJjRiKo/PUTUm3UUAhlD9zvTEHUq4RjstuDdX56Rd/yBaxGuUGSwJjpDLYn1wk9itjahXKNAmkIlJ/hSD1EMoytyyHamqTa+EdNg5rOLXHJXckF22cy2J48IR5sL5nZNvYMBtuT66xwM/RNi6XaxIPtpzhUER3CCZaT0L7XXk8q2D5UUuJMQUQJMppbUPV7yWD73ByU3nuPQxURJW73Cy8iWlMj1WYQg+3JBpYQiEhMsKgKkObXvmofTibYPhuBcXzqldynb/wciIal2vjHzmSwPbnOam2Evnm5VJt4sP1khyoiSlxs/acMtqeUZDXVwti2QqqNklsEX9kEhyoiSlw82F4ys43B9j2CEywnmeiBWuz685+l2jDYnrxi5zPPwGiUW8U3+L7vMNieXNe+ew/2vPSyVJvQ4MHoz2B7skEkZkAmeSIU8HV6YjW6Molg+9Mu5CAJuS4+SLJKqo2a1xe+IeMcqogocfraJILtJ3KQhNxn1u2FuXODVJt4sD13HCB3JZvZFpjIzDZyH4PtvY09xElmx+9+Jx9s/4MfQEtLc6giosS0btmCmrfflmqTNXYsii652JmCiBIUD7Z/XDrYfhiD7ckm3dkezNhflVywfSmD7cldQoiOgE/JYHsOkpAHJBdsPwJa38HOFESUIGFZiK2aL9eIwfbkEeaezUlktpVDK+jvUEVEiUk+2P5cZwqio/DTxUmk8csVqP1Q7gcub9pUFJzJoC5yV7LB9mWzH2KwPbmu/rNFaFiyVKpNn/PPQ+6p3OKDuk83TOhm4n1nQPsq3D4ebP++3AlVFWlTLuEgCbnO3LURVt1eqTa+IQy2J/cJU0dsdTLB9rMcqYdIhrF9tXyw/fDJDLYn1wk9Cl02s80fRKCcW+KS+4ytXyQZbJ/jUEX0dRyZTDHiGI8yWrqObckE2z/0EAdJqEcc69oFgAPvz0HLBrnHzIuvugqZI/mYOfWMY12/ZiSCysefkDqWlh7CkPsZbE/2kH16JRT8amsZffPypILt1RwOkpC7RCyC2LpP5BoF0uAfy0VF5D5jyxcQYclg+9EMtif3iUhbPPdKghLKhH/UNIcqIkpccsH2zGwj91ltTdA3LZFqo2Qy2L6ncYIlxWx/4jc4MO+Dowb79v3tNbRXVUkdKx5sP9DG6oiOra2iAlv/738iVlfX6XW9uRlVf5APth90D4Ptqeds++WvcHDhJ0f1vbuff0E62L70zjsRLOpjZ3nUSwkh0C4xwaIoQMgfn2Cxwi2IrmGwPaUmfeNi6WD7wNiZUIIhhyoiSozV2gh9yzKpNkpmPnzDT3WoIqLEJRVsP47B9uS+eGbbSqk2Sm5f+MrGO1QRUeL0NUkE2088j5ltPYwTLCmmrbISW/79P7Duew+gbft2AED0wAHsfPY5qeMEi4sZbE89ymhqQu28eVh5403Y99rrEEb8F8SuPyURbP+d78CXneVEmURdat2yGZt+/K/YMPsRtO/eDSC5YPv0IQy2J/tEDVMu3N7/Vbh9dMUHgC6XGxQ87SIOkpDrrMYDMCplg+2LoTHYnjwgtmYBYJlSbQITz4Giag5VRJQY8+CeJILtSxlsT65LPtj+XGa2kevM6u0w91ZItdH6D4fWr8yhiuhYOJ2VYvSOgeimVauw6tbb0f+66xDZtxdWu1yw/dCHGGxPPevQtWu2tWHHk09i/3vvod/VV8sH25eXo+hiBttTzzp0/TYsXYoVN92CgTfdiNZNmyF0Xeo4Qx+eDdXHX71kj0hMbpAuPRgPtzdqqmDsWCfVVus3FL7S0VJtiOx2eJBEOtiegyTkPmNfJaya7VJtGGxPXiAsq6PvlcBge/IIc/emJILtxzHYnlwnTAOx1ZLB9poP/onnOFMQHRdHeVKM0dR4+L+FaWLvK69IHyNv+jTkzzzDxqqITkw/4toFgHBlJSr/53/kDqKqDLYnV+hNXz1lJXQdu//yvPQx+px/PnInM9ie7CGEQERP/FFxv6bCr6nxYPvlSQTbn34xB0nIdckF209gsD25Tph6fIsPGZof/vFnO1MQkYR4sH2tVJt4sH2BQxURJUboUfnMNn8aAuXMbCP3xYPtG6Xa+EdPY7C9SzhKmUKEENCbmrt1DCUQwNCHfsBBEupxRjevXaAj2H7ECBuqIUqcFY1KPyX4dVp6CEMe+J5NFRElsT1YIL6mJqlg+7EzoGYz2J7clVywfQj+sVxURO7TtyxPIth+KtR0bolL7hKRNugbFkm1UUKZ8I9msD25T9+4GJANti8/g8H25Lqkg+1HnOZQRXQinGBJIWY4LL0dzdcNvOlGhAYy2J563pFPACTDn5uLQXffbVM1RInr7sQ2AJTedReCfRhsT/aJ6HLbg6X5fbDCzfLB9hk5XMVHnqBv/Fw+2L6cwfbkPqu1EcaW5VJtGGxPXhFb9wlgyGW2+cefDcXHzDZyl9VUC6NSLtheze0L3xAG25P79NVJBNtPYrC9mzjBkkKMbg5QB/v1Q8mtt9hUDZEc42tbhMka9F0G25M7vr69naz0IYPR/7pr7SmGCPLbgwU0FZqqILriQ/lg+1MvZLA9uS4ebL9aqo2aVwxtMIPtyV1CCMTWzE8i2P5cBtuT68yDe2Du2ijVRu1TCm0AdxwgdyUbbO+fdB4z28h1ZnUlzH2SwfYDhkMrZrC9m9hzpJBDIcvJGvrQgwy2J9d05/rNGleOoosusrEaosR1u+995GEG25OtYoYp9XkxLeCDUbNDPti+P4PtyX3xQZKPIB1sP+k8bolLrjOrK2HV7JBqow0cCa3vIIcqIkqMsCzEVkmGKzPYnjwi6WB7ZraRy4RpILZqvlwjzQf/BAbbu40TLCmkO6uog8XFyDnlFPuKIZLUnSewii65hMH25JruPH2VPmQwssaMta8YIgDtktuDBTUliWB7DWlTLuEgCbnO3LUBVt0+qTa+IROg5RU7VBFRYpIOth83y5F6iGQY21dDNB+UauMbfiqD7cl1DLanVGZsWQ7R1ijVhsH23sARyxTSnVXU0ZoarLjhJtR+9BGE5GOSRHboTgZL5S//GxX/9V+INTTYWBFRYrrT94Z3VGHFjTeh7jO5cFCiY0lmezBr63JYjbVS5wmMnc5BEnJd0sH25Qy2J/fFg+3lctz8o6cx2J5cl1ywfRb8o6c6VBFR4pILtp/JYHtyXTzYfqlUGyUzj8H2HsEJlhRiNDZ2q32sthab/8+/Yd0DDyJcVWVLTUSJEEJ0O+T+wPtzsPKGG1H95lsQptzqbaLu6O61G62uxsZHf4QND/8Q7XvkHlUn+rqYYUltDxaEgejqhVLnUDJyEBjHVXzkvniwfbtUm0D5mVACDLYnd1mtDfLB9ln58A2f7FBFRIlLLth+FoPtyXVJBdvn9YVvCDPbyH366vmAxWD7VMUJlhSiN8utgDqWphUrsPZ7DyBSU2PL8YhOxIpEIGJyN+ldMVtbsf3xx7HnxRdtqIooMd3Z3u5I9YsXY90DDyJWzyexKHkyT68AgLJefpAkeNpFHCQh11mN++WD7fP7QRtc7kxBRAmK5wYtYLA9pSSzdrd8sH3RIAbbk+uEEPHcINlg+4kMtif3xYPtt0m10QaMgFY8xKGKSBanuVKI3s0nWA7pc/75KPvBgwjk59lyPKIT6e4TAIcE+vRB2UM/QMGZZ9pyPKJEdDfk/pC+l1+GId/7Hvw52bYcj3of2e3BfFYMVsWXUufQ+g+Dr2SUbGlEtooPksyHbLA9w5XJC8zqSlj7kwi2L2KwPblLWCZiqyXDlRUVgQnnsO8l15m7NsKq2yvVRhs8nsH25Lqkg+0nMtjeSzjBkkK6O0gdLC7GsEcfQf60aTZVRJQYo7sD1IqC4quvxqBv3wtfRoY9RRElSO9GyD0AhEpKMOxfHkXuKafYUxD1WrppwZIYb9a2r5Y7gaohbcrFHCQh15k718Oqlwy2L5sAlcH25DJhJBlsP36WI/UQyTAqkwi2H8Fge3JfUsH2gTQEmNlGHmBsWZZEsP10qOlcuOklnGBJIUkPUqsqBlx/HQbdfRe0dAZ3Uc/rzgB1+pAhGProD5E9jvuikjuSfYJF0TQMvOVmlN5+G9Rg0OaqqDeK6HLbzWg75PagDoydwUEScp2IRRBb/6lco0AI/rEcJCH36VuWyQfbj5kONcRge3KXaG+N515JUEJZ8I9isD25L57ZFpZqExjLYHtyn9XWCH3TMqk28WD7Ux2qiJLFCZYUkswgdcbw4Rj+4x8ha/Ro+wsiSlAyT18pfj9KbrsVA266Carf70BVRIlJJoMla+wYDP+Xf0HGsKEOVES9VdRIfIJFbaiG2t6S8PvjwfYcoCb36RsWyQfbj2OwPbnPam2AsfULqTZKVgF8w/iEK7kvtv5T+WD7CWczs41cZzUegLFtlVQbNa8YGoPtyQP01QsYbH+S4P+RFCKziloNBjHo7rvQ/1vXQ/XxfzO5S/bpq+wJEzD00R8ifRD3oib3yeRfaekhDL7vPvT7xtVQNAbVkn1My4JhWgm/31e9Ver4wdMu5iAJuc5q2A9j+xqpNmp+P2iDGGxP7mKwPaWy5ILtB0PrP9yhiogSE+975TPb/BPPZbA9uc7ct00+2H7gSAbbexRH3lOEECLhVdS5p52KYY/+EKGBAx2uiigxiT7BomVmYvB3v4O+l10GReUND7nPjERgRaMJvTf/jBkY9sjDCPbt63BV1BvJPL0CANr+7Ym/d8Aw+EpGypZEZKv4IMlHkA+2P4+5QeQ6c9+2JILtR0ErKnWoIqLEJB1sP5HB9uS+ZILtfUMYbE/uE6Yu3/dqfvgnnO1MQdRtnGBJEWZbG4R5/MEVX04Oyr7/AIouvog3O+QpiUwOFpx9Nsoe/D4ChYU9UBFRYhK5dv0FBRj60A9QeM7Z7HvJMVGJ/BWlvQVqS4IhtaqGtNMYbE/uiwfbV0u18ZVNhJrHSW1ylzB06Gslg+19fvjHn+VMQUQSjMpVSQTbnwY1K9+hiogSI2KRpILt/WNnOlMQkQRj83KINrmdXvxjpjHY3sM4wZIiTrRFTdFFF2LI9x9AIC+vZwoiknC8J1gCRUUYOns28s+Y0YMVESXmRFszFl95BQZ/9zvwZ/NGh5wlJBb1awd2INHpkkA5g+3JffFBEgbbU2qKB9snnnkFAP7RDLYn98WD7RdLtYkH25/uUEVEidM3LpYPti8/E0qQmW3kLqu1EfpmyWD7rHz4RpzmUEVkB06wOEhYFozaakR3VyK2uxJ69S5Y0QiEqUNRNSj+AHyFxQiWDkOgZCgC/QZBOUaY97EGqIP9+mH4oz9E3lTe5JC9zHArYnu2I7a7EtFdlbBaGiB0HUIIKH4/tPRMBAYORaCkDIGSofDlHHsVU5dPASgK+n3japTeey98GRkO/k2otxGmCf3AXsR2VSK6uxL6vl2w9CiEYUDR4n2vv6h/vO8tHYpAv1IovmP1vY1dvh4qLcGwH/0IuadMcvBvQr2R2dYCfe92xPbsQGx3Jcy2Zgg9Hjqr+vxQ0jOB4sGw+pbCKiqFkplz1DF8BxLbpkbJzEWgnAPUZA9hmTDramDu3wVj/y6Y9dUQhg6YBqD5oPj80PKL4etbCq2oFFphv8PZE/qGRUAsmWD7NCf+KtQLWeEWGDU7YezfBaNmJ0R7a/z6BaD4AlBCmfAVD4KvuBS+voOgpmfG27Uw2J7cJUwD5sFqGPt3wqjZCbN+P2DoEKYRD0H2B+Ar6AeteFC8/y0oPtz3xtZ9wmB7cpXV1gzzQMd9Q+1uiEgbhGEACqBofijpWV/dNxSVQE2LjxtYjQdgVCYRbD+YwfZkD2EYMGr3QK+uglFdBbN+P4ShQ1gmFM0HxR+Er88A+PoNhr/fIGj5xYe3wddXz08u2J6ZbZ7GCRYHxKp3oeXzeYhsXn14UASqClhHh9MadfsR2bImvjRVVREYOBRZMy5A2ojxnTIojgoJV1UM+Nb1GHT3XdBCnIEne1ixKNpWLkLb8gUw6g7EXzzGtWvW1yK2bxew9KP42zKzkTFpBjKnngcts/Nq/q8PUqeXlWHYo48iq3ysI38P6p2ie7aj5dM5iGxdd3hQ5Jh978H9aN+4sqPv1RAcPAJZMy9C2rCxnbZK+voTLIrPh4G33IzS226FGgw6+veh3sOKtiO88jO0ffkpzKa6+IvHuHbRUAtU7/oqSDkzB1r5VJgjJgPZ+YBlQavdmdB50067iIMk1C1CCJg1VYis+QzG3m3xyRQAUJSjHrsSAKzGg9Ar18X/pGrwDRiKwNDx0CtXSW1Tp+b3Z7A9dZsVCSO6YSmiG5dBtHb8vldUQHTuewUANB2EuX8XoqvjX1OzchEcMxWi9YB8sP0kBttT9wghYOzdhsiqT2Hs295xDSqAgk5976H/ijXUAhWr43/QfPCXjIB/yBiYuzdJnVfty2B76j6rvRWxjUsR27riq6f/jtX3NtfB3L/r8NfUrHwERp8O62AVpIPtJzGzjbpHCAF952a0r/gYevWO+Ge1Q9dUF32vWb8f0c1fxv/g8yMwZAyCg0bArK6UOq82cCS0voO7/xcgRylCyGw6QccihEB0x2a0fDYH0e2bjj0wciIdv1h8+UXIOvMSpI87HYrPh/3vvY+t//n/AQAyR47E8B//CJkjGUhL9jDbWtC6bAFal86HiMqtIO1EUQBFRfqk6ciacSH8BfF90ZdfeRX0ujoogQBKbr8NA264AeoxntYikiGEQKRiPZo/eQ+xnRXd73uL+iP7rEuRXn4aFE3D3tdfx/ZfPwEAyCovx/Af/wgZZWX2/iWo1zJbmtD2xQK0fbEQQtch+0HxMEUBVA3+4gFQiooRrKs6YRNtwHCEzrmRHzQpKUJY0HduRnTVQpi1e7ocGElIRzs1MxeqBiiaksA1qSDt3Juh5jJ7hZJjtTYismYRohuWxgemk/44rACaBl9uHlTEn5I9Ea1kFIJTLkvyfNTbCcuEvn092ld+DKuupvt9b3Y+VM2C6tNO3PcqKtLOv53ZK5Q0q7ke0fWfI7bly/h1252hSJ8fWmY2FEvvtDD5mG8fMgGBU85P/nzUqwnTRHTrKrR/OR9mw4EuFxIlpKPv1XIL4dMsqH7fiftezY+0i+5i9koK4ASLDczmRtS98cf44F6yNzlHUQAIqFm5KLju26hd9AV2/vFPGHTvPRhw3bVQfHz4iLpPCIG2Lxaice5r3fyA+TUdg9yZU89F9nnXYOn5FyBr3DgM++EjCJWW2nMO6vWM+lrU/e1/Edu7w76+t+NmScvrg8IbvoPq9z7E3lf/hsHf/Q76XX1VQjfwRCcihIW2pfPR/PHb8X7Xrr5XUQEhECjIRSDdf+wbdlVDxpXf4yAJJcVsrEXbRy/Dqt+f/AfMr+s4jhIMQUvzQz3Ofa6vbCICk87r/jmp1xGWhciKBYismN/xgl19b7yv1bJzoAWOM1Dt8yPtgrughjLtOS/1KkZdNdrm/RVWU539fW8oHf5QEIrv2JOEvpGnI1DOcHCSJywTkS8/QmzdoqOesuoWRQGgQM3IhHq8BRqBEEIX3MnsFUqKXrMLLXNegNXSgEPjtN12aJI7PROBzDSox1mg4R93FnOvUgQnWLopUrEedW/8CSIasWli5Ws6fkn4h52C7LMvQ2jAQPvPQb2SFQmj/u3nEdm00rmTKAp8RQOAolHoe811XClNtglvXIn6N56JbwWWzBMrJ6KogAL4h5+K3AuuQlpfrpQme5jhVjT+4y+IVm5w9Dy+3HwEM31Q1aP73cD4sxCceLaj56eTU6xiFcKf/j3e7zpy3xvve335faBYsaPvG4IhhC64i9krJM1qa0bbh6/AqE4soypZanY+fMGuB/r842bBP+JUR89PJx8hBGKbliP82TsdizIc6ntVFf6CQqg4OhdASc9C2vl3cFtRkma1NCC84FWYB/c6eh41uwAqun6aJXDKBfANGe/o+enkI4RAZPWnaFv0TwA2Log7kqICmg/BwgJoytF9u5KVj7QL7uC2oimCj0EkSZgmmhf8Ay2L5ti3gqTLE8WPq1esQKsVQeCau6BlZDlzLuo1Yvt2ou7Vp2E2Nzp7IiFg1O6DUl+L9k3DkD5msrPno5OeMHQ0zn0drUvnO3wiCxCAvmU5WlUdgW/cCTWU7uw56aQX3bUNDW/+EVa4zfFzGc2NMMMBpA8ZDLW94fDrDLanZAgjhvCid6BvdXBRBnC47zUO7ofWtwSqFYVyRAhooPwsTq6QNH13Bdo+fAUiFnH8XFZLI/RoEP7i/lDav8pxU7IL4Bs2yfHz08lFxCJoW/gW9Mq1Dp/IAkwL+oEa+PoNhiraoRyRLeQffw4nV0iavnMTwp+8ARzKxnSQ1VIPEUyHLy8POKLvZbA9JcOKhNHywSvQqzY6eyJhAUYM0ZpqBEqGQjPDUI6YRGewfWrhXidJEKaJ+jf+GJ9cAZybXPma6PZNOPCnX8Bsbe6R89HJKVq1BQee+X/xyRUnVkB9nWVB6DHU/+0PaP1iofPno5OWMHQc/Otv0bpsQY+et33zGuz/0y9gtTs/KE4nr8i29aj76+Owwq091/fGomjbshkoGQ+lY9/etNMuhuJjBhYlThgxtL73HPSKVT16XvPAHliWBrX/CACAWtAf2qCxPVoDpb5Y5Vq0/vNZiFh7z/S9woKIRRDbtR1KSTkQjC/OCEzkIAnJEdEIWv7xR+jb1/XoeY3qnTCRBrV4KIBDwfbDerQGSn2xrSsQ/uglQI/2UN8rIKJh6DW7oQ2eAATi24EFGGxPkqz2VjS9/iT0nZt79Lyx3dthaJlQOsLsGWyferhFmCQhBBr+/hzCa5a4U4CqwlfQF0V3/ghqeoY7NVDKiu3ZgdrnfgVhGj02Mfh1ed+4ExkTprlybkpdwrJQ98rTaN+82p1rV1Hh71eKort+CDXI1dMkJ1q1FXWvPAmYFmzZt1eWoiD3yjvgT/PBzxXUJEGYBtrmvgBjX6VLfa8Cre8ghKacDzWUCTWnT8/XQClL37kZrXOed+2eF4qKjAtvgqoCPk4OkgShx9Dy7jMwD+x2re/1lYxAaNJMqFkFULPyer4GSlmx7evQ/vHfXDq7Amga0s+9EQpM+EpGu1QHpSIrGkHTm0/BrKvpmYnBoygIDB+P0Lip0PL7QU3n7kWphE+wSGpZ+K57kysAYFkwDu7Hwb89HR8kJ0qQ0ViHg3/9DYRpY5h9Ehr+/hdEdmxx7fyUmhrnvob2Tavcu3aFBb16F+pe+yOEE5kvdNIy6mpQ/9rTHVlBbl2/Ao3vPg+RzgESSpwQAuHP3oax16XJlXgRMPfvRHTDcijZhe7UQCnJqN2L1nl/dfWeF0Kg7aNXoWQWuFcDpRwhLLQteM29yZV4ETB2bUF023pOrpAUY/8utC983cUKBGCaCC98DUpOkYt1UKoRlomWOc/DrKt2aXIFAARiFWsQ21nByZUUxAkWCeGNK9C88F23ywCEhVhVBRrnuLUqgFKN0GM4+NffwIr20PYIx68Gda88BaPhoMt1UKpoXbEIrYs/dLsMQFiIbFmDpvlvu10JpQgr2o66V34HoevuDvIBgGWh/tWnYLY2nfi9RABi6xd3ZK64fO0KAb1yDaJrPnW3DkoZVnsrWt//S8fEtpviA30t7z0HKxp2uRZKFZEVC6BvX+/+fQOA2IaliG5Y6nYZlCKstiaEP3gRrt83QAB6DOF5L0DoUZdroVQR/vw96Lu2eqLvbV+xAJHNK9wugyRxgiVBViSMxndedLuMIwi0fbEQ0V3b3C6EUkDLorkwams88EET8f1R9Sga33/F7UooBZitTWh872W3y+ik5ZP3EavZ7XYZlAJaPn0PZlO9Bya2AQgBqz2M5o/edLsSSgFWSwPal811u4xOIl98CLOpzu0yKAW0L50L0d5DeVcnIiyIcDMiyz2wUIQ8z2w4gMiX890uo5Pw5+/B4uIMSkD70vfjExoeGKCGsGA11yO65hO3K6EUoO/fjfZV3rpW2ha+xQzYFMMJlgQ1f/wOrIjHVh4pKhre/Su3q6HjMhpq0fzZ+3B/JckRLAuRrWvRvrVnQxsp9TTOeyO++t9LVAUN/3gRjDCj49Fr96Ft+QJvfMg8RFhoX/8Forsq3K6EPC685D1vXbsd2j9/h30vHZexfzdim7/01vUrBKLrl8I4uM/tSsjDhBAIf/o2AI8Fcltm/HcC0XEYe7fBqNrgjYntwwSiaxfBbOLOGXRsQlho/fgNQPHW8LjQo2hb8r7bZZAEb11BHqXv34PWZR4bJAEAYcE4sBdtX3hrppW8pfH9v3nv2gUARUHjP1/y3uA5eUZ01zaEVy322I06AMtCbHclwmu4ZQJ1TQiBpvdfgecGSQBAUdD0/ssQlul2JeRR+p4KGFUbvdf3CgvGngoYOze7XQl5lLAshD/9u+cGSQAAioLwJ3+H8NrPFXmGvn0djH3bPdn36tvWQt9b6XYl5FHCNNC++B1A8eB9L4D2xe9ycQYdU3TjFzAP7PFg3xtfnKHv584ZqcKDd5/eIoRAw7svefaXBQA0ffQWzLYWt8sgD4pUrEdk6xpvbA32dULAbKpDy+IP3K6EPEhYFhr+8aI3B0kAAAoa338VVqTd7ULIgyIbVyC2e5v3btSBeHDtwRq0rWCeBR1NmAbaP/uHh+97FYQ/fwfC4OIMOlps85cwD+7zaN9rwTywG7Gtq9yuhDxI6DGEF70LTy7MAOIThJ++zcUZ1KXYxqWwmuu9uahTWDD3VcLYucntSsiDrEgYbYs8kLN9LIqK1o/f4OKMFOHVkSvP0PdWxQdJvDhA3UHoUbStXOR2GeRBzYvmeHiQJK5l8QcQhuF2GeQx0e2boe/34EqSwwSscCvCa5e5XQh5UMviefDsIEmH1sUf8GadjqLv3AyrxaODJAAAAdHWBL1qg9uFkMcIIRBZ+bHbZZxQZOVCrqSmo8Qq10KEW+CpLZ2PJASsxloYu7nFKHUmLAvRtZ+5XcYJKIiu5cIiOlp005cQ0YjbZRybsGAe2ANjX5XblVACOMFyAm2rFwOqx79NQiC8chFv1qkTo7EOsaqtHh4kiRORMCLb1rtdBnlM26rPvd/3KgpaV3j9AwX1NL22Gsb+PfDsIEkHq6URsZ3b3C6DPCa2dYXnF2ZAURDbssLtKshjzP27YLU0uF3GCVmNtfGnbIiOEN30ZQr0vSqim790uwryGGNfJUTE60HcAmbtHpjNdW4XQh4T2bgMXv/MBkVFZNMXbldBCfD46JW7hKEjvHapp59eOcSoPwCds5p0hPCapd6/UQcAVY0PphN1sKLtCG/40vt9rxDQ91ZBr61xuxLykPa1Sz28td0RVBXhtUvcroI8xGpvhbHb+wszIASMvdthtTW5XQl5SHTLytToexWVE4TUidlcD7OmKgX6Xgt61UZY0bDblZCHxCpSpe9VoFdwi0b6inFwH8y6FPgcLyxEt66C0GNuV0InkAI9oXvat6719uNiR1JVtK3mQAnFCSHi28Z5/UYdACwLka1rYYZb3a6EPCK8fgWQKtvGKWr8SUcidAQsr1ni4a3tjmBZaN+4AlYs6nYl5BGxbWtS476hQ6xitdslkEcIQ49fD6nQ9woLsS0rIcwUuc8hx8W2rkyNRXEAYMUD74kAQMQiMKo2pkjfKxDbupLb49JhkU1fpsbkIAAYOqLbueuL16XI1eSO8Npl3t+i5hDLQnjtUgivr/imHqFX74LZeNDtMhJnWWjfwNV8FBdesyR1PmgKC+FVnGChuNiuCljhFrfLSJyhI1rBgRKKi6XUys74QAkRAOi7twJ66kwWi1gExh5u0UhxsS2rUmhyW4k/LUYEQN+5CbBMt8tImAg3wzyw2+0yyAOEEPEtD1Nlwk1REN3M8TKvS5HZA3fEdm/3/hY1RxCRdpiN3FeSgNjeHW6XIEdVoe/b6XYV5AFCCMT2VKXQB03AbG6A2ZZCg+rkmNi+namzEgoAVA2x6l1uV0EeICwTVipsk3AEq/EghKG7XQZ5gHlgT2r1vYoKo3aP21WQB4hYBFZK5UIImAf38SkAAgCYB/emzoJkAIACs3av20WQB1htzRDtXs8OOoIQMPbzM5vXpVJv2KOs9jCs1tTb21nfz5t1AvT9ewFVc7uMxFkWYtWcYCHAbGqAiKXI1oxH0PfzZp0A40CKXQeWCb2GK/koHrydMqv4DhMwGw64XQR5gHFwX4pdvwJmXbXbRZAHmPX73S5BnmnAaq53uwryAPPgvpRakAxFgdmQWotJyBnmwX1ulyBNRMKptVNCL+RzuwCv0m0eJPndotWYs7kKlQebkObTMLmkL/713NMwtDDXvpOoKvT9exEaPcm+Y1JK0qt32fq4bk9cv3rtPgjLgpJSq2DIbnZPEv/u8zWYu2UnKusakebzYfLAIvz4nNMwtCDHvpMoCvSa3UgrG2XfMSkl6dU7bR3k++0nKzFn0w5sq21Eml/DqSXF+NcLpmJYn1zbzsGFGQTYP8j36zmL8c9VW1BRU4+0gA9Tygbg379xNoYXF9h6HrO+Br4+A2w9JqUeuwdKHp+7BP9cvRUV++uR5o9fv/929VkY3tem61cImLWpN7hD9rM7YNnxa7eDWVcDLafQ1mNSahFC2DpZ8ev3P8e7K7egorouft8wdCD+45vn2HvfIKyUHFgn+xl11fEtyW3aNeOJD5fjvTUVqDhQj5Dfh9OG9MfPLp+JYX3zbTn+IUZdNQLpWbYek+zDkcxjsHvAYenOGtx26hj8484r8PLNF8O0LNz00lyEYzZubSAEYvu5ErW3E0Kk5vVrGDAbUig3hhyh19i7zceyXTW4bfJovH375XjpxgthWAI3v2zztaso8bqpVxOmAaO+1tZjLq2qxm1TxuLde6/GK7ddBsOycOPz/7T1+hXtbTBbm207HqUms77G1m0+Fm/dhbtnTcYH/3Ir3nrwWzAsC9/4zatoi8ZsOwdUFVY9V6L2diIagbB5Refn23bjrrNOwbwf3oy3vn89DMvCNb99zdbr12ppgNBt/HmglGTWVdva9/bEtQtF5RNYBNHWBNjYh32+ZRfuPnsyPvzX2/H32TfCtCxc/euX7b12EX9il7nFZB6sBmBf5uvibbtx58yJmPvQDXj9u9+EYVq49vdvoi1q75hDvG7yKj7Bcgx6bXV8iyWbngL4600XdfrzY1eciYmPvYS11QcxdVA/W84BIWBwkK/Xs1qabP/A1iPXL+JPsfgKimw7HqUevbY6fq9jUwTLizdc2OnPj112BiY98QrW1dTh9NJie05iWYjxKYBez2iwf4ull267tNOfH//G2Rj//57H2n21mDq4v23nMQ7WQMvMtu14lHrMhgO2bvPxxoPf6vTnp267DMMf+Q1W76zBjBGl9pzEslJzex2yldlo/zZxb9x/Xac//+6WSzDiR7/Fml37MX14iW3nMRtr+QRWL2fW77e37+2Ra5fbM1K8/7LTmw/d0OnPT91xGYY99IS99w0AYJmwWhugZdv7VBelFuNgta2f2177zjWd/vzkTRdi9E/+gDW792P6sIH2nERRYPC+19P4BMsxxDMAnAtZbu6Yic8NBW09rhWL2no8Sj1WD+RXOHX9Cl6/vZ6IRRzdy7elYxVJbprN126k3dbjUeoRUef7r+bIob43zdbjCp19b2/ndPZVc3v8+HkZIVuPm4qZXWSvnui/mtvj58jNsLvv5RMsvZ3zfa8D164Q/MxGtj690pXmcPway7O53wXgeO3kfT3V9+al29z38jObp3GC5RiEYdi2H99RxxYCP/9gGU4r6YtRRfbuySdMGx9Bo5QkDGevAUevX4drJ+9zcrBBCIGffxS/dkcW5dl7bNOw9XiUepz+/SuEwH/MWYwpg4oxyub9fNn3Ehy8BoQQ+Mnr8zF12ECMGdDH3mOz7+31hOHsNSCEwE/fXICpQwdiTH97r1/w+u31nPz96+y1y/uG3k5YzvVfQgj862sfYdrwEowZYP/uFsLGrFpKTU7ePwoh8LO3P8HpZQMwur+NWVVCAA7f81D3cILlWByaXAGAn85ZjM376/HUNefYf3AH66YU4fA1wOuXnCQcvAb+z7wl2HygAb+7apb9B+e1Sw5fAz/55yJs2l+Hp649z/6D8/olB5/a/uErH2DD3lo8c/eV9h+c1y45eO0CwKN/+xAb9h7An+683P6D8/olB/HaJUc5eA388OV52LDnAJ655ypnTsDrlxy8Bn70xgJs3HcQf7ztEvsPzmvX0zjBcgyKzwc7Q48O+T9zFuPDrbvwt1svRb/sDNuPr2h+249JqUXxOXcNOH39wsHaKTWofmeugZ/NW4IPt+7Gqzdf7Ezfy2u313PyGvjpPxfhg81VeP3OK9A/J9P24/P6JTh0//joKx9gztoKvDv7RgzIsz/nJ36/Tr2Zojl3Dfzobx9iztpteOcHNzhy/YLXLzl0/Tp/7fK+obdzqu/94cvzMGf1Vrz7yM0YkO9MPqCTvzcoNTh1DfzLGwswb30l/n7/teifm2Xz0RXeN3gc/+8cg+IPAIpi26IoIQT+z9wlmLu5Cq/feilK8+z+YYtTHBqcpNSh+AO2H5PXL/UUxR/s6Hvt6XyFEPjZvKWYu2UnXrvlYpTafqMT58TPHaUWJyYphBD46XuLMHfjDrx+1xUodWKQBJxgIfv7MCEEHn31A7y3eivenX0TBhXm2nr8w3zse3s7xYFrQAiBH732Ed5bvRXvPHSDY9cvF8aRE31vj1y77HvJ5v5LCIFHX56Hf67agn/+8BYM7pNr6/E74QRLr+dE3/svby7A+2u34e37r8Ogghxbjw8AUBR+ZvM49izH4MvvCwj7gpZ/Mmcx/rGuEs9cfz4ygn4caA0DALKCAYT89v1v8PXpZ9uxKDVpWbmApgGmfXuL9tT16y/oa9uxKDX5CopsnWD56dwl+MeG7Xjm2nOREfjq2s0OBpBm17WrqPAX9bfnWJSytDwb99jt8K///Axvr92GZ2+8CJmBAA60dPS9afb2vVq+/ftbU2pRcwqBvdsAy55730demYc3lm/Ey9/9JjLTAtjf1AoAyA4FEQrY9OFQUaHl2pwrQClHzSmw/Zg/fPVDvPHlRrz07W8gM+jQ9QtAzbW/dkotWl4fmAf22Dbu0CPXrqrGf2dQr2Z33/vIS3Px+rINePn+a527bwAARYGaZW8WJ6UeLb8IZmOtbWMOP3p9Ad5cuRkv3H1F/PptbgMAZKcFbL1+ed/rbZxgOQZ/8UBb97d78ctNAIDrXniv0+uPXXEmrps4wp6TqBoCxSX2HItSlqJp8Bf2g75/j23H7JnrV4WvoNieY1HK8hcPtG2ADwBeXLkZAHDdX+d0ev2xy2bi2gnDbTuPv+9A245FqUkNpEHLyYfZVG/bMV9YvhEA8M1n3+n0+q+vnoXrTxllyzkUfwBaTr4tx6LUpeUX29r3PvvJKgDAZY+91On1p267FDdOH2/PSYQFjfcNvZ6angUlGIKIttt2zGc/i1+/lz/xSqfXf3fLJbhx2jhbzqGkZ0INpttyLEpdWn4/QKy07Xg9ce3CYt9LgJqVD6gaYFNg/J8Xxn8OLvvVXzu9/tQdl+GmGRNsOQcQr5tbhJGvsD9i2zfCri2Lnvt8DQDgqt++3un1J2+8EDecPtaWc0BY8BVyUaeXsWc5Bn/RAFuPt/tnd9t6vC5ZJvx97a2bUpO/Xyn02n22DZb0xPXryy/iXupk+0TFrp/caevxuiSs+MQQ9Xr+4lKYzQ22LdDY+3/vs+U4x+MrGgBFsT9zjlKLlm/vYFnD//7Y1uMdi911U2rSCvrB2LfdtuPVP/0j2451LFoBB0kIHRMV9i3q7IlrFwB8Bdw1o7dTVBVqXhGsumpbjtf4zE9sOc5xKQq0Qo6XUfy+wc4di2p/M9u2Yx0PJ7e9jSH3x6BmZkNJS71VRVxFTUDHdWDjE1iOU1UE+g9yuwryAF9+UUrui8sJFgIQX+SQSpMVqgY/n3wlpO42cZxgIQDQCvsDagp9rFVVrkIlACk6WKaoUHO5RRh1TBQrKdT3AlDzuSU5ITV/B/sC3N7O41KrN+xBiqLEB3xTaaBE88HHDAtC/AmWlJpgEYKDfAQgvhoq1SYrlLQQtGze7BDi/ZiN2yw5zjLh78u+l+KBxWp2auVBKBk5UAJpbpdBHqAV9k+xvteCVsgnAAhQQ5lQQplulyFFzevDLZYIwKGnAFJrzEHj01cEQM3JB1IsMN7Xpz93HfA4TrAcR2jsqanzC0NVERo9iTc7BAAIlg6DGspwu4zECYHQmMluV0EekT5uSupMbqsq0sefzpsdAgAEh4yG4g+4XUbiFAVpI+3b15pSm3/Y+NTpexUFgWG8dinOP3hUaj3BovngL7UnR4tSX2DYhNR5CkBREBg20e0qyCP8g8bAzi3uHOcPwtevzO0qyAMURUVweAr1vQCCIya5XQKdQOpcTS5ILz8V0DS3y0iMZSFj0nS3qyCPUDQN6ROnp8aHTUVBoHQYfHl81JziMiZMdbuExLHvpSMo/gBCY09Lkb5XRXBYObSMLLcrIY8IDD8ldRYWCYHAcH7QpDg1mA7/4DGpMVCiqPCXlUMJBN2uhDwiMPIUW7MAHCUEB/noMDUjG1r/oamxOENRERg2kQuS6bDg6NNSp+9VVARHTHS7CjqBFLgLdY+alo7Q6FNSYqBETc9CsGyM22WQh6RPnJ4a2yUIgYxTznC7CvIQLSsHaUNTY6BEyytEYCBXQtFXQuNPT5G+10L6+BSazCTHaTkF0IpKAHh/oEQt6AeN+6jTEYKjTk2NgRJhITiKT23TV7TC/lBz+7hdxokpCnz9h0DNynW7EvKQwIgUWZwhLPi5MIOO4B9QBjUjx+0yTkxR4R88GmqKbSfZG3l/9MplGakwSK2oSJ80HUoKTARRzwkUD4SvKAXCu3w+bg9GR8mYfIb3B0oUBZmTZ3J7MOokUDIMagpk8iiBNKQNH+d2GeQxgZGnIhW2+wiO5H0DdeYrGQ4lLd3tMk5ICWXC13+o22WQhyiKEl9J7fXJbSEQGHWq21WQx/gHjU6JLAs1Ox9a4QC3yyAPURQVwbEpsDW5sJA25jS3q6AEcET+BIJDx0DLK/T2D50CZE4+0+0qyIOypp7ndgnHp6jImDgDapAhtdRZaNQkqJk53u57NQ0Zp8xwuwryGEVRkDnlHLfLOD5FQcapZ0JJgQ/E1LMCQ8d5PzjeH4CfGQD0NYqqIVg+DV4fpA6On8FFcXSUwIhTAJ+3ty5S0tIRKOPCDOpM8QUQGHmatz+zAQiMnc5FcXSUtDFTvL1rhqJAzcxBYPBotyuhBHj4SvIGRVWRd9nN3n3sUVGQNf0C+AqK3K6EPCh90gz4i0s8+0tDCQSRfe5VbpdBHqT4/ci77Abv9r1QkHP2FdBS4EkF6nkZp82CltfHsx821VAGMmdc7HYZ5EFKIA1pUy9xu4zjCk25EGoKPKlAPS9t4llQ0rPgyUkWRYGamYu08dwWl46mpmciNOUCt8s4rtCMy6H4A26XQR6UNulsKH6PLs5QFKi5fRAYxScA6Ghadj5Cp54LT943APHt9Gd9g9lBKcKbo64ekzZsLNJGTvRgFosCNT0LWWde6nYh5FGKqiL38ps9u9VSzvnfgJbOvSSpa6GxpyI4eKT3+l5FgZZXgKwZ3v4gTO5RNB9yL/buBGH2BdfyyUE6psDIU6AW9vfe4gxFgZpXhMDoKW5XQh6l+ANIn3kFPLnNnRBIP/MqPjlIxxQsnw41x4M7ZygqtL6lCAyf6HYl5FFKMIS00y9yu4yuCYHQ9CugqJrblZBHpZ96DtTMbHhukkVR4S8dicCQsW5XQgny2Ccn78q95Fveu9mBQO4l3+IgCR1XcGAZ0ifO8NZAiaLC13cgMri1HR2HoijIu+Jm742TCIG8y2/mIAkdV7BsNNJGTfJW36uq8A8citBYruKjY1MUFelnXOW9xRlCIH3m1RwkoePyDxkL34Ch3up7FRW+0lHwDxrldiXkYYqmIf3Mq7y3OOPQ5KDnxkLIS/zDJ8UzTrx0nSgq/GXj4es3xO1KyMMUnx8ZZ30Dnht0UIDMWVez700hHrrz9DZfbgFyzrnK7TK+oqgIlo1GaCyD5ujEci64BmpayFM3PHlX3MI9qOmE/EX9kXWmh7YyUhSExkxGaAT3oKYTyz7/m1D8fu/0vYqC3Etu4I06nZCvaCACY6bCO6v5FPhHToaveJDbhZDHKYqC9JlXeevpV01D+szL3a6CUoB/4DD4h0/0zn0DgOCEGfAV9ne7DPI4RVERmnElPHPfoCiAP4C0KR59soY8JVA2Fv4hYzzV96afdh603D5ul0ESPHTn6X2ZMy6MT2i4/UOnqtBy8lFw7bc5SEIJ0TKyUHDTA+5fux3yLr8ZwYFlbpdBKSLn3KuQNrzc/dWoqgpfn37Iv+ZOd+uglOHLyUf+N7/tdhmH5V15B/xFA9wug1JEaNol0PqWut/3Kiq0Pv2RPuMKd+uglKHl9UHG+Te4XcZhmRfcBC27wO0yKEVknPUNaPnFHuh7Ffj6lyF0uocWOpGnaYX9EZp5tdtldFCQcd5NUDOy3S6EUoCiKMi64EZoOYWe6Hv9Q8YiNOV8d+sgaZxgkaAoCvKvvgP+/oPc+6FTVCiBNBTe8iDU9Ax3aqCUFCwZivxvuD8wnDnjQmRMnul2GZRCFFVFwfX3wden2L0VqaoKNT0TfW79AbdlJCnBstHIufhGt8tA1qwrEBoz2e0yKIUomg8ZF94MNSvX3fvejGxkXHgrt2UkKYEhYxGadonbZSB0xuXcGoykKP4AMi+5HUp6pqt9r5pTiIyLboaicVtGSlxg+CQEJ53tdhkIzbyKW4ORFDUYQvaV90AJhlzte7XC/si+8CYobk/0kDT+H5Ok+APoc8tD8BX16/kfOkWNn//2h+EvLO7Zc9NJIX3c6ci9/BbXzp9x6lnIOf8a185PqUtNC6Hozh/Cl1vY85Msigo1GELRXT+CL5crUElexilnIPs89/q+zGkXIHMGt0ggeWpaBjIvuwdKepY7972hDGRefg/U9KyePTedFNImnom0yee4d/4pFyBt3AzXzk+pS83MQdaV33ZnoE9R4+e/4h6owfSePTedFIKTzkFg7DTXzp829VIEhp/i2vkpdWk5Bci55jtQ/IGe3/1FUaHlFiLnqm9DCQR79txkC0UIr6WopQYz3Ir61/+E6PaNPXNCRYWWnYeCG76LQL/SnjknnbTa1ixBwzsvAJYV/8dJigIIgayZlyD7nCuZu0LdYrY04eCrv0dsZ0XPnFBR4MsvQuFN98NfxP2nqXvaVnyKpnl/i2coOh0griiAALJmXY7MGRdxS1HqFqulAa0fvASrbl8PnVGBmt8XGRfcDC07v4fOSScjIQSiaz5D+9I5h15w9oSKAkBBaPqlSBvPyRXqHrPxIFrnvgCrsdb5a7eDVjQQmRfeAjUzp0fORycnIQSiqz5GdNWCw+MBjlIUQFERmn45AiOZU0zdY9RVo/nd52C11PdY3+sbMBTZF9/CRUUpjBMs3SAsCy2fz0Pz/L93vODctzI0ZjLyrrwtHlROZAP9wD7U/e33MOr2O3ftqiqUYBoKvnkv0oaNdeYc1OsI00Tzx++geeE/Hb9hT580A3mX3wSVq0jIJnrNbtS//r8wmx28YVdUqOkZyPvGPQgOGu7MOajXEaaByPJ5iK773PFzBcZMRWjaJVA0n+Pnot7BqNmJ1nkvQbS3ONj3KlAyspF54c3wFZU4cw7qdYShI/z5u4htXO7gWRQAAsGJZyE05QJuC0a2MfZVIvzx3yCi7Y72vWpmHtLPuzGeX0RkAxGLouXjNxDbstK5k3QsiEufeiFCp57LxcgpjhMsNojurEDda3+A1dqC+LJUmygqoCjIveRbyDj1LK4+JdtZsSga338F4VWfx7ddsutplo5B78Cg4Sj45r3QsnPtOS7RESLbNqLub3+AFQnbe8OuqICmIf/KW5Exabp9xyXqYEXb0fjeS4hsXBG/3ux6mqXjWMGyMci98nZoGVwBRfbTqzah7ePXACNmc9+rAJof6bO+iUBZuX3HJepgRcJoW/AajJ2b7V2g0dH3+oeMRfrZ34Qa5II4sl+sYg3aFr4BmIbtfa/iDyLjvBvgHzTSvuMSdbDaWxH++DWY1dtt7nvjx/IPnYDQjCug+LkgjuwlhEB043K0LnwrPlZm6w4ECpRQOrIuvhWBgcNsPC65hRMsNrEi7Whb8SlaPp8Hq60Fh1aBJEVRAFVDxuSZyJp+Pnx5fewslego0Z0VaPnsfUQq1ndvoqWjrb+4BFlnXorQ6EmchSdHWe1taF32MZo//wCivQ3d7XsVnw+ZU85G5vTz4cvhtjTkHCEEYlVb0PL5XMSqttjT9w4YgqwZFyE4vJzBiOQoq70V0Q1LEF23GNCj3T+gL4Bg+TQEy6dzawRylBACxq4taF+5EGZNVfcmuTva+voPQdqks+ErGc4FceQoq60ZkbWfI7p+SXySu5uUQBqC489AcNw0qGkZNlRI1DUhLBg7NyO65hOYB/fa0vdqA4YhbcKZ8PUrs7dYoq8xWxrQvupTRNYtBiyz25OESlo6QqfMQtq46VyUcRLhBIvNhKEjvG45mj99H2b9gfiLqhb/ITwWRQUgACGgpIWQOfU8ZE45mytPqcfpB/aiZdE8hNcui9/wHHFtHtMRg4LBstHIOvMSBAeP5AdM6lGWHkN41eJ439tYF3/xRAPWR3xdTc9E1owLkDllFtQQP2BSz9JrdqNl8TxENq4EIDo+OAocd7LwyL53+DhkTr8QwZKhPVIv0SFCjyK2+UtE1nwKEW6Jv3iiQZMjvq6EMhGcMBPBUVMY6Ek9zti/C5GVn0Cv2hB/IZEBvyPe4y8rR9qks7gdGPU4EY0gunEZIqs/hYi0xV880fV7xH2DkpGDtElnITjq1HiYM1EPEULArKlCdO2nMPZ0ZGrK9L2KAn/ZOATHn8ntwKjHWZEwIms/R/uqT+Lb3gFSfa+anY/0U89FcNRkKD5/D1RMPYkTLA4RQsCoP4DY7krEdm9HdOdWGAdrjhqoVrNyERw0AsGSMgRKhsJfPJD7TZPrrGgEsb07ENtdieiuSsR2b4OIRjq/SfMh0H8wgoOGIVAyFIGBZdAys90pmKiDsCwYdfs7rttKRKu2wDi4/6j3aTn5CA4egUDpUARLh8FfNID7TZPrrEgYsb1ViO3ZjtieSuh7dkB8/ekAnx+B/oMP97uBAUOgpme6UzBRByEsWA21MPbvgrl/F4yaHbCa6496n5KVB1+/IfD1LYWvbynU3CI+6UqusyLh+HW7fxeM6ioYB3YDht75Tb4AfH1L4CseDF9xKbS+JVCD6e4UTNRBWBbM+pqOfncXjOodsFoajnqfmlMIX7/B8BUPive9eX34pCu5zmpvg1m7G+aBXTBqdsafbDGNzm/yB6AVxe8ZtKJS+PoMhBJIc6dgog7CMmEerIZeXQWjZif0vdthtTYe9T4trwj+AWXxvrffYGi5fbgQ+STGCZYeJIQADB1C1wFNg+IP8EMlpQxhGvFrVwgofj+g+fjLgVKCsCwIQ4cwdCg+f/wf9r2UIoRpQugxACK+ylTV2PdSShDCAkwDwjCg+Hwd9w3se8n7hBCAZcbvG6AAPj8XYVDKEMICDAPCNOILN33seyk1HOp7YejxbfN9figq+15KDcKyAFOHMM340ymaxr63l+EECxERERERERERERERkSROpxEREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ4gQLERERERERERERERGRJE6wEBERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ4gQLERERERERERERERGRJE6wEBERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ8rldgNeFTv8e/KFM+NOzO/6dA18oE4GgD4GQH4GgBn/Qh2DIB3/Qh5x0P7LS/MgM+pCb7kdmmg+ZaT5kBXwI+TVkBTSk+7/6J6ApCGgKgj4FAVVBmk+FZulQjCiUWDj+byMCJdYOEQ3DamuGiIRhtbdBhJthtbfBCEcQa26D3hZBrCUMo60delsE0eYoYm06ok1R6G06Ym062ttiaDUstBoCTbqJNtNCk27hSXNHt79HvrQMBDJy4EvLhC+UiWAo2Ol74w9qCIbi35OsNB9yQoH4vzu+T+l+DZkBX8f3RkVWwIc0v4o0Tf3q+9Txbx8sqHo7oEeg6u3x75EehYi0QrS3wYq0wWprgYi0wWprhhGOQG9rR6w5DKMtglhLx/erTUe0OQq9VUesLYZocwyxsI4m3USrIdBqWGg2TLQaFh43kv8eEREREREREREREdHJhU+wEBERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ4gQLERERERERERERERGRJE6wEBERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ4gQLERERERERERERERGRJE6wEBERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ4gQLERERERERERERERGRJE6wEBERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ4gQLERERERERERERERGRJE6wEBERERERERERERERSVKEEMLtIlJNNBrFL37xC/z4xz9GMBi07b1Ov1/22N3B7xERERERERERERERncw4wZKE5uZm5OTkoKmpCdnZ2ba91+n3yx67O/g9IiIiIiIiIiIiIqKTGbcIIyIiIiIiIiIiIiIiksQJFiIiIiIiIiIiIiIiIkmcYCEiIiIiIiIiIiIiIpLECZYkBINB/Nu//VtCIegy73X6/bLH7g5+j4iIiIiIiIiIiIjoZMaQeyIiIiIiIiIiIiIiIkl8goWIiIiIiIiIiIiIiEgSJ1iIiIiIiIiIiIiIiIgkcYKFiIiIiIiIiIiIiIhIEidYJDzyyCOYOXMmbrrpJsRisU5fa29vx2WXXYazzjoL559/Purr64/7/kNmzpyJrKyso95jGAZuv/12zJw5Ew8++GBCNQDAL37xC5x66qnHfW9XtdqF3yMiIiIiIiIiIiIi6g04wZKgVatWoaamBp999hnGjBmDN954o9PX58yZg/LycnzyySe47rrr8Itf/OK47weARYsWYc+ePRg5cuRR73n33XcxcOBAfPbZZwiHw1i8ePEJa2hpacH69etPWO/Xa33xxRf5Peqh7xERERERERERERERnRw4wZKgJUuW4IILLgAAXHTRRVi8eHGnrw8fPhzhcBgA0NjYiIMHDx73/QDwy1/+EjfffHOX7+nqfCeq4Te/+Q2+973vnbDer9fap0+fZL4lR+H3iIiIiIiIiIiIiIh6C06wJKixsRHZ2dkAgJycnKO2jBo6dCjWr1+P8vJyvPDCCxg8ePBx39/U1ISqqipMnjy5y/d0db7j1dDU1IR169Zh+vTpJ6z367VeddVV3f7+nOicXZ23N36PiIiIiIiIiIiIiOjkwAmWr6mpqcEZZ5xx1D9CCDQ3NwOID8zn5+d3ev/48eNRWVmJ3NxcGIaB+fPnd/n+Q5544glccMEFx3xPXl7eUV/r6rUjj3f//fcft/0hzz//PGbNmoX169fjP/7jP/Dzn/+c3yObv0dEREREREREREREdHLzuV2A1xQXF2PRokVHvb5q1So89thjuPXWWzFv3jzMmDGj0/t///vfwzRN3H///ViwYAGefvppfPDBB0e9/5Bt27ahsrISr7zyCtra2vCTn/wEt99+++GvT506FR988AHOPPNMzJs3D3feeSfS0tK6rOHQ8ZYsWQIAqKiowKZNm1BfX3/M8x+aTMjNzUVjYyO/RzZ/j4iIiIiIiIiIiIjo5MYnWBI0adIkFBcXY+bMmdi4cSOuueYaAMC3v/1tAMBNN92EOXPmYNasWfjZz36G//qv/zru+1988UUsXrwYN954IyzLQmFhIa655prDX7/88suxe/duzJw5E6FQCNOmTeuyhiOPN3fuXMydOxfDhw/Hk08+ecz3fr3W2bNn83vUQ98jIiIiIiIiIiIiIjo5KEII4XYRREREREREREREREREqYRPsBAREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ4gSLw/7yl78gNzfXlmNVVVVBURT4fD7s3bu309eqq6vh8/mgKAqqqqo6fe3NN9/ErFmzkJOTg8zMTIwfPx4///nPUV9fb3uN3XH77bdDURTcd999R33tu9/9LhRFwe233374tZqaGjzwwAMoKytDMBhESUkJLr/8csyfP//wewYPHownnniiB6onIiIiIiIiIiIiot6EEywpqH///njhhRc6vfb8889jwIABR733Jz/5Ca6//nqcdtppmDNnDtavX4/HHnsMa9aswYsvvthTJSespKQEr776Ktrb2w+/FolE8Morr6C0tPTwa1VVVZg8eTIWLFiA//7v/8a6deswd+5cnH322fje977nRulERERERERERERE1ItwguUE5s6dizPOOAO5ubkoKCjAZZddhsrKSgDAwoULoSgKGhsbD79/9erVh58iWbhwIe644w40NTVBURQoioJ///d/BwA0NDTg1ltvRV5eHtLT03HxxRejoqIioZpuu+02PPfcc51e+8tf/oLbbrut02vLly/Hf/3Xf+Gxxx7Dr371K0yfPh2DBw/G+eefjzfffPOo93vBKaecgtLSUrz11luHX3vrrbdQUlKCSZMmHX7t0BMty5cvxze/+U2MGDECY8eOxezZs7F06VI3SiciIiIiIiIiIiKiXoQTLCfQ1taG2bNn44svvsD8+fOhqiquvvpqWJZ1wrbTp0/HE088gezsbFRXV6O6uhqPPPIIgPh2WF9++SXeeecdLFmyBEIIXHLJJdB1/YTHveKKK9DQ0IBFixYBABYtWoT6+npcfvnlnd730ksvITMzE9/97ne7PI4XtgXryh133NFpAunZZ5/FnXfeefjP9fX1mDt3Lr73ve8hIyPjqPZe/XsRERERERERERER0cnD53YBXnfNNdd0+vOf//xnFBUVYePGjSdsGwgEkJOTA0VRUFxcfPj1iooKvPPOO/j8888xffp0APHJkJKSErz99tu49tprj3tcv9+Pm2++Gc8++yzOOOMMPPvss7j55pvh9/s7va+iogJlZWVHve51t9xyC3784x8fzpz5/PPP8eqrr2LhwoUAgG3btkEIgVGjRrlbKBERERERERERERH1WnyC5QQqKytx4403oqysDNnZ2RgyZAgAYNeuXUkfc9OmTfD5fDj99NMPv1ZQUICRI0di06ZNAICLL74YmZmZyMzMxNixY486xl133YXXX38dNTU1eP311zs94XGIEAKKoiRdp1sKCwtx6aWX4vnnn8dzzz2HSy+9FIWFhYe/LoQAgJT8uxERERERERERERHRyYFPsJzA5ZdfjpKSEvzpT39C//79YVkWysvLEYvFkJmZCeCrAX8ACW3xdeT7v/76oUmDZ5555nDQe1dPoJSXl2PUqFG44YYbMHr0aJSXl2P16tWd3jNixAgsWrQIuq6n3FMsd955J+6//34AwFNPPdXpa8OHD4eiKNi0aROuuuoqF6ojIiIiIiIiIiIiot6OT7AcR11dHTZt2oSf/vSnOPfcczF69Gg0NDQc/nqfPn0AANXV1Ydf+/okRyAQgGmanV4bM2YMDMPAsmXLOp1r69atGD16NABgwIABGDZsGIYNG4ZBgwZ1Wd+dd96JhQsXdvn0CgDceOONaG1txdNPP93l1xsbG7v+i3vARRddhFgshlgshgsvvLDT1/Lz83HhhRfiqaeeQltb21Ftvfz3IiIiIiIiIiIiIqKTAydYjiMvLw8FBQX44x//iG3btmHBggWYPXv24a8PGzYMJSUl+Pd//3ds3boV7733Hh577LFOxxg8eDBaW1sxf/58HDx4EOFwGMOHD8eVV16Je+65B4sWLcKaNWtw8803Y8CAAbjyyisTru+ee+5BbW0t7r777i6/fvrpp+PRRx/Fww8/jEcffRRLlizBzp07MX/+fFx77bV4/vnnk/vG9ABN07Bp0yZs2rQJmqYd9fWnn34apmliypQpePPNN1FRUYFNmzbhySefxLRp01yomIiIiIiIiIiIiIh6E06wHIeqqnj11VexYsUKlJeX46GHHsKvfvWrw1/3+/145ZVXsHnzZkyYMAG//OUv8Z//+Z+djjF9+nTcd999uP7669GnTx/893//NwDgueeew+TJk3HZZZdh2rRpEELg/fffl9rKy+fzobCwED7fsXd6++Uvf4mXX34Zy5Ytw4UXXoixY8di9uzZGD9+PG677TbJ70jPys7ORnZ2dpdfGzJkCFauXImzzz4bDz/8MMrLy3H++edj/vz5+P3vf9/DlRIRERERERERERFRb6OIYwWCEBERERERERERERERUZf4BAsREREREREREREREZEkTrAQERERERERERERERFJ4gQLERERERERERERERGRJE6wEBERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUniBAsREREREREREREREZEkTrAQERERERERERERERFJ4gQLERERERERERERERGRJE6wEBERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUn6/wFj20IYMdx9uAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlgAAANUCAYAAADfCiCRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gVNdfAzwLSi0gTkKqIKChFpQmCIAgiIqI0G4o0GyBVkCa9CIrSe+8d6SggSEeQ3ntvuwss226+P86XdzKZTLt37t7d5fyeJ8+9M5PJZFomOS1hjDEGBEEQBEEQBEEQBEEQBEEQBEEQhGNShLoCBEEQBEEQBEEQBEEQBEEQBEEQSQ1SsBAEQRAEQRAEQRAEQRAEQRAEQbiEFCwEQRAEQRAEQRAEQRAEQRAEQRAuIQULQRAEQRAEQRAEQRAEQRAEQRCES0jBQhAEQRAEQRAEQRAEQRAEQRAE4RJSsBAEQRAEQRAEQRAEQRAEQRAEQbiEFCwEQRAEQRAEQRAEQRAEQRAEQRAuIQULQRAEQRAEQRAEQRAEQRAEQRCES0jBQhAEQRAEQRAEQRAEQRAEQRAE4RJSsBAEQRAEQRAEQRAEQRAEQRAEQbgkSStYevXqBWFhYbr05JNPOt6fMQYRERHAGAtiLQmCIAiCIAiCIAiCIAiCIAiCSG6kCnUFAuWFF16A9evX/285ZcqUjveNjIyELFmyQHh4OGTOnDkY1SMIgiAIgiAIgiAIgiAIgiAIIhmS5BUsqVKlcuW1QhAEQRAEQRAEQRAEQRAEQRAEEShJOkQYAMCJEycgT548UKhQIWjUqBGcPn3aNG90dDREREToEkEQBEEQBEEQBEEQRKBERgLUrw8wZ06oa0IQBEEQREKRpBUsZcuWhWnTpsGaNWtg/PjxcPXqVahQoQLcunVLmX/AgAGQJUuW/6V8+fIlcI0JgiAIggg1jAE8fBjqWhAEQTjn+nVvy3r1VYBx47wrkyAIZNAggMWLARo3DnVNnENT0hIEQRBEYCRpBUutWrXg/fffhxIlSkD16tVh5cqVAAAwdepUZf6uXbtCeHj4/9KFCxcSsroEQRAEQSQCvvgCIF06gCNHQl0TgiCSKlu3AkybljDH+v13gFy5AHr18qa8H38E2LULoGVLb8ojCELjxo1Q18Ad168D5M0L0KFDqGtCEARBEEmXJK1gkcmQIQOUKFECTpw4odyeJk0ayJw5sy4RBEEQBPFoMXky/g4dGtp6EASRdHntNYBPPwXYuTP4x/r6a/zt3dub8u7d86YcgiCSPsOHA1y5AjBsWKhrArBmDcDgweRRQxAEQSQ9kpWCJTo6Go4cOQK5c+cOdVUIgiAIgvCQhw9pwE0QyYEHDzA01aVLoa6JN5w6FeoamPPTTwDvvw8QH69fHxYWmvoQhExkZKhrQCSmvtVbbwF07oyKlmAjt4t2hIcDXL0anLoQCUNcHIDJbAIEQRABk6QVLB06dIBNmzbBmTNnYMeOHdCgQQOIiIiATz/9NNRVI5IQ9++HugYEQRCEFefOYUivDz/0tlw7IeP164lL8HD+vLfzMHjNiRNoYX/njv9lREWhYCU62rt6EYmLLl0wNNWrr4a6Jt6QmNoImR49ABYtAli1KnR1+P13gFmzQnf8hCIxPweJlV9/BcicGWDSpMDKuX3bm/oEAmMAH30E0Lx54GXt3w9w4EDg5TglMT67588Ht/w9ewAyZQIYMsT5Po8/DpA7d+J43gj/qFgRIHt2gGPHQl2T0PDgAUC/fgD//RfqmiQdwsMBbt4MdS2IpEKSVrBcvHgRGjduDEWLFoX69etD6tSpYfv27VCgQIFQVy1J8ssvADNmhLoWCcuYMQAZMwKMHx/qmhCEM27eBChZEuDnn0NdE4JIOMaMwd8FC7R1168DfP+99Twq27dbD6KsFCyrVuGcB5984q6uweLuXYACBbBOboiLA7h4Ub1t716APHmw3JMnA64ilCiBc0R89ZX/ZXz6KVqwfvNN4PVJTFy/TgM0zooV+Hv5cmjr4RWJUTgp8847+Lt3L8DhwwnnwXL6NIY3a9o0YY7nBMYAOnUCKFLEOyH2mjXYNvNnOzmQEM/1d9/h7xdf+F/GhAkA2bIB9O3rTZ385dIlgJkzASZOtDbe27bN2nvvwQPs57/0kmZocOwY9ndWrUKF6aOA2+cvIsJd/lat0KCjUyd3+wEAHDrkfh9OUvheJGd4SM9HQemv4qefALp3B3jxxVDXJOnw+OMAOXKQUTbhjCStYJkzZw5cvnwZYmJi4NKlS7Bw4UJ4/vnnQ12tJMnp0wBt2wJ8/HGoa5KwtG6Nvy1ahLYeRGAsW4YDrEeBAQPQsu3770NdE4JIOFQD0s8/R0Wj2SDh/HmA8uUBnnvOvFwrISMX1vhreLBzp7dhCPwNQ/TmmwD58gH8+adxW5kyGHf9/HlvJrvmwqDZswF8Pv/KmD8ff702fFizBmDdOvwfHg5QrlzCxZt/+BCFrzlyoMKLCC4bNqAiIaGYNAktQhM7d+7gO//CCwkn5DtzJmGO44a5c9Fq/eRJgDfesM576BB6JJw7Z53vrbdwYnOuyEpI+vUDaN/e2zL37MH2atw4b8sNBl9+ib8//hjaeojhpsy+fzt3ogX9U08BzJmDdX79dRT0c8LDtf9coFe6NPZ3atfGkH9etW+TJgHUquVfmLatWwGWLPGmHoHy888AWbKgciuU7NyJwmvxfop07Qrw9NPuPGD27cPnJDEKd2NjnX9LfD58Xi5ccJZ/2DAc8waT9esB3n7beZ0Yw3ZexaRJADt2aMtduuC7Hkxv7KgogD59UC7glN27g1efYHHhAr47Tu9TfDx+w7zob4vP99mz/pfjNhyhF9y4ATBlCirtiYQjSStYCO8IJJwHQYSad9/FAdbx46GuSfB5+DDUNUgeHD0KMHYsCTvtePAg8cab5lZoZvfQy/bgn3/MB1UqNm4EKFsWIH9+XPb5ABYvDmzOCX8Fon/9hb/cC8gMfzrgMTHm2/btc17O3bsY/i3QgV9srHp9ZCQKQGvUwAHpiBE4EO7QwV35J09iOfyaOkUM62YmeHkUmDXLqIiYMQNg1y5n+zt5Rs+fB6heHRUJCcXGjShUO3w44Y7pD1YeQ3PmeBMyJD4ehfL8WlSvHniZp0+jUijQMFKcrVu1/3ZK8JdfRqHte+95c2wviI9HL8Hp03G5e3ecpPzECf/LvHtXv/zxx3htuOKdMbK894ItW7T/jRujIcfmzSgE44iGH/yay22fyjN31y6ABg3wfRE5dcpcoP/FFwCrVwOMHu34FP7Ha6/he+GF96sKN88bNzpThWdjDIX1GzZ4Uy8rypbFb9ygQertAwei0nnkSOO2nTvV/abSpfE56dnTvzodOICh67yeK+zmTQyxVr++s/yzZ+PzwvvFVkRFYf/shx+CFxaXMTRA+uMPNNhyQqtWADlzYn9eZMMGfJfKldPWDRqE3mpp0+I75pY1a+z7Rv3743NRsqR6++TJAB98YK7kMVtv1pdWceUK9oGC+X2oXRvfnbfecpa/Wzf8drdqFfixxfPy1/O3aVM0spK/s8GmalWAZs3QiP7YMZp7KKEgBYvHnDgRPA0lY+hKXaqUvSVVKGjbFi2JE0p4QB39Rw/5gy9biLkRgCZVaGJabyhWDDte/gwqHyXy5MF402YhpoLFyZN6jwtVGBf5GxARgXM6mA1s3SK2NxUqOBsUAqD1abVq+J8LRSZNwkHo00+r9zlwwN4yyuk37/x5FNZYKT9UyG3L9Ok4+LxzB8uaMEFvjX78OECaNABt2qjLc+PBUrAgeq688oq7OnN+/BHrnzo1zvcgI4YOiY429lO6dHEmvPjgAxz0Vq3qXz0BAmvDly3DgebVq6hYXLNGb+0cKCdOBDcud9OmKAwWn6OPP8b31qzvGBWF3kwffwyQIQPApk3GPKdPa++a2D8+eNCdoEDF2rXOFWoJPXh2i1kbsmEDCnu9CBkyZQoK5V94wf8y7t/H+z5litZuHj4cWBgpETfjB27U4sZCONgsWgQwapQxfKVsgOO0De7YESBrVmxfOOI1OnkSIEUKTIzh81K2bOK6Jpxx49wbzuzerXlO+kPJktiuX7umrXPbzov3TqVgccKrrwIsXIieu+PGYZt47hzAM89gCLVg4dSq3C1ejfNXrUJhvRfKXivE75pdCDH53Tx5Et+p0qXN5Uj+vm+vvoqh6+rU8W9/M+bMwf6U7MUUH4+efF27AlSpooWMXb/eednidzsh5uNzOsbhHn09eujXHz1qvV+tWu7qc+4cKhOs5qnbvt0+LOLnn2No5bRptf6J+F6lTat5dnPOnwdIn975XFJ58uCYJ5B53s6cAahcGWD5clQCrF2rf0cOHsRfp0YsfBzohUebKCfwt/8+axae1+zZgdfHDbwdGj8eozlkz26dPzqa5KteQAoWD5k0CeDZZwEaNgxO+UuW4GSA//6rWQswho1NoANIL/jlFxyYz50b3OMwhh+qatX8awSio9GVXv6gEImbAwdQeNalCy6PH48Dwu3btTz0USDcIj4/hBEuvFUJNd0QEYGWm04FPkWKYOgWPqBUCX3lskaORGsv3kaYdYRFxYNZnnv3jJZjTr3HREtUAE0QDqAeKF6+jLHWCxXS9i9SxH7ABoAD2RkzUMDMyy5WDC2WBg/WW7L++6+z+nM++QQHxH36oPXnl18CFC6sbeehG7xQUgaqJBAHmV9/bdwufhtSpNDf96tXcTDWp499CA47QVJMDPbJ5G+Rv9+m//5D4Sf3Mn73XRzEtmunWfM9/rh3YZiefRaF7KHwajYLxde1K4Zx5durVNFv37sXBfA8FKB4rUuUwH6DylrYCbdvA9SsiQq177/H50acB0om0D5ITAxavCa0Z6XbtsEKMUSKjOr6xMWh1Xbv3jh+evgQ50bMmhXbMdlS2F+uXcOwwF4qBW7dSph+56lTAFOnaoJXJ3M57diB13DsWPu8Q4fi77vv4q/sLSGOa2/cQEH1zp3eC2y9oGVL92HNXnkFPSh37sT2hYd527gRvZ0mTdK8v3r2RCW3+I7yZ6psWftjmfU5zNaXKOEuPwBa/LdsiW3nP//Y18ktly7pvQq8MPwK5nvkleeG2H8LC8N+S5cueP83btT3j+zg/ddDh1DwLX7XGjcOzNtZ5N49rd5O+pResG4dzkU1cCCOHUaNMs/78CFa1n/0kfncorJihjE01vBynr7EJj84f9582/Xr+EyXL++uzO7d1evlMPm//ILtm1vlhEqudvWqM8PzZs1wjFi3Lnof16yZMOEpO3bUvn+cyEjtXdm5Uz+mSGgj1wsXUGaZEKFWL18GSJcOv4WEETdtBClY/IAx1NrL7rlc2LBwIXZARWu8v/4KfCJFcX/emZswAa3EGjQw3+/OHetJfgES34fFinv30NXyzz/9s6r+9Vd0pa9RQ79+0yZcF0hYmXv3sPzz51EhtmeP/2UlJMG+//7G4hfp2hV/uVVCixYotG3cOPCynZJQ78mmTdh5VLlFkweLt4TqejZqhIPxUMRkPXUKYN68hHueIyMxNnblyu477Fzw50TgKH5zBw0yv7diZ1qVZ+VK8/BC8fHoxWA134J8XTdvtr7W4ve5XTscaJw8abQeU5UxYQJa9j/9NFqcXb2qCcfWrNF7zPBvm9tn7u5dnBRTRq6PHH4jMbVV4jdIVrCIijO336oLF1DYyCe2fvtt7JPJygLx+XVzXV58EZ9XWZBw/ToKXDmvvWbc9/p1tFr1x6tYFu48fIiWhffuuS/LKWaGQqpJw8VwNwsX4u+FC9iuvf66Mf+33zqrw/r1ODcCD+chhlPgwp8PPnBWlj98+inGbO/WzTpfXBwO/L1SxHj1rvp8+rmTOne236dVK7Ta7tUL71+WLLjea6vlZs0wTKJZKBU75PZu5Uq0BuVzOfrL7t34XbT6RjzzDMBnn6nnpRJDeIr3sUkT7CO7DZGyZg16ionCWHG+D7GeThQ9XuC2DROVCv36ARQt6szDfdUq7H+vWIH9pGrVsG394gvNu7JPH8z3xx/WZYnGDWvXoqLEaShE2QBAFRrP50PPgFmz8J6o2s+FCwM3gLh2TR9a8N49bCNz5QqsXJHLl3GeuLAwvTCeMezLDRli3OfoUfzOOunHynlatsRjOVW83L+P31K5X9ihA9avZEnNa5lz6hR60546hcYzcp+xb1/0RCteHKBAAf03d/58fN+9IJhzmIih4cS+k5tQ1mXKoHHEzJnmc4vK4btOnMDn/rffvJEvAGjPyMGDeE/tzsGr8dP582iY7KZfnisXfhPcwj1x5e99IAZBYr3F/Tp2xDFf7tzoPTdmjHW5oryDeyH36oVtrd08aSJuQlkePoz9644d9euffRYN1bZvN0YMkq/dkiUAS5e6qx/n2jX756xOHZRZml0DxrAt4UZ8gcD7IVZGRI8qUVEAbqZ5JwWLHyxZgkJdeeJc8aXJmRMbFQAM+1G1Klqoeg0XFHG3bpX1ZfbsWNdALRf+/Rc7OXZhR1IE8ak6dy7wj5ocm5ZTpQpq362UVXZ06IBh3AoUwDijL79snf/kSbRQDeUkoNHR+Gx61ZmTuX8fw780auRdmYG4ofrLw4c4SGvSxPk+onW5G6pUwc6jyhI7IScqu3vXu85rqAgPx06Dmwkl7Vi5Ui/c9Ie5c1FAxucRkTl5EoUpwfBOfOYZtEh1ExLDSgCnEvL16YNhIwH0FphuJ4z/7TccDIvHOHsWO7/iPZU77126mNdZtIaT8/h82KE1U7SvXYudz+7d0bJaVI7Ex+P+gQxWRozQ/ssCRrGcX3/FXzF0kc+nxeTn9ZHZtw8gc2a1wEJENsqwE3Ax5iz8hs+HgwG3HqR377oP6yNaAIrtWFiY/r6LCjc7oZlMq1aoWOIWz/zZ+u03Lc8337gfDI8YgQJhjvyuhoXpr4dqbo1KldAqNH16VPK5Ydcu/bX47ju0LDT7jsfHo+FPIN+Lr75Cw4kXXrBX5ERE6MPxcJx6kIvPkzggf/NNFHTVqqV+l+0YODCwcDlz5uCv+Ez+9JNmYMJp0wYV9LJgAADr/O23aIVqRTAUoLz+nMGD9cuq6ykr3Z2GNoyPdzc/mJdeOgCaNbATDxErXnkFlelOYvSr3uMffnB2nNOnnQnx7GLcexGPXlWWvJ4LnLdtwzaMz5c1ejQqOa2eE7Hc7t3xey4/i3b7yRbkchtrJxgTvaNr1kTBbc2a5vnFaylfV1VovPnzURnRtCl+e7NmNea5dEn/zPTsad7nVHH5MsCTTwLkzauF7FOFEVQ9Bxs2qI0g//4bvdXEPl2/ftr95uGkALCP16ULQKdOaKgjUqwYGpcsWmR/HvJzxi3jRU/N6GgcX+3ahe14XBy25Z9/jmO/jz4yhv0SQ+rJ7NuHY7hnnsE+q8p74P338VcMYcqxm9fmxg20bLcLRWY271ZEBL5H3EDBH8RvjFl4QTvkkE98jCuXkSeP1t/1x7Dg5k2Ut4j7isfgfZcSJfCZ+/FHLe+aNSjH2LjR2bHOnTN6sqs4ehTlRY0aeRPKyileeVgDGL1ooqJQpjR0qDbfVHg4GiK4jXBz7Rp6C4rhoq1gDKdRSJfOuG3OHONY0sxjnfcrli61vjaRkSjrq1fP3vuds2wZPmvnz2PbahY2msON68+exbluSpdGhW3TpljO0qX4rDqdm4bwj8WL3cnRScHiB2butvLAkoe8MPtI+nzWE07K2DWAI0eiW70s+OP1sgrxIk5+e+oUxprnAhxOqVLYyZHXnzql72gGS8EyahR+4JxaIvpLIG65boRGsbEYBubFF9Gt2O2kuV6xejV2OpwKjOPjrV1XZZYuxU6ql6HjatfW/tu9F7yTbAdjRiHin3+isuPIERQ2nTjhLn6maF0uc+oUCuesOtEqxZtXk7yq6NkTO9w+H1pVZs3qbcxiJ+E03HT0fD5rgR53I2/e3JnVcVQUWpPZWaTWqYMKSVlxFh+Pg7EJE+yPZUeRIihs9De0jRmigk6cbNVfTpxA4YdoecYYPku//ILPeSBzhu3ejYNh0VL222+NHZ3WrXGyRxF/hD92z5/Yia5fXzO0iIvDe1aypNFK1a4ediFDvvgCBcdi3bhluFXZqm2lS+Mz0KmTUdgm5hctmMwGs+L3zul3f9EiHAzIHqRWrF2LbZEbS/F06XDgyoWqViHCxDlbRAXC5ct6y20VZpOviuWLyha+bcIEVNSKREWhciEsDD2ZxAG6LExUKSDkOXxEJeHbb+Pvvn14/e0Gg59/jvtwC18ukFq5EveX27j27fHZd+KxYMX48ShwmTxZW6d6J7t2xcGpyqLfjs2b8Xn68ktcfvddFAjIz3nWrOZeyCrlDgBavjudq8kKfs7R0RjrfeBA/XZ+3qJCFgCFuClS4HeDK7jtjuGUJk2wzbPaz85rW9z377/Ratlf0qZFQzYnIZCuXMGkqoe4zolHRmQkWpSK3zUzj0c3cEGjlRJk9myjQFIWPHPEfvq8eVoYvcaNsU/rL156vprNH/Ddd+glMWGC1qYMG4a/bdrg98ltP8uJUNZNn6FhQ3075YTwcGfHcJJH9MjZuNGZgK9PH30YMz6vgRl582r/169Hpb9qXCLXd+1aHDvky4fXKF8+HGeePo2K/1699IpJs368KFvg9+/nn/UGq06MIp0o/nPnRs+tV1/F78u4cSg4nTzZXC4QrMnXAfB7zpi551Xz5tgOFS/uX/n9++N71KCB/Ts9fLi9wkA0BjMrz8lzrfKWBsD2m899J5bj5N7GxgLkyIHyFrMwfnKdhw7VjMPeegvbe9FL6dAhrIdKiViwoN5AxgyxPNkDPBgE2nbXr4/nLMpB5PHO5MnmEXt49J1Vq7Bfw+/d5cuBfZM4Dx7gMVTer40b4zstGqHZERVlrJf47M2apc/73394nBIlNCVNRAT2dThr1qAyjXucqOTAcXGo+JQNSLp1wz782bN47L/+0vdDvDTAtZvbxwtOnkRDgcQQRcmuLXeq5OOQgsUlBw+av5xuLfcaNsTOizzINkMsX/UwcsWDmSfClCnm1tCi5rxtWxRIf/edOq8ocNi6Fa0zSpXS1gUrLAjvZKsUATduaAKIiAi1NQjHrn6xsahhli3eL13yz5o8Nlbd8ZWF+XJHffVq8w/OqVPOGtIBA+yt1N02bI0bo+BKntBRxdmzKOBOKFTnUrUqCjzsFFiffIKCYlEo9cYbqJisX9/eSnD3buPH0KpBrlEDBxjyZMniJLmM4WDbqWWEU06dwrZsxgx9u9KnD3a4mzbVwiGYncO0aWjVZRd+kLNqFXrTtWxpnqduXRQOHTtmr3z2+bDdKV1a3fa2aIGKS96+OrE8WrQIO82iwtkK3u7we7ZwIb7HXHAnc/CgURgkP7O3bmGIGM6WLShM7dfPmw6o+M56EV6mTx9s48TYyeL9sPLCENdt3+7cy8ipwsasrZfrEBOjvWP+dvTOnMH0339GJayd8sFMqLdrF9Zt0iQUkIkCdLP+RqdO2n+7b5086e3Nm2rrVpXX0e7d9u+o6vj+eGv++CP++mMpzhVFcogwK7jiNG9eFJyK750YMkouV2THDuwfqcJVHT2KbUSdOvrnbe5c5xN47thhfFYLFbJvj0uXxoFTxox4f+yuqepd69vX2MZxw5uhQ9E6OVDs+rvcU+Lbb933OXv1wl/e712+HN/b3bv1+SIizD1Wn3wSlctmyP2zHj2wP2Fmdd+zp/peOBlXVKumGXR9+ql+m9M+q901jIzEdm3xYrVAad48FBjYlSPeS+5h5RbG8DvKv198bBAXhwpVnw8FPOLcRXK4RblPFRuLfdscObCvuGABXldRKcNp3x6TaP0uK2LHjDG2dXfvYj+oenWtPyrf3zNnUHEkx8QX4UpYsVwRxtBDUfy+c8+ukyfx3alWDfuW06e797D2UhgiTxTN4YYlVgrbr77C/oXqnVI9h27bCSfv3uefu+9HmdWjbVsUAEZHO4uBH8hY+913UbBuNr8LgHE8U7eu8/LFccPnn2Ob8eKLemMz0UjG7FzEsFqTJqEQ7PvvjQJc2eDgiy9QKc3fcyf3Up53bO9eawMLL+aes6NVK4yIwrl3DxWNJ08av1ccpyGSxLFAihSoeBD7mLt24XXcvh3bu2bNsP8TH49euRUq6MtLkQKv9/ff6wXKnAsXjMaZqnrya251DuLz4uRcxTZSvKd25TixWOdzJzpBDk8p9qHdtsOB4I8HS3y8Nh9akya4rJJDWRmN8vewdm1UpM2bhzIXUZEbDMT2wY3X6y+/aP1FztKl2JYdPGgMv/nii/h9PXgQFba7d2PI00qV9Pn++MM8KoDPh4YzDRoYvQXlfktUlP4eyKH0AoGPu4JJkSL4rTMz8N66FWVRgc4jxhh+S8zk7WPHYtg9szmKAPwIj8weYcLDwxkAsPDwcNu8584xduMG/2xpiTNlinEb375+vTE/Y/p8U6bY17d7dy1/ihS47tlnzY+rOs7QoeqyxTxvvWUs59QpbV3jxtr6Nm2Mx541y/5c7PD5GDt+nLH4eG1dxozGY50/z9iZM/i/cGHGYmO1bXfuqMtW1VmVXnhB22fnTlz38svW9S5UyLy8e/f0ecPD9ds//VTbtmeP+l4yxtju3bg+Y0bruvzzj7GMAwcYO3sW/588ydiECYzNn29+LJnbt/V1btkS18fEYJKpWVOfPzYW13XvbswbHs7YjBn4q6JWLft7tnmzcT++rUkT63Pj+dq0Ma6zer8YY2zvXvW2Dz8038esvAIFtPVlyjD2yiv4//p16/048fGMxcWZn2fnzvoyfvuNsehoxpo3t762FSsydv++sf4VK6rr4PPp15UpY6z3jRt43FWrGHv40HjMjRvNz+PqVS3fzZvG7U7bxY8+0tZ16eLsXeB5tm/HdgcA6zNmjPX+fFv79tr/HDkYa9qUsY8/ZmzbNsa++05f53r1GPv2W+fvKGffPjw3/r5zTp/WysqWjbErV5yd68yZ6u0ffWSsm9gOHz6sP58yZfT7DxmCbS3ffvo0Y+3aGe/d0087a7fF9PPP6uv2+uva+tatGcudG/+PGmVsl+U0e7Zx3f79+L0y2+evvxirX19fl9GjtetqdTxx+4wZ2v9UqbCcxo2t31m31wyAsQwZGMuf33z73bvOysmZE+9/lSqM9eql3W+r91FOFy7gO8KXy5VjbNEi8+dUTt264fZjx7R1MTH6/pQq/fqr9v+nn4xlAOA3XVy2qoeYVqzQX6O1a3HfCROs92vYUL/M2x4x/fILvkM//KBfnzYt9pdU5S5Zgse/ds24bdIk9TMv3r/ISPNtTu+TnPr2ZWz6dPtnLU0a/bfFKnXubKyDuCz2mZykQYPMt12+rD7v2bP167/+2ryM+HjGHjxwVpevv8bynn9evz5FCv3yf/9p/xs00P4PH679v3kT31PxHO7c0bafP68/h4sXtW1t21rXk/cTly93d63FJLeZTz+NZX7yCS4/+aS27Z133D13APq+pty+Mqbvo9klkZQp9duOH9e3bUOHMvbZZ9pykSKYmjY1lsu/H3L67TfndTMrwy5duKBf/uILY5/z/n38Lu7bh++dWb/e7HqZHVsegzi59uK6r76yrkevXvZlyuucvqM8ie9aYk1z5rjL/+OPjP35p3Y95XGGKpUqxVhEBOZv3drZccS+opiWLjXfZ9gwY7/DybHcvOdOk9u2yCylTKn1WwEY+/13HE/5fIxVqID9JJ8Pk/x9PHQI6yG2NTy9+abxnciXT59H7D+LaeFCY7/D7lrUqWO+TfzmyNuOHNGWo6PV77TI3LnqsuR+oFmbZHcuJ04w1qyZs/O+fBm/f/Hxxm379jF26xa2c5s26eugaq9UdbXKy+ValSrp1+fLp9/n88+1bWPH4jpxXAeA71T27Pp14ljVLO3Yof0fPNi/59/nw+f44UO9rEHuk/Mkjr94f54xTbYHgGPhAQOs+3VikvtadmM5Mb37rn55715sb9q2ZSxLFvP95PZv5Ur7Z8DuOYmPxzHJlSt4bVT5fD7sW2zbpn7GVNy6hfWLjTXPIx6LfwtU21Om1K8/cwavlSzfMOOPP6zfEbGfbEajRtbbZVxkTX7ICpZ797Djc+OGPt+tW9aNmdjQq7avW6e+cXLe48et6yvmTZECO+Nmx127Fgcyv/+uX1+nDnZ8ZeGnVf0ZY+yDD7R1ooJF1SmaM8f+2ouKExXDhmFZXIDPGAp95GOdP68XhMj3KjLSWLZTBQs//x499Ovk50PESsEyZAhj77/PWKdOeP6y4OCTT7RyJk82f9nFDszp0yic/ucfY77Fi7V8W7aY16tKFfuGhSN/TD/7TP/RzZmTsTVrsPNQogQKdcT8S5aYH6tuXVz/9tvqYydmBcuIEdq27dsZi4rSKypV+4jbIiLwmZDvk9gxHjoU31uzMmNiGFuwQBO69expfZ5iGjnS2fvQp4+xnFKl9OVHR6NQoE4d/fp06bR9duxAIako4BGFIjw1aKA+h19+0XfyA1GwZM+u7W91vzhiJ0rsKM6YoW9vN240Ch2cXGOxYwvA2HvvMfbqq9b1mjsXO5BiB4Xnl5XCovIWgLFcuXB9TIy6I8TzmSnOReEPJyZGW3fggLP7YJcqVHCe1+zex8fjwEV8duTvQerU/pV/6JD5ts2b9R38li39O8YXX2j/w8Kwz8LbTVXyV8Fil5y0xap07Jh7BYtZun2bsalTUSlgtX/Hjrhd/G72728uqOEpUyb98o4d+m+q2TPmpO4qhUXXrsb+ml1SKVhGjFC3pXbJn3vAMROm3bjB2Jdf4v8rV9QChYRO8nmKy24VLAMHmm/jygne1+brp0/XG6NYlV+hAvYlnNSldm0sr3hx63yigkVMoqKnRg38LVFCq6fYt+7enbEWLbC/cfkyY//+6/yaNWmiV3x7kTJnRkWg03tul6zaN1Ho5fR5c9rGyQqWxJpUilpZcViypH57q1ZMiVxO4cL6flUgiTHGDh40rpfHv6KC+Jln7MuU14nGPk5SUlCw+Jt42+ZEwQKARj6VK1sLFb1I4vd/9erQXR9/vrNmSVSwAGB/7+ZNbXnHDlQoyvtxhbSqrXnlFfxOv/+++/qMGaPv5wZyLfbvt1awbN+uLT98qG5b4uMZu3SJsb//Nj9O1672dfLyngFoxsIvvWTc1q2b9n/DBn0dnHxLGMPv60svabIqcXu6dObft6pVNZmZvO3+fWO7//LLxnx2/Q85mSnY7BLvQ5cowVjevJqBiZmCRUyibERUsLhNVkZoblORIv7tN26c+hmwe1ZEY1nuIJA+Pcp4VGVZye7M4A4AQ4aY5xGP1agRrtuwQZPlyXWJjcVvOje4LFAA1zdqhAqvXbuM33fGUEloVX/xOCdOqPNwWalTXGRNfsgKFrMH9McfzR9uxqw7EowZFSxjxzL21FPGvKL1B2N4k6tVw/1V1t12SbSS5olbIpQurTVEL75oXX/G9IJQ/hIwplaw5MqFL4A4iJw6FT/YDx5oL3OPHuaKFlEwz3GiYJEtsrZsMZbtRsFiZpk0ciSWdfo0Xktu3W2lYBHT3LlGBUvTpmiFc/Gi3iOKMbQCPnzY+LzJlu2nTuEHa/NmFGC7fWbscFuenDp00B/r7l0UIMhly94wDx/iu2BXPm+UxQ4X3+ZUwfLZZ/bnyxhq8l97DdsHsVMEoLYinDNHa/hVSlnZGgLAaHnUpImxHj4fCvL79jXuv3evs3sodzLt3gmxnGzZcPnePRQ+rFmjfp78fWZy5UKFK2N4nleuGPPs2YPP/rRpmEdWRPF0+jQqZ8Q2GUAbcDh5F8Q8YudMZYnMLaaXLtU8keySrGCpV0+vYDl9GsuMicGBQ3S0/j7K9UyfXl9/1UA2Lg4HawUKaG0yf67EfKqOi0rBIg7yxLoH8lx4oWDhVkOqb0mgSWzb5CS3DwmVgqVgCSSJ7dTu3Yxt3Rr49RE9CFWpYUOjFaZdkt+TL76wV7BYGds4SSqFidv8/grvuFDdTbp4kbGyZc23y23ZY495+yz5k6w81LZtc1eWnYLF50PhYebM2voSJbRr40RR6bS/yhUsdvnMFCxmiTNrlnkeN/2HUCSnHnc8ycYxgSRuZGFmQS2m7793bgUdynTunHHdb7+hQG/pUqOlMwBjzz2Hgq2TJ/37/vuT1q7F48rrGzZEZXaVKmiUUq+e8zJVyiWVh9Gjmvj4wKlXYShSoH3JQJKXz3yePP7tly4d1sNMmSsa8gQztWplvd3M4EQ21OAyBBm+3czjxun9sVLQeJ1atFCvb9gQhdy7dtkbfYvLYt8jkGugSioFS0KlypXV9XaiYPnqK20sK3o2uE1eKli8TLdv4zjrzBnrezljBm4XI63ICpbt2zGPKNtkDK/fkSPWxvJiORMmoIymTBnsC5l9/3mEHgC9ZzQ/ripigyyn+OMPY12sFCxihCYAlO9evIjj52LFNC8Zs/1Nz9951uQHV7DUrx9usEDhiJa4qsSY/XY5RJhZ3nXrtOPKVsZu3C69TBxRwdKwobbezq131Sr9OX/zjX47dz2UEa3dq1XDhiJ9emP5589bW99PmoQvrIibzrSVuz1j+gGyG9f14cPNrTNSpdIrWMRyixbV55XDzohC3IUL/bvfUVH6Rkx0wfPy2RLPX1YGZs6MjTdj1q7fctq0SWtIBw/W19lMwXL5smZlKz/3Zsf580/rephZldepY905klPp0vb36/XXGStYUG2RrQqxFeh9e+opYzmMacJcUTgxbhxaBDoRLjh5Np0IpAYPRmGTP+WLywMGYGcgPBy9MFSKwP793Zdrl1QKFrEjmzWr3ltC9C5s3lx9n2fP1jpCqmOKQoN9+7Dz9M47xnzcsvSDD7TjqBQsdud44AB2atxcm/LlA3t+3Foeu02ffhrc8iklbMqa1bjOzmjBqYFFcklyyDI5+dMOBzvNm2e+betWd2XZKVhOnky483KqYBEH006SV/2GUKYBA9zlr1rVu2OnS6cf3Nslu3cqMaSzZ43rfv1V8/6wei8AUAHTq1fCCi7NkhyhgFJgac4c/fg9MSaVLCGhkpdtqb8KlrRpsR5JQZmrSrJiqH9/DO8rIgtNQ3F/QpG8qH9EROjPwy6pvH8Y04fftUtJ4VvrT+LGujlz2j8PjNl7nckKDMa0CEqizEFGLkc0kjbLkyqVeT3MnkvZgKZsWWNdxD6YaIDt8xm9qH75Rb8s962d4iJr8oMrWADClQ8dY2otqZzPanuTJvqbZ5U/Uya0wD571mhhK7tbJ1TivP22tu6993Dd+vX4AlvtnyWL3sNElVReJk7rd/68s5iPly+jcHDePLS4d1q+lVUnY3oLYTeeMcOHWwva5fiMZkkMZyM3MrLSwOn97tRJv+6VV3C93MgGmsT5BMyS2xjRshBVDN3Fz8/nw49D3bqo1FR5xrh9Dt0kp54MAPYKFjuL6U2b8Dz4fEZe3UP52gRiBeLvMROq/GLFtP/y/ChOUqDhCNwohCtXRgWJymL399/Nz1G2ypQV4ar022+o/BUVLKpQa1bJzNNIlcqVC+79p0RJTKp+gj9GC8k5JQaPFC8Tn8PDabISJK9albB1r15dPYdOoMlKMZ9Uksq7l5L/yW7+KjvvBTfzxFCilJxSYmhLk7qCxSwdPoyRBJ5+2v/5pRLD/Qkk+RPtRk6J0TDmUbh3obgmTq6Z7Ghw6JBeSc1p3x7H6VyBIZdTqpRxHy/OUdWf2L5dHwZNZeRy6JBaISdHAeDzDMt1t8NF1uSHnYJl/377G+s2lnq/fqF/4dy+nIwZ1/OJ5b1KGzeiBYJVGAJVsgsNwlMwQhgwpoV7AHA3IZ5d/Hd/khduvSrPjCxZUBAqT36VGJOdoP+//5zNNyLHTU+syc4Sa8sW/bPvNgSNWZJdNxMi2Sm7A02J9X6rPEn8TWbKPX+/S1Wr6sPWuZ1Q2OnEppQoJXSS5w8DMMY8p/Rop549Q1+HYKfu3YOjuEnIlNTGXck9BSNEJyVKSSGpwueFIi1bRl7XqnT8eOjrQMm/dOJE6OuQ2JLVFBcAjB09al+G3P9LmVK/zJg+bB+fh9uqTB6+PpjnXqkSGn1u347zQ8nbc+VSXx+7SClOCcMTfDSJiIiALFmyAEA4AGTWbeveHWDYMICoqJBULdEwbhzAjRsA3bqFuiZqZswA+Oij0Bz7118Bvv02NMdWUaYMwJ493pf7+OMAw4cDNGvmfdmJlezZARYtAqhcOdQ1CYxlywDq1vW+3MmTk9/zwBhAWFioa5H0oetIEASRfEiRAsDnC3Ut/OeFFwAOHQp1LQiCeNTJlw/gwoVQ14IgCMIZrVoBjBljvn3HDoABAwCWLMHl6dMBGjYESJ3autxy5QC2b/esmpY88QTA7dvelOVUa0IKFhMFC0EQRFInVy6Aa9dCXYukweefA0yaFOpaJH0WLABo0CDUtSAIgiAIgiAIgiAIwi3166PBsVPeegugRQvcLzniVGuSKrjVIAiCIEIFKVecQ8oVbyDlCkEQBEEQBEEQBEEkTdx6L69eDVCyZFCqkqQgDxbyYCEIgiAIgiAIgiAIgiAIgiAI4v9xqjVJEdxqEARBEARBEARBEARBEARBEARBJD9IwUIQBEEQBEEQBEEQBEEQBEEQBOESUrAQBEEQBEEQBEEQBEEQBEEQBEG4hBQsBEEQBEEQBEEQBEEQBEEQBEEQLiEFC0EQBEEQBEEQBEEQBEEQBEEQhEtIwUIQBEEQBEEQBEEQBEEQBEEQBOGSVG53uHv3LqxZswYuXboEYWFhkDt3bqhZsyZkzZo1GPUjCIIgCIIgCIIgCIIgCIIgCIJIdLjyYJk4cSK8+uqrsH37dvD5fBAfHw/bt2+HcuXKwcSJE4NVR4IgCIIgCIIgCIIgCIIgCIIgiERFGGOMOc1ctGhR2LNnD2TMmFG3PjIyEsqUKQPHjx/3vILBJCIiArJkyQIA4QCQOdTVIQiCIAiCIAiCIAiCIAiCIAgixDjVmrjyYAkLC4N79+4Z1t+7dw/CwsLcFOUpo0aNgkKFCkHatGmhTJkysGXLlpDVhSAIgiAIgiAIgiAIgiAIgiCI5I+rOViGDh0Kr7/+OhQvXhzy5s0LAAAXL16EQ4cOwbBhw4JSQTvmzp0Lbdu2hVGjRkHFihVh7NixUKtWLTh8+DDkz58/JHUiCIIgCIIgCIIgCIIgCIIgCCJ54ypEGABAfHw87Ny5Ey5fvgyMMcibNy+8+uqrkDJlymDV0ZKyZctC6dKlYfTo0f9bV6xYMahXrx4MGDDAcl8KEUYQBEEQBEEQBEEQBEEQBEEQhIhTrYkrDxYAgJQpU0L58uXd7hYUYmJiYM+ePdClSxfd+ho1asC2bdsM+aOjoyE6Ovp/yxEREUGvI0EQBEEQBEEQBEEQBEEQBEEQyQ9Xc7CILFy40Mt6+MXNmzchPj4ecuXKpVufK1cuuHr1qiH/gAEDIEuWLP9L+fLlS6iqEgRBEARBEARBEARBEARBEASRjPBbwdKkSRMYPny4ZR6X0cf8JiwszHBceR0AQNeuXSE8PPx/6cKFCwlSP4IgCIIgCIIgCIIgCIIgCIIgkhd+K1iWLVsGvXr1gm+//dagSImPj4cpU6ZAsWLFAq6gFdmzZ4eUKVMavFWuX79u8GoBAEiTJg1kzpxZlwiCIAiCIAiCIAiCIAiCIAiCINzit4KlZs2asHnzZli8eDHUr18foqKiICYmBkaPHg3PPPMMtG/fHho2bOhlXQ2kTp0aypQpA+vWrdOtX7duHVSoUCGoxyYIgiAIgiAIgiAIgiAIgiAI4tEljAUYx+vSpUtQu3ZtAMA5UWJjY6Ft27bwzTffQKZMmTyppBVz586Fjz/+GMaMGQPly5eHcePGwfjx4+HQoUNQoEABy30jIiIgS5YsABAOAOTNQhAEQRAEQRAEQRAEQRAEQRCPOk61JqkCOUh4eDhMmjQJLl26BA8ePICwsDDYvn07lChRIpBiXdGwYUO4desW9OnTB65cuQLFixeHP/74w1a5QhAEQRAEQRAEQRAEQRAEQRAE4S9+e7B07doVRo8eDdmyZYPOnTtD06ZN4auvvoJVq1bBihUr4JVXXvG6rp5DHiwEQRAEQRAEQRAEQRAEQRAEQYg41Zr4PQfLkiVL4Ndff4Xjx49DixYtIEOGDDBlyhRo0aIFVK1aFZYuXepv0QRBEARBEARBEARBEARBEARBEIkavz1YGGMQFham3DZhwgT4+uuvYejQofD1118HVMFgQh4sBEEQBEEQBEEQBEEQBEEQBEGIONWaBDzJvRmrVq2Chg0bQkRERDCK9wRSsBAEQRAEQRAEQRAEQRAEQRAEIRL0EGF21KpVC/76669gFU8QBEEQBEEQBEEQBEEQBEEQBBEygubBkhQgDxaCIAiCIAiCIAiCIAiCIAiCIERC7sFCEARBEARBEARBEARBEARBEASRXCEFC0EQBEEQBEEQBEEQBEEQBEEQhEtIwUIQBEEQBEEQBEEQBEEQBEEQBOESUrAQBEEQRAJw+bJ3ZT39tHdlEQRBEARBEARBEARBJEYqVXKWr1Ch4NbDClKweEgob2RSokgRb8vr2tX/fQsXdv6iBptABKaZMnlXD39ZsQJg2bJQ1yJwwsJCXQPnOG1zvvoquPUgNOrVM9/22GMAx48nWFUIgiAIgiAIIlnx3nuhrgHxqPPCC87ykXyQILxj3TqAY8cA8ucPdU3MIQWLCfHx7vKnSQNw6hRAlSoAGTIEpUo60qb1rqzs2b0rywnPPJOwx7OCMWfX8okngl+XQChTxvsyhw0D6NvXef5y5QDeeQfA5wPYscP7+iQFnnoKoGjRwMsZPNg+z6efApw+rV83bZox3/jxAAMHAnTvHni9CHsWLgS4e1etME2RAhXMzz2X4NUy8MYboa5B0iRv3lDXgCAIgkgulCsX6hokXzZssM+TgiQhSZKkZAxHJE9q1nSWb+PG4NaDcEbOnKGuQeJhypRQ18B/0qQBePZZlLsHg7AwNIgNBOpWAECqVMZ1bjtc5cvjDdm4EYVrwWTXLuO6Nm3M89sJ8xYtUgtm/aFCBYAvvjDf3qgRwNix/pf/448AvXvr1wXayVLt37KlfnnmzMCO4S937mj/v/02YY/dvr35tnTpjOuyZcPfsDCAggW9qUOePMZ1mTP7V9b33zvLJytInbYFqVIBXLgAcPQowOOPG7c3bar9//1367I6drQ/nkpArrpezZsDZMwI8NNPALGxqADbv9++fJk1a1CBlpiR31vOZ5/hB9nJYBsAYNQogOefd3/848fxecmSBeDAAeN2t21V6dLYPpcs6Sz/rl1qBX/t2gD58unXrV3rri6PCrGx1tsD8Zh0wtKl3pb3yisAOXIAbN/ubbmEOV4o2YmEo2fPUNeAsKJyZRxXffBBqGsSHCjcZ/B44w3sl1uNg1evTrj6EN7RvHngZYwZY76tQIHAyycIgEf3WXIiyzDD62v2+ONoVE3gtf30U4B//gE4c0a/LTH2s1q08G8/f5+hZ581rnMrgyUFC/gnePD5AP76y7g+LEytsJk61Vm5o0ej25NVSJ9nntELfb/91mjxPnGifruMqJljDODjj9XH+vRT+zqL5M8PMHQoQKtW6u2zZwPkzu2uTJFUqfQd5a1bA2swGQP47jvjellI+dZb2jULNMTPwoX4O2WKXnCqEr6KgvqGDc0t3ZwKbs2ufefO6ntmdm3Nnhe7/dxy6BDOW/HllwA9egDcuAFw+zbApEnGvNWqmZfz8ssAQ4ZYH6t4cfQEmj5dW3f+vFFh+vbb6v0LF9b+376tdx2uUgUgfXptuU0bvEavvGJdJ5nXX8dnMWdOvcKGY3fdU6XCZ8XqeVm9Wq0krlEDQ8C5UT7fuKEpXOXQgPJHnfPyy/rl+fPV+VRt6tCh6HklevZkzQoweTJAVBQOto8cAZg1S78fYwCvvqott24N8Pff6uMCqNt4AP05ivdbpkIF820i2bNjGIR9++w7Chs34rVbtcq4LV06gBkz9OtSpjQv66WXnNUvOWJ2bzkq5albrMIKuG0T7Ni5E+DaNYCyZb0tt1gxb8vj9OsXuOWQE1KmBGjWzP5bpqJBA+vtTsr87DPnx9uyBaBECW35ySed7+sl4jdOxbx5CVMPr3nttVDXwHv27MFvnhMSu1VnxoxotDBoUGjrEaxQq8ndEl/17alYMeGO/9RT1l71OXL4X/bQof7vqyI2FiAyEuDwYeO2Ll28PZZde370qLfH85patQIfj1v1gz/8MLCyCTTK++cfgCZNQl0T73ntNTQadkJyb+PNkGWTPp/zfc1kBP6ya5dmCOw1SdVIolw5o0H0nDkoNwkGy5YBdOgA0K6deR5RBscRFeFim20m8/rsMxyHOY3Ckz8/9gOmTMF2f8UK4zv7888uo/OwR5jw8HAGAGzPnnCGt0lLjDHDOnm7mKdKFX3ZfH3mzIzt2cOYz6dfJ5Y1dixj164xtnw5Y3FxuP+335ofOzKSsU2btOVffsF9qlXT1s2Zo/2/f99YxsGD2v9t2/R1HjRI+9+jB2OlS1tfCzE1amS8Bp07M9amDWMHDuD6uDj7csqXZ2zhQuP63r3xWg4bxtjff2N5XbvalzdkiHp9gQJYxpkzjGXMqK3v1s14vx88YOzWLfy/dKmxrJs3zY//zz+MDR7M2Pjx+ufk999xe4UKjH31lX6fjz7CPIcOMbZkCf43O0bVqur1P/6o/Z83j7Hbt9X5wsP196xsWX39ABgrVEj7v3Kl+TvBGGNXrzp/ZniaMYOxzz7Tr/P51O+u/AxVr87YuXP6dceOaf/Xr9ef308/MTZ/PmOvvaa9L+Kxhg7Feyw/y/w8L13Sr6tXD48ncu2atr1KFca+/NJ4rRYtUl8L+Zg8nT9vvBbi9jVrrO8L58ABbfvs2er88j3klCmjrStWzPx+zpypP+aMGc7O8coVxipVYqxdO8ZOnTLm278f7118vH79sGH64/H3acMG9TUQ2xfG8JjyuZqdW4oUxnVffWV9bwAYi4rC9XfvMta6Na7LlEnbniaNPn+NGlpZly/rtz39NLa3AIy1bKnlE78NPL3/PrbzTq6/6pkQ3yWnaflyxsaMcZ7/8ceN61KlcnfM7Nnd11P1vojL6dMzVq4cY+PGYZscG8vYk08Gdoz+/c23XbmiXw70WFbPo9sk9l3efFOdR/VuuElnzhjb8kDT8OHYXxDXPfaY8+vSrJn2f/16xrZu1ZaHDjXmV/W55KR6T63uoXjM4cPV+d54w//76STduGFc9+ef+nqK/YSkksT+sFl65png1+OZZ/A7Zrb96FHnZe3d6/ydz5MneOc0fbrzvJcvG79zAIzVro3ncupU6J6Rdu30dRPHC4Emue+fnNLvv2O7IbZfANgfSYi2wsn3b98++3J+/tnd+mDU98EDxj780JvjPP+8/hhNmui3lynjvP1ImdKbOuXO7d+1cpL3hRfU68ePN9+nY0dv7+2jmHr1Ut8nr/t4ZqldO/f7PP+8s3wXL+J5nT7NWOHC2vqpU415veh/J7VUrZrxvN1cBy+vWf78WN7Bg4y9+ipjq1Z5e67i/XeS2rZFGcCGDd5fd1GOEBvL2PbtxjwFC6q/NenS4fITTzg71vHj5nIss3tq127L28qV069Ln14rIybG+hiirMsq9e9vlDemTq1t57IoN4B9luQLV7Ds3q0pWNauZezIEdxudiO2btXK4OtatNCXzdfnyWNc999/+vLGjjXWTVSw/Pab+uHZuJGxLl3wAWMMBUA8z9y5+vy1axvL6NSJsfr1tYdq9WrGJkzQ17VHD8ZGj8b/FStq6+vVY+zTT43XRlSwLF2Kgr+HD/Xn5kTBEhmpvgd9+hiv1Q8/qMsYMQIb0tu39WVly6b95woWxhj79Vdc98UXRkWEirg4/cCIMcZeeslYj59/Vu/PGAqJ//kHBTL37ukH8Q8eqPcpXtx4DJVgpV8/vLf//ovCHI7qWkVE4LY9e1CIePYsLkdHM9a4MWNTpuj3/eMP/X2cOtV4Xk4b3CNHsPz4eKMQzIp58zCP2IGrUUO/b8uWjFWurCku//5bOxfGcP3Nm9bHYYyxdetQ0Ll8ubaubVs8jlieDK9LlSqMNW9uPC+vFSyXLzOWKxc+h4sXM7Z7t7pe4kfH50Nho+qap09vXH/2LL77+/frhWtyio3VlxUb6+wcra5j9erq9RUqGPfx+TTFoQrx2jOmVrBMmKCuY8OGxnX37pnXG4Cxv/4ybo+L0wttevfW7/Pmm8Zz4tsKF0aFzbp1+J5yzBQshw87u/4AegX97NnWec0UAPzZu3uXsaZNUSn78KH5fuK58fp17+68HQHQt+0AeqMDp0k+14cPsW0SMVMsOu1kWylY7t3TL/Pvkr9JpE8fxr7+Gp8R8foXLKjed88e/fLixdp/M8FEoAqW06exrrVqBVaOmA4fNt7X1KnV7ykAY99/rz8+Y/gMlyqF/S1RWCjvz41A7OrkVMFSujQeQ1SQTpyo/R8wQPv/9tvOr8nWrdZGIbKStX9/rMfrrxufryNH0KCAMfcDTZ7cDNLEVLCgtaIfAPuIFy6Ybw8PV69/7jntf1SUd88jT7IAz+x55Ck2Fr91Tsret09dVocOxnVuFCwffmj93VfV2Wles/OvVQvXywqWX36xLi9LFsbeeUf9zLi9VxMm6L/VZsrJWrWwb1q3LmN37mjrrYTQ4nl98YV1PXr18u75S4gksmABrnvmGVwuUsR+//z59csREf4f3yyPSqknJt6XVW1buxbHSE7rY/X+ykZCqnNxomBp2RK/VfL6gQO1/9wgiC+3aKHPy8dMTs4pNlYtVHabcuTw7946yau6HgDWCha5P54UU6AGOiVL6tscK+VD0aIoLxKN18wULOJyypTmRqKBJicKlvr19csvv2ye9+WXGVuxwijXEq/Lnj1oUGt2vokl1atn3vb17as3/nObxo0zGu66uQ5r1pjnlb8JTtLQocyAm/379LHe7qTfmzat/jr4Uw8n6exZ/OVGZLJBMIBmmC/XgSvFxo7V1ol9xhEjsL+SLh3KwDgHDmAf265vpTqmOJ7p29d4TbgDA18uXlwrQ1aw9OihP4ZToxw+vhHh38svvzRucwLYZ0m+cAXL+fOagkUUpIgPlNkDsnUraiHv3NGv53nr1jWukxUs48YZ6yYqWEaNMj++iKiR5cJnnl8eeNvRsiUOTq5eRWHBjh0o8Of7v/ceKgW6dkWhNbfO37/fvmyfT20NyM+5dWvjNRMbORkzBYsMXy92OEQFi8/H2IkT2jNw5w4qlUaOND+XjRuxnLx5cVm0AipSBAfoXHnhBNFCVBbqca5fR+WYeK5vvWU8/8WL1furrpXTOvL8V6/ql7mHjUhcHD4z8+ZhfpWF+uOPW9fPDlmAfuMGPpMnTjg7HzfI2m2fT7sOZvDz+P57/QCEY6VgUQ3I7RQsMTGYzJ4djijEZQyFmqprzr3ZPv1UXU58PGPvvot5evbUyujcWZ2/ShX9cZy8t2K+9u316zdtQgHKmTPW56uCe+hwiw2VgkU8dvPmeP3Xr8dr3Ly5vlNlVW+7Z3nDBsZ27UIlt7iPrGARyyxcWF3WX38Zr2mDBur6qK4/gFFBb5W3cmX1ejPlntgO//GH/jjcECBLFlwWPfCcpKxZ9cuygsWJR4yT+6YS6ObMiZY2qjK5pxFPKk8z8Xiiol7sfNqlevWcvU/yOWzaxFhYmNF6Xr4Wa9dq/zdsUAvoRW8Pq/TPP+r13FIoNta5IFTuRMvXmxsriOvSpDF/tkePxu+s/C3h3wArBUufPs4ULJs3a//r1tX+f/ONPh/vU505o34mxOPLhjR2z7nq3AEYe+UV3Ma9l0eM0PKLbbiqjyG2iR9/bF+P0aO1c1QZ7bg9D3kQe+OG9bkOG+ZMwcKY3sjIafrkE1QU37xpfC5URgdm9eTbz55Fhbldu/Dvv+qyVIJQNwoWTlycXtDRs6e6fTUzqLLygpbXcwXLyZP69aLnkdz2A2D/UnWchw8Z27nT3X2UFSyq4wEY+4l8/dNPa//FdyhFCr23s9jGqpLYz0oKSebkSU1hsXs3ep2OH48W7fXr642kALAtkssTvcGHDTMaApgdX7X9zTeNXqNmZUyejAYK8rYHD/TPmWiYJKd+/dTrs2c3XitVPcQ+k5jktkqOALFnDxou8uVvvtEfQ1aw2LVFqrzbtmH0CSdKYPGbx5Pb/p5dHfn3p2ZNvYIlZ07tv2hE9d13miFcmTI4Lq5UyehZrrJ+FwWS/qRevdTXxCrx7+VPP5nnqVRJH41AjiRgl+Li9P1Cfp+vXdO3gVWqYJ+Jky4drt++XX2fxOWaNZ31mfxJsoGyKjVooB83WSlYGjY0vqeM6fvTqv6m03fJKl2/rl/+91/tvyjzc5LEaCr79xu3Hz9uVLA8/zy+C7K3m5zeeUfdjnF5j5jXzEjC6t0Wx0+i0Z5Z+usvtUzk779R3sgV/3KqUAHbxZ9+wvyDBqHsU5XXiYJFVCKqrk+rVmqPeLeJMVR2iHK95cv1ecz6KfXqaeu4MbfoOT1vHm6TDWg5Dx9ieyPLKK3Oe9Ik7T9XsIiGelzBsmMH1k8ck8l9aFlxxBj2v9u3t75mKgWLz4fGY3byNDPAPkvyhStYwsPD2X//GUP8zJmDgyP5BXYCz9uvn3GdHI5ApWD57jttO/cgsTu+z4cPycqV+FCI+WUrLidwCxbVeb37rnGbmceFWdkxMYwtW6aVGReHQkbxxZVfApWCZf58+xeZMRQa5s2rF+xwt8FAOHBAa8jEht8svJUd69Zp4c/MEO/v9etqi0I7BYvYgDlVsNy9iw23XJZKwSIjN4Tbt6uPK3roJHX4efTsiY30rFl6V0NRwXL6NIag454Q69ZhB0ccAIgdWPkYbq/XjRt4Pzm3bxutcnw+bK9UbYEKXg8zBYsYeo8xzQWTd8affNK6XFnBEihXrmjXm4f9M+scyiHPGEMPQqtr7/beyAM3KwULtwKV2b3b2BZ88IG6PuIy9/5Ik8adgkVUTImK/CtXrK/Jk0/qrcoZw+e7WzetA6UacFuFNXr8cb1iUlawmO179SoqiqZPd3bfVF6ES5eqFSytWuG3sWVL/bfB7BwY07wVnnlG70lg5e6cO7c+pKPdcycOCBnTvruihSxj2J/ImROVf6JnIg+9J1/Te/e08HcAeN7vv6+ul+o8Tp7U6mgWhoynQoUwj+wx6fNhe9arF37vVc8wV6yq6rFwofl1E++P6jz4YIwvq+4JgF7BEh2Nvzlz4rlMnozLr7+uP+6cOSiAFQck4rG8UrDwEKEREdi3EAcYZoNEjjjQlI2JeKpUCc/t8mX9vnKI0MmT7UPwyOchCrJlRAvu9evxexIdrVaw9OhhFFreuWPsb86bhwoA1TMOYBycyXUXhVQclSX3U0/py5E9EuXEv2uq+sjr/FGwMKYJWrilpCwcNzue6r2xeibfegvXnzihXy+GrlRZtebKpW5rzY4jJ1G4P2ECtpEZM2KbZxbeSoavF701atXCd2v4cFQsWClYZG/HHj3UIT+8SKJyMpBUpw6OCTZvNl4PGXmcJHrPyveAX987d3CMvGOHtl/nzur7p7oXYvr8c72CZeBA9FYUlfsyq1Zh+yV+q8TyrbxOeVsPoDekzJbN/Nlx8tyuWIG/NWtiHtl4Rd73u+/0y14oWOyutZhURiZmiu7ff2ds2jR9v8JJHe/dQ+FpeLhewSJ64orjK8bw/ixZYjSavXUL5R5//KFWcp07p/aWc5p++UUzVnOaGMP3xyrc1muv6a+R25BEjBkVLByfD8cKPOqLyO3bmpJfdZ/EZTlyil0qXJixfPmc5RXfN7P04Yf644thsMX+BID5uEbuT1udrz+Jh4w3K3PDBmMEEKs0aZJWT7H9u3pVM0qR+/aLF+M30MobeMsWfUQFsY7c4FzMz/u6qufO7JqJbYeT6+oElSFI5crqvGbPpF095Agrcnnc2yuQ58TqfPl2bsCo2iYqWMQoIEuW4DfWjbLB50NPajH0o+qY4pQLXMHCjdcBjFNwmNUdwCjDEuGePaqkUrAEisNHL3kiKljsCAtz97LyvHPmGNfJ7lryvByM6QVcchx7p2zcqH34xA6FmzLMzkt0DQuEuDjUCIuKKNXxeFIpWHw+/EDLWngreHzBzz4L/Bxkjh7V5loIFqKCJS5Or7QrUwYtCc0e6x07UBAjdhJ5SDa38P1XrXKXX6Vl5oixcpM6/Dx69lRvl8NUyfCP2S+/4DxCVsdImzbg6gaM3ccqKgqFClyZvWcPCuX/+w+fQbljJpf7/fdBqfb/OHfOqEw6dw7vk0phevkydkJbtVKXx4XqZttlZKt+OSQaY9q2IkXUZfh8OHgWBZMff6zfV9UxPXAA24W9e40ekIyhsYGqYyIrWPbu1YckNKs/V6bt3InWUipUVtpWbutZsuitjKtX12+XBwy1aqHA1KyOZu+laMX622+aoli0Yi1YUBsU8fvy66+a8lwVakE0tjhxAhUz0dGoKPrxR1xvFoIrd261tZ4Z3HpYDlEqK1h43TlZsuA2LoA4cAANFwC0cIliSAnG1FZmjBnnBQLQPwvcKvSpp4z5MmbEevHk5JzFPGIcX7lsO4MBWcEizgMnu7ibWcpHRaFCkIcAE6+zz4f9GbPBgpkHi5uwambnDqApWFTYKVhkBYfKw9gsrObnn+vzcUWrvP+vv6IwShTgliiB/Z6mTc3rJ983zt27xmOcP6+F3a1TR59fdR3FEKCil7QMX8+9QsVY1xxVOBtZwRITo713AHqrWzHsqVgG/+7KZfurYLlzB/s2vFxZ8NKpk38KlvPn9V4JXGh8/Lg+/9WrqND86Se919+CBeidzgXw0dF6y23VtZFTixZ6i38uBHz4ENOzzxr3efpp8/tdtKj2/4cf9HlEy2RZ8Hz1qn47/w74fBhFoGRJYz0mTtRb6TttGzJkMN/mdC6Du3f9Ny5jDPtfYhsiW5Ob4fOh94SYd+5c9b0AwDHLhx/iuyIKGPm7I3rmOoXnHznS+v2JisLxuRjeJFAFC2MoQOKGEnFxaJnPv0fyvu3a6Zdly2mrYwFoxiRm/VC750SlYBGjZIhpzBitXD5vppM6is+hOJesKA+5exeV3PXrm95WA7InAQDKdeS6dO/O2IsvOntvfv3V3oMlc2a9ApJjJTiUFSyiJ6yTxJi5gsUtBw+izIWHgeVlTpyIy6Jiwyrx+6raNnOmfln8/rRurY6kwUPb82WxHs8/j8qLihVxnGqG2J/n8OWsWc3rC6D2eDObGkBex/+vX+/OC0jsZ4uhLEVZkDzWEvtbZm2cCr5NpWAxCy2oOl+exEgPqjxiyHM3z+yGDXpZ7xtvWJ+PmFTTA/DUuTOOrUUDH1V5VgoWq3m5nRrh//kntoM7d5qfk6hg8QoxYpHItGnoSSm+o+L3iq+zU7BwA10n9zoqCg0j5L4OKVg8xo2CRRRqOGH9elQGiNq+Zcs0K2jxxvKOu4jPh9bux47pFSyBPASbNuHHTbT6ccuGDeie7eCSeYLckKiEYSJ796ImmX/AzThzBgXWCXUeXiNaL8bH6xUssbHOFDxiODIrra8V3bujUNWth4MYckSGFCzu4AOdL77wvwyvGDMGhSGq+UgCgV+jYCtY/MHq2Y+JQaUJnyfLDp9P71prpWB59ln78n77Dd8nPhmjWedcfv7E9oUTH6+OZyoOePlkxFbwvGbeSiIqqyJ5cuG8eTWBDBdc8W2yB8TPP+NgNF8+dPe2q6PZe8nnX1Jtv3bNmYBJVrBkzmy/D2N6QYGYcufWWwI5aVdU9VQpWESioozWnXJZYsgKjhjG8okntPWnTqF1KN8mDvzi41EQc/OmUWjI5/zgODln0WtENAqQr5mdgkVUhDKmF8SqFCziXG0ff4zeiYyh4Ncf93MzBYub8ALyuYtxlvmkkirsFCxt2uA2UWAoH1ues40jPjeihaW8/9Klxn3j4vDZFD3FVCxYYAxlq1Kw8PC4hw4Z22/VdRSVQ+JgWIavnzYNl3le0dpe9Y7zMLQisbEo2Dt6VC+cUx1PFBbIZVspWC5c0Avx7Vi5EoWuv/+O90Ql9OHvCFfW2l2rGjVwWQ4RJloTi4JMs3qZPfuqJHszyuM0VZhIlVcp3yaGTZLn/bNTsIjldOum31eO9Q+gWY7v2IHv6549KLwWlTxiKlMGhYByeNFq1fCbOWSI3nPLymLeC8RwJi+/7NzAUZxLYcAA8zAocjmiguXWLVwnhvJyCs9vFZbIbB/xm6iqr91z67aOXFG3ZQv2m6Kj1d5/qmP98ANep8GDtb6lXd3lpFKwmO03erRWrhhCk6MywAAwV7AsWaIvIzbWvVLw8mW9MY9qvonu3dUKUFU6ftzeA4Zbnvfoof+GygoW8dnlCpb9+zWvYyf1Ea+PaKzlJbxMrmBxMnerGJlD3jZ5stFrVvz+7N+v76vx1LixvrzSpbG9z5kTZUpOsFKwqEJjiUkMOyUq6VVhq/ny8OH6ZTcKFt73EBk5EqcjEBEVLD/+aN2eWj0f/DxWrjTuN22adTkLFuD+3JOzbFmjgkXsR6ROjfIsMZKBG2JjNQUb7wPI8HJbtkRjuxIlsJ8on8NLL6FnIUf8VqvK43IiuZx06bDPJD4vVauiQQE34r99G58zsxB2dvCyE1LBojr+wIHGdXYKFrO5bay4eVM//QcpWDwmmAoWO8SX5+hR67xibM9HDX7eL7yAFh6BWEYlJ6wULG6u0fTpRiuvYMLraKVgSY4hwsSJ/kS8ULDcvo1hhO7f97+MxA6/RolRwRIM+vZFq6YDB4zb+LUoWtR9uTyEkJlHi8iff6q/TXLnb/VqrQNlJjhV7f/CC87qLB9Ptjzp2BGFR3/+aZyMVlawiB4CTo+pQrSS8xeuDPnyS2yDuQWkHWfP6q3leXrrLeMAiwtR3CDGqvWX27fR0EEMFfjgAQ7wx43Th5lkTB/GQQ7VKuLz4XmKnkEcvr/ZfFEicvzgvXtRiMjLsLJUZMyoYBGPz4UFfHnnTmPI1kCRFSw8vN/Jk0YFJE+yQk+u9/792qTrW7aYH9tOwXLvHg7Wz50zHoMns3biwQO0Ml29Wr9e3l+lYOHYKVhUiAqWevXQe8EK1XXcsQOXX38dPXTM6nD+PAqJuGItKgqF17dva3lUlrwqBYuInYKFT17KmPEZqVlT/czwEJXc86dgQes6mCGXyxEVq6prxddzxb3Ppw8ZJYaYC1TBkiaN3lhgxgx9Hv5ec1QeiCoFy7x5KLA7cQKfEVXYLDcKlsGD9fuqrP7l0DwcMwHcsGFGq/B33tF/J+PjUQHKlcOqcrxq30QFS5kyzsffVt5rjGlWxi++qF+v8mARBWZO4flFBYtseWy2j0rBsnatFgpJrLNYXqNG5vPdqRgxAgVzYnhgjhwSUT4Wt7S3+j6o9lOlNWtQOcOtxrkxkSqvKPhVKa/j4tCoUhaei4gKlvPnvXte//hDL0QVj9+9u36+itmzMfzorFnq90alYBE9uFShfRjTK1j4nCd8mStYRMzuSZEiWIfOnVHB8OefmJ/PwZAzZ+DXS1UPM2MKce6HQYOM/XaV15WoYOGeuHyZG1ZMnIgejo0a4TnJHjVvv43LbmQpVgoWbjw1darWVxOT+B0UvyFW3lpc6ciXnShYihUz9r2t4CGWU6dWb3fa/sfE6EOji/lFz1LVNRS5eBHLkhUsoucsryv3uvr6a+fny7l/H6crMLv//Fhy5B27a2GnYOETtMvlyAoWM/xRFMt14PO1eokTBUv37igTEMXx3CBE9GBUwT3NO3VyXzdeL1KweIwbBYu/2lAz7BokkS1bvD12UoKftz+NZHJGjNns8+nDziVmJRSvo9WAwM6COinBzyOYCpZHAX6NHhUFC2PmnjFvvIHXwirMnhkRETjA48o4N98hjtgZ5nMC3b2LgiMnbc/q1TjAP3zY3fF4KlBAv9yxo/k+8iTbTrHbh8+TceiQ8zJV8Imv/UG+LtyaW1znT9nh4SioEoUG/uDm2GKoFFU8byfw/QPx0N2xw37+FcbUCpYFC9BTRVbycXf8f/81j9/tFlnBcv++NnBWhcAAQOGoKMDh7N6ttwq1m0uPtz/+vk8A9h7GdvsvW2ae1x8FS3w8enFkz24+eafIX3+h4HP5cv36q1ex3Y6PRwGI7CnjFJWCJU8e633cKFhk5YA8yffWrSh8Eq3Tjx3z34hDLFv2cnz1VfP7NXIktvfipKbiPA3inHSiFbAKPkeFuH3OHBTsHj2qtVeffYaCRvkbKStYeOx48bqbzYtmh+hNbqZgmTABQ9Wp7sHZs6gk5vuYKVjE8xHTzz8bt/NwLk7K4fNYqIS5/iCGgitd2vn4++JFNNCSLbHF7d27G70uxEnARe+iIUM0RZsT+HxKYv3tFCx8XkLVHH+cCxf04XP96dM4wU7BcuuWc4t+1XMmJlGJHhWlvX/nzhkNSMT7pfJgERFDDomIbSpj2M/g75aXiOF1u3fH56llS/1k76KCR6xTnTrG9aLQ3ImChYer5c+VeFyO2T157jnz8zp3znsjPn5ccc5Z+ZpMnIhGFypPX3m+Jsb07zKfS8SqXRT7qatX4z0w88qyQqUc4M+caLDh82levmJ+1TfESsHC2zi+vH69flmerwgAFcxuuHIFvfXNxmpi2S1aGA1jzBD3E8P1iXPwWSFOByCXyRUsPh8qdYIhD+PHslKwiEpDjp2ChSs05fvmVMESCCNG4LxyZ854XzZXdlWt6m6/O3cwlKYTL/8rV/y71/yakoLFY9woWKwmzvQHtx2kmTNRo/qo8fvvaLGmmtz7UWfpUu2jyhg26HYh1ELNpUvqDp/IjRvYIVXFiUxqpEmD77g40bIIKVicwa+RmaLqUSIqCt8NLzqO/gzUef7ixQM/vhN4x7J/f7RQ3LNHP6GxSsGydCkOlERFtD/nmJjfS9UAXVwvzjGS2BFDwVl5sFjB9w9EweKU06ftn49g1keemFdEtoKdOhUNVB48QCVQoM81t2p0UwZXipYta5wY2gmHDukn+7ZSsIiTNbshJsZ5KMdgo/JQ81LBIirouDV6MNu8GzewHT92zPjdqljR/XE7dzYaW1y9iophs4nVVQoWM8Q6WglMjh5FhdyXX2KeWbOcn4OIlYJF9GyyqzPfZ98+83zycwWgVrC884718cT9791DL3p/Qw1bld+unSaYatPGu/JFVB4s/nDvHgq7GdPK++477X/GjOr9nN5jTrDeVdE7LNBjqZ4zMdkJY2Ni8N2SPW3sFCyq8LaMGRUswYQfRzRcEFF5nTGm93YB0OZn48s81JSMSsHCmP2clnIqVsyv0/WbHTuM4ap4uDcnxigqBQtj2D/g4dAY07bbRYsJBJWC5eZNVNCqFFOyMqFIEfwvWuFbKVh++02/LCtY/vsP5Wbid69kSW/PmXsEup3LWLxnsbE4n17fvvp+jx2jR+sNXD76CPfjXiDBhNdRVrCI3kkqzBQsly/r5y2VQ3mmTRt8BUswiY9HL2g7461QwK9pMBQsqYBwxIoVAO3bA/z4Y2iO36RJaI4batq0wUQYqVtXv9ysWWjq4YY8eTBZkT07wJgxCVOfYHP5MsD58wAlS4a6Jkmb338HmDcPoF27UNck9KRNC/DKK96U1a8fQLduAJ07u983LMybOtjRrRt+A7JmxeXSpQHOndOOr6pH3brG9pFIvKRMid+v27cBihQJrCzGvKmTFYUKAUyZgt+qxMakSQAtWwIsWoTLNWoAfPIJ/q9XD6BFC4By5RK2Tps3A0ybBtCqlX/X7PnnMf3wg/d14zz2WPDKdsvQoQCPP479/t278bs3Z4535TdrBlC+PMAzzxjP+5dfvDsOJ3t2bMe9YuBA47pcuQBmzDDf5/XXATJkAChe3L581TelbFnjuqJF8XfsWIDevQFy57Yv2w0DB2rfPTucfo937wZ4+WX/66SCMYAXXvC2zJMnAZYvx/YqXTpsu55+2ttjeE2GDJhExPsyZIh6P6f3mNOkCcCsWQCff+5uPzumTQNo2BCge3dt3VtvAaxeHdg3o25dgLZtAQ4cwF8AgGLFrPfh7VKWLPr1ds/5c89hnUP5bT50CGDvXoB331VvT5cO+7BbtwIMGgQwahSuHzIE7ytnxQr9fmZ9myee0P6nSaP9T53afd0TkldfxSRy6hRAVJTxvqsoX169/p139Mt9+gDcuKG11wlFtmwATZuqt8n3cutWgA0bAN57z1nZPp9+uVAh/XK6dAA5cgC89JK2zusx29q1+Ix++KF/+2fKBJAqFcCSJbh86RLAqlXYf7WjVSv98qRJ2E8Kpazl0CGAXr2c1V8kd25932H9eoDJkwF69PC0eiEjRQrzdzU5QwoWhzz3HMAff4S6FgRBJCWeeELf+ZVJnz7h6pKUIUVrcOjaFaBRI2Pn3IqxY3EAPm1a8Ool41YAESg//YTGFGYCkcTG7NmhrkHgTJrkTTl2ghuv+PRTZ/mCofBJl858W/bsADNnanlEQUXKlPj+BoI/g/T8+fVCu0BJKOVuqMiSRWt7SpUC+OILHKRa8cYbAMuWmW8Xr1lYmPE9mT4dYOdOgK+/9q/O/pIQClEAgIwZUYGbyuWo9/JlgCtXUMFnRliYd8oV8X31x/DBjjJlUAjUq5d1PjfvWDCUk08/rQnjAQJXvFsRzPakShWAESPwf+bM3pQ5cSLAZ58BVK7sTXmc554D2L9fv27WLEz+ClEBAObORcOgqlVR2XL7Nn4T/CFvXuvtYWEopA0l3CDAivz5MTVurK3Lkwfg/n00KKtb13mbkikTwI4d2LYldqWKHalTOz+H/PkBPvrIWrEOEDrDaDfkyIFjMafw7+aePag8KlwYl3/6Cd8vlTJaVL55Qc6c3ip58+YFuHDBv/b4scfQ+C6U5MoFMHp04OU89RQ+s8lFwZIU8PrdACAFS8hYsgQtc0RrBYIgHi3efBM72CVKhLomxKNIWJjWMXdKixYAX36ZvIWc3bujUNNri+Rg4WZgllyJjASIjvZOiJWYadAAFZyVKqm3p02L1sKMWStj/GHgQLSA79jR23IJc+yUKwAAX32Fxhxmz4Sd18JHH2FKaPr0AaheHb8rwcYf4aNsXRpsChYE+Pnn4BoVOPEKsOsXdOmCioPly4MjnEjqnD+PbXDt2t6XnTYtjh0SgqxZsW1xS5o0+D0uXBjryylUyJ1Bj8y33wKcOGH0UrAjqfRX06c3/7ZanYPsCeIPSeUaibgdvyQWnFxrK+MDvk1WKlgZsowcaX/MUJMUn0GnNG+O30y3bRcRPPr3xz6MW68jJ5CCJUS8+y5aKCTnxoQgCGtSpCAlK5H0SEzfrWDVJakoV556KtQ1SBxkzIjpUSB1agzbYkWwlPZlygA8fEhC1cRGqlQAH39sXP/ff+jZInoDJCaqVQO4c8dZSJjkiiiATpMm8FCodl5BLVtiOBoeguiDD7Rtf/6J4eh697YuY8AATMkB8dnz6huSLx8mkYTy1koM7NyJIWh/+snbctOmBRg/3v1+nTqhF45Z2C4iaZIrV6hrgIwbB/DaaxjyzQmZMgV2PKdtiZjvmWcCO6bXJKZxZEKQNSt66DgxmBGxC6tP+E/XrpiCQZJWsBQsWBDOnTunW9e5c2cYqArQmwh51BoXgiAIgvCSR/U7+vffaK1mZpWWWAaejzrJUagWauWK1Tvfowd6iH/5ZYJVJ1FTvLizeUdCyeOPh7oGoSVjRpx30OdLmGuRLh1abfp8AA8e6JUKVapgepRImxbgyBFsV4LRtr3zDn6vHyXL5RdfxNBgiYUPPgA4c8ao9EpKiIrYYJDY5zhS0bw5zndTo0Zo61GxIkBMjPNwiT16YHivzz7z73jyHCxmyKFBEwNPPQVw8WLCeeEFC3/69m6UK5s2oaHDyJH4XerePfRh0AjnJGkFCwBAnz594EthJJXxUTFhJAiCIIhHlLx5cVLE+vVDXZPQULEiWhvLbNwI0LOnNnEqQSQ3rCwx8+YFuHo18QgTCMIJwQhRYUeKFI+O158dzz0XvLKXLgWIj3c//w/hLQULhroG/rFwIUCHDsFXWI0bF9zyg0Hq1AATJoS6FoibuaiyZ8eJ7a2wEuBny+bsOHnzovIpderEEz532zacN5KMYKypXBk9TTm3biWee0jYk+Q/95kyZYInn3wy1NUgCIIgCCKBOHYMJx+2c3sfMgRjWtuFPEkuVK2KiUgcJEcPllCxbx8qT4oWtc5HyhXiUSRLFoDwcPv3g0hYwsJIuUL4T/363hoS5cuHoYry5we4dw8nRR83DoBEaYmfGTPQsKppU2f5w8IA1qwJbp3cki8fhuwj3PHEE6GuAeGGMMaS7vCvYMGCEB0dDTExMZAvXz744IMPoGPHjpDaZCbD6OhoiI6O/t9yREQE5MuXD8LDwyEzqQUJgiAIItkRGRl4zGOCcAMX8m/bBlC+fGjrQhBE8ic6GiAuDiBDhlDXhCCIxMrJk5rhUebMALt2AdSq5X5uCCK4tGihzTeUdCW1yY833kAl15kzSdcrjgg+SVrBMnz4cChdujRkzZoVdu7cCV27doV3330XJpj4C/bq1Qt6K8xYScFCEARBEARBeAFXsBw4ELwJ5wmCIAiCIIjkxd27AL16obfKK6+EujYEx+cDuH+fjPYIaxKdgsVMCSKya9cuePnllw3rFy5cCA0aNICbN29CNkWAQvJgIQiCIAiCIILJyJE4R9DAgaGuCUEQBEEQBEEQBBFsEp2C5ebNm3Dz5k3LPAULFoS0adMa1l+6dAmeeuop2L59O5QtW9b2WBEREZAlSxZSsBAEQRAEQRAEQRAEQRAEQRAE4YpEN+1a9uzZIXv27H7tu2/fPgAAyJ07t5dVIgiCIAiCIAiCIAiCIAiCIAiC0JHoFCxO+eeff2D79u1QtWpVyJIlC+zatQvatWsHdevWhfz584e6egRBEARBEARBEARBEARBEARBJGMSXYgwp+zduxfatGkDR48ehejoaChQoAA0atQIOnXqBOnTp3dUBmMMIiMjIVOmTBDGZyQlCIIgCIIgCIIgCIIgCIIgCIKwIckqWAiCIAiCIAiCIAiCIAiCIAiCIEJFilBXgCAIgiAIgiAIgiAIgiAIgiAIIqlBChaCIAiCIAiCIAiCIAiCIAiCIAiXkIKFIAiCIAiCIAiCIAiCIAiCIAjCJaRgIQiCIAiCIAiCIAiCIAiCIAiCcAkpWAiCIAiCIAiCIAiCIAiCIAiCIFxCChaCIAiCIAiCIAiCIAiCIAiCIAiXkIKFIAiCIAiCIAiCIAiCIAiCIAjCJaRgIQiCIAiCIAiCIAiCIAiCIAiCcAkpWAiCIAiCIAiCIAiCIAiCIAiCIFxCChaCIAiCIAiCIAiCIAiCIAiCIAiXkIKFIAiCIAiCIAiCIAiCIAiCIAjCJaRgIQiCIAiCIAiCIAiCIAiCIAiCcAkpWAiCIAiCIAiCIAiCIAiCIAiCIFzySCtYGGMQEREBjLFQV4UgCIIgCIIgCIIgCIIgCIIgiCREklaw9OrVC8LCwnTpySefdLx/ZGQkZMmSBSIjI4NYS4IgCIIgCIIgCIIgCIIgCIIgkhupQl2BQHnhhRdg/fr1/1tOmTJlCGtDEARBEARBEARBEARBEARBEMSjQJL2YAEASJUqFTz55JP/Szly5Ah1lUJCdDTAjBkA166FuiYE5/x5gNu3Q10LgiAIgiAIgiCIxMPDh6GuQdIiPh5g4kSA48dDXRMiObB0KcDu3aGuBUEQRPIiyStYTpw4AXny5IFChQpBo0aN4PTp06Z5o6OjISIiQpeSCz16AHz8MUDZsqGuCQGAiq4CBQCyZQt1TQiCIAiCIAgC4PJlgAEDAG7cCHVNiEeZtWsB0qXDZ5FwxoQJAM2bAxQtGuqaEEmdgwcB6tUDeOWVUNeEIAgieZGkFSxly5aFadOmwZo1a2D8+PFw9epVqFChAty6dUuZf8CAAZAlS5b/pXz58iVwjYPH4sX4e+5caOtBIHv3hroGBEEQBEEQBKHx5psAP/wA0LBhqGsSWiIiALZuBWAs1DV5NPnyS/z94YfQ1iMpsW1bqGuQOPn7b4DSpen6uIG8oAiCIIJDklaw1KpVC95//30oUaIEVK9eHVauXAkAAFOnTlXm79q1K4SHh/8vXbhwISGrG1TMBgiMAfh8CVuXpARjAHfvhroWBEEQBEEQBBFcDh/G3z//DG09Qk3ZsgCvvQYwfXqoa5J4+esvgBdeANiyRb09Jgbg2LEErRKRxAmGQrNSJYB9+wAqVvSmPJ8P4Pp1b8oiCIIgHi2StIJFJkOGDFCiRAk4ceKEcnuaNGkgc+bMupRcMOuwvPEGwEsvYdxWwkibNgBZs6KrupeQRRxBEARBEASRlBk6FGDhwlDXwnuOHsXfmTMT7piRkQA9ewIcOpRwxwyEqlVRIVe5snr7W28BPPccwLx5CVsvp4SHYx2nTUvY4w4fDlCsGMDVq96WGxbmbXn+EhmJysnhw93t9+mnACVK4LyxiZmGDQFy5QJYv946X2wswP37CVMnryE5BUEQRHBIVgqW6OhoOHLkCOTOnTskxz9xInQT9pl9KP/6C+Ns8oEEoWfMGPz98Udvyw2G19C8eTjYuXLF+7ITI+vXA3TogBZyROD06gVQuDDFXScIgiAIL4iMRE+QpGrEtGKF9bhl926Ajh0BGjRIuDolNAnp5d+pE0CfPgDFiyfcMYMJ94L6/nuAuDj7/NHRANu3278vEycCLF/uf734mHjAAIA1a1Cwn5C0b4/j7p49AcaOBfjnn4Q9frD59VcMr9e+vbv9pk1D5eLq1cGpl1csWIC/Q4ZY53vmGYCMGQHu3XN/jJ9+AmjUKHRRRrxSsBw5gvIJL8rz+TB0I0EQRGJg+XKAPXvc75ekFSwdOnSATZs2wZkzZ2DHjh3QoEEDiIiIgE8TuicFqMh49lmAl19O8EMDgPrDRtYJzvH6WgXj2jdsiM9Zhw7el21FbGzCHo/z5psAw4YBjBoVmuMnN3r3BjhzBmDw4FDXxJ5LlwDKl09Yy1KCIIhHgfh4gLZtk6dXglN27EDrazPhlpM+3MOHAFWqoKf4L79o6+/cQat+leHO2LEA336rlT9+PE40HBXl9gy84Z13ANq1M9/+KITJSUgB586d3pd59WrCWNFzgzQVFy8CvPuueltEBCoiAVCgXL48QP/+5u/Y8eM4kXvduv7VMyICoGBBgJYtAW7f9q8Mr1i2DKBVK4AKFQIr5+hRHPv5ayAVHY3Kpn//ReVGIMorAIAHD8y3RUbi8+APwTCoC2bbev48/vojgOvRA2DuXIBNm7ytU0Lz/PMon1izJvCy3ngDIEsWHKuGkhs3ACZPdteuXr2KCtVkNPsAQSR6GPP/e2PHoUPYD/FHtp+kFSwXL16Exo0bQ9GiRaF+/fqQOnVq2L59OxQoUCDox964Ud+I8hi+gbp9nzoFMGOGeYf/yhWARYuM1j+BKFhGjwb4/+lrCI/wQsFy9CiGZpA7h4EMGO7cMXYYJk9GxY2KffsAUqcG6N7d/2MGSqg7WkmN2Fjt+btwAT8MYngEVdvi82G7k1gmPWzXDq0cP/rI/b69ewN06aItz5yJQrBHQVCU3IiKCp1XKJE4YAwH799/H+qaIOvWofX5jh2hron/zJ6NCoHk7JVgR7lyaH09Zw4ui322Fi3Q25MLhVW0aAGQLh3A3r24PHmytu2333Beir59jfu1agUwcqQmVGvRAmDpUvQSEUlIA6mxY1E4VLy4XlEEEPyQRDExaA1/5EjgZd28CbBhgza34ocfooA7PNzaYyKxhF3itG/v3JDq6lWA3LkBcuTwtg7HjwOULKlf17o1wK5d5vv88YdxXXQ0CkwzZ8Z7sGQJrh8xwryca9e0//7MkTl1Kgq+x41zv6/XeBUirGRJNDhTXWMn/PwzwA8/AJQqBVCrFgqN7txR571zB+CLLwA2bzYvz6p9ypkTIF8+TfnglA0bANKkwfP0iiVLANKnx7G0PyRE25BU+7g+H0ZG4PijZJLh38UZMwIvKxCqVQP4/HOA775zvs/776N3YvXqwatXYuLOHYD//vN//7g4+37O0qUAkyb5fwzCGp8vdEbUXtGhA35vgmGMHZBMjD3ChIeHMwBg4eHhrvbbsIExbBa0dc2aGdf5Ay9j0iT19kyZcPtvv+nXFyhgPH5MjLbu0CF1eXv3BlZvn4+x6dPNy0/s8HN/5RVtXVQUY+fO+V9m165auYE8D3z/zp31yzVr+ldeRATunyqVtm7XLut6vvGGN8+1P/DjfvON832GD2fs66/xuUzqHDnC2H//udsnMpKxJ55grEYNXK5fX/8sAjDWvr1xv+nTQ3efVdSo4V99oqK0/S5fxnV8+fPPva8nYeTBA8YOHAj8HYyJYSwsjLG0aRmLj/embgmJz8fYzZuhOfaxY4x98AFj+/aF5vheEmgfxWt4XTJmDP6xAnmHtm9nbNs24/rjxxnr1y9xXdNQwM+/e3fGRo5kLE8exo4e1W8bM0a/z82bjN26pc8jpqefZuzSJcZ+/NH8+vL1S5YYy+GcOsVY3ryMDRvm/Xmr6h4Wxljz5uo6r1qlXu/zMbZgAWPLl7s//sOHjM2YwdjVq4wNHmx+rS5dsn8HmjdnrG5dzJc9O5YzcyZj332nP8fSpY378m3VqpmXf+sWnufDh7js8zF24YI+z4EDztr6mBish9W7d/Omtv3OHet6McbYwoXG8q5fx36w2/Z/7lzGXnsNz69CBfUzvmiRfh95u8zZs9o2Pgbh6fHHtf/HjjH25puMbdrE2JYt+nydOrk7j19/1fZt0SLh2roLFxibP5+xuDj1tQuEQMtr0MC4/9mz6rwvvGB/DHGca1bXGTPMt/H2TyRPHv+vldl1yZzZvzL5Pm+95SzfX385K/fkSRynifu2aeOubirCwzG5Yd68wJ7N2bP1171vX//KEeFl/fRT4GV5UY8sWdzv86j0q9Klw3PdtUtbN2YMY6NG2e8bGclYzpyMvfuudT5+PU+fdle3ffuwHv6OHePiGBs7lrERIxibMMG/MpIC5cphv+nBg9DW4/x5HLPINGvGWOvW1vvyZyR9euxjnTjhXb1U/SunJGkPllChcudkzNtjbN2qXs8t6latsi+jdGn7PJcvO6+TiiVLAD7+GOCFFwIrx0tiY9Ey8/ff/dv/xRcBChRA7w1/GDDAXX7++prhVezegwfxV4yTLHqHONH+XrwIcPasN/Ux4/59/+OZt2uH1qNmYRiOHLF3JYyLA1i8WG9F5wSfL/D3iRMfjxNklihhbUUrs2YNejitXYvLTuMCm7U3ocJfqzHxuZEn0fTHEvJRY9s2bDvPnbPPGx+v9gqqWBHbUG6p6i8XL2K7+PChdTiKxEqzZgDZs9tPkhoM3n4bYP58gFde8aa8s2cB+vUzt3gNBJ8Pvz3c+jEiAr3OeBzuxDoZrj8x161gDL1juMXzmDEA2bLhHBhuiY9HD40KFbTv2LRpABkyYCjbbt28q3dCExmJYYYWL9av79lT7THC2brV3Ivxm2/w2/3VV/r14ncoOhrf52zZzOeaOHXKueeB1Tfu++8xTGZCeW3xdlZFCsUocd48gMcew2/FO++476/17IneqeXLo6eqilmzAPLmxTBPVkyYgF4qhw+jBwsAQNOmOCemCPc0cssbb+B59uiBy199hdaS3Kp23z783uXKZV3Ovn1onW9XD/HZMruu/frhczh+vHp7y5bYDy5VyvpYMg0bAvz9N1ptm82D4OVYV+yTvf8+tn+vv27MN3gwvr/8GRW9tOW6rVrlXT/cLYULA3zwAc4fY8bDh/huJwRr16IXl5uwYvv2qSNxbNqE7SSPgKBqv27f1nsmuX1WvJajBBN/wgru349zthQqpF8fqOV1bCx6iWXJ4mweJE6g1zuhokswFrq5Z5PSM+kla9eiF64VPLoKDw0XGYkeum3aoNeoFcuXY39s6VJn9bl1y1k+TqlSWA/uoeyWiRPxO9q2LYarfOkl+76IHYzhXGBW/dSEZvt27DfZhS4NdhjV/PlxzHLggLbu0iX0DB892tl4izGAmjUBihRx/lzZEch5k4JFYvNmdJfn3L6Nnb6EnoRMNagRkTs3qo8AF6gDmHc4A3V/FQf/CfEh6tlTH4pBxcyZGFv866/9OwYfmPFJ7tzw66/GdYcP47XZvt0oLPf5cJBZu7b7Y3GuXcMG+9IlHBSZuaSrBmvic/3VV8aPovh83L+PA8tChczjkh47Zj5gdsKtWzhhoNuB4YUL+uddpZS4dg1jxebLZ13WyJEA9evjoNkNH32EAgFZ8OMPYhxiLjRwgvwO2rUjnGC2bz6fJiD/5ZfghiMUn1ev2qN9+/xXtiY1KlbEtrNJE/u8r7+OQiX52vDlqVON+4wdix1VJwIG8f45fY695PTpwGIp8/Pv18+b+rjh5En8dTPYtqJsWQwT2by5db6rV1H4auVyHhWFbTW/v/Pm4beHx7j9+GNsS5s2xeWkOsCNisIwF2L73bGj+SBt4UKAGjU04Uvr1qjQ8idMonjfeZiWTz/1VlEZqvvSti3Gra9fX1t3/TqG5vjxR/U5rlsH8Npr9t9+uY/UsqUmEBeVM1Zx2WfPDjxUsFfv7ezZAI0buw9BI05CrhojNGyov1Zu+w+8j3TmjPlz9MMP+GumRJCR6+BvKCWZ/fvxd/Zs/B09Gn+7dsVfrkC3UzJ16ODdO8ND9rZooS7z338DK9/KGEU8nkro4a9xlGj4pFIIvPYahuSrUgV/a9Uy5pk/H8dSAwdq68Rx3E8/YbvKx8P375sbMM2caa0oUcG/e9zAScVzzwE89RSGgDbjv/9wTBdoe12zJl4TNxPRmxkIVqmCSjven1E9d40bW8/nZEcwxiGByjhU+9+7h3P8fPyxu7JWrMBfN2M6J4hhwx97DGUKwTaEBEi40IqffgqQJw+Gx3fCvXvY/qvm81m1Cg2CrUIdiiR0P+fhQ+++//6yfDm2Hc89524/sZ/x2WfG7T4fhl5r2NC6HMbw/ojh8f0dA4oCezfIIYAPHMCQk/7O57RyJZ7DtGn6ufl8vuAYrrklVSrzbU2aoGFWQswTKF53t31MxgD+/BP/+2tgLxPI3HakYAHsFPGG+PXXUQPLrZFKl8ZB74QJWn67BtffF1qENyY3bmDs0Nat9ccNC8NOIu/g2j18jRu7r4PbuHyrV7s/hhv27MFB9OefW+cTlQSiFXVkpPbhCsZHMzJSHa/zhRdQ2Fa+PAowRY4dwwZl9Wq00nrtNfeWsfXrY4P91ltowZI7N3bgGMP4gXxOH/EZ4cIC+bkpWlS/LHagxI+CKGwQP6rPPYfn6a9gkg9MxLieTu5V/vzo7WG1j9WARoRrvs2sXUeN0g/6Hz7Ee8cH4P37OzuOyOnT+vtud843bhgHshcuoPWcSKgVLN99B5AyJVpOL1+OwrE6dczzHzqE1vdexPL1gqgo/AaULh1Y5yIUMU7v3UNBmeydFB+P97tZM/M46GaWaWLMXF6u2bdFNfhq1Qq/j50721Zf90wmdIz8yEiAp5/GdiXQdyOxxffn9O3rXPnD20LeeTWjVCkcPFnFUK9YEdtq3s7K/aVly/CXCyNCRXw8enTZCadXrsTz+ecf7KvxuSS+/x4FMNWq4XJcHG4fN04t/OBeyfLxxOdn0CC09OZtf3w8fm/ldl/8fnjVtt+5o5V76hT2MwYNst5n/34cqHvZnqvicYteTioBLxe2qwQudh6iKot6uwGxU0GQGf70T1X7NGmCFpxOBpvic1a+vOblFIz2y6zMQKzfvSIuTt33k4Vewaqf23JFT2un+44ciYpbK2WIaLCkgjGATJmM6zNmNFcwVKnirH5Wc39s2oT1FifUvn8f+5YqwZ0ofO7RAz0DP/4Y28WMGXFuGNlLMiYGr0/z5nh9IyKwvzRtGrbT8nXevNmZp+Hx45p3sJWF7Ysv4nirb188lt1cMnv24LfqxRfVXm9OJwA+dQoVMnZ5ZM6dw3rK9111nazw952ykwkEgsq7f8ECHG95OU9IiRKoAFRx/jz2s50qBbZvR0ONUM5feuyYO+/jyEjzcQGf49js+sjUr4/jyE6djNtq10ajV5WCVkVCfocePMD2yG1EmJ490QjKCwOaKVNwfiaRbt2ceaqKfc0lS/C+ffih5n10+DDOXz1vnvG6RkVp39ihQwFefRXgzTe17f72Q7zuv6ieh5gYHK+o+pLHjwO8+6653KN2bYAnnlDLjXl0m44dAd57z31fnntBd+miKQru3NHacPFcHnvMvJzZs3Efbhx75gy+P3bjQfE8OHbPqHi/vDKYjYjAvqU/nqN2nj1WkIIF8MOWO7f+Ybl+HRPvDLVsqf5YfPMN/oo3X7byvH0bGxr+gMfHa14NZoSFoRA1Z058ucaMwYaJc+UKWsvnyoX/xbLWrEFLfRG3FhN9++Lk5m4erj17sAFw81E9ckTd2KpwOrm7WBZXCty6hR+uTJmwfiVLYofZS1SDdw63ZraaEKxzZ+zM8QlSzVizRn+sbdvwVxwQbduGrshFi+JgYvZs/ccxVy58tuUG+9o1fJ5U1ovis8Cv8cqVaE1Wt65+EsG1a7GD43ZyMlWHCAAVGoG6UTttoK3y3byJ1tYtWmgC9/791R1DruSy49AhTZirendkj6Tly7FdeOYZ/Xp5kNG3r/POhd2He9s2/8IuiB5dY8bY569RA4Vh/lp4ee3BInaYzEJm2HHhAr4jXg4C169HhaqZldrIkdjWlS+PSlt+HoMGoRJ26FDsSHNrw6go/cCZX8f79/F537ABFdc5c6KAt1UrLa9ZW8UYfhNUyiUnyiovPFgiI/2bQFR81t1Yk8XH4zdn8GBtndu6X7rk3AqYMbSknjbN3THu3sV6du+OHWWnAhifDwXmn3yi3s7bquXLzcuQPZwSq4fKgAGoDLKbCL5OHfz2VqiAfbXnn8dnbt483M4HTuJ5xsbit7NWLQxj0KqV9XXYtw8H3V26oPCeK6H27UNhyoIFmgHBvHkATz6p7fvbb+7OW8XixTgITJEC3fg7dMC+Qpcu1vV+/XXsC5Qvj8txcShk9de72IxAniFxUvewMOOkltzwQfy2cO8qNzAGMGSI/lhOiI/HfrLVOX7xBYYUjYrC5+3vv/XbRYMXp94NgwZh/9FJPePi8JletgwHslZ1ffBA/80Qyw/E+j0QeB2uXEFBQ65cxr66HKLmxg18551O8uvPM9q/P9bNSkFpZggkMns2fu85336LHhrvv49tufyNtprY9cED7F9wL0mZhw/NhUn+hmmzo18//Xtsx7//6vsg8r0Vv7+RkSjAnDIFLelr10bDIR7p4ORJbOfEcJxm91o0YBPzMIb9Xrkee/Zge28Vmmb8ePT+rFgRn8Wff1ZfZ9V7LK9zYoTG95k7V1tXsCA+U3aolNVbt2peluI4ZN067f+qVWhBbRYu2y6qhRlXruA4ySr8FO/3i/1AVZ9OvJ88b0SE8/f+4EFUAKr6Yo0bo6L81VfV+5q10V4ptHw+/NYvXOgs//LlaGzJFaoXLuD4h3sDqujZU99vdvK8msGfHSvvR6eht70OBWsFHy/ZTaz9338oW+HvS58+KJ8R23gn+HxGuZoqfGz//qhAMAt3HBaG76jcBnzyCSps+XjRLDTtvXsA6dNjaH4ATQ4kKjed3ntu8Mpxq2Q8exagVy93YRW7dEEF1LvvGreVKKH111VwQwExchLn7bfRuHPoUFRYuY0OU6IEfg8GDQLo3RvXPfEEyo7OntV/9608WDj8Hnz0ERqFv/GG/T6Rkdifeuop/I5lyGD0DnKC2Fb9/juOm6zaL3Fb69bYt3ztNW2bF/JABzs/uvBJ7gHCmTg5FU9Xr+qXhw7F/cQJLPkV/PRTbblMGf1xypXTtu3dy1iJEvh/yBB9vvh4LV+bNowtW6Y/zuLFxjq6STJ37jD28svq7Xxd2bL69ZcvM9aoEU6GuGaNfqK7n37CCRzTpNEmccPrzNiUKYzdvm2sA9935Upc3rMHJ5aaNYux3r1xYsm4ONy2bp35uYwfz9iGDfgrnnPx4rh96FBtnXxdAfST3PN1P/xgPI4Vt26ZX/uqVbX/zz+Pk8/Wrs3Y0qX2961yZX29ABjr1o2xGzcYW79evU+VKvrl/Plxsj5x3ZgxjE2bpt6fT5L+5pvq7SdPMvbJJ/49d1ao9q9XT/t/44az/dasMebZuNFZnSpVMs8nTth5/DhjL75oPPazz2r/v/nG/pzFSV4B8LrKz5LZue7axdiAAfiOqa5d3rzGdU89pS/P58Nnkm/fsIGx/v219+7vv9X12LIFn+uDB83PTTzu229bX/+YmMCfH3GS+1On9HWoX1/Lt2wZToIbG2tdnjjh7OXL7urC6dBBK8Pn0ybLVXHnjnac0aPx+VFN8iu3DWbbeeKT8qqu78GD6ueGMZwAmq8zawusnk8Axpo2NW57/33763b0qJY/Oto+v0xkJO4rT1IZFWW935EjjE2erB3b6n6JbN2qvjavvea8zrw9r1nTWf4//7S/BwcOGPe7fl2fp3p16+NY3fPBg/Eei/2X8uXty6pXD5e7dNHWzZ9vPIZ4Xf2dsJIzfjwe125CR/7s2F1bednq/RDbt2PHjHlKldL+nzun/X/uOWyzxbx88uCdO/Xr5WWezCZdBmCsZ08s6/x5rOOePVrbzylY0Hz/jRvNr6N8Ddau9a9dtyqTMZyEnK+LiDDuI054/v77eP2c3DfxOBcuuNuHpw0bcP8VK/Trly0zP5/atbV1vJ81fLj6eoj3Vpzc+8oVfdk3bzL2+++MjRunrufHH6vXi9/t//4z1hmAsdSpcYJRvjx7NmNTp6onaX/nHftrzRhj+fJZPyvNmunfmQMHnN1HEb6et3+VK2vrOnY0nmt0tH354vf6zh2cFD4yUj8G4KlTJxwbiVy+bF13ua+XKpX2Pz5e3wcCwO+X+Eyo7l/hwngN/Hm+VSl1aq2+Yp/ZaWrXzlk+xhg7fFj/vjhJGTIwdumStixPoCxewxMn9GMQ+fiq8WT9+vZ1+PJL7XgzZ2rrxfewRg3GevSwPn+zbTVqaP+rVGHsgw+MecTJqc3O5dgxnHyYLzdsaH1cMU2ditePvxPitilTjOfyxBP6dZ06YR9dvG8qVNeF8/jj6vWMoawGwCizkcu8fh37kZ9+itumTzcek09yv2cPvpO83WzWDNefPu3s3q1cydi1a3id//gD82XPrt/v1i39N/raNfN7ULw4PuuM4X0ID9f2EyepZwzHtF98YXwfRNmTyMCB+mPxSe7lsZ6ZnElEHl/wssTrVLo0nsOlS4wtWYLvfdGixm8+z58+vfE4fFuaNNq6CxcYa9FCP5YV6xITg+PJmTOt+6BmzyBj2KcrUoSxkSPN9zfrz4uMHavlmTRJf9wRI7A9zJ+fsRw5GKtQwXr8wtu1HTu0dblzmz+nS5eqz/fzz+3bgtKl9ctiH+y997T/e/ao99+/XzvurVt47kuXomxP/OZ262bc988/GZs3j7HffsP9ypVD+e6CBTjWunYN13fowFiePNbnce+e8TpmyqS+b/I4S/V88OWvvjKWK+/ToYO2LTbWfjJ3cV8u0+PLs2Yxdv+++vqalTNxIl7r/Pn15xEbi/Ig1bOmkhvwunBEOcv48dp6sc8t9iX5urFj9W2YmHifTu4v+XyMVazI2BtvoDxx+XLjeIcxfOe//db6nbbDj12SD3YKlmee0S+3aYP7uVWwWL2sotJh0yb9yyYL350I462S/AI1bqzfvn27sc6yoKRuXf0+2bJp//v00f6vXo0PaHw8DmgBcIAhw/P37m1+rYoVw20NG6of9C1bzM/5+eeNjf+SJeq8s2frO31WChbVR/b2bfN6qAZXAIyFhdnfN5WCRX42/Uljxxo7ufJzLXbSxWS2XpVmzsQP2tdfG6/hwYP6j6NdWefPY74lS1BJZbafqGB5+BA/uj/9pG0/fNj83r72mvo5Y0w/WGzUyNn5i6xejQN3UbDfsqVxn7Rp9csLFlhfI1EpJKZ06dTrxY9V+/bqPO++qxeayuci58+UCe/nv//idp9Pv71OHfPrypj5QNKOu3e1joY4MG7RAgWpfFlUsIjvAGP4jKxYoSmG797FX/GdPndOreywo2NHrQzeFl68qM9z4oS+rrKCzWwAYXZ95GvYujXec9X1zZLFuC5fPizHn2fcart4HUTk6zp3Lg5EeP7x49WdICtE5TOHC2L4t9zJtRM7jT6fuVKucGHr6yMObDnR0Zrwd9gw/ffVirg4THPnOrsHMjdu6LcXKmR9PCf3dNUq7X+JEmpFliigfPppXCcqWOS0YgVjzZtry6lSYaeXfzfu3dPfnyFDMA8Xdpidh5mwmpMhg74etWpp90++Bk7fD1FQpFKwiN90UVD+3HPGd7RfPxxA9OqlX2/WhsrfEznJxjvffqu/HoUKme+7aJH5dZSvwcqVzp7viRNRyatSDlo9gwCokDh3Do2DmjVDAwQn98ju/l28GNj+v/9uXL9wofp8VALjTJlwW0QEY7t343ggLg4V8apjysq211+3rqNKACunEiWcP/Pi/RAV5E6u1ZYtjD32mH7dvHnYZuzdqxf48hSoguXQIX1eLswQ1+XIYV3+iROM5cqFgkfG9MZ1dvXq14+xzp2tFSx25xgfbzSukhWDbu+fv4kxHAMGU8HSv7//9RMVGdwYhyO+l4sXWytYmjYN7BoxxthHH6m32ylY2rRxdhwzBYtYh+hobC/tymrUyPkzlDIl/vKxtN21yJrVvkyfD785J0+atyl//qltkxUsUVHY/xSNaADw3bl+XV2m+A0ZM0avEJOPWby4+txkIwVZlmJ1XcTlw4fx9/XXtbpaCXIBcOwVG6v153fvxv1E4eS2bfo21+fD7yhj+m+XiFMFi5hH9U1nTD/uBmDs+++N96JMGXWb+uuv+rL4+nTp9OtPnNC2iQqW8uW15/Xvv41Kav4cA6Agfs8eHCNxQxfVM8OZNo2xBg1wPK26hhxZflS4MCq8/vgDxwjt2hmP0aoV3ku+PGIEKlXEPFOn6o/D++X9+ml56tfXjPDsFCzTp2N/0Mn31iqplJRWKVs2VMRUr643CAXQjFUYc24o8MUX2n+nxsIAagWLOF4QkZ9p1fOhWqfaJufh8pQffkDjcxXifm++qV83axb2JfmyU0PZJk2MCpbvv8f//NvAEY0kVXVhjLEzZ/TbJkzQtol9F1FW7uQ+VaumzisaHXOFfqVKKPM5eBBldDNnMvbkk+bX3il+7JJ8sFOwyKlKFRR0yg08Y/oXtHRp7RhOrN744EP00PjmG6PmT7Su8jeJgy6x48ET9xrhyxUq6K+ZVdlifRcvxo/bq68ar1Xjxoy99JL+OFYKFr6f2YMuCs6dJKeKKjMFS5cueO3OntWvF4VdcuIfcH/Sk08az98rBcukSYGX4yZxTp3S1nXr5uz5AsD3SRxcv/WWUVgIgB9vjtwJBEClHRdax8VhJ4ULTitWNOa/eRO3iR00Nx3kXbtQU87XjRnj/Jx54gpQ1TbVu2x3HRkzF7qL9RSX+/RBwbVdvW/eNFqBix0/xrCjV7q05uVj9UzL3n4i/IN5+LCxYyxas3Ch/v792rru3XHd11/jcs2ajI0ahf9HjMCPrljeiy9aK1mio7HDIC6rzoe3dwcOaB0l0fNJVLYD6Acb8rVX4eZZsHpuRaW2XV6rY3OFNF9u0EDLf+wY3sNKlbCdXLRIXYZs2SIrnSIi0JqeK2JU9RPXVa6MAhq7aycqCipXRgunqCjNG2n6dLWnmJhq1cLfXr30xxI9KwH0gpyjR9X3Nj4eB19PP42dZJ6/Xz9NcSofX1YKTZig3+6PgsXnw0E5X5a/f+nSoQCID0L/+stYxt27KFT05/nkApLHH1fX89o16/MYMgS9N+LijHlVx/vkE72nBIBz4eHu3fr2UKVgEZOsYHHavlsJ46ySPCgX3xnGrBUsCxc6e24YUytYfD7sO77zDj4rI0ZoecS+dHS08RmKinL+HQ4kMRaYgiU+3vgtNTsOY3oBlbw9TRptmX+rVMnMmymQVLiw+fthldz0d0RFrXje/H9YmN5rgyfZQ9vq+sp1efNNvRUqgPbNDeSZcfN88P9imyqm6dOtlfgAqHyS173wgv/1CiQNGoS/Zl7yVumll4JfP1GQKArrVddHtLAWk5nXqtPEBdhm3mPPPutc2WR3Pc2MrThWhg5iKl7cvccQAHrsWG03M0KUkzh+Z8zcO5Mjfjvr1cM+vio/7+uqxjfyGPK334z7V6qE40pV2aKxkNsk10X0iGcMx79OZEPid6NpU+fvZapUjP3yi/G6xsQYhdmlSqHHpmxMJ5fJvWZFVF6y8vuoihgBgH0Gnw/lTqLgHEBvDCv2LVKkQEObAweM74Ybbz6zdsOsLZH34QwbZn8sud+o6peJ40gA/bhpwwZcZ/YOHDxorWAR33uze+E0mbV5/qR27dCT/u5d5/dOVDjz8ZmTdO8eGvBWqKAZ6oreu2bPg5yiotAYVX5WufGc3bOjejYePECF2tWrxjwqBYvoKX/okPq5VB1L9tgRt4nKHtFjXVUXxhj7+Wf9tokT8Tpcu6bvc7tVsKjqFmhyix+7JB/cKlisLrqoYClVSjuGyppBTtyaWXwY7dzoEyrJ4U2c7vfGG+4e+G++se6EyPuJ9O3r7pycKljef1/TVt+7h2HERIvR5s1x2+nTKPBzYn3jbxKtXwGMIUP8TWIIoIRIHLmD7vT5+vNP47uh0jSLruRW1gkDBmjbucu+StgEgB8CWTDp9JzldZ06uX+nZHdgMblVsHTpgspP0RJBlcyEV3b1fu89fadDTnFx+vCCjNkrDU+fVnuOiXlEJTWAXunLPVheeUVbx5V7ouWWmGQFC0/c80WGu0E/+SQKBK0GMVZCVtFVnF/PCRPQamrHDv020YI/Ls46VKHb59YrBUvBgmjZy5e5gmXDBrUHjSrx0Ha80yWGIWEMLdYBUHDOrfzE+sneWKq6q+ovhpPi6/76CzvoGTP6d105oncGv89y3suX9aE8RKsgURAPYB6+I0UKVNqZnSNXsMTGogKSKxH37GGsbVv1ecgWoHbnrFq/aJFzLyk5id6zZuf100+oxOJWk6pynn4af7dtQ89hs8FnzpzGdU5CwajSkSPW2+VvWurUzsqVwzA4Tapvns+HbZRsJCMn0btSRBZKMaYPk8URB3lyevFFzNOzp3p7IIIrN8nn04cZc5tmzXLWlnLMBHXyM2ylVPjnH++vg78KlnLlzAW8TpI/xzQrZ/BgFACKghiVwgZA7SnjNMkeMVZJNHQSQ9kGI3l1LZNTslOwOO2juE3ceM5LYaM/zwNj3o0pg506ddL+//efeb5jx4x9ZTfPQ6jPU7w/ZtuOHNFHT3Ga3MoqihY1Pi+tW5vn530qAE2oL6eJEzXDRcacKVjM0pAh5pEYxGgBQ4Z4f39EAyy57mZGGSpvdtnYyqvUrBkagM2bh8Y6VnmLFDEqWNassX8mHqUkyi1y5DAaeDOmPRNW5ajGjnFxWogyM0/Wo0fV447lyzVlPB/PidurV9d7rM2apffMsorqYnUequ0cMwWLGJJaVrAMG6Z5e4kGhLduOW8PeDKT3/ib3OLHLskHrxQsYmgXAFSwxMU5H+CcPYsunl6EMvA6Va6sWbn7O3gXk5nLmJMHW/Wgx8TYWw/LqUEDd/l9Pr0FB0+ffKJ3saNkn5YuxWddDmNQooTehdaLxDFzv1elzZutvY1k6xgnSfWh5NaRcpx0q2SlYEnoZCUUc5LksH2MOffKErFzjReFKNmy4T5ix7B2baPXi9vnS0TcPn68Pl6unOQwRGISvZ0AjNa1YnrpJVSE37xpHwbGTbKat8HqWjjJ/+ab1nGjzZLPp7fEUx03Vy7joOCrr8zL5J1hn888/u/cufpjqLwx3Fwruc/Ak6zoEy1kueJD3C5/l3LlslZ8MKYWShcqpPcEHDTIfH4vf5JVGE9/k6hgmT/f3gpNtF4MdfLX0yRYSfXNc2pFPnYshhTbs0d7F1UCqq1bjQqWb7+1jnnNFSxm20uWTJjrE+jzKw7KrZJqXhYxufn+y/GjvUpmbVcwk1f9HrP5Zx6llFj6kIkpybHsE/p+uAlRE4zjM6af8ygxJzNBenJNoWhvrRJjek9Uu2TV7xLn+FUpWI4cQUVMIPUdNgzraxXCPdCUP7/RqOvePfP8v/9uHDsGQ/kjJzsFi5ske8pQwsQVnvKce06SXUQRq7Rsmf4dkr9jsmxAVF4A4LtmhtVxVds5ZqHrefiudeuM4wwxnLGo9G/WDI2c5DFwsK6nKu3cqc3D5QSwz5J88UrBkpxTlSr+WUgEO3HEydOClaKjzUM2+KswohT8tG8fNuR2YRXkJE6c6kWSP2RiWr069NcpMSTGnOfl8/D4fO4tC70crHA3XMbQWi5zZv32IUP8t/JJiBAZXt8/xtwZCcheOk7Svn365cOH0RpMtlR0815dvYqWZnx+HKtz5P/lEG5u0qxZ7pS+PL3zjtEKnIdhcZqmTnWWz2tvTDOP1kc1iRaeST2pFJ5mil5RKeY0tKvsvRuKNH9+YPu7madBNdE0T2bzrSRkGj8+4Y8pT1RKyf/kr0FJck5vvIEhHFXzIQY7MRZaBQtXLtl5s1MKTdq1K/R1EBNj7sJDDR9uvZ3P4RbsensRYt8qyZ6+sne6fE0YQ0Ow3LlxnpXBg4N/DQoU8K6sIkWCX99HLQWiBJQj89gZ+MshIbduRe9Zn08LUbZzp9HDRE6qd/ftt63lXq+84v+zaDaHtioFEtbX7pyd4CJr8oMULPapaFHzkBmhTJxQ1yMUg01KlJJbcjPh3fz5aC3tj3WCHPM00PTee+ZeSAlhkZRYUoUK9gOphExuLOycJjEcT3Jv9/nkf5QouUl377qzMEsqyakHilkKZCLsxJbECY8pUUouyd+5wAJNjIXWiJGHRiYFCyUnKRiC9cQgy0nI9MIL7iIEUHo0kpkht5PUrJm3dbGaU1pMwQqfaZasQhPKya1xtdPklDBs2B5NIiIiIEuWLAAQDgCZQ12dREv16gDr14e6FnquXgWIjwfImzfUNSEIIhQMHw7Qrp27fbZuBahYMTj1kWnQAGDBgoQ5FkEQRGKgfHmAf/4JdS2IYNG2LcCIEaGuBUF4S8aMAPfuJfxxX34ZYPfuhD+uiM8HUKgQwLlzoa0H8Why4wZAjhyhrkXCkTUrwJ07oa4FQRD+4FRrQgoWUrAkSXLmBChWDGDTplDXhCAIgiAIgiAIgiAIgiAIgkhOONWapApuNQgiOFy/jokgCIIgCIIgCIIgCIIgCIIgQkGKUFeAIAiCIAiCIAiCIAiCIAiCIAgiqUEKFoIgCIIgCIIgCIIgCIIgCIIgCJeQgoUgCIIgCIIgCIIgCIIgCIIgCMIlpGAhCIIgCIIgCIIgCIIgCIIgCIJwCSlYCIIgCIIgCIIgCIIgCIIgCIIgXEIKFoIgCIIgCIIgCIIgCIIgCIIgCJeQgoUgCIIgCIIgCIIgCIIgCIIgCMIlpGAhCIIgCIIgCIIgCIIgCIIgCIJwiWcKlj179nhVlGtGjRoFhQoVgrRp00KZMmVgy5YtIasLQRAEQRAEQRAEQRAEQRAEQRDJH88ULO+9955XRbli7ty50LZtW+jWrRvs27cPKlWqBLVq1YLz58+HpD4EQRAEQRAEQRAEQRAEQRAEQSR/whhjzGnmDz/8ULmeMQarVq2Ce/fueVYxp5QtWxZKly4No0eP/t+6YsWKQb169WDAgAGW+0ZERECWLFkAIBwAMge3ogRBEARBEARBEARBEARBEARBJHqcak1SuSl0/fr1MH36dMiYMaN0MAabN292U5QnxMTEwJ49e6BLly669TVq1IBt27YZ8kdHR0N0dPT/liMiIoJeR4IgCIIgCIIgCIIgCIIgCIIgkh+uFCxVqlSBjBkzwuuvv27YVqpUKc8q5ZSbN29CfHw85MqVS7c+V65ccPXqVUP+AQMGQO/evROqegRBEARBEARBEARBEARBEARBJFNczcGyaNEipXIFAGD16tWeVMgfwsLCdMuMMcM6AICuXbtCeHj4/9KFCxcSqooEQRAEQRAEQRAEQRAEQRAEQSQjXHmwJDayZ88OKVOmNHirXL9+3eDVAgCQJk0aSJMmTUJVjyAIgiAIgiAIgiAIgiAIgiCIZIorDxaRhQsXelkPv0idOjWUKVMG1q1bp1u/bt06qFChQohqRRAEQRAEQRAEQRAEQRAEQRBEcsdvBUuTJk1g+PDhlnkYY/4W75j27dvDhAkTYNKkSXDkyBFo164dnD9/Hlq1ahX0YxMEQRAEQRAEQRAEQRAEQRAE8Wjid4iwZcuWwYcffghnzpyBX375RTfnSXx8PEyfPh0GDhwIR48e9aSiZjRs2BBu3boFffr0gStXrkDx4sXhjz/+gAIFCgT1uARBEARBEARBEARBEARBEARBPLqEsQDcTPbv3w916tSBl19+GWbNmgUpU6aEiRMnwuDBgyE8PBy++eYb6N27t5f19ZSIiAjIkiULAIQDQOZQV4cgCIIgCIIgCIIgCIIgCIIgiBDjVGsSkIIFAODSpUtQu3ZtAAC4efMmxMbGQtu2beGbb76BTJkyBVJ00CEFC0EQBEEQBEEQBEEQBEEQBEEQIk61Jn6HCAMACA8Ph0mTJsGlS5fgwYMHEBYWBtu3b4cSJUoEUixBEARBEARBEARBEARBEARBEESixu9J7rt27QoFChSAKVOmQP/+/eHGjRvwwQcfQPXq1WHXrl1e1pEgCIIgCIIgCIIgCIIgCIIgCCJR4beCZcmSJfDrr7/C8ePHoUWLFpAhQwaYMmUKtGjRAqpWrQpLly71sp4EQRAEQRAEQRAEQRAEQRAEQRCJBr/nYGGMQVhYmHLbhAkT4Ouvv4ahQ4fC119/HVAFgwnNwUIQBEEQBEEQBEEQBEEQBEEQhEiCTXJvxqpVq6Bhw4YQERERjOI9gRQsBEEQBEEQBEEQBEEQBEEQBEGIONWa+B0izI5atWrBX3/9FaziCYIgCIIgCIIgCIIgCIIgCIJIIpw5A9C9e6hr4S1BU7AAAJQuXTqYxRMEQRBJlNatQ10DgvCWzz4LdQ0IIuE4eTLUNSAIgiAIgiCIR4d27RLuWBcvBq/sTz4BKFgQ4KefgneMUBBUBQtBEEQgvPNOqGtABItRowD69Al1LZIGFSsm3LGGDjWu27VLnXfgwMCPxxhAdLR1njx59Muffx74cYNBy5ahrgFA2bLBP8adO8E/hkiBAgl7PMIZJtMwEgRBEARBEEFkwYJQ1yDhSZnS/T6FCnlfDzeMHOnffr16qdePHQsweLDf1VEybx7ASy8BbNqkXz9wIEDevAD9+1vvX62af8etVMn9Pv4eKyEhBQsRFBo1CnUNQseRIwATJwJcuhTqmnjH6NGhrgGRHEmTxv0+xYsHdsy33gps/2Dy+OMApUoZ1/ftq84f6LVQkSkTQLZs+nU5cwIsX27MmzGjN8dMndp6e758+uVMmQDy57cv98MP/a+TP5QrB3DlCkCRIgl7XJFcudzlv3ULYNky5/lr1MDr7xaV4s4JDx4APPmkf/sGysGD+uVVq7wpd+tWb8rxh1deCd2xCYIgQs3XX4e6BgTxaFG5cqhrkDx5//1Q10DNrVtoPDd3rvdlx8e73+f0aYD69fXrnnsO4OhRgG7dvKmXFV995d9+ZmPsFi0AUqXSr7tyBeDff/07DgDABx/g/vK72rkz/rZqZb2/W4OrrFkBpk4FaNbM3X4AAPXqWW8/dMi4Tr5ewYYULCa8+GKoa5BwuBXIOOHXX+3zVKjg/XETA889hxbWefJ4b9F85ox6/eLF/gm9nFK1avDK9he3Vv3PP+8879dfA3zxBd7L5Mbzz/sv7JSpUcM+T/v25tvy5nV/TKcTjJkhKgqs6uYPKuWIyMqV1ttr1QLo3du43qzjMmKEeVlPP219LDPCwoweK/nzA9SpY8xbrx5AiRL+HScQUqUCOHVKv65rV4Dvv9evkz1fRF56CS12vObJJ7HtMGPxYuO6H36wHzTExmr/583TP7u3b2v/7ZRVMk88gZ6Chw878yjLkcO/d1C8Nx07Ot8vXTr3x/KKF17QL3ulnC1eHODPP70pyy07d4bmuIkBq/aSIPzhiSdCXYPgcuSIs3zZswM0bBjcugAAvPFG4GU89xxAsWKBl+Mv5cuH7tiPIleuhLoGRK1a3pXlrzdAckNWGISCu3fV6/l30Y2R244dAVdHCfe8mDBBvz4sDKBoUTRg/OWX4BxbPJaTMfmaNcb9nPLkkziuTWhWrtSPT+0oWhTHu7dvY3gwfzyS7HjmGWf5Bgzw/tgcUrCYkNCWr2bIlsRe8+67AHXrOs/vtBHKkQNg7Vrz7U8/DVCzpvPjAtgLLxMjo0cDnDhhbNj9pWBB9fpq1dwJrdzibwMYrBjt48YB/P23u33cdEZGjsR7NmaMu2MkFGnTGtctWaL9f/ttrRPatCnApEn6vOnTe1MPJx//hAgjw5h5x2LqVO3/w4conD92DGDIEIz5+frrzo+zaJH19sGDrWOV1q6tXs/btmbN3Lu+moWEshK02w12ChVy9oykSmV/Tdq2tS9HpGlTgG++0a+TBRIpUuitUf75BzvRjz+urZs+3Sgg55QuDbBtG1p/WcV9LVzYeb1FL4sOHQDWr1cbGtSrB+DzATRvrq3r1w/PyYzdu/XnGxYG8Oyz2nLWrNr/0qXxm+5W8VWsGMBTTznL6/O5K5vTrx+e96BB7vYTFTpt2qB1XHi4f3VwymOP6Ze9/r5WqaL3HHLzrDnlgw+8L1Mk2G27P17AVn3m777TrPFEypRxf5zERI4cKAiXPf0SA2belxyxzU6KNGxobbzj9vuXmNi927mR0fXr7oyYOG69+bJkcX8MmRYtrI0ggs3mzaE7dqhRGZjIuDVsK1nSfFu+fP57wObJA3DzJravRGB8+607Gc7vv2MYJJHvv0fjxwYNvK3bd995W57X/PorwLVrRmPocuWMeb3ysnaKF+0xx0k/bO1aHLs75do1NL4D0I+TAPRG3m3amJdRtqx/3zaZAwesx/czZ6LRqpmcwB8C9f53cn9r18bxaY8e6u3yfW3e3Hy8mzu3s3rZjT2cjk2ctiW7dzvLp4M9woSHhzMAYD//HM6WLWOsWDHGcCjPWEwMY6VKacsJldavZ2zzZsYiIxm7epWxcuWMeTp1si8nJsbZ8c6fZ6xFC2d5X3oJr9uBA9b5MmXSrvHZs9r6nTvx3GJicNvkye6uzalTjLVtm/D3hCdVfe/cYez33/XrzHjzTS3PO+/o9+nTx1kdGFOvj4hgLD4+eOd+8qT2v2FD83zffstYihT6+rZurc47aZL2P2dOdZ66dbX/kZGMDRnCWP36jEVHm18LOR0/ztiUKbiPavvUqerrzFm0yNtrmSaN9faMGe3LmDFD+795M2MrVuivR506uHzqFD4X4rbnn2fswQPGqlZlbNAgxm7edFf/4sW1/zVrqvPUqKH979BBnYcxxmbO1JY/+ADX+Xzmx/7zT8ZeeEFdVrVqxvVffIHb5s9nbOlS9Xt57ZqWv0oV63O3euZ4+2iVR7Wtb1/GHj7E59Rs/02b1OWtX49tOF+uV0/7P2iQeT2aNzffNmkS1kHc36xeV64wduGC9TVr397+moplr1tnPNZff+mXu3TBPKNG4fPl8+HyTz/py42LMx6vYkXjM/Dvv9r2HDm0/6r9VSl/fvzWqciSRctXvry2Xvzuml3f1q2x3ZO3z5/PWGwsY717M7Zli37bwIFaflXbZnb9GWNs4kRtfb58+ueM/2/a1Pl14Sl7duN1kfM89phx3erVmPfVV9X13bOHsdGj8bry7eI3I2NG4/fZaUqTRl/PMWPU9fYnRURo57B8ObbXR45gG+Dknrk5zmuvGe+3k32dXLfTp72rq9mz6eR7+P77zs6PMXX/2eqbE6z06afelZUjB57be+95V+b164xdvIjtJQB+n3/80b97mDat+fbISOM6u+9wYkqXL2Ofyur8Q11Hf1NsLNZfbF+tzlP8/ro5hpv8XjzjjDE2bZqzvB98YFz3ww+BX9dQ39tQJSfvw7lz7sr85hvzbU89hcccNsx9XWvXxn337cNygnVNLl/WL+/bx9iLLwb3Pjj5ro4f7+19v37d+fE5RYoY14ljtkBTrVp6+QaAXhaoSpky6Zc//tjbezNsmL5Mjtj2ZcyojXvk62ZXfq5c3t5Xq/vn5vvHGGNLlphv5+O+yEh7OYqqHozhWObxx7HPGB6urmf+/PoyrlzB8b2T45nVi9OqlX1da9fWPwv8vzhG4lSoYFw3cCAub9iA8h/5mubNq/1v0sT6nmXJoq27dctYZy5r4ixYoN9evLhRdjp1qvG+cO7e1fKZyQUB7MceKhl4qlTG9+DECfMyxPdcvCZOIQ8WQEuWd97Rzwfw2GMYSuHWLfP9PvvMm+Nzq9Fp01C7WakSxt3LlUsdG3DgQIDx4wGOH9fWLVumt8SWrS/NCAtzb4VYooR77xMA1ABXqqTV7dNP9dvfe896/8KF0Z1rzhy0KgmGO2GLFsZ11arha6WKXf74486v36JFmrXe+PHurUvtJnZOkQLraUaLFgCzZxuvO2f2bPN9xXM0c3Ps0AE9nGQvG5WFePr0+np06WJ+bE7GjHiMhQvdhcEpUgSPlTq10dLpu+/QRdHnA7hwAeD+faN1dvbszo9lx5gx9hb/y5djOKbq1c3ziNr/SpXQY0WET+hWuLCWl59HzZoYdmfjRoBOnfQWvzVrqi18RWSrGdki7eBBfRgHt+1LWBh648geR3PnotW3+Iz/8YfmmiofZ8sWgFGj8H+DBuaeejlzav9FjwfRwyBXLnVMT9GLysxbworp0zE8VJo01vN2FCumnm8lLAy/H2+/jecohs17801sK83Ka9dOvY0/D6qQg2fPGudjUnk9iF5DYWHu4sKqQmXJ95Z71LVujdZMZs9YypQYe1dE9o4B0HvriO1bypTOLHjOnTOfiF10nRbDyTh5L378UR2D99lnNYuh117TbxPLDcTDQNxXtLrKkAGvy4oV+vzyfEqitZ0Tt/UdO7DdmzVLW2fXzyhdGuMCL1yIYSwHDgRYulTbPnEiWqa5cf+fPx/bBO6qv2IFWqFbWTzbzSVlZVVYpw62+c89h23AJ5/otx88iO9206bY1sohBM08hTNnxmdnyxa1x6Mdbdp45+nYvTt6o/TurW8brOBWw2J7b9a/kb+VI0eae/uqcPOeiM9XrVrW/bLWrc23TZliDL/kJoSZGF6T19/t+2713ObIgcf4+2+87vPmGfsZZvvJ7Nmj/b9zR78tY0bjvdq40f44KgIJ4Sf2KatXR6vVmBjsq1uhsri8fRvf5R9+MG7zarJduxjkVjidu433Hbdu1Y83Z860zh9MrMY4bmjcWL9s5gUxb57xPgbqzeiF55/4TonfzKROzZrO5tcTsbqeXjwvJUvi+NCKQOaayJ1b79VbsiTA9u0YqcEurFC2bBimSQ6Za4ccIk8OCwygHwOZceKEer0oj+rUCX/FMcXeveh1bueNkCGDcZ0/70/79uhNKbfndergNT55Er9NN28C7N8PsHq1Onz+mTNGTxyv2iQ7xP5YZKR/1+H6dQyZd/WqcZtTb8vBgwGaNAk8Msu6dcZv9rvv2u+XMSN6sPsTPrhaNbzPCxZgH1mFOLH8mDHoBeLE0/app+zDLAcSyl/1nDVpYlzXuTNAdDTKYVKkwGt64ACexz//6EPsjR+P52jWvtk9Y7LcQj6/vXuNEXCsPBTF8baZHHvXLmM/Su4z2tX71VfxHbci4O+0c11M8oN7sIT/vxpT1FCKmGm3RK23rLVzk7p3RwtmM65eZeyzz9R169WLscaNNU32gQOaJfSIEerjRUVp/+/fZ6xlS2f1LFlSO+6pU9ZaP05cHFrCFimi1VFkzhxtv/Bw1HQ+/bSxzI4djfvu2KFt79/f/+svakn37DFu51ZcopWzeC9mz9aW27Qxv48yMTGM9eyJFsi9e5vXb8kSxpYtQ68DxozbU6fWvBRU23maPNk6D2OM/f23etupU3gPnnqKsRs3tPVhYdp/7pkk3j/G8L6XK6e3Qv7+e309fvtNs/R+7jltvWhtqsLJ/RVZs0Zbv3GjVmcrzLwH3KaWLbG8+Hi9N5PqWjOG787Chcbtgwbpte4iGzag18bdu8bzuHABrbD5c6S6jjVq2F9X0fvhrbf0+du3x2VuQQHAWOfO5vdF9GD58EN9nWRPOX5d2rXD5axZ9fnla+qGnTux3PBwbf+tW7X/3boZrxU/Bv//+efqPGb58+Uzr4+4z+nTuG71am3dRx8xVrq01jZxVqwwnr+qHkeP4rZVq3BZtADn3lBiuyYiejxdvYrruJUzAGP79+uP26GDeT2OHTPW87//jPk3b2bsk0+05StX1Netb191nStVsn4uxHOSLYJEDwDRGwUAt82Zoy6T07Gjlp9bRDKm/+7K1wAALZ1kdu1CjzoVYvvAEb0hzDwPRSZM0Nb36IG/5crhtjFjGCtTBq0HOaInS4sWes818bv6xhvm9RWfcc78+Yxt26Ytv/WWu/e6XTusN/d0ZIyx7dvx/tWuzdiXXzL2xBPm10PVV1HVmycrC31epmiJKXqwqDh8mLGUKdFjz6oOv/+O75t8vGHDsJ/HCQ/HPiT3CBK9TFWpRQvMFxmp95CTk1MPFhErbxHxW9G5M+bPkEFfjmq/+fPVx1q61FgPlQeLWbmqJHoK37uH/TdVvgwZ0KPX7prwZW4pyJdTpjTfd+pUvI7c0nLwYNy3fn3zfUTvNJ5kiz6ze8Y5dMj++sh9Wcb0Xo537hi3nz6NbcfjjzO2eLG7+8FThw7uPevE9Prr2v/YWK0NEL2FeeJe2by/I3vVyojbChRQH3/kSPV6s3ZKfrbNkvht5ykuTutHWSWxHRQ9jVQeBowxNmCAcX3+/Bh5YPFibR33+Onf3703x7vvav/dehVMnKhvU+2u58qVWl7R0le0svUnxcXZR3Aw8/wW7wtfnjXLW8/HN94wrrPyOChZ0nnZjOH3rVcvHI+NHKmPZiCPKZwkq3Y2d24sb+hQ99dB7K8xxli2bNb3xJ9rXa0alq3yGGcMvT6GDNHvkz699l/0DhbziF4Y4phdvM78/xNP4P5//WXslzq5n6r19+5p/3v10up4+DAms/ZRvgYHDjCWJw9603Dk8xFlC6okRheIi2Osa1ccb77/vrXsrWdPfTkLFuD6ypX16z/6yPzYK1ca79/Gjdr/HTuMcqcNG9QeLBcvokfA6NHm148xfJbksQpPN2+q99u7F9ft24ffYXHbhx+q742T+8cYRiUQt2XOjN/BmBjGvvvOuI/ZteQeLBzxPRgzRvufLp15Xa3g+0yZov2Pi8NtJ09iVCNRZgmg/462aqWXffC0fLl2jNu3tb7d+PH6vgPHzINFjg7DGMrO3J6rz4fnIY6/za6FGPFBFe1Els2Kcgr+rF26pK0bOdK+ft26MVaokF7mWrSo9v/cOX0dVe2Qql8hRkDiHD+uftY2bMDnVFW+U1w+fskLpwoWUWijakBkN2pVh9Yqde9uX9dmzdzf3OnTtX3efhs7owcP4rbjxzUhm+iyZteJEpFDT/AkKlj49eGNlIyoqOG8/LK+vEKF1AIP8aOk6thXqcLY2rWM/fyz9fUX3eWOHTO/zw8e4HLatNgB5aFYxBf5+nXn90fESsEiI267f98oMJf3nzwZ66pSwlSujB/yNWtwvZnrLReAyR37HTuwc79jh1Z24cLGuvt8+g4oH5jy5d9+Q4HQrVt6Ye29e6iM2bpVfd3s3i1Z+CkqWJwihycyS6NGYdiBJk0YGztWWz94MAqN5XfArBxZ2Jgnj/p52LmTsTNnnJ+HFXwQ/+uvuHzokH7AJgq+RAXLN9/oz4UL8MRORpcuxnNs1w7ziQoW+cMrKlg2b9bW37+P15p/ZDmicNfN/ZVZsQLbDF6/d97RC0TlY3C33fnz1XnefRfDwfz7r36blYJl0SLsPPIOPWP4/NSogR1SM3w+7Hz/84+6LgB4PipatUKhNFc6xsXhd2fCBH0+lYLF50Ohg6j44Hl4B8yubVu/Hju2HNEdecsWbB9Wr8Y2wYxt29Rlnz2L7vU8nJaKlSuxUyUOnhjTf+dkBbQTxPOoVUtbL4ZO5PBn+MgRZ2WL8LJ+/11bJ77DYh6zcxAVLDExjP3xh9GN3uy4336rX86ZE/s2YWH4rTbbz8l1PHsWvwsLF9rntULuR6j6anaorqGVKzsvU1RU3L8f2HmIbea+fdry5csoyDTrb3Fu3dILdGTh+1df2Z9z7dr+KVgY0xsMyfn4/06dcJm/j2nTmtclLg7bWFnwwJg+1ApjeB9k5YVYrhyuVf5+MYZtIG/rfD516Npr1/SCP1FwJRoH8HWygmXoUPy+X71qfj1jYlAwwp/refPM78Hatca+hGgg4/Q96NULlYWq0I+ff47ttCigYUyvYLl92/lxzOomKt14mjfP/PlwksSwZOL7Ex1tDD8aF4dtGs8nhk1VnZM4rhBDL4pJVjzxdOqUMTRbzpzmoVSuX2ds+HBt+eZNvUCvYUOtXlbhSuTziIjQ1pspWFTCJf5sxsUx9sorWv+Df1ecKMVE4xlRwSKGHHKSZMRtcphdbijCadxY2yYa4viT+HPD+93p0+MYXcwj9o3NzqNmTRxvh4dbK8LNUtas6vVbt+I3QFwnCpvk0FFuFSwyouKW95Hk/XLkwPHVH38Yt4lCWjk9+SSW54+CZehQfT1FpYTqvPh/OUzQxYvm+/GxkPjuqBD3mTxZk9XUravOc/YsGmbysb18XPFcihfXyhC/Iar9VOctypoA0PhL3Ld3b/U5qeqtugZyv00OVRQRgX1mcV23bjgOL1UKBbz+wI2M5DrJRpdNmxrrv2CBNj6XFSyM4bf74kX8LxpMTptm3McOs+vWt6+xryPKqPi6vn31+8XH60OY3r2rD4todXwnea5e1dpAOwVLxYpa+8KN7zhcCV2rlv5bIPZn3cD3EZ9nFbNmoYzg5Em9XGvCBKNBxo8/qsvg8jifD5X+4th5507ct1UrlMnwsnifq359LS//Fj/zjLtztWPfPhz/X7igrVOFc+X9dLk+8rW7fl1v9GUHf+evXsVxvXh/eTju9euxL6QyylGFCBO/kRxRwXLkCMoyuVyDFCwBICtYxE6CjCr+nszNm9jxEDtf8lwbPIkfCCcKFjMPFivEF92Krl21fMeOoUBMZREgK1hkLT5PGTM6ryNjqPQRGxfZcufNN9X7xcejouOTT9SDDe4lwRgOXhhT11dUsDCGH1WVppgxFO5ZWTz4i9VgUoavf+wxdVnivq++ap1H7JwxZq5gkYVs+/bphb8isgeL6rhLluDyN99gflGALSpY7DC7ZjzJHTNRu+6UP/80lrtvn9GyUGbsWBRCmQnTxH3FwZSsYOne3fo4XnDlilowx48pCpmaN0dBdevWmqdMnz6MNWigdRrEwYIqXvW4cZhPPG/ZG0O0gHKCOB/MH3/4fSls4fNRNG6My1eu4CBGfNbkQYoIX58/v/Vx7ISkTpGvvRsvOxXiXEZWbSHPw62rGzTA5U6dMPYpfwac1P3QIef127bN3MPFCdu3a/VkzOj98vffKKRSeYmZwffn1pmM6RX/nPh4d+WKjBiB74DYiRWF72I9smdXP5+i4MQpfKDOjTe4AGzAAFw28xLkx+GC81Bw6hQKYNy0r6rvzK5d5vPD8bmlGMM5CkQPI3/hZY8YoRfeuIEP4gBw4GrVRsjndO8etncqBYssxFfVS+zPysJ4/p97vl26hMI+bvWqusZWyAoWxrANky11ly5FoYZ8DNky2QzRMyFdOlwnWkIyhu/CmjV6LzDxOojLvC4qy2gzVHm51fWdO5hEz+8SJfR53Y4zzOolX3N/FCyM6b2+eGrSRK0YdapgUT2fADgnHf8vGiNxxHkeZOwULGK9RK+LPHnQY1L2HM6WDb+tvE8hKr4nT8b+uDzmyZEDjQg4t26hQIFz9y5afov9FLMoB6rzcKJgGTzYugyVoVwgChZu9GaWZEG32T0B0BQsZ86oDTFEZWlcnN6oTzTscJL483XgAMaw37dPP39es2b66212TX0+/ff122/VBk1ievttjBLQpg1+swGMitYtW7R+EE+iTEAWMDudr1b2UhfPg+fh3g7yvj/9pL5vANYRLHLmxH1UChaVYBwAjQSnTjX2XY4etb4n/H+6dHordHmOFTF17Yr7il48KkSP+kmTUDDYrRu+0/J1kY1cVdesZk0c21arprdk5+0z9/pQeTPxxNtcuf8gK1j69FGfk1ndzK6BXEcAxr7+Wl2OF8iGJyKiV4bo3caTOOenSsEiInrk8HFwdDQ+8zt32teT75snj3GbPNeUqu8hK1h4nT78UDOa5MJpPu4VEccZAJqxlcjmzdhHXrZMv95OwcIYXhOx3pyYGLwPXMayfj0aF9q9S2bwfcw8os344AP8Zt+9i9+Gjh1xjFi3rr23uhn8nCIj0culY0c8340bjUbVN27ovfWDyejReq8Z7mkusmuXFnHEK0SFCZfnMqbvU4jPjcqDhTE0dBWNc8XvrNzv4wqtqlX15TvFo2YoaeJGwSIOJFu31ltUqxAbmqtXje56Yh4nA25R6eAUpwqWu3exgy+GkKpTx/hwliql3493MGVrMrcKFpkHDxj75RetPO5Ca4XPh1btO3Zgp7V3b7Wls+pDLlrqcKwGU8HAapJ7s3NIlUpdluhBMn26Og/fbqdg2bfP2QdexErBcu4cukuKjaI86PJSwSLDQyK5ua+i9Z/YEMfHM9avHy4XLeq8PM6WLfih4oMkXrbowssYbhMFIQkJH/SJnmbc4soKMVSVyqpRpWBRceOGc4HzgQP4TojhvELJpUv6Cco53H25SZOEqYd87bm1RyBcuKAX3qiYORM7mbwzGBdn9ISzY9o0/aTtCYWoOGrUKPB3j+9fs6a2LjoalTgbN/pfrhNWr9YUVCdP4rspWuOK+KNgkZVC0dHYwVYJKUV4uzBrlvNjBQOnAnSO6jvDPTRlF/ohQ4Iz8OHl79qFy/Pno4eCG0QFixyOkQt95OMBYHg1jtgvTp0af//5R+/Or7qmonVk6dLqfjH3cpVRGf9YoVKwMIZh0Oz6WHKduCBchTgxKhd6xcdjv1S2hlcdS/Zg4YppxvQepCpBg1ndAbAtk7+hfJtsNW8WYtHpsTiicJYx+xBhZqgULK1aqRUs+/ap6ySndu1QqLNggd6LUBxzuFWwyIoqq2slKnjy5lXn4SF7OKJRAxcOyAqWuDjn31WObOX51lv4vKrOw0mIMFmQ6OQ5cqJgqV5d+1+3rr7sPXsY273buE/DhkYlhYy4jStYzJDH4OIzrfJoyZlTHe7a7PniXu8ZMmjrzCIb2MHzhYWhBbToASVz7pyx/lw4dvYsCvYbN8b/fPvmzfr8pUvjt08MzQOAVtX8f4UK1n2CQ4dQCcINRDp2xGs4ejR+L0RDtUGD0Nualz1mjPkYOlcu3EcVyvHwYf2zxVO9eub1FMc28j3h/9On1yu6RC/ETZswasSXX6IS49Yt3Dc2FtdZ9Yd4GZMmWW93omCx+pbdv68ZeJ07h8oi0dAIAOUMHFnBUqaM/piicsyq3k6fcTFEn2hh7+YdcYIspBURlWaigqVZM/weiGMIWbmnYsECfUhCN9y9i57rKmOm+Hi9wkEVZcDu/nBEpb+MGILYDU4ULG7xV8HSvj2+m1zx7HR/n89oIJrc4dfHTnnqJRs2oAzPrk78vvXtqzeENuP4cXU0mOhofCe5ksztM+VRM5Q0kRUsXNP79tvq/PziutEoc01uXJzewpox7MjWrOksXMSdO1gvN8IIO+GlFU4ULDExqMS5eBE7BjxfoAoWDi9PFb890DJ5mjsXG8eePfWx7b/+2tsPtR23bukH6FYfGL4+ZUp1WQ8fYodnwwbzjyEvo39//XrZ5d4frBQsTuAD3UKF7PPy47z8MobKuH0bhT7vvadZgIqI7uVOETvHnToZr5nbQa0Zy5ZpFkEy4jwOCYnPp7VP48djJ5sPCOz2mzgRB7737qGSVIwx7lTB4pak0Mk5cQI7JaIVRjDp1k27xmFh3j2vjwpXr6Inqr+DH8acDWoTki++UL9348YlbDvjr3WX13Ch3csv2+e1+0bzdS++GJy6MobKW3GOGn/YtUurq6xgkcsW+0uikEy0JH34UDMOEIWxqpCG4nxKchg73n8QwxyKREejAJDPYSD3S2XMFCw8xKzV/EA83J5Zf0lEDP3kBr6PrGARFcs3buB16dHDvjw57I+KceNQeCuHH4uKQgWEOE+FFbLQUmTvXk3RJHuw8PkBxPkDVIgCWgDsf1y/rlew7N6t77ur3k8xicKk2FhUcO/apReqqL6RXilYRI85MwWLPL8cY9hnEOOdiwqWmTPNr6EdkZH4LIheotevG73WrTxYhg/HPCovATvEOY0A0BMsZUr0VMmbF89TFILz+U7FsEaMGY/bqJFxvYy4zU7B8v33+nLEcCPh4ZoH43ffYbjwffvMvUnMPHkWLzaGM5L3HTPG9pL+Ly+PFCDOf2O3T4oU9nnk9557LMhRLUQFLr8fbrAz0uDvEheOcSNZHq4dgLFnn9Xyr16t90I5fBj740WL4nhl5kxU4NsZD6nuKWPanFavvaa38hYNF/0NIy4e10wGxbdnzmxfZzGUrBPk8JPi+FyeE4X3o/gy94KwOy837cb77+PzZWbB7hVWobG2bEGLeNlgSX6/xTkoQmEAKBr+iO0LX+eFkNxfBYvoGSjXy9/7KM5v5Q8PH+K7nCMHjZfNGD4cjaHtQkgnJKrnZtYs79oEt+V42AwlPWQFC2PoKmkmpLP7uKnyiq5y4hwBCUEgD5ZKwcI7UWbwfF4rWKpU8aY8sUwA8xBbjCW8goUxbMg3bNB/rK0GBVYdYTuOHkXLJtm6Vp680R/sJpS2Iy4OFSGyJ4cKfhw+EbMd/ihYGEMNdyBhhwJFnJg3KcPPgQ/mxXmUiODBr7HssUYkDPz6m4W7TGguX0ahoDzvkb/tY1Lnzh0UONh5BzCmTdDMkziBKmPaQHP27GDU1DtEBcv+/fpz2r5dn5evV82ls2KF2nuG76MKJbpwIW7Llk0fboYx9HhzEl7A58N6qrwERcwULIyhsEsVinHhQr1n+fHj+HxYeSN9/jkeI0cO+7qL8LrJIcLceiRxrl1zZ5AhGj74gzi5rBmyguX0aTTK4vNAmiErWDiigkVGzL9gAQp2d+/Ger71lvnzYqdgsRoTuFGwiPM1mSlY+LNghahgSQghkKhgkef74PMGiF5ATp8pWcFy44ZxDC4qWHw+FGrKhokrV+onIOZzzYgeQzLiXIl2YWXFOYcYMypYGDM+W6LnmZjc3C8xhKLT8K48P1ewyG2s1T7vv2+fRwxXBaDJBuS5tUQFC1fCecmDB9iX4Vy+jFEFRMVxkSL6fUSvBHmydaeo7ilj2Ia0bo1C7OhobDOWLtULuANRsPz3nzHEkqpedgqWFSvchyCWPX1lA8i//tLaNt73OXrUPJS4CA9j6abdUME9FwJROMvcvo2KO9GjVMbMI1zk/v3QCetFgxfVJPdOPVisaNPGv3sXDA8W0aPRXx48SLiwW4Q3qJ6b2Fics4bPq+tF+Y7zB37IpItKwWIFv7huFCyi9V5CK1h4bG4eD9oNooKFxxLlnWgzeH6vFSxOrPacIsbNNPMAYUwTOHjpPeOG0aPx+CNGGLfx+hcsGJxj85BpVtaaVixalHDP+bhxOEjl8f/tWLkyYd9BrwiVB4vXXLtmDJeycCF2iIjgMW4cWg2r3GCJ4MPf3erVQ10Ta3w+tGZbvjzUNUm8PHiAghl+T2fM0G+Pj9fH+E2siAqWf//VD07MFCx79zovf98+9HpUCRV8Pgwzc/Mm/u/XD78DwcBKweIlERE4iHN773ndChTA5UOH0FMoEDZscH7OgSpYRCG1GbKCxSmiguX4cW39Bx+YH5Ovf/pp58dhzD4siFcKluzZtf7c/PnqPNybyQonXgleYuXBwseGqvkK7ZAVLCo++sh5eTwfV7DIc2zKtGjBWNmy5nOFcXibz0NWqxQsMqKCRTQ8cyNoPXNG2691a2f78PxcweLzoYJo/Hj7fRo0sM+zbZs+TBhXsMghMuvUwYmDR42yv75ew0O7yuG0vFCw8PCS4hwudjRogIK+YArZrdqPQIXWjOnnP+Lvl0hcnH9zLxw+jKGZvKhjMObItcOJgiXUjBqFCnARXmcvFCw3b+L4Ru4P23H5MmO5c+vD0nrxHCxdah2alUh+8LnAatcOTvnHjqnnZzMjFRCuKVzYv/1KlQJYu9bbuliRNy/ApUsAmTMHVs6SJQCnTwMULWqdr3FjgNmzATp3Dux4nFOnANasAfj8c2/KAwCoXl37z5h5vhdfBLh1C+Dxx707thtatcLrmSWLcdv27QC9egEMGxacY//2G8DIkQBhYf7tX68ewK5d9s+LF3z5JSYiaZAzJyaR+vVDU5dHCXpPEgdW35zEQFgYwI8/hroWiZt06QCKFdOWn31Wvz1FCoD8+RO2TglFjhzO85YsiUlFWBhApUra8g8/BFIra158EeDAgeCVz8mUCaBdO/f7rVgB0K0bwNSpuPz885gCoXJlgFdf1T+nwcJJP9HfvqRIkSLa/0GDALZsAfjuO/P8vXu7K9/unbUaC7z6KsB//zk7DmMAgwcDdO0KkDWr4+olOsaNA2jRAv/zcUrKlO7LcfJsDBsGcPeudjwvyx871lk5xYoB3LmjHk+bHUP83o8cqbWHbt6HggXV5Vnx1FMAFy8CvPaadjyn48UnnrDPI7ff/HyyZTPmfe45TAnNzJkA/fpZy2v8bZdGjwbo2BHb/Jkzne0zf75/x/KKDRsAmjd3/ryrEJ+/UaOM21Om9E8+VqwYwLRpANOn+183Tpo0gZeRHGnd2nybF+OSbNkA1v0fe/cdH0WZ/wH8M5ueEEJCCE2aYAEUEFDsvZxdPNvp6amn3v2s6FkOy529n5Wz62G9s6CIoiI2EBEFBFSKjV5Cek82W57fHw+TnZmd2Z1tmZ3k8369ntfuTn12d3Z25vk+ZW7s6/XvL8sptb/FceOA5cuBffeNPz8nnRT/uuROH34I/O9/wHnnpWb7u+4afr8XCQMsMdi8GWhpMb+IsKK94PzHP4DcXFkA3VkGDEh8G1lZ9grLX3wRuPZa65vqWO28c+Q/hURF+1Oxc6GZSmbBFQCYNEmeSFIpkRtiRQEmTkxeXpIp3Qs4rSSjgIKInNG3L7B9Oy/6u5JvvwXWrQP23tvpnCRu9Ghg+HBZqcXM7NlAQ4MsuHObRx+V1+ypuulK1PHHy5RMmZnAN9/YW7Yzri3ive4aOxb49dfw6cOGAVu3Rs57rPssLATWr7cuoLvuOllx6Mwzw+c99BAwY4YMAkQTDMpHs+DKiy8CV1whK7WlM0WRFTbq6oCffgJOOCE0PRHvvWc+vazMel40Bx0kK/7l5safL1WsFe6SXUHP7jH9229Aa6v1PaSZ114Dnn9eBiWiMX7P++xjvpyT/40eT/yVYe1se8QI+fzLL4EePVKzn2Q6/HBZUTYRo0cDs2bJ506Xj6QTt5YrpAvj+WT2bOCFF1gpkGLTt2/kSjedzdUBlqFDh2LDhg26aTfccAPuvffelOxv4ED7y956KzB9ur41R36+nN5VZWUB48c7nQsia8kIODqBARYi9/r+e9nyMNkFqeScvfd2d3BFW8CbmSkLSjN33BGohUeq447rvHwlW0kJ8MgjTuei65owIXXbfuoped91wQXh86yuifLzZUW4gw+OfX9DhljP69kT+Ogj63mvvhr5/H799bLlyqOPWi9z3nnAH/8oC3Dd4Lrr9K/juU7VrpOKln9PPCErCJ59dvK3Hc2VVwJffQVMnpyc7dktyM3OlikWf/iDTHaorWp+/FG2zPjb38KX6dkzeb1ZpDO1lVA6SdX94s03A4FA6nodmDABWLpUBtDdhAGW5BowQB5rRG7m6gALANx+++24WBPm7JEmVQn++U+Z3Oq662TXBaed5nROUod/it3PXnvJG65IN9Lp6G9/A155Rd58E5G7lJWx9Qqll+HDgYcfDtVEzciQrQJibaVN7lZQkNj648fL7mciXVPFW+BXWho5IGGmokK2rIilQlwyHHusDORZteC/7z55X1VaGnk7doMrnX3/UlAgW/l4vUC/fubLJNpiIJmBJfXz6dUrNffidrpDKyiQ99EAsGJF/Ps65xwZwJsyJf5tJMPq1UBjo6wpDMgWDaNH65f55BPg3Xfl8c7umjpXcbHsxi6e4LId+fnye02VmTPl+f6yy1K3DyKizuD6AEthYSH6WV3tUdwOPhiorOSNNnU9qex2LlX69AE2bWJLFiIiSg5jgV3//o5kgxx09tmyFvqhh8a/jcMPT1p2ElZQkHjQKB6KEr17imjBlXTm8ch7QiFkbwVm+veXLTXXro2vxUh+fmJ57Ez9+wNnnSWDCIWFqd3Xyy/LMW+c/nzsjKVyxBEypauuXLFy8WJ5rFxxhdM5ic9OOwEPPOB0LmLn9mPKqos/Ioqf6wMs9913H+644w4MGjQIp59+Oq677jpkW7SN9Xq98Hq9Ha8bGho6K5uu5OabAaKuhsEVIiIiSpbsbNnnOVE0dlokTJok08iR9lsR3XuvbHWUqjEzUkFR5NgunbUvp4MrXVFXu6caPrxrd0Ofrs44A3jjjVDXeW7x88+ym7+jj3Y6J0Rdj6sDLFdddRXGjx+P4uJifPvtt5g6dSrWrVuH5557znT5e+65B7fddlsn55KIiIiIiIgoMaluNZEoq67SzHSHsTq6WmF+V+D2lgeUHk49Vbbcs9PCK53ssotMRJR8ihDp9Rdz6623Rg2CLF68GBMnTgybPmPGDJx22mmoqqpCb5O+rcxasAwaNAj19fXo2bNn4pknV9Be6KbX0U9ERERE1DU0NYUCAq2tQG6us/npCoQALr4Y2HPP6F2TdSfq/d0ZZwCvv+5sXrSCQeCAA+T4Ne+843Ruui8hgOOOk2OVLFyY3HF/iIiIgDQMsFRVVaGqqiriMkOHDkWuyRX6li1bsNNOO2HRokWYNGlS1H01NDSgqKiIAZZuhgEWIiIiIqLUUwsz993X6ZxQV6be351+uuy2J50IwZYs6UC97+d3QUREqZB2XYSVlpaiNM7BP5YtWwYA6M+ROimCe+4Bpk4Fnn7a6ZwQEREREXVd++/vdA6oO8nIcDoH4Vignx74PRARUSqlXYDFrq+//hqLFi3CYYcdhqKiIixevBhXX301TjrpJAwePNjp7FEa+/vfgb/8BSgudjonRERERERElAzpGGAhIiKirs+1AZacnBy8/vrruO222+D1ejFkyBBcfPHFuP76653OGrkAgytERERERERdR6ZrSzeIiIjIzVx7CTJ+/HgsWrTI6WwQERERERERkcPYgoWIiIic4HE6A0RERERERERE8bj5ZqBPH+DWW53OCREREXVHihBCOJ0JpzQ0NKCoqAj19fXo2bOn09khIiIiIiIiohgFg4CH1UeJiIjIAbwEISIiIiIiIiLXYnCFiIiInMLLECIiIiIiIiIiIiIiohgxwEJERERERERERERERBSjbj0GixACjY2NKCwshKIoTmeHiIiIiIiIiIiIiIhcolsHWIiIiIiIiIiIiIiIiOLBLsKIiIiIiIiIiIiIiIhixAALERERERERERERERFRjBhgISIiIiIiIiIiIiIiihEDLERERERERERERERERDFigIWIiIiIiIiIiIiIiChGDLAQERERERERERERERHFiAEWIiIiIiIiIiIiIiKiGDHAQkREREREREREREREFCMGWIiIiIiIiIiIiIiIiGKUtgGW+fPn48QTT8SAAQOgKApmzpypmy+EwK233ooBAwYgLy8Phx56KFauXOlMZomIiIiIiIiIiIiIqFtJ2wBLc3Mzxo4di2nTppnOv//++/HQQw9h2rRpWLx4Mfr164ejjjoKjY2NnZxTIiIiIiIiIiIiIiLqbhQhhHA6E9EoioJ33nkHp5xyCgDZemXAgAGYMmUKbrjhBgCA1+tF3759cd999+Evf/mLg7klIiIiIiIiIiIiIqKuLm1bsESybt06lJeX4+ijj+6YlpOTg0MOOQQLFy60vR0hBBoaGuCCGBMREREREREREREREaWRTKczEI/y8nIAQN++fXXT+/btiw0bNliu5/V64fV6O143NDRg0KBBqK+vR8+ePVOTWSIiIiIiIiIiIiIi6nJc2YJFpSiK7rUQImya1j333IOioqKONGjQoFRnkYiIiIiIiIiIiIiIuiBXBlj69esHINSSRVVRURHWqkVr6tSpqK+v70ibNm1KaT6JiNxq82aAvScSERERERERERFZc2WAZdiwYejXrx/mzp3bMa29vR3z5s3D/vvvb7leTk4OevbsqUtERKQ3bRowaBBw/fVO54RS4YUXgN/9DmhsdDonRERERERERETulrYBlqamJixfvhzLly8HIAe2X758OTZu3AhFUTBlyhTcfffdeOedd/Djjz/i/PPPR35+Ps4++2xnM05E5HJTpsjHBx90NBuUIn/+MzBnDvDAA07nhIiIiIiIiIjI3dJ2kPslS5bgsMMO63h9zTXXAAD+9Kc/Yfr06bj++uvR2tqKSy+9FLW1tZg0aRI+/vhjFBYWOpVlIqIugV2DdQ91dU7ngIiIiIiIiIjI3RQhum9RWkNDA4qKilBfX8/uwoiIdvB4QkGW7vsP0XUpiny84grgsceczQsRERERERERkZulbRdhRETkDAZVugd+z0REREREREREiWGAhYiIqBtigIWIiIiIiIiIKDEMsGj873/AkUcClZVO58Tad98Bp58O/Pqr0zkhIiIiIiIiIiIiIkpMdTXw73/LR7dJ20HunfCHP8jHqVOB555zNi9WJkyQjytXAqtWOZsXIiIiIiIiIiIiIqJETJ4MfPkl8M47wCefOJ2b2LAFi4maGqdzEN1PPzmdg84VDLI7m3hMn56+wUIiKxUVwOjRwIMPJmd7LS3J2U5Xk47n1HXr5Hf//PNO54SIiIiIiIiIOsuXX8rHTz/VTw8GgR9+AAKBzs+TXQywuJRVwVhbG/D994kXnLW3J7Z+MrW0AMOGAWeeaX+d778HPvggdXmKJhCwX6jb1qbv8i1ZJ4zWVuCCC4CLL07/oKEQgN8feZl164ARI4Bp08zXT8fCYtVjjwETJyanmWNrK/DnPwOzZiW+rXR1552yhd5118W/jcZGYMMG4JVXgIIC2cyU0t+VV8rv/qKLnM4JERERERERkTsFAsA55wD/+pfTOUncP/4BjBkDXHWV0zmxxgCLTZs2AU8+qS80nztXFuBpNTZ2Tn6sCpMPPxwYOxZ4/fX4t718OZCTA9xwg35/TtUCf+89YONG4M037a8zdixw/PHAjz/aX6e9HVi6VEZG7Vi4UObNzLhxslC3ri7yNt54A8jLA3bZRUZop0wBiorCjyutYBC46y7giy8ib1sbJGttjbysXV98AVxzjQwKJdPZZwO9e0cOQFxzDfDbb8AVV4TPO/10Weu9MwKD778vUyyuukoeW/fck/j+H34YeOEF4OSTE99WuvJ6zadPnw7svz+wfXv4vEAA+Oyz0Dl44EBg6FDg3HPl68svT0VO3Ud7LmhocC4fZnw+oLbW6VwQERERERERuZcQwL77Aq+9Blx7bfj8+fOBrVs7P1/r18uy9VjLKO+6Sz4mo+Ksz2e/3DcWDLAAOO88fa14s+DF+PHApZcCf/87MG8eMGoUcPTRsgBP9fHHQM+ewN/+lvIsW/r6a/n47LPxb2PqVPl4//2haZdcIgMG330nx6p5+OHQvE8+iS34EatEDnyrrtSWLpWfkfa7Pucc2crgvvvsbfuAA4CTTpItK4zUwM68ebLg99xzgUcf1S8TCOhb5bz0klymuVl+9tdcA7z6avi2X38duPlm4LDD7OUTSF7rjsMOk999siPg//ufLOx97TXrZWbOtJ43YwawerX8k0ilpibgxBNlamoKTa+slEGXaK2PtH8iW7YAN90kg7d2BIPA5s3yu+9M339vPv3112Ug8+efk79PRTGffsEF8hynnqO0HnoIOOII4Mgj5evOCna7jfYY1B7DgPyuDz889D/S3Bz53PHjj8AvvyQnX0IAgwYBX32VnO0RERERERERdUcffggsWWI+b9484JBDZKXUzrbHHrJs/bbbwudVVKR+/y0tQFkZcOCB9paPpSyVARYA776rrxVv1uqhqko+fvwxcOihsjDXSI0KPvRQ0rMYs2T3S6eO47HffrIw/JprQvOOOgo444zIrS4SkUiAxWz8kU2bZCDlkkv03Sy99ZZ8jHXch82bI8//8EPZTdGUKfrpxi6xtD/cDz+UgYw//jF8e9ruxJySrEJVo2BQts5YuTLycitXAvX1wOzZMvqssiqYTxZtgbS2oHqvvWTQJZZo+gknAHffDfzud/aWP/dcWQCdzK7QmpqAOXMit/wZO9Z8+llnyQL588+3XnflSnluLS+PP4833hh+YfCf/8iWLNrv4z//kY/ffmu9rXTuRi5ezz0H7LmnbOUXq5kzgSeeCL0+6ijg88/lZ7thA9CjhzyuzdTVyf3uums8uZaECF1Etbebt0wiIiIiIiIiIvu2bLGeZxzfJJmEkGU4L71kPr+5WT7ed1/oOSDL4fv2TV2+VF99Jcsy1EqlkXi9MiBkFwMsJiIVYFsV4AYCcsCddGEnwCKE7Lro8cdD0+bNAz76yHqdSAWxyYg2Ll0qWxPV1wP33gusXRs5wCKEbD1jVeD/0Uf676W5GRg8OPTabhdin3wiW6tEOkmZURT9SUMrUmGvGtBTnXGG7AbLzKJFcswCN2hslGMsLFxoPv+11+T4ItFOYvvtJwuDTzgBuOOO5OfTivY7054L1OPinXfsb2v5cvlo97uzat1jZ/waK5MnywDPTTfFtz5gfXwDsqu8adNkcCgQkL9rq5YlX38NnHIKsPfewDffhKbfc4+cZrb8M8/EllerYEEyBAKyC73OHu/o4ovlecwYwLVibCFy2WWh59pzuDrI/OzZsuWiMXClDSybteJTzZghgzDffRc+789/lhdRVl0tEhEREREREVHypLLi6YIFsgznT3+KvmyPHqHnL7+cujxpxfLeP/kktrJWBlhiZBVg+eST2Lajfqnbt8t1YymYtcNOq4+FC+Xg21deGZp26KH292Ech2PVKtl1WiLjv0ycKGu89+0ruwEaOzbye3n3XRl8iFSLWtuvoLEmvd0f11FHyULAv/zF3vKqk0+2Lvg0vi9tXjyaX+b27TKI9NZb4YGXrVtlsGH06PDtRxv/xcoPP1gHQOKlvtdbbpEBvQMOkN1q/fabfrlIrQ+0GhuBxYvlc21kPJXdQj39NPDf/4Zem50LkvVHdcklcvuPPBJ92TPOAEpL4xu7Qj1vxRqo0PJE+BdRAz+ffAJkZgK9esluFP/v/8KX3X9/+XtesiQUfIpGOy6Unc9+9mx7243kllvkAOzG/T34oOxCr3dv2ZUZILusO+GEyAGIZNG2qPrtN+vxjE46yd72tIHLCROASZPk+e/cc8Pfu1UrJwA47TQZAJ88OXye2uro9ttT3/qMiIiIiIiIqKvbsiW8W39tZXnt/bzPJ8svpk9Pzr61ZZZCyPKdSOOttLXJsrZ4euRI1OOPR+5tJdbyPQZYYmRVCKTtpgiQheIHHmjeLKqtTQYiJk8G+vWThfennmo91kEy/PijHBRIWyCZ6GDC//iH/vX558uu0846y3qdhgbZ197338sazVYHrDrIdVNT5ACLnWZd0QrujHmItLxZAa12eSGAZcv0861+sMb91tebb1Pbwsi4jlnB7fr1cnyZOXPM92tm/fpQPseMkQGQSCeaF1+0P0B2czMwYoQc60jbtV5ZmZweLTi5bFmowNqMtms6s0JcIWQTyMpK/fSqKhlVnz9fFgBbDfDV0AAMGQL89a/xja9k1p1gNOoYSldfHX3Zt96Sx87rr8uAxvPPh7fCe/FFfasQQN/KTQh5XoonQKQGWNatk90jGsf1MPPUU7Hvx8wtt8jvBei87r/uvFN+xmo3dkLIz1LbHaF6cXLIIfKc8Yc/hG+nujrUCiQYjD4WT7RWieoF08UXy99VaWnUtxKzZ56R3R2qA8yp7AQ27RwXRERERERERBS/gw8OH49aW1amLTt55RVZfnHBBeFlV9u3Jz5kw957y/HLrdxxhyzT+d//7G/3z3+WZS3xDI2hfe9XXhkaw1e1cqVsgaMtO7eLARYb1q4NPbeKvBkL5adOlV2x/OlPsqmTNor3yivAmjXhg3abdXO1dKns5/7DD2PLs7bbHiHkNm6+OXJ3SnfeGds+7OSpvl7/3q+5Brj1VlnjecIE4Mkno28jkR90NLfcAvTvb7+rMDPa7/7f/wbGj7detqoqFLgwvi9tNznaVgGxBEoAYJddZAsIbWubKVPkeDMLF4a3DqirA4YNk5+DVrQIsjbY0NoKnHMOcP/94dt/+21Z+P7yy+aF4JHGIGlulp9nItH0//1PnjR3310/fcoUGQA95BDZAspqgK8HHzT/LBRFbkP7OcybF/69ak/M338vP4Nk1Q4wevJJ2bpil130eTr/fGDffeXrH36Qwa2iotAyjY1AXp4M9pq54QbrppFqMHTcOPlZqGNRRaP9XIzBWjNWAZSnn5aPsbTYmjdPHhPGiw4rdXXABx/ou2JTW/Cdfro8diIFEH78MTz/paVyTJ2aGtnKY/Bg2Z2W1mefyW3vtZf8viLl97PP5O/PbNypZLvllthb5SR7XDAiIiIiIiIi0tOWYas++CD0XFs2oS2vHTUq9Hz+fNkgQO0BY+lSOd9Y6fzrr/WVlbXbVstqFiywzmusvUEBctzm+fP1Fe4//TR6o4UPPpAV/rW04z8Hg3K4ghtvlMuxBUsKaAsC7RYqffxx6Pl55wH77AM88ICsbX/xxfb3ffzxsnDuuOOsl/F6ZeG8tkXBihXy8aKL9IX1S5bIgq6zzpKFcapffpGFZskkhOwSqE8f+Rm2toZ3PWVnUPCLLgo9b2rSt6zQHvArV8rP2tjt1N//HlrO7AeyfbsMQCVDtC6d+vSRgYympsg/Vm3QRtsaYf58fWspbasXldl4HDNmyO7KDjhAFtYCsmD31Vetg0vRaqUvWAD88Y8yuvvYY3KMkBtukNvftEkW6t90kz4SHWkMH6O//U3fJ2O83n1XPhrHxog01pKW2WcMyBYxjz4qW21onXaa/rX2u1ywQHYHaGyR88IL9vISiRDAl1+GXqst1Nas0S83ZozMu9nYKZ9+aj7+zf33y27ozI4J9Q9JPf989pm9/BYUyM/mtdfsjaMTqdu6uXNjGyD90END7zXan+aWLUBxsTwX33dfaHpbmwxWzZgh9x2pxVdzs/w9qLT/KT/9FOoi8vrr5XYvvFC2gDziCHmxsny53MbNN0fO6w03hE/Tvr9ktvKJ1tXYUUfpj30GWMiutWtlZYxorbqIiIiIiCg+Tz8t7zk7ewzRWMQ71mx3FqmCutpFt51ygUcflY9qQOWEE2QLlxNOCC3z7beyq3dtZWVtuYydSrCJdBWuvo+lS2UF2khdlwOyTCdSL0jacjm7wxdoMcBiQ7QWFGvW6A8yIHww9HXrZOGZ2WDNkWgPyM8/189TD6YbbpCFXSefrJ8/fHhooGLtOh9+KLsT0hbGxjN2hRCR19OeDPfbD8jPl11Raa1aJVsIALJWeTSFhTJAsW6dLHDVFpLvt59sJXHssfp1li2LvQVQJEcfHaq1b2T35PDQQ5GPK21QTHsMnHaavjD6+OP169npMk21554yQGLWfREQ3lTOaM0aGaC58UYZxNK6807ZLdXdd+sj5WbfsdXJ3Ri4SDazLs6eekpOHzNGHktz5oT/llVWBcba8ZSamvQBQsB6sO+lS+3lOxLt8TdrVvg0ddyaSLQRfKNevaKvHwzKc5XV52Z0zjn2ljvwQOt50QIPVvx+fQuqzz6TrQ613Scefrj5fq64wrrFDxAeTFS7i7ztNhlcUmmP/7VrgWnT5IWPcTB6QB+YmTMn+jFz003yYqe8XP4mI42Xkyi1dgog35OxJkpTk+xqz6w2zZIlMuBFBMixjB5+2P54QUREbuT1ysp3P/zgdE7smzZNtiw3drubCKt7KiIntLamtveMSGprw8tKiFLpr3+V95zG7p/tqq1NThmGavVq+b+o9ho0dy6Qk5PYeLHd0SGHWM+78EL5qC0Lu/XW6Ntsa9NXKF29Wt6z3X57+LKxBsWMXdmbsQrUqOUbp5xiPl9b1hJpiAy/H1i0SN8Y4osvzCslRyS6sfr6egFAAPVCfvShpLVsmQibr02HHRZ5vt301ltC+P1CbNsW2nd2duR1li0ToqDA/j6OOEKI//43fPp335kvrzKbN3q0EP/8p/m8GTOEOPVU+/navl2IoqLkfI5m6aWX5Pv45Zfoy5aWhh8rxmVeeCH0fMGC0HK9etnLz1lnCVFTYz2/rCz29yiEEAMH2l/WznQhhNi6VYhXXhHC603Nd5ORkdztaQWDQuTkhM+rrU18P088YT2vrU2IU04xP6YPP9x8nRkz5O/Q+DlH+g1aTQeE+Ne/5Pynnw5NS8ZvzCw/kfLhRIqUn8sui/6e/vpXeexMn57cfP3rX+HTBg3Sv7744sjbWL5ciKlTY9vveefF/p3G+7kvXCjEhRcmZ39vvBF+Lk6Fn36S/6WUHsyOlXQRDApx8slCnHSSfE7uFAwKsWSJEI2NTueEurO77nL+XBcICPHww0J884295bXXUsnw2GNye++9l5ztUWqsXi3EihVO5yL1Kivl8bj//tGX9fmSv3/197VpU/K3TWRGe/8Zj+Jiuf6nn4bPa2kR4tJLhZgzJ/b83HyzfN2zp/P/k+nE5xOitdV8+uWXy/LkaGUJ0cpKtJ+1tjz3lFP0y+y6q/V6DzwQmjZ8eGJlDkIIsWiR9fyFC8O3qWpulvs//3whfvst8n722cfeZxINW7DYMH9+5PnJ6vpkwQLZaqB/fxk9A6J3qbTXXrFH1b74InyaVeT5iiust7NypYwwm/n97+XYG3a1tFh3xZQMW7bIrnbsjLlQVSVbMPz3v/K1Wc0q7Wd+4IFyTI158+yPAzF/fnjXTVrxNJNbs8Z+qwG73WNVVclj7I9/lK1RUiEVXQe1tMjo8xVX6L8/IeSjWeuAWKktEsw8+6wcY8nsmLbqQuuJJ2StwH320U9/7TXr31mklll/+5v8/rTHUip/Y25h1i2hcTysp56S3S5qu/VKBu14PSpjN0jPPht5G+PGyW75YhHpWAUSH7xO1dIimwgno8s7ADjjjOg1Wq69Vv5u4hmETrXbbvI8p+1/Vqu9Xf5vdudatoGAbB6ezFrLblRbK7udnDULqKhI/vZbWiJ3N5hKF18sW+g6VXO3M731FjBxIjBpUufuNxiUrQnnzu3c/XYmIeTvI927+Kupcb7rSjutilPttdeAq6+O/beQyH+u1pVXyke7rZmp8wWDwMiRstsVN99H3HWX7EkkUu8bauv/SN0SA7L3kKys+LqPsSMdzg2qn3+OPi4rdV9qiwDtWMKqhx6S5RvHHBN5G4sXy7FI33gjNC1Vvy03qKuT3ZJv2BA+b4895Lisxv/gl16SLUxPOy16WQIQKhOLRjv+uLG8RDvmiuq554Bt24DrrgtN05ZFmfVkYYd2aAsjs3LTd96RPfu8/bYcPmL6dNmDUyTJOuYYYLGgKKEBh5ct65x9Tp8eCn7Y+WHEY9s2fVcuKqtxYaZNM/9xq5J1gR3txJuoqVNlVznGrtys/PADcPbZsqA1Nzd8vvGEcsEFsXVptXWrLIi0YvekpzVypP1ltYOgaxlvNvv0CfWh+P77sefJCdXV8kbtuefCC9Mvvzx5+8nIsJ4X6U/AitpFkjp+kuqcc2T3gmYijc0EyD+KRPq0tCvdClKMFwDRTJ4M/Otf+mnGLhe7sn79Ih/Pdr3ySuLbMIoUiAbk97ZsWSggngj1OF68WB/YufRS2QT6ssvkuXnqVODNNxPfn5s8/bT8/xwzxumcOCue/+ZYDB4sK9k4cU597jlZ8J/Mrh6s/PijPJYee0z+Z6fStm2ya0btddvLL8vHVatkd4tGGzfKrhpjGTcukuefl91wvPmmHO/w6KNjW//772V3rr/8Ett6dXXyOigVwUArb7wh/z8HD5bXlE1N8W1n1izgoIPsj32ptXEj8M9/Wo/NtmoV0Lu3vgvQ7ipSt7DJlOpzJ6WO9t4wlvEOU6WlRZ5j1HEE7Lr5Ztkl7VNPhc9Tr+20BbxW6upC93nJvK/Uinbv5vMBmzenZt9atbWyEtKQIanbx6efdu0AzoIFsgulRMYRee21ULlksnz/vb4idaLnaLPrDG13d9qCeqPJk+V175lnhqZVVqa+EsTy5bIrrWgBVSvbt8tzQTKuse67T5a7AsAll8ju9/fbL3y5n36S16bGLue3bYttf9HOH2ecIY+JWIdZuPhiYMAA6/lLl9ofr1cr0u9nv/3Cy+tPPVWWtWorjXVGmRiA7t3YKlIXYWqy0y3SwQfH1szJTrrwQpnHZG+XKXXJ2GzOjenSS63n7bWX8/mzk/r1izz/wAOFuOqqxPdz0EHOv9do6eGHhfj3v5O7zaYm2TTV6ffG5N6ksrOs2r2jFXW5p5+297+/fbsQH3+s795J3cayZfpju6kpPJ/vvx/+PtJdba1sWp1Il1ZHHJH69/3OO/L7NjtWEhUMCvHtt0LU18vXFRVCHH107N3Qqd2HAEKUl4fPX7dOHottbfa3+cMPQtTVyefqtqdPt16+uTl8WjAoxOTJQpx4Yvzfs7rvr7+Ob/1164TYuNHesiNH6r/nzz6T0+fOFeLBB5Pb/dqECXIf48aFpp14ovlxVl+vPwZvvz05eVC3t99+8R3b+flyneHDY1tPvS7VvvdUu+ii0Hvcd1/5qO362I4vvght49BD9fOCQdmdanu79fpqdxQHH2w+/9prY/8eAoHI85uahHjxRSGqquxvU3vfEIv6enlOvvfe2NYz8/e/x5YHddkLLrC/jy+/lF0fv/56aNpnn8nuWNXtFRbK6fPmCTF2rL775WiM5wuv1/w86ZRg0Pz/IpLaWiGqq1OSnZi1t4e+p59+EuKZZ+Rvy6ybmmTatMn8v+Dee+P73ajr3HFH+LzZs62vVY0++ii0zKRJseVBCPm97rOPEI8/bp3HmTND09rbhWho0C+3//5yuS+/jH3/sdB2IZ8Kn38e//bb2+U5xez/5aefZBdFzc3yGFqzJvo5PFXU9/fUU/bXaWgIHfsVFaFteL3JyZN2m2q66CJ762p/98GgfhvG3+uf/6yfv3mz+TZLS83vAY88MnIXYV98Ia+h41VSEvn4+/VXITZsEOLGG4W48srw+WqXUgccIF+//748P9ixYYMQd98tzwebN4fy4fPphxwwUqfPn6+ffsEFyblH16Zow2T06GFvOyNGhJ6fdlrs+fj++/jfw/33h57fc09in4ddKTpduoOdAIudNGlS8g9o9UtMxXaZUpNiGXOGyf3JDQGWVKQrr4x9DBAmJm2qqTEfC8wsvfxy6D9bvTn65Rd5IblmTWi5p56Sy65eHfl/X71ofe210DR1G8uWycIx9fWWLeH/w88+G3puJhiMXOhQVRW9UOKZZ4TYaSdZCHD11XJstkQMGCDz++678W9DO3ZUvNavlxe6apBDCPlZtLaG36RF2tfrrwvx3HP6aatWyXGsrLz9dmibGzfqxwmKxYMPhtbbvj18vjpPW+jy9ttC/PijfN7crH//X3+tz4f63CrAcvnlcv633+qna8d0i7Uw25j3eAIsLS2h9e30S282Xpw2Dx9+GHserJgdT1YBlpNO0k/XFtCbFfQFg/IG85hj7OVB2191ou/Bihqsi3W9zz6Tv9FEmd3kP/mk/fWbm/Xr7rmnfr56s3zaaebra/8XrN63NsBSUxN9bIlp0+R4l3feKcTuu5sX/qvve++9Q9OiFehpAyzqZ68tQHv9dVmA1NAgrzkfecR6nD7V9OmykMfvl/lsaYmcB7sBlnXrZIGQuuzuu9v/byos1O/D+B0BoQCL+trjsd6e9rd4771C9OkjC8JU6jiW8QZZPv00PPj++uvmYwxobdtmfp74299kfl54IXzerFnyO9AeKz5f6HPQHg92C1dffFFeQyxbJr+jq66K/P8YTVtbKD8//RR6/te/xr/NaJ56Su5jypTweddfb37M1tdHPibVdcwC59qxVdU0bZr5dj74ILSMOlbLO+/I6ySrAmQt9XgAQtc/xjxqr9eGDg2dq4zLnX9+9P0lQlvAauaxx4S46ab4t3/77dbbv/pqWfHTyt13y/X69w+fp27zoouEuO8++bxvXzmurOqXX+Q11WWXhX5/V18trwMinbubm2VFLfX3ePvtQpx9tnXFEDUvaiF8NF99Fcq7EPLcpm4jWYHjs88OP97//Ofo66m/k+nT9YFONam/v8pKeb9jDLDcdZf5dq0CLOp/g9kxsm5d9P8uY2DSKNJ/aUNDeF6MlYi082bNMj9vW9lpJ7ns4MFyfFV1XZ8vclBJnT5vnnVekpWijeHqtqS93okn2RXDol1PsgIsqUpNTc7ngcl++v3vnc8DU+elAw5wPg9OpfHjnc8Dk3vT4MH2l33lFfl/3dAgxJAhsmBcvdnUtlaz28JCXeYPf5CvtQX7y5bJmkTqa/VGWZsfbYCloiJ8+yefHJpvLFRUa4yVltrLo5pefTXKxcwOauDKeAOmbue888LXqa6WN4pWN5PqzdJhh4W2s2FD9LwEg/qCXiFCN1BqPrSFSKtWmX//ZttV502ZIgsdtddKn3xinp/TT9dv95hjQs99PlnTcenS6O9Lu41IARY17/Pnh14Hg7LQEJAFvF6vrBWnzv/mm9BzqwCLOv+44/TTtYFBNcBSUSEHu7ziCnkj989/hmpRb9woxO9+J8To0XKwd+3nagyw+P2y9likViUbN4bWj3ZDK0T0AIuxpmdrq6zJ+Mc/Rt+2avt2WZhidjydcIJ++i236PevpkMOkdOvvVaIQYPCWydoC+WCQSEuuUSIRx8Nz4u6jLYWXyQVFfob9Ei/CSHk71d7TPfsKcTKlZHXCwRki6GqqvBAn5Y2IGjl8suFuO02+fxPfwr/HI3nwrY2+XmpQVdtoeQPP+jX7d1bv662IMbILFArRHhrF22ApaBAPn72mSzkMDvOjdvMygpfJjdXv8/qavkf9Ze/hJb55htZCPvdd/K1NsDy+OOhwuv/+z9ZWUCdd8cdoec//2z9vWoL4v7v/0LnOrPPSQj97zbSMakNoGrTTTfJlhYffBA5sGr8bM46K3xbxgCLVX7+7//kb7G2Vr/85MmhZdRpQ4eGarCbfQbt7fL8d+GF8vxoXH/tWvla+7mqmpvlf+748fIYfu01Od+sQFhdt7g4NO233+T5WPt+1f9M7XXIaafJ38dDD8nXH38sl1Fb2P7tb7KHgQ8/lO/J7w+tu/vu+hZ58dK27NUGWAD5m4lE+9k//XRovWitk9XfpVm+b7hBPy8YlINoA7L12vHHy4DYkiWywNx4rKgBlu++k+drv1+I//zH/Bg3o23JfNBB+m1rj0Mr2pZbgL5gW502a1b4NCBUiUh97USAxeeTx7+2RW+0yk1ChFqyLVoUmnb11eaftfa6ThsUEUJ+X48+GmrZCeiPM2PrjIwM89+gdhk1AKm+XrhQfgfaylgq9Tr/iiv060yZor+Wfugh/Xdt1gJ10yYZKKqsDE076ij9Z6IdmFu9vlevme22OjHac8/wY13tPScSs9+INvn9+koAxuuBffaRgZnddtNfQ9sNsGivjefOjfw7VVuaXXqpEP/6lzx3RXo/xhaDxnMdoA/kR/o8Nm2S/3MffBD7Z+n361uGCCF/A//6l74y1RdfxPbdMAmxyy6JrW9XDIt2PekeYGFyV4qnyRsTkxsTAyxMnZWef17+X595pv11/H7ZwkG9sF21SgYFtAX6Z50l5wUC+nW1NRO//DJ8vjbA8oc/yAKy0tJQ4ZIxL1ovvxyavmWLvssqLeM27r8/NC8YlIWZZoW4atB30iR9QbC6nT/9KTStrk6+tyFD5LxHHgkPsvz3v0JkZ8ubzEMPDW3niSfk/PJyebF6992hdWpr5Q1QdrZc9quvwvMxcKC8SVRr6UVK6g1PICALjLVdlajp4Yf1r595JvyzOf546308/njo+U8/yZv/00+XQYVI340xwDJ9un7+pZcKMWZM6LX2+FO/15tuCr1+663Qc2OA5aGHZKBNnT9ggBD/+19ovlnXZTvvHP5e1YCBtquqjAx99yhffSUDP0OGyEIw9QZZ+z1rBYPyt6Kurw2wrFkTCnrV1gpx7rnW3RgsWRJ6/vTTsnbe/ffrW08B8thZtEi2prQq/NcWMpr9Ho0BFsA8yLf77rLgVX2tLYQVQl849Mkn5r97IULTtd+JlfXrQ8sa11ePI6MVK6L/lu67L7S81xsKmu60U6jw1pgv9Xz30EPh09XftvZzE8L8XK2eM4SQhV8ejyxg0S5z+eWy8PzDD62/NyFCrROA8BYFxvM1IAOO6vNnn5XLaWuQm33nK1eGttnYGPlYUmmDCIGAvisKlRpg7dkz/Ht9/HEZOFVfqwXGgL5A+ZdfrPNhdU5VBYNC3HqrLLDSbt/qPX30kRDXXac/zrUpNzf0H6K+J61Fi8z3YfV/vmlT5PxoPzP1mFRfmwVY1HTGGfrPoLLSPMirFqaqrxcskEFdbaUQIcy7k9Im9RxcUaE/F6mFuwsWmK933XVyvjbAYkwDBoS6VbrkEv28QYP0FU969tQH8e10vbhwoawEoe3STNuq7MUXox83qttuk4GSm26S/5fG9dRzWW2tDFYvWyZ/r9rgCiD/C7Q1x40BFrUlg1VSAxjqazXAor5+7jnrAIuxgPThh/XHg/qfqr7Oz5f//RdfLK8RZ82S70372Wtb0Grfhza4/I9/hLoaNS6rDb4aAywrVoQXFMfb5abfL88XxuPHeO4GZPBYpVZaWbw4tH+1YpSa2tpky17ttDfflN1Z/vWv8r9dnX7VVfLYXrdObsusm58jj5T70nZpZpVmzw7/D1ArCKiv1QA1IAMcWtr1PvtM/1r9jzH73rT/6Sptga/a1ZXxuNAGWNTAamam+e9v5kz5P7B8eeRuNM0+FzXA8tVXsjDfrOJVtM/W59MHjvfe23pZbZdbffpYL6dtzaF9v9reNI49Njyvo0eb/86s3s+pp8qWY2oQy1iZAQgFWOrrZRDXKs/nnx96PmuW/B2pv59NmyIPL+Hz6YOHQggxapR8rr2X+fzz0Pswu/ZhSn6yK4ZFux4GWJiSmdiCham7JLOLFiamVCWzG3O7SVuTTe1yApDHsLH2qFmKdNHft69+20KEL6PSFtJq04gRQtx8s7x4VguLzZZTLVyon/bGG6EbOuM6p59uXmClbVavTaNHy8I7lXbeIYeEnj/2mJx/xRXh+TMLvs6erb8JHTDAvHDLLKm1Y9XX2psWNZl1z3nrraFuuazypSZjFwZqUmtUNzSE14BVj8uKClkAa/W9RUpHHy2/e/W1NsACyC5HbrnFvBsGbXrmGX3B6m23md8YqsmscE9b4GkWmFGT+l5Vb70lWxholxk8OFT4rk5bsSK81m6kNG2a9TxtbXq1a4+rr5YBqDVrZOHgscear9vaKgvPIwXcIqWbbpIFbmoAU9vl14wZ+t+DWhCi/Ry0hUy33hre4sqsdYKxAAeQhW9erywUXLvWXqGSuj2zVh7GGrNm5wD1N/Dpp6Fpjz6qD4wNGmS+33//O7TN226L/XPXtprTnncB+X7UAhGzz0HbBQ0gj5dIARbt56CtLWo23+uVgc5Ivzf1N6EtFAXM+8DXJrNAExAaX0abD59P5sUqwHLVVXI5bSDNLN1+u9yW369v1WQ3aZkFwwG5fbsVJubMEWHUecYACxAeIDHm7bzz5PgukboJ0a4/c2bsn4Ga1FZHBx4YmlZcHH0MQyH0LRJTkQ46KDw4vXix/r/mpJPk9Hnz5P9QtDw3NIQHf7XLaCsbqEn93Wpb30XbTyCgP1+dd54QihJ5PbXbPvW1sTD98sutAyyA/P86//xQ8NuYtBVzrNLUqTLwcfnloaCkNmkrSahp1Cjz41nbVak2wKL+t2dny8/p++9l4Xz//vK3vW2bzMe6dfL65R//kP9Bo0bJwNHmzfKYP/54WcnBOIbnypXWAWdtd0VPPBGarm3VHUsyC85GG+v2qqsSGw/X6pynbTlbV6efN26c/vXvf29+/GuPYZVZV4nG9YSQ//HqazXwqV3mscdkC+ylS/XTDz88vCJQY6OsuGaWt0MP1bccmjBBhIn2Gba3m7f8MEt/+YvM30cfyXOj1XLaFiyAvBaZMyc0DpGatNenVpVs1Nbs6jWc1TLGVu9q+uUXeTxEe29HHx0+7f335T6NXdQak7EyllmFICAUpFm9WlYwiPe4Z7Kf7Iph0a6HARYmJiYmJqb0TomMb2WnlUQyktpljHG6ys42rrtOX2CrTYccIgtAtDU3tTcQ2lqqkZKdgtgDDwwvlDTWtnrvPXlzFM9npa1hayfZvVkzS35/fAW6atIWgtbWWudLHRsllnTkkfqasMYAS6qStgVAPEkIWfD8yCPWy2Rnhx/3ZrVerdLuu1vP0xZQHnqoDER1xuemTTvtpB/MHdC3UFNb/fzzn7J2tDrdrGBt+XK5vUcfDZ+Xl2cdtNCmaAORqiknx/zG3/j5fvSReUGwWcHM4sXR96sGWLQ1ceM57rQBZjWpNXmtCseMrS+MAUGr9Msv4TVnjfn5xz/s59/43Z9zTuTlp0yxt92zz5ZBl1699ANGG5PZZ2eW1EF74/2OhNAXABtTv36xVUjz++X7amrSt+J76CHzlh7aAW21yW63vtpA8DPPxP9ZJPIZmhW2Jztdfnno+zJ2pQjIc7Dd/uq111nLl8uKHV98EX09ddwhu3lubrZuTRUpGX/Hp52mb6Fw2WX6oI1VilQb306KVDBrVbEh2uejDbAY36NV/gcN0nera5XMKiqorZONSR0zyXjtGG+KdC5zIs2caS+QlpsrK+0YxxJTk3aMIDvftxD6AIvaCs5s3VdeMZ++ZIkQI0fKCiJqSwi7SaUdxzBSeuwx+9u2qtxkTMYAi1VSu5QWIjzwZZYSHfA8nnTFFYn9xzI5m+yKYdGuhwEWJiYmJiamrps6s+tGY3/2gLwpsxpfxO0p1hs1NcUaYEnXpO0SKBkpUncDbkx2CqyskrbPdGN68039a23LNDemAQMS34bdAEssSdstYKRUVGRvuddes64V2h2TtmVDspK25rgTSZXMbWrHn9GmI490/jtMRVq6VD9GUCpTaansttFsnnYMgFSlESNi69rGeO5PVrLbgsaJZNXiWJv3VPzu4klmLTLiTcn4X3QyabtW0yZFkddGZl00ArJrNe3rSy6RFS3s7NMqwNKdUrr8Fpi6ZrJLkQdh99TQ0ICioiIA9QB6Op0dIiIicqmLLgKee87pXBB1LxMnAkuWOJ0LZy1eDOy9t9O5oO7u0kuBJ55I7jZLSoCamuRuk6gr8fuBjAxAUZzOCamGDgXWr3c6F91Pezvw9dfAIYc4nRPqiuxGTRhgYYCFiIiIiIhc6OWXgXPPdToXRETkhGXLgL32cjoXRM6aPBl45x2nc0FdVcoDLK2traipqcHAgQN101euXInRo0fHs8lOxwALERERERERERERERFp2Y2aeOLZ+FtvvYVdd90Vxx13HMaMGYNvvvmmY965rEJFRERERERERERERERdXFwBljvvvBPfffcdVqxYgRdeeAEXXnghXnvtNQBAN+5xjIiIiIiIiIiIiIiIuonMeFby+Xzo06cPAGDixImYP38+Tj31VPz6669QOMIWERERERERERERERF1cXG1YCkrK8P333/f8bp3796YO3cuVq9erZveWZ544gkMGzYMubm5mDBhAr788stOzwMREREREREREREREXUfcQVYXn75ZZSVlemmZWdn47///S/mzZuXlIzZ9frrr2PKlCm46aabsGzZMhx00EE49thjsXHjxk7NBxERERERERERERERdR+KcPmgKZMmTcL48ePx5JNPdkwbOXIkTjnlFNxzzz0R121oaEBRURGAegA9U5tRIiIiIiIiIiIiIiJKe3ajJnG1YNGaMWNGopuIW3t7O5YuXYqjjz5aN/3oo4/GwoULw5b3er1oaGjQJSIiIiIiIiIiIiIiolglHGA5++yz8fDDD0dcJlWNZKqqqhAIBNC3b1/d9L59+6K8vDxs+XvuuQdFRUUdadCgQSnJFxERERERERERERERdW0JB1hmzZqFW2+9FVdeeWVYICUQCGD69OkYOXJkoruJSFEU3WshRNg0AJg6dSrq6+s70qZNm1KaLyIiIiIiIiIiIiIi6poyE93AMcccg/nz5+OEE07Apk2b8NprryEjIwPPP/887r//ftTX1+OKK65IRl7DlJaWIiMjI6y1SkVFRVirFgDIyclBTk5OSvJCRERERERERERERETdR8IBFgAYO3YsFi1ahOOOOw777rsvqqqq4PP5MGXKFFxxxRUoLCxMxm7CZGdnY8KECZg7dy4mT57cMX3u3Lk4+eSTU7JPIiIiIiIiIiIiIiKipARY6uvr8cILL2DLli1oaWmBoihYtGgR9txzz2RsPqJrrrkG5557LiZOnIj99tsPzzzzDDZu3Ii//vWvKd83ERERERERERERERF1TwmPwTJ16lQMGTIE06dPx913343KykqcfvrpOPLII7F48eJk5DGiM888E4888ghuv/12jBs3DvPnz8cHH3yAIUOGpHzfRERERERERERERETUPSnCODJ9jEaOHImpU6finHPOQUZGRsf0W265BQ8//DBeffXVtO2uq6GhAUVFRQDqAfR0OjtEREREREREREREROQwu1GThAMsQggoimI677nnnsPll1+OBx98EJdffnkiu0kJBliIiIiIiIiIiIiIiEir0wIs0Xz44Yc488wz0dDQkMrdxIUBFiIiIiIiIiIiIiIi0rIbNUl4DJZojj32WHzxxRep3g0RERF1IXfc4XQOqKvLy3M6B0REREREpFqwwOkcEMUn5QEWABg/fnxn7IaIiIi6iMMOA6qroy/34YepzccVV6R2+6SnKMCXXwJLlgADBqR2Xx98AMybB9TUAJMnJ2ebAwfGv+60aebTGWy0lpXldA7is2aN0znoeg48MDXb/eIL4Nprk7vNkpLkbo9S46GHnM5B5xszBjjoIKdzEVlbLEF13gABAABJREFUG/Dss527z+zs1G4/2n/ZpEnAIYekNg+RfPMNMGWKc/u3MnNmbMsPGpSSbHRpZ5zRufsbPFjeC1B0d93ldA7IqFMCLERERESxEEIWQq1YAcyYYb3ckUfa215jY3z5eOwx4JFH4ls3kqFDw6fdeGP82yssjH/ddKEoQDAoC0onTAC2bAnNu+UWe9t4+OHI83NzQ8+HDAEOPhgoLgbefjv2/JqxUwjz9tvAvvsCH30k93/aafK7v/TS8GUfeEAGG40GDAD69AH+/e/E8jtzJvDUU8B55yW+HUAWAkVquH7PPYntR/Xyy8ArrwCtrbGtd9xx+teTJwO33aaftvfeoed2Cu03bowtDwDQu7c8DjozeHb11Z23L6O8PPmbTqUvv0zNdoVI/mf36af61y+8oH+9dGly99cZ+vWT55LOdNdd+t+rmTvvjG2b2oK9ceOA118HPJ1YYrLHHp23L6OaGnnNNX9+9GXV30Q8/51nnBF+zFuZOxfYtEk/LScHuOii6Ou+807yPk/jufrBB5OzXZVV0PXii4Fzz5X/q53dKcz554eel5UBl18O9OoVeZ1YA1HTpgE9esjKUtGuY81+6yefLK8VH3oIuOmm6PtL9Lf8u98Bq1YBy5aFz9tzz/BpkVpKB4OJ5aWz7LprbMubfTZmdt5Zfv977aWfnp8fvTumQAC49Vb7eRo7Fnj6aeDQQ+2vY2XIkOj/O53h1FOBnhzlIv2Ibqy+vl4AEEC9kD9jJiYmJiYmpnRIX36p/89+663wZf70JzmvvV2IV18V4tdfQ/P699cvK0T4+uPHC3H33aHX55wTvowQQvj9Qnz8sRC77KKfV1honvf8/PBpN98s86m+/ve/haivF+Kll4SYM0eI++8XIhAQ4sEHhXjxRSHWrhXi5JOF+OtfQ+t89ZUQ338vRFtb+PZ//tk876tWCTF6tBD775/Y97FsWeT5+flCfP11bNscOlT/+ogjwq/VtJ+fnW0KIY+DI44QYued5bScnND87GwhZs0SYvp0633Fk8aNk4933GEvj1amTw8tV1Agpy1YEL6N9naZhBDC5wtNv+uu8GXPO888Hx9+GNrv+eeHph93nPlvwSy98ooQGzfa/yyfflqmWD7bv/xF/3qPPWL/3l54QYhJk4TYujU0bepU821o81deLsQ//hH9+7STh/HjhfjkEyHmzYv/uFu/Xn4/ZvPefNN6vYMPFuKRR8znFRXFfrxHSmbba2sT4osvYtvOH/9oPc/jie97GDZM//qll6Kv8/nnctvPPBOaVl+f2GdkzKvxdVNT5PUbG4W4557Q66++EuKmm8KXu/HG5H63kZLXK8QHH+innXFG6Pkhhwhx6aXxbbuiwvpzbGyU53Wz+ZdcYr0uIMSFF4aer1ol86/9LrTXIZ31OVZWCpGZmZxtLVggxIEHCvHdd0L885/Rl9eyumb4/HMhVq+Wy9TXR/5svvpKiD33tN6Pnffg8wnR0hJ6vffe9tb3eOQy2t/FLbeYX0tq0/jx5tM3bAh/DxdcYL7ssccK8f77QkyZYv+76ts39Fx7veX3678X9bom1al/f3mNbfzO/P7I69XUhJ7/4Q/2jrlAILTtSZOsl91vP/3rsWNFGPV4O/VU+fqzz+S1jrrO4MHW2z/3XHlt/tln1svU1loffzfcED4tLy/ye4/nuzE7hk89NXzaJZeYrz98uBAnnWS+7sknhy//7rvyXsn4/2mV1q7Vv3722dB29947NH3bNvkZGK9Rr75aiE2bzD+vn36S5wM754CvvpL3U+p/uBDyutnOudB4nGmvrx56SP5f7L67fH3ffULce6/1+mPG2NvPWWcJ8eij9vM1Z44Qjz8e3zHEFHuyK4ZFux4GWJKbXn/d+Tyka+rVy/k8MDElO/Xp43wemLpumj9f/5/9/vvhy9xwg34ZbQDD55MFPtOnC9HQIOcb11dvwJqbZQGgEOGFg1raGwNAFr7++c/y4ls7XXsTcsABshBapU5//HH71yu//hp+k11bK8QPP4S299NP+jyMGRO+HbUQas4c84I3tVBn8WIhtm8XoqRE/zmYfU977CHEO+8I0doqxJIl9r7bpUuF2LJFiKuu0k//4YfwPKvzbr5Zf+O9117m29ZqaJA3PtrAW2am9edstr3p04WYNi302nizfO21QjzwgNzXxx/rgx1madkye9/50qVCVFfL5199Ffl9avP+009CzJghC6e3bRPijTfk8f355/oCYuM2tAVFQghxxRXRv8cbbhAiGDTP/3//a77O00+Hf9affx6+nPo7VBQhZs7Uz2tqiv69GZM2n/X1MlBp9v6XLxfif/8L/4wibdts/vDh+tcnnWTxRQshysrsvQd1XytXms/76CN5Xtl339C0t9+Wx08waB5gycsTYp997O8fkIUAkeZrP78nnwwVwgohfyfa83Sk9O23oedDhsigKSALTLdvt/c9GJO2oBaQBcVmy6kBU0AWtgkhP8Mzz5SFP0LIQmtAiN69w9cvLY3+PaoFI+r/kHH+xo0yIPj11/K7O/10Oe/MM+V8v1+I//s/+XmrjIVj2oCi2XF50UX64KpZeuopISZPFmLCBBmc/vJL889NCP1vde5c+R+svv7972VB6tVXxx7wF8I86KSaPFk//d13hdi8WX5n2vV++EFfQP3DD/L8/dhj+t/khRfKoKT2f9cqX9r3qKa//EX//3bqqUL85z/23+vUqeHT47mXNNL+p48fL69frJb3+awLOY2iLWM13yzPxvOUzyeXVe851Os5q/XVNG2aXKatTV6DqYW5Zusdemjo+fPPh89/4onw9YSQx4dZYFv9n9Ous9tuQixcaB4IBfQBluXLQ8/V4INq0yYhrrkm9mPBmLSF9MbKLmp+tAXfVt/n+PHyvGC23Lp1sR+jRx1lvezcufrXy5eHr19ZKT//ujrzPA8ebF6IfcAB+uXV4FhWlv6a3upzAIT4+9/l9bV2mvE61/jeY/3e7rwzfL2vvjLflrYCGSCDRy+/LJf98ks5bcIEea2pLvP++6EgVEGB/H/RXj9pt5eZKcSaNfJcq50eDIaeP/CAXK+uTl6DVlXJewxt0ENboee880IBlGjHSrTPL5I1a+QyPXvq19l7b/lbVV9XVobOQeq0f/0rfHuLFoXm77+//lpjzZrwc60xnXCCvKfUfnbGdO65oecPPyyX7W4BlltucW7fdsWwaNfDAEty00cfOZ+HdE12CiqYmNyW7NYoZ3I+RaoRlq7JGGBpbpaFVtoCguuuC/9vb2jQ34Brabd/2mn6G25Vba1+OS1jQaSW9gZMGwwyUi/c16+3vDyxTVuYbyzw2rDB/L399FPotXb52lpZELFpU2i+tuBQu/wTT4SeV1aGll+8WL/NAQP0NQcBfVDMWLuzpiY8z+q8m2+WQZlrr5UFGl6vvmWK1edt3I5aq9WMWcsA47zZs4UYOFA+P/JI8+3U1MjC1xEjhLj9diE+/TR6/iLRBlh23TW8BYQQ8ns1m240c6bMv3HZ2bPl9gcOlK+vvDL8s9AWTD74YOT9WN0kGgMs77wjX2trkgOy4OSSS2QgZN488+NHZed8YiykMstvc7N83t4uxIknyuCcnX0Ioa+536uXEJddFnrt91sHooSQN9V2z4tCWLdumDs3tM2WlvCgrFmh0i67yMBobq58v2bbnTkzdH779ttQwYFZSz3jueKll8zfc6RaxGr65pvQ8zVr5HpqINysVYJ2v9oCP0AWIlVUhLahTq+qksegcVsrVoSef/qp9XcnhD6fQKglXnGxfG0WDFZZFVyZaWqSeTUGGLXq62Wt8XHjZGBZCH1hfTAoW0uqr596yrqFm5q0ASYts/ekrWynOv54+fqLL/Tv++efhTj7bOv9qgUp6vsQwjpIbKy9bfTGG6FAlPa7VVti2GHMn1qAb5z30EOh35467fXX5euNG8OvI559NvS8qEgu9/e/638HNTWyEoMxD7NmhT5fq9+iljaQ4PfrKx9YHXfRtmlcRi0AtrMNqzyfeWbotdpSM9p+V67UB5cjWbpUX4CuXrtMnSo/lyee0B8nCxbI9Z5/Xl53qC2dVMuX68/5zzwTnse//jU07fnn5fnhk0/k7/Xtt/UBFu2+zf47zM5/2nXMUlWV/rX2P9EsSFRWFj3AsvvuoWnffCNbLhitXCkL4LUB80jH08cfW7+HYFBeq65apf+/s+P22+U21O8uGNQHQw480HpdbcG2lhpIP+wwGbxWr4fVCkcffGAegNVu69hj5fOrrpLXO5G+QyAUDFZfb94cyo9x2fvv17fmN1q/XuZPiND/eWWlbBX43HOh/0wt7fazskLTDz9cvx/1+cMPW3+uKm3rd+29n7Eyhxmzz+iyy+yf2xsbQ+sNGSKnaVvdme3LLMAihBCvvSaDqMGgTOPHy2t29f9gyxYhBg2K/jtQp6nXEOr3bnZvqa0AZpYiBSzdmObPj9wqLJXJrhgW7Xq6coDljTc6d3/jxsk/aqffd7qmzmyiz5SeyayLF7en225zPg/dISWjBdzVVzv/PmJNixeH/2/7fPqC27/9Lbb/fXW93Xazt9ywYfrpxlY0WmrNurvukoEbs2WEkIUFVVWx5duKtquGlStlFyyAENdfb299q/ei0tbCFkLWwDr8cH2B8PbtoeW1AZbNm0M3FcGgLNCYPj10MyeEPsDy8cfmeVCDg2Y3S7EEWHr0kPPHj7deprFR1nx+8MHw7fn9+uBTbW30Qnutjz6SBYrxWLgw+vtLVDAovz+11qdZgGXECFnYftFFsgAhmhkzZMG9ttuy116T89TX778vX198sX5f2i4ggkFZY/fZZ833o67zr38J8d57Mtj03XeyZn7//jIQFinAYYe6j379wrsKVD3zjBAZGfJYvvzy2L4z7U3wSSeF14I1bmv7dlmwet998n3uvXeolqWVxx4L3576uzIWCI8aJa9d3347tL72t9vYaF7gq+ZRfW4VYGlokIVJZseZmrSt8owqK/XLquc8rzdUIN+vn5w3aJAs2ND6+utQDdpgUAYRDjxQthIxfhbRAixCyGW++EKIW28NnRM3bpTHREuL/M1EO09df72cZyy8TZRa8KptvafmY+lSfTdAX38tC3y13bNZvX9jyx0hQi2LBg8OLRcIyP+MSHk75xx5TGlbvqnrGqnnCrXljxDRAyxa2u407ZzHVGowaNUqfcUCIULb0wZltdNXrNBPX7BAiIMOChXof/WVPP6WLpXz1WPB+F7Mfmt+v9x+RYWsLa5t2Wq0ZYv8/LQ1/7UVC8xo96ctzDVbJjc3+ja0ARir84e29nek/1m11a1acUTbhZQdP/4YqtihPb+p9t9f/oeogV0hIp9n1X1HC7AIEf6fZBVgMaO9BjvuuNB51upcqm7nhx9kjX1ji632dhkk0Ab2Ro2SLVBKSmQFF61p0+RxFOv/qlrYP2BA5Pc3Y0Zofk6ODARs3RrbvsyolSi01P1ECrCsXSvvxW68UT+9ttZeq+RI30l7u/xe1M/y//4vNP+UU+Sj2noTCH13mzbJ41dr9Wr9//y//qW//oqkqck8oBLpvZx3Xmi69hpGCNm16l57yfO6HWqXy9oKBNrWCmbd+mrzM2KE/JzUFp6xqK6WXW6q3d2eeGLk869VgMUoEAiv6BIM6q8H9t47vEKcOk8bYHnkEbnuQw/pKytEC7Bo/w+cTna6UI6WvvxSH0jvzGRXDIt2PV01wDJ6tHx/nblPtasFp997uqaHH3Y+D/GkZPUBHG+aNUs//oCbU6y/D20t/XRNDLAkJ0WqfQgk59waqYl6uqZIN27qMtdcE9v/vrqettadmdmzZS1Ts0L9F17Qfzda2pvwWbNCNX9TJRiU3ZMNHixv0hoaZIsRs4ICM2pA5sQTzeerfTQbC020NfK071lbQ9EObYDFit9vHZDS1nKNtp2VK+VNjZ2WQ1u2yG1NmBB92c7QGQEWI7Nzhrbv+1g99JDsIkgtnFJbAandoGkDLMbWa9Go661aFT5PrUmYKPWG+Nln9d1HqS0rVOr7izXAonaT9oc/hKap6++6q7zONqsdHAtjgEUtzNVS56n3EtEYx8cx/mdZBVi0Zs+WwdzZs2WXcNrtPPig+TaCQVmofuqp4QUYqrY2ffdksVLzYSfAEsv2IlUMsGp9maiVK0O/NSHksaQW0mzYIAs8jS0PJk8WYuRI6/8T7fg1jz4aml5dbf8/SAhZoKb+Rs1awBi1tsoglLaw1E5LDNUvv4SWiyWf2lZuRur27r5bP/3xx+1XeNAy66ZQCH3N6lGjrNffuNG8RaiZ006L/Ll98IEcOydSQemcOfK6auFC8/lW/yHGc4f2vFNVpR/vwkxtrb7iQqwBlmiCweiBay1139rKAGpFkJkzI6+rDbBoW6iYaW4Ozdcek5Guqe1SK3Wp112xVCSJprpanne0XZxZUednZydv/5H2c9BBkZdL5HOI5TvRjlVWXy/HENG2rDcGx8ycfbYMpFVVyfN6Mn8Tr7wit3XMMfpzQrRAbTTqWEtajY2y9dC771qvp1akuPLK+PZrZutWeb1qvIdT31+0Ftx22Pk/MQZYzEQbU8qqS1knkva9xZuSHWDRnnft5N+OJP3U3ClSgGXCBOcPwn//O7711NqA0ZabMiVUozPRpN702RnMLFJyw1glVoPfGZO2Sx6rgUWdTsuWRe6+bP585/KmdhtibNKcqnTxxfJ3H6m7Artpv/1kgYh2mhCyZqud9c85x3wQazvJTr+8kWqMxpJuvdW546MrJW23AmbnFzvn8672XR19dOT/7xtvlAW0VrVirajbj1QwEY1VX9NOCQRiKwDQqq6W3QAY+6pWVVbKLpmMhchCyEDFunX6aUuXxvbZaFtWxaO+Prz2VrI0NFgX3HY2bfcJnUUbYHnnHXluMjsO4uX16o87bY2+WL31VmxjGsUjEAgF5378URY8a8e+MIo1wCKEvN7RBoPmzJE3ksZaqvEy9tVtRp13zjn2t9vaqh/bQwjZnz2gL9SPRH3f2sHrnabmw6yf/3h88YUsqE5VECURZkHIYDByoaLaWiWR/1MjbQ8MsdJev0eiBtCByN1PxULd3n//m5ztBYPyv9k4LtmGDbJLod/9Lvz/N17q2DCFhcnZnpkPPpDdkxkDJsuWyZrjW7bI1j/Glmaxuu46Z88f6r61AZbycllQGy3Qry3oE0IG3b/5xnr5r7+W4z5ozZ4tg1Rm45qlE7VW/b77Wi+j5jvSuHnJoO7nsMNStw+1ReDkyaF78EgtLd55J7zCiJpPOwEWbWBQ7cIyUve4sTI7b/7yixA77WQdCEiVTZvkWG9WwYpkUr+DZARY7OynVy/Zqmz0aOvrhmg9CFmNM+dEEkL+ryWyjS+/tNftubaVXKRkNt5ZpPzb+v4SPwTcyyzAcv758obJrD/eVKbmZtkcdPt2eeJVL6gOOyz6usZBZdWm5Q88IAct015sGA+SZDTVAkIXRGaF0wMHykFw7Wxn1KjO/dzVZBwcOFKaPVv2B67tx9YsaQexMwuwaPvrB+x9RrfdJvsvT/T9fvZZ6Kb3gQfC5197bajZfEGBM9+JVqr3NXJk5MEP48m7tusedZrdFkHnniuXb2+XeYt139GWiRZg+fVXfZ+kVmnuXCF++y2+z8hOjQHjeA6dlWIJsD/7rKxdlEiw2lgQF893CoTGR9htt/D+7Z1oItzUpK/dfMYZ9teNFmARIr5a6WqtebNxHOzSDuJLeoGA7EJM221AJNoa9YlQu4ex6p7E7ZwIsGi76OgMahd72q6F3ExbeSVdaIOR335rvsyKFbKFhd3AiMo4CHAgEFv3SyptRRSn/fe/sg97slZfH3+A34x2zK54LF0a3n2XmdtuS+53+/nnsiueZNb27yyBgLy3NRuTzm2am+V9bTIrA8RCPXZfeCH2ddWa+Mk69y1alLxrrFSoqIh87lBbUE+Zktp8PP64LIyNZTymWAUCMgChamyM/R5G/R7jqUxi97yYqGS0Fk5n6nfw5pup3U9RkdzPCSfYW147/o0xxVLGaUzGrk21yWpMpUhJlUjZgt0Ay5Ah9rYXyzAOdqXh6bbzmAVY1NpowaC+NlakpDbXjbfFyeTJ1nm0GiTU+GVrXxubO5v1uayul0iARe0mRdsk75xzwpe79loZhbezzWi1rCOdQOzk1SrFMn6M2mezEJG7cdIWiGibegNyULtFi0Kvzz9ftgKy810HApEDb6++GnkbxouZ1tbIfUN/843sDsOsNkwqk5bddYyD5KrNWK3SRRfJ2nJGseZV/SM0fk/GaVlZodfz5skAitn2tIWT69fLIIu2H9Jon1u0ZSK1WtJ+9pGW+eij+D8vO9+N3feipldflTU8knHsBYNCnHxy9OWuuir0GVRWCvHPf0Ze3irAoK1VbPaehTAfgNKY1q6V5+N16/Q1RE46yf45OJlJ9dFH8n9AOyB7tHTMMeG/y2TYulUGxLTdWsVKG1SkxLS3y8LcOXMS205VlbxIVvth72paW2UQN1rXdskUDMrxNxLtlioWK1bY76873WkrMqQLbYAl2YYOTc621QoOqe4WhtJTICAHNr73XqdzQhS7K66Q9yLx1KZX7wXOPjt5+QkGZUWnVNe4T4XmZllekqxWZpG4ITCgvWckZ3z8sSw7TXUg/ddf5bhHdoNikcoFtV1iapPHE+om2ipZlVNZlVfYLRcYNCj+soVUB1jefVffVS0gRFlZbNe2aXTZ3/nUAMuYMaEAy5Ilofl2WwpoxXOgRKsl9uij4evk5pof4Gb9hZutr6738svx5dmqdrF2UERAdpWk9uFpDDJY/ZAjtR66887owRJA9klvfK9myw0aFBpMy+571/4J7757aLqxpcfChbJw4s479QMeq81hg0E5vsgDD9g/flTG2ujak2e0lgdWrAb00rrgAnufkTqIXSJJy+4xuXy5fpp2IEttOvbYyIMNa4/B446TXd+pTWzNUrQAyx57yGnZ2eHvz6zlw5/+ZJ6v6urQMs89Jwfu1a531FH2Pi9ti4m8PP28r78O7c/4B5PI96P9/ai15LTTm5vDj10hrGsWGL9rIcxbge2zT2z5Uz/D3/8+8nILFoQHK+vqor/3336TF2d/+1toenu7DKDNm2f+eaqsLpIA89py6jw7AZb8/Ng+p2jJqt/7SOtoWwX+8Y/m66eLRYvkd0nUWbze9OmyjKLTBsXTxVNPpS5P99wTOo8nYsMGIf785/CukYiIurJgULa84f88mVH/uxlgISNtd8vvvae/t/b5ZM8WgL5XlBtvFOK11yLflwsRed6558ZWNqBasUJ2J/f885GX147JpqYff7Qeg+WSS0LPtZV+IiVtj0NqHrVlutXVoW777fKAMH++TC+9BEyYEJouRPL3lZsLHHaYflpJSeR1PDF8S3vtZW+5s86Sj3/4A3DTTcB119nfRywWLgR695bPzzwTCAaB66/XL9O3r3wsLQWysoBTTgFmzQrf1q67ApddBlxwgfm+Jk4M/TyWL7eXv4ICmaLZaafQc0UJPZ8xA9hjD/mdrlihX0cIYPJk+flqqesrCvDkk8C119rLq1V+jLT5i8VjjwHjxsnfgZUXXgDuvz/ydo46Cti6Nb482HHhhfrXl10GvPEG8NFH4b+VXXYx38Ypp1jPU+erTj4ZeO01YJ99rJeP9pnvvrt83G23yMuprH7zJSVAbS3w00/An/8MzJ0LlJeH5j/9tHzceefwdf/zH2DYMGDVKuC44+S0ggKgvj6UPwDYd9/Qc+37Cgb1n0u8FAXo1y98en4+0KNH6PXhh8vHf/xDv9zhh8s8jx1rb39ZWbHl77XX7C13wAFAZqb1/GuuCZ+mKPK7uflmoFev0PSsLOD224GDD468zxEj9K/V/478fOvzol3xnjes9Oxpf9nHHgOefVae9486Sn63Dz6Y3Pwk26RJ5r8zolTJzgYyMpzOBdn1+9/La8R165zOScgf/wiMGgVcdVXyt33ddcC8ecD77ye2ncGDgeeek9fWRETdhaLI+0T+zxNRLG6/XZY3LlsGnHBCaPqiRbKsYs4c4G9/k2Vlt94qy1SvuQY49tj49peXJx/PPDM0TVuuEc2YMcCmTeFlegBwzz2yXOPJJ4EzztCXfey/PzB6NPD3v5tv9+yzQ8933TWU15kz9cvdfHPouVn5hzYGUFIC5OREfDthGGCB/GAPOgg491z9dO2HqX1+wgnALbfEt685c4DPPottHbPC1tdfl4/TpsnH5ctl4MJuodSrr8rHjAzgzjuB++6LLU9WohXSKUrogFfNmgU8/7w+KHLiicAXX4ReX3SRLFRWf7za/XzzDXD66bKQPVbBYOh5YaH1cjNmAAMHAv/9r376qFHADz/I73T4cGDAgNA8bcFuvIWXgwebT+/VCxg/PvHtaw0dKk/Mxt+B0bXXAkuXyoL64mJ5w3799cDddwMjR8oTol3GAmM7zjtP/3raNPn9K4r+t7JmjXwsLo59H1ZeecV8+p57hk/TfieBgHycOVPmdfHi0Lx77glf98gjrfPQq5f+N6QN0KrBSrPg8PnnA2vXyu/od78DvvxSFvxkZQF33WW+L+17UBT5/u+4A/jxR+v8xUIN9GgvBlRqAX1ODlBdDdxwA/Dtt8Cnn1oX3qtBGfWPHzD/LPbeWz4aAyRnnikDvdHU1UVfxizAkmyffw4cfzzw1Vexr7tsWfLzE68zzpDn+MJC4OOP5X+BeiwTEbmRogCnniqvrdJFQQGwciXwyCPJ33ZGhqwkYKfSEhERERElrkcPWZ47bpx8PX068M9/ysqAADBkiCwjHjxYTv/pJ1kBPlJQJDfXfPrVVwPffRc+/eWX48t7W5ss41EdeSTQ0AD89a/ytbZhwoIF8vHkk4HNm2UgRjVyJLDffvr8NzXJisknn6zfp/q5WDErO7r77ujvRcUASwTawkXtB/3uu9G/GDM1NdFrKJsxC7CcdJI8IC+7TL4eO1YGSYqK4tumoiTnJtBOQf/558tIqyo7W0YwBw7UL3fIIdbb0Baa77OPDK4MG2a+rLZGvpE2wNK/v/kyDz0k97F5c6jlj5UDDww9nzgx9Dze1lBz51rPs2qtZPYd9OsnP/Nvv40vH8btjx8vT2SVlfKEet99wNSpMugyfHjk9bVBlblzQ0GpG2+0XmfQoNDzQw6Rfww33xxesLz77vJzP+aYUGsRs5YqsXwf2uPwnHP0gbMVK4CLLw4PvAHhrT8AWeP9jTf0x8bll+vXe/dd2bLMrqwsGUxauTL0RxPt/SmKPFb79JGvrQpEjMdSQYH83EePtp8/s9oJqtdeA158MRTwtVJSAtx7bygwotIGNAEZrHr0UflZqMaM0S+zahXw4YeyZcyqVfp5fn/oeaRzmdV5trBQfgdZWUBZmfX6QHJaSI4ZI2sLqxdURuqx+5e/hM8bN07+hgEZkIonSDtiBPD997GvZ5Ts1jNERERERERE3cmf/iRbqtgxe7asYFpZCXz9tax8e8cdQFWV+fIPPaTv+USlrSybkxOq9KrS9lKilZMj96elbcWnLbPWlhcYy41//FGWKWsVFERvfRKtBYtq6tTI29FigCUCbQsBrVi67FINGxZ/TfpIB6QdiRTkXXMN8N57oa6HorFTUJaRoW8BFE/+5syRBYSRAhAqY4sZbeGoNsDy9tuh52qTub59ZaTWLquTgJbdwsQFC2Te1UCBWhhux1dfAaedJpsLFhQAb70lP3NjAXWiEm3GPHQosGWLjC5btaIws+uu8mS8//7h+fn2W1mArnr9ddlqZNGi0DQ7x1x1NbB6dXi3XkOGhJ6PGQM880z4Sd5IbcFix0knxV7gvNtusjWVKtbflNXydvOxZo1sWWL0zDOydZqVoiLZIsmsRYpVwFNr/XrZXZ4akMrPB668Up5vly6VXZYYW+eNHClrbdx2mwy+LVwYmqcNsFgxnk+0PB553NTXh3dNZuzC64ADrLejbeGUiLlzZaul444z/62+955sgfbNN9G3ZawcsMsuwC+/6FtvWdV2iSaWZsVERERERETdjVo5jigZjjsO+N//ZA8e++4ry+Zuvtlea2Sr+/eyMlkupK10bVWeDUQuW49U1jh5snwcPTq28nljuZdaDqIOwZBoJVgGWCLYc0/ZTdWvv4Z/0FYf/MKF8TeRsnLmmfH3kQfom0/Fs+4JJwCXXKKfbqw5noh4DuKJE2UXN5G6UlJpgyiR9q2tlX/++bLQ+NdfY8uXWUQ3XmorqQ8+kN3nfPmlfr4278aC8P33B958UzYXbGiIXJibDqIVsP7rX/Lxyiujb0tR9J/H0KGy1Yi21Zmdk3BJifn3GWn8GyuRjsFUSNbYEHb/rHbbLbymQrzee08GB++8M/qyWVmyD0+zcVPGj5fjBfXsGerL3axVnLY5aaQAy1lnyeMoWndcubmhLsrU2iNXXCHHL9I6/HAZCFy7NnwbEycC27fL4JPxdx+LrKxQyz6zllzDh8v/qz33jB5M++QT8ybBgGzJdeed4eNN2TF2bHiNEyIiIiIiIpKFwC+8ABxxhNM5oe7K2LX//vvLyvjGivjqfb12vL9I5QxWvUYBkQMsTz4pk1klXyOrIToURfZU9NNPoeEFDj1UPsZb3s0ASxSHHCILoYxftlXrkf32kzWCjRKJhGVlyUL2LVtkfmIdayTamBoqY/90kTzwgPn0WGren366/LzsDFadyOcXqXDbON7Ct9/KAZdPP10WGkeKtpq5/no5iNT8+bHn00g9oey8sxwA2tiSYupUWQB+6aX66cbPKp4WV8k0bpw+j9oxQ4zmzJEtvWbM0E8//XTZdDHRfsOvvVa2OjH7jdo1fboMeBpbT6kBAbM8xtKCJRlefFEGKV58Ub6OFnBJtAWL6uab9bUV4vndnnCCDA5GOk5iNWeO7DvzzTcjL2fsTkwrK0seh3bGaFGp3ZBZHbe/+51114ZlZfL703Y7mIhEu+HKytJ3S6jd3pgxMrhiJ5ivDkz39NNARYV10IaIiIiIiKi722ef8N4QiFJt7lzZa8z774f3eKEoshK0WhH/1VflOC9qWbW2G/xTTrHeR6QyikjlmIWFcqwWO+O2asdy0QZO1H3vumuo1c7LL8synHjGuAWAzOiLEBBeUHjEEbJZUqQCuWQbMEA/8Ltdubnyh6HtlsuMOn5BNJs2WRcyan8gaqsDK7EEihIJsBgHslYUWeB6113Ac8/p5+29d2LdaOXlyUGkjGIt3BwzJvo6I0bIcXiysmR/iapkjO2QTD166Ls3e/llWTPfbMyVo4+WXSyZvfdYCratPPCAdXDQriFDZMDT6Kab5HgsZmNvaMeQ6QyDBoWCCUcfHb17wmQdM3fcIVO6jakxYEDkvjOXL5dj31x7bXL3qyjp1ZR76lR5nv/nP8PnHX20DGwOGCCD8nl59vtvVdn53u++W9Zo6dcvtm0TERERERERUeodeaS9HoMA4OyzZVIpCrBtmxznJdL4wvEGWGI1e7YsM50wIfJyffrIruTjxQCLTcYv3uPRj9kRzUMPJTc/sbr5ZuDzz62bRwGyQO200+R4HSrt+w4EgJaWyK06zjkH+M9/ZGuLa65JPN+JePhh4IknzMf2OPpomTpLpO68zNjp9xAIH+chXf3f/8nfwOmnywixdjwUo3QrnI+F1cDm0VrMPP647EZq2rTk58lOQbZVgOWww2Q3VtEGbI+23dJSOVja4MHxbSfVxo4Nb0nn5uPQyl13ARdeqG9lpHr2WRlcPuus0DhD++8vgy3PPhu+fLyfj6IwuEJERERERETUVfXrB/z5z/Gvn8xxWo87LnxapLF148UAS4q9847sxy0dBvHVDu5uJdoAztG6zDriCNkljnYg8GSw0/TLaMoUmYzcUHAa65gp2lY6iQ48nwp9+wI1NeGtibqLaNH3yy+XBdl2fqOpYBVgeeklGfw5//z4tqt+3/PmyZYT0VrRUWopSnj/qariYuCGG/TTjjpK1jwxO2fanUZEREREREREZNc11wALFgC//31ytzt/vuwC7KyzkrtdgAGWlFm4EFiyRI5rki6FTo8+Cmzdqh9wyOjGG4HWVtn6A5AFbLFKZpc4b70FvP565O593EB7DEQavHvNGmDWLOCyy2Lb/qBBsmZ6QUFogO10012DK4C9LricCq4A1vkrLY2vieQNN8jWcmoz0VGjZNdwlLijjpL9ocZzbo5Huvx/EREREREREVHXk52tf92jB/Dxx8nfz0EHyZQKihDpNmJD52loaEBRURHq6+vRs2fPiMuWlAC1tfJ5Mj4xbaFVOn4DlZXA2rXApElO5yR51M+8pESO89GZtm8PdYtTVQX07t25+3fCo4/KYNIXXwCjRzudG2eox9y8ecDBBzubl0hWrADGjZPP0/F85IQzzgiNYwPIFkYvveRcflS1tTLwfNpp0cfWSQX1mB45UrZW1PrxR2DPPWUrOr+/8/NGRERERERERO5www3Ali2yQm4ilTsvuACYPh34+mtg332Tlr2YJHHYmK7tww/luCKzZzudk87Rp0/XCq4AoXEwzAZXp+S76iqgoqL7Ble00j1oMXYs8MILwCefOJ2T9JUu32FxMXDxxc4EV6LZYw8ZdKmsdDonRERERERERJTO7rsPeOWVxHvOeOEFoKHBueAKwC7CbJs0SXbfRO41fbrsaiyZXZjZ1V272emu79uNLrjA6RyQm1j9tp04vxIRERERERFR96QoQGGhs3lgCxaHqK0o7rjD2Xx0JxkZciwIJwr9+/SR4/FMniy7KCOi9LbLLk7ngIiIiIiIiIiI0h1bsDjkzjuBiy4Chg51OifUGRQFmDnT6VyQU0aNcjoHFKsbbwQaG4HHH5evd9vN2fykG7ZOIyIiIiIiIiJiCxbHKAowbBgLqYi6sspKYP162YKJ3KWgAHjsMWDBAuD664Frr3U6R+lhv/3k40UXOZsPIiIiIiIiIqJ0oAiRLkP3dr6GhgYUFRWhvr4ePXv2dDo7REREaa25GVi+XAZaPKyiQURERERERETdHLsIIyIiIlsKCoADDnA6F0RERERERERE6YH1T4mIiIiIiIiIiIiIiGLEAAsREREREREREREREVGMuvUYLEIINDY2orCwEApHmyciIiIiIiIiIiIiIpu6dYCFiIiIiIiIiIiIiIgoHuwijIiIiIiIiIiIiIiIKEYMsBAREREREREREREREcWIARYiIiIiIiIiIiIiIqIYMcBCREREREREREREREQUIwZYiIiIiIiIiIiIiIiIYsQACxERERERERERERERUYwYYCEiIiIiIiIiIiIiIooRAyxEREREREREREREREQxYoCFiIiIiIiIiIiIiIgoRgywEBERERERERERERERxYgBFiIiIiIiIiIiIiIiohgxwEJERERERERERERERBSjbh1gEUKgoaEBQgins0JERERERERERERERC7SrQMsjY2NKCoqQmNjo9NZISIiIiIiIiIiIiIiF+nWARYiIiIiIiIiIiIiIqJ4MMBCREREREREREREREQUIwZYALz88stOZ4GIiIiIiIiIiIiIiFyEARYAra2tTmeBiIiIiIiIiIiIiIhchAEWAMFg0OksEBERERERERERERGRizDAAgZYiIiIiIiIiIiIiIgoNgywgAEWIiIiIiIiIiIiIiKKDQMsYICFiIiIiIiIiIiIiIhiwwALGGAhIiIiIiIiIiIiIqLYMMACBliIiIiIiIiIiIiIiCg2DLCAARYiIiIiIiIiIiIiIooNAyxggIWIiIiIiIiIiIiIiGLDAAsYYCEiIiIiIiIiIiIiotgwwAJACOF0FoiIiIiIiIiIiIiIyEVcHWCZP38+TjzxRAwYMACKomDmzJlxbYctWIiIiIiIiIiIiIiIKBauDrA0Nzdj7NixmDZtWkLbYYCFiIiIiIiIiIiIiIhikel0BhJx7LHH4thjj014OwywEBERERERERERERFRLFwdYEmWRYsW4d5774WiKLaSx+OxvaxxvYyMDNOUmZlpa5rdZTMzM5GVlQWPx9WNlIiIiIiIiIiIiIiI0lK3CrB4vV54vd6O1w0NDQCAhQsXYuHChU5lK6U8Hg+ysrI6UmZmJjIzM5Gdnd0RhDF7rV3euL7xdXZ2ti7l5uZ2PM/JyUFOTo7pc+20zMzucSj26tULeXl5TmeDiIiIiIiIiIiIiBLUPUq1d7jnnntw2223hU0/8sgjkZOTAyFERwIQ8bUxRVsekF2RBYNBBAKBsOfGR+184/Jm66v7MAoGg2GBpXSkBoLUwIz2ufo6KysrLDCjptzc3I5Hdb52mtXyndnCJxAIYLfddmOAhYiIiIiIiIiIiKgLUIRVybzLKIqCd955B6eccorlMmYtWAYNGoRPP/0UAwcO7IRcpo4xSBMIBOD3++Hz+XSPfr8f7e3tHc+Ny2iXMy5rtQ2fz4f29nbT5PV6Laenw9g3aoubnJwc5OXl6R5zc3ORm5uLvLw85OfnIy8vD3l5eSgoKOh4np+f35GM0/Ly8nQtc2pqajB8+HCUlZU5+I6JiIiIiIiIiIiIKBm6VQsWtfVCV+TxeFw33orf748YgLGarqbW1lZ4vV60tbXZSuo6Pp+vIw/qdlMlOzu7IyiTnZ2NXr16oVevXigoKECPHj10j9rnhYWF6NmzJwoLC8Oed9VjmIiIiIiIiIiIiMhNXB1gaWpqwq+//trxet26dVi+fDlKSkowePBgB3NGdqjjwRQUFHTqfgOBQEyBmdbW1o7U0tLSkaymtbS0dLTOUQM49fX1Sct/dna2aeBFfW4VmDF7npubC0VRkpY3IiIiIiIiIiIiou7C1V2EffHFFzjssMPCpv/pT3/C9OnTo67f0NCAoqKiLtFFGKUPIQTa29vDAjHl5eXo1asXMjMz0dzcjObmZjQ1Nekem5ub0djYiKamJjQ0NKCxsRGNjY1oaGhAa2tr0vOakZHREWwpKirSpV69etl6XVBQwCANERERERERERERdTuuDrAkigEW6kyJjsHi9/tNAy/aRzvPGxoa0NzcnLT3pQZp7AZkjK979eqF3NzcpOWHiIiIiIiIiIiIqDO4uoswou4kMzOzYwyXRAUCATQ3N+uCLg0NDaivr0ddXR3q6+t1yThNfR0IBBAIBFBbW4va2tq485Obm4vi4uKYUklJCYqLixmcISIiIiIiIiIiIkcwwELUDamtTnr27Bn3NoQQaGlpiRqEiTZNCIG2tjZs27YN27ZtizkfsQRn1KCMmhicISIiIiIiIiIiongxwEJEcVEUBQUFBSgoKMCAAQPi2kYwGERjY2NHC5hIqaamRve6rq4OwWAw4eBMSUkJevfujd69e+ueW00rLi5GVlZWXO+XiIiIiIiIiIiIug4GWIjIMR6Pp2NMlqFDh8a0brTgjDEgYxWc2bp1K7Zu3RrTvnv27BlTUKakpARFRUVQFCWm/RAREREREREREVH6YoCFiFwpGcGZmpqajlRdXa1LxmlqwAZAx5g169ats73PjIyMjsCLWVCmT58+KC0tRWlpacfz4uJieDyemN4bERERERERERERdQ4GWIio29EGZ4YNG2Z7vUAggNra2ohBGLNATUtLCwKBACorK1FZWRlTPq2CL8ZH9XleXl48HwkRERERERERERHFiAEWIiKbMjIyOoIZsWhra4sYlKmqqkJVVRUqKys7ntfX1yMYDMYclMnPz7cMvpg9FhcXIyMjI9aPgoiIiIiIiIiIqNtjgIWIKMVyc3MxcOBADBw40PY67e3tqK6u1gVd1OfGR/W5z+dDS0sLNmzYgA0bNtjaj8fjQUlJSVjwpaysTJfUab1792ZAhoiIiIiIiIiICAywEBGlpezsbPTv3x/9+/e3tbwQAo2NjREDMsZpdXV1CAaDHfPWrFkTdT+KoqC0tNQ0+GIWlCkqKoKiKIl+HERERERERERERGmHARYioi5AURT07NkTPXv2xPDhw22t4/P5UFNTowu6qM8rKio6UmVlJSoqKlBdXQ0hRMdyK1eujLqPrKwsy+CL2XSOIUNERERERERERG7BAAsRUTeVlZWFvn37om/fvraW9/v9qK6uNg2+mKXGxkb4fD5s2bIFW7ZssbWPHj16WAZf1MCMmufS0lJ2V0ZERERERERERI5hgIWIiGzJzMyMKSDT1tYWMQBjnOf1etHU1ISmpiasW7cu6vY9Hg9KS0s78tSvX7+O58bUp08fZGbyL4+IiIiIiIiIiJInodKmiRMnYsKECR1pzJgxyMrKSlbeiIjIxXJzczFo0CAMGjQo6rLqGDJ2WsZs374dVVVVCAaDHdN++OGHiNtXx44xBl7MgjJ9+vThfxkREREREREREUWVUIBlv/32w9KlS/HKK6+gtbUV2dnZGD16NPbff3+cddZZOOCAA5KVTyIi6sK0Y8iMGDEi6vJ+vx9VVVXYvn07tm/fjvLy8o7nxlRZWYlgMNgxdsyPP/4Ydfu9e/eO2CJGnVdWVsZgDBERERERERGRywkhUFdXh/LycpSXl+Owww6ztZ4ihBCJ7jwQCGDlypVYsmQJlixZgk8++QS//fYbzj33XPznP/+BoiiJ7iIlGhoaUFRUhE8//RQDBw50OjvUxdXU1GD48OEoKytzOitE3UogENAFYyIFZSoqKhAMBmPafklJSdRWMWrKzs5O0bskIiIiIiIiIiKj1tbWjnIgNW3btk33Wk3t7e0d69kNmyQlwGJm7ty5OOecc3D33XfjoosuSsUuEsYAC3UmBliI0l8wGER1dbVlixjt9IqKCgQCgZi2X1JSgn79+ulS//79w6aVlJTA4/Gk6F0SEREREREREbmXWpnWLEhiDKDU19fHtO1evXqhX79+WL16ta3lUxZgAYBnnnkGzz77LBYvXpyqXSSEARbqTAywEHUtwWAQNTU1UbspKy8vR0VFBfx+v+1tZ2ZmdrSGiRaMKSgoSOG7JCIiIiIiIiJKPSEEmpqaIrYwUVOslV5zcnJslbH07dsXubm5MeU7oTFYotl3331xww03pHIXREREjvB4PCgtLUVpaSlGjx4dcVltMCbSBUJ5eTmqqqrg9/uxZcsWbNmyJWo+evToEXZBYHahUFZWhszMlP7tExERERERERHptLe3o6KiwlYXXS0tLba3qygK+vTpY1omYiwXKSoqStkwJgmVtPz73//G3nvvjbFjxyInJydsfmVlJQf/JSKibi+WYIzZhYdZU9dt27ahtbUVTU1N+PXXX/Hrr79G3K6iKCgtLbVVY6NXr15pO34aERERERERETlLCIGampqoZRfl5eWorq6OadtqRVKz8gptWUafPn3SoiJpQjm4+eab0dDQgMzMTIwaNQoTJ07ExIkTMXLkSLS0tGDq1Kk4+OCDk5VXS0888QQeeOABbNu2DaNHj8YjjzyCgw46KOX7JSIiSrbs7GzstNNO2GmnnSIup206G+2CRm06W1lZicrKSvzwww9R82CnVUzfvn2Rl5eXzLdPRERERERERA5paWnp6H0jWjddPp/P9naNXaFbBU/69u2LHj16pPAdJl9CAZba2lr89ttvWLp0aUeaMWMG6urqAAC77747HnzwwWTk09Lrr7+OKVOm4IknnsABBxyAp59+GsceeyxWrVqFwYMHp3TfRERETlEUBYWFhSgsLMQuu+wScdlAIIDq6mpbNUvq6urQ3t6OjRs3YuPGjVHzUVRUZCsYU1paioyMjGS9fSIiIiIiIiKyQa1waaeLroaGhpi2XVJSYqtMoKSkBB6PJ0Xv0FkpGeR+8+bN8Pl8GDZsWLI3HWbSpEkYP348nnzyyY5pI0eOxCmnnIJ77rkn4rrqIPdz5szhIPeUcjU1Ndh5553Rp08fp7NCRGSpra0N27dv76ixYvW8vLwcXq/X9nY9Hg/KysrQt2/fjlor6vP+/fvrphcWFrKLMiIiIiIiIiILQgg0NDRY3rdv27at43llZSWCwaDtbefm5upalBjv4bVjvZoNG9JVZGdn21ouJQGWztLe3o78/Hy8+eabmDx5csf0q666CsuXL8e8efN0y3u9Xl1hUENDAwYNGoS///3vyM3N7bR8ExERuZ0QAm1tbWhqaoqampubY9p2ZmYmevToYSulQ3+rRERERERERMng9/vR3NyMxsbGqPfafr8/pm0XFBR03EsXFhZa3mfn5OSw0iOAf/7zn7aWc3WpRFVVFQKBAPr27aub3rdvX5SXl4ctf8899+C2227rrOwRERF1WYqiIC8vD3l5eVFb5gUCAbS0tKCxsRHNzc2WF4eNjY1ob2+H3+9HXV1dR5ejkeTl5dkKxOTl5XXZ5shERERERESUvoLBIFpbW21VUGxtbY1p2zk5ObbuifPz89ltd4q4OsCiMkbUhBCmUbapU6fimmuu6XittmA57LDD2EUYpRy7CCMiiq65ubmjGbO2ibO2qbP62ufzobW1Fa2traisrIy43YyMjLDmzFZNnd02oB4RERERERF1vubm5qhda6uvY2ltkpWVpbtP1d63Gh/z8/NT+A7JDlcHWNQBc42tVSoqKsJatQAyomfWL1xmZia7GKGUy8zMRFZWlu3++4iIuqPs7GwUFxdj9913j7icEAK1tbWWA/Npk9ridevWrdi6dWvUPBQUFJgO0mccqK+srAxZWVnJeutERERERETkML/f3zEgfKT7zW3btqGpqSmmbffu3dt0AHhjKikpYRddLuLqqEJ2djYmTJiAuXPn6sZgmTt3Lk4++WQHc0ZERESppCgKSkpKUFJSgtGjR0dc1ufzoaKiwtYFcktLC5qbm/Hbb7/ht99+i5qP0tLSiBfGvEAmIiIiIiJyllpBz9hDgtn9YWVlJWIZsjwvLy8sYGIWQCkrK2Ol6y7K1QEWALjmmmtw7rnnYuLEidhvv/3wzDPPYOPGjfjrX//qdNaIiIgoDWRlZWHgwIG2ugNtamoyDbwYp23fvh2BQABVVVWoqqrCjz/+GDUPdgIx/fr1YxNvIiIiIiKiKIQQaGxsDAuaaO/ZtM99Pp/tbXs8Hl330pF6NujRowcr03Vzrg+wnHnmmaiursbtt9+Obdu2YY899sAHH3yAIUOGOJ01IiIicpkePXpgxIgRGDFiRMTlgsEgqqurI7aGUZ/X1tbC5/Nh06ZN2LRpU9Q8FBYWRqz5pKY+ffqwi1MiIiIiIupSWlpabAdNYh0Qvri4WDd+idX9ljosBZEdioilzVMX09DQgKKiInz66acc5J5SrqamBsOHD0dZWZnTWSEiok7k9Xp1NwKRAjJtbW22t6soCvr06WOrVlVRURFrVRERERERkSO8Xm9Ht83RgiaNjY0xbbuwsFDX2sTsuTpQvNnY3ESJYrVHIiIiohTKycnB4MGDMXjw4IjLCSHQ0NAQMRCjpoqKCgSDQVRUVKCiogLff/991Dxogy/qDYY2lZWVoW/fvgzGEBERERFRVNrB4KMFTWpra2Padm5ubtj9i1XQpKCgIEXvkMgeBliIiIiI0oCiKCgqKkJRURF22223iMsGAgHdzUykVF9fD6/Xiw0bNmDDhg1R85GTk9MRbFEfjUEYNfXu3RsejydZHwERERERETmovb0dlZWV2L59OyoqKnSPxi67qqqqYhoMPisryzJQYpxWWFjISl/kGgywEBEREblMRkZGx01INK2trR03QdqxYbQ3SuqNU2NjI7xer+3xYjweD/r06RMxCKMN1mRlZSXj7RMRERERkQ1CCDQ1NZkGTMweY21p4vF4UFZWZitoUlxczKAJdUkMsBARERF1YXl5eRg6dCiGDh0addmWlhbTmmpmr2tqahAMBjte21FSUmKrZUzfvn2Rl5eX4DsnIiIiIup6AoEAampqwq7RrQInsYzzCMjKXMYW7eqjMWjSu3dvDgZP3R4DLEREREQEAMjPz7cdjPH5fB3dB0QLyFRWVnbcCNbU1GD16tVRt9+jRw/LIEyfPn3Qp08flJWVoU+fPigpKeGNHRERERG5VltbW8f4itFamVRWViIYDMa0/YKCAtOAidljcXExuwEmigEDLEREREQUs6ysLAwYMAADBgyIumwwGOyoZWcnIOP1etHU1ISmpib89ttvUbfv8XjQu3dvXdAl0nMGZIiIiIgolbxeLyorK3VJDY4Y0/bt29HQ0BDzPnr37m0aJDFOKysr40DwRCnEAAsRERERpZTH40FpaSlKS0sxevToiMsKIdDQ0BC1RYya1K7K1NerVq2ylR8GZIiIiIjIrpaWFtPgiFUApbGxMeZ9qIPA22ll0qdPH2RmsliXKB3wl0hEREREaUNRFBQVFaGoqAi77LJL1OV9Ph+qq6vDbmrV58ZptbW1cQdk7ARjGJAhIiIiSm9CCDQ3N9tuYVJZWYnm5uaY95OZmam7RrRKaquToqIiDgJP5EIMsBARERGRa2VlZXUMtmmHGpCxCsAYnxsDMnYoioLi4mL07t27o+WOmozT1NfFxcUMyhARERHFoa2tDdXV1aiqqgp7ND5Xr/FiHfgdALKzs3WBEWMlG2Pq1asXAyZE3QADLERERETUbcQTkKmqqrIVjKmoqEBdXR2EEKipqUFNTQ1++eUXW/tRFAUlJSURgzDGaRyAlIiIiLqa1tZWywCJ1WM8rUsAIC8vL2KAxBhAKSwsZMCEiMIwwEJEREREZCErKwv9+/dH//79bS3v9/tRU1PTUSBgLCAwe11fXw8hBKqrq1FdXW07bx6PxzIoo07r3bs3SkpKOlJxcTFycnLi/TiIiIiIbFG74VKvbyIFSLTPW1tb49pfRkZGWOUU42NpaakueMKB34koGRhgISIiIiJKkszMTJSVlaGsrMz2Oj6fL2pQxjitoaEBwWCw43UsCgoKdEEXbTIGZLQpLy8v1o+DiIiIXC4QCKC+vh61tbUdLXQjJe1yPp8vrn1mZWWZBkciTevZsydblxCRIxhgISIiIiJyUFZWVsfgpna1t7eHBWXMAjPGAg+1NmlzczM2bdoUUz5zc3Mtgy+RAjUFBQUs8CAiInJYe3u7aZAkWuBE7f40XtnZ2VGDI8Zp7IqLiNyEARYiIiIiIpfJzs6OaSwZAAgGg6ivr7dV+9SY/H4/2trasHXrVmzdujWmvGZmZqJXr14dqbi42PK12Tx2aUZERCT/xxsbG1FXV2eaamtrLafX1NSgqakpof1HagFr7I5U+zo/P5/BEiLq0hhgISIiIiLqBjweD4qLi1FcXIzhw4fbXk8IgcbGxpiDMtXV1Whvb4ff74+rKzNVbm6u7WCM8XVRUREyM3nLQ0REzlNbkVoFQiIFSerq6lBfX49gMJhwPnr16mW7RaoaMGGFByIia7zbICIiIiIiS4qioGfPnujZsyeGDh1qez0hBFpaWiwLjSK9rq2tRX19PYQQaGtrQ3l5OcrLy+PKf35+PoqKijreg9nzaNMKCwvh8Xji2j8REbmf1+tFQ0MDGhoaUF9fb/o80rz6+nrU1dUhEAgknJfs7OywSgXGZJyvdt1ZVFSEjIyMJHwiRESkYoCFiIiIiIiSTlEUFBQUoKCgAAMHDox5fW1XKNGCMWbz1K5QWlpa0NLSgm3btiX0fgoLC20HZ9SgTI8ePcIec3Nz2VUKEVEnCAaDaG5uRlNTExobGzse7QZEtMt5vd6k5SszMzPmAIk28X+EiCi9MMBCRERERERpx+PxoKioCEVFRRgyZEjM6/v9/o4CMuOj2TSreT6fDwDQ2NiIxsbGhN9XRkYGevToYRp8MT7aXYbdoBGR2wkh0NraqguGJPq8ubk56fns0aOHaVDdzms1aMIxSYiIuhZeiRMRERERUZeTmZmJ3r17o3fv3nFvQwjR0S1MrMEaY2FfS0sLACAQCKC+vh719fXJeqvIzc1Fjx49OloM5efnIz8/v+N5tMdoyzCAQ0Rql43Nzc0dLQPNnkebb1xWPVc2NTUlZXwRMx6PRxeUjtZtpNXrwsJCdq9FRERhXH2lfNddd2H27NlYvnw5srOzUVdX53SWiIiIiIioi1AUBbm5ucjNzUVZWVlC2woEAqZd1VjVvo62TGNjI/x+PwCgra0NbW1tqKqqSsbbDpOVlWUajMnPz0dubi7y8vJMHxOZx0JMImtCCLS3t3f89ltbW3WP8T5vbW2NGBDpLAUFBaYt+aK19LN6zi61iIgolVwdYGlvb8fpp5+O/fbbD88//7zT2SEiIiIiIjKVkZHRUQs6Wbxery74Eqk2eaTa5VaPam1yn8/XMcZNZ8nKygoLvuTk5CA7O7vjMdbnsa6XmZmJrKwsZGZm6pI6LSMjg4W2XVAwGITf7+9IPp8v7HV7e3tH8nq9tl/Hsqz6Wg2AGAMiQgjHPqOcnBzLVnCxPjcGRQoKCuDxeBx7b0RERLFydYDltttuAwBMnz7d2YwQERERERF1spycHOTk5CTUDZoVtYZ8pCCMsdZ8pFr0dpZRx7sBZFDH5/MlZdybVMrIyAgLwkR7bTYtIyMDHo8nLFlNT2ReZwaFgsFgWAoEAqbT7c43WyYQCOiCIFbBETvTnQxcxCtSC7FYn0cLiOTl5bHbQCIiIo1u9a/o9Xrh9Xo7Xjc0NAAAmpub2b0YpVx7e7vTWSAiIiIiskVRlI4ATklJSafsMxAIRAzQWLUEiPY83vW0Be+BQMAyz1bzqGvRBsaMrZ2S/Vp9npWVFTV4kp2dzZZUREREDupWAZZ77rmno9WL1uDBg1FYWOhAjqi7yc/PdzoLRERERERpKSMjAwUFBSgoKHA6K2GEEFFbQZi1ioi2jPo61pYcVvPsrNOZn1mkljR2WtvEso7d1kJ2ljFO6+yWP0REROQeikiz9q+33nqraRBEa/HixZg4cWLH6+nTp2PKlClRW6GYtWAZNGgQ6uvrk9oXMhERERERERERERERdW1p14Ll8ssvx1lnnRVxmaFDh8a1bbWJOxERERERERERERERUSLSLsBSWlqK0tJSp7NBRERERERERERERERkKe0CLLHYuHEjampqsHHjRgQCASxfvhwAMGLECPTo0SPq+oWFhaivr+f4K0REREREREREREREFJO0G4MlFueffz5efPHFsOmff/45Dj300M7PEBERERERERERERERdQuuDrAQERERERERERERERE5weN0BoiIiIiIiIiIiIiIiNyGARYiIiIiIiIiIiIiIqIYMcBCREREREREREREREQUIwZYiIiIiIiIiIiIiIiIYsQACxERERERERERERERUYwYYCEiIiIiIiIiIiIiIooRAyxEREREREREREREREQxYoCFiIiIiIiIiIiIiIgoRgywEBERERERERERERERxYgBFiIiIiIiIiIiIiIiohgxwEJERERERERERERERBQjBliIiIiIiIiIiIiIiIhixAALERERERERERERERFRjBhgISIiIiIiIiIiIiIiihEDLERERERERERERERERDFigIWIiIiIiIiIiIiIiChGDLAQERERERERERERERHFiAEWIiIiIiIiIiIiIiKiGDHAQkREREREREREREREFCMGWIiIiIiIiIiIiIiIiGLEAAsREREREREREREREVGMGGAhIiIiIiIiIiIiIiKKEQMsREREREREREREREREMWKAhYiIiIiIiIiIiIiIKEYMsBAREREREREREREREcWIARYiIiIiIiIiIiIiIqIYMcBCREREREREREREREQUIwZYiIiIiIiIiIiIiIiIYsQACxERERERERERERERUYwync5AVyaEQLCuEr5tG+Av3wB/5RYInxcI+ABPBpTMbGQU90Fm/6HI7DcEmaUDoGTwK6H0ILxt8FdshL98I/zbNyDY1AD42+XMjEx48gqQ0XcwMvsORma/IfDkFzqbYaIdhAgiWFspz7vbNyJQtRXC1w4E/ECGPPd6isvkebffYGSU9IeSkeF0tokAAMG2Fvi3b4S/fAN829ZDtDTK4xcAMrPgyeuBzH5DkNV/iDz35vVwNsNEO4hgEIGacnnuLd8Af9U2zbk3E0pWNjJ690NWP3nsZvTuB8XDcy+lh2Brc8ex6yvfgGBLI+D3AQCUrGwoeYUd593MvoPhyStwOMdEkggGEKguh3/bevjKNyBQs12ee4PquTcHmb37y2O3/1BklJRBUVjPltJDsKVxR3nZevi2bYBoa5bHr6JAycyCp6AImf2HIGtHmZknJ8/pLBMBAEQgAH/VVnnu3bYegdrtED7fjnNvFpTsHGSWDpDHbv+hyCjuw3NvF6cIIYTTmehq/NXlaF32BXxrV0K0t8mJHg8QDIYvrCiAAAABeDKQOWAY8vY6BFmDd4OiKJ2ZbSIIvw/ta5ai7ceFCNZWyImKBxAmx65hnlJQhJzdJyJnz/1500mO8FduQdvyefCtXxMKBlodv9rpGZnIHLAzcscdjMyBw3nupU4n2r1oW/WtPPfWVcmJkc69mmsKT2ExckZPQu4e+8GTm99JOSYK8ZVvQOt3X8C38aeOAmlb597MLGQN2gV5ex2KrAHDOi2/RKqgtxXelYvQ9uMiBBtq5ESb172eolLk7rEvckZPgic7t5NyTCQJIeDfuhat382Db/MvMpAN2Dz3ZiN7yO7IG38oMvsO6rxME+0QbG1G2w8L0bbyGwQba+VEq/IyQH/uLS5D3pj9kTtqHyhZOZ2UYyJJCAHfpp/lde+WtTvOvcqOcl2T41d7XGflIHvn0cgffxgy+wzo1HxT52CAJUmEEPBvW4fWpZ/Bt+GnyBfnkSgKIAQyivsib+LhyB4xljWrKeWCbS3wrvwa3hULILyt8W9IUQDFg5xR+yBn7EHI6FmSvEwSmRBCwL/lV7Qt/Rz+rWsTOPfK9TJKByB3/KHIGrYHFA9rmFBqBVua0Pb9ArStWCBbuMZNATIzkbvHfsgddxAyevRKVhaJTAkh4NuwBq1LP4N/2/rEz719ByF/4hHIGjqStfso5YJN9Wj9fgHavl+4IygY7+2wAmRlIW/MgcgdcwA8BT2TmU2iMEIE0b52JVqXfoZAxeaEz72ZA4Yhb8IRyBq8KysYUcoFGmvRumwe2n74GggGgASKIpXsXOTtdbA897I1N6WYCAbQ/uv3aFn8KQLV2xI+92YN2hV5E49A1k6s3NmVMMCSBMHmBjTN/Z+sPRLvDy2MAkDAU1iMHr/7I7L6Dk7CNon0hBBoX70YLQtmJXyRo6N4ACGQM/Yg5E06hkFCSolgYx2a5r6GwPaNyTv37ghye4pKUXDMOcjs3T/xbRIZCCHQ9v0CtHw1Wx63STv3ygv0vIlHIm/vIxkkpJQI1FWhcc4rCFRu6ThnJkytYNS7Hwp/dy4yissS3yaRgRBBtC79HK3ffiyP22SeexUP8vf9HXL3OphBQkoJf3U5mj56GYHaiuSfe8sGofB3f2TlOEoJEQyg5ZuP0brkUwAWNf3joSiAJwMFB52E3D33Z0E1pYS/YjMaPnwJwfrqJJ571SD3zvLc26Mo8W2S4xhgSZBv0y9onPMKhLcteX8UWjv+JPL3Px654w7mnwYljWj3onneDPh+/T6l+8nosxMKjjkHGYXFKd0PdS/t61eh+dPXAZ8vRedeD6AoyD/wJGSP2ofnXkqaYFsLmj55Hb71q1K6n8wBO6PwmHNYo5qSyvvLCjR9+joQCKTu3OvxoMfhpyFntwnJ3z51W8GWJjR+/Cr8m39N6X6yBu+GHkf9gd3lUtIIIeBdvQTN82YAQZG6c29mJnoceRZyhu+Z/O1TtxVorEPjRy/L1q4plD18T/Q48kyO0UJJIyvEfYXmL9+VDV1TdO5VsnNQeMwfkT109+RvnzoVAyxxEsEgWhfPReviT5IXxYwia8hI9DjqLPaxTgnzV21F80cvI9hUl/pjV/EAmVkoOOIMZA8bndp9UZcnAn60fvMRvCsWdNo+s4bviYJDfw+FfaxTgnzlG9D44UsQLY2dcu5VsnPR45hzkD1419Tui7o84feh+ct34V35TaftM3vkRPQ4eDKUrOxO2yd1Tb7Nv6FxzssQba2pKSDRUjxQcvNReOx5HFuIEibavWj64m20//xdp+0zZ8/9UXDgiVAyMjttn9Q1ta9fjcaPXpGD1qf83KvAU1CEwuPPRxbHFqIEBb2taJr7P7Sv/bET9iZ7L8qbcDjy9/sdFA97f3ErBljiIIJBNM19De2/rOjcHSsKPD17o+i0y9jPJMXNv209Gt97LrldgtmUf8ipyBm1T6fuk7oOEQig6aOX4d/4E+LvLz0OigJPST/0PPkvUHIYZKH4tG/8CY3vv5Dcbmmi2VEBpMfR5yBn13Gds0/qcoTfh4ZZz8G/dR06+9yb2Xcwep58CYMsFDfvbz+g6aOX5YvOPPcCKDzufGQPG9U5+6QuR7S3oX7m07I7xk69Z1OQNWgECk+4kEEWilvb6iVomvtfqIXHnWJHd409T74E2YNGdM4+qcsJtrWg/q1psjvGTi4vyx6+JwqPPZdBFpdiB7ExEkKg+Yu3Oj+4IneOYEMNGt55GsFEBiKnbstfuVkW8DkQXAGAlnlvo/2X5Z2+X3I/EQyi+ZP/wb9xDTq1gA+Q596acjS+/7ysgUUUI9/WtWic/Z8dXXt04vG7Y19Nc19D+7qVnbdf6jJEIIDGD1+Ef1snB1cAQAj4t29Ew/v/gQj4O3ff1CW0b1iDpo9e6dzANtCxv8YPX4Jv0y+dt1/qMoTfh4b3XnAguAIAAr5Nv6Lxo5chgoFO3jd1Bd5fv0fT3P/teNXZ594gGmY9C9+2DZ23X+oygu1tqH/nKQRqKx0pL2v/7Qc0zv0fRKpbfFFKMMASo9aln8G7arFzGRBBBGorZBcjvOChGASb6tD0/n+AgM+RPwtV86dvpLwPVup6Wr/5CL61PziXASEQqNyM5k9e5wUPxSRQV7kjsB1EpxdQq4SQ/V9XbHZm/+RKQgg0z3sHvg0/O3fdIAT8W35D02dvgo3uKRb+qq1o/PAlR695EQyiYfZ0+Gu2O5cHch0hBJo+eR3+8vUOHr8CvnWr0LLgfYf2T27lK9+Axo9egZPXvAgG0DDrWQQaapzJA7mSCAbR+OErCFRtTX2XdhG0//QdWhbNcWz/FD8GWGLQvvZHtC76yOlsACII/+Zf0bzgPadzQi4h/D40zv4PhLfV2RtNmRs0fTAdwcY6h/NBbuH96Tt4l893OhuAEPCtX4m2xZ84nRNyCdHehoZZz0P4nA1sA5AFfe89j2BLo7P5INfw/rAQ3lXfwLFCkg4C7T99h7Zl8xzOB7lFsLUZDe89DwQCcPb4FUDAj8ZZz7H3AbKtdelnaP91hfPXDQDavl+Atk4ce4vcLdBUj4ZZzzlaOA0AEAKi3YuGd59h7wNkW8vXH8C3YXVanHtbF38C78/LnM4GxYgBFpuC7W1o+uwtp7Oh4/3+K/jK2fSRomtbMR/Bmu3OX+wA8oLH146WBbOczgm5QLC1CS1fvut0NnTavvscgepyp7NBLtCy+BMEG2vS59zb1oLmhbOdzgm5QKCxDs1fpVfN5ZZFHyFQX+10NsgFWr7+EKKlMU3OvUEEm+vR+s3HTueEXCBQW5F2x0rzl+8i2NzgdDbIBZq/fBfC25YWBdSy55cqtCz51OmckAv4KzajdennTmdDp+mztxBsa3E6GxQDBlhsav12LoQ3zQ5uRUHz5zMggmlw80BpK9BYi7YlnzmdDT0RhG/9Kvg2/ux0TijNtS76CPCnW80jBc3zZ7K7GorIX7Mdbcvnp8dNpkoE0b5mKXzsppGiaFkwa0e3dmlECDTPT6+AO6Uf//ZNsuVVWp17Bdq+/wr+qq1O54TSmBACTfNmOp2NcIFA2gXcKf20b/pVjlOcDoHtDgKtSz9DoK7K6YxQGhMiiKbP3wKU9CoeFz4vWr7+0OlsUAzS6whKU/7qcrSt+DK9LtQBOSZA9bYd3TcQmWtd8H76HbsAoChomf8OB64lS/7tG9G+Zkn6Hb8iiED5evh+XeF0TihNqWNXAIrTWQmneFg5gyJq3/Qz2n/7Ic0KSSArZ2xYjfb1q53OCaUpIYJomvd22hWSAJAV4754m5UzyFL72h/h3/xLWp57239eBt/WtU7nhNKUCATQ/PlbgJKG170CaOK5lyLwrl4C//ZNaXjuFWj74WuOoekiaXj1mV7SupBkh5aFsxFsbXY6G5SGfJt+gW/9yvT7swAAIRBsrIV3xQKnc0JpSIggWubPTM9Ckh1avnofot3rdDYoDbX/9gP8W35L03NvEIGacnhXLnI6J5SGRCCA5i/eTs9CEkAWUs97B8LvczonlIa8q5cgULE5bc+9/vINaGef6mRC+NrRPH8m0rbMQQ0QBgNO54TSUNv3CxCoq0y/SnGArJyx8Se0r1vldE4oDQW9rek9trWioOnzGQwQukT6llyliUDFZvi3rk3PC/UdRHs7vKu/dToblIbavvs8fQtJdmhbPg8iwIt10vNvWYtA1db0Pve2NqH9l+VOZ4PSUOvSz5C2hSQ7tC75DCKNf1/kjPb1qxCsr07PQhKgo3JG+9ofnc4JpRkhBFrTrUtcE27II3U+768rIJobAKTvuTdQs53dO1MYEQyiJe3PawpaORYLmfCuXgLR1up0NqyJIPzbN8K/bZ3TOSEbGGCJwrtmaVrXoJYE2lZ9y6gm6QSb6nYEB9P7uBDeVvg2/eR0NijNeH9yw7lXgXfNEqczQWnGX7MdgcotSNtCkh2CzfXwb13vdDYozXhXL0n/c6+iyHwSafi3b0KwodrpbEQVqN0Of+UWp7NBaca7enHaV4qD4uF1L4Xxbf4ForXJ6WxEIeAv38CxWChM26pvkO73bFA8aFu91OlckA1pfgflLBHwy0I+F9TwDNZV7SjQIZK8Py9L/wt1AFA8aF/DPwwKET4vfOnY/38YgUDFJl6sk447KmZAXqyzoIQ0gq1N8G1Ynf7nXiHg2/QLgk31TueE0oh3jQuCg8COQmpe91JIoKEW/q3r0r5SHEQQ7WtXIuhN49re1OnaVi92yblXQRvPvaThr96GQNU2p7MRnQjC+9N37B7XBVxwJnRO+/rVEO1tTmfDHtYoIQ0hBNpXL07/C3VA9ou6fjWCbS1O54TSRPtvPwIBv9PZsEdR0P7zd07ngtKECAZlLdR0L6AGZEHJL8shfO1O54TShPfn5e64btjBy7EsaAdZKe4715x7vWuWsHtc6iBbbbugUhwABANo/2WF07mgNBH0tqH91+9dcu4V8K76lt3jUgdXtNpW+dvZPa4LuORocoZsAeCSj0iNavIPgwAEqrYi2FDjdDbsE0H4+IdBO7T//J17bjSFkDfGRAD8W9e5oJsEDb8P7etXO50LShPuqlUvXJZfSiXfhjWAz+t0NmwT3lb4Nv/idDYoTXjXLHVRcFvhdS91aF/7I+CiYHGwqQ7+8o1OZ4PSgBACbauXuCM4CLAFlku4JHrgDH/5Bvf84CAv1oONdU5ng9JAoGKz01mIjccDv9vyTCkhhJDHgmtuNAHRVI9gW7PT2aA04K/Y5J7gILDj3LvJ6VxQGhCBAALVW53ORkwCNdvZXQIBgLxu8LjotlbhuZck0d6GYL2bupqV1+ms1EnAjuteN517ocC/nedeAoLNDe6qFCfkOEKU3tx0NuxUQW8rRHOD09mIWaDKXTfHlBqB6m3uutgJBhGo4hhCBHnedVEtVFWgutzpLFAa8FdvA+CiAEswCH8lrxsICNRVAkG3FZgJBGq2O50JSgP+qq0uO34F/G7o951Szu/G68eA3109JVDK+Cu2uOvcqyjy/4K6PVeMvWIg2loQbGl0OhsUQabTGUhXqSgsW/jrJkz7dDFWbNyO7Q3NeOmik3Hc2F2StwPFA3/1NmTvvEfytkmulOwbzYW/bMLjc7/Bik3bUV7fhJcvmYzjx+2atO0DO2qiiiAUt3TLRykRqE7+xU7qj18FgepyZA0cnsRtkhvJ1ldJPPem+roBYHCbAKTo3NsJx6+/ehsyy3ZK6jbJffyVyT2PpfzYFQKBCp57ycXn3qptyCgqTeo2yV2EEEmv3Lvw183492dLsGKTPHZf/PNJOG7MiOTtQAST/n9B7uSv3ip7HUhirxkpP34hr3uz8wuTuk1KHpZkWkjFxU6L14c9BpbhvtOPSPq2JYFAlQtrwVBSCSGSHiBsbm/HHjuV4b4zjkzqdnUCfgQbalO3fXKFQE150rtYSvnxqygp+c8gdxEBP4J1ye3mI/XXDWptKBc1kaeUCFSXJ73la8qPX4+HrQcpJb0OdMa5N9hYC+FrT9n2yR38bjz3Kh5e9xKCTfUQSe51oKXdh9ED++De0w5P6na1AjXbIdzU6oZSIhXlpik/fhWF5b1pji1YLARqKuTFThJPvkeO3hlHjt45adsLI4SMxFK3JloaAX9yb9iOGj0cR41Ofe38QO12ZBT1Tvl+KH0Faiogu1hKXm2SlB+/IshCPkKgvjrp47al/Lphh0Dtdnjye6R8P5S+/DXlSe/mI+XHb5DnXgICtZVJ32bnnHsFAnWVyOwzMMX7oXQWqHbhuRdix/U6dWep6KLzyFHDcOSoYUnfrk7Aj2BjLcscujl/1dakj/ma8uNXUeBn17hpjS1YLAhfWzLL9zqNaHff2AWUXK4+BtpZk6+7Ez5v0gupO4Nob3M6C+SwZNfi60yu/t+gpBBed57Dgjz3dnvC595jwM3/G5Qcor3V6SzETghe95Krz1+87iVXnsOEcPU1T3fAAIsFEfDDlRGWgN/pHJDDRMDndBbi5ua8U3IIv0uPgSDPvd2ei/9/hYvzTsnh2nOvW/NNyeN37/lLuDjvlBxuPQZc+59BSePma0c3552Sw5XHgBCuvubpDhhgsSKEK+MryW7mRi7k5mPAzXmn5HDpMSBcmm9KIlcfA27OOyWFW49ft+abksjFxwCPX3LrMeDWfFPyuPkYcHPeKTncegy4Nd/dBAMsVjIy5TAAbpPBYXW6OyUzy+ksxM/NeaekcOvxq/DcSy4+Bnj8klvPvcjksdvtufj8pfD47fbcegy4Nd+UPG6+dlQyMpzOAjnMncevwuveNMcAiwUlMwtQ3Bdhce0NMiWPK/8sJHf+0VFS8dxLLuXqYyDDxXmnpFCysp3OQlyUTHfmm5LH1edeN+edksOt5zCX/mdQ8vDcS67mxmNAUdz9u+sGWJppIaOoNOnNr5q87VhXWdfxekN1PX7YXIHi/FzsVNIzKfvIKC5LynbIvTw9igBPBhAMJG2bTW3tWFdZ2/F6Q3U9fti0HcUFeUk7dgHA06s0adsid8oo6g0fFCSzy4+UH7+KAk9x38S3Q66W0bN30rfZGdcNAJDBc2+3l9GrD3ybfwGCwaRtM+XHr8fD616S92xJ1mnn3hTkndwls7gMgYrNgHDZuZfHbreXivt247G7MRXnXkVBRs+S5GyLXCuzpC/a66uSWubbGcdvRq8+SdkOpQYDLBYySvsnPcCyfGM5TnnsjY7Xt7zzBQDgrH1GY9q5xya+A48HGaUDEt8OuZriyYCnVx8Ea8qTts3lG8tx0iP/7Xh984zPAAB/2HcP/Pu845OzE0XhHwYho3f/pN5kAp1z/Gb07peU7ZB7Kdk58PTohWBTXdK2mfLrBgDIzIKnsDg52yLXyijtn9TgCtAJx28wiMzS/olvh1xNyS+EkpMH4W1N2jY749yr5PWAJzc/Kdsi98oo7Q/85LIyB557CTsCxEmu1Lli43acMu3Njte3zJwHADhzn1GYds7vkrIPT1FvtgIgWW66bhWSWakz5cevCMqyEkpbDLBYyEzBgXvgLoNR9fi1Sd9uh2AwJfkm98nsMwDttRVJK6g+cNfBqHnihqRsy4qnqJRdhBEySpIfqEj58SsEz70EAMgoG4hgc33SKmik/LoBMqipuLBbPkquVASJO+f4ZXC7u1MUBRm9+8O/dW3SttkZx25mH1aKox3nsCRX6uysawfq3hSPBxklfRGo2pq0bR6wyyBUPnpN0rYXRlGQWbZT6rZPrpFZmvxKnSk/fgEGt9Mcx2CxoOQXQsnOdTobMcvgD46gXvQm92I9pRQFmX0GOp0LSgOeot6yNpTLsJCPACCz9wAALgpWeDw89xIAIDMFwe3OwEI+AiDPYx4X3dZ6PMgo5bmX1OsGl1EUds9IACCDFW4698KlvzlKOlcGKtjrQNpz19mwEymKgow+O8FdBSUZ7GKJAKjdLLkowAIWkpCk1oZylewcKAVFTueC0kBmnwFJrw2VUsEgMtm1KEEOcu9xWZ/knoIieHLynM4GpYGM0gFJ7+IupXjupR08+T2g5BY4nY2YZBSXsdcBArDjujfoojIHIdh6kAAAnp69XTfQfWbpAPY6kOYYYIkgZ5cxcE0rAMWD7J1HQ8lwX81vSr7M/sOguKnQQQhkDd/D6VxQmsgeMRauCW4rHmSPGMuLHQIAZA3a1V0X64qC7J1HO50LShM5u+4FuOVcpniQves4p3NBaSJ72Ch31aLOyEDW0N2dzgWliZxdxwGKS45fRUH2LuOczgWlieyd94Rryssgx0vM2mkXp7NBaUDxeJAzYox7zr3YcZ1Oac09R5MDsncZ556uakQQOSP3djoXlCaUjAxk7zbeHX8YioKMvkOQ0bO30zmhNJHtposHEUTObhOczgWlCSUrW147uOTcmzV4N3jyC53OCaWJnN0muKf1qwgiZ/eJTueC0oQnNx9ZQ0e55NzrQfbOe8Ljwq6oKTVydp/ontavQvC6lzpkFPZC1k4j3FE5Q/EgZ7cJUDLZ+oqknJF7u+fcqygMsLiAC65CnePJyUP2sNGuuFhXcguQNYjReArJ3m2CO/4whEDOSBaSUIinoCcydxruiot1T2ExMvoOdjoblEZyd+e5l9wpo7gPMsoGwQ0tCDN690Mmx74ijVy3FJSIIM+9pJPRZyA8vUqdzkZ0ioLM/sOQ0ZNjAFBIzqh93FE5gxUzyCBrp+HwFPR0OhvRKR5kDRkJT34Pp3NCUaR/5MBhOSNdUKNE8SBn9wlQ3NLahjpFZukAeNwwAKEnA9nD93Q6F5RmZG2+NL9YVxRk7z6R3YORTuaAYfC4YUyerBxkDx3ldC4ozeSO2htu6O4jZ9Q+TmeB0kzW4N1c0T2ukteDXdSQjqIoyB21T/pXLBICOaPYYwbp5QzfwxXd43p6liCzHyvFUYiieOT1ZNqfe4M7rs8p3THAEkXW4F3hKSxO8x+dQO7ofZ3OBKWh3DEHOJ2FyBQF2buNh8JuEsgga9hoKHlpXktD8bAmFIVRFA9yxx7odDYiUxTk7rEvFBfcEFPnyt5lXPr/J2dmI2fX8U7ngtKMkpGB3D33R3q3wFKQO+YAKG4aL4Y6Rc7uE4E0HzheyclHzvAxTmeD0oySlSPLotK6vAzIG3cwK8VRmNzRk9L82FXgKejJSnEuwau7KBRPBgoOPTV9a1IrCnLHHYyM4j5O54TSUPbue8NT0i99u7nLzEbepGOczgWlISUzC/kHnOh0NiLKnXg4PD1c0FKBOl3u2APh6VmSthfsSk4e8vY+0ulsUBry5OQhf//jnc5GRPn7HQtPXoHT2aA0lDfhcCjp2oWGosDTowh5ex3idE4oDXnyC5G/z9FOZyOi/ANPhJKd43Q2KA3lTzo6fStnKAoyevXZEYAn0svoWYK8CYcjfStnCBQceirHDnKJNC11TS/ZQ3ZH1tCRaVlIreTmI5+FJGRB8XhQcMjktO3mLm/f38GT7q0UyDFZI8Ygo9/Q9Dv3Kgo8PXohd+zBTueE0pSSkYmCQ9K3ckbBgSdxgGWylDNqH2SUDki/AKGiIKO4DLl77ud0TihNKVnZKDj4ZKezYU4IFBxyClsOkqXcsQfCU9Q7Dc+9HmSUDULO7mw5SOY8ufkoOOAEp7NhTggUHH4alAx2p0/m8iceAU9BIdIuyKJ4kDVoF2TvvIfTOSGb0qzUKn0VHHxK+l3sACg48OT0rS1AaSGz3xBk7To+vY5fRYGnpC9yRk1yOieUxhRFkefedBsPQAjkH8xCEoose8huyBo2Or0ChIoHmf2GIHs3FpKQNcXjQcGhv0+/AKEQKDj09xxzkCLKHj4GmQN2Trtzb9bg3ZDFLj4ogrStnCGC6HHY76Gk02+K0k7O6H2Q0Wdg2p17s3cZi+ydRjidE0pjSla2rJScbmUOgGy9kk7leBRRGp390ltGzxLk7XOU09kIUTzIHDgc2buOczon5AL5+x0rA3FpdHIuOORU9kFNUWX07oecdGopoijIGjoKWUN2dzon5AIFB520o0/1NDn3Kgov1MmWrH6DkTN6X6TTsZu9+wRkDdzZ6ZxQmlN2nOfgSZNjF//P3n2Hx3Wc9+L/zinbF70QIMHee5VE9V4sx73FkS0X2UncEieOk9zcXCe/3DjF9o3jEnfHdhJXObFly1aXKFEUJYG9d4IkSPS6/ZT5/bEgRRAguWexu+cs8P08j58bLnbOGV8fDObMO/O+ABQF4ZvfxLGXrso3cyF8C1Z56J1NwL/yRmj1093uCHmcEAqid7zd7W68RggIXUf4xje43RMqA755K7Lv9x4KEAY33AGtusHtbpAD3nl6ykBw3W3Q5y53f8IjFCiRSkTvfQ8n6pQTJRRF5L4H4ZWFktBNb4I2bZbb3aAyEbz2bmjT53tj7K2sQ/iOd7jbDyobakUNove91+1uXBC5453Q6prd7gaVifDNb4Ta2OL+y6ZQoNY1I3LrW93tB5UNraYRkbve7XY3Loje+wDUqjq3u0FlInL7O6BWN3pi7NWaZ3s39RN5jtbQgoiHgizR+z8ANVrldjeoDAghEL33ASgV1R4YewX0WUs8X5eLxmKAxQEhFETv+t2RvNQu/X+dEBC6D9Hf+SALfJIjWtNshG57m9vdgH/ljfAvY2owyp1QVITv+T0olXXujr3+ICL3v59pGckR36xFCN/yJre7geCGu+BftMbtblAZEaqGite/H0qk0sWxV4EIRVHx+g8wLSM54p+/EqGN97ndDYRu/B345ixzuxtURs6/64tg2NWxV6moRvS+B1m7ghwJLL0GwfV3uN0NRG5/O3wtTA1GuVP8QVS+8cMQfhczvwgFak0jovc9wGwvZYj/izkkdB8q3vhhqNX1pZ/wCAGoOire9PvQahpLe2+aFPyL1iJ4k3vFP32L1yN4/f2u3Z/Kl+IPIvrGD0OJVrky9grdj+gbPwy1oqa096ZJIbDielcX+gKrbvJWmlMqG0owgoq3/CFEKOLC2KtABEKofMsfQglXlPbeNCkE1t6GwNrbXLt/cMNdCK72UJpTKhtqtAqVb/7DkYW+0o+9SrgCFW/+Q27opLyENt4H/4rrXbt/+KY3IMANnZQHtaoOlW/5QwjdV/ogi1CgVtai8s1/CIUbOsuSkNJrVdTKg52MYfix/4TZfqw0NxQCSrgC0fsehNbYUpp70qSVPtiKxKb/yRZRlHaR7yYASPhX34zgtfcyEk8TYscGEXv8P2F1nS7NDYWAEq1G5N73Qq2dVpp70qSV3LUZic2/AiCLX8RWCEBKBK+5C8ENdzGlKE2INdSH4Ue/B6u3AyUpAioE1OoGRF/3INSq+uLfjyYtKSVS255FYutjI1PSEoy9AELX34/A6ps59tKEWP1dGHr0e7AHe4r/7AIABNT65uzYG60uwf1ospLSRmLr40i++tSFOWlRCZGtNXjLmxF0MbhDk4PZfRZDv/4u7NhAicbebMaZitc9yE1FZYwBlgmQto3ktqeRfPnJok/Y9TnLELnznVD8waLdg6YWq7cDscf/A/ZQX/GeXaFA6D6E73wXi4JTwUjLQvLVJ5DesQnnA3jFoi9YjfAtb4bQ/UW7B00tZudpDP/2B7Djg8Ude/1BRO99APoMpkegwpCWifjmXyO958Wi38u/7FqEb3oj04JRwRhnj2P4sf+ATCaKt7lICIhQFNF73wO9aXZx7kFTjjQyiD3/P8gcaC36vQKrb0Zo430Qqlb0e9HUkGk7lB17M+mijr1KpBoV9z8IrWFGce5BU46dTiH2zE+RObKreDc5vyFuw50IXXs3hMKUjOWMAZYCMNqPvTZhL+RCn1AAAYRu+B0EVt7AHVBUcNJII/78L2Ac3pF93go16Rn5Q6E2zkTk7t/L5m8nKjCj7RDiT/0I0kgXdqFaCEAoCN38JvgWr+fYSwVnp5OIPf1TGMf3FnZX38i1tBnzEb373VBC0cJcl+gi6WN7EHvqx4BpFH7sVTVEbn8H/AtXF+66RCPsZByxJ34I4/Thooy9+uwliNz5LiiBUGGuS3SR9MFtiD37MGBbBR97he5D5K53wzdnaeGuSzTCjg9h6Lc/gHn2RFHGXt+C1Yjc8XamVaKCk1IitXcr4sXI/jJS4zV673vgm7mwcNcl1zDAUiB2Oon0npeQ3LkJMpWY2MVGFvf8SzYguOYWqFV1hekk0WUY7ceQ2v4szDNHJxZoGWmrVDciuO426PNWMApPRWUn40jv3YLU7heBTGpiFxMCUFT4l14D/6qbmBqBikpKCePUISRbn4F57kRBxl61fjqC626Hb95yCLcK49KUYMeHkNy1Gak9LwKGgYltMBKApiGw4noEVt0ElZsyqIiktGGc2I9E6zPZdKMFGHu1abMQXHc79NlLuCmDisoaHkBq5/NI7X0JsCxMeHOn7kdw1Y0IrLwRSihSkD4SjUfaNjJHdyPR+jSsnrMFGXv16fMQ3HAH9JaFHHupqKzBXiR3bEJq79bsczvBZXThDyK45hYEVt7ATRmTCAMsBSZNA+mDrUhuexb2cH/2Q0UB7Cv88Tj/x0DK7CRn5Q0IrLqRO0+p5Myes0jt2ATj2O7s85jLxOei51trnoPA2tugzVjASQ6VlDQySB98FakdmyDjQ9kPr/b8CjHyXiohfAH4V90I//KNUAIs6EmlZXSeQnLbs9kTLYDjsVdvWYjgutuhTZ/LsZdKys6kkN67FckdmyCTseyHVx17X/u5CIQQXHNLduxlGlwqMePsiezY23Yg+0EuY+9F39HnLEVw7W1MB0YlZ6cSSO19KTvvTScBiJF5bY5jbyiK4NpbEVh6DQR3/VMJSSlhnDmCZOszME4fyX54tfUy4KLnV8A3fwVC62+H1sDaxFRadiKG5O7NSO18ATKTGr2WezkXjb1KpArB9bcjsGQDhO4rQY+plBhgKRIpbVj93TA72mB2tMFoP54tTncJEYxAa54Dra4ZajAI35JrmfOUXGenE7A6T8PsOAWz4yTMzlPZVCAXUxSodc3QmmZDi1ZCnb2cO/7JddK2Yfd3wexsyz6/Z4+/Fuy+iAhFoTXNgTZ9LtS6Jmh10zn2kuvsZBxm56nsvOHsiezYa5mjv6So0BpmQGueA2vWcoQrq6FGWAyR3CVtC1ZvR/bZ7WiD2X48Wxj0EkqkElrzXGSaFgC1zaiZNo0nXcl1diIGs7MNxrk2mOdOwOw6M3bsVTVoDS3Qm+fgeNU8LJnVBJWb4chl0rJg9ZzNjrsdbTDPnsjWeLuEEq2G3jwX/Q3zodc1obGpCULhSVdylx0fgnHu5Mi89zjMrvZsCryLaTr0xpnQmuegvXYh5rVMgxrkZjhyl7RMmN3tMM+1wTh3EsbZ45CJ4THfUyproU+fC2PGUvhrGxCqa2CWgUmMAZYSkpYFaRnZhWpFhdD0C8U7rY4TSL/0C/hvfBvUekbiyVuktAHTzD6/UmafW1W/MDE3dj4BBCLQFl3HPxjkOdIyX3t+VS079o4EU+xUDNZQD9TqJigsZE8ec2HsNbMpmITmAzTtwjjbNZSAT1VRGfLx5Ap5jrRGnl3LHDP2tg8mcaw3jrXTqxDxM7hN3vLa2JsBILLz3pGxV0qJH+5sx7zaEK5tqebYS55zpbF317lB7Do3hDcunYbKgO5yT4lGy469BqRhZOtTXDT22lLil/vOYWFdBMumcWMReY88v95gmdm1Mk2HULObiDqGUuhPZjCvLgKfyvWyyYr/y5aQUFUovgCUUBRKIHQhuAIA9mAXYFtIb/kf2ANdLvaSaCwhFAjdByUQhhKMQOj+C8EVaVuQiSHI3jOwju8AY7bkNULVIPwjY68/OOqkijQygJSw+jtGFrGJvOPC2Bs8P/b6LgRXbClh2RJJw8Rwis8ueY9QNSj+4LhjbyxjwrQldp0dRMqwrnAVotJ7beyNQAmGR429CcNC2rKxvyuG3R1DLveUaKwrjb29cQNJw8ZvDnYhwbGXPCY79vqhhMaOvbG0CVsCB7tjONoTd7mnRGMJ7eKxN3AhuAIAKdOCYUmc6I3DtLleNlkxwOIR9kB39v8wM0i9+HPY8QFX+0OUK5kcvpBT0u44Bvv0fpd7RJS77O5UANKG2d+RPe1CVAZM67Vc1fG0gRiDLFRGYunsWJu2bOw8OwjDyrPQLVGJ9SZeG2u3tQ/icHfMxd4QOdObyM57h9ImfnuwCxmTYy+Vh4GL5rm7zg3izEDSxd4QOZMcCWinTRsn++KwuSl5UmKAxSPswYtOraTiSG/+OWSKkXnyPnlJMNA6vQ/WuaPudIbIoQsBFgCwTZgDnZCX5v4l8qBLF6SHUxkkMwwQkvdJKRFLvzbOJgwLu84OwuKOPioDfYnMqH+/2NaHtv6ES70hyp1py1GL1D2JDJ440s2xl8rCYHL0RqJXzvSjK5Z2qTdEuTNtG4b12jibyFg41Z9g5pdJiAEWD5CmAXlJEWYZ60fqhZ9BpjlhJ2+7NMACANbx7bA6j5e+M0QOSNsaW0jRzMDq74S0uaOPvG28Hf8DiTSDLOR5ScOGdclL5VDaZJCFykJfcnSARQJ49ngPTnM3NXlcfzKDS4fY9qEUgyxUFgZSo+e3UgJbTvahm0EW8riUMfadbShl4lR/kkGWSYYBFg+wh3uRnZ6PJod6kHr+pwyykKfJ+OC4n1tHW2F1nihxb4hyN+r0yqjP09maLAyykIeZl0mpxCALeV38Ms/nQMrArnMMspC39SfHpmO0JfD0sW4GWcjT+hLjpxI9NZBkkIU8b2icVLiWlHiRQRbyuMvVGhxMGQyyTDIMsHjApadXRv1sqIcnWcjTZGr4sj+zjr7KIAt51pWK2kszDWuAQRbyJinlZQMsAIMs5G1XKqw8kGSQhbzLlhJD6fHH1vNBljODDLKQNw1eoVYbgyzkZYZlI3WZekEXgixxBlnIm9JXqHU1mDJwaoBBlsmCARYPkLHLB1gAQA52jwRZOGEnb5G2BVwl+GcdfRVW18nSdIjICevKRcGlwSALeZMtxzv3OhqDLORVVwqwANkgy24GWciDYmkTV1oDsSXw9FEGWcibBlNXnhOcGkjiSQZZyINiV5nPng+y9DDIQh6UvsKmOCBbX+g0gyyTAgMsHmBfJcACnA+y/JRBFvIUmYrl9D3ryCsMspDnSPPqi88MspAXWTk+jwOJNFIMspDHJDNXDrAA2TRMDLKQ11zu9MrFLAZZyKOudILlvDYGWciDYumrzxssW2IzgyzkQRnz6s/vAIMskwIDLB5wtRMsF77HkyzkNcncAiwAgyzkPfIqJ1gufI9BFvIY08Gz2M8gC3nM1U6wnMcgC3nN0FVOAJx3PsjSziALeYSU8qonWM5rG0jiqaMMspB3XO0Ey3mWzZMs5C22lMhYuY2lDLKUPwZYPMCODeT8XTnYhdTmn0FmOGEn98nk5euvjCcbZGkrUm+IcielvGqKsFHfZ5CFPMTKcaJ+Xn8ijZTBIAu5z7QlMldJlXAxBlnIS4bSuc8bLAk8dbSHQRbyhIRhwXQwjp7sZ5CFvCOWw+nB88yRIEtvPFPEHhHlJnOF+ivjYZClvDHA4jKZTgJGylmbgS6kXniYQRZyXa4pwi5mHXkFVjeDLOQy2/liM4Ms5BVOTrCc1x9nkIXcl8zx9MrF+pMG9jDIQh6Q6wmA8ywps0GWIWfvekSF5vTZBRhkIe/I9QTLeaYtsflkL4Ms5Donm4rOY5ClfDHA4rJc6q+MRw50ZoMsVykwTlRMTk+wjLSCdZjpwshd0sx9F+qodheCLM4XCYkKxcku1Iv1x1n4ntyVT4AFAPpGTrLk++wTFUIuNVguZUmJp46wJgu5ayiH+ivjOR9k4dhLbsqlBsulzgdZupkujFyUdniC5TwGWcoTAywuy7X+yrhtBzqReu5HsOODBewRUe7yOcEy0jJ7kqX9UEH7Q5QraeW/yCyNNMz+jgldgyhfUkpYeeyGOm8gkUbCQZobokJKTCDA1580sLN9IK/dgEQTZdnSUZqaUW2lxJNHu3GsN17gXhHlZiCPEyznnexP4rcHOx2nuiEqhIxl5/1337QlNp/oxdkhBrjJHfkGWIBskOVkXwI2A9xlgwEWl+V7guU8GetH+rkfwR7sLlCPiHIjLROYYJo66+QumCd3MTJPpZfnCZbX2mdg9p/L+yQMUb5sKTHREXMwmcFwKsOxl0ou1wL3lzOUNrH9zABSE7wOkVOxjDmhsVdKYNOJXuzrzOf0N9HEDOZ5guW8s8Np/OpA54THcCKn8g1sn2dL4KW2fpzsY+YXKr2MObExczht4nhvPK/00FR6DLC4bCInWC5cIxVDatOPYfW0F6BHRLnJ//TKaHb7IVhHX4WU/KNBpSMdFLi/LMuE2X8W0uDRcyqdQuVCj6UMDCUZZKHSyjdF2MUShoVt7QOIM90dlVA+NSzG8/LpfrSeGeDYSyU1VIDntyeRwS/3deSdbowoH07rr1zOtvYBHOoe5thLJZUuwKnrhGHhWE+cJ7jLAAMsLrNjA4W5kGXBbNvD4stUOnnVXxmfjPVBDvUW7HpEV1OQAAsA2BJ2MsbJOpWMWcDJdcayYXCyTiVUqN3PpiVxbijFsZdKppCLymeHUxjgIjWViJSyYAHClGnjSA9T3VHp5FN/5XLODaUR5yksKhFbShhWYeappi0xmOS8wes0tzswlUkpJ3yCRalphjZrGdQZiyB8gQL1jOjqJnyCRfNBqZ8JpWE2RLgaQojCdIzoKqSUwATrpwg9ACUYgfCHIRTuVaDSmWihWUUAQZ+GoE+DrqoF6hXR1ZmWPeEXzeqgjqaKAOrDfqgK5w1UOvkUuL9YUFcxvzaMBbVhVAX1AvWK6OriGQvWBILRAkBLVRAL68KYVR2CxrGXSmiiJ1iCuopZVUHMrA4h6ufyJ5VOIepWVQQ0VAd9iAY0KFwv8zyOMG4y0oCZybu5/7bfg1rTVMAOEeVOpvPPY6rUzYS6YAOEwsU9coE9sZ1LWu10CM1XoM4QOWNN4KRqyKehIuhjQJtckZrAi6YigGtn1iCoc95A7phISrrljVGsn1HFxRFyxUQWqP2qgrevbELYx2Ujckcyk/9725KGKJY0RDjvJVdMJKWXrggsqI9AU7mRs5zwfy0XTfQEgBzoKlBPiJyT6fwL3NuxXkBw+CF3yAmeXpETCIwTTZQ9gRMshdhJRZSv9ASeP1sCCdZcIRfFJ7DI1xPPMLhCrpnIs5u2bAxP8PQW0UQkJ1AkvD+ZYXCFXDORU9uGLWEUqO4mlQ5XOF0kkxMLsJgn9xSoJ0R5yOQfYEEqDjnIACG5ZIInWOwC1h8icmoiaT5MmzVXyD1pa2Jj79mhVIF6QuTcROoHdcTSGGTNFXLJRAIsAHCwe4JpoYnyJKVEciJj73B6Qu2JJmKi71z9CW7qLDcMsLhITnCRzu7vgM1TLOQSOZEACwC783iBekLkjLQneIIlk4K0uFBCpSelhDXB3UxJngIgl0zkBAuQPQXAU1jkBsuWE0pxBwCHuUhNLplogOVYb4JjL7kiY0lMdBN/W3/+ac2JJsKcQFpnAOhPGLAnsLGOSo8BFhfJVPy1fyga1JYl0Basd3QNnmIhN0jbBozXdpKKUCXU2asAfyjna9i97ZBGuhjdI7qyi3dRCwERiEAJVji6BE+xkBsunWPrqjJSUyX3ayQzJifr5IqLAyyqItBcEUBTRSDn9hLAuWGeYqHSu3QHdH3Yh+tmVjsq9n2kNz7hADlRPhLGaxsr/KqCpQ0RLKgN59zetCWO9sav/kWiAktdMvbWhXxY3VzpaN57oi8ByXkvueDiFGGqIlAX9qEikHs9K0tKDCa5qbOcsFqZi2QyBqV2OrRZy6DOWASh+yEtIxs0yXHh2Ty1H/qKmyFUvci9JbqIkQI0H5T6WVAaZkOEq7L5TS0T1ul9uV1D2rC726A2LyxuX4kuIW0LQg9ACUYg/GEIRYG0rZGgSW4TcDsZgxKuZl5fKilLSihCIOhTEfTp0EcKH1q2jXiOOdIlgFTGRMjPeQOVVsayURPUMa0igPqwH6oikDYtdAylchx5s2nCZlYFOfZSScUNCyFdxfzaMObXhlEVzI6ffYkMDvfktvCcMm2cHkxidnXum5GICiFh2JhZFcSiujBmVYegKgKDKQNHHARNDnbHsLQxWsReEo2VNLNj76zqIGZWhRDxZ5cvu2NptOeYNjRhWOiKZ9AY8Rezq0RjmLZERUBDddCHaECDIgQSGQtDDmpx9ycyqA75ithLKiQhGc51jTTSEPrYgT6z4ymYx3fmfB3funuhzV5ewJ4RXZkcqWEhFHX05+k4jNZHc79QMAp9zb1cKKGSkrYNoYw9wGkOdkM6mPColQ1QArnvACSaqPNTtkvHTMOy0TOce9pGXVVQGwlw7KWSMm0b2jhj7+5zg+iJ555nenVzJWr4skklZFg2VEWMKVTfFUvj1wc7c75OU9SP+xY1Frp7RFeUMW34tLFj76/2d+DscO7ZBN6ybBrquUhNJWSOjL2Xzlc7hlN48WRfztdprghg46yaQneP6IosW0Id56Tr4e5hpIzc04ctbIggoKlX/yK5jinCXDRecAUAtDkrHV3HOLqNxx6ppISijgmuAMieBqielvuFksOQAx0F7BnR1Y0XXAEAJRhxdB07MVSI7hDlTIixL5lANmBy/jRLLgyLxe6p9MYLrgDZhQ8nTg9MrAYckVO6qowJrgDZVGHVwdxPA54bTqOPRWupxMYLrgDA4gZn897dHUyPS6Wlqcq4897GiB8hPfcF57NDKcRZg5BKbLzgCgDUOtwk1BvjvKFcMMDiQUpVA5Tq3Hc3ycFu2N2ni9gjotypjXMdfd9qP1yknhA5I/QAoOaeOVMaKdYRIs8I+ZxlfY2nmdOXvKEm5IPPQYCwN5HhQgl5ghACC+ucnWTd18lFavKGOTUhR2Pv8b44x17yBCGE43SLR3NM50hUbFUO62f2JTMwbW6MKwcMsHiUOtvhKZYjrUXqCZEzoroJuMzprPHIwU7Y8YHidYgoR0IIKEFn+aWtxGCRekPkTMCnwUnCr5RhweQpFvIARQhHxe4B4AxPsZBHzKsNw0GtexzriyN5SeFmIjdoioIFDgKEtgT28hQLecQshwGWk/0Jnt4mT1AVgapA7qdfpQT6HKTSJfcwwOJRWstiQMv9l87uOA57OPc8lETFIhQVSsMcR23ss0eK1BsiZ5SAswCLTMUhLe7mI/cpQiDo8BRLIsNTLOQNTtOEnRtOcaGEPCGgqY52UtsSONDFRWryhiUO04Qd6Ipx7CVPCPlUTIvmvqnTtCVO9CWK2COi3DmtJdgTz8BmWQjPY4DFo4TuhzZrhaM25tFtReoNkTNq03zAwV5qu7sNMpMqXoeIciRUFSLAWixUnsL+3DdmAEAibXKyTp4Q1FXUh3N/2bQl0D7IeQN5w7JGZ5szDnbHYNoce8l9tSGfowB32rJxmKmWyCPm1zl7ZzvWG+e8lzwh5FMRdFBHyLQlBpPcGOd1DLB4mDZ/raPvm237IDNMmUDuE/4QlLqW3BtIG1bH0eJ1iMgBNVTh6Pt2chhScjcfuU9TFfi13CfrEtkgC5EXtFQ5S/dxZjDJhRLyhPqwH42R3HdSp0wbx3u5SE3esHKaswDhno4hSI695AENYR8qArmf3k4YFs4OcXMGuU8IgToHG4sAoCee5tjrcQyweJgSqYLavCD3BpYJ88Tu4nWIyAGleaGj79sdxyBt5qQm9wndD+FzkK5G2rCTseJ1iMgB56dYDE7WyRMqAxqi/twXSjKWja5Yuog9Isqd01MsezuHOfaSJ8ysCqLKwSL1YMpEG+tgkQcIIbCg1tkpliM9fGcjb6gK6tAdFHFLGjbiGa6XeRkDLB6nLVjn6Pvm0R1cpCZPUKI1ENG63BsYadjdbcXrEJEDSqjS0fftxCAXSsgTfJoCzcFk3ZISKRZcJg8QQqClKuiozemBJMde8oSZVUFEfLmfIBxIGdxJTZ4ghMDyac5Ob+/pYHpc8oaWqiD8Wu7Lmn0JA30JFgwn9wkhUBvO/fQrkD3FQt7FAIvHKbXToVQ15vx9mYrBOnOoiD0iyp3q9BTL2cNcKCFPEL4goDo4CWCZTNFIniCEcHyKJZ5mTl/yhoaIH34199eT4bSJgRSfX3KfIkRep1iIvGBhXdjR2Ht2KI2eOBepyX2qIjC3JuyoDU+xkFfUhH0Que+Lw1DKRNrkxjivYoDF44QQ0Basd9TGPLKNi9TkCaK2GfDnPuGRiSHIwc4i9ogoN0IIKE5rscQHi9QbImeCPg0ODrHAsGxkOFknD1CEwIw8TrEQecGCugh0NffBt30ohQEWrSUP0FUFSxqdpVriKRbyirm1IUfz3vbBFBIZ1iAk92mKQE3QaS0WBre9igGWMqDOWAgRzH3CYw90wu45U8QeEeVGCMVZHSEAVvvhIvWGyBklGAFE7n8mpZGCNHhsl9wnhECIp1ioTDVXBBwtlPTEM1woIU/wqQoW1jlbpN7byUVq8obljVFHY+/R3jjiHHvJAwKaiplVoZy/L5F9fom8oC7iLMDSn8jAtO0i9YYmggGWMiAUFdq8NY7aGAe2FKk3RM4oDXMANffCiXKgA/ZwbxF7RJQbIRQoQWfpPqz4QHE6Q+RQyOcswJIyLBgWJ+vkPl1V0FQRcNTmZH+iSL0hcmZpQxQO1qhxtDeO4TQXqcl9YZ/mKNWSLYEdZxkgJG+YX+csTdjx3gRrEJIn+DUVUX/u62W2BHpiPMXiRQywlAltzkpHi9R292lYXaeK2COi3AhNh9I411Ebq21vkXpD5IzTNGEynYDNUyzkAaoiEPTlPm8AgFiKk3XyhpZKZ2nCOobT3ElNnhD1a5hVnftOalsCO88yxSh5w8omZxuLDnQNM0BInlAZ0NEQyb1guCUlDnWzFgt5Q72DZxfIFrs3uTHOcxhgKRPCF4Q2a7mjNsa+zazFQp6gNi0AHOznk4OdsAe7itchohwJVYMIONsRZcf6i9QbImecFrtPGRYM1mIhDwj5NNSFnKVMONHHUyzkDcsdFrs/2hvHYIppGsl99WE/mqK5L/TZEtjezgAhecMCp6dY+uJIZDjvJfeFfSoCWu7L87YEumLc1Ok1DLCUEW3+Wkfft/vOwu44UaTeEOVOBMIQtdMdtbFO7WWAkDxBDVU6+r7MJGFnUkXqDVHudFWBz8FkHQCGuchHHtHisNh9VyzNndTkCQ0RP+rDuQcIJYAdPMVCHrFimrPT24e6YwwQkic0RvyOUy0d7B4uYo+IciOEcHyKpTeeYXpnj2GApYwo0RqozfMdtcns5ykW8gZ1+iJH35dDPZADnUXqDVHuhO6H0J3VA7Bj/Rx7yRMifmenANKmhQxPsZAHVAV1RwslAHCij0VryRucLlIf70ugL8E0jeS+WdVBVAYc1M8EsO0MA4TkPiEEFtZFHLU52ZdAjClGyQMqgzp0xUHWFwBdwzzF4iUMsJQZfcn1jr4vB7pgnT1SpN4Q5U6J1kJUNzlqY53aw0Vq8gQlUu3o+9JIQfIUC3mAT1Ogq05PsXCRj9wnhMCcmtxrWQBATzyDIe6kJg+YVRVETdBZmkaeYiEvUITA+ulVjtoc6Y2jnwFC8oCZ1UGEfWrO35cADnbyFAu5TxECDQ5SNAJAXyKDjMlTLF7BAEuZUaoaoM5wdhLA2P8ipOQvHblPnemsjpCM9UP2nS1Sb4hyp/gCED5n6WrsOE+xkPuEEIgGnZ1iyZg20gZPsZD7akM+VDjYSQ0Ax3t5ioXcJ4TA2unOUoy2DSTRE+ciNblvXm3IcYCwlbVYyAMUIbC0wVkdrLaBJDdnkCdUh3zwqc5OsXTGuKnTKxhgKUPZUywOfumGemGdPlS8DhHlSIlUQ9TOcNSGtVjIK5yfYklDZpJF6g1R7vyamkctlgzHXnKdEAJza5wVre1LGuhPcpGa3NdSGUSdg1osALC9faA4nSFyQAiB9TOqHLU53pdggJA8oaUq6DjF6IEunmIh92VPsThLTd6fMJBmemdPYIClDCkVtVBnLnHUxtj/IqTNUyzkPnXmMkffl4lB2D2ni9Qbotwpuh/C7yxdjcVaLOQR0YCzRT7DsjlZJ0+oCflQ5XAn9fHeBMdecp0QAuuanZ1iOTOUQidzqpMHzK4Ooi7kbO7w6pmB4nSGyAEhBJY2OjvFcmYwhcEkT7GQ+6qDOvwON8Zx3uANDLCUKX3J9YDI/X8+GR+AdWpfEXtElBslVAmlfqajNtbpfUxzR56ghp2dYoGZgUwnitMZIgd8mgq/lntOagAYThlcpCZPcHqKZTBloJ8LJeQBzRUBTIs4y6m+/exAcTpD5IAQAhtaqhy1OTWQ5EIfecL0igAqHaYY3cdTLOQBQgg0OqzFMpA0kGJ6Z9cxwFKmlEgVtNnO6lkYB7ZAWmaRekSUO7VlGZykuUNyGHZXW9H6Q5Qrofsg/M4W+niKhbwiGnB2CsC0bE7WyROqgjpqHe6kPtYb59hLrsunFsu54TTah5hTndzXUhlAo8MA4StnBjj2kuuEEFjWWOGozbmhFPoSTHNH7qsM6Ag4PMXSMcx5g9sYYClj2uLrACX33agyMQzzSGsRe0SUGxGMQmmY7aiN1bYH0uRuVHKfGqly1sAyYCe5I4rcp2sqArrTUyysxULeMKfGWYrG4bSJDu6kJg+YFg2gucJZTvVXTvfD5thLLhNCYIPDWixnh1Jo62cNQnLftKgfNQ5TjO46O8h5L7kue4rF2bxhKGUiluaGejcxwFLGlFAFtDmrHLUxDm6FnRgqUo+Icqe2LHWU5g5GCtbp/cXrEFGOhOaDCEQctbFj/ZA2TwKQ+yIOa7FYtkQszeA2ua8ioKPeYcHwY70xmKxBSB6w1mEtlv6kgQNdsSL1hih30yudBwi3nOrj2EuuE0Jg6TRnp1j6kgbaBhggJPdVBDQEHW6Max9MMkDoIgZYypy++FpAzS23ZOfAMA6cbMfpZ/+nyL0iujoRCENpnJPTd9MZA4dOncW+l56BOdxf5J4RXZ0arhr173g8gQOHj+LI8RPjT2qkDWu478I/Y7EYNm3ahIcffhgvvvgihoYY+KbS0FUl58l6KpXCkcOHsGP3XmQM7ogi983JsRaLlBLd587i8MGD2H70dJF7RXR1DRE/WiqDOX03nUri7IkjePSl7UhkOPaS+zbMyC1AKKVEX0c7Dh08iOf3nypyr4iuriHsQ12OmzOSiTjOHD+CJ7buRNrkxjhylxAC03KsxSKlRPvpNuzfvx/Hz3YXuWd0Oc6qPpHniEAY2rw1MA+/Ou7P95/uwP/98eN45cgpnOvLLuApisCX//EMPvJnf1XKrhKNoc5YCrvrJDDOzn7LsvH5//olfrHpFew51gZjZJKzYPa/YM/BI/D7neUDJiokoelIWAKf+f/+Dk8+txkHjxyFPbJT757bbsGvfvTvY9rIVAxtvYP4oz/5FH7zm9/AMF47FRAMBvGnf/qn+Ou//mv4fM52aBM5FQn4kDTG352XyWTwxc//E5587Lc4dGA/TDO7uLdq9Rps39YKReHeHHJPxK+hMeJHZ2z81F/7tr+C//q3L+Lg7h0Y7O8FAGi6jv/80U/wzre+uZRdJRpj7fRKnB4cf+xNp5J45FtfxN4tz6H9+GHIkTnFD6/ZiB1bX4QQDmoXEhXYtGgAM6uCOHWZnf0HW7fgif/4GtoO7EF8aAAAoPn8+Pkvfok33HdPCXtKNFq2FksUm473jvvzRGwYP/nq57Br6wtoP37kwka5H951L5574rel7CrRGBG/hpBPRSIzfsDv+acex39886s4sGcnhkc2bAaDITz19NO4fuN1pewqgSdYJgV94TWANv6C3Kf//RHs603h/X/wMfz85z/Hli1bcPfd9+Cn//WfTFdDrhP+IJRp88b92fM79+P/fPPHWH7tjfjiv34JmzZtwg9/+EMcOXka2597osQ9JRrrv/7n1/jG93+IW26/A9/61rewefNm/MM//AMef3YTBgbHP5Hyt//nr/Hqq6/i85//PPbt24f+/n7s3bsXn/zkJ/G5z30OH//4x0v834KmIk1VEPSNv8fm6Scew79+/p+x8dpr8JWvfAXPP/88vvnNb2LXzh3Ys3dfiXtKNNaVarF87i//GOnBHnzyjz6OX/3qV9iyZQtWLF+O//zxT5kygVxXG/JhdvX4z2/rU4/i6R99B/ffcQu++Y1v4IUXXsC//Mu/YNcrL2HP0ZOl7SjRONZf4RTLv//NHyNsp/Dnn/oTPProo9iyZQvmzp6F7/zwpyXsIdH46sJ+NEbG35z57C9/imf++4d4wz134jvf+Q42b96M//t//y82PfkY2nuYOYPclT3FMn6KRtM08Zcf+xB0WPiLP/9zPPbYY9iyZQtqaqrx458za5EbGGCZBIQ/mE0VNo7uwRhuvfVW3H///Whvb8fGjRtRV1cH28jAPLqjxD0lGkudsWTcAGFX3yAA4M/+7M9QX18PTdOwalW25pBx5hCkxZQJ5K6u7h7U1NTg4x//OHRdR01NDRYuXAgAF06zXKqntxdr167F/Pnz8dnPfhb33XcfvvKVr+Av/uIv8LnPfQ7f/va30dbWVsr/GjRFRQM6xtsP3dPdDUVR8OlPfxqVlZUIBoNYvnw5AGAwmeYiNbku5NMwvXL8l82B3h78zu/8Dm655RZ0dHRg48aNqKioQMow0R3PlLinRGOtn14JZZzBd6ivB5FIBJ/85CcRDAZRWVmJJUuWAABeZcF78oD6sB/za8dP0zjU14O3ve1tuP7669Hd3Y2NGzciFAphMGlc9tQLUSktv0wtlqG+HjQ0NOCjH/0oVFVFXV0dFixYAADY1T7AeS+5LuLXEPWP3RiXyaQRGx7C7/3e72HDhg3o6+vDxo0b4ff7kUibiDPFaMkxwDJJaPPXQUSqx3y+eu50fPvb38YNN9yAT3ziE6MW/YwDWyCTLJ5I7hK6H+rM5WM+Xz6vBaqqYMWKFXjHO96B55577rUfmilYZw6UrpNE41i7di3Onj2LpUuX4r3vfS/2799/1TYL5szGb37zG9x///3Ys2cP5s+fj69//ev43Oc+h/e///2wbRsvvPBCCXpPU52qKIgE9DGfL12+ArZtY+HChfjd3/1dbN269cLPbFsizoL35AFza8LQx1mlXrBsBf7u7/4Ot912Gz7zmc+M+tmRnhgsmwsl5K6KgI7ljWMX+mYuWob+/n4sXrwYDzzwAHbu3HnhZ/1JA4d74iXsJdH4rptZNe7YO3PRcvz5n/857rzzTvzTP/3TqJ9taevj2EuuqwrqmDdOgHDOkhVoa2vDsmXL8OCDD+LgwYMXftabyODMYKqU3SQaV3NlYMzGuGAwhFlz5+MjH/kI7r77bvzrv/7rqJ+z4H3pMcAySQhVg2/VbWM+/9KH34r//l8fxJ++eezPYGaQ2ft8CXpHdGXKtLkQlxQNXzZ3Jlr//Z/x6L/8FaqjYydDdvshyORwiXpINNYb3vAGvPzyy/jvn/4o5zaf+fQn8fXPfxabHv81du3aha985Suora1FOp1GJpPdXa1pLI9GpRH261AvWShZt+EaPLFpC37yi19B18cGYGIpA9ZlTmgRlYquKpg7zkLJ33zle/jst36I173jgTE/S5s2TvYnStE9oita1VSBsK6O+mzZtTfhr3/wa3zySz8Yt822MwNIsegyuSzs07BunFRhn/jiD/DR//fv2HD3G8b8bDBlYk/H+KlziUppaWMUPnX0Euh1d74On/2PR/Bn//LtcdvsOTcI0+K8l9zl11TUX5LmTgiB7/3iMXzlBz/FrXffN6ZNyrDRl+Dp7VJigGUSUafNhdo0up6FX9dwz9rFmDetbtw21qn9sHrOlKJ7RJclhAJ17toxny+d24I7N6yEPt6Cs7RhnthZ/M4RXcE111yDW+64O+fvB4MBvO/d78DGVUuRjg/jXe96FyzLwsc+9jF8//vfh6IouPHGG4vYY6LXCCFQGRybonHZihW46Zbbxi1oLwEMJTlZJ/c1VwTGpEwIR6O49tY7UT+tadw2p/oTSDBlArlMVxVc0zI288DsJSuweP3GcdukLRvb2weL3TWiq1reWIGqwCVjb2UVVlx/GyprG8Zts619ELE0x15yl09VsHxadMznC1etw+I114zbJmnaONjNrC/kvoaIH7o6emNcTW0dbrrjblTXjr/e2zGUhsmNcSXDAMsko6+8DVDUq3/xIpmdT0NK/tKRu5SKOij1sxy1kf3nYPedLVKPiHIjxHiVLK7MMAy8+3ffhWeffRYPP/wwuru78Vd/9Vf4yEc+ghkzZhShl0Tj8+sa/LqzeUPKsJDmTmpymRACC+sjjtpIAEd64kyZQK6bXR1EU3T8osuXc7A7hh7WEiKXqYrADbNrHLUxbYmtp1kwnNw3uzqE6uDYE9pXcrgnhmEGCMlliiLQXBF01MaSEh1D6SL1iC7FAMsko0SqoC0aP/p+OXKwmwXvyRPU2SsB1Vl6JPP4Dha8p7JimiYe/Oif4NePP4WHH34Y06ZNw913342VK1fin//5n93uHk1BFYGxp1iuZijBgvfkvsqAjqbo+AXvL6c3kWHBe3KdEALXzawek1P9arac6mPBe3LdjMog5lSHHLU51pvAmUEWvCd3CSGwunlsmrsrkRLYwYL35AEVAQ0Rn7P1sr5EhgXvS4QBlklIX3gNROi14omdA8M43TN6x8hwKo2DZzov/JEw9r0Ae7ivpP0kupTwBaG2LLvwb8uysedoGwxz9B+Ew6fOYjA2kkc9HYd1cncpu0l0QSqVwu7dY5+/PfsPIpVKo7O7Gw/90Z/htje+Aw/8wSdw7GQbPvCJT+GXv30CP/nJT7BgwQLccccd6O3txWc/+9kLdViISklTRxe8NwwDe/fshn3JkfIjhw8hNpytfWXaEsMpFrwn982rDUO7qJZQ17l29HZ1jvrO8MAA2tuOX/j3oe5hZJhTnVxWHfRhaeNr6WqMTBqnDu8f8732Y4eQTmUXpnviGeztYA1Cct/GWdVQLzrF3XP2NIb6ekZ9Z3igDz1nT1/496bjvUibHHvJXTUhH2ZfFCBMp5I4deTAmO+1HT6ATDpb5L47nsGJPtZxI3cJIdBcOXpj0Zm2kxjo6x31WU93J861vzb2nu5PwrYZICw2BlgmIaHp2VRhAH79yl7M+9Df4R9+9tSo7+w83o51f/x5vO+LP8x+YJnItD7GVGHkOqVpAUSwArZt47oP/gXWv+/T6B+Oj/rOhz77Ncx64+9j3/FTAAC74yjsgc7xLkdUNIODg5g1axZuvfXWMT+7663vxvz1N+Jf/u3beOTxpzF/8TI8v7UVS667DQ8/8hv88Ic/xPLly3H77bejszP77N5xxx1obm7GgQNjJ/hExRYZKXhvGAZuvW497r75ehjG6ADKh9/3HqxdthCnT7UBAOJpAxmmCiOX+TQFc2qyCyWP/Ne/43dvXoNf/3h0ofCXNz2F9955Hb7xj38DADAsiUNdw9yNSq5b01SJoKYgnUzgL998M/7+fW8c850v/tGD+NT9115YvN5+dgD9rIVFLov6NayZnt3U+fh/fB3/+y034ZXHfzHqO9uffhT/+y034dHvfgkAEMtYeOkUN3WS+5ZPi0JXBIYH+/GH91yDv/3QO8d856/f92Z85L6NSMazNVh2dwwhxpMA5LKArqIunM0+8JV/+r+4//rVePbx34z6zi9/8l+495oV+K9vfw0AkLFsdAynSt7XqYYBlklKbZ4PpWEWHm3dj5UrV6K1tRWtra1QFAV/93d/h9bWVvzVX/0VfrH1tZ3Xdt9ZmIdbXew1ESAUBercNTh+tgu7j7bhW9/6FlpbW/GBD3wAc+fOvfAs6/4AHt+660I78+irkCZ3U1PpbN68GV1dXXjyySfR2tqKO+64A7fffjtaW1vx1FNPoaunFz975NdoaWnB9773PSxatAgA8Pa3vx1ve9vboOs6HnnkkQvP9Pkx+rHHHnP5vxlNRUIIVAR9OLBvL04cP4Yf/ehHaG1txTvf+c5R84hkIoHnn33mQrsBpgojD5heGUTYp2Lzk7/B3XffjdbW1gtj6Te/+U20trbioYcewguP//pCm+54Bp0x5qUmd/k0BetnVOHEvp3o7+q4MC+4//77sXHjRrS2tmLz5s1IDA3iYOtLAABbAs+f6OVuVHLdqqZKVPg17HzuMbzlLW9Ba2srHn74YQDAD3/4Q7S2tuJd73oXdjz72wttDnXH0dbPkwDkLr+mYmljBQ5sexlD/X145pln0NrailtvvRV33XXXhXnEQE8XDu54FQBg2RLbTjNVGLmvMRqApgg89ZtH8J73vAetra34/ve/DwD45S9/idbWVrz+9a/H07/91YU2PfEMYqwlVFTOkrdR2RBCwLfqdtRWfA3tu/fgC1/4wpjvHDt2DLXR8KjPjP0vQm2aC6WirlRdJRpDqWpEdct8qKqCn/zkJ3jmmWfGfCeVSqGu6rW0CkgnYJ3YCW3BhhL2lKayurrsOPm1r30Nfv/oQrXpdHbR7nT7Odx0y204efIktmzZAgDYunUr3v3ud497zXQ6feG6RKXm11Q01tcDAH7wgx+gqqpqzHds20ZNbe2Ff1u2xHAqg4qgs2LNRIWkCIGFdRFUVtfi4O7Wcee9u3fvRkVN7ajPDnfHUB3U4dfUUnWVaIz5tWHMbGoEAHz7299GODz6/cyysicFI1XVFz7rTRjY1TGENQ5rCRAVkqYIbJxVjUhVDXbv3j3u2Lt9+3ZEKutHffb8iT68PeJHQOfYS+6ZWxtCU0P22fzqV78Kn290TcJUKrvjP1pdc+GznkQGR3vjWFAXKV1HiS6hKgJNFQFU1dSitXX8ee++ffswd8nyUZ+dGUhgQX0UquK0AhzlQkiGXye1E089jM989p9xqrt/zM8CPg0fvvd63Lt2yajPRVUjAre9G0LhhIfcI9MJfPNvP4WfPfUiLHts6roV82bibz/0ToSDo3NQaktuhFLTXKpu0hQmpcTf//3f49lnnx37M9PAhtXL8c9f+hq++tWvorW1Fb/59a/wi//4Nv7f176Nnt7esRcUKlauXYfPfvazCIWcFQ4lKhTTsvFPX/gXPPabX2erel5ixao1+PP//X/GvITWRAJcpCbXPfJCK774T5/FwCV1AAAgFIngnQ99FMvWXjPq89qQDyubKiAEXzbJPb2JDP7gL/4Ge1/aNO7P569chzf+/p9AUV5LQCEE8DuLp11IFULkBikl/u2R5/DdL38B8cGxaw6haCXue/CjmLl49ELf/NoQ7phfP+b7RKXUHUvhY5/+39i/beu4P19x7Y14y0MfHzVHUARwx/x6VFxUv5Co1KSU+O8nN+HfvvgFxIaGxvy8qqYWv//JT2P+otHrvTUhH2ZUBUvVzSmFAZZJThoZpJ76HmRi7C/clehLr4e+5Poi9YooN1b7IVgnd139ixfTA9DX3AOhczc1uUfaFpIdJzF/7fU419kFAPi3z/09HnrP716xnRKpgRrmblRy13Ayg1jaWcpFVRGoiwahcJGaXJQ2Lbx8qh+mw9RJixuiaK4IXP2LREW09VQ/9nc5K2BfFdDxxqXTuBuVXDWYMvDwnnOOx9675tdhbm346l8kKqLWM/1o6086alMd1HHrvDrOe8lVScPC0e4YnC7qz6kJIcoAYcGxBsskJ3QffOvuddzOOLAVdj+LhpO7lOYFEFGH6ZKMFKzjO4rTIaIcCUVFoGYaXnr8l/jPr38JT/33j/DBB9511XZ2rB/SZOFaclckoENTnU0RLVtimEWXyWV+Tc0rbceR7hhShlWEHhHlbv30bD0LJwZSBrafHSxSj4hyUxnQcW1L9dW/eIkXTvYhybGXXLaqqRJB3dm8tz9p4HB3rEg9IspNUFfRGHW+sfjMQBIW67gVHAMsU4DaMBPavDXOGkkb6dbfQlosgkTuEULJ1lRxmK7O7jkFu/dMkXpFlBslEMb02fPwjje9Hjdff22O6WckrKEeFk8kVwkhUBVyPllPZEykuVBCLpsW9TtOmWRJiQNdwxx7yVWaquCmObVwuh96b8cQumLpovSJKFfLGiOOTwKmTBvPn+jl2Euu0lUF66ZXOW63v2sYg0lnJ76JCq0+4kfQYT0rw5Y4O+js1BZdHQMsU4S+/CaIcJWjNnKoB8aBl4rTIaIciWAU6uyVjtuZx7ZBZlJF6BFR7tRojeMAoTTSsBPcjUru0lUlr6PjA4k0bC6UkIuEEFhcH4XuMGVSf9JA+xDnDeSuxogfy6dFHbWRAJ4/0QvTGluzkKhUhBC4dW6t47H3ZH8SR3vjReoVUW4aowHMqXFWA1NK4NUz/bB5EoBcJIRAS1XQ8eaM/qSBoRQDhIXEAMsUITQffOvvc9zOPPQKrN72IvSIKHfKtPkQlQ3OGhnpbJCFC33kIqGoUCscprnDSKowg7tRyV1hvw7dYaowW0oMJZgqjNzl0xQsanC2SA0AR3tiSGR4epvctaa5ClUOA9xDaROt7QPF6RBRjqJ+DdfPcp4qbPPJfsTSHHvJXSunVSDk8CTAYMrEAYe1s4gKLaCrmJZHLcEzA0luziggBlimELVuOrSFGxy2ksi8/GvIdKIofSLKhRAC2vwNgOIsL7Xsa4d97kiRekWUG8UfghJ0vtBnDnZB2pzwkHuEEKjMI1VY0jCRSHNHFLmrIeJHQ8TZ82vLbLol5qUmN2mKwM15pArb3xXDyX6+s5G7FtVHMLMq6KhNxrLx1NEejr3kKk1VsH5GleN2B7tj6BjmCVhyV13Yh7DPWYDQtCVODSS5KblAGGCZYvSlN0BEax21kclhpF/5DaTkQh+5RwTCUOesctzOOrkL9lBPEXpElDslUuM4QAjLhDXUzQkPuSqbKsxZPQsAGExmYFisx0LuWlQfgc/hKaxYxmLhWnJdXdiHVU0Vjtu9cKIXg0z5QS4SQuDmOTWOx97OWBovn+4vUq+IclMf8WN+bdhxu1dPDyCR4byX3COEwIyqIHIq+3qRWNpE5zAzZxQCAyxTjFA1+DbcB6e/dXbXSZgHthapV0S5URrnQlRNc9ZISpiHXoI0uKuE3CMUBWql81RhMp2AnRgqQo+Ichf2a45ThQFAf5z1WMhduqpgcUPEcbtzwymcHWLxT3LXqqZK1ASdpQozbIlnjvUw5Qe5KuzTcONs56nC9nQM4xjrsZDLlk2LIuLwJEDGsvHyqT7WYyFX+TUVTXmkCuuKpTHMzRkTxgDLFKRWT4O26FrH7YwDW2B1nix8h4hylE0Vth5QHRZeziRhHn6Zp7DIVYovCCXofDeqHeuDnWGAkNwjhEBVyO84XY1lSwwk0jyFRa6qC/sxLeo81d3h7hiGWROAXKSOpApzWDMc/UkDW071c+wlV82vDWN2tbNUYQCw6XgvBpJc6CP3aIqC9S3OA4R9SQO7O7gxjtxVG/Ih4nOYOQPAqYEkMibXyyaCAZYpSl+y0XnRcADpVx7lbmpylfCHoM5d47idHOiEdXp/EXpElDslWg2ozic81mAXpM1j5+QeTVUQDTpPFZY2LMS5SE0uW1gXgV9z9tqTrccyCIMnAchFNSEf1jRXOm53tDeOwz08CUDuyaYKq0XA4dhr2BJPHunm2Euuqg35sLDe+QnYY71xnB7gCVhyz/lUYU43Z1i2xKn+BLMPTAADLFOUUFT4N9wHCIePQCaJzMu/4kIfuUqpnwVR0+y4nX16P+z+c0XoEVFuhFCgVtQ7b2hb2SALJzzkopBPg8/hQgkADKcyyJicN5B7NFXB4oao43ZJw8aBrmGOveSqFdMqUBd2HuDeeqoPvYlMEXpElJugruKm2TWO2/UlDbxwso9jL7lqaUMUFX7nG+O2tw9giOmWyEU+TUFzpfMThAnDwrkhZs7IFwMsU5hSWQ99xS2O29l952Ds3lSEHhHl5kKqMJ/zPxrm4Zch09zRR+5RfAEo4SrH7WQmBTs+UPD+EOXqfKowpzuigGw9Fot5qclFtSEfWqqczxt64hnuRiVXKULgljm10FVng68lgWeO9SDNlB/korm1YSzO4yTAkZ44DnTHitAjotyoisA1M6uhOqxfbNoSL5/qh2lz7CX3VAd1VAYcptYH0BvPYCDJzRn5YIBlitPmr4U6fYHjduax7TDPHCxCj4hyI/QAtEUbAYcTHpgZmAdf4ikscpUSroLII0BoxwdgpxNF6BFRblRFQVXIefFEW0oMJFLcjUqumlcbRmXA+W7UY71xvmySqyoDOm6aXeu43XDaxAsnezn2kqtumF2N2pDzhb4XT/ahO54uQo+IclMZ0LFmuvM0jUNpE9vbBzn2kmvOpwrzqc6X/c8MJJEyuF7mFAMsU5wQAr5190JEnBfxymx7HPZQbxF6RZQbpaIO6uxVjtvJWB+sk7uK0COi3AghoFbWA4rquK012A1p8dg5ucevq4jksSMqY9oYZsoEcpEiBJZPq3B8EkAC2NsxzJMA5KrZ1SEsa3Se6u7UQBJ7OoaL0COi3GiKgrsW1MPncOy1JfDkkW6kmWaUXDSrOoTZ1SHH7U4PJHGijxvjyD2qIjCrJuR4T7Itgbb+BLMPOMQAC0Hofvive4PzwsumgfTWRyAN7ioh9yhNC6DUznDczj53FFZXWxF6RJQboahQKxucN5Q2rIEuSMmFPnJPxK/DrzkPEMbTBlIGi96Te/yaimWNFY7bZSwb+zqGWPyTXLVhehUaI37H7ba1D+As86qTiyoDOm6dW+e43XDawjPHejn2kqtWN1eiKo/NRbvODaKPtbDIRUFdxYw86rGkTRtnBpM8heUAAywEIFuPxbfmTsft5HAv0ix6Ty4SQkCdvwEION/RZx19FfZQdxF6RZQbxReAEnVe/FOamexJFk54yCWv1WNxXpBlIJ6Gwd2o5KKakA9zapzvRh1IGTjUFePYS65RFIHb5tYioDl7jZcAnjnWjYEkTxGSe+bUhLCyyXmA+9RAEi+d6i9Cj4hyoyoC186qhu6wEKEtgS1tfYhnuLmI3FMd8qEm5HPcbjBpoHOYG+pzxQALXaDNWg519krH7ezOkzB2Ps2XTXKN0HRoizc6T7ckbZgHXoRMMm0CuUcJVkD4w47byXQCdowvm+QeRRGoDjvfSS0B9MXTsFj8k1w0uzqE2jxeNs8Np3Cynyk/yD0hn4Zb59bBaXg7Y0k8caQLSeZVJxddM6MK06LO5w57O4axp2OoCD0iyk3Ep2F9i/PU+mnTxosn+5CxOO8l9zRXBhDUnYcAumJpnsLKEQMsNIpv9e0QVc5T1pgndsM8/GoRekSUGyVcBXXeOucNzQyM/S9AGkybQO4QQkCtqANU58fO7cQgrARfNsk9Pk1FRdD5IrUtJfpiKab8INcIIbC0MQq/w5MAAHCiL4GOYc4byD3NFQGszaPwcixj4cmj3TC50EcuURWBO+fXIZjH2LulrR8nWdOCXNRcEcDCuojjdsNpE1vb+mCzpgW5RBECs6rDcFgKC0C26P1wmqewroYBFhpFqBr8174B0J3vKjH2Pg/zzMEi9IooN2rDbCiNc503TMWyJ1mY6o5cIhQFWlUD4Hg/KmAP98JO82WT3BPyaQjozuuxmLZEfzzFE7DkGl1VsGJaRR4jL3Cgcxj9Se7oI/esnFaBlsqA43Y98Qw2nWBNC3JP2Kfhjvn1eY29Tx/rQXeMKWvIPcumRVEXdr65qDuewbb2Ac57yTU+TUFLtfMUuQDQ1hdHiidgr4gBFhpDiVTBt/6+vNpmXv0trN72AveIKHfq3DUQYedHd+VwL6zDr3DCQ64Rmg9qRW1eba3BLkiDL5vkDiEEKkN+qA7zUgNAxrQxmMxw7CXXVAR0LKh3vhtVAthzboh51ck1QgjcPKcWEZ/zAHfbQBKvnhkofKeIcjS9MoANM6octzNtid8e7uJuanKNIgSuaanO6wTsqYEkDnTFitArotxUBHTUR5xvqLclcKIvDoMnYC+LARYal9Y8H9rCDc4b2hbSW37BugDkGqGo2Xos+aRb6j0Nq21PEXpFlBslGIUSjDpvKCXMgU5Iiy+b5A5FCFSHA3ntRk1mTMTTLLxM7pleEUBjHi+bpi2x6+wg86qTa/yaitvn1SGP+Db2dQ5jfxfrEJJ7VjdXYGZV0HG7pGHjt4e6kDY59pI7grqKa/OoxwIAB7qG0cZabuSiaVE/wnlszjAsiZN9Caa6uwwGWOiy9GU3Qamf6bxhJon0i/8NmU4WvlNEORCBCLSF1+bV1m4/CKvjWIF7RJQ7JVoDoTlf6INtZYMsLBxOLtFVBZWhPJ5dAMMpA0meBCCXCCGwqCGa18tmyrSx++wgLL5skkvqwn5snFmTV9uXT/Xj1ADf2cgdQgjcPq8WFX7Ncdv+pIEnjnRz7CXX1Ef8WDGtIq+229oHmOqOXCOEwMzqEPQ8dmckDQunBhLMPjAOBljosoSiwH/dGyCizifsMtaP9Eu/4G5qco1S0wx1zuq82lrHtsPuP1fYDhHlSAgFalUjoDh/2YSZyaYL44SHXBL0aYgEnJ8gBICBRBoZk7l9yR2aIrCqqRI+1fnr0VDaxP7OIY695JpF9REsb3R+AlYCeO54D3rirCdE7vBrKu5b1JBXuqWzQyk8f6KXYy+5ZkFdGLPzqGkhJfBSWx+GUjzBTe7QVQWza8N5nYAdSpk4N5QqfKfKHAMsdEXCF4D/hrcAfud/NOzedmS2PcYJD7lGbV4IpWlBHi0lzEMvwY4PFLpLRDkRqgqtuhEQzv9My0wS9jBfNsk9Eb+OoC+PACGAvngKJtMtkUsCuopVTRVQ83jZ7I5ncKw3XvhOEeVow4wqzK52nm7JtCWePNqNGE8RkkuqgjruWVCf10Lf4Z44dpwdLHyniHIghMCa6ZV5pRk1bIkXT/Yhxc1F5JKgrmJWnkXve+IZ9PAU1igMsNBVKeEq+K9/M6A6XyyxTh+EsesZLvSRa9Q5qyBqmp03tEyY+56HTDI3NblDaD6oVQ15tbWTw7DjrIVF7hBCoDLogy+P3ahSZoMsFlPdkUuiAR3L8kz5cWogybzq5JrzRe/rwz7HbZOGhccPdyFpcKGP3NFUEcBtc+vyavvqmUHs7+Q7G7lDEQLXzqxGRcD5elnCsPDiiT7WciPXRAM6plc635wBZE8R9id4AvY8BlgoJ2pNE3wb7s+rrXlsB4y9zzPIQq4QQoG28DqISB5F6IwUjL3PQaZihe8YUQ4UXxBqRX4vm3Z8EFaMQRZyhxAC1aEAtDy2o1q2RG+MQRZyT13Yj4V1kbzaHuuN4/QAgyzkDk1RcOf8ekTyqCc0mDLx2OEupBhkIZfMrwtjw4yqvNq+cLIPB7v5zkbu0FUFN8yqRSCPzUUDKQObT/TCYJCFXFIb9qE+4nxzBgCcHkhiIMlUdwADLOSANn0B9JW35tXWPPwqjP0vFrZDRDkSqgZtyY15pbpDJglj7ybINBdLyB1KMAolXJVXWzs+AIup7sgliiJQHQ5AERMJsnBzBrljRlUQLXnu6DvSE0f7IAuHkzuCuoq7FzTkVU+oP2ng8SNdSJtc6CN3rGmuwKL6cF5tNx3vxZEepmokd4R8Km6YXQs1j81F/UkDL57sY5pccs20aACVedbRPNWfwCDrCTHAQs5o89dBm7s6r7bmwa0wDm4tbIeIciR8QWhLbwLUPP5opOPZkywZLpaQO5RwFUQgv93UdqwfVoK5qckdmqqgOuw8LzWQDbL0xZKwGWQhl8yvC+eVbgkADnXHWACUXFMV1HHH/Lq8alr0JrJBFqasITcIIXDT7FpMrwjk1f7ZYz04znpY5JKqoI5rW/LInAGgN5HBlrY+mDzBTS4QQqClOoiQ7vwELACc6ktgeIoHWRhgIUeEENBX3Q5l2ty82hv7NsM4/GqBe0WUGyVUCW3x9UAeu6mRimVPsmS4WEKlJ4SAWlEHoef3smkP98FODBW4V0S58Wlq3kEW05bojacYZCFXCCGwtLECUb/zvOoAcKBrGB3DnDeQO5qiAdw4uzavtj3xDJ440s2UNeQKVRG4a0E9qoPON8ZJAE8f68FJ1sMilzRVBLC6uTKvtt3xDF5q6+cJbnKFIgRm14TyOgErAZzsS2A4bRa+Y2WCARZyTCgK/Ne+HiLP4svGnk0wjm4vcK+IcqNUNUKdtz6/xskhmPs2QRrpwnaKKAdCiGzR+3xOYQGwhnthJ1kAlNwR0DVUBPM7CWBaNvriKdis5UYuUBWBVU2VeeVVB4ADncPoinHeQO6YXxvG2jwX+rpiaTx5tJspa8gVfk3BfYsa8tpNbUvgySPdODXA7APkjnm1YSyoyy/VXVcsja2n+ri5iFyhqQrm1Iag5rEpORtkiSM+RYMsDLBQXoTmg//6t0AEo3m1N3Y9A/P4rgL3iig3auMcKDOW5NVWJgZh7nse0swUuFdEVycUFVpVIyDy+/NtDfXATrIAKLkj7NcR8uV3EsCwbPTFGGQhd/g0BauaK6HlkW9JAtjXMYSeOIMs5I5VTRVYUJvfQl/HcBpPH+uByYU+ckHUr+HeRfV5jb22BJ443I0zrIdFLlkxrQLNeaa66xhO4+XT/Zz3kiv8morZNSHkkfcFUgIn+uKIZ6ZekEVIyd9Yyp892I3Uph8Dee7o962/F9qs5Xm1lVJC2hZsy4JtmYBtQyL7OAsIQGQXIxVVg1BVCKFA5JMaiiYlKSWsI6/A7m7Lq72I1EBbdguElsfRdSkBacM2TUjLgLRMSGkD50djISAUBYqqQ2gahKpB5LmgTpOTbaRg9XdkZzB5UCsboATyW2yRUkKOjLu2ZQLSxvmpRHbsFRAqx14an5QS/Yk00oaVV3ufpqAmHMjrmZJSQsYHYPe0w+5th913Lpv20TIBRQFUHSJcCbVuBpTa6VBqmiD0/E7d0OTUn8hg17lB5LPWLACsbKpEbZ41XaRpwB7ogj3QkX12E0PAyPxBqBqg+aFUNUCpngalehpEqIJjL11g2RJPHu3G2TzrArVUBnD7vPq8ijdnx95B2P3nYPedgz3QBZhpSMuCUBRA1SBClVBqmqHUTINS1Zh9polGtPUn8MSR7rzGXk0ReN2iBjTludAtjQzswS7I/g7YAx2QyRjkyPxXKBrg80Opasz+p3oaEIhw7KULTNvG5hO96E3kV5tiRmUA17RU5z/vjfWPjL0dsAe7ADNz0dirQ0SqoFQ3QalpglJZz7GXRhlIZnCqP78gtSKAubXhvDfXSSMNu78Tdn8H7P4OyFRsZN4rs8+pL5DNTnN+3hvMr15tITHAQhNm9Z1D+oWfAXnt6BfwXXM/tJbFOX1bSgnbMmFl0pC288UZRdOh6n4oan6Fm2hykdKGdWgr7N4zebUXFXXQlt4EkWPKJmlbsNJJ2Eba+cK4okL1B6Hofk7aCQBgZ5Kw+jvxWmTOGbWqEYo/lNN3pZSwTWNiY68/AEXh2EsjQZZ4Gmkz3yCLippw7mOhHRuAeegVmKf2AefraAkFkOOlvclu0MiO0QKiuhH6wg1QZy6B4PNLAHriaew5N5TXyKuIbJClJpRbkEXaFqyzR2Ge2AU52IPseH/+uR+nBxc/17ofavNCaHNXQQnnlyKKJhfTsvHEkW505JmyblZVELfNrYOSY5DFjvXDPLod1tmjgDlyzyuNvQAAmd2oUdUIbe5qqM3zucmIAADHeuN4+mhPXmOvrgjcv7gRjdHc6sFJy4J19jCsk3sgh3uzHwpx+fe3i59rXyA79s5Z5YkFP3KfYdl44UQv+pP5BVlmVgWxfkZV7vPeoV4YR7fB7jgGmCP3vOzze/HYq0CpngZt3hoo0+ZyzYEAAH2JDM7kmW5RFQJz68II5pjqUVomrNMHYZ7cDRnrz36Y69jrD0GbsRjanJUQeW4knSgGWKggrN52pF94GLDy+KMhBHzrXwdt5uVTNp1f3DMz6ctMyh3eUtWg+fwQiso/HFOctG2Yh7ZA9p3Nq72oqIe25MYrnmSxLRNWOlmY2i1CZAMtvgBfOAl2OglrYAJBlqucZJFSwjYyMDOpvE/LXEyoGjR/AAp3R015Ukr0xVPImPn9TfdrKqqvEmSx+ztgHNgK6/TBi4ImTgkAEghEoC+5DtrcVRAaT7VMdd2xNPZ2FC/IIk0D1un9MI7uANLx/Ds68lKqNM+HPm8tlMr6/K9Fk4Jh2Xj8cBe64vmlup1dHcQtc+queJLF7u+AcaQVdsfxKy+MXNHI2BuMQl+wHmrLEu6sJhzuieHZY715tfWpAvctasC06OVPskgjDev0/mwq88xEUotlfz+U6QugzV0DJVozgWvRZJAxbTx/ogeDqfzSJs2qCmLtjCool5n3Silh952FeaQVdlfbhMdeEa6EtmA91OmLOPYSeuNptA/mdwJWVQTm1IQR8l0+yCIzKZhte2Ee35l3dqSsbDYNdcbibKAwUjWBa+VxdwZYqFCs7tNIv/jzbKqNPPjW3AVt7qoxn9uWCSOVKMji3qWEqkL3h7JHJGnKkrYF8+CLkP0debUXkZrsSRZ99K4oKSXMZKwwgZVxqMEoVF9uO7Fo8rLTiZEgS37Uinoo4+yws02jiGOvBj0YYpBwirOlRH8shUyeBZR9qoLqSGDMy6Y00si0Pgbr1P4r7JbOk+6H79rXQ5u+sHDXpLLUOZzCvs7hvNoKAMubKlAfHvs33Oo4gcyupyf4gnnpDUcCLU3z4Vt5G1PfTXEZ08Zjh7vQk8gvyDKjIoDb59dBu+T9SWZSyOx4EnbniQks7l2GLwjf2ruhNswq3DWpLB3sGsamE315tdUUgXsW1mNGZXDMz6yzR2Ds2ZTfhtHLOT/2zlgMfdmNOWc9oMkpbVp4/ngvhvIsAD69Ipsu7NJThDKVQGbH47C7Txd+7A2E4Vt3L9Ta6YW7JpWl7lga5/JMM6oIYE5tGOFL0oVJKWGdPgBj7wuAbSHfTaNjjPweqLNXQF9yA0SJMhgxwEIFZXWeRHrL/4z8cjinr7gF+sINAEZ+2Yw0rEyxi4IK6IEQFI2R+alMWibMA5shB7vyai9CldCW3QzhC164npEYzvt3Ief76n5oQeb6nersVBxWns8uAKjRWiihCgAjY28mVfyxVwjowTBPs0xxtpToi6Vg5Blk0dVsTZbzL5t2fwfSL/53tj5FEae42oL10FfdXrIJO3lTx3AK+ycQZFnSGL2wm1raFowDL8E6sauAPRx7VxGMwLf+Pp5mmeLSpoXfHupCX54pa6ZF/LhrQT10NRtksfrOIfPqo9ld/0UZe7O7qrUFG6Atupab46a4fZ3D2HwyvyCLIoC7FtRjdnU2Ta60TBj7N8M+faCQXbyEgAhXQF97L0+zTHEpw8Km4z2IZfJbI2iM+LFxVs2FU4RW92lktv02uymjaGMvoC2+DtqC9VxzmOK6htPoGM4vyCIEMLsmjKg/++4vzQwyu5+DffZIIbs49r4VdfCtu7ck6XIZYKGCs84dQ/qlX+a9Y1RbshHaoutgZpKQVnEXpy+m6n6oPta3mMqkZcLc/zzkUE9+FwhEoC+/BbZQYSVjhe3clSgq9FCUx3enODsVgzXYnXd7JVIDJRiFkYznVWclX6ovwLF3iptokEVTBKrDAcjjO2DseAqALGpw5TxR1Qj/DW+GEqku+r3Iu84OJXGwK/+/+YvqI2jSDWRaH4Mcyn8Mz102fYK+7Eaos5Zz7J3CkkY2yDKQyi/IUhf24e75dVDbdsE8sGVk42kJxt7qJvjX3wsRjBb9XuRdu88N4aVT/Xm1FQBun1eHuYEMjO2PQ8YGUPRnV2THXm3ZLTnXn6XJKTkSZInnGWSpC/uwcWYVxNFWmIdfwYWUikWm1LXAt+4eiBxreNLk1DmcQudwfhsxBYCZNSFEM4PItP4WMjGMkoy9igp91e3QmhcU91YMsFAxmO1HkHn5kbwXOMSym6HMWFTgXl2dourQAkG+bE5h0jSyQZbh/PL7wh8G5m/IpqUpMS1SxdMAU5ydHIaVb4AQgO2PAC6kL1A0H8feKc62JXpjKZh2fkEWNR1H+LnvoKRPkBCA7kfgjvdCqagt5Z3JY84MJnG4O/8gy+KzL6F6+ExJAoMX0+athbb4Oo69U1jCsPCbg515p6xpFEnc1v546cdeXxD+m95x4fQtTU07zg7ildMDebe/b/gVNBi9pR97F14Dbf66kt6TvCWeMfH88V4kjDxPsthDWNf2RIF7dRVCQAQi8N/0DteKiJP7pJToGE6jO5ZvtguJmQcfgz/ZV/KxV192E7Q5K4t2fZ6tpaLQpi+Ab8P9QD7T7coGiGlzC96nXNiWATOdBOOOU5fQ9Gw9lXA+O5IF0DjXleAKAJixQcg8ayDR5KAEo1CjdXm1lYoGKO4E6GwzAyud33FjmhwURaAmEoB2hcLJlyVtBHaXeIEPyL4UGGmknv0v2PGBUt+dPGRGZRDz6/JbbKiOd6BquL3kL5kAYB7bDvPotpLfl7wjpKu4b1HDhZQdTqiwsbLrFXfG3kwS6Rd/DpmKl/ru5CFrmiuxbnp+aV/mZs6h3oXgCgCYh1+BeXJ3ye9L3hH2abhpTi2CmvN1A01aWHDu5SL06iqkhEzFsql4M8nS3588QQiBaVE/6sL51fOr7DkGX6L0wRUAMPa9ALOI6SAZYKGi0VoWw7f+XmeNItVQ1t4DoblXAM42DVhFKkpO5UFovmw9lZDDCfv0xUCFmznNJYz4EGSeO8BpclBCUShRZ7vppaJC+iPZXaEuKU3NLfIydSTIojoJskiJ0M7fQus7U7yOXeX+SCeQ3vQTSM4dprSZVSHMrXUWZKlI9WFB+4sQeabVLQTz0Mswzxxy7f7kvrBPw30LGxD25V5TSoHETb1bUWfkl6JpwqQEUjGktz4CaRawKDmVnXXTK7G6ydlJphlmL26I7YJwcVOluf9FWJ0nXLs/uS/i13DT3Dr4HQRZFEisP/c8KjKDRezZFUgJmRhA+pVflzSlNHmLEAJNFQHUhpwFWSKDp1F/+hWIEqS0uxxj17Owuk8X5doMsFBRabOWwbf27ty+HIxCWXcfhC9Q3E7lwMqkYXGyPqUJ3Q9t+S0QwRwn7NPmA9VNxe1ULqQNMzHEU1hTnBqqgBLJsYimB4Ir55npJGyOvVOaqiiodRBkCe5/FnrXsSL36iqkhIz1I73lFxx7p7jZ1SHMqcktN3nYjGPRqU1QPbBAYex6BnZ/p9vdIBdF/NkgS0jPLchyXV8rmtJdRe7VVUgJOdSDzM6n3O0HuUoIgWtaqrBiWm41eRpkDLcMtUJxMbB9nrHjSdj5pqWmSSHq13DznFr41KsvzQpIrO14ETVpl58ZKSH7zsHYs8ndfpCrhBBorgygJpTb5vhQogfTTmx2dVPReZnW38KOFz5IyQALFZ02ZyV8a++58pf8oWxwxUO5HJkqjIQegLb81qufZGmYA9TNLE2nciAtE3aG6ZamOjVcefUgi6LC9kVcS2s3HiPFsXeqyzXIEmjbAV/7vhL16iqkhN1xHFabR/pDrsklyBIUFpaceAqa7ZWAskRm19M8ATvFVQR03Lfo6idZNsQPYlbqbIl6dTUS9tkjsDp4EmAqE0Jg48xqrLxKkKVGs3BH/xZo0v3ANgBA2jD2bOK8d4qrCOi4eW7tVU+yrOzfhYZkR4l6dXVW215YPS6dICdPEEJgemUQNVc5yRK0Umg6/CSEBzYVARKwzaKMvd5ZUaFJTZuzAr5rXj/+Ip7mg7ruPohwfvlTi0ZKWFyknvKEbyTIcpmFalE/C6ifXdpO5cBKJbhQQlDDlVAvly5MKNmi9orHpgLSZqowuhBkuVxNlmCiF/6DL7iSv/dKMjufYqqwKU4IgTk14cvWZPGrAkvanoVueeg5GTmFZbXtdbsn5LLKgI77FzWi4jI1WVb5Y5g/eBBwMb3HWAKZPc+xDuEUJ4TAdTOrsf4yNVmiPgV39G2GT3roOZEScqAT9tnDbveEXFYZ0HHL3DoEL3OKcLnoxfQBl09sjyFg7H6Waw5TXDbIErhsTRa/AjTtfxSKJ4IrI6SE3XMadoHTNHpsVYUmM61lMXzXvRFQLvqjoWjQrnk9EM0xlU2JWUYGtpcGAnKF0P3Qlt0CcUl9FVE7HbJxnidSK40lYbLwJwFQQhVQKy+pDSQEEK721MmVi1mZFCfrNBJkCUK/JG1CUAX0l37mUq+uIp2CsW+z270gD5hZFcKi+siozzRFYFnyBPwJl+pWXIVxcCtkOuF2N8hlEb+G1y1uRHVwdNqPJTV+LGl71qVeXYkEksMwj253uyPkMiEE1s2owsaZ1aM+D+kq7lHaEDK9Ob4Z+7dwcwYh6tdw69xaRC45Rbi4SsPME8/BW4FtABjZnHFyt9sdIZedr8nSGPWP+lxXBaaf2wbV9ObG9cze5wu6OcObKys0aWnN8+C/4S2AqgNCwHfN/ZAOizGXmplKut0F8gCh6dCW3gQxUmdFVDYCLctd7tWVSSPNehYEAFACEahVjQCywUCloh62xwMYRsqbL8FUWspI4XvfSNoEv64icGAThOXVsU3CPPwq7MEetztCHjC9MohljVEIAKoAVlYJ+I+/Cu8tkoywTRgHXnK7F+QBIV3F6xY1XNiROq8mhDW9rZ7InX455uFXYCeG3O4GecDKpgrcPCe7gdOnCtzbrCHcvsdzp14vMNIwj7S63QvygJBPwy1z61ARyJ4inFsTwrzTL7rcqyszDmyB5HvblCeEQGM0gKaKbE1tVRGYpQxDbT/g3bE3FYd5dFvBLscAC5Wc2jAL/pveDt/61wH1LW5356qkbcG2eIqFAKFq0BZfD2XGUqiLN0KWQfDCSjNASFmKPwS1uhFqZQNkGfz5l5YJyROEBEARAjXhACJ+HVWKBfvEbu9O1EeYh191uwvkEY3RAFY0VWB5UyVCZ/acj3N7k5SwzhziKRYCAPg1FfctbMDqpgrc0KBBnjvm8bFXwjrBndSUtaQhijvm1+HeRQ2oPLfboxkHzpOwTu2FNDJud4Q8IKCruGVOHZY0RLEynIHsOe3tsdeyYJ5iilHKqo/4MaMqiLm1YajHt3t87AXM47sgC7Te6/0VFpqU1NpmqC2LYZXJJMI2y6OfVHxCUaHNWl426YukmYH08G5DKi3FF4Twh2CVyZhmGd4PYlJpCCEQDfpgndoHz+7+P09KmKf2lUUQnkqjLuxHjV+B1X7Y24skAACZ7ScRAF1VsHZ6FWT7IXg7Oojs2Ht6f9nM0an45teGMS0gYHec8P7Ya9uwOrxWY4Pc4tMULG2Mwj5zyPML1NkA4f6CFwyn8lUT8iFgpWB3ezw4CACWUbBaLAywkGukbXn/l22EZRj8g0Gj2Blv5pEcj10mgUwqDWmZZTT2pjn20ihmuexONg1YZ4+43QvyEKvzBODZ1HajmacOuN0F8hApJcxT++H54DYAZFKwu0+53QvyEOvcMaAsNpsJWGcOut0J8hBp2zBPezi90kVkYgh2f4fb3SAPMdsPoyzmDULALNDYywALuaa8diZL2AUsfkTlTdpWQYthFVs5BYOo+Mrl5CAAQMqCHdml8mcPdEEOdrvdjdwIUT7BICoJ6/TBMtiFmiVjfbCHWEeIsuy+c0By2O1u5EaI7IIk0Yhs0KIcxl4J2d/BOkJ0gd3dBhhl8h4vBCyOvTRCSlk+z4OUsLtOFSQ9LgMs5AopZdml3eIpADrPzqTd7oIjrGVB52XH3nIKbqNs0plR8Zlt+8pmgRpSwu44wVoWBACQmTJJk3CeEEwTRhdY7eWQomaElLDPHWOKRgIAyOQw5EAnymIXNQBAwObpVxphlkV6sBHna7gxRSMBkMN9kLF+t7vhgIR19uiEr8IAC7miHGtC2FygphF2maT4uFg5nbih4inHQBufXTrP7j1bPgvUI+z+Tre7QB5gD3ajfBb4kF2k5rNLI+y+c+U19kobcrjX7V6QB9gDXW53wTF7sPz6TMUhy23stQzI+IDbvSAPKLtxTIiC9JkBFnJFWUa2pWQtAAKAskxZxBR3BJTnsyttm2MvZU9fDZTbgq8oy8UdKjx7uBflkaLmNfZQD8degpQ25HCf291wjCnuCADs4b7yOQEAAJAjAXma6qRpQJZLasaLcOwlALCHegFRRuEGWZixt4z+G9NkUqxFvm9869tYtHwlKusasfGmW7D5xS0FvX457v6mwpJSFqVQ4te//V0sXLkOFY0zcN0td2DzlpcKen2eAiCgeGPYN771bSxasQqV9dOw8eZbsXlLgcfeMjz1SAWWigNG4dMzfvOJrVj68c+h5j3/Bzf85Vfw4oEThbu4ABdKCAAgh3qLEl/5xqPPY8kHP4Pqt/wxrv/jf8KL+yae3uACMwMwxd2UJ+ODRZn3fuM3L2DJh/4W1W/7U1z/J5/Di/uOFe7iQsku7tCUJ4d7i3J48Bu/3oTFH/hrVL3pE7j+E/+AzXsLOPam4kxxR0ULbBd77OXpQQIAOdRTnLlDEee9MjYw4YMADLCQK4qRbutnP/9vfOrP/xJ//qlP4eXNz+OG6zfijW99O06dPl2we5TlyRsqqGIEKn723/+DT/3l/8ZffOqP8fLzz+CGjdfhDW9/F06dPlOwe5TjyQUqvKKNvX/xv/Dnn/pTvLx5E27YuBFvfOs7Cjv28vmd8opx1PzhLbvx6e8/ik+/+VZs+ceP4frFs/Hmf/w+TvcMFOYGUsLu7yjMtais2YPdBU/z8fAL2/Dpb/8cn37HPXjpX/8CNyybhzf9zb/hdFfhFmW4SE2yCLuRH35hOz79nf/Bp99+N176lz/DDUvn4U3/39dxurtAz660yy89CRVFMdIz/uz5VvzZtx7Gn7/zXmz90l/i+uXz8abPfBWnCjj2cpGainESpDRjL0+wTHWyQKdBLlX0ea+0J5zijgEWckUxdlF/6Stfxfve+x584H3vxeLFi/D5f/pHzJg+Hd/89ncLdg+eYKFiPAP/+tWv433v+T184L3vwZJFC/GFf/z77LP73X8v3E0k0ywRIK3CB4m/9JV/w/ve+wA+8OB7sXjRInz+n/4h+/x+h2MvFU72ha2wRwC+/OhmPHjbOrzv9g1YPL0Bn3vw9ZhRW4lvPflywe4hh3o59lJRCn1+6RfP4MG7NuL991yPxS3T8LkPvQ0z6qrxrd++UKA7CMhY+aWGosLKplgq7JLBl375HB688zq8/+6N2Wf3obeMPLsvFuwe5ZjWjApLWhaQihX8ul/6n2fwvruvx/vvuQGLZzbh8x9+O2bUVeFbv3m+YPewy6o4NBWDLNOxlynCCEYqewq6wIo/75343IEBFnJHgdcaMpkMtu/YiTtvv23U53fecRu2vlzAhRIuklCBn4FMJoPtO3fhrttuHfX5nbfdiq0vv1rQe5VVkTwqkmI8vztx5+23j/r8zttvw9aXXyncjfjokpkpaB71jGlix4mzuGPlglGf375yPl4+3Faw+0DaRTkiT+VD2oV/BjKGiR1HT+OONUtGfX7HmiXYWqg0d0IwTQ0BBX4GMoaJHcdO447Vi0Z9fsfqRdh6sIApGpkal6zCj1/ZsffU2LF37RJsPXC8QHcRBf+9o/IjrcIuUJds7OWzO+UVY+5YknkvADnBvxsMsJBLCrta1tPbC8uy0NDQMOrzhvoGdHbyiDgVUqGf3b6RZ7d+1OeNDfXo6Cr0s8tV6qmsGAHi18be0c9vQ0N9QcdeyWd3yiv0KabeoQQs20ZDZWTU542VUXQOFHjHK1PcTW124Rd6e4ZisGwbjVXRUZ83VEXROTBUuBvx9OCUJwv8/PYMxUee3YpRnzdURdHZX8CCzrbFjXFTXRHGr/Njb8MlY29jVQU6+ws09gpw7KWRuWPhxrBSjr00xRVhg0O5zHsZYKFJRVyyu1VCjvmMaEKK9K425tmVfHapfAjw+aUiK9JC2fjzhkLfhYt8U1oR/+e/9FmVUo4ZjyeEC9RUtLF37G04baCCKuL4VfT3No69BFmU+UPxx14+u1TMsfeSO3ls3ssAC00KdbW1UFUVnZ2doz7v7u4es7OaaEIK/PZXV1sz8uyO3u3f1d2DxvpCP7t8c53KihHwuDD2XnLaqru7p6Bjb0EnTlSWhKIW9Hq1FSGoioLOgdG79roGY2NOtUxYgftOZUYt/P/+dRURqIqCjkt2nXYPxsbsrJ6QIvSdyotQtIJer64iPPLsjt5x2j04XNhnVyjc6DHVFXHsvfS0Slchn18Jjr2UnTsWcAgr2djLOS8VeN4AlHDeO8HnlwEWckeBJ7w+nw9r16zG088+N+rzp595Dtdde23hbsSJOhXj2V29Ck89t2nU508/twnXXbuhoPfi80uFln1+V+PpZ54d9fnTzz6H6669pnA34qNLmo5C7ojyaRrWzGnGM3uOjvr82T1Hce3CWQW7DyD4sjnVCQWFHsR8uoY181vwzI6Doz5/ZudBXLdkToHuIovykkxlRivsM+DTNayZ14Jndh0a9fkzOw/husWFenbBcZeKMn5lx96ZeGbHgVGfP7PjIK5bMrdAd+HYSwBUHYWcO3DspVIRarHG3mLPewFMsO8cuckVQiiQsrD5GT/xsY/iAx/6faxdsxrXXXMNvvO97+H0mTP40AffX7B7CMGY5FQnlMI/A3/00T/A+3//o1i3ehWuvWYDvvO9H2Sf3fe/r3A3EYI7+QhCUbIFlwvoEx/7CD7w4T/A2rVrcN01G/Cdf/9+9vn9QAHHXk7WpzwRqSl4yoyP338jHvrqz7Bm7nRcu3AmvvvUqzjdM4iH7ixccFCEKzn2TnFCCIhQFDJRwBzRAD7xptvxwf/3A6xdMBPXLp6D7z72Ik539+Gh+24qzA2khBKuKsy1qGyJUBUgCzxveOOt+OAX/xNr58/EtYtm47uPb8Hpnn48dO8NBbuH4LM75QlNB/QAYKQKet1PvPl2fPAL38faBbNw7eI5+M5jL+J0dz8eel2Bxl5k5w40tSnhKlhlOPYq0ZqCXYvKlD+UDRIXuIZb0ee9wITnvQywkCsUVYVV4AJYb3/rW9DX14fP/tM/o6OjE8uWLsEvHv4pZs2cWbB7KFzkm/IKnSoBAN7+ljejt68fn/3nL+BcZyeWLVmMX/70R5g1s6Vg9yhGv6n8CFWDtDMFveb4Y+9PCjr2FiOwSeVFqSp8us+3Xb8SfbEE/vHnz6BjYBhLWxrx33/xIGbWVxfmBkJAqZ5WmGtRWROV9ZCJYRTyFNbbblqH3qE4/uHHv0VH3xCWzmrC/3zmI5jZULjFDVFRW7BrUXlSKgv/DLztprXoHY7jH37yODr6BrPP7v/5/cI9u0IU5W8GlR9RUQfZe6ag13z7zevRNxTHZ3/0G3T0DWHZrCb84m8/glkNhftdUaIce6e6Yvz9Lf7Yq0Cp4Ng71QkhIKI1kINdV/+yAyWZ90Yn9g4opGQFLSo9y8jATCfd7oZjvnCUp1gImaHesis+qPiC0IJht7tBLrMy6fIceyM8BTDVSSmR/PnnAauwu6GKSgjoy26EvuxGt3tCLjOOtMI8/Ep5zR0UFYH7fp9j7xQnLROpR7+GcitcrC+/Gdrc1W53g1xmHHwJ1ondBT+FVVR6AIG7CncKnMqTzKSQeuybbnfDMX31ndBmLnW7G+SyzO7nYJ0+UFZjrwhVIHD7eyZ0Da4UkyvKM92LYHCFAJTnaRDBYomEMh17WaiWMLIbqqLO7W44IyVEVYPbvSAPUKK15RVcASCiNRx7CULVIMIVbnfDsbL7e0FFkR17y2eBD+CzS1nCFwB8Qbe74ZjC55cAKBXlNvYKiMqJn77iajG5ohzTvXCBms4TBS74WQrFKDZG5Ueo5Tf2Khx7aYRa0zRSMLx8KFWNbneBPEBUltmCg1CgMDhII0RVI1BmwTaF6e0IZZjmUAgo5fb3goomO4cso7F3JDUUUdkFikVhgoPl9ZZKk4YQouwWfFVNd7sL5BGK5nO7C84IpTxPLlDBCaGU3dircOylEWrL4rLaDSWqGqGwUC0BUIJRiHLKSy5tqE3z3O4FeYTWvKCMTmAJKLXTIcpw5zcVnojUQITK6ASWlFCnceylLLV5AcomPaMQUBrnlN17JhWHUt1YXiewpCzIvJcBFnKNqpfXIjUX+eg8oWpAGZ3CUn0BpvmgCzj2UrlSGmYBgfKpJaXNXeV2F8hDtJlL3O5C7vwhKLUz3O4FeYTSOBsom81FEirz/9MIIQTUGUtQLqcARLiyIGlqaHJQm+cB5bJJUkrWXqELhFCgtSwpm9OvorIeSmRiBe4BBljIRYqqoVwmO4qqc4GaLhBCQPUF3O5GzhSf3+0ukIeUU8BC0X0ce+kCIQS0OavKY7IuRHktqFPRqc0LyufZbVnMsZcuEIqaPUFYDs+EokFtmu92L8hD1OkLUR6nALLBII69dJ7QfFCa55fH2Kv7sxuhiEaoMxaVzelXraUwwUEGWMg1Qgioenks9JXbjm8qPkUvj6CFUHWmB6NRhBBlE2Th2EuX0mYv9/5kXQgozfMh/CG3e0IeInwBKA2zvb9QIiXUGYvd7gV5jNaypCzGXnX6AogymeNQaYhgBKKmGd7f2CmhTl/gdifIY7SWpeUx9s5YzDUHGkWJ1pRHLRahQG0uzMYMBljIVUo5LJ4JhQXuaQyhqBBlkC5B9ZfPSRsqHbUMTjUJhbWDaCyloja7Q87Lxe6lhL5gvdu9IA/S5qz09kKJyNavKESaBJpcRGUDRGWDtwOEUkKbvdLtXpAHZZ8Lj4+9jbMhAhG3e0Ieo9TNgAhXwdMBQjmyAYroEp5Pl3x+Y0aBstN4+O2UpgJFUT2/Q1n3B3lUl8alBb1dC0CoelkEgaj0FFXz/CkWLRDi2Evj8q29G55dKBECyvSFUBtnu90T8iC1bgaUaXO9u0gtAX35TW73gjxICAHfytu8GyAUAmrLkmxhXaJLKI2zIWqbvTv2QkBbcoPbnSAPEkJAX3kbPDvvhYA6dxWUaK3bHSEPUqcvytaV8urYq6jQF28s3OUKdiWiPGVrWXjzFy67CKm53Q3yKKGoUD2cAkYLhrlATZel+YNud+GyFE0fqdNFNJZSWQdt4QZ4cu4gFPjW3Ol2L8jD9GU3evQEloA2dyUXSeiylOrGbAF5L84tFQ36Ui5Q0/iEENCX3ezZNWpt/joooQq3u0Eepda3QGnyaC0W3Q990bVu94I8SggB34pbPbs5Q190HUSgcJumvTi7pylGCAHNo2mMvLwASd6g+IOeXChRfEEILlDTFQhF8ewY59V+kTdIKSEX3wA7UuV2V8bQl94AJVzpdjfIw5RgFJoXU8j5/NAWXON2L8jj9CU3AKr3TsDqS65n3Su6IiVSDXXuKnhrc4YAAhGoc1e73RHyOH35TZ5cc9CX3QRRJrVpyR1KVUN2c4bHxl4RroJa4NR23vsNpSlJ0bxXiFv1BSAU/orQlQkhoAU9li9XKFADXKCmq1N0n+fGOc0f9FyfyH1SSqQMEwOJNLqGkuhPW/CvvMXtbr1GCIhINbTF3MVHV6fNXZPNqe6h3aj68pshPJ62l9wn/MHsKSyvEAKioh7q7BVu94TKgDZ/HRAIeWjsldmxl5vi6CqUYBTaksKlMpowIaDUNENtWex2T6gM6Is3Ap7KXCShr7yt4GvQXMEgTxBCQA96Z7KjqJrna8OQdyi6z1OpwrRwBYQHd7iQ92TH3oh3xl7NB4VjL42QUiKZMdEfT6FzMIH+eBrJjAlbSgR1DXrLEmiLr3O7mwAEoPngv/kdXCShnAhVhe+a14+cBHB//NXmrYHWvMDtblCZUGcugzrLCwWNBaAH4L/29dyYQTkRmg++DfcDwhsbO7WF10BtmOV2N6hMaHPXQJm+EK7PG4QA/GH4NryO6cgpJ8IXgH/D/Z5Zc9CX3QS1trng1+VMhDwjfa4DwnQ/N59QVBZXJkeklEiebvfE8VgtVMHaFeRIqr0digemA0LVoAWCHHunuAsnVeJpdA4mMJBII2VYY9KmB33ZcU5feevIy6aLhID/xrdBida42w8qK0q4cmShz90xT2mc45FAJZULIQT0FbdAqW+Bewt9AlAU+K99A0Qw6lIfqBwp0Vroa++G24vUyvSFUOetdbUPVF6EEPCtvhOiutHFuYMAVB3+697ItIzkiFLdCN+au9zuBtTZK4p26tX9FRUiANK2cfAzf4Pt734A/c+/COlSESShKNBZGJwc6nvhBex6/wdw/HP/AmMw5lo/1GCUu//JEds0sf8v/hd2PPAgBl/e5uLYq3LsncKklMiYFgYTaXQNjZxUMczL1qJVFQFdzU5hhRDwb3wjlMY5cGWxRAj4b3wr1IaZpb83lT21thm+9fe5tFAioNS1wLf2Hp56JceEosK34fUQNdNQ+rFXAELAd90boVQ3lvjeNBmoDbOgu7jQpzTOgb7iNs57yTGhatngRrTOhbmDAFQV/o1vglJRW+J702SgNs+HvvI29+4/Y3G2blCRfneEdGs1hegiHb/6NY589h8u/Lti1UrM/OgfIDRndsn6IFQNeiDIl0xyxEqlsOP3HkC6sxMAoIZCmP7eB9Dwursh1NIdP9dCUSgeOEFD5aX9Rz/G8S99+cK/qzZsQMtHPoTg9Okl64NQNQZXpijDspHMmEhlTFgOpqPRgI5IYHQwWZoGMq2PwWrbW+hujk+MpAXb+CaoTXNLc0+atKzuU8hsewKwMkCJXs2U6QvhW3kb09rRhEgzg8yOJ2GfO1aaG4psWjDfhtdBrS3dXIUmJ6vzBIydTwO2Wbqxt2Up9GU3eq7+LJUXmUkhs+0x2N2nSnNDIQB/CP4Nr2dgmybMbD8MY9czgLRLNvZqc1dDW7KxqOu9DLCQ64zBIbS+63dhDgyM/oGqYtqb34jpD7wbari4xw9VXwCq7uMCHznW9s1v4cwPfjDm8+Cc2Zj1Bw8hunxZUe8vFDVbc4WTdHIo3d2Nbe96N6xEYtTnQtPQ9I63oemdb4caDBS1D5o/CIVj75Ri2dmgSjJjwrTzm4LWR4PQ1PEnx+ldz8I6/GrRJ+xK7XT4rn8TlFBF0e5BU4s91Iv0jieA4b7i3UQIQCjQV9wCrWVJ8e5DU4qUEsbe52Gd3DMy7hZx7K1rgW/dPUxNQwVj9XfC2PU0kBgs3k2EABQV+srboDbNL959aEqxbRvGnudgt+0b+aSIY2/jHPjW3AXhK+67IU0dVs8ZZHY9AyRjKNqzK7Ip7Xxr7oLaOLs497j4dgywkNuOfu7zOPff/3PZn+s1NWj58AdRe/uthV+EEwJ6IMSaFZSX5KlT2PHg+yAN47Lfqb39Vsx4/3vgqyl8bn7FF4Aa4M5/ys/Bz/wNup948rI/9zU0YOYfPITqG64vztgbDHPsnSKklEibFhJpE2nTmtC1NFVBfTQ45nM7FUe69XFY3WcQuv3dSL/4c8hCL1QLBZA2tKXXZ4+Xs6gyFYCUElb7YWR2Pg3fqtshE4Mwj7RmXwoL/JomwlXwrb+P9YKoYGQyhsyuZ2DHB+Ffdw/Srz4KJIcLe5OR3wVt8UZoC9Zz3ksFIaWEdWo/Mrufg2/9fZD952Cd3F2csTdaC33tPVDClQW9Lk1ddmIImR1PAZYBffnNyLz6KJBOXL2hEyNjrb7sJqhzVnHspYKQUsI8vhPG7k3w3/hWWOeOwjq1v8BjrwAgIaoa4Vt3D5QS1WpjgIVcNXzwIHZ+4KGcfpGiK1di1scKlDZMCKi6n6dWKG9SSuz/009h4JVXrvpdNRRC8wO/i8bX31eQtGFC80H1B6Fo+oSvRVPTwPbt2PPRj+f03coN6zHrIx9GoBBpw4SA5gvw1MoUYdk2EhkTibQJu0DTzUhAR/Si9GDZSfpupFsfg0wnodTNQPh1D0FaJqyTe2DsfwkyMTixSbsQgATUmUugL76OqRGoYM4vkNgdxwEA/pvfAbV+JuyhHhhHt8M+e3TkHTHf35+RF8xgFNr8tVBnLGZKMCoIKSWsE7uR2fs8YKShNMxG4Ka3QZoGrFP7YRxtBVJxnH8G8zIyT1BnLIY2fy2UKHP+U2HYsYFsaruuNgBA4Pb3QKluhD3QBfPYdtidJya42Dcy9oYroc5bC7V5AbMNUEFIacM8ugPGvs2AZUCdvhD+694AaWZgntwL89j2AgRasnWu1JlLoc1bCyVSVYiuE8Ee6kVm2+Owe84AAAL3fQhKpBpW3zmYR7dlx+QJv7NJiEgNtAXroDbNL+mGOAZYyDXStrHrw7+P4X37c24jfD6s/dF/Qa0I53dToUDz+aFoOhf3aEJ6Nz2Pg3/1V47aNL/rnZjxvgcgLTOveyq6H6o/VNLaLjT52KaJHQ++D4njJ3Juo4ZCWPuTH0L48wvqCUWB6gtw7J1iTNtGXywFK89UYOOpiwYvFLi3h/uQ2vprWOeOX/i5OmMhQre/+8K/pW3Daj8MY/8WyIFsrazzJ1EuT7y2qK2o0OathrboGijhqoL996CpTUob5rGdMPa9AJivnYIN3PkglMr6C/+2E0Mwj+/M7uyzLbxWTPwKv1MXPd+iog76/HVQmuayxiAVjD3Um12cHlkgAQC1ZQn819x/4d/StmGdPQLzyKuvnSbMZezNtgYUDdqcFdDmroYo0c5TmvykbcE8sg3GgS3ARe9jgfs+PCrlpx0fgHl8J+wzh0ae2RwChRePvVWN2YXphlmc91LB2ANdyGx/AnZ/x4XPtLmr4Ftz14V/S9uCdeYQzCOtkPGB7IdOxl5NhzZnFbQ5qyECTMVIhSEtE8bBrTAPbB31LAbf9EcQF9URtof7YB7bAav9UPY9LJdgy0XPt1LTDG3BOih1La6MvdzCRK7p/PWjjoIrADDtDb+DUHMzpJSQtgXbsiAtE7ZtjfuLJ4QCoWpQVBVCVbP/5iSHJshKJnHiS19y1EYJBtH8rndBj1RB2iPPrWlAmgakPV7KHAGhaVBUHULTIFQuTFNhnP3Zw46CKwDQ/I63I1BXf9HYa8I2TUjLwngvnEI5P/Zmx19w7J2SNEVBXSSIvngKhnWlF7vcqIqApghI24JxYCvSO58dtUACYExefqEo0FoWQ52xCDIxBLu3HXbPGVjdpyEHu8fOHfQAlPoWqHXTodROh1LTBMHTglRA9mB3doGk79yYn136/CqhCviW3wy5ZCPsgW7Y/R2w+89l2xrpS1tDVNRCqWmCUj0NSvU0iGCUYy8VjLQtmIdegXFw60jA7zXCNzp1o1AUaDMWQZ2+MDv2jjy3du9ZyOHesRf3BaDUNI/8pwlKZT1PW1FBWf0dyGx7PPu3/xKXPr9KuAq+FbdCLrkB9mAXZH/HyPjbAZiZSxoLiGjda2NvVSNEMFLM/yo0xUjLgHHgJZiHW8cGSsaMvSq0mUuhtiyBjA9mx93+c7B72yFj/WMv7g9BqWmGWtOUnfNW1HHspYKyes4g0/r42L/9QgE036iPlGgNfKvvgFx2E+yBzuy423cuO/Zaxpj2orIOak3za/PeQJ4b8QuEvznkCmNwCCf+7WuO2ujVVZj94Q8BAIQQFxbvgGzE87XDWBLno/B8qaRiOPOD/0C6s9NRm5kf/AD8dXUAshMfoahQ9EueXSlHHl0+v1Qc6e5unPr2tx218U9rRMuD7wVwydjru3jcxWu7TMBnl16jKAK1kQD64+kJ118J6BrsvnNIvfQI7L6Ocb9zucLHQgiIcGU2//nMpQBGnl/LyAZphAKoOqAwGEjFIS1zZIHk1cvvJL1M8Vih6lBrm6HWNmevJWX2GpaZ/X8VDRjZSERUDFZvOzLbnhg/OAJA+MfWxgIuGXtnLAaQPcEFy8qOv4oKqBo3YlDRSDMDY9+LMI9ux7inUFTtshsphKZDrZ0O1GbT5EopAdsG7JGxV9UAReOzS0VjdbUhs/3J106jXOKK895IVTa918wlAM6PvWb2PyNjL1PXUbFIIw1j9yaYx3eO/wV/8LJjp9B9UOtboNa3ZK91fuw9H2RRVU+OvQywkCtOfuMbMAcHHbWZ89GPQote/oj4a79c3volo8kleeoU2n/0I0dtQnPmoOltb7vszy88ux77A0GTz4kvfxVWIumozdw//mOogcss+l38zPL5pcsQQqA67EdfPI3MBIIsyrFWJHY8ecWj4pdb5Ltcv6D5xuyeIio0q+sUMjueHH/36HmaL+eFDiEEINTsAglREUkjDWPvC5dfIDnvMsHB8QihAJoC8HQgFZnVcRyZHU9BJoYu+51LT69ciRAiu7DHdM1UZDKdRGbPc7Da9l3xe8Lx2Mt5LxWfeeYwjB1PQqbil/3OZBx7GWChkhs+cAAdv/ilozYVK1ag4b57i9QjotxIKXH8i1+ENJ3VUJn7J5+EonG4JXcNbNuG7iefdNSm+rrrUHvzTUXqEU0lhmVPKLgi0nHY25+46hYK5osmL5GZJDJ7NsE6ufeq33USHCQqBbP9CIxdT0MmY1f9Lp9f8hKZiiOz+1lYpw9e/csOFvmIik1KCevMQWR2PQOkr74pzskiNVGx2clhGNufgnX2yFW/OxnnDVzxo5KSto2jn/vC1QsVXUxRMO9TfwKhMO0Buat30yYMvPKqozZ1d92FyjVritQjotzYpoljX/h/jtoIXce8P/ljzx29pfJjWjb64qkJXUM9dySn86mXS5VAVErZBZJDIwskiZzacJGEvMJOxmDsfDqnBZLzhI9jL7lPSgmrbS8yuzcBRm7zjsm4yEflyY4PIrPjKdidudfK5PNLXiClhHlsJ4w9m8bWqbqMyTjvZYCFSqrjV79G7MABR22a3/oWRBYuLFKPiHKTLWz/ZUdt1FAIsz/6kSL1iCh3Z3/6MyROnHTUZsbvvRvBlpbidIimDNuW6IunHO2rGI92LreFPgZYyG12Yii7QNJx3FlDLpKQy6SUME/sgrHn+ZwXSM7jIh+5zY71I7P9Sdjdpxy1m4yLfFRepG3DPLYdxr7N2fooTvD5JZfZgz3IbHscdm+7o3aTcd7AAAuVjDE4iJNf+7qjNnp1NWZ96KEi9Ygod2d+8ANkuroctWm5qLA9kVvSXd049Z3vOGrjnzbtQmF7onxJmQ2uWPYEoytGCmpPbgsmTBFGbpHShnl0x8gCieG4PRf5yE32UC8y259wvEByAZ9fcom0LZiHW2EceClbfN6hybjIR+XDHujKLk4PdObVns8vuUVaJowDL8E8+DIgbecXmISb4hhgoZI5+fU8Ctt/7MqF7YlKIXHqFNp/9GNHbUJz56LprW8tUo+IcnfiK19xXNh+3icvX9ieKBdSSgwk0jCsPCbcl9A6j0PkOHHnCRZygz3QlV2c7u/I+xpcJCE3SMuEcejl/BdIRjgptExUKFbfOWS2PwE52J33NRjcJjdI04BxYAvMI63O0udfTNEAVS9sx4hyYHWfRmbb45DDfXlfYzKOvQywUEkM7z+Ajl8+4qhNxcqVLGxPrpNS4sS/sLA9laeB1m3ofvIpR22qN16HmptuLFKPaKqIpQ2kjPyL2l9M7cw91dJknKyTd0nLyO7eO/xq/gskI/jsUqlZPWeyi9MTWCABAGg6hMo5L5WONDIw9m+GeXT7xC/G4DaVmNXZhsyOJyDjzjYfX0r4A6yVSSUlMylkdj8H68TuCV9rMm4s4kyIik5aFo5+/vP5FbbnHwxyWe9zz2HgVWeF7evvvguVq1cXp0NEObINA0fzKWz/yU9y7KUJSRkmYinnKZIuJ9f0YPAFIRSlYPcluhJ7oAvprY9AxgcKcj0GWKhUpJQwdj0L81gBFqfBZ5dKy+o9i8zLv4JMDhfkenx+qVSkbSOz/QlYbXsLc0E+u1RCVlcb0i//GkjFC3K9yTj28i2Uii5b2P6gozbNb3srIgsWFKlHRLmxkkmc+PJXHLVRQyHM/ggL25P7zv70Z0iePOmozYwHfg/BlhnF6RBNCaZlYyCRzqutb/8maO0HRn2mDHVDSec2kWf9FSolUVEHbf5aQPcX5oKTcCcfeZMQAtrcVVDqZxbmenx2qYSU6kZo89YULDXSZFzkI28SigJ9/lootc2FuR6fXSohpXY69HlrsqnpCmESzh0YYKGiyquwfU0NZj30wSL1iCh3p7//fceF7Wc+9EH4WNieXJbu6kLbd77rqI2/qQkt731PkXpEU4EtJfrjqbwyJQUyw/B1HIZ/26+hH2u98Lna3ZbzNVh/hUrp/EJJ8O4PQJ21bOLX40IJlZBSUQv/TW+H75rXQwQiE7sYn10qIaGo0Bddg8DdH4A6Y9HErzcJF/nIu5SqBvhv+V341t074QVmPrtUSkLVoC+9HoF7PwC1ef7ErzcJn18GWKioTn7tGzCHhhy1YWF78oJEWxvO/vgnjtqE5s1F01veUqQeEeXu+Je/AjvptLD9H7GwPeVNSonBRBqm7Ty64tdUVNU3IvKGj0Kftxq+fc/Ct+85AIDak3uARWGAhVwgAmH4198H/62/C0ygDsVkfNEkbxNCQGtZnF2onr4w/+tw7CUXKKEo/Nf+Dvw3vh0QE1jWYoCQSkwIAW32cgTv/iCUaXPyvw6fXXKBEq6C/4a3wHfDmyd0ncn4/LIGCxXN8L796HjEYWH7VSvRcO89ReoRUW6klDieV2H7P4FgYXtyWf+rreh56mlHbWquvx41N7KwPeUvnmdRe11VUBX2QwgBqaqwB7shAPiOvQqRikHtPZPztZgijNwkUwnAcjZvuNhkfNGkMqGqsCdQ6J7PLrlJpoYBaefdXvi5uYhcoqqQQ/mPvZMxxRKVDxl3tpF+FEUFNF/hOuMRXAmkopCWhaNf+IKzwvaqivmf+lMWVybX9T77HAZbW6/+xYvU33MPKletKlKPiHJjGwaOOS1s7/Nh7if/iGMv5S1tWBjOo6i9KgSqw34oI8+ecXQn7J72Cz/XL6nHcjXcRU1ukaYBY/czE7sIF6nJJeaxHZBDPXm35+krcovMpJDZsyn/C6g6RIFquRA5ZRx6BTIxmHd7BrfJLTIVh7H3hbzbC19wUq49MEUYFUXHI79yXtj+rW9BeP7Ec/kRTYSVSODEl7/sqI0aDmP2R/6wSD0iyl37T36KZFvuKZUAoOWB30NwBgvbU35My0Z/IpVX2+qIH6qSnYrKdAKZ7U9OqC8MsJBbjEMvQyaG87+AHoBQ+FpGpWcnYzD2b5nYRbjIRy4x9r8IpJ2lxL0Yg4PkFjs2APPQKxO6Bue95JbM7ucAM5P/BSbp2MuZPBWcMTCQX2H7Dz1UpB4R5e7093+ATHe3ozYzP/hB+Gpri9Qjotyku7pw6rv/7qiNv6kJM97DwvaUHykl+uPpvIraV4X80FX1wr/TO56BnMAiCcCFEnKHPdwP8/CrE7qG8DFFDbnD2LNpYosk4PNL7rAHumAe2zmxizA4SC7J7HoGsJ2n1r0Yx15yg9VzBlbbvgldY7KevmKAhQru5Ne/AXPY2S6+uR//GLRIpEg9IspN4uRJnP3xjx21yRa2n1iBL6JCOP6lL+dR2P6PoQb8ReoRTWZSSgwk0jBt53nPw34NQd9rWWqt3rMwDjtLyzge1mChUpNSIrPr6YkvkjA4SC6wuk/BOu0sFeN4+PxSqUkpkdn5FIA8dnhcZLIu8pG3mWePwe44PuHrcOylUpO2PeGMA8DkfXYZYKGCGtq3Dx2P/MpRm4rVq1B/z91F6hFRbi4UtrecLZKwsD15Qf8rr6LnaWf5/2tuuAG1N7GwPeUnmTHzKmrv0xREA68VNZTSRurlR51dRAjoC9dnCyRe/DFTJVCJWWePwu486aiN0jALoqJu9Idc5KMSk7aFzM6nnTVSVGhzVgGX5E3nIjWVmtW2D3bvWUdtlGlzICI1oz6brIt85F3SMmDscjj2qjrU2SvGfs6xl0rMPLYDctBZthd1+gKIcOWozybr2MtVQSoYaVk49vk8Ctv/KQvbk/t6n3kWg9u2OWpTf++9LGxPrptIYXuifJiWjaGk85QyqhCoCgVG/c03ju4YVdg+F/qiDQhc8zr4lm5E6pXfwDp7DABPsFBpSTPjvLC95oNv/X0Q/hDMYzuy9QPMzKR90STvMo/ugBzqddRGW7gBvmU3Qpu3GpmdT8PuOQOAwW0qLZlJIbPXYWF7XxD+Da8DNB/MI60wDrwEWCaDg1Ry2cL2Q47a6Es2Ql90Dey5q7Jjb985AAxuU2nJVMxxYXsRjMJ3zf2AEDAOvgzz4MvZU9+T9NllgIUKpuOXjyB28JCjNs1veyvC8+cVqUdEubESCZz4ylcctWFhe/KK9h//BMlTpxy1aXnPAwhOn16kHtFkdj41WD5JOarDfqjKa8EVmUogs/0pR9cQgTD8q28DACgVtQje8QDMUweQfvUxLvJRSRkHnRe215dcDyWYTYmrL1gHbcYiZPY+z0USKik7GYNx4EVHbUQoCn3RtQAApbIe/pvfCev0QRh7ngNYB4BKyNi32XFhe9/ymy+Ms/qia6G2LIGx+zkGt6mk7Fi/48L2IloDbcE6AIBSPQ3+W98N6+ReGAe3QGh6MbpJNK7Mbuc12/RVt0Fo2cwFvmU3Qpu1DJkdT0/adzYGWKggMv39OPn1bzhqo9fWYtZDHyxSj4hyd/p733de2P6hh+Crqbn6F4mKKN3ZiVP//j1HbQLNzZjxwAPF6RBNerGUAcNyXnelMuSDro1O6ZXe+bTjwvb+dXeNWowWQkCftRRa83yA6RqpROzhPseF7UVFLbT5a0Z/FozAv+F1kBMsMk7khLHnOcA0HLXRV94+ajFPCAFt5hKozfMgLknXSFQsdn8nzOO7HLVRapqgzl4++rNQBfzXvYFjL5VMtm6Q88L2vtV3jBpjhRDQ5qzA/9/efYfHUd3743/PzBatuixZlotkW+623DAYF2xMr6aEAKF3QgKEYAi5ubnfW/K9v5tvbi6BkEByEwIBQgktBAK2ARsDroB7tyxbrpItq0ur3Z1yfn+sbCws23tWM5pZ6/16njyJd/fMfKyMj2bPOXPeWvEIu0skOi6zZo90sL1aOBDagI7XqZqZh+BZ1wCm3D1IquA3UbJF5e9+n0Sw/f0MtifXhSsrsf+vf5Vqkz5kCPpefZUzBRFJ2PHUb6WD7UsZbE9JihkmWqLyN8TpAR/SAx1X2ZmH9kHfJrcto9a7GL7ScZ2+p/gDnb5OZLcjgyRCbqIxMOH84w5EH17dR+Q08+BumHu2SLVR+wyC1m9op+/x2qXukmywfWDCecfdjpzXL3UXs6oC1oGdUm20ASOgFQ7s9D1eu9RdhGUhtlpuxwEoKgITz++071UUBThFr1+G3FOXNW3YgAPv/UOqTfaECeh9IYPtyV3xYPsnpIPthzDYnjyg/osvcGihZLD9WdORf9Z0hyqiU5nVvjWYrICmIjvU8SY62WD74JmXQVF460ruMveXwzpYKdVGKx4FrXexMwURJSjZYPvA+OMPUBN1F3PXhiPZE4nylY6HmlfkUEVEiRGGDn2tZGab5od/3CxH6iGSYVSskg629404A2p2vkMVeRe/pVKXxIPt5cKVoWkY+iiD7cl9hxYuROPKVVJtCi+5GNnjO19BTdRdrFhMOtheDQQw5OEfOlMQnfKa2mIwLblVo6qiIDcj7Zjf93r5ali1+6WO5R8xGVovDpKQu4QRg772E7lGvgACY892piAiCcb2VRDN8sH2alaeQxURJUbEIoit/0yuUSAE/5iznCmISIK+dYV8sP3oaVBDWQ5VRJQY0dYCfcNiqTZKKAv+UVMdqsjbOMFCXVL193fRslUu2L7/td9GxpBShyoiSowRDqPyN5LB9pmZGPg9BtuT++LB9nuk2gy49Rak9evnUEV0KmuLGWiLGdLtctMDHULtgXiwfTSpYPtZ0ucnspu+ZQVEm2Sw/ejpUELcEpfcZbU1Q9+8VKqNkp59JNieyE36xsVATDLYfuzMDpltRG6wWurlM9uy8uEbeppDFRElLrZukXyw/YRze+wWdpxgoaTF6uuxK4lg+xIG25MH7Hn+ecQOHZJqU3L3XQy2J9dFqqvlg+3798OAm25ypiA6pZmWhcY2+a3B0gM+BP3HbqUYXb1AepDkm8H2RG5ILti+AL4hE0/+QSKH6es+TSLY/pwOwfZEbrDqq2HsWCPVRu3VF9rAspN/kMhBdgXbE7nBrNkDc/cmqTZqn0HQ+g93qCLv4wQLJa3ymWSC7R+ALyPDoYqIEhPeuRNVr78h1SZj6FD0veoqZwoikrDzqd/CikSk2gx5+GEG25M0IQQawjEIuZ3B4FOVY3JXgPZg+3LJYPvCEvhKx8sVQGSz+CDJgiSC7c+DovLrFrnLPLgb5l7ZYPvBxw22J+ouR/peSYEJnYcrE3Unc//2JILtR0IrLHGoIqLECMtEbNVHco0UFYGJPTuzjXf8lJSm9Rtw4B9ywfY5Eyei94UXOFQRUWLiwfZPSgfbl855mMH25Lr6FStw6BO5/f97zTgLvaZPc6giOpWFYwZihlxfCQC5GcFjbq6FlWyw/aU9+kadvCEebL9Lqo1WMprB9uS6eLC93LaMUDUEJpzLvpdcl1yw/QSoeX0cqogoMcLQoa+TzWzzwz+OmW3kPmP7aogmud1efCMmQ83qecH2R+MEC0kTpont//O4XCNNw5BH5/BGnVx3aMECNK6SDLa/9BJkj2OwPbnLisVQ8asnpNqogQCG/PAhhyqiU5lpWWhuk9tzFwCy0gLwa8dua6BvXyUfbD9yMrQ8BtuTuxhsT6nMKF8J0Vwn1cY3/AyomQy2J3eJWBuD7SllJRVsP4rB9uQ+0dYSz72SEA+2n+JQRamDEywkreqdv6N12zapNv2vuxYZpQy2J3cZ4TB2MtieUtS+V19jsD11m6a2GCR3BkPApyIjeOyTflakFdFVclt8KGkZCI4/R7ICIvvpW5YnF2yfxi1xyV1WuBn65mVSbRhsT16RfLB9mkMVESXGamawPaWu5ILtz+uxwfZH4wQLSYnV1WPX//5Bqk2gIB8ld93pUEVEidvz3PPQa2ul2gy85x4E8riKj9yVbLB98c0Mtid5Ed1ARJfbGkwBkJt+7NZgABBLKtj+Qg6SkOusploY276SasNge/IKff0iwJQMth9/LoPtyXXxYPu1Um3UXv0YbE+uE0IgtnaBfLD9RAbbk/vMmt1JBtsPc6ii1MIJFpJS+czvpIPtBz/4IIPtyXXhHTtR9YZksP2wYSi66kqHKiJK3I6nfgMrGpVqM+Thh6EGGWxPciwh0BSW3xosJz0IrZMwb7NmL/RyuW0Z48H23JaR3BUfJFkoH2w/8XwG25PrzIO7YO7dKqOY00gAAGVKSURBVNVGLRoMre8QhyoiSowQArHVkrlBUHp8uDJ5QzzYvlKqjVY8ElpvBtuTu+LB9pJ9r6LG73vZ9wLgBAtJaFq3HgfelwuozTltInpfcL5DFRElRgiBiieeSC7YvpMsAaLuVL98BWo/WSTVJn/mDAbbU1JaIjpMIbc5WJpfQyhw7NZgwrIQ+YLB9pSazH3bkgu2LxjgUEVEiYkH28ttywhVQ2A8B6jJfWblelj11VJtfKXjoeYy2J7cFQ+2XyjXyOeHf+wsR+ohkmFsX5VksH0vhypKPZxgoYQkE2yvaBqGPMJge3LfoY8XoGn1aqk2hZdeiuyxYx2qiCgxyQbblzLYnpKgmxZao3LbyaiKgpxQ509KxYPtq6SO5x95JoPtyXXCiEFft0iuEYPtySOSCrYfMRlqZq4zBRElSMTaENvwuVyjIIPtyRviwfaSmW2jpkMNZTpUEVFirLZm6BuXSLVR0rMZbP8NnGChhFT97R20lpdLtel3/XUMtifXGa2t2PnbZILt73OoIqLE7X3lVbTtkQu2L779NqT17etQRXQqiUQiaGhogK7rEEKgMSy3DR0A5KQHoKrHLqSIB9vLPWauhDIRHD9LugYiu+mbkwi2H3MWg+3JdVa4Kclg+8kOVUSUOH1DEsH2ZWczs41cZzXXyQfbZ+fDN5SZbeQ+Palg+3MZbP8NnGChk4rV1aNSOti+ACV33uFQRUSJSyrY/t57GWxProtUVWPPn1+QapPWvz8G3HiDQxXRqWD16tW4/fbbUVZWhoyMDOTl5WHAgAFYuvwL6KZc1kTQryHNf+zWYAAQW7UAiEXkjsdge/IAq6kWRrlksH1Ob/hKJzhTEJEEfd2iJILtz4OiMdie3GXWV8PYKRlsn98P2sAxDlVElBghBGJrFsoH2084n8H25Drz4G6YuzdLtVGLBkPrx2D7b+IEC51U5TPPwGxpkWoz+AcMtif3te7Ygf1vvinVJmP4MBRdeYVDFRElbsevfy0fbP8Ig+3pxK644gosX74cM2fOxB/+8Ae8+eabCIVC+Msrr0gdRwGQE+p81ZJZswf6dslg+z4D4RvMbRnJXfFBkgXywfYTzmOwPbnOPLAL5r5tUm3UolL4+jHYntwlhICeTLD9BIYrk/vM/eWwDlZKtdGKR0HrXexMQUQJEpaJ2OqP5BqpWvy+l33vMfhNgE6oce06HHj/A6k2OZNOQ+/zz3OoIqLECCGw41dPANLB9nMYbE+uq1u2HLWffibVJn/mTPSaOtWhiuhUsXfvXjzyyCN48MEH0b9/f1xzzTXIzs6GrsuteM5MC0DrZEBZWBYiK+TuG6AoCE5msD25z9y3FVbNbqk2DLYnL0g+2P5cZwoikpBUsP2QCVBzCx2qiCgxwohBX/uJXCNfAH5mtpEHGOUrIZrkdnthsP3xdb6vAxEAYRioeJzB9pSaDn30MZrWrJFqU3jZZcguK3OmIKIEJRVsHwyi9Ic/cKgiOpUMHToU9913HyzLQllZGS6++GLpY/hUFRnBzm8h9fKVsOqSCbbvI10HkZ0YbE+pzCj/CqKFwfaUekQ0mWD7dPhHT3emICIJ+pYV8plto6cx2J5cZ7U1Q9+URLD9SAbbHw+fYKHj2v+3v6G1fLtUm/7fuR4Zgwc7VBFRYozWVux8Wj7YftB933WoIqLE7X3lVUT27pVqw2B7StRHH32E//3f/8Vll12W9DFy0gOdLqSwIq2IrpZbQc1ge/IKffMyiDa5LXEZbE9ekFywfQ6D7ckT9I1JBNuPncnMNnJdcsH2BfANYbA9uU9fuwgwJDPbJpwHxcfMtuPhBAt1KlZXh11/eFaqTaCgAMV33O5MQUQS9jz3HPRauVV8A797L/wMtieXRaqq5IPtBwxgsD0lbNCgQbj77rsxZEhye+6nB3wI+DrfRjG26mMG21NKigfbr5Rqw2B78op4sL0h1SYw4VwG25PrzLqqJILt+0MrYbA9uetIsH1SmW3cjpzcZR7cBXOPbLB9KbR+Qx2q6NTACRbq1M6n5YPtSx9isD25r7WiAvvffEuqTcbw4Si6gsH25L4dTz4lH2w/52Gogc7DxomORwgh3UZVgKy0EwXbr5Y6HoPtyQuSD7Y/n8H25DrzQKV0sL3Wdwi0vgy2J3cJYUFfk0ywPcOVyX0MtqdUJSwzvihOhqohMJF978nwWwEdo3HtWhz8YK5Um5xJk1BwHoPtyV1CCOx4Qj7YfsgjDLYn99UtW4bazySD7c+eiV5TuQ8qyTMs+QmW7FAQqnrsjXU82P59uYMx2J48wtybRLD9wDHQCvo7VBFRYoRpJBFs74N//DnOFEQkwdy5Hlb9Aak2viETGWxPrks22J6ZbeQFRvlKiOYkgu0zudvLyXCChToQhoGK//mVVBtF0zD0UQbbk/tqPvoITWvkHjMvvPwyZI3hY+bkLisaRcXjSQTbP/SQQxXRqayxqQlNzR2fUm1ra0NL8/FDOgM+FWn+ziei9W1fwaqrlqrBP2oKg+3JdUJPItjeH0SgbKYj9RDJMLavhGipl2rjHzEZakauMwURJUhE2xDbmEyw/TRnCiKSoG9ZnkSw/XQoDLYnl1ltzdA3MtjeKZxgoQ72v/03tG6XDLa/4TtIHzTImYKIEmS0tKDy6ael2viysjDouwy2J/ftfeVVRPbtk2oTD7YvcqgiOlX9/ve/R++CArz84p87vP7Ki3/GmCEleOn5P3XaLicUPH6w/ZqFUjUooUwEx3EVH7lP37IMIiIZbD96OoPtyXVJBdtn5MA34gyHKiJKnL7xc+nMtsDYs5nZRq6LB9t/JdWGwfbkFfraTwCTwfZO8bldAHlHrLYWu/7wR6k2gd69UcJge/KA3UkE25cw2J48IJlg+1BxMYPtKSl/eu45XHDBBbjvvvuQnZ0NAPjNb36DpqYm/P73v8erf3kRt9xxV4c26QEffFrna3KSCrY//SIOkpDrrKZDSQTbFzLYnjxBX/eJfLD9eAbbk/viwfbrpNrEg+1HO1QRUWKSzmybyMw2cl882H6LVBsG28vhBAsdsfPpZ2C2tkq1Kf3Bg9DS0x2qiCgxrdu3o+qtt6XaZIwYgaLZsx2qiChxO578NaxYTKoNg+0pWWmhEPbv349PP/0UAPDee+8deW///v3IyMru8HkFQGZa5wNyyQXbD4JvUJlc0UQ2S36Q5DwOkpDrzOqdMPeVS7VhsD15QVLB9ooSH6DmduTkMnPfNlgHd0m10UpGQysY4FBFRIlhsH334AQLAQAa16zBwbnzpNrknn46Cs4716GKiBIjhMCOX0kG2ysKg+3JE+qWLkXtZ3J7UOfPOht5U850qCI6lRmmhYcf+wl+/rP/wN+Pmlg5LDe3F+b8+CcdXssI+qF1MqAsLAuR5bLB9iqCZzLYntwXD7bfI9VGGzgGWj6D7cldwjQQWyu3LSOD7ckrjGSD7XN6O1QRUWKEkURmG4PtySOM8q8YbN8NOMFCEIaB7bLB9j5ffICagyTkspoPP0TTOrnHzPtcfjmyRvMxc3KXFY2i4ldPSrWJB9v/wJmC6JTXHIlh6vQZeHd+YiuYFAXIOM7TK/q2r2DVywbbnwktt1CqDZHdGGxPqcwo/0o+2H7kmQy2J9eJaBj6hmSC7ac7UxCRBH1zksH2zGwjl1nhZugbl0q1UdJzGGyfBD7jTtj/1tsIV1RItYkH2w90qCKixMSD7Z+RauPLzsbA797rUEVEidv78ivSwfYld9yOtCIG25M83TAR0SWe9AOQGQxA7SzYvq0liWD7LATHz5JqQ+QEffNS+WD7MWdxkIRcZ4WboG9ZLtVGyciFbziD7cl9sQ2LAV0y2H7cLCj+oEMVESXGaqqFUc5ge0pN8cw2yWD7iecy2D4JnGDp4WKHDmHXH5+VahMoLETJ7bc5VBFR4nb/6TnodXLB9gPvvRf+3FxnCiJKUGT/fux54UWpNqGSYvS/4TsOVUSnuuaI3I21pijICHb+oHM0qWD7CzlIQq6zmg7B2L5Kqo2SWwhf6XiHKiJKnL42mWD7c6Bo3LSC3GXWVcGslAy2LxgArXiUQxURJUYIEd+WkcH2lILMA0kE2/cthdaXwfbJ4L/4Ho7B9pSqWsu3o+qtt6TaZI4ciT6zL3eoIqLEVTDYnrqRblqIGpJPr4T8nW4Dah7cDaNijdSxtCIG25P7kg62n3A+FIVfmchdZvVOmPtlg+2HMtieXCeEBX11EsH2ExiuTO5jsD2lKmGZiK3+SK6RqrHv7QJ+W+jBGlevwcF586Xa5J5xOgrOZUgiuUsIgR1PPAFYEoMkioJSBtuTB9QtWYq6zxdLtck/ZxbyzmSwPSWnVfLpFZ+qIuQ/dsWzsExEVnwgd3JFRXAyg+3JfebeLUkE25dBy+/nUEVEiRGmEZ8clMFge/IIY+c6WA2ywfanMdieXBcPtv9ErhGD7ckjjG1fQTTL7fbiG3kmg+27gBMsPZRlGNj+P49LtVF8PgyZw2B7cl/N/PnywfazZyNrFB8zJ3dZ0SgqnnhCqo2alobSHzzoUEV0qjMtC2263JYyWcd5eiW5YPspDLYn1wk9mmSw/QxH6iGSYZR/BdHaINUmHmyf40xBRAmKB9vLLSpCWgb8o6c5UxCRBH3zMog2ZrZR6rHCTdA3JRNszwWdXcEJlh6q6s23EN6xQ6oNg+3JC4zmZgbbU8ra85eXEdm3X6oNg+2pK1qjck+vBDQVQd+xT/pZbS2Irk4m2J6r+Mh98WB7uS1xOUhCXmC1NjLYnlJWbMPn8sH2Y89mZhu5Lh5sv1KqjZLTG77SCc4URCQhntkmG2x/HhSNwfZdwQmWHiiZYPtgnz4oueN2ZwoikrD7T89Br6+XajPwu9+FP4er+Mhdbfv2Ye+LL0m1CZWUMNiekmZZAuGo7NMrgU6fXomu+hjQo1LHCp5+EQdJyHVWYw2D7Sll6esWyQfbTziXwfbkOrN2P8zK9VJtGGxPXpB8Ztt5DLYn15kHKmHu3SrVRu07BL5+DLbvKv7r74F2/PZpmOGwVJvShx6EFgo5VBFRYlrLt6Pq7bel2mSOGoU+l1/mUEVEiduRTLD9Iw9D9XMlCSWnNaZDSHzer6kIdPL0ipFUsP1g+AaNkWpDZLevB0lk/iUw2J68wazeIR9s328otKJShyoiSowQlnxuEIPtySPMfVth1eyWaqMNHMNge3JdPNj+Y7lG7cH21HX85tDDNKxajZr5H0q1yZ18BvJnzXKmIKIECctCxa9+JR9sP+dhBtuT62o/X4y6xUuk2hSccw7yJk92qCI61QkhEJbcHiwz7djJPGGZiK54X+7kDLYnjzD3bIF1aK9UG23QWAbbk+viwfZy2zJC88E/jsH25D5jxzoI2WD7oQy2J/cJPQZ97SK5Rv4gAmUzHamHSEYywfb+kVOgZuY6U1APwwmWHsQyDFQ8/iupNvFg+4c5SEKuq5k/H83r5R4z73PFFQy2J9eZkSh2PPlrqTZqWhpKH2KwPSUvHDNgSSza96lKp9kr+tavYNXLDZL4R0+BlstBEnKX0KOIrV8k14jB9uQRxrYvkwi2n8Jge3KdiIahb/xcrlFaBvyjGGxP7tO3LIOISAbbj57OzDZyXVLB9hk58I3kgk67cIKlB6l6403pYPsBN96A9IEMtid3Gc3NqHzmd1JtfDk5GHjvPQ5VRJS4vS+/jMh+yWD7O+9AsE8fhyqiU50QQjrcPiPoP2YxhdXWgqjkCmolPQvBcQy2J/fpm5YC0sH2M6AE0x2qiCgx8WD7FVJtlIxc+Iad7lBFRImLbfhMOrONwfbkBVbTIQbbU8pKJtg+MIHB9nbiBEsPEa2pwa5n/yTVJtinD4pvv82hiogSt/tPf5IPtr+PwfbkvrZ9+7AnmWD771zvUEXUE0R0E6bE4yuqoiAUODYQObrqIwbbU0qyGmtgVMgG2/eBr3ScQxURJU5f9wlgyQbbn8dge3JdPNh+g1QbBtuTF8Qz2xYmEWx/PoPtyXXJBNtrfYdAY7C9rdgT9BA7kwm2/+EPGGxPrmspL0fV23+TapM5ahT6XMZge3Lfjid+DSEdbD+HwfaUNCEEWmx4esU4sAtGxVqp42hFg+EbyGB7clfSwfYTGWxP7jOrdsDcv12qjdZvGLSiwQ5VRJSYeLC9ZLiyorT3vdyOnNxl7k022L6/QxURJUaYBmKrPpJrpPrgn8hge7vxW0QP0LBqFWo+lPsHl3vmZOSfzS0+yF3CsrAjmWD7R+ZwJQm5rvbzxahbIhlsf+65yJt8hkMVUU+gmxYMM/E+U1GA9GDHVc/CMhH94gO5E6sqgmcy2J7cZ+7ZnFywfa++DlVElBhhGoitTSbYfpYj9RDJMHashWg4KNXGN3QS1OwChyoiSozQY9DXLZJrxGB78gij/CuIFrndXvyjzoSaketMQT0YRyBPcZZhoOJ/Hpdqw2B78oqD8+aheb3cY+ZFV16BrJEjHaqIKDFmJIqKJ56UaqOGQgy2py4LSz69kh7wQ/3G73t965fSwfaBUVOh5TDYntwVD7b/VK6RP43B9uQJDLanVCUirdA3LpZqozDYnjxC37yUwfaUkuLB9suk2igZufCNONOhino2TrCc4va/8SbCOyul2gy46Uakl5Q4UxBRgozmZuxKIti+5N57HaqIKHF7//IXRKuqpNqU3HkHgoWFDlVEPYFlCbTpplSbjGDH7eistmZE13widQwlPQuBcVzFR+5LKti+7CwG25PrrNYG+WD7zDwG25MnxDZ8Lp3Z5h83C4o/4FBFRImxmg7B2C6Z2ZZTyGB78gR9zUL5YPuJzGxzCidYTmHRmhrsfvZZqTbBoj4ovu1WhyoiStzuZ5+F3tAg1WbQ9+6DPzvbmYKIEtS2dy/2vPQXqTahgQPR//rrHKqIeoo2XS4UOT3gg6Z2fHolujKZYPuLGWxPrksm2F7N7QPfYAbbk/v0tUkE248/l4Mk5Dqzdj/MXZLB9r2LoQ3gjgPkrq8z2ySD7Seex+3IyXVm9U6Y+7ZJtdH6DYXWd4hDFRF7hVPYzt88DTPcJtWm9KGHGGxPrmvZtg1Vf3tHqk3m6NEovPRSZwoiSpAQAhVPPMlge+p2Qgjp7cG++fSKcWAXjB3rpI6h9S2Fb+BoqTZEdks22N7PYHvyALOqAmZVhVQbrT+D7cl9QliIrZYNtlcRmHAetyMn18WD7fdItdEGlkHLZ7A9uUuYhnzfq/rgn3CuMwURAE6wnLIaVq5EzUdywfZ5U6Yg/2xu8UHuigfbPyEdbD9kDoPtyX11ixejfqncPqgF55+HvDO4xQd1jW5aMKzEB5cDPhU+7es+U1gmoivelzupqiI4+RIOkpDrkgu2H8dge3Jd8sH25zhTEJEEY8daiEbZYPvTGGxProsH28ttiRsPtmdmG7nP2JZMsP0UBts7jKORpyDLMFDx+K+k2ih+P4bM+SEHSch1B+fORfMG2WD7K5E5coRDFRElxoxEUPGrJ6XaqKEQSh98wJmCqEcJx2S3B+v49Iq+9UtYDXKDJIHR0xhsT64TehSxdYvkGgXSECg7y5F6iGQY276AaG2UauMfORVqOrfEJXclF2yfyWB78oR4sL1kZtuYsxhsT66zwk3QNy+VahMPtp/sUEV0GCdYTkH7X38jqWD7UHGxMwURJchoakbl7ySD7XNzUHLvPQ5VRJS4PS++hGh1tVSbgQy2JxtYQiAiMcGiKkCaX/u6fTiZYPtsBMbyqVdyn75pCRANS7Xxj5nBYHtyndXSAH3LF1Jt4sH2kxyqiChxsQ2fMdieUpLVWANj+0qpNkpuIXyl4x2qiChx8WB7ycw2Btt3C06wnGKiB2uw+09/kmrDYHvyil3PPgujQW4V36D7vsdge3Jd25692PvyK1JtQoMGoR+D7ckGkZgBmeSJUMDX4YnV6Kokgu3PuIiDJOS6+CDJaqk2al4f+AaPdagiosTp65IItp/AQRJyn1m7D+aujVJt4sH23HGA3JVsZltgAjPbyH0Mtvc29hCnmJ2//a18sP0PfwgtLc2hiogS07J1K6rfeUeqTdaYMSi89BJnCiJKUDzY/gnpYPuhDLYnm3RlezDjQGVywfYlDLYndwkh2gM+JYPtOUhCHpBcsP1waH0GOVMQUYKEZSG2eoFcIwbbk0eYe7ckkdlWBi2/n0MVESUm+WD785wpiI7BbxenkIavVqLmI7l/cHlTpyB/JoO6yF3JBtuXznmYwfbkurrPF6N+2XKpNr0vOB+5p3OLD+o63TChm4n3nQHt63D7eLD9B3InVFWkTb6UgyTkOnP3Jli1+6Ta+AYz2J7cJ0wdsTXJBNvPcqQeIhnGjjXywfbDJjHYnlwn9Ch02cw2fxCBMm6JS+4ztn2ZZLB9jkMV0TdxZDLFiOM8ymjpOrYnE2z/8MMcJKFucbxrFwAOfjAXzRvlHjMvuuoqZI7gY+bUPY53/ZqRCCqeeFLqWFp6CIMfYLA92UP26ZVQ8OutZfQtXyQVbK/mcJCE3CViEcTWfyrXKJAG/xguKiL3GVu/hAhLBtuPYrA9uU9EWuO5VxKUUCb8I6c6VBFR4pILtmdmG7nPam2EvnmZVBslk8H23Y0TLClmx5O/xsH5Hx4z2Lf/r6+jrbJS6ljxYPsBNlZHdHyt5eXY9n//E7Ha2g6v601NqPy9fLD9wHsYbE/dZ/svfolDiz49pu/d88KL0sH2JXfeiWBhbzvLox5KCIE2iQkWRQFC/vgEixVuRnQtg+0pNemblkoH2wfGzIASDDlUEVFirJYG6FtXSLVRMnvBN+x0hyoiSlxSwfZjGWxP7otntq2SaqPk9oGvdJxDFRElTl+bRLD9hPOZ2dbNOMGSYlorKrD13/8D6+9/EK07dgAAogcPYtdzz0sdJ1hUxGB76lZGYyNq5s/Hqhtvwv7X34Aw4r8gdv8xiWD7730PvuwsJ8ok6lTL1i3Y/JN/xsY5j6Jtzx4AyQXbpw9msD3ZJ2qYcuH2/q/D7aMrPwR0udyg4BkXc5CEXGc1HIRRIRtsXwSNwfbkAbG1CwHLlGoTmHAuFFVzqCKixJiH9iYRbF/CYHtyXfLB9ucxs41cZ1btgLmvXKqN1m8YtL6lDlVEx8PprBSjtw9EN65ejdW33o5+112HyP59sNrkgu2HPMxge+peh69ds7UVO596Cgfefx99r75aPti+rAyFlzDYnrrX4eu3fvlyrLzpFgy46Ua0bN4CoetSxxnyyByoPv7qJXtEYnKDdOnBeLi9UV0JY+d6qbZa3yHwlYySakNktyODJNLB9hwkIfcZ+ytgVe+QasNge/ICYVntfa8EBtuTR5h7NicRbD+WwfbkOmEaiK2RDLbXfPBPONeZguiEOMqTYozGhiP/W5gm9r36qvQx8qZNRa8ZZ9lYFdHJ6UdduwAQrqhAxf/8j9xBVJXB9uQKvfHrp6yErmPPn1+QPkbvCy5A7iQG25M9hBCI6Ik/Ku7XVPg1NR5s/0USwfZnXsJBEnJdcsH24xlsT64Tph7f4kOG5od/3DnOFEQkIR5sXyPVJh5sn+9QRUSJEXpUPrPNn4ZAGTPbyH3xYPsGqTb+UVMZbO8SjlKmECEE9MamLh1DCQQw5OEfcpCEup3RxWsXaA+2Hz7chmqIEmdFo9JPCX6Tlh7C4Afvt6kioiS2BwvE19QkFWw/ZjrUbAbbk7uSC7YPwT+Gi4rIffrWL5IItp8CNZ1b4pK7RKQV+sbFUm2UUCb8oxhsT+7TNy0FZIPty85isD25Lulg++FnOFQRnQwnWFKIGQ5Lb0fzTQNuuhGhAQy2p+539BMAyfDn5mLg3XfbVA1R4ro6sQ0AJXfdhWBvBtuTfSK63PZgaX4frHCTfLB9Rg5X8ZEn6JuWyAfblzHYntxntTTA2PqFVBsG25NXxNZ/ChhymW3+cedA8TGzjdxlNdbAqJALtldz+8A3mMH25D59TRLB9hMZbO8mTrCkEKOLA9TBvn1RfOstNlVDJMf4xhZhsgZ+n8H25I5vbm8nK33wIPS77lp7iiGC/PZgAU2FpiqIrvxIPtj+9IsYbE+uiwfbr5Fqo+YVQRvEYHtylxACsbULkgi2P4/B9uQ689BemLs3SbVRe5dA688dB8hdyQbb+yeez8w2cp1ZVQFzv2Swff9h0IoYbO8m9hwp5HDIcrKGPPwQg+3JNV25frPGlqHw4ottrIYocV3uex99hMH2ZKuYYUp9X0wL+GBU75QPtu/HYHtyX3yQ5GNIB9tPPJ9b4pLrzKoKWNU7pdpoA0ZA6zPQoYqIEiMsC7HVkuHKDLYnj0g62J6ZbeQyYRqIrV4g10jzwT+ewfZu4wRLCunKKupgURFyTjvNvmKIJHXlCazCSy9lsD25pitPX6UPHoSs0WPsK4YIQJvk9mBBTUki2F5D2uRLOUhCrjN3b4RVu1+qjW/weGh5RQ5VRJSYpIPtx85ypB4iGcaONRBNh6Ta+IadzmB7ch2D7SmVGVu/gGhtkGrDYHtv4IhlCunKKupodTVW3nATaj7+GELyMUkiO3Qlg6XiF/+N8v/6L8Tq622siCgxXel7wzsrsfLGm1D7uVw4KNHxJLM9mLXtC1gNNVLnCYyZxkEScl3SwfZlDLYn98WD7eVy3PyjpjLYnlyXXLB9FvyjpjhUEVHikgu2n8Fge3JdPNh+uVQbJTOPwfYewQmWFGI0NHSpfaymBlv+z79h/YMPIVxZaUtNRIkQQnQ55P7gB3Ox6oYbUfXW2xCm3Optoq7o6rUbrarCpsd+jI2P/Ahte+UeVSf6pphhSW0PFoSB6JpFUudQMnIQGMtVfOS+eLB9m1SbQNlMKAEG25O7rJZ6+WD7rF7wDZvkUEVEiUsu2H4Wg+3JdUkF2+f1gW8wM9vIffqaBYDFYPtUxQmWFKI3ya2AOp7GlSux7v4HEamutuV4RCdjRSIQMbmb9M6YLS3Y8cQT2PvSSzZURZSYrmxvd7S6pUux/sGHEKvjk1iUPJmnVwBA2SA/SBI842IOkpDrrIYD8sH2vfpCG1TmTEFECYrnBi1ksD2lJLNmj3ywfeFABtuT64QQ8dwg2WD7CQy2J/fFg+23S7XR+g+HVjTYoYpIFqe5UojexSdYDut9wQUo/eFDCPTKs+V4RCfT1ScADgv07o3Sh3+I/JkzbTkeUSK6GnJ/WJ/Zl2Pw/ffDn5Nty/Go55HdHsxnxWCVfyV1Dq3fUPiKR8qWRmSr+CDJAsgG2zNcmbzArKqAdSCJYPtCBtuTu4RlIrZGMlxZUREYfy77XnKduXsTrNp9Um20QeMYbE+uSzrYfgKD7b2EEywppKuD1MGiIgx97FH0mjrVpoqIEmN0dYBaUVB09dUY+N174cvIsKcoogTpXQi5B4BQcTGG/tNjyD3tNHsKoh5LNy1YEuPN2o41cidQNaRNvoSDJOQ6c9cGWHWSwfal46Ey2J5cJowkg+3HzXKkHiIZRkUSwfbDGWxP7ksq2D6QhgAz28gDjK0rkgi2nwY1nQs3vYQTLCkk6UFqVUX/66/DwLvvgpbO4C7qfl0ZoE4fPBhDHvsRssdyX1RyR7JPsCiahgG33IyS22+DGgzaXBX1RBFdbrsZbafcHtSBMdM5SEKuE7EIYhs+k2sUCME/hoMk5D596wr5YPvR06CGGGxP7hJtLfHcKwlKKAv+kQy2J/fFM9vCUm0CYxhsT+6zWhugb14h1SYebH+6QxVRsjjBkkKSGaTOGDYMw37yY2SNGmV/QUQJSubpK8XvR/Ftt6L/TTdB9fsdqIooMclksGSNGY1h//RPyBg6xIGKqKeKGolPsKj1VVDbmhP+fDzYngPU5D5942L5YPuxDLYn91kt9TC2fSnVRsnKh28on3Al98U2fCYfbD/+HGa2keushoMwtq+WaqPmFUFjsD15gL5mIYPtTxH8fySFyKyiVoNBDLz7LvT7zvVQffy/mdwl+/RV9vjxGPLYj5A+kHtRk/tk8q+09BAG3Xcf+n7raigag2rJPqZlwTCthD/vq9omdfzgGZdwkIRcZ9UfgLFjrVQbtVdfaAMZbE/uYrA9pbLkgu0HQes3zKGKiBIT73vlM9v8E85jsD25zty/XT7YfsAIBtt7FEfeU4QQIuFV1LlnnI6hj/0IoQEDHK6KKDGJPsGiZWZi0Pe/hz6XXw5F5Q0Puc+MRGBFowl9ttdZ0zH00UcQ7NPH4aqoJ5J5egUAtAM7Ev9s/6HwFY+QLYnIVvFBko8hH2x/PnODyHXm/u1JBNuPhFZY4lBFRIlJOth+AoPtyX3JBNv7BjPYntwnTF2+79X88I8/x5mCqMs4wZIizNZWCPPEgyu+nByU/uBBFF5yMW92yFMSmRzMP+cclD70AwQKCrqhIqLEJHLt+vPzMeThH6Lg3HPY95JjohL5K0pbM9TmBENqVQ1pZzDYntwXD7avkmrjK50ANY+T2uQuYejQ10kG2/v88I8725mCiCQYFauTCLY/A2pWL4cqIkqMiEWSCrb3j5nhTEFEEowtX0C0yu304h89lcH2HsYJlhRxsi1qCi++CIN/8CACeXndUxCRhBM9wRIoLMSQOXPQ66zp3VgRUWJOtjVj0ZVXYND3vwd/Nm90yFlCYlG/dnAnEp0uCZQx2J7cFx8kYbA9paZ4sH3imVcA4B/FYHtyXzzYfqlUm3iw/ZkOVUSUOH3TUvlg+7KZUILMbCN3WS0N0LdIBttn9YJv+BkOVUR24ASLg4RlwaipQnRPBWJ7KqBX7YYVjUCYOhRVg+IPwFdQhGDJUASKhyDQdyCU44R5H2+AOti3L4Y99iPkTeFNDtnLDLcgtncHYnsqEN1dAau5HkLXIYSA4vdDS89EYMAQBIpLESgeAl/O8VcxdfoUgKKg77euRsm998KXkeHg34R6GmGa0A/uQ2x3BaJ7KqDv3w1Lj0IYBhQt3vf6C/vF+96SIQj0LYHiO17f29Dp66GSYgz98Y+Re9pEB/8m1BOZrc3Q9+1AbO9OxPZUwGxtgtDjobNKWgaUgSOgDh4DK78Ili/Y6TF8BxPbpkbJzEWgjAPUZA9hmTBrq2Ee2A3jwG6YdVUQhg6YBqD5oPj80HoVwdenBFphCbSCvkeyJ/SNi4FYMsH2aU78VagHssLNMKp3wTiwG0b1Loi2lvj1C0DxBaCEMuErGghfUQl8fQZCTc+Mt2tmsD25S5gGzENVMA7sglG9C2bdAcDQIUwjHoLsD8CX3xda0cB4/5tfdKTvja3/lMH25CqrtQnmwfb7hpo9EJFWCMMAFEDR/FDSs76+bygshpoWHzewGg7CqEgi2H4Qg+3JHsIwYNTshV5VCaOqEmbdAQhDh7BMKJoPij8IX+/+8PUdBH/fgdB6FR3ZBl9fsyC5YHtmtnkaJ1gcEKvajeYl8xHZsubIoAhUFbCODac1ag8gsnVtfGmqqiIwYAiypl+ItOHjOmRQHBMSrqro/53rMfDuu6CFOANP9rBiUbSuWozWLxbCqD0Yf/E4165ZV4PY/t3A8o/jH8vMRsbE6ciccj60zI6r+b85SJ1eWoqhjz2GrLIxjvw9qGeK7t2B5s/mIrJt/ZFBkeP2vYcOoG3Tqva+V0Nw0HBkzbgYaUPHdNgq6ZtPsCg+HwbccjNKbrsVarDzwW0iWVa0DeFVn6P1q89gNtbGX+zs2m1uAGr2wVz1aTxIOTMHyrAJ8I0+A2ZmHoQ/CFgWtJpdCZ037YyLOUhCXSKEgFldicjaz2Hs2x6fTAEARTnmsSsBwGo4BL1iffxPqgZf/yEIDB0HY8caqfOqvfox2J66zIqEEd24HNFNKyBa2n/fKyogOva9AgAaD8E8sBvRNfH31KxcBEdPAVoPyQfbT2SwPXWNEALGvu2IrP4Mxv4d7degAijo0Pce/l+x+hqgfE38D5oP/uLhCAwZA3PPZqnzqn0YbE9dZ7W1ILZpOWLbVn799N/x+t6mWpgHdh95T83qhcCoMyEO7YJ0sP1EZrZR1wghoO/agraVn0Cv2hn/rnb4muqk7zXrDiC65av4H3x+BAaPRtqgETCrKqTOqw0YAa3PoK7/BchRihAym07Q8QghEN25Bc2fz0V0x+bjDuqdVPsvFl+vQmTNvBTpY8+E4vPhwPsfYNt//n8AgMwRIzDsJz9G5ggG0pI9zNZmtKxYiJblCyCicitIO1AUQFGRPnEasqZfBH9+fF/0L668CnptLZRAAMW334b+N9wA9ThPaxHJEEIgUr4BTZ++j9iu8q73vYX9kH32ZUgvOwOKpmHfG29gx6+eBABklZVh2E9+jIzSUnv/EtRjmc2NaP1yIVq/XASh65D9oniEokAJBJA2ehxEWgb8+04+YKL1H4bQuTfyiyYlRQgL+q4tiK5eBLNmb6cDIwlpb6flF0JTRYID1QrSzrsZai6zVyg5VksDImsXI7pxefyaS/rrsAIlGECgdx8gltg2NVrxSAQnX57k+ainE5YJfccGtK36BFZtdZf7Xl9hX2iqlVjfq6hIu+B2Zq9Q0qymOkQ3LEFs61fx67YrQ5HBIPw5+Qn3vb7B4xE47YLkz0c9mjBNRLetRttXC2DWH+x0IVFC2vveYN8B0BQzsf5b8yPt4ruYvZICOMFiA7OpAbVv/iE+uJfsTc4xFAACalYu8q/7LmoWf4ldf/gjBt57D/pfdy0UHx8+oq4TQqD1y0VomPd6F79gfkP7IHfmlPOQff41WH7BhcgaOxZDf/QoQiUl9pyDejyjrga1f/1fxPbttK/vbb9Z0vJ6o+CG76Hq/Y+w77W/YtD3v4e+V1/V4clComQJYaF1+QI0ffJOvN+1q+9VVPhCAaT1KYBi6sf/nKoh48r7OUhCSTEbatD68Suw6g4k/wXzm9on+ny5vaCqJz6er3QCAhPP7/o5qccRloXIyoWIrFzQ/oJdfa8CNRiEPy/366e4OuPzI+3Cu6CGMu05L/UoRm0VWuf/BVZjrb19r6LAn58PVTlJ3zviTATKGA5O8oRlIvLVx4itX3zMU1ZdoihQAkH4MjNP3PcGQghdeCezVygpevVuNM99EVZzPQ6P03aZokJRFQR7F0JVTjyG4R97NnOvUgQnWLooUr4BtW/+ESIasWli5RsOryztV4b8S7+F0IAB9p+DeiQrEkbdOy8gsnmVcydRFGgFfSEKRqLv9d/hSmmyTXjTKtS9+Wx8K7Bknlg5GUWN3z8NGIfeV16HtD5cKU32MMMtaPj7nxGt2OjcSRQgNGAAfGrnK6MC485GcMI5zp2fTlmx8tUIf/a3eL/ryH2vCsXvg7+gDxBtPfb9YAihC+9i9gpJs1qb0PrRqzCqEsuoSoqiwN+nL1ShdzqA6B87C/7hpzt3fjolCSEQ2/wFwp+/274ow6G+Ny2IQH7vTp8IUNKzkHbBHdxWlKRZzfUIL3wN5qF9zp1EUeArKIKid74TR+C0C+EbPM6589MpSQiByJrP0Lr4HwBsXBB3NEWFlp6OYEFBp1mESlYvpF14B7cVTRF8DCJJwjTRtPDvaF48174VJJ2eqP24+9ajZaGFwDV3QcvIcuZc1GPE9u9C7WvPwGxqcPZEQsCsrYbSUIu2zcORPnqSs+ejU54wdDTMewMtyxc4fCIrvjhl9xq0fKwg8K07oYbSnT0nnfKiu7ej/q0/wAp3MnBsJwG07dsPNS2EzCGlEI0Hj7zFYHtKhjBiCC9+F/o2BxdlAICwIGIxxPbvgX9AKRS9FTC+fhorUHY2J1dImr6nHK0fvQoRizh7IiGgH6iGGkpHoG9/iObaI28p2fnwDZ3o7PnplCNiEbQueht6xTqHT2RBtLUhunc3AoOGQYk2d3giwD/uXE6ukDR912aEP32zw+9xRwgB41A1lPRM+PN6Q7TUHXmLwfaUDCsSRvOHr0Kv3OTsiYQFs7UF4dYWhIaOhtLW0GHLRgbbpxbudZIEYZqoe/MP8ckVwLnJlW+I7tiMg3/8OcyWpm45H52aopVbcfDZ/xefXHFiBdQ3WRaEHkPdX3+Pli8XOX8+OmUJQ8ehv/wGLSsWdut527asxYE//hxWm8OD4nRKi2zfgNq/PAEr3NJtfa8VDqNp/XqogydCad+3N+2MS6D4mIFFiRNGDC3vPw+9fHW3nlfftxOm6YPWP545qOb3gzZwTLfWQKkvVrEOLf94DiLW1j19r7BgtbUismMb1IHjgGB8cUZgAgdJSI6IRtD89z9A37G+W88bq9wOE2lQ+w4BcDjYfmi31kCpL7ZtJcIfvwzo0W7qewVEuAWxfZXQBk8AAvHtwAIMtidJVlsLGt94CvquLd163rbtm6H7sqD2GQyAwfapiFuESRJCoP5vzyO8dpk7BagqfPl9UHjnj6GmZ7hTA6Ws2N6dqHn+lxCm0W0Tg9+U9607kTF+qivnptQlLAu1rz6Dti1r3Ll2FRX+viUovOtHUINcPU1yopXbUPvqU4BpwZZ9e2UpCnKvugP+oA9+rqAmCcI00DrvRRj7K1zqexVofQYiNPkCqKFMqDm9u78GSln6ri1omfuCa/e8UFRkXHQTVBXwcXKQJAg9hub3noV5cI9rfa+veDhCE2dCzeoFNSuv+2uglBXbsR5tn/zVpbMrgKYh/fwboQgTvuJRLtVBqciKRtD41tMwa6u7Z2LwGAoCQ8cifdwUqL36QU3n7kWphE+wSGpe9J57kysAYFkwDh3Aob8+Ex8kJ0qQ0VCLQ3/5NYRpY5h9Eur/9mdEdm517fyUmhrmvY62zavdu3aFBb1qN2pf/wOEE5kvdMoyaqtR9/oz7VlBbl2/Ag3vvgCRzgESSpwQAuHP34Gxz6XJlXgRMA/sQnTjF1CyC9ypgVKSUbMPLfP/4uo9L4RA68evQcnMd68GSjlCWGhd+Lp7kyvxImDs3oro9vWcXCEpxoHdaFv0hosVCMA0Ef7kdSg5hS7WQalGWCaa574As7bKpckVABCIbV+H6K7tnFxJQZxgkRDetBJNi95zuwxAWIhVlqNhrlurAijVCD2GQ3/5NaxoN22PcOJqUPvq0zDqD7lcB6WKlpWL0bL0I7fLAISFyNa1aFzwjtuVUIqwom2offW3EHrngcfdW4yFuteehtnS6G4dlDJiG5a2Z664fO0KAb1iLaJrP3O3DkoZVlsLWj74c/vEtpviA33N7z8PK3pscDhRZyIrF0LfscH9+wYAsY3LEd243O0yKEVYrY0If/gSXL9vgAD0GMLzX4TQoy7XQqkivOR96Lu3eaLvbVu5EJEtK90ugyRxgiVBViSMhndfcruMowi0frkI0d3b3S6EUkDz4nkwaqo98EUT8f1R9SgaPnjV7UooBZgtjWh4/xW3y+ig+dMPEKve43YZlAKaP3sfZmOdBya2AQgBqy2Mpo/fcrsSSgFWcz3aVsxzu4wOIl9+BLOx9uQfpB6vbfk8iLZuyrs6GWFBhJsQ+cIDC0XI88z6g4h8tcDtMjoIL3kfFhdnUALaln8Qn9DwwAA1hAWrqQ7RtZ+6XQmlAP3AHrSt9ta10rrobWbAphhOsCSo6ZN3YUU8tvJIUVH/3l+4XQ2dkFFfg6bPP4D7K0mOYlmIbFuHtm3dG9pIqadh/pvx1f9eoiqo//tLYIQZnYhesx+tXyz0xpfMw4SFtg1fIrq73O1KyOPCy9731rXbrm3Ju+x76YSMA3sQ2/KVt65fIRDdsBzGof1uV0IeJoRA+LN3AHgskNsy478TiE7A2LcdRuVGb0xsHyEQXbcYZiN3zqDjE8JCyydvAoq3hseFHkXrsg/cLoMkeOsK8ij9wF60rPDYIAkACAvGwX1o/dJbM63kLQ0f/NV71y4AKAoa/vGy9wbPyTOiu7cjvHqpx27UAVgWYnsqEF7LLROoc0IINH7wKjw3SAIAioLGD16BsEy3KyGP0veWw6jc5L2+V1gw9pbD2LXF7UrIo4RlIfzZ3zw3SAIAUBSEP/0bhNf+XZFn6DvWw9i/w5N9r759HfR9FW5XQh4lTANtS98FFA/e9wJoW/oeF2fQcUU3fQnz4F4P9r3xxRn6Ae6ckSo8ePfpLUII1L/3smd/WQBA48dvw2xtdrsM8qBI+QZEtq31xtZg3yQEzMZaNC/90O1KyIOEZaH+7y95c5AEAKCg4YPXYEXa3C6EPCiyaSVie7Z770YdiAfXHqpG60rmWdCxhGmg7fO/e/i+V0F4ybsQBhdn0LFiW76CeWi/R/teC+bBPYhtW+12JeRBQo8hvPg9eHJhBhCfIPzsHS7OoE7FNi2H1VTnzUWdwoK5vwLGrs1uV0IeZEXCaF3sgZzt41FUtHzyJhdnpAivjlx5hr6vMj5I4sUB6nZCj6J11WK3yyAPalo818ODJHHNSz+EMAy3yyCPie7YAv2AB1eSHCFghVsQXrfC7ULIg5qXzodnB0natSz9kDfrdAx91xZYzR4dJAEACIjWRuiVG90uhDxGCIHIqk/cLuOkIqsWcSU1HSNWsQ4i3AxPbel8NCFgNdTA2MMtRqkjYVmIrvvc7TJOQkF0HRcW0bGim7+CiEbcLuP4hAXz4F4Y+yvdroQSwAmWk2hdsxRQPf5jEgLhVYt5s04dGA21iFVu8/AgSZyIhBHZvsHtMshjWlcv8X7fqyhoWen1LxTU3fSaKhgH9sKzgyTtrOYGxHZtd7sM8pjYtpWeX5gBRUFs60q3qyCPMQ/shtVc73YZJ2U11MSfsiE6SnTzVynQ96qIbvnK7SrIY4z9FRARrwdxC5g1e2E21bpdCHlMZNMKeP07GxQVkc1ful0FJcDjo1fuEoaO8Lrlnn565TCj7iB0zmrSUcJrl3v/Rh0AVDU+mE7Uzoq2IbzxK+/3vUJA31cJvaba7UrIQ9rWLffw1nZHUVWE1y1zuwryEKutBcYe7y/MgBAw9u2A1drodiXkIdGtq1Kj71VUThBSB2ZTHczqyhToey3olZtgRcNuV0IeEitPlb5XgV7OLRrpa8ah/TBrU+B7vLAQ3bYaQo+5XQmdRAr0hO5p27bO24+LHU1V0bqGAyUUJ4SIbxvn9Rt1ALAsRLatgxlucbsS8ojwhpVAqmwbp6jxJx2J0B6wvHaZh7e2O4ploW3TSlixqNuVkEfEtq9NjfuGdrHyNW6XQB4hDD1+PaRC3yssxLaugjBT5D6HHBfbtio1FsUBgBUPvCcCABGLwKjclCJ9r0Bs2ypuj0tHRDZ/lRqTgwBg6Iju4K4vXpciV5M7wutWeH+LmsMsC+F1yyG8vuKbuoVetRtmwyG3y0icZaFtI1fzUVx47bLU+aIpLIRXc4KF4mK7y2GFm90uI3GGjmg5B0ooLpZSKzvjAyVEAKDv2QboqTNZLGIRGHu5RSPFxbauTqHJbSX+tBgRAH3XZsAy3S4jYSLcBPPgHrfLIA8QQsS3PEyVCTdFQXQLx8u8LkVmD9wR27PD+1vUHEVE2mA2cF9JAmL7drpdghxVhb5/l9tVkAcIIRDbW5lCXzQBs6keZmsKDaqTY2L7d6XOSigAUDXEqna7XQV5gLBMWKmwTcJRrIZDEIbudhnkAebBvanV9yoqjJq9bldBHiBiEVgplQshYB7az6cACABgHtqXOguSAQAKzJp9bhdBHmC1NkG0eT076ChCwDjA72xel0q9Ybey2sKwWlJvb2f9AG/WCdAP7ANUze0yEmdZiFVxgoUAs7EeIpYiWzMeRT/Am3UCjIMpdh1YJvRqruSjePB2yqziO0LArD/odhHkAcah/Sl2/QqYtVVuF0EeYNYdcLsEeaYBq6nO7SrIA8xD+1NqQTIUBWZ9ai0mIWeYh/a7XYI0EQmn1k4JPZDP7QK8Srd5kOS3i9dg7pZKVBxqRJpPw6TiPvjn887AkIJc+06iqtAP7ENo1ET7jkkpSa/abevjut1x/eo1+yEsC0pKrYIhu9k9SfzbJWsxb+suVNQ2IM3nw6QBhfjJuWdgSH6OfSdRFOjVe5BWOtK+Y1JK0qt22TrI95tPV2Hu5p3YXtOANL+G04uL8M8XTsHQ3rm2nYMLMwiwf5DvV3OX4h+rt6K8ug5pAR8ml/bHv3/rHAwryrf1PGZdNXy9+9t6TEo9dg+UPDFvGf6xZhvKD9QhzR+/fv/t6rMxrI9N168QMGtSb3CH7Gd3wLLj1247s7YaWk6Brcek1CKEsHWy4lcfLMF7q7aivKo2ft8wZAD+49vn2nvfIKyUHFgn+xm1VfEtyW3aNePJj77A+2vLUX6wDiG/D2cM7od/nT0DQ/v0suX4hxm1VQikZ9l6TLIPRzKPw+4Bh+W7qnHb6aPx9zuvwCs3XwLTsnDTy/MQjtm4tYEQiB3gStSeTgiRmtevYcCsT6HcGHKEXm3vNh8rdlfjtkmj8M7ts/HyjRfBsARufsXma1dR4nVTjyZMA0Zdja3HXF5Zhdsmj8F7916NV2+7HIZl4cYX/mHr9SvaWmG2NNl2PEpNZl21rdt8LN22G3fPmoQP/+lWvP3Qd2BYFr7169fQGo3Zdg6oKqw6rkTt6UQ0AmHzis4l2/fgrrNPw/wf3Yy3f3A9DMvCNb953dbr12quh9Bt/PdAKcmsrbK17+2OaxeKyiewCKK1EbCxD1uydTfuPmcSPvrn2/G3OTfCtCxc/atX7L12EX9il7nFZB6qAmBf5uvS7Xtw54wJmPfwDXjj+9+GYVq49ndvoTVq75hDvG7yKj7Bchx6TVV8iyWbngL4y00Xd/jz41fMxITHX8a6qkOYMrCvLeeAEDA4yNfjWc2Ntn9h65brF/GnWHz5hbYdj1KPXlMVv9exKYLlpRsu6vDnxy8/CxOffBXrq2txZkmRPSexLMT4FECPZ9Tbv8XSy7dd1uHPT3zrHIz7fy9g3f4aTBnUz7bzGIeqoWVm23Y8Sj1m/UFbt/l486HvdPjz07ddjmGP/hprdlVj+vASe05iWam5vQ7Zymywf5u4Nx+4rsOff3vLpRj+499g7e4DmDas2LbzmA01fAKrhzPrDtjb93bLtcvtGSnef9nprYdv6PDnp++4HEMfftLe+wYAsExYLfXQsu19qotSi3Goytbvba9/75oOf37qposw6qe/x9o9BzBt6AB7TqIoMHjf62l8guU44hkAzoUsN7XPxOeGgrYe14pFbT0epR6rG/IrnLp+Ba/fHk/EIo7u5dvcvookN83mazfSZuvxKPWIqPP9V1PkcN+bZutxhc6+t6dzOvuqqS1+/LyMkK3HTcXMLrJXd/RfTW3xc+Rm2N338gmWns75vteBa1cIfmcjW59e6UxTOH6N5dnc7wJwvHbyvu7qe/PSbe57+Z3N0zjBchzCMGzbj++YYwuBn324AmcU98HIQnv35BOmjY+gUUoShrPXgKPXr8O1k/c5OdgghMDPPo5fuyMK8+w9tmnYejxKPU7//hVC4D/mLsXkgUUYafN+vux7CQ5eA0II/PSNBZgydABG9+9t77HZ9/Z4wnD2GhBC4F/eWogpQwZgdD97r1/w+u3xnPz96+y1y/uGnk5YzvVfQgj88+sfY+qwYozub//uFsLGrFpKTU7ePwoh8K/vfIozS/tjVD8bs6qEABy+56Gu4QTL8Tg0uQIA/zJ3KbYcqMPT15xr/8EdrJtShMPXAK9fcpJw8Br4P/OXYcvBevz2qln2H5zXLjl8Dfz0H4ux+UAtnr72fPsPzuuXHHxq+0evfoiN+2rw7N1X2n9wXrvk4LULAI/99SNs3HcQf7xztv0H5/VLDuK1S45y8Br40SvzsXHvQTx7z1XOnIDXLzl4Dfz4zYXYtP8Q/nDbpfYfnNeup3GC5TgUnw92hh4d9n/mLsVH23bjr7dehr7ZGbYfX9H8th+TUovic+4acPr6hYO1U2pQ/c5cA/86fxk+2rYHr918iTN9L6/dHs/Ja+Bf/rEYH26pxBt3XoF+OZm2H5/XL8Gh+8fHXv0Qc9eV4705N6J/nv05P/H7derJFM25a+DHf/0Ic9dtx7s/vMGR6xe8fsmh69f5a5f3DT2dU33vj16Zj7lrtuG9R29G/17O5AM6+XuDUoNT18A/vbkQ8zdU4G8PXIt+uVk2H13hfYPH8f+d41D8AUBRbFsUJYTA/5m3DPO2VOKNWy9DSZ7d/9jiFIcGJyl1KP6A7cfk9UvdRfEH2/teezpfIQT+df5yzNu6C6/fcglKbL/RiXPi3x2lFicmKYQQ+Jf3F2Pepp14464rUOLEIAk4wUL292FCCDz22od4f802vDfnJgwsyLX1+Ef42Pf2dIoD14AQAj9+/WO8v2Yb3n34BseuXy6MIyf63m65dtn3ks39lxACj70yH/9YvRX/+NEtGNQ719bjd8AJlh7Pib73n95aiA/Wbcc7D1yHgfk5th4fAKAo/M7mcexZjsPXqw8g7Ata/uncpfj7+go8e/0FyAj6cbAlDADICgYQ8tv3f4Ovd1/bjkWpScvKBTQNMO3bW7S7rl9/fh/bjkWpyZdfaOsEy7/MW4a/b9yBZ689DxmBr6/d7GAAaXZdu4oKf2E/e45FKUvLs3GP3Xb//I/P8c667XjuxouRGQjgYHN735tmb9+r9bJ/f2tKLWpOAbBvO2DZc+/76Kvz8eYXm/DK97+NzLQADjS2AACyQ0GEAjZ9OVRUaLk25wpQylFz8m0/5o9e+whvfrUJL3/3W8gMOnT9AlBz7a+dUouW1xvmwb22jTt0y7WrqvHfGdSj2d33PvryPLyxYiNeeeBa5+4bAEBRoGbZm8VJqUfrVQizoca2MYcfv7EQb63aghfvviJ+/Ta1AgCy0wK2Xr+87/U2TrAch79ogK3727301WYAwHUvvt/h9cevmInrJgy35ySqhkBRsT3HopSlaBr8BX2hH9hr2zG75/pV4csvsudYlLL8RQNsG+ADgJdWbQEAXPeXuR1ef/zyGbh2/DDbzuPvM8C2Y1FqUgNp0HJ6wWyss+2YL36xCQDw7efe7fD6r66ehetPG2nLORR/AFpOL1uORalL61Vka9/73KerAQCXP/5yh9efvu0y3DhtnD0nERY03jf0eGp6FpRgCCLaZtsxn/s8fv3OfvLVDq//9pZLcePUsbacQ0nPhBpMt+VYlLq0Xn0Bscq243XHtQuLfS8BalYvQNUAmwLj/7Qo/u/g8l/+pcPrT99xOW6aPt6WcwDxurlFGPkK+iG2YxPs2rLo+SVrAQBX/eaNDq8/deNFuOHMMbacA8KCr4CLOr2MPctx+Av723q8Pf96t63H65Rlwt/H3ropNfn7lkCv2W/bYEl3XL++XoXcS51sn6jY/dM7bT1ep4QVnxiiHs9fVAKzqd62BRr7/u99thznRHyF/aEo9mfOUWrRetk7WFb/vz+x9XjHY3fdlJq0/L4w9u+w7Xh1z/zYtmMdj5bPQRJC+0SFfYs6u+PaBQBfPnfN6OkUVYWaVwirtsqW4zU8+1NbjnNCigKtgONlFL9vsHPHoppfz7HtWCfCyW1vY8j9caiZ2VDSUm9VEVdRE9B+Hdj4BJbjVBWBfgPdroI8wNerMCX3xeUECwGIL3JIpckKVYOfT74SUnebOE6wEABoBf0ANYW+1qoqV6ESgBQdLFNUqLncIozaJ4qVFOp7Aai9uCU5ITV/B/sC3N7O41KrN+xGiqLEB3xTaaBE88HHDAtC/AmWlJpgEYKDfAQgvhoq1SYrlLQQtGze7BDi/ZiN2yw5zjLh78O+l+KBxWp2auVBKBk5UAJpbpdBHqAV9EuxvteCVsAnAAhQQ5lQQplulyFFzevNLZYIwOGnAFJrzEHj01cEQM3pBaRYYLyvdz/uOuBxnGA5gdCY01PnF4aqIjRqIm92CAAQLBkKNZThdhmJEwKh0ZPcroI8In3s5NSZ3FZVpI87kzc7BAAIDh4FxR9wu4zEKQrSRti3rzWlNv/QcanT9yoKAkN57VKcf9DI1HqCRfPBX2JPjhalvsDQ8anzFICiIDB0gttVkEf4B46GnVvcOc4fhK9vqdtVkAcoiorgsBTqewEEh090uwQ6idS5mlyQXnY6oGlul5EYy0LGxGluV0EeoWga0idMS40vm4qCQMlQ+PL4qDnFZYyf4nYJiWPfS0dR/AGExpyRIn2viuDQMmgZWW5XQh4RGHZa6iwsEgKBYfyiSXFqMB3+QaNTY6BEUeEvLYMSCLpdCXlEYMRptmYBOEoIDvLREWpGNrR+Q1JjcYaiIjB0Ahck0xHBUWekTt+rqAgOn+B2FXQSKXAX6h41LR2hUaelxECJmp6FYOlot8sgD0mfMC01tksQAhmnneV2FeQhWlYO0oakxkCJlleAwACuhKKvhcadmSJ9r4X0cSk0mUmO03LyoRUWA/D+QIma3xca91GnowRHnp4aAyXCQnAkn9qmr2kF/aDm9na7jJNTFPj6DYaalet2JeQhgeEpsjhDWPBzYQYdxd+/FGpGjttlnJyiwj9oFNQU206yJ/L+6JXLMlJhkFpRkT5xGpQUmAii7hMoGgBfYQqEd/l83B6MjpEx6SzvD5QoCjInzeD2YNRBoHgo1BTI5FECaUgbNtbtMshjAiNORyps9xEcwfsG6shXPAxKWrrbZZyUEsqEr98Qt8sgD1EUJb6S2uuT20IgMPJ0t6sgj/EPHJUSWRZqdi9oBf3dLoM8RFFUBMekwNbkwkLa6DPcroISwBH5kwgOGQ0tr8Db/+gUIHPSTLerIA/KmnK+2yWcmKIiY8J0qEGG1FJHoZEToWbmeLvv1TRknDbd7SrIYxRFQebkc90u48QUBRmnz4SSAl+IqXsFhoz1fnC8PwA/MwDoGxRVQ7BsKrw+SB0cN52L4ugYgeGnAT5vb12kpKUjUMqFGdSR4gsgMOIMb39nAxAYM42L4ugYaaMne3vXDEWBmpmDwKBRbldCCfDwleQNiqoi7/KbvfvYo6Iga9qF8OUXul0JeVD6xOnwFxV79peGEggi+7yr3C6DPEjx+5F3+Q3e7XuhIOecK6ClwJMK1P0yzpgFLa+3Z79sqqEMZE6/xO0yyIOUQBrSplzqdhknFJp8EdQUeFKBul/ahLOhpGfBk5MsigI1Mxdp47gtLh1LTc9EaPKFbpdxQqHps6H4A26XQR6UNvEcKH6PLs5QFKi5vREYyScA6Fhadi+ETj8PnrxvAOLb6c/6FrODUoQ3R109Jm3oGKSNmODBLBYFanoWsmZe5nYh5FGKqiJ39s2e3Wop54JvQUvnXpLUudCY0xEcNMJ7fa+iQMvLR9Z0b38RJvcomg+5l3h3gjD7wmv55CAdV2DEaVAL+nlvcYaiQM0rRGDUZLcrIY9S/AGkz7gCntzmTgikz7yKTw7ScQXLpkHN8eDOGYoKrU8JAsMmuF0JeZQSDCHtzIvdLqNzQiA07QooquZ2JeRR6aefCzUzG56bZFFU+EtGIDB4jNuVUII89s3Ju3Iv/Y73bnYgkHvpdzhIQicUHFCK9AnTvTVQoqjw9RmADG5tRyegKAryrrjZe+MkQiBv9s0cJKETCpaOQtrIid7qe1UV/gFDEBrDVXx0fIqiIv2sq7y3OEMIpM+4moMkdEL+wWPg6z/EW32vosJXMhL+gSPdroQ8TNE0pM+8ynuLMw5PDnpuLIS8xD9sYjzjxEvXiaLCXzoOvr6D3a6EPEzx+ZFx9rfguUEHBcicdTX73hTioTtPb/Pl5iPn3KvcLuNriopg6SiExjBojk4u58JroKaFPHXDk3fFLdyDmk7KX9gPWTM9tJWRoiA0ehJCw7kHNZ1c9gXfhuL3e6fvVRTkXnoDb9TppHyFAxAYPQXeWc2nwD9iEnxFA90uhDxOURSkz7jKW0+/ahrSZ8x2uwpKAf4BQ+EfNsE79w0AguOnw1fQz+0yyOMURUVo+pXwzH2DogD+ANIme/TJGvKUQOkY+AeP9lTfm37G+dBye7tdBknw0J2n92VOvyg+oeH2PzpVhZbTC/nXfpeDJJQQLSML+Tc96P612y5v9s0IDih1uwxKETnnXYW0YWXur0ZVVfh690Wva+50tw5KGb6cXuj17e+6XcYReVfeAX9hf7fLoBQRmnoptD4l7ve9igqtdz+kT7/C3TooZWh5vZFxwQ1ul3FE5oU3QcvOd7sMShEZZ38LWq8iD/S9Cnz9ShE600MLncjTtIJ+CM242u0y2inIOP8mqBnZbhdCKUBRFGRdeCO0nAJP9L3+wWMQmnyBu3WQNE6wSFAUBb2uvgP+fgPd+0enqFACaSi45SGo6Rnu1EApKVg8BL2+5f7AcOb0i5AxaYbbZVAKUVQV+dffB1/vIvdWpKoq1PRM9L71h9yWkaQES0ch55Ib3S4DWbOuQGj0JLfLoBSiaD5kXHQz1Kxcd+97M7KRcdGt3JaRpAQGj0Fo6qVul4HQWbO5NRhJUfwBZF56O5T0TFf7XjWnABkX3wxF47aMlLjAsIkITjzH7TIQmnEVtwYjKWowhOwr74ESDLna92oF/ZB90U1Q3J7oIWn8f0yS4g+g9y0Pw1fYt/v/0Slq/Py3PwJ/QVH3nptOCeljz0Tu7FtcO3/G6Wcj54JrXDs/pS41LYTCO38EX25B90+yKCrUYAiFd/0YvlyuQCV5Gaedhezz3ev7MqdeiMzp3CKB5KlpGci8/B4o6Vnu3PeGMpA5+x6o6Vnde246JaRNmIm0See6d/7JFyJt7HTXzk+pS83MQdaV33VnoE9R4+e/4h6owfTuPTedEoITz0VgzFTXzp825TIEhp3m2vkpdWk5+ci55ntQ/IHu3/1FUaHlFiDnqu9CCQS799xkC0UIr6WopQYz3IK6N/6I6I5N3XNCRYWWnYf8G76PQN+S7jknnbJa1y5D/bsvApYV/4+TFAUQAlkzLkX2uVcyd4W6xGxuxKHXfofYrvLuOaGiwNerEAU3PQB/Ifefpq5pXfkZGuf/NZ6h6HSAuKIAAsiaNRuZ0y/mlqLUJVZzPVo+fBlW7f5uOqMCtVcfZFx4M7TsXt10TjoVCSEQXfs52pbPPfyCsydUFAAKQtMuQ9o4Tq5Q15gNh9Ay70VYDTXOX7vttMIByLzoFqiZOd1yPjo1CSEQXf0JoqsXHhkPcJSiAIqK0LTZCIxgTjF1jVFbhab3nofVXNdtfa+v/xBkX3ILFxWlME6wdIGwLDQvmY+mBX9rf8G5H2Vo9CTkXXlbPKicyAb6wf2o/evvYNQecO7aVVUowTTkf/tepA0d48w5qMcRpommT95F06J/OH7Dnj5xOvJm3wSVq0jIJnr1HtS98b8wmxy8YVdUqOkZyPvWPQgOHObMOajHEaaByBfzEV2/xPFzBUZPQWjqpVA0n+Pnop7BqN6FlvkvQ7Q1O9j3KlAyspF50c3wFRY7cw7qcYShI7zkPcQ2feHgWRQAAsEJZyM0+UJuC0a2MfZXIPzJXyGibY72vWpmHtLPvzGeX0RkAxGLovmTNxHbusq5k7QviEufchFCp5/HxcgpjhMsNojuKkft67+H1dKM+LJUmygqoCjIvfQ7yDj9bK4+JdtZsSgaPngV4dVL4tsu2fU0S/ugd2DgMOR/+15o2bn2HJfoKJHtm1D719/DioTtvWFXVEDT0OvKW5ExcZp9xyVqZ0Xb0PD+y4hsWhm/3ux6mqX9WMHS0ci98nZoGVwBRfbTKzej9ZPXASNmc9+rAJof6bO+jUBpmX3HJWpnRcJoXfg6jF1b7F2g0d73+gePQfo534Ya5II4sl+sfC1aF70JmIbtfa/iDyLj/BvgHzjCvuMStbPaWhD+5HWYVTts7nvjx/IPGY/Q9Cug+LkgjuwlhEB00xdoWfR2fKzM1h0IFCihdGRdcisCA4baeFxyCydYbGJF2tC68jM0L5kPq7UZh1eBJEVRAFVDxqQZyJp2AXx5ve0slegY0V3laP78A0TKN3RtoqW9rb+oGFkzL0No1ETOwpOjrLZWtKz4BE1LPoRoa0VX+17F50Pm5HOQOe0C+HK4LQ05RwiBWOVWNC+Zh1jlVnv63v6DkTX9YgSHlTEYkRxltbUgunEZouuXAnq06wf0BRAsm4pg2TRujUCOEkLA2L0VbasWwayu7Nokd3tbX7/BSJt4DnzFw7ggjhxltTYhsm4JohuWxSe5u0gJpCE47iwEx06FmpZhQ4VEnRPCgrFrC6JrP4V5aJ8tfa/WfyjSxs+Er2+pvcUSfYPZXI+21Z8hsn4pYJldniRU0tIROm0W0sZO46KMUwgnWGwmDB3h9V+g6bMPYNYdjL+oavF/hMejqAAEIASUtBAyp5yPzMnncOUpdTv94D40L56P8LoV8Rueo67N4zpqUDBYOgpZMy9FcNAIfsGkbmXpMYRXL433vQ218RdPNmB91Ptqeiaypl+IzMmzoIb4BZO6l169B81L5yOyaRUA0f7FUeCEk4VH973DxiJz2kUIFg/plnqJDhN6FLEtXyGy9jOIcHP8xZMNmhz1vhLKRHD8DARHTmagJ3U748BuRFZ9Cr1yY/yFRAb8jvqMv7QMaRPP5nZg1O1ENILophWIrPkMItIaf/Fk1+9R9w1KRg7SJp6N4MjT42HORN1ECAGzuhLRdZ/B2NueqSnT9yoK/KVjERw3k9uBUbezImFE1i1B2+pP49veAVJ9r5rdC+mnn4fgyElQfP5uqJi6EydYHCKEgFF3ELE9FYjt2YHorm0wDlUfM1CtZuUiOHA4gsWlCBQPgb9oAPebJtdZ0Qhi+3YitqcC0d0ViO3ZDhGNdPyQ5kOg3yAEBw5FoHgIAgNKoWVmu1MwUTthWTBqD7RftxWIVm6FcejAMZ/TcnohOGg4AiVDECwZCn9hf+43Ta6zImHE9lUitncHYnsroO/dCfHNpwN8fgT6DTrS7wb6D4aanulOwUTthLBg1dfAOLAb5oHdMKp3wmqqO+ZzSlYefH0Hw9enBL4+JVBzC/mkK7nOioTj1+2B3TCqKmEc3AMYescP+QLw9SmGr2gQfEUl0PoUQw2mu1MwUTthWTDrqtv73d0wqnbCaq4/5nNqTgF8fQfBVzQw3vfm9eaTruQ6q60VZs0emAd3w6jeFX+yxTQ6fsgfgFYYv2fQCkvg6z0ASiDNnYKJ2gnLhHmoCnpVJYzqXdD37YDV0nDM57S8Qvj7l8b73r6DoOX25kLkUxgnWLqREAIwdAhdBzQNij/AL5WUMoRpxK9dIaD4/YDm4y8HSgnCsiAMHcLQofj88f+w76UUIUwTQo8BEPFVpqrGvpdSghAWYBoQhgHF52u/b2DfS94nhAAsM37fAAXw+bkIg1KGEBZgGBCmEV+46WPfS6nhcN8LQ49vm+/zQ1HZ91JqEJYFmDqEacafTtE09r09DCdYiIiIiIiIiIiIiIiIJHE6jYiIiIiIiIiIiIiISBInWIiIiIiIiIiIiIiIiCRxgoWIiIiIiIiIiIiIiEgSJ1iIiIiIiIiIiIiIiIgkcYKFiIiIiIiIiIiIiIhIEidYiIiIiIiIiIiIiIiIJHGChYiIiIiIiIiIiIiISBInWIiIiIiIiIiIiIiIiCRxgoWIiIiIiIiIiIiIiEgSJ1iIiIiIiIiIiIiIiIgkcYKFiIiIiIiIiIiIiIhIEidYiIiIiIiIiIiIiIiIJHGChYiIiIiIiIiIiIiISBInWIiIiIiIiIiIiIiIiCRxgoWIiIiIiIiIiIiIiEiSz+0CvC505v3whzLhT89u/+8c+EKZCAR9CIT8CAQ1+IM+BEM++IM+5KT7kZXmR2bQh9x0PzLTfMhM8yEr4EPIryEroCHd//V/ApqCgKYg6FMQUBWk+VRolg7FiEKJheP/bUSgxNogomFYrU0QkTCstlaIcBOstlYY4QhiTa3QWyOINYdhtLZBb40g2hRFrFVHtDEKvVVHrFVHW2sMLYaFFkOgUTfRalpo1C08Ze7s8s/Il5aBQEYOfGmZ8IUyEQwFO/xs/EENwVD8Z5KV5kNOKBD/7/afU7pfQ2bA1/6zUZEV8CHNryJNU7/+ObX/tw8WVL0N0CNQ9bb4z0iPQkRaINpaYUVaYbU2Q0RaYbU2wQhHoLe2IdYUhtEaQay5/efVqiPaFIXeoiPWGkO0KYZYWEejbqLFEGgxLDQZJloMC08Yyf+MiIiIiIiIiIiIiOjUwidYiIiIiIiIiIiIiIiIJHGChYiIiIiIiIiIiIiISBInWIiIiIiIiIiIiIiIiCRxgoWIiIiIiIiIiIiIiEgSJ1iIiIiIiIiIiIiIiIgkcYKFiIiIiIiIiIiIiIhIEidYiIiIiIiIiIiIiIiIJHGChYiIiIiIiIiIiIiISBInWIiIiIiIiIiIiIiIiCRxgoWIiIiIiIiIiIiIiEgSJ1iIiIiIiIiIiIiIiIgkcYKFiIiIiIiIiIiIiIhIEidYiIiIiIiIiIiIiIiIJHGChYiIiIiIiIiIiIiISBInWIiIiIiIiIiIiIiIiCRxgoWIiIiIiIiIiIiIiEgSJ1iIiIiIiIiIiIiIiIgkcYKFiIiIiIiIiIiIiIhIEidYiIiIiIiIiIiIiIiIJHGChYiIiIiIiIiIiIiISBInWIiIiIiIiIiIiIiIiCRxgoWIiIiIiIiIiIiIiEgSJ1iIiIiIiIiIiIiIiIgkcYKFiIiIiIiIiIiIiIhIEidYiIiIiIiIiIiIiIiIJClCCOF2EakmGo3i5z//OX7yk58gGAza9lmnPy977K7gz4iIiIiIiIiIiIiITmWcYElCU1MTcnJy0NjYiOzsbNs+6/TnZY/dFfwZEREREREREREREdGpjFuEERERERERERERERERSeIECxERERERERERERERkSROsBAREREREREREREREUniBEsSgsEg/u3f/i2hEHSZzzr9edljdwV/RkRERERERERERER0KmPIPRERERERERERERERkSQ+wUJERERERERERERERCSJEyxERERERERERERERESSOMFCREREREREREREREQkiRMsEh599FHMmDEDN910E2KxWIf32tracPnll+Pss8/GBRdcgLq6uhN+/rAZM2YgKyvrmM8YhoHbb78dM2bMwEMPPZRQDQDw85//HKeffvoJP9tZrXbhz4iIiIiIiIiIiIiIegJOsCRo9erVqK6uxueff47Ro0fjzTff7PD+3LlzUVZWhk8//RTXXXcdfv7zn5/w8wCwePFi7N27FyNGjDjmM++99x4GDBiAzz//HOFwGEuXLj1pDc3NzdiwYcNJ6/1mrS+99BJ/Rt30MyIiIiIiIiIiIiKiUwMnWBK0bNkyXHjhhQCAiy++GEuXLu3w/rBhwxAOhwEADQ0NOHTo0Ak/DwC/+MUvcPPNN3f6mc7Od7Iafv3rX+P+++8/ab3frLV3797J/EiOwZ8REREREREREREREfUUnGBJUENDA7KzswEAOTk5x2wZNWTIEGzYsAFlZWV48cUXMWjQoBN+vrGxEZWVlZg0aVKnn+nsfCeqobGxEevXr8e0adNOWu83a73qqqu6/PM52Tk7O29P/BkRERERERERERER0amBEyzfUF1djbPOOuuY/wgh0NTUBCA+MN+rV68Onx83bhwqKiqQm5sLwzCwYMGCTj9/2JNPPokLL7zwuJ/Jy8s75r3OXjv6eA888MAJ2x/2wgsvYNasWdiwYQP+4z/+Az/72c/4M7L5Z0REREREREREREREpzaf2wV4TVFRERYvXnzM66tXr8bjjz+OW2+9FfPnz8f06dM7fP53v/sdTNPEAw88gIULF+KZZ57Bhx9+eMznD9u+fTsqKirw6quvorW1FT/96U9x++23H3l/ypQp+PDDDzFz5kzMnz8fd955J9LS0jqt4fDxli1bBgAoLy/H5s2bUVdXd9zzH55MyM3NRUNDA39GNv+MiIiIiIiIiIiIiOjUxidYEjRx4kQUFRVhxowZ2LRpE6655hoAwHe/+10AwE033YS5c+di1qxZ+Nd//Vf813/91wk//9JLL2Hp0qW48cYbYVkWCgoKcM011xx5f/bs2dizZw9mzJiBUCiEqVOndlrD0cebN28e5s2bh2HDhuGpp5467me/WeucOXP4M+qmnxERERERERERERERnRoUIYRwuwgiIiIiIiIiIiIiIqJUwidYiIiIiIiIiIiIiIiIJHGChYiIiIiIiIiIiIiISBInWIiIiIiIiIiIiIiIiCRxgsVhf/7zn5Gbm2vLsSorK6EoCnw+H/bt29fhvaqqKvh8PiiKgsrKyg7vvfXWW5g1axZycnKQmZmJcePG4Wc/+xnq6upsr7Erbr/9diiKgvvuu++Y977//e9DURTcfvvtR16rrq7Ggw8+iNLSUgSDQRQXF2P27NlYsGDBkc8MGjQITz75ZDdUT0REREREREREREQ9CSdYUlC/fv3w4osvdnjthRdeQP/+/Y/57E9/+lNcf/31OOOMMzB37lxs2LABjz/+ONauXYuXXnqpu0pOWHFxMV577TW0tbUdeS0SieDVV19FSUnJkdcqKysxadIkLFy4EP/93/+N9evXY968eTjnnHNw//33u1E6EREREREREREREfUgnGA5iXnz5uGss85Cbm4u8vPzcfnll6OiogIAsGjRIiiKgoaGhiOfX7NmzZGnSBYtWoQ77rgDjY2NUBQFiqLg3//93wEA9fX1uPXWW5GXl4f09HRccsklKC8vT6im2267Dc8//3yH1/785z/jtttu6/DaF198gf/6r//C448/jl/+8peYNm0aBg0ahAsuuABvvfXWMZ/3gtNOOw0lJSV4++23j7z29ttvo7i4GBMnTjzy2uEnWr744gt8+9vfxvDhwzFmzBjMmTMHy5cvd6N0IiIiIiIiIiIiIupBOMFyEq2trZgzZw6+/PJLLFiwAKqq4uqrr4ZlWSdtO23aNDz55JPIzs5GVVUVqqqq8OijjwKIb4f11Vdf4d1338WyZcsghMCll14KXddPetwrrrgC9fX1WLx4MQBg8eLFqKurw+zZszt87uWXX0ZmZia+//3vd3ocL2wL1pk77rijwwTSc889hzvvvPPIn+vq6jBv3jzcf//9yMjIOKa9V/9eRERERERERERERHTq8LldgNddc801Hf78pz/9CYWFhdi0adNJ2wYCAeTk5EBRFBQVFR15vby8HO+++y6WLFmCadOmAYhPhhQXF+Odd97Btddee8Lj+v1+3HzzzXjuuedw1lln4bnnnsPNN98Mv9/f4XPl5eUoLS095nWvu+WWW/CTn/zkSObMkiVL8Nprr2HRokUAgO3bt0MIgZEjR7pbKBERERERERERERH1WHyC5SQqKipw4403orS0FNnZ2Rg8eDAAYPfu3Ukfc/PmzfD5fDjzzDOPvJafn48RI0Zg8+bNAIBLLrkEmZmZyMzMxJgxY445xl133YU33ngD1dXVeOONNzo84XGYEAKKoiRdp1sKCgpw2WWX4YUXXsDzzz+Pyy67DAUFBUfeF0IAQEr+3YiIiIiIiIiIiIjo1MAnWE5i9uzZKC4uxh//+Ef069cPlmWhrKwMsVgMmZmZAL4e8AeQ0BZfR3/+m68fnjR49tlnjwS9d/YESllZGUaOHIkbbrgBo0aNQllZGdasWdPhM8OHD8fixYuh63rKPcVy55134oEHHgAAPP300x3eGzZsGBRFwebNm3HVVVe5UB0RERERERERERER9XR8guUEamtrsXnzZvzLv/wLzjvvPIwaNQr19fVH3u/duzcAoKqq6shr35zkCAQCME2zw2ujR4+GYRhYsWJFh3Nt27YNo0aNAgD0798fQ4cOxdChQzFw4MBO67vzzjuxaNGiTp9eAYAbb7wRLS0teOaZZzp9v6GhofO/uAdcfPHFiMViiMViuOiiizq816tXL1x00UV4+umn0draekxbL/+9iIiIiIiIiIiIiOjUwAmWE8jLy0N+fj7+8Ic/YPv27Vi4cCHmzJlz5P2hQ4eiuLgY//7v/45t27bh/fffx+OPP97hGIMGDUJLSwsWLFiAQ4cOIRwOY9iwYbjyyitxzz33YPHixVi7di1uvvlm9O/fH1deeWXC9d1zzz2oqanB3Xff3en7Z555Jh577DE88sgjeOyxx7Bs2TLs2rULCxYswLXXXosXXnghuR9MN9A0DZs3b8bmzZuhadox7z/zzDMwTROTJ0/GW2+9hfLycmzevBlPPfUUpk6d6kLFRERERERERERERNSTcILlBFRVxWuvvYaVK1eirKwMDz/8MH75y18eed/v9+PVV1/Fli1bMH78ePziF7/Af/7nf3Y4xrRp03Dffffh+uuvR+/evfHf//3fAIDnn38ekyZNwuWXX46pU6dCCIEPPvhAaisvn8+HgoIC+HzH3+ntF7/4BV555RWsWLECF110EcaMGYM5c+Zg3LhxuO222yR/It0rOzsb2dnZnb43ePBgrFq1Cueccw4eeeQRlJWV4YILLsCCBQvwu9/9rpsrJSIiIiIiIiIiIqKeRhHHCwQhIiIiIiIiIiIiIiKiTvEJFiIiIiIiIiIiIiIiIkmcYCEiIiIiIiIiIiIiIpLECRYiIiIiIiIiIiIiIiJJnGAhIiIiIiIiIiIiIiKSxAkWIiIiIiIiIiIiIiIiSZxgISIiIiIiIiIiIiIiksQJFiIiIiIiIiIiIiIiIkmcYCEiIiIiIiIiIiIiIpLECRYiIiIiIiIiIiIiIiJJnGAhIiIiIiIiIiIiIiKSxAkWIiIiIiIiIiIiIiIiSZxgISIiIiIiIiIiIiIikvT/A7NCSxr+KTwcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -231,7 +233,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAADdCAYAAABOtY7oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzc0lEQVR4nO3deVgT1/oH8G8SkrCDgCAosriBgiggiIqirVrXq7VVr627VltbpfjzqrWtS1XsYqu9Vtyl7rbVenGpiqiIBVSQTVlVEGQRQXYkQDK/PyhpEYIJJkwC7+d58tSczGRecrn5MnPmnMNhGIYBIYQQ0gQu2wUQQghRXxQShBBCZKKQIIQQIhOFBCGEEJkoJAghhMhEIUEIIUQmCglCCCEyUUgQQgiRiUKCEEKITBQShBBCZNK4kNi5cyfs7Oygra0NNzc3hIWFybXfn3/+CS0tLfTr10+1BRJCSBuiUSFx8uRJ+Pr6Ys2aNYiJiYG3tzfGjBmDzMzMZvcrKSnBrFmz8MYbb7RSpYQQ0jZwNGmCP09PT7i6uiIgIEDa5ujoiEmTJsHf31/mftOnT0ePHj3A4/Fw5swZxMbGyn1MiUSCnJwcGBgYgMPhvE75hBCiFhiGQVlZGaysrMDlNn+uoNVKNb226upqREdHY9WqVQ3aR40ahfDwcJn7HTx4EA8fPsSRI0ewcePGVx5HJBJBJBJJn2dnZ6N3794tL5wQQtRUVlYWunTp0uw2GhMSBQUFEIvFsLCwaNBuYWGBvLy8JvdJS0vDqlWrEBYWBi0t+X5Uf39/rF+/vlF7VlYWDA0NFS+cEELUTGlpKaytrWFgYPDKbTUmJOq9fMmHYZgmLwOJxWLMmDED69evR8+ePeV+/9WrV8PPz0/6vP7DNDQ0pJAghLQp8lxC15iQMDMzA4/Ha3TWkJ+f3+jsAgDKysoQFRWFmJgYfPzxxwDq+hcYhoGWlhYuX76MESNGNNpPKBRCKBSq5ocghBANozF3NwkEAri5uSE4OLhBe3BwMAYNGtRoe0NDQyQkJCA2Nlb6WLx4MXr16oXY2Fh4enq2VumEEKKxNOZMAgD8/Pwwc+ZMuLu7w8vLC3v27EFmZiYWL14MoO5SUXZ2Ng4dOgQulwsnJ6cG+5ubm0NbW7tRuypcSMhFB10BBtqb0F1RhBCNpVEhMW3aNBQWFmLDhg3Izc2Fk5MTLly4ABsbGwBAbm7uK8dMtAZRrRhrg+7jWZkIfawMscDbDuOcrSDQ0pgTN0IIAaBh4yTYUFpaCiMjI5SUlMjdcV1SWYNvLyfjt+gnqKqRAAAsDIWYPcgWMzy6wlhXoMqSCSGkWYp8r1FIvEJLQqJeUUU1jt3OxM/hGcgvqxt7ocPn4R23Lpg3xA52ZnqqKJkQQppFIaFErxMS9aprJTgXn4N9YelIzC0FAHA4wBsOFljgbQdPO+q3IIS0HgoJJVJGSNRjGAYRjwqxPywdIcn50nanzoZYMMQeY50tqd+CEKJyFBJKpMyQ+KeHz8px4GY6Tt39u9+ik6E2Zg2yoX4LQohKUUgokapCol59v0VgeAae/aPf4l33Lpg7mPotCCHKRyGhRKoOiXqiWjHOxeVi3810JP2j3+JNRwssGGIHD+q3IIQoCYWEErVWSNRjGAYRDwux72Y6rjbRbzGuryX4POq3IIS0HIWEErV2SPzTg/xyHPyzcb9F/XgLI11+q9ZDCGkbKCSUiM2QqPe8ohrHbj3GzxGPG/RbTP2r38KW+i0IIQqgkFAidQiJeqJaMc7G5WJf2CMk55UBoH4LQojiKCSUSJ1Cop6sfgvnzkZY4G2Hsc7Ub0EIkY1CQonUMST+6UF+OQ78mY5T0U8gqv2732LOYFv8ewD1WxBCGqOQUCJ1D4l6TfVb6Ap4eNeN+i0IIQ1RSCiRpoREPVn9FqN6W+CrfznB3FCb5QoJIWyjkFAiTQuJegzDIPxhIfaFPcK1lGcAAFtTXRxZ4IkuHXRZro4QwiZFvteod7ON4nA4GNzdDAfneuCS71BYm+ggo7ASU3dFIL2ggu3yCCEagkKiHejVyQC/LPKCfUc95JRU4d1dEUj561IUIYQ0h0KinbA00sEvi7zg0MkABeUiTNsTgYQnJWyXRQhRcxQS7YiZvhAnPhgIF2tjFFfWYMbeSNzJeM52WYQQNUYh0c4Y6wpwdIEnPO1MUCaqxaz9t3EzrYDtsgghaopCoh3SF2ohcK4HhvXsiBc1YswLvIPgxKdsl0UIUUMUEu2UjoCHPbPc8FafTqgWS7D4SDSC4nLYLosQomYoJNoxoRYPO2b0x+T+nSGWMFh2IgYn72SyXRYhRI1QSLRzWjwutr7rghmeXcEwwMpTCTj4ZzrbZRFC1ASFBAGXy8GmSU5Y6G0HAFh/NhE/XXvAclWEEHWgpegOFRUV2LJlC0JCQpCfnw+JRNLg9UePHimtONJ6OBwOPhvrCD2hFrZdScO3l1JQIarFitG9aI0KQtoxhUNiwYIFCA0NxcyZM2FpadnqXyA7d+7Et99+i9zcXPTp0wfbtm2Dt7d3k9uePn0aAQEBiI2NhUgkQp8+fbBu3TqMHj26VWvWFBwOB75v9oSugIfNF5Kx8/pDVFaL8eX43uByKSgIaY8UDok//vgD58+fx+DBg1VRT7NOnjwJX19f7Ny5E4MHD8bu3bsxZswYJCYmomvXro22v3HjBkaOHInNmzfD2NgYBw8exIQJE3Dr1i3079+/1evXFB8M7QYdgRa+OHMPgeEZqBDVYsuUvuBRUBDS7ig8C6ydnR0uXLgAR0dHVdUkk6enJ1xdXREQECBtc3R0xKRJk+Dv7y/Xe/Tp0wfTpk3Dl19+Kdf2mjoLrDKcin6CFb/FQcIA4/ta4odp/WjFO0LaAJXOAvvVV1/hyy+/RGVlZYsLbInq6mpER0dj1KhRDdpHjRqF8PBwud5DIpGgrKwMJiYmMrcRiUQoLS1t8Givprh1wU8zXMHncXAuPhcfHolGVY2Y7bIIIa1IrstN/fv3b9D38ODBA1hYWMDW1hZ8fsPlMe/evavcCv9SUFAAsVgMCwuLBu0WFhbIy8uT6z22bt2KiooKTJ06VeY2/v7+WL9+/WvV2paMcbbEHgEPiw9H40pSPub/fAd7Z7lDV6DwlUpCiAaS6//pkyZNUnEZ8nu5o5xhGLk6z48fP45169bhf//7H8zNzWVut3r1avj5+Umfl5aWwtrauuUFtwHDe5kjcK4H5v98B38+KMSs/bdxYO4AGGrT+tmEtHVyhcTatWtVXccrmZmZgcfjNTpryM/Pb3R28bKTJ09i/vz5+PXXX/Hmm282u61QKIRQKHztetsar26mOLLAE3MO3EbU4yLM2BuJQ/M8YaInYLs0QogKKdwnYW9vj8LCwkbtxcXFsLe3V0pRTREIBHBzc0NwcHCD9uDgYAwaNEjmfsePH8ecOXNw7NgxjBs3TmX1tQeuXTvg+AcDYaonwL3sUkzfE4H80iq2yyKEqJDCIZGRkQGxuHHnpUgkwpMnT5RSlCx+fn7Yt28fDhw4gKSkJHz66afIzMzE4sWLAdRdKpo1a5Z0++PHj2PWrFnYunUrBg4ciLy8POTl5aGkhBbbaak+VkY4ucgLFoZCpD4tx9TdEXhS1Lo3MRBCWo/cvY9BQUHSf1+6dAlGRkbS52KxGCEhIbCzs1NudS+ZNm0aCgsLsWHDBuTm5sLJyQkXLlyAjY0NACA3NxeZmX9PULd7927U1tZiyZIlWLJkibR99uzZCAwMVGmtbVl3c338umgQZuyLlK6bfXThQNiZ6bFdGiFEyeQeJ8Hl1p10cDgcvLwLn8+Hra0ttm7divHjxyu/Sha153ESr5Jb8gLv7buFR88qYKYvxNEFnujVyYDtsgghr6CScRISiQQSiQRdu3aVztlU/xCJREhJSWlzAUGa19S62fFPitkuixCiRAr3SaSnp8PMzEwVtRAN1Hjd7Fu0bjYhbYjC03L8+OOPTb8RhwNtbW10794dQ4cOBY/HU0qBbKPLTfIpF9VifuAd3Ep/Dm0+F3tnucO7R0e2yyKENEGR77UWzd307NkzVFZWokOHDmAYBsXFxdDV1YW+vj7y8/Nhb2+Pa9eutYlBaBQS8ntRLcbiI9EITX0GAY+Ln95zxcjezY9hIYS0PpXO3bR582YMGDAAaWlpKCwsxPPnz5GamgpPT09s374dmZmZ6NSpEz799NMW/wBEM9Wvmz26jwWtm01IG6HwmUS3bt1w6tQp9OvXr0F7TEwMpkyZgkePHiE8PBxTpkxBbm6uMmtlBZ1JKK5WLMGK3+Lxe0w2OBxgy9vOmDag8VTuhBB2qPRMIjc3F7W1tY3aa2trpVNmWFlZoaysTNG3Jm1EU+tmH7hJ62YTookUDonhw4dj0aJFiImJkbbFxMTgww8/xIgRIwAACQkJKh9YR9Rb/brZC4bU/R5sOEfrZhOiiRQOif3798PExARubm7SyfDc3d1hYmKC/fv3AwD09fWxdetWpRdLNAuHw8GacY5Y9kYPAMC3l1LwzcXkRoMxCSHqS+E+iXrJyclITU0FwzBwcHBAr169lF2bWqA+CeXYc+MhNl9IBgDMGWRL62YTwiJFvtdavHKMg4MDHBwcWro7aWdeXjdbVCvB5slOcq0FQghhj8IhIRaLERgYiJCQEOn0HP909epVpRVH2paZA22gy+fh/36Lw/HbmRDwOFg3sQ8FBSFqTOGQWLZsGQIDAzFu3Dg4OdFfgkQxU9y6QMIwWPFbPH6OeAyBFhefjXWk3yNC1JTCIXHixAn88ssvGDt2rCrqIe3Au+7WqBEz+Oz3BOwNS4dAi4v/G9WLgoIQNaTw3U0CgQDdu3dXRS2kHZnh2RXrJ/YBAPx07SF+DKHbYwlRRwqHxPLly7F9+3a6jZG8ttmDbLFmrCMA4IcrqQi4/pDligghL1P4ctPNmzdx7do1/PHHH+jTpw/4fH6D10+fPq204kjbt3CoParFEnx7KQVfX0wGn8fBAm/VrZVOCFGMwiFhbGyMyZMnq6IW0k4tGd4d1bUSbA9Jw8bzSRBqcTHTy5btsgghaEFIHDx4UBV1kHbO980eqBZLEHD9Ib74333weVxM96BJAQlhm8J9EkDdZH5XrlzB7t27pRP55eTkoLy8XKnFkfaDw+HgP6N7Yf5fcz2t/j0Bp6KfsFwVIUThM4nHjx/jrbfeQmZmJkQiEUaOHAkDAwN88803qKqqwq5du1RRJ2kHOBwOPh/niBqxBIciHmPFb3EQaHExwcWK7dIIabcUPpNYtmwZ3N3dUVRUBB0dHWn75MmTERISotTiSPvD4XCwbkIfTB9gDQkD+J6MxcV7mr8uCSGaSuGQuHnzJj7//HMIBIIG7TY2NsjOzlZaYaT94nI52DzZGW+7doZYwuCT4zEISXrKdlmEtEsKh4REIoFYLG7U/uTJExgYGCilKEK4XA6+fccFE1ysUCNm8OGRuwhNfcZ2WYS0OwqHxMiRI7Ft2zbpcw6Hg/Lycqxdu5am6iBKxeNy8P1UF7zVpxOqxRJ8cCgK4Q8K2C6LkHZF4fUksrOzMWLECPB4PKSlpcHd3R1paWkwMzPDjRs3YG5urqpaWUHrSbCvulaCj45G40pSPnT4PPw8zwMediZsl0WIxlLke61Fiw69ePECJ06cQHR0NCQSCVxdXfHee+816MhuKygk1IOoVoyFh6JxI/UZ9AQ8HF7gCdeuHdguixCNpMj3mkKXm2pqamBvb4/09HTMnTsXO3bswM6dO7FgwYJWC4idO3fCzs4O2tracHNzQ1hYWLPbh4aGws3NDdra2rC3t6dbdDWUUIuHPTPdMKibKSqqxZh94DYSnpSwXRYhbZ5CIcHn8yESiVib0vnkyZPw9fXFmjVrEBMTA29vb4wZMwaZmZlNbp+eno6xY8fC29sbMTEx+Oyzz7B06VKcOnWqlSsnyqDN52HfbHd42JqgrKoW7++/hcScUrbLIqRNU/hy05YtW5CcnIx9+/ZBS6vFq5+2iKenJ1xdXREQECBtc3R0xKRJk+Dv799o+5UrVyIoKAhJSUnStsWLFyMuLg4RERFyHbP+tCwnJ4cuN6mJclEtFvx8B3FZJeigx8fPcz3Qw4LurCNEXqWlpbCyslLNGte3bt1CSEgILl++DGdnZ+jp6TV4XVWzwFZXVyM6OhqrVq1q0D5q1CiEh4c3uU9ERARGjRrVoG306NHYv38/ampqGs1gCwAikQgikUj6vLS07i9VKysa9auOsgD038h2FYS0XS2aBXbKlCmqqKVZBQUFEIvFsLCwaNBuYWGBvLy8JvfJy8trcvva2loUFBTA0tKy0T7+/v5Yv3698gonhBANpnGzwL7cH8IwTLN9JE1t31R7vdWrV8PPz0/6vLS0FNbW1nS5SU0Vlosw9+BtpOVXwMpYG4fmeaBzB122yyJErdVfbpKHwiExYsQInD59GsbGxo0OOmnSJFy9elXRt5SLmZkZeDxeo7OG/Pz8RmcL9Tp16tTk9lpaWjA1NW1yH6FQCKFQ2KhdT0+v0aU1wj49PT0cX+KD6bsj8aigAvOPJeCXRV6wNGp7t2MToixNzZohi8Ijrq9fv47q6upG7VVVVa+8HfV1CAQCuLm5ITg4uEF7cHAwBg0a1OQ+Xl5ejba/fPky3N3dm+yPIJrJ3EAbxxYOhI2pLrKev8CMvbeQX1rFdlmEtAlyn0nEx8dL/52YmNjgL3SxWIyLFy+ic+fOyq3uJX5+fpg5cybc3d3h5eWFPXv2IDMzE4sXLwZQd6koOzsbhw4dAlB3J9OOHTvg5+eHhQsXIiIiAvv378fx48dVWidpfZ2M6oJi6q4IpBdUYMa+WzjxwUCY6Tc+KySEKICRE4fDYbhcLsPlchkOh9Pooaury+zfv1/et2uxn376ibGxsWEEAgHj6urKhIaGSl+bPXs2M2zYsAbbX79+nenfvz8jEAgYW1tbJiAgQKHjlZSUMACYkpISZZRPVOxxQQUzcPMVxmblOWb0D6HM83IR2yURonYU+V6Te5zE48ePwTAM7O3tcfv2bXTs2FH6mkAggLm5OXg8noqijD00LYfmSS+owNTdEXhWJoJTZ0McXTAQRjp0eZGQeiqfu6k9oZDQTGlPyzB9TyQKK6rhYm2MI/M9YKBNQUEIoKK5mx48eIDo6OgGbSEhIRg+fDg8PDywefPmllVLiAr0sDDAkQWeMNblIy6rGHMP3kGFqJbtsgjROHKHxIoVK3DmzBnp8/T0dEyYMAECgQBeXl7w9/dvsM4EIWxztDTEkfmeMNTWQtTjIsz/+Q5eVMt/6x8hRIGQiIqKarCo0NGjR9GzZ09cunQJ27dvx7Zt2xAYGKiKGglpMafORjg03xP6Qi1EPnqODw5HoaqGgoIQeckdEgUFBejSpYv0+bVr1zBhwgTpcx8fH2RkZCi1OEKUoZ+1MX6eNwC6Ah7C0grw0dG7qK6VsF0WIRpB7pAwMTFBbm4ugLp1rqOiouDp6Sl9vbq6GtQHTtSVm40JDswZAG0+F1eT8/HxsbuoEVNQEPIqcofEsGHD8NVXXyErKwvbtm2DRCLB8OHDpa8nJibC1tZWFTUSohQD7U2xb9YACLS4uJz4FL4nY1FLQUFIs+Qecb1p0yaMHDkStra24HK5+PHHHxvMZXT48GGMGDFCJUUSoixDephh9/tu+OBwFM7H50LA4+K7d13A47KzkBYh6k6hcRI1NTVITExEx44dG80gGBcXhy5dusicOE9T0TiJtuny/Tx8dPQuaiUM3nbtjG+m9IUWT+GpzAjRSDSYTokoJNqu8/G5WHoiBmIJgzcczLFjhit0BG1v1gBCXqaSwXSEtDXj+lpi1/tuEGpxEZKcj5n7b6G4svEMx4S0ZxQSpF0b2dsCRxb8PeBu6u4I5Ja8YLssQtQGhQRp9wbYmuDXxYNgYShE6tNyTNkZjgf5ZWyXRYhaUDgkmlpwqF5BQcFrFUMIW3p1MsCpDwfBvqMeckqq8M6uCNzNLGK7LEJYp3BITJ06FRJJ43vLnz59Ch8fH2XURAgrunTQxW+LB8HF2hjFlTWYsTcS15Lz2S6LEFYpHBK5ubmYP39+g7a8vDz4+PjAwcFBaYURwgYTPQGOL/TEsJ4dUVUjwYJDUTgV/YTtsghhjcIhceHCBdy+fRuffvopACA7OxvDhg2Ds7MzfvnlF6UXSEhr0xVoYd9sd0zu3xliCYPlv8Zhz42HbJdFCCvkHnFdz9TUFJcuXcKQIUMAAOfPn4erqyuOHj0KLpf6wUnbwOdxsfVdF5jpC7A3LB2bLyTjWZkIq8c4gkujs0k70qJv9S5duiA4OBjHjh2Dh4cHjh8/3iaXLiXtG5fLwZpxvfHZ2LrLqHvD0vF/v8bRxICkXZFrxHWHDh3A4TT+66myshJCobBBQDx//ly5FbKMRlwTADgV/QT/ORUPsYSBT6+O2PmeK3QFCp+IE6IWFPlek+u3nFacI+3dFLcuMNET4MOj0bie8gwz9t7CwTkD0EFPwHZphKgUzd30CnQmQf7pbmYR5gXeQXFlDbp11MOh+Z7obKzDdlmEKETlE/xJJBI8ePAA+fn5jcZMDB06VNG3U2sUEuRlD/LLMGv/beSUVKGToTZ+nueBXp0M2C6LELmpNCQiIyMxY8YMPH78uNFKdBwOB2Jx21o/mEKCNCWn+AVmH7iNtPxyGGprYf+cARhga8J2WYTIRaWzwC5evBju7u64d+8enj9/jqKiIumjrXVaEyKLlbEOfl3sBTebDiitqsX7+27hSuJTtssiROkUPpPQ09NDXFwcunfvrqqa1AqdSZDmvKgWY8mxu7ianA8elwP/yc6YOsCa7bIIaZZKzyQ8PT3x4MGDFhfXUkVFRZg5cyaMjIxgZGSEmTNnori4WOb2NTU1WLlyJZydnaGnpwcrKyvMmjULOTk5rVc0afN0BDzsnumGd9y6QCxh8J9T8fjp2oNGl2IJ0VQK3+j9ySefYPny5cjLy4OzszP4fH6D1/v27au04v5pxowZePLkCS5evAgA+OCDDzBz5kycPXu2ye0rKytx9+5dfPHFF3BxcUFRURF8fX0xceJEREVFqaRG0j7xeVx8+05fmOkLsSv0Ib69lIKCchG+GNebRmcTjafw5aampt7gcDhgGEZlHddJSUno3bs3IiMj4enpCaCuA93LywvJycno1auXXO9z584deHh44PHjx+jatatc+9DlJqKIfWGPsPF8EgBgoosVvnvXBQItmq6GKJ9YwuBwRAYqqsVYMlyxy/9KH0z3T+np6Yru8toiIiJgZGQkDQgAGDhwIIyMjBAeHi53SJSUlIDD4cDY2FjmNiKRCCKRSPq8tLS0xXWT9meBtz3M9IX4v1/jEBSXg6LKagS87wZ9IY3OJspzL7sEn/2egPgnJeDzOBjj1An2HfVVciyFf3NtbGxUUUez8vLyYG5u3qjd3NwceXl5cr1HVVUVVq1ahRkzZjSbnP7+/li/fn2LayVkUv/O6KAnwIdHohGWVoAZeyNxcM4AmOoL2S6NaLhyUS2+v5yKwPB0SBjAQFsLK99ygK2pnsqOKVdIBAUFYcyYMeDz+QgKCmp224kTJ8p98HXr1r3yC/nOnTsA0OTcUfWXuF6lpqYG06dPh0Qiwc6dO5vddvXq1fDz85M+Ly0thbU13a1CFDOsZ0ccWzgQ8wLvIP5JCd7ZFYFD8zxgbaLLdmlEQ126n4d1QfeRW1IFAJjgYoUvxjvC3EBbpceVq0+Cy+VK/5pvbjpwRfskCgoKXrnkqa2tLY4dOwY/P79GdzMZGxvjhx9+wNy5c2XuX1NTg6lTp+LRo0e4evUqTE1N5a4PoD4J8noePivHrP23kV38Ah0NhPh5rgd6W9HvEZFfdvELrP3ffVxJqhuHY22ig42TnDGsZ8cWv6fKp+VobfUd17du3YKHhwcA4NatWxg4cGCzHdf1AZGWloZr166hY0fFP1QKCfK6npZWYfaB20jOK4OBUAt7Z7tjoL1if6yQ9qdWLEFgeAa+D05FZbUYWlwOPhhqj09G9ICO4PWWZlDpOAlZsrKyMG/ePGW9XQOOjo546623sHDhQkRGRiIyMhILFy7E+PHjGwSEg4MDfv/9dwBAbW0t3nnnHURFReHo0aMQi8XIy8tDXl4eqqurVVInIU2xMNTGyUVe8LA1QZmoFrMO3MbFe/L1pZH2KTarGBN3/ImN55NQWS2Gu00HXFjmjf+85fDaAaEopZ1JxMXFwdXVVWVzNz1//hxLly6V9olMnDgRO3bsaHCnEofDwcGDBzFnzhxkZGTAzs6uyfe6du0afHx85DounUkQZamqEeOT4zEITnwKLgfYOMkZMzzluxWbtA+lVTX47lIKDkc+BsMARjp8rB7jgKnu1kodc8PK5SZVhwRbKCSIMtWKJfj8zD2cuJMFAPAb2ROfjOgu1w0YpO1iGAYXEvKw/ux95JfV3YI/uX9nrBnnCDMV3BWn0nEShJCW0+Jx4f+2MzoaCPHfqw/wfXAqCspFWDuhD3g0OrtdynpeiS//dw/XUp4BAOzM9LBxkhMGdzdjubI6FBKEtDIOh4Plo3rBVE+A9ecScSjiMQrLq/H9NBcItWit+PaiRizB/pvp2HYlFVU1Egh4XCz26YaPfLpBm68+vwdyh8Tbb7/d7OvNTbZHCGlszmA7mOoL4fdLLM4n5KKoshq7Z7rBQJv/6p2JRot+XIQ1vycgOa8MAOBpZ4JNk53R3Vw1o6Zfh9whYWRk9MrXZ82a9doFEdKeTHCxQgddARYdjkL4w0JMCQjHuol9MKibelxqIMpVUlmDLReTcfx2JgCggy4fa8b1xhTXzmrbL6UR4yTYRB3XpDUkPCnB3MDbKCivuz37DQdzrB7rgO7mtCxqW8AwDILicvDVuUTp/8bvunXB6rGOMNETtHo9bW4wHZsoJEhreV5Rje1XUnH0ViZqJQx4XA6mD7DGpyN7quQOF9I6Mgoq8MX/7iEsrW52iW4d9bBpsjOrAyopJJSIQoK0tofPyvH1H8m4/NdyqPpCLXzo0w3zh9ipVYcmaV51rQR7bjzEj1cfoLpWAoEWF58M744PhtmzfoMChYQSUUgQtkQ+KsTmC0mIf1ICALA00saK0b0wqV9nWsxIzd16VIg1Z+7hQX45AGBIdzN8NckJdmaqm61VERQSSkQhQdgkkTA4G5+Dby6mILv4BQCgj5Uh1oxzpM5tNVRUUQ3/P5LwS9QTAICZvgCfj+uNf/WzUquOaQoJJaKQIOqgqkaMwPAM/HT1AcpEtQCoc1udMAyD03ezselCEp5X1HVM/9vDGivfcoCxbut3TL8KhYQSUUgQdVJYLsKPIWk4cisT4r86t//tYQ3fN6lzmy0Pn5Xj89/vIeJRIQCgp4U+Nk92hrutCcuVyUYhoUQUEkQdPXxWji1/JCOYOrdZU1UjRsD1hwi4/hDVYgm0+VwsfaMHFgyxV/t1zSkklIhCgqgz6txmR/jDAnz++z08KqgAULcS4Vf/ckJXU81YeZBCQokoJIi6o87t1sEwDGKyinEoPANnYnMAAB0NhFg7oTfGOVuqVcf0q1BIKBGFBNEUVTViHPwzAzuv/d25/aajOVaNoc7t15GSV4aguGwExeUg63ldCHM4wPueNvi/0b1gpKN5c21RSCgRhQTRNNS5/foyCytxNj4HQbE5SHlaJm3XFfAwsrcF5g62Qz9rY/YKfE0UEkpEIUE0FXVuKya/tArn4nMRFJeD2KxiabuAx8WwXh0x0cUKbziaQ1eg+SssUEgoEYUE0XSRjwqx6XwSErKpc/tlJZU1+ONeXTBEPiqE5K9vQy4HGNTNDBNdrDDaqZNGXlJqDoWEElFIkLZAIqmbhfTbS393bjt1NsRnY9tf53ZldS2CE5/ibFwOQlOfoUb891ega1djTHSxwti+ljA30GaxStWikFAiCgnSlrTXzm1RrRg3UgsQFJeDK4lP8aJGLH3NoZMBJvazwoS+VrA20YxbWF8XhYQSUUiQtqiwXITtIWk42oY7t8USBpGPChEUm4M/7uWitKpW+lpXE138q58VJrpYoYdF2w1HWSgklIhCgrRlba1zu34sQ1BsDs4n5OJZmUj6mrmBEOP7WmFiPyu4dDHSqHENykYhoUQUEqQ9eLlz28pIGx8N747u5vow0xfAVE8IIx2+2nZ0J+eVIig2B2fj/x7LAABGOnyMde6ECS5W8LQzBU9N629tFBJKRCFB2oumOrf/icflwERPAFM9Acz0hTD9KzxM9QXSIKn7d91/VX2raGZhpXSQW+rTcml7/ViGiS5W8O7RUe3nUWIDhYQSUUiQ9qZ+WvKrSfkoqBChsLwaJS9qFH4fHT6vLkj0hTDTE0j//XLImOkL0EFPAD7v1V/m+aVVOPvXWIa4Nj6WQZUoJJSIQoKQuqU4iyqrUVBeFxqFf4VHQXk1CstFKKyo+29Bed02olqJwscw1uXDVO+vUPnHmYmpvhAMw+DivTxEPCoE09RYhj6dYKTbtsYyqJIi32sUt4SQVxJocWFhqA0Lw1ePHWAYBpXV4roQ+StM6oPkWdnfgVIfNs8rqiFhgOLKGhRX1uDhs4pm37//X2MZxrXxsQzqQmNCoqioCEuXLkVQUBAAYOLEifjvf/8LY2NjufZftGgR9uzZgx9++AG+vr6qK5SQdo7D4UBPqAU9oZZcU2eLJQyKK6tRWPGPM5W/QqX+TKWyWgyvbqaY6NJ+xjKoC40JiRkzZuDJkye4ePEiAOCDDz7AzJkzcfbs2Vfue+bMGdy6dQtWVlaqLpMQoiAel1PXV6EvRM92OGZB3WlESCQlJeHixYuIjIyEp6cnAGDv3r3w8vJCSkoKevXqJXPf7OxsfPzxx7h06RLGjRvXWiUTQkiboBH3hkVERMDIyEgaEAAwcOBAGBkZITw8XOZ+EokEM2fOxIoVK9CnTx+5jiUSiVBaWtrgQQgh7ZVGhEReXh7Mzc0btZubmyMvL0/mfl9//TW0tLSwdOlSuY/l7+8PIyMj6cPa2rpFNRNCSFvAakisW7cOHA6n2UdUVBQANDmEnmEYmUPro6OjsX37dgQGBio0/H716tUoKSmRPrKyslr2wxFCSBvAap/Exx9/jOnTpze7ja2tLeLj4/H06dNGrz179gwWFhZN7hcWFob8/Hx07dpV2iYWi7F8+XJs27YNGRkZTe4nFAohFP49wVn9MBK67EQIaSvqv8/kGibHaIDExEQGAHPr1i1pW2RkJAOASU5ObnKfgoICJiEhocHDysqKWblypcx9mpKVlcUAoAc96EGPNvfIysp65XegRtzd5OjoiLfeegsLFy7E7t27AdTdAjt+/PgGdzY5ODjA398fkydPhqmpKUxNTRu8D5/PR6dOnZq9G+plVlZWyMrKgoGBgUKXrUpLS2FtbY2srCwaqf0S+myaRp9L0+hzka2lnw3DMCgrK5NrWIBGhAQAHD16FEuXLsWoUaMA1A2m27FjR4NtUlJSUFJSotTjcrlcdOnSpcX7Gxoa0i+2DPTZNI0+l6bR5yJbSz4bIyMjubbTmJAwMTHBkSNHmt2GecX1NVn9EIQQQpqmEbfAEkIIYQeFhIoIhUKsXbu2wZ1SpA59Nk2jz6Vp9LnI1hqfDU0VTgghRCY6kyCEECIThQQhhBCZKCQIIYTIRCFBCCFEJgoJFdm5cyfs7Oygra0NNzc3hIWFsV0Sq/z9/TFgwAAYGBjA3NwckyZNQkpKCttlqR1/f39wOBxaPfEv2dnZeP/992FqagpdXV3069cP0dHRbJfFqtraWnz++eews7ODjo4O7O3tsWHDBkgkiq8rLg8KCRU4efIkfH19sWbNGsTExMDb2xtjxoxBZmYm26WxJjQ0FEuWLEFkZCSCg4NRW1uLUaNGoaKi+fWM25M7d+5gz5496Nu3L9ulqIWioiIMHjwYfD4ff/zxBxITE7F161a5lyxuq77++mvs2rULO3bsQFJSEr755ht8++23+O9//6uS49EtsCrg6ekJV1dXBAQESNscHR0xadIk+Pv7s1iZ+nj27BnMzc0RGhqKoUOHsl0O68rLy+Hq6oqdO3di48aN6NevH7Zt28Z2WaxatWoV/vzzz3Z/Fv6y8ePHw8LCAvv375e2TZkyBbq6ujh8+LDSj0dnEkpWXV2N6Oho6RxT9UaNGtXsKnrtTf0cWyYmJixXoh6WLFmCcePG4c0332S7FLURFBQEd3d3vPvuuzA3N0f//v2xd+9etsti3ZAhQxASEoLU1FQAQFxcHG7evImxY8eq5HgaM3eTpigoKIBYLG60zoWFhUWzq+i1JwzDwM/PD0OGDIGTkxPb5bDuxIkTuHv3Lu7cucN2KWrl0aNHCAgIgJ+fHz777DPcvn0bS5cuhVAoxKxZs9gujzUrV65ESUkJHBwcwOPxIBaLsWnTJvz73/9WyfEoJFTk5WnFmWZW0WtvPv74Y8THx+PmzZtsl8K6rKwsLFu2DJcvX4a2tjbb5agViUQCd3d3bN68GQDQv39/3L9/HwEBAe06JE6ePIkjR47g2LFj6NOnD2JjY+Hr6wsrKyvMnj1b6cejkFAyMzMz8Hi8RmcN+fn5MlfRa08++eQTBAUF4caNG681BXtbER0djfz8fLi5uUnbxGIxbty4gR07dkAkEoHH47FYIXssLS3Ru3fvBm2Ojo44deoUSxWphxUrVmDVqlXSVT2dnZ3x+PFj+Pv7qyQkqE9CyQQCAdzc3BAcHNygPTg4GIMGDWKpKvYxDIOPP/4Yp0+fxtWrV2FnZ8d2SWrhjTfeQEJCAmJjY6UPd3d3vPfee4iNjW23AQEAgwcPbnSbdGpqKmxsbFiqSD1UVlaCy2341c3j8VR2C6xGLF+qaU6cOMHw+Xxm//79TGJiIuPr68vo6ekxGRkZbJfGmg8//JAxMjJirl+/zuTm5koflZWVbJemdoYNG8YsW7aM7TJYd/v2bUZLS4vZtGkTk5aWxhw9epTR1dVljhw5wnZprJo9ezbTuXNn5ty5c0x6ejpz+vRpxszMjPnPf/6jkuNRSKjITz/9xNjY2DACgYBxdXVlQkND2S6JVZCxxu7BgwfZLk3tUEj87ezZs4yTkxMjFAoZBwcHZs+ePWyXxLrS0lJm2bJlTNeuXRltbW3G3t6eWbNmDSMSiVRyPBonQQghRCbqkyCEECIThQQhhBCZKCQIIYTIRCFBCCFEJgoJQgghMlFIEEIIkYlCghBCiEwUEoQQQmSikCDtAofDwZkzZwAAGRkZ4HA4iI2Nlbn99evXweFwUFxcDAAIDAxUuxXR5Pk55LFu3Tr069dPKTWRtodCgmi8/Px8LFq0CF27doVQKESnTp0wevRoRERENLm9tbU1cnNzFVrLYtq0adJFXtRFS34OQhRFU4UTjTdlyhTU1NTg559/hr29PZ4+fYqQkBA8f/68ye15PB46deqk0DF0dHSgo6OjjHKVpiU/ByGKojMJotGKi4tx8+ZNfP311xg+fDhsbGzg4eGB1atXY9y4cU3u09RlmgsXLqBnz57Q0dHB8OHDkZGR0WCfly831V+iOXz4MGxtbWFkZITp06ejrKxMuk1ZWRnee+896OnpwdLSEj/88AN8fHzg6+vbZF0lJSXg8XiIjo4GUDe9uomJCQYMGCDd5vjx47C0tGzy56i/RBYSEgJ3d3fo6upi0KBBjabb3rJlCywsLGBgYID58+ejqqqqwesSiQQbNmxAly5dIBQK0a9fP1y8eFH6+pQpU/DJJ59In/v6+oLD4eD+/fsAgNraWhgYGODSpUtN/pxEs1BIEI2mr68PfX19nDlzBiKRqEXvkZWVhbfffhtjx45FbGwsFixYgFWrVr1yv4cPH+LMmTM4d+4czp07h9DQUGzZskX6up+fH/78808EBQUhODgYYWFhuHv3rsz3MzIyQr9+/XD9+nUAQHx8vPS/paWlAOqCYNiwYc3WtWbNGmzduhVRUVHQ0tLCvHnzpK/98ssvWLt2LTZt2oSoqChYWlpi586dDfbfvn07tm7diu+++w7x8fEYPXo0Jk6ciLS0NACAj4+PtEYACA0NhZmZGUJDQwEAd+7cQVVVFQYPHvyKT5BoBJXMLUtIK/rtt9+YDh06MNra2sygQYOY1atXM3FxcQ22AcD8/vvvDMMwTHp6OgOAiYmJYRiGYVavXs04OjoyEolEuv3KlSsZAExRURHDMAxz8OBBxsjISPr62rVrGV1dXaa0tFTatmLFCsbT05NhmLrpnPl8PvPrr79KXy8uLmZ0dXWbnQbcz8+PGT9+PMMwDLNt2zbmnXfeYVxdXZnz588zDMMwPXv2ZAICApr8Oa5du8YAYK5cuSJ9v/PnzzMAmBcvXjAMwzBeXl7M4sWLGxzT09OTcXFxkT63srJiNm3a1GCbAQMGMB999BHDMAwTHx/PcDgc5tmzZ8zz588ZPp/PbNy4kXn33XcZhmGYzZs3Sz8HovnoTIJovClTpiAnJwdBQUEYPXo0rl+/DldXVwQGBsq1f1JSEgYOHNhgDXIvL69X7mdrawsDAwPpc0tLS+Tn5wMAHj16hJqaGnh4eEhfNzIyQq9evZp9Tx8fH4SFhUEikSA0NBQ+Pj7w8fFBaGgo8vLykJqa+sozib59+zaoCYC0rqSkpEY/2z+fl5aWIicnp9FZwODBg5GUlAQAcHJygqmpKUJDQxEWFgYXFxdMnDhReiYhz9kO0RwUEqRN0NbWxsiRI/Hll18iPDwcc+bMwdq1a+Xal2nhkip8Pr/Bcw6HI11Csv49/xk88hxr6NChKCsrw927dxEWFgYfHx8MGzYMoaGhuHbtGszNzeHo6Ch3XfXHV3Rpy6bqrm/jcDgYOnQorl+/Lg0yJycniMViJCQkIDw8HD4+Pgodj6gvCgnSJvXu3RsVFRVybxsZGdmg7eXniurWrRv4fD5u374tbSstLZVe15elvl9ix44d4HA46N27N7y9vRETE4Nz58699l/ojo6Ozf6shoaGsLKyws2bNxtsEx4e3iCc6vslrl+/Dh8fH3A4HHh7e+O7777DixcvqD+iDaGQIBqtsLAQI0aMwJEjRxAfH4/09HT8+uuv+Oabb/Cvf/1LrvdYvHgxHj58CD8/P6SkpODYsWNyX6qSxcDAALNnz8aKFStw7do13L9/H/PmzQOXy230V/rLfHx8cOTIEQwbNgwcDgcdOnRA7969cfLkydf+C33ZsmU4cOAADhw4gNTUVKxdu1Z6V1K9FStW4Ouvv8bJkyeRkpKCVatWITY2FsuWLWtQ4/3795GQkABvb29p29GjR+Hq6gpDQ8PXqpOoDwoJotH09fXh6emJH374AUOHDoWTkxO++OILLFy4EDt27JDrPbp27YpTp07h7NmzcHFxwa5du7B58+bXru3777+Hl5cXxo8fjzfffBODBw+Go6MjtLW1m91v+PDhEIvFDQJh2LBhEIvFr30mMW3aNHz55ZdYuXIl3Nzc8PjxY3z44YcNtlm6dCmWL1+O5cuXw9nZGRcvXkRQUBB69Ogh3cbJyQlmZmZwcXGRBoKyaiTqhda4JqSVVFRUoHPnzti6dSvmz5/PdjmEyIVGXBOiIjExMUhOToaHhwdKSkqwYcMGAJD7Mhgh6oBCghAV+u6775CSkgKBQAA3NzeEhYXBzMyM7bIIkRtdbiKEECITdVwTQgiRiUKCEEKITBQShBBCZKKQIIQQIhOFBCGEEJkoJAghhMhEIUEIIUQmCglCCCEy/T8fJb5dseU4pAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAADdCAYAAABOtY7oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzc0lEQVR4nO3deVgT1/oH8G8SkrCDgCAosriBgiggiIqirVrXq7VVr627VltbpfjzqrWtS1XsYqu9Vtyl7rbVenGpiqiIBVSQTVlVEGQRQXYkQDK/PyhpEYIJJkwC7+d58tSczGRecrn5MnPmnMNhGIYBIYQQ0gQu2wUQQghRXxQShBBCZKKQIIQQIhOFBCGEEJkoJAghhMhEIUEIIUQmCglCCCEyUUgQQgiRiUKCEEKITBQShBBCZNK4kNi5cyfs7Oygra0NNzc3hIWFybXfn3/+CS0tLfTr10+1BRJCSBuiUSFx8uRJ+Pr6Ys2aNYiJiYG3tzfGjBmDzMzMZvcrKSnBrFmz8MYbb7RSpYQQ0jZwNGmCP09PT7i6uiIgIEDa5ujoiEmTJsHf31/mftOnT0ePHj3A4/Fw5swZxMbGyn1MiUSCnJwcGBgYgMPhvE75hBCiFhiGQVlZGaysrMDlNn+uoNVKNb226upqREdHY9WqVQ3aR40ahfDwcJn7HTx4EA8fPsSRI0ewcePGVx5HJBJBJBJJn2dnZ6N3794tL5wQQtRUVlYWunTp0uw2GhMSBQUFEIvFsLCwaNBuYWGBvLy8JvdJS0vDqlWrEBYWBi0t+X5Uf39/rF+/vlF7VlYWDA0NFS+cEELUTGlpKaytrWFgYPDKbTUmJOq9fMmHYZgmLwOJxWLMmDED69evR8+ePeV+/9WrV8PPz0/6vP7DNDQ0pJAghLQp8lxC15iQMDMzA4/Ha3TWkJ+f3+jsAgDKysoQFRWFmJgYfPzxxwDq+hcYhoGWlhYuX76MESNGNNpPKBRCKBSq5ocghBANozF3NwkEAri5uSE4OLhBe3BwMAYNGtRoe0NDQyQkJCA2Nlb6WLx4MXr16oXY2Fh4enq2VumEEKKxNOZMAgD8/Pwwc+ZMuLu7w8vLC3v27EFmZiYWL14MoO5SUXZ2Ng4dOgQulwsnJ6cG+5ubm0NbW7tRuypcSMhFB10BBtqb0F1RhBCNpVEhMW3aNBQWFmLDhg3Izc2Fk5MTLly4ABsbGwBAbm7uK8dMtAZRrRhrg+7jWZkIfawMscDbDuOcrSDQ0pgTN0IIAaBh4yTYUFpaCiMjI5SUlMjdcV1SWYNvLyfjt+gnqKqRAAAsDIWYPcgWMzy6wlhXoMqSCSGkWYp8r1FIvEJLQqJeUUU1jt3OxM/hGcgvqxt7ocPn4R23Lpg3xA52ZnqqKJkQQppFIaFErxMS9aprJTgXn4N9YelIzC0FAHA4wBsOFljgbQdPO+q3IIS0HgoJJVJGSNRjGAYRjwqxPywdIcn50nanzoZYMMQeY50tqd+CEKJyFBJKpMyQ+KeHz8px4GY6Tt39u9+ik6E2Zg2yoX4LQohKUUgokapCol59v0VgeAae/aPf4l33Lpg7mPotCCHKRyGhRKoOiXqiWjHOxeVi3810JP2j3+JNRwssGGIHD+q3IIQoCYWEErVWSNRjGAYRDwux72Y6rjbRbzGuryX4POq3IIS0HIWEErV2SPzTg/xyHPyzcb9F/XgLI11+q9ZDCGkbKCSUiM2QqPe8ohrHbj3GzxGPG/RbTP2r38KW+i0IIQqgkFAidQiJeqJaMc7G5WJf2CMk55UBoH4LQojiKCSUSJ1Cop6sfgvnzkZY4G2Hsc7Ub0EIkY1CQonUMST+6UF+OQ78mY5T0U8gqv2732LOYFv8ewD1WxBCGqOQUCJ1D4l6TfVb6Ap4eNeN+i0IIQ1RSCiRpoREPVn9FqN6W+CrfznB3FCb5QoJIWyjkFAiTQuJegzDIPxhIfaFPcK1lGcAAFtTXRxZ4IkuHXRZro4QwiZFvteod7ON4nA4GNzdDAfneuCS71BYm+ggo7ASU3dFIL2ggu3yCCEagkKiHejVyQC/LPKCfUc95JRU4d1dEUj561IUIYQ0h0KinbA00sEvi7zg0MkABeUiTNsTgYQnJWyXRQhRcxQS7YiZvhAnPhgIF2tjFFfWYMbeSNzJeM52WYQQNUYh0c4Y6wpwdIEnPO1MUCaqxaz9t3EzrYDtsgghaopCoh3SF2ohcK4HhvXsiBc1YswLvIPgxKdsl0UIUUMUEu2UjoCHPbPc8FafTqgWS7D4SDSC4nLYLosQomYoJNoxoRYPO2b0x+T+nSGWMFh2IgYn72SyXRYhRI1QSLRzWjwutr7rghmeXcEwwMpTCTj4ZzrbZRFC1ASFBAGXy8GmSU5Y6G0HAFh/NhE/XXvAclWEEHWgpegOFRUV2LJlC0JCQpCfnw+JRNLg9UePHimtONJ6OBwOPhvrCD2hFrZdScO3l1JQIarFitG9aI0KQtoxhUNiwYIFCA0NxcyZM2FpadnqXyA7d+7Et99+i9zcXPTp0wfbtm2Dt7d3k9uePn0aAQEBiI2NhUgkQp8+fbBu3TqMHj26VWvWFBwOB75v9oSugIfNF5Kx8/pDVFaL8eX43uByKSgIaY8UDok//vgD58+fx+DBg1VRT7NOnjwJX19f7Ny5E4MHD8bu3bsxZswYJCYmomvXro22v3HjBkaOHInNmzfD2NgYBw8exIQJE3Dr1i3079+/1evXFB8M7QYdgRa+OHMPgeEZqBDVYsuUvuBRUBDS7ig8C6ydnR0uXLgAR0dHVdUkk6enJ1xdXREQECBtc3R0xKRJk+Dv7y/Xe/Tp0wfTpk3Dl19+Kdf2mjoLrDKcin6CFb/FQcIA4/ta4odp/WjFO0LaAJXOAvvVV1/hyy+/RGVlZYsLbInq6mpER0dj1KhRDdpHjRqF8PBwud5DIpGgrKwMJiYmMrcRiUQoLS1t8Givprh1wU8zXMHncXAuPhcfHolGVY2Y7bIIIa1IrstN/fv3b9D38ODBA1hYWMDW1hZ8fsPlMe/evavcCv9SUFAAsVgMCwuLBu0WFhbIy8uT6z22bt2KiooKTJ06VeY2/v7+WL9+/WvV2paMcbbEHgEPiw9H40pSPub/fAd7Z7lDV6DwlUpCiAaS6//pkyZNUnEZ8nu5o5xhGLk6z48fP45169bhf//7H8zNzWVut3r1avj5+Umfl5aWwtrauuUFtwHDe5kjcK4H5v98B38+KMSs/bdxYO4AGGrT+tmEtHVyhcTatWtVXccrmZmZgcfjNTpryM/Pb3R28bKTJ09i/vz5+PXXX/Hmm282u61QKIRQKHztetsar26mOLLAE3MO3EbU4yLM2BuJQ/M8YaInYLs0QogKKdwnYW9vj8LCwkbtxcXFsLe3V0pRTREIBHBzc0NwcHCD9uDgYAwaNEjmfsePH8ecOXNw7NgxjBs3TmX1tQeuXTvg+AcDYaonwL3sUkzfE4H80iq2yyKEqJDCIZGRkQGxuHHnpUgkwpMnT5RSlCx+fn7Yt28fDhw4gKSkJHz66afIzMzE4sWLAdRdKpo1a5Z0++PHj2PWrFnYunUrBg4ciLy8POTl5aGkhBbbaak+VkY4ucgLFoZCpD4tx9TdEXhS1Lo3MRBCWo/cvY9BQUHSf1+6dAlGRkbS52KxGCEhIbCzs1NudS+ZNm0aCgsLsWHDBuTm5sLJyQkXLlyAjY0NACA3NxeZmX9PULd7927U1tZiyZIlWLJkibR99uzZCAwMVGmtbVl3c338umgQZuyLlK6bfXThQNiZ6bFdGiFEyeQeJ8Hl1p10cDgcvLwLn8+Hra0ttm7divHjxyu/Sha153ESr5Jb8gLv7buFR88qYKYvxNEFnujVyYDtsgghr6CScRISiQQSiQRdu3aVztlU/xCJREhJSWlzAUGa19S62fFPitkuixCiRAr3SaSnp8PMzEwVtRAN1Hjd7Fu0bjYhbYjC03L8+OOPTb8RhwNtbW10794dQ4cOBY/HU0qBbKPLTfIpF9VifuAd3Ep/Dm0+F3tnucO7R0e2yyKENEGR77UWzd307NkzVFZWokOHDmAYBsXFxdDV1YW+vj7y8/Nhb2+Pa9eutYlBaBQS8ntRLcbiI9EITX0GAY+Ln95zxcjezY9hIYS0PpXO3bR582YMGDAAaWlpKCwsxPPnz5GamgpPT09s374dmZmZ6NSpEz799NMW/wBEM9Wvmz26jwWtm01IG6HwmUS3bt1w6tQp9OvXr0F7TEwMpkyZgkePHiE8PBxTpkxBbm6uMmtlBZ1JKK5WLMGK3+Lxe0w2OBxgy9vOmDag8VTuhBB2qPRMIjc3F7W1tY3aa2trpVNmWFlZoaysTNG3Jm1EU+tmH7hJ62YTookUDonhw4dj0aJFiImJkbbFxMTgww8/xIgRIwAACQkJKh9YR9Rb/brZC4bU/R5sOEfrZhOiiRQOif3798PExARubm7SyfDc3d1hYmKC/fv3AwD09fWxdetWpRdLNAuHw8GacY5Y9kYPAMC3l1LwzcXkRoMxCSHqS+E+iXrJyclITU0FwzBwcHBAr169lF2bWqA+CeXYc+MhNl9IBgDMGWRL62YTwiJFvtdavHKMg4MDHBwcWro7aWdeXjdbVCvB5slOcq0FQghhj8IhIRaLERgYiJCQEOn0HP909epVpRVH2paZA22gy+fh/36Lw/HbmRDwOFg3sQ8FBSFqTOGQWLZsGQIDAzFu3Dg4OdFfgkQxU9y6QMIwWPFbPH6OeAyBFhefjXWk3yNC1JTCIXHixAn88ssvGDt2rCrqIe3Au+7WqBEz+Oz3BOwNS4dAi4v/G9WLgoIQNaTw3U0CgQDdu3dXRS2kHZnh2RXrJ/YBAPx07SF+DKHbYwlRRwqHxPLly7F9+3a6jZG8ttmDbLFmrCMA4IcrqQi4/pDligghL1P4ctPNmzdx7do1/PHHH+jTpw/4fH6D10+fPq204kjbt3CoParFEnx7KQVfX0wGn8fBAm/VrZVOCFGMwiFhbGyMyZMnq6IW0k4tGd4d1bUSbA9Jw8bzSRBqcTHTy5btsgghaEFIHDx4UBV1kHbO980eqBZLEHD9Ib74333weVxM96BJAQlhm8J9EkDdZH5XrlzB7t27pRP55eTkoLy8XKnFkfaDw+HgP6N7Yf5fcz2t/j0Bp6KfsFwVIUThM4nHjx/jrbfeQmZmJkQiEUaOHAkDAwN88803qKqqwq5du1RRJ2kHOBwOPh/niBqxBIciHmPFb3EQaHExwcWK7dIIabcUPpNYtmwZ3N3dUVRUBB0dHWn75MmTERISotTiSPvD4XCwbkIfTB9gDQkD+J6MxcV7mr8uCSGaSuGQuHnzJj7//HMIBIIG7TY2NsjOzlZaYaT94nI52DzZGW+7doZYwuCT4zEISXrKdlmEtEsKh4REIoFYLG7U/uTJExgYGCilKEK4XA6+fccFE1ysUCNm8OGRuwhNfcZ2WYS0OwqHxMiRI7Ft2zbpcw6Hg/Lycqxdu5am6iBKxeNy8P1UF7zVpxOqxRJ8cCgK4Q8K2C6LkHZF4fUksrOzMWLECPB4PKSlpcHd3R1paWkwMzPDjRs3YG5urqpaWUHrSbCvulaCj45G40pSPnT4PPw8zwMediZsl0WIxlLke61Fiw69ePECJ06cQHR0NCQSCVxdXfHee+816MhuKygk1IOoVoyFh6JxI/UZ9AQ8HF7gCdeuHdguixCNpMj3mkKXm2pqamBvb4/09HTMnTsXO3bswM6dO7FgwYJWC4idO3fCzs4O2tracHNzQ1hYWLPbh4aGws3NDdra2rC3t6dbdDWUUIuHPTPdMKibKSqqxZh94DYSnpSwXRYhbZ5CIcHn8yESiVib0vnkyZPw9fXFmjVrEBMTA29vb4wZMwaZmZlNbp+eno6xY8fC29sbMTEx+Oyzz7B06VKcOnWqlSsnyqDN52HfbHd42JqgrKoW7++/hcScUrbLIqRNU/hy05YtW5CcnIx9+/ZBS6vFq5+2iKenJ1xdXREQECBtc3R0xKRJk+Dv799o+5UrVyIoKAhJSUnStsWLFyMuLg4RERFyHbP+tCwnJ4cuN6mJclEtFvx8B3FZJeigx8fPcz3Qw4LurCNEXqWlpbCyslLNGte3bt1CSEgILl++DGdnZ+jp6TV4XVWzwFZXVyM6OhqrVq1q0D5q1CiEh4c3uU9ERARGjRrVoG306NHYv38/ampqGs1gCwAikQgikUj6vLS07i9VKysa9auOsgD038h2FYS0XS2aBXbKlCmqqKVZBQUFEIvFsLCwaNBuYWGBvLy8JvfJy8trcvva2loUFBTA0tKy0T7+/v5Yv3698gonhBANpnGzwL7cH8IwTLN9JE1t31R7vdWrV8PPz0/6vLS0FNbW1nS5SU0Vlosw9+BtpOVXwMpYG4fmeaBzB122yyJErdVfbpKHwiExYsQInD59GsbGxo0OOmnSJFy9elXRt5SLmZkZeDxeo7OG/Pz8RmcL9Tp16tTk9lpaWjA1NW1yH6FQCKFQ2KhdT0+v0aU1wj49PT0cX+KD6bsj8aigAvOPJeCXRV6wNGp7t2MToixNzZohi8Ijrq9fv47q6upG7VVVVa+8HfV1CAQCuLm5ITg4uEF7cHAwBg0a1OQ+Xl5ejba/fPky3N3dm+yPIJrJ3EAbxxYOhI2pLrKev8CMvbeQX1rFdlmEtAlyn0nEx8dL/52YmNjgL3SxWIyLFy+ic+fOyq3uJX5+fpg5cybc3d3h5eWFPXv2IDMzE4sXLwZQd6koOzsbhw4dAlB3J9OOHTvg5+eHhQsXIiIiAvv378fx48dVWidpfZ2M6oJi6q4IpBdUYMa+WzjxwUCY6Tc+KySEKICRE4fDYbhcLsPlchkOh9Pooaury+zfv1/et2uxn376ibGxsWEEAgHj6urKhIaGSl+bPXs2M2zYsAbbX79+nenfvz8jEAgYW1tbJiAgQKHjlZSUMACYkpISZZRPVOxxQQUzcPMVxmblOWb0D6HM83IR2yURonYU+V6Te5zE48ePwTAM7O3tcfv2bXTs2FH6mkAggLm5OXg8noqijD00LYfmSS+owNTdEXhWJoJTZ0McXTAQRjp0eZGQeiqfu6k9oZDQTGlPyzB9TyQKK6rhYm2MI/M9YKBNQUEIoKK5mx48eIDo6OgGbSEhIRg+fDg8PDywefPmllVLiAr0sDDAkQWeMNblIy6rGHMP3kGFqJbtsgjROHKHxIoVK3DmzBnp8/T0dEyYMAECgQBeXl7w9/dvsM4EIWxztDTEkfmeMNTWQtTjIsz/+Q5eVMt/6x8hRIGQiIqKarCo0NGjR9GzZ09cunQJ27dvx7Zt2xAYGKiKGglpMafORjg03xP6Qi1EPnqODw5HoaqGgoIQeckdEgUFBejSpYv0+bVr1zBhwgTpcx8fH2RkZCi1OEKUoZ+1MX6eNwC6Ah7C0grw0dG7qK6VsF0WIRpB7pAwMTFBbm4ugLp1rqOiouDp6Sl9vbq6GtQHTtSVm40JDswZAG0+F1eT8/HxsbuoEVNQEPIqcofEsGHD8NVXXyErKwvbtm2DRCLB8OHDpa8nJibC1tZWFTUSohQD7U2xb9YACLS4uJz4FL4nY1FLQUFIs+Qecb1p0yaMHDkStra24HK5+PHHHxvMZXT48GGMGDFCJUUSoixDephh9/tu+OBwFM7H50LA4+K7d13A47KzkBYh6k6hcRI1NTVITExEx44dG80gGBcXhy5dusicOE9T0TiJtuny/Tx8dPQuaiUM3nbtjG+m9IUWT+GpzAjRSDSYTokoJNqu8/G5WHoiBmIJgzcczLFjhit0BG1v1gBCXqaSwXSEtDXj+lpi1/tuEGpxEZKcj5n7b6G4svEMx4S0ZxQSpF0b2dsCRxb8PeBu6u4I5Ja8YLssQtQGhQRp9wbYmuDXxYNgYShE6tNyTNkZjgf5ZWyXRYhaUDgkmlpwqF5BQcFrFUMIW3p1MsCpDwfBvqMeckqq8M6uCNzNLGK7LEJYp3BITJ06FRJJ43vLnz59Ch8fH2XURAgrunTQxW+LB8HF2hjFlTWYsTcS15Lz2S6LEFYpHBK5ubmYP39+g7a8vDz4+PjAwcFBaYURwgYTPQGOL/TEsJ4dUVUjwYJDUTgV/YTtsghhjcIhceHCBdy+fRuffvopACA7OxvDhg2Ds7MzfvnlF6UXSEhr0xVoYd9sd0zu3xliCYPlv8Zhz42HbJdFCCvkHnFdz9TUFJcuXcKQIUMAAOfPn4erqyuOHj0KLpf6wUnbwOdxsfVdF5jpC7A3LB2bLyTjWZkIq8c4gkujs0k70qJv9S5duiA4OBjHjh2Dh4cHjh8/3iaXLiXtG5fLwZpxvfHZ2LrLqHvD0vF/v8bRxICkXZFrxHWHDh3A4TT+66myshJCobBBQDx//ly5FbKMRlwTADgV/QT/ORUPsYSBT6+O2PmeK3QFCp+IE6IWFPlek+u3nFacI+3dFLcuMNET4MOj0bie8gwz9t7CwTkD0EFPwHZphKgUzd30CnQmQf7pbmYR5gXeQXFlDbp11MOh+Z7obKzDdlmEKETlE/xJJBI8ePAA+fn5jcZMDB06VNG3U2sUEuRlD/LLMGv/beSUVKGToTZ+nueBXp0M2C6LELmpNCQiIyMxY8YMPH78uNFKdBwOB2Jx21o/mEKCNCWn+AVmH7iNtPxyGGprYf+cARhga8J2WYTIRaWzwC5evBju7u64d+8enj9/jqKiIumjrXVaEyKLlbEOfl3sBTebDiitqsX7+27hSuJTtssiROkUPpPQ09NDXFwcunfvrqqa1AqdSZDmvKgWY8mxu7ianA8elwP/yc6YOsCa7bIIaZZKzyQ8PT3x4MGDFhfXUkVFRZg5cyaMjIxgZGSEmTNnori4WOb2NTU1WLlyJZydnaGnpwcrKyvMmjULOTk5rVc0afN0BDzsnumGd9y6QCxh8J9T8fjp2oNGl2IJ0VQK3+j9ySefYPny5cjLy4OzszP4fH6D1/v27au04v5pxowZePLkCS5evAgA+OCDDzBz5kycPXu2ye0rKytx9+5dfPHFF3BxcUFRURF8fX0xceJEREVFqaRG0j7xeVx8+05fmOkLsSv0Ib69lIKCchG+GNebRmcTjafw5aampt7gcDhgGEZlHddJSUno3bs3IiMj4enpCaCuA93LywvJycno1auXXO9z584deHh44PHjx+jatatc+9DlJqKIfWGPsPF8EgBgoosVvnvXBQItmq6GKJ9YwuBwRAYqqsVYMlyxy/9KH0z3T+np6Yru8toiIiJgZGQkDQgAGDhwIIyMjBAeHi53SJSUlIDD4cDY2FjmNiKRCCKRSPq8tLS0xXWT9meBtz3M9IX4v1/jEBSXg6LKagS87wZ9IY3OJspzL7sEn/2egPgnJeDzOBjj1An2HfVVciyFf3NtbGxUUUez8vLyYG5u3qjd3NwceXl5cr1HVVUVVq1ahRkzZjSbnP7+/li/fn2LayVkUv/O6KAnwIdHohGWVoAZeyNxcM4AmOoL2S6NaLhyUS2+v5yKwPB0SBjAQFsLK99ygK2pnsqOKVdIBAUFYcyYMeDz+QgKCmp224kTJ8p98HXr1r3yC/nOnTsA0OTcUfWXuF6lpqYG06dPh0Qiwc6dO5vddvXq1fDz85M+Ly0thbU13a1CFDOsZ0ccWzgQ8wLvIP5JCd7ZFYFD8zxgbaLLdmlEQ126n4d1QfeRW1IFAJjgYoUvxjvC3EBbpceVq0+Cy+VK/5pvbjpwRfskCgoKXrnkqa2tLY4dOwY/P79GdzMZGxvjhx9+wNy5c2XuX1NTg6lTp+LRo0e4evUqTE1N5a4PoD4J8noePivHrP23kV38Ah0NhPh5rgd6W9HvEZFfdvELrP3ffVxJqhuHY22ig42TnDGsZ8cWv6fKp+VobfUd17du3YKHhwcA4NatWxg4cGCzHdf1AZGWloZr166hY0fFP1QKCfK6npZWYfaB20jOK4OBUAt7Z7tjoL1if6yQ9qdWLEFgeAa+D05FZbUYWlwOPhhqj09G9ICO4PWWZlDpOAlZsrKyMG/ePGW9XQOOjo546623sHDhQkRGRiIyMhILFy7E+PHjGwSEg4MDfv/9dwBAbW0t3nnnHURFReHo0aMQi8XIy8tDXl4eqqurVVInIU2xMNTGyUVe8LA1QZmoFrMO3MbFe/L1pZH2KTarGBN3/ImN55NQWS2Gu00HXFjmjf+85fDaAaEopZ1JxMXFwdXVVWVzNz1//hxLly6V9olMnDgRO3bsaHCnEofDwcGDBzFnzhxkZGTAzs6uyfe6du0afHx85DounUkQZamqEeOT4zEITnwKLgfYOMkZMzzluxWbtA+lVTX47lIKDkc+BsMARjp8rB7jgKnu1kodc8PK5SZVhwRbKCSIMtWKJfj8zD2cuJMFAPAb2ROfjOgu1w0YpO1iGAYXEvKw/ux95JfV3YI/uX9nrBnnCDMV3BWn0nEShJCW0+Jx4f+2MzoaCPHfqw/wfXAqCspFWDuhD3g0OrtdynpeiS//dw/XUp4BAOzM9LBxkhMGdzdjubI6FBKEtDIOh4Plo3rBVE+A9ecScSjiMQrLq/H9NBcItWit+PaiRizB/pvp2HYlFVU1Egh4XCz26YaPfLpBm68+vwdyh8Tbb7/d7OvNTbZHCGlszmA7mOoL4fdLLM4n5KKoshq7Z7rBQJv/6p2JRot+XIQ1vycgOa8MAOBpZ4JNk53R3Vw1o6Zfh9whYWRk9MrXZ82a9doFEdKeTHCxQgddARYdjkL4w0JMCQjHuol9MKibelxqIMpVUlmDLReTcfx2JgCggy4fa8b1xhTXzmrbL6UR4yTYRB3XpDUkPCnB3MDbKCivuz37DQdzrB7rgO7mtCxqW8AwDILicvDVuUTp/8bvunXB6rGOMNETtHo9bW4wHZsoJEhreV5Rje1XUnH0ViZqJQx4XA6mD7DGpyN7quQOF9I6Mgoq8MX/7iEsrW52iW4d9bBpsjOrAyopJJSIQoK0tofPyvH1H8m4/NdyqPpCLXzo0w3zh9ipVYcmaV51rQR7bjzEj1cfoLpWAoEWF58M744PhtmzfoMChYQSUUgQtkQ+KsTmC0mIf1ICALA00saK0b0wqV9nWsxIzd16VIg1Z+7hQX45AGBIdzN8NckJdmaqm61VERQSSkQhQdgkkTA4G5+Dby6mILv4BQCgj5Uh1oxzpM5tNVRUUQ3/P5LwS9QTAICZvgCfj+uNf/WzUquOaQoJJaKQIOqgqkaMwPAM/HT1AcpEtQCoc1udMAyD03ezselCEp5X1HVM/9vDGivfcoCxbut3TL8KhYQSUUgQdVJYLsKPIWk4cisT4r86t//tYQ3fN6lzmy0Pn5Xj89/vIeJRIQCgp4U+Nk92hrutCcuVyUYhoUQUEkQdPXxWji1/JCOYOrdZU1UjRsD1hwi4/hDVYgm0+VwsfaMHFgyxV/t1zSkklIhCgqgz6txmR/jDAnz++z08KqgAULcS4Vf/ckJXU81YeZBCQokoJIi6o87t1sEwDGKyinEoPANnYnMAAB0NhFg7oTfGOVuqVcf0q1BIKBGFBNEUVTViHPwzAzuv/d25/aajOVaNoc7t15GSV4aguGwExeUg63ldCHM4wPueNvi/0b1gpKN5c21RSCgRhQTRNNS5/foyCytxNj4HQbE5SHlaJm3XFfAwsrcF5g62Qz9rY/YKfE0UEkpEIUE0FXVuKya/tArn4nMRFJeD2KxiabuAx8WwXh0x0cUKbziaQ1eg+SssUEgoEYUE0XSRjwqx6XwSErKpc/tlJZU1+ONeXTBEPiqE5K9vQy4HGNTNDBNdrDDaqZNGXlJqDoWEElFIkLZAIqmbhfTbS393bjt1NsRnY9tf53ZldS2CE5/ibFwOQlOfoUb891ega1djTHSxwti+ljA30GaxStWikFAiCgnSlrTXzm1RrRg3UgsQFJeDK4lP8aJGLH3NoZMBJvazwoS+VrA20YxbWF8XhYQSUUiQtqiwXITtIWk42oY7t8USBpGPChEUm4M/7uWitKpW+lpXE138q58VJrpYoYdF2w1HWSgklIhCgrRlba1zu34sQ1BsDs4n5OJZmUj6mrmBEOP7WmFiPyu4dDHSqHENykYhoUQUEqQ9eLlz28pIGx8N747u5vow0xfAVE8IIx2+2nZ0J+eVIig2B2fj/x7LAABGOnyMde6ECS5W8LQzBU9N629tFBJKRCFB2oumOrf/icflwERPAFM9Acz0hTD9KzxM9QXSIKn7d91/VX2raGZhpXSQW+rTcml7/ViGiS5W8O7RUe3nUWIDhYQSUUiQ9qZ+WvKrSfkoqBChsLwaJS9qFH4fHT6vLkj0hTDTE0j//XLImOkL0EFPAD7v1V/m+aVVOPvXWIa4Nj6WQZUoJJSIQoKQuqU4iyqrUVBeFxqFf4VHQXk1CstFKKyo+29Bed02olqJwscw1uXDVO+vUPnHmYmpvhAMw+DivTxEPCoE09RYhj6dYKTbtsYyqJIi32sUt4SQVxJocWFhqA0Lw1ePHWAYBpXV4roQ+StM6oPkWdnfgVIfNs8rqiFhgOLKGhRX1uDhs4pm37//X2MZxrXxsQzqQmNCoqioCEuXLkVQUBAAYOLEifjvf/8LY2NjufZftGgR9uzZgx9++AG+vr6qK5SQdo7D4UBPqAU9oZZcU2eLJQyKK6tRWPGPM5W/QqX+TKWyWgyvbqaY6NJ+xjKoC40JiRkzZuDJkye4ePEiAOCDDz7AzJkzcfbs2Vfue+bMGdy6dQtWVlaqLpMQoiAel1PXV6EvRM92OGZB3WlESCQlJeHixYuIjIyEp6cnAGDv3r3w8vJCSkoKevXqJXPf7OxsfPzxx7h06RLGjRvXWiUTQkiboBH3hkVERMDIyEgaEAAwcOBAGBkZITw8XOZ+EokEM2fOxIoVK9CnTx+5jiUSiVBaWtrgQQgh7ZVGhEReXh7Mzc0btZubmyMvL0/mfl9//TW0tLSwdOlSuY/l7+8PIyMj6cPa2rpFNRNCSFvAakisW7cOHA6n2UdUVBQANDmEnmEYmUPro6OjsX37dgQGBio0/H716tUoKSmRPrKyslr2wxFCSBvAap/Exx9/jOnTpze7ja2tLeLj4/H06dNGrz179gwWFhZN7hcWFob8/Hx07dpV2iYWi7F8+XJs27YNGRkZTe4nFAohFP49wVn9MBK67EQIaSvqv8/kGibHaIDExEQGAHPr1i1pW2RkJAOASU5ObnKfgoICJiEhocHDysqKWblypcx9mpKVlcUAoAc96EGPNvfIysp65XegRtzd5OjoiLfeegsLFy7E7t27AdTdAjt+/PgGdzY5ODjA398fkydPhqmpKUxNTRu8D5/PR6dOnZq9G+plVlZWyMrKgoGBgUKXrUpLS2FtbY2srCwaqf0S+myaRp9L0+hzka2lnw3DMCgrK5NrWIBGhAQAHD16FEuXLsWoUaMA1A2m27FjR4NtUlJSUFJSotTjcrlcdOnSpcX7Gxoa0i+2DPTZNI0+l6bR5yJbSz4bIyMjubbTmJAwMTHBkSNHmt2GecX1NVn9EIQQQpqmEbfAEkIIYQeFhIoIhUKsXbu2wZ1SpA59Nk2jz6Vp9LnI1hqfDU0VTgghRCY6kyCEECIThQQhhBCZKCQIIYTIRCFBCCFEJgoJFdm5cyfs7Oygra0NNzc3hIWFsV0Sq/z9/TFgwAAYGBjA3NwckyZNQkpKCttlqR1/f39wOBxaPfEv2dnZeP/992FqagpdXV3069cP0dHRbJfFqtraWnz++eews7ODjo4O7O3tsWHDBkgkiq8rLg8KCRU4efIkfH19sWbNGsTExMDb2xtjxoxBZmYm26WxJjQ0FEuWLEFkZCSCg4NRW1uLUaNGoaKi+fWM25M7d+5gz5496Nu3L9ulqIWioiIMHjwYfD4ff/zxBxITE7F161a5lyxuq77++mvs2rULO3bsQFJSEr755ht8++23+O9//6uS49EtsCrg6ekJV1dXBAQESNscHR0xadIk+Pv7s1iZ+nj27BnMzc0RGhqKoUOHsl0O68rLy+Hq6oqdO3di48aN6NevH7Zt28Z2WaxatWoV/vzzz3Z/Fv6y8ePHw8LCAvv375e2TZkyBbq6ujh8+LDSj0dnEkpWXV2N6Oho6RxT9UaNGtXsKnrtTf0cWyYmJixXoh6WLFmCcePG4c0332S7FLURFBQEd3d3vPvuuzA3N0f//v2xd+9etsti3ZAhQxASEoLU1FQAQFxcHG7evImxY8eq5HgaM3eTpigoKIBYLG60zoWFhUWzq+i1JwzDwM/PD0OGDIGTkxPb5bDuxIkTuHv3Lu7cucN2KWrl0aNHCAgIgJ+fHz777DPcvn0bS5cuhVAoxKxZs9gujzUrV65ESUkJHBwcwOPxIBaLsWnTJvz73/9WyfEoJFTk5WnFmWZW0WtvPv74Y8THx+PmzZtsl8K6rKwsLFu2DJcvX4a2tjbb5agViUQCd3d3bN68GQDQv39/3L9/HwEBAe06JE6ePIkjR47g2LFj6NOnD2JjY+Hr6wsrKyvMnj1b6cejkFAyMzMz8Hi8RmcN+fn5MlfRa08++eQTBAUF4caNG681BXtbER0djfz8fLi5uUnbxGIxbty4gR07dkAkEoHH47FYIXssLS3Ru3fvBm2Ojo44deoUSxWphxUrVmDVqlXSVT2dnZ3x+PFj+Pv7qyQkqE9CyQQCAdzc3BAcHNygPTg4GIMGDWKpKvYxDIOPP/4Yp0+fxtWrV2FnZ8d2SWrhjTfeQEJCAmJjY6UPd3d3vPfee4iNjW23AQEAgwcPbnSbdGpqKmxsbFiqSD1UVlaCy2341c3j8VR2C6xGLF+qaU6cOMHw+Xxm//79TGJiIuPr68vo6ekxGRkZbJfGmg8//JAxMjJirl+/zuTm5koflZWVbJemdoYNG8YsW7aM7TJYd/v2bUZLS4vZtGkTk5aWxhw9epTR1dVljhw5wnZprJo9ezbTuXNn5ty5c0x6ejpz+vRpxszMjPnPf/6jkuNRSKjITz/9xNjY2DACgYBxdXVlQkND2S6JVZCxxu7BgwfZLk3tUEj87ezZs4yTkxMjFAoZBwcHZs+ePWyXxLrS0lJm2bJlTNeuXRltbW3G3t6eWbNmDSMSiVRyPBonQQghRCbqkyCEECIThQQhhBCZKCQIIYTIRCFBCCFEJgoJQgghMlFIEEIIkYlCghBCiEwUEoQQQmSikCDtAofDwZkzZwAAGRkZ4HA4iI2Nlbn99evXweFwUFxcDAAIDAxUuxXR5Pk55LFu3Tr069dPKTWRtodCgmi8/Px8LFq0CF27doVQKESnTp0wevRoRERENLm9tbU1cnNzFVrLYtq0adJFXtRFS34OQhRFU4UTjTdlyhTU1NTg559/hr29PZ4+fYqQkBA8f/68ye15PB46deqk0DF0dHSgo6OjjHKVpiU/ByGKojMJotGKi4tx8+ZNfP311xg+fDhsbGzg4eGB1atXY9y4cU3u09RlmgsXLqBnz57Q0dHB8OHDkZGR0WCfly831V+iOXz4MGxtbWFkZITp06ejrKxMuk1ZWRnee+896OnpwdLSEj/88AN8fHzg6+vbZF0lJSXg8XiIjo4GUDe9uomJCQYMGCDd5vjx47C0tGzy56i/RBYSEgJ3d3fo6upi0KBBjabb3rJlCywsLGBgYID58+ejqqqqwesSiQQbNmxAly5dIBQK0a9fP1y8eFH6+pQpU/DJJ59In/v6+oLD4eD+/fsAgNraWhgYGODSpUtN/pxEs1BIEI2mr68PfX19nDlzBiKRqEXvkZWVhbfffhtjx45FbGwsFixYgFWrVr1yv4cPH+LMmTM4d+4czp07h9DQUGzZskX6up+fH/78808EBQUhODgYYWFhuHv3rsz3MzIyQr9+/XD9+nUAQHx8vPS/paWlAOqCYNiwYc3WtWbNGmzduhVRUVHQ0tLCvHnzpK/98ssvWLt2LTZt2oSoqChYWlpi586dDfbfvn07tm7diu+++w7x8fEYPXo0Jk6ciLS0NACAj4+PtEYACA0NhZmZGUJDQwEAd+7cQVVVFQYPHvyKT5BoBJXMLUtIK/rtt9+YDh06MNra2sygQYOY1atXM3FxcQ22AcD8/vvvDMMwTHp6OgOAiYmJYRiGYVavXs04OjoyEolEuv3KlSsZAExRURHDMAxz8OBBxsjISPr62rVrGV1dXaa0tFTatmLFCsbT05NhmLrpnPl8PvPrr79KXy8uLmZ0dXWbnQbcz8+PGT9+PMMwDLNt2zbmnXfeYVxdXZnz588zDMMwPXv2ZAICApr8Oa5du8YAYK5cuSJ9v/PnzzMAmBcvXjAMwzBeXl7M4sWLGxzT09OTcXFxkT63srJiNm3a1GCbAQMGMB999BHDMAwTHx/PcDgc5tmzZ8zz588ZPp/PbNy4kXn33XcZhmGYzZs3Sz8HovnoTIJovClTpiAnJwdBQUEYPXo0rl+/DldXVwQGBsq1f1JSEgYOHNhgDXIvL69X7mdrawsDAwPpc0tLS+Tn5wMAHj16hJqaGnh4eEhfNzIyQq9evZp9Tx8fH4SFhUEikSA0NBQ+Pj7w8fFBaGgo8vLykJqa+sozib59+zaoCYC0rqSkpEY/2z+fl5aWIicnp9FZwODBg5GUlAQAcHJygqmpKUJDQxEWFgYXFxdMnDhReiYhz9kO0RwUEqRN0NbWxsiRI/Hll18iPDwcc+bMwdq1a+Xal2nhkip8Pr/Bcw6HI11Csv49/xk88hxr6NChKCsrw927dxEWFgYfHx8MGzYMoaGhuHbtGszNzeHo6Ch3XfXHV3Rpy6bqrm/jcDgYOnQorl+/Lg0yJycniMViJCQkIDw8HD4+Pgodj6gvCgnSJvXu3RsVFRVybxsZGdmg7eXniurWrRv4fD5u374tbSstLZVe15elvl9ix44d4HA46N27N7y9vRETE4Nz58699l/ojo6Ozf6shoaGsLKyws2bNxtsEx4e3iCc6vslrl+/Dh8fH3A4HHh7e+O7777DixcvqD+iDaGQIBqtsLAQI0aMwJEjRxAfH4/09HT8+uuv+Oabb/Cvf/1LrvdYvHgxHj58CD8/P6SkpODYsWNyX6qSxcDAALNnz8aKFStw7do13L9/H/PmzQOXy230V/rLfHx8cOTIEQwbNgwcDgcdOnRA7969cfLkydf+C33ZsmU4cOAADhw4gNTUVKxdu1Z6V1K9FStW4Ouvv8bJkyeRkpKCVatWITY2FsuWLWtQ4/3795GQkABvb29p29GjR+Hq6gpDQ8PXqpOoDwoJotH09fXh6emJH374AUOHDoWTkxO++OILLFy4EDt27JDrPbp27YpTp07h7NmzcHFxwa5du7B58+bXru3777+Hl5cXxo8fjzfffBODBw+Go6MjtLW1m91v+PDhEIvFDQJh2LBhEIvFr30mMW3aNHz55ZdYuXIl3Nzc8PjxY3z44YcNtlm6dCmWL1+O5cuXw9nZGRcvXkRQUBB69Ogh3cbJyQlmZmZwcXGRBoKyaiTqhda4JqSVVFRUoHPnzti6dSvmz5/PdjmEyIVGXBOiIjExMUhOToaHhwdKSkqwYcMGAJD7Mhgh6oBCghAV+u6775CSkgKBQAA3NzeEhYXBzMyM7bIIkRtdbiKEECITdVwTQgiRiUKCEEKITBQShBBCZKKQIIQQIhOFBCGEEJkoJAghhMhEIUEIIUQmCglCCCEy/T8fJb5dseU4pAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -265,7 +267,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1oklEQVR4nOzdd1gU19cH8O8iRSwgKvYudoO9IPausffeS/yZRI3dqNGoscZujMbeTey9dxGs2LBjAQUBpUmHPe8fvDPu7M42WFwWzud55mHnzp27dwu7Z+/coiAiAmOMMcYYs2hW5q4AY4wxxhhLPQ7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYygEwX1BERIiIiwHMuM8YYYywjyXRBXWRkJBwdHREZGWnuqjDGGGOMmUymC+oYY4wxxjIiDuoYY4wxxjIADupMIDIyEjdu3DB3NRhjjDGWiXFQZwIDBw5EvXr1zF0NxhhjjGViHNQZ4P379zqPP336FADw5csXKJXKb1ElxhhjjDEJDur0uHbtGooUKYJLly7pzZszZ0707Nkz7SvFGGOMMaaGgzodXr16hSlTpgAAmjRpYtA5+/btg1KphJ+fHxQKBV68eGGSuiiVSoMCSwA4dOgQHjx4YJL7ZYwxxphl4KBOi+joaLi4uOD69euS9MjISMTExABIDrT++OMPBAUFSfLY2NigWLFiAIATJ04YfJ87d+7EzJkzAQDr169H3bp1xWP//PMPmjRpgtu3b+stp3PnzqhSpQoSExMNvm/GGGOMWTYFZbKlFSIiIuDo6Ijw8HA4ODhozffjjz9izZo1kjQigkKhQKlSpXD06FFUqlRJ7/3Z29vjt99+w+TJk8W0U6dOISYmBp07d5bkVSgUkvsRbo8bNw7Lly8Xz23VqpXO+xTOBYAbN26gbt26ePnyJW7cuIH+/fvrrTNjjDHGLA+31GkREBCg9Zivr6/BlzdjYmIwZcoUPH78GDExMXj69CnatGmDLl26GFwXIaADgKSkJJ15f/75Z8n+vn37AAC1atXCgAEDDL5PxhhjjFkWDupk/Pjjjzhw4IBGumoL2OfPn40qs3LlysiWLRsqVKggpiUkJODx48cAki+3yqlWrZpkXz2o27lzJxYtWoRVq1YBgPhXoFQq8eXLF4SFhQEAzp49q/OS8J07d+Di4oK4uDiNY0SEqKgorecyxhhjzHz48qsM1eDtW3j+/DnKli2rdV/V/PnzMW7cONjZ2eHdu3coXry4eMze3l7s7ycYM2YMvLy84OnpKUnX9rL37t0be/bsga+vL0qWLAkAcHBwwMyZM5E3b14MHjwYISEhyJMnT4oeK2OMMcbShsW01EVGRqJOnTrIkSMHHj16BADYu3cv3Nzc0LRpU/j5+Zm5him3ZcsWyb62gA4Apk6diqxZswJIbulTpR7QAUB8fLxGQGesyMhIzJgxAxcvXgQAhISEpKo8xhhjjJmexQR19vb2OHbsGLp16wYgOaBZunQpLl++jDlz5mDOnDkmuR9/f3+TlGOMP/74w+hzDL38+/fff8umq47qPX78OI4dO4bExETJiNnHjx9jx44dAJIv41pZJb9d9PXrY4wxxti3Z23uChjK2toazs7O4v6LFy9QqVIl2Nrawt3dHRMmTDDJ/bRo0cIk5aS1evXqybbMqdN2mbV+/foaac7OzggODgYAeHt7SwZzKJVKceUMbatm+Pv7Y8iQITh06BBu3LiBKlWqIG/evHrryBhjjLHUs5iWOnVhYWGSPnHaWo/i4uIQEREh2XQRApf07tmzZ3j37p1JyxQCOgAao3MTExPFy7gPHz6EQqGAr6+vJGhcvXo1zp49ixEjRqB58+aSQSH6KBQK/P7776l8BIwxxljmZbFBnZOTkyRAy5Ili2y++fPnw9HRUdyKFi2qtcxPnz6ZvJ4Z0YULFwAApUuXhpWVFfbv3w/ga2C9c+dOAMl977y9vREeHg5A2gfw8+fP4ohcwZIlSzTuKykpCYcPH9ba4sgYY4yxZBYb1Lm4uMDHxwfx8fG4fv06XF1dZfNNnToV4eHh4qZrQIWpW74yqg0bNkj2u3XrhujoaNmguFq1asiVKxdu3boFW1tbcW3cPHnyIF++fHj69Cn++usvMf+RI0ckwd2GDRvQqVMnXL16VbYuHTt2xOzZs03xsBhjjDGLZjF96gCgbdu28Pb2xrNnzzBy5EiMHTsWjRo1QtasWbFt2zbZc+zs7GBnZ2dQ+cJAAGa87Nmz6zxeu3ZtAMC///4rBs8JCQlo2rSpZKLnjh07AgCaN2+OqlWriiNt1S+bv3r1CgkJCThy5AiOHDmC3377zWSPhTHGGLNEFhXUyU2a26tXL5OVn5qgrlevXtizZ4/J6pKRqU6xEhkZKXu7WrVqOi+5uri4aD129+5dBAUFoXXr1uKEyTly5EhlrRljjLH0jZumVNjY2BiVv06dOihXrhwASNZ2ZYb78uWL1mOenp6YPn26JC0hIQFTpkzRWWaNGjXQpk0bAMBff/2FnDlz8koYjDHGMjwO6lSoBnVDhw4FADRq1Ehr/kmTJsHHxwcPHjxA1apVkTt3bp1lHjp0yOC6NGjQQLKfP39+g8/NKNzc3DTStmzZgoULFxp0/smTJ/Hjjz8C+Dq4gzHGGMuoOKhTIXTGnzlzJjZs2AAiwqVLl7Tm79KlC6ysrPDdd98BAKpUqaKRJz4+Hv7+/nj58qXYX8wQa9askewHBgYafG5G1L59e0RFReHZs2eyx8+fP68xf16fPn3E2//991+a1o8xxhgzNw7qVAjLj71580aS/vTpU/HYnTt39JbTsmVLABBH5BYuXBilS5fWml9uwmNhTdeKFSsiKChIf+X/X0ae7LdevXr4888/ZY81b94c9erVw9u3b8U01SlTiAgHDhyQjLQVbN68GQsWLDB5fRljjLFviYM6FY6OjgCAXLlySdLLlSuHSpUqgYhQvXp1recL/biOHz8OIsL9+/c18jx79gyvXr0S9z99+oRmzZqJ+66urqhXr544YjdPnjySlTT0ycgtUg8ePNB53MvLCyVKlJA9tmPHDnTt2hWjR4/W6Mc3ZMgQTJ061VTVZIwxxsyCgzoVTZo0AQAMHz5cZ76cOXPKpk+YMAFfvnyBtbX2QcVly5ZFqVKlACRPoJw7d26MGjVKPH7//n1cv35dnEy5SJEiGmUMGTJEI83KygofPnxA48aNQUQ6R45m9lYpba8fADx//pwHVTDGGLNIHNSpEAIhfaNgfX19NS7RAslLXembr02wd+9eeHl5AQAcHByQlJSExMRE8bi1tTXOnDmDdevWaZy7ceNGjbT+/fujYMGCkrT//e9/svfdu3dvFCpUyKB6ZmT+/v5YtWqVuO/p6Yly5cqZdJocxhhjzBhJSUk4ffq0JG3YsGEafe3lcFCnQuhor2++urx584p93lKqR48eKFOmjLhvZWWlsdRZixYtdLYqAUDjxo1RqVIl/PLLLxrHsmbNCiB5AMicOXMAJLdCFitWDIcPH9bI3759e9n7kAss06PevXsbnNfZ2RlFixbFzz//LKYJo21v3rxp8roxxhhjhli2bBlat26Nhw8fIjIyEt27d8fGjRvF2Rx04aBOhaFBXXpw+/ZtXLlyBSdOnMCjR49kl0kT1mLNkiULatWqBeDrAIyaNWsiOjpakl+4/Hz+/HnJ4Ixhw4bhjz/+QFRUFAoXLiw558OHD3j58iVOnjwpSS9RogRq1qwprgP7LezevdvgvMJKFXKCgoIQERGBN2/egIjw66+/YtKkSaaool4bN27Ey5cvv8l9McYYS38+fPgAIHkeVwcHB+zbt8/gcy1qRYm0ZklBXY0aNfTmES7nWltbo1mzZpgxYwbGjh0rHre1tQUAuLu748yZM8iaNStq164Nd3d3AMDOnTtRoUIFWFlZiQMJXr16JbYAAhAv+aqvqTts2DD8+uuvAIC+ffum8FGajzBoRtXixYtx9uxZREdHo0SJEnj79i0aN24s25p67949ODo6iv0nDTVs2DAUK1ZMMoqXMcZY5jB9+nQsW7YMQHKXLmNxUKfCkoI6Q4wZMwY3b95E5cqVYW1tjd9//11yPEuWLBoDKoSADpDO8yZQXUd39OjR4m31SZpT8ma0BOrTz9jb2yM6OhoKhQI//vgjVq1ahSZNmojzGyqVSq3PRbZs2dCoUSOcPHkSYWFh4qhr9RZUxhhjlu/vv/9GzZo1UbNmTUn6pk2bkCNHDvTo0QNLliyR5DdWxoheTCS9B3UTJkzQWGlClzJlyuDmzZuwt7dPk/qsXr1avK1QKMTLvcK+LsLlYEsXExOD0NBQAMnPx6tXryQTVr9+/VrnuadOncKJEyfg5OSEp0+fpnV1GWOMpTF/f38oFAo8efJETDt9+jRGjRqFWrVqISkpCRMnTsTnz58BJK9g1bNnTwDSgZpbt241+r7TZ/RiJuk9qFu8eDGuXLli7mrg8+fPsnPGqT5vqkFdjhw5NPLOmzcvVXUwpv9cWlMdLevi4iI5FhcXp/d8YWCGh4cHgIzbyskYY5mB8Fl+4sQJMa1169bi7a1bt2LJkiWoX7++xg9/Y9egV5c+oxczEYI6/lLVzcnJSVwaTRvV5zAyMhKJiYliixYAlCpVCj/99JNGXzw5csO409O0I2fOnNF6zNXVFbdu3dJInz9/vnhbuAQurDfM7z/GGLN8EyZMAABJix0ATJ48WUxXvxSrPguGsTioUyF8uabXljpLsH//fgDJK2GoypIli2SlDoVCgZUrV6JIkSJo3LixJG+PHj3E24cPH9Y63167du1MU+k0lJiYiNq1a2PRokU4fvy42Nw+bdo0Mc+nT58k56gGdRcuXMB///3Hl2YZYywdW758ufjZrdpXXalUomLFipK8qseF7wQgeeUjXTMzGIKjFxXp/fKrJejcuTP27duHwYMHyx6/c+cOypQpI5kaRdcKHB06dAAAvHv3Dnv27JEcEwJIY+XLly9F56XG5MmT0a5dO+TJk0dj/WD1lsiPHz/i48ePAIBmzZqhR48eqFChAk6fPg2lUilZ05Yxxpj5qc7nqhq0bdu2TSOv+g95Qf/+/VNdD45eVHBQl3oKhQJdu3bV2oRcvXp1PH/+XDKKVhhRevLkSclkwKqKFi0qdiQV2Nra4vjx40bX0dfX1+hzTEm9uV1O5cqVNdKGDBmCefPmwcnJCZ6eniapy5cvXwzq98cYY0w7bd1mtDVwpFk9SNcioRlQREQEHB0dER4eDgcHB8mxAwcOoGvXrvj06RNy585tphpmPkSE0NBQ8Tn39/dH0aJFxWOqFAoFSpUqhVevXknS1Lm6uuLu3bsarYARERHImTOn5JzixYuny3nhiEhn/zrV5yYpKQkKhUL8QVK9enVYWVnhwIEDKFasmNYyFAoFqlSpAm9vb5PVmzHGMpMbN25g6NChePLkCYgIxYsXx7t370x+P9myZdO7Njk3SangljrzUCgUkiC6SJEiAL4u26Xq9u3buHHjht4yDx06hCxZsqB58+aSdGGiYNXlVgoUKCCZGyi9OHfunMF5ra2t0bJlS9y5cwcKhQL37t3DnTt3ZJeze/78uWQuvPv375ukvowxZqmyZs2KcePG6cwTFRWlMVp1+PDhqFevnjgYomfPnmkS0BnK6OglLCwMe/fuxdKlS7Fs2TLs2bNHMqrRknFQl368ePFCY0FjIHklDfU+cbt27RJvz5kzB2FhYShZsiQA4OzZs1i/fj169uyJuXPnivlKlCgh3s6SJYtkuHl6oT7RsT7nz5+XvbQbHx8v2S9Xrly6Gj3MGGOppVQqceHChRSfHxcXh+XLl+PatWta83Tp0kWySlBcXBw2bNggyfPvv/+muA76CKtE6WJU9LJx40bUrl0bnp6eUCqVSEpKgqenJ+rWrYuNGzemuKLpBQd16YeLi4vs8ltyevfuLd6ePn26xhJfw4cPx549e8RlywAgb9684m0rKyvxUmbHjh313l/p0qUNqldaUygUICJxUIU2Qv/FS5cuifMcHj16NF3N9ccYY6mxbt06NGvWTHYKKWNom+Dfw8NDnL7KyckJM2bMQLVq1VJ1X8ZSXaJTKzJC2bJlKTIyUiM9IiKCypQpY0xRZhMeHk4AKDw8XOPYzp07CQBFRUWZoWYsNQCQMW/npKQkOnz4MAGgFStW0PPnzwkADR06VCxLbvvrr78k92fu7cOHD+To6Kg337lz5wwqLyoqisaOHUsxMTFp9VIxxpjJTZ8+nQDQmTNnxLSIiAgaO3YsxcXFaeRPSkoSv+vHjBkj+RwUhIaG0uDBg+ns2bNm/6xv0qQJ3b9/X+/zYFSTlEKhwJcvXzTSv3z5kiEmTOWWuszDysoKHTp0QGJiIn766SeUKVMGu3btwsyZMwEAZcuWRWxsLACgW7du4nmDBg0CAI2+euZSqFAhhIeH681naH2/++47LF++HPv27Utt1Rhj7JshmTGfa9aswfLly8WVHYKCgsT1VMePH4/s2bPjy5cvWLFiheQ8hUKBwMBArFu3Dps3bza6K4ypCF2GLly4gAsXLsDV1VXvOdonCJOxZMkSNGrUCJUrVxbnGfP398fjx4/x559/pqDKqTdhwgR4eXmhWLFi2Lx5M2xtbVNcFgd1mY/q1Cu9e/dGYGAgAKB8+fKws7NDYmIiFAqFmE+4lDl48GCjBjJYCmG6l7CwMCgUCty+fRs1atTQec7JkyeRlJRkEZNBM8YsGxHh8ePHkmmfEhMTERAQACC5a4l6ENa5c2eEhYVh6NChOHbsGAYOHCj+cNXWzadgwYJo27ZtGj0Kw0ydOhVt27Y16jKvUUFdu3bt0KZNG9y8eRMfPnwAEaFw4cKoXbt2qpe2SIl79+4hMDAQV69exbx587Bv3z706dMnxeXxMmEsb968aNasmfgLSXhfnz59Gi9evBADfmFS5Izq/PnzAJLn1Ktbt65kxHFISAg2bNiAyZMnQ6FQiB98wi/luLg4JCQkyK75yxhjqbFx40YMHz4cPj4+qFChAgDpeqnHjx/H6dOnUb16dZQtW1ZMV13RiIgMillU1279Vvz8/FC0aFE4OTnBysrK+H57qbuKbV5r1qyhrVu3EhHR7du3afTo0Rp5YmNjKTw8XNz8/Py09qm7desWTZo0iZKSktK87sy0goKCKCgo6JveZ3h4OHXq1IkmTJhAAGjw4MGUL18+AkC1atUyex8MU26q+vTpQwDo3bt3RKTZn9HV1VXjHMYYMwXh8/by5ctimrbPrd69e8umb9q0yeyfqbo+awFQvnz5UvT8GNVSp2r//v3o2rVrSk83ibCwMBQqVAgA4OjoKFlDTTB//nzMnj3boPJq1qxp0Gz/LP1xdnb+5vfp4OCAgwcPQqlUYsKECcifPz8SExNx4sQJtG7dWrJqRkbw3XffITo6WpxTUNvybg8ePPiW1WKMpWPHjh1D+/btERcXl6ruUQK59VW10TbCf8iQIamuR3qV4s5jffr0wbJly3TmMeRJTw0nJydEREQASA7w5FaBmDp1KsLDw8XNz88vTevEMh8rKyvkz58fQHKg06FDB53r2VoihUKBR48ewdfXF7dv3waQ/FiF/z/GWMYTGRmZ6v9xYW1rfSsh6JOYmIjo6GixK4ilr4H922+/6Tye0m5gKQ7qjhw5glmzZuHnn3/WCN6SkpKwZcsW8Xp3Wqlbt644b8zp06fh7u6ukcfOzg4ODg6SjbG0ZmVlBQ8PDwCQrFmr3mrcrFkzg8pLj5MFW1lZSeYEnDBhguR4UlLSt64SY8yEnJ2dNeb9FISGhhoUqJlqAGLv3r2RPXt2cXLg1atXW9xnjDC7wt27dzFt2jSdeYUJ9I2V4me5VatWuHLlCg4ePIguXbogJiYG8fHxWLt2LVxcXPDLL79oLMBuatWqVUOBAgXQoEED+Pj4mP1yMGOqqlSpAgAYOXIkRo4cCSB5RJWqUaNG6SxDyF+pUiWxvPRi7dq1kv0///xT8uvy0KFDsueFh4db3IcxY5lRXFycbLqvry9y586NihUraj3X19cXV65cEYM6Q6/ceXp6IioqCq9evcLTp0/FdPVpls6dO4dOnTph4sSJBpVrTvXr1wcRYfbs2SAiVKtWTWdL3MWLF3Hs2LGU3Vkq+yySv78/ubq6kqurKxUqVIicnZ1p3rx5FBERkdqi04SuyYcZSyvr168nAPTPP//QgQMHCADNnTuXiL528q1QoQIBoKNHj4ppJ06cIAD022+/icctZWvSpIns54BqHh8fH0naxIkTiYgoICCAANCVK1e+3YvEGJMQ/i/Vde3aVXLs/fv39OrVK0meLFmyEABq1qwZAaBPnz5Jjp8/f54A0KtXr+jZs2e0ZcsWSkpK0hjgsH79eoqNjTX751lqtgYNGmg8hwkJCZI87du3p4oVK6b6NUtVx5/w8HBs2rQJ79+/R3R0NBQKBTw9PfHdd9+lpljGMiyFQoH27dtj3rx5+OWXXyTHtm3bhsmTJ6Nt27b4/vvv0aJFC9jb2wMAbG1txV+8luLixYv43//+h5YtW6J///6yedauXSuZU2rx4sVYuHCh2EJ58OBBrcv2MMbMQ/2zSJi3NiYmRlzKSmiNF/6qnnPt2jWx64nqsovC1CSqAxxGjBiR7lvjSpYsidevX4v7uXLlkvT5k2uVE9IqVaqELVu2mG6QZkqjwSlTppCjoyOVKlWK1q1bR1++fKGBAwdSvnz56ObNm6mONtMKt9Qxc1i3bh0BoA0bNmgcg5Zfw0TJS9ksW7aMoqOjqWzZsmb/xZnSzdPT0+C8qr9gx40bR02bNqUdO3ZQQkICRUdHa32O//rrLxo8eLBBVwkSEhIMf/EYy0RevnxJ586do7dv30o+m2JjYykxMZGIiDp27Cg5Jtx2dHQkIqKmTZuKacI0T6NGjSI/Pz9JfvVt5syZZv+sSsnm5+dHR44coYIFC1KxYsU0HuOgQYM0nmehVbJ58+Ymff1SHNSVL1+etm7dKr7IgunTp1P27Nnp0KFDqa5cWuCgjpnD3r17CQDt379f45iuoE5VmTJldH6wODg4iHM4WfIWGhoqCeqE25UqVdL6PF27dk3MV7t2bZ3P44cPHwgAHT582LAXj7FMRO5/Ukjv1q0bERF16NBBPKZ6KVY1r9z2/fffk4eHh9k/Y/Rtp0+f1nlcuKQsbCEhIURElJiYKMZEwrHLly9rXU9+zZo19OHDB9O+fik9UalUaj32zz//kJ2dHa1atSqlxacZDuqYOSiVStq3b5/s/43qh6EuLi4uBHxt9WrQoIHkA/L9+/dElDwRs/A+t8RN6E8HSIM69edJtQ9P8+bNZfPI8fLyIgD0008/GfryMZZpyP1PqqYTEbVr107r/29gYKDWY7rO+9abs7Oz1mNnz56VBK7C1qVLFxo7dqxGfzi5ie8N/Vw3tTS7xxMnTlDOnDnTqvgU46COpTdubm5Us2ZNvfm6d+8ufkgcPHiQPn/+TEREW7ZsEX8pqgIMX9li4MCBZv+QlduE1jn1LxghMDt69CgREbVs2VI2qHv37h1duHBB8rwMGzaMAFDTpk1T9oIxlsHEx8fT2LFjqX///gYFdbr+Z3v06GH2zw31LUuWLOTr6yvud+zYUefjOH/+PHXu3Fnc/+GHH+jNmzeS5+zOnTvk5uZGALR+/maooI4o+UGnNxzUMUsVFRVFjx49Mjh/cHAwRUdHG/Shd+/ePbN/8Bq6EZE4gnjhwoW0atUq2TwfPnwgOzs7jQ/WRo0aEQCqWrUqERH5+PhQjx49eHlAlmlER0dTw4YN6fXr10RENGPGDL3/c8Jt1ZZ0S9kEwv68efMk+wUKFKCOHTtS6dKlxSDN39+fChUqRB06dNB6ZfLLly9au3FkyKAuPeKgjmU2mzZtokOHDun80AsMDKRixYqZ/cPXkK1169bipZPZs2fL5qlWrZrGh7rQalmjRg0CklsxiYjatGkjfpCnhaSkJA4YWZrx9/fX6NsuR6lU0pYtWyg+Pl7stjFu3DgiIho8eLDZ/6+/ZVAn/D8uWbKEbt26lSavy8GDB8nDwyNNytaFgzrGMgmhdUt1s7Gxofj4eCIijQ7PGWkj+vqBnjt3bgJAbm5uRPS1f9DHjx/p2rVrFBsbS58+faJq1app7cT8888/08yZM8na2poCAwN1Pu8ODg7k6upqwleSZWbPnz8nAPTu3Tuxb9e0adP0nnfx4kUCkluphNGro0aNop9++sns/59puT179kx8Duzt7SVBXkaUsR+dDA7qWGb28OFDyQees7OzeOzLly90//59yfHmzZtT/vz5CUj+Vf/PP/+Y/UM6tUGdcElWSG/RogUBoAsXLhAA+vnnn2n37t0EgJYtWyb7PKqWffDgQZ3Puep9MZYSz549o6dPnxIRUZ06dQhInshcmJRXbnJbVfv27SMbGxuz/x+mxVaiRAmtx4TJzQUBAQHi85hRZbpPGg7qWGaWmJhIrVq1IisrKwJAL1++1MijOj2IHEM+aB0cHMz+Ya+6CXNCqW+qo4SFy8/t27ennTt3il+WcXFxtHbtWkm/GtUy/vvvP5owYQJFR0eTUqmkPXv2UGJiIt26dYt27dqVJkGd0BeKZQ6q7yHhdrdu3SSB2pUrVyTzOCYlJdGmTZsoMTHR7P9/ptz+97//SfaHDBlCCxculKQ1a9aM3r59a66Xy6w4qGMsE4qLi9M5kW/x4sUNDupu3bqlkebo6Gj2D3/VzcfHRzZdaJ1T3Tp06CC5JLV06VICQOfOnZN9Dnr16kUA6O+//6Zz584RAHGyadXNGPfu3aOzZ8/KHhOeb2HkL7M8Y8aMoZUrV2qkv379mm7fvk09e/akZs2aiemq7yFdywWOHDlSPOfIkSMEgAYMGGD2/z9TbsLzsW7dOlq3bp34Xa6ap0WLFmn58qVrqVomjDFmmWxtbXUef/z4MeLj42WPLVmyBG3atEFwcDASEhJkl7exsrIyST1NRdvC402bNtVI8/f3x5EjR8T9jx8/AgCaN2+Obdu2YfTo0ZL8wtJGsbGxaN68OQDAx8dHo9zPnz8jd+7cknKzZMmCvHnzauStVq0aAMgugv7u3TsAwJMnT9CuXTvZx8XM76+//kL27NkxcOBAjWMrVqwAAPz000+S9JIlS0r2FQoFxo0bJ0lr1qwZnjx5Inufr1+/xvv371GkSBFxuc5t27al+DGkV3L/F6q0/b9nBgrS9+xkMBEREXB0dER4eDgcHBzMXR3GMgQ/Pz+MHj0aR48eBQDkzp0bnz9/BgCEhYUhV65cZqxd2hoyZAg2bdokScuSJYu45qUqIkJwcDCyZcuGHDlyiGnqhHUh5Y4dOHAAXbt2xYgRI7Bu3TpTPASWBtRfw1evXuHQoUNo2rQpqlevDgBYtmwZjh49Cjc3NygUCsydO1dnmffv30fNmjWRkJCgNc/AgQOxdetWEz0K80lMTIS1tWa7k7aQRXi+PTw8UKNGDb0/XDMss7URmglffmUsbfzwww/i5Y+8efNqXC7hTX62fXUrVqzQeoyIaP/+/eLxffv2pfj1ev78OQUEBGg9/unTp0w3FYu/vz+1aNFC67JORETr16+n7t276y1LeI2EaS1cXV3N/v5Lz9uzZ8+oU6dO4r5SqRRvq07JpOv5FtaezczS1zUSxpjFIpVf0MKvZvUWLFX37t3D/fv3cf/+fcycORPR0dFpXkdzK1CggNZjK1euxI0bNzBmzBiNY8+ePcOrV6+gVCrF5xYAunXrJltWaGgoEhMTddalbNmyKFy4sOwxIkKePHkwe/ZsnWVkNGvWrMHZs2dx8+ZNAMDBgwfx6NEjSZ4RI0bgv//+M7jMevXq4eLFi3jw4IFJ65rRlC1bFhUqVBD3Vd/nHTt2BABky5ZN6/nnz5/H/fv3066CFoKDOsaYSSiVSvF21qxZAcj3WRNUrVoVrq6ucHV1xezZs2Fvb48+ffqkeT3Tm9mzZ0OhUGDMmDGoV6+e5JhCoYC3tzfKly8PFxcXtGvXTvJlJyAizJ49W7zknTt3bvzvf/+Tvb/IyEjkz58fQPJrFhQUpJFHuLx37tw5rfW+ffu22DdMXVRUlNbz1AUHB0OhUMh+IRMR3rx5o5EeHR2NAwcOID4+HjNnzkRsbKzB9wcAGzduxIgRIzTSw8LCAAAnT56EQqFAly5dxL5p6q5cuaK1/BcvXkj2df0fZHTbt2/XSNu7d694u3z58oiLiwMATJ06VSPv9OnTxdtFixbVej9NmzZF8eLFU1PVjMG8DYXfHl9+ZSxtDBkyhADQ1KlTxYmM3717R0TS0XsTJkygIkWKyJaRkJCgMUny2rVryc/Pz+yXh8y1CaNvha1p06aSfSKi69evE5C8RqXwfBcqVEj2Ofb09NS4j//++48CAgKobNmyFBgYSJGRkQSA6tWrp/X1zpIli+zlsCtXrhAAWr58udZzvby86MqVK0RE4ojhqVOn0s2bN6l58+bi9DHr168nAHT69GmaMWMGKZVK+vLlC/34448EQFwibtWqVWLZr1+/Ji8vL4qLi5Pcp+qlZOFxq0574e/vL6Znz55d8vxMmTKF+vbtKzkXAL1//1728Zn7PWOKrW/fvgblmzp1qtZjNjY2ss9HSEgIAcmrw6ibMmWK7PvqxIkTWp9v9hUHdYwxk1iwYIH4RdelSxcCQH5+fkRk/AS8ql8AJ06cEGfON3YT1nLMyFtoaKh4O1u2bJK+SImJidSyZUvJdCxeXl4aZUyePJnGjBkjfhGXLVuWAN1Bneq6uoMGDaL8+fMTEdHy5cvFcoOCgsT8p06dIgA0duxYyftBWOlg0qRJVL9+fQJAcXFxso918+bNkv2ZM2cSAJozZw4BEANKYXv8+DERkfic/Pnnn5L3V69evejZs2ey0/LIbb1795bsV65cmT58+EDXrl2jQYMGEQC6evWq2d8Tqd3mzp1Ls2bNkqT16dOHIiIiNPImJCTQjh07xH0hII6MjBQDa+HYvXv3aPv27ZSQkEANGzaku3fvaryvlEqlRkDODMdBHWPMJBITE8nb25uIiE6fPk0AxLnwVL/EDSHkV539Xb2Fys3NTbK/YcMGjS+cX375RSNNLp8lb5UqVdJ6bOTIkeLtO3fu0M2bNzUCEwA0YcIE2fPd3d1lXx9hcmYAkpY/Hx8fGjdunLj/5s0bIiJJoKm6TZ06lfr06UMAKFeuXGK6tqBO/T2gb+vZsycRJS9gD4Dq1KkjeX+ZYhNaLDPSNm/ePDFQBkC2trbia1+1alUCIE58rP4/++HDB405+IRjLO1lumeZgzrGvj1jP9Tl8p86dYqyZctGUVFR9ODBAwoPD6e2bdtSUFAQxcTEiJfqVDdvb2/JfoECBUipVKa7FS/SaitSpIhB+X7++WfZ9Jo1a9K4ceNow4YNRES0ceNGWr9+vcGTS/v6+hIRaZ38WXXLmjWreFtY/soUGxGJLUx16tSh77//3uyvS3rbgoODJfsXL16kefPmEZC8rJ6q8ePHE5A8+bWnp6eY/vvvv5OLi4tJ/v9ZymW6Z5mDOsa+PQCUJ08eg/OfO3eOtm3bZtR9yK3ioN5CFB8fT0Rf+6Bl9O333383KJ8hQe78+fONvn9hObPHjx8bdd7nz59N9hwIl5J5074J/6PA1/8RYemtrVu3Sv7P9u7dSwDo1atXBv9vqt4PS1s8+pUxluZCQ0NlRzFq06xZM/Tv39+o+yAtk/jeuXNH3BdWf5DLmxHNnDnToHwRERF688iNTNSnRYsWAIxfYWTo0KFG35c2z58/N1lZlkx1FKkq9YmMhf8RQc6cOSX7PXr0QHBwMEqVKmXaCjKT4KCOMZbmcuXKJa6gkFaEJbgOHTokSRdm7zclXfPvsa9evnyJjRs3wt3d3ajzDh48mEY1ypyaNGmCOXPmyB4TVm04cuQIFi9erHFc7geQ3NJ2uly7do2D62/EIoK6yMhI1KlTBzly5JBMBLl37164ubmhadOm8PPzM2MNGWPm1q1bNxw5cgQdOnQw+tz8+fPjwIEDqFKlit68Q4YMweDBg9GqVauUVDPTGTZsmDh/Hvs21Oc7NKRlun379pgwYUKa1Mfd3R1lypRJk7KZlEUEdfb29jh27Jhk9vSEhAQsXboUly9fxpw5c7T+CmGMZQ4KhQLt27eXnZxXneqEslu2bEFgYCA6d+4MLy8v8fJTkSJFxDyqi6ILK1+otwgylh5MmzYNq1evBpDcQpdSffv2RdWqVVNVBvv2LCKos7a2hrOzsyTtxYsXqFSpEmxtbeHu7o6HDx/KnhsXF4eIiAjJxhjL2Pr27SvZL1u2rGTfwcEBf/zxBwDA0dFRTLezs8PDhw+xZMkS+Pn5ITo6Gm/fvpW04O3ZswfA11UzGDNGr1690qTclStXIiwsDPPmzYOLiwuA5FblEiVKYMaMGQCARo0aGVxe4cKFce/ePTg5OaVJfVnasDZ3BVIqLCwMDg4O4n5SUpJsvvnz52e69QsZy+y2bt2KDRs2iPu3b99GfHy8JI/QeV/90lS5cuVQrlw5AMlXCYoVK6ZzzVZtVq1ahZ9++sno81jGJgRcxlIoFHj+/DkiIiJQo0YNMV3u0mrOnDmRlJQEKysr9OvXT0xfsGAB3NzcUnT/zDKkq5a6wMBA1K9fX2OT64/h5OQkaXXLkiWLbJlTp05FeHi4uHHfO8YyvixZskha0nLmzIk8efJI8rRv3x4AULt2bb3l2dra4uXLlwAAV1dXMX3jxo2SfKotgj/++KN4e/DgwWKLx6FDh+Dp6anz/gICAvTWKa35+vqauwoZkrZRqOoKFSoEIPnHR3x8PJRKJVxcXAwe+CM34rhu3bribUO6KTDLk66CugIFCuDatWsamzCqTZWLiwt8fHwQHx+P69evSz5oVdnZ2cHBwUGyMcZYxYoVQUQoXLiwQfnz588PAGjbtq2YNmTIEEke9R+XQrcQ4ccpEaFjx46oU6cOvL29td5XgQIF8OjRIzx9+lRcOL5t27Y4duyYmEepVBpU75QqWbJkmpafWdnZ2Ym3P378KN5WncLnypUrYuB/6dIljWlGhPed8EMjJd6/f48XL16k+HyWPinIQiZsatu2Lby9vVG8eHGMHDkSgwYNwp49e7BixQpkzZoV27ZtQ9GiRfWWExERAUdHR4SHh3OAxxgzysOHD1GhQgVxGghA2uJRp04deHl5Afh6Wez+/ftwdXWVbRnx9vZGtWrVNNJ1fSwL5RBRmrW2nDt3Ds2aNePWHC22b9+ucx7FgQMHIm/evPjxxx81gmPV10319ufPn9G0aVN4e3un6TyKqvfNMqBvPt2xmfGKEowxU9qyZQt16NCBNmzYQP7+/hprYuoDLTP8a5MtWzZq2LAhERHZ2dmlaiUBKysrWrp0qUZ6RESE1roJm9y6uqbYSpcurTdPzpw50+S+BwwYoDePg4ODuJas3CY8d4LKlStrvLYRERH08uVLIiJq27YtAcmraHwLhrzHmOVKV5dfGWPM0gwcOBCHDx/G0KFDUbhwYfj4+ODcuXMpKmvSpEniSEVtoqKicPnyZQDJqyUcPXoUwcHBKbq/pKQktGvXTiNdtSVSm8TERK3HVKeAMcatW7f0zmdWsWJFRERESC5jmsrWrVvF26rPy61bt/D+/XsEBwcjLCwM9vb24jGhJa5ChQrw9vbWWIFBdb9r165iWunSpQEAv/76K1xcXDTOSyv79+/H3bt3v8l9MTMwd1T5rXFLHWMsPcH/t5w8efLEJOUIC66rby4uLuLtuLg4ev/+PRERPXv2TExftmwZdevWjZRKpaRMuW3Xrl1aj+k6t0CBAlqP3b59m5o3b67zfitVqkRERK9fv6Zjx44Z1RI3cuRIAkAtWrQQWyg7depEW7dupU+fPon17t69OxER7dixQ2urllBmiRIlKCYmRlwzVZ2/vz8tWbKEqlevTm/fvk3Va8yYPhzUMcaYGb1584Z8fHxSXY4QZCQlJdGUKVMIAOXPn5+2bdumEYSpevLkiXjpUVuZ6ltkZCQREZ04cYK+fPmicTlS17lTp04Vb2/dulVy7M6dO9SoUSMCQGXKlJEcq1ixIgGgypUrG1RHuW3lypUEgC5fvkweHh4EJF9GVhUVFUUJCQkGP98VK1Y06nViLC3x5VfGGDOj4sWLo0KFCiYrz8rKSlybc+XKlejfvz/i4+PRu3dv2fz0/x3m5QZFPH36VPYcYR3fNm3aIHv27LC3t9dYr1UYLSzIly8fiAidOnUCkDzly4ABAyR5rK2tsWnTJvz666948OABAKBq1apYv3497ty5I1sX9ZU9KlWqpJHH1dUVgwcPxogRI5CUlISGDRuKo4fVH3e2bNkMuvwsDJQ4fvy43ryMfSsc1DHGWAYnTInh4uKiEcQUL14cDg4O+N///qdxXrly5VCqVCkAwMiRIwFIV+BQ1alTJ3FuNUAz2BKCOYFcEFm4cGGUKlUKc+fOFaeHsbOzw/Dhw8U+dOrntW/fHkuXLsWlS5eQI0cOXLt2DSEhIeIE0gCQO3dubNq0CXZ2dhqTTqd0hO+2bdtARChRokSKzmcsLXBQxxhjGcDMmTPFAKx169YApJPNAsDjx48RExMjScuWLRvCw8O1TsJ848YN3L59G3///TcA4JdfftFah3///Vdcok31vq9du4bly5fLnlO5cmUAyUGW6gTRQvDVuHFjAF+DL/Ul4KysrDBu3Dg0atQIkZGRyJUrF/LkyYOrV6+KA0rkCBNFqwebjFkyi5mnzlR4njrGGEuZuLg42NraGty6tWHDBhQrVgwtW7YU07y8vFC3bl389NNPWLlyJRITE6FUKmFra6tx/vv371GgQAGtKwbpExsbC3t7e7Ru3RonT55MURmMWRIO6hhjjH0zERERKFasGC5fvowqVaqk+f2tWbMGXbt2TdH6vYxZGg7qGGOMMcYyAO5TxxhjjDGWAXBQxxhjjDGWAXBQxxhjjDGWAWS6PnVEhMjISOTMmTPF8xMxxhhjjKU3mS6oY4wxxhjLiPjyK2OMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBpDpgjoiQkREBIjI3FVhjDHGGDOZTBfURUZGwtHREZGRkeauCmOMMcaYyWS6oI4xxhhjLCPioI4xxhhjLAPgoM6EYmNjcezYMXNXgzHGGGOZkMUEdZGRkahTpw5y5MiBR48eAQD27t0LNzc3NG3aFH5+fmauITBz5ky0b98eCoUCSqXS3NVhjDHGWCZiMUGdvb09jh07hm7dugEAEhISsHTpUly+fBlz5szBnDlzTHp/s2fPRo4cOYw6JzAwULydlJRk0vowxhhjjOliMUGdtbU1nJ2dxf0XL16gUqVKsLW1hbu7Ox4+fCh7XlxcHCIiIiSbIWbNmoWoqCij6qhQKMTb6i11vXr1Qt26dY0qjzHGGGPMUBYT1KkLCwuDg4ODuK+tZWz+/PlwdHQUt6JFi5q0Hnfu3MGbN28AAFZWX59OpVIJIkJISAiA5EvFXl5eOst68uQJLl++bNL6pdaxY8fQvn17c1eDMcYYY3pYbFDn5OQkaXXLkiWLbL6pU6ciPDxc3Azpe6d6GRUAfv31VxQoUEAjX1RUFGrWrImSJUsCkLbUJSUlYdmyZXB2dkZYWJjGua9fv8bcuXMlaRUrVkTjxo311u9b6t+/Pw/+YIwxxiyAxQZ1Li4u8PHxQXx8PK5fvw5XV1fZfHZ2dnBwcJBs+hQsWFCy/8cff+Djx4+StKSkJEmfu4cPH2pcfr169SoAYNq0aWK6EDD27dsXM2bMSPcrW/CAD8YYY8wyWJu7AsZo27YtvL298ezZM4wcORJjx45Fo0aNkDVrVmzbtu2b1EGhUGDy5Mn4/vvvJenLly/XuPwq7Pv6+orpBQsWBBGJwZxSqdTayigICAhAvnz5ZPOtWrUKcXFxmDBhAgDgzZs32LRpE2bPni0JMlOKgzrGGGPMQlAmEx4eTgAoPDxcax4A4qa6/+jRI8kx1a1WrVrUqlUrcT8kJES83bBhQ40y69WrRwAoLi6OSpUqRWvXrhWPx8bG0o8//kiLFy+mmJgYAkA9evSgGTNmEBHR2bNnSalU0sGDByVlEhE1aNCAAFBkZCRVqVKF7t27R0RE06dPp5S83NmyZUvReYwxxhj7tiyqpe5b+Pz5s9ZjlStX1nrs1q1bkn3VFq4rV65o5Bda8ZKSkuDr64vx48eLx1atWoXVq1cDAIoUKQIA+PfffwEATZo0QYsWLbBw4ULs2rVLa30+fPiA+/fv448//sC///6LJUuWaM2ri/A44uPjsWPHDgwePNgkLYCMMcYYMy2L7VOXVoYMGSLZf/bsWYrKCQoK0nps/vz5uHbtGgDgwIEDAIDo6Gjx+MSJE8XbX758kZzbtGlTAMDkyZNx//59Mf3ff//F48ePxWBROC8xMRHA19HBvr6+qFWrljhdS2Jios5+fUJQt3LlSgwdOlTsJ6gqJiYGnTp1QkBAgNZyGGOMMZa2OKhT8+nTJ8l++fLlU1SOrlY91YET/fr101nO8OHDDbq/nj17onLlymIr2i+//AIAYqCVkJAAAFizZg1u376Ne/fuISkpCTY2Nli5cqXWcoWgTgg0VYNPwc2bN3H48GEsW7bMoLoyxhhjzPQ4qFNj6ZcWL126BAAIDQ0F8LWlTiC02FlbW4u3hdZCOeoDJeRa9WxtbQF8DRwN8fnzZygUCty9e9fgcxhjjDGmHQd1aiw9qBMIAdvt27cl6UKQZ21tLQZoRIShQ4dCoVBIgrb4+HiNoE51Pz4+HrGxseIlX+GYUqnEihUrEB8fr7V+jx8/BgCd/QIZY4wxZjgO6tTITRRsiYSgCQAGDhwo3haCvbdv32LLli0AgKtXr2LTpk0AkgdwzJw5E8+fP8esWbM0ylUN+qpXrw57e3tJUJeQkIDWrVtj7NixWL9+vdb6CeesWrUKffr0AQCsX78e/v7+KXi0jDHGGFOQrl7yGVBERAQcHR0RHh4uOxFxRmmp06Z69eqpuuR5+PBhODo6IioqSpyr78CBA+jSpQsAoHXr1jh16hQAYNGiRZJBH6o8PDzg7u4u7hMRFAoFatWqhZs3b6a4fowxxlhmxS11mUxq+7B17NgRjRs3lky+LAR0AMSADgDCw8Ml5/br1w8FCxbE+fPnMXXqVNnyb926haFDh0rKAYCFCxdi4cKFqao7Y4wxlpFxS50KIpKsCsFSz8/PT5xrT1crqNBSp54mEI7JvV2zZMmCuXPnYurUqWjfvj1cXFx4JC5jjLFMhyMYFRmlP116UrRoUWzevBl+fn4680VERGg99uHDB/H25s2bAQAvXrwQp4ZRKpWYM2cOAODYsWNYvnx5KmvNGGOMWR4O6lToGq3JUm7IkCHo2LGjzjyOjo4aaZ8+fUJMTAxOnDghpgktcP369cP8+fPFEbcxMTGSc4XJlRljjLHMgoM6FbGxsbLpjRs3/rYVyYDu3btn9Dl58+ZF06ZNJUucCa+RMJhCfR4+gSF9B7W93sb49OmTScphjDHGUsuig7o3b97A2dkZjRs3RuPGjREcHJyq8rR9OR89ejTFZXIfvdTx9PSULNX24sULvH79Wtx/+PChePvp06eyZSxYsAAKhUISAEZERMDe3h558+ZNVf3y5s2L5s2bp6oMxhhjzBQsPuJo1KgRLl26hEuXLsHZ2TlVZQlzuKnLkSNHiss0dJWF0aNHp/g+MhvVOfgmTZok3hbW0wWAhg0bivmEkbaqo3GF2+rLwgmio6OhUChw/PhxvfW5fv26EbVnjDHG0obFB3XXr19HgwYNMG3aNNmRkXFxcYiIiJBs2qivnqBqypQp4u0OHToYXD/VlrqWLVuKt9UD0FWrVmlMAcLktW/fXrx94cIF8faoUaMk+Ro1aoQnT56I+5cuXcKjR48AJI+Y1UVo9d2+fbvB9SIi7NmzR+uPA8YYYwwA5s6dizdv3pi8XIsO6goWLIiXL1/iypUrCAoKwsGDBzXyzJ8/H46OjuJWtGhRreWpfhnv2bMHhw8fFgPF8ePHi8d0BQStW7fWeqx3797iKFDVYM/b2xsKhQIODg44ePAg9u/fr7UMpp16/7pPnz6hYsWK4n63bt3w3XffQaFQSC7V379/H0qlUnz9//nnH5QoUcLo+7906RJ69+6tcyUNxhhjmZtSqcSMGTPE1ZRMyaKDOjs7O2TPnh0KhQJdu3aFt7e3Rp6pU6ciPDxc3HRNraHaUtezZ09Ji5ydnR0AYOLEiWJgeOjQIY0ymjVrJt4WVlMQWggHDRqEIkWKYMaMGTh58qSYr0qVKuLtTp06SSbzFabt0EW1NYoZpmrVqpLb5cqVg7W1NZ48eYIRI0aIx/bu3YuZM2caVOaXL18AAKGhoSatK2OMsYxDiDXS4qqORQd1kZGR4u0rV67AxcVFI4+dnR0cHBwkmza6Lr/mzJkT3t7emDdvHiZNmoSOHTuidevWqFatmkY+waJFi8Q01fTff/8d1apV01kXwbx582QvKwvq1q2LggUL6i3Hy8tL5/G9e/fqLSMje/nyJQBIWvYECxYsEG/HxMRgxYoVsq+JMEHyli1b4OTklEY1ZYwxZgmISNIHXCDEGqrfI0lJSbJLZEZHRyMuLs7g+7TooO7atWuoUaMGGjRogPfv36e6KVOImuvWrSt7vEqVKrCxsUHhwoVx6NAh2NnZ4eLFiym+v6dPn+LBgwcpPh+A3suEfn5+ICLUrl1bZz65YMYQq1atStF5liQhIQFv375FWFgYJk2ahLFjx+L777/X2j/zxYsX4kTWdevWxdixYw26nw8fPmDXrl0mqjVjjDFzWrNmDSpXrgxfX19JumoL3X///Yd+/fphwYIFqFOnDvz8/HDw4EFkyZIFRITs2bOLqzIZwqKDujZt2uDOnTu4evUqtm3bBmtr61SVJ0TP//zzj8HnODo64sKFC/jjjz8AJPeVe/r0KW7cuKH33IIFC+K7776TPWZjYyPZl4vgu3btKq6koI2hbwZbW1vZ9EqVKgHQPjVLZlll7uHDhyhatChWr14NADh58iTmzp0rHg8ODhYvv6ry8vLCihUrEB4ejr179yIuLk58zh48eIDLly+LeTt16oS+ffumSf1LlCiBAwcOpEnZjDHGNAnTbH3+/FmSrtpS16NHD+zcuVO8WhQZGYklS5ZAqVSKjUYhISEG36dFB3WmJkTPxs4t16RJE+TLlw9A8iW4cuXKaW3tM1RISIikb1atWrXw5s0byZxt+/btg4uLi9jfT50xc7DJBXU5c+bEw4cPcfToUfj4+Miel1mCuunTp2sEbaoDM/Lly4fevXtLjqsOxvjhhx/Qq1cvZM2aVQzEq1SpIpnYOi2XqXv79i1mzJiRZuUzxlhm5+XlBScnJ3GFI+H7UX21KiGou337tpgmt765ah99Q3FQp0J4ovVNd6HrXFNNNuzg4IBcuXJJ0ooXL46yZctq5M2aNatkOpThw4fD2dlZ7NOnzfDhw8W+X+pz8eXKlQuPHj2CQqFAu3btUK5cOQCawZ/qII+M7P79+xppwpJl2giBPiD9paZtdLPw3lHtw2dKmSUAZ4yxb+3UqVNo164dwsLCxCt3hw8fBgBs3bpVkleu/75qUCfcVj8eHR2ttx4c1KlITWAmBIKpvQScUg4ODmjYsCEA4M8//0RQUBAGDx4syRMWFoYvX76IA0oGDRokBmmqrXqPHz9GaGgoihUrpnE/CQkJ6Ny5s7jfqFEjyfHUrL6Rkan2nXzw4IFsy6fwjyxMlizn4MGD6N69uyRN3/yLjDHG0labNm3Ey6Rz586Fn5+fePXly5cvuHfvHt69ewdA/6hXuaAOAH799Ve99eCgTkVKL78CQN++fTFz5kz06tXL1NUymraWRkdHR2TPnh3btm0DAJQtWxZ///03mjRpIsmna9AEEYl9DmfNmgUAksEibdq0keQfOnSoZP/jx48aZaZmxQ5LERgYKNkX+iqq0vaPrKpHjx7Yt2+fJC137txwdHTUeo7QQsctdYwxZnpyA9ySkpIQFRUFAMiWLRuqV6+OkiVLApBvqdu0aROA5D51qqsjqcqePbveunBQpyI1l1/t7Owwe/ZsrQMOvgUhKNAXlLq5uYGIkDdvXnTq1EmyKoM+1apVQ548efDo0SNMnz4dANC4cWMULVoUxYoVk9x327ZtMWvWLDGA2b59u0ZL5qxZszL9Cgx169aFQqGQzDe4d+9e8QNBlXrg16VLF73PHwdzjDFmGqGhoZIBbgD0DnDbsGEDgOQYIzQ0FPfu3dOat169elqPyQ3G00CZTHh4OAGg8PBwjWOnTp0iAPT27Vsz1MxwAwcOpLlz52qkt2jRggBQTExMisp99eoV+fr6aj3+7NkzCg0NlT2WlJRESUlJREQEgFTfWpUqVRL3hecfAH358oWIiKpUqUIAqGbNmpLzeQMVK1aM/Pz8xOdSSE9MTNR4rvz9/Sk4OFjM++nTJ6pZsybdvXtX4zVJjc+fP0vuhzHGMrLLly9TfHw8ERE1b95c47P0W34n6GOeDmDpVGpa6r6lLVu2yKZv3rwZO3fuRNasWVNUbqlSpXQelxukIVBtoQsPD8eHDx9k8wktde7u7mJTstC6qT7n36BBg8TH6uHhofUXTL9+/dCoUSMMHz5cZ/0t0bt37zBy5Ei4ublJRlD5+/sjW7ZskrxFihSBjY0N4uPjERoaiuPHj+P27duoXr26mKdgwYIICAhIVZ3y58+PhIQEbgFkjGV4/v7+aNSoEaZPnw4bGxtxxOratWsxYsSI9BcvmCqSvX37tqmKSlO6WuqOHTtGAOjDhw9mqFnGNWvWLPEXRnx8PAGgunXrisfr1KlDACgqKoqIiAYNGkQAaOzYsZJfJ9Dzy0Xb8Yy4nT9/nsqWLSt77N9//yUAVKJECa3Pl5eXl/jL01jqzztjjFmqffv2UUJCgtbjixYtIgBUqlQpjc/Sfv360Y4dO9JVS53JPpmLFi1qqqLSlK6g7vDhwwSAAgMDzVCzjEupVFJcXBwRJV+mBUC1atUSj9erV48AUHR0NBERRUVFUe3atenly5cpDuq+//57yf65c+cM/qfZvHmz2YO21Gzt27fXeTwkJIQA0NSpU3W+brt376bnz59rpHNQxxizRD4+PuTu7i5+H/3zzz8EgBYvXizJd+fOHZoxYwZt2LDB7J/nxgZ1Rl1+7dGjh2w6EWnMmGyJLOXyq6VRKBTiJVYrKyu0a9dOMjR74MCB8PDwEC/NZsuWTedatTly5JDtMGptbS1OCKw+IEP9UqWqv/76C//73/8Mf0DpnL5pZYS5jl69eqUzX+/eveHk5ITPnz9j9+7d6NSpE+zt7U1WT8YY+5bmz5+P69ev482bN0hMTBS77Kxfvx4TJ05EcHAwWrdujTt37pi5pilnVFB37tw5bN++XWMKCiLClStXTFoxc0jNlCbMcOpBx4gRIzB8+HCDpvQAvr5Od+/elazq8ObNG7x48QJNmjSBg4MDhg0bJhl1pK5q1aqoVKkSfvjhB+TKlSvVawdbCrn5GBMTE7F582YMGjRIskRdZGQkfH190adPH4wfPx5LliwRj/Xo0QM7duww64hvxpjlOnPmDCpWrGjU2qb6JCQkwNraWvb7ZPv27QCS52Lt0qWLmP7ixQsAwJgxYyw6oANg3DWUzp0706VLl2SPtWrVypiizEbX5VehL1JYWJgZasbkQKXJ+YcffiAAZGtrq7MZesOGDeJrWLJkSQJAt2/fJgC0YMECAkD58uXTel+WfvlV37Zt2zbJpdo2bdpIjm/dupXu378vPtdPnz4lADRo0CDJ8wSAbty4karXNyAggJRKZarKYIxZJgBUpkyZFJ3bvHlzypYtm2yZEydO1Hp/lr7pfU5T9GymI+PHj6f69etTnz59xOvkuugK6vbs2UMAKCIiIi2qylJA9Y2sVCopNjaWrK2tDXpzq1IqlbR7925KSEggAOTm5qb1vs6ePWv2f9z0tC1evJgA0IABAyTPEwDy8PBI8Wsr9O1bsWJFistgjFkuAJQrV64UnwuA6tevTz169JCkFyhQQCP/1atXzf5ZaopNH4u+znjv3j0EBgbi6tWrqFixosZM+8biy6/pm0KhgJ2dXYomK1YoFOjVqxesra1x6dIlnf3O3N3d8enTJ3G/bt26Bt9PhQoVjK5bejdx4kQAwPv37zWOJSQkyJ7z5MkTBAcH6yxXWELH09NTb15VZ86ckb2czhizPLq+bx89eoRy5crhv//+05rn2rVr+Pfff/HmzRvxkmtgYKC43uqKFSuwevVqNGjQwLQV/4YcHBwAACdOnNCbN8XRi7ZFyb+lGzduoGXLlgCA1q1bw8PDI1Xl8UCJ9Of169d49OiRJG3v3r3o2LFjists1KgR8uTJo5F+7tw53Lx5E/b29sidO7eY3qpVK/G2arAnp3DhwimuV3p3/vx5jWVqtm/fDk9PT0nfRiB5qTlXV1eDyj169Cjy5csnux6uusuXL6NVq1YaC2QzxtKfoKCgFK9zCiSvYPT8+XP06NEDr1+/1lmO+jyrgwYNwpgxYzB27Fj89NNPhlc6HRo9ejSISGMZTjkpDur69OmDZcuW6cxDaTw5aVhYmBjBOjo6yo7AjYuLExc817fwObfUpT8lSpTQWCe1e/fuOHTokMnvq1mzZqhVq5a4X6xYMQDJAyoePHgADw8P5M6dG1OmTNFaxpYtW/QuGWPJhJGzAicnJ7i5ucHGxgZv376VHFNf7zYgIEA8PyYmBpGRkQC+Ln2jfr4c4X88KCgoZQ+AMfZNJCUlIX/+/Pjtt9905lP9oXz//n1UqFABcXFxACD5sViqVCmdLXZy8cbKlSuNrXa65O7ubnDeFEcvR44cwaxZs/Dzzz9rPJlJSUnYsmVLml+KcnJyEoO0sLAwSeuKYP78+XB0dBS3okWLai3PwcEB5cuX56COAUgO5oDktXK/++47uLm5Afg6LF6uVa5w4cJaV/zIiFT/50qUKCFp1QSSf1StXr0asbGxKFSokHi8evXqqFatmtH3J/yq1xVYM8bS1vPnz1G+fHmda5EKjSQ7duwwqMyFCxeiatWqePr0Kd69eyeb5+rVq3B3d9dYe9WS/Pzzz0blj4mJwffff2/4CSnqofj/vL29qUiRItSpUyeKjo6muLg4+uuvv6hEiRLk5OREM2fOTE3xet29e5f69u1LRERz586lXbt2aeSJjY2l8PBwcfPz8yNAfqAEY6oePXpEbdu2FddZlZM7d27ZTqxys49nxK1q1aqyHXmF28JqIePHj5c9rrodP35c8tyuWbOGAFBQUJCYdvDgQYM7DDPG0obw/3z16lWteWbPnq3zf/XOnTvi8TFjxkg+C06dOkW+vr5m/3xLi23y5MlG5TdWqj8Z/f39ydXVlVxdXalQoULk7OxM8+bN+2YjSE05+pUxY+3Zs4dq1apFS5YsoRo1aojprq6uBID+/vtvUigURv/jL1261OwfPindVD/Mha148eLibWEEsvqmHtQJ6aVKlRLTOKhjzPy6detGgObI9VevXtGePXuISPrDLS4uTuP/u1OnTmb/rEqrTf3xq243btwQbzs7OxMA6tq1K4WHh1PHjh1lyzJGqj4Zw8LC6Pfff6c8efKQvb09ZcuWjR48eJCaItMcB3XsW3j79i3t2LFDvH3+/HkKCAigli1b6vwwsLGxIQCUmJgoTiWS0TZhjWX1TVtQp/rBdujQIUnasmXL6NChQ9/uhWUsE1MqlfTo0SOaO3cuAaCDBw+KP+I+fvyoN6hZsGABvX37lhITEzWWcrT0TfUxExE1a9ZMI09oaCgplUpx/86dOxQcHCw2SG3cuJEA0IgRI2jIkCFUqVIlo1+jFAd1U6ZMIUdHRypVqhStW7eOvnz5QgMHDqR8+fLRzZs3U1psmuOgjpmT6nq2AGjUqFGSfS8vL8mEvub+oPqW23///UfLli0TF9dW/8Ak0gzq1I8zxtLOpk2bCEheyB6ApOVcmD8UAOXMmVPr/7mLi4vZP2tMvU2YMIGIpJ9HUVFR5O/vL8kXGhoqPpchISEaz69SqUx1bJLiT8Py5cvT1q1bNfobTZ8+nbJnz55ufz1zUMfSAycnJwKkqzsA0OhCoP7hcezYMWrfvr24/+eff5r9A83UW/PmzSk+Pl6SFhsbS0REhw8flnxwCreDg4Pp77//1nie4+LiKCkpKe1fUMbSuR07doj9zjds2EBTpkyRzRcdHU0AaOfOnRrHRo8eTUDyijwAqEWLFmb/vEgPm0B9n4jIxcWFihcvTnny5BF/sKalFAd1upb2+eeff8jOzo5WrVqV0uLTDAd1LD0ICwujt2/fklKppCtXrtAvv/yi8WFAJA3qVIMTIU14P2f0be3atXT+/HlJS93du3c18kVERNCpU6fI1dVV/JU8dOjQb/nSMpYuqQYccsGH4NOnTwSA2rRpI0kXltHMLFurVq00flxq2wRXr16lP//8M+1eRAOk2XWLEydOUM6cOdOq+BTjoI5ZEuFDY9iwYbLpqrdPnz5t8AeWcBnFUja5/ikFChTQSJMLcm1tbbU+v0OGDKHx48dL0qKjo2n16tWyP1wnTpxIjRs3NsEry5hhoqOjKTY2looUKUIjRozQmffKlSsUHBwse0xXMKIqLCyMgOQWcyKi06dP04kTJ6h58+Zm/xww9Xby5Emtx+bNm0dERG/evNE7Ejc9SdPa3LlzJy2LTxEO6pglET40Ll++LEm/desWXb9+XcwzadIkSX5924YNG8z+gWrMJgwgUd0cHR010oRWBkM+dB0cHCTHg4KC6OXLlzRjxgwCkvs3hoSEUGRkpMbrwdi3AoCKFCli0HsPANWsWVPrMV3/F0FBQRQUFEShoaGyeTPipdbnz59rPbZgwQK9z196XCc+TWfZrV69eloWz1imUbt2bcl+zZo1Ua9ePQBAZGQk5s+fb3BZp0+fTvPVXkxNbo3Z8PBwjTT15coEDx48wPXr1/H69WskJiZi/fr1GqvLlClTBi4uLuKEqomJicibNy++++47o+vr7++PP//8UyP9hx9+SFF5LHPw8/MDoPl+9/f3l83/6tUrjXWsX716pZHv119/1XqflNy4g3z58iFfvnxaPxvOnj2rs+6WSNcSZcOHD5fst2jRQiNPzpw5TV6n1OKlExizAFmzZtV6LEeOHOIqKA8fPoSvry+2b98uyXP+/HmcOHECERERaNmypbjOMZD8JSAsy2Pp9u3bJ5tepUoV1K9fH6VKlcKUKVMwcuRIyfFXr16JQaLqcwMAb9680SjvypUrsveTmJiIyMhI9O3bFxMmTNAoa926dRprGTMGJP/wKFasGObPnw9bW1tcvXpV7znVqlVDhw4dJGnqQZm/vz/++OMP2fOJCHPmzJGsomRpP/hSQ271qNKlS+PFixcaK1SdOnXKIpYn5KCOsXTM29sbGzduNDh/5cqVUbJkSeTJk0eS/t1336FNmzbiL0vhg3vBggUoVaoUbG1tTVdpMwoODtab59q1axppbdu2FW+vWLECgO4vt0aNGsmmDxo0CA4ODmJLi77FzE0hMTHxm9wPS51NmzZBoVDItjoDX1vpdu/eDQC4deuW3jKF9ZOzZs2KJ0+eiOnR0dGIiIhApUqVcOfOHa3nt2zZUmNtVksP6urVq6f1/1OdekvdggUL4OnpCRcXF428VlZWsLOzM0kd0xIHdYylY1WqVMGQIUOMPq9169bYtWuXuK/+4SVcppRbv9aShYSE6M3j5eWlkfb8+XONNEPWgL527Ro+fvwo7u/cuRPA1+c7KSkJR48e1fiivHDhguR2w4YNJcdDQ0OhUChw+/ZtvXWwsbFB06ZN9eYLDw9HVFSU3nwsbezZswdAcsAl2Lx5s/hDRP3Sq42NjWw5b968watXr7B//34xLS4uDhUrVhT3s2fPjiZNmsDHxwdr167VWqdz585ppFn6Z8L69etx6dIljfQiRYpopFlZWeHZs2fi/uTJk5E3b16tZTs4OMDLywsREREIDAw0SX1Nzkx9+cyGB0qwzAQqAwhUPXv2jADQu3fvNPLKbcL8VMK2evVq8XaHDh00JtnMaBsRSWaCB5LXpAVA5cqV03gO3d3dCQA1bNiQANCePXtkyyQiqly5slheSEiIJM/YsWOJKHm+PdUBG3KvsSHvhYIFCxr+5mEm1bp1awIgjk6Ni4uTvHbq74+1a9fKpteuXdvs/w/m3oRlyrT9r8o9byNHjiRvb28CIK7ZLfxP+fj40NmzZ7/xOyJtcEsdYxlYWFgYtm/frtE/pGzZsiAiFC1aVExzcHAAkNyi8OOPP0ryr169WrJfunRp8fbhw4ct/te9PkSk8Zzky5cPAPDs2TMkJiZKBmlcv34dwNe+d7169dIo08PDAwqFQuxjly9fPvTo0UOSR+iT5+7ubnSn7OPHj4t9gA4ePAgACAgIMKoMS/DgwQN4e3trpCuVShw6dEj2cuLevXvF50QQEBCAc+fO4e3bt1AoFLh06RK8vLxQqVIlrQNwjHHq1CkAXy/JC5f5tZk7d65sR371fpqZkbW1tdHn9O/fX3wv9OzZE0SEHDlyAAAqVKiA5s2bm7SO5mL8M8MYsxiOjo7o16+fQXk/ffoEpVIJW1tbPH78GACwdu1axMbGauS1srIySd+bevXqwcPDI9XlpDV9l2JtbGxQqVIlo8pUvTwuUL0sC3y9nKx+GTY6OhrZsmXTWX67du0AJAekXbp0Mapuxpg3bx6aNWuGunXrptl96FKlShUA0Hg/bt26FUOGDMG5c+fQrFkzyTEhyFY9p3HjxpLL8KtXr0Z8fDx8fHwQGhoKZ2dng+oTGxuLx48fo0aNGjh48CBiY2MlgxmUSiWuXLkiGU36v//9T6Oc9+/fy5ava8SmpStWrBjevXunN5/q69a9e3esWLECBw4cQMGCBTXyxsfH4+LFi3B3d0doaCiA5KAuwzJXE2FqvX79mvLmzUuNGjWiRo0aUVBQkEHn8eVXxvSLiYmhDRs2SCbghcqljPPnz2ucAwMum6hu2bJlIyKiHDlymP1yjjm2//3vfwblu3jxouTS0pEjRwhIXmJO9XnX9nqovzbaKJXKFC2pBiSv+2mI+vXrU7NmzbQeP3z4MC1dutSgspRKpWQSbVV2dnZi+oEDB2TrDIDmzp1LREQBAQEaz3uPHj3EJfn0fb88ffqULl68KC6xBYASExNlX8+M3lUhNVtERIR4u0GDBlrz9ejRQ7zds2dP2dcEAPXp08eg91JGYtFBXdeuXY0+j4M6xlLGzc1NEmiok/vwTUxMpHbt2on7J06coIULFxIAmj17NhERTZ482exfJubYDA3q5s2bJ95Wf55V92NjY+no0aP05MkTse+QtnPk9OnTR+vxyMhIyWLkcq+7IfTlNaasmzdvyj6upKQkSbpqUBcVFUVjxoyRHNe21J5qUPfx40eDHtedO3fE20KfS94M31SfSz8/P5o5cyaVKVNGkufLly/07t076tixIwGgMWPGGPR+ySwsOqgrUKAA1a9fn6ZOnapzLVpVHNQxljLR0dE0ZMgQAuSDutjYWDp27JjGh7TqKg+enp7k5+dHZcqUkSxn1LhxY4M/+A8cOGD2Lx9TbKNGjTIon9CpG4CkJQhIDuT0na++QgARUeHChcne3l62JbZGjRoar62zszMBEFsJ58+fr3GeIYS8QpD09OlTmjp1qsZxAKRUKqlBgwbk4eGhUU5SUhJt3rxZkj8mJob8/f3pyZMnGu8XouSWPdUWHmF7+vSp3ufw/fv3Bj0u1ZVaatSoYfb3mCVtx44d0/p+2rlzJ+XLl08j/ciRIxQTE2PQey+zsNigLjY2lr58+UJKpZKGDh1K+/fv15ovPDxc3Pz8/AjgoI6xlBBa1eSCOqLkL87du3dTQkKCGDCoBhXaGDOiL6Ncvho5cuQ3uR/VoBCAZBRv06ZNaeXKlUQkDahu3rxJpUqVori4OHr06JGY3r9/fwJAOXLkEF874dibN28kr+mXL180Xmf1+8iTJ4/4vjhz5ozkuLCYev369Wn16tWULVs2WrhwISUkJFDdunU1Hqerq6vW52DMmDEaPziErWvXrnqfw5MnT4qP4dOnT9SkSRM6c+YMTZs2ja5fv27291J63jw8PHQe/+GHHySX/VXfE6q8vLxo8ODBWj9DWLJ0H9QFBASQu7u7xqY6RcOJEydoxowZsuf/9ttvsm8kDuoYM96kSZMI0B7UyRH6yTRt2lRrnqpVqxKQfLn23LlzlD17dkl/KdUtMTGRvv/+e7N/WaV2s7e3N8v9JiQkaKSpTq8BgLJnz04AyMfHR5JeoUIFAr72hySSBmozZ86kffv2iYF3vXr1JK+zat5du3aJt9UvmQLJ0+0AyUGd6jq9HTp0MMvz9uzZM3r37h0tX75ckr527Vqzv5fMsVWsWNGgfERE69atIwC0aNEisra2lhxfvny55D2SK1cu8TxmPIt95lQX0p0yZQpt3bpVNh+31DFmOkJQd+nSJYPPiYyMJADUvHlzrXmEudrUKZVKevbsGY0cOZKGDh1Ky5YtE4+pfjHcunVL9gulcOHCZv/ys4StevXqKTpv1qxZBn2pExHdvn1bkq4a1AktgKqbMK9bsWLFzP78qG6Z/bKqi4sLAaBWrVrpzNevXz+6cOGCxv/0q1ev6Pz58/TTTz8RADp9+rTk+KFDh6h169YGf74wKYsN6k6cOEHVq1en+vXrU//+/SkhIcGg87hPHWMp5+/vT61bt6bo6GiDzxFa6lq0aKE1jzC5sTFUv0DUW5oA0Jo1azT6oPH27Tcikh0UkllHPVv6lpSURE+ePKHevXvrzPfq1Su9/8N+fn5G/c8z/RREFr7Qm5EiIiLg6OiI8PBwcbJVxljaISKMHz8eo0ePlkxarCoxMREhISEoUKCAweWqztdFRBr7QPLySVmzZpU9f+HChXB2dk7RMmzMcG/fvkXx4sXNXQ1mIsL/Vs+ePfHvv/9qHM+ZMyciIiK+dbXY/+MVJRhjaUqhUGDp0qVaAzogeYZ4YwI6Q2mbef7gwYOYNGkSBg8ebPL7nDBhgsnLtGQc0FmmSZMm6TyuvrJFZGRkWlaHGYiDOsaYRdK24PnVq1fF21myZJFN79Spk97ytbXw6TNw4MAUncdYemFjY4Np06bpzFO7dm3x9uTJk8UltzLyiheWgIM6xphFWrZsmWx6/fr1tabb2dkZXH5K19hMybqUjKXGhQsXMHbs2FSVcfHiRfF227Zt4ejoiNjYWLi6uorpqoHc+PHj8ezZMzRq1EiyzBkHdebFQR1jzCKNHj0alDzYCwCQL1++VJeZPXt28ba2lkB99K0Ty5gpODk5ibebNGmCZcuWYe7cuQA01zY9duwYTp06JVtO5cqVASSvfSsQuhCo/whS7UNnZWWFsmXL4tKlSyhWrJgknZkPP/uMsQzB19cX4eHhGum5cuUSb+saFxYUFAR/f39x387ODv/884+kBQMArl27hlmzZknSpkyZIt5Oi76BjKkbOXIkAMDe3l5M+/XXX0FEKFy4sCRvmzZt0KpVK3H//v37YovylStX4OPjI8mv2to9btw48bYh7+3WrVsb8SiYyZlr2K258JQmjGUugYGB9OTJEyIiatu2Lal/7AGQpG3dupUAUMeOHcU0d3d3ST7VKVRKlChBL168IKVSSYmJiZIyU7IJ84Dxlnm3GTNm6Dzu5eVF8fHx9OLFCwoMDNR4z48bN06SX+69Lkx+ret/wVgfP36kuLi4FJ/PUo87fzDGMrT8+fMjf/78AIB9+/YhNDRUZ/4BAwagbt26KFKkiJh2+PBh5M2bV9xX7Tf0+vVr8bbqwIyUUCgUSEpKSlUZ2uzatQt9+vRJk7KZaXh7e6Nq1aoYPHgw5syZo3Hcw8MD/v7+Yt82FxcX2XLo/1ukt23bJnl/qp5jY2ODmJgYU1bfJF0gWOrw5VfGWKZhb2+PQoUK6c1XtmxZZMuWTdwXgrUWLVoA0N9vSBg5a2dnh/79+4vpnTt31nmeUqmU9E8CTDdFiurlt/Qsd+7c5q5CiugaLeru7o5y5crpPL9mzZqoUqUKiAglS5YU02/dugVPT09MmzYNbm5u6N69u966lCpVSixz5syZYvqHDx9w584dAICtra3ecpjl4aCOMcb0EFrm1P927dpVNv+FCxcAAKNGjcK2bdvECY7VR9T++eefGufu379fst+0aVPJfvXq1TXO0RYwvHv3Trxt7Jf4rl27JK2V30q3bt2++X0CyYMADh06hNu3b6NXr15Gnz9v3jzxdtasWSWPY8OGDXj69CnCwsIk/T6FwQl//fUXLl26JFtuzZo1UadOHUn5+owePRpeXl6oUKGCJL1gwYLipPs7d+5Ely5dDC6TWQYO6hhjTA/hcpbQYmdlZYXjx49j48aNsvnLli0LAOjRowcAiNNCVK1aVczTu3dv/PLLLxrn5smTB58/f8YPP/wAGxsbjVZBIsLChQvF/axZs+LYsWPivmqLUdGiRcWWL2EeMUP17t3bLJfTfv31V60jNXXR1xKmT6VKldCxY0fUqFEDo0aN0ppPCNY8PT3FAPzu3buSPC9evBDznTt3DuXLlwcAODo6SlYyEgY0uLi4SEZep5aVlZVk+hE5LVu21PgBwTIA83bp+/Z4oARjTNWcOXOoePHiOvMolUqaPXs2+fv7p+g+lEqlOJhi27ZtBIAuXbpEREQvX77U2UH99OnTkk7vnTt3pt27dxMA6t+/v5ivYcOG1KRJEyJKXm9XrgM91Drc79+/X2tnfCLNDvdpvX38+FG2riNGjKCTJ0/SgwcPyNHRUfbc1q1bp+q+VV27dk1yzNraWrzdo0cPAkBv377V+vwKr/nNmzdlX1Mh37179+iff/4hpVKpkefChQs0ZcoU2fPTiq73IbMMme7V46COMWZuMTExkn1dX6aPHj0Sjzds2JDCw8PFoG7ZsmVG3e/58+fFsr777jvJfatuwsjfhIQECggIIACUI0cOIiKKjY3VGhidO3dOvN2tWzdq1aoVhYSE0NKlSyX5ihQponHuly9fZJ8TLy8vyfMVExNDnp6eGucPHz7coODNycmJ/vjjDwIgBq3Dhw/XeH1atmwpnlOsWDECQAcOHKCAgACaNGmSbCBmaFC0cePGdBk8cVBn+Szi1YuIiKDatWtT9uzZ6eHDh2L6nj17qG7dutSkSRN69+6dQWVxUMcYS2/0fZn6+vpK9lMa1Mm5desWZc2aVdLCpB6w2NnZ0aJFi4iIKDExURIk1alThwDQwYMHiYjo33//JQC0ePFi8Xz1c9zc3CT73bp106iXrudEqVRqBGt37941KKhLSkqi69evEwD65ZdfKCEhgZKSkmTvRzjn1atX9Oeff+p9Li09KOrTp49F158RWUSfOnt7exw7dkzS8TQhIQFLly7F5cuXMWfOHNnh34wxlhGojoYEvg7UIB2TKRuqZs2aWLVqlaRs9aWeYmNjMXHiRABfR/4uWLAARISWLVsCSF7VAPg6IEN1uTTVqV7Cw8M1JrGtW7euUXVWKBRo06YNgOTRoU+fPkW1atWwZMkSMc+CBQtkpwaxsrJCrVq1MGzYMEyePBnW1tZaRzO3bdsWBQsWRKlSpWT7P2Y0O3fuNMl7ipmPRcxTZ21tDWdnZ0naixcvUKlSJdja2sLd3d1kw/4ZY+xb+/fff1G0aFGz3f+wYcMwbNgwg/IqFAokJCSIgdqMGTPQo0cPODo6AgDatWuHefPm4YcffpA938HBARUrVsTBgwexa9cuZM2aFe3btze6zkIgVqxYMXFAx/jx43Hr1i3s3bsXvXr1QvHixXH+/HmNc21sbPDPP//ovY/jx48bVae9e/emeq5CxlLDIoI6OWFhYZJRRNom7IyLi0NcXJy4HxERkeZ1Y4wxYxgy95iqVq1aoX79+mabTFi1Fc7GxkZcPxRIbpXTNWcbAMyaNQtdunSRnZ5Fla7HZ+jC8d9yBK8w2pkxc0lXQV1gYKDsHEVHjhzRmJDSyclJEqBp+3U0f/58zJ4927QVZYwxM8qVKxeuXr1q7mqkmLW1td6ATt9lQG2XoIW1foXvhO+++w6PHz/G+/fv8ccff6SwxoxZhnQV1BUoUADXrl0zKK+Liwt8fHwQHx+PW7duifNAqZs6daqkL0RERIRZL3Mwxlhm9OOPPxo9V54uwuVX9aBu8eLFqFOnjmTi5IoVK6JixYriiiCMZVQKspBekW3btoW3tzeKFy+OkSNHYtCgQdizZw9WrFiBrFmzYtu2bQYFaxEREXB0dER4eLjk8i1jjDHLcffuXQwbNgxeXl6wsbExd3UYSxcsJqgzFQ7qGGOMMZYRWcSUJowxxhhjTDcO6hhjjDHGMgAO6hhjjDHGMoBM16eOiBAZGYmcOXMaPM8RY4wxxlh6l+mCOsYYY4yxjIgvvzLGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQCZLqgjIkRERICIzF0VxhhjjDGTyXRBXWRkJBwdHREZGWnuqjDGGGOMmUymC+oYY4wxxjIiDuoYY4wxxjIADuoMdOXKFTx//tzc1WCMMcYYk2Vt7gpYgujoaDRq1AgAeIAFY4wxxtIlbqnT4/bt28iePbu5q8EYY4wxppPFBHWRkZGoU6cOcuTIgUePHgEA9u7dCzc3NzRt2hR+fn5pcr8PHz6U7G/cuBFXr14FEaFXr164f/++eOz9+/dpUgfGGGOMMX0sJqizt7fHsWPH0K1bNwBAQkICli5disuXL2POnDmYM2fON6nHsGHD0LBhQ8THx2Pv3r346aefAACXL19GkSJFcO3aNZPf57Nnz3D37t1UlaFUKhEfH2+iGjHGGGMsvbGYoM7a2hrOzs7i/osXL1CpUiXY2trC3d1do0VNEBcXh4iICMlmDIVCIZuelJQEALCyssLevXvRuHFjAMkBGJDc905uYMXTp0+RmJgIAAgICMCxY8f01qF8+fKoUaOGUfVWKpViHQFg9OjRsLOzM6oMxhhjjFkOiwnq1IWFhcHBwUHcVw1gVM2fPx+Ojo7iVrRoUaPuR1tQl5CQACC5ha5Xr14a6Rs2bEC5cuWgUCjw6tUrAMmXkCtUqIDZs2cDAL7//nu0b98eABAfHw8vLy/xMrJCoUD37t2NqiuQHFQ+ePAAnTp1grX113EwO3fuNLosxhhjjFkOiw3qnJycJK1uWbJkkc03depUhIeHi5sxfe/8/PwwaNAg2WN58uSRTReCS29vbzFt69atAIDY2FgAEPvhBQcHi3kKFSqEunXrwsXFRUzbt2+fJKjMnTu31n57b9++xaVLl1C+fHlUqVIFR48elRzX9vwwxhhjLGOw2ClNXFxc4OPjg/j4eNy6dQuurq6y+ezs7Iy+7NimTRsUKFAAW7Zs0ZpHW8tgYmIiqlevjnv37olpWbNmRe/evREeHg7g67Qotra24jmfPn0CAJ393kJDQ3H69GkMGTJE41jFihURHR2t9VwO6hhjjLGMzaKCurZt28Lb2xvPnj3DyJEjMXbsWDRq1AhZs2bFtm3bTHY/p06dSvG5iYmJkoAOADw8PHD8+HFx/9ixY3B3dxeDOvXWQ19fX63la+sTqCugA5L7/gFAq1at8OHDB619EAUxMTFYuHAhpk+fLrmMa4wGDRqgffv2mDRpUorOZ4wxxpjhFJTJZtONiIiAo6MjwsPDJX3yBB8/fkSBAgW+aZ3c3d1x/fp1cb906dJiPzw5BQoUgIeHB0qWLCmmaev7R0TYuXMn+vXrJ0k/c+YMWrRoofU+li9fjnHjxuHAgQPo3Lmz3sfg4eGBevXqSdKEOul6i/3999+YMWOG5FI0Y4wxxoxnsX3q0sr27du/+X2GhIRI9nUFdAAQGBiItm3bIjY2FklJSdi7d6/O/OoBHQC0bNlSNm+lSpUwYcIEcYSu8FebmJgYseVRtTXSUNOmTdN4/IwxxhgzHgd1aiZOnPjN79Pf39/oc54+fYr58+cja9asktG3xjh8+LBk/86dO/Dx8cGff/6p0cr2/v17zJ07V6PVLVu2bOII3sDAQDFd3+VdQSZrKGaMMcbSDAd16UBUVFSKzrty5YreljRhxK2cXr164e+//8a///4LAKhZs6Z4TD2oGz58OGbMmIH79+/DxcVFNhhTvQQsN3DlzZs3+Pz5syRNV1C3fv16nD17Fu7u7jofB2OMMcYsbKAEk7p06ZLePN9//73WY7GxsRg1ahSA5OlTVAkBWlJSEq5evQqlUgkAqF27NhISEvDw4UP06dNHcs7kyZMxZMgQ7N69W5KelJSELFmyoGTJkihQoAACAgLEY8Jo3xcvXqBMmTKS80aOHCnefvr0KapWrarxGL58+QIbGxueWJkxxlimxy11GdyFCxcMyvfff/9J9oWgbvHixWjYsCFOnz4N4OvkynZ2dnj8+LHknJCQEDx48EAj2BOWUgOSL9Fu2bIFM2bMAJDcJw8A5s6dq7N+M2fORFRUFIgIixcvFgdW5MyZE7Vr1zboMTLGGGMZGQd1TNaCBQsASCdRVqVtPr0qVapopK1du1ayP3jwYJ1B3MaNGxEWFiZJO3r0KP78808EBgZi0qRJkkDxwYMHWssKCgoSWw6VSiV69eolLuXGGGOMZSR8+ZXJ+vjxo87jjRo1Mqq8/fv36zy+bds21KxZE6dPn8bx48dx/vx5jTyJiYnipM/6+hJ++PABq1atgqenJy5duoTevXsjJCQEe/fuRUxMjMYgEcYYY8zScVDHUiQ0NNSo/N26ddNIW79+vWT/559/Fm+r98sDkgdVCH37hMmU1T169AgbN27Eu3fvcODAAXE5N0POZYwxxiwZTz6sRtskvnIqVqwIHx8fU1aP6fHkyRNUqFABQPLKG6VKlQLwdRSt8Pq5urpKLssmJibi48ePKFy4MLp06aK35ZAxxhizNNxkkQpJSUkICgoydzUyFdXLpkJAByQHc6rLran3s0tKShIDP/WWuj179uDkyZNpUV3GGGMsxQYPHowTJ04YnJ9b6lQ8f/4c5cqVM7is+vXr4+rVq2LrUNWqVTUGFjx+/BiVKlVKdb1Z6owePRo2NjZYvnw5ACAuLk5ce1d4/Xx9fdGwYUNs3boVTZs2NVdVGWOMMQDJ3082NjZaBydq5Oeg7quzZ8/KLp81ZMgQbNq0SZJWrVo1nDp1Cvny5RODgsjISOTMmVOSj4iMuqQrEOqoqnDhwkhISODWQRO4dOmSONhD/fWpWrUq7t27Z45qMcYYYyJD1lBXxZdfVaxbt87gvHfv3kW+fPnE/UqVKiFHjhy4evUqXr9+LclbsWJFo+tSt25d8XZMTAxy5syJJUuWSNJZyjVu3BiRkZF4/vy5uavCGGOM6SSs/KQPB3UqrK2/DgZ2d3fXOC5MmKvu+fPnuHbtGoDkS7IlSpRIVT3atm0rthi2bt0aWbNmRUREBHr16oWdO3emqmz21dKlS/VOenz37l0sW7ZMdoqV9+/fQ6FQ4OLFi2lVRcYYY5nI6dOnJaspCQICAgxaUpSDOhXClBcAcPXqVY3jPXv2lL2UWqZMGeTKlStF91m/fn3J/q5du3D8+HExwOzfv7/keI4cOQwqV25JrW/JmFZPc5k1axa2b9+uke7t7Q1XV1fcuHEDNWrUwC+//ILmzZtj6dKlkvnxhFa+s2fPapQRGBioc1JkxhhjmcuRI0e0TugvaNeunTjd15cvX8T0sWPHonr16nrvg4M6FcJqCCdOnJAEbz179gSQ3KfN0P5xs2bNwsSJEyVpSUlJmDhxIqZPny6m/f777wCS++gBQIECBQAYfv1cm/nz52P06NGpKiM1HB0dzXbfpvDw4UPUq1dPkjZ+/Hjs2bMH7969g4eHh/ga7du3DwqFQrIKRuXKlWVX1xB4enpiy5YtaVF1xhhj6cTbt2+hUCjw6tUrdOzYUfyuN4QQewgM6S7EQZ0KoXVLvZWrZcuWICKjWuN+++03LFq0SJJmZWWFRYsWYc6cOWJakyZN8PDhQ7Rp0wbA12Cue/fuqFKlClq3bq1RtjBPW9WqVTF+/HgAyUGcKnt7e9l5+AAgf/78AJLXcT137hyGDBli8OMylPA4li1bZvKyzal///4oXrw43N3dERkZCQB48eIFAEimVPn06ZPOctzc3DB48OC0qyhjjDGDXbx4EW/fvjV5uZcuXQIAnDlzxqjzHjx4gDt37hh9fxzUqVCfwFZOSkay7t27Vwy+5FSuXFljhEuhQoXg7e2N3Llza+S/e/cuIiIicPfuXSxZsgQBAQGYMmWKJE+ePHkkl5MFderUEZfaypIlC5o1a5YmKywULVoUAFC6dGmTl51eqAesCQkJqF27NlavXi1Jv3//vmStWlWnT58Wg0MAiI6ORkxMjOkryxhjTKumTZumuNtSQECA1mPC9+uNGze05jl69Ci2bdsG4GsMUKVKFdnvcL0okwkPDycAFB4ernHs8OHDBIA+fvxIREQAyM7OTpLn119/JVM8be3bt6fFixeL+15eXgSAPnz4kOIyARAA8vLyIiKiCRMmiGkAKDIykoiInJycJI/Bw8ODAFDBggUl+QHQs2fP6OLFi/TPP/9oHNO1ERH5+PhI6pUZt8jISMlzcvDgQQoODpbk6d27t/haWFtbk5OTU4rfA4wxxoyn+jltjKdPnxIA+u+//2SPb9++Xfb7kYjo6NGjNHfuXEl6lixZxH3hu1ruXK2Pw+hHYOF0BXWHDh0iABQUFERERM+fP6eAgIBvXcUU+/fff+n8+fPi/tWrV2XfDA4ODrJvDhcXF51voA0bNmgcj4+P1xrUCcwdWKWXTXguGjduLEmvX7++xnPFGGPs20npZ++5c+cIAE2bNk32+PDhwzW+Cz59+iS5T2Fbu3atQd8juvDlVxXqC76XKVNGHLhgCbp37y5ZCaF+/fqyAy6Ey6/a2NjYyKYPHToUlPxDAEDypVVteVXVqlULR48e1Zsvo3N1dQUAjX4buprYL1++jMePH+Ovv/7SOPbixQvJ67t3717Mnj3bRLVljDGmj74uWf/8849GmouLi+wl21GjRqW6PhzUqVAP6jKqhIQE2fQ9e/bgf//7n+yqGurWrFmDU6dOSdKEwRpdunSRpN+8eRPt2rUTB2gY69atWxppderUSVFZ5vTw4UMAmkFcfHw8du7ciSNHjohpnz59wrhx49C4cWNUrlwZo0ePFlcYCQ4OxtmzZ1G2bFnJCNpevXph1qxZ4j4RaX2tGWOMpZ4Q1MXExGDZsmWSz3dtgyNCQ0NRqFChtKmQ0W2NFk7X5df//vuPAFBoaOi3r1gaglqz7YABA3Q246r3AzO0/M+fP1PevHnp5s2bsvmSkpIoKiqKbG1tdTYvd+vWjQDQ3LlzqW3btpL7EDbhMWTU7ccff9RIe//+PYWEhFD27NnFtEmTJmm8DvHx8URENH36dAJAvr6+Wl87Ly8v8vf3N+h1ZoyxjMqY7zxVly5dknxOnzlzhmbNmkV3796lihUrmvy7Qe/jSMmDt2S6grq9e/dqPWbJChYsSP379xf3ExMTKSYmRuc5fn5+dPbsWYPKN/afQRiYIbf16tWLHj16RE2aNKGEhATxHCFAAUDPnz+n0NBQ+uuvv8wefKXVZm9vb1C+yZMnExHRrVu3JOm3bt0ihUIheW1CQ0NJqVQSEdHly5dp9+7dBIDy5Mmj9bV6//59hvuRwxjLHD59+kRTpkyhxMREOnXqFNnb21NiYqJGvk6dOqU4qLt8+bLeH+Qc1KUhXUHdnj17CABFRESYoWaWa/HixdS5c2eD879//54A0NGjRyk0NJQSExPp3bt3BIBWrlyp9Tz1N7VSqTR78GXubcqUKZLnRtgWLlwo2e/Xrx8BEEdcG/pBAYDy589v8GvLGGPpxdixYwlInhGiefPmBHydBUKVMUFTQkIC1atXj+7du0dERFeuXJGc3717d7MGdUZ3HouJicH79+810h8/fmxsUelOZulTZ2oTJkzAgQMHDM5fqFAhJCYmol27dsiVKxeyZMmCokWL4tmzZ/jxxx8NLkfoy1CqVClxZQ7g67q92bJlM7gsS6VQKCRLl6mmq9qxYwcA4MKFC0bfx8ePH1NWOcYYMyPhuzw+Pl5jLlhtTpw4ASA51pEbVBgUFAQPDw/xO0f9s/a///5Ldb21KVWqlN48RkUv+/btQ9myZdG2bVu4urrCy8tLPKa+RqklEl5sDurSXpYsWTTSypYtq3ckkbCahiqFQiFZes3V1RVRUVEIDQ1F4cKFUaZMGUn+yZMnp7DW6Y+VlRXGjRunkT5p0iTZ/Nqe34cPHyI+Pt6kdWOMsfRAdWUGpVKJmJgYbNq0CSNHjoSHh4ck7/fffw+FQoFs2bJh4MCBGmUJccLTp0/x22+/oUGDBmlbeRV79uzRn8mYpswqVaqIc7jdunWLKlasSDt37iQioqpVqxpTlNnouvwqTBKor78ZMw8ANHDgQI200qVLExFRnz59CACNGjVKkickJERsut69ezcRkaS/meo2Y8YMs19SNWZzdXU1Kr+2gScAqEKFCkREFBERQX369KGAgACDm/wZY8xcIiIi6PPnz5K0mzdvyn7ODRgwgLp06WLwZ2ZCQgLFxsZSbGwsvXnzht6+fWu2z/v79+/rfS6MapJKSEiAs7MzAKBmzZq4cuUK1q1bh99//z1Fy2elN8QtdenakydP8Pfff2ukN2vWDAAwd+5cAEC5cuUkx4X3ZuvWrdGrVy8AX+cD2rp1K5YuXSrmdXNzM33F09CDBw+Myq/r//TJkycAkpeY27VrFwoWLCge+/z5c8oqyBhjaax06dLInTs3Nm7cKKapdzVp27YtAGDbtm1GdRcqV64csmbNimzZsqFEiRIoXry4aSqdRoyKXvLlyyf5EsmTJw/Onj2LJ0+eGP3lYioTJkxAgwYN0Ldv31RfPhL61GWEADUjKl++PLJmzSpJ+/jxo7jWasmSJeHt7a2xzqpckC6kVahQQXL50pA5+izZ8ePHsWbNGq3Hp0yZIju3XZ48ebSe4+npKXsJmDHGvoXg4GAAwLBhw+Dp6QlAcz5QYZ5QY/n6+sqWZw6GxCZGBXXbt29Hvnz5JGm2trbYvXs3Ll++bFztTODevXsIDAzE1atXUbFiRezbty9V5ZUsWRK9evXiljoLki9fPsmqFlWqVNF4/RwdHTFz5kysX79eTKtXrx4AaEyILNfXzxApXQjaHHQNRlm4cKHWY6dPn5YdEPW///0Py5cvN0XVGGPMYG/fvtWY4NfNzQ1xcXGYNm2aJN3Pz+9bVs1sjIpeihQponXZLGHE4bd048YNsWWldevWGh0eASAuLg4RERGSTZuGDRti9+7dKf5iZ+mTQqHA7NmzUbRoUTGtd+/eCAkJQbFixTTy37p1SxLcrFy5UnKcZEZP2dramrDG6VPr1q1RuXJljXS+NMsY+5aKFCmCn3/+GY0aNUKrVq00jqe2gSe9WL16Ne7duyfum7ylTtX+/ftTeqrJhIWFwcHBAUBya4zcl8v8+fPh6Ogobqpf7Cxz03ZJsWbNmpg0aRKSkpJARJLLuUOGDAEAvHnzBgBQsWJFANqXXsuoiAi7d+/GixcvJGnR0dGylyni4uIwY8YMHmHLWAb16NEj8VJlWnv//j1WrVqltfWtX79+36QeaW306NGoWrUqhg0bZvA5KQ7q+vTpg2XLlunMI9eiYUpOTk5iy1tYWBhy586tkWfq1KkIDw8Xt8zSBMtST+4y/Lp16wB8DQiFARfq06Y4OjrqLb9Dhw6praJZdO/eHVZWVujTpw/q1KmDt2/fAkieNiB79uyYPXs2gOS58SIiInD79m3s3r0bc+fOFefLM9bnz5+xdetWkz0GxlgypVKJDRs2aMzJ5ufnh3PnzhlcznfffYfSpUsbdd/FixfHhAkTMH36dERGRurM++7dOxw6dAiLFi2S1D0j6tSpE3bu3CnuC4MzcuTIof/klA4hPnXqFDk4ONBPP/0kLj0kSExMpM2bN1O5cuVSWrxB7t69S3379iUiorlz59KuXbv0nqNrShOWeUHP1B26jt+7d49u374tGXqeK1cuyXlyW0xMjMFD2Tt37mz26VP0bRUqVCAAVK1aNXHVEGHqmIkTJxIAsrGxoYoVK9K7d+8Mfm0OHjxIdnZ2BIDCwsKMe2EZYzoJy2MCoC9fvojpBQsW1PjMe/nyJRElrxm9ZcsWyTFdn5Fv376l/fv3ExFRWFgYBQQESM4BQEWLFiWi5PhBWCIyMTFRXNarQIECZv+MS+3m6Ogo3v7+++/F23fv3hVvC8+TqoSEBLp8+bJBr2eqJqDy9vamIkWKUKdOnSg6Opri4uLor7/+ohIlSpCTkxPNnDkzNcUbZPz48VS/fn3q06cPxcXF6c3PQR2TM3DgQK0fSEREuXPn1nn83r17kn/eDh06EBGJgYyQ/vjxY/F2fHw81a5dW9zXNnceABo6dKjZP5CM2RYsWKDz+MKFC8UPdiKipKQkat++PXl7e2s8t6rnXb16NRWvMmNM3aZNm8T/r0ePHonpQppA+Iz777//NI7J5ReofuZ9+fKFChUqRABkl3kMCgqiBg0aiOUUL16cAFBoaKjZP9NSs128eJF8fX1p6tSpYtr9+/fp77//psDAQCIiWrRoEdna2qb69Uz1rKL+/v7k6upKrq6uVKhQIXJ2dqZ58+al2/VTOahjKSE3uaUq4QOvXr16BIA+ffpERF+DukmTJomtd25ubgSAkpKSKDIyUvwnL1GiBPXq1Uv2Q2H8+PFm/2BKi23AgAEEgKpUqSKmxcbGis/r/fv3Nc7p1atXmrzGwcHBdPToUZOXGxAQwJ83zKyUSiW9f/9e9phqUPf48WMxXUgTWsuOHj1KAGjOnDniMVVyaap51c/19PTU+dnw8eNHs38+mWIrU6aM+HwcP36cAJCvr68JX12pVM3dER4ejk2bNuH9+/d48eIFwsLCcP78eUybNg05c+ZMTdGMpSs5c+aEk5OT1uNC/7vKlSuDiCT9OxUKBRYuXIjQ0FAAwObNm/Hzzz9DoVBI+kgoFAqto5usrKyQK1cuEzyS9GXbtm0AgPv374tpjRo1wrt371C6dGnZ+e/0LZUTExMDhUKB3bt3G1WXbt26oX379rh06ZJR5+lTsGBBVKpUyaRlMmaM9evXo3Dhwvjw4YPOfHKfPwUKFEDhwoVl8wv98MqXLy+mzZs3T/wsmzFjhiS/6n7dunV11kV9uqn0rHnz5lqPeXt7i7fbtm2LmJgYlCxZMs3qkuKgburUqShevDi2bNmCP/74A8HBwejevTuaN2+OW7dumbKOjKV7wgeQ+jqA3bt3x969eyVp5cqVw4oVKzQ+QBUKBWrWrClbvpWVFTZt2mRQXcaOHWtgrdMnLy8v7NmzB76+vhqzwstRKBRYvHixuB8TEwPga8CoT0hICKZPn473798DSJvnz9/f3+RlMmao27dvAwA+ffqkM5/wmSSsLgMk/398/PhR/L9SXfM9KSkJsbGxePbsmZimug53ZqE+h+eaNWswdOhQLF68GNmyZZPkVZ9A3+RS2sRXvnx52rp1q9iJUTB9+nTKnj07HTp0KLWtiGmCL7+ytJLS9xT+v5m+bt26lJSURE+fPtVowp8xYwYRER04cEDjWI8ePST7s2fPFm9XrlzZ7Jcf0mJTf/7Kli0r7quu9ava8VsboT+l0KfR1dU1Ra+jvteXsW/F29tbcil1xIgRBEC2z+rmzZvF9+iTJ0+ISPcAL9Vt/fr11LJlS7N/Hhi7dejQQedxoV+ftq1ixYqyn0fp4X89xS11Pj4+GDBggMZEvXPmzMHy5cvRs2dPcfkmxjIDYc7ElDp48CCsrKxQrlw5PH/+HGPGjAGQvFrFpEmTAABt2rTROG/v3r1o2rSpuG9lZYVFixbB09MTd+/eTVWd0qvevXtLLq8+f/4cr169AiCd5qBNmzYICwuTLePChQuYNm0a4uLiAHy9hE7/PxWTn5+f3pYNZrksYW7Ju3fv4suXLzrzREVFaUwfVrVqVcklf0OXvtyxY4c4B6chRowYobGigyXQ1x1C23Rtzs7OOHr0qNgqZ2VlleZTtxktraLFEydOUM6cOdOq+BTjljqW3kDLrzthBKl6q7cwaGLv3r105coVIiLatWuXWM68efNkyxemHMlIW1JSksYvZrnBFTExMeLz8c8//1CtWrXEY23bttXIL4zMM8VnmLbXl5nP4cOHCQD5+fmZuypaeXl5EQBq06aNJN3Hx4e6du1KRMlTXQDJo8lVqb/nhJa6Bw8eiGm3bt2ipKQkSUtdZtisrKxoypQpOvN4e3vLpguzGgjPsUKh0Pm8m0OaLXLapk0bk3c4ZiwjKl26tLhShTEKFSok9uHr2bMn5s2bBwCyy+ZUrVoV3t7eWLNmTeoqm86oT5gKyE/q/PjxYzx8+BAKhQLDhw+X9Ps9ceKERn5hMEZkZCTatGkj6QidkJAAIkKuXLkM7ufIvj0fHx+txy5evAggbdcDDQ4Oll3lyNPTU5ywW5c6deoASO5o7+vri1OnTgFIXsVm//79UCgUYkvyyZMndZYltF4L7/WnT5+iVq1akol8MzJSaU3LkiWLbOta165dERQUhJkzZ+K7777DxYsXsXv3bhw+fFjM06VLF8k5AwYMkOwvWLAA48ePN3HtjWTWkNIMuKWOWYrPnz/TgAEDKDo6WpIutNSlZM62169fEwDKly+f1l+pqpNiAqC1a9ea/de1tu38+fOS/apVq8rmK1GiBI0bNy5V91W+fHmKiooiAGRtbU3A1wlTVfn4+Ej2hfPZt3P9+nUCQAcPHpQ9PnbsWAJA169fN9l9vn//nhYtWiTuQ6Yl5/Pnz3rfD58+fZK8r/PmzUvZs2cXz1F9T/72228EgBo3biwpQ/U+IiIiJOcMHjxYsi9MMpyRN9XnpFy5cuJk6MIUIwDo5MmTWl8TT09PWrZsmSQtNjaWkpKS9L8xvrFM90nDQR2zdMIM8Cmd6+jt27f09u1bjQ++n3/+mQDQDz/8IEl/8+aN2T+U08sWGBgo+4UhuHXrFgGgffv2iWly+Yxx5coVmjx5Mt26dSvFZWQ2wgS5qkGWKiHAN2VQ17p1awJAkZGRRKT5ukdGRtLff/+t9/3QpEkTg4ITuU14j6jmlxt4lZm2LFmyEBFRrVq1yMHBgT58+EATJkwg4OsPY7kBJJYqzS6/MsbSRo8ePRASEpLiuY6KFSumMcAJgDgPX758+STpxYsXF6cHcXd31zjv999/T1E9LNH69es10oRLwElJSeKcVPfu3UOnTp1kO6grFAps2bJFY6obVWPGjEHjxo0BAA0bNsTChQtRq1Yt8fj79+9x9OhR2ct7DOL7W9/aoPT/l+EiIiKgUChw/vz5FN+nMPCCtHScHzBgAH744Qe95ei6NKtv0MT06dM1LinLrWGd0Qnzf96/fx+JiYkAgJs3byI8PBwFCxYUXyPhualSpYp5KpoGMt+rzVgGkCdPnlSdr/pBX6JECQDJ/e4OHz6MX3/9FdHR0ZL8/fv3BxFh3759GmXZ2dml/dxL6cTMmTM10p4/f47g4GBMmDABw4cPB5A8AatqXxwAePHiBTw9PQEAgwcPRq9evXD//n18/PhRki8kJAQrV67E5cuXtdajSJEi6NChA/LkyaNz9F1AQAAUCgU8PDwMfozp0aNHj6BQKBAYGIioqCitIzQ9PT2RI0cOcUSztqBOCLZJZaQzAKMnrNZW5l9//aVxXK6P38ePH9GyZUvJYva6Rqrqm9TfyspK8sNLoVBkqr7twvMzYcIEHDhwAK6urrL5hgwZggIFCqBy5crfsnrfBAd1jGVinTp1wrVr1+Dm5oamTZuiQ4cOsLW1hb29vWx+uS+c0qVL621ByMgqVqyIfPnyYfny5TrzlS1bFm5ubpK03377DQUKFMCDBw8AAJcvX4azs7PWMuQGhkybNk0jbf/+/Xj58qUYSOjrSG9qly5dQpYsWRAbGyt7/MKFC9ixY4dG+osXLxAcHKyRfvz4cQCAh4cH2rdvr7WVet26dYiKisK7d+/01g9InkYI0JzORp+DBw9KVkFRLUOpVGL06NEa56j/7+zatQtbtmzB2bNnJS2EhtZBzsmTJzVa6kaMGJHi8tKrXbt2aQRs8fHx4lQjHTt2ROfOnbWeX7FiRQQEBKR6Gqr0iIM6xjIhoQUjS5YsKFy4MDw8PDQ+4JydnfHzzz/rLUuhUMhezmX6Ca15L1++BAC9o6CF4EbV5s2bMWnSJCQkJCAsLAwfPnxAt27dUKNGDTEIVL8EFxMTg6NHj5riIchas2YNlEql1nn+mjVrhv79+4v7u3btwqlTp1C2bFlUrFhRI79qwCSMXBV07NhRDJhsbGwAJH/Byzl16hQUCgWsra0BQAwChPP1Xa4VdOnSBVWrVkVISIiYpt76p5ru4+OjEdT17dtXfFzCJcKJEyfC19fXoDpkZkQkvsYTJkxA586dYWNjg6JFi4KIULVqVfNW0Iw4qGMsExK+eHRd6gkKCsKKFSu0Hp8yZYreMtSVKlVKvC1ciswoVCeANlbXrl3RqFEjvV/o+/fv11hy7OPHj1i8eDHOnj0LJycncZ3OiIgIMUhRD+omTZqEDh06ICgoCEDyOt579uzBxYsXERgYKLZgpdT+/ftl0+Pj48UARvDgwQP07dtXnFhbCJTCwsLElj5tAVN8fDyOHDki7qv3pVPPv337dgBf+4+ePn1aUr664OBgja4IqpydncXJrYUyatSooZHv5MmTsvchXHYV1itesmSJ1vtKD7Jnz27uKgBIfl2FS+yLFi3CgQMHzFyj9IODOsYyIW1f9vrkzZsXrVq1wsOHD9G7d28A0LperT4FChTA27dvMWrUKLx9+9bigzxD1qnV5cqVKxppZcuWlexv27ZNY31hgXqwBHy9XKvakurv7y+u9lO5cmUsWLAAo0aNQu/evdG0aVMULFgQXbp0gUKh0Np389mzZ+Ki7XKEYEp91QY7OztJ0KNQKPD333/LluHk5AR7e3uULVsWUVFRAKCxStF///0n3vby8hIfp/C41RewF973QjCnWg/V44J8+fKJwfrPP/8Ma2trcf441XoCX/+XXr9+rfFYEhISZJ+rOXPmAAC2bNmicSw9krvUbwqurq5YunQpAKBatWpi+nfffYdXr15pDDAhInG9bWN+VGYK33q4rbnxlCaMkTjf2vHjx01WJrRMKVC4cGHxtuo6kW/evDG4DN70b3LrAh85coSAr6uM7Ny50+hy9b3WRMlzoV25ckWct0s4Jqx8YOzr++XLF8l+165dNfIIqymobiNHjiQA9Ouvv8rWv2fPnrKPb8OGDQSA+vXrR0RE58+fp+7du4t5Bg0apPc5ateundbjM2bMMPv7wxTb8+fPTVpegwYNxNcmPj6edu7cSR8+fBCPu7m5ERGJ8/EJ27Zt2+jjx4904sQJ4z6kMgEO6hhjJpGUlCQuR6S63b17V7wdFhZG+/fvpxkzZpBSqdQoQ9uHf+fOnWW/kHn7ugnzF6puBw8eJAA0f/58evjwIXXp0sXocgMCAqhDhw7k7e1N165do9WrV0uOnzx5UpywOm/evJJ5DYsUKWLQ66u+NWvWTG+eBw8eaD1WuXJl8TZR8uSxRCT5gSFsnTp1kuy/ePEiRRPytmrVyuzvgbTeDH0NfX196dKlS7JL8Klu9+/f1/gMEH5wAiAvLy8iIjp69CgByT9OANDp06dN+tmVkXBQxxgzmT/++EPyoZ2YmEhEhk/Aq3ruwIEDCfi6rmXv3r3N/qWWnreOHTtqpO3fvz/V5T5+/JgAUNOmTY0+t0CBAuJrq7qawrfc/v33XwKSV10w92tkKZu9vT1t375dI139f1R9U5/s+fTp01rz1q5d26jPlk+fPpFSqTTphNEZEfepY4yZjPqUG8b22RP6L7Vo0ULslC2su6qtrIIFCxpbzQxJfV48IHlkYGoJ/dkoBVNtREdHY/fu3ahWrRpy586d6rqkRI8ePQAgU83XllpDhgxBv379cP36dYPyC/PyjRkzRpLesmVLre8bY99PuXPnhkKhQL169Yw6L7PhoI4xZjJCR/PWrVsDML4T8+nTp/Hu3TscOXJEY8RjSjpEN2rUSCPt+++/N7ocSyXXad9Ywhe1MA2IMSIiItCnTx9xpQ1mGYT/OV0B1JMnT3Dq1Cm8efMGo0aNAhHB1tZWNu/o0aOxb98+lClTRkxbtmyZaSvNAHBQxxgzISGoGzNmjOSXeEhICN6/f6/3fGtraxQtWhRZs2aFnZ0dAO3BXOfOnXHo0CEMGDAAQPLcYYB02bJjx45pLAH0ww8/oHjx4kY8qsztxo0bAICzZ8+auSYsrXl5eenNU6RIEQBA+fLl0apVK4P+l1avXo2uXbvi9u3bAJJb3eSWHGSpx0EdY8xkhGk11Ft18uTJg0KFChlV1m+//YZ58+aJUxw0bNgQAMQpMOrVq4eOHTtiwYIFSEpKwqBBgwBIg8AcOXLg5s2b4v7nz5/Rrl07cfqE+fPni+tEMmaJfv31V63HunbtiqioKAwZMgRXr14VJ2fWxpBJxO/evYtHjx4ZXU8AcHBwwLJly3D37t0Unc/046COMWZyKblUp87BwQHTpk0Tg7Rhw4YhJCQEefPm1chrZWUlzltVokQJtG/fXlxuS/WSkPpyUFmyZMGLFy9k73/u3Lk669evXz8jHxFjqSP33hd+zMhxd3dHtmzZsHHjRtSvX19vH1fh8ujAgQO15nF2dkalSpUMq7CMsWPHckt5Gkr9Jy9jjP2/SZMmAYDWCXJTQ30yXPXLsrVr18atW7dQo0YNrQGX3FqPBQoUQN++fbFz504x7c2bNyhevDguXrwoWZcTSF4Vw9fXF+PGjZNdv5Sxb8nFxcXgvHJBXYMGDXD16lUAyf8f6gMYoqKi8OHDB61Lr7H0hVvqGGMm4+DggLlz56bpWrBCi1zRokU1jtWsWVPngAptx9S/7ISy5UZsCqNxU/sY1VeLYBmPoaNHDeHk5ISpU6fqzDN48GCdx9VHpwPJK5lUr15d6znZsmWDi4uL7Jq8LP3hoI4xZlHq168PLy8vdO/e3WRlqgd1wr7wJejj44MWLVoA+LpYvLb+SYaM0o2MjDRJXz71xe1Z+iLXitaqVSvZJeFUlShRQrasX375BVevXtXap03bkmsCba1tly5dMslIaWZ+HNQxxixO7dq1TbLmo1CG6nqTqoSgLleuXDhz5gyICCNGjECuXLlQsmRJjfxFixYVA0JhNC6QvManMGfcoUOHkCNHDtmWvpkzZxpc98ePH6Nx48YG5zfWoUOH0qzszEJ9LVkgecBPgwYNJJf7AWD27Nnw8fEBkDyyVCCMEhW6NNSvXx+VKlXCgQMH4OHhISnD1tYW/v7+ePjwIQCgXbt2svXatm2bZD9nzpyygSSzPBzUMcYyHfW5737++Wc8f/4c2bJlk+QTLsNmzZpVTHNzc0NoaCjs7e01FrwvVaqUWPb+/fvF9F9++UUM9hwdHbXWS+iAXq9ePYSGhiI2NlY2X1pfDouNjUXHjh3TrPz0qEKFCiYvU+5ypzCIqE+fPvDz8xPTJ0+eDHt7ewDJQVZsbCyICG3btgWgOedi586d4ebmplF+4cKFUblyZRCRZF44Vf3798ft27dx4sSJlD0wlm5xUMcYy3TUgzqFQoEyZcpotKwsWrQI586dg5OTk2w5/v7+kn0rKyvZKSZsbW3FS3FCWeqrPdy8eVMMHr///nvkypULdnZ2uHHjBu7fvy+ujKBa79QaP368uIqHKn1TX2REaXEpW/XHgEC1hVaY8w1Ifu8Ix4hInKdR+GEh9CWVY2Njg1GjRumtT6lSpcTbNWrUQJs2bfSewywLB3WMsUxH2yoV6h3G7e3t0axZM63lqH9pW1lZ4ffff9cYQZglSxYMGzYMN2/eFCdDVg3SAKBWrVribdV61a1bF66urlpn6wcgeynYEEuWLJG0Tnbt2hVKpdLo5d2+tT///NOk5ZUtWxb58+fHx48fTVbm/fv3kSdPHri6ukrStQ2wsbKyEp931R8X/fr1g6enJ+rUqaP1vuLj48WlunQx1Y8Bln6l7//c/xcZGYk6deogR44ckg6ie/fuhZubG5o2bSppxmaMMUOof8mdOHHC6IlVVb9s1ctbtWoV5s6dC4VCAYVCIQncVAnzgulaEu3HH39Ezpw5AQD58uUT0x8/fiyZYFlf60vp0qUlo3pVLzv+9NNPkvvet2+fzrJSQrV1Sp0hq47MnTsXv/zyi9bjwiVMOfPnzxdvC/3XgOT+bID0eSUiJCYmSlYoMdQvv/wiBnPqI6i1zeEovEcAaVCnUCh0BnTGkFs2j2UwZAESEhIoKCiIBg4cSA8fPiQiovj4eKpduzbFxcXRtWvXaPjw4QaVFR4eTgAoPDw8LavMGEtHHj9+TOfOnRP39+zZQwBo2bJlqS47NjaW/P39CQC1aNHCqHMBkL29vbj/6dMnKlWqFL1580brOdu2baOPHz/KlgWA4uPj6fDhw+K++hYZGUmvXr2igwcPEhHRx48fxWPa6mjM1rx5cwoMDNR6vH79+pL9z58/S+5fX/nz5s2TzTdw4EACQJs3b6b4+HiN4yEhIUREVLlyZfG+Tp48SUFBQbKPV6BUKunNmzf066+/EgBas2YNLV68mLJlyybmvXjxIp0+fZqGDh2q8fwFBATQjh07xLzr1q2THC9VqhQBIKVSKb4WPXv21Pr6p0ZcXBz5+fmlSdksfbCIoE6gGtQ9fvyYBg8eLB6rW7eu7DmxsbEUHh4ubn5+fhzUMZbJhYeHU4sWLSg4ONgk5YWGhhIAatmypVHnqQd1qaEajLx48UJrUBQTEyM5Tz2o0lau+jZlyhTZ9AEDBhBRcjAjF8y5ublJ0tXrXrt2bQJAx48fJwA0YsQISf65c+cSEdGFCxfIw8NDTH/58iUBoNevXxMR0ezZs8nJyUnjcQcFBdGNGze0Po/C/asLCgqiPn36iOUEBwfTo0ePaN68eaRUKg1+fc6cOSNJd3V1ldzfsmXLTPa+ZJmPRVx+lRMWFiaZHV5ulBGQ3Nzu6OgobnITljLGMhcHBwecOXNGdtmllCAdl011WbVqFW7cuGGSOqhycXHBqVOnJGlTpkzB06dPNfoBGlpnYV1fAPjrr7/Qu3dvAECTJk0k+YR+YQUKFMD9+/exefNmEBFWrlwJAKhSpQqmT58uOUd1JO/169cRGxsrjhIWBpaMHDkSwNdl35o0aSKO/hw8eDBKly4NIhKn5pg5cyY+f/4sXo4VHrezszPq1q2r9XEK96/O2dkZO3fuFMvJmzcvKlWqJFnKzhDCfIfajB071mTvS5b5pKtlwgIDA9GtWzeN9CNHjmj0S3ByckJERIS4r63z6dSpUyX9LyIiIjiwY4yZVI4cOWBjY4Nx48YZdd6PP/5osjrUqlULt27dEvfr168vOW5tbY1y5cppnKdvnd7ffvsNly5dEj9jXV1dMWrUKMTHx+OHH35A165dJSNHVQdZuLq6in3LypYtC2dnZ4wcORJVq1aVrK177do1BAUFifWxtraGm5sbfv/9d4wbNw4LFiyAUqlE6dKl8dNPP0nqR2qDUtT5+fkhLi5OZx5Vwv2b2pMnT2RHsLq6uuLBgwcmvz+WOaWroK5AgQK4du2aQXldXFzg4+OD+Ph43Lp1S2OEkcDOzk4cGs4YY2nBxsbG7GtjXrx4EeHh4eK+ocuY6VvZYtasWeLtU6dOoWrVqgCSW8zWrl0LIsL69etx5swZ7Nu3D87OzrLlZM+eXQzcAODs2bPiwu5OTk4a08ZYWVlhxowZkv2JEyca9JhUqc8laC6qEwqrWr9+fYoeF2Ny0lVQp0vbtm3h7e2NZ8+eYeTIkRg0aBDGjh2LRo0aIWvWrBozZDPGWGaSPXt2ZM+eXdw3dlqSvn376s3TqlUrjTSFQoHhw4fj/9q716CozvsP4F+XOwIrICIIXriKiIo3XFhAEAEBcdpxEo2TNtNpmrzpTNrYTJ3pNM1MG/umnXYm7YvkhW0nTdpM+sJFUC4KykVA7uGiICiiIIi47MplF5bn/8Jw/hDvZuFwdr+fmWd2j+yyv/WBw3ef55znHDhwAF9//fVjS7U8zew1dO2dm5vbUwcliF6WYkLdk1a+PnLkCI4cOSJDNURES9vsSF1QUNBjiyR/15MuZ/WygoKCnjsVSkQLSzGhjoiIXpyDgwOqqqpw7969517yi4vSEtkGxZ79SkREz6bRaJ65GC8R2RaGOiIiGxYfH4+0tDS8++67cpdCRAtsmbCzgyAMBgPUajVGR0fnrXNHREREpGQcqSMiIiKyAQx1RERERDaAoY6IiIjIBtjdMXVCCBiNRnh6evI0fiIiIrIZdhfqiIiIiGwRp1+JiIiIbABDHREREZENYKgjIiIisgEMdUREREQ2gKGOiIiIyAYw1BERERHZAIY6IiIiIhvAUEdERERkAxjqiIiIiGwAQx0RERGRDWCoIyIiIrIBDHVERERENsDuQp0QAgaDAUIIuUshIiIishq7C3VGoxFqtRpGo1HuUoiIiIisxu5CHREREZEtYqgjIiIisgEMdXPU1tbiF7/4BWZmZuQuhYiIiOilMNTN0dHRgb/85S+wWCxyl0JERET0Uhjq5lCpHv13MNQRERGR0jDUzeHg4AAAnH4lIiIixWGom2N2pI6hjoiIiJSGoW4OTr8SERGRUjHUzcHpVyIiIlIqhro5OP1KRERESsVQNwenX4mIiEipGOrm4PQrERERKRVD3RycfiUiIiKlYqibY3akjtOvREREpDQMdXNwpI6IiIiUiqFuDoY6IiIiUiqGujk4/UpERERKpehQZzQaERcXBw8PD7S2tn7v78eROiIiIlIqRYc6Nzc3nDlzBocPH7bK9+M6dURERKRUig51jo6O8PPzs9r34zp1REREpFSOchew0EwmE0wmk7RtMBie+tjZkbqf/OQnUKvVcHBwgIODAxwdHR+7dXNzg7u7O9zd3aX7c//N3d0dK1asmNfc3d2xbNmyBX/PREREZH9sPtSdPHkSH3300Qs9dvPmzXjnnXcwOjoKi8WC6elp6dZkMknbU1NTmJycxPj4uNQmJiYwNjb2zFE+JyeneSHP29sbq1atmtf8/f3nbbu6ulrrv4KIiIhs2DIhhJC7iO/rrbfewvHjx7F58+bHvvakkbrg4GCMjo7Cy8vLqnUIITA1NYXx8XGMjY1hdHQUer3+qW1kZAT37t3D4OAghoaG8ODBg8e+p5eXF4KCghAUFITg4OAn3lr7fRAREZHyKD7UZWVloampCevWrcM777yDt95665mPNxgMUKvVCxLqvi+z2Yx79+5haGgIQ0NDGBwcxN27d3Hnzh309fXh9u3b6Ovrw+DgIOZ2m5eXFzZs2ICQkBCEhoYiNDRUur927Vo4OTnJ+K6IiIhoMSg+1L2spRzqXpTZbEZ/f78U8vr6+nDjxg10d3eju7sbvb290hm8Dg4OWLt2LUJDQxEWFoaoqChs3LgRUVFRCAoK4jF+RERENoKhzgZNT0/j1q1b6OnpkYJeT08POjs70dnZKU1HL1++XAp4s7dRUVEICwvj6B4REZHCMNTZGYvFgps3b6KjowMdHR24evWqdF+v1wMAnJ2dER0djS1btmDLli3YunUrtmzZYtXlY4iIiMi6GOoIwKOTPIaGhtDe3o7W1lY0NzejpaUFra2tmJiYAAAEBATMC3nbt29HZGSktBQMERERyYehjp7JYrHg+vXraGlpkYJeS0sLent7AQAeHh7YsWMHdu7cKbXQ0FAeq0dERLTIGOrolTx48ACNjY2oq6vDlStXUFdXh5s3bwIAVqxYMS/o7d69G8HBwQx6REREC4ihjqxmeHgY9fX1qKurk9rt27cBAGvWrIFGo0F8fDw0Gg1iY2Ph4uIic8VERES2g6GOFtTdu3dRU1ODqqoqXL58GVeuXMHk5CRcXFywY8cOKeRpNBoEBATIXS4REZFiMdTRojKbzWhqasLly5eloNfX1wcAWL9+PbRaLZKTk5GcnIywsDBO2RIREb0ghjqSXV9fnxTyysvL0dTUhJmZGQQEBCA5ORlJSUlITk5GVFQUQx4REdFTMNTRkjM6OorKykpcvHgRFy9eRF1dHSwWC/z8/JCUlCSFvJiYGC6nQkRE9C2GOlryHj58iMuXL+PSpUu4ePEiampqYDab4e3tjdTUVOzbtw9paWmcriUiIrvGUEeKMzExgdraWpSWluL8+fOorq7G9PQ0goODkZaWhn379mHfvn1YvXq13KUSEREtGoY6Ujyj0Yjy8nKUlJSgpKQE33zzDQAgOjoaaWlpSEtLQ1JSEvubiIhsGkMd2ZzBwUFcuHAB58+fR0lJCXp7e+Hg4IDdu3cjIyMDmZmZ2LlzJxwcHOQulYiIyGoY6simCSHQ09MjjeKVlJRAr9fDx8cH+/fvR2ZmJjIyMrhGHhERKR5DHdmV6elp1NbW4ty5cygsLMSVK1cghMDWrVuRmZmJzMxMxMfHw9nZWe5SiYiIXgpDHdm14eFhFBcXSyFvcHAQHh4eSE1NlULehg0b5C6TiIjouawe6nbu3IkdO3ZIbcuWLXBycrLmS3wvDHX0NDMzM2hubpYCXmVlJaanpxEREYHs7GxkZ2cjMTGRo3hERLQkWT3U/fznP0d9fT2am5sxMTEBZ2dnREdHIz4+HkeOHEFCQoI1X+6lMdTRizIYDLhw4QLOnj2L/Px83LlzB56enkhPT0dOTg4OHDgAf39/ucskIiICsIDTrxaLBW1tbairq0NdXR1KSkrQ3d2NN998E6dOnZJtkViGOnoVQgg0NzfjzJkzyM/PR01NDQBg165dyMnJQXZ2NmJjY7n4MRERWZXFYpEW3d+7d+8zH7uox9QVFxfj2LFj+Pjjj/HTn/50sV52HoY6soahoSFpBK+wsBAGgwGBgYHIyspCTk4O0tLSsHz5crnLJCIiBRobG0NJSQl0Oh3OnDmDoaEhHDhwAAUFBc983qKfKPHpp5/is88+w5UrVxbzZSUMdWRtZrMZFRUVyM/Px5kzZ9DZ2QkXFxfs3btXGsXjyRZERPQsAwMDOHPmDHQ6HUpKSjA5OYmNGzfi0KFDyM3NRVxc3HPXV130UNfS0oLk5GQ8ePBgMV9WwlBHC62rq0sKeJcuXcLU1BSio6ORm5uLQ4cOYdeuXVCpVHKXSUREMhJCoK2tDTqdDjqdDjU1NVCpVNBqtcjNzcXBgwcRERHxUt/T6qHub3/7G3bt2oWtW7fCxcXlsa+fP38eR48exdDQkDVf9oUx1NFiMhgMKCoqQl5eHs6cOYORkRGsXr0aBw8eRG5uLvbt2wc3Nze5yyQiokUwNTWF8vJyKcjduHEDHh4eyMzMRG5uLrKysuDr6/vK39/qoc7b2xsGgwGOjo7YtGkTdu7ciZ07dyIqKgrj4+M4ceIEQkND8fXXX1vzZV8YQx3JZXp6GlVVVdDpdDh9+jSuX78Od3d3pKenIzc3Fzk5OfDz85O7TCIisqLR0VGcO3cOOp0OBQUF0Ov1WLNmDXJzc5Gbm4uUlJQnDoK9igWZfu3u7kZ9fb3UGhoaoNfrAQAbN25EQUEB1q9fb+2XfSEMdbQUCCFw9epVKeBVV1cDAOLj46XjJyIjI2WukoiIXkVvb680GldWVobp6WnExsZKQW6hVktYtGPqbt++jampKasfMH78+HHU1NRg7dq1OHXq1HMXhmWoo6VocHBQOkC2uLgYExMTiIiIkAKeRqN57gGyREQkj5mZGTQ0NEhBrrm5GU5OTkhJSZGOj1u7du2C16Hoy4Q1NjbiT3/6Ez7//HP84Q9/wIYNG/DGG2888zkMdbTUjY+PS6ey5+XlYWhoCCtXrkROTg4OHTqE/fv3c7kUIiKZTU5O4sKFC9K+ur+/H97e3sjOzkZubi4yMjIWPWcoOtT9/e9/h4eHB370ox+hvr4ep06dwieffPLM5zDUkZJYLBbU1tZK07QdHR1wdXVFWlqadBxeQECA3GUSEdmF4eFh5Ofn4/Tp0ygqKsLY2BhCQkKkWZWEhARZL43qKNsrW4Fer0dgYCAAQK1WY2Rk5LHHmEwmmEwmadtgMCxafUTfl4ODAzQaDTQaDU6ePImuri5peP/dd9/FzMwM4uLipOM0oqOjeVULIiIrunbtmrTfraqqghACe/bswW9+8xvk5uYiKipqyex3Fb1Y1uyZtsCjgOfj4/PYY06ePAm1Wi214ODgxS6TyGrCw8Px/vvv4+LFixgaGsI///lPrFmzBh9//DFiYmIQGhqK9957DxcuXMDU1JTc5RIRKY7FYkFFRQU++OADREZGYuPGjfjwww/h4+ODTz/9FAMDA6iqqsKvf/1rbNq0ackEOkDh06/fPaYuJCQER48enfeYJ43UBQcHc/qVbMrk5CTKysqkT5N37tyBWq1GVlYWcnNzkZmZiRUrVshdJhHRkvTw4UMUFRVBp9MhPz8fw8PD8Pf3n7emqLu7u9xlPpeiQx3As1+JvksIgcbGRingNTY2wtHREcnJydJZWLxsGRHZu/7+fuTl5UGn0+H8+fMwmUyKv/qP4kPdy2KoI3vT19cn7bhmp2VjYmKk4/B27typuB0XEdHLEkKgqalJ2h/W19fDwcEBSUlJ0gfe0NBQucv8XhjqiOzI7GXLZqcYeNkyIrJlcw9NycvLw+3bt+Hl5YUDBw7g4MGDyMrKgre3t9xlWg1DHZGdmnvZMp1Oh66uLri5uUmXLcvOzoa/v7/cZRIRvZR79+4hPz8fOp1OWnZkw4YN0mhcYmLicw/VUiqGOiICMP+0/crKSgDAnj17pB3hUjvLi4gIeDSt2t7eLk2rzl52cc+ePdIshL3svxjqiOgx9+7dQ0FBAXQ6HQoLC6UFNmePw9NqtbIusElE9m1qagqXLl1CXl4e8vLy0NPTA3d3d2RkZODgwYPIzs7GqlWr5C5z0THUEdEzTU5OorS0VBrF6+/vx4oVK5CVlYWcnBxkZGQ8cY1IIiJrGhkZwblz56DT6XDu3DmMjo5izZo10mxCSkoKXF1d5S5TVgx1RPTChBDSRatPnz6N5uZmqFQqaDQaZGVlISsrC1u3brWLaQ4iWlhCCLS0tKCgoAAFBQWoqqrCzMwMduzYIU2rbtu2jfubORjqiOiV3blzB2fPnkV+fj6Ki4sxNjaGwMBAKeClpaXB09NT7jKJSCGMRiNKSkqkINff3w8PDw/s378fWVlZOHDgANasWSN3mUsWQx0RWYXJZEJFRQUKCgqQn5+Pa9euwcnJCUlJSVLIi4yM5KdqIpIIIXD16lUpxJWXl2NqagpRUVHSfkOr1drs2arWxlBHRAuiu7sbZ8+eRUFBAUpLSzE5OYkNGzYgKysL2dnZ2Lt3L9fEI7JD4+PjKC0tlYLczZs34erqitTUVGk0LiQkRO4yFYmhjogW3NydeH5+Pnp7e+Hq6oqUlBSkp6cjPT0dUVFRHMUjskFCCLS1taGoqAhFRUUoKyuDyWTChg0bkJ2djaysLH7IsxKGOiJaVEIIdHR0oKCgAIWFhSgvL4fJZMKaNWukgJeWloaVK1fKXSoRvaKhoSGUlJRIQW5gYACurq5ISkpCRkYGsrOzERERwQ9yVsZQR0SyGh8fR3l5ubTzb21txbJly7B9+3Yp5MXHx/OYGqIlzGQyobKyUvo9bmxsBABs2bJF+j1OTEy0+yVHFhpDHREtKf39/SguLkZRURGKi4tx7949LF++HHv37kV6ejr279+PjRs38hM+kYxmR9yLi4tRWFiIixcvYnx8HKtWrZo34h4QECB3qXaFoY6IlqyZmRk0NzdLn/4rKipgNpsREBCAlJQUqYWEhDDkES0gIQSuX7+O0tJSXLhwAWVlZRgcHISLiwsSExOlIBcTEwOVSiV3uXaLoY6IFGNsbAzl5eW4cOECSktL0dDQgJmZGaxdu3ZeyFu7dq3cpRIpXm9vrxTiSktLcfv2bahUKuzatUv6XdNqtXB3d5e7VPoWQx0RKZZer8elS5dQWlqK0tJSNDc3AwBCQkLmhbzAwECZKyVa+vr7+1FWViaFuJ6eHixbtgzbtm1DSkoKUlNTkZiYyL+dSxhDHRHZjPv37+PixYtSyGtrawMAhIeHQ6vVSi08PJzTtWTXhBC4du0aysvLUVFRgYqKCvT09AAAoqOjkZqaipSUFCQnJ/PazgrCUEdENmtwcBBlZWXSH66WlhYIIeDn5zcv5MXGxsLJyUnucokWzNTUFBobG+eFuOHhYahUKmzbtg2JiYnQarVITEyEv7+/3OXSK2KoIyK7MTo6isuXL0t/1GpqajA5OQl3d3fExcVBq9UiISEBu3fvhre3t9zlEr2y4eFh1NbWorq6GpWVlaiursb4+Djc3NwQFxcnhTiNRsPrM9sQhjoisltmsxkNDQ1SyKuoqMD9+/cBABEREYiLi0NcXBx2796NrVu3cq08WpJMJhOam5tRU1OD6upq1NTUoLu7GwDg6+uLhIQEKcRt376dP8c2jKGOiOhbQgh0dXWhpqYGtbW1qKmpQVNTE6ampuDi4oLY2Fgp5MXFxXEpFVp0MzMz6O7uRl1dnRTgGhsbYTab4ezsLP2Mzjb+jNoXhjoiomeYnJxEU1OTFPLmjoJ4e3tj27ZtiI2NlVpkZCQcHR1lrppswfT0NK5evYqGhgY0NDSgsbERjY2NMBqNAIDQ0NB5AW7btm1wcXGRuWqSE0MdEdFLun//Pmpra1FfXy/9ob1x4wYAwM3NDTExMfOCXkxMDC9WTs80NjaG9vZ2NDU1SSGupaUFk5OTAICwsDDExsZi+/bt2L59O2JjY+Hn5ydz1bTUMNQREVmBXq9HU1OTFPIaGxvR0dEBi8UClUqFkJAQREdHY/PmzYiOjkZ0dDQiIyM5smJnTCYTrl27htbW1nlt9kOBSqVCVFTUvPC2bds2qNVqmSsnJWCoIyJaIBMTE2htbUVzczPa2tqk1t/fDwBwcHBAWFiYFPaioqIQHh6O8PBw7p8UTq/Xo6urC52dnejs7ERHRwdaW1vR2dkJi8UCAAgKCsLmzZuloL9582Zs2rSJV2igV8ZQR0S0yB48eDAv5LW2tqKtrQ1DQ0PSY/z9/aWAFx4ejoiICISHhyMsLIx/9JeIhw8f4ubNm/PC22yb25cBAQGIjIyUAtxsiFuxYoV8xZNNYqgjIloiHjx4gK6uric2vV4vPc7f3x/r1q17auNUnXUYjUb09vbi5s2bT2yzy98AgJeXFyIjIxERETGvhYeHcx04WjSKDXVGoxFpaWloa2tDdXU1Nm/e/ELPY6gjIqURQmB4eFgKeL29vfParVu3YDabpcer1WoEBwcjICBAaqtXr563HRAQAA8PDxnflTyEEBgbG8PQ0BD6+/vntYGBgXnbBoNBep6TkxPWrVuH9evXP9bCw8Ph5+fHpUNIdooNddPT03jw4AF+9atf4fjx4wx1RGS3ZmZmcPfu3XlB7/bt27h79y4GBgakNjExMe957u7u8PX1ha+vL3x8fJ546+3tDU9PT3h4eEhtdluuS6tZLBYYjUYYjUYYDAbp/uy2Xq/H/fv3MTw8LN3OvT83AAOPzlgODAxEYGAgAgICpPuBgYFScAsICIBKpZLl/RK9KMUupuTo6PhCp3ObTCaYTCZpe+4nLyIiW6BSqaQQotFonvgYIQQMBsO8kDc4OIiRkRHcv39fuu3u7pa2Z9dDexpnZ2d4eHhg+fLlcHFxgZOTE5ydnZ/YZtfuE0Jgdizhu7cWi0XaZ882s9k8b3t8fPyxcPpdbm5uWLlyJVauXAlfX1/4+/sjOjoavr6+0r/7+flJIU6tVnOUjWyCYkPdizp58iQ++ugjucsgIpLVsmXLoFaroVarsXHjxhd6jtlshl6vx8OHD/Hw4UMYjcYn3h8bG4PZbH6sTU1NSfcnJiak4LRs2bJ592dvnZyc4OHhARcXl6c2Nzc3eHp6wtPTE15eXtL9udtyjSASyW3Jh7q7d+/i8OHDj/27TqeDj4/Pc59/4sQJ/PKXv5S2DQYDgoODrVojEZEtcnZ2xqpVq7Bq1Sq5SyGiF7DkQ93q1atRUVHxys+f/XRHREREZMsUfdRnVlYWioqK8Pbbb+Mf//iH3OUQERERyUaxZ7++Kp79SkRERLbI7kKdEAJGoxGenp4824mIiIhsht2FOiIiIiJbpOhj6oiIiIjoEYY6IiIiIhvAUEdERERkA5b8OnWLafYkCiIiIqKl5nkneTLUzTE8PMyV04mIiGhJet5ybAx1czg7OwMA+vr6uIadwsxe/o19pyzsN2VivykX+07ZPD09n/l1hro5Zoc0vby8+MOuUOw7ZWK/KRP7TbnYd7aJJ0oQERER2QCGOiIiIiIbwFA3h4uLCz788EO4uLjIXQq9JPadMrHflIn9plzsO9vGy4QRERER2QCO1BERERHZAIY6IiIiIhvAUEdERERkAxjq5jh+/DgSExNx7NgxmM1mucuhb9XX1yMxMRHJycl47bXXMDU1hf/+97/QaDRITU1FX18fAKC9vR1arRYajQYlJSUAgIcPH+LQoUPQarX44x//KOfbsFtffvkl/Pz8AID9phBlZWXYt28fkpOTcfr0afabQszMzODHP/4xEhMTkZSUhO7ubvadvREkhBCioaFBHDt2TAghxO9//3vx73//W+aKaNbAwIAYGxsTQghx4sQJ8dVXX4ndu3cLk8kkKioqxNtvvy2EEOLQoUOis7NTjI6OCo1GI4QQ4s9//rP47LPPhBBCZGRkiL6+PnnehJ2yWCzihz/8oYiNjRVms5n9pgATExMiJydHmEwmIYRgvylIfX29eP3114UQQhQVFYn33nuPfWdnOFL3rcuXLyM9PR0AkJmZiaqqKpkrolmrV6+Gu7s7AMDJyQmdnZ2Ijo6Gs7MzEhIS8M033wAABgYGEB4eDi8vL/j6+mJ4eHhev+7fvx/V1dWyvQ979MUXX+Dw4cNQqVTo6upivylAVVUV3NzccPDgQfzgBz/AlStX2G8KERQUBAAQQkCv18PPz499Z2cY6r6l1+ulS6ao1WqMjIzIXBF9161bt1BSUgKtVjvv8jYWiwXAox3ZrNk+ZL/Kx2Kx4KuvvsLrr78OYP7v2OzXAfbbUjM4OIgbN24gLy8PP/vZz/C73/2O/aYQK1euhEqlQlRUFD744APs3buXfWdnGOq+5e3tDYPBAODRHx8fHx+ZK6K5DAYD3nzzTZw6dQqrVq2S+goAHBwcAAAq1f//OM/2IftVPp9//jlee+01qV/m9gXAfluqVqxYAa1WC2dnZ6SmpqKxsZH9phCFhYVwc3PD1atX8b///Q9//etf2Xd2hqHuW3v27EFRURGAR78YCQkJMldEsywWC44dO4bf/va3iIiIQFhYGNrb22E2m1FZWYktW7YAeDRN29XVBYPBgJGREaxcuXJev5aUlECj0cj5VuxKe3s7/vWvfyEzMxNdXV349NNP2W8KsHv3brS3twMAGhsbkZ6ezn5TEG9vbwCPwvnw8DD7zt7IekTfEvP+++8LrVYr3njjDekgYZLfF198IXx8fERycrJITk4W//nPf8SXX34p9uzZI/bu3Stu3bolhBCira1NJCQkiD179oiioiIhhBAGg0Hk5uaK+Ph4cfLkSTnfhl3bsWOHEEKw3xTik08+EYmJiSI5OVl0d3ez3xRienpaHD16VCQlJYm4uDhRWVnJvrMzvEwYERERkQ3g9CsRERGRDWCoIyIiIrIBDHVERERENoChjoiIiMgGMNQRERER2QCGOiIiIiIbwFBHREREZAMY6oiIiIhsAEMdERERkQ1gqCMiIiKyAQx1RERERDbg/wC95c3/92pUhwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1oklEQVR4nOzdd1gU19cH8O8iRSwgKvYudoO9IPausffeS/yZRI3dqNGoscZujMbeTey9dxGs2LBjAQUBpUmHPe8fvDPu7M42WFwWzud55mHnzp27dwu7Z+/coiAiAmOMMcYYs2hW5q4AY4wxxhhLPQ7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYyAA7qGGOMMcYygEwX1BERIiIiwHMuM8YYYywjyXRBXWRkJBwdHREZGWnuqjDGGGOMmUymC+oYY4wxxjIiDuoYY4wxxjIADupMIDIyEjdu3DB3NRhjjDGWiXFQZwIDBw5EvXr1zF0NxhhjjGViHNQZ4P379zqPP336FADw5csXKJXKb1ElxhhjjDEJDur0uHbtGooUKYJLly7pzZszZ0707Nkz7SvFGGOMMaaGgzodXr16hSlTpgAAmjRpYtA5+/btg1KphJ+fHxQKBV68eGGSuiiVSoMCSwA4dOgQHjx4YJL7ZYwxxphl4KBOi+joaLi4uOD69euS9MjISMTExABIDrT++OMPBAUFSfLY2NigWLFiAIATJ04YfJ87d+7EzJkzAQDr169H3bp1xWP//PMPmjRpgtu3b+stp3PnzqhSpQoSExMNvm/GGGOMWTYFZbKlFSIiIuDo6Ijw8HA4ODhozffjjz9izZo1kjQigkKhQKlSpXD06FFUqlRJ7/3Z29vjt99+w+TJk8W0U6dOISYmBp07d5bkVSgUkvsRbo8bNw7Lly8Xz23VqpXO+xTOBYAbN26gbt26ePnyJW7cuIH+/fvrrTNjjDHGLA+31GkREBCg9Zivr6/BlzdjYmIwZcoUPH78GDExMXj69CnatGmDLl26GFwXIaADgKSkJJ15f/75Z8n+vn37AAC1atXCgAEDDL5PxhhjjFkWDupk/Pjjjzhw4IBGumoL2OfPn40qs3LlysiWLRsqVKggpiUkJODx48cAki+3yqlWrZpkXz2o27lzJxYtWoRVq1YBgPhXoFQq8eXLF4SFhQEAzp49q/OS8J07d+Di4oK4uDiNY0SEqKgorecyxhhjzHz48qsM1eDtW3j+/DnKli2rdV/V/PnzMW7cONjZ2eHdu3coXry4eMze3l7s7ycYM2YMvLy84OnpKUnX9rL37t0be/bsga+vL0qWLAkAcHBwwMyZM5E3b14MHjwYISEhyJMnT4oeK2OMMcbShsW01EVGRqJOnTrIkSMHHj16BADYu3cv3Nzc0LRpU/j5+Zm5him3ZcsWyb62gA4Apk6diqxZswJIbulTpR7QAUB8fLxGQGesyMhIzJgxAxcvXgQAhISEpKo8xhhjjJmexQR19vb2OHbsGLp16wYgOaBZunQpLl++jDlz5mDOnDkmuR9/f3+TlGOMP/74w+hzDL38+/fff8umq47qPX78OI4dO4bExETJiNnHjx9jx44dAJIv41pZJb9d9PXrY4wxxti3Z23uChjK2toazs7O4v6LFy9QqVIl2Nrawt3dHRMmTDDJ/bRo0cIk5aS1evXqybbMqdN2mbV+/foaac7OzggODgYAeHt7SwZzKJVKceUMbatm+Pv7Y8iQITh06BBu3LiBKlWqIG/evHrryBhjjLHUs5iWOnVhYWGSPnHaWo/i4uIQEREh2XQRApf07tmzZ3j37p1JyxQCOgAao3MTExPFy7gPHz6EQqGAr6+vJGhcvXo1zp49ixEjRqB58+aSQSH6KBQK/P7776l8BIwxxljmZbFBnZOTkyRAy5Ili2y++fPnw9HRUdyKFi2qtcxPnz6ZvJ4Z0YULFwAApUuXhpWVFfbv3w/ga2C9c+dOAMl977y9vREeHg5A2gfw8+fP4ohcwZIlSzTuKykpCYcPH9ba4sgYY4yxZBYb1Lm4uMDHxwfx8fG4fv06XF1dZfNNnToV4eHh4qZrQIWpW74yqg0bNkj2u3XrhujoaNmguFq1asiVKxdu3boFW1tbcW3cPHnyIF++fHj69Cn++usvMf+RI0ckwd2GDRvQqVMnXL16VbYuHTt2xOzZs03xsBhjjDGLZjF96gCgbdu28Pb2xrNnzzBy5EiMHTsWjRo1QtasWbFt2zbZc+zs7GBnZ2dQ+cJAAGa87Nmz6zxeu3ZtAMC///4rBs8JCQlo2rSpZKLnjh07AgCaN2+OqlWriiNt1S+bv3r1CgkJCThy5AiOHDmC3377zWSPhTHGGLNEFhXUyU2a26tXL5OVn5qgrlevXtizZ4/J6pKRqU6xEhkZKXu7WrVqOi+5uri4aD129+5dBAUFoXXr1uKEyTly5EhlrRljjLH0jZumVNjY2BiVv06dOihXrhwASNZ2ZYb78uWL1mOenp6YPn26JC0hIQFTpkzRWWaNGjXQpk0bAMBff/2FnDlz8koYjDHGMjwO6lSoBnVDhw4FADRq1Ehr/kmTJsHHxwcPHjxA1apVkTt3bp1lHjp0yOC6NGjQQLKfP39+g8/NKNzc3DTStmzZgoULFxp0/smTJ/Hjjz8C+Dq4gzHGGMuoOKhTIXTGnzlzJjZs2AAiwqVLl7Tm79KlC6ysrPDdd98BAKpUqaKRJz4+Hv7+/nj58qXYX8wQa9askewHBgYafG5G1L59e0RFReHZs2eyx8+fP68xf16fPn3E2//991+a1o8xxhgzNw7qVAjLj71580aS/vTpU/HYnTt39JbTsmVLABBH5BYuXBilS5fWml9uwmNhTdeKFSsiKChIf+X/X0ae7LdevXr4888/ZY81b94c9erVw9u3b8U01SlTiAgHDhyQjLQVbN68GQsWLDB5fRljjLFviYM6FY6OjgCAXLlySdLLlSuHSpUqgYhQvXp1recL/biOHz8OIsL9+/c18jx79gyvXr0S9z99+oRmzZqJ+66urqhXr544YjdPnjySlTT0ycgtUg8ePNB53MvLCyVKlJA9tmPHDnTt2hWjR4/W6Mc3ZMgQTJ061VTVZIwxxsyCgzoVTZo0AQAMHz5cZ76cOXPKpk+YMAFfvnyBtbX2QcVly5ZFqVKlACRPoJw7d26MGjVKPH7//n1cv35dnEy5SJEiGmUMGTJEI83KygofPnxA48aNQUQ6R45m9lYpba8fADx//pwHVTDGGLNIHNSpEAIhfaNgfX19NS7RAslLXembr02wd+9eeHl5AQAcHByQlJSExMRE8bi1tTXOnDmDdevWaZy7ceNGjbT+/fujYMGCkrT//e9/svfdu3dvFCpUyKB6ZmT+/v5YtWqVuO/p6Yly5cqZdJocxhhjzBhJSUk4ffq0JG3YsGEafe3lcFCnQuhor2++urx584p93lKqR48eKFOmjLhvZWWlsdRZixYtdLYqAUDjxo1RqVIl/PLLLxrHsmbNCiB5AMicOXMAJLdCFitWDIcPH9bI3759e9n7kAss06PevXsbnNfZ2RlFixbFzz//LKYJo21v3rxp8roxxhhjhli2bBlat26Nhw8fIjIyEt27d8fGjRvF2Rx04aBOhaFBXXpw+/ZtXLlyBSdOnMCjR49kl0kT1mLNkiULatWqBeDrAIyaNWsiOjpakl+4/Hz+/HnJ4Ixhw4bhjz/+QFRUFAoXLiw558OHD3j58iVOnjwpSS9RogRq1qwprgP7LezevdvgvMJKFXKCgoIQERGBN2/egIjw66+/YtKkSaaool4bN27Ey5cvv8l9McYYS38+fPgAIHkeVwcHB+zbt8/gcy1qRYm0ZklBXY0aNfTmES7nWltbo1mzZpgxYwbGjh0rHre1tQUAuLu748yZM8iaNStq164Nd3d3AMDOnTtRoUIFWFlZiQMJXr16JbYAAhAv+aqvqTts2DD8+uuvAIC+ffum8FGajzBoRtXixYtx9uxZREdHo0SJEnj79i0aN24s25p67949ODo6iv0nDTVs2DAUK1ZMMoqXMcZY5jB9+nQsW7YMQHKXLmNxUKfCkoI6Q4wZMwY3b95E5cqVYW1tjd9//11yPEuWLBoDKoSADpDO8yZQXUd39OjR4m31SZpT8ma0BOrTz9jb2yM6OhoKhQI//vgjVq1ahSZNmojzGyqVSq3PRbZs2dCoUSOcPHkSYWFh4qhr9RZUxhhjlu/vv/9GzZo1UbNmTUn6pk2bkCNHDvTo0QNLliyR5DdWxoheTCS9B3UTJkzQWGlClzJlyuDmzZuwt7dPk/qsXr1avK1QKMTLvcK+LsLlYEsXExOD0NBQAMnPx6tXryQTVr9+/VrnuadOncKJEyfg5OSEp0+fpnV1GWOMpTF/f38oFAo8efJETDt9+jRGjRqFWrVqISkpCRMnTsTnz58BJK9g1bNnTwDSgZpbt241+r7TZ/RiJuk9qFu8eDGuXLli7mrg8+fPsnPGqT5vqkFdjhw5NPLOmzcvVXUwpv9cWlMdLevi4iI5FhcXp/d8YWCGh4cHgIzbyskYY5mB8Fl+4sQJMa1169bi7a1bt2LJkiWoX7++xg9/Y9egV5c+oxczEYI6/lLVzcnJSVwaTRvV5zAyMhKJiYliixYAlCpVCj/99JNGXzw5csO409O0I2fOnNF6zNXVFbdu3dJInz9/vnhbuAQurDfM7z/GGLN8EyZMAABJix0ATJ48WUxXvxSrPguGsTioUyF8uabXljpLsH//fgDJK2GoypIli2SlDoVCgZUrV6JIkSJo3LixJG+PHj3E24cPH9Y63167du1MU+k0lJiYiNq1a2PRokU4fvy42Nw+bdo0Mc+nT58k56gGdRcuXMB///3Hl2YZYywdW758ufjZrdpXXalUomLFipK8qseF7wQgeeUjXTMzGIKjFxXp/fKrJejcuTP27duHwYMHyx6/c+cOypQpI5kaRdcKHB06dAAAvHv3Dnv27JEcEwJIY+XLly9F56XG5MmT0a5dO+TJk0dj/WD1lsiPHz/i48ePAIBmzZqhR48eqFChAk6fPg2lUilZ05Yxxpj5qc7nqhq0bdu2TSOv+g95Qf/+/VNdD45eVHBQl3oKhQJdu3bV2oRcvXp1PH/+XDKKVhhRevLkSclkwKqKFi0qdiQV2Nra4vjx40bX0dfX1+hzTEm9uV1O5cqVNdKGDBmCefPmwcnJCZ6eniapy5cvXwzq98cYY0w7bd1mtDVwpFk9SNcioRlQREQEHB0dER4eDgcHB8mxAwcOoGvXrvj06RNy585tphpmPkSE0NBQ8Tn39/dH0aJFxWOqFAoFSpUqhVevXknS1Lm6uuLu3bsarYARERHImTOn5JzixYuny3nhiEhn/zrV5yYpKQkKhUL8QVK9enVYWVnhwIEDKFasmNYyFAoFqlSpAm9vb5PVmzHGMpMbN25g6NChePLkCYgIxYsXx7t370x+P9myZdO7Njk3SangljrzUCgUkiC6SJEiAL4u26Xq9u3buHHjht4yDx06hCxZsqB58+aSdGGiYNXlVgoUKCCZGyi9OHfunMF5ra2t0bJlS9y5cwcKhQL37t3DnTt3ZJeze/78uWQuvPv375ukvowxZqmyZs2KcePG6cwTFRWlMVp1+PDhqFevnjgYomfPnmkS0BnK6OglLCwMe/fuxdKlS7Fs2TLs2bNHMqrRknFQl368ePFCY0FjIHklDfU+cbt27RJvz5kzB2FhYShZsiQA4OzZs1i/fj169uyJuXPnivlKlCgh3s6SJYtkuHl6oT7RsT7nz5+XvbQbHx8v2S9Xrly6Gj3MGGOppVQqceHChRSfHxcXh+XLl+PatWta83Tp0kWySlBcXBw2bNggyfPvv/+muA76CKtE6WJU9LJx40bUrl0bnp6eUCqVSEpKgqenJ+rWrYuNGzemuKLpBQd16YeLi4vs8ltyevfuLd6ePn26xhJfw4cPx549e8RlywAgb9684m0rKyvxUmbHjh313l/p0qUNqldaUygUICJxUIU2Qv/FS5cuifMcHj16NF3N9ccYY6mxbt06NGvWTHYKKWNom+Dfw8NDnL7KyckJM2bMQLVq1VJ1X8ZSXaJTKzJC2bJlKTIyUiM9IiKCypQpY0xRZhMeHk4AKDw8XOPYzp07CQBFRUWZoWYsNQCQMW/npKQkOnz4MAGgFStW0PPnzwkADR06VCxLbvvrr78k92fu7cOHD+To6Kg337lz5wwqLyoqisaOHUsxMTFp9VIxxpjJTZ8+nQDQmTNnxLSIiAgaO3YsxcXFaeRPSkoSv+vHjBkj+RwUhIaG0uDBg+ns2bNm/6xv0qQJ3b9/X+/zYFSTlEKhwJcvXzTSv3z5kiEmTOWWuszDysoKHTp0QGJiIn766SeUKVMGu3btwsyZMwEAZcuWRWxsLACgW7du4nmDBg0CAI2+euZSqFAhhIeH681naH2/++47LF++HPv27Utt1Rhj7JshmTGfa9aswfLly8WVHYKCgsT1VMePH4/s2bPjy5cvWLFiheQ8hUKBwMBArFu3Dps3bza6K4ypCF2GLly4gAsXLsDV1VXvOdonCJOxZMkSNGrUCJUrVxbnGfP398fjx4/x559/pqDKqTdhwgR4eXmhWLFi2Lx5M2xtbVNcFgd1mY/q1Cu9e/dGYGAgAKB8+fKws7NDYmIiFAqFmE+4lDl48GCjBjJYCmG6l7CwMCgUCty+fRs1atTQec7JkyeRlJRkEZNBM8YsGxHh8ePHkmmfEhMTERAQACC5a4l6ENa5c2eEhYVh6NChOHbsGAYOHCj+cNXWzadgwYJo27ZtGj0Kw0ydOhVt27Y16jKvUUFdu3bt0KZNG9y8eRMfPnwAEaFw4cKoXbt2qpe2SIl79+4hMDAQV69exbx587Bv3z706dMnxeXxMmEsb968aNasmfgLSXhfnz59Gi9evBADfmFS5Izq/PnzAJLn1Ktbt65kxHFISAg2bNiAyZMnQ6FQiB98wi/luLg4JCQkyK75yxhjqbFx40YMHz4cPj4+qFChAgDpeqnHjx/H6dOnUb16dZQtW1ZMV13RiIgMillU1279Vvz8/FC0aFE4OTnBysrK+H57qbuKbV5r1qyhrVu3EhHR7du3afTo0Rp5YmNjKTw8XNz8/Py09qm7desWTZo0iZKSktK87sy0goKCKCgo6JveZ3h4OHXq1IkmTJhAAGjw4MGUL18+AkC1atUyex8MU26q+vTpQwDo3bt3RKTZn9HV1VXjHMYYMwXh8/by5ctimrbPrd69e8umb9q0yeyfqbo+awFQvnz5UvT8GNVSp2r//v3o2rVrSk83ibCwMBQqVAgA4OjoKFlDTTB//nzMnj3boPJq1qxp0Gz/LP1xdnb+5vfp4OCAgwcPQqlUYsKECcifPz8SExNx4sQJtG7dWrJqRkbw3XffITo6WpxTUNvybg8ePPiW1WKMpWPHjh1D+/btERcXl6ruUQK59VW10TbCf8iQIamuR3qV4s5jffr0wbJly3TmMeRJTw0nJydEREQASA7w5FaBmDp1KsLDw8XNz88vTevEMh8rKyvkz58fQHKg06FDB53r2VoihUKBR48ewdfXF7dv3waQ/FiF/z/GWMYTGRmZ6v9xYW1rfSsh6JOYmIjo6GixK4ilr4H922+/6Tye0m5gKQ7qjhw5glmzZuHnn3/WCN6SkpKwZcsW8Xp3Wqlbt644b8zp06fh7u6ukcfOzg4ODg6SjbG0ZmVlBQ8PDwCQrFmr3mrcrFkzg8pLj5MFW1lZSeYEnDBhguR4UlLSt64SY8yEnJ2dNeb9FISGhhoUqJlqAGLv3r2RPXt2cXLg1atXW9xnjDC7wt27dzFt2jSdeYUJ9I2V4me5VatWuHLlCg4ePIguXbogJiYG8fHxWLt2LVxcXPDLL79oLMBuatWqVUOBAgXQoEED+Pj4mP1yMGOqqlSpAgAYOXIkRo4cCSB5RJWqUaNG6SxDyF+pUiWxvPRi7dq1kv0///xT8uvy0KFDsueFh4db3IcxY5lRXFycbLqvry9y586NihUraj3X19cXV65cEYM6Q6/ceXp6IioqCq9evcLTp0/FdPVpls6dO4dOnTph4sSJBpVrTvXr1wcRYfbs2SAiVKtWTWdL3MWLF3Hs2LGU3Vkq+yySv78/ubq6kqurKxUqVIicnZ1p3rx5FBERkdqi04SuyYcZSyvr168nAPTPP//QgQMHCADNnTuXiL528q1QoQIBoKNHj4ppJ06cIAD022+/icctZWvSpIns54BqHh8fH0naxIkTiYgoICCAANCVK1e+3YvEGJMQ/i/Vde3aVXLs/fv39OrVK0meLFmyEABq1qwZAaBPnz5Jjp8/f54A0KtXr+jZs2e0ZcsWSkpK0hjgsH79eoqNjTX751lqtgYNGmg8hwkJCZI87du3p4oVK6b6NUtVx5/w8HBs2rQJ79+/R3R0NBQKBTw9PfHdd9+lpljGMiyFQoH27dtj3rx5+OWXXyTHtm3bhsmTJ6Nt27b4/vvv0aJFC9jb2wMAbG1txV+8luLixYv43//+h5YtW6J///6yedauXSuZU2rx4sVYuHCh2EJ58OBBrcv2MMbMQ/2zSJi3NiYmRlzKSmiNF/6qnnPt2jWx64nqsovC1CSqAxxGjBiR7lvjSpYsidevX4v7uXLlkvT5k2uVE9IqVaqELVu2mG6QZkqjwSlTppCjoyOVKlWK1q1bR1++fKGBAwdSvnz56ObNm6mONtMKt9Qxc1i3bh0BoA0bNmgcg5Zfw0TJS9ksW7aMoqOjqWzZsmb/xZnSzdPT0+C8qr9gx40bR02bNqUdO3ZQQkICRUdHa32O//rrLxo8eLBBVwkSEhIMf/EYy0RevnxJ586do7dv30o+m2JjYykxMZGIiDp27Cg5Jtx2dHQkIqKmTZuKacI0T6NGjSI/Pz9JfvVt5syZZv+sSsnm5+dHR44coYIFC1KxYsU0HuOgQYM0nmehVbJ58+Ymff1SHNSVL1+etm7dKr7IgunTp1P27Nnp0KFDqa5cWuCgjpnD3r17CQDt379f45iuoE5VmTJldH6wODg4iHM4WfIWGhoqCeqE25UqVdL6PF27dk3MV7t2bZ3P44cPHwgAHT582LAXj7FMRO5/Ukjv1q0bERF16NBBPKZ6KVY1r9z2/fffk4eHh9k/Y/Rtp0+f1nlcuKQsbCEhIURElJiYKMZEwrHLly9rXU9+zZo19OHDB9O+fik9UalUaj32zz//kJ2dHa1atSqlxacZDuqYOSiVStq3b5/s/43qh6EuLi4uBHxt9WrQoIHkA/L9+/dElDwRs/A+t8RN6E8HSIM69edJtQ9P8+bNZfPI8fLyIgD0008/GfryMZZpyP1PqqYTEbVr107r/29gYKDWY7rO+9abs7Oz1mNnz56VBK7C1qVLFxo7dqxGfzi5ie8N/Vw3tTS7xxMnTlDOnDnTqvgU46COpTdubm5Us2ZNvfm6d+8ufkgcPHiQPn/+TEREW7ZsEX8pqgIMX9li4MCBZv+QlduE1jn1LxghMDt69CgREbVs2VI2qHv37h1duHBB8rwMGzaMAFDTpk1T9oIxlsHEx8fT2LFjqX///gYFdbr+Z3v06GH2zw31LUuWLOTr6yvud+zYUefjOH/+PHXu3Fnc/+GHH+jNmzeS5+zOnTvk5uZGALR+/maooI4o+UGnNxzUMUsVFRVFjx49Mjh/cHAwRUdHG/Shd+/ePbN/8Bq6EZE4gnjhwoW0atUq2TwfPnwgOzs7jQ/WRo0aEQCqWrUqERH5+PhQjx49eHlAlmlER0dTw4YN6fXr10RENGPGDL3/c8Jt1ZZ0S9kEwv68efMk+wUKFKCOHTtS6dKlxSDN39+fChUqRB06dNB6ZfLLly9au3FkyKAuPeKgjmU2mzZtokOHDun80AsMDKRixYqZ/cPXkK1169bipZPZs2fL5qlWrZrGh7rQalmjRg0CklsxiYjatGkjfpCnhaSkJA4YWZrx9/fX6NsuR6lU0pYtWyg+Pl7stjFu3DgiIho8eLDZ/6+/ZVAn/D8uWbKEbt26lSavy8GDB8nDwyNNytaFgzrGMgmhdUt1s7Gxofj4eCIijQ7PGWkj+vqBnjt3bgJAbm5uRPS1f9DHjx/p2rVrFBsbS58+faJq1app7cT8888/08yZM8na2poCAwN1Pu8ODg7k6upqwleSZWbPnz8nAPTu3Tuxb9e0adP0nnfx4kUCkluphNGro0aNop9++sns/59puT179kx8Duzt7SVBXkaUsR+dDA7qWGb28OFDyQees7OzeOzLly90//59yfHmzZtT/vz5CUj+Vf/PP/+Y/UM6tUGdcElWSG/RogUBoAsXLhAA+vnnn2n37t0EgJYtWyb7PKqWffDgQZ3Puep9MZYSz549o6dPnxIRUZ06dQhInshcmJRXbnJbVfv27SMbGxuz/x+mxVaiRAmtx4TJzQUBAQHi85hRZbpPGg7qWGaWmJhIrVq1IisrKwJAL1++1MijOj2IHEM+aB0cHMz+Ya+6CXNCqW+qo4SFy8/t27ennTt3il+WcXFxtHbtWkm/GtUy/vvvP5owYQJFR0eTUqmkPXv2UGJiIt26dYt27dqVJkGd0BeKZQ6q7yHhdrdu3SSB2pUrVyTzOCYlJdGmTZsoMTHR7P9/ptz+97//SfaHDBlCCxculKQ1a9aM3r59a66Xy6w4qGMsE4qLi9M5kW/x4sUNDupu3bqlkebo6Gj2D3/VzcfHRzZdaJ1T3Tp06CC5JLV06VICQOfOnZN9Dnr16kUA6O+//6Zz584RAHGyadXNGPfu3aOzZ8/KHhOeb2HkL7M8Y8aMoZUrV2qkv379mm7fvk09e/akZs2aiemq7yFdywWOHDlSPOfIkSMEgAYMGGD2/z9TbsLzsW7dOlq3bp34Xa6ap0WLFmn58qVrqVomjDFmmWxtbXUef/z4MeLj42WPLVmyBG3atEFwcDASEhJkl7exsrIyST1NRdvC402bNtVI8/f3x5EjR8T9jx8/AgCaN2+Obdu2YfTo0ZL8wtJGsbGxaN68OQDAx8dHo9zPnz8jd+7cknKzZMmCvHnzauStVq0aAMgugv7u3TsAwJMnT9CuXTvZx8XM76+//kL27NkxcOBAjWMrVqwAAPz000+S9JIlS0r2FQoFxo0bJ0lr1qwZnjx5Inufr1+/xvv371GkSBFxuc5t27al+DGkV3L/F6q0/b9nBgrS9+xkMBEREXB0dER4eDgcHBzMXR3GMgQ/Pz+MHj0aR48eBQDkzp0bnz9/BgCEhYUhV65cZqxd2hoyZAg2bdokScuSJYu45qUqIkJwcDCyZcuGHDlyiGnqhHUh5Y4dOHAAXbt2xYgRI7Bu3TpTPASWBtRfw1evXuHQoUNo2rQpqlevDgBYtmwZjh49Cjc3NygUCsydO1dnmffv30fNmjWRkJCgNc/AgQOxdetWEz0K80lMTIS1tWa7k7aQRXi+PTw8UKNGDb0/XDMss7URmglffmUsbfzwww/i5Y+8efNqXC7hTX62fXUrVqzQeoyIaP/+/eLxffv2pfj1ev78OQUEBGg9/unTp0w3FYu/vz+1aNFC67JORETr16+n7t276y1LeI2EaS1cXV3N/v5Lz9uzZ8+oU6dO4r5SqRRvq07JpOv5FtaezczS1zUSxpjFIpVf0MKvZvUWLFX37t3D/fv3cf/+fcycORPR0dFpXkdzK1CggNZjK1euxI0bNzBmzBiNY8+ePcOrV6+gVCrF5xYAunXrJltWaGgoEhMTddalbNmyKFy4sOwxIkKePHkwe/ZsnWVkNGvWrMHZs2dx8+ZNAMDBgwfx6NEjSZ4RI0bgv//+M7jMevXq4eLFi3jw4IFJ65rRlC1bFhUqVBD3Vd/nHTt2BABky5ZN6/nnz5/H/fv3066CFoKDOsaYSSiVSvF21qxZAcj3WRNUrVoVrq6ucHV1xezZs2Fvb48+ffqkeT3Tm9mzZ0OhUGDMmDGoV6+e5JhCoYC3tzfKly8PFxcXtGvXTvJlJyAizJ49W7zknTt3bvzvf/+Tvb/IyEjkz58fQPJrFhQUpJFHuLx37tw5rfW+ffu22DdMXVRUlNbz1AUHB0OhUMh+IRMR3rx5o5EeHR2NAwcOID4+HjNnzkRsbKzB9wcAGzduxIgRIzTSw8LCAAAnT56EQqFAly5dxL5p6q5cuaK1/BcvXkj2df0fZHTbt2/XSNu7d694u3z58oiLiwMATJ06VSPv9OnTxdtFixbVej9NmzZF8eLFU1PVjMG8DYXfHl9+ZSxtDBkyhADQ1KlTxYmM3717R0TS0XsTJkygIkWKyJaRkJCgMUny2rVryc/Pz+yXh8y1CaNvha1p06aSfSKi69evE5C8RqXwfBcqVEj2Ofb09NS4j//++48CAgKobNmyFBgYSJGRkQSA6tWrp/X1zpIli+zlsCtXrhAAWr58udZzvby86MqVK0RE4ojhqVOn0s2bN6l58+bi9DHr168nAHT69GmaMWMGKZVK+vLlC/34448EQFwibtWqVWLZr1+/Ji8vL4qLi5Pcp+qlZOFxq0574e/vL6Znz55d8vxMmTKF+vbtKzkXAL1//1728Zn7PWOKrW/fvgblmzp1qtZjNjY2ss9HSEgIAcmrw6ibMmWK7PvqxIkTWp9v9hUHdYwxk1iwYIH4RdelSxcCQH5+fkRk/AS8ql8AJ06cEGfON3YT1nLMyFtoaKh4O1u2bJK+SImJidSyZUvJdCxeXl4aZUyePJnGjBkjfhGXLVuWAN1Bneq6uoMGDaL8+fMTEdHy5cvFcoOCgsT8p06dIgA0duxYyftBWOlg0qRJVL9+fQJAcXFxso918+bNkv2ZM2cSAJozZw4BEANKYXv8+DERkfic/Pnnn5L3V69evejZs2ey0/LIbb1795bsV65cmT58+EDXrl2jQYMGEQC6evWq2d8Tqd3mzp1Ls2bNkqT16dOHIiIiNPImJCTQjh07xH0hII6MjBQDa+HYvXv3aPv27ZSQkEANGzaku3fvaryvlEqlRkDODMdBHWPMJBITE8nb25uIiE6fPk0AxLnwVL/EDSHkV539Xb2Fys3NTbK/YcMGjS+cX375RSNNLp8lb5UqVdJ6bOTIkeLtO3fu0M2bNzUCEwA0YcIE2fPd3d1lXx9hcmYAkpY/Hx8fGjdunLj/5s0bIiJJoKm6TZ06lfr06UMAKFeuXGK6tqBO/T2gb+vZsycRJS9gD4Dq1KkjeX+ZYhNaLDPSNm/ePDFQBkC2trbia1+1alUCIE58rP4/++HDB405+IRjLO1lumeZgzrGvj1jP9Tl8p86dYqyZctGUVFR9ODBAwoPD6e2bdtSUFAQxcTEiJfqVDdvb2/JfoECBUipVKa7FS/SaitSpIhB+X7++WfZ9Jo1a9K4ceNow4YNRES0ceNGWr9+vcGTS/v6+hIRaZ38WXXLmjWreFtY/soUGxGJLUx16tSh77//3uyvS3rbgoODJfsXL16kefPmEZC8rJ6q8ePHE5A8+bWnp6eY/vvvv5OLi4tJ/v9ZymW6Z5mDOsa+PQCUJ08eg/OfO3eOtm3bZtR9yK3ioN5CFB8fT0Rf+6Bl9O333383KJ8hQe78+fONvn9hObPHjx8bdd7nz59N9hwIl5J5074J/6PA1/8RYemtrVu3Sv7P9u7dSwDo1atXBv9vqt4PS1s8+pUxluZCQ0NlRzFq06xZM/Tv39+o+yAtk/jeuXNH3BdWf5DLmxHNnDnToHwRERF688iNTNSnRYsWAIxfYWTo0KFG35c2z58/N1lZlkx1FKkq9YmMhf8RQc6cOSX7PXr0QHBwMEqVKmXaCjKT4KCOMZbmcuXKJa6gkFaEJbgOHTokSRdm7zclXfPvsa9evnyJjRs3wt3d3ajzDh48mEY1ypyaNGmCOXPmyB4TVm04cuQIFi9erHFc7geQ3NJ2uly7do2D62/EIoK6yMhI1KlTBzly5JBMBLl37164ubmhadOm8PPzM2MNGWPm1q1bNxw5cgQdOnQw+tz8+fPjwIEDqFKlit68Q4YMweDBg9GqVauUVDPTGTZsmDh/Hvs21Oc7NKRlun379pgwYUKa1Mfd3R1lypRJk7KZlEUEdfb29jh27Jhk9vSEhAQsXboUly9fxpw5c7T+CmGMZQ4KhQLt27eXnZxXneqEslu2bEFgYCA6d+4MLy8v8fJTkSJFxDyqi6ILK1+otwgylh5MmzYNq1evBpDcQpdSffv2RdWqVVNVBvv2LCKos7a2hrOzsyTtxYsXqFSpEmxtbeHu7o6HDx/KnhsXF4eIiAjJxhjL2Pr27SvZL1u2rGTfwcEBf/zxBwDA0dFRTLezs8PDhw+xZMkS+Pn5ITo6Gm/fvpW04O3ZswfA11UzGDNGr1690qTclStXIiwsDPPmzYOLiwuA5FblEiVKYMaMGQCARo0aGVxe4cKFce/ePTg5OaVJfVnasDZ3BVIqLCwMDg4O4n5SUpJsvvnz52e69QsZy+y2bt2KDRs2iPu3b99GfHy8JI/QeV/90lS5cuVQrlw5AMlXCYoVK6ZzzVZtVq1ahZ9++sno81jGJgRcxlIoFHj+/DkiIiJQo0YNMV3u0mrOnDmRlJQEKysr9OvXT0xfsGAB3NzcUnT/zDKkq5a6wMBA1K9fX2OT64/h5OQkaXXLkiWLbJlTp05FeHi4uHHfO8YyvixZskha0nLmzIk8efJI8rRv3x4AULt2bb3l2dra4uXLlwAAV1dXMX3jxo2SfKotgj/++KN4e/DgwWKLx6FDh+Dp6anz/gICAvTWKa35+vqauwoZkrZRqOoKFSoEIPnHR3x8PJRKJVxcXAwe+CM34rhu3bribUO6KTDLk66CugIFCuDatWsamzCqTZWLiwt8fHwQHx+P69evSz5oVdnZ2cHBwUGyMcZYxYoVQUQoXLiwQfnz588PAGjbtq2YNmTIEEke9R+XQrcQ4ccpEaFjx46oU6cOvL29td5XgQIF8OjRIzx9+lRcOL5t27Y4duyYmEepVBpU75QqWbJkmpafWdnZ2Ym3P378KN5WncLnypUrYuB/6dIljWlGhPed8EMjJd6/f48XL16k+HyWPinIQiZsatu2Lby9vVG8eHGMHDkSgwYNwp49e7BixQpkzZoV27ZtQ9GiRfWWExERAUdHR4SHh3OAxxgzysOHD1GhQgVxGghA2uJRp04deHl5Afh6Wez+/ftwdXWVbRnx9vZGtWrVNNJ1fSwL5RBRmrW2nDt3Ds2aNePWHC22b9+ucx7FgQMHIm/evPjxxx81gmPV10319ufPn9G0aVN4e3un6TyKqvfNMqBvPt2xmfGKEowxU9qyZQt16NCBNmzYQP7+/hprYuoDLTP8a5MtWzZq2LAhERHZ2dmlaiUBKysrWrp0qUZ6RESE1roJm9y6uqbYSpcurTdPzpw50+S+BwwYoDePg4ODuJas3CY8d4LKlStrvLYRERH08uVLIiJq27YtAcmraHwLhrzHmOVKV5dfGWPM0gwcOBCHDx/G0KFDUbhwYfj4+ODcuXMpKmvSpEniSEVtoqKicPnyZQDJqyUcPXoUwcHBKbq/pKQktGvXTiNdtSVSm8TERK3HVKeAMcatW7f0zmdWsWJFRERESC5jmsrWrVvF26rPy61bt/D+/XsEBwcjLCwM9vb24jGhJa5ChQrw9vbWWIFBdb9r165iWunSpQEAv/76K1xcXDTOSyv79+/H3bt3v8l9MTMwd1T5rXFLHWMsPcH/t5w8efLEJOUIC66rby4uLuLtuLg4ev/+PRERPXv2TExftmwZdevWjZRKpaRMuW3Xrl1aj+k6t0CBAlqP3b59m5o3b67zfitVqkRERK9fv6Zjx44Z1RI3cuRIAkAtWrQQWyg7depEW7dupU+fPon17t69OxER7dixQ2urllBmiRIlKCYmRlwzVZ2/vz8tWbKEqlevTm/fvk3Va8yYPhzUMcaYGb1584Z8fHxSXY4QZCQlJdGUKVMIAOXPn5+2bdumEYSpevLkiXjpUVuZ6ltkZCQREZ04cYK+fPmicTlS17lTp04Vb2/dulVy7M6dO9SoUSMCQGXKlJEcq1ixIgGgypUrG1RHuW3lypUEgC5fvkweHh4EJF9GVhUVFUUJCQkGP98VK1Y06nViLC3x5VfGGDOj4sWLo0KFCiYrz8rKSlybc+XKlejfvz/i4+PRu3dv2fz0/x3m5QZFPH36VPYcYR3fNm3aIHv27LC3t9dYr1UYLSzIly8fiAidOnUCkDzly4ABAyR5rK2tsWnTJvz666948OABAKBq1apYv3497ty5I1sX9ZU9KlWqpJHH1dUVgwcPxogRI5CUlISGDRuKo4fVH3e2bNkMuvwsDJQ4fvy43ryMfSsc1DHGWAYnTInh4uKiEcQUL14cDg4O+N///qdxXrly5VCqVCkAwMiRIwFIV+BQ1alTJ3FuNUAz2BKCOYFcEFm4cGGUKlUKc+fOFaeHsbOzw/Dhw8U+dOrntW/fHkuXLsWlS5eQI0cOXLt2DSEhIeIE0gCQO3dubNq0CXZ2dhqTTqd0hO+2bdtARChRokSKzmcsLXBQxxhjGcDMmTPFAKx169YApJPNAsDjx48RExMjScuWLRvCw8O1TsJ848YN3L59G3///TcA4JdfftFah3///Vdcok31vq9du4bly5fLnlO5cmUAyUGW6gTRQvDVuHFjAF+DL/Ul4KysrDBu3Dg0atQIkZGRyJUrF/LkyYOrV6+KA0rkCBNFqwebjFkyi5mnzlR4njrGGEuZuLg42NraGty6tWHDBhQrVgwtW7YU07y8vFC3bl389NNPWLlyJRITE6FUKmFra6tx/vv371GgQAGtKwbpExsbC3t7e7Ru3RonT55MURmMWRIO6hhjjH0zERERKFasGC5fvowqVaqk+f2tWbMGXbt2TdH6vYxZGg7qGGOMMcYyAO5TxxhjjDGWAXBQxxhjjDGWAXBQxxhjjDGWAWS6PnVEhMjISOTMmTPF8xMxxhhjjKU3mS6oY4wxxhjLiPjyK2OMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBsBBHWOMMcZYBpDpgjoiQkREBIjI3FVhjDHGGDOZTBfURUZGwtHREZGRkeauCmOMMcaYyWS6oI4xxhhjLCPioI4xxhhjLAPgoM6EYmNjcezYMXNXgzHGGGOZkMUEdZGRkahTpw5y5MiBR48eAQD27t0LNzc3NG3aFH5+fmauITBz5ky0b98eCoUCSqXS3NVhjDHGWCZiMUGdvb09jh07hm7dugEAEhISsHTpUly+fBlz5szBnDlzTHp/s2fPRo4cOYw6JzAwULydlJRk0vowxhhjjOliMUGdtbU1nJ2dxf0XL16gUqVKsLW1hbu7Ox4+fCh7XlxcHCIiIiSbIWbNmoWoqCij6qhQKMTb6i11vXr1Qt26dY0qjzHGGGPMUBYT1KkLCwuDg4ODuK+tZWz+/PlwdHQUt6JFi5q0Hnfu3MGbN28AAFZWX59OpVIJIkJISAiA5EvFXl5eOst68uQJLl++bNL6pdaxY8fQvn17c1eDMcYYY3pYbFDn5OQkaXXLkiWLbL6pU6ciPDxc3Azpe6d6GRUAfv31VxQoUEAjX1RUFGrWrImSJUsCkLbUJSUlYdmyZXB2dkZYWJjGua9fv8bcuXMlaRUrVkTjxo311u9b6t+/Pw/+YIwxxiyAxQZ1Li4u8PHxQXx8PK5fvw5XV1fZfHZ2dnBwcJBs+hQsWFCy/8cff+Djx4+StKSkJEmfu4cPH2pcfr169SoAYNq0aWK6EDD27dsXM2bMSPcrW/CAD8YYY8wyWJu7AsZo27YtvL298ezZM4wcORJjx45Fo0aNkDVrVmzbtu2b1EGhUGDy5Mn4/vvvJenLly/XuPwq7Pv6+orpBQsWBBGJwZxSqdTayigICAhAvnz5ZPOtWrUKcXFxmDBhAgDgzZs32LRpE2bPni0JMlOKgzrGGGPMQlAmEx4eTgAoPDxcax4A4qa6/+jRI8kx1a1WrVrUqlUrcT8kJES83bBhQ40y69WrRwAoLi6OSpUqRWvXrhWPx8bG0o8//kiLFy+mmJgYAkA9evSgGTNmEBHR2bNnSalU0sGDByVlEhE1aNCAAFBkZCRVqVKF7t27R0RE06dPp5S83NmyZUvReYwxxhj7tiyqpe5b+Pz5s9ZjlStX1nrs1q1bkn3VFq4rV65o5Bda8ZKSkuDr64vx48eLx1atWoXVq1cDAIoUKQIA+PfffwEATZo0QYsWLbBw4ULs2rVLa30+fPiA+/fv448//sC///6LJUuWaM2ri/A44uPjsWPHDgwePNgkLYCMMcYYMy2L7VOXVoYMGSLZf/bsWYrKCQoK0nps/vz5uHbtGgDgwIEDAIDo6Gjx+MSJE8XbX758kZzbtGlTAMDkyZNx//59Mf3ff//F48ePxWBROC8xMRHA19HBvr6+qFWrljhdS2Jios5+fUJQt3LlSgwdOlTsJ6gqJiYGnTp1QkBAgNZyGGOMMZa2OKhT8+nTJ8l++fLlU1SOrlY91YET/fr101nO8OHDDbq/nj17onLlymIr2i+//AIAYqCVkJAAAFizZg1u376Ne/fuISkpCTY2Nli5cqXWcoWgTgg0VYNPwc2bN3H48GEsW7bMoLoyxhhjzPQ4qFNj6ZcWL126BAAIDQ0F8LWlTiC02FlbW4u3hdZCOeoDJeRa9WxtbQF8DRwN8fnzZygUCty9e9fgcxhjjDGmHQd1aiw9qBMIAdvt27cl6UKQZ21tLQZoRIShQ4dCoVBIgrb4+HiNoE51Pz4+HrGxseIlX+GYUqnEihUrEB8fr7V+jx8/BgCd/QIZY4wxZjgO6tTITRRsiYSgCQAGDhwo3haCvbdv32LLli0AgKtXr2LTpk0AkgdwzJw5E8+fP8esWbM0ylUN+qpXrw57e3tJUJeQkIDWrVtj7NixWL9+vdb6CeesWrUKffr0AQCsX78e/v7+KXi0jDHGGFOQrl7yGVBERAQcHR0RHh4uOxFxRmmp06Z69eqpuuR5+PBhODo6IioqSpyr78CBA+jSpQsAoHXr1jh16hQAYNGiRZJBH6o8PDzg7u4u7hMRFAoFatWqhZs3b6a4fowxxlhmxS11mUxq+7B17NgRjRs3lky+LAR0AMSADgDCw8Ml5/br1w8FCxbE+fPnMXXqVNnyb926haFDh0rKAYCFCxdi4cKFqao7Y4wxlpFxS50KIpKsCsFSz8/PT5xrT1crqNBSp54mEI7JvV2zZMmCuXPnYurUqWjfvj1cXFx4JC5jjLFMhyMYFRmlP116UrRoUWzevBl+fn4680VERGg99uHDB/H25s2bAQAvXrwQp4ZRKpWYM2cOAODYsWNYvnx5KmvNGGOMWR4O6lToGq3JUm7IkCHo2LGjzjyOjo4aaZ8+fUJMTAxOnDghpgktcP369cP8+fPFEbcxMTGSc4XJlRljjLHMgoM6FbGxsbLpjRs3/rYVyYDu3btn9Dl58+ZF06ZNJUucCa+RMJhCfR4+gSF9B7W93sb49OmTScphjDHGUsuig7o3b97A2dkZjRs3RuPGjREcHJyq8rR9OR89ejTFZXIfvdTx9PSULNX24sULvH79Wtx/+PChePvp06eyZSxYsAAKhUISAEZERMDe3h558+ZNVf3y5s2L5s2bp6oMxhhjzBQsPuJo1KgRLl26hEuXLsHZ2TlVZQlzuKnLkSNHiss0dJWF0aNHp/g+MhvVOfgmTZok3hbW0wWAhg0bivmEkbaqo3GF2+rLwgmio6OhUChw/PhxvfW5fv26EbVnjDHG0obFB3XXr19HgwYNMG3aNNmRkXFxcYiIiJBs2qivnqBqypQp4u0OHToYXD/VlrqWLVuKt9UD0FWrVmlMAcLktW/fXrx94cIF8faoUaMk+Ro1aoQnT56I+5cuXcKjR48AJI+Y1UVo9d2+fbvB9SIi7NmzR+uPA8YYYwwA5s6dizdv3pi8XIsO6goWLIiXL1/iypUrCAoKwsGDBzXyzJ8/H46OjuJWtGhRreWpfhnv2bMHhw8fFgPF8ePHi8d0BQStW7fWeqx3797iKFDVYM/b2xsKhQIODg44ePAg9u/fr7UMpp16/7pPnz6hYsWK4n63bt3w3XffQaFQSC7V379/H0qlUnz9//nnH5QoUcLo+7906RJ69+6tcyUNxhhjmZtSqcSMGTPE1ZRMyaKDOjs7O2TPnh0KhQJdu3aFt7e3Rp6pU6ciPDxc3HRNraHaUtezZ09Ji5ydnR0AYOLEiWJgeOjQIY0ymjVrJt4WVlMQWggHDRqEIkWKYMaMGTh58qSYr0qVKuLtTp06SSbzFabt0EW1NYoZpmrVqpLb5cqVg7W1NZ48eYIRI0aIx/bu3YuZM2caVOaXL18AAKGhoSatK2OMsYxDiDXS4qqORQd1kZGR4u0rV67AxcVFI4+dnR0cHBwkmza6Lr/mzJkT3t7emDdvHiZNmoSOHTuidevWqFatmkY+waJFi8Q01fTff/8d1apV01kXwbx582QvKwvq1q2LggUL6i3Hy8tL5/G9e/fqLSMje/nyJQBIWvYECxYsEG/HxMRgxYoVsq+JMEHyli1b4OTklEY1ZYwxZgmISNIHXCDEGqrfI0lJSbJLZEZHRyMuLs7g+7TooO7atWuoUaMGGjRogPfv36e6KVOImuvWrSt7vEqVKrCxsUHhwoVx6NAh2NnZ4eLFiym+v6dPn+LBgwcpPh+A3suEfn5+ICLUrl1bZz65YMYQq1atStF5liQhIQFv375FWFgYJk2ahLFjx+L777/X2j/zxYsX4kTWdevWxdixYw26nw8fPmDXrl0mqjVjjDFzWrNmDSpXrgxfX19JumoL3X///Yd+/fphwYIFqFOnDvz8/HDw4EFkyZIFRITs2bOLqzIZwqKDujZt2uDOnTu4evUqtm3bBmtr61SVJ0TP//zzj8HnODo64sKFC/jjjz8AJPeVe/r0KW7cuKH33IIFC+K7776TPWZjYyPZl4vgu3btKq6koI2hbwZbW1vZ9EqVKgHQPjVLZlll7uHDhyhatChWr14NADh58iTmzp0rHg8ODhYvv6ry8vLCihUrEB4ejr179yIuLk58zh48eIDLly+LeTt16oS+ffumSf1LlCiBAwcOpEnZjDHGNAnTbH3+/FmSrtpS16NHD+zcuVO8WhQZGYklS5ZAqVSKjUYhISEG36dFB3WmJkTPxs4t16RJE+TLlw9A8iW4cuXKaW3tM1RISIikb1atWrXw5s0byZxt+/btg4uLi9jfT50xc7DJBXU5c+bEw4cPcfToUfj4+Miel1mCuunTp2sEbaoDM/Lly4fevXtLjqsOxvjhhx/Qq1cvZM2aVQzEq1SpIpnYOi2XqXv79i1mzJiRZuUzxlhm5+XlBScnJ3GFI+H7UX21KiGou337tpgmt765ah99Q3FQp0J4ovVNd6HrXFNNNuzg4IBcuXJJ0ooXL46yZctq5M2aNatkOpThw4fD2dlZ7NOnzfDhw8W+X+pz8eXKlQuPHj2CQqFAu3btUK5cOQCawZ/qII+M7P79+xppwpJl2giBPiD9paZtdLPw3lHtw2dKmSUAZ4yxb+3UqVNo164dwsLCxCt3hw8fBgBs3bpVkleu/75qUCfcVj8eHR2ttx4c1KlITWAmBIKpvQScUg4ODmjYsCEA4M8//0RQUBAGDx4syRMWFoYvX76IA0oGDRokBmmqrXqPHz9GaGgoihUrpnE/CQkJ6Ny5s7jfqFEjyfHUrL6Rkan2nXzw4IFsy6fwjyxMlizn4MGD6N69uyRN3/yLjDHG0labNm3Ey6Rz586Fn5+fePXly5cvuHfvHt69ewdA/6hXuaAOAH799Ve99eCgTkVKL78CQN++fTFz5kz06tXL1NUymraWRkdHR2TPnh3btm0DAJQtWxZ///03mjRpIsmna9AEEYl9DmfNmgUAksEibdq0keQfOnSoZP/jx48aZaZmxQ5LERgYKNkX+iqq0vaPrKpHjx7Yt2+fJC137txwdHTUeo7QQsctdYwxZnpyA9ySkpIQFRUFAMiWLRuqV6+OkiVLApBvqdu0aROA5D51qqsjqcqePbveunBQpyI1l1/t7Owwe/ZsrQMOvgUhKNAXlLq5uYGIkDdvXnTq1EmyKoM+1apVQ548efDo0SNMnz4dANC4cWMULVoUxYoVk9x327ZtMWvWLDGA2b59u0ZL5qxZszL9Cgx169aFQqGQzDe4d+9e8QNBlXrg16VLF73PHwdzjDFmGqGhoZIBbgD0DnDbsGEDgOQYIzQ0FPfu3dOat169elqPyQ3G00CZTHh4OAGg8PBwjWOnTp0iAPT27Vsz1MxwAwcOpLlz52qkt2jRggBQTExMisp99eoV+fr6aj3+7NkzCg0NlT2WlJRESUlJREQEgFTfWpUqVRL3hecfAH358oWIiKpUqUIAqGbNmpLzeQMVK1aM/Pz8xOdSSE9MTNR4rvz9/Sk4OFjM++nTJ6pZsybdvXtX4zVJjc+fP0vuhzHGMrLLly9TfHw8ERE1b95c47P0W34n6GOeDmDpVGpa6r6lLVu2yKZv3rwZO3fuRNasWVNUbqlSpXQelxukIVBtoQsPD8eHDx9k8wktde7u7mJTstC6qT7n36BBg8TH6uHhofUXTL9+/dCoUSMMHz5cZ/0t0bt37zBy5Ei4ublJRlD5+/sjW7ZskrxFihSBjY0N4uPjERoaiuPHj+P27duoXr26mKdgwYIICAhIVZ3y58+PhIQEbgFkjGV4/v7+aNSoEaZPnw4bGxtxxOratWsxYsSI9BcvmCqSvX37tqmKSlO6WuqOHTtGAOjDhw9mqFnGNWvWLPEXRnx8PAGgunXrisfr1KlDACgqKoqIiAYNGkQAaOzYsZJfJ9Dzy0Xb8Yy4nT9/nsqWLSt77N9//yUAVKJECa3Pl5eXl/jL01jqzztjjFmqffv2UUJCgtbjixYtIgBUqlQpjc/Sfv360Y4dO9JVS53JPpmLFi1qqqLSlK6g7vDhwwSAAgMDzVCzjEupVFJcXBwRJV+mBUC1atUSj9erV48AUHR0NBERRUVFUe3atenly5cpDuq+//57yf65c+cM/qfZvHmz2YO21Gzt27fXeTwkJIQA0NSpU3W+brt376bnz59rpHNQxxizRD4+PuTu7i5+H/3zzz8EgBYvXizJd+fOHZoxYwZt2LDB7J/nxgZ1Rl1+7dGjh2w6EWnMmGyJLOXyq6VRKBTiJVYrKyu0a9dOMjR74MCB8PDwEC/NZsuWTedatTly5JDtMGptbS1OCKw+IEP9UqWqv/76C//73/8Mf0DpnL5pZYS5jl69eqUzX+/eveHk5ITPnz9j9+7d6NSpE+zt7U1WT8YY+5bmz5+P69ev482bN0hMTBS77Kxfvx4TJ05EcHAwWrdujTt37pi5pilnVFB37tw5bN++XWMKCiLClStXTFoxc0jNlCbMcOpBx4gRIzB8+HCDpvQAvr5Od+/elazq8ObNG7x48QJNmjSBg4MDhg0bJhl1pK5q1aqoVKkSfvjhB+TKlSvVawdbCrn5GBMTE7F582YMGjRIskRdZGQkfH190adPH4wfPx5LliwRj/Xo0QM7duww64hvxpjlOnPmDCpWrGjU2qb6JCQkwNraWvb7ZPv27QCS52Lt0qWLmP7ixQsAwJgxYyw6oANg3DWUzp0706VLl2SPtWrVypiizEbX5VehL1JYWJgZasbkQKXJ+YcffiAAZGtrq7MZesOGDeJrWLJkSQJAt2/fJgC0YMECAkD58uXTel+WfvlV37Zt2zbJpdo2bdpIjm/dupXu378vPtdPnz4lADRo0CDJ8wSAbty4karXNyAggJRKZarKYIxZJgBUpkyZFJ3bvHlzypYtm2yZEydO1Hp/lr7pfU5T9GymI+PHj6f69etTnz59xOvkuugK6vbs2UMAKCIiIi2qylJA9Y2sVCopNjaWrK2tDXpzq1IqlbR7925KSEggAOTm5qb1vs6ePWv2f9z0tC1evJgA0IABAyTPEwDy8PBI8Wsr9O1bsWJFistgjFkuAJQrV64UnwuA6tevTz169JCkFyhQQCP/1atXzf5ZaopNH4u+znjv3j0EBgbi6tWrqFixosZM+8biy6/pm0KhgJ2dXYomK1YoFOjVqxesra1x6dIlnf3O3N3d8enTJ3G/bt26Bt9PhQoVjK5bejdx4kQAwPv37zWOJSQkyJ7z5MkTBAcH6yxXWELH09NTb15VZ86ckb2czhizPLq+bx89eoRy5crhv//+05rn2rVr+Pfff/HmzRvxkmtgYKC43uqKFSuwevVqNGjQwLQV/4YcHBwAACdOnNCbN8XRi7ZFyb+lGzduoGXLlgCA1q1bw8PDI1Xl8UCJ9Of169d49OiRJG3v3r3o2LFjists1KgR8uTJo5F+7tw53Lx5E/b29sidO7eY3qpVK/G2arAnp3DhwimuV3p3/vx5jWVqtm/fDk9PT0nfRiB5qTlXV1eDyj169Cjy5csnux6uusuXL6NVq1YaC2QzxtKfoKCgFK9zCiSvYPT8+XP06NEDr1+/1lmO+jyrgwYNwpgxYzB27Fj89NNPhlc6HRo9ejSISGMZTjkpDur69OmDZcuW6cxDaTw5aVhYmBjBOjo6yo7AjYuLExc817fwObfUpT8lSpTQWCe1e/fuOHTokMnvq1mzZqhVq5a4X6xYMQDJAyoePHgADw8P5M6dG1OmTNFaxpYtW/QuGWPJhJGzAicnJ7i5ucHGxgZv376VHFNf7zYgIEA8PyYmBpGRkQC+Ln2jfr4c4X88KCgoZQ+AMfZNJCUlIX/+/Pjtt9905lP9oXz//n1UqFABcXFxACD5sViqVCmdLXZy8cbKlSuNrXa65O7ubnDeFEcvR44cwaxZs/Dzzz9rPJlJSUnYsmVLml+KcnJyEoO0sLAwSeuKYP78+XB0dBS3okWLai3PwcEB5cuX56COAUgO5oDktXK/++47uLm5Afg6LF6uVa5w4cJaV/zIiFT/50qUKCFp1QSSf1StXr0asbGxKFSokHi8evXqqFatmtH3J/yq1xVYM8bS1vPnz1G+fHmda5EKjSQ7duwwqMyFCxeiatWqePr0Kd69eyeb5+rVq3B3d9dYe9WS/Pzzz0blj4mJwffff2/4CSnqofj/vL29qUiRItSpUyeKjo6muLg4+uuvv6hEiRLk5OREM2fOTE3xet29e5f69u1LRERz586lXbt2aeSJjY2l8PBwcfPz8yNAfqAEY6oePXpEbdu2FddZlZM7d27ZTqxys49nxK1q1aqyHXmF28JqIePHj5c9rrodP35c8tyuWbOGAFBQUJCYdvDgQYM7DDPG0obw/3z16lWteWbPnq3zf/XOnTvi8TFjxkg+C06dOkW+vr5m/3xLi23y5MlG5TdWqj8Z/f39ydXVlVxdXalQoULk7OxM8+bN+2YjSE05+pUxY+3Zs4dq1apFS5YsoRo1aojprq6uBID+/vtvUigURv/jL1261OwfPindVD/Mha148eLibWEEsvqmHtQJ6aVKlRLTOKhjzPy6detGgObI9VevXtGePXuISPrDLS4uTuP/u1OnTmb/rEqrTf3xq243btwQbzs7OxMA6tq1K4WHh1PHjh1lyzJGqj4Zw8LC6Pfff6c8efKQvb09ZcuWjR48eJCaItMcB3XsW3j79i3t2LFDvH3+/HkKCAigli1b6vwwsLGxIQCUmJgoTiWS0TZhjWX1TVtQp/rBdujQIUnasmXL6NChQ9/uhWUsE1MqlfTo0SOaO3cuAaCDBw+KP+I+fvyoN6hZsGABvX37lhITEzWWcrT0TfUxExE1a9ZMI09oaCgplUpx/86dOxQcHCw2SG3cuJEA0IgRI2jIkCFUqVIlo1+jFAd1U6ZMIUdHRypVqhStW7eOvnz5QgMHDqR8+fLRzZs3U1psmuOgjpmT6nq2AGjUqFGSfS8vL8mEvub+oPqW23///UfLli0TF9dW/8Ak0gzq1I8zxtLOpk2bCEheyB6ApOVcmD8UAOXMmVPr/7mLi4vZP2tMvU2YMIGIpJ9HUVFR5O/vL8kXGhoqPpchISEaz69SqUx1bJLiT8Py5cvT1q1bNfobTZ8+nbJnz55ufz1zUMfSAycnJwKkqzsA0OhCoP7hcezYMWrfvr24/+eff5r9A83UW/PmzSk+Pl6SFhsbS0REhw8flnxwCreDg4Pp77//1nie4+LiKCkpKe1fUMbSuR07doj9zjds2EBTpkyRzRcdHU0AaOfOnRrHRo8eTUDyijwAqEWLFmb/vEgPm0B9n4jIxcWFihcvTnny5BF/sKalFAd1upb2+eeff8jOzo5WrVqV0uLTDAd1LD0ICwujt2/fklKppCtXrtAvv/yi8WFAJA3qVIMTIU14P2f0be3atXT+/HlJS93du3c18kVERNCpU6fI1dVV/JU8dOjQb/nSMpYuqQYccsGH4NOnTwSA2rRpI0kXltHMLFurVq00flxq2wRXr16lP//8M+1eRAOk2XWLEydOUM6cOdOq+BTjoI5ZEuFDY9iwYbLpqrdPnz5t8AeWcBnFUja5/ikFChTQSJMLcm1tbbU+v0OGDKHx48dL0qKjo2n16tWyP1wnTpxIjRs3NsEry5hhoqOjKTY2looUKUIjRozQmffKlSsUHBwse0xXMKIqLCyMgOQWcyKi06dP04kTJ6h58+Zm/xww9Xby5Emtx+bNm0dERG/evNE7Ejc9SdPa3LlzJy2LTxEO6pglET40Ll++LEm/desWXb9+XcwzadIkSX5924YNG8z+gWrMJgwgUd0cHR010oRWBkM+dB0cHCTHg4KC6OXLlzRjxgwCkvs3hoSEUGRkpMbrwdi3AoCKFCli0HsPANWsWVPrMV3/F0FBQRQUFEShoaGyeTPipdbnz59rPbZgwQK9z196XCc+TWfZrV69eloWz1imUbt2bcl+zZo1Ua9ePQBAZGQk5s+fb3BZp0+fTvPVXkxNbo3Z8PBwjTT15coEDx48wPXr1/H69WskJiZi/fr1GqvLlClTBi4uLuKEqomJicibNy++++47o+vr7++PP//8UyP9hx9+SFF5LHPw8/MDoPl+9/f3l83/6tUrjXWsX716pZHv119/1XqflNy4g3z58iFfvnxaPxvOnj2rs+6WSNcSZcOHD5fst2jRQiNPzpw5TV6n1OKlExizAFmzZtV6LEeOHOIqKA8fPoSvry+2b98uyXP+/HmcOHECERERaNmypbjOMZD8JSAsy2Pp9u3bJ5tepUoV1K9fH6VKlcKUKVMwcuRIyfFXr16JQaLqcwMAb9680SjvypUrsveTmJiIyMhI9O3bFxMmTNAoa926dRprGTMGJP/wKFasGObPnw9bW1tcvXpV7znVqlVDhw4dJGnqQZm/vz/++OMP2fOJCHPmzJGsomRpP/hSQ271qNKlS+PFixcaK1SdOnXKIpYn5KCOsXTM29sbGzduNDh/5cqVUbJkSeTJk0eS/t1336FNmzbiL0vhg3vBggUoVaoUbG1tTVdpMwoODtab59q1axppbdu2FW+vWLECgO4vt0aNGsmmDxo0CA4ODmJLi77FzE0hMTHxm9wPS51NmzZBoVDItjoDX1vpdu/eDQC4deuW3jKF9ZOzZs2KJ0+eiOnR0dGIiIhApUqVcOfOHa3nt2zZUmNtVksP6urVq6f1/1OdekvdggUL4OnpCRcXF428VlZWsLOzM0kd0xIHdYylY1WqVMGQIUOMPq9169bYtWuXuK/+4SVcppRbv9aShYSE6M3j5eWlkfb8+XONNEPWgL527Ro+fvwo7u/cuRPA1+c7KSkJR48e1fiivHDhguR2w4YNJcdDQ0OhUChw+/ZtvXWwsbFB06ZN9eYLDw9HVFSU3nwsbezZswdAcsAl2Lx5s/hDRP3Sq42NjWw5b968watXr7B//34xLS4uDhUrVhT3s2fPjiZNmsDHxwdr167VWqdz585ppFn6Z8L69etx6dIljfQiRYpopFlZWeHZs2fi/uTJk5E3b16tZTs4OMDLywsREREIDAw0SX1Nzkx9+cyGB0qwzAQqAwhUPXv2jADQu3fvNPLKbcL8VMK2evVq8XaHDh00JtnMaBsRSWaCB5LXpAVA5cqV03gO3d3dCQA1bNiQANCePXtkyyQiqly5slheSEiIJM/YsWOJKHm+PdUBG3KvsSHvhYIFCxr+5mEm1bp1awIgjk6Ni4uTvHbq74+1a9fKpteuXdvs/w/m3oRlyrT9r8o9byNHjiRvb28CIK7ZLfxP+fj40NmzZ7/xOyJtcEsdYxlYWFgYtm/frtE/pGzZsiAiFC1aVExzcHAAkNyi8OOPP0ryr169WrJfunRp8fbhw4ct/te9PkSk8Zzky5cPAPDs2TMkJiZKBmlcv34dwNe+d7169dIo08PDAwqFQuxjly9fPvTo0UOSR+iT5+7ubnSn7OPHj4t9gA4ePAgACAgIMKoMS/DgwQN4e3trpCuVShw6dEj2cuLevXvF50QQEBCAc+fO4e3bt1AoFLh06RK8vLxQqVIlrQNwjHHq1CkAXy/JC5f5tZk7d65sR371fpqZkbW1tdHn9O/fX3wv9OzZE0SEHDlyAAAqVKiA5s2bm7SO5mL8M8MYsxiOjo7o16+fQXk/ffoEpVIJW1tbPH78GACwdu1axMbGauS1srIySd+bevXqwcPDI9XlpDV9l2JtbGxQqVIlo8pUvTwuUL0sC3y9nKx+GTY6OhrZsmXTWX67du0AJAekXbp0Mapuxpg3bx6aNWuGunXrptl96FKlShUA0Hg/bt26FUOGDMG5c+fQrFkzyTEhyFY9p3HjxpLL8KtXr0Z8fDx8fHwQGhoKZ2dng+oTGxuLx48fo0aNGjh48CBiY2MlgxmUSiWuXLkiGU36v//9T6Oc9+/fy5ava8SmpStWrBjevXunN5/q69a9e3esWLECBw4cQMGCBTXyxsfH4+LFi3B3d0doaCiA5KAuwzJXE2FqvX79mvLmzUuNGjWiRo0aUVBQkEHn8eVXxvSLiYmhDRs2SCbghcqljPPnz2ucAwMum6hu2bJlIyKiHDlymP1yjjm2//3vfwblu3jxouTS0pEjRwhIXmJO9XnX9nqovzbaKJXKFC2pBiSv+2mI+vXrU7NmzbQeP3z4MC1dutSgspRKpWQSbVV2dnZi+oEDB2TrDIDmzp1LREQBAQEaz3uPHj3EJfn0fb88ffqULl68KC6xBYASExNlX8+M3lUhNVtERIR4u0GDBlrz9ejRQ7zds2dP2dcEAPXp08eg91JGYtFBXdeuXY0+j4M6xlLGzc1NEmiok/vwTUxMpHbt2on7J06coIULFxIAmj17NhERTZ482exfJubYDA3q5s2bJ95Wf55V92NjY+no0aP05MkTse+QtnPk9OnTR+vxyMhIyWLkcq+7IfTlNaasmzdvyj6upKQkSbpqUBcVFUVjxoyRHNe21J5qUPfx40eDHtedO3fE20KfS94M31SfSz8/P5o5cyaVKVNGkufLly/07t076tixIwGgMWPGGPR+ySwsOqgrUKAA1a9fn6ZOnapzLVpVHNQxljLR0dE0ZMgQAuSDutjYWDp27JjGh7TqKg+enp7k5+dHZcqUkSxn1LhxY4M/+A8cOGD2Lx9TbKNGjTIon9CpG4CkJQhIDuT0na++QgARUeHChcne3l62JbZGjRoar62zszMBEFsJ58+fr3GeIYS8QpD09OlTmjp1qsZxAKRUKqlBgwbk4eGhUU5SUhJt3rxZkj8mJob8/f3pyZMnGu8XouSWPdUWHmF7+vSp3ufw/fv3Bj0u1ZVaatSoYfb3mCVtx44d0/p+2rlzJ+XLl08j/ciRIxQTE2PQey+zsNigLjY2lr58+UJKpZKGDh1K+/fv15ovPDxc3Pz8/AjgoI6xlBBa1eSCOqLkL87du3dTQkKCGDCoBhXaGDOiL6Ncvho5cuQ3uR/VoBCAZBRv06ZNaeXKlUQkDahu3rxJpUqVori4OHr06JGY3r9/fwJAOXLkEF874dibN28kr+mXL180Xmf1+8iTJ4/4vjhz5ozkuLCYev369Wn16tWULVs2WrhwISUkJFDdunU1Hqerq6vW52DMmDEaPziErWvXrnqfw5MnT4qP4dOnT9SkSRM6c+YMTZs2ja5fv27291J63jw8PHQe/+GHHySX/VXfE6q8vLxo8ODBWj9DWLJ0H9QFBASQu7u7xqY6RcOJEydoxowZsuf/9ttvsm8kDuoYM96kSZMI0B7UyRH6yTRt2lRrnqpVqxKQfLn23LlzlD17dkl/KdUtMTGRvv/+e7N/WaV2s7e3N8v9JiQkaKSpTq8BgLJnz04AyMfHR5JeoUIFAr72hySSBmozZ86kffv2iYF3vXr1JK+zat5du3aJt9UvmQLJ0+0AyUGd6jq9HTp0MMvz9uzZM3r37h0tX75ckr527Vqzv5fMsVWsWNGgfERE69atIwC0aNEisra2lhxfvny55D2SK1cu8TxmPIt95lQX0p0yZQpt3bpVNh+31DFmOkJQd+nSJYPPiYyMJADUvHlzrXmEudrUKZVKevbsGY0cOZKGDh1Ky5YtE4+pfjHcunVL9gulcOHCZv/ys4StevXqKTpv1qxZBn2pExHdvn1bkq4a1AktgKqbMK9bsWLFzP78qG6Z/bKqi4sLAaBWrVrpzNevXz+6cOGCxv/0q1ev6Pz58/TTTz8RADp9+rTk+KFDh6h169YGf74wKYsN6k6cOEHVq1en+vXrU//+/SkhIcGg87hPHWMp5+/vT61bt6bo6GiDzxFa6lq0aKE1jzC5sTFUv0DUW5oA0Jo1azT6oPH27Tcikh0UkllHPVv6lpSURE+ePKHevXvrzPfq1Su9/8N+fn5G/c8z/RREFr7Qm5EiIiLg6OiI8PBwcbJVxljaISKMHz8eo0ePlkxarCoxMREhISEoUKCAweWqztdFRBr7QPLySVmzZpU9f+HChXB2dk7RMmzMcG/fvkXx4sXNXQ1mIsL/Vs+ePfHvv/9qHM+ZMyciIiK+dbXY/+MVJRhjaUqhUGDp0qVaAzogeYZ4YwI6Q2mbef7gwYOYNGkSBg8ebPL7nDBhgsnLtGQc0FmmSZMm6TyuvrJFZGRkWlaHGYiDOsaYRdK24PnVq1fF21myZJFN79Spk97ytbXw6TNw4MAUncdYemFjY4Np06bpzFO7dm3x9uTJk8UltzLyiheWgIM6xphFWrZsmWx6/fr1tabb2dkZXH5K19hMybqUjKXGhQsXMHbs2FSVcfHiRfF227Zt4ejoiNjYWLi6uorpqoHc+PHj8ezZMzRq1EiyzBkHdebFQR1jzCKNHj0alDzYCwCQL1++VJeZPXt28ba2lkB99K0Ty5gpODk5ibebNGmCZcuWYe7cuQA01zY9duwYTp06JVtO5cqVASSvfSsQuhCo/whS7UNnZWWFsmXL4tKlSyhWrJgknZkPP/uMsQzB19cX4eHhGum5cuUSb+saFxYUFAR/f39x387ODv/884+kBQMArl27hlmzZknSpkyZIt5Oi76BjKkbOXIkAMDe3l5M+/XXX0FEKFy4sCRvmzZt0KpVK3H//v37YovylStX4OPjI8mv2to9btw48bYh7+3WrVsb8SiYyZlr2K258JQmjGUugYGB9OTJEyIiatu2Lal/7AGQpG3dupUAUMeOHcU0d3d3ST7VKVRKlChBL168IKVSSYmJiZIyU7IJ84Dxlnm3GTNm6Dzu5eVF8fHx9OLFCwoMDNR4z48bN06SX+69Lkx+ret/wVgfP36kuLi4FJ/PUo87fzDGMrT8+fMjf/78AIB9+/YhNDRUZ/4BAwagbt26KFKkiJh2+PBh5M2bV9xX7Tf0+vVr8bbqwIyUUCgUSEpKSlUZ2uzatQt9+vRJk7KZaXh7e6Nq1aoYPHgw5syZo3Hcw8MD/v7+Yt82FxcX2XLo/1ukt23bJnl/qp5jY2ODmJgYU1bfJF0gWOrw5VfGWKZhb2+PQoUK6c1XtmxZZMuWTdwXgrUWLVoA0N9vSBg5a2dnh/79+4vpnTt31nmeUqmU9E8CTDdFiurlt/Qsd+7c5q5CiugaLeru7o5y5crpPL9mzZqoUqUKiAglS5YU02/dugVPT09MmzYNbm5u6N69u966lCpVSixz5syZYvqHDx9w584dAICtra3ecpjl4aCOMcb0EFrm1P927dpVNv+FCxcAAKNGjcK2bdvECY7VR9T++eefGufu379fst+0aVPJfvXq1TXO0RYwvHv3Trxt7Jf4rl27JK2V30q3bt2++X0CyYMADh06hNu3b6NXr15Gnz9v3jzxdtasWSWPY8OGDXj69CnCwsIk/T6FwQl//fUXLl26JFtuzZo1UadOHUn5+owePRpeXl6oUKGCJL1gwYLipPs7d+5Ely5dDC6TWQYO6hhjTA/hcpbQYmdlZYXjx49j48aNsvnLli0LAOjRowcAiNNCVK1aVczTu3dv/PLLLxrn5smTB58/f8YPP/wAGxsbjVZBIsLChQvF/axZs+LYsWPivmqLUdGiRcWWL2EeMUP17t3bLJfTfv31V60jNXXR1xKmT6VKldCxY0fUqFEDo0aN0ppPCNY8PT3FAPzu3buSPC9evBDznTt3DuXLlwcAODo6SlYyEgY0uLi4SEZep5aVlZVk+hE5LVu21PgBwTIA83bp+/Z4oARjTNWcOXOoePHiOvMolUqaPXs2+fv7p+g+lEqlOJhi27ZtBIAuXbpEREQvX77U2UH99OnTkk7vnTt3pt27dxMA6t+/v5ivYcOG1KRJEyJKXm9XrgM91Drc79+/X2tnfCLNDvdpvX38+FG2riNGjKCTJ0/SgwcPyNHRUfbc1q1bp+q+VV27dk1yzNraWrzdo0cPAkBv377V+vwKr/nNmzdlX1Mh37179+iff/4hpVKpkefChQs0ZcoU2fPTiq73IbMMme7V46COMWZuMTExkn1dX6aPHj0Sjzds2JDCw8PFoG7ZsmVG3e/58+fFsr777jvJfatuwsjfhIQECggIIACUI0cOIiKKjY3VGhidO3dOvN2tWzdq1aoVhYSE0NKlSyX5ihQponHuly9fZJ8TLy8vyfMVExNDnp6eGucPHz7coODNycmJ/vjjDwIgBq3Dhw/XeH1atmwpnlOsWDECQAcOHKCAgACaNGmSbCBmaFC0cePGdBk8cVBn+Szi1YuIiKDatWtT9uzZ6eHDh2L6nj17qG7dutSkSRN69+6dQWVxUMcYS2/0fZn6+vpK9lMa1Mm5desWZc2aVdLCpB6w2NnZ0aJFi4iIKDExURIk1alThwDQwYMHiYjo33//JQC0ePFi8Xz1c9zc3CT73bp106iXrudEqVRqBGt37941KKhLSkqi69evEwD65ZdfKCEhgZKSkmTvRzjn1atX9Oeff+p9Li09KOrTp49F158RWUSfOnt7exw7dkzS8TQhIQFLly7F5cuXMWfOHNnh34wxlhGojoYEvg7UIB2TKRuqZs2aWLVqlaRs9aWeYmNjMXHiRABfR/4uWLAARISWLVsCSF7VAPg6IEN1uTTVqV7Cw8M1JrGtW7euUXVWKBRo06YNgOTRoU+fPkW1atWwZMkSMc+CBQtkpwaxsrJCrVq1MGzYMEyePBnW1tZaRzO3bdsWBQsWRKlSpWT7P2Y0O3fuNMl7ipmPRcxTZ21tDWdnZ0naixcvUKlSJdja2sLd3d1kw/4ZY+xb+/fff1G0aFGz3f+wYcMwbNgwg/IqFAokJCSIgdqMGTPQo0cPODo6AgDatWuHefPm4YcffpA938HBARUrVsTBgwexa9cuZM2aFe3btze6zkIgVqxYMXFAx/jx43Hr1i3s3bsXvXr1QvHixXH+/HmNc21sbPDPP//ovY/jx48bVae9e/emeq5CxlLDIoI6OWFhYZJRRNom7IyLi0NcXJy4HxERkeZ1Y4wxYxgy95iqVq1aoX79+mabTFi1Fc7GxkZcPxRIbpXTNWcbAMyaNQtdunSRnZ5Fla7HZ+jC8d9yBK8w2pkxc0lXQV1gYKDsHEVHjhzRmJDSyclJEqBp+3U0f/58zJ4927QVZYwxM8qVKxeuXr1q7mqkmLW1td6ATt9lQG2XoIW1foXvhO+++w6PHz/G+/fv8ccff6SwxoxZhnQV1BUoUADXrl0zKK+Liwt8fHwQHx+PW7duifNAqZs6daqkL0RERIRZL3Mwxlhm9OOPPxo9V54uwuVX9aBu8eLFqFOnjmTi5IoVK6JixYriiiCMZVQKspBekW3btoW3tzeKFy+OkSNHYtCgQdizZw9WrFiBrFmzYtu2bQYFaxEREXB0dER4eLjk8i1jjDHLcffuXQwbNgxeXl6wsbExd3UYSxcsJqgzFQ7qGGOMMZYRWcSUJowxxhhjTDcO6hhjjDHGMgAO6hhjjDHGMoBM16eOiBAZGYmcOXMaPM8RY4wxxlh6l+mCOsYYY4yxjIgvvzLGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQAc1DHGGGOMZQCZLqgjIkRERICIzF0VxhhjjDGTyXRBXWRkJBwdHREZGWnuqjDGGGOMmUymC+oYY4wxxjIiDuoYY4wxxjIADuoMdOXKFTx//tzc1WCMMcYYk2Vt7gpYgujoaDRq1AgAeIAFY4wxxtIlbqnT4/bt28iePbu5q8EYY4wxppPFBHWRkZGoU6cOcuTIgUePHgEA9u7dCzc3NzRt2hR+fn5pcr8PHz6U7G/cuBFXr14FEaFXr164f/++eOz9+/dpUgfGGGOMMX0sJqizt7fHsWPH0K1bNwBAQkICli5disuXL2POnDmYM2fON6nHsGHD0LBhQ8THx2Pv3r346aefAACXL19GkSJFcO3aNZPf57Nnz3D37t1UlaFUKhEfH2+iGjHGGGMsvbGYoM7a2hrOzs7i/osXL1CpUiXY2trC3d1do0VNEBcXh4iICMlmDIVCIZuelJQEALCyssLevXvRuHFjAMkBGJDc905uYMXTp0+RmJgIAAgICMCxY8f01qF8+fKoUaOGUfVWKpViHQFg9OjRsLOzM6oMxhhjjFkOiwnq1IWFhcHBwUHcVw1gVM2fPx+Ojo7iVrRoUaPuR1tQl5CQACC5ha5Xr14a6Rs2bEC5cuWgUCjw6tUrAMmXkCtUqIDZs2cDAL7//nu0b98eABAfHw8vLy/xMrJCoUD37t2NqiuQHFQ+ePAAnTp1grX113EwO3fuNLosxhhjjFkOiw3qnJycJK1uWbJkkc03depUhIeHi5sxfe/8/PwwaNAg2WN58uSRTReCS29vbzFt69atAIDY2FgAEPvhBQcHi3kKFSqEunXrwsXFRUzbt2+fJKjMnTu31n57b9++xaVLl1C+fHlUqVIFR48elRzX9vwwxhhjLGOw2ClNXFxc4OPjg/j4eNy6dQuurq6y+ezs7Iy+7NimTRsUKFAAW7Zs0ZpHW8tgYmIiqlevjnv37olpWbNmRe/evREeHg7g67Qotra24jmfPn0CAJ393kJDQ3H69GkMGTJE41jFihURHR2t9VwO6hhjjLGMzaKCurZt28Lb2xvPnj3DyJEjMXbsWDRq1AhZs2bFtm3bTHY/p06dSvG5iYmJkoAOADw8PHD8+HFx/9ixY3B3dxeDOvXWQ19fX63la+sTqCugA5L7/gFAq1at8OHDB619EAUxMTFYuHAhpk+fLrmMa4wGDRqgffv2mDRpUorOZ4wxxpjhFJTJZtONiIiAo6MjwsPDJX3yBB8/fkSBAgW+aZ3c3d1x/fp1cb906dJiPzw5BQoUgIeHB0qWLCmmaev7R0TYuXMn+vXrJ0k/c+YMWrRoofU+li9fjnHjxuHAgQPo3Lmz3sfg4eGBevXqSdKEOul6i/3999+YMWOG5FI0Y4wxxoxnsX3q0sr27du/+X2GhIRI9nUFdAAQGBiItm3bIjY2FklJSdi7d6/O/OoBHQC0bNlSNm+lSpUwYcIEcYSu8FebmJgYseVRtTXSUNOmTdN4/IwxxhgzHgd1aiZOnPjN79Pf39/oc54+fYr58+cja9asktG3xjh8+LBk/86dO/Dx8cGff/6p0cr2/v17zJ07V6PVLVu2bOII3sDAQDFd3+VdQSZrKGaMMcbSDAd16UBUVFSKzrty5YreljRhxK2cXr164e+//8a///4LAKhZs6Z4TD2oGz58OGbMmIH79+/DxcVFNhhTvQQsN3DlzZs3+Pz5syRNV1C3fv16nD17Fu7u7jofB2OMMcYsbKAEk7p06ZLePN9//73WY7GxsRg1ahSA5OlTVAkBWlJSEq5evQqlUgkAqF27NhISEvDw4UP06dNHcs7kyZMxZMgQ7N69W5KelJSELFmyoGTJkihQoAACAgLEY8Jo3xcvXqBMmTKS80aOHCnefvr0KapWrarxGL58+QIbGxueWJkxxlimxy11GdyFCxcMyvfff/9J9oWgbvHixWjYsCFOnz4N4OvkynZ2dnj8+LHknJCQEDx48EAj2BOWUgOSL9Fu2bIFM2bMAJDcJw8A5s6dq7N+M2fORFRUFIgIixcvFgdW5MyZE7Vr1zboMTLGGGMZGQd1TNaCBQsASCdRVqVtPr0qVapopK1du1ayP3jwYJ1B3MaNGxEWFiZJO3r0KP78808EBgZi0qRJkkDxwYMHWssKCgoSWw6VSiV69eolLuXGGGOMZSR8+ZXJ+vjxo87jjRo1Mqq8/fv36zy+bds21KxZE6dPn8bx48dx/vx5jTyJiYnipM/6+hJ++PABq1atgqenJy5duoTevXsjJCQEe/fuRUxMjMYgEcYYY8zScVDHUiQ0NNSo/N26ddNIW79+vWT/559/Fm+r98sDkgdVCH37hMmU1T169AgbN27Eu3fvcODAAXE5N0POZYwxxiwZTz6sRtskvnIqVqwIHx8fU1aP6fHkyRNUqFABQPLKG6VKlQLwdRSt8Pq5urpKLssmJibi48ePKFy4MLp06aK35ZAxxhizNNxkkQpJSUkICgoydzUyFdXLpkJAByQHc6rLran3s0tKShIDP/WWuj179uDkyZNpUV3GGGMsxQYPHowTJ04YnJ9b6lQ8f/4c5cqVM7is+vXr4+rVq2LrUNWqVTUGFjx+/BiVKlVKdb1Z6owePRo2NjZYvnw5ACAuLk5ce1d4/Xx9fdGwYUNs3boVTZs2NVdVGWOMMQDJ3082NjZaBydq5Oeg7quzZ8/KLp81ZMgQbNq0SZJWrVo1nDp1Cvny5RODgsjISOTMmVOSj4iMuqQrEOqoqnDhwkhISODWQRO4dOmSONhD/fWpWrUq7t27Z45qMcYYYyJD1lBXxZdfVaxbt87gvHfv3kW+fPnE/UqVKiFHjhy4evUqXr9+LclbsWJFo+tSt25d8XZMTAxy5syJJUuWSNJZyjVu3BiRkZF4/vy5uavCGGOM6SSs/KQPB3UqrK2/DgZ2d3fXOC5MmKvu+fPnuHbtGoDkS7IlSpRIVT3atm0rthi2bt0aWbNmRUREBHr16oWdO3emqmz21dKlS/VOenz37l0sW7ZMdoqV9+/fQ6FQ4OLFi2lVRcYYY5nI6dOnJaspCQICAgxaUpSDOhXClBcAcPXqVY3jPXv2lL2UWqZMGeTKlStF91m/fn3J/q5du3D8+HExwOzfv7/keI4cOQwqV25JrW/JmFZPc5k1axa2b9+uke7t7Q1XV1fcuHEDNWrUwC+//ILmzZtj6dKlkvnxhFa+s2fPapQRGBioc1JkxhhjmcuRI0e0TugvaNeunTjd15cvX8T0sWPHonr16nrvg4M6FcJqCCdOnJAEbz179gSQ3KfN0P5xs2bNwsSJEyVpSUlJmDhxIqZPny6m/f777wCS++gBQIECBQAYfv1cm/nz52P06NGpKiM1HB0dzXbfpvDw4UPUq1dPkjZ+/Hjs2bMH7969g4eHh/ga7du3DwqFQrIKRuXKlWVX1xB4enpiy5YtaVF1xhhj6cTbt2+hUCjw6tUrdOzYUfyuN4QQewgM6S7EQZ0KoXVLvZWrZcuWICKjWuN+++03LFq0SJJmZWWFRYsWYc6cOWJakyZN8PDhQ7Rp0wbA12Cue/fuqFKlClq3bq1RtjBPW9WqVTF+/HgAyUGcKnt7e9l5+AAgf/78AJLXcT137hyGDBli8OMylPA4li1bZvKyzal///4oXrw43N3dERkZCQB48eIFAEimVPn06ZPOctzc3DB48OC0qyhjjDGDXbx4EW/fvjV5uZcuXQIAnDlzxqjzHjx4gDt37hh9fxzUqVCfwFZOSkay7t27Vwy+5FSuXFljhEuhQoXg7e2N3Llza+S/e/cuIiIicPfuXSxZsgQBAQGYMmWKJE+ePHkkl5MFderUEZfaypIlC5o1a5YmKywULVoUAFC6dGmTl51eqAesCQkJqF27NlavXi1Jv3//vmStWlWnT58Wg0MAiI6ORkxMjOkryxhjTKumTZumuNtSQECA1mPC9+uNGze05jl69Ci2bdsG4GsMUKVKFdnvcL0okwkPDycAFB4ernHs8OHDBIA+fvxIREQAyM7OTpLn119/JVM8be3bt6fFixeL+15eXgSAPnz4kOIyARAA8vLyIiKiCRMmiGkAKDIykoiInJycJI/Bw8ODAFDBggUl+QHQs2fP6OLFi/TPP/9oHNO1ERH5+PhI6pUZt8jISMlzcvDgQQoODpbk6d27t/haWFtbk5OTU4rfA4wxxoyn+jltjKdPnxIA+u+//2SPb9++Xfb7kYjo6NGjNHfuXEl6lixZxH3hu1ruXK2Pw+hHYOF0BXWHDh0iABQUFERERM+fP6eAgIBvXcUU+/fff+n8+fPi/tWrV2XfDA4ODrJvDhcXF51voA0bNmgcj4+P1xrUCcwdWKWXTXguGjduLEmvX7++xnPFGGPs20npZ++5c+cIAE2bNk32+PDhwzW+Cz59+iS5T2Fbu3atQd8juvDlVxXqC76XKVNGHLhgCbp37y5ZCaF+/fqyAy6Ey6/a2NjYyKYPHToUlPxDAEDypVVteVXVqlULR48e1Zsvo3N1dQUAjX4buprYL1++jMePH+Ovv/7SOPbixQvJ67t3717Mnj3bRLVljDGmj74uWf/8849GmouLi+wl21GjRqW6PhzUqVAP6jKqhIQE2fQ9e/bgf//7n+yqGurWrFmDU6dOSdKEwRpdunSRpN+8eRPt2rUTB2gY69atWxppderUSVFZ5vTw4UMAmkFcfHw8du7ciSNHjohpnz59wrhx49C4cWNUrlwZo0ePFlcYCQ4OxtmzZ1G2bFnJCNpevXph1qxZ4j4RaX2tGWOMpZ4Q1MXExGDZsmWSz3dtgyNCQ0NRqFChtKmQ0W2NFk7X5df//vuPAFBoaOi3r1gaglqz7YABA3Q246r3AzO0/M+fP1PevHnp5s2bsvmSkpIoKiqKbG1tdTYvd+vWjQDQ3LlzqW3btpL7EDbhMWTU7ccff9RIe//+PYWEhFD27NnFtEmTJmm8DvHx8URENH36dAJAvr6+Wl87Ly8v8vf3N+h1ZoyxjMqY7zxVly5dknxOnzlzhmbNmkV3796lihUrmvy7Qe/jSMmDt2S6grq9e/dqPWbJChYsSP379xf3ExMTKSYmRuc5fn5+dPbsWYPKN/afQRiYIbf16tWLHj16RE2aNKGEhATxHCFAAUDPnz+n0NBQ+uuvv8wefKXVZm9vb1C+yZMnExHRrVu3JOm3bt0ihUIheW1CQ0NJqVQSEdHly5dp9+7dBIDy5Mmj9bV6//59hvuRwxjLHD59+kRTpkyhxMREOnXqFNnb21NiYqJGvk6dOqU4qLt8+bLeH+Qc1KUhXUHdnj17CABFRESYoWaWa/HixdS5c2eD879//54A0NGjRyk0NJQSExPp3bt3BIBWrlyp9Tz1N7VSqTR78GXubcqUKZLnRtgWLlwo2e/Xrx8BEEdcG/pBAYDy589v8GvLGGPpxdixYwlInhGiefPmBHydBUKVMUFTQkIC1atXj+7du0dERFeuXJGc3717d7MGdUZ3HouJicH79+810h8/fmxsUelOZulTZ2oTJkzAgQMHDM5fqFAhJCYmol27dsiVKxeyZMmCokWL4tmzZ/jxxx8NLkfoy1CqVClxZQ7g67q92bJlM7gsS6VQKCRLl6mmq9qxYwcA4MKFC0bfx8ePH1NWOcYYMyPhuzw+Pl5jLlhtTpw4ASA51pEbVBgUFAQPDw/xO0f9s/a///5Ldb21KVWqlN48RkUv+/btQ9myZdG2bVu4urrCy8tLPKa+RqklEl5sDurSXpYsWTTSypYtq3ckkbCahiqFQiFZes3V1RVRUVEIDQ1F4cKFUaZMGUn+yZMnp7DW6Y+VlRXGjRunkT5p0iTZ/Nqe34cPHyI+Pt6kdWOMsfRAdWUGpVKJmJgYbNq0CSNHjoSHh4ck7/fffw+FQoFs2bJh4MCBGmUJccLTp0/x22+/oUGDBmlbeRV79uzRn8mYpswqVaqIc7jdunWLKlasSDt37iQioqpVqxpTlNnouvwqTBKor78ZMw8ANHDgQI200qVLExFRnz59CACNGjVKkickJERsut69ezcRkaS/meo2Y8YMs19SNWZzdXU1Kr+2gScAqEKFCkREFBERQX369KGAgACDm/wZY8xcIiIi6PPnz5K0mzdvyn7ODRgwgLp06WLwZ2ZCQgLFxsZSbGwsvXnzht6+fWu2z/v79+/rfS6MapJKSEiAs7MzAKBmzZq4cuUK1q1bh99//z1Fy2elN8QtdenakydP8Pfff2ukN2vWDAAwd+5cAEC5cuUkx4X3ZuvWrdGrVy8AX+cD2rp1K5YuXSrmdXNzM33F09CDBw+Myq/r//TJkycAkpeY27VrFwoWLCge+/z5c8oqyBhjaax06dLInTs3Nm7cKKapdzVp27YtAGDbtm1GdRcqV64csmbNimzZsqFEiRIoXry4aSqdRoyKXvLlyyf5EsmTJw/Onj2LJ0+eGP3lYioTJkxAgwYN0Ldv31RfPhL61GWEADUjKl++PLJmzSpJ+/jxo7jWasmSJeHt7a2xzqpckC6kVahQQXL50pA5+izZ8ePHsWbNGq3Hp0yZIju3XZ48ebSe4+npKXsJmDHGvoXg4GAAwLBhw+Dp6QlAcz5QYZ5QY/n6+sqWZw6GxCZGBXXbt29Hvnz5JGm2trbYvXs3Ll++bFztTODevXsIDAzE1atXUbFiRezbty9V5ZUsWRK9evXiljoLki9fPsmqFlWqVNF4/RwdHTFz5kysX79eTKtXrx4AaEyILNfXzxApXQjaHHQNRlm4cKHWY6dPn5YdEPW///0Py5cvN0XVGGPMYG/fvtWY4NfNzQ1xcXGYNm2aJN3Pz+9bVs1sjIpeihQponXZLGHE4bd048YNsWWldevWGh0eASAuLg4RERGSTZuGDRti9+7dKf5iZ+mTQqHA7NmzUbRoUTGtd+/eCAkJQbFixTTy37p1SxLcrFy5UnKcZEZP2dramrDG6VPr1q1RuXJljXS+NMsY+5aKFCmCn3/+GY0aNUKrVq00jqe2gSe9WL16Ne7duyfum7ylTtX+/ftTeqrJhIWFwcHBAUBya4zcl8v8+fPh6Ogobqpf7Cxz03ZJsWbNmpg0aRKSkpJARJLLuUOGDAEAvHnzBgBQsWJFANqXXsuoiAi7d+/GixcvJGnR0dGylyni4uIwY8YMHmHLWAb16NEj8VJlWnv//j1WrVqltfWtX79+36QeaW306NGoWrUqhg0bZvA5KQ7q+vTpg2XLlunMI9eiYUpOTk5iy1tYWBhy586tkWfq1KkIDw8Xt8zSBMtST+4y/Lp16wB8DQiFARfq06Y4OjrqLb9Dhw6praJZdO/eHVZWVujTpw/q1KmDt2/fAkieNiB79uyYPXs2gOS58SIiInD79m3s3r0bc+fOFefLM9bnz5+xdetWkz0GxlgypVKJDRs2aMzJ5ufnh3PnzhlcznfffYfSpUsbdd/FixfHhAkTMH36dERGRurM++7dOxw6dAiLFi2S1D0j6tSpE3bu3CnuC4MzcuTIof/klA4hPnXqFDk4ONBPP/0kLj0kSExMpM2bN1O5cuVSWrxB7t69S3379iUiorlz59KuXbv0nqNrShOWeUHP1B26jt+7d49u374tGXqeK1cuyXlyW0xMjMFD2Tt37mz26VP0bRUqVCAAVK1aNXHVEGHqmIkTJxIAsrGxoYoVK9K7d+8Mfm0OHjxIdnZ2BIDCwsKMe2EZYzoJy2MCoC9fvojpBQsW1PjMe/nyJRElrxm9ZcsWyTFdn5Fv376l/fv3ExFRWFgYBQQESM4BQEWLFiWi5PhBWCIyMTFRXNarQIECZv+MS+3m6Ogo3v7+++/F23fv3hVvC8+TqoSEBLp8+bJBr2eqJqDy9vamIkWKUKdOnSg6Opri4uLor7/+ohIlSpCTkxPNnDkzNcUbZPz48VS/fn3q06cPxcXF6c3PQR2TM3DgQK0fSEREuXPn1nn83r17kn/eDh06EBGJgYyQ/vjxY/F2fHw81a5dW9zXNnceABo6dKjZP5CM2RYsWKDz+MKFC8UPdiKipKQkat++PXl7e2s8t6rnXb16NRWvMmNM3aZNm8T/r0ePHonpQppA+Iz777//NI7J5ReofuZ9+fKFChUqRABkl3kMCgqiBg0aiOUUL16cAFBoaKjZP9NSs128eJF8fX1p6tSpYtr9+/fp77//psDAQCIiWrRoEdna2qb69Uz1rKL+/v7k6upKrq6uVKhQIXJ2dqZ58+al2/VTOahjKSE3uaUq4QOvXr16BIA+ffpERF+DukmTJomtd25ubgSAkpKSKDIyUvwnL1GiBPXq1Uv2Q2H8+PFm/2BKi23AgAEEgKpUqSKmxcbGis/r/fv3Nc7p1atXmrzGwcHBdPToUZOXGxAQwJ83zKyUSiW9f/9e9phqUPf48WMxXUgTWsuOHj1KAGjOnDniMVVyaap51c/19PTU+dnw8eNHs38+mWIrU6aM+HwcP36cAJCvr68JX12pVM3dER4ejk2bNuH9+/d48eIFwsLCcP78eUybNg05c+ZMTdGMpSs5c+aEk5OT1uNC/7vKlSuDiCT9OxUKBRYuXIjQ0FAAwObNm/Hzzz9DoVBI+kgoFAqto5usrKyQK1cuEzyS9GXbtm0AgPv374tpjRo1wrt371C6dGnZ+e/0LZUTExMDhUKB3bt3G1WXbt26oX379rh06ZJR5+lTsGBBVKpUyaRlMmaM9evXo3Dhwvjw4YPOfHKfPwUKFEDhwoVl8wv98MqXLy+mzZs3T/wsmzFjhiS/6n7dunV11kV9uqn0rHnz5lqPeXt7i7fbtm2LmJgYlCxZMs3qkuKgburUqShevDi2bNmCP/74A8HBwejevTuaN2+OW7dumbKOjKV7wgeQ+jqA3bt3x969eyVp5cqVw4oVKzQ+QBUKBWrWrClbvpWVFTZt2mRQXcaOHWtgrdMnLy8v7NmzB76+vhqzwstRKBRYvHixuB8TEwPga8CoT0hICKZPn473798DSJvnz9/f3+RlMmao27dvAwA+ffqkM5/wmSSsLgMk/398/PhR/L9SXfM9KSkJsbGxePbsmZimug53ZqE+h+eaNWswdOhQLF68GNmyZZPkVZ9A3+RS2sRXvnx52rp1q9iJUTB9+nTKnj07HTp0KLWtiGmCL7+ytJLS9xT+v5m+bt26lJSURE+fPtVowp8xYwYRER04cEDjWI8ePST7s2fPFm9XrlzZ7Jcf0mJTf/7Kli0r7quu9ava8VsboT+l0KfR1dU1Ra+jvteXsW/F29tbcil1xIgRBEC2z+rmzZvF9+iTJ0+ISPcAL9Vt/fr11LJlS7N/Hhi7dejQQedxoV+ftq1ixYqyn0fp4X89xS11Pj4+GDBggMZEvXPmzMHy5cvRs2dPcfkmxjIDYc7ElDp48CCsrKxQrlw5PH/+HGPGjAGQvFrFpEmTAABt2rTROG/v3r1o2rSpuG9lZYVFixbB09MTd+/eTVWd0qvevXtLLq8+f/4cr169AiCd5qBNmzYICwuTLePChQuYNm0a4uLiAHy9hE7/PxWTn5+f3pYNZrksYW7Ju3fv4suXLzrzREVFaUwfVrVqVcklf0OXvtyxY4c4B6chRowYobGigyXQ1x1C23Rtzs7OOHr0qNgqZ2VlleZTtxktraLFEydOUM6cOdOq+BTjljqW3kDLrzthBKl6q7cwaGLv3r105coVIiLatWuXWM68efNkyxemHMlIW1JSksYvZrnBFTExMeLz8c8//1CtWrXEY23bttXIL4zMM8VnmLbXl5nP4cOHCQD5+fmZuypaeXl5EQBq06aNJN3Hx4e6du1KRMlTXQDJo8lVqb/nhJa6Bw8eiGm3bt2ipKQkSUtdZtisrKxoypQpOvN4e3vLpguzGgjPsUKh0Pm8m0OaLXLapk0bk3c4ZiwjKl26tLhShTEKFSok9uHr2bMn5s2bBwCyy+ZUrVoV3t7eWLNmTeoqm86oT5gKyE/q/PjxYzx8+BAKhQLDhw+X9Ps9ceKERn5hMEZkZCTatGkj6QidkJAAIkKuXLkM7ufIvj0fHx+txy5evAggbdcDDQ4Oll3lyNPTU5ywW5c6deoASO5o7+vri1OnTgFIXsVm//79UCgUYkvyyZMndZYltF4L7/WnT5+iVq1akol8MzJSaU3LkiWLbOta165dERQUhJkzZ+K7777DxYsXsXv3bhw+fFjM06VLF8k5AwYMkOwvWLAA48ePN3HtjWTWkNIMuKWOWYrPnz/TgAEDKDo6WpIutNSlZM62169fEwDKly+f1l+pqpNiAqC1a9ea/de1tu38+fOS/apVq8rmK1GiBI0bNy5V91W+fHmKiooiAGRtbU3A1wlTVfn4+Ej2hfPZt3P9+nUCQAcPHpQ9PnbsWAJA169fN9l9vn//nhYtWiTuQ6Yl5/Pnz3rfD58+fZK8r/PmzUvZs2cXz1F9T/72228EgBo3biwpQ/U+IiIiJOcMHjxYsi9MMpyRN9XnpFy5cuJk6MIUIwDo5MmTWl8TT09PWrZsmSQtNjaWkpKS9L8xvrFM90nDQR2zdMIM8Cmd6+jt27f09u1bjQ++n3/+mQDQDz/8IEl/8+aN2T+U08sWGBgo+4UhuHXrFgGgffv2iWly+Yxx5coVmjx5Mt26dSvFZWQ2wgS5qkGWKiHAN2VQ17p1awJAkZGRRKT5ukdGRtLff/+t9/3QpEkTg4ITuU14j6jmlxt4lZm2LFmyEBFRrVq1yMHBgT58+EATJkwg4OsPY7kBJJYqzS6/MsbSRo8ePRASEpLiuY6KFSumMcAJgDgPX758+STpxYsXF6cHcXd31zjv999/T1E9LNH69es10oRLwElJSeKcVPfu3UOnTp1kO6grFAps2bJFY6obVWPGjEHjxo0BAA0bNsTChQtRq1Yt8fj79+9x9OhR2ct7DOL7W9/aoPT/l+EiIiKgUChw/vz5FN+nMPCCtHScHzBgAH744Qe95ei6NKtv0MT06dM1LinLrWGd0Qnzf96/fx+JiYkAgJs3byI8PBwFCxYUXyPhualSpYp5KpoGMt+rzVgGkCdPnlSdr/pBX6JECQDJ/e4OHz6MX3/9FdHR0ZL8/fv3BxFh3759GmXZ2dml/dxL6cTMmTM10p4/f47g4GBMmDABw4cPB5A8AatqXxwAePHiBTw9PQEAgwcPRq9evXD//n18/PhRki8kJAQrV67E5cuXtdajSJEi6NChA/LkyaNz9F1AQAAUCgU8PDwMfozp0aNHj6BQKBAYGIioqCitIzQ9PT2RI0cOcUSztqBOCLZJZaQzAKMnrNZW5l9//aVxXK6P38ePH9GyZUvJYva6Rqrqm9TfyspK8sNLoVBkqr7twvMzYcIEHDhwAK6urrL5hgwZggIFCqBy5crfsnrfBAd1jGVinTp1wrVr1+Dm5oamTZuiQ4cOsLW1hb29vWx+uS+c0qVL621ByMgqVqyIfPnyYfny5TrzlS1bFm5ubpK03377DQUKFMCDBw8AAJcvX4azs7PWMuQGhkybNk0jbf/+/Xj58qUYSOjrSG9qly5dQpYsWRAbGyt7/MKFC9ixY4dG+osXLxAcHKyRfvz4cQCAh4cH2rdvr7WVet26dYiKisK7d+/01g9InkYI0JzORp+DBw9KVkFRLUOpVGL06NEa56j/7+zatQtbtmzB2bNnJS2EhtZBzsmTJzVa6kaMGJHi8tKrXbt2aQRs8fHx4lQjHTt2ROfOnbWeX7FiRQQEBKR6Gqr0iIM6xjIhoQUjS5YsKFy4MDw8PDQ+4JydnfHzzz/rLUuhUMhezmX6Ca15L1++BAC9o6CF4EbV5s2bMWnSJCQkJCAsLAwfPnxAt27dUKNGDTEIVL8EFxMTg6NHj5riIchas2YNlEql1nn+mjVrhv79+4v7u3btwqlTp1C2bFlUrFhRI79qwCSMXBV07NhRDJhsbGwAJH/Byzl16hQUCgWsra0BQAwChPP1Xa4VdOnSBVWrVkVISIiYpt76p5ru4+OjEdT17dtXfFzCJcKJEyfC19fXoDpkZkQkvsYTJkxA586dYWNjg6JFi4KIULVqVfNW0Iw4qGMsExK+eHRd6gkKCsKKFSu0Hp8yZYreMtSVKlVKvC1ciswoVCeANlbXrl3RqFEjvV/o+/fv11hy7OPHj1i8eDHOnj0LJycncZ3OiIgIMUhRD+omTZqEDh06ICgoCEDyOt579uzBxYsXERgYKLZgpdT+/ftl0+Pj48UARvDgwQP07dtXnFhbCJTCwsLElj5tAVN8fDyOHDki7qv3pVPPv337dgBf+4+ePn1aUr664OBgja4IqpydncXJrYUyatSooZHv5MmTsvchXHYV1itesmSJ1vtKD7Jnz27uKgBIfl2FS+yLFi3CgQMHzFyj9IODOsYyIW1f9vrkzZsXrVq1wsOHD9G7d28A0LperT4FChTA27dvMWrUKLx9+9bigzxD1qnV5cqVKxppZcuWlexv27ZNY31hgXqwBHy9XKvakurv7y+u9lO5cmUsWLAAo0aNQu/evdG0aVMULFgQXbp0gUKh0Np389mzZ+Ki7XKEYEp91QY7OztJ0KNQKPD333/LluHk5AR7e3uULVsWUVFRAKCxStF///0n3vby8hIfp/C41RewF973QjCnWg/V44J8+fKJwfrPP/8Ma2trcf441XoCX/+XXr9+rfFYEhISZJ+rOXPmAAC2bNmicSw9krvUbwqurq5YunQpAKBatWpi+nfffYdXr15pDDAhInG9bWN+VGYK33q4rbnxlCaMkTjf2vHjx01WJrRMKVC4cGHxtuo6kW/evDG4DN70b3LrAh85coSAr6uM7Ny50+hy9b3WRMlzoV25ckWct0s4Jqx8YOzr++XLF8l+165dNfIIqymobiNHjiQA9Ouvv8rWv2fPnrKPb8OGDQSA+vXrR0RE58+fp+7du4t5Bg0apPc5ateundbjM2bMMPv7wxTb8+fPTVpegwYNxNcmPj6edu7cSR8+fBCPu7m5ERGJ8/EJ27Zt2+jjx4904sQJ4z6kMgEO6hhjJpGUlCQuR6S63b17V7wdFhZG+/fvpxkzZpBSqdQoQ9uHf+fOnWW/kHn7ugnzF6puBw8eJAA0f/58evjwIXXp0sXocgMCAqhDhw7k7e1N165do9WrV0uOnzx5UpywOm/evJJ5DYsUKWLQ66u+NWvWTG+eBw8eaD1WuXJl8TZR8uSxRCT5gSFsnTp1kuy/ePEiRRPytmrVyuzvgbTeDH0NfX196dKlS7JL8Klu9+/f1/gMEH5wAiAvLy8iIjp69CgByT9OANDp06dN+tmVkXBQxxgzmT/++EPyoZ2YmEhEhk/Aq3ruwIEDCfi6rmXv3r3N/qWWnreOHTtqpO3fvz/V5T5+/JgAUNOmTY0+t0CBAuJrq7qawrfc/v33XwKSV10w92tkKZu9vT1t375dI139f1R9U5/s+fTp01rz1q5d26jPlk+fPpFSqTTphNEZEfepY4yZjPqUG8b22RP6L7Vo0ULslC2su6qtrIIFCxpbzQxJfV48IHlkYGoJ/dkoBVNtREdHY/fu3ahWrRpy586d6rqkRI8ePQAgU83XllpDhgxBv379cP36dYPyC/PyjRkzRpLesmVLre8bY99PuXPnhkKhQL169Yw6L7PhoI4xZjJCR/PWrVsDML4T8+nTp/Hu3TscOXJEY8RjSjpEN2rUSCPt+++/N7ocSyXXad9Ywhe1MA2IMSIiItCnTx9xpQ1mGYT/OV0B1JMnT3Dq1Cm8efMGo0aNAhHB1tZWNu/o0aOxb98+lClTRkxbtmyZaSvNAHBQxxgzISGoGzNmjOSXeEhICN6/f6/3fGtraxQtWhRZs2aFnZ0dAO3BXOfOnXHo0CEMGDAAQPLcYYB02bJjx45pLAH0ww8/oHjx4kY8qsztxo0bAICzZ8+auSYsrXl5eenNU6RIEQBA+fLl0apVK4P+l1avXo2uXbvi9u3bAJJb3eSWHGSpx0EdY8xkhGk11Ft18uTJg0KFChlV1m+//YZ58+aJUxw0bNgQAMQpMOrVq4eOHTtiwYIFSEpKwqBBgwBIg8AcOXLg5s2b4v7nz5/Rrl07cfqE+fPni+tEMmaJfv31V63HunbtiqioKAwZMgRXr14VJ2fWxpBJxO/evYtHjx4ZXU8AcHBwwLJly3D37t0Unc/046COMWZyKblUp87BwQHTpk0Tg7Rhw4YhJCQEefPm1chrZWUlzltVokQJtG/fXlxuS/WSkPpyUFmyZMGLFy9k73/u3Lk669evXz8jHxFjqSP33hd+zMhxd3dHtmzZsHHjRtSvX19vH1fh8ujAgQO15nF2dkalSpUMq7CMsWPHckt5Gkr9Jy9jjP2/SZMmAYDWCXJTQ30yXPXLsrVr18atW7dQo0YNrQGX3FqPBQoUQN++fbFz504x7c2bNyhevDguXrwoWZcTSF4Vw9fXF+PGjZNdv5Sxb8nFxcXgvHJBXYMGDXD16lUAyf8f6gMYoqKi8OHDB61Lr7H0hVvqGGMm4+DggLlz56bpWrBCi1zRokU1jtWsWVPngAptx9S/7ISy5UZsCqNxU/sY1VeLYBmPoaNHDeHk5ISpU6fqzDN48GCdx9VHpwPJK5lUr15d6znZsmWDi4uL7Jq8LP3hoI4xZlHq168PLy8vdO/e3WRlqgd1wr7wJejj44MWLVoA+LpYvLb+SYaM0o2MjDRJXz71xe1Z+iLXitaqVSvZJeFUlShRQrasX375BVevXtXap03bkmsCba1tly5dMslIaWZ+HNQxxixO7dq1TbLmo1CG6nqTqoSgLleuXDhz5gyICCNGjECuXLlQsmRJjfxFixYVA0JhNC6QvManMGfcoUOHkCNHDtmWvpkzZxpc98ePH6Nx48YG5zfWoUOH0qzszEJ9LVkgecBPgwYNJJf7AWD27Nnw8fEBkDyyVCCMEhW6NNSvXx+VKlXCgQMH4OHhISnD1tYW/v7+ePjwIQCgXbt2svXatm2bZD9nzpyygSSzPBzUMcYyHfW5737++Wc8f/4c2bJlk+QTLsNmzZpVTHNzc0NoaCjs7e01FrwvVaqUWPb+/fvF9F9++UUM9hwdHbXWS+iAXq9ePYSGhiI2NlY2X1pfDouNjUXHjh3TrPz0qEKFCiYvU+5ypzCIqE+fPvDz8xPTJ0+eDHt7ewDJQVZsbCyICG3btgWgOedi586d4ebmplF+4cKFUblyZRCRZF44Vf3798ft27dx4sSJlD0wlm5xUMcYy3TUgzqFQoEyZcpotKwsWrQI586dg5OTk2w5/v7+kn0rKyvZKSZsbW3FS3FCWeqrPdy8eVMMHr///nvkypULdnZ2uHHjBu7fvy+ujKBa79QaP368uIqHKn1TX2REaXEpW/XHgEC1hVaY8w1Ifu8Ix4hInKdR+GEh9CWVY2Njg1GjRumtT6lSpcTbNWrUQJs2bfSewywLB3WMsUxH2yoV6h3G7e3t0axZM63lqH9pW1lZ4ffff9cYQZglSxYMGzYMN2/eFCdDVg3SAKBWrVribdV61a1bF66urlpn6wcgeynYEEuWLJG0Tnbt2hVKpdLo5d2+tT///NOk5ZUtWxb58+fHx48fTVbm/fv3kSdPHri6ukrStQ2wsbKyEp931R8X/fr1g6enJ+rUqaP1vuLj48WlunQx1Y8Bln6l7//c/xcZGYk6deogR44ckg6ie/fuhZubG5o2bSppxmaMMUOof8mdOHHC6IlVVb9s1ctbtWoV5s6dC4VCAYVCIQncVAnzgulaEu3HH39Ezpw5AQD58uUT0x8/fiyZYFlf60vp0qUlo3pVLzv+9NNPkvvet2+fzrJSQrV1Sp0hq47MnTsXv/zyi9bjwiVMOfPnzxdvC/3XgOT+bID0eSUiJCYmSlYoMdQvv/wiBnPqI6i1zeEovEcAaVCnUCh0BnTGkFs2j2UwZAESEhIoKCiIBg4cSA8fPiQiovj4eKpduzbFxcXRtWvXaPjw4QaVFR4eTgAoPDw8LavMGEtHHj9+TOfOnRP39+zZQwBo2bJlqS47NjaW/P39CQC1aNHCqHMBkL29vbj/6dMnKlWqFL1580brOdu2baOPHz/KlgWA4uPj6fDhw+K++hYZGUmvXr2igwcPEhHRx48fxWPa6mjM1rx5cwoMDNR6vH79+pL9z58/S+5fX/nz5s2TzTdw4EACQJs3b6b4+HiN4yEhIUREVLlyZfG+Tp48SUFBQbKPV6BUKunNmzf066+/EgBas2YNLV68mLJlyybmvXjxIp0+fZqGDh2q8fwFBATQjh07xLzr1q2THC9VqhQBIKVSKb4WPXv21Pr6p0ZcXBz5+fmlSdksfbCIoE6gGtQ9fvyYBg8eLB6rW7eu7DmxsbEUHh4ubn5+fhzUMZbJhYeHU4sWLSg4ONgk5YWGhhIAatmypVHnqQd1qaEajLx48UJrUBQTEyM5Tz2o0lau+jZlyhTZ9AEDBhBRcjAjF8y5ublJ0tXrXrt2bQJAx48fJwA0YsQISf65c+cSEdGFCxfIw8NDTH/58iUBoNevXxMR0ezZs8nJyUnjcQcFBdGNGze0Po/C/asLCgqiPn36iOUEBwfTo0ePaN68eaRUKg1+fc6cOSNJd3V1ldzfsmXLTPa+ZJmPRVx+lRMWFiaZHV5ulBGQ3Nzu6OgobnITljLGMhcHBwecOXNGdtmllCAdl011WbVqFW7cuGGSOqhycXHBqVOnJGlTpkzB06dPNfoBGlpnYV1fAPjrr7/Qu3dvAECTJk0k+YR+YQUKFMD9+/exefNmEBFWrlwJAKhSpQqmT58uOUd1JO/169cRGxsrjhIWBpaMHDkSwNdl35o0aSKO/hw8eDBKly4NIhKn5pg5cyY+f/4sXo4VHrezszPq1q2r9XEK96/O2dkZO3fuFMvJmzcvKlWqJFnKzhDCfIfajB071mTvS5b5pKtlwgIDA9GtWzeN9CNHjmj0S3ByckJERIS4r63z6dSpUyX9LyIiIjiwY4yZVI4cOWBjY4Nx48YZdd6PP/5osjrUqlULt27dEvfr168vOW5tbY1y5cppnKdvnd7ffvsNly5dEj9jXV1dMWrUKMTHx+OHH35A165dJSNHVQdZuLq6in3LypYtC2dnZ4wcORJVq1aVrK177do1BAUFifWxtraGm5sbfv/9d4wbNw4LFiyAUqlE6dKl8dNPP0nqR2qDUtT5+fkhLi5OZx5Vwv2b2pMnT2RHsLq6uuLBgwcmvz+WOaWroK5AgQK4du2aQXldXFzg4+OD+Ph43Lp1S2OEkcDOzk4cGs4YY2nBxsbG7GtjXrx4EeHh4eK+ocuY6VvZYtasWeLtU6dOoWrVqgCSW8zWrl0LIsL69etx5swZ7Nu3D87OzrLlZM+eXQzcAODs2bPiwu5OTk4a08ZYWVlhxowZkv2JEyca9JhUqc8laC6qEwqrWr9+fYoeF2Ny0lVQp0vbtm3h7e2NZ8+eYeTIkRg0aBDGjh2LRo0aIWvWrBozZDPGWGaSPXt2ZM+eXdw3dlqSvn376s3TqlUrjTSFQoHhw4fj/9q716CozvsP4F+XOwIrICIIXriKiIo3XFhAEAEBcdpxEo2TNtNpmrzpTNrYTJ3pNM1MG/umnXYm7YvkhW0nTdpM+sJFUC4KykVA7uGiICiiIIi47MplF5bn/8Jw/hDvZuFwdr+fmWd2j+yyv/WBw3ef55znHDhwAF9//fVjS7U8zew1dO2dm5vbUwcliF6WYkLdk1a+PnLkCI4cOSJDNURES9vsSF1QUNBjiyR/15MuZ/WygoKCnjsVSkQLSzGhjoiIXpyDgwOqqqpw7969517yi4vSEtkGxZ79SkREz6bRaJ65GC8R2RaGOiIiGxYfH4+0tDS8++67cpdCRAtsmbCzgyAMBgPUajVGR0fnrXNHREREpGQcqSMiIiKyAQx1RERERDaAoY6IiIjIBtjdMXVCCBiNRnh6evI0fiIiIrIZdhfqiIiIiGwRp1+JiIiIbABDHREREZENYKgjIiIisgEMdUREREQ2gKGOiIiIyAYw1BERERHZAIY6IiIiIhvAUEdERERkAxjqiIiIiGwAQx0RERGRDWCoIyIiIrIBDHVERERENsDuQp0QAgaDAUIIuUshIiIishq7C3VGoxFqtRpGo1HuUoiIiIisxu5CHREREZEtYqgjIiIisgEMdXPU1tbiF7/4BWZmZuQuhYiIiOilMNTN0dHRgb/85S+wWCxyl0JERET0Uhjq5lCpHv13MNQRERGR0jDUzeHg4AAAnH4lIiIixWGom2N2pI6hjoiIiJSGoW4OTr8SERGRUjHUzcHpVyIiIlIqhro5OP1KRERESsVQNwenX4mIiEipGOrm4PQrERERKRVD3RycfiUiIiKlYqibY3akjtOvREREpDQMdXNwpI6IiIiUiqFuDoY6IiIiUiqGujk4/UpERERKpehQZzQaERcXBw8PD7S2tn7v78eROiIiIlIqRYc6Nzc3nDlzBocPH7bK9+M6dURERKRUig51jo6O8PPzs9r34zp1REREpFSOchew0EwmE0wmk7RtMBie+tjZkbqf/OQnUKvVcHBwgIODAxwdHR+7dXNzg7u7O9zd3aX7c//N3d0dK1asmNfc3d2xbNmyBX/PREREZH9sPtSdPHkSH3300Qs9dvPmzXjnnXcwOjoKi8WC6elp6dZkMknbU1NTmJycxPj4uNQmJiYwNjb2zFE+JyeneSHP29sbq1atmtf8/f3nbbu6ulrrv4KIiIhs2DIhhJC7iO/rrbfewvHjx7F58+bHvvakkbrg4GCMjo7Cy8vLqnUIITA1NYXx8XGMjY1hdHQUer3+qW1kZAT37t3D4OAghoaG8ODBg8e+p5eXF4KCghAUFITg4OAn3lr7fRAREZHyKD7UZWVloampCevWrcM777yDt95665mPNxgMUKvVCxLqvi+z2Yx79+5haGgIQ0NDGBwcxN27d3Hnzh309fXh9u3b6Ovrw+DgIOZ2m5eXFzZs2ICQkBCEhoYiNDRUur927Vo4OTnJ+K6IiIhoMSg+1L2spRzqXpTZbEZ/f78U8vr6+nDjxg10d3eju7sbvb290hm8Dg4OWLt2LUJDQxEWFoaoqChs3LgRUVFRCAoK4jF+RERENoKhzgZNT0/j1q1b6OnpkYJeT08POjs70dnZKU1HL1++XAp4s7dRUVEICwvj6B4REZHCMNTZGYvFgps3b6KjowMdHR24evWqdF+v1wMAnJ2dER0djS1btmDLli3YunUrtmzZYtXlY4iIiMi6GOoIwKOTPIaGhtDe3o7W1lY0NzejpaUFra2tmJiYAAAEBATMC3nbt29HZGSktBQMERERyYehjp7JYrHg+vXraGlpkYJeS0sLent7AQAeHh7YsWMHdu7cKbXQ0FAeq0dERLTIGOrolTx48ACNjY2oq6vDlStXUFdXh5s3bwIAVqxYMS/o7d69G8HBwQx6REREC4ihjqxmeHgY9fX1qKurk9rt27cBAGvWrIFGo0F8fDw0Gg1iY2Ph4uIic8VERES2g6GOFtTdu3dRU1ODqqoqXL58GVeuXMHk5CRcXFywY8cOKeRpNBoEBATIXS4REZFiMdTRojKbzWhqasLly5eloNfX1wcAWL9+PbRaLZKTk5GcnIywsDBO2RIREb0ghjqSXV9fnxTyysvL0dTUhJmZGQQEBCA5ORlJSUlITk5GVFQUQx4REdFTMNTRkjM6OorKykpcvHgRFy9eRF1dHSwWC/z8/JCUlCSFvJiYGC6nQkRE9C2GOlryHj58iMuXL+PSpUu4ePEiampqYDab4e3tjdTUVOzbtw9paWmcriUiIrvGUEeKMzExgdraWpSWluL8+fOorq7G9PQ0goODkZaWhn379mHfvn1YvXq13KUSEREtGoY6Ujyj0Yjy8nKUlJSgpKQE33zzDQAgOjoaaWlpSEtLQ1JSEvubiIhsGkMd2ZzBwUFcuHAB58+fR0lJCXp7e+Hg4IDdu3cjIyMDmZmZ2LlzJxwcHOQulYiIyGoY6simCSHQ09MjjeKVlJRAr9fDx8cH+/fvR2ZmJjIyMrhGHhERKR5DHdmV6elp1NbW4ty5cygsLMSVK1cghMDWrVuRmZmJzMxMxMfHw9nZWe5SiYiIXgpDHdm14eFhFBcXSyFvcHAQHh4eSE1NlULehg0b5C6TiIjouawe6nbu3IkdO3ZIbcuWLXBycrLmS3wvDHX0NDMzM2hubpYCXmVlJaanpxEREYHs7GxkZ2cjMTGRo3hERLQkWT3U/fznP0d9fT2am5sxMTEBZ2dnREdHIz4+HkeOHEFCQoI1X+6lMdTRizIYDLhw4QLOnj2L/Px83LlzB56enkhPT0dOTg4OHDgAf39/ucskIiICsIDTrxaLBW1tbairq0NdXR1KSkrQ3d2NN998E6dOnZJtkViGOnoVQgg0NzfjzJkzyM/PR01NDQBg165dyMnJQXZ2NmJjY7n4MRERWZXFYpEW3d+7d+8zH7uox9QVFxfj2LFj+Pjjj/HTn/50sV52HoY6soahoSFpBK+wsBAGgwGBgYHIyspCTk4O0tLSsHz5crnLJCIiBRobG0NJSQl0Oh3OnDmDoaEhHDhwAAUFBc983qKfKPHpp5/is88+w5UrVxbzZSUMdWRtZrMZFRUVyM/Px5kzZ9DZ2QkXFxfs3btXGsXjyRZERPQsAwMDOHPmDHQ6HUpKSjA5OYmNGzfi0KFDyM3NRVxc3HPXV130UNfS0oLk5GQ8ePBgMV9WwlBHC62rq0sKeJcuXcLU1BSio6ORm5uLQ4cOYdeuXVCpVHKXSUREMhJCoK2tDTqdDjqdDjU1NVCpVNBqtcjNzcXBgwcRERHxUt/T6qHub3/7G3bt2oWtW7fCxcXlsa+fP38eR48exdDQkDVf9oUx1NFiMhgMKCoqQl5eHs6cOYORkRGsXr0aBw8eRG5uLvbt2wc3Nze5yyQiokUwNTWF8vJyKcjduHEDHh4eyMzMRG5uLrKysuDr6/vK39/qoc7b2xsGgwGOjo7YtGkTdu7ciZ07dyIqKgrj4+M4ceIEQkND8fXXX1vzZV8YQx3JZXp6GlVVVdDpdDh9+jSuX78Od3d3pKenIzc3Fzk5OfDz85O7TCIisqLR0VGcO3cOOp0OBQUF0Ov1WLNmDXJzc5Gbm4uUlJQnDoK9igWZfu3u7kZ9fb3UGhoaoNfrAQAbN25EQUEB1q9fb+2XfSEMdbQUCCFw9epVKeBVV1cDAOLj46XjJyIjI2WukoiIXkVvb680GldWVobp6WnExsZKQW6hVktYtGPqbt++jampKasfMH78+HHU1NRg7dq1OHXq1HMXhmWoo6VocHBQOkC2uLgYExMTiIiIkAKeRqN57gGyREQkj5mZGTQ0NEhBrrm5GU5OTkhJSZGOj1u7du2C16Hoy4Q1NjbiT3/6Ez7//HP84Q9/wIYNG/DGG2888zkMdbTUjY+PS6ey5+XlYWhoCCtXrkROTg4OHTqE/fv3c7kUIiKZTU5O4sKFC9K+ur+/H97e3sjOzkZubi4yMjIWPWcoOtT9/e9/h4eHB370ox+hvr4ep06dwieffPLM5zDUkZJYLBbU1tZK07QdHR1wdXVFWlqadBxeQECA3GUSEdmF4eFh5Ofn4/Tp0ygqKsLY2BhCQkKkWZWEhARZL43qKNsrW4Fer0dgYCAAQK1WY2Rk5LHHmEwmmEwmadtgMCxafUTfl4ODAzQaDTQaDU6ePImuri5peP/dd9/FzMwM4uLipOM0oqOjeVULIiIrunbtmrTfraqqghACe/bswW9+8xvk5uYiKipqyex3Fb1Y1uyZtsCjgOfj4/PYY06ePAm1Wi214ODgxS6TyGrCw8Px/vvv4+LFixgaGsI///lPrFmzBh9//DFiYmIQGhqK9957DxcuXMDU1JTc5RIRKY7FYkFFRQU++OADREZGYuPGjfjwww/h4+ODTz/9FAMDA6iqqsKvf/1rbNq0ackEOkDh06/fPaYuJCQER48enfeYJ43UBQcHc/qVbMrk5CTKysqkT5N37tyBWq1GVlYWcnNzkZmZiRUrVshdJhHRkvTw4UMUFRVBp9MhPz8fw8PD8Pf3n7emqLu7u9xlPpeiQx3As1+JvksIgcbGRingNTY2wtHREcnJydJZWLxsGRHZu/7+fuTl5UGn0+H8+fMwmUyKv/qP4kPdy2KoI3vT19cn7bhmp2VjYmKk4/B27typuB0XEdHLEkKgqalJ2h/W19fDwcEBSUlJ0gfe0NBQucv8XhjqiOzI7GXLZqcYeNkyIrJlcw9NycvLw+3bt+Hl5YUDBw7g4MGDyMrKgre3t9xlWg1DHZGdmnvZMp1Oh66uLri5uUmXLcvOzoa/v7/cZRIRvZR79+4hPz8fOp1OWnZkw4YN0mhcYmLicw/VUiqGOiICMP+0/crKSgDAnj17pB3hUjvLi4gIeDSt2t7eLk2rzl52cc+ePdIshL3svxjqiOgx9+7dQ0FBAXQ6HQoLC6UFNmePw9NqtbIusElE9m1qagqXLl1CXl4e8vLy0NPTA3d3d2RkZODgwYPIzs7GqlWr5C5z0THUEdEzTU5OorS0VBrF6+/vx4oVK5CVlYWcnBxkZGQ8cY1IIiJrGhkZwblz56DT6XDu3DmMjo5izZo10mxCSkoKXF1d5S5TVgx1RPTChBDSRatPnz6N5uZmqFQqaDQaZGVlISsrC1u3brWLaQ4iWlhCCLS0tKCgoAAFBQWoqqrCzMwMduzYIU2rbtu2jfubORjqiOiV3blzB2fPnkV+fj6Ki4sxNjaGwMBAKeClpaXB09NT7jKJSCGMRiNKSkqkINff3w8PDw/s378fWVlZOHDgANasWSN3mUsWQx0RWYXJZEJFRQUKCgqQn5+Pa9euwcnJCUlJSVLIi4yM5KdqIpIIIXD16lUpxJWXl2NqagpRUVHSfkOr1drs2arWxlBHRAuiu7sbZ8+eRUFBAUpLSzE5OYkNGzYgKysL2dnZ2Lt3L9fEI7JD4+PjKC0tlYLczZs34erqitTUVGk0LiQkRO4yFYmhjogW3NydeH5+Pnp7e+Hq6oqUlBSkp6cjPT0dUVFRHMUjskFCCLS1taGoqAhFRUUoKyuDyWTChg0bkJ2djaysLH7IsxKGOiJaVEIIdHR0oKCgAIWFhSgvL4fJZMKaNWukgJeWloaVK1fKXSoRvaKhoSGUlJRIQW5gYACurq5ISkpCRkYGsrOzERERwQ9yVsZQR0SyGh8fR3l5ubTzb21txbJly7B9+3Yp5MXHx/OYGqIlzGQyobKyUvo9bmxsBABs2bJF+j1OTEy0+yVHFhpDHREtKf39/SguLkZRURGKi4tx7949LF++HHv37kV6ejr279+PjRs38hM+kYxmR9yLi4tRWFiIixcvYnx8HKtWrZo34h4QECB3qXaFoY6IlqyZmRk0NzdLn/4rKipgNpsREBCAlJQUqYWEhDDkES0gIQSuX7+O0tJSXLhwAWVlZRgcHISLiwsSExOlIBcTEwOVSiV3uXaLoY6IFGNsbAzl5eW4cOECSktL0dDQgJmZGaxdu3ZeyFu7dq3cpRIpXm9vrxTiSktLcfv2bahUKuzatUv6XdNqtXB3d5e7VPoWQx0RKZZer8elS5dQWlqK0tJSNDc3AwBCQkLmhbzAwECZKyVa+vr7+1FWViaFuJ6eHixbtgzbtm1DSkoKUlNTkZiYyL+dSxhDHRHZjPv37+PixYtSyGtrawMAhIeHQ6vVSi08PJzTtWTXhBC4du0aysvLUVFRgYqKCvT09AAAoqOjkZqaipSUFCQnJ/PazgrCUEdENmtwcBBlZWXSH66WlhYIIeDn5zcv5MXGxsLJyUnucokWzNTUFBobG+eFuOHhYahUKmzbtg2JiYnQarVITEyEv7+/3OXSK2KoIyK7MTo6isuXL0t/1GpqajA5OQl3d3fExcVBq9UiISEBu3fvhre3t9zlEr2y4eFh1NbWorq6GpWVlaiursb4+Djc3NwQFxcnhTiNRsPrM9sQhjoisltmsxkNDQ1SyKuoqMD9+/cBABEREYiLi0NcXBx2796NrVu3cq08WpJMJhOam5tRU1OD6upq1NTUoLu7GwDg6+uLhIQEKcRt376dP8c2jKGOiOhbQgh0dXWhpqYGtbW1qKmpQVNTE6ampuDi4oLY2Fgp5MXFxXEpFVp0MzMz6O7uRl1dnRTgGhsbYTab4ezsLP2Mzjb+jNoXhjoiomeYnJxEU1OTFPLmjoJ4e3tj27ZtiI2NlVpkZCQcHR1lrppswfT0NK5evYqGhgY0NDSgsbERjY2NMBqNAIDQ0NB5AW7btm1wcXGRuWqSE0MdEdFLun//Pmpra1FfXy/9ob1x4wYAwM3NDTExMfOCXkxMDC9WTs80NjaG9vZ2NDU1SSGupaUFk5OTAICwsDDExsZi+/bt2L59O2JjY+Hn5ydz1bTUMNQREVmBXq9HU1OTFPIaGxvR0dEBi8UClUqFkJAQREdHY/PmzYiOjkZ0dDQiIyM5smJnTCYTrl27htbW1nlt9kOBSqVCVFTUvPC2bds2qNVqmSsnJWCoIyJaIBMTE2htbUVzczPa2tqk1t/fDwBwcHBAWFiYFPaioqIQHh6O8PBw7p8UTq/Xo6urC52dnejs7ERHRwdaW1vR2dkJi8UCAAgKCsLmzZuloL9582Zs2rSJV2igV8ZQR0S0yB48eDAv5LW2tqKtrQ1DQ0PSY/z9/aWAFx4ejoiICISHhyMsLIx/9JeIhw8f4ubNm/PC22yb25cBAQGIjIyUAtxsiFuxYoV8xZNNYqgjIloiHjx4gK6uric2vV4vPc7f3x/r1q17auNUnXUYjUb09vbi5s2bT2yzy98AgJeXFyIjIxERETGvhYeHcx04WjSKDXVGoxFpaWloa2tDdXU1Nm/e/ELPY6gjIqURQmB4eFgKeL29vfParVu3YDabpcer1WoEBwcjICBAaqtXr563HRAQAA8PDxnflTyEEBgbG8PQ0BD6+/vntYGBgXnbBoNBep6TkxPWrVuH9evXP9bCw8Ph5+fHpUNIdooNddPT03jw4AF+9atf4fjx4wx1RGS3ZmZmcPfu3XlB7/bt27h79y4GBgakNjExMe957u7u8PX1ha+vL3x8fJ546+3tDU9PT3h4eEhtdluuS6tZLBYYjUYYjUYYDAbp/uy2Xq/H/fv3MTw8LN3OvT83AAOPzlgODAxEYGAgAgICpPuBgYFScAsICIBKpZLl/RK9KMUupuTo6PhCp3ObTCaYTCZpe+4nLyIiW6BSqaQQotFonvgYIQQMBsO8kDc4OIiRkRHcv39fuu3u7pa2Z9dDexpnZ2d4eHhg+fLlcHFxgZOTE5ydnZ/YZtfuE0Jgdizhu7cWi0XaZ882s9k8b3t8fPyxcPpdbm5uWLlyJVauXAlfX1/4+/sjOjoavr6+0r/7+flJIU6tVnOUjWyCYkPdizp58iQ++ugjucsgIpLVsmXLoFaroVarsXHjxhd6jtlshl6vx8OHD/Hw4UMYjcYn3h8bG4PZbH6sTU1NSfcnJiak4LRs2bJ592dvnZyc4OHhARcXl6c2Nzc3eHp6wtPTE15eXtL9udtyjSASyW3Jh7q7d+/i8OHDj/27TqeDj4/Pc59/4sQJ/PKXv5S2DQYDgoODrVojEZEtcnZ2xqpVq7Bq1Sq5SyGiF7DkQ93q1atRUVHxys+f/XRHREREZMsUfdRnVlYWioqK8Pbbb+Mf//iH3OUQERERyUaxZ7++Kp79SkRERLbI7kKdEAJGoxGenp4824mIiIhsht2FOiIiIiJbpOhj6oiIiIjoEYY6IiIiIhvAUEdERERkA5b8OnWLafYkCiIiIqKl5nkneTLUzTE8PMyV04mIiGhJet5ybAx1czg7OwMA+vr6uIadwsxe/o19pyzsN2VivykX+07ZPD09n/l1hro5Zoc0vby8+MOuUOw7ZWK/KRP7TbnYd7aJJ0oQERER2QCGOiIiIiIbwFA3h4uLCz788EO4uLjIXQq9JPadMrHflIn9plzsO9vGy4QRERER2QCO1BERERHZAIY6IiIiIhvAUEdERERkAxjq5jh+/DgSExNx7NgxmM1mucuhb9XX1yMxMRHJycl47bXXMDU1hf/+97/QaDRITU1FX18fAKC9vR1arRYajQYlJSUAgIcPH+LQoUPQarX44x//KOfbsFtffvkl/Pz8AID9phBlZWXYt28fkpOTcfr0afabQszMzODHP/4xEhMTkZSUhO7ubvadvREkhBCioaFBHDt2TAghxO9//3vx73//W+aKaNbAwIAYGxsTQghx4sQJ8dVXX4ndu3cLk8kkKioqxNtvvy2EEOLQoUOis7NTjI6OCo1GI4QQ4s9//rP47LPPhBBCZGRkiL6+PnnehJ2yWCzihz/8oYiNjRVms5n9pgATExMiJydHmEwmIYRgvylIfX29eP3114UQQhQVFYn33nuPfWdnOFL3rcuXLyM9PR0AkJmZiaqqKpkrolmrV6+Gu7s7AMDJyQmdnZ2Ijo6Gs7MzEhIS8M033wAABgYGEB4eDi8vL/j6+mJ4eHhev+7fvx/V1dWyvQ979MUXX+Dw4cNQqVTo6upivylAVVUV3NzccPDgQfzgBz/AlStX2G8KERQUBAAQQkCv18PPz499Z2cY6r6l1+ulS6ao1WqMjIzIXBF9161bt1BSUgKtVjvv8jYWiwXAox3ZrNk+ZL/Kx2Kx4KuvvsLrr78OYP7v2OzXAfbbUjM4OIgbN24gLy8PP/vZz/C73/2O/aYQK1euhEqlQlRUFD744APs3buXfWdnGOq+5e3tDYPBAODRHx8fHx+ZK6K5DAYD3nzzTZw6dQqrVq2S+goAHBwcAAAq1f//OM/2IftVPp9//jlee+01qV/m9gXAfluqVqxYAa1WC2dnZ6SmpqKxsZH9phCFhYVwc3PD1atX8b///Q9//etf2Xd2hqHuW3v27EFRURGAR78YCQkJMldEsywWC44dO4bf/va3iIiIQFhYGNrb22E2m1FZWYktW7YAeDRN29XVBYPBgJGREaxcuXJev5aUlECj0cj5VuxKe3s7/vWvfyEzMxNdXV349NNP2W8KsHv3brS3twMAGhsbkZ6ezn5TEG9vbwCPwvnw8DD7zt7IekTfEvP+++8LrVYr3njjDekgYZLfF198IXx8fERycrJITk4W//nPf8SXX34p9uzZI/bu3Stu3bolhBCira1NJCQkiD179oiioiIhhBAGg0Hk5uaK+Ph4cfLkSTnfhl3bsWOHEEKw3xTik08+EYmJiSI5OVl0d3ez3xRienpaHD16VCQlJYm4uDhRWVnJvrMzvEwYERERkQ3g9CsRERGRDWCoIyIiIrIBDHVERERENoChjoiIiMgGMNQRERER2QCGOiIiIiIbwFBHREREZAMY6oiIiIhsAEMdERERkQ1gqCMiIiKyAQx1RERERDbg/wC95c3/92pUhwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -346,7 +348,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkhElEQVR4nO3deZgdR30v/G9VdfdZZtNq7btsLZYtGQMG24QtxgsYzB6WGDDLJQFeXpaXXJK8CSS5SUhe7gPcQDaWwL0swZgAIYAxNgZksM1iyRKWbGskWbItWeusZ+vuqveP6nPmjGYkzdKn+yzfz/OARnNmTpc1S39P1a9+JYwxBkRERNSxZNoDICIionQxDBAREXU4hgEiIqIOxzBARETU4RgGiIiIOhzDABERUYdjGCAiIupwDANEREQdjmGAiIiowzEMEBERdTiGASIiog7HMEBERNThGAaIiIg6HMMAERFRh2MYICIi6nAMA0RERB2OYYCIiKjDMQwQERF1OIYBIiKiDscwQERE1OEYBoiIiDocwwAREVGHYxggIiLqcAwDREREHc5JewCNZsIAwaljCI4fgS6OwIQBEIaAEBDKARwHzpwFcBYsgezugxAi7SETERElqq3CgDEG/pMHUT6wB8HxJ+E/9TjCgZOA0WMfJCQgABjY/zNm7CEvC2fhErgXLIO7aAUyF22F6upJ+j+DiIgoUcKYurthi/JPHEHpt79CYfd90EOn7Q3/jBv9tEgJaA0IAW/1BuQufiayF22FzGRjHTcREVEzaNkwYHSIwo6fo/DrnyA4ccQGgPoZgLgIYUOFUsheeCm6r7wW7qIV8V+HiIgoJS0ZBkr9v8XQHbciPH082QtHgSN36bPR89wbobr7kr0+ERFRA7RUGPCPP4mhH92GysG9Y6/Y0yAkoBS6r7wO3c98AYTrpTMOIiKiGLREGDBaY2T79zByzw8AKex6fpOQPXMw9xXvgLd0VdpDISIimpGmDwO6WMDpb38elQN70h7K5IQAhETf9a9D/tJnpz0aIiKiaWvqMBAOncbJr3xy4vbAJtV15bXo+Z0b2auAiIhaStOGAf/EUZz6yiehCyMtEQSqcpc+C33XvwFCsrkjERG1hqa8Y+niKE79+z+0XBAAgOKD92Jk+/fSHgYREdGUNV0YMEbj9Le/AD082HJBoGrknu+j9OiutIdBREQ0JU0XBkZ+9j1bLNiiQcASGPj2FxCcOpb2QIiIiM6rqcJA6dFdGLnn+2kPIwYGJvBx6hv/BF0ppz0YIiKic2qaMGACH4Pf/zLsKUJtwGiEp45h9Jd3pT0SIiKic2qaMFDYdS/06DCi4wTbgzEYve9H0OVS2iMhIiI6q6YIAyYMbXfBNmTKZRR+89O0h0FERHRWTREGirvvgx4eSHsYDWIwcu8drB0gIqKm1RRhYOTnt6NtagUmYUoFFHfdm/YwiIiIJpV6GAgHTyEcOIG2qhU4kxAoN+vZCkRE1PGctAdQObwv7SE0njGoHNqHwC9DBz5EdRak/gwDUX1v9TH7f9VzDoQQ0cdH7zvjcSIioplKPww83g9ImcixxPceeBKf+dkD2PXEcTw1XMDn3ngdrt+8tuHXBQBTLiI8+RTQ3Rf/HIgQNmDUB4RacMAZIaL6sXV/Z6AgIupoqYeB8mOPJhIEAKBQ8XHx4gX4vadtxNu+cnsi16znP74f7sbL4n9iY2Bgaist0w4btWAgISa8LRkciIjaXKphwPgVhKeeSux6L9iwCi/YsCqx640jJfyjhxoTBmbLGNjDK/X5g8T5goO0fzI0EBG1jlTDgC4X07x8srSBaYfmQ1MNDlE4EDL6nxj7kzMMRETNJeWZAT/NyyfMQPuVtAeRHGNgTAijw0kfroYDnBEU7J8MCkRESUq9ZqCztPH2yWkyRsOEGpg0K4i6GYXobaEgVDSzQEREsUo1DAjXTfPyCROQbibtQbQIA6PPMqsQhQMpFYRUUWhQnE0gIpqFdMOAl03z8smSAsJjGJg1Y2DCEGF4RlAQIgoIUTiovs2QQER0XqmGAelloOYuRHj6eCLXGy37OHBysPb3w6eGsfvJE5iTz2D5nJ7GXlxrOIuWN/YancwY6DCYsOwwVsSoxv/JkEBEVJN6zUBm1UUoDJ5MpNfAzieO4VWf/Xbt7x/53j0AgNc8bQM+8aoXNvz6ztI1Db8GjTdWmxCMe3/9DIJUiksNRNTRhLH7xFJT2HUfBr/7pTSHkAjhZTDnlg9BuhkI5UEoBdsy0NTVFRr7ZvVLUt9MqPY2ixAbxQYEZywccAaBiDpE6jMD3op1aQ+h8YSAs2SVPRXKL8P4ZRghIN0sZCYHodxp3XTMhLBgordR1wcgep9957j3G8NQMRmjNYyuQNdNItRmDpQDKRV7JBBRW0o9DKi++ZC986CHTqU9lMYxgLv8jCUCY6ArRehKEZAK0stCeTkIdf4vSe1mVDvcaAZDqg8G2tjp9GqoMLr2Z6cHB6NDhDoEqj0iqoWKSkFKB0JxeYGIWl/qYUAIgZ4rr8XgD76a9lAaRmQyyG7cdvYP0CF0aRS6NAqhXMhMDtLN2qY8jRpT/UFG57lMLThoMyEkjL2tYRI6YyJVtULFACHKAKIiRVWtPXC4vEBELSf1MAAAuUuuwPDP/gt6dCjtocRPCOS2XQnhelP6cBP6CAs+QgxBuBk7W+BmUr251IKDOv/HGmPsdHsUDqpvo/pnGzJGwwQaOhjrqCmVY5cWFMMBETW/pggDwnHRfeW1GLrj1rSHEjvheshsvnxGn2v8MgK/bKemvRykl512fUHShBBRceTE5DBuNqEuKNQCQxstR4zNHlgMB0TUzJoiDABAfuuVGN7+fZjiSNpDiY8QyF12NWRmls2VjIEuF6DLBUAqqFowaJov35TUjkGGnCwr2FmF6nJDXWDQ0d9b2fhwICCVgnRsQOApj0SUttS3FtYr7n0AA//x2bSHEQ8hofrmofeVb4NsUNtl4bh2xqDB9QXNoLb8ELUp1tHbbTGbIARkNGsglaodCU1ElJSmCgMAMPTjb2H03jvSHsbsOS7m//77gczUagVmS7pZO1uQcn1B0mxICGtBQUdvt3RIGBcOnLYPekSUvqYLA0aHOPXV/4XK4f6Wnhqe8/K3wl2xzm4dTJKQkF4WMtqm2EnBoF6tJqFuFuFsxyk3PSFtMHCicNChX1MiapymCwMAEBaGceJzfw09OtKSgaDrWdeg9/k3QftlhOUCjF9OZyDV+oJMDkJOYStAm6sWMOooGJgwhA5DtNrR0jYYuJw1IKLYNGUYAAD/2BM4+ZVPwpSKLRUIspsux5yXvmnczddoDe2XoMtFmNA/x2c3jnC8aMYgCyF4A6mqBYQwsLMIYWvNIAipohkDl7sUiGjGmjYMAEBw+gROfeWTCIcHWiIQdD3jBeh54cvPebM1YYCwUoSulICUbjq1NsiOx5vHJMaKFQMbDsKwNXokCAGpXC4nENG0NXUYAOySwelvfhb+4X1pD2Vy0S/c3t99Fdy1GyFdz95kHQ/COXtPAGMMTOhDl4vQfimdgjfWF0yZ/XqF0DqI/mz+nQxxLCcYY7B//3488sgjyGaz2LBhA5YuXRrzSIkobU0fBgBbVDj8429j9P47ASFnNkuQ70bfy9+G8t7foPTrn9benb38d5DZ+DQM/sdngcI0exwIAZnrxtxXvA3eivUIRgagS+OfoxYMXA/S8YBJjso1xsD4ZYSVYmr1BUI6kJkoGLC+4LzG1R+EQdMvLwgpa7MGUzmu2RiDT33qU/jUpz6F/fv3j3vshhtuwCc/+UmsX7++kUMmogS1RBio8o8cwuAdt8J/Yr99RT7Voee7MfeN74fwMgCAwn13ovTLu5B9xguQv+KFAABTKeP0//mfUwsEQgJSoPuKa9D1rGtqTYVMGMA/ffS8n1sNBrXZgzPrC6JlhHTrC3KQXob1BdNQmz0Ig1oNQlOKti4qxz3rjNADDzyApz3tabj55pvxmte8Blu3bkWxWMS9996Lj370oxgZGcGuXbuwcOHCFP4DiChuLRUGAPsLt/TwDgzdeRv00Onzf0JdEHBz3QgqJXvTfvIg3KWrIZQDx8vCL46cPxBEsxLZzU9H7/NeBtU3b8KHBMMnocvT3E4olQ0Fyo1CggtIBegwqi8oAqkcAiQgvYydLWB9wbTZcBBE4aBJZw6iOgPluuNmDG6//XZcd911uP/++3H77bdj+/btyGaz+PCHP4y1a9di7dq1+MAHPoCPfOQj6Y6fiGLRcmGgygQ+Rn/zUxR+/VOEAyfOunzQ94b/G2ruQri5bkjHgTEGfnEUJgwglAM31wUhBHQQwC+OIDx9HINf/sTYE1RnIIRAZu1mdF91PbxlayZcp0oHFQQDx2b/HyikDQiOC0TnEZjAt4WHaWyFE9LOFmSykKoxHRXbnanuWqjNHDRZUaIQUI4L6bh4dF8/Nm7cCMdx4LourrnmGuzcuRPlchlHjhzBG97wBjz22GPYvn172qMmohi0VnP7OsJx0f3MF6LrGS9AcPQwig/9EsXdv4QuDANS1l5Jl/f+BvlnX4ugUoKr7I3fzXVBBz5kVOBnjEFQKdU+HkICsGvC7rK1yG95JrIbtkHmu887Lul4EG5m9mv/RsP45drzqHwfnK4+mHxvtE2xBBMkWF9gNHR5FLo8ag/cqZ6PwPqCKRPRzRaODVPGaOhoWcE0QzgwBqFfQehXsHr5Unz3O9/GE0eO4rWvfS36+vrw/ve/H5/97Geho/MiJHscELWNlp0ZmIzRGpXD+1De/xCC40/CP/YE9PBArTagfiag9jl1MwWFX/4YwYE9cBcth7toBbIbtkH1zp32OHSlhGDoRGz/XcLLwumZP7HwUIfQlRJ0pQgTBrFdb1pjczzITHQ+ApcRZsVoPbakEAZNs51RSIn/+v7teMWrXo2//Mu/xB/8wR9g3bp1ePe7342/+qu/Snt4RBSDtgoDk/GHB+CfOAqR74bMd8PJ5qHcsfMCQr+CoFSACQO4Xb3jHpspYwyCgWPxFABKBXfOovNuDdOhD122wSCdngxirKkR6wtiYbSGDnyE0cxBWu740Z14xWt+DzfddBO+/OUv46abbsK9996LvXv3soCQqE207DLBVBmpoBYsBgA7ve2MX++WUUU1YINBHGFACAGZ70E4fGrWz+X0zp/SHnGpXMi8C5Prhgkq0Y6EMpKrLzDRNYu2viCTg4r6F9DMCCmhvAwUMrV6Ax349jjkhDL8nT++G6/6vdfjuuuuw5e+9CW85S1vwe23345vfePr6OvKIayU7c8QlwyIWlrb/6aursPWLxEYY8bVDLi5rtpSQVAuwsnkZn1d6eUQRjsCZkooF0JO70skhIBwM5BuBiavoStlu4wQVGY8jmkzGro0Cl1ifUFcqvUGynFrJzXqIIAO/YbVGtz905/ila/5PbzgBS/A17/+dbz73e/Gl7/8ZfzZn/4xNm/eBKNDBJUQqJQgoq2K8hyNtoioebX9MkF5eAAAprybAEIi090by7XD4gjC0YHZPYlUcHrmQ85yxqIp6gvcjF1KYH1BrBqxnHD8+AlsvGQrrrrqKnz729/G+973PvzTP/3TuI/5kw//Ef7fP/7whM+VjjdhqyIRNbcOCAODqE6V1/cZqKrvMwAAbldvbFXSxmj4p47Gsoavuvogs92x/HLVgV9rbJRufUHunC2bafriWk649bZv4vfffAtOnToFz/OwY8eOcY//8z//M37x859j945fn/U5hJRQjgfpumxeRdTk2n6ZQEhZa/ZSveHXM2FQe7/0srFulxJCQuW6ERaGZv1c4eggtF+G0z1v1uuzMprONbme9OsLpO1fwPqCeMS1nDB3rt1F8973vheOM/HrsnPnTsybe+6dNkZru2W3UoJ0XCjHg1CcLSBqRm0/M1AZHZ5y57czdxrEwWgN//SR+Aq+pILTMw/SzcTzfBFjUqovqCOUOzZjwIK02BmtEQY+dFA5bzAIwxB/8v/+Oe697/5JH+/p7cEfffADuPqqK6c3CCGh3CgY8GtM1DQYBuo0IgwAQFgYimV2oJ7K90Hm4lk2OJOtLyjaxkY6vfoC5eUg3AxfSTaA1qFdSvD91PoZSOVAuh6PWyZqAgwDdRoVBmKfHYgINwunZ27DqvRrvfXTrC8QAtLNQmZydncFbxqxsksJUQFiUEnpKG0BVVd0SETJYxio06gwAADB6CB0cTj+J5YSTvc8SC8b/3PXMcbY+oJyEdovNfRaZyUVVHWbIusLYjdWY+AjDPxUgoFQyhYdsrCUKFEMA3UaGQaMDu3OggYV6clsN1RXXyK/QG19QbRNMUjpmGXljrVB5tpz7KrBIPR96MBH8odjCVtb4HqcLSBKAMNAnUaGAQAIRgagS+N3NMhMF4wOYWJ4tS2UA9UzD9Jp3H/DmUxo6wvCSnFWDZZmg/UFjVVdLrLFh8mHP6kcKC/DvgVEDcQwUKfRYcCEoa0diAjHg9Nne7vr4gjCwmAs12lkceHZjK8vKKa29lzrdsj6goYY18cg4WAgpIRyM1xCIGoAhoE6jQ4DABCMnIYujQJCwp1zwbi1b+2XEQyfiuUVtnAzcLrnprK2boyB8csIK8XZH+U8U6wvaLhqW+/Qr0z5ZywWQkC5HrcnEsWIYaBOEmHAhAH800fh9M6H9CaegWC0RjByCqYSQ5GeEFDdc6Ey+dk/1wwZraH9lOsLHHdsxoCd8BpChyF0UEHoJ1tfIB3XzhYo1hUQzQbDQJ0kwgBgZwDO1TTIGANdGkE4Gs+ygczkobrmpP4qyi4jlFKtL5BudMwy6wsaojZbEFRgwuS+xkKpKBSwZwHRTDAM1EkqDEyV9isIhk/Gc+NsUOfCmbD1BfXnI6RRXyDHuh3yBtIQRmuEfiXR/gVCSCjXg3Q9fk2JpoFhoE6zhQGgumxwGqZSjOX5ZK4HKt/bNL8om6a+IJOL2iBzujlutaJDv2IPT0qIcj0oN5P6jBhRK2AYqNOMYQCIfpmWRxGOjJ3AOBtCuXB65kE47uwHFyOj6/oXhGnVF3jRjAHrCxrBno8Q1RYk1NHS1hXYtsdENDmGgTrNGgaqTOgjGD4VWyGe6poDme1qmlmCeiYMEFaXEdKqL6gds8wp57jZpaIQYVBJbIuikArKY10B0WQYBuo0exgA7C/RsDAUW2tj4WbsLEGTTo/bNshRfYGffn2BbLLZlHZgjIb2o6LDaRyzPFMMBUQTMQzUaYUwUBVnTwIICad7DmSKWxCnohnqC4RyxrYpNmmAalW12QK/nEhtAZsYEY1hGKjTSmEAiNZfRwegy4VYnk94OTjdc1riJmfrC4pRfUFKxyw7XhQMMqwviJnWIUK/Au1XGn4tIaSdKWAooA7GMFCn1cJAlS4XEYycjqcgSwhbS5DJt8wvxlp9QbmYzjHLEJBehvUFDWCMRuj7CP1yw5eIGAqokzEM1GnVMADYcw+CkVOxTZ+n2c54pmrHLFdKtvAw8ZP2ENUX5CAzWUjF+oK4JNr6WAg4XgaSwY46CMNAnVYOA0C1c+EowtGBmJ5RQHX1QmaTPfQoDsYY2wa5XIQJGj/VPBnWFzSGDgO7hNDoXQhCwHEzbGBEHYFhoE6rh4EqHfgIh0/FtldfOC5U97yWraQ3OqzrX5BifUEmB+lmeWOJie1wWEbY6LoCIaDcDBRDAbUxhoE67RIGgOoWxEHo4khsz9ls3QtnQoc+dLkUHbOcVn1B1NSI09CxsEsIFYSVCkxDv6YCyou6GvLrRm2GYaBOO4WBKl0p2eLCmNZZhXKguuc2xRkHszFWX1CErpSRSn2BtPUFKjofgWan2vY49CsNnwFSbgbKYyig9sEwUKcdwwBQ3YJ42lbbx0Rmu6G6ettiS50xGrpSjo5ZTru+IMde+jHQ1X4FDa0rEFAelw+oPTAM1GnXMFAVlgoIR0/Ht0VLKjjdcyG9bDzP1wSaor7AzdjZAk5Hz5rWIcJKg0OBEHC8LLckUktjGKjT7mEAiLYgjp6GqZRie06ZyUN1zWm7V7Q6qD9mOYX6AiEg3er5CLzRzIbRGkGl1NBQIKSE42V5JDa1JIaBOp0QBoBovbxSRDAyEN9NLmppLLxc2/0iHF9fEF+ImhapIL0s6wtmyWiNwC83tLOhUMrOFPDrRC2EYaBOp4SBqrjbGQOA8LJwuua07Q3L1hfYpkbp1Re4df0L2ms2JilJbEuUjms7GrLHBLUAhoE6nRYGquLecQAIqHwPZK6n7WYJ6tn6giLCcjG1Y5ZZXzA7NhRUbLvjBpGuB8fNMLhRU2MYqNOpYQCIesCPDkGX4utLAKnsLIHX3o127Gl7QXPUF2RyEIr1BdNljEZYaWwo4HZEamYMA3U6OQxUab+McOR0rJX0ws3C6e6D6IBe/ba+oGwbG/np1Reo6jJCmy7XNIoxxi4fVCpoSO8JtjimJsUwUIdhwLLdC4egi8OxPq/tYNjTFr0JpmKsvqAI0+g++mchlDvWBpnT1FNmQ0GlcaclChkdhsRZHGoODAN1GAbG04GPcORUvDcyqaC6+ux2uQ76JWiXEUoIK6wvaCWNDgV2O2IO0uEMDqWLYaAOw8BE9iTEEYSjQ4hz2lQ4nm1r3KKHH82UrS/wazMGDXnVeT5CjO1GYH3BlIwtHzSmpkAqByqT5c4DSg3DQB2GgbMzYYBg5DRMzAVWMtttDz/qwClsYwyMX0ZYKcb+7zpltfqCHITijeh8Gt2ngEWGlBaGgToMA+dmjIEuFxCODsT7ilZIu3SQyXfsL0GjNbRfgi4XYzt6erqEU9e/oEPqOmbK6BBBo9ocs70xpYBhoA7DwNQYHSIYGYCpxHfwERAtHXTNgezwr0Ez1BfUtinymOVz0mGIoFKECeP/Ogmp4GRykJyxoQQwDNRhGJgeXSkiGBkEdLwH+shMlz0RscPXT2v1BeWi3aaYSn2BhPSi8xHYc39S1T4TQaUEo+PvMaFcD6rNe3VQ+hgG6jAMTJ8xBro4jLAwjFj3ZQsBle+FzHbzlyCao75ASAcyEwWDDg9qkzHGQAc+gkoDghuXDqjBGAbqMAzMnAkDhKODtkI+TlJB5fvslDV/CQKI6gtqxyynVV/gRfUFGdYXnKG2HbFSRtyNi+zSAQ9BovgxDNRhGJg9XSkhHB2ItYMhYJvnqK4+7pE/gwkDhNU2yGnVF1SXEVhfMI4xBmGl3JAWx9Jx4WRY6EnxYRiowzAQj1pvgsJQ7NOlws3YmQJ+ncaxbZD9umOW060v6LT+EeditI52HsS/HdHxsmxtTLFgGKjDMBAvo0O7dBDjEclV0svZmQJOl05gjLHbFCul9OoLlFN3zDLrCwBA6xBhuQQd96yZlNGuA/4s0MwxDNRhGGgM7Zft0kED9mTLbFfUtIg3nMnYY5ar9QXx3oSmivUF4+kgsNsRY955IB0XjsczKGhmGAbqMAw0zljDosEGHPErIHPdULke/iI8h1p9QbmYzjHLEJBehvUFqC8yjP9kS+Vlobh0QNPEMFCHYaDxjNYIC4PQpdH4n1zIaDtiF38RnoOtL6hEMwZp1hfk7FbFDjja+mxsPUEp9k6GbFhE08UwUIdhIDk6qCAcGYBpQFFVp56MOBO1+oJysTFfiylgfQGgwwBBuTTl31VTxbMOaKoYBuowDCTLLh0UERYGgAZ0bhOOa3ceeNnYn7sdNUd9QcbOFrid13Gv1rSoHO9sDQsMaSoYBuowDKTDaI2wOAxdHEEjpqy5HXH6dOhDl6vHLKdVX5C1swUdVl9gjLFLBzGfjMi2xnQuDAN1GAbSZXSIsDDUmHoCVENBL6Sbacjzt6Ox+oIidAM66k2JtPUFKjofoVPoMERQLsa7dCAE3Ewe0umcf0eaGoaBOgwDzcGEPsLRofhbG0cYCmbGGA1dKdtlhNTqC9yxjocdsHOkUecd2A6GrKmhMQwDdRgGmov2KwgLgw1rnCMcz/YoYIvjaavVF5SLMDGfWjlVws3Y2YIO+PrZ1sYlhHEuHQgBJ5ODYrdIAsPAOAwDzad2Wt/oYMMO5bGhoAeiA4vWZqt6fG+tDXIa9QVCQLpZe5iVau9T/bQO7a6DGAs8pXLsLEEHzLTQ2TEM1GEYaF61pkWFoYYdyCOUa2cKWGQ1I7X6gnIR2o+/mc6USAXpZdu6vsAYE21FLMa6dOBkcjwiuYMxDNRhGGh+Y4cgDTfsVahQDmS+l30KZsHWF0TnI6RZX5DJ2W2KbfiqtxFLB0IpuJl8W/570bkxDNRhGGgdjd6OCABQDlSuBzKTZyiYBaND20+iUkztmOV2ri+ozhLEedYBWxp3HoaBOgwDrceEIcJi47YjArAdDfO9DAWz1DT1BdXdCG1UX2BnCcoIYyy2FVLByeYgO7QrZKdhGKjDMNC6TOAjKAzBNGg7IgAbCnI9PPsgBtXCUF0ppVpfoKptkNukvqARvQmcTBaywxo/dSKGgToMA61P+2WEhaGGbUcEYA9EynXbUMBXTbNmtLbnI1SKDTnmeiqE49rzEdqgvqARJyJyx0H7YxiowzDQPmwoGIZp8KtOmclD5rohHX7fxMEuI5RYXxADozX8cgEmjOnfkX0J2hrDQB2Ggfaj/QrC4hBMA86NryfcDFS2m9sSY2LrC/zawUlxbqGbMiGi0xTtNsVW/LqOHX4U3/KZdDw4GX6ftxuGgToMA+1LBxXownDDWhzXSCdaQshDCE6pxqHWeKpSbOzyz7nU6gtyEKr1loaM1gjKReiYmhUJIW1xYZvUWhDDwDgMA+3PBL7dklguNPZCQkBmu+xsAX9hxqZWX1AuNqwj5fkIxxs7UbHFAl9YnSWI6de+8jJQLb6cQhbDQB2Ggc5hQh9hIYFQAEB4Oahcd8cdxdtoJgwQVrcpplRfUGuD3EJfW2OMnSWIqVhTSAU3y0ZFrY5hoA7DQOcxYWBnChrZpyAiHBcy22NvHi1y42gFtfqCahvkVOoLZF3/gtaoL9BBAL9ciO3fi+2MWxvDQB2Ggc6VZCiAlFBZbk1shGaoLxDSgcxUj1lu7q9v3C2NpXLgZHMtt3xCDAPjMAyQ0WHU5ngUDWtzXCMgs3nIbNeMtiYWCgU8+OCDGBgYwJIlS7B169YGjLF1Ga1r3Q7TrS/IQXqZpr5BxjpLIATcaJaAWgfDQB2GAaqyoWAEujSSyLSzUK4NBVM4JOaOO+7Ahz70IezatQth3R7yT3ziE3jve9/b6KG2pLH6giIQYw//qROQXsbOFjRpfYExGkG5FFstgXI9KG61bRkMA3UYBuhMRmvo0ijC0khCRWrCnrSX7TrrTeOyyy5DJpPBW9/6Vjz96U/HBRdcgFtuuQWe5+E///M/Exhj67LHLPtj5yM0fPZnEnX1Bc326jnuvgRCSjiZPGQLbsfsNM07b0XUBISUUPkeuHMXQ/XMg2h4p0EDXS4gGDwOf+Ap20XxjBAyMDCAzZs3I5/P49Zbb8WyZcuQzWYbPK72IISAdD04XX1w51wA1dUH4WaSHYTR9ms8fBL+0AmEpdFYzxKYDSEElOvBy/fEUu9gtIZfHEFQKaPNX3e2PM4M1OHMAE2F9svQxZHGNzCqI7wcVLYLws3gHe94Bz772c8CALq6ujAyMoKXvexl0FpzZmCGjA5r3Q5NTI15pqvZ6gvsGQdlhJV4CjFZXNjc+FUhmibpZuD0zoc7dzFkrgdIYE3UVIoIhk7AP30U//Dxj2HXzh34yEc+0vDrdgohFVS2C27vAri9CyCzXUDCNy0TVBAWBuEPHEcwOgDtp/tqWggBx8vCzXXHcgPXYYBKYWRKXRBNKnUdnY2t0YhmSCgHTlcfTL4HulSwdQWNflWpQ4hKARctnY+eDH98G0EoB06uBybbDRNUohmDJOsLzNg1hbSzBZkspEqnvkAqBTffjaBSgp7tFkRj4BdHobwslDt5TYzWIfziqF2qYPFhYvjbhGiWRN2RxsYvISyOJLLHfcJ0tuGrqTgJISDcDKSbsYHPL9s2yEE8e/KnxGjo8ih0eRRCOdEyQjbx/gUi2i4YKieWdsZhpQQTBhOWDYwxCEp2i2PoV+B4CddzdDCGAaKYCCEgosNsdODbuoJyAk2MItqvwB84Zo9VzjR/w5tWIoSE8nJQXi61+oJqY6ywOAzhZOxsgZvs1j3luJBKISjN/tCj6rKBm83XDjwKysXaEkHol886e0DxY80AUQNIx4XTMxfuvCVQ+V4gxr7txhj86oEd+O2evePe/9SxY7jjRz9CaeA4/FNH4A8ejyrVOWMQp/r6AqdnPmQmn0J9QRnh6CD8gWMIRgeh/Upi9QX2xMI8nExu9k8WLRsEURfEcT0OotkBSgZ3E9ThbgJqFGPslkFdGoGZZVOXT//rF/D+P/4zAON3E3znO98BANx4/YvwjS99btznCDdrZwy8LA+UaQDbv6AS9S8oI5X+BdLWF6jofIQkaB0iKBUbtzVSCNYOJIRhoA7DACVBBxXo0qg9MXEGP36/95b/hqFiGV/72tcghMD8+fMxPDyMcrmMz3zmM/ifH/84jvX/9iyfLWzDm0wegt3hGsIYDV0p22WEJOsL6gjljh2c1ODwZ883KCNsUJ2Mk8lCJd0LogOxZoAoYdLxILs9mK450WzB6LRuGitXLMMXv3orXvayl0147Mknn8TKFcvO8dkmevVaBISIKtVzEAmvPbczISRUJgeVqdYXFKHLJRidZH2Bj7Do2/oCN2NnC9xMQ77GQgg4mSyk48AvxXcKYlVQKUM2aQvndsKZgTqcGaC0mNBHWLLB4Hy7Ao6fOIl/+JfP4ckjRyc8lsvl8Lab34BLt2ye3gBqW9gad9PoZPaY5WCsDXIaOz+EgHSz9musGnPUsDE6luLCMzmZHH83NxjDQB2GAUqbMQamUrKFf34pnUEIObYjga/IYlerLygXodP6GksF6WUbUl9gosK/sBLff5sQEm6+m9+LDcQwUIdhgJqJCQPocgFhaTShQ5ImEd00ZAOnmTuZrS+wDYZSrS/I5Ow2xRjrC3QYxLpswNmBxmIYqMMwQM3IGAPjl23RYYLnIUwkIKJjeNNofNPuTGjrC8JKMbXwF3d9QbWJUBzLBkLKqDUyA2kjMAzUYRigZmd0ODZbkNKBOlX2YJ2s3ZXQoDXoTjS+vmD23f5mpFpcGsPX1hgD7VcQxLBs4GTzUE127HO7YBiowzBAraK27lydLUj7x7i2nJDlzoQY1WaFKqVU6wtULRhMv77ANhIygFDwS6Oz+l4VUsHLd8/48+nsGAbqMAxQK6oWHepyIeEDdc6GywmNYLSG9qM2yLNsXDVTwnHt13Ua9QVBYQi6UoTqmmtnB2Z5y3FzXbX2xRQfhoE6DAPU6moFaeUCTIzV3LNRvYFwOSE+dhmhlGp9gXSrM0Fnry8wxsAfPGZbJatMLG25pXLg5rpm/Tz1TLkAPTIAhEF03oSxIVY5EJk8RNectu/cyTBQh2GA2onROmp4U0jkFMUpkQrSzdROA0yqbW67svUFfu3gpHTqC+TYjhPljAsGulJCMDoAIx0gxiOY3Xw35AxmnIwx0KeOQJ8+Cj1wDOHAMeiBp4DyeQpzpYLomQ81dxHknIWQfRdALVoF0UadERkG6jAMULuyhYdRMEhpC9ukpGNDgReFAy4pzFi1viCsFNMLf9X6gujUTH/ktK0ZcOK9aUrHhZvNT/njw4FjCA7uRnDgQZjCkH2nkNNv/lQNOsbY/9ZlF8FdcwnU0vUtH2wZBuowDFAnqFWqlwuprT2flbLhoDp7wHAwM7X6gnIRJkyrvsCDCSowQgJC2RupkGM31Fny8j3nnLo3lRL8R38N/8BOmMET9rpx3+6qgcLx4KzaDHf95VALztUOvHkxDNRhGKBOU21slOZN41yEcseWFNxM26/bNoIJA4TVNshpNa+qjgUAEIUC5UAoNzpie/q3IeVm4GSyE6+hNYJ9v0Z5x48BP8ETJKNgoFZuRuay34XsnpPMdWPCMFCHYYA6mQ78aEdCMfUeBmcjnGo4yEK4HoRgOJiqWn1BtQ1yE/zqF44H1TUHAvY4ZBOGdklLh1Man9fVO65GIXhyH8q/uh1m+GQDR30e0QyIu+nZ8C6+qmXqChgG6jAMEFn1h+o0TfHhJITj2XDgeDYccFlhSpqiviAi3AycrjnjburGGMAY6DCw4SAKCWdSXhaOl4EujqD8i28jPNIPQCD97bUAIIBMFtkrboSzYmPagzkvhoE6DANEE1XXn03UQz+VE/emSiobDKrhwHE5e3AetV0nlVJqS0XSzUJ19Z1z26kxZlwwqLY4VoUhlH/67zDlYtN+b7oXXw3v0uc19TIXw0AdhgGic6t1PqyUYCrFaE92cxPKrQsH3oTtbzRmrL6gCOhkb6zSy0Hle6f1tfEP7kb5598CYJpi2eNc1LILkb36VRBN2k6ZYaAOwwDR9LTKcsJ4Iqo98GqzCJCKAaGODX1+7Wub1LS7zOShcj1T+lpUHv4lKr/6fgKjiouAXLAUuee9HiKTS3swEzAM1GEYIJo5ozWMX6odydusU7aTEnJcOBCO19RTukmyBw2VoMslmKDxgU9mu+Dkes75Mf6BXSj//D8aPpbYCQE5fxly17yp6epbGAbqMAwQxWP8ckJ6a9GzIlW0xOBEf7od307Z6LDW7bCRS0Qq1wOVnbzlcHj6KIo/+Fzq2yRnw914BTKXX5v2MMZp7ZZJRNSUhBC1/gDo6rM3Eb8MUynbbW2t8Itc20I1c2aOkc7EgNAhdQhCKqhsF1S2Czr0ocvVNsjxzgKFxWFACKjM+C6DplxE6e5/b61Zp0n4e++DnL8M7uotaQ+lhmGAiBpOSGV/sUe/3E0Y2HDgl6H9cmuEgyodwFQCGIw/CEqoMwKC47Z1LYJULmTehcl1R7NA1fqCeISFIRsIPLu+boxB6Z5vwhSHmr5YcCrKv/g2ZN9CqLmL0h4KAC4TjMNlAqLkGWOA6syBX4rCQWu/8hsjxmYRohkEKAUhnbarSTBawx88FvvzOl1zIL0s/H2/Qfm+78b+/KkRArJ3AXIvfmdTBEbODBBRqoQQgHKglANku2w4OHPmoGWnhW1V/qRnQAgJEQUD25o3CgnKackZhThnBeoFowNQpheVXT9tyPOnxhjoweMIn3gEzvINaY+GYYCImosQAnBcKMcFct1RG92gNmtg/HJbTBPDaJhAw+AsxZVS2aWH6E/IKDAoxwaJJgsLunKeY4CnSkhbaS/tn0IqhIceGjttsK0IVB78CdSyi1L/ejIMEFFTE8L2BYDjQuV6aj32jV+2e+H9CqCbv/nRtFULGCd9UEAoNRYQpLLhQdoTAoWUic4umDCY2o4RIerGWj/es4/ZaI3SQ79o0MjTZqBPH0V4pB/O0vWpjoRhgIhaig0HHuCM1fcYre1xuUEF2rd/tu7SwlTY2RKEwcTdDvWEiG6wcnxgGHfznX1wCCtFAGLcq/kzX91Dyhm1hg4O7YEZOT3jsTU9IVDZ9VOGASKi2RJSQnhZwMtCoa4oMajAROHABJW0h5m8qP7CYAo9BIUcu3lHAQFC2JAg5NjShIhu+rX3C8hMF1S2uyEzEcHjD9trtsPS0GSMgT7xOEy5AHHGVsokMQwQUdsZV5RY3c5YW14YCwetcLZCYowGQm2n/Gfy+VE4qA8JIvpz4t8FAGH/QPXvmPiYkNBPHWzfIFAnPH441UJChgEi6gjnXV4IKrbqv5V6HjQTYwAzvsZhtrdwoQ1MaWSWzzI9/3rH/fjk9+7B0YERbFq2EH/7xutx1cZVjb2okAiPHUo1DLTXRlciomkQUkJ6Wah8L9zeBfDmLYE7bymcvoVQXXMgs90Qbsa+sqXE6VNPJnq92+7djT/6Pz/AB1/6O9j+V+/ElRtW4ZV//39w+MRAYy9sNMKnHmvsNc6D3+FERHWElJBuBirXDad7Dty+hfDmL4U7bwmc3gVRSOiyswxNtr2v3ehTRxINYv/w/Z/j5uddhjc//3JsXLYQH/v967Fsfi8+e+cvG35tffpoqstWXCYgIpoCIRWEN/6kuWqhogkD21wojP4XBEjq2N92ZirFxOoFKkGABw4cwfte8pxx73/hlnW479HDjR+A0YBfBlQ6t2WGASKiGaoWKgrlAF629v5aSKgFhMD+Twdt1Go5AQmGqpPDBYRa44K+8aclLuzrxlMDydQtmMBHWnNNDANERDEbFxKQG/dYtd2y0QFMGI6FhDC0f3ZA5fyUmeSLOSdujzTJdQdMsTcGwwARUYKq7ZYF3AmPGWOAqP0ydHU2IQoMYdienRbPxUnu4Lj5PXkoKSfMAhwfHJ0wW9AwzsTviaQwDBARNYlqUx8hPQATb4TjahR0ONayWOva2zC6bWYXhOMm1nDIcxxctmYJfry7Hy99xqba++/avR8vvjyZLX9CMQwQEdF5jF9+ODtjNKB1FBh0FBhsUKh/n61faN7gIHoXJDq8d19/Jd7+j9/EZWuX4pnrV+DffvwrPH5yEG994TMafm2R67ZdNFPCMEBE1GaEkICSUwgNJmoWpOtmGqK3o/fDGBsuqh9X9/5G0qVR+Ht/BRMEkM7YLg4dhIA2gCMhZbzbDl/5rC04NVzAx/7jJzg6MIzNyy/AN/6fN2DlgjmxXmcCIaEWrWnsNc43BGPaZD7pLCqjw/YbewqcbB7KTW6NioioVdVuHUaPhQRdDQ9m/PtrQaIuRJjoxAQDGJhxfw9OHkHwi/+KaiQEIAHpqCgIwH6ckIBC7IEgLZln3AD3oqendn3ODBAR0bTVKuyFAqBmvSXOlIvwD/4W5b2/gjl9BFAO8te9FZVd2xEcfgS6YoOBs2IDvEuuQuGHXwLCEBq6LQKBvGBlqtdnGCAiolSYMEDwxD74/TsRHNo77lyI/ItuhrNoFdSCZSj++N8RHH4YzooNyD3/NRDKQf5FN6Pwvc8BAQCvxcOAl4XsW5jqEBgGiIgoMcYY6BNPoNK/E8H+XTDlwiQfJVDZdQ/UgmUQykHu+a9F8PgjcJZfBKEcmDBAZdd2VJcQWpuAt/GK5HoZnG0UrBkYw5oBIqLG0CMD8Pt3wu/fCT14YgqfIcbNBFSZMIhmCh6p1RK0NMdF18vfl+pOAoAzA0RE1CCmUoJ/8Lfw+3ciPHpwup+N4PBeBI8/AnfV5tp7g8cfQXD4YQCAdFr9Fibgbrgi9SAAMAwQEVGMjA4RPNEPv3+HrQOY8Ul8dmbAWX7RuPc6yy+Cs2KDLSoMwtaeGVAK3sZnpT0KAAwDREQ0S8YY6JNH7DLA/gdhSqOzfMbxSwQmDMbVDOSe/9raUkErBwLvkudCZPNpDwMAwwAREc2QHh2E3/8g/P4d0APHY3xmA++Sq2pBYGw3wcZaQPAuudouF7TiIZBCQC29EO7mK9MeSQ0LCOuwgJCI6NyMX4Z/8CFbB3DkABrSLzhqu5x/0c21PgP2OhP7DLRc4yEhILrmIH/DOyDcTNqjqWEYqMMwQEQ0kdEa4ZF++Pt2wj+0Bwj8xl+0dkCRAGAguvqArj6YY4fR0h0IlYP89W9Pva/AmbhMQEREkwpPHYW/bwf8/btgisPJXjx6nSrnLYZ72fOB3vkQQsDf+0uEjz0E4bkQhcEWOqHRnkiZvfqVTRcEAM4MjMOZASLqdLowFNUB7IQ+/VTyAxASzvL1cNdtg1p+IcJKCWaSmQgTVBD86gcwJ55AM5+8CMDOckgH2ef9HpzF6R5IdDYMA3UYBoioExm/guDQHlT27UB4ZH8qr7bl/KVw12+Du2YLZK4bJgzgF4bHtSg+kwlDhA9th37stwmOdJqEgMh2I/u810HNW5z2aM6KYaAOwwARdQqjNcKjB2wdwGMPAUEl8TGIfC/cdVvhrt8KNeeC2vu1X0FQGMZUXvEbY4Aj/fAf+FH0jubaXiAXrUbuOa+CyDTHFsKzYRiowzBARO0uPH0Mfv8O+P0PwhSGkh+A48FdfbENAItXQ4ixAkBjDHS5iHDS8wrOTQY+/J13ITzSj2rRYXoEkMkhc9kL4azZCtECRY4MA3UYBoioHeniCPz9UR3AySPJD0AIqKXr4K3bBmfVRghn4u9ZozWC4gjMTGcohITbPQfh0f0o/+p2mOGTsxz0zMYAIeBueja8i69qqq2D58MwUIdhgIjahQl8BIf22rbAT/SnMn0u5y22ywBrL4XM95z143Tg22WBWY5RZnJwsl02WOz7DSq7fgpTGrE36Yb990ezEEJCrdyMzGUvhOzqa9C1GodhoA7DABG1MmM0wqOP2bbAB38L+OXExyByPXDXXWp3A8xbdM6PNcZAV0oIZ92+2AYBlcmPOwrYGAN97DH4B3cjOLjb1kXEFgxsCJALV8JdeymcFZsgMrkYnjcdDAN1GAaIqBWFA8drxwOb0cHkB+C4cFdthrtuK9SStVNaIzdGIyyOQPuzL1x08j2Q55mSN2GI8Mg+BIf2IDz5BMzw6bFQICQAM3EXhRAAxPjwkMlDzrkAzrIL4ay6GDLfO+vxNwOGgToMA0TUKnRpFMH+3aj074A+8UQKIxBQS9fAXbcN7qpN01of12FglwWm+Lv5rKSEk++FVNPvn2d0CDN8CnrgOMLBYzAjA0AYwISBvfkrB0I6EJkcZN9CyDkXQPYtbOlX/+fCMFCHYYCImpkJfASPPwJ/3w4Ejz+aTh3AnAtsP4C1l0J2Tf9VcVgpISyOzHocwnHh5HpaolK/FbAdMRFREzPGIDx2yPYDOLgbqJQSH4PIdcNdewncddsg5y0ety4/VcaYaFlg9nUM0stBZfMzGgdNjmGAiKgJ6aGTqFTrAIZPJz8A5cJZtRHeum1QS9dCSDXjpzLRssBUZ2nPOaxcD5TXOlv2WgXDABFRkzDlAvwDu+Hv24nw+OFUxqAWr4G7fivcVZshvOysny+slKNlgVmuSAsJp2tm9QF0fvxXJSJKkQmDqA5gJ4LHH5l9Ud0MyL4FY3UA3XNieU5jDMLSKHQMyxrC8eDku8d1K6R4MQwQESXMGIPw+OO2IdCB3TDlYuJjEJk83LWXwl2/FXL+0ljX340O7bJAGMz6uVQ2D+nlWB/QYAwDREQJ0cOnon4AD0IPpdAuVzlwVmyAu34bnGXrZ1UHcDbaLyMoxLQskO+BdNxYxkXnxjBARNRAplyEf/C38Pt3IHzqUCpjUItW2WWAVZsbtk/eLgsUoCuzn+XgtsHkMQwQEcXM6BDB44/C79+J4PDDQAzT5dMle+fbcwHWbYXsmdvQa8W6LJDJQ2a4LJA0hgEiohgYY6BPPGmPB96/C2YGx/DOlsjk4Ky5xLYFXri84TdUYwy0X0ZYHMXslwUEnFwPJBu/pYJhgIhoFvTIQO1cAD14IvkBSGXrANZthbP8QoiEtt4ZrRGW4jlbQCgHTr6nITUMNDUMA0RE02QqJfgHH7J1AEcPpjIGdcEKey7AmoshMvlEr62Dii0SjKEdMrsJNgeGASKiKTA6RPBkv+0HcGhPKnUAomcu3HVb4a3bCtk7P/Hrx9k7ABBw8t3nPW2QksEwQER0FsYY6FNHx+oAYjhgZ9q8LNw1W2wdwAUrU3sFrcMAYUwthbks0HwYBoiIzqBHh+Dv3wl/307ogWPJD0BIOMsvgrt+K5zlF0GkuNfeGANdKSEsjcbyfNLLQmW7uCzQZBgGiIgAGL8M/7E9tg7gyQOYdXX8DMgFy+Ct3wZnzRbIbFfi1z+T3TI4AhP6MTybgMp185ChJsUwQEQdy2iN8Mh+uxvgsYeAII6b3vSI7jlRW+BtUH0LEr/+2cR2wBAAIZVdFuAhQ02LXxki6jjhqaeiOoAHYQrDyQ/AzcBdfTHc9VuhFq1qqgN4jNEIi6PQfjmW55NuBirXzWWBJscwQEQdQReG4e9/0PYDOHU0+QEICWfZetsPYOXGVOsAzkYHPoLCcCxbBm0TIe4WaBUMA0TUtoxfQXBoDyr9OxE+2Q+YFOoA5i+x/QDWXgKZ6078+lNhjEFYLkDHdHoizxZoPQwDRNRWjNEIjxy0ywAHHwKC2XfImy6R77XnAqzfCjXngsSvPx0mDOy5AjFsGQQAle2C9LJcFmgxDANE1BbCgWPw99m2wKYwlPwAHA/u6s1w122DWry66V8VG2Ogy0WEMZ2hIJQDJ9fNIsEWxa8aEbUsXRyBv38X/P4d0CePJD8AIaCWroO3biuclZsgWuSQnTgbCAGAzOSgMmwp3MoYBoiopZjAR3Borz0e+Il98RS7TZOct9guA6y9FDLfk/j1Z8q2Ey5AV+KpDYCQcPI9kE1YDEnTwzBARE3PGI3wqUPw9+2Af/C3QEzb3qZD5HrgrrvUtgWetzjx68+WDioIiiOAjic82S2DXU21LZJmjmGAiJpWOHjCBoD9D8KMDCQ/AMeFu2qzDQBL1jZ9HcBkjNHRbEAchwuBWwbbFMMAETUVXRpFcGA3Kvt2QJ94IoURCKgla+Cu3wZ31SaIFr7pab+MoDga21KK3TLYzQOG2hDDABGlzoQBgsMP2+OBH38knTqAORfAXR/VAXT1JX79OBmtEZZGoP34tlVyy2B7YxggolQYYxAeO2TPBTiwG4hrGnsaRLardi6AnLe45W90xhhov2xPGIypwZKQCirfA8ktg22NX10iSpQeOoVK/w74/Q/CDJ9KfgDKgbNykz0eeOm6tpnyNjpEUByBifGwJenloLLcMtgJGAaIqOFMuQD/wG/t8cDHDqcyBrV4tW0LvHozhJdNZQyNYIyBrpTsbEBcpIST45bBTsIwQEQNYcIAweOP2n4Ahx8GYmpwMx2yb4HtB7BuK2T3nMSv32gmDOxsQBjE9pxsINSZGAaIKDbGGIQnHreFgAd2w8TU6nY6RCYPd+0lcNdtg1ywtC1vanG3EgZYG9Dp+FUnolnTw6dtIWD/Tuihk8kPQDlwVmywxwMvv7Bt6gAmo/0KglJ8zYMAQGXykJlcWwYnmhqGASKaEVMuwn/sIfj7diB86rFUxqAWrYzqAC6GyORSGUNSTBgiKI3CxHgKIw8Xoip+BxDRlBkdInhin10GOLwXiHGteqpkzzzbD2DdVsieeYlfP2nGGITlAnQ5pvMEAAACKptn3wCqYRggonMyxkCffNIeD3xgF0ycVetT5eXgrt1ijwdeuLwjbmDGGJigEmsHQYBdBGlyDANENCk9MgB//4Pw9+2EHjye/ACkgrP8ItsPYPlFHTWVrcMAYXEUJoyvZwCEgMp2Q7peR4Qpmp7O+ekiovMylVJUB7AT4dGDAOLpYjcdauEKGwBWb4HM5hO/fppiP1QoIt0MVLarJQ9aomQwDBB1OKNDhE/uR6V/B4LH9gJxvhqdItE9NzoXYCtU3/zEr5+2RrQRBgAIGZ0w6MX3nNSWGAaIOpAxBvrUUbsdcP+DMMWR5AfhZeGuvhju+m1QF6zs2KlrHfgIS6OxNg4CAOllo1bCnA2g82MYIOogenQoqgPYAT1wLPkBCAln+YVw12+zdQAd3O7Wniw4Cu2X431iqexsQAf/29L0MQwQtTnjl+E/tgd+/06ET+5HGnUAcsEyeOu2wVm7BTLblfj1m0ntLIFyId4lAbB5EM0cwwBRGzJaIzyy3y4DPLYHiLFRzVSJrr7auQBqzsLEr9+MdOAjLI7AxHxOg3A8OLkubhekGWMYIGoj4amn4PfvsHUAheHkB+BmbB3Auq1Qi1dxvTqiwwBhqRBr90AAdkkg28UCQZo1hgGiFqcLw7YOoH8n9KmjyQ9ASDjL1sFdtw3Oyg0QDm9MVUaHdqtg3HUBEFDZHKTHJQGKB8MAUQsyQQXBob2o7NuB8Mn+2Neep0LOX2KXAdZeCpnrTvz6zcxojbBchK7E2ULYYs8AagSGAaIWYYxGePSgbQv82ENA7K82z0/ke+Guu9S2BZ57QeLXb3a2OLCIsFRE3IWaQioo7hKgBmEYIGpy4cAxGwD2PwgzOpj8ABwP7qrNcNdvhVq8hq9IJzHWNKgQ6zkCAGwb4QwPFaLGYhggakK6OAL/wG7bD+Dkk8kPQAioJWvhrd8GZ+UmCBaoTap6mFBYKsS+QwCIGgdl8gxg1HAMA0RNwgQ+gsMPw9+3A8ET++J/hTkFcu6iaDvgpZD53sSv30oa1TkQAIRy7JJABx3OROnidxpRiozRCJ86ZPsBHNidTh1Arhvu2kttW+B5ixO/fqsxYYCgEdsEgehkwS5IN8MlAUoUwwBRCsLBEzYA9O+EGRlIfgDKhbtqk60DWLKWzWqmoHHbBC3p5aCyOfZmoFQwDBAlRJdGERzYbdsCH388hREIqCVr7DLA6s0QbiaFMbQeY6JtguX4twkCgHBcONkuCC4JUIr43UfUQCYMbB1A/04Ehx9Jpw5gzkK467bZOoCuvsSv36qM1ggrRehyCY04z0EoByqbh2STJmoCDANEMTPGIDx22LYFPvBboAGNZ85HZLvgrr0E7rptkPOXcP15GhrZMAhA1EI4D+F4/LpQ02AYIIqJHjoFv38nKv07YYZPJT8A5cBZudG2BV62jnUA02R0GIWAUmMuwOJAamIMA0SzYMpF2w+gfwfCY4dTGYNavDqqA7gYwsumMoZW1vAQAAGVyfFoYWpqDANE02TCAMHjj0Z1AA8DDWg2cz6yb8HYuQA9cxO/fjswYYiw3LjdAQCbBlHrYBggmgJjDMITj8PftxPBgd0w5ULiYxCZPJy1l8Bbtw1ywVK+ypwhEwZ2JqCRIcDNQGXzXKqhlsEwQHQOevh0rR+AHjqZ/ACkiuoAtsJZtp7bz2ZBhwF0uQDtN6BZUEQ4rq0L4NeJWgy/Y4nOYCol+Ad/C3/fDoRPPZbKGNSilXY74OqLITK5VMbQLnQY2LMDGtExMMJtgtTqGAaIYIvIgif22WWAw3uBBvSbPx/RMw/e+q1w122F7JmX+PXbjQ58hOUCTOA37iJS2oZB3CZILY5hgDqWMQb65BH4+3bAP7ALpjSa/CC8HNy1W+Cu2wq1cAVvKLNkTxH0EZaLMGEDQwCPFaY2wzBAHUePDMLfvxP+vp3Qg8eTH4BUcJZfBHf9VjjLL2IdQAyMMdCVEsJKEdAN7PIopN0myBBAbYa/hagjGL8M/+BDtg7g6EE0or3s+aiFy21DoDVbILP5xK/fjmyPgFLUI6CBX1MhbU0AGwZRm2IYoLZldIjwyf2o9O9E8NgeoJHTxmchuufYfgDrtkH1zU/8+u3IGAMTBtCVYkN3BgAApLTLAQwB1OYYBqitGGOgTx212wH3PwhTHEl+EF4W7uqLbR3AopU8kjYmxhhovwJdKcI0uMBTSAWZyTEEUMdgGKC2oAtD8PsftP0ATj+V/ACEhLP8QtsPYMUGCMdNfgxtymgd1QOUGn7qo5DKNgvi7gDqMAwD1LKMX4b/2B74/TsRHtkPmOTrAOSCZfDWbYWz9hLIbFfi129nJgwQVkoNPDNgjFAOVCbHEEAdi2GAWorRGuGR/XYZ4LE9QAMbyZyN6OqL6gC2Qs1ZmPj121lta2Cl2Nj+ABEbAvIQjssQQB2NYYBaQnj6KdsPYP+DMIXh5AfgZuCu3mwLARevYh1AzMa2BpYSOfhJKBcqm4NQDAFEAMMANTFdGIa/P6oDOHU0+QEICWfpOrjrt8FZuQGCrWZjNbYroBTtCmj8Mo9wXLs7gDUdROMwDFBTMUEFwaG9qOzbgfDJ/nTqAOYtgbt+K9w1l0DmexK/frszWkP7ZehKCSah45+l60F6OYYAorNgGKDUGaMRHj1o6wAOPgQ08GjZsxH5XrhrL4W7fivU3EWJX7/d2VkAH7pSbujRweMJSC8LlcnyKGGi82AYoNSEA8fh9++A3/8gzOhg8gNwPLirNtsAsHgNhGQdQNyMDqErZYR+qbFtgutJBeVl2TKYaBoYBihRujgC/8Bu+P07oE88mfwAhIBashbu+m1wV26CcFkHEDe7I6CCsFJu6LHBZxKOC+XluDOAaAYYBqjhTOAjOPww/P4dCB7f1/DGMZORcxdF2wEvhcz3Jn79TmDCEKEf9QVIsNZDuhnbLZAHPhHNGH96qCGM0QifOhTVAfwWSKBxzJlErjuqA9gGNW9x4tfvBLZFcBm6Uh53ZHD/gQO4+6fb8esHduDgY4fgOApvesPr8MqbXhbPhYUcWwrg8g7RrAljUijXTlBldHjKFctONg/FaeNZCQdP2ADQvxNmZCD5ASgX7qpNtg5gyVoWjjVAbUtgFALO3BL4s3t+jmtf+goAwObNm7FhwwYcOXIEO3Y8gCf27UUul5vxtYVyIL0szwwgihlnBmjWdKmA4MAu2xb4+OMpjEBALVkNd902uKs3Q7iZFMbQ3owxthiwGgDOsdTzk5/dgwULFmD//v3I5/PwfR/f/e538YpXvAKFYnFGYUA4nm0XrByGAKIGYBigGTFhgODwI1EdwKOJdI07k5yz0NYBrN0K2d2X+PU7gQkDhH7ZNgWa4te4u7sbw8PDuOmmm/DrX/8a//zP/wylZjJDw62BRElhGKApM8YgPHbYLgMc2A1UiomPQWS74K69BO66bZDzl/BVYgNUtwNqvzyjpkBvfN1r8MDOnTh1+jROnTo17c8fWwrw2PaZKCEMA3ReeugU/P6dqPTvhBme/i/3WVMOnJUb7fHAy9bzVWID2CWAig0AYTCr51owfz6++K//hIGBQSxavX5qnySE3RXgZbkrgCgF/KmjSZlyMeoHsBPhsUOpjEEtXm2XAVZfDOFlUxlDO6u1BY4hAMyUcFxItzoLwFkeorQwDFCNCQMEjz8Kv38ngsMPp1MH0LcgqgO4FLJnbuLXb3fG6LEZgASOCJ6UkJBeBspjLQBRs2AY6HDGGOgTT6CybweCA7thyoXExyAyeThrL4G3bivkgmV8hRgzozV0UIH2K4l2BJyMk+uB2zOXX2OiJsMwUEdrjU55naKHT9f6Aeihk8kPQCo4KzbY44GXrYfgOnFsqtsAjV+BDiqJLwEYY/CXf/N3uPPun0x47KUvfwWuueYafPSjH2UgIGoibd90qDw8iGpTFDfXjaBSGvfLUSgHjpeFXxyxH9PVC9mmHc1MpQT/4G/h79uB8KnHUhmDumClPRdg9cUQmZk3n6Hx7HkAfm0GII2Wz1X3/+rXeM7vXodXv/rVyGazeM973gMpJT75yU+iXC7j61//OrZv346rrroqtTES0Xgd8HJsLAhIx4GruuAXR2HCAEI5cHNdEELAzXXDL47AL4wg090+veuNDhE8sQ/+vp0IDu8FUigUEz3z4K3bCnfdVsjeeYlfv1010/Q/AAipIL0sBku2FuEtb3kL5s2bB601tNZ417vehcHBQXz961/HyZMpzEYR0Vl1zMxA/Y3fGAMd+JDR6WbGmFpAUF4GTou/YjXGQJ88An/fDvgHdsGURpMfhJeDu2aLbQu8cAWnhGOQ9vT/pKS0WwLdTG1L4NDQEDZu3IgjR45M+imLFy/G3r170dfHRlFEzaLtw0D92QT1gaCqPggI5cDLd6c11FnTI4Pw9++Ev28n9ODx5AcgFZzlF9l+ACsuYh1ADKrHAevAT336v0ZEAcDLQEg1adCrVCp4+OGHJ/30iy66CJkMW0YTNZO2DAN6dAjBySMITz6F4OQRBCeehPf034WzaMWEw4hCv4KgVIA+fRzhob1w5i+BM38x1LxFEI6b4n/F1Bi/DP/gQ/D7dyA8chBnHhqTBLVwOdx12+Cs2QKZzSd+/XZijAF0aG/+QSW97X9nqjYFcjM8H4CoDbXNS7dw6BTKDz+A8t5fITx9zL5TCAAC7tar4SxaYducnnGDl45r3z93ISoH96B0x1ejBxS8NZuR2fA0eKs3NVUwMDpE+OR+VPp3InhsDxAmf8MQ3XNsP4B1W6H6FiR+/XZhb/4aOvRrMwBolnwuBKTj2RkA5TIAELWxlp4Z0MVRlB95AOW9v0bw1CF78z/jP8e95Cpkn/6CKdcMlH51F/xd99hPFtJOyzoeMhduRWbD0+CuuDC1X4rhqaO2DmD/gzDR7odEeVm4qy+2AWDRSvaNnyETvfK31f9+c0z91whI17MzAA4DAFGnaMkwYIIAxZ0/Q+G+HwJBBYDA2abH86/4Q6i++bXdBGfWCFQDgg4C+MURhIMnUfjmZyY+kZSA1lAXrED3c18Od8mqhv43VunCEPz+B20/gNNPJXLNcYSEs3y9XQZYsaGpZkhaRXPf/C3heFBeBsJhW2CiTtRSYcAYg8q+BzH6s+9AjwxM7ZOy3eh+1bsgXG9cn4Hg6CE4i1eO6zNg/ApGvvFpoHSOV93RbIF34TZ0XfViqAZslTN+Bf6hPbYfwJH9qUwbywVL4a3bBmftJZDZrsSv38rslj8fJrTr/tDNd/MHqucCZHg6IBG1ThgITh7FyF23IjhyEOeaCZhUXSAAgNIDP4G/46dwt/0Ospc9FwCmFgTqCQkIgdzlz0f+mS+CmNF57WOM1giPHrDLAI/tiWY8kiW6+uCuuxTuum1QcxYmfv1WZbSObvzRK/8UznSYkqgGQDgepOsyABBRTUuEgfKjOzH8w6/YV1gznWLNdiN/w83wH905VhMAW1PgXrgVhe99aepBYBwBZ8kq9N7wJsiu6TcrCk8/BX/fTvj7d8IUhmdw/VlyM3BXb7YBYPEq3iDOwxgNEwYwYQAd2D+bcdq/SkgF4Xo2BHAXABGdRVOHAWMMCvfdjuL9d6Q9lHMTEiKbR99N/w3OwqXn/XBdGIZ/YJftB3Bq8sYsDSUEnKXr4a7fCmflRgjHO//ndKBak5/ArwUA06yv+usIx7W7AFyPpwIS0ZQ0bRgwOsTIXd9A+aH70x7K1AgBKBe9L30rvOXrJzxsggqCQ3ttW+An+1N5NSnnLYG7fivcNZdA5nsSv34zM8YARkev9sdu/i2hugXQ9aIdAJzdIaLpacowYIzByI/+HeU9v0x7KNMjBCAEel78FlR+c4ftxLdopT0d8OBDgF9Ofkj5Hrhrt9q2wHMXJX79ZmXX+aPp/ujm3zT7+6eA0/9EFKemDAPFB3+O0btvS3sYMyME3J4uCGMwsdAx+vsk/RBi5XhwV222AWDxGog2PYVxKqod/YwOocMAJgxhdNC0Ff7nwul/ImqUputA6B85iNGf/Efaw5gxt7sLQjnIv+hmVHZtR3D4EdhAIOCs2ADvkqtQ+OGX7OmBcQYCIaCWrLXHA6/cVNs50SmqnfyMHrvh2z+bf43/bIRUtQDABkBE1EhNNTOgC8M4/eX/z56y1zzDmjInn4NUEvkb3gpn0SqYMEDxx/+O4PDDcFZsRO75r4FQDoKnHkPhe5+L5Zpy7iLbFnjtpTPazdBqqmv7Z97wW2Z9/xzGbv6ubf/bwTM6RJSsppoZGL7jazClQksGAQDQfgCpMqjsugdqwTII5SD3/NciePwROMvtKX4mDFDZtR3T7pVQR+S64a69FO76bZBRHUC7vWqs3fR1aG/4USW/CUOkcRhTQ0gFyZs/ETWBppkZ8I8ewuDXP5n2MGZNui6cbAbOig21mYCqsZmC6tLBNCgXzqpN8NZvhVqyFhDS7lAoFeDke2pnybcKe7M3MEbX1vSNjm7+OmzJNf3zkhJSuWOv/rnuT0RNomnuIIX7fjh2MFAL074P7SgEh/ciePwRuKs21x4LHn8EweHJz3ifnIBashruum1wV2+GcO0Z8DoMEBaGYKqnFTZHnptgrHhPj7vZV9/XNq/wz0ZIe9PnzZ+ImlxThIHg2OO2BW8bkK4L6ThwVmyAs/yicY85yy+Cs2LDeWcGZN9C2w9g7VbI7r7a+43WCEuj0GduUUwhDIx/Za9tZ77oFX31xt/qwW7apIJUTu3mDyHbbvmGiNpTU4SBwv13tMWswGRLBCYMxtUM5J7/2kmXCkS2C+7aS+Cu2wY5f8m4m4gxBrpcRFguYrIQEddKz2Q3eLtur+37oxu8fX+bv6o/HyEglGtv/sqBcBw2+yGilpV6GDCVMioHftsWNxfpOgAMvEuuqgWByXYTeJdcXVsucNZssc2Jlq2fMI1sjIH2KwhLo+cJSmcLCNWbu/3T3sjN+Bv8uBt/638NGkUox978HXvz56t+ImonqRcQVg4/gqH/+Oc0hxArt6cbwhnfZ0AHQW3poNZnAEDXje886+mAOvARlkantGVOSFWbWakPATQzQqro1b5r/5SKN34iamuph4HCfbejcP+PGr5E8Ik77sd/7XwUjx47hZzr4BlrluLPbnwO1i+aF/u13J5uiKjRUFAqQ/t+bQkBMICbQfcr3gOZn9gXwIQBglIBJoUjjDuSkLVX+0K5bO1LRB0p9WUC/4n9idQK/HzfYdzynG24bOUiBNrgr7+7Ha/+x9uw/cNvRlfGjfVa/vAInHwO2g+gfVvxr30fauPToE8dQdf1b5kQBIwOEZYKE4sDKSYCQqmxV/1KQUiHe/uJiJDyzIDRIU7+4x/b1rwJOzFSwKY/+Sd8+z2vwZXrlzf+glIit+130HX1jePebbRGWC5AV0qNH0OHqE3tV2/4SnGNn4joHFKdGTDlYipBAACGivYV+Nx8NpkLGgM9Mlj313PvEKDzq73Kr7vxQ/KmT0Q0XemGgcBP57rG4M++9RNcsXYZNi1dkNRFYYKKDQGVEsJy67ZdTpxUtRu+jG7+YFEfEVFs0q0ZCNM5Ue6PvnEXHnryBL773tcmel3j+/BHBoAWPkmvIYS0N3spoxt99e/K7ufnTZ+IqKHSDQMp9NP/79+4C7fv7sd3/q/XYumcnkSvLbwM3K5ehOViZ9UICFG72dde5Yu6Gz9v9kREqUo1DAjXS+xaxhj899vuwvce3Idvvfs1WDW/7/yfFCchbJc6qeDkumEyebtcUCm2/nKBkPZGH/05/sYv2ZmPiKjJpRsGMjkILwuTwKvkP7r1Ltz2m7340tteiu6sh6eGRgEAvVkPOS/erYWTE+MaDAkpobJ5yEwuqiEoNlc75toNXtibeXRTr930hQCkBMBpfCKiVpduGBACzrK18A/uafir4y/csxMAcNP/unXc+z/1+mvxuisubui1AQBGw1m6ZsK7hRBQmRykl4X2K9Dlgj3wJ27VG3j0v/obfO0VPW/wREQdKfWmQ+7SKAw02PFPvr/h1zgnIeAuWnWOhwWUl4F0PZjAR1gujh1RPAUq21V7JQ8hIVB/4+eNnYiIzq4JwsCa1l8znwI1fwmElznvxwkhIFwP0vWgwwC6XJxSV0LpZthNj4iIZiT1MOBcsNzuKkip+VAihIS7fP20P00qBzLfA6PzCCsluwPhbMGpAwIVERE1RuovJYVykNn0dHvqXrsyGtmLnznjTxdSwcl2we2ZB5XrBs446hgADLsYEhHRDDXFHTj/9BeibVvyCglv7RY485fM/qmEgPKycLvnwMn3Qjh1uyA4M0BERDPUFGFA9c5DZmObzg4Yjfwzr4n1KYUQkK4Ht6sPTvccSDc6GpmIiGgGmubum3/G77bfq1sh4a7aZOsiGkQqB06+B9JJroETERG1l6YJA2rOAmQufqbdDtc2DLqefV3agyAiIjqnpgkDAND9OzdBzV3UNssFXb9zU0NnBYiIiOLQVHdd4XrovfEWCNcF0MIzBELA2/A0ZC+9Ku2REBERnVdThQEAUH3z0XPd76NlC+KEhJq7CD0veDU7/xERUUtoujAAAN7qTchf+eK0hzF9QkJkstHsBgv6iIioNQhjmreEv7jjpxj96bfTHsbUCAnZ3Yu+l/8B1JwFaY+GiIhoypo6DABA+ZEHMHzHVwGtm3jroYC6YBn6Xvo2yHxP2oMhIiKalqYPAwAQHH8CQ//5OejRoaYMBJmLr0D3c18B4aR+1AMREdG0tUQYAABdKmD0F99Dede9theB0WkPCbKrF13PeSkyF12W9lCIiIhmrGXCQFVw8ihGf/pt+IcfiUJBwsMXElAK+Wdcg9xlvzP+fAAiIqIW1HJhoKpycC9Gf/othAPH7Q264TMFAoBBZvMV6Hr2dZBdvQ2+HhERUTJaNgwAgDEawZMHUH74AZQfeQCmUoo3GEQzD2rBUmQ3PR3ehduguvvieW4iIqIm0dJhoJ4JA/iHHkHp4d/AP7jHBgPA3tCFsLsRzkXKuo8RkHMWILvhMmQuehrU3IUNHTsREVGa2iYM1DPGwBSGEZw6ivDkUQQnn0J44gno4ihMGABhYBsEKQUoF2ruQjjzF0PNXwJn3iKoeYtYC0BERB2jLcMAERERTV1TtiMmIiKi5DAMEBERdTiGASIiog7HMEBERNThGAaIiIg6HMMAERFRh2MYICIi6nAMA0RERB2OYYCIiKjDMQwQERF1OIYBIiKiDscwQERE1OEYBoiIiDocwwAREVGHYxggIiLqcE7aA6jnXXYLpONBSAUhFZQ79raQcuwxpSAdD7L2mJrwmJAKUgoIKaCUhDjjbSkFpBK1jznnY0JAORJKCigp4EVvO7W/q7HH1NjHOXUfqyZ7WwhIIaAE4CpZe9tREkrA/l0KuFJM8rZ93JWy9rYSAkIAUgBCIHp+QABQUkAC9r9Fova2FIAS9W/b5xDGAEZD6AAY97a2/9Nnf0wYDYTh2Ns6AHQIozUQVGDCENDavi/wYXRo3/Z9oPp29WOrH+dXxj5Hh9B+ABNqGK2hKwF0aD/HhBraD6DDsbdN9HboBzB1HxdWgrq3QxhtoEMT/T36fG3sY6GBCQ10qBH6OnpOg9APo88Z+zxtDEJjUNEGocEZb5/5d/u2hn07NIgeG3v7n8zBVH8u48Kfb/588+e7eX++OTNARETU4RgGiIiIOhzDABERUYdjGCAiIupwDANEREQdjmGAiIiowzEMEBERdTiGASIiog7HMEBERNThGAaIiIg6HMMAERFRh2MYICIi6nAMA0RERB2OYYCIiKjDMQwQERF1OIYBIiKiDscwQERE1OEYBoiIiDocwwAREVGHYxggIiLqcAwDREREHY5hgIiIqMMxDBAREXU4hgEiIqIOxzBARETU6UybKpVK5s///M9NqVRKeygTNPPYjOH4ZqOZx9ZOmvnfuZnHZgzHNxvNPLbZEsYYk3YgaYShoSH09fVhcHAQvb29aQ9nnGYeG8DxzUYzj62dNPO/czOPDeD4ZqOZxzZbXCYgIiLqcAwDREREHY5hgIiIqMO1bRjIZDL48z//c2QymbSHMkEzjw3g+GajmcfWTpr537mZxwZwfLPRzGObrbYtICQiIqKpaduZASIiIpoahgEiIqIOxzBARETU4douDHzwgx/Ec57zHLzhDW9ApVIZ91ixWMRLXvISPPe5z8U111yDU6dONdX4qv7mb/4GT3/601MfUxAEePOb34znPOc5eO9735vYeKY6vqqk/73qnW1szfC91o748x3fmPjzfX6d9PPdVmHggQcewNGjR/Gzn/0Mmzdvxje+8Y1xj3//+9/Hli1b8JOf/ASvec1r8L//9/9uqvEBwPDwMHbv3t0UY/rP//xPLF++HD/72c9QKBTw85//PLFxTWV8QPL/XlMdW9rfa+2IP9/xjok/3zMfW9rfa43QVmHgF7/4BV70ohcBAK677roJ39wXXnghCoUCAGBgYAALFy5sqvEBwCc/+Um8613vaooxTWW8aY4PSP7fq965xpb291o74s93vGPiz/e5ddrPt5P2AOI0MDCApUuXAgD6+vomTN2sW7cOu3fvxpYtWyCEwH333ddU4xscHMSuXbvwp3/6p00xpoGBgVr/7cnGm/b40vj3murY0v5ea0f8+Y53TPz5nvnY0v5ea4SWnBk4evQorr766gn/M8ZgaGgIgP1Czps3b9znffGLX8Tznvc87N69Gx/96EfxF3/xF001vk984hN497vf3ZAxnc3cuXPPOqZzPdYM40vj36veucaW1PdaO+LPd3z48z1znfbz3ZJhYPHixdi+ffuE/91www344Q9/CAC4/fbbcdVVV0343OoXdM6cORgYGGiq8e3btw//43/8D1x33XV49NFH8bd/+7cNGV+9Zz3rWWcd07keS8q5xpDGv9dUxwYk873WjvjzHR/+fDdmbEAb/nynd3pyY3zgAx8wV199tXn9619vyuWyMcaYd7zjHcYYYwYHB80NN9xgnvvc55qrrrrKPPzww001vnqXX355amOqjsf3fXPzzTebq6++2rznPe9JbDxTHV+9JP+96p1tbM3wvdaO+PM9+zHx53vqOunnm+2IiYiIOlxLLhMQERFRfBgGiIiIOhzDABERUYdjGCAiIupwDAMd4N/+7d8wZ86cWJ7r4MGDEELAcRw88cQT4x47cuQIHMeBEAIHDx4c99htt92G5z3veejr60N3dzcuvfRS/MVf/EWtkUecYyTqNG9+85shhMA73/nOCY/94R/+IYQQePOb31x739GjR/Ge97wHa9euRSaTwYoVK3DjjTfizjvvrH3M6tWr8YlPfCKB0VMzYBigGVm6dCm+9KUvjXvfF7/4RSxbtmzCx/7Jn/wJXvva1+IZz3gGvv/972P37t34+Mc/jp07d7ZFT2+iZrBixQp87WtfQ7FYrL2vVCrhq1/9KlauXFl738GDB3H55Zfjrrvuwt/93d9h165d+MEPfoDnP//5qbX+pfQxDLSAH/zgB7j66qsxZ84czJ8/Hy95yUvQ398PALj77rshhBjX9GLHjh21V+d333033vKWt2BwcBBCCAgh8JGPfAQAcPr0adx8882YO3cu8vk8rr/+ejz66KNTGtOb3vQmfOELXxj3vn/7t3/Dm970pnHvu//++/HXf/3X+PjHP46///u/x5VXXonVq1fjmmuuwW233Tbh44loZp72tKdh5cqV+OY3v1l73ze/+U2sWLECl112We191ZmC+++/H6961atw0UUX4eKLL8b73/9+3HvvvWkMnZoAw0ALGB0dxfvf/3788pe/xJ133gkpJV7+8pdDa33ez73yyivxiU98Ar29vThy5AiOHDmCD37wgwDs1OKvfvUrfOc738EvfvELGGNwww03wPf98z7vS1/6Upw+fRrbt28HAGzfvh2nTp3CjTfeOO7jvvzlL6O7uxt/+Id/OOnzcGmAKD5vectbxoX0z3/+87jllltqfz916hR+8IMf4F3vehe6uromfD5/HjtXWx1U1K5e+cpXjvv75z73OVxwwQV46KGHzvu5nuehr68PQggsXry49v5HH30U3/nOd3DPPffgyiuvBGBv3CtWrMC3vvUtvPrVrz7n87quize+8Y34/Oc/j6uvvhqf//zn8cY3vhGu6477uEcffRRr166d8H4iit/v//7v48Mf/nCttueee+7B1772Ndx9990AbItfYww2btyY7kCp6XBmoAX09/fj9a9/PdauXYve3l6sWbMGAHDo0KEZP+eePXvgOA6uuOKK2vvmz5+PDRs2YM+ePQCA66+/Ht3d3eju7sbFF1884Tne+ta34tZbb8XRo0dx6623jnsFUmWMgRBixuMkoqlbsGABXvziF+OLX/wivvCFL+DFL34xFixYUHu82nCWP5N0Js4MtIAbb7wRK1aswL/+679i6dKl0Fpjy5YtqFQq6O7uBjD2Qw5gStP8Z+tCXX/z/uxnP1srRprslf2WLVuwceNGvO51r8OmTZuwZcsW7NixY9zHXHTRRdi+fTt83+fsAFECbrnlltppf5/+9KfHPXbhhRdCCIE9e/bgpptuSmF01Kw4M9DkTp48iT179uBP//RP8cIXvhCbNm3C6dOna48vXLgQgN3WV3XmDdnzPIRhOO59mzdvRhAE487hPnnyJB555BFs2rQJALBs2TKsX78e69evx6pVqyYd3y233IK777570lkBAHj961+PkZERfOYzn5n08bY47YuoiVx33XWoVCqoVCq49tprxz02b948XHvttfj0pz+N0dHRCZ/Ln8fOxTDQ5ObOnYv58+fjX/7lX7Bv3z7cddddeP/73197fP369VixYgU+8pGP4JFHHsF//dd/4eMf//i451i9ejVGRkZw55134sSJEygUCrjwwgvxspe9DG9/+9uxfft27Ny5E2984xuxbNkyvOxlL5vy+N7+9rfj+PHjeNvb3jbp41dccQU+9KEP4QMf+AA+9KEP4Re/+AUee+wx3HnnnXj1q1+NL37xizP7hyGiSSmlsGfPHuzZswdKqQmPf+Yzn0EYhnjmM5+J2267DY8++ij27NmDT33qU3j2s5+dwoipGTAMNDkpJb72ta/h17/+NbZs2YL3ve99+Pu///va467r4qtf/Sr27t2LrVu34mMf+xj+6q/+atxzXHnllXjnO9+J1772tVi4cCH+7u/+DgDwhS98AZdffjle8pKX4NnPfjaMMfje9743rel8x3GwYMECOM7ZV5w+9rGP4Stf+Qruu+8+XHvttbVtTJdeeim3FhI1QG9vL3p7eyd9bM2aNfjNb36D5z//+fjABz6ALVu24JprrsGdd96Jf/zHf0x4pNQseIQxERFRh+PMABERUYdjGCAiIupwDANEREQdjmGAiIiowzEMEBERdTiGASIiog7HMEBERNThGAaIiIg6HMMAERFRh2MYICIi6nAMA0RERB3u/wdCE9C+/hzxNwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkc0lEQVR4nO3dd5hdV30v/O9aa+/TpqlavcuWJcuWTDPYpl/jAgbTQ4nBplxCeXkpL7kkeW8gyU1C8nIf4AbSKIF7KcGY0AIYY2NABttgLFnCkm2NJEu2JatOPWWXtd4/1j5nzmhG0pR99j7l+3ke0GjOzNnLmrK/Z63f+i1hjDEgIiKijiXTHgARERGli2GAiIiowzEMEBERdTiGASIiog7HMEBERNThGAaIiIg6HMMAERFRh2MYICIi6nAMA0RERB2OYYCIiKjDMQwQERF1OIYBIiKiDscwQERE1OEYBoiIiDocwwAREVGHYxggIiLqcAwDREREHY5hgIiIqMMxDBAREXU4hgEiIqIOxzBARETU4RgGiIiIOhzDABERUYdjGCAiIupwTtoDaDQTBghOHkVw7DB0aQQmDIAwBISAUA7gOHDmLICzYAlkdx+EEGkPmYiIKFFtFQaMMfCfPIDK/t0Ijj0J/6nHEQ6cAIwe+yAhAQHAwP6fMWMPZXJwFi6Be94yuItWIHvBFqiunqT/M4iIiBIljKm7G7Yo//hhlH//WxR33Qs9dMre8E+70U+LlIDWgBDIrN6A/EXPQu6CLZDZXKzjJiIiagYtGwaMDlHc/isU7/85guOHbQConwGIixA2VCiF3PmXoPvyq+EuWhH/dYiIiFLSkmGg3P97DN1+C8JTx5K9cBQ48pc8Bz3Pvx6quy/Z6xMRETVAS4UB/9iTGPrprfAO7Bl7xZ4GIQGl0H35Neh+1osg3Ew64yAiIopBS4QBozVGtv0QI3f/GJDCruc3CdkzB3Nf9U5klq5KeyhEREQz0vRhQJeKOPXdL8LbvzvtoUxOCEBI9F37BhQueU7aoyEiIpq2pg4D4dApnPjapyduD2xSXZdfjZ7nXc9eBURE1FKaNgz4x4/g5Nc+DV0caYkgUJW/5Nnou/ZNEJLNHYmIqDU05R1Ll0Zx8t//oeWCAACUHrwHI9t+mPYwiIiIpqzpwoAxGqe++yXo4cGWCwJVI3f/COVHd6Y9DCIioilpujAw8ssf2mLBFg0ClsDAd7+E4OTRtAdCRER0Tk0VBsqP7sTI3T9KexgxMDCBj5Pf+idor5L2YIiIiM6qacKACXwM/uirsKcItQGjEZ48itHf3Jn2SIiIiM6qacJAcec90KPDiI4TbA/GYPTen0JXymmPhIiI6IyaIgyYMLTdBduQqVRQ/N0v0h4GERHRGTVFGCjtuhd6eCDtYTSIwcg9t7N2gIiImlZThIGRX92GtqkVmIQpF1HaeU/awyAiIppU6mEgHDyJcOA42qpW4HRCoNKsZysQEVHHc9IegHdob9pDaDxj4B3ci9D3EAYeRHUWpP4MA1F9b/Ux+3/Vcw6EENHHR+877XEiIqKZSj8MPN4PSJnIscT37H8Sn/vlA9j5xDE8NVzEF958Da7dtLbh1wUAUykhHBmEcTPxz4EIYQNGfUCoBQecFiKqH1v3dwYKIqKOlnoYqDz2aCJBAACKno+LFi/AHzztQrz9a7clcs164cBxyIVL439iY2Bgaist0w4btWAgISa8LRkciIjaXKphwPgewpNPJXa9F21YhRdtWJXY9caREsHQKWQaEQZmyxjYwyv1uYPEuYKDtH8yNBARtY5Uw4CulNK8fLK0AcIg7VHM3lSDQxQOhIz+J8b+5AwDEVFzSXlmwE/z8gkzgGnjHROnMwbGhDA6nPThajjAaUHB/smgQESUpNRrBjoLb3JVxmiYUAOTZgVRN6MQvS0UhIpmFoiIKFaphgHhumlePmGiw/57Z8PA6DPMKkThQEoFIVUUGhRnE4iIZiHdMJDJpXn5ZEkBOAwDs2YMTBgiDE8LCkJEASEKB9W3GRKIiM4p1TAgM1mouQsRnjqWyPVGKz72nxis/f3QyWHsevI45hSyWD6np7EX1xqqu6+x1+hkxkCHwYRlh7EiRjX+T4YEIqKa1GsGsqsuQHHwRCK9BnY8cRSv+fx3a3//2A/vBgC87mkb8KnXvLixF5cKsnduY69BE4zVJozfyVE/gyCV4lIDEXU0YUy6Je7Fnfdi8AdfSXMIichu2IKuF70CwslAqAyEUrAFhaauS5Cxb1a/JPXNhGpvd9COhITZgOCMhQPOIBBRh0h9ZiCzYl3aQ2g8IZDb/EwIYwC/AuNXYISAdHOQ2TyEcqd10zETwoKJ3kZdH4Doffad495vDEPFZIzWMNqDrptEqM0cKAdSKvZIIKK2lHoYUH3zIXvnQQ+dTHsoDSOyBagFi8e/0xhorwTtlewSQiYHlclDqHN/SWo3o9rhRtM3LhhoY6fTq6HC6NqfnR4cjA4R6hDwPfuOaqGiUpDSgVBcXiCi1pd6GBBCoOfyqzH446+nPZSGyW7cevYbhg6hy6PQ5VEI5UJm85BuzjblaRBRf5DROS5TCw7aTAgJY29rmITOmEhVrVAxQIgKgKhIUVVrDxwuLxBRy0k9DABA/uLLMPzL/4QeHUp7KPETAvlLnj3lDzehj7DoI8QQhJu1swVuNtWbSy04qHN/rDHGTrdH4aD6Nqp/tiFjNEygoYOxjppSOXZpQTEcEFHza4owIBwX3ZdfjaHbb0l7KLFTC5dA5gsz+lzjVxD4FTs1nclDZnLTri9ImhAiKo6cmBzGzSbUBYVaYGij5Yix2QOL4YCImllThAEAKGy5HMPbfgRTGkl7KPERAt1XXjf75zEGulKErhQBqaBqwaBpvnxTUjsGGXKyrGBnFarLDXWBQUd/b2Xjw4GAVArSsQGBpzwSUdpS31pYr7TnAQz8x+fTHkY8hITqm4c5b3h3w17xCse1MwYNri9oBrXlh6hNsY7ebovZBCEgo1kDqVTtSGgioqQ0VRgAgKGffQej99ye9jBmz3Ex/6b/Nukr4EaQbs7OFqRcX5A0GxLCWlDQ0dstHRLGhQOn7YMeEaWv6cKA0SFOfv1/wTvU39JTw3Ne+Ta4K9bZrYNJEhIyk4OMtil2UjCoV6tJqJtFONNxyk1PSBsMnCgcdOjXlIgap+nCAACExWEc/8JfQ4+OtGQg6Hr2Veh94Q3QfgVhpQjjV9IZSLW+IJuHkAlNUTSxagGjjoKBCUPoMERdC8iWYIOBy1kDIopNU4YBAPCPPoETX/s0TLnUUoEgt/HpmPPyt4y7+Rqtof0ydKUEE/pn+ezGEU4mmjHIQQjeQKpqASEM7CxC2FozCEKqaMbA5S4FIpqxpg0DABCcOo6TX/s0wuGBlggEXc98EXpe/Mqz3mxNGCD0StBeGUjpplNrg+xkePOYxFixYmDDQRi2Ro8EISCVy+UEIpq2pg4DgF0yOPXtz8M/tDftoUwu+oXbe/UfwF19PqTj2pusk4FwztwTwBgDE/rQlRK0X06n4I31BVNmv14htA6iP5t/J0McywnGGOzbtw+PPPIIcrkcNmzYgKVLl8Y8UiJKW9OHAcAWFQ7/7LsYve8OQMiZzRIUutH3yrejsud3KN//i9q7c09/HrIXPg2D//F5oDjNHgdCQOa7MfdVb0dmxXoEIwPQ5fHPUQsGbgbSyQCTHJVrjIHxKwi9Umr1BUI6kNkoGLC+4JzG1R+EQdMvLwgpa7MGUzmu2RiDz3zmM/jMZz6Dffv2jXvsuuuuw6c//WmsX7++kUMmogS1RBio8g8fxODtt8B/Yp99RT7VoRe6MffNH4TIZAEAxXvvQPk3dyL3zBehcNmLAQDGq+DU//mfUwsEQgJSoPuyq9D17Ksgszn7HGEA/9SRc35uNRjUZg9Ory+IlhHSrS/IQ2ayrC+YhtrsQRjUahCaUrR1UTnuGWeEHnjgATztaU/DjTfeiNe97nXYsmULSqUS7rnnHnz84x/HyMgIdu7ciYULF6bwH0BEcWupMADYX7jlh7dj6I5boYdOnfsT6oKAm+9G4JXtTfvJA3CXroZQDpxMDn5p5NyBIJqVyG16Bnpf8AqovnkTPiQYPgFdmeZ2QqlsKFBuFBJcQCpAh1F9QQlI5RAgAZnJ2tkC1hdMmw0HQRQOmnTmIKozUK47bsbgtttuwzXXXIP77rsPt912G7Zt24ZcLoePfvSjWLt2LdauXYsPfehD+NjHPpbu+IkoFi0XBqpM4GP0d79A8f5fIBw4fsblg743/d9QcxfCzXdDOg6MMfBLozBhAKEcuPkuCCGggwB+aQThqWMY/Oqnxp6gOgMhBLJrN6H7imuRWbbmjOPSgYdg4Ojs/wOFtAHBcYHoPAIT+LbwMI2tcELa2YJsDlK5yV+/DZjqroXazEGTFSUKAeW4kI6LR/f248ILL4TjOHBdF1dddRV27NiBSqWCw4cP401vehMee+wxbNu2Le1RE1EMWqu5fR3huOh+1ovR9cwXIThyCKWHfoPSrt9AF4cBKWuvpCt7fofCc65G4JXhKnvjd/Nd0IFvi/2EgDEGgVeufTyEBGDXhN1la1HY/CzkNmyFLHSfc1zSyUC42dmv/RsN41dqz6MKfXC6+mAKvdE2xTJMkGB9gdHQlVHoyqg9cKd6PgLrC6ZMRDdbODZMGaOho2UF0wzhwBiEvofQ97B6+VL84HvfxROHj+D1r389+vr68MEPfhCf//znoaPzIiR7HBC1jZadGZiM0Rreob2o7HsIwbEn4R99Anp4oFYbUD8TUPucupmC4m9+hmD/briLlsNdtAK5DVuheudOexzaKyMYOh7bf5fI5OD0zJ9YeKhDaK8M7ZVgwiC2601rbE4GMhudj8BlhFkxWo8tKYRB02xnFFLiP390G171mtfiL//yL/FHf/RHWLduHd773vfir/7qr9IeHhHFoK3CwGT84jB0uQwjha0PyBWg3Ezt8dD3EJSLgDFwCl1QTuYszzY1xhgEA0fjKQCUCu6cRefcGqZDH7pig0E6PRnEWFMj1hfEwmgNHfgIo5mDtNz+0zvwqtf9AW644QZ89atfxQ033IB77rkHe/bsYQEhUZto2WWCqTIGgOtCAHZ62xm/3i2jimrbDMiLJQwIISALPQiHT876uZze+VPaIy6VC1lwYfLdMIEX7UioILn6AhNds2TrC7J5qKh/Ac2MkBIqk4VCtlZvoAPfHoecUIa/42d34TV/8EZcc801+MpXvoKbbroJt912G77zrW+iryuP0KvYnyEuGRC1tLb/TV1dh61fIjDGjKsZcPNdtaWCoFKCk83P+royk0cY7QiYKaFcCDm9L5EQAsLNQrpZmIKG9ip2GSHwZjyOaTMaujwKXWZ9QVyq9QbKcWsnNeoggA79htUa3PWLX+DVr/sDvOhFL8I3v/lNvPe978VXv/pV/Pc/+xNs2rQRRocIvBDwyhDRVkV5lkZbRNS82n6ZoDI8AABT3k0AIZHt7o3l2mFpBOHowOyeRCo4PfMh3dnNWDRFfYGbtUsJrC+IVSOWE44dO44LL96CK664At/97nfxgQ98AP/0T/807mP+9KN/jP/3Tz464XOlk5mwVZGImlsHhIFBVKfK6/sMVNX3GQAAt6s3tippYzT8k0diWcNXXX2Que5YfrnqwK81Nkq3viB/1pbNNH1xLSfccuu38YdvvRknT55EJpPB9u3bxz3+z//8z/j1r36FXdvvP+NzCCmhnAyk67J5FVGTa/tlAiFlrdlL9YZfz4RB7f0yk4t1u5QQEirfjbA4NOvnCkcHof0KnO55s16fldF0rsn3pF9fIG3/AtYXxCOu5YS5c+0umve///1wnIlflx07dmDe3LPvtDFa2y27XhnScaGcDITibAFRM2r7mQFvdHjKnd9O32kQB6M1/FOH4yv4kgpOzzxINxvP80WMSam+oI5Q7tiMAQvSYme0Rhj40IF3zmAQhiH+9P/9c9xz732TPt7T24M//vCHcOUVl09vEEJCuVEw4NeYqGkwDNRpRBgAgLA4FMvsQD1V6IPMx7NscDpbX1CyjY10evUFKpOHcLN8JdkAWod2KcH3U+tnIJUD6WZ43DJRE2AYqNOoMBD77EBEuDk4PXMbVqVf662fZn2BEJBuDjKbt7sreNOIlV1KiAoQAy+lo7QFVF3RIRElj2GgTqPCAAAEo4PQpeH4n1hKON3zIDO5+J+7jjHG1hdUStB+uaHXOiOpoKrbFFlfELuxGgMfYeCnEgyEUrbokIWlRIliGKjTyDBgdGh3FjSoSE/muqG6+hL5BWrrC6JtikFKxywrd6wNMteeY1cNBqHvQwc+kj8cS9jaAjfD2QKiBDAM1GlkGACAYGQAujx+R4PMdsHoECaGV9tCOVA98yBj6KI4VSa09QWhV5pVg6XZYH1BY1WXi2zxYfLhTyoHKpNl3wKiBmIYqNPoMGDC0NYORISTgdNne7vr0gjC4mAs12lkceGZjK8vKKW29lzrdsj6goYY18cg4WAgpIRys1xCIGoAhoE6jQ4DABCMnIIujwJCwp1z3ri1b+1XEAyfjOUVtnCzcLrnprK2boyB8SsIvdLsj3KeKdYXNFy1rXfoe1P+GYuFEFBuhtsTiWLEMFAniTBgwgD+qSNweudDZiaegWC0RjByEsaLoUhPCKjuuVDZwuyfa4aM1tB+yvUFjjs2Y8BOeA2hwxA68BD6ydYXSMe1swWKdQVEs8EwUCeJMADYGYCzNQ0yxkCXRxCOxrNsILMFqK45qb+KsssI5VTrC6QbHbPM+oKGqM0WBB5MmNzXWCgVhQL2LCCaCYaBOkmFganSvodg+EQ8N84GdS6cCVtfUH8+Qhr1BXKs2yFvIA1htEboe4n2LxBCQrkZSDfDrynRNDAM1Gm2MABUlw1OwXilWJ5P5nugCr1N84uyaeoLsvmoDTKnm+NWKzr0PXt4UkKUm4Fys6nPiBG1AoaBOs0YBoDol2llFOHI2AmMsyGUC6dnHoTjzn5wMTK6rn9BmFZ9QSaaMWB9QSPY8xGi2oKEOlraugLb9piIJscwUKdZw0CVCX0EwydjK8RTXXMgc11NM0tQz4QBwuoyQlr1BbVjljnlHDe7VBQiDLzEtigKqaAyrCsgmgzDQJ1mDwOA/SUaFodia20s3KydJWjS6XHbBjmqL/DTry+QTTab0g6M0dB+VHQ4jWOWZ4qhgGgihoE6rRAGquLsSQAh4XTPgUxxC+JUNEN9gVDO2DbFJg1Qrao2W+BXEqktYBMjojEMA3VaKQwA0frr6AB0pRjL84lMHk73nJa4ydn6glJUX5DSMctOJgoGWdYXxEzrEKHvQftew68lhLQzBQwF1MEYBuq0Whio0pUSgpFT8RRkCWFrCbKFlvnFWKsvqJTSOWYZAjKTZX1BAxijEfo+Qr/S8CUihgLqZAwDdVo1DAD23INg5GRs0+dptjOeqdoxy17ZFh4mftIeovqCPGQ2B6lYXxCXRFsfCwEnk4VksKMOwjBQp5XDAFDtXDiKcHQgpmcUUF29kLlkDz2KgzHGtkGulGCCxk81T4b1BY2hw8AuITR6F4IQcNwsGxhRR2AYqNPqYaBKBz7C4ZOx7dUXjgvVPa9lK+mNDuv6F6RYX5DNQ7o53lhiYjscVhA2uq5ACCg3C8VQQG2MYaBOu4QBoLoFcRC6NBLbczZb98KZ0KEPXSlHxyynVV8QNTXiNHQs7BKCh9DzYBr6NRVQmairIb9u1GYYBuq0Uxio0l7ZFhfGtM4qlAPVPbcpzjiYjbH6ghK0V0Eq9QXS1heo6HwEmp1q2+PQ9xo+A6TcLFSGoYDaB8NAnXYMA0B1C+IpW20fE5nrhurqbYstdcZoaK8SHbOcdn1Bnr30Y6Cr/QoaWlcgoDJcPqD2wDBQp13DQFVYLiIcPRXfFi2p4HTPhczk4nm+JtAU9QVu1s4WcDp61rQOEXoNDgVCwMnkuCWRWhrDQJ12DwNAtAVx9BSMV47tOWW2ANU1p+1e0eqg/pjlFOoLhIB0q+cj8EYzG0ZrBF65oaFASAknk+OR2NSSGAbqdEIYAKL1cq+EYGQgvptc1NJYZPJt94twfH1BfCFqWqSCzORYXzBLRmsEfqWhnQ2FUnamgF8naiEMA3U6JQxUxd3OGABEJgena07b3rBsfYFtapRefYFb17+gvWZjkpLEtkTpuLajIXtMUAtgGKjTaWGgKu4dB4CAKvRA5nvabpagnq0vKCGslFI7Zpn1BbNjQ4Fn2x03iHQzcNwsgxs1NYaBOp0aBoCoB/zoEHQ5vr4EkMrOEmTau9GOPW0vaI76gmweQrG+YLqM0Qi9xoYCbkekZsYwUKeTw0CV9isIR07FWkkv3Byc7j6IDujVb+sLKraxkZ9efYGqLiO06XJNoxhj7PKB56EhvSfY4piaFMNAHYYBy3YvHIIuDcf6vLaDYU9b9CaYirH6ghJMo/von4FQ7lgbZE5TT5kNBV7jTksUMjoMibM41BwYBuowDIynAx/hyMl4b2RSQXX12e1yHfRL0C4jlBF6rC9oJY0OBXY7Yh7S4QwOpYthoA7DwET2JMQRhKNDiHPaVDgZ29a4RQ8/milbX+DXZgwa8qrzXIQY243A+oIpGVs+aExNgVQOVDbHnQeUGoaBOgwDZ2bCAMHIKZiYC6xkrtseftSBU9jGGBi/gtArxf7vOmW1+oI8hOKN6Fwa3aeARYaUFoaBOgwDZ2eMga4UEY4OxPuKVki7dJAtdOwvQaM1tF+GrpRiO3p6uoRT17+gQ+o6ZsroEEGj2hyzvTGlgGGgDsPA1BgdIhgZgPHiO/gIiJYOuuZAdvjXoBnqC2rbFHnM8lnpMETglWDC+L9OQio42TwkZ2woAQwDdRgGpkd7JQQjg4CO90Afme2yJyJ2+Ppprb6gUrLbFFOpL5CQmeh8BPbcn1S1z0TglWF0/D0mlJuBavNeHZQ+hoE6DAPTZ4yBLg0jLA4j1n3ZQkAVeiFz3fwliOaoLxDSgcxGwaDDg9pkjDHQgY/Aa0Bw49IBNRjDQB2GgZkzYYBwdNBWyMdJKqhCn52y5i9BAFF9Qe2Y5bTqCzJRfUGW9QWnqW1H9CqIu3GRXTrgIUgUP4aBOgwDs6e9MsLRgVg7GAK2eY7q6uMe+dOYMEBYbYOcVn1BdRmB9QXjGGMQepWGtDiWjgsny0JPig/DQB2GgXjUehMUh2KfLhVu1s4U8Os0jm2D7Ncds5xufUGn9Y84G6N1tPMg/u2ITibH1sYUC4aBOgwD8TI6tEsHMR6RXCUzeTtTwOnSCYwxdpuiV06vvkA5dccss74AALQOEVbK0HHPmkkZ7TrgzwLNHMNAHYaBxtB+xS4dNGBPtsx1RU2LeMOZjD1muVpfEO9NaKpYXzCeDgK7HTHmnQfSceFkeAYFzQzDQB2GgcYZa1g02IAjfgVkvhsq38NfhGdRqy+olNI5ZhkCMpNlfQHqiwzjP9lSZXJQXDqgaWIYqMMw0HhGa4TFQejyaPxPLmS0HbGLvwjPwtYXeNGMQZr1BXm7VbEDjrY+E1tPUI69kyEbFtF0MQzUYRhIjg48hCMDMA0oqurUkxFnolZfUCk15msxBawvAHQYIKiUp/y7aqp41gFNFcNAHYaBZNmlgxLC4gDQgM5twnHtzoNMLvbnbkfNUV+QtbMFbud13Ks1LarEO1vDAkOaCoaBOgwD6TBaIywNQ5dG0Igpa25HnD4d+tCV6jHLadUX5OxsQYfVFxhj7NJBzCcjsq0xnQ3DQB2GgXQZHSIsDjWmngDVUNAL6WYb8vztaKy+oATdgI56UyJtfYGKzkfoFDoMEVRK8S4dCAE3W4B0OuffkaaGYaAOw0BzMKGPcHQo/tbGEYaCmTFGQ3sVu4yQWn2BO9bxsAN2jjTqvAPbwZA1NTSGYaAOw0Bz0b6HsDjYsMY5wsnYHgVscTxttfqCSgkm5lMrp0q4WTtb0AFfP9vauIwwzqUDIeBk81DsFklgGBiHYaD51E7rGx1s2KE8NhT0QHRg0dpsVY/vrbVBTqO+QAhIN2cPs1Ltfaqf1qHddRBjgadUjp0l6ICZFjozhoE6DAPNq9a0qDjUsAN5hHLtTAGLrGakVl9QKUH78TfTmRKpIDO5tq4vMMZEWxFLsS4dONk8j0juYAwDdRgGmt/YIUjDDXsVKpQDWehln4JZsPUF0fkIadYXZPN2m2IbvuptxNKBUAputtCW/150dgwDdRgGWkejtyMCAJQDle+BzBYYCmbB6ND2k/BKqR2z3M71BdVZgjjPOmBL487DMFCHYaD1mDBEWGrcdkQAtqNhoZehYJaapr6guhuhjeoL7CxBBWGMxbZCKji5PGSHdoXsNAwDdRgGWpcJfATFIZgGbUcEYENBvodnH8SgWhiqvXKq9QWq2ga5TeoLGtGbwMnmIDus8VMnYhiowzDQ+rRfQVgcath2RAD2QKR8tw0FfNU0a0Zrez6CV2rIMddTIRzXno/QBvUFjTgRkTsO2h/DQB2GgfZhQ8EwTINfdcpsATLfDenw+yYOdhmhzPqCGBit4VeKMGFM/47sS9DWGAbqMAy0H+17CEtDMA04N76ecLNQuW5uS4yJrS/wawcnxbmFbsqEiE5TtNsUW/HrOnb4UXzLZ9LJwMny+7zdMAzUYRhoXzrwoIvDDWtxXCOdaAmhACE4pRqHWuMpr9TY5Z+zqdUX5CFU6y0NGa0RVErQMTUrEkLa4sI2qbUghoFxGAbanwl8uyWxUmzshYSAzHXZ2QL+woxNrb6gUmpYR8pzEU5m7ETFFgt8YXWWIKZf+yqThWrx5RSyGAbqMAx0DhP6CIsJhAIAIpOHynd33FG8jWbCAGF1m2JK9QW1Nsgt9LU1xthZgpiKNYVUcHNsVNTqGAbqMAx0HhMGdqagkX0KIsJxIXM99ubRIjeOVlCrL6i2QU6lvkDW9S9ojfoCHQTwK8XY/r3Yzri1MQzUYRjoXEmGAkgJlePWxEZohvoCIR3IbPWY5eb++sbd0lgqB04u33LLJ8QwMA7DABkdRm2OR9GwNsc1AjJXgMx1zWhrYrFYxIMPPoiBgQEsWbIEW7ZsacAYW5fRutbtMN36gjxkJtvUN8hYZwmEgBvNElDrYBiowzBAVTYUjECXRxKZdhbKtaFgCofE3H777fjIRz6CnTt3IqzbQ/6pT30K73//+xs91JY0Vl9QAmLs4T91AjKTtbMFTVpfYIxGUCnHVkug3AwUt9q2DIaBOgwDdDqjNXR5FGF5JKEiNWFP2st1nfGmcemllyKbzeJtb3sbnvGMZ+C8887DzTffjEwmg+9///sJjLF12WOW/bHzERo++zOJuvqCZnv1HHdfAiElnGwBsgW3Y3aa5p23ImoCQkqoQg/cuYuheuZBNLzToIGuFBEMHoM/8JTtonhaCBkYGMCmTZtQKBRwyy23YNmyZcjlcg0eV3sQQkC6GThdfXDnnAfV1QfhZpMdhNH2azx8Av7QcYTl0VjPEpgNIQSUm0Gm0BNLvYPRGn5pBIFXQZu/7mx5nBmow5kBmgrtV6BLI41vYFRHZPJQuS4IN4t3vvOd+PznPw8A6OrqwsjICF7xildAa82ZgRkyOqx1OzQxNeaZrmarL7BnHFQQevEUYrK4sLnxq0I0TdLNwumdD3fuYsh8D5DAmqjxSgiGjsM/dQT/8MlPYOeO7fjYxz7W8Ot2CiEVVK4Lbu8CuL0LIHNdQMI3LRN4CIuD8AeOIRgdgPbTfTUthICTycHNd8dyA9dhAK84MqUuiCaVuo7OxtZoRDMklAOnqw+m0ANdLtq6gka/qtQhhFfEBUvnoyfLH99GEMqBk++ByXXDBF40Y5BkfYEZu6aQdrYgm4NU6dQXSKXgFroReGXo2W5BNAZ+aRQqk4NyJ6+J0TqEXxq1SxUsPkwMf5sQzZKoO9LY+GWEpZFE9rhPmM42fDUVJyEEhJuFdLM28PkV2wY5iGdP/pQYDV0Zha6MQignWkbIJd6/QETbBUPlxNLOOPTKMGEwYdnAGIOgbLc4hr4HJ5NwPUcHYxggiokQAiI6zEYHvq0rqCTQxCiifQ/+wFF7rHK2+RvetBIhJFQmD5XJp1ZfUG2MFZaGIZysnS1wk926pxwXUikE5dkfelRdNnBzhdqBR0GlVFsiCP3KGWcPKH6sGSBqAOm4cHrmwp23BKrQC8TYt90Yg98+sB2/371n3PufOnoUt//0pygPHIN/8jD8wWNRpTpnDOJUX1/g9MyHzBZSqC+oIBwdhD9wFMHoILTvJVZfYE8sLMDJ5mf/ZNGyQRB1QRzX4yCaHaBkcDdBHe4moEYxxm4Z1OURmFk2dfnsv34JH/yT/w5g/G6C733vewCA6699Cb71lS+M+xzh5uyMQSbHA2UawPYv8KL+BRWk0r9A2voCFZ2PkAStQwTlUuO2RgrB2oGEMAzUYRigJOjAgy6P2hMTZ/Dj9wc3/VcMlSr4xje+ASEE5s+fj+HhYVQqFXzuc5/D//zkJ3G0//dn+GxhG95kCxDsDtcQxmhor2KXEZKsL6gjlDt2cFKDw58936CCsEF1Mk42B5V0L4gOxJoBooRJJwPZnYHpmhPNFoxO66axcsUyfPnrt+AVr3jFhMeefPJJrFyx7CyfbaJXryVAiKhSPQ+R8NpzOxNCQmXzUNlqfUEJulKG0UnWF/gIS76tL3CzdrbAzTbkayyEgJPNQToO/HJ8pyBWBV4FsklbOLcTzgzU4cwApcWEPsKyDQbn2hVw7PgJ/MO/fAFPHj4y4bF8Po+33/gmXLJ50/QGUNvC1ribRiezxywHY22Q09j5IQSkm7NfY9WYo4aN0bEUF57Oyeb5u7nBGAbqMAxQ2owxMF7ZFv755XQGIeTYjgS+Iotdrb6gUoJO62ssFWQm15D6AhMV/oVefP9tQki4hW5+LzYQw0AdhgFqJiYMoCtFhOXRhA5JmkR005ANnGbuZLa+wDYYSrW+IJu32xRjrC/QYRDrsgFnBxqLYaAOwwA1I2MMjF+xRYcJnocwkYCIjuFNo/FNuzOhrS8IvVJq4S/u+oJqE6E4lg2ElFFrZAbSRmAYqMMwQM3O6HBstiClA3Wq7ME6ObsroUFr0J1ofH3B7Lv9zUi1uDSGr60xBtr3EMSwbODkClBNduxzu2AYqMMwQK2itu5cnS1I+8e4tpyQ486EGNVmhbxyqvUFqhYMpl9fYBsJGUAo+OXRWX2vCqmQKXTP+PPpzBgG6jAMUCuqFh3qSjHhA3XOhMsJjWC0hvajNsizbFw1U8Jx7dd1GvUFQXEI2itBdc21swOzvOW4+a5a+2KKD8NAHYYBanW1grRKESbGau7ZqN5AuJwQH7uMUE61vkC61ZmgM9cXGGPgDx61rZJVNpa23FI5cPNds36eeqZShB4ZAMIgOm/C2BCrHIhsAaJrTtt37mQYqMMwQO3EaB01vCkmcorilEgF6WZrpwEm1Ta3Xdn6Ar92cFI69QVybMeJcsYFA+2VEYwOwEgHiPEIZrfQDTmDGSdjDPTJw9CnjkAPHEU4cBR64Cmgco7CXKkgeuZDzV0EOWchZN95UItWQbRRZ0SGgToMA9SubOFhFAxS2sI2KenYUJCJwgGXFGasWl8QeqX0wl+1viA6NdMfOWVrBpx4b5rSceHmClP++HDgKIIDuxDsfxCmOGTfKeT0mz9Vg44x9r912QVw11wMtXR9ywdbhoE6DAPUCWqV6pViamvPZ6RsOKjOHjAczEytvqBSggnTqi/IwAQejJCAUPZGKuTYDXWWMoWes07dG68M/9H74e/fATN43F437ttdNVA4GTirNsFd/3SoBWdrB968GAbqMAxQp6k2NkrzpnE2QrljSwputu3XbRvBhAHCahvktJpXVccCAIhCgXIglBsdsT3925Bys3CyuYnX0BrB3vtR2f4zwE/wBMkoGKiVm5C99L9Ads9J5roxYRiowzBAnUwHfrQjoZR6D4MzEU41HOQg3AyEYDiYqlp9QbUNchP86hdOBqprDgTsccgmDO2Slg6nNL5MV++4GoXgyb2o/PY2mOETDRz1OUQzIO7G5yBz0RUtU1fAMFCHYYDIqj9Up2mKDychnIwNB07GhgMuK0xJU9QXRISbhdM1Z9xN3RgDGAMdBjYcRCHhdCqTg5PJQpdGUPn1dxEe7gcgkP72WgAQQDaH3GXXw1lxYdqDOSeGgToMA0QTVdefTdRDP5UT96ZKKhsMquHAcTl7cA61XSdeObWlIunmoLr6zrrt1BgzLhhUWxyr0hAqP/93mEqpab833YuuROaSFzT1MhfDQB2GAaKzq3U+9MowXinak93chHLrwkFmwvY3GjNWX1ACdLI3VpnJQxV6p/W18Q7uhvfr7wGh1xTLHmejlp2P3JWvgWjSdsoMA3UYBoimp1WWE8YTUe1BpjaLAKkYEOrY0OfXvrZJTbvLbAEq3zOlr4X38G/g/fZHCYwqLgJywVLkX/BGiGw+7cFMwDBQh2GAaOaM1jB+uXYkb7NO2U5KyHHhQDiZpp7STZI9aKgMXSnDBI0PfDLXBSffc9aP8ffvROVX/9HwscROCMj5y5C/6i1NV9/CMFCHYYAoHuOXE9Jbi54VqaIlBif60+34dspGh7Vuh41cIlL5Hqjc5C2Hw1NHUPrxF1LfJjkb7oWXIfv0q9Mexjit3TKJiJqSEKLWHwBdffYm4ldgvIrd1tYKv8i1LVQzp+cY6UwMCB1ShyCkgsp1QeW6oEMfulJtgxzvLFBYGgaEgMqO7zJoKiWU7/r31pp1moS/517I+cvgrt6c9lBqGAaIqOGEVPYXe/TL3YSBDQd+BdqvtEY4qNIBjBfAYPxBUEKdFhAct61rEaRyIQsuTL47mgWq1hfEIywO2UCQsevrxhiU7/42TGmo6YsFp6Ly6+9C9i2Emrso7aEA4DLBOFwmIEqeMQaozhz45SgctPYrvzFibBYhmkGAUhDSabuaBKM1/MGjsT+v0zUHMpODv/d3qNz7g9ifPzVCQPYuQP6l72qKwMiZASJKlRACUA6UcoBclw0Hp88ctOy0sK3Kn/QMCCEhomBgW/NGIUE5LTmjEOesQL1gdAAKffB2/qIhz58aY6AHjyF84hE4yzekPRqGASJqLkIIwHGhHBfId0dtdIParIHxK20xTQyjYQINgzMUV0pllx6iPyGjwKAcGySaLCxo7xzHAE+VkLbSXto/hVQIjxwYO22wrQh4D/4catkFqX89GQaIqKkJYfsCwHGh8j21HvvGr9i98L4H6OZvfjRt1QLGSR8UEEqNBQSpbHiQ9oRAIWWiswsmDKa2Y0SIurHWj/fMYzZao/zATxs08rQZ6FNHEB7uh7N0faojYRggopZiw0EGcMbqe4zW9rjcwIP27Z+tu7QwFXa2BGEwcbdDPSGiG6wcHxjG3XxnHxxCrwRAjHs1f/qre0g5o9bQwcHdMCOnZjy2picEvJ2/YBggIpotISVEJgdkclCoK0oMPJgoHJjAS3uYyYvqLwym0ENQyLGbdxQQIIQNCUKOLU2I6KZfe7+AzHZB5bobMhMRPP6wvWY7LA1Nxhjo44/DVIoQp22lTBLDABG1nXFFidXtjLXlhbFw0ApnKyTGaCDUdsp/Jp8fhYP6kCCiPyf+XQAQ9g9U/46JjwkJ/dSB9g0CdcJjh1ItJGQYIKKOcM7lhcCzVf+t1POgmRgDmPE1DrO9hQvlwpRHZvks0/Ovt9+HT//wbhwZGMHGZQvxt2++FldcuKqxFxUS4dGDqYaB9troSkQ0DUJKyEwOqtALt3cBMvOWwJ23FE7fQqiuOZC5bgg3a1/ZUuJMaTjR6916zy788f/5MT788udh21+9C5dvWIVX//3/waHjA429sNEIn3qssdc4B36HExHVEVJCulmofDec7jlw+xYiM38p3HlL4PQuiEJCl51laLLtfe3GFIcSDWL/8KNf4cYXXIq3vvDpuHDZQnziD6/Fsvm9+Pwdv2n4tfWpI6kuW3GZgIhoCoRUEJnxJ81VCxVNGNjmQmH0vyBAUsf+tjXfS6xewAsCPLD/MD7wsueOe/+LN6/DvY8eavwAjAb8CqDSuS0zDBARzVC1UFEoB8jkau+vhYRaQAjs/3TQRq2WG8/o5ELVieEiQq1xXt/40xIX9nXjqYFk6hZM4COtuSaGASKimI0LCciPe6zabtnoACYMx0JCGNo/O6ByfspSCE4Tt0ea5LoDptgbg2GAiChB1XbLAu6Ex4wxQNR+Gbo6mxAFhjBsz06LZ5PgYU7zewpQUk6YBTg2ODphtqBhnInfE0lhGCAiahLVpj5CZgBMPEF1XI2CDsdaFmtdextGt8/sglCJNRzKOA4uXbMEP9vVj5c/c2Pt/Xfu2oeXPj2ZLX9CMQwQEdE5jF9+ODNjNKB1FBh0FBhsUKh/n52Gb97gIPNdiQ7vvddejnf847dx6dqleNb6Ffi3n/0Wj58YxNte/MyGX1vku20XzZQwDBARtRkhJKDkFEKDiZoF6bqZhujt6P0wxoaL6sfVvb+RdHkU/m9+AhMEkM7YLg4dhIA2gCMhY15GePWzN+PkcBGf+I+f48jAMDYtPw/f+n/ehJUL5sR6nQmEhFq0prHXONcQjGmX+aTJeaPD9ht7CpxcAcqdODVHRETj1W4dRo+FBF0ND2b8+2tBoi5EmOjEBAMYmHF/D04cRvDr/4xqJAQgAemoKAjAfpyQgELsgSAt2WdeB/eCZ6R2fc4MEBHRtNUq7IUCoGa9Jc5USvAP/B6VPb+FOXUYUA4K17wN3s5tCA49Au3ZYOCs2IDMxVeg+JOvAGEIDd0WgUCetzLV6zMMEBFRKkwYIHhiL/z+HQgO7hl3LkThJTfCWbQKasEylH727wgOPQxnxQbkX/g6COWg8JIbUfzhF4AAQKbFw0AmB9m3MNUhMAwQEVFijDHQx5+A178Dwb6dMJXiJB8l4O28G2rBMgjlIP/C1yN4/BE4yy+AUA5MGMDbuQ3VJYTWJpC58LLkehmcaRSsGRjDmgEiosbQIwPw+3fA798BPXh8Cp8hxs0EVJkwiGYKHqnVErQ0x0XXKz+Q6k4CgDMDRETUIMYrwz/we/j9OxAeOTDdz0ZwaA+Cxx+Bu2pT7b3B448gOPQwAEA6rX4LE3A3XJZ6EAAYBoiIKEZGhwie6Iffv93WAcz4JD47M+Asv2Dce53lF8BZscEWFQZha88MKIXMhc9OexQAGAaIiGiWjDHQJw7bZYB9D8KUR2f5jOOXCEwYjKsZyL/w9bWlglYOBJmLnw+RK6Q9DAAMA0RENEN6dBB+/4Pw+7dDDxyL8ZkNMhdfUQsCY7sJLqwFhMzFV9rlglY8BFIIqKXnw910edojqWEBYR0WEBIRnZ3xK/APPGTrAA7vR0P6BUdtlwsvubHWZ8BeZ2KfgZZrPCQERNccFK57J4SbTXs0NQwDdRgGiIgmMlojPNwPf+8O+Ad3A4Hf+IvWDigSAAxEVx/Q1Qdz9BAAY080lC0WBAAbcq59R+p9BU7HZQIiIppUePII/L3b4e/bCVMaTvbi0etUOW8x3EtfCPTOhxAC/p7fQD+2G84zXoLwtz8AfC/Zcc2YPZEyd+Wrmy4IAJwZGIczA0TU6XRxKKoD2AF96qnkByAknOXr4a7bCrX8fIReGeYMMxF64CkE2/4DTV84IAQgHeRe8AdwFqd7INGZMAzUYRggok5kfA/Bwd3w9m5HeHhfw08knIycvxTu+q1w12yGzHfDhAH84vC4FsWTMccPwb/n+wmNcgaEgMh1I/eCN0DNW5z2aM6IYaAOwwARdQqjNcIj+20dwGMPAUHy0+2i0At33Ra467dAzTmv9n7tewiKw5hyceLgMXjbbrVvm+aaJZCLViP/3NdAZJtjC+GZMAzUYRggonYXnjoKv387/P4HYYpDyQ/AycBdfZENAItXQ4ixAkBjDHSlhHDS8wrOTsHAu/8nCA/3o1p0mB4BZPPIXvpiOGu2QLRAkSPDQB2GASJqR7o0An9fVAdw4nDyAxACauk6ZNZthbPqQghn4u9ZozWC0gjMTGcohITbPQfhkX2o/PY2mOETsxz0zMYAIeBufA4yF13RVFsHz4VhoA7DABG1CxP4CA7usW2Bn+hPZfpczltslwHWXgJZ6Dnjx+nAt8sCsxyjzObh5LpssNj7O3g7fwFTHrE36Yb990ezEEJCrdyE7KUvhuzqa9C1GodhoA7DABG1MmM0wiOP2bbAB34P+JXExyDyPXDXXWJ3A8xbdNaPNcZAe2WEs25fbIOAyhbGHQVsjIE++hj8A7sQHNhl6yJiCwY2BMiFK+GuvQTOio0Q2XwMz5sOhoE6DANE1IrCgWO144HN6GDyA3BcuKs2wV23BWrJ2imtkRujEZZGoGPoE+AUeiDPMSVvwhDh4b0IDu5GeOIJmOFTY6FASABm4i4KIQCI8eEhW4Cccx6cZefDWXURZKF31uNvBgwDdRgGiKhV6PIogn274PVvhz7+RAojEFBL18BdtxXuqo3TWh/XYWCXBab4u/mMpIRT6IVU0++fZ3QIM3wSeuAYwsGjMCMDQBjAhIG9+SsHQjoQ2Txk30LIOedB9i1s6Vf/Z8MwUIdhgIiamQl8BI8/An/vdgSPP5pOHcCc82w/gLWXQHZN/1Vx6JURlkZmPQ7huHDyPS1Rqd8K2I6YiKiJGWMQHj1o+wEc2AV45cTHIPLdcNdeDHfdVsh5i8ety0+VMSZaFph9HYPM5KFyhRmNgybHMEBE1IT00Al41TqA4VPJD0C5cFZdiMy6rVBL10JINeOnMtGywFRnac86rHwPVKZ1tuy1CoYBIqImYSpF+Pt3wd+7A+GxQ6mMQS1eA3f9FrirNkFkcrN+vtCrRMsCs1yRFhJO18zqA+jc+K9KRJQiEwZRHcAOBI8/MvuiuhmQfQvG6gC658TynMYYhOVR6BiWNYSTgVPoHtetkOLFMEBElDBjDMJjj9uGQPt3wVRKiY9BZAtw114Cd/0WyPlLY11/Nzq0ywJhMOvnUrkCZCbP+oAGYxggIkqIHj4Z9QN4EHoohXa5yoGzYgPc9VvhLFs/qzqAM9F+BUExpmWBQg+k48YyLjo7hgEiogYylRL8A7+H378d4VMHUxmDWrTKLgOs2tSwffJ2WaAI7c1+loPbBpPHMEBEFDOjQwSPPwq/fweCQw8DMUyXT5fsnW/PBVi3BbJnbkOvFeuyQLYAmeWyQNIYBoiIYmCMgT7+pD0eeN9OmBkcwztbIpuHs+Zi2xZ44fKG31CNMdB+BWFpFLNfFhBw8j2QbPyWCoYBIqJZ0CMDtXMB9ODx5Acgla0DWLcFzvLzIRLaeme0RliO52wBoRw4hZ6G1DDQ1DAMEBFNk/HK8A88ZOsAjhxIZQzqvBX2XIA1F0FkC4leWweeLRKMoR0yuwk2B4YBIqIpMDpE8GS/7QdwcHcqdQCiZy7cdVuQWbcFsnd+4tePs3cAIOAUus952iAlg2GAiOgMjDHQJ4+M1QHEcMDOtGVycNdstnUA561M7RW0DgOEMbUU5rJA82EYICI6jR4dgr9vB/y9O6AHjiY/ACHhLL8A7votcJZfAJHiXntjDLRXRlgejeX5ZCYHleviskCTYRggIgJg/Ar8x3bbOoAn92PW1fEzIBcsQ2b9VjhrNkPmuhK//unslsERmNCP4dkEVL6bhww1KYYBIupYRmuEh/fZ3QCPPQQEcdz0pkd0z4naAm+F6luQ+PXPJLYDhgAIqeyyAA8Zalr8yhBRxwlPPhXVATwIUxxOfgBuFu7qi+Cu3wK1aFVTHcBjjEZYGoX2K7E8n3SzUPluLgs0OYYBIuoIujgMf9+Dth/AySPJD0BIOMvW234AKy9MtQ7gTHTgIygOx7Jl0DYR4m6BVsEwQERty/gegoO74fXvQPhkP2BSqAOYv8T2A1h7MWS+O/HrT4UxBmGlCB3T6Yk8W6D1MAwQUVsxRiM8fMAuAxx4CAhm3yFvukSh154LsH4L1JzzEr/+dJgwsOcKxLBlEABUrgsyk+OyQIthGCCithAOHIW/17YFNsWh5AfgZOCu3gR33Vaoxaub/lWxMQa6UkIY0xkKQjlw8t0sEmxR/KoRUcvSpRH4+3bC798OfeJw8gMQAmrpOmTWbYGzciNEixyyE2cDIQCQ2TxUli2FWxnDABG1FBP4CA7usccDP7E3nmK3aZLzFttlgLWXQBZ6Er/+TNl2wkVoL57aAAgJp9AD2YTFkDQ9DANE1PSM0QifOgh/73b4B34PxLTtbTpEvgfuuktsW+B5ixO//mzpwENQGgF0POHJbhnsaqptkTRzDANE1LTCweM2AOx7EGZkIPkBOC7cVZtsAFiytunrACZjjI5mA+I4XAjcMtimGAaIqKno8iiC/bvg7d0OffyJFEYgoJasgbt+K9xVGyFa+Kan/QqC0mhsSyl2y2A3DxhqQwwDRJQ6EwYIDj1sjwd+/JF06gDmnAd3fVQH0NWX+PXjZLRGWB6B9uPbVsktg+2NYYCIUmGMQXj0oD0XYP8uIK5p7GkQua7auQBy3uKWv9EZY6D9ij1hMKYGS0IqqEIPJLcMtjV+dYkoUXroJLz+7fD7H4QZPpn8AJQDZ+VGezzw0nVtM+VtdIigNAIT42FLMpOHynHLYCdgGCCihjOVIvz9v7fHAx89lMoY1OLVti3w6k0QmVwqY2gEYwy0V7azAXGREk6eWwY7CcMAETWECQMEjz9q+wEcehiIqcHNdMi+BbYfwLotkN1zEr9+o5kwsLMBYRDbc7KBUGdiGCCi2BhjEB5/3BYC7t8FE1Or2+kQ2QLctRfDXbcVcsHStrypxd1KGGBtQKfjV52IZk0Pn7KFgP07oIdOJD8A5cBZscEeD7z8/LapA5iM9j0E5fiaBwGAyhYgs/m2DE40NQwDRDQjplKC/9hD8PduR/jUY6mMQS1aGdUBXASRzacyhqSYMERQHoWJ8RRGHi5EVfwOIKIpMzpE8MReuwxwaA8Q41r1VMmeebYfwLotkD3zEr9+0owxCCtF6EpM5wkAAARUrsC+AVTDMEBEZ2WMgT7xpD0eeP9OmDir1qcqk4e7drM9Hnjh8o64gRljYAIv1g6CALsI0uQYBohoUnpkAP6+B+Hv3QE9eCz5AUgFZ/kFth/A8gs6aipbhwHC0ihMGF/PAAgBleuGdDMdEaZoejrnp4uIzsl45agOYAfCIwcAxNPFbjrUwhU2AKzeDJkrJH79NMV+qFBEulmoXFdLHrREyWAYIOpwRocIn9wHr387gsf2AHG+Gp0i0T03OhdgC1Tf/MSvn7ZGtBEGAAgZnTCYie85qS0xDBB1IGMM9MkjdjvgvgdhSiPJDyKTg7v6Irjrt0Kdt7Jjp6514CMsj8baOAgAZCYXtRLmbACdG8MAUQfRo0NRHcB26IGjyQ9ASDjLz4e7fqutA+jgdrf2ZMFRaL8S7xNLZWcDOvjflqaPYYCozRm/Av+x3fD7dyB8ch/SqAOQC5Yhs24rnLWbIXNdiV+/mdTOEqgU410SAJsH0cwxDBC1IaM1wsP77DLAY7uBGBvVTJXo6qudC6DmLEz8+s1IBz7C0ghMzOc0CCcDJ9/F7YI0YwwDRG0kPPkU/P7ttg6gOJz8ANysrQNYtwVq8SquV0d0GCAsF2PtHgjALgnkulggSLPGMEDU4nRx2NYB9O+APnkk+QEICWfZOrjrtsJZuQHC4Y2pyujQbhWMuy4AAiqXh8xwSYDiwTBA1IJM4CE4uAfe3u0In+yPfe15KuT8JXYZYO0lkPnuxK/fzIzWCCslaC/OFsIWewZQIzAMELUIYzTCIwdsW+DHHgJif7V5bqLQC3fdJbYt8NzzEr9+s7PFgSWE5RLiLtQUUkFxlwA1CMMAUZMLB47aALDvQZjRweQH4GTgrtoEd/0WqMVr+Ip0EmNNg4qxniMAwLYRzvJQIWoshgGiJqRLI/D377L9AE48mfwAhIBashaZ9VvhrNwIwQK1SVUPEwrLxdh3CABR46BsgQGMGo5hgKhJmMBHcOhh+Hu3I3hib/yvMKdAzl0UbQe8BLLQm/j1W0mjOgcCgFCOXRLooMOZKF38TiNKkTEa4VMHbT+A/bvSqQPId8Nde4ltCzxvceLXbzUmDBA0YpsgEJ0s2AXpZrkkQIliGCBKQTh43AaA/h0wIwPJD0C5cFdttHUAS9ayWc0UNG6boCUzeahcnr0ZKBUMA0QJ0eVRBPt32bbAxx5PYQQCaskauwywehOEm01hDK3HmGibYCX+bYIAIBwXTq4LgksClCJ+9xE1kAkDWwfQvwPBoUfSqQOYsxDuuq22DqCrL/HrtyqjNUKvBF0poxHnOQjlQOUKkGzSRE2AYYAoZsYYhEcP2bbA+38PNKDxzLmIXBfctRfDXbcVcv4Srj9PQyMbBgGIWggXIJwMvy7UNBgGiGKih07C798Br38HzPDJ5AegHDgrL7RtgZetYx3ANBkdRiGg3JgLsDiQmhjDANEsmErJ9gPo347w6KFUxqAWr47qAC6CyORSGUMra3gIgIDK5nm0MDU1hgGiaTJhgODxR6M6gIeBBjSbORfZt2DsXICeuYlfvx2YMERYadzuAIBNg6h1MAwQTYExBuHxx+Hv3YFg/y6YSjHxMYhsAc7ai5FZtxVywVK+ypwhEwZ2JqCRIcDNQuUKXKqhlsEwQHQWevhUrR+AHjqR/ACkiuoAtsBZtp7bz2ZBhwF0pQjtN6BZUEQ4rq0L4NeJWgy/Y4lOY7wy/AO/h793O8KnHktlDGrRSrsdcPVFENl8KmNoFzoM7NkBjegYGOE2QWp1DANEsEVkwRN77TLAoT1AA/rNn4vomYfM+i1w122B7JmX+PXbjQ58hJUiTOA37iJS2oZB3CZILY5hgDqWMQb6xGH4e7fD378Tpjya/CAyebhrN8NdtwVq4QreUGbJniLoI6yUYMIGhgAeK0xthmGAOo4eGYS/bwf8vTugB48lPwCp4Cy/AO76LXCWX8A6gBgYY6C9MkKvBOgGdnkU0m4TZAigNsPfQtQRjF+Bf+AhWwdw5AAa0V72XNTC5bYh0JrNkLlC4tdvR7ZHQDnqEdDAr6mQtiaADYOoTTEMUNsyOkT45D54/TsQPLYbaOS08RmI7jm2H8C6rVB98xO/fjsyxsCEAbRXaujOAACAlHY5gCGA2hzDALUVYwz0ySN2O+C+B2FKI8kPIpODu/oiWwewaCWPpI2JMQba96C9EkyDCzyFVJDZPEMAdQyGAWoLujgEv/9B2w/g1FPJD0BIOMvPt/0AVmyAcNzkx9CmjNZRPUC54ac+CqlssyDuDqAOwzBALcv4FfiP7YbfvwPh4X2ASb4OQC5Yhsy6LXDWXgyZ60r8+u3MhAFCr9zAMwPGCOVAZfMMAdSxGAaopRitER7eZ5cBHtsNNLCRzJmIrr6oDmAL1JyFiV+/ndW2BnqlxvYHiNgQUIBwXIYA6mgMA9QSwlNP2X4A+x6EKQ4nPwA3C3f1JlsIuHgV6wBiNrY1sJzIwU9CuVC5PIRiCCACGAaoieniMPx9UR3AySPJD0BIOEvXwV2/Fc7KDRBsNRursV0B5WhXQOOXeYTj2t0BrOkgGodhgJqKCTwEB/fA27sd4ZP96dQBzFsCd/0WuGsuhiz0JH79dme0hvYr0F4ZJqHjn6WbgczkGQKIzoBhgFJnjEZ45ICtAzjwENDAo2XPRBR64a69BO76LVBzFyV+/XZnZwF8aK/S0KODxxOQmRxUNsejhInOgWGAUhMOHIPfvx1+/4Mwo4PJD8DJwF21yQaAxWsgJOsA4mZ0CO1VEPrlxrYJricVVCbHlsFE08AwQInSpRH4+3fB798OffzJ5AcgBNSStXDXb4W7ciOEyzqAuNkdAR5Cr9LQY4NPJxwXKpPnzgCiGWAYoIYzgY/g0MPw+7cjeHxvwxvHTEbOXRRtB7wEstCb+PU7gQlDhH7UFyDBWg/pZm23QB74RDRj/OmhhjBGI3zqYFQH8HsggcYxpxP57qgOYCvUvMWJX78T2BbBFWivMu7I4P79+3HXL7bh/ge248BjB+E4Cm950xvw6hteEc+FhRxbCuDyDtGsCWNSKNdOkDc6POWKZSdXgOK08ayEg8dtAOjfATMykPwAlAt31UZbB7BkLQvHGqC2JTAKAadvCfzl3b/C1S9/FQBg06ZN2LBhAw4fPozt2x/AE3v3IJ/Pz/jaQjmQmRzPDCCKGWcGaNZ0uYhg/07bFvjY4ymMQEAtWQ133Va4qzdBuNkUxtDejDG2GLAaAM6y1PPzX96NBQsWYN++fSgUCvB9Hz/4wQ/wqle9CsVSaUZhQDgZ2y5YOQwBRA3AMEAzYsIAwaFHojqARxPpGnc6OWehrQNYuwWyuy/x63cCEwYI/YptCjTFr3F3dzeGh4dxww034P7778c///M/Q6mZzNBwayBRUhgGaMqMMQiPHrLLAPt3AV4p8TGIXBfctRfDXbcVcv4SvkpsgOp2QO1XZtQU6M1veB0e2LEDJ0+dwsmTJ6f9+WNLARm2fSZKCMMAnZMeOgm/fwe8/h0ww9P/5T5ryoGz8kJ7PPCy9XyV2AB2CcCzASAMZvVcC+bPx5f/9Z8wMDCIRavXT+2ThLC7AjI57gogSgF/6mhSplKK+gHsQHj0YCpjUItX22WA1RdBZHKpjKGd1doCxxAAZko4LqRbnQXgLA9RWhgGqMaEAYLHH4XfvwPBoYfTqQPoWxDVAVwC2TM38eu3O2P02AxAAkcET0pIyEwWKsNaAKJmwTDQ4Ywx0MefgLd3O4L9u2AqxcTHILIFOGsvRmbdFsgFy/gKMWZGa+jAg/a9RDsCTsbJ98DtmcuvMVGTYRioo7VGp7xO0cOnav0A9NCJ5AcgFZwVG+zxwMvWQ3CdODbVbYDG96ADL/ElAGMM/vJv/g533PXzCY+9/JWvwlVXXYWPf/zjDARETaTtmw5VhgdRbYri5rsReOVxvxyFcuBkcvBLI/Zjunoh27SjmfHK8A/8Hv7e7QifeiyVMajzVtpzAVZfBJGdefMZGs+eB+DXZgDSaPlcdd9v78dz/8s1eO1rX4tcLof3ve99kFLi05/+NCqVCr75zW9i27ZtuOKKK1IbIxGN1wEvx8aCgHQcuKoLfmkUJgwglAM33wUhBNx8N/zSCPziCLLd7dO73ugQwRN74e/dgeDQHiCFQjHRMw+ZdVvgrtsC2Tsv8eu3q2aa/gcAIRVkJofBsq1FuOmmmzBv3jxoraG1xnve8x4MDg7im9/8Jk6cSGE2iojOqGNmBupv/MYY6MCHjE43M8bUAoLKZOG0+CtWYwz0icPw926Hv38nTHk0+UFk8nDXbLZtgReu4JRwDNKe/p+UlHZLoJutbQkcGhrChRdeiMOHD0/6KYsXL8aePXvQ18dGUUTNou3DQP3ZBPWBoKo+CAjlIFPoTmuos6ZHBuHv2wF/7w7owWPJD0AqOMsvsP0AVlzAOoAYVI8D1oGf+vR/jYgCQCYLIdWkQc/zPDz88MOTfvoFF1yAbJYto4maSVuGAT06hODEYYQnnkIweALhwDFktlwJtWDphMOIQt9DUC5CD56APvgw1Nzz4MxfDDVvEYTjpvhfMTXGr8A/8BD8/u0IDx/A6YfGJEEtXA533VY4azZD5gqJX7+dGGMAHdqbf+Clt/3vdNWmQG6W5wMQtaG2eekWDp1E5eEHUNnzW4Snjtp3CgFAwI2CgFAO5Gk3eOm49v198+EFAUq3fz16QCGzZhOyG56GzOqNTRUMjA4RPrkPXv8OBI/tBsLkbxiie47tB7BuC1TfgsSv3y7szV9Dh35tBgDNks+FgHQydgZAuQwARG2spWcGdGkUlUceQGXP/QieOmhv/qf957gXX4HcM1405ZqB8m/vhL/zbvvJQtppWSeD7PlbkN3wNLgrzk/tl2J48oitA9j3IEy0+yFRmRzc1RfZALBoJfvGz5CJXvnb6n+/Oab+awSkm7EzAA4DAFGnaMkwYIIApR2/RPHenwCBB0DgTNPjhVe9G6pvfm03wek1AtWAoIMAfmkE4eAJFL/9uYlPJCWgNdR5K9D9/FfCXbKqof+NVbo4BL//QdsP4NRTiVxzHCHhLF9vlwFWbGiqGZJW0dw3f0s4GahMFsJhW2CiTtRSYcAYA2/vgxj95fegRwam9km5bnS/5j0QbmZcn4HgyEE4i1eO6zNgfA8j3/osUD7Lq+5otiBz/lZ0XfFSqAZslTO+B//gbtsP4PC+VKaN5YKlyKzbCmftxZC5rsSv38rslj8fJrTr/tDNd/MHqucCZHk6IBG1ThgIThzByJ23IDh8AGebCZhUXSAAgPIDP4e//Rdwtz4PuUufDwBTCwL1hASEQP7pL0ThWS+BmNF57WOM1giP7LfLAI/tjmY8kiW6+uCuuwTuuq1QcxYmfv1WZbSObvzRK/8UznSYkqgGQDgZSNdlACCimpYIA5VHd2D4J1+zr7BmOsWa60bhuhvhP7pjrCYAtqbAPX8Lij/8ytSDwDgCzpJV6L3uLZBd029WFJ56Cv7eHfD37YApDs/g+rPkZuGu3mQDwOJVvEGcgzEaJgxgwgA6sH8247R/lZAKws3YEMBdAER0Bk0dBowxKN57G0r33Z72UM5OSIhcAX03/Fc4C5ee88N1cRj+/p22H8DJyRuzNJQQcJauh7t+C5yVF0I4mXN/TgeqNfkJ/FoAMM36qr+OcFy7C8DN8FRAIpqSpg0DRocYufNbqDx0X9pDmRohAOWi9+VvQ2b5+gkPm8BDcHCPbQv8ZH8qryblvCVw12+Bu+ZiyEJP4tdvZsYYwOjo1f7Yzb8lVLcAuploBwBnd4hoepoyDBhjMPLTf0dl92/SHsr0CAEIgZ6X3gTvd7fbTnyLVtrTAQ88BPiV5IdU6IG7dottCzx3UeLXb1Z2nT+a7o9u/k2zv38KOP1PRHFqyjBQevBXGL3r1rSHMTNCwO3pgjAGEwsdo79P0g8hVk4G7qpNNgAsXgPRpqcwTkW1o5/RIXQYwIQhjA6atsL/bDj9T0SN0nQdCP3DBzD68/9Iexgz5nZ3QSgHhZfcCG/nNgSHHoENBALOig3IXHwFij/5ij09MM5AIATUkrX2eOCVG2s7JzpFtZOf0WM3fPtn86/xn4mQqhYA2ACIiBqpqWYGdHEYp776/9lT9ppnWFPmFPKQSqJw3dvgLFoFEwYo/ezfERx6GM6KC5F/4esglIPgqcdQ/OEXYrmmnLvItgVee8mMdjO0mura/uk3/JZZ3z+LsZu/a9v/dvCMDhElq6lmBoZv/wZMudiSQQAAtB9Aqiy8nXdDLVgGoRzkX/h6BI8/Ame5PcXPhAG8ndsw7V4JdUS+G+7aS+Cu3woZ1QG026vG2k1fh/aGH1XymzBEGocxNYRUkLz5E1ETaJqZAf/IQQx+89NpD2PWpOvCyWXhrNhQmwmoGpspqC4dTINy4azaiMz6LVBL1gJC2h0K5SKcQk/tLPlWYW/2Bsbo2pq+0dHNX4ctuaZ/TlJCKnfs1T/X/YmoSTTNHaR470/GDgZqYdr3oR2F4NAeBI8/AnfVptpjweOPIDg0+RnvkxNQS1bDXbcV7upNEK49A16HAcLiEEz1tMLmyHMTjBXv6XE3++r72uYV/pkIaW/6vPkTUZNrijAQHH3ctuBtA9J1IR0HzooNcJZfMO4xZ/kFcFZsOOfMgOxbaPsBrN0C2d1Xe7/RGmF5FPr0LYophIHxr+y17cwXvaKv3vhbPdhNm1SQyqnd/CFk2y3fEFF7aoowULzv9raYFZhsicCEwbiagfwLXz/pUoHIdcFdezHcdVsh5y8ZdxMxxkBXSggrJUwWIuJa6ZnsBm/X7bV9f3SDt+9v81f15yIEhHLtzV85EI7DZj9E1LJSDwPGq8Db//u2uLlI1wFgkLn4iloQmGw3QebiK2vLBc6azbY50bL1E6aRjTHQvoewPHqOoHSmgFC9uds/7Y3cjL/Bj7vxt/7XoFGEcuzN37E3f77qJ6J2knoBoXfoEQz9xz+nOYRYuT3dEM74PgM6CGpLB7U+AwC6rn/XGU8H1IGPsDw6pS1zQqrazEp9CKCZEVJFr/Zd+6dUvPETUVtLPQwU770Nxft+2vAlgk/dfh/+c8ejePToSeRdB89csxT//frnYv2iebFfy+3phogaDQXlCrTvQ2ZcONksAAO4WXS/6n2QhYl9AUwYICgXYVI4wrgjCVl7tS+Uy9a+RNSRUl8m8J/Yl0itwK/2HsLNz92KS1cuQqAN/voH2/Daf7wV2z76VnRl3Viv5Q+PwCnkof0A2rcV/9rzoTY8DfrkYXRde9OEIGB0iLBcnFgcSDEREEqNvepXCkI63NtPRISUZwaMDnHiH//EtuZN2PGRIjb+6T/hu+97HS5fv7zxF5QS+a3PQ9eV1497t9EaYaUI7ZUbP4YOUZvar97wleIaPxHRWaQ6M2AqpVSCAAAMlewr8LmFXDIXNAZ6ZLDur2ffIUDnVnuVX3fjh+RNn4houtINA4GfznWNwX//zs9x2dpl2Lh0QVIXhQk8GwK8MsJK67ZdTpxUtRu+jG7+YFEfEVFs0q0ZCNM5Ue6Pv3UnHnryOH7w/tcne2Hlwh8ZAFr4JL2GENLe7KWMbvTVvyu7n583fSKihko3DKTQT/+/fetO3LarH9/7v16PpXN6kr24DuF29SKslDqrRkCI2s2+9ipf1N34ebMnIkpVqmFAuJnErmWMwX+79U788MG9+M57X4dV8/vO/UlxEsJ2qZMKTr4bJluwywVeqfWXC4S0N/roz/E3fsnOfERETS7dMJDNQ2RyMAm8Sv7jW+7Erb/bg6+8/eXozmXw1NAoAKA3l0E+E+/WwsmJcQ2GhJRQuQJkNh/VEJSaqx1z7QYv7M08uqnXbvpCAFIC4DQ+EVGrSzcMCAFn2Vr4B3Y3/NXxl+7eAQC44X/dMu79n3nj1XjDZRc19NoAAKPhLF0z4d1CCKhsHjKTg/Y96ErRHvgTt+oNPPpf/Q2+9oqeN3gioo6UetMhd2kUBhrs2Kc/2PBrnJUQcBetOsvDAiqThXQzMIGPsFIaO6J4ClSuq/ZKHkJCoP7Gzxs7ERGdWROEgTWtv2Y+BWr+EohM9pwfJ4SAcDOQbgY6DKArpSl1JZRult30iIhoRlIPA855y+2ugpSaDyVCSLjL10/706RyIAs9MLqA0CvbHQhnCk4dEKiIiKgxUn8pKZSD7MZn2FP32pXRyF30rBl/upAKTq4Lbs88qHw3cNpRxwBg2MWQiIhmqCnuwIVnvBht25JXSGTWboYzf8nsn0oIqEwObvccOIVeCKduFwRnBoiIaIaaIgyo3nnIXtimswNGo/Csq2J9SiEEpJuB29UHp3sOpBsdjUxERDQDTXP3LTzzv7Tfq1sh4a7aaOsiGkQqB06hB9JJroETERG1l6YJA2rOAmQvepbdDtc2DLqec03agyAiIjqrpgkDAND9vBug5i5qm+WCrufd0NBZASIiojg01V1XuBn0Xn8zhOsCaOEZAiGQ2fA05C65Iu2REBERnVNThQEAUH3z0XPNH6JlC+KEhJq7CD0vei07/xERUUtoujAAAJnVG1G4/KVpD2P6hITI5qLZDRb0ERFRaxDGNG8Jf2n7LzD6i++mPYypERKyuxd9r/wjqDkL0h4NERHRlDV1GACAyiMPYPj2rwNaN/HWQwF13jL0vfztkIWetAdDREQ0LU0fBgAgOPYEhr7/BejRoaYMBNmLLkP3818F4aR+1AMREdG0tUQYAABdLmL01z9EZec9theB0WkPCbKrF13PfTmyF1ya9lCIiIhmrGXCQFVw4ghGf/Fd+IceiUJBwsMXElAKhWdehfylzxt/PgAREVELarkwUOUd2IPRX3wH4cAxe4Nu+EyBAGCQ3XQZup5zDWRXb4OvR0RElIyWDQMAYIxG8OR+VB5+AJVHHoDxyvEGg2jmQS1YitzGZyBz/lao7r54npuIiKhJtHQYqGfCAP7BR1B++HfwD+y2wQCwN3Qh7G6Es5Gy7mME5JwFyG24FNkLngY1d2FDx05ERJSmtgkD9YwxMMVhBCePIDxxBMGJpxAefwK6NAoTBkAY2AZBSgHKhZq7EM78xVDzl8CZtwhq3iLWAhARUcdoyzBAREREU9eU7YiJiIgoOQwDREREHY5hgIiIqMMxDBAREXU4hgEiIqIOxzBARETU4RgGiIiIOhzDABERUYdjGCAiIupwDANEREQdjmGAiIiowzEMEBERdTiGASIiog7HMEBERNThGAaIiIg6nJP2AOplLr0Z0slASAUhFZQ79raQcuwxpSCdDGTtMTXhMSEVpBQQUkApCXHa21IKSCVqH3PWx4SAciSUFFBSIBO97dT+rsYeU2Mf59R9rJrsbSEghYASgKtk7W1HSSgB+3cp4Eoxydv2cVfK2ttKCAgBSAEIgej5AQFASQEJ2P8WidrbUgBK1L9tn0MYAxgNoQNg3Nva/k+f+TFhNBCGY2/rANAhjNZA4MGEIaC1fV/gw+jQvu37QPXt6sdWP873xj5Hh9B+ABNqGK2hvQA6tJ9jQg3tB9Dh2Nsmejv0A5i6jwu9oO7tEEYb6NBEf48+Xxv7WGhgQgMdaoS+jp7TIPTD6HPGPk8bg9AYeNogNDjt7dP/bt/WsG+HBtFjY2//kzmQ6s9lXPjzzZ9v/nw37883ZwaIiIg6HMMAERFRh2MYICIi6nAMA0RERB2OYYCIiKjDMQwQERF1OIYBIiKiDscwQERE1OEYBoiIiDocwwAREVGHYxggIiLqcAwDREREHY5hgIiIqMMxDBAREXU4hgEiIqIOxzBARETU4RgGiIiIOhzDABERUYdjGCAiIupwDANEREQdjmGAiIiowzEMEBERdTiGASIiog7HMEBERNThGAaIiIg6nWlT5XLZ/Pmf/7kpl8tpD2WCZh6bMRzfbDTz2NpJM/87N/PYjOH4ZqOZxzZbwhhj0g4kjTA0NIS+vj4MDg6it7c37eGM08xjAzi+2WjmsbWTZv53buaxARzfbDTz2GaLywREREQdjmGAiIiowzEMEBERdbi2DQPZbBZ//ud/jmw2m/ZQJmjmsQEc32w089jaSTP/Ozfz2ACObzaaeWyz1bYFhERERDQ1bTszQERERFPDMEBERNThGAaIiIg6XNuFgQ9/+MN47nOfize96U3wPG/cY6VSCS972cvw/Oc/H1dddRVOnjzZVOOr+pu/+Rs84xnPSH1MQRDgrW99K5773Ofi/e9/f2Ljmer4qpL+96p3prE1w/daO+LPd3xj4s/3uXXSz3dbhYEHHngAR44cwS9/+Uts2rQJ3/rWt8Y9/qMf/QibN2/Gz3/+c7zuda/D//7f/7upxgcAw8PD2LVrV1OM6fvf/z6WL1+OX/7ylygWi/jVr36V2LimMj4g+X+vqY4t7e+1dsSf73jHxJ/vmY8t7e+1RmirMPDrX/8aL3nJSwAA11xzzYRv7vPPPx/FYhEAMDAwgIULFzbV+ADg05/+NN7znvc0xZimMt40xwck/+9V72xjS/t7rR3x5zveMfHn++w67efbSXsAcRoYGMDSpUsBAH19fROmbtatW4ddu3Zh8+bNEELg3nvvbarxDQ4OYufOnfizP/uzphjTwMBArf/2ZONNe3xp/HtNdWxpf6+1I/58xzsm/nzPfGxpf681QkvODBw5cgRXXnnlhP8ZYzA0NATAfiHnzZs37vO+/OUv4wUveAF27dqFj3/84/iLv/iLphrfpz71Kbz3ve9tyJjOZO7cuWcc09kea4bxpfHvVe9sY0vqe60d8ec7Pvz5nrlO+/luyTCwePFibNu2bcL/rrvuOvzkJz8BANx222244oorJnxu9Qs6Z84cDAwMNNX49u7di//xP/4HrrnmGjz66KP427/924aMr96zn/3sM47pbI8l5WxjSOPfa6pjA5L5XmtH/PmOD3++GzM2oA1/vtM7PbkxPvShD5krr7zSvPGNbzSVSsUYY8w73/lOY4wxg4OD5rrrrjPPf/7zzRVXXGEefvjhphpfvac//empjak6Ht/3zY033miuvPJK8773vS+x8Ux1fPWS/Peqd6axNcP3Wjviz/fsx8Sf76nrpJ9vtiMmIiLqcC25TEBERETxYRggIiLqcAwDREREHY5hgIiIqMMxDHSAf/u3f8OcOXNiea4DBw5ACAHHcfDEE0+Me+zw4cNwHAdCCBw4cGDcY7feeite8IIXoK+vD93d3bjkkkvwF3/xF7VGHnGOkajTvPWtb4UQAu9617smPPbud78bQgi89a1vrb3vyJEjeN/73oe1a9cim81ixYoVuP7663HHHXfUPmb16tX41Kc+lcDoqRkwDNCMLF26FF/5ylfGve/LX/4yli1bNuFj//RP/xSvf/3r8cxnPhM/+tGPsGvXLnzyk5/Ejh072qKnN1EzWLFiBb7xjW+gVCrV3lcul/H1r38dK1eurL3vwIEDePrTn44777wTf/d3f4edO3fixz/+MV74whem1vqX0scw0AJ+/OMf48orr8ScOXMwf/58vOxlL0N/fz8A4K677oIQYlzTi+3bt9dend9111246aabMDg4CCEEhBD42Mc+BgA4deoUbrzxRsydOxeFQgHXXnstHn300SmN6S1veQu+9KUvjXvfv/3bv+Etb3nLuPfdd999+Ou//mt88pOfxN///d/j8ssvx+rVq3HVVVfh1ltvnfDxRDQzT3va07By5Up8+9vfrr3v29/+NlasWIFLL7209r7qTMF9992H17zmNbjgggtw0UUX4YMf/CDuueeeNIZOTYBhoAWMjo7igx/8IH7zm9/gjjvugJQSr3zlK6G1PufnXn755fjUpz6F3t5eHD58GIcPH8aHP/xhAHZq8be//S2+973v4de//jWMMbjuuuvg+/45n/flL385Tp06hW3btgEAtm3bhpMnT+L6668f93Ff/epX0d3djXe/+92TPg+XBojic9NNN40L6V/84hdx88031/5+8uRJ/PjHP8Z73vMedHV1Tfh8/jx2rrY6qKhdvfrVrx739y984Qs477zz8NBDD53zczOZDPr6+iCEwOLFi2vvf/TRR/G9730Pd999Ny6//HIA9sa9YsUKfOc738FrX/vasz6v67p485vfjC9+8Yu48sor8cUvfhFvfvOb4bruuI979NFHsXbt2gnvJ6L4/eEf/iE++tGP1mp77r77bnzjG9/AXXfdBcC2+DXG4MILL0x3oNR0ODPQAvr7+/HGN74Ra9euRW9vL9asWQMAOHjw4Iyfc/fu3XAcB5dddlntffPnz8eGDRuwe/duAMC1116L7u5udHd346KLLprwHG9729twyy234MiRI7jlllvGvQKpMsZACDHjcRLR1C1YsAAvfelL8eUvfxlf+tKX8NKXvhQLFiyoPV5tOMufSTodZwZawPXXX48VK1bgX//1X7F06VJorbF582Z4nofu7m4AYz/kAKY0zX+mLtT1N+/Pf/7ztWKkyV7Zb968GRdeeCHe8IY3YOPGjdi8eTO2b98+7mMuuOACbNu2Db7vc3aAKAE333xz7bS/z372s+MeO//88yGEwO7du3HDDTekMDpqVpwZaHInTpzA7t278Wd/9md48YtfjI0bN+LUqVO1xxcuXAjAbuurOv2GnMlkEIbhuPdt2rQJQRCMO4f7xIkTeOSRR7Bx40YAwLJly7B+/XqsX78eq1atmnR8N998M+66665JZwUA4I1vfCNGRkbwuc99btLH2+K0L6Imcs0118DzPHieh6uvvnrcY/PmzcPVV1+Nz372sxgdHZ3wufx57FwMA01u7ty5mD9/Pv7lX/4Fe/fuxZ133okPfvCDtcfXr1+PFStW4GMf+xgeeeQR/Od//ic++clPjnuO1atXY2RkBHfccQeOHz+OYrGI888/H694xSvwjne8A9u2bcOOHTvw5je/GcuWLcMrXvGKKY/vHe94B44dO4a3v/3tkz5+2WWX4SMf+Qg+9KEP4SMf+Qh+/etf47HHHsMdd9yB1772tfjyl788s38YIpqUUgq7d+/G7t27oZSa8PjnPvc5hGGIZz3rWbj11lvx6KOPYvfu3fjMZz6D5zznOSmMmJoBw0CTk1LiG9/4Bu6//35s3rwZH/jAB/D3f//3tcdd18XXv/517NmzB1u2bMEnPvEJ/NVf/dW457j88svxrne9C69//euxcOFC/N3f/R0A4Etf+hKe/vSn42Uvexme85znwBiDH/7wh9OaznccBwsWLIDjnHnF6ROf+AS+9rWv4d5778XVV19d28Z0ySWXcGshUQP09vait7d30sfWrFmD3/3ud3jhC1+ID33oQ9i8eTOuuuoq3HHHHfjHf/zHhEdKzYJHGBMREXU4zgwQERF1OIYBIiKiDscwQERE1OEYBoiIiDocwwAREVGHYxggIiLqcAwDREREHY5hgIiIqMMxDBAREXU4hgEiIqIOxzBARETU4f5/+orJaFqNiAMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -373,7 +375,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmEAAANSCAYAAACdtWp+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddbgVVRfG30P3pUFCSlIECVEQkVCQUhpFFAQUpEVFkBRJJZWUkkZKQFpppLuR7o57uXC5ub8/1jdOnrrBBXx/zzPPmdl9zpk5Z2a/e63lUkopEEIIIYQQQgghhBBCCCGEkFglQXwPgBBCCCGEEEIIIYQQQggh5FmEIgwhhBBCCCGEEEIIIYQQQkgcQBGGEEIIIYQQQgghhBBCCCEkDqAIQwghhBBCCCGEEEIIIYQQEgdQhCGEEEIIIYQQQgghhBBCCIkDKMIQQgghhBBCCCGEEEIIIYTEARRhCCGEEEIIIYQQQgghhBBC4gCKMIQQQgghhBBCCCGEEEIIIXEARRgvKKUQFBQEpVR8D4UQQgghhBBCCCGEEEIIIU8RFGG8cP/+fQQEBOD+/fvxPRRCCCGEEEIIIYQQQgghhDxFUIQhhBBCCCGEEEIIIYQQQgiJAyjCPMXs2gXUrAkcPRrfIyGEEEIIIYQQQgghhBBCiJVE8T0AEn3KlJHXY8eAM2fidyyEEEIIIYQQQgghhBBCCDFDS5g44uFD4PXXgX794r6vs2fldeZMwOUC1qyJ+z4JIYQQQgghhBBCCCGEEOIZijCxyNGjwC+/AFFRwLRpwNatQJ8+wHvvAXv3xl2/LhcQGQl89JEcV6tmLxMebj6ePBl4/30gLCzuxhWfXLsGHDz4ePu8cQOYMAEICnq8/RJCCCGEEEIIIYQQQgh5MqEIE0OUAiZNkgn/F18EWrcGfv0VuH9fL7N0qe46zEp4OLBnjwg3Tly5AkRESH737sAffziPwdiflWPHgHTppL5Gq1bAb78BM2Z4fYtxzpEjEttm9273ZYYNA8qX9/w+jTz3HFC8OHD8eOyM0ReqVQPatAHat5fj8HDgwgUgNPTxjYEQQgghhBBCCCGEEELIkwNFmBiycCHw6acy4a/RsqXdCiMy0rl+y5ZA6dLAjz/a83buBLJnB+rWFcuVwYOBd991bufuXfPxrl36fp8+wIMHUt+KZrXRpw9QqBBw+7Zz++7YuROoUgXYt8+/ekbq1gVWrABefdV9ma++Av7+Gxgzxp4XFAQUKwb07CnHY8fqeRs2RH9c/qAUsH+/7C9aJK8NGwK5cgHJkgGnT3uuv38/UK+eCGaEEEIIIYQQQgghhBBCng0owkSDM2fE9RSgT7xbmTXLnjZ7tlhGGNEsUQYOtJfXBIdly4DPPtPT582TSX8j+fObjzdt0vdTpND3O3Y0CyZ37gClSknsmhMngB9+0PP++EOsZ8LCgFu3JO3UKRFErl2T41dfBdatA955xz5+TxjHf+qUvLqzBjKyb59d8JkwATh0CBgwQI7btdPzHj3yb1xOXLli/7w15s4Vd3AJDFdSokTyumSJnjZ0qOc+3nwT+P13oEgRc7o78S42uHpV/x4JIYQQQgghhBBCCCGExD4UYfzk9m0gXz4gSxaZnN+xw/e6H34olhGHD4t4MW+ec7k9e4A8eYDp053zGzcG/vrLnGadrD91SkSNdeskPo3Gzz+brUP69zfHq9HEFkCsbgYPBpImBTJlkjY/+khcg1Wtao4nc+OGCBXnzollysqVQOfOQNu24k7NyPLl0t6wYfIZJEmi54WEOL9njXnzgJIlReAoXFgsaGbO1PPPnDGX91eEuXQJKFAAGDlSjmfPFmukxo3l+P59EUu0cX7wgb0NTYQxYo3JA4joVb++iEpOcWQ2bwYCAkRkim3Cw4Fs2cRtm69xga5ckZhHDx/a84KDga5dxTKKEEIIIYQQQgghhBBCiPBUizCbNm1C7dq1kS1bNrhcLixevNiUr5RC3759kS1bNiRPnhwVK1bEkSNHYtSncZI/e3a7GOILL70kk9XaxD6gT8Jv3izuyc6d89zG+vWe88ePF/dcVarY81wu9/WmTBHLm+Bge17+/MD27bJ/6BDw/PPm/CVLRDwKCABq1ABGjQLGjRM3YoAuXNSqJWLWV1/JZ2CMmZIihXym3bvLOEeNMotEGnXqSLyXmjXNrt8+/NBcLiRExIPixYGCBYGtW92/dwDo0QM4eRL44gs51qxq5s8HOnUC0qQRt2FGaxsrvoowDRqI67KSJe15ly4BFSqIG7k2bTyPOToYRR9frWEqVpSYR998Y88bMEBc6nlyKUcIIYQQQgghhBBCCCH/NZ5qEebBgwcoXrw4Ro8e7Zj/ww8/YPjw4Rg9ejR27dqFrFmz4u2338Z9X6O7W9i4UYLIxxW//AIsWOBb2UGDol/GaplipXZtZwsPK9evm4/r1nUuV7Ei8NZbIrAY3Z254+OP9fg1nTuLuzRfMQo6gIgfffuKUPPPP8Drr4vA5WTNAdjFJ2O5n37S96dOBS5edG7j+nVx5WYdh8bPP4sl0eHD7t9Hx47O6WfOeHdRFhQk59LNm+Z0o0s1o/WLNZ6QxurVZtdvJ0/K68KF9rJHj3oeEyGEEEIIIYQQQgghhPwXcSnlLtrF04XL5cLvv/+OOnXqABArmGzZsqFz58745v9L90NDQ5ElSxYMGTIErVu39qndoKAgBAQEYNmyQNSqlSauhv9YadkSmDw5vkfxeOjYUaxurDF6cuUyWxstXSoWPBUr6mmbNok1SmzQoIFY0wCeLZEAEcms1jRKidu1jz4Sa5/WrcXa6f59sWTZskWEnj/+EPdzq1YB5crpVkhKyRhOnAB275Y6efJI3pYtIk7t3Alkzgzkzg2cPg288ILk9+sH9OqljztDBrPbOkBi4mi/JNZflMhIIGFCnz8qG99/L5ZfixYBadOa85YsEfdxhQtHv/3YwOk7I4QQQgghhBBCCCGEkKfaEsYTZ8+exbVr11C1atV/05ImTYo333wTWz34pAoNDUVQUJBpA8SF1rPCf0WAAcQqJHFie/r58+I+q1cvEVvee88swACxJ8AAvsddAYCvv7anrVsHfPed7M+aJWObPVtEl127RFxp314smFatknLaaX7lCjBjhogYR46Iu7natfW2e/eWOEevvqoLM6dPm/ONaNZGDx+Kq7SffrILLxrr14u4NXWqHCslY4iIcHbRZuXwYel//Xr5rgCp+/bbIgrVqQMUKSKfiTcLr7hiyxYgdWqzpRQhhBBCCCGEEEIIIYQAz7AIc+3/gS6yZMliSs+SJcu/eU4MGjQIAQEB/245c+aM03HGN2+9Fd8jiFt+/VUEFye6dgX69xerkrhm6VKJj+OL3dmIEfa0KlWAU6fc14mKkvdq5dAhiV3UrJme1rCh2RXaunXmWEdnz9pFI6PrOc1l24QJsnXqZC5rbKtePYlr06KFuD0rVgwoWlTEniRJRLw4cMC9SLV/v73dH36wx2Jq2hR48035fK9fl+/W3ed1+DDw55+y7+n7mDNHPhsnjPUaNQIePbJ/DtFhxw7gs8/slkYxITzc/TVACCGEEEIIIYQQQgiJW55ZEUbDZfH9pJSypRnp3r07AgMD/90uugv84QYnq4vo8txz/tfxFnjeypo1EoPlWWb9es/5x48/nnG0bQt8/nnctN2woXN6sWL+t5U3r9lSBnAWNNwJBfnyicszQNyUaXz0kS7+XLokr8HBwMsvA4UKAeXLA5cvS/rFiyIeaBY0gC589Ojh3O/WrcArrwBZs4qVU/78UtYomISHAy+9JDF5evUCMmWS2Dcap0+LO7cTJ4AmTUT8sgpE/fsDOXIAFy7o78GJsDCx1nG5RED6v1GdR157DZg4EWjXzntZX6leXVzMrV0be20SQgghhBBCCCGEEEJ845kVYbJmzQoANquXGzdu2KxjjCRNmhRp0qQxbf6QPr19Aju6JE0KTJniX53XXvOvvMsVOyv445Nq1QAPX+kTxYQJcdPuyZNx065G+fLm427d3IsPgIghhw8Dd+7oacuXuy9/9qzEr8mRQ8SU558XyxajJcqDB97HuWeP+XjgQGl3+XI518uW1fP695d4Qe+8o6e98ALQvDkweLC5nJFevcTFW65c8rk7abq3b5tdGObLJ27ZfLVw2bfPt3JWGjWSfo3Ckya+jBnjf3vXrwMhIdEbCyGEEEIIIYQQQggh5BkWYfLkyYOsWbPiT83vEICwsDBs3LgR5cqVi7N+06WTQOaxxSefyEr95MnFTVWhQnpesmSyYr9vX5ksjYjwHvTdiBbzJDJST3NyT9a2bbSG/tgoVMjuVqpUqfgZy3+FIUO8x0B56aXotf366/K6bZs5PTAweu1dvw60aiX7VpHGHYafDUyapO8bXa0BQIECzhYunTub29Bo2lTOVaV0gSoyUlyfGcVQLe6OJ5SSeDS3bok7upAQYP58EZzOnrWX9ycuESBWSVmzihWNJ9q1k9hAvrjaI4QQQgghhBBCCCHkv8ZTLcIEBwdj//792P//wBFnz57F/v37ceHCBbhcLnTu3BkDBw7E77//jsOHD6N58+ZIkSIFmjRpEu0+69bV9994w76yPWdOca90+7asqPeGOzdSWluAuE56+FAmdseP1/P/+Ucmgfv0ATJnBhIm9NzX22+bj3/7TV6NIowW1F1j/XpZQe9pnIcOee43puTO7RzvRCM8HChRwpzWurW4kopvouMOjDhz4ICzsOGNBg0AD2GgAEhMFyOaWzRAYtlo+OJObtAgYOZM57zVq4EFC4AvvwQyZBArncGDxfWZUdTyRTCZMUN+gzJlEhdy9+/reZ98Yn9P4eHe2zSiWdDcuGHP69NHXMUFBwNjx4qFl1GsIoQQQgghhBBCCCGECE+1CLN7926UKFECJf4/A9+lSxeUKFECvXv3BgB07doVnTt3Rtu2bVG6dGlcvnwZa9asQerUqaPVX+rUwMKF4i6pZUvg999lIvX+fSBNGnE3pLmbSp9eAo97oksXYPZs57zKlc3xMDTefFNiUVy8qIs03ihUSFbrr1ljTv+/xza88ooIPe3bi5BTv76kDx8OVKwo+xMnymSx1RIAkEDrVhFEI08eGbNGunTO5ZyMk2rVks/ozBlzYHkryZPLZ9W2LTB5snymrVrJuOKaZMnc52XMCHTv7r2NRYvi3p3Ys0LVqnHTbvLkYlXihCZmREXZryGnst9+67lMo0Zi1QaIm7cBA+xlrl0Tq7ZKleznhiamTJump50/b3bJt2mTuE1zqgfI+3D3fp3Yvl233Nm9W6z9WrQwu4j77DPf2yOEEEIIIYQQQggh5L+CSyk6kfFEUFAQAgICAAQiKiqNX+6+zp0TceLjjyVA+ccfA998I6v5X35Zj/swejTQoYO5bky+FesYBw+WfgERh7SV/e76iIyUSeDs2X1rXymgdGlnV0+3b8tq+Xz55LMYO1ZEHyPZs0v8kGrVgJ079fRTp6SeU7/HjgHLlslk9tq1ZjdtGsWKxZ6VTsKEZoshjfv3JabI33/b83r0AF58UawcPHH8OJAihcRBsfLXXyJcVajgW0wUEn0yZQJu3nTO27jRLCa648wZsUqJTZInF0s4ANi/X4SZVq0kXs7evZ7rzpgBfPSRfqyUXJMZM8rxypXmmDiAiMtDhwLFiwPjxunpuXOLm7PVq/U6p0+br1Hjb8rmzcDixXL+HjkiQqkn0dId69aJQDxunG/fASGEEEIIIYQQQgghTxIUYbxgFGGUSuN3/chIs5uwW7eAn38Wd0HGWAuPHsnk6vbtchwbIsxXX0lslMaN9bQzZ4Bhw4CuXSWweHQYOhT4+mvZ379fJmvLlAF27ZK0zJmB116TmCBaUPP794GUKcWK6I03zO1p7/XePd1Sxmly2CjC+PL5WMUil8u3elWrSv/G7y1LFoktYuTkSQnkrpRMTFevbs5/9Egspz780HN/x44BadMCzz1nz9u2TT7LyEggUSLvY/eEr++fPHncvw+kSiXX2sGDkvbyy3L9+YNSIvoVLmxOM+JJaN61yyyi7ttntoJTCpg+XYRmq0u29OkllpAWn8dXtPEUKCAxsAghhBBCCCGEEEIIeZp4qt2RPQ1Y47RkzAh895092HWyZLEXw2TdOhE/hgwB3n/fPKmaN6/EeImuAAOIuKMFFy9eXNI012aAuEpbskQXYABx5ZYggUzYurOwSZtWxI8lS+wCDCCWCgBQp45v4+zTR9//4AOZfO7eXRc7rKKJRqVKMlYjy5cDOXKIZcHvvwMbNogAA8jnW60aMGWKWK6MHy8WFUmTuu/DSMaM8vk4kSKFvCZMKO7WYsLRo/7X+eCDmPVJYofUqeU80wQYwH8BBhDRJCjIfX5UlOf6lSqZj2/ftpdp1sw5Js6dO8Cnn8p16Inr13VhKCRET0+c2FwuIkJEmR9+EFdoFBgJIYQQQgghhBBCSHTxd25p40bfy1KE8ZEWLeK+j+7dgW7ddIuS6FKpkrjCsgoJccmYMeIqaNEiz7FwUqYUl0ZRUcD8+bJv5J13gHffda67caNYlWiu1bxRrZq+37u3rKQfOFCCrp8+DfTs6VyvdWt7WqlSIi41bSoikNUtkssl1k1Vqkh9zd1TunTmiXONFSvkNVcuKauJLRq5ckmMoQIF9LQxY8Ql2eTJ5rLFijm/D42sWeX8NbpsS5nSHHzeHV98AZQtqx/nzy91jeTLJ+70tm3z3p47atf2LgD4i6/nyX+JkiWBwED92CrGhoZ6rh8cbD6+dct8rLlN88SNG/r++fNAp07678DEiXK+fv+9HL/1ll7W6o7vo4/knP7mG6kXHVGKEEIIIYQQQgghhJBOnSS2ubtQBQCwfj1w4IDsb9yox1L3BYowPmJdhR0XpEwJDBok8VWeNnLmFOuQunW9l02cWESLBg3sFkGeKFxYVti/9ppv5VOl0veTJtX3XS6xCDK6/3rvPXkdNkx3ibZunVi7/Pmn72N04qWX5CLWiIoSC5l798Q9nDYmI8ePi0hijaGRIoUEdq9cWY7feguoV89z/1ev2oWbF14AsmUzC367dgG//WZ2F5Uli7iQe/QImD1bgrkbrSE6dxa3bD/9JC7p/CEsTN9v1Eg+g+gIkLNn6/ua9VWhQhILidipWlXf166lkSOBCRPE0ssfDh82H/sSD8coDterJ+eOdj5/9pm89ukjLvi2btXLnjtnXpEwd6653fPnzceRkbIpJeevlagooFcvXRAlntmyxfx9EEIIIYQQQgghhDwr/PSTzC2tXm3PW7FC5i0rV5bwAIDMg/sDRRgfiWk8DvL4cSfCaOTJAyxdKhYcc+fKa+fOen6lSiIwGFfjRxejhYAmuAQEmCekNUuV1q1FfLFanGikSgWsXSuTy3/+qbtpA4BateS1Zk09to0RzcqoSxd5LV1aLAiuXJH9Ro3EvZOG5mYuaVJxTZY5s7hd+/ZbcW01YoT+fhIkEDXY07UyebL8mCklYty9e8CmTXrcnNKlJW/8ePdtaMycKd9Pw4ZSf9w4cZU3a5b/P4RG+vaNft2njd9+A/7+Wyye2rRxtgLzhNHlIGCPm+SEyyVxserWBfbulbRz54Dmzc3l+vWz102QAPj1V+d269bVY8ZERMifYooUUid5cum3ZUvJ/+MPcfHXv79cKxERkj5woAikmkB486a+wmH+fLPotHWrWNQdOeLZXNUoNrojPFxeDxwQ8TeuMbp584XgYInl9frrzoIWIYQQQgghhBBCyNNEcLB4PurRwzyvY/Qgo1Gzpvk4PNx/gw2XUvSk74mgoCAEBASgU6dAjByZJr6HQ/zg2jXd2uX6dREQ4osWLYCpU8UC5eRJ5zJXrgCLF0tMDXcCjBMhIbro0q6dmMZVrWq3ogFkQvjkSaBIEc8B2FeskPqahYI/hIRIIPksWex5UVGe+9U4fVqPueNEnjy6FZEnfOnLyu7dj8ca7YMPgDlz4r6fZ5HJk3VBxcrVqyKWvP22+3yjFRwgsar++gvIkEGOlywRqyxNZOrTR2J5AcDzz4v7vDFj9PqjR8u1Z+Xvv+UaGjIE6NjR2UXkpk1SZuhQEcMAOV64UOJkxTY9ewIDBsjYypUz54WFATt2iIWU8Wbi0iWxdgSAu3fjZlyEEEIIIYQQQgh5dggKAtJEYyp93z5xUz9woDm0gj/cuSPzq82bA/XrO5eZOFH3yLJtmx6OYeRImfcZNUoWsadIYZ9TvnEDmDRJFqn7qqxQhPGCJsJ89VUgfvyRIszTxMOHuphx/77ZMuZxExgoK/gbNACyZ4+/cTxOjALIZ5/Jj5910tcT58+LJcJ33wHLlpnzcuUS6wlfx5A8uUyCDxmi540YoU96G1FKLI3SpRNF3MoffwCrVpkn4aPDhQvA0aMSByk2WLNGrJCiI5z9l7h4URcUjNStC/z+u+yPHg20b+97m1mzirhjZOlS3c0hIDcerVuLhV316np6njzO53KjRmKpFNto18SrrwLbt5vzWrUSgatjR7nZ0Dh/XncdefOmHvOKEEIIIYQQQgghxMrixTLP0revLGz1xsmTEs/722/Fy8+FCzL3d+SIiCDGOcahQ4EFC8TTTkCAc3tZsugxiSMixBuKFaMIY2TYMJkXOntWFuKuXAm8+KL7sfuqrNAdmY/QHdnTR4oU4q5r1ar4FWAA+VHo1Om/I8AA8oMJyI/ohAn+CTCA/NiWLi2ihxVr/A93aIr5wIESI0aLh1KkCNChg7hYcqJKFQlibyRPHjE3rFVLfow3b9bzNDdvVipU0PdffdWclyQJUK2ac71Bg5zTAWc3XfPmieVHpUp2wYqYcRJgAF2AAfx31xUWJis82rYVcW7WLLMAA0j+jz8CNWqYTVudrGMA+U6vXZP92HABdu2amNpqON2AaLGjfvpJrg/NTZuxf1/cqxFCCCGEEEIIIeS/i+buvm9fCQFhDNNgJSwMqFNHyr3+uj6feP68zOda449//bV48Rg1Cjh1SubbFizQ80+f1gUYAAgNde7X3Vzx3LkiwAAylt693Y/dHyjC+Ii/ft7Ik8Fbb7mf6CZxS86cogZrbpxiglVx9tUd0pYtIuJoVg0zZohJ4+rVMgm9aZPnGDDXrsmq/+rV5UfcKMYaRZqoKOc4NOvWSd2vv7b/uCdJYj5+4w3gzTflz6dbN/djMo6hSRMRgxo21NOsfiqdsPZNzHz9tX/l79wRoXXcODnXmjb1XP70aRH0HjxwL8IAQNGi4hYteXLg/fclLSoK2LPHLIbcv++5v8uXxQVb6tR6mpMIY2T0aPnfa9pUBCQNX0WYGzd8cxlICCGEEEIIIYSQp4czZySOilHosBIVpe9/8IEsTLcSFCTzc9myiacYwHl+Y8kS5z6CgiQ29M6dMi8WFiaeRgYMMJfT4vBq+5rI425ubNcu8/HChc7l/IUijI9QhCEk/li3TgQULZZHvXq+1cuQQSxXNOEic2aJiZEjh17mww/1fau1TpYsEk9oxQp7fJkUKfT9+/dFQDl7Vo8rAshE94oVwA8/2Cfbtd+UKVOAb74BNm4UIUdLv33bLiCWKmVuZ9YsoHx5+/tevNhzXKH9+93neWPgQDHZ9JdvvjF/Zv9lSpWSP/tUqYBbt9yXu30bKFNG9n/7TW4mxo0TC7HmzSV9xgxxdfbFF2JhM2WKxG0xsny5ve2ECYE2bUTg9LQiZdYsfQyArDIJDXUOVGckSxYgXz5xXwaIiW/Fip6tjOgclRBCCCGEEEIIebKpUEHmhozzaVaMIgwgcxcaDx/KoummTcVF/+3b3vvcu1fKjxunp+3ebbZySZZMvNhMnWquq3n5AGTuLlcumeMbPNh7v1ayZvW/jgZFGB+hOzJC4o/MmeXHdts2cek0fHjstf3CC8D48UDx4sAvv9jzPVkqaGjumnLnNsf7MGIVcTTF/ZNP5Iffmp8+vbjS27NHYnRs3ChWL76M5733RBj66Se9b6N1hjufmb7QvTuQN6//9QYPFndY69d7tvT5r3Hvnu9lt24VSy4AmDNHxMiPP5bjkSNFcGzZUs6dr7+Wm4vDh+VmxUrChOIm8OhREQp95e23xc1f2rTuhRijmHL4sFgKTZwo53CvXrLS5coVc/mqVUWkCQ2VcnHt9uxxCj5hYf67uCOEEEIIIYQQQp5ELl+W1/Xr3ZexijBGseTDD8UbjFP4AXeUKiWLRNu21dM2bpR5Mw13z/n79un727bp+7t3+96/RkyMNCjC+AhFGELin1y5xNQwJiKCE61bi3WIp0BbTowaJVYIP/9sTmvbVvxTGqlSxXzs6w93yZLSZoUK4pbKFxEGEOHl88+BRYskaHyLFnqer59ftmz6fuHC+mqCV14xl3Nnwjlhgli/jBmjj6liRYl5c/Cgb/1fvSp/3k5Cwn+N+fOBpEn1Y2McG0BWkmgMHSru9l56Sb4HK8YbD38FiXPn5NWdeGMUUJQyuzMbNkxWumTPDhw/LmlTp0r8rk2bgEaN5Bzp2NG/MV28CERGOucFB5vj2nz2mcSFevhQN382royJTZQS0TJTJvd+aAkhhBBCCCGE/PdQyhy79UkkPFzmlZxcj7mbS/jhB+cFp0qJa6/Fi2NzhN55+23g5MnH26cTLqX8m365d+8eVq9ejcuXL8PlcuG5555DtWrVkC5durgaY7wSFBSEgIAAjBgRiM6d08T3cAghTxiRkd7jawDyx/X553rw8+iuxL9+XSawq1f3b9XApk1iGQGIqOGLmHP8uEyaf/aZuMAyMm2a7hIrcWLdx+b770sQM0DeY0SEexF79GigXz/dZVWpUmLB888/+jiNFkIvvSSWFRq9e0v9uCJNGrOA8KxSurT4PLVaY/nChQsS4yYwEDhyBOjaVb7D9Okl/7XX3Pt//f57cQ/orl9fr5FVq+R6qFdPrKwKF9ZjMD16JOJl6tQyRpdL72/GDGDSJFk906+fWOn4y/79Yq3WooXz+wgL04Wzo0dlbIQQQgghhBBCSOvW4pHlyBFZKBhXPHwITJ8O1K4t80m+cPq0eFRJkUJCBOTLJ+7JAfOzb65c4tliwAB57r5xQ9KcGDBAYsnEF/fu+R5j2h98nbvwyxJm8uTJKFOmDLZv346oqChERkZi+/bteO211zBZm1l8RmFMGEKIE74IMID8hvzyC/Duu0CHDtHvL0sWWSmxdKl/9UqVkrHmzet+0rtbN+DQIZmM7tkTKFhQxmwVYADgo4/EBdbu3eIiDhDrhe7dZV+L/+LJirB9exGVNBo2NK8CsY5zyxagWTP9+LvvxJ1bXPHWW3HX9pNEdExwNZ5/HqhUCahTR26mEifWLWUAYPt2ZwEG8By3CBABb/167yuDtPNv0SKJX6PFSerYEfj0U9m/f9/eTkSECDCAuEu7e1fOd2tMHSPWm6sSJYBWrXSrJKuLNuPqH1+t2AghhBBCCCGERI+hQ8X7xtOA5hK/f39g9mxxkx8XFhvdu8ui4Fdf1dP++cfuwQUArl0TbywvvCDP8+vWSfrp0+YA9xrnz8vzdObMsgByyhT344hPAQaIGwHGH/yyhClYsCD27NmDVNoS0/9z//59lCpVCv9oy5efITRLmAkTAvHZZ7SEIYQ8vTx4IJPkSZLoAsdnn4kvztq1o+/mTSlZEZEvn0w0HzkirsR8NZDUxjJpkvwpa8KM07/TuHG6D1DNdHfhQuCbb/R6WbKYxZ3y5c2uugAgRw6gfn2ZNP/1V+dxPXwI1K0r7qoeB199JTcw8+c/nv406tcHFiyIniWME+nSeRYyjOTMKa7EnMiTBzh7VtyXrVxpzz97FmjcWKx4rBw9al9JVKOGiJeaMDh5ssTQsVKvnpxTgJxj2ufSo4fcUO7era8e0vK6dwdef13i8nTrpt/0t2sHjB0r+8ePi7AJiDu+Dz+UlUDvvmsfw9WrIlKl4W0HIYQQQgghhPjEgwe6V4SbN4GMGX2vGxQkW44ccTM2I5s3y/yJ9lxZt66+sO+NN8STiS/cuCHxR62WJ+Hh4hL/5ZclVnD+/LoVizbPkiCB7B87JnFfNcqXB/7+27m/YcPE6uWll3wb39PM2LHm+DMaefMCZ86Y0+LEEsblciHYYUlqcHAwXLE1e/OEwpgwhJCnnZQp7fFbUqUSE9OYxNlxueRPXVvp/+KLvgswgEx4t24t1jW9e0tao0bOZXPmNB+nSiXWMUbR5do1803I5s0ysW7kzBmx5NHi3BgpUgT49ltZxbFqlbhF0zbN0seJF16wp+XPr+/Png0ULeq+fsqUwLx57vPjioULzRZGMcVXAQZwL8AAIrIA8h2sWCFC4enTen6DBs4CDCA3olZWrDCf51pMGiuLFunlEySQOtOnAwMHyrnltKpq0CARYABg8GA9XRNgAPONWvHi4lrvvffM7ezcKen+iJiEEEIIIYQQQsyWGv7G5MyRQ+YbnGKfWLlwQRbOuWPqVODjj50tR3bvlpi/BQroacbYr5s3i+v2Dh1kcj8y0n0M0yxZgNy5gVu35Fny+ed1l9ubN0v84ogI8zxQs2byXK0JB4ULS9qOHSJiuRNgAJmveNYEmOrVndM//1zmNjRPGxqLF8vczbffylyF0zyQO/wSYYYOHYo333wT9evXR8eOHdGxY0fUq1cPFStWxLBhw/xp6rEzduxY5MmTB8mSJUOpUqWwefNmv+pThCGEPIs8Cb9t9eoB48fLjUGbNhI03p11Ss2aItRY3bFlyGA+PntWrCe0eDPz5ukxbLp1M7uYNAaFK1JELHkGDNDTtDgiLpfUtf4Ja2gCjVFAqlNH33/1Vc/WJvFpTDp9evz17Qs1awLLlskNjlJyc7h3r/vypUo5pz94oO9rbsysJEggFlI1a8pxUJBZpPL1Zj4szHyDWqOGrG56/XVzueHD5XXbNjlHtDpRUeZy4eGyEmfBAt/6jy127JDPnhBCCCGEEELikrAwu4tnX9CenYxixcGDvtcPDRUX1oB4QPj7b/GC4GThEBwsiz6zZXNvAdGihcQg1Z6z584FihUDTpyQxX6A+dnUupCxQwcRYmrWlH7eeEPmC4xeOox9f/utPEtevCguuQcO1PMSJxZPERrTp9uFg+nTJZ7r2287vx8NJ/dlTzvt2pmPK1YEZs2S/bRp9bjOgAhdL70kbscHDACqVfPPfZxf02+1atVC9erVsXPnTly5cgVKKWTPnh1lypRBQl8DI8QDv/32Gzp37oyxY8fi9ddfx4QJE1C9enUcPXoUzz//vE9tMCYMIeRZ5Elzd5Qggfz5u8PlklgwVl59VW5mtDgjLpe4sdJImFBWowwcCGTNaq6ruYgCZNWIJ9KkkRUlTmJK4cLyZ5wmjW7RYrwxSpJErDkOHXLf9pNGpky6kPWk0L69eaVQbBMVBVy54j7f3SokI0rJiiTr6iirRRYAfPkl0KWL3WUeIPF1XC65yV+6VNzxjRsn7Z88KTfJX39tv3H0hZ9/FrNzbzfa2vV44oR5tZY7Ll0Ss/pn3ECaEEIIIYQQEssULSrPOf64EiteXASXQ4fMizNr1DA/jyslCyaTJNEn2TWMIsikSfq8QNq0slBzzRpxl925M/DFF3rZ8HC7txEjWrzUDz6Q15Ytza6/NNy5QNfcct+4oc9bzJkDvP++uE/XmDjRXG/9evdj8sS2bdGr97RRrZp85lOnAiVL6ul58tg/uwIFRHzKmRN47jlJi+5iZr+rJUyYEGXLlo1eb/HE8OHD0bJlS7Rq1QoAMHLkSKxevRrjxo3DIJ+jNYUjLCws7gZJCCGPkaZNE2LVqgRo3jwcz8JP2/jxwI8/JkSrVpEe30+GDHaT4Lx5gfHjEyBLFoVSpZRPn8eOHS4sXZoA1atHoXx5UekDAsKQPLnWvtyJpU4dAe2vNnnyMHTpAly7lhBTptgXLnTqFPb/vj3cxQFIl07h7t24n+GePTsct2650LHjE2AuZcDo4iuuCAoKB+C8+uLixSi4XAmQM6cC4Pw99O0bgatXff/cSpaM+v8DgtlAOU8eIFkyhUuXwjFlSqJ/80NCwlCxYmJcueJC+/bAp586n7QPH4pbPasgsnmzCx07yvsLDfV2wsv5ePhwOHLn9uzsdurUBGjTJhG++CISgwdHemmXEEIIIYQQ4g9BQUDq1M/ugqeTJ+XZY+3acNSt6z3QhlLAwYNS56WXgNGj9edvAOjSJRI9ekQidWrgr79cWLBAnoG++CIc27e78MknUUicWLOCsT+H169v77NDB30/ODgMwcHA0qUJ8M8/LqRPr3D7tguAPO9fuhSJsLDIf9s+c0YhXToFPx1TmfjgA+DMmQj06PFkPac/ieTIoXDpkv1iWbw4DA8f6vGDtO8nQQKFsDC7D7mXX5ZXd3NFSTwpcQZcSvkaPsbMwoULUd/pbHzCCAsLQ4oUKTB//nzUrVv33/ROnTph//792Lhxo6l8aGgoQg2+RoKCgpAzZ0506NAPGTJYfIMQQshTilJAVFQCJEzI37WYculSNty/nwaFC+tBRnbsKIOjRwujSZM5uHYtC5RKgNy5z/+bv2tXKSxfLkFEWracjEyZbiBZMvlH79u3j62P3LnP4ty5PACATJlu4ObNzKb8pEkfITQ0Way+r759v8PevSWwdKlEjk+UKBwREf8Ns9AqVdZi7doq8T2Mf6lXbyEWLdLvubp3H4hBg77997hvXzEPUwq4dSsj0qe/gzt30mPMmHYoUWIfsmW7jDNn8qJevUVInDgSGzZUwIYNlUx1nVAK+O47OR8bNFiAokWPeBznoEHf/HseemqXEEIIIYQQ4h+XLmXHpEmtUKrUHtSu/Wz6C9aehRs2nI8XXzzqpTTw6FFSDB7cDQCQM+cFPHiQEnfuZLCVS578IUJCUtjSK1dehxIl9iE0NAlGj+5gy/dG9eorsHJlDbf5zz9/Hpkz38Du3a/43fbTToUKG7Fp05seyyRLFoJHj5Kb0goWPI4TJwqhUqX1WL++kmO9OnV+x+LFdR3zjHz55VAMG/aVKS1Dhlvo0GGMKU0775zyfKFPH/scjhPRlt6aNGmCESNGeCwTTX0nVrl16xYiIyORJUsWU3qWLFlw7do1W/lBgwYhICDg3y3n/6NAp0z50FaWEEKeVlwuUICJJXLkuGISYADg1Vd34pNPpiFp0jDkynXRJMAAwCuv7EGvXv3Qp893yJnz0r8CjDsKFBBHo4kThyFNmiBbfqtWk/DmmxtRoMAJn8edOLH7PgMC7gEAEibUrRkSJ9ZXhDRtOsNU/u23/0TSpI+89tmy5WSkTXvXa7n45kkSYACYBBgA+P138w3n3btpAQDTp3+EMWPaYf78Bpg+/SMAwL59JbB8eS0cO1YEx48XxtWrWf8VYJxQCtiy5XWcOpUXUVH6qqHAwDQ4ePAlhIe7X3FlPEcIIYQQQgh5kti/vzh273YTPPIpYP36igCAPXue3vcAAJGRLmzZUg6XLmU3pc2a9cG/x6dO5fOprdBQ3QLh+ecvICzM2SLBSYABgHXrKmPYsC9x8qQPfpcd8CTAAMCFC7n+kwIMAOTP7z1YSosWU2xpFSpsRpcuw1GhwiZTesGCx5E161W8+up2vPzyQeTLd8qUnyvXOXTsOArPPaf7Fk+d+gGs1Kixwu14XK641TGibQmzevVqNGrUCM2aNcOoUaPgMtjCRUZGYsaMGRg8eDCOHz/uoZW458qVK8iePTu2bt1qcqM2YMAAzJgxwzY+d5YwN2/eRJon0WE/IYSQZ4pt21z4809xj6a5AgsODsOsWQlQsWIUIiOBIkXMN5enT4chRw6JZ9KgQSKEhgJ//eW8ziJVKoVbt8Jx5w5Qo0YilCihMHWq2T1atmwKZ8+GY/78BGja1D7pHhoahsKFE+PMGfnvf/QoDEoByZM73/R+8EEkhg2LRIYMwMyZCdCypaeJfIXw8GfUvv4JoHXrSEyYoH/fRndk+/a5sHGjC998I9/P4cNhKFrU/J22axeJ4cMjsXy5C3nzKhw5kgBly0Yhe3agYMHEOHdOvrsBAyLw1VcUegkhhBBCSPwTHg6kSiX3tefPh9nihPrDzp0unD3rwsKFCTB0aAR8DDXtF0FB9pihb72VCJs3yzOed5fCcUNUlMRxtaIUEBnpW6yMJUtcaNTI7Bp540YXqlY1e10IDQ3DTz8lQJIkQJs2Uf/2r5TEfF250oXz513o1IluueKaFSvCsXx5AowZoz9HZs+ucPmy++f21avDUa2aZ08aDx+G4f33EyFtWoXp0zUXbmHIlEnyCxVKjLNnXcieXWHXrnBTzJ+ICODyZaBAAbmu33wzCmvWROCNNxJh5079OmnRIiFmzXJ+/tVImlTaaNgwEjNn+u9W21d3ZFAxYP/+/SpHjhyqTp066uHDhyo0NFSNHTtW5c6dW6VLl0717t07Js3HCqGhoSphwoRq0aJFpvSOHTuqChUqeK0fGBioAKjAwMC4GiIhhBBi4/59pVKnVqpsWXve7NlKNWyolNyCKnXjhr2MlqdtTZrI66BB5nIHDtjLtmolecOG6Wn16slrsWKSN2mSnqcxdqwc79tnbs9IVJRSc+fa+9S24sXd58XVNmPG4+8zvrbnnzcfp0+vVPbsSs2f71v9LFmU2rPHnJY8uXy3efPav/djx5S6csXfs99Mjx5K1amj1OXLSrVtK+fsli1KDRyoVGSk+3q//y7lw8KU+vtvpTp2VCo42HNfQUFKffaZUuvWxWzMhBBCCCHkyeHhQ/0e9fjx6Ldjfc558033ZSMjlbp3z/8+xo+XtidMMKe/8orz85U/PHyoVIsWSv3xhzn9/n15TlNKqfBwud/WjjV27pTn059+srf74ovyXBEUJMdhYUpt3y5tWRk+XH8fX32l1IUL0q71ueO11/T9oCDpVzu+di3+n6v+S9v69Uq1b29OCw93X75MGaX++cd7u0b++UeuL+v5eumS53Naa6tSJTkuV87cfmSkUh995Pna2b1bqXbtlLp503NfMSUGl65w6dIlVaxYMVWsWDGVLVs2lSlTJjVgwAAVpF15TwBlypRRn3/+uSmtcOHCqlu3bl7rUoQhhBASX4SEuJ9k3rtXv5Fw+ouKitInxatUUSo0VG6cre0FBentpEih1MiR+s3zzz/reffuKTV6tFLXr0veypWeb2Tc3VwppdStW3reu+8qVbKkfvzpp7F7w3j/vm83f5cvx//N7dOyZcni/Bm+8II5zfiZGvnrL/8efrU2EiWy9zt1ql7u7l2l1q7Vz3GtzPTp+n779s59DBig1Msvy0Opu/OWEEIIIYQ8nRifeQ4fjn47/fqZ70Vz5HBftlYtKXPsmEwmR0R4blvLt95jaxQtGr371AMHlOrZU56LvvtOb+PkSck/eFCpJElkIZJSSn38seQPHeq+/9dfV2rIELmvN453zhylvvxSP+7aVR9D165KPXhgFmEApVwu788f/6VFc0/iduaM+XstV85+rho3Tczw9t3GBlpbVarIsbYw9MUX9TLXrimVObNSnTvHTp/RJdoxYQAgMDAQU6ZMweXLl3Hy5Encu3cPa9euxbfffovUqVPHpOlYpUuXLpg0aRKmTJmCY8eO4YsvvsCFCxfQpk2b+B4aIYQQ4pZkyZzNva04Wb+6XMDffwM//ADMnStlXnnF3p7x7/r994FOnfS0Fi1kW7IECAgA2rUDMmeWvKpVJc9deLiGDeW1VSvP4+3QwXycJ4++X7MmkF13FeyW5MmBn3+2p9epA6RK5VynZEnzcbZswEcfee+LANevO6efMrvlNX13kf+36j52DHjrLaBQIdkPDgbu35e8tWvle+jTB2jdGrhxAzh9Wm8jIsLe5/79+n6FCkCVKsBrrwFHDXE8HxrC+o0eDdy8aW+nRw9pa4rdLTEAubWvWFHaVsqed+yYuEeITQIDgXr1gAULgJ077Z9vXBEVJab9hBBCCCFPE/PnA8uX6/eMjx4BGzeKKzLjfaTTPSUg955B9vCbJsL88AK2bJm8Dhkiz1cVK7ov++efQNq0wMyZ5vSvvpJ7QgAICTHnHTgg98xXrsAjxYsD/fsDvXsDxogM+fMDRYoA48fL+/rlF0mfPl3vWyn5/AD9FZDnzG++kft6I4cOAcOG6cc//ABs2CBj+OEHafP2bXMd6721E/Pney9DzM/SvlCzpuf8998HVq+Wdj/8UNLy55fvH5A5B43XXgMqVwb++APImFHSatfW83v08G9s/qKNpXVrea7cskXPy5IFuHrV/dzFYyO66k23bt1UQECAyps3r5owYYIKDg5WzZo1U5kzZ1Y7d+6MTaEoVhgzZozKlSuXSpIkiSpZsqTauHGjT/VoCUMIIeRJZP9+fdWHJ5dMvqC1o61+ig2Cg8XMPSTEnhcaqve5fr1Sb7+tHy9Zou9bV4PVqiWWD9YVNKlTS7kOHfS0hg3F4sZYX9tWrBC3atYVOMePx/8qo6d1a9bMc/6lS0p1765U8+bO+evW2dM+/lipGjU8t2s0dHZXxnhOAeLKwYpTPSNr1ujpY8bI9RcUJOdjr16S/v330btWrJw/r1Tu3EolTOh5THFF06bS18qVj6c/QgghhJCYcv26fr+UOrVSV6/q7ph79BD3zVr+7t32+oGBkpckied+vv3WfG+WM6ekd+ggbqRDQ/WyWhmjFbnV3ZKGk8W3tn3yiZTJnNl8T5gggexXq2Zvb+ZMperXl2cyY1uadY5xM1oraJ+ZdZs+XakCBeL/meNp2RYujHkbffrI644d8p1GRnou36mT+Tk7WTL3ZbNlE0sm67lq3fr1M59Xhw4pdeeOfrxxo1jF7N3rfF4bz7fgYKWqV1fqww/luGdP5zr+8vrr0t68ebHTXlyC6FYsVKiQmjZtmoqw2NP17NlTpUyZUi1evDjGg3sSoAhDCCHkSSQiQqnSpWWSOqZoN0Zt28a8LV+IitL73LRJqRMnlHrpJaVmzVJq1So9T6NZM6XeeEP3KWy9OWzZUtLv35c4NmfOmPsbNUom3leu1H0bFyli78foPqtx47i9MX/pJbmJje8HhGdh075Td/m//mpPu3hRqc2b9e/eqZ4RzTe3t80Ts2YpNW2a9+tDezDxt/3YwHhtOsWjIoQQQgh5Erh0yRyzxBp/ondvfT9FChFltOOtW+3t7dih5z965NxnZKRShQub+3n+ecnTjhculHIREXpaQIC5jtUdmnFs7jajO2ftnlDbz5DBHntGy6tSxXvbSZP6dp+bJk383/c/zq1RIxGetNio7rYsWeQ+XzvW4u14qjNwoD1tzBgRUozfsZWRI923eeyYud9u3cT91nPPmcv17GmP9+OuzR49nMfhK9WrO7+fBw9i1q6RkBBxqWd9T08i0XZHdvToUXz88cdImDChKf3777/HyJEj0bhxY4wePTqGdjqEEEIIcSJhQnFRpJm5x4RkyeS1evWYt+ULRrPljBmBAgWAgweBJk3EnVTlykDnznqZX38FNm0CEiWS48GDgRdekDqTJwOjRkl6qlRAly52M+yOHeWzeucdve9KlfQ6Gsb9bt30/SpVxJWbO9y559q7FzhyxJyWLRtQqpSYaQcE2OucOeO+HyveXA/8V1i6FGjQwH1+8+b2tJw5gTfeALZvt7t20AgKEhd1v/xidw3hL2FhYsLfrJmYwhtRStynaS7bHjyIWV8A0LatuGfzx2UGIC47NNx9LkaOHXN//hNCCCGEeCM8XO7zQ0O9l/3pJ7mHHzIEyJED6NVLz7NMTZru3VKlMrsg89aX1V2WRv/+cu/jifr1xcWX5o4J0N2JaWjPIfv2AQsX2t0kO1GkiPl42jTzeNOmFRe2Vtau9d62L5894N1V27PGuHHAiRPA7NlA06byWqCAvdzZs/Icu3YtcP48UKuWpL/+uvu2P/lEf7bVaNtWfx5wh9X9m5EcOeR140agZUtx/TZiBHDuHLB+vbjnUwr4/nvz8zgg10uxYsDYsXJeamTI4Hk83nD3flKkiFm7RpIlA156yf6enkjiSt1ZsWKFSq35B3mKoSUMIYSQZ53Ll8Xd0uNcPTJrllitxBdBQUoNHqzUqVN6mnHFmnE1Xf/+ku9uhZBSSm3YYE/XVqRpx8mSmccQHCwuD6xtGYNeetqMVgvcorcZV0latxIl/G/v9Gn5DqOilDp7Vlw3hIebg8Fu2WI+D4YNk/Ru3cRay1P7mgH68ePiZkK7ZidPVurNN5U6ckSp997Tyzu524iIUGrtWjlnrZY5M2fqdYsW9XwNnT1rPm8JIYQQQqzcvSubOzp2lHsJzeWWJ5zujTROnXJ//5Q5s/m+ZeVKCfTeqpVuab92rZ5/6JCknT6tVM2acu8WFua+/Y0b/b9ndPd+Yrr16kW3YenTR7/u0KFKbdum1MOHzudg8eLO36UTXbuavxdtf84cyT90SHeb/M47knbkiBy/+65zm5GRSlWurFTdukp9+aVSiRMr9csvSv39t/frxx9++02s8919Dr7SsqX3z+m/RJx+DHv27InL5h8LFGEIIYSQ/w6DBin19deyv3+/mIprcW2MN9u//26+ody2zX5DrtXr3l2OJ06093fypP0mvmpV/dhTnBql7K4J4mobMMD3sjNmxP/Dl69bihRx0+5rr+n7Y8cqdfu2fly5snx3J054j3lj3TTTfe04f37PYpzR5ZqGtYzRh7NRhHn5Zc/Xyrx5elkrEREiZLrj1Cm5Lq5f99yHP8ybp9SECfrxhQsyuWJ1+REX/PSTuPsIDo77vgghhBAjhw9LHD3jwiIrS5cqlSOHiAWPE6NwERamp1+/LtuKFeZ7EiOrVil17pz8tzZvLi6enO51NI4d83wPdfiwvj9xor7/xRcSK1KLr6Jt167p7rfy5DHHlImNbfDg+L8Pju9Ni3kS21u9euL6+a23zOnNmsmiJ0913cU20bA+8x086L7snTvyXDd9uhzfuOEcy/XaNX2hlVIiWvoa89Wd67wnhZs3xa3b6tXxPZInA8T3AJ50KMIQQgghRCmlRo+Wm+1p0+RhVrv5Vkp8S1tv4rWb56go8VvtDu1hoFs3OTaKMEo5PyDkyqXXd/cQkT27vHryM71tm28WNYMG+fbQ07Gj5zH9F7dGjewWN9q55O+2Y4cu6mmbp4f4NWvs55u1zLx5YqmjlPiiNuZt3+7+vDUKkcePm/O0uDa//upcN2tWya9e3X37/mA8h5culTTNkil79tjpwxPG74IQQgiJDSIj5T/tyhXP5bT/oPz5vZfxFnQ+pqxerdSiRbJ/547ES9H61t6HNXaLcdNYt05P8zZRf+SI1HGKAehuK1fOexnjBH6SJDLZHt/3lM/atmaN/ftNmdJ7vUaNlGrSxH1+w4bOMSOt1wOgVPLksujuzBnn+2YntDg7s2bF5Goh/0WiHROGEEIIIeS/RLt2QHAw8PHHQN685rykSe3lE/z/LsvlArJnd9/ugAHA4cPyCgDffCOvjRqZyz3/vPgl/uQTYM0aPX3uXImjs2oVcPkysHq1+PM9f14eL7JmBbZsAb780t53mjTu/ecOHKjv++pjt359ee3a1bfy/wXmzQP69TOntW8fvbZefRUYNMicZoxfZMWXuC6NGsl50LGjnONGXnvNXv7KFfFdPmWKnlaoELBnj348a5a89u/v3Oe1a/K6cqWz//KgIDmH9u71Pn7A7Of93XfFt7zmz/ryZXPZZcvEb7c7v+ZKAcOHSxtOTJwo16hS9rw7d3wb79PK4cNmP+GEEPKs4vQbH1vcu+dbuapV5T8td273ZYyx306e1PePHJH/5oYNgbt3zeUfPdKP//oLWLLEt/FoPHgA9O5t/48ODgaqVQPq1ZM+x4wBLlww5wP6PYIntm7V97/7znPZli2Bf/5xjgHoS/vu+OsvfT8sTOJlkNilQgWJvWnE6R45Uybz8bRpch5FRDg/g0VFeX52GTNGYuhs3w7cvw907y4xRd9+27dxL1sGHDgAfPCBb+UJ+Zf4VoGedGgJQwghhBAnfvtNd/cUFaVU06ZK9ewpbqYuXIhZ21ev6pY02kqtSpVi1qaxLW3TfHRb04cNU+r+fVkFOHq0+Ef2ZUWb5mrC0yrHp3WrXz/+x+DvliGDrDDUePjQ/zbOn9dXE96+rdT777svaz3Pcuc2n3+XLpl9Q1vraXToYD+njG4atPeiufy7f9/ze3C6Brp2db5GPLlZM9bfudOe9sUXznXig2HDlPr009iL9WWMmaXFuyKEkCeFqKjYc8tz9apSzz2nWyhHlxkzlPr2W/Pv8Jw58js6ZIie9uiRrMDX/tM0PP1Paty9ay537Zq42nrhBT2tWjX7/2JEhNmK9OpV5/bv3LHf07Zqpde7cUPS9uzRLbABcXv27bfmPnftkrLWdKf3+eOP8X8Pxc03y+0yZXxra9Qo99/33r3iYvnqVTmXtPzdu/WYPe3bS5rVpd7ly0pt2iTnqlavXj3v15Gv7r4IiU3gvch/G4owhBBCCIlP/v5bzOpjKuwopVTZsvIQMm+euHrQWLBAKZdLYmqsX2+fuF22TH+AWb7c/EDz8cf2h5sLFzw/iB08qNSrr3qe0He3xZcYMn58/D8MR3f75ht52HzvPf/rFiok7kTq1hWXDZ7KKmUXRO7c0c8LT/WMWPMbNFAqVSrdPVpgoFLp0onLsYkTdZ/tvrSvpeXKpVRoqKRFRcl5Vb26UkmT6mWsgYSNvu3XrrW32aGDTGx9953/fvenTRMRN7ZEE21MseX/3yjgnTgRO20SQkhs0aqVuIw6d8638lFR7gXlLl3M/x9RUfLfpnH9uvmeLCxM7musv99aGxs26GnJktn/mzS3tHnzOtd3+p988EAmp69d08vUrOn7hPi0aWY3UNag3tp7SZRI8o1uda1tjR2rl/O0TZ+u1JQpSrVu7fn/+vZtEani+97pWd8KFfKcf+iQ8/dt3Xx1sbt2rfP37cS4cRIvyEhkpC76uUNrt04dPU27rytVynNdQh4HHk57ohRFGEIIIYQ8O0RE6PE/rGgT0k5ERSnVubMe+HzAAP1B56OP7A9TN286P4B98YVSBw7o5bQVoU7bnDlK1a4tD4HG9Js3nf1AJ0kikwru2lu9WlaZRvdhddy4+H9gjslm/M7ialNKqeLFzWnZsin14otKff21+3rGgPbr13vvY+dO/8elYUxv2VKfXHNXt2pVmRBSyhxfyTippqW1aaPU1KnO/WrX2GuviXCpsX27+PHX6mzb5v469MbBg3qAWK29P/6IfntGjJ/R0qXyHsaPj522HyexJXIR8rRz9qysHo8rQkOVmjtXRILHgfF3e9Uq7+XbtZOymvgQFaXU22/LgoNOncy/4x076mWjokTEB3TBR1tQot0jWcc0f76elimTnq7djxnHfv++WAysXOn8PxYeLkHqAflvHTlSL1OjRsz+w7X7wBs35D1ag5ovWmRejBAXm6f7OG6xt+3b512E0f4v27WThS8ZM9rLpEwp5+SpU3JvEBnp3FbmzM4LtGIbrd333tPTduyQGDJnz8Z+f4T4Sxyc9s8WFGEIIYQQQswMHKg/6BitWTScJrXfecfezsKF7h/+jFjTg4Pt5TduNLvWsG6aVYOnPgGlcuZUKkcOe7q3etyUypMn+nU//FAmpLyVU0rcU/jTtnHi3ZqXNatd6HPaevZU6vvv9ePVq+1ttmxpdrMycqRY69y8KeV69tTzDh+WNG0yT9tWrvR+/a1fL5MKRh490tsIDNT3Fy/23p62wjsqyr1IYXV5o21Nmyr111/e+/CFuBZI7t+XleaffBK77V67ptTrr0tQaEKeFrRreP9+z+X+/tv76nMn+vWT9nPmjN74/MX62xQYqNTPP4urIo0rV3QBXStXubIcG91faSIHIFYe2n7+/GKBoh0vWCCfjbXvMWPM9yNVqkgfkZHyG2Qst2CBb/9jdeoo9eabnssUKxaz//Bs2cTixfhfZd0qV45ZH9z83/LlMx+7W+jktJ0+7ZweFGR2WadtefIo1b27UjNnmq+vyEhn0aZ/f+/XYv/+ukuxKVPMebGN1m7fvrHfNiGxQRyc9s8WFGEIIYQQQsz0768/6DRoYH+YCg83P2T166dPRBtZtMj9g6MRLS1hQj3tr78kVs2aNTLZonH9uoxp1Sqltm6VCQXjSlxv8WpefNF5kt/d6j5usbc1bOi9zJEjShUs6F+7nTpJbBtf2vdnmzNHqVmzzGlOk1edOsm5ZxRctJgymTOby65ZYz73N2wQ9zJ79sixccLPKFqcPes8xrlzJf+LL+TYaHWklFK//CLpkyYp9corMsloHYNSnid9Cha0lzdy5IhSP/2kx/dxolkzpQoXtsdEiCmTJombuMhIEUm0MRuxup3zF2Oco7jgzh35zY3pKt6oqNj/fKPDlClKffCBZ+tLX4mKch/LwlfOnHG2CNm9W9wdPmnWU6dPizun8+ejVz8kRD577ZwdPVrPO3lS3DJqn4fRfZC/51/Jkubr4uJFGXtscvu2rMBXyv3vU6FCenktbckSfb9wYf330ZftwAF9v2tX9+Wsed99Zy+TO3fs/ifF1vbaa/E/hvje1q1zn5c/v1hMRbdtT2LZjBn2tNy5zSKhp/PduFWsKP99H35oz1NKqTfesKcbrXytaC7i3nlHLz94sL2csb2ff7bnZ8hgHkdssn+/LJh5Ev7rCHEiDk77ZwuKMIQQQgghZoyr/bVVnMaJDqXsD3tO/P67udzw4fJqXb2v5U+aFPOxR0XJqnWj2yzjON54wx7Avk0bqXvjhkzKrVxpjh3iy6ZN5GnvkduzuTmtVE6Vyr4aVRNhrGWXLJH0jRtlktWYV6eOWSA0ihqJEzuP57PPzP0YhUyn/rXtiy/kWtAmOI1xB5w2J27dMr9vT+7LtDILFvh4IfuAcSX6t9+aV7RraO7jxo51/x6qVrWvCjZSvbrnzyGmaEGwM2RwX+bBA+9iQatWSiVIIBPtc+aI+OAvWh9Ofe3eLW4PPYltSumf1bhxzu23aeN+FXNwsLnvzp2lrdmz9bS7d0XUM8Zt0to+dcoejFkbz759zum//eb5/Wjcvy8x0x49Umrz5uiJQ3fvehenkiTRx/bnn761Gxoq3/upU/J7ZHQrNHSoXs56TRuFhIoV9XJhYeIW9Isv7H1FRMhmFGFef11eXS4RY2KLgABp9+RJz79P2mcaG7/xxkUo3J7srWxZu0s1wPyb7W7zdL4MHCjWqNb0c+eUKlDAnv7SS+bj8uWd2y1QQPo9d86crl3nBw/qVmnG/O7d5dUYoxEw/1ZOnGh/fydPynW9YoVSR4/Kb5cnQkJk8ZRxMYjT//qQIfK/uW2b83/F7NlSt3hxX65yQp4tEN8DeNKhCEMIIYQQYsYYzDUqSixOrAFurQ97Tixe7Fu5mTOVatHC++Ser0RFyUTc6dNKLVtmHm/VqubjJk2c2zC6f7Jubdo4P9ArJb7ePT34N27sOX6Ktlkn+ytVktfPPhMrIH8mKpwmDbhFb0uY0Dnd6sJl0yZnN2gJEyo1YoT79o0BoxMnVqpWLe9WWrVrm4/bt5dJIE8uZ4zbsmXOvtyNmzXW1M8/28u0aCGTutqEUmSk7qJEK9O6tf1au3VLxps+vUwY3brl23V+54778WoTQ8Y0K4sXyyp5Lb9qVRHHli4VF0s1aogVXpUq7tuICffuibjy4oue29fEOqMPfCe0NtKmldcECfwbz+rV4v8/b16JD2B1iae1P2yYOT0iwrncN9/Y+zBaGVjRJtobN7a3lSOHnta4sXMbY8ZIWrt2IvJ89ZW5jRIlnMfZsqUcR0XJuaetgNfiL2lo8ThKl5bX5MklFkjhwuZYaO44e1apNGnkt9wT1nNZcyd45Yr8LwUHy2e7fbtex2klvLb17y/nmtE6RPvsjP/1L7ygt7d6tZ6uiU0PH4rFnrcFCitWKNWrl/yHGVer79xpdlv0119S3igYaaLykSPmBQ2ff+65zwoVlCpSxLffu2d9S5Ag/scQm1uBAroIoW2ffiruQN1dN8aFRE6bFttn9mxpy5r//ffyu2a8D6tVS+8rIkL/D+zfXyywS5XSy1atqp/f1arp6cbFTC1bilW3O1FWq9O8ufS3d6+8au7u6te319HuLfLkcW7TH374QQSu6FicaM8NnGIl/0UQ3wN40qEIQwghhBBi5vZtcZFkfcg1oj0g/vKL+zLGSdIWLWJ/nP6gjaN6dTmeO1dW71644L7O1q3moLjatn27Uu++qx83barX+eEHPb1cOQkE/OqreppSMgn19dfOYo621axpPlZKPs+oKLMLGV+2R49k0q5fP6Xato3/SZX/wpY0qXOQ2+hsVn/xcbG98or3MtqK2LlznfNdLud2jdcfYL/ONIFR27Jm1fNu35ZJ8eHD9bS2beW62rDB/Vg//liuFeOEpJF793z/bIxu5qzcvClCiidu3bKvFg4JkQDeOXKYJ+9mzZLfE+OK5V697P1HRck1rX0n7uJl+cLp087ucwoXNpfT0t9/X09buVKpFCnMlkTGa8CI1QLR+pl06GAft3ZsFAiMbUyfrqenSWN/Dxcvuv88rOlOrqcmTxbXar4I594wWlhYuXxZJnKt4wJEEFu1SqlEiURsMbq9UspzrDRArEmqVrWnp0hhPs6XT8bhJMiGhyuVOrVv10v9+vp+//7iMtT4vvr0cX6f2mZd0c/Nv61Fi/gfQ0y2rFnNLiC//dZ8vnz8sfP1ZWzD6Aq3UCH5jdWm+4zuazW6dDH/zhst9bS0Dz+017Naw2llNaE1PFyuzy+/lPQ//nAeu6f3o4nEGpGRYoHy8KG9zsOHYv1pXTRFCHl8IL4H8KRDEYYQQgghxH/27/ftgVJ7kHQK7vk40cbRsKF/9YxWCOPG6S52QkPFnVP+/OZ4OJqbifLl9UDod+7IRMLRo+a2V650PxHx2WfmYyO3bnmfyEiTRiZBnYKqc6KHW3S39u3dWwO526yChy/no1IyAW5N82ShZt3OnxfrGu3YuOJ4797ovf/16/U2NJE5bVpx3xIVJX0a3WHNny9lvv5aTzP6/ve0aRYmRosmjf379bSoKLvrR3eftRNWwVfbrLGAtPR69Zy/O6e0yEhxs/f117qLGm3TLCI0jAJxaKi8f2N5q1WjtV8nkcD6PWsEBtrTY3ptPP+8TP5qHDki4pQmNhndd2lpW7fqcRgA97GZjO+tVi3zuI2B5GOyGa8V63blSsza3rpV38+XT66j2BgzN/t2+HD8j8Hf7ddfxRJac8VlvB67dTMfG4VXp98nQESKP/4QMcXXmE9GMbN3bz194UKxhtTERE9oC26mTbO3feeOb+PQ0MaiWYcRQp4OEN8DeNKhCEMIIYQQEndoD5JOYsDj5OefRTA5d87/uleueLaYsXLnjt1FjxN//uk8IfHee3ahxcrMmeL7P1Uqe31PsTmUkrgETv7OM2Wyu7Zy2nr1EgsFp7w8eeJ2sqZ+fZkEju9JI26+b0eOmI+Vkkn2zp0lxkbZsvY6SjmnuTvvnLZNm3TXLdqmubXyZEXjy3bpklJFi5rTnn9e39fijyRPbh6/0/tyt61eLeV79NDTSpaUWC/G6/f2bWcrEEDEj+vXPf8eVKjgXNcowty/b/8urO9l+XKzhSAgsVO0/UyZzHmVK5snSI2WgQ0bKvXRR/YxlSxpt9qaN0/qO/0WWq2zIiNlVXqOHOb0kJDYO9/HjDFb4CxbJp+NscyDBzLpbK07YYJ/fSnl2b1hbG1Hj8Z9H9xiZ7t0SYTPuGg7Vy7zAoyFC81B2K2b0XWgu83dNJyW37WrHJ86JZaC1phPTr9Fvgov7tqI7v3q/fvu46REdyxazEJCyNNBAjzFDBgwAOXKlUOKFCmQNm1axzIXLlxA7dq1kTJlSmTMmBEdO3ZEWFjY4x0oIYQQQghx5NQp4I8/gCpV4ncc7dsD//wD5Mrlf93nngNy5vS9fLp0QMKE3stFROj7EyYAGTMC69cDixcDGTJ4rvvhh8D9+8CuXfa81q09102bFiha1J5+8yawZAlw9qzn+gkTAilT6sdNm+r71at7rgsAzz/vvYwTf/wBLFjg/bMhTxYvvmg+jogAOnQARo4EatYEEie219mzx552+TJw6ZLv/VaoAJw5Y067dAmYPh2oWNH3dpzIkQM4fNicduGCvq/93oWE6GmRkUBoqO993LljT9u7F8ibFxg2TE+rXRsICnJu48cfgSxZ5Ldi7VoZw4MHwI4dwPjxwPXr7sd04gTwyy/AunVA6tTex1uzJrB0qTlt/nx9/+ZNc966dcC5c8Ddu0Du3DIeY70ZM+x97N0L7N5tTmvUSKYrnbCm//yzfHbW8yhjRuf60aFdOyBPHv143TqgSxdzmR9+AJIksdf19tttJXdu4Isv/B6i31SrFvd9kNghUSLn3w4AKF7c93a+/db+27xyJfDTT0Dp0kDnzkC9evJb/dNPQOHC9jayZdP3e/XS9xs0kHudiAggTRrP43juOXnNlw9o0gRI4MMMp8vlvYwTFy4Af/4Z/fvVVKmA116Lfv9OvPpq7LVFCIl7nmoRJiwsDA0bNsTnn3/umB8ZGYmaNWviwYMH2LJlC+bOnYuFCxfiyy+/fMwjJYQQQgghTuTLB9SqFd+jeDLRJi2yZAFatQJu3PB/crhQIaBnT//7Tp7cOd3lkok9I+3by+StRsmS5glEoyjSsyfw7rsywe6O5cv1/fz53ZdbtAjo1k0Eqqgo/TzyNmmTPr3nfBK/jBolk/saDx7Yy5QubU/LkcO/SUR3NGsW8za84TQJumCBf+fmtGnAw4fOefPm6ftbt3pvK00a4K23RLDQJgo//xzImlUEGXe0bu08IXn1KlC5svd+f/rJe5lhw4Dz572X03ASXGbMAIKDvdft3Nk53ekcjAlGgX34cBG0jHz3Xez048/nFhMuXnw8/ZCYkygRcPu2c56TUPLBB8AnnwB//21O798f2L9fxGyNggVlAcauXcCIEZKWK5eI6jly2NtOmlTfN94H9uol9zqeFqssXAi0aAG0aeO+TGyTM6f8Tj4JHDokwvTHH8f3SAgh/uBSyt26kKeHX3/9FZ07d8a9e/dM6StXrkStWrVw8eJFZPu/zD537lw0b94cN27cQBpvT2gAgoKCEBAQgMDAQJ/KE0IIIYQQElucOCGChnHltIZxNaWnO/rwcLMo4uvdv9NqTa3u1KnAnDky2asZpB85AuzbJ1Y4LpdYvfzzDzBoENC4sZSJitLbNbZfsKA+EamUTOKMHQuUKiUTOFYmTAA++8x53NeuyWR8kya62DNxIvDpp7L/0Udi7eBpNWqaNO6tB5yYN08snN5+2/c6GsmTmy0i/uu8+67dYuJZZOlSYPJksS6LCfnyAadPx86YnjTGjweOH/cs2hIS2wQFeRfzo0P79sDo0bHfric6dwb++ku3zLt3T8SWq1fluFs3YPBg2W/TRhY+aGuWq1YFVq/W23K659i2DShXzpzmRLduwJAh5rQtW4Dy5WV/61a9neBgszVtbFCmjNxXVK8OrFgRu20TQoivPNWWMN7Ytm0bihYt+q8AAwDVqlVDaGgo9jjZsAMIDQ1FUFCQaSOEEEIIISQ+KFjQWYABxOIE0Ccx3JE4sW5BY7Vi8cTq1cCYMc55n3wCrFmjCzCAuJVq2lSfqFmxQkSY11+XY5fLPIkzd6689u0rboQqVwa+/lrSXnlFhJ4XXnDuX5uscSJrVplg0lbiAkCKFPp+okTy6rTqFxC3TAEBznnt2jmnp0wZ/RWylSpFr54Tnr7fLFlirx8A2Lw5dtvT+K94ju7UyXz9RJdnVYABZFKYAgyJa2rWFGueypXFwsKbez1/3cJpWIWdlCmB33/3r42uXeW+QOPXX8VC44cfnMuPGGH+rU6cGHjvPdl/+WVg4EApU7480K+fuMYLCRFxZfFi5zanT9f3fXUf6mSRW64csH07cOWK2ZrWaCETWyxdKu4XjWMnhJDHzTMtwly7dg1ZLE8b6dKlQ5IkSXDt2jXHOoMGDUJAQMC/W05/HHwTQgghhBDymJgyBWje3BwrwR0DB4qfdeOqVm9UrQq0bav7XPcXl0vciWTPLrF/rDEfGjeWlbN9+ohIsnatfSKpVCl5tfp5d4pZY8Ra3riqVhNhUqXS08aNE1dQy5fLRFx4uJ6nub5as0YmqZx8zhtFHndobtus7kOM8TtiypIlIm5pK5uNWMftZAlkFfwmTND3kyUz55UvLyvG+/VzHkuDBvZ4L76wapX/dZ5Gzp4Vl2Ik/qlaNeZtOLnII9HHKSaONyZPlrg+Rj74wHu9kiXFXdbatRLHxAnjggA33vC9YvwfOndOBFRPFpmJEukLKNKnB4YOlUULc+eKxcpvv4n7xAsXPC9MSJtW6sydK/9VP/wgv+2rV0v/nTuLUJMpk5RPlkxcElrdkq5eLWJKkyZ6WvbsEidl507P7z1VKrvo7HJJTJPnnjOLMNp/dGySNSvw1VexG9+JEEL85YkTYfr27QuXy+Vx222NtucBl8O/mlLKMR0AunfvjsDAwH+3i3RwSgghhBBCnkCKFxdrEV8musuWlWDWBQr430/v3vLatKn/dTXy5TPHhvGVTJkkSPbt29Fz9fX222IBYrRS0QSWdOn0tJYtgVu3gBo15NgYs2HbNiAwUNpKn16CmBvrAvqk0d69um/7zz83ixg//CBCyC+/iMVPs2YS06NQIfu4c+WSz0xj3DhzvpMf+I8/Bl56ScStL76wf17WNpziC737rr5frZq5n08+0c8FbfVz6tTmgMpGZs0C/vjDOc8a0Plxcfy4Pc2XSVp3zJkjwtft2zJp+cor0W/rSWfBgvgeQdzQtq3uqjAmeIpf9V/kuefkNyO6+DHlAwB45x2JEdK+vTndU1wRQH7nfAkZrLkNbNLEOfbUokXm33snXnpJ38+VS/6bjC68evWS//O//pL0Bw9kf+1aEW2//FKEkZdfFivTRo0892f8b2ncWHcLmjq1uPPMnNlzfStVqwLff2//TN96y7ffvrNnzTFkjGgCECGEPMs8cSJM+/btcezYMY9bUW9L3/5P1qxZbRYvd+/eRXh4uM1CRiNp0qRIkyaNaSOEEEIIIeS/SuvWwLFj4vYkPsieXVbQOll3eGP1anEzY1yBrFnkGFdaJ05sXpFsjNGSKJHZjUyKFDIBtmGDnpY1q7yWKCHCw+3b4sqtZUux7Lh9W19VnDSpCDK//qqnbdsmbsk0caJWLRHNNIziCCCCijGWSNasYlWhvYckScRy59gxEWSuXRMXNNOny6rlK1dkMk3ra+pUERG++AKYNEmsgWbPNlu/3L8vq7DXrPG+6lkbQ5489uDrxYtLwHDNnV5cULu2c3q6dMCmTfpxtmzmgNBWSpVy7+YnKgp4/335btKnl+/Ql88lLunYMe7ajo5lgju6do1+XaurIm+T7N4YPTrmbQDu3Rsaeftt38rFBVu3AidPxm0fRkEhRQqx1vTHsYj2Owq4dwnpjmLF9H3tt6VyZWfLRSOrVnnva/RooEgReX+zZkma0TVlnTpA3boibEye7NxGrVri9mzcOImdpqGJErlzi1Xh4cNAlSqSliSJnJuVK3uPUVOmjL6/YoUIi+5E8PgibVr37lWLFBErpoULH+uQCCHksfLEiTAZM2ZEoUKFPG7JrLbwbihbtiwOHz6Mq1rUMQBr1qxB0qRJUUrzbUAIIYQQQghxi8slK2pjY6IyJpQsKZNLWoBhX3C57FYX2upfT7F0Hjzw3G7GjMCbbwKHDskknjV2Tfr0uju2atXk2BOvvQasWyduZcaNAwYNMgtHiRMDDRvqxylSmIUZd0GMCxUChg/X48F89JGsWn7uOYnVc/Wq+P1v3lxEhFy5RDhau9Y+ZqXkPWnWRb7Svr24+tFYuFD6r17dXM7JMie6uHNpljix2W3U0qViCePOyiNhQlldb2XfPs9uhJzwd2X/6NFiWWWNT/Haa87llfK+Gr10ae/ntjti03pJO5eiQ5Ei5uNz58RNkxF3sawAsUDTqFFDxvHoUfTGYqRzZ+d0o2j07bfmY6c4UkaLAH/FKnfTJFWqiDXkCy/EzGLH6Ibr5589x9fQrvlduyQge/fu4u7RE0bXhtbftO++0/cHDJB2N26U3806dczWLMuWyW/onDlmEcadFYYn6td3jgVm/G6M4lPz5iJyHz6sn+Nbt4ogkiCBxDl6+WW9fPr0wN27wIkT/o/NSOLEMg6l5Lf1l1/cx1SLT4xWplbat3fvDo4QQp4FnjgRxh8uXLiA/fv348KFC4iMjMT+/fuxf/9+BAcHAwCqVq2KIkWK4KOPPsK+ffuwdu1afPXVV/j0009p4UIIIYQQQshTRvXq0YszAohbl/r1ZQIPEKuPUaPEWsTKF1/Iq5PbLyNFi4rIEltkzSqTdKlTmy0PEiVyngTX3KBVqhT9/ryJa6NGiTjTp4/7Mq+/Lq+dO8vEo9ElkMslFiMauXLJq9U3//Dh7tsvVkzEB+sYVq0Cjh61r3Y39l+2rL6fIIFYH3XsKCvFS5WS8dWv79xveLi40fvtNz2tRg3zJKqv+LsGsF07say6e9cc58IqOBjx5l7o449FwPMUP8IdVtGkRAn/29AICDB/ZyNHypiuXRO3gGfPuhcgrG4Nc+Qwf8eAOWaFkbAwsUBbtUp+SzT3UZobQm/Uri1j3LXLnmcUDapUAcaOFZeCxrg/adIA+/frx06C2C+/6PtaAHUrTi4MAbMFn5Fs2fT9tWvlfDcGa2/VSq7dsWP1NCfLx169dAG2SRMRdX/8UY5nzJDXKVMkcPygQXKcJYt8lwMH2mOCAGIZV7u2/OZWrqynp0ghVnuAWJD07i2isVIiZpUuLaJKpUoS3N547j/3HNCtm6QZf982bjT37SmOT0SEWLbNmeOcbwxIbxQ/EySQ/l98UazllLKfn1bSpo1dS7MnGe3/0t3CAUIIeaZRTzHNmjVTAGzb+vXr/y1z/vx5VbNmTZU8eXKVPn161b59e/Xo0SOf+wgMDFQAVGBgYBy8A0IIIYQQQsiTRmioUuvWKRUSEn9juHJFW9es1J07Sp09q1TWrEoNGKCXOXpUqd69lYrvR5WHD5U6eFCpqCilbt2SVyM9eujvxVhHX7utVFCQ+di4tWsndc6d09M+/NDcx9Chet6lS0pt3Chlrl9Xqlo1pWrUsI/LiLG/jBnltXNnyQsL0/POnfP8Wbh7D0oplSGDc17HjkotXapUmjT2z0kppUaNMqdPnmyuX7q0pN++7dz+sWNKLVqkVGSklIuIkHPKqWyqVEotWGBPX7nSfHzrllLz5im1e7f79+xuu3FDqSRJnN+rRteuznXfe8/+uUZFmdOCg91/B+7Q+hs0SKlhw+yfMaDUhAnO3/P335vTKlTQyx04oKefOKFU06b68Tvv2PtYtkypqVPlO7961fy9ZMmi1JYtSt27p1TNms7vb+RIpZInV+qzz/T0q1c9n6v9++tpW7YoNWKEfKbHjim1Z49eLjBQfhNv3za3c+uW589WY9Mm+5jDw/X8qCilGjZUqmVLPe38eXMZf1m/XvopUkSOEyWS4w4d5DcoJhw9qtTXXyt1/37M2vkvERmp1OLF8htNCCH/NVxKKRWfItCTTlBQEAICAhAYGEjrGUIIIYQQQshjQSlZNZwgAbBypVgiKBV9N07xyfffy0p2QN6Dxv37EnOocWOJmaBZ9gBi4aK5ntq2TSxhbt7UV7wHBprjJAweLC6PrH34ivFzPXtWAm1/+qnuDmzXLrFc8OY2zdjO88+LizltTCEhssLfyrJlstpfKaBLF4mD9NVXen5goFie1Kqlx9jp1Qu4cQNo0ECsbDT3cU7nh7vPw1r2xx/lPUdE2C2VDh2S7+noUYlfcfaspBu/E42yZcUC5MoVcRdldDOljSdRIiAy0v342rYV13waadMC9+6JRZvRjZdW1/hewsKAmTPlO0ybVvY9fQ5a3rlz8t60tqyfz+TJuns6La9pU90KREsrXly3eDl+XI8Dc+WKvG/t8/r1V3E7lzcvMG+epK1Yobvqu3dP4hgBElcqRQrd5ZhSwMOHQKpU9s8iIkL6uX3bbjlkZN48cUc4ebIen8oJLQ7Khx+6L+MLGzbYrfYex2zUkSPyvaZMKeftpk3yXoy/N4QQQkhcw78dQgghhBBCCHnCcLmANWvsaU8j1mDqGqlTA7Nn29MnTpSJ68hI4M4dXRDIlAmYOlUmjK3r48LDY2+8uXOLGGLEW7wVjblzxf1aoUIShFoTYQD3E92aKyKXCxgxwp4fEACcPm3+/r//3rfx+EONGtLX/717AxDRIUMGca+0a5fEAaldW883usn7+2951dyd5c8PvPGGfG+rVpljgmgCjDs6d5bv+qOPxIVg2rQiYmju7ADzJPr69TLB//XXMqZPPpHNKaaPEy6XPWj43Lkyga991tb4PID5O02fXs5Xo0gUFaXvp05tFk0SJhSXVy4X8M8/4hrRGKsqbVoRQBIlssdocrncu3TSPhdPAgwANGokmzdiKr5oGN2oFSsm19njwOjCMk8e98HhCSGEkLiEIgwhhBBCCCGEkDjDXcBwd2iiTYIEdouM5s2d63izUPHGsGES3Ftb9R9dGjeWDZAYNitXmvNbthRrh08+kTgZgMQQ8YavAty9e8DChRI/o2dPz2W/+AKYNEkskgBdMDB+X4MH68HiU6SQmEVGjEJIliwSB8VIggQSo+f2bbMI8+238v7btnUeW4ECImgkS6a/d6MAA5hFkYoVna0qHj1ybt8XtO8xSRKxxqpTR89r0ABYsEDiC2ns3CnxSYyfUUCAvu9kBaW9t127REi0CnXu4ts8jWTNKpZUadJInJqnVVQmhBBCogPdkXmB7sgIIYQQQgghJPrcvSuWLW+9pbuGcqJBA5nsPn7c2erAG5s3iwhgDETuD4GB5knzmBISAgwfLpYjxYrp6VFRwJkzYilSsKC839gmJASoWlWCnX/3nftyUVF68PITJ0T8AMSV16NH3kWAR4904eDkSeCFF5zLHTsm7uWKFBHrkshIYM8ecbNmtKbxhcaNxZXW8OEiJHli1y6gTBkJRr9ggX/9eEIpEa98mSKYOlXOq3r15FgTH2bMEHdmMWHOHPmOfv0VaNYsZm0RQgghJO6gCOMFijCEEEIIIYQQEjMiImSy39Pqd6Vkcv6/Eqvh2jWJ+eHOXdvjYtw4sZyxxm7xhYgIXUS5cAHImdN92cuXxbIppu83NBQ4cAAoXVosbbxx86a45vKl7OPAaP1SunTM23v0yH9rM0IIIYQ8XijCeIEiDCGEEEIIIYQQ4szQoWIV4snihujs2SMB4hs0iO+REEIIIeRxQRHGCxRhCCGEEEIIIYQQQgghhBASHZ4Qg1xCCCGEEEIIIYQQQgghhJBnC4owhBBCCCGEEEIIIYQQQgghcQDdkXlBKYX79+8jderUcHmKIkkIIYQQQgghhBBCCCGEEGKAIgwhhBBCCCGEEEIIIYQQQkgcQHdkhBBCCCGEEEIIIYQQQgghcQBFGEIIIYQQQgghhBBCCCGEkDiAIgwhhBBCCCGEEEIIIYQQQkgcQBGGEEIIIYQQQgghhBBCCCEkDqAIQwghhBBCCCGEEEIIIYQQEgdQhCGEEEIIIYQQQgghhBBCCIkDKMIQQgghhBBCCCGEEEIIIYTEARRhCCGEEEIIIYQQQgghhBBC4gCKMIQQQgghhBBCCCGEEEIIIXEARRhCCCGEEEIIIYQQQgghhJA4gCIMIYQQQgghhBBCCCGEEEJIHEARhhBCCCGEEEIIIYQQQgghJA6gCEMIIYQQQgghhBBCCCGEEBIHUITxglIKQUFBUErF91AIIYQQQgghhBBCCCGEEPIUQRHGC/fv30dAQADu378f30MhhBBCCCGEEEIIIYQQQshTBEUYQgghhBBCCCGEEEIIIYSQOOCpFmE2bdqE2rVrI1u2bHC5XFi8eLEpXymFvn37Ilu2bEiePDkqVqyII0eOxM9gHyPnzwMTJgCPHgFRUbIRQgghhBBCCCGEEEIIIeTx8lSLMA8ePEDx4sUxevRox/wffvgBw4cPx+jRo7Fr1y5kzZoVb7/9dqy6FgsPB86ejbXmYoWSJYE2bYD+/YFXXwXKlQMY0oYQQgghhBBCCCGEEEIIeby41DMScd7lcuH3339HnTp1AIgVTLZs2dC5c2d88803AIDQ0FBkyZIFQ4YMQevWrX1qNygoCAEBAQgMDESaNGls+e+8A6xeDSxbBtSsGWtvJ0a4XPKaMydw8aLs374NpE/vf1tnzwK3bgGvvBJ74yOEEEIIIYQQQgghhBBC/gs81ZYwnjh79iyuXbuGqlWr/puWNGlSvPnmm9i6davbeqGhoQgKCjJtnli9Wl5HjYqVYXvFH8kscWJ9P7ouyfLmBcqUiXtrn9DQuG2fxIwdO4BLl+J7FIQQQgghhBBCCCGEEPJ08cyKMNeuXQMAZMmSxZSeJUuWf/OcGDRoEAICAv7dcubMaSvjJIS4ExEePgS6dQN27/Z97O74+2+xZpkyxbfykZHex3fwIFCtmn18SgEhIfrxoUO+9fnPP8CBA76V1Vi6FEiRApg82b965PFw6BDw2mtiWUUIIYQQQgghhBBCCCHEd55ZEUbDpfnm+j9KKVuake7duyMwMPDf7aLmz+v/7NgBZM0KzJhhrudO5OjeHRgyJPruvL7/HihfXsSc8uWBe/eAli2Br78GjhzxXPfBA+/je+cdYM0amWQ38v77QIYM+rHLJcKMsU0nChYEXn5Z3J/5St26YqnTqpXvdcjjY9u2+B4BIYQQQgghhBBCCCGEPJ08syJM1qxZAcBm9XLjxg2bdYyRpEmTIk2aNKbNSOPGwI0bwMcfm+s5iRwXLwI//eR+jA8eAK+/DgwYIMcREcDs2XocFwDo3VssYL791lx36FCgdGn3bQNAcLDn8QHA1avyarSaAYB588yWMC6XiCWpUgHnzzu3ZXR5duaM57EZcQi14xcPHwIXLsSsDSPh4cDnnwPz5/te54cfgIULY97vk8i9e/E9AkIIIYQQQgghhBBCCHk6eWZFmDx58iBr1qz4888//00LCwvDxo0bUa5cuWi3GxGh7xvdkjmJHB98YE/TxI4pU4Dq1YGtW4GePYH9+4H+/YEPPwSKFAH27gVmzdLrjRtnb+vRI3nduhUYP97uJk3Ldze+b74xH4eGinBz7Ji97MaNwJIl+tidMAo5xr4BGVvu3CLmGMUhAEib1rk9APjrL6B+feD6dWDCBOe+CxUCcuUCTpyQ45s3gTp1gGXL7GXXrNHfh5W7d+WzL1xYPs9GjdyPy8iuXfJZNmhgz1u6FChRwrvV0syZInAtXepbn48T63lCCCGEEEIIIYQQQgghxDcSxfcAYkJwcDBOnTr17/HZs2exf/9+pE+fHs8//zw6d+6MgQMHIn/+/MifPz8GDhyIFClSoEmTJtHqb+BA4PJl/fiNN/R9J5Fjxw7z8a5dQOXKQLt24qLMSIkSxvcFlCplzg8Lcx5TaKhY0wAiZrgTGKzju3JFrDeMJEsmrtacQuYMHarvW725hYRITJmCBfU0qwjz4IFuQfPpp8CcOSLMuFzOIkxkpFj/aGM8d06EKQBo2BBInVovq1kOrVwpY+jWTT6HJUvMwtTVqxL/BpD3eP8+sGED8MknQMKEYrXkJEB548YN93nvvaeP+ehR9+U++kgvbxXT7t0DAgLsn/uTwJAhwJ079vM5umjWQIkTx057hBBCCCGEEEIIIYQQEp881SLM7t27UalSpX+Pu3TpAgBo1qwZfv31V3Tt2hUhISFo27Yt7t69i1dffRVr1qxBauMMvo9ERgI9epjT/v5b3z93Drh0CciRQ44//9xsNQNILJfg4NibsAaA1av1fSfLG43QUJncHz5cLEdeftm5nJMAYyWBxX4qRQp7mapVpb9bt8SS5d139by5c4HmzeXzaNHCXH/AAImfc+uWWSTSBBhALFZSpwZOnTK7PUuWTF6NVidnzwL79gF9+0qAeY0bN4BXXxUB6cEDoFMn53g3DRuKi7jISODtt4H8+e3WOIkMV5EmLAG6ZQ7g3oWbVkcjSRJz3ubNQIUKQJs2ztZQWv1Jk4BixeQ9xTWRkfIdZMggghcgwtoLL8SsXaWAsmXFkun4cSB58piPlRBCCCGEEEIIIYQQQuITl1LWdffESFBQEAICArB3byBKlvQevCQ4GDh82B7oPq4oWlT688aaNSJ2lC8vx+fPiwuv6GAVBNxZaCglLtZ69fK/jy++AEaMcM6bOVNiwFjj5EyZIiLEiy96b3/PHt3aqGJFYP16oEsX5z6bNBEhRuP990Uo+r/mh7Vrgbfekv2QEF0MqlIFWLdOr+fuSlu0SIQqQISHhw/1vIoVxRWcp/pr1ugWPnFxNRu/36gocaO3erVYdr3yiqQfPAi89FLM+omI0C1gVq4E3nknZu3FBg8fAr/+CtSuDeTMGd+jIYQQQgghhBBCCCGEPG081ZYwj5P+/X0rlypV3I7Dii8CDAD8/rtZONmyJfp9jh8PLFgAlCxpdqNmJWdOsQ6KDu4EGABo2tQ5PUkSYMwY39rX3F4B4pIsZ06zRYsRowADiCXP3LnAl18CJ0+KKzMNowgTGGiuN3068PHH9vY7djTXN6IJMJ44ftx93o0bwM8/A5kyiRs841h9YdEi83FYmG599d13enpsuEozWo5Z3dk5ceuWiIlW132xSc+eci727evZ7RwhhBBCCCGEEEIIIYQ4kcB7EQKYrROeRqyurD78MGbt3bolFhieXKtFV4CJLrt22V2lucMaY+fSJXEp5y9GAQWQyXoNTYzRaNZMLHCaNDG7JzPGGfKFsDCxBrp6VY6N7tc+/FBi5Bw7JgJOliwiIHbqJK7fatSQGDhHj4pgdeuWtHfsmN2K5qefdAsdDaMAtmyZf+PWaNJE4hhFRprTjcJYVJRz3TNngN9+k/xcuYDSpYGdO6M3Dl/QBKebN/W0778HRo1yLn/8uFjOuBs/IYQQQgghhBBCCCHkvwUtYXzEGt+FPHmMGqW7BfOGL5YWvhASYhZ0fvpJYtkkTQoEBdnL16snrtT27xe3ablzm/MzZRIxYudO2Xeid28Rv7JmBbJlM8fLmT3bbrmjMX26vv/rr/Lavr3EuTl5Eli8GHjvPWDePGDoUBG1rCxY4Ny2E3v2APPnizWJ0UJszhx53bBBrEuqVwfSpjWLMPXrS5yZX36R4xMngFmzRAABROTQhNE1a4AyZXwfl8bDhyKUeRLurJZDZ8/K5w8AHTrY6xYuLK+JEwOVK8t36M7CihBCCCGEEEIIIYQQ8uxDSxgfsa7aJ08mf/3lWzmr26/oopTZLRcAnD4t4sOhQ/byFy7I67FjImgMHWrOv3lT3KqVLw8ULGjOGz9ehBLN+ujaNbMAE11OnpTXoUNlTI0bOwswnnC5JEZO6dJiobNzp+wPGQLkyAHcvi3u2YzX0VtviVVMunTAV1+ZRRgAmDhR3y9WTBdgAGDzZn0/OhY5t28DKVMCFSqY0/v3B4YNk9hO771n/g6HDgXu3tWPreM1Mny4CGSa5dCZM0DVquYYQb5w6ZKIdb662fPGhQveBcibN+MmthAhhBBCCCGEEEIIIf9FXEpxus0TQUFBCAgIABAIIE18D4fEEi+95CyS+EuFCsCmTTFv50kgR47ou5A7fBgoWtR7uYcPgRQpnPNOnLALT8ePS5o15kyHDhLrRuPRI2DSJHHFNmiQubxS9vrTpgHNm8t+8+YS2yhfPqBWLUnr1MnZ5djUqeLODRBLp9SpzflOsXGUAooUEeFNO/aF0FDgtdfEagoQ93IvvghkyOC53oMH8hlbx7J/v7zPokXdn/uLFokVUqdOwMiRvo2TEEIIIYQQQgghhBDiHlrCxIDs2eN7BJ4pUCC+R/DkEhsCDCAT6k2axE5b8U1gYPTrLlwY83JOLsUqVXIua3UTdvWquFYbMgTYulV3Edepk7h8M1qwAGY3Yr/+KuX69NHT3MV8Wb5c3w8LE9FKKUnv0MG5zrlzugDjD++9pwswAPDmmyIeeuLKFXHt9t579jzNDdzhw+7P/6++ktdRo0QUI4QQQgghhBBCCCGExAyKMH5SpYq+X7as57JlygCffx634/HEiROyct4XZs50n+e0up8It28/O/GC7t+Pfl2jgOGJjz5yn+ckAl296lzWGvg+Tx59v3x5iccCSIyeCxek3wcP9DJOcWCqVXM/No09e/T9KVOAnDmBdu3Egmb0aOc65co5p0dGAo0aAYMHm9MvXQJ27wZWr7bXcfd5AMCBAyIMR0QAf/xhz0+cWN8vVsy5DaO4VaiQZ5drhBBCCCGEEEIIIYQQ71CE8ZOuXYEvvwTGjbNPBGukTi2TpTt2AGPH+tbuggXerQk8BRB3h7sxWvEUJ2LRIv/6/PJL/8r7yy+/SNySJ4GjRyWQPXm8/Pab5/y//zYfL18OpEol7riiopyvJV/ExrNn9f2uXeV13DjPdazCyfXr8jprlsQO6t5djiMigFu3RNh55RX37ZUvb46Xo/Hyy+bjO3fMx4kSeR7nhg3AqVPmNKNw5Y19+4A33gB+/933OhqXLonrNWNMnqcJpYAGDUSkp4NPQgghhBBCCCGEEGKEIoyfJEokAbrbtDEHGTdSvjyQNat+fOKE5zgOb78tcRjq1XNfpkwZ4J9//B+vNxHm9dcl7kaDBkCWLDIRaiVvXu/9tG0rE6dRUeZg8zlyOE94V64sk9P58nlv20iOHMCnnwJz5/pXjzy9VK9uT9OEDE9s3mxP278fyJQJ+PFHe54/gkNM0FyTNWumpw0bBqRLJ2Pzxt9/A599JvshIRJnxwnrb47REsYJJ9dvISHyWdWr59lSKjwcKFkS2LLF8++YO778UkTrXr3EJZomTMUGffrIewsNjb02rQQHi4i+bp3EJSKEEEIIIYQQQgghRIMijJ8YhRejwLFvn75vjdtQoIBzwPM6dYARI2RFvLc+d+xwFiysgcGteBJhsmWTSdOCBYGAABnj1q32cmnTigB05owelNzKiBFAypR2a4JEiYDMmfXj+fPlvaxdK0LVb7+JsDJjhr3N5s0lXoeR2J7gdCcC1arlu4stEresWhW9ehUqOKffuWO+XjUeVyD6kBDg4EFz2ldf+W/9MWYMkCKFXHfurnOXS1wShoTYhav69eVzWLtWRFgn6tQRi5/ffwdKlZI2tHFeuCBxZiIjxZLPiV27gN69dQFEKWcBzRqzZ+NG5/Z8xejarl8/sfLx16LPH27c0Pe9WSyeOSNjsloqEUIIIYQQQgghhBDPnDgBNGxojqP8NEARxk+MIkzz5vJaqpS4Apo/X9xk9eplr5csmYgPRj74AOjc2bz6PWdOe11Pk3qTJ9vTli3TxQp31jpOeYkSObtkSp4cyJ9f4m5MmSKrva0kSeLcR6JEwIoVQPr0wHffyWSvMQB7qVIy1qZNZcJWo2pVYOpUsRZw50bp+ef1/QsX7PF3unRxrmfEnXVAhw5A377u31dss2aNCD/xQY4c8dPvf5WBA4HixWPeTvv2+r5TPB2No0fFZdrPP5vTFy0St2dvveXeFeLOnfr+yZMinL71lhwXLAg0aSLuAZs0MdcLC5PXMmWA778HhgyR4+HDpY1+/eSa1bD+xj14IMLS8OHAtm3mdpcuBe7dcx5vVJSI3mnTyvVrJDJSxKi///b8uxgdQkLMY/REuXIi8GrWTIQQQgghhBBCCCHEN2rXlsXA3mK1P2lQhPET4+Rd3boSqFtbtd2ggbjJSpXKuW6ZMmY3SA0b2ssYRYHly80TlU5ky2ZfNV6ihD6xbhWEJk0SgQGwBwTX+PVXcfk1Y4aUt7pIqlRJPoeVK+X400/djy9hQhnP7duyIt4TpUvLZHJUlDko+fvvO5dfs0bfz5HD7mLKnSWEdXxWXntNd80UHAzUqOG9nZgwaJC4pHMKph4bHD7sOT8gwH1eiRKxOxYi1mexjTcLMXdxmqIjRuzYIVY0Whwp47WqUaIEcPmyfrxpk7x+9ZW89ukD5Mqlu4CzijBnzgAzZ8q4y5UT0WXnThFy33vPLFj27SuxtwYOFFeQJ09K+nffmc/9xImBjz6SMsOH+/eeIyJ8z/fm9kyzBFq/Xk+7csVZ3CaEEEIIIYQQQgghOtq8j6f45k8iFGH8JE8efd/lkjgIKVP6Xr9LF9mmTnW2OpkyRV5795bJf6tljJNoUKGCeSLUWKZZMzHT0oiKAkaNkklbzZLHSrNmsrq9aVOgZUvnMgkSAO+8I5OHngKTv/qq+zwn0qRxdmnmRMGCYvWzcaPUSZlSLG40vE2cAkChQubjsWNl5b0mhiVOLGKYkRo1xILJiiZYtGvnuU9tIhqQWDrffON9nP4yZAjw4YfAoUPijspIixYyGa2RIoX7dt5+O/bHBpjdzz0uN2DPMrFhWeMPRtdeS5bY848eNVtYBQaaY0VpvPuuiLlOv4XGmDnp0slvycCBcvz33/J65IiILe3aAT16mK1mALM1XOLEusVP167AgAESy8YbEyeK20dNJPnnH7u1i7Edb5YwTmTPDlSpYhaWje2NGBG9mGCxxbVr4kqOEEIIIYQQQgghJDpERACNGjnHaY4tHjyQuR+ry/+rV8VyZupU93XnzzcvmDWydKnMpVrd6fuFIh4JDAxUABQQqNKnfzx9PnrkPu/4caX691dKpsSUOnVK0v/6S0+7edNeT8tbsyZuxmzlwAGlvvpKqTt3Yt7Wp5/q4/fGRx9JueeeU2rGDL3eihVK5cyp1KxZehqg1LlzSg0c6L19LT9ZMjk+ftzcDqDU6tVK3b6t1J49elrLlvJZ3Lun1LhxSl29KvVv3fLcj3WbNEnfz5jRuUyiRO7fh7Hc/PnmtPLl3fc7dqz7POvWqZPvZZVSKiREPpebN32vx+3Z3DJk8L/OlStKlS7te/mlS+1pI0far5UdO5QqUkR+M4zXSbp0Si1bJvvVqpnrbN2ql+ve3ZwXEeF8LWbIYE/r2tU+nvbtJa9oUXteRIRS+/bZ+/DG4cPyW+ULc+ZI/x07+tfHs0BwsFI9eyq1d298j4QQQgghhBBCCHm6WbxYn/+ICcZ5HSvvvSfp9eqZ0+vV89z36dN6/pIl9jkTLa9Ro+iPm5YwfnDr1uPpJ2lS93kFC8qK7+XLgWnT9MDyRqsPJ8uGdetkNbUWzyGuKVZMlM106WLe1iefyGupUt7Ljh4tViBbt4qVkkb16uLarV49PW34cHGJ1K2bWAV5c5cG6AHQkye35+XIIZY4xiDp7dvLZxEQALRpI/EwACBDBu99GTG6qXM6D+vW9c3yxwl351uxYvLZ79olq/AbNZL0AgWkr4sXgenT9fL16wPPPed7v8mSyefi6Xz3l27dYq8t8vi4fdv/Om+/Deze7Xt5pexpmkVbaKhuzfLuu2LJU6OGWARqJE4M/PST7FtdsBmvvUGD9P2rV4EsWYBOnfRbBA0n65/gYODmTdnXLGo06x0nt4Jffy0WeD16yPH06XJ9HjtmL6tx8CBQtKhz/DEnvv5aXrX3/l+if3/ZjP8lhBBCCCGEEEIIEc6ckTjB+/d7L2uMpxtb7NsnoUIAGYPmrcXowQXwHu7D6FL/vff0MBVWPM23eIMijI989ZXzpFl8UaMG8PHH+rHRBY6TQFCpkkw4PknvwVfKlgXOntVdEHkiTRpxNZQ7N1CkiIgx587p+UYxQ4uF4nKJOdp337lvd/ZsaXvZMjlOlsxepkgReTV+/jFxE2UUOKxukzRBBADu3HEfWN0XjOP94ANxFXbyJHDggLzP0qWB/PllQnr0aInvkTChiE7ahDEgE9lHj4oLtPr13feXJo35ODZFmLgOylW2rPP1RR4/R474V97dH2X//sBLL8n1Gxkp15NG69b6vvG3AxBRomFDuTat1+eWLeIO8J13RGD66Sdx4WiNfWNl7Fggc2aJu5Mhg/xmO4lHGiNGyOuQIfLarJlcu++/794tmiYgPXzoeSwaVveWv/3mW71ngX374nsEhBBCCCGEEELIk0NQkLh+37lTjuvUAebMAV55BTh+XBbkuxNbjOEmfJnj9YWSJWXeMjjYc7gDb/Mx1pjJBw/Kq3VORosDvGGDzCdbxR5PUITxEXdxSZ4UjBNuT6PQ4o3cuaM3WV+2rFi7aBgnFP35Tj/4QPz+aTFSrBPxRsX3xReBnj2BCRP8/y7+/FOsm9atk0ncqVPlR6xYMXO5334T65QjR8TayNhPpkz2drNksaf98IOkDx8OnD4tMTLGjpVYQC+8YC8fECCxN4xtGT/PsDAgbVpZZe8u3hAALF5sPk6SxLN48sorEoi9dWvvwctDQ73H5IkuL70kot7Dh559SD4JUCiy485KqlcvES5OnZLfBHdxYoyrIgCxblmwQM7fs2fNeW+8IcKt9qftxK1bwGef2f2UAkDHjpI+apT9Dz88XMRQY6wvKwcPyrXYrBmwfbv7cr5gvManTxeBJ7a5dAkoXFjelz+cOqUL43HBs/hfSgghhBBCCCGERIfQUPEiNGKEHgNcWyAbESHP9V27ymJXJ86c0fc3bDDnKSXzlH/+Gb2xXb/u7CFIKfFY5C0mcGCgPa1SJfE2Mn++nvbPP7LgVrOU8bQI3QpFGB950kWYN9+U19y543UYTxX+fqdG1dRoCbNypd3i5fvvZYLVX956SyYWK1WS/po3Fxd0r7yil9EmQfPn161vAAnsDQBffmlv9+RJfV+bWPz6a3GXlD8/kDcv8O23MnHrDwUL6vuaGgwANWuKJc3Ro3ra7t3y4+dk0md17wQAr78uP8rbtwN//AGMH2/uQ+Odd/T9sDCgXz9xP9erl/6nYKVkSRFTDhwAxoxxH3jLiFHJ//hjsQiyYpywjk2++cb3skeOmC04SNzTqpW+nzGj7/UmThShxYrx98UqwgwdCnToABQqZE63lgsJEdGkbFkRdG7fluuna1dzuQMHzDcbISEi8mrB5jyd056sdPyhZ08Rmzt08F42MFC3UMmfH6hd27s4G10owhBCCCGEEEIIIcDAgRL+YsoU72W3bnVON85tBQTIYtcmTWTOb8UKya9aNXrjK1oUmDXLnLZ9O5Atm8xrGD1dDB9uns8YMkQseqxs2CBztEZvRIDzHKYvUITxkSddhMmYUdzoeFodTczE5Ds1uiaKrYlIb9y6JZO2EyY45y9cCKxaJa7zrKROre8b49HEdJKxWjV9P316c7vFiokKPmCA/JB6iumTOrWshr9xQ09r0ULERaP4Zf2s69UDli4V6yNARKz06eXHu18/+cE1Cli//CLuniZOFGuRYsWAtm0lroY3jDGDEiQQawcrp06Jm7ZBg+SPJD4oVEh3tUdiF1+sSlKm9K/Nnj3taUbhwxhjCtD9m1rxZFr7ySfyH9G4sb3vl18WMVUTOL/8UoTe/PnFpNco4GqEh4vQWbGijG/sWN19Ymio/A756u5Mq+MrRYuKiGoUTq0raPwlNFTasK6MoQhDCCGEEEIIIeRZYv9+WbC8dq1/9Xr0kOf/+/e9l715E5g7V3/GHjsW+P13c5mkSWWuYs4cic27dKn79pYskefzBQvcl3n0yJ5Wtixw7Zo9/csvdffuGzY8xvjSingkMDBQAVADBgTG91BILFGhglLJkyt1717M2tFCbW/cGDvjimumT1fqm2+UioqK3XYXLlSqX7/Ya/fcOaXmzlUqIsKeFx6uVNWq+mf/66+SHham1N27zu21bq2XV8p5nA8f6mWKFVOqRQul1q9Xau9epebMUerMGee29XDrSqVJY27/wQOlFi9W6tgxczlAqXLllEqY0J5u3cqUkdf9+53zBw60pyml1JAh+vGIEfYy+fIpNXKk9/65xc/21lv6fkCA+bvNnDlu+kySRKm//1YqUSLvZUuV0veN5+CjR0q1ayf79erJeO/e1a/loCClZs5UKtDwdzp8uLntkyedr7WICKVCQvRy7dvr+y1aKLV2rZQ5dkypl1+W3yVfadZM2unSRY7Pn7e/50ePJO+nn5Ravdr3tp9EoqKUatRIqS+/jO+REEIIIYQQQgiJDUaNkrmec+fM6YcPK3Xpkn78/PP6c+7o0fKc7QtOcwNKKZUggfu5A5dLqddfd84bO9Z9PaWUOnFCqQsX5Hnfmhdb8yBKKdW2bey04wsuGXzM2bNnD0p5Wur+lBIUFISAgAAMGRKIrl3TeK9AnniiosRtldHlT3QYOlRc6EycyBXTj5sjR0Stbt3au0VT69ZiAQPIz6MTERG6dVOGDGJ15Ava916woJhbGq2BnMpp1KsnZpLXr4vqnzevbqWQMSPQpg3w/PMSn+faNSBPHtnOndPbyJ8f+PVXcdum0bAhMG+eWAH16SNpQUESs2T6dLH4GT9ezEdz55bVBG+8AWTN6vl9/vGHlN2/X9zKObF5s7N1EPGfd94RaxIry5ZJfKQnlUOHJHaSxsmTcp5WriwrVrTr49135Xz64w/ZN/LTT2IGnDOnOb14cYld9eCBHHfsKGWtdWfO1AMEWq/3gwfFQq1/f7OpsfH6VMr59/ziReD8eaB8eee2tTKaqfOTzP79uvVfePiTb+lLCCGEEEIIIU8z//wDpEnjfe4lOpw+Lc+imuv/bt3EOwsAXLkCZM8u+yEhMg9qfd797jvx+lG0qMRk0di/X2JCP/ecHDs9Jyslz79WDx6+UKKE2UWYkTt33M+vKSXecIzhD6JLSIh4ExozJmbt+KqsxJo7srp168ZWU08kT/qkCvGdBAliLsAAcqFOmkQBJj548UWgXTvfJg+7dwdSpQK++MJ9GeP1bYxz4yvFirn/gwAkiJfRnVn+/HIO5solf5BG/5JKSUyhTz8Vl2l58kj63LnmNtOnF/NNI7/+Kq/G95M6tYxv6FDgww9FLMmfX0SnBg3kT9UTPXrIxP/EieKeyh3lywOffy7X1z//eG7THy5f9l6mTRtg8WK5oTGKUoAIXk8b7j6/J1mAAcwCDABMmyav69aZrw/NzNgqwAAirjz/vAjc2rqS48dFQNEEGMDZ/VrHjroAA4jLtOvX9eMmTUTANd6u3L5tbuPOHef3dvs2cOGCcx4A/PWXjLtBA/dlYoMLF4Bhw5yDBvpKZKS+7+79EkIIIYQQQghxZtIkoHNnz5PvV6+KUHD1qswzaWKGhq8T97dvy0LCCxdkke7AgfIaFQX8/Tfwwgvm2MuDB4sI06+fLJTUSJlSwgVY6dNHYl3/+COwfLkIOqdPi0iSLZu473bnKuzw4egJMIB7AQZwjsGsER4eOwIMIDF6Pbk4i238Wv/YyBqJ5v8opXDnGX+SN8YAIYQ8PeTOLUHGPQk2LpfkR0SY/7x85YUXPOc3aCBb1aoiyDjFAdGwTgprWOO8TJwoKxWMpEghr57ig/hL//76vrebhLFjxa+mURyqWxfYu1esCNzRogXw55/yZ29k2TL508+bFzhzxn39rl1FrHrvPTk2CqOjRwOLFnke95OGp/f6NOHJV2xwsOe6kyeLYJgypQgnVv74w3v/q1aJiDhpknOfp06JIGnkww+d23r0yLPgPnSovC5e7H1cMaFsWVnNdPCgLnIZOXBAxvD11/rvgZWWLfX9oCCJk0UIIYQQQgghxDtKyaJZQBZKvvWWnhcVJXM6mTLJXAYg8UeMdV0uWWBYrJgsZrU+13XuLItR580TwaFECZkr+eEH/Rl75Uqgdm1zoHsj334rr4MHm8fmaS5Kez+JEpkXAf/xh3hdccK6EDO2MHqusGKMcx1THlssmP/j11TdX3/9hWbNmqFdu3a2LaW/0YifMuiug5CnF1+u3xMngJ9/lklbX9m8WdyIdeniW/nXXwdGjhTLHH8xvoemTeXPzuUS6xMrH38sr9Wr+9Z2nz5iqXDiBHDjhntroObN9X13k+BW65wkScQdlSdGjgRq1JD9dOnkxiQyEqhZU9Jmz5YbGC1wmhVP329cmPtGB+uql/8Co0a5z+ve3XPdoUOBHTvEisZozaJx+rRvY5g8Wd83Lqbo3l3Mrq04uYED5EZ6yRL92CpIRkQ472s4CVJbt8rNbePGYu0DAPfueRavrlyR1z//dM5/+WWgb1+zeGrlwAF9PzRUhJjixYFevdzXIYQQQgghhDwbREaKZ5FZs+J7JL6xcaNzcHVfUApYsUJ/jooNSpbU948eFZfvQUG6a67MmYEtW/Qyw4bp+yEh8rpwoSy+nD5dvBN8/jmwbZt8N5p1xuHDQPv2+mJV43Pili3uBRgjd+/6//4iIsRNvsby5f63EZd4el5+4vE9fIxSdevWVRs2bHDMq1atmj9NPXbGjBmjcufOrZImTapKliypNm3a5FO9wMBABUBNmBDovTAhhEQTb0G9oqL0/DFj9PTmzZ3r3b+vVGSk7/0by+7cKQHhR4+2lzt3TvKN4/nkE/fvp1Mnpe7cUapbNwkIZ3yfEyboQdvv31dq5EgJiu6JU6fsQdCMQeaMffftaz42btaA8Nye3W38eDkHCxeOfhupU5uPQ0P187FgQXt5LT8sTE8zXk+XL5vLZ8umVGCgUmnTKpUnj1yPu3crdeWKXO8FCyq1YIFePnlypSZNUio42Pncr1rV/TVk7HfPHqVGjNCPn1ZWrVJq4ED5XSKEEEIIIYS4Z/bsp+f+/88/ZZzJkpnT9+5VautW7/UXLZL6WbLEznj++sv9M2POnN6fK2vVUmrxYnmW09I+/VTf37pV3z9wIObPwpUrR6/e+vXx/xz/NG2+4pclzKJFi/Dmm2865q1yt3z0CeC3335D586d0aNHD+zbtw9vvPEGqlevjgueHLxbYEwYQkh84nKJC6KRI4HPPtPTHz1yLp8qlX9uyYxlX3lFVmO0a2cvlyuX5LtcwK5dYjkwZYq93IQJYkLaq5dYtwwaJLF8NGrUkPeh/bamSgV06iRxNTyRL5/dDZs7N1Flyrhv54sv5PO0Mny4eaVKbHLqlLjHM5ojk7inTRugfn3g1q3ot2FdbRMaKq8vvCAWZFZGj5bXdev0tPbt9X2rJc+VK7IS6t494OxZMS8vXVoswNq1kz6M8WZCQoBWreS6mTnT3r9Svr2v0FBny53YwNcxxAbvvCMm90/SKi1j7B1CCCGEEEKeFPyYCo0WkZHy7BscLLEzY/K8oXkAMM57KCXWKOXKybxFWJi5zsOHwE8/AefO6R48NO8KO3Y4zwNohIYCa9boFiuAWKQUKCBWK1ocXieM7tXTpXMus2yZzJMYxzxxor5frpy+76kvXzE+j/rDwIEx7/tJZd686NctVixmfbuUepyPyfHDq6++ipIlS2LcuHH/phUuXBh16tTBoEGDPNYNCgpCQEAAJk++haZNU8f1UAkh/1GSJk0CABgyJAKdO/se2ax164T49VdRMkJDw7yUjn8OHnRh4sQE6NEjMtquwqZOTYA2bcQHWcGCCvv2hZuE8hMngCNHXKhbV8Hl0j9bjW7dIvHddzJDevs2UK1aIhw6JCqU9hk2bpwIixcnwIABEfjggyjkzWtuw0rFilHYsEFXsoYMicA335j9pGltKwUkS+a5PfJkU6FCFDZt8j/4knYObNzoQtWq5mBzmzeH4403oheATmvXeK6XKROF336LwLJlCZAiBdC0aRTCw4FUqfQyjRpF4pVXFL7+Ws7VGzfCTPGnQkPFd3Dy5P6N58IF4I03EqNVqyj06hX3aoT2vocPj0C7dvL7OX16AkyblgBz50YgU6Y4H4KJGTMSoFOnhFiwIAKVKz/zt9mEEEIIISQO0GZrPcWmjA7ff58Q/fvH3RxC8+YJMWeO/oD+3XcR6NZN7tE12wFfF4x+911CDBwobV2+HIaMGUXASJ1a7v8/+ywSv/ySEFOmRODDD6WPr75KiJ9/Tog0aRTeeScK8+ZJ/Z49I9G/f0IkTapw5044EiWStpYsSYAKFaKQJYtet0mTSCRPLotGL150YeVKGXCTJpGYPZur9J9m1qwJtz2L+0rjxpEYPz4SI0YkQL9+8gydMaPCzZu+XaTRjnSycOFC1K9fP7rVHxthYWHYs2cPulmi7VStWhVbt261lQ8NDUWotsQVIsIAwPLlS3DRGjWaEEJiiXbtMuLs2TwIDt6NQYN8n7RLnz4VsmdvjNKld2PQoAPeKzwBZMsGTJ0a/fqRkQnwxhtvIleuC8ib9wx++MH589KC0LVrlwFjxuhmCMmS9YdRfy9UqAgOHZJIc5owX6RIIqRLlw2hoRcxfboC0MfWfsmSe7B3bykAQPHiP2HDhs4AgDp1FuPhwwPo1CktJk5shYcPU5raBoCiRevh8GGJYpcmTSCCggLgicaNf8NvvzV2zCtW7AAOHizusb7Gyy/vw9GjRRAWJsF7Mma8iVu3HvMM9TNAdAQYAOjUaQqyZr2O06fzAPjYlDdp0mwAzaLVrn5u6efpzp0JkCePLrhs3/4Ljh8vDOCNf9PmzUtoWgnUtets5M59HgAQFeXCjz9+hZCQFChRYh9u3cqABg0WIiAgyOt4fv/9PVy79jL690+IRIk8BKhxIDg4JVKkeODxwSw0NDESJ45AggTatS/ve82aPxEUtBMA0LevpNWtux81a670awwxReu7dm2gZ0/Pi30IIYQQQghxYtasD/DgQUq0ajXZcN8bc9avrwKgPABgwIBBPgkioaFJsGbN2yha9DDy5DnvseycOeZn5z59EkEpCcg5fXpT3L+fGm3ajEfChN7f0/btbwCQILNvvXUKjRvPR1hYIgASzPeXX0QQadEiES5ckD7mzv0cQGYEBbmwe/c5APkAwCA8udCz52gsW1YL165lxf37af4/zu/w888ydqPQkj37JQA5bOnk8VG37u84caIAjh590ZTeufMIJEv2CIMHewk6a+C336YDaOk2P3Pm67hxI4tj3vHjhzBq1BIkSAD06JEQERGJkDx5KJzmi5yI3iwCgCZNmmCEuyjJ/+dJMLK5desWIiMjkSWL+QPMkiULrjlEdho0aBACAgL+3XLmzAkASJDA95XphBDiL5ky3UKZMrt8uhExkiZNMD79dDJKlHg6BJjYIGHCKFSpsh4vvHDap5vRTJluG/Zv2PKLFDmKevUWoX370f+mJUkSgVy5Lvzb/kcfTUe2bJfx4Yd69MLq1XU3nAkT6qv9EySIhMsFpEt3z+2YatZcgUqV1qNjx5/QpctIj+PPnv0SChc+7ja/bNnt/+6XK7cV6dPfdls2UaIIuFz6Z1ay5D6PfZPYZfz4Nli3riJmzPjYlhceHu11MQCAS5eye8yfOPEzbN78hscySZLoi1CCg1MiJCQFAGDfvhK4ePF5rFpVDeHhibB0aW1s2FAB8+Y1wO3bdlv7sDD3ll7h4Ylw4kR+7NhRBiEhyUx5Z8/mwtChX2HBggZuagNBQakxaNC3+O23Rg65sgLJ2O7DhyncthXXREQkxsmTL8Rb/4QQQgghJPZZseIdLF9eI077UAo4ebIArlzJjtOn88Vq2xERuhXA/v0l3JbbuLECZs9+H5GRLqxfXxF79pTGtGnNPbYdHJzSMX3HjjLYs6cEzpzJh5s3M+PGjcz/5p05kxuzZn2A7dvLICpK2jh06EVERiZAwoS6L7OLF2V+NjLS+blpz56SDu/VueyWLeVx8mSBfwUYANi8uTySJrX7e/f0bEPilpo1l+HFFw+jaNHDCAgItOWnSPEQyZI5W3NVqrQOAQH3bOmhoe6/zyRJQvHppxNNaa+/vgUAkCxZCCpV2vBveuLEkf8XYHwn2u7IVq9ejUaNGqFZs2YYNWoUXAb7uMjISMyYMQODBw/G8ePuJ44eB1euXEH27NmxdetWlC1b9t/0AQMGYMaMGbbxOVnC5MyZE+vX30K5cnRHRgghTyOau6L168NRrlzMFghs2+ZCQABQpIjCt98mREgIMGJE5L99zJwZgYYNRbhPly4xHj6U/0dPpt7bt7uwebMLPXvabxKXLAnHO+8oTJmSAJ9/bs8PDQ37t+82bSJx8aILy5c7r7Ho0CESs2YlwJ07MqYff4z41xVVdEifXiF1auD8+Vi2kf8PMnduON5/P/ruyCZPToC2bWMm5Hz5ZSQGDhRB8fhxoHhx8w1qsWJRyJgRWLdOP79efz0K69bpD0dhYUCdOomwdq3ZxZ/Ge+8lwqpVklerVhQWLtTr1qmT6F9Tf3fXi9HlWmhomMkdwdChEWjbNgpXrgAvvCBp1apFYelS/x1Rz5+fAE2byud5+HAY8uf3va7VBeLT4CqSEEIIIYR4JzAQyJxZ7vXOnAlDds/roPxm3ToXhgxJiJEjI/Dyy+b73thg/34XXn1Vf+aoWzcKc+dG/L8PoHLlRChVSuHzzyP/7X/evHBMmJDQdn+/fr0LAwcmxMKFEUjzfy2jW7eEGDHCu7XIvn3hKFJEnsuN984BAQpZsgD//GN/vkycWGHLlgjT+K2cOxeGatUS48QJqV+mTBR27vTd/iAgQCEwkM+2sUGXLpFo3z7Sq2v3LVvCUb68fKdVqkQhVSpxEQeYz3ujGz2Nhw/DkDCh/fkLAO7cCUPKlEDy5IkRFaV/p+fPhyFXLnv5hg0j8c03UXjxRYXkySV/4MAIfPml7krPnWvAJEl8FOpUDNi/f7/KkSOHqlOnjnr48KEKDQ1VY8eOVblz51bp0qVTvXv3jknzsUJoaKhKmDChWrRokSm9Y8eOqkKFCl7rBwYGKgAqMDAwroZICCEkjjl6VKklS+K2D83D7fHjelrbtpJWpYr3+kFBehuVKslrsmRKRUVJfmSknq9tkyaZ+27dWqlatezltK1bN6UyZtSPhw61l8mc2X19bUuYUKnnnlPq5EmlOnTwXt7T1qWL+ThVqpi1F50tffrH36d1mz49+nWVUqp379gZh0b9+r7X2bdP6ty54769O3fk/HOXr5RSDRro6XnyKLV/v/vrDFAqIkKpli3tbf70k75fvrz3a88Ja5u//BL9uu548ECp8PDojY8QQgghhDx+Ll7U7/HGjXMus3OnUnv3yr2qE0OHKlW8uFI3btjztLaLF3d/P/nokVLXryvVpIlSGzf6N/6CBc3tNmig5y1c6HyvP2OGUmnS6Mf580v/2nHChEodOKDUhAm+Pz8cP67Uw4dyPxyXz1jW98st+tuOHfKM5i6/bFl5frtxQ+ZeHj0yn9OAzIusXKkfd+hgLlOjhlIjR+rHRjp1svep8cor5vSSJfW84GB5lnv1VenbOianvrQ0d9d4dIH3Ip65dOmSKlasmCpWrJjKli2bypQpkxowYIAKCgqKjfHFCmXKlFGff/65Ka1w4cKqW7duXutShCGEEOILJ08qtXmzOe3BA6XmzlXq7l3v9aOilKpaVak33xTBJTLSXqZLF6Vq11bq66+VWrpUT//+e6WyZVPq3Dm5cdFuGqwT8337KtW4sexnyOA8KV6qlPl482alJk/Wj+vUMY/p0iWlsmdXqlAhpT77TN6DrzdyZctKGz176mnHj0f/xjB7dqWSJPGvTrduSv36a/zf1D4pm4Y/dRIkECEmSxZ7nnYelynjXDcsTD//P/jAnr98ufl8M+aVLOl9bO3bm+s/fOj+gdhdP9bPxt+6Tty7p5TLpdTLL/veLiGEEEIIeXzs3KlUo0ZKnTmjpx05ot/j/fijvY5RpClc2L6oKDRUz//qK6Vu3lRq3jxJV0rPsy4S09i0yfle86+/lMqRQ6kVK8z97dih1MCB+sKfnDnNdWvXlvTBg93fTztNvDdpErNnjn37pN3cueP/+edZ2saMibu2lVLqwgWlhgyRBXYXLyr13Xd6vtMCOqX079i4MFWr066d+fi99+T5cNIkpU6dMrezfLnzmJQSUXDaNDnfW7dW6vJl57FoVKki9RMnltcWLcz5WvsnT3pux1/gvYh77t27p/r166cyZMigkidPrlKkSKEOHjwYW2OLNebOnasSJ06sJk+erI4ePao6d+6sUqZMqc6dO+e1LkUYQgghjwvN6iUmdX//XW4YypdXau1a803KoEFyw9S7t1L//KNUs2Z63qVLclP1+ut62qpVevs7dij1ySdKXb3qfdy+3sgtXizlf/jBfCPlVPbgQbnJO3/efXvDh8sDzKpVvo+hb18ZR3zfMD8pm3GVW2xs2oOgu/wCBZT6+295AHRXpmJFpYYNM1uL+bp9+aX0f/WqUr16SVrZsvIgGhrqLMhcueLc1rFjvl2L1npOaNcpoD90Gzl2TAQjQgghhJCnkQcPlFq2TF8N78SBA1ImNtm5U6nPP1fq9u2Yt+V0P7d1q57WvbuevmePCBnGVf7a9vffUubAAaVq1tTTe/cWoQbQBR0tz+i9AFBq+3alvvlGqaxZ7e1bPRP07Gl/D19+Kc9sToKK9b0+jm3atMffZ3xsH3/sf52GDX0vW6GC/bvcvVupEiU81xsxwr8x/fOP8zVy4oRexiqaaJw9K89h16/bz8s2bczHjRu7vx6jouQ5//JlpebMUWrdOvdlvXHrlghWt2/LvnU+49Qp+RxjG0S3Yrdu3VRAQIDKmzevmjBhggoODlbNmjVTmTNnVjt37ozNMcYKY8aMUbly5VJJkiRRJUuWVBt9tNmjCEMIIeRpIipKVqE8eCDHxgeBHTvMZTULkLRp9bRy5fTympWCv7i7efvqK6VSpJDVKY0a6RPgQUFKvfaarKpRSql+/cz1pk/3rf0JE7yXsW43byr155/Rv7Fu1Cj+b+6f9M24Qio+tvPnPVvNaB5rT5wQQcTTw9LZs+Zz8cwZu4hirdOnj1LbtpnLzJ+v548ZI9fGvHmSt2aNpL/yivP1dfasXLv79snDvFVI6tRJzsuYiLqEEEIIITHhjTfkfsaTOx/tXig213JrbdavH736q1cr9f77MjFrvJ/r3VufBDamW/t12rp2lQVv2qp7bRs4UN8vUED3WACIW+qY3P+mTi2fqzGtXz9xJWYt6238cbEZ3Qc/y5u2CMyf7ZdfnNOLFdO/x5w5RYgIDLR/l0qZxUKn7eBB31zBaXMK7jh1Si8bEuL7dda6tVwPmnAzYIAIjEars2cReC/iTKFChdS0adNUhOXJr2fPniplypRqsba89SmHIgwhhJCnnUuX9BVYRiIiZALaaK67f7+IMsOHR78/443bc88pVbeuTCwr5bzq34rRHP6rr9y3nzSpUh9+qB/v2uU8Bk+bUvLZGNOscWrcbenTywPa118rNXWqs3s3T1urVvHzMJA2bfz0G1/bW295L6O57nvzTc/lpk3Tz7F16/R0bW2PO1/agPkcNq6CNPqqPn/e7N7BSlSUvV2jL29jfmxNaERG6oLOl1/K+R4dzpxRauxY/x7Q3NGnj0yQOLltJIQQQp5mbt60L7Do108WSgUHx12/J06IFX1sod2PaItKoqJEGDG6itXKzJkT+/2mSaOnWRemREXJs47T2mytfosW9nuudetk0YzT/Z2n+8ciReL/fljbnOJvhoU9/nH4+rz1tG41aypVurRZpPB1Gz/ennb0qCxc1GJxGhk7VsrUqOF8LgPm2JuAuDF3ijlr3XxZ1NW9u1KjR3svZyQqyv5M8F9YQIboVozy8OlMnDhRJU2aVP3888/Rbf6JgSIMIYSQ/xoxndg03rh17Oh//f37pW6KFJ7b1+Jp7Nkjk99OZZ5/3vONpVJyM2u92Tx71h4Q0119jZMnncucOePsNzk6N+WAxOjZti36DwWaD1xu/m/GcILvvmvOe/TIc92ICLFc8eWBR9usGC1ojJvmOjAkRE/zN1CrEw8fKpUvnwipxpV2V664r7NokVKHDtnTtXhNffva827dEos0X397tHGsX+9b+SeB0FDvqwkJIYT8t9EsF95805yu/e/NnBl3fWt9HDgQ87aMk/qFCkna0aN6mhafRDueNcu/9jdtcr7XMLaZNKkcnz4tsTO1Z4JWrcxuYd3Vd9pmzrSnaYvZ4vse9Wnbkid/vP3lyxf3faROre8bWbVKqXfe8b2dcePsaZ6IihLXWVZRw1rfeKzFrDWmFS4sQuytW0qlS6dU//6e+yX+kwDRxOVyuc1r1aoVfv/9d3z77bfRbZ4QQggh8USCaN8d2OnTx/86xYsDhw4BFy86569dC1SqBMydK8clSwL16jmXTZUKWLPGc38pU5qPXS4gd2559cS0aebjJEmcy+XJA8yaZU9Pn95z+07UqgW0aAG89pr/dTXy5jUflywZ/bb+awweDOzapT+uGEmWzHPdTp3k3P7uO9/7i4oyH2vnvJV33pHXR4/0tG7dzGV27AAaNwYuXJDjbduA2bPNZZQC+vYFZs4EvvlGrt/Tp4HffwfCw/Vy1645j2PrVrkWX3rJnhcWJq8bN9rzypQB3n4bmDrVuV13PHgAREb6Vyc63L8PVK0KTJgQ/TZy5QIyZDB/R4QQQp497t8Hxo+3/1eePg1s2OC57pQp8mr8r9T+PwEgaVL/x/PDD0Dnzvb7Fnfs2+d/HwBw6xbQuzfQvTuQPLmert3LJEyop929a65rvd8xcv068Ndf+vivXQMqVJB7DU/vKTQUaN0aKFcOuHJFv/+ZNMn8HgcOBMaMkecFb/fETZva07JnBz76yHM9YickxJ4Wl59jdM9rd+TJY0/Llcu5bLVqch/pK2+95d9YXC6gVCn7s8iLL5pfs2XT81KnNpfNlQs4ehSoXFnuV+/cAXr08G8cxDuxOM1ipnr16tjg7R+GEEIIIc800REaAKBoUfd1K1cG1q0DChZ0X3/BAsmfNUsmdw8eBL78Eli1yl42RQrnNiZOBDJnloe1oUPlQS4yUh4U790DPv7YXN7bg/H69UDbtsDPP8tDdrp0nss7kSqVb+W6dHGfFxhoPrZO1hPPlCkjQuUff/hXb8wYee3Xz1mkcGLePPNx/vzuy0ZFmR9ot22TiRul5PW116Q97QGxXDngww9FONH46y8RiT76SCZtfvxRzzOKMHv3mvueNg0oVEiuO284iZVnzsjrb795r//ggb7/3ntAvnzAw4fe6/nKuHHA6tXmtJ9/Bv78E2jTJnpthoXJpNGjR8DZszEfIyGEkJhx+7bc51nviWKDDh2Azz8HqlQxp7/wgiwiOnTIfV2nBUBGEcYoZPhCZKQsqhg1Cjh2TNK2bhVhwx2eBBGN48dlktZIy5bA99/LghXjAgmtPWPa+fPm/0Nrn0FBQNeucv9euLDcy2sLIW7f1svduuV5nL/84vxeg4P1/R49gPbtZaI8uhP1M2dGrx4xkyVL9OsOGOC+/htviOjw55/Rb3/tWn1/1CjzgrhXXpH7a0/392+/7bn9fPn0/RdekHvc/PmBTZuAS5eiN+Zly+T3aOlSOR48WM+z/pZE9x6X+EeciTAAUJJLKwkhhJD/HNOmAc89B+zeHX9jqF9fHhBfflmOX3pJhJRq1YAvvjCXdSfClC4tE6ctW4qAM368TL67XEBAgL28cXK5WzexOjhwQE+rWFEm4v/H3n3HR1G8fwB/LpUeOqEXkSogxUKRIogiogiigFJUQEFFLKiICihVEAEFBb5SBGlKFQRUehEpSu81IJCElkZIu/n98fyGnd3bvdu75JIQPu/Xa1+3Nzs7O9f35tmZefNNopdftv9Yvv1WW9+1y94+qan6+w88oK0b/zQXK2avzKNH7eWzw+4xcyp3DTCqs2f19901vgQG6q9wI+IgYocOrsEcVePGRHv28Lq7AMHw4dp6r17autNJ1LMn0bFjRF9/rd9HNrioDUjpbfiZMkVf/rlz7v9Uq8f2ZM8eDpTKnkVSbKz1PjIw647a2BMaylfk2u3Bk5xMtGSJvtHJrqtX+fnyZV9fnTzJ33HnzmXeMQEAvNWjB1GfPq4X1LgTFWXvu3vpUr49fFhLU3tsHDxova8ahImO5ltjD8rDh61/d4y/sep56F9/cYNu48ZEtWtr6QcOcE9ds7reuMHnzRs2aGnHjnFgpGxZ/bGMFzBIsq7yXIOIz0vVntkyz9tv8zl7+/Z8IUidOlqvmb59iSZM0Jd99iyf369caX5sKxcvepcfPAcRMsIrr/i+7333EQUFuaaHh3PAlYh7mMj/ht74+We+CFASQn9OvmMHn/+4G0Xhvvu0dfXzR8S9sBYu5ECMvKBp2TKi48c5gFS6tPd1JuKRHSZN0j5rxv8JKl+eF/CeX4MwAAAAcPfp3p3ov/+4W3R2NGQIB1bkFU1WQRgiz0OSqdQgzHPP8dBRxpNso2PHzNODg7lHwsaN+j/Dxj+8UocO+j/I6jAQRNyLR1KHXytQwLx3zfPPEzVrpt0fN457Fj3yiPnxVVbDsqm8eV49efbZjCsruxk0iK/qO3mSG05u3PBu/5gY/hNnbMAx3m/QgG8//dS6LNmTx8gqMPT99xysXLVK3yhUtSrXq2NHbjRRe7Z4atxyOvnqQyPjkIPyMzN/Pr+/Fy92X6704ovm6eoQjSkp3GNIDoVWpw73KjIOibJ5M1Hv3vxdqF7B+Oef/Gf6hRfs1WnECH6uWrTQPzZVdDQ/B+vXc4BMXtndqRPRG28Qde5s71gZ4bHH+L3y9NOZc7yLF4kaNiSaMydzjgcAOcOqVXwrrxD3ZONG/j0ODtYHV1RCcBBfDdyvWMG/XXFxWppxGCCVen5UvDj/fsyapaV99hkPLTRokOuxBw3iBmc1ULFzp7beq5d2bhcVpaX37889TiQZEElN5V7bEyZwwEpav55vZS/UyZM5qJWUZP6Y5O+Wu6GmUlM536RJHKRSz2lV77yj/01bsoRo4ECidu34vqeeMZLV8K5gbfly/x+jenW+oKddO9cLYjwJDnYNwpw7R3Tpkn70hA0b+BytTBl75W7axP/riLh3SmgoUZcu+vPfgAA+tqcLf/75h8//lizR0mbN4nOn+vX5fL9jR3v18sWjj3JvmNWrtbQ9e3g44Mcf999xQZHVk9JkdzExMYKIRExMTFZXBQAAAPykdGl7Ex+643QK0bq1EC1a8CTsdqiTuRcqJMRDD/H6K69oeQ4c0PI8+qiWbjZZ46RJQjzwAE+oqG6fPl1b79pViLNneVJzp5MnYDVO/rhlixCHDgkxbJh+wnR1cnar5do16221awvx1FNCFCmScZNgPvlk5ky2mR2WPHkyppx69VzTUlO9K+PmTZ6M1k7eF17Q1gsWtM7XtKn+8yQEv/e2b+f6dehgvW90NOc/dkyIokWFGDVKv12WJyUn6+8nJenz//GHECtW8LZPPtHSP/iAb596Sojjx/X7jB9v/vlUl/LltXWj1auFaNdOiIsXhXjnHSE++kiIypW1/Js3C1G8uBALFuifJ+Mx+vWz/o4wM38+fwf+/bf7fHbYPaY727cLceSI62umOnCAn5+nnkr/8QCspKQI8euv/NuXHk6nEFu3CnH1avrr9PPP/Jn1pQ5//CHE5ctaWkqKEFFRPHH5c88JsWuX+b7z5wvx7rvaucCdbuBA776r1HM1d/vExpp/7y9dKsTJk9r9/v21fa5dE+Lxx4WYNYvP4R57zHX/Fi3My1UVKuS6LS5OiC+/tP49mjVLiDfecE2fNo3rW7u2a5nGx6g+Lne/e0J4zteokXfnIcYlPj59+9+Ny0sv2c9r9hq2a2eet0AB63Leftv9MaTu3T3XST0vXLJEiEqVtPv33OP+c12hgmt5zzzjmnbggLaP0ylEYiKvv/yya70PHRIiVy7+jvFk40YhBg92PR+FnI08Z7m7IQgDAACQ8zmdQsydywGJzD6uDCCcPClEZKQQU6fyn1yVPMlv3lxLa9qU0z75xLzsunW1/aZN09bVAI8Q3AjTqhVvW7SIG9fd8eVPmlycTl7cNcQbl4YNXdMCA7X1N94Q4uDBrP8ja1zCw7O+Dv5cOnQQYu/ejC2zRAn+HMjPxNix9veVgQl3gRoiIf76S4jly4UIDRVi9mztfb16tXn+6GghGjTQ7ufOra0fO+aa39PnpGRJ17zu9ilVSlsvXFhbf/JJIa5fF2L0aNd9ZDBLTYuJESIiwv1numxZ95/969c5wGv3+8EXERHa/kWK8HPs6TjpOd6d6ttvufHGXaDKn2QjVE733nv83ure3bv9jMGKX37hckqXTl991GBxVJR3+y5Zwvvly6elGRv3HQ7zfeX25ct9r3tGunWLAxvXr7tuO3tWiHHj+Dtv2zYh1q3Tb9+/3/N3R1ycEBMnCnHunPU+s2Zp36kREdygawzuyOW99zi4rKbt38+vp3yP+bJIJ06Yb2vb1rdyrfYTQn9RApEQH39sr8waNXx/nHaXKlX8f4yctqxday+f/O1/7TV9+oIF5vnVwKUxsHjjhvVxVK+8Yp6nZk3+Daxfn8/Runbl/xWRkfqg4qlT7r9H1Au4Hn9ciB49tO+QFSvM66QaMsQ8T1KS++PC3c3NWwqEQBAGAAAA/EsGJtyRV2bJK/OF4MbqWbOsr0x98EHtz8HGjdp6797pq2/Llu7/qAnh+c+VuyvkjFdlrljBV5WpaUlJ3LDSq5fWSLJ+PV+xnNV/aIm4x8qqVVlfD38v8+ZlfR3UZehQvppb3jdeGWy2SD//bO8YoaHa+qFD1uVZ7a/2AjPydOx8+fT3rRq/GjRwLU/2ojIGYr77TstTvLj1537nTi3fv/9a51OP6UtD/Z9/6st45hnPx7F6PjPCv/9mTO+FjCYfc0b0XvLWokV87KlTM77s+fOFaNxYiAsXMr5sOy5c4J5khw7xfV/eXxcv8mfpvff4vjFQmh5xcVo527dzj7/GjbX6qm7dEuKnn7QghNlV23Y/R3Lb//6XvvrbcfkyvwZmF8Xs2iVE1aq8EPFFGkbFivG2Ll20el++zFffL1zIgXizx6xejS7PQ8LD+f6RI+bPVVgYb//iC/ff3e3bC7FsmWv6s8/qf7O8XWS9rbb5Wq7V4q6n8922qOfVGb3IgGlmLJ4upildWoiVK/WfMXX7L78IkZAgxIcf6ntrq/kee0yI4GD9NqvzR1WfPuZ5WrbU50tN1UYgiIsT4uuvhThzxvW7wUi9aMfM0aP82KzEx3MAaMkSz8cCkCzebiAhCAMAAABZLSXF3h8KlbHBRa6//nr66vLuu/o/Q1FR2nqfPvpjEXFDSq9e3AAhmQ1/IZekJB4+49df+Y+N0+k6xIQ7crgo4/LDD/b/lF66JMTixb7/qX3rLSH++Sfz/kRj0Zb8+b3LL9kZ9sK4qIFOudSowT1svDm25Cl/WJj+/ptvmuerUcO8oZFIiAkTrI8pGxxVCQmuV3cHBlp//tR8s2fz1d4yyPzvvzw03YkTWv4pU7h8mccYhHnySddjWA2dZyU6mh/HpUvWeczs2MHlFijA948c4QYeX23ezI/XGHRPTeXvuhkzzK/sNyMf87x5vtfHV3aecyN3DVlmZXfsyN+h+/eb53M6rXt2pYfsYZo/v74+3jxW9TfSWIY35QjBv3116gjx/vt836oRvHJl133V3rBWdbDalpjIAbErV/hCD7ltxgzv6u8LdTggYxNMuXKu9TXmMXtMgwZp63//7bp96FC+rVBBiAED9NsOHRLi88+tn8sLF7TAjy9L0aK+7yuE9XtCvpczcqlVK+PLvFOXa9f0vVMzcrH6/fbH4i4Ic++95p/RvHm1PEuXaumyh4vs8VezJt+fOdO1F7BxiL/q1flxq7Zs0barvb2ee86HLxYTUVH8v2XnzowpD8AOyuoKZHcIwgAAAMCd6OpVIV59lf/ECKH9eXnzzfSVGxvLjaYjRgixZ4/+ylw51rxsROnY0byMmze5gcfsT58V+afv9Gn39UtI4CuPDx/WN9gIYf9PqdPJ5Xj7Z/all3iojpgYbky1u9/nn5s3DGHx/3L0qBDff581x1apDZ12lyZNzNPLlxeiWzf3x5VDHqrpJUtq9bl4kedcsQpOSStX8vGOHrX+jI0YwZ9HOYxg7dqcV51j6sgRTjMGYYh4qDjVlCmen0/ps8/0eWTPuYQE7mXnbvjFYcO0/WSjWJ06rvk2bOD5kaykpOhf39279dvV4Ygefti6HEkta+ZMz/kzmvE5v3mTG643bjTPv2ED5x061Hx7WpoQ58/ry1aHFVq71nUfOSTOjz+6bouN5V6i167x/fh492Puz57NFwakpblerW31/oqP58a7X37R0oYM4Z4p/ftr+5Qt6/o+3bdPex9euqSfo0X66CO+YEJ9rwvBc7pYfa6Nz4Wn7x53PShkIKlBAz6XkNtmzbJ+Hs2kpfF5gvH5P3nSNc3p1H/m5LJjhxb8NPYGlMvzzwvx9NP2esMa54FwOLz/7lWXp59O3/7pXRAYyZrl5k0extibfewGxs6d099Xe+DaXaKj9ff37jXvdaUGYaZO5XklifhiDqsmUPmdTqTvoS8EB2JkL9jr1/l3IS2NAx0VK2rfmep8dlu3Wn+HqL1RZs/m7yT5ewFwJ6KsrkB2hyAMAAAA5ATyz87bb2d82YMHcw8UKSaG/yzduGGvTkQcwHA3tE5cnPuGTjMdO2rlC8HDJajHVIdiUhfJ2OC1ebNrXjksCpmcVdv9syz/gGZU44DVVZQ//uifxog7eTEOdZeZy9GjHJy4dct8zoH0LO7mxpFj+j/+uOu2jz7ixpHKld2XLwQHF9Q0qyF7jEtoKO+vzuUkezysW2d9PE+fKzPGPLInUKdOfL90afMGeuNnSP3ukJxOfX3NhpV84QXeNnOmlk8NKqkNUe4eh0ptPJ82jSfzLl9eP3+O08m9D8+eNS9DBrt8GV7KWFe1l4CR8fGZkb0IFi7U8gUFud9PppvNY6Q2NJ45wz28qlfXvz6bNvFV3moA1jgEkNljPXWKG1JlL7gSJTj9wgUtn9UQOsYlMZEfZ/78vD50KA+reeqUluf55/XHf+gh92WqAT5Pn1+rnjLqayI/m+r2tm1dn3OroQdHjdL2K1OGv+/kUJ0VKujzugswBQfrn2MsWDJ6UYfSsrMIoQ9QEgnx6afu93n5Zf6Meipb7f3tcPA+P/zAQ5A6na7HlcuIETxXivHiK/lZUz+Pcvn3X/7sTZxob3hkIfQXKa1a5Tm/lbZtubcM5lCBuwlldQWyOwRhAAAAICeQf5jefTera6KRdcqb1z/lq1cdqtQ/fD16CFGtGl893bevEJMna9vMGhCNf2D79rV+DDt3ClGvnhBjxmhXF5otcigEOZRawYK+NyQsXGheTyLuRWSnjMaNs75B5G5aOnXSGuuzw2JnrPuUFJ4E19djVK0qRKlS2v09e/h9axWEUee+siqze3cOnnz/vRBffWU+5vwXX7g2lLVuzUNfxcTwZ/X0adcGOTXQ8Oyz5sevVIl7Q6hDipnle/99bvDavt18aMadO/n5PX2a5yp65x1tvPubN/W9e9SeEurk8er8E4cOCfHEE9xDw2yuE1m2FaeTX2uzxyQEB9DV+yrjd4kQ3IA3diwHIU+e1LYZeyioy7BhWuOgOoxNqVLasW7d4qCSVRmvvsrBgjFjzLdPnqy/L4eoUuv+6KPm70112By7Qxv++6+27qnxlojnSfE0/NHSpfw8WfVyUR+L1bbISP3cVWbLgQPa8z5tGgeT1HkjoqL4ogWz4SFbtdLWn3hCe/9NnOj+mO7eH1iwpHdp0cJ6m7EHy8sva+91dZitK1f0+T74gHu6yfs//cSfHXk/LIx7rU6dqqVt26a/wMFqfqzPP+fvGjmf3eefu+YJD+dtchhisx7X//xjXr47SUna/ps2eb+/5HRaz2sJkFNRVlcgu0MQBgAAAHIC+Yfp+++zuiYaWSc5/n5Gq1dPO4Y77q78czqFWLNGm09i714eemfkSG44vnSJAzF2/oha/cGXE50nJfHwFuqfdk+LHJaHSH9FYvHirnkvXTJPNy7JydxDwGzbpUtZ31iCxXVZtUo/DFJ6lnvu8Zxn2DC+Kjej6i/Hgv/oI/PtRYpoQzj56zns2ZNv0zNHg1xOnfLcEO5uadZMf3/0aG6Er1FDnz5pkr7+0vvva+nly+v3+eor/X05NJ1RdLQQ33yjBQjlsDPqvkIIUaiQdn/MGC0IJQPU6nLzpr5X0dq19p+TZct4KJqKFbW0sDCuZ48eQgQEeC7D3dBRTz3lft+uXe3Vs2FDe/nUOZ3atEn/e46ILwZo2NDz3Fj332+9bc0az8cZMIBfO/X3JyiIA5/GuauMi/q7TMSByL179cPyYcmcxWy4vDtlUYcszIjFbKiw77/n3pOJiVoPLiL9MF333aelyzlR5JKQoA8aL1zIPRblfRnMXLBAS5NmzODvXzuio83PY8+cEWLcOP13/OzZHMiXvYDtztdlNHAgz/foKYgPAHrkOcvdDUEYAAAAyAnWreNG05SUrK6JRvYOkVfpZbS//uIGoe++80/53rL682/2mljljY3Vrvbu25evIrxwwfVqQnXiVLnEx/PQZ54aI4TgBgAivpL9kUd4XU7AasxvnHcjM5eVKzO2vHHjXBup74Tl0CHtNcuMJSAgfZNRmy12xtffuTPrn+vstIwfr6337Kl9D5jNrWG1nD7NvRlkEPfMGQ4gGQNBRDwkjno/Kso1T6dO7r/D1CUjPr8NGmT965DepXXrrK8DlrtvUQNiR4/ycFZZXSciIerXd3/Bx+zZ+iG7MmIxzrFm1ms8Joa/81S1a2v7GOcSNJ7PLVrE36/yvpwLLTmZhxD96it755IZITHROgAPAP7jEEIIAkuxsbEUFhZGMTExVKBAgayuDgAAAECOceUK0apVRJ06EeXJ459jOJ1EAQH+KdtbJUoQRUW5ppudjTsc5mUkJRGFhHg+Vrt2RCtXavdXryZ64gk+lrvnY+ZMop49Od+uXUQ1a/JzePQo0QMPmNctJYUoONhznVQ7dxI9+CA/J5GR3u1boQLR2bO8HhNDtG0b0ZNP2ts3Pp4oXz7r7Skp/PxUrUp08qR39cpKly7xZ6lXr6yuCWSmDz4g+vJL1/QWLYg2bLBXRuXK2ns9KIgoNZXovvuIDh70vG+3bkRz5rimt2nD3zlgT8uWROvWZXUtICfr0oVo/nx9WpkyRBcu8HpiItH580RVqvhWfvfuRKGhRNOna2kJCUQvvki0bJl3ZT33HNHPP1ufB12+zOcOixYRvfCC+7K2bSMqUIBo/36uCxGfe+zcqc/38MNEO3Zo91euJGrb1nNd77+faN8+Xk9O1p+fyXO78eOJNm3ix3T1KlGpUpx+4gR//wLA3SOb/CUFAAAAgLtN0aJEPXr4LwBDlH0CMEREmzfbz6v+kT96lG+rV7cXgCEi+uEH/f0nnuBbh4OoYkVe/+wzfZ7TpzkAI/M9+CBR3rxE+fNrARgzQUH6+/Xrc8OHldKluby4OA76eOv777X1vHm5wffAAc/7BQdzfneCgvg9s28f0bx53tctq4SHE6WlZXUtILOZBWCI7AdgiPTBxtRUvrUTgCEi2rvXPB0BGO8gAHP3efhh620//ED0/vsZe7xbt1zTihTR1nPl4sCGmeee81z+jBlE06bp0/Lk8e13qWRJvp0yxXy7PGe0ChjVqMHfjZcvEzVqxEHlxo217Rs38nlVmTJaWmKivoyiRe3VVT03Us+FlizR1t99l2j5cj5/s3sOBwA5Uzb6WwoAAAAAkHNVraqtly7tPm/nzvr9hCA6fNj+sYoXJxo40Hzb6dNc3rBh+nQZnPHEU8AjTx5u+HjoIfPt8urWfPmIChe2d0yV2pgUGMi3993neT8ZkJs923PePHn4yuGM4m0PlfBw74+BIMyda/DgrK6Bb+wEPwHuVj/95Jq2ahVRkyZEP/5ovV+BAhxE2LRJn/6//7kGBz76SH9/zx7zi09u3SLavZvo6695eestDgwUK0b0ySfacY2OH3ftQWNG/hYbPf64a9r58+7LCg3l29699eclzZrxRReyN2udOub7HzrE5z9qUKl8eX4cq1cT5c6tnVdJN2/qy7j/fvd1lMaN44DZP//wuU2lStrFIe4eGxF+swHuRgjCAAAAAABkkosXeciLCxe4QeTyZfN8zz7Lt/KKUF9YDeWRXmYBD3XoM1l3q94wxYpp6+XLa+v9+xNt3+75+BUqeM4jffGFti6HTOveXUvr3dv9/q+/bv9YVp54gui11zznU/M0b+79cWQvBjsKFfK+fPAfX4JuAJB5Bg/m3+sPP7SXv1UrHnrK6MknibZsIbr3Xn262lM2d27+/a5RQ0vLl4/o1Vdde4+OGkU0ebJ2v149btz/8kt9ACM4mHupDhjAy6RJ/PsbGan/nXz3XW392jWup7G3K5H1b1pEBAdLFi/W8qm/o8uXcw8U2YPkrbd4mFD1IhN5vKAgfc/XjRuJfvtNO7cxO8cx9sZRde6s9Qom0ger1Is7jh/XB0vcCQsjGjuWqG5dvn/0KA+1myuXeX61J4zTae8YAJBzIAgDAAAAAJBJSpbUeojUr289/Mczz/BVsPv3+34seQWqt/O1+KJtW254WL6c6M03OS0wkK/4JdIHFdReQOHhRKNHEw0fTjRxIlHDhkR//EFUrpz1serU4bHg//5bn242ZMo773CDFpG+Qeu337inizqc04QJrvun97l7+WW+etlOg86DD2rrTZua5ylWjINVUp8+RL//zutJSfbqNHiw6xXWGc3ptG6EAlf582d1DQDuXPPmcVDBnT//TN8xHn6Yf68bNnSfr149zjdpkutFFup3NxHR229r6/J3Sl1XfzfcDaVp9ts3cCD3eq1ene/L+VCMjIGMr77i7++kJPfB+jFjuEeNUdmyHCzp0IHvBwXpe5W2a8e3a9Zwz5QxY/ixlS2r5VGHAn3sMc5np9fdwIGeL6xQLVrEvXFnzuShz0JCeCg4Y4DMG8HB7n/71HMKd+c5AJAzIQgDAAAAAJDNOBzcEG93XHIzjz7KV9dGRFjnkYEHs2FT7FB76hQpQvT00/pGhp9/5kaWRYuIXnqJ0z79VF/Ghx/qh2Nq1YqHE3n+edehw2QDWKdO+qAFER9D9fjj3LgzZw5Rgwb6Rro2bbihp2BBnkw3NlbfICYZhyghItq61TXNyowZHHSyE4RRr8Tt08c8T3CwNhQLEdHUqdxIZdzfnSee8K3Rf9Qo+3kdDi0A5y/ffMNzShmH47kT5eQgTFhYVtcArDz5ZOYdq1Yt/j70hy5dPH+GWrbUB+LNfPstB0rMGvzVIIHUtq2+Z+f16zwc2KVLHPxQh7Tq2ZMvNFCpFyTUq6etyzlP1MCMnL/k0Ue1NDkcV/HiPI/ZqVOuddy6lYMinTq5brPicLifu8Tp5M+1u7niVOpQZTLoU7gw90yRj1GdG1A9Z3E4OJ+dIUe9Dfw//DBfPNKzJ9FTT3GPnFde8a4Mbzkc3MMoMtLzHHUAkPMgCAMAAAAAkEM98oj7oY7efpsDEF27+uf44eFEH3zADVWzZxNFRbkGT8zky0e0cKF+bpx33+WrZ60Yr+iVQZWOHYl27bKeoyY42LoBTwY4VI0bE3Xrpt0/eZKHAvvgA+u62ZmMV62/1fj6uXLx+POtWhHNmqXflpzs+RhEfJWvL1fgvv++d5NFyyuwPTGbhyBPHvcNfPfeyz2uZs3iXlTG+Y3MtGmjnyw5vcyG6PGV2XPgTy1a6Oeo8qeoKO/y16unXS3v7jPljtnn9m41fLh5+sqV+mEk+/fnBml/yZ1b/zvjbljJ0qWJzp7l7/wSJax7cQwezL0aifTze1j5+28t8FSypD5A2KQJ0RtvcKDErMG/WjW+Vb+nu3XTD09WsKA+T8eO/Bieeopo/HjXMtXhqAIC+MKLSpW0gIz6HdOzJ9/mycMXB8yZo/WCJCKqXZv3NSpcmIcHS+/wpGrvEFlW48Z8AYexV6rRQw9xQEr2jjGjDg12zz326zV9urbuy3ey+rxkRq9hIu5hVLx45hwLALIZAW7FxMQIIhIxMTFZXRUAAAAAgGyBm7yEKFnSv8dxOrVjrV9vv16FC2fc8T//XCtX/fe0fbsQ69Zp9+PjhXj3XS3fW29p286f19KnTNE/f3I9NlaIOnWEGDyY91m2TH9cIiGqVbOu6+XLQpQoIcQ777juJ5fdu7X806db55PL8uVC9O4txM2b2n6e9pHP0fXr9vJOnSrEggXa/Y4dhUhM5Od+0yZ+TMZ9Jk92ffyejvPcc/brb7U4HNp6UhLXVb6mc+fya2g8RmSk53J37PCuHnFxvj+Gpk25jkeOpO+5sLuon2E7S1oa73P1Ktdz1Srvj5maaj9v48bW23r2FGLECNf0iIjMee7sLAUKCHHokPX2pCQhhgzh91j//pzWu7f2uenaldPkd4Pcr1AhIUJCvK9P585CfPONEEFB+vRJk/TvhcWLzffv1o3fm6p581zzhYTo85w9q99eqJC2vn+/li8+nut37hy/155/Xoj8+YW4cEFfXu7c+vKk5cv179WYGCGaNRPi229dv5M8GTlSX35amhApKfo8ly8LsXQpv6ez0j//CFG1qhBLlvi2v9PpOU+jRvxcjB/vXdnyORw+3Le6AQBkFvKc5e6GIAwAAAAAgJ5s9PB3EEY91vbtnvP+8gsHMoyNeOk1aBDXoWNHz3llfadM0dKiorT0hARtfc4cDg4sW+a+LLnUru3+2GlpfLtunRAtWwqxd6+278iR+rwzZ3puULVTp0ceEaJGDSFefpnvv/GGljciQojjx7W81asLUbo0r48axQ17KSlCHDyo5Zk+3fWY+/frj5mY6LlexqVrV32+woVd81SrZr1/q1b8OI3PTVycdV3uu89e3dTXSV0qV3ZNO32ay6xZ07q8sWOttzVpYv85y4jFznHy5OHbUqXM33OtWtk/nsPhesxt24QYM0af9umnHCBzF7TculWI777T7j/2mPb+zOjnaelS/fs8LMzefrLR3t3zr5LfEVJKCj8PxvfEl18KceyYdj8kRIi2bYWIjhbi44/Nj7Vvn1bO5ctaes2aWhDhww+FePFFbpRXg0cDBgjx77/mr/9PP2n5hgwR4sEHOZhi1KSJlu/oUT5WdLR5mZ4EBmplff+9lr5unfVz6y1jEOZuFxcnxIYN3gec5HM4apRfqgUAkGHwde8BgjAAAAAAAHr9+nGjx6xZ/j9W9+5CNG+etVcCJydzTxy1R4iVbdu494zxiuaJE7nXhxBao5Hx6mujb7/lBkuZv0ED7+vudPJV4sYrkX/8USt3505t3SzQoBo9Wtsue63I4xw96trIKwQHmoiEmD2bn8vkZNc877wjxAsvWF8x/d9/Qqxcab3dU2P1m29qj/vzz3ldvo+JhChThq9qV/cJDtY36pYvb6/RVOZZu9a1bs8+69pLyOnkXlTffKNPP3FCiNdf1+7Xq6cd4777zB/nggW8vUgRvq/2ziLiq809PWfqe8C4/PUXByPk/YgI7fW1CgJYbQsP59tr17gX0a1b5s9ncrK+N5kMMk2erKWtWMGN+FFRvM+qVUI89BA/hyr52DZv5vvG50dddu3S91zz5v125IgQly65D/KoS1KSvtxixfg7wyxv8+audfrgA32esWM5iOItuf+ECdxbRN7v29f9469Z0/VzLbd99pn18c6f50CtO3Pn2vvcXbnCvX3++cd9Pjty5dKO+fvvWnpamhBdumRMr4urV/l7R+01Cd6Tr9OXX2Z1TQAA3PPwM5a9DR8+XDRs2FDkzp1bhIWFmeY5d+6ceOqpp0SePHlEkSJFxFtvvSWS5BmODQjCAAAAAADoOZ3ceAa+OXnSu4ZCswb09DpxQt+w2aULr+/Zw8GfpUvN91N7FNiVkuJbg7A3tm7lhuLoaCHKluVhmt56i4fQIRLi8GHXfdRgyOuvc5rasCwDVTJos3Ah33/7bfd1OX5c37vJLIiSlsZBmkuX9PsaAxhqWrNmWlqtWq4N4ffcowUrFywQokcPfj4GDNDyPPCAVsaPP3LvnyNHeLiqnTs5PSGBh4syG/YsOlobhk3WMTXVdTgoqyDMjBn8XvPiL7kQgt9Dsoxt27T0bds4eGVnuCMhuCfR339r92fNsg6M7NvHnwWz97sawJPLhx9q67KHlHzPyKCOmv+117R1WX81CCOE1gvv99+FuHGDg5HPP29eJ9lrJ29e+8+r0Rdf8HskLk7/nL/4oj5fy5b6gI9Z8HXmTA7YXbvme32E4B6D3n7npNf69Xy8pk3tv7d84c+y7xbyveHtMGYAAJnNIYQQWTsrje+GDBlCBQsWpAsXLtAPP/xAN27c0G1PS0uj+++/n4oVK0ZfffUVXb16lXr06EEdOnSgb775xtYxYmNjKSwsjGJiYqhAZs+YCAAAAAAAdz05eXDz5kQbNmRcufv3ExUrxpNUC0EUG6ufrNrM2LHahOnZ9Z9kSgpP9BwYSJSaSnTjBlHRouZ5L18mWrKE6KWXiAoU0J7rV18l+t//iK5d48mtpUuXiMLDvZvo+qefiD77jGjpUp5A2528eXni7cKFia5e5bQZM4hGjuSJ1OUE4S1aEG3cyOunTxOdOEHUurV1ubK+VasSHT1qv+579xLVravdj40lOnyYJ+X+4guiQYNcjyHlzs2PRU339T0jhDZ597ZtRI0a+VaOkdNJNGEC0Xvv6dMLFCCKiCC6fp2oYkWemPz4cW37rVv8eowYwc8REU8S3rs3r6em8vtvxQqiZ57RHoN8Lvr1Izp1imjtWm0bkba9aFGi6GjX/YiIRo/Wnnfj83nlCj/vefP68my4ksd95x395PKXLxN9/jnRc88RPfpoxhzLypw5RN2783pmfucYn3fInnr35s/i4cM86T0AQHZ1RwdhpFmzZtGAAQNcgjCrV6+mp556is6fP0+lSpUiIqIFCxZQz549KSoqylZQBUEYAAAAAADISvfcww3t331H9PrrWVuXceOIBg7k9Tv/n6Srn3/mxvS5c4mKF8/84y9dSjRsGDc816plnW/HDg6EjB6tvR7uNGtGtHkz0ahRRB995F2d1Ibo5GSi4GDtVt1mbLCW79d+/Xh9+nSiXr28O7ZZPbZvJ2rY0PdyzDz5JNHq1bx+6RIHUIoV4/uXLxMVLEiUK5frfidOEL35JtHHHxMdO0b02mucLj8bqan8fDdrRtSuHQcEjx8nevBBXnbt0ueXj7FIEQ6omElO5te9TRuiBx5I7yN3b8kSojFjiObPJ6pUyb/HsvLvv0T16vF6TvzOgfRLS+PPLABAdpajgzCfffYZLV++nPbt23c77fr161S4cGFav349tWjRwqWspKQkSkpKun0/NjaWypYtiyAMAAAAAABkiStXuLH28ce13gBZ5a+/tF4Id/4/yTtbWhq/H+xcrR8by4GbRx8lCgry7jhq+U6n9fHef59o8WKirVuJ/vuPqEEDrl9aGtGZMxxMTE/PArnv0aPcoycjbdrEPc2IiJKSiEJCvC9j6lQtSGrns9GmDdGaNfr88jGqPaGA6NdfiSpUcB+YBAAAyM6y+BTevy5fvkwlSpTQpRUqVIhCQkLo8uXLpvuMGjWKwsLCbi9ly5bNjKoCAAAAAACYKlqUG2yzOgBDxD0Q/vyTG9UhawUG2g9qFCjAw5V5G4Axcne8ceO4x1bp0tzLQ75fAwOJKldO/9BOCxYQTZyY8QEYIn0vF1+fo9BQ7/JPmULUqpUWiCEi6tSJb+30brqbtGuHAAwAANzZssFpvN7QoUPJ4XC4XXbv3m27PIfJmZ4QwjSdiGjQoEEUExNzezl//rzPjwUAAAAAACCnadmSr0qHu8OiRXxbsqTnvP6cQ+OFF4j69/dP2WqA09dgZ+fORE2a8Pw/dlSsSPTHH9zDTZo7l3u9yXmXAAAAIGdI53UwGe/NN9+kzp07u81TweYZf3h4OP3999+6tOvXr1NKSopLDxkpNDSUQr29hAUAAAAAAAAgB+rUiYcUy8mTlNetS1S7NtH/TyXrk1y5iLZsSV89QkJ4GDcAAADIWbJdEKZo0aJUtGjRDCmrYcOGNGLECLp06RKV/P/Ldn7//XcKDQ2l+vXrZ8gxAAAAAAAAAHKy7DAUnj8FBfEE8Dk50AQAAABZJ9sFYbwRERFB165do4iICEpLS6O9e/cSEVHlypUpX7581Lp1a6pRowZ169aNxo4dS9euXaP333+fevfuTQUKFMjaygMAAAAAAABAtpDTA00AAACQdRxCCJHVlfBVz549afbs2S7pGzZsoObNmxMRB2r69etH69evp9y5c1PXrl1p3Lhxtocci42NpbCwMIqJiUHgBgAAAAAAAAAAAAAAbLujgzCZAUEYAAAAAAAAAAAAAADwBYIwHgghKC4ujvLnz08ODBALAAAAAAAAAAAAAAA2IQgDAAAAAAAAAAAAAADgB5h6DgAAAAAAAAAAAAAAwA8QhAEAAAAAAAAAAAAAAPADBGEAAAAAAAAAAAAAAAD8AEEYAAAAAAAAAAAAAAAAP0AQBgAAAAAAAAAAAAAAwA8QhAEAAAAAAAAAAAAAAPADBGEAAAAAAAAAAAAAAAD8AEEYAAAAAAAAAAAAAAAAP0AQBgAAAAAAAAAAAAAAwA8QhAEAAAAAAAAAAAAAAPADBGEAAAAAAAAAAAAAAAD8AEEYAAAAAAAAAAAAAAAAP0AQxgMhBMXGxpIQIqurAgAAAAAAAAAAAAAAdxAEYTyIi4ujsLAwiouLy+qqAAAAAAAAAAAAAADAHQRBGAAAAAAAAAAAAAAAAD9AECYTXbxIlJaW1bUAAAAAAAAAAAAAAIDMgCCMH6nTyGzYQFS6NFH79llWHQAAAAAAAAAAAAAAyER3dBBm8+bN1K5dOypVqhQ5HA5atmyZbrsQgoYOHUqlSpWi3LlzU/PmzenQoUOZUreYGKKKFYn69eP7X3/NtytXZsrhAQAAAAAAAAAAAAAgi93RQZiEhASqU6cOffvtt6bbv/zySxo/fjx9++23tGvXLgoPD6fHHnuM4uLi/F63H34gOneO6Lvv+L7DYZ5vxQqiLl2IYmPNt0+aRNSuHVFSkudj7tpFdPasT9UFAAAAAAAAAAAAAIAMdkcHYdq0aUPDhw+nDh06uGwTQtCECRNo8ODB1KFDB7rvvvto9uzZdPPmTZo3b57f65aSYi/fM88QLVhANGaM+fa33+beM4sXu25zOomOH+dhz06fJnrwQe59czf6/Xei118nunkzq2vim/h4oqVL79z6AwAAAAAAAAAAAICrOzoI486ZM2fo8uXL1Lp169tpoaGh1KxZM9q+fbvlfklJSRQbG6tbfJGa6jnP9eva+v79rtudTm3d4SC6dIkoOlpLGzSIqGpVorFjidRR1tS5aMwIQTR0KNH8+URpaVzmsWOe60tEFBnJwY5//nGf78IFDgrNmWOvXHeOHSOaNo3rauXxx4mmTiX65pv0Hy+jrFxJ9Ouv9vK+/DJRhw5Effv6t04AAAAAAAAAAAAAkHlybBDm8uXLRERUokQJXXqJEiVubzMzatQoCgsLu72ULVvWq+Nu2EC0erVrEMZsOLKEBG195UoOpgjBPSJOnyZKTta2O51EpUoRFS+uBWe+/JJvP/yQKG9eLW9MjPs6bt5MNGwYUdeuRMHBXGa1akTnz3t+fH37crCjfn33+UaN4uHRunfXB5OkAweI+vThIdsefdR98KFaNaLXXiOaPFlLO3iQaPp017Jl0OfcOaKffnIfuPHFzZuux+zXj+ihh3jbF18Q/fUXUWIiDyP39NNEN254LveXX/j2xx8ztr4AAAAAAAAAAAAAkHVybBBGchiiH0IIlzTVoEGDKCYm5vZy3hCZcDqJJk4kWr9eS9u+nRvfb93igMKTT3IAwhNjY/4HH3DPiQ4diO65Rx+EUauhBm+kfv20dWOj/3//EQ0YQHTiBN+PiNC2qb1mDh7U7xcfTzRiBNGRI5zvwgUOntiRO7e2btaZqG5dDqJUrsyBq++/91zmn39q67VqcRBn3jzuESTJHkHVqhG99JK9cu26epWoUCGiwECi997TXp/vviPauZPo2WeJPvuMqFEjfi9IV65kXB0AAAAAAAAAAAAA4M6RY4Mw4eHhREQuvV6ioqJceseoQkNDqUCBArpFVb06BzRattTSGjfmxvd27bS0Vau0deNQX0JwACYpyfX4mzdr65s2aetqoCEuznU/9RjGIEy3bhw4ql2b74eEuO5PRLRwoT4oM2wY0SefENWowb1typYlOnlSv8/ffxO1aEH077/69GLFtHU1aJSQQPTDD1oPFbXH0KVLvC0x0bx+8fFEI0cShYZqaRMmEI0e7ZpXBkGmTzcvyxe//qoFXsaP5+CLas8ebV2dE+jUKd+Od/Qo0SOP8Hw3mWnhQg4s3kmE4MDYxIlZXRMAAAAAAAAAAAAATY4NwlSsWJHCw8Ppjz/+uJ2WnJxMmzZtokaNGvlU5r59RMeP69M2btTW1Z4aqmrViJYv1+4vXMg9OZo0cc3733/a+tNPm5fnaZqaunV5+LP16znYs2EDp8vAhNV8NbNnE731FtHFi9yovXOntm3sWPN9Hn6Yn4N69YjGjePeJ/Hx+gnm1SDMe+8R9eplXtZDD/G2Tz/V0uLjtfXdu4kGD9b3EDLrFTRmjLa+b59+27vvEr3yiud5c4yE0PfuIeIh4+bN0+5fu6atq3Xcts28zAMHiFq35kCWmc6dibZu5fluDh/mx+5pqDm7rN4DBw/ycRs3zpjjeGvzZg4+eWvfPg6MDRiQ4VVyMWUKD8cXFeX/YwEAAAAAAAAAAMCd7Y4OwsTHx9PevXtp7969RER05swZ2rt3L0VERJDD4aABAwbQyJEjaenSpXTw4EHq2bMn5cmTh7p27er1saKiiO6/X59Wuzb3AvFWly7cqG7WiLtggef91aGu3GnZkudFMdq/33qfyZOJSpfmnj3qPDN2DBzIxxs6VB8cUQMpS5ZY7y+HXFu5Ukt74glt3awHkNmcLx99pL8vBPfsWLKE6OuviWbOJDpzhnvRTJliXpf4eO6BkpLCPV6KFOFh2VSpqUQvvqg/jvTxx+7rTcSP7Y8/iBo2NN9+7py2/vDD3AuoaVOis2fN89u1ZQtRWJj5Y1eP6W+nTxP9/0eXiHi4vGbNuLeZt9T3mLcBNm+98QbRP/9wTzEAAAAAAAAAAAAAd4KyugLpsXv3bmqhREHeffddIiLq0aMHzZo1iz744ANKTEykfv360fXr1+mhhx6i33//nfLnz+/1scx6b9idHyWj1a1rfwL3f/7R369SRZsbxp3hw4mee859HnXILdVXX+nvT5lC9L//8XquXJ6PHRJC1KkT0W+/6XvUmLHzWPbude3ZERlJ9M47vP7yy/peLq+9RjRtGq9/+inP90Pk2uhuFcAhIpozR1u3egwXL/KtWdDgt9/0w8rJQM7+/UQVK5rvExdHZPXWPnmSh2378EPu6XLzJgcTnn6aqEwZLV9wsLYuBPeoshIZSfTYY9yzyJceKPfcw7cXLxKVLKnN5+ONr77iOXrUYfKSk/VD1vmLWS8sbxmf45QUouvXiYoXT3/ZAAAAAAAAAAAAkPXu6J4wzZs3JyGEyzJr1iwiInI4HDR06FC6dOkS3bp1izZt2kT33XefT8dS52fJDrp3920/O0EL6Zdf3G//8kt75fzwA1GFCjw3iuzt4s6BA3xsTwEYu9atc01bulRbHzmSgxGffsrDYckADBH3DEqvadP0QRkiz7012rZ1v/2vv4jKlSNavJjvr1xJVKAA0YgR3CtkzhxuzJfatOHXoXVr/VBpbdroyw1SwrJmcxapRozg10oGs6TXX+fAwuDBrvtcvsz7qMFB+Z5UnxO1h4yZ6Gii+fOJ3n+fj6++TnZ6ii1YoAWjfLVzZ/p63WzcSFS4sL63WtOmRCVKcE85AAAAAAAAAAAAuPPd0UEY8EztTZHRPvnEft5z54h69PBfXdy5csU1TZ3jZvhwol9/5dtmzfT5AjLoE6IGzQYM0Pc+8UWjRhzQeu457onSqROnf/IJUd++fLzHH9fyy54iZ8/qgysHD+rLVXvCqMGMKVM4sNKxI9HVq5yWmKjfd/dunv9m6lS+P3Kka71LluRh/OrX19Lkc6wGNOrW1ept1uOkVi0iq1EFCxYk6tDBfKg6qUsXnptp0iR9+rVrHBSxE5w5coQDW77q0IE/ny+9pKXt2MG3c+ZwsGz7duv5e4h4SEPjMHlGS5fysdSgHAAAAAAAAAAAAGQOBGFyuP/vFJQtGBv8M8uYMb7vaxbA8ZVsTJ84URuKLCPMnKkPmMydy7e7dvH8L8ZgiXGOms2b+VYIbdg4IqLPP+fAy9y5PHQZEc+r06cPr6sBquPHiR54gKhJE+/rbxaEISL691+ie+8levBBvn/6tBZAiox0X+bSpUT58vEQbO56q0RG8naZp0MHDor8/8iGHn33nec8TifPL3Ttmmu6Sh3eLymJqF8/HkbPrEeRVKIEUY0a7ufy6dCBn48hQzzX1Rd//00UEeE+z6FDPHScp95VAAAAAAAAAAAAOQ2CMH5QrFjWHfvpp7Pu2J7ExGR1DbLW6tX28hmDJOnRtClRnjzu8zRrxkGCNm30cw19/TXfduumz79lC9+qQRir3hhCEA0dyoEiqyH95JwoxmCJDL4cPsw9bO65h+egsTsE2K1bRIMG8bBj6j5q8MPpJGrZkuihh7jnjKyj3R4ustzffiPq318b6i0ykodK27SJA1uPP0708MP6fQMDtfWFC4ny5tXuJyZqdbAa9k8N2uzf77mu6Q38HT9O9NFHPBScdPgwP67y5d3ve999/HyMG5e+OgAAAAAAAAAAANxpgjxnAW80acJX7GeUuXP1wxW5M2yYvcZY6eefeTirfPnsTTKeP3/GBgjuNk8/bW8enSef9H9djD79lOc4sUP2rFGDMMZhvaSnn+b5atyZOZOoUiXX4Io6DJecp2fLFqJFi+zVU1q0iOfQiYjgoIsc6oyI58/ZsIHX1d4kqal8zLVrib75hqhUKfOyZZ3lHD733kv01ltEPXsSrVnDvT8kOfdNUhJRxYr6njGdO+vL/f57z48rNlZbL1jQc345f5A7ycn8ei1dyoEj9bvn4Yd5SLMDBzhAlCcP97byhhxuDQAAAAAAAAAA4G6BnjAZ4KGHtPVz57Qr2NXGXl+9+CIHVn7/3XpS+5QUoqNHeT4QdU4PT2TD8vr19vL//rv9su8mVg30Zj74wHOerVt9r4uv7AZgiLihPjVV35PD6j3kKQBDRDR9OlF4uNaLxIz63vPlfXj+PA+jdvGiPlAZH6+tG4cHe+01Hn6td28tTR32jYho717u6SN9/TXPm7NmjXk9btwgWraM6NIl7+rfqpVrMFadtyY1lQNpL7zAgZIVK6yfz7NnrQPFw4dz/efO5R5Qaj3lnDK//cZz+xQtqv++uXzZ8+MwPsd22e39BAAAAAAAAAAAkJFu3XI/97QdCMJkgLff1tZjY4meeIIbd//5h+iZZ9Jffq1aPAxTmTL6OTuIiEqXJgoKIqpalXsmWAVhJk92TStXjm8ffNDefBEVK3pXb39q1y6ra6BZsMA83ZuA2J0kOZmocGGiX3/N2HLnzLGXb8YM38qfPt31GGrPLjWoofrtNw50njnDQRejYcO09TNnOHBjZeRIfQ8fu9atI/rpJ6K+fbV5iubP17b//DMHUBYtIipShL93pk1zDRqlpPDn+J57iKpX5/mJVOpwdEQcYFy40LxOKSlEISHafTmUm9PJgS6zgIvTSXThgndBlTfe4OHOZBDI6OxZewEgAAAAAAAAAAAAb8THc1ub2gnDFwjCpNPOnfq5HuS8DvJWbaA1Gj2aaOpU7f7AgfrtMkiievVV/VwQX3yh396wofmx+vVznRi8QAFtfcgQ80nV1Tx2r2KvUMFePlWjRnwlvxXjcEsff+y+vK1biSpX9r4evggNNU8vU8Z+GdWqmaefO0fUo4f3dfK3uDhu/M5Ia9dab8uo+YSME8ir8/Rs3my9X548PGSa1efLriNH0jdc4fff85xTa9YQffihlv7dd9q6DHAsWuQaBFZ7/hw9SjRggOdjvvee9Tb1u6hkSb798EOiOnXMe32tWUNUtiwHxOxISSGaMoV7Mqnz9Did/NhefpmDSvLYAAAAAAAAAAAAGWXrVr5we8+e9I3UgiBMOj3wgH5CbWODfJ062nqzZvohnD78kKh4ce1+/vzccFm8OM/VYtXTIEiZycd49X6fPkQTJujLXbWKbwsV0k+gnS+ftu5wcCO0cVipIkW0dfWqd8msjt7OE0HEDdxJSa7pCxdyg+usWfp0NWhx8iTPPbJ0qZaWlsZzfXz3HTfgZlQjvhmzehN5Nwm5VS+QcuV4npG7nZyHJr3czbXy1lvW23zpvWLmxAmizz5Lfzlt2njOU7iw69Bt7oLCVtwNExcdra3PmsXfafJ9r86HY/TaazzXTt++1j9gTqf+O0cNIB08yEOuqd8LGfUaAQAAAAAAAAAAEOnbpgICfB8pCkEYHxiv8FaDGblyWe8XHMxXbhMRPfII3+bPr20PDSUaM4YoMpKHF6pd27os2TPEeGV+YCAPj3b0KPesWbVKP9G7Ovl4gOHVdziIWrTQT+BdqZK2XqQIB3hUTz3lejV9SAjRK68QtW5tXX+jL77gK+RV335L9PzzXK9ChfTbChbk4MuJEzy00vLlRO3b8/NbsyYHx8qUIXr9db4tUMA/V8svWaIPeEn9+ukDXr6Qk7U7HOkrx4oaYLtTlSiR1TXwzrFjmXcss8CjcfgxIqJt24iOH+d1s0BGcrJrLzpJDo1GRDRzJtGXX9qvX//+HBQrV05fDhEHYF55RZ82bJgWsDH7nrUbqDt3joe0S07m79o1a9I/58y0adyT8OrV9JUDAAAAAAAAAAD+53TyPM/qKDlmjJ0S1JGBrIbON4MgjA/eeIOoVy9udCTioYqkYsWs9wsO5iDG3Lk8OTcRUfPm2nZvJq0+fpyHQqtXz3x7oULcIKoGYOxSh/EyDpOlzn8jjR+vPRdEHAj64Qf3w0uVKqXv4VGyJA+19umn/NzOmcOBDEkdjkwGfe65x3XIsRkz+Cr53Lldj3ngAPf2MQs+zJ7N8+pYUQNtqsKFXfe7epUDSHXrWpensgqGNGjAtwkJ9soh4ufEitpw3awZ90K4U3XtSnTxIgfhwNzGjfbyNWnC7+FVq4j++891e0yMeaCRSN8TxlcXLmif6bg47t3y44/8mTSS886YTYZWsaIWePr2W6JWrTg4YnT//fxdExpKFB7OvYrkvDfz5+vn2rHrtdc4mDVqlD7dqpeclbQ0Hkbu/Hnv6wAAAAAAAAAAcKdwOs0vio2J4VFkjhzx7/GXL+cLft21nV+7RvTnn+bbli3jdmG7EITxwpIl3DBYrhzPadCzp2sed70W7r+fhy578UXtRVKHJ/MmCFOsGPf28Ja7+R0k9QPw6adE3bvz0D9Shw58K+fCcTj0k9Crj+n4cf3E9W+9pU1yrvZMCQ3lwMnnn/Nz+9JL+udS7Qlj9rzbUaQI90AyC9A0bszBMTNVq+qHPapeXVtXh6KTChfmugcEcCO17PVk5fx58/eNDEK1bWu9r3FunCNHuCE3LEyfPnEiUe/e2v2nnybq2NF9vSQ1yGiX7FnhC7O5RIzmzOH3T/78+nle+vThW3cBNTD31FPW28yCHkSuPViM/viDx870ZPduvu3cmXuzyR6DRi1acC8/dS4a6epVHn5w3Tr+nlm3joMjN27o8xnvE/FVDzdvcnCva1ctT2Ki9n144gTR++9z7xkr33+v7TtuHH8/uJtryGj0aKIXXrCeIyo9pk7lst0NLwcAAAAAAAAA4G9padyu3aqVayDmgw94xCR1ig9/MM4bbaZRI/Oh/ZOTiZ591rvjIQhjU+vW/OR27+4+n1lj+vbt3Hj3ySfu9/UmCOOrsWO5t8i//1rnURtcixXjwFO7dlraDz8QTZ7MEUNJDbyo6/feyw1/33xD9NBD/MYNCuKuXN4Ms6X2MDL2fvGW2Ye4dGmi++7jQE316vqhjR58kIc6e+ABDqyoj9s4B9Cnn+rvFy3KjbBWPZaIOCh0//36tCef1IJFjRoRjRihbXvzTaKVKzmQNWIEvxaFCxP99hsHwwIC+PGo9X/1VX3PiPz5+ZgnT1rXS/JlODR3PcI8cdebR1KH0lPnSBo2jIN+mzejsTkz/PKL++2tW3sOQhLxkIG//caLJ7t3c682M2fOEB0+rE+z06vk99/1wZkrV4gOHeIApOwx9uyzPM9NeLh5jyEi7rXWogWvDxzI36Vq8FOKjTUPVMrfCONcX2b7e+v117mXjXF+LQAAAAAAAADIfD//TNSpE48Kcrc5eZLon394bnLjKCJyFBSzC3C9kZLifv5gtf2aiC+mNc7ZbTWtgNkFvp4gCGOT3flNzBqsGzbk4IenHgWZEYRxOPgqc2Ojv6pGDa5r+fKu88YQ8dBg/frphyhSH7fxTUzEgYMdO/Q9Wrxp3M+Vi2j/fm4YNet94o3//Y/rv38/X7n+669cfq5cPDTS/v28/tdf3HA5YQI/pp07uVE1PFwryzguoFUAQY3qXr7Mw4GpAgP1w7PNmKHfLocmI+KIcNu2RBUq8P1+/bgXgDpZu3q8v//m50ytt5wbyFPA4+mn9UGrTp2IfvrJ/T5E1u91q2CU+l7y1MBs7Fmg9mzKl4+DfsWL63tnGd0J8+EY50jKyQoUIOrWzV7elBTuKWcmLs71eyUyknvvTZpkXebly/oAe1ycFvicOpVvDx3StpcpY13W3r36+8ePa4HttDTudSOHMdy/X8tnZ+iy5GQe+jEszHx+HyLPvyMygLRzJweWt2zxfFwi/o4ZMEBfZwAAAAAAAADwzfPP88WtY8dmdU2sXbvG03Ls2pWx5aptx3FxRLducVvpsGHez6ecmsptFbItNDWVaORIbrOtWdO6nURt8969my+m7d7d3rzBFy54V0ciBGFsMwssmGnc2PuyZYPe0097v68/5MrFV4J7M99GkybcGN6ypXngxsw77/CtGjxwp1YtDhClV3g49x6pVYuHK1KHYcqVS+tZ8fDDPLyRcXw/teeFnCtm5Ur+sFo1DqvPSYkS5hOLb9zI8+GsX+864bx6TGPvGzOjR/OtOu/LG29o654CgtOmce+A+fM5UFWyJKctWsTDNa1ezfP6rFnDz6ORVQBkzx7tOVu/ngNE773HX46S+nybzStk7FlRsCAHrWbNsp67x8hs0np/82acSCLPE4P5k6deexnt+HH+YbfDXdAgNNQ1CNO3L9HSpTyfVZcu1vuuW6et37ih/9EtV85e3awsXcq3U6ZwLzcZlFmzRstjHNqtXz/ugXfgAJ8wpKURVapE9MorvF3Oo6OaMIEDWitXWtclPp5vH3+cTzKaNrX3GHr14sCPL8NgAgAAAAAAAIA5T0O9Z6V33+W2jAcfzNhyDx7U1uPiiObN44uuhw7V57Mzys1nn/EF5PJi1VmziAYP5vXjx4mGDNHyJiRox1bb+v/5R1ufN89zIKZ+fc/1ciHArZiYGEFEYuLEGLf5jhwRYtw4IRITvT9GfLwQJ0/6WMFs5MYNIVJSvNvn1Cnv98kOBg4Uon9/+/lXrxYiKEiICRP4fvv2QvBH2t7+f/yh5b9xw94+kZFCOJ3a/VWrzMuQaery66/2jiGEEBs3CtG4sRBbtggRECBEpUqc/sEHruXKem3fri9j3jwtz7Vr2npEhHkZdsl9HnyQ60kkRPHiQtxzj/njzuhFfc4rVdLWH37Y/X5791q/NhmxeHr8TqcQu3dnznOUkctbbwnxzTeZc6zly4U4fZqfK+M242s3fDin1aypTx87Voh//hGiXDkhXnrJ+lgFCvBjMzuO0ynE4MFCzJkjRMGCnF6ypPVngUiIl192LceT/Pnt509I4Pew/P5JSRFixQohrlyxdyyj2Fjv8q9ZI8Ts2b4dCwAAAAAAACAzyP/Yb76Z1TWxVreud20Hnjidru0o+/YJMXGidr92bX17StOmQjzxhBBpaVo5qalCxMXxup02nP37OW/Llnz/99+FmDTJOv+sWfbLtgs9YWzy1BOmWjW+ot+sh4MnefPamwcjuwsL0/fYsKNSJe/3yQ6+/NJ6OCAzTzzBw2y9/TbfV4fQskOdI8JTLxapeHF9rwC1d01YmPt9hbBft2bNePL1Jk24h8mRI5w+ZgyXIz8TMgpdvDgP0adS5+ApUIB7ySxb5jokV+fO9utFxD0DHn+cexk1a8b1iYzUv+fsfGY7d+ZeQaoXXvC8X6VK5ulz5/IcSerwfNKGDb5PPiZ7SRDx1QKff26ezypdcjg4qv+///lWj6ySkqJ/L/nTM8/wBHJmPf8uXtTf/+QT7g2jDmlGxL3n2rfnyeDmzrU+Vmwsz6tlZvt2HjqtWzdtTNKEBG27EK7z5MycaV7WlStEUVH8eZ44Ud9lVx2j1vj9cPw4D5Mou+M++igPeSl7AE2axD097fS6uXKFaN8+7f7gwfw5MQ5D6M4TTxD16GG/N6enOXgAAAAAAAAA/MXuiEJZwWoqiQULuP3KG0Jw29xDD+nTN23Stzmox5wyhdsD1qzRplYg4lFy8ufX96hxR84XLEdBad+ee7xYGTbM/rD5dmXjlzl7sTscGYAVNfDibRBGbQx1N9eJO/Xr88Tiixfr08eP59vZs30rV5Uvn+s8OYcOcQOyuyGu1IbzwECe3PyZZ/i+OoyXVeOxlbff5i9q4/M9axbPyfH22xygUQMsMlCmmj9fHzA5dcrehPPVqvH4ntu3639E7rmH50hS5ymZMIEbs5s391yu1KsX/4j99x8HIF5/XdsWGGg9p5PdYJbV0HcdOtivY3pVrWo/b2oqz3WSWU6fNk83ew9ZPWcREemrg9nQegEBPNTYvHn83q1Z03M5aWlExYpxsPaRR3i4s8BAoo8+cs1rHAv24Yd5DNuyZYn69+dhBomIPvyQb+WJjTEYtG0bUXS0Pq1cOQ7gyLl1Ro7kusk5euw8DmnjRn6Nbt2yHu5uxQo+cRs9mgO0S5a4n7jPF3PmaBMLAgAAAAAAwJ1HCHtDY9mRlKS/uPFOa3M+fJiHe3/0UX16aiq3CcgLMomI/viDL2RfsYIv+tyyxbVNoX9/fZuhemFmVJS2Li/8dDp5Hm8i8ykSzBjn4b15k9vlrJw54/5iWV8gCGPTnfaBgOytQQPv8rdtS/Tss0TjxqXvuO++69oY/M47RNev8+RTtWtzmt15IuyoVInozTfd9zhx13vh2DGeH+Ovv3zraWbm4YeJjh7lwMdDD3FQYvVqDphYzf+hHrtSJS5DKlJE30jcoAHRzz/zeseO3POnXz++r85B1LUrN/5u3MgN9/feqz/mTz+Z1+XDDzng9f77fL9UKe7dI+dMCgnhhnizIEz37vavsjB+7/Xty8/ZL7/ox9TMKOPHc6BQ5c2EbP/7H9ctq2VWHaKizHutBQTw3C0vvsiLHbdumaePGaMFRKT27bXjzp7N3x+S2mPn5EkOiqkByL17ea6t4GDuPVexor5s+V3wxx/6dHeB6337uCfOjRv6Xi19+nDAs3p1/lybBaw++IBP4AYN4vnCOnbU93KUj/O//4gWLnQfoJk/n3vuCME9epo352BW9+7eBVftunKFfxMiIzO+bAAAAAAAgLuFENw+o86lbNS1K1+4aLyQ0FvnzxMVLcr/V6WsaHNWe554S+19orZJLFzIbQKy3TEykqh1a27DeuYZ9/P0WlH/g//6K9/K9jZvZIt2/YwZ0S3nknPC/O9/7ueEAfBGSooQI0YI8ddfWV0TvdRUns8hs+3axeMoBgVl/rGN/vxTG9fxp5+4bkLwmJX9+wsxbZqW948/eAzJ8+eFOHrU83iQf/zBc+J448QJ8/Emk5PN81+/ro2LOXq0674//MDbfvjB83iWCxbo0xcu1LaZle1uUecUIRLit9+EKFPGtW4rVrjuO2aMd8fC4t0ihBAxMd7tU6SIELduec43cKB+PFer469dK8Thw1pagQKcLu8/+6z1Z0Tm6d1biEuXrI/z99/W+6pL48ZCJCXxHD5t2vD3daFCvO2bb8zroD4X//4rxOuvu5YbH2/9GHzx9NNc7gMPZGy5AAAAAAAAdxN1PmKrOUnl9q++St+xBgxw/a/4wQe8Tbbl+Nv69XzcQYM8561XT//ffeBAfd1v3uT0M2eEKFFCS//wQ/+0X5jNl2tnWbRIiLNn/demYofXPWESExPpv//+c0k/ZBzsPofJFhEzyDGCgog+/ljfmyI7CAy0P+dMRmrQgLsjmny1ZLqWLblHxY4dfKWD7LXkcPAV8r17a3lbtSJ66y2iMmV42KyRI93Po9KqFc+J443KlXl+C6lTJ761GpauYEHuJUOk7/GyfDlfkfDSS3z/5Zc9H7txY/39ChW09bx5tfW4OL7CoUwZ67K6deMhsqQnntCP5ynLbNFCe4zSBx+4zpv16afce2H6dKKePT09EvDE2yG4rl61N+dKSIhrDy+jhQt57ibZk4uI58FRmf0Gp6Xpe4vt2KHvlWNWFyLuQfL779pnwUgIorNneSjF1av5sybLXb3afB+1B058PD8/Rq1aWdfNF/IqIGNXbgAAAAAAAPDNpUv8n9CKOgS2FaeT6MABbWoBtTyzUSgCAnjY/Pz5uY0jJobn8j1+nLcfOcL/fV9/neuXXnII9VGjXLclJPCxEhJ4MY5OMnas/r7sUdO8uX6UhjFj0l9PM1bz5Xry/PP6Ni1fpHd0Iq+CML/88gtVqVKFnnzySapduzb9LQd+J6JuGT1bTTaDIAyAfzVo4H2Awl9efdV1ojA7Bg3ifTOa+iM/Y4b9/dQgzNNP87BwsiHa4eAh2dwpU4Z/cH/7jYfYeuABbVubNtoQaPny8WvXqJF1WWPGENWty8Pq9evHxzcOi5YvHy+LFmlp773Ht2vX6vNGR3PQq1cvovLl3T8OM1ZDvbljd2iv9Khc2f/HMOPLPChTpnjOExzsOg+VkZ05irZtc03r2VMfSLl5k+eTsSLH761bl4M+Vu8BIfTzcKmszgVSUvT3zU7M5XizQnDQ1uHwPKZwcjIPzXbpkmudrOZsAgAAAAAAuJu4C5q4s349X/R6+bKWVrUqt1Vs3my+z9atHBQxXpQ4bx5fPFqrFv9vrF2b5zkZPpyHvj5zhvOZ/dfMlUu7ULZPH55KYMgQ/u+amsrtLi+9RDR1KtErr3j3GM3+36rP1/Tp+m2NG/OxJk7kdrqEBPfl79nDQ+wbL7LNiWT7lK+8CsIMHz6c/vnnH9q3bx/NmDGDXnnlFZr3/zPuCl/f8ZlkypQpVLFiRcqVKxfVr1+ftmzZ4tX+CMIAQFZ54QW+rVxZ6+Vih6e5X6pW5ROHNm2s81Spwts7dtTP7XHPPTyWqZwMzXg82avhk094bpB8+Xj7kiVEkydr+erU0dbNHtsjj2jHU6lXWMirOFSenqeuXflkIiqK5+ywY9o0e/ncserBJHkTZMsor77q23iw333nOY/ZPCx2VKzIvbekS5f4vTJ0qJZmnCTv1Cn3QQ0ZKJGT+VkRwjooZScIk5LC73Mr165pVzQNGuS+HqGhPIZuqVI8N5g0bZr+CqpTp7STegAAAAAAgLtF9+7cXhAfzxfDLVhAFBFhb9+WLYl+/NH8f5n6/0u1YgW3d1SpwiOjXL/O/81efJHo9Gn9fCmjRvEoHlFRPC8KkXk7jXH+Y9kucPMm/9dT7d/P//1q1CD64Qctfd8+oo8+4jmM//lHS2/dmnuADBnCI7c0aKCvozo3jSyHiOc7NV64a9b0v28fj2hytypVyn5er4IwKSkpVKxYMSIiatCgAW3evJmmTp1Kn3/+OTnU1rlsZuHChTRgwAAaPHgw/fvvv/TII49QmzZtKMLup5IQhAGArNO2LQ/ltWePd/u99BL/mD/zjHWeypW5p8u6dXxfHW7Nk/BwogIFtPvq9+ShQ/wD/cUXrgEU1Y8/ausFC2rra9bwFSNPP22+39dfa+uFCrluX7bM+phyKLU8eXhivbp1rfOq8uQhatbMfFuvXq5pixdzrx9V6dLW5Y8aZb8uvjCeXEkzZvDwiP6gvk7eqFuXqH17fdr+/UTDhvFVNurQdna9845r12kzO3a4nuhKy5bxCbRq4kT9UHyeehWpJ65//qmt37hBNHo0P7bWrfmEXrVmjbb+2mv6bZUr88n26dPuj+2LGzf4u2TOnIwvGwAAAAAAID3mzOGgxNdfc/tCly48Wsb+/fbLMPv/p15op15cqI5I8O23RIULE+XO7fkYN27wrVkQxl1vk2rV9PeDg/m/4pEj3A7hcPBy//08AsmZM0RNmvBFjIMH83/O8+d5eLPevb1vV1KZXfTo7sLCO8HSpfr7hw8TNWzoehGu1QBgni5+VjmEF11YWrRoQRMnTqTatWvfTktOTqYePXrQzz//TKm+jGeSCR566CGqV68efadctlu9enVq3749jTIbAE8RGxtLYWFhNG/eFerYMb+/qwoAkKFu3eKTBDtx8shIDkp48yOiWrrUQZ07B1OxYoIuXEjxvAMRJSYSFSzIY6QdPJjsdv6Qe+8NpogIfiBJSfpf/7VrHfT001o3k1u3kunZZ4No9Wp+MPnyCYqP530LFxZ06ZJWv6++CqCPPw7SldezZxpFRDho/XrtyUhKSqZevQJpzhx9VH7y5FTq0cNJ+fKF3E5r29ZJixenksNBFBqqpfftm0bffWce1Y+LS6aQEH3+jDJuXCq9+aaT1q510DPPeOiOcwf45JM0Gj48a66OaNbMScWKCerUyUmhoUTt2+ufz2XLUlzSpKSkZLp8mah8ee01PnUqmZYsCaAdOxy0eLH7xyTf91bvkW+/TaXevbmvuRBEn30WSJUrC+rRw2J8NRtmzAigvn2DdMcHAAAAAADwh7Q0Hr3AOOy4EETDhwdSjRpO6thRa8pW/xtVqybo6FGt8aNmTSdNmpRGTZpo+aOjiXr3DqKXX06j55+3/m8cGiooNpbbDczaAXxRsKCgMmUEHTzoY6OLn8j/eePGBdDgwUEect85Ll5MplKlrNtXZBuU+h6Sz4UQRLlycfqiRSn09NPCpX2HiKhsWXG7ncoTr57ZOXPmUFCQfpeQkBCaP38+vfnmm94UlWmSk5Npz5499NFHH+nSW7duTdu3b3fJn5SURElJSbfvx/7/7MDbtn1Px49nzyATAEB2IARRjx4VqHjxKBo16qbnHf5fs2bNKT4+L/388yq3waKEhDeIqCgRkWkAvUuXe2n+/K7UrNlGGj16E9282ZyIuOvKSy9Npe+/f52IiO69dyeNGqV1K9i8+REielRXVv78k6lp0+tUsmRl+v33x6hnz9k0atRNunGjHhG10+WNjh5B48YRFSgwgGJjw4iIKD5+C40evZGIiB54oA3t2vUgEREVLDiGqlV7lo4ere5S/6++ko9piPWTYOGFFxbQwoXWk6tER39Fo0ffolOnKhKRzfHXsrGsCsAQEW3axCfMv/xiXodPPjlKRLVMt5UqFUtt2qwhIm0ym0aNrlFkZLitY2vve/P3yOTJx+nzz4tQu3YrKSEhDy1Y0IWIiC5eHOaxbCHMg7UbNjQjouaG4/uH0+l7EBgAAAAAAO58P//ckQ4duo86dVpENWseuZ1+8WJJmjatDxEF0qeffv7//10Eaf+N9AEYIqJDhwKoVSuiIUO+oNOnK1KePAm0Z0992rXrwdsXbFpJTU27/f/n11/7E5HJEBxeunHDQTduZL+RpN57byoVLXqNQIqYIAABAABJREFUhg71vi0iO5s2bRSVL9+Dzp2rYLr9f/+bTAULxpL6/1r9zxsa+iElJeWiXbsm0OHD3MZVr95T9M8/9W/niY2NIaKCturjVRCmjDrehkHjxo29KSrTXLlyhdLS0qhEiRK69BIlStBldeal/zdq1CgaNsy1sSJ//ngiyuWSDgAAzOEgqljxrNf7tWix0VY+p9P9SVLVqifo449HUEgIB8ybNNlKAQFOqlr1GIWHR9LAgWPp5Ml7qEaNw7r90tJcG9NDQzkYf++9J+nee0/eTq9b9x9KTMxFf/75mMs+bdqsoYULeQKfpCTt6ojgYC2AHxqaQp07L6LTpyvSjz9qwZBq1bSTS0+qVz9MR47UuH2/TJnzVL36MerSZR7Nn9/VdJ+gIL6CJyEhr+3jEBE98MAu2rXrAa/2udsdPGgegCEiunq1KC1d2l6XZjcAQ0T0009dqHLlkxQWdoNiYgq6bJfvi9mzu1PLlutup+/ffx/Vrn2QhCBKTMxNefIkEhFRXFw+2rSpGdWps5d+/bUdhYdfpg4dlunKDAjQrhpLSMhNefMm3r6fnBxEW7c+QtWqHaVSpS6Z1jktzUEBAcJjb7yYmPw0deprdP/9e6l16z/dZ84mhODvj6CgtKyuCgAAAECOlZbmoMBA3+ehdjodunPazHb0aBVasKALtWixgZo1s5jtPZOdOVOBHA5BFSpos6knJOShXLkS0/Vc22X2miYnB1FiYh46dOg+IiLatq2xLgiTkqI1Yd+8mYd+/LH77f/tRES1ah2gAwe0kZskIQLor78eprVrH/eyjkEUHV2Epk3rQykpGT9aRXYyd+5LVLx4lOeMNoWEJFFycqjnjOn0yiszaMaMV9zmCQqy7lAhhPs/qe++O56Sk0Mob17tIuOnnlpFzZtvovHj3yUiIofD/ufFq+HIVIsXL6aOHTv6smumunjxIpUuXZq2b99ODRs2vJ0+YsQImjNnDh01zDJk1hOmbNmyFB0dTQXUyQ8AACBTVakSTOfOmQ9Hlh6ffhpIX37JgZhFi1IoLY2oQwf3P40zZwbQ668H0VNP8bBjRDx5fIUKWnfVZ57hMgYNCqTx4wN19f7rLwc1b651fVYfz6OPBtG2bQFUpoygCxf0JwXduqXRrVtEP/+sBY42b06hhx7iY1kNU3XrVjI5HDwObYkS9k4gW7RwUp8+adSlC9ezeHFBUVG+XbXz0ktp9MADglauDKA//kBXh8zQp08aTZumvU/Gjk2liAgHffMNpx04kEy1arm+F5KSkunXXx20YEEAffllGs2dG0CffcZ/eMqWFbRrV8rteZiGDg2kUaP0721VYiJR7drBVKWKoFWr+HOSnEz03HNBlDcv0bx5qbeDMwMHBtKkSVzW2bPJVLIkp1+/TrR0aQB16ODUzRuVFZKSiLZudVDjxoJy5SJ6881Amj8/gHbvTqGKFbO2bgAAAAA50enTRA0aBFOvXk7q0sVJu3Y5qHdvp63htomIjh8natIkmPr3T6NPPvF9iF7p2jWi06cd1KCB/aZUs6GO0uvmTa6Lm2vlLXu6x8URFS3KdYqNTabQUKJjx4hq1+a0iIhkMlzHnqGuXSNq3DiYIiKIfv01lR59VFBsLFGxYvr/JjVr8mv+5JOCatYUuv8LS5akUIcO+qHEwsIExcRkv14md6MOHZy0ZIlv//s3bkyh4cMD6ZVX0qhrV+vh4lq3dtKvv6ZatoGEhAiKi0uhgwcdVL++Vk6dOk7at4/rduZMMpUqRbRoUQB17x5I06enUbdu9r4nihYNprg4B3XvnkazZ9scqUP4KCQkRIwfP95tHqfT6WvxGSYpKUkEBgaKJUuW6NL79+8vmjZt6nH/mJgYQUQiJibGX1UEAAAbKlQQgk8lM7bc997zvlynU4gDB4RITtanz5snxOef83bpww9dy9+yRUszHjcuToj9+3ldbq9VS4hNm4RITBTip5/0+548qe1btSqnhYZaly/rtmKFPo+6tGnD+dR61qhhnZ9IiFOnrLepli1zX463S9++6S/j5Zczrj4lSmTs48vsZfJk/f0WLVzz3LghxJNPur7Gf/4pxOzZ2mu9dq3re2D3bi1t9WohFi3i9IEDtfS2bbX8LVtyWo8e+vdRSor+c+bOrVtCfPWVEAcP2stv5bXXuC49e/J9Wd/u3YWIiEhf2QAAAADg6pVXXM9FFy60v3/btub/SaykpgrRpIkQnTqZby9dmsvasMF+HYznzL66dEmIWbP4P2H58lze9OnmeQcPFqJcOd7HaM8erT7nznHap59qac2bc1pcnBBpafp9o6KEaNZMf86vcjqFeOEFId56S4j4eH16aiqvT5umf07GjHH9j2tcjh3T31fbBrBkv+X8eXv5SpQQ4n//E2LcOC3t2jXtfSPTChQQ4uGHtfubN2vvL5mWJ48QxYrx+3vKFCFOn9bKmTpVy/fee0J8/TW326hu3jR/T1s5eVKIESOE8CZcQN4dQrNmzRpRoEAB8dZbb7kEW1JTU8XMmTNF1apVfS0+Qz344IOib9++urTq1auLjz76yOO+CMIAAGQPW7fyj+/UqRlb7oED/GNsIy7vk48+0n7wpb//1tK+/tp6X5mnXj0tLTVViCVLtG1q429EhBAjRwpx5YrnPxxXrlifDLVpw3mcTiH69RNi/Hj3QZhnntHX17ioLlzI2BM8d8clEmLUKM9lREVl/Ynqnb6or8O2bXx/3TotbcoUPhnfvt38NfrkE+1+2bKunwF5jP/+05+AHzmi5R0wQIgvvuDA0YwZQpw5I8ShQ/yZkPkPH+YT9rg468+dkdMpxNNPe37fjRsnRKNG/McyM6Smuv4xzg4iIoRYsED7o303uHKF35sAAADA53zGi9V8ZRaE+fhj+/urFxSpEhLML+j5918tv9l2uS1PHvt1MJ5DWjEe759/hHj3XSGuX+f71apxGepFhMZ6btrEjctyW4kS2rbkZL7ITgaS5JKQoA/CEHHwJiBAiCJFhPjhByH27uUy5EVJxscSGcnn5eoFV0QcYHE6+b92jRp8IdV332X9fxcs3i/t2tnPK4Tr+0xdDhzgdpITJ7T3kPzvZvbZmTRJiOPHhWjd2jUAumcPBx3j491fpDdsmBBVqvB//6xC6dl57969okyZMqJ9+/bi5s2bIikpSUyZMkVUqFBBFCpUSHz22WcZVc90WbBggQgODhY//PCDOHz4sBgwYIDImzevOHv2rMd9EYQBAMg+/NXgGBXlvwbDQYP0JyNCaMGNIUPc7yv3U4Mw0oABQvTpY72v2tht5dIlPlE3nhQ98YRr3urVrU+i5FUm8n5IiOtJmJSWJkTduhlzIij//LjL43S63/7OO9yzI711udN7wKR32bVLf79uXSHy59enlSkjxMSJ5vsPGeL6nnnuOdfX8oUX9Gn58/NVfjVr2n+dqlQRolAhIWJjXd/ny5YJ0aCBEEePamlnz7qW4+l9543kZPOrFN1xOrmetWrxn9nsRP38b9yY1bXJHPLx3riR1TUBAADIWrIR/pFHMqa8V191Pc8aNMj+/g8+qO23Zw9fLHLxIt83+8+jBhGMgaS4OPvne+vXC1GwoBD33affp0UL7X/nL78I8dRTQly9yhcQFS0qxOLFQvTuzSMjyH1ee02Iy5e1+2ZBFMndeelnn1mfxxu3DR/umm/VKtdyDxzQj4hgdq6v9rw5cIAvzsrq/y4ZvZg9X74s7v4nBwT4Vuazz6a/XqtX88Vs8v7y5dyDxSq/ENyzpE4dLW3RIiHCwoRYs8b+5/ejj4SoXdu7C+iyM0pvARcuXBC1a9cWtWvXFqVKlRLFihUTI0aMELFm/2yz0OTJk0X58uVFSEiIqFevnti0aZOt/RCEAQCA9FBPMr1VqRLvN3Kkb8devJivoHLn4EHXk6bHH3fN1769tt049Jjsxi7vy6u0rB53aqq27cgR8xO3Ll34cf/yi5ZmHDZMnoxZnfxVr87bExKEuPde8xPZK1f4BDE9J6X58vGJaEaceBuXc+f8U252WgoW1F+xRyTE6NGu+azeK74uGzbou6mr76WHHtLSzF6DLl3cl+0N2TjgzXBpsbHasXbsMA8o+ZvTycHgN97Qp6fnubgTqYHeHTuyujYAAABZ6403MvYcwCwI425Qm4QE/g9x8KAQSUnm52nq0EeqM2f4inq57YUX9D1dBwywPsdJSNBfGOPpPFQNqnhaGjUS4v77tfvGC502bOBe5dHR5vs3bswXGFmVL0eG8HbZt8/7ffbudR3+OCcsBw+69lDydgkNFaJrV/Nt99/PQ3D5Uu6ZM+bphQt73vf777WRB9LSeKjoDh2093nlyq77VK6sbZdBOdkjKzv24s9MQfZmjjEXExNDM2bMoP/++49u3rxJDoeDduzYQbVq1UpPsX7Rr18/6tevX1ZXAwAA7jK9ehHt30/UurX3++7YQbRlC1G7dr4du0MH3/YrV841bfp0opQUoldeIapUiSgggMj5/3PW2Z0YUwoMJNq2jSddr1aN6IEHiHbt0ud58UWitm2JjhzR0vr0IZo5k9fj44ny5uX18HCiy5d5vUQJoshIXs+Vi2/z5OHJJhs0IPrnH05LS+OJ1nPn5nUrffsSFStG9Pnn1nmuXyeKjrb32L1VoIB/ys1ObtzgU3bVRx+55qtePWOP26IF3548ya9z587atr//5vdYvnzm74/58+0f5/Jl/qyUKmW+fedOvp0zh2jUKD5ekIcz9MREbf2RR/izeeECUenS/HwWLGi/fnZERRGFhRGFhmppZ88STZjA6599RlS8eMYe806RkqKtJyVlXT0AAAD8YcUKosmT+Rzc6lxGJc/PM4rZ/4wzZ6zzDxpENGkS0ccf8/8WMzdvuqYJQVSxoj5t4UKiPXv4f0RAANEff5iXFx9PVKsWn7fv3as/T7MSHu45jxQaSrR9u3Y/Lk6/XZ7T7t9vvv+2bfzfyspLL9mvi2rNGu/3cTrd//fKjj7+mGjkSOvtw4YR1ahBVLiwlnbsGFHVqt4d5/779f+JWrUiCg4mWr2aaNo0/Wfhzz+JvvuOaPFi92UGBRFVqOCaHhnJ/xnM6rhvH1GdOrzep4923IAAPq6VhASiW7f4/5PUrx9RkSJEzZppZdzNfH74gwYNovLly9OsWbNo5MiRFB0dTZ06daJWrVrRLmNLCgAAwF0qOJhPkJ591vt9ixXjQEpwcMbXS0pO1tY7duQTruHDXfMVLUq0cqUW2LlwgRt/Bw4kKltWn9fh4D9s4eHWf1YaNeIgCxH/scubl2jECG27DPCoQYjwcD5uRIT+D97q1dq62lAvgzCyTjNn8n5ffMEngLlz87bAQKIlS4imTtXXsVw5oilT+MT6gQfMHwcRn9wWKmS9PT3cvfby5Dgn8FcQy47Klfl9+uqr+vRHHyWqV4/ok098Lzs1lahuXQ6OxMS4z5uSQtStG3+erl93n/fGDf1+REQ//0w0Zgy/FxcuJFq3jujiRe/qe/Ik0YIF+j+Ap09zcLN2bX1e9fEYGwPs2LePqGVLor/+8n7f7ET9DlXXAQD8ZeNGog8+QOD3Tud0cqPlL78QPfwwX9zgi5gYz+cNx47xBScREd6X/8wzRL//TvTOO/byBwZ6fwx3zIIwCxfyc7Z7N9GGDUTduxNdvcrbJk3S8s2YYV6m8bxl3z7tQi+jkyf5PGjRIr6wS7V1K9/u2MGv3/79fE5booTHh+WVkBB7+VassN62Z4/1tn37vKuPdP689/s4nek/X/Lnf2Mi1/99n35qnu/sWX7fffYZv0/V9+q993p/3MBA/k6Q/viDaNUqDvI98ID235WIqHx5ov/+0+9vdtHnvHl8O2kSB1zWrSM6fpwvnqpShWjzZg6USMnJfM6/bh1fvOjpYkt1e548HIhS369BQRwALFPGfTl3DV+70FSrVk3Mnj1bpBoG0f/kk09E3rx5xbJly9LdTSc7wHBkAACQk/39t9Z12N1EdnbIcuQwYN6Ul5KiH9Zn+XKtjOHDeexnd+XJ/SZN0tYffdT8OO7qoHal7tFD2zZ3rnU3bWMd7C5z5wrx4ov6iePVpUABHova3XHPnxeib9+s7X6Pxfy1OXJEiHnztLTt292/d3Pn1pdx8aJ5/sRE82N+841rWkiI9fv97795/O8rV4S4cIGHB5D7zZ+v5Rs/XktPSxPipZf486jOAyQnazX7HJQv7zpkmTGfat8+fk9bPX5P/vuPh4M4edK3/b117Zr2OFatypxjAsCdwen0z7xd8jvnyy8zvuw7WXrnd/zvP/6NzSxPPKH/LWzRwjXPjRs8GbWVvXu1/S9cEGLFCh7+x6hIEc7zwAPe11OW37SpvfwffKDts3s3/066s24dzxto9Rvaq5e9c69XXnF/3qwuxiHTSpa0t1/9+q5ps2bp7y9dmvHnlU89lTXns/5Y/vpLiPDw9JVhnJvGuPTvn77y1flC335bP5S2uhiNGqXfZvd4I0bw/4Ddu4X48EPr8mNitG2XLgnx+uva/fXrzYeH27fP82d22TLrY3ry8MO+73s38vlpcrppCZk+fboIDQ0V33zzja/FZxsIwgAAQE6WnCxEjRrmE1N6S56Ade6c/jKWLvVuvwMHeCzkmBg+AQ4L826ODUnOZ/P5565/Gjdu5DGXjxzRj39rrLvdRfrySy2tcGH+E/3mmzx+rxqYstrfavznjFxeesn/x8hJizqeuFzGjhXi4495olUh+LX1NB544cL6eUacTm5gMctbsKB5+qRJ/Dm/ckX/fnZ33Nde0/KNHaulb9yorW/frq1v2eK53PPnOXhz/rxrPrN6tW3L7+1Oncwn8Dxxgie7nTuX72/fzg0wYWG8f5kyrvvYFRnJ48jbob6Gixf7fkwAyHmeeEKIChV47rmMJL9zevXK2HKzo9WrefFkwAAONKjzd3hDnudUrerb/p7ExfE5pBooMv5Oli3rul++fLxNzslg1KGD+W/uv//ysXbudL3IyFtyvzp13Oc7fty8LnIuCCkigtPffFNfPpEQ337L59gHDvC2yEh+Teyce9Wrp2+kdre88oq2npMCHHfL4u7/EVH65mZp2ZLfezdv8nmo8XOgLkbqfzoh+P3s7lhTpnAQUgjtvPPSJb5Ib+dO88/ZhAn8P1UI/q/66ac834+8bzxGfLz7z626X40anvMaHT0qRN26OAe2y+RtkzF+++03kT9/fn8Vn2kQhAEAgJwuLS39vWCE4Kt3+vXTn7B6S54wrliRvrr4OulfSooQt255znf4sBABAXwFknTsmHcn+ZI6GWahQq7H8rS/L8eWS5s29vJ162YvX6VKWf/H7E5Ybt0S4t57vX+v2H0djIu8AvbCBSGiosyv5DQuMog5erSWpvYI27RJW//tN8/v1zp1tPWtW80fn7p/mTJC9O5tnkcIIVq10rZdv25+zBdf9P677cQJ3rdWLfPtSUncyCOdP68d78cfPZef3iu1veHuezApiXscLV3K+ZYs4YYxAMg4Zt+RGVnuq6/ay5+WlrnfPRklIUF7rLGx7vPKfO+9Z6/s6GjudZ2Wlv4ghR3yN+urr1zrLJeCBYVo3177Dfz3X23blCnm5VpN4v3nn+YN0YGBvN+KFUI8/rgQffpwrwF31P3d/aZaXQxifE4bNtSXZ7XPa68JkSuXd+c7L79sL58MbmFxv8j3Y3ZbzD4/6tKnj2tapUpC/PCD/ntFLo88oq137er+c1CzJt9++qlrHjkJvayjEHw8Ifi9+cQTfEEWkf96Mu7fL8Qff3CwRh7bjpgYvmgL/MtvU+K0adOGNm7c6K/iAQAAIIMEBHge79WO+vV5fpeiRX0vo39/ni/miSfSVxdfJ/0LCtJPPm6lenWi2FieM0aqUsU87+zZ7su67z5tXQjPxzZTpQrRN9/ox8GuWJHn8HnmGev9XnvNPP2vv3ic588/tze5qLRunf28d7NcuYhOnLCff8sWomvXiObM8e14cpz0334jatrU/bjgknwvqZOnqu/PyEht3c6cMOp4402a6LeVKsXjuqsuXCCaPt21nL//5rlktm3T0jp2ND/mTz/pJ7K1cukSj3d/5gzRxImcduAAj1seFcVjvUtVqxKFhWlz4sg5eYh4zG53zp/nMbgHDtTSLl8mev99794PdnTsSFStGk+QambyZG2+sgUL+Lvinns8l/vnn/ycnj7NY6Rn1nxON24QXbmSOceCO19Skuc5MjL6eMbPmvp96c3vqDfk/HnuCEHUuDFPGp2a6p96+Is6b4SnedW8VaMGnx8tWOA6H4anczFfztXkZNbyN8bMjRtEy5bx+oUL2tyJRPz+WrpUP6F8UpL1OevixURffeWaLudrefpporVrebLvSZN43hOjmBjX/wfnz/Nn6/p11+dBna/OaPlyoh9+4PV//9XSd+603mfqVOvfMCtW87oYefq9BvbSS/4/xqVL+vue/kcOHmyePmyYtm72P3DsWKJXXtHP63PvvXyuuHw5nyO3a2f+uSEiGj+e507ZuZM/z5995prH7PMojzdjBs9jOmIEP2b1XDAj1apF1KoV0dtvu85h5E6BAv6fawdIjc+BGfSEAQAAALuMV1Z16MDpp07p041zdcyezcMobdrkWqbatV0uS5ZY12H7du6RdP063795k3swGMceJ7IeU9l42qMOSeVuOX9e33vhTlzSO061v5b3309/GeocNZ6W3Ll53pfPP9fSunc3zzttGr9PPA0P4Wkx+wyp24QQIijIdVuBAtb7PfssDwdx4wZffagOnSYFBJjvu2iREHny8PrWrfr6DRnCw8scPaqljR7NVx63b+86JM6QIa6PR52HR32MQnBvOzmUnCexsTzcRGQkXxn/119amevXm+/Ts6eW54UXzOtgFBVl/jzlysXD7PiL+jxl5nwNOdn+/fz+zWjZ5SraRx/l98u5c+bbv/lGm3suI9SuzcNHqsOOqfN3zZuXcccSQiv34Yc951XnyDh0KGPrYZevva2vXtXqfuqU6/a+fXkYHPXK9nfesVe2u98id8P3JCYKUaWKEM8/791jUcvv1Mn1+9/u8uST2nPjrueJu992s8e/Z49WVzlPo1lvAnUJCuIe4UeO2H88Fy8K0bhx+s4VsGTesmaNf8uXQ8qqaadO6XtLqd8DRNqIBWpamzb674F587ju6tC56lDXU6bw/66///buc+yJOkcTgBm8NTxAEAYAAADsUv8QzJmjD2acPcvBEbnNyNMQaurE7b4YM8b1z88ff5j/KTJKShJi6FD+0+Luz9SlSzzkiacxkP29vPyy/aHWjItZ0CunLD/95P0+jz1mL5/TyX+M01M/42dIXZYts55wNzTU++OorPK99pq2/sUXrhOzNmyoH05QDQapjaOrV5vXYd06fZra8CfTJkxw/7lOTuaGsOBgbhQ0HseqgUENvKjL7t3Wx1Ifq6fnNSbG82TMqi+/5KFC5JxBKnW4ufQMmZYRw27mBL//zs9l7doZW+7UqfxZ/P13z3lTUlxf66tXOYDp7ZxwZuT7ZcgQ1207d1p/F5iZOdP9Y1K/l9QLKdSJnRcs8Kb2+jKmT+fnRqV+7jydO6gNk//+61s90mP1ag5QTZ7Mjyclxf6+kZFa3c0CSHLbDz+4fhfFxQnx/fc8b5cZd99l5cvz7X338Xe/auVK+++fXbu0SbGNxzAOy+nNkpDAz6ev+3/xhXn6mjVCNGrE688/zwEuu2X++KO9fIcP6ycvx+Lfxeo1/O47e/tfueLd8Zo18y6/1TyBTif/puzY4XruZfwMh4draXv3CvHZZ/p5/WS+06f1n09fh672ZMMGHtoWwIzfhiMDAAAAuJu99BJ37ZbKl+chw06fJnrxRdf8noZQGzOGb/v29a0+Zl3kK1cmeuMNol69eDgiKyEhREOGELVu7f4YQUE81EWtWtZ5DhwwT69Zk4fJ6tBBP8ybkfw7Vb++dZ7vvuNhBVq2dF9fM5Ure7/PnWLGDO/3+eMPe/kSEtI/5I674abatyf68UfzbUlJ6TuulalTtfWzZ4nq1tVv/+sv/XA5sbHaujqEWZs2rmWfP0/UrZs+bcsWvlWHONu8mW8nTSIaN04//FBqKtcrNZX3MRt6TQjXNCLrYYxatTIflubWLc/DO8ky09KISpcmqlDB/LXZsoWobFkeCkf64AP+bvz4Y9f86jBEvg41OXo0UXi4+WMzEoLov//0acYh91JT7Q3Dlx316cO3+/dnbLmvvcav93PPuc83YQIPeVK2rPaeJ+LfmGXLeIi8jBq+S/0sSXbeA0Q8BOSCBUQvv+z+t08dHkodjkkdRsnqc+hJjx5EvXsTdepknadKFfdDK6nfUVkxHNnAgfxcvvEGUcGCRI89RrR3r/55s6LWd+xYHo7LTFSU/r7TSZQ/P9Hrr/Nvh7fOnePbgwd52EX19XP3HbRiBZ+//PEHD130wANEderoh/WU0jMcVt68vv2eS59+ap7+xBPa78iiRfr3jifdu9vLl5ho/nyAfaVKaetdu7r/flD/h6iMw8JaKVjQdrWIiOipp4gOHbKfPyTEPN3h4N+qhx7ShtAjIurcWVsfPJi3qZ+FOnV4WDK13NOneQixihX1x/D1fMKT5s1z9n8JSB8EYQAAAAAySUAA/wnwZQ6eN98kOnKEAzm+KFFCW2/UiKhBA6Jy5Yi+/Zbn3jD+OTFj9mdMfSxBQXzrbl6dQoXM0w8dIqpXj8cx79uX6IUX3Ndl1SpuzFu92nWbHNP4zTe1tKZN+fbJJ92XW6UKUZcu7vPcqfw5Z89rrxHNm5e+MooVc79djqmfEVJS+H3/+OP28v/wg3kA0d1cLu+9pw/MqJ57jujiRX1amzZEQ4dyw6u0YQN/xt5+mxszAwP5/tWr3DihzkVl1rCVlKR9ptSggVUj2I0bPEa6cY6EatW0z5CV774jGj6cA0zx8fzYjY+RiMu5cMF87i+zQI8anLPTKJiSojWaXr5MtHIl0aBB3FB77738nSf99x/Rrl36/YcOJSpThujrr7msOXN4HiD1u/fBB7lxKzqa6PBhorfeIpo7l+fRMmv498WxY1zvc+f4O8mqAdobN29y4E7yJTiwYgVRw4b6YIZaTmws358+neiTT/TzoqWlEb3zjnZfHcNfnWfq0UfNj927Nzfiy4Df5s38HFm9LyZPdk2zGzwrX17/WxAXx59H42cnIUFbVz/vahDGbuDHaPlyvl2/no/bvLn++4GI6NQpoiVLrMtQ34/evjcvXeJzhbFj3ecbNYq/o+T74OJF/v3dtIkDGaqNGzmg3bw5N6h26GD9PlSDMLNmcV6z71Tj/mqjrRoQ91VAAJ9DRUbqG27l+/DoUf78P/MMB5tat+bvf8nse81OEModO3O7pZc3jel2JSby90J2N3kyzxNn9l1k9f1kl533pNkFCdLevdr6E0/w97EVqyCMw8G/62Y+/JDnTProI/37vXhxvn36aevjpabyvg8+yPflc/Xll/ybamRnHk5VuXLa+hdf8G+w2YUuqooVOSAKkC1kdVec7A7DkQEAAIBdcm6JQoWyuiauUlKE6NyZ55lwOl274UdG8jjnI0a4L8M4lMDQodq6nGNAHRN53Dh9/ps3hWjalNfLljUfYkAI/dBKDod5HmnzZp6D4/PP9cM3OZ08f87p01z3S5eEGD7c/dAIFy7oh6txtxQqJETRolk/3MTdsrz3Ho/hnd5yfBmWzdflgw8y71iFC7um/f67ENWqafc//1yIp57yXNYXX/DnZuZM74eZmzFDW5dD8Uixsfq8cogwef/RR10/34sXa9uPHbP+fpLlFyvGeVessK6jEEKsXavdL12av7fUuhDxc9eggX4/Nc+cOa5lmw2B5S3j82Q8vlFkJA+BcuuW++GeTp7UlzdggPd1k/tWqCBErVo8LJI6ZE3NmkL8+qv+OMeP877x8fp0ddi+rl3124xDz12+rG1btEgbMoqI53uS86CpdTR7ztShOY1D1MXF8RwXcsg2dZHDNE2ezHMWyH1PnNDyjB+vlaXOF0XkOhSON881kX6uJ+Py7bfm+//3H8+bIvOtW+f+eKtW8bxu8rdc/a44coSH+fzrLx5WbNs213ru28fHfPJJ774zLl7kcozvXeN8ekT8Oz59uhDz52tpnoa3ki5d4nnB0jN/mTq/npynxtM+R474fryctqjzzPlzKVnS931VZueMv/zimlaunBD33OOanjeva5o6VKG6PPustu5uLkb1e3TOHCG++so6r/F7VS7XrvEwyUOHCvHbb0K0bSvEhx/ycL4JCebfQ8eO8WOPieEhYs3KlcP3Xb/O3ycpKdr3idOp/94m0ubRsnr+jXVYvdr9dxhAdmfxFgcJQRgAAACwa/t2Hg/5n3+yuib+89FHPE9IgQI8x83gwdqfI9mAojY4RERo63Lc5shIblDft8/6j9fGjZzWsiUHWdz9OfPGxInu/3zfvOl57gv5B1kI/lPqKe/LL/Nkwf5oaLiblvfec/0Dn92X557LvGOZNfb4OvZ+rlzaup2gjbqogdktW7TPXloaN9yreY8c4W3yfvPmrp9ZNdBx4ACnJSby901SEjdAHz3K6XYDbAcPmj9fal3Mlmee4Xk/PJVvNHiwEC++aD4G/ZgxQgwcqE+bMMG83IgIIZo00Z4HSZ2gu1w5buzasYMDTdL27Tzniqe6emJVL7letaoQgwbpt8u5UowTLDdooJVr1lj422/a9nff9fy8//uvawP7ypX6+quB0atX+TmSv13ffGP/fS4DWMaAjWT8fZs40fW5vHaN39+ykVK1e7frc2hVl++/589A48b8+ZMBIuN8EAULasEtp5Prrs7No+bt21eI6tW1+6VLa+sy0Dlliv7iDONFF3aXkyf5dSlQQAtsJCXxRRTGvOpE23IZPdp9+Veu6F9bq/nwvF2qVrUX0KlcOWOOh8X+IgQHPs22ff+99X6jRuk/h7duuZ6/rVzJvzVlymhpr7xifn4iPytykQFpY7769fmzVKMG3z91iudtefBB1/l21Hmo5s7VB2y6d9fn7dXL9Vh16rh+37izfz9/7oxkeUOGaOuLF7sv68MP9c+N2XePmXPn+PcAc7vBnc7iLQ4SgjAAAAAArpKT+VZt0JLUq62jorgh9vnn+QpZYxnu/nhduKA1jq1alTETXZo11siAj7yC3Xi1OJEQe/bw1YHz5umvEjx71nNjwKRJnFdNe/ppvs2XTz+xvNUV8Ooydy5PbivvV6nCdbcTEPK0fPRRxjeGZNTSs2fW18HbJTg46+uQ2YsaeBo5kt/70dHcYGuWX20Qe+QR95/ZL77gz194uBD336+fnFoIfS8cd8ujjwoREuKabvyc+rqo0tK0dDUoZdwmv9/sNOoWLsw9EuTkw8bt6pXSly9r33Ge6iqpDV1y/cwZ7iViVoax96Dxs7pxIzf2nzunT7//fu04ZuWqQTmrY6tL9+6uvXCI+Pv7+++5obNKFS1dXXc6OQjgzeu8YYNrmryy+++/9ekTJvDnYMYM7TekeXPe9tprfH/ECO4pqga15LJunXU9pk1zDSpafRZCQrRJr43vAV/e62+9lTGfGbn06OF+MvCff3ZNw0UOWNRlyhTtu6tzZyG6dNH3vF61ynpfK2qexEROi47W0o4cEaJUKe1+7dp8O3CgefmzZwvx/vscUJffGUJw0OfyZf2x1QubPv5Y/xvxyy9CfPmldv/VV/XH69dPW4+K4t56auA1PZYs4ec2Lk6IXbv499hTkOTaNf6d//57ffrSpdy7HD1dIKdz8zUDQiAIAwAAAOCOenWypA7PYnaFr6Q2QLr785uRFi3y/Kf7v/+0bfv3c2DEijpEjtXy3nucV027fp2vWN6/n3v7qHUxK0Nt6IqIcG3MlHxpsJB/4B98kBtavdlXbXSQS/v29q5a98cycmTWHBdLxi03b/Jnzuk0D5qqAci2bbV1Idxf4Wxc5PCR6nL9esY8BuniRW74kukrVui/P9RgyaFDnOapt5669O5t/rlXe1EcOuS5ridO8BXgp05xULh4cW4sk3kWLOCAsa/Px733mqffdx8fX32O1OWxx7TnymyoH+PSrZt2Jbm3i7uGWW+XmjWFaN1an/bxx9r7tW5dIbZu1bbly+f5+1sdPs+4WAU4rZZatVzTXnkl4x5/ehd5kYLZkp0vFLibljfe0Iboy4rlkUest5k5dUqIhg05cOBtUFr9bFavbv79ffas9r4NCuJA4uLF/Hsm8/zvf9ble/LTTxz0NdZn1SrtvK1BAw7oqo/n7be1dbOemNkJernA3SDA/YwxAAAAAADW1IlzJTl5JxFR7tzW+6oTftaqlXF1cqdjR6IJE3hS24EDeZJgI7XO+fPzYkWdVLRfP97355/1eRwO1/0KFiQaMoQfd2KifttHH7nmv+cebb1MGaI8eczrc/mydV2tDBzIk4CvW0cUEuLdvo0bu6Z98glRrlze1yMjpHfCXCKebLlJk/SXA7555hmeTDggwPyzoE54vmqVtv7ff/pJ4D2Rk2qrqla1v78ne/cSlSrFE7xLyclEUVE8QfGVK/pJ3eX34dtv2z/G9Onm6fv3a+vqMczs2EFUuzZPcH/PPURJSVzH8HAtT+fORPHx9utldOKEeXpqKk/irv5mqNTv11OnPB/n1i2i48e9rx8R0auv+rafmUOHiH7/XZ929qz2fv33X/13THw8P+9W7ruP6Nw56+3qZ8KOAwdc02bM8K4Mf1qxwnrbn39mXj1yksWLM7a8b78l2rZNP0m8qkQJotdfd1+G1aTso0ebv0dVmzcTjRrF63XqaOlW3yWVKhFt30707LNETZtq6S1a8LmbXTdvaut58xK99BJRhw48Yfy0aURvvcWf7yJFOD13bqLdu4l27Urfd0zXrkTNm2v377+fz9eaNCGqUIF/T/76i+iRR/T7VajA56Dh4fpz7uzI7FwZIKfJ5h9DAAAAAMjOjAEEIm5A3buXG6ICA93vf/EiByPWrPFL9VwEBHAjZ716RF9+SdSsmWseNQjjKZigNiK0a0cUG0v03HNEEydq6UFBfHvlCgd0xo7Vl/HOO3zbqRPfjhhBNGaMvkG4SBFuxIuK4j+qRYpo21q31tZLlOA/+59+SnTtmnmdn3iCAyVERJUr822VKkT58vH+DRvq87/wgrbepg3RvHna/ZIlie69V58/NDR9QZj33vNtv27d+DFIv/7qWzkOBwe6IGv88Yf77VZBhTJluBEqPaKi0re/9PPP3CBHpP+OfO45/oy9+y433qmP5fHH9Q18dn33nWvapUva+q5d7vcfMcL8ezw52fu6eCs1lWjpUuvtRYtyHruBlZ9/Nr8wwA5fAtjeUL83zVg1ZhMRHTxI1KeP9Xaz90BOVbRoVtfAvkmTMra89u2ttz35pPW2qVM5+GD8bc8I5cqZpz/6KL8vk5P5/du5s2ueEyf4vGj3bn16s2YceFQ9+aRrI/177xEtW8YXkEhmwXUjtZyUFHsXn9SowbdPPKFPnzOHA1wOB3+3T5rkWvf69YkaNPB8DG/s2kV0/TqfbxPxOWFQEAdrPv5Yy1epElFcHJ8/AkDWQxAGAAAAAHxm1SBap472p9WdkiWJhg7lK8azi1y5iMaNIxo+XH81uFXecuX4z+9992kBl/79tTxC8G2RIhykef99fRkdO3IjxZw5fD8ggOiDD4iOHtXyBAfzFfXFivF9tRHhoYf05TVoQPT550SFCnHj5YAB+u3VqxN98QX/MT98WL8tMJCvbl2/Xkt7801+DHv3Ei1ZQtSlC18BSkT02GNEDz+sL8PhsA7CnDyprRcubJ7HztWi7dq5vjbffUdUurR2v3Ztz+UYBQfz7cWL3u+bHhUrZu7xjFJSsvb43hg3Lqtr4Nnzz2ufeytr1xJduKDdj4jQPlfeMLuKW22UfOMN9/uvXOn9MTOK08nfL1ZmzeLvCbXHU061c6fv+1r1NMqJMuuCjfT68EPuFaH+JqXXkiXcu+TTT123PfCA+T5CcADP4eDvHON3TNOm/N3jjW+/1dblecb583we8/zzvEyYwNuDg4lq1jR/HsqW5fOi+vX16fJ3WLV8uet3anAw95xUL0opWdK7x5KWZi/funX8uL/80rvy/SUoyLxHtMPBgfWZM/m34amn+DW36nUEAJkLQRgAAAAA8FlOHbbpvfeIBg/2nM/h4GEzIiJ87z3hcHAjhdmfZHmVqToMhTRiBPdgcdfIeu+9rq+RvJ8vn3ljh8OhT5dXidapowVXTpzgHgtt27qWkZKiD8KMGsWPrXlzHu7I6STaupWHQGvShJ+3EiW0/O6GsJMWL+ar/Z95RkvLm5eHefvqK26oV4M0docbefZZe/kyksPBgUhVhw6Zc+xHHuErkYOCiHr3tr9flSocOO3Y0X91s7J8eeYf0xfff+85z7Fj/jm2GkTNzsx64BjFxd05De/poQbu4c7Xti3fhoV5v2+3bubpDgdfbDBkiOs2Oxey5M/Pwzaq5szhYIg7VaoQjRyp3X/xRf32e+/l3/GaNYkWLuTFOCyY1UUXZow9U154QbvAxcoff/Dv2aJF9o7x1Vf8fEyerPVCrlTJOn94OJ9ryZ4n2V3PnvzYsvsQZAB3G3wkAQAAAMBnvXvz1cp2xuvPqQoUcH/1ZXquQDx6lCg6Wh+kkD7+mBtxzbapjEESO4EGdR+z+pcsSdSqFTcKqY0j1atzQ4wahLlyhYfNkGP5Oxw8l0zRokSbNhGdPq2/wlUdUsxsiJXfftPqZ/bY332Xg2jqY1B7xaiBGyOruXbsGjjQ/pXPDgdRr17cEF2lin6bp14UGaV3b+0qYtnLyo5y5bgXxy+/+Hbc9ARvsyLwY8WXniuqgwczph7ZRcuW3uVXh01zxzi/CtxZPviAAwePP+7f48yfTzRlinWvEE8KFOCGdnU4UTvUOdsk+Tum/p5JBQu6L8/Yu5VI31vEbJjXFi1c08wa4MPC9EEc+TsZFWXey6NkST7PUOdd8eV7z9PFFeqwibJO27YRffaZ1ktY/laZnZO0asXzxFSrZq8+777L5yV16xI1akR05Ih+Li0AAH9AEAYAAAAAfBYURNSjh/srCO9WI0cS1arl3UTbRrlzp38MfGODvp3JT816wlhRG0QOHOB91SBM06b8OMwajgICOL86rF3RojxnzbBhPFTS1avatqpVeV4aKSbGul7q41Sfgzx5uGFHtWgRj0P/xReu+3rD3YTC48dzAOiRRzhomZLCE6uHhro+x56CMHnyWE/KbqZVK/N09bgffOD+tZ47V1svV057jjxNoGzmxg3v95EyeoLp9FDnLzIG0uzwtrE3o4wY4Z9yvelNlRUefDCra5A1jPOQ+Ztx+Lh+/bi3n53epenRuTNR375Ef//Nc5EsW2ZvvypV+Dtt7Voecqp/f+9+t7t25d96lTwnUr/LV63i35mNG83L2bSJzxv69tWnr12rXcQgTZ+u9fB88EHujbJpkz5YYzU/ihoQkb/1xYrxRQS7d+s/J9Wru5Zl1oPWE3UoUjNqsEqW36gRnwfI+5s383CrGfUboJ6TVKuW/qA6AIAnCMIAAAAAAPjBoEF8ZaU3w3D4gy8NJp56wqjUOWFko4bauNG0qefjGcdl/+ILDpQ4HPz8RUdzY4xxmKWuXfm2USP35asNPLlzuzYWd+rEDWNySDk1CLN1K9HLL/N6+/bmAYTwcKLu3TmoVKgQN7wZr95/5x1uFNy8mRvo1OfI+Bo5ne575SQkcC+aDRv06epQLLKhqmFD68nu1Yngw8L4ymMrHTty0KB2bf3QNPfdx3Mdxcfr8z/yiHVZmTkHjRoQNAaZ3M1H4smZM/ya1q/PwbcjR3wLxGSFfPk4eJ7R7AaMn37a/XZ3k4zbtWWLa5rV0DzpbXy9csU/85q98kr6yyhd2rtebhnBOHm5/NzZmQA9I8ghNY1DYhGZ90ypUoXo3Dn9b9n48dxLMyqKgxvuREbyHByFC/M8MPv3a8OQqd91Tz7JvzNqrxLZsy8khH8rBw1yfZ+2bu3ae6ZXLx5uKiWFg05EvP/u3fzdnyePdbDi1i1t3Vhu/fpc3ubN/Hs3cyanq3X2xV9/6e936aK/r743rH77atTgHjNyqDcAgDsNgjAAAAAAADmYu8ZwK94EYbp0IRo+nK/WNWNnjhfZU0POgWNUtCgHZYwNne3acaOT1bEldXiXPHk8z9+jBmEaNyaaMYMb2hYvNh8T/sIFotmz9WmPPaatf/21++OpEwsTcRCmXTvzvOXLa+vNmxONGaPd79SJG/Hee4/nlRGCaPt23nbqFDcQqvOQGBvNja+1+jyEhvIV4vv2uQ4Dlz+/a0P2ihXWjd6ff26ersqI+XmaN9cmiCZyDdZNnMjBI28mcx41intnVajADZi7d/Mk3AEB/Dz4W0Y09ufJ4zkQYiR7iRFZP05jA7ed97AqOZkDGjVr2q+X1fB/Dz/sGtzdscM8b9Wq+vuDBpnnmz3btfGYiD+/Zun9++sbwhs2NC/XirvPSY0a+p5YVubP52D1yy/zPlKePDzXhj8EBOgDMfJ7xZcLAlTezqGkzgsmmb3vV650TQsIIKpYkQNYjzxC9PPPPDzor79qvUOksDAOXly5QjRpkr5XjPG7XTpyhAMcCxdymadPm+cbPdo8XTKbK6VDBw6MW80tdu2a+/2J+DEvXar9Jpcty8MnGueUsev997X1zZtdfy8rVCB6/nkOjHvzfQwAcCe5o4MwI0aMoEaNGlGePHmooMXAmhEREdSuXTvKmzcvFS1alPr370/JycmZW1EAAAAAgCySP7/389KoDTOerl52OHiYmdattTS18d3O1c8//MANn95OKO5wcOOX2dXNRNzQtXkzD9UiyaCQuwl2hw/nW7WnRPHi/LiMQ5Xlz28+1JrK0xwFJUvqh4BJSuJF2rKFewONHMmPR2Wc3HzkSKJx41yPUakSNxBWqcINf++953pFsfpaXbzI4+ZL3gzR9vjjHKDYvFk/Hw8RX3H+/PNEy5e7L0MdxsesIdJYrlGePNxTSA24zZrFPZY6d+bJ3gMCOHj04YfuyyLiRsL69XnIHqvebepnIL0mTeJAllFkZPrLLl3ael6KZs3MrzRXh7SrXZuHBTJSex0RmdefyHpen+BgbrS2CsBVqUI0YID7Y0pBQfYmpb5yxXW4vpEjzfd1OIjmzTMvR35nSF98wUE+NfDg7dw27iZ1X73ac8+jhx/mwGNwMAeSDx3S5syYO5eDskbGALWv8zepQ6DJ3x9PvwXPP+9+u9rTrEoVDpDL4bfk5OqqihVd03zp9eRwED33HAfrnnqK6PBh/Xb5Gpt9R1r16qhWjSdPDwzkMq2CiY8+6n19idz/JvXqxZ+Pbt28K7NmTd+DwOpnrHJl14BcQAD/Ln3zjW/lAwDcCe7oIExycjJ16tSJ+hoHzfx/aWlp1LZtW0pISKCtW7fSggULaPHixfSenUtGAAAAAAByCG+DMGoDuLf7EnFDLhE3eNlpvC9enBs+zSY4To9q1Vx7AsmAjfEqeVWjRnwl8aRJno+hBiqMTp3iXjqNG7svw+HQD9dy9qy+gbVJE74/aJBrbyF1aBm7nn+eAzXGhma1h0OhQt6XK3sc9ezJt40bc88ZdZgfWX/jFely8mVJfQ+++KLrsdas4UCVVU8vOR+EOnxc+fJ8Bfb8+fpJwq3eowMH8tBv587xleq7drlv3Pz0U+ttqlGjPOd57TXznmFWvUuuX7c37NRzzxG1bGn9mH/7Td97SFJ7pyQmcoDt9Gn9+8QsIGIWmDLrSaMGwqx6jBw44DqUoFlDu5l+/TjgQsRz4uzfz/eLFNH3bHjqKb41m0/D3VxNxsf+xhuu6Va9Dsx8/715cLlMGQ4Ili7tfogoIfg7xfh+3bmTl/bt9Q3hTzxB9O+//Jo+8AB/Fyck8PBZJUvyd3lEhJZ/yRKiqVNd53+R1OfPbk+YPn3481y6NH8/ues51K0bDxW5ZQsH++SwWUavvqqtT52acUMG2p0HLzXVt/KPH+egnacAvi9q1eKgvrE3ij+pr73VXDUAADmeyAFmzpwpwsLCXNJ/++03ERAQIP7777/bafPnzxehoaEiJibGVtkxMTGCiGznBwAAAADIbr74QggiIZ5/3l7+Y8c4P5EQiYm+HfPkSSEuXvRtX3945x0hypUT4soVvh8aqj1Gb23cKMSECUL8+acQTmfG1VHWp3RpISIjhXjySSGWLHG/z4wZvj8OMx9/LMSwYby+bRuXW726vX3j44XYvdv1OWna1LyOc+cKUbIkP49CaHmIhGjXTr9Pkyb67VevcnrdulrahAlCHD0qxLJl2jGOHPH8/Fy6pC/7hReEaNtWiNhYe49bFRkpxJdfCnHjhr5MdVm1yjWtZUtt/cwZLmv/ftd8P/7omlayJOd3OvXpx44JsXq1dv/337V6/v67ed3ka6em9eihT6tRQyvn1Ckt/cQJ/X5C8HP4+utCLF4sRFiYEC+9JMTff2t59u8X4vRp1/eMWd2EECIuTru/dq314zCW07+/9Ws2c6aWLzqa03r2dC3z5Ene9sor5seSj//ee7XHs3Wrli81VfsuVpcdO4To0EGIDz8UYt06ro/0ww/6vKmpQqSkaK/3Z59p2+Li+Dv+p5+sH6tqzx7Xz5Okvh5xcUIkJPB6u3ZCVKwoxM2b2vYXXtDKOXiQ06KiXJ+fixetPxNVqwqRnKyvw/Dh2vZvv+W0UaOEaNHC/mdzzRrev2xZvh8f73rsX36xV5Zq82Zt/8GDrfO1apWx3893KqdTiPr1hahdW4i0tKyuDQBA1nAIIURWB4LSa9asWTRgwAC6YZgl87PPPqPly5fTvn37bqddv36dChcuTOvXr6cWLVq4lJWUlERJSt//2NhYKlu2LMXExFABd2MWAAAAAABkU2lpfBV/3br2erbcuKFd4Z6WZm9YnzuBEFoPgOBg7Srl7PKPSNatSBHtqn1P0tJ46J/mzfU9TjLK7t3co8hqyDc7wsO1YbTcPddq74y2bbWr7IXgq8LV3ivx8Xx1fr16fAW/u7L37uU6mM0RYXbs33/Xz+njK6veJvv2uU7OPX68NleK7KERE+M6bNi5c65zqtSowUNNGY8ZGcm9zORnWN1265Y2NF/LlkTr1vG6fA5l3v79eVgtNa1cOa4HEdHNm9oQT8ePc68S2cvM+HokJfGQVJs2Ecm/4lbfL/JY1avzsIIdOvD8KmlpWo+SP//kuu/dy6+Z7E3z1FM8z4ZazltvWfdsu3CB57woU4bo/HlOS0jQ3vNTpvCwUHLumMRE7oETGck9Rk6eNC+XiHuPyNdL9gA4eVLfI+PGDfdDj127xp/BJk24B4rRxYvc48U4V5MnUVHaPrGx9uY0EoIfh9rDZt8+ovvv17ZLmzfze0MOGUbEPXAuXOD3e3w8f87LleMeOMZeOykp/Nw/8YTrvD3e+Ptvfr4LFeL6Gd9v8n3pLfneGjzYdTg6aeVK7r325JPWvYbuFk4nP/+ehu8EAMipvOgQe+e5fPkylTCciRQqVIhCQkLo8uXLpvuMGjWKhg0blhnVAwAAAADIFIGB3jXQFyzIQZvQ0JwTgCHSN0L7OkyMP33yCTfm2RkGTQoMJProI//VyWzuD281b87j/XuyYQM3pE+dSvTxx/ptxkZqGUzctIkb3Tt3ti5XNhDb5c2wUXatWMFDYIWF8Zwqzz1H9MsvvO3bb3m4ubAwbgyWgZewMA5AvPceDxNGxA3WP//MAQA5Z1FKivkx5XNm1uiZK5cWFIiO5iGu1GsU//6bh20bOtR13+vXtfXcuXkYtPh4DjbkyUMUF2deH/maqUN0WX2//PADT8Q+erT+c6s+Frl+//18bBmEMXuvuRsKq0wZokuX9PNEqXOHPPywPgiQOzdP0j5jhud5TMqV46H2ChTQHoc6R1XVqu4DMEQ8B9GFC9aPwdd5OooX52G/kpPtBWCI+DEY30916vDQZ8b5ZJo2dd1fDhMonTzJgSCz92hwMNHbb9urlztymEQi/XupcmWiZ57xLQBj11NPEZ044Ro4vRvlpHMJAABfZLueMEOHDvUYBNm1axc1UP4NWPWE6dOnD507d47Wrl2rSw8JCaEff/yROpucqaMnDAAAAABAzjdqFDf09+tHNHlyVteGCcG9IOzM7XEnWbuWr2Ynst/rqEkTom3btH2MV7Bn9L/YBx7gXj9EHNgxa0D21ogRHFgbOJDoyy/1286d48AHkXYlfmIi35c9VKRTp7h+bdvq586RDcqPPqr1ZFEbmb15juLj+bjurlJ//32ir74i+u47otdf19KTkriHSp48/Lxt2eL++EJwD5uqVbVAkje6duUAzY4d+sDEtm0cQFMb3UeN4rkvtmzx/nP1999EZ864D/D5atky/lxMnOjfIAC4mjCBP3/jx9ubs8yK3HfWLKIePTKiZgAAkJNluyDMlStX6IqHvvcVKlSgXMrlMxk5HJlRbGwshYWFIQgDAAAAAJCDCMFXs1etiit0/U0IomnTiO67j6hxY3v7lC7NwyzJ/Yl4aCI54XlG/4s9e1ab5H3bNqJGjdJfpqf32Gef8ZBXH3zguazkZA44qI3GmzZxT4ZvvtECOr4GYewQQh88MnPuHNG77/Ji97X2tS7paUAHSK/Nm/kz+PHHGGILAAA8y3bDkRUtWpSKFi2aIWU1bNiQRowYQZcuXaKSJUsSEdHvv/9OoaGhVF8dmBQAAAAAAO4qDgfPNwH+53AQvfaad/vExLimyeGz/KFCBR4mKiLC++HLrHh6j33+uf2yzHpLNGvGiyoqioeZeuUV+2Xb5XC4D8AQ8bBLixdn/LHN6gKQlZo2zZgecwAAcHfIdkEYb0RERNC1a9coIiKC0tLSaO/evUREVLlyZcqXLx+1bt2aatSoQd26daOxY8fStWvX6P3336fevXujVwsAAAAAAEA29cUX3JuiXz8tTU747i+HDvFcQcbhwO4kxYrxY8CV+QAAAADZR7YbjswbPXv2pNmzZ7ukb9iwgZo3b05EHKjp168frV+/nnLnzk1du3alcePGUaicFdADDEcGAAAAAACQueRQXlWqaAGF8eN5knq5HQAAAADgTnBHB2EyA4IwAAAAAAAAWe/ff4nq1eN1/IsFAAAAgDsFpqAEAAAAAACAbK9uXaI9e4giI7O6JgAAAAAA9t3Rc8IAAAAAAADA3UP2hAEAAAAAuFOgJwwAAAAAAAAAAAAAAIAfIAgDAAAAAAAAAAAAAADgBw4hMKWhO0IIiouLo/z585PD4cjq6gAAAAAAAAAAAAAAwB0CQRgAAAAAAAAAAAAAAAA/wHBkAAAAAAAAAAAAAAAAfoAgDAAAAAAAAAAAAAAAgB8gCAMAAAAAAAAAAAAAAOAHCMIAAAAAAAAAAAAAAAD4AYIwAAAAAAAAAAAAAAAAfoAgDAAAAAAAAAAAAAAAgB8gCAMAAAAAAAAAAAAAAOAHCMIAAAAAAAAAAAAAAAD4AYIwAAAAAAAAAAAAAAAAfoAgDAAAAAAAAAAAAAAAgB8gCAMAAAAAAAAAAAAAAOAHCMIAAAAAAAAAAAAAAAD4AYIwHgghKDY2loQQWV0VAAAAAAAAAAAAAAC4gyAI40FcXByFhYVRXFxcVlcFAAAAAAAAAAAAAADuIAjCAAAAAAAAAAAAAAAA+AGCMAAAAAAAAAAAAAAAAH6AIIxN69evz+oqAAAAAAAAAAAAAADAHQRBGJuSk5OzugoAAAAAAAAAAAAAAHAHQRDGprS0tKyuAgAAAAAAAAAAAAAA3EEQhLHJ6XRmdRUAAAAAAAAAAAAAAOAOgiCMTegJAwAAAAAAAAAAAAAA3kAQxib0hAEAAAAAAAAAAAAAAG8gCGMTesIAAAAAAAAAAAAAAIA3EISxCT1hAAAAAAAAAAAAAADAGwjC2IQgDAAAAAAAAAAAAAAAeANBGJswHBkAAAAAAAAAAAAAAHgDQRib0BMGAAAAAAAAAAAAAAC8gSCMTegJAwAAAAAAAAAAAAAA3kAQxib0hAEAAAAAAAAAAAAAAG/k+CDM5s2bqV27dlSqVClyOBy0bNkyn8pBTxgAAAAAAAAAAAAAAPBGjg/CJCQkUJ06dejbb79NVznoCQMAAAAAAAAAAAAAAN4IyuoK+FubNm2oTZs26S5n/fr15HQ6yeFweFwCAgJs5bPaNzAw0GUJCgqyleZN3qCgIAoODqaAgBwfiwMAAAAAAAAAAAAAyHQ5PgjjraSkJEpKSrp9PzY2loiI1q5dS2vXrs2qavlVQEAAhYSE3A7KyFu5btwm76v5POUNDg6m0NBQCgkJoZCQEMqVK9ft9dDQ0Nvb5K3Z9sDAwKx+qvzO4XBQ4cKFKSQkJKurAgAAAAAAAAAAAADphCCMwahRo2jYsGEu6a1ataLQ0FASQpguROT2vkxzOp1u88vtaWlplJaWRk6nk5xO5+1146263Sy/us2K0+mkW7duZejz6A+BgYEUEhJyO+gTGhp6e10GbOR2GbgJDQ2lXLly6e4b0+S6DP4Y0zK7p5A8LgAAAAAAAAAAAADc2RxCRgDuAg6Hg5YuXUrt27e3zGPWE6Zs2bK0ceNGCg8Pz4Ra+o8xiJOWlkapqamUkpJCKSkplJqa6nJfTU9NTaXk5GRdPqv9zcpJTk42XZKSkizTs8PbUwZl5BIaGkq5c+d2uc2TJ4/uNm/evJQ7d+7baXJR03Lnzq3r4XP16lWqXr06FSpUKAsfMQAAAAAAAAAAAABkBPSEMZC9I3KigICAO2r+FyHE7cCPu8BNUlLS7SCPTL916xYlJSXRrVu3XJakpCRKTEzU3TfmSUlJuV0PGZiLiYnxy+MMDQ29HZAJDQ2lQoUKUVhYGOXLl4/y5s17+1Zdz5cvH+XPn5/y589PBQoU0N3mz5+fgoOD/VJXAAAAAAAAAAAAALAPQRjIthwOx+3hxvLmzZupx05LS3MbwDEGcm7dukUJCQmUmJhIiYmJdPPmTUpMTHSbJnv5yCDP9evXiYjozJkz6a5/rly5XII0vq7n1KAkAAAAAAAAAAAAgL/l+CBMfHw8nTx58vb9M2fO0N69e6lw4cJUrly5LKwZZGeBgYG3e5/4gxCCkpKS6ObNm7eXxMREioyMpCJFipDD4aD4+HhKSEighISE2+vqbVxcHMXGxlJcXNztdTmUngwMRUdHp7uuwcHBtwMyYWFhuqVgwYK27ufOnZscDke66wIAAAAAAAAAAABwJ8nxc8Js3LiRWrRo4ZLeo0cPmjVrlsf9Y2NjKSwsLEfMCQPZX3rnhElJSTENzthdV9Nu3ryZYY8rKCjIq6CN8X7BggUpJCQkw+oDAAAAAAAAAAAAkBlyfE+Y5s2bZ4vJ3QEyQ3BwMBUuXJgKFy6c7rJSU1N1PW7kEhMTQzdu3KCYmBjdYky7ceMGxcbGktPppNTUVLp69SpdvXrV5/rkyZOHChUq5HEpXLiwSxoCOAAAAAAAAAAAAJAVcnwQBgB8ExQURAULFqSCBQv6XIYQguLj490Gatzdj4mJodjYWCKi28O2/ffff17Xw24Ax2zBnDgAAAAAAAAAAADgKwRhAMBvHA4H5c+fn/Lnz09lypTxqYy0tDSKjY2l69evuyzXrl0zTZdLTEwMCSHSHcApXLgwFSlS5Pbi6X6hQoUoMDDQp8cLAAAAAAAAAAAAOQeCMACQrQUGBt7uleItp9NJMTExbgM1VgEdYwDnwoULXh27YMGCbgM1Zmn58uUjh8Ph9eMEAAAAAAAAAACA7AlBGADIsQICAjIkgHP16lW6du3a7Xlt5GKWJodPu3HjBt24cYNOnTpl+5hyTh+zQE3RokWpWLFiVLRoUd16WFgYAjcAAAAAAAAAAADZFIIwAAAm1ABOpUqVbO+XkpJyO3BjFawxC94kJSVRSkoKRUZGUmRkpO3jBQUFuQRmzII1ahrmuQEAAAAAAAAAAMgcCMIAAGSg4OBgKl68OBUvXtz2PkIISkxMdNvT5sqVK7eX6OhounLlCsXHx1NqaipdvnyZLl++bPt4+fPn9ypoU7BgQQoICPDl6QAAAAAAAAAAALirIQgDAJDFHA4H5cmTh/LkyUNly5a1vZ8M3KiBGXlrlZaWlkZxcXEUFxdHZ86csXWcwMBAKlKkiC4wIwNNxYsXp2LFiunuFypUCEEbAAAAAAAAAAAAQhAGAOCOlTt3bipTpgyVKVPGVn45z41VsMYscBMbG0tpaWkUFRVFUVFRto4TGBh4OzBjDNCYBW7y5cuHeW0AAAAAAAAAACBHQhAGAOAuoc5zc++999raJzk52WUoNLlERUXdvpXL9evXKS0tzash0nLlyuW2Z41xG+a0AQAAAAAAAACAOwWCMAAAYCkkJIRKlSpFpUqVspVfBm3MAjTqIrclJCTQrVu3KCIigiIiImwdo0CBAm571hQvXpxKlChBJUqUoMKFC2NoNAAAAAAAAAAAyDIIwgAAQIbxNmiTkJDgEqxxF7xJTU2l2NhYio2NpZMnT3osPygoiIoVK3Y7KBMeHn573bgULVoUARsAAAAAAAAAAMhQfg3CNGjQgOrXr397qV27NgUHB/vzkAAAcAfJmzcv5c2blypUqOAxrxCCYmJiPPauiYyMpMjISLp27RqlpqbSpUuX6NKlSx7Ll3PZWAVp1ABO0aJFKTAwMAOeAQAAAAAAAAAAyMn8GoRp2LAh7dmzh+bOnUuJiYkUEhJCNWvWpEaNGlHnzp2pcePG/jw8AADkIA6HgwoWLEgFCxakKlWqeMyfnJxM0dHRt4Myly9fvr1uXK5cueLVXDYBAQFUtGhRWz1sihUrRkFB6HgKAAAAAAAAAHAnczqddO3atdvtR61atbK1n0MIIfxcN0pLS6NDhw7R7t27affu3fTnn3/SqVOnqFu3bjRz5kxyOBz+roLPYmNjKSwsjDZu3Ejh4eFZXR3I4a5evUrVq1enQoUKZXVVAO4qKSkpuoCNuhiDN1euXCFvfjodDocuYOOuh03x4sURsAEAAAAAAAAAyEQJCQm3AytyuXTpkktaZGQkpaam3t7PbvtQpgRhzPzxxx/04osv0siRI6lXr15ZUQVbEISBzIQgDED2l5qaSleuXPHYu+by5ct05coVcjqdtsuWAZvw8HCXpWTJkrr7BQsWzNYXMQAAAAAAAAAAZJXU1FSKiopyCaSYBVni4+O9KrtIkSIUHh5OBw8etJU/y4IwRETTpk2j6dOn065du7KqCh4hCAOZCUEYgJwlLS3tdsDGXe+ayMhIio6OprS0NNtlh4SE2ArWlChRgnLnzu3HRwkAAAAAAAAA4H9yvmCzXirGJTo62quRTHLnzu3SpmK8Hx4eTsWLF6eQkBCv6p2lY548/PDD9OGHH2ZlFQAAAPwmMDDw9lBjnqSlpdHVq1c9nkRcunSJbty4QcnJyRQREUEREREeyw4LC/N4EhEeHk5FixalwMDAjHjoAAAAAAAAAAC23Lp16/ZFq1ZDgcklKSnJdrkBAQG3h4L3dBFrvnz5/DbiiF+DMJMnT6YHHniA6tSpQ6GhoS7bo6OjKTg42J9VAAAAuCMEBgZS8eLFqXjx4lS7dm23eY0nJ+661SYlJVFMTAzFxMTQsWPH3JYbEBBAxYsX9xisCQ8Pp/z582M4NAAAAAAAAAAw5XQ66cqVKx6HArt8+TLduHHDq7LDwsLctlnINo0iRYpki4tN/RqE+eSTTyg2NpaCgoKoRo0a1KBBA2rQoAFVr16dbt68SYMGDaKmTZv6swq3TZkyhcaOHUuXLl2imjVr0oQJE+iRRx7JlGMDAABkpFy5clH58uWpfPnybvPJbrp2gjXR0dHkdDpvp3uSO3duW71rSpQo4XU3XQAAAAAAAADInuLi4myN4hEVFZWuYdfdtTPcacOu+31OmFOnTtGePXtuL//888/tyFa1atXot99+owoVKvizCrRw4ULq1q0bTZkyhRo3bkxTp06l//3vf3T48GEqV66c230xJwxkJswJAwBZJTU1laKjo21NWBcXF+dV2YULF/bYsyY8PJwKFy5MAQEBfnqEAAAAAAAAAGAmJSVFN4m9u+HAEhISvCq7WLFiHocCCw8Pp4IFC+bYETf8HoQxc+HCBUpJSaGKFStmyvEeeughqlevHn333Xe306pXr07t27enUaNGud1XBmHWrVtna0x/gPS4du0aVa1alQoWLJjVVQEAsJSQkECRkZG3l8uXL+uGR1PTU1NTbZcbFBR0ew4d9QoXeV9dz5s3rx8fIQAAAAAAAMCdTQhB169ft/zfrv5/v3Llildl58uXz/S/ulwvWbIklShRgooVK5ajpyOxO/JHlgRhMlNycjLlyZOHfv75Z3r22Wdvp7/99tu0d+9e2rRpky5/UlKSbnKf2NhYKlu2LH300UeUK1euTKs3AADAnc7pdNKtW7coPj5et8TFxbmkJSYmelV2SEgI5cuXz+OSN2/ebDH+KwAAAAAAAEBGSElJcflPbfafOyEhwavhwBwOh63/2fny5TOd//1uNGTIEFv5/DonTHZw5coVSktLc+nFUqJECdMx70eNGkXDhg3LrOoBAMD/sfffcXIc5534/6nqnrw5ISdGgGACcxApkiCVqCxRwT5ZpCU5hzufTz5/fec7+edz9tdBsr8OirZ0FpWowJwjmMAAkARJkEQOm3cnp+6q3x+9u9zFBkzP9kx3737er9cKu7PT3Q+oRk11PVVP0ZIlpUQymUQymURfX9+C77UsC/l8fsGO5GRn0rIsVCoVjI6OYnR09KRxJJPJBTuPra2taGlpQTweX7JLn4mIiIiIiCi4lFIoFArzTlyc/jV9AUEt4vH4nM/AJ34lEgmWCG+QJZ+EmXTioIrWes6Blt///d/H7/zO70z9PLkS5oYbbmA5Mmo4liMjIlqY1hq5XG5W2bO5vh8YGIBt2ygUCigUChgcHFzw3JObAE4un56+nPrEJdZh2wSQiIiIiIiImktrPbWJ/eQz6vHjx+d8fh0cHIRSquZzx2Kxect4n/g6V634b8knYXp6emAYxqxVL4ODg3MmVWKx2Jw3pmEYMM0l/5+LfGYYBiKRSM31BImIlqNYLIbu7m5s3bp1wffZto2RkZF5NxOc/jU2NoZKpYJDhw7h0KFDJ42hvb191iaCc3319vayHBoREREREdESUqlUZuyvMv3rxA3t3ZTeFkKgr69vwWfMyQ3t29raWMkhRJZ8ViEajeLCCy/EfffdN2NPmPvuuw8f+tCHfIyMiIiIGskwDPT19aGvrw/nnnvugu8tlUoYHByc1WGeq0NdLpeRTqeRTqfx+uuvL3heKSV6e3tndZjn+mInmoiIiIiIyB9KqRmT+BZKstRSFnu61tbWkz4PTk7i4yKApWlZ/L/6O7/zO/jMZz6Diy66CJdffjn+5V/+BYcOHcKv/Mqv+B0aERERBUA8Hsf69euxfv36Bd+ntUYmkznpbKf+/v6p5eSTy8t37dp10hhONttpckk5l5MTEREREREtTGuN8fHxWUmVub4fHBx0tYm9aZoLPrdNf35LpVIN/FtSGCyLJMwnP/lJjIyM4I/+6I9w/PhxnH322bjzzjuxYcMGv0MjIiKiEBFCoL29He3t7TjzzDMXfK9lWRgeHj7pypr+/n5kMhmUSiUcOHAABw4cOGkcnZ2dNZVD6+np4caKRERERES0ZJy4T+hCiZWBgQFUKhVX5+/p6Zmxn8r0xMr07zs7O/msRTUTWmvtdxBBlslk0N7ejocffhgrV670Oxxa4kZGRrBlyxZ0dnb6HQoRETVRoVCYd7n7iV9uHiIMw5ixMeNCXy0tLSyHRkREREREvigWiydNqkx+XygUXJ27o6Njzk3rT3ytt7cXkUikQX9DWs6WxUoYIiIioiBLJpPYtGkTNm3atOD7JpfTn2zvmv7+fgwNDcG2bRw7dgzHjh2rKYbpM7wmZ36tWLECfX19M35OpVJM2BARERER0YIqlQoGBwdrWrWSyWRcnbulpWXOpMqJ3/f19SEejzfob0hUGyZhiIiIiEJCCIHOzk50dnbirLPOWvC91WoVQ0NDJ927pr+/H7lcDoVCAfv27cO+fftOGkcikVgwSTP9587OTiZsiIiIiIiWiFKphMHBQQwMDMz6c/Jr8jnD7Qb2sVjspEmVyeeMlpaWBv0NibzHJAwRERHREhSJRLB69WqsXr36pO/N5XJzlkObfIia/lBVKBRQLBZr3r/GNM0FkzTTf+7p6YFpsntKRERERNQsWmuk0+k5kypz/el2xYppmnOW/prr+7a2Nk7goiWJT7lEREREy1xLSwtaWlpw6qmnnvS9kwmbE2e7nfjzwMAA0uk0LMuquSSaEAI9PT0nTdpMvhaLxbz46xMRERERLSmWZWF4eHjBhMrk94ODg643r49EIjP66dP/nCxtzA3sid7GJAwRERER1cxNwqZcLs96yJsvcTM8PAytNYaGhjA0NIRXXnnlpOdvb2+fd2VNb2/v1J+9vb18+CMiIiKiUCsUCjWvVhkZGYHW2tX529ra5kyqzPVne3s7V6wQucAkDBERERE1RCwWw7p167Bu3bqTvndytt7JVthM/mxZFtLpNNLpNPbu3XvS8xuGMbXKZjIxs9D3HR0dTNoQERERUcMUCoWpCUiTX4ODg7NeGxoawsDAAPL5vKvzSynR09NTU1Klt7cXiUSiQX9TImIShoiIiIh8Z5rmVMmCk9FaY2xsbMFEzfQH2UwmA9u2p35fCyZtiIiIiKhWWmvk8/mTJlOm/65QKLi+Tjwerymp0tfXh+7ubhiG0YC/LRG5xSQMEREREYWKEAJdXV3o6urCli1bTvr+crk8tcpmrgdjr5I2k0mZkyVsenp6WB6NiIiIKMC01shmszUlUya/SqWS6+tEo9EZfcX5vibL7ra0tLAMGFEIMQlDREREREtaLBbDmjVrsGbNmpreX2/Spr+/H/39/TVdQ0qJrq4udHd3o6enZ8bXia9N/szVNkRERET1KRQKGB4exsjIyJx/Tn4/PanidrN6AEgkEnMmUeZLtLS2tjKpQrQMMAlDRERERDRNM5I2SqmpB/7XX3+9putIKacSMvMlak58rb29nYkbIiIiWjK01rMSKgslVSb/LBaLdV0vlUqdNJEy/fepVMrjvzERLQVMwhARERERLYLbpE2lUsHo6OjUAMGJAwVz/ZzNZqGUmkrm1MowjHkTN5OvdXd3T5V36+rqQmdnJyKRSL3/OYiIiIhqMlnya7JftFBSZfrvyuVyXdeLRqMz+kNz9ZG6u7tnJFu4WT0ReYFJGCIiIiKiJopGo1i5ciVWrlxZ8zHlctl14iaXy8G2bQwODmJwcNBVjK2trTMSMyd+nZi4mfyKxWJu/3MQERFRyNm2jfHxcYyOjs77NTY2Nufrtm3Xdc1YLDZnAmWh17ifChH5hUkYIiIiIqKAi8ViWLVqFVatWlXzMeVyeVaSZq7EzfSBkPHxcQBANptFNpvFwYMHXcWZTCYXTN7Mlcjp7OxEMpnkoAgREZHPyuXyvMmShRIrk/2HesXj8TnLrC6UVGHfgYjChEkYIiIiIqIlKBaLYfXq1Vi9enXNx9Qyk3VkZGTOQRilFAqFAgqFAo4cOeIq1kgkgs7OTnR0dEx9Tf95od91dHQgGo26/c9DRES05CilkMlkMD4+PuNrbGxs1mvTX59MphQKhUVdv62tbd7JF52dnfO+zpJfRLTUMQlDREREREQA3t5Dpru729Vxk4M+tSZtpn9ZloVqtVpX2bRJyWSy5oTNicmdtrY2GIZR13WJiIi8NLlHylwJk4WSKZO/y2Qy0FovKgYp5bwJk4WSKR0dHdxTjohoHkzCEBERERHRokgppxIbp5xySs3HzTXYdOIA0/SfT/xdJpMBgKkVOMeOHasr/paWFrS1taGtrQ3t7e0z/qz1tVQqBSllXdcnIqJw01qjXC4jk8kgnU4jk8nM+v5kP6fTaYyPj0Mpteh4EonEjAkIc01KOPFrskxoW1sbP8+IiDzGJAwREREREflCCDGV1Fi/fr3r4y3LmlF2xU0CZ2xsDMViEQCQy+WQy+XqTuKc+HepNYHT0tKC1tbWWX9Go1HWuSciagLbtqc+A3K5HLLZLHK5nKtkyuT31WrVs7ii0ei8SZOFkimdnZ1ob29HLBbzLBYiIlo8JmGIiIiIiCiUTNOcKoNSj3K5PO8g2+T3tbxm2za01kin00in0zh8+PCi/15zJWdaWlrmTdws9GcqlWLJNSIKPa01CoXCjGTJ5J/1fj+ZjPeKEAKtra1zJuVr+XkywcI9UoiIlhYmYYiIiIiIaFmKxWLo6+tDX19f3efQWqNYLLpO3GQymVkDgpODgZZlYWxsDGNjY179VZFMJqcSMslkct4/F/rdQu9hkoeIlFIoFosoFArI5/NTpSLr/X7yz+krVRa738l8DMNAa2vrVPLaTfJk+vctLS0s5UVERLMs+STM//k//wd33HEHXnzxRUSjUYyPj/sdEhERERERLRFCiKnExMqVKxd1LsuykM/nF5zhXcvvJr/PZrOwbRvA2/vmNEosFpszUZNIJJBIJBCPxxGPx6e+P/HPWl+b/jsOdBLNb3KPklKphGKxOOPPWr5f6PfzJU28XlUyHyHE1MrAk60UrPX3LANJRESNtOSTMJVKBTfddBMuv/xyfO1rX/M7HCIiIiIiojmZpon29na0t7d7cr7JQdjpCZq5Zpmf7M+Ffjc5K71cLqNcLnu6eudkotHorARNLBZDNBpFNBr15PuFfh+JRBCJRGCa5tTXiT8bhsGB3SXItm1YljXjq1qtzvi+UqlMfZXL5Zp/rue9cyVLSqWSr/+N4vH4nKvnTraq7sTvk8nkrIRJIpFgEpaIiEJlySdhvvSlLwEAvvnNb/obCBERERERURMJIaZWjfT09Hh+fq01SqXSvEmafD5/0ln2tc7An/zTsqyp608ORGcyGc//bl5aKElzsp8nXzMMA4ZhQEo542uu1xZ6vZbfCSGaljjSWkMpNeeXbdvz/q6eY06WOJnvtbne06iSWI0ihJh3VdrJVqGd+P1kcmWhpAqTJERERDMt+SSMW5MzuCZNdugzmQzi8bhfYdEyEbbOPBEREREtX9MHdru7u5tyTcuyFkzoLLSqwIvvT1yVMH2gXik1b8zTk0e0dE2ujjIM46Srqdz+vNDvTpZYMU2TK7KIiIh8xCTMCf70T/90avXMdOvXr0dra6sPEdFyMjlbkYiIiIiIZjNNc6osUdBMX21RzwqLk/3sZsWH29+d+HqzaK1drfBZ7HvmW2nkxWtc+UFERETzETqEU+//9//+33MmSqZ79tlncdFFF039/M1vfhP/+T//Z4yPjy943FwrYdatW4d0Oo22trZFxU1ERERERERERERERMtHKFfC/MZv/AY+9alPLfiejRs31nXuWCyGWCxW17FERERERERERERERESTQpmE6enpacjGkkRERERERERERERERF4JZRLGjUOHDmF0dBSHDh2Cbdt48cUXAQCnnXZaTXWEW1tbkU6nuR8MERERERERERERERG5Eso9Ydy4+eab8a1vfWvW6w899BCuueaa5gdERERERERERERERETLwpJPwhAREREREREREREREflB+h0AERERERERERERERHRUsQkDBERERERERERERERUQMwCUNERERERERERERERNQATMIQERERERERERERERE1AJMwREREREREREREREREDcAkDBERERERERERERERUQMwCUNERERERERERERERNQATMIQERERERERERERERE1AJMwREREREREREREREREDcAkDBERERERERERERERUQMwCUNERERERERERERERNQATMIQERERERERERERERE1AJMwREREREREREREREREDcAkDBERERERERERERERUQMwCUNERERERERERERERNQATMIQERERERERERERERE1AJMwREREREREREREREREDcAkDBERERERERERERERUQMwCUNERERERERERERERNQATMIQERERERERERERERE1AJMwREREREREREREREREDcAkDBERERERERERERERUQMwCUNERERERERERERERNQATMIQERERERERERERERE1AJMwREREREREREREREREDcAkDBERERERERERERERUQMwCUNERERERERERERERNQATMIQERERERERERERERE1AJMwREREREREREREREREDWD6HcByp5WCPdoPq/8grOMHYY0ch65WANsCDBMiEoXRvRKRVRthrtwAo2slhGTujIJBFXOoHjuA6vGDsI7vhyrkoK0qAEBEopDJVkRWb4S5aiMiqzZAxlM+R0zk0MqGNXTMuX+P7Yc13A9Uy9C2DWGaEJEYzL41iKzeiMiqjTB6VkIItr0UDKqQRfX4AVj9B1E9fgC6VHD6DkJAmBHIVPtUu2uu3AAZS/gdMhEAQNs2rMEjqB7bj8rR/bBH+qGrVWhlQRgRiGgMkRVrEVm9CZE1m2B09bHtpcCwc2lYxw84fYf+g07ba1UACKff29qByKpNTt935XrIaNzvkIkAANq2YI8chz1wCNbgIajMiNNvUDaEGQEiMZg9q2H0rYfRtw6yrRtCCL/DJgIA2JkxVI/umxp3UBNtrxASiERhtHUhumYTImtOQWTleohozO+QiQAA2qqicvwQqkfeQvnwPtjjQ9DVKmDbQCQCGUsgsmo9omtPRXTtJhgdPWx7lzihtdZ+B7EcVY8fQPH5h1E9vBeYGLSGkIBWs988/XUzgsi6M5C44BpEVm1sWrxEk1SpiNLuJ1B8+Umo9KjzopSAmuPeBWbcv7KjB4lzr0T8nMv4YEpNp7VG9fCbKOx8EJWDe51kNzB/2zv9vo5EETvlLCQvvh6RleuaFzTRBFXMo7T7cZReeQYqN+68WGPba3T2IX7ulYifdQlEJNqcgIkmaK1ROfAaCs88gMqRN50HTwhAiJO2vSIaQ+y0c5G8ZDsifWuaGzgRAJXPovjioyi98ixUPu28OG/bO/2+FjB6ViJx/lWIb7kYwuTcR2ourRWsQ6+j/PITsAcOTd2XEADmGgKa3h+OxhHZuBWxc94Bo6O3mWETAQDs7BgKOx922t5C1nlxvrZ3ctBaa0AImH1rkbzwnYhvuQjCMJoXNBGcifal119E7ukHUD12wLlnp9+jJ5re740nkdh6EVouvR5mF9vepYhJmCbSWqF64DUUn3sQVv/B+Qf+TmbiOHPlBiQuvA6RjZs5S5Aazs6No/j8oyjuetwZvF5E0yEiMSS2XYXE+VdDplo9jJJoNq0Uym/uRuGp+2ANHll02xtZexqSl92A6IYzOVOFGs7OjKL4wiMovfwUoOzFtb2xBBLnX434uVdCJrgykRpLKxul115A4al7YQ0fX3TbG924GanL3oXIutPY9lLDWWNDKD73EEqvPOPct4tpexMpJC+8FvFzr+DKRGo4bVuovrUb5V2PQGVGJhKDddy/k2MO6zcjdu7VMFes9z5YohNYw8eRf+Z+lF7Z6bxQT7/ByTRCptqQvGQ7EuddCcnVMdRg2qqisOsp5HbcAzu92LZXI75lG1queDeiq9j2LiVMwjSJPT6E7N3fhj18rP5/jCeaOI/RvQqt7/kMjE5mSsl7WikUnrkfhafuAaC9uXcB5/4VEql33IjEBddwQIUawho6hvTPvgF7dNDDtnfioXTVBrS//2YY7V2LPyfRCbSyUXjqHhSfexDAPCsG6iEEIA2krv4Q4mdfzraXGqJ6/BDGf/p1qMU8hJ5oMhG+7nS0v/+zMFrbF39OohNoy0LusZ+i9OJj9ScO5ySASASt130c8bMu9uicRDNZ/QdQeOh70IWMdyed7PeuPQOJd36M5aWpIXS1gswDP0Bp95Met72AiMXR9p6fR/zM8z07J9F0pX2vYvzHX4cq5Lw76cQKmfjmbeh4/3+CjCe9Ozf5hkmYJijvfQG5B7/vlF/w8MNkipCAYaDl2psQO3Ob9+enZUvls8jc+W+oHnmzodeJbNyCtvf8PGdmk2e01ii9/BSy933fGfxrUNsrIhG0vfc/IXb6ud6fn5YtOzuG7F3/7qyabaDoaeeiZfsnIWMsD0ne0Fqj+PwjyD5428QLDWp7Y3G0f+BmxDZt8f78tGzZ48NI3/4N2EPHATTuETl21sVove5jEBHOzCZvaK1Q3v0Yyjvvn7/c2GIJARFPIXndp2Cu3Oj9+WnZsoaPY/zHX4U9NtSYe3dCYtvVaL32w84+SEQe0MpG9pHbkXvibu8mHZ1ICMjWDnR9/JcQXb3R+/NTUzEJ00DaqiL/6I9R3vNM064ZO+tipK7+CD9YaNEqh95A5o5vQZeLjRlEmU5IyGQL2t5/MyKrNzX2WrTkqUoJ2Xu/h/JrzzXtmokL3omWd34QwmDNd1qcyv49yN7zHWfD3Ia3vQKypQNtN34WZh/3OqLFUaUC0nd+G5U3X2r8xSYedFOXvQupd7wPQrLmOy1Oee+LyNz7H4BlNaXtNTp60Pb+W2D2rGrstWjJU8UcCg9/H/axtxp/sYm2N3bh9YiddzVLotOiFV96Cpl7b3X2xGh02wsBs3cV2j/8eZisIkOLZGfGMfqjf0X1yL7GX0wIAAJtN3wMqYuvZSWDEGMSpkG0VUXmJ/8Kq/9AQ7P5swgBc+UGtH3wC9x8l+pW3vsiMnf8W+NmUs1l8oPlQ5/nzFaqmyqXMP69L8MaPNrcthcC0Y1nov0jX2AihupW2vMMcvffisla1k0hJCAE2j/8y4isPbU516QlRxXzGP3O38AeG2xy2wvEzjgf7R+8mYkYqlvxhUeRe/i25l5USMAw0XHTryOykvXeqT6qkEXuZ/8MnU83ve2NnL4Nias+wkQM1S335D3IP3Z7cy8qJEQ0iq6f+y8we1c399q0ZFjjIxj+xl845ccanjycKXXJtWi74SYmYkKKn5gNoG0L2Tu+2fwEDABoDav/IDJ3fBPatpp7bVoSyvv3IHPnv8HT/V9qMVEyKvPTr6FyuLHlz2hp0tUKxn/4Tz4kYABAo3LgdaR/9k1o1dyOGC0N5Td2IXf/9yZ+ambb68w8TP/0X1HtP9S869KSocpFjN365YaXEZlPee+LyNz1f6Gb/BBMS0Px5aebn4ABnLbXriL9w3+ENXys+den0FOlPPJ3fBU6n/Gl7a2+8QJKT90JzumlehR2Ptz8BAwAaAVdqWD0u38Pa3Sw+den0LOz4xj+t7/2JQEDAPlnHkL24Z82/brkDSZhPKa1Rv7hH6F6+A1fOkMTQcA68iZyD/2QnSJyxRo8iszPvuHfvQs4iZiffJWdInJFa4XMXd+GdfyAj/evRuXNl5B75Cc+XZ/Cqnr8ALL3fBtNTb5MpzVgW8j89F9hZ0b9iYFCSSuF9E++DmvomC8PopNKrzyD/BN3+3Z9CqfKwdcnVh/6RGvoahXpH/0zVN7DjdRpydO2hcJ934HKjvna9lb2PIXKKzt8uz6FU2nvLmQf/KF/AWgFXSpi7Pv/CFUq+BcHhY6qVjDy3X+AyqZ9bXtzT9yN/AuP+3Z9qh+TMB4r7X4C5VefhW8DKVM0Kq/tRGnXYz7HQWGhijmkf/wvTj1WP2kNbVWRvu2focpFf2Oh0Cg8dR/Ke3f5m0CcUHzuYRRfesrvMCgk7Ow4Mj/7mv/3rtbQ5RIyP/kqtFX1NxYKjdwjP0XlwGv+378A8jvuQum1F/wOg0LCHh9C+mdfD8Ajm4Iq5JD+yVehbdvnYCgsijt+BnvwsK+DgJNKT9+F6pG9fodBIVEdOob0z77pdxhO25sZw/htX+VKWqqJ1hrjP/3WRNUN/++Z9J3/gfIhVpAJGyZhPGRnxlDY4cOSygUUdtzJWa1Uk9xjt0MVsoH4QIFWUNkxFJ66x+9IKASskX7kd9zldxgzZB/8IWe1Uk3yj/4EulwKxCA2tII9NojCzgf9joRCoHr8EArPPuB3GDNk7v0uZ7XSSWmtkb3/+4Blwf8sDACtYA0cRpGT56gG1rF9qO59DoG4dwEAAsXHboO2Kn4HQgGntULm7v/r/6TPSVqhevgNlF562u9IKATKb+xG6dXng/HMBgDQGP/Zv3EbipBhEsZD+cd+Aqig/IOcoLUTF9ECqv0HUX7l6QB9oADQGsUXHoU1fNzvSCjApgZSELCN6SwL2UdZq5UWVjm0F5W3dgcj+T1Fo7jzAdjpEb8DoQDTWiFz73edzcUDRJeLyD1+p99hUMBV3npponR0kNpeIP/EnbBzab/DoADTykZxx0+BQG3IrKELOZR3Pep3IBRwpZefgXX8YODa3uxDt0EV836HQQGmqxWM3/XdYLW9WsMeG0L+GU6eC5NgPTmFWOXQ66jufyVwHyjQCtX9e1A5+JrfkVBAaaWcQeyADaQ4BLIPfJ97G9G8yntfRPXwm4Fse8uvPIvq0f1+R0IBpW0LuYd+GKzO/CStkXvEh42qKTRKLz0NayAYpXBm0BrF5x9FdfCI35FQQOlqBbkHf4jATd4AANtG/rGf+R0FBVjllaeg0sPBmjgHANAo73oUdoYTOGhuqlRA9qFg9i11pYTcY8GqaEPBkt1x78Q+MEFre4HMI7fDzoz7HQbVKIijrqGjbQv5h38UzIEUABAC+Udu4zI1mlPpladhDwWjruUsWsE6th/lvazxTrPpSjm4AykAICQy990KHZQl9xQoxV2PBXQgBc4EjgOvorJ/j9+RUAAFeSAFACAEMvd+jxM4aE6FZx+AymcRnFJO02iF8mvPoXLkLb8joQBShSxKz9/vdxgLKj3JgWyaW+6JO6GDut+r1ii++ASqA4f9joQCyBobRu6JuxHIfgMA2DbS9//A7yioRkzCeKCyfw9UZjSYAykAoDVUZhSVfa/4HQkFjNYahWeC3ZkHEIoYqflKrz8f3IEUwNlfY/g4Kgdf9zsSChitbBR3PuR3GAsTgnvD0JyKLz3l7GMUVBMTOKrHDvgdCQWMtiooPP8wAttvAAAhUWTbS3OovPYMEORJlVrBOvIG7LFBvyOhgFGlAoovPB7c8TLAmbj8LNtemi2/82EEut+gFUp7noOV5l7gYcAkjAfKrz4b0FJO0wiB8mvP+h0FBYx1/ICTQAw4e/g4rOFjfodBAVN86engrkCcJCRKrzzjdxQUMNVDb0CXAl57WmtYx/fDDsFnBDVXcfdTCPTDKMC2l+ZUfusVoBrwzcO1QuXAq1CFnN+RUIBorVHZG6QNoechBKpvsoIBzVR6/QVA2X6HsTCtUH79RaggTzKhptO2jcLup4CgV7YQwhkbocALeOYg+FQhi+qh14NZymk6rVE9tBeqkPU7EgqQ0p4QJBABZzBlD5OI9DZ7fATWsf3BfxjVCuU3drNDTzOUwjB5A5iYwPGc31FQgFQHj8AeOe53GCenFUp7noW2qn5HQgFSeiUEkzcAQAMltr00jT1wEDqf9juMk5tIFrEUL01X3P1UONpe20J574t+R0EBUt63B7oY8IlzAKA1Ci/uYCneEAjBCECwlfe+EPxBwEkaKL/+vN9RUEBoq+I84AU9gQg4gymvPAsd9Bk01DSlPc+EozMPTHToOSuQHKpcROWtl0LS9mqUXnmaHXqaUnr5mXAkEOHsG1Z+82W/w6CAsHNpVA/uDclzm9P2Ek2qvPFCeNreUh7WMe5rRA5rbAjW8QPhaHuFQPGlp/yOggKksOvJ0LS99vgwqkf3+x0GnUQ47qYAC9cMUY3y62GKlxqpsv+14JdkmEaX8qgeftPvMCggiq88G47OPAAIgdIrO/2OggKi8tZLwS/JMI3KjsHiRqUEpxxO8ZVnwpFABJy9NbiKliaEbXazPXwc1uiA32FQAGhlo7pvd6ja3upbu/2OggKi9OpzoRnEhtaoHnkLdnbc70goAFS5hNLeXeFpe6V0xkgo0ELSGgaTtq1wlGSYxh7phw7yhn7UNNWBQ4AMURMghBMzLXuqXIRKj/gdRu20RrX/IFcTEAA4CY0wtb0ALLa9BEBlx8NRkmGSVqge44xAclgDh8OzgnaC1c+2lwCVHgbCVFpRK9iDvHfJUQ3LKphpqv2cfESANXg0+HvBTKcUKkf2+R0FnUS4RgECxh4bDN0HCrR24qZlzxoK2YcKAGvomN8hUACE8j6wqlDc4JwQwrZXytBNOKHGsIaO+h2Ca7qQgwpT4ogaxho4HJ7ZrAAgJaxhtr0E2KP9fofgmsqOck8uAgBYA0cAhGjMTMhQ9nfIe9XB8N0H1aHj0GHq6yxDpt8BhFkjBiV2vHkYX3ngWew6NICBTB7/9vkP4X3nne7pNezh4zB7Vnt6Tgofy+MPlSffOoJ/eOg57DoyiIFMHt+85f143zmneXcBrWENHvHufBRajUjCPLnvKP7h4eew++gQBjJ5fOOzN+J9Z5/q6TWsoWMw2rs9PSeFi9ba80G1HW8ewT88uBO7Djv9hm997oN437ketr1KhfIhhLxnDR1zVhJ4OAHpyX1H8Y+PvoDdRwYxkC3gG7/wPrx36ymenR9w4o6u97YvTeGibQv2+JCn52x4v1cpDgQSAECNDjjlnDwaWHti7yH8/d1PYtfBfvSnc/j2r38c7992pifnnqI11PgQDI45LGuqXITKpT09Z+P7DZptLwGYSMJIw7My0k8dOIb/7/FdeOnYEAayBXzt0+/Ge87a5Mm5p1hV2GMjMLt6vT0veYYrYRbBGun3vKRIoVzF2Wv68Oc3bff0vFOkhMUZrcueKhWgC1lPz1moVLF1dS/+9KPXenre6VR6hLOqCPbwce/b3sn798Pv9PS8U4QM5woe8pTKjgGWt3txFSpVbF3Tiz/7+HWennc6e4SzqmgyAe5tOadCxcLWVT34k0a1vRBse6kh1Qua0e/lQCABEythPPwMLpQrOGfdCvzFz73bs3POxR4L3woe8lYjPn8b3m/QmuXICMBEWToP9/EsVCyctbIbf3zjOzw751yq7DsEGlfCLII9MuB5SZHrt56C6z2eATiDUrC5yeOy14h7YPuWTdi+xeNM/om0hj0+xJVcy1x16Jjnbe/2zRuxffNGT885k3YS97SsNaLtvf6sTbje61lUJ7ItqOw4jLauxl6HAq06eNTzck7bN2/A9s0bPD3nDFKw7SVYI+Hs9+piHqpUgIwnG3odCjavy5HdcM5puMHLVVtzkRL2mLerzyh8rGHvP38b3m8AoNKj0LYFYXC4dDnzunrBdWesx3VnrPf0nLNICWvoOHDm+Y29DtWNK2EWQVeKfodQF10OZ9zkHV0p+x1C3cIcO3lDV0p+h+Ce1rx3KdT3gK6GN3byRnjb3hDGTZ5i20thpj1eQdsUGgDv3WVPV0pOKb3Q0ay+QdDVELa9EKHu8ywHYWwRAyOsDXNY4ybvaDu894C2LL9DIJ+FtQ0L5UM0eUrbIW6/whw7eSKUn79ahzNu8pZdhdel9JqF9y+F9fNXq3DGTR6yrbA2vQDb3mVNK+V55Y1mCetYyXLBJMxieFxbuHnCGjd5JrT3LjwvhUIhFNb7N6xxk4fCew9o3r8U1vuX/YZlT2sd3oFAtr0UVrx3l70w9x3DHDt5IcT///PeDTQmYRZBmBG/Q6iLMMIZN3koxPdAWP/dkXeEGc76vLx3Kcy1pcMcO3kjlPeAEGx7ybl3QzooEdY+D3lIGn5H4J4I6WcGecppe/2Ooj5se5c3IQ1AhHP2Bvu9wcYkzGJEon5HUJ+wxk2eCXXDHObYyRPCDGMbJkIaN3mKCXAKsVDeA0Kw30DhvHcnhDl28kZokxkh7vOQN0QkEtrVqGx7CWFte3nvBlpI76pgMDp6YR19y9NagblyBfuHxqd+PjiSxktHBtGZjGNtV9viLyAljM7exZ+HQs3o7PH8nLlyBfuHx6d+PjSawUtHJ+7dTg/u3QlGh/exU7iY3SthDR71tFOfL1ewfzg99fOh0QxePjqEjmQcaztbF38BKdj2UkParxP7DYe87jcAgBCQrZ3enItCy+heCXt8BF5Oa82XK9g/ckLbe2wIHQmP2l6tYbLtXfYa8fnblH5vJAqRaPHmXBRasr0Hdinv2flypQr2DY5O/XxwaBy7D/WjM5XAuu52by6iFGRbtzfnotAyOvs8P2fD+w0AZLKVSRiC2dkLa+iYZ+fLl6vYPzrt3h3P4OXjw+hMxLCmw5t7F8qG2eX9vzvyDpMwi2B2r0LZ482aXjzUjw///femfv6ftz0MAPjUJVvxlc+8d/EXUApm96rFn4dCTabaIaJx6ErJs3PuOjyAj/zjD6d+/sOfPAoA+OTFW/DlT7/bk2vIVBtkLOHJuSi8zN7VwKs7PT3ni0cG8dF/+tHUz//rZ48BAD554Rb8/aduWPwFlHLipmXN6OwFpPR08sauQwP48Fe+P/Xz//zxIwCAT15yFr7y8+/x5BpGR294Z+KSZyJ9a1DZvwdQ3iVhXjwyiI/9y4+nfv5ftz8OAPjEhZvx95+4fvEX0Bpm75rFn4dCrRHPPs3o95o9qyBCWg6FvGN0r4Y9dNizvsMLB47jA3/17amf/+B79wMAPn3Fufj/fvEDnlwDAIyuFZ6di8KpEc8+De83ADBXrPPkPBRukVXrYY30e9b27jo2iJu+/rOpn79015MAgJu2nYG//eh1nlwDACIr2O8NMj5RL4LRvdLzc77j9PUY/vLven7e6QwmYZY9IQSMnlWwju337JxXnrYOg//vf/bsfHMx+viBQoDRs8rz2u5XnroWA3/5W56e80RMwpCQBozOPtgj/Z6d88rT12Ho737Hs/PNIiTMvrWNOz+Fhtm72tMEIuC0vf1//huenvNEbHtJRGOQLR1QuXHPztnwfq+UMHvZ9tJEMsPDtveqzRsw/tU/8Ox88zG6vB8roXCRqTaIWAK6XPTsnA3vN0gDJsccCM7ko6KHYw5XbFqDo/+/X/HsfHMSEmY3E+BBxj1hFsFsQBKmGRqRPKLwifStdWZkh4WUiHA2KyGkA2pSNmRJPoWP2bcWECFqe6GdxCcte2Fse0U0Btna4XcYFADmirUAQrSqRCmYbHsJgAxhMkMkWyGicb/DIJ8JIcKX0FB2KPs75D2zb43nEz8bzexi9YKgC9MoQOCIaDx0NdJlawckO0QEwOhd4/mM1oZSiiVFCMDErKp40u8wXDG6VkIYht9hUACYPWvg5Z4aDaf1RMy03BmdvSHbpFTA7FvLck4EAE4fMmT3QugGL6khjI6+cN27QsBgv4EmRFasC9fETwCRFVyFSCEs6yUkIqs3+h0FnUS4WsMAip5+fng6RUIievo2v6OggIidujVcs7ENE5GNm/2OggJACIH45gvCc/8KgfiWC/yOggIieto5oZpVJaJxRNae6ncYFABCGoidcV542l5o57OCCEDs9PMAHZ7JRyLVBnPler/DoAAQkSjMtaeHZ8xBa0Q2ne13FBQQsTO3hWrip9HZx/2MCABgpNqcZ6DQtL0KiS0c7w26sDxFBVZ8y0XhGUzRCrHNF/odBQWETLQguumscAymCInYGedzFRdNiW+9JDyDKVo7nxVEAIzWTphrTglHh15IxDZfyGXtNCVxzmXhaXuFRHwL+73kMHtWwQhLiRkhkNh6CUQY+ujUFNHTLwzPmIMRQWTDWX5HQQERWb0Rsr3b7zBqIwQS517OFbQ0JXX+FaFpe0U8gdipTIAHHXt2i2R09jllnUJQY9joWQ2TWX2aJjQD2VohftbFfkdBAWKuXA/Z0eN3GCcnBCLrToPRFq7SldRY8bMuCUeHXivEmECkaaLrz4BMtvodxskJidipZ0MmUn5HQgGS2Hqp3yHURmvEtrDfS28z158JRGJ+h3FyQiJyytkQkajfkVBACCGcCRxhSGxoIH4W+730tviWbeEoxSslkudcxvLnIcAkjAfiZ12CMNR3j511id8hUMBEN22BiAV/dYlItSGy7jS/w6AACU2HXmvEz77M7ygoYGKnnhuKDr3s6IHZt87vMChAhJSIn3NZ8FfRaoX4OSEZcKemiYWilKmAuWIdzK4+vwOhABGGieipISgHqRXLn9Msia0hmHwkBKIbTofR2uF3JBQgMpZwEjFBb3uVQuJcjjmEQcDvpHCInn4+RNBnpkRiiJ3BDhHNJAwT8XPfEfiB7OT5V7EkA80S33oJIIM920MkUoiffq7fYVDAiGjMmRgR8LY3cd5VLMlAsyTOuyLYC8CFgGztQOwUlsOhmWSixdmfINB9So3Etqv9DoICKLol4BUMhIBs74WxcqPfkVDAGO1diAZ9P1qtkbjgGr+joABqueiagLe9EpFVGxBZyYlzYRDgVjA8ZDyJ5BXv8zuMBaUufy9kPOl3GBRAyUu2Q8QDWq5DCMjWTiQueKffkVAAGS3tSF3xHr/DWFDrtR+BiAY8SU++SF32nuBO4BACRmcf4udc7nckFEBmRw+Sl2wPbhJRa7Re/wnuZURzSl31fiCo5TqEhLlyvbNih+gERtdKRDYHeAKH1khc+QFOnKM5tV73seBO4BAS0Q1nInYa99Og2aJrT0Hi7IuDm0TUCu3v/TQnzoVEQO+i8IltvQxG98rg/cMUAkbXCsRYDofmIaNxtFz7Eb/DmJvWaLnuYxBmxO9IKKCSF17rbPYYtE6HkDBXb+R+GjQvmUgheeX7/Q5jblqj5bqPQwR8pRn5p+Wyd0/sDRO8tje6cTMHUmheRksHUpcHdAKH1mjZfhMHsWle8YuuD+beMELC3HQ2zFWn+B0JBZTZ2YvUpTcE75ltQusNn+AgNs2rbfvHIMwATu4REslt70B09Qa/I6EasYfnESElUtd8LHjL1LRG6tqPcSCFFhQ7YxvM1ZuClUQUEtFNZyF2yla/I6EAE6aJ1utvCl6d4cmZ2OzM0wLiWy+F0bM6WA+kQiJ6xjZE1pzqdyQUYCIaQ+v2jyNweyIKoPX6m9j20oIS266G7OgJWNsrED/3CkT61vodCQWYjCWRuCSASUQpkbg02JVByH+py94FmWpDoCZwCIHkJdu5DxctyGhtR+s7P+B3GLOIaBRt137I7zDIhQCNuIZfZNXGYNV4FwKxLRcjsmqT35FQwAkh0Lr9puDcuwBgGGi5JqArdChQYpu2IHbG+YG6fxMXvhORvjV+h0EBJ6REy3U3+R3G24SAiESRekfwHjIoeGJnno/oxs2BmsCRuvzdHEihkxKGidbrPxGcCRxCQMRTSF35Xr8joRCInHEBjN61gWp74xdNDq4TzU9Eomi94ZMIzAQOISFbOpC6/N1+R0IhkLr4Wpi9qwPV9rbfcBNkssXvMMiF4Nw9S0Tq6g8Ho1MkJIzeNUi9k4PYVBuzZxVa3/PzfocxQaDt/TfD6OjxOxAKidb3/ByMrhWBaHsj605Dy9Uf9DcOCo3IyvWBSsS0vf8XYbS0+x0GhYAQAu0fvAVGW2cA2l6B6KlnB36fMAqO6LrTkbo6ILNHhUT7h78AGdQ9GilQhJBIXv/zzp6evk9AEoiceh6iW7mHHNUmfvo5SF0RhISzAAwTnTf9KiT376QaCMNA1yd/DSKeCEDbCyQvvBrJ86/wOwxyiUkYjwkzgrb33+LMBPHrgVRIyFQb2m68hXtpkCvxM7cheYX/S8lT13wYsU1n+R0GhYiMxtDxsV+GSKR8bXuNjm60f+hzEEHd9JcCKb71UiQuvNbvMNCy/ROIrGUZMqqdjCfRcdOvQURjvra9Zs9qtH/gZu6lQa4kLngn4uf4P3jc9t7/hMjK9X6HQSEik61IvfsXACPi32CgEDD61iHxjg+zBCS5krryPYhtuRC+liUTQMeHPwezZ5V/MVDomB3d6P7krwHS8LXtjZ2yBe3v+oQ/16dF4ZNKA8hkK9o++qv+DAYKCZFIoe2jv8olwVSX5CXX+zoYmLzivUhuu9q361N4GW1d6Pzkb0LE4r60vbK1HR2f/E3IeLK516YlIXnFjYid7d9gYOrqDyF+1iW+XZ/Cy+zqQ+enfgsi4sNgoJAwOnvQ+cnf4ExWck0IgZbrPo7Ymdt8i6H1XZ9ySqoSuWR0r0LqPTf7MxgoBGTnSqTe/Quc9EmuCSHR/r7PIHrqVp8GsgXaP3ALYqdw0ie5F117ipOIEcKXtjey5hR03vQrnPQZUkLroBTDXXrs9Aiyd3wT9ugAmlP3UsDo6kPrjTfDaGcZJ6qf1hqFZ+5HYcddzgSVRjcTEx9eqas/iMS2d3I2FS2KNdKP9I+/Cnt8uGn13s0V69D+oc85ZXmI6qS1QmHHXSg+9yAmGt/GXlBIQAi0XPMRxH1MANHSUB04jPHb/hUqO960tjey9lS0f+gXYXDiES2CVjbyj/wExRcfa84FhQSkROu7PoX45gubc01asqyBQyg88H+hS/nm9XvXnIbEtZ+AjHHiEdVPW1Vk7vseSi891ZwLCjlRueYziJ9+XnOuSUtWef9rGP3RV6FLRUCrplwzfub56PjgZyFj8aZcj7zHJEyDaauK/OM/Q/nlJxt+rdjZlyP1jg9wNgp5pnLkTWRu/xZ0qdC4DxYhnPJ5778FkVUbGnMNWnZ0pYzMA99H+ZVnG3gVZ5A8edF1SF31fs5GIc9UDryG7D3fhq6UG9v2tnah7cabnU0miTygykVk7voOynt3Ne4iQgBaI3XFe5G64j0Qkgv7yRvlN3Yjc893AMtqaNtrdPah7QO3wOxa0Zhr0LKjSnkUH/kBrCNvNO4iE5Pk4he9C9FzrmT5R/JM8ZVnkbnnPwDbbuBgtoC5Yg3aP/Q5mNx3ljxiZ9MYu+1rqBxqZNsrAQG0v+smJC/khOWwYxKmScpv7kbu/lsBu+rtDBXhbCjWsv2TiDGbTw2gCjlk7vp3VA/tnRr48MTEuaKnbEXru3+OJZyoIYovP4PsfbcCSnnbqRcCIhJD242/gNipW707L9EEO5dG9q5/g3X8gMdtrwS0QvSMbWi57uOQUc6kIm9prVF88XFkH/ihc9963fbGk+j44C2IbjjTu/MSTbDTI0jf/k3Yg0fg6YrEibY3dvZlaL32IxBm1JvzEk3QWqHy8g6Unr0HgPB8MFskWpHc/mmYK7h/EXnPGhnA+I+/Cnuk39sTT7S9yQuvQcs1H4IwTG/PT8ueVgq5x+9E9tE7pu43LxntXej8+C8juopt71LAJEwTqXwGxV2Po7T7CcCqYnGdegGYEcTPvQKJ867i/i/UUForVN56BYVn7oM1cHhxHy4Tx5qrNyF58XZEN53FbD41lJ0ZQ+G5h1DctQOwrUUPZotoHIkL3onkBVdDJls8ipJoNq0UKm/uQuHZB2CPHPek7Y2sPQ2Ji7Yjsu50tr3UUNb4MArPPIDi7ied+3axbW88ieRF1yK57SrIRMqjKIlm07aN8uvPo/DM/bDHBheXCJ9sezducfq9a0/1NliiE9jjQyjvfgzVN18EoD1oe1OInfMORDdfDMGJG9RA2qqi+MqzKDx1L+z0iCdtb+z0c5G67AZEVm30NFaiE1UHjyK34x4UX9mJRSXCJ+572dKOliveheT5V3LfwyWESRgfqHIR5VeeRvGFh6GLeefFkw2sTPu9SKSQ2PZOxLZeBhlLNCFiIofWGtWj+1B49gFUD7zqvCils8pgIdPeEz31bCQv3s6OEDWdKuZRfPFxFJ572Cmxh4nN9Gpse2WqDclLtiN+zuXsCFFTaa1RPfwGijsfQPXIm86LtbS9U/evQPT085C88FqYfWsbHi/RdCqfReH5R1B47hHoSmmipM1J2t5p97ds60Tq0huQOPtSiAhXD1DzaK1R2b8HhWcfgHVsv/Oim7ZXCMQ2X4jkRdfB7FnV+ICJplH5DMqv7EDl1aedCaCTEy8WGv6Z3u9t60LsvHcicup5XD1ATaWVQvnN3cg/ea8zARQApAEoe4Gjpj3XSYn42Zchdcl2mF19TYmZaJI1PoL8Mw8g/9xjzgTQWtreaX0Ls2clWq58LxJnXchy50sQkzA+0sqGPdIPq/8gqv0HYR3dB5Ubn/U+2dIBc/UmRFZugLlqI4zulRCS/xjJXyqfRbX/AKrHDqB6dB+swSPOh8x0honIyvWIrDkFRmcvIhu3wEi2+hMw0QRt27CGjk7du9Wj+6By6Vnvk21diK47DUbfGkRXbYS5cj33HiDfqXwG1eMHYB0/gOqx/bCGjs5+KDUjTp9h9SYY7V2IbNwKgysHyGfaqsIaPIrK0X2oHtuP6uG3oArZWe8zOnoRWXcqzBVrEV19CswVa7j3APnOzo6hemyi7T26D9bQsdmJxEgUkVUbEVm9CUZXH6Ibt3DCHPlOW1XYI8dgDx6GNXAI9sCBiclIM8n2HhgrN8LsWwejbz1kezfbXvKV1hoqM4rK0f3Oc9uRN2ENHZ/V9opoHJE1m5wxh54ViG3Ywo3LyXeqWkH12EFUju5D5cg+VA69ObvtFQJm90pE15+GyIq1iG44HWb3SlYrWMKYhAkYbVvQVtUZzDZMCDPCmScUClorwKpCV6vORBQzCpgmhJDQWsPufxMi2Q7Z1ssPFQocbVnQVsVpe83IjLbXzo1BFdIwu9ZAmBGfIyWaaWbbK5x7dHrbe/RViNYeGO2cCUjBo62q82VbTrtrRqdm/dn5cahSHmbHCvaFKXC0mmh7J1YYiEgEMCIQQkArBWv4EGRLJ4xku9+hEs2gtXb6u7YFrWynfTUjnORJoaCVctrdagWQcqLfO9H22has0WMwWrogEywZTcEy2fbqagXatiEiUYjI222vlR2Ftqow23s58XMJ4xNNwAjD5IMmhZIQEojEICJzlGmyLUAr6PwYtDQgWrubHyDRAoRpQphzt73aqgDKhjV2HGbXarbRFCgLtr1WGYCGzg5BGSZkS1fT4yNaiJhIes9lqu1NDzmJGD6QUoAIKYFoDGKO8qTaqgAAVG4MQhqQcQ4GUnAI4ewtCzMCToujsBFSOu3unG1vFQBg50YBKSFjyWaHRzSvybZ3/n5vFdquwsqOwGzr4cTlJYpPM0TUcLpamvpeZYehCrNLPxEFla6WnW/sKuyxfmf2K1EI6Mq0tnf8ONteCpXJwRTYVdiZIWfVF1EITCZhAMDODEOViz5GQ0S0PMxse0egpvWDiYJMaw1tO/1eXS07q2JYtGpJYhKGiBrPKs/4UY33Q5VyPgVDVDutFTDRIQIAbZVhj/ezU0ShMD0BDgBq9ChUKe9TNES108qesdeRrpZhZ0bY9lIoTB8IBAA7MwhVLc/zbiIi8oKe9swGaGcCxwntMVEQzbx3AV0pws6Ps9+7BDEJQ0QNp+d48FSjxzgYSIE3V8ddV4pMxFA4VE+cAaihRg5Bl9n2UrBNrYKZ/lqlCDvLRAyFwIl9B61hj/czEUNE1ECzntu0hjU+yEQMBd5c/V5VysPOp9nvXWKYhCGihpsrCQNozsqm4KvO3WnX5QITMRR4J66EcV5UsIeZiKFgm2/ARJcLTMRQoGmt5xxMcRIxA/P0iYmIaDGc6gXWHL9QE4mYOdplooCY7/5UpRzsAhMxSwmTMETUUFrrGeWcTvgtEzEUaCcuDZ7xOyZiKMBOLOd0wi+ZiKFgm2sgZQITMRRoygYwz72pFSwmYoiIvLdAv2Gq7WUihgJKL3D/qiITMUsJkzBE1FgLDGI7mIih4DpZZ91JxAywU0TBc7LSC1OJmEJz4iFyYaEEOMBEDAXXye5dJmKIiLy30CC28wYmYii4tFr4/mUiZulgEoaIGqq2GqwTiRjOyqaAOelgCgBdzjMRQ4GjrRoG+LSCPXyQiRgKnJMOpoCJGAqmWvoNTMQQEXmrln4DEzEURE7lmJPfv04iJsN+b8gxCUNEjVXzRngaaoSJGAoOrTVQYyediRgKnFrbXiZiKGC01vOX0jvxvUzEUNBYNQwEAkzEEBF5qKYEOOC0vWkmYihAauzzAoAqZpmICTkmYYioodx1cJiIoQBZqK77HJiIoSCpbRXi5JuZiKEAqXUgZYKTiBll20uBUPNAIDAtEeOivSYiotlqWQkzSTERQ8FR0yquaZiICTcmYYiosWy3D5YsTUbBUE/HnIkYCgrXg3pMxFBAuH0YBSbaXiZiKABc379awRrvZyKGiGgRXLe9SsFKDzIRQ76rp9/LREx4MQlDRA1VV8dGTyRiSkzEkI9czsaexEQMBYKblTCTphIxbHvJP/U8jAJMxJD/nLru9fR7JxMxLE1GROSW1spVSacpymYihnxXb7+XiZhwYhKGiBpGa1X3QLaTiDkCVcx4GxRRjVyVczrx2HIe9thxaKU8jIioNtq2AF3HwyjgJGKGDkIVs94GRVQjV+WcTjy2nIedGXL6H0TNpuobSAEwlYhRlaJ38RARLQd1DmIDcBIx4wNQTIKTTxbT71XFLOzcGBMxIcIkDBE1jgezStTYcaj8mAfBELmzmA4RAOhKEdbo0bpntxDVbREJRIeGGjnEtpf8scg2U1dKsMeHmASnptPWIj/vtYY9PsCV4ERELiz6WUsr2OODUGUmwan5Fnv/qnIBVnaEiZiQYBKGiBpmMSsJplPpQdiZYX6wUFN5sjTdqsAaPcZl7tRUnrW9Y8egssOenIuoVl4krrVVdjY8ZxKcmmixkzcm2Zkh2FwJTkRUE2+eszTszBCT4NRUWuv6SumdeJ5KCVaaE5DCgEkYImocjx5GAafEyOJndxPVpu667nNRNlQp5825iGrgVRIGcJa5e3k+ooXUXdd9LsqGKhe8ORdRLbzs95YKTCISEdXAy7ZSlfPQXvVDiE7Gw3tXK5slTUPA9DsAIlq6Fj1wJ02IZBtkog0iEvMmKKJaeNAhErEkZKIVIpaEEJzzQE1kLbKutRGBSHZAptohTLa91ERetL3RBGQ8BRFNQAjhQVBEtVn0QKBhQsZbIOMtEAYf04mIauJV2xtLsu2lptKL2UtugowlnXs3EmO/NwTYwhBR4yyiQyRauiBbe/hBQr5YVIdISJg969iJJ98spiSObOuDYNtLPlnUILY0YHauhJCGdwERubCY+1e2dDkTN9j2EhG5spjnNqO1CyKWYttLvtB2/auuhBmB2dYLITnZM0z4/xYRNcyiamNXSuwMkX8WMxCoFUuIkL8Wcf/pSpFtL/lmUSVAlA2wFjb5aRH3r7bKbHuJiFxa7J4aulph20u+WUy/19kLiXsmhw2TMETUOIsaCCxwHwLyzWJrAStuqEs+cfYzWkTbW8p6trk0kWuLbXu5/xb5RGsF6PqTgLpU4D4ERERuLaLdBSb2gFnkOYjqtth+L/c+DB0mYYioIRb7MAoAqpD2KBoilxa5kkWXctCckU1+UDYWOytK58c9CYXIrUUnwEt5JxFJ1GyLKCni0FClvCehEBEtG4tte7WGLnMzc/IH+73LD5MwRNQYJw5iR+KQ7X2Ai+W+upDmhwr5YkZtYSEhk20Q8RYXJ9DQnJFNfjhxFUs0Cdmx0tUpVH6cbS/5Y/pgipDOHhnRRO3HawXNWYHkgxMHUkQkDtnS5eocXMlFROTOifvBiGgcMtXh6hxse8k30/sO0nD6vWa05sO1bbF6TMhw12AiagzbAqQJkWyDTLZPfZjoSgm61lJNyoYu5SASrQ0MlGgOyoaIJZ2O0MRmjdqqwHLRSVfFDGSyrYFBEs2mbQswIhDJDshUx9ttbykPXcrWdhK7Al0uQMRTDYyUaDatbYhoAjKegogmIISAqpZhV2qfpapKeUjeu9RsygIMEzLeAhlvgTCcx2xdLkBXS7Wdw6pAV8sQkVgDAyUiWjq0sgEjAhlPQcaSM9veGgendbUMbVUhzEgjQyWaRWsFGUs6924k5vR7y0VY2ZGaz6FKeUj2G0JDaE51JKIG0EoBQsza6E6XC7BHDtd8HhFLwuhe53V4RAvSSkHI2YtFrZGjtQ+mADC713IwhZpKKxsQclbbq4pZqJFDNZ9HJNrY9lLTzdX2aq1hjfXPXuW1ALNzFQdTqKnm6/eqUg52Zrjm84h4C8y2Hq/DIyJakuZre+1iFio3VvN5ZKIVRkun1+ERzUtrDWg9Z7+3OnrcRWl/gUjXqjnHLih4+P8SETWEkLMHAQEA0QTgZolluQBdLXsYGdHJzdeJcbuyxebeGtRkQhpztr0i3gIYtS+A1sUMl7dT083V9gohIBMuykHCSToSNdN8/V4RSwGi9kduZ0+5xe4vQ0S0PMzX9spYCkDtZdAV9/OkJhNCzN/vjSddnIl7yoUJkzBE1FRCCMhku6tjVL72WSxEjSTidQymnLg/EpEPhBAQSXcz/FRutEHRELnjDKbUTpXyHEyhQHAGU5hEJCJqJiElhJuBbK25NwwFhuGyrK5dynE/z5BgEoaImk4k3K0m0IUMB7IpEISQ7gdTCukGRUPkjtuNSnV+jDOyKRCElBAxt7MCOZhCweB+JVeGgylERItUTwKcbS8FgTAiU/t61kTZUC72TyT/MAlDRE0nDBMi3uriCA1dGG9UOESuuC1JpgoZ6JpruhI1jjCjEDEXD6RaQbOkHgUEB1MorIQZdbc/nFLQTCISES2KMKOA4WJ/OGVDcyCbAoL93qWJSRgi8oV0ufGdyo9zIJsCQURiEJF47QdoxdIiFBiitdvV+1VuhB16CgQRiQGmy8GUcqFxARG5IF2uArcLXA1DRLQYQggYCTcTPwFV4DMbBYOMJYB59qmdi7aq3M8zBJiEISJfiGgCcDOQrWxoDmRTQLgt66TyaQ6mUCCIWAowXczItqvQJba95D9nMMXlSkTOCqSAELEkII3aD7Cr0NVS4wIiIloGRDzpbj9PqwxVLTcwIqLaCCFguFwNYxe5ijbomIQhIt/Ili5X71e5MQ6mUCCIWNLd8na7Cl3hjGzynxAC0u1qmOxIg6IhcsftQLa2KpwVSIEghKirnCkREdVPCFnHvlycfETB4JQkEzW/X1eK3Es54JiEISLfiHgLYJi1H2CVOZBNgeAMprS7Okbl0w2KhsgdkWx3NyO7UmCNbAoEIYT7GtkcyKaAkPFWQLgcTLGqDYyIiGjpky5LkulygQPZFAhCSsh40tUxXA0TbEzCEJFvhBCQKXd7w+jcWIOiIXJHJlrdLW+vFKG5vJ0CQAgJkXK5EpGrYSggnBmtnBVI4eMMpridkc0kIhHRYghpOOV4XVAcyKaAcFuSTJXz0Ip7KQcVkzBE5CuRbHc3K7CcZ2kRCgQhpevSInaBq2EoGGRLJ1wNZBfTnJFNgSCkARl3O5jC0iIUDK5LkhVz0MpuUDRERMuDkXS3GkaVstCaA9nkP2FGINzspaw1VDnfuIBoUZiEISJfCWlAJDtcHaNyo40JhsgltyXJdDHLGdkUCMKIOElwF1SOq2EoGNyWFlGlHGcFUiAII+LsbVQzzSQiEdEiCTMKEYnVfoDWUCUOZFMwGC73NbKLOe6lHFBMwhCR72Sqw9X7dYEzsikYhGE6exu5oPLjjQmGyCXZ0u3q/To/xiQiBYIwIxBRl7MCWdaJAkImXK6GKWSYRCQiWqS62l6uhqEAEJEYhBGp/QBlQ5W5l3IQMQlDRL4TZtT9QDZnZFNAuF0NowppDmRTIIho3F2NbK2gssONC4jIBdeDKcUsyzpRIIhIDMKM1n6AVkwiEhEtkojGAcOs/QBlc28YCgQhxMSeiLWzCxmuhgkgJmGIKBBkqtPV+53VMNwbhvwno3F3dVoBqNxYg6Ihcke4XQ2TG4W2uRKR/CciMcDNrECtoQocyCb/CSHc7w1TSDOJSES0CM5AtstyplwNQwEhY0lAuBjCVzZL6gUQkzBEFAzRBOB2IDvL1TAUDDLlcjVMMcOSehQIIt4CuJmRDQ2VGWpYPES1EkK432iXm5xTQIhYCpBG7QcwiUhEtGgynnI3kK0V9+WiQBBCuN8bhknEwGEShogCQQgB2eJyNUwxA10tNygiotqJWMrdjGwANlfDUAA4ba/bvWHGuRKRAsH1QDY0VCHdsHiIalXfapgMk4hERIsghHRd1kkVstyXiwJBxlMARO0HaAVV5GqYIGEShogCQ8RbXc7IBvcnoEAQQsBwm0QsZTmQTYEgUh0uk4hcDUPBUNdAdjHHfbkoEGSiFZBuHsc1VJ5JRCKixZCJNkC4HcjmSkTyn5CG+71hikwiBgmTMEQUGEIIyNYeV8foUg66WmpQRES1E/EWroahUBJCQrb1uTpGF8a5EpECQcZbXK6GAcs6USAIISGTHa6OUcUMk4hERIsgpHQSMS6oYpYrESkQjESr+yRiKde4gMgVJmGIKFBEvAWIxFwdozJcDUP+E0LAaO1ydYyTRORANvlPJNvdr0TkahgKAGdvGJf7cpVy0Db35SL/Oath3CYRuRqGiGgxZKLV5d4wGqrAvWHIf0JKJxHjAlfDBAeTMEQUKM5qmF5Xx+hyHrpSbFBERLUTsZTrgWw7N9qgaIhqJ4RwvxqmmOZKRAoEEU8BhunqGDvP1TDkPyEEjFSHq2NUMcskIhHRIggp6yhnytUwFAwy3uI6iWgXmUQMAiZhiChwRCwJRBOujuFqGAoCZ28Yl6thygUoDmRTAIhEWx0rEQcbFA1R7epZDaPLeWiLA9nkPxFvAaTbJCJXwxARLYZMtLjfl4vlTCkAnNUw7vaGUcUck4gBwCQMEQVOXXvDVApQ5UKDIiKqnYglIdwOZGe5Gob8V99qmCxXIlIgiFjS/b5c+fHGBEPkQj2rYXQpB21VGhMQEdEy4OzL5bKcaTHLfbkoEGTC5WoYaNgsqec7JmGIKJBkLAkRTbo6RqUHobVuUEREtRFCQLpdDVMpQpXyDYqIqHYi3gpE4q6OscePs+0l3zkD2S5Xw1SKUBWuRCT/OSX1XCYRc2Nse4mIFkHGW1zvy8UJHBQEQkgYSXd7w6hSjqvAfcYkDBEFlmxztxoGVhm6MN6QWIjcENEEhNuB7OwwtOaGeeQvIQRk+wp3B1WK0NwomgJARBOAyYFsCp+6VsNUilyJSES0CPWVMy1wAgcFQj1JRCs/zn6vj5iEIaLAEtGEs9H5SQwMDePehx/DbXfei2cffxjlIsuSkb+cknq1rYbRWuPg4aPYs+dVjB491ODIiE5OxFJAjSsRc/kCXn3jLex98RkolmcgnzmDKR01vVcphQOHDmPPnlcwPnissYER1UDEkjUnETPZLPa8/gbeeOkFTuAgIloEEU/VvC/XeDqNPa/vxb5XX+JANvlOCAEjUdtqGNu28ea+/djz8ksopMcaHBnNx90OgERETSZbe2CX5y7TtOPZ5/HFP/pzPP38rhmvr1zRhz/787/AZz/72WaESDQnGU1ARRPzzlJ98LEd+Kuv/DOe2/0yxsadVQTxeAx33n47rt1+fTNDJZpBCAGjvQ/20IE5f5/OZPG///oreOCxJ/Ham/unHkI/dON78OPb72pipESziWgcwozOu1/GHfc+gL//56/i+V0vI51xNthNJZN46KEHcfEllzYzVKIZnNUwnbDTg3P+fmR0DP/rz/4aDz2+A2+8tX/q9c/83Kfwb9/5j2aFSUS0pEyWM7WzI3P+vn9gEH/4p3+Jx3Y8jbcOHJx6/Td+9Zfx5X/8p2aFSTQnGU/BLmYBZc/5+3//7vfxjW//B1586RXkC85k5c6ODry4axfWr1/fzFAJXAlDRAEnonGIeMucv/ul//oHsISJf//3f8f+/fsxPDyMp59+Gtdtvx4333wzvvnNbzY3WKITLLQa5hd+7b8gU6rid/7r7+LOO+/Ejh07sGbNWtz2/VubGCHR3EQsNe9KxG/cehu+/t3bcN273ouvfe1reOKJJ/ClL30JP7njbuTTo02OlGgmIQTkPGWdKpUKPvPLvwkLBn7vv/933H333dixYwda29rw0x/9oLmBEs1BRBMQZnTO3/3j1/8Nt/74drz3xg/gW9/6Fp544gl88YtfxHe//0NomzXeiYjqJWJJwJh7jvpff+WfcPu9D+KDH/kovv3tb2PHjh349V//dfzHrd+Dnmfgm6hZnFXgbXP+bmBwCF/4rf+Ktq4efOmP/gj3338/duzYgXQmg7t+9pMmR0oAkzBEFAKyrXfO18fSGdx4442oVCr47d/+bXzwgx/E/fffj+985zv49Kc/jS996UtQiiUayD8yMn8ScXB4BJ/4xCdw+eWXY3h4GJdffjmSySSUVYEqs6Qe+W++vWGGRkawcuVK/Oqv/ioMw0Bvby9OP/10AIA91s/yDOQ7GY1DRGfvy1Uql5HL5/HzP//zuPDCCzE2NobLL78csVgMdrUMVS37EC3R24QQkC1zT+AYHBrGhg0b8LnPfQ62bWPt2rU45ZRToJSCnWNpESKiek2uRJzL4PAINm/ejM985jMoFos45ZRTsH79+om2d7y5gRLNQcaSEMbscqYjo6PQWuOXf/mXceaZZ6JQKODyyy8HANjlAjRLSTcdkzBEFHjCjELM8UB62qYN+OM//mN87nOfQ2Z4AF2pGP7gD/4Ad999N2655RYcOHAA+/fvn+OMRM1jtHYDQsx6/fyzz8Lv/u7v4vrrr8df/MVfzPidnRnmQDb5TkQTEHM8kG47+yzs27cPZ599Nj772c/i9ddfn/qdruShi5lmhkk0p7kGU1pbWnDapo34lV/5Fbz73e/Gl7/85Rm/V7kxtr3kOxmNz7kScds5W7F7926cd955+MVf/EUcPPh2WRxdLkCV5y5/SkREJydjiTkncGw792w8/vjjuOCCC/CFL3wB/f39U7/T5TwncJDvhBAwWjpmvb5h3Tp0tLfjwx/+MD7wgQ/gO9/5zozfW/nx5gRIU5iEIaJQkC3dszbM++4//y2+/Cd/iFcevQv3ff9b+J//9TcAAKVSCZWKUwvekLMHv4maSRgm5ByDgXfd+i385Ntfxcc/+L7ZB9lVqEK6CdERLUy29wHSmPHax9//bjz2k+/g1n/+mzmPUekBaK5CJJ8JMwKZmFmeQQiBh2//IX7yf7+B971r+6xjtFWBLs29Dx1RMxktnbMmcNzy85/Egz+5FV//yl/PeYydG2ESkYhoEYyW2c9sv/0rn8e9P/oP/MNf/smcx9i5Uba95DsZiUHGkjNeS6WSePbhe/CT//g3XLTtvFnH6EoJap79a6kxmIQholAQUkK2zyxLtmpFH37pM5/CGaduQv/gED71S7+N888/HzfeeCO++c1vYtP6tVjbmZznjETNI1MdwAlLhLu7OvHe7ddgZe/c5fZUbpRLhMl3QpqQbX2zXr/sgvNwxUXb5j7IrkJlhxocGdHJyVTbrCRiX28P3nv9dejpmrvkk50fZ4138p0wTMhkx8zXhMA7LrsEl1xw/twH2RZUgSsRiYjqJYwIZHL2BI5r3nEFtp179twHWVWoUq4J0REtzEi1z5rAsX7tGrzn+mvR2to65zFWLs0kYhMxCUNEoSHirUA0Mev1weERvPuTt6Bia/z4xz/Gt7/9bfzgBz/Al77420AhDV0t+RAt0duEEDDaetwdpDXs7EhjAiJyQaQ6gcjs8gwL0dkRaIvlGchfQkgYqQ53B2kFledKRPKfTLbNu1H0fFRhnBM4iIgWQSZnT+A4GZVPcwIH+U5IA8YJq8BPSllQxWxjAqJZmIQhotAQQsBonzkje3h0DO/+1C0YzeTw4IMPYufOnfjCF76AL/ynT+JTH34/AMAeH2B2n3wnY0mImLuVWbqUgyoXGhQRUW2EEDA6Vrk8SkONHWfbS74TsSREJObqGFXKscY7+c6p8d7t7iCtYedGGxMQEdEyIIScsyzZgrSCzf01KABkosX1BA67kOUEjiZhEoaIQkVE4hATs1pHx8bxnk/9IoZG03jwwQfx2muv4dOf/jTOPHUTPv+fPgHLmvggqZag82P+BU00wWjtAfD2EuEDh49gcGTmapfB4REcOHxk6mc7PcT9Nch3IpaEmFYap1gs4eXX9s563649r6Ncdvbk0uU8217ynTOQPXMw5a39BzEyNvPeHBgcwqEjR6d+trMj0JptL/lLxhIzJnDk8nm8+vqbM96jtcaLL+9BtVp1fi4XoLi3ERFR3UQ0MWMCRzqTwetvvjXjPZZlY9fLe6bGHHQpD1Xm/hrkLyEEzGmrwLXWeO2NN5HNzlztcvjIUfQPDE6+C1aWexs1A5MwRBQ6srUHkAZ+6Xf/B44ODOGBBx7AgQMHcNNNN6FarWLP3jdx6Xs+hq1Xv3dqMFBlhqE5q5V8JsyIsz8MgD//+/8PZ1xyDb7349tnvOf7P7kDZ1xyDf7s7/7ReUFZsLPDTY6UaDbZvgIQEsOjY9h06fV478//0qz3vPMjn8HpV7wbubyzgkulB6CtSrNDJZpBmFHIhFML+w/++M+x5dKrccc99894z9e//V2cdsEV+MevfdN5wbZYlowCwUkiChw+egwbz7scN93yyzN+r5TCJdtvxDlXXo9KxWlv7ewIZ7USEdXJmcDh7B336t43sOHcS3DLr/+XGe/J5nK4+Lr34uLt74OamDBn50Y5eY58J6NxiIky/rf82m/jvCuuxc4Xds14z5/9zZex8ZyL8OPb7wIAaKvCvY2agEkYIgodIQ3Itl7c+cAj+MM//ENs3boV69evx44dO7Bz507s3LkTP/jBD7D/0BG88PKeiaM07PF+ZvfJd7KlAzBM/PjOe/Hxj38cO3fuxK233goAuPXWW7Fz507cdNNNuO2Oe6aO0cUsVJmzWslfwjAh2/rw6FM7MTI2jocffhg7d+7EVVddhfe85z3YuXMn7rzzThwfHMJTz73oHKQV1NhRtr3kO5lsB4TEbbffhZtvvhk7d+7E17/+dQDA7bffjp07d+J973sffnzH3VPHqGIWivvKkc+EEYFMtePBR59AJpud6utu27YNH/vYx7Bz505873vfw76Dh/DiS684B2k1sZqLbS8RUT2EGYFMtOK+hx6FEHKq7T3jjDPw2c9+Fjt37sQ3vvENvPLq69j71j7nIGWzJCQFgplqByBw2+134vd+7/ewc+dO/Omf/ikA4Nlnn8XOnTtxwQUX4Gd33Tt1jJ3PQNtVnyJeHtwViiMiCgiRaENvdxf+/d//HU8++eSs32cyGQBAd2fH2y9WS9C5UYhWl/W1iTwkhITR2oOerk7s2rULf/3Xfz3rPS+++CI2rl4x4zU7PQTRE4dwuVEkkZdESxd6enoBAF/5ylcQiURm/L5YdMowdHe9Xf5Jlwtse8l3QkoYLR3o6erEM888M2fbu2fPHlx47tYZr9mZUYiulRCCc9fIPzLZhu6eHgCY895Np51VW13T295KEbqUh0i0NCdIIqIlRibb0d3djXK5PGfbOzw8DCklOtre3gxdlwtQ5QKky71AibwkDBNGshU9XV144IEHcOjQoVnvOXz4MN5xyQXTXtGwsmMw23shhJj1flo8oTk9hohC6q6f/RRf+bv/F8XS7DJjQgi87/pr8Ntf+Oys3xm9GyAi8WaESDQnrTWee/Q+/Olf/Q3GxmeXu+nsaMfv/davYts5MwcDRbwFZseKWe8naiarkMUf/Y/fw+PPPD/n76+/6nL8t1/73MzOuxAw+k51vUE6kZe01njivjvxV3/3ZWROqI0NAD3d3fiD//pbOOvMM2a8LuMtMFq7mhUm0ZzKuTT+x+//dzz34u5ZvxNC4MZ3bcdv/tItJ/4CZtcaCJeb9BIRkSM3OoT/8f/8PnbveXXW76SQ+PiH3o/PfebTM38hJMyuVZw8R77SWuOOH34X//gvX0OxNHtl9/o1q/GH//13sW7N6hmvG8k2GMm2We+nxWMShohCzU4PQOfH3R1kxmD0ruesVvKVtiqwho8AcPcxbHSsgIxzViv5yx49Al1wuV9GNAGjdxNnVpGvtFWBNdbv+jijvQ8yygkc5B+tNez0IHTF3cbPIhKH0bGCbS8RUR2m2l6X+8uKaAJGWw/bXvKVqpRgZdzvL2t2rIA0Iyd/I7nCEUgiCjXZ2gsYLj8crDJUdqQxARHVSJhRyDpmVtuZIWhlNyAiotrJjlWAdDmzulKEzrHtJX8JM+rsD+OSnR3hZrvkKyEEjNZuwOUkIl0tQZVmr/wiIqKTe7vtdZdM0ZUidLnQoKiIaiOjcchYyvVxdnaU+8o1AJMwRBRqQkoYHStdH6dzo65nEhJ5TSbbIdzOrFYKdnqInSLylZAGZNfqk7/xBCo9CM2NzslnMtkGYUbdHaRs2PmxxgREVCNhmM5goEsqN8bNdomI6iQME0aq8+RvPIGdG4O2rQZERFQ7I9UOuCyNp+0qVJETOLzGJAwRhZ6IJSHq6RSN90Nrzmol/wghYLT1uZ9ZVc5Dl3INioqoNjLeWkfbq2GPHmUSkXzlzGp1vxJRl/JQZU7gIH/JeArC7YbPWsPODLPtJSKqk4in3O8rqxXsHFcUkL+ElDBb6hgvK2SgrEoDIlq+mIQhoiVBtvUAbme1WhWoOupjEnlJmBEYrT2uj7Mzw5xZRb6T7Svcl4SslqAyQ40JiKhGwoxCpjpcH2fnRlkSknxXX1myMlQx06CIiIiWtqkJHK7LkpWgS/kGRUVUGxmN17WvLMuSeYtJGCJaEoSosyxZfozLLMl3ItEKEU24O0gr2OMD7BSRr4Q0IDvXuD5OZ4eguJqLfCYTrfWVJcuMsO0lXwlpwGhzP4FD5cagWBKSiKguwjBhtNSxp2duDJorCshnRqrN9Z6e2rZg51iO1ytMwhDRkiGiCYg6OkVqvJ+dIvKVEAJGe199m+1mudE5+UvGUxCpOtre0SPQFvcoIP9MbbYLl7NaqyWoAlcUkL9kLAkRr2Oz3fQQV3MREdVJxJLuJ89Bw8oMQyuWQif/CCFhtrovS6bKBdhczeUJJmGIaEmRrd2AGXN3kFawR49xfxjylTDM+ma1FtJcUUC+k+0r3JeEVDbs0cNcUUC+EmYEsqXD9XGqkIaqcH8Y8pfR0uV6s11nNdcQ214iojq8XZbM5XCqbcHOciUt+UtGYpCJOsqS5ca4P4wHmIQhoiVFCAmj031ZMlhlqPSg9wERuSDiLe4328XErFZ2ishHQkoYdZQlQ6UIlR7wPiAiF2S8BSLicgIH4JQl495c5CMhjYnVXO7oSgmqkG5ARERES5/T9rpfBa4rRZZCJ98ZyXYIw11ZMgCwMqNczbVITMIQ0ZIjInFnRYxLupDmAyn5SggBo63X/cwqrWCND3A1F/lKxJIQLXW0vbkRtr3kq6myZC4324VWsDPDnNVKvnLKkrmf1ary41BlruYiIqqHjCXrmjyn8uNQ1XIDIiKqzdRqLreUBSs3xn7vIjAJQ0RLkmjpBuqY1arGB6C5YSn5yClL1uv+QKsCOzPsfUBELsj2PvclIQGosWPQfCAlHwnDhJFyXydbWxWo/Lj3ARG5UFdZMsApS8bVXEREdTFaOt1PngOcCRzcm4t8JM0oZKLV9XG6UmQp9EVgEoaIliQhBIzO1XV0irSzPww7ReQjmWiBqKdTVMxys2jylRASRtcauN3o3Nmb6zCXuJOvRDxVx2a7gCpmocqFBkREVBshZX0TOLSCnR7krFYiojoIacBoc78K3NmbiytpyV9Gsg3C7Z6eAOx8mqu56sQkDBEtWcKMQnbUsT+MXYUa72eniHxltPW43+gcEzOr2CkiH4loArJzlfsDq2Wo8WNse8k3U2XJ6qiTbWdHoK1qA6Iiqo2MxiFb6lzNlRttQEREREufjCYgk+2uj9PVMsvxkq+EEDBbu+pazWVlRzhxuQ5MwhDRkiYTrRD1lBcp5aDzYw2IiKg2QkiYHSvc71EADWu8n50i8pVMdUIkO1wfpwtptr3kKyElzLYeuF/NpWFlhrk3F/lKJtrq26OgmIUq5RsQERHR0ieTbRCRuOvjVCHDvbnIV8IwnUSMW0rByo5y8pxLTMIQ0ZIn23qBejpFmSFolhchHwkzCqO9z/2BtsXyIuQ72bmqzr25+qErfCAl/wgzCqPV/QQO2FXYfCAlHzmruXrqXM01DG1VGhAVEdHSJoRwypLVszdXdoR7c5GvZDQOI9nm+jhdLcNmKXRXmIQhoiVPCAGja3V9naLRo3wgJV/JeEt9S9zLBajsSAMiIqqNEBJG97r69uYaPsS2l3wl4y0Q8ZTr43S5wL25yFdCSpjtfahrNdf4AAcDiYjq4OwP0+P+QK1gpQdZxYB8JROtEPVMnitmYXMlbc2YhCGiZUEYEciOOvYo0Ar2yBE+kJKvZGt3nUvc07DzrDVM/hFmDLJrjfsDleUkYvhASj4yWjoBM+L6OFVIs7QT+cpZzVXnZtHpQZbVIyKqg4zE6tqbC7bl7OvJlbTkk6n9YeqZuJwbg6qUGhDV0sMkDBEtGzKegqzngdSuOiti+EBKPhFCwOhYAUj3H9sqO8zBQPKVTLRBtNTR9lplqJHDbHvJN0JM7A/jem8up7wIH0jJTzLRAhFvcX2ctiqw00McDCQiqoOMt9S1N5eulp3SZGx7ySdCGvXtDwPAyo5AWVWPI1p6mIQhomVFtHRDxNyXF0G1BDV2nJ0i8o0wTBjtK+o61k4PQFfLHkdEVDvZvgKI1vFAWs6z7SVfCSNS34oCAHZmCJoPpOQjo7ULMKOuj9OVIlRutAEREREtbUIIGC1dde3N5ZQ0ZRUD8o+MxGCkOtwfqDWszDCrGJwEkzBEtKwIIZzNouvpFJVyUJmhBkRFVBsZS0K21DE7RWtYY8ehbQ4Gkj+EEDC619a1xF0XxqGzww2Iiqg2MpaETLS6P1Br1nknXwkhYbb31rWaSxWz3HCXiKgOQk6spHW7NxcAVchAlXLeB0VUIxlPQUYT7g9UNqz0MKsYLIBJGCJadoQ0YHSurutYnR+Dyo97GxCRCzLVAVHHigIoG9ZYPwcDyTfCiEB2ra3rWJUZhCqMexsQkQsy1VHXhqXOHhtDfCAl3wgjAqOtt65jVW4UqlzwOCIioqXP2ZurvtJOdnaUJU3JN0IIGK2d9U1ctquwsqOsYjAPJmGIaFkS0YRTHqcOKj3A2SnkG2d/mL66OkWwKrDHB9gpIt/IeAtkW19dx6rRY9Bl7m9E/nAeSHvqW81lVWBnWOed/CNjSchke13H2ukhKJY0JSJyTcZTkHXszQWwpCn5SwiJSGt3XStpdaUEOz/Ofu8cmIQhomVLpjogUp11HavGjkFXOTuF/CGkAbNzFSDcf4zrStHp1LNTRD4RrT0QyY46jtSwhw9zfyPyjTAMmG29qKe8iK4UuZKWfCVTHXVtFg1oZ2852/I8JiKipU62dEJE4+4PZElT8pkwIzDr3BdRlfKcuDwHJmGIaFmTbb0Q9cxO0Rr2yFHusUG+EWYURufKuo7VxSwHA8k3zt5cqyFiKfcHaxv28EEOBpJvRCQKo62nrmNVMQu7mPU4IqLaCCFgtPXUWVZPwRofgFYsq0dE5MbUSloj4v5gljQln8loHEZLfROX7Xwaqlz0OKJwYxKGiJY1IQRkxyogUsfsFGXBHjnCwUDyjYwmYLTXWdopNwrFDXfJJ0IIyO51gFnHYKBddRIxnBlIPpGxBGSdD6QqNwZVYlk98ocQ0uk31FPS1K46K2I4GEhE5IqQEmZ7b/0lTdPDrGJAvjHiKchEa13HWtkR7m80DZMwRLTsCSlhdK2pb3aKVXESMRwMJJ/IRGvdg4F2ZgiqyEQM+UNIA0bPekDWMRhYLTERQ74yEq11P5Da2RFudk6+EdKA2b6ivpKm1TLs8UEmYoiIXBKG6SRi6tljo1qCnWEihvxjJNsgo4m6jrUyI9xbbgKTMEREcDpFRteauh5IYZVhjxzmYCD5RqY6IeJ1Dgamh6BYHod8Isyok4ip44EUlSLs4UMsj0O+kakOiDofSO3MMEs0kG+EGal7Ja2ulmCnBzkYSETkkjCjTmmyOjj7ejIRQ/5wyup1QZjROo7WsDLDTMSASRgioikiEoPsWlPfwdXyxIoYDgZS8wkhYLT31j8YmB7kxnnkGxFNQHatq+/gSgFq5BBnZZMvnD02uut8IJ1YjVhhIob8IaPxuvc30hUmYoiI6rGYkqa6UoSdHWHbS74QQsBs666vioGeSMRYFe8DCxEmYYiIppGxJGRHfZudo1qCPcpEDPlDCAGjY0V9ZfUA2OMD3KeAfCMTrXW3vbqchxo+zEQM+cLZY6O+Ou8AYKeHWSubfCPjLZCpjrqOdWZlD3EwkIjIpcWUNNXlAuzsKNte8oWQBiLt3fVVkNEaVnoYyqp6H1hIMAlDRHQCmWyHaOmu7+BKEWr0KAcDyRdCGjA7V9U/GDjez30KyDeypRuipauuY3U5BzVyhG0v+cLZY6OvvrJ60E5ZSJZoIJ/IZDtEvKWuY3W5wPI4RER1WExJU13OQ+XG2PaSL4QRcVbE1EMrWOkh6GWaiGEShohoDrK1GyLRVtexulKAGj3GwUDyhTAjMDpXAqhnMBCwx/q5TwH5RravrHt/I13KTiTB+UBKzSfMCIy23jqP1k5ZSCZiyAdOnfduiEi8ruN1Oc/yOERELi22pKkq5aDyTMSQP2QkBqO1vslz0ArVzBC0vfwSMULzXywtYdqqQI32Q40egz1yFDqfAewqoBVgRJw9QDpXQnavhuxaDZFqh6hrFiMtRVprZ2Z1pb6VASLeAtm5uq57SmsNnRuDGj0GNXIc9lg/UC0DynKWfhoRiJYOGN1rnPu3cwVEnWWoaGlSpTzs8f76DhYCRucqyHpnZ1XLUCNHYQ8fhT10GLow2fZqwDCdPUC6V8PoWQvZsxYi2ca2l6ZopWAPHwDq3CtDJNohu9Ysru0dOw41ehwqPQRYFWjbhpBvt72ycxVk1yrI9l4Io466yLRkqZIzIF0XIWC2r4CI1DcgoyslqNHjsEeOQg0fhS5mAdt6u+2NJSC7VkP2TPQd6iyFQkuTVgrW+HGgztmpMt7iTGJaTNubHoQeH4TKjjizZJUNSAPCMCFSHZAdfZAdKyBauyDqXPVL5DVdKUGND0KND0CNDwDlArRtAdBOHyGSgOx07l3ZsQIilvQ7ZAoQrWxY4wPO53UdZKLVWVVTT9urFHRmGPbIMWfcIT3kfAYoy6msYEQg23sgu1bD6F4N0d7LtpdmsAtZ2IV0fQdLA5FFPEvpUsHp8072e0u5t/8dGaYzHtezBrJ7DYzuNRBx/9teJmFoydHKhn34NVTffA56fNB5UQhAAxP/M5OQTlIGAKJxmOu2wDz9IshUe7NCpgDTSsEePVL/YKDLRIzKjqK691nYR/c6SRdg5j068+yTUQJCQHauhHn6RTDWnA5RT41OWnJUMQs7PVjfwULA6FwNGa1tZqy2LVgHXkL19Weh09Pb3nm6GdPv61gS5qZzETnzEshkfSvQaGnRyoY9dACo1rdXhkh2uGt7M8Oovvkc1PF9TsIQWOD+nd72SsiulTBPvQByxSYmEwkAoIo52LnR+g4WEmZHX80zY7VVhXXgZVhvPgednbhmrW1vPAVz4zmInH4hRDxVX7y0pGhlwxrrf7sddEkmWiFbuly1vdb+3VDDh98eOFmw7Z14XUiIzpUwN54D2V1f0p1oMbRVgX3kNdiH9jiTjYCTtL3TfhdPwVy7Gcb6rRA19rNpadO25SRilF3X8TLZBsPF/l72yDFU9z4D1X/ASbgA89+/01+XBmTvekTOvBiyZx3bXgIAWPk0VDFb38EuEzG6UoL11guw3noBOj+R/Jl3vGzm70SyHeZp22Ceus23tpdJGFoytFWBtf8lVPc+A5TymNFRd2MiYWOsPQORMy+F7OjzOlQKGa1s2CNH6h8MjLdCdq5asJNijxxD9fWnoY6/tXAHfuErAdAQyTaYZ14Kc8NWztAmqGIGdnqovoOFnFgRM38nRVdKqL75PKqvPQUsZj+ZiX8fxsZzEN1yOWR7vWV9aKnQtuWsiKmzRNPJEjHOasejsN7YCTV0aPFtb6rDSYSvPZOzBAl2MQuVG6vv4BoSMbpchPXWC6jufbbufyPOtQQAAXPTOTDPuBiy3tIStGQ4g4H9i5uVvUAiZqrt3b8beux4/W3vxHEi1QHzlPOdRLjkJCRqLF0uwDr4CuyDL9edrHQIQEoY67bA3HgOBFcmLnteJGJkcv7KLlprqP59qL72FNSoB21vxwpENl8KY/VpnAC6zGmtYRcyDU3EqEIW1t5nYb35/CLbXgBGBOZpFzj93mRz214mYWhJsI6+gcpzdy/uIfREEx8uxrrNiG57V92lIWhpcBIxh+sfDIylnJJ3J3RQdLmI8s67oPr3LWIAcB6xBGIXvx/Gig3enZNCSRUysDP1JmIEjI6VkHOUTrAOvIzys3cAllNywRMTs1WMU85H7MJ3Q5gss7ecadtyVsRYdba9ibaJ0mQntL2lPCrP3wM1fMT7tjeeQvTC98LoXu3dOSmU7EIGKj9e38FCwGjvg4zEZrystYa9fzcqLz4A2Da8a3udfwfm6Rcicu41TCQuc9q2nBUxqr5EjIi3OPvMnDAYqIs5VHY/NLFits4Jc/NdM9GKyHnXQbb1eHZOoklaa9gHX4b1+tMTfQYv217AOOU8mKddxETiMqftKqzxwfoTMfOUJlO5MZSf+pnT9nrV751MxrR2IXbZB9n2LnNaa9j5NFQpV98JpIFIW8+sZ3+tNaxXn0T15UcnX1hkpBMm/o1Ezr4K5pYrmraqi0kYCjVtW6i+9Cist55v3EWEgEi0IXb5h7gqZpnTyoY9fAiwKnUdL6JJZzBwonNtDx9F+emfOqsHGtIUOw+35ubLEDnrCs5QWebsfBoqO1zn0QJGxwrIiXI12qqi/Nw9sPe96Fl8c11TtHUh/o6bINvZqV/OtF2dSMTU2fbGWyC71021gfbQIVR23u0kdhrW9gLmlsthnnYhSzUsc3Y+DVVvrWwIGO29U6sRdbWMynP3wD78mncBznXVjj7ELv8wZEtHQ69Dwabt6kQipr7BQBFLwmjrnWoD7cFDqL70sJPYaUTbO3Ed88zLYKzbwraXPKMrJVRfethZNdtAoqMP0fOvh4i3NPQ6FGzaqjorYuYrr3QSIp6CMW01onX4NWfCsrIb1/YKiei262FsOJtt7zLmJGLGoUr5+k4gJMz2HsiJleC6lEf5yZ9ADR70MMrZZN8GxC7/UFNK8zIJQ6GlcuMoP/UT6HrL7LgxUaohct51ME85jx8sy5i2LWdFTJ2DgYjEIbvWwH7zOVRffnzyrJ7FNx/ZvQbRSz8AmWCnfjmz8+NQ9W4YDcBoXwFUSig9/n3ozCgafu9OduovuRGRTec29loUaNqqwh7aX/fycxFLQXSugf3mTlh7n4XXM7DnI3vXI3rBu7gJ7zJn58ehJvcMqIPR1gsUMyjv+LGz90CjH9+EAKSJ6CXvg7n2zMZeiwLNGQxcRCImmoBs7YL95vNO+aYmkb0bEDn7KogTVpIRuaXGB1B54T6gXERT+r1GBJHzroPRu76x16JA01bFWRFTbyImloRMtqG6+2HY+3d7HN38jHVbEL3ghpr3taOlR2sNOzcGVW+ZciFgtvVAj/aj/ORtQKXUnH5vNI7Y5R9peBUZJmEolFRmBKWH/6OBs1jnZ555KaJnX9XUa1KwOPsUHKprMNBZyr7H2fy5mYQAYinEr/05bny+zNm5Mag6N4xW2VFYLz7o1IlvctsbOe86RM+6oqnXpGDRVsVZEVNv23vodeiRo94HthAhIBKtiL3jExBxJmKWK601VH687lrZKj0Ee9fDzmBMs9veC25A5NRtTb0mBYu2Ks6KmDoGA7VWUAf3AOMDDYhsIQIi1Y7oJe9nIobqZg8fQfW5uyZyL01ue8+9Fsbq05t6TQoWXa3ASg/U9bmvbQv2nh3QYwNo7r0rIDpXIH7VJ1jOfxlbbCJGDR2G2v3IxJy5Jt2/E6Uho1d+FObaMxp2GdamodBR+XGUHr3VlwQMAFivP43qa083/boUHMIwYfSsAwx3e1X4loBxLg6U8yg/8l3oepeH0pJgtHRCpjpdH6fzaVgvPuRLAgYAqrseRHXvzqZfl4JDmFEYvRsAOf+mjXNxEjCvNT8B41wcuphFeccPoSul5l+fAkEIAZnqgKxj42WdHYW9+xFANT8BAwDV5++DdaB5KxgoeIQZhdm50tmzzQWtNdTBV3xIwACAhi6kUdl5F3S9q9dpWVNj/ag+f7e3+7+4UN39EOz+/U2/LgWHiERhtPdNlVqslVYK9qtP+pCAAQANPT7g9Hvt+vYUo/ATQjhjDtGE62PVyDGolx4BoJvb751o6ys7boPdwPE6JmEoVHS1jPLjPwQqRV8eRCdVX3kM1qFXfbs++U8YERjd6wCj9sFA1X/AnwTMpInBwNITP4Kus6QPLQ2ypRMy1VHz+3WlhOquR5wVCD62vZXn7oZ19A3frk/+E2YMRu9GwMWm4WrgIPTIscYFdTJaQ+fHUXn2dug6S/pQ+E0lYlzU+telAqzdj06UgvKx7d15F+wG1+OmYBNmFGbHCleJGH38LWB8sIFRnSwADZ0dRXX3w9B1lvSh5Unl0xN7aPhbNKa66wEoP/8Nke9kJOYkYlBbIkZrDfutF6BHj8O3foPWUMPHUHnubrDw0vIlhIDR2gUxsa9hLXRuDGr3w76ON0ArlJ/4IdR4Y7a9YBKGQkNrjfLTP4XOj/v7j3JCZeddsMf6/Q6DfCTMiURMDYOBKj0EOwgzSbWGHh9E5bl7/Y6EfCSEgGzpgky2n/S9WilYLz8OVAqBaHvLT/wQqhl7gVFgiUjtiRg1PgR17K3GB3UyWkONHEP15Uf9joR85LS9nTVt/KmVDevlx3xb+T0zGKD8xG1Q+XF/4yBfiUgMRseKmmZlq9F+6EAk7jTU8GFYbz7vdyAUEtqqOiXI7Cr8TH47wWhnILtU594KtCQ4iZhe1JKIUcffchLgvtOwD78Ga+8zfgdCPhJCwGzthoicPBGjq2XYux6qex8kTykbpUdvhS4XPT81kzAUGvahPVADB/1/EJ2iUdl5N2dWLXPCjMLoWb9geRytbFj7XkKtM1gaT8M+/Crsfh9X5ZDvhBCQrd0nTcSo/v3Q6aHgtL1KofzMHZxZtcyJSBxGz8YFEzHatmAffr15QdXAPvASbD9X5ZDvnBINXSdNxOijbwK5sYC0vRqwq6g8f5/fgZDPZCQGo2Ph0mTaqkAfDVjbu38XVGbE7zAoBKy3nocuZILT9lplVF9/0u9AyGcyGj9pIkaXC1D7djUvqBpUX3kCKjvmdxjkIyEEzLaTJ2LU/t1AORiTPqE1UMqh8tIjnp+aSRgKBV0to7L7Ib/DmElr6MwwrH27/Y6EfDaViJlnjxg9fBwo5eH7bKoZBCov3M9arcvcVCJmnj1itG3BfuvF5gZ1MlpBDR+BffAVvyMhn4loHEbvpnnLQuqxQaAasL0AhEB114PQihM4lrPJRMx8e8ToagX2/oD1L7WG6t8P+9ibfkdCPpORGMwFEjF66ChgB6z0ohCovvoEJ3DQglRuHPaBALa9x9+CGj3udyTkMxmNw+iYf48YdejVYKwimEGj8uL9bHuXuclEzLx7xBSy0IdfC0YCZtJEaT816m31IyZhKBSqe3YAlbLfYcyp+vKj0GUuEV7uhBlxEjFmdOYvZATW/mDNSHFo6EIG1hvc6Hy5m6zXKlu7Z/5CGlCHXpsoxxA85efvha4G83OBmscpTbYJME5oe40o7MOvIVjJbzgTOHKjsA++5Hck5LOpPWKSbTN/IQ1nNmDgBlIATuCgSSIShdm5avZqRK2hB/YhkG1vegjqOJOINDetNap7Hvc7jHkIVF95jBM4aCIJPsf+XOUi1PG3gjWIDThJxMGDsANRIo38NDXmEEvO/IU0Yb/2VE2lTptOCJR3eru3EZMwFHgqMzxRxzdgHyiT7CoqLz/mdxQUAMIwnUTMxFJLkWhzVkoFrTM0TfXVJ6EKGb/DoAAwUh2QbT3OD0JCKA37wEvBvX/LRba9BGBiNWLfRsCMOS+kOgO/SrW6ZwcncJDzQJrqgEx1TLwgISolqGNvBrTtnZjA8frTfgdCASDMiJOImViNKBJtE6VwAjiQMqH6+tPQVsBWSFIgqIED0KPHgtv25sdhH+IqcHL6vWbHiqkkuEi0wXrlcQS37RWovng/dEAn9lHzOCvBOyHjLc4Lhgkx3g891h/Mtldr6LHjsPd7N3mOSRgKvOobzwX38wRwlqkdfJmDKQQAENKA0b0WoqUbMGPOjLsgfqBM0gpW0MpNkW+MZDuM9j4YnatgvflcMGekTNGw9j4LHbRyU+QLYURg9G6EbOuFECb0yNFgt722BYuDKTTBSLbBaOmC2dEHa+/OgLe9QHXvs9AqYOWmyBfCMGF2rIRMdUBUStDZEQR24hwAVMssqUdzsva96HcIJ2Xt38WyTgRgIgnescKZxJEZhs6NIbhtr4Yu5mAffcPvQCgAnAlI7TCS7TBbu2G9FvyJPdXXnvSs7WUShgJNW1XYh18N9kAKAGgN6/BrfkdBASGkAaOtB/ahPYEfSIHWsA6+DB3IsifkB5lohYCGfWRv8NteZcM6/KrfUVBACMOEbOuDfeS14Le90LAP7uFgCk2RiRboahlq8GDw295qhaVFaIowTBipDtjH3wxB2wvYR/f6HQIFjMqNQ2eG/A7j5MoFqNFjfkdBASEME0ayDdbBl0PQ9gpYB1iKlxxCCBjJVujMMHR21O9wTkpnR6HGvNkbhkkYCjT7+JtASOpO80OFptMTK6QCP5ACOB36wUN+R0EBYh3cE9D9CE4gBKx9QdxzifyilR2OyRsAdCENPT7gdxgUIPbBPQj28u8JQsDysDQDhZ+2qlD9+8LR9mZHoHLjfodBAWIf24uwtL1MItJ0Oqh7wcyioYYOsww6zWDvf2n2/kZBJKRnJclC8Lel5cw6EIasvkOnh6DSIZhBQ02hho9AF3N+h1EbIWEdZFkcelsYSjIAcDZ7HDoElR/3OxIKCDV4EKiW/Q6jNkJwJRdN0VrD2r8bwS0nMo3WUP37WIqXpqjBg0BYStQJAfs4y+KQQ2s9kdgIUdtrcW8NclhHXgtBAmaSgH2I/V5yaNt2VnGFYeKnVk71GHvx/RwmYSiwdCkfjpIMk4RgSTKaYh9+NTQJRGgF++hebpZHAACVG4MaPe53GLUTwlm5QwTAOvJ6iNpeDfvI6ywHSQCcyTxOTfeQ0Nr590aEieoFYVhJADhtL/cmoAl6rB8IU0JZ2c4YCREAO1QTKTUnftIUNbAvPBPnAKBadmJeJCZhKLDU+KDfIbijNWu00hQ76JtCn0jZUJkRv6OgAAhVAmaCGmHbSw41ejxcba9Vgc6zNAOFsO0VEmrUm/rYFG5aa6j0IEKxkmBSpQhdLvodBQWAU8kiJAlEwGl70yEbJ6GG0EqF7l7QuVFoq+J3GBQA9ujxcJQimySkE/MihehvTMtN6DpEAMuREQCnQ6SzIZrNOkHz/iVMJMDD1CHSGmosZIOX1BDaqgClkJSBnEZnhv0OgQJApYdC1vYqqDHuaUQAKkUghOWRVC74mwFT46nsaLiGHLSCynLiHMFZPavCt5qaEz8JANTYYLgmzmkNNb748TLTg1CIGkJlhp0Okcf/Lv/l7h34258+jP6xLLasW4G/uPmDuPKsU7w5eaUEXcpDxFPenI9CSedGG1LbsqH3rpBQaQ4EEpxBtUbcv/c9jb+7/XH0j+ewZU0f/vwX3osrN2/05Nw6n4a2qhBmxJPzUTjpBj3U/fOdj+Fvb3sQ/WMZbFm/En/5uY/iyq2nenNyIaAywzBWn+bN+Si01PhgY9ree57E3/70EfSPZ7Fl7Qr8xc0fwJVbNnlybp0dgdYKIkzJI/KcyjYmmfHPP3sIf/P9e9A/Oo6zNqzGX/zKp/COc87w6OwCOjsKdK/x6HwUVjoz5PlA4D/f/jD+5gf3on807dy7v/wJvOPs0z07v86MQGsNEZbyq9QQqkGTeBo65gBAp4eBrlWenY/CSY8PwOvB3n+59yn87c8em+jz9uEvfuFGz/q8gHbKVy4Se8wUWGqs3/MO0Q+eeBFf/OZP8cWPbseOv/zPuGLLJnzkT76Gw0PerVrgQDY14h5o+L2rFdQ4Z7TSRNvrsR88+RJ+79/uwn/78DvxxJ/8Kq7YvAEf/fN/x+Hhcc+uwZWI1IiZdT947Hl88Wu34Ys3vQtP/s1/w5VnnYoP/9E/4fCQR4OOunEP0RQeWuuGlOH9wY5d+OI3f4YvfvQ67Pjz38IVWzbiI3/ydRwe9qjvoOxw7WNDDaGzo/B6KcH3H34G/+2fvovf+/T78NQ//iGuOPsMfPh//B0ODXrUzgtnDzxa3rRS0Pm0p+f8/iPP4r/98/fwe596H576yv/AFVtPw4f/55dxaNDDZKVVcVag0bLWiBW0DR9zEJLPbARdrUAXvC3H/IMdu/HFb92BL37kGuz4s9/AFZs34iN/9i1Pxxt0IQNdXVw5PSZhKJC01g15qPvyzx7FZ6+7GDdffyk2r12Bv7zlQ1jb3YF/vfdJj64guDyYnHvA4w5R4+9dDgQSoK0qdDHr+Xm/cucO/MI1F+Dmay/C5jV9+ItfeB/WdLfhq/c/49k12KEnlRv1vO39+588jM9efxluedfl2LxuJf7y8x/F2p5O/OtdT3h0Bc1yZORsCt2AGulfvv0xp++w/RKn73DzB7G2px3/eu9Tnl2DZUVI58c9L+f09z+6Dze/+x245b1XY/P61firX/0U1vZ24l9vf9ibC2gNzWe2ZU8Xs56vQPz72+7Hze+6Ere85x3YvH4V/upXPuncu3c84ul1mEQknRnxfNJyw8cctILK8JltuWvEmOmX73gcn732Qtx83cXYvKYPf/nZ92Ntdzv+9b6nPb3OYmNnEoaCSdmef6BUqhZe2HcU28+buYz9uvPOwNOvH/TmIkI05CGaQmaR2fETNeXeBQDb8u5cFE4NaL8qloUX9h/D9nNnllvafs5peGrvYY+uwraXMHEPeNd3qFQtvPDWYWw//8wZr28//0w89dp+z66jQ7iXAnmrEZvUVqzJvsPMEjjXnetx34H377Kn7aqnz22VqoUX3jiI7RdunfH69gu34qk9b3l2Hba95HX75dy7h7D9grNmvL79grM8vXcBsO0l6GoZnvd7mzDmsNiVBLQEeD1eNjXecGKf9zQ8vdfDPi+w6DEHJmEomJTt+SlHsnnYSqGvvXXG6yvaWzAw7t3Mb82BbFLe3gPNuncb8e+OwqUR7ddItjBx/7bMeL2vvQWDaY/uXwHA5v277Hl8DwxnnLZ3RUfbjNf7OloxMMa2lzzUiLY3M3fb63nfgf1e8rztzTn37glt74qONgyMeVg6im0vefzMNnXvdp5477ZiYMzb0ju8fym0Yw7sN5DX9+68fd5WDIznPL3WYu9fJmEomDxeBTPdifvXaXi+gp6Wuwbdvg2/dxv4747CooFt76wreXsH6wbGTmGhG3ILz2p79ezXFof37rLX0H7vzJtVz/HaYmj2HahBbdise1drCD61UQg0vt8APrdRw+6Bxo+X8d5d9hp2757Y59WBa3uZhKFgMgzPT9ndmoIh5aws/mA6h76O1nmOck9I72OnkPH4/m3WvQveu8uekKbn5+xuTTr3b3rmLJShdH7WbJW6aba9BKcN87Cj3dPmtL39J8xeHUpn2faSt4wGtL1tyfn7Dl61vQBEA2KnkPG479DT1uLcuyesehlMZ2etMFgUtr3k8T0wde+Ozuw3DKazs1Z2LVoDxksoZDz+/G3emAP7Dcue1/duk/q8ABYdO5MwFEwNaJijERPbTlmDB3e/MeP1h3bvxaVnbvDoKrohD9IUMkbE09M1594FO0QEmN7euwAQNU1s27QaD740sxb2gy+/hcvOWOfRVdj2EibuAe+yMNGIiW2nrsODu16f8fqDL76OyzZv8uw6bHvJ634DMNH2ztl3eMPbvgPbXjIMeN72nr4BDz6/Z8brDz6/B5eddapn1+HkDfK6/XLu3fV48IVXZ7z+4POvenrvAmDfgUI75iBM3rvLntdt79R4w5szXn/opTdx6Rke9nmBRcfOu58CSQgBkWyDLnhbO/U3P3A1Pv/l72LbKWtx6Zkb8PX7nsbh4XF8/l2Xe3MBrSFaOr05F4WWbOkAtPL0nA2/dwGI1g7PzkXhJCIxIBoHKiVPz/sb77sCX/jHH+KCU1bjktPX4RsP7sSR4TQ+t/0Sz64h27o9OxeFk0x1wPZ4eftvfegafO5vv40LTluPS8/ciK/fswOHh8fw+fdc6dk1ZCv7DcudSKScGdke1/j/zfdfhc9/+Van73DGenz9/mecvsMNl3l2Dcl+77Ink21QAp5WmPmtj96Az/3l13DBGRtx6ZZT8LU7H8XhwVF8/sZrPLqCgGjp8OhcFFYi4eHs/gm/9ZHr8bm/+gYuOH2Dc+/e9RgOD43i8++72tPriFS7p+ej8JGtnVAD0tNxh4aPOQgJ0cpntuVOtnR5fs7fvPEd+Pw/fB/bTlkz0ed9FoeH0/j89d6NNwCAbF1c7EzCUGCJjhXQhSy87NF//MrzMZot4M9+cD/6xzI4a/1K/Oj/+RzW93r3ACnbez07F4WTaMA90PB7V0gYHSu8OReFmuxYATV40NNzfvzyczCaK+DPfvQw+sezOGvtCvzwi5/B+t4Oz64h2/s8OxeFk2jrgdd1pj9+1QUYyebxp7feg/7RNM7asAq3/eEvY32fRw8PQkK2sd+w3AkhIdp6oMcHPD3vx684z+k7/PABp++wbiV+9Pu3eNjvFRBMgC97oqXL8/ruN11zCUazefzJd36G/tE0tm5YjR//8W9jwwqP7jex+IEUCj9hmECiFSh6t+n4Te+82Ll3/+8dzr27cTV+/Ee/4d29CwDSaEgCicJFtvd6PvGz4WMOWnG8jCDiSSCaACpFz8758SvOdcYbfvigM96wbgV+9N8/6+lYL2IJiFhyUacQmrspUkBV9+xA9bUnw7XpnGEi8aHf9nTDUwofbVVR/Mnf+R2Ga5HztyNy6ja/wyCflZ+/D9beZz3v1DdULIXUR/+L31GQz3S5gNI9X/U7DNci226AuW6L32GQz8o774Z94OVQtb2ipROJ937B7zDIZ6qQQeXx7/sdhmuR86+H0edxmRIKncoL90ENHECYNgsXbT2IXfFRv8Mgn6nxAZQe+He/w3AtdvUnYPSu9zsM8lnp4f+YaHvDQ67YiPg1n17cOTyKhchzor03XAkYALKtlwkYgjAjoVwizlkpBACyoy9Ug4AAIDu5iovgzEyKxv0OwzXZ1uN3CBQAjZjR2liCbS8BmCjpFML9VQRXwhAmytmG6fFdSPYbCAAmynqF6eZ1cAU4AU71DYgQpSSE9KTfG6K/MS03siNkjbNH/yhpaZCdK4GQJeTYoSdg4t4NEyFhdIUsZmoYpyxdiNpeIbmXHAGYSICHiZh4gKZlTwjhlCQLEyMCEW/xOwoKANHaHa6Jn1pNlF+l5U4YZvj6kPEURCzhdxQUALJzRbgmH2nlSb+XSRgKLJnqaMjeGg2jFYy1Z/gdBQWEseaMEHXoBWTfeogQziAn78mOvnCt5NIKxrqz/I6CAsJYczpCU1JECMiVpzg16WnZkz1rgDANTGjNfi9NMVad4ncItRMCxspNrF5AAADZvQYI1eewgLFio99BUECY6zaHZ+KnEE68RACMVaeGaxWtNJyYF3saD0Ihahhz4zl+h1C7eAtkzzq/o6CAMFadCphRv8OokYa5IUT/1qihhBAwTzk/NB160dbDVYg0xVh1Wng69FrDXM+9YMghhHT6vaFoewVk1yrIsM3ApYYxVp6K0KxC1BrG6tP9joICQhim03cIS9vbs2bRG0PT0mGsPys8Ez+1hrnhbL+joIAQ0bgzcTkMJcmEhLHmDE8mLYfgb0vLWWgy+0LA3Hg2Z1TRFGGYzuBaGO4Jw4Sx+jS/o6AAMTeeE5IOvUDklPPY9tIUEYlBrjo1HG1vJAbJjUlpGnPD1pC0vRrmJk7eoLeJWMJZzRWGREw8BcFSejRNeCoYaBhrzvQ7CAoQ2dIB2bUaYWh7RVs396ClGcxN54SjJJlWnvV7mYShQBOxJOTKU4I/mKI1zPVb/Y6CAsbYcHbwO/RCwFi7GcKM+B0JBYhs6YDsXRf8thcaxkbOqKKZzHVbwtH2rtsCEZZVO9QUsr03HKV4hYSxliVFaCZj9RkIfjlIAXPNGZy8QTOIjhUQiRDsEWSYkH0b/I6CAsapHhP0tjdkVW6oKeSKTUA0BKV4owknVg8wCUOBFzn1gmAPpggB2bsespUlGWgm2bkSor0v2APZWiNy6vl+R0EBFDnzksC3vca6zZCJVr8joYCRvesgku0I9KxADZZkoDlFTr/I7xAWJgSMDVu5jxzNIvvWA0EvkySEs+qBaBohBIzAl2aemLwRqv1rqBmMtWcCkYB/JhsRmOu5hyfNJKRE5IyA93sBRE6/EEJ6kz5hEoYCz1ixIfClRaLnb/c7BAogIQSi264P7kC2EDA2ngPZudLvSCiAjLWbnQGVoNZpFRLRbTf4HQUFkBASkXOvRXBnBTr7LsnWLr8DoQAyNp7tlEoKar/XMBE952q/o6AAEtJAZPNlfoexIPOU8yHiIVjxQE1nrN8a7AkckSjMUy/0OwoKIBGJInruO/0OY0GRre/gXkY0J/PMS4FEC4LZ9gog0QrTw75NQEdWiGaKnnddQB9GBczTL4Js6/Y7EAooo3s1jA1bg3n/GhFEz77K7ygooIQQiF30XgR1IDty9lWQqXa/w6CAMvrWQ64M6ASOaAzmmZf4HQUFlBAC0QvfFdgJHJGzr4aIp/wOgwJK9m2E6FoVzLY3noLBcjg0DyElzK3vQGD7vZsvh4hE/Q6DAsrYENAJHEJAtHbBPHWb35FQQAkzgugF70Yw216N6AXv8rR0P5MwFAoy1R7MmVWxBCKbL/c7Cgq46NlXAwFcOh45+yrOSKEFyfZemGdcgmDNTBEQyYB+JlCgRM6+OpAruSJbr4aIxPwOgwLM6FoFY9O5wRpMEQKirZsDKbQgIQQiW64I5FhKZPMVLOVECzK61zh1/4PW9rb3Qa4+3e9IKMCEEIhecEPwJnBojei2Gzwr5URLk7HmdMgVGwPW9krIFRthrPG27eW/BAoN84xLIFIdgfqHGT1/O2ek0EmJeAqRc67xO4y3CQHRsQLmKef5HQmFQPScq6dtVipO+BMneb0RNKKXvI8DKXRSMunt8vFFEwKye41Tu5voJKLnXD1R4z0g/V4NRC98NwdS6KRkqsNJIgaGs3+n0bfe70AoBCKbLwdkkPqYApGtV0EEaAyEgsnoXAkjUBMlBIz1Z8HoXed3IBRwzirwdwPS8DuUt0mJ6IXv8rztZS+aQkMYJmJXfgwwIgjCA6l55qUwOZBCNTI3nRuMEghCANEEYld8BCKAM8QpeEQkhuilH3DuHdNE/PpfgLHmNExPvBhrTkf8+l8ATBONbp8j510Hc9Wp/3/2/jtMruM8E77vOql7ckYaDHKagJwTA0gQYKZEBYuSrOi1VvLa70qyXtned9f2t2uv7Ev7ydpP3ncdFFfBoqjACJAECJLIwAAYpAEwyMAMZoDBYHJ3n1TfHz0AASKwC9NnTvfg/l0XLwrd/ZzzoHVYXaeqTj2BnoOGD2PyvIHVoyH3G4QAovmwFjzGgRRKiYjkIrLi2YxZfGTOexh6+diw06AsYUyZB61sLDKh7RW5hTBnZna9BMocIicf5rxHEPq1O8CceT+3PqeUWbMegFZWGX7fQQiI4ork0zlEKdAKSmEtfSbsNK6xlj4DrSD9bS9H4CiraAUliCx7JvQfFW3MVJi1K0LNgbKLEALW3IehVVQhvE69ADQd0eUfhpbDoqSUOnvnK4CUiD7wCegV4xBZ/pGBiZjk48OR5c9CrxiH6AOfQJB7kOgTZ8Os5haQlLpk27saonhEiH0HAegmIkuegojkhJQDZSO9bAysxY+HnQaMqfNhZtTqWsp0QmgwZz8IkV8cbttrRGDOewTC4M4FlDq9rHKgPkzIeUyeB53bkJECoemILH0GIrcovLZXCCCSh8iyD0Po6aulQcOfUTkV5pyHwk4D5pyHYKR5G7KrOAlDWUevGIfI0qdD+lER0EZORGTxE1zJSsqEpiOy7EPQQilYKgBNQ2TFR6CVjBric1M2k3YcMtEPQMBp3A7peRC6jsjyjyCy4iOILH8WQtchPQ9O4zYENcmoV1Ujsuhxtr2kTOhG8oa0oGzo214hAH2g7Q9gNRUNf0ZVdXKLhpDoE2bCnL0qtPNT9hKGBWvBoxA5BeH0ew0T1sLHoOUWDvG5aTgwqqphTA9vS1N9fB2MKfNDOz9lLxHJQeS+j0NE88Pp91o5iN7/e1z0SXfFnL4IRu3y0M5v1K6AOX1RYMcXUmZa5Sai1Hitp5DY+TLg2kNWgEwfVwtr3sOc0adBkU4Cid2vwW85PjQnvLoF2ZKnuJUIKUvUr4d7bNfAn8S1J1+E/t6erdLzkNjyK3jNxxHEkzDGlPnJPVkzaZ9YyjrSjsGuXwf/0rmhOeHVlYCLHodWPHJozknDlnvmEOzd6wDpD1m/15i+CObM+7h9KQ2KTPTDbtgI2dk2RGcUyS2l5jwMraB0iM5Jw5V79jDcxq0D7W7Qba8AIGFMmQ998jwuPKJB8fu7kdj2u6FtewtKEVn6DLSCkiE6Jw1HUkq4R3fC2f/W1ReCPeFAW2vOehDG9EWBtr2chKGs5ne1I7HrVciui8GdRAhAaLDmPQJjfG1w56F7ipQSzv634J7YB0AG+sOijRiffIIgkhvYOWh48q60Ib7+X266PiMrPgKjasa1P7vnjiCx+VfpPbkQgG4gsvgpGOOq03tsumf5vg+nYSP8c40DrwTY9o6alNwKzYwEdg66t7htp+HUvw7Z14XArl0hAMNCZPET0Fl/i9LE9zy4hzfDvxD8AiRt9GSY1cshDC6ao/Rw207DbdwCxPsRbNsbgTnnYehlY4I5B91zfNeBvfs1+M3HAj+XPnEWrNkPcsEypY1z+hCchg1Aoj+48TIhgGhy+zy9vDKYc1yHy5ooK0kp4Z4/isTWF2BWL4ExfXHyjQBmLEV+CaIP/T4nYCht/P4eJDa/AK/1NKIPPpd8VDjdhAAgYNatRGTFRzgBQ8qklLB3v/a+Do+AXjntpv2p9TFToVemt/i5VjQCOY/+O07AUNp4PVfQv/7HcFrOwlr+LBBEfZaBhRvmzPthLXycEzCUFlJKOMd2Ib7pFzAXrIU+cWbyjbT2e5PH0kpHI/rI5zkBQ2nj916Bs+3XkP3dMOevBQJpF5Ntr1G7Embd/ZyAobSQvg+nqR7OzpdgzlkNbdSkgXfS3/aKktGIrPgoJ2AobbwrbYit+wGk68Fa+iHAsJD2baMHFs1Zi55AZN4jnIChtJCei8S+TYi98wIiDzwHbdRAnzSd/d6BY2mjJiNnzReHZAIG4JMwlIX8/u7kKta2UwAAa8VHoZePhd95Ec7RHfDOH03+B3W3l/ZArMgtgjljMfRxNRC6kca/Ad2rpJRwj++B3bARcBLQR09G9IFPQLo23NMH4RzdCcR7cfVR9Lsy8GOij6uFOW0htELWIKC745xsgL3jpeteuXErMul58FqaoI+Zeu3Pg9qS7GrbW1AGs3Y5jPG13H6M0kL6HhIHtyG++w3AdWBOnoW8h34P0knAPXMQ7vE9gB0b5FkEIAT08bUwJs+FllecjtSJ4HVeRGLHy/DbzwMAcp/+Y2j5xfAunYNzZAf81pPp6fcWVcCcsQT62OkQGtfp0eBJ34PbVA/36HbA96BPmAlrzsOQTgLeucNwTx9Mbis9WJoOfewMGOPrIFiDgNLE77wIe98bkJ3JHTeij/17wIzAv9wM9+Q+yI6W9LS9heXJfsOICdx+jNJCug4SDW/DPrAZkD6suuWILlwDmeiHc3xPst+bjrZXN2FMngNjynzWf6G0cS+eRXzLi/AH2t6Cz/wXQGjwL5yA07gVfnszILTk9rx3YyBWK6+EWb0M2ujJQ9r2cmSZsoaUPryT++Ac3gp4zrXXxcBKVq14BCKLn4RftzLZ4T+1H/C9gQ4OcMdBwev+IxZFI5KTL2OmcA9sSpvk1nmv3FCL4OrTKcKwYE6ZB2PSbHjnj8I5sgOy5/LAhz7oB+bqD4YEdAPG5LkwpsyDllMQzF+E7gnSjsPet/H9r8KsXvK+CZcm6JXTrk3MmNVL4TU3JT+u2PZqZZUwa5YPtL28CaX0cNtbEHvnN/Dam6+9JqIDba8ZgTllPoyJs+E1H4XbtHtgmyeotb2GCWPiHBiTZvOpQ0ob6bmwD74L5/AWwH/vWrx6jekVVdArquB3XYJzdCe8s4eTg4GpDApe3/aWj4VZvRTaiPFseylt/I4LyQHs7svXXhNW8p5NmBEYk+ZCHz8TXksT3FMNQLxv4EMfdP1et1DJsGCMr4NeVQ1hRYP5i9A9R7oO3CPb4J7Yc921KAAzAiEE9PKxyQWgXe1wT+1LToQDKba9731GK6uEMWkuRMkotr2UNm7rqeQA9vVt79V+byQX1kDRcffUATjHdqbe9l7/vpUDc9rCZL+XT3xTmkg7jnj9m3CO7MK133krem1Rpj5mCvQxU+C1N8M5sg3+tTGHFCZkru/3jpkMc8bSIXvy5aZU+CQMZQO/6xLsfW9CXmm96b3oo394y0EP6Trwr7TC72iB194C//J5wEnc+CEhIArLoZdXQSsbA610NERuITtClDbSc+Ec3jowiOLd8J4xfTEi81bfHCMlZF8X/I4W+Jeb4bU3Q3a333xwKwda+VjoZWOS12/xSD61RWmRqF8P99iu970qAMNA9IFPwGncdt0TL8knZMzqJYhv+nmyhtbCxyF7O+BdOpdcvX1T26tBKxkJrWIc9PJKaOVjoeUWDtHfju4F0rURr9+IxP7NN3XMo/MfQnT+QzfHSAnZ1wm/40Ky/3C5GbL3ys0Hj+RCKxsDvWR0st9QVMGntiitvItnEN/x8g0D2AAATUfe7/35Lfup0kkkr92BfoN/uRlwnRs/dLXtLR8LrawSetkYPjlAaSUdG07jFngn9930nll3P4wp826Oudrv7WyD7LoI/0orZH/3zQeP5EIrGQWteCS04hEQ+aV8aovSyrt4Bs6+N2++/qwc5Dz2pVvGSCcBv/Mi/M625LXbeRHw3Rs/pGkQhRXJ67dkJLSikdcWkhKlg0zEEN/9Opxj9Te9F13+DKxpt2p7fcjuy/Avt8DraIF/6Txkf9dNnxM5BdAqqqCVjkn2GwrL2fZSWjlnjyC+7eWb2l6toBT5H/m/bhkjE/3Ja/dyM/xL5+B3XAC897W9ugGtdDS0iiroZZXQysaEvmCOo3WU0aTnwj2yHe7x+tvPbpq3XvkkDPPaKkFzerKDD+knb0ilD+gGoJuccKHAeJfOIrHz1VtPoAC37XwLISDyi6HlFwPjagAkO0nw3OQ/mp68foXG65fSzrvSCrdp9y3ekYDrIv7mj3HjlnkSXnMTvOZjgBlBzmNfgpb73pNYUsrkBKTnDrS9JqAbvHYpMM7544i9+1v4PR23fP/qisCbXhcCIr8EWn7JHdteTrhQUKQdR2Lvm8mtQm5BRHJv23YKMwJ95AToIyfAxPvbXjnQ72XbS8HxWk/CadgIGeu59Qdu87TKDf3esdMBJGtxwHeT17CmA5rBQT8KjEzE4BzYBO/8kVu+f6cJE2FGro05AO9re4Fk26vpbHspEFJKuKcPIb7jVchY7y0/c/t+rwZRVAGtqALGpNnJ4/kD/V6f/V4Knt/fg/j2V+CeOXzL92937QLJPvHVp2OAgbb36j0bkLH9Xk7CUMbyLp1NrkTpu3k2/hozknKHXAgBCB2w+CNCwZJ2HHbDxtsOolylsgJKCC1ZTM+wBpse0W1JKWHvXneHx9Hl+/6dpE+ZB7/tFKKrPn3DBAww0PYOdIKIguTH+xDb9iqcpr13/JzKCii2vTQUpJTwzjUisWsdZPzWgyiA6rXLtpeGhoz3wdn/FryWpjt+7up2ZKkQmgZobHcpWFfbXufg24Adv+3nVLa7Y9tLQ8Xv7UR8+8twzx274+eUxhyutb1sfyk4Uvpwju1BfPfrd257Vfu9hpn8J4Pxl4EyjrRjcA6+k9zb+gOodOaJhoJ77gjs+nW3XYlyvbAfhSR6P/fU/mvFn1NlTJmHyMJHA8qI6INJKeEcb0Bs28uQ8f4P/LyI5g1BVkSp8fu7kdj1Krzzdx5EAdQGUoiCJqWEd+YgnEPv3rzt6C3w+qVM4vd1wtm3Af6lsx/8YY45UAaRvg/7yE4k6t8EXPsDP89+L2USr/MS4ltfhNd25gM/e6cnYbIVJ2EoY0gp4TUfhbN/E2DHUophZ54yhd/fDbt+PbzzR1OO4SQMZRJpx2Dv26AWZOXAmvVgMAkRpcDr7kBs8+/gnr/zCuzrDccOPWUf6ftwmnbD3rcxpUEUgP0Gyhx+T0dyAPuywsINhacJiIIifR/uiT1wj2y7uX7AbXDhJ2UKr6MN8a2/g3cp9baXfQfKBNJzYR94F4mGd26qlXw7w/Ha5SQMZQS/rwvO/o3w206rBbJDRCGTUsI9Xq80iHLVcPxRoexl738bSHzwUwTXs+as4mQ4hUL6HhIHtyK++82bi49/AI0rAilkXudFJHa8BL+9WSmO/QYKm/Q9uE274R7dkfIgylUcyKaw+Z1tsPe+Adl1SSmO1y6FTboOEg2bYB/YcvtaybcihNJ2ekRBcNvOIL71Rfidim3vMFw4x0kYCpX0fXgn98Fp3JLySpTrsUNEYfK7LiGx8xXl7Zuu4vVLmcLraIV7vF4pRiurhDFpTjAJEd2B296M2Du/gdfeclfxw7FDT9khuQrwHTiHt6oNolzFa5dC5HW0wNn7JmTPZfXgq/W1iEIgXQdu41a4J/bi/XUNU8J7NgqRe+Ek4ltehN/ToRwrrJyUaygTpZu044jXvwHnyK67ih+OW+lxEoZC43dehL3vDcjOi3d9DM7qUxik58I5tBlO41bAv4tBlKv4BAFlACkl7Pp1gFS7KbUWrE0WwCMaItKxEa/fgITqKsDrGRZEhhdspOHJazuN+I5X7m4AewCfhKEwSCcB5/AWeKca7v4gkRz2GSgUXttpOPs2QMa67/oYIsIxBxp6MtGP+K71cJr23vUxuPCIwuKcOYz49lcg+3vu+hjDsd/LSRgactJ14B7dnlx1rTjodxOuSqEh5l08i8TOwQ2iAADMCISmpycpokFwTzUoP81lTJkPvXR0QBkR3cw534TYu7+F33NlUMfhzSgNNZmIIbH3zYEV2IPDJ2hpqHkXTsBu2AjEewd1HC6co6EmE/1wDrwN7/yRQR+LbS8NJSkl3FMHEd/xKmS8b1DHGo6D2JTZ/P5uxLe9Avds46CPNRy3PeckDA0pv/Mi7J0vQ/Z3peV47BDRUEk+LbAebtPutByPHSLKBNKOJesZqYjkwpr1QCD5EL2f9D30v/MbOMf2pOV4GidhaAi5rSeR2PKbQQ+iXMVJRBoq0nPh1K+D19KUluPxno2Gktd6Enb9esCJp+V4vH5pqEgngdim5+GeP5aW47HfQEPJOXUQsS2/A5xEWo43HLcj4+aANKREYTmMyXPTtifwcJwZpcwkhIA5dT60EePTczxOwlAGsPdvAhL9SjHW7FVse2nICE1HpG4p9BFV6TneMOzMU+bSy6tgTl0ApOnJV/YdaKgI3YA+ZR5E0Yj0HJCD2DSEtPKxMCbUJWsRpQOvXxoiwozAqlsOrbgiPcdjv4GGkFE5BdbUuUCath8djpOInIShISU0DcbkuYg+/FnoVdWDPyAfbachpBVVILrqU4gs+xBETv6gjsVBbAqb13EB7nG1pwu0skoYk2YHlBHRrRnllch/+g+Rc/+zg+6MD8fOPGUuYZiwZt2P3Ce+DL1y2uCPx8EUGkJ66RhEHvgEzFmrADMyqGPxSQIaSsKwYNauRGTVp6FVjBv88TjmQEPIGD0ReU9/GZGFawa9eJn9XhpKwooiuvgx5D3176GPHGzbK4Zl28tJGAqFiObBmr8W1sqPAfrd74rHDj0NNSEEjPG1yHn830OvmnH3x+FACoVISgl79zq1ulxCwFqwloV1KRRCaIhMn4+Cj38NRtXdD2bzZpTCoBWUIOeB30P0vo8N6jjsO9BQE0KDMWk2og9/FlpZ5d0fh/dsFAKtoBTWsg/DnLfm7g8ixKAnIYlUJZ8EX478Z/8YWvmYuz8O+w0UAr10FHIf/QKiSx6/62OISHRY1lDmJAyFK94PeO5dh/NpAgqNbsDvar/7eHaIKETuyQb4l5uVYowp86GXjg4oI6LUCF2Hd+XiXcdr3I6MQuT3dd59sG5AGGbaciFSIjT4vVfuPjwy/FazUnYQQgyuHq2VwwVIFB6hwe/uuPtw9nspJEII+D2D6TcMz/EyTsJQaKTrwDm4aRBH4KoUCo97dCdk991PwnACkcIiEzHYDRvVgiK5sGbdH0xCRArie9+G7O2863g+CUNh8WM9sBs23XX8cL0ZpezgHNmmXEPuBnwShkLi93XCPbbrruP5FBeFKbH7dcCO33U8+70UFu9KG+zD2+86frheu5yEodC4R3dAxnrv/gBWFCJdxfaIFPj93bAPvjOoY3AwhcJi79+kPJBizVnFm1AKndfVjkTDINtergikkNh73gRc+67j2W+gsPhdl+CdbBjUMdiHoLA4+zcBvnfX8bx2KSxu2xk4x/cN6hjsO1AYpJSIb3sZkP5dH0NEhuc9G0ewKRR+Twfc4/WDOsZwLNJE2cHe+ybgOoM6Bjv0FAav44Jy26uVj4UxcXZAGRGlRkqJ2NaXBzWQAvBmlMLhtZ2Ge/rAoI7BJ2gpDFJKOA0bASjUkLsF3rdRGLwLJ+C3nRrcQXjtUgik7yUHsQeJ/V4Kg3tyP7y2M4M6hogOz34vJ2FoyEkp4ex/a1CzogAHsSkcXuspeGcPD/o47BDRUJNSwt69Ti1ICFjz13IvbAqdc6YR7rljgz6ONkwfbafMJX0PiV2Kbe8tsN9AYfDOHYbf0TL4A/G+jYaY9Fw4BzYN+jicAKcwOEd2wb/SNujjsN9LQ03accR3rR/0cYZrv5eTMDTk/JYm+JfOKsVoI8ZDFJbd+CI78zTEpOchUa/4g6LpMCbPBd43iD1cf1Qoc7kn98G/3KwUY0yZD710VEAZEaVGunbyKRgVpgVr+gIA72t7uR0ZDTHn6C74XReVYvSqGRB5RTe8xn4DDTVpx+Ec2qwWZEWhV1Xf9DIHsmmoucd2QfZ3K8XoldOA9/UTuPCThpof60V8zwalGJFbCGNC3fte1ACLNZRpaCX2vaVcdsKcPPume7ThWhPGCDsBurdI14Zz8G21IMOCNW8NYEXhnWxIFoZ0bXbmacg5x3ZCdrcrxZg1y2DNvB/mtIVI7H4N/qVzAHgzSkNLJmKw921UC4rkwpr1QCD5EKmI790E2dupFBOd/zCis1bAqlmE2OYX4V06D2D4dugpM/n9Pck6XApEbhGiy54BIGAf2gzn8FbA9zgJQ0POObJNuYacWbMCxoSZ8CbMhNPwFmT3JUDTAd0MKEuim/l9nXCbdinFiPwSmPPXwvQ8uEe3wz2xF5A+J2FoyCV2vQ44CaWY6KK1MCfWwW2Zj/j2V+B3tUNEclhDmYaU19EG+/AOpRitbAyiKz4EOAnE926Ec2QnIOWwrQnDSRgaUu7RHeqzotVLr82KGlPmQR87Dc7Bd7m3MA0pv78bzkG1gtAirwhm9TIAgFY8AtGHfh/e6YOwGzbwSS4aUvb+twA7phRjzXmI7SyFzutsR6LhXaUYrWQEInVLAQBGxVjkP/Ml2Efqkdi3CUJn15eGjr33DcC1lWIi8x+BMKzk/579IMxJs5HY9RrASRgaQn7nRXgnG5RiRMko6OOTK7H1skpoDzwH71QD3NP7ua0pDZnk1ueblGvImbMehNB0QNNh1t0HfVwtnP0bWROGhpTbehrOiX1KMfroSTAm1AIAjDGTkff0l2Ef3gbn9OC3UCdKlZQS8e0vK5ediC59HELTgEgOcpY8DmvqPMS3vTRsF87xTpSGjN9zGe7xPUoxorAc+sQ5N74WzYe14FFIxZtaosGw974JuI5SjDVvDYTx3so/IQSMiTOhj52e/KEhGgLe5RbltlcrHwtj4qyAMiJKjZQSsa0vKQ+k5Cx/KjmQMkAIDZHqhbCm8JqmoeO2nYZ7+qBSjD56MvSqGTe8phWUIvrgc8p9EKK7lRzE3ghAKsVZsx68YbJFaBqMyXOhj69Nc4ZEt+e3noTfdkopRh8zFfqI8Te8phWWwVr+EcBj20tDQ/oe4ttfUQvSdESXPH5j26sbiMxcCWvGojRnSHR7zsn98NrOKMWY0+bDqKi64TW9bDRyH/8i4LrpTC9jcBKGhkSyM/+W8qxockXKrQerr64SJAqa13oS3lm1lST6mCnQK6fe8j1h8tqloSGlhF2vWBBaCFgL1nLVKoXOOX0I7vkmpRhzymyYYybd8j1hcl9sGhrS92Dvek0tSNMRuU3bK4QA2HegIeKdPQy/44JSjD5hFrSSW9eQ4z0bDRXpuXAObFIL0k2YM++/5VtCCIDXLw0Ru3En/CttSjFW7VLoxRW3fI/9Xhoq0o4jsUuxdrKVg8j8h2/5lhDasO33cik2DQm/pelaLYxU6VXV0MvHBpQRUWqk5yGxW/EHRdNhzXuEg9gUOvfkPviXW5RijKkLoN9mIIVoqEjHRmzbq2pBZgQ5ix8NJiEiBc7RnfC7LinFmNVLoRWWBZQRUWqkHYdzSG0LSFhRmDXLg0mISIF7bCdkf7dSjDFjMUROQUAZEaXG7+9BYq9a/U6RW4jI7FtPIBINpcTet5TLTkTnPwwtOjzrvtwJJ2EocNK1YR94Wy3IsGDWrgwmISIFztEdkD2XlWLMmmXQCkoDyogoNTLRD3ufWmcekTxYt1kNSDSU4ns3QfZ2KsVE5z8ELa8wmISIUuT398Der9bvFblFsOrY76XwOY3blGvImTUrWUOOQuf3dsJt2q0UI/JLYUyeF1BGRKlL7H4dcBJKMdHFj/JpFwqd19EKu3GHUoxWPgbmtPkBZZTZOAlDgXOP7gDiarOiZvUyiHtwVpQyi9/XpbwaUOQVw6xeFlBGRKmz929SHkix5qziQAqFzutsR2K/WturlYxEpG5pQBkRpc7e8wagWLcwsuDGGnJEYfA7L8I71aAUI0pGseYLhU5KCefAW8o15MzZD95QQ44oDG7raTgn1NpefcxkGONrAsqIKDVSSsS3v6xYdkIgZ8mT92yN5Hvzb01Dxu+5rFwQWhSWQ584O6CMiFJn731TuRCuNf8RDqRQ6LzLLcptr1Y+FsZEFi6ncEkpEdv6kvJASu6KpziQQqFzW0/BPXNQKUYfPRn62OkBZUSUmmT9zo0ApFKcNXsVt9+l0PmtJ+G3nVaK0SunQa8YF0xCRCmSvof4tpfVgjQd0SWPs+2l0DknGuC1nVWKMafNg15RGVBGmY+TMBQYKVgXdcoAAGpISURBVCWchrcUZ0UBc/aqe3ZWlDKHd+EkvHONSjH6mKkwKqcFlBFRaqSUsHevUwsSAtaCR9mZp9A5pw7BPd+kFGNOmQNj9MSAMiJKjfQ99bZX0xFZsJZtL4XOO3sYfscFpRh94ixoxSMDyogoNdJ14OzfpBakmzDr7gskHyIVduMO+J0XlWKs2mXQi8oDyogoNdKOJ7fRUyAiOYjMfzigjLIDR7opMF7LMfjt55Ri9Koa6GX37qwoZQbpuUjUqw+kWPMfCSYhIgXuib3wO1qUYoypC6CXcCCFwiUdG7Ftr6gFmRHkLFkbTEJECpyjO+F3XVKKMWuWQSssCygjotRIO668/S6sHJjVy4NJiEiB27QLMtatFGPMWAKRUxBQRkSp8ft7kNj7llKMyCtCZDbrd1L4Ens3QsbUyk5E5q+Gdo+XneAkDAVCOjacA2pFSWFEYNauCCYhIgXO0R2QPR1KMWbNcmj5JQFlRJQameiH3aDYmY/mwZrJzjyFL773Lci+LqWY6IKHoeUWBpQRUWr8/m7Y+9X6vSKvCBb7vZQBnMatyjXkzNoVrCFHofN7O+E27VaKEQWlMCbPDSgjotQldr8OOAmlmOiitRCmFVBGRKnxOlphN+5QitHKK2FOnRdQRtmDkzAUCPfodiDepxRj1iyDuMdnRSl8fl8XnIOblWJEfjHMahaEpvDZDW+pD6TMeYgDKRQ6r/MSEvvV2l6tdBQitUsCyogodfaeNwDXVoqJzF/LGnIUOr+zDd4ptYLQomQ09HG1AWVElBopJZwDbynXkDNnPcgachQ6t/U0nBNqba8+ZjKM8TUBZUSUGillso6RVKkhJ5Cz5AmWnQAnYSgAfvdluCf2KsWIwgroE1gQmsJn730T8BylGGveGg6kUOi8y83Kba9WUQVjwsyAMiJKjZQSsS0vKQ+k5C5/kgMpFDq39RTcM4eUYvQxU6CPZQ05CpeUUvnpWUDAmv0g6xhR6PwLJ+C3nVaK0SunQ68YF0xCRCmSvpccxFah6YgueZxtL4XOOdEA7+JZpRhz2nzoFSw7AXAShtJMSgln/1uA9JXizNkPclaUQudeOAHvXKNSjF45FUbl1IAyIkqN9H31gtBCJFdiszNPIXNOHYTbfFwpxpwyB8boiQFlRJQa6XlI7HpNLUjTEVnAtpfC5509BHnlglKMPnEWtGLWkKNwSdeBc2CTWpBhwqy7L4h0iJTYjTvgd15UirHqlkEvKg8oI6LUyEQMiV3rlWJEJAeR+Q8HlFH24ag3pZXXfAx++zmlGH1cDfQyzopSuKTnwq5X+0GBbsCa90gwCREpcE/ug9+hNpBiTF0IrYQDKRQu6SQQ2/aqWpAZQc6SR4NJiEiBc3QHZHe7UoxZswxaQWlAGRGlRtpxOIfUtoCElQOzelkwCREpcI/thIz1KMUY05dA5OQHlBFRavz+HiT2KtbvzCtCZBbrd1L4Ens3QiqWnYjMXw0tmhtQRtmHkzCUNtKx4RxUK0oKIwKzdmUwCREpcI7sgOzpUIoxa5ZByy8JKCOi1MhEv/J2IiKaB2smVwNS+OJ7N0H2dSnF5Cx4GFpuQUAZEaXG7++GfUCt3yvyimHVrggoI6LUOY1b1GvI1a5kDTkKnd97Be7xeqUYUVAKY/LcgDIiSl1i13rASSjFRBc9CmFaAWVElBqvoxX2kZ1KMVp5Jcxp8wLKKDtxEobSxj26HVCcFTVrlkFEOCtK4fL7uuAcelcpRuQXczUgZQS74S3lgRRrzsMcSKHQeZ0XkdivthJbKx0Fq3ZJQBkRpc7e8wbgqtWQiyxgDTkKn9/ZBu/UfqUYrXQ09HEsCE3hurb1uWINOXPWKtaQo9C5rafgnFRre/XKKTDGVweUEVFqpPSTdYykVIgSyFn6BITgtMP1+G1QWvjd7coFoUXRCOgTZwWUEVHq7D1vAJ6rFGPNWwOhGwFlRJQar71Zue3VKqqgT6gLKCOi1EgpEdvysvJASu7yJzmQQqFzW0/CPXNIKUYfMxV65bSAMiJKjZQSdsNGxSiRHMRmHSMKmX/hBPyLZ5Ri9LHToVdUBZQRUWqk7yG+7RW1IE1HdPHjbHspdM7xBngXzyrFmNMXQC9n2Yn34yQMDdq1FSnSV4ozZz/IWVEKnXvhBLzzR5Ri9MppMCqnBpQRUWqk78OuX6cWJAQi81kQmsLnnDoIt/m4Uow5dS6M0RMDyogoNdLzkNil2PZqevIpGLa9FDLvzCHIK61KMfrE2dCKRwSUEVFqpOvAObBJLcgwYdZy+10Kn314O/zOi0oxVt1y6EVlAWVElBqZiCGx+3WlGBHJRXT+QwFllN04Ak6D5jUfhd9+XilGH1cLvXRMQBkRpUZ6Luz69WpBugFr3iPBJESkwD2xF37HBaUYY9pCaCUjA8qIKDXSSSCmuhrQjCBn8dpgEiJS4BzZDtndrhRj1i6HVlAaUEZEqZF2HM5hte13YeXArF4aTEJECtxjOyFjPUoxxoylEDn5AWVElBq/vxuJvYr1O/OKEJnFCUQKX3zvRkjFshORBatZduI2OAlDgyIdG87Bd9SCzAhMFiWlDOAc2Q7Z06EUY9Ysh5ZfHExCRCmSiX7Y+xU789F8WHXszFP44nveguzrVorJWbgaWm5BQBkRpcbv74at2O8VecWwapYHlBFR6pzDWwA7rhRj1q5kDTkKnd97Be7xeqUYUVAGY9KcYBIiUhDf9Trg2kox0cWPQphWQBkRpca7fAHOkZ1KMVp5JcypcwPKKPtxEoYGxT26HVCcFTWrl3NWlELn93XCOaRWEFrkl3A1IGUEu2Gj8kCKNfchDqRQ6LwrF5HYr9b2aqWjYNUsDigjotTZ9a8DrqMUE1mwBsIwA8qIKDX+lVZ4p9UKQmulo6GPqwkoI6LUXNv6XLGGnDl7FWvIUejcC6fgnlRre/XKKTDGVQeUEVFqpPQR3/4yIKVClEDO0idZduIO+M3QXfO72+Ge2KMUI4pGQJ84M6CMiFJn73kD8FylGGv+GgjdCCgjotR47efhntinFKNVjIM+vi6YhIhSJKVEbOtLyjXkclc8xYEUCp174STcs4eVYvTKqTDGTg8oI6LUSCmTizeUCJizVrGOEYXOv3Ac/sUzSjH62BnQy8cGlBFRaqTvJQexVWg6oosfZ9tLoXOON8C7eE4pxpyxAHo5y07cCSdh6K5IKeE0vKU4KwqYsx/krCiFzm05Ae/8UaUYfex0GGOmBJQRUWqk78PerVgQWghEFqxlZ55C55w8ALf5hFKMOXUujFETgkmIKEXS85DY/ZpakKYjMp91jCh83pmDkJ1tSjH6pNnQikcElBFRaqTrwDnwtlqQYcGsXRlMQkQK7MPb4XdeUoqx6pZDLyoLKCOi1MhEDIndryvFiEguovMeCiij4YOj4XRXvPNH4V8+rxSjj6uFXspZUQqX9FzY9YqD2LoBa+7qYBIiUuCe2Av/SqtSjDFtEQdSKHTSTiC27VW1IDOCnMUcxKbwOUe2Q3ZfVooxa5dDKygJKCOi1Eg7Buew2haQiOTCnMHtdyl87rEdkLEepRhzxlKInPyAMiJKjd/XjcRexfqdeUWIzGb9TgpffM8GSMWyE5EFq1l2IgWchCFl0knAOai4IsWMwKxdEUxCRAqcI9she68oxZg1y6HlFweTEFGKZLwP9n7Fznw0H9ZMduYpfPE9GyH7u5VichauhpZbEFBGRKnx+7pgH3hHKUbkF8OqWR5QRkSpcw5vUa4hZ9auYA05Cp3f0wG3qV4pRhSWQZ80O6CMiFIX37UecG2lmOjixyAMK6CMiFLjXb4A5+gupRi9YizMqXMDymh44SQMKXOPbAcS/UoxZs1yzopS6PzeTjiH1FYDivwSmNVcDUjhsxveUh5IseY+DGFGAsqIKDXelYtIHNiiFKOVjYZVszigjIhSl6wh5yjFROavhTDMgDIiSo1/pRXe6QNKMVrpGOhVNQFlRJQaKSWcA5uUa8iZs1axhhyFzr1wEu4ptbbXqJwKY9yMgDIiSo2UPuLbXlYsOyEQXfIEy06kiN8SKfG72+Ge3KsUI4pGQJ8wM6CMiFJn730D8FylGGv+WgjdCCgjotR47efhntynFKONGAd9fG0wCRGlSEqJ2JYXlQdScpc/xYEUCp174QTcs4eVYvTKaTDGTgsoI6LUSOnDbtioGCVgzl7FGnIUOr/lOPyLZ5Ri9LEzoJePDSgjotRI30N82ytqQZqO6JLH2PZS6Jzj++BdOqcUY85YCL2cZSdSxUkYSpmUEk7DRsVZUcCavYqzohQ6t+U4vPNHlWL0sdNhjJkcUEZEqZG+D3u3Yh0jIZIrsdmZp5A5Jw/AbTmpFGNNmwdj1PiAMiJKjfRcJHap15CLLFgTTEJECrwzByE725Ri9EmzoRVVBJQRUWqk68A5uEktyLBg1q0MJB8iFfahbfC7LinFWDNXQCssCygjotTIRAyJXa8rxYhILqLzHgooo+GJI+OUMu/8EfiXm5Vi9PF10EpHB5QRUWqk58KuX68WpBuw5q0OJiEiBe6JPfCvtCrFGNMWQSseEVBGRKmRdgKxba+qBVlRRBevDSYhIgXOke2QPZeVYqya5dDySwLKiCg1MhGDc0htC0hEcmHO4Pa7FD736A7IWK9SjDljKUQ0P6CMiFLj93UhsW+TUozIL0ZkFicQKXzxPRsgFctORBY8AhHJCSij4YmTMJQS6STgHFQrSgozApNFSSkDOI3bIHuvKMWYtSug5RUHkxBRimS8D3bDJqUYkZMPa+Z9wSREpCC+ZyNkf7dSTM6C1dByOJBC4fL7umAfeFcpRuSXwKxZFlBGRKlzDm8GHLUacmbtSggrGlBGRKnxezrgHq9XihGF5dAnzQkmISIF8V3rAddWiokuehTCsALKiCg1XnsLnCO7lGL0irEwp84JJqFhjJMwlBLnyHZAcVbUrFkOEckNKCOi1Pi9nXAOq60GFAWlMGcsCSgjotTZDRuVB1KsOQ9DmJGAMiJKjXelDYkDam2vXjYaVs2igDIiSl1iz+uA5yjFRBasgTDMgDIiSo1/pRXemYNKMVrZGOhV1QFlRJQaKSWc/W8p15AzZz0IoXFYi8LltpyEe0qt7TXGToUxbkZAGRGlRkof8e0vA1AoOyEEokueYNmJu8BvjD6Q39UO7+RepRhRPAL6hJkBZUSUOnvP64DnKsVY89ZA6EZAGRGlxms/D/dkg1KMNmI89PG1AWVElBopJWJbXlIeSMlZ/hSEpgeUFVFq3Asn4J1tVIrRx06DUTktoIyIUiOln1y8oUIImLNWsYYchc5vaYJ/6axSjF5VDb18bEAZEaVGei7i219RC9INRBc/zraXQuc07YN36bxSjDl9IfTyMQFlNLxxEobuKLkiZSMgFWZFAVizH+KsKIXObW6C13xMKUYfOwPGmMkBZUSUGun7sHe9phYkNEQWrGVnnkLnnNgPt+WkUow1bT6MUeMDyogoNdJzkdi1Ti1INxCZvyaYhIgUeKcPQna2KcXoE+dAK6oIKCOi1EjXhnPwbbUgw4JZy1oaFD778Hb4XZeUYqyZK6AVlgaUEVFqZKIfid2vK8WIaB6i8x4KKKPhj6PkdEfe+SPwLzcrxejj66CVjAooI6LUSM+FvWe9WpBuwJq3OpiEiBS4x/fAVxxIMaYv4kAKhU7aCcS2v6oUI6wooos5iE3hcxq3Q/ZcVoqxapdDyy8JKCOi1MhELFkLRkUkF2b10mASIlLgHt0BGetVijGrl0JE8wLKiCg1fl8XEvs2KcWI/GJEZnICkcIX37MBUrHsRGTBaohITkAZDX+chKHbkk4CzsF31ILMCMyaFcEkRKTAadwK2dupFGPWroSWVxRMQkQpkvE+2PvfUooROQWw6tiZp/DF92yA7O9RiokuXA0tJz+gjIhS4/d1wVbs94r8Epg1ywPKiCh1zuHNgJNQijHr7mMNOQqd39MB9/gepRhRWA594pxgEiJSEN+5HnBtpZjo4sdYQ45C57W3wDmyWylGr6iCOWVOMAndIzgJQ7flNG4DFGdFzZoVnBWl0Pm9V+Ac3qoUIwpKYc5YHFBGRKmz921UHkix5j7MgRQKndfRhsQBtbZXLxsDq5ptL4UvUb9euYZcZAFryFH4/I4L8M6oFYTWyiqhj2VBaArXe1ufq9WQM2c9CKFxKIvC5bacgHtare01xk6DUTU9oIyIUiOlj/j2lwEolJ0QAtGlT7DsxCDx26Nb8rsuwTu1TylGFI+EPqEumISIFNh73lAeSLHmcyCFwuddOgf3VINSjDZiPPRxNQFlRJQaKSViW15UHkjJWfEUB1IodG7LcXjnjijF6GOnw6icFlBGRKmR0oe9f6NakBAwZ61iDTkKnd/SBP/SOaUYvaoaevnYgDIiSo30XMS3v6IWpBvJp2DY9lLInKa98C6dV4oxZyyCXjY6oIzuHbzrpZu8tyJFYVYUgDV7FWdFKXRucxO85mNKMXrVDBijJweUEVFqpO/D3q1YEFpoiCxYy848hc45sR/uhVNKMdb0+TBGjgsoI6LUSM9FQrXt1Q1E5rOOEYXPO30AsvOiUow+aQ60ovKAMiJKjXRt2AfeVgsyLJi13H6Xwmcf3ga/q10pxpq5AlphaUAZEaVGJvqR2P2GUoyI5iE6d1VAGd1bOGJON/HONcK/3KIUo0+YCa1kVEAZEaVGug7s+vVqQboJa+7qYBIiUuAer4ff2aYUY05fBK2oIqCMiFIj7Thi219VihFWFNFFHMSm8DmN2yB7OpRirNoV0PKLg0mIKEUy0Q/n8Ba1oEguzBlLg0mISIF7dAcQ71WKMauXQUTzAsqIKDV+bxcS+9QmEEV+CSIzOYFI4YvXb4BULDsRWfAIy06kCSdh6AbSjsM59K5akBllUVLKCE7jNsi+TqUYs24FtLyiYBIiSpGM9cLev0kpRuQUwKxjZ57CF6/fCNnfoxQTXfgItJz8gDIiSo3f2wn7oFq/V+SXwKxZFlBGRKlzDm9RriFn1t3HGnIUOr/nMtzje5RiRGE59ImzA8qIKHXxXesA11aKiS5+FMIwA8qIKDVeezOco7uVYvQRVTCnsO1NF07C0A2cI9sAxVlRs2Y5hMVZUQqX33tFeTWgKCiDOX1JQBkRpc5u2Kg8kGLNfZgDKRQ6r6MViYNblWL0sjGwqhcFlBFR6hJ7XleuIRdZsJY15Ch0fscFeGfUCkJrZZXQx84IKCOi1Egp4TS8pVxDzpy9ijXkKHRuywm4pw8pxRhjp8Ecx7aXwiWlj9i2lwEolJ0QAtElT7DsRBrxm6Rr/K5L8E6qFYQWxSOhT6gLKCOi1Nl7Xgd8TykmMn8NhK4HlBFRarxL5+Ce2q8Uo42cAH1cTUAZEaVGSon+LS8pD6TkrHiKAykUOrflOLxzR5Ri9LHTYVRODSgjotRI6ScXb6gQIjmIzRpyFDKv5Rj89nNKMXpVDfSyyoAyIkqN9FzEt7+iFqQbiC55LJiEiBQ4TXvhtzcrxVgzFkEvGx1QRvcm3gETgKsrUjZCaVYUgDV7FWdFKXRu8zF4zU1KMXpVNfTRkwLKiCg10vdhqxaEFhoi89dyIIVC55xogHfhlFKMNX0BjJHjAsqIKDXSc5FQbXt1A5H5rGNE4fNOH4DsuqgUo0+aC62wPKCMiFIjHRvOAbVaGjAiMGtXBJMQkQL70Db4Xe1KMZGZK6EVlAaUEVFq/Hg/ErvfUIoR0TxE5q4KKKN7F0fPCQDgnWuE39GiFKNPmAmtZFRAGRGlRroO7PrX1YJ0E9bch4NJiEiBe7wefmebUow5YzG0Ig6kULikHUds22tKMSKSg+iiRwLKiCh1TuM2yJ4OpRirbiW0/OJgEiJKkUz0K2+/i0guzBncfpfC5x7dDsT7lGLMmmUQ0byAMiJKjd/bhUTDJqUYUVACayYnECl8iT1vQiqWnYgsXAMRYdmJdOMkDEHacTiH1IqSwozCrFkeTEJECpzGrZB9nUoxZt1KaHlFwSRElCIZ64W9f5NSjMgpgFm7MpiEiBTE6zdAxnqUYqILV0PLyQ8oI6LU+L2dsA+q9XtFQSnM6qUBZUSUOufQZuUacmbd/awhR6Hzuy/DPbFXKUYUVkCfMCugjIhSF9+1DnAdpZjo4scgDDOgjIhS411qhnO0XilGHzEO5uTZAWV0b+MkDME5sg1QnBU1a1dAWJwVpXD5PR1wDqsVhBYFZTCnLw4oI6LU2fs2KA+kWPNWQ5hWQBkRpcbraEXi4DalGL18DKwZiwLKiCh1ifr1gOcqxUQWrIXQjYAyIkqN19EC76xaQWitbCz0sdMDyogoNVJKOPvfUq4hZ85+kDXkKHRu83G4p9XaXqNqOswqtr0ULun7iG1/CUplJ4RAdOkT3Po8IPxFu8f5nRfhnWxQihElo6CPrwsoI6LU2XteB3xPKSayYA2ErgeUEVFqvEtn4Z4+oBSjjZwAvao6oIyIUiOlRP/mF5UHUnJWPM2BFAqd29wE7/xRpRi9agaMMVMCyogoNVL6cBreUgsSIjmIzYEUCpnXfAx++zmlGH1cDfSyyoAyIkqN9FzEt7+iFqQbiC5+LJiEiBQ4TXvgt6uVnbBmLIZeyrITQeHd8D3s2ooUlVlRANYsduYpfG7zMXgtx5Vi9HE10EdNCigjotRI34etWhBa05Irsdn2Usic4w3wWk8rxVgzFsAYURVMQkQpkp6LhGrbqxuIzGMdIwqfd+oAZNdFpRhj8jxohawhR+GSjg3n4NtqQUaE2+9SRrAPbYXffVkpJjJrJbSCkoAyIkqNH+9Hov4NpRiRk4/I3AcDyogATsLc07xzh+F3qM2K6hNmQSvhrCiFS7oO7Pr1akGGCWvuw8EkRKTAbdoNv1NtIMWcvoQDKRQ6accR2/6aUoyI5CC6aE1AGRGlzjm8FbL3ilKMVbcSWn5xMAkRpUgm+uE0blELiubBmL4kmISIFLhHtwPxPqUYs2YZRCQ3oIyIUuP3diLRoDaBKApKYNWtCCgjotQl6t+ETMSUYiILHoGIsOxEkDgJc4+SdhyOYlFSWFGYNcuDSYhIgdO4FbKvSynGrF0JLbcwoIyIUuPHemEfUOzM5xbArGVnnsIX370BMtajFBNd+Ai0aF5AGRGlxu/thH1os1KMKCiFWb00oIyIUucc2qxcQ86su4815Ch0fnc73BN7lWJE0QjoE2cFlBFR6uI71wGuoxQTXfwYhGEGlBFRarxL5+Ecq1eK0UeOgzl5dkAZ0VWchLlHOY3bAFttVtSsWQFhRQPKiCg1fk8HnMNblWJEYRnM6YsDyogodc6+DcoDKdbc1RxIodB5ly8gcWibUoxeXglrxsKAMiJKXaJ+PeC5SjGRBWshdCOgjIhS411ugXdWrSC0Vj4WeiULQlO4rm19rlhDLlnHiMNUFC63uQnumcNKMUbVDJhVbHspXNL3Edv+MpTKTggN0SVPcOvzIcBft3uQ33kR3qkGpRhRMgr6+LqAMiJKjZQS9p7XAd9TiovMXwuh6wFlRZQa7+JZuKcPKMVoIydCr6oOKCOi1Egp0b/lRcWBFIGcFU9BaOxqUrjc5iZ4548qxehVM2CMmRJQRkSpkdKHs3+jWpDQYLJ+J2UAr/ko/PbzSjH6uFropWMCyogoNdJzEd/+qlqQbiC6+NFgEiJS4Byrh9+uVnbCql4EvZRlJ4YC74zvMckVKRuhNCsKwJq9ip15Cp3X3ASv5bhSjD6uBvqoiQFlRJQa6fvqBaE1DZEFa9j2Uuic4/vgtZ5RirFmLIAxoiqgjIhSIz1Xve3VDUTms44Rhc87tR+y65JSjDF5LmvIUeikY8M5+I5akBnh9ruUEexDW+F3X1aKicy6D1pBSUAZEaXGj/chsedNpRiRk4/I3FUBZUTvx0mYe4x39jD8jgtKMfrEWdCKRwaUEVFqpOvA3rNeLcgwYc19OJiEiBS4Tbshuy4qxZjTl3AghUIn7Thi219TihGRHEQXPRJQRkSpcw5vhey9ohRj1d0HLa8ooIyIUiMT/crb7yKaB2P6kmASIlLgHt0OxPuUYszq5RCR3IAyIkqN39uJxD7F+p0FpbDqWDuZwpeofxMyoVZ2IrJwDctODCFOwtxDpB2Hc+hdtSArB2Y1f1AofM7hLZB9XUoxZt190HILA8qIKDV+rAf2AcXOfG4hzDquBqTwxXa/CRnrVYqJLloDLZoXUEZEqfF7r8A+tFkpRhSUwazmIDaFzzn0LuCq1ZAz6+5nDTkKnd/dDvfEHqUYUTQC+sSZAWVElLr4znWA5yjFRJc8BmGYAWVElBr30jk4x9TaXn3keJiTZgWUEd0KJ2HuIU7jVsBWmxU1a1ZwVpRC5/d0wGlUKwgtCsthTlsUUEZEqbP3bQActYEUa+5qCIMDKRQu7/IF2IfU2l69ohLW9AUBZUSUukT9esBzlWIiC9dC6EZAGRGlxrvcDO+sWkForbwKeuW0gDIiSo2UEk7DW4BU2/rcnP0ghODQFIXLPd8E94xa22uMmwFzLNteCpf0fcS3vQKlshNCQ3TJE9z6fIjxl+4e4Xe2wTu1XylGlIyCPr42oIyIUiOlhF2/HvA9pbjI/DUQuh5QVkSp8S6egXf6oFKMNmoi9KoZAWVElBopJfo3v6g4kCKQs/xpCI3dSwqXe/4YvPPHlGL0qmoYoycHlBFRaqTvJwexVQgN5qwHOZBCofPOH4V/+bxSjD6uFnrpmIAyIkqN9FzEt7+iFqQbiC56NJiEiBQ4x+rhX25RirGqF0MvZdmJoca75HuAlBJ2w1tQmhUFYM1exc48hc5rPgbvwgmlGH1cDfRREwPKiCg10vfUC0JrGiLz17LtpdA5TXvhtZ1RirFmLIAxYmxAGRGlRnpu8ikYFbqJyHzWMaLweacaILsvKcUYk+dCKywLKCOi1EgnAeeg2va7MCMwa7n9LoXPPrgFfk+HUkxk1n3QCkoCyogoNX68D/H6N5ViRE4+InMfDCgjuhNOwtwDvLOHIa9cUIrRJ86GVsxZUQqXdB3Ye15XCzIsWHMfDiYhIgXusd2QXWoDKeaMJRxIodD5iRhiO15TihGRHEQXrQkoI6LUOYe3QPZeUYqxZq6EllcUUEZEqZHxPuXtdxHNhzGddYwofO6R7UCiXynGrFkOEckNKCOi1Pi9nUg0vKMUoxWUwqpj7WQKX6L+TeWyE9GFa1h2IiSchBnmpB1PFnZUYeXArF4WTEJECpzDWyD7upRirLqV0HILA8qIKDV+rAf2AbXVgCK3kKsBKSPE69+EjPUpxUQXrYUW5UAKhcvvuQL70BalGFFYBnPG0oAyIkqdc2gz4KrVkDPr7oMwWUOOwuV3t8M9uVcpRhSNgD5hZkAZEaUuvuM1wHOUYqJLHocwzIAyIkqNe/EcnGP1SjH6yPEwJs0KKCP6IJyEGeacxq3Ks6Jm7UrOilLo/J4O5dWAorAcxvRFAWVElDp77wbAtZVirHmPQBgcSKFweZcvwD60XSlGrxgLa8b8gDIiSl2ifj3guUoxkQVrWUOOQuddboZ3Tq0gtFZeBb2SBaEpXFJKOA0bFWvIXd36nMNRFC7n/DG4ZxuVYoxx1TDGTg0oI6LUSN9HfPvLakFCQ3TpE9z6PET81RvG/M42eKcalGJEyWjo42oCyogoNVJK2LvXAb6nFBdZsBZC40AKhcu7eAbemYNKMfqoSdDHTg8oI6LUSOmjf/OLigMpAjkrnuJACoXOPX8UXvMxpRh9XDWM0ZMDyogoNdL3k4PYKoQGc/aDHEih0Hnnj8C/3KwUo4+vg1Y6OqCMiFIjXQfx7a+qBekmoosfDSYhIgXOsd3wL6uVnbBqFkMvYdmJMPGOeZiSUsJW7cxDwGJnnjKAd/4ovNaTSjH6+FroIycEkxBRiqTvIbF7nVqQpsGav4ZtL4XOadoHr+2MUoxVvRBGxdiAMiJKjXSd5FMwKnQTkXmPBJMQkQLvVANkd7tSjDFlHrQC1pCjcEknAeegWi0NmBGYNaylQeGzD26B7OlQionMvg9afnEwCRGlyI/3IV7/plKMyMlHZM6DAWVEqeIkzDDlnT0EeaVVKUafOAtaMWdFKVzSdWDveV0tyLBgzXk4mISIFLjHdkN2XVKKMWcshVbIgRQKl5+IIbbjNaUYEclFdCEHsSl8zuGtkL2dSjHWzPug5RUFkxBRimS8L7l9tIpoPozpi4NJiEiBc2Q7kOhXijFrlkNEWEOOwuX3XEFiv1rtZK2gFFYdJxApfIndbwB2XCkmunAty05kAE7CDEPSjicLO6qwcmBWLwsmISIFzuHNkP3dSjHWzPug5RYElBFRavz+HtgH3laKEbmFMGvZmafwxXe/CRnrU4qJLl4DLcqBFAqX33MFtmK/VxSWwZyxJKCMiFLnHHpXvYbczPtZQ45C53e1wzu5VylGFI+APmFmQBkRpS6+cx3gOUox0SWPQ+hGQBkRpca9eA5O0x6lGH3UBBiT2PZmAk7CDENO4xbAjinFmLUrOStKofO7L8NpVCsILYoqYExbGFBGRKmz972pPpAy7xEOpFDo3PYW2IfV2l69Yiys6fMDyogodYn6u6kh9yiEzhpyFC6v/Ty8c2oFobWKKmhjWBCawiWlhLN/o2INOcCa/RBryFHonHPH4J5Va3uN8TUwxrLtpXBJ30d828tqQUJDdMkT3Po8Q/AXcJjxO9vgndqvFKOVjoY+riagjIhSI6WEXb9efSBl/hoIjQMpFC6v7TS8M4eUYvRRk6CPnR5QRkSpkdJHbMuLigMpAjkrnuJACoXOPX8UXnOTUowxrgbG6EkBZUSUGun7cPa/pRYkNJizVnEghULnnT8C/3KzUow+vg5ayaiAMiJKjXQdxHe8qhakm4guWhtMQkQKnKO74XdcUIqxapZALxkRUEakinfPw4iUEnbDRsUowc48ZQTv/FF4rSeVYvTxtdBHTggmIaIUSd9DYvc6tSBNh7VgLdteCp19bC+8trNKMVb1QhgVYwPKiCg10nWQ2L1eLcgwYc1nHSMKn3dqH2R3u1KMMWUetILSgDIiSo10EnAOvqMWZEZg1qwIJiEiBfbBLZA9HUoxkdn3QcsvDiYhohT5sV7E97ypFCNyChCZ80AwCdFd4STMMOKdOQh5pVUpRp84G1oxZ0UpXNK1Ye95XS3IsGDNeTiYhIgUuEd3KQ+kmNVLOJBCofMTMcR3qE0gikguogs5iE3hsw9vgezrVIqx6u6DllsYTEJEKZLxPjiN25RiRE4+jOmLA8qIKHVO4zYg0a8UY9asgIjkBJQRUWr8nitI7FebQNQKy2DVsX4nhS9R/wZgx5VioovWsOxEhuEkzDAh7Ticw2pFSWHlwKxeGkxCRAqcQ1sg+7uVYqyZ90PLLQgoI6LU+P09sBVXA4rcQq4GpIwQ3/0GZLxPKSa6eC20aG5AGRGlxu/pgHNoi1KMKCyHOWNJQBkRpc459K5yDTmz7n7WkKPQ+V2X4J3apxQjikdCn1AXTEJECuI7XwM8VykmuuQxCN0IKCOi1LgXz8Jp2qsUo4+aAGPizIAyorvFSZhhwjm8RXlW1KxbyVlRCp3ffRnOEcXVgEUVMKYtCCgjotTZ+95UHkix5q+BMMyAMiJKjdveAvvwDqUYfUQVrOnzAsqIKDVSyuQWkKo15BauhdBZQ47C5bWfh3dOrSC0VjEO2hgWhKZwSSnh7N+oWEMOsGavYg05Cp1z7ijcs0eUYozxNTAq2fZSuKTvI77tZbUgoSG65AlufZ6B+Gs4DPhXWuGd3q8Uo5WOgV5VE1BGRKmRUsKuXw/4vlJcZMFaCI0DKRQur+00vDOHlGL00ZOhV04LKCOi1EjpI7blRcWBFIGcFU9xIIVC5zUfg9dyXCnGGF8LY9SkgDIiSo30veQgtgqhwZz1IAdSKHTeuUb4l1uUYvQJM6GVjAooI6LUSNdBfMerakGGieiitcEkRKTAOboLfoda2Qmrdin0EpadyES8k85yUkrYDYqdeQiYs1exM0+h884fgdd6UilGH18HfcT4gDIiSo30veRKbBWannwKhm0vhcw+thde21mlGKtmEYzyyoAyIkqNdB31ttcwYc1bHUxCRAq8kw2Q3ZeVYowp81lDjkIn7XhyGz0VZhRmDWtpUPjsg5she64oxURm3w8tvziYhIhS5Md6Ed+zQSlG5BYgMueBYBKiQeMkTJbzzhyE7GxTitEnzYZWVBFQRkSpka4Ne88bakGGBWvuQ8EkRKTAPboTsrtdKcasXsqBFAqdn4ghvuM1pRgRzUV0AQexKXz2oc2QfV1KMckacoUBZUSUGhnvVd9+N6cAxvTFAWVElDrnyDYg0a8UY9Yuh7ByAsqIKDV+zxUk9qtNIGqFZbBqlwWUEVHqErvfUC47EV24FsKMBJQRDRYnYbKYtGNwDm9WC4rkwpyxNJiEiBQ4hzZD9ncrxVgz74eWUxBQRkSpcS+3wN6nuCIlr4irASkjxHe9ARlXG0iJLloLLZobUEZEqfF7OuAc3qoUIwrLYXIQmzKAc/Bd5RpyZt39rCFHofO7LsE72aAUI4pHQh9fF1BGRKmL73gN8FylmOiSxyF0I6CMiFLjtp2Fc3yvUow+aiKMiWx7MxlblpBJ34Pf0Qq37Szci2fhd7RBunay2KimQxgWtJKRMEaOgz5iHPSyUddqYTiHtyjPipq1KyGsaBB/FboH+f3dcNvOwms7B7ftDGSsD9JzAADCMJMr+EaOS16/I8dBy8lPxnVfhnNku9K5RNEIGNMWpv3vQPcm6blw287DbjkFp/kU3PYLkM5A26vrEGYE5oixMCsnwBwzEUbFGAhNh9/fg8SbPxo4igBwfU2Nq39+/+uANe8RDqRQ2vh9XfAunku2vxfPQib6IV0XEIDQTYjcAhgjx0MfUQV9xLhrEyhuezPsxh1K59JHVMGaPi+Ivwbdg6TrwG07D6flFOzmU/A62iBdJzlAYpgQpgVzZBXMMcm2N9nv1SClTG5D5ntK54ssfBRCZw05GjwpJWRvJ9yL5+BdPAfv4ln4iVjy2hUD/d7comt9XqOiCiKSfArAaz8P77xaQWhtxHhoY6YE8Vehe5B0HXjtze9du92Xk22v7wO6AWFa0MsrB/oNVdCKyiFEsu11Gjbi/f3aD2LNXsUacpQWUkr4PVfgtZ0Z6Peeh7RjyetXaBCGCa2gONnvHTkOxoiqa+NdzrmjcM+ptb3GhFoYlWx7KT2kY8NtOwen9TTcC6fhdV0GXAfS9yEMA8KKwhhRBWP0eJijxkMrroAQAtL3EN/+strJhIbo0se59XmG4yRMCKSU8FpPI3HgXbjNJwZuKMXAuN2NHRwJwO9qh3vqYPJPmg5jzGSYk+rgntqv9B+YVjYGelV1Ov8qdA/y4/2wD29HonHXe1uCCA2Q/g2fkwDQdRle21kkBt4TBSWIVC+CvHwu2elXEFmwFkJjZ57unpQS9pmj6N+5AfbZpuvaXnHT9QsA3uU2xA/vSv7BMBEZPxWm1wVoGqKrPgmncRu85uO4OvGiV06FWb0E8U0/B1wXV29Y9TFToFdOG6q/Jg1TfqwX9qFtsI/VQ8Z6ky/eru3tTra9V9/TCkphVi+GfaLhpn7GHQmBnBVPcSCFBkVKH/bJw+jf9RaclpPJ3/+r/ddbXI/e5TbED+1M/sEwEZlch8iEqfBajiud1xhfC2PUxMGmT/c4v68biUNb4TTthYz3JV/UtJv6sdf6va2n32t7iypg1SyG33JU7aRCgznrQQ6k0KBI34d7thH2wa3w2s8n29vbtL0SgN95CU7TnuQLhgVjfDWMikr4HS1K59UnzIRWMioNfwO6l/k9VxA/sBlO0z7IRCz54m3aXr+rHW7zyffa3tKRiNQuReKg4q4xhonowrVpyJ7uZdL3YB/fj9i+d+Bdar5t23v1f3kdrUgcTi6SE1YU1pRZMIpK4Xe0Kp3Xql0KvXhEOv4KFCAhpcrdOA2GlD7cM0eQaNgEr73lloMnKRmI0/KLoemA0LUUOukCkQc/yVowdNf83k7E92+G3bgT8Dyoroh6jwB0HXp+AYQbS2liRZ9Qh+jSZ+7yfHSvk76HxNF96Nv+OtxLd9/25o4qg2YaiD78+9ArxkF6HhJbfgWvuQl65TRElj8LoevwLp1F/M0fJ4M0HTmP/SFrwdBd87ovwz6wBfax+uR1O5hum2ECRgSyL7WtIK2axchd8fTdn4/uadJzEW/cg/4db8C7cnHQ/V69pByG5kIzU+j3GhZyn/wya8HQXfM6LyKxfzOc4/sAyMG1vWYEel4BNOGl1O81pi2EWbPi7s9H9zTpOnBONCCx/13I3isDi43u4vq9OuZQVAbhO6mNOZhRRFd/lrVg6K55ly8gvu8dOCf3J18YRNsrrCiEYUDasZQmtSPzH0Zk1n13fT66t0nHRrxxF+L1b8Hv60pP22v3Qkuh3yByC5D/4T9mLZgswCdhhojXeQn9G34Ov/PidbOgd3Ejel2c39cFX0qISA6MqAVh3P7/Tn3SbE7A0F2Rvo/4ng1I7N008MJg520l4LnwujsBAHpuLoTwb98xMiOw5jw8yHPSvcppO4+u330fXuelQbe9Tl8MkeJCOI3boZVWQug6Iss/Aq+lCfqYqRC6Dul5cBq34eqWZGb1Uk7A0F2Rnot4/ZuwD2y++8Hr9xvY9kkYBiC05BZ8tyGiuYgufGTw56R7knPhNLpe/CH8nitItocYdL/X6+yAJ31oefmw8gxod9hmzJp5Hydg6K5I10Fsx2twjuxMX9vrJOB12vA0AT2/AJqh37bfK3IKYExjHSO6O+6FU4hteh4y3vvei3d773Z1zKH7CiB9iJx86JZ+x4lEs3YFJ2Dorkgngf7NL8Jp2jvQ9g5+rbi045A2AE0HdAFxh0WkWlE5rNplgz4n3ZvsM0fQ+/rPIRPX1d1MU9src/KSizjuMJEYXbiWEzBZgpMwQ8Bu2ovYlt+9t491uh4+GjiOtBNwHBtGaTk0eYuiY5FcmDOWpuecdE/x+7rRt+Hn8FrPpP/gA9ev19cHraAEmkzgVr8r1sz7r9WSIUqVlBKxfZvRs+GF99rcQba9Tk8/IIAImpDY8sK1J1+MqhnJw197Mia5RZnIK4JZs3yQfxO6F/k9V9C/8efJp2aB9AwCXiUlkqu6fWiFJfC7O3GrJxujix+FFuFACqmR0kds9yb0vvPi9a+m6eADN6X9/UjYBqyyUujCueljWlEFzBkcxCZ17y2au5R8IZ1tLyTgS3jdXZDFFdC1Ww+omDPvZw05UiZ9H/b+t5HY+xZueUM1uIMn/xXvh+ua0AsKoMmb63OJklHQx7MgNKnzLl9A3xs/g9/TkXwhrW0vAN+D9D2IwlLI/q5btr3RxY9B6BweJTXS89C/Yx3iezbh2qKjtB18oN8b74e0otAtE8K/ud+rj54IYyLb3mzBViZA0rER2/ZScjY/0BP5gATc9jboI6uSg9neex0js3blteJkRKlyzjehf8MvIO1E4Ofye7sgrQiMkjKgr+Pa66JoBIypCwI/Pw0vfiKG7nU/Q+LovrQf2+nuhxGJAM3H4LU0XZuAAQCvpQlec9O1P1vz1nAghZQ5pw+j/51fDdQVCpbs74aWlw9YUfhXLl17XR85Dta0uYGfn4YXP9aH7ld/AvtUY7Ankj6k4yDR2gpr/BToThfEdQM21oK1ENrtn5IhuhX7RANi7/52YNFcsLt1+13tkDn5MIpLIRLvPbGgjRgPbTQLQpMav78HsbefT9YjAtK34PP9pA+4NryOdojRE4F45w1DjhbrGJEiKSXsI7sR2/Ji8roNuFKC330FWn4RhKG/V9sWgDGhFkYl215S4/VcQc9rP4F38dzAK0G1vRLSjsO14zDHTIS8cuG9uXahIbrkCba9WYSVVgMiHRt9634wsI/w0PEunofvGdc68FrZGOhV1UOaA2U/+3gD+l79IWQinv6VKLcifUg7DqetGdrk+UAkDwAQWbA2pb2zia7y4/248rN/QOJYQyDHNwtzoUcj0CunQR8z9Yb39DFToVdOBSAg8ksG/jdR6uyju9G/4WeAYw9R2yshE/2QvVdgzVoOEckBhEDO8qcgBNteSp3f34srP/v/wj6tWID8riVvdO0zx+GZpdBGTQIAGOPrYIyaOEQ50HCROLAFsU3PA54zdG1vrDfZ7x03EzAsQNNhchCbFPl93eh7+Z/gtZ0dmhMODJK7F04BBSMgSisBAPqEWdBKRg1NDjRsxOs3IPbub5KT30PR9kLC7+uG19ebfGLWMAHDQnTR2iE4Nw0nXlc7un75XXiXmofmhAOTlE7zSWhjpkErT7a9Vu0y6MUsO5FNhJQBTzffg6Tnom/9j+G1ngp8Nv+WhIA+cjyi8x+GlpsPrbB86HOgrOWcbkTfG/8nnGsXAISGvNXPAdKFOXFWODlQVpJ2Ah3/9j/htp4LpCNvFuQiUlwIvXLqta3IpOfdVBPm6pZk5qz7YdWysC6lxj7RkBwEDIUAdB25D30CMhGHNWV2SHlQNvLj/bjyi+/Cu9w2RIMoN4vMmIfcmQuhV1RByy0IJQfKTokjOxHf8uIHfzAIQgC6ibzVn4SQHvTKaeHkQVnJj/eh7+V/huztDK3tNaYtgDluKoyRE7nzBimJN7yL+I7Xwjm5EBBWFLmrnwMcG+Z4Llqm1Hm9neh6/v8H2d8TWtsbnXs/zBGVMCfUsBZMluEyxzSTUiK25XfwLoQ0AZNMAl7rGdhHdkMUlIWTA2Ult70ZfW/+LLxrFwCkRN/GX0Ir5moqSp2UPrpe+THc1rOBdYbMvBwAEmb1khsmXBKbf4XElhcgPQ9C12FWLwUg4Z7aH0geNPy4racRe/uFEDOQgO+hf9PzMEZWhZgHZRvpe+h68QfwLreGdiMKAIkje5A4d4oTMKTEOX8svAkYINnf9hz0b3oegv1eUiA9F/1v/DTUCRgAcI/tht95mRMwpMQ+eSC8CRhgYHunBPo3vQB95Pjw8qCsIx0bPS/+a6gTMAAQ3/s2/EScEzBZiJMwaWYf3DpQAybsB4wknBP7YB/cEnIelC38WC/6XvtRqD8mSckb0t7Xfgg/EQs5F8oWfVteQ6Jpf6ATiP0Xr0BKIL7p5/Aunb32xIsXt+E1NyGx5QV4l84ivunngG4guurTgeVCw4ff25l8+jDsfoOUgGOjb/2PIV073Fwoa/Ru+h2cs8fCXbwxoH/764gf2RN2GpQlvK529G/4OdJeSFeVlJDxfvS98RNIL/haYDQ8xLa+CL+9OQPu24DE7tfhnBuqrSgp23mXL6B/4y/DTiO5HXpfN/pe/z+Qfvj/HVHmk1Ki542fw7sS3pPf1+t7+zdwmk+EnQYp4iRMGvk9HYjvfj3sNG4Q3/06/O6OD/4g3fNiO16DjPdlxEAKpITs60K8/s2wM6Es4LZfQN+29cGfyPfR13IJ0nEQf/PH8JqPI9HVjdilK0h0dcNrbkL8zR9DOg56Wy6xQ08piW1/ZaAGTCa0vT78rstINLwTdiaUBZwLZxDb83bYadyg541fwo/1hZ0GZbirOxfA8xD6BDiQbHsvX4B9eHvYmVAWcFtOwD2+Dxlx7Q6Ib/kdpMMFHHRnUvroe/uFjBjABgBIH17radhHd4edCWUB++RBOCcPZsY924DeDb/kAo4sw0mYNIpteyWj/oMEAEggtv3lsLOgDOe2nYVzbG9mXb9Swj64Hd7lC2FnQhlMSonu1/8NQ7aSdWAixndcJDq74XT3AwCc7n4kOrvhOy76Wi4BjoueTb8dmpwoaznnm+Ceacycm1EAgESi4R143ZfDToQymPR99Lzxb4DIrFsJacfRt+XVsNOgDOeePjSwdXQmtb3JItV+X3fYaVAGk56L2NaXkvWEMoiM9SGxP7Mm5Snz2Ef3wG9vyawxByQXo/rx/rDToAwmHRt97/wWoT89ez0p4Xd3IL6Pi+eySWbdOWUx59wxuOeOZlxnHtKHe+4YnLN8RJhuTfo++t/9bcZ15gEAQqD/3d9BZlhHjTJH4sgeOOdPDG3b6/vob70Mp+fGzrrT04/+1suA7wPSR+Lwbtjnjg9dXpRVkgMpL2Zm2wsgvvVltr10W/ED2+FezIytcG4gJWL7tsBpOx92JpShpGMnF85l0kDKVb6H2M4Q6yRQxrMPb4fs6ci4QWxAwj6wBV5Xe9iJUIby4/2Ib8/QRRKOjfjOIdhVgbJWrH4jZF8PMukJxKv6d74Br6cz7DQoRZyESYNMH0iBEIhte4mPqdEt2Ud2we9ozcDOPJKPCF88C+d4Q9iZUAby7QS6N7yAjBxIAQAh0P36v0H6XtiZUAayD26F7LmSsW2v29yUXFxC9D5+rA+9b/8u7DRuTwj0vPFvnESkW0o0vA0Z60UmDqRA+nBPHoB74VTYmVAG8vu7kdi7Mew07ii+/ZWwU6AMFd/9JqSTCDuNW5MS9pFdcC81h50JZSCvqx2xPW8hI/sNQHKB6OaXws6CUsRJmDRwzjRC9nZm5kAKkKyv0dsJ50xj2JlQhpFSIr4v8x8dj+/bFHYKlIHijfWQ/Zm5IgUAICW8y62wT3Mgm24kfQ+JA5vDTuMDCNaGoVuKH9wBaWfoQAqQHMhuPQu35XTYmVCGka6DxKGtyNh+AwAIgcT+d8POgjKQfXQ3kMkLe6QPr+VEsmg10XX8RAz2kZ2ZO14GAELLgr45hSG+f0tGdxsgfdgn9sPrvhJ2JpQCTsKkgdO0J3OfgrlKCDjH6sPOgjKM13YmOYGY4fwrF1kbhm4SO7AtC9peDbGDO8LOgjKM23wcMpHpe09LeBfPwu/pCDsRyiBSSsQObEdm340C0DTEDu0MOwvKMM6Zw4DrhJ3GnUkJt7kJfqw37Ewog0jpwzm2J7MHsQFAaHCO7ws7C8owzon9ye2aM5n04Zw8CGnHw86EMoj0PCSO1Gfe9rvvJwQSRznemw04CTNIfn8P3Objmd8hkhJu8wn4/T1hZ0IZxD62J+OK6t6S0JK5Eg1wr1xKrnLO+LbXR+JYA/xELOxMKIPYx/ZmSdsrYDftCzsLyiDuxWZ4HVmwytn3kWjcDenYYWdCGSTZ783wxRsAICWcE9yKl97jtZ2B7O8OO40PJn04x/dyK166gX20Hhm7ffT1fA/2yYNhZ0EZxDl7BDIb7uOlROLwLm7FmwWyYAQgszknGjJ+MeD12KGnq6TrwD6+P/Nn9YHkI5bH9rBDT9fED+3MjoEUAPA9xI9wEpGSZCIG9+zhLGl7Jexj9ezQ0zXJtjc7bh+kYyNxgoMplOT3dcNrOZn5izcG2FzRStexm/ZlT9sb70/+t0YEwOtsh3fpPLJi0EwItr10g3jjrqxpe/2eDritZ8JOgz5AdlxNGcw+vg9Z8YMCAJCwm/aGnQRlCOfsUcDNnhWiMhGD23wi7DQoQ8QOZfi+wtcTAvFDu8LOgjKEc+Zw5m/JcB3Z1zVw80z3Oikl4od3ZccEIpBsew/vDjsLyhDOqeyakPM7L8K7cjHsNCgDSN+De+pgFrW9GuyT+8POgjKEc6IhexbOSQmv7Qz83q6wM6EMIO04nFONWdX2Jo5xvDfTcRJmEKTnws+ywnN+50VIzw07DcoA3qXzWTOrDwAQAt6l5rCzoAzgx/vhd2VRnQop4bSehcyWDhwFyrvUnF1tLwS8dra9BPg9VyDjmV7L6DpSwrnAFYGU5LWfz4rdcK7HtpcAwO9qB7wMr2V0PenDu3gu7CwoQ7gXz2fPwrkBbHsJANzLF7JnAgYApM8nYbJANo0CZBy/81LW/aBAymTedM/zsu1HBYDX0Rp2CpQB3EstYaegznWya+KIAuNdbsmutlcItr0EIDvbXhnrhR/rCzsNygBee0t23bcJjW0vAQD8bKjD9T6y5wqkm0UTRxQY73KW9R3Y9tIAr/1C2Cko8zrauPAzwxlhJ5DNvDQ/BfM/Xt2Cl/YcRdOFy4haBhZNHou/+sgqTB1VltbzeB2t0MtGp/WYlH28y+n9Ufkfr23Fy3uPoqm1I3n9TqrEX374wfRdv1JyVQoBANz29Hbmv/vWbrxy8CSOX7yCqGlg4fhR+E+PLcOUipK0nse51AK9uDytx6TsIqVMa99hSPoN0k8OXtI9z22/kHyKK003d/+wcRdePXACTZeuIGoYWDhhNP6fx5Zjyoj0tr3upRZY46am9ZiUXaTnwu++nLbjDVnby4FAwsCYQxrb3m+/shkv1R+5dv0unjIWf/WRhzB1dDr7qMmFn3r5mDQek7KNn4hB9vek7XiBjzcAACTcy2x7CcnrQNPSto30d17fgZcbjqGprQM5poGFEyvxn5++D1NHlqbl+AAAz4Xf3QG9iGMOmYpPwgyC19Ga1i1Fthw9iy8+OB9v/Pln8ZuvPgfP9/Gh//Ez9CXSWLdD09I+eUTZx4/3Q8Z603rMrcfO4osPzMfr3/x9/PpPfg+u7+PD//CLtF6/fjdXVRHgXmxJdojSZNvJFnxu6Uy88pWP4JdffBqu7+Pj//Ii+uw0XmtCy8pV5JResrcTSGMbNiT9BgxsZcpVVfe8ZBuWvicJtp1oxueWzcKrf/QxPP/vnkm2vf/82/S2vRBpn7in7ON3taf1KZgha3vTvGCKspPX0ZrWJ2i3HD2LP1i1EG/+p8/ht1/7JFxPBnL9csyB/DRPJA/FeAMXftJV7qXmtNbx3Hr8HL6wci7Wf+2T+NVXPgrX9/HR7z2f9rbXzcIneO4lfBJmEPzOi2ntEL3wHz9xw5+/97knMOU/fgf7zrRi+bRx6TmJ72ddHRtKvyC2pPvVn/zeDX/+3meewNSv/0N6r19I+F3tfJLrHue2t6S1Q/TzLzx1w5+/89GHUff/+VfsP38RSydVpukskh0igpfmtndI+g0A4LmQvV0QBel9QoGyi3spvds5/eIPnrnhz//wsYdR+1f/kt62VxNc0UpZ2/bKRD9kIgYRyUnbMSn7pPve/ddffe6GP//j55/E5P/rf2Df6QtYPn18ek4itORYCd3T0t32Ds14w8B2ep4LoXO49F6W7rb3l1/+yA1//p+fXIsZf/6PaDjXhmVTqtJzEqHBu8K2N5PxSZhBkHY80ON39ycAACV50bQeV9qJtB6Pso90gr8GumPJ/z5K8tJ74yid9K4UoOzjJ4Jte3viyf8+inPT2PZKOST/3VFmC/oaCKrfALDtpeD7vT3x5DWW9raX/V7K6raX1++9TrrB/v52xa5ev2m+Zws4b8p80kkAQgR2/KDGGwAAnpv+Y1JWkU6wO7B0D4w5lKSz3ysE+70ZjpMwgyDd4BpmKSX+/JdvYunUKtRUjkjvsT1u53TPC7hTIaXEXzy/AUumjEVNZUV6j80OEQW4JZ2UEv/l5c1YPGE0qtNcjyvojhxlgQDbryD7DQAAn23vvS7ofu9/fuldLJ44Jr1tr5RAgHlTdkj2HYMZCAy67WW/l4LuO/zFv72evH7Hpvn69bz0Ho+yj+chyLY3qPEGgG3vvU76flp3Pbrp+FLi//n1JiyZVInqMWm+fnntZjROwgxK+rZkeL8//dl6HDp/Ef/yvq0a0iKNW0lQdgr6CvjTn7+OQ82X8C9ffDr9B+f1SwFeA3/2u3dwuPUy/tcn1qT/4Lx2KVv7DUjeLNC9LsC29zeb0HihHf/vcwG0vYH3eijjBdh+Bd32su9AQfr6/1mHQ+cu4l//8MPpPzivXQpwEDvQ8QaA1y8F6v9+fgMOt1zCP332ifQfnNduRuMkzCAEtUfkn/5sPV7bdwwvff1TqCwtTPvxhW6m/ZiUXYSmB3bsb/z8dby2vwkvffU5VJYEcP0a3Jv1nmcE04b9+e/exuuHT+GFf/chjCnOT/vxhcm2954X0O9v0P0GILg+D2WPoK6BP/vtJqw/fAovfOnDGFNckN6DCwHw2r3nJa/d9A9KsO2lIRHQfduf/nRd8vr9xqeDuX557ZJuIoi2N+jxBgC8fu9xQtMC20rvm89vwLoDJ/Db//AxjClJc78XADheltH4/85gGFZaDyelxDd+th4v7z2Kl//005hQUZzW41/DgcB7nghgEFtKiW/84nW8su8YXvrqJzG+vDjt5wAQ2CAmZQ9hpr/t/fPfvYPXDp3Er//wQxgfyECKSHvelH3SPZg2ZP0GILDJT8oeIoB+75//9m28evAEfvOlZzG+tCitxwcACBFIn4eyTJqvAba9NJSEbqS1NpCUEn/603V4ec9RvPJ/fxoTKkrSduzrceEcCcNI66r8IRtvACfACcmJuDRugy6lxDef34BX9h/H7/744wFdv5KL7jMcn4QZBL24AtDS9xV+/afr8G/bD+Kf/+AZ5EcttHX1oq2rFzE7jXUENA16Ufr3zKTsohWVp/2YX//5evxyxyH88xeeDu76BaAXpbdOB2Ufo2wUINLX9n7zt2/jhb1H8Y+feAT5ERMXe/pwsacPMSeN+6lqAnoJ2957nZbm9mtI+g0AIDRoeQEMkFNW0ctGpnVV4Dd/swm/2nME/+u5Ncm2t7sPF7vT3PZKCb0kgBpJlFW0wixtew0LIpqX3mNS1kn3fdvX/s9r+OW2A/iXP/wQ8qORYK5f6af9vzvKPum+dodqvEHk5HMBB6V93Okbv3wTz+9uxP/+zOPJ67e7D23dfem9fn0/OU5NGYvTu4Ogl4wE/PTtc/mvm/YAAJ74+/9zw+vf+9wT+OTy2ek5ie9DLx2VnmNR1hK5BYAVBex42o75/bf3AgCe+PZPb3j9e595HM8tm5WWc4jcQggrmpZjUfYyKsYgnY+2/2j7QQDAh//3b254/TsffQi/t6A6PSfxfZgVlek5FmUtrbAsuXgjTX2HIek3IDl5xBWBZFRUwj51OG2rWn+47QAA4EP/769veP0fPvYwfm9hTVrOASkHfjPoXpbuibihanv10pEQAW2HQtlDLxsN7+K5tNXX+Ne36gEAj3/rxze8/o+ffwqfXJHGvkPJyLQdi7JTusedhmK8AQD0cvYbCDAqxsLruJi2tvcHmxsAAE9/999ueP1/fnItPrGkLi3nAAC9fHTajkXpxzvqQdDS/KPS+S9/kdbj3Q47RCSEgF46Cl7r6bQd88r//rO0HevWBH9QCMDAJEwaH21v/dYfpe1Yd8KBQBKaDq2oAv6VtrQcb0j6DUKDXsZrlwCjYnRaFx+1/f0fp+1Yd8K2l4QZgcgrguzrSsvxhqTt1dj2UpJWMjKtBc67vv//pO1Yd6JzzOGeJ3LyIawcSDuWluMFP96AgbaXYw4E6GWjkM6Fn+3/8+tpO9ZtCY1PwmQ4bkc2CNm6vQE7RAQMzJCncTu9wAnBDhEBSK7GzjqaBr00O38zKL308jFp3U4veJJP0BKA7JzMEFYEWj630qOrK5uz6KkS34dWyns2AvSS7PsNFrkF3L2AIISAlm3379w5hgbo5aPTuvBzKGjF5RC6HnYadAfZNAqQcYQZgSgIppBdUER+MYQVCTsNygB62Zi0rmgNnPQ5CUMAAC2vACInu/ZIN8pGQ2jsENFA25tNHXops+8GmgKhF1dkWZFwAWPEWG7nRAAG2t4suxT0Ura9BGglFWmtxxU4IaCXZeGCKQqEUVGZZYuPuJ0TJRnZti2d0GCOqAo7C/oA2dUaZiBr0qzs6RQJAWty+vbKpOxmjq/Org6RbsCsmhZ2FpQBhBCIVs/PnutXCERr5oedBWUIc0IN0vloe+CsKIxRE8LOgjKA0DREps3OnrYXEpEZ88JOgjKEObE2qybARW4h9Gx88pfSThgWjLHTsqftlRLmxPTVN6DsZk6qS+t2ekHTiiugFXE7JwK0nHwYoydmz3iv9GFN4XhvpsuSX/LMZU6Zkz0deilhTpkbdhaUIbRoLozxM7KjQy80mJNmQph8iouScmoXZ0+HXkpEaxaGnQVlCC2vCHq2dOiFBmvKXAidJQQpKad2Ufa0vZqG6HT2eylJLx6RPU/1CQFr2jyIbOij05Awp87NnrZXN5P3mEQA9Iqx0ApLw04jRQLW9AV8gpauidQszJrxXhHJhTluethp0Adgz26Q9OIK6OWVyPzn2wW0sjEs0kQ3iEybnx0deunDms7VrPQeY1QV9JIsaM+EgDluGvSC4rAzoQxiTZ2XHR166cOaOifsLCiDmOOmQssrDDuNDyY0WJProGXZ1pUULGtaljyVKmVyoR/RAGPsNCAbFqMJDeakOgjDCjsTyhBCJCc2smLxEQBr6uywU6AMEpk8E8iGxWhCQ2TGfNaDyQKchEkDc9p8ZP7WIjJ7bjxoyBjjpkFEcsJO4wOJ3MLko6BEA4QQyJm1NPM79FIiZ+aSsLOgDGNOqM2KDr1WVA6tLMv2Q6ZACaEhWrc4C9peHzl1i8POgjKMOWlWFjwBLqBXjIVeVB52IpRBhG7AnJwF20FKnztv0E2sqXMyf/GREDAqJ0PLzYKFJjRkhBVNbvGVBW1vZAbHe7NBhl9J2cGaNBOwomGncWdmhPVg6CZC02HVLEGmP8kVqVvGLRnoJtHaxRk/kC1y8xGdxhVVdCNhWlmxKtCqXcYtGegmOTMzfAJcCGgFJbAmVIedCWUYLZoLc3Km1/OUsGqXhp0EZSBrRoZvBykEtOIK6CPHhZ0JZRgtvxhGptejlRKRmcvCzoIyUHTm8gxvezXoI8fBYB25rJDBrWD2EJEc5CxcE3YadxRduCYrnnigoRedcz9Epm7XMTCQwg4R3YqeX4j85Y+FncYdFax6FsLklgx0s8i8VZm7tYgQ0EpGJieKiN5HLy5D7qKHM3cgW0oUPPxRbslAtxRduCZzF3AIDfqIquQTO0Tvo5eMgFWdwU8iSono0ie5cI5uKWfp45m77lNoMMZOhVHFehp0M3PUOFgz5mfuJKL0kf/Ah8POglKUoVdR9jGnzYdWOirzOkVCQCsdxYEUui1hWshZ/mTYadyalMhZ8TSLQtNt5S54IFnrKuPaXg1m5SREq/lYMN2aFslFzqK1Yadxa1IiZ/lTEBq7iXRreYtXD9SGyby215pYg8jk2rAzoQyl5RYgOu/hsNO4NekjZ9lTfAKRbisydxVgZuAOHELAmDQTxqgJYWdCGUovLEVkzgPIuH7DgJzlbHvp9vKWPZ6ZCziEQKRuKZ+CySK8u04ToWnIWf505u11KWWyM8+BFLoDc2Id9NETM2t2X2gwxlfDrJoWdiaUwYRuoOCRj2Ve2wuJgkc+zs483ZE5bR60stGZNYkoBMzJc2CMHB92JpTBhGkhf9WzyLiaiEIg/6Fnw86CMpxVuwRaYVnGtb1WzRLoZaPDzoQymIjkILooA3fg0HREF2bowhLKGNE590PkFSCzJmIEInPug15UFnYilMG03ALkLs28Nk6YEeQuyby86PYyaMQ1+xkjqmDOWIjM+VERMKcvgMF9WekDCCGQu+LpDLoZFYBuIGfZE2EnQlkgMmEGItXzM+j6BXIXroJZwYLmdGdCaMhd8Qwypt8gBGBGMnOAhzJOZOosWBMza4/3vKVrYBSzoDndmdB05Kx4JnMWcAgBEc1DdN5DYWdCWcCcMgf6iHEZ1fZGFzwCLbcg7DQowwnDRO7KZ5AxCziEBpFfhOicB8LOhLJAdOYy6OWjM6rtzV35NLRobthpkILMuXqGiZwlj0MfMTb8/zCFBr2iEjlLOYhNqdFLRiB31cfDTmOARN7q56AXlISdCGWJojWfgJEJnSKhwRo/Dfn3ZegWf5Rx9PLK5GBgRhDIW/0pDqRQSoQQKHz896EXlWZA2ytgTZmJ3CWrw82DsoYxeiKiSx4PO40koSHvkd9n/U5KiRAaclb9HkROfvhtLwSMKXNgVi8OOQ/KFua4GYguyIQtIZOLPvMf+yzrd1JKhKaj4PHPJ3+rM2DxZ3TWCkSrWXYi24T9qz3sCN1A7sOfgsgvCq9TJDSIvELkrv4Ua2mQEmtSHaIZUKMgZ8VT3IaMlAgrguKPfAlabog3pEKDXlKBoqe/AKGxIDSlzpo2D5HZ94edBnJWfoj7uZMSLZqLoo/8+4Eb0vDaXmNEJYoe+zQLQpMSq2ZJRgwe5z74cejlfHqWUqfl5CP3kU8DhhHeYKAQ0EeOYx0jUhaZ+yDMqXPCTUII5D3ySejFI8LNg7KKXlCMwie/AGh6qG2vOX46cldwwX024p1KALScPOQ/9oVwVqcIDSInD/mPfxFaTv7QnpuGheic+waK5oV0/kVrEKlZEtr5KXvpBSUo+cSfQERDGAwUGvTCEpR84o/5SDDdlcj8h0MdDIwufRLW1LmhnZ+yl1FcjpKP/1FyJWkYbW/pCBR/5MsQVmRoz01ZTwiBnKWPw5wyJ7Qccu57FuaEmtDOT9lLLxmJ3DWfAbQQJmKEgFY2hos+6a4IIZB7/7MwJtQglC15hUDuw5+AOXbq0J+bsp4xsgqFT34x2ecNoe01Rk9EwaOf4aLPLCWkzJTNcIcfv+cK+t78GfyOC0N0RgGtdCTyHv4kNG7jRIMgpUSi4V3Ed62/+kKwJxQCQPJGOFK3NNhz0bDndlxE56//Cd6Vi0O237sxegKKn/kC9ILiITkfDU9S+kjs2YjEvk3JdnEo2l6hIWf5U7CmzQ/2XDTsuZea0fnbf4Xf3TFkba85biqKnvhs8ilIorskfQ/xXa/DPrgFyQHBoNteDdB05Nz3YViTZgZ7Lhr2vEvN6N/4M8hY79D1e8dOQ859z3ILPRoU6bmIbX0ZduPOoTmh0ADDRN6qj8McP2NozknDltN8Ej2v/RgyEQOkPyTntKbMRv5DH+MWelmMkzABk56L+K71sA9tC/xcVs1SRBet4WoUShu39Qz63vgpZLwvuE69EBB5Rchb/UkYFZXBnIPuOdKx0b3hBcT3bw3uJAOD5LlLViN/xeNcjUJp4zYfR/9bv4S048F16oWAVlCK3Ieeg146Mphz0D3Ht+PoWf9vSBzdE9xJhAAkkLfiMeQufphbkFHaOGePoH/T84DrBDigIqCVjEDuQ5+AXlQe0DnoXiMTMcTe/TXcc0eDO8nAornIwkdg1SzlFmSUNvaJ/eh/+wXA8wIdzNYrKpH38HNcsExp4/f3ouf1n8I9fzy4kww8cZN3/4cQqVnEtjfLcRJmiDinD6P/nV8NdOrT+JULARgmcu/7CB9lp0D48X70v/VLuOeOpXdl9sCxzIm1yL3/WQgrmp7jEl0ndng3utf9DPDctLe9IpKDoic/i8jE6vQdl2iA39+D/rf+DV7r6TS3vRogfZhT5yJn6ZNcSUVpJ6VE/MB29Lz5fPK6TeuAioDIzUPRk5+DVTUljcclSvJ7O9G/8RfwLp1HWp+Kudr2Vi9GzqK1EIaZnuMSDZBSwj68HYlrOxmkdzBb5BYid9XvQa8Ym9bjEgGA13UZfW/8FH5HK4JoeyOz70N04WoumqO0k9JHrP4txLavH7hnS2/bqxWWoeCx34fB2nHDAidhhpAf6012jA5tA5zE4A9oWojULIVVu5T1XyhQUkq4544ivncTvLaz1zozd2UgVh89EdG5D8ConMLZfAqU19OF/vq30L/n3eRE+CA79SKSg9yFq5A7dyW0nLz0JEl0C1L6cM80Ir7vbfiXW9LS9hpjpyIy6z4YoyemN1mi9/G6OtBf/xZiDVsB3xv0RKLIyUPuglXImbMcGrfAoQBJ34Nz6iASDe/Av9KWnrZ3XDUis++DMaIqvckSvY/ffRmJg1vhNNUPTITfbdubHAgXOfmwZq6ANW0+hMnaWxQc6blwTuxHfO8m+F3tg1uEJLTkgs9JdYjMuQ9GOXfcoGC5HW2I7dkE++geAINoeweuey2/GDnzH0SkeiEXbgwjnIQJgXQSsI/WI7H/XchYT/LFD+rcX/e+yMlHZNZKWNMWsAgpDTm37Szi+96Ge6Yx+UIqN6bXPiNgTqxFZM793HqMhpwf70esYQv6dm6AjPUlX9Q0wL/D9Xvd+1pBMfKWrEZO3RI+PUBDSkoJr/U0Eg1vw20eeNz9A9teMTB+IgEhYE6ahcisldBLRw1FykTX+LE+xPa+i/76Tcl9s4EPvn6vb3uLypC3eDWiNQshDG65S0NHSgm3+TgSDe/Aaz2VfFGp7dVgTp2LyMwV0IsrhiJlomuuLgC1G7cDjo0brs3bue761orKYc26D+akmXx6gIaUlD7cswMLQC+eS774geNl4mowoOmwZixI9nsLS4NPmOg6Xm8n4g2bET+wNbkA9Ppr83au6/fqZaORs2AVrMlse4cjTsKESPo+/M5L8C6ehXvxHLzW0/B7Om76nFZQAn3UBBgjxkEfMQ5acQWExv2vKVx+vB/exXNw287CbT0N7+J5wHNu/JBhwRhRBX3UeBgjx0EfUcXVqxQ66ftw21vgNJ+C03IK9rkTyULS76OXVMAcOwVW5USYlROhl45g7QEKnR/rhXfx3ED7ewZee3Nyu73rmRb0EeNgjByfbIMrxnLLRwqd9Dy4l1rgtJyC03IazvkT8Hs7b/qcXjoSZtVkmKMnwhwzAXpJBZ+YpdD5/T3JdvfiWXhtZ+C1tySf8LqeFR3o745L3rdVVPLJAQqd9Fz4Ha3J8YaL5+C1nXlvIehVQkArroA+cgL0EVUwKqogCkrY9lLo/L4uuG1n4bWdS445XG65aQGdiOQMjDcMjDlUVEIYXDBH4ZKeC/fiebitZ+C0noHbcgoy1nvjh4SAXjYa5piJMEaNhzFqPDS2vcMaJ2EyjJQ+4LmQnguhG4BucNCPsoKUEvA9SNdJ/mgYJmfuKWtI3wdcJ9n2GiZgsO2l7HC17b220optL2URtr2Urdj2UjaTvp9cPOd7gG4OjDlw0I8y341jDlqy38C2l7LEtX6v7yX7vWx77zmchCEiIiIiIiIiIiIiIgoAl5oREREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQCMsBMYDnKX/jHMnHwY0TxYeUUwovkwcvIRyTFhRgxEcgyYEQNWREc0x0R+1EBB1ERRjomCqIGiXBP5EQO5po58Sx/4d/LPUUNDxBCw9OQ/UV3A0jXoXgLCTUA4cQgnlvy3m4CM9cCP9cHv64GM90HG++D19cDti8Ppi8Hu7ofTH4fT3QenLwG7z0ai24bda8Ppc5DoTiAed9Hl+Oh1k/90D/z7u96pu/6OchZ/BWZOPszcwoF/F8HIyYcVMWDlmLAi+g3fVVGuiYJo8nspzk1+Z0U5JnJNHTmmjoKB7+nqP5Yu3vueNIGooUH3neR3ZPff8G+Z6Iff1w0Z74cf64Ps74Yf64PT0w+nLwanLw67px/uwP9OdCdg9zlIdCXg9Dmw+xzE+uyB70eiy/HQ5/nocgb3HRERERERERERERHR8MInYYiIiIiIiIiIiIiIiALASRgiIiIiIiIiIiIiIqIAcBKGiIiIiIiIiIiIiIgoAJyEISIiIiIiIiIiIiIiCgAnYYiIiIiIiIiIiIiIiALASRgiIiIiIiIiIiIiIqIAcBKGiIiIiIiIiIiIiIgoAJyEISIiIiIiIiIiIiIiCgAnYYiIiIiIiIiIiIiIiALASRgiIiIiIiIiIiIiIqIAcBKGiIiIiIiIiIiIiIgoAJyEISIiIiIiIiIiIiIiCgAnYYiIiIiIiIiIiIiIiALASRgiIiIiIiIiIiIiIqIAcBKGiIiIiIiIiIiIiIgoAJyEISIiIiIiIiIiIiIiCgAnYYiIiIiIiIiIiIiIiALASRgiIiIiIiIiIiIiIqIAcBKGiIiIiIiIiIiIiIgoAJyEISIiIiIiIiIiIiIiCgAnYYiIiIiIiIiIiIiIiALASRgiIiIiIiIiIiIiIqIAcBKGiIiIiIiIiIiIiIgoAJyEISIiIiIiIiIiIiIiCgAnYYiIiIiIiIiIiIiIiAIgpJQy7CSGm0Qigb/927/Fn/3ZnyESiWTV51WPPRhB5jVcviMiIiIiIiIiIiIiyl6chAlAd3c3ioqK0NXVhcLCwqz6vOqxByPIvIbLd0RERERERERERERE2YvbkREREREREREREREREQWAkzBEREREREREREREREQB4CQMERERERERERERERFRADgJE4BIJIL/8l/+S8pF2zPp86rHHowg8xou3xERERERERERERERZS8hpZRhJ0FERERERERERERERDTc8EkYIiIiIiIiIiIiIiKiAHAShoiIiIiIiIiIiIiIKACchCEiIiIiIiIiIiIiIgoAJ2HS7Otf/zpWrlyJT37yk7Bt+4b3YrEYnnjiCdx///1YvXo1Ojo67vj5q1auXImCgoKbPuO6Lj772c9i5cqV+JM/+ZMPPD8A/O3f/i0WLFjwgfneKtd0Cfs7+qAcgBu/pzC+IyIiIiIiIiIiIiLKfpyESaO9e/eitbUV7777LmpqavCrX/3qhvdfe+011NXV4e2338bHPvYx/O3f/u0dPw8Amzdvxvnz5zF9+vSbPvPSSy9h7NixePfdd9Hf348f/vCHdzxeT08PDh48mFK+78/1Jz/5ybD4jrZu3fqBOVz/PYXxHRERERERERERERHR8MBJmDTatm0bHnnkEQDA2rVrsXXr1hvenzp1Kvr7+wEAnZ2daG9vv+PnAeBb3/oWPvWpT93yM+8/34svvnjH4/3DP/wDvvKVr6SU7/tzraioUP06bins72jr1q0fmMP131MY3xERERERERERERERDQ+chEmjzs5OFBYWAgCKiopu2p5q8uTJOHjwIOrq6vDjH/8YEyZMuOPnu7q6cPr0acyfP/+Wn7nV+W53vK6uLhw4cADLli1LKd/35/rMM88M6rtJ5Zy3Om8Q39Gdcnj/9xTGd0REREREREREREREwwMnYe5Ca2srVqxYcdM/Ukp0d3cDSA7el5aW3vD5WbNm4cSJEyguLobrutiwYcMtP3/Vd77zHTzyyCO3/UxJSclN793us9/5znfwR3/0Rzcc/1bxV/3oRz/CAw88gIMHD+Kv/uqv8Nd//dfD5ju609/7/d9TkN8REREREREREREREQ1vnIS5C6NGjcLmzZtv+uexxx7D66+/DgBYv349li9ffsPnv/a1r+FP//RPsXnzZnzve9/DiBEjbvn5q44fP45t27bhm9/8JpqamvAXf/EXN3xmyZIlN8Q/9dRTtz3e8ePH8d/+23/D2rVr0dTUhP/+3//7TfHvP//VCYfi4mJ0dnYOi+9o+fLld/x7v/97amxsDOw7IiIiIiIiIiIiIqLhjZMwaTR37lyMGjUKK1euxOHDh/Hss88CAP7wD/8QAPDJT34Sr732Gh544AH85//8n/E3f/M3d/z8T37yE2zduhXPPfccfN9HeXk5nn322WvvP/nkkzh37hxWrlyJnJwcfPazn73peNcfa926dVi3bh2mTp2Kb37zm7fM93a5fvWrXx0W39HSpUvv+Pd+//f03e9+d8i/IyIiIiIiIiIiIiIaHoSUUoadBBERERERERERERER0XDDJ2GIiIiIiIiIiIiIiIgCwEkYIiIiIiIiIiIiIiKiAHAShoiIiIiIiIiIiIiIKACchMkAP/zhD1FcXJyWY50+fRpCCBiGgebm5hveu3DhAgzDgBACp0+fvuG9F154AQ888ACKioqQn5+PWbNm4a//+q/R0dGR9hzv1mc/+1kIIfClL33ppve+/OUvQwiBz372s9dea21txX/4D/8BkyZNQiQSQVVVFZ588kls2LDh2mcmTJiA73znO0OQPRERERERERERERHdazgJM0yNGTMGP/7xj2947Uc/+hEqKytv+uxf/MVf4OMf/zgWLlyI1157DQcPHsS3v/1tNDQ04Cc/+clQpZySqqoq/OIXv0AsFrv2Wjwex89//nOMGzfu2munT5/G/PnzsXHjRvzd3/0dDhw4gHXr1uHBBx/EV77ylTBSJyIiIiIiIiIiIqJ7DCdh0mDdunVYsWIFiouLUVZWhieeeAInTpwAAGzatAlCCHR2dl77/L59+649jbJp0yZ87nOfQ1dXF4QQEELgL//yLwEAV65cwe///u+jpKQEubm5ePTRR9HU1JRSTp/5zGfwgx/84IbXfvjDH+Izn/nMDa/t3LkTf/M3f4Nvf/vb+Pu//3ssW7YMEyZMwOrVq/HCCy/c9PmwzZs3D+PGjcOvf/3ra6/9+te/RlVVFebOnXvttatPxuzcuRMf+chHMG3aNNTW1uKrX/0qtm/fHkbqRERERERERERERHSP4SRMGvT19eGrX/0qdu3ahQ0bNkDTNHzoQx+C7/sfGLts2TJ85zvfQWFhIS5cuIALFy7g61//OoDk9lu7d+/Giy++iG3btkFKicceewyO43zgcZ966ilcuXIFmzdvBgBs3rwZHR0dePLJJ2/43E9/+lPk5+fjy1/+8i2PE/YWZLfyuc997oYJpu9///v4/Oc/f+3PHR0dWLduHb7yla8gLy/vpvhM/DsRERERERERERER0fBjhJ3AcPDss8/e8Od//dd/xYgRI3D48OEPjLUsC0VFRRBCYNSoUddeb2pqwosvvogtW7Zg2bJlAJITJlVVVfjtb3+Lj370o3c8rmma+NSnPoXvf//7WLFiBb7//e/jU5/6FEzTvOFzTU1NmDRp0k2vZ7JPf/rT+LM/+7Nr9W+2bNmCX/ziF9i0aRMA4Pjx45BSYsaMGeEmSkRERERERERERET3ND4JkwYnTpzAc889h0mTJqGwsBATJ04EAJw9e/auj9nY2AjDMLB48eJrr5WVlWH69OlobGwEADz66KPIz89Hfn4+amtrbzrGF77wBTz//PNobW3F888/f8PTIldJKSGEuOs8w1BeXo7HH38cP/rRj/CDH/wAjz/+OMrLy6+9L6UEgKz7exERERERERERERHR8MInYdLgySefRFVVFf75n/8ZY8aMge/7qKurg23byM/PB/DexACAlLYTu/7z73/96uTCv/zLv1wrUH+rJ1nq6uowY8YMfOITn0B1dTXq6uqwb9++Gz4zbdo0bN68GY7jZNXTMJ///OfxR3/0RwCA733veze8N3XqVAgh0NjYiGeeeSaE7IiIiIiIiIiIiIiI+CTMoF2+fBmNjY34T//pP+Ghhx5CdXU1rly5cu39iooKAMCFCxeuvfb+iRDLsuB53g2v1dTUwHVd7Nix44ZzHTt2DNXV1QCAyspKTJkyBVOmTMH48eNvmd/nP/95bNq06ZZPwQDAc889h97eXvzjP/7jLd/v7Oy89V88ZGvXroVt27BtG2vWrLnhvdLSUqxZswbf+9730NfXd1Nspv6diIiIiIiIiIiIiGh44STMIJWUlKCsrAz/9E//hOPHj2Pjxo346le/eu39KVOmoKqqCn/5l3+JY8eO4ZVXXsG3v/3tG44xYcIE9Pb2YsOGDWhvb0d/fz+mTp2Kp59+Gn/wB3+AzZs3o6GhAZ/61KdQWVmJp59+OuX8/uAP/gCXLl3CF7/4xVu+v3jxYnzjG9/A1772NXzjG9/Atm3bcObMGWzYsAEf/ehH8aMf/ejuvpiA6bqOxsZGNDY2Qtf1m97/x3/8R3ieh0WLFuGFF15AU1MTGhsb8d3vfhdLly4NIWMiIiIiIiIiIiIiutdwEmaQNE3DL37xC9TX16Ourg7/8T/+R/z93//9tfdN08TPf/5zHDlyBLNnz8a3vvUt/Nf/+l9vOMayZcvwpS99CR//+MdRUVGBv/u7vwMA/OAHP8D8+fPxxBNPYOnSpZBS4tVXX1XaNswwDJSXl8Mwbr/z3Le+9S387Gc/w44dO7BmzRrU1tbiq1/9KmbNmoXPfOYzit/I0CksLERhYeEt35s4cSL27NmDBx98EF/72tdQV1eH1atXY8OGDfhf/+t/DXGmRERERERERERERHQvEvJ2xUeIiIiIiIiIiIiIiIjorvFJGCIiIiIiIiIiIiIiogBwEoaIiIiIiIiIiIiIiCgAnIQhIiIiIiIiIiIiIiIKACdhiIiIiIiIiIiIiIiIAsBJGCIiIiIiIiIiIiIiogD8/9uzYwEAAACAQf7Wo9hXGkkYAAAAAACAgYQBAAAAAAAYSBgAAAAAAICBhAEAAAAAABhIGAAAAAAAgIGEAQAAAAAAGEgYAAAAAACAQf+MrH9Sd07XAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmEAAANSCAYAAACdtWp+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddbgVVRfG30P3pUFCSlIECVEQkVCQUhpFFAQUpEVFkBRJJZWUkkZKQFpppLuR7o57uXC5ub8/1jdOnrrBBXx/zzPPmdl9zpk5Z2a/e63lUkopEEIIIYQQQgghhBBCCCGEkFglQXwPgBBCCCGEEEIIIYQQQggh5FmEIgwhhBBCCCGEEEIIIYQQQkgcQBGGEEIIIYQQQgghhBBCCCEkDqAIQwghhBBCCCGEEEIIIYQQEgdQhCGEEEIIIYQQQgghhBBCCIkDKMIQQgghhBBCCCGEEEIIIYTEARRhCCGEEEIIIYQQQgghhBBC4gCKMIQQQgghhBBCCCGEEEIIIXEARRgvKKUQFBQEpVR8D4UQQgghhBBCCCGEEEIIIU8RFGG8cP/+fQQEBOD+/fvxPRRCCCGEEEIIIYQQQgghhDxFUIQhhBBCCCGEEEIIIYQQQgiJAyjCPMXs2gXUrAkcPRrfIyGEEEIIIYQQQgghhBBCiJVE8T0AEn3KlJHXY8eAM2fidyyEEEIIIYQQQgghhBBCCDFDS5g44uFD4PXXgX794r6vs2fldeZMwOUC1qyJ+z4JIYQQQgghhBBCCCGEEOIZijCxyNGjwC+/AFFRwLRpwNatQJ8+wHvvAXv3xl2/LhcQGQl89JEcV6tmLxMebj6ePBl4/30gLCzuxhWfXLsGHDz4ePu8cQOYMAEICnq8/RJCCCGEEEIIIYQQQgh5MqEIE0OUAiZNkgn/F18EWrcGfv0VuH9fL7N0qe46zEp4OLBnjwg3Tly5AkRESH737sAffziPwdiflWPHgHTppL5Gq1bAb78BM2Z4fYtxzpEjEttm9273ZYYNA8qX9/w+jTz3HFC8OHD8eOyM0ReqVQPatAHat5fj8HDgwgUgNPTxjYEQQgghhBBCCCGEEELIkwNFmBiycCHw6acy4a/RsqXdCiMy0rl+y5ZA6dLAjz/a83buBLJnB+rWFcuVwYOBd991bufuXfPxrl36fp8+wIMHUt+KZrXRpw9QqBBw+7Zz++7YuROoUgXYt8+/ekbq1gVWrABefdV9ma++Av7+Gxgzxp4XFAQUKwb07CnHY8fqeRs2RH9c/qAUsH+/7C9aJK8NGwK5cgHJkgGnT3uuv38/UK+eCGaEEEIIIYQQQgghhBBCng0owkSDM2fE9RSgT7xbmTXLnjZ7tlhGGNEsUQYOtJfXBIdly4DPPtPT582TSX8j+fObjzdt0vdTpND3O3Y0CyZ37gClSknsmhMngB9+0PP++EOsZ8LCgFu3JO3UKRFErl2T41dfBdatA955xz5+TxjHf+qUvLqzBjKyb59d8JkwATh0CBgwQI7btdPzHj3yb1xOXLli/7w15s4Vd3AJDFdSokTyumSJnjZ0qOc+3nwT+P13oEgRc7o78S42uHpV/x4JIYQQQgghhBBCCCGExD4UYfzk9m0gXz4gSxaZnN+xw/e6H34olhGHD4t4MW+ec7k9e4A8eYDp053zGzcG/vrLnGadrD91SkSNdeskPo3Gzz+brUP69zfHq9HEFkCsbgYPBpImBTJlkjY/+khcg1Wtao4nc+OGCBXnzollysqVQOfOQNu24k7NyPLl0t6wYfIZJEmi54WEOL9njXnzgJIlReAoXFgsaGbO1PPPnDGX91eEuXQJKFAAGDlSjmfPFmukxo3l+P59EUu0cX7wgb0NTYQxYo3JA4joVb++iEpOcWQ2bwYCAkRkim3Cw4Fs2cRtm69xga5ckZhHDx/a84KDga5dxTKKEEIIIYQQQgghhBBCiPBUizCbNm1C7dq1kS1bNrhcLixevNiUr5RC3759kS1bNiRPnhwVK1bEkSNHYtSncZI/e3a7GOILL70kk9XaxD6gT8Jv3izuyc6d89zG+vWe88ePF/dcVarY81wu9/WmTBHLm+Bge17+/MD27bJ/6BDw/PPm/CVLRDwKCABq1ABGjQLGjRM3YoAuXNSqJWLWV1/JZ2CMmZIihXym3bvLOEeNMotEGnXqSLyXmjXNrt8+/NBcLiRExIPixYGCBYGtW92/dwDo0QM4eRL44gs51qxq5s8HOnUC0qQRt2FGaxsrvoowDRqI67KSJe15ly4BFSqIG7k2bTyPOToYRR9frWEqVpSYR998Y88bMEBc6nlyKUcIIYQQQgghhBBCCCH/NZ5qEebBgwcoXrw4Ro8e7Zj/ww8/YPjw4Rg9ejR27dqFrFmz4u2338Z9X6O7W9i4UYLIxxW//AIsWOBb2UGDol/GaplipXZtZwsPK9evm4/r1nUuV7Ei8NZbIrAY3Z254+OP9fg1nTuLuzRfMQo6gIgfffuKUPPPP8Drr4vA5WTNAdjFJ2O5n37S96dOBS5edG7j+nVx5WYdh8bPP4sl0eHD7t9Hx47O6WfOeHdRFhQk59LNm+Z0o0s1o/WLNZ6QxurVZtdvJ0/K68KF9rJHj3oeEyGEEEIIIYQQQgghhPwXcSnlLtrF04XL5cLvv/+OOnXqABArmGzZsqFz58745v9L90NDQ5ElSxYMGTIErVu39qndoKAgBAQEYNmyQNSqlSauhv9YadkSmDw5vkfxeOjYUaxurDF6cuUyWxstXSoWPBUr6mmbNok1SmzQoIFY0wCeLZEAEcms1jRKidu1jz4Sa5/WrcXa6f59sWTZskWEnj/+EPdzq1YB5crpVkhKyRhOnAB275Y6efJI3pYtIk7t3Alkzgzkzg2cPg288ILk9+sH9OqljztDBrPbOkBi4mi/JNZflMhIIGFCnz8qG99/L5ZfixYBadOa85YsEfdxhQtHv/3YwOk7I4QQQgghhBBCCCGEkKfaEsYTZ8+exbVr11C1atV/05ImTYo333wTWz34pAoNDUVQUJBpA8SF1rPCf0WAAcQqJHFie/r58+I+q1cvEVvee88swACxJ8AAvsddAYCvv7anrVsHfPed7M+aJWObPVtEl127RFxp314smFatknLaaX7lCjBjhogYR46Iu7natfW2e/eWOEevvqoLM6dPm/ONaNZGDx+Kq7SffrILLxrr14u4NXWqHCslY4iIcHbRZuXwYel//Xr5rgCp+/bbIgrVqQMUKSKfiTcLr7hiyxYgdWqzpRQhhBBCCCGEEEIIIYQAz7AIc+3/gS6yZMliSs+SJcu/eU4MGjQIAQEB/245c+aM03HGN2+9Fd8jiFt+/VUEFye6dgX69xerkrhm6VKJj+OL3dmIEfa0KlWAU6fc14mKkvdq5dAhiV3UrJme1rCh2RXaunXmWEdnz9pFI6PrOc1l24QJsnXqZC5rbKtePYlr06KFuD0rVgwoWlTEniRJRLw4cMC9SLV/v73dH36wx2Jq2hR48035fK9fl+/W3ed1+DDw55+y7+n7mDNHPhsnjPUaNQIePbJ/DtFhxw7gs8/slkYxITzc/TVACCGEEEIIIYQQQgiJW55ZEUbDZfH9pJSypRnp3r07AgMD/90uugv84QYnq4vo8txz/tfxFnjeypo1EoPlWWb9es/5x48/nnG0bQt8/nnctN2woXN6sWL+t5U3r9lSBnAWNNwJBfnyicszQNyUaXz0kS7+XLokr8HBwMsvA4UKAeXLA5cvS/rFiyIeaBY0gC589Ojh3O/WrcArrwBZs4qVU/78UtYomISHAy+9JDF5evUCMmWS2Dcap0+LO7cTJ4AmTUT8sgpE/fsDOXIAFy7o78GJsDCx1nG5RED6v1GdR157DZg4EWjXzntZX6leXVzMrV0be20SQgghhBBCCCGEEEJ845kVYbJmzQoANquXGzdu2KxjjCRNmhRp0qQxbf6QPr19Aju6JE0KTJniX53XXvOvvMsVOyv445Nq1QAPX+kTxYQJcdPuyZNx065G+fLm427d3IsPgIghhw8Dd+7oacuXuy9/9qzEr8mRQ8SU558XyxajJcqDB97HuWeP+XjgQGl3+XI518uW1fP695d4Qe+8o6e98ALQvDkweLC5nJFevcTFW65c8rk7abq3b5tdGObLJ27ZfLVw2bfPt3JWGjWSfo3Ckya+jBnjf3vXrwMhIdEbCyGEEEIIIYQQQggh5BkWYfLkyYOsWbPiT83vEICwsDBs3LgR5cqVi7N+06WTQOaxxSefyEr95MnFTVWhQnpesmSyYr9vX5ksjYjwHvTdiBbzJDJST3NyT9a2bbSG/tgoVMjuVqpUqfgZy3+FIUO8x0B56aXotf366/K6bZs5PTAweu1dvw60aiX7VpHGHYafDUyapO8bXa0BQIECzhYunTub29Bo2lTOVaV0gSoyUlyfGcVQLe6OJ5SSeDS3bok7upAQYP58EZzOnrWX9ycuESBWSVmzihWNJ9q1k9hAvrjaI4QQQgghhBBCCCHkv8ZTLcIEBwdj//792P//wBFnz57F/v37ceHCBbhcLnTu3BkDBw7E77//jsOHD6N58+ZIkSIFmjRpEu0+69bV9994w76yPWdOca90+7asqPeGOzdSWluAuE56+FAmdseP1/P/+Ucmgfv0ATJnBhIm9NzX22+bj3/7TV6NIowW1F1j/XpZQe9pnIcOee43puTO7RzvRCM8HChRwpzWurW4kopvouMOjDhz4ICzsOGNBg0AD2GgAEhMFyOaWzRAYtlo+OJObtAgYOZM57zVq4EFC4AvvwQyZBArncGDxfWZUdTyRTCZMUN+gzJlEhdy9+/reZ98Yn9P4eHe2zSiWdDcuGHP69NHXMUFBwNjx4qFl1GsIoQQQgghhBBCCCGECE+1CLN7926UKFECJf4/A9+lSxeUKFECvXv3BgB07doVnTt3Rtu2bVG6dGlcvnwZa9asQerUqaPVX+rUwMKF4i6pZUvg999lIvX+fSBNGnE3pLmbSp9eAo97oksXYPZs57zKlc3xMDTefFNiUVy8qIs03ihUSFbrr1ljTv+/xza88ooIPe3bi5BTv76kDx8OVKwo+xMnymSx1RIAkEDrVhFEI08eGbNGunTO5ZyMk2rVks/ozBlzYHkryZPLZ9W2LTB5snymrVrJuOKaZMnc52XMCHTv7r2NRYvi3p3Ys0LVqnHTbvLkYlXihCZmREXZryGnst9+67lMo0Zi1QaIm7cBA+xlrl0Tq7ZKleznhiamTJump50/b3bJt2mTuE1zqgfI+3D3fp3Yvl233Nm9W6z9WrQwu4j77DPf2yOEEEIIIYQQQggh5L+CSyk6kfFEUFAQAgICAAQiKiqNX+6+zp0TceLjjyVA+ccfA998I6v5X35Zj/swejTQoYO5bky+FesYBw+WfgERh7SV/e76iIyUSeDs2X1rXymgdGlnV0+3b8tq+Xz55LMYO1ZEHyPZs0v8kGrVgJ079fRTp6SeU7/HjgHLlslk9tq1ZjdtGsWKxZ6VTsKEZoshjfv3JabI33/b83r0AF58UawcPHH8OJAihcRBsfLXXyJcVajgW0wUEn0yZQJu3nTO27jRLCa648wZsUqJTZInF0s4ANi/X4SZVq0kXs7evZ7rzpgBfPSRfqyUXJMZM8rxypXmmDiAiMtDhwLFiwPjxunpuXOLm7PVq/U6p0+br1Hjb8rmzcDixXL+HjkiQqkn0dId69aJQDxunG/fASGEEEIIIYQQQgghTxIUYbxgFGGUSuN3/chIs5uwW7eAn38Wd0HGWAuPHsnk6vbtchwbIsxXX0lslMaN9bQzZ4Bhw4CuXSWweHQYOhT4+mvZ379fJmvLlAF27ZK0zJmB116TmCBaUPP794GUKcWK6I03zO1p7/XePd1Sxmly2CjC+PL5WMUil8u3elWrSv/G7y1LFoktYuTkSQnkrpRMTFevbs5/9Egspz780HN/x44BadMCzz1nz9u2TT7LyEggUSLvY/eEr++fPHncvw+kSiXX2sGDkvbyy3L9+YNSIvoVLmxOM+JJaN61yyyi7ttntoJTCpg+XYRmq0u29OkllpAWn8dXtPEUKCAxsAghhBBCCCGEEEIIeZp4qt2RPQ1Y47RkzAh895092HWyZLEXw2TdOhE/hgwB3n/fPKmaN6/EeImuAAOIuKMFFy9eXNI012aAuEpbskQXYABx5ZYggUzYurOwSZtWxI8lS+wCDCCWCgBQp45v4+zTR9//4AOZfO7eXRc7rKKJRqVKMlYjy5cDOXKIZcHvvwMbNogAA8jnW60aMGWKWK6MHy8WFUmTuu/DSMaM8vk4kSKFvCZMKO7WYsLRo/7X+eCDmPVJYofUqeU80wQYwH8BBhDRJCjIfX5UlOf6lSqZj2/ftpdp1sw5Js6dO8Cnn8p16Inr13VhKCRET0+c2FwuIkJEmR9+EFdoFBgJIYQQQgghhBBCSHTxd25p40bfy1KE8ZEWLeK+j+7dgW7ddIuS6FKpkrjCsgoJccmYMeIqaNEiz7FwUqYUl0ZRUcD8+bJv5J13gHffda67caNYlWiu1bxRrZq+37u3rKQfOFCCrp8+DfTs6VyvdWt7WqlSIi41bSoikNUtkssl1k1Vqkh9zd1TunTmiXONFSvkNVcuKauJLRq5ckmMoQIF9LQxY8Ql2eTJ5rLFijm/D42sWeX8NbpsS5nSHHzeHV98AZQtqx/nzy91jeTLJ+70tm3z3p47atf2LgD4i6/nyX+JkiWBwED92CrGhoZ6rh8cbD6+dct8rLlN88SNG/r++fNAp07678DEiXK+fv+9HL/1ll7W6o7vo4/knP7mG6kXHVGKEEIIIYQQQgghhJBOnSS2ubtQBQCwfj1w4IDsb9yox1L3BYowPmJdhR0XpEwJDBok8VWeNnLmFOuQunW9l02cWESLBg3sFkGeKFxYVti/9ppv5VOl0veTJtX3XS6xCDK6/3rvPXkdNkx3ibZunVi7/Pmn72N04qWX5CLWiIoSC5l798Q9nDYmI8ePi0hijaGRIoUEdq9cWY7feguoV89z/1ev2oWbF14AsmUzC367dgG//WZ2F5Uli7iQe/QImD1bgrkbrSE6dxa3bD/9JC7p/CEsTN9v1Eg+g+gIkLNn6/ua9VWhQhILidipWlXf166lkSOBCRPE0ssfDh82H/sSD8coDterJ+eOdj5/9pm89ukjLvi2btXLnjtnXpEwd6653fPnzceRkbIpJeevlagooFcvXRAlntmyxfx9EEIIIYQQQgghhDwr/PSTzC2tXm3PW7FC5i0rV5bwAIDMg/sDRRgfiWk8DvL4cSfCaOTJAyxdKhYcc+fKa+fOen6lSiIwGFfjRxejhYAmuAQEmCekNUuV1q1FfLFanGikSgWsXSuTy3/+qbtpA4BateS1Zk09to0RzcqoSxd5LV1aLAiuXJH9Ro3EvZOG5mYuaVJxTZY5s7hd+/ZbcW01YoT+fhIkEDXY07UyebL8mCklYty9e8CmTXrcnNKlJW/8ePdtaMycKd9Pw4ZSf9w4cZU3a5b/P4RG+vaNft2njd9+A/7+Wyye2rRxtgLzhNHlIGCPm+SEyyVxserWBfbulbRz54Dmzc3l+vWz102QAPj1V+d269bVY8ZERMifYooUUid5cum3ZUvJ/+MPcfHXv79cKxERkj5woAikmkB486a+wmH+fLPotHWrWNQdOeLZXNUoNrojPFxeDxwQ8TeuMbp584XgYInl9frrzoIWIYQQQgghhBBCyNNEcLB4PurRwzyvY/Qgo1Gzpvk4PNx/gw2XUvSk74mgoCAEBASgU6dAjByZJr6HQ/zg2jXd2uX6dREQ4osWLYCpU8UC5eRJ5zJXrgCLF0tMDXcCjBMhIbro0q6dmMZVrWq3ogFkQvjkSaBIEc8B2FeskPqahYI/hIRIIPksWex5UVGe+9U4fVqPueNEnjy6FZEnfOnLyu7dj8ca7YMPgDlz4r6fZ5HJk3VBxcrVqyKWvP22+3yjFRwgsar++gvIkEGOlywRqyxNZOrTR2J5AcDzz4v7vDFj9PqjR8u1Z+Xvv+UaGjIE6NjR2UXkpk1SZuhQEcMAOV64UOJkxTY9ewIDBsjYypUz54WFATt2iIWU8Wbi0iWxdgSAu3fjZlyEEEIIIYQQQgh5dggKAtJEYyp93z5xUz9woDm0gj/cuSPzq82bA/XrO5eZOFH3yLJtmx6OYeRImfcZNUoWsadIYZ9TvnEDmDRJFqn7qqxQhPGCJsJ89VUgfvyRIszTxMOHuphx/77ZMuZxExgoK/gbNACyZ4+/cTxOjALIZ5/Jj5910tcT58+LJcJ33wHLlpnzcuUS6wlfx5A8uUyCDxmi540YoU96G1FKLI3SpRNF3MoffwCrVpkn4aPDhQvA0aMSByk2WLNGrJCiI5z9l7h4URcUjNStC/z+u+yPHg20b+97m1mzirhjZOlS3c0hIDcerVuLhV316np6njzO53KjRmKpFNto18SrrwLbt5vzWrUSgatjR7nZ0Dh/XncdefOmHvOKEEIIIYQQQgghxMrixTLP0revLGz1xsmTEs/722/Fy8+FCzL3d+SIiCDGOcahQ4EFC8TTTkCAc3tZsugxiSMixBuKFaMIY2TYMJkXOntWFuKuXAm8+KL7sfuqrNAdmY/QHdnTR4oU4q5r1ar4FWAA+VHo1Om/I8AA8oMJyI/ohAn+CTCA/NiWLi2ihxVr/A93aIr5wIESI0aLh1KkCNChg7hYcqJKFQlibyRPHjE3rFVLfow3b9bzNDdvVipU0PdffdWclyQJUK2ac71Bg5zTAWc3XfPmieVHpUp2wYqYcRJgAF2AAfx31xUWJis82rYVcW7WLLMAA0j+jz8CNWqYTVudrGMA+U6vXZP92HABdu2amNpqON2AaLGjfvpJrg/NTZuxf1/cqxFCCCGEEEIIIeS/i+buvm9fCQFhDNNgJSwMqFNHyr3+uj6feP68zOda449//bV48Rg1Cjh1SubbFizQ80+f1gUYAAgNde7X3Vzx3LkiwAAylt693Y/dHyjC+Ii/ft7Ik8Fbb7mf6CZxS86cogZrbpxiglVx9tUd0pYtIuJoVg0zZohJ4+rVMgm9aZPnGDDXrsmq/+rV5UfcKMYaRZqoKOc4NOvWSd2vv7b/uCdJYj5+4w3gzTflz6dbN/djMo6hSRMRgxo21NOsfiqdsPZNzHz9tX/l79wRoXXcODnXmjb1XP70aRH0HjxwL8IAQNGi4hYteXLg/fclLSoK2LPHLIbcv++5v8uXxQVb6tR6mpMIY2T0aPnfa9pUBCQNX0WYGzd8cxlICCGEEEIIIYSQp4czZySOilHosBIVpe9/8IEsTLcSFCTzc9myiacYwHl+Y8kS5z6CgiQ29M6dMi8WFiaeRgYMMJfT4vBq+5rI425ubNcu8/HChc7l/IUijI9QhCEk/li3TgQULZZHvXq+1cuQQSxXNOEic2aJiZEjh17mww/1fau1TpYsEk9oxQp7fJkUKfT9+/dFQDl7Vo8rAshE94oVwA8/2Cfbtd+UKVOAb74BNm4UIUdLv33bLiCWKmVuZ9YsoHx5+/tevNhzXKH9+93neWPgQDHZ9JdvvjF/Zv9lSpWSP/tUqYBbt9yXu30bKFNG9n/7TW4mxo0TC7HmzSV9xgxxdfbFF2JhM2WKxG0xsny5ve2ECYE2bUTg9LQiZdYsfQyArDIJDXUOVGckSxYgXz5xXwaIiW/Fip6tjOgclRBCCCGEEEIIebKpUEHmhozzaVaMIgwgcxcaDx/KoummTcVF/+3b3vvcu1fKjxunp+3ebbZySZZMvNhMnWquq3n5AGTuLlcumeMbPNh7v1ayZvW/jgZFGB+hOzJC4o/MmeXHdts2cek0fHjstf3CC8D48UDx4sAvv9jzPVkqaGjumnLnNsf7MGIVcTTF/ZNP5Iffmp8+vbjS27NHYnRs3ChWL76M5733RBj66Se9b6N1hjufmb7QvTuQN6//9QYPFndY69d7tvT5r3Hvnu9lt24VSy4AmDNHxMiPP5bjkSNFcGzZUs6dr7+Wm4vDh+VmxUrChOIm8OhREQp95e23xc1f2rTuhRijmHL4sFgKTZwo53CvXrLS5coVc/mqVUWkCQ2VcnHt9uxxCj5hYf67uCOEEEIIIYQQQp5ELl+W1/Xr3ZexijBGseTDD8UbjFP4AXeUKiWLRNu21dM2bpR5Mw13z/n79un727bp+7t3+96/RkyMNCjC+AhFGELin1y5xNQwJiKCE61bi3WIp0BbTowaJVYIP/9sTmvbVvxTGqlSxXzs6w93yZLSZoUK4pbKFxEGEOHl88+BRYskaHyLFnqer59ftmz6fuHC+mqCV14xl3Nnwjlhgli/jBmjj6liRYl5c/Cgb/1fvSp/3k5Cwn+N+fOBpEn1Y2McG0BWkmgMHSru9l56Sb4HK8YbD38FiXPn5NWdeGMUUJQyuzMbNkxWumTPDhw/LmlTp0r8rk2bgEaN5Bzp2NG/MV28CERGOucFB5vj2nz2mcSFevhQN382royJTZQS0TJTJvd+aAkhhBBCCCGE/PdQyhy79UkkPFzmlZxcj7mbS/jhB+cFp0qJa6/Fi2NzhN55+23g5MnH26cTLqX8m365d+8eVq9ejcuXL8PlcuG5555DtWrVkC5durgaY7wSFBSEgIAAjBgRiM6d08T3cAghTxiRkd7jawDyx/X553rw8+iuxL9+XSawq1f3b9XApk1iGQGIqOGLmHP8uEyaf/aZuMAyMm2a7hIrcWLdx+b770sQM0DeY0SEexF79GigXz/dZVWpUmLB888/+jiNFkIvvSSWFRq9e0v9uCJNGrOA8KxSurT4PLVaY/nChQsS4yYwEDhyBOjaVb7D9Okl/7XX3Pt//f57cQ/orl9fr5FVq+R6qFdPrKwKF9ZjMD16JOJl6tQyRpdL72/GDGDSJFk906+fWOn4y/79Yq3WooXz+wgL04Wzo0dlbIQQQgghhBBCSOvW4pHlyBFZKBhXPHwITJ8O1K4t80m+cPq0eFRJkUJCBOTLJ+7JAfOzb65c4tliwAB57r5xQ9KcGDBAYsnEF/fu+R5j2h98nbvwyxJm8uTJKFOmDLZv346oqChERkZi+/bteO211zBZm1l8RmFMGEKIE74IMID8hvzyC/Duu0CHDtHvL0sWWSmxdKl/9UqVkrHmzet+0rtbN+DQIZmM7tkTKFhQxmwVYADgo4/EBdbu3eIiDhDrhe7dZV+L/+LJirB9exGVNBo2NK8CsY5zyxagWTP9+LvvxJ1bXPHWW3HX9pNEdExwNZ5/HqhUCahTR26mEifWLWUAYPt2ZwEG8By3CBABb/167yuDtPNv0SKJX6PFSerYEfj0U9m/f9/eTkSECDCAuEu7e1fOd2tMHSPWm6sSJYBWrXSrJKuLNuPqH1+t2AghhBBCCCGERI+hQ8X7xtOA5hK/f39g9mxxkx8XFhvdu8ui4Fdf1dP++cfuwQUArl0TbywvvCDP8+vWSfrp0+YA9xrnz8vzdObMsgByyhT344hPAQaIGwHGH/yyhClYsCD27NmDVNoS0/9z//59lCpVCv9oy5efITRLmAkTAvHZZ7SEIYQ8vTx4IJPkSZLoAsdnn4kvztq1o+/mTSlZEZEvn0w0HzkirsR8NZDUxjJpkvwpa8KM07/TuHG6D1DNdHfhQuCbb/R6WbKYxZ3y5c2uugAgRw6gfn2ZNP/1V+dxPXwI1K0r7qoeB199JTcw8+c/nv406tcHFiyIniWME+nSeRYyjOTMKa7EnMiTBzh7VtyXrVxpzz97FmjcWKx4rBw9al9JVKOGiJeaMDh5ssTQsVKvnpxTgJxj2ufSo4fcUO7era8e0vK6dwdef13i8nTrpt/0t2sHjB0r+8ePi7AJiDu+Dz+UlUDvvmsfw9WrIlKl4W0HIYQQQgghhPjEgwe6V4SbN4GMGX2vGxQkW44ccTM2I5s3y/yJ9lxZt66+sO+NN8STiS/cuCHxR62WJ+Hh4hL/5ZclVnD+/LoVizbPkiCB7B87JnFfNcqXB/7+27m/YcPE6uWll3wb39PM2LHm+DMaefMCZ86Y0+LEEsblciHYYUlqcHAwXLE1e/OEwpgwhJCnnZQp7fFbUqUSE9OYxNlxueRPXVvp/+KLvgswgEx4t24t1jW9e0tao0bOZXPmNB+nSiXWMUbR5do1803I5s0ysW7kzBmx5NHi3BgpUgT49ltZxbFqlbhF0zbN0seJF16wp+XPr+/Png0ULeq+fsqUwLx57vPjioULzRZGMcVXAQZwL8AAIrIA8h2sWCFC4enTen6DBs4CDCA3olZWrDCf51pMGiuLFunlEySQOtOnAwMHyrnltKpq0CARYABg8GA9XRNgAPONWvHi4lrvvffM7ezcKen+iJiEEEIIIYQQQsyWGv7G5MyRQ+YbnGKfWLlwQRbOuWPqVODjj50tR3bvlpi/BQroacbYr5s3i+v2Dh1kcj8y0n0M0yxZgNy5gVu35Fny+ed1l9ubN0v84ogI8zxQs2byXK0JB4ULS9qOHSJiuRNgAJmveNYEmOrVndM//1zmNjRPGxqLF8vczbffylyF0zyQO/wSYYYOHYo333wT9evXR8eOHdGxY0fUq1cPFStWxLBhw/xp6rEzduxY5MmTB8mSJUOpUqWwefNmv+pThCGEPIs8Cb9t9eoB48fLjUGbNhI03p11Ss2aItRY3bFlyGA+PntWrCe0eDPz5ukxbLp1M7uYNAaFK1JELHkGDNDTtDgiLpfUtf4Ja2gCjVFAqlNH33/1Vc/WJvFpTDp9evz17Qs1awLLlskNjlJyc7h3r/vypUo5pz94oO9rbsysJEggFlI1a8pxUJBZpPL1Zj4szHyDWqOGrG56/XVzueHD5XXbNjlHtDpRUeZy4eGyEmfBAt/6jy127JDPnhBCCCGEEELikrAwu4tnX9CenYxixcGDvtcPDRUX1oB4QPj7b/GC4GThEBwsiz6zZXNvAdGihcQg1Z6z584FihUDTpyQxX6A+dnUupCxQwcRYmrWlH7eeEPmC4xeOox9f/utPEtevCguuQcO1PMSJxZPERrTp9uFg+nTJZ7r2287vx8NJ/dlTzvt2pmPK1YEZs2S/bRp9bjOgAhdL70kbscHDACqVfPPfZxf02+1atVC9erVsXPnTly5cgVKKWTPnh1lypRBQl8DI8QDv/32Gzp37oyxY8fi9ddfx4QJE1C9enUcPXoUzz//vE9tMCYMIeRZ5Elzd5Qggfz5u8PlklgwVl59VW5mtDgjLpe4sdJImFBWowwcCGTNaq6ruYgCZNWIJ9KkkRUlTmJK4cLyZ5wmjW7RYrwxSpJErDkOHXLf9pNGpky6kPWk0L69eaVQbBMVBVy54j7f3SokI0rJiiTr6iirRRYAfPkl0KWL3WUeIPF1XC65yV+6VNzxjRsn7Z88KTfJX39tv3H0hZ9/FrNzbzfa2vV44oR5tZY7Ll0Ss/pn3ECaEEIIIYQQEssULSrPOf64EiteXASXQ4fMizNr1DA/jyslCyaTJNEn2TWMIsikSfq8QNq0slBzzRpxl925M/DFF3rZ8HC7txEjWrzUDz6Q15Ytza6/NNy5QNfcct+4oc9bzJkDvP++uE/XmDjRXG/9evdj8sS2bdGr97RRrZp85lOnAiVL6ul58tg/uwIFRHzKmRN47jlJi+5iZr+rJUyYEGXLlo1eb/HE8OHD0bJlS7Rq1QoAMHLkSKxevRrjxo3DIJ+jNYUjLCws7gZJCCGPkaZNE2LVqgRo3jwcz8JP2/jxwI8/JkSrVpEe30+GDHaT4Lx5gfHjEyBLFoVSpZRPn8eOHS4sXZoA1atHoXx5UekDAsKQPLnWvtyJpU4dAe2vNnnyMHTpAly7lhBTptgXLnTqFPb/vj3cxQFIl07h7t24n+GePTsct2650LHjE2AuZcDo4iuuCAoKB+C8+uLixSi4XAmQM6cC4Pw99O0bgatXff/cSpaM+v8DgtlAOU8eIFkyhUuXwjFlSqJ/80NCwlCxYmJcueJC+/bAp586n7QPH4pbPasgsnmzCx07yvsLDfV2wsv5ePhwOHLn9uzsdurUBGjTJhG++CISgwdHemmXEEIIIYQQ4g9BQUDq1M/ugqeTJ+XZY+3acNSt6z3QhlLAwYNS56WXgNGj9edvAOjSJRI9ekQidWrgr79cWLBAnoG++CIc27e78MknUUicWLOCsT+H169v77NDB30/ODgMwcHA0qUJ8M8/LqRPr3D7tguAPO9fuhSJsLDIf9s+c0YhXToFPx1TmfjgA+DMmQj06PFkPac/ieTIoXDpkv1iWbw4DA8f6vGDtO8nQQKFsDC7D7mXX5ZXd3NFSTwpcQZcSvkaPsbMwoULUd/pbHzCCAsLQ4oUKTB//nzUrVv33/ROnTph//792Lhxo6l8aGgoQg2+RoKCgpAzZ0506NAPGTJYfIMQQshTilJAVFQCJEzI37WYculSNty/nwaFC+tBRnbsKIOjRwujSZM5uHYtC5RKgNy5z/+bv2tXKSxfLkFEWracjEyZbiBZMvlH79u3j62P3LnP4ty5PACATJlu4ObNzKb8pEkfITQ0Way+r759v8PevSWwdKlEjk+UKBwREf8Ns9AqVdZi7doq8T2Mf6lXbyEWLdLvubp3H4hBg77997hvXzEPUwq4dSsj0qe/gzt30mPMmHYoUWIfsmW7jDNn8qJevUVInDgSGzZUwIYNlUx1nVAK+O47OR8bNFiAokWPeBznoEHf/HseemqXEEIIIYQQ4h+XLmXHpEmtUKrUHtSu/Wz6C9aehRs2nI8XXzzqpTTw6FFSDB7cDQCQM+cFPHiQEnfuZLCVS578IUJCUtjSK1dehxIl9iE0NAlGj+5gy/dG9eorsHJlDbf5zz9/Hpkz38Du3a/43fbTToUKG7Fp05seyyRLFoJHj5Kb0goWPI4TJwqhUqX1WL++kmO9OnV+x+LFdR3zjHz55VAMG/aVKS1Dhlvo0GGMKU0775zyfKFPH/scjhPRlt6aNGmCESNGeCwTTX0nVrl16xYiIyORJUsWU3qWLFlw7do1W/lBgwYhICDg3y3n/6NAp0z50FaWEEKeVlwuUICJJXLkuGISYADg1Vd34pNPpiFp0jDkynXRJMAAwCuv7EGvXv3Qp893yJnz0r8CjDsKFBBHo4kThyFNmiBbfqtWk/DmmxtRoMAJn8edOLH7PgMC7gEAEibUrRkSJ9ZXhDRtOsNU/u23/0TSpI+89tmy5WSkTXvXa7n45kkSYACYBBgA+P138w3n3btpAQDTp3+EMWPaYf78Bpg+/SMAwL59JbB8eS0cO1YEx48XxtWrWf8VYJxQCtiy5XWcOpUXUVH6qqHAwDQ4ePAlhIe7X3FlPEcIIYQQQgh5kti/vzh273YTPPIpYP36igCAPXue3vcAAJGRLmzZUg6XLmU3pc2a9cG/x6dO5fOprdBQ3QLh+ecvICzM2SLBSYABgHXrKmPYsC9x8qQPfpcd8CTAAMCFC7n+kwIMAOTP7z1YSosWU2xpFSpsRpcuw1GhwiZTesGCx5E161W8+up2vPzyQeTLd8qUnyvXOXTsOArPPaf7Fk+d+gGs1Kixwu14XK641TGibQmzevVqNGrUCM2aNcOoUaPgMtjCRUZGYsaMGRg8eDCOHz/uoZW458qVK8iePTu2bt1qcqM2YMAAzJgxwzY+d5YwN2/eRJon0WE/IYSQZ4pt21z4809xj6a5AgsODsOsWQlQsWIUIiOBIkXMN5enT4chRw6JZ9KgQSKEhgJ//eW8ziJVKoVbt8Jx5w5Qo0YilCihMHWq2T1atmwKZ8+GY/78BGja1D7pHhoahsKFE+PMGfnvf/QoDEoByZM73/R+8EEkhg2LRIYMwMyZCdCypaeJfIXw8GfUvv4JoHXrSEyYoH/fRndk+/a5sHGjC998I9/P4cNhKFrU/J22axeJ4cMjsXy5C3nzKhw5kgBly0Yhe3agYMHEOHdOvrsBAyLw1VcUegkhhBBCSPwTHg6kSiX3tefPh9nihPrDzp0unD3rwsKFCTB0aAR8DDXtF0FB9pihb72VCJs3yzOed5fCcUNUlMRxtaIUEBnpW6yMJUtcaNTI7Bp540YXqlY1e10IDQ3DTz8lQJIkQJs2Uf/2r5TEfF250oXz513o1IluueKaFSvCsXx5AowZoz9HZs+ucPmy++f21avDUa2aZ08aDx+G4f33EyFtWoXp0zUXbmHIlEnyCxVKjLNnXcieXWHXrnBTzJ+ICODyZaBAAbmu33wzCmvWROCNNxJh5079OmnRIiFmzXJ+/tVImlTaaNgwEjNn+u9W21d3ZFAxYP/+/SpHjhyqTp066uHDhyo0NFSNHTtW5c6dW6VLl0717t07Js3HCqGhoSphwoRq0aJFpvSOHTuqChUqeK0fGBioAKjAwMC4GiIhhBBi4/59pVKnVqpsWXve7NlKNWyolNyCKnXjhr2MlqdtTZrI66BB5nIHDtjLtmolecOG6Wn16slrsWKSN2mSnqcxdqwc79tnbs9IVJRSc+fa+9S24sXd58XVNmPG4+8zvrbnnzcfp0+vVPbsSs2f71v9LFmU2rPHnJY8uXy3efPav/djx5S6csXfs99Mjx5K1amj1OXLSrVtK+fsli1KDRyoVGSk+3q//y7lw8KU+vtvpTp2VCo42HNfQUFKffaZUuvWxWzMhBBCCCHkyeHhQ/0e9fjx6Ldjfc558033ZSMjlbp3z/8+xo+XtidMMKe/8orz85U/PHyoVIsWSv3xhzn9/n15TlNKqfBwud/WjjV27pTn059+srf74ovyXBEUJMdhYUpt3y5tWRk+XH8fX32l1IUL0q71ueO11/T9oCDpVzu+di3+n6v+S9v69Uq1b29OCw93X75MGaX++cd7u0b++UeuL+v5eumS53Naa6tSJTkuV87cfmSkUh995Pna2b1bqXbtlLp503NfMSUGl65w6dIlVaxYMVWsWDGVLVs2lSlTJjVgwAAVpF15TwBlypRRn3/+uSmtcOHCqlu3bl7rUoQhhBASX4SEuJ9k3rtXv5Fw+ouKitInxatUUSo0VG6cre0FBentpEih1MiR+s3zzz/reffuKTV6tFLXr0veypWeb2Tc3VwppdStW3reu+8qVbKkfvzpp7F7w3j/vm83f5cvx//N7dOyZcni/Bm+8II5zfiZGvnrL/8efrU2EiWy9zt1ql7u7l2l1q7Vz3GtzPTp+n779s59DBig1Msvy0Opu/OWEEIIIYQ8nRifeQ4fjn47/fqZ70Vz5HBftlYtKXPsmEwmR0R4blvLt95jaxQtGr371AMHlOrZU56LvvtOb+PkSck/eFCpJElkIZJSSn38seQPHeq+/9dfV2rIELmvN453zhylvvxSP+7aVR9D165KPXhgFmEApVwu788f/6VFc0/iduaM+XstV85+rho3Tczw9t3GBlpbVarIsbYw9MUX9TLXrimVObNSnTvHTp/RJdoxYQAgMDAQU6ZMweXLl3Hy5Encu3cPa9euxbfffovUqVPHpOlYpUuXLpg0aRKmTJmCY8eO4YsvvsCFCxfQpk2b+B4aIYQQ4pZkyZzNva04Wb+6XMDffwM//ADMnStlXnnF3p7x7/r994FOnfS0Fi1kW7IECAgA2rUDMmeWvKpVJc9deLiGDeW1VSvP4+3QwXycJ4++X7MmkF13FeyW5MmBn3+2p9epA6RK5VynZEnzcbZswEcfee+LANevO6efMrvlNX13kf+36j52DHjrLaBQIdkPDgbu35e8tWvle+jTB2jdGrhxAzh9Wm8jIsLe5/79+n6FCkCVKsBrrwFHDXE8HxrC+o0eDdy8aW+nRw9pa4rdLTEAubWvWFHaVsqed+yYuEeITQIDgXr1gAULgJ077Z9vXBEVJab9hBBCCCFPE/PnA8uX6/eMjx4BGzeKKzLjfaTTPSUg955B9vCbJsL88AK2bJm8Dhkiz1cVK7ov++efQNq0wMyZ5vSvvpJ7QgAICTHnHTgg98xXrsAjxYsD/fsDvXsDxogM+fMDRYoA48fL+/rlF0mfPl3vWyn5/AD9FZDnzG++kft6I4cOAcOG6cc//ABs2CBj+OEHafP2bXMd6721E/Pney9DzM/SvlCzpuf8998HVq+Wdj/8UNLy55fvH5A5B43XXgMqVwb++APImFHSatfW83v08G9s/qKNpXVrea7cskXPy5IFuHrV/dzFYyO66k23bt1UQECAyps3r5owYYIKDg5WzZo1U5kzZ1Y7d+6MTaEoVhgzZozKlSuXSpIkiSpZsqTauHGjT/VoCUMIIeRJZP9+fdWHJ5dMvqC1o61+ig2Cg8XMPSTEnhcaqve5fr1Sb7+tHy9Zou9bV4PVqiWWD9YVNKlTS7kOHfS0hg3F4sZYX9tWrBC3atYVOMePx/8qo6d1a9bMc/6lS0p1765U8+bO+evW2dM+/lipGjU8t2s0dHZXxnhOAeLKwYpTPSNr1ujpY8bI9RcUJOdjr16S/v330btWrJw/r1Tu3EolTOh5THFF06bS18qVj6c/QgghhJCYcv26fr+UOrVSV6/q7ph79BD3zVr+7t32+oGBkpckied+vv3WfG+WM6ekd+ggbqRDQ/WyWhmjFbnV3ZKGk8W3tn3yiZTJnNl8T5gggexXq2Zvb+ZMperXl2cyY1uadY5xM1oraJ+ZdZs+XakCBeL/meNp2RYujHkbffrI644d8p1GRnou36mT+Tk7WTL3ZbNlE0sm67lq3fr1M59Xhw4pdeeOfrxxo1jF7N3rfF4bz7fgYKWqV1fqww/luGdP5zr+8vrr0t68ebHTXlyC6FYsVKiQmjZtmoqw2NP17NlTpUyZUi1evDjGg3sSoAhDCCHkSSQiQqnSpWWSOqZoN0Zt28a8LV+IitL73LRJqRMnlHrpJaVmzVJq1So9T6NZM6XeeEP3KWy9OWzZUtLv35c4NmfOmPsbNUom3leu1H0bFyli78foPqtx47i9MX/pJbmJje8HhGdh075Td/m//mpPu3hRqc2b9e/eqZ4RzTe3t80Ts2YpNW2a9+tDezDxt/3YwHhtOsWjIoQQQgh5Erh0yRyzxBp/ondvfT9FChFltOOtW+3t7dih5z965NxnZKRShQub+3n+ecnTjhculHIREXpaQIC5jtUdmnFs7jajO2ftnlDbz5DBHntGy6tSxXvbSZP6dp+bJk383/c/zq1RIxGetNio7rYsWeQ+XzvW4u14qjNwoD1tzBgRUozfsZWRI923eeyYud9u3cT91nPPmcv17GmP9+OuzR49nMfhK9WrO7+fBw9i1q6RkBBxqWd9T08i0XZHdvToUXz88cdImDChKf3777/HyJEj0bhxY4wePTqGdjqEEEIIcSJhQnFRpJm5x4RkyeS1evWYt+ULRrPljBmBAgWAgweBJk3EnVTlykDnznqZX38FNm0CEiWS48GDgRdekDqTJwOjRkl6qlRAly52M+yOHeWzeucdve9KlfQ6Gsb9bt30/SpVxJWbO9y559q7FzhyxJyWLRtQqpSYaQcE2OucOeO+HyveXA/8V1i6FGjQwH1+8+b2tJw5gTfeALZvt7t20AgKEhd1v/xidw3hL2FhYsLfrJmYwhtRStynaS7bHjyIWV8A0LatuGfzx2UGIC47NNx9LkaOHXN//hNCCCGEeCM8XO7zQ0O9l/3pJ7mHHzIEyJED6NVLz7NMTZru3VKlMrsg89aX1V2WRv/+cu/jifr1xcWX5o4J0N2JaWjPIfv2AQsX2t0kO1GkiPl42jTzeNOmFRe2Vtau9d62L5894N1V27PGuHHAiRPA7NlA06byWqCAvdzZs/Icu3YtcP48UKuWpL/+uvu2P/lEf7bVaNtWfx5wh9X9m5EcOeR140agZUtx/TZiBHDuHLB+vbjnUwr4/nvz8zgg10uxYsDYsXJeamTI4Hk83nD3flKkiFm7RpIlA156yf6enkjiSt1ZsWKFSq35B3mKoSUMIYSQZ53Ll8Xd0uNcPTJrllitxBdBQUoNHqzUqVN6mnHFmnE1Xf/+ku9uhZBSSm3YYE/XVqRpx8mSmccQHCwuD6xtGYNeetqMVgvcorcZV0latxIl/G/v9Gn5DqOilDp7Vlw3hIebg8Fu2WI+D4YNk/Ru3cRay1P7mgH68ePiZkK7ZidPVurNN5U6ckSp997Tyzu524iIUGrtWjlnrZY5M2fqdYsW9XwNnT1rPm8JIYQQQqzcvSubOzp2lHsJzeWWJ5zujTROnXJ//5Q5s/m+ZeVKCfTeqpVuab92rZ5/6JCknT6tVM2acu8WFua+/Y0b/b9ndPd+Yrr16kW3YenTR7/u0KFKbdum1MOHzudg8eLO36UTXbuavxdtf84cyT90SHeb/M47knbkiBy/+65zm5GRSlWurFTdukp9+aVSiRMr9csvSv39t/frxx9++02s8919Dr7SsqX3z+m/RJx+DHv27InL5h8LFGEIIYSQ/w6DBin19deyv3+/mIprcW2MN9u//26+ody2zX5DrtXr3l2OJ06093fypP0mvmpV/dhTnBql7K4J4mobMMD3sjNmxP/Dl69bihRx0+5rr+n7Y8cqdfu2fly5snx3J054j3lj3TTTfe04f37PYpzR5ZqGtYzRh7NRhHn5Zc/Xyrx5elkrEREiZLrj1Cm5Lq5f99yHP8ybp9SECfrxhQsyuWJ1+REX/PSTuPsIDo77vgghhBAjhw9LHD3jwiIrS5cqlSOHiAWPE6NwERamp1+/LtuKFeZ7EiOrVil17pz8tzZvLi6enO51NI4d83wPdfiwvj9xor7/xRcSK1KLr6Jt167p7rfy5DHHlImNbfDg+L8Pju9Ni3kS21u9euL6+a23zOnNmsmiJ0913cU20bA+8x086L7snTvyXDd9uhzfuOEcy/XaNX2hlVIiWvoa89Wd67wnhZs3xa3b6tXxPZInA8T3AJ50KMIQQgghRCmlRo+Wm+1p0+RhVrv5Vkp8S1tv4rWb56go8VvtDu1hoFs3OTaKMEo5PyDkyqXXd/cQkT27vHryM71tm28WNYMG+fbQ07Gj5zH9F7dGjewWN9q55O+2Y4cu6mmbp4f4NWvs55u1zLx5YqmjlPiiNuZt3+7+vDUKkcePm/O0uDa//upcN2tWya9e3X37/mA8h5culTTNkil79tjpwxPG74IQQgiJDSIj5T/tyhXP5bT/oPz5vZfxFnQ+pqxerdSiRbJ/547ES9H61t6HNXaLcdNYt05P8zZRf+SI1HGKAehuK1fOexnjBH6SJDLZHt/3lM/atmaN/ftNmdJ7vUaNlGrSxH1+w4bOMSOt1wOgVPLksujuzBnn+2YntDg7s2bF5Goh/0WiHROGEEIIIeS/RLt2QHAw8PHHQN685rykSe3lE/z/LsvlArJnd9/ugAHA4cPyCgDffCOvjRqZyz3/vPgl/uQTYM0aPX3uXImjs2oVcPkysHq1+PM9f14eL7JmBbZsAb780t53mjTu/ecOHKjv++pjt359ee3a1bfy/wXmzQP69TOntW8fvbZefRUYNMicZoxfZMWXuC6NGsl50LGjnONGXnvNXv7KFfFdPmWKnlaoELBnj348a5a89u/v3Oe1a/K6cqWz//KgIDmH9u71Pn7A7Of93XfFt7zmz/ryZXPZZcvEb7c7v+ZKAcOHSxtOTJwo16hS9rw7d3wb79PK4cNmP+GEEPKs4vQbH1vcu+dbuapV5T8td273ZYyx306e1PePHJH/5oYNgbt3zeUfPdKP//oLWLLEt/FoPHgA9O5t/48ODgaqVQPq1ZM+x4wBLlww5wP6PYIntm7V97/7znPZli2Bf/5xjgHoS/vu+OsvfT8sTOJlkNilQgWJvWnE6R45Uybz8bRpch5FRDg/g0VFeX52GTNGYuhs3w7cvw907y4xRd9+27dxL1sGHDgAfPCBb+UJ+Zf4VoGedGgJQwghhBAnfvtNd/cUFaVU06ZK9ewpbqYuXIhZ21ev6pY02kqtSpVi1qaxLW3TfHRb04cNU+r+fVkFOHq0+Ef2ZUWb5mrC0yrHp3WrXz/+x+DvliGDrDDUePjQ/zbOn9dXE96+rdT777svaz3Pcuc2n3+XLpl9Q1vraXToYD+njG4atPeiufy7f9/ze3C6Brp2db5GPLlZM9bfudOe9sUXznXig2HDlPr009iL9WWMmaXFuyKEkCeFqKjYc8tz9apSzz2nWyhHlxkzlPr2W/Pv8Jw58js6ZIie9uiRrMDX/tM0PP1Paty9ay537Zq42nrhBT2tWjX7/2JEhNmK9OpV5/bv3LHf07Zqpde7cUPS9uzRLbABcXv27bfmPnftkrLWdKf3+eOP8X8Pxc03y+0yZXxra9Qo99/33r3iYvnqVTmXtPzdu/WYPe3bS5rVpd7ly0pt2iTnqlavXj3v15Gv7r4IiU3gvch/G4owhBBCCIlP/v5bzOpjKuwopVTZsvIQMm+euHrQWLBAKZdLYmqsX2+fuF22TH+AWb7c/EDz8cf2h5sLFzw/iB08qNSrr3qe0He3xZcYMn58/D8MR3f75ht52HzvPf/rFiok7kTq1hWXDZ7KKmUXRO7c0c8LT/WMWPMbNFAqVSrdPVpgoFLp0onLsYkTdZ/tvrSvpeXKpVRoqKRFRcl5Vb26UkmT6mWsgYSNvu3XrrW32aGDTGx9953/fvenTRMRN7ZEE21MseX/3yjgnTgRO20SQkhs0aqVuIw6d8638lFR7gXlLl3M/x9RUfLfpnH9uvmeLCxM7musv99aGxs26GnJktn/mzS3tHnzOtd3+p988EAmp69d08vUrOn7hPi0aWY3UNag3tp7SZRI8o1uda1tjR2rl/O0TZ+u1JQpSrVu7fn/+vZtEani+97pWd8KFfKcf+iQ8/dt3Xx1sbt2rfP37cS4cRIvyEhkpC76uUNrt04dPU27rytVynNdQh4HHk57ohRFGEIIIYQ8O0RE6PE/rGgT0k5ERSnVubMe+HzAAP1B56OP7A9TN286P4B98YVSBw7o5bQVoU7bnDlK1a4tD4HG9Js3nf1AJ0kikwru2lu9WlaZRvdhddy4+H9gjslm/M7ialNKqeLFzWnZsin14otKff21+3rGgPbr13vvY+dO/8elYUxv2VKfXHNXt2pVmRBSyhxfyTippqW1aaPU1KnO/WrX2GuviXCpsX27+PHX6mzb5v469MbBg3qAWK29P/6IfntGjJ/R0qXyHsaPj522HyexJXIR8rRz9qysHo8rQkOVmjtXRILHgfF3e9Uq7+XbtZOymvgQFaXU22/LgoNOncy/4x076mWjokTEB3TBR1tQot0jWcc0f76elimTnq7djxnHfv++WAysXOn8PxYeLkHqAflvHTlSL1OjRsz+w7X7wBs35D1ag5ovWmRejBAXm6f7OG6xt+3b512E0f4v27WThS8ZM9rLpEwp5+SpU3JvEBnp3FbmzM4LtGIbrd333tPTduyQGDJnz8Z+f4T4Sxyc9s8WFGEIIYQQQswMHKg/6BitWTScJrXfecfezsKF7h/+jFjTg4Pt5TduNLvWsG6aVYOnPgGlcuZUKkcOe7q3etyUypMn+nU//FAmpLyVU0rcU/jTtnHi3ZqXNatd6HPaevZU6vvv9ePVq+1ttmxpdrMycqRY69y8KeV69tTzDh+WNG0yT9tWrvR+/a1fL5MKRh490tsIDNT3Fy/23p62wjsqyr1IYXV5o21Nmyr111/e+/CFuBZI7t+XleaffBK77V67ptTrr0tQaEKeFrRreP9+z+X+/tv76nMn+vWT9nPmjN74/MX62xQYqNTPP4urIo0rV3QBXStXubIcG91faSIHIFYe2n7+/GKBoh0vWCCfjbXvMWPM9yNVqkgfkZHyG2Qst2CBb/9jdeoo9eabnssUKxaz//Bs2cTixfhfZd0qV45ZH9z83/LlMx+7W+jktJ0+7ZweFGR2WadtefIo1b27UjNnmq+vyEhn0aZ/f+/XYv/+ukuxKVPMebGN1m7fvrHfNiGxQRyc9s8WFGEIIYQQQsz0768/6DRoYH+YCg83P2T166dPRBtZtMj9g6MRLS1hQj3tr78kVs2aNTLZonH9uoxp1Sqltm6VCQXjSlxv8WpefNF5kt/d6j5usbc1bOi9zJEjShUs6F+7nTpJbBtf2vdnmzNHqVmzzGlOk1edOsm5ZxRctJgymTOby65ZYz73N2wQ9zJ79sixccLPKFqcPes8xrlzJf+LL+TYaHWklFK//CLpkyYp9corMsloHYNSnid9Cha0lzdy5IhSP/2kx/dxolkzpQoXtsdEiCmTJombuMhIEUm0MRuxup3zF2Oco7jgzh35zY3pKt6oqNj/fKPDlClKffCBZ+tLX4mKch/LwlfOnHG2CNm9W9wdPmnWU6dPizun8+ejVz8kRD577ZwdPVrPO3lS3DJqn4fRfZC/51/Jkubr4uJFGXtscvu2rMBXyv3vU6FCenktbckSfb9wYf330ZftwAF9v2tX9+Wsed99Zy+TO3fs/ifF1vbaa/E/hvje1q1zn5c/v1hMRbdtT2LZjBn2tNy5zSKhp/PduFWsKP99H35oz1NKqTfesKcbrXytaC7i3nlHLz94sL2csb2ff7bnZ8hgHkdssn+/LJh5Ev7rCHEiDk77ZwuKMIQQQgghZoyr/bVVnMaJDqXsD3tO/P67udzw4fJqXb2v5U+aFPOxR0XJqnWj2yzjON54wx7Avk0bqXvjhkzKrVxpjh3iy6ZN5GnvkduzuTmtVE6Vyr4aVRNhrGWXLJH0jRtlktWYV6eOWSA0ihqJEzuP57PPzP0YhUyn/rXtiy/kWtAmOI1xB5w2J27dMr9vT+7LtDILFvh4IfuAcSX6t9+aV7RraO7jxo51/x6qVrWvCjZSvbrnzyGmaEGwM2RwX+bBA+9iQatWSiVIIBPtc+aI+OAvWh9Ofe3eLW4PPYltSumf1bhxzu23aeN+FXNwsLnvzp2lrdmz9bS7d0XUM8Zt0to+dcoejFkbz759zum//eb5/Wjcvy8x0x49Umrz5uiJQ3fvehenkiTRx/bnn761Gxoq3/upU/J7ZHQrNHSoXs56TRuFhIoV9XJhYeIW9Isv7H1FRMhmFGFef11eXS4RY2KLgABp9+RJz79P2mcaG7/xxkUo3J7srWxZu0s1wPyb7W7zdL4MHCjWqNb0c+eUKlDAnv7SS+bj8uWd2y1QQPo9d86crl3nBw/qVmnG/O7d5dUYoxEw/1ZOnGh/fydPynW9YoVSR4/Kb5cnQkJk8ZRxMYjT//qQIfK/uW2b83/F7NlSt3hxX65yQp4tEN8DeNKhCEMIIYQQYsYYzDUqSixOrAFurQ97Tixe7Fu5mTOVatHC++Ser0RFyUTc6dNKLVtmHm/VqubjJk2c2zC6f7Jubdo4P9ArJb7ePT34N27sOX6Ktlkn+ytVktfPPhMrIH8mKpwmDbhFb0uY0Dnd6sJl0yZnN2gJEyo1YoT79o0BoxMnVqpWLe9WWrVrm4/bt5dJIE8uZ4zbsmXOvtyNmzXW1M8/28u0aCGTutqEUmSk7qJEK9O6tf1au3VLxps+vUwY3brl23V+54778WoTQ8Y0K4sXyyp5Lb9qVRHHli4VF0s1aogVXpUq7tuICffuibjy4oue29fEOqMPfCe0NtKmldcECfwbz+rV4v8/b16JD2B1iae1P2yYOT0iwrncN9/Y+zBaGVjRJtobN7a3lSOHnta4sXMbY8ZIWrt2IvJ89ZW5jRIlnMfZsqUcR0XJuaetgNfiL2lo8ThKl5bX5MklFkjhwuZYaO44e1apNGnkt9wT1nNZcyd45Yr8LwUHy2e7fbtex2klvLb17y/nmtE6RPvsjP/1L7ygt7d6tZ6uiU0PH4rFnrcFCitWKNWrl/yHGVer79xpdlv0119S3igYaaLykSPmBQ2ff+65zwoVlCpSxLffu2d9S5Ag/scQm1uBAroIoW2ffiruQN1dN8aFRE6bFttn9mxpy5r//ffyu2a8D6tVS+8rIkL/D+zfXyywS5XSy1atqp/f1arp6cbFTC1bilW3O1FWq9O8ufS3d6+8au7u6te319HuLfLkcW7TH374QQSu6FicaM8NnGIl/0UQ3wN40qEIQwghhBBi5vZtcZFkfcg1oj0g/vKL+zLGSdIWLWJ/nP6gjaN6dTmeO1dW71644L7O1q3moLjatn27Uu++qx83barX+eEHPb1cOQkE/OqreppSMgn19dfOYo621axpPlZKPs+oKLMLGV+2R49k0q5fP6Xato3/SZX/wpY0qXOQ2+hsVn/xcbG98or3MtqK2LlznfNdLud2jdcfYL/ONIFR27Jm1fNu35ZJ8eHD9bS2beW62rDB/Vg//liuFeOEpJF793z/bIxu5qzcvClCiidu3bKvFg4JkQDeOXKYJ+9mzZLfE+OK5V697P1HRck1rX0n7uJl+cLp087ucwoXNpfT0t9/X09buVKpFCnMlkTGa8CI1QLR+pl06GAft3ZsFAiMbUyfrqenSWN/Dxcvuv88rOlOrqcmTxbXar4I594wWlhYuXxZJnKt4wJEEFu1SqlEiURsMbq9UspzrDRArEmqVrWnp0hhPs6XT8bhJMiGhyuVOrVv10v9+vp+//7iMtT4vvr0cX6f2mZd0c/Nv61Fi/gfQ0y2rFnNLiC//dZ8vnz8sfP1ZWzD6Aq3UCH5jdWm+4zuazW6dDH/zhst9bS0Dz+017Naw2llNaE1PFyuzy+/lPQ//nAeu6f3o4nEGpGRYoHy8KG9zsOHYv1pXTRFCHl8IL4H8KRDEYYQQgghxH/27/ftgVJ7kHQK7vk40cbRsKF/9YxWCOPG6S52QkPFnVP+/OZ4OJqbifLl9UDod+7IRMLRo+a2V650PxHx2WfmYyO3bnmfyEiTRiZBnYKqc6KHW3S39u3dWwO526yChy/no1IyAW5N82ShZt3OnxfrGu3YuOJ4797ovf/16/U2NJE5bVpx3xIVJX0a3WHNny9lvv5aTzP6/ve0aRYmRosmjf379bSoKLvrR3eftRNWwVfbrLGAtPR69Zy/O6e0yEhxs/f117qLGm3TLCI0jAJxaKi8f2N5q1WjtV8nkcD6PWsEBtrTY3ptPP+8TP5qHDki4pQmNhndd2lpW7fqcRgA97GZjO+tVi3zuI2B5GOyGa8V63blSsza3rpV38+XT66j2BgzN/t2+HD8j8Hf7ddfxRJac8VlvB67dTMfG4VXp98nQESKP/4QMcXXmE9GMbN3bz194UKxhtTERE9oC26mTbO3feeOb+PQ0MaiWYcRQp4OEN8DeNKhCEMIIYQQEndoD5JOYsDj5OefRTA5d87/uleueLaYsXLnjt1FjxN//uk8IfHee3ahxcrMmeL7P1Uqe31PsTmUkrgETv7OM2Wyu7Zy2nr1EgsFp7w8eeJ2sqZ+fZkEju9JI26+b0eOmI+Vkkn2zp0lxkbZsvY6SjmnuTvvnLZNm3TXLdqmubXyZEXjy3bpklJFi5rTnn9e39fijyRPbh6/0/tyt61eLeV79NDTSpaUWC/G6/f2bWcrEEDEj+vXPf8eVKjgXNcowty/b/8urO9l+XKzhSAgsVO0/UyZzHmVK5snSI2WgQ0bKvXRR/YxlSxpt9qaN0/qO/0WWq2zIiNlVXqOHOb0kJDYO9/HjDFb4CxbJp+NscyDBzLpbK07YYJ/fSnl2b1hbG1Hj8Z9H9xiZ7t0SYTPuGg7Vy7zAoyFC81B2K2b0XWgu83dNJyW37WrHJ86JZaC1phPTr9Fvgov7tqI7v3q/fvu46REdyxazEJCyNNBAjzFDBgwAOXKlUOKFCmQNm1axzIXLlxA7dq1kTJlSmTMmBEdO3ZEWFjY4x0oIYQQQghx5NQp4I8/gCpV4ncc7dsD//wD5Mrlf93nngNy5vS9fLp0QMKE3stFROj7EyYAGTMC69cDixcDGTJ4rvvhh8D9+8CuXfa81q09102bFiha1J5+8yawZAlw9qzn+gkTAilT6sdNm+r71at7rgsAzz/vvYwTf/wBLFjg/bMhTxYvvmg+jogAOnQARo4EatYEEie219mzx552+TJw6ZLv/VaoAJw5Y067dAmYPh2oWNH3dpzIkQM4fNicduGCvq/93oWE6GmRkUBoqO993LljT9u7F8ibFxg2TE+rXRsICnJu48cfgSxZ5Ldi7VoZw4MHwI4dwPjxwPXr7sd04gTwyy/AunVA6tTex1uzJrB0qTlt/nx9/+ZNc966dcC5c8Ddu0Du3DIeY70ZM+x97N0L7N5tTmvUSKYrnbCm//yzfHbW8yhjRuf60aFdOyBPHv143TqgSxdzmR9+AJIksdf19tttJXdu4Isv/B6i31SrFvd9kNghUSLn3w4AKF7c93a+/db+27xyJfDTT0Dp0kDnzkC9evJb/dNPQOHC9jayZdP3e/XS9xs0kHudiAggTRrP43juOXnNlw9o0gRI4MMMp8vlvYwTFy4Af/4Z/fvVVKmA116Lfv9OvPpq7LVFCIl7nmoRJiwsDA0bNsTnn3/umB8ZGYmaNWviwYMH2LJlC+bOnYuFCxfiyy+/fMwjJYQQQgghTuTLB9SqFd+jeDLRJi2yZAFatQJu3PB/crhQIaBnT//7Tp7cOd3lkok9I+3by+StRsmS5glEoyjSsyfw7rsywe6O5cv1/fz53ZdbtAjo1k0Eqqgo/TzyNmmTPr3nfBK/jBolk/saDx7Yy5QubU/LkcO/SUR3NGsW8za84TQJumCBf+fmtGnAw4fOefPm6ftbt3pvK00a4K23RLDQJgo//xzImlUEGXe0bu08IXn1KlC5svd+f/rJe5lhw4Dz572X03ASXGbMAIKDvdft3Nk53ekcjAlGgX34cBG0jHz3Xez048/nFhMuXnw8/ZCYkygRcPu2c56TUPLBB8AnnwB//21O798f2L9fxGyNggVlAcauXcCIEZKWK5eI6jly2NtOmlTfN94H9uol9zqeFqssXAi0aAG0aeO+TGyTM6f8Tj4JHDokwvTHH8f3SAgh/uBSyt26kKeHX3/9FZ07d8a9e/dM6StXrkStWrVw8eJFZPu/zD537lw0b94cN27cQBpvT2gAgoKCEBAQgMDAQJ/KE0IIIYQQElucOCGChnHltIZxNaWnO/rwcLMo4uvdv9NqTa3u1KnAnDky2asZpB85AuzbJ1Y4LpdYvfzzDzBoENC4sZSJitLbNbZfsKA+EamUTOKMHQuUKiUTOFYmTAA++8x53NeuyWR8kya62DNxIvDpp7L/0Udi7eBpNWqaNO6tB5yYN08snN5+2/c6GsmTmy0i/uu8+67dYuJZZOlSYPJksS6LCfnyAadPx86YnjTGjweOH/cs2hIS2wQFeRfzo0P79sDo0bHfric6dwb++ku3zLt3T8SWq1fluFs3YPBg2W/TRhY+aGuWq1YFVq/W23K659i2DShXzpzmRLduwJAh5rQtW4Dy5WV/61a9neBgszVtbFCmjNxXVK8OrFgRu20TQoivPNWWMN7Ytm0bihYt+q8AAwDVqlVDaGgo9jjZsAMIDQ1FUFCQaSOEEEIIISQ+KFjQWYABxOIE0Ccx3JE4sW5BY7Vi8cTq1cCYMc55n3wCrFmjCzCAuJVq2lSfqFmxQkSY11+XY5fLPIkzd6689u0rboQqVwa+/lrSXnlFhJ4XXnDuX5uscSJrVplg0lbiAkCKFPp+okTy6rTqFxC3TAEBznnt2jmnp0wZ/RWylSpFr54Tnr7fLFlirx8A2Lw5dtvT+K94ju7UyXz9RJdnVYABZFKYAgyJa2rWFGueypXFwsKbez1/3cJpWIWdlCmB33/3r42uXeW+QOPXX8VC44cfnMuPGGH+rU6cGHjvPdl/+WVg4EApU7480K+fuMYLCRFxZfFi5zanT9f3fXUf6mSRW64csH07cOWK2ZrWaCETWyxdKu4XjWMnhJDHzTMtwly7dg1ZLE8b6dKlQ5IkSXDt2jXHOoMGDUJAQMC/W05/HHwTQgghhBDymJgyBWje3BwrwR0DB4qfdeOqVm9UrQq0bav7XPcXl0vciWTPLrF/rDEfGjeWlbN9+ohIsnatfSKpVCl5tfp5d4pZY8Ra3riqVhNhUqXS08aNE1dQy5fLRFx4uJ6nub5as0YmqZx8zhtFHndobtus7kOM8TtiypIlIm5pK5uNWMftZAlkFfwmTND3kyUz55UvLyvG+/VzHkuDBvZ4L76wapX/dZ5Gzp4Vl2Ik/qlaNeZtOLnII9HHKSaONyZPlrg+Rj74wHu9kiXFXdbatRLHxAnjggA33vC9YvwfOndOBFRPFpmJEukLKNKnB4YOlUULc+eKxcpvv4n7xAsXPC9MSJtW6sydK/9VP/wgv+2rV0v/nTuLUJMpk5RPlkxcElrdkq5eLWJKkyZ6WvbsEidl507P7z1VKrvo7HJJTJPnnjOLMNp/dGySNSvw1VexG9+JEEL85YkTYfr27QuXy+Vx222NtucBl8O/mlLKMR0AunfvjsDAwH+3i3RwSgghhBBCnkCKFxdrEV8musuWlWDWBQr430/v3vLatKn/dTXy5TPHhvGVTJkkSPbt29Fz9fX222IBYrRS0QSWdOn0tJYtgVu3gBo15NgYs2HbNiAwUNpKn16CmBvrAvqk0d69um/7zz83ixg//CBCyC+/iMVPs2YS06NQIfu4c+WSz0xj3DhzvpMf+I8/Bl56ScStL76wf17WNpziC737rr5frZq5n08+0c8FbfVz6tTmgMpGZs0C/vjDOc8a0Plxcfy4Pc2XSVp3zJkjwtft2zJp+cor0W/rSWfBgvgeQdzQtq3uqjAmeIpf9V/kuefkNyO6+DHlAwB45x2JEdK+vTndU1wRQH7nfAkZrLkNbNLEOfbUokXm33snXnpJ38+VS/6bjC68evWS//O//pL0Bw9kf+1aEW2//FKEkZdfFivTRo0892f8b2ncWHcLmjq1uPPMnNlzfStVqwLff2//TN96y7ffvrNnzTFkjGgCECGEPMs8cSJM+/btcezYMY9bUW9L3/5P1qxZbRYvd+/eRXh4uM1CRiNp0qRIkyaNaSOEEEIIIeS/SuvWwLFj4vYkPsieXVbQOll3eGP1anEzY1yBrFnkGFdaJ05sXpFsjNGSKJHZjUyKFDIBtmGDnpY1q7yWKCHCw+3b4sqtZUux7Lh9W19VnDSpCDK//qqnbdsmbsk0caJWLRHNNIziCCCCijGWSNasYlWhvYckScRy59gxEWSuXRMXNNOny6rlK1dkMk3ra+pUERG++AKYNEmsgWbPNlu/3L8vq7DXrPG+6lkbQ5489uDrxYtLwHDNnV5cULu2c3q6dMCmTfpxtmzmgNBWSpVy7+YnKgp4/335btKnl+/Ql88lLunYMe7ajo5lgju6do1+XaurIm+T7N4YPTrmbQDu3Rsaeftt38rFBVu3AidPxm0fRkEhRQqx1vTHsYj2Owq4dwnpjmLF9H3tt6VyZWfLRSOrVnnva/RooEgReX+zZkma0TVlnTpA3boibEye7NxGrVri9mzcOImdpqGJErlzi1Xh4cNAlSqSliSJnJuVK3uPUVOmjL6/YoUIi+5E8PgibVr37lWLFBErpoULH+uQCCHksfLEiTAZM2ZEoUKFPG7JrLbwbihbtiwOHz6Mq1rUMQBr1qxB0qRJUUrzbUAIIYQQQghxi8slK2pjY6IyJpQsKZNLWoBhX3C57FYX2upfT7F0Hjzw3G7GjMCbbwKHDskknjV2Tfr0uju2atXk2BOvvQasWyduZcaNAwYNMgtHiRMDDRvqxylSmIUZd0GMCxUChg/X48F89JGsWn7uOYnVc/Wq+P1v3lxEhFy5RDhau9Y+ZqXkPWnWRb7Svr24+tFYuFD6r17dXM7JMie6uHNpljix2W3U0qViCePOyiNhQlldb2XfPs9uhJzwd2X/6NFiWWWNT/Haa87llfK+Gr10ae/ntjti03pJO5eiQ5Ei5uNz58RNkxF3sawAsUDTqFFDxvHoUfTGYqRzZ+d0o2j07bfmY6c4UkaLAH/FKnfTJFWqiDXkCy/EzGLH6Ibr5589x9fQrvlduyQge/fu4u7RE0bXhtbftO++0/cHDJB2N26U3806dczWLMuWyW/onDlmEcadFYYn6td3jgVm/G6M4lPz5iJyHz6sn+Nbt4ogkiCBxDl6+WW9fPr0wN27wIkT/o/NSOLEMg6l5Lf1l1/cx1SLT4xWplbat3fvDo4QQp4FnjgRxh8uXLiA/fv348KFC4iMjMT+/fuxf/9+BAcHAwCqVq2KIkWK4KOPPsK+ffuwdu1afPXVV/j0009p4UIIIYQQQshTRvXq0YszAohbl/r1ZQIPEKuPUaPEWsTKF1/Iq5PbLyNFi4rIEltkzSqTdKlTmy0PEiVyngTX3KBVqhT9/ryJa6NGiTjTp4/7Mq+/Lq+dO8vEo9ElkMslFiMauXLJq9U3//Dh7tsvVkzEB+sYVq0Cjh61r3Y39l+2rL6fIIFYH3XsKCvFS5WS8dWv79xveLi40fvtNz2tRg3zJKqv+LsGsF07say6e9cc58IqOBjx5l7o449FwPMUP8IdVtGkRAn/29AICDB/ZyNHypiuXRO3gGfPuhcgrG4Nc+Qwf8eAOWaFkbAwsUBbtUp+SzT3UZobQm/Uri1j3LXLnmcUDapUAcaOFZeCxrg/adIA+/frx06C2C+/6PtaAHUrTi4MAbMFn5Fs2fT9tWvlfDcGa2/VSq7dsWP1NCfLx169dAG2SRMRdX/8UY5nzJDXKVMkcPygQXKcJYt8lwMH2mOCAGIZV7u2/OZWrqynp0ghVnuAWJD07i2isVIiZpUuLaJKpUoS3N547j/3HNCtm6QZf982bjT37SmOT0SEWLbNmeOcbwxIbxQ/EySQ/l98UazllLKfn1bSpo1dS7MnGe3/0t3CAUIIeaZRTzHNmjVTAGzb+vXr/y1z/vx5VbNmTZU8eXKVPn161b59e/Xo0SOf+wgMDFQAVGBgYBy8A0IIIYQQQsiTRmioUuvWKRUSEn9juHJFW9es1J07Sp09q1TWrEoNGKCXOXpUqd69lYrvR5WHD5U6eFCpqCilbt2SVyM9eujvxVhHX7utVFCQ+di4tWsndc6d09M+/NDcx9Chet6lS0pt3Chlrl9Xqlo1pWrUsI/LiLG/jBnltXNnyQsL0/POnfP8Wbh7D0oplSGDc17HjkotXapUmjT2z0kppUaNMqdPnmyuX7q0pN++7dz+sWNKLVqkVGSklIuIkHPKqWyqVEotWGBPX7nSfHzrllLz5im1e7f79+xuu3FDqSRJnN+rRteuznXfe8/+uUZFmdOCg91/B+7Q+hs0SKlhw+yfMaDUhAnO3/P335vTKlTQyx04oKefOKFU06b68Tvv2PtYtkypqVPlO7961fy9ZMmi1JYtSt27p1TNms7vb+RIpZInV+qzz/T0q1c9n6v9++tpW7YoNWKEfKbHjim1Z49eLjBQfhNv3za3c+uW589WY9Mm+5jDw/X8qCilGjZUqmVLPe38eXMZf1m/XvopUkSOEyWS4w4d5DcoJhw9qtTXXyt1/37M2vkvERmp1OLF8htNCCH/NVxKKRWfItCTTlBQEAICAhAYGEjrGUIIIYQQQshjQSlZNZwgAbBypVgiKBV9N07xyfffy0p2QN6Dxv37EnOocWOJmaBZ9gBi4aK5ntq2TSxhbt7UV7wHBprjJAweLC6PrH34ivFzPXtWAm1/+qnuDmzXLrFc8OY2zdjO88+LizltTCEhssLfyrJlstpfKaBLF4mD9NVXen5goFie1Kqlx9jp1Qu4cQNo0ECsbDT3cU7nh7vPw1r2xx/lPUdE2C2VDh2S7+noUYlfcfaspBu/E42yZcUC5MoVcRdldDOljSdRIiAy0v342rYV13waadMC9+6JRZvRjZdW1/hewsKAmTPlO0ybVvY9fQ5a3rlz8t60tqyfz+TJuns6La9pU90KREsrXly3eDl+XI8Dc+WKvG/t8/r1V3E7lzcvMG+epK1Yobvqu3dP4hgBElcqRQrd5ZhSwMOHQKpU9s8iIkL6uX3bbjlkZN48cUc4ebIen8oJLQ7Khx+6L+MLGzbYrfYex2zUkSPyvaZMKeftpk3yXoy/N4QQQkhcw78dQgghhBBCCHnCcLmANWvsaU8j1mDqGqlTA7Nn29MnTpSJ68hI4M4dXRDIlAmYOlUmjK3r48LDY2+8uXOLGGLEW7wVjblzxf1aoUIShFoTYQD3E92aKyKXCxgxwp4fEACcPm3+/r//3rfx+EONGtLX/717AxDRIUMGca+0a5fEAaldW883usn7+2951dyd5c8PvPGGfG+rVpljgmgCjDs6d5bv+qOPxIVg2rQiYmju7ADzJPr69TLB//XXMqZPPpHNKaaPEy6XPWj43Lkyga991tb4PID5O02fXs5Xo0gUFaXvp05tFk0SJhSXVy4X8M8/4hrRGKsqbVoRQBIlssdocrncu3TSPhdPAgwANGokmzdiKr5oGN2oFSsm19njwOjCMk8e98HhCSGEkLiEIgwhhBBCCCGEkDjDXcBwd2iiTYIEdouM5s2d63izUPHGsGES3Ftb9R9dGjeWDZAYNitXmvNbthRrh08+kTgZgMQQ8YavAty9e8DChRI/o2dPz2W/+AKYNEkskgBdMDB+X4MH68HiU6SQmEVGjEJIliwSB8VIggQSo+f2bbMI8+238v7btnUeW4ECImgkS6a/d6MAA5hFkYoVna0qHj1ybt8XtO8xSRKxxqpTR89r0ABYsEDiC2ns3CnxSYyfUUCAvu9kBaW9t127REi0CnXu4ts8jWTNKpZUadJInJqnVVQmhBBCogPdkXmB7sgIIYQQQgghJPrcvSuWLW+9pbuGcqJBA5nsPn7c2erAG5s3iwhgDETuD4GB5knzmBISAgwfLpYjxYrp6VFRwJkzYilSsKC839gmJASoWlWCnX/3nftyUVF68PITJ0T8AMSV16NH3kWAR4904eDkSeCFF5zLHTsm7uWKFBHrkshIYM8ecbNmtKbxhcaNxZXW8OEiJHli1y6gTBkJRr9ggX/9eEIpEa98mSKYOlXOq3r15FgTH2bMEHdmMWHOHPmOfv0VaNYsZm0RQgghJO6gCOMFijCEEEIIIYQQEjMiImSy39Pqd6Vkcv6/Eqvh2jWJ+eHOXdvjYtw4sZyxxm7xhYgIXUS5cAHImdN92cuXxbIppu83NBQ4cAAoXVosbbxx86a45vKl7OPAaP1SunTM23v0yH9rM0IIIYQ8XijCeIEiDCGEEEIIIYQQ4szQoWIV4snihujs2SMB4hs0iO+REEIIIeRxQRHGCxRhCCGEEEIIIYQQQgghhBASHZ4Qg1xCCCGEEEIIIYQQQgghhJBnC4owhBBCCCGEEEIIIYQQQgghcQDdkXlBKYX79+8jderUcHmKIkkIIYQQQgghhBBCCCGEEGKAIgwhhBBCCCGEEEIIIYQQQkgcQHdkhBBCCCGEEEIIIYQQQgghcQBFGEIIIYQQQgghhBBCCCGEkDiAIgwhhBBCCCGEEEIIIYQQQkgcQBGGEEIIIYQQQgghhBBCCCEkDqAIQwghhBBCCCGEEEIIIYQQEgdQhCGEEEIIIYQQQgghhBBCCIkDKMIQQgghhBBCCCGEEEIIIYTEARRhCCGEEEIIIYQQQgghhBBC4gCKMIQQQgghhBBCCCGEEEIIIXEARRhCCCGEEEIIIYQQQgghhJA4gCIMIYQQQgghhBBCCCGEEEJIHEARhhBCCCGEEEIIIYQQQgghJA6gCEMIIYQQQgghhBBCCCGEEBIHUITxglIKQUFBUErF91AIIYQQQgghhBBCCCGEEPIUQRHGC/fv30dAQADu378f30MhhBBCCCGEEEIIIYQQQshTBEUYQgghhBBCCCGEEEIIIYSQOOCpFmE2bdqE2rVrI1u2bHC5XFi8eLEpXymFvn37Ilu2bEiePDkqVqyII0eOxM9gHyPnzwMTJgCPHgFRUbIRQgghhBBCCCGEEEIIIeTx8lSLMA8ePEDx4sUxevRox/wffvgBw4cPx+jRo7Fr1y5kzZoVb7/9dqy6FgsPB86ejbXmYoWSJYE2bYD+/YFXXwXKlQMY0oYQQgghhBBCCCGEEEIIeby41DMScd7lcuH3339HnTp1AIgVTLZs2dC5c2d88803AIDQ0FBkyZIFQ4YMQevWrX1qNygoCAEBAQgMDESaNGls+e+8A6xeDSxbBtSsGWtvJ0a4XPKaMydw8aLs374NpE/vf1tnzwK3bgGvvBJ74yOEEEIIIYQQQgghhBBC/gs81ZYwnjh79iyuXbuGqlWr/puWNGlSvPnmm9i6davbeqGhoQgKCjJtnli9Wl5HjYqVYXvFH8kscWJ9P7ouyfLmBcqUiXtrn9DQuG2fxIwdO4BLl+J7FIQQQgghhBBCCCGEEPJ08cyKMNeuXQMAZMmSxZSeJUuWf/OcGDRoEAICAv7dcubMaSvjJIS4ExEePgS6dQN27/Z97O74+2+xZpkyxbfykZHex3fwIFCtmn18SgEhIfrxoUO+9fnPP8CBA76V1Vi6FEiRApg82b965PFw6BDw2mtiWUUIIYQQQgghhBBCCCHEd55ZEUbDpfnm+j9KKVuake7duyMwMPDf7aLmz+v/7NgBZM0KzJhhrudO5OjeHRgyJPruvL7/HihfXsSc8uWBe/eAli2Br78GjhzxXPfBA+/je+cdYM0amWQ38v77QIYM+rHLJcKMsU0nChYEXn5Z3J/5St26YqnTqpXvdcjjY9u2+B4BIYQQQgghhBBCCCGEPJ08syJM1qxZAcBm9XLjxg2bdYyRpEmTIk2aNKbNSOPGwI0bwMcfm+s5iRwXLwI//eR+jA8eAK+/DgwYIMcREcDs2XocFwDo3VssYL791lx36FCgdGn3bQNAcLDn8QHA1avyarSaAYB588yWMC6XiCWpUgHnzzu3ZXR5duaM57EZcQi14xcPHwIXLsSsDSPh4cDnnwPz5/te54cfgIULY97vk8i9e/E9AkIIIYQQQgghhBBCCHk6eWZFmDx58iBr1qz4888//00LCwvDxo0bUa5cuWi3GxGh7xvdkjmJHB98YE/TxI4pU4Dq1YGtW4GePYH9+4H+/YEPPwSKFAH27gVmzdLrjRtnb+vRI3nduhUYP97uJk3Ldze+b74xH4eGinBz7Ji97MaNwJIl+tidMAo5xr4BGVvu3CLmGMUhAEib1rk9APjrL6B+feD6dWDCBOe+CxUCcuUCTpyQ45s3gTp1gGXL7GXXrNHfh5W7d+WzL1xYPs9GjdyPy8iuXfJZNmhgz1u6FChRwrvV0syZInAtXepbn48T63lCCCGEEEIIIYQQQgghxDcSxfcAYkJwcDBOnTr17/HZs2exf/9+pE+fHs8//zw6d+6MgQMHIn/+/MifPz8GDhyIFClSoEmTJtHqb+BA4PJl/fiNN/R9J5Fjxw7z8a5dQOXKQLt24qLMSIkSxvcFlCplzg8Lcx5TaKhY0wAiZrgTGKzju3JFrDeMJEsmrtacQuYMHarvW725hYRITJmCBfU0qwjz4IFuQfPpp8CcOSLMuFzOIkxkpFj/aGM8d06EKQBo2BBInVovq1kOrVwpY+jWTT6HJUvMwtTVqxL/BpD3eP8+sGED8MknQMKEYrXkJEB548YN93nvvaeP+ehR9+U++kgvbxXT7t0DAgLsn/uTwJAhwJ079vM5umjWQIkTx057hBBCCCGEEEIIIYQQEp881SLM7t27UalSpX+Pu3TpAgBo1qwZfv31V3Tt2hUhISFo27Yt7t69i1dffRVr1qxBauMMvo9ERgI9epjT/v5b3z93Drh0CciRQ44//9xsNQNILJfg4NibsAaA1av1fSfLG43QUJncHz5cLEdeftm5nJMAYyWBxX4qRQp7mapVpb9bt8SS5d139by5c4HmzeXzaNHCXH/AAImfc+uWWSTSBBhALFZSpwZOnTK7PUuWTF6NVidnzwL79gF9+0qAeY0bN4BXXxUB6cEDoFMn53g3DRuKi7jISODtt4H8+e3WOIkMV5EmLAG6ZQ7g3oWbVkcjSRJz3ubNQIUKQJs2ztZQWv1Jk4BixeQ9xTWRkfIdZMggghcgwtoLL8SsXaWAsmXFkun4cSB58piPlRBCCCGEEEIIIYQQQuITl1LWdffESFBQEAICArB3byBKlvQevCQ4GDh82B7oPq4oWlT688aaNSJ2lC8vx+fPiwuv6GAVBNxZaCglLtZ69fK/jy++AEaMcM6bOVNiwFjj5EyZIiLEiy96b3/PHt3aqGJFYP16oEsX5z6bNBEhRuP990Uo+r/mh7Vrgbfekv2QEF0MqlIFWLdOr+fuSlu0SIQqQISHhw/1vIoVxRWcp/pr1ugWPnFxNRu/36gocaO3erVYdr3yiqQfPAi89FLM+omI0C1gVq4E3nknZu3FBg8fAr/+CtSuDeTMGd+jIYQQQgghhBBCCCGEPG081ZYwj5P+/X0rlypV3I7Dii8CDAD8/rtZONmyJfp9jh8PLFgAlCxpdqNmJWdOsQ6KDu4EGABo2tQ5PUkSYMwY39rX3F4B4pIsZ06zRYsRowADiCXP3LnAl18CJ0+KKzMNowgTGGiuN3068PHH9vY7djTXN6IJMJ44ftx93o0bwM8/A5kyiRs841h9YdEi83FYmG599d13enpsuEozWo5Z3dk5ceuWiIlW132xSc+eci727evZ7RwhhBBCCCGEEEIIIYQ4kcB7EQKYrROeRqyurD78MGbt3bolFhieXKtFV4CJLrt22V2lucMaY+fSJXEp5y9GAQWQyXoNTYzRaNZMLHCaNDG7JzPGGfKFsDCxBrp6VY6N7tc+/FBi5Bw7JgJOliwiIHbqJK7fatSQGDhHj4pgdeuWtHfsmN2K5qefdAsdDaMAtmyZf+PWaNJE4hhFRprTjcJYVJRz3TNngN9+k/xcuYDSpYGdO6M3Dl/QBKebN/W0778HRo1yLn/8uFjOuBs/IYQQQgghhBBCCCHkvwUtYXzEGt+FPHmMGqW7BfOGL5YWvhASYhZ0fvpJYtkkTQoEBdnL16snrtT27xe3ablzm/MzZRIxYudO2Xeid28Rv7JmBbJlM8fLmT3bbrmjMX26vv/rr/Lavr3EuTl5Eli8GHjvPWDePGDoUBG1rCxY4Ny2E3v2APPnizWJ0UJszhx53bBBrEuqVwfSpjWLMPXrS5yZX36R4xMngFmzRAABROTQhNE1a4AyZXwfl8bDhyKUeRLurJZDZ8/K5w8AHTrY6xYuLK+JEwOVK8t36M7CihBCCCGEEEIIIYQQ8uxDSxgfsa7aJ08mf/3lWzmr26/oopTZLRcAnD4t4sOhQ/byFy7I67FjImgMHWrOv3lT3KqVLw8ULGjOGz9ehBLN+ujaNbMAE11OnpTXoUNlTI0bOwswnnC5JEZO6dJiobNzp+wPGQLkyAHcvi3u2YzX0VtviVVMunTAV1+ZRRgAmDhR3y9WTBdgAGDzZn0/OhY5t28DKVMCFSqY0/v3B4YNk9hO771n/g6HDgXu3tWPreM1Mny4CGSa5dCZM0DVquYYQb5w6ZKIdb662fPGhQveBcibN+MmthAhhBBCCCGEEEIIIf9FXEpxus0TQUFBCAgIABAIIE18D4fEEi+95CyS+EuFCsCmTTFv50kgR47ou5A7fBgoWtR7uYcPgRQpnPNOnLALT8ePS5o15kyHDhLrRuPRI2DSJHHFNmiQubxS9vrTpgHNm8t+8+YS2yhfPqBWLUnr1MnZ5djUqeLODRBLp9SpzflOsXGUAooUEeFNO/aF0FDgtdfEagoQ93IvvghkyOC53oMH8hlbx7J/v7zPokXdn/uLFokVUqdOwMiRvo2TEEIIIYQQQgghhBDiHlrCxIDs2eN7BJ4pUCC+R/DkEhsCDCAT6k2axE5b8U1gYPTrLlwY83JOLsUqVXIua3UTdvWquFYbMgTYulV3Edepk7h8M1qwAGY3Yr/+KuX69NHT3MV8Wb5c3w8LE9FKKUnv0MG5zrlzugDjD++9pwswAPDmmyIeeuLKFXHt9t579jzNDdzhw+7P/6++ktdRo0QUI4QQQgghhBBCCCGExAyKMH5SpYq+X7as57JlygCffx634/HEiROyct4XZs50n+e0up8It28/O/GC7t+Pfl2jgOGJjz5yn+ckAl296lzWGvg+Tx59v3x5iccCSIyeCxek3wcP9DJOcWCqVXM/No09e/T9KVOAnDmBdu3Egmb0aOc65co5p0dGAo0aAYMHm9MvXQJ27wZWr7bXcfd5AMCBAyIMR0QAf/xhz0+cWN8vVsy5DaO4VaiQZ5drhBBCCCGEEEIIIYQQ71CE8ZOuXYEvvwTGjbNPBGukTi2TpTt2AGPH+tbuggXerQk8BRB3h7sxWvEUJ2LRIv/6/PJL/8r7yy+/SNySJ4GjRyWQPXm8/Pab5/y//zYfL18OpEol7riiopyvJV/ExrNn9f2uXeV13DjPdazCyfXr8jprlsQO6t5djiMigFu3RNh55RX37ZUvb46Xo/Hyy+bjO3fMx4kSeR7nhg3AqVPmNKNw5Y19+4A33gB+/933OhqXLonrNWNMnqcJpYAGDUSkp4NPQgghhBBCCCGEEGKEIoyfJEokAbrbtDEHGTdSvjyQNat+fOKE5zgOb78tcRjq1XNfpkwZ4J9//B+vNxHm9dcl7kaDBkCWLDIRaiVvXu/9tG0rE6dRUeZg8zlyOE94V64sk9P58nlv20iOHMCnnwJz5/pXjzy9VK9uT9OEDE9s3mxP278fyJQJ+PFHe54/gkNM0FyTNWumpw0bBqRLJ2Pzxt9/A599JvshIRJnxwnrb47REsYJJ9dvISHyWdWr59lSKjwcKFkS2LLF8++YO778UkTrXr3EJZomTMUGffrIewsNjb02rQQHi4i+bp3EJSKEEEIIIYQQQgghRIMijJ8YhRejwLFvn75vjdtQoIBzwPM6dYARI2RFvLc+d+xwFiysgcGteBJhsmWTSdOCBYGAABnj1q32cmnTigB05owelNzKiBFAypR2a4JEiYDMmfXj+fPlvaxdK0LVb7+JsDJjhr3N5s0lXoeR2J7gdCcC1arlu4stEresWhW9ehUqOKffuWO+XjUeVyD6kBDg4EFz2ldf+W/9MWYMkCKFXHfurnOXS1wShoTYhav69eVzWLtWRFgn6tQRi5/ffwdKlZI2tHFeuCBxZiIjxZLPiV27gN69dQFEKWcBzRqzZ+NG5/Z8xejarl8/sfLx16LPH27c0Pe9WSyeOSNjsloqEUIIIYQQQgghhBDPnDgBNGxojqP8NEARxk+MIkzz5vJaqpS4Apo/X9xk9eplr5csmYgPRj74AOjc2bz6PWdOe11Pk3qTJ9vTli3TxQp31jpOeYkSObtkSp4cyJ9f4m5MmSKrva0kSeLcR6JEwIoVQPr0wHffyWSvMQB7qVIy1qZNZcJWo2pVYOpUsRZw50bp+ef1/QsX7PF3unRxrmfEnXVAhw5A377u31dss2aNCD/xQY4c8dPvf5WBA4HixWPeTvv2+r5TPB2No0fFZdrPP5vTFy0St2dvveXeFeLOnfr+yZMinL71lhwXLAg0aSLuAZs0MdcLC5PXMmWA778HhgyR4+HDpY1+/eSa1bD+xj14IMLS8OHAtm3mdpcuBe7dcx5vVJSI3mnTyvVrJDJSxKi///b8uxgdQkLMY/REuXIi8GrWTIQQQgghhBBCCCHEN2rXlsXA3mK1P2lQhPET4+Rd3boSqFtbtd2ggbjJSpXKuW6ZMmY3SA0b2ssYRYHly80TlU5ky2ZfNV6ihD6xbhWEJk0SgQGwBwTX+PVXcfk1Y4aUt7pIqlRJPoeVK+X400/djy9hQhnP7duyIt4TpUvLZHJUlDko+fvvO5dfs0bfz5HD7mLKnSWEdXxWXntNd80UHAzUqOG9nZgwaJC4pHMKph4bHD7sOT8gwH1eiRKxOxYi1mexjTcLMXdxmqIjRuzYIVY0Whwp47WqUaIEcPmyfrxpk7x+9ZW89ukD5Mqlu4CzijBnzgAzZ8q4y5UT0WXnThFy33vPLFj27SuxtwYOFFeQJ09K+nffmc/9xImBjz6SMsOH+/eeIyJ8z/fm9kyzBFq/Xk+7csVZ3CaEEEIIIYQQQgghOtq8j6f45k8iFGH8JE8efd/lkjgIKVP6Xr9LF9mmTnW2OpkyRV5795bJf6tljJNoUKGCeSLUWKZZMzHT0oiKAkaNkklbzZLHSrNmsrq9aVOgZUvnMgkSAO+8I5OHngKTv/qq+zwn0qRxdmnmRMGCYvWzcaPUSZlSLG40vE2cAkChQubjsWNl5b0mhiVOLGKYkRo1xILJiiZYtGvnuU9tIhqQWDrffON9nP4yZAjw4YfAoUPijspIixYyGa2RIoX7dt5+O/bHBpjdzz0uN2DPMrFhWeMPRtdeS5bY848eNVtYBQaaY0VpvPuuiLlOv4XGmDnp0slvycCBcvz33/J65IiILe3aAT16mK1mALM1XOLEusVP167AgAESy8YbEyeK20dNJPnnH7u1i7Edb5YwTmTPDlSpYhaWje2NGBG9mGCxxbVr4kqOEEIIIYQQQgghJDpERACNGjnHaY4tHjyQuR+ry/+rV8VyZupU93XnzzcvmDWydKnMpVrd6fuFIh4JDAxUABQQqNKnfzx9PnrkPu/4caX691dKpsSUOnVK0v/6S0+7edNeT8tbsyZuxmzlwAGlvvpKqTt3Yt7Wp5/q4/fGRx9JueeeU2rGDL3eihVK5cyp1KxZehqg1LlzSg0c6L19LT9ZMjk+ftzcDqDU6tVK3b6t1J49elrLlvJZ3Lun1LhxSl29KvVv3fLcj3WbNEnfz5jRuUyiRO7fh7Hc/PnmtPLl3fc7dqz7POvWqZPvZZVSKiREPpebN32vx+3Z3DJk8L/OlStKlS7te/mlS+1pI0far5UdO5QqUkR+M4zXSbp0Si1bJvvVqpnrbN2ql+ve3ZwXEeF8LWbIYE/r2tU+nvbtJa9oUXteRIRS+/bZ+/DG4cPyW+ULc+ZI/x07+tfHs0BwsFI9eyq1d298j4QQQgghhBBCCHm6WbxYn/+ICcZ5HSvvvSfp9eqZ0+vV89z36dN6/pIl9jkTLa9Ro+iPm5YwfnDr1uPpJ2lS93kFC8qK7+XLgWnT9MDyRqsPJ8uGdetkNbUWzyGuKVZMlM106WLe1iefyGupUt7Ljh4tViBbt4qVkkb16uLarV49PW34cHGJ1K2bWAV5c5cG6AHQkye35+XIIZY4xiDp7dvLZxEQALRpI/EwACBDBu99GTG6qXM6D+vW9c3yxwl351uxYvLZ79olq/AbNZL0AgWkr4sXgenT9fL16wPPPed7v8mSyefi6Xz3l27dYq8t8vi4fdv/Om+/Deze7Xt5pexpmkVbaKhuzfLuu2LJU6OGWARqJE4M/PST7FtdsBmvvUGD9P2rV4EsWYBOnfRbBA0n65/gYODmTdnXLGo06x0nt4Jffy0WeD16yPH06XJ9HjtmL6tx8CBQtKhz/DEnvv5aXrX3/l+if3/ZjP8lhBBCCCGEEEIIEc6ckTjB+/d7L2uMpxtb7NsnoUIAGYPmrcXowQXwHu7D6FL/vff0MBVWPM23eIMijI989ZXzpFl8UaMG8PHH+rHRBY6TQFCpkkw4PknvwVfKlgXOntVdEHkiTRpxNZQ7N1CkiIgx587p+UYxQ4uF4nKJOdp337lvd/ZsaXvZMjlOlsxepkgReTV+/jFxE2UUOKxukzRBBADu3HEfWN0XjOP94ANxFXbyJHDggLzP0qWB/PllQnr0aInvkTChiE7ahDEgE9lHj4oLtPr13feXJo35ODZFmLgOylW2rPP1RR4/R474V97dH2X//sBLL8n1Gxkp15NG69b6vvG3AxBRomFDuTat1+eWLeIO8J13RGD66Sdx4WiNfWNl7Fggc2aJu5Mhg/xmO4lHGiNGyOuQIfLarJlcu++/794tmiYgPXzoeSwaVveWv/3mW71ngX374nsEhBBCCCGEEELIk0NQkLh+37lTjuvUAebMAV55BTh+XBbkuxNbjOEmfJnj9YWSJWXeMjjYc7gDb/Mx1pjJBw/Kq3VORosDvGGDzCdbxR5PUITxEXdxSZ4UjBNuT6PQ4o3cuaM3WV+2rFi7aBgnFP35Tj/4QPz+aTFSrBPxRsX3xReBnj2BCRP8/y7+/FOsm9atk0ncqVPlR6xYMXO5334T65QjR8TayNhPpkz2drNksaf98IOkDx8OnD4tMTLGjpVYQC+8YC8fECCxN4xtGT/PsDAgbVpZZe8u3hAALF5sPk6SxLN48sorEoi9dWvvwctDQ73H5IkuL70kot7Dh559SD4JUCiy485KqlcvES5OnZLfBHdxYoyrIgCxblmwQM7fs2fNeW+8IcKt9qftxK1bwGef2f2UAkDHjpI+apT9Dz88XMRQY6wvKwcPyrXYrBmwfbv7cr5gvManTxeBJ7a5dAkoXFjelz+cOqUL43HBs/hfSgghhBBCCCGERIfQUPEiNGKEHgNcWyAbESHP9V27ymJXJ86c0fc3bDDnKSXzlH/+Gb2xXb/u7CFIKfFY5C0mcGCgPa1SJfE2Mn++nvbPP7LgVrOU8bQI3QpFGB950kWYN9+U19y543UYTxX+fqdG1dRoCbNypd3i5fvvZYLVX956SyYWK1WS/po3Fxd0r7yil9EmQfPn161vAAnsDQBffmlv9+RJfV+bWPz6a3GXlD8/kDcv8O23MnHrDwUL6vuaGgwANWuKJc3Ro3ra7t3y4+dk0md17wQAr78uP8rbtwN//AGMH2/uQ+Odd/T9sDCgXz9xP9erl/6nYKVkSRFTDhwAxoxxH3jLiFHJ//hjsQiyYpywjk2++cb3skeOmC04SNzTqpW+nzGj7/UmThShxYrx98UqwgwdCnToABQqZE63lgsJEdGkbFkRdG7fluuna1dzuQMHzDcbISEi8mrB5jyd056sdPyhZ08Rmzt08F42MFC3UMmfH6hd27s4G10owhBCCCGEEEIIIcDAgRL+YsoU72W3bnVON85tBQTIYtcmTWTOb8UKya9aNXrjK1oUmDXLnLZ9O5Atm8xrGD1dDB9uns8YMkQseqxs2CBztEZvRIDzHKYvUITxkSddhMmYUdzoeFodTczE5Ds1uiaKrYlIb9y6JZO2EyY45y9cCKxaJa7zrKROre8b49HEdJKxWjV9P316c7vFiokKPmCA/JB6iumTOrWshr9xQ09r0ULERaP4Zf2s69UDli4V6yNARKz06eXHu18/+cE1Cli//CLuniZOFGuRYsWAtm0lroY3jDGDEiQQawcrp06Jm7ZBg+SPJD4oVEh3tUdiF1+sSlKm9K/Nnj3taUbhwxhjCtD9m1rxZFr7ySfyH9G4sb3vl18WMVUTOL/8UoTe/PnFpNco4GqEh4vQWbGijG/sWN19Ymio/A756u5Mq+MrRYuKiGoUTq0raPwlNFTasK6MoQhDCCGEEEIIIeRZYv9+WbC8dq1/9Xr0kOf/+/e9l715E5g7V3/GHjsW+P13c5mkSWWuYs4cic27dKn79pYskefzBQvcl3n0yJ5Wtixw7Zo9/csvdffuGzY8xvjSingkMDBQAVADBgTG91BILFGhglLJkyt1717M2tFCbW/cGDvjimumT1fqm2+UioqK3XYXLlSqX7/Ya/fcOaXmzlUqIsKeFx6uVNWq+mf/66+SHham1N27zu21bq2XV8p5nA8f6mWKFVOqRQul1q9Xau9epebMUerMGee29XDrSqVJY27/wQOlFi9W6tgxczlAqXLllEqY0J5u3cqUkdf9+53zBw60pyml1JAh+vGIEfYy+fIpNXKk9/65xc/21lv6fkCA+bvNnDlu+kySRKm//1YqUSLvZUuV0veN5+CjR0q1ayf79erJeO/e1a/loCClZs5UKtDwdzp8uLntkyedr7WICKVCQvRy7dvr+y1aKLV2rZQ5dkypl1+W3yVfadZM2unSRY7Pn7e/50ePJO+nn5Ravdr3tp9EoqKUatRIqS+/jO+REEIIIYQQQgiJDUaNkrmec+fM6YcPK3Xpkn78/PP6c+7o0fKc7QtOcwNKKZUggfu5A5dLqddfd84bO9Z9PaWUOnFCqQsX5Hnfmhdb8yBKKdW2bey04wsuGXzM2bNnD0p5Wur+lBIUFISAgAAMGRKIrl3TeK9AnniiosRtldHlT3QYOlRc6EycyBXTj5sjR0Stbt3au0VT69ZiAQPIz6MTERG6dVOGDGJ15Ava916woJhbGq2BnMpp1KsnZpLXr4vqnzevbqWQMSPQpg3w/PMSn+faNSBPHtnOndPbyJ8f+PVXcdum0bAhMG+eWAH16SNpQUESs2T6dLH4GT9ezEdz55bVBG+8AWTN6vl9/vGHlN2/X9zKObF5s7N1EPGfd94RaxIry5ZJfKQnlUOHJHaSxsmTcp5WriwrVrTr49135Xz64w/ZN/LTT2IGnDOnOb14cYld9eCBHHfsKGWtdWfO1AMEWq/3gwfFQq1/f7OpsfH6VMr59/ziReD8eaB8eee2tTKaqfOTzP79uvVfePiTb+lLCCGEEEIIIU8z//wDpEnjfe4lOpw+Lc+imuv/bt3EOwsAXLkCZM8u+yEhMg9qfd797jvx+lG0qMRk0di/X2JCP/ecHDs9Jyslz79WDx6+UKKE2UWYkTt33M+vKSXecIzhD6JLSIh4ExozJmbt+KqsxJo7srp168ZWU08kT/qkCvGdBAliLsAAcqFOmkQBJj548UWgXTvfJg+7dwdSpQK++MJ9GeP1bYxz4yvFirn/gwAkiJfRnVn+/HIO5solf5BG/5JKSUyhTz8Vl2l58kj63LnmNtOnF/NNI7/+Kq/G95M6tYxv6FDgww9FLMmfX0SnBg3kT9UTPXrIxP/EieKeyh3lywOffy7X1z//eG7THy5f9l6mTRtg8WK5oTGKUoAIXk8b7j6/J1mAAcwCDABMmyav69aZrw/NzNgqwAAirjz/vAjc2rqS48dFQNEEGMDZ/VrHjroAA4jLtOvX9eMmTUTANd6u3L5tbuPOHef3dvs2cOGCcx4A/PWXjLtBA/dlYoMLF4Bhw5yDBvpKZKS+7+79EkIIIYQQQghxZtIkoHNnz5PvV6+KUHD1qswzaWKGhq8T97dvy0LCCxdkke7AgfIaFQX8/Tfwwgvm2MuDB4sI06+fLJTUSJlSwgVY6dNHYl3/+COwfLkIOqdPi0iSLZu473bnKuzw4egJMIB7AQZwjsGsER4eOwIMIDF6Pbk4i238Wv/YyBqJ5v8opXDnGX+SN8YAIYQ8PeTOLUHGPQk2LpfkR0SY/7x85YUXPOc3aCBb1aoiyDjFAdGwTgprWOO8TJwoKxWMpEghr57ig/hL//76vrebhLFjxa+mURyqWxfYu1esCNzRogXw55/yZ29k2TL508+bFzhzxn39rl1FrHrvPTk2CqOjRwOLFnke95OGp/f6NOHJV2xwsOe6kyeLYJgypQgnVv74w3v/q1aJiDhpknOfp06JIGnkww+d23r0yLPgPnSovC5e7H1cMaFsWVnNdPCgLnIZOXBAxvD11/rvgZWWLfX9oCCJk0UIIYQQQgghxDtKyaJZQBZKvvWWnhcVJXM6mTLJXAYg8UeMdV0uWWBYrJgsZrU+13XuLItR580TwaFECZkr+eEH/Rl75Uqgdm1zoHsj334rr4MHm8fmaS5Kez+JEpkXAf/xh3hdccK6EDO2MHqusGKMcx1THlssmP/j11TdX3/9hWbNmqFdu3a2LaW/0YifMuiug5CnF1+u3xMngJ9/lklbX9m8WdyIdeniW/nXXwdGjhTLHH8xvoemTeXPzuUS6xMrH38sr9Wr+9Z2nz5iqXDiBHDjhntroObN9X13k+BW65wkScQdlSdGjgRq1JD9dOnkxiQyEqhZU9Jmz5YbGC1wmhVP329cmPtGB+uql/8Co0a5z+ve3XPdoUOBHTvEisZozaJx+rRvY5g8Wd83Lqbo3l3Mrq04uYED5EZ6yRL92CpIRkQ472s4CVJbt8rNbePGYu0DAPfueRavrlyR1z//dM5/+WWgb1+zeGrlwAF9PzRUhJjixYFevdzXIYQQQgghhDwbREaKZ5FZs+J7JL6xcaNzcHVfUApYsUJ/jooNSpbU948eFZfvQUG6a67MmYEtW/Qyw4bp+yEh8rpwoSy+nD5dvBN8/jmwbZt8N5p1xuHDQPv2+mJV43Pili3uBRgjd+/6//4iIsRNvsby5f63EZd4el5+4vE9fIxSdevWVRs2bHDMq1atmj9NPXbGjBmjcufOrZImTapKliypNm3a5FO9wMBABUBNmBDovTAhhEQTb0G9oqL0/DFj9PTmzZ3r3b+vVGSk7/0by+7cKQHhR4+2lzt3TvKN4/nkE/fvp1Mnpe7cUapbNwkIZ3yfEyboQdvv31dq5EgJiu6JU6fsQdCMQeaMffftaz42btaA8Nye3W38eDkHCxeOfhupU5uPQ0P187FgQXt5LT8sTE8zXk+XL5vLZ8umVGCgUmnTKpUnj1yPu3crdeWKXO8FCyq1YIFePnlypSZNUio42Pncr1rV/TVk7HfPHqVGjNCPn1ZWrVJq4ED5XSKEEEIIIYS4Z/bsp+f+/88/ZZzJkpnT9+5VautW7/UXLZL6WbLEznj++sv9M2POnN6fK2vVUmrxYnmW09I+/VTf37pV3z9wIObPwpUrR6/e+vXx/xz/NG2+4pclzKJFi/Dmm2865q1yt3z0CeC3335D586d0aNHD+zbtw9vvPEGqlevjgueHLxbYEwYQkh84nKJC6KRI4HPPtPTHz1yLp8qlX9uyYxlX3lFVmO0a2cvlyuX5LtcwK5dYjkwZYq93IQJYkLaq5dYtwwaJLF8NGrUkPeh/bamSgV06iRxNTyRL5/dDZs7N1Flyrhv54sv5PO0Mny4eaVKbHLqlLjHM5ojk7inTRugfn3g1q3ot2FdbRMaKq8vvCAWZFZGj5bXdev0tPbt9X2rJc+VK7IS6t494OxZMS8vXVoswNq1kz6M8WZCQoBWreS6mTnT3r9Svr2v0FBny53YwNcxxAbvvCMm90/SKi1j7B1CCCGEEEKeFPyYCo0WkZHy7BscLLEzY/K8oXkAMM57KCXWKOXKybxFWJi5zsOHwE8/AefO6R48NO8KO3Y4zwNohIYCa9boFiuAWKQUKCBWK1ocXieM7tXTpXMus2yZzJMYxzxxor5frpy+76kvXzE+j/rDwIEx7/tJZd686NctVixmfbuUepyPyfHDq6++ipIlS2LcuHH/phUuXBh16tTBoEGDPNYNCgpCQEAAJk++haZNU8f1UAkh/1GSJk0CABgyJAKdO/se2ax164T49VdRMkJDw7yUjn8OHnRh4sQE6NEjMtquwqZOTYA2bcQHWcGCCvv2hZuE8hMngCNHXKhbV8Hl0j9bjW7dIvHddzJDevs2UK1aIhw6JCqU9hk2bpwIixcnwIABEfjggyjkzWtuw0rFilHYsEFXsoYMicA335j9pGltKwUkS+a5PfJkU6FCFDZt8j/4knYObNzoQtWq5mBzmzeH4403oheATmvXeK6XKROF336LwLJlCZAiBdC0aRTCw4FUqfQyjRpF4pVXFL7+Ws7VGzfCTPGnQkPFd3Dy5P6N58IF4I03EqNVqyj06hX3aoT2vocPj0C7dvL7OX16AkyblgBz50YgU6Y4H4KJGTMSoFOnhFiwIAKVKz/zt9mEEEIIISQO0GZrPcWmjA7ff58Q/fvH3RxC8+YJMWeO/oD+3XcR6NZN7tE12wFfF4x+911CDBwobV2+HIaMGUXASJ1a7v8/+ywSv/ySEFOmRODDD6WPr75KiJ9/Tog0aRTeeScK8+ZJ/Z49I9G/f0IkTapw5044EiWStpYsSYAKFaKQJYtet0mTSCRPLotGL150YeVKGXCTJpGYPZur9J9m1qwJtz2L+0rjxpEYPz4SI0YkQL9+8gydMaPCzZu+XaTRjnSycOFC1K9fP7rVHxthYWHYs2cPulmi7VStWhVbt261lQ8NDUWotsQVIsIAwPLlS3DRGjWaEEJiiXbtMuLs2TwIDt6NQYN8n7RLnz4VsmdvjNKld2PQoAPeKzwBZMsGTJ0a/fqRkQnwxhtvIleuC8ib9wx++MH589KC0LVrlwFjxuhmCMmS9YdRfy9UqAgOHZJIc5owX6RIIqRLlw2hoRcxfboC0MfWfsmSe7B3bykAQPHiP2HDhs4AgDp1FuPhwwPo1CktJk5shYcPU5raBoCiRevh8GGJYpcmTSCCggLgicaNf8NvvzV2zCtW7AAOHizusb7Gyy/vw9GjRRAWJsF7Mma8iVu3HvMM9TNAdAQYAOjUaQqyZr2O06fzAPjYlDdp0mwAzaLVrn5u6efpzp0JkCePLrhs3/4Ljh8vDOCNf9PmzUtoWgnUtets5M59HgAQFeXCjz9+hZCQFChRYh9u3cqABg0WIiAgyOt4fv/9PVy79jL690+IRIk8BKhxIDg4JVKkeODxwSw0NDESJ45AggTatS/ve82aPxEUtBMA0LevpNWtux81a670awwxReu7dm2gZ0/Pi30IIYQQQghxYtasD/DgQUq0ajXZcN8bc9avrwKgPABgwIBBPgkioaFJsGbN2yha9DDy5DnvseycOeZn5z59EkEpCcg5fXpT3L+fGm3ajEfChN7f0/btbwCQILNvvXUKjRvPR1hYIgASzPeXX0QQadEiES5ckD7mzv0cQGYEBbmwe/c5APkAwCA8udCz52gsW1YL165lxf37af4/zu/w888ydqPQkj37JQA5bOnk8VG37u84caIAjh590ZTeufMIJEv2CIMHewk6a+C336YDaOk2P3Pm67hxI4tj3vHjhzBq1BIkSAD06JEQERGJkDx5KJzmi5yI3iwCgCZNmmCEuyjJ/+dJMLK5desWIiMjkSWL+QPMkiULrjlEdho0aBACAgL+3XLmzAkASJDA95XphBDiL5ky3UKZMrt8uhExkiZNMD79dDJKlHg6BJjYIGHCKFSpsh4vvHDap5vRTJluG/Zv2PKLFDmKevUWoX370f+mJUkSgVy5Lvzb/kcfTUe2bJfx4Yd69MLq1XU3nAkT6qv9EySIhMsFpEt3z+2YatZcgUqV1qNjx5/QpctIj+PPnv0SChc+7ja/bNnt/+6XK7cV6dPfdls2UaIIuFz6Z1ay5D6PfZPYZfz4Nli3riJmzPjYlhceHu11MQCAS5eye8yfOPEzbN78hscySZLoi1CCg1MiJCQFAGDfvhK4ePF5rFpVDeHhibB0aW1s2FAB8+Y1wO3bdlv7sDD3ll7h4Ylw4kR+7NhRBiEhyUx5Z8/mwtChX2HBggZuagNBQakxaNC3+O23Rg65sgLJ2O7DhyncthXXREQkxsmTL8Rb/4QQQgghJPZZseIdLF9eI077UAo4ebIArlzJjtOn88Vq2xERuhXA/v0l3JbbuLECZs9+H5GRLqxfXxF79pTGtGnNPbYdHJzSMX3HjjLYs6cEzpzJh5s3M+PGjcz/5p05kxuzZn2A7dvLICpK2jh06EVERiZAwoS6L7OLF2V+NjLS+blpz56SDu/VueyWLeVx8mSBfwUYANi8uTySJrX7e/f0bEPilpo1l+HFFw+jaNHDCAgItOWnSPEQyZI5W3NVqrQOAQH3bOmhoe6/zyRJQvHppxNNaa+/vgUAkCxZCCpV2vBveuLEkf8XYHwn2u7IVq9ejUaNGqFZs2YYNWoUXAb7uMjISMyYMQODBw/G8ePuJ44eB1euXEH27NmxdetWlC1b9t/0AQMGYMaMGbbxOVnC5MyZE+vX30K5cnRHRgghTyOau6L168NRrlzMFghs2+ZCQABQpIjCt98mREgIMGJE5L99zJwZgYYNRbhPly4xHj6U/0dPpt7bt7uwebMLPXvabxKXLAnHO+8oTJmSAJ9/bs8PDQ37t+82bSJx8aILy5c7r7Ho0CESs2YlwJ07MqYff4z41xVVdEifXiF1auD8+Vi2kf8PMnduON5/P/ruyCZPToC2bWMm5Hz5ZSQGDhRB8fhxoHhx8w1qsWJRyJgRWLdOP79efz0K69bpD0dhYUCdOomwdq3ZxZ/Ge+8lwqpVklerVhQWLtTr1qmT6F9Tf3fXi9HlWmhomMkdwdChEWjbNgpXrgAvvCBp1apFYelS/x1Rz5+fAE2byud5+HAY8uf3va7VBeLT4CqSEEIIIYR4JzAQyJxZ7vXOnAlDds/roPxm3ToXhgxJiJEjI/Dyy+b73thg/34XXn1Vf+aoWzcKc+dG/L8PoHLlRChVSuHzzyP/7X/evHBMmJDQdn+/fr0LAwcmxMKFEUjzfy2jW7eEGDHCu7XIvn3hKFJEnsuN984BAQpZsgD//GN/vkycWGHLlgjT+K2cOxeGatUS48QJqV+mTBR27vTd/iAgQCEwkM+2sUGXLpFo3z7Sq2v3LVvCUb68fKdVqkQhVSpxEQeYz3ujGz2Nhw/DkDCh/fkLAO7cCUPKlEDy5IkRFaV/p+fPhyFXLnv5hg0j8c03UXjxRYXkySV/4MAIfPml7krPnWvAJEl8FOpUDNi/f7/KkSOHqlOnjnr48KEKDQ1VY8eOVblz51bp0qVTvXv3jknzsUJoaKhKmDChWrRokSm9Y8eOqkKFCl7rBwYGKgAqMDAwroZICCEkjjl6VKklS+K2D83D7fHjelrbtpJWpYr3+kFBehuVKslrsmRKRUVJfmSknq9tkyaZ+27dWqlatezltK1bN6UyZtSPhw61l8mc2X19bUuYUKnnnlPq5EmlOnTwXt7T1qWL+ThVqpi1F50tffrH36d1mz49+nWVUqp379gZh0b9+r7X2bdP6ty54769O3fk/HOXr5RSDRro6XnyKLV/v/vrDFAqIkKpli3tbf70k75fvrz3a88Ja5u//BL9uu548ECp8PDojY8QQgghhDx+Ll7U7/HGjXMus3OnUnv3yr2qE0OHKlW8uFI3btjztLaLF3d/P/nokVLXryvVpIlSGzf6N/6CBc3tNmig5y1c6HyvP2OGUmnS6Mf580v/2nHChEodOKDUhAm+Pz8cP67Uw4dyPxyXz1jW98st+tuOHfKM5i6/bFl5frtxQ+ZeHj0yn9OAzIusXKkfd+hgLlOjhlIjR+rHRjp1svep8cor5vSSJfW84GB5lnv1VenbOianvrQ0d9d4dIH3Ip65dOmSKlasmCpWrJjKli2bypQpkxowYIAKCgqKjfHFCmXKlFGff/65Ka1w4cKqW7duXutShCGEEOILJ08qtXmzOe3BA6XmzlXq7l3v9aOilKpaVak33xTBJTLSXqZLF6Vq11bq66+VWrpUT//+e6WyZVPq3Dm5cdFuGqwT8337KtW4sexnyOA8KV6qlPl482alJk/Wj+vUMY/p0iWlsmdXqlAhpT77TN6DrzdyZctKGz176mnHj0f/xjB7dqWSJPGvTrduSv36a/zf1D4pm4Y/dRIkECEmSxZ7nnYelynjXDcsTD//P/jAnr98ufl8M+aVLOl9bO3bm+s/fOj+gdhdP9bPxt+6Tty7p5TLpdTLL/veLiGEEEIIeXzs3KlUo0ZKnTmjpx05ot/j/fijvY5RpClc2L6oKDRUz//qK6Vu3lRq3jxJV0rPsy4S09i0yfle86+/lMqRQ6kVK8z97dih1MCB+sKfnDnNdWvXlvTBg93fTztNvDdpErNnjn37pN3cueP/+edZ2saMibu2lVLqwgWlhgyRBXYXLyr13Xd6vtMCOqX079i4MFWr066d+fi99+T5cNIkpU6dMrezfLnzmJQSUXDaNDnfW7dW6vJl57FoVKki9RMnltcWLcz5WvsnT3pux1/gvYh77t27p/r166cyZMigkidPrlKkSKEOHjwYW2OLNebOnasSJ06sJk+erI4ePao6d+6sUqZMqc6dO+e1LkUYQgghjwvN6iUmdX//XW4YypdXau1a803KoEFyw9S7t1L//KNUs2Z63qVLclP1+ut62qpVevs7dij1ySdKXb3qfdy+3sgtXizlf/jBfCPlVPbgQbnJO3/efXvDh8sDzKpVvo+hb18ZR3zfMD8pm3GVW2xs2oOgu/wCBZT6+295AHRXpmJFpYYNM1uL+bp9+aX0f/WqUr16SVrZsvIgGhrqLMhcueLc1rFjvl2L1npOaNcpoD90Gzl2TAQjQgghhJCnkQcPlFq2TF8N78SBA1ImNtm5U6nPP1fq9u2Yt+V0P7d1q57WvbuevmePCBnGVf7a9vffUubAAaVq1tTTe/cWoQbQBR0tz+i9AFBq+3alvvlGqaxZ7e1bPRP07Gl/D19+Kc9sToKK9b0+jm3atMffZ3xsH3/sf52GDX0vW6GC/bvcvVupEiU81xsxwr8x/fOP8zVy4oRexiqaaJw9K89h16/bz8s2bczHjRu7vx6jouQ5//JlpebMUWrdOvdlvXHrlghWt2/LvnU+49Qp+RxjG0S3Yrdu3VRAQIDKmzevmjBhggoODlbNmjVTmTNnVjt37ozNMcYKY8aMUbly5VJJkiRRJUuWVBt9tNmjCEMIIeRpIipKVqE8eCDHxgeBHTvMZTULkLRp9bRy5fTympWCv7i7efvqK6VSpJDVKY0a6RPgQUFKvfaarKpRSql+/cz1pk/3rf0JE7yXsW43byr155/Rv7Fu1Cj+b+6f9M24Qio+tvPnPVvNaB5rT5wQQcTTw9LZs+Zz8cwZu4hirdOnj1LbtpnLzJ+v548ZI9fGvHmSt2aNpL/yivP1dfasXLv79snDvFVI6tRJzsuYiLqEEEIIITHhjTfkfsaTOx/tXig213JrbdavH736q1cr9f77MjFrvJ/r3VufBDamW/t12rp2lQVv2qp7bRs4UN8vUED3WACIW+qY3P+mTi2fqzGtXz9xJWYt6238cbEZ3Qc/y5u2CMyf7ZdfnNOLFdO/x5w5RYgIDLR/l0qZxUKn7eBB31zBaXMK7jh1Si8bEuL7dda6tVwPmnAzYIAIjEars2cReC/iTKFChdS0adNUhOXJr2fPniplypRqsba89SmHIgwhhJCnnUuX9BVYRiIiZALaaK67f7+IMsOHR78/443bc88pVbeuTCwr5bzq34rRHP6rr9y3nzSpUh9+qB/v2uU8Bk+bUvLZGNOscWrcbenTywPa118rNXWqs3s3T1urVvHzMJA2bfz0G1/bW295L6O57nvzTc/lpk3Tz7F16/R0bW2PO1/agPkcNq6CNPqqPn/e7N7BSlSUvV2jL29jfmxNaERG6oLOl1/K+R4dzpxRauxY/x7Q3NGnj0yQOLltJIQQQp5mbt60L7Do108WSgUHx12/J06IFX1sod2PaItKoqJEGDG6itXKzJkT+/2mSaOnWRemREXJs47T2mytfosW9nuudetk0YzT/Z2n+8ciReL/fljbnOJvhoU9/nH4+rz1tG41aypVurRZpPB1Gz/ennb0qCxc1GJxGhk7VsrUqOF8LgPm2JuAuDF3ijlr3XxZ1NW9u1KjR3svZyQqyv5M8F9YQIboVozy8OlMnDhRJU2aVP3888/Rbf6JgSIMIYSQ/xoxndg03rh17Oh//f37pW6KFJ7b1+Jp7Nkjk99OZZ5/3vONpVJyM2u92Tx71h4Q0119jZMnncucOePsNzk6N+WAxOjZti36DwWaD1xu/m/GcILvvmvOe/TIc92ICLFc8eWBR9usGC1ojJvmOjAkRE/zN1CrEw8fKpUvnwipxpV2V664r7NokVKHDtnTtXhNffva827dEos0X397tHGsX+9b+SeB0FDvqwkJIYT8t9EsF95805yu/e/NnBl3fWt9HDgQ87aMk/qFCkna0aN6mhafRDueNcu/9jdtcr7XMLaZNKkcnz4tsTO1Z4JWrcxuYd3Vd9pmzrSnaYvZ4vse9Wnbkid/vP3lyxf3faROre8bWbVKqXfe8b2dcePsaZ6IihLXWVZRw1rfeKzFrDWmFS4sQuytW0qlS6dU//6e+yX+kwDRxOVyuc1r1aoVfv/9d3z77bfRbZ4QQggh8USCaN8d2OnTx/86xYsDhw4BFy86569dC1SqBMydK8clSwL16jmXTZUKWLPGc38pU5qPXS4gd2559cS0aebjJEmcy+XJA8yaZU9Pn95z+07UqgW0aAG89pr/dTXy5jUflywZ/bb+awweDOzapT+uGEmWzHPdTp3k3P7uO9/7i4oyH2vnvJV33pHXR4/0tG7dzGV27AAaNwYuXJDjbduA2bPNZZQC+vYFZs4EvvlGrt/Tp4HffwfCw/Vy1645j2PrVrkWX3rJnhcWJq8bN9rzypQB3n4bmDrVuV13PHgAREb6Vyc63L8PVK0KTJgQ/TZy5QIyZDB/R4QQQp497t8Hxo+3/1eePg1s2OC57pQp8mr8r9T+PwEgaVL/x/PDD0Dnzvb7Fnfs2+d/HwBw6xbQuzfQvTuQPLmert3LJEyop929a65rvd8xcv068Ndf+vivXQMqVJB7DU/vKTQUaN0aKFcOuHJFv/+ZNMn8HgcOBMaMkecFb/fETZva07JnBz76yHM9YickxJ4Wl59jdM9rd+TJY0/Llcu5bLVqch/pK2+95d9YXC6gVCn7s8iLL5pfs2XT81KnNpfNlQs4ehSoXFnuV+/cAXr08G8cxDuxOM1ipnr16tjg7R+GEEIIIc800REaAKBoUfd1K1cG1q0DChZ0X3/BAsmfNUsmdw8eBL78Eli1yl42RQrnNiZOBDJnloe1oUPlQS4yUh4U790DPv7YXN7bg/H69UDbtsDPP8tDdrp0nss7kSqVb+W6dHGfFxhoPrZO1hPPlCkjQuUff/hXb8wYee3Xz1mkcGLePPNx/vzuy0ZFmR9ot22TiRul5PW116Q97QGxXDngww9FONH46y8RiT76SCZtfvxRzzOKMHv3mvueNg0oVEiuO284iZVnzsjrb795r//ggb7/3ntAvnzAw4fe6/nKuHHA6tXmtJ9/Bv78E2jTJnpthoXJpNGjR8DZszEfIyGEkJhx+7bc51nviWKDDh2Azz8HqlQxp7/wgiwiOnTIfV2nBUBGEcYoZPhCZKQsqhg1Cjh2TNK2bhVhwx2eBBGN48dlktZIy5bA99/LghXjAgmtPWPa+fPm/0Nrn0FBQNeucv9euLDcy2sLIW7f1svduuV5nL/84vxeg4P1/R49gPbtZaI8uhP1M2dGrx4xkyVL9OsOGOC+/htviOjw55/Rb3/tWn1/1CjzgrhXXpH7a0/392+/7bn9fPn0/RdekHvc/PmBTZuAS5eiN+Zly+T3aOlSOR48WM+z/pZE9x6X+EeciTAAUJJLKwkhhJD/HNOmAc89B+zeHX9jqF9fHhBfflmOX3pJhJRq1YAvvjCXdSfClC4tE6ctW4qAM368TL67XEBAgL28cXK5WzexOjhwQE+rWFEm4v/H3n3HR1G8fwB/LpUeOqEXkSogxUKRIogiogiigFJUQEFFLKiICihVEAEFBb5SBGlKFQRUehEpSu81IJCElkZIu/n98fyGnd3bvdu75JIQPu/Xa1+3Nzs7O9f35tmZefNNopdftv9Yvv1WW9+1y94+qan6+w88oK0b/zQXK2avzKNH7eWzw+4xcyp3DTCqs2f19901vgQG6q9wI+IgYocOrsEcVePGRHv28Lq7AMHw4dp6r17autNJ1LMn0bFjRF9/rd9HNrioDUjpbfiZMkVf/rlz7v9Uq8f2ZM8eDpTKnkVSbKz1PjIw647a2BMaylfk2u3Bk5xMtGSJvtHJrqtX+fnyZV9fnTzJ33HnzmXeMQEAvNWjB1GfPq4X1LgTFWXvu3vpUr49fFhLU3tsHDxova8ahImO5ltjD8rDh61/d4y/sep56F9/cYNu48ZEtWtr6QcOcE9ds7reuMHnzRs2aGnHjnFgpGxZ/bGMFzBIsq7yXIOIz0vVntkyz9tv8zl7+/Z8IUidOlqvmb59iSZM0Jd99iyf369caX5sKxcvepcfPAcRMsIrr/i+7333EQUFuaaHh3PAlYh7mMj/ht74+We+CFASQn9OvmMHn/+4G0Xhvvu0dfXzR8S9sBYu5ECMvKBp2TKi48c5gFS6tPd1JuKRHSZN0j5rxv8JKl+eF/CeX4MwAAAAcPfp3p3ov/+4W3R2NGQIB1bkFU1WQRgiz0OSqdQgzHPP8dBRxpNso2PHzNODg7lHwsaN+j/Dxj+8UocO+j/I6jAQRNyLR1KHXytQwLx3zfPPEzVrpt0fN457Fj3yiPnxVVbDsqm8eV49efbZjCsruxk0iK/qO3mSG05u3PBu/5gY/hNnbMAx3m/QgG8//dS6LNmTx8gqMPT99xysXLVK3yhUtSrXq2NHbjRRe7Z4atxyOvnqQyPjkIPyMzN/Pr+/Fy92X6704ovm6eoQjSkp3GNIDoVWpw73KjIOibJ5M1Hv3vxdqF7B+Oef/Gf6hRfs1WnECH6uWrTQPzZVdDQ/B+vXc4BMXtndqRPRG28Qde5s71gZ4bHH+L3y9NOZc7yLF4kaNiSaMydzjgcAOcOqVXwrrxD3ZONG/j0ODtYHV1RCcBBfDdyvWMG/XXFxWppxGCCVen5UvDj/fsyapaV99hkPLTRokOuxBw3iBmc1ULFzp7beq5d2bhcVpaX37889TiQZEElN5V7bEyZwwEpav55vZS/UyZM5qJWUZP6Y5O+Wu6GmUlM536RJHKRSz2lV77yj/01bsoRo4ECidu34vqeeMZLV8K5gbfly/x+jenW+oKddO9cLYjwJDnYNwpw7R3Tpkn70hA0b+BytTBl75W7axP/riLh3SmgoUZcu+vPfgAA+tqcLf/75h8//lizR0mbN4nOn+vX5fL9jR3v18sWjj3JvmNWrtbQ9e3g44Mcf999xQZHVk9JkdzExMYKIRExMTFZXBQAAAPykdGl7Ex+643QK0bq1EC1a8CTsdqiTuRcqJMRDD/H6K69oeQ4c0PI8+qiWbjZZ46RJQjzwAE+oqG6fPl1b79pViLNneVJzp5MnYDVO/rhlixCHDgkxbJh+wnR1cnar5do16221awvx1FNCFCmScZNgPvlk5ky2mR2WPHkyppx69VzTUlO9K+PmTZ6M1k7eF17Q1gsWtM7XtKn+8yQEv/e2b+f6dehgvW90NOc/dkyIokWFGDVKv12WJyUn6+8nJenz//GHECtW8LZPPtHSP/iAb596Sojjx/X7jB9v/vlUl/LltXWj1auFaNdOiIsXhXjnHSE++kiIypW1/Js3C1G8uBALFuifJ+Mx+vWz/o4wM38+fwf+/bf7fHbYPaY727cLceSI62umOnCAn5+nnkr/8QCspKQI8euv/NuXHk6nEFu3CnH1avrr9PPP/Jn1pQ5//CHE5ctaWkqKEFFRPHH5c88JsWuX+b7z5wvx7rvaucCdbuBA776r1HM1d/vExpp/7y9dKsTJk9r9/v21fa5dE+Lxx4WYNYvP4R57zHX/Fi3My1UVKuS6LS5OiC+/tP49mjVLiDfecE2fNo3rW7u2a5nGx6g+Lne/e0J4zteokXfnIcYlPj59+9+Ny0sv2c9r9hq2a2eet0AB63Leftv9MaTu3T3XST0vXLJEiEqVtPv33OP+c12hgmt5zzzjmnbggLaP0ylEYiKvv/yya70PHRIiVy7+jvFk40YhBg92PR+FnI08Z7m7IQgDAACQ8zmdQsydywGJzD6uDCCcPClEZKQQU6fyn1yVPMlv3lxLa9qU0z75xLzsunW1/aZN09bVAI8Q3AjTqhVvW7SIG9fd8eVPmlycTl7cNcQbl4YNXdMCA7X1N94Q4uDBrP8ja1zCw7O+Dv5cOnQQYu/ejC2zRAn+HMjPxNix9veVgQl3gRoiIf76S4jly4UIDRVi9mztfb16tXn+6GghGjTQ7ufOra0fO+aa39PnpGRJ17zu9ilVSlsvXFhbf/JJIa5fF2L0aNd9ZDBLTYuJESIiwv1numxZ95/969c5wGv3+8EXERHa/kWK8HPs6TjpOd6d6ttvufHGXaDKn2QjVE733nv83ure3bv9jMGKX37hckqXTl991GBxVJR3+y5Zwvvly6elGRv3HQ7zfeX25ct9r3tGunWLAxvXr7tuO3tWiHHj+Dtv2zYh1q3Tb9+/3/N3R1ycEBMnCnHunPU+s2Zp36kREdygawzuyOW99zi4rKbt38+vp3yP+bJIJ06Yb2vb1rdyrfYTQn9RApEQH39sr8waNXx/nHaXKlX8f4yctqxday+f/O1/7TV9+oIF5vnVwKUxsHjjhvVxVK+8Yp6nZk3+Daxfn8/Runbl/xWRkfqg4qlT7r9H1Au4Hn9ciB49tO+QFSvM66QaMsQ8T1KS++PC3c3NWwqEQBAGAAAA/EsGJtyRV2bJK/OF4MbqWbOsr0x98EHtz8HGjdp6797pq2/Llu7/qAnh+c+VuyvkjFdlrljBV5WpaUlJ3LDSq5fWSLJ+PV+xnNV/aIm4x8qqVVlfD38v8+ZlfR3UZehQvppb3jdeGWy2SD//bO8YoaHa+qFD1uVZ7a/2AjPydOx8+fT3rRq/GjRwLU/2ojIGYr77TstTvLj1537nTi3fv/9a51OP6UtD/Z9/6st45hnPx7F6PjPCv/9mTO+FjCYfc0b0XvLWokV87KlTM77s+fOFaNxYiAsXMr5sOy5c4J5khw7xfV/eXxcv8mfpvff4vjFQmh5xcVo527dzj7/GjbX6qm7dEuKnn7QghNlV23Y/R3Lb//6XvvrbcfkyvwZmF8Xs2iVE1aq8EPFFGkbFivG2Ll20el++zFffL1zIgXizx6xejS7PQ8LD+f6RI+bPVVgYb//iC/ff3e3bC7FsmWv6s8/qf7O8XWS9rbb5Wq7V4q6n8922qOfVGb3IgGlmLJ4upildWoiVK/WfMXX7L78IkZAgxIcf6ntrq/kee0yI4GD9NqvzR1WfPuZ5WrbU50tN1UYgiIsT4uuvhThzxvW7wUi9aMfM0aP82KzEx3MAaMkSz8cCkCzebiAhCAMAAABZLSXF3h8KlbHBRa6//nr66vLuu/o/Q1FR2nqfPvpjEXFDSq9e3AAhmQ1/IZekJB4+49df+Y+N0+k6xIQ7crgo4/LDD/b/lF66JMTixb7/qX3rLSH++Sfz/kRj0Zb8+b3LL9kZ9sK4qIFOudSowT1svDm25Cl/WJj+/ptvmuerUcO8oZFIiAkTrI8pGxxVCQmuV3cHBlp//tR8s2fz1d4yyPzvvzw03YkTWv4pU7h8mccYhHnySddjWA2dZyU6mh/HpUvWeczs2MHlFijA948c4QYeX23ezI/XGHRPTeXvuhkzzK/sNyMf87x5vtfHV3aecyN3DVlmZXfsyN+h+/eb53M6rXt2pYfsYZo/v74+3jxW9TfSWIY35QjBv3116gjx/vt836oRvHJl133V3rBWdbDalpjIAbErV/hCD7ltxgzv6u8LdTggYxNMuXKu9TXmMXtMgwZp63//7bp96FC+rVBBiAED9NsOHRLi88+tn8sLF7TAjy9L0aK+7yuE9XtCvpczcqlVK+PLvFOXa9f0vVMzcrH6/fbH4i4Ic++95p/RvHm1PEuXaumyh4vs8VezJt+fOdO1F7BxiL/q1flxq7Zs0barvb2ee86HLxYTUVH8v2XnzowpD8AOyuoKZHcIwgAAAMCd6OpVIV59lf/ECKH9eXnzzfSVGxvLjaYjRgixZ4/+ylw51rxsROnY0byMmze5gcfsT58V+afv9Gn39UtI4CuPDx/WN9gIYf9PqdPJ5Xj7Z/all3iojpgYbky1u9/nn5s3DGHx/3L0qBDff581x1apDZ12lyZNzNPLlxeiWzf3x5VDHqrpJUtq9bl4kedcsQpOSStX8vGOHrX+jI0YwZ9HOYxg7dqcV51j6sgRTjMGYYh4qDjVlCmen0/ps8/0eWTPuYQE7mXnbvjFYcO0/WSjWJ06rvk2bOD5kaykpOhf39279dvV4Ygefti6HEkta+ZMz/kzmvE5v3mTG643bjTPv2ED5x061Hx7WpoQ58/ry1aHFVq71nUfOSTOjz+6bouN5V6i167x/fh492Puz57NFwakpblerW31/oqP58a7X37R0oYM4Z4p/ftr+5Qt6/o+3bdPex9euqSfo0X66CO+YEJ9rwvBc7pYfa6Nz4Wn7x53PShkIKlBAz6XkNtmzbJ+Hs2kpfF5gvH5P3nSNc3p1H/m5LJjhxb8NPYGlMvzzwvx9NP2esMa54FwOLz/7lWXp59O3/7pXRAYyZrl5k0extibfewGxs6d099Xe+DaXaKj9ff37jXvdaUGYaZO5XklifhiDqsmUPmdTqTvoS8EB2JkL9jr1/l3IS2NAx0VK2rfmep8dlu3Wn+HqL1RZs/m7yT5ewFwJ6KsrkB2hyAMAAAA5ATyz87bb2d82YMHcw8UKSaG/yzduGGvTkQcwHA3tE5cnPuGTjMdO2rlC8HDJajHVIdiUhfJ2OC1ebNrXjksCpmcVdv9syz/gGZU44DVVZQ//uifxog7eTEOdZeZy9GjHJy4dct8zoH0LO7mxpFj+j/+uOu2jz7ixpHKld2XLwQHF9Q0qyF7jEtoKO+vzuUkezysW2d9PE+fKzPGPLInUKdOfL90afMGeuNnSP3ukJxOfX3NhpV84QXeNnOmlk8NKqkNUe4eh0ptPJ82jSfzLl9eP3+O08m9D8+eNS9DBrt8GV7KWFe1l4CR8fGZkb0IFi7U8gUFud9PppvNY6Q2NJ45wz28qlfXvz6bNvFV3moA1jgEkNljPXWKG1JlL7gSJTj9wgUtn9UQOsYlMZEfZ/78vD50KA+reeqUluf55/XHf+gh92WqAT5Pn1+rnjLqayI/m+r2tm1dn3OroQdHjdL2K1OGv+/kUJ0VKujzugswBQfrn2MsWDJ6UYfSsrMIoQ9QEgnx6afu93n5Zf6Meipb7f3tcPA+P/zAQ5A6na7HlcuIETxXivHiK/lZUz+Pcvn3X/7sTZxob3hkIfQXKa1a5Tm/lbZtubcM5lCBuwlldQWyOwRhAAAAICeQf5jefTera6KRdcqb1z/lq1cdqtQ/fD16CFGtGl893bevEJMna9vMGhCNf2D79rV+DDt3ClGvnhBjxmhXF5otcigEOZRawYK+NyQsXGheTyLuRWSnjMaNs75B5G5aOnXSGuuzw2JnrPuUFJ4E19djVK0qRKlS2v09e/h9axWEUee+siqze3cOnnz/vRBffWU+5vwXX7g2lLVuzUNfxcTwZ/X0adcGOTXQ8Oyz5sevVIl7Q6hDipnle/99bvDavt18aMadO/n5PX2a5yp65x1tvPubN/W9e9SeEurk8er8E4cOCfHEE9xDw2yuE1m2FaeTX2uzxyQEB9DV+yrjd4kQ3IA3diwHIU+e1LYZeyioy7BhWuOgOoxNqVLasW7d4qCSVRmvvsrBgjFjzLdPnqy/L4eoUuv+6KPm70112By7Qxv++6+27qnxlojnSfE0/NHSpfw8WfVyUR+L1bbISP3cVWbLgQPa8z5tGgeT1HkjoqL4ogWz4SFbtdLWn3hCe/9NnOj+mO7eH1iwpHdp0cJ6m7EHy8sva+91dZitK1f0+T74gHu6yfs//cSfHXk/LIx7rU6dqqVt26a/wMFqfqzPP+fvGjmf3eefu+YJD+dtchhisx7X//xjXr47SUna/ps2eb+/5HRaz2sJkFNRVlcgu0MQBgAAAHIC+Yfp+++zuiYaWSc5/n5Gq1dPO4Y77q78czqFWLNGm09i714eemfkSG44vnSJAzF2/oha/cGXE50nJfHwFuqfdk+LHJaHSH9FYvHirnkvXTJPNy7JydxDwGzbpUtZ31iCxXVZtUo/DFJ6lnvu8Zxn2DC+Kjej6i/Hgv/oI/PtRYpoQzj56zns2ZNv0zNHg1xOnfLcEO5uadZMf3/0aG6Er1FDnz5pkr7+0vvva+nly+v3+eor/X05NJ1RdLQQ33yjBQjlsDPqvkIIUaiQdn/MGC0IJQPU6nLzpr5X0dq19p+TZct4KJqKFbW0sDCuZ48eQgQEeC7D3dBRTz3lft+uXe3Vs2FDe/nUOZ3atEn/e46ILwZo2NDz3Fj332+9bc0az8cZMIBfO/X3JyiIA5/GuauMi/q7TMSByL179cPyYcmcxWy4vDtlUYcszIjFbKiw77/n3pOJiVoPLiL9MF333aelyzlR5JKQoA8aL1zIPRblfRnMXLBAS5NmzODvXzuio83PY8+cEWLcOP13/OzZHMiXvYDtztdlNHAgz/foKYgPAHrkOcvdDUEYAAAAyAnWreNG05SUrK6JRvYOkVfpZbS//uIGoe++80/53rL682/2mljljY3Vrvbu25evIrxwwfVqQnXiVLnEx/PQZ54aI4TgBgAivpL9kUd4XU7AasxvnHcjM5eVKzO2vHHjXBup74Tl0CHtNcuMJSAgfZNRmy12xtffuTPrn+vstIwfr6337Kl9D5jNrWG1nD7NvRlkEPfMGQ4gGQNBRDwkjno/Kso1T6dO7r/D1CUjPr8NGmT965DepXXrrK8DlrtvUQNiR4/ycFZZXSciIerXd3/Bx+zZ+iG7MmIxzrFm1ms8Joa/81S1a2v7GOcSNJ7PLVrE36/yvpwLLTmZhxD96it755IZITHROgAPAP7jEEIIAkuxsbEUFhZGMTExVKBAgayuDgAAAECOceUK0apVRJ06EeXJ459jOJ1EAQH+KdtbJUoQRUW5ppudjTsc5mUkJRGFhHg+Vrt2RCtXavdXryZ64gk+lrvnY+ZMop49Od+uXUQ1a/JzePQo0QMPmNctJYUoONhznVQ7dxI9+CA/J5GR3u1boQLR2bO8HhNDtG0b0ZNP2ts3Pp4oXz7r7Skp/PxUrUp08qR39cpKly7xZ6lXr6yuCWSmDz4g+vJL1/QWLYg2bLBXRuXK2ns9KIgoNZXovvuIDh70vG+3bkRz5rimt2nD3zlgT8uWROvWZXUtICfr0oVo/nx9WpkyRBcu8HpiItH580RVqvhWfvfuRKGhRNOna2kJCUQvvki0bJl3ZT33HNHPP1ufB12+zOcOixYRvfCC+7K2bSMqUIBo/36uCxGfe+zcqc/38MNEO3Zo91euJGrb1nNd77+faN8+Xk9O1p+fyXO78eOJNm3ix3T1KlGpUpx+4gR//wLA3SOb/CUFAAAAgLtN0aJEPXr4LwBDlH0CMEREmzfbz6v+kT96lG+rV7cXgCEi+uEH/f0nnuBbh4OoYkVe/+wzfZ7TpzkAI/M9+CBR3rxE+fNrARgzQUH6+/Xrc8OHldKluby4OA76eOv777X1vHm5wffAAc/7BQdzfneCgvg9s28f0bx53tctq4SHE6WlZXUtILOZBWCI7AdgiPTBxtRUvrUTgCEi2rvXPB0BGO8gAHP3efhh620//ED0/vsZe7xbt1zTihTR1nPl4sCGmeee81z+jBlE06bp0/Lk8e13qWRJvp0yxXy7PGe0ChjVqMHfjZcvEzVqxEHlxo217Rs38nlVmTJaWmKivoyiRe3VVT03Us+FlizR1t99l2j5cj5/s3sOBwA5Uzb6WwoAAAAAkHNVraqtly7tPm/nzvr9hCA6fNj+sYoXJxo40Hzb6dNc3rBh+nQZnPHEU8AjTx5u+HjoIfPt8urWfPmIChe2d0yV2pgUGMi3993neT8ZkJs923PePHn4yuGM4m0PlfBw74+BIMyda/DgrK6Bb+wEPwHuVj/95Jq2ahVRkyZEP/5ovV+BAhxE2LRJn/6//7kGBz76SH9/zx7zi09u3SLavZvo6695eestDgwUK0b0ySfacY2OH3ftQWNG/hYbPf64a9r58+7LCg3l29699eclzZrxRReyN2udOub7HzrE5z9qUKl8eX4cq1cT5c6tnVdJN2/qy7j/fvd1lMaN44DZP//wuU2lStrFIe4eGxF+swHuRgjCAAAAAABkkosXeciLCxe4QeTyZfN8zz7Lt/KKUF9YDeWRXmYBD3XoM1l3q94wxYpp6+XLa+v9+xNt3+75+BUqeM4jffGFti6HTOveXUvr3dv9/q+/bv9YVp54gui11zznU/M0b+79cWQvBjsKFfK+fPAfX4JuAJB5Bg/m3+sPP7SXv1UrHnrK6MknibZsIbr3Xn262lM2d27+/a5RQ0vLl4/o1Vdde4+OGkU0ebJ2v149btz/8kt9ACM4mHupDhjAy6RJ/PsbGan/nXz3XW392jWup7G3K5H1b1pEBAdLFi/W8qm/o8uXcw8U2YPkrbd4mFD1IhN5vKAgfc/XjRuJfvtNO7cxO8cx9sZRde6s9Qom0ger1Is7jh/XB0vcCQsjGjuWqG5dvn/0KA+1myuXeX61J4zTae8YAJBzIAgDAAAAAJBJSpbUeojUr289/Mczz/BVsPv3+34seQWqt/O1+KJtW254WL6c6M03OS0wkK/4JdIHFdReQOHhRKNHEw0fTjRxIlHDhkR//EFUrpz1serU4bHg//5bn242ZMo773CDFpG+Qeu337inizqc04QJrvun97l7+WW+etlOg86DD2rrTZua5ylWjINVUp8+RL//zutJSfbqNHiw6xXWGc3ptG6EAlf582d1DQDuXPPmcVDBnT//TN8xHn6Yf68bNnSfr149zjdpkutFFup3NxHR229r6/J3Sl1XfzfcDaVp9ts3cCD3eq1ene/L+VCMjIGMr77i7++kJPfB+jFjuEeNUdmyHCzp0IHvBwXpe5W2a8e3a9Zwz5QxY/ixlS2r5VGHAn3sMc5np9fdwIGeL6xQLVrEvXFnzuShz0JCeCg4Y4DMG8HB7n/71HMKd+c5AJAzIQgDAAAAAJDNOBzcEG93XHIzjz7KV9dGRFjnkYEHs2FT7FB76hQpQvT00/pGhp9/5kaWRYuIXnqJ0z79VF/Ghx/qh2Nq1YqHE3n+edehw2QDWKdO+qAFER9D9fjj3LgzZw5Rgwb6Rro2bbihp2BBnkw3NlbfICYZhyghItq61TXNyowZHHSyE4RRr8Tt08c8T3CwNhQLEdHUqdxIZdzfnSee8K3Rf9Qo+3kdDi0A5y/ffMNzShmH47kT5eQgTFhYVtcArDz5ZOYdq1Yt/j70hy5dPH+GWrbUB+LNfPstB0rMGvzVIIHUtq2+Z+f16zwc2KVLHPxQh7Tq2ZMvNFCpFyTUq6etyzlP1MCMnL/k0Ue1NDkcV/HiPI/ZqVOuddy6lYMinTq5brPicLifu8Tp5M+1u7niVOpQZTLoU7gw90yRj1GdG1A9Z3E4OJ+dIUe9Dfw//DBfPNKzJ9FTT3GPnFde8a4Mbzkc3MMoMtLzHHUAkPMgCAMAAAAAkEM98oj7oY7efpsDEF27+uf44eFEH3zADVWzZxNFRbkGT8zky0e0cKF+bpx33+WrZ60Yr+iVQZWOHYl27bKeoyY42LoBTwY4VI0bE3Xrpt0/eZKHAvvgA+u62ZmMV62/1fj6uXLx+POtWhHNmqXflpzs+RhEfJWvL1fgvv++d5NFyyuwPTGbhyBPHvcNfPfeyz2uZs3iXlTG+Y3MtGmjnyw5vcyG6PGV2XPgTy1a6Oeo8qeoKO/y16unXS3v7jPljtnn9m41fLh5+sqV+mEk+/fnBml/yZ1b/zvjbljJ0qWJzp7l7/wSJax7cQwezL0aifTze1j5+28t8FSypD5A2KQJ0RtvcKDErMG/WjW+Vb+nu3XTD09WsKA+T8eO/Bieeopo/HjXMtXhqAIC+MKLSpW0gIz6HdOzJ9/mycMXB8yZo/WCJCKqXZv3NSpcmIcHS+/wpGrvEFlW48Z8AYexV6rRQw9xQEr2jjGjDg12zz326zV9urbuy3ey+rxkRq9hIu5hVLx45hwLALIZAW7FxMQIIhIxMTFZXRUAAAAAgGyBm7yEKFnSv8dxOrVjrV9vv16FC2fc8T//XCtX/fe0fbsQ69Zp9+PjhXj3XS3fW29p286f19KnTNE/f3I9NlaIOnWEGDyY91m2TH9cIiGqVbOu6+XLQpQoIcQ777juJ5fdu7X806db55PL8uVC9O4txM2b2n6e9pHP0fXr9vJOnSrEggXa/Y4dhUhM5Od+0yZ+TMZ9Jk92ffyejvPcc/brb7U4HNp6UhLXVb6mc+fya2g8RmSk53J37PCuHnFxvj+Gpk25jkeOpO+5sLuon2E7S1oa73P1Ktdz1Srvj5maaj9v48bW23r2FGLECNf0iIjMee7sLAUKCHHokPX2pCQhhgzh91j//pzWu7f2uenaldPkd4Pcr1AhIUJCvK9P585CfPONEEFB+vRJk/TvhcWLzffv1o3fm6p581zzhYTo85w9q99eqJC2vn+/li8+nut37hy/155/Xoj8+YW4cEFfXu7c+vKk5cv179WYGCGaNRPi229dv5M8GTlSX35amhApKfo8ly8LsXQpv6ez0j//CFG1qhBLlvi2v9PpOU+jRvxcjB/vXdnyORw+3Le6AQBkFvKc5e6GIAwAAAAAgJ5s9PB3EEY91vbtnvP+8gsHMoyNeOk1aBDXoWNHz3llfadM0dKiorT0hARtfc4cDg4sW+a+LLnUru3+2GlpfLtunRAtWwqxd6+278iR+rwzZ3puULVTp0ceEaJGDSFefpnvv/GGljciQojjx7W81asLUbo0r48axQ17KSlCHDyo5Zk+3fWY+/frj5mY6LlexqVrV32+woVd81SrZr1/q1b8OI3PTVycdV3uu89e3dTXSV0qV3ZNO32ay6xZ07q8sWOttzVpYv85y4jFznHy5OHbUqXM33OtWtk/nsPhesxt24QYM0af9umnHCBzF7TculWI777T7j/2mPb+zOjnaelS/fs8LMzefrLR3t3zr5LfEVJKCj8PxvfEl18KceyYdj8kRIi2bYWIjhbi44/Nj7Vvn1bO5ctaes2aWhDhww+FePFFbpRXg0cDBgjx77/mr/9PP2n5hgwR4sEHOZhi1KSJlu/oUT5WdLR5mZ4EBmplff+9lr5unfVz6y1jEOZuFxcnxIYN3gec5HM4apRfqgUAkGHwde8BgjAAAAAAAHr9+nGjx6xZ/j9W9+5CNG+etVcCJydzTxy1R4iVbdu494zxiuaJE7nXhxBao5Hx6mujb7/lBkuZv0ED7+vudPJV4sYrkX/8USt3505t3SzQoBo9Wtsue63I4xw96trIKwQHmoiEmD2bn8vkZNc877wjxAsvWF8x/d9/Qqxcab3dU2P1m29qj/vzz3ldvo+JhChThq9qV/cJDtY36pYvb6/RVOZZu9a1bs8+69pLyOnkXlTffKNPP3FCiNdf1+7Xq6cd4777zB/nggW8vUgRvq/2ziLiq809PWfqe8C4/PUXByPk/YgI7fW1CgJYbQsP59tr17gX0a1b5s9ncrK+N5kMMk2erKWtWMGN+FFRvM+qVUI89BA/hyr52DZv5vvG50dddu3S91zz5v125IgQly65D/KoS1KSvtxixfg7wyxv8+audfrgA32esWM5iOItuf+ECdxbRN7v29f9469Z0/VzLbd99pn18c6f50CtO3Pn2vvcXbnCvX3++cd9Pjty5dKO+fvvWnpamhBdumRMr4urV/l7R+01Cd6Tr9OXX2Z1TQAA3PPwM5a9DR8+XDRs2FDkzp1bhIWFmeY5d+6ceOqpp0SePHlEkSJFxFtvvSWS5BmODQjCAAAAAADoOZ3ceAa+OXnSu4ZCswb09DpxQt+w2aULr+/Zw8GfpUvN91N7FNiVkuJbg7A3tm7lhuLoaCHKluVhmt56i4fQIRLi8GHXfdRgyOuvc5rasCwDVTJos3Ah33/7bfd1OX5c37vJLIiSlsZBmkuX9PsaAxhqWrNmWlqtWq4N4ffcowUrFywQokcPfj4GDNDyPPCAVsaPP3LvnyNHeLiqnTs5PSGBh4syG/YsOlobhk3WMTXVdTgoqyDMjBn8XvPiL7kQgt9Dsoxt27T0bds4eGVnuCMhuCfR339r92fNsg6M7NvHnwWz97sawJPLhx9q67KHlHzPyKCOmv+117R1WX81CCOE1gvv99+FuHGDg5HPP29eJ9lrJ29e+8+r0Rdf8HskLk7/nL/4oj5fy5b6gI9Z8HXmTA7YXbvme32E4B6D3n7npNf69Xy8pk3tv7d84c+y7xbyveHtMGYAAJnNIYQQWTsrje+GDBlCBQsWpAsXLtAPP/xAN27c0G1PS0uj+++/n4oVK0ZfffUVXb16lXr06EEdOnSgb775xtYxYmNjKSwsjGJiYqhAZs+YCAAAAAAAdz05eXDz5kQbNmRcufv3ExUrxpNUC0EUG6ufrNrM2LHahOnZ9Z9kSgpP9BwYSJSaSnTjBlHRouZ5L18mWrKE6KWXiAoU0J7rV18l+t//iK5d48mtpUuXiMLDvZvo+qefiD77jGjpUp5A2528eXni7cKFia5e5bQZM4hGjuSJ1OUE4S1aEG3cyOunTxOdOEHUurV1ubK+VasSHT1qv+579xLVravdj40lOnyYJ+X+4guiQYNcjyHlzs2PRU339T0jhDZ597ZtRI0a+VaOkdNJNGEC0Xvv6dMLFCCKiCC6fp2oYkWemPz4cW37rVv8eowYwc8REU8S3rs3r6em8vtvxQqiZ57RHoN8Lvr1Izp1imjtWm0bkba9aFGi6GjX/YiIRo/Wnnfj83nlCj/vefP68my4ksd95x395PKXLxN9/jnRc88RPfpoxhzLypw5RN2783pmfucYn3fInnr35s/i4cM86T0AQHZ1RwdhpFmzZtGAAQNcgjCrV6+mp556is6fP0+lSpUiIqIFCxZQz549KSoqylZQBUEYAAAAAADISvfcww3t331H9PrrWVuXceOIBg7k9Tv/n6Srn3/mxvS5c4mKF8/84y9dSjRsGDc816plnW/HDg6EjB6tvR7uNGtGtHkz0ahRRB995F2d1Ibo5GSi4GDtVt1mbLCW79d+/Xh9+nSiXr28O7ZZPbZvJ2rY0PdyzDz5JNHq1bx+6RIHUIoV4/uXLxMVLEiUK5frfidOEL35JtHHHxMdO0b02mucLj8bqan8fDdrRtSuHQcEjx8nevBBXnbt0ueXj7FIEQ6omElO5te9TRuiBx5I7yN3b8kSojFjiObPJ6pUyb/HsvLvv0T16vF6TvzOgfRLS+PPLABAdpajgzCfffYZLV++nPbt23c77fr161S4cGFav349tWjRwqWspKQkSkpKun0/NjaWypYtiyAMAAAAAABkiStXuLH28ce13gBZ5a+/tF4Id/4/yTtbWhq/H+xcrR8by4GbRx8lCgry7jhq+U6n9fHef59o8WKirVuJ/vuPqEEDrl9aGtGZMxxMTE/PArnv0aPcoycjbdrEPc2IiJKSiEJCvC9j6lQtSGrns9GmDdGaNfr88jGqPaGA6NdfiSpUcB+YBAAAyM6y+BTevy5fvkwlSpTQpRUqVIhCQkLo8uXLpvuMGjWKwsLCbi9ly5bNjKoCAAAAAACYKlqUG2yzOgBDxD0Q/vyTG9UhawUG2g9qFCjAw5V5G4Axcne8ceO4x1bp0tzLQ75fAwOJKldO/9BOCxYQTZyY8QEYIn0vF1+fo9BQ7/JPmULUqpUWiCEi6tSJb+30brqbtGuHAAwAANzZssFpvN7QoUPJ4XC4XXbv3m27PIfJmZ4QwjSdiGjQoEEUExNzezl//rzPjwUAAAAAACCnadmSr0qHu8OiRXxbsqTnvP6cQ+OFF4j69/dP2WqA09dgZ+fORE2a8Pw/dlSsSPTHH9zDTZo7l3u9yXmXAAAAIGdI53UwGe/NN9+kzp07u81TweYZf3h4OP3999+6tOvXr1NKSopLDxkpNDSUQr29hAUAAAAAAAAgB+rUiYcUy8mTlNetS1S7NtH/TyXrk1y5iLZsSV89QkJ4GDcAAADIWbJdEKZo0aJUtGjRDCmrYcOGNGLECLp06RKV/P/Ldn7//XcKDQ2l+vXrZ8gxAAAAAAAAAHKy7DAUnj8FBfEE8Dk50AQAAABZJ9sFYbwRERFB165do4iICEpLS6O9e/cSEVHlypUpX7581Lp1a6pRowZ169aNxo4dS9euXaP333+fevfuTQUKFMjaygMAAAAAAABAtpDTA00AAACQdRxCCJHVlfBVz549afbs2S7pGzZsoObNmxMRB2r69etH69evp9y5c1PXrl1p3Lhxtocci42NpbCwMIqJiUHgBgAAAAAAAAAAAAAAbLujgzCZAUEYAAAAAAAAAAAAAADwBYIwHgghKC4ujvLnz08ODBALAAAAAAAAAAAAAAA2IQgDAAAAAAAAAAAAAADgB5h6DgAAAAAAAAAAAAAAwA8QhAEAAAAAAAAAAAAAAPADBGEAAAAAAAAAAAAAAAD8AEEYAAAAAAAAAAAAAAAAP0AQBgAAAAAAAAAAAAAAwA8QhAEAAAAAAAAAAAAAAPADBGEAAAAAAAAAAAAAAAD8AEEYAAAAAAAAAAAAAAAAP0AQBgAAAAAAAAAAAAAAwA8QhAEAAAAAAAAAAAAAAPADBGEAAAAAAAAAAAAAAAD8AEEYAAAAAAAAAAAAAAAAP0AQxgMhBMXGxpIQIqurAgAAAAAAAAAAAAAAdxAEYTyIi4ujsLAwiouLy+qqAAAAAAAAAAAAAADAHQRBGAAAAAAAAAAAAAAAAD9AECYTXbxIlJaW1bUAAAAAAAAAAAAAAIDMgCCMH6nTyGzYQFS6NFH79llWHQAAAAAAAAAAAAAAyER3dBBm8+bN1K5dOypVqhQ5HA5atmyZbrsQgoYOHUqlSpWi3LlzU/PmzenQoUOZUreYGKKKFYn69eP7X3/NtytXZsrhAQAAAAAAAAAAAAAgi93RQZiEhASqU6cOffvtt6bbv/zySxo/fjx9++23tGvXLgoPD6fHHnuM4uLi/F63H34gOneO6Lvv+L7DYZ5vxQqiLl2IYmPNt0+aRNSuHVFSkudj7tpFdPasT9UFAAAAAAAAAAAAAIAMdkcHYdq0aUPDhw+nDh06uGwTQtCECRNo8ODB1KFDB7rvvvto9uzZdPPmTZo3b57f65aSYi/fM88QLVhANGaM+fa33+beM4sXu25zOomOH+dhz06fJnrwQe59czf6/Xei118nunkzq2vim/h4oqVL79z6AwAAAAAAAAAAAICrOzoI486ZM2fo8uXL1Lp169tpoaGh1KxZM9q+fbvlfklJSRQbG6tbfJGa6jnP9eva+v79rtudTm3d4SC6dIkoOlpLGzSIqGpVorFjidRR1tS5aMwIQTR0KNH8+URpaVzmsWOe60tEFBnJwY5//nGf78IFDgrNmWOvXHeOHSOaNo3rauXxx4mmTiX65pv0Hy+jrFxJ9Ouv9vK+/DJRhw5Effv6t04AAAAAAAAAAAAAkHlybBDm8uXLRERUokQJXXqJEiVubzMzatQoCgsLu72ULVvWq+Nu2EC0erVrEMZsOLKEBG195UoOpgjBPSJOnyZKTta2O51EpUoRFS+uBWe+/JJvP/yQKG9eLW9MjPs6bt5MNGwYUdeuRMHBXGa1akTnz3t+fH37crCjfn33+UaN4uHRunfXB5OkAweI+vThIdsefdR98KFaNaLXXiOaPFlLO3iQaPp017Jl0OfcOaKffnIfuPHFzZuux+zXj+ihh3jbF18Q/fUXUWIiDyP39NNEN254LveXX/j2xx8ztr4AAAAAAAAAAAAAkHVybBBGchiiH0IIlzTVoEGDKCYm5vZy3hCZcDqJJk4kWr9eS9u+nRvfb93igMKTT3IAwhNjY/4HH3DPiQ4diO65Rx+EUauhBm+kfv20dWOj/3//EQ0YQHTiBN+PiNC2qb1mDh7U7xcfTzRiBNGRI5zvwgUOntiRO7e2btaZqG5dDqJUrsyBq++/91zmn39q67VqcRBn3jzuESTJHkHVqhG99JK9cu26epWoUCGiwECi997TXp/vviPauZPo2WeJPvuMqFEjfi9IV65kXB0AAAAAAAAAAAAA4M6RY4Mw4eHhREQuvV6ioqJceseoQkNDqUCBArpFVb06BzRattTSGjfmxvd27bS0Vau0deNQX0JwACYpyfX4mzdr65s2aetqoCEuznU/9RjGIEy3bhw4ql2b74eEuO5PRLRwoT4oM2wY0SefENWowb1typYlOnlSv8/ffxO1aEH077/69GLFtHU1aJSQQPTDD1oPFbXH0KVLvC0x0bx+8fFEI0cShYZqaRMmEI0e7ZpXBkGmTzcvyxe//qoFXsaP5+CLas8ebV2dE+jUKd+Od/Qo0SOP8Hw3mWnhQg4s3kmE4MDYxIlZXRMAAAAAAAAAAAAATY4NwlSsWJHCw8Ppjz/+uJ2WnJxMmzZtokaNGvlU5r59RMeP69M2btTW1Z4aqmrViJYv1+4vXMg9OZo0cc3733/a+tNPm5fnaZqaunV5+LP16znYs2EDp8vAhNV8NbNnE731FtHFi9yovXOntm3sWPN9Hn6Yn4N69YjGjePeJ/Hx+gnm1SDMe+8R9eplXtZDD/G2Tz/V0uLjtfXdu4kGD9b3EDLrFTRmjLa+b59+27vvEr3yiud5c4yE0PfuIeIh4+bN0+5fu6atq3Xcts28zAMHiFq35kCWmc6dibZu5fluDh/mx+5pqDm7rN4DBw/ycRs3zpjjeGvzZg4+eWvfPg6MDRiQ4VVyMWUKD8cXFeX/YwEAAAAAAAAAAMCd7Y4OwsTHx9PevXtp7969RER05swZ2rt3L0VERJDD4aABAwbQyJEjaenSpXTw4EHq2bMn5cmTh7p27er1saKiiO6/X59Wuzb3AvFWly7cqG7WiLtggef91aGu3GnZkudFMdq/33qfyZOJSpfmnj3qPDN2DBzIxxs6VB8cUQMpS5ZY7y+HXFu5Ukt74glt3awHkNmcLx99pL8vBPfsWLKE6OuviWbOJDpzhnvRTJliXpf4eO6BkpLCPV6KFOFh2VSpqUQvvqg/jvTxx+7rTcSP7Y8/iBo2NN9+7py2/vDD3AuoaVOis2fN89u1ZQtRWJj5Y1eP6W+nTxP9/0eXiHi4vGbNuLeZt9T3mLcBNm+98QbRP/9wTzEAAAAAAAAAAAAAd4KyugLpsXv3bmqhREHeffddIiLq0aMHzZo1iz744ANKTEykfv360fXr1+mhhx6i33//nfLnz+/1scx6b9idHyWj1a1rfwL3f/7R369SRZsbxp3hw4mee859HnXILdVXX+nvT5lC9L//8XquXJ6PHRJC1KkT0W+/6XvUmLHzWPbude3ZERlJ9M47vP7yy/peLq+9RjRtGq9/+inP90Pk2uhuFcAhIpozR1u3egwXL/KtWdDgt9/0w8rJQM7+/UQVK5rvExdHZPXWPnmSh2378EPu6XLzJgcTnn6aqEwZLV9wsLYuBPeoshIZSfTYY9yzyJceKPfcw7cXLxKVLKnN5+ONr77iOXrUYfKSk/VD1vmLWS8sbxmf45QUouvXiYoXT3/ZAAAAAAAAAAAAkPXu6J4wzZs3JyGEyzJr1iwiInI4HDR06FC6dOkS3bp1izZt2kT33XefT8dS52fJDrp3920/O0EL6Zdf3G//8kt75fzwA1GFCjw3iuzt4s6BA3xsTwEYu9atc01bulRbHzmSgxGffsrDYckADBH3DEqvadP0QRkiz7012rZ1v/2vv4jKlSNavJjvr1xJVKAA0YgR3CtkzhxuzJfatOHXoXVr/VBpbdroyw1SwrJmcxapRozg10oGs6TXX+fAwuDBrvtcvsz7qMFB+Z5UnxO1h4yZ6Gii+fOJ3n+fj6++TnZ6ii1YoAWjfLVzZ/p63WzcSFS4sL63WtOmRCVKcE85AAAAAAAAAAAAuPPd0UEY8EztTZHRPvnEft5z54h69PBfXdy5csU1TZ3jZvhwol9/5dtmzfT5AjLoE6IGzQYM0Pc+8UWjRhzQeu457onSqROnf/IJUd++fLzHH9fyy54iZ8/qgysHD+rLVXvCqMGMKVM4sNKxI9HVq5yWmKjfd/dunv9m6lS+P3Kka71LluRh/OrX19Lkc6wGNOrW1ept1uOkVi0iq1EFCxYk6tDBfKg6qUsXnptp0iR9+rVrHBSxE5w5coQDW77q0IE/ny+9pKXt2MG3c+ZwsGz7duv5e4h4SEPjMHlGS5fysdSgHAAAAAAAAAAAAGQOBGFyuP/vFJQtGBv8M8uYMb7vaxbA8ZVsTJ84URuKLCPMnKkPmMydy7e7dvH8L8ZgiXGOms2b+VYIbdg4IqLPP+fAy9y5PHQZEc+r06cPr6sBquPHiR54gKhJE+/rbxaEISL691+ie+8levBBvn/6tBZAiox0X+bSpUT58vEQbO56q0RG8naZp0MHDor8/8iGHn33nec8TifPL3Ttmmu6Sh3eLymJqF8/HkbPrEeRVKIEUY0a7ufy6dCBn48hQzzX1Rd//00UEeE+z6FDPHScp95VAAAAAAAAAAAAOQ2CMH5QrFjWHfvpp7Pu2J7ExGR1DbLW6tX28hmDJOnRtClRnjzu8zRrxkGCNm30cw19/TXfduumz79lC9+qQRir3hhCEA0dyoEiqyH95JwoxmCJDL4cPsw9bO65h+egsTsE2K1bRIMG8bBj6j5q8MPpJGrZkuihh7jnjKyj3R4ustzffiPq318b6i0ykodK27SJA1uPP0708MP6fQMDtfWFC4ny5tXuJyZqdbAa9k8N2uzf77mu6Q38HT9O9NFHPBScdPgwP67y5d3ve999/HyMG5e+OgAAAAAAAAAAANxpgjxnAW80acJX7GeUuXP1wxW5M2yYvcZY6eefeTirfPnsTTKeP3/GBgjuNk8/bW8enSef9H9djD79lOc4sUP2rFGDMMZhvaSnn+b5atyZOZOoUiXX4Io6DJecp2fLFqJFi+zVU1q0iOfQiYjgoIsc6oyI58/ZsIHX1d4kqal8zLVrib75hqhUKfOyZZ3lHD733kv01ltEPXsSrVnDvT8kOfdNUhJRxYr6njGdO+vL/f57z48rNlZbL1jQc345f5A7ycn8ei1dyoEj9bvn4Yd5SLMDBzhAlCcP97byhhxuDQAAAAAAAAAA4G6BnjAZ4KGHtPVz57Qr2NXGXl+9+CIHVn7/3XpS+5QUoqNHeT4QdU4PT2TD8vr19vL//rv9su8mVg30Zj74wHOerVt9r4uv7AZgiLihPjVV35PD6j3kKQBDRDR9OlF4uNaLxIz63vPlfXj+PA+jdvGiPlAZH6+tG4cHe+01Hn6td28tTR32jYho717u6SN9/TXPm7NmjXk9btwgWraM6NIl7+rfqpVrMFadtyY1lQNpL7zAgZIVK6yfz7NnrQPFw4dz/efO5R5Qaj3lnDK//cZz+xQtqv++uXzZ8+MwPsd22e39BAAAAAAAAAAAkJFu3XI/97QdCMJkgLff1tZjY4meeIIbd//5h+iZZ9Jffq1aPAxTmTL6OTuIiEqXJgoKIqpalXsmWAVhJk92TStXjm8ffNDefBEVK3pXb39q1y6ra6BZsMA83ZuA2J0kOZmocGGiX3/N2HLnzLGXb8YM38qfPt31GGrPLjWoofrtNw50njnDQRejYcO09TNnOHBjZeRIfQ8fu9atI/rpJ6K+fbV5iubP17b//DMHUBYtIipShL93pk1zDRqlpPDn+J57iKpX5/mJVOpwdEQcYFy40LxOKSlEISHafTmUm9PJgS6zgIvTSXThgndBlTfe4OHOZBDI6OxZewEgAAAAAAAAAAAAb8THc1ub2gnDFwjCpNPOnfq5HuS8DvJWbaA1Gj2aaOpU7f7AgfrtMkiievVV/VwQX3yh396wofmx+vVznRi8QAFtfcgQ80nV1Tx2r2KvUMFePlWjRnwlvxXjcEsff+y+vK1biSpX9r4evggNNU8vU8Z+GdWqmaefO0fUo4f3dfK3uDhu/M5Ia9dab8uo+YSME8ir8/Rs3my9X548PGSa1efLriNH0jdc4fff85xTa9YQffihlv7dd9q6DHAsWuQaBFZ7/hw9SjRggOdjvvee9Tb1u6hkSb798EOiOnXMe32tWUNUtiwHxOxISSGaMoV7Mqnz9Did/NhefpmDSvLYAAAAAAAAAAAAGWXrVr5we8+e9I3UgiBMOj3wgH5CbWODfJ062nqzZvohnD78kKh4ce1+/vzccFm8OM/VYtXTIEiZycd49X6fPkQTJujLXbWKbwsV0k+gnS+ftu5wcCO0cVipIkW0dfWqd8msjt7OE0HEDdxJSa7pCxdyg+usWfp0NWhx8iTPPbJ0qZaWlsZzfXz3HTfgZlQjvhmzehN5Nwm5VS+QcuV4npG7nZyHJr3czbXy1lvW23zpvWLmxAmizz5Lfzlt2njOU7iw69Bt7oLCVtwNExcdra3PmsXfafJ9r86HY/TaazzXTt++1j9gTqf+O0cNIB08yEOuqd8LGfUaAQAAAAAAAAAAEOnbpgICfB8pCkEYHxiv8FaDGblyWe8XHMxXbhMRPfII3+bPr20PDSUaM4YoMpKHF6pd27os2TPEeGV+YCAPj3b0KPesWbVKP9G7Ovl4gOHVdziIWrTQT+BdqZK2XqQIB3hUTz3lejV9SAjRK68QtW5tXX+jL77gK+RV335L9PzzXK9ChfTbChbk4MuJEzy00vLlRO3b8/NbsyYHx8qUIXr9db4tUMA/V8svWaIPeEn9+ukDXr6Qk7U7HOkrx4oaYLtTlSiR1TXwzrFjmXcss8CjcfgxIqJt24iOH+d1s0BGcrJrLzpJDo1GRDRzJtGXX9qvX//+HBQrV05fDhEHYF55RZ82bJgWsDH7nrUbqDt3joe0S07m79o1a9I/58y0adyT8OrV9JUDAAAAAAAAAAD+53TyPM/qKDlmjJ0S1JGBrIbON4MgjA/eeIOoVy9udCTioYqkYsWs9wsO5iDG3Lk8OTcRUfPm2nZvJq0+fpyHQqtXz3x7oULcIKoGYOxSh/EyDpOlzn8jjR+vPRdEHAj64Qf3w0uVKqXv4VGyJA+19umn/NzOmcOBDEkdjkwGfe65x3XIsRkz+Cr53Lldj3ngAPf2MQs+zJ7N8+pYUQNtqsKFXfe7epUDSHXrWpensgqGNGjAtwkJ9soh4ufEitpw3awZ90K4U3XtSnTxIgfhwNzGjfbyNWnC7+FVq4j++891e0yMeaCRSN8TxlcXLmif6bg47t3y44/8mTSS886YTYZWsaIWePr2W6JWrTg4YnT//fxdExpKFB7OvYrkvDfz5+vn2rHrtdc4mDVqlD7dqpeclbQ0Hkbu/Hnv6wAAAAAAAAAAcKdwOs0vio2J4VFkjhzx7/GXL+cLft21nV+7RvTnn+bbli3jdmG7EITxwpIl3DBYrhzPadCzp2sed70W7r+fhy578UXtRVKHJ/MmCFOsGPf28Ja7+R0k9QPw6adE3bvz0D9Shw58K+fCcTj0k9Crj+n4cf3E9W+9pU1yrvZMCQ3lwMnnn/Nz+9JL+udS7Qlj9rzbUaQI90AyC9A0bszBMTNVq+qHPapeXVtXh6KTChfmugcEcCO17PVk5fx58/eNDEK1bWu9r3FunCNHuCE3LEyfPnEiUe/e2v2nnybq2NF9vSQ1yGiX7FnhC7O5RIzmzOH3T/78+nle+vThW3cBNTD31FPW28yCHkSuPViM/viDx870ZPduvu3cmXuzyR6DRi1acC8/dS4a6epVHn5w3Tr+nlm3joMjN27o8xnvE/FVDzdvcnCva1ctT2Ki9n144gTR++9z7xkr33+v7TtuHH8/uJtryGj0aKIXXrCeIyo9pk7lst0NLwcAAAAAAAAA4G9padyu3aqVayDmgw94xCR1ig9/MM4bbaZRI/Oh/ZOTiZ591rvjIQhjU+vW/OR27+4+n1lj+vbt3Hj3ySfu9/UmCOOrsWO5t8i//1rnURtcixXjwFO7dlraDz8QTZ7MEUNJDbyo6/feyw1/33xD9NBD/MYNCuKuXN4Ms6X2MDL2fvGW2Ye4dGmi++7jQE316vqhjR58kIc6e+ABDqyoj9s4B9Cnn+rvFy3KjbBWPZaIOCh0//36tCef1IJFjRoRjRihbXvzTaKVKzmQNWIEvxaFCxP99hsHwwIC+PGo9X/1VX3PiPz5+ZgnT1rXS/JlODR3PcI8cdebR1KH0lPnSBo2jIN+mzejsTkz/PKL++2tW3sOQhLxkIG//caLJ7t3c682M2fOEB0+rE+z06vk99/1wZkrV4gOHeIApOwx9uyzPM9NeLh5jyEi7rXWogWvDxzI36Vq8FOKjTUPVMrfCONcX2b7e+v117mXjXF+LQAAAAAAAADIfD//TNSpE48Kcrc5eZLon394bnLjKCJyFBSzC3C9kZLifv5gtf2aiC+mNc7ZbTWtgNkFvp4gCGOT3flNzBqsGzbk4IenHgWZEYRxOPgqc2Ojv6pGDa5r+fKu88YQ8dBg/frphyhSH7fxTUzEgYMdO/Q9Wrxp3M+Vi2j/fm4YNet94o3//Y/rv38/X7n+669cfq5cPDTS/v28/tdf3HA5YQI/pp07uVE1PFwryzguoFUAQY3qXr7Mw4GpAgP1w7PNmKHfLocmI+KIcNu2RBUq8P1+/bgXgDpZu3q8v//m50ytt5wbyFPA4+mn9UGrTp2IfvrJ/T5E1u91q2CU+l7y1MBs7Fmg9mzKl4+DfsWL63tnGd0J8+EY50jKyQoUIOrWzV7elBTuKWcmLs71eyUyknvvTZpkXebly/oAe1ycFvicOpVvDx3StpcpY13W3r36+8ePa4HttDTudSOHMdy/X8tnZ+iy5GQe+jEszHx+HyLPvyMygLRzJweWt2zxfFwi/o4ZMEBfZwAAAAAAAADwzfPP88WtY8dmdU2sXbvG03Ls2pWx5aptx3FxRLducVvpsGHez6ecmsptFbItNDWVaORIbrOtWdO6nURt8969my+m7d7d3rzBFy54V0ciBGFsMwssmGnc2PuyZYPe0097v68/5MrFV4J7M99GkybcGN6ypXngxsw77/CtGjxwp1YtDhClV3g49x6pVYuHK1KHYcqVS+tZ8fDDPLyRcXw/teeFnCtm5Ur+sFo1DqvPSYkS5hOLb9zI8+GsX+864bx6TGPvGzOjR/OtOu/LG29o654CgtOmce+A+fM5UFWyJKctWsTDNa1ezfP6rFnDz6ORVQBkzx7tOVu/ngNE773HX46S+nybzStk7FlRsCAHrWbNsp67x8hs0np/82acSCLPE4P5k6deexnt+HH+YbfDXdAgNNQ1CNO3L9HSpTyfVZcu1vuuW6et37ih/9EtV85e3awsXcq3U6ZwLzcZlFmzRstjHNqtXz/ugXfgAJ8wpKURVapE9MorvF3Oo6OaMIEDWitXWtclPp5vH3+cTzKaNrX3GHr14sCPL8NgAgAAAAAAAIA5T0O9Z6V33+W2jAcfzNhyDx7U1uPiiObN44uuhw7V57Mzys1nn/EF5PJi1VmziAYP5vXjx4mGDNHyJiRox1bb+v/5R1ufN89zIKZ+fc/1ciHArZiYGEFEYuLEGLf5jhwRYtw4IRITvT9GfLwQJ0/6WMFs5MYNIVJSvNvn1Cnv98kOBg4Uon9/+/lXrxYiKEiICRP4fvv2QvBH2t7+f/yh5b9xw94+kZFCOJ3a/VWrzMuQaery66/2jiGEEBs3CtG4sRBbtggRECBEpUqc/sEHruXKem3fri9j3jwtz7Vr2npEhHkZdsl9HnyQ60kkRPHiQtxzj/njzuhFfc4rVdLWH37Y/X5791q/NhmxeHr8TqcQu3dnznOUkctbbwnxzTeZc6zly4U4fZqfK+M242s3fDin1aypTx87Voh//hGiXDkhXnrJ+lgFCvBjMzuO0ynE4MFCzJkjRMGCnF6ypPVngUiIl192LceT/Pnt509I4Pew/P5JSRFixQohrlyxdyyj2Fjv8q9ZI8Ts2b4dCwAAAAAAACAzyP/Yb76Z1TWxVreud20Hnjidru0o+/YJMXGidr92bX17StOmQjzxhBBpaVo5qalCxMXxup02nP37OW/Llnz/99+FmDTJOv+sWfbLtgs9YWzy1BOmWjW+ot+sh4MnefPamwcjuwsL0/fYsKNSJe/3yQ6+/NJ6OCAzTzzBw2y9/TbfV4fQskOdI8JTLxapeHF9rwC1d01YmPt9hbBft2bNePL1Jk24h8mRI5w+ZgyXIz8TMgpdvDgP0adS5+ApUIB7ySxb5jokV+fO9utFxD0DHn+cexk1a8b1iYzUv+fsfGY7d+ZeQaoXXvC8X6VK5ulz5/IcSerwfNKGDb5PPiZ7SRDx1QKff26ezypdcjg4qv+///lWj6ySkqJ/L/nTM8/wBHJmPf8uXtTf/+QT7g2jDmlGxL3n2rfnyeDmzrU+Vmwsz6tlZvt2HjqtWzdtTNKEBG27EK7z5MycaV7WlStEUVH8eZ44Ud9lVx2j1vj9cPw4D5Mou+M++igPeSl7AE2axD097fS6uXKFaN8+7f7gwfw5MQ5D6M4TTxD16GG/N6enOXgAAAAAAAAA/MXuiEJZwWoqiQULuP3KG0Jw29xDD+nTN23Stzmox5wyhdsD1qzRplYg4lFy8ufX96hxR84XLEdBad+ee7xYGTbM/rD5dmXjlzl7sTscGYAVNfDibRBGbQx1N9eJO/Xr88Tiixfr08eP59vZs30rV5Uvn+s8OYcOcQOyuyGu1IbzwECe3PyZZ/i+OoyXVeOxlbff5i9q4/M9axbPyfH22xygUQMsMlCmmj9fHzA5dcrehPPVqvH4ntu3639E7rmH50hS5ymZMIEbs5s391yu1KsX/4j99x8HIF5/XdsWGGg9p5PdYJbV0HcdOtivY3pVrWo/b2oqz3WSWU6fNk83ew9ZPWcREemrg9nQegEBPNTYvHn83q1Z03M5aWlExYpxsPaRR3i4s8BAoo8+cs1rHAv24Yd5DNuyZYn69+dhBomIPvyQb+WJjTEYtG0bUXS0Pq1cOQ7gyLl1Ro7kusk5euw8DmnjRn6Nbt2yHu5uxQo+cRs9mgO0S5a4n7jPF3PmaBMLAgAAAAAAwJ1HCHtDY9mRlKS/uPFOa3M+fJiHe3/0UX16aiq3CcgLMomI/viDL2RfsYIv+tyyxbVNoX9/fZuhemFmVJS2Li/8dDp5Hm8i8ykSzBjn4b15k9vlrJw54/5iWV8gCGPTnfaBgOytQQPv8rdtS/Tss0TjxqXvuO++69oY/M47RNev8+RTtWtzmt15IuyoVInozTfd9zhx13vh2DGeH+Ovv3zraWbm4YeJjh7lwMdDD3FQYvVqDphYzf+hHrtSJS5DKlJE30jcoAHRzz/zeseO3POnXz++r85B1LUrN/5u3MgN9/feqz/mTz+Z1+XDDzng9f77fL9UKe7dI+dMCgnhhnizIEz37vavsjB+7/Xty8/ZL7/ox9TMKOPHc6BQ5c2EbP/7H9ctq2VWHaKizHutBQTw3C0vvsiLHbdumaePGaMFRKT27bXjzp7N3x+S2mPn5EkOiqkByL17ea6t4GDuPVexor5s+V3wxx/6dHeB6337uCfOjRv6Xi19+nDAs3p1/lybBaw++IBP4AYN4vnCOnbU93KUj/O//4gWLnQfoJk/n3vuCME9epo352BW9+7eBVftunKFfxMiIzO+bAAAAAAAgLuFENw+o86lbNS1K1+4aLyQ0FvnzxMVLcr/V6WsaHNWe554S+19orZJLFzIbQKy3TEykqh1a27DeuYZ9/P0WlH/g//6K9/K9jZvZIt2/YwZ0S3nknPC/O9/7ueEAfBGSooQI0YI8ddfWV0TvdRUns8hs+3axeMoBgVl/rGN/vxTG9fxp5+4bkLwmJX9+wsxbZqW948/eAzJ8+eFOHrU83iQf/zBc+J448QJ8/Emk5PN81+/ro2LOXq0674//MDbfvjB83iWCxbo0xcu1LaZle1uUecUIRLit9+EKFPGtW4rVrjuO2aMd8fC4t0ihBAxMd7tU6SIELduec43cKB+PFer469dK8Thw1pagQKcLu8/+6z1Z0Tm6d1biEuXrI/z99/W+6pL48ZCJCXxHD5t2vD3daFCvO2bb8zroD4X//4rxOuvu5YbH2/9GHzx9NNc7gMPZGy5AAAAAAAAdxN1PmKrOUnl9q++St+xBgxw/a/4wQe8Tbbl+Nv69XzcQYM8561XT//ffeBAfd1v3uT0M2eEKFFCS//wQ/+0X5jNl2tnWbRIiLNn/demYofXPWESExPpv//+c0k/ZBzsPofJFhEzyDGCgog+/ljfmyI7CAy0P+dMRmrQgLsjmny1ZLqWLblHxY4dfKWD7LXkcPAV8r17a3lbtSJ66y2iMmV42KyRI93Po9KqFc+J443KlXl+C6lTJ761GpauYEHuJUOk7/GyfDlfkfDSS3z/5Zc9H7txY/39ChW09bx5tfW4OL7CoUwZ67K6deMhsqQnntCP5ynLbNFCe4zSBx+4zpv16afce2H6dKKePT09EvDE2yG4rl61N+dKSIhrDy+jhQt57ibZk4uI58FRmf0Gp6Xpe4vt2KHvlWNWFyLuQfL779pnwUgIorNneSjF1av5sybLXb3afB+1B058PD8/Rq1aWdfNF/IqIGNXbgAAAAAAAPDNpUv8n9CKOgS2FaeT6MABbWoBtTyzUSgCAnjY/Pz5uY0jJobn8j1+nLcfOcL/fV9/neuXXnII9VGjXLclJPCxEhJ4MY5OMnas/r7sUdO8uX6UhjFj0l9PM1bz5Xry/PP6Ni1fpHd0Iq+CML/88gtVqVKFnnzySapduzb9LQd+J6JuGT1bTTaDIAyAfzVo4H2Awl9efdV1ojA7Bg3ifTOa+iM/Y4b9/dQgzNNP87BwsiHa4eAh2dwpU4Z/cH/7jYfYeuABbVubNtoQaPny8WvXqJF1WWPGENWty8Pq9evHxzcOi5YvHy+LFmlp773Ht2vX6vNGR3PQq1cvovLl3T8OM1ZDvbljd2iv9Khc2f/HMOPLPChTpnjOExzsOg+VkZ05irZtc03r2VMfSLl5k+eTsSLH761bl4M+Vu8BIfTzcKmszgVSUvT3zU7M5XizQnDQ1uHwPKZwcjIPzXbpkmudrOZsAgAAAAAAuJu4C5q4s349X/R6+bKWVrUqt1Vs3my+z9atHBQxXpQ4bx5fPFqrFv9vrF2b5zkZPpyHvj5zhvOZ/dfMlUu7ULZPH55KYMgQ/u+amsrtLi+9RDR1KtErr3j3GM3+36rP1/Tp+m2NG/OxJk7kdrqEBPfl79nDQ+wbL7LNiWT7lK+8CsIMHz6c/vnnH9q3bx/NmDGDXnnlFZr3/zPuCl/f8ZlkypQpVLFiRcqVKxfVr1+ftmzZ4tX+CMIAQFZ54QW+rVxZ6+Vih6e5X6pW5ROHNm2s81Spwts7dtTP7XHPPTyWqZwMzXg82avhk094bpB8+Xj7kiVEkydr+erU0dbNHtsjj2jHU6lXWMirOFSenqeuXflkIiqK5+ywY9o0e/ncserBJHkTZMsor77q23iw333nOY/ZPCx2VKzIvbekS5f4vTJ0qJZmnCTv1Cn3QQ0ZKJGT+VkRwjooZScIk5LC73Mr165pVzQNGuS+HqGhPIZuqVI8N5g0bZr+CqpTp7STegAAAAAAgLtF9+7cXhAfzxfDLVhAFBFhb9+WLYl+/NH8f5n6/0u1YgW3d1SpwiOjXL/O/81efJHo9Gn9fCmjRvEoHlFRPC8KkXk7jXH+Y9kucPMm/9dT7d/P//1q1CD64Qctfd8+oo8+4jmM//lHS2/dmnuADBnCI7c0aKCvozo3jSyHiOc7NV64a9b0v28fj2hytypVyn5er4IwKSkpVKxYMSIiatCgAW3evJmmTp1Kn3/+OTnU1rlsZuHChTRgwAAaPHgw/fvvv/TII49QmzZtKMLup5IQhAGArNO2LQ/ltWePd/u99BL/mD/zjHWeypW5p8u6dXxfHW7Nk/BwogIFtPvq9+ShQ/wD/cUXrgEU1Y8/ausFC2rra9bwFSNPP22+39dfa+uFCrluX7bM+phyKLU8eXhivbp1rfOq8uQhatbMfFuvXq5pixdzrx9V6dLW5Y8aZb8uvjCeXEkzZvDwiP6gvk7eqFuXqH17fdr+/UTDhvFVNurQdna9845r12kzO3a4nuhKy5bxCbRq4kT9UHyeehWpJ65//qmt37hBNHo0P7bWrfmEXrVmjbb+2mv6bZUr88n26dPuj+2LGzf4u2TOnIwvGwAAAAAAID3mzOGgxNdfc/tCly48Wsb+/fbLMPv/p15op15cqI5I8O23RIULE+XO7fkYN27wrVkQxl1vk2rV9PeDg/m/4pEj3A7hcPBy//08AsmZM0RNmvBFjIMH83/O8+d5eLPevb1vV1KZXfTo7sLCO8HSpfr7hw8TNWzoehGu1QBgni5+VjmEF11YWrRoQRMnTqTatWvfTktOTqYePXrQzz//TKm+jGeSCR566CGqV68efadctlu9enVq3749jTIbAE8RGxtLYWFhNG/eFerYMb+/qwoAkKFu3eKTBDtx8shIDkp48yOiWrrUQZ07B1OxYoIuXEjxvAMRJSYSFSzIY6QdPJjsdv6Qe+8NpogIfiBJSfpf/7VrHfT001o3k1u3kunZZ4No9Wp+MPnyCYqP530LFxZ06ZJWv6++CqCPPw7SldezZxpFRDho/XrtyUhKSqZevQJpzhx9VH7y5FTq0cNJ+fKF3E5r29ZJixenksNBFBqqpfftm0bffWce1Y+LS6aQEH3+jDJuXCq9+aaT1q510DPPeOiOcwf45JM0Gj48a66OaNbMScWKCerUyUmhoUTt2+ufz2XLUlzSpKSkZLp8mah8ee01PnUqmZYsCaAdOxy0eLH7xyTf91bvkW+/TaXevbmvuRBEn30WSJUrC+rRw2J8NRtmzAigvn2DdMcHAAAAAADwh7Q0Hr3AOOy4EETDhwdSjRpO6thRa8pW/xtVqybo6FGt8aNmTSdNmpRGTZpo+aOjiXr3DqKXX06j55+3/m8cGiooNpbbDczaAXxRsKCgMmUEHTzoY6OLn8j/eePGBdDgwUEect85Ll5MplKlrNtXZBuU+h6Sz4UQRLlycfqiRSn09NPCpX2HiKhsWXG7ncoTr57ZOXPmUFCQfpeQkBCaP38+vfnmm94UlWmSk5Npz5499NFHH+nSW7duTdu3b3fJn5SURElJSbfvx/7/7MDbtn1Px49nzyATAEB2IARRjx4VqHjxKBo16qbnHf5fs2bNKT4+L/388yq3waKEhDeIqCgRkWkAvUuXe2n+/K7UrNlGGj16E9282ZyIuOvKSy9Npe+/f52IiO69dyeNGqV1K9i8+REielRXVv78k6lp0+tUsmRl+v33x6hnz9k0atRNunGjHhG10+WNjh5B48YRFSgwgGJjw4iIKD5+C40evZGIiB54oA3t2vUgEREVLDiGqlV7lo4ere5S/6++ko9piPWTYOGFFxbQwoXWk6tER39Fo0ffolOnKhKRzfHXsrGsCsAQEW3axCfMv/xiXodPPjlKRLVMt5UqFUtt2qwhIm0ym0aNrlFkZLitY2vve/P3yOTJx+nzz4tQu3YrKSEhDy1Y0IWIiC5eHOaxbCHMg7UbNjQjouaG4/uH0+l7EBgAAAAAAO58P//ckQ4duo86dVpENWseuZ1+8WJJmjatDxEF0qeffv7//10Eaf+N9AEYIqJDhwKoVSuiIUO+oNOnK1KePAm0Z0992rXrwdsXbFpJTU27/f/n11/7E5HJEBxeunHDQTduZL+RpN57byoVLXqNQIqYIAABAABJREFUhg71vi0iO5s2bRSVL9+Dzp2rYLr9f/+bTAULxpL6/1r9zxsa+iElJeWiXbsm0OHD3MZVr95T9M8/9W/niY2NIaKCturjVRCmjDrehkHjxo29KSrTXLlyhdLS0qhEiRK69BIlStBldeal/zdq1CgaNsy1sSJ//ngiyuWSDgAAzOEgqljxrNf7tWix0VY+p9P9SVLVqifo449HUEgIB8ybNNlKAQFOqlr1GIWHR9LAgWPp5Ml7qEaNw7r90tJcG9NDQzkYf++9J+nee0/eTq9b9x9KTMxFf/75mMs+bdqsoYULeQKfpCTt6ojgYC2AHxqaQp07L6LTpyvSjz9qwZBq1bSTS0+qVz9MR47UuH2/TJnzVL36MerSZR7Nn9/VdJ+gIL6CJyEhr+3jEBE98MAu2rXrAa/2udsdPGgegCEiunq1KC1d2l6XZjcAQ0T0009dqHLlkxQWdoNiYgq6bJfvi9mzu1PLlutup+/ffx/Vrn2QhCBKTMxNefIkEhFRXFw+2rSpGdWps5d+/bUdhYdfpg4dlunKDAjQrhpLSMhNefMm3r6fnBxEW7c+QtWqHaVSpS6Z1jktzUEBAcJjb7yYmPw0deprdP/9e6l16z/dZ84mhODvj6CgtKyuCgAAAECOlZbmoMBA3+ehdjodunPazHb0aBVasKALtWixgZo1s5jtPZOdOVOBHA5BFSpos6knJOShXLkS0/Vc22X2miYnB1FiYh46dOg+IiLatq2xLgiTkqI1Yd+8mYd+/LH77f/tRES1ah2gAwe0kZskIQLor78eprVrH/eyjkEUHV2Epk3rQykpGT9aRXYyd+5LVLx4lOeMNoWEJFFycqjnjOn0yiszaMaMV9zmCQqy7lAhhPs/qe++O56Sk0Mob17tIuOnnlpFzZtvovHj3yUiIofD/ufFq+HIVIsXL6aOHTv6smumunjxIpUuXZq2b99ODRs2vJ0+YsQImjNnDh01zDJk1hOmbNmyFB0dTQXUyQ8AACBTVakSTOfOmQ9Hlh6ffhpIX37JgZhFi1IoLY2oQwf3P40zZwbQ668H0VNP8bBjRDx5fIUKWnfVZ57hMgYNCqTx4wN19f7rLwc1b651fVYfz6OPBtG2bQFUpoygCxf0JwXduqXRrVtEP/+sBY42b06hhx7iY1kNU3XrVjI5HDwObYkS9k4gW7RwUp8+adSlC9ezeHFBUVG+XbXz0ktp9MADglauDKA//kBXh8zQp08aTZumvU/Gjk2liAgHffMNpx04kEy1arm+F5KSkunXXx20YEEAffllGs2dG0CffcZ/eMqWFbRrV8rteZiGDg2kUaP0721VYiJR7drBVKWKoFWr+HOSnEz03HNBlDcv0bx5qbeDMwMHBtKkSVzW2bPJVLIkp1+/TrR0aQB16ODUzRuVFZKSiLZudVDjxoJy5SJ6881Amj8/gHbvTqGKFbO2bgAAAAA50enTRA0aBFOvXk7q0sVJu3Y5qHdvp63htomIjh8natIkmPr3T6NPPvF9iF7p2jWi06cd1KCB/aZUs6GO0uvmTa6Lm2vlLXu6x8URFS3KdYqNTabQUKJjx4hq1+a0iIhkMlzHnqGuXSNq3DiYIiKIfv01lR59VFBsLFGxYvr/JjVr8mv+5JOCatYUuv8LS5akUIcO+qHEwsIExcRkv14md6MOHZy0ZIlv//s3bkyh4cMD6ZVX0qhrV+vh4lq3dtKvv6ZatoGEhAiKi0uhgwcdVL++Vk6dOk7at4/rduZMMpUqRbRoUQB17x5I06enUbdu9r4nihYNprg4B3XvnkazZ9scqUP4KCQkRIwfP95tHqfT6WvxGSYpKUkEBgaKJUuW6NL79+8vmjZt6nH/mJgYQUQiJibGX1UEAAAbKlQQgk8lM7bc997zvlynU4gDB4RITtanz5snxOef83bpww9dy9+yRUszHjcuToj9+3ldbq9VS4hNm4RITBTip5/0+548qe1btSqnhYZaly/rtmKFPo+6tGnD+dR61qhhnZ9IiFOnrLepli1zX463S9++6S/j5Zczrj4lSmTs48vsZfJk/f0WLVzz3LghxJNPur7Gf/4pxOzZ2mu9dq3re2D3bi1t9WohFi3i9IEDtfS2bbX8LVtyWo8e+vdRSor+c+bOrVtCfPWVEAcP2stv5bXXuC49e/J9Wd/u3YWIiEhf2QAAAADg6pVXXM9FFy60v3/btub/SaykpgrRpIkQnTqZby9dmsvasMF+HYznzL66dEmIWbP4P2H58lze9OnmeQcPFqJcOd7HaM8erT7nznHap59qac2bc1pcnBBpafp9o6KEaNZMf86vcjqFeOEFId56S4j4eH16aiqvT5umf07GjHH9j2tcjh3T31fbBrBkv+X8eXv5SpQQ4n//E2LcOC3t2jXtfSPTChQQ4uGHtfubN2vvL5mWJ48QxYrx+3vKFCFOn9bKmTpVy/fee0J8/TW326hu3jR/T1s5eVKIESOE8CZcQN4dQrNmzRpRoEAB8dZbb7kEW1JTU8XMmTNF1apVfS0+Qz344IOib9++urTq1auLjz76yOO+CMIAAGQPW7fyj+/UqRlb7oED/GNsIy7vk48+0n7wpb//1tK+/tp6X5mnXj0tLTVViCVLtG1q429EhBAjRwpx5YrnPxxXrlifDLVpw3mcTiH69RNi/Hj3QZhnntHX17ioLlzI2BM8d8clEmLUKM9lREVl/Ynqnb6or8O2bXx/3TotbcoUPhnfvt38NfrkE+1+2bKunwF5jP/+05+AHzmi5R0wQIgvvuDA0YwZQpw5I8ShQ/yZkPkPH+YT9rg468+dkdMpxNNPe37fjRsnRKNG/McyM6Smuv4xzg4iIoRYsED7o303uHKF35sAAADA53zGi9V8ZRaE+fhj+/urFxSpEhLML+j5918tv9l2uS1PHvt1MJ5DWjEe759/hHj3XSGuX+f71apxGepFhMZ6btrEjctyW4kS2rbkZL7ITgaS5JKQoA/CEHHwJiBAiCJFhPjhByH27uUy5EVJxscSGcnn5eoFV0QcYHE6+b92jRp8IdV332X9fxcs3i/t2tnPK4Tr+0xdDhzgdpITJ7T3kPzvZvbZmTRJiOPHhWjd2jUAumcPBx3j491fpDdsmBBVqvB//6xC6dl57969okyZMqJ9+/bi5s2bIikpSUyZMkVUqFBBFCpUSHz22WcZVc90WbBggQgODhY//PCDOHz4sBgwYIDImzevOHv2rMd9EYQBAMg+/NXgGBXlvwbDQYP0JyNCaMGNIUPc7yv3U4Mw0oABQvTpY72v2tht5dIlPlE3nhQ98YRr3urVrU+i5FUm8n5IiOtJmJSWJkTduhlzIij//LjL43S63/7OO9yzI711udN7wKR32bVLf79uXSHy59enlSkjxMSJ5vsPGeL6nnnuOdfX8oUX9Gn58/NVfjVr2n+dqlQRolAhIWJjXd/ny5YJ0aCBEEePamlnz7qW4+l9543kZPOrFN1xOrmetWrxn9nsRP38b9yY1bXJHPLx3riR1TUBAADIWrIR/pFHMqa8V191Pc8aNMj+/g8+qO23Zw9fLHLxIt83+8+jBhGMgaS4OPvne+vXC1GwoBD33affp0UL7X/nL78I8dRTQly9yhcQFS0qxOLFQvTuzSMjyH1ee02Iy5e1+2ZBFMndeelnn1mfxxu3DR/umm/VKtdyDxzQj4hgdq6v9rw5cIAvzsrq/y4ZvZg9X74s7v4nBwT4Vuazz6a/XqtX88Vs8v7y5dyDxSq/ENyzpE4dLW3RIiHCwoRYs8b+5/ejj4SoXdu7C+iyM0pvARcuXBC1a9cWtWvXFqVKlRLFihUTI0aMELFm/2yz0OTJk0X58uVFSEiIqFevnti0aZOt/RCEAQCA9FBPMr1VqRLvN3Kkb8devJivoHLn4EHXk6bHH3fN1769tt049Jjsxi7vy6u0rB53aqq27cgR8xO3Ll34cf/yi5ZmHDZMnoxZnfxVr87bExKEuPde8xPZK1f4BDE9J6X58vGJaEaceBuXc+f8U252WgoW1F+xRyTE6NGu+azeK74uGzbou6mr76WHHtLSzF6DLl3cl+0N2TjgzXBpsbHasXbsMA8o+ZvTycHgN97Qp6fnubgTqYHeHTuyujYAAABZ6403MvYcwCwI425Qm4QE/g9x8KAQSUnm52nq0EeqM2f4inq57YUX9D1dBwywPsdJSNBfGOPpPFQNqnhaGjUS4v77tfvGC502bOBe5dHR5vs3bswXGFmVL0eG8HbZt8/7ffbudR3+OCcsBw+69lDydgkNFaJrV/Nt99/PQ3D5Uu6ZM+bphQt73vf777WRB9LSeKjoDh2093nlyq77VK6sbZdBOdkjKzv24s9MQfZmjjEXExNDM2bMoP/++49u3rxJDoeDduzYQbVq1UpPsX7Rr18/6tevX1ZXAwAA7jK9ehHt30/UurX3++7YQbRlC1G7dr4du0MH3/YrV841bfp0opQUoldeIapUiSgggMj5/3PW2Z0YUwoMJNq2jSddr1aN6IEHiHbt0ud58UWitm2JjhzR0vr0IZo5k9fj44ny5uX18HCiy5d5vUQJoshIXs+Vi2/z5OHJJhs0IPrnH05LS+OJ1nPn5nUrffsSFStG9Pnn1nmuXyeKjrb32L1VoIB/ys1ObtzgU3bVRx+55qtePWOP26IF3548ya9z587atr//5vdYvnzm74/58+0f5/Jl/qyUKmW+fedOvp0zh2jUKD5ekIcz9MREbf2RR/izeeECUenS/HwWLGi/fnZERRGFhRGFhmppZ88STZjA6599RlS8eMYe806RkqKtJyVlXT0AAAD8YcUKosmT+Rzc6lxGJc/PM4rZ/4wzZ6zzDxpENGkS0ccf8/8WMzdvuqYJQVSxoj5t4UKiPXv4f0RAANEff5iXFx9PVKsWn7fv3as/T7MSHu45jxQaSrR9u3Y/Lk6/XZ7T7t9vvv+2bfzfyspLL9mvi2rNGu/3cTrd//fKjj7+mGjkSOvtw4YR1ahBVLiwlnbsGFHVqt4d5/779f+JWrUiCg4mWr2aaNo0/Wfhzz+JvvuOaPFi92UGBRFVqOCaHhnJ/xnM6rhvH1GdOrzep4923IAAPq6VhASiW7f4/5PUrx9RkSJEzZppZdzNfH74gwYNovLly9OsWbNo5MiRFB0dTZ06daJWrVrRLmNLCgAAwF0qOJhPkJ591vt9ixXjQEpwcMbXS0pO1tY7duQTruHDXfMVLUq0cqUW2LlwgRt/Bw4kKltWn9fh4D9s4eHWf1YaNeIgCxH/scubl2jECG27DPCoQYjwcD5uRIT+D97q1dq62lAvgzCyTjNn8n5ffMEngLlz87bAQKIlS4imTtXXsVw5oilT+MT6gQfMHwcRn9wWKmS9PT3cvfby5Dgn8FcQy47Klfl9+uqr+vRHHyWqV4/ok098Lzs1lahuXQ6OxMS4z5uSQtStG3+erl93n/fGDf1+REQ//0w0Zgy/FxcuJFq3jujiRe/qe/Ik0YIF+j+Ap09zcLN2bX1e9fEYGwPs2LePqGVLor/+8n7f7ET9DlXXAQD8ZeNGog8+QOD3Tud0cqPlL78QPfwwX9zgi5gYz+cNx47xBScREd6X/8wzRL//TvTOO/byBwZ6fwx3zIIwCxfyc7Z7N9GGDUTduxNdvcrbJk3S8s2YYV6m8bxl3z7tQi+jkyf5PGjRIr6wS7V1K9/u2MGv3/79fE5booTHh+WVkBB7+VassN62Z4/1tn37vKuPdP689/s4nek/X/Lnf2Mi1/99n35qnu/sWX7fffYZv0/V9+q993p/3MBA/k6Q/viDaNUqDvI98ID235WIqHx5ov/+0+9vdtHnvHl8O2kSB1zWrSM6fpwvnqpShWjzZg6USMnJfM6/bh1fvOjpYkt1e548HIhS369BQRwALFPGfTl3DV+70FSrVk3Mnj1bpBoG0f/kk09E3rx5xbJly9LdTSc7wHBkAACQk/39t9Z12N1EdnbIcuQwYN6Ul5KiH9Zn+XKtjOHDeexnd+XJ/SZN0tYffdT8OO7qoHal7tFD2zZ3rnU3bWMd7C5z5wrx4ov6iePVpUABHova3XHPnxeib9+s7X6Pxfy1OXJEiHnztLTt292/d3Pn1pdx8aJ5/sRE82N+841rWkiI9fv97795/O8rV4S4cIGHB5D7zZ+v5Rs/XktPSxPipZf486jOAyQnazX7HJQv7zpkmTGfat8+fk9bPX5P/vuPh4M4edK3/b117Zr2OFatypxjAsCdwen0z7xd8jvnyy8zvuw7WXrnd/zvP/6NzSxPPKH/LWzRwjXPjRs8GbWVvXu1/S9cEGLFCh7+x6hIEc7zwAPe11OW37SpvfwffKDts3s3/066s24dzxto9Rvaq5e9c69XXnF/3qwuxiHTSpa0t1/9+q5ps2bp7y9dmvHnlU89lTXns/5Y/vpLiPDw9JVhnJvGuPTvn77y1flC335bP5S2uhiNGqXfZvd4I0bw/4Ddu4X48EPr8mNitG2XLgnx+uva/fXrzYeH27fP82d22TLrY3ry8MO+73s38vlpcrppCZk+fboIDQ0V33zzja/FZxsIwgAAQE6WnCxEjRrmE1N6S56Ade6c/jKWLvVuvwMHeCzkmBg+AQ4L826ODUnOZ/P5565/Gjdu5DGXjxzRj39rrLvdRfrySy2tcGH+E/3mmzx+rxqYstrfavznjFxeesn/x8hJizqeuFzGjhXi4495olUh+LX1NB544cL6eUacTm5gMctbsKB5+qRJ/Dm/ckX/fnZ33Nde0/KNHaulb9yorW/frq1v2eK53PPnOXhz/rxrPrN6tW3L7+1Oncwn8Dxxgie7nTuX72/fzg0wYWG8f5kyrvvYFRnJ48jbob6Gixf7fkwAyHmeeEKIChV47rmMJL9zevXK2HKzo9WrefFkwAAONKjzd3hDnudUrerb/p7ExfE5pBooMv5Oli3rul++fLxNzslg1KGD+W/uv//ysXbudL3IyFtyvzp13Oc7fty8LnIuCCkigtPffFNfPpEQ337L59gHDvC2yEh+Teyce9Wrp2+kdre88oq2npMCHHfL4u7/EVH65mZp2ZLfezdv8nmo8XOgLkbqfzoh+P3s7lhTpnAQUgjtvPPSJb5Ib+dO88/ZhAn8P1UI/q/66ac834+8bzxGfLz7z626X40anvMaHT0qRN26OAe2y+RtkzF+++03kT9/fn8Vn2kQhAEAgJwuLS39vWCE4Kt3+vXTn7B6S54wrliRvrr4OulfSooQt255znf4sBABAXwFknTsmHcn+ZI6GWahQq7H8rS/L8eWS5s29vJ162YvX6VKWf/H7E5Ybt0S4t57vX+v2H0djIu8AvbCBSGiosyv5DQuMog5erSWpvYI27RJW//tN8/v1zp1tPWtW80fn7p/mTJC9O5tnkcIIVq10rZdv25+zBdf9P677cQJ3rdWLfPtSUncyCOdP68d78cfPZef3iu1veHuezApiXscLV3K+ZYs4YYxAMg4Zt+RGVnuq6/ay5+WlrnfPRklIUF7rLGx7vPKfO+9Z6/s6GjudZ2Wlv4ghR3yN+urr1zrLJeCBYVo3177Dfz3X23blCnm5VpN4v3nn+YN0YGBvN+KFUI8/rgQffpwrwF31P3d/aZaXQxifE4bNtSXZ7XPa68JkSuXd+c7L79sL58MbmFxv8j3Y3ZbzD4/6tKnj2tapUpC/PCD/ntFLo88oq137er+c1CzJt9++qlrHjkJvayjEHw8Ifi9+cQTfEEWkf96Mu7fL8Qff3CwRh7bjpgYvmgL/MtvU+K0adOGNm7c6K/iAQAAIIMEBHge79WO+vV5fpeiRX0vo39/ni/miSfSVxdfJ/0LCtJPPm6lenWi2FieM0aqUsU87+zZ7su67z5tXQjPxzZTpQrRN9/ox8GuWJHn8HnmGev9XnvNPP2vv3ic588/tze5qLRunf28d7NcuYhOnLCff8sWomvXiObM8e14cpz0334jatrU/bjgknwvqZOnqu/PyEht3c6cMOp4402a6LeVKsXjuqsuXCCaPt21nL//5rlktm3T0jp2ND/mTz/pJ7K1cukSj3d/5gzRxImcduAAj1seFcVjvUtVqxKFhWlz4sg5eYh4zG53zp/nMbgHDtTSLl8mev99794PdnTsSFStGk+QambyZG2+sgUL+Lvinns8l/vnn/ycnj7NY6Rn1nxON24QXbmSOceCO19Skuc5MjL6eMbPmvp96c3vqDfk/HnuCEHUuDFPGp2a6p96+Is6b4SnedW8VaMGnx8tWOA6H4anczFfztXkZNbyN8bMjRtEy5bx+oUL2tyJRPz+WrpUP6F8UpL1OevixURffeWaLudrefpporVrebLvSZN43hOjmBjX/wfnz/Nn6/p11+dBna/OaPlyoh9+4PV//9XSd+603mfqVOvfMCtW87oYefq9BvbSS/4/xqVL+vue/kcOHmyePmyYtm72P3DsWKJXXtHP63PvvXyuuHw5nyO3a2f+uSEiGj+e507ZuZM/z5995prH7PMojzdjBs9jOmIEP2b1XDAj1apF1KoV0dtvu85h5E6BAv6fawdIjc+BGfSEAQAAALuMV1Z16MDpp07p041zdcyezcMobdrkWqbatV0uS5ZY12H7du6RdP063795k3swGMceJ7IeU9l42qMOSeVuOX9e33vhTlzSO061v5b3309/GeocNZ6W3Ll53pfPP9fSunc3zzttGr9PPA0P4Wkx+wyp24QQIijIdVuBAtb7PfssDwdx4wZffagOnSYFBJjvu2iREHny8PrWrfr6DRnCw8scPaqljR7NVx63b+86JM6QIa6PR52HR32MQnBvOzmUnCexsTzcRGQkXxn/119amevXm+/Ts6eW54UXzOtgFBVl/jzlysXD7PiL+jxl5nwNOdn+/fz+zWjZ5SraRx/l98u5c+bbv/lGm3suI9SuzcNHqsOOqfN3zZuXcccSQiv34Yc951XnyDh0KGPrYZevva2vXtXqfuqU6/a+fXkYHPXK9nfesVe2u98id8P3JCYKUaWKEM8/791jUcvv1Mn1+9/u8uST2nPjrueJu992s8e/Z49WVzlPo1lvAnUJCuIe4UeO2H88Fy8K0bhx+s4VsGTesmaNf8uXQ8qqaadO6XtLqd8DRNqIBWpamzb674F587ju6tC56lDXU6bw/66///buc+yJOkcTgBm8NTxAEAYAAADsUv8QzJmjD2acPcvBEbnNyNMQaurE7b4YM8b1z88ff5j/KTJKShJi6FD+0+Luz9SlSzzkiacxkP29vPyy/aHWjItZ0CunLD/95P0+jz1mL5/TyX+M01M/42dIXZYts55wNzTU++OorPK99pq2/sUXrhOzNmyoH05QDQapjaOrV5vXYd06fZra8CfTJkxw/7lOTuaGsOBgbhQ0HseqgUENvKjL7t3Wx1Ifq6fnNSbG82TMqi+/5KFC5JxBKnW4ufQMmZYRw27mBL//zs9l7doZW+7UqfxZ/P13z3lTUlxf66tXOYDp7ZxwZuT7ZcgQ1207d1p/F5iZOdP9Y1K/l9QLKdSJnRcs8Kb2+jKmT+fnRqV+7jydO6gNk//+61s90mP1ag5QTZ7Mjyclxf6+kZFa3c0CSHLbDz+4fhfFxQnx/fc8b5cZd99l5cvz7X338Xe/auVK+++fXbu0SbGNxzAOy+nNkpDAz6ev+3/xhXn6mjVCNGrE688/zwEuu2X++KO9fIcP6ycvx+Lfxeo1/O47e/tfueLd8Zo18y6/1TyBTif/puzY4XruZfwMh4draXv3CvHZZ/p5/WS+06f1n09fh672ZMMGHtoWwIzfhiMDAAAAuJu99BJ37ZbKl+chw06fJnrxRdf8noZQGzOGb/v29a0+Zl3kK1cmeuMNol69eDgiKyEhREOGELVu7f4YQUE81EWtWtZ5DhwwT69Zk4fJ6tBBP8ybkfw7Vb++dZ7vvuNhBVq2dF9fM5Ure7/PnWLGDO/3+eMPe/kSEtI/5I674abatyf68UfzbUlJ6TuulalTtfWzZ4nq1tVv/+sv/XA5sbHaujqEWZs2rmWfP0/UrZs+bcsWvlWHONu8mW8nTSIaN04//FBqKtcrNZX3MRt6TQjXNCLrYYxatTIflubWLc/DO8ky09KISpcmqlDB/LXZsoWobFkeCkf64AP+bvz4Y9f86jBEvg41OXo0UXi4+WMzEoLov//0acYh91JT7Q3Dlx316cO3+/dnbLmvvcav93PPuc83YQIPeVK2rPaeJ+LfmGXLeIi8jBq+S/0sSXbeA0Q8BOSCBUQvv+z+t08dHkodjkkdRsnqc+hJjx5EvXsTdepknadKFfdDK6nfUVkxHNnAgfxcvvEGUcGCRI89RrR3r/55s6LWd+xYHo7LTFSU/r7TSZQ/P9Hrr/Nvh7fOnePbgwd52EX19XP3HbRiBZ+//PEHD130wANEderoh/WU0jMcVt68vv2eS59+ap7+xBPa78iiRfr3jifdu9vLl5ho/nyAfaVKaetdu7r/flD/h6iMw8JaKVjQdrWIiOipp4gOHbKfPyTEPN3h4N+qhx7ShtAjIurcWVsfPJi3qZ+FOnV4WDK13NOneQixihX1x/D1fMKT5s1z9n8JSB8EYQAAAAAySUAA/wnwZQ6eN98kOnKEAzm+KFFCW2/UiKhBA6Jy5Yi+/Zbn3jD+OTFj9mdMfSxBQXzrbl6dQoXM0w8dIqpXj8cx79uX6IUX3Ndl1SpuzFu92nWbHNP4zTe1tKZN+fbJJ92XW6UKUZcu7vPcqfw5Z89rrxHNm5e+MooVc79djqmfEVJS+H3/+OP28v/wg3kA0d1cLu+9pw/MqJ57jujiRX1amzZEQ4dyw6u0YQN/xt5+mxszAwP5/tWr3DihzkVl1rCVlKR9ptSggVUj2I0bPEa6cY6EatW0z5CV774jGj6cA0zx8fzYjY+RiMu5cMF87i+zQI8anLPTKJiSojWaXr5MtHIl0aBB3FB77738nSf99x/Rrl36/YcOJSpThujrr7msOXN4HiD1u/fBB7lxKzqa6PBhorfeIpo7l+fRMmv498WxY1zvc+f4O8mqAdobN29y4E7yJTiwYgVRw4b6YIZaTmws358+neiTT/TzoqWlEb3zjnZfHcNfnWfq0UfNj927Nzfiy4Df5s38HFm9LyZPdk2zGzwrX17/WxAXx59H42cnIUFbVz/vahDGbuDHaPlyvl2/no/bvLn++4GI6NQpoiVLrMtQ34/evjcvXeJzhbFj3ecbNYq/o+T74OJF/v3dtIkDGaqNGzmg3bw5N6h26GD9PlSDMLNmcV6z71Tj/mqjrRoQ91VAAJ9DRUbqG27l+/DoUf78P/MMB5tat+bvf8nse81OEModO3O7pZc3jel2JSby90J2N3kyzxNn9l1k9f1kl533pNkFCdLevdr6E0/w97EVqyCMw8G/62Y+/JDnTProI/37vXhxvn36aevjpabyvg8+yPflc/Xll/ybamRnHk5VuXLa+hdf8G+w2YUuqooVOSAKkC1kdVec7A7DkQEAAIBdcm6JQoWyuiauUlKE6NyZ55lwOl274UdG8jjnI0a4L8M4lMDQodq6nGNAHRN53Dh9/ps3hWjalNfLljUfYkAI/dBKDod5HmnzZp6D4/PP9cM3OZ08f87p01z3S5eEGD7c/dAIFy7oh6txtxQqJETRolk/3MTdsrz3Ho/hnd5yfBmWzdflgw8y71iFC7um/f67ENWqafc//1yIp57yXNYXX/DnZuZM74eZmzFDW5dD8Uixsfq8cogwef/RR10/34sXa9uPHbP+fpLlFyvGeVessK6jEEKsXavdL12av7fUuhDxc9eggX4/Nc+cOa5lmw2B5S3j82Q8vlFkJA+BcuuW++GeTp7UlzdggPd1k/tWqCBErVo8LJI6ZE3NmkL8+qv+OMeP877x8fp0ddi+rl3124xDz12+rG1btEgbMoqI53uS86CpdTR7ztShOY1D1MXF8RwXcsg2dZHDNE2ezHMWyH1PnNDyjB+vlaXOF0XkOhSON881kX6uJ+Py7bfm+//3H8+bIvOtW+f+eKtW8bxu8rdc/a44coSH+fzrLx5WbNs213ru28fHfPJJ774zLl7kcozvXeN8ekT8Oz59uhDz52tpnoa3ki5d4nnB0jN/mTq/npynxtM+R474fryctqjzzPlzKVnS931VZueMv/zimlaunBD33OOanjeva5o6VKG6PPustu5uLkb1e3TOHCG++so6r/F7VS7XrvEwyUOHCvHbb0K0bSvEhx/ycL4JCebfQ8eO8WOPieEhYs3KlcP3Xb/O3ycpKdr3idOp/94m0ubRsnr+jXVYvdr9dxhAdmfxFgcJQRgAAACwa/t2Hg/5n3+yuib+89FHPE9IgQI8x83gwdqfI9mAojY4RERo63Lc5shIblDft8/6j9fGjZzWsiUHWdz9OfPGxInu/3zfvOl57gv5B1kI/lPqKe/LL/Nkwf5oaLiblvfec/0Dn92X557LvGOZNfb4OvZ+rlzaup2gjbqogdktW7TPXloaN9yreY8c4W3yfvPmrp9ZNdBx4ACnJSby901SEjdAHz3K6XYDbAcPmj9fal3Mlmee4Xk/PJVvNHiwEC++aD4G/ZgxQgwcqE+bMMG83IgIIZo00Z4HSZ2gu1w5buzasYMDTdL27Tzniqe6emJVL7letaoQgwbpt8u5UowTLDdooJVr1lj422/a9nff9fy8//uvawP7ypX6+quB0atX+TmSv13ffGP/fS4DWMaAjWT8fZs40fW5vHaN39+ykVK1e7frc2hVl++/589A48b8+ZMBIuN8EAULasEtp5Prrs7No+bt21eI6tW1+6VLa+sy0Dlliv7iDONFF3aXkyf5dSlQQAtsJCXxRRTGvOpE23IZPdp9+Veu6F9bq/nwvF2qVrUX0KlcOWOOh8X+IgQHPs22ff+99X6jRuk/h7duuZ6/rVzJvzVlymhpr7xifn4iPytykQFpY7769fmzVKMG3z91iudtefBB1/l21Hmo5s7VB2y6d9fn7dXL9Vh16rh+37izfz9/7oxkeUOGaOuLF7sv68MP9c+N2XePmXPn+PcAc7vBnc7iLQ4SgjAAAAAArpKT+VZt0JLUq62jorgh9vnn+QpZYxnu/nhduKA1jq1alTETXZo11siAj7yC3Xi1OJEQe/bw1YHz5umvEjx71nNjwKRJnFdNe/ppvs2XTz+xvNUV8Ooydy5PbivvV6nCdbcTEPK0fPRRxjeGZNTSs2fW18HbJTg46+uQ2YsaeBo5kt/70dHcYGuWX20Qe+QR95/ZL77gz194uBD336+fnFoIfS8cd8ujjwoREuKabvyc+rqo0tK0dDUoZdwmv9/sNOoWLsw9EuTkw8bt6pXSly9r33Ge6iqpDV1y/cwZ7iViVoax96Dxs7pxIzf2nzunT7//fu04ZuWqQTmrY6tL9+6uvXCI+Pv7+++5obNKFS1dXXc6OQjgzeu8YYNrmryy+++/9ekTJvDnYMYM7TekeXPe9tprfH/ECO4pqga15LJunXU9pk1zDSpafRZCQrRJr43vAV/e62+9lTGfGbn06OF+MvCff3ZNw0UOWNRlyhTtu6tzZyG6dNH3vF61ynpfK2qexEROi47W0o4cEaJUKe1+7dp8O3CgefmzZwvx/vscUJffGUJw0OfyZf2x1QubPv5Y/xvxyy9CfPmldv/VV/XH69dPW4+K4t56auA1PZYs4ec2Lk6IXbv499hTkOTaNf6d//57ffrSpdy7HD1dIKdz8zUDQiAIAwAAAOCOenWypA7PYnaFr6Q2QLr785uRFi3y/Kf7v/+0bfv3c2DEijpEjtXy3nucV027fp2vWN6/n3v7qHUxK0Nt6IqIcG3MlHxpsJB/4B98kBtavdlXbXSQS/v29q5a98cycmTWHBdLxi03b/Jnzuk0D5qqAci2bbV1Idxf4Wxc5PCR6nL9esY8BuniRW74kukrVui/P9RgyaFDnOapt5669O5t/rlXe1EcOuS5ridO8BXgp05xULh4cW4sk3kWLOCAsa/Px733mqffdx8fX32O1OWxx7TnymyoH+PSrZt2Jbm3i7uGWW+XmjWFaN1an/bxx9r7tW5dIbZu1bbly+f5+1sdPs+4WAU4rZZatVzTXnkl4x5/ehd5kYLZkp0vFLibljfe0Iboy4rlkUest5k5dUqIhg05cOBtUFr9bFavbv79ffas9r4NCuJA4uLF/Hsm8/zvf9ble/LTTxz0NdZn1SrtvK1BAw7oqo/n7be1dbOemNkJernA3SDA/YwxAAAAAADW1IlzJTl5JxFR7tzW+6oTftaqlXF1cqdjR6IJE3hS24EDeZJgI7XO+fPzYkWdVLRfP97355/1eRwO1/0KFiQaMoQfd2KifttHH7nmv+cebb1MGaI8eczrc/mydV2tDBzIk4CvW0cUEuLdvo0bu6Z98glRrlze1yMjpHfCXCKebLlJk/SXA7555hmeTDggwPyzoE54vmqVtv7ff/pJ4D2Rk2qrqla1v78ne/cSlSrFE7xLyclEUVE8QfGVK/pJ3eX34dtv2z/G9Onm6fv3a+vqMczs2EFUuzZPcH/PPURJSVzH8HAtT+fORPHx9utldOKEeXpqKk/irv5mqNTv11OnPB/n1i2i48e9rx8R0auv+rafmUOHiH7/XZ929qz2fv33X/13THw8P+9W7ruP6Nw56+3qZ8KOAwdc02bM8K4Mf1qxwnrbn39mXj1yksWLM7a8b78l2rZNP0m8qkQJotdfd1+G1aTso0ebv0dVmzcTjRrF63XqaOlW3yWVKhFt30707LNETZtq6S1a8LmbXTdvaut58xK99BJRhw48Yfy0aURvvcWf7yJFOD13bqLdu4l27Urfd0zXrkTNm2v377+fz9eaNCGqUIF/T/76i+iRR/T7VajA56Dh4fpz7uzI7FwZIKfJ5h9DAAAAAMjOjAEEIm5A3buXG6ICA93vf/EiByPWrPFL9VwEBHAjZ716RF9+SdSsmWseNQjjKZigNiK0a0cUG0v03HNEEydq6UFBfHvlCgd0xo7Vl/HOO3zbqRPfjhhBNGaMvkG4SBFuxIuK4j+qRYpo21q31tZLlOA/+59+SnTtmnmdn3iCAyVERJUr822VKkT58vH+DRvq87/wgrbepg3RvHna/ZIlie69V58/NDR9QZj33vNtv27d+DFIv/7qWzkOBwe6IGv88Yf77VZBhTJluBEqPaKi0re/9PPP3CBHpP+OfO45/oy9+y433qmP5fHH9Q18dn33nWvapUva+q5d7vcfMcL8ezw52fu6eCs1lWjpUuvtRYtyHruBlZ9/Nr8wwA5fAtjeUL83zVg1ZhMRHTxI1KeP9Xaz90BOVbRoVtfAvkmTMra89u2ttz35pPW2qVM5+GD8bc8I5cqZpz/6KL8vk5P5/du5s2ueEyf4vGj3bn16s2YceFQ9+aRrI/177xEtW8YXkEhmwXUjtZyUFHsXn9SowbdPPKFPnzOHA1wOB3+3T5rkWvf69YkaNPB8DG/s2kV0/TqfbxPxOWFQEAdrPv5Yy1epElFcHJ8/AkDWQxAGAAAAAHxm1SBap472p9WdkiWJhg7lK8azi1y5iMaNIxo+XH81uFXecuX4z+9992kBl/79tTxC8G2RIhykef99fRkdO3IjxZw5fD8ggOiDD4iOHtXyBAfzFfXFivF9tRHhoYf05TVoQPT550SFCnHj5YAB+u3VqxN98QX/MT98WL8tMJCvbl2/Xkt7801+DHv3Ei1ZQtSlC18BSkT02GNEDz+sL8PhsA7CnDyprRcubJ7HztWi7dq5vjbffUdUurR2v3Ztz+UYBQfz7cWL3u+bHhUrZu7xjFJSsvb43hg3Lqtr4Nnzz2ufeytr1xJduKDdj4jQPlfeMLuKW22UfOMN9/uvXOn9MTOK08nfL1ZmzeLvCbXHU061c6fv+1r1NMqJMuuCjfT68EPuFaH+JqXXkiXcu+TTT123PfCA+T5CcADP4eDvHON3TNOm/N3jjW+/1dblecb583we8/zzvEyYwNuDg4lq1jR/HsqW5fOi+vX16fJ3WLV8uet3anAw95xUL0opWdK7x5KWZi/funX8uL/80rvy/SUoyLxHtMPBgfWZM/m34amn+DW36nUEAJkLQRgAAAAA8FlOHbbpvfeIBg/2nM/h4GEzIiJ87z3hcHAjhdmfZHmVqToMhTRiBPdgcdfIeu+9rq+RvJ8vn3ljh8OhT5dXidapowVXTpzgHgtt27qWkZKiD8KMGsWPrXlzHu7I6STaupWHQGvShJ+3EiW0/O6GsJMWL+ar/Z95RkvLm5eHefvqK26oV4M0docbefZZe/kyksPBgUhVhw6Zc+xHHuErkYOCiHr3tr9flSocOO3Y0X91s7J8eeYf0xfff+85z7Fj/jm2GkTNzsx64BjFxd05De/poQbu4c7Xti3fhoV5v2+3bubpDgdfbDBkiOs2Oxey5M/Pwzaq5szhYIg7VaoQjRyp3X/xRf32e+/l3/GaNYkWLuTFOCyY1UUXZow9U154QbvAxcoff/Dv2aJF9o7x1Vf8fEyerPVCrlTJOn94OJ9ryZ4n2V3PnvzYsvsQZAB3G3wkAQAAAMBnvXvz1cp2xuvPqQoUcH/1ZXquQDx6lCg6Wh+kkD7+mBtxzbapjEESO4EGdR+z+pcsSdSqFTcKqY0j1atzQ4wahLlyhYfNkGP5Oxw8l0zRokSbNhGdPq2/wlUdUsxsiJXfftPqZ/bY332Xg2jqY1B7xaiBGyOruXbsGjjQ/pXPDgdRr17cEF2lin6bp14UGaV3b+0qYtnLyo5y5bgXxy+/+Hbc9ARvsyLwY8WXniuqgwczph7ZRcuW3uVXh01zxzi/CtxZPviAAwePP+7f48yfTzRlinWvEE8KFOCGdnU4UTvUOdsk+Tum/p5JBQu6L8/Yu5VI31vEbJjXFi1c08wa4MPC9EEc+TsZFWXey6NkST7PUOdd8eV7z9PFFeqwibJO27YRffaZ1ktY/laZnZO0asXzxFSrZq8+777L5yV16xI1akR05Ih+Li0AAH9AEAYAAAAAfBYURNSjh/srCO9WI0cS1arl3UTbRrlzp38MfGODvp3JT816wlhRG0QOHOB91SBM06b8OMwajgICOL86rF3RojxnzbBhPFTS1avatqpVeV4aKSbGul7q41Sfgzx5uGFHtWgRj0P/xReu+3rD3YTC48dzAOiRRzhomZLCE6uHhro+x56CMHnyWE/KbqZVK/N09bgffOD+tZ47V1svV057jjxNoGzmxg3v95EyeoLp9FDnLzIG0uzwtrE3o4wY4Z9yvelNlRUefDCra5A1jPOQ+Ztx+Lh+/bi3n53epenRuTNR375Ef//Nc5EsW2ZvvypV+Dtt7Voecqp/f+9+t7t25d96lTwnUr/LV63i35mNG83L2bSJzxv69tWnr12rXcQgTZ+u9fB88EHujbJpkz5YYzU/ihoQkb/1xYrxRQS7d+s/J9Wru5Zl1oPWE3UoUjNqsEqW36gRnwfI+5s383CrGfUboJ6TVKuW/qA6AIAnCMIAAAAAAPjBoEF8ZaU3w3D4gy8NJp56wqjUOWFko4bauNG0qefjGcdl/+ILDpQ4HPz8RUdzY4xxmKWuXfm2USP35asNPLlzuzYWd+rEDWNySDk1CLN1K9HLL/N6+/bmAYTwcKLu3TmoVKgQN7wZr95/5x1uFNy8mRvo1OfI+Bo5ne575SQkcC+aDRv06epQLLKhqmFD68nu1Yngw8L4ymMrHTty0KB2bf3QNPfdx3Mdxcfr8z/yiHVZmTkHjRoQNAaZ3M1H4smZM/ya1q/PwbcjR3wLxGSFfPk4eJ7R7AaMn37a/XZ3k4zbtWWLa5rV0DzpbXy9csU/85q98kr6yyhd2rtebhnBOHm5/NzZmQA9I8ghNY1DYhGZ90ypUoXo3Dn9b9n48dxLMyqKgxvuREbyHByFC/M8MPv3a8OQqd91Tz7JvzNqrxLZsy8khH8rBw1yfZ+2bu3ae6ZXLx5uKiWFg05EvP/u3fzdnyePdbDi1i1t3Vhu/fpc3ubN/Hs3cyanq3X2xV9/6e936aK/r743rH77atTgHjNyqDcAgDsNgjAAAAAAADmYu8ZwK94EYbp0IRo+nK/WNWNnjhfZU0POgWNUtCgHZYwNne3acaOT1bEldXiXPHk8z9+jBmEaNyaaMYMb2hYvNh8T/sIFotmz9WmPPaatf/21++OpEwsTcRCmXTvzvOXLa+vNmxONGaPd79SJG/Hee4/nlRGCaPt23nbqFDcQqvOQGBvNja+1+jyEhvIV4vv2uQ4Dlz+/a0P2ihXWjd6ff26ersqI+XmaN9cmiCZyDdZNnMjBI28mcx41intnVajADZi7d/Mk3AEB/Dz4W0Y09ufJ4zkQYiR7iRFZP05jA7ed97AqOZkDGjVr2q+X1fB/Dz/sGtzdscM8b9Wq+vuDBpnnmz3btfGYiD+/Zun9++sbwhs2NC/XirvPSY0a+p5YVubP52D1yy/zPlKePDzXhj8EBOgDMfJ7xZcLAlTezqGkzgsmmb3vV650TQsIIKpYkQNYjzxC9PPPPDzor79qvUOksDAOXly5QjRpkr5XjPG7XTpyhAMcCxdymadPm+cbPdo8XTKbK6VDBw6MW80tdu2a+/2J+DEvXar9Jpcty8MnGueUsev997X1zZtdfy8rVCB6/nkOjHvzfQwAcCe5o4MwI0aMoEaNGlGePHmooMXAmhEREdSuXTvKmzcvFS1alPr370/JycmZW1EAAAAAgCySP7/389KoDTOerl52OHiYmdattTS18d3O1c8//MANn95OKO5wcOOX2dXNRNzQtXkzD9UiyaCQuwl2hw/nW7WnRPHi/LiMQ5Xlz28+1JrK0xwFJUvqh4BJSuJF2rKFewONHMmPR2Wc3HzkSKJx41yPUakSNxBWqcINf++953pFsfpaXbzI4+ZL3gzR9vjjHKDYvFk/Hw8RX3H+/PNEy5e7L0MdxsesIdJYrlGePNxTSA24zZrFPZY6d+bJ3gMCOHj04YfuyyLiRsL69XnIHqvebepnIL0mTeJAllFkZPrLLl3ael6KZs3MrzRXh7SrXZuHBTJSex0RmdefyHpen+BgbrS2CsBVqUI0YID7Y0pBQfYmpb5yxXW4vpEjzfd1OIjmzTMvR35nSF98wUE+NfDg7dw27iZ1X73ac8+jhx/mwGNwMAeSDx3S5syYO5eDskbGALWv8zepQ6DJ3x9PvwXPP+9+u9rTrEoVDpDL4bfk5OqqihVd03zp9eRwED33HAfrnnqK6PBh/Xb5Gpt9R1r16qhWjSdPDwzkMq2CiY8+6n19idz/JvXqxZ+Pbt28K7NmTd+DwOpnrHJl14BcQAD/Ln3zjW/lAwDcCe7oIExycjJ16tSJ+hoHzfx/aWlp1LZtW0pISKCtW7fSggULaPHixfSenUtGAAAAAAByCG+DMGoDuLf7EnFDLhE3eNlpvC9enBs+zSY4To9q1Vx7AsmAjfEqeVWjRnwl8aRJno+hBiqMTp3iXjqNG7svw+HQD9dy9qy+gbVJE74/aJBrbyF1aBm7nn+eAzXGhma1h0OhQt6XK3sc9ezJt40bc88ZdZgfWX/jFely8mVJfQ+++KLrsdas4UCVVU8vOR+EOnxc+fJ8Bfb8+fpJwq3eowMH8tBv587xleq7drlv3Pz0U+ttqlGjPOd57TXznmFWvUuuX7c37NRzzxG1bGn9mH/7Td97SFJ7pyQmcoDt9Gn9+8QsIGIWmDLrSaMGwqx6jBw44DqUoFlDu5l+/TjgQsRz4uzfz/eLFNH3bHjqKb41m0/D3VxNxsf+xhuu6Va9Dsx8/715cLlMGQ4Ili7tfogoIfg7xfh+3bmTl/bt9Q3hTzxB9O+//Jo+8AB/Fyck8PBZJUvyd3lEhJZ/yRKiqVNd53+R1OfPbk+YPn3481y6NH8/ues51K0bDxW5ZQsH++SwWUavvqqtT52acUMG2p0HLzXVt/KPH+egnacAvi9q1eKgvrE3ij+pr73VXDUAADmeyAFmzpwpwsLCXNJ/++03ERAQIP7777/bafPnzxehoaEiJibGVtkxMTGCiGznBwAAAADIbr74QggiIZ5/3l7+Y8c4P5EQiYm+HfPkSSEuXvRtX3945x0hypUT4soVvh8aqj1Gb23cKMSECUL8+acQTmfG1VHWp3RpISIjhXjySSGWLHG/z4wZvj8OMx9/LMSwYby+bRuXW726vX3j44XYvdv1OWna1LyOc+cKUbIkP49CaHmIhGjXTr9Pkyb67VevcnrdulrahAlCHD0qxLJl2jGOHPH8/Fy6pC/7hReEaNtWiNhYe49bFRkpxJdfCnHjhr5MdVm1yjWtZUtt/cwZLmv/ftd8P/7omlayJOd3OvXpx44JsXq1dv/337V6/v67ed3ka6em9eihT6tRQyvn1Ckt/cQJ/X5C8HP4+utCLF4sRFiYEC+9JMTff2t59u8X4vRp1/eMWd2EECIuTru/dq314zCW07+/9Ws2c6aWLzqa03r2dC3z5Ene9sor5seSj//ee7XHs3Wrli81VfsuVpcdO4To0EGIDz8UYt06ro/0ww/6vKmpQqSkaK/3Z59p2+Li+Dv+p5+sH6tqzx7Xz5Okvh5xcUIkJPB6u3ZCVKwoxM2b2vYXXtDKOXiQ06KiXJ+fixetPxNVqwqRnKyvw/Dh2vZvv+W0UaOEaNHC/mdzzRrev2xZvh8f73rsX36xV5Zq82Zt/8GDrfO1apWx3893KqdTiPr1hahdW4i0tKyuDQBA1nAIIURWB4LSa9asWTRgwAC6YZgl87PPPqPly5fTvn37bqddv36dChcuTOvXr6cWLVq4lJWUlERJSt//2NhYKlu2LMXExFABd2MWAAAAAABkU2lpfBV/3br2erbcuKFd4Z6WZm9YnzuBEFoPgOBg7Srl7PKPSNatSBHtqn1P0tJ46J/mzfU9TjLK7t3co8hqyDc7wsO1YbTcPddq74y2bbWr7IXgq8LV3ivx8Xx1fr16fAW/u7L37uU6mM0RYXbs33/Xz+njK6veJvv2uU7OPX68NleK7KERE+M6bNi5c65zqtSowUNNGY8ZGcm9zORnWN1265Y2NF/LlkTr1vG6fA5l3v79eVgtNa1cOa4HEdHNm9oQT8ePc68S2cvM+HokJfGQVJs2Ecm/4lbfL/JY1avzsIIdOvD8KmlpWo+SP//kuu/dy6+Z7E3z1FM8z4ZazltvWfdsu3CB57woU4bo/HlOS0jQ3vNTpvCwUHLumMRE7oETGck9Rk6eNC+XiHuPyNdL9gA4eVLfI+PGDfdDj127xp/BJk24B4rRxYvc48U4V5MnUVHaPrGx9uY0EoIfh9rDZt8+ovvv17ZLmzfze0MOGUbEPXAuXOD3e3w8f87LleMeOMZeOykp/Nw/8YTrvD3e+Ptvfr4LFeL6Gd9v8n3pLfneGjzYdTg6aeVK7r325JPWvYbuFk4nP/+ehu8EAMipvOgQe+e5fPkylTCciRQqVIhCQkLo8uXLpvuMGjWKhg0blhnVAwAAAADIFIGB3jXQFyzIQZvQ0JwTgCHSN0L7OkyMP33yCTfm2RkGTQoMJProI//VyWzuD281b87j/XuyYQM3pE+dSvTxx/ptxkZqGUzctIkb3Tt3ti5XNhDb5c2wUXatWMFDYIWF8Zwqzz1H9MsvvO3bb3m4ubAwbgyWgZewMA5AvPceDxNGxA3WP//MAQA5Z1FKivkx5XNm1uiZK5cWFIiO5iGu1GsU//6bh20bOtR13+vXtfXcuXkYtPh4DjbkyUMUF2deH/maqUN0WX2//PADT8Q+erT+c6s+Frl+//18bBmEMXuvuRsKq0wZokuX9PNEqXOHPPywPgiQOzdP0j5jhud5TMqV46H2ChTQHoc6R1XVqu4DMEQ8B9GFC9aPwdd5OooX52G/kpPtBWCI+DEY30916vDQZ8b5ZJo2dd1fDhMonTzJgSCz92hwMNHbb9urlztymEQi/XupcmWiZ57xLQBj11NPEZ044Ro4vRvlpHMJAABfZLueMEOHDvUYBNm1axc1UP4NWPWE6dOnD507d47Wrl2rSw8JCaEff/yROpucqaMnDAAAAABAzjdqFDf09+tHNHlyVteGCcG9IOzM7XEnWbuWr2Ynst/rqEkTom3btH2MV7Bn9L/YBx7gXj9EHNgxa0D21ogRHFgbOJDoyy/1286d48AHkXYlfmIi35c9VKRTp7h+bdvq586RDcqPPqr1ZFEbmb15juLj+bjurlJ//32ir74i+u47otdf19KTkriHSp48/Lxt2eL++EJwD5uqVbVAkje6duUAzY4d+sDEtm0cQFMb3UeN4rkvtmzx/nP1999EZ864D/D5atky/lxMnOjfIAC4mjCBP3/jx9ubs8yK3HfWLKIePTKiZgAAkJNluyDMlStX6IqHvvcVKlSgXMrlMxk5HJlRbGwshYWFIQgDAAAAAJCDCMFXs1etiit0/U0IomnTiO67j6hxY3v7lC7NwyzJ/Yl4aCI54XlG/4s9e1ab5H3bNqJGjdJfpqf32Gef8ZBXH3zguazkZA44qI3GmzZxT4ZvvtECOr4GYewQQh88MnPuHNG77/Ji97X2tS7paUAHSK/Nm/kz+PHHGGILAAA8y3bDkRUtWpSKFi2aIWU1bNiQRowYQZcuXaKSJUsSEdHvv/9OoaGhVF8dmBQAAAAAAO4qDgfPNwH+53AQvfaad/vExLimyeGz/KFCBR4mKiLC++HLrHh6j33+uf2yzHpLNGvGiyoqioeZeuUV+2Xb5XC4D8AQ8bBLixdn/LHN6gKQlZo2zZgecwAAcHfIdkEYb0RERNC1a9coIiKC0tLSaO/evUREVLlyZcqXLx+1bt2aatSoQd26daOxY8fStWvX6P3336fevXujVwsAAAAAAEA29cUX3JuiXz8tTU747i+HDvFcQcbhwO4kxYrxY8CV+QAAAADZR7YbjswbPXv2pNmzZ7ukb9iwgZo3b05EHKjp168frV+/nnLnzk1du3alcePGUaicFdADDEcGAAAAAACQueRQXlWqaAGF8eN5knq5HQAAAADgTnBHB2EyA4IwAAAAAAAAWe/ff4nq1eN1/IsFAAAAgDsFpqAEAAAAAACAbK9uXaI9e4giI7O6JgAAAAAA9t3Rc8IAAAAAAADA3UP2hAEAAAAAuFOgJwwAAAAAAAAAAAAAAIAfIAgDAAAAAAAAAAAAAADgBw4hMKWhO0IIiouLo/z585PD4cjq6gAAAAAAAAAAAAAAwB0CQRgAAAAAAAAAAAAAAAA/wHBkAAAAAAAAAAAAAAAAfoAgDAAAAAAAAAAAAAAAgB8gCAMAAAAAAAAAAAAAAOAHCMIAAAAAAAAAAAAAAAD4AYIwAAAAAAAAAAAAAAAAfoAgDAAAAAAAAAAAAAAAgB8gCAMAAAAAAAAAAAAAAOAHCMIAAAAAAAAAAAAAAAD4AYIwAAAAAAAAAAAAAAAAfoAgDAAAAAAAAAAAAAAAgB8gCAMAAAAAAAAAAAAAAOAHCMIAAAAAAAAAAAAAAAD4AYIwHgghKDY2loQQWV0VAAAAAAAAAAAAAAC4gyAI40FcXByFhYVRXFxcVlcFAAAAAAAAAAAAAADuIAjCAAAAAAAAAAAAAAAA+AGCMAAAAAAAAAAAAAAAAH6AIIxN69evz+oqAAAAAAAAAAAAAADAHQRBGJuSk5OzugoAAAAAAAAAAAAAAHAHQRDGprS0tKyuAgAAAAAAAAAAAAAA3EEQhLHJ6XRmdRUAAAAAAAAAAAAAAOAOgiCMTegJAwAAAAAAAAAAAAAA3kAQxib0hAEAAAAAAAAAAAAAAG8gCGMTesIAAAAAAAAAAAAAAIA3EISxCT1hAAAAAAAAAAAAAADAGwjC2IQgDAAAAAAAAAAAAAAAeANBGJswHBkAAAAAAAAAAAAAAHgDQRib0BMGAAAAAAAAAAAAAAC8gSCMTegJAwAAAAAAAAAAAAAA3kAQxib0hAEAAAAAAAAAAAAAAG/k+CDM5s2bqV27dlSqVClyOBy0bNkyn8pBTxgAAAAAAAAAAAAAAPBGjg/CJCQkUJ06dejbb79NVznoCQMAAAAAAAAAAAAAAN4IyuoK+FubNm2oTZs26S5n/fr15HQ6yeFweFwCAgJs5bPaNzAw0GUJCgqyleZN3qCgIAoODqaAgBwfiwMAAAAAAAAAAAAAyHQ5PgjjraSkJEpKSrp9PzY2loiI1q5dS2vXrs2qavlVQEAAhYSE3A7KyFu5btwm76v5POUNDg6m0NBQCgkJoZCQEMqVK9ft9dDQ0Nvb5K3Z9sDAwKx+qvzO4XBQ4cKFKSQkJKurAgAAAAAAAAAAAADphCCMwahRo2jYsGEu6a1ataLQ0FASQpguROT2vkxzOp1u88vtaWlplJaWRk6nk5xO5+1146263Sy/us2K0+mkW7duZejz6A+BgYEUEhJyO+gTGhp6e10GbOR2GbgJDQ2lXLly6e4b0+S6DP4Y0zK7p5A8LgAAAAAAAAAAAADc2RxCRgDuAg6Hg5YuXUrt27e3zGPWE6Zs2bK0ceNGCg8Pz4Ra+o8xiJOWlkapqamUkpJCKSkplJqa6nJfTU9NTaXk5GRdPqv9zcpJTk42XZKSkizTs8PbUwZl5BIaGkq5c+d2uc2TJ4/uNm/evJQ7d+7baXJR03Lnzq3r4XP16lWqXr06FSpUKAsfMQAAAAAAAAAAAABkBPSEMZC9I3KigICAO2r+FyHE7cCPu8BNUlLS7SCPTL916xYlJSXRrVu3XJakpCRKTEzU3TfmSUlJuV0PGZiLiYnxy+MMDQ29HZAJDQ2lQoUKUVhYGOXLl4/y5s17+1Zdz5cvH+XPn5/y589PBQoU0N3mz5+fgoOD/VJXAAAAAAAAAAAAALAPQRjIthwOx+3hxvLmzZupx05LS3MbwDEGcm7dukUJCQmUmJhIiYmJdPPmTUpMTHSbJnv5yCDP9evXiYjozJkz6a5/rly5XII0vq7n1KAkAAAAAAAAAAAAgL/l+CBMfHw8nTx58vb9M2fO0N69e6lw4cJUrly5LKwZZGeBgYG3e5/4gxCCkpKS6ObNm7eXxMREioyMpCJFipDD4aD4+HhKSEighISE2+vqbVxcHMXGxlJcXNztdTmUngwMRUdHp7uuwcHBtwMyYWFhuqVgwYK27ufOnZscDke66wIAAAAAAAAAAABwJ8nxc8Js3LiRWrRo4ZLeo0cPmjVrlsf9Y2NjKSwsLEfMCQPZX3rnhElJSTENzthdV9Nu3ryZYY8rKCjIq6CN8X7BggUpJCQkw+oDAAAAAAAAAAAAkBlyfE+Y5s2bZ4vJ3QEyQ3BwMBUuXJgKFy6c7rJSU1N1PW7kEhMTQzdu3KCYmBjdYky7ceMGxcbGktPppNTUVLp69SpdvXrV5/rkyZOHChUq5HEpXLiwSxoCOAAAAAAAAAAAAJAVcnwQBgB8ExQURAULFqSCBQv6XIYQguLj490Gatzdj4mJodjYWCKi28O2/ffff17Xw24Ax2zBnDgAAAAAAAAAAADgKwRhAMBvHA4H5c+fn/Lnz09lypTxqYy0tDSKjY2l69evuyzXrl0zTZdLTEwMCSHSHcApXLgwFSlS5Pbi6X6hQoUoMDDQp8cLAAAAAAAAAAAAOQeCMACQrQUGBt7uleItp9NJMTExbgM1VgEdYwDnwoULXh27YMGCbgM1Zmn58uUjh8Ph9eMEAAAAAAAAAACA7AlBGADIsQICAjIkgHP16lW6du3a7Xlt5GKWJodPu3HjBt24cYNOnTpl+5hyTh+zQE3RokWpWLFiVLRoUd16WFgYAjcAAAAAAAAAAADZFIIwAAAm1ABOpUqVbO+XkpJyO3BjFawxC94kJSVRSkoKRUZGUmRkpO3jBQUFuQRmzII1ahrmuQEAAAAAAAAAAMgcCMIAAGSg4OBgKl68OBUvXtz2PkIISkxMdNvT5sqVK7eX6OhounLlCsXHx1NqaipdvnyZLl++bPt4+fPn9ypoU7BgQQoICPDl6QAAAAAAAAAAALirIQgDAJDFHA4H5cmTh/LkyUNly5a1vZ8M3KiBGXlrlZaWlkZxcXEUFxdHZ86csXWcwMBAKlKkiC4wIwNNxYsXp2LFiunuFypUCEEbAAAAAAAAAAAAQhAGAOCOlTt3bipTpgyVKVPGVn45z41VsMYscBMbG0tpaWkUFRVFUVFRto4TGBh4OzBjDNCYBW7y5cuHeW0AAAAAAAAAACBHQhAGAOAuoc5zc++999raJzk52WUoNLlERUXdvpXL9evXKS0tzash0nLlyuW2Z41xG+a0AQAAAAAAAACAOwWCMAAAYCkkJIRKlSpFpUqVspVfBm3MAjTqIrclJCTQrVu3KCIigiIiImwdo0CBAm571hQvXpxKlChBJUqUoMKFC2NoNAAAAAAAAAAAyDIIwgAAQIbxNmiTkJDgEqxxF7xJTU2l2NhYio2NpZMnT3osPygoiIoVK3Y7KBMeHn573bgULVoUARsAAAAAAAAAAMhQfg3CNGjQgOrXr397qV27NgUHB/vzkAAAcAfJmzcv5c2blypUqOAxrxCCYmJiPPauiYyMpMjISLp27RqlpqbSpUuX6NKlSx7Ll3PZWAVp1ABO0aJFKTAwMAOeAQAAAAAAAAAAyMn8GoRp2LAh7dmzh+bOnUuJiYkUEhJCNWvWpEaNGlHnzp2pcePG/jw8AADkIA6HgwoWLEgFCxakKlWqeMyfnJxM0dHRt4Myly9fvr1uXK5cueLVXDYBAQFUtGhRWz1sihUrRkFB6HgKAAAAAAAAAHAnczqddO3atdvtR61atbK1n0MIIfxcN0pLS6NDhw7R7t27affu3fTnn3/SqVOnqFu3bjRz5kxyOBz+roLPYmNjKSwsjDZu3Ejh4eFZXR3I4a5evUrVq1enQoUKZXVVAO4qKSkpuoCNuhiDN1euXCFvfjodDocuYOOuh03x4sURsAEAAAAAAAAAyEQJCQm3AytyuXTpkktaZGQkpaam3t7PbvtQpgRhzPzxxx/04osv0siRI6lXr15ZUQVbEISBzIQgDED2l5qaSleuXPHYu+by5ct05coVcjqdtsuWAZvw8HCXpWTJkrr7BQsWzNYXMQAAAAAAAAAAZJXU1FSKiopyCaSYBVni4+O9KrtIkSIUHh5OBw8etJU/y4IwRETTpk2j6dOn065du7KqCh4hCAOZCUEYgJwlLS3tdsDGXe+ayMhIio6OprS0NNtlh4SE2ArWlChRgnLnzu3HRwkAAAAAAAAA4H9yvmCzXirGJTo62quRTHLnzu3SpmK8Hx4eTsWLF6eQkBCv6p2lY548/PDD9OGHH2ZlFQAAAPwmMDDw9lBjnqSlpdHVq1c9nkRcunSJbty4QcnJyRQREUEREREeyw4LC/N4EhEeHk5FixalwMDAjHjoAAAAAAAAAAC23Lp16/ZFq1ZDgcklKSnJdrkBAQG3h4L3dBFrvnz5/DbiiF+DMJMnT6YHHniA6tSpQ6GhoS7bo6OjKTg42J9VAAAAuCMEBgZS8eLFqXjx4lS7dm23eY0nJ+661SYlJVFMTAzFxMTQsWPH3JYbEBBAxYsX9xisCQ8Pp/z582M4NAAAAAAAAAAw5XQ66cqVKx6HArt8+TLduHHDq7LDwsLctlnINo0iRYpki4tN/RqE+eSTTyg2NpaCgoKoRo0a1KBBA2rQoAFVr16dbt68SYMGDaKmTZv6swq3TZkyhcaOHUuXLl2imjVr0oQJE+iRRx7JlGMDAABkpFy5clH58uWpfPnybvPJbrp2gjXR0dHkdDpvp3uSO3duW71rSpQo4XU3XQAAAAAAAADInuLi4myN4hEVFZWuYdfdtTPcacOu+31OmFOnTtGePXtuL//888/tyFa1atXot99+owoVKvizCrRw4ULq1q0bTZkyhRo3bkxTp06l//3vf3T48GEqV66c230xJwxkJswJAwBZJTU1laKjo21NWBcXF+dV2YULF/bYsyY8PJwKFy5MAQEBfnqEAAAAAAAAAGAmJSVFN4m9u+HAEhISvCq7WLFiHocCCw8Pp4IFC+bYETf8HoQxc+HCBUpJSaGKFStmyvEeeughqlevHn333Xe306pXr07t27enUaNGud1XBmHWrVtna0x/gPS4du0aVa1alQoWLJjVVQEAsJSQkECRkZG3l8uXL+uGR1PTU1NTbZcbFBR0ew4d9QoXeV9dz5s3rx8fIQAAAAAAAMCdTQhB169ft/zfrv5/v3Llildl58uXz/S/ulwvWbIklShRgooVK5ajpyOxO/JHlgRhMlNycjLlyZOHfv75Z3r22Wdvp7/99tu0d+9e2rRpky5/UlKSbnKf2NhYKlu2LH300UeUK1euTKs3AADAnc7pdNKtW7coPj5et8TFxbmkJSYmelV2SEgI5cuXz+OSN2/ebDH+KwAAAAAAAEBGSElJcflPbfafOyEhwavhwBwOh63/2fny5TOd//1uNGTIEFv5/DonTHZw5coVSktLc+nFUqJECdMx70eNGkXDhg3LrOoBAMD/sfffcXIc5534/6nqnrw5ISdGgGACcxApkiCVqCxRwT5ZpCU5hzufTz5/fec7+edz9tdBsr8OirZ0FpUoiTlTDGACSYABJEESOSw2T07dVb8/ene5i03Tsz3T3buf9+u1wu7sdPcDqlFTXU/VU7RkSSmRTCaRTCbR19c373sty0I+n5+3IznRmbQsC5VKBSMjIxgZGVkwjmQyOW/nsbW1FS0tLYjH40t26TMREREREREFl1IKhUJhzomLU7+mLiCoRTwen/UZ+OSvRCLBEuENsuSTMBNOHlTRWs860PL7v//7+J3f+Z3JnydWwtxwww0sR0YNx3JkRETz01ojl8vNKHs22/cnTpyAbdsoFAooFAoYGBiY99wTmwBOLJ+eupz65CXWYdsEkIiIiIiIiJpLaz25if3EM+rx48dnfX4dGBiAUqrmc8disTnLeJ/8Olet+G/JJ2F6enpgGMaMVS8DAwOzJlVisdisN6ZhGDDNJf+fi3xmGAYikUjN9QSJiJajWCyG7u5ubN26dd732baN4eHhOTcTnPo1OjqKSqWCQ4cO4dChQwvG0N7ePmMTwdm+ent7WQ6NiIiIiIhoCalUKtP2V5n6dfKG9m5Kbwsh0NfXN+8z5sSG9m1tbazkECJLPqsQjUZx4YUX4v7775+2J8z999+PD33oQz5GRkRERI1kGAb6+vrQ19eHc889d973lkolDAwMzOgwz9ahLpfLSKfTSKfTeP311+c9r5QSvb29MzrMs32xE01EREREROQPpdS0SXzzJVlqKYs9VWtr64LPgxOT+LgIYGlaFv+v/s7v/A4+85nP4KKLLsLll1+Of/mXf8GhQ4fwK7/yK36HRkRERAEQj8exfv16rF+/ft73aa2RyWQWnO3U398/uZx8Ynn57t27F4xhodlOE0vKuZyciIiIiIhoflprjI2NzUiqzPb9wMCAq03sTdOc97lt6vNbKpVq4N+SwmBZJGE++clPYnh4GH/0R3+E48eP4+yzz8Zdd92FDRs2+B0aERERhYgQAu3t7Whvb8eZZ54573sty8LQ0NCCK2v6+/uRyWRQKpVw4MABHDhwYME4Ojs7ayqH1tPTw40ViYiIiIhoyTh5n9D5EisnTpxApVJxdf6enp5p+6lMTaxM/b6zs5PPWlQzobXWfgcRZJlMBu3t7XjkkUewcuVKv8OhJW54eBhbtmxBZ2en36EQEVETFQqFOZe7n/zl5iHCMIxpGzPO99XS0sJyaERERERE5ItisbhgUmXi+0Kh4OrcHR0ds25af/Jrvb29iEQiDfob0nK2LFbCEBEREQVZMpnEpk2bsGnTpnnfN7GcfqG9a/r7+zE4OAjbtnHs2DEcO3asphimzvCamPm1YsUK9PX1Tfs5lUoxYUNERERERPOqVCoYGBioadVKJpNxde6WlpZZkyonf9/X14d4PN6gvyFRbZiEISIiIgoJIQQ6OzvR2dmJs846a973VqtVDA4OLrh3TX9/P3K5HAqFAvbt24d9+/YtGEcikZg3STP1587OTiZsiIiIiIiWiFKphIGBAZw4cWLGnxNfE88Zbjewj8ViCyZVJp4zWlpaGvQ3JPIekzBERERES1AkEsHq1auxevXqBd+by+VmLYc28RA19aGqUCigWCzWvH+NaZrzJmmm/tzT0wPTZPeUiIiIiKhZtNZIp9OzJlVm+9PtihXTNGct/TXb921tbZzARUsSn3KJiIiIlrmWlha0tLTg1FNPXfC9Ewmbk2e7nfzziRMnkE6nYVlWzSXRhBDo6elZMGkz8VosFvPir09EREREtKRYloWhoaF5EyoT3w8MDLjevD4SiUzrp0/9c6K0MTewJ3obkzBEREREVDM3CZtyuTzjIW+uxM3Q0BC01hgcHMTg4CBeeeWVBc/f3t4+58qa3t7eyT97e3v58EdEREREoVYoFGperTI8PAyttavzt7W1zZpUme3P9vZ2rlghcoFJGCIiIiJqiFgshnXr1mHdunULvnditt5CK2wmfrYsC+l0Gul0Gnv37l3w/IZhTK6ymUjMzPd9R0cHkzZERERE1DCFQmFyAtLE18DAwIzXBgcHceLECeTzeVfnl1Kip6enpqRKb28vEolEg/6mRMQkDBERERH5zjTNyZIFC9FaY3R0dN5EzdQH2UwmA9u2J39fCyZtiIiIiKhWWmvk8/kFkylTf1coFFxfJx6P15RU6evrQ3d3NwzDaMDflojcYhKGiIiIiEJFCIGuri50dXVhy5YtC76/XC5PrrKZ7cHYq6TNRFJmoYRNT08Py6MRERERBZjWGtlstqZkysRXqVRyfZ1oNDqtrzjX10TZ3ZaWFpYBIwohJmGIiIiIaEmLxWJYs2YN1qxZU9P7603a9Pf3o7+/v6ZrSCnR1dWF7u5u9PT0TPs6+bWJn7nahoiIiKg+hUIBQ0NDGB4envXPie+nJlXcblYPAIlEYtYkylyJltbWViZViJYBJmGIiIiIiKZoRtJGKTX5wP/666/XdB0p5WRCZq5Ezcmvtbe3M3FDRERES4bWekZCZb6kysSfxWKxruulUqkFEylTf59KpTz+GxPRUsAkDBERERHRIrhN2lQqFYyMjEwOEJw8UDDbz9lsFkqpyWROrQzDmDNxM/Fad3f3ZHm3rq4udHZ2IhKJ1Pufg4iIiKgmEyW/JvpF8yVVpv6uXC7Xdb1oNDqtPzRbH6m7u3tasoWb1RORF5iEISIiIiJqomg0ipUrV2LlypU1H1Mul10nbnK5HGzbxsDAAAYGBlzF2NraOi0xc/LXyYmbia9YLOb2PwcRERGFnG3bGBsbw8jIyJxfo6Ojs75u23Zd14zFYrMmUOZ7jfupEJFfmIQhIiIiIgq4WCyGVatWYdWqVTUfUy6XZyRpZkvcTB0IGRsbAwBks1lks1kcPHjQVZzJZHLe5M1siZzOzk4kk0kOihAREfmsXC7PmSyZL7Ey0X+oVzwen7XM6nxJFfYdiChMmIQhIiIiIlqCYrEYVq9ejdWrV9d8TC0zWYeHh2cdhFFKoVAooFAo4MiRI65ijUQi6OzsREdHx+TX1J/n+11HRwei0ajb/zxERERLjlIKmUwGY2Nj075GR0dnvDb19YlkSqFQWNT129ra5px80dnZOefrLPlFREsdkzBERERERATg7T1kuru7XR03MehTa9Jm6pdlWahWq3WVTZuQTCZrTticnNxpa2uDYRh1XZeIiMhLE3ukzJYwmS+ZMvG7TCYDrfWiYpBSzpkwmS+Z0tHRwT3liIjmwCQMEREREREtipRyMrFxyimn1HzcbINNJw8wTf355N9lMhkAmFyBc+zYsbrib2lpQVtbG9ra2tDe3j7tz1pfS6VSkFLWdX0iIgo3rTXK5TIymQzS6TQymcyM7xf6OZ1OY2xsDEqpRceTSCSmTUCYbVLCyV8TZULb2tr4eUZE5DEmYYiIiIiIyBdCiMmkxvr1610fb1nWtLIrbhI4o6OjKBaLAIBcLodcLld3Eufkv0utCZyWlha0trbO+DMajbLOPRFRE9i2PfkZkMvlkM1mkcvlXCVTJr6vVquexRWNRudMmsyXTOns7ER7eztisZhnsRAR0eIxCUNERERERKFkmuZkGZR6lMvlOQfZJr6v5TXbtqG1RjqdRjqdxuHDhxf995otOdPS0jJn4ma+P1OpFEuuEVHoaa1RKBSmJUsm/qz3+4lkvFeEEGhtbZ01KV/LzxMJFu6RQkS0tDAJQ0REREREy1IsFkNfXx/6+vrqPofWGsVi0XXiJpPJzBgQnBgMtCwLo6OjGB0d9eqvimQyOZmQSSaTc/453+/mew+TPESklEKxWEShUEA+n58sFVnv9xN/Tl2pstj9TuZiGAZaW1snk9dukidTv29paWEpLyIimmHJJ2H+z//5P7jzzjuxa9cuRKNRjI2N+R0SEREREREtEUKIycTEypUrF3Uuy7KQz+fnneFdy+8mvs9ms7BtG8Db++Y0SiwWmzVRk0gkkEgkEI/HEY/HJ78/+c9aX5v6Ow50Es1tYo+SUqmEYrE47c9avp/v93MlTbxeVTIXIcTkysCFVgrW+nuWgSQiokZa8kmYSqWCm266CZdffjm+9rWv+R0OERERERHRrEzTRHt7O9rb2z0538Qg7NQEzWyzzBf6c77fTcxKL5fLKJfLnq7eWUg0Gp2RoInFYohGo4hGo558P9/vI5EIIpEITNOc/Dr5Z8MwOLC7BNm2Dcuypn1Vq9Vp31cqlcmvcrlc88/1vHe2ZEmpVPL1v1E8Hp919dxCq+pO/j6ZTM5ImCQSCSZhiYgoVJZ8EuZLX/oSAOCb3/ymv4EQERERERE1kRBictVIT0+P5+fXWqNUKs2ZpMnn8wvOsq91Bv7En5ZlTV5/YiA6k8l4/nfz0nxJmoV+nnjNMAwYhgEp5bSv2V6b7/VafieEaFriSGsNpdSsX7Ztz/m7eo5ZKHEy12uzvadRJbEaRQgx56q0hVahnfz9RHJlvqQKkyRERETTLfkkjFsTM7gmTHToM5kM4vG4X2HRMhG2zjwRERERLV9TB3a7u7ubck3LsuZN6My3qsCL709elTB1oF4pNWfMU5NHtHRNrI4yDGPB1VRuf57vdwslVkzT5IosIiIiHzEJc5I//dM/nVw9M9X69evR2trqQ0S0nEzMViQiIiIioplM05wsSxQ0U1db1LPCYqGf3az4cPu7k19vFq21qxU+i33PXCuNvHiNKz+IiIhoLkKHcOr9//7f/3vWRMlUzz77LC666KLJn7/5zW/iP//n/4yxsbF5j5ttJcy6deuQTqfR1ta2qLiJiIiIiIiIiIiIiGj5COVKmN/4jd/Apz71qXnfs3HjxrrOHYvFEIvF6jqWiIiIiIiIiIiIiIhoQiiTMD09PQ3ZWJKIiIiIiIiIiIiIiMgroUzCuHHo0CGMjIzg0KFDsG0bu3btAgCcdtppNdURbm1tRTqd5n4wRERERERERERERETkSij3hHHj5ptvxre+9a0Zrz/88MO45pprmh8QEREREREREREREREtC0s+CUNEREREREREREREROQH6XcARERERERERERERERESxGTMERERERERERERERERA3AJAwREREREREREREREVEDMAlDRERERERERERERETUAEzCEBERERERERERERERNQCTMERERERERERERERERA3AJAwREREREREREREREVEDMAlDRERERERERERERETUAEzCEBERERERERERERERNQCTMERERERERERERERERA3AJAwREREREREREREREVEDMAlDRERERERERERERETUAEzCEBERERERERERERERNQCTMERERERERERERERERA3AJAwREREREREREREREVEDMAlDRERERERERERERETUAEzCEBERERERERERERERNQCTMERERERERERERERERA3AJAwREREREREREREREVEDMAlDRERERERERERERETUAEzCEBERERERERERERERNQCTMERERERERERERERERA3AJAwREREREREREREREVEDMAlDRERERERERERERETUAEzCEBERERERERERERERNQCTMERERERERERERERERA3AJAwREREREREREREREVEDMAlDRERERERERERERETUAEzCEBERERERERERERERNYDpdwDLnVYK9kg/rP6DsI4fhDV8HLpaAWwLMEyISBRG90pEVm2EuXIDjK6VEJK5MwoGVcyheuwAqscPwjq+H6qQg7aqAAARiUImWxFZvRHmqo2IrNoAGU/5HDGRQysb1uAx5/49th/WUD9QLUPbNoRpQkRiMPvWILJ6IyKrNsLoWQkh2PZSMKhCFtXjB2D1H0T1+AHoUsHpOwgBYUYgU+2T7a65cgNkLOF3yEQAAG3bsAaOoHpsPypH98Me7oeuVqGVBWFEIKIxRFasRWT1JkTWbILR1ce2lwLDzqVhHT/g9B36Dzptr1UBIJx+b2sHIqs2OX3flesho3G/QyYCAGjbgj18HPaJQ7AGDkFlhp1+g7IhzAgQicHsWQ2jbz2MvnWQbd0QQvgdNhEAwM6Monp03+S4gxpve4WQQCQKo60L0TWbEFlzCiIr10NEY36HTAQA0FYVleOHUD3yFsqH98EeG4SuVgHbBiIRyFgCkVXrEV17KqJrN8Ho6GHbu8QJrbX2O4jlqHr8AIrPP4Lq4b3A+KA1hAS0mvnmqa+bEUTWnYHEBdcgsmpj0+IlmqBKRZRefALFl5+ESo84L0oJqFnuXWDa/Ss7epA490rEz7mMD6bUdFprVA+/icLOh1A5uNdJdgNzt71T7+tIFLFTzkLy4usRWbmueUETjVPFPEovPo7SK89A5cacF2tse43OPsTPvRLxsy6BiESbEzDROK01KgdeQ+GZB1E58qbz4AkBCLFg2yuiMcROOxfJS7Yj0remuYETAVD5LIq7HkXplWeh8mnnxTnb3qn3tYDRsxKJ869CfMvFECbnPlJzaa1gHXod5ZefgH3i0OR9CQFgtiGgqf3haByRjVsRO+cdMDp6mxk2EQDAzo6isPMRp+0tZJ0X52p7JwattQaEgNm3FskL34n4losgDKN5QRPBmWhfen0Xck8/iOqxA849O/UePdnUfm88icTWi9By6fUwu9j2LkVMwjSR1grVA6+h+NxDsPoPzj3wt5Dx48yVG5C48DpENm7mLEFqODs3huLzj6K4+3Fn8HoRTYeIxJDYdhUS518NmWr1MEqimbRSKL/5IgpP3Q9r4Mii297I2tOQvOwGRDecyZkq1HB2ZgTFF36G0stPAcpeXNsbSyBx/tWIn3slZIIrE6mxtLJReu0FFJ66D9bQ8UW3vdGNm5G67F2IrDuNbS81nDU6iOJzD6P0yjPOfbuYtjeRQvLCaxE/9wquTKSG07aF6lsvorz7Z1CZ4fHEYB3378SYw/rNiJ17NcwV670Plugk1tBx5J95AKVXdjov1NNvcDKNkKk2JC/ZjsR5V0JydQw1mLaqKOx+Crkd98JOL7bt1Yhv2YaWK96N6Cq2vUsJkzBNYo8NInvPt2EPHav/H+PJxs9jdK9C63s+A6OTmVLynlYKhWceQOGpewFob+5dwLl/hUTqHTciccE1HFChhrAGjyF9+zdgjwx42PaOP5Su2oD2998Mo71r8eckOolWNgpP3Yvicw8BmGPFQD2EAKSB1NUfQvzsy9n2UkNUjx/C2E+/DrWYh9CTTSTC152O9vd/FkZr++LPSXQSbVnIPfZTlHY9Vn/icFYCiETQet3HET/rYo/OSTSd1X8AhYe/B13IeHfSiX7v2jOQeOfHWF6aGkJXK8g8+AOUXnzS47YXELE42t7z84ifeb5n5ySaqrTvVYz9+OtQhZx3Jx1fIRPfvA0d7/9PkPGkd+cm3zAJ0wTlvS8g99D3nfILHn6YTBISMAy0XHsTYmdu8/78tGypfBaZu/4N1SNvNvQ6kY1b0Paen+fMbPKM1hqll59C9v7vO4N/DWp7RSSCtvf+J8ROP9f789OyZWdHkb37351Vsw0UPe1ctGz/JGSM5SHJG1prFJ//GbIP3Tb+QoPa3lgc7R+4GbFNW7w/Py1b9tgQ0nd8A/bgcQCNe0SOnXUxWq/7GESEM7PJG1orlF98DOWdD8xdbmyxhICIp5C87lMwV270/vy0bFlDxzH246/CHh1szL07LrHtarRe+2FnHyQiD2hlI/uzO5B74h7vJh2dTAjI1g50ffyXEF290fvzU1MxCdNA2qoi/+iPUd7zTNOuGTvrYqSu/gg/WGjRKofeQObOb0GXi40ZRJlKSMhkC9refzMiqzc19lq05KlKCdn7vofya8817ZqJC96Jlnd+EMJgzXdanMr+Pcje+x1nw9yGt70CsqUDbTd+FmYf9zqixVGlAtJ3fRuVN19q/MXGH3RTl70LqXe8D0Ky5jstTnnvLmTu+w/AsprS9hodPWh7/y0we1Y19lq05KliDoVHvg/72FuNv9h42xu78HrEzruaJdFp0YovPYXMfbc6e2I0uu2FgNm7Cu0f/jxMVpGhRbIzYxj50b+iemRf4y8mBACBths+htTF17KSQYgxCdMg2qoi85N/hdV/oKHZ/BmEgLlyA9o++AVuvkt1K+/dhcyd/9a4mVSzmfhg+dDnObOV6qbKJYx978uwBo42t+2FQHTjmWj/yBeYiKG6lfY8g9wDt2KilnVTCAkIgfYP/zIia09tzjVpyVHFPEa+8zewRwea3PYCsTPOR/sHb2YihupWfOFR5B65rbkXFRIwTHTc9OuIrGS9d6qPKmSRu/2fofPppre9kdO3IXHVR5iIobrlnrwX+cfuaO5FhYSIRtH1c/8FZu/q5l6blgxrbBhD3/gLp/xYw5OH06UuuRZtN9zERExI8ROzAbRtIXvnN5ufgAEArWH1H0Tmzm9C21Zzr01LQnn/HmTu+jd4uv9LLcZLRmV++jVUDje2/BktTbpawdgP/8mHBAwAaFQOvI707d+EVs3tiNHSUH5jN3IPfG/8p2a2vc7Mw/RP/xXV/kPNuy4tGapcxOitX254GZG5lPfuQubu/wvd5IdgWhqKLz/d/AQM4LS9dhXpH/4jrKFjzb8+hZ4q5ZG/86vQ+YwvbW/1jRdQeuoucE4v1aOw85HmJ2AAQCvoSgUj3/17WCMDzb8+hZ6dHcPQv/21LwkYAMg/8zCyj/y06dclbzAJ4zGtNfKP/AjVw2/40hkaDwLWkTeRe/iH7BSRK9bAUWRu/4Z/9y7gJGJ+8lV2isgVrRUyd38b1vEDPt6/GpU3X0LuZz/x6foUVtXjB5C999toavJlKq0B20Lmp/8KOzPiTwwUSloppH/ydViDx3x5EJ1QeuUZ5J+4x7frUzhVDr4+vvrQJ1pDV6tI/+ifofIebqROS562LRTu/w5UdtTXtrey5ylUXtnh2/UpnEp7dyP70A/9C0Ar6FIRo9//R6hSwb84KHRUtYLh7/4DVDbta9ube+Ie5F943LfrU/2YhPFY6cUnUH71Wfg2kDJJo/LaTpR2P+ZzHBQWqphD+sf/4tRj9ZPW0FYV6dv+Gapc9DcWCo3CU/ejvHe3vwnEccXnHkHxpaf8DoNCws6OIXP71/y/d7WGLpeQ+clXoa2qv7FQaOR+9lNUDrzm//0LIL/jbpRee8HvMCgk7LFBpG//egAe2RRUIYf0T74Kbds+B0NhUdxxO+yBw74OAk4oPX03qkf2+h0GhUR18BjSt3/T7zCctjczirHbvsqVtFQTrTXGfvqt8aob/t8z6bv+A+VDrCATNkzCeMjOjKKww4cllfMo7LiLs1qpJrnH7oAqZAPxgQKtoLKjKDx1r9+RUAhYw/3I77jb7zCmyT70Q85qpZrkH/0JdLkUiEFsaAV7dACFnQ/5HQmFQPX4IRSefdDvMKbJ3PddzmqlBWmtkX3g+4Blwf8sDACtYJ04jCInz1ENrGP7UN37HAJx7wIABIqP3QZtVfwOhAJOa4XMPf/X/0mfE7RC9fAbKL30tN+RUAiU33gRpVefD8YzGwBAY+z2f+M2FCHDJIyH8o/9BFBB+Qc5TmsnLqJ5VPsPovzK0wH6QAGgNYovPApr6LjfkVCATQ6kIGAb01kWso+yVivNr3JoLypvvRiM5PckjeLOB2Gnh/0OhAJMa4XMfd91NhcPEF0uIvf4XX6HQQFXeeul8dLRQWp7gfwTd8HOpf0OgwJMKxvFHT8FArUhs4Yu5FDe/ajfgVDAlV5+Btbxg4Fre7MP3wZVzPsdBgWYrlYwdvd3g9X2ag17dBD5Zzh5LkyC9eQUYpVDr6O6/5XAfaBAK1T370Hl4Gt+R0IBpZVyBrEDNpDiEMg++H3ubURzKu/dherhNwPZ9pZfeRbVo/v9joQCStsWcg//MFid+QlaI/czHzaqptAovfQ0rBPBKIUzjdYoPv8oqgNH/I6EAkpXK8g99EMEbvIGANg28o/d7ncUFGCVV56CSg8Fa+IcAECjvPtR2BlO4KDZqVIB2YeD2bfUlRJyjwWrog0FS3bHfeP7wASt7QUyP7sDdmbM7zCoRkEcdQ0dbVvIP/KjYA6kAIAQyP/sNi5To1mVXnka9mAw6lrOoBWsY/tR3ssa7zSTrpSDO5ACAEIic/+t0EFZck+BUtz9WEAHUuBM4DjwKir79/gdCQVQkAdSAABCIHPf9ziBg2ZVePZBqHwWwSnlNIVWKL/2HCpH3vI7EgogVcii9PwDfocxr9KTHMim2eWeuAs6qPu9ao3iridQPXHY70gogKzRIeSeuAeB7DcAgG0j/cAP/I6CasQkjAcq+/dAZUaCOZACAFpDZUZQ2feK35FQwGitUXgm2J15AKGIkZqv9PrzwR1IAZz9NYaOo3Lwdb8joYDRykZx58N+hzE/Ibg3DM2q+NJTzj5GQTU+gaN67IDfkVDAaKuCwvOPILD9BgAQEkW2vTSLymvPAEGeVKkVrCNvwB4d8DsSChhVKqD4wuPBHS8DnInLz7LtpZnyOx9BoPsNWqG05zlYae4FHgZMwnig/OqzAS3lNIUQKL/2rN9RUMBYxw84CcSAs4eOwxo65ncYFDDFl54O7grECUKi9MozfkdBAVM99AZ0KeC1p7WGdXw/7BB8RlBzFV98CoF+GAXY9tKsym+9AlQDvnm4VqgceBWqkPM7EgoQrTUqe4O0IfQchED1TVYwoOlKr78AKNvvMOanFcqv74IK8iQTajpt2yi8+BQQ9MoWQjhjIxR4Ac8cBJ8qZFE99HowSzlNpTWqh/ZCFbJ+R0IBUtoTggQi4Aym7GESkd5mjw3DOrY/+A+jWqH8xovs0NM0pTBM3gDGJ3A853cUFCDVgSOwh4/7HcbCtEJpz7PQVtXvSChASq+EYPIGAGigxLaXprBPHITOp/0OY2HjySKW4qWpii8+FY6217ZQ3rvL7ygoQMr79kAXAz5xDgC0RmHXDpbiDYEQjAAEW3nvC8EfBJyggfLrz/sdBQWEtirOA17QE4iAM5jyyrPQQZ9BQ01T2vNMODrzwHiHnrMCyaHKRVTeeikkba9G6ZWn2aGnSaWXnwlHAhHOvmHlN1/2OwwKCDuXRvXg3pA8tzltL9GEyhsvhKftLeVhHeO+RuSwRgdhHT8QjrZXCBRfesrvKChACrufDE3ba48NoXp0v99h0ALCcTcFWLhmiGqUXw9TvNRIlf2vBb8kwxS6lEf18Jt+h0EBUXzl2XB05gFACJRe2el3FBQQlbdeCn5JhilUdhQWNyolOOVwiq88E44EIuDsrcFVtDQubLOb7aHjsEZO+B0GBYBWNqr7XgxV21t960W/o6CAKL36XGgGsaE1qkfegp0d8zsSCgBVLqG0d3d42l4pnTESCrSQtIbBpG0rHCUZprCH+6GDvKEfNU31xCFAhqgJEMKJmZY9VS5CpYf9DqN2WqPaf5CrCQgAnIRGmNpeABbbXgKgsmPhKMkwQStUj3FGIDmsE4fDs4J2nNXPtpcAlR4CwlRaUSvYA7x3yVENyyqYKar9nHxEgDVwNPh7wUylFCpH9vkdBS0gXKMAAWOPDoTuAwVaO3HTsmcNhuxDBYA1eMzvECgAQnkfWFUobnBOCGHbK2XoJpxQY1iDR/0OwTVdyEGFKXFEDWOdOBye2awAICWsIba9BNgj/X6H4JrKjnBPLgIAWCeOAAjRmJmQoezvkPeqA+G7D6qDx6HD1NdZhky/AwizRgxK7HjzML7y4LPYfegETmTy+LfPfwjvO+90T69hDx2H2bPa03NS+Fgef6g8+dYR/MPDz2H3kQGcyOTxzVvej/edc5p3F9Aa1sAR785HodWIJMyT+47iHx55Di8eHcSJTB7f+OyNeN/Zp3p6DWvwGIz2bk/PSeGitfZ8UG3Hm0fwDw/txO7DTr/hW5/7IN53rodtr1KhfAgh71mDx5yVBB5OQHpy31H846Mv4MUjAziRLeAbv/A+vHfrKZ6dH3Dijq73ti9N4aJtC/bYoKfnbHi/VykOBBIAQI2ccMo5eTSw9sTeQ/j7e57E7oP96E/n8O1f/zjev+1MT849SWuosUEYHHNY1lS5CJVLe3rOxvcbNNteAjCehJGGZ2WknzpwDP/f47vx0rFBnMgW8LVPvxvvOWuTJ+eeZFVhjw7D7Or19rzkGa6EWQRruN/zkiKFchVnr+nDn9+03dPzTpISFme0LnuqVIAuZD09Z6FSxdbVvfjTj17r6XmnUulhzqoi2EPHvW97J+7fD7/T0/NOEjKcK3jIUyo7Clje7sVVqFSxdU0v/uzj13l63qnsYc6qookEuLflnAoVC1tX9eBPGtX2QrDtpYZUL2hGv5cDgQSMr4Tx8DO4UK7gnHUr8Bc/927PzjkbezR8K3jIW434/G14v0FrliMjAONl6Tzcx7NQsXDWym788Y3v8Oycs6my7xBoXAmzCPbwCc9Lily/9RRc7/EMwGmUgs1NHpe9RtwD27dswvYtHmfyT6Y17LFBruRa5qqDxzxve7dv3ojtmzd6es7ptJO4p2WtEW3v9WdtwvVez6I6mW1BZcdgtHU19joUaNWBo56Xc9q+eQO2b97g6TmnkYJtL8EaDme/VxfzUKUCZDzZ0OtQsHldjuyGc07DDV6u2pqNlLBHvV19RuFjDXn/+dvwfgMAlR6Bti0Ig8Oly5nX1QuuO2M9rjtjvafnnEFKWIPHgTPPb+x1qG5cCbMIulL0O4S66HI44ybv6ErZ7xDqFubYyRu6UvI7BPe05r1Lob4HdDW8sZM3wtv2hjBu8hTbXgoz7fEK2qbQAHjvLnu6UnJK6YWOZvUNgq6GsO2FCHWfZzkIY4sYGGFtmMMaN3lH2+G9B7Rl+R0C+SysbVgoH6LJU9oOcfsV5tjJE6H8/NU6nHGTt+wqvC6l1yy8fymsn79ahTNu8pBthbXpBdj2LmtaKc8rbzRLWMdKlgsmYRbD49rCzRPWuMkzob134XkpFAqhsN6/YY2bPBTee0Dz/qWw3r/sNyx7WuvwDgSy7aWw4r277IW57xjm2MkLIf7/n/duoDEJswjCjPgdQl2EEc64yUMhvgfC+u+OvCPMcNbn5b1LYa4tHebYyRuhvAeEYNtLzr0b0kGJsPZ5yEPS8DsC90RIPzPIU07b63cU9WHbu7wJaQAinLM32O8NNiZhFiMS9TuC+oQ1bvJMqBvmMMdOnhBmGNswEdK4yVNMgFOIhfIeEIL9BgrnvTsuzLGTN0KbzAhxn4e8ISKR0K5GZdtLCGvby3s30EJ6VwWD0dEL6+hbntYKzJUr2D84NvnzweE0XjoygM5kHGu72hZ/ASlhdPYu/jwUakZnj+fnzJUr2D80NvnzoZEMXjo6fu92enDvjjM6vI+dwsXsXglr4Kinnfp8uYL9Q+nJnw+NZPDy0UF0JONY29m6+AtIwbaXGtJ+ndxvOOR1vwEAhIBs7fTmXBRaRvdK2GPD8HJaa75cwf7hk9reY4PoSHjU9moNk23vsteIz9+m9HsjUYhEizfnotCS7T2wS3nPzpcrVbBvYGTy54ODY3jxUD86Uwms62735iJKQbZ1e3MuCi2js8/zcza83wBAJluZhCGYnb2wBo95dr58uYr9I1Pu3bEMXj4+hM5EDGs6vLl3oWyYXd7/uyPvMAmzCGb3KpQ93qxp16F+fPjvvzf58/+87REAwKcu2YqvfOa9i7+AUjC7Vy3+PBRqMtUOEY1DV0qenXP34RP4yD/+cPLnP/zJowCAT168BV/+9Ls9uYZMtUHGEp6ci8LL7F0NvLrT03PuOjKAj/7TjyZ//l+3PwYA+OSFW/D3n7ph8RdQyombljWjsxeQ0tPJG7sPncCHv/L9yZ//549/BgD45CVn4Ss//x5PrmF09IZ3Ji55JtK3BpX9ewDlXRJm15EBfOxffjz58/+643EAwCcu3Iy//8T1i7+A1jB71yz+PBRqjXj2aUa/1+xZBRHScijkHaN7NezBw571HV44cBwf+KtvT/78B997AADw6SvOxf/3ix/w5BoAYHSt8OxcFE6NePZpeL8BgLlinSfnoXCLrFoPa7jfs7Z397EB3PT12yd//tLdTwIAbtp2Bv72o9d5cg0AiKxgvzfI+ES9CEb3Ss/P+Y7T12Poy7/r+XmnMpiEWfaEEDB6VsE6tt+zc1552joM/L//2bPzzcbo4wcKAUbPKs9ru1956lqc+Mvf8vScJ2MShoQ0YHT2wR7u9+ycV56+DoN/9zuenW8GIWH2rW3c+Sk0zN7VniYQAaft7f/z3/D0nCdj20siGoNs6YDKjXl2zob3e6WE2cu2l8aTGR62vVdt3oCxr/6BZ+ebi9Hl/VgJhYtMtUHEEtDlomfnbHi/QRowOeZAcCYfFT0cc7hi0xoc/f/9imfnm5WQMLuZAA8y7gmzCGYDkjDN0IjkEYVPpG+tMyM7LKREhLNZCSEdUJOyIUvyKXzMvrWACFHbC+0kPmnZC2PbK6IxyNYOv8OgADBXrAUQolUlSsFk20sAZAiTGSLZChGN+x0G+UwIEb6EhrJD2d8h75l9azyf+NloZherFwRdmEYBAkdE46GrkS5bOyDZISIARu8az2e0NpRSLClCAMZnVcWTfofhitG1EsIw/A6DAsDsWQMv99RoOK3HY6blzujsDdkmpQJm31qWcyIAcPqQIbsXQjd4SQ1hdPSF694VAgb7DTQusmJduCZ+Aois4CpECmFZLyERWb3R7yhoAeFqDQMoevr54ekUCYno6dv8joICInbq1nDNxjZMRDZu9jsKCgAhBOKbLwjP/SsE4lsu8DsKCojoaeeEalaViMYRWXuq32FQAAhpIHbGeeFpe6GdzwoiALHTzwN0eCYfiVQbzJXr/Q6DAkBEojDXnh6eMQetEdl0tt9RUEDEztwWqomfRmcf9zMiAICRanOegULT9ioktnC8N+jC8hQVWPEtF4VnMEUrxDZf6HcUFBAy0YLoprPCMZgiJGJnnM9VXDQpvvWS8AymaO18VhABMFo7Ya45JRwdeiER23whl7XTpMQ5l4Wn7RUS8S3s95LD7FkFIywlZoRAYuslEGHoo1NTRE+/MDxjDkYEkQ1n+R0FBURk9UbI9m6/w6iNEEicezlX0NKk1PlXhKbtFfEEYqcyAR507NktktHZ55R1CkGNYaNnNUxm9WmK0Axka4X4WRf7HQUFiLlyPWRHj99hLEwIRNadBqMtXKUrqbHiZ10Sjg69VogxgUhTRNefAZls9TuMhQmJ2KlnQyZSfkdCAZLYeqnfIdRGa8S2sN9LbzPXnwlEYn6HsTAhETnlbIhI1O9IKCCEEM4EjjAkNjQQP4v9XnpbfMu2cJTilRLJcy5j+fMQYBLGA/GzLkEY6rvHzrrE7xAoYKKbtkDEgr+6RKTaEFl3mt9hUICEpkOvNeJnX+Z3FBQwsVPPDUWHXnb0wOxb53cYFCBCSsTPuSz4q2i1QvyckAy4U9PEQlHKVMBcsQ5mV5/fgVCACMNE9NQQlIPUiuXPaYbE1hBMPhIC0Q2nw2jt8DsSChAZSziJmKC3vUohcS7HHMIg4HdSOERPPx8i6DNTIjHEzmCHiKYThon4ue8I/EB28vyrWJKBZohvvQSQwZ7tIRIpxE8/1+8wKGBENOZMjAh425s47yqWZKAZEuddEewF4EJAtnYgdgrL4dB0MtHi7E8Q6D6lRmLb1X4HQQEU3RLwCgZCQLb3wli50e9IKGCM9i5Eg74frdZIXHCN31FQALVcdE3A216JyKoNiKzkxLkwCHArGB4ynkTyivf5Hca8Upe/FzKe9DsMCqDkJdsh4gEt1yEEZGsnEhe80+9IKICMlnakrniP32HMq/Xaj0BEA56kJ1+kLntPcCdwCAGjsw/xcy73OxIKILOjB8lLtgc3iag1Wq//BPcyolmlrno/ENRyHULCXLneWbFDdBKjayUimwM8gUNrJK78ACfO0axar/tYcCdwCInohjMRO437adBM0bWnIHH2xcFNImqF9vd+mhPnQiKgd1H4xLZeBqN7ZfD+YQoBo2sFYiyHQ3OQ0Tharv2I32HMTmu0XPcxCDPidyQUUMkLr3U2ewxap0NImKs3cj8NmpNMpJC88v1+hzE7rdFy3cchAr7SjPzTctm7x/eGCV7bG924mQMpNCejpQOpywM6gUNrtGy/iYPYNKf4RdcHc28YIWFuOhvmqlP8joQCyuzsRerSG4L3zDau9YZPcBCb5tS2/WMQZgAn9wiJ5LZ3ILp6g9+RUI3Yw/OIkBKpaz4WvGVqWiN17cc4kELzip2xDebqTcFKIgqJ6KazEDtlq9+RUIAJ00Tr9TcFr87wxExsduZpHvGtl8LoWR2sB1IhET1jGyJrTvU7EgowEY2hdfvHEbg9EQXQev1NbHtpXoltV0N29ASs7RWIn3sFIn1r/Y6EAkzGkkhcEsAkopRIXBrsyiDkv9Rl74JMtSFQEziEQPKS7dyHi+ZltLaj9Z0f8DuMGUQ0irZrP+R3GORCgEZcwy+yamOwarwLgdiWixFZtcnvSCjghBBo3X5TcO5dADAMtFwT0BU6FCixTVsQO+P8QN2/iQvfiUjfGr/DoIATUqLlupv8DuNtQkBEoki9I3gPGRQ8sTPPR3Tj5kBN4Ehd/m4OpNCChGGi9fpPBGcChxAQ8RRSV77X70goBCJnXACjd22g2t74RROD60RzE5EoWm/4JAIzgUNIyJYOpC5/t9+RUAikLr4WZu/qQLW97TfcBJls8TsMciE4d88Skbr6w8HoFAkJo3cNUu/kIDbVxuxZhdb3/LzfYYwTaHv/zTA6evwOhEKi9T0/B6NrRSDa3si609By9Qf9jYNCI7JyfaASMW3v/0UYLe1+h0EhIIRA+wdvgdHWGYC2VyB66tmB3yeMgiO67nSkrg7I7FEh0f7hL0AGdY9GChQhJJLX/7yzp6fvE5AEIqeeh+hW7iFHtYmffg5SVwQh4SwAw0TnTb8Kyf07qQbCMND1yV+DiCcC0PYCyQuvRvL8K/wOg1xiEsZjwoyg7f23ODNB/HogFRIy1Ya2G2/hXhrkSvzMbUhe4f9S8tQ1H0Zs01l+h0EhIqMxdHzslyESKV/bXqOjG+0f+hxEUDf9pUCKb70UiQuv9TsMtGz/BCJrWYaMaifjSXTc9GsQ0Zivba/ZsxrtH7iZe2mQK4kL3on4Of4PHre99z8hsnK932FQiMhkK1Lv/gXAiPg3GCgEjL51SLzjwywBSa6krnwPYlsuhK9lyQTQ8eHPwexZ5V8MFDpmRze6P/lrgDR8bXtjp2xB+7s+4c/1aVH4pNIAMtmKto/+qj+DgUJCJFJo++ivckkw1SV5yfW+DgYmr3gvktuu9u36FF5GWxc6P/mbELG4L22vbG1Hxyd/EzKebO61aUlIXnEjYmf7NxiYuvpDiJ91iW/Xp/Ayu/rQ+anfgoj4MBgoJIzOHnR+8jc4k5VcE0Kg5bqPI3bmNt9iaH3Xp5ySqkQuGd2rkHrPzf4MBgoB2bkSqXf/Aid9kmtCSLS/7zOInrrVp4FsgfYP3ILYKZz0Se5F157iJGKE8KXtjaw5BZ03/QonfYaU0DooxXCXHjs9jOyd34Q9cgLNqXspYHT1ofXGm2G0s4wT1U9rjcIzD6Cw425ngkqjm4nxD6/U1R9EYts7OZuKFsUa7kf6x1+FPTbUtHrv5op1aP/Q55yyPER10lqhsONuFJ97COONb2MvKCQgBFqu+QjiPiaAaGmonjiMsdv+FSo71rS2N7L2VLR/6BdhcOIRLYJWNvI/+wmKux5rzgWFBKRE67s+hfjmC5tzTVqyrBOHUHjw/0KX8s3r9645DYlrPwEZ48Qjqp+2qsjc/z2UXnqqORcUcrxyzWcQP/285lyTlqzy/tcw8qOvQpeKgFZNuWb8zPPR8cHPQsbiTbkeeY9JmAbTVhX5x29H+eUnG36t2NmXI/WOD3A2CnmmcuRNZO74FnSp0LgPFiGc8nnvvwWRVRsacw1adnSljMyD30f5lWcbeBVnkDx50XVIXfV+zkYhz1QOvIbsvd+GrpQb2/a2dqHtxpudTSaJPKDKRWTu/g7Ke3c37iJCAFojdcV7kbriPRCSC/vJG+U3XkTm3u8AltXQttfo7EPbB26B2bWiMdegZUeV8ij+7AewjrzRuIuMT5KLX/QuRM+5kuUfyTPFV55F5t7/AGy7gYPZAuaKNWj/0Odgct9Z8oidTWP0tq+hcqiRba8EBND+rpuQvJATlsOOSZgmKb/5InIP3ArYVW9nqAhnQ7GW7Z9EjNl8agBVyCFz97+jemjv5MCHJ8bPFT1lK1rf/XMs4UQNUXz5GWTvvxVQyttOvRAQkRjabvwFxE7d6t15icbZuTSyd/8brOMHPG57JaAVomdsQ8t1H4eMciYVeUtrjeKux5F98IfOfet12xtPouODtyC64Uzvzks0zk4PI33HN2EPHIGnKxLH297Y2Zeh9dqPQJhRb85LNE5rhcrLO1B69l4AwvPBbJFoRXL7p2Gu4P5F5D1r+ATGfvxV2MP93p54vO1NXngNWq75EIRhent+Wva0Usg9fheyj945eb95yWjvQufHfxnRVWx7lwImYZpI5TMo7n4cpRefAKwqFtepF4AZQfzcK5A47yru/0INpbVC5a1XUHjmflgnDi/uw2X8WHP1JiQv3o7oprOYzaeGsjOjKDz3MIq7dwC2tejBbBGNI3HBO5G84GrIZItHURLNpJVC5c3dKDz7IOzh4560vZG1pyFx0XZE1p3OtpcayhobQuGZB1F88Unnvl1s2xtPInnRtUhuuwoykfIoSqKZtG2j/PrzKDzzAOzRgcUlwifa3o1bnH7v2lO9DZboJPbYIMovPobqm7sAaA/a3hRi57wD0c0XQ3DiBjWQtqoovvIsCk/dBzs97EnbGzv9XKQuuwGRVRs9jZXoZNWBo8jtuBfFV3ZiUYnw8ftetrSj5Yp3IXn+ldz3cAlhEsYHqlxE+ZWnUXzhEehi3nlxoYGVKb8XiRQS296J2NbLIGOJJkRM5NBao3p0HwrPPojqgVedF6V0VhnMZ8p7oqeejeTF29kRoqZTxTyKux5H4blHnBJ7GN9Mr8a2V6bakLxkO+LnXM6OEDWV1hrVw2+guPNBVI+86bxYS9s7ef8KRE8/D8kLr4XZt7bh8RJNpfJZFJ7/GQrP/Qy6UhovabNA2zvl/pZtnUhdegMSZ18KEeHqAWoerTUq+/eg8OyDsI7td1500/YKgdjmC5G86DqYPasaHzDRFCqfQfmVHai8+rQzAXRi4sV8wz9T+71tXYid905ETj2PqweoqbRSKL/5IvJP3udMAAUAaQDKnueoKc91UiJ+9mVIXbIdZldfU2ImmmCNDSP/zIPIP/eYMwG0lrZ3St/C7FmJlivfi8RZF7Lc+RLEJIyPtLJhD/fD6j+Iav9BWEf3QeXGZrxPtnTAXL0JkZUbYK7aCKN7JYTkP0byl8pnUe0/gOqxA6ge3Qdr4IjzITOVYSKycj0ia05BZO0mGL3rYCRb/QmYaJy2bViDRyfv3erRfVC59Iz3ybYuRNedhsiG02H2rILZs4Z7D5DvVD6D6vEDsI4fQPXYfliDR2c+lJoRp8+wehMiq9bD6NsAgysHyGfaqsIaOIrK0X2oHtuP6uG3oArZGe8zOnoRWXcqohs3j7e9K7n3APnOzo6iemy87T26D9bgsZmJxEgUkVUbEVm9CZF1p8LsXcsJc+Q7bVVhDx+DPXAY1olDsE8cGJ+MNJ1s74GxciPMvnUw+tZDtnez7SVfaa2hMiOoHN3vPLcdeRPW4PEZba+IxhFZs8kZc9hwGiI9a7lxOflOVSuoHjuIytF9qBzZh8qhN2e2vULA7F6J6PrTEDvtLJjdq2B29bFawRLGJEzAaNuCtqrOYLZhQpgRzjyhUNBaAVYVulp1JqKYUcA0IYSE1hp2/5sQyXbItl5+qFDgaMuCtipO22tGprW9dm4UqpCG2bUGwoz4HCnRdNPbXuHco1Pb3qOvQrT2wGjnTEAKHm1VnS/bctpdMzo568/Oj0GV8jA7VrAvTIGj1XjbO77CQEQigBGBEAJaKVhDhyBbOmEk2/0OlWgarbXT37UtaGU77asZ4SRPCgWtlNPuViuAlOP93vG217ZgjRyD0dIFmWDJaAqWibZXVyvQtg0RiUJE3m57rewItFWF2d7LiZ9LGJ9oAkYYJh80KZSEkEAkBhGZpUyTbQFaQedHoaUB0drd/ACJ5iFME8Kcve3VVgVQNqzR4zC7VrONpkCZt+21ygA0dHYQyjAhW7qaHh/RfMR40ns2k21vetBJxPCBlAJESAlEYxCzlCfVVgUAoHKjENKAjHMwkIJDCGdvWZgRcFochY2Q0ml3Z217qwAAOzcCSAkZSzY7PKI5TbS9c/d7q9B2FVZ2GGZbDycuL1F8miGihtPV0uT3KjsEVZhZ+okoqHS17HxjV2GP9juzX4lCQFemtL1jx9n2UqhMDKbArsLODDqrvohCYCIJAwB2ZgiqXPQxGiKi5WF62zsMNaUfTBRkWmto2+n36mrZWRXDolVLEpMwRNR4Vnnaj2qsH6qU8ykYotpprYDxDhEAaKsMe6yfnSIKhakJcABQI0ehSnmfoiGqnVb2tL2OdLUMOzPMtpdCYepAIADYmQGoanmOdxMRkRf0lGc2QDsTOE5qj4mCaPq9C+hKEXZ+jP3eJYhJGCJqOD3Lg6caOcbBQAq82TruulJkIobCoXryDEANNXwIusy2l4JtchXM1NcqRdhZJmIoBE7uO2gNe6yfiRgiogaa8dymNayxASZiKPBm6/eqUh52Ps1+7xLDJAwRNdxsSRhAc1Y2BV919k67LheYiKHAO3kljPOigj3ERAwF21wDJrpcYCKGAk1rPetgipOIOTFHn5iIiBbDqV5gzfILNZ6ImaVdJgqIue5PVcrBLjARs5QwCUNEDaW1nlbO6aTfMhFDgXby0uBpv2MihgLs5HJOJ/2SiRgKttkGUsYxEUOBpmwAc9ybWsFiIoaIyHvz9Bsm214mYiig9Dz3ryoyEbOUMAlDRI01zyC2g4kYCq6FOutOIuYEO0UUPAuVXphMxBSaEw+RC/MlwAEmYii4Frp3mYghIvLefIPYzhuYiKHg0mr++5eJmKWDSRgiaqjaarCOJ2I4K5sCZsHBFAC6nGcihgJHWzUM8GkFe+ggEzEUOAsOpoCJGAqmWvoNTMQQEXmrln4DEzEURE7lmIXvXycRk2G/N+SYhCGixqp5IzwNNcxEDAWH1hqosZPORAwFTq1tLxMxFDBa67lL6Z38XiZiKGisGgYCASZiiIg8VFMCHHDa3jQTMRQgNfZ5AUAVs0zEhByTMETUUO46OEzEUIDMV9d9FkzEUJDUtgpx4s1MxFCA1DqQMs5JxIyw7aVAqHkgEJiSiHHRXhMR0Uy1rISZoJiIoeCoaRXXFEzEhBuTMETUWLbbB0uWJqNgqKdjzkQMBYXrQT0mYigg3D6MAuNtLxMxFACu71+tYI31MxFDRLQIrttepWClB5iIId/V0+9lIia8mIQhooaqq2OjxxMxJSZiyEcuZ2NPYCKGAsHNSpgJk4kYtr3kn3oeRgEmYsh/Tl33evq9E4kYliYjInJLa+WqpNMkZTMRQ76rt9/LREw4MQlDRA2jtap7INtJxByBKma8DYqoRq7KOZ18bDkPe/Q4tFIeRkRUG21bgK7jYRRwEjGDB6GKWW+DIqqRq3JOJx9bzsPODDr9D6JmU/UNpACYTMSoStG7eIiIloM6B7EBOImYsRNQTIKTTxbT71XFLOzcKBMxIcIkDBE1jgezStTocaj8qAfBELmzmA4RAOhKEdbI0bpntxDVbREJRIeGGj7Etpf8scg2U1dKsMcGmQSnptPWIj/vtYY9doIrwYmIXFj0s5ZWsMcGoMpMglPzLfb+VeUCrOwwEzEhwSQMETXMYlYSTKXSA7AzQ/xgoabyZGm6VYE1cozL3KmpPGt7R49BZYc8ORdRrbxIXGur7Gx4ziQ4NdFiJ29MsDODsLkSnIioJt48Z2nYmUEmwamptNb1ldI7+TyVEqw0JyCFAZMwRNQ4Hj2MAk6JkcXP7iaqTd113WejbKhSzptzEdXAqyQM4Cxz9/J8RPOpu677bJQNVS54cy6iWnjZ7y0VmEQkIqqBl22lKuehveqHEC3Ew3tXK5slTUPA9DsAIlq6Fj1wJ02IZBtkog0iEvMmKKJaeNAhErEkZKIVIpaEEJzzQE1kLbKutRGBSHZAptohTLa91ERetL3RBGQ8BRFNQAjhQVBEtVn0QKBhQsZbIOMtEAYf04mIauJV2xtLsu2lptKL2UtunIwlnXs3EmO/NwTYwhBR4yyiQyRauiBbe/hBQr5YVIdISJg969iJJ98spiSObOuDYNtLPlnUILY0YHauhJCGdwERubCY+1e2dDkTN9j2EhG5spjnNqO1CyKWYttLvtB2/auuhBmB2dYLITnZM0z4/xYRNcyiamNXSuwMkX8WMxCoFUuIkL8Wcf/pSpFtL/lmUSVAlA2wFjb5aRH3r7bKbHuJiFxa7J4aulph20u+WUy/19kLiXsmhw2TMETUOIsaCCxwHwLyzWJrAStuqEs+cfYzWkTbW8p6trk0kWuLbXu5/xb5RGsF6PqTgLpU4D4ERERuLaLdBcb3gFnkOYjqtth+L/c+DB0mYYioIRb7MAoAqpD2KBoilxa5kkWXctCckU1+UDYWOytK58c8CYXIrUUnwEt5JxFJ1GyLKCni0FClvCehEBEtG4tte7WGLnMzc/IH+73LD5MwRNQYJw9iR+KQ7X2Ai+W+upDmhwr5YlptYSEhk20Q8RYXJ9DQnJFNfjh5FUs0Cdmx0tUpVH6MbS/5Y+pgipDOHhnRRO3HawXNWYHkg5MHUkQkDtnS5eocXMlFROTOyfvBiGgcMtXh6hxse8k3U/sO0nD6vWa05sO1bbF6TMhw12AiagzbAqQJkWyDTLZPfpjoSgm61lJNyoYu5SASrQ0MlGgWyoaIJZ2O0PhmjdqqwHLRSVfFDGSyrYFBEs2kbQswIhDJDshUx9ttbykPXcrWdhK7Al0uQMRTDYyUaCatbYhoAjKegogmIISAqpZhV2qfpapKeUjeu9RsygIMEzLeAhlvgTCcx2xdLkBXS7Wdw6pAV8sQkVgDAyUiWjq0sgEjAhlPQcaS09veGgendbUMbVUhzEgjQyWaQWsFGUs6924k5vR7y0VY2eGaz6FKeUj2G0JDaE51JKIG0EoBQszY6E6XC7CHD9d8HhFLwuhe53V4RPPSSkHImYtFreGjtQ+mADC713IwhZpKKxsQckbbq4pZqOFDNZ9HJNrY9lLTzdb2aq1hjfbPXOU1D7NzFQdTqKnm6veqUg52Zqjm84h4C8y2Hq/DIyJakuZqe+1iFio3WvN5ZKIVRkun1+ERzUlrDWg9a7+3OnLcRWl/gUjXqlnHLih4+P8SETWEkDMHAQEA0QTgZolluQBdLXsYGdHC5urEuF3ZYnNvDWoyIY1Z214RbwGM2hdA62KGy9up6WZre4UQkAkX5SDhJB2Jmmmufq+IpQBR+yO3s6fcYveXISJaHuZqe2UsBaD2MuiK+3lSkwkh5u73xpMuzsQ95cKESRgiaiohBGSy3dUxKl/7LBaiRhLxOgZTTt4ficgHQgiIpLsZfio30qBoiNxxBlNqp0p5DqZQIDiDKUwiEhE1k5ASws1AttbcG4YCw3BZVtcu5bifZ0gwCUNETScS7lYT6EKGA9kUCEJI94MphXSDoiFyx+1GpTo/yhnZFAhCSoiY21mBHEyhYHC/kivDwRQiokWqJwHOtpeCQBiRyX09a6JsKBf7J5J/mIQhoqYThgkRb3VxhIYujDUqHCJX3JYkU4UMdM01XYkaR5hRiJiLB1KtoFlSjwKCgykUVsKMutsfTiloJhGJiBZFmFHAcLE/nLKhOZBNAcF+79LEJAwR+UK63PhO5cc4kE2BICIxiEi89gO0YmkRCgzR2u3q/So3zA49BYKIxADT5WBKudC4gIhckC5XgdsFroYhIloMIQSMhJuJn4Aq8JmNgkHGEsAc+9TORltV7ucZAkzCEJEvRDQBuBnIVjY0B7IpINyWdVL5NAdTKBBELAWYLmZk21XoEtte8p8zmOJyJSJnBVJAiFgSkEbtB9hV6GqpcQERES0DIp50t5+nVYaqlhsYEVFthBAwXK6GsYtcRRt0TMIQkW9kS5er96vcKAdTKBBELOluebtdha5wRjb5TwgB6XY1THa4QdEQueN2IFtbFc4KpEAQQtRVzpSIiOonhKxjXy5OPqJgcEqSiZrfrytF7qUccEzCEJFvRLwFMMzaD7DKHMimQHAGU9pdHaPy6QZFQ+SOSLa7m5FdKbBGNgWCEMJ9jWwOZFNAyHgrIFwOpljVBkZERLT0SZclyXS5wIFsCgQhJWQ86eoYroYJNiZhiMg3QgjIlLu9YXRutEHRELkjE63ulrdXitBc3k4BIISESLlcicjVMBQQzoxWzgqk8HEGU9zOyGYSkYhoMYQ0nHK8LigOZFNAuC1Jpsp5aMW9lIOKSRgi8pVItrubFVjOs7QIBYKQ0nVpEbvA1TAUDLKlE64GsotpzsimQBDSgIy7HUxhaREKBtclyYo5aGU3KBoiouXBSLpbDaNKWWjNgWzynzAjEG72UtYaqpxvXEC0KEzCEJGvhDQgkh2ujlG5kcYEQ+SS25JkupjljGwKBGFEnCS4CyrH1TAUDG5Li6hSjrMCKRCEEXH2NqqZZhKRiGiRhBmFiMRqP0BrqBIHsikYDJf7GtnFHPdSDigmYYjIdzLV4er9usAZ2RQMwjCdvY1cUPmxxgRD5JJs6Xb1fp0fZRKRAkGYEYioy1mBLOtEASETLlfDFDJMIhIRLVJdbS9Xw1AAiEgMwojUfoCyocrcSzmImIQhIt8JM+p+IJszsikg3K6GUYU0B7IpEEQ07q5GtlZQ2aHGBUTkguvBlGKWZZ0oEEQkBmFGaz9AKyYRiYgWSUTjgGHWfoCyuTcMBYIQYnxPxNrZhQxXwwQQkzBEFAgy1enq/c5qGO4NQ/6T0bi7Oq0AVG60QdEQuSPcrobJjUDbXIlI/hORGOBmVqDWUAUOZJP/hBDu94YppJlEJCJaBGcg22U5U66GoYCQsSQgXAzhK5sl9QKISRgiCoZoAnA7kJ3lahgKBplyuRqmmGFJPQoEEW8B3MzIhobKDDYsHqJaCSHcb7TLTc4pIEQsBUij9gOYRCQiWjQZT7kbyNaK+3JRIAgh3O8NwyRi4DAJQ0SBIISAbHG5GqaYga6WGxQRUe1ELOVuRjYAm6thKACcttft3jBjXIlIgeB6IBsaqpBuWDxEtapvNUyGSUQiokUQQrou66QKWe7LRYEg4ykAovYDtIIqcjVMkDAJQ0SBIeKtLmdkg/sTUCAIIWC4TSKWshzIpkAQqQ6XSUSuhqFgqGsgu5jjvlwUCDLRCkg3j+MaKs8kIhHRYshEGyDcDmRzJSL5T0jD/d4wRSYRg4RJGCIKDCEEZGuPq2N0KQddLTUoIqLaiXgLV8NQKAkhIdv6XB2jC2NciUiBIOMtLlfDgGWdKBCEkJDJDlfHqGKGSUQiokUQUjqJGBdUMcuViBQIRqLVfRKxlGtcQOQKkzBEFCgi3gJEYq6OURmuhiH/CSFgtHa5OsZJInIgm/wnku3uVyJyNQwFgLM3jMt9uUo5aJv7cpH/nNUwbpOIXA1DRLQYMtHqcm8YDVXg3jDkPyGlk4hxgathgoNJGCIKFGc1TK+rY3Q5D10pNigiotqJWMr1QLadG2lQNES1E0K4Xw1TTHMlIgWCiKcAw3R1jJ3nahjynxACRqrD1TGqmGUSkYhoEYSUdZQz5WoYCgYZb3GdRLSLTCIGAZMwRBQ4IpYEoglXx3A1DAWBszeMy9Uw5QIUB7IpAESirY6ViAMNioaodvWshtHlPLTFgWzyn4i3ANJtEpGrYYiIFkMmWtzvy8VyphQAzmoYd3vDqGKOScQAYBKGiAKnrr1hKgWocqFBERHVTsSSEG4HsrNcDUP+q281TJYrESkQRCzpfl+u/FhjgiFyoZ7VMLqUg7YqjQmIiGgZcPblclnOtJjlvlwUCDLhcjUMNGyW1PMdkzBEFEgyloSIJl0do9ID0Fo3KCKi2gghIN2uhqkUoUr5BkVEVDsRbwUicVfH2GPH2faS75yBbJerYSpFqApXIpL/nJJ6LpOIuVG2vUREiyDjLa735eIEDgoCISSMpLu9YVQpx1XgPmMShogCS7a5Ww0DqwxdGGtILERuiGgCwu1AdnYIWnPDPPKXEAKyfYW7gypFaG4UTQEgognA5EA2hU9dq2EqRa5EJCJahPrKmRY4gYMCoZ4kopUfY7/XR0zCEFFgiWjC2eh8AScGh3DfI4/htrvuw7OPP4JykWXJyF9OSb3aVsNorXHw8FHs2fMqRo4eanBkRAsTsRRQ40rEXL6AV994C3t3PQPF8gzkM2cwpaOm9yqlcODQYezZ8wrGBo41NjCiGohYsuYkYiabxZ7X38AbL73ACRxERIsg4qma9+UaS6ex5/W92PfqSxzIJt8JIWAkalsNY9s23ty3H3tefgmF9GiDI6O5uNsBkIioyWRrD+zy7GWadjz7PL74R3+Op5/fPe31lSv68Gd//hf47Gc/24wQiWYlowmoaGLOWaoPPbYDf/WVf8ZzL76M0TFnFUE8HsNdd9yBa7df38xQiaYRQsBo74M9eGDW36czWfzvv/4KHnzsSbz25v7Jh9AP3fge/PiOu5sYKdFMIhqHMKNz7pdx530P4u//+at4fvfLSGecDXZTySQefvghXHzJpc0MlWgaZzVMJ+z0wKy/Hx4Zxf/6s7/Gw4/vwBtv7Z98/TM/9yn823f+o1lhEhEtKRPlTO3s8Ky/7z8xgD/807/EYzuexlsHDk6+/hu/+sv48j/+U7PCJJqVjKdgF7OAsmf9/b9/9/v4xrf/A7teegX5gjNZubOjA7t278b69eubGSqBK2GIKOBENA4Rb5n1d7/0X/8AljDx7//+79i/fz+Ghobw9NNP47rt1+Pmm2/GN7/5zeYGS3SS+VbD/MKv/RdkSlX8zn/9Xdx1113YsWMH1qxZi9u+f2sTIySanYil5lyJ+I1bb8PXv3sbrnvXe/G1r30NTzzxBL70pS/hJ3feg3x6pMmREk0nhICco6xTpVLBZ375N2HBwO/99/+Oe+65Bzt27EBrWxt++qMfNDdQolmIaALCjM76u3/8+r/h1h/fgffe+AF861vfwhNPPIEvfvGL+O73fwhts8Y7EVG9RCwJGLPPUf/rr/wT7rjvIXzwIx/Ft7/9bezYsQO//uu/jv+49XvQcwx8EzWLswq8bdbfnRgYxBd+67+irasHX/qjP8IDDzyAHTt2IJ3J4O7bf9LkSAlgEoaIQkC29c76+mg6gxtvvBGVSgW//du/jQ9+8IN44IEH8J3vfAef/vSn8aUvfQlKsUQD+UdG5k4iDgwN4xOf+AQuv/xyDA0N4fLLL0cymYSyKlBlltQj/821N8zg8DBWrlyJX/3VX4VhGOjt7cXpp58OALBH+1megXwno3GI6Mx9uUrlMnL5PH7+538eF154IUZHR3H55ZcjFovBrpahqmUfoiV6mxACsmX2CRwDg0PYsGEDPve5z8G2baxduxannHIKlFKwcywtQkRUr4mViLMZGBrG5s2b8ZnPfAbFYhGnnHIK1q9fP972jjU3UKJZyFgSwphZznR4ZARaa/zyL/8yzjzzTBQKBVx++eUAALtcgGYp6aZjEoaIAk+YUYhZHkhP27QBf/zHf4zPfe5zyAydQFcqhj/4gz/APffcg1tuuQUHDhzA/v37ZzkjUfMYrd2AEDNeP//ss/C7v/u7uP766/EXf/EX035nZ4Y4kE2+E9EExCwPpNvOPgv79u3D2Wefjc9+9rN4/fXXJ3+nK3noYqaZYRLNarbBlNaWFpy2aSN+5Vd+Be9+97vx5S9/edrvVW6UbS/5Tkbjs65E3HbOVrz44os477zz8Iu/+Is4ePDtsji6XIAqz17+lIiIFiZjiVkncGw792w8/vjjuOCCC/CFL3wB/f39k7/T5TwncJDvhBAwWjpmvL5h3Tp0tLfjwx/+MD7wgQ/gO9/5zrTfW/mx5gRIk5iEIaJQkC3dMzbM++4//y2+/Cd/iFcevRv3f/9b+J//9TcAAKVSCZWKUwvekDMHv4maSRgm5CyDgXff+i385Ntfxcc/+L6ZB9lVqEK6CdERzU+29wHSmPbax9//bjz2k+/g1n/+m1mPUekT0FyFSD4TZgQyMb08gxACj9zxQ/zk/34D73vX9hnHaKsCXZp9HzqiZjJaOmdM4Ljl5z+Jh35yK77+lb+e9Rg7N8wkIhHRIhgtM5/ZfvtXPo/7fvQf+Ie//JNZj7FzI2x7yXcyEoOMJae9lkol8ewj9+In//FvuGjbeTOO0ZUS1Bz711JjMAlDRKEgpIRsn16WbNWKPvzSZz6FM07dhP6BQXzql34b559/Pm688UZ885vfxKb1a7G2MznHGYmaR6Y6gJOWCHd3deK926/Byt7Zy+2p3AiXCJPvhDQh2/pmvH7ZBefhiou2zX6QXYXKDjY4MqKFyVTbjCRiX28P3nv9dejpmr3kk50fY4138p0wTMhkx/TXhMA7LrsEl1xw/uwH2RZUgSsRiYjqJYwIZHLmBI5r3nEFtp179uwHWVWoUq4J0RHNz0i1z5jAsX7tGrzn+mvR2to66zFWLs0kYhMxCUNEoSHirUA0MeP1gaFhvPuTt6Bia/z4xz/Gt7/9bfzgBz/Al77420AhDV0t+RAt0duEEDDaetwdpDXs7HBjAiJyQaQ6gcjM8gzz0dlhaIvlGchfQkgYqQ53B2kFledKRPKfTLbNuVH0XFRhjBM4iIgWQSZnTuBYiMqnOYGDfCekAeOkVeALUhZUMduYgGgGJmGIKDSEEDDap8/IHhoZxbs/dQtGMjk89NBD2LlzJ77whS/gC//pk/jUh98PALDHTjC7T76TsSREzN3KLF3KQZULDYqIqDZCCBgdq1wepaFGj7PtJd+JWBIiEnN1jCrlWOOdfOfUeO92d5DWsHMjjQmIiGgZEELOWpZsXlrB5v4aFAAy0eJ6AoddyHICR5MwCUNEoSIicYjxWa0jo2N4z6d+EYMjaTz00EN47bXX8OlPfxpnnroJn/9Pn4BljX+QVEvQ+VH/giYaZ7T2AHh7ifCBw0cwMDx9tcvA0DAOHD4y+bOdHuT+GuQ7EUtCTCmNUyyW8PJre2e8b/ee11EuO3ty6XKebS/5zhnInj6Y8tb+gxgenX5vnhgYxKEjRyd/trPD0JptL/lLxhLTJnDk8nm8+vqb096jtcaul/egWq06P5cLUNzbiIiobiKamDaBI53J4PU335r2HsuysfvlPZNjDrqUhypzfw3ylxAC5pRV4FprvPbGm8hmp692OXzkKPpPDEy8C1aWexs1A5MwRBQ6srUHkAZ+6Xf/B46eGMSDDz6IAwcO4KabbkK1WsWevW/i0vd8DFuvfu/kYKDKDEFzViv5TJgRZ38YAH/+9/8fzrjkGnzvx3dMe8/3f3InzrjkGvzZ3/2j84KyYGeHmhwp0UyyfQUgJIZGRrHp0uvx3p//pRnveedHPoPTr3g3cnlnBZdKn4C2Ks0OlWgaYUYhE04t7D/44z/Hlkuvxp33PjDtPV//9ndx2gVX4B+/9k3nBdtiWTIKBCeJKHD46DFsPO9y3HTLL0/7vVIKl2y/EedceT0qFae9tbPDnNVKRFQnZwKHs3fcq3vfwIZzL8Etv/5fpr0nm8vh4uvei4u3vw9qfMKcnRvh5DnynYzGIcbL+N/ya7+N8664Fjtf2D3tPX/2N1/GxnMuwo/vuBsAoK0K9zZqAiZhiCh0hDQg23px14M/wx/+4R9i69atWL9+PXbs2IGdO3di586d+MEPfoD9h47ghZf3jB+lYY/1M7tPvpMtHYBh4sd33YePf/zj2LlzJ2699VYAwK233oqdO3fipptuwm133jt5jC5mocqc1Ur+EoYJ2daHR5/aieHRMTzyyCPYuXMnrrrqKrznPe/Bzp07cdddd+H4wCCeem6Xc5BWUKNH2faS72SyHRASt91xN26++Wbs3LkTX//61wEAd9xxB3bu3In3ve99+PGd90weo4pZKO4rRz4TRgQy1Y6HHn0CmWx2sq+7bds2fOxjH8POnTvxve99D/sOHsKul15xDtJqfDUX214ionoIMwKZaMX9Dz8KIeRk23vGGWfgs5/9LHbu3IlvfOMbeOXV17H3rX3OQcpmSUgKBDPVDkDgtjvuwu/93u9h586d+NM//VMAwLPPPoudO3figgsuwO133zd5jJ3PQNtVnyJeHtwViiMiCgiRaENvdxf+/d//HU8++eSM32cyGQBAd2fH2y9WS9C5EYhWl/W1iTwkhITR2oOerk7s3r0bf/3Xfz3jPbt27cLG1SumvWanByF64hAuN4ok8pJo6UJPTy8A4Ctf+Qoikci03xeLThmG7q63yz/pcoFtL/lOSAmjpQM9XZ145plnZm179+zZgwvP3TrtNTszAtG1EkJw7hr5Rybb0N3TAwCz3rvptLNqq2tq21spQpfyEImW5gRJRLTEyGQ7uru7US6XZ217h4aGIKVER9vbm6HrcgGqXIB0uRcokZeEYcJItqKnqwsPPvggDh06NOM9hw8fxjsuuWDKKxpWdhRmey+EEDPeT4snNKfHEFFI3X37T/GVv/t/USzNLDMmhMD7rr8Gv/2Fz874ndG7ASISb0aIRLPSWuO5R+/Hn/7V32B0bGa5m86Odvzeb/0qtp0zfTBQxFtgdqyY8X6iZrIKWfzR//g9PP7M87P+/vqrLsd/+7XPTe+8CwGj71TXG6QTeUlrjSfuvwt/9XdfRuak2tgA0NPdjT/4r7+Fs848Y9rrMt4Co7WrWWESzaqcS+N//P5/x3O7XpzxOyEEbnzXdvzmL91y8i9gdq2BcLlJLxEROXIjg/gf/8/v48U9r874nRQSH//Q+/G5z3x6+i+EhNm1ipPnyFdaa9z5w+/iH//layiWZq7sXr9mNf7wv/8u1q1ZPe11I9kGI9k24/20eEzCEFGo2ekT0PkxdweZMRi96zmrlXylrQqsoSMA3H0MGx0rIOOc1Ur+skeOQBdc7pcRTcDo3cSZVeQrbVVgjfa7Ps5o74OMcgIH+UdrDTs9AF1xt/GziMRhdKxg20tEVIfJttfl/rIimoDR1sO2l3ylKiVYGff7y5odKyDNyMJvJFc4AklEoSZbewHD5YeDVYbKDjcmIKIaCTMKWcfMajszCK3sBkREVDvZsQqQLmdWV4rQOba95C9hRp39YVyys8PcbJd8JYSA0doNuJxEpKslqNLMlV9ERLSwt9ted8kUXSlClwsNioqoNjIah4ylXB9nZ0e4r1wDMAlDRKEmpITRsdL1cTo34nomIZHXZLIdwu3MaqVgpwfZKSJfCWlAdq1e+I0nUekBaG50Tj6TyTYIM+ruIGXDzo82JiCiGgnDdAYDXVK5UW62S0RUJ2GYMFKdC7/xJHZuFNq2GhARUe2MVDvgsjSetqtQRU7g8BqTMEQUeiKWhKinUzTWD605q5X8I4SA0dbnfmZVOQ9dyjUoKqLayHhrHW2vhj1ylElE8pUzq9X9SkRdykOVOYGD/CXjKQi3Gz5rDTszxLaXiKhOIp5yv6+sVrBzXFFA/hJSwmypY7yskIGyKg2IaPliEoaIlgTZ1gO4ndVqVaDqqI9J5CVhRmC09rg+zs4McWYV+U62r3BfErJagsoMNiYgohoJMwqZ6nB9nJ0bYUlI8l19ZcnKUMVMgyIiIlraJidwuC5LVoIu5RsUFVFtZDRe176yLEvmLSZhiGhJEKLOsmT5US6zJN+JRCtENOHuIK1gj51gp4h8JaQB2bnG9XE6OwjF1VzkM5lora8sWWaYbS/5SkgDRpv7CRwqNwrFkpBERHURhgmjpY49PXOj0FxRQD4zUm2u9/TUtgU7x3K8XmEShoiWDBFNQNTRKVJj/ewUka+EEDDa++rbbDfLjc7JXzKegkjV0faOHIG2uEcB+Wdys124nNVaLUEVuKKA/CVjSYh4HZvtpge5mouIqE4ilnQ/eQ4aVmYIWrEUOvlHCAmz1X1ZMlUuwOZqLk8wCUNES4ps7QbMmLuDtII9coz7w5CvhGHWN6u1kOaKAvKdbF/hviSksmGPHOaKAvKVMCOQLR2uj1OFNFSF+8OQv4yWLteb7TqruQbZ9hIR1eHtsmQuh1NtC3aWK2nJXzISg0zUUZYsN8r9YTzAJAwRLSlCSBid7suSwSpDpQe8D4jIBRFvcb/ZLsZntbJTRD4SUsKooywZKkWo9AnvAyJyQcZbICIuJ3AATlky7s1FPhLSGF/N5Y6ulKAK6QZERES09Dltr/tV4LpSZCl08p2RbIcw3JUlAwArM8LVXIvEJAwRLTkiEndWxLikC2k+kJKvhBAw2nrdz6zSCtbYCa7mIl+JWBKipY62NzfMtpd8NVmWzOVmu9AKdmaIs1rJV05ZMvezWlV+DKrM1VxERPWQsWRdk+dUfgyqWm5ARES1mVzN5ZayYOVG2e9dBCZhiGhJEi3dQB2zWtXYCWhuWEo+csqS9bo/0KrAzgx5HxCRC7K9z31JSABq9Bg0H0jJR8IwYaTc18nWVgUqP+Z9QEQu1FWWDHDKknE1FxFRXYyWTveT5wBnAgf35iIfSTMKmWh1fZyuFFkKfRGYhCGiJUkIAaNzdR2dIu3sD8NOEflIJlog6ukUFbPcLJp8JYSE0bUGbjc6d/bmOswl7uQrEU/VsdkuoIpZqHKhARER1UZIWd8EDq1gpwc4q5WIqA5CGjDa3K8Cd/bm4kpa8peRbINwu6cnADuf5mquOjEJQ0RLljCjkB117A9jV6HG+tkpIl8ZbT3uNzrH+MwqdorIRyKagOxc5f7Aahlq7BjbXvLNZFmyOupk29lhaKvagKiIaiOjcciWOldz5UYaEBER0dInownIZLvr43S1zHK85CshBMzWrrpWc1nZYU5crgOTMES0pMlEK0Q95UVKOej8aAMiIqqNEBJmxwr3exRAwxrrZ6eIfCVTnRDJDtfH6UKabS/5SkgJs60H7ldzaViZIe7NRb6Sibb69igoZqFK+QZERES09MlkG0Qk7vo4Vchwby7ylTBMJxHjllKwsiOcPOcSkzBEtOTJtl6gnk5RZhCa5UXIR8KMwmjvc3+gbbG8CPlOdq6qc2+ufugKH0jJP8KMwmh1P4EDdhU2H0jJR85qrp46V3MNQVuVBkRFRLS0CSGcsmT17M2VHebeXOQrGY3DSLa5Pk5Xy7BZCt0VJmGIaMkTQsDoWl1fp2jkKB9IyVcy3lLfEvdyASo73ICIiGojhITRva6+vbmGDrHtJV/JeAtEPOX6OF0ucG8u8pWQEmZ7H+pazTV2goOBRER1cPaH6XF/oFaw0gOsYkC+kolWiHomzxWzsLmStmZMwhDRsiCMCGRHHXsUaAV7+AgfSMlXsrW7ziXuadh51hom/wgzBtm1xv2BynISMXwgJR8ZLZ2AGXF9nCqkWdqJfOWs5qpzs+j0AMvqERHVQUZide3NBdty9vXkSlryyeT+MPVMXM6NQlVKDYhq6WEShoiWDRlPQdbzQGpXnRUxfCAlnwghYHSsAKT7j22VHeJgIPlKJtogWupoe60y1PBhtr3kGyHG94dxvTeXU16ED6TkJ5logYi3uD5OWxXY6UEOBhIR1UHGW+ram0tXy05pMra95BMhjfr2hwFgZYehrKrHES09TMIQ0bIiWrohYu7Li6Bagho9zk4R+UYYJoz2FXUda6dPQFfLHkdEVDvZvgKI1vFAWs6z7SVfCSNS34oCAHZmEJoPpOQjo7ULMKOuj9OVIlRupAEREREtbUIIGC1dde3N5ZQ0ZRUD8o+MxGCkOtwfqDWszBCrGCyASRgiWlaEEM5m0fV0iko5qMxgA6Iiqo2MJSFb6pidojWs0ePQNgcDyR9CCBjda+ta4q4LY9DZoQZERVQbGUtCJlrdH6g167yTr4SQMNt761rNpYpZbrhLRFQHIcdX0rrdmwuAKmSgSjnvgyKqkYynIKMJ9wcqG1Z6iFUM5sEkDBEtO0IaMDpX13Wszo9C5ce8DYjIBZnqgKhjRQGUDWu0n4OB5BthRCC71tZ1rMoMQBXGvA2IyAWZ6qhrw1Jnj41BPpCSb4QRgdHWW9exKjcCVS54HBER0dLn7M1VX2knOzvCkqbkGyEEjNbO+iYu21VY2RFWMZgDkzBEtCyJaMIpj1MHlT7B2SnkG2d/mL66OkWwKrDHTrBTRL6R8RbItr66jlUjx6DL3N+I/OE8kPbUt5rLqsDOsM47+UfGkpDJ9rqOtdODUCxpSkTkmoynIOvYmwtgSVPylxASkdbuulbS6koJdn6M/d5ZMAlDRMuWTHVApDrrOlaNHoOucnYK+UNIA2bnKkC4/xjXlaLTqWeniHwiWnsgkh11HKlhDx3m/kbkG2EYMNt6UU95EV0pciUt+UqmOuraLBrQzt5ytuV5TERES51s6YSIxt0fyJKm5DNhRmDWuS+iKuU5cXkWTMIQ0bIm23oh6pmdojXs4aPcY4N8I8wojM6VdR2ri1kOBpJvnL25VkPEUu4P1jbsoYMcDCTfiEgURltPXceqYhZ2MetxRES1EULAaOups6yegjV2AlqxrB4RkRuTK2mNiPuDWdKUfCajcRgt9U1ctvNpqHLR44jCjUkYIlrWhBCQHauASB2zU5QFe/gIBwPJNzKagNFeZ2mn3AgUN9wlnwghILvXAWYdg4F21UnEcGYg+UTGEpB1PpCq3ChUiWX1yB9CSKffUE9JU7vqrIjhYCARkStCSpjtvfWXNE0PsYoB+caIpyATrXUda2WHub/RFEzCENGyJ6SE0bWmvtkpVsVJxHAwkHwiE611DwbamUGoIhMx5A8hDRg96wFZx2BgtcREDPnKSLTW/UBqZ4e52Tn5RkgDZvuK+kqaVsuwxwaYiCEickkYppOIqWePjWoJdoaJGPKPkWyDjCbqOtbKDHNvuXFMwhARwekUGV1r6noghVWGPXyYg4HkG5nqhIjXORiYHoRieRzyiTCjTiKmjgdSVIqwhw6xPA75RqY6IOp8ILUzQyzRQL4RZqTulbS6WoKdHuBgIBGRS8KMOqXJ6uDs68lEDPnDKavXBWFG6zhaw8oMMREDJmGIiCaJSAyya019B1fL4ytiOBhIzSeEgNHeW/9gYHqAG+eRb0Q0Adm1rr6DKwWo4UOclU2+cPbY6K7zgXR8NWKFiRjyh4zG697fSFeYiCEiqsdiSprqShF2dphtL/lCCAGzrbu+KgZ6PBFjVbwPLESYhCEimkLGkpAd9W12jmoJ9ggTMeQPIQSMjhX1ldUDYI+d4D4F5BuZaK277dXlPNTQYSZiyBfOHhv11XkHADs9xFrZ5BsZb4FMddR1rDMre5CDgURELi2mpKkuF2BnR9j2ki+ENBBp766vgozWsNJDUFbV+8BCgkkYIqKTyGQ7REt3fQdXilAjRzkYSL4Q0oDZuar+wcCxfu5TQL6RLd0QLV11HavLOajhI2x7yRfOHht99ZXVg3bKQrJEA/lEJtsh4i11HavLBZbHISKqw2JKmupyHio3yraXfCGMiLMiph5awUoPQi/TRAyTMEREs5Ct3RCJtrqO1ZUC1MgxDgaSL4QZgdG5EkA9g4GAPdrPfQrIN7J9Zd37G+lSdjwJzgdSaj5hRmC09dZ5tHbKQjIRQz5w6rx3Q0TidR2vy3mWxyEicmmxJU1VKQeVZyKG/CEjMRit9U2eg1aoZgah7eWXiBGa/2JpCdNWBWqkH2rkGOzho9D5DGBXAa0AI+LsAdK5ErJ7NWTXaohUO0RdsxhpKdJaOzOrK/WtDBDxFsjO1XXdU1pr6Nwo1MgxqOHjsEf7gWoZUJaz9NOIQLR0wOhe49y/nSsg6ixDRUuTKuVhj/XXd7AQMDpXQdY7O6tahho+CnvoKOzBw9CFibZXA4bp7AHSvRpGz1rInrUQyTa2vTRJKwV76ABQ514ZItEO2bVmcW3v6HGokeNQ6UHAqkDbNoR8u+2Vnasgu1ZBtvdCGHXURaYlS5WcAem6CAGzfQVEpL4BGV0pQY0chz18FGroKHQxC9jW221vLAHZtRqyZ7zvUGcpFFqatFKwxo4Ddc5OlfEWZxLTYtre9AD02ABUdtiZJatsQBoQhgmR6oDs6IPsWAHR2gVR56pfIq/pSglqbABq7ATU2AmgXIC2LQDa6SNEEpCdzr0rO1ZAxJJ+h0wBopUNa+yE83ldB5lodVbV1NP2KgWdGYI9fMwZd0gPOp8BynIqKxgRyPYeyK7VMLpXQ7T3su2laexCFnYhXd/B0kBkEc9SulRw+rwT/d5S7u1/R4bpjMf1rIHsXgOjew1E3P+2l0kYWnK0smEffg3VN5+DHhtwXhQC0MD4/0wnpJOUAYBoHOa6LTBPvwgy1d6skCnAtFKwR47UPxjoMhGjsiOo7n0W9tG9TtIFmH6PTj/7RJSAEJCdK2GefhGMNadD1FOjk5YcVczCTg/Ud7AQMDpXQ0ZrmxmrbQvWgZdQff1Z6PTUtneObsbU+zqWhLnpXETOvAQyWd8KNFpatLJhDx4AqvXtlSGSHe7a3swQqm8+B3V8n5MwBOa5f6e2vRKyayXMUy+AXLGJyUQCAKhiDnZupL6DhYTZ0VfzzFhtVWEdeBnWm89BZ8evWWvbG0/B3HgOIqdfCBFP1RcvLSla2bBG+99uB12SiVbIli5Xba+1/0WoocNvD5zM2/aOvy4kROdKmBvPgeyuL+lOtBjaqsA+8hrsQ3ucyUbAAm3vlN/FUzDXboaxfitEjf1sWtq0bTmJGGXXdbxMtsFwsb+XPXwM1b3PQPUfcBIuwNz379TXpQHZux6RMy+G7FnHtpcAAFY+DVXM1newy0SMrpRgvfUCrLdegM6PJ3/mHC+b/juRbId52jaYp27zre1lEoaWDG1VYO1/CdW9zwClPKZ11N0YT9gYa89A5MxLITv6vA6VQkYrG/bwkfoHA+OtkJ2r5u2k2MPHUH39aajjb83fgZ//SgA0RLIN5pmXwtywlTO0CaqYgZ0erO9gIcdXxMzdSdGVEqpvPo/qa08Bi9lPZvzfh7HxHES3XA7ZXm9ZH1oqtG05K2LqLNG0UCLGWe14FNYbO6EGDy2+7U11OInwtWdyliDBLmahcqP1HVxDIkaXi7DeegHVvc/W/W/EuZYAIGBuOgfmGRdD1ltagpYMZzCwf3GzsudJxEy2vftfhB49Xn/bO36cSHXAPOV8JxEuOQmJGkuXC7AOvgL74Mt1JysdApASxrotMDeeA8GVicueF4kYmZy7sovWGqp/H6qvPQU14kHb27ECkc2Xwlh9GieALnNaa9iFTEMTMaqQhbX3WVhvPr/ItheAEYF52gVOvzfZ3LaXSRhaEqyjb6Dy3D2Lewg92fiHi7FuM6Lb3lV3aQhaGpxEzOH6BwNjKafk3UkdFF0uorzzbqj+fYsYAJxDLIHYxe+HsWKDd+ekUFKFDOxMvYkYAaNjJeQspROsAy+j/OydgOWUXPDE+GwV45TzEbvw3RAmy+wtZ9q2nBUxVp1tb6JtvDTZSW1vKY/K8/dCDR3xvu2NpxC98L0wuld7d04KJbuQgcqP1XewEDDa+yAjsWkva61h738RlV0PArYN79pe59+BefqFiJx7DROJy5y2LWdFjKovESPiLc4+MycNBupiDpUXHx5fMVvnhLm5rploReS86yDbejw7J9EErTXsgy/Dev3p8T6Dl20vYJxyHszTLmIicZnTdhXW2ED9iZg5SpOp3CjKT93utL1e9XsnkjGtXYhd9kG2vcuc1hp2Pg1VytV3Amkg0tYz49lfaw3r1SdRffnRiRcWGem48X8jkbOvgrnliqat6mIShkJN2xaqLz0K663nG3cRISASbYhd/iGuilnmtLJhDx0CrEpdx4to0hkMHO9c20NHUX76p87qgYY0xc7Drbn5MkTOuoIzVJY5O5+Gyg7VebSA0bECcrxcjbaqKD93L+x9uzyLb7ZrirYuxN9xE2Q7O/XLmbar44mYOtveeAtk97rJNtAePITKznucxE7D2l7A3HI5zNMuZKmGZc7Op6HqrZUNAaO9d3I1oq6WUXnuXtiHX/MuwNmu2tGH2OUfhmzpaOh1KNi0XR1PxNQ3GChiSRhtvZNtoD1wCNWXHnESO41oe8evY555GYx1W9j2kmd0pYTqS484q2YbSHT0IXr+9RDxloZeh4JNW1VnRcxc5ZUWIOIpGFNWI1qHX3MmLCu7cW2vkIhuux7GhrPZ9i5jTiJmDKqUr+8EQsJs74EcXwmuS3mUn/wJ1MBBD6OcSfZtQOzyDzWlNC+TMBRaKjeG8lM/ga63zI4b46UaIuddB/OU8/jBsoxp23JWxNQ5GIhIHLJrDew3n0P15ccnzupZfHOR3WsQvfQDkAl26pczOz8GVe+G0QCM9hVApYTS49+Hzoyg4ffuRKf+khsR2XRuY69FgaatKuzB/XUvPxexFETnWthvPgtr77Pwegb2XGTvekQveBc34V3m7PwY1MSeAXUw2nqBYgblHT929h5o9OObEIA0Eb3kfTDXntnYa1GgOYOBi0jERBOQrd2w33zOKd/UJLJ3AyJnXwVx0koyIrfU2AlUXrgfKBfRlH6vEUHkvOtg9K5v7LUo0LRVcVbE1JuIiSUhk22ovvgI7P0vehzd3Ix1WxC94Iaa97WjpUdrDTs3ClVvmXIhYLb1QI/0o/zkbUCl1Jx+bzSO2OUfaXgVGSZhKJRUZhilR/6jgbNY52aeeSmiZ1/V1GtSsDj7FByqezBQl4uoPv+Ax1EtQAgglkL82p/jxufLnJ0bhap3w2gA1V0PQ4+daHrbGznvOkTPuqKp16Rg0VbFWRFTb9tbKsDa86S3QS1ECIhEK2Lv+AREnImY5UprDZUfq79WNoDqznuB/Fjz294LbkDk1G1NvSYFi7YqzoqYOgcDdT4N9cZOj6NaiIBItSN6yfuZiKG62UNHUH3u7vHcS5Pb3nOvhbH69KZek4JFVyuw0vU/c6nhY7BfeQLNvXcFROcKxK/6BMv5L2OLTsRoDevxHzp7Mjer3zteGjJ65Udhrj2jYZdhbRoKHZUfQ+nRW31JwACA9frTqL72dNOvS8EhDBNGzzrAcL9XhdYK1t5mP4jC+bdSzqP8s+9C17s8lJYEo6UTMtVZ17H2iUO+JGAAoLr7IVT9+LdDgSHMKIzeDYCce9PGuWilYO1r3kzAty+soYtZlHf8ELpSav71KRCEEJCpDsg6N162j70F5Mb8aXufvx/WgeatYKDgEWYUZudKZ882l7RtQR18pQFRLXhl6EIalZ13Q9e7ep2WNTXaj+rz93i7/4sL1Rcfht2/v+nXpeAQkSiM9r7JUotu6GoZ9pvPo/n3roYeO+H0e+369hSj8BNCOGMO0URdx9tvvQBUis3t94639ZUdt8E+vq9hl2EShkJFV8soP/7D5v+DPEn1lcdgHXrVt+uT/4QRgdG9DjBqHwx0NhV7Gjo31rjA5g8AuphF6YkfQdc5k5yWBtnSCZnqcHWMGumH/dqTvra9lefugXX0Dd+uT/4TZgxG70bAxabhWmvYbzwP+JWA1ho6P4bKs3dA11nSh8JvMhHjsta/GjoyvorAx7Z3592wG1yPm4JNmFGYHSvcJWK0gnrzOee5zQ9aQ2dHUH3xEeg6V/HQ8qTy6fE9NPwtGlPd/SDU2ICvMZC/ZCTmJGJQeyJG2xasXQ85+876QWuooWOoPHcPWHhp+RJCwGjtghjf17BW6tCr0L5M3hinFcpP/BBqrDHbXjAJQ6GhtUb56Z9C+1CKYTaVnXfDHu33OwzykTDHEzE1DgZae5+DTte7MbpHtIYeG0Dlufv8jYN8JYSAbOmCTLbX9H6dS8N6+TFA+T+IUX7ih1DN2AuMAktE3CVi7Ld2Qefr3RjdI1pDDR9D9eVH/Y2DfOW0vZ01b/ypMkOw9/ib/AYAaKD8xG1Q+TF/4yBfiUgMRseK2mZlaw37zReAYq7xgc0fCNTQYVhvPu9zHBQW2qo6JcjsKvxMfjvBaGcgu+TTYDoFgpOI6UVNiRitYe9+GFhE+VNvaNiHX4O19xmf4yA/CSFgtnZDRGpLxKgTB53JG35TNkqP3gpd9n4SCZMwFBr2oT1QJw76/yA6SaOy8x7OrFrmhBmF0bN+wfI41uHXoUeCkrTTsA+/Cru/ccssKfiEEJCt3QsnYmwL1efvB4KypFwplJ+5kzOrljkRicPo2bhgIsY6vBc6U/8eSF6zD7wEe/iY32GQj5wSDV0LJ2KqZdi7Hq57Q3RvacCuovL8/X4HQj6TkRiMjoVLk9kHX3H2MAoIe/9uqMyw32FQCFhvPQ9dyARkzEEDVhnV15u8nx0FjozGa0rEWC8/Bp0bbU5QNai+8gRUNjjxUPMJIWC2LZyI0fkM1J7Hg9H2ag2Ucqi89DPPT80kDIWCrpZRefFhv8OYTmvozJA/NeYpUCYTMXPsEaNLBagje+H7bKppBCovPMBarcvcZCJmrj1ipIHKs/fUvRF6Q2gFNXTEGeChZU1E4zB6N81ZFlIXC9CDR5oc1QKEQHX3Q9ABWFVG/plIxMy5R4yQqD57d0ASMOO0hurfD/vYm35HQj6TkRjMeRIxOjMMBK2EkhCovvoEJ3DQvFRuDPaBgD3baw11/C2okeN+R0I+k9E4jI6594hR/fudvTsDRaOy6wG2vcvcRCJmrj1iBATsZ24PRNWNSVrDfusFKI8nUjMJQ6FQ3bMDqJT9DmNW1Zcfhfar3iYFhjAjTiLGjE7/RTSJ6u6AJRABOBuWZmC9wY3Ol7uJeq2ytXv6L6QB+9BrQMnvUiKzKz9/H3Q1mJ8L1DxOabJNgDG97RWxFlivPYVgJb/hTODIjcA++JLfkZDPJveISbZN/4U0YL+1Gwhk+8YJHOQQkSjMzlUzViMKIwq1bxcC2famB6GOM4lIs9Nao7rncb/DmINA9ZXHOIGDxpPgM/fnEhqw9z4bjFUEU2kNNXAQ9vG3/I6EfDY55hBLTv+FEXH2MAravQsAQqC809u9jZiEocBTmaHxOr4B/EcJOOUZXn7M7ygoAIRhOomY8aWWItEG643ngvmBMq766pNQhYzfYVAAGKkOyLYe5wchIYQB+42dwb1/y0W2vQRgfDVi30bAjDk/p7pg7Q12grm6ZwcncJDzQJrqgEx1jL8gISwL6tArAW17xydwvP6034FQAAgz4iRixlcjimQb7L3PwM0G0s1Wff1paKvidxgUQOrEAeiRY8Fte/NjsA9xFTg5/V6zY8VkElwm21B94X4Et+0VqO56ADpIlRXIF85K8E7IeIvzgmFCpAegh48Es+3VGnr0OOz93k2eYxKGAq/6xnPB/TwBnGVqB1/mYAoBAIQ0YHSvhWjpBswY1LE3g/mBMkErWG/t8jsKCggj2Q6jvQ9G5ypnkK2WzXd9o2HtfRa6ysEUAoQRgdG7EbKtFxASavhosNte24LFwRQaZyTbYLR0wezoc1ZwBbrtBap7n4UOUqk08o0wTJgdK51EYrkEnR1GYCfOAc5eSyypR7Ow9u3yO4QFWft3s6wTARhPgnesgEx1QKeHxveBCeq9oaGLOdhH3/A7EAoAZwJSO4xkO8zWblh7dvgd0oKqrz3pWdvLJAwFmraqsA+/GuyBFADQGtbh1/yOggJCSANGWw/sQ3sCP5ACrWEdfBlac3k7OWSiFQIa9pG9wW97lQ3r8Kt+R0EBIQwTsq0P9pHXg9/2QsM+uIeDKTRJJlqgq2WogYPBb3urFZYWoUnCMGGkOpxSX4FvewH76F6/Q6CAUbkx6Myg32EsrFyAGjnmdxQUEMIwYSTbYB18OQRtr4B1gKV4ySGEgJFshc4MQWdH/A5nQTo7AjXqzd4wTMJQoNnH3wRCUneaHyo0lR5fIRX4gRTA6dAPHPI7CgoQ6+AeIAyJOSFg7dvtdxQUIFrZ4Zi8AUAX0gHcQJX8ZB/cg2Av/x4nBCwPSzNQ+GmrCtW/Lxxtb3YYKjfmdxgUIPaxvQhL28skIk2ly0Wo42+FoO3VUIOHWQadprH3vzRjf6NAEtKzkmQh+NvScmYdCENW36HTg1DpEMygoaZQQ0egi8Hc0HwGIWEdZFkcelsYSjIAcDZ7HDwElR/zOxIKCDVwMKAbms9CCK7koklaa1j7X0Rwy4lMoTVU/z6W4qVJauAgEJYSdULAPs6yOOTQWo8nNkLU9lrcW4Mc1pHXQpCAmSBgH2K/lxzatp1VXGGY+KmVUz3GXnw/h0kYCixdyoejJMMEIViSjCbZh18NTQIRWsE+upeb5REAQOVGoUaO+x1G7YRwVu4QAbBCUYpsnNawj7zOcpAEwJnM49R0DwmtnX9vRBivXhCGlQSA0/ZybwIap0f7gTAllJXtjJEQAbBDNZFSc+InTVIn9oVn4hwAVMtOzIvEJAwFlhob8DsEd7RmjVaaZAd9U+iTKRsqM+x3FBQAoUrAjFPDbHvJoUaOh6vttSrQeZZmoBC2vUJCjXhTH5vCTWsNlR5AKFYSTKgUoctFv6OgAHAqWYQkgQg4bW86ZOMk1BBaqdDdCzo3Am1V/A6DAsAeOR6OUmQThHRiXqQQ/Y1puQldhwhgOTIC4HSIdDZEs1nHad6/hPEEeJg6RFpDjYZs8JIaQlsVoBSSMpBT6MyQ3yFQAKj0YMjaXgU1yj2NCEClCISwPJLKBX8zYGo8lR0J15CDVlBZTpwjOKtnVfhWU3PiJwGAGh0I18Q5raHGFj9eZnoQClFDqMyQ0yHy+N/lv9yzA3/700fQP5rFlnUr8Bc3fxBXnnWKNyevlKBLeYh4ypvzUSjp3EhDals29N4VEirNgUCCM6jWiPv3/qfxd3c8jv6xHLas6cOf/8J7ceXmjZ6cW+fT0FYVwox4cj4KJ92gh7p/vusx/O1tD6F/NIMt61fiLz/3UVy59VRvTi4EVGYIxurTvDkfhZYaG2hM23vvk/jbn/4M/WNZbFm7An9x8wdw5ZZNnpxbZ4ehtYIIU/KIPKeyjUlm/PPtD+Nvvn8v+kfGcNaG1fiLX/kU3nHOGR6dXUBnR4DuNR6dj8JKZwY9Hwj85zsewd/84D70j6Sde/eXP4F3nH26Z+fXmWForSHCUn6VGkI1aBJPQ8ccAOj0ENC1yrPzUTjpsRPwerD3X+57Cn97+2Pjfd4+/MUv3OhZnxfQTvnKRWKPmQJLjfZ73iH6wRO78MVv/hRf/Oh27PjL/4wrtmzCR/7kazg86N2qBQ5kUyPugYbfu1pBjXFGK423vR77wZMv4ff+7W78tw+/E0/8ya/iis0b8NE//3ccHhrz7BpciUiNmFn3g8eexxe/dhu+eNO78OTf/Ddcedap+PAf/RMOD3o06Kgb9xBN4aG1bkgZ3h/s2I0vfvN2fPGj12HHn/8WrtiyER/5k6/j8JBHfQdlh2sfG2oInR2B10sJvv/IM/hv//Rd/N6n34en/vEPccXZZ+DD/+PvcGjAo3ZeOHvg0fKmlYLOpz095/d/9iz+2z9/D7/3qffhqa/8D1yx9TR8+H9+GYcGPExWWhVnBRota41YQdvwMQch+cxG0NUKdMHbcsw/2PEivvitO/HFj1yDHX/2G7hi80Z85M++5el4gy5koKuLK6fHJAwFkta6IQ91X779UXz2uotx8/WXYvPaFfjLWz6Etd0d+Nf7nvToCoLLg8m5BzzuEDX+3uVAIAHaqkIXs56f9yt37cAvXHMBbr72Imxe04e/+IX3YU13G776wDOeXYMdelK5Ec/b3r//ySP47PWX4ZZ3XY7N61biLz//Uazt6cS/3v2ER1fQLEdGzqbQDaiR/uU7HnP6DtsvcfoON38Qa3va8a/3PeXZNVhWhHR+zPNyTn//o/tx87vfgVveezU2r1+Nv/rVT2Ftbyf+9Y5HvLmA1tB8Zlv2dDHr+QrEv7/tAdz8ritxy3vegc3rV+GvfuWTzr175888vQ6TiKQzw55PWm74mINWUBk+sy13jRgz/fKdj+Oz116Im6+7GJvX9OEvP/t+rO1ux7/e/7Sn11ls7EzCUDAp2/MPlErVwgv7jmL7edOXsV933hl4+vWD3lxEiIY8RFPILDI7frKm3LsAYFvenYvCqQHtV8Wy8ML+Y9h+7vRyS9vPOQ1P7T3s0VXY9hLG7wHv+g6VqoUX3jqM7eefOe317eefiade2+/ZdXQI91IgbzVik9qKNdF3mF4C57pzPe478P5d9rRd9fS5rVK18MIbB7H9wq3TXt9+4VY8tectz67Dtpe8br+ce/cQtl9w1rTXt19wlqf3LgC2vQRdLcPzfm8TxhwWu5KAlgCvx8smxxtO7vOehqf3etjnBRY95sAkDAWTsj0/5XA2D1sp9LW3Tnt9RXsLTox5N/NbcyCblLf3QLPu3Ub8u6NwaUT7NZwtjN+/LdNe72tvwUDao/tXALB5/y57Ht8DQxmn7V3R0Tbt9b6OVpwYZdtLHmpE25uZve31vO/Afi953vbmnHv3pLZ3RUcbTox6WDqKbS95/Mw2ee92nnzvtuLEqLeld3j/UmjHHNhvIK/v3Tn7vK04MZbz9FqLvX+ZhKFg8ngVzFQn71+n4fkKelruGnT7NvzebeC/OwqLBra9M67k7R2sGxg7hYVuyC08o+3VM19bHN67y15D+73Tb1Y9y2uLodl3oAa1YTPuXa0h+NRGIdD4fgP43EYNuwcaP17Ge3fZa9i9e3KfVweu7WUShoLJMDw/ZXdrCoaUM7L4A+kc+jpa5zjKPSG9j51CxuP7t1n3LnjvLntCmp6fs7s16dy/6emzUAbT+RmzVeqm2fYSnDbMw452T5vT9vafNHt1MJ1l20veMhrQ9rYl5+47eNX2AhANiJ1CxuO+Q09bi3PvnrTqZSCdnbHCYFHY9pLH98DkvTsyvd8wkM7OWNm1aA0YL6GQ8fjzt3ljDuw3LHte37tN6vMCWHTsTMJQMDWgYY5GTGw7ZQ0eevGNaa8//OJeXHrmBo+uohvyIE0hY0Q8PV1z7l2wQ0SA6e29CwBR08S2Tavx0EvTa2E/9PJbuOyMdR5dhW0vYfwe8C4LE42Y2HbqOjy0+/Vprz+063VctnmTZ9dh20te9xuA8bZ31r7DG972Hdj2kmHA87b39A146Pk9015/6Pk9uOysUz27DidvkNftl3PvrsdDL7w67fWHnn/V03sXAPsOFNoxB2Hy3l32vG57J8cb3pz2+sMvvYlLz/CwzwssOnbe/RRIQgiIZBt0wdvaqb/5gavx+S9/F9tOWYtLz9yAr9//NA4PjeHz77rcmwtoDdHS6c25KLRkSweglafnbPi9C0C0dnh2LgonEYkB0ThQKXl63t943xX4wj/+EBecshqXnL4O33hoJ44MpfG57Zd4dg3Z1u3ZuSicZKoDtsfL23/rQ9fgc3/7bVxw2npceuZGfP3eHTg8NIrPv+dKz64hW9lvWO5EIuXMyPa4xv9vvv8qfP7Ltzp9hzPW4+sPPOP0HW64zLNrSPZ7lz2ZbIMS8LTCzG999AZ87i+/hgvO2IhLt5yCr931KA4PjODzN17j0RUEREuHR+eisBIJD2f3j/utj1yPz/3VN3DB6Ruce/fux3B4cASff9/Vnl5HpNo9PR+Fj2zthDohPR13aPiYg5AQrXxmW+5kS5fn5/zNG9+Bz//D97HtlDXjfd5ncXgojc9f7914AwDI1sXFziQMBZboWAFdyMLLHv3HrzwfI9kC/uwHD6B/NIOz1q/Ej/6fz2F9r3cPkLK917NzUTiJBtwDDb93hYTRscKbc1GoyY4VUAMHPT3nxy8/ByO5Av7sR4+gfyyLs9auwA+/+Bms7+3w7Bqyvc+zc1E4ibYeeF1n+uNXXYDhbB5/euu96B9J46wNq3DbH/4y1vd59PAgJGQb+w3LnRASoq0HeuyEp+f9+BXnOX2HHz7o9B3WrcSPfv8WD/u9AoIJ8GVPtHR5Xt/9pmsuwUg2jz/5zu3oH0lj64bV+PEf/zY2rPDofhOLH0ih8BOGCSRagaJ3m47f9M6LnXv3/97p3LsbV+PHf/Qb3t27ACCNhiSQKFxke6/nEz8bPuagFcfLCCKeBKIJoFL07Jwfv+JcZ7zhhw854w3rVuBH//2zno71IpaAiCUXdQqhuZsiBVR1zw5UX3syXJvOGSYSH/ptTzc8pfDRVhXFn/yd32G4Fjl/OyKnbvM7DPJZ+fn7Ye191vNOfUPFUkh99L/4HQX5TJcLKN37Vb/DcC2y7QaY67b4HQb5rLzzHtgHXg5V2ytaOpF47xf8DoN8pgoZVB7/vt9huBY5/3oYfR6XKaHQqbxwP9SJAwjTZuGirQexKz7qdxjkMzV2AqUH/93vMFyLXf0JGL3r/Q6DfFZ65D/G297wkCs2In7Npxd3Do9iIfKcaO8NVwIGgGzrZQKGIMxIKJeIc1YKAYDs6AvVICAAyE6u4iI4M5Oicb/DcE229fgdAgVAI2a0NpZg20sAxks6hXB/FcGVMITxcrZhenwXkv0GAoDxsl5hunkdXAFOgFN9AyJEKQkhPen3huhvTMuN7AhZ4+zRP0paGmTnSiBkCTl26AkYv3fDREgYXSGLmRrGKUsXorZXSO4lRwDGE+BhIsYfoGnZE0I4JcnCxIhAxFv8joICQLR2h2vip1bj5VdpuROGGb4+ZDwFEUv4HQUFgOxcEa7JR1p50u9lEoYCS6Y6GrK3RsNoBWPtGX5HQQFhrDkjRB16Adm3HiKEM8jJe7KjL1wrubSCse4sv6OggDDWnI7QlBQRAnLlKU5Nelr2ZM8aIEwDE1qz30uTjFWn+B1C7YSAsXITqxcQAEB2rwFC9TksYKzY6HcQFBDmus3hmfgphBMvEQBj1anhWkUrDSfmxZ7Gg1CIGsbceI7fIdQu3gLZs87vKCggjFWnAmbU7zBqpGFuCNG/NWooIQTMU84PTYdetPVwFSJNMladFp4OvdYw13MvGHIIIZ1+byjaXgHZtQoybDNwqWGMlaciNKsQtYax+nS/o6CAEIbp9B3C0vb2rFn0xtC0dBjrzwrPxE+tYW442+8oKCBENO5MXA5DSTIhYaw5w5NJyyH429JyFprMvhAwN57NGVU0SRimM7gWhnvCMGGsPs3vKChAzI3nhKRDLxA55Ty2vTRJRGKQq04NR9sbiUFyY1KawtywNSRtr4a5iZM36G0ilnBWc4UhERNPQbCUHk0RngoGGsaaM/0OggJEtnRAdq1GGNpe0dbNPWhpGnPTOeEoSaaVZ/1eJmEo0EQsCbnylOAPpmgNc/1Wv6OggDE2nB38Dr0QMNZuhjAjfkdCASJbOiB71wW/7YWGsZEzqmg6c92WcLS967ZAhGXVDjWFbO8NRyleIWGsZUkRms5YfQaCXw5SwFxzBidv0DSiYwVEIgR7BBkmZN8Gv6OggHGqxwS97Q1ZlRtqCrliExANQSneaMKJ1QNMwlDgRU69INiDKUJA9q6HbGVJBppOdq6EaO8L9kC21oicer7fUVAARc68JPBtr7FuM2Si1e9IKGBk7zqIZDsCPStQgyUZaFaR0y/yO4T5CQFjw1buI0czyL71QNDLJAnhrHogmkIIASPwpZnHJ2+Eav8aagZj7ZlAJOCfyUYE5nru4UnTCSkROSPg/V4AkdMvhJDepE+YhKHAM1ZsCHxpkej52/0OgQJICIHotuuDO5AtBIyN50B2rvQ7EgogY+1mZ0AlqHVahUR02w1+R0EBJIRE5NxrEdxZgc6+S7K1y+9AKICMjWc7pZKC2u81TETPudrvKCiAhDQQ2XyZ32HMyzzlfIh4CFY8UNMZ67cGewJHJArz1Av9joICSESiiJ77Tr/DmFdk6zu4lxHNyjzzUiDRgmC2vQJItML0sG8T0JEVoumi510X0IdRAfP0iyDbuv0OhALK6F4NY8PWYN6/RgTRs6/yOwoKKCEEYhe9F0EdyI6cfRVkqt3vMCigjL71kCsDOoEjGoN55iV+R0EBJYRA9MJ3BXYCR+TsqyHiKb/DoICSfRshulYFs+2Np2CwHA7NQUgJc+s7ENh+7+bLISJRv8OggDI2BHQChxAQrV0wT93mdyQUUMKMIHrBuxHMtlcjesG7PC3dzyQMhYJMtQdzZlUsgcjmy/2OggIuevbVQACXjkfOvoozUmhesr0X5hmXIFgzUwREMqCfCRQokbOvDuRKrsjWqyEiMb/DoAAzulbB2HRusAZThIBo6+ZACs1LCIHIlisCOZYS2XwFSznRvIzuNU7d/6C1ve19kKtP9zsSCjAhBKIX3BC8CRxaI7rtBs9KOdHSZKw5HXLFxoC1vRJyxUYYa7xte/kvgULDPOMSiFRHoP5hRs/fzhkptCARTyFyzjV+h/E2ISA6VsA85Ty/I6EQiJ5z9ZTNSsVJf2KB1xtBI3rJ+ziQQguSSW+Xjy+aEJDda5za3UQLiJ5z9XiN94D0ezUQvfDdHEihBclUh5NEDAxn/06jb73fgVAIRDZfDsgg9TEFIluvggjQGAgFk9G5EkagJkoIGOvPgtG7zu9AKOCcVeDvBqThdyhvkxLRC9/ledvLXjSFhjBMxK78GGBEEIQHUvPMS2FyIIVqZG46NxglEIQAognErvgIRABniFPwiEgM0Us/4Nw7pon49b8AY81pmJp4Mdacjvj1vwCYJhrdPkfOuw7mqlMbeg1aOsz/P3v/HR5Hdp4J3/ep0N3IAAEwgWBOCMw5TeAEcvJIo2CNJCt6rZW89ruSrFe29921/e3aK/vSfrL2k/ddB8VVsEajMJGcGXI4M8wkSIIJJMFMAgRIAETu7krn+6NBDvPUIbpQ3eD9u665Ruzup+phq+b0qXNOnWfK/IHVoyH3G4QAYvmILHycAynki4jmIrryuYxZfGTOfxh62biw06AsYUydD610HDKh7RW5hTBnZXa9BMocIicf5vxHEfq1O8CcdT+3PiffIrMfgFZaEX7fQQiI4vLU0zlEPmgFIxBZ9mzYaVwVWfYstIL0t70cgaOsohWUILr82dB/VLSx02DWrAw1B8ouQghE5j0MrbwS4XXqBaDpiK34MLQcFiUl/6ydrwJSIvbAJ6CXj0d0xUcGJmJSjw9HVzwHvXw8Yg98AkHuQaJPmgOziltAkn+ptvcRiOKRIfYdBKCbiC59GiKaE1IOlI300rGILHki7DRgTFsAM6NW11KmE0KDOedBiPzicNteIwpz/qMQBncuIP/00oqB+jAh5zFlPnRuQ0YKhKYjuuxZiNyi8NpeIYBoHqLLPwyhp6+WBg1/RsU0mHMfCjsNmHMfgpHmbciu4CQMZR29fDyiy54J6UdFQBs1CdElT3IlKykTmo7o8g9BC6VgqQA0DdGVH4FWMnqIz03ZTFoJyGQ/AAG7YTuk60LoOqIrPoLoyo8guuI5CF2HdF3YDdsQ1CSjXlmF6OIn2PaSMqEbqRvSgtKhb3uFAPSBtj+A1VQ0/BmVVaktGkKiT5wFc87q0M5P2UsYEUQWPgaRUxBOv9cwEVn0OLTcwiE+Nw0HRmUVjBnhbWmqT6iFMXVBaOen7CWiOYje93GIWH44/d5IDmL3/x4XfdJdMWcshlGzIrTzGzUrYc5YHNjxhZSZVrmJyB+35RSSO18BHGvICpDp42sQmf8wZ/RpUKSdRHL36/Cajw/NCa9sQbb0aW4lQsqSdevhHNs18Cdx9ckXob+/Z6t0XSS3/Apu03EE8SSMMXVBak/WTNonlrKOtOKw6tbBu3RuaE54ZSXg4iegFY8amnPSsOWcOQRr9zpAekPW7zVmLIY56z5uX0qDIpP9sOo3Qna2DtEZRWpLqbkPQysYMUTnpOHKOXsYTsPWgXY36LZXAJAwpi6APmU+Fx7RoHj93Uhu+93Qtr0FIxBd9iy0gpIhOicNR1JKOEd3wt7/9pUXgj3hQFtrzn4QxozFgba9nIShrOZ2XYK163XIrovBnUQIQGiIzH8UxoSa4M5D9xQpJaz6jXBP1gOQgf6waCMnpJ4giOYGdg4antzLrUis/5ebrs/oyo/AqJx59c/OuSNIbv5Vek8uBKAbiC55Gsb4qvQem+5ZnufB2vMmZPOxgVcCbHtHT05thWZGAzsH3Vuc1tOpiZj+HgR27QoBGBFElzwJnfW3KE0814Vz6F14LScDP5c2ZgrMqhUQBhfNUXq4radhH94MJOMItu2Nwpz7MPTSscGcg+45nmPD2vXqkCz+1CfNRmTOg1ywTGljnz4Ia98GCCse3HiZEEAstX2eXlYRzDmuwWVNlJWklHDOH4W19dcwq5bCmLEk9UYAM5YivwSxh36fEzCUNl5/D5KbX4TXegaxB59PPSqcbkIAEDBrVyG68iOcgCFlUkpYu1+/ocMjoFdMv2l/an3sNOgV6S1+rhWNRM5j/44TMJQ2bs9l9K//MZzWJkRWPAcEUZ9lYOGGOet+RBY9wQkYSgspJexju5DY9AtEFj0OfdKs1Btp7femjqWNGIPYo5/nBAyljdd7Gfa2X0PGe2EuWAsE0i6m2l6jZhXM2vs5AUNpIT0PdmMdrJ0vw5z3KLTRkwfeSX/bK0rGILryo5yAobRxL7civu4HkK5EZNmHACOCtG8bPbBoLrL4SUTnP8oJGEoL6TpI7tuE+Lu/RuyBT0IbPdAnTWe/d+BY2ugpyFnzxSGZgAH4JAxlIa+/G3b9RnitpwAAkZUfhV42Dl7nRdhHd8A9fzT1H9TdXtoDsSK3CObMJdDHV0PoRhr/BnSvklLCOb4HVv1GwE5CHzMFsQc+AelYcE4fhH10J5DoxZVH0e/KwI+JPr4G5vRF0ApZg4Dujn2yHtaOl6955fqtyKTrwm1uhD522tU/D2pLsittb0EpzJoVMCbUcPsxSgvpuUge3IbE7jcBx4Y5ZTbyHvo9SDsJ58xBOMf3AFZ8kGcRgBDQJ9TAmDIPWl5xOlIngtt5Eckdr8BrOw8AyH3mj6HlF8O9dA72kR2pJwvS0e8tKoc5cyn0cTMgNK7To8GTngunsQ7O0e2A50KfOAuRuQ9D2km45w7DOX0wta30YGk69HEzYUyohWANAkoTr/MirH1vQnamdtyIPf7vATMKr70Jzsl9kB3N6Wl7C8tS/YaRE7n9GKWFdGwk69+BdWAzID1EalcgtmgNZLIf9vE9qX5vOtpe3YQxZS6MqQtY/4XSxrl4FoktL8EbaHsLPvNfAKHBu3ACdsNWeG1NgNBS2/PejYFYrawCZtVyaGOmDGnby5FlyhpSenBP7oN9eCvg2ldfFwMrWbXikYgueQpe7apUh//UfsBzBzo4wB0HBa/5j1gUjUxNvoydyj2wKW28rjYkd716XS2CK0+nCCMCc+p8GJPnwD1/FPaRHZA97QMf+qAfmCs/GBLQDRhT5sGYOh9aTkEwfxG6J0grAWvfxhtfhVm19IYJl0boFdOvTsyYVcvgNjWmPq7Y9mqlFTCrVwy0vbwJpfRw2poRf/c3cNuarr4mYgNtrxmFOXUBjElz4DYdhdO4G7Kva+BDCm2vYcKYNBfG5Dl86pDSRroOrIPvwT68BfDevxavXGN6eSX08kp4XZdgH90J9+zh1GCgn0HBa9vesnEwq5ZBGzmBbS+ljddxITWA3d1+9TURSd2zCTMKY/I86BNmwW1uhHOqHkj0DXzog67faxYqGREYE2qhV1ZBRGLB/EXoniMdG86RbXBO7LnmWhSAGYUQAnrZuNQC0K42OKf2vb/Fnq+29/3PaKUVMCbPgygZzbaX0sZpOZUawL627b3S743mIjJQdNw5dQD2sZ3+295r34/kwJy+KNXv5RPflCbSSiBR9xbsI7tw9Xc+Eru6KFMfOxX62Klw25pgH9kG7+qYg48JmWv7vWOnwJy5bMiefLkpFT4JQ9nA67oEa99bkJdbbnov9tgf3nLQQzo2vMst8Dqa4bY1w2s/D9jJ6z8kBERhGfSySmilY6GNGAORW8iOEKWNdB3Yh7cODKK4171nzFiC6PxHbo6RErKvC15HM7z2JrhtTZDdbTcfPJIDrWwc9NKxqeu3eBSf2qK0SNath3Ns1w2vCsAwEHvgE7Abtl3zxEvqCRmzaikSm36eqqG16AnI3g64l86lVm/f1PZq0EpGQSsfD72sAlrZOGi5hUP0t6N7gXQsJOo2Irl/800d89iChxBb8NDNMVJC9nXC67iQ6j+0N0H2Xr754NFcaKVjoZeMSfUbisr51BallXvxDBI7XrluABsAoOnI+70/v2U/VdrJ1LU70G/w2psAx77+Q1fa3rJx0EoroJeO5ZMDlFbStmA3bIF7ct9N75m198OYOv/mmCv93s5WyK6L8C63QPZ333zwaC60ktHQikdBKx4JkT+CT21RWrkXz8De99bN118kBzmPf+mWMdJOwuu8CK+zNXXtdl4EPOf6D2kaRGF56votGQWtaNTVhaRE6SCTcSR2vwH7WN1N78VWPIvI9Fu1vR5kdzu89ma4Hc3wLp2H7O+66XMipwBaeSW0EWNT/YbCMra9lFb22SNIbHvlprZXKxiB/I/8X7eMkcn+1LXb3gTv0jl4HRcA94a2VzegjRgDrbwSemkFtNKxoS+Y42gdZTTpOnCObIdzvO72s5vmrVc+CcO8ukrQnJHq4EN6qRtS6QG6AegmJ1woMO6ls0jufO3WEyjAbTvfQgiI/GJo+cXA+GoAqU4SXCf1j6anrl+h8fqltHMvt8Bp3H2LdyTgOEi89WNcv2WehNvUCLfpGGBGkfP4l6Dlvv8klpQyNQHpOgNtrwnoBq9dCox9/jji7/0WXk/HLd+/siLwpteFgMgvgZZfcse2lxMuFBRpJZDc+1Zqq5BbENHc27adwoxCHzUR+qiJMHFj2ysH+r1seyk4bstJ2PUbIeM9t/7AbZ5Wua7fO24GgFQtDnhO6hrWdEAzOOhHgZHJOOwDm+CeP3LL9+80YSLM6NUxB+CGthdItb2azraXAiGlhHP6EBI7XoOM997yM7fv92oQReXQisphTJ6TOp430O/12O+l4Hn9PUhsfxXOmcO3fP921y6Q6hNfeToGGGh7r9yzARnb7+UkDGUs99LZ1EqUvptn468yo7475EIIQOhAhD8iFCxpJWDVb7ztIMoVKiughNBSxfSMyGDTI7otKSWs3evu8Di6vOHfKfrU+fBaTyG2+tPXTcAAA23vQCeIKEheog/xba/Bbtx7x8+prIBi20tDQUoJ91wDkrvWQSZuPYgCqF67bHtpaMhEH+z9b8Ntbrzj565sR+aH0DRAY7tLwbrS9toH3wGsxG0/p7LdHdteGipebycS21+Bc+7YHT+nNOZwte1l+0vBkdKDfWwPErvfuHPbq9rvNczUPxmMvwyUcaQVh33w3dTe1h9ApTNPNBScc0dg1a277UqUa4X9KCTRjZxT+68Wf/bLmDof0UWPBZQR0QeTUsI+Xo/4tlcgE/0f+HkRyxuCrIj88fq7kdz1Gtzzdx5EAdQGUoiCJqWEe+Yg7EPv3bzt6C3w+qVM4vV1wt63Ad6lsx/8YY45UAaRngfryE4k694CHOsDP89+L2USt/MSEltfgtt65gM/e6cnYbIVJ2EoY0gp4TYdhb1/E2DFfcWwM0+ZwuvvhlW3Hu75o75jOAlDmURacVj7NqgFRXIQmf1gMAkR+eB2dyC++Xdwzt95Bfa1hmOHnrKP9DzYjbth7dvoaxAFYL+BMofX05EawG5XWLih8DQBUVCk58E5sQfOkW031w+4DS78pEzhdrQisfV3cC/5b3vZd6BMIF0H1oH3kKx/96ZaybczHK9dTsJQRvD6umDv3wiv9bRaIDtEFDIpJZzjdUqDKFcMxx8Vyl7W/neA5Ac/RXCtyNzVnAynUEjPRfLgViR2v3Vz8fEPoHFFIIXM7byI5I6X4bU1KcWx30Bhk54Lp3E3nKM7fA+iXMGBbAqb19kKa++bkF2XlOJ47VLYpGMjWb8J1oEtt6+VfCtCKG2nRxQEp/UMEltfgtep2PYOw4VznIShUEnPg3tyH+yGLb5XolyLHSIKk9d1Ccmdrypv33QFr1/KFG5HC5zjdUoxWmkFjMlzg0mI6A6ctibE3/0N3Lbmu4ofjh16yg6pVYDvwj68VW0Q5QpeuxQit6MZ9t63IHva1YOv1NciCoF0bDgNW+Gc2Isb6xr6wns2CpFz4SQSW16C19OhHCsiOb5rKBOlm7QSSNS9CfvIrruKH45b6XEShkLjdV6Ete9NyM6Ld30MzupTGKTrwD60GXbDVsC7i0GUK/gEAWUAKSWsunWAVLspjSxcmyqARzREpG0hUbcBSdVVgNcyIhAZXrCRhie39TQSO169uwHsAXwShsIg7STsw1vgnqq/+4NEc9hnoFC4radh79sAGe++62OIKMccaOjJZD8Su9bDbtx718fgwiMKi33mMBLbX4Xs77nrYwzHfi8nYWjISceGc3R7atW14qDfTbgqhYaYe/EskjsHN4gCADCjEJqenqSIBsE5Va/8NJcxdQH0EWMCyojoZvb5RsTf+y28nsuDOg5vRmmoyWQcyb1vDazAHhw+QUtDzb1wAlb9RiDRO6jjcOEcDTWZ7Id94B24548M+lhse2koSSnhnDqIxI7XIBN9gzrWcBzEpszm9Xcjse1VOGcbBn2s4bjtOSdhaEh5nRdh7XwFsr8rLcdjh4iGSuppgfVwGnen5XjsEFEmkFY8Vc9IRTQXkdkPBJIP0Y2k56L/3d/APrYnLcfTOAlDQ8hpOYnklt8MehDlCk4i0lCRrgO7bh3c5sa0HI/3bDSU3JaTsOrWA3YiLcfj9UtDRdpJxDe9AOf8sbQcj/0GGkr2qYOIb/kdYCfTcrzhuB0ZNwekISUKy2BMmZe2PYGH48woZSYhBMxpC6CNnJCe43EShjKAtX8TkOxXionMWc22l4aM0HREa5dBH1mZnuMNw848ZS69rBLmtIVAmp58Zd+BhorQDehT50MUjUzPATmITUNIKxsHY2JtqhZROvD6pSEizCgitSugFZen53jsN9AQMiqmIjJtHpCm7UeH4yQiJ2FoSAlNgzFlHmIPfxZ6ZdXgD8hH22kIaUXliK3+FKLLPwSRkz+oY3EQm8LmdlyAc1zt6QKttALG5DkBZUR0a0ZZBfKf+UPk3P/coDvjw7EzT5lLGCYis+9H7pNfhl4xffDH42AKDSF9xFhEH/gEzNmrATM6qGPxSQIaSsKIwKxZhejqT0MrHz/443HMgYaQMWYS8p75MqKL1gx68TL7vTSURCSG2JLHkff0v4c+arBtrxiWbS8nYSgUIpaHyIK1iKz6GKDf/a547NDTUBNCwJhQg5wn/j30ypl3fxwOpFCIpJSwdq9Tq8slBCIL17KwLoVCCA3RGQtQ8PGvwai8+8Fs3oxSGLSCEuQ88HuI3fexQR2HfQcaakJoMCbPQezhz0Irrbj74/CejUKgFYxAZPmHYc5fc/cHEWLQk5BEqlJPgq9A/nN/DK1s7N0fh/0GCoE+YjRyH/sCYkufuOtjiGhsWNZQ5iQMhSvRD7jOXYfzaQIKjW7A62q7+3h2iChEzsl6eO1NSjHG1AXQR4wJKCMif4Suw7188a7jNW5HRiHy+jrvPlg3IAwzbbkQKREavN7Ldx8eHX6rWSk7CCEGV482ksMFSBQeocHr7rj7cPZ7KSRCCHg9g+k3DM/xMk7CUGikY8M+uGkQR+CqFAqPc3QnZPfdT8JwApHCIpNxWPUb1YKiuYjMvj+YhIgUJPa+A9nbedfxfBKGwuLFe2DVb7rr+OF6M0rZwT6yTbmG3HX4JAyFxOvrhHNs113H8ykuClNy9xuAlbjrePZ7KSzu5VZYh7ffdfxwvXY5CUOhcY7ugIz33v0BIjGIdBXbI1Lg9XfDOvjuoI7BwRQKi7V/k/JASmTuat6EUujcrjYk6wfZ9nJFIIXE2vMW4Fh3Hc9+A4XF67oE92T9oI7BPgSFxd6/CfDcu47ntUthcVrPwD6+b1DHYN+BwiClRGLbK4D07voYIjo879k4gk2h8Ho64ByvG9QxhmORJsoO1t63AMce1DHYoacwuB0XlNterWwcjElzAsqIyB8pJeJbXxnUQArAm1EKh9t6Gs7pA4M6Bp+gpTBIKWHXbwSgUEPuFnjfRmFwL5yA13pqcAfhtUshkJ6bGsQeJPZ7KQzOyf1wW88M6hgiNjz7vZyEoSEnpYS9/+1BzYoCHMSmcLgtp+CePTzo47BDRENNSglr9zq1ICEQWbCWe2FT6OwzDXDOHRv0cbRh+mg7ZS7puUjuUmx7b4H9BgqDe+4wvI7mwR+I9200xKTrwD6wadDH4QQ4hcE+sgve5dZBH4f9Xhpq0kogsWv9oI8zXPu9nIShIec1N8K7dFYpRhs5AaKw9PoX2ZmnISZdF8k6xR8UTYcxZR5wwyD2cP1RoczlnNwHr71JKcaYugD6iNEBZUTkj3Ss1FMwKswIIjMWArih7eV2ZDTE7KO74HVdVIrRK2dC5BVd9xr7DTTUpJWAfWizWlAkBr2y6qaXOZBNQ805tguyv1spRq+YDtzQT+DCTxpqXrwXiT0blGJEbiGMibU3vKgBEdZQpqGV3Pe2ctkJc8qcm+7RhmtNGCPsBOjeIh0L9sF31IKMCCLz1wCRGNyT9anCkI7FzjwNOfvYTsjuNqUYs3o5IrPuhzl9EZK7X4d36RwA3ozS0JLJOKx9G9WCormIzH4gkHyIVCT2boLs7VSKiS14GLHZKxGpXoz45pfgXjoPYPh26Ckzef09qTpcCkRuEWLLnwUgYB3aDPvwVsBzOQlDQ84+sk25hpxZvRLGxFlwJ86CXf82ZPclQNMB3QwoS6KbeX2dcBp3KcWI/BKYC9bCdF04R7fDObEXkB4nYWjIJXe9AdhJpZjY4rUwJ9XCaV6AxPZX4XW1QURzWEOZhpTb0Qrr8A6lGK10LGIrPwTYSST2boR9ZCcg5bCtCcNJGBpSztEd6rOiVcuuzooaU+dDHzcd9sH3uLcwDSmvvxv2QbWC0CKvCGbVcgCAVjwSsYd+H+7pg7DqN/BJLhpS1v63ASuuFBOZ+xDbWQqd29mGZP17SjFayUhEa5cBAIzycch/9kuwjtQhuW8ThM6uLw0da++bgGMpxUQXPAphRFL/e86DMCfPQXLX6wAnYWgIeZ0X4Z6sV4oRJaOhT0itxNZLK6A98DzcU/VwTu/ntqY0ZFJbn29SriFnzn4QQtMBTYdZex/08TWw929kTRgaUk7Ladgn9inF6GMmw5hYAwAwxk5B3jNfhnV4G+zTg99CncgvKSUS219RLjsRW/YEhKYB0RzkLH0CkWnzkdj28rBdOMc7URoyXk87nON7lGJEYRn0SXOvfy2Wj8jCxyAVb2qJBsPa+xbg2EoxkflrIIz3V/4JIWBMmgV93IzUDw3REHDbm5XbXq1sHIxJswPKiMgfKSXiW19WHkjJWfF0aiBlgBAaolWLEJnKa5qGjtN6Gs7pg0ox+pgp0CtnXveaVjACsQefV+6DEN2t1CD2RgBSKS4y+8HrJluEpsGYMg/6hJo0Z0h0e17LSXitp5Ri9LHToI+ccN1rWmEpIis+Arhse2loSM9FYvurakGajtjSJ65ve3UD0VmrEJm5OM0ZEt2efXI/3NYzSjHm9AUwyiuve00vHYPcJ74IOE4608sYnIShIZHqzL+tPCuaWpFy68HqK6sEiYLmtpyEe1ZtJYk+dir0imm3fE+YvHZpaEgpYdUpFoQWApGFa7lqlUJnnz4E53yjUow5dQ7MsZNv+Z4wuS82DQ3pubB2va4WpOmI3qbtFUIA7DvQEHHPHobXcUEpRp84G1rJrWvI8Z6Nhop0HdgHNqkF6SbMWfff8i0hBMDrl4aI1bAT3uVWpZhIzTLoxeW3fI/9Xhoq0koguUuxdnIkB9EFD9/yLSG0Ydvv5VJsGhJec+PVWhh+6ZVV0MvGBZQRkT/SdZHcrfiDoumIzH+Ug9gUOufkPnjtzUoxxrSF0G8zkEI0VKRtIb7tNbUgM4qcJY8FkxCRAvvoTnhdl5RizKpl0ApLA8qIyB9pJWAfUtsCEpEYzOoVwSREpMA5thOyv1spxpi5BCKnIKCMiPzx+nuQ3KtWv1PkFiI659YTiERDKbn3beWyE7EFD0OLDc+6L3fCSRgKnHQsWAfeUQsyIjBrVgWTEJEC++gOyJ52pRizejm0ghEBZUTkj0z2w9qn1plHNA+R26wGJBpKib2bIHs7lWJiCx6CllcYTEJEPnn9PbD2q/V7RW4RIrXs91L47IZtyjXkzOpVrCFHofN6O+E07laKEfkjYEyZH1BGRP4ld78B2EmlmNiSx/i0C4XO7WiB1bBDKUYrGwtz+oKAMspsnIShwDlHdwAJtVlRs2o5xD04K0qZxevrUl4NKPKKYVYtDygjIv+s/ZuUB1Iic1dzIIVC53a2Iblfre3VSkYhWrssoIyI/LP2vAko1i2MLry+hhxRGLzOi3BP1SvFiJLRrPlCoZNSwj7wtnINOXPOg9fVkCMKg9NyGvYJtbZXHzsFxoTqgDIi8kdKicT2VxTLTgjkLH3qnq2RfG/+rWnIeD3tygWhRWEZ9ElzAsqIyD9r71vKhXAjCx7lQAqFzm1vVm57tbJxMCaxcDmFS0qJ+NaXlQdSclc+zYEUCp3TcgrOmYNKMfqYKdDHzQgoIyJ/UvU7NwKQSnGROau5/S6Fzms5Ca/1tFKMXjEdevn4YBIi8kl6LhLbXlEL0nTElj7BtpdCZ5+oh9t6VinGnD4fenlFQBllPk7CUGtI7twAAGpHSURBVGCklLDr31acFQXMOavv2VlRyhzuhZNwzzUoxehjp8GomB5QRkT+SClh7V6nFiQEIgsfY2eeQmefOgTnfKNSjDl1LowxkwLKiMgf6bnqba+mI7pwLdteCp179jC8jgtKMfqk2dCKRwWUEZE/0rFh79+kFqSbMGvvCyQfIhVWww54nReVYiI1y6EXlQWUEZE/0kqkttFTIKI5iC54OKCMsgNHuikwbvMxeG3nlGL0ymropffurChlBuk6SNapD6REFjwaTEJECpwTe+F1NCvFGNMWQi/hQAqFS9oW4tteVQsyo8hZujaYhIgU2Ed3wuu6pBRjVi+HVlgaUEZE/kgrobz9LiI5MKtWBJMQkQKncRdkvFspxpi5FCKnIKCMiPzx+nuQ3Pu2UozIK0J0Dut3UviSezdCxtXKTkQXPALtHi87wUkYCoS0LdgH1IqSwojCrFkZTEJECuyjOyB7OpRizOoV0PJLAsqIyB+Z7IdVr9iZj+UhMoudeQpfYu/bkH1dSjGxhQ9Dyy0MKCMif7z+blj71fq9Iq8IEfZ7KQPYDVuVa8iZNStZQ45C5/V2wmncrRQjCkbAmDIvoIyI/EvufgOwk0oxscVrIcxIQBkR+eN2tMBq2KEUo5VVwJw2P6CMsgcnYSgQztHtQKJPKcasXg5xj8+KUvi8vi7YBzcrxYj8YphVLAhN4bPq31YfSJn7EAdSKHRu5yUk96u1vdqI0YjWLA0oIyL/rD1vAo6lFBNdsJY15Ch0Xmcr3FNqBaFFyRjo42sCyojIHykl7ANvK9eQM2c/yBpyFDqn5TTsE2ptrz52CowJ1QFlROSPlDJVx0iq1JATyFn6JMtOgJMwFACvux3Oib1KMaKwHPpEFoSm8Fl73wJcWykmMn8NB1IodG57k3Lbq5VXwpg4K6CMiPyRUiK+5WXlgZTcFU9xIIVC57ScgnPmkFKMPnYq9HGsIUfhklIqPz0LCETmPMg6RhQ678IJeK2nlWL0ihnQy8cHkxCRT9JzU4PYKjQdsaVPsO2l0Nkn6uFePKsUY05fAL2cZScATsJQmkkpYe9/G5CeUpw550HOilLonAsn4J5rUIrRK6bBqJgWUEZE/kjPUy8ILURqJTY78xQy+9RBOE3HlWLMqXNhjJkUUEZE/kjXRXLX62pBmo7oQra9FD737CHIyxeUYvRJs6EVs4YchUs6NuwDm9SCDBNm7X1BpEOkxGrYAa/zolJMpHY59KKygDIi8kcm40juWq8UI6I5iC54OKCMsg9HvSmt3KZj8NrOKcXo46uhl3JWlMIlXQdWndoPCnQDkfmPBpMQkQLn5D54HWoDKca0RdBKOJBC4ZJ2EvFtr6kFmVHkLH0smISIFNhHd0B2tynFmNXLoRWMCCgjIn+klYB9SG0LSERyYFYtDyYhIgXOsZ2Q8R6lGGPGUoic/IAyIvLH6+9Bcq9i/c68IkRns34nhS+5dyOkYtmJ6IJHoMVyA8oo+3AShtJG2hbsg2pFSWFEYdasCiYhIgX2kR2QPR1KMWb1cmj5JQFlROSPTPYrbyciYnmIzOJqQApfYu8myL4upZichQ9Dyy0IKCMif7z+blgH1Pq9Iq8YkZqVAWVE5J/dsEW9hlzNKtaQo9B5vZfhHK9TihEFI2BMmRdQRkT+JXetB+ykUkxs8WMQZiSgjIj8cTtaYB3ZqRSjlVXAnD4/oIyyEydhKG2co9sBxVlRs3o5RJSzohQur68L9qH3lGJEfjFXA1JGsOrfVh5Iicx9mAMpFDq38yKS+9VWYmsjRiNSszSgjIj8s/a8CThqNeSiC1lDjsLndbbCPbVfKUYbMQb6eBaEpnBd3fpcsYacOXs1a8hR6JyWU7BPqrW9esVUGBOqAsqIyB8pvVQdIykVogRylj0JITjtcC1+G5QWXnebckFoUTQS+qTZAWVE5J+1503AdZRiIvPXQOhGQBkR+eO2NSm3vVp5JfSJtQFlROSPlBLxLa8oD6TkrniKAykUOqflJJwzh5Ri9LHToFdMDygjIn+klLDqNypGidQgNusYUci8CyfgXTyjFKOPmwG9vDKgjIj8kZ6LxLZX1YI0HbElT7DtpdDZx+vhXjyrFGPOWAi9jGUnbsRJGBq0qytSpKcUZ855kLOiFDrnwgm4548oxegV02FUTAsoIyJ/pOfBqlunFiQEogtYEJrCZ586CKfpuFKMOW0ejDGTAsqIyB/pukjuUmx7NT31FAzbXgqZe+YQ5OUWpRh90hxoxSMDyojIH+nYsA9sUgsyTJg13H6Xwmcd3g6v86JSTKR2BfSi0oAyIvJHJuNI7n5DKUZEcxFb8FBAGWU3joDToLlNR+G1nVeK0cfXQB8xNqCMiPyRrgOrbr1akG4gMv/RYBIiUuCc2Auv44JSjDF9EbSSUQFlROSPtJOIq64GNKPIWbI2mISIFNhHtkN2tynFmDUroBWMCCgjIn+klYB9WG37XURyYFYtCyYhIgXOsZ2Q8R6lGGPmMoic/IAyIvLH6+9Gcq9i/c68IkRncwKRwpfYuxFSsexEdOEjLDtxG5yEoUGRtgX74LtqQWYUJouSUgawj2yH7OlQijGrV0DLLw4mISKfZLIf1n7FznwsH5FaduYpfIk9b0P2dSvF5Cx6BFpuQUAZEfnj9XfDUuz3irxiRKpXBJQRkX/24S2AlVCKMWtWsYYchc7rvQzneJ1SjCgohTF5bjAJESlI7HoDcCylmNiSxyDMSEAZEfnjtl+AfWSnUoxWVgFz2ryAMsp+nIShQXGObgcUZ0XNqhWcFaXQeX2dsA+pFYQW+SVcDUgZwarfqDyQEpn3EAdSKHTu5YtI7ldre7URoxGpXhJQRkT+WXVvAI6tFBNduAbCMAPKiMgf73IL3NNqBaG1EWOgj68OKCMif65ufa5YQ86cs5o15Ch0zoVTcE6qtb16xVQY46sCyojIHyk9JLa/AkipECWQs+wplp24A34zdNe87jY4J/YoxYiikdAnzQooIyL/rD1vAq6jFBNZsAZCNwLKiMgft+08nBP7lGK08vHQJ9QGkxCRT1JKxLe+rFxDLnfl0xxIodA5F07COXtYKUavmAZj3IyAMiLyR0qZWryhRMCcvZp1jCh03oXj8C6eUYrRx82EXjYuoIyI/JGemxrEVqHpiC15gm0vhc4+Xg/34jmlGHPmQuhlLDtxJ5yEobsipYRd/7birChgznmQs6IUOqf5BNzzR5Vi9HEzYIydGlBGRP5Iz4O1W7EgtBCILlzLzjyFzj55AE7TCaUYc9o8GKMnBpMQkU/SdZHc/bpakKYjuoB1jCh87pmDkJ2tSjH65DnQikcGlBGRP9KxYR94Ry3IiMCsWRVMQkQKrMPb4XVeUoqJ1K6AXlQaUEZE/shkHMndbyjFiGguYvMfCiij4YOj4XRX3PNH4bWfV4rRx9dAH8FZUQqXdB1YdYqD2LqByLxHgkmISIFzYi+8yy1KMcb0xRxIodBJK4n4ttfUgswocpZwEJvCZx/ZDtndrhRj1qyAVlASUEZE/kgrDvuw2haQiObCnMntdyl8zrEdkPEepRhz5jKInPyAMiLyx+vrRnKvYv3OvCJE57B+J4UvsWcDpGLZiejCR1h2wgdOwpAyaSdhH1RckWJGYdasDCYhIgX2ke2QvZeVYszqFdDyi4NJiMgnmeiDtV+xMx/LR2QWO/MUvsSejZD93UoxOYsegZZbEFBGRP54fV2wDryrFCPyixGpXhFQRkT+2Ye3KNeQM2tWsoYchc7r6YDTWKcUIwpLoU+eE1BGRP4ldq0HHEspJrbkcQgjElBGRP647RdgH92lFKOXj4M5bV5AGQ0vnIQhZc6R7UCyXynGrF7BWVEKndfbCfuQ2mpAkV8Cs4qrASl8Vv3bygMpkXkPQ5jRgDIi8se9fBHJA1uUYrTSMYhULwkoIyL/UjXkbKWY6IK1EIYZUEZE/niXW+CePqAUo40YC72yOqCMiPyRUsI+sEm5hpw5ezVryFHonAsn4ZxSa3uNimkwxs8MKCMif6T0kNj2imLZCYHY0idZdsInfkukxOtug3Nyr1KMKBoJfeKsgDIi8s/a+ybgOkoxkQVrIXQjoIyI/HHbzsM5uU8pRhs5HvqEmmASIvJJSon4lpeUB1JyVzzNgRQKnXPhBJyzh5Vi9IrpMMZNDygjIn+k9GDVb1SMEjDnrGYNOQqd13wc3sUzSjH6uJnQy8YFlBGRP9Jzkdj2qlqQpiO29HG2vRQ6+/g+uJfOKcWYMxdBL2PZCb84CUO+SSlh129UnBUFInNWc1aUQuc0H4d7/qhSjD5uBoyxUwLKiMgf6XmwdivWMRIitRKbnXkKmX3yAJzmk0oxkenzYYyeEFBGRP5I10Fyl3oNuejCNcEkRKTAPXMQsrNVKUafPAdaUXlAGRH5Ix0b9sFNakFGBGbtqkDyIVJhHdoGr+uSUkxk1kpohaUBZUTkj0zGkdz1hlKMiOYiNv+hgDIanjgyTr6554/Aa29SitEn1EIbMSagjIj8ka4Dq269WpBuIDL/kWASIlLgnNgD73KLUowxfTG04pEBZUTkj7SSiG97TS0oEkNsydpgEiJSYB/ZDtnTrhQTqV4BLb8koIyI/JHJOOxDaltAIpoLcya336XwOUd3QMZ7lWLMmcsgYvkBZUTkj9fXheS+TUoxIr8Y0dmcQKTwJfZsgFQsOxFd+ChENCegjIYnTsKQL9JOwj6oVpQUZhQmi5JSBrAbtkH2XlaKMWtWQssrDiYhIp9kog9W/SalGJGTj8is+4JJiEhBYs9GyP5upZichY9Ay+FACoXL6+uCdeA9pRiRXwKzenlAGRH5Zx/eDNhqNeTMmlUQkVhAGRH54/V0wDlepxQjCsugT54bTEJEChK71gOOpRQTW/wYhBEJKCMif9y2ZthHdinF6OXjYE6bG0xCwxgnYcgX+8h2QHFW1KxeARHNDSgjIn+83k7Yh9VWA4qCETBnLg0oIyL/rPqNygMpkbkPQ5jRgDIi8se93IrkAbW2Vy8dg0j14oAyIvIvuecNwLWVYqIL10AYZkAZEfnjXW6Be+agUoxWOhZ6ZVVAGRH5I6WEvf9t5Rpy5uwHITQOa1G4nOaTcE6ptb3GuGkwxs8MKCMif6T0kNj+CgCFshNCILb0SZaduAv8xugDeV1tcE/uVYoRxSOhT5wVUEZE/ll73gBcRykmMn8NhG4ElBGRP27beTgn65VitJEToE+oCSgjIn+klIhveVl5ICVnxdMQmh5QVkT+OBdOwD3boBSjj5sOo2J6QBkR+SOll1q8oUIImLNXs4Ychc5rboR36axSjF5ZBb1sXEAZEfkjXQeJ7a+qBekGYkueYNtLobMb98G9dF4pxpyxCHrZ2IAyGt44CUN3lFqRshGQCrOiACJzHuKsKIXOaWqE23RMKUYfNxPG2CkBZUTkj/Q8WLteVwsSGqIL17IzT6GzT+yH03xSKSYyfQGM0RMCyojIH+k6SO5apxakG4guWBNMQkQK3NMHITtblWL0SXOhFZUHlBGRP9KxYB98Ry3IiMCsYS0NCp91eDu8rktKMZFZK6EVjggoIyJ/ZLIfyd1vKMWIWB5i8x8KKKPhj6PkdEfu+SPw2puUYvQJtdBKRgeUEZE/0nVg7VmvFqQbiMx/JJiEiBQ4x/fAUxxIMWYs5kAKhU5aScS3v6YUIyIxxJZwEJvCZzdsh+xpV4qJ1KyAll8SUEZE/shkPFULRkU0F2bVsmASIlLgHN0BGe9VijGrlkHE8gLKiMgfr68LyX2blGJEfjGisziBSOFL7NkAqVh2IrrwEYhoTkAZDX+chKHbknYS9sF31YLMKMzqlcEkRKTAbtgK2dupFGPWrIKWVxRMQkQ+yUQfrP1vK8WInAJEatmZp/Al9myA7O9RioktegRaTn5AGRH54/V1wVLs94r8EpjVKwLKiMg/+/BmwE4qxZi197GGHIXO6+mAc3yPUowoLIM+aW4wCREpSOxcDziWUkxsyeOsIUehc9uaYR/ZrRSjl1fCnDo3mITuEZyEoduyG7YBirOiZvVKzopS6Lzey7APb1WKEQUjYM5cElBGRP5Z+zYqD6RE5j3MgRQKndvRiuQBtbZXLx2LSBXbXgpfsm69cg256ELWkKPweR0X4J5RKwitlVZAH8eC0BSu97c+V6shZ85+EELjUBaFy2k+Aee0WttrjJsOo3JGQBkR+SOlh8T2VwAolJ0QArFlT7LsxCDx26Nb8rouwT21TylGFI+CPrE2mISIFFh73lQeSIks4EAKhc+9dA7OqXqlGG3kBOjjqwPKiMgfKSXiW15SHkjJWfk0B1IodE7zcbjnjijF6ONmwKiYHlBGRP5I6cHav1EtSAiYs1ezhhyFzmtuhHfpnFKMXlkFvWxcQBkR+SNdB4ntr6oF6UbqKRi2vRQyu3Ev3EvnlWLMmYuhl44JKKN7B+966Sbvr0hRmBUFEJmzmrOiFDqnqRFu0zGlGL1yJowxUwLKiMgf6XmwdisWhBYaogvXsjNPobNP7Idz4ZRSTGTGAhijxgeUEZE/0nWQVG17dQPRBaxjROFzTx+A7LyoFKNPngutqCygjIj8kY4F68A7akFGBGYNt9+l8FmHt8HralOKicxaCa1wREAZEfkjk/1I7n5TKUbE8hCbtzqgjO4tHDGnm7jnGuC1NyvF6BNnQSsZHVBGRP5Ix4ZVt14tSDcRmfdIMAkRKXCO18HrbFWKMWcshlZUHlBGRP5IK4H49teUYkQkhthiDmJT+OyGbZA9HUoxkZqV0PKLg0mIyCeZ7Id9eItaUDQX5sxlwSREpMA5ugNI9CrFmFXLIWJ5AWVE5I/X24XkPrUJRJFfgugsTiBS+BJ1GyAVy05EFz7KshNpwkkYuo60ErAPvacWZMZYlJQygt2wDbKvUynGrF0JLa8omISIfJLxXlj7NynFiJwCmLXszFP4EnUbIft7lGJiix6FlpMfUEZE/ni9nbAOqvV7RX4JzOrlAWVE5J99eItyDTmz9j7WkKPQeT3tcI7vUYoRhWXQJ80JKCMi/xK71gGOpRQTW/IYhGEGlBGRP25bE+yju5Vi9JGVMKey7U0XTsLQdewj2wDFWVGzegVEhLOiFC6v97LyakBRUApzxtKAMiLyz6rfqDyQEpn3MAdSKHRuRwuSB7cqxeilYxGpWhxQRkT+Jfe8oVxDLrpwLWvIUei8jgtwz6gVhNZKK6CPmxlQRkT+SClh17+tXEPOnLOaNeQodE7zCTinDynFGOOmwxzPtpfCJaWH+LZXACiUnRACsaVPsuxEGvGbpKu8rktwT6oVhBbFo6BPrA0oIyL/rD1vAJ6rFBNdsAZC1wPKiMgf99I5OKf2K8VooyZCH18dUEZE/kgp0b/lZeWBlJyVT3MghULnNB+He+6IUow+bgaMimkBZUTkj5ReavGGCiFSg9isIUchc5uPwWs7pxSjV1ZDL60IKCMif6TrILH9VbUg3UBs6ePBJESkwG7cC6+tSSkmMnMx9NIxAWV0b+IdMAG4siJlI5RmRQFE5qzmrCiFzmk6BrepUSlGr6yCPmZyQBkR+SM9D5ZqQWihIbpgLQdSKHT2iXq4F04pxURmLIQxanxAGRH5I10HSdW2VzcQXcA6RhQ+9/QByK6LSjH65HnQCssCyojIH2lbsA+o1dKAEYVZszKYhIgUWIe2wetqU4qJzloFrWBEQBkR+eMl+pHc/aZSjIjlITpvdUAZ3bs4ek4AAPdcA7yOZqUYfeIsaCWjA8qIyB/p2LDq3lAL0k1E5j0cTEJECpzjdfA6W5VizJlLoBVxIIXCJa0E4tteV4oR0RzEFj8aUEZE/tkN2yB7OpRiIrWroOUXB5MQkU8y2a+8/S6iuTBncvtdCp9zdDuQ6FOKMauXQ8TyAsqIyB+vtwvJ+k1KMaKgBJFZnECk8CX3vAWpWHYiumgNRJRlJ9KNkzAEaSVgH1IrSgozBrN6RTAJESmwG7ZC9nUqxZi1q6DlFQWTEJFPMt4La/8mpRiRUwCzZlUwCREpSNRtgIz3KMXEFj0CLSc/oIyI/PF6O2EdVOv3ioIRMKuWBZQRkX/2oc3KNeTM2vtZQ45C53W3wzmxVylGFJZDnzg7oIyI/EvsWgc4tlJMbMnjEIYZUEZE/riXmmAfrVOK0UeOhzllTkAZ3ds4CUOwj2wDFGdFzZqVEBHOilK4vJ4O2IfVCkKLglKYM5YElBGRf9a+DcoDKZH5j0CYkYAyIvLH7WhB8uA2pRi9bCwiMxcHlBGRf8m69YDrKMVEF66F0I2AMiLyx+1ohntWrSC0VjoO+rgZAWVE5I+UEvb+t5VryJlzHmQNOQqd03Qczmm1tteonAGzkm0vhUt6HuLbX4ZS2QkhEFv2JLc+Dwh/0e5xXudFuCfrlWJEyWjoE2oDyojIP2vPG4DnKsVEF66B0PWAMiLyx710Fs7pA0ox2qiJ0CurAsqIyB8pJfo3v6Q8kJKz8hkOpFDonKZGuOePKsXolTNhjJ0aUEZE/kjpwa5/Wy1IiNQgNgdSKGRu0zF4beeUYvTx1dBLKwLKiMgf6TpIbH9VLUg3EFvyeDAJESmwG/fAa1MrOxGZuQT6CJadCArvhu9hV1ekqMyKAojMZmeewuc0HYPbfFwpRh9fDX305IAyIvJHeh4s1YLQmpZaic22l0JmH6+H23JaKSYycyGMkZXBJETkk3QdJFXbXt1AdD7rGFH43FMHILsuKsUYU+ZDK2QNOQqXtC3YB99RCzKi3H6XMoJ1aCu87nalmOjsVdAKSgLKiMgfL9GPZN2bSjEiJx/ReQ8GlBEBnIS5p7nnDsPrUJsV1SfOhlbCWVEKl3RsWHXr1YIME5F5DweTEJECp3E3vE61gRRzxlIOpFDopJVAfPvrSjEimoPY4jUBZUTkn314K2TvZaWYSO0qaPnFwSRE5JNM9sNu2KIWFMuDMWNpMAkRKXCObgcSfUoxZvVyiGhuQBkR+eP1diJZrzaBKApKEKldGVBGRP4l696CTMaVYqILH4WIsuxEkDgJc4+SVgK2YlFSRGIwq1cEkxCRArthK2Rfl1KMWbMKWm5hQBkR+ePFe2EdUOzM5xbArGFnnsKX2L0BMt6jFBNb9Ci0WF5AGRH54/V2wjq0WSlGFIyAWbUsoIyI/LMPbVauIWfW3scachQ6r7sNzom9SjGiaCT0SbMDyojIv8TOdYBjK8XEljwOYZgBZUTkj3vpPOxjdUox+qjxMKfMCSgjuoKTMPcou2EbYKnNiprVKyEisYAyIvLH6+mAfXirUowoLIU5Y0lAGRH5Z+/boDyQEpn3CAdSKHRu+wUkD21TitHLKhCZuSigjIj8S9atB1xHKSa6cC2EbgSUEZE/bnsz3LNqBaG1snHQK1gQmsJ1detzxRpyqTpGHKaicDlNjXDOHFaKMSpnwqxk20vhkp6H+PZXoFR2QmiILX2SW58PAf663YO8zotwT9UrxYiS0dAn1AaUEZE/UkpYe94APFcpLrpgLYSuB5QVkT/uxbNwTh9QitFGTYJeWRVQRkT+SCnRv+UlxYEUgZyVT0No7GpSuJymRrjnjyrF6JUzYYydGlBGRP5I6cHev1EtSGgwWb+TMoDbdBRe23mlGH18DfQRYwPKiMgf6TpIbH9NLUg3EFvyWDAJESmwj9XBa1MrOxGpWgx9BMtODAXeGd9jUitSNkJpVhRAZM5qduYpdG5TI9zm40ox+vhq6KMnBZQRkT/S89QLQmsaogvXsO2l0NnH98FtOaMUE5m5EMbIyoAyIvJHuo5626sbiC5gHSMKn3tqP2TXJaUYY8o81pCj0Enbgn3wXbUgM8rtdykjWIe2wutuV4qJzr4PWkFJQBkR+eMl+pDc85ZSjMjJR3Te6oAyohtxEuYe4549DK/jglKMPmk2tOJRAWVE5I90bFh71qsFGSYi8x4OJiEiBU7jbsiui0ox5oylHEih0Ekrgfj215ViRDQHscWPBpQRkX/24a2QvZeVYiK190HLKwooIyJ/ZLJfeftdxPJgzFgaTEJECpyj24FEn1KMWbUCIpobUEZE/ni9nUjuU6zfWTACkVrWTqbwJevegkyqlZ2ILlrDshNDiJMw9xBpJWAfek8tKJIDs4o/KBQ++/AWyL4upRiz9j5ouYUBZUTkjxfvgXVAsTOfWwizlqsBKXzx3W9BxnuVYmKL10CL5QWUEZE/Xu9lWIc2K8WIglKYVRzEpvDZh94DHLUacmbt/awhR6HzutvgnNijFCOKRkKfNCugjIj8S+xcB7i2Ukxs6eMQhhlQRkT+OJfOwT6m1vbqoybAnDw7oIzoVjgJcw+xG7YCltqsqFm9krOiFDqvpwN2g1pBaFFYBnP64oAyIvLP2rcBsNUGUiLzHoEwOJBC4XLbL8A6pNb26uUViMxYGFBGRP4l69YDrqMUE120FkI3AsqIyB+3vQnuWbWC0FpZJfSK6QFlROSPlBJ2/duAVNv63JzzIITg0BSFyznfCOeMWttrjJ8JcxzbXgqX9Dwktr0KpbITQkNs6ZPc+nyI8ZfuHuF1tsI9tV8pRpSMhj6hJqCMiPyRUsKqWw94rlJcdMEaCF0PKCsif9yLZ+CePqgUo42eBL1yZkAZEfkjpUT/5pcUB1IEclY8A6Gxe0nhcs4fg3v+mFKMXlkFY8yUgDIi8kd6XmoQW4XQYM5+kAMpFDr3/FF47eeVYvTxNdBHjA0oIyJ/pOsgsf1VtSDdQGzxY8EkRKTAPlYHr71ZKSZStQT6CJadGGq8S74HSClh1b8NpVlRAJE5q9mZp9C5TcfgXjihFKOPr4Y+elJAGRH5Iz1XvSC0piG6YC3bXgqd3bgXbusZpZjIzIUwRo4LKCMif6TrpJ6CUaGbiC5gHSMKn3uqHrL7klKMMWUetMLSgDIi8kfaSdgH1bbfhRmFWcPtdyl81sEt8Ho6lGKis++DVlASUEZE/niJPiTq3lKKETn5iM57MKCM6E44CXMPcM8ehrx8QSlGnzQHWjFnRSlc0rFh7XlDLciIIDLv4WASIlLgHNsN2aU2kGLOXMqBFAqdl4wjvuN1pRgRzUFs8ZqAMiLyzz68BbL3slJMZNYqaHlFAWVE5I9M9Clvv4tYPowZrGNE4XOObAeS/UoxZvUKiGhuQBkR+eP1diJZ/65SjFYwApFa1k6m8CXr3lIuOxFbtIZlJ0LCSZhhTlqJVGFHFZEcmFXLg0mISIF9eAtkX5dSTKR2FbTcwoAyIvLHi/fAOqC2GlDkFnI1IGWERN1bkPE+pZjY4rXQYhxIoXB5PZdhHdqiFCMKS2HOXBZQRkT+2Yc2A45aDTmz9j4IkzXkKFxedxuck3uVYkTRSOgTZwWUEZF/iR2vA66tFBNb+gSEYQaUEZE/zsVzsI/VKcXooybAmDw7oIzog3ASZpizG7Yqz4qaNas4K0qh83o6lFcDisIyGDMWB5QRkX/W3g2AYynFROY/CmFwIIXC5bZfgHVou1KMXj4OkZkLAsqIyL9k3XrAdZRiogvXsoYchc5tb4J7Tq0gtFZWCb2CBaEpXFJK2PUbFWvIXdn6nMNRFC77/DE4ZxuUYozxVTDGTQsoIyJ/pOchsf0VtSChIbbsSW59HiL+6g1jXmcr3FP1SjGiZAz08dUBZUTkj5QS1u51gOcqxUUXroXQOJBC4XIvnoF75qBSjD56MvRxMwLKiMgfKT30b35JcSBFIGfl0xxIodA554/CbTqmFKOPr4IxZkpAGRH5Iz0vNYitQmgw5zzIgRQKnXv+CLz2JqUYfUIttBFjAsqIyB/p2Ehsf00tSDcRW/JYMAkRKbCP7YbXrlZ2IlK9BHoJy06EiXfMw5SUEpZqZx4CEXbmKQO454/CbTmpFKNPqIE+amIwCRH5JD0Xyd3r1II0DZEFa9j2Uujsxn1wW88oxUSqFsEoHxdQRkT+SMdOPQWjQjcRnf9oMAkRKXBP1UN2tynFGFPnQytgDTkKl7STsA+q1dKAGYVZzVoaFD7r4BbIng6lmOic+6DlFweTEJFPXqIPibq3lGJETj6icx8MKCPyi5Mww5R79hDk5RalGH3SbGjFnBWlcEnHhrXnDbUgI4LI3IeDSYhIgXNsN2TXJaUYc+YyaIUcSKFweck44jteV4oR0VzEFnEQm8JnH94K2dupFBOZdR+0vKJgEiLySSb6UttHq4jlw5ixJJiEiBTYR7YDyX6lGLN6BUSUNeQoXF7PZST3q9VO1gpGIFLLCUQKX3L3m4CVUIqJLVrLshMZgJMww5C0EqnCjioiOTCrlgeTEJEC+/BmyP5upZjIrPug5RYElBGRP15/D6wD7yjFiNxCmDXszFP4Ervfgoz3KcXElqyBFuNACoXL67kMS7HfKwpLYc5cGlBGRP7Zh95TryE3637WkKPQeV1tcE/uVYoRxSOhT5wVUEZE/iV2rgNcWykmtvQJCN0IKCMif5yL52A37lGK0UdPhDGZbW8m4CTMMGQ3bAGsuFKMWbOKs6IUOq+7HXaDWkFoUVQOY/qigDIi8s/a95b6QMr8RzmQQqFz2pphHVZre/XycYjMWBBQRkT+JevupobcYxA6a8hRuNy283DPqRWE1soroY1lQWgKl5QS9v6NijXkgMich1hDjkJnnzsG56xa22tMqIYxjm0vhUt6HhLbXlELEhpiS5/k1ucZgr+Aw4zX2Qr31H6lGG3EGOjjqwPKiMgfKSWsuvXqAykL1kBoHEihcLmtp+GeOaQUo4+eDH3cjIAyIvJHSg/xLS8pDqQI5Kx8mgMpFDrn/FG4TY1KMcb4ahhjJgeUEZE/0vNg739bLUhoMGev5kAKhc49fwRee5NSjD6hFlrJ6IAyIvJHOjYSO15TC9JNxBavDSYhIgX20d3wOi4oxUSql0IvGRlQRqSKd8/DiJQSVv1GxSjBzjxlBPf8UbgtJ5Vi9Ak10EdNDCYhIp+k5yK5e51akKYjsnAt214KnXVsL9zWs0oxkapFMMrHBZQRkT/SsZHcvV4tyDARWcA6RhQ+99Q+yO42pRhj6nxoBSMCyojIH2knYR98Vy3IjMKsXhlMQkQKrINbIHs6lGKic+6Dll8cTEJEPnnxXiT2vKUUI3IKEJ37QDAJ0V3hJMww4p45CHm5RSlGnzQHWjFnRSlc0rFg7XlDLciIIDL34WASIlLgHN2lPJBiVi3lQAqFzkvGkdihNoEoormILeIgNoXPOrwFsq9TKSZSex+03MJgEiLySSb6YDdsU4oROfkwZiwJKCMi/+yGbUCyXynGrF4JEc0JKCMif7yey0juV5tA1ApLEall/U4KX7LuTcBKKMXEFq9h2YkMw0mYYUJaCdiH1YqSIpIDs2pZMAkRKbAPbYHs71aKicy6H1puQUAZEfnj9ffAUlwNKHILuRqQMkJi95uQiT6lmNiStdBiuQFlROSP19MB+9AWpRhRWAZz5tKAMiLyzz70nnINObP2ftaQo9B5XZfgntqnFCOKR0GfWBtMQkQKEjtfB1xHKSa29HEI3QgoIyJ/nItnYTfuVYrRR0+EMWlWQBnR3eIkzDBhH96iPCtq1q7irCiFzutuh31EcTVgUTmM6QsDyojIP2vfW8oDKZEFayAMM6CMiPxx2pphHd6hFKOPrERkxvyAMiLyR0qZ2gJStYbcorUQOmvIUbjctvNwz6kVhNbKx0Mby4LQFC4pJez9GxVryAGROatZQ45CZ587CufsEaUYY0I1jAq2vRQu6XlIbHtFLUhoiC19klufZyD+Gg4D3uUWuKf3K8VoI8ZCr6wOKCMif6SUsOrWA56nFBdduBZC40AKhcttPQ33zCGlGH3MFOgV0wPKiMgfKT3Et7ykOJAikLPyaQ6kUOjcpmNwm48rxRgTamCMnhxQRkT+SM9NDWKrEBrM2Q9yIIVC555rgNferBSjT5wFrWR0QBkR+SMdG4kdr6kFGSZii9cGkxCRAvvoLngdamUnIjXLoJew7EQm4p10lpNSwqpX7MxDwJyzmp15Cp17/gjclpNKMfqEWugjJwSUEZE/0nNTK7FVaHrqKRi2vRQy69heuK1nlWIi1YthlFUElBGRP9Kx1dtew0Rk/iPBJESkwD1ZD9ndrhRjTF3AGnIUOmklUtvoqTBjMKtZS4PCZx3cDNlzWSkmOud+aPnFwSRE5JMX70VizwalGJFbgOjcB4JJiAaNkzBZzj1zELKzVSlGnzwHWlF5QBkR+SMdC9aeN9WCjAgi8x4KJiEiBc7RnZDdbUoxZtUyDqRQ6LxkHIkdryvFiFguYgs5iE3hsw5thuzrUopJ1ZArDCgjIn9kold9+92cAhgzlgSUEZF/9pFtQLJfKcasWQERyQkoIyJ/vJ7LSO5Xm0DUCksRqVkeUEZE/iV3v6lcdiK2aC2EGQ0oIxosTsJkMWnFYR/erBYUzYU5c1kwCREpsA9thuzvVoqJzLofWk5BQBkR+eO0N8Pap7giJa+IqwEpIyR2vQmZUBtIiS1eCy2WG1BGRP54PR2wD29VihGFZTA5iE0ZwD74nnINObP2ftaQo9B5XZfgnqxXihHFo6BPqA0oIyL/EjteB1xHKSa29AkI3QgoIyJ/nNazsI/vVYrRR0+CMYltbyZjyxIy6bnwOlrgtJ6Fc/EsvI5WSMdKFRvVdAgjAq1kFIxR46GPHA+9dPTVWhj24S3Ks6JmzSqISCyIvwrdg7z+bjitZ+G2noPTegYy3gfp2gAAYZipFXyjxqeu31HjoeXkp+K622Ef2a50LlE0Esb0RWn/O9C9SboOnNbzsJpPwW46BaftAqQ90PbqOoQZhTlyHMyKiTDHToJRPhZC0+H19yD51o8GjiIAXFtT48qfb3wdiMx/lAMplDZeXxfci+dS7e/Fs5DJfkjHAQQgdBMitwDGqAnQR1ZCHzn+6gSK09YEq2GH0rn0kZWIzJgfxF+D7kHSseG0nofdfApW0ym4Ha2Qjp0aIDFMCDMCc1QlzLGptjfV79UgpUxtQ+a5SueLLnoMQmcNORo8KSVkbyeci+fgXjwH9+JZeMl46toVA/3e3KKrfV6jvBIimnoKwG07D/e8WkFobeQEaGOnBvFXoXuQdGy4bU3vX7vd7am21/MA3YAwI9DLKgb6DZXQisogRKrttes34sZ+7QeJzFnNGnKUFlJKeD2X4baeGej3noe04qnrV2gQhgmtoDjV7x01HsbIyqvjXfa5o3DOqbW9xsQaGBVseyk9pG3BaT0Hu+U0nAun4Xa1A44N6XkQhgERicEYWQljzASYoydAKy6HEALSc5HY/orayYSG2LInuPV5huMkTAiklHBbTiN54D04TScGbijFwLjd9R0cCcDraoNz6mDqT5oOY+wURKbMgnv6gNJ5tdKx0Cur0vXXoHuUl+iHdXg7kg273t8SRGiA9K77nASArna4rWeRHHhPFJQgWrUYsuN8qtOvILpwLYTGzjzdPSklrDNH0b9zA6yzjde0veKm6xcA3PZWJA7vSv3BMBGdMA2m2wVoGmKrPwm7YRvcpuO4MvGiV0yDWbUUiU0/BxwHV25Y9bFToVdMH6q/Jg1TXrwX1qFtsI7VQcZ7Uy/eru3tTrW9V97TCkbArFoM+8SBm/oZdyQEclY+zYEUGhQpPVgnD6N/19uwm0+mfv+v3CDe4np021uROLQz9QfDRHRKLaKTp8NtPq50XmNCDYzRkwabPt3jvL5uJA9thd24FzLRl3pR027qx17t97acfr/tLSqHWbUEaDmmdlKhwZz9IAdSaFCk58E52wDr4Fa4bedT7e1t2l4JwOu8BLtxT+oFIwJjQhWMkePgdTQrnVefOAtayeg0/A3oXub1XEbiwGbYjfsgk/HUi7dpe72uNjhNJ99ve0eMQqR6GexDW9ROapiILVqbhuzpXiY9F9bx/Yjvexfupabbtr1X/pfb0YLk4dQiORGJITJ1NoziUngdLUrnjdQsg148Mh1/BQqQkFLlbpwGQ0oPzpkjSNZvgtvWfMvBE18G4ozSkdA0+FwVKBB98JOsBUN3zevtRGL/ZlgNOwHXheqKqPcJwDRgFpUAyV5fEfrEWsSWPXuX56N7nfRcJI/uQ9/2N+Bcuvu2N3d0KTTTQOzh34dePh7SdZHc8iu4TY3QK6YjuuI5CF2He+ksEm/9OBWk6ch5/A9ZC4bumtvdDuvAFljH6lLX7SC6bVI3IYwIZH+Pr89Hqpcgd+Uzd30+urdJ10GiYQ/6d7wJ9/LFQfd7o2MroMPydwwjgtynvsxaMHTX3M6LSO7fDPv4PgByUG2vlpMHo6gYsP3tYGBMXwSzeuVdn4/ubdKxYZ+oR3L/e5C9lwcWG93F9XtlzKF8LISb8HcMM4bYI59lLRi6a277BST2vQv75P7UC4Noe0U0B8I0fdczii54GNHZ9931+ejeJm0LiYZdSNS9Da+va9Btr1k2Coj3wM+4m8gtQP6H/5i1YLIAn4QZIm7nJfRv+Dm8zovXzILexY3oNXFOxyUAgFE8Ah/0gIA+eQ4nYOiuSM9DYs8GJPduGnhhsPO2ErBt2O2XIAwdRl4eMLCF2S2ZUUTmPjzIc9K9ym49j67ffR9u56VBt712XxzR4kLYDduhjaiA0HVEV3wEbnMj9LHTIHQd0nVhN2zDlS3JzKplnIChuyJdB4m6t2Ad2Hz3g9c3EK6d2jJS11PHdG7f9opYLmKLHh30OeneZF84ja6Xfgiv5zJS7SEG3e9NXrgAoQHRkWXQcOcFSJFZ93EChu6KdGzEd7wO+8jOtLW9XrwPVrwfWk4OjPz8Oy6gEzkFMKazjhHdHefCKcQ3vQCZuGah293eu10Zc2hrAQRglJRCeHeurWHWrOQEDN0VaSfRv/kl2I17B9rewa8Vl8l46ika04SmaXdse7WiMkRqlg/6nHRvss4cQe8bP4e8dsJvkG2v3X4JEBJmQRHgJO8YElu0lhMwWYKTMEPAatyL+Jbfvd/op+vho4HjOJ2XISImzNKRt57lj+bCnLksPeeke4rX142+DT+H23Im/QeXEtJ2YHd2wSgth7D6catZ/sis+6/WkiHyS0qJ+L7N6Nnw4vtt7iDbXrunHxBAFI1Ibnnx6pMvRuXM1OGvPhmT2qJM5BXBrF4xyL8J3Yu8nsvo3/jz1FOzQFoGAa9IDYdLSM+BVlAMr6fzlp+LLXkMWpQDKaRGSg/x3ZvQ++5L176apoN7kC6QaGmDnpeLaGkJYN3c79WKymHO5CA2qXt/0VxqoVs6215Awov3w0rEYY6qgLDjt/yUOet+1pAjZdLzYO1/B8m9b7+/6Ch9Bwck4HS0Q8vJhZ6fD9g3DwiKktHQJ7AgNKlz2y+g782fwevpSL2Q1rYXgG3DA6AXl0H2dd7yI7Elj0PoHB4lNdJ10b9jHRJ7NuHqoqO0HTzV9trd3dByc6Gb5i2fqNXHTIIxiW1vtmArEyBpW4hvezk1mx/oiTzIZBJW8zmY46ZAWH3XPVlg1qy6WpyMyC/7fCP6N/wC0rrzrHs6OB3tELEYzBHlkN2Xrr4uikbCmLYw8PPT8OIl4+he9zMkj+5L+7Ht7n4Y0SjQdAxuc+PVCRgAcJsb4TY1Xv1zZP4aDqSQMvv0YfS/+6uBukLBEUJAxnsg8vIhzJz3Bx0B6KPGIzJ9XqDnp+HHi/eh+7WfwDrVEOyJpAe3tw/9vb3InV4F9LVft7o1snAthKYHmwMNO9aJesTf++3AtRTgbt1Swm5tglZQDLOoBLK/6+pb2sgJ0MawIDSp8fp7EH/nhVQ9IiB9Cz5vJD148T54/b0wx08HetuuO1eEdYxIkZQS1pHdiG95KXUtBVwpwe1sh1ZQDGHokL2dV183JtbAqGDbS2rcnsvoef0ncC+eG3glwLa3vw8egGjlFHjtTe+/JzTElj7JtjeLsNJqQKRtoW/dDwb2ER46dtNJuJ4Obew0AIBWOhZ6ZdWQ5kDZzzpej77XfgiZTKR/JcqtSA8yEYfVfBb61IVANA8AEF24FuKD9tojuoaX6Mfln/0DksfqAzm+WZgLPRaFXjEd+kA7e4U+dhr0imkABER+ycD/JvLPOrob/Rt+Btg+614MlpRAMg6vtwPRWSsgojmAEMhZ8TSEYNtL/nn9vbj8s/8vrNNHh+iMqRvd/mMNcKKl0EdPBgAYE2phjJ40RDnQcJE8sAXxTS+kFrENUdvr9XQi2XwO2sQ5gBEBNB0mB7FJkdfXjb5X/glu69mhOeHAILl99hhkwUiI0goAgD5xNrSS0UOTAw0biboNiL/3m9Tk91C0vZDwervg9nbDrFoCGCZgRBBbvHYIzk3DidvVhq5ffhfupaYP/nA6DExSJs8eh6iYAa1sHAAgUrMcejHLTmQTIWXA0833IOk66Fv/Y7gtpwKfzb8lIaCPmoDYwoeh5eRDKywb+hwoa9mnG9D35v8J59oFAKEh99HnITwH5qTZ4eRAWUlaSXT82/+E03IukI68WZCLaHEh9IppV7cik657U02YK1uSmbPvR6SGhXXJH+tEfWoQMBQC0HXkrv4EpJVAZOqckPKgbOQl+nH5F9+F2946RIMoN4vOmIfcOYuhl1VCyy0IJQfKTskjO5HY8tIHfzAIQgC6ibxHPwXhOdArpoeTB2UlL9GHvlf+ObWiP6S215y+AOb46dBHTeLOG6QkUf8eEjteD+fkQkBEYsh95JOAnYQ5gYuWyT+3txNdL/z/IPt7wuv3zrsfkZEVMCdWsxZMluEyxzSTUiK+5XdwL4Q0AZNKAm7LGVgNuyEKSsPJgbKS09aEvrd+Ft61CwBSon/DL6EVczUV+Selh65Xfwyn5WxgnSEzLweAhFm19LoJl+TmXyG55UVI14XQdZhVywBIOKf2B5IHDT9Oy2nE33kxxAwk4Lnof+cFGKMqQ8yDso30XHS99AO47S2h3YgCQPLoXiTPnuIEDCmxzx8LbwIGSPW3XRv9b/8Sgv1eUiBdB/1v/jTUCRgAsI/Vwe1s5wQMKbFOHghvAgZI1aa1kujf9CvooyaElwdlHWlb6HnpX0OdgAGA5N534CUTnIDJQpyESTPr4NaBGjBhP2AkYZ/YB+vglpDzoGzhxXvR9/qPQv0xSUndkPa+/kN4yVsXLSW6Ud+W15Fs3B/oBGL/xcuQEkhs+jncS2evPvHiJiy4TY1IbnkR7qWzSGz6OaAbiK3+dGC50PDh9Xamnj4Mu98gJWBb6Fv/Y0jHCjcXyhq9m34H++yxcBdvDOjf/gYSR/aEnQZlCberDf0bfo60F9JVJSVkoh99b/4E0g22FhgNH/GtL8Fra8qA+zYgufsN2OeGaitKynZu+wX0b/xl2GmktkPv60bfG/8H0gv/vyPKfFJK9Lz5c7iXw3vy+1p97/wGdtOJsNMgRZyESSOvpwOJ3W+EncZ1ErvfgNfdEXYalAXiO16HTPRlxEAKpITs60Ki7q2wM6Es4LRdQN+29cGfyPPQ13wJ0raReOvHcJuOI9nVjfily0h2dcNtakTirR9D2jZ6my+xQ0++xLe/OlADJhPaXg9eVzuS9e+GnQllAfvCGcT3vBN2GtfpefOX8OJ9YadBGe7KzgVwXYQ+AQ6k2t72C7AObw87E8oCTvMJOMf3ISOu3QGJLb+DtLmAg+5MSg9977yYEQPYAADpwW05Devo7rAzoSxgnTwI++TBzLhnG9C74ZdcwJFlOAmTRvFtr2bUf5AAAAnEt78SdhaU4ZzWs7CP7c2s61dKWAe3w22/EHYmlMGklOh+498wZCtZByZiPNtBsrMbdnc/AMDu7keysxue7aCv+RJgO+jZ9NuhyYmyln2+Ec6Zhsy5GQUASCTr34Xb3R52IpTBpOeh581/A0Rm3UpIK4G+La+FnQZlOOf0oYGtozOp7U0Vqfb6usNOgzKYdB3Et76cqieUQWS8D8n9mTUpT5nHOroHXltzZo05ILUY1Uv0h50GZTBpW+h797cI/enZa0kJr7sDiX1cPJdNMuvOKYvZ547BOXc04zrzkB6cc8dgn+UjwnRr0vPQ/95vM64zDwAQAv3v/Q4ywzpqlDmSR/bAPn9iaNtez0N/Szvsnus763ZPP/pb2gHPA6SH5OHdsM4dH7q8KKukBlJeysy2F0Bi6ytse+m2Ege2w7mYGVvhXEdKxPdtgd16PuxMKENJ20otnMukgZQrPBfxnSHWSaCMZx3eDtnTkXGD2ICEdWAL3K62sBOhDOUl+pHYnqGLJGwLiZ1DsKsCZa143UbIvh5k0hOIV/TvfBNuT2fYaZBPnIRJg0wfSIEQiG97mY+p0S1ZR3bB62jJwM48Uo8IXzwL+3h92JlQBvKsJLo3vIiMHEgBACHQ/ca/QXpu2JlQBrIOboXsuZyxba/T1JhaXEJ0Ay/eh953fhd2GrcnBHre/DdOItItJevfgYz3IhMHUiA9OCcPwLlwKuxMKAN5/d1I7t0Ydhp3lNj+atgpUIZK7H4L0k6GncatSQnryC44l5rCzoQykNvVhviet5GR/QYgtUB088thZ0E+cRImDewzDZC9nZk5kAKk6mv0dsI+0xB2JpRhpJRI7Mv8R8cT+zaFnQJloERDHWR/Zq5IAQBICbe9BdZpDmTT9aTnInlgc9hpfADB2jB0S4mDOyCtDB1IAVID2S1n4TSfDjsTyjDSsZE8tBUZ228AACGQ3P9e2FlQBrKO7gYyeWGP9OA2n0gVrSa6hpeMwzqyM3PHywBAaFnQN6cwJPZvyehuA6QH68R+uN2Xw86EfOAkTBrYjXsy9ymYK4SAfawu7Cwow7itZ1ITiBnOu3yRtWHoJvED27Kg7dUQP7gj7CwowzhNxyGTmb73tIR78Sy8no6wE6EMIqVE/MB2ZPbdKABNQ/zQzrCzoAxjnzkMOHbYadyZlHCaGuHFe8POhDKIlB7sY3syexAbAIQG+/i+sLOgDGOf2J/arjmTSQ/2yYOQViLsTCiDSNdF8khd5m2/eyMhkDzK8d5swEmYQfL6e+A0Hc/8DpGUcJpOwOvvCTsTyiDWsT0ZV1T3loSWypVogHP5UmqVc8a3vR6Sx+rhJeNhZ0IZxDq2N0vaXgGrcV/YWVAGcS42we3IglXOnodkw25I2wo7E8ogqX5vhi/eAAApYZ/gVrz0Prf1DGR/d9hpfDDpwT6+l1vx0nWso3XI2O2jr+W5sE4eDDsLyiD22SOQ2XAfLyWSh3dxK94skAUjAJnNPlGf8YsBr8UOPV0hHRvW8f2ZP6sPpB6xPLaHHXq6KnFoZ3YMpACA5yJxhJOIlCKTcThnD2dJ2ythHatjh56uSrW92XH7IG0LyRMcTKEUr68bbvPJzF+8McDiila6htW4L3va3kR/6r81IgBuZxvcS+eRFYNmQrDtpeskGnZlTdvr9XTAaTkTdhr0AbLjaspg1vF9yIofFACAhNW4N+wkKEPYZ48CTvasEJXJOJymE2GnQRkifijD9xW+lhBIHNoVdhaUIewzhzN/S4ZryL6ugZtnutdJKZE4vCs7JhCBVNt7eHfYWVCGsE9l14Sc13kR7uWLYadBGUB6LpxTB7Oo7dVgndwfdhaUIewT9dmzcE5KuK1n4PV2hZ0JZQBpJWCfasiqtjd5jOO9mY6TMIMgXQdelhWe8zovQrpO2GlQBnAvnc+aWX0AgBBwLzWFnQVlAC/RD68ri+pUSAm75SxktnTgKFDupabsansh4Lax7SXA67kMmcj0WkbXkBL2Ba4IpBS37XxW7IZzLba9BABeVxvgZngto2tJD+7Fc2FnQRnCuXg+exbODWDbSwDgtF/IngkYAJAen4TJAtk0CpBxvM5LWfeDAilTedM9z822HxUAbkdL2ClQBnAuNYedgjrHzq6JIwqM296cXW2vEGx7CUB2tr0y3gsv3hd2GpQB3Lbm7LpvExrbXgIAeNlQh+sGsucypJNFE0cUGLc9y/oObHtpgNt2IewUlLkdrVz4meGMsBPIZm6an4L5H69twct7jqLxQjtiEQOLp4zDX31kNaaNLk3redyOFuilY9J6TMo+bnt6f1T+x+tb8creo2hs6Uhdv5Mr8JcffjB916+UXJVCAACnLb2d+e++vRuvHjyJ4xcvI2YaWDRhNP7T48sxtbwkreexLzVDLy5L6zEpu0gp09p3GJJ+g/RSg5d0z3PaLqSe4krTzd0/bNyF1w6cQOOly4gZBhZNHIP/5/EVmDoyvW2vc6kZkfHT0npMyi7SdeB1t6fteEPW9nIgkDAw5pDGtvfbr27Gy3VHrl6/S6aOw1995CFMG5POPmpq4adeNjaNx6Rs4yXjkP09aTte4OMNAAAJp51tLyF1HWha2raR/s4bO/BK/TE0tnYgxzSwaFIF/vMz92HaqBFpOT4AwHXgdXdAL+KYQ6bikzCD4Ha0pHVLkS1Hz+KLDy7Am3/+Wfzmq8/D9Tx86H/8DH3JNNbt0LS0Tx5R9vES/ZDx3rQec+uxs/jiAwvwxjd/H7/+k9+D43n48D/8Iq3Xr9fNVVUEOBebUx2iNNl2shmfWzYLr37lI/jlF5+B43n4+L+8hD4rjdea0LJyFTmll+ztBNLYhg1JvwEDW5lyVdU9L9WGpe9Jgm0nmvC55bPx2h99DC/8u2dTbe8//za9bS9E2ifuKft4XW1pfQpmyNreNC+YouzkdrSk9QnaLUfP4g9WL8Jb/+lz+O3XPgnHlYFcvxxzIC/NE8lDMd7AhZ90hXOpKa11PLceP4cvrJqH9V/7JH71lY/C8Tx89HsvpL3tdbLwCZ57CZ+EGQSv82JaO0Qv/sdPXPfn733uSUz9j9/BvjMtWDF9fHpO4nlZV8eG0i+ILel+9Se/d92fv/eZJzHt6/+Q3usXEl5XG5/kusc5bc1p7RD9/AtPX/fn73z0YdT+f/4V+89fxLLJFWk6i2SHiOCmue0dkn4DALgOZG8XREF6n1Cg7OJcSu92Tr/4g2ev+/M/fOxh1PzVv6S37dUEV7RS1ra9MtkPmYxDRHPSdkzKPum+d//1V5+/7s//+PmnMOX/+h/Yd/oCVsyYkJ6TCC01VkL3tHS3vUMz3jCwnZ7rQOgcLr2Xpbvt/eWXP3Ldn//nJ9di5p//I+rPtWL51Mr0nERocC+z7c1kfBJmEKSVCPT43f1JAEBJXiytx5VWMq3Ho+wj7eCvge546r+Pkrz03jhKO70rBSj7eMlg296eROq/j+LcNLa9Ug7Jf3eU2YK+BoLqNwBseyn4fm9PInWNpb3tZb+Xsrrt5fV7r5NOsL+/XfEr12+a79kCzpsyn7STgBCBHT+o8QYAgOuk/5iUVaQd7A4s3QNjDiXp7PcKwX5vhuMkzCBIJ7iGWUqJP//lW1g2rRLVFSPTe2yX2znd8wLuVEgp8RcvbMDSqeNQXVGe3mOzQ0QBbkknpcR/eWUzlkwcg6o01+MKuiNHWSDA9ivIfgMAwGPbe68Lut/7n19+D0smjU1v2yslEGDelB1SfcdgBgKDbnvZ76Wg+w5/8W9vpK7fcWm+fl03vcej7OO6CLLtDWq8AWDbe6+TnpfWXY9uOr6U+H9+vQlLJ1egamyar19euxmNkzCDkr4tGW70pz9bj0PnL+JfbtiqIS3SuJUEZaegr4A//fkbONR0Cf/yxWfSf3BevxTgNfBnv3sXh1va8b8+sSb9B+e1S9nab0DqZoHudQG2vb/ZhIYLbfh/nw+g7Q2810MZL8D2K+i2l30HCtLX/886HDp3Ef/6hx9O/8F57VKAg9iBjjcAvH4pUP/3CxtwuPkS/umzT6b/4Lx2MxonYQYhqD0i//Rn6/H6vmN4+eufQsWIwrQfX+hm2o9J2UVoemDH/sbP38Dr+xvx8lefR0VJANevwb1Z73lGMG3Yn//uHbxx+BRe/Hcfwtji/LQfX5hse+95Af3+Bt1vAILr81D2COoa+LPfbsL6w6fw4pc+jLHFBek9uBAAr917XuraTf+gBNteGhIB3bf96U/Xpa7fb3w6mOuX1y7pJoJoe4MebwDA6/ceJzQtsK30vvnCBqw7cAK//Q8fw9iSNPd7AYDjZRmN/+8MhhFJ6+GklPjGz9bjlb1H8cqffhoTy4vTevyrOBB4zxMBDGJLKfGNX7yBV/cdw8tf/SQmlBWn/RwAAhvEpOwhzPS3vX/+u3fx+qGT+PUffggTAhlIEWnPm7JPugfThqzfAAQ2+UnZQwTQ7/3z376D1w6ewG++9BwmjChK6/EBAEIE0uehLJPma4BtLw0loRtprQ0kpcSf/nQdXtlzFK/+35/GxPKStB37Wlw4R8Iw0roqf8jGG8AJcEJqIi6N26BLKfHNFzbg1f3H8bs//nhA16/kovsMxydhBkEvLge09H2FX//pOvzb9oP45z94FvmxCFq7etHa1Yu4lcY6ApoGvSj9e2ZSdtGKytJ+zK//fD1+ueMQ/vkLzwR3/QLQi9Jbp4Oyj1E6GhDpa3u/+dt38OLeo/jHTzyK/KiJiz19uNjTh7idxv1UNQG9hG3vvU5Lc/s1JP0GABAatLwABsgpq+ilo9K6KvCbv9mEX+05gv/1/JpU29vdh4vdaW57pYReEkCNJMoqWmGWtr1GBCKWl95jUtZJ933b1/7P6/jltgP4lz/8EPJj0WCuX+ml/b87yj7pvnaHarxB5ORzAQelfdzpG798Cy/sbsD//swTqeu3uw+t3X3pvX49LzVOTRmL07uDoJeMArz07XP5r5v2AACe/Pv/c93r3/vck/jkijnpOYnnQR8xOj3HoqwlcguASAywEmk75vff2QsAePLbP73u9e995gk8v3x2Ws4hcgshIrG0HIuyl1E+Ful8tP1H2w8CAD78v39z3evf+ehD+L2FVek5iefBLK9Iz7Eoa2mFpanFG2nqOwxJvwGpySOuCCSjvALWqcNpW9X6w20HAAAf+n9/fd3r//Cxh/F7i6rTcg5IOfCbQfeydE/EDVXbq48YBRHQdiiUPfTSMXAvnktbfY1/fbsOAPDEt3583ev/+Pmn8cmVaew7lIxK27EoO6V73GkoxhsAQC9jv4EAo3wc3I6LaWt7f7C5HgDwzHf/7brX/+cn1+ITS2vTcg4A0MvGpO1YlH68ox4ELc0/Kp3/8hdpPd7tsENEQgjoI0bDbTmdtmNe/t9/lrZj3ZrgDwoBGJiESeOj7S3f+qO0HetOOBBIQtOhFZXDu9yaluMNSb9BaNBLee0SYJSPSevio9a//+O0HetO2PaSMKMQeUWQfV1pOd6QtL0a215K0UpGpbXAedf3/5+0HetOdI453PNETj5EJAfSiqfleMGPN2Cg7eWYAwF66Wikc+Fn2//8etqOdVtC45MwGY7bkQ1Ctm5vwA4RAQMz5GncTi9wQrBDRABSq7GzjqZBH5GdvxmUXnrZ2LRupxc8ySdoCUB2TmaISBRaPrfSoysrm7PoqRLPgzaC92wE6CXZ9xsscgu4ewFBCAEt2+7fuXMMDdDLxqR14edQ0IrLIHQ97DToDrJpFCDjCDMKURBMIbugiPxiiEg07DQoA+ilY9O6ojVw0uMkDAEAtLwCiJzs2iPdKB0DobFDRANtbzZ16KXMvhtoCoReXJ5lRcIFjJHjuJ0TARhoe7PsUtBHsO0lQCspT2s9rsAJAb00CxdMUSCM8oosW3zE7Zwoxci2bemEBnNkZdhZ0AfIrtYwA0Umz86eTpEQiExJ316ZlN3MCVXZ1SHSDZiV08POgjKAEAKxqgXZc/0KgVj1grCzoAxhTqxGOh9tD1wkBmP0xLCzoAwgNA3R6XOyp+2FRHTm/LCToAxhTqrJqglwkVsIPRuf/KW0E0YExrjp2dP2SglzUvrqG1B2MyfXpnU7vaBpxeXQiridEwFaTj6MMZOyZ7xXeohM5XhvpsuSX/LMZU6dmz0deilhTp0XdhaUIbRYLowJM7OjQy80mJNnQZh8iotScmqWZE+HXkrEqheFnQVlCC2vCHq2dOiFhsjUeRA6SwhSSk7N4uxpezUNsRns91KKXjwye57qEwKR6fMhsqGPTkPCnDYve9pe3UzdYxIB0MvHQSscEXYaPglEZizkE7R0VbR6UdaM94poLszxM8JOgz4Ae3aDpBeXQy+rQOY/3y6glY5lkSa6TnT6guzo0EsPkRlczUrvM0ZXQi/JgvZMCJjjp0MvKA47E8ogkWnzs6NDLz1Eps0NOwvKIOb4adDyCsNO44MJDZEptdCybOtKClZkepY8lSplaqEf0QBj3HQgGxajCQ3m5FoIIxJ2JpQhhEhNbGTF4iMAkWlzwk6BMkh0yiwgGxajCQ3RmQtYDyYLcBImDczpC5D5W4vI7LnxoCFjjJ8OEc0JO40PJHILU4+CEg0QQiBn9rLM79BLiZxZS8POgjKMObEmKzr0WlEZtNIs2w+ZAiWEhljtkixoez3k1C4JOwvKMObk2VnwBLiAXj4OelFZ2IlQBhG6AXNKFmwHKT3uvEE3iUybm/mLj4SAUTEFWm4WLDShISMisdQWX1nQ9kZncrw3G2T4lZQdIpNnAZFY2GncmRllPRi6idB0RKqXItOf5IrWLueWDHSTWM2SjB/IFrn5iE3niiq6njAjWbEqMFKznFsy0E1yZmX4BLgQ0ApKEJlYFXYmlGG0WC7MKZlez1MiUrMs7CQoA0VmZvh2kEJAKy6HPmp82JlQhtHyi2Fkej1aKRGdtTzsLCgDxWatyPC2V4M+ajwM1pHLChncCmYPEc1BzqI1YadxR7FFa7LiiQcaerG590Nk6nYdAwMp7BDRrej5hchf8XjYadxRwernIExuyUA3i85fnblbiwgBrWRUaqKI6AZ6cSlyFz+cuQPZUqLg4Y9ySwa6pdiiNZm7gENo0EdWpp7YIbqBXjISkaoMfhJRSsSWPcWFc3RLOcueyNx1n0KDMW4ajErW06CbmaPHIzJzQeZOIkoP+Q98OOwsyKcMvYqyjzl9AbQRozOvUyQEtBGjOZBCtyXMCHJWPBV2GrcmJXJWPsOi0HRbuQsfSNW6yri2V4NZMRmxKj4WTLemRXORs3ht2GncmpTIWfE0hMZuIt1a3pJHBmrDZF7bG5lUjeiUmrAzoQyl5RYgNv/hsNO4NekhZ/nTfAKRbis6bzVgZuAOHELAmDwLxuiJYWdCGUovHIHo3AeQcf2GATkr2PbS7eUtfyIzF3AIgWjtMj4Fk0V4d50mQtOQs+KZzNvrUspUZ54DKXQH5qRa6GMmZdbsvtBgTKiCWTk97EwogwndQMGjH8u8thcSBY9+nJ15uiNz+nxopWMyaxJRCJhT5sIYNSHsTCiDCTOC/NXPIeNqIgqB/IeeCzsLynCRmqXQCkszru2NVC+FXjom7Ewog4loDmKLM3AHDk1HbFGGLiyhjBGbez9EXgEyayJGIDr3PuhFpWEnQhlMyy1A7rLMa+OEGUXu0szLi24vg0Zcs58xshLmzEXInB8VAXPGQhjcl5U+gBACuSufyaCbUQHoBnKWPxl2IpQFohNnIlq1IIOuXyB30WqY5SxoTncmhIbclc8iY/oNQgBmNDMHeCjjRKfNRmRSZu3xnrdsDYxiFjSnOxOajpyVz2bOAg4hIGJ5iM1/KOxMKAuYU+dCHzk+o9re2MJHoeUWhJ0GZThhmMhd9SwyZgGH0CDyixCb+0DYmVAWiM1aDr1sTEa1vbmrnoEWyw07DVKQOVfPMJGz9AnoI8eF/x+m0KCXVyBnGQexyR+9ZCRyV3887DQGSOQ98jz0gpKwE6EsUbTmEzAyoVMkNEQmTEf+fRm6xR9lHL2sIjUYmBEE8h75FAdSyBchBAqf+H3oRSMyoO0ViEydhdylj4SbB2UNY8wkxJY+EXYaKUJD3qO/z/qd5IsQGnJW/x5ETn74bS8EjKlzYVYtCTkPyhbm+JmILcyELSFTiz7zH/8s63eSL0LTUfDE51O/1Rmw+DM2eyViVSw7kW3C/tUedoRuIPfhT0HkF4XXKRIaRF4hch/5FGtpkJLI5FrEMqBGQc7Kp7kNGSkRkSiKP/IlaLkh3pAKDXpJOYqe+QKExoLQ5F9k+nxE59wfdhrIWfUh7udOSrRYLoo+8u8HbkjDa3uNkRUoevzTLAhNSiLVSzNi8Dj3wY9DL+PTs+SflpOP3Ec/DRhGeIOBQkAfNZ51jEhZdN6DMKfNDTcJIZD36CehF48MNw/KKnpBMQqf+gKg6aG2veaEGchdyQX32Yh3KgHQcvKQ//gXwlmdIjSInDzkP/FFaDn5Q3tuGhZic+8bKJoX0vkXr0G0emlo56fspReUoOQTfwIRC2EwUGjQC0tQ8ok/5iPBdFeiCx4OdTAwtuwpRKbNC+38lL2M4jKUfPyPUitJw2h7R4xE8Ue+DBGJDu25KesJIZCz7AmYU+eGlkPOfc/BnFgd2vkpe+klo5C75jOAFsJEjBDQSsdy0SfdFSEEcu9/DsbEaoSyJa8QyH34EzDHTRv6c1PWM0ZVovCpL6b6vCG0vcaYSSh47DNc9JmlhJSZshnu8OP1XEbfWz+D13FhiM4ooI0YhbyHPwmN2zjRIEgpkax/D4ld66+8EOwJhQCQuhGO1i4L9lw07DkdF9H563+Ce/nikO33boyZiOJnvwC9oHhIzkfDk5Qekns2IrlvU6pdHIq2V2jIWfE0ItMXBHsuGvacS03o/O2/wuvuGLK21xw/DUVPfjb1FCTRXZKei8SuN2Ad3ILUgGDQba8GaDpy7vswIpNnBXsuGvbcS03o3/gzyHjv0PV7x01Hzn3PcQs9GhTpOohvfQVWw86hOaHQAMNE3uqPw5wwc2jOScOW3XQSPa//GDIZB6Q3JOeMTJ2D/Ic+xi30shgnYQImXQeJXethHdoW+Lki1csQW7yGq1EobZyWM+h786eQib7gOvVCQOQVIe+RT8IorwjmHHTPkbaF7g0vIrF/a3AnGRgkz136CPJXPsHVKJQ2TtNx9L/9S0grEVynXghoBSOQ+9Dz0EeMCuYcdM/xrAR61v8bkkf3BHcSIQAJ5K18HLlLHuYWZJQ29tkj6N/0AuDYAQ6oCGglI5H70CegF5UFdA6618hkHPH3fg3n3NHgTjKwaC666FFEqpdxCzJKG+vEfvS/8yLguoEOZuvlFch7+HkuWKa08fp70fPGT+GcPx7cSQaeuMm7/0OIVi9m25vlOAkzROzTh9H/7q8GOvVp/MqFAAwTufd9hI+yUyC8RD/63/4lnHPH0rsye+BY5qQa5N7/HEQklp7jEl0jfng3utf9DHCdtLe9IpqDoqc+i+ikqvQdl2iA19+D/rf/DW7L6TS3vRogPZjT5iFn2VNcSUVpJ6VE4sB29Lz1Quq6TeuAioDIzUPRU59DpHJqGo9LlOL1dqJ/4y/gXjqPtD4Vc6XtrVqCnMVrIQwzPcclGiClhHV4O5JXdzJI72C2yC1E7urfg14+Lq3HJQIAt6sdfW/+FF5HC4Joe6Nz7kNs0SNcNEdpJ6WHeN3biG9fP3DPlt62VyssRcHjvw+DteOGBU7CDCEv3pvqGB3aBtjJwR/QjCBavQyRmmWs/0KBklLCOXcUib2b4LaevdqZuSsDsfqYSYjNewBGxVTO5lOg3J4u9Ne9jf4976UmwgfZqRfRHOQuWo3ceaug5eSlJ0miW5DSg3OmAYl978Brb05L22uMm4bo7PtgjJmU3mSJbuB2daC/7m3E67cCnjvoiUSRk4fchauRM3cFNG6BQwGSngv71EEk69+Fd7k1PW3v+CpE59wHY2RlepMluoHX3Y7kwa2wG+sGJsLvtu1NDYSLnHxEZq1EZPoCCJO1tyg40nVgn9iPxN5N8LraBrcISWipBZ+TaxGdex+MMu64QcFyOloR37MJ1tE9AAbR9g5c91p+MXIWPIho1SIu3BhGOAkTAmknYR2tQ3L/e5DxntSLH9S5v+Z9kZOP6OxViExfyCKkNOSc1rNI7HsHzpmG1At+bkyvfkbAnFSD6Nz7ufUYDTkv0Y94/Rb07dwAGe9LvahpgHeH6/ea97WCYuQtfQQ5tUv59AANKSkl3JbTSNa/A6dp4HH3D2x7xcD4iQSEgDl5NqKzV0EfMXooUia6yov3Ib73PfTXbUrtmw188PV7bdtbVIq8JY8gVr0IwuCWuzR0pJRwmo4jWf8u3JZTqReV2l4N5rR5iM5aCb24fChSJrrqygJQq2E7YFu47tq8nWuub62oDJHZ98GcPItPD9CQktKDc3ZgAejFc6kXP3C8TFwJBjQdkZkLU/3ewhHBJ0x0Dbe3E4n6zUgc2JpaAHrttXk71/R79dIxyFm4GpEpbHuHI07ChEh6HrzOS3AvnoVz8RzcltPwejpu+pxWUAJ99EQYI8dDHzkeWnE5hMb9rylcXqIf7sVzcFrPwmk5DffiecC1r/+QEYExshL66AkwRo2HPrKSq1cpdNLz4LQ1w246Bbv5FKxzJ1KFpG+gl5TDHDcVkYpJMCsmQR8xkrUHKHRevBfuxXMD7e8ZuG1Nqe32rmVGoI8cD2PUhFQbXD6OWz5S6KTrwrnUDLv5FOzm07DPn4DX23nT5/QRo2BWToE5ZhLMsROhl5TziVkKndffk2p3L56F23oGbltz6gmva0ViA/3d8an7tvIKPjlAoZOuA6+jJTXecPEc3NYz7y8EvUIIaMXl0EdNhD6yEkZ5JURBCdteCp3X1wWn9Szc1nOpMYf25psW0IlozsB4w8CYQ3kFhMEFcxQu6TpwLp6H03IGdssZOM2nIOO9139ICOilY2COnQRj9AQYoydAY9s7rHESJsNI6QGuA+k6ELoB6AYH/SgrSCkBz4V07NSPhmFy5p6yhvQ8wLFTba9hAgbbXsoOV9reqyut2PZSFmHbS9mKbS9lM+l5qcVzngvo5sCYAwf9KPNdP+agpfoNbHspS1zt93puqt/Ltveew0kYIiIiIiIiIiIiIiKiAHCpGRERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFwAg7geEgd9kfw8zJhxHLQySvCEYsH0ZOPqI5JsyogWiOATNqIBLVEcsxkR8zUBAzUZRjoiBmoCjXRH7UQK6pIz+iD/w79eeYoSFqCET01D8xXSCia9DdJISThLATEHY89W8nCRnvgRfvg9fXA5nog0z0we3rgdOXgN0Xh9XdD7s/Abu7D3ZfElafhWS3BavXgt1nI9mdRCLhoMv20Ouk/uke+Pd33VN3/R3lLPkKzJx8mLmFA/8ugpGTj0jUQCTHRCSqX/ddFeWaKIilvpfi3NR3VpRjItfUkWPqKBj4nq78E9HF+9+TJhAzNOienfqOrP7r/i2T/fD6uiET/fDifZD93fDifbB7+mH3xWH3JWD19MMZ+N/J7iSsPhvJriTsPhtWn414nzXw/Uh02S76XA9d9uC+IyIiIiIiIiIiIiIaXvgkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwREREREREREREREREAeAkDBERERERERERERERUQCElFKGncRwk0wm8bd/+7f4sz/7M0Sj0az6vOqxByPIvIbLd0RERERERERERERE2YuTMAHo7u5GUVERurq6UFhYmFWfVz32YASZ13D5joiIiIiIiIiIiIgoe3E7MiIiIiIiIiIiIiIiogBwEoaIiIiIiIiIiIiIiCgAnIQhIiIiIiIiIiIiIiIKACdhAhCNRvFf/st/8V20PZM+r3rswQgyr+HyHRERERERERERERFR9hJSShl2EkRERERERERERERERMMNn4QhIiIiIiIiIiIiIiIKACdhiIiIiIiIiIiIiIiIAsBJGCIiIiIiIiIiIiIiogBwEibNvv71r2PVqlX45Cc/CcuyrnsvHo/jySefxP33349HHnkEHR0dd/z8FatWrUJBQcFNn3EcB5/97GexatUq/Mmf/MkHnh8A/vZv/xYLFy78wHxvlWu6hP0dfVAOwPXfUxjfERERERERERERERFlP07CpNHevXvR0tKC9957D9XV1fjVr3513fuvv/46amtr8c477+BjH/sY/vZv//aOnweAzZs34/z585gxY8ZNn3n55Zcxbtw4vPfee+jv78cPf/jDOx6vp6cHBw8e9JXvjbn+5Cc/GRbf0datWz8wh2u/pzC+IyIiIiIiIiIiIiIaHjgJk0bbtm3Do48+CgBYu3Yttm7det3706ZNQ39/PwCgs7MTbW1td/w8AHzrW9/Cpz71qVt+5sbzvfTSS3c83j/8wz/gK1/5iq98b8y1vLxc9eu4pbC/o61bt35gDtd+T2F8R0REREREREREREQ0PHASJo06OztRWFgIACgqKrppe6opU6bg4MGDqK2txY9//GNMnDjxjp/v6urC6dOnsWDBglt+5lbnu93xurq6cODAASxfvtxXvjfm+uyzzw7qu/FzzludN4jv6E453Pg9hfEdEREREREREREREdHwwEmYu9DS0oKVK1fe9I+UEt3d3QBSg/cjRoy47vOzZ8/GiRMnUFxcDMdxsGHDhlt+/orvfOc7ePTRR2/7mZKSkpveu91nv/Od7+CP/uiPrjv+reKv+NGPfoQHHngABw8exF/91V/hr//6r4fNd3Snv/eN31OQ3xERERERERERERERDW+chLkLo0ePxubNm2/65/HHH8cbb7wBAFi/fj1WrFhx3ee/9rWv4U//9E+xefNmfO9738PIkSNv+fkrjh8/jm3btuGb3/wmGhsb8Rd/8RfXfWbp0qXXxT/99NO3Pd7x48fx3/7bf8PatWvR2NiI//7f//tN8Tee/8qEQ3FxMTo7O4fFd7RixYo7/r1v/J4aGhoC+46IiIiIiIiIiIiIaHjjJEwazZs3D6NHj8aqVatw+PBhPPfccwCAP/zDPwQAfPKTn8Trr7+OBx54AP/5P/9n/M3f/M0dP/+Tn/wEW7duxfPPPw/P81BWVobnnnvu6vtPPfUUzp07h1WrViEnJwef/exnbzretcdat24d1q1bh2nTpuGb3/zmLfO9Xa5f/epXh8V3tGzZsjv+vW/8nr773e8O+XdERERERERERERERMODkFLKsJMgIiIiIiIiIiIiIiIabvgkDBERERERERERERERUQA4CUNERERERERERERERBQATsIQEREREREREREREREFgJMwGeCHP/whiouL03Ks06dPQwgBwzDQ1NR03XsXLlyAYRgQQuD06dPXvffiiy/igQceQFFREfLz8zF79mz89V//NTo6OtKe49367Gc/CyEEvvSlL9303pe//GUIIfDZz3726mstLS34D//hP2Dy5MmIRqOorKzEU089hQ0bNlz9zMSJE/Gd73xnCLInIiIiIiIiIiIionsNJ2GGqbFjx+LHP/7xda/96Ec/QkVFxU2f/Yu/+At8/OMfx6JFi/D666/j4MGD+Pa3v436+nr85Cc/GaqUfamsrMQvfvELxOPxq68lEgn8/Oc/x/jx46++dvr0aSxYsAAbN27E3/3d3+HAgQNYt24dHnzwQXzlK18JI3UiIiIiIiIiIiIiusdwEiYN1q1bh5UrV6K4uBilpaV48sknceLECQDApk2bIIRAZ2fn1c/v27fv6tMomzZtwuc+9zl0dXVBCAEhBP7yL/8SAHD58mX8/u//PkpKSpCbm4vHHnsMjY2NvnL6zGc+gx/84AfXvfbDH/4Qn/nMZ657befOnfibv/kbfPvb38bf//3fY/ny5Zg4cSIeeeQRvPjiizd9Pmzz58/H+PHj8etf//rqa7/+9a9RWVmJefPmXX3typMxO3fuxEc+8hFMnz4dNTU1+OpXv4rt27eHkToRERERERERERER3WM4CZMGfX19+OpXv4pdu3Zhw4YN0DQNH/rQh+B53gfGLl++HN/5zndQWFiICxcu4MKFC/j6178OILX91u7du/HSSy9h27ZtkFLi8ccfh23bH3jcp59+GpcvX8bmzZsBAJs3b0ZHRweeeuqp6z7305/+FPn5+fjyl798y+OEvQXZrXzuc5+7boLp+9//Pj7/+c9f/XNHRwfWrVuHr3zlK8jLy7spPhP/TkREREREREREREQ0/BhhJzAcPPfcc9f9+V//9V8xcuRIHD58+ANjI5EIioqKIITA6NGjr77e2NiIl156CVu2bMHy5csBpCZMKisr8dvf/hYf/ehH73hc0zTxqU99Ct///vexcuVKfP/738enPvUpmKZ53ecaGxsxefLkm17PZJ/+9KfxZ3/2Z1fr32zZsgW/+MUvsGnTJgDA8ePHIaXEzJkzw02UiIiIiIiIiIiIiO5pfBImDU6cOIHnn38ekydPRmFhISZNmgQAOHv27F0fs6GhAYZhYMmSJVdfKy0txYwZM9DQ0AAAeOyxx5Cfn4/8/HzU1NTcdIwvfOELeOGFF9DS0oIXXnjhuqdFrpBSQghx13mGoaysDE888QR+9KMf4Qc/+AGeeOIJlJWVXX1fSgkAWff3IiIiIiIiIiIiIqLhhU/CpMFTTz2FyspK/PM//zPGjh0Lz/NQW1sLy7KQn58P4P2JAQC+thO79vM3vn5lcuFf/uVfrhaov9WTLLW1tZg5cyY+8YlPoKqqCrW1tdi3b991n5k+fTo2b94M27az6mmYz3/+8/ijP/ojAMD3vve9696bNm0ahBBoaGjAs88+G0J2RERERERERERERER8EmbQ2tvb0dDQgP/0n/4THnroIVRVVeHy5ctX3y8vLwcAXLhw4eprN06ERCIRuK573WvV1dVwHAc7duy47lzHjh1DVVUVAKCiogJTp07F1KlTMWHChFvm9/nPfx6bNm265VMwAPD888+jt7cX//iP/3jL9zs7O2/9Fw/Z2rVrYVkWLMvCmjVrrntvxIgRWLNmDb73ve+hr6/vpthM/TsRERERERERERER0fDCSZhBKikpQWlpKf7pn/4Jx48fx8aNG/HVr3716vtTp05FZWUl/vIv/xLHjh3Dq6++im9/+9vXHWPixIno7e3Fhg0b0NbWhv7+fkybNg3PPPMM/uAP/gCbN29GfX09PvWpT6GiogLPPPOM7/z+4A/+AJcuXcIXv/jFW76/ZMkSfOMb38DXvvY1fOMb38C2bdtw5swZbNiwAR/96Efxox/96O6+mIDpuo6GhgY0NDRA1/Wb3v/Hf/xHuK6LxYsX48UXX0RjYyMaGhrw3e9+F8uWLQshYyIiIiIiIiIiIiK613ASZpA0TcMvfvEL1NXVoba2Fv/xP/5H/P3f//3V903TxM9//nMcOXIEc+bMwbe+9S381//6X687xvLly/GlL30JH//4x1FeXo6/+7u/AwD84Ac/wIIFC/Dkk09i2bJlkFLitddeU9o2zDAMlJWVwTBuv/Pct771LfzsZz/Djh07sGbNGtTU1OCrX/0qZs+ejc985jOK38jQKSwsRGFh4S3fmzRpEvbs2YMHH3wQX/va11BbW4tHHnkEGzZswP/6X/9riDMlIiIiIiIiIiIionuRkLcrPkJERERERERERERERER3jU/CEBERERERERERERERBYCTMERERERERERERERERAHgJAwREREREREREREREVEAOAlDREREREREREREREQUAE7CEBEREdH/vz07FgAAAAAY5G89in2lEQAAADCQMAAAAAAAAAMJAwAAAAAAMJAwAAAAAAAAAwkDAAAAAAAwkDAAAAAAAAADCQMAAAAAADCQMAAAAAAAAIMAo8yH6xBWf6sAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -465,7 +467,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABA1UlEQVR4nO3deZQcZ33v/89TVd09+4w02tcZbZasBbzgVcTYxNgYG0MIcDAGjIGEw3Jzg7nk5EB+JNxswOH8nFwgNyEYHJIAAQMhBGzAYH7YGBvjRZItWZKt0a7RMvvaXVXP74/qWWRtM6Puql7er3N8NNM93d/vyNPqz1R963mMtdYKAABULSfpBgAAQLIIAwAAVDnCAAAAVY4wAABAlSMMAABQ5QgDAABUOcIAAABVjjAAAECVIwwAAFDlCAMAAFQ5wgAAAFWOMAAAQJUjDAAAUOUIAwAAVDnCAAAAVY4wAABAlSMMAABQ5QgDAABUOcIAAABVjjAAAECVIwwAAFDlCAMAAFQ5wgAAAFWOMAAAQJXzkm6g2GzgK+g+Jv/EEdnhQdnAlwJfMkZyPRkvJbe5VW7rAjn1TTLGJN0yAACxqqgwYK2Vf2Sfsnt3yD9+WMGxgwp6T0jWTnyRMZLG3vDtSfeZdEZu60J5cxfJm7tYmVUb5dQ1xvo9AAAQN2Pt5HfK8uSfOKLRHU9qZPtvFPb3SMbRS9/op8VxpDCUjFFq6RrVrLtE6VUb5aRrCtk2AAAloWzDgA0DjWz9tYafeVjBiSNRALBh4QsZE4UKx1V65QbVX3a9vHmLC18HAICElGUYGN2zXQMPfUdhz/F4C+cDR2b95aq/6rVyG5rjrQ8AQBGUVRjwjx/WwC++p9y+nRO/sSfBOJLjqu7y61V3yTUyXjqZPgAAKICyCAM2DDX06wc09NhP8iGgCKcDZshpaFHTLe9WasGypFsBAGBGSj4MhCND6vvhvyi39/mkWzk9YyTjqPF336ya9Zcn3Q0AANNW0mEg6O9Wz7e/qLC3q6SOBpxJ3WW/q7qrbmKtAgBAWSnZMOCf6FTPt78gOzxYFkFgTGb9ZWr83bfKOCzuCAAoDyX5jhWODKr3u/+37IKAJI0++7iGfv1A0m0AADBlJRcGrA3V98OvKRzoK7sgMGbosR9r9IVtSbcBAMCUlFwYGHr0gWhYsEyDwJi+H31NQc+xpNsAAOCcSioMjL74rIYe+3HSbRSG76v3P/9ZNjeadCcAAJxVyYQB6/vq/8k3k26jcGyooPuYhp78RdKdAABwViUTBkaee1x2qD/pNgrLWg0/8XOF2ZGkOwEA4IxKIgzYIKic0wMvYbOjGnnmkaTbAADgjEoiDIxsf0LhQG/SbRSJ1dBvfsbsAACgZJVEGBh6/CdJt1BUdnRII8/+Juk2AAA4rcTDQNDXrbD3RNJtFJcxyu7dkXQXAACcVuJhIHfwxaRbKD5rlTvwgmyZr50AAKhMXtIN5A69KDmOFBb/jfLRFw7oCz//rZ45cFSdfYP66rtv1k0bVxW9riTZ7IiCrmPyWufHUg8AgKlK/sjA/t2xBAFJGsrmtH7RXP3N710bS72Xyh2qgqMgAICyk+iRAZvLKug+Glu9V69r16vXtcdW7ySOI//IPmnjlcnUBwDgDBI9MmCraTGe0MqODifdBQAAp0g2DOSySZaPmVXoV9P3CwAoF4nPDFQVm3QDAACcKtEwYFLpJMvHzMipqu8XAFAukg0D6UyS5eNljEymJukuAAA4RaJXE5hURk7LHIU9x2OpNzCa1Z7jPeOf7+vq09aDRzWrrkZLZjUVt7gN5c1bWtwaAADMQOKLDqWXrtZIX1csaw08s79Tb/zifeOf/z//+f9Jkt76inX6P2+7oej1U4tXFL0GAADTZay1iY61jTz3G/U/8O9JthALk86o9QN/LWOY2QQAlJbE35mq4rdlY+QtWkEQAACUpMTfnZym2XIaZyXdRnFZKd22NukuAAA4rcTDgDFGdZf9btJtFJXJZFS7/vKk2wAA4LQSDwOSVHPhZTJ1jUm3URzGqPaS66rrMkoAQFkpiTBgPE/1l1+fdBtFYby0al++Oek2AAA4o5IIA5JUs+Fymdr6pNsoLGNUe/E1cjK1SXcCAMAZlUwYMF5aja9+c9JtFI5x5DTNVu0l1ybdCQAAZ1UyYUCSMqtfptpLr0u6jcJwXTXf+j45LEEMAChxJRUGJKn+6puUWrJSKvNr8ptuuE1e6/yk2wAA4JxK7h3XOK6aXneHnLoGyZik25mR2kuvU2bNy5NuAwCAKSm5MCBJTl2Dmt/4hzKZurI7QpBZc5Hqr74p6TYAAJiyxPcmOJug57h67vuiwv5eyRZ/I6PzVXvxNar/ndez7DAAoKyUdBiQpHBoQH0/+IpyB19MupXTy5/KqL/mDfKWr5LjpaOtmb2M5KVkyvRUBwCgepR8GJAkGwYafPgHGv7tQ9Fpg1I5SmCMTG29mm9+t1KLVyjo71I4MjD5C2RSaRkvM/Gn6ybWLgAAp1MWYWBMrnO/Bn7+HfmHOyQZSQm1bhzJGNVdep1qX3GdnHR0+aANfPldh87+WMeV8dLRf6n8nw4BAQCQnLIKA5JkrVV29xYN/OI/FfZ3x1s8f1Qic8FFqt98i9ymU3db9PuOy44OTe95HVdObaPcuqYCNQoAwNSVXRgYY31fw888rOFnHlbYe6J4pw+MkayVjFFq+VrVX/EapRa2nfHLw9yogp7O6dVwHHktCzmFAABIRNmGgTHWWvlHD2h0x5Ma2f6E7PCA5DhSeB7BwDhRAJCVt6hdNesuVWb1y+RMce8Ev6dTNjc65XJu87zxUw0AAMSt7MPAZDYMlTv4orId2+UfP6zg+CGFA70TX2CcaNRgbN7AKv9n/q/A9eTOmidv3mJ5cxcrs3qT3MZTTwWcSzg6rKDv2NS+2PXktcxnbgAAkJiKCgOnY7Oj8rs6FZw4rHB4SDbwpcCPrgRwPclLyW1ulde6QE7z7IKsEWCtld99RApyU3uA48ptmiMnlTnv2gAATFfFh4GkhCMDCvq7pvUYp75FTm0jaxMAAGLFUnlFYjL10jQP/YeDPQr6jsuez7wDAADTRBgoEmOMnBlcKmizw/J7jsj62SJ0BQDAqQgDReTU1M9so6XAl9/d+ZLVDAEAKA7CQBEZ48ipbZz4PJWRUzvVowVWQX+X/P4TsqWy/DIAoCIRBorMqW2MFi7KXzHgNrTIbZozvsHRudiRQfndnbL+FK9MAABgmriaIAbBYI9MuvakSwdt4MvvOyZN+U3eyGlokVPTwNUGAICCIgzEwFp72jdwa63Cge5pzQaYdK3cxtksUgQAKBjCQAkIRwbzaxJM8X+F48ptbGUJYwBAQRAGSoT1s/L7jkerI06RU9ckp66Z0wYAgPNCGCghNgwVDHRNawtk46XlNs2JllYGAGAGCAMlxlqrcGRA4UCPpnzawBi5DbOjdQ0AAJgmwkCJsn4uf9pg6pcUmkyd3IbZMg5XjAIApo4wUMKstQoHuxUOT2MlQseT29TKDogAgCkjDJSBcHRYQf8JaRorETr1zXJqmxguBACcE2GgTNggUNB/QjY3MuXHmFRGbmMrw4UAgLMiDJQRa63C4X6Fgz1Tf5Bx5DbOlpOpK1pfAIDyRhgoQzaXld8/zTUJahrkNLTIzGQXRQBARSMMlClrQwUD3bIjg1N/kOvJa5wjk0oXrzEAQNkhDJS5cGRQwUCXNI3/jaxcCACYjDBQAWzgK+g7IeuPTv1BbiqaJeASRACoeoSBCmGtVTjUp3Cod1qPc2qb5NRzlAAAqhlhoMKEuVEFfcelMJj6g1wv2gWRowQAUJUIAxVoJhseSZJT25g/SsAVBwBQTQgDFcpaKzs6qGCge1rDhRwlAIDqQxiocDbwFfR3TWvlQomjBABQTQgDVeC8jhI0zJaTrilecwCAxBEGqogN/GiWIDvdowQNcupZvRAAKhVhoMrM+CiB40XrEnCUAAAqDmGgSkVHCbpls8PTehx7HABA5SEMVLHoKMFQ/ihBOPUHOm50xQFHCQCgIhAGIBsG0RUH0zxKYDJ1cutnybhukToDAMSBMABJ53GUwBg5dS1yahtY0hgAyhRhACeZ6VECeanoMkQWKwKAskMYwGmFo0MK+rumd5RAkqmpl1vfIuNw6gAAygVhAGdkwyC64mCaexzIOFEgqKnn1AEAlAHCAM5pxkcJvLTchtkyqXSROgMAFAJhAFNiw0DhYK/CkYFpP9apya9g6LA2AQCUIsIApiXMjSoY6JL83PQeaBy5DbNkMnWcOgCAEkMYwLRZaxWODCgc7JneksaSTCoThQKPUwcAUCoIA5ixaMCwR3Z0cNqPZYtkACgdhAGctzA7Ei1WFEzz1IHjRkcJ0rWcOgCABBEGUBDWWoXD/QqHemdw6qBGbkMLpw4AICGEARSUDXwFgz3TX5tAksnUy61vlnG9InQGADgTwgCKIswO508d+NN8pJFT1yintolLEQEgJoQBFI21VuFQn8KhPknT/DEzjpz6Zjk1bIAEAMVGGEDR2cCPljWe7uZHkuR60dLGDBkCQNEQBhCbcGyL5DCY9mNNKiOnvoVdEQGgCAgDiJW14aRTB9NnMnXRkQKGDAGgYAgDSMT5XHUg5RctqmtmyBAACoAwgETZXFbBYLdsbnT6DzaOnLomObWNzBMAwHkgDCBx1lrZ7IiCwZlciijJ8aJFixgyBIAZIQygZExsgNQr2XDajzdeWk5Di5xUTRG6A4DKRRhAybFhqHC4T+FQv6a9PoGi5Y2d+mauPACAKSIMoGTZwFcw1Cs7Mv1dESVCAQBMFWEAJc/62Wir5NzIjB5PKACAsyMMoGxE+x30TH+r5DxCAQCcHmEAZcVaKzs6qGCwd0YrGUqEAgB4KcIAylK0kmG/wuE+aYY/woQCAIgQBlDWbBgoHOxVODIw4+cgFACodoQBVAQb+NGeB4QCAJg2wgAqCqEAAKaPMICKVLhQ0CTjZVjmGEBFIwygohUkFHhpOXVN7H0AoGIRBlAVChEK5LjR1sk1DWydDKCiEAZQVQoSCoyRU9MQbZ3seoVrDgASQhhAVSpIKJBkMnVya5tkUukCdQYA8SMMoKoVLBSkMnJqm2TSNcwVACg7hAFAhQsFcr3oSEFNPaEAQNkgDACT2MBXONwfhYLzeWkYJxo2rG2QcdzCNQgARUAYAE7DhqHCkQGFw/0z3hApYuTU1EfDhl6qYP0BQCERBoCziHZJHFIw3Cf5M9s6eYxJ10ahIHX+ixiFYahdu3bpqaee0sDAgNrb23XttdfK4ZJHADNAGACmwFormxtVONwnmx05vydzPDm1DXJq6md0CuHzn/+8Pv7xj6uvr++k27/0pS/pve997/n1BqAq8WsEMAXGGDnpGnnN8+TNWiinpkHSDH+7D32Fgz3yTxyU33dcYXZE08nkf/Znf6Ybb7xRP/3pT9XV1SVrrS699FI98cQTM+sHQNUjDADTZLyU3MbZ8loXyalrlszMX0Z2dEhB71H5XYcVDPXJTmE+YWRkRM3NzXr00Uf1yU9+csa1AWAMy6cBM2QcV259s5y6RtmR/FxB4M/syfJHC8LBnnPOFrzlLW/Rl770JRljtGrVqvP8LgCAIwPAeTPGkVPbIG/WQrlNc2XOc+tjmx2edLSg95SjBV/96lfV3d2tu+6667zqAMAYjgwABWKMkcnUysnUyuayCob7ZEeHZv6Eoa9wsFfhYG/+aEGDTCpa4bClpYVFjQAUDGEAKAKTSstLzckvYjSQX8QonPHz2eywguxw/kqE+vwAIwAUBmEAKCLjenIbWuTUN8tmhxUOD8jmzuPSxElHC8LzOeoAAJMwMwDEwBgjJ1Mnr2WevNmL5NQ2zfgqhOHhEX3zu9/XU089fdLt27Zu0b/+679qYOA891cAUHUIA0DMxo4WeK2L5TbNkUnVTOvxH/vk/9YdH/ifeuTxJ5TJRMOKmUxGT/z2Sd1xxx36w/feKXueqyUCqC6sQAiUABv40V4IIwNSePbZgle+9g1a/7KL9OUvf/mU+z7ykY/o/h/+QM/88qeSm4r2RcjUybicEQRwZvwLAZQA43py61vk1J17tuCC1av0zW9+Uz/96U9Pua+7u1uv/p2ro0+C3MTaBamMTKYuCgbsogjgJTgyAJSoMx0t6Oru0b996zs63tV1ymNampr09jf/nubNnXPG5zXpGjmZeplMrcx5rJ4IoHIQBoASZ60tzJUIpxhbF6FeJl3DugVAFSMMAGVk4mjBoDSFfQymzDjRKYRMXUG2WAZQXggDQBmy1sr6o7IjQ9F6A+exoNEpjBMdMUjX5o8YcCoBqHSEAaDMRacRRhSODsqODksq5EvaRDMG6dpoxoDhQ6AiEQaACmJtKDs6HAWDbCHnCyLGS+ePGtRJrsfpBKBCEAaACmXDQOHokOzokGxutPAFHE9OplYmXcucAVDmCANAFbCBr3B0KBo8DIqwOqFx8pcs1kU7KzrMGaB82Oyw7GB+u/DAj2503Oi0WLpWpr6p4mdnCANAlbF+diIYFPKKhElMqmZiCJHVD1EirLWyPZ0Ke48p7Dsu23dcYd9x6Vyn1BxHpmGWnKa5Mk2tcprmyGldLJPKxNN4DAgDQJWKrkjIyo4OKhwp8BUJk3kpOama6MqEVKbif8NC6Qn7jis48Lz8/c9Jw/mNvIwz/Z/5sVNh1kaX4y5YIW/pOjnz28o+9BIGAEwKBkMKs8MTh0qLwKQy0ZGDdEbGY9YAxWGzI/L3blWw7znZ/q7ojbzQb3djz+mm5C5eI699k5xZCwpbIyaEAQCnsH5OYXY4OpdajOHDcSYKB+kaOakayUsRDnBebBgq6Niq3PZHpFxWhb3U9izywcBZvEap9a+UU9cUT90CIQwAOCsbBtFyyKPD+csVi/hPhnFODgdcvohpCDo7lNv6kOxAd3JNGCPJyFt9qbzVr5BJpZPrZRoIAwCmbGyBI5sdjk4nFGkAcZzjyqRq5KTzpxbK/LwsisOODCr75AMKj+6VZBTb0YCzMlI6o/TLr5e7aFXSzZwTYQDAjFhrJT+nMDukcHS4OJcsvpTrTQwjehkZlxURq13YdVijj31fyg4XfiagQLw1l8lbd2VJD88SBgAUhA38aM5gdLjAuyueheNGpxW8dP7PVEn/g4vC8g8+r9wT9+dDQGm/lTkL2pW+9HUyXirpVk6LMACg4GwYRqcSciOy2VEpLN7VCS9lvPSkcJBm7qBC+S8+rdyWnyfdxjQYmVkLlLnyDTLpmqSbOQVhAEDR2cCPNlPKjURDiMVa0+B0jCOTSkenFcb+ZIXEsubv367cb+9Puo3pM/lAsPnNJbfpF2EAQKystVKQU5gdlc2NRKcU4v5nyPXGw4HjZbiksYyEvcc0+ouvF394tYjclRcpvfFVSbdxEsIAgESNL3iUP6UQrWsQ9z9LJn9qIS3jpqJwwPxBybHZEY38/F+lkYGSHRacqtSlr5W3ZG3SbYwjDAAoKdZa2Vz+qEF2RNbPJteM40WhwEvJuClmEBJkrVX20e8qPLav7IOAJMlxlbnmbXKa5ybdiSTCAIASZ8NwPByE2ZF4LmE8FzcfELx0PiSkoisbCAlF43dsVe7pnybdRuEYI9MwW5nr3lESPzes4AGgpBnHkcnUSplaucqHA39UNpcd/zPWgURJCnKyQU52dGhSo0bGTUfBYNKRBIYVz58NA+We/3XSbRSWtbL9JxQeeVHuwpVJd0MYAFBejOPIpGuldK2k/EBi6EfhIDcazR8kcWrB2iic+C/Zy8Fxo5UTXU/G9WSciY9lnJL4rbDUBQd2TOw2WFGMcjselbNgReI/B4QBAGXNGBMdtndTUk29pMlDiaPjfyY2fR4GsmEg5UZPHYs0JgoGjndyYHC9aF6BoCBrQ/k7Hku6jSKxsr3HFB7dK3d+W6KdEAYAVBxjot0QlcqM32bDID97kD+94GeTH0TLL+lslTv99ROTjyq8JDBUy1GF4OAu2aHepNsoHmOU2/FrwgAAxME4rkymTsrUSZpY78Dmsgr90ehN2c+ppJa1PddRBceLZhIcN1rEZvxPZ/zzcg8NwZEXxrcHrkjWynYfls0OR6e/EkIYAFCVjDFSfuliRw2SxgKCHw0H+rnoFEOQk4L4llOesrEwkz/7cda3ypcEBGPGgsPJQULGlFxwCI/tr9wgMEl44lCig4SEAQDIiwJC/lLBiTMM4zs02iCbDwnR1QRlswpeGERHGRRdlnnmt1YzERqME/1GbhwZx+Q/d/KBYdLHjnPy1xYwTIRDfdLkKzZi8I8/ekR3f+/nOtLdp3VLF+iz73mDrr5wRXGLGkfhiYOEAQAoZcYYKRWtUDhZdJlj/ujBeEgogVmEGbMTpyZOvnV6xsKCMxYcxoJC/mMZyWjSx0Zm7Lb855KJFhiK0bcffkofu+d7uvsP3qQr17bryz/+ld7wv/9JT/79n2jp3FnFK2xDBccPKMn9DFl0CAAKKLrUMRg/ejB2msEGfvkcSSgR4d5nFR7cGds6Er/zsbv18hVL9Pfv//3x2y760N/qlss36FPvuLm4xY1Rzc0fioZDE8CRAQAoIDN2uaDrSTp5IGx8TYSxcJD/04bRx+V7RKFIcvHtcJnN+XrqhQO66/euO+n2V7/8Av16R0fxG7BW8rMSYQAAKttJayK8hLVWsuFESAhPDgzVeFTBBvF9z8f7BxWEoea3NJ50+7yWRnX29MfSgw18JTW+SRgAgBJgjJFMfrJ/0voIY8ZPP+SvdlAQyNpg4hx/GFZeYIh7mWkpml2Y3IK18V1hkcD3O4YwAABl4OTTDzWn/ZqxowtRQAgnBYWJwDD2eZJvPFN2miMoxTKnsV6u4+hIT99Jtx/rHdC85oZYekhqXkAiDABAxRg7uiDHPefh5rEjDeMBwU4ODmF0DttGf1ob5kOGVZyLMhnXk41pwaF0ytNFK5foZ8/s1K1XbBq//WfP7NTNl60ven1JsYaflyIMAEAVGjvSIFfTOk8dHX0YCwphPlSEpwaH8Y8n7h9/rCb/KZ0pYJjG2dLhF87/m52i//H6a/Sev/t3XbxyqS6/oE33/ORR7T/erffecFXxi9fUR0toJ4QwAACYsujog5EUbc1cqLPp9qXhwFqFxlWw8/ECVTi33998kU70D+lv/uPHOtLdpwuXLdR3P/E+LZs3u7iFjZE7Z2lxa5yrBdYZAACUIhsGGvnB56MjCxUu9bLr5LW/LLH6TmKVAQA4C+O4Mi0Lkm4jFk7r4mTrJ1odAFBRgiMvKujulM0OqxAHnt25y/KnJSpYKiPT2JpoC8wMAAAKJrf7SQX7d0SfeCmZuiY5dc0ydU3j/zl1TTL1+du8s0/Qe20b5e98XCW1tXRBGXkrL058t0jCAACgYLy2jRNhwM/J9p1Q0HfizA9I1+bDweSwMDk8NMpt26igY0tlLtfsevJWvDzpLggDAIDCcReuktK1UnZ4ag/IDivMDks9nWf8Em/1pQXqrtQYeSsvkkmffhGpODEzAAAoGOO68pYXbpEed8kFSl/8GrnL1lfe7IDjyFt5cdJdSCIMAAAKxIahgsMvyg50F+T53AUrlLnqjTKOI++CKxJdoa8YvLVXymRqz/2FMWCdAQDAeQl7jsrfs1X+3m2yw4XZ4c+Zs0Q1194m46XHbws6O5R99LsFef5kGTkL2pW+/PWJDw6OIQwAAKYtHB5QsHeb/D1bFZ7lfP9MOLMWqOa62097Lj33/GPyt/+qoPViZYxMbZMy17490eWHX4oBQgDAlFg/p+DA8/I7tio48mJRpvtN0xzVvOptZxyq89ZcprD7sMLOjvK8usA4Sl9xa0kFAYkjAwCAs7DWKjy6NzoNsH+75GeLVsvUt6jmd98pp67p7D3lRjX6y/+Q7T9RRoEg2tMhfdnNcheuTLqZUxAGAACnCHuPy+/YIr9jm+xQX9HrmdrGKAg0zJrS19tcVtnH/lPh8YMq+QWJjJEcV+krbo1WVCxBhAEAgCTJjgzK3/us/I6tCrsOx1c4U6faV79DTvPcaT3MBr5yzzyoYN9zRWqsAIyRMvXKXHGrnJZ5SXdzRoQBAKhiNvAVHNwpf89WBYdfkGzMOwSmMqq57na5sxfO6OHWWgUdW5Tb8vOxGwrY3Plz5ixV+rLXyaRL4xLCMyEMAECVsdYqPLY/Og2wb7uUG02mETelmmtvkzt36Xk/Vdh3Qrltv1B4dK8ko2RPHRgpXaPU+s1yl10oY0p/SR/CAABUibDvhPyOrfI7tsoO9sZS05m9SOFAl5Qdeckdrmp+561yF64oaL2gs0O5rQ8VbOGjaTFGkpG3+lJ5q18hk0qf8yGlgjAAABXMjg7J3/dctB7AiYOx1DR1TfLaN8pr2yinaY5Gf/uA/J2/mfQFRpmr3yRv6dqi1LdhqGDvVuV2/FoaHZKMU8TTH/mjEMbIWbRGqfWbz3k1RCkiDABAhbGBr+DQ7mg9gEO7pDCGOQAvLW/ZOnntm+TMXXbSynpB12GNPPDl8c8zV9wqr31j0Vuy1io8cVDBgR0KDjwfXRZpTEHnCpzWxXKXrpO7aHVJbDg0U4QBAKgA1lqFxw9EpwH2PXfqYfliMEbuwpXy2jbKXbxGxjv93gHWWg3/8B9l+44rfelrlVp9SfF7e2kPYaCws0PBoV0Ku4/IDvZMhALjSLKnCQkmHx4mhal0rZymOXLmt8tbskamtjGm76C4CAMAUMbC/i75HduiOYCYzpM7sxbIa9sob/l6mdqGKT0m+9wjkozSF15V3OamyIaB7ECPbP8JhX3Ho7UUAl82DKI3f8eTcV0pVSunabZM0xw5ja1l/dv/2RAGAKDM2OzwxBzA8QOx1DR1jfKWb5TXvnHa6wFI0akL47ICfqkiDABAGbBBoODwC/I7tig4uEsKg+IX9VLylq6LBgHnLZdxSv8SOcwMMQ0ASpS1VmHXofz2wM9K2eHiFzVG7vx2ee0b5S654KQthFG5CAMAUGLCwZ5oDmDPFtn+rlhqOi3z5LVtktu2Xk6FDMVh6ggDAFACbHZE/v7t0RzAsX2x1DS1DfKWb4hOA8yaH0tNlCbCAAAkxIaBgsMvRusBHNwpBX7xi7opuUsuiE4DzG9nDgCSCAMAECtrrcLuIxNzAKODsdR15rdFlwMuXSuTysRSE+WDMAAAMQgHe+Xv3SZ/z1bZvuOx1DTNc6MA0LahLJfIRXwIAwBQJDY3Kn//DvkdWxV2dsRTNFMvr229vLZNcmbNP2lZYOBMCAMAUEA2DBV07pG/Z0u0Hn4scwCe3MVr5LVvkrtgBXMAmDbCAAAUQNDdGQ0CdmyTHRmIpaYzb/nEHECFLpOLeBAGAGCGwqF+BXu3Kbdnq2zv0VhqmsbW/PbAG+TUt8RSE5WPMAAA02D9rIL9z0dHATr3FHQ73DPK1MlbdmG0PfDshcwBoOAIAwBwDjYMFR7tiC4HPLBD8nPFL+q4+TmAjXIXrpRx3OLXRNUiDADAGYQ9R+V3bJXfsU12uD+Wms7cpdEcwLJ1MunaWGoChAEAmCQcHlCw99nocsDuI7HUNA2z8nMAG+U0zIqlJjAZYQBA1bN+TsHBndHlgEdejGcOIF0jb9l6ee0b5bQuZg4AiSIMAKhK1lqFR/dGcwD7t0t+tvhFHUfuotXy2jbKXbRKxuWfYJQGfhIBVJWw73gUADq2yg71xVLTaV0sr31TNAeQqYulJjAdhAEAFc+ODMrf91y0PXDXoVhqmvqWiTmAxtmx1ARmijAAoCLZwI/mADq2Kjj0gmTD4hdNZfLrAWyUM2cpcwAoG4QBABXDWqvw2P7ocsB9z0m50eIXNY7cRSvltW2Su3g1cwAoS/zUAih7YX+X/D1bovUABntiqenMXhSdBlh2oUxNfSw1gWIhDAAoS3Z0aGIO4MTBWGqauqZoQaD2jXKa5sRSE4gDYQBA2bCBr+DQ7vwcwC4pjGEOwEvLW7YuGgSct5w5AFQkwgCAkmatVXjiYHQ54L5npexI8YsaI3fBCnntm+QuXiPjpYpfE0gQYQBASQoHuqNBwD1bZQe6Y6npzFoQLQi0fL2c2oZYagKlgDAAoGTY7LD8fdujfQGO7Y+lpqltlNe2IToN0DIvlppAqSEMAEiUDQIFh1+I5gAO7pTCoPhFvZS8JWvltW+K5gAcp/g1gRJGGAAQO2utwq5D+TmA56TRoeIXNUbu/PboNMDSC2S8dPFrAmWCMAAgNuFgj/yObdEcQP+JWGqa5nlKtW+Uu3yDnLrGWGoC5YYwAKCobHZE/v78HMDRfbHUNDUNcvNzAO6s+bHUBMoZYQBAwdkwVHDkRfl7tkRzAIFf/KKuJ3fJWnntG+XOb2cOAJgGwgCAgrDWKuw+El0O2PGsNDoYS11nflu0KuDStTKpTCw1gUpDGABwXsKhvvwcwBbZvuOx1DRNc6J9AZZvkFPfHEtNoJIRBgBMm82Nyt+/I5oD6OyIp2imXt7y9dG+ALMWsCwwUECEAQBTYsNQQece+Xu2KjjwvBTkil/U9eQuXhMNAi5cIeO4xa8JVCHCAICzCrs7levYqmDvNtnhgVhqOvOW5ecA1smka2KpCVQzwgCAU4RD/Qr2botOA/QcjaWmaWydmANoaImlJoAIYQCAJMn6WQUHno9OA3TukawtftF07cQcwOxFzAEACSEMAFXMhqHCo3vl79ki/8Dzkp8tflHHlbt4tby2TXIXrpRxmQMAkkYYAKpQ2Hss2hegY6vscH8sNZ05S+S1b5K3bJ1MujaWmgCmhjAAVAk7PCB/77PRHED3kVhqmoZZ0SBg2wY5jbNjqQlg+ggDQAWzfk7BwZ3R9sCHX4hpDqBG3rILo+2BWxczBwCUAcIAUGGstdEcQMdW+ft3SLnR4hd1HLmLVkfrASxaJePyTwtQTnjFAhUi7Ds+MQcw1BdLTad1cXQ54LILZTJ1sdQEUHiEAaCM2dGhaA5gz1aFXYdiqWnqm/NzABvlNLXGUhNAcREGgDJjA1/BwV3yO7YoOPSCZMPiF01lojmAto1y5i5lDgCoMIQBoAxYaxUe3x+dBtj3XDxzAMaRu3ClvPaNchevYQ4AqGC8uoESFvZ3RYOAe7bKDvbEUtOZvTA6DbB8vUxNfSw1ASSLMACUGDs6LH/fc9F6AMcPxFLT1DXJa9sgr22TnOY5sdQEUDoIA0AJsIGv4NDuaD2AQ7ukMIY5AC8tb+m6aF+AecuZAwCqGGEASIi1VuGJgxNzANnh4hc1Ru6CFdF6AEsukPFSxa8JoOQRBoCYhQPd0RxAxzbZ/q5Yajot8+W1b5K7fL2c2oZYagIoH4QBIAY2OzIxB3Bsfyw1TW1jfg5go5yWebHUBFCeCANAkdgwUHD4Bfl7tio4uFMKg+IX9VLylqzNzwG0yThO8WsCKHuEAaCArLUKuw5HpwH2PiuNDhW/qDFy5rcp1bYpmgNIpYtfE0BFIQwABRAO9ubnALbK9p2IpaZpniuvfZO85evl1DXFUhNAZSIMADNkc6Py922P5gCO7o2lpqlpkLt8fXQaoGU+lwMCKAjCADANNgwVHHlR/p4t0RxA4Be/qOvJXXKBvLZNche0MwcAoOAIA8A5WGsVdndGGwPtfVZ2ZDCWus78tmhZ4KVrZVKZWGoCqE6EAeAMwqE++R3bojmA3mOx1DRNc+S1b5S3fIOc+uZYagIAYQCYxOay8g/skL9ni8LOjniKZurkLV8vr32TnFkLmAMAEDvCAKqeDUMFnXuifQH2Py8FueIXddz8HMBGuQtXyDhu8WsCwBkQBlC1ojmArfL3bpMdHoilpjN3WXQaYOk6mXRNLDUB4FwIA6gq4XC/go5no8sBezpjqWkaZ0eDgG0b5TS0xFITAKaDMICKZ/2sggPPR8sCd+6RrC1+0XRtNAfQtlFO6yLmAACUNMIAKpK1VmFnR3QaYP8Oyc8Wv6jjyl28Oj8HsErGZQ4AQHkgDKCihL3H5O/ZKn/vVtmh/lhqOnOWRHMAyy6USdfGUhMACokwgLJnRwbl7302uhyw+0gsNU1Di7y2TfLaNshpnB1LTQAoFsIAypL1cwoO7owuBzz8QjxzAKkaecsvjOYA5ixhDgBAxSAMoGxYaxUe2xedBti/XcqNFr+o48hduEpe+ya5i1bJuLxkAFQe/mVDyQv7Tsjv2CK/Y5vsYG8sNZ3WxdHlgMsvlMnUxVITAJJCGEBJsqND0RxAx1aFJw7FUtPUN0+sB9DUGktNACgFhAGUDBv4Cg7uiuYADu2WbFj8oqmMvGXrogAwdxlzAACqEmEAibLWKjx+QP6eLfL3bZdyI8Uvakx+DmCj3EWrZbxU8WsCQAkjDCARYX9XtCBQx1bZgZ5YajqzF+bnANbL1NTHUhMAygFhALGxo8Py9z0XzQEcPxBLTVPXKG/5RnntG+U0z42lJgCUG8IAisoGgYLDu6N9AQ7tksKg+EW9tLyla+W1b5IzbzlzAABwDoQBFJy1VuGJg/ntgZ+TssPFL2qM3AUron0BllzAHAAATANhAAUTDnTL79gWzQH0d8VS02mZHw0CLl8vp7YxlpoAUGkIAzgvNjsyMQdwbH8sNU1to7zlG6I5gJZ5sdQEgEpGGMC02TBQcPhF+Xu2KDi4M545ADcVzQG0bZQzv03GcYpfEwCqBGEAU2KtVdh1OD8H8Kw0OhRLXWd+e7Q98JK1Mql0LDUBoNoQBnBW4WBvfg5gi2zfiVhqmua58to3yVu+Xk5dUyw1AaCaEQZwCpsblb9/u/w9WxUe3RtLTVNTL3d8DmA+lwMCQIwIA5Ak2TBUcOTFaF+AA89LgV/8oq4nd8kF8to2yV3QzhwAACSEMFDFrLUKuzujALB3m+zIYCx1nXnLozmApetkUplYagIAzowwUIXCob6J9QB6j8VS0zTNyW8PvEFOfXMsNQEAU0MYqBI2l5V/YEc0B9C5J56imTp5y9dHlwPOXsgcAACUKMJABbNhqLCzQ7mOLQr2Py8FueIXddz8HMBGuQtXyDhu8WsCAM5L1YQBa220OE4QyIa+ZIyM40muV3GDa2HPUfl7tsrfu012uD+Wms7cpdHlgEvXyaRrYqkJACiMigwD4WCfgq7O/H9HFJw4rKD7qOSf/jdjU9ckt3WB3NaFcmfPkzt7gdxZ88pqs5tweEDB3m3RaYCezlhqmsbZE3MADbNiqQkAKDxjrbVJN1EIQV+XsrufUXbnUwq7j+ZvNZIxkg2n9iSOI4X5r3VcpZavVXrNRUotK81d8KyfU3Dg+ehqgCMvSnH8r0zXylt+oby2TXJaFzEHAAAVoKzDQDgyqOzuLco+/6SCo/vzb/wF/HaMEwUJL630yo1Kr3m5vMWrEn0DtNYq7OyIlgXev0Pys8Uv6rhyF62OdgdcuErGZQ4AACpJWYYBG/ga3fKIhp94MP9maCQV+dvIBwN37hLVbX69vAXLilvvJcLeYxNzAEN9sdR05iyJTgMsu1AmUxtLTQBA/MoqDFhrlXtxm4Z+9QPZgd5kmsiHgtSqTaq94rVyG4t3rtyODMrf+2y0PXDX4aLVmcw0tOTnADbKaZwdS00AQLLKJgwEXZ0afOg7Cjr3KpYjAediHMkY1Vx0jWoueXXBDp1bP6fg4M5oDuDwC/HMAaRq8nMAG+XMWcIcAABUmbIIA9kXtmrwwW9Gw31THQaMjZE7f5kabrxdTl3jjJ7BWqvw2L7oNMD+7VJutMA9noZx5C5aFc0BLFot41bkhSUAgCko6TBgrdXIb36qkd8+mHQrZ2ccmZo6Ndx8p7w5i6b8sLDvRDQI2LFVdjCe0x5O6yJ5bZvkLb9QJlMXS00AQGkr2TBgw0BDv/iusjueSLqVqTFGclNquOldSi1eecYvs6ND8vc+J79ji8ITh+Jprb55Yg6gqTWWmgCA8lGSYcBaq6Gff1vZ53+bdCvTY6J1DRpv/UN5C5aP32wDX8GhXfL3bFVwaHc8pzpSGXlL18lr3yhn7jLmAAAAZ1SSYWB026819MvvJd3GzBgjU1Ovprf8kezooPzdT8rf95yUHYmltrtwZbQvwOI1JblQEgCg9JRcGPCP7FX/9/6xBAcFp8E4cucvU82FFyv35I+LXs6ZvTA6DbB8vUxNfdHrAQAqS0mNkIdD/Rq4/2tK/LLB82VDBUc65LcuOHmJ4wIydY3ylm+MTgM0zy348wMAqkdJHRno/8E98g/EdE49Junlq6TeI4V5Mi8tb+naaBBwfhtzAACAgiiZIwN+5375+3cm3UZhGSO/p1uu7MzfuI2RO79dXvsmuUvWyHjpwvYIAKh6JRMGhp/46cTGQJXCWoW9J+S0NMloet+X0zI/WhBo+Xo5tTNbzAgAgKkoiTDgHzsof9/zSbdRHMYozEnOFAb7TW2DvOUbotMAs+YXvzcAAFQiYWDkiZ9V3lGBMdYqHOxT2FArxzvN/gVuSu7SC5Rq2xTNAThO/D0CAKpa4mHA5kaV2/tcPBvyJMU4Cq2jyW/zzvx2ee0b5S1ZK5NiDgAAkJzEw4Dfub+yg4Ak2VA2sDJz5uWXBd4gp64p6a4AAJBUCmHgcEcspwj+3/sf1Q+e3qldnV2qSXm6bMViffKN12j1/HjW6rcjQ8pc+3a5tQ2x1AMAYKoSP0HtH3oxllmBR3bv13uuuVgP/K/b9Z3/8Vb5Yag3/Z//0OBotui1xwSd+2KrBQDAVCUaBmwYyI/pDfLbH3qLbrtyo9YtmqsNS+bp8++4SQe6+vTMvs5Y6ss40VEQAABKTLJhYHRECvxEavcNj0qSWuprYqpoFQ70xlQLAICpS/Y0gZ9LpKy1Vp+472e6YuUSXbgopnX9rU3s+wUA4GwSPk2QzFGBj33zJ3r24FF96c5bYq1rA8IAAKD0JBoGjDuFZfkK7E+++RP9aMtuff9/vk2LZ8V7eR/7CgAASlGylxZ68YUBa63+5D9+qv9+eqe+/8dv0/I5LbHVliQZIxPj9wsAwFQlGgZMplYmXSObHSl6rf/1jZ/o2088p3/7w99TQyatzt4BSVJTbUa16TjepI2c5jkx1AEAYHqSDQPGyF3YFm1SVORVCO/55VOSpFvu/vpJt3/+HTfptis3FrW2JMmG8ha2Fb8OAADTlPgKhKmF7bHsWNj1xT8peo2zMkbe/KXJ9gAAwGkkvgKht7Ct8vcmkOTOXiCTyiTdBgAAp0g8DLhzF0vuabb2rSTGkbd4ZdJdAABwWomHAeN6Sl9wSbRZUaWyoTJrL026CwAATqsk3oFrLnqVpAo9VWAcpdrWy21dkHQnAACcVkmEAbdpttJrLq7MowM2VM2l1yXdBQAAZ1Qy7741l1xbeYOExpG37AJ5cxcn3QkAAGdUMmHAbZ6j9LpLJWOSbqWArGove03STQAAcFYlEwYkqe7qW+S0zKuY0wW1m1/PUQEAQMkrqXddk0qr4aZ35vcsKOMjBMYotfoiZdZfkXQnAACcU0mFAUlym1rVcP1tKturC4wjp2We6q95o0xFnfIAAFSqkgsDkpRafoFqr7gx6Tamzzgy6Ro13PROmRTbFQMAyoOxtnRH+Ee2PKzhR36QdBtTYxw59U1qeP375Da3Jt0NAABTVtJhQJKyu5/R4IP/IdmwhC89NHLnLFLD6+6QU9eYdDMAAExLyYcBSfKPH9LAD++VHeoryUCQXvcK1b3yVhk38U0gAQCYtrIIA5IUjgxp+LEHlH3u8WgtAhsm3ZJMXZPqrn6d0qtelnQrAADMWNmEgTFBV6eGHvkv+Qd2K7r8MOb2jZEcTzWXXqeaTZtlvFS89QEAKLCyCwNjcvue19DD/6Ww93i0SFHRjxREwSO99hWqvfw1zAYAACpG2YYBSbI2lH+4Q9ldzyi7+2kpO1rYYGCMZK3c1oVKX3Cx0is3yWloLsxzAwBQIso6DExmA1/+gd0a3fmUcvt2RMFAkmSmNmPgOFI49jVGTnOr0qtfrvTql8ltmVvM1gEASFTFhIHJrLWywwMKujoVdB1R0HVUwYlDssODsoEvhcH4uX/jeXKa58htXSB39gK5s+bJnTWPWQAAQNWoyDAAAACmriSXIwYAAPEhDAAAUOUIAwAAVDnCAAAAVY4wAABAlSMMAABQ5QgDAABUOcIAAABVjjAAAECVIwwAAFDlCAMAAFQ5wgAAAFWOMAAAQJUjDAAAUOUIAwAAVDkv6QYmS190pxwvLeO4Mo4rNzXxsXGciftcV46XljN+n3vKfcZx5ThGxjFyXUfmJR87jpHjmvGvOet9xsj1HLmOkesYpfMfe+OfuxP3uRNf5036Wvd0Hxsjxxi5Rkq5zvjHnuvINYo+d4xSjjnNx9H9KccZ/9g1RsZIjpGMUf75JSPJdYwcKfpeHI1/7BjJNZM/jp7DWCvZUCb0pZM+DqP/wjPfZ2woBcHEx6EvhYFsGEp+VjYIpDCMbvNzsmEQfZzLSWMfj33t2NflshOPCQOFOV82CGXDUGHWVxhEj7FBqDDnKwwmPrb5j4OcLzvp64KsP+njQDa0CgOb/zz/+NBG9wVWNrAKg1BBLsw/p1WQC/KPmXhcaK0Ca5UNrQKrl3z80s+jj0NFHwdW+fsmPv6/tiPR12Wh8Prm9c3ru3Rf3xwZAACgyhEGAACocoQBAACqHGEAAIAqRxgAAKDKEQYAAKhyhAEAAKocYQAAgCpHGAAAoMoRBgAAqHKEAQAAqhxhAACAKkcYAACgyhEGAACocoQBAACqHGEAAIAqRxgAAKDKEQYAAKhyhAEAAKocYQAAgCpHGAAAoMoRBgAAqHKEAQAAqhxhAACAKkcYAACg2tkKNTIyYj/5yU/akZGRpFs5RSn3Zi39nY9S7q2SlPLfcyn3Zi39nY9S7u18GWutTTqQFENfX5+am5vV29urpqampNs5SSn3JtHf+Sjl3ipJKf89l3JvEv2dj1Lu7XxxmgAAgCpHGAAAoMoRBgAAqHIVGwYymYw++clPKpPJJN3KKUq5N4n+zkcp91ZJSvnvuZR7k+jvfJRyb+erYgcIAQDA1FTskQEAADA1hAEAAKocYQAAgCpXcWHgox/9qF75ylfq7W9/u7LZ7En3DQ8P6+abb9Y111yj66+/Xl1dXSXV35i/+Zu/0aWXXpp4T77v64477tArX/lK/dEf/VFs/Uy1vzFx/31NdqbeSuFnrRLx+i5cT7y+z62aXt8VFQaeeuopHTlyRL/85S914YUX6tvf/vZJ9//oRz/Shg0b9Itf/EJvectb9LWvfa2k+pOk/v5+bdu2rSR6+q//+i8tWbJEv/zlLzU0NKRf/epXsfU1lf6k+P++ptpb0j9rlYjXd2F74vU9896S/lkrhooKA48++qhe85rXSJJuvPHGU364V69eraGhIUlST0+P5s6dW1L9SdLf/d3f6YMf/GBJ9DSVfpPsT4r/72uys/WW9M9aJeL1XdieeH2fXbW9vr2kGyiknp4eLVq0SJLU3Nx8yqGblStXatu2bdqwYYOMMXrsscdKqr/e3l5t3bpVn/jEJ0qip56envH1t0/Xb9L9JfH3NdXekv5Zq0S8vgvbE6/vmfeW9M9aMZTlkYEjR45o8+bNp/xnrVVfX5+k6H/k7NmzT3rcvffeq1e96lXatm2b/uIv/kKf+tSnSqq/u+++Wx/60IeK0tOZzJo164w9ne2+Uugvib+vyc7WW1w/a5WI13fh8PqeuWp7fZdlGFiwYIEefvjhU/676aab9OMf/1iS9MADD+jqq68+5bFj/0NbWlrU09NTUv3t3r1bf/VXf6Ubb7xRu3bt0t/+7d8Wpb/JrrjiijP2dLb74nK2HpL4+5pqb1I8P2uViNd34fD6Lk5vUgW+vpPbPbk47rrrLrt582Z722232dHRUWuttX/wB39grbW2t7fX3nTTTfaaa66xV199tX3++edLqr/JLrnkksR6Gusnl8vZd77znXbz5s32wx/+cGz9TLW/yeL8+5rsTL2Vws9aJeL1ff498fqeump6fbMcMQAAVa4sTxMAAIDCIQwAAFDlCAMAAFQ5wgAAAFWOMFAFvvrVr6qlpaUgz9XR0SFjjDzP08GDB0+67/Dhw/I8T8YYdXR0nHTffffdp1e96lVqbm5WQ0ODNm3apE996lPjC3kUskeg2txxxx0yxuj973//Kfd94AMfkDFGd9xxx/htR44c0Yc//GGtWLFCmUxGS5cu1S233KIHH3xw/Gva2tp09913x9A9SgFhADOyaNEi/cu//MtJt917771avHjxKV/78Y9/XG9961v1ile8Qj/60Y+0bds2fe5zn9MzzzxTEWt6A6Vg6dKl+sY3vqHh4eHx20ZGRvT1r39dy5YtG7+to6NDl1xyiX72s5/pM5/5jLZu3ar7779f1157bWJL/yJ5hIEycP/992vz5s1qaWlRa2urbr75Zr3wwguSpIceekjGmJMWvXj66afHfzt/6KGH9O53v1u9vb0yxsgYoz//8z+XJHV3d+ud73ynZs2apbq6Or32ta/Vrl27ptTTu971Ln3lK1856bavfvWrete73nXSbY8//rj++q//Wp/73Of02c9+VldddZXa2tp0/fXX67777jvl6wHMzMUXX6xly5bpO9/5zvht3/nOd7R06VJddNFF47eNHSl4/PHH9fu///tas2aN1q9fr4985CP69a9/nUTrKAGEgTIwODioj3zkI/rNb36jBx98UI7j6I1vfKPCMDznY6+66irdfffdampq0uHDh3X48GF99KMflRQdWnziiSf0/e9/X48++qistbrpppuUy+XO+byvf/3r1d3drYcffliS9PDDD6urq0u33HLLSV/3b//2b2poaNAHPvCB0z4PpwaAwnn3u999Uki/5557dOedd45/3tXVpfvvv18f/OAHVV9ff8rjeT1Wr4raqKhSvelNbzrp8y9/+cuaN2+ennvuuXM+Np1Oq7m5WcYYLViwYPz2Xbt26fvf/74eeeQRXXXVVZKiN+6lS5fqe9/7nt785jef9XlTqZRuv/123XPPPdq8ebPuuece3X777UqlUid93a5du7RixYpTbgdQeO94xzv0p3/6p+OzPY888oi+8Y1v6KGHHpIULfFrrdXatWuTbRQlhyMDZeCFF17QbbfdphUrVqipqUnt7e2SpH379s34Obdv3y7P83T55ZeP39ba2qoLLrhA27dvlyS99rWvVUNDgxoaGrR+/fpTnuM973mPvvWtb+nIkSP61re+ddJvIGOstTLGzLhPAFM3Z84cve51r9O9996rr3zlK3rd616nOXPmjN8/tuAsr0m8FEcGysAtt9yipUuX6ktf+pIWLVqkMAy1YcMGZbNZNTQ0SJp4kUua0mH+M61CPfnN+5//+Z/Hh5FO95v9hg0btHbtWr3tbW/TunXrtGHDBj399NMnfc2aNWv08MMPK5fLcXQAiMGdd945vtvfF77whZPuW716tYwx2r59u97whjck0B1KFUcGStyJEye0fft2feITn9CrX/1qrVu3Tt3d3eP3z507V1J0Wd+Yl74hp9NpBUFw0m0XXnihfN8/aR/uEydOaOfOnVq3bp0kafHixVq1apVWrVql5cuXn7a/O++8Uw899NBpjwpI0m233aaBgQF98YtfPO39FbHbF1BCbrzxRmWzWWWzWd1www0n3Td79mzdcMMN+sIXvqDBwcFTHsvrsXoRBkrcrFmz1Nraqn/6p3/S7t279bOf/Uwf+chHxu9ftWqVli5dqj//8z/Xzp079d///d/63Oc+d9JztLW1aWBgQA8++KCOHz+uoaEhrV69Wrfeeqve97736eGHH9Yzzzyj22+/XYsXL9att9465f7e97736dixY3rve9972vsvv/xyfexjH9Ndd92lj33sY3r00Ue1d+9ePfjgg3rzm9+se++9d2Z/MQBOy3Vdbd++Xdu3b5fruqfc/8UvflFBEOiyyy7Tfffdp127dmn79u36+7//e1155ZUJdIxSQBgocY7j6Bvf+IZ++9vfasOGDfrjP/5jffaznx2/P5VK6etf/7p27Nihl73sZfr0pz+tv/zLvzzpOa666iq9//3v11vf+lbNnTtXn/nMZyRJX/nKV3TJJZfo5ptv1pVXXilrrX74wx9O63C+53maM2eOPO/MZ5w+/elP69///d/12GOP6YYbbhi/jGnTpk1cWggUQVNTk5qamk57X3t7u5588klde+21uuuuu7RhwwZdf/31evDBB/UP//APMXeKUsEWxgAAVDmODAAAUOUIAwAAVDnCAAAAVY4wAABAlSMMAABQ5QgDAABUOcIAAABVjjAAAECVIwwAAFDlCAMAAFQ5wgAAAFXu/wcOIlul/XMVWwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABA2UlEQVR4nO3deZQcZ33v/89TVd09+4w02tcZbZasBbzgnRibGBtjYwgBDo4BYyDhQLi5wVxyciA/Em424HB+Ti6QmxAMDkmAgIEQAjbYYH7YGBvjRZKt1dZo12iZfe2uquf3R/UssraZUXdVL+/XOT7q6WW+X8nT6o+qvvU8xlprBQAAqpaTdAMAACBZhAEAAKocYQAAgCpHGAAAoMoRBgAAqHKEAQAAqhxhAACAKkcYAACgyhEGAACocoQBAACqHGEAAIAqRxgAAKDKEQYAAKhyhAEAAKocYQAAgCpHGAAAoMoRBgAAqHKEAQAAqhxhAACAKkcYAACgyhEGAACocoQBAACqHGEAAIAqRxgAAKDKeUk3UGw28BV0H5N/4ojs8KBs4EuBLxkjuZ6Ml5Lb3Cq3dYGc+iYZY5JuGQCAWFVUGLDWyj+yT9m92+UfP6zg2EEFvSckayeeZIyksQ98e9JjJp2R27pQ3txF8uYuVmbVRjl1jbH+HgAAiJuxdvInZXnyTxzR6PanNbLt1wr7eyTj6OUf9NPiOFIYSsYotXSNatZdovSqjXLSNYVsGwCAklC2YcCGgUa2/ErDzz2q4MSRKADYsPCFjIlCheMqvXKD6i+7Qd68xYWvAwBAQsoyDIzu2aaBR76jsOd4vIXzgSOz/nLVX/V6uQ3N8dYHAKAIyioM+McPa+Dn31Nu386Jf7EnwTiS46ru8htUd8m1Ml46mT4AACiAsggDNgw19KsHNfTET/IhoAinA2bIaWhR063vUWrBsqRbAQBgRko+DIQjQ+r74b8ot3dH0q2cnjGScdT4229VzfrLk+4GAIBpK+kwEPR3q+fbX1TY21VSRwPOpO6y31bdVTezVgEAoKyUbBjwT3Sq59tfkB0eLIsgMCaz/jI1/vbbZRwWdwQAlIeS/MQKRwbV+93/W3ZBQJJGn39SQ796MOk2AACYspILA9aG6vvh1xQO9JVdEBgz9MSPNfri1qTbAABgSkouDAw9/mA0LFimQWBM34++pqDnWNJtAABwTiUVBkZfel5DT/w46TYKw/fV+5//LJsbTboTAADOqmTCgPV99f/km0m3UTg2VNB9TENP/zzpTgAAOKuSCQMjLzwpO9SfdBuFZa2Gn/qZwuxI0p0AAHBGJREGbBBUzumBl7HZUY0891jSbQAAcEYlEQZGtj2lcKA36TaKxGro1z9ldgAAULJKIgwMPfmTpFsoKjs6pJHnf510GwAAnFbiYSDo61bYeyLpNorLGGX3bk+6CwAATivxMJA7+FLSLRSftcodeFG2zNdOAABUJi/pBnKHXpIcRwqL/0H5+IsH9IWf/UbPHTiqzr5BffU9t+jmjauKXleSbHZEQdcxea3zY6kHAMBUJX9kYP/uWIKAJA1lc1q/aK7+5neui6Xey+UOVcFREABA2Un0yIDNZRV0H42t3mvXteu169pjq3cSx5F/ZJ+08cpk6gMAcAaJHhmw1bQYT2hlR4eT7gIAgFMkGwZy2STLx8wq9Kvp9wsAKBeJzwxUFZt0AwAAnCrRMGBS6STLx8zIqarfLwCgXCQbBtKZJMvHyxiZTE3SXQAAcIpEryYwqYycljkKe47HUm9gNKs9x3vGv97X1actB49qVl2NlsxqKm5xG8qbt7S4NQAAmIHEFx1KL12tkb6uWNYaeG5/p978xfvHv/5//vP/kyS9/VXr9H/ecWPR66cWryh6DQAApstYaxMdaxt54dfqf/Dfk2whFiadUesH/1rGMLMJACgtiX8yVcW/lo2Rt2gFQQAAUJIS/3RymmbLaZyVdBvFZaV029qkuwAA4LQSDwPGGNVd9ttJt1FUJpNR7frLk24DAIDTSjwMSFLNhZfJ1DUm3UZxGKPaS66vrssoAQBlpSTCgPE81V9+Q9JtFIXx0qp95TVJtwEAwBmVRBiQpJoNl8vU1ifdRmEZo9qLr5WTqU26EwAAzqhkwoDx0mp87VuTbqNwjCOnabZqL7ku6U4AADirkgkDkpRZ/QrVXnp90m0Uhuuq+bb3y2EJYgBAiSupMCBJ9VffrNSSlVKZX5PfdOPt8lrnJ90GAADnVHKfuMZx1fSGO+XUNUjGJN3OjNReer0ya16ZdBsAAExJyYUBSXLqGtT85j+QydSV3RGCzJqLVH/1zUm3AQDAlCW+N8HZBD3H1XP/FxX290q2+BsZna/ai69V/W+9kWWHAQBlpaTDgCSFQwPq+8FXlDv4UtKtnF7+VEbD9b8rb0m7jJeKtmb2MpKXkinTUx0AgOpR8mFAkmwYaPDRH2j4N49Epw1K5SiBMTK19Wq+5T1KLV6hoL9L4cjA5CfIpNIyXmbiV9dNrF0AAE6nLMLAmFznfg387DvyD3dIMpISat04kjGqu/R61b7qejnp6PJBG/jyuw6d/bWOK+Olo/9S+V8dAgIAIDllFQYkyVqr7O7NGvj5fyrs7463eP6oROaCi1R/za1ym07dbdHvOy47OjS97+u4cmob5dY1FahRAACmruzCwBjr+xp+7lENP/eowt4TxTt9YIxkrWSMUsvXqv6K1ym1sO2MTw9zowp6OqdXw3HktSzkFAIAIBFlGwbGWGvlHz2g0e1Pa2TbU7LDA5LjSOF5BAPjRAFAVt6idtWsu1SZ1a+QM8W9E/yeTtnc6JTLuc3zxk81AAAQt7IPA5PZMFTu4EvKdmyTf/ywguOHFA70TjzBONGowdi8gVX+1/wfgevJnTVP3rzF8uYuVmb1JrmNp54KOJdwdFhB37GpPdn15LXMZ24AAJCYigoDp2Ozo/K7OhWcOKxweEg28KXAj64EcD3JS8ltbpXXukBO8+yCrBFgrZXffUQKclN7gePKbZojJ5U579oAAExXxYeBpIQjAwr6u6b1Gqe+RU5tI2sTAABixVJ5RWIy9dI0D/2Hgz0K+o7Lns+8AwAA00QYKBJjjJwZXCpos8Pye47I+tkidAUAwKkIA0Xk1NTPbKOlwJff3fmy1QwBACgOwkARGePIqW2c+DqVkVM71aMFVkF/l/z+E7KlsvwyAKAiEQaKzKltjBYuyl8x4Da0yG2aM77B0bnYkUH53Z2y/hSvTAAAYJq4miAGwWCPTLr2pEsHbeDL7zsmTflD3shpaJFT08DVBgCAgiIMxMBae9oPcGutwoHuac0GmHSt3MbZLFIEACgYwkAJCEcG82sSTPF/hePKbWxlCWMAQEEQBkqE9bPy+45HqyNOkVPXJKeumdMGAIDzQhgoITYMFQx0TWsLZOOl5TbNiZZWBgBgBggDJcZaq3BkQOFAj6Z82sAYuQ2zo3UNAACYJsJAibJ+Ln/aYOqXFJpMndyG2TIOV4wCAKaOMFDCrLUKB7sVDk9jJULHk9vUyg6IAIApIwyUgXB0WEH/CWkaKxE69c1yapsYLgQAnBNhoEzYIFDQf0I2NzLl15hURm5jK8OFAICzIgyUEWutwuF+hYM9U3+RceQ2zpaTqStaXwCA8kYYKEM2l5XfP801CWoa5DS0yMxkF0UAQEUjDJQpa0MFA92yI4NTf5HryWucI5NKF68xAEDZIQyUuXBkUMFAlzSN/42sXAgAmIwwUAFs4CvoOyHrj079RW4qmiXgEkQAqHqEgQphrVU41KdwqHdar3Nqm+TUc5QAAKoZYaDChLlRBX3HpTCY+otcL9oFkaMEAFCVCAMVaCYbHkmSU9uYP0rAFQcAUE0IAxXKWis7OqhgoHtaw4UcJQCA6kMYqHA28BX0d01r5UKJowQAUE0IA1XgvI4SNMyWk64pXnMAgMQRBqqIDfxoliA73aMEDXLqWb0QACoVYaDKzPgogeNF6xJwlAAAKg5hoEpFRwm6ZbPD03odexwAQOUhDFSx6CjBUP4oQTj1FzpudMUBRwkAoCIQBiAbBtEVB9M8SmAydXLrZ8m4bpE6AwDEgTAASedxlMAYOXUtcmobWNIYAMoUYQAnmelRAnmp6DJEFisCgLJDGMBphaNDCvq7pneUQJKpqZdb3yLjcOoAAMoFYQBnZMMguuJgmnscyDhRIKip59QBAJQBwgDOacZHCby03IbZMql0kToDABQCYQBTYsNA4WCvwpGBab/WqcmvYOiwNgEAlCLCAKYlzI0qGOiS/Nz0XmgcuQ2zZDJ1nDoAgBJDGMC0WWsVjgwoHOyZ3pLGkkwqE4UCj1MHAFAqCAOYsWjAsEd2dHDar2WLZAAoHYQBnLcwOxItVhRM89SB40ZHCdK1nDoAgAQRBlAQ1lqFw/0Kh3pncOqgRm5DC6cOACAhhAEUlA18BYM901+bQJLJ1Mutb5ZxvSJ0BgA4E8IAiiLMDudPHfjTfKWRU9cop7aJSxEBICaEARSNtVbhUJ/CoT5J0/wxM46c+mY5NWyABADFRhhA0dnAj5Y1nu7mR5LketHSxgwZAkDREAYQm3Bsi+QwmPZrTSojp76FXREBoAgIA4iVteGkUwfTZzJ10ZEChgwBoGAIA0jE+Vx1IOUXLaprZsgQAAqAMIBE2VxWwWC3bG50+i82jpy6Jjm1jcwTAMB5IAwgcdZa2eyIgsGZXIooyfGiRYsYMgSAGSEMoGRMbIDUK9lw2q83XlpOQ4ucVE0RugOAykUYQMmxYahwuE/hUL+mvT6BouWNnfpmrjwAgCkiDKBk2cBXMNQrOzL9XRElQgEATBVhACXP+tloq+TcyIxeTygAgLMjDKBsRPsd9Ex/q+Q8QgEAnB5hAGXFWis7OqhgsHdGKxlKhAIAeDnCAMpStJJhv8LhPmmGP8KEAgCIEAZQ1mwYKBzsVTgyMOPvQSgAUO0IA6gINvCjPQ8IBQAwbYQBVBRCAQBMH2EAFalwoaBJxsuwzDGAikYYQEUrSCjw0nLqmtj7AEDFIgygKhQiFMhxo62TaxrYOhlARSEMoKoUJBQYI6emIdo62fUK1xwAJIQwgKpUkFAgyWTq5NY2yaTSBeoMAOJHGEBVK1goSGXk1DbJpGuYKwBQdggDgAoXCuR60ZGCmnpCAYCyQRgAJrGBr3C4PwoF5/PWME40bFjbIOO4hWsQAIqAMACchg1DhSMDCof7Z7whUsTIqamPhg29VMH6A4BCIgwAZxHtkjikYLhP8me2dfIYk66NQkHq/BcxCsNQu3bt0jPPPKOBgQG1t7fruuuuk8MljwBmgDAATIG1VjY3qnC4TzY7cn7fzPHk1DbIqamf0SmEz3/+8/r4xz+uvr6+k+7/0pe+pPe9733n1xuAqsQ/I4ApMMbISdfIa54nb9ZCOTUNkmb4r/vQVzjYI//EQfl9xxVmRzSdTP5nf/Znuummm/TQQw+pq6tL1lpdeumleuqpp2bWD4CqRxgApsl4KbmNs+W1LpJT1yyZmb+N7OiQgt6j8rsOKxjqk53CfMLIyIiam5v1+OOP65Of/OSMawPAGJZPA2bIOK7c+mY5dY2yI/m5gsCf2TfLHy0IB3vOOVvwtre9TV/60pdkjNGqVavO83cBABwZAM6bMY6c2gZ5sxbKbZorc55bH9vs8KSjBb2nHC346le/qu7ubt19993nVQcAxnBkACgQY4xMplZOplY2l1Uw3Cc7OjTzbxj6Cgd7FQ725o8WNMikohUOW1paWNQIQMEQBoAiMKm0vNSc/CJGA/lFjMIZfz+bHVaQHc5fiVCfH2AEgMIgDABFZFxPbkOLnPpm2eywwuEB2dx5XJo46WhBeD5HHQBgEmYGgBgYY+Rk6uS1zJM3e5Gc2qYZX4UwPDyib373+3rmmWdPun/rls3613/9Vw0MnOf+CgCqDmEAiNnY0QKvdbHcpjkyqZppvf5jn/zfuvOD/1OPPfmUMploWDGTyeip3zytO++8U3/wvrtkz3O1RADVhRUIgRJgAz/aC2FkQArPPlvw6te/SetfcZG+/OUvn/LYRz7yET3wwx/ouV88JLmpaF+ETJ2MyxlBAGfG3xBACTCuJ7e+RU7duWcLLli9St/85jf10EMPnfJYd3e3XvtbV0dfBLmJtQtSGZlMXRQM2EURwMtwZAAoUWc6WtDV3aN/+9Z3dLyr65TXtDQ16ffe+juaN3fOGb+vSdfIydTLZGplzmP1RACVgzAAlDhrbWGuRDjF2LoI9TLpGtYtAKoYYQAoIxNHCwalKexjMGXGiU4hZOoKssUygPJCGADKkLVW1h+VHRmK1hs4jwWNTmGc6IhBujZ/xIBTCUClIwwAZS46jTCicHRQdnRYUiHf0iaaMUjXRjMGDB8CFYkwAFQQa0PZ0eEoGGQLOV8QMV46f9SgTnI9TicAFYIwAFQoGwYKR4dkR4dkc6OFL+B4cjK1Mula5gyAMkcYAKqADXyFo0PR4GFQhNUJjZO/ZLEu2lnRYc4A5cNmh2UH89uFB350p+NGp8XStTL1TRU/O0MYAKqM9bMTwaCQVyRMYlI1E0OIrH6IEmGtle3pVNh7TGHfcdm+4wr7jkvnOqXmODINs+Q0zZVpapXTNEdO62KZVCaexmNAGACqVHRFQlZ2dFDhSIGvSJjMS8lJ1URXJqQyFf8vLJSesO+4ggM75O9/QRrOb+RlnOn/zI+dCrM2uhx3wQp5S9fJmd9W9qGXMABgUjAYUpgdnjhUWgQmlYmOHKQzMh6zBigOmx2Rv3eLgn0vyPZ3RR/khf64G/uebkru4jXy2jfJmbWgsDViQhgAcArr5xRmh6NzqcUYPhxnonCQrpGTqpG8FOEA58WGoYKOLcpte0zKZVXYS23PIh8MnMVrlFr/ajl1TfHULRDCAICzsmEQLYc8Opy/XLGIf2UY5+RwwOWLmIags0O5LY/IDnQn14Qxkoy81ZfKW/0qmVQ6uV6mgTAAYMrGFjiy2eHodEKRBhDHOa5MqkZOOn9qoczPy6I47Migsk8/qPDoXklGsR0NOCsjpTNKv/IGuYtWJd3MOREGAMyItVbycwqzQwpHh4tzyeLLud7EMKKXkXFZEbHahV2HNfrE96XscOFnAgrEW3OZvHVXlvTwLGEAQEHYwI/mDEaHC7y74lk4bnRawUvnf02V9F+4KCz/4A7lnnogHwJK+6PMWdCu9KVvkPFSSbdyWoQBAAVnwzA6lZAbkc2OSmHxrk54OeOlJ4WDNHMHFcp/6VnlNv8s6TamwcjMWqDMlW+SSdck3cwpCAMAis4GfrSZUm4kGkIs1poGp2McmVQ6Oq0w9isrJJY1f/825X7zQNJtTJ/JB4Jr3lpym34RBgDEylorBTmF2VHZ3Eh0SiHuv4ZcbzwcOF6GSxrLSNh7TKM//3rxh1eLyF15kdIbX5N0GychDABI1PiCR/lTCtG6BnH/tWTypxbSMm4qCgfMH5Qcmx3RyM/+VRoZKNlhwalKXfp6eUvWJt3GOMIAgJJirZXN5Y8aZEdk/WxyzTheFAq8lIybYgYhQdZaZR//rsJj+8o+CEiSHFeZa98hp3lu0p1IIgwAKHE2DMfDQZgdiecSxnNx8wHBS+dDQiq6soGQUDR+xxblnn0o6TYKxxiZhtnKXP/Okvi5YQUPACXNOI5MplbK1MpVPhz4o7K57PivsQ4kSlKQkw1ysqNDkxo1Mm46CgaTjiQwrHj+bBgot+NXSbdRWNbK9p9QeOQluQtXJt0NYQBAeTGOI5OuldK1kvIDiaEfhYPcaDR/kMSpBWujcOK/bC8Hx41WTnQ9GdeTcSZuyzgl8a/CUhcc2D6x22BFMcptf1zOghWJ/xwQBgCUNWNMdNjeTUk19ZImDyWOjv+a2PR5GMiGgZQbPXUs0pgoGDjeyYHB9aJ5BYKCrA3lb38i6TaKxMr2HlN4dK/c+W2JdkIYAFBxjIl2Q1QqM36fDYP87EH+9IKfTX4QLb+ks1Xu9NdPTD6q8LLAUC1HFYKDu2SHepNuo3iMUW77rwgDABAH47gymTopUydpYr0Dm8sq9EejD2U/p5Ja1vZcRxUcL5pJcNxoEZvxX53xr8s9NARHXhzfHrgiWSvbfVg2Oxyd/koIYQBAVTLGSPmlix01SBoLCH40HOjnolMMQU4K4ltOecrGwkz+7MdZPypfFhCMGQsOJwcJGVNywSE8tr9yg8Ak4YlDiQ4SEgYAIC8KCPlLBSfOMIzv0GiDbD4kRFcTlM0qeGEQHWVQdFnmmT9azURoME70L3LjyDgm/7WTDwyTbjvOyc8tYJgIh/qkyVdsxOAff/SY7vnez3Sku0/rli7QZ9/7Jl194YriFjWOwhMHCQMAUMqMMVIqWqFwsugyx/zRg/GQUAKzCDNmJ05NnHzv9IyFBWcsOIwFhfxtGclo0m0jM3Zf/mvJKOg6XIDf09R9+9Fn9LF7v6d7fv8tunJtu77841/qTf/7n/T03/+Jls6dVbzCNlRw/ICS3M+QMAAAMxRd5lgjaWIXuuhSx2D86MHYaQYb+OVzJOF82TD6Lzw5SEw3VNjscBQqYlpH4u+//3O9+7WX6z03XCFJ+ux736yHntmhLz3wmD71zluKWtv2HpUN/Gg4NAGEAQAoIDN2uaDrSTp5IGx8TYSxcJD/1YbR7fI9olAkQS62IJDN+XrmxQO6+3euP+n+177yAv1qe0fxG7BW8rMSYQAAKttJayK8jLVWsuFESAhPDgxVc1RhEhvE93s+3j+oIAw1v6XxpPvntTSqs6c/lh5s4Cup8U3CAACUAGOMZPKT/ZPWRxgzfvohf7WDgkDWBhPn+MOw8gJD3MtMS9HswuQWrI3vCosEfr9jCAMAUAZOPv1Qc9rnjB1diAJCOCkoTASGsa+T/OCZshi3kJ7TWC/XcXSkp++k+4/1Dmhec0MsPSQ1LyARBgCgYowdXZDjnvNw89iRhvGAYCcHhzA6h22jX+34QKBVnIsyRZctxrPgUDrl6aKVS/TT53bqtis2jd//0+d26pbL1he9viTpNKeP4kIYAIAqNHakQa6mdZ46Ovpgx68YiEJFeGpwGL898fj4azX5V+lMAcNk6mNdEPJ/vPFavffv/l0Xr1yqyy9o070/eVz7j3frfTdeVfziNfXREtoJIQwAAKYsOvpgJEWH8At1Nt2+PBxYq9A5qjjTwO9ec5FO9A/pb/7jxzrS3acLly3Udz/xfi2bN7u4hY2RO2dpcWucqwVruZYFAFB6bBho5Aefj44sVLjUK66X1/6KxOrHN50BAMA0GMeVaVmQdBuxcFoXJ1s/0eoAgIoSHHlJQXenbHZYhTjw7M5dlj8tUcFSGZnG1kRbYGYAAFAwud1PK9i/PfrCS8nUNcmpa5apaxr/z6lrkqnP3+edfYLea9sof+eTKqmtpQvKyFt5ceK7RRIGAAAF47VtnAgDfk6274SCvhNnfkG6Nh8OJoeFyeGhUW7bRgUdmytzuWbXk7filUl3QRgAABSOu3CVlK6VssNTe0F2WGF2WOrpPONTvNWXFKi7UmPkrbwov9lVspgZAAAUjHFdecsLt0iPu+QCpS++Ue6y9ZU3O+A48lZenHQXkggDAIACsWGo4PBLsgPdBfl+7oIVylz1ZhnHkXfBFYmu0FcM3torZTK1535iDFhnAABwXsKeo/L3bJG/d6vscGF2+HPmLFHNdbfLeOnx+4LODmUf/25Bvn+yjJwF7Upf/sbEBwfHEAYAANMWDg8o2LtV/p4tCs9yvn8mnFkLVHP9Hac9l57b8YT8bb8saL1YGSNT26TMdb+X6PLDL8cAIQBgSqyfU3Bgh/yOLQqOvFSU6X7TNEc1r3nHGYfqvDWXKew+rLCzozyvLjCO0lfcVlJBQOLIAADgLKy1Co/ujU4D7N8m+dmi1TL1Lar57XfJqWs6e0+5UY3+4j9k+0+UUSCI9nRIX3aL3IUrk27mFIQBAMApwt7j8js2y+/YKjvUV/R6prYxCgINs6b0fJvLKvvEfyo8flAlvyCRMZLjKn3FbdGKiiWIMAAAkCTZkUH5e5+X37FFYdfh+Apn6lT72nfKaZ47rZfZwFfuuYcV7HuhSI0VgDFSpl6ZK26T0zIv6W7OiDAAAFXMBr6Cgzvl79mi4PCLko15h8BURjXX3yF39sIZvdxaq6Bjs3KbfzZ2RwGbO3/OnKVKX/YGmXRpXEJ4JoQBAKgy1lqFx/ZHpwH2bZNyo8k04qZUc93tcucuPe9vFfadUG7rzxUe3SvJKNlTB0ZK1yi1/hq5yy6UMaW/pA9hAACqRNh3Qn7HFvkdW2QHe2Op6cxepHCgS8qOvOwBVzW/9Xa5C1cUtF7Q2aHclkcKtvDRtBgjychbfam81a+SSaXP+ZJSQRgAgApmR4fk73shWg/gxMFYapq6JnntG+W1bZTTNEejv3lQ/s5fT3qCUebqt8hburYo9W0YKti7Rbntv5JGhyTjFPH0R/4ohDFyFq1Rav0157waohQRBgCgwtjAV3Bod7QewKFdUhjDHICXlrdsnbz2TXLmLjtpZb2g67BGHvzy+NeZK26T176x6C1ZaxWeOKjgwHYFB3ZEl0UaU9C5Aqd1sdyl6+QuWl0SGw7NFGEAACqAtVbh8QPRaYB9L5x6WL4YjJG7cKW8to1yF6+R8U6/d4C1VsM//EfZvuNKX/p6pRLYhdCGgcLODgWHdinsPiI72DMRCowjyZ4mJJh8eJgUptK1cprmyJnfLm/JGpnaxph+B8VFGACAMhb2d8nv2BrNAcR0ntyZtUBe20Z5y9fL1DZM6TXZFx6TZJS+8KriNjdFNgxkB3pk+08o7DseraUQ+LJhEH34O56M60qpWjlNs2Wa5shpbC3rf/2fDWEAAMqMzQ5PzAEcPxBLTVPXKG/5RnntG6e9HoAUnbowLivglyrCAACUARsECg6/KL9js4KDu6QwKH5RLyVv6bpoEHDechmn9C+Rw8wQ0wCgRFlrFXYdym8P/LyUHS5+UWPkzm+X175R7pILTtpCGJWLMAAAJSYc7InmAPZslu3viqWm0zJPXtsmuW3r5VTIUBymjjAAACXAZkfk798WzQEc2xdLTVPbIG/5hug0wKz5sdREaSIMAEBCbBgoOPxStB7AwZ1S4Be/qJuSu+SC6DTA/HbmACCJMAAAsbLWKuw+MjEHMDoYS11nflt0OeDStTKpTCw1UT4IAwAQg3CwV/7erfL3bJHtOx5LTdM8NwoAbRvKcolcxIcwAABFYnOj8vdvl9+xRWFnRzxFM/Xy2tbLa9skZ9b8k5YFBs6EMAAABWTDUEHnHvl7Nkfr4ccyB+DJXbxGXvsmuQtWMAeAaSMMAEABBN2d0SBgx1bZkYFYajrzlk/MAVToMrmIB2EAAGYoHOpXsHercnu2yPYejaWmaWzNbw+8QU59Syw1UfkIAwAwDdbPKti/IzoK0LmnoNvhnlGmTt6yC6PtgWcvZA4ABUcYAIBzsGGo8GhHdDngge2Snyt+UcfNzwFslLtwpYzjFr8mqhZhAADOIOw5Kr9ji/yOrbLD/bHUdOYujeYAlq2TSdfGUhMgDADAJOHwgIK9z0eXA3YfiaWmaZiVnwPYKKdhViw1gckIAwCqnvVzCg7ujC4HPPJSPHMA6Rp5y9bLa98op3UxcwBIFGEAQFWy1io8ujeaA9i/TfKzxS/qOHIXrZbXtlHuolUyLn8FozTwkwigqoR9x6MA0LFFdqgvlppO62J57ZuiOYBMXSw1gekgDACoeHZkUP6+F6LtgbsOxVLT1LdMzAE0zo6lJjBThAEAFckGfjQH0LFFwaEXJRsWv2gqk18PYKOcOUuZA0DZIAwAqBjWWoXH9keXA+57QcqNFr+oceQuWimvbZPcxauZA0BZ4qcWQNkL+7vk79kcrQcw2BNLTWf2oug0wLILZWrqY6kJFAthAEBZsqNDE3MAJw7GUtPUNUULArVvlNM0J5aaQBwIAwDKhg18BYd25+cAdklhDHMAXlresnXRIOC85cwBoCIRBgCUNGutwhMHo8sB9z0vZUeKX9QYuQtWyGvfJHfxGhkvVfyaQIIIAwBKUjjQHQ0C7tkiO9AdS01n1oJoQaDl6+XUNsRSEygFhAEAJcNmh+Xv2xbtC3Bsfyw1TW2jvLYN0WmAlnmx1ARKDWEAQKJsECg4/GI0B3BwpxQGxS/qpeQtWSuvfVM0B+A4xa8JlDDCAIDYWWsVdh3KzwG8II0OFb+oMXLnt0enAZZeIOOli18TKBOEAQCxCQd75HdsjeYA+k/EUtM0z1OqfaPc5Rvk1DXGUhMoN4QBAEVlsyPy9+fnAI7ui6WmqWmQm58DcGfNj6UmUM4IAwAKzoahgiMvyd+zOZoDCPziF3U9uUvWymvfKHd+O3MAwDQQBgAUhLVWYfeR6HLAjuel0cFY6jrz26JVAZeulUllYqkJVBrCAIDzEg715ecANsv2HY+lpmmaE+0LsHyDnPrmWGoClYwwAGDabG5U/v7t0RxAZ0c8RTP18pavj/YFmLWAZYGBAiIMAJgSG4YKOvfI37NFwYEdUpArflHXk7t4TTQIuHCFjOMWvyZQhQgDAM4q7O5UrmOLgr1bZYcHYqnpzFuWnwNYJ5OuiaUmUM0IAwBOEQ71K9i7NToN0HM0lpqmsXViDqChJZaaACKEAQCSJOtnFRzYEZ0G6NwjWVv8ounaiTmA2YuYAwASQhgAqpgNQ4VH98rfs1n+gR2Sny1+UceVu3i1vLZNcheulHGZAwCSRhgAqlDYeyzaF6Bji+xwfyw1nTlL5LVvkrdsnUy6NpaaAKaGMABUCTs8IH/v89EcQPeRWGqahlnRIGDbBjmNs2OpCWD6CANABbN+TsHBndH2wIdfjGkOoEbesguj7YFbFzMHAJQBwgBQYay10RxAxxb5+7dLudHiF3UcuYtWR+sBLFol4/JXC1BOeMcCFSLsOz4xBzDUF0tNp3VxdDngsgtlMnWx1ARQeIQBoIzZ0aFoDmDPFoVdh2Kpaeqb83MAG+U0tcZSE0BxEQaAMmMDX8HBXfI7Nis49KJkw+IXTWWiOYC2jXLmLmUOAKgwhAGgDFhrFR7fH50G2PdCPHMAxpG7cKW89o1yF69hDgCoYLy7gRIW9ndFg4B7tsgO9sRS05m9MDoNsHy9TE19LDUBJIswAJQYOzosf98L0XoAxw/EUtPUNclr2yCvbZOc5jmx1ARQOggDQAmwga/g0O5oPYBDu6QwhjkALy1v6bpoX4B5y5kDAKoYYQBIiLVW4YmDE3MA2eHiFzVG7oIV0XoASy6Q8VLFrwmg5BEGgJiFA93RHEDHVtn+rlhqOi3z5bVvkrt8vZzahlhqAigfhAEgBjY7MjEHcGx/LDVNbWN+DmCjnJZ5sdQEUJ4IA0CR2DBQcPhF+Xu2KDi4UwqD4hf1UvKWrM3PAbTJOE7xawIoe4QBoICstQq7DkenAfY+L40OFb+oMXLmtynVtimaA0ili18TQEUhDAAFEA725ucAtsj2nYilpmmeK699k7zl6+XUNcVSE0BlIgwAM2Rzo/L3bYvmAI7ujaWmqWmQu3x9dBqgZT6XAwIoCMIAMA02DBUceUn+ns3RHEDgF7+o68ldcoG8tk1yF7QzBwCg4AgDwDlYaxV2d0YbA+19XnZkMJa6zvy2aFngpWtlUplYagKoToQB4AzCoT75HVujOYDeY7HUNE1z5LVvlLd8g5z65lhqAgBhAJjE5rLyD2yXv2ezws6OeIpm6uQtXy+vfZOcWQuYAwAQO8IAqp4NQwWde6J9AfbvkIJc8Ys6bn4OYKPchStkHLf4NQHgDAgDqFrRHMAW+Xu3yg4PxFLTmbssOg2wdJ1MuiaWmgBwLoQBVJVwuF9Bx/PR5YA9nbHUNI2zo0HAto1yGlpiqQkA00EYQMWzflbBgR3RssCdeyRri180XRvNAbRtlNO6iDkAACWNMICKZK1V2NkRnQbYv13ys8Uv6rhyF6/OzwGsknGZAwBQHggDqChh7zH5e7bI37tFdqg/lprOnCXRHMCyC2XStbHUBIBCIgyg7NmRQfl7n48uB+w+EktN09Air22TvLYNchpnx1ITAIqFMICyZP2cgoM7o8sBD78YzxxAqkbe8gujOYA5S5gDAFAxCAMoG9Zahcf2RacB9m+TcqPFL+o4cheukte+Se6iVTIubxkAlYe/2VDywr4T8js2y+/YKjvYG0tNp3VxdDng8gtlMnWx1ASApBAGUJLs6FA0B9CxReGJQ7HUNPXNE+sBNLXGUhMASgFhACXDBr6Cg7uiOYBDuyUbFr9oKiNv2booAMxdxhwAgKpEGECirLUKjx+Qv2ez/H3bpNxI8Ysak58D2Ch30WoZL1X8mgBQwggDSETY3xUtCNSxRXagJ5aazuyF+TmA9TI19bHUBIByQBhAbOzosPx9L0RzAMcPxFLT1DXKW75RXvtGOc1zY6kJAOWGMICiskGg4PDuaF+AQ7ukMCh+US8tb+laee2b5MxbzhwAAJwDYQAFZ61VeOJgfnvgF6TscPGLGiN3wYpoX4AlFzAHAADTQBhAwYQD3fI7tkZzAP1dsdR0WuZHg4DL18upbYylJgBUGsIAzovNjkzMARzbH0tNU9sob/mGaA6gZV4sNQGgkhEGMG02DBQcfkn+ns0KDu6MZw7ATUVzAG0b5cxvk3Gc4tcEgCpBGMCUWGsVdh3OzwE8L40OxVLXmd8ebQ+8ZK1MKh1LTQCoNoQBnFU42JufA9gs23cilpqmea689k3ylq+XU9cUS00AqGaEAZzC5kbl798mf88WhUf3xlLT1NTLHZ8DmM/lgAAQI8IAJEk2DBUceSnaF+DADinwi1/U9eQuuUBe2ya5C9qZAwCAhBAGqpi1VmF3ZxQA9m6VHRmMpa4zb3k0B7B0nUwqE0tNAMCZEQaqUDjUN7EeQO+xWGqapjn57YE3yKlvjqUmAGBqCANVwuay8g9sj+YAOvfEUzRTJ2/5+uhywNkLmQMAgBJFGKhgNgwVdnYo17FZwf4dUpArflHHzc8BbJS7cIWM4xa/JgDgvFRNGLDWRovjBIFs6EvGyDie5HoVN7gW9hyVv2eL/L1bZYf7Y6npzF0aXQ64dJ1MuiaWmgCAwqjIMBAO9ino6sz/d0TBicMKuo9K/un/ZWzqmuS2LpDbulDu7HlyZy+QO2teWW12Ew4PKNi7NToN0NMZS03TOHtiDqBhViw1AQCFZ6y1NukmCiHo61J293PK7nxGYffR/L1GMkay4dS+ieNIYf65jqvU8rVKr7lIqWWluQue9XMKDuyIrgY48pIUx//KdK285RfKa9skp3URcwAAUAHKOgyEI4PK7t6s7I6nFRzdn//gL+BvxzhRkPDSSq/cqPSaV8pbvCrRD0BrrcLOjmhZ4P3bJT9b/KKOK3fR6mh3wIWrZFzmAACgkpRlGLCBr9HNj2n4qYfzH4ZGUpF/G/lg4M5dorpr3ihvwbLi1nuZsPfYxBzAUF8sNZ05S6LTAMsulMnUxlITABC/sgoD1lrlXtqqoV/+QHagN5km8qEgtWqTaq94vdzG4p0rtyOD8vc+H20P3HW4aHUmMw0t+TmAjXIaZ8dSEwCQrLIJA0FXpwYf+Y6Czr2K5UjAuRhHMkY1F12rmkteW7BD59bPKTi4M5oDOPxiPHMAqZr8HMBGOXOWMAcAAFWmLMJA9sUtGnz4m9Fw31SHAWNj5M5fpoab7pBT1zij72CtVXhsX3QaYP82KTda4B5PwzhyF62K5gAWrZZxK/LCEgDAFJR0GLDWauTXD2nkNw8n3crZGUempk4Nt9wlb86iKb8s7DsRDQJ2bJEdjOe0h9O6SF7bJnnLL5TJ1MVSEwBQ2ko2DNgw0NDPv6vs9qeSbmVqjJHclBpufrdSi1ee8Wl2dEj+3hfkd2xWeOJQPK3VN0/MATS1xlITAFA+SjIMWGs19LNvK7vjN0m3Mj0mWteg8bY/kLdg+fjdNvAVHNolf88WBYd2x3OqI5WRt3SdvPaNcuYuYw4AAHBGJRkGRrf+SkO/+F7SbcyMMTI19Wp62x/Jjg7K3/20/H0vSNmRWGq7C1dG+wIsXlOSCyUBAEpPyYUB/8he9X/vH0twUHAajCN3/jLVXHixck//uOjlnNkLo9MAy9fL1NQXvR4AoLKU1Ah5ONSvgQe+psQvGzxfNlRwpEO5OQtOXuK4gExdo7zlG6PTAM1zC/79AQDVo6SODPT/4F75B2I6px6TzIo1sl0FGhT00vKWro0GAee3MQcAACiIkjky4Hful79/Z9JtFJYx8nt7dF7LERkjd367vPZNcpeskfHSheoOAABJJRQGhp96aGJjoEphrYITR+XOmT3tDYWclvnRgkDL18upndliRgAATEVJhAH/2EH5+3Yk3UZxGKMwNHKm8tTaBnnLN0SnAWbNL3prAABIJRIGRp76aeUdFRhjrYLebjmNZ1jtz03JXXqBUm2bojkAZyqxAQCAwkk8DNjcqHJ7X4hnQ56E2FCSm5KC3Ph9zvx2ee0b5S1ZK5NiDgAAkJzEw4Dfub+ig4AkyYYK/VBuy9z8ssAb5NQ1Jd0VAACSSiEMHO6I5RTB//vA4/rBszu1q7NLNSlPl61YrE+++Vqtnh/PWv1+b6/q3vxhubUNsdQDAGCqEj9B7R96KZZZgcd279d7r71YD/6vO/Sd//F2+WGot/yf/9Dg6PSm/M9H0LkvtloAAExVomHAhoH8mD4gv/2Hb9PtV27UukVztWHJPH3+nTfrQFefntvXGUt9GSc6CgIAQIlJNgyMjkiBn0jtvuFRSVJLfU1MFa3Cgd6YagEAMHXJnibwc+d+ThFYa/WJ+3+qK1Yu0YWLYlrX39rEfr8AAJxNwqcJkjkq8LFv/kTPHzyqL911a6x1bUAYAACUnkTDgHFTsdf8k2/+RD/avFvf/5/v0OJZ8V7ex74CAIBSlOylhV58YcBaqz/5j4f038/u1Pf/+B1aPqclttqSJGNkYvz9AgAwVYmGAZOplUnXyGZHil7rf33jJ/r2Uy/o3/7gd9SQSauzd0CS1FSbUW06jg9pI6d5Tgx1AACYnmTDgDFyF7ZFmxQVeRXCe3/xjCTp1nu+ftL9n3/nzbr9yo1FrS1JsqG8hW3FrwMAwDQlvgJhamF7LDsWdn3xT4pe46yMkTd/abI9AABwGomvQOgtbKv8vQkkubMXyKQySbcBAMApEg8D7tzFkusm3UZxGUfe4pVJdwEAwGklHgaM6yl9wSXRZkWVyobKrL006S4AADitkvgErrnoNZIq9FSBcZRqWy+3dUHSnQAAcFolEQbcptlKr7m4Mo8O2FA1l16fdBcAAJxRyXz61lxyXeUNEhpH3rIL5M1dnHQnAACcUcmEAbd5jtLrLpWMSbqVArKqvex1STcBAMBZlUwYkKS6q2+V0zKvYk4X1F7zRo4KAABKXkl96ppUWg03vyu/Z0EZHyEwRqnVFymz/oqkOwEA4JxKKgxIktvUqoYbblfZXl1gHDkt81R/7ZtlKuqUBwCgUpVcGJCk1PILVHvFTUm3MX3GkUnXqOHmd8mk2K4YAFAejLWlO8I/svlRDT/2g6TbmBrjyKlvUsMb3y+3uTXpbgAAmLKSDgOSlN39nAYf/g/JhiV86aGRO2eRGt5wp5y6xqSbAQBgWko+DEiSf/yQBn54n+xQX0kGgvS6V6nu1bfJuIlvAgkAwLSVRRiQpHBkSMNPPKjsC09GaxHYMOmWZOqaVHf1G5Re9YqkWwEAYMbKJgyMCbo6NfTYf8k/sFvR5Ycxt2+M5HiqufR61Wy6RsZLxVsfAIACK7swMCa3b4eGHv0vhb3Ho0WKin6kIAoe6bWvUu3lr2M2AABQMco2DEiStaH8wx3K7npO2d3PStnRwgYDYyRr5bYuVPqCi5VeuUlOQ3NhvjcAACWirMPAZDbw5R/YrdGdzyi3b3sUDCRJZmozBo4jhWPPMXKaW5Ve/UqlV79CbsvcYrYOAECiKiYMTGatlR0eUNDVqaDriIKuowpOHJIdHpQNfCkMxs/9G8+T0zxHbusCubMXyJ01T+6secwCAACqRkWGAQAAMHUluRwxAACID2EAAIAqRxgAAKDKEQYAAKhyhAEAAKocYQAAgCpHGAAAoMoRBgAAqHKEAQAAqhxhAACAKkcYAACgyhEGAACocoQBAACqHGEAAIAqRxgAAKDKeUk3MFn6orvkeGkZx5VxXLmpidvGcSYec105XlrO+GPuKY8Zx5XjGBnHyHUdmZfddhwjxzXjzznrY8bI9Ry5jpHrGKXzt73xr92Jx9yJ53mTnuue7rYxcoyRa6SU64zf9lxHrlH0tWOUcsxpbkePpxxn/LZrjIyRHCMZo/z3l4wk1zFypOj34mj8tmMk10y+HX0PY61kQ5nQl066HUb/hWd+zNhQCoKJ26EvhYFsGEp+VjYIpDCM7vNzsmEQ3c7lpLHbY88de14uO/GaMFCY82WDUDYMFWZ9hUH0GhuECnO+wmDits3fDnK+7KTnBVl/0u1ANrQKA5v/Ov/60EaPBVY2sAqDUEEuzH9PqyAX5F8z8brQWgXWKhtaBVYvu/3yr6PboaLbgVX+sYnb/9d2JPq+LBTe37y/eX+X7vubIwMAAFQ5wgAAAFWOMAAAQJUjDAAAUOUIAwAAVDnCAAAAVY4wAABAlSMMAABQ5QgDAABUOcIAAABVjjAAAECVIwwAAFDlCAMAAFQ5wgAAAFWOMAAAQJUjDAAAUOUIAwAAVDnCAAAAVY4wAABAlSMMAABQ5QgDAABUOcIAAABVjjAAAECVIwwAAFDlCAMAAFQ7W6FGRkbsJz/5STsyMpJ0K6co5d6spb/zUcq9VZJS/nMu5d6spb/zUcq9nS9jrbVJB5Ji6OvrU3Nzs3p7e9XU1JR0Oycp5d4k+jsfpdxbJSnlP+dS7k2iv/NRyr2dL04TAABQ5QgDAABUOcIAAABVrmLDQCaT0Sc/+UllMpmkWzlFKfcm0d/5KOXeKkkp/zmXcm8S/Z2PUu7tfFXsACEAAJiaij0yAAAApoYwAABAlSMMAABQ5SouDHz0ox/Vq1/9av3e7/2estnsSY8NDw/rlltu0bXXXqsbbrhBXV1dJdXfmL/5m7/RpZdemnhPvu/rzjvv1Ktf/Wr90R/9UWz9TLW/MXH/eU12pt5K4WetEvH+LlxPvL/PrZre3xUVBp555hkdOXJEv/jFL3ThhRfq29/+9kmP/+hHP9KGDRv085//XG9729v0ta99raT6k6T+/n5t3bq1JHr6r//6Ly1ZskS/+MUvNDQ0pF/+8pex9TWV/qT4/7ym2lvSP2uViPd3YXvi/T3z3pL+WSuGigoDjz/+uF73utdJkm666aZTfrhXr16toaEhSVJPT4/mzp1bUv1J0t/93d/pQx/6UEn0NJV+k+xPiv/Pa7Kz9Zb0z1ol4v1d2J54f59dtb2/vaQbKKSenh4tWrRIktTc3HzKoZuVK1dq69at2rBhg4wxeuKJJ0qqv97eXm3ZskWf+MQnSqKnnp6e8fW3T9dv0v0l8ec11d6S/lmrRLy/C9sT7++Z95b0z1oxlOWRgSNHjuiaa6455T9rrfr6+iRF/yNnz5590uvuu+8+veY1r9HWrVv1F3/xF/rUpz5VUv3dc889+sM//MOi9HQms2bNOmNPZ3usFPpL4s9rsrP1FtfPWiXi/V04vL9nrtre32UZBhYsWKBHH330lP9uvvlm/fjHP5YkPfjgg7r66qtPee3Y/9CWlhb19PSUVH+7d+/WX/3VX+mmm27Srl279Ld/+7dF6W+yK6644ow9ne2xuJythyT+vKbamxTPz1ol4v1dOLy/i9ObVIHv7+R2Ty6Ou+++215zzTX29ttvt6Ojo9Zaa3//93/fWmttb2+vvfnmm+21115rr776artjx46S6m+ySy65JLGexvrJ5XL2Xe96l73mmmvshz/84dj6mWp/k8X55zXZmXorhZ+1SsT7+/x74v09ddX0/mY5YgAAqlxZniYAAACFQxgAAKDKEQYAAKhyhAEAAKocYaAKfPWrX1VLS0tBvldHR4eMMfI8TwcPHjzpscOHD8vzPBlj1NHRcdJj999/v17zmteoublZDQ0N2rRpkz71qU+NL+RRyB6BanPnnXfKGKMPfOADpzz2wQ9+UMYY3XnnneP3HTlyRB/+8Ie1YsUKZTIZLV26VLfeeqsefvjh8ee0tbXpnnvuiaF7lALCAGZk0aJF+pd/+ZeT7rvvvvu0ePHiU5778Y9/XG9/+9v1qle9Sj/60Y+0detWfe5zn9Nzzz1XEWt6A6Vg6dKl+sY3vqHh4eHx+0ZGRvT1r39dy5YtG7+vo6NDl1xyiX7605/qM5/5jLZs2aIHHnhA1113XWJL/yJ5hIEy8MADD+iaa65RS0uLWltbdcstt+jFF1+UJD3yyCMyxpy06MWzzz47/q/zRx55RO95z3vU29srY4yMMfrzP/9zSVJ3d7fe9a53adasWaqrq9PrX/967dq1a0o9vfvd79ZXvvKVk+776le/qne/+90n3ffkk0/qr//6r/W5z31On/3sZ3XVVVepra1NN9xwg+6///5Tng9gZi6++GItW7ZM3/nOd8bv+853vqOlS5fqoosuGr9v7EjBk08+qd/93d/VmjVrtH79en3kIx/Rr371qyRaRwkgDJSBwcFBfeQjH9Gvf/1rPfzww3IcR29+85sVhuE5X3vVVVfpnnvuUVNTkw4fPqzDhw/rox/9qKTo0OJTTz2l73//+3r88cdlrdXNN9+sXC53zu/7xje+Ud3d3Xr00UclSY8++qi6urp06623nvS8f/u3f1NDQ4M++MEPnvb7cGoAKJz3vOc9J4X0e++9V3fdddf4111dXXrggQf0oQ99SPX19ae8nvdj9aqojYoq1Vve8paTvv7yl7+sefPm6YUXXjjna9PptJqbm2WM0YIFC8bv37Vrl77//e/rscce01VXXSUp+uBeunSpvve97+mtb33rWb9vKpXSHXfcoXvvvVfXXHON7r33Xt1xxx1KpVInPW/Xrl1asWLFKfcDKLx3vvOd+tM//dPx2Z7HHntM3/jGN/TII49Iipb4tdZq7dq1yTaKksORgTLw4osv6vbbb9eKFSvU1NSk9vZ2SdK+fftm/D23bdsmz/N0+eWXj9/X2tqqCy64QNu2bZMkvf71r1dDQ4MaGhq0fv36U77He9/7Xn3rW9/SkSNH9K1vfeukf4GMsdbKGDPjPgFM3Zw5c/SGN7xB9913n77yla/oDW94g+bMmTP++NiCs7wn8XIcGSgDt956q5YuXaovfelLWrRokcIw1IYNG5TNZtXQ0CBp4k0uaUqH+c+0CvXkD+9//ud/Hh9GOt2/7Dds2KC1a9fqHe94h9atW6cNGzbo2WefPek5a9as0aOPPqpcLsfRASAGd9111/huf1/4whdOemz16tUyxmjbtm1605velEB3KFUcGShxJ06c0LZt2/SJT3xCr33ta7Vu3Tp1d3ePPz537lxJ0WV9Y17+gZxOpxUEwUn3XXjhhfJ9/6R9uE+cOKGdO3dq3bp1kqTFixdr1apVWrVqlZYvX37a/u666y498sgjpz0qIEm33367BgYG9MUvfvG0j1fEbl9ACbnpppuUzWaVzWZ14403nvTY7NmzdeONN+oLX/iCBgcHT3kt78fqRRgocbNmzVJra6v+6Z/+Sbt379ZPf/pTfeQjHxl/fNWqVVq6dKn+/M//XDt37tR///d/63Of+9xJ36OtrU0DAwN6+OGHdfz4cQ0NDWn16tW67bbb9P73v1+PPvqonnvuOd1xxx1avHixbrvttin39/73v1/Hjh3T+973vtM+fvnll+tjH/uY7r77bn3sYx/T448/rr179+rhhx/WW9/6Vt13330z+4MBcFqu62rbtm3atm2bXNc95fEvfvGLCoJAl112me6//37t2rVL27Zt09///d/ryiuvTKBjlALCQIlzHEff+MY39Jvf/EYbNmzQH//xH+uzn/3s+OOpVEpf//rXtX37dr3iFa/Qpz/9af3lX/7lSd/jqquu0gc+8AG9/e1v19y5c/WZz3xGkvSVr3xFl1xyiW655RZdeeWVstbqhz/84bQO53uepzlz5sjzznzG6dOf/rT+/d//XU888YRuvPHG8cuYNm3axKWFQBE0NTWpqanptI+1t7fr6aef1nXXXae7775bGzZs0A033KCHH35Y//AP/xBzpygVbGEMAECV48gAAABVjjAAAECVIwwAAFDlCAMAAFQ5wgAAAFWOMAAAQJUjDAAAUOUIAwAAVDnCAAAAVY4wAABAlSMMAABQ5f5/QI5lYG6Uxf0AAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/tutorials/causal_effect_estimation/tigramite_tutorial_general_causal_effect_analysis.ipynb b/tutorials/causal_effect_estimation/tigramite_tutorial_general_causal_effect_analysis.ipynb index a1886ee0..7d62361c 100644 --- a/tutorials/causal_effect_estimation/tigramite_tutorial_general_causal_effect_analysis.ipynb +++ b/tutorials/causal_effect_estimation/tigramite_tutorial_general_causal_effect_analysis.ipynb @@ -486,7 +486,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAFICAYAAAA24bcOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmgUlEQVR4nO3deViU5f4/8PczCzCMijAiric1xZYrs8wWKxlBck8N3PWoqUezTMs2vdpLzUottcwjpelxSTEtzcolU9My0zANERdQQUV2EAZme35/+IOvGjrwzD0LM+/XdZ3rOg3zuZ/POfG8uZ/1lmRZlkFERDek8nQDRETejkFJROQAg5KIyAEGJRGRAwxKIiIHGJRERA4wKImIHGBQEhE5wKAkInKAQUlE5ACDkojIAQYlEZEDDEoiIgcYlEREDjAoiYgcYFASETnAoCQicoBBSUTkAIOSiMgBBiURkQMMSiIiBxiUREQOaDzdAPkvWZZhsVhQVlYGk8kEs9mMitWTJUlCQEAAdDodgoKCoNVqIUmShzsmf8WgJLezWCzIy8tDfn4+rFZrtWo0Gg1CQ0MRFhYGrVbr4g6JriXJFX/CiVysrKwMWVlZKC4udmqcunXrIiIiAkFBQYI6I7o5BiW5nCzLyMnJQVZWltBxIyIi0KBBAx6Sk8sxKMmlzGYzzp49i7KyMpeMr9Pp0Lx5cwQEBLhkfCKAQUkuVF5ejrS0tGqfh1RKo9GgZcuWCAwMdOl2yH/x9iByCbPZjNOnT7s8JAHAarUiLS0NZrPZ5dsi/8SgJOHsdjvS09Nhs9nctk2r1Yr09HTY7Xa3bZP8B4OShMvKyvLI7M5sNgu/YEQEMChJsJKSEuTm5nps+7m5uSgpKfHY9sk3MShJGFmWkZmZ6ek2kJmZCV6jJJEYlCRMSUmJV1xQMZvNnFWSUAxKEiYvL8/TLVTypl6o9mNQkhAWiwVFRUWKau12O/r06YO5c+de8/nevXtxzz334Mcff6zxmEVFRbBYLIr6Iboeg5KEKC0tVVyrUqkwduxYrF27FoWFhQCA48ePY+rUqZg8eTK6devm9p6IrsagJCFMJpNT9b169UL9+vWxatUqXLx4ERMnTkTv3r0xatQoj/VEVIGPMJIQp0+fdnoGt3btWsyfPx8NGzZE06ZN8dFHH0GtViseT6/Xo2XLlk71RARwRkmClJeXOz1G7969UVZWBlmWMXv2bKdCEoDLXsRB/odBSUKIeHRwxowZAICCggKnQxIQ0xMRwKAkL7FgwQLs2bMHK1euhM1mw9dff+3plogqMShJCGdenrt+/XosX74cCxYsQNu2bTF8+HAsXbrU6dt7+EJfEoVBSUJoNMqWX9qzZw9mzJiBWbNm4e677wYADB06FJcvX8bmzZs90hPR9RiUJIROp6txzd9//42pU6fi+eefR9euXSs/r1OnDoYOHYrPP//cqVe1KemJqCq8PYiEyMnJwcWLFz3dxjUaNWqEBg0aeLoN8gGcUZIQ3jh788aeqHZiUJIQwcHBXnVOUKPRIDg42NNtkI9gUJIQkiTBYDB4uo1KBoOBV71JGAYlCRMaGurpFip5Uy9U+zEoSRiNRuMVs0qDweBVpwGo9mNQklARERHQarUe275Wq0VERITHtk++iUFJQqlUKjRr1sxj22/WrBlUKv5ak1j8jSLh9Ho9GjZs6PbtNmzYEHq93u3bJd/HoCSXKC4uFvLqteoyGAwIDw932/bIvzAoSZgTJ05g1qxZ6NChA1q3bo1Tp065JbzCw8PRqFEj3g5ELsNHGMkpKSkpSExMRGJiIg4fPlz5eXBwMC5dugS9Xo+ioiJkZmY69dx2VdRqNZo2bYp69eoJHZfoeryHgmpkx44dkGUZe/fuRWJiIo4ePVrl93r37l15vrBevXoIDg7GhQsXKhcPc1ZISAgaN27M24DILfhbRg7JsoyjR49i5syZWLNmTbVqBg4ceM0/azQaNG/eHA0aNEBubi4KCwtR04MZSZIQEhICg8HA57jJrXjoTVWSZRlJSUmVh9WpqanVrtXr9cjOzr5pmNlsNhQUFMBkMqG0tBRms7nK7wUEBCA4OBjBwcEICQkRskQEUU1xRkmVZFnGwYMHK8Px1KlTisZ5/PHHHc741Go1Zs2ahY8//hgAEBQUhCZNmiAwMBDAlcXKzp8/X7lA2OTJk/Hhhx8q6ofIWQxKPyfLMn7//ffKcExPT3d6zOsPu2/EbrfDarUCAC5fvnzTWSsXCiNPYlD6uRdeeAFz584VNl7dunXRvXt3YeMReQPeR+nn3nvvPTzxxBPCxuvbty+CgoKEjUfkDRiUfk6r1WLNmjXo37+/kPFiY2OFjEPkTRiUVBmW/fr1c3qs4uJi5xsi8jIMSgJw5Tacf/3rX06Nce+99+Lpp58W1BGR92BQEoArt9/Mnz/fqTHeffddQd0QeRde9SZMmjQJCxcudGqM0NBQxMTECOqIyLswKP3c008/jU8//dTpcfr374+AgAABHRF5HwalH3vqqafw2WefCRlr0KBBQsYh8kYMSj81YcIELF68WMhYBoMBXbp0ETIWkTdiUPqhcePGISEhQdh4cXFxHl1QjMjVGJR+ZuzYsfj888+FjlndZ7uJaiveHuRHRo8e7VRIxsfH/+PKdnh4OKKiopxtjcirMSj9xMiRI7Fs2TLF9UOHDsW6devw7bffXnM+Mj4+nm8ZJ5/HoPQDw4cPx/LlyxXXjxgxAitXrgRwZS2cTZs2wWg0AuBhN/kHBqWPGzZsWGXIKTFy5Mh/hKxer8fmzZsxePBgPProo862SOT1eMzkw4YMGVLtNW6qMmrUKCxdurTKn+n1eqxatYpLxJJf4IzSRw0ePNipkBwzZswNQ7ICQ5L8BWeUPmjAgAFITExUXD927FgsWbJEYEdEtRtnlD4mLi7OqZAcP348Q5LoOpxR+pD+/ftj48aNiusnTJiARYsWiWuIyEdwRukj+vXr51RITpw4kSFJdAMMSh/Qp08ffPPNN4rrJ02ahE8++URgR0S+hYfetVyvXr2wZcsWxfXPPvssPv74Y4EdEfkezihrsZ49ezoVks899xxDkqgaGJS1VPfu3fH9998rrp86dSrmzp0rsCMi38VD71ooNjYW27dvV1z/wgsv4IMPPhDYEZFv44yylunatatTIfnSSy8xJIlqiEFZi0RHR2PHjh2K66dNm4bZs2cL7IjIP/DQu5YwGo3YtWuX4vrp06djxowZAjsi8h+cUXo5u92OqKgop0LytddeY0gSOYFB6cUqQnL37t2Kx3jjjTfw9ttvC+yKyP/w0NtL2e12PProo9i3b5/iMd566y28/vrrArsi8k8MSi9kt9vxyCOP4Ndff1U8xjvvvINXX31VYFdE/otB6WXsdjs6deqE/fv3Kx5jxowZmD59usCuiPwbg9KL2O12PPjggzhw4IDiMWbOnIlp06YJ7IqIGJRewm634/7778fBgwcVjzF79my89NJLArsiIoBB6RXsdjs6duyIQ4cOKR7j/fffx4svviiwKyKqwKD0MLvdjg4dOiApKUnxGHPmzMHzzz8vrikiugaD0oPsdjvuvfdeHD58WPEY8+bNw5QpU8Q1RUT/wKD0ELvdjvbt2+PIkSOKx5g/fz4mTZoksCsiqgqD0gNsNhvuvvtu/P3334rHWLBgAZ555hmBXRHRjTAo3cxqteLuu+9GcnKy4jE++eQTTJw4UWBXRHQzDEo3slqtaNeuHY4dO6Z4jEWLFmHChAkCuyIiRxiUbmK1WnHXXXchJSVF8RiLFy/Gf/7zH4FdEVF1MCjdwGq14s4770RqaqriMZYsWYKxY8cK7IqIqotB6WJWqxV33HEHTpw4oXiMhIQEjBkzRmBXRFQTDEoXMpvNuPPOO3Hy5EnFY3zxxRcYPXq0wK6IqKYYlC5iNptx++234/Tp04rHWLZsGUaOHCmwKyJSgkHpAmazGbfddhvS0tIU1UuShC+//BIjRowQ3BkRKcGgFMxsNqNt27ZIT09XVC9JElasWIFhw4aJbYyIFGNQClRWVobbbrsNZ86cUVQvSRJWrlyJIUOGCO6MiJzBoBSkrKwMbdu2xdmzZxXVS5KE1atXY9CgQYI7IyJnMSgFKCsrQ2RkJM6dO6eoXpIkrFmzBgMHDhTcGRGJwKB0UmlpKdq2bYuMjAxF9ZIkYe3atYiPjxfcGRGJwqB0QmlpKSIjI5GZmamoXpIkrF+/Hv379xfcGRGJxKBU6PLly4iMjMSFCxcU1UuShA0bNqBv376COyMi0VSebqA2cjYkVSoVNm7cyJAkqiU4o6yhy5cvo02bNrh48aKiepVKhW+++Qa9e/cW3BkRuQqDsgaKiooQGRmJrKwsRfUqlQqbNm1Cz549BXdGRK7EoKymoqIitGnTBpcuXVJUr1KpsHnzZvTo0UNwZ0TkagzKaigoKEBkZCSys7MV1atUKmzZsgXdunUT3BkRuQOD0gERIfnDDz8gNjZWcGdE5C4MypsoKChA69atkZubq6herVbjxx9/RExMjODOiMid/Pr2oA0bNiAnJ6fKn+Xl5Tkdklu3bmVIEvkAvw7KGTNmICYm5h9hmJubizZt2jgVktu3b0d0dLSINonIw/w2KE+dOoWDBw/ir7/+uiYsc3JyEBkZiby8PEXjqtVq/PTTTzAajQK7JSJP8tugXLt2beV/P3z4MLp27YoTJ044HZI///wzOnfuLKpNIvICfnsx5+qgBICkpCS0bdsWsiwrGk+j0WDnzp145JFHRLRHRF7EL4MyNTUVSUlJ//jcmZD8+eef8fDDDzvZGRF5I78Myutnk87QaDTYvXs3HnroIWFjEpF38cug/Oqrr4SMo9Fo8Msvv+CBBx4QMh4ReSe/C8rk5GQcPXrU6XG0Wi327t2Ljh07CuiKiLyZ3wXlunXrnB5Dq9Vi3759uO+++wR0RETezq+CUpZlrFq1yqkxtFotfvvtN9x7772CuiIib+dXQfnbb78hNTVVcX1AQAD279+P9u3bi2uKiLye39xwXlBQ4PRKh+3atcOtt94qqCMiqi38JiglSVL8xE2FP/74A7169cLly5cFdUVEtYHfBGV6ejrKysqcHmfPnj3o1asXSkpKBHRFRLWB3wSlqHsnAWD37t0MSyI/4hcXc2RZFvY0TsOGDfHEE08gPj4egYGBQsYkIu/mF0H5559/4tSpU4rrGzVqhLi4OMTHx+PRRx+FWq0W2B0ReTuvC0qbzYaSkhKYTCaYTCaUlZXBbrdDlmVIkgS1Wo3g4GDodDrodDoEBwdDkqSbjqnksLtJkyaIj49HfHw8OnXqxHAkUkiWZZSWllbu06WlpbDZbJX7tEqlQlBQUOU+rdfrvW5/85qgNJlMyM3NRWFh4Q3f4iPLMux2OwoLC1FYWAjgyjsgw8LCEBYWBq1WW2VNdQ+7tVotxowZgxEjRuDBBx+ESuU3p3CJhLNYLMjLy0NeXh5sNluV36nYpy9fvlx5N4kkSQgJCYHBYIBOp3Nnyzfk8aAsKytDZmYmTCaTonqbzYbs7GxkZ2ejfv36aNy48TV/jQ4cOID09PQb1rdo0QK9evVCWloali9fDoPBoKgPIrrCZrPhwoULKCgoUFQvyzIKCgpQUFAAnU6Hpk2bIigoSGyTNeSxoJRlGTk5OcjKyhI2ZkFBAYqLi9G0aVPUq1cPQNWvVGvVqhUGDBiA+Ph4dOjQweGhOxFVT1FRETIzM284g6wpk8mEkydPIiIiAg0aNPDYvuqRoLRarThz5oziWeTN2Gw2nD17FqGhoWjcuHFlULZp06YyHNu3b89wJBJIlmWcP38e+fn5Lhk/KysLRUVFuOWWW6DRuD+23L5Fi8WCtLQ0mM1ml24nPz8fRUVFGD16NOLi4nDXXXcxHIlcQJZlnDt3DkVFRS7djslkwunTp9GyZcsqr0e4kluvVlitVqSnp7s8JCvYbDaMGzeOIUnkIrIsIzMz0+UhWcFsNiM9PR1Wq9Ut26vgtqCUZRkZGRkoLy931yYBXDlv6ewz3kRUtby8PMUXbZQqLy9HRkaG4jWulHBbUBYWFnrsZRIXL150e0AT+bry8nJcvHjRI9u+fPly5S2C7uCWoLRYLDh//rw7NlWlisMDd/4FIvJl3rBPnT9/HhaLxS3bcktQZmdnw263u2NTN1RaWori4mKP9kDkK4qLi1FaWurRHux2O7Kzs92yLZcHpc1mc9ktAzWVm5vr6RaIfIK37Ev5+fnC7tm8GZcHZUFBgdcc8paUlPBcJZGTysvLveYVg7Isu+Vcpcvvo1Q6m9y9ezeefvrpG/78sccew5w5cxT106hRI0U9EZHyffpqw4cPR+vWrfHmm286PVZeXh7CwsKcHudmXBqUdrtd8VvF77//fuzcufOaz2w2G1577TWkpKRg/Pjxisb19HkVotrO2X3IbrcjNTUVjz/+uJB+Kt4w5sqX2Lg0KJ1ZeiEoKOiaB+FtNhumTZuGlJQUJCQkIDIyUtG4JpOp8vVORFQzsiw7/ehxWloaTCYTbr/9dkFdXcma4OBgYeNdz6XnKEU9y10Rkr/++iuWLFmiOCSBK/+i3fVkEJGvMZvNTl9zSE5OhkajcWo/vp4r3htxNZcGpYhAujokExIS0LZtW6/oi8gfidh3jh07hlatWgldSsXV+7RLg9LZvzyuCEkAHr+nk6i2ErHvHDt2TOhhN+B81jjita/wrgjJffv2YcmSJcJCkog8R5ZlHD9+HHfccYenW6kRlwal0gsmNpsN06dPrwzJ2267TWhfXOKBSBln951z586huLhYeFC6+uKsS696BwQE1LjGbrdj+vTp2LlzJ+bMmYPw8HDk5ORc853Q0FCnFh9S0hcROb/vJCcnA7gSuCdOnKj8XKPRoGXLlh7ryxGXBqWShYGOHj2KLVu2AAAmTpxY5Xf27t1budRDTUmSxKAkUiggIACSJCk+J5iSkgIAGDZs2DWft2vXDitXrlTcl6sXIXNpUCpZEKhdu3Y4cuSIC7q5QqfT8R5KIoUkSYJOp1N80/mUKVMwZcoUsU1BWdbUhEtP1lWs1+tNXHlTKpE/8LZ9KCgoyOXXHVx+VSM0NNTVm6gRb+uHqLbxtn3I1c95A24Iyvr163vNoa5erxd6kyuRPwoMDIRer/d0GwCunAoICQlx+XZcHpRqtdpr/gIZDAZPt0DkE7xlX3L2DpjqcssNheHh4R6/d1Gn02HRokVuWy2OyJfVrVvX4+cqVSoVwsPD3bMtd2xEq9WiSZMm7thUlSRJwieffIJXXnkF3bp1c+uiRES+SJIkNG3a1KOn1Zo0aeK29b3dNs0LCQlBnTp13LW5a/z000+YN28eAOC3335jWBIJEBgY6LGXYNetW9ct5yYruC0oJUlCs2bN3H4xJTk5GZMnT77ms/379+Oxxx5z+3rERL4mLCwM9evXd+s2AwMD3T6bdeuJQ41GgxYtWrjtyZjU1FQMHTq0yqcIfv/9d4YlkZMqDsGVPilXUwEBAWjRogU0GpevYnMNt19h0Wq1aNWqlcsfOfrrr78wYMCAm67QduDAAcTGxnrNKpFEtZEkSWjevLnL727R6XRo1aqV285LXs0jl6I1Gg1atWqFiIgI4WOr1Wps2bIFw4YNq9a78/744w907doVeXl5wnsh8hcVM8t//etfLrldJyIiAq1atXL7TLKCx+7ZkSQJ4eHhaN26tbDZZf369ZGQkICXX365RnWHDh1iWBIJUK9ePURGRgo7b6nT6dC6dWuEh4d79Aq7Z+L5KkFBQbj11lthMpmQm5uLwsLCGr2ZRK1WIywsDGFhYSgrK8P27dsV9fHnn38iJiYG27dv95qbaYlqI7VajWbNmiEiIgJ5eXnIy8u76Smw61U8bWMwGFx+iq66PB6UFXQ6HZo1a4bGjRujpKQEJpMJJpOpcinKipUT1Wo1goODodPpoNPpEBwcXPmXRqvVYseOHejatSsOHz5c4x6SkpIqw7JBgwai/ycS+RWtVouIiAg0bNgQpaWllft0aWkpbDZb5T5d8fKcin1ar9e75WmbmvCaoKygVqtRr149xVfRGjRoUBmWSUlJNa4/fPgwoqOjsWPHDrfd9U/kyyRJgl6v95rnw5XwyTURDAYDduzYgXvuuUdR/ZEjRxAdHY1Lly4J7oyIaiOfDErgyo2w27dvR4cOHRTVHz16lGFJRAB8OCiBK2G5bds23HfffYrq//77b3Tp0gVZWVmCOyOi2sSngxK48hqmbdu2oWPHjorqk5OT0aVLF1y8eFFwZ0RUW/h8UAJX7q/cunUr7r//fkX1x44dQ5cuXXDhwgXBnRFRbeAXQQn8X1g+8MADiupTUlIYlkR+ym+CErjyqretW7fioYceUlR//PhxGI1GnD9/XnBnROTN/CoogSuPWP3www/o1KmTovrU1FQYjUZkZmYK7oyIvJXfBSXwf2H58MMPK6o/ceIEjEYjMjIyBHdGRN7IL4MSuPKG5O+//x6PPvqoovqTJ0/CaDTi3LlzgjsjIm/jt0EJXAnLLVu2oHPnzorqT506BaPRiLNnzwrujIi8iV8HJQDUqVMHW7ZsQVRUlKL606dPw2g04syZM4I7IyJv4fdBCQB6vR7fffcdjEajovq0tDQYjUakp6cL7YuIvAOD8v+rCMvo6GhF9enp6QxLIh/FoLxKcHAwNm3ahJiYGEX1Z86cQVRUFNLS0gR3RkSexKC8TkVYxsbGKqo/e/YsoqKicPr0acGdEZGnMCiroNPp8M033+Cxxx5TVH/u3DlERUXh1KlTgjsjIk9gUN5ARVh2795dUX1GRgaioqJw8uRJwZ0RkbsxKG8iKCgIGzZsQI8ePRTVZ2ZmIioqCidOnBDcGRG5E4PSgYqw7NWrl6L68+fPw2g0IjU1VXBnROQuDMpqCAwMxPr169G7d29F9RVhefz4ccGdEZE7MCirKTAwEImJiejTp4+i+gsXLsBoNCIlJUVwZ0TkagzKGqgIy759+yqqv3jxIoxGI44dOya4MyJyJQZlDQUEBGDt2rXo16+fovqsrCwYjUYkJyeLbYyIXIZBqUBFWD7xxBOK6i9dugSj0YijR48K7oyIXIFBqZBWq8WaNWsQFxenqD47OxvR0dE4cuSI4M6ISDQGpRO0Wi1Wr16NAQMGKKqvCMu//vpLcGdEJBKD0klarRarVq3CoEGDFNXn5OQgOjoahw8fFtwZEYnCoBRAo9Hgf//7HwYPHqyoPjc3FzExMUhKShLbGBEJwaAURKPRYMWKFRgyZIii+oqw/PPPPwV3RkTOYlAKpNFosHz5cgwbNkxRfV5eHmJiYnDo0CHBnRGRMxiUgmk0Gnz55ZcYMWKEovr8/HzExMTg4MGDgjsjIqUYlC6gVquxdOlS/Pvf/1ZUX1BQgK5du+LAgQOCOyMiJRiULqJWq/HFF19g1KhRiuoLCgoQGxuL33//XWxjRFRjDEoXUqvV+Pzzz/Hkk08qqi8sLERsbCz2798vuDMiqgkGpYupVCosWbIEY8eOVVRfVFSE2NhY/Prrr4I7I6LqYlC6gUqlwuLFizFu3DhF9cXFxejWrRv27dsnuDMiqg4GpZuoVCp89tlnGD9+vKL6irDcu3ev4M6IyBEGpRupVCp8+umnmDBhgqL6y5cvo3v37vjll18Ed0ZEN8OgdLOKsJw4caKi+oqw3LNnj+DOiOhGGJQeIEkSFi5ciGeeeUZRfUlJCXr06IFdu3YJ7oyIqsKg9BBJkjB//nw8++yziupLSkrQs2dP/Pzzz2IbI6J/YFB6kCRJ+OijjzB58mRF9aWlpejZsyd++uknwZ0R0dUYlB4mSRLmzZuH5557TlG9yWRC7969sWPHDsGdEVEFBqUXkCQJc+bMwdSpUxXVV4Tl9u3bBXdGRACD0mtIkoQPPvgAL774oqL6srIy9OnTB9u2bRPcGRExKL2IJEmYPXs2XnrpJUX1FWH5448/Cu6MyL8xKL2MJEl477338MorryiqLy8vR9++ffHDDz8I7ozIfzEovZAkSZg5cyamT5+uqL4iLLds2SK4MyL/xKD0UpIk4d1338Wrr76qqN5sNqN///747rvvBHdG5H8YlF5MkiS8/fbbeP311xXVV4Tlpk2bBHdG5F8YlF5OkiS89dZbePPNNxXVWywWxMXF4dtvvxXbGJEfYVDWEm+88QbeeustRbUWiwXx8fHYuHGj2KaI/ASDshZ5/fXX8c477yiqtVgsGDBgADZs2CC4KyLfx6CsZV599VXMmDFDUa3VasXAgQPx9ddfC+6KyLcxKGuh6dOnY+bMmYpqK8IyMTFRcFdEvotBWUtNmzYN7733nqJam82GwYMHY926dYK7IvJNDMpa7OWXX8b777+vqNZms2HIkCH46quvBHdF5HsYlLXciy++iA8//FBRrc1mw9ChQ7F69WrBXRH5FgalD5g6dSrmzp2rqNZut2P48OFYtWqV4K6IfIfG0w2QGM899xxUKhWmTJlS41q73Y4RI0ZUhqZoVqu1yjXJMzIyqj1GRkYGdu/e/Y/PO3XqBI2Gv8bkWpIsy7KnmyBxFixYoHgdHkmS8OWXX2LEiBGCuwJiYmKEL1kRHR3NN7uTWzAofdDChQsxadIkRbWSJGHp0qUYOXKk0J52796NqKgooWPu2rULnTt3FjomUVV4jtIHPfPMM1i4cKGiWlmWMXr0aCxbtkxoT507d0Z0dLSw8aKjoxmS5DacUfqwRYsWYeLEiYpqJUlCQkICnnzyyRt+R5ZlSJJU7TFFzio5myR34ozShz311FP47LPPFNXKsowxY8YgISGhyp+XlJRg6NChsNls1R5T1KySs0lyO5l83n//+18ZgOL/LF68+JrxSkpK5C5dusgA5J07d9aol127djnVCwB5165dAv/fIXKMM0o/MG7cOCQkJNToMPlq48ePx+LFiwEApaWl6NOnD3bu3AkANX6yx9lZJWeT5Ak8R+lHvvjiC4wdOxZK/5XPmzcP33333TXrh4eHh+P8+fM1upfRmXOVPDdJnsCg9DPLli3Dk08+qTgsq7J9+3bExMTUqEbJfZW8b5I8hYfefmbUqFFYtmyZ4sPwqih5scYbb7zhlhoiETij9FMrVqzAyJEjhcwsDQYDLly4AK1WW6O66OjoynOd1fkuZ5PkKZxR+qkRI0Zg+fLlUKmc/xXIzc2tduBdrSYzRM4myZMYlH5s+PDhWLFihZCwVHL4HRUVhS5dujj8Hq90k6fx0JuwZs0aDBs2DHa7XfEYoaGhuHjxIgICAmpUt2vXLhiNRoffYVCSJ3FGSRg8eDBWrVoFtVqteIz8/PxrbhuqLkezSs4myRswKAkAMGjQICxfvtypMdauXauo7mbnH3lukrwBg5IAXFn329mVGTdu3Ijy8vIa191oVsnZJHkLBiXBYrFg8ODB2LBhg1PjFBYWYuvWrYpqq5o5cjZJ3oJB6ecsFguGDBmCr7/+Wsh4Sg+/r59VcjZJ3oRXvf3cCy+8gDlz5ggbr27durh06RKCgoJqXHv1FXBe6SZvwqD0c7Is48CBA0hMTMS6deuQnp7u9JgbNmxAv379FNVGR0dDkiQ+hUNehUFJlWRZxqFDhypD89SpU4rGGTJkSI2Xv7XZbLBYLDh48CAAoEOHDtBqtU7dskQkCoOSqiTLMg4fPlwZmqmpqdWu1ev1yM7Ohk6nu+F3bDYbCgoKYDKZUFpaCrPZXOX3AgICEBwcDJ1Oh/r16zM4ySMYlOSQLMs4evQo1q1bh/Xr1yM5OdlhTWJiIuLi4v7xuclkQm5uLgoLC2v8Qg5JkhASEgKDwXDTECYSjUFJNZacnIzExEQkJibiyJEjVX5n4MCB1zz/bbVaceHCBRQWFgrpISQkBI0bN67RC4OJlGJQklOOHz9eGZpJSUmVnwcHB+PSpUvQ6/UoKipCZmZmjRYiqw61Wo2mTZuiXr16Qscluh6DkoQ5efJkZWgePHgQX331FTp37oycnByXbrdBgwaIiIgQ+jJioqsxKMklTp8+jfz8fAQGBrplewaDAY0aNWJYkkvwyRxyiTp16rgtJIErLw/Ozs522/bIvzAoSbiSkhJcunTJ7du9dOkSSkpK3L5d8n0MShLKbrcjIyPDY9vPyMhw6gXERFVhUJJQWVlZsFgsHtu+xWJBVlaWx7ZPvolBScJYrVbk5uZ6ug3k5ubCarV6ug3yIQxKEiY/P9/TLVTypl6o9mNQkhCyLHvFbLJCbm6ukDXLiQAGJQlSWlqq6HDXarWiR48emDVr1j9+9vbbb6NHjx6KAthqtaK0tLTGdURVYVCSECaTSVGdRqPBmDFjsGHDBhQUFFR+npCQgG3btmHRokUwGAxu7YnoegxKEsKZUOrbty9CQkKwevVqAMDmzZuxePFiLFiwAC1atPBIT0RX46tXSAhnQkmr1WL06NFYvHgx7rzzTrz55puYNWsW2rdv77GeiK7GGSUJ4eztOHFxcVCpVJg0aRImT56M2NhYj/dEVIEzShLC2SvMgYGB6NixI7KysjBixAiv6ImoAmeU5DVOnDiBu+66y9NtEP0Dg5KEUKmc+1UqKytDWloa7rjjDkEdOd8TUQX+JpEQzr5SLSUlBTabDbfffrugjqBobXGiqjAoSYjg4GCn6o8dO4bg4GDccsstgjoCFyAjYfiGcxKisLAQ586d83Qb12jevDlCQkI83Qb5AM4oSQhnZ5Su4I09Ue3EoCQhtFqtV62GWK9ePWi1Wk+3QT6CQUnChIWFebqFSt7UC9V+DEoSRq/XIyAgwNNtICAgAHq93tNtkA9hUJIwkiShadOmnm4DTZs25bK1JBSDkoTS6/WKX4smgsFg4GyShGNQknAREREeOQQPCAhARESE27dLvo9BScKpVCq0aNECarXabdvUaDRo0aIFH1skl+BvFblEQEAAWrVqBY3G9S+o0mg0aNmypVdcSCLfxCdzyKXMZjPOnTvnspfo6nQ6NG/enCFJLsWgJJeTZRk5OTnIysoSOm6jRo1gMBh4hZtcjkFJblNWVoasrCwUFxc7NU7dunXRqFEjp99YRFRdDEpyO4vFgry8POTn51d7uQaNRoPQ0FCEhYXx0URyOwYleYwsy7BarTCZTDCZTDCbzZXLN0iShICAAOh0Ouh0Omg0Gh5ik8cwKImIHODtQUREDjAoiYgcYFASETnAoCQicoBBSUTkAIOSiMgBBiURkQMMSiIiBxiUREQOMCiJiBxgUBIROcCgJCJygEFJROQAg5KIyAEGJRGRAwxKIiIHGJRERA4wKImIHGBQEhE5wKAkInKAQUlE5ACDkojIgf8Huo6lGEZLzqoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAFICAYAAAA24bcOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmaUlEQVR4nO3deXiM5/4/8PczS5LJIGREaGhRS5erqlVdtGQkUnvRxM5BcahWabU9h6t7i2pLW5Q60lJqKVFaqq2litKq0iiNiCVBgsieSCZme35/+E2+aJjkmXuWzLxf13Wu63Qyn/v5nNM879zPekuyLMsgIqIbUnm7ASIiX8egJCJygkFJROQEg5KIyAkGJRGREwxKIiInGJRERE4wKImInGBQEhE5waAkInKCQUlE5ASDkojICQYlEZETDEoiIicYlERETjAoiYicYFASETnBoCQicoJBSUTkBIOSiMgJBiURkRMMSiIiJzTeboAClyzLsFgsKC8vh8lkgtlshmP1ZEmSEBQUBJ1Oh5CQEGi1WkiS5OWOKVAxKMnjLBYL8vPzUVBQAKvVWqUajUaDevXqITw8HFqt1s0dEl1Lkh1/woncrLy8HNnZ2SgpKXFpnNq1ayMyMhIhISGCOiO6OQYluZ0sy8jNzUV2drbQcSMjI1G/fn0ekpPbMSjJrcxmM86cOYPy8nK3jK/T6dCkSRMEBQW5ZXwigEFJbnT58mWkp6dX+TykUhqNBs2aNUNwcLBbt0OBi7cHkVuYzWacOnXK7SEJAFarFenp6TCbzW7fFgUmBiUJZ7fbkZGRAZvN5rFtWq1WZGRkwG63e2ybFDgYlCRcdna2V2Z3ZrNZ+AUjIoBBSYKVlpYiLy/Pa9vPy8tDaWmp17ZP/olBScLIsoysrCxvt4GsrCzwGiWJxKAkYUpLS33igorZbOaskoRiUJIw+fn53m6hgi/1QjUfg5KEsFgsKC4uVlRrt9vRu3dvzJkz55rP9+zZg/vuuw8//vhjtccsLi6GxWJR1A/R9RiUJERZWZniWpVKhTFjxmDNmjUoKioCABw7dgxTpkzBpEmT0LVrV4/3RHQ1BiUJYTKZXKrv2bMn6tati5UrV+LChQuYMGECevXqhZEjR3qtJyIHPsJIQpw6dcrlGdyaNWswd+5cNGjQAFFRUfjoo4+gVqsVj6fX69GsWTOXeiICOKMkQS5fvuzyGL169UJ5eTlkWcasWbNcCkkAbnsRBwUeBiUJIeLRwenTpwMACgsLXQ5JQExPRACDknzEvHnzsHv3bqxYsQI2mw1ff/21t1siqsCgJCFceXnuunXrsGzZMsybNw+tW7fGsGHDsGTJEpdv7+ELfUkUBiUJodEoW35p9+7dmD59OmbOnIl7770XADBkyBBcunQJmzZt8kpPRNdjUJIQOp2u2jV///03pkyZghdeeAFdunSp+LxWrVoYMmQIPvvsM5de1aakJ6LK8PYgEiI3NxcXLlzwdhvXaNiwIerXr+/tNsgPcEZJQvji7M0Xe6KaiUFJQoSGhvrUOUGNRoPQ0FBvt0F+gkFJQkiSBIPB4O02KhgMBl71JmEYlCRMvXr1vN1CBV/qhWo+BiUJo9FofGJWaTAYfOo0ANV8DEoSKjIyElqt1mvb12q1iIyM9Nr2yT8xKEkolUqFxo0be237jRs3hkrFX2sSi79RJJxer0eDBg08vt0GDRpAr9d7fLvk/xiU5BYlJSVCXr1WVQaDARERER7bHgUWBiUJc/z4ccycORPt2rVDixYtcPLkSY+EV0REBBo2bMjbgcht+AgjuSQ1NRVJSUlISkrCoUOHKj4PDQ3FxYsXodfrUVxcjKysLJee266MWq1GVFQU6tSpI3RcouvxHgqqlu3bt0OWZezZswdJSUk4cuRIpd/r1atXxfnCOnXqIDQ0FOfPn69YPMxVYWFhaNSoEW8DIo/gbxk5Jcsyjhw5ghkzZmD16tVVqhkwYMA1/6zRaNCkSRPUr18feXl5KCoqQnUPZiRJQlhYGAwGA5/jJo/ioTdVSpZlJCcnVxxWp6WlVblWr9cjJyfnpmFms9lQWFgIk8mEsrIymM3mSr8XFBSE0NBQhIaGIiwsTMgSEUTVxRklVZBlGQcOHKgIx5MnTyoa54knnnA641Or1Zg5cyY+/vjjKo05adIkfPDBB4r6IXIVgzLAybKM33//vSIcMzIyXB7z+sPuG7Hb7bBarVX+LpG3MCgD3Isvvog5c+YIG6927dro1q2bsPGIfAHvowxw7777Lp588klh4/Xp0wchISHCxiPyBQzKAKfVarF69Wr069dPyHhxcXFCxiHyJQxKqgjLvn37ujxWSUmJ6w0R+RgGJQG4chvOrbfe6tIY999/P5555hlBHRH5DgYlAbhy+83cuXNdGuOdd94R1A2Rb+FVb8LEiRMxf/58l8aoV68eYmNjBXVE5FsYlAHumWeewYIFC1wep1+/fggKChLQEZHvYVAGsKeffhqffvqpkLEGDhwoZBwiX8SgDFDjx4/HokWLhIxlMBjQuXNnIWMR+SIGZQAaO3YsEhMThY0XHx/v1QXFiNyNQRlgxowZg88++0zomFV9tpuopuLtQQFk1KhRLoVkQkLCP65sR0REIDo62tXWiHwagzJAjBgxAkuXLlVcP2TIEKxduxbffvvtNecjExIS+JZx8nsMygAwbNgwLFu2THH98OHDsWLFCgBX1sLZuHEjjEYjAB52U2BgUPq5oUOHVoScEiNGjPhHyOr1emzatAmDBg1Cx44dXW2RyOfxmMmPDR48uMpr3FRm5MiRWLJkSaU/0+v1WLlyJZeIpYDAGaWfGjRokEshOXr06BuGpANDkgIFZ5R+qH///khKSlJcP2bMGCxevFhgR0Q1G2eUfiY+Pt6lkBw3bhxDkug6nFH6kX79+mHDhg2K68ePH4+FCxeKa4jIT3BG6Sf69u3rUkhOmDCBIUl0AwxKP9C7d2988803iusnTpyITz75RGBHRP6Fh941XM+ePbF582bF9c899xw+/vhjgR0R+R/OKGuwHj16uBSSzz//PEOSqAoYlDVUt27d8P333yuunzJlCubMmSOwIyL/xUPvGiguLg7btm1TXP/iiy/i/fffF9gRkX/jjLKG6dKli0sh+fLLLzMkiaqJQVmDxMTEYPv27Yrrp06dilmzZgnsiCgw8NC7hjAajdi5c6fi+mnTpmH69OkCOyIKHJxR+ji73Y7o6GiXQvLVV19lSBK5gEHpwxwhuWvXLsVjvP7663jrrbcEdkUUeHjo7aPsdjs6duyIvXv3Kh7jzTffxGuvvSawK6LAxKD0QXa7HY899hh+/fVXxWO8/fbbeOWVVwR2RRS4GJQ+xm63o0OHDti3b5/iMaZPn45p06YJ7IoosDEofYjdbsfDDz+M/fv3Kx5jxowZmDp1qsCuiIhB6SPsdjsefPBBHDhwQPEYs2bNwssvvyywKyICGJQ+wW63o3379jh48KDiMd577z289NJLArsiIgcGpZfZ7Xa0a9cOycnJiseYPXs2XnjhBXFNEdE1GJReZLfbcf/99+PQoUOKx/jwww8xefJkcU0R0T8wKL3Ebrejbdu2OHz4sOIx5s6di4kTJwrsiogqw6D0ApvNhnvvvRd///234jHmzZuHZ599VmBXRHQjDEoPs1qtuPfee5GSkqJ4jE8++QQTJkwQ2BUR3QyD0oOsVivatGmDo0ePKh5j4cKFGD9+vMCuiMgZBqWHWK1W3HPPPUhNTVU8xqJFi/Dvf/9bYFdEVBUMSg+wWq24++67kZaWpniMxYsXY8yYMQK7IqKqYlC6mdVqxV133YXjx48rHiMxMRGjR48W2BURVQeD0o3MZjPuvvtunDhxQvEYn3/+OUaNGiWwKyKqLgalm5jNZtx55504deqU4jGWLl2KESNGCOyKiJRgULqB2WzGHXfcgfT0dEX1kiThiy++wPDhwwV3RkRKMCgFM5vNaN26NTIyMhTVS5KE5cuXY+jQoWIbIyLFGJQClZeX44477sDp06cV1UuShBUrVmDw4MGCOyMiVzAoBSkvL0fr1q1x5swZRfWSJGHVqlUYOHCg4M6IyFUMSgHKy8vRqlUrnD17VlG9JElYvXo1BgwYILgzIhKBQemisrIytG7dGpmZmYrqJUnCmjVrkJCQILgzIhKFQemCsrIytGrVCllZWYrqJUnCunXr0K9fP8GdEZFIDEqFLl26hFatWuH8+fOK6iVJwvr169GnTx/BnRGRaCpvN1ATuRqSKpUKGzZsYEgS1RCcUVbTpUuX0LJlS1y4cEFRvUqlwjfffINevXoJ7oyI3IVBWQ3FxcVo1aoVsrOzFdWrVCps3LgRPXr0ENwZEbkTg7KKiouL0bJlS1y8eFFRvUqlwqZNm9C9e3fBnRGRuzEoq6CwsBCtWrVCTk6OonqVSoXNmzeja9eugjsjIk9gUDohIiR/+OEHxMXFCe6MiDyFQXkThYWFaNGiBfLy8hTVq9Vq/Pjjj4iNjRXcGRF5UkDfHrR+/Xrk5uZW+rP8/HyXQ3LLli0MSSI/ENBBOX36dMTGxv4jDPPy8tCyZUuXQnLbtm2IiYkR0SYReVnABuXJkydx4MAB/PXXX9eEZW5uLlq1aoX8/HxF46rVavz0008wGo0CuyUibwrYoFyzZk3Ffz906BC6dOmC48ePuxySP//8Mzp16iSqTSLyAQF7MefqoASA5ORktG7dGrIsKxpPo9Fgx44deOyxx0S0R0Q+JCCDMi0tDcnJyf/43JWQ/Pnnn/Hoo4+62BkR+aKADMrrZ5Ou0Gg02LVrFx555BFhYxKRbwnIoPzqq6+EjKPRaPDLL7/goYceEjIeEfmmgAvKlJQUHDlyxOVxtFot9uzZg/bt2wvoioh8WcAF5dq1a10eQ6vVYu/evXjggQcEdEREvi6gglKWZaxcudKlMbRaLX777Tfcf//9groiIl8XUEH522+/IS0tTXF9UFAQ9u3bh7Zt24prioh8XsDccF5YWOjySodt2rTB7bffLqgjIqopAiYoJUlS/MSNwx9//IGePXvi0qVLgroiopogYIIyIyMD5eXlLo+ze/du9OzZE6WlpQK6IqKaIGCCUtS9kwCwa9cuhiVRAAmIizmyLAt7GqdBgwZ48sknkZCQgODgYCFjEpFvC4ig/PPPP3Hy5EnF9Q0bNkR8fDwSEhLQsWNHqNVqgd0Rka/zuaC02WwoLS2FyWSCyWRCeXk57HY7ZFmGJElQq9UIDQ2FTqeDTqdDaGgoJEm66ZhKDrtvueUWJCQkICEhAR06dGA4EikkyzLKysoq9umysjLYbLaKfVqlUiEkJKRin9br9T63v/lMUJpMJuTl5aGoqOiGb/GRZRl2ux1FRUUoKioCcOUdkOHh4QgPD4dWq620pqqH3VqtFqNHj8bw4cPx8MMPQ6UKmFO4RMJZLBbk5+cjPz8fNput0u849ulLly5V3E0iSRLCwsJgMBig0+k82fINeT0oy8vLkZWVBZPJpKjeZrMhJycHOTk5qFu3Lho1anTNX6P9+/cjIyPjhvVNmzZFz549kZ6ejmXLlsFgMCjqg4iusNlsOH/+PAoLCxXVy7KMwsJCFBYWQqfTISoqCiEhIWKbrCavBaUsy8jNzUV2drawMQsLC1FSUoKoqCjUqVMHQOWvVGvevDn69++PhIQEtGvXzumhOxFVTXFxMbKysm44g6wuk8mEEydOIDIyEvXr1/favuqVoLRarTh9+rTiWeTN2Gw2nDlzBvXq1UOjRo0qgrJly5YV4di2bVuGI5FAsizj3LlzKCgocMv42dnZKC4uxm233QaNxvOx5fEtWiwWpKenw2w2u3U7BQUFKC4uxqhRoxAfH4977rmH4UjkBrIs4+zZsyguLnbrdkwmE06dOoVmzZpVej3CnTx6tcJqtSIjI8PtIelgs9kwduxYhiSRm8iyjKysLLeHpIPZbEZGRgasVqtHtufgsaCUZRmZmZm4fPmypzYJ4Mp5S1ef8SaiyuXn5yu+aKPU5cuXkZmZqXiNKyU8FpRFRUVee5nEhQsXPB7QRP7u8uXLuHDhgle2fenSpYpbBD3BI0FpsVhw7tw5T2yqUo7DA0/+BSLyZ76wT507dw4Wi8Uj2/JIUObk5MBut3tiUzdUVlaGkpISr/ZA5C9KSkpQVlbm1R7sdjtycnI8si23B6XNZnPbLQPVlZeX5+0WiPyCr+xLBQUFwu7ZvBm3B2VhYaHPHPKWlpbyXCWRiy5fvuwzrxiUZdkj5yrdfh+l0tnkrl278Mwzz9zw548//jhmz56tqJ+GDRsq6omIlO/TVxs2bBhatGiBN954w+Wx8vPzER4e7vI4N+PWoLTb7YrfKv7ggw9ix44d13xms9nw6quvIjU1FePGjVM0rrfPqxDVdK7uQ3a7HWlpaXjiiSeE9ON4w5g7X2Lj1qB0ZemFkJCQax6Et9lsmDp1KlJTU5GYmIhWrVopGtdkMlW83omIqkeWZZcfPU5PT4fJZMKdd94pqKsrWRMaGipsvOu59RylqGe5HSH566+/YvHixYpDErjyL9pTTwYR+Ruz2ezyNYeUlBRoNBqX9uPrueO9EVdza1CKCKSrQzIxMRGtW7f2ib6IApGIfefo0aNo3ry50KVU3L1PuzUoXf3L446QBOD1ezqJaioR+87Ro0eFHnYDrmeNMz77Cm9HSO7duxeLFy8WFpJE5D2yLOPYsWO46667vN1Ktbg1KJVeMLHZbJg2bVpFSN5xxx1C++ISD0TKuLrvnD17FiUlJcKD0t0XZ9161TsoKKjaNXa7HdOmTcOOHTswe/ZsREREIDc395rv1KtXz6XFh5T0RUSu7zspKSkArgTu8ePHKz7XaDRo1qyZ1/pyxq1BqWRhoCNHjmDz5s0AgAkTJlT6nT179lQs9VBdkiQxKIkUCgoKgiRJis8JpqamAgCGDh16zedt2rTBihUrFPfl7kXI3BqUShYEatOmDQ4fPuyGbq7Q6XS8h5JIIUmSoNPpFN90PnnyZEyePFlsU1CWNdXh1pN1jvV6fYk7b0olCgS+tg+FhIS4/bqD269q1KtXz92bqBZf64eopvG1fcjdz3kDHgjKunXr+syhrl6vF3qTK1EgCg4Ohl6v93YbAK6cCggLC3P7dtwelGq12mf+AhkMBm+3QOQXfGVfcvUOmKryyA2FERERXr93MSQkBAsWLPDYanFE/qx27dpeP1epUqkQERHhmW15YiNarRa33HKLJzZVKVmWMX36dEydOhVdu3b16KJERP5IkiRERUV59bTaLbfc4rH1vT02zQsLC0OtWrU8tbkKdrsd7733HpYuXQoA+O233xiWRAIEBwd77SXYtWvX9si5SQePBaUkSWjcuLFHL6bY7XbMmjULX3755TWf79u3D48//rjH1yMm8jfh4eGoW7euR7cZHBzs8dmsR08cajQaNG3a1CNPxjhmkitXrqz057///jvDkshFjkNwpU/KVVdQUBCaNm0Kjcbtq9hcw+NXWLRaLZo3b+7WR45kWcYHH3zg9JGo/fv3Iy4uzmdWiSSqiSRJQpMmTdx+d4tOp0Pz5s09dl7yal65FK3RaNC8eXNERkYKH1ulUmHu3LlYvnx5lb7/xx9/oEuXLsjPzxfeC1GgcMwsb731VrfcrhMZGYnmzZt7fCbp4LV7diRJQkREBFq0aCFsdhkWFoYFCxYgMTGxWnUHDx5kWBIJUKdOHbRq1UrYeUudTocWLVogIiLCq1fYvRPPVwkJCcHtt98Ok8mEvLw8FBUVVevNJGq1GuHh4QgPD0d5eTl2796tqI8///wTsbGx2LZtm8/cTEtUE6nVajRu3BiRkZHIz89Hfn4+bDZblesdT9sYDAa3vxWoqrwelA46nQ6NGzdGo0aNUFpaCpPJBJPJVLEUpWPlRLVajdDQUOh0Ouh0OoSGhlb8pdFqtdi+fTu6dOmCQ4cOVbuH5OTkirCsX7++6P+JRAFFq9UiMjISDRo0QFlZWcU+XVZWBpvNVrFPO16e49in9Xq9R562qQ6fCUoHtVqNOnXqKL6KVr9+/YqwTE5Ornb9oUOHEBMTg+3bt3vsrn8ifyZJEvR6vc88H66EX66JYDAYsH37dtx3332K6g8fPoyYmBhcvHhRcGdEVBP5ZVACV26E3bZtG9q1a6eo/siRIwxLIgLgx0EJXAnLrVu34oEHHlBU//fff6Nz587Izs4W3BkR1SR+HZTAldcwbd26Fe3bt1dUn5KSgs6dO+PChQuCOyOimsLvgxK48vLgLVu24MEHH1RUf/ToUXTu3Bnnz58X3BkR1QQBEZTA/4XlQw89pKg+NTWVYUkUoAImKIErT+5s2bIFjzzyiKL6Y8eOwWg04ty5c4I7IyJfFlBBCVx5xOqHH35Ahw4dFNWnpaXBaDQiKytLcGdE5KsCLiiB/wvLRx99VFH98ePHYTQakZmZKbgzIvJFARmUwJU3JH///ffo2LGjovoTJ07AaDTi7NmzgjsjIl8TsEEJXAnLzZs3o1OnTorqT548CaPRiDNnzgjujIh8SUAHJQDUqlULmzdvRnR0tKL6U6dOwWg04vTp04I7IyJfEfBBCQB6vR7fffcdjEajovr09HQYjUZkZGQI7YuIfAOD8v9zhGVMTIyi+oyMDIYlkZ9iUF4lNDQUGzduRGxsrKL606dPIzo6Gunp6YI7IyJvYlBexxGWcXFxiurPnDmD6OhonDp1SnBnROQtDMpK6HQ6fPPNN3j88ccV1Z89exbR0dE4efKk4M6IyBsYlDfgCMtu3bopqs/MzER0dDROnDghuDMi8jQG5U2EhIRg/fr16N69u6L6rKwsREdH4/jx44I7IyJPYlA64QjLnj17Kqo/d+4cjEYj0tLSBHdGRJ7CoKyC4OBgrFu3Dr169VJU7wjLY8eOCe6MiDyBQVlFwcHBSEpKQu/evRXVnz9/HkajEampqYI7IyJ3Y1BWgyMs+/Tpo6j+woULMBqNOHr0qODOiMidGJTVFBQUhDVr1qBv376K6rOzs2E0GpGSkiK2MSJyGwalAo6wfPLJJxXVX7x4EUajEUeOHBHcGRG5A4NSIa1Wi9WrVyM+Pl5RfU5ODmJiYnD48GHBnRGRaAxKF2i1WqxatQr9+/dXVO8Iy7/++ktwZ0QkEoPSRVqtFitXrsTAgQMV1efm5iImJgaHDh0S3BkRicKgFECj0eDLL7/EoEGDFNXn5eUhNjYWycnJYhsjIiEYlIJoNBosX74cgwcPVlTvCMs///xTcGdE5CoGpUAajQbLli3D0KFDFdXn5+cjNjYWBw8eFNwZEbmCQSmYRqPBF198geHDhyuqLygoQGxsLA4cOCC4MyJSikHpBmq1GkuWLMG//vUvRfWFhYXo0qUL9u/fL7gzIlKCQekmarUan3/+OUaOHKmovrCwEHFxcfj999/FNkZE1cagdCO1Wo3PPvsMTz31lKL6oqIixMXFYd++fYI7I6LqYFC6mUqlwuLFizFmzBhF9cXFxYiLi8Ovv/4quDMiqioGpQeoVCosWrQIY8eOVVRfUlKCrl27Yu/evYI7I6KqYFB6iEqlwqeffopx48YpqneE5Z49ewR3RkTOMCg9SKVSYcGCBRg/fryi+kuXLqFbt2745ZdfBHdGRDfDoPQwR1hOmDBBUb0jLHfv3i24MyK6EQalF0iShPnz5+PZZ59VVF9aWoru3btj586dgjsjosowKL1EkiTMnTsXzz33nKL60tJS9OjRAz///LPYxojoHxiUXiRJEj766CNMmjRJUX1ZWRl69OiBn376SXBnRHQ1BqWXSZKEDz/8EM8//7yiepPJhF69emH79u2COyMiBwalD5AkCbNnz8aUKVMU1TvCctu2bYI7IyKAQekzJEnC+++/j5deeklRfXl5OXr37o2tW7cK7oyIGJQ+RJIkzJo1Cy+//LKiekdY/vjjj4I7IwpsDEofI0kS3n33Xfz3v/9VVH/58mX06dMHP/zwg+DOiAIXg9IHSZKEGTNmYNq0aYrqHWG5efNmwZ0RBSYGpY+SJAnvvPMOXnnlFUX1ZrMZ/fr1w3fffSe4M6LAw6D0YZIk4a233sJrr72mqN4Rlhs3bhTcGVFgYVD6OEmS8Oabb+KNN95QVG+xWBAfH49vv/1WbGNEAYRBWUO8/vrrePPNNxXVWiwWJCQkYMOGDWKbIgoQDMoa5LXXXsPbb7+tqNZisaB///5Yv3694K6I/B+DsoZ55ZVXMH36dEW1VqsVAwYMwNdffy24KyL/xqCsgaZNm4YZM2YoqnWEZVJSkuCuiPwXg7KGmjp1Kt59911FtTabDYMGDcLatWsFd0XknxiUNdh//vMfvPfee4pqbTYbBg8ejK+++kpwV0T+h0FZw7300kv44IMPFNXabDYMGTIEq1atEtwVkX9hUPqBKVOmYM6cOYpq7XY7hg0bhpUrVwruish/aLzdAInx/PPPQ6VSYfLkydWutdvtGD58eEVoima1WitdkzwzM7PKY2RmZmLXrl3/+LxDhw7QaPhrTO4lybIse7sJEmfevHmK1+GRJAlffPEFhg8fLrgrIDY2VviSFTExMXyzO3kEg9IPzZ8/HxMnTlRUK0kSlixZghEjRgjtadeuXYiOjhY65s6dO9GpUyehYxJVhuco/dCzzz6L+fPnK6qVZRmjRo3C0qVLhfbUqVMnxMTECBsvJiaGIUkewxmlH1u4cCEmTJigqFaSJCQmJuKpp5664XdkWYYkSVUeU+SskrNJ8iTOKP3Y008/jU8//VRRrSzLGD16NBITEyv9eWlpKYYMGQKbzVblMUXNKjmbJI+Tye/973//kwEo/s+iRYuuGa+0tFTu3LmzDEDesWNHtXrZuXOnS70AkHfu3Cnw/x0i5zijDABjx45FYmJitQ6TrzZu3DgsWrQIAFBWVobevXtjx44dAFDtJ3tcnVVyNknewHOUAeTzzz/HmDFjoPRf+YcffojvvvvumvXDIyIicO7cuWrdy+jKuUqemyRvYFAGmKVLl+Kpp55SHJaV2bZtG2JjY6tVo+S+St43Sd7CQ+8AM3LkSCxdulTxYXhllLxY4/XXX/dIDZEInFEGqOXLl2PEiBFCZpYGgwHnz5+HVqutVl1MTEzFuc6qfJezSfIWzigD1PDhw7Fs2TKoVK7/CuTl5VU58K5WnRkiZ5PkTQzKADZs2DAsX75cSFgqOfyOjo5G586dnX6PV7rJ23joTVi9ejWGDh0Ku92ueIx69erhwoULCAoKqlbdzp07YTQanX6HQUnexBklYdCgQVi5ciXUarXiMQoKCq65baiqnM0qOZskX8CgJADAwIEDsWzZMpfGWLNmjaK6m51/5LlJ8gUMSgJwZd1vV1dm3LBhAy5fvlztuhvNKjmbJF/BoCRYLBYMGjQI69evd2mcoqIibNmyRVFtZTNHzibJVzAoA5zFYsHgwYPx9ddfCxlP6eH39bNKzibJl/Cqd4B78cUXMXv2bGHj1a5dGxcvXkRISEi1a6++As4r3eRLGJQBTpZl7N+/H0lJSVi7di0yMjJcHnP9+vXo27evotqYmBhIksSncMinMCipgizLOHjwYEVonjx5UtE4gwcPrvbytzabDRaLBbt37wYAdOzYEVqt1qVblohEYVBSpWRZxqFDhypCMy0trcq1er0eOTk50Ol0N/yOzWZDYWEhTCYTysrKYDabK/1eUFAQQkNDodPpULduXQYneQWDkpySZRlHjhzB2rVrsW7dOqSkpDitSUpKQnx8/D8+N5lMyMvLQ1FRUbVfyCFJEsLCwmAwGG4awkSiMSip2lJSUpCUlISkpCQcPny40u8MGDDgmue/rVYrzp8/j6KiIiE9hIWFoVGjRtV6YTCRUgxKcsmxY8cqQjM5Obni89DQUFy8eBF6vR7FxcXIysqq1kJkVaFWqxEVFYU6deoIHZfoegxKEubEiRMVoXngwAGsXr0a0dHRyM3Ndet269evj8jISKEvIya6GoOS3OLUqVM4fPgwbr/9do9sz2AwoGHDhgxLcgs+mUNuUatWLY+FJHDl5cE5OTke2x4FFgYlCVdaWoqLFy96fLsXL15EaWmpx7dL/o9BSULZ7XZkZmZ6bfuZmZkuvYCYqDIMShIqOzsbFovFa9u3WCzIzs722vbJPzEoSRir1Yq8vDxvt4G8vDxYrVZvt0F+hEFJwhQUFHi7hQq+1AvVfAxKEkKWZZ+YTTrk5eUJWbOcCGBQkiBlZWWKDnetViu6d++OmTNn/uNnb731Frp3764ogK1WK8rKyqpdR1QZBiUJYTKZFNVpNBqMHj0a69evR2FhYcXniYmJ2Lp1KxYuXAiDweDRnoiux6AkIVwJpT59+iAsLAyrVq0CAGzatAmLFi3CvHnz0LRpU6/0RHQ1vnqFhHAllLRaLUaNGoVFixbh7rvvxhtvvIGZM2eibdu2XuuJ6GqcUZIQrt6OEx8fD5VKhYkTJ2LSpEmIi4vzek9EDpxRkhCuXmEODg5G+/btkZ2djeHDh/tET0QOnFGSzzh+/Djuueceb7dB9A8MShJCpXLtV6m8vBzp6em46667BHXkek9EDvxNIiGCg4Ndqk9NTYXNZsOdd94pqCMoWlucqDIMShIiNDTUpfqjR48iNDQUt912m6COwAXISBi+4ZyEKCoqwtmzZ73dxjWaNGmCsLAwb7dBfoAzShLC1RmlO/hiT1QzMShJCK1W61OrIdapUwdardbbbZCfYFCSMOHh4d5uoYIv9UI1H4OShNHr9QgKCvJ2GwgKCoJer/d2G+RHGJQkjCRJiIqK8nYbiIqK4rK1JBSDkoTS6/WKX4smgsFg4GyShGNQknCRkZFeOQQPCgpCZGSkx7dL/o9BScKpVCo0bdoUarXaY9vUaDRo2rQpH1skt+BvFblFUFAQmjdvDo3G/S+o0mg0aNasmU9cSCL/xCdzyK3MZjPOnj3rtpfo6nQ6NGnShCFJbsWgJLeTZRm5ubnIzs4WOm7Dhg1hMBh4hZvcjkFJHlNeXo7s7GyUlJS4NE7t2rXRsGFDl99YRFRVDEryOIvFgvz8fBQUFFR5uQaNRoN69eohPDycjyaSxzEoyWtkWYbVaoXJZILJZILZbK5YvkGSJAQFBUGn00Gn00Gj0fAQm7yGQUlE5ARvDyIicoJBSUTkBIOSiMgJBiURkRMMSiIiJxiUREROMCiJiJxgUBIROcGgJCJygkFJROQEg5KIyAkGJRGREwxKIiInGJRERE4wKImInGBQEhE5waAkInKCQUlE5ASDkojICQYlEZETDEoiIicYlERETvw/kBic/81ky9gAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -540,7 +540,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFUCAYAAACX0dxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABV6klEQVR4nO3dZ3gUdfs+/HOz6b2RQgIEQq8RkCpFAUEQKRKlSRWkQyhJFtvt/bvNphCkIwhSREBFRUQERYoUEUR6hxRSSEIqKZuyu/O88CF/EEgmm53Nbvb8HEcOcZlr5tLA5tyZ71wjEwRBABERERFRFVnUdANEREREZJoYJImIiIhIJwySRERERKQTBkkiIiIi0gmDJBERERHphEGSiIiIiHTCIElEREREOmGQJCIiIiKdMEgSERERkU4YJImIiIhIJwySRERERKQTswqSGo0GH3/8sc71xcXFGDp0KJo2bYqgoCAMGDAACQkJ+muQiIxKdd8zAGDOnDkICAiATCbD5cuX9dQZEZkqfbyvGBOzCpKXLl3Crl27qrWPqVOn4saNGzh//jxeffVVTJ06VU/dEZGx0cd7xogRI3D8+HE0aNBAT10RkSnTx/uKMTGbIHn16lUMGjQIKSkpCAoKwocffljlfdja2mLgwIGQyWQAgC5duiAuLk7frRKREdDHewYA9OzZE/7+/nrujohMkb7eV4yJZU03YCgtW7bEsGHD0Lx5c8yaNUsv+1yxYgUGDx6sl30RkXGR4j2DiMxbbXxfMZszkgDw119/oWPHjk+83qNHD3h6ej71Kykp6an7ioiIwK1bt2rVOgciepw+3zOIiIBnv6+YKpkgCEJNN2EIarUabm5uuH//Pmxtbau1ryVLlmDnzp04ePAgXF1d9dMgERkVfb5nAEBAQAD27t2L1q1b66E7IjJF+n5fMQZmc2k7OTkZTk5O1f7GLV26FDt27GCIJKrl9PWeQUT0UG18XzGbS9v+/v5o27YtmjVrhsWLF+u0j+TkZCxYsAC5ubl48cUXERQUhM6dO+u5UyIyBvp4zwCAmTNnwt/fH8nJyejbty8aN26sxy6JyJTo633FmJjNpW0iIiIi0i+zOSNJRERERPrFIElEREREOmGQJCIiIiKdMEgSERERkU4YJImIiIhIJwySRERERKQTBkkiIiIi0gmDJBERERHphEGSiIiIiHTCIElEREREOmGQJCIiIiKdMEgSERERkU4YJImIiIhIJwySRERERKQTy5puwBhotVqoVCqoVCoUFxdDq9VCEATI5XLY2NjAzs4OdnZ2kMvlNd0qERmB0tJSFBUVobi4GKWlpRAEATKZDFZWVuXvFzY2NjXdJhEZAa1WW/5+8e+MYWtrC1tbW9jb28PCwjTP7Zl1kCwpKUF2djZycnKg1Wor3FYmk8HV1RXu7u6ws7MzUIdEZCy0Wi3y8vKQnZ0NlUpV6fa2trZwd3eHq6uryf6AICLdFRcXIzs7G7m5uaIyhpubG9zc3EwuY8gEQRBquglD02q1yMjIQGZmpk71rq6u8PHxgaWlWedwIrNRWFiIlJQUlJaWVrnW0tISfn5+cHJykqAzIjI2Go0GGRkZyMrK0qnezc0NPj4+JnMV1OyCZHFxMRITE1FWVlat/cjlctSvXx8ODg566oyIjI0gCEhPT9f5Q+ejXF1d4efnB5lMpofOiMgYqVQqJCYmQq1WV2s/crkcDRo0gL29vZ46k45ZBUmVSoX4+PhKTzGLJZPJUL9+fZ5pIKqFBEFAcnIy8vLy9LZPR0dH1K9fn5e6iWqhoqIixMfHQ1+xSiaTISAgwOhPWJnNu1lZWZleQyTwzw+au3fvori4WG/7JCLjkJ6ertcQCQAFBQVITU3V6z6JqOaVlpYiISFBbyES+CdjJCQkoKSkRG/7lIKkQXLv3r1o1qwZmjRpgg0bNkh5qAo9PLOgzxD56L6TkpIk2TcR1YzCwkK9XM5+mtzcXL0HVCKqOYbIGMZ88ViyS9tqtRotW7bE4cOH4ezsjPbt2+PPP/+Eu7u7FIerUE5ODlJSUiQ9hpeXF7y8vCQ9BhFJTxAE3Lx5s9rrqCtiYWGBZs2amcxieiJ6tuzsbMmvNPj4+MDT01PSY+hKsjOSp0+fRqtWrcrvVhw4cCAOHDgg1eGeSRAEyc4sPCozM5NnJYmM0N69e7Fp0ybRwfDBgweShkjgn8kRubm5kh6DiHQzf/583LlzR9S2giDg/v37Enf0T8Yw1rOSVQ6SWq0WzZs3R1hY2GOvHzhwANbW1vjmm28AAKmpqfDz8yv/fX9/f8nPCj5NYWGhQdYXPJwxR0TGJSUlBZMmTULz5s1FBUpDfPB8eBxj/cFAZM62bt2KZs2aYdKkSZUGyoKCAsk/eAL/XOV98OCB5MfRRZUHIVpYWEChUGD27NkIDw+Hm5sbLly4gODgYERERCA4OBgAnvoGWRNjLwoKCgx2rPz8fM6WJDIyD2+Gi4uLw6RJk/C///0P7733HsaOHQsrK6vHttVoNKKGjetDWVkZ8vPzOQ6IyMhotVpoNBps2rQJW7duxbhx4/Duu+8iMDDwiW3z8/MN1ld+fj5cXFwMdjyxdFojqVar0bRpU4wfPx6TJ09Gly5dMGTIEKxevbp8m5MnTyImJgbff/89AGDu3Lno3LkzRo8erb/uRYiLi0NRUZFBjiWTydC6dWuDHIuIqicwMLA8UD78AFhQUICEhASD9fDjjz9i8eLFBjseEelGLpc/NVDevn3bYJNbrK2t0bRpU4Mcqyp0WiNpaWmJsLAwrFixAgMHDkT79u2xYsWKx7bp1KkTLl++jJSUFOTn52Pfvn3o37+/XpquCkOO5hEEweQebURkru7cuYOJEyeiefPm2Lx5M9RqtcFHedWpU8egxyMi3Tw8Q/nvS96GHM1TWlpqlMthdL7ZZsyYMSgqKoIgCNixY8cTdx9aWloiNjYWL774Ip577jksWrQIHh4e1W64qgz9P51Bksi0PBoo4+LiDHrsf19aJyLj9mignDFjhsEzhjHe1Kvzgr5Zs2YB+GfB+LNGWLz22mt47bXXdD2ESaruY5GIyPBat26NDz/8EAEBAcjIyDDYcY3xhwIRVczGxgZTp05FaGiowacvGOOaap3OSL7//vv46aefcOrUKajVamzcuFHffemNoT/xG/LmHiKqntatW+Obb77BhQsXMGLECFhbWxv0+IZcqE9E1WNjY4PZs2fjzp07WLFiBfz9/Q16g62FhYVRBskq32yzYcMGzJkzB4cOHUKXLl3w8ccfY/369bh9+7ZRXqZJTk422CcGGxsbbNu2zSDHIiJx/vrrL+zbt++x11q3bo0PPvgAr7/++mPPvS4pKcGtW7cM1ltSUhJOnTplsOMRUeWio6MfWy/98AxkWFjYY2MNAeDu3bsGG8vj6OiIgIAAgxyrKqoUJH/++WcMHToUO3bswPDhwwH8M7y3QYMGiI2NxaRJkyRrVFeGmDj/kKenJ3x8fAxyLCISZ926dZg2bRqA/3cJe/jw4Y8FyIcEQcC1a9cMdsm5ZcuWT+2DiGqOp6cnsrKyKgyQD2VmZiItLc0gfRnrE/REv4OdPXsWwcHBiI6OLg+RAODs7IzZs2cjMjISGo1Gkiarw8XFxWCngt3c3AxyHCKqmn9fwn5WeJPJZAZ7jKurqytDJJERsrW1fewS9rNCJPDP32NDMeSxqkKyZ20bk9TUVGRnZ0t6DGM95Uxk7m7fvo33338f1tbWsLKygpWVVfmvn/aaq6srnn/+ecn7CgwM5JQHIiMUHR2NixcvVvpe8fCfvXr1euZNx/ri7OyM+vXrS3oMXZnFY1jq1KmD3NxcSS9XeXt7S7ZvItJd48aNkZeXh59//lnU9kuWLIGHhweysrIk68nFxYUhkshIde/e/YnHQD9Lw4YNMXLkSNy/f1+yUUAymcyoM4ZZXFexsrKq8NR0dXl7e/OHApERCwkJEbVdcHAw5s+fD29vb9jY2EjSi6WlJerWrSvJvomo+rp37y7qqoStrS2+++47eHl5Sfp32sfHR7L3I30wiyAJ/HMGQIqB6M7OzvD09NT7fomo+nJycvC///1P1KNZW7RogY0bN0Imk8HCwgL16tXT+xpGmUyG+vXrS34ZjIiqThAEHD58GP369cOZM2cq3X7dunUICgoC8M/6RSnuk3BxcTHYum1dmcUayYcEQUB6ejoyMzP1sj8XFxf4+/sb5VwnInOWlpaGTz75BGvXrhU1q9HJyQmnT59G8+bNH3u9uLgY8fHxermR0MLCAgEBAbC3t6/2vohIf7RaLX788UcolUr8+eefompmzJiB1atXP/aaIAi4d++e3u7JcHV1hZ+fn9FnDLMKkg/l5ubi3r17Ov9wkMlk8PHxgbu7u9F/g4nMSXx8PGJiYvD5559X6Rm433777WPTKB5VVlaG1NTUag0Pd3BwgJ+fn8EHnhPRs6nVauzcuRORkZG4cuWK6LouXbrg6NGjT/37LAhCecbQ9b4MmUwGX19fuLm5mUTGMMsgCfzzByg9PR25ublVWiDr4uICb29v/kAgMiJXrlxBZGQkduzYUeUPiKGhoYiKiqp0u7y8PGRkZFQpoFpZWcHLywuurq4m8QOByBwUFxdj06ZNiImJQXx8fJVqvby88Pfff1d634VarUZaWhry8vKqnDF8fHyM8gEvz2K2QfIhjUaDvLw85OfnQ6VSPfGsbLlcDltbWzg5OcHV1dWgj0MiooqdOnUKSqUSe/bsEV1jaWlZ/vf8pZdewoEDB0T/vRYEASqVCrm5uSgqKnrs6RcP2djYwN7eHq6urrC3t2eAJDISDx48wKeffoqlS5ciPT1dVM2j7xdyuRwHDx5E7969RR9To9EgNze3PGP8+4OuXC6HnZ0dHB0dTTZjmH2Q/DeNRgONRgNBECCXy03ym0pUmwmCgIMHD0KpVOLw4cOi6/r164fFixfj9u3bmDJlCvz9/XH27NlqPSlCEASUlZVBEATIZDJYWlpyyDiRkbl//z6WL1+O1atXi35ksqenJ+bNm4cpU6agQ4cOSE5OxpIlS7BgwYJq9aJWq6HVamtVxmCQJCKToNVqsXv3biiVSvz111+iamQyGYYPH47w8HB07NgRwD/P027RogV27tyJTp06SdkyEdWgpKQkLFmyBJ999hlUKpWomnr16mHRokWYPHly+Y1xy5Ytw8mTJ/HVV1/xCsNTMEgSkVErKyvD9u3bERkZievXr4uqsbS0xNixYxEWFvbEndgAkJ6ebtQDfolIdzdu3EBUVBS++OKLJ5arPUuzZs0QHh6O0aNHP3EPRGFhIbRaLZycnKRo1+QxSBKRUSoqKsLnn3+OmJgY3L17V1SNnZ0d3n77bSxcuNBoHydGRNL4+++/oVQq8e2334q+waVDhw5QKBQYOnQo57vqyPQvzhNRrZKbm4s1a9Zg2bJluH//vqgaFxcXzJw5E3Pnzq3WmkciMi2CIOD3339HREQEfvnlF9F1vXv3hkKhQL9+/Xi5upoYJInIKKSnp2PZsmVYs2YNHjx4IKrGy8sL8+fPx7Rp0+Di4iJxh0RkLARBwN69e6FUKvHHH3+Irhs8eDAUCgW6du0qYXfmhUGSiGpUQkIClixZgo0bNz51nM7TBAQEYNGiRZg4cSKfc09kRtRqNb7++mtERkbi0qVLomosLCwwatQohIWFoU2bNhJ3aH4YJImoRly9ehWRkZHYvn276CHiLVu2RHh4OEaOHGlSA3uJqHqKi4uxZcsWREdHIy4uTlSNjY0NJk6ciEWLFqFRo0YSd2i+GCSJyKBOnz4NpVKJ3bt3i67p1KkTFi9ejMGDB3NOI5EZyc/Px7p16xAbG4u0tDRRNY6Ojpg+fTpCQkLg6+srcYfEIElEkhMEAYcOHYJSqcRvv/0muq5v375QKBR48cUXuSCeyIxkZmZixYoVWLVqFXJyckTVeHh4YN68eZg5cybc3Nwk7pAeYpAkIslotVrs2bMHSqUSp0+fFl03bNgwKBQKPP/88xJ2R0TGJjk5GbGxsVi/fj2KiopE1fj7+2PhwoV4++234eDgIHGH9G8MkkSkd2VlZdi5cyciIyNx9epVUTVyuRxjxoxBWFgYWrZsKXGHRGRMbt68iejoaGzduhVlZWWiapo2bYrw8HCMGTPmiSHiZDgMkkSkNyqVqnyIeGJioqgaW1vb8iHiDRo0kLhDIjIm586dg1KpxK5du0QPEX/uueewePFiDBs2jEPEjQCDJBFVW15eHtauXYtPPvkEGRkZomqcnZ3Lh4jzcYVE5uXYsWOIiIjA/v37Rdf06tULCoUCL7/8MtdMGxEGSSLSWUZGBpYvX47Vq1cjLy9PVE2dOnUQEhKCGTNmcIg4kRkRBAH79u2DUqnEiRMnRNe9+uqrUCgU6Natm4Tdka4YJImoyu7evYslS5Zgw4YNUKlUomrq16+P0NBQTJo0iUPEicyIRqPBN998g8jISFy4cEFUjYWFBd58802Eh4ejbdu2EndI1cEgSUSiXb9+HVFRUdi2bRvUarWomhYtWiA8PByjRo3iEHEiM1JSUoKtW7ciKioKd+7cEVVjbW1dPkQ8MDBQ4g5JHxgkiahSZ8+ehVKpxHfffSd6Qfzzzz8PhUKBIUOGcIg4kRkpKCjAunXrsHTpUqSmpoqqcXBwKB8iXrduXYk7JH1ikCSipxIEAUePHkVERAR+/fVX0XUvvfQSFAoF+vTpwwXxRGYkKysLK1euxMqVK5GdnS2qxt3dHXPnzsWsWbPg7u4ucYckBQZJInqMVqvF3r17oVQqcerUKdF1Q4YMgUKhQOfOnSXsjoiMTUpKCpYuXYp169ahsLBQVI2fnx8WLFiAKVOmwNHRUeIOSUoMkkQEAFCr1fjqq68QGRmJy5cvi6qRy+UYPXo0wsLC0KpVK4k7JCJjcvv2bURHR2PLli0oLS0VVdO4cWOEh4dj7NixsLGxkbhDMgQGSSIzV1xcjM2bNyM6Ohrx8fGiamxsbDB58mQsXLgQDRs2lLhDIjImFy5cgFKpxDfffAOtViuqJigoCAqFAq+//jqHiNcyDJJEZio/Px+ffvopli5dirS0NFE1Tk5OmDFjBubNmwcfHx+JOyQiY3L8+HEolUrs27dPdE2PHj2gUCgwYMAArpmupRgkicxMZmYmli9fjlWrViE3N1dUjaenJ+bNm4eZM2fC1dVV0v6IyHgIgoD9+/dDqVTi2LFjousGDhwIhUKBF154QcLuyBgwSBKZiaSkJMTGxuKzzz5DUVGRqJp69eph0aJFmDx5Muzt7SXukIiMhUajwbfffgulUonz58+LqrGwsEBwcDDCw8MRFBQkaX9kPBgkiWq5mzdvIioqCl988QXKyspE1TRr1gzh4eEYPXo0rK2tJe6QiIxFaWkpvvjiC0RFReHWrVuiaqysrDBhwgSEhoaicePGEndIxoZBkqiW+vvvv6FUKvHtt9+KHiLeoUMHKBQKDB06lAviicxIYWEh1q9fj9jYWKSkpIiqcXBwwDvvvIP58+fDz89P4g7JWDFIEtUigiDg2LFjiIiIwIEDB0TX9e7dGwqFAv369eOCeCIzkp2djVWrVmHFihXIysoSVePm5oY5c+Zg9uzZ8PDwkLhDMnYMkkS1gCAI+Omnn6BUKnHy5EnRdYMHD4ZCoUDXrl0l7I6IjM29e/ewdOlSfPrppygoKBBV4+vriwULFmDq1KlwcnKSuEMyFQySRCZMrVbjm2++QWRkJC5evCiqxsLCAqNGjUJYWBjatGkjcYdEZEzu3LmD6OhobN68WfQQ8cDAQISFhWHcuHEcIk5PYJAkMkElJSXYsmULoqKiEBcXJ6rGxsYGEydOxKJFi9CoUSOJOyQiY3Lx4kVERkbiq6++Ej1EvG3btlAoFBgxYgQsLRkX6On4J4PIhOTn52PdunVYunQp7t27J6rG0dER06dPR0hICHx9fSXukIiMycmTJ6FUKrF3717RNd27d4dCocDAgQO5ZpoqxSBJZAKysrKwYsUKrFy5Ejk5OaJqPDw8yoeIu7m5SdwhERkLQRDwyy+/QKlU4ujRo6LrBgwYgMWLF6NHjx4Sdke1DYMkkRFLSUlBbGws1q9fj8LCQlE1/v7+WLhwId5++204ODhI3CERGQuNRoPvv/8eSqUSf//9t6gamUyGESNGQKFQ4LnnnpO4Q6qNGCSJjNCtW7cQHR2NLVu2iB4i3rRpU4SHh2PMmDEcIk5kRkpLS7Ft2zZERUXh5s2bomqsrKwwbtw4hIaGomnTphJ3SLUZgySRETl//jyUSiV27dolekH8c889h8WLF2PYsGEcIk5kRgoLC7FhwwYsWbIEycnJomrs7e0xdepULFiwAP7+/hJ3SOaAQZLICBw7dgxKpRI///yz6JpevXpBoVDg5Zdf5oJ4IjOSk5OD1atXY/ny5cjMzBRV4+rqitmzZ2POnDnw9PSUuEMyJwySRDVEEAT8/PPPUCqVOH78uOi6V199FQqFAt26dZOwOyIyNmlpafjkk0+wdu1a5Ofni6rx8fHBggUL8M4773CIOEmCQZLIwDQaDXbt2gWlUokLFy6IqrGwsMCbb76J8PBwtG3bVuIOiciYxMXFISYmBps2bUJJSYmomoYNGyIsLAzjx4+Hra2txB2SOWOQJDKQkpISfPHFF4iKisLt27dF1VhbW5cPEQ8MDJS4QyIyJpcvX0ZkZCR27twJjUYjqqZ169ZQKBR44403OEScDIJ/yogkVlBQgPXr1yM2NhapqamiahwcHMqHiNetW1fiDonImJw6dQpKpRJ79uwRXdO1a1coFAoMGjQIFhYWEnZH9DgGSSKJZGdnY+XKlVixYgWys7NF1bi7u2Pu3LmYNWsW3N3dJe6QiIyFIAg4ePAglEolDh8+LLru5ZdfxuLFi9GzZ0/edEc1gkGSSM9SU1OxdOlSfPrpp6KHiPv5+WHBggWYMmUKHB0dJe6QiIyFVqvF7t27ERERgbNnz4qqkclkeP311xEeHo4OHTpI3CFRxRgkifTkzp07iI6OxubNm1FaWiqqpnHjxggPD8fYsWNhY2MjcYdEZCzKysrw5ZdfIioqCtevXxdVY2lpibfeegthYWFo1qyZxB0SicMgSVRNFy9ehFKpxNdffy16iHhQUBAUCgVef/11DhEnMiNFRUXYuHEjlixZgrt374qqsbOzKx8iXq9ePYk7JKoaBkkiHZ04cQJKpRI//fST6JoePXpAoVBgwIABXM9EZEZyc3OxZs0aLFu2DPfv3xdV4+LiUj5EvE6dOhJ3SKQbBkmiKhAEAQcOHIBSqcTvv/8uum7gwIFQKBR44YUXJOyOiIxNeno6li1bhjVr1uDBgweiary9vTF//nxMmzYNzs7OEndIVD0MkkQiaDQafPfdd1AqlTh37pyoGgsLCwQHByM8PBxBQUHSNkhERiUhIQExMTH4/PPPUVxcLKomICAAoaGhmDhxIoeIk8lgkCSqQGlpKbZt24aoqCjcvHlTVI2VlRUmTJiA0NBQNG7cWOIOiciYXL16FZGRkdi+fbvoIeKtWrWCQqHAm2++ySHiZHL4J5boKQoLC/HZZ58hNjYWycnJomocHBzwzjvvYP78+fDz85O4QyIyJqdPn4ZSqcTu3btF13Tu3BmLFy/Gq6++yiHiZLIYJIkekZOTg1WrVmH58uXIysoSVePm5oY5c+Zg9uzZ8PDwkLhDIjIWgiDgt99+g1KpxKFDh0TX9evXDwqFAr179+ZNd2TyGCSJANy7dw+ffPIJ1q5di4KCAlE1vr6+WLBgAaZOnQonJyeJOyQiY6HVavHDDz9AqVTizJkzompkMhmGDRsGhUKBjh07StwhkeEwSJJZi4uLKx8iXlJSIqomMDAQYWFhGDduHIeIE5mRsrIy7NixA5GRkbh27ZqoGktLS4wZMwZhYWFo0aKFxB0SGR6DJJmlS5cuITIyEjt37hQ9RLxt27ZQKBQYMWIEF8QTmRGVSoXPP/8cMTExSExMFFVja2uLKVOmYMGCBWjQoIHEHRLVHP40JLPyxx9/QKlU4scffxRd0717dygUCgwcOJDrmYjMSF5eXvkQ8YyMDFE1Li4umDlzJubOnQsvLy+JOySqeQySVOsJgoBff/0VSqUSR44cEV03YMAAKBQK9OzZU7rmiMjoZGRkYNmyZVi9erXoIeJeXl4ICQnB9OnT4eLiInGHRMaDQZJqLa1Wi++//x5KpRJnz54VVSOTyTBixAgoFAo899xzEndIRMYkMTERS5YswYYNG0QPEW/QoEH5EHE7OzuJOyQyPgySVOuUlpbiyy+/RFRUFG7cuCGqxsrKCuPGjUNoaCiaNm0qcYdEZEyuXbtWPkRcrVaLqmnRogUUCgVGjhwJKysriTskMl4MklRrFBUVYcOGDViyZAmSkpJE1djb22Pq1KlYsGAB/P39Je6QiIzJmTNnyoeIC4IgqqZTp05QKBR47bXXOEScCAySVAvk5uZi9erVWLZsGTIzM0XVuLq6Yvbs2ZgzZw48PT0l7pCIjIUgCDh8+DCUSiUOHjwouq5Pnz5QKBR46aWXeNMd0SMYJMlkpaWlYdmyZVizZg3y8/NF1fj6+mL+/Pl45513OEScyIxotVr8+OOPUCqV+PPPP0XXDR06FAqFAp06dZKwOyLTxSBJJic+Ph4xMTH4/PPPRQ8Rb9SoEUJDQzF+/HjY2tpK3CERGQu1Wo2dO3ciMjISV65cEVUjl8vLh4i3bNlS4g6JTBuDJJmMK1euIDIyEjt27IBGoxFV06ZNGygUCgQHB3OIOJEZUalU2LRpE2JiYpCQkCCqxtbWFpMnT8bChQsREBAgaX9EtQV/spLR+/PPP6FUKvHDDz+IrunatSsWL16MQYMGcT0TkRl58OAB1q5di08++QTp6emiapydnTFjxgzMmzcP3t7eEndIVLswSJJREgQBBw8ehFKpxOHDh0XX9e/fv3yIOAMkkfm4f/8+li9fjlWrViEvL09UTZ06dTBv3jzMmDEDrq6u0jZIVEsxSJJR0Wq12L17N5RKJf766y9RNTKZDK+//jrCw8PRoUMHiTskImNy9+5dxMbG4rPPPoNKpRJVU79+fSxatAiTJk2Cvb29xB0S1W4MkmQUysrKsH37dkRGRuL69euiaiwtLfHWW28hLCwMzZo1k7hDIjIm169fR1RUFLZt2yZ6iHjz5s0RHh6O0aNHc4g4kZ4wSFKNKioqwueff46YmBjcvXtXVI2dnV35EPF69epJ3CERGZOzZ89CqVTiu+++Ez1EvGPHjlAoFBg6dCiHiBPpGYMk1Yjc3FysWbMGy5Ytw/3790XVuLi4lA8Rr1OnjsQdEpGxEAQBR48ehVKpxC+//CK67sUXX4RCoUDfvn25ZppIIgySZFDp6enlQ8QfPHggqsbb2xvz58/HtGnT4OzsLHGHRGQstFotfvrpJ0RERODUqVOi61577TUoFAp06dJFwu6ICGCQJANJSEjAkiVLsHHjRhQXF4uqCQgIQGhoKCZOnMgh4kRmRK1W4+uvv4ZSqcTly5dF1cjlcowaNQphYWFo3bq1xB0S0UMMkiSpq1evIjIyEtu3bxc9RLxVq1ZQKBR48803OUScyIwUFxdj8+bNiImJQVxcnKgaGxsbTJo0CYsWLULDhg0l7pCI/o0/pUkSp0+fhlKpxO7du0XXdO7cGYsXL8arr77KBfFEZiQ/Px+ffvopli5dirS0NFE1Tk5OmD59OkJCQuDj4yNxh0T0LAySpDeCIODQoUNQKpX47bffRNf169cPCoUCvXv35oJ4IjOSmZmJFStWYOXKlcjNzRVV4+npiblz52LmzJlwc3OTtkEiqhSDJFWbVqvFnj17oFQqcfr0aVE1MpkMw4YNg0KhQMeOHSXukIiMSVJSUvkQ8aKiIlE1/v7+WLRoESZPngwHBweJOyQisRgkSWdlZWXYuXMnIiMjcfXqVVE1lpaWGDNmDMLCwtCiRQuJOyQiY3Lz5k1ERUXhiy++QFlZmaiaZs2aISwsDGPGjIG1tbXEHRJRVTFIUpWpVKryIeKJiYmiamxtbTFlyhQsWLAADRo0kLhDIjIm586dg1KpxK5du0QPEW/fvj0WL16MoUOHQi6XS9whEemKQZJEy8vLw9q1a/HJJ58gIyNDVI2LiwtmzpyJuXPnwsvLS+IOichYCIKAY8eOQalUYv/+/aLrevfuDYVCgX79+nHNNJEJYJCkSmVkZGD58uVYvXo18vLyRNV4eXkhJCQE06dPh4uLi8QdEpGxEAQB+/btQ0REBE6ePCm6bvDgwVAoFOjatauE3RGRvjFI0jPdvXsXS5YswYYNG6BSqUTVNGjQoHyIuJ2dncQdEpGxUKvV+OabbxAZGYmLFy+KqrGwsMDIkSMRHh6ONm3aSNwhEUmBQZKecO3aNURFReHLL7+EWq0WVdOiRQsoFAqMHDkSVlZWEndIRMaipKQEW7ZsQXR0NO7cuSOqxtraGhMnTsSiRYsQGBgocYdEJCUGSSr3119/QalU4vvvvxe9IL5Tp05QKBR47bXXOEScyIwUFBRg3bp1WLp0KVJTU0XVODo6lg8R9/X1lbhDIjIEBkkzJwgCjhw5AqVSiV9//VV0XZ8+faBQKPDSSy9xQTyRGcnKysLKlSuxYsUK5OTkiKrx8PDA3LlzMWvWLA4RJ6plGCTNlFarxd69e6FUKnHq1CnRdUOHDoVCoUCnTp0k7I6IjE1KSgpiY2Oxfv16FBYWiqrx8/PDwoULMWXKFA4RJ6qlGCTNjFqtxldffQWlUokrV66IqpHL5eVDxFu2bClxh0RkTG7duoXo6Ghs2bJF9BDxJk2aIDw8HGPHjuUQcaJajkHSTBQXF2PTpk2IiYlBfHy8qBpbW1tMnjwZCxcuREBAgLQNEpFROX/+PCIjI/HNN99Aq9WKqgkKCsLixYsxfPhwDhEnMhMMkrXcgwcP8Omnn+KTTz5BWlqaqBpnZ2fMmDED8+bNg7e3t8QdEpExOX78OJRKJfbt2ye6pmfPnlAoFOjfvz/XTBOZGQbJWur+/ftYsWIFVq1ahdzcXFE1derUwbx58zBjxgy4urpK2h8RGQ9BELB//35ERETg+PHjousGDRoEhUKB7t27S9gdERkzBslaJikpqXxBvNgh4vXr18eiRYswadIk2NvbS9whERkLjUaDXbt2ITIyEufPnxdVY2FhgTfeeAPh4eFo166dtA0SkdFjkKwlbty4gaioKGzbtk30gvjmzZsjPDwco0eP5hBxIjNSUlKCL774AtHR0bh165aoGmtra0yYMAGLFi1C48aNJe6QiEwFg6SJ+/vvv6FUKvHtt9+KHiLesWNHKBQKDB06lEPEicxIQUEBPvvsM8TGxiIlJUVUjYODA6ZNm4b58+ejbt26EndIRKaGQdIECYKA33//HREREfjll19E17344otQKBTo27cvF8QTmZHs7GysWrUKy5cvR3Z2tqgad3d3zJkzB7NmzYKHh4fEHRKRqWKQNCGCIJQPEf/jjz9E17322mtQKBTo0qWLhN0RkbFJTU3F0qVLsW7dOhQUFIiqqVu3LhYsWICpU6fC0dFR4g6JyNQxSJoAtVqNr7/+GpGRkbh06ZKoGrlcjlGjRiEsLAytW7eWuEMiMiZ37txBdHQ0Nm/ejNLSUlE1jRs3RlhYGN566y3Y2NhI3CER1RYMkkasuLgYW7ZsQXR0NOLi4kTV2NjYYNKkSVi0aBEaNmwocYdEZEwuXryIyMhIfPXVV6KHiLdr1w4KhQIjRozgEHEiqjIGSSOUn5+PdevWITY2VvQQcScnJ0yfPh0hISHw8fGRuEMiMiYnT55EREQEfvrpJ9E1L7zwAhQKBV555RWumSYinTFIGpHMzMzyIeI5OTmiajw9PTF37lzMnDkTbm5uEndIRMZCEAT88ssviIiIwO+//y667pVXXoFCoUCPHj0k7I6IzAWDpBFITk4uHyJeVFQkqsbf3x+LFi3C5MmT4eDgIHGHRGQsNBoNvvvuOyiVSpw7d05UjUwmQ3BwMMLDw/Hcc89J3CERmRMGyRp08+ZNREdHY+vWraKHiDdr1gxhYWEYM2YMrK2tJe6QiIxFaWkptm3bhqioKNy8eVNUjZWVFcaPH4/Q0FA0adJE4g6JyBwxSNaAc+fOQalUYteuXaKHiLdv3x4KhQLDhg3jgngiM1JYWIgNGzZgyZIlSE5OFlVjb2+Pd955B/Pnz4e/v7/EHRKROWOQ/P8JgoCSkhKUlJRAo9FAEATI5XLY2NjA1tZWL4vRjx07hoiICOzfv190Ta9evbB48WL069ePC+KJjIharUZxcTFKS0shCAJkMhmsrKxgZ2cHS8vqv7Xm5OSUDxHPysoSVePm5obZs2dj9uzZ8PT0rHYPRKQfDzNGcXExtFptecawtbWFjY2NSf98N+sgKQgCCgoKkJ2djYKCggrPDjo4OMDd3R1OTk5VeqygIAjYt28flEolTpw4Ibru1VdfhUKhQLdu3UTXEJG0ysrKkJOTg5ycnAqXo1haWsLV1RXu7u5VXoJy7949fPLJJ1i7dq3oIeK+vr7lQ8SdnJyqdDwikoYgCMjPz0d2djYKCwsrzBiOjo7lGcPUQqVMEHtttZYpKChASkqK6LWJD8nlctStWxfOzs4VfrM1Gg2++eYbREZG4sKFC6L2bWFhgZEjRyI8PBxt2rSpUl+mRhAEFBcXo6Cg4Imv/Pz88l8XFxdDEIQa/ZLJZLC3t4e9vT0cHBye+PW///nw13Z2dib3hkBPp9FokJaWJnqawqNcXFzg6+tb6VnKuLg4xMTEYNOmTSgpKRG170aNGiEsLAzjxo2Dra1tlXsjImnk5+cjJSUFarW6SnWWlpblGcNUmF2Q1Gq1SE1NRW5ubrX24+joCH9//yd+OJSUlGDr1q2IiorCnTt3RO3L2toaEydOxKJFixAYGFitvqTwrND3aOCr7PWnvabRaGr6P01yzwqdFQXRp23j5OQELy8veHl58S59A8vPz0dycnK1/rxaWFjAz88PLi4uT/ze5cuXERkZiZ07d4o+Rps2baBQKBAcHKyXy+hEpB8ajQapqanIy8ur1n6cnJzg7+9vEvdEmFWQ1Gg0iI+PR3FxsV72Z2VlhYYNG8La2hoFBQVYt24dli5ditTUVFH1jo6OmDZtGkJCQlC3bl299CRGcXEx0tPTkZ6ejrS0tPJfP/qVkZHxWPgzh9BnKuzt7ctD5cMvb2/vJ17z8vKCp6cng0Y15OTkICUlRW/78/HxKV+7eOrUKURERODHH38UXd+tWzcoFAoMGjSIZ7uJjIxarUZ8fLzoKwqVsba2RsOGDWFlZaWX/UnFbIKkVqtFfHw8VCqVXvdrZWWFU6dOYf78+cjOzhZV4+HhUT5E3N3dXS99qFSqCoPho68/ePBAL8ck4yeTyeDu7v7MoPnvMGqK63OkkpeXh6SkJL3v18nJCRMmTMCRI0dE1/Tv3x+LFy9Gjx49+P0hMkJarRZ37tzRW4h8yNraGoGBgUZ9ZlLSUxXDhg3DkSNH0KdPH+zatUvKQ1UqIyND7yES+GfxfePGjUWFSD8/PyxcuBBTpkwRdXmysLCw0lD48Cs/P18f/zlUywiCgKysLGRlZeHq1auVbm9jY/PMoFmvXj00atQIjRo1gru7e60ONKWlpXo9E/mogoICUT8UZDIZRowYgfDwcLRv316SXohIP9LT0/UeIoF/3ovu3btn1GO8JD0jefjwYRQUFGDLli01GiSLiooQFxcn6TGWLFmCLVu2PPX3mjRpgrCwMIwdOxY2NjblPSUmJiIxMREJCQnlv7579y7S0tKQlpaGwsJCSXumyslkMtGzPs2Js7Nzeaj891eDBg1Meli+IAhISEiQ9O9fUVERunbtCq1W+8TvWVpaYty4cQgNDUWzZs0k64GI9KOgoAAJCQmSHqN+/fpGewOO5Je2jxw5glWrVtVokExISBA9RkNXKpUKnTp1euy1Zs2aYciQIfD19UVSUtJjwTEzM1PSfmqanZ0dnJyc4Ojo+NhXVV97OMOzJr4eEgQBKpUKRUVFKCwsfOyfT3utsn8+7bWqTg8wZhYWFvD3938iYAYGBqJRo0bw8PAw6NnMCxcuwNnZGQ0bNhS1vSE+eALARx999Nj7or29PaZMmYIFCxagXr16kh+fiJ7uxx9/xMCBA0VfTo6LixP9eGNd2draonHjxpIeQ1dVDpJarRYtW7bEkCFDEBUVVf76gQMHMHjwYHz55ZcIDg4uf72mg2RJSQlu3bplkGPNnj0bR44cgVwuN8mbU2QyGTw8PODt7Q1vb2+4ubnpFAQdHByMej2HMSorK6swdObk5CAjI+OZX6WlpTX9nyCak5NThWczH56115d169Zh1qxZmDBhAhYvXlxpoLx7965B1hHn5OSgZ8+ecHV1xezZszFnzhwOEScyAp6envDy8sIHH3yA4ODgCn+eFRcX4/bt2wbpq1GjRrC3tzfIsapCpzOSW7ZswezZs5GYmAg3NzdcuHABPXr0wAcffICFCxc+tm1NB8mHP2gN4dy5cxg3bpxBjiWWTCZDnTp1ysPho18+Pj6P/XudOnV4h68JEgQBDx48KL/bvrIvsU9JqQkymeypZzMbNWqEJk2awMPDo8r7XLduHaZNmwbgn8vGFQVKrVYrai2pvhw5cgTjxo0z2ktWRObI09Oz/H2yRYsWFQbK9PR03L9/3yB9eXh4wNfX1yDHqgqdgqRarUbTpk0xfvx4TJ48GV26dMGQIUOwevXqJ7at6SCZmJhosBtRCgsL0aVLF4Mcy8rKSvRXbb4pgqpOq9VCrVajrKwMZWVlj/36aV/GtEbU2tq6fMbmwy9bW9sKnzaVnp6O+Pj4x157GCjfffddBAQElL9uqMvaD508eRKbNm0y2PGIqHJnzpx54qriswJlfHy8we5nsLOzM8pZ0zqvkVy3bh0WL14MPz8/BAQE4Pvvv39qWq/pIHn9+vUqT5bXlSAIaN++vcGOR0TVY2lpiYkTJ2Lx4sUICAhAdna26Dmw+nD8+HFMnz7dYMcjour5d6C8evXqU2+ak4JMJkPLli2N7uSQ+IdG/8uYMWNQVFQEQRCwY8eOp4bI/v37Izg4GPv27YO/vz/OnDlTrWZ1Yci1ijKZDI6OjgY7HhFVj1qtxmeffYYmTZpg6tSpBr8Jjo81JDIt165dw6hRo9CmTRvs3LnTYCESQPlje42NzgviZs2aBQDIzMx85kLUAwcO6Lp7IiKDMcY3ZyIiU6DTGcn3338fP/30E06dOgW1Wo2NGzfquy+9MfTdw1KPGSIi/XNxccGdO3dw+PBhg4ZKfT2ulYgMo0WLFtixYwcuXbqEkSNHVrg+W9/+PZrOWFT5jOSGDRsQGxuLQ4cOoV27dpg3bx6io6MxdepUo3wepJ2dncFutpHL5ejYsaNBjkVU2wmCgJKSEpSUlKC4uLh8HFJRUZHel6xkZ2fj0KFDSE9PR/fu3fW674pYWFgY7AY9IhKnKjfb2NnZGexmm4dzlY1NlW62+fnnnzF06FDs2LEDw4cPBwA8ePAADRo0QGxsLCZNmiRZo7oy5PgfNzc3+Pn5GeRYROZKEAQkJibiwoULuHjxYvnXrVu3qn020crKCn/++afBPhQ3b96cI7eIjAzH/1SN6CB59uxZ9OrVCx9//DHmzp372O998MEH2LlzJ65du2Z0g6gNOZA8ICCAN9sQ1ZDCwkJcuXLlsXB54cIF5ObmVmk/MTEx6Nu3r+QBz8HBQfTTdojIcDiQvGokf0SiMTDEIxJtbGzQuHFjozztTGSuBEHAL7/8gpSUFKSnp5cHzBs3bjzz8ni7du2wbds2yXsz5mfnEpkzPiKxaswiSBpiyHC9evXg4uIi6TGISD+Ki4tx9erVJ85ePhz/s2HDBnTo0EGys5L84ElUexQUFCAhIUHSYxjzB0+zCJIAkJaWJtmMOBcXF9SrV0+SfRORYQiCgLS0NFy8eBE3b95Et27dYGVlpfe7MktLSzF16lT4+fmhe/fu6NatGzp27MiZkkQm7N69e5I9ftbV1RX+/v6S7FsfzCZIarVaxMfHQ6VS6XW/VlZWaNy4sdGtDSWi6snLy0NSUpLe9/vRRx898aQva2trdOjQoTxYduvWDd7e3no/NhFJQ6vV4s6dOygpKdHrfq2trREYGGjUGcNsgiTwz1Nu4uPj9Ta7zcrKCg0bNoS1tbVe9kdExiUnJwcpKSnV3o9Wq4WFhQViYmKwdetWUTWNGzdGt27d0L17d3Tv3t0oH41GRP+PWq1GfHy83sKktbU1GjZsaJSjFR9lVkES+OcNPTU1tcp3cv6bo6Mj/P39ObqDqJbLz89HcnKyzrMr1Wo1VCoVPvroo2o97atu3bro378/+vfvj759+8LDw0PnfRGRNDQaDVJTU5GXl1et/Tg5OcHf39+oz0Q+ZHZB8qGCggKkpKSgrKysSnVyuRx169aFs7Mzzw4QmQmNRoO0tDTk5OSIrhEEATKZDJcvX0ZERAQuXbqkt35kMhk6deqE/v37Y8CAAXj++ef5oZbIiOTn5yMlJQVqtbpKdZaWluUZw1SYbZAE/nmjLygoQHZ2NgoKCiocZuzg4AB3d3c4OTkZ9JFIRGQ8ysrKkJOTg5ycnAo/hFpaWsLNzQ1ubm7lS1+Sk5Nx8uRJnDx5EidOnMC5c+f09oQeV1dX9O3bFwMGDED//v2NemE+kbkQBAH5+fnIzs5GYWFhhRnD0dGxPGOY2kkqsw6SjxIEAR999BGys7Nhb28PmUwGlUoFQRCwbNkyk/vGEpG0Lly4gGXLlsHT0xOWlpbQaDTIzs7GW2+9hV69elVaX1hYiNOnT5cHyz/++KPaS24eatWqVfnZyh49evCOcKIaJggC3nvvPRQUFMDOzq48Y1haWiImJsakMwaD5CMGDBjwxBqm5s2b49q1azXUEREZq+PHj6NHjx5PvP7tt9+WP0K2KrRaLa5du4YTJ07gxIkTOHnypF6emGFnZ4devXqVn61s1qyZSf/QIjJVvXr1wu+///7Ya+3bt8fZs2drqCP94KIaIiIjYGFhgVatWqFVq1aYOnUqgH+e43vs2DEcOHAABw4c0GkckUqlwv79+7F//34AQIMGDcpv2unTpw8fpEBE1cIgSURkpLy9vTFixAiMGDECgiDg2rVrOHDgAPbv34+jR4/qNGYkMTER69evx/r16yGXy9G1a9fys5Xt27fnGnAiqhK+YxARmQCZTIaWLVsiJCQEBw4cQE5ODvbv34958+ahRYsWOu1To9Hg+PHjeO+99/D888/D29sbY8aMwdatW5GWlqbn/wIiqo14RpKIyATZ2dmVX6IGgLt375ZfAj948KBOc+wyMzOxfft2bN++HQAQFBSEAQMGYMiQIejcuTPXVhLRE3hGkoioFqhfvz6mTJmCXbt2ITMz87EzjboGwPPnzyMyMhJdu3ZFgwYNEBISgpMnT0Kr1eq5eyIyVQySRES1jKWlJbp3747/+7//w+nTp5GRkYHt27dj/Pjx8PHx0WmfSUlJWLZsGbp374769etj7ty5OHbsGEMlkZljkCQiquU8PT0xatQobN68GampqTh//jyioqLw4osv6vQc35SUFKxYsQI9e/aEv78/Zs2ahaNHj+ptwDoRmQ4GSSIiMyKTydCuXTuEhobi0KFDyM7Oxp49ezBz5kwEBgZWeX/37t3D6tWr0bt3b9StWxfTp0/HoUOHqvxoOCIyTQySRERmzNHREYMHD8aqVatw+/Zt3L59G6tXr8bgwYPh4OBQpX1lZGTg008/RZ8+fVC3bl288847+PXXXyt8nCQRmTYGSSIiKhcYGIgZM2Zgz549uH//Pr777juMHj0aTk5OVdrP/fv3sX79erz88svw9fXF22+/jf379zNUEtUyDJJERPRUdnZ2GDZsGL788ktkZGTghx9+wFtvvQVnZ+cq7ScrKwsbN27EK6+8Am9vb0ycOBH79u1DaWmpRJ0TkaEwSBIRUaVsbW3x2muvYevWrcjIyMDevXsxfvx4uLq6Vmk/OTk52Lx5MwYNGgQvLy+MHz8eP/74o05P6SGimscgSUREVWJjY4NBgwZh8+bNSE9Px759+zBp0iS4u7tXaT95eXnYunUrXnvtNdSpUwdjx47F7t27oVKpJOqciPSNQZKIiHRmbW2NV155BRs3bkRaWhoOHDiAKVOmwMPDo0r7yc/Px5dffolhw4bBy8sLo0aNwnfffcczlURGjkGSiIj0wsrKCi+//DLWr1+PtLQ0HDx4EO+88w7q1KlTpf0UFBRg586deP3111G3bl3MnTsX58+fl6ZpIqoWBkkiItI7S0tL9OnTB59++inu3buHw4cPY8aMGfD29q7SfrKzs7FixQo899xzaN++PVatWoXs7GyJuiaiqmKQJCIiScnlcvTu3RurV69GSkoKjh49itmzZ6Nu3bpV2s+5c+cwe/Zs+Pr64s0338SBAwf4NB2iGsYgSUREBiOXy9GzZ0+sWLECSUlJOH78OObOnQs/Pz/R+ygtLcXXX3+NAQMGICAgAO+//z7u3LkjYddE9CwMkkREVCMsLCzQvXt3LFu2DHfv3sUff/yB+fPno379+qL3kZycjP/9739o3Lgxevfuja1bt6KwsFDCronoUQySRERU4ywsLNClSxfExsYiISEBR48exfjx42Fvby96Hw9rfH19MXXqVPzxxx8QBEHCromIQZKIiIyKTCZDz549sXnzZqSlpWHDhg3o1q2b6Pr8/Hx89tln6NatG1q2bImYmBikpaVJ2DGR+WKQJCIio+Xk5ITJkyfjxIkTuHbtGkJDQ+Hj4yO6/vr16wgNDYW/vz+GDBmC3bt383nfRHrEIElERCahefPmiIqKQlJSEn788UcMGzYMlpaWomo1Gg327NmDYcOGwd/fHwsXLsSVK1ck7pio9mOQJCIik2JpaYlXX30V3333HVJSUrB06VK0atVKdH1GRgZiY2PRunVrdO7cGevWrUNeXp6EHRPVXgySRERksry8vBASEoJLly7h9OnTmDZtGpydnUXXP6zx8fHBW2+9hUOHDkGr1UrYMVHtwiBJREQmTyaT4fnnn8fatWtx7949bNu2DX369BFdX1xcXF4TGBiIiIgIZGZmStgxUe3AIElERLWKvb09xowZg4MHDyIuLg4ffvhhlWZTJiQk4N1330W9evUwZcoUXL58WcJuiUwbgyQREdVaDRs2xH/+8x/Ex8fj4MGDGD16NGxsbETVFhcXY8OGDWjTpg369u2LH3/8kZe9if6FQZKIiGo9CwsL9OnTB19++SXu3buHNWvW4Pnnnxdd/9tvv+G1115D06ZNsWLFCjx48EDCbolMB4MkERGZFTc3N0yfPh2nT5/GxYsXERISAk9PT1G1d+7cwdy5c+Hv74958+bxGd9k9hgkiYjIbLVp0wZLly5FSkoKvv32W7z88sui6vLz87F8+XI0adIEQ4YMwaFDh/g4RjJLDJJERGT2rK2tMXz4cBw4cABXr17FtGnTYGdnV2mdIAjYs2cP+vTpg3bt2mHjxo1QqVQG6JjIODBIEhERPaJFixZYu3YtkpOTERUVhXr16omqu3TpEt5++23Ur18f7733HlJTUyXulKjmMUgSERE9hbu7O0JDQxEXF4evv/4a3bt3F1WXmZmJjz/+GA0aNMCYMWNw+vRpiTslqjkMkkRERBWwtLREcHAwjh8/jjNnzmDs2LGwsrKqtE6tVmP79u3o3LkzunXrhq+++gplZWUG6JjIcBgkiYiIROrYsSO++OILJCYm4v3330edOnVE1f3xxx8YOXIkGjVqhMjISGRlZUncKZFhMEgSERFVka+vL/773//i7t272LRpE9q1ayeqLjk5GQqFAvXq1cM777yDK1euSNwpkbQYJImIiHRka2uLCRMm4Ny5czhy5AiGDh0KmUxWaZ1KpcL69evRunVr9OvXDz/99BOfmkMmiUGSiIiommQyGXr16oXvv/8ed+7cwfz58+Hs7Cyq9uDBg3j11VfRvHlzrFmzBsXFxRJ3S6Q/DJJERER61LBhQ8TGxiI5ORkrV65EkyZNRNXdunULM2fORKNGjbBs2TIUFRVJ3ClR9TFIEhERScDJyQmzZs3C9evXsXfvXvTr109U3b179xASEoKGDRsiJiYGBQUFEndKpDsGSSIiIglZWFhg0KBB+OWXX3D58mVMnTpV1FNzMjIyEBoaioCAAERERODBgwcG6JaoahgkiYiIDKRVq1ZYt24dkpKSoFQq4e/vX2lNVlYW3n33XTRo0AD/+c9/kJOTY4BOicRhkCQiIjIwDw8PhIeHIy4uDl999RU6dOhQaU1ubi4++ugjNGjQAO+++y4yMzMN0ClRxRgkiYiIaoiVlRXeeOMNnDlzBvv27UOXLl0qrcnPz0dERAQCAgIQGhqK9PR0A3RK9HQMkkRERDVMJpPhlVdewcmTJ/Hrr7+iZ8+eldYUFhYiJiYGDRs2xLx585CammqATokexyBJRERkJGQyGfr27YujR4/iyJEj6NOnT6U1KpUKy5cvR6NGjTBz5kzcvXvXAJ0S/YNBkoiIyAj16tULBw8exIkTJzBgwIBKty8pKcGaNWvQuHFjTJkyBXFxcQbokswdgyQREZER69atG37++WecPn0agwcPrnT7srIybNiwAU2bNsWECRNw8+ZNA3RJ5opBkoiIyAQ8//zz2LNnD86dO4fXX3+90u01Gg22bNmCFi1aYMyYMbh69aoBuiRzwyBJRERkQoKCgrBr1y5cunQJI0eOhEwmq3B7rVaL7du3o3Xr1ggODsaFCxcM1CmZAwZJIiIiE9S6dWvs2LED165dw7hx4yCXyyvcXhAE7Nq1C0FBQRg6dCjOnj1roE6pNmOQJCIiMmHNmjXDli1bcOPGDUyePBmWlpaV1vzwww/o2LEjBg0ahFOnThmgS6qtGCSJiIhqgcDAQGzYsAG3b9/GtGnTYG1tXWnNvn370LVrVwwaNAiXLl0yQJdU2zBIEhER1SINGjTA2rVrcefOHcyePRu2traV1uzbtw/t2rXDpEmTkJycbIAuqbZgkCQiIqqF/P39sWLFCsTHx2PBggWwt7evcHtBELBp0yY0adIECoUCeXl5BuqUTBmDJBERUS3m4+ODJUuWICEhAeHh4XB0dKxw++LiYkRGRiIwMBDLly9HSUmJgTolU8QgSUREZAbq1KkDpVKJxMREvP/++3Bxcalw+6ysLMybNw8tWrTAzp07odVqDdQpmRIGSSIiIjPi7u6O//73v0hISEBYWBhsbGwq3D4+Ph6jRo1Cp06dcPjwYQN1SaaCQZKIiMgMubq6IjIyEjdv3sT48eMrHWx+9uxZvPTSSxg4cCDv8KZyDJJERERmrH79+ti8eTPOnz+PAQMGVLr9zz//zDu8qRyDJBEREaFt27b4+eefcfDgQbRv377CbXmHNz3EIElERETl+vTpgzNnzuDLL79EQEBAhds+eof3smXLeIe3GWKQJCIiosdYWFhg9OjRuH79OpYuXQp3d/cKt8/KykJISAhatGiBHTt28A5vM8IgSURERE9lY2ODkJAQ3LlzB2FhYZU+JSc+Ph6jR4/mHd5mhEGSiIiIKvToHd4TJkzgHd5UjkGSiIiIRKlXrx42bdqE8+fP45VXXql0e97hXfsxSBIREVGVtG3bFvv27cNvv/3GO7zNHIMkERER6eSll17CmTNnsH37dt7hbaYYJImIiEhnFhYWGDVqVJXv8G7ZsiX27t1roC5JKgySREREVG1VvcM7Li4OgwcPxpAhQxAfH2+gLknfGCSJiIhIb6p6h/eePXvQsmVL/N///R+Ki4sN1CXpC4MkERER6V1V7vAuLi7GBx98gDZt2mD//v0G6pD0gUGSiIiIJPPoHd4dOnSocNvbt2/jlVdewfDhw5GYmGigDqk6GCSJiIhIci+99BJOnz6NjRs3wtPTs8Jtv//+e7Ro0QIRERG8u9vIMUgSERGRQVhYWGDSpEm4ceMGpk+fXuH6SZVKhXfffRdt27bFL7/8YsAuqSoYJImIiMig3N3dsWbNGpw+fRqdOnWqcNubN2+if//+CA4ORlJSkoE6JLEYJImIiKhGdOzYEX/88QfWr19f6fzJXbt2oXnz5oiKikJpaamBOqTKMEgSERFRjbGwsMCUKVNw8+ZNTJkypcLL3UVFRQgPD0e7du3w22+/GbBLehYGSSIiIqpxHh4eWL9+Pf74449K7+6+fv06+vbti5EjRyIlJcVAHdLTMEgSERGR0ejcuTP+/PNPrF27Fm5ubhVu+9VXX6F58+aIjY1FWVmZgTqkRzFIEhERkVGRy+WYNm0abty4gUmTJlW4bUFBARYuXIigoCAcOXLEMA1SOQZJIiIiMkp16tTBxo0bcfLkSQQFBVW47dWrV/Hiiy9i7NixuHfvnmEaJAZJIiIiMm5du3bFX3/9hVWrVsHFxaXCbb/88ks0a9YMy5Ytg1qtNlCH5otBkoiIiIyeXC7HzJkzcePGDYwfP77CbfPz8xESEoL27dvj2LFjBurQPDFIEhERkcnw9vbG5s2bcezYMbRt27bCbS9duoSePXti/PjxSE9PN1CH5oVBkoiIiEzOCy+8gLNnz2LZsmVwcnKqcNutW7eiadOmWLlyJTQajYE6NA9mHyRVKhVycnKQk5Pz1NEBGo2m/PcLCwtroEMiMhaCIJS/Hzx48OCp2xQUFJRvo9VqDdwhkXmxtLTE3LlzcePGDYwdO7bCbR88eIA5c+age/fuuHLlikH6qyxjqNXq8t8vKioySE/6JhMEQajpJmrSqVOn0LVrV1Hbfv311wgODpa4IyIyZn379hX1RI2goCD8/fffFT6lg4j06+jRo5g5c2alQdHKygrvvvsuFAoFrK2tJevnyJEjePHFF0Vtu3fvXgwaNEiyXqRi9kESAF555RXs37+/wm1atWqFixcvwsLC7E/iEpm1Y8eOoWfPnpVu9/3332Po0KHSN0REjykrK8PKlSvx4YcfoqCgoMJtW7VqhY0bN6Jz586S9dO7d28cPXq0wm06duyI06dPm+QHT6YiAB9++KGobRgiiahHjx7o06dPhdsEBQVhyJAhBuqIiB5lZWWF+fPn48aNGxg1alSF2165cgVdu3ZFSEiIZMvX/vOf/4jaxhRDJMAzkuUqOivJs5FE9Kjjx4+jR48ez/x9no0kMh6HDh3CO++8g9u3b1e4XUBAAD777DP07dtX7z1UdFbSlM9GAjwjWa6is5I8G0lEj3rhhRee+cOGZyOJjMtLL72EixcvIjQ0FHK5/JnbJSQkoF+/fpg0aRJycnL02kNFZyVN+WwkwDOSj3naWUmejSSipzlx4gReeOGFJ17/7rvvMGzYsBroiIgqc/bsWUyePBkXLlyocDtvb2+sXr0ar7/++mOvP3jwAM7Ozjod+2lnJU39bCTAM5KPedpZSZ6NJKKn6d69+xNnJYOCgnhJm8iIdejQAWfOnEFERARsbGyeuV16ejpGjBiB4cOHIzU1FQBQUlKC3r1748aNGzod+2lnJU39bCTAM5JPePSsJM9GElFF/r1WkmsjiUzHjRs38Pbbb+P48eMVbufi4oIlS5YgISEBH3/8MQYNGoS9e/fqdMxHz0rWhrORAIPkE/7880906dIFAOdGElHl+vXrh4MHD3JuJJEJ0mq1+PTTTxEWFlbpqKBH7d+/H/3796/y8R6dK2mqcyP/jUHyKQYOHIi7d+/ybCQRVerhWUmejSQyXXfv3sX06dOxb98+Udu3bNkSFy5cgKWlZZWP1bt3bxQWFtaKs5EAg+QT1Go1/v77b6SmpuLVV1+FXC6vFd9oItI/QRBQVlaGqKgohIaGwsrKih8+iUyUIAjYsWMH5syZg6ysrEq3X7lyJWbNmlWlY6jVapw8eRIqlQp9+vTRKYgaG7MPkhqNBnl5ecjPz4dKpYJarX7s9+VyOWxtbeHk5ARXV9da8U0nIt0IggCVSoXc3FwUFRWhuLj4iW1sbGxgb28PFxcXODg48IMokYm5f/8+5s2bh+3bt1e4nbu7O27dugV3d/dnbqPRaJCbm1ueMTQazWO/L5fLYWdnB0dHR5PNGGYbJNVqNdLT05Gbm4uq/C9wcXGBt7e3pM/mJCLjk5eXh4yMDJSUlIiusbKygpeXF1xdXRkoiUzMDz/8UOlylXnz5uGTTz554nW1Wo20tDTk5eVVOWP4+PjAysqqqu3WGLMMkrm5uUhNTYVWq9WpXiaTwcfHB+7u7vzhQFTLlZWVITU1Ffn5+Trvw8HBAX5+fvwASmRCIiIi8O6771a4jaWlJa5cuYKmTZsC+OeqRW5uLu7du1etjOHr6ws3NzeTyBhmFSQFQUBaWpqotQ9iuLi4wM/Pj2uiiGqp4uJixMfHP3E5ShcWFhYICAiAvb29HjojIildvXoVzz33HEpLSyvddsiQIdi9ezcEQcC9e/eQnZ2tlx5cXV3h5+dn9GHSrILkvXv39BYiH3J2dka9evWM/htNRFVTXFyMuLg4nc8qPI1MJkPDhg0ZJomMnFarRXp6OhITEx/7SkhIQEJCAuLj46FSqcq3P3ToEJo2bar3Ryu6uLjA39/fqDOG2QTJvLw8JCUlSbJvb29v1KlTR5J9E5HhabVa3L59W9TZiKqytLREkyZNKnzmLxEZN0EQkJ6ejri4OMTHx8Pb2xs+Pj6SHMvX1xceHh6S7FsfJLsmm5SUhN69e6Nly5Zo27YtvvnmG6kOVamysjKkpKRItv/09PTHPpkQkWlLT0+XJEQC/yzCf/jINSIyTQ/vlejWrRuCg4Ph6+sr2bHS0tKqdJOfoUkWJC0tLbFs2TJcvXoVBw8eREhICAoLC6U6XIXu37+v18tTT5Oeni7p/olIN1lZWVX6+19aWqr3JTD/lpeXxw+fREbq/v37Vdo+IyOjSndmV9XDs5/GSrIg6evri6CgIACAl5cX3N3d9bYAtSo0Go3e1yw8TUFBgVF/YiAyV7t27Sq/KiImUBrqfUrqsEpEunnuuecwZ84cUVcy1Wo1cnNzJe/pwYMHkl0lqa4qB0mtVovmzZsjLCzssdcPHDgAa2vrp17C/uuvv6DValGvXj3dO9VRVWc4VYchAisRVd2VK1fwxhtvVBooBUEwWJDMzc2V/EoJEVVdcXExVq5cicDAwEoDpSFCZE0cqyp0utlmy5YtmD17NhITE+Hm5oYLFy6gR48e+OCDD7Bw4cLHts3KykKPHj2wYcMGdOvWTW+Ni5WcnGyw//k2NjbYtm2bQY5FROL89ddfTzw/t1WrVvjwww/x+uuvPza+q6SkBLdu3TJYb0lJSTh16pTBjkdElYuOjn7sqVU2NjaYOnUqwsLC4Ofn99i2d+/exYMHDwzSl6OjIwICAgxyrKrQKUiq1Wo0bdoU48ePx+TJk9GlSxcMGTIEq1evfmy7kpIS9OvXD1OmTMFbb72lt6ar4ubNmwY9HdyuXTueZSAyEa1bt8aHH36I4cOHw8LCArm5uUhOTjbY8Q8dOoS5c+ca7HhEpLunBcrr168/8WhlqVhYWKBFixZGNwpIpzWSlpaWCAsLw4oVKzBw4EC0b98eK1aseGwbQRAwYcIEvPTSSzUWIoF/7tg2JEdHR4Mej4h0d/nyZQQHB6Ndu3bYtWuXwdcgOTk5GfR4RKS7kpKSxy55JycnGyxEAv8sLTTGiY0632wzZswYFBUVQRAE7Nix44mZaCdOnMBXX32F3bt3IygoCEFBQbh06VK1GzZ2pvjAdSJzd/nyZYSHhyMhIcGgx+VTsYhMT0lJCdasWYOIiAiDH9sYg6TOqWfWrFkAgMzMzKcO1n3hhReM4hKvTCYz6P94jvQgMi2BgYF47733MHbsWOTm5iItLc1gxzb0FRMiqh65XI5x48bh3XffRWBgIK5cuWLQjGGMHz516uj999/HTz/9hFOnTkGtVmPjxo367ktvbG1tDXYsmUzGIElkIgIDA7Fp0yZcv34dEyZMgKWlpUHfL4Cqz6sjopohl8sxceJE3LhxA59//jkCAwMB/LNu0lCsra2Nbn0koMPNNhs2bMCcOXNw6NAhdOnSBR9//DHWr1+P27dvw8rKSqo+dZaWlobMzEyDHMvZ2Rlubm4GORYRifP5559j3rx55f/eqFEjvP/++xgzZswT71kajQbXrl0zWG/169c3yh8MROasQYMG5eP8/n0G8t9SU1MNNjLM1dUV/v7+BjlWVVTp0vbPP/+MmTNnYseOHejSpQsAYPbs2ViyZAm++OILTJo0SZImq8PR0dFgQdLJyYmL54mMzMOzjBUFyIfkcjns7OwMcmXBysoKTk5ODJJERsbCwqLSAPmQk5OTwYKkseYL0Ze2z549i+DgYERHR2P48OHlrzs7O2P27NmIjIyERqORpMnqcHBwMMipZ7lcDhcXF8mPQ0RV4+/v/9gl7MqunHh6ehqkL09PT4ZIIiM0bty4Jy5hP4ujo6NBrsZaWlrC2dlZ8uPoQqc5kqYmJydH1KOOqsPLywteXl6SHoOIpCcIAm7evCnpjTAWFhZo1qzZU29UJCLTkp2djdTUVEmP4ePjY7APuVVlfLf/SMDV1RUODg6S7d/GxsZov8FEVDUymUzydUh+fn4MkUS1hJubG+zt7SXbv62tLTw8PCTbf3WZRZB8+INBitvmZTIZ6tWrZ5S35BORbhwcHCT7cOjq6splMES1iCEyhjEvgzGb9GNlZYWGDRvq9Rstk8lQv359g48MISLpeXt7w9XVVa/7dHR0RN26dfW6TyKqedbW1ggICNBr4JPJZAgICDDoiCFdmMUayUcVFxcjMTGx2uuf5HI56tevL+klcyKqWYIgID09XS+TH9zc3FC3bl2jPrNARNWjUqmQmJhY7UcnyuVyNGjQQNJL5vpidkES+Od5lRkZGTr/cHB1dYWvry/XOBGZicLCQqSkpOj0LG5LS0v4+fkZ7egOItIvjUaDjIwMZGVl6VTv5uYGHx8fk8kYZhkkHyopKUF2djZycnIqfZyjTCaDq6sr3N3dYWdnZ6AOichYaLVa5OXlITs7W9ScSVtbW7i7u8PV1ZVrqInMUHFxMbKzs5GbmysqY7i5ucHNzc3kMoZZB8mHtFotVCoViouLoVKpoNVqIQgC5HI5bG1tYWtrCzs7O5P5dEBE0iotLYVKpYJKpUJpaSkEQYBMJoOVlRXs7OxgZ2dn9OuaiMgwHmaMhznjaRnD3t7eZD9wMkgSERERkU5MM/4SERERUY1jkCQiIiIinTBIEhEREZFOGCSJiIiISCcMkkRERESkEwZJIiIiItIJgyQRERER6YRBkoiIiIh0wiBJRERERDphkCQiIiIinTBIEhEREZFOGCSJiIiISCcMkkRERESkEwZJIiIiItIJgyQRERER6YRBkoiIiIh0wiBJRERERDphkCQiIiIinTBIEhEREZFOGCSJiIiISCcMkkRERESkEwZJIiIiItLJ/wcmBnA+w+E+mwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFUCAYAAACX0dxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWIElEQVR4nO3dd3gU5f4+/nuz6T0hpJBAAqE3AyJVEAQEQaqgUgQBQTqEkmTxqOeczzGb0ITQBEGKShFERETwIMihiCDSO6RAEpKQXjfJ7s7vD77kBwLJZLOzmc3er+vKJW7mPfOGwOy9zzzzjEIQBAFERERERJVkVd0NEBEREZF5YpAkIiIiIoMwSBIRERGRQRgkiYiIiMggDJJEREREZBAGSSIiIiIyCIMkERERERmEQZKIiIiIDMIgSUREREQGYZAkIiIiIoMwSBIRERGRQSwqSOp0Onz66acG12s0GgwePBiNGzdGSEgI+vbti/j4eOM1SESyUtVzBgDMnDkTQUFBUCgUuHz5spE6IyJzZYzzipxYVJC8dOkSdu3aVaV9TJo0CTdu3MD58+fxxhtvYNKkSUbqjojkxhjnjGHDhuH48eMIDAw0UldEZM6McV6RE4sJklevXkX//v2RlJSEkJAQfPLJJ5Xeh729Pfr16weFQgEA6NixI2JjY43dKhHJgDHOGQDQrVs3BAQEGLk7IjJHxjqvyIl1dTdgKs2bN8eQIUPQtGlTTJ8+3Sj7jImJwYABA4yyLyKSFynOGURk2WriecViRiQB4M8//0S7du2eer1r167w8vJ65te9e/eeua/IyEjcunWrRs1zIKInGfOcQUQEPP+8Yq4UgiAI1d2EKWi1Wnh4eODBgwewt7ev0r4WL16M7du349ChQ3B3dzdOg0QkK8Y8ZwBAUFAQ9u3bh5YtWxqhOyIyR8Y+r8iBxVzaTkxMhIuLS5V/cEuXLsW2bdsYIolqOGOdM4iIHqmJ5xWLubQdEBCA1q1bo0mTJliwYIFB+0hMTMTcuXORnZ2NHj16ICQkBB06dDByp0QkB8Y4ZwDAtGnTEBAQgMTERPTq1QsNGzY0YpdEZE6MdV6RE4u5tE1ERERExmUxI5JEREREZFwMkkRERERkEAZJIiIiIjIIgyQRERERGYRBkoiIiIgMwiBJRERERAZhkCQiIiIigzBIEhEREZFBGCSJiIiIyCAMkkRERERkEAZJIiIiIjIIgyQRERERGYRBkoiIiIgMwiBJRERERAaxru4G5ECv16OoqAhFRUXQaDTQ6/UQBAFKpRJ2dnZwcHCAg4MDlEpldbdKRDJQUlKCwsJCaDQalJSUQBAEKBQK2NjYlJ0v7OzsqrtNIpIBvV5fdr74e8awt7eHvb09HB0dYWVlnmN7Fh0ki4uLkZmZiaysLOj1+nK3VSgUcHd3h6enJxwcHEzUIRHJhV6vR05ODjIzM1FUVFTh9vb29vD09IS7u7vZvkEQkeE0Gg0yMzORnZ0tKmN4eHjAw8PD7DKGQhAEobqbMDW9Xo+0tDSkp6cbVO/u7g5fX19YW1t0DieyGAUFBUhKSkJJSUmla62treHv7w8XFxcJOiMiudHpdEhLS0NGRoZB9R4eHvD19TWbq6AWFyQ1Gg0SEhJQWlpapf0olUrUq1cPTk5ORuqMiORGEASkpqYa/KHzce7u7vD394dCoTBCZ0QkR0VFRUhISIBWq63SfpRKJQIDA+Ho6GikzqRjUUGyqKgIcXFxFQ4xi6VQKFCvXj2ONBDVQIIgIDExETk5OUbbp7OzM+rVq8dL3UQ1UGFhIeLi4mCsWKVQKBAUFCT7ASuLOZuVlpYaNUQCD99o7t69C41GY7R9EpE8pKamGjVEAkB+fj6Sk5ONuk8iqn4lJSWIj483WogEHmaM+Ph4FBcXG22fUpA0SO7btw9NmjRBo0aNsH79eikPVa5HIwvGDJGP7/vevXuS7JuIqkdBQYFRLmc/S3Z2ttEDKhFVH1NkDDlfPJbs0rZWq0Xz5s1x5MgRuLq6om3btvjjjz/g6ekpxeHKlZWVhaSkJEmP4e3tDW9vb0mPQUTSEwQBN2/erPI86vJYWVmhSZMmZjOZnoieLzMzU/IrDb6+vvDy8pL0GIaSbETy9OnTaNGiRdndiv369cPBgwelOtxzCYIg2cjC49LT0zkqSSRD+/btw8aNG0UHw9zcXElDJPBw5Yjs7GxJj0FEhpkzZw7u3LkjaltBEPDgwQOJO3qYMeQ6KlnpIKnX69G0aVOEh4c/8frBgwdha2uLnTt3AgCSk5Ph7+9f9v2AgADJRwWfpaCgwCTzCx6tMUdE8pKUlITx48ejadOmogKlKT54PjqOXN8YiCzZli1b0KRJE4wfP77CQJmfny/5B0/g4VXe3NxcyY9jiEovhGhlZQWVSoUZM2YgIiICHh4euHDhAoYPH47IyEgMHz4cAJ55gqyOZS/y8/NNdqycnByuLUkkM49uhouNjcX48ePxn//8B//4xz8wevRo2NjYPLGtTqcTtdi4MZSWliI3N5d3cBPJjF6vh06nw8aNG7FlyxaMGTMGH374IYKDg5/aNi8vz2R95eXlwc3NzWTHE8ugOZJarRaNGzfG2LFjMWHCBHTs2BGDBg3CqlWryrY5efIkFi1ahO+//x4AMGvWLHTo0AEjR440XvcixMbGorCw0CTHyszMxCuvvGKSYxFR1QQHB5cFykcfAPPz8xEfH2+yHiIjI7Ft2zaTHY+IDKNUKp8ZKG/fvm2ylVtsbW3RuHFjkxyrMgz6KGxtbY3w8HDExMSgX79+aNu2LWJiYp7Ypn379rh8+TKSkpKQl5eH/fv3o0+fPkZpujJMuTSPKYa3icg47ty5g3HjxqFp06bYtGkTtFqtyZfy0ul0Jj0eERnm0Qjl3y95m3JpnpKSEllOhzH4msqoUaNQWFgIQRCwbdu2p+4+tLa2xpIlS9CjRw+0adMG8+fPR61atarccGXJ8Q+diOTj8UB54sSJ6m6HiGTs8UA5ZcoUgx6bWhVyvKnX4Al906dPB/BwwvjzlrAYOHAgBg4caOghiIhMomXLlvjkk0/QsWNHk9yBSUTmy87ODpMmTUJYWJjJV1+Q4yNWDRqR/Oijj/DTTz/h1KlT0Gq12LBhg7H7Mpq/T6aXkhx/wET0fC1btsTOnTtx4cIFDBs2DHZ2diY9Ps8ZRObDzs4OM2bMwJ07dxATE4OAgACT3mBrZWUly3NGpW+2Wb9+PWbOnInDhw+jY8eO+PTTT7Fu3Trcvn3bpKFNrMTERJN9YtDpdNi9e7dJjkVE4vz555/Yv3//E6+1bNkSH3/8Md58880n7pouLi7GrVu3TNbb5cuXce3aNZMdj4gqtnDhwifmSz8agQwPD39iWUMAuHv3rsmW5XF2dkZQUJBJjlUZlQqSP//8MwYPHoxt27Zh6NChAB4u3hsYGIglS5Zg/PjxkjVqKFOsOP+Il5cXfH19TXIsIhJn7dq1mDx5MoD//xL20KFDn7nsjiAIuHbtmsnmITVv3pzL/xDJjJeXFzIyMsoNkI+kp6cjJSXFJH3J9Ql6os9gZ8+exfDhw7Fw4cKyEAkArq6umDFjBqKiomR5B6Kbm5vJhoI9PDxMchwiqpy/X8J+XnhTKBQme4yru7s7QySRDNnb2z9xCft5IRJ4+O/YVEx5rMqQ7FnbcpKcnIzMzExJjyHXIWciS3f79m189NFHsLW1hY2NDWxsbMp+/bzXunTpIvncp+DgYDg4OEh6DCKqvIULF+LixYuizhU2NjZo2LAh6tWrJ2lPrq6ukh/DUBbxGJbatWsjOztb0stVPj4+ku2biAzXsGFD5OTk4Oeffxa1/eLFi+Hj44OMjAzJenJzc2OIJJKpLl26PPUY6OepX78+Tp48iYyMDMmWG1QoFLLOGBZxXcXGxqbcoemq8vHx4ZsCkYyFhoaK2m748OGYM2cOfHx8JLuD29raGnXq1JFk30RUdV26dMFLL71U4Xb29vbYvXs3fH19Jf037evra/IVJSrDIoIk8HAEQIoF0V1dXeHl5WX0/RJR1WVlZeE///mPqEezNmvWDBs2bIBCoYCVlRXq1q1r9DmMCoUC9erVe+7au0RUfQRBwJEjR9C7d2+cOXOmwu3Xrl2LkJAQAA/nL0pxn4Sbm5vJ5m0byiLmSD4iCAJSU1ORnp5ulP25ubkhICBAlus6EVmylJQUfPbZZ1izZg3y8vIq3N7FxQWnT59G06ZNn3hdo9EgLi7OKDcSWllZISgoCI6OjlXeFxEZj16vx48//gi1Wo0//vhDVM3UqVOxatWqJ14TBAH379832j0Z7u7u8Pf3l33GsKgg+Uh2djbu379v8JuDQqGAr68vPD09Zf8DJrIkcXFxWLRoEb788stKPQP3u+++e2I1iseVlpYiOTlZVCB9HicnJ/j7+8PW1tbgfRCRcWm1Wmzfvh1RUVG4cuWK6LqOHTvi6NGjz/z3LAhCWcYw9L4MhUIBPz8/eHh4mEXGsMggCTz8C5Samors7OxKTZB1c3ODj48P3xCIZOTKlSuIiorCtm3bKv0BMSwsDNHR0RVul5OTg7S0tEoFVBsbG3h7e8Pd3d0s3hCILIFGo8HGjRuxaNEixMXFVarW29sbf/31V4X3XWi1WqSkpCAnJ6fSGcPX11eWD3h5HosNko/odDrk5OQgLy8PRUVF0Gq1T3xfqVTC3t4eLi4ucHd3N+njkIiofKdOnYJarcbevXtF11hbW5f9O3/11Vdx8OBB0f+uBUFAUVERsrOzUVhY+MTTLx6xs7ODo6Mj3N3d4ejoyABJJBO5ubn4/PPPsXTpUqSmpoqqefx8oVQqcejQIXTv3l30MXU6HbKzs8syxt8/6CqVSjg4OMDZ2dlsM4bFB8m/0+l00Ol0EAQBSqXSLH+oRDWZIAg4dOgQ1Go1jhw5Irqud+/eWLBgAW7fvo2JEyciICAAZ8+erdKTIgRBQGlpKQRBgEKhgLW1NRcZJ5KZBw8eYPny5Vi1apXoRyZ7eXlh9uzZmDhxIl588UUkJiZi8eLFmDt3bpV60Wq10Ov1NSpjMEgSkVnQ6/XYs2cP1Go1/vzzT1E1CoUCQ4cORUREBNq1awfg4fO0mzVrhu3bt6N9+/ZStkxE1ejevXtYvHgxvvjiCxQVFYmqqVu3LubPn48JEyaU3Ri3bNkynDx5Ejt27OAVhmdgkCQiWSstLcXWrVsRFRWF69evi6qxtrbG6NGjER4e/tSd2ACQmpoq6wV+ichwN27cQHR0NL766qunpqs9T5MmTRAREYGRI0c+dQ9EQUEB9Ho9XFxcpGjX7DFIEpEsFRYW4ssvv8SiRYtw9+5dUTUODg54//33MW/ePNk+ToyIpPHXX39BrVbju+++E32Dy4svvgiVSoXBgwdzfVcDmf/FeSKqUbKzs7F69WosW7YMDx48EFXj5uaGadOmYdasWVWa80hE5kUQBPzvf/9DZGQkfvnlF9F13bt3h0qlQu/evXm5uooYJIlIFlJTU7Fs2TKsXr0aubm5omq8vb0xZ84cTJ48GW5ubhJ3SERyIQgC9u3bB7Vajd9//1103YABA6BSqdCpUycJu7MsDJJEVK3i4+OxePFibNiw4ZnL6TxLUFAQ5s+fj3HjxvE590QWRKvV4ttvv0VUVBQuXbokqsbKygojRoxAeHg4WrVqJXGHlodBkoiqxdWrVxEVFYWtW7eKXkS8efPmiIiIwDvvvGNWC/YSUdVoNBps3rwZCxcuRGxsrKgaOzs7jBs3DvPnz0eDBg0k7tByMUgSkUmdPn0aarUae/bsEV3Tvn17LFiwAAMGDOA6jUQWJC8vD2vXrsWSJUuQkpIiqsbZ2RlTpkxBaGgo/Pz8JO6QGCSJSHKCIODw4cNQq9X49ddfRdf16tULKpUKPXr04IR4IguSnp6OmJgYrFy5EllZWaJqatWqhdmzZ2PatGnw8PCQuEN6hEGSiCSj1+uxd+9eqNVqnD59WnTdkCFDoFKp8NJLL0nYHRHJTWJiIpYsWYJ169ahsLBQVE1AQADmzZuH999/H05OThJ3SH/HIElERldaWort27cjKioKV69eFVWjVCoxatQohIeHo3nz5hJ3SERycvPmTSxcuBBbtmxBaWmpqJrGjRsjIiICo0aNemoRcTIdBkkiMpqioqKyRcQTEhJE1djb25ctIh4YGChxh0QkJ+fOnYNarcauXbtELyLepk0bLFiwAEOGDOEi4jLAIElEVZaTk4M1a9bgs88+Q1pamqgaV1fXskXE+bhCIsty7NgxREZG4sCBA6JrXnnlFahUKrz22mucMy0jDJJEZLC0tDQsX74cq1atQk5Ojqia2rVrIzQ0FFOnTuUi4kQWRBAE7N+/H2q1GidOnBBd98Ybb0ClUqFz584SdkeGYpAkokq7e/cuFi9ejPXr16OoqEhUTb169RAWFobx48dzEXEiC6LT6bBz505ERUXhwoULomqsrKzw9ttvIyIiAq1bt5a4Q6oKBkkiEu369euIjo7G119/Da1WK6qmWbNmiIiIwIgRI7iIOJEFKS4uxpYtWxAdHY07d+6IqrG1tS1bRDw4OFjiDskYGCSJqEJnz56FWq3G7t27RU+If+mll6BSqTBo0CAuIk5kQfLz87F27VosXboUycnJomqcnJzKFhGvU6eOxB2SMTFIEtEzCYKAo0ePIjIyEv/9739F17366qtQqVTo2bMnJ8QTWZCMjAysWLECK1asQGZmpqgaT09PzJo1C9OnT4enp6fEHZIUGCSJ6Al6vR779u2DWq3GqVOnRNcNGjQIKpUKHTp0kLA7IpKbpKQkLF26FGvXrkVBQYGoGn9/f8ydOxcTJ06Es7OzxB2SlBgkiQgAoNVqsWPHDkRFReHy5cuiapRKJUaOHInw8HC0aNFC4g6JSE5u376NhQsXYvPmzSgpKRFV07BhQ0RERGD06NGws7OTuEMyBQZJIgun0WiwadMmLFy4EHFxcaJq7OzsMGHCBMybNw/169eXuEMikpMLFy5ArVZj586d0Ov1ompCQkKgUqnw5ptvchHxGoZBkshC5eXl4fPPP8fSpUuRkpIiqsbFxQVTp07F7Nmz4evrK3GHRCQnx48fh1qtxv79+0XXdO3aFSqVCn379uWc6RqKQZLIwqSnp2P58uVYuXIlsrOzRdV4eXlh9uzZmDZtGtzd3SXtj4jkQxAEHDhwAGq1GseOHRNd169fP6hUKrz88ssSdkdywCBJZCHu3buHJUuW4IsvvkBhYaGomrp162L+/PmYMGECHB0dJe6QiORCp9Phu+++g1qtxvnz50XVWFlZYfjw4YiIiEBISIik/ZF8MEgS1XA3b95EdHQ0vvrqK5SWloqqadKkCSIiIjBy5EjY2tpK3CERyUVJSQm++uorREdH49atW6JqbGxs8N577yEsLAwNGzaUuEOSGwZJohrqr7/+glqtxnfffSd6EfEXX3wRKpUKgwcP5oR4IgtSUFCAdevWYcmSJUhKShJV4+TkhA8++ABz5syBv7+/xB2SXDFIEtUggiDg2LFjiIyMxMGDB0XXde/eHSqVCr179+aEeCILkpmZiZUrVyImJgYZGRmiajw8PDBz5kzMmDEDtWrVkrhDkjsGSaIaQBAE/PTTT1Cr1Th58qTougEDBkClUqFTp04SdkdEcnP//n0sXboUn3/+OfLz80XV+Pn5Ye7cuZg0aRJcXFwk7pDMBYMkkRnTarXYuXMnoqKicPHiRVE1VlZWGDFiBMLDw9GqVSuJOyQiOblz5w4WLlyITZs2iV5EPDg4GOHh4RgzZgwXEaenMEgSmaHi4mJs3rwZ0dHRiI2NFVVjZ2eHcePGYf78+WjQoIHEHRKRnFy8eBFRUVHYsWOH6EXEW7duDZVKhWHDhsHamnGBno1/M4jMSF5eHtauXYulS5fi/v37omqcnZ0xZcoUhIaGws/PT+IOiUhOTp48CbVajX379omu6dKlC1QqFfr168c501QhBkkiM5CRkYGYmBisWLECWVlZompq1apVtoi4h4eHxB0SkVwIgoBffvkFarUaR48eFV3Xt29fLFiwAF27dpWwO6ppGCSJZCwpKQlLlizBunXrUFBQIKomICAA8+bNw/vvvw8nJyeJOyQiudDpdPj++++hVqvx119/iapRKBQYNmwYVCoV2rRpI3GHVBMxSBLJ0K1bt7Bw4UJs3rxZ9CLijRs3RkREBEaNGsVFxIksSElJCb7++mtER0fj5s2bompsbGwwZswYhIWFoXHjxhJ3SDUZgySRjJw/fx5qtRq7du0SPSG+TZs2WLBgAYYMGcJFxIksSEFBAdavX4/FixcjMTFRVI2joyMmTZqEuXPnIiAgQOIOyRIwSBLJwLFjx6BWq/Hzzz+LrnnllVegUqnw2muvcUI8kQXJysrCqlWrsHz5cqSnp4uqcXd3x4wZMzBz5kx4eXlJ3CFZEgZJomoiCAJ+/vlnqNVqHD9+XHTdG2+8AZVKhc6dO0vYHRHJTUpKCj777DOsWbMGeXl5omp8fX0xd+5cfPDBB1xEnCTBIElkYjqdDrt27YJarcaFCxdE1VhZWeHtt99GREQEWrduLXGHRCQnsbGxWLRoETZu3Iji4mJRNfXr10d4eDjGjh0Le3t7iTskS8YgSWQixcXF+OqrrxAdHY3bt2+LqrG1tS1bRDw4OFjiDolITi5fvoyoqChs374dOp1OVE3Lli2hUqnw1ltvcRFxMgn+LSOSWH5+PtatW4clS5YgOTlZVI2Tk1PZIuJ16tSRuEMikpNTp05BrVZj7969oms6deoElUqF/v37w8rKSsLuiJ7EIEkkkczMTKxYsQIxMTHIzMwUVePp6YlZs2Zh+vTp8PT0lLhDIpILQRBw6NAhqNVqHDlyRHTda6+9hgULFqBbt2686Y6qBYMkkZElJydj6dKl+Pzzz0UvIu7v74+5c+di4sSJcHZ2lrhDIpILvV6PPXv2IDIyEmfPnhVVo1Ao8OabbyIiIgIvvviixB0SlY9BkshI7ty5g4ULF2LTpk0oKSkRVdOwYUNERERg9OjRsLOzk7hDIpKL0tJSfPPNN4iOjsb169dF1VhbW+Pdd99FeHg4mjRpInGHROIwSBJV0cWLF6FWq/Htt9+KXkQ8JCQEKpUKb775JhcRJ7IghYWF2LBhAxYvXoy7d++KqnFwcChbRLxu3boSd0hUOQySRAY6ceIE1Go1fvrpJ9E1Xbt2hUqlQt++fTmficiCZGdnY/Xq1Vi2bBkePHggqsbNza1sEfHatWtL3CGRYRgkiSpBEAQcPHgQarUa//vf/0TX9evXDyqVCi+//LKE3RGR3KSmpmLZsmVYvXo1cnNzRdX4+Phgzpw5mDx5MlxdXSXukKhqGCSJRNDpdNi9ezfUajXOnTsnqsbKygrDhw9HREQEQkJCpG2QiGQlPj4eixYtwpdffgmNRiOqJigoCGFhYRg3bhwXESezwSBJVI6SkhJ8/fXXiI6Oxs2bN0XV2NjY4L333kNYWBgaNmwocYdEJCdXr15FVFQUtm7dKnoR8RYtWkClUuHtt9/mIuJkdvg3lugZCgoK8MUXX2DJkiVITEwUVePk5IQPPvgAc+bMgb+/v8QdEpGcnD59Gmq1Gnv27BFd06FDByxYsABvvPEGFxEns8UgSfSYrKwsrFy5EsuXL0dGRoaoGg8PD8ycORMzZsxArVq1JO6QiORCEAT8+uuvUKvVOHz4sOi63r17Q6VSoXv37rzpjswegyQRgPv37+Ozzz7DmjVrkJ+fL6rGz88Pc+fOxaRJk+Di4iJxh0QkF3q9Hj/88APUajXOnDkjqkahUGDIkCFQqVRo166dxB0SmQ6DJFm02NjYskXEi4uLRdUEBwcjPDwcY8aM4SLiRBaktLQU27ZtQ1RUFK5duyaqxtraGqNGjUJ4eDiaNWsmcYdEpscgSRbp0qVLiIqKwvbt20UvIt66dWuoVCoMGzaME+KJLEhRURG+/PJLLFq0CAkJCaJq7O3tMXHiRMydOxeBgYESd0hUffhuSBbl999/h1qtxo8//ii6pkuXLlCpVOjXrx/nMxFZkJycnLJFxNPS0kTVuLm5Ydq0aZg1axa8vb0l7pCo+jFIUo0nCAL++9//Qq1W47fffhNd17dvX6hUKnTr1k265ohIdtLS0rBs2TKsWrVK9CLi3t7eCA0NxZQpU+Dm5iZxh0TywSBJNZZer8f3338PtVqNs2fPiqpRKBQYNmwYVCoV2rRpI3GHRCQnCQkJWLx4MdavXy96EfHAwMCyRcQdHBwk7pBIfhgkqcYpKSnBN998g+joaNy4cUNUjY2NDcaMGYOwsDA0btxY4g6JSE6uXbtWtoi4VqsVVdOsWTOoVCq88847sLGxkbhDIvlikKQao7CwEOvXr8fixYtx7949UTWOjo6YNGkS5s6di4CAAIk7JCI5OXPmTNki4oIgiKpp3749VCoVBg4cyEXEicAgSTVAdnY2Vq1ahWXLliE9PV1Ujbu7O2bMmIGZM2fCy8tL4g6JSC4EQcCRI0egVqtx6NAh0XU9e/aESqXCq6++ypvuiB7DIElmKyUlBcuWLcPq1auRl5cnqsbPzw9z5szBBx98wEXEiSyIXq/Hjz/+CLVajT/++EN03eDBg6FSqdC+fXsJuyMyXwySZHbi4uKwaNEifPnll6IXEW/QoAHCwsIwduxY2NvbS9whEcmFVqvF9u3bERUVhStXroiqUSqVZYuIN2/eXOIOicwbgySZjStXriAqKgrbtm2DTqcTVdOqVSuoVCoMHz6ci4gTWZCioiJs3LgRixYtQnx8vKgae3t7TJgwAfPmzUNQUJCk/RHVFHxnJdn7448/oFar8cMPP4iu6dSpExYsWID+/ftzPhORBcnNzcWaNWvw2WefITU1VVSNq6srpk6ditmzZ8PHx0fiDolqFgZJkiVBEHDo0CGo1WocOXJEdF2fPn3KFhFngCSyHA8ePMDy5cuxcuVK5OTkiKqpXbs2Zs+ejalTp8Ld3V3aBolqKAZJkhW9Xo89e/ZArVbjzz//FFWjUCjw5ptvIiIiAi+++KLEHRKRnNy9exdLlizBF198gaKiIlE19erVw/z58zF+/Hg4OjpK3CFRzcYgSbJQWlqKrVu3IioqCtevXxdVY21tjXfffRfh4eFo0qSJxB0SkZxcv34d0dHR+Prrr0UvIt60aVNERERg5MiRXEScyEgYJKlaFRYW4ssvv8SiRYtw9+5dUTUODg5li4jXrVtX4g6JSE7Onj0LtVqN3bt3i15EvF27dlCpVBg8eDAXEScyMgZJqhbZ2dlYvXo1li1bhgcPHoiqcXNzK1tEvHbt2hJ3SERyIQgCjh49CrVajV9++UV0XY8ePaBSqdCrVy/OmSaSCIMkmVRqamrZIuK5ubmianx8fDBnzhxMnjwZrq6uEndIRHKh1+vx008/ITIyEqdOnRJdN3DgQKhUKnTs2FHC7ogIYJAkE4mPj8fixYuxYcMGaDQaUTVBQUEICwvDuHHjuIg4kQXRarX49ttvoVarcfnyZVE1SqUSI0aMQHh4OFq2bClxh0T0CIMkSerq1auIiorC1q1bRS8i3qJFC6hUKrz99ttcRJzIgmg0GmzatAmLFi1CbGysqBo7OzuMHz8e8+fPR/369SXukIj+ju/SJInTp09DrVZjz549oms6dOiABQsW4I033uCEeCILkpeXh88//xxLly5FSkqKqBoXFxdMmTIFoaGh8PX1lbhDInoeBkkyGkEQcPjwYajVavz666+i63r37g2VSoXu3btzQjyRBUlPT0dMTAxWrFiB7OxsUTVeXl6YNWsWpk2bBg8PD2kbJKIKMUhSlen1euzduxdqtRqnT58WVaNQKDBkyBCoVCq0a9dO4g6JSE7u3btXtoh4YWGhqJqAgADMnz8fEyZMgJOTk8QdEpFYDJJksNLSUmzfvh1RUVG4evWqqBpra2uMGjUK4eHhaNasmcQdEpGc3Lx5E9HR0fjqq69QWloqqqZJkyYIDw/HqFGjYGtrK3GHRFRZDJJUaUVFRWWLiCckJIiqsbe3x8SJEzF37lwEBgZK3CERycm5c+egVquxa9cu0YuIt23bFgsWLMDgwYOhVCol7pCIDMUgSaLl5ORgzZo1+Oyzz5CWliaqxs3NDdOmTcOsWbPg7e0tcYdEJBeCIODYsWNQq9U4cOCA6Lru3btDpVKhd+/enDNNZAYYJKlCaWlpWL58OVatWoWcnBxRNd7e3ggNDcWUKVPg5uYmcYdEJBeCIGD//v2IjIzEyZMnRdcNGDAAKpUKnTp1krA7IjI2Bkl6rrt372Lx4sVYv349ioqKRNUEBgaWLSLu4OAgcYdEJBdarRY7d+5EVFQULl68KKrGysoK77zzDiIiItCqVSuJOyQiKTBI0lOuXbuG6OhofPPNN9BqtaJqmjVrBpVKhXfeeQc2NjYSd0hEclFcXIzNmzdj4cKFuHPnjqgaW1tbjBs3DvPnz0dwcLDEHRKRlBgkqcyff/4JtVqN77//XvSE+Pbt20OlUmHgwIFcRJzIguTn52Pt2rVYunQpkpOTRdU4OzuXLSLu5+cncYdEZAoMkhZOEAT89ttvUKvV+O9//yu6rmfPnlCpVHj11Vc5IZ7IgmRkZGDFihWIiYlBVlaWqJpatWph1qxZmD59OhcRJ6phGCQtlF6vx759+6BWq3Hq1CnRdYMHD4ZKpUL79u0l7I6I5CYpKQlLlizBunXrUFBQIKrG398f8+bNw8SJE7mIOFENxSBpYbRaLXbs2AG1Wo0rV66IqlEqlWWLiDdv3lziDolITm7duoWFCxdi8+bNohcRb9SoESIiIjB69GguIk5UwzFIWgiNRoONGzdi0aJFiIuLE1Vjb2+PCRMmYN68eQgKCpK2QSKSlfPnzyMqKgo7d+6EXq8XVRMSEoIFCxZg6NChXEScyEIwSNZwubm5+Pzzz/HZZ58hJSVFVI2rqyumTp2K2bNnw8fHR+IOiUhOjh8/DrVajf3794uu6datG1QqFfr06cM500QWhkGyhnrw4AFiYmKwcuVKZGdni6qpXbs2Zs+ejalTp8Ld3V3S/ohIPgRBwIEDBxAZGYnjx4+Lruvfvz9UKhW6dOkiYXdEJGcMkjXMvXv3yibEi11EvF69epg/fz7Gjx8PR0dHiTskIrnQ6XTYtWsXoqKicP78eVE1VlZWeOuttxAREYEXXnhB2gaJSPYYJGuIGzduIDo6Gl9//bXoCfFNmzZFREQERo4cyUXEiSxIcXExvvrqKyxcuBC3bt0SVWNra4v33nsP8+fPR8OGDSXukIjMBYOkmfvrr7+gVqvx3XffiV5EvF27dlCpVBg8eDAXESeyIPn5+fjiiy+wZMkSJCUliapxcnLC5MmTMWfOHNSpU0fiDonI3DBImiFBEPC///0PkZGR+OWXX0TX9ejRAyqVCr169eKEeCILkpmZiZUrV2L58uXIzMwUVePp6YmZM2di+vTpqFWrlsQdEpG5YpA0I4IglC0i/vvvv4uuGzhwIFQqFTp27Chhd0QkN8nJyVi6dCnWrl2L/Px8UTV16tTB3LlzMWnSJDg7O0vcIRGZOwZJM6DVavHtt98iKioKly5dElWjVCoxYsQIhIeHo2XLlhJ3SERycufOHSxcuBCbNm1CSUmJqJqGDRsiPDwc7777Luzs7CTukIhqCgZJGdNoNNi8eTMWLlyI2NhYUTV2dnYYP3485s+fj/r160vcIRHJycWLFxEVFYUdO3aIXkT8hRdegEqlwrBhw7iIOBFVGoOkDOXl5WHt2rVYsmSJ6EXEXVxcMGXKFISGhsLX11fiDolITk6ePInIyEj89NNPomtefvllqFQqvP7665wzTUQGY5CUkfT09LJFxLOyskTVeHl5YdasWZg2bRo8PDwk7pCI5EIQBPzyyy+IjIzE//73P9F1r7/+OlQqFbp27Sphd0RkKRgkZSAxMbFsEfHCwkJRNQEBAZg/fz4mTJgAJycniTskIrnQ6XTYvXs31Go1zp07J6pGoVBg+PDhiIiIQJs2bSTukIgsCYNkNbp58yYWLlyILVu2iF5EvEmTJggPD8eoUaNga2srcYdEJBclJSX4+uuvER0djZs3b4qqsbGxwdixYxEWFoZGjRpJ3CERWSIGyWpw7tw5qNVq7Nq1S/Qi4m3btoVKpcKQIUM4IZ7IghQUFGD9+vVYvHgxEhMTRdU4Ojrigw8+wJw5cxAQECBxh0RkyRgk/x9BEFBcXIzi4mLodDoIggClUgk7OzvY29sbZTL6sWPHEBkZiQMHDoiueeWVV7BgwQL07t2bE+KJZESr1UKj0aCkpASCIEChUMDGxgYODg6wtq76qTUrK6tsEfGMjAxRNR4eHpgxYwZmzJgBLy+vKvdARMbxKGNoNBro9fqyjGFvbw87Ozuzfn+36CApCALy8/ORmZmJ/Pz8ckcHnZyc4OnpCRcXl0o9VlAQBOzfvx9qtRonTpwQXffGG29ApVKhc+fOomuISFqlpaXIyspCVlZWudNRrK2t4e7uDk9Pz0pPQbl//z4+++wzrFmzRvQi4n5+fmWLiLu4uFTqeEQkDUEQkJeXh8zMTBQUFJSbMZydncsyhrmFSoUg9tpqDZOfn4+kpCTRcxMfUSqVqFOnDlxdXcv9Yet0OuzcuRNRUVG4cOGCqH1bWVnhnXfeQUREBFq1alWpvsyNIAjQaDTIz89/6isvL6/s1xqNBoIgVOuXQqGAo6MjHB0d4eTk9NSv//7fR792cHAwuxMCPZtOp0NKSoro1RQe5+bmBj8/vwpHKWNjY7Fo0SJs3LgRxcXFovbdoEEDhIeHY8yYMbC3t690b0Qkjby8PCQlJUGr1VaqztrauixjmAuLC5J6vR7JycnIzs6u0n6cnZ0REBDw1JtDcXExtmzZgujoaNy5c0fUvmxtbTFu3DjMnz8fwcHBVepLCs8LfY8Hvopef9ZrOp2uun9rknte6CwviD5rGxcXF3h7e8Pb25t36ZtYXl4eEhMTq/T31crKCv7+/nBzc3vqe5cvX0ZUVBS2b98u+hitWrWCSqXC8OHDjXIZnYiMQ6fTITk5GTk5OVXaj4uLCwICAszingiLCpI6nQ5xcXHQaDRG2Z+NjQ3q168PW1tb5OfnY+3atVi6dCmSk5NF1Ts7O2Py5MkIDQ1FnTp1jNKTGBqNBqmpqUhNTUVKSkrZrx//SktLeyL8WULoMxeOjo5lofLRl4+Pz1OveXt7w8vLi0GjCrKyspCUlGS0/fn6+pbNXTx16hQiIyPx448/iq7v3LkzVCoV+vfvz9FuIpnRarWIi4sTfUWhIra2tqhfvz5sbGyMsj+pWEyQ1Ov1iIuLQ1FRkVH3a2Njg2PHjiE8PByZmZmiamrVqlW2iLinp6dR+igqKio3GD7+em5urlGOSfKnUCjg6en53KD59zBqjvNzpJKTk4N79+4Zfb82NjaYPHkyfvvtN9E1ffr0wYIFC9C1a1f+fIhkSK/X486dO0YLkY/Y2toiODhY1iOTkg5VDBkyBL/99ht69uyJXbt2SXmoCqWlpRk9RAIPJ9+XlpaKCpH+/v6YN28eJk6cKOryZEFBQYWh8NFXXl6eMX47VMMIgoCMjAxkZGTg6tWrFW5vZ2f33KBZt25dNGjQAA0aNICnp2eNDjQlJSVGHYn8+77FXLVQKBQYNmwYIiIi0LZtW0l6ISLjSE1NNXqIBB6eL+7fvy/rZbwkHZE8cuQI8vPzsXnz5moNkoWFhYiNjZVs/zqdDsOGDcPt27ef+f1GjRohPDwco0ePhp2dXVlPCQkJSEhIQHx8fNmv7969i5SUFKSkpKCgoECynkkchUIheq1PS+Lq6loWKv/+FRgYaNaL5QuCgPj4eEn//f3000+IiIh45vesra0xZswYhIWFoUmTJpL1QETGkZ+fj/j4eEmPUa9ePdnegCP5pe3ffvsNK1eurNYgGR8fL3oZDUP9+OOPWLBgwROvNWnSBIMGDYKfnx/u3bv3RHBMT0+XtJ/q5uDgABcXFzg7Oz/xVdnXHq3hWR1fjwiCgKKiIhQWFqKgoOCJ/z7rtYr++6zXKrt6gJxZWVkhICDgqYAZHByMBg0aoFatWiYdzbxw4QJcXV1Rv359UdtL/cETeHglY+DAgU8sMO7o6IiJEydi7ty5qFu3rqTHJ6Ln+/HHH9GvXz/Rl5NjY2NFP97YUPb29mjYsKGkxzBUpYOkXq9H8+bNMWjQIERHR5e9fvDgQQwYMADffPMNhg8fXvZ6dQfJ4uJi3Lp1S/LjlJaWokePHsjJyYFSqTTLm1MUCgVq1aoFHx8f+Pj4wMPDw6Ag6OTkJOv5HHJUWlpabujMyspCWlrac79KSkqq+7cgmouLS7mjmY9G7Y1l7dq1mD59Ot577z0sWLCgwkB59+5dk8wj3rVrF/71r3/B3d0dM2bMwMyZM7mIOJEMeHl5wdvbGx9//DGGDx9e7vuZRqN57tVIY2vQoAEcHR1NcqzKMGhEcvPmzZgxYwYSEhLg4eGBCxcuoGvXrvj4448xb968J7at7iD56I3WFD7++GN8//33JjmWWAqFArVr1y4Lh49/+fr6PvH/tWvX5h2+ZkgQBOTm5pbdbV/Rl9inpFQHhULxzNHMBg0aoFGjRqhVq1al97l27VpMnjwZwMPLxuUFSr1eL2ouqTEUFRXh6NGjmDRpkmwvWRFZIi8vr7LzZLNmzcoNlKmpqXjw4IFJ+qpVqxb8/PxMcqzKMChIarVaNG7cGGPHjsWECRPQsWNHDBo0CKtWrXpq2+oOkgkJCSa7EWX37t345JNPTHIsGxsb0V81+aYIqjy9Xg+tVlt2o9jjv37Wl5zmiNra2patsfnoy97evtynTaWmpiIuLu6J1x4Fyg8//BBBQUFlr5visvbjtm/fjl9//dVkxyOiip05c+apq4rPC5RxcXEmu5/BwcFBlmtNGzT8ZG1tjfDwcCxYsADfffcd2rZti5iYGGP3ZhRS3Kn9PB4eHiY71qM3eSJLUlJSgpKSkio/UECr1WL9+vXYtGkTxo0bhwULFiAoKMhoa8yKdfv2bZw6dcqkxySiyrt27RpGjBiBf//7308ESlNmjEdPepPb4JD4h0b/zahRo1BYWAhBELBt27ZnDvn26dMHw4cPx/79+xEQEIAzZ85UqVlDmHKuohyHnIno+bRaLb744gs0atQIkyZNMuloJABZjfYSUcUeBcpWrVph27ZtJh3QefTYXrkxeELc9OnTAQDp6enPnYh68OBBQ3dvltzd3au7BSIygBxPzkRE5sCgEcmPPvoIP/30E06dOgWtVosNGzYYuy+jMeXdw3IbbiYicdzc3HDnzh1s2LABe/bswdWrVyVZXPjveM4gMi/NmjXDtm3bcOnSJYwYMcKkjy/8+9J0clHpm23Wr1+PmTNn4vDhw+jYsSM+/fRTrFu3Drdv35bl8yBNebNNQUEBZs+ebZJjEdV0giCguLgYxcXF0Gg0ZcshFRYWmmTKilKpRGBgIJo0aYLGjRujefPmaN26NZydnY12DN5sQyQ/vNmmcioVJH/++WcMHjwY27Ztw9ChQwEAubm5CAwMxJIlSzB+/HjJGjWUKZf/8fDwgL+/v0mORWSpBEFAQkICLly4gIsXL5Z93bp1S/JL1AqFAo0aNUKbNm0QEhKCkJAQ+Pv7GzxK0LRpUy65RSQzXP6nckQHybNnz+KVV17Bp59+ilmzZj3xvY8//hjbt2/HtWvXZLcQtakWJAeAoKAgo45WEJF4BQUFuHLlyhPh8sKFC1W+w7sitWvXLguVbdq0QdOmTUVdnXFychL9tB0iMh0uSF45kj8iUQ5M8YhEOzs7NGzYUJbzF4gslSAI+OWXX5CUlITU1NSygHnjxg3JLo/b29ujRYsWaNOmDdq0aYMXXngBbm5uT20n52fnElkyPiKxciwiSJpikeG6des+882CiORHo9Hg6tWrT41epqenS3K8Bg0aPDFq2bhxYzRq1IgfPIlqgPz8fMTHx0t6DDl/8LSIIAkAKSkpkr1JuLm5oW7dupLsm4hMQxAEpKSk4OLFi/jrr79w8uRJ3LhxA3FxcdBqtUY9lpeXFzp37owuXbqgc+fOaNeuHezt7Y16DCIynfv370v2+Fl3d3cEBARIsm9jsJggqdfrERcXZ/RV6G1sbNCwYUPZzQ0loqrJycnBvXv3UFpaihs3buDcuXM4d+4czp8/b/TJ9ba2tnjxxRfLgmXnzp3h4+Nj1GMQkXT0ej3u3Llj9GXDbG1tERwcLOuMYTFBEnj4lJu4uDijPQbNxsYG9evXh62trVH2R0TykpWVhaSkpCdeEwQBycnJZaHy/PnzuHXrFvR6vVGP3bBhw7JRyy5duqB58+a8FE4kY1qtFnFxcUYLk7a2tqhfv74sl1Z8nEUFSeDhp4bk5OQq38np7OyMgIAALt1BVMPl5eUhMTGx3Jtz8vPzcfHiRZw/fx7nzp3DxYsXjT75vk6dOujTpw/69OmDXr16oVatWkbdPxFVnU6nQ3JyMnJycqq0HxcXFwQEBMh6JPIRiwuSj+Tn5yMpKanSz8lUKpWoU6cOXF1dOTpAZCF0Oh1SUlKQlZUlanutVovbt2/j3LlzuHLlCs6fP4+EhASj9aNQKNC+fXv06dMHffv2xUsvvcQPtUQykpeXh6SkpErPr7a2ti7LGObCYoMk8PASVX5+PjIzM5Gfn1/uYsZOTk7w9PSEi4sLrKwMerIkEZm50tJSZGVlISsrq9wPodbW1vDw8ICHh0fZ1JfExEScPHkSJ0+exIkTJ3Du3DmjLUHk7u6OXr16oW/fvujTp4+sJ+YTWQpBEJCXl4fMzEwUFBSUmzGcnZ3LMoa5DVJZdJB8nCAImDVrFv74448nfthBQUHYsWOH2f1giUhaZ8+exdSpU584XygUCkRGRqJnz54V1hcUFOD06dNlwfL333832uLpLVq0KBut7Nq1K+8IJ6pmgiBg8uTJOHfu3BOvN23aFJs3bzbrjMFrIf+PQqHAzZs3cfr06Sdez8vLM+sfMBFJo6io6KnzBQDRc6OcnJzQo0cP9OjRA8DD+dvXrl3DiRMncOLECZw8edLgJ2ZcuXIFV65cwdKlS+Hg4IBXXnmlbLSySZMmPKcRmZhCocD169dx5syZJ17X6XRm/++RQZKISAasrKzQokULtGjRApMmTQLw8Dm+x44dw8GDB3Hw4EHcu3ev0vstKirCgQMHcODAAQBAYGBg2U07PXv25IMUiKhKGCSJiGTKx8cHw4YNw7BhwyAIAq5du4aDBw/iwIEDOHr0qEHLjCQkJGDdunVYt24dlEolOnXqVDZa2bZtW84BJ6JK4RmDiMgMKBQKNG/eHKGhoTh48CCysrJw4MABzJ49G82aNTNonzqdDsePH8c//vEPvPTSS/Dx8cGoUaOwZcsWpKSkGPl3QEQ1EUckiYjMkIODQ9klagC4e/du2SXwQ4cOGbSOXXp6OrZu3YqtW7cCAEJCQtC3b18MGjQIHTp0MPu5XERkfByRJCKqAerVq4eJEydi165dSE9Pf2Kk0dAAeP78eURFRaFTp04IDAxEaGgoTp48afSn+BCR+WKQJCKqYaytrdGlSxf83//9H06fPo20tDRs3boVY8eOha+vr0H7vHfvHpYtW4YuXbqgXr16mDVrFo4dO8ZQSWThGCSJiGo4Ly8vjBgxAps2bUJycjLOnz+P6Oho9OjRw6Dn+CYlJSEmJgbdunVDQEAApk+fjqNHjxptgXUiMh8MkkREFkShUOCFF15AWFgYDh8+jMzMTOzduxfTpk1DcHBwpfd3//59rFq1Ct27d0edOnUwZcoUHD58uNKPhiMi88QgSURkwZydnTFgwACsXLkSt2/fxu3bt7Fq1SoMGDAATk5OldpXWloaPv/8c/Ts2RN16tTBBx98gP/+97/lPk6SiMwbgyQREZUJDg7G1KlTsXfvXjx48AC7d+/GyJEj4eLiUqn9PHjwAOvWrcNrr70GPz8/vP/++zhw4ABDJVENwyBJRETP5ODggCFDhuCbb75BWloafvjhB7z77rtwdXWt1H4yMjKwYcMGvP766/Dx8cG4ceOwf/9+lJSUSNQ5EZkKgyQREVXI3t4eAwcOxJYtW5CWloZ9+/Zh7NixcHd3r9R+srKysGnTJvTv3x/e3t4YO3YsfvzxR4Oe0kNE1Y9BkoiIKsXOzg79+/fHpk2bkJqaiv3792P8+PHw9PSs1H5ycnKwZcsWDBw4ELVr18bo0aOxZ88eFBUVSdQ5ERkbgyQRERnM1tYWr7/+OjZs2ICUlBQcPHgQEydORK1atSq1n7y8PHzzzTcYMmQIvL29MWLECOzevZsjlUQyxyBJRERGYWNjg9deew3r1q1DSkoKDh06hA8++AC1a9eu1H7y8/Oxfft2vPnmm6hTpw5mzZqF8+fPS9M0EVUJgyQRERmdtbU1evbsic8//xz379/HkSNHMHXqVPj4+FRqP5mZmYiJiUGbNm3Qtm1brFy5EpmZmRJ1TUSVxSBJRESSUiqV6N69O1atWoWkpCQcPXoUM2bMQJ06dSq1n3PnzmHGjBnw8/PD22+/jYMHD/JpOkTVjEGSiIhMRqlUolu3boiJicG9e/dw/PhxzJo1C/7+/qL3UVJSgm+//RZ9+/ZFUFAQPvroI9y5c0fCronoeRgkiYioWlhZWaFLly5YtmwZ7t69i99//x1z5sxBvXr1RO8jMTER//nPf9CwYUN0794dW7ZsQUFBgYRdE9HjGCSJiKjaWVlZoWPHjliyZAni4+Nx9OhRjB07Fo6OjqL38ajGz88PkyZNwu+//w5BECTsmogYJImISFYUCgW6deuGTZs2ISUlBevXr0fnzp1F1+fl5eGLL75A586d0bx5cyxatAgpKSkSdkxkuRgkiYhItlxcXDBhwgScOHEC165dQ1hYGHx9fUXXX79+HWFhYQgICMCgQYOwZ88ePu+byIgYJImIyCw0bdoU0dHRuHfvHn788UcMGTIE1tbWomp1Oh327t2LIUOGICAgAPPmzcOVK1ck7pio5mOQJCIis2JtbY033ngDu3fvRlJSEpYuXYoWLVqIrk9LS8OSJUvQsmVLdOjQAWvXrkVOTo6EHRPVXAySRERktry9vREaGopLly7h9OnTmDx5MlxdXUXXP6rx9fXFu+++i8OHD0Ov10vYMVHNwiBJRERmT6FQ4KWXXsKaNWtw//59fP311+jZs6foeo1GU1YTHByMyMhIpKenS9gxUc3AIElERDWKo6MjRo0ahUOHDiE2NhaffPJJpdamjI+Px4cffoi6deti4sSJuHz5soTdEpk3BkkiIqqx6tevj3/+85+Ii4vDoUOHMHLkSNjZ2Ymq1Wg0WL9+PVq1aoVevXrhxx9/5GVvor9hkCQiohrPysoKPXv2xDfffIP79+9j9erVeOmll0TX//rrrxg4cCAaN26MmJgY5ObmStgtkflgkCQiIovi4eGBKVOm4PTp07h48SJCQ0Ph5eUlqvbOnTuYNWsWAgICMHv2bD7jmywegyQREVmsVq1aYenSpUhKSsJ3332H1157TVRdXl4eli9fjkaNGmHQoEE4fPgwH8dIFolBkoiILJ6trS2GDh2KgwcP4urVq5g8eTIcHBwqrBMEAXv37kXPnj3xwgsvYMOGDSgqKjJBx0TywCBJRET0mGbNmmHNmjVITExEdHQ06tatK6ru0qVLeP/991GvXj384x//QHJyssSdElU/BkkiIqJn8PT0RFhYGGJjY/Htt9+iS5cuourS09Px6aefIjAwEKNGjcLp06cl7pSo+jBIEhERlcPa2hrDhw/H8ePHcebMGYwePRo2NjYV1mm1WmzduhUdOnRA586dsWPHDpSWlpqgYyLTYZAkIiISqV27dvjqq6+QkJCAjz76CLVr1xZV9/vvv+Odd95BgwYNEBUVhYyMDIk7JTINBkkiIqJK8vPzw7///W/cvXsXGzduxAsvvCCqLjExESqVCnXr1sUHH3yAK1euSNwpkbQYJImIiAxkb2+P9957D+fOncNvv/2GwYMHQ6FQVFhXVFSEdevWoWXLlujduzd++uknPjWHzBKDJBERURUpFAq88sor+P7773Hnzh3MmTMHrq6uomoPHTqEN954A02bNsXq1auh0Wgk7pbIeBgkiYiIjKh+/fpYsmQJEhMTsWLFCjRq1EhU3a1btzBt2jQ0aNAAy5YtQ2FhocSdElUdgyQREZEEXFxcMH36dFy/fh379u1D7969RdXdv38foaGhqF+/PhYtWoT8/HyJOyUyHIMkERGRhKysrNC/f3/88ssvuHz5MiZNmiTqqTlpaWkICwtDUFAQIiMjkZuba4JuiSqHQZKIiMhEWrRogbVr1+LevXtQq9UICAiosCYjIwMffvghAgMD8c9//hNZWVkm6JRIHAZJIiIiE6tVqxYiIiIQGxuLHTt24MUXX6ywJjs7G//6178QGBiIDz/8EOnp6SbolKh8DJJERETVxMbGBm+99RbOnDmD/fv3o2PHjhXW5OXlITIyEkFBQQgLC0NqaqoJOiV6NgZJIiKiaqZQKPD666/j5MmT+O9//4tu3bpVWFNQUIBFixahfv36mD17NpKTk03QKdGTGCSJiIhkQqFQoFevXjh69Ch+++039OzZs8KaoqIiLF++HA0aNMC0adNw9+5dE3RK9BCDJBERkQy98sorOHToEE6cOIG+fftWuH1xcTFWr16Nhg0bYuLEiYiNjTVBl2TpGCSJiIhkrHPnzvj5559x+vRpDBgwoMLtS0tLsX79ejRu3Bjvvfcebt68aYIuyVIxSBIREZmBl156CXv37sW5c+fw5ptvVri9TqfD5s2b0axZM4waNQpXr141QZdkaRgkiYiIzEhISAh27dqFS5cu4Z133oFCoSh3e71ej61bt6Jly5YYPnw4Lly4YKJOyRIwSBIREZmhli1bYtu2bbh27RrGjBkDpVJZ7vaCIGDXrl0ICQnB4MGDcfbsWRN1SjUZgyQREZEZa9KkCTZv3owbN25gwoQJsLa2rrDmhx9+QLt27dC/f3+cOnXKBF1STcUgSUREVAMEBwdj/fr1uH37NiZPngxbW9sKa/bv349OnTqhf//+uHTpkgm6pJqGQZKIiKgGCQwMxJo1a3Dnzh3MmDED9vb2Fdbs378fL7zwAsaPH4/ExEQTdEk1BYMkERFRDRQQEICYmBjExcVh7ty5cHR0LHd7QRCwceNGNGrUCCqVCjk5OSbqlMwZgyQREVEN5uvri8WLFyM+Ph4RERFwdnYud3uNRoOoqCgEBwdj+fLlKC4uNlGnZI4YJImIiCxA7dq1oVarkZCQgI8++ghubm7lbp+RkYHZs2ejWbNm2L59O/R6vYk6JXPCIElERGRBPD098e9//xvx8fEIDw+HnZ1dudvHxcVhxIgRaN++PY4cOWKiLslcMEgSERFZIHd3d0RFReHmzZsYO3ZshQubnz17Fq+++ir69evHO7ypDIMkERGRBatXrx42bdqE8+fPo2/fvhVu//PPP/MObyrDIElERERo3bo1fv75Zxw6dAht27Ytd1ve4U2PMEgSERFRmZ49e+LMmTP45ptvEBQUVO62j9/hvWzZMt7hbYEYJImIiOgJVlZWGDlyJK5fv46lS5fC09Oz3O0zMjIQGhqKZs2aYdu2bbzD24IwSBIREdEz2dnZITQ0FHfu3EF4eHiFT8mJi4vDyJEjeYe3BWGQJCIionI9fof3e++9xzu8qQyDJBEREYlSt25dbNy4EefPn8frr79e4fa8w7vmY5AkIiKiSmndujX279+PX3/9lXd4WzgGSSIiIjLIq6++ijNnzmDr1q28w9tCMUgSERGRwaysrDBixIhK3+HdvHlz7Nu3z0RdklQYJImIiKjKKnuHd2xsLAYMGIBBgwYhLi7ORF2SsTFIEhERkdFU9g7vvXv3onnz5vi///s/aDQaE3VJxsIgSUREREZXmTu8NRoNPv74Y7Rq1QoHDhwwUYdkDAySREREJJnH7/B+8cUXy9329u3beP311zF06FAkJCSYqEOqCgZJIiIiktyrr76K06dPY8OGDfDy8ip32++//x7NmjVDZGQk7+6WOQZJIiIiMgkrKyuMHz8eN27cwJQpU8qdP1lUVIQPP/wQrVu3xi+//GLCLqkyGCSJiIjIpDw9PbF69WqcPn0a7du3L3fbmzdvok+fPhg+fDju3btnog5JLAZJIiIiqhbt2rXD77//jnXr1lW4/uSuXbvQtGlTREdHo6SkxEQdUkUYJImIiKjaWFlZYeLEibh58yYmTpxY7uXuwsJCRERE4IUXXsCvv/5qwi7peRgkiYiIqNrVqlUL69atw++//17h3d3Xr19Hr1698M477yApKclEHdKzMEgSERGRbHTo0AF//PEH1qxZAw8Pj3K33bFjB5o2bYolS5agtLTURB3S4xgkiYiISFaUSiUmT56MGzduYPz48eVum5+fj3nz5iEkJAS//fabaRqkMgySREREJEu1a9fGhg0bcPLkSYSEhJS77dWrV9GjRw+MHj0a9+/fN02DxCBJRERE8tapUyf8+eefWLlyJdzc3Mrd9ptvvkGTJk2wbNkyaLVaE3VouRgkiYiISPaUSiWmTZuGGzduYOzYseVum5eXh9DQULRt2xbHjh0zUYeWiUGSiIiIzIaPjw82bdqEY8eOoXXr1uVue+nSJXTr1g1jx45FamqqiTq0LAySREREZHZefvllnD17FsuWLYOLi0u5227ZsgWNGzfGihUroNPpTNShZbD4IFlUVISsrCxkZWU9c+kAnU5X9v2CgoJq6JCI5EIQhLLzQW5u7jO3yc/PL9tGr9ebuEMiy2JtbY1Zs2bhxo0bGD16dLnb5ubmYubMmejSpQuuXLlikv4qyhharbbs+4WFhSbpydgUgiAI1d1EdTp16hQ6deokattvv/0Ww4cPl7gjIpKzXr16iXqiRkhICP76669yn9JBRMZ19OhRTJs2rcKgaGNjgw8//BAqlQq2traS9fPbb7+hR48eorbdt28f+vfvL1kvUrH4IAkAr7/+Og4cOFDuNi1atMDFixdhZWXxg7hEFu3YsWPo1q1bhdt9//33GDx4sPQNEdETSktLsWLFCnzyySfIz88vd9sWLVpgw4YN6NChg2T9dO/eHUePHi13m3bt2uH06dNm+cGTqQjAJ598Imobhkgi6tq1K3r27FnuNiEhIRg0aJCJOiKix9nY2GDOnDm4ceMGRowYUe62V65cQadOnRAaGirZ9LV//vOforYxxxAJcESyTHmjkhyNJKLHHT9+HF27dn3u9zkaSSQfhw8fxgcffIDbt2+Xu11QUBC++OIL9OrVy+g9lDcqac6jkQBHJMuUNyrJ0UgietzLL7/83DcbjkYSycurr76KixcvIiwsDEql8rnbxcfHo3fv3hg/fjyysrKM2kN5o5LmPBoJcETyCc8aleRoJBE9y4kTJ/Dyyy8/9fru3bsxZMiQauiIiCpy9uxZTJgwARcuXCh3Ox8fH6xatQpvvvnmE6/n5ubC1dXVoGM/a1TS3EcjAY5IPuFZo5IcjSSiZ+nSpctTo5IhISG8pE0kYy+++CLOnDmDyMhI2NnZPXe71NRUDBs2DEOHDkVycjIAoLi4GN27d8eNGzcMOvazRiXNfTQS4IjkUx4fleRoJBGV5+9zJTk3ksh83LhxA++//z6OHz9e7nZubm5YvHgx4uPj8emnn6J///7Yt2+fQcd8fFSyJoxGAgyST/njjz/QsWNHAFw3kogq1rt3bxw6dIjrRhKZIb1ej88//xzh4eEVLhX0uAMHDqBPnz6VPt7j60qa67qRf8cg+Qz9+vXD3bt3ORpJRBV6NCrJ0Ugi83X37l1MmTIF+/fvF7V98+bNceHCBVhbW1f6WN27d0dBQUGNGI0EGCSfotVqcerUKdy9exdvvfUWlEpljfhBE5HxCYKA0tJSqFQqREZGwsbGhh8+icyUIAjYtm0bZs6ciYyMjAq3X7FiBaZPn16pY2i1Whw5cgQFBQV44403DAqicmPxQVKn0yEnJwd5eXkoKiqCVqsF8PAvlEKhgFKphL29PVxcXODu7l4jfuhEZBhBEFBUVITs7GwUFhZCo9GUvf7oA6ednR0cHR3h5uYGJycnfhAlMjMPHjzA7NmzsXXr1nK38/T0xK1bt+Dp6fncbXQ6HbKzs8syhk6nA/BkxnBwcICzs7PZZgyLDZJarRapqanIzs5GZf4I3Nzc4OPjI+mzOYlIfnJycpCWlobi4mLRNTY2NvD29oa7uzsDJZGZ+eGHHyqcrjJ79mx89tlnT72u1WqRkpKCnJycSmcMX19f2NjYVLbdamORQTI7OxvJycnQ6/UG1SsUCvj6+sLT05NvDkQ1XGlpKZKTk5GXl2fwPpycnODv788PoERmJDIyEh9++GG521hbW+PKlSto3LgxgIcjjdnZ2bh//36VMoafnx88PDzMImNYVJAUBAEpKSmi5j6I4ebmBn9/f86JIqqhNBoN4uLiyi5HVYWVlRWCgoLg6OhohM6ISEpXr15FmzZtUFJSUuG2gwYNwp49eyAIAu7fv4/MzEyj9ODu7g5/f3/Zh0mLCpL37983Woh8xNXVFXXr1pX9D5qIKkej0SA2NtbgUYVnUSgUqF+/PsMkkczp9XqkpqYiISHhia/4+HjEx8cjLi4ORUVFZdv/+uuvaNKkidEfrejm5oaAgABZZwyLCZI5OTm4d++eJPv28fFB7dq1Jdk3EZmeXq/H7du3RY1GVJa1tTUaNWpU7jN/iUjeBEFAamoqYmNjy65atG3bVpJj+fn5oVatWpLs2xgkC5L37t3Du+++i7S0NFhbW+Ojjz6qtsW9S0tLcevWLaOOLPxdcHAwHBwcJNs/EZmOFFcvHufm5oa6detKtn8iMp2SkhLcunWrUjfVVIZCoUDDhg3LfaRjdZJscp+1tTWWLVuGq1ev4tChQwgNDUVBQYFUhyvXgwcPJA2RwMPnchKR/GRkZFTq339JSYmkIRJ4eIXk8ctiRCQfDx48qNT2aWlpkoVI4P8f/ZQryYKkn58fQkJCAADe3t7w9PQ02gTUytDpdEafs/As+fn5lVoWhIhMY9euXWjdujV27twpKlCa6jwldVglIsO0adMGM2fORFJSUoXbarVaZGdnS95Tbm6uJFNtjKHSQVKv16Np06YIDw9/4vWDBw/C1tYWO3fufKrmzz//hF6vr5ZLOZVdw6kqTBFYiajyrly5grfeeqvCQCkIgsmCZHZ2tuRXSoio8jQaDVasWIHg4OAKA6UpQmR1HKsyDJojuXnzZsyYMQMJCQnw8PDAhQsX0LVrV3z88ceYN2/eE9tmZGSga9euWL9+PTp37my0xsVKTEw02R++TqfD7t27TXIsIhLnzz//fOr5uS1atMAnn3yCN99884nlu4qLi3Hr1i2T9Xb58mVcu3bNZMcjoootXLiw7KlVwMOnVU2aNAnh4eHw9/d/Ytu7d+8iNzfXJH05OzsjKCjIJMeqDIOCpFarRePGjTF27FhMmDABHTt2xKBBg7Bq1aontisuLkbv3r0xceJEvPvuu0ZrujJu3rxpsuHgtLQ09OzZ0yTHIqKqa9myJT755BMMHToUVlZWyM7ORmJiosmO/5///Ac7duww2fGIyHDPCpTXr18ve7Sy1KysrNCsWTPZLQVk0BxJa2trhIeHIyYmBv369UPbtm0RExPzxDaCIOC9997Dq6++Wm0hEnh4x7apWMhKSkQ1xuXLlzF8+HC88MIL2LVrl8nnOfOcQWQ+iouLn7jknZiYaLIQCTycWijHc4bBN9uMGjUKhYWFEAQB27Zte2pNtBMnTmDHjh3Ys2cPQkJCEBISgkuXLlW5YSIiY7t8+TIiIiJw6tSp6m6FiGSuuLgYq1evxqeffmrSwSpAnh8+rQ0tnD59OgAgPT39mQvrvvzyy7KYSK5QKGT5B09E8hAcHIx//OMfGD16NLKzs5GSklLdLRGRTCmVSowZMwYffvghgoODceXKFZNmDDk+ktmgjj766CP89NNPOHXqFLRaLTZs2GDsvozG3t7eZMeysbEx2bGIqGqCg4OxceNGXL9+He+99x6sra1Ner4AwKfbEJkJpVKJcePG4caNG/jyyy8RHBwMACZdJNzW1lZ28yMBA262Wb9+PWbOnInDhw+jY8eO+PTTT7Fu3Trcvn1blkEqJSUF6enpJjmWs7OzrB9jRGSJvvzyS8yePbvs/xs0aICPPvoIo0aNeuqcpdPpTHoXdd26dWU5wkBkyQIDA8uW8/v7COTfJScnm2zJMHd3dwQEBJjkWJVRqUvbP//8M6ZNm4Zt27ahY8eOAIAZM2Zg8eLF+OqrrzB+/HhJmqwKZ2dnkwVJNzc3uLi4mORYRCTOo1HG8gLkI0qlEg4ODiZ56oyNjQ1cXV1lOcJAZMmsrKwqDJCPuLi4mCxIyjVfiP4ofPbsWQwfPhwLFy7E0KFDy153dXXFjBkzEBUVBZ1OJ0mTVeHk5GSSoWelUgk3NzfJj0NElRMQEPDEJeyKrpx4eXmZpC8vLy+GSCIZGjNmzFOXsJ/H2dnZJFdjra2t4erqKvlxDGHQOpLmJisrS9SjjqrC29sb3t7ekh6DiKQnCAJu3rwp6d2YVlZWaNKkCedIEtUAmZmZSE5OlvQYvr6+JvuQW1kWMTnH3d0dTk5Oku3fzs5Otj9gIqochUIh+Twkf39/hkiiGsLDwwOOjo6S7d/e3l7W919YRJB89MYgxaR2hULBCfNENYyTk5NkHw7d3d05DYaoBjFFxpDzNBiLST82NjaoX7++UX/QCoUC9erVM/mSIUQkPR8fH7i7uxt1n87OzqhTp45R90lE1c/W1hZBQUFGDXwKhQJBQUEmXWLIEBYxR/JxGo0GCQkJVZ7/pFQqUa9ePUkvmRNR9RIEAampqUZZ+cHDwwN16tSR9cgCEVVNUVEREhISqvzoRKVSicDAQEkvmRuLxQVJ4OHzKtPS0gx+c3B3d4efnx/nOBFZiIKCAiQlJaGkpKTStdbW1vD395ft0h1EZFw6nQ5paWnIyMgwqN7DwwO+vr5mkzEsMkg+UlxcjMzMTGRlZVX4OEeFQgF3d3d4enrCwcHBRB0SkVzo9Xrk5OQgMzNT1DqT9vb28PT0hLu7O+dQE1kgjUaDzMxMZGdni8oYHh4e8PDwMLuMYdFB8hG9Xo+ioiJoNBoUFRVBr9dDEAQolUrY29vD3t4eDg4OZvPpgIikVVJSgqKiIhQVFaGkpASCIEChUMDGxgYODg5wcHCQ/bwmIjKNRxnjUc54VsZwdHQ02w+cDJJEREREZBDzjL9EREREVO0YJImIiIjIIAySRERERGQQBkkiIiIiMgiDJBEREREZhEGSiIiIiAzCIElEREREBmGQJCIiIiKDMEgSERERkUEYJImIiIjIIAySRERERGQQBkkiIiIiMgiDJBEREREZhEGSiIiIiAzCIElEREREBmGQJCIiIiKDMEgSERERkUEYJImIiIjIIAySRERERGQQBkkiIiIiMgiDJBEREREZhEGSiIiIiAzy/wEgzsrTPk548gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -589,7 +589,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFUCAYAAACX0dxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgfklEQVR4nOzdd1QT2dsH8G9C701BERHBjih2LIgFe+91xbWvbS1rdy1rd3V17XXtvSOgoqKIBewFuxTpRXqHJPf9wxd+IjMhQDITyP2cw9l15mbmCblknrlzi4AQQkBRFEVRFEVRJSTkOwCKoiiKoiiqfKKJJEVRFEVRFFUqNJGkKIqiKIqiSoUmkhRFURRFUVSp0ESSoiiKoiiKKhWaSFIURVEURVGlQhNJiqIoiqIoqlRoIklRFEVRFEWVCk0kKYqiKIqiqFKhiSRFURRFURRVKjSRpCiKoiiKokpFpRJJsViMNWvWyOVYK1euhEAgQGBgoFyOR/FHHvWia9euaNSoERwdHeHs7IyXL1/KJziKV2WtG9nZ2ejfvz/q1KkDR0dHdO/eHaGhofILkOKFPL4zZs6cCRsbG3odUUHyzEWUgUolkm/evMH58+fLfJznz5/D398f1tbWcoiK4ps86sXZs2fx+vVrvHz5EnPnzsW4cePkFB3FJ3nUjUmTJuHjx494+fIlevfujUmTJskpOoov8qgXgwcPxv3791GjRg05RUWVF/LKRZSFyiSS7969Q69evRAZGQlHR0csX768VMfJycnBtGnTsGvXLggEAjlHSXFNXvXC2Ni44P9TUlIgFKrMn1aFJY+6oa2tjZ49exZ8Vzg5OSE4OFjeoVIcktd3Rvv27WFlZSXn6ChlJ6/6o0zU+Q6AKw0aNMCAAQNQr149TJ8+vdTHWbZsGUaPHo2aNWvKMTqKL/KqFwAwZswY3LlzBwBw/fp1eYRH8UiedSPftm3b0KdPH7kci+KHIuoFpToqYv1RqWaTp0+fonnz5kW2Ozs7o1KlSow/4eHhBeUePXqEJ0+eYOrUqVyGTSlYWetFvqNHjyI8PByrV6/GvHnzuAidUjB51Q0AWLt2LT5//lyh+kapKnnWC0r1sNWf8kpACCF8B8EFkUgEExMTxMfHQ1tbu1THWL9+PbZt2wZNTU0AQEREBCwsLHDgwAH06NFDnuFSHJFHvWCio6ODiIgImJmZye2YFLfkWTc2bdqE06dP49atW4W6QVDlj7y/M2xsbODh4YGGDRvKITpK2SnqmsMnlWmRjIiIgIGBQZk+uIULFyIqKgqhoaEIDQ2FlZUVbty4QZPIckwe9SI1NRVRUVEF/7506RLMzMxgamoqjxApnsijbgDAP//8g1OnTuHmzZs0iawA5FUvKNVUEeuPyiSSVlZWaNSoEerWrYvFixfzHQ6lJORRL1JSUtC/f384ODigcePG2LlzJzw8POhgrHJOHnUjIiICc+fORXJyMjp27AhHR0e0atVKzpFSXJLXtWTatGmwsrJCREQEXF1dUatWLTlGSSmripiLqMyjbYqiKIqiKEq+VKZFkqIoiqIoipIvmkhSFEVRFEVRpUITSYqiKIqiKKpUaCJJURRFURRFlQpNJCmKoiiKoqhSoYkkRVEURVEUVSo0kaQoiqIoiqJKhSaSFEVRFEVRVKnQRJKiKIqiKIoqFZpIUhRFURRFUaVCE0mKoiiKoiiqVGgiSVEURVEURZUKTSQpiqIoiqKoUqGJJEVRFEVRFFUq6nwHoAwkEgmysrKQlZWF7OxsSCQSEEKgpqYGLS0t6OjoQEdHB2pqanyHSnGIEILs7OyCeiESiUAIgVAohKamZkG90NDQ4DtUimO5ubnIzMxEdnY2cnNzQQiBQCCAhoZGQb3Q0tLiO0yKYyKRqKBe5OTkQCKRQCAQQF1dHdra2tDW1oaOjg4EAgHfoVIckkgkBfXi5xwjv17o6upCKCyfbXsqnUjm5OQgMTERSUlJkEgkUssKBAIYGxvD1NQUOjo6HEVI8UEkEiEpKQmJiYnIy8srtry+vj5MTU1hYGBALxAVmEQiQUpKChITE5GVlVVseW1tbZiamsLY2LjcXiCo4hFCkJGRgcTERKSmphZbXl1dHaampjAxMaE3oRVcdnY2EhMTkZycLFOOYWJiAhMTk3KXYwgIIYTvILgmkUgQFxeHb9++ler1xsbGqFKlCtTVVToPr3AIIUhKSkJMTEyxf/RMdHR0YGVlRVuiKqCMjAxERkYiNze3xK9VV1dHtWrVYGBgoIDIKD7l5uYiMjISGRkZJX6tQCCAhYUFzMzM6A1oBSMWixEXF4eEhIRSvd7ExARVqlQpN09BVS6RzM7OxtevX2VqaZJGTU0N1tbW0NPTk1NkFJ/EYjHCwsJKdUH4WdWqVWFmZiaHqCi+EUIQGxtb6pvOHxkbG6NatWo0aaggkpOTERkZibJeQnV0dFCjRg3aMFFBZGVl4evXrxCJRGU6jpqaGmrUqAFdXV05RaY4KpVIZmVlISQkpFStTUwEAgGsra1pS0M5JxKJEBISgpycHLkd09zcHObm5nI7HsU9QggiIiKQkpIit2Pq6+vD2tqaPuou5xITExEVFSW342loaMDW1pY+6i7nMjMzERISUuabi3wCgQA2NjZK32ClMt9meXl5ck0ige8XmrCwMGRnZ8vtmBS3CCH4+vWrXJNIAIiLi0NSUpJcj0lxKzY2Vq5JJACkp6fLNQGhuJeamir3zzAvLw+hoaFyvT5R3MrNzUVoaKjckkjg+/UpNDRU7tcneVNoIunh4YG6deuidu3aOHDggCJPJVV+y4Ii/kgJIQgPD6dfAOVUfHy8TAMnSiMqKqpUfeoo/mVkZMjlcTaT5ORkuSeoFDdEIhEiIyMVcuycnBzExsYq5NiUYnGRYyjzw2OFJZIikQhz5syBj48Pnj9/jg0bNiAxMVFRp5MqOTlZLn3f2OTk5CjsokMpTk5ODuLi4hR2fEKIwi46lOLkXxQUKTIyEmKxWKHnoOQvOjpaoZ9bQkICMjMzFXZ8SjGSkpIU+rllZ2eXeuAOFxSWSD5+/Bj29vYFoxV79uyJGzduKOp0rAghnCR53759o62SPPv333/h4+Mj850bF3+YGRkZtOsDzzw8PHD48GGZO7+npqaWeTBecSQSCZKTkxV6Dkq64OBgrFy5UubPITc3l5OWZNoowb85c+YgKChIprKEEMTHxys4ou/1QllbJUucSEokEtSrVw8LFiwotP3GjRvQ1NTEuXPnAHx/rFetWrWC/VZWVry0zmRkZHDSvyB/jjmKP48fP0bnzp3h4uJSbEIpFos568NILwz8ioiIwK+//op69erJlFBy9Xkp84VBFWRnZ2PFihWwsbGRKaHk6okaFzcylHRHjhxB3bp1MW7cuGITyvT0dE4+L5FIJNM8pXwo8XwDQqEQixYtwowZM7Bw4UKYmJjg1atXGDJkCNauXYshQ4YAAOMXJB/TXqSnp3N2rrS0NDqFA4/y/5j9/PzQuXNnODs7Y8WKFejYsWORupeZmcnZRTwtLQ3p6ek0aeBJfotwUFAQfv31V6xatQpLly7F6NGji4ySFYvFCusz+7O8vDykpaXR6YB4kt/dKSUlBStWrMCWLVswe/Zs/P777zA2Ni5SPi0tjbPYUlJS6Hy0PCKEQCwW49ChQzh69CjGjBmDJUuWwM7OrkhZLutFWloajIyMODufrEo1/Y9IJEKdOnXg5uaG8ePHw8nJCf369cPOnTsLyjx8+BB///03Ll26BAD4/fff0apVK4wcOVJ+0csgODiYsz4nAoEADRs25ORclOyYEsrY2FhOHkfk+/XXX/H06VPOzkcVz9bWtkhCmZ6ejtDQUM5iuHr1KhYvXszZ+ajiGRkZFUkoJRIJ3r17x1kMsbGxcHV15ex8VPHU1NQYE8ovX75w1n1JU1MTderU4eRcJVGqPpLq6upYsGABtm3bhp49e6Jp06bYtm1boTItW7ZEYGAgIiMjkZaWBi8vL3Tr1k0uQZcEl/3TCCHlbmkjVZDfQvnjI2+up1OoUaMGp+ejihccHIxx48ahXr16OHToEPLy8jjvz1q5cmVOz0cVL7+F8sdH3lx/X5SHSahVTX4L5c+PvLmsG7m5uUr5ZKvUg21GjRpV8Hjw1KlTRZbyUVdXx+bNm9GxY0c0adIE8+bN42W1D65/6TSRVF4/JpRcj4zU1tbm9HyU7H5MKIODgzk9N52AWnn9mFBevHiR03OXl6XxVNGPCeXUqVM5zzGUcVBvqTv0TZ8+HcD3DuNslb5v377o27dvaU9RLpV1WSRKsXr27Inly5dDW1ub0/6zdKoX5dawYUMsX74cNjY2Cp0S6mfKeFGg/sfc3Bzz589H9+7dER0dzdl5lbHVifofLS0tTJo0CfPnz+d89gVl7FNdqhbJP//8E56envD394dIJMLBgwflHZfccH3Hz2VyQsmuZ8+eCAgIgKenJ1q2bMl5vaAjt5VTw4YNce7cObx69QqDBw+GpqYmp+fnsqM+JTtzc3Ns2rQJwcHBmDt3LufL4Cr7SiaqSktLCzNmzEBQUBC2bdsGKysrTgfYCoVCpUwkSzzY5sCBA5g5cyZ8fHzg5OSENWvWYN++ffjy5YtSPqaJiIjg7I5BS0sLx48f5+RcVFEXL15EYGBgoW09evTAihUr0LJly0Lb5b1WbnFu377N24T8qu7p06fw8vIqtK1hw4ZYtmwZBg0aVGjd65ycHHz+/Jmz2MLDw+Hv78/Z+aj/iY+Px+7duwtty2+BnDJlSqH1jQkh+PDhA2dPFkQiUcFAVYp7GzduLNRfOr8FcsGCBYWmNQSAsLAwzqbl0dfXh42NDSfnKokSJZLXrl1D//79cerUKQwcOBDA9zmvatSogc2bN2PcuHEKC7S0uEwYKlWqhCpVqnByLqqoUaNG4eTJkwD+9wj75wQyX3Z2Nr58+cJJXDo6OozTRlDc2LNnD3777TcA/3uEPXDgwEIJZD5CCN6/f8/ZI+cGDRowxkEp3rt372Bvbw+APYH80devXzlrQa5ZsyZrHJTimZmZITExEVpaWpg8eTIWLFgAS0tLxrLfvn1DTEwMJ3GZm5vD3Nyck3OVhMzfYM+ePcOQIUOwcePGgiQSAAwNDTFjxgysX79eKfuBGRkZcdYUbGJiwsl5KHY/P8Jmo62tzdnAKFNTU07OQ7H7+RE2W/ImEAg4+7yMjY1pEsmznx9hS0veuPp+19DQoKO2eaatrY2ZM2ciODgY//77L2sSCYBxzlFF4fJcJVGqeSTLm6ioKIU/VlTWJmdVEh8fX6LpVJKTkxW+prKamhrq1q1LEwYeJSQkwMTERObPIDc3F58+fVJwVICdnR2d5YFH+ROSy9ryRwjBp0+fFL6KSdWqVXmZ4YT6n5JeS7joQmdoaAhra2uFnqO0VOLqVrlyZYVfyC0sLBR6fKp4JZ2Tz8jISOHT8lhYWNAkkmdmZmYl+gw0NTUVfiE3MjKiSSTP9PT0SvT4WCAQoGrVqgqM6Hvdo0+2+FfSa4m5ublCn3wKBAKlzjFU4gqnoaFRpIOsPFlYWNCLQjkkEAhQvXp1hX0B6Ovr04tCOWVhYaGwJerU1dWlPiqjlJehoaFCHy9Wr16d3niWQ5qamgr9m65SpYpSL5mpMjXWyMhIIa0MAoEAhoaGcj8uxQ0tLS1YWVnJ/biampqwsrJSyqkaqOIJhUKFXNQFAgGsra3phNPlWNWqVRXyJMPS0pI2SJRjxsbGCmk4MDIyUvp+9iqTSALfs/pKlSrJ7XhGRka4ffs2KlWqhAEDBmD//v0K73NHyU9iYiKOHz+OiRMnIiUlRW7H1dLSQs2aNTmdX4ySn+zsbFy7dg2zZ8/G/fv35Zb0CYVC1KxZkw6kKKckEgkCAgKwfPly/PPPP3JN+iwtLZU+WaDYffnyBVu2bMHEiROhr68vt+MaGxuXiwYJlRhs87Pk5GRER0eXepS5QCBAlSpVYGpqioSEBFhaWhbqgO3g4IBevXqhb9++aNmyJW19UCKfP3+Gu7s7rl69ivv370MsFsPMzAxRUVEQiUSIjIws02TApqamsLCwoJ95ORMfHw9PT0+4u7vD29u7YCDGixcvYG9vj6ioqDJN/aKnp4dq1apxPuE5VTaZmZm4fft2wXdGbGwsAODff//F9OnTERcXV6bFBvK7Xckz+aAUTywWw9/fH1evXoW7uzvev38PABg8eDDOnj1bkGOUdhqx/P64JiYmSp9EAiqaSALfJ3yNjY1FcnJyiZajMjIygoWFRaELwuDBg3HhwgXG8ubm5ujduzf69OmDLl260LnBOCYWi/Ho0aOCC8GHDx+KlJk6dSp27twJ4PvIzG/fvuHbt28lutHQ1dVFlSpVaGtTOZE/wbS7uzvc3d3x6NGjIt8DDRs2xOvXrwu+yFNSUhAXF1eiGw0NDQ2Ym5vD2Ni4XFwQKCAmJgYeHh5wd3fHzZs3C01MDXyfiSEqKqpgPr+srCzExMQU3HzIQigUwszMjJOBoJR8pKen4+bNm3B3d4eHhwfjDcSVK1cKloUWiUSIiYlBSkpKiXOMKlWqKOUCL2xUNpHMJxaLkZKSgrS0NGRlZRVZK1tNTQ3a2tpITExEbm4uWrduXeQYXl5e6NWrV7HncnBwQEBAAO0Hw4Hw8PCCpTyLazF49OgRnJycCm0jhCAtLQ0pKSnIyspCbm5uof0CgQDa2trQ09ODiYmJUneEpv4nLy8PS5YswaVLl4qdkH7Dhg2YP39+oW2EEGRlZSE5ORmZmZlFkgzge9cGXV1dGBsbQ1dXlyaQ5cS+fftw8OBBPH78WGq5Xr16wcPDo8j23NxcJCUlISMjA9nZ2UVaozQ0NKCjowMjIyMYGBjQBLKcuHPnDv7++2/4+PhIvYnMf7L181MHsViM5OTkghzj5wYKNTU16OjoQF9fH8bGxuWyS1T5i1jO1NTUYGpqWtA/RSwW49mzZ4iKikLv3r0LPtRbt25h9uzZ8PT0hIuLS6FjdO3aFZaWllJX0LG2toaHhwdNIjliZWUFDQ2NYpPI2rVro1WrVkW25w+iyh9IJZFIIBKJQAiBUCiEuro6TRDKIQ0NDdjb2+Pvv/+WWk4gEGDkyJGM23V1dQtangkhyMvLAyEEAoEA6urqNEEop1q0aFHkxoHJL7/8wrhdU1OzYIoWQghEIhEkEgkEAgHU1NRod5dyqnHjxjJ1eRo+fDhj1xU1NTWYmZkVDPbNrxeEEKipqZXLxPFn9BvvJ2pqalixYgWWLl1a6IIQGhqKjIwM9OjRA7du3Sr0GnV1dYwZM0bqcbW1temUHxwSCATYs2cPnJ2dpZYbPXq0TAmhUCiEpqYmtLS0oKGhQZPIcszNzQ0LFy6UWqZTp04yjeYXCAQF9UJTU5MmkeVYkyZNCpZYZWNgYFDw6FIagUAADQ2NgnpBk8jyy9TUFNevXy+2HyvbDcbP1NXVC74zKkISCdBEsgh/f39cu3YNb9++LdTvMTQ0FMD3/jC9e/eGl5dXodcVV4k+ffoEe3v7Io9IKcU5dOgQ7t+/L7XM6NGjOYqGUhaPHz/G3r17pZaR9aJAVRxxcXFYvHix1DJDhgyhT5VUjEgkwrx585Cens5apnbt2lKX5K3oaCL5k5UrVxb6//x+LvmJJADk5OSgf//+cHd3L9jWoEEDNGnSROqxP336hLp16zL2q6Lka+vWrZg4caLUTs5t27aFra0th1FRfPP19UXnzp2RlJTEWkZHRwcDBw7kMCqKbxEREWjfvj1evXoltRy9wVAtOTk5GDJkCE6cOCG13C+//KLST6loIvkDf39/XL9+veDfP7ZK/phIAt877Q8ePLhQMinLl0xoaChq165dohF+lOwIIVi1ahVmz55dbFnaGqlarl+/ju7du0ttWQCAAQMGwMDAgKOoKL4FBQXB2dkZHz9+lFrO2toa7du35ygqim8ZGRno06cPLl++XGzZUaNGKT4gJUYTyR/82Br547aMjAzGgTQ/J5MjRoyAUCiElpYWhg8fznqeiIgI2NnZITU1VX7BUyCEYMGCBVi2bBlrmfwpOzQ1NTF06FCuQqN4duHCBfTt25f1aUB+vQBoq5MqeffuHZydnYs0FOT7cc3lUaNG0T6wKiIlJQXdu3fHzZs3Gfdra2sX3GzSJ1sACEUIIeTRo0cEAOPPpk2bWPcBIBoaGuTKlSuEEEL69OlDrl69SgghZPXq1VJfV7lyZZKSksLn264wxGIxmTJlitTf9+rVq0lcXBypX78+GTBgAN8hUxw5fPgwEQqFrPWib9++JD09nQwePJhYWFiQvLw8vkOmOPDs2TNiZmbGWi/q1KlDwsLCyJYtWwgA8u7dO75DpjgQHx9PmjVrxlov9PX1yZ07d8i9e/eIjo4O2bNnD98h844mkv+ve/furBWnevXqUhOU/GTSy8uLpKenFzruP//8I/V1FhYWJC0tjad3XTHk5eWR0aNHS/09b926taB8REQE8fPz4zFiiis7d+6UWi9GjBhBcnNzCSGE5OTkkIsXL/IcMcWF+/fvE0NDQ9Z64eDgQGJiYgrKnzlzhsdoKa5ERUWRBg0asNYLY2Nj4u/vX1De29ubJCYm8hixcqCJJJHeGinLz8iRI4mnpyfJyclhPP6uXbukvt7S0pJkZmZy/K4rhuzsbDJgwADW361AICAHDx7kO0yKB+vXr5f6dzdx4kQiEon4DpPimLe3N9HV1WWtFy1btiQJCQl8h0lxLCQkhNjZ2bHWC3Nzc/Lq1Su+w1RKNJEk0lsjZfnZsGFDsec4dOgQEQgErMewtrYm2dnZHLzbiiMjI4N07dqV9Xeqrq5OTp8+zXeYFMckEglZvHix1L/ZOXPmEIlEwneoFMcuX75MNDU1WetFhw4dSGpqKt9hUhz78OEDsbKyYq0XVlZW5MOHD3yHqbRUPpEsSWtkvXr1GLc3aNBApnMdO3ZMajJpa2tb8JiNki45OZm0a9eO9XeppaVV0FeVUh1isZjMnDlT6t/x8uXLaRKpgk6cOEHU1NRY60WPHj3okyEV9PLlS2Jubs5aL+zs7EhISAjfYSo1lU8kMzMzSUJCAklISCCmpqZFKpGGhga5e/cuiYuLIwkJCYyJoFAolLmD/uHDh6Ve5OrUqUM7+xfj27dvUjtD6+npkdu3b/MdJsUxkUhEfv31V6l/X5s2beI7TIoHe/fulXoTP3jwYNauSVTF9ejRI2JsbMxaL+zt7UlUVBTfYSo9lU8kf8Q0gk9TU7NQmTp16jBWuL1798p8nj179ki92Nnb2xOxWCzvt1chREVFEXt7e9bfnbGxMXn06BHfYVIcy8nJIUOGDGGtFwKBoER/o1TFUdysG2PHjqU37yrIx8eH6OnpsdaLZs2akfj4eL7DLBdoIvkDWRLJFStWMFa65s2bl+hc27Ztk/rl5ujoSJPJn4SGhkrtDF25cmXy4sULvsOkOJaZmUl69erFWi/U1NTI8ePH+Q6T4phEIiHLly+X+j07ffp0+j2rgjw8PIi2tjZrvWjXrh1JTk7mO8xygyaSP5AlkUxJSWGseOrq6iX+Qtq4caPUL7mWLVvSL7n/9/HjR6mdoatVq0bev3/Pd5gUx1JTU0nHjh1Z64Wmpia5dOkS32FSHJNIJGTOnDlSv18XLVpE+8qqoLNnzxJ1dXXWetG1a9ci0/hR0tFE8geyJJKEEGJtbc1YAUszuKO4ScudnZ1V/svu1atXUjtD29rakuDgYL7DpDiWmJhIWrVqxVovdHV1ibe3N99hUhwTiURk4sSJUr9X165dy3eYFA/+++8/qYsTDBgwgM6eUgo0kfyBrIkk26jQ3r17l+q8f/75p9Qvvc6dO5f1rZVb/v7+UjtDN2jQgERGRvIdJsWxmJgY0qhRI9Z6YWhoSCedV0G5ublk5MiRUr9Pt2/fzneYFA+K6042evRo2le2lGgi+QNZE8mQkBDGimhiYlLqc8+fP19qJS9tklqe3blzh+jr67P+Tpo2bUo7Q6ugsLAw1kFvAIiZmRl5+vQp32FSHMvKyiL9+vVjrRdCoZAcOnSI7zApHqxZs0bq9XXKlCm0G1kZ0ETyB7ImkoQQ1uW1IiIiSn3+4ua/+/XXX0t97PLG09NTamfotm3b0s7QKujLly+kRo0arPWiatWqJDAwkO8wKY6lp6cTV1dX1nqhoaFBzp07x3eYFMckEglZuHCh1OvqH3/8ofLdx8qKJpI/KEki2a1bN8ZKOX/+/DLFMGnSJKmVftmyZWU6fnlw9uxZoqGhwfo7cHV1pZ2hVVBgYCCpWrUqa72oUaMG+fLlC99hUhxLSkoibdq0Ya0X2traxNPTk+8wKY6JxWIybdo0qdfTv/76iyaRckATyR+UJJE8f/48Y8WsW7dumeMYO3as1Mq/b9++Mp9DWR06dEhqZ+h+/fqRrKwsvsOkOPb06VPGv88f/+7Cw8P5DpPiWFxcHGnSpAlrvdDX1yd37tzhO0yKY3l5ecTNzU3qdXTLli18h1lh0ETyByVJJMViMeNyW0KhUC59LQYPHsz6ByAQCCrkHfb27dul/uGPHDmSLiGpgu7du0cMDAxY60Xjxo1JbGws32FSHIuMjCT169dnrRcmJibE39+f7zApjuXk5JBBgwZJvX7u37+f7zArFCGoUhEKhahdu3aR7RKJBBcuXCjz8c+dOwcXFxfGfYQQ9O3bF8+ePSvzeZTFunXrMGPGDNb9kyZNwtGjR6GhocFhVBTfvL290a1bN6SlpTHub9WqFe7cuQNzc3OOI6P4FBISAmdnZ7x//55xv7m5Oe7evYtWrVpxHBnFp8zMTPTr14/1Gqyuro6TJ09iwoQJHEdWsdFEsgz69+/PuP3gwYNyOb6Pjw/q1avHuE8sFqNdu3b4+vWrXM7FF0IIFi1ahMWLF7OWmTt3Lvbs2QM1NTUOI6P4dunSJfTp0wdZWVmM+zt27IibN2/CxMSE48goPn348AHOzs4IDg5m3F+9enX4+fmhUaNGHEdG8Sk1NRU9evTA9evXGfdraWnh4sWLGD58OMeRqQC+m0SVSUkebRPyfd3nn8sD3+ewk5fs7GxSpUoV1mZ6IyMjkpSUJLfzcUksFpPp06dLfZy9YsUK2hlaBR07doyx60j+T69evUhmZibfYVIce/HiBalcuTJrvbCzsyOhoaF8h0lxLCEhgbRo0YK1Xujq6pJbt27xHWaFRVsky6Bq1aqMrSGpqakICQmRyzm0tLQQGBgIAwMDxv0pKSlo2LAhcnNz5XI+rohEIowfPx47duxgLbN582YsX74cAoGAw8govu3ZswdjxoyBWCxm3D906FBcvHgROjo6HEdG8enRo0fo2LEj4uPjGffb29vDz88PNWrU4Dgyik8xMTFwcXHBkydPGPcbGRnh5s2b6Ny5M8eRqQ6aSJaRs7Mz4/Z///1XbucwMzPDy5cvoaWlxbg/MjISzZo1g0Qikds5FSk3NxcjRozA4cOHGfcLBALs3bsXc+bM4TYwind///03fvvtNxBCGPePGzcOJ0+ehKamJseRUXzy8fFBly5dkJyczLi/efPm8PX1RdWqVbkNjOJVWFgY2rdvj8DAQMb9lSpVwp07d9CmTRuOI1MxfDeJKpOSPtom5PvE2T+/Bv//iEXe/P39pT7uc3V1lfs55S0zM5P06NGD9T2oqamREydO8B0mxTGJRFLsUqEzZ86kq0+ooKtXrxItLS3WeuHs7ExSUlL4DpPi2KdPn4i1tTVrvbC0tCTv3r3jO0yVQBPJH5QmkZRIJERdXZ0xIVLERe/KlStEIBCw/vG4ubnJ/ZzykpqaSlxcXFhj19TUJJcvX+Y7TIpjEomEzJo1S2oSuWTJEtpXVgWdPn2a8fs1/6dr164kIyOD7zApjr1+/ZpYWFiw1ouaNWuSoKAgvsNUGTSR/EFpEklCCOtcZorq3Ltz506pF92//vpLIecti4SEBNKyZUupnaG9vb35DpPimEgkIhMmTJBan9evX893mBQPDhw4IPWmecCAASQ7O5vvMCmOPX78mJiamrLWi3r16pVpqWKq5Ggi+YPSJpJsrSljxoxRWKyLFi2SevG9dOmSws5dUjExMcTBwYE1VkNDQ3L//n2+w6Q4lpubS4YPHy61Hu/cuZPvMCkebN26VWq9+OWXX0heXh7fYVIc8/X1lbo4gaOjI4mLi+M7TJVDE8kflDaRfP36NWvzuiKNGjWK9Q9KXV2dfPjwQaHnl8XXr19J7dq1WeM0MzMjz5494ztMimNZWVmkT58+rPVCKBSSI0eO8B0mxTGJREJWrVolNYmcMmUK7Surgq5du0Z0dHRY60Xr1q3L7VR45R1NJH9Q2kSSEEI0NTWLvFZR/SR/JK3PoZGREUlLS1Po+aX5/Pmz1M7QVatWJW/fvuUtPoofaWlppHPnzqz1QkNDg5w/f57vMCmOSSQSMn/+fKlJ5Lx582hfWRV0/vx5oqGhwVovOnfuzOu1TtXR6X/kxM7Orsg2sVgMPz8/hZ7Xx8eH8dzA9zkm+ZoWKDAwEM7OzggLC2Pcb2Njg/v376NBgwYcR0bxKTk5GV27dsXt27cZ92tra8Pd3R2DBg3iODKKTxKJBNOmTcPGjRtZy6xatQobNmyg88qqmKNHj2Lo0KHIy8tj3N+nTx94eHhAX1+f48iofDSRlBO2yU6PHDmi0PMKhUI8f/6cdcLyT58+cX5Rfvr0KVxcXBATE8O4v27duvDz84OtrS2ncVH8io+PR8eOHfHo0SPG/QYGBrhx4wa6d+/OcWQUn0QiEcaOHYvdu3ezltmyZQuWLl1Kk0gVs2vXLri5ubE2hgwfPhwXLlyAtrY2x5FRhfDdJKpMyvJo+/nz54xN7oqYT5JJYGCg1DkmV61axUkc9+7dk9oZunHjxiQ2NpaTWCjlERERQerVq8daL0xMTMjjx4/5DpPiWHZ2Nhk4cCBrvRAIBOTAgQN8h0nxYMOGDVK7OUyYMIGIRCK+w6QI7SNZSFkSSUIIYx8ONTU1zvr0nDt3TuofnoeHh0LPf/36damdoZ2cnEhiYqJCY6CUT1BQEKlZsyZrvbCwsCCvX7/mO0yKYxkZGaRbt26s9UJdXZ2cPn2a7zApjkkkErJkyRKp17LZs2fTvrJKhCaSPyhrIlm3bl3GSu/n56fAqAuTNi2QhoYG+fz5s0LOe+HCBamdoTt16kQ7Q6ugd+/eEUtLS9Z6Ub16dfLp0ye+w6Q4lpKSQpydnVnrhZaWFnF3d+c7TIpjYrGYzJw5U2oSuWzZMppEKhnaR1KOOnbsyLj96NGjnMWwdu1adOvWjXFfXl4eWrRogYyMDLme89ixY1I7Q/fu3Ruenp60M7SKefHiBdq3b4+oqCjG/bVq1cL9+/dRu3ZtjiOj+JSQkIDOnTuzDkTU09ODp6cn+vTpw3FkFJ/EYjEmTpyIbdu2sZb5+++/sXLlStpXVtnwnckqk7K2SAYEBDDeQdWuXVuBURclFoulPkps0KCB3O7odu3aJfXucdiwYSQ3N1cu56LKjwcPHhAjIyPWetGwYUMSHR3Nd5gUx6Kiooi9vT1rvTAyMiIPHz7kO0yKYzk5OWTo0KFS+8ru2bOH7zApFrRFUo5atmwJdXX1IttDQkI4jSN/JLeenh7j/nfv3mHYsGFlPs/ff/+NqVOnsu4fN24cTpw4AQ0NjTKfiyo/bt26hS5duiAlJYVxf4sWLeDr64sqVapwHBnFp69fv6J9+/Z4+/Yt4/7KlSvj7t27aN26NceRUXzKysrCwIEDcfbsWcb9ampqOHr0KCZPnsxxZJSsaCIpZzVr1iyyTSQS4dWrV5zGYWxsjIcPH0JNTY1x/7lz57Bly5ZSHZsQgj///BPz589nLfP7779j//79rOenKiZ3d3f06tULmZmZjPvbt2+PW7duwdTUlOPIKD59+vQJzs7O+PLlC+P+atWq4d69e3B0dOQ2MIpX6enp6NWrFzw9PRn3a2pq4ty5cxg9ejTHkVElQRNJOWvXrh3jdra7LUVq1KgRjh07xrp/7ty5ePr0aYmOSQjB7NmzsXr1atYyS5cuxZYtWyAU0uqlSk6dOoWBAwciNzeXcX/37t1x7do1GBoachwZxafXr1+jffv2CA8PZ9xfs2ZN+Pn5oV69ehxHRvEpKSkJXbp0wZ07dxj36+jo4OrVqxgwYADHkVElxvezdWVS1j6ShBBy5coVxj4e7dq1U1DUxfvjjz9Y+54YGhqSzMxMmY4jEonI+PHjpfaJ3LBhg4LfDaWM9u/fTwQCAWu9GDRoEMnOzuY7TIpjAQEBxMTEhLVe1K9fn0RERPAdJsWx2NhY0rhxY6nXJS5nO6HKhiaSP5BHIpmTk8P4h2FmZqagqGXTsWNH1j/a5s2bF/v63NxcMmzYMKlJ5K5duzh4J5Sy+eeff6TWizFjxpC8vDy+w6Q4dvfuXaKvr89aL5o0aULi4uL4DpPiWHh4OOtUefnXyqdPn/IdJlUC9NmjnGlqasLIyKjI9sTERF7WvM7n7e3NOrjh6dOnWLRoEetrs7OzMXDgQJw5c4Zxv1AoxNGjR/Hbb7/JJVaqfCCE4K+//sKcOXNYy0ydOhWHDh1iHIRGVVzXrl1D9+7dkZ6ezri/TZs28PHxQeXKlTmOjOJTUFAQnJ2d8fHjR8b9VapUga+vL5o1a8ZxZFRZ0ERSAZjmxSOEsM6bxgV1dXU8evSI9YK+fv16xr4q+Z2hPTw8GF+noaGBc+fO4ZdffpFrvJRyI4Rg/vz5WL58OWuZBQsWYMeOHbSvrIo5f/48+vXrh+zsbMb9nTt3hre3N4yNjbkNjOLVu3fv4OzsjNDQUMb9NWrUgJ+fH+zt7bkNjCoz+g2vAG3atGHcfvnyZW4D+YmNjQ0OHz7Mur9Xr15ITk4u+Hd+Z2gfHx/G8vmdoQcOHCjnSCllJpFI8Ntvv2HTpk2sZdasWYP169fTiYNVzJEjRzBs2DDWxQn69u0LDw8P1qnJqIrp+fPnaN++PaKjoxn316lTB35+fqhVqxbHkVHyQBNJBejfvz/j9vv373MbCINRo0Zh1KhRjPuysrIK5nCLi4tDp06d4O/vz1jWwMAAN27cYF1Fh6qYRCIRxowZg71797KW+ffff7F48WIOo6KUwc6dOzF27FjWLjwjRozA+fPnoa2tzXFkFJ8ePHiAjh07IiEhgXF/o0aNcO/ePVSvXp3jyCh5ERBCCN9BKItKlSoVqeyamprIyckp0XEkEgnU1dXx86/WyMioUIsfXyQSCWrVqsU6UfrIkSPx/PlzfPjwgXG/qakpbty4gebNmysyTErJ5OTkYPjw4awt60KhEPv378e4ceO4DYzi3fr166X2s544cSJ2795N55VVMTdv3kT//v1Z55Vt1aoVvLy86Lyy5RxNJH8gr0SS7VgAkJubqxQrvcTFxcHa2rrE761KlSq4efMmGjZsqKDIKGWUkZGBAQMG4ObNm4z71dXVceLECQwdOpTjyCg+EUKwZMkSrFu3jrXMnDlzsGnTJtrNQcVcuXIFQ4cOZZ1XtkOHDnB3d4eBgQHHkVHyRh9tKwjb5LrXrl3jOBJm5ubmuHDhQoleY21tDT8/P5pEqpiUlBR0796dNYnU0tLC5cuXaRKpYiQSCX7//XepSeTy5ctpEqmCTp48iUGDBrEmkT179oSXlxdNIisImkgqSPv27Rm3s41+5kOvXr0wffp0mcrWqVMH9+/fp52hVcy3b9/QuXNn1v69enp6uHbtGnr16sVxZBSfxGIxJkyYgO3bt7OW2bRpE1asWEGTSBWzb98+jB49GmKxmHH/kCFDcOnSJejo6HAcGaUoNJFUkEGDBjFuZxu8wpft27czrg/+IwcHB9oZWgVFR0fDxcUFz549Y9xvbGyMW7duoWPHjhxHRvEpNzcXI0aMwKFDhxj3CwQC7N27F3PnzuU4MopvmzdvxuTJk4uMD8j366+/4tSpU9DU1OQ4MkqRaCKpIE2bNmWcP49tDi2+3Lp1C7GxsVLL/PHHH7CwsOAoIkoZhIaGwtnZGe/evWPcX7lyZdy9exdOTk4cR0bxKSsrCwMGDMC5c+cY96upqeHYsWOYNGkSx5FRfCKEYMWKFfjjjz9Yy8yYMQMHDhygA64qIDrY5gfyHGwDfO+HGB8fX2S7SCRSij+m4jpD59PW1kZsbCwMDQ05iozi08ePH+Hq6oqIiAjG/VZWVrh16xbq1q3LcWQUn9LS0tC3b1/cvXuXcb+mpibOnDnDOv0ZVTERQvDHH3/gn3/+YS2zePFirF69mnZzqKBoi6QC2dnZMW5//vw5x5EUderUKamdoX+UnZ0NV1dXDqKi+Pbq1Su0b9+eNYm0tbWFn58fTSJVTGJiIlxdXVmTyPzFCWgSqVrEYjEmT54sNYlct24d1qxZQ5PICowmkgrUqFEjxu23bt3iOJLC9u/fj1GjRrF2hmby5MkTbNmyRYFRUXzz9/dHhw4dEBcXx7i/QYMG8PPzg42NDbeBUbyKjY1Fx44d8fjxY8b9hoaG8Pb2RteuXTmOjOJTXl4exowZg/3797OW2bFjBxYuXMhhVBQfaCKpQM7OzozbAwICOI7kf/755x9MmjSJtTP0yJEjWTtCz5s3D1+/flVkeBRP7ty5A1dXV9YJ85s2bQpfX19YWlpyGxjFq/DwcLRv3x6vX79m3G9mZgYfHx+0a9eO48goPmVnZ2PIkCE4efIk436hUIjDhw9j2rRpHEdG8YEmkgrEdofOtmKMIhFCsHLlSqkjKadPn45jx47hxIkTjPvFYjE6dOigoAgpvnh6eqJnz57IyMhg3N+2bVv4+PigUqVKHEdG8enLly9wdnbGp0+fGPdXrVoVvr6+aNasGceRUXzKyMhAnz59cOXKFcb9GhoaOHPmDNzc3DiOjOINoQqYmZkRAIV+NDU1y3RMdXX1Isc0MDCQU8SykUgkZO7cuUXi+PFn0aJFRCKRFLymd+/erGWnT5/OafyU4pw9e5axjub/dOnShaSnp/MdJsWxN2/ekCpVqrDWixo1apAvX77wHSbFsaSkJNKmTRvWeqGtrU28vLz4DpPiGE0kf6CIRLJy5cpFjikQCIhYLJZT1NKJRCIyadIkqUnk2rVri7wuNzeXGBsbs77G39+fk/gpxfnvv/+IUChk/Yz79+9PsrOz+Q6T4tiTJ0+Iqakpa72oW7cuCQ8P5ztMimNxcXGkSZMmrPVCX1+f3L17l+8wKR7QR9sKxjQwgRDC2udInvI7Q+/bt4+1zPbt27Fo0aIi2zU0NKQu59i9e3eIRCK5xElxb/v27Rg3bhwkEgnj/lGjRuHs2bPQ0tLiODKKT35+fujUqRMSExMZ9zdu3Bj37t2DlZUVx5FRfIqMjISLiwtevHjBuN/ExAS3b9+Gi4sLx5FRyoAmkgrGNnLb29tboefNyckptjP0oUOHpC6R6OTkxLo/OTmZdfUeSrmtXbsWM2fOZN0/efJkHD16FBoaGhxGRfHN29sb3bp1Q1paGuP+Vq1a4c6dOzA3N+c4MopPISEhcHZ2xvv37xn3W1hYwNfXFy1btuQ4MkpZ0ERSwfgYuS1rZ+ixY8cWe6zt27ejRo0ajPvc3d1x4cKFsoRKcYgQgkWLFmHJkiWsZebOnYvdu3czrspEVVyXLl1Cnz59kJWVxbi/Y8eOuHnzJkxMTDiOjOLT+/fv0a5dO4SEhDDur169Ou7duwcHBweOI6OUCt/P1pWJIvpIRkdHM/YnadCggZyiLiw5OZm0bdtWamdoT0/PEh0zJCSEqKmpsR4vOTlZIe+Fkh+xWEymTZsmta/sypUrCw24olTDsWPHWP++AZBevXqRzMxMvsOkOPb8+XNSqVIl1npRq1YtEhoayneYlBKgzQ4KVqVKFcblENlWDimLb9++oVOnTnjw4AHjfn19fVy7dg09e/Ys0XFtbGywceNGxn3Z2dno3r17iWOluCMSiTBu3Djs3LmTtcw///yDZcuW0dUnVMyePXswZswY1sUJhg4diosXL0JHR4fjyCg+PXr0CB07dsS3b98Y9zds2BD37t1jfVpFqRi+M1lloogWSUII412dQCCQQ8T/ExkZSRo0aMB692hiYlLmkdbNmzdnPf7Ro0fl9E4oecrJySGDBg1i/dwEAgHZt28f32FSPNi4caPUFupx48YRkUjEd5gUx27dukX09PRY60Xz5s3Jt2/f+A6TUiK0RZIDTCMcCSEIDw+Xy/FDQ0Ph7OyMd+/eMe43NzfH3bt30apVqzKd5/bt29DW1mbcN2nSJNb+VRQ/MjMz0a9fP9Z+rGpqajhx4gQmTpzIcWQUnwghWLZsGebPn89aZubMmdi/fz/j0xSq4rp69Sp69erFujiBs7Mzbt++DTMzM44jo5QZTSQ5YGdnx7idbe3akvjw4QPatWuH4OBgxv3Vq1eHn58f6+jxkjA0NMSRI0cY92VnZ9NR3EokNTUVPXr0wPXr1xn3a2pq4uLFixgxYgTHkVF8IoRgzpw5WLVqFWuZJUuWYOvWrXTAlYo5ffo0Bg4ciJycHMb93bp1w/Xr12FoaMhxZJSyo98UHKhXrx7j9pcvX5bpuK9evUL79u0RGRnJuN/Ozg5+fn6oU6dOmc7zo6FDh6J9+/aM+65du4bbt2/L7VxU6SQmJsLV1RX37t1j3K+rqwtPT0/07duX48goPonFYkyaNAlbt25lLbN+/XqsXr2a9pVVMQcOHMDIkSNZ5wYeOHAgrly5Al1dXY4jo8oDmkhywNHRkXF7Wdbc9vf3R4cOHRAfH8+4397eHn5+fgrpDH316lVoamoy7hs8eDDrJNeU4sXExMDFxQVPnjxh3G9kZISbN2/C1dWV48goPuXl5WH06NE4cOAAa5mdO3diwYIFHEZFKYOtW7di4sSJIIQw7v/ll19w5swZujgBxYomkhxg65vINjdXcXx8fODq6ork5GTG/c2bN4evry+qVq1aquMXx9DQkLVVIzk5GePHj1fIeSnpwsLC0L59ewQGBjLur1SpEnx8fNCmTRuOI6P4lN/t5PTp04z7hUIhjhw5gqlTp3IcGcUnQghWrVqF2bNns5b57bffcPjwYairq3MYGVXu8DrUR8koatQ2IYQIBIIix7a0tCzxca5evUq0tLRYR9Q5OzuTlJQUucRcnIYNG7KOBH716hUnMVDfffr0iVSvXp21XlhaWpK3b9/yHSbFsbS0NNKpUyfWeqGhoUHOnz/Pd5gUxyQSCZk3b57UUfvz58+n88pSMqEtkhxhGu3M1qLI5syZMxgwYABrZ+iuXbty2hnay8uLsUM+IQS9evXiJAYKePPmDZydnVlnAbCxsYGfnx8aNGjAcWQUn5KSktClSxf4+Pgw7tfW1oa7uzsdJKdiJBIJpk6dir///pu1zOrVq7F+/XraV5aSCU0kOWJsbFxkW0mmyzl48CBGjBjB2hl6wIABcHd357QzdPXq1bFw4ULGfREREVi6dClnsaiqx48fw8XFBbGxsYz769Wrh/v378PW1pbjyCg+xcXFoVOnTvD392fcb2BggBs3btDFBFSMSCSCm5sb9uzZw1pm69atWLJkCU0iKdnx3SSqTBT5aLtJkyaMjw+io6OLfe3WrVulPoL45ZdfSF5enlziLA0rKyvGuIRCIQkPD+ctroru7t27RF9fn7VeODo6ktjYWL7DpDgWHh5O6tWrJ3VxgsePH/MdJsWx7OxsMmDAAKmLExw8eJDvMKlyiLZIcoRt9LS0uSQJIVi9ejVmzZrFWmbKlCm8d4b28vJivHuVSCTo0aMHDxFVfNevX0f37t2Rnp7OuL9169a4c+cOzM3NOY6M4lNwcDCcnZ1ZZ4SwsLCAr68vWrRowXFkFJ8yMzPRt29fXLp0iXG/uro6Tp06hXHjxnEcGVUR0ESSI2xzSb548YJxOyEECxcuxJ9//sl6zHnz5mHXrl28Txzs4OAANzc3xn2BgYHYvXs3xxFVbBcuXEDfvn2RnZ3NuL9Tp07w9vZm7E5BVVzv3r1Du3btEBoayrjf2toafn5+cHBw4DYwilcpKSno1q0bvL29GfdraWnh0qVLGDZsGMeRURUFTSQ5wjaX5Pv374tsk0gkmDZtGjZu3Mh6vFWrVmHDhg1K04/l4MGDrInL7NmzkZmZyW1AFdSRI0cwdOhQ5OXlMe7v06cPPD09oa+vz3FkFJ+eP38OFxcXREdHM+6vXbs2/Pz8ULt2bY4jo/iUkJCAzp074/79+4z79fT04OXlhd69e3McGVWR0ESSI7LOJSkSiTB27FiprXhbtmzB0qVLlSaJBL7PRXf+/HnGfTk5ORg5ciTHEVU8u3btwtixY1knfB82bBguXLjAuh46VTE9ePAAHTt2xLdv3xj3Ozg44N69e7C2tuY4MopP0dHRcHFxwbNnzxj3Gxsb49atW+jUqRPHkVEVDt+dNJWJIgfbSCQSxg7ONWvWLCiTnZ1NBg4cKLUz9IEDB+QSj6J0796dNf7AwEC+wyu31q9fL3XA1fjx44lIJOI7TIpjN2/eJLq6uqz1omXLliQhIYHvMCmOhYaGEjs7O9Z6UblyZfLixQu+w6QqCNoiyRGBQMA4ICY1NRXA987Q/fr1w8WLFxlfn98ZWtlXjTl//jzrUlp0vrqSI4RgyZIlrNMsAcCsWbOwf/9+qKmpcRgZxbcrV66gV69erN1GXFxccOvWLZiamnIcGcWnT58+oV27dggKCmLcX61aNdy7d4+1uxVFlRRNJDnE9MgxMzMTqamp6N69O27cuMH4Oi0tLVy8eLFcdIbW09PDmjVrGPd9/PgRJ06c4Dii8ksikWDWrFlYu3Yta5k///wT//zzj1J1c6AU79SpUxg0aBByc3MZ9/fo0QNeXl4wMDDgODKKT69fv4azszMiIiIY99va2sLPz4918CdFlYaAEJaV2lVQpUqVkJCQUGibpqYm60oyJVWlSpUiE0cLhUI0bdoUT58+ZXyNnp4erly5gs6dO8slBq5YWVkhMjKyyHYDAwMkJyfzPtJc2YnFYkycOBGHDh1iLbNx40bMmzePw6goZbB//35MnjwZbF/dgwYNwsmTJ6GpqclxZBSfAgIC0L17d9YV0xo0aICbN2/C0tKS28CoCo9ezTnEtHShRCJhTSKNjIxw8+bNcpdEAt9bTJikpaVh5syZHEdTvuTm5mLEiBGsSaRAIMDu3btpEqmC/vnnH0yaNIk1iXRzc8Pp06dpEqli7t69C1dXV9YksmnTpvD19aVJJKUQNJHkkJmZmcxlK1eujLt376J169YKjEhxnJ2d4ezszLhv9+7diIuL4zii8iErKwsDBw7EuXPnGPerqanh6NGjmDJlCseRUXwihGDlypWYO3cua5lp06bhv//+43VxAop7Xl5e6NGjB+viBG3btoWPjw8qVarEcWSUqqCJJIcqV64sU7mK0hn6woULjANAJBIJBg4cyENEyi0tLQ29evWCp6cn434NDQ2cO3cOo0eP5jgyik+EEMybNw8rVqxgLbNw4UJs376ddhlRMefOnUO/fv1YFydwdXXFjRs3YGRkxHFklCqh3zocqlq1arFlatasWWE6Q1euXBlTp05l3PfgwQPcu3eP44iUV1JSErp06YI7d+4w7tfR0cHVq1cxYMAAjiOj+CQWizFlyhRs3ryZtczatWuxbt06OuBKxRw6dAjDhw+HSCRi3N+vXz9cvXoVenp6HEdGqRqVfwby5cuXgglbmQbVSCQSnDlzBsD3ZQ4bN26ssFjq16+Pmzdvolq1ago7B9e2bt2KI0eOFExz9KMRI0YwDshRNbGxsejatStev37NuN/AwACenp6sXQWoiikvLw9jx47FyZMnWcts27YNM2bM4DAqShls375dal/zkSNH4vDhw9DQ0OAwKkpl8TiHpVIIDw8nmpqaUid7zv95+vRpqc9z9+5doq2tzXrsJk2akLi4ODm+M+Vx6tQp1ve9YcMGvsPjVVhYGKlTpw7r78fU1JQ8efKE7zApjmVnZ5N+/fqx1guhUEj+++8/vsOkeLBmzRqp16lJkybRxQkoTql8IkkIIdOmTSs2iezTp0+pj+/l5SU1iTQ2NiZJSUnye0NKqH79+ozvXUtLi2RmZvIdHi++fPlCatSowVovqlSpQt68ecN3mBTH0tPTSZcuXVjrhbq6Ojl79izfYVIck0gkZOHChVKvU3PnziUSiYTvUCkVQxNJIlurZGlbI8+dO0c0NDSkHrtJkyZyfkfK5927d6zvf9iwYXyHx7nAwEBStWpV1t+JtbU1+fz5M99hUhxLTk4mbdu2Za0X2traxNPTk+8wKY6JxeJiGzxWrFhBk0iKF3SwDb5Pnj1x4kTW/X369EGzZs1KfNwjR45g2LBhyMvLk1qOqf9gRVO/fn3WgSJnz55FdHQ0xxHx59mzZ3BxcWF9z3Xq1MH9+/dRq1YtjiOj+PTt2zd06tQJDx48YNyvr6+Pa9euoWfPnhxHRvFJJBJh3Lhx2LlzJ2uZzZs3Y/ny5XTAFcULurLN/4uIiICdnR3jkmNPnz4tcSK5c+dOTJ8+XaayFhYWiImJKdHxy6PMzEyYmJgw/o47deqE27dv8xAVt+7fv49evXqx3jw4ODjg5s2bsLCw4Dgyik9RUVHo0qUL3r17x7jf2NgY169fR6tWrTiOjOJTbm4uRo4ciQsXLjDuFwgE2LNnDyZNmsRxZBT1P7RF8v+xtUr27t27xEnk+vXrZU4iAbCul1vR6OrqYvHixYz7fHx88PnzZ44j4tbNmzfRtWtX1iSyZcuWuHv3Lk0iVUxoaCicnZ1Zk0hzc3P4+vrSJFLFZGZmol+/fqxJpJqaGo4fP06TSIp3tEXyB0ytkiVpjSSEYMmSJVi3bh1rGXV19SLzfunr6yMtLa10QZczhBCYmJggJSWlyL4WLVrg8ePHPESleJcvX8awYcNYbxo6dOgAd3d3GBgYcBwZxacPHz7A1dWVdRosKysr3Lp1C3Xr1uU4MopPqamp6NOnD+tcu5qamjh79iz69evHcWQUVRRtkfzBz62SJekbKZFI8Pvvv0tNIpcvXw5dXd0i24vrQ1mRCAQCbNiwgXHfkydPWNcdL89OnDiBwYMHsyaRPXr0gJeXF00iVcyrV6/Qvn171iTSzs4Ofn5+NIlUMYmJiXB1dWVNInV1deHh4UGTSEp58DnSRxlFREQUjOCWdaS2SCQiY8eOlTqibtOmTYQQQipXrsw4nYeqsbCwYPw91a9fn+/Q5GrPnj1EIBCw1oshQ4aQnJwcvsOkOPbo0SNibGzMWi/s7e1JVFQU32FSHIuOjiYNGzZkrReGhobk/v37fIdJUYXQFsmfVKtWDZMmTZK5NTI3NxcjRozA4cOHGfcLBALs3bsXc+fOBQBoaWkVKSORSMoUc3nENgLx/fv3FWbQzaZNmzBlyhQQlt4jv/76K06dOgVNTU2OI6P45OPjA1dXVyQnJzPub9asGe7evSvTkqpUxREWFob27dsjMDCQcX+lSpVw584dtG3bluPIKEo62kfy/xFCkJOTg5ycHCQkJCA1NRU2NjbQ0tKCtrY247QKWVlZGDx4MLy8vBiPqaamhqNHj2LkyJEF22rVqoWgoCDG86uamjVrIjQ0tMj2GjVqMG7nAyEEeXl5yM7OhkgkAiEEQqEQmpqa0NbWhpqaGuNrVqxYgb/++ov1uDNmzMDWrVshFNJ7ufJKJBIhOzsbubm5IIRAIBBAQ0MDOjo6UFdnXn3W09MTgwYNYlyOFQDatWsHDw8PGBkZKTJ0SoEkEgmys7ORk5MDiUQCgUAAdXV1aGtrQ0NDg/Fa8vnzZ7i6uiIsLIzxmJaWlrh58yYaNGig6PApBcnPMbKzsyGRSEAIgZqaGrS1taGlpVWup25S6USSEIL09HQkJiYiPT1dajKnp6cHU1NTGBgYQCgUIi0tDX379sXdu3cZy7N1hnZwcGC84xSLxSqXVPj4+KBz586M+06fPo1hw4ZxHNH/ZGVlISkpCcnJyVJbjLW0tGBqagpjY2OoqamBEIK5c+diy5YtrK9ZvHgxVq9eXa6/OFRVXl4ekpKSkJSUJLVvs7q6OoyNjWFqalrQ4nz27FmMGjWqyGC7fF27dsXFixehp6enkNgpxRGLxUhJSUFiYiKys7NZywmFQhgaGsLU1BQ6OjoQCAR48+YNunTpgtjYWMbX2NjY4Pbt27C1tVVU+JSCEEKQlpaGxMREZGRkSM0x9PX1C3KM8nZtUNlEMj09HZGRkSUe6KKmpoaqVati4MCBuHPnDmMZXV1dXL58GV26dCmyr2XLlnjy5EmR7SkpKTA0NCxRLBWBvb0947Qn5ubmrF+sipSTk4OoqChkZGSU6HUCgQCVK1fGrl27sHLlStZy69atw8KFC8saJsUxsViMmJgYJCUllfi1RkZG+PjxI7p168Z6UzJgwACcOnWKsesLpbwIIUhISEBsbGyJnyrlt0Q5OjoiMTGRsUy9evVw69YtVKtWTR7hUhxKS0tDZGQk640jG3V1dVhaWparfEC1msDw/bFDREQEQkNDSzVaWiwWIyIiAhs3boS5uXmR/YaGhvD29mZMIgEwjtoGvq9qoYqOHz/OuD0uLg67d+/mLA5CCL59+4bPnz+XOInMf31cXByGDBmC9u3bM5bZsWMHTSLLobS0NHz69KlUSSTw/SbR0tISs2fPZtz/yy+/4OzZszSJLGdycnIQFBSEmJiYUnVNys7ORkpKCnbs2MH4NMrR0RG+vr40iSxnxGIxwsPD8fXr1xInkcD3LjNhYWH4+vUrxGKxAiKUP5VKJMViMYKDg1k7uZeEtrY2rl27BktLy4JtZmZmxXaGZntslZCQUOaYyqMmTZqwTrS8cOFCTgYiEUIQFRUll9WFCCHYuXMnunbtWrBNKBTi8OHDmDZtWpmPT3ErKSlJLl/oEokEY8eOxZ9//llo+5QpU3D48GHWPpWUcsrKykJQUJDUx9iycnBwwMWLFwvVgdatW+POnTuMjRWU8hKJRAgODmacJ7mk0tLSEBQUVC6mB1SZRFIikSA0NFQuf/j5NDU14e7uDkNDQ1StWhX37t1D06ZNpb6GJpJFnThxgnF7amoq1q5dq/DzR0dHl7q1ic2mTZvg5OQEDQ0NnDlzBm5ubnI9PqV4KSkprHM8ltbQoUMLWibnzZuHXbt2qVzf6PIuJycHISEhcr3JtbOzK/ge7NSpE7y9vWFsbCy341OKJ5FIEBISwjqQrjRyc3MREhKi9C2TCu0jOWDAANy9exedO3fG+fPnFXUamcTExCjs8XFiYiKqVasGOzu7YsuOHz8e//33X5HtJ06cKDS6W9V06dIFt27dKrJdT08PqampCrvYpqWl4evXrwo5tkQiQVRUFLp3766Q41OKk5ubiy9fviisRfzp06dwc3Mrd53qVR0hRG4tkUxev36NgQMHQltbWyHHpxQnOjpaYQ1CxsbGsLKyUsix5UGht8IzZ87E0aNHFXkKmWRmZiq0D6KpqSkqVaokU1m2PpJZWVnyDKncOX78OONFNSMjA3///bdCzpnf31VRhEIhGjVqpLDjU4pBCEFkZKRCu1XQuQDLp/j4eIUlkQDQuHFjxinFKOWWnp6u0KeKycnJSE1NVdjxy0qhiWTHjh2VYtm3uLg4Ts4hS+MuW18otuXzVIWFhQXrkl/r16+X6Rg+Pj4l+mNLTExU+CODxMTEUnW4puTn5cuXJZqXNCsrq1QDrkoiJycHaWlpCj0HJV1cXBwePnwoc3mxWKzwQZH5o8Apfl29erVE1waucgxlVeJEUiKRoF69eliwYEGh7Tdu3ICmpibOnTsnt+DkIScnB+np6ZycpywXH/qICzh48CDjI+zk5GQcOHBAptfb2Nhg9erVxSaUXH5hs03tQXHD398ftWvXxqRJk2RKKLmaQYEmDPz69u0b2rZti27dusmUUBY3p6y8JCYmquRqZ8pk7NixcHBwwOnTp4tNKLOzs5GZmanwmLg6T2mUOJEUCoVYtGgRdu/eXTBA4dWrVxgyZAjWrl2LIUOGyD3IspDH6CllPFdFZGpqWmi084+WLl0q0zGSkpLw559/FptQZmZmctZSKI9ZAqiyEYlE2L9/f7EJpUQi4ewRUkZGBm2tVgLe3t4yJZRcfb9LJBJOGj8o6d6/f48RI0YUm1DSHKOUg21EIhHq1KkDNzc3jB8/Hk5OTujXrx/j+sl3797Fjh07eBts8/XrV84eIampqWHcuHFSy4SGhjJOM1OzZk1YWFgoKrRyIzc3F8+fP2fcV6dOHZiamrK+9vPnz0VaeUxMTDBnzhzMnDmz0ASv3759k8t0P7Jau3YtQkJCODsf9T8xMTFFEkd1dXX8+uuvWLx4MWxsbAq2Z2ZmIjg4mLPYHj58iEOHDnF2Pup/MjMz8fr16yLbu3btiuXLl6NNmzYF2wghePfuHWdL2SYnJ2PevHmcnIsq6smTJ0USx/r162PZsmUYMmRIoX6sISEhCu8Kk09HR0emQb1cK/Wo7b1792Lx4sWoVq0abGxscOnSJcZOwnwnkh8+fOD0rr9Jkya0lUEJ/ZxQhoeHc3p3N2PGDNblNCn+/JxQJiYmIioqirPze3p60knqldSPCWV2dja+fPnC2blTUlLQrl07zs5Hye7nhPLdu3ecdUUQCARo0KCB0nWFK/Vgm1GjRiEzMxOEEJw6dYoxiezWrRuGDBkCLy8vWFlZMS4NqGhcz7+kr6/P6fko2fz8yFuec33Jgk7noZx+fOQ9ceJExMfHc3p+ZbsgUP+T/8i7a9euePXqFafn1tDQ4PR8lOx+fuTNZX9WQghnreIlUerlFKZPnw7g+yNCtukKbty4UdrDU5TC8HHxpp3nlZ9AIOC8bij7RMMUTfYpdrRufFeqFsk///wTnp6e8Pf3h0gkwsGDB+Udl9xwOScXIYR2klZSJiYmWL16NUJDQ7FkyRLO1zWmI7eVk7q6OiZOnIjPnz9j3759Ms8HKy+0Xiivrl274sGDB7hx4wYaN27M6bnLw7J4qqp+/fo4ffo03rx5g2HDhnG6MhUfN7uyKHGL5IEDB7B582b4+PigcePGmDVrFjZu3IhJkyYpZXO8jo4OZ4NtcnJyeOkfqa6uDl1dXejq6kJHR6fg/8v7xLYvXrxgfAStp6cHBweHItvZBtvMnTsXM2bMKDTYRkdHh9M+ku/evePsXPmEQmGh+pD/o4x/p4pUksE2XHdB+PTpE6fnA75fjLS1tYt8Z2hpaSnlRUpRSjLYJv93w9VjRUIInJycODkXVRTbYJvly5dj8ODBha6tOjo6nA220dbWVsq/0RIlkteuXcO0adNw6tSpgko+Y8YMbNq0CceOHSt2xDIfuE4kTU1NOW9lEIlESE1NLTJtiY2NDRo2bAgHB4eC/9atWxeampqcxldanp6e6N27d5HtGRkZOHXqVKEEAPjeb/fkyZMA2BPIfDo6OgqJmYlQKIShoSGysrI47d8ikUiQkZFR5EuucuXKhepEw4YNYW9vrxSLByjCnj178NtvvwFgTyDzcZ1IZmRkQENDg9MWKEIIsrKykJWVVejGS19fH/b29gX1Ir9umJubcxYbl969ewd7e/uCfzMlkPkEAgF0dHQ4m8evUaNGePToESfnoooyMzMruI6zJZD5dHV1OUsk2VbG45vMo7afPXsGFxcXrFmzBr///nuhfcuWLcPp06fx/v17pWsFy8nJwefPnzk5l42NDfT19ZGdnY2oqKgiP5GRkfD19UVkZCQn8TBRV1dH3bp14eDggBYtWqBVq1Zo2rQpp4lVSVSrVo1xFG3nzp2LrM09atQoXLt2TWoCmY8Qgo8fP3LSgmxubg5zc3OIRCLExsYW1IUf60ZERARCQkIQGhrK26h/GxsbODg4oGnTpnByckLLli2lTrdUXuzZswczZsyQmkD+KCwsjJO5JPX09FCzZk1IJBIkJCQU+p748f9DQ0MRHBzM22TE5ubmaNiwIRwdHdGqVSs4OTmhevXqStkyUhL5iaS0BPJHCQkJiI6OVnhcQqEQ9erV4/SRKVWYmZkZLCwspCaQ+bgc0W9ra6uUyWSpp/8pT0JDQxXed1FLSwu1atUq9st19uzZ2Lp1a5HtnTt3hoGBAYKDgxEcHMxpX0t1dXU0btwYTk5OBRcKWd4LF44ePQo3N7ci2wUCAeLi4gr1abtz5w6aNWsmNYH8UXx8PGJjY+UWK5t69eqxLo35M5FIhMjIyIJ68PMPV6uu5KtTp05BnWjVqhUaNWpU7h6Nv3z5EsbGxsUmkPm4mkvS2tpa5rpKCEFcXBxrvYiMjOS0tbtKlSqFvi+aN29e7masiIuLw5cvX4pNIPOJxWJ8/PhR4QPnKlWqhCpVqij0HJR0V69eRc+ePWVuGOPiRk9bWxu1atVS6DlKSyUSSS4uDNWrV4eRkVGx5WbMmIEdO3YU2X7gwAGMHz8ewPeLxrdv31gvGuHh4Qq/aJiamqJVq1YFP3y2Tv34mOFHI0aMKHiUXRpisRifPn1S6MhZU1NTWFpayu14qampCAkJYawXISEhCn9Eqq2tjWbNmhVKIqysrJTipkNeCCEIDQ1V6OMqWW88ZZWdnY2vX78Wqgv5/x8UFKTwG1OhUIiGDRsWuumoX79+hWtVi4uLU+iaxwKBAHXq1Cl3N2uqLj09XablV8uiJDeeXFOJRBL43uFeUa05RkZGqF69ukxlx48fj//++6/I9hMnTmDkyJEyHSMjIwPv37/HmzdvEBgYWPBfRT92qVOnTqEEwsHBgZMvvH/++Qdz584tsl1LSwuZmZllulilpaXh69evZQmPlYaGBmrXrs3ZxTQvLw+fP38uVCfevHmD4OBghd54VK1ataBetGrVqly2Tv0sNzcXX758UUjrk0AggJ2dHWf9MQkhCAsLK/J98f79e4XeeBgaGqJFixaF6kZ5729JCEFQUBCys7MVcvxq1arBxMREIcemFCs6OrrIYE95MTY2hpWVlUKOLQ8qk0hKJBKEhIQgKytLrsfV0NBArVq1ZG4CHzp0KM6dO1dk+7Vr19C9e/cyxfLt2ze8ffu2yAVDUf299PX10b59e3Tu3BmdO3eGg4ODQpImiUQCAwMDxkcHmzZtYkwySyIqKkruA6QEAgFsbW2Vou9pRkYG3r17VyTBVNQSkerq6mjZsmVBvXBycuJ8uiV5SElJQXh4uNyPa2lpqRR9T/m48WjQoEFBvXBxcYGxsbFCzqNIOTk5CAoKkvtNhpGRUYVr3VclEokEQUFBcl/sQlNTE3Z2dko3/uRHKpNIAt8fZYaEhBR7N/nw4UMkJibC1NRUav8ZDQ0NeHp6okOHDmjSpIlMXwC9evWCl5dXke2PHz9GixYtin8TJUQIQXh4eKGLxevXr/H27Vu5P9KtVKkSOnXqVHChsLW1lduX4pQpU7B3794i26tWrVrmJe0IIYiKikJSUlKZjpNPIBCgRo0aSt8q9+3bNwQGBhb8vHnzBi9evJD7zZaOjg6cnZ0L6oWjo6NSfyn+KCkpSa6D46pUqcL5XJUlxXTj8fz5c7m3tgiFQjRv3hydO3dGp06d0LZtW6W48ZJFVlYWQkJC5JZMGhoaVogBTKpOJBIhJCREbsmkpqYmatasqfRdHVQqkQS+3zVERUUhOTmZcf/Dhw8xefLkgn/v3buXMZnU19eHlZUVBg8ejCtXrqBatWro27cv+vTpg44dO7I+turQoQN8fX2LbA8KCoKtrW3p3lQpZGRk4NmzZwgICIC/vz8CAgLkPprc2tq6IHno1KkTqlatWupjpaamwtjYmLGl5OHDh2jdunVZQgUhBAkJCWVupdPU1ET16tXLzQXxZyKRCIGBgQV1wt/fHx8+fJDrOUxMTNChQ4eCulG3bl2lvoCmpaUhIiKiTDdeQqEQ1apVk6kftTIihCA4OLjQ98WLFy/k+mhcS0sLbdq0KagXzZs3l3mQGh9ycnIQHh5e5sfclStXhrm5uVL/DVCyE4vFiIqKKvM8xQYGBrCysioXN90ql0jmS09PR2RkZKEvwocPH+L27ds4e/Ysli5ditWrV2Po0KHo3LlzQTKppqYGS0tLGBoaQiAQ4MKFCxg8eHChY+vp6aFbt27o27cvevbsicqVKxfsa9myJeOa4ykpKbx3pI2IiEBAQEDBxeLp06dybZ0q62Otdu3a4cGDB0W2t27dGg8fPpRLjDk5OYiKiirxQAuBQIDKlSujUqVKFW6AQXJyMh4/flwoiZBn65SlpWWhGw5Z+xtzSSwWIyYmplSt1kZGRqhatapSJ0WlkZ2djZcvXxa66ZDngANDQ0O4uLgUPOVo2LCh0iVb+TegsbGxJe4OoK2tDSsrK87nLqW4kZaWhsjIyBJP56aurl6QY5QXKptIAv9b0jAxMRHe3t6YNGlSwT5PT0/06tWr4N9HjhxBv379YGBgUChRyMnJQZUqVVhbOIVCIdq0aYO+ffuif//+GDhwIAIDA4uUE4vFSpeA5OXlITAwsFACIa/WKaFQiBYtWqBv377o168fGjRoUOxF4smTJ2jZsmWR7QKBAImJiXLtb5WVlYWkpCQkJydLfXylpaUFU1NTGBsbl4s7R3nIH3Dw403Hy5cv5dY6VadOHfTp0wd9+/ZFmzZtlCoBy8vLQ1JSEpKSkqS+X3V1dZiYmMDExKTcLAAgD7GxsYXqxZMnT+S2IIS5uTl69uyJvn37omvXrtDT05PLceVBLBYjJSUFSUlJUm++8xcnMDU1hY6OjtIlxpR8EUKQlpaGxMREZGRkSL3Z0NfXh6mpKQwMDMpdvVDpRPJHJ06cwOjRo7F06VK0bt0aPXv2hJeXFx49eoTVq1fj+PHjGDVqFONrJ0+ejH379kk9vpaWFjw9PTF58mQEBQUV2V9ePoakpCQ8fvwY9+7dw+3bt/HkyRO59BOys7NDv3790LdvX7Rt25Y1ebCysmJ8BD9+/HgcOHCgzHH8jBCCU6dO4d69ezA0NISamhry8vIQExODbdu2KcWgCWWQnZ2NFy9e4P79+7h9+zb8/PzkMq+amZkZevfuXZA8KFO/01evXmHr1q2oVKkS1NXVIRaLkZiYiF9++QUuLi58h6cUxGIx3r9/j4cPH8LHxwc+Pj6Ij48v83G1tbXh6uqKfv36oXfv3ko176JEIsHo0aNRtWpVaGpqQiKRIC0tDY0bN8akSZPKXZJAyQchBEuXLkV6enrBTURWVhbU1dXx999/l+96QShCCCHe3t4EQMGPp6dnoX97e3uzvtbPz69Q2Z9/hEIhcXd3J4QQYmVlxbi/vEpOTiZXrlwhM2fOJPb29lJ/D7L+mJmZkTFjxpDz58+TtLS0Quf7999/GV+jq6tLxGKxQt7jmjVrGM8ZHx+vkPNVBDk5OcTX15csX76ctGvXjqirq5e5XmhpaZFevXqRffv2kaioKL7fIuvf/YULF/gOTWmJxWLy6tUr8s8//5DevXsTAwODMtcLgUBAnJycyLp168jbt2+JRCLh+20yxjlr1iy+w6J41r59+yL1omnTpnyHVWY0kfxBs2bNCj7cpUuXEgDE2NhYahJJCCESiYTUrFlT6pdd7969CSGEVK5cucg+dXV1Lt4eJ2JiYsjJkyfJ+PHjiY2NjVySh549e5I9e/aQqKgoIhaLiba2NmPZffv2KeQ90USy7NLS0oiXlxeZO3cucXR0lMsNR6tWrcjatWtJYGAgL8kDTSTLLjc3lzx8+JCsWrWKdOjQgWhqapa5XtSqVYvMnTuX+Pr6kry8PF7eF00kKSY0kVQB3bp1K/IhV69eXabX/vnnn8V+wbVv357xDlxLS0vB74w/QUFBZN++fWTYsGGMSXRJf1q2bMmaiNSoUUMh74EmkvIXHx9Pzp49S6ZMmUJq165d5nphZ2dH5syZQ+7evctZ8kATSfnLyMgg3t7eZMGCBaRFixZEKBSWqV6YmZkRNzc3cvHiRZKens7Z+6CJJMWEJpIqgCmRrFevnkyv/fTpk0xfbAKBoMg2fX19Bb8z5SCRSMjr16/Jli1biKurq1wed/788+rVK7nHTRNJxfv69Ss5dOgQGTZsGDE0NCxTHahUqRKZOnUqefDggUJbKmkiqXiJiYnk0qVL5LfffmPsFlSSH21tbTJ48GBy6dIlkp2drdC4aSJJMamoiaRyDRMux2rXro1WrVoVW44wDKpR9slG5UUgEMDBwQGzZs3CzZs3ER8fj5MnT2L48OFym+pg6tSpcjkOxS1ra2uMHTsWp0+fRnx8PLy9vTFt2rRSLQv27ds37Nq1C23btoWdnR2WLl2K9+/fKyBqStFMTEzQv39/7Nq1C2FhYXj69CmWLVuGxo0bl/hY2dnZOH/+PAYMGICqVati0qRJ8PX1VcgymBSlSmgiKUe//PILAOCPP/7AkCFDZH6dKk0P8iNjY2OMGDECp06dKkgepk+fXqZ5BB88eIAuXbrg2LFjcpt2hOKWpqYmunTpgh07diAsLAzPnj3D8uXL4ejoWOJjhYSEYM2aNWjQoAGaNm2KzZs3y33ifYobAoEAzZo1w8qVK/Hy5UuEhITg33//RefOnUs8RVRSUhL279+PDh06wMbGBgsWLMDr168VFDlFVXB8N4kqk7I82ibke7+vmTNnFjxOGz9+vEyPXOzs7BT1lsoliURCnj9/TpYvX06aNGlS6kdZOjo6ZPjw4eTq1askNze31PHQR9vKIzQ0lGzbtq1MXSMEAgHp1KkTOXjwIElOTi51LPTRtvJITEwkJ06cIEOHDi3TSPCGDRuSdevWka9fv5YpHqZj00fbVEV9tE0TyR+UNZFkMmfOnGK/vBo1aiSnd1Axff36lWzfvp106dKl1MmDmZkZ+e2334ifn1+JpwmiiaRySkpKIidPniTDhw8vdb9KLS0tMmjQIHLhwoUS95ujiaRyysnJITdu3CBTp04tU79KZ2dnsmfPHpKQkFDiGGgiSTGpqIkkfbStYJs3b8bKlSullnn79i2+fv3KUUTlj7W1NaZPnw5vb298+/YNJ06cQO/evUv0OCshIQG7d++Gs7MzbG1tsWTJEsaJ4any4+euETdu3MC4ceNK1N82JycHFy5cwKBBg2BhYYEJEybgwYMH5WaBAKooTU1NdO3aFTt37izoGrFw4UJYW1uX6Dh+fn6YMmUKqlSpgn79+uHChQtyXVucoioKmkhyYNmyZdiyZQvrfrFYjPr169MBATIwMjLCyJEjcfXqVURHR6NOnTolPsbXr1+xdu1a1KpVC127dsXFixfpBaKcy08eDh48iNjY2IJBFSXpf5ySkoKDBw+iXbt2aNSoEXbu3ImUlBQFRk0pmkAgQNOmTbFu3TqEhITA19cXkyZNgomJiczHyMvLg7u7OwYPHgxra2ssXbqU3vhT1A9oIsmRWbNmoV+/fqz7s7Ky4OjoiGfPnnEYVflWqVIlHDx4sEzHuHnzJgYNGoQaNWpg2bJlCAsLk1N0FF+0tbUxaNAgXLx4ETExMQWDKkqyBFlgYCCmT58OS0tLTJgwAU+fPlVgxBQXhEIh2rdvj7179yImJgZXrlzB0KFDoa2tLfMxYmJisGbNGtSsWRO9e/eGh4cHxGKxAqOmKOVHE0kOWVhYSN2fm5sLJycn3Lt3j6OIyr927drB2NiYcV9JWh2io6OxatUq1KxZE3369IGnpye9QFQAJiYmmDBhAu7cuYOwsDBs3LixRFPHZGZm4uDBg2jRogWaN2+OAwcOID09XYERU1zQ1NRE3759cebMGcTGxuLw4cPo0qULhELZLomEEHh6eqJPnz6oWbMmVq1ahaioKAVHTVHKiSaSHIqOji62jEgkQseOHeHp6clBRBXD0KFDGbdXq1YNPj4+GD9+PIyMjGQ6lkQigYeHB3r37g1bW1usWbOGTiNUQVhZWWHevHl4+fIlAgMDsWjRItSoUUPm1z979gwTJ06EpaUlpk2bRvvYVhCGhoZwc3ODt7c3IiIisGXLFjRv3lzm14eHh2PZsmWwtrbGwIED4e3trcBoKUoJ8T3aR5koYtT2j5ycnEo0RcmpU6fkdu6KLDY2lvV3mJKSQgghJCsri1y4cIEMHDiQaGholGj0JtsybXTUdvknFouJn58fmTJlCjE2Ni71CN8ff+io7Yrhw4cPZNmyZaRmzZpyqRd01DZFR21TZZaQkCBzWUIIRowYgX379ikwoorB3NwctWvXLrKdEIK//voLwPd+cwMHDsSFCxcQHh6OdevWwcbGRqbj05UvKi6hUIh27dph9+7diIqKwuHDh+Hk5MR3WJQSqFu3LlauXIkvX77gxo0bGDBgANTU1Ep9PEJnAqAqKJpIcig1NbXINoFAAF1dXdbXTJ48GX///bciw6oQZsyYwbj92LFjRbZZWFhg4cKFCAoKwvXr19G/f3+Z+0b9aNGiRQgJCSnx6yjlpKOjAzc3Nzx69AgvX77Eb7/9Bn19/RIfZ8OGDXj48KECIqT4IBQKC2Z3CAsLw19//VWqpTtPnTqFs2fPQiQSKSBKiuIRzy2iSkXRj7b19fWLHF9HR4eEh4cXO6Hy0qVL5RZHRSQSiVgnK3/16lWxrw8PDycrVqwg1apVK/Fj72HDhpGnT59y8C4prqWmppK9e/eWaoWltm3bksuXL5d4AnxK+eXl5RF3d3fSs2dPIhAISlQvatasSbZv307S09P5fhsUxyrqo22aSP5A0YkkU6JjZmZGCPm+vKKZmZnUL6AZM2bILZaKqGPHjoy/t969e8t8jLy8PHLlyhXSo0ePEl8gOnbsSLy8vAqWyKQqDolEQgICAsi4ceOIjo5OiepF3bp1yb59+0hWVhbfb4NSgJCQELJkyRJiYWFRonphZmZGli1bRuLi4vh+CxRHaCKpAhSZSEokEta703wpKSnE0tJS6pfPmDFj5BJPRcS2ZJ2Wllapkrvg4GCyaNEioqenV6ILRMOGDcnhw4dJTk6OAt4lxbekpCSybds2YmNjU6J6YWFhQVavXl2qJfco5Zebm0vOnTtHOnfuXKJ6oa2tTaZMmUI+ffrE91ugFIwmkipAkYlkSEgI45dIy5YtC5XLysoitra2Ur94+vfvL5eYKiK2kbdHjx4t9TH/+uuvEl0Y8n+qVatGNm7cSJKTk+X4Dillce/evVLVCz09PTJz5kwSEhLC91ugFKQ09UIgEJCBAweSR48e8R0+pSAVNZGkg204EhAQwLi9Zs2ahf6tra2Njx8/wt7envVYly9fRufOneloYgZsc0pu3ry51Mcs7UjNyMhIzJ8/H9bW1pg3bx4iIiJKHQOlfEqyUs6PMjIysG3bNtSqVQsjRozA8+fP5RwZVR4RQnDx4kW0bt0azs7OcHd3p9/xVLlAE0mOvHz5knF7/fr1i2xTV1fH69ev0bJlS9bj+fj4wMnJiX7R/CR/up+fvXnzRu7racs6qjc1NRWbNm1CzZo14ebmhg8fPsg1Dkq5jB07FtWrVy+2nFgsxunTp9GsWTO4urri9u3bdIqYCqxnz55o0aKFTGXv37+Pfv36wd7eHv/995/cv7soSp5oIskRtuShSZMmjNuFQiEePXoEV1dX1mM+efIEDg4OdDqJH1hYWMDW1rbIdolEgj179sj1XH/99RfCw8Oxfv16VK1atdjyIpEIR48ehb29PcaMGUNXRqmg+vTpg6CgIBw/flzm5Rhv374NV1dXdOjQgS6RWkHVqVMHAQEBuHv3Lnr16iXTaz58+IDx48ejfv36OHr0KF22lVJKNJHkyNevXxm3S2t1FAqFuHnzJgYMGMBa5t27d6hTpw6ys7PLHGNF4ebmxrj94MGDcj+XsbExFixYgJCQEPz3339o0KBBsa+RSCQ4duwY6tatiwkTJrDWDar80tDQwKhRo/DixQt4e3ujS5cuMr3u3r17cHFxQZcuXeDv76/gKCmuCQQCuLi4wMPDA2/fvsWvv/4KDQ2NYl8XFBQENzc32Nvb48yZM/RJFKVUaCLJkZiYmCLbBAIBqlSpUuxrL168iLFjx7LuDwkJga2tLeOE56pozpw5jNvfvHmjsNZbLS0t/Prrr3jz5g08PDzg4uJS7GvEYjEOHjyI2rVrY9q0aYiMjFRIbBR/BAIBunTpAm9vb7x48QKjRo2Sqc/trVu30Lp1a/Tq1QvPnj3jIFKKaw0aNMB///2H0NBQLFiwAEZGRsW+5uPHjxg+fDgcHR1x6dIl2hWCUgo0keRIcnJykW06Ojoyv/7QoUOYOXMm6/7o6GjY2tri27dvpQmvQtHX14ednV2R7RKJRCGtkj8SCoXo1asX7t69i8ePH2PIkCHFrpqTl5eHXbt2wc7ODrNnz0ZsbKxCY6T44ejoiOPHjyM4OBizZ8+WqX+tl5cXmjdvjgEDBuDNmzccRElxzdLSEuvXr0d4eDg2b94sU//aN2/eYODAgWjevDk8PT1pQknxiiaSHGF69GxsbFyiY/z777/4888/WfcnJCTAzs4OYWFhJQ2vwhk5ciTjdi7XLm/RogXOnj2LT58+YerUqdDU1JRaPicnB1u3boWtrS0WLFhAbwoqKGtra/zzzz8ICwvD2rVrUalSpWJfc/nyZTRq1AjDhg3D+/fvOYiS4pqBgQHmzJmDoKAgHDt2TKZuMs+fP0fv3r3RunVr3Lx5kyaUFC9oIsmB8PBwxj9wWQZo/Oyvv/7Cpk2bWPenpqaifv36+Pz5c4mPXZHMnTuXcfurV684719kZ2eHnTt34vPnz5g0aRLU1dWlls/MzMTGjRtRs2ZNLF26FElJSRxFSnHJxMQEixYtQnBwMNasWQMTE5NiX3P27Fk0bNgQv/zyC758+cJBlBTXNDQ0MHr0aLx+/RonTpxA7dq1i31NQEAAunbtChcXF/j6+nIQJUX9D00kOSDrHJKymjt3Lvbv3886j11mZiYcHBxYpxxSBUZGRrCxsSmyXSwW4/Dhw5zHA3xvidq7dy8+fvyIsWPHFvvIOz09HWvWrEHNmjWxatUq2ge2gjIwMMDixYsREhKC5cuXw9DQUGp5iUSC48ePo169ehg/fjxCQ0O5CZTilJqaGkaOHIl3797h0KFDMl0v/Pz80KFDB7i6uuLRo0ccRElRNJHkBFtCV69evVIfc8KECTh16hRrMpmTk4MWLVrgwYMHpT5HeTd8+HDG7fKeBqikbG1tcejQIbx//x4jR44sdmLrlJQULFu2DLa2tti5cyed7qmCMjIywooVKxASEoJFixZBT09PanmxWIz//vsPderUwZw5c2jLdQWlrq6OsWPH4sOHD9i7dy+srKyKfc3t27fRpk0b9OvXT+WfTlGKRxNJDrDNIeno6Fim4w4bNgweHh6sLVsikQguLi64ceNGmc5TXs2bN49x+4sXL5Ri+ow6dergxIkTePPmDQYPHlxs+YSEBEyfPh2NGzfG9evXOYiQ4oOpqSnWrl2LkJAQzJ07F9ra2lLL5+XlYcuWLahduzZ27dpFbzQqKE1NTUyaNAmfP3/Gtm3bZJrxw93dHfb29vRGg1IomkhygG3iaWlzSMqqZ8+euHPnDmu/O7FYjB49euD8+fNlPld5Y2pqyjgCUiQS4dSpUzxExMze3h7nzp3Dixcv0KdPn2LLv3v3Dj169EDPnj3pwIsKrHLlyti0aROCg4MxY8aMYgdrJSQkYNq0afRGo4LT1tbGjBkzEBQUhE2bNhU7WOvHGw36RINSBJpIcoBpjWWBQCDTNA+yaN++PQICAqClpcW4nxCCoUOHKnzqG2XEtvb2zp07OY6keI6OjnB3d0dAQAC6d+9ebPlr167BwcEBM2bMQEJCAgcRUnyoWrUqtm3bhi9fvmDy5MnFDtaiNxqqQVdXF3PnzkVISAjWrVtX7GAt+kSDUhSaSHKA6ZGCgYGBXM/RtGlTvHr1inVuSkIIJkyYgK1bt8r1vMpuwYIFjNufPn2qFI+3mbRs2RLXrl3D/fv30alTJ6llxWIxduzYgVq1amHLli3Izc3lKEqKa9WrV8eePXvw6dMn/Prrr8VObE5vNFSDvr4+Fi5ciNDQUKxcubLYwVr0RoOSN5pIKlh0dDTj+qiydJguqbp16+LDhw9Sk9TZs2dj5cqVcj+3sqpcuTKqVatWZHteXh7OnTvHQ0Sya9u2LW7fvo1r164VO6dccnIy5syZg4YNG+Lq1at0PrkKrGbNmvjvv//w5s0b9OjRQ2rZH280tm7dSm80KjBDQ0MsW7YMwcHBmD59Or3RoDhDE0kF8/b2ZtxelhHb0lhbW+PLly8wNTVlLbNixQrWZQQrokGDBjFu53v0tqy6d++OV69eYefOnTAzM5Na9vPnz+jbty+6dOmC169fcxQhxYf69evDy8tL5huN2bNn0xsNFWBmZobt27eX+EaDPtGgSosmkgrm5+fHuL1Vq1YKO6e5uTmCgoKkjurbsmULJkyYoLAYlAnb4+3Hjx9zHEnpqaurY+rUqfj8+TPmzJkDDQ0NqeVv376NJk2aYNKkSXTJxQqO3mhQTEp6o5H/RMPd3Z3eaFAlQhNJBWP7su7atatCz2tsbIygoCDUqFGDtczBgwcxZMgQhcahDCwtLVG5cuUi2zMzM/H27VseIio9ExMTbN68GW/fvkW/fv2klpVIJNi/fz9q166Nf//9l7GLBVUxlPZGY9q0aUhJSeEoSooPJb3R6NevH7p160ZXTqJkRhNJBWNadUIgEKBRo0YKP7euri4+ffok9TH6+fPn0a1bN4XHwrcOHTowbt+xYwe3gchJ7dq1cfnyZdy+fbvYupSWloZZs2bByckJL1684ChCig8lvdHYtWsX6tevj/Pnz9NWqAqspDcaN2/eRMOGDbFmzRr6uJsqFk0kFYxpxLa+vn6xy+PJi6amJt6+fYtmzZqxlvH29kbr1q2VdhSzPEyZMoVxe3mfBqNTp054/vw59u/fD3Nzc6llnz59iubNm2Pu3LlIT0/nKEKKDyW50YiOjsaQIUPQt29ffP36laMIKT6U5EYjJycHS5cuRZMmTXD//n2OIqTKI5pIKlBcXBzj5K+WlpacxiEUCvH48WPWVjkA8Pf3h6OjY4WdrLZTp06Md+Ffv35FXl4eDxHJj5qaGiZMmIDPnz9jwYIFUieulkgk+Oeff2Bvbw8PDw8Oo6T4UJIbDQ8PDzRo0AD//PNPhf0eoL4ryY3Gu3fv4OzsjMmTJ9PVcShGNJFUIK5HbEsjFApx584d9O3bl7XMmzdvUL9+fWRnZ3MYGXeYOpwTQnDs2DEeopE/Q0NDrF+/Hh8+fCi272tYWBj69OmDIUOGICoqiqMIKT6U5EYjMzMTc+fORcuWLfH06VMOo6T4UJIbjX379qF+/fo4ffo07QZBFUITSQXiY8R2ca5cuYJRo0ax7v/y5Qtq1apVIR99Dhw4kHF7RUkk89WsWRNnz57F7du3Ubt2ballz58/j/r162PXrl10ME4Fl3+j8fbtW3Tu3Flq2RcvXqBVq1aYNWsW0tLSOIqQ4kP+jcanT58wbdo0CAQC1rKxsbEYMWIEevbsiZCQEA6jpJQZTSQViG3EtqurK8eRFHb8+HFMmzaNdX9kZCRsbW2RmJjIYVSKx/aeK2rLS6dOnfD69Wv8+eefUjvXp6amYtq0aWjbti2dEkYF1KpVCzdv3sSxY8ekrtMskUjw77//okGDBrhy5QqHEVJ8MDIywo4dO/Dw4UM4ODhILXv9+nXY29tj48aN5b5rEFV2NJFUoKCgIMbt0ga+cGXHjh1YvHgx6/74+HjY2tpWqMeeZmZmjBfO9PR0fPz4kYeIFE9bWxt//fUXXr58iXbt2kktGxAQgGbNmmHhwoXIzMzkKEKKDwKBAKNHj8aHDx8wbtw4qWUjIiLQv39/DBgwABERERxFSPHFyckJz549w4YNG1iX3AWArKwsLFiwAM2bN0dAQACHEVLKhiaSCkIIYVx2ysDAgLMR28VZs2YN1q9fz7o/JSUFderUYU2IyyNnZ2fG7du3b+c4Em41aNAAvr6+2L9/P4yNjVnLiUQibNiwAQ0bNiz3I9qp4pmZmeHgwYO4e/cu6tatK7Xs5cuXUb9+fWzbto12g6jgNDQ0MH/+fLx9+xbdu3eXWvb169do3bo1pk+fTuckVVHKkdFUQM+fP2ecTsfGxob7YKRYsGABdu/ezbo/IyMD9vb2ePPmDYdRKQ7bNEDXrl3jOBLuCYVCTJgwAR8+fMDIkSOllg0JCUGPHj3w66+/IjU1laMIKb64uLjg1atXWLlypdTBOOnp6fj999/h7OxMJ6xWATVr1oSXlxdOnToFCwsL1nKEEOzcuRP29va4desWhxFSyoAmkgpy4cIFxu1OTk4cR1K8KVOm4Pjx46ydrHNyctCsWTM8evSI48jkr0uXLlBXVy+yPSQkRGWmPLGwsMCJEydw48YN2NraSi17+PBhNGrUCHfv3uUmOIo3WlpaWLZsGV6/fi11qjAAePToERo3bow9e/bQEbwVnEAgwPDhw/H+/XtMmjRJatnIyEh06dIFM2fOpN1jVAhNJBXk3r17jNt79+7NcSSyGTVqFC5fvsz62D0vLw/Ozs7l/m5TIBAwTr9ECMHp06d5iIg/Xbt2xZs3b7Bw4ULG5Drf169f0bFjR8yZM6fCTg1F/U/dunXh4+ODQ4cOwdTUlLVcZmYmfvvtN/Ts2bNC9aWmmJmYmGDv3r3w8/Mrdu3u7du3o0mTJnj8+DFH0VF8oomkgnz48IFxe48ePTiORHZ9+/bF7du3WZMKsViMbt264eLFixxHJl9s0wAdOnSI40j4p6uri3Xr1uH58+do3bq11LJbtmxBs2bN8Pz5c46io/giEAgwduxYfPjwAWPGjJFa9vr162jYsCHOnDnDUXQUn9q1a4cXL15gzZo10NLSYi336dMntGnTBsuXL6cjuys4mkgqgEQiYZw6x8jIqNg1TvnWoUMHPHz4kLWflEQiweDBg3HkyBGOI5Of6dOnM25/9uwZx5EoDwcHB9y/fx+7d++GgYEBa7l3796hVatWWL16tcp0BVBllStXxpEjR3D79m3Y2dmxlktKSsLw4cMxcuTICjdtGFWUpqYmFi9ejMDAQHTq1Im1nFgsxl9//YXWrVvj/fv3HEZIcYkmkgrg6+vL2G+ouMmhlUWLFi3w/Plz1qkfCCEYO3ZsuR3pXLlyZcZHdikpKYwj7VWFUCjElClT8Pr1a7i4uLCWE4lE+PPPP9GuXTt8+vSJwwgpvnTq1AkvX75kHayW79SpU3BwcGBd1YuqWPLnJN22bRu0tbVZyz179gxNmjTB1q1bGQehUuUbTSQV4PLly4zbi5vHT5nY29vj3bt30NfXZy0zc+ZMrFmzhsOo5KdFixaM2yvaKjelYWNjAx8fH2zevFnqo6uAgAA4Ojpi165ddMCFCtDX18fu3bvh5eWFqlWrspaLiopCt27dMG3aNGRkZHAYIcUHoVCIGTNm4MWLF6zfq8D3QZuzZ8+Gq6srwsLCOIyQUjSaSCrAw4cPGbf379+f20DKyMbGBp8/f4aJiQlrmaVLl2LevHkcRiUfAwYMYNzu7u7OcSTKSSgUYs6cOQUtCWyysrIwbdo0dO/eHZGRkRxGSPGlR48eePPmDYYOHSq13K5du9CkSRP4+/tzFBnFp3r16uHhw4dYuXIl1NTUWMvduXMHDg4OOHr0KL0BrSBoIqkAnz9/LrJNIBCwToatzKpUqYLg4GCpc4ht2rQJkydP5jCqsmObR/HVq1ccR6Lc7O3t4e/vj6VLl0qdSN/b2xsNGzbEqVOnOIyO4ouZmRnOnDmDkydPSp3g/vPnz2jbti2WLl2K3Nxc7gKkeKGuro5ly5bB39+fcXaMfKmpqXBzc8OgQYMQHx/PYYSUItBEUs5yc3MZZ/c3NTVVmhVtSsrY2BjBwcGoXr06a5l9+/Zh+PDhHEZVNgYGBowXwMTERPo47ieamppYtWoVHjx4ILWfb3JyMkaOHInhw4fTFS5UxIgRIxAYGIiuXbuylpFIJFizZg2cnJwq7FKkVGHNmzfH8+fPMWvWLKnlLl26hIYNG6rEghAVWfnMbJQY27Jy9evX5zgS+dLV1cWXL19Qp04d1jJnzpxBr169OIyqbBo1asS4XdXmk5SVk5MTXrx4gWnTpkktd+bMGTpNkAqpVq0arl+/jp07d0pdm/nFixdo3rw5bbVWETo6OtiyZQtu374ttREiLi4OPXv2xKJFi+hMEOUUTSTljG2gTfv27bkNRAE0NTXx7t07ODo6spbx8vJCu3btysXIPLbJ4S9dusRxJOWHnp4eduzYgRs3bsDS0pK1XFBQEFq3bk0H4qgIgUCAqVOn4uXLl2jVqhVrufT0dIwcORJTpkyhk9uriE6dOuHNmzfFzke6fv16dOrUifa1LodoIiln9+/fZ9xeXMf08kJNTQ3Pnj2TOgL9wYMHaNasGcRiMYeRldzYsWMZtz99+pTbQMqhrl27IjAwUOqa3bm5uZg2bRpGjBhB1+tWEXXq1MH9+/exevVqqasl7d27F61bt6brdasIIyMjHDlyBBcuXEClSpVYy/n5+cHR0RE3btzgMDqqrGgiKWchISFFtqmrq6Nx48Y8RKMYQqEQfn5+6NmzJ2uZly9fokGDBkrdwb5y5cqM0xvFxcXRlRhkYGJighMnTuDMmTNSR/afOXMGzZs3x8uXL7kLjuKNuro6lixZgoCAAKlL6b18+RJNmzbFuXPnOIyO4tPAgQMRGBiIPn36sJb59u0bevTogaVLl9JH3eUETSTl6PHjx4wVv2bNmjxEo3ienp5SB9h8+vQJtWrVUurBK0wXOkIIrly5wkM05dPQoUPx+vVrqa3Unz9/hpOTE/bt20cfdauIpk2b4unTp5g0aRJrmbS0NAwdOhTTp09HTk4Oh9FRfLGwsMCVK1ewY8cO1hXUCCFYs2YNXF1dER0dzXGEVEnRRFKO2NZq7tChA7eBcOjUqVNSp/4JDw+Hra0tkpKSOIxKdt26dWPcfvbsWY4jKd+srKzg4+OD+fPns5bJycnB5MmTMXr0aKSnp3MYHcUXHR0d7N27F8ePH4eenh5ruZ07d6JNmzYIDg7mMDqKLwKBANOmTcPDhw+lNrT4+vrC0dERt2/f5jA6qqRoIilHd+7cYdxeXCfj8m7Pnj1SE4i4uDjY2toiJiaGw6hkM27cOMbtdBLlktPQ0MCGDRtw9epVxiUo8508eRLNmzfHmzdvOIyO4tOoUaPw9OlTNGzYkLXM8+fP0bRpU1y8eJHDyCg+5c/uwLZABPD9+tGlSxesWLFC6fvdqyqaSMoR0920mpoa2rZty0M03NqwYQNWr17Nuj85ORm1a9dm7EPKJxsbG8Y1YiMjI8vFyHNl1Lt3b7x48QKtW7dmLfPx40e0bNkSBw8epI+6VUS9evUQEBDAevMGfF/vftCgQfj999+Vun81JT/Gxsa4cOECtm7dCg0NDcYyhBCsXLkSXbt2VcoGCVVHE0k5efHiBeMADRsbGwgEAh4i4t6SJUuwbds21v3p6elo0KAB3r59y2FUxWOaG1MikdDHKWVgbW0NX19fzJ07l7VMdnY2JkyYADc3N6XuR0vJj66uLg4ePIjDhw9LnXNy27ZtaNeuHUJDQ7kLjuKNQCDA77//jvv376NGjRqs5Xx8fNCkSRPWp38UP2giKSf//fcf4/aKMH9kScyYMQOHDx9mTZ6zs7PRtGlTPHnyhOPI2Lm6ujJupxMnl42GhgY2bdqEy5cvS11G79ixY2jRogU+fPjAXXAUr9zc3PDkyROpCzU8efIETZo0gYeHB4eRUXxq2bIlnj9/jr59+7KWiYmJgaurK9asWUOfGikJmkjKCVvrlZubG8eR8M/NzQ0XLlxgXRIyNzcXbdq0UZq7SrbP6NGjRxxHUjH169cPL168QIsWLVjLvH//Hq1atYKXlxeHkVF8sre3x5MnT/DLL7+wlklOTkbfvn2xbt062gVCRZiamuLy5cvYtGkT61ykEokES5cuxbBhw+jTDCVAE0k5CQoKKrJNTU0Nzs7OPETDvwEDBuDGjRtQU1Nj3C8SieDq6gp3d3eOIyuqUaNGjHGGhYXxEE3FZGNjg/v37+P3339nLZOamorevXtj06ZNNGlQEXp6ejhy5AgOHDjA2FcZ+N4/bvHixRg1ahSysrI4jpDig0AgwNy5c3Hv3j2pyyueP38e7dq1o9/VPKOJpBy8fv2asWO4tbU1a6ucKnB1dcX9+/dZO1BLJBL0798fJ06c4DiyoqpUqVJkW2ZmJl2RRY40NTWxdetWXLhwAUZGRoxlCCGYN28e3Nzc6BJ6KkIgEGD8+PF4/Pgx6taty1ru1KlTcHZ2pkvoqZDWrVvjxYsXxS5+0bx5czx48IDDyKgfqW6WI0ds80eqamvkj5ycnPDs2TOprQ2jR4/G7t27OY6sMLZpSZShxbSiGThwIJ4/f45mzZqxljl27Bg6dOhAJyNWIQ4ODnjy5InUZTefPXuG5s2bIyAggMPIKD6ZmZnh6tWr2LBhA+sTrvj4eHTs2JF1rAKlWDSRlAO2dUEr+vyRsnJwcEBgYKDUCYmnTp2KDRs2cBhVYWyTxtM1XxXD1tYW9+/fl9o/LiAgAM2bN1eqgVmUYhkYGOD48ePYunUr69OcmJgYuLi44OjRoxxHR/FFKBRi/vz58Pb2Zp2jNi8vD+PHj8esWbPo0ooco4lkGRFC8Pnz5yLb1dTU0LFjRx4iUk52dnb49OkT6yNNAFi4cCEWL17MYVT/M3jwYMbtT58+5TgS1aGtrY0jR47g77//Zh3lHxUVhfbt2+PkyZMcR0fxJX8qmGvXrrGO9s/JyYGbmxvmzZtHJ6lWIZ06dcLjx4+lruH+77//omfPnkq7mlpFRBPJMrp27Rrj3Y+NjY1K949kYmlpiaCgIFSuXJm1zLp16zBt2jQOo/quVq1ajCMEaSduxRIIBPjjjz/g4eEBQ0NDxjLZ2dkYNWoUFi9eTKf7UCFdu3ZFQECA1H6TmzZtQp8+fZCSksJhZBSf7Ozs8OjRI/Tp04e1zM2bN9GyZUu8f/+ew8hUF810ymjv3r2M23v37s1xJOWDmZkZgoODUa1aNdYyu3btwujRozmM6jsLC4si2zIzM+mgDw707NkT/v7+qFWrFmuZdevWoX///nQAlAqpU6cOAgIC0KNHD9Yy165dQ6tWrRifDFEVk6GhIS5fvoxFixaxlvny5QucnJzolGIcoIlkGfn5+TFunzVrFreBlCP6+vr48uWL1KThxIkTUu84FYFtwA2dKJsb9evXx+PHj9GlSxfWMlevXkWbNm0Yp9uiKiYjIyNcvXoV8+bNYy2Tv+TmzZs3OYyM4pNQKMTatWtx8uRJ1sGcdEoxbtBEsgyio6MZ+2EYGhrCxsaG+4DKEW1tbbx//x4ODg6sZTw8PNChQwfOHmeyDbj59OkTJ+enABMTE3h5eUm9EXv79i1atmwJHx8f7gKjeKWmpoaNGzfiyJEj0NTUZCyTnJyM7t27499//6VJgwoZMWIE/Pz8WJ9y0SnFFI8mkmXAtq5069atOY6kfFJXV8fLly+l/r58fX3RsmVLTpJJtgE3dN46bqmrq2PLli04ePAg6xykiYmJ6Nq1K/bt28dxdBSfxowZA19fX8Z5X4Hvc9POmjULkydPpiN3VUj+7A6tWrViLZM/pVh8fDyHkakGmkiWweXLlxm3jx8/nttAyjGhUIiHDx+ia9eurGWePXsGe3t7xknf5YltwA3tyM+PcePG4c6dOzA3N2fcLxaLMXnyZCxfvpy2QKkQJycnPH36FM2bN2cts3//fvTv358un6dCqlatirt37xY7pVjbtm0RHBzMYWQVH00kS0kikTB27hYKhRg0aBAPEZVvN27cYG0RBL73U6xTpw4yMzMVGgfTgJu8vDyFnpNi17ZtWzx58gSOjo6sZf766y9MnDiRtkCpkGrVquHevXtSJy/39PREp06daAuUCsmfUmzTpk2ss6Z8/vwZrVu3xrNnzziOruKiiWQpXbp0iXH+stq1a9Npf0rp3LlzUltzv379Cjs7OyQnJyssBrYBNxR/rK2tcf/+fQwZMoS1zMGDB9GvXz/aAqVCdHR0cPz4caxbt451HtLHjx/TFigVk79Ot7QpxeLi4uDi4kIXnJATmvGU0v79+xm39+vXj+NIKpYDBw5gzpw5rPtjYmJgZ2eHuLg4hZyfbcANxS89PT2cOXMGK1asYC3j5eWFjh070hYoFSIQCLBw4UJcuXKFdeUs2gKlmnr06IGAgADY2dkx7s/IyEDv3r3pCklyQBPJUnr06BHj9pkzZ3IcScWzefNmqQlDYmIiatWqha9fv8r93NIer1P8EggEWL58OQ4dOsS65u6TJ0/o9EAqqE+fPrhz5w7rYge0BUo11atXDw8fPmTtTysSieDm5oZ169bRftZlQBPJUggNDWWcFNnExETqRNuU7JYvX44tW7aw7k9LS0P9+vXlvnJBrVq1WJMUSjmMHTsWV69eha6uLuP+L1++oE2bNnR5SxXTokULPHz4kLZAUYWYm5vjzp076N69O2uZxYsXY/r06XS5zVKiiWQpsCU4bdu25TiSim3WrFk4cOAAa/+nrKwsODo64vnz53I9r5mZmVyPR8lfjx49cPfuXaktUB06dMD169c5joziU61atWgLFFWEvr4+3N3dMXbsWNYyu3btwpAhQ5CVlcVdYBUETSRLgW3an8mTJ3MbiAoYP348zp49y5pM5ubmolWrVrh3757czmlrayu3Y1GKI0sLVJ8+fXDkyBGOI6P4lN8CJW1ZRdoCpXo0NDTw33//YcmSJaxlLl26hC5duiAxMZHDyMo/mkiWUGpqKsLCwopsV1dXR8+ePXmIqOIbPHgwrl27xvrIWSQSoWPHjnJbU1XaVDOUcpGlBWrs2LFYu3YtbYFSIfr6+rhy5Qp+/fVX1jK0BUr1CAQCrF69Grt27WKdXeXBgwdo164d43WeYkYTyRJie6zt6OhIp/1RoG7dusHX15dxwnDg+7yevXv3xpkzZ8p8LhcXlzIfg+KOLC1QS5YsoS1QKkZDQwMHDx7E0qVLWcvQFijV9Ntvv+HChQusa3S/f/8erVu3xuvXrzmOrHyimU8JnTx5knH7xIkTOY5E9eRPTq2lpcW4nxCCESNGlHnZvG7dupXp9RT3StICRdfbVR0CgQCrVq3C7t27aQsUVUj//v1x69YtmJiYMO6PioqCs7Mz7ty5w3Fk5Y/KJ5JZWVlISkpCUlIS4womYrEY9+7dw7dv35CYmMi6ms24ceO4CFflOTo64s2bN6wjdgkhmDx5MjZv3lzqc5iYmLC2fP4oOTkZSUlJdAlFJSFrC1SvXr2Qnp5eqnMQQgq+L5hmbgCA9PT0gjJcrBFPFW/KlCm4ePGi1Baodu3aMX6/yyotLa3gc2eSnZ1dsF/Ry71Ssmnbti0ePHgAa2trxv2pqano0aMHPDw8Sn2O4nIMkUhUsF/RK7cpDFFxjx49IgBk+qlXrx7j9gYNGvD9NlROeHg4MTQ0lPp5/fnnnyU6pkQiIV+/fiXXrl0jBgYGMteLGTNmKOhdUqW1e/duIhQKWT8zJycnkpiYWKpjd+7cWaZ64ejoSCQSiZzfGVUWDx48IKampqyfmYWFBXn9+nWpjr1y5UqZ6oWOjg6Jjo6W8zujyiIyMpI0btyY9TNTV1cnp0+fLtWx79y5I/O1xMPDQ87vjBsqn0gSQkj37t1l/qCZfjZs2MD3W1BJ8fHxxMzMTOpnM3PmTJmPFxoaWmxy+vOPlpYWiYiIUOC7pErr8uXLRFtbW2qiFxsbW+Lj3rt3T6a6cenSJfm/KarM3r9/T2rUqMH6uZmYmJCAgIASHzcpKYkYGxsXWy/mzJmjgHdFlVVycjLp1KkT6+cmEAjIgQMHSnVsFxeXYutF8+bNy+2NJ00kSclaJZl+Ro4cSTw8PEh2djbfb0XlpKSkkKpVq0r9fNzc3GQ+3smTJ0v02dPWSOVWXAtUvXr1SHh4eEF5sVhMkpOTiz1uca2StDVSuUVFRUltgdLX1yd3794t9BpZWrCLa5WkrZHKLScnh4wYMULqZ7h169ZCr5GlXsjSKlleWyMJoYlkAWmtktWrVy+2EmhoaBAvLy++34ZKysrKIra2tlI/nwEDBhSUDw8PJ35+fqzHGzNmjExJJG2NLB/evHlDLCwsWD9HGxsbEhQURCQSCZkyZQpZu3Ztscf08/OTWjdoa6TyS0pKIq1bt2b9DLW1tcm1a9cIIYQcPXqU9OrVS6ZjSmuVpK2Ryk8sFpMpU6ZI/ftetWoVkUgk5OXLl8TOzo7k5OQUe1xprZLluTWSEJpIFpDWKrlp06Zik8grV67w/RZUWl5eHmnQoIHUz6lz584kJiaG1KtXjwwcOJD1WKmpqcUmpgBtjSxPPn36RKytrVk/y6pVqxI3NzcCgDg4OMh0TFdXV8Zj0dbI8iMtLU1q67KGhgaZNWsWEQqFRF1dncTHxxd7TLZWSdoaWX5IJBIyb948qd//EyZMIJUqVSIAiLu7e7HHlNYqWZ5bIwmhiWQhTK2S9vb2JD09nSaR5YBYLCYtWrSQ+sevo6NDABBNTU2pjyT8/f2JmpoabY2sQL5+/Upq165d7A0CABIYGFjs8e7fv8/42osXL3Lwbih5ycrKIn369JGpXuzevbvY4yUnJzO2Ss6ePZuDd0PJi0QiIatXr5apXowYMUKmYzK1Spb31khCaCJZCFOr5NmzZwkhhFhaWtIkshwQi8Uyj6rds2eP1GP99ddftDWygomJiSEODg7F1o0lS5bIdLyfWyVpa2T5lJubS4YPH15svWjfvr1Mx/u5VZK2RpZfW7duLbZe6OrqkvT09GKPxdQqWd5bIwmhiWQRP7ZK2tvbE7FYTAghpE2bNjSJLEf69+9f7B9/27ZtpR4jLy+PtGrVirZGVjAJCQmkZcuWUuuGra2tTAnhz30lad/I8kskEpEJEyZIrRcCgYCEhYUVe6yf+0rSvpHl28GDB4lAIJBaN06dOiXTsX5slawIrZGE0ESyCH9//yKtkYQQMnLkyEKJBB1Yo/zy+7xJ+wkKCpJ6jI8fPxY8DtfS0qKtkRVEamoqqVOnjtS64e/vL9Ox8lslaWtk+SeRSMiwYcOk1ou///5bpmPlt0rS1siKYceOHVLrRZ8+fWQ6zo+tkhWhNZIQmkgy6tGjR6HWSEIIWbx4ccGXwq1bt3iMjpKVSCQidevWlfrHv3LlymKPs3PnTgKAjB8/nrZGVhB79+4t9iZj7ty5Mh0rv1WStkaWfwEBAcUuRtCyZUuZjpXfKklbI8u/uLi4YgdzampqyjR1GCHfWyUrSmskITSRLCIvL48EBASQS5cukby8vIIPet++fURfX5/4+vryHCElC7FYTMaPH19sslCrVq1i/5glEgkZP348iYuLI3///TfJzc2tMF8AqujZs2cFrczSfqytrWWqGzk5OeSvv/4i2dnZhW4+qfIlOTmZ1KpVq9h6AYCEhIRIPZZEIiG5ublk586dJCIigohEIm7eBCV3EomEDB48WKZ6cfTo0WKPl5eXR3x9fcn169dJXl4eB+9A8QSEEAIVJhaLkZKSgrS0NGRlZUEkEhXar6amBm1tbSQmJiIvLw9OTk48RUqVRHh4OJYvXw4PDw/Ex8dLLfvo0aMinyshBGlpaUhJSUFWVlaRtXEFAgG0tbWhp6cHExMTaGlpyf09UIqTnp6O69ev49KlS/Dw8GBdN9vf3x+tWrUq+DchBFlZWUhOTkZmZiays7OLvEZLSwu6urowMjKCnp4eBAKBwt4HJV8ikQj379/HpUuXcOnSJYSHhzOW+/vvv/HHH38U2pabm4ukpCRkZGQgOzu7yDrrGhoa0NHRgaGhIQwNDSEUChX2Pij5IoQgMDCwoF68fPmSsVyfPn3g7u5eaJtYLEZycnJBjiEWiwvtV1NTg46ODvT19WFsbAx1dXVFvQ2FUdlEUiQSITY2FsnJySjJr8DIyAgWFhbQ1NRUYHSUvIjFYgQEBMDd3R3u7u54//59kTJTp07Fzp07AXz/wvj27Ru+fftW5A9eGl1dXVSpUgW6urpyi53iRm5uLu7cuYOLFy/i4sWL+PbtW8G+uXPnYtOmTQCAlJQUxMXFIScnR+Zja2howNzcHMbGxjShLGcIIXj+/DkuXryIc+fO4fPnzwX7WrRogcePHwMAsrKyEBMTg4yMDJmPLRQKYWZmhsqVK9OEshwKCQnB5cuXceHCBTx48KBgu6amJuLi4mBkZASRSISYmBikpKSUOMeoUqUKNDQ0FBG6QqhkIpmcnIyoqKgid4yyEggEqFKlCkxNTenFoZz5/Pkzrl69iqtXr8LPzw9isRimpqaIjo6GSCRCZGRkiRKFn5mYmKBKlSpQU1OTY9QUV0QiEe7evYtz587hwoUL0NPTw+fPnxEdHY20tLRSH1dPTw/VqlWjN6DlFCEEr1+/xrlz53D27Fl8/vwZwcHB0NHRKXTjUVIaGhqoVq0a9PX15RgtxaWIiAicP38e586dw8OHD3H06FH07t0b0dHRZcoxqlatChMTk3KRY6hUIkkIQUxMDBISEuRyPCMjI1SrVo3eUZZTiYmJuHbtGtzd3fH777/D0NBQLsfV0tKCjY1NubqjpIrKf8xpbm5e6gvCj4RCIWxsbGirdTlHCMGrV6/k+gjS0tISpqamcjsexY+wsDDEx8fLrauTsbExqlWrpvTJpEolktHR0XJLIvMZGhqievXqSv9BU+xSUlJY+0KVlqamJmxtbctlfxfqu+zsbAQHB8slicwnEAhQs2ZNmkyWY2KxGCEhIYz9Y8uCJpPlGyEEUVFRSEpKkutxjYyMYGVlpdQ5hso0paWkpMg9iQSA1NTUMj3aoPiVk5ODiIgIuR83NzcXERERJeobQykPiUSCsLAwuSaRwPeLTVhYWIn631LKJTo6Wu5JJABERUUhKytL7seluJGcnCz3JBL4nrskJibK/bjypLBEMjw8HB06dECDBg3QqFEjnDt3TlGnKlZeXh4iIyMVdvzY2Fj6BVAOEUIQHh6usGQvPT1dIV8slOLFxsYWGakvLyKRCFFRUQo5NqVYqampSE5OVtjxw8PD5X7zQilebm6uQv+mY2JiytR3X9EUlkiqq6tj69atePfuHW7duoXZs2eXaFSbPMXHxyv8jzM2Nlahx6eKV9w0Pz9LSUlRSMvCj2JjY+mFgWcJCQkl+gxyc3MV8vTiR/nTSlH8ycjIKNE1iRCC6OhoBUb0vymEKH6V9FoSFxen0KdPhBClzjEUlkhWrVoVjo6OAABzc3OYmpry0jwrFos5+cNMT09X6jsGVTBr1iz07NkTAQEBMpVXdLIA/G+eUoo/586dQ+PGjXH+/HmZEkquvqe4qH8Uu69fv8LW1habN2+WKaFMS0tDXl6ewuP69u0b7RLDM0dHR8ycOVOmJ5kikUihrdT5UlNTFfaUpKxKnEhKJBLUq1cPCxYsKLT9xo0b0NTUZHyE/fTpU0gkElSvXr30kZZSSedwKovLly/jxIkTuHnzJifno4q6du0anJycik0os7OzOWsRUvb+LaogMDAQQ4YMKTahJIRw9nklJyfT1mqexcXF4Y8//pApoeSqpTAvLw+ZmZmcnItilp2dje3bt8POzq7YhJKLJJKPc5VEqUZtHzlyBDNmzMDXr19hYmKCV69ewdnZGcuWLSsy239CQgKcnZ1x4MABtGnTRm6ByyoiIoKTX/7Dhw8xefLkgn+PGjUKdnZ2Cj8v9T8XL15EYGBgoW09evTA8uXLC61OAnxP7rjsp3b79m2aUPLk6dOn8PLyKrStYcOGWL58OQYOHFho+q6cnJxCE08rWnh4OPz9/Tk7H/U/8fHx2L17d6Ft5ubmmD9/PqZMmQI9Pb2C7YQQfPjwgbNBUiKRCJcuXeLkXFRRGzduLNTtSUtLC5MmTcKCBQtQrVq1QmXDwsJYV8aSN319fdjY2HByrpIoVSIpEolQp04duLm5Yfz48XByckK/fv0KVgfJl5OTgy5dumDixIn45Zdf5BZ0SXz69EnhzcEPHz7E7du3cfbsWSxduhSrV69W6Pmokvs5oYyMjOS0L9Ls2bNx69Ytzs5HyebnhDI5OVkho/jZ+Pj44Pfff+fsfJRsfk4oc3Nz8enTJ87On5iYCBcXF87OR8mGKaH88OFDkaWVFUUoFKJ+/fpKNxVQqfpIqqurY8GCBdi2bRt69uyJpk2bYtu2bYXKEEIwduxYdOrUibckEoDC+7Tkt0SePXsWANC6dWuFno8qnZ8feXPR1+lHlSpV4vR8lGx+fuTNdR8kAwMDTs9HyebnR95lWdWoNOQ1oTUlXzk5OYUeeUdERHCWRALfuxYqY//ZUg+2GTVqFDIzM0EIwalTp4osCffgwQOcOXMGly9fhqOjIxwdHfHmzZsyB6xs8h9XLl26FJ6enujZsyc8PT2xdOlSniOjmFy7dg3z589X+Gjtn9ElE5VbYGAgFixYgNDQUE7PS1fFUm5xcXFYtWoVrl+/zul5la3FiSosJycHu3btwtq1azk/tzImkqVedmP69OkAvo8wY7pItmvXTik6kgsEAoX+4vNXIsh/nO3p6YlevXop7HxU6Tk7O2PlypXo0KEDwsPDOevXAoDzxJWSna2tLf7880+MGjUKKSkpiImJ4ezcXLeMU7IzMjLC7Nmz8fvvv0NLSwtBQUGcnZtOWK+81NTUMGbMGCxZsgR2dnZ4+/Ytp8mdMt58liqiP//8E56envD394dIJMLBgwflHZfcaGtrK/T4bdq0wd69ezF06FAAwKNHjxR6PqrknJ2d4ePjA19fX3Ts2BECgYDzR0dct3RRxbO1tcWhQ4fw4cMHjB07FhoaGgr/vvhZSeeroxTPyMgIK1asQGhoKJYvXw5jY2POvy/oqG3lo6amhl9//RUfP37Ef//9VzCYlsu6oampqZSt1SUebHPgwAHMnDkTPj4+cHJywpo1a7Bv3z58+fIFGhoaioqz1GJiYjhZwvDnUduXL19Gp06dFH5e6n/Gjx9faPop5/9r7/59k/gfOI6/rgeF41fvoAJFCrQO/gdqTD6juzFx0oTEuGkHV3XoaIz/gnFwcHL2r3DW6IQNGpsIGEOOEuC+wzeQGn/hlbse8nxsNPR9lxy59+v9+7//tL+/PwuPx3379k2tViuU+zJNU9vb25EcklgFT58+1b1792afz507p4cPH+rGjRs/vLPG47HevHkT2r3VarVIVgyr4O3bt7pw4cLs8/EeSNu2f/j++/fvQ9sruFwuM0/yFNXr9dliTNM01Ww2df/+/Z/uxPLx48fQduSwbVvVajWUa/2NvxrafvXqle7cuaMXL17o0qVLkqS9vT09efJEz58/161btwK5yZPIZDKhBMnLly/r5cuXcl1XxWJRV65cCfya+N40FBwfwv5VJZ1KpQKf9jCVzWaVyWQCvw5+btrLOA2QN2/eVCz281efaZqyLCuUPUbj8biy2SxB8pRMt/f5U4CcymazoQXJjY2NSHbMrArDMGYB8sGDB9rd3f3ld7PZbGhBMqqL8+YOkq9fv9b169f1+PFjXbt2bfb3XC6nvb09PXr0SM1mM3KLCtLptBKJROAvANM0dfXq1UjOX1gVFy9e1O3bt38bIKdM05TjOKG8AFixfbqq1aqePXv22wB53Obmpg4ODgK/r83NTULkKUomk9rf3/9jgJzK5/OhdErkcjlC5ClrNpu6e/fubwPkVCaTUTweD3y+cywWUy6XC/QafvnaR3LZdLvduY46OolisahisRjoNbBYYWw+nU6ntbOzE+g1sFie5+ndu3eBVgxra2s6f/585Bre+L2Dg4PAjzzd3d1VKpUK9BpYrDAOuCiXy5HtlFiJ7jPbtr87pWDREolEZB8wfi2RSAQa/g3D+OEUBESfYRiBz0M6e/YsIXIJbW1tBfrcCoUCIXIJOY4T6HNLJpMqFAqBlX9SKxEkpxVDEMPOhmFoe3ubIe0ldebMGVmWFUjZlUpF6+vrgZSNYKXT6cAah7Zta2NjI5CyEaxYLBZY4zCRSKhUKgVSNoIVRsaI8jSYlUk/8XhcOzs7C33QhmGoVquFvmUIFscwDNXr9YWvkCwWi3IcZ6FlIlylUmmuuXN/I5PJqFKpLLRMhCuXyy38GcbjcTUaDTokltj6+roajcZCA59hGGo0GpFfwb8ScySPGwwGarVaJ57/ZJqmarVaoEPmCM94PNaHDx/U7/dPXNbW1lakhyEwP8/z9Pnz54UssnAcR5VKJdI9C5hfr9dTu90+8c4PlmWpXq/PtRAM0ee6rlqt1omPTjRNU/V6fSmmOqxckJT+f17l4eGh78rBtu3A58ogfJ7nqdfr6dOnT75OZbIsS9VqNfKtR/y9fr+vdrvt6yzu6XBoVLfugH/D4VDtdttXA9QwDJVKJRUKBRoX/5jxeKzDw0N9+fLF1/87jqNyubw0GWMlg+TU0dGROp2Out3uH4ODYRiybVv5fD6wOXWIhtFopG63q06nM1fPdSaTUT6fZ0/Af9xkMtHXr1/V6XTm2mcymUwqn8/Ltm2GLP9hnuep3++r0+nMdexqLBZTPp+X4zhs8/OPGwwG6nQ66vV6c2UMx3HkOM7SZYyVDpJTk8lErutqMBjIdV1NJhN5nifTNJVMJpVMJmVZ1tK0DrAYnudpMBjMfhej0Uie52ltbU3r6+uyLEuWZVEZrKDhcCjXdeW6robDoTzPk2EYisfjs98FPdOrZzQazX4XR0dHmkwmMgxDsVjsu7qEBudqmWaMac74WcZIpVJL2+AkSAIAAMCX5Yy/AAAAOHUESQAAAPhCkAQAAIAvBEkAAAD4QpAEAACALwRJAAAA+EKQBAAAgC8ESQAAAPhCkAQAAIAvBEkAAAD4QpAEAACALwRJAAAA+EKQBAAAgC8ESQAAAPhCkAQAAIAvBEkAAAD4QpAEAACALwRJAAAA+EKQBAAAgC8ESQAAAPhCkAQAAIAvBEkAAAD48j9Nvk3ZxQAl8AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFUCAYAAACX0dxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgK0lEQVR4nOzdd1QT2dsH8G9C703AgohgRxQ7FsSCXexdV1372taydteydldX197r2jsCKioWbNgLdukdpXdIct8/fOEnMhMCJDMJuZ9zOLvO3Mw8IZfMM3duERBCCCiKoiiKoiiqhIR8B0BRFEVRFEWpJppIUhRFURRFUaVCE0mKoiiKoiiqVGgiSVEURVEURZUKTSQpiqIoiqKoUqGJJEVRFEVRFFUqNJGkKIqiKIqiSoUmkhRFURRFUVSp0ESSoiiKoiiKKhWaSFIURVEURVGlQhNJiqIoiqIoqlTUKpEUi8VYtWqVXI61fPlyCAQCBAYGyuV4FH/kUS86d+6MBg0awNnZGa6urnj58qV8gqN4Vda6kZ2djT59+qBWrVpwdnZG165dERoaKr8AKV7I4ztj+vTpsLOzo9cRNSTPXEQZqFUi+ebNG5w9e7bMx3n+/DkePXoEW1tbOURF8U0e9eL06dN4/fo1Xr58idmzZ2PMmDFyio7ikzzqxoQJE/Dx40e8fPkSPXv2xIQJE+QUHcUXedSLAQMG4N69e6hWrZqcoqJUhbxyEWWhNonku3fv0KNHD0RFRcHZ2RlLly4t1XFycnIwZcoU7NixAwKBQM5RUlyTV70wNTUt+P+UlBQIhWrzp1VuyaNu6Orqonv37gXfFS4uLggODpZ3qBSH5PWd0bZtW9jY2Mg5OkrZyav+KBNNvgPgSr169dC3b1/UqVMHU6dOLfVxlixZghEjRqB69epyjI7ii7zqBQCMHDkSt27dAgBcvXpVHuFRPJJn3ci3ZcsWeHh4yOVYFD8UUS8o9VEe649aNZs8ffoUTZs2LbLd1dUVFSpUYPyJiIgoKPfw4UM8efIEkydP5jJsSsHKWi/yHTlyBBEREVi5ciXmzJnDReiUgsmrbgDA6tWr8fnz53LVN0pdybNeUOqHrf6oKgEhhPAdBBdEIhHMzMzw9etX6OrqluoYa9euxZYtW6CtrQ0AiIyMhLW1Nfbt24du3brJM1yKI/KoF0z09PQQGRkJCwsLuR2T4pY868aGDRtw8uRJ3Lhxo1A3CEr1yPs7w87ODl5eXqhfv74coqOUnaKuOXxSmxbJyMhIGBkZlemDmz9/PqKjoxEaGorQ0FDY2Njg2rVrNIlUYfKoF6mpqYiOji7494ULF2BhYQFzc3N5hEjxRB51AwD++ecfnDhxAtevX6dJZDkgr3pBqafyWH/UJpG0sbFBgwYNULt2bSxcuJDvcCglIY96kZKSgj59+sDJyQkNGzbE9u3b4eXlRQdjqTh51I3IyEjMnj0bycnJaN++PZydndGiRQs5R0pxSV7XkilTpsDGxgaRkZFwd3dHjRo15BglpazKYy6iNo+2KYqiKIqiKPlSmxZJiqIoiqIoSr5oIklRFEVRFEWVCk0kKYqiKIqiqFKhiSRFURRFURRVKjSRpCiKoiiKokqFJpIURVEURVFUqdBEkqIoiqIoiioVmkhSFEVRFEVRpUITSYqiKIqiKKpUaCJJURRFURRFlQpNJCmKoiiKoqhSoYkkRVEURVEUVSo0kaQoiqIoiqJKhSaSFEVRFEVRVKlo8h2AMpBIJMjKykJWVhays7MhkUhACIGGhgZ0dHSgp6cHPT09aGho8B0qxSFCCLKzswvqhUgkAiEEQqEQ2traBfVCS0uL71ApjuXm5iIzMxPZ2dnIzc0FIQQCgQBaWloF9UJHR4fvMCmOiUSignqRk5MDiUQCgUAATU1N6OrqQldXF3p6ehAIBHyHSnFIIpEU1Iufc4z8eqGvrw+hUDXb9tQ6kczJyUFiYiKSkpIgkUiklhUIBDA1NYW5uTn09PQ4ipDig0gkQlJSEhITE5GXl1dseUNDQ5ibm8PIyIheIMoxiUSClJQUJCYmIisrq9jyurq6MDc3h6mpqcpeIKjiEUKQkZGBxMREpKamFlteU1MT5ubmMDMzozeh5Vx2djYSExORnJwsU45hZmYGMzMzlcsxBIQQwncQXJNIJIiPj8e3b99K9XpTU1NUrFgRmppqnYeXO4QQJCUlITY2ttg/eiZ6enqwsbGhLVHlUEZGBqKiopCbm1vi12pqaqJKlSowMjJSQGQUn3JzcxEVFYWMjIwSv1YgEMDa2hoWFhb0BrScEYvFiI+PR0JCQqleb2ZmhooVK6rMU1C1SySzs7MRFhYmU0uTNBoaGrC1tYWBgYGcIqP4JBaLER4eXqoLws8qVaoECwsLOURF8Y0Qgri4uFLfdP7I1NQUVapUoUlDOZGcnIyoqCiU9RKqp6eHatWq0YaJciIrKwthYWEQiURlOo6GhgaqVasGfX19OUWmOGqVSGZlZSEkJKRUrU1MBAIBbG1taUuDihOJRAgJCUFOTo7cjmllZQUrKyu5HY/iHiEEkZGRSElJkdsxDQ0NYWtrSx91q7jExERER0fL7XhaWlqwt7enj7pVXGZmJkJCQsp8c5FPIBDAzs5O6Rus1ObbLC8vT65JJPD9QhMeHo7s7Gy5HZPiFiEEYWFhck0iASA+Ph5JSUlyPSbFrbi4OLkmkQCQnp4u1wSE4l5qaqrcP8O8vDyEhobK9fpEcSs3NxehoaFySyKB79en0NBQuV+f5E2hiaSXlxdq166NmjVrYt++fYo8lVT5LQuK+CMlhCAiIoJ+Aaior1+/yjRwojSio6NL1aeO4l9GRoZcHmczSU5OlnuCSnFDJBIhKipKIcfOyclBXFycQo5NKRYXOYYyPzxWWCIpEokwa9Ys+Pn54fnz51i3bh0SExMVdTqpkpOT5dL3jU1OTo7CLjqU4uTk5CA+Pl5hxyeEKOyiQylO/kVBkaKioiAWixV6Dkr+YmJiFPq5JSQkIDMzU2HHpxQjKSlJoZ9bdnZ2qQfucEFhieTjx4/h6OhYMFqxe/fuuHbtmqJOx4oQwkmS9+3bN9oqybN///0Xfn5+Mt+5cfGHmZGRQbs+8MzLywuHDh2SufN7ampqmQfjFUcikSA5OVmh56CkCw4OxvLly2X+HHJzczlpSaaNEvybNWsWgoKCZCpLCMHXr18VHNH3eqGsrZIlTiQlEgnq1KmDefPmFdp+7do1aGtr48yZMwC+P9arUqVKwX4bGxteWmcyMjI46V+QP8ccxZ/Hjx+jY8eOcHNzKzahFIvFnPVhpBcGfkVGRuLXX39FnTp1ZEooufq8lPnCoA6ys7OxbNky2NnZyZRQcvVEjYsbGUq6w4cPo3bt2hgzZkyxCWV6ejonn5dIJJJpnlI+lHi+AaFQiAULFmDatGmYP38+zMzM8OrVKwwcOBCrV6/GwIEDAYDxC5KPaS/S09M5O1dKSgqdwoFH+X/M/v7+6NixI1xdXbFs2TK0b9++SN3LzMzk7CKelpaG9PR0mjTwJL9FOCgoCL/++itWrFiBxYsXY8SIEUVGyYrFYoX1mf1ZXl4eUlNT6QhunuR3d0pJScGyZcuwadMmzJw5E7///jtMTU2LlE9LS+MstqSkJJWblLo8IYRALBbj4MGDOHLkCEaOHIlFixbBwcGhSFku60VaWhpMTEw4O5+sSjX9j0gkQq1atTBq1CiMHTsWLi4u6N27N7Zv315Q5sGDB/j7779x4cIFAMDvv/+OFi1aYNiwYfKLXgbBwcGc9TlJTEyEm5sbJ+eiZMeUUMbFxXHyOCJf7969ERwczNn5qOLZ29sXSSjT09MRGhrKWQyrV6/GiRMnODsfVTwTE5MiCaVEIsG7d+84i8HX1xezZ8/m7HxU8TQ0NBgTyi9fvnDWfUlbWxu1atXi5FwlUapbYU1NTcybNw9btmxB9+7d0bhxY2zZsqVQmebNmyMwMBBRUVFIS0uDj48PunTpIpegS4LL/mn0cYRyym+h/PGRN9fTKdD+s8onODgYY8aMQZ06dXDw4EHk5eVx3p+VDrhRPvktlD8+8ub6+4LO9qB88lsof37kzWXdyM3NVconW6V+pjJ8+PCCx4MnTpwospSPpqYmNm7ciPbt26NRo0aYM2cOL6t9KOMvneLHjwmlokflUqrjx4Ty3r17fIdDKYkfE8pdu3Zxem563VJePyaUv/32G+dJvzI2SpS6Q9/UqVMBfO8wzrYeZK9evdCrV6/SnoKi5K579+5YunQprKysOO0/Sym3+vXrY+nSpWjZsiWnXR4o5WZlZYW5c+dixIgRdI5HqoCOjg4mTJiAuXPncj77gjIusVqqFsk///wT3t7eePToEUQiEfbv3y/vuOSGyyWnlPEDpr7r3r07AgIC4O3tjebNm3O+FBmtG8qpfv36OHPmDF69eoUBAwZAR0eH0/PTeqGcrKyssGHDBgQHB2P27NmcD3CggzaVk46ODqZNm4agoCBs2bIFNjY2nH5WQqFQKb8zSjzYZt++fZg+fTr8/Pzg4uKCVatWYc+ePfjy5YtSrhMaGRnJ2R2DWCzG+fPnOTkXVdT58+cRGBhYaFu3bt2wbNkyNG/evNB2ea+VW5zr16/TeQN58vTpU/j4+BTaVr9+fSxZsgT9+/cvNGo6JycHnz9/5iy2wMBAvH//nrPzUf/z9etX7Ny5s9C2/BbISZMmFVrfmBCCDx8+cNanNS4uDnfv3uXkXFRR69evL9RfOr8Fct68eYWmNQSA8PBwzqblMTQ0hJ2dHSfnKokSJZJXrlxBnz59cOLECfTr1w/A9zmvqlWrho0bN2LMmDEKC7S0uEwYKlSogIoVK3JyLqqo4cOH4/jx4wD+9wj75wQyX3Z2Nr58+cJJXHp6eozTRlDc2LVrF3777TcA/3uE3a9fP8ZpdwgheP/+PWf9kOrVq0en/+HJu3fv4OjoCIA9gfxRWFgYZ1O9VK9enTUOSvEsLCyQmJgIHR0dTJw4EfPmzUPlypUZy3779g2xsbGcxGVlZQUrKytOzlUSMn+DPXv2DAMHDsT69esLkkgAMDY2xrRp07B27VqlHIFoYmLCWVOwmZkZJ+eh2P38CJuNrq4uZ/O0mZubc3Ieit3Pj7DZkjeBQMDZ52VqakqTSJ79/AhbWvLG1fe7lpYW9PX1OTkXxUxXVxfTp09HcHAw/v33X9YkEgDjnKOKwuW5SqJU80iqmujoaIWvSqCsTc7q5OvXr7C0tJS5fHJyssJHb2toaKB27do0YeBRQkICzMzMZP4McnNz8enTJwVHBTg4ONBJp3mUPyG5rC1/hBB8+vRJ4dO8VapUiZcZTqj/Kem1hIsudMbGxrC1tVXoOUpLLa5ulpaWCr+QW1tbK/T4VPFK8ocPfG+t1tXVVVA031lbW9MkkmcWFhYl+gy0tbUVfiE3MTGhSSTPDAwMSvT4WCAQoFKlSgqM6Hvdo0+2+FfSa4mVlZVCn3wKBAKlzjHU4gqnpaVVpIOsPFlbW9OLggoSCASoWrWqwr4ADA0N6UVBRVlbWytsBLempqbUR2WU8jI2Nlbo48WqVavSG08VpK2trdC/6YoVK3I+o0RJqE2NNTExUUgrg0AggLGxsdyPS3FDR0cHNjY2cj+utrY2bGxslHKqBqp4QqFQIRd1gUAAW1tb1rl3KeVXqVIlhTzJqFy5Mm2QUGGmpqYKaTgwMTFR+n72apNIAt+z+goVKsjteCYmJrh58yYqVKiAvn37Yu/evXTFFBWSmJiI//77D+PHj0dISIjcjqujo4Pq1avTueBUVHZ2Nq5cuYKZM2fi8uXLckv6hEIhqlevTgdSqCiJRIKAgAAsXboUq1evlmvSV7lyZaVPFih2X758waZNmzBu3Dhoa2vL7bimpqYq0SChFoNtfpacnIyYmJhSjzIXCASoWLEizM3NkZCQgMqVKxfqgO3k5IQePXqgV69eaN68OW19UCKfP3+Gp6cnLl++jHv37kEsFsPCwgLR0dEQiUSIiooq09qp5ubmsLa2pp+5ivn69Su8vb3h6ekJX1/fgoEYL168gKOjI6Kjo8s09YuBgQGqVKki14sMpXiZmZm4efNmwXdG/uo2//77L6ZOnYr4+Hh8+/at1MfP73ZlaGgor5ApDojFYjx69AiXL1+Gp6dnwVywAwYMwOnTpwtyjNJOI5bfH9fMzEzpk0hATRNJABCJRIiLi0NycnKJ1jU1MTGBtbV1oQvCgAEDcO7cOcbyVlZW6NmzJzw8PNCpUyc6NxjHxGIxHj58WHAh+PDhQ5EykydPxvbt2wF8H5n57ds3fPv2rUQ3Gvr6+qhYsSJtbVIR+RNMe3p6wtPTEw8fPizyPVC/fn28fv264Is8JSUF8fHxJbrR0NLSgpWVFUxNTVXigkABsbGx8PLygqenJ65fv15oYmrg+0wM0dHRBfP5ZWVlITY2tuDmQxZCoRAWFhacDASl5CM9PR3Xr1+Hp6cnvLy8GG8gLl26VLAstEgkQmxsLFJSUkqcY1SsWFEpF3hho7aJZD6xWIyUlBSkpaUhKysLIpGo0H4NDQ3o6uoiMTERubm5aNmyZZFj+Pj4oEePHsWey8nJCQEBAbQfDAciIiIKlvIsrsXg4cOHcHFxKbSNEIK0tDSkpKQgKysLubm5hfYLBALo6urCwMAAZmZmSt0RmvqfvLw8LFq0CBcuXCh2Qvp169Zh7ty5hbYRQpCVlYXk5GRkZmYWSTKA710b9PX1YWpqCn19fZpAqog9e/Zg//79ePz4sdRyPXr0gJeXV5Htubm5SEpKQkZGBrKzs4u0RmlpaUFPTw8mJiYwMjKiCaSKuHXrFv7++2/4+flJvYnMf7L181MHsViM5OTkghzj5wYKDQ0N6OnpwdDQEKampirZJUr1IpYzDQ0NmJubF/RPEYvFePbsGaKjo9GzZ8+CD/XGjRuYOXMmvL294ebmVugYnTt3RuXKlaWuoGNrawsvLy+aRHLExsYGWlpaxSaRNWvWRIsWLYpszx9ElT+QSiKRQCQSgRACoVAITU1NmiCoIC0tLTg6OuLvv/+WWk4gEGDYsGGM2/X19QtangkhyMvLAyEEAoEAmpqaNEFQUc2aNSty48Dkl19+Ydyura1dMEULIQQikQgSiQQCgQAaGhq0u4uKatiwoUxdnoYMGcLYdUVDQwMWFhYFg33z6wUhBBoaGiqZOP6MfuP9RENDA8uWLcPixYsLXRBCQ0ORkZGBbt264caNG4Veo6mpiZEjR0o9rq6uLp3yg0MCgQC7du2Cq6ur1HIjRoyQKSEUCoXQ1taGjo4OtLS0aBKpwkaNGoX58+dLLdOhQweZRvMLBIKCeqGtrU2TSBXWqFGjgiVW2RgZGRU8upRGIBBAS0uroF7QJFJ1mZub4+rVq8X2Y2W7wfiZpqZmwXdGeUgiAZpIFvHo0SNcuXIFb9++LdTvMTQ0FMD3/jA9e/aEj49PodcVV4k+ffoER0fHIo9IKcU5ePAg7t27J7XMiBEjOIqGUhaPHz/G7t27pZaR9aJAlR/x8fFYuHCh1DIDBw6kT5XUjEgkwpw5c5Cens5apmbNmlKX5C3vaCL5k+XLlxf6//x+LvmJJADk5OSgT58+8PT0LNhWr149NGrUSOqxP336hNq1azP2q6Lka/PmzRg/frzUTs6tW7eGvb09h1FRfLtz5w46duyIpKQk1jJ6enro168fh1FRfIuMjETbtm3x6tUrqeXoDYZ6ycnJwcCBA3Hs2DGp5X755Re1fkpFE8kfPHr0CFevXi3494+tkj8mksD3TvsDBgwolEzK8iUTGhqKmjVrlmiEHyU7QghWrFiBmTNnFluWtkaql6tXr6Jr165SWxYAoG/fvjAyMuIoKopvQUFBcHV1xcePH6WWs7W1Rdu2bTmKiuJbRkYGPDw8cPHixWLLDh8+XPEBKTGaSP7gx9bIH7dlZGQwDqT5OZkcOnQohEIhdHR0MGTIENbzREZGwsHBAampqfILngIhBPPmzcOSJUtYy+RP2aGtrY1BgwZxFRrFs3PnzqFXr16sTwPy6wVAW53Uybt37+Dq6lqkoSDfj2suDx8+nPaBVRMpKSno2rUrrl+/zrhfV1e34GaTPtkCQChCCCEPHz4kABh/NmzYwLoPANHS0iKXLl0ihBDi4eFBLl++TAghZOXKlVJfZ2lpSVJSUvh82+WGWCwmkyZNkvr7XrlyJYmPjyd169Ylffv25TtkiiOHDh0iQqGQtV706tWLpKenkwEDBhBra2uSl5fHd8gUB549e0YsLCxY60WtWrVIeHg42bRpEwFA3r17x3fIFAe+fv1KmjRpwlovDA0Nya1bt8jdu3eJnp4e2bVrF98h844mkv+va9eurBWnatWqUhOU/GTSx8eHpKenFzruP//8I/V11tbWJC0tjad3XT7k5eWRESNGSP09b968uaB8ZGQk8ff35zFiiivbt2+XWi+GDh1KcnNzCSGE5OTkkPPnz/McMcWFe/fuEWNjY9Z64eTkRGJjYwvKnzp1isdoKa5ER0eTevXqsdYLU1NT8ujRo4Lyvr6+JDExkceIlQNNJIn01khZfoYNG0a8vb1JTk4O4/F37Ngh9fWVK1cmmZmZHL/r8iE7O5v07duX9XcrEAjI/v37+Q6T4sHatWul/t2NHz+eiEQivsOkOObr60v09fVZ60Xz5s1JQkIC32FSHAsJCSEODg6s9cLKyoq8evWK7zCVEk0kifTWSFl+1q1bV+w5Dh48SAQCAesxbG1tSXZ2NgfvtvzIyMggnTt3Zv2dampqkpMnT/IdJsUxiURCFi5cKPVvdtasWUQikfAdKsWxixcvEm1tbdZ60a5dO5Kamsp3mBTHPnz4QGxsbFjrhY2NDfnw4QPfYSottU8kS9IaWadOHcbt9erVk+lcR48elZpM2tvbFzxmo6RLTk4mbdq0Yf1d6ujoFPRVpdSHWCwm06dPl/p3vHTpUppEqqFjx44RDQ0N1nrRrVs3+mRIDb18+ZJYWVmx1gsHBwcSEhLCd5hKTe0TyczMTJKQkEASEhKIubl5kUqkpaVFbt++TeLj40lCQgJjIigUCmXuoH/o0CGpF7latWrRzv7F+Pbtm9TO0AYGBuTmzZt8h0lxTCQSkV9//VXq39eGDRv4DpPiwe7du6XexA8YMIC1axJVfj18+JCYmpqy1gtHR0cSHR3Nd5hKT+0TyR8xjeDT1tYuVKZWrVqMFW737t0yn2fXrl1SL3aOjo5ELBbL++2VC9HR0cTR0ZH1d2dqakoePnzId5gUx3JycsjAgQNZ64VAICjR3yhVfhQ368bo0aPpzbsa8vPzIwYGBqz1okmTJuTr1698h6kSaCL5A1kSyWXLljFWuqZNm5boXFu2bJH65ebs7EyTyZ+EhoZK7QxtaWlJXrx4wXeYFMcyMzNJjx49WOuFhoYG+e+///gOk+KYRCIhS5culfo9O3XqVPo9q4a8vLyIrq4ua71o06YNSU5O5jtMlUETyR/IkkimpKQwVjxNTc0SfyGtX79e6pdc8+bN6Zfc//v48aPUztBVqlQh79+/5ztMimOpqamkffv2rPVCW1ubXLhwge8wKY5JJBIya9Ysqd+vCxYsoH1l1dDp06eJpqYma73o3LlzkWn8KOloIvkDWRJJQgixtbVlrIClGdxR3KTlrq6uav9l9+rVK6mdoe3t7UlwcDDfYVIcS0xMJC1atGCtF/r6+sTX15fvMCmOiUQiMn78eKnfq6tXr+Y7TIoHBw4ckLo4Qd++fensKaVAE8kfyJpIso0K7dmzZ6nO++eff0r90uvYsWNZ35rKevTokdTO0PXq1SNRUVF8h0lxLDY2ljRo0IC1XhgbG9NJ59VQbm4uGTZsmNTv061bt/IdJsWD4rqTjRgxgvaVLSWaSP5A1kQyJCSEsSKamZmV+txz586VWslLm6Sqslu3bhFDQ0PW30njxo1pZ2g1FB4ezjroDQCxsLAgT58+5TtMimNZWVmkd+/erPVCKBSSgwcP8h0mxYNVq1ZJvb5OmjSJdiMrA5pI/kDWRJIQwrq8VmRkZKnPX9z8d7/++mupj61qvL29pXaGbt26Ne0MrYa+fPlCqlWrxlovKlWqRAIDA/kOk+JYeno6cXd3Z60XWlpa5MyZM3yHSXFMIpGQ+fPnS72u/vHHH2rffaysaCL5g5Ikkl26dGGslHPnzi1TDBMmTJBa6ZcsWVKm46uC06dPEy0tLdbfgbu7O+0MrYYCAwNJpUqVWOtFtWrVyJcvX/gOk+JYUlISadWqFWu90NXVJd7e3nyHSXFMLBaTKVOmSL2e/vXXXzSJlAOaSP6gJInk2bNnGStm7dq1yxzH6NGjpVb+PXv2lPkcyurgwYNSO0P37t2bZGVl8R0mxbGnT58y/n3++HcXERHBd5gUx+Lj40mjRo1Y64WhoSG5desW32FSHMvLyyOjRo2Seh3dtGkT32GWGzSR/EFJEkmxWMy43JZQKJRLX4sBAwaw/gEIBIJyeYe9detWqX/4w4YNo0tIqqG7d+8SIyMj1nrRsGFDEhcXx3eYFMeioqJI3bp1WeuFmZkZefToEd9hUhzLyckh/fv3l3r93Lt3L99hlitCUKUiFApRs2bNItslEgnOnTtX5uOfOXMGbm5ujPsIIejVqxeePXtW5vMoizVr1mDatGms+ydMmIAjR45AS0uLw6govvn6+qJLly5IS0tj3N+iRQvcunULVlZWHEdG8SkkJASurq54//49434rKyvcvn0bLVq04Dgyik+ZmZno3bs36zVYU1MTx48fx7hx4ziOrHyjiWQZ9OnTh3H7/v375XJ8Pz8/1KlTh3GfWCxGmzZtEBYWJpdz8YUQggULFmDhwoWsZWbPno1du3ZBQ0ODw8govl24cAEeHh7Iyspi3N++fXtcv34dZmZmHEdG8enDhw9wdXVFcHAw4/6qVavC398fDRo04Dgyik+pqano1q0brl69yrhfR0cH58+fx5AhQziOTA3w3SSqTEryaJuQ7+s+/1we+D6HnbxkZ2eTihUrsjbTm5iYkKSkJLmdj0tisZhMnTpV6uPsZcuW0c7Qaujo0aOMXUfyf3r06EEyMzP5DpPi2IsXL4ilpSVrvXBwcCChoaF8h0lxLCEhgTRr1oy1Xujr65MbN27wHWa5RVsky6BSpUqMrSGpqakICQmRyzl0dHQQGBgIIyMjxv0pKSmoX78+cnNz5XI+rohEIowdOxbbtm1jLbNx40YsXboUAoGAw8govu3atQsjR46EWCxm3D9o0CCcP38eenp6HEdG8enhw4do3749vn79yrjf0dER/v7+qFatGseRUXyKjY2Fm5sbnjx5wrjfxMQE169fR8eOHTmOTH3QRLKMXF1dGbf/+++/cjuHhYUFXr58CR0dHcb9UVFRaNKkCSQSidzOqUi5ubkYOnQoDh06xLhfIBBg9+7dmDVrFreBUbz7+++/8dtvv4EQwrh/zJgxOH78OLS1tTmOjOKTn58fOnXqhOTkZMb9TZs2xZ07d1CpUiVuA6N4FR4ejrZt2yIwMJBxf4UKFXDr1i20atWK48jUDN9NosqkpI+2Cfk+cfbPr8H/P2KRt0ePHkl93Ofu7i73c8pbZmYm6datG+t70NDQIMeOHeM7TIpjEomk2KVCp0+fTlefUEOXL18mOjo6rPXC1dWVpKSk8B0mxbFPnz4RW1tb1npRuXJl8u7dO77DVAs0kfxBaRJJiURCNDU1GRMiRVz0Ll26RAQCAesfz6hRo+R+TnlJTU0lbm5urLFra2uTixcv8h0mxTGJREJmzJghNYlctGgR7Surhk6ePMn4/Zr/07lzZ5KRkcF3mBTHXr9+TaytrVnrRfXq1UlQUBDfYaoNmkj+oDSJJCGEdS4zRXXu3b59u9SL7l9//aWQ85ZFQkICad68udTO0L6+vnyHSXFMJBKRcePGSa3Pa9eu5TtMigf79u2TetPct29fkp2dzXeYFMceP35MzM3NWetFnTp1yrRUMVVyNJH8QWkTSbbWlJEjRyos1gULFki9+F64cEFh5y6p2NhY4uTkxBqrsbExuXfvHt9hUhzLzc0lQ4YMkVqPt2/fzneYFA82b94stV788ssvJC8vj+8wKY7duXNH6uIEzs7OJD4+nu8w1Q5NJH9Q2kTy9evXrM3rijR8+HDWPyhNTU3y4cMHhZ5fFmFhYaRmzZqscVpYWJBnz57xHSbFsaysLOLh4cFaL4RCITl8+DDfYVIck0gkZMWKFVKTyEmTJtG+smroypUrRE9Pj7VetGzZUmWnwlN1NJH8QWkTSUII0dbWLvJaRfWT/JG0PocmJiYkLS1NoeeX5vPnz1I7Q1eqVIm8ffuWt/gofqSlpZGOHTuy1gstLS1y9uxZvsOkOCaRSMjcuXOlJpFz5syhfWXV0NmzZ4mWlhZrvejYsSOv1zp1R6f/kRMHB4ci28RiMfz9/RV6Xj8/P8ZzA9/nmORrWqDAwEC4uroiPDyccb+dnR3u3buHevXqcRwZxafk5GR07twZN2/eZNyvq6sLT09P9O/fn+PIKD5JJBJMmTIF69evZy2zYsUKrFu3js4rq2aOHDmCQYMGIS8vj3G/h4cHvLy8YGhoyHFkVD6aSMoJ22Snhw8fVuh5hUIhnj9/zjph+adPnzi/KD99+hRubm6IjY1l3F+7dm34+/vD3t6e07gofn39+hXt27fHw4cPGfcbGRnh2rVr6Nq1K8eRUXwSiUQYPXo0du7cyVpm06ZNWLx4MU0i1cyOHTswatQo1saQIUOG4Ny5c9DV1eU4MqoQvptElUlZHm0/f/6cscldEfNJMgkMDJQ6x+SKFSs4iePu3btSO0M3bNiQxMXFcRILpTwiIyNJnTp1WOuFmZkZefz4Md9hUhzLzs4m/fr1Y60XAoGA7Nu3j+8wKR6sW7dOajeHcePGEZFIxHeYFKF9JAspSyJJCGHsw6GhocFZn54zZ85I/cPz8vJS6PmvXr0qtTO0i4sLSUxMVGgMlPIJCgoi1atXZ60X1tbW5PXr13yHSXEsIyODdOnShbVeaGpqkpMnT/IdJsUxiURCFi1aJPVaNnPmTNpXVonQRPIHZU0ka9euzVjp/f39FRh1YdKmBdLS0iKfP39WyHnPnTsntTN0hw4daGdoNfTu3TtSuXJl1npRtWpV8unTJ77DpDiWkpJCXF1dWeuFjo4O8fT05DtMimNisZhMnz5dahK5ZMkSmkQqGdpHUo7at2/PuP3IkSOcxbB69Wp06dKFcV9eXh6aNWuGjIwMuZ7z6NGjUjtD9+zZE97e3rQztJp58eIF2rZti+joaMb9NWrUwL1791CzZk2OI6P4lJCQgI4dO7IORDQwMIC3tzc8PDw4jozik1gsxvjx47FlyxbWMn///TeWL19O+8oqG74zWWVS1hbJgIAAxjuomjVrKjDqosRisdRHifXq1ZPbHd2OHTuk3j0OHjyY5ObmyuVclOq4f/8+MTExYa0X9evXJzExMXyHSXEsOjqaODo6stYLExMT8uDBA77DpDiWk5NDBg0aJLWv7K5du/gOk2JBWyTlqHnz5tDU1CyyPSQkhNM48kdyGxgYMO5/9+4dBg8eXObz/P3335g8eTLr/jFjxuDYsWPQ0tIq87ko1XHjxg106tQJKSkpjPubNWuGO3fuoGLFihxHRvEpLCwMbdu2xdu3bxn3W1pa4vbt22jZsiXHkVF8ysrKQr9+/XD69GnG/RoaGjhy5AgmTpzIcWSUrGgiKWfVq1cvsk0kEuHVq1ecxmFqaooHDx5AQ0ODcf+ZM2ewadOmUh2bEII///wTc+fOZS3z+++/Y+/evaznp8onT09P9OjRA5mZmYz727Ztixs3bsDc3JzjyCg+ffr0Ca6urvjy5Qvj/ipVquDu3btwdnbmNjCKV+np6ejRowe8vb0Z92tra+PMmTMYMWIEx5FRJUETSTlr06YN43a2uy1FatCgAY4ePcq6f/bs2Xj69GmJjkkIwcyZM7Fy5UrWMosXL8amTZsgFNLqpU5OnDiBfv36ITc3l3F/165dceXKFRgbG3McGcWn169fo23btoiIiGDcX716dfj7+6NOnTocR0bxKSkpCZ06dcKtW7cY9+vp6eHy5cvo27cvx5FRJcb3s3VlUtY+koQQcunSJcY+Hm3atFFQ1MX7448/WPueGBsbk8zMTJmOIxKJyNixY6X2iVy3bp2C3w2ljPbu3UsEAgFrvejfvz/Jzs7mO0yKYwEBAcTMzIy1XtStW5dERkbyHSbFsbi4ONKwYUOp1yUuZzuhyoYmkj+QRyKZk5PD+IdhYWGhoKhl0759e9Y/2qZNmxb7+tzcXDJ48GCpSeSOHTs4eCeUsvnnn3+k1ouRI0eSvLw8vsOkOHb79m1iaGjIWi8aNWpE4uPj+Q6T4lhERATrVHn518qnT5/yHSZVAvTZo5xpa2vDxMSkyPbExERe1rzO5+vryzq44enTp1iwYAHra7Ozs9GvXz+cOnWKcb9QKMSRI0fw22+/ySVWSjUQQvDXX39h1qxZrGUmT56MgwcPMg5Co8qvK1euoGvXrkhPT2fc36pVK/j5+cHS0pLjyCg+BQUFwdXVFR8/fmTcX7FiRdy5cwdNmjThODKqLGgiqQBM8+IRQljnTeOCpqYmHj58yHpBX7t2LWNflfzO0F5eXoyv09LSwpkzZ/DLL7/INV5KuRFCMHfuXCxdupS1zLx587Bt2zbaV1bNnD17Fr1790Z2djbj/o4dO8LX1xempqbcBkbx6t27d3B1dUVoaCjj/mrVqsHf3x+Ojo7cBkaVGf2GV4BWrVoxbr948SK3gfzEzs4Ohw4dYt3fo0cPJCcnF/w7vzO0n58fY/n8ztD9+vWTc6SUMpNIJPjtt9+wYcMG1jKrVq3C2rVr6cTBaubw4cMYPHgw6+IEvXr1gpeXF+vUZFT59Pz5c7Rt2xYxMTGM+2vVqgV/f3/UqFGD48goeaCJpAL06dOHcfu9e/e4DYTB8OHDMXz4cMZ9WVlZBXO4xcfHo0OHDnj06BFjWSMjI1y7do11FR2qfBKJRBg5ciR2797NWubff//FwoULOYyKUgbbt2/H6NGjWbvwDB06FGfPnoWuri7HkVF8un//Ptq3b4+EhATG/Q0aNMDdu3dRtWpVjiOj5EVACCF8B6EsKlSoUKSya2trIycnp0THkUgk0NTUxM+/WhMTk0ItfnyRSCSoUaMG60Tpw4YNw/Pnz/HhwwfG/ebm5rh27RqaNm2qyDApJZOTk4MhQ4awtqwLhULs3bsXY8aM4TYwindr166V2s96/Pjx2LlzJ51XVs1cv34dffr0YZ1XtkWLFvDx8aHzyqo4mkj+QF6JJNuxACA3N1cpVnqJj4+Hra1tid9bxYoVcf36ddSvX19BkVHKKCMjA3379sX169cZ92tqauLYsWMYNGgQx5FRfCKEYNGiRVizZg1rmVmzZmHDhg20m4OauXTpEgYNGsQ6r2y7du3g6ekJIyMjjiOj5I0+2lYQtsl1r1y5wnEkzKysrHDu3LkSvcbW1hb+/v40iVQzKSkp6Nq1K2sSqaOjg4sXL9IkUs1IJBL8/vvvUpPIpUuX0iRSDR0/fhz9+/dnTSK7d+8OHx8fmkSWEzSRVJC2bdsybmcb/cyHHj16YOrUqTKVrVWrFu7du0c7Q6uZb9++oWPHjqz9ew0MDHDlyhX06NGD48goPonFYowbNw5bt25lLbNhwwYsW7aMJpFqZs+ePRgxYgTEYjHj/oEDB+LChQvQ09PjODJKUWgiqSD9+/dn3M42eIUvW7duZVwf/EdOTk60M7QaiomJgZubG549e8a439TUFDdu3ED79u05joziU25uLoYOHYqDBw8y7hcIBNi9ezdmz57NcWQU3zZu3IiJEycWGR+Q79dff8WJEyegra3NcWSUItFEUkEaN27MOH8e2xxafLlx4wbi4uKklvnjjz9gbW3NUUSUMggNDYWrqyvevXvHuN/S0hK3b9+Gi4sLx5FRfMrKykLfvn1x5swZxv0aGho4evQoJkyYwHFkFJ8IIVi2bBn++OMP1jLTpk3Dvn376ICrcogOtvmBPAfbAN/7IX79+rXIdpFIpBR/TMV1hs6nq6uLuLg4GBsbcxQZxaePHz/C3d0dkZGRjPttbGxw48YN1K5dm+PIKD6lpaWhV69euH37NuN+bW1tnDp1inX6M6p8IoTgjz/+wD///MNaZuHChVi5ciXt5lBO0RZJBXJwcGDc/vz5c44jKerEiRNSO0P/KDs7G+7u7hxERfHt1atXaNu2LWsSaW9vD39/f5pEqpnExES4u7uzJpH5ixPQJFK9iMViTJw4UWoSuWbNGqxatYomkeUYTSQVqEGDBozbb9y4wXEkhe3duxfDhw9n7QzN5MmTJ9i0aZMCo6L49ujRI7Rr1w7x8fGM++vVqwd/f3/Y2dlxGxjFq7i4OLRv3x6PHz9m3G9sbAxfX1907tyZ48goPuXl5WHkyJHYu3cva5lt27Zh/vz5HEZF8YEmkgrk6urKuD0gIIDjSP7nn3/+wYQJE1g7Qw8bNoy1I/ScOXMQFhamyPAonty6dQvu7u6sE+Y3btwYd+7cQeXKlbkNjOJVREQE2rZti9evXzPut7CwgJ+fH9q0acNxZBSfsrOzMXDgQBw/fpxxv1AoxKFDhzBlyhSOI6P4QBNJBWK7Q2dbMUaRCCFYvny51JGUU6dOxdGjR3Hs2DHG/WKxGO3atVNQhBRfvL290b17d2RkZDDub926Nfz8/FChQgWOI6P49OXLF7i6uuLTp0+M+ytVqoQ7d+6gSZMmHEdG8SkjIwMeHh64dOkS434tLS2cOnUKo0aN4jgyijeEKmBhYUEAFPrR1tYu0zE1NTWLHNPIyEhOEctGIpGQ2bNnF4njx58FCxYQiURS8JqePXuylp06dSqn8VOKc/r0acY6mv/TqVMnkp6ezneYFMfevHlDKlasyFovqlWrRr58+cJ3mBTHkpKSSKtWrVjrha6uLvHx8eE7TIpjNJH8gSISSUtLyyLHFAgERCwWyylq6UQiEZkwYYLUJHL16tVFXpebm0tMTU1ZX/Po0SNO4qcU58CBA0QoFLJ+xn369CHZ2dl8h0lx7MmTJ8Tc3Jy1XtSuXZtERETwHSbFsfj4eNKoUSPWemFoaEhu377Nd5gUD+ijbQVjGphACGHtcyRP+Z2h9+zZw1pm69atWLBgQZHtWlpaUpdz7Nq1K0QikVzipLi3detWjBkzBhKJhHH/8OHDcfr0aejo6HAcGcUnf39/dOjQAYmJiYz7GzZsiLt378LGxobjyCg+RUVFwc3NDS9evGDcb2Zmhps3b8LNzY3jyChlQBNJBWMbue3r66vQ8+bk5BTbGfrgwYNSl0h0cXFh3Z+cnMy6eg+l3FavXo3p06ez7p84cSKOHDkCLS0tDqOi+Obr64suXbogLS2NcX+LFi1w69YtWFlZcRwZxaeQkBC4urri/fv3jPutra1x584dNG/enOPIKGVBE0kF42PktqydoUePHl3ssbZu3Ypq1aox7vP09MS5c+fKEirFIUIIFixYgEWLFrGWmT17Nnbu3Mm4KhNVfl24cAEeHh7Iyspi3N++fXtcv34dZmZmHEdG8en9+/do06YNQkJCGPdXrVoVd+/ehZOTE8eRUUqF72frykQRfSRjYmIY+5PUq1dPTlEXlpycTFq3bi21M7S3t3eJjhkSEkI0NDRYj5ecnKyQ90LJj1gsJlOmTJHaV3b58uWFBlxR6uHo0aOsf98ASI8ePUhmZibfYVIce/78OalQoQJrvahRowYJDQ3lO0xKCdBmBwWrWLEi43KIbCuHlMW3b9/QoUMH3L9/n3G/oaEhrly5gu7du5fouHZ2dli/fj3jvuzsbHTt2rXEsVLcEYlEGDNmDLZv385a5p9//sGSJUvo6hNqZteuXRg5ciTr4gSDBg3C+fPnoaenx3FkFJ8ePnyI9u3b49u3b4z769evj7t377I+raLUDN+ZrDJRRIskIYTxrk4gEMgh4v+Jiooi9erVY717NDMzK/NI66ZNm7Ie/8iRI3J6J5Q85eTkkP79+7N+bgKBgOzZs4fvMCkerF+/XmoL9ZgxY4hIJOI7TIpjN27cIAYGBqz1omnTpuTbt298h0kpEdoiyQGmEY6EEERERMjl+KGhoXB1dcW7d+8Y91tZWeH27dto0aJFmc5z8+ZN6OrqMu6bMGECa/8qih+ZmZno3bs3az9WDQ0NHDt2DOPHj+c4MopPhBAsWbIEc+fOZS0zffp07N27l/FpClV+Xb58GT169GBdnMDV1RU3b96EhYUFx5FRyowmkhxwcHBg3M62dm1JfPjwAW3atEFwcDDj/qpVq8Lf35919HhJGBsb4/Dhw4z7srOz6ShuJZKamopu3brh6tWrjPu1tbVx/vx5DB06lOPIKD4RQjBr1iysWLGCtcyiRYuwefNmOuBKzZw8eRL9+vVDTk4O4/4uXbrg6tWrMDY25jgyStnRbwoO1KlTh3H7y5cvy3TcV69eoW3btoiKimLc7+DgAH9/f9SqVatM5/nRoEGD0LZtW8Z9V65cwc2bN+V2Lqp0EhMT4e7ujrt37zLu19fXh7e3N3r16sVxZBSfxGIxJkyYgM2bN7OWWbt2LVauXEn7yqqZffv2YdiwYaxzA/fr1w+XLl2Cvr4+x5FRqoAmkhxwdnZm3F6WNbcfPXqEdu3a4evXr4z7HR0d4e/vr5DO0JcvX4a2tjbjvgEDBrBOck0pXmxsLNzc3PDkyRPG/SYmJrh+/Trc3d05joziU15eHkaMGIF9+/axltm+fTvmzZvHYVSUMti8eTPGjx8PQgjj/l9++QWnTp2iixNQrGgiyQG2volsc3MVx8/PD+7u7khOTmbc37RpU9y5cweVKlUq1fGLY2xszNqqkZycjLFjxyrkvJR04eHhaNu2LQIDAxn3V6hQAX5+fmjVqhXHkVF8yu92cvLkScb9QqEQhw8fxuTJkzmOjOITIQQrVqzAzJkzWcv89ttvOHToEDQ1NTmMjFI5vA71UTKKGrVNCCECgaDIsStXrlzi41y+fJno6OiwjqhzdXUlKSkpcom5OPXr12cdCfzq1StOYqC++/TpE6latSprvahcuTJ5+/Yt32FSHEtLSyMdOnRgrRdaWlrk7NmzfIdJcUwikZA5c+ZIHbU/d+5cOq8sJRPaIskRptHObC2KbE6dOoW+ffuydobu3Lkzp52hfXx8GDvkE0LQo0cPTmKggDdv3sDV1ZV1FgA7Ozv4+/ujXr16HEdG8SkpKQmdOnWCn58f435dXV14enrSQXJqRiKRYPLkyfj7779Zy6xcuRJr166lfWUpmdBEkiOmpqZFtpVkupz9+/dj6NChrJ2h+/btC09PT047Q1etWhXz589n3BcZGYnFixdzFou6evz4Mdzc3BAXF8e4v06dOrh37x7s7e05joziU3x8PDp06IBHjx4x7jcyMsK1a9foYgJqRiQSYdSoUdi1axdrmc2bN2PRokU0iaRkx3eTqDJR5KPtRo0aMT4+iImJKfa1mzdvlvoI4pdffiF5eXlyibM0bGxsGOMSCoUkIiKCt7jKu9u3bxNDQ0PWeuHs7Ezi4uL4DpPiWEREBKlTp47UxQkeP37Md5gUx7Kzs0nfvn2lLk6wf/9+vsOkVBBtkeQI2+hpaXNJEkKwcuVKzJgxg7XMpEmTeO8M7ePjw3j3KpFI0K1bNx4iKv+uXr2Krl27Ij09nXF/y5YtcevWLVhZWXEcGcWn4OBguLq6ss4IYW1tjTt37qBZs2YcR0bxKTMzE7169cKFCxcY92tqauLEiRMYM2YMx5FR5QFNJDnCNpfkixcvGLcTQjB//nz8+eefrMecM2cOduzYwfvEwU5OThg1ahTjvsDAQOzcuZPjiMq3c+fOoVevXsjOzmbc36FDB/j6+jJ2p6DKr3fv3qFNmzYIDQ1l3G9rawt/f384OTlxGxjFq5SUFHTp0gW+vr6M+3V0dHDhwgUMHjyY48io8oImkhxhm0vy/fv3RbZJJBJMmTIF69evZz3eihUrsG7dOqXpx7J//37WxGXmzJnIzMzkNqBy6vDhwxg0aBDy8vIY93t4eMDb2xuGhoYcR0bx6fnz53Bzc0NMTAzj/po1a8Lf3x81a9bkODKKTwkJCejYsSPu3bvHuN/AwAA+Pj7o2bMnx5FR5QlNJDki61ySIpEIo0ePltqKt2nTJixevFhpkkjg+1x0Z8+eZdyXk5ODYcOGcRxR+bNjxw6MHj2adcL3wYMH49y5c6zroVPl0/3799G+fXt8+/aNcb+TkxPu3r0LW1tbjiOj+BQTEwM3Nzc8e/aMcb+pqSlu3LiBDh06cBwZVe7w3UlTmShysI1EImHs4Fy9evWCMtnZ2aRfv35SO0Pv27dPLvEoSteuXVnjDwwM5Ds8lbV27VqpA67Gjh1LRCIR32FSHLt+/TrR19dnrRfNmzcnCQkJfIdJcSw0NJQ4ODiw1gtLS0vy4sULvsOkygnaIskRgUDAOCAmNTUVwPfO0L1798b58+cZX5/fGVrZV405e/Ys61JadL66kiOEYNGiRazTLAHAjBkzsHfvXmhoaHAYGcW3S5cuoUePHqzdRtzc3HDjxg2Ym5tzHBnFp0+fPqFNmzYICgpi3F+lShXcvXuXtbsVRZUUTSQ5xPTIMTMzE6mpqejatSuuXbvG+DodHR2cP39eJTpDGxgYYNWqVYz7Pn78iGPHjnEckeqSSCSYMWMGVq9ezVrmzz//xD///KNU3RwoxTtx4gT69++P3Nxcxv3dunWDj48PjIyMOI6M4tPr16/h6uqKyMhIxv329vbw9/dnHfxJUaUhIIRlpXY1VKFCBSQkJBTapq2tzbqSTElVrFixyMTRQqEQjRs3xtOnTxlfY2BggEuXLqFjx45yiYErNjY2iIqKKrLdyMgIycnJvI80V3ZisRjjx4/HwYMHWcusX78ec+bM4TAqShns3bsXEydOBNtXd//+/XH8+HFoa2tzHBnFp4CAAHTt2pV1xbR69erh+vXrqFy5MreBUeUevZpziGnpQolEwppEmpiY4Pr16yqXRALfW0yYpKWlYfr06RxHo1pyc3MxdOhQ1iRSIBBg586dNIlUQ//88w8mTJjAmkSOGjUKJ0+epEmkmrl9+zbc3d1Zk8jGjRvjzp07NImkFIImkhyysLCQuaylpSVu376Nli1bKjAixXF1dYWrqyvjvp07dyI+Pp7jiFRDVlYW+vXrhzNnzjDu19DQwJEjRzBp0iSOI6P4RAjB8uXLMXv2bNYyU6ZMwYEDB3hdnIDino+PD7p168a6OEHr1q3h5+eHChUqcBwZpS5oIskhS0tLmcqVl87Q586dYxwAIpFI0K9fPx4iUm5paWno0aMHvL29GfdraWnhzJkzGDFiBMeRUXwihGDOnDlYtmwZa5n58+dj69attMuImjlz5gx69+7NujiBu7s7rl27BhMTE44jo9QJ/dbhUKVKlYotU7169XLTGdrS0hKTJ09m3Hf//n3cvXuX44iUV1JSEjp16oRbt24x7tfT08Ply5fRt29fjiOj+CQWizFp0iRs3LiRtczq1auxZs0aOuBKzRw8eBBDhgyBSCRi3N+7d29cvnwZBgYGHEdGqRu1fwby5cuXgglbmQbVSCQSnDp1CsD3ZQ4bNmyosFjq1q2L69evo0qVKgo7B9c2b96Mw4cPF0xz9KOhQ4cyDshRN3FxcejcuTNev37NuN/IyAje3t6sXQWo8ikvLw+jR4/G8ePHWcts2bIF06ZN4zAqShls3bpVal/zYcOG4dChQ9DS0uIwKkpt8TiHpVKIiIgg2traUid7zv95+vRpqc9z+/Ztoqury3rsRo0akfj4eDm+M+Vx4sQJ1ve9bt06vsPjVXh4OKlVqxbr78fc3Jw8efKE7zApjmVnZ5PevXuz1guhUEgOHDjAd5gUD1atWiX1OjVhwgS6OAHFKbVPJAkhZMqUKcUmkR4eHqU+vo+Pj9Qk0tTUlCQlJcnvDSmhunXrMr53HR0dkpmZyXd4vPjy5QupVq0aa72oWLEiefPmDd9hUhxLT08nnTp1Yq0Xmpqa5PTp03yHSXFMIpGQ+fPnS71OzZ49m0gkEr5DpdQMTSSJbK2SpW2NPHPmDNHS0pJ67EaNGsn5HSmfd+/esb7/wYMH8x0e5wIDA0mlSpVYfye2trbk8+fPfIdJcSw5OZm0bt2atV7o6uoSb29vvsOkOCYWi4tt8Fi2bBlNIile0ME2+D559vjx41n3e3h4oEmTJiU+7uHDhzF48GDk5eVJLcfUf7C8qVu3LutAkdOnTyMmJobjiPjz7NkzuLm5sb7nWrVq4d69e6hRowbHkVF8+vbtGzp06ID79+8z7jc0NMSVK1fQvXt3jiOj+CQSiTBmzBhs376dtczGjRuxdOlSOuCK4gVd2eb/RUZGwsHBgXHJsadPn5Y4kdy+fTumTp0qU1lra2vExsaW6PiqKDMzE2ZmZoy/4w4dOuDmzZs8RMWte/fuoUePHqw3D05OTrh+/Tqsra05joziU3R0NDp16oR3794x7jc1NcXVq1fRokULjiOj+JSbm4thw4bh3LlzjPsFAgF27dqFCRMmcBwZRf0PbZH8f2ytkj179ixxErl27VqZk0gArOvlljf6+vpYuHAh4z4/Pz98/vyZ44i4df36dXTu3Jk1iWzevDlu375Nk0g1ExoaCldXV9Yk0srKCnfu3KFJpJrJzMxE7969WZNIDQ0N/PfffzSJpHhHWyR/wNQqWZLWSEIIFi1ahDVr1rCW0dTULDLvl6GhIdLS0koXtIohhMDMzAwpKSlF9jVr1gyPHz/mISrFu3jxIgYPHsx609CuXTt4enrCyMiI48goPn348AHu7u6s02DZ2Njgxo0bqF27NseRUXxKTU2Fh4cH61y72traOH36NHr37s1xZBRVFG2R/MHPrZIl6RspkUjw+++/S00ily5dCn19/SLbi+tDWZ4IBAKsW7eOcd+TJ09Y1x1XZceOHcOAAQNYk8hu3brBx8eHJpFq5tWrV2jbti1rEung4AB/f3+aRKqZxMREuLu7syaR+vr68PLyokkkpTz4HOmjjCIjIwtGcMs6UlskEpHRo0dLHVG3YcMGQgghlpaWjNN5qBtra2vG31PdunX5Dk2udu3aRQQCAWu9GDhwIMnJyeE7TIpjDx8+JKampqz1wtHRkURHR/MdJsWxmJgYUr9+fdZ6YWxsTO7du8d3mBRVCG2R/EmVKlUwYcIEmVsjc3NzMXToUBw6dIhxv0AgwO7duzF79mwAgI6OTpEyEomkTDGrIrYRiO/fvy83g242bNiASZMmgbD0Hvn1119x4sQJaGtrcxwZxSc/Pz+4u7sjOTmZcX+TJk1w+/ZtmZZUpcqP8PBwtG3bFoGBgYz7K1SogFu3bqF169YcR0ZR0tE+kv+PEIKcnBzk5OQgISEBqampsLOzg46ODnR1dRmnVcjKysKAAQPg4+PDeEwNDQ0cOXIEw4YNK9hWo0YNBAUFMZ5f3VSvXh2hoaFFtlerVo1xOx8IIcjLy0N2djZEIhEIIRAKhdDW1oauri40NDQYX7Ns2TL89ddfrMedNm0aNm/eDKGQ3supKpFIhOzsbOTm5oIQAoFAAC0tLejp6UFTk3n1WW9vb/Tv359xOVYAaNOmDby8vGBiYqLI0CkFkkgkyM7ORk5ODiQSCQQCATQ1NaGrqwstLS3Ga8nnz5/h7u6O8PBwxmNWrlwZ169fR7169RQdPqUg+TlGdnY2JBIJCCHQ0NCArq4udHR0VHrqJrVOJAkhSE9PR2JiItLT06UmcwYGBjA3N4eRkRGEQiHS0tLQq1cv3L59m7E8W2doJycnxjtOsVisdkmFn58fOnbsyLjv5MmTGDx4MMcR/U9WVhaSkpKQnJwstcVYR0cH5ubmMDU1hYaGBgghmD17NjZt2sT6moULF2LlypUq/cWhrvLy8pCUlISkpCSpfZs1NTVhamoKc3Pzghbn06dPY/jw4UUG2+Xr3Lkzzp8/DwMDA4XETimOWCxGSkoKEhMTkZ2dzVpOKBTC2NgY5ubm0NPTg0AgwJs3b9CpUyfExcUxvsbOzg43b96Evb29osKnFIQQgrS0NCQmJiIjI0NqjmFoaFiQY6jatUFtE8n09HRERUWVeKCLhoYGKlWqhH79+uHWrVuMZfT19XHx4kV06tSpyL7mzZvjyZMnRbanpKTA2Ni4RLGUB46OjozTnlhZWbF+sSpSTk4OoqOjkZGRUaLXCQQCWFpaYtu2bVixYgVruTVr1mD+/PllDZPimFgsRmxsLJKSkkr8WhMTEwQGBqJnz56sNyV9+/bFiRMnGLu+UMqLEIKEhATExcWV+KmSrq4uhEIhmjVrhsTERMYyderUwY0bN1ClShV5hEtxKC0tDVFRUaw3jmw0NTVRuXJllcoH1KsJDN8fO0RGRiI0NLRUo6XFYjEiIyMxevRoxr5txsbG8PX1ZUwiATCO2ga+r2qhjv777z/G7fHx8di5cydncRBC8O3bN3z+/LnESWT+6+Pj49G+fXvWL/1t27bRJFIFpaWl4dOnT6VKIoHvN4kVK1aEq6sr4/5ffvkFp0+fpkmkisnJyUFQUBBiY2NL1TUpOzsbmZmZGD58OON+Z2dn3LlzhyaRKkYsFiMiIgJhYWElTiKB711mwsPDERYWBrFYrIAI5U+tEkmxWIzg4GDWTu4l0bhxY2zcuLFQHzkLC4tiO0OzPbZKSEgoc0yqqFGjRqwTLc+fP5+TgUiEEERHR8tldSFLS0vs3r0blpaWBduEQiEOHTqEKVOmlPn4FLeSkpLk8oWupaWF9evXo1mzZoW2T5o0CYcOHWLtU0kpp6ysLAQFBUl9jC2r8ePHY9SoUYW2tWzZErdu3YKVlVWZj09xRyQSITg4mHGe5JJKS0tDUFCQSkwPqDaJpEQiQWhoqFz+8PO1a9cOa9asgUAgQKVKlXD37l00btxY6mtoIlnUsWPHGLenpqZi9erVCj9/TExMqVubmFSrVg27du2CmZkZtLS0cOrUqSIXCkr5paSksM7xWBr6+vrYvHkznJycAABz5szBjh071K5vtKrLyclBSEiI3G5yBQIBZs2ahYEDBwL4vlysr68vTE1N5XJ8ihsSiQQhISGsA+lKIzc3FyEhIUrfMqnQPpJ9+/bF7du30bFjR5w9e1ZRp5FJbGyswh4f37hxAx4eHnBwcCi27NixY3HgwIEi248dO1ZodLe66dSpE27cuFFku4GBAVJTUxV2sU1LS0NYWJhCjv3+/Xvo6+ujR48eCjk+pTi5ubn48uWLQlrEk5KS8Pz5c0yfPl3lOtWrO0KI3FoifyYSieDp6Ym5c+dCV1dX7senFCsmJkZhDUKmpqawsbFRyLHlQaG3wtOnT8eRI0cUeQqZZGZmKrQPoru7OypUqCBTWbY+kllZWfIMSeX8999/jBfVjIwM/P333wo5Z35/V0WpW7cuGjVqpLDjU4pBCEFUVJTCulWYmZmhe/fuCjk2pVhfv35VSBIJfB9k0b9/f8YpxSjllp6ertCnisnJyUhNTVXY8ctKoYlk+/btlWLZt/j4eE7OIUvjLltfKLbl89SFtbU165Jfa9eulekYfn5+JfpjS0xMVPgjg8TExFJ1uKbk5+XLlyWalzQrK6tUA65KIicnB2lpaQo9ByVdfHw8Hjx4IHN5sVis8EGR+aPAKX5dvny5RNcGrnIMZVXiRFIikaBOnTqYN29eoe3Xrl2DtrY2zpw5I7fg5CEnJwfp6emcnKcsFx/6iAvYv38/4yPs5ORk7Nu3T6bX29nZYeXKlcUmlFx+YbNN7UFx49GjR6hZsyYmTJggU0LJ1QwKNGHg17dv39C6dWt06dJFpoSyuDll5SUxMVEtVztTJqNHj4aTkxNOnjxZbEKZP/pe0bg6T2mUOJEUCoVYsGABdu7cWTBA4dWrVxg4cCBWr15d0GFYWchj9JQynqs8Mjc3R+fOnRn3LV68WKZjJCUl4c8//yw2oczMzOSspVAeswRQZSMSibB3795iE0qJRMLZI6SMjAzaWq0EfH19ZUooufp+l0gknDR+UNK9f/8eQ4cOLTahpDlGKQfbiEQi1KpVC6NGjcLYsWPh4uKC3r17M66ffPv2bWzbto23wTZhYWGcPULKyMjAjBkzpJYJDQ1lnGamevXqsLa2VlBkqiM3NxfPnz9n3FerVi2Ym5uzvvbz589FWnnMzMwwa9YsTJ8+vdAEr9++fZPLdD+yWrp0KaKjozk7H/U/sbGxRRJHTU1N/Prrr1i4cCHs7OwKtmdmZiI4OJiz2E6ePFlu1pZXNZmZmXj9+nWR7Z07d8bSpUvRqlWrgm2EELx7946zpWyfP3/O6Ty6VGFPnjwpkjjWrVsXS5YswcCBAwv1Yw0JCVF4V5h8enp6Mg3q5VqpR23v3r0bCxcuRJUqVWBnZ4cLFy4wdhLmO5H88OEDZ3f9cXFxcHd35+RcVMn8nFBGRERwenfXtm1buU4xRMnHzwllYmIipwn/5MmT4e/vz9n5KNn9mFBmZ2fjy5cvnJ3b29ubLl6gpH5OKN+9e8dZVwSBQIB69eopXVe4Ug+2GT58ODIzM0EIwYkTJxiTyC5dumDgwIHw8fGBjY0N49KAisbl/EvKPteTOvv5kTfXj5uVtW+Luvvxkff48eMRFBTE6fnVdUUrVZD/yLtz5864f/8+p+emfSSV14+PvE+cOMHphOGEEM5axUui1MspTJ06FcD3L0K26QquXbtW2sOrJGUenk/9Dx93c/QmQ/kJBALO64aippKh5EfZWn8o5UHrxnelapH8888/4e3tjUePHkEkEmH//v3yjktuuJyTi47OVV5mZmZYuXIlQkNDsWjRIs5XjaCJpHLS1NTE+PHj8fnzZ+zZswf29vacnp8mksorvyXy2rVrUpe9VQS62pHyqlu3Lk6ePIk3b95gyJAh0NLS4uzcfNzsyqLELZL79u3Dxo0b4efnh4YNG2LGjBlYv349JkyYwOkvVFZ6enqcDbbha1JxTU1N6OvrQ19fH3p6egX/r+oT27548YJxuSkDA4OCZeZ+xDbYZvbs2Zg2bVqhwTZ6enqc9ZHMysri5XGEUCgsVB/yf5Tx71SRSjLYhusVRfioFwKBALq6ukW+M3R0dJTyIqUoJRlsk/+74erzqlSpElxcXDg5F1UU22CbpUuXYsCAAYWurXp6epwNttHV1VXKv9ESJZJXrlzBlClTcOLEiYJKPm3aNGzYsAFHjx7FmDFjFBJkWXCZSBoaGsLc3JzzlkmRSITU1NQij9bt7OxQv359ODk5Ffy3du3a0NbW5jS+0vL29kbPnj2LbM/IyMCJEycKJQDA9367x48fB8CeQObT09NTSMxMsrOzUbFiRcTFxXGaOEgkEmRkZBT5krO0tCxUJ+rXrw9HR0elWDxAEXbt2oXffvsNAHsCmY/rRNLW1hYJCQmc97PKyspCVlZWoRsvQ0NDODo6FtSL/LphZWXFWWxcevfuHRwdHQv+zZRA5hMIBNDT0+Osr3OfPn0wcuRITs5FFWVhYVFwHWdLIPPp6+tzlkiyrYzHN5lHbT979gxubm5YtWoVfv/990L7lixZgpMnT+L9+/dK1wqWk5ODz58/c3IuOzs7GBoaIjs7G9HR0UV+oqKicOfOHURFRXESDxNNTU3Url0bTk5OaNasGVq0aIHGjRtzmliVRJUqVRhH0Xbs2LHI2tzDhw/HlStXpCaQ+Qgh+PjxIycj+q2srGBlZQWRSIS4uLiCuvBj3YiMjERISAhCQ0N5m1vQzs4OTk5OaNy4MVxcXNC8eXOp0y2pil27dmHatGlSE8gfhYeHc9Lf2cDAANWrV4dEIkFCQkKh74kf/z80NBTBwcG8DdiysrJC/fr14ezsjBYtWsDFxQVVq1ZVypaRkshPJKUlkD9KSEhATEyMwuMSCoWoU6cOfbzNIwsLC1hbW0tNIPNxOaLf3t5eKZPJUk//o0pCQ0MVPsGrjo4OatSoUeyX68yZM7F58+Yi2zt27AgjIyMEBwcjODiY0wlpNTU10bBhQ7i4uBRcKGR5L1w4cuQIRo0aVWS7QCBAfHx8oTXOb926hSZNmkhNIH/09etXxMXFyS1WNnXq1GFdGvNnIpEIUVFRBfXg5x+uR/nWqlWroE60aNECDRo0ULlH4y9fvoSpqWmxCWQ+ruaStLW1lbmuEkIQHx/PWi+ioqI4be2uWLFioe+Lpk2bwtDQkLPzy0N8fDy+fPlSbAKZTywW4+PHjwofUV2hQgVUrFhRoeegpLt8+TK6d+8uc8MYFzd6urq6qFGjhkLPUVpqkUhycWGoWrUqTExMii03bdo0bNu2rcj2ffv2YezYsQC+XzS+ffvGetGIiIhQ+EXD3NwcLVq0KPjhs3Xqx8cMPxo6dGjBo+zSEIvF+PTpk0IHwpibm6Ny5cpyO15qaipCQkIY60VISIjCH5Hq6uqiSZMmhZIIGxsbpbjpkBdCCEJDQxX6uErWG09ZZWdnIywsrFBdyP//oKAghd+YCoVC1K9fv9BNR926dctdq1p8fLxC1zwWCASoVauWyt2sqbv09HSZll8ti5LceHJNLRJJ4HuHe0W15piYmKBq1aoylR07diwOHDhQZPuxY8cwbNgwmY6RkZGB9+/f482bNwgMDCz4r6Ifu9SqVatQAuHk5MTJF94///yD2bNnF9muo6ODzMzMMl2s0tLSEBYWVpbwWGlpaaFmzZqcXUzz8vLw+fPnQnXizZs3CA4OVuiNR/7AgPybDlVsnfpZbm4uvnz5opDWJ4FAAAcHB876YxJCEB4eXuT74v379wq98TA2NkazZs0K1Q1V729JCEFQUJDCRttXqVIFZmZmCjk2pVgxMTFFBnvKi6mpKWxsbBRybHlQm0RSIpEgJCRE7iOrtbS0UKNGDZmbwAcNGoQzZ84U2X7lyhV07dq1TLF8+/YNb9++LXLBUFR/L0NDQ7Rt2xYdO3ZEx44d4eTkpJCkSSKRwMjIiPHRwYYNGxiTzJKIjo6W+wApgUAAe3t7peh7mpGRgXfv3hVJMBW1RKSmpiaaN29eUC9cXFygo6OjkHMpUkpKCiIiIuR+3MqVKytF31M+bjzq1atXUC/c3Nw4n4ZLHnJychAUFCT3mwwTE5Ny17qvTiQSCYKCghhnGikLbW1tODg4KN34kx+pTSIJfH+UGRISUuzd5IMHD5CYmAhzc3Op/We0tLTg7e2Ndu3aoVGjRjJ9AfTo0QM+Pj5Ftj9+/BjNmjUr/k2UECEEERERhS4Wr1+/xtu3b+X+SLdChQro0KFDwYXC3t5ebl+KkyZNwu7du4tsr1SpUpmXtCOEIDo6Wm5LGAoEAlSrVk3pW+W+ffuGwMDAgp83b97gxYsXcr/Z0tPTg6ura0G9cHZ2VuovxR8lJSXJdXBcxYoVC/XrVUZMNx7Pnz+Xe2uLUChE06ZN0bFjR3To0AGtW7dWihsvWWRlZSEkJERuyaSxsXG5GMCk7kQiEUJCQuSWTGpra6N69epK39VBrRJJ4PtdQ3R0NOsSeQ8ePMDEiRML/r17927GZNLQ0BA2NjYYMGAALl26hCpVqqBXr17w8PBA+/btWR9btWvXDnfu3CmyPSgoiNPJkDMyMvDs2TMEBATg0aNHCAgIkPtocltb24LkoUOHDqhUqVKpj5WamgpTU1PGlpIHDx6gZcuWZQkVhBAkJCSUuZVOW1sbVatWVZkL4s9EIhECAwML6sSjR4/w4cMHuZ7DzMwM7dq1K6gbtWvXVuoLaFpaGiIjI8t04yUUClGlShWZ+lErI0IIgoODC31fvHjxQq6PxnV0dNCqVauCetG0aVOZB6nxIScnBxEREWV+zG1paQkrKyul/hugZCcWixEdHV3meYqNjIxgY2OjEjfdapdI5ktPT0dUVFShL8IHDx7g5s2bOH36NBYvXoyVK1di0KBB6NixY0EyqaGhgcqVK8PY2BgCgQDnzp3DgAEDCh3bwMAAXbp0Qa9evdC9e3dYWloW7GvevDnjmuMpKSm8d6SNjIxEQEBAwcXi6dOncm2dKutjrTZt2jCueduyZUs8ePBALjHm5OQgOjq6xAMtBAIBLC0tUaFChXI3wCA5ORmPHz8ulETIs3WqcuXKhW44ZO1vzCWxWIzY2NhStVqbmJigUqVKSp0UlUZ2djZevnxZ6KZDngMOjI2N4ebmVvCUo379+kqXbOXfgJZmjlhdXV3Y2NhwPncpxY20tDRERUWVeDo3TU3NghxDVahtIgl8/xJIT09HYmIifH19MWHChIJ93t7e6NGjR8G/Dx8+jN69e8PIyKhQopCTk4OKFSuytnAKhUK0atUKvXr1Qp8+fdCvXz8EBgYWKScWi5UuAcnLy0NgYGChBEJerVNCoRDNmjVDr1690Lt3b9SrV6/Yi8STJ0/QvHnzItsFAgESExPl2t8qKysLSUlJSE5Olvr4SkdHB+bm5jA1NVWJO0d5yB9w8ONNx8uXL+XWOlWrVi14eHigV69eaNWqlVIlYHl5eUhKSkJSUpLU96upqQkzMzOYmZmpzAIA8hAXF1eoXjx58kRuC0JYWVmhe/fu6NWrFzp37gwDAwO5HFcexGIxUlJSkJSUJPXmWygUwtjYGObm5tDT01O6xJiSL0II0tLSkJiYiIyMDKk3G/kLmhgZGalcvVDrRPJHx44dw4gRI7B48WK0bNkS3bt3h4+PDx4+fIiVK1fiv//+w/DhwxlfO3HiROzZs0fq8XV0dODt7Y2JEyciKCioyH5V+RiSkpLw+PFj3L17Fzdv3sSTJ0/k0k/IwcEBvXv3Rq9evdC6dWvW5MHGxobxEfzYsWOxb9++MsfxM0IIDhw4gD179hT6jIRCIby9vWFhYSH3c6qi7OxsvHjxAvfu3cPNmzfh7+8vl3nVLCws0LNnz4LkQZn6nT579gyTJ08uVC8EAgFWr16Njh078hiZ8hCLxXj//j0ePHgAPz8/+Pn54evXr2U+rq6uLtzd3dG7d2/07NlTqeZdlEgkaNWqVaHvRYFAgEGDBmHWrFkqlyRQ8kEIwaRJk/DixYtC2+vUqYPDhw+rdr0gFCGEEF9fXwKg4Mfb27vQv319fVlf6+/vX6jszz9CoZB4enoSQgixsbFh3K+qkpOTyaVLl8j06dOJo6Oj1N+DrD8WFhZk5MiR5OzZsyQtLa3Q+f7991/G1+jr6xOxWKyQ97hq1SrGc379+lUh5ysPcnJyyJ07d8jSpUtJmzZtiKamZpnrhY6ODunRowfZs2cPiY6O5vstsv7dnzt3ju/QlJZYLCavXr0i//zzD+nZsycxMjIqc70QCATExcWFrFmzhrx9+5ZIJBK+3yZjnDNmzOA7LIpnbdu2LVIvGjduzHdYZUYTyR80adKk4MNdvHgxAUBMTU2lJpGEECKRSEj16tWlftn17NmTEEKIpaVlkX2amppcvD1OxMbGkuPHj5OxY8cSOzs7uSQP3bt3J7t27SLR0dFELBYTXV1dxrJ79uxRyHuiiWTZpaWlER8fHzJ79mzi7OwslxuOFi1akNWrV5PAwEBekgeaSJZdbm4uefDgAVmxYgVp164d0dbWLnO9qFGjBpk9eza5c+cOycvL4+V90USSYkITSTXQpUuXIh9y1apVZXrtn3/+WewXXNu2bRnvwHV0dBT8zvgTFBRE9uzZQwYPHsyYRJf0p3nz5qyJSLVq1RTyHmgiKX9fv34lp0+fJpMmTSI1a9Ysc71wcHAgs2bNIrdv3+YseaCJpPxlZGQQX19fMm/ePNKsWTMiFArLVC8sLCzIqFGjyPnz50l6ejpn74MmkhQTmkiqAaZEsk6dOjK99tOnTzJ9sQkEgiLbDA0NFfzOlINEIiGvX78mmzZtIu7u7nJ53Pnzz6tXr+QeN00kFS8sLIwcPHiQDB48mBgbG5epDlSoUIFMnjyZ3L9/X6EtlTSRVLzExERy4cIF8ttvvzF2CyrJj66uLhkwYAC5cOECyc7OVmjcNJGkmJTXRFK5hgmrsJo1a6JFixbFliMMg2qUfbJReREIBHBycsKMGTNw/fp1fP36FcePH8eQIUPkNtXB5MmT5XIcilu2trYYPXo0Tp48ia9fv8LX1xdTpkwp1bJg3759w44dO9C6dWs4ODhg8eLFeP/+vQKiphTNzMwMffr0wY4dOxAeHo6nT59iyZIlaNiwYYmPlZ2djbNnz6Jv376oVKkSJkyYgDt37ihkGUyKUic0kZSjX375BQDwxx9/YODAgTK/Tp2mB/mRqakphg4dihMnThQkD1OnTi3TPIL3799Hp06dcPToUblNO0JxS1tbG506dcK2bdsQHh6OZ8+eYenSpXB2di7xsUJCQrBq1SrUq1cPjRs3xsaNG+U+8T7FDYFAgCZNmmD58uV4+fIlQkJC8O+//6Jjx44lniIqKSkJe/fuRbt27WBnZ4d58+bh9evXCoqcoso5vptElUlZHm0T8r3f1/Tp0wsep40dO1amRy4ODg6KeksqSSKRkOfPn5OlS5eSRo0alfpRlp6eHhkyZAi5fPkyyc3NLXU89NG28ggNDSVbtmwpU9cIgUBAOnToQPbv30+Sk5NLHQt9tK08EhMTybFjx8igQYPKNBK8fv36ZM2aNSQsLKxM8TAdmz7apsrro22aSP6grIkkk1mzZhX75dWgQQM5vYPyKSwsjGzdupV06tSp1MmDhYUF+e2334i/v3+JpwmiiaRySkpKIsePHydDhgwpdb9KHR0d0r9/f3Lu3LkS95ujiaRyysnJIdeuXSOTJ08uU79KV1dXsmvXLpKQkFDiGGgiSTEpr4kkfbStYBs3bsTy5cullnn79i3CwsI4ikj12NraYurUqfD19cW3b99w7Ngx9OzZs0SPsxISErBz5064urrC3t4eixYtYpwYnlIdP3eNuHbtGsaMGVOi/rY5OTk4d+4c+vfvD2tra4wbNw73799XmQUCqKK0tbXRuXNnbN++vaBrxPz582Fra1ui4/j7+2PSpEmoWLEievfujXPnzsl1bXGKKi9oIsmBJUuWYNOmTaz7xWIx6tatSwcEyMDExATDhg3D5cuXERMTg1q1apX4GGFhYVi9ejVq1KiBzp074/z58/QCoeLyk4f9+/cjLi6uYFBFSfofp6SkYP/+/WjTpg0aNGiA7du3IyUlRYFRU4omEAjQuHFjrFmzBiEhIbhz5w4mTJgAMzMzmY+Rl5cHT09PDBgwALa2tli8eDG98aeoH9BEkiMzZsxA7969WfdnZWXB2dkZz5494zAq1VahQgXs37+/TMe4fv06+vfvj2rVqmHJkiUIDw+XU3QUX3R1ddG/f3+cP38esbGxBYMqSrIEWWBgIKZOnYrKlStj3LhxePr0qQIjprggFArRtm1b7N69G7Gxsbh06RIGDRoEXV1dmY8RGxuLVatWoXr16ujZsye8vLwgFosVGDVFKT+aSHLI2tpa6v7c3Fy4uLjg7t27HEWk+tq0aQNTU1PGfSVpdYiJicGKFStQvXp1eHh4wNvbm14gygEzMzOMGzcOt27dQnh4ONavX1+iqWMyMzOxf/9+NGvWDE2bNsW+ffuQnp6uwIgpLmhra6NXr144deoU4uLicOjQIXTq1AlCoWyXREIIvL294eHhgerVq2PFihWIjo5WcNQUpZxoIsmhmJiYYsuIRCK0b98e3t7eHERUPgwaNIhxe5UqVeDn54exY8fCxMREpmNJJBJ4eXmhZ8+esLe3x6pVq+g0QuWEjY0N5syZg5cvXyIwMBALFixAtWrVZH79s2fPMH78eFSuXBlTpkyhfWzLCWNjY4waNQq+vr6IjIzEpk2b0LRpU5lfHxERgSVLlsDW1hb9+vWDr6+vAqOlKCXE92gfZaKIUds/cnFxKdEUJSdOnJDbucuzuLg41t9hSkoKIYSQrKwscu7cOdKvXz+ipaVVotGbbMu00VHbqk8sFhN/f38yadIkYmpqWuoRvj/+0FHb5cOHDx/IkiVLSPXq1eVSL+iobYqO2qbKLCEhQeayhBAMHToUe/bsUWBE5YOVlRVq1qxZZDshBH/99ReA7/3m+vXrh3PnziEiIgJr1qyBnZ2dTMenK1+UX0KhEG3atMHOnTsRHR2NQ4cOwcXFhe+wKCVQu3ZtLF++HF++fMG1a9fQt29faGholPp4hM4EQJVTNJHkUGpqapFtAoEA+vr6rK+ZOHEi/v77b0WGVS5MmzaNcfvRo0eLbLO2tsb8+fMRFBSEq1evok+fPjL3jfrRggULEBISUuLXUcpJT08Po0aNwsOHD/Hy5Uv89ttvMDQ0LPFx1q1bhwcPHiggQooPQqGwYHaH8PBw/PXXX6VauvPEiRM4ffo0RCKRAqKkKB7x3CKqVBT9aNvQ0LDI8fX09EhERESxEyovXrxYbnGURyKRiHWy8levXhX7+oiICLJs2TJSpUqVEj/2Hjx4MHn69CkH75LiWmpqKtm9e3epVlhq3bo1uXjxYoknwKeUX15eHvH09CTdu3cnAoGgRPWievXqZOvWrSQ9PZ3vt0FxrLw+2qaJ5A8UnUgyJToWFhaEkO/LK1pYWEj9Apo2bZrcYimP2rdvz/h769mzp8zHyMvLI5cuXSLdunUr8QWiffv2xMfHp2CJTKr8kEgkJCAggIwZM4bo6emVqF7Url2b7Nmzh2RlZfH9NigFCAkJIYsWLSLW1tYlqhcWFhZkyZIlJD4+nu+3QHGEJpJqQJGJpEQiYb07zZeSkkIqV64s9ctn5MiRcomnPGJbsk5HR6dUyV1wcDBZsGABMTAwKNEFon79+uTQoUMkJydHAe+S4ltSUhLZsmULsbOzK1G9sLa2JitXrizVknuU8svNzSVnzpwhHTt2LFG90NXVJZMmTSKfPn3i+y1QCkYTSTWgyEQyJCSE8UukefPmhcplZWURe3t7qV88ffr0kUtM5RHbyNsjR46U+ph//fVXiS4M+T9VqlQh69evJ8nJyXJ8h5SyuHv3bqnqhYGBAZk+fToJCQnh+y1QClKaeiEQCEi/fv3Iw4cP+Q6fUpDymkjSwTYcCQgIYNxevXr1Qv/W1dXFx48f4ejoyHqsixcvomPHjnQ0MQO2OSU3btxY6mOWdqRmVFQU5s6dC1tbW8yZMweRkZGljoFSPiVZKedHGRkZ2LJlC2rUqIGhQ4fi+fPnco6MUkWEEJw/fx4tW7aEq6srPD096Xc8pRJoIsmRly9fMm6vW7dukW2ampp4/fo1mjdvzno8Pz8/uLi40C+an+RP9/OzN2/eyH09bVlH9aampmLDhg2oXr06Ro0ahQ8fPsg1Dkq5jB49GlWrVi22nFgsxsmTJ9GkSRO4u7vj5s2bdIqYcqx79+5o1qyZTGXv3buH3r17w9HREQcOHJD7dxdFyRNNJDnCljw0atSIcbtQKMTDhw/h7u7OeswnT57AycmJTifxA2tra9jb2xfZLpFIsGvXLrme66+//kJERATWrl2LSpUqFVteJBLhyJEjcHR0xMiRI+nKKOWUh4cHgoKC8N9//8m8HOPNmzfh7u6Odu3a0SVSy6latWohICAAt2/fRo8ePWR6zYcPHzB27FjUrVsXR44cocu2UkqJJpIcCQsLY9wurdVRKBTi+vXr6Nu3L2uZd+/eoVatWsjOzi5zjOXFqFGjGLfv379f7ucyNTXFvHnzEBISggMHDqBevXrFvkYikeDo0aOoXbs2xo0bx1o3KNWlpaWF4cOH48WLF/D19UWnTp1ket3du3fh5uaGTp064dGjRwqOkuKaQCCAm5sbvLy88PbtW/z666/Q0tIq9nVBQUEYNWoUHB0dcerUKfokilIqNJHkSGxsbJFtAoEAFStWLPa158+fx+jRo1n3h4SEwN7ennHCc3U0a9Ysxu1v3rxRWOutjo4Ofv31V7x58wZeXl5wc3Mr9jVisRj79+9HzZo1MWXKFERFRSkkNoo/AoEAnTp1gq+vL168eIHhw4fL1Of2xo0baNmyJXr06IFnz55xECnFtXr16uHAgQMIDQ3FvHnzYGJiUuxrPn78iCFDhsDZ2RkXLlygXSEopUATSY4kJycX2aanpyfz6w8ePIjp06ez7o+JiYG9vT2+fftWmvDKFUNDQzg4OBTZLpFIFNIq+SOhUIgePXrg9u3bePz4MQYOHFjsqjl5eXnYsWMHHBwcMHPmTMTFxSk0Roofzs7O+O+//xAcHIyZM2fK1L/Wx8cHTZs2Rd++ffHmzRsOoqS4VrlyZaxduxYRERHYuHGjTP1r37x5g379+qFp06bw9vamCSXFK5pIcoTp0bOpqWmJjvHvv//izz//ZN2fkJAABwcHhIeHlzS8cmfYsGGM27lcu7xZs2Y4ffo0Pn36hMmTJ0NbW1tq+ZycHGzevBn29vaYN28evSkop2xtbfHPP/8gPDwcq1evRoUKFYp9zcWLF9GgQQMMHjwY79+/5yBKimtGRkaYNWsWgoKCcPToUZm6yTx//hw9e/ZEy5Ytcf36dZpQUrygiSQHIiIiGP/AZRmg8bO//voLGzZsYN2fmpqKunXr4vPnzyU+dnkye/Zsxu2vXr3ivH+Rg4MDtm/fjs+fP2PChAnQ1NSUWj4zMxPr169H9erVsXjxYiQlJXEUKcUlMzMzLFiwAMHBwVi1ahXMzMyKfc3p06dRv359/PLLL/jy5QsHUVJc09LSwogRI/D69WscO3YMNWvWLPY1AQEB6Ny5M9zc3HDnzh0OoqSo/6GJJAdknUNSVrNnz8bevXtZ57HLzMyEk5MT65RD6sDExAR2dnZFtovFYhw6dIjzeIDvLVG7d+/Gx48fMXr06GIfeaenp2PVqlWoXr06VqxYQfvAllNGRkZYuHAhQkJCsHTpUhgbG0stL5FI8N9//6FOnToYO3YsQkNDuQmU4pSGhgaGDRuGd+/e4eDBgzJdL/z9/dGuXTu4u7vj4cOHHERJUTSR5ARbQlenTp1SH3PcuHE4ceIEazKZk5ODZs2a4f79+6U+h6obMmQI43Z5TwNUUvb29jh48CDev3+PYcOGFTuxdUpKCpYsWQJ7e3ts376dTvdUTpmYmGDZsmUICQnBggULYGBgILW8WCzGgQMHUKtWLcyaNYu2XJdTmpqaGD16ND58+IDdu3fDxsam2NfcvHkTrVq1Qu/evdX+6RSleDSR5ADbHJLOzs5lOu7gwYPh5eXF2rIlEong5uaGa9eulek8qmrOnDmM21+8eKEU02fUqlULx44dw5s3bzBgwIBiyyckJGDq1Klo2LAhrl69ykGEFB/Mzc2xevVqhISEYPbs2dDV1ZVaPi8vD5s2bULNmjWxY8cOeqNRTmlra2PChAn4/PkztmzZItOMH56ennB0dKQ3GpRC0USSA2wTT0ubQ1JW3bt3x61bt1j73YnFYnTr1g1nz54t87lUjbm5OeMISJFIhBMnTvAQETNHR0ecOXMGL168gIeHR7Hl3717h27duqF79+504EU5ZmlpiQ0bNiA4OBjTpk0rdrBWQkICpkyZQm80yjldXV1MmzYNQUFB2LBhQ7GDtX680aBPNChFoIkkB5jWWBYIBDJN8yCLtm3bIiAgADo6Ooz7CSEYNGiQwqe+UUZsa29v376d40iK5+zsDE9PTwQEBKBr167Flr9y5QqcnJwwbdo0JCQkcBAhxYdKlSphy5Yt+PLlCyZOnFjsYC16o6Ee9PX1MXv2bISEhGDNmjXFDtaiTzQoRaGJJAeYHikYGRnJ9RyNGzfGq1evWOemJIRg3Lhx2Lx5s1zPq+zmzZvHuP3p06dK8XibSfPmzXHlyhXcu3cPHTp0kFpWLBZj27ZtqFGjBjZt2oTc3FyOoqS4VrVqVezatQufPn3Cr7/+WuzE5vRGQz0YGhpi/vz5CA0NxfLly4sdrEVvNCh5o4mkgsXExDCujypLh+mSql27Nj58+CA1SZ05cyaWL18u93MrK0tLS1SpUqXI9ry8PJw5c4aHiGTXunVr3Lx5E1euXCl2Trnk5GTMmjUL9evXx+XLl+l8cuVY9erVceDAAbx58wbdunWTWvbHG43NmzfTG41yzNjYGEuWLEFwcDCmTp1KbzQoztBEUsF8fX0Zt5dlxLY0tra2+PLlC8zNzVnLLFu2jHUZwfKof//+jNv5Hr0tq65du+LVq1fYvn07LCwspJb9/PkzevXqhU6dOuH169ccRUjxoW7duvDx8ZH5RmPmzJn0RkMNWFhYYOvWrSW+0aBPNKjSoomkgvn7+zNub9GihcLOaWVlhaCgIKmj+jZt2oRx48YpLAZlwvZ4+/HjxxxHUnqampqYPHkyPn/+jFmzZkFLS0tq+Zs3b6JRo0aYMGECXXKxnKM3GhSTkt5o5D/R8PT0pDcaVInQRFLB2L6sO3furNDzmpqaIigoCNWqVWMts3//fgwcOFChcSiDypUrw9LSssj2zMxMvH37loeISs/MzAwbN27E27dv0bt3b6llJRIJ9u7di5o1a+Lff/9l7GJBlQ+lvdGYMmUKUlJSOIqS4kNJbzR69+6NLl260JWTKJnRRFLBmFadEAgEaNCggcLPra+vj0+fPkl9jH727Fl06dJF4bHwrV27dozbt23bxm0gclKzZk1cvHgRN2/eLLYupaWlYcaMGXBxccGLFy84ipDiQ0lvNHbs2IG6devi7NmztBWqHCvpjcb169dRv359rFq1ij7upopFE0kFYxqxbWhoWOzyePKira2Nt2/fokmTJqxlfH190bJlS6UdxSwPkyZNYtyu6tNgdOjQAc+fP8fevXthZWUltezTp0/RtGlTzJ49G+np6RxFSPGhJDcaMTExGDhwIHr16oWwsDCOIqT4UJIbjZycHCxevBiNGjXCvXv3OIqQUkU0kVSg+Ph4xslfK1euzGkcQqEQjx8/Zm2VA4BHjx7B2dm53E5W26FDB8a78LCwMOTl5fEQkfxoaGhg3Lhx+Pz5M+bNmyd14mqJRIJ//vkHjo6O8PLy4jBKig8ludHw8vJCvXr18M8//5Tb7wHqu5LcaLx79w6urq6YOHEiXR2HYkQTSQXiesS2NEKhELdu3UKvXr1Yy7x58wZ169ZFdnY2h5Fxh6nDOSEER48e5SEa+TM2NsbatWvx4cOHYvu+hoeHw8PDAwMHDkR0dDRHEVJ8KMmNRmZmJmbPno3mzZvj6dOnHEZJ8aEkNxp79uxB3bp1cfLkSdoNgiqEJpIKxMeI7eJcunQJw4cPZ93/5csX1KhRo1w++uzXrx/j9vKSSOarXr06Tp8+jZs3b6JmzZpSy549exZ169bFjh076GCcci7/RuPt27fo2LGj1LIvXrxAixYtMGPGDKSlpXEUIcWH/BuNT58+YcqUKRAIBKxl4+LiMHToUHTv3h0hISEcRkkpM5pIKhDbiG13d3eOIynsv//+w5QpU1j3R0VFwd7eHomJiRxGpXhs77m8trx06NABr1+/xp9//im1c31qaiqmTJmC1q1b0ylh1ECNGjVw/fp1HD16VOo6zRKJBP/++y/q1auHS5cucRghxQcTExNs27YNDx48gJOTk9SyV69ehaOjI9avX6/yXYOosqOJpAIFBQUxbpc28IUr27Ztw8KFC1n3f/36Ffb29uXqsaeFhQXjhTM9PR0fP37kISLF09XVxV9//YWXL1+iTZs2UssGBASgSZMmmD9/PjIzMzmKkOKDQCDAiBEj8OHDB4wZM0Zq2cjISPTp0wd9+/ZFZGQkRxFSfHFxccGzZ8+wbt061iV3ASArKwvz5s1D06ZNERAQwGGElLKhiaSCEEIYl50yMjLibMR2cVatWoW1a9ey7k9JSUGtWrVYE2JV5Orqyrh969atHEfCrXr16uHOnTvYu3cvTE1NWcuJRCKsW7cO9evXV/kR7VTxLCwssH//fty+fRu1a9eWWvbixYuoW7cutmzZQrtBlHNaWlqYO3cu3r59i65du0ot+/r1a7Rs2RJTp06lc5KqKeXIaMqh58+fM06nY2dnx30wUsybNw87d+5k3Z+RkQFHR0e8efOGw6gUh20aoCtXrnAcCfeEQiHGjRuHDx8+YNiwYVLLhoSEoFu3bvj111+RmprKUYQUX9zc3PDq1SssX75c6mCc9PR0/P7773B1daUTVquB6tWrw8fHBydOnIC1tTVrOUIItm/fDkdHR9y4cYPDCCllQBNJBTl37hzjdhcXF44jKd6kSZPw33//sXayzsnJQZMmTfDw4UOOI5O/Tp06QVNTs8j2kJAQtZnyxNraGseOHcO1a9dgb28vteyhQ4fQoEED3L59m5vgKN7o6OhgyZIleP36tdSpwgDg4cOHaNiwIXbt2kVH8JZzAoEAQ4YMwfv37zFhwgSpZaOiotCpUydMnz6ddo9RIzSRVJC7d+8ybu/ZsyfHkchm+PDhuHjxIutj97y8PLi6uqr83aZAIGCcfokQgpMnT/IQEX86d+6MN2/eYP78+YzJdb6wsDC0b98es2bNKrdTQ1H/U7t2bfj5+eHgwYMwNzdnLZeZmYnffvsN3bt3L1d9qSlmZmZm2L17N/z9/Ytdu3vr1q1o1KgRHj9+zFF0FJ9oIqkgHz58YNzerVs3jiORXa9evXDz5k3WpEIsFqNLly44f/48x5HJF9s0QAcPHuQ4Ev7p6+tjzZo1eP78OVq2bCm17KZNm9CkSRM8f/6co+govggEAowePRofPnzAyJEjpZa9evUq6tevj1OnTnEUHcWnNm3a4MWLF1i1ahV0dHRYy3369AmtWrXC0qVL6cjuco4mkgogkUgYp84xMTEpdo1TvrVr1w4PHjxg7SclkUgwYMAAHD58mOPI5Gfq1KmM2589e8ZxJMrDyckJ9+7dw86dO2FkZMRa7t27d2jRogVWrlypNl0B1JmlpSUOHz6MmzdvwsHBgbVcUlIShgwZgmHDhpW7acOoorS1tbFw4UIEBgaiQ4cOrOXEYjH++usvtGzZEu/fv+cwQopLNJFUgDt37jD2Gypucmhl0axZMzx//px16gdCCEaPHq2yI50tLS0ZH9mlpKQwjrRXF0KhEJMmTcLr16/h5ubGWk4kEuHPP/9EmzZt8OnTJw4jpPjSoUMHvHz5knWwWr4TJ07AycmJdVUvqnzJn5N0y5Yt0NXVZS337NkzNGrUCJs3b2YchEqpNppIKsDFixcZtxc3j58ycXR0xLt372BoaMhaZvr06Vi1ahWHUclPs2bNGLeXt1VuSsPOzg5+fn7YuHGj1EdXAQEBcHZ2xo4dO+iACzVgaGiInTt3wsfHB5UqVWItFx0djS5dumDKlCnIyMjgMEKKD0KhENOmTcOLFy9Yv1eB74M2Z86cCXd3d4SHh3MYIaVoNJFUgAcPHjBu79OnD7eBlJGdnR0+f/4MMzMz1jKLFy/GnDlzOIxKPvr27cu43dPTk+NIlJNQKMSsWbMKWhLYZGVlYcqUKejatSuioqI4jJDiS7du3fDmzRsMGjRIarkdO3agUaNGePToEUeRUXyqU6cOHjx4gOXLl0NDQ4O13K1bt+Dk5IQjR47QG9BygiaSCvD58+ci2wQCAetk2MqsYsWKCA4OljqH2IYNGzBx4kQOoyo7tnkUX716xXEkys3R0RGPHj3C4sWLpU6k7+vri/r16+PEiRMcRkfxxcLCAqdOncLx48elTnD/+fNntG7dGosXL0Zubi53AVK80NTUxJIlS/Do0SPG2THypaamYtSoUejfvz++fv3KYYSUItBEUs5yc3MZZ/c3NzdXmhVtSsrU1BTBwcGoWrUqa5k9e/ZgyJAhHEZVNkZGRowXwMTERPo47ifa2tpYsWIF7t+/L7Wfb3JyMoYNG4YhQ4bQFS7UxNChQxEYGIjOnTuzlpFIJFi1ahVcXFzK7VKkVGFNmzbF8+fPMWPGDKnlLly4gPr166vFghDlmWpmNkqMbVm5unXrchyJfOnr6+PLly+oVasWa5lTp06hR48eHEZVNg0aNGDcrm7zScrKxcUFL168wJQpU6SWO3XqFJ0mSI1UqVIFV69exfbt26WuzfzixQs0bdqUtlqrCT09PWzatAk3b96U2ggRHx+P7t27Y8GCBXQmCBVFE0k5Yxto07ZtW24DUQBtbW28e/cOzs7OrGV8fHzQpk0blRiZxzY5/IULFziORHUYGBhg27ZtuHbtGipXrsxaLigoCC1btqQDcdSEQCDA5MmT8fLlS7Ro0YK1XHp6OoYNG4ZJkybRye3VRIcOHfDmzZti5yNdu3YtOnToQPtaqyCaSMrZvXv3GLcX1zFdVWhoaODZs2dSR6Dfv38fTZo0gVgs5jCykhs9ejTj9qdPn3IbiArq3LkzAgMDpa7ZnZubiylTpmDo0KF0vW41UatWLdy7dw8rV66UulrS7t270bJlS7pet5owMTHB4cOHce7cOVSoUIG1nL+/P5ydnXHt2jUOo6PKiiaSchYSElJkm6amJho2bMhDNIohFArh7++P7t27s5Z5+fIl6tWrp9Qd7C0tLRmnN4qPj6crMcjAzMwMx44dw6lTp6SO7D916hSaNm2Kly9fchccxRtNTU0sWrQIAQEBUpfSe/nyJRo3bowzZ85wGB3Fp379+iEwMBAeHh6sZb59+4Zu3bph8eLF9FG3iqCJpBw9fvyYseJXr16dh2gUz9vbW+oAm0+fPqFGjRpKPXiF6UJHCMGlS5d4iEY1DRo0CK9fv5baSv3582e4uLhgz5499FG3mmjcuDGePn2KCRMmsJZJS0vDoEGDMHXqVOTk5HAYHcUXa2trXLp0Cdu2bWNdQY0QglWrVsHd3R0xMTEcR0iVFE0k5YhtreZ27dpxGwiHTpw4IXXqn4iICNjb2yMpKYnDqGTXpUsXxu2nT5/mOBLVZmNjAz8/P8ydO5e1TE5ODiZOnIgRI0YgPT2dw+govujp6WH37t3477//YGBgwFpu+/btaNWqFYKDgzmMjuKLQCDAlClT8ODBA6kNLXfu3IGzszNu3rzJYXRUSdFEUo5u3brFuL24TsaqbteuXVITiPj4eNjb2yM2NpbDqGQzZswYxu10EuWS09LSwrp163D58mXGJSjzHT9+HE2bNsWbN284jI7i0/Dhw/H06VPUr1+ftczz58/RuHFjnD9/nsPIKD7lz+7AtkAE8P360alTJyxbtkzp+92rK5pIyhHT3bSGhgZat27NQzTcWrduHVauXMm6Pzk5GTVr1mTsQ8onOzs7xjVio6KiVGLkuTLq2bMnXrx4gZYtW7KW+fjxI5o3b479+/fTR91qok6dOggICGC9eQO+r3ffv39//P7770rdv5qSH1NTU5w7dw6bN2+GlpYWYxlCCJYvX47OnTsrZYOEuqOJpJy8ePGCcYCGnZ0dBAIBDxFxb9GiRdiyZQvr/vT0dNSrVw9v377lMKriMc2NKZFI6OOUMrC1tcWdO3cwe/Zs1jLZ2dkYN24cRo0apdT9aCn50dfXx/79+3Ho0CGpc05u2bIFbdq0QWhoKHfBUbwRCAT4/fffce/ePVSrVo21nJ+fHxo1asT69I/iB00k5eTAgQOM28vD/JElMW3aNBw6dIg1ec7Ozkbjxo3x5MkTjiNj5+7uzridTpxcNlpaWtiwYQMuXrwodRm9o0ePolmzZvjw4QN3wVG8GjVqFJ48eSJ1oYYnT56gUaNG8PLy4jAyik/NmzfH8+fP0atXL9YysbGxcHd3x6pVq+hTIyVBE0k5YWu9GjVqFMeR8G/UqFE4d+4c65KQubm5aNWqldLcVbJ9Rg8fPuQ4kvKpd+/eePHiBZo1a8Za5v3792jRogV8fHw4jIzik6OjI548eYJffvmFtUxycjJ69eqFNWvW0C4QasLc3BwXL17Ehg0bWOcilUgkWLx4MQYPHkyfZigBmkjKSVBQUJFtGhoacHV15SEa/vXt2xfXrl2DhoYG436RSAR3d3d4enpyHFlRDRo0YIwzPDych2jKJzs7O9y7dw+///47a5nU1FT07NkTGzZsoEmDmjAwMMDhw4exb98+xr7KwPf+cQsXLsTw4cORlZXFcYQUHwQCAWbPno27d+9KXV7x7NmzaNOmDf2u5hlNJOXg9evXjB3DbW1tWVvl1IG7uzvu3bvH2oFaIpGgT58+OHbsGMeRFVWxYsUi2zIzM+mKLHKkra2NzZs349y5czAxMWEsQwjBnDlzMGrUKLqEnpoQCAQYO3YsHj9+jNq1a7OWO3HiBFxdXekSemqkZcuWePHiRbGLXzRt2hT379/nMDLqR+qb5cgR2/yR6toa+SMXFxc8e/ZMamvDiBEjsHPnTo4jK4xtWhJlaDEtb/r164fnz5+jSZMmrGWOHj2Kdu3a0cmI1YiTkxOePHkiddnNZ8+eoWnTpggICOAwMopPFhYWuHz5MtatW8f6hOvr169o374961gFSrFoIikHbOuClvf5I2Xl5OSEwMBAqRMST548GevWreMwqsLYJo2na74qhr29Pe7duye1f1xAQACaNm2qVAOzKMUyMjLCf//9h82bN7M+zYmNjYWbmxuOHDnCcXQUX4RCIebOnQtfX1/WOWrz8vIwduxYzJgxgy6tyDGaSJYRIQSfP38usl1DQwPt27fnISLl5ODggE+fPrE+0gSA+fPnY+HChRxG9T8DBgxg3P706VOOI1Efurq6OHz4MP7++2/WUf7R0dFo27Ytjh8/znF0FF/yp4K5cuUK62j/nJwcjBo1CnPmzKGTVKuRDh064PHjx1LXcP/333/RvXt3pV1NrTyiiWQZXblyhfHux87OTq37RzKpXLkygoKCYGlpyVpmzZo1mDJlCodRfVejRg3GEYK0E7diCQQC/PHHH/Dy8oKxsTFjmezsbAwfPhwLFy6k032okc6dOyMgIEBqv8kNGzbAw8MDKSkpHEZG8cnBwQEPHz6Eh4cHa5nr16+jefPmeP/+PYeRqS+a6ZTR7t27Gbf37NmT40hUg4WFBYKDg1GlShXWMjt27MCIESM4jOo7a2vrItsyMzPpoA8OdO/eHY8ePUKNGjVYy6xZswZ9+vShA6DUSK1atRAQEIBu3bqxlrly5QpatGjB+GSIKp+MjY1x8eJFLFiwgLXMly9f4OLiQqcU4wBNJMvI39+fcfuMGTO4DUSFGBoa4suXL1KThmPHjkm941QEtgE3dKJsbtStWxePHz9Gp06dWMtcvnwZrVq1YpxuiyqfTExMcPnyZcyZM4e1TP6Sm9evX+cwMopPQqEQq1evxvHjx1kHc9IpxbhBE8kyiImJYeyHYWxsDDs7O+4DUiG6urp4//49nJycWMt4eXmhXbt2nD3OZBtw8+nTJ07OTwFmZmbw8fGReiP29u1bNG/eHH5+ftwFRvFKQ0MD69evx+HDh6Gtrc1YJjk5GV27dsW///5LkwY1MnToUPj7+7M+5aJTiikeTSTLgG1d6ZYtW3IciWrS1NTEy5cvpf6+7ty5g+bNm3OSTLINuKHz1nFLU1MTmzZtwv79+1nnIE1MTETnzp2xZ88ejqOj+DRy5EjcuXOHcd5X4PvctDNmzMDEiRPpyF01kj+7Q4sWLVjL5E8p9vXrVw4jUw80kSyDixcvMm4fO3Yst4GoMKFQiAcPHqBz586sZZ49ewZHR0fGSd/liW3ADe3Iz48xY8bg1q1bsLKyYtwvFosxceJELF26lLZAqREXFxc8ffoUTZs2ZS2zd+9e9OnThy6fp0YqVaqE27dvFzulWOvWrREcHMxhZOUfTSRLSSKRMHbuFgqF6N+/Pw8RqbZr166xtggC3/sp1qpVC5mZmQqNg2nATV5enkLPSbFr3bo1njx5AmdnZ9Yyf/31F8aPH09boNRIlSpVcPfuXamTl3t7e6NDhw60BUqN5E8ptmHDBtZZUz5//oyWLVvi2bNnHEdXftFEspQuXLjAOH9ZzZo16bQ/pXTmzBmprblhYWFwcHBAcnKywmJgG3BD8cfW1hb37t3DwIEDWcvs378fvXv3pi1QakRPTw///fcf1qxZwzoP6ePHj2kLlJrJX6db2pRi8fHxcHNzowtOyAnNeEpp7969jNt79+7NcSTly759+zBr1izW/bGxsXBwcEB8fLxCzs824Ibil4GBAU6dOoVly5axlvHx8UH79u1pC5QaEQgEmD9/Pi5dusS6chZtgVJP3bp1Q0BAABwcHBj3Z2RkoGfPnnSFJDmgiWQpPXz4kHH79OnTOY6k/Nm4caPUhCExMRE1atRAWFiY3M8t7fE6xS+BQIClS5fi4MGDrGvuPnnyhE4PpIY8PDxw69Yt1sUOaAuUeqpTpw4ePHjA2p9WJBJh1KhRWLNmDe1nXQY0kSyF0NBQxkmRzczMpE60Tclu6dKl2LRpE+v+tLQ01K1bV+4rF9SoUYM1SaGUw+jRo3H58mXo6+sz7v/y5QtatWpFl7dUM82aNcODBw9oCxRViJWVFW7duoWuXbuyllm4cCGmTp1Kl9ssJZpIlgJbgtO6dWuOIynfZsyYgX379rH2f8rKyoKzszOeP38u1/NaWFjI9XiU/HXr1g23b9+W2gLVrl07XL16lePIKD7VqFGDtkBRRRgaGsLT0xOjR49mLbNjxw4MHDgQWVlZ3AVWTtBEshTYpv2ZOHEit4GogbFjx+L06dOsyWRubi5atGiBu3fvyu2c9vb2cjsWpTiytEB5eHjg8OHDHEdG8Sm/BUrasoq0BUr9aGlp4cCBA1i0aBFrmQsXLqBTp05ITEzkMDLVRxPJEkpNTUV4eHiR7ZqamujevTsPEZV/AwYMwJUrV1gfOYtEIrRv315ua6pKm2qGUi6ytECNHj0aq1evpi1QasTQ0BCXLl3Cr7/+ylqGtkCpH4FAgJUrV2LHjh2ss6vcv38fbdq0YbzOU8xoIllCbI+1nZ2d6bQ/CtSlSxfcuXOHccJw4Pu8nj179sSpU6fKfC43N7cyH4PijiwtUIsWLaItUGpGS0sL+/fvx+LFi1nL0BYo9fTbb7/h3LlzrGt0v3//Hi1btsTr1685jkw10cynhI4fP864ffz48RxHon7yJ6fW0dFh3E8IwdChQ8u8bF6XLl3K9HqKeyVpgaLr7aoPgUCAFStWYOfOnbQFiiqkT58+uHHjBszMzBj3R0dHw9XVFbdu3eI4MtWj9olkVlYWkpKSkJSUxLiCiVgsxt27d/Ht2zckJiayrmYzZswYLsJVe87Oznjz5g3riF1CCCZOnIiNGzeW+hxmZmasLZ8/Sk5ORlJSEl1CUUnI2gLVo0cPpKenl+ochJCC7wummRsAID09vaAMF2vEU8WbNGkSzp8/L7UFqk2bNozf77JKS0sr+NyZZGdnF+xX9HKvlGxat26N+/fvw9bWlnF/amoqunXrBi8vr1Kfo7gcQyQSFexX9MptCkPU3MOHDwkAmX7q1KnDuL1evXp8vw21ExERQYyNjaV+Xn/++WeJjimRSEhYWBi5cuUKMTIykrleTJs2TUHvkiqtnTt3EqFQyPqZubi4kMTExFIdu2PHjjLVC2dnZyKRSOT8zqiyuH//PjE3N2f9zKytrcnr169Ldezly5fLVC/09PRITEyMnN8ZVRZRUVGkYcOGrJ+ZpqYmOXnyZKmOfevWLZmvJV5eXnJ+Z9xQ+0SSEEK6du0q8wfN9LNu3Tq+34Ja+vr1K7GwsJD62UyfPl3m44WGhhabnP78o6OjQyIjIxX4LqnSunjxItHV1ZWa6MXFxZX4uHfv3pWpbly4cEH+b4oqs/fv35Nq1aqxfm5mZmYkICCgxMdNSkoipqamxdaLWbNmKeBdUWWVnJxMOnTowPq5CQQCsm/fvlId283Nrdh60bRpU5W98aSJJClZqyTTz7Bhw4iXlxfJzs7m+62onZSUFFKpUiWpn8+oUaNkPt7x48dL9NnT1kjlVlwLVJ06dUhERERBebFYTJKTk4s9bnGtkrQ1UrlFR0dLbYEyNDQkt2/fLvQaWVqwi2uVpK2Ryi0nJ4cMHTpU6me4efPmQq+RpV7I0iqpqq2RhNBEsoC0VsmqVasWWwm0tLSIj48P329DLWVlZRF7e3upn0/fvn0LykdERBB/f3/W440cOVKmJJK2RqqGN2/eEGtra9bP0c7OjgQFBRGJREImTZpEVq9eXewx/f39pdYN2hqp/JKSkkjLli1ZP0NdXV1y5coVQgghR44cIT169JDpmNJaJWlrpPITi8Vk0qRJUv++V6xYQSQSCXn58iVxcHAgOTk5xR5XWqukKrdGEkITyQLSWiU3bNhQbBJ56dIlvt+CWsvLyyP16tWT+jl17NiRxMbGkjp16pB+/fqxHis1NbXYxBSgrZGq5NOnT8TW1pb1s6xUqRIZNWoUAUCcnJxkOqa7uzvjsWhrpOpIS0uT2rqspaVFZsyYQYRCIdHU1CRfv34t9phsrZK0NVJ1SCQSMmfOHKnf/+PGjSMVKlQgAIinp2exx5TWKqnKrZGE0ESyEKZWSUdHR5Kenk6TSBUgFotJs2bNpP7x6+npEQBEW1tb6iOJR48eEQ0NDdoaWY6EhYWRmjVrFnuDAIAEBgYWe7x79+4xvvb8+fMcvBtKXrKysoiHh4dM9WLnzp3FHi85OZmxVXLmzJkcvBtKXiQSCVm5cqVM9WLo0KEyHZOpVVLVWyMJoYlkIUytkqdPnyaEEFK5cmWaRKoAsVgs86jaXbt2ST3WX3/9RVsjy5nY2Fji5ORUbN1YtGiRTMf7uVWStkaqptzcXDJkyJBi60Xbtm1lOt7PrZK0NVJ1bd68udh6oa+vT9LT04s9FlOrpKq3RhJCE8kifmyVdHR0JGKxmBBCSKtWrWgSqUL69OlT7B9/69atpR4jLy+PtGjRgrZGljMJCQmkefPmUuuGvb29TAnhz30lad9I1SUSici4ceOk1guBQEDCw8OLPdbPfSVp30jVtn//fiIQCKTWjRMnTsh0rB9bJctDayQhNJEs4tGjR0VaIwkhZNiwYYUSCTqwRvnl93mT9hMUFCT1GB8/fix4HK6jo0NbI8uJ1NRUUqtWLal149GjRzIdK79VkrZGqj6JREIGDx4stV78/fffMh0rv1WStkaWD9u2bZNaLzw8PGQ6zo+tkuWhNZIQmkgy6tatW6HWSEIIWbhwYcGXwo0bN3iMjpKVSCQitWvXlvrHv3z58mKPs337dgKAjB07lrZGlhO7d+8u9iZj9uzZMh0rv1WStkaqvoCAgGIXI2jevLlMx8pvlaStkaovPj6+2MGc2traMk0dRsj3Vsny0hpJCE0ki8jLyyP+/v7k2LFjJC8vr+CD3rNnDzE0NCR37tzhOUJKFmKxmIwdO7bYZKFGjRrF/jFLJBIyduxYEhsbSxYvXkxyc3PLzReAOnr27FlBK7O0H1tbW5nqRk5ODpk1axbJzs4udPNJqZbk5GRSo0aNYusFABISEiL1WBKJhOTm5pI1a9aQsLAwIhKJuHkTlNxJJBIyYMAAmerFkSNHij1eXl4e8fX1JRcuXCB5eXkcvAPFExBCCNSYWCxGSkoK0tLSkJWVBZFIBAAghEAgEEBDQwO6urpITExEXl4eXFxceI6YkkVERASWLl0KLy8vfP36VWrZhw8fFvlcCSFIS0tDSkoKsrKyCtbGza8XAoEAurq6MDAwgJmZGXR0dBT2Xij5S09Px9WrV3HhwgV4eXmxrpv96NEjtGjRouDfhBBkZWUhOTkZmZmZyM7OLtguEAgAADo6OtDX14eJiQkMDAwKtlPKTyQS4d69e7hw4QIuXLiAiIgIxnJ///03/vjjj0LbcnNzkZSUhIyMDGRnZ0MikRSqF1paWtDT04OxsTGMjY0hFAoV/n4o+SCEIDAwsKBevHz5krGch4cHPD09C20Ti8VITk4uyDHEYnHBMfNzDD09PRgaGsLU1BSampqKfjtyp7aJpEgkQlxcHJKTk1GSX4GJiQmsra2hra2twOgoeRGLxQgICICnpyc8PT3x/v37ImUmT56M7du3A/j+x/3t2zd8+/at4A9eFvr6+qhYsSL09fXlFjvFjdzcXNy6dQvnz5/H+fPn8e3bt4J9s2fPxoYNGwAAKSkpiI+PR05OjszH1tLSgpWVFUxNTWlCqWIIIXj+/DnOnz+PM2fO4PPnzwX7mjVrhsePHwMAsrKyEBsbi4yMDJmPLRQKYWFhAUtLS5pQqqCQkBBcvHgR586dw/379wu2a2trIz4+HiYmJhCJRIiNjUVKSkqJc4yKFStCS0tLEaErhFomksnJyYiOjoZEIinV6wUCASpWrAhzc3N6cVAxnz9/xuXLl3H58mX4+/tDLBbD3NwcMTExEIlEiIqKKlGi8DMzMzNUrFgRGhoacoya4opIJMLt27dx5swZnDt3DgYGBvj8+TNiYmKQlpZW6uMaGBigSpUq9AZURRFC8Pr1a5w5cwanT5/G58+fERQUBH19/UI3HiWlpaWFKlWqwNDQUI7RUlyKjIzE2bNncebMGTx48ACHDx+Gh4cHYmJiypRjVKpUCWZmZiqRY6hVIkkIQWxsLBISEuRyPBMTE1SpUoXeUaqoxMREXLlyBZ6envj9999hbGwsl+Pq6OjAzs5Ope4oqaJEIhF8fX1hYWEBAwODMh9PKBTCzs6OtlqruPyWyoSEBFSuXFkux6xcuTLMzc3lciyKP+Hh4Xjx4gUcHBzkcjxTU1NUqVJF6ZNJtUokY2Ji5JZE5jM2NkbVqlWV/oOm2KWkpLD2hSotbW1t2Nvbq2R/F+q77OxsBAcHl7pVgYlAIED16tVpMqnCxGIxQkJCCvrHygtNJlUbIQTR0dFISkqS63FNTExgY2Oj1DmG2jSlpaSkyD2JBIDU1NQyPdqg+JWTk4PIyEi5Hzc3NxeRkZEl6htDKQ+JRILw8HC5JpHA94tNeHh4ifrfUsolJiZG7kkkAERHRyMrK0vux6W4kZycLPckEvieuyQmJsr9uPKksEQyIiIC7dq1Q7169dCgQQOcOXNGUacqVl5eHqKiohR2/Li4OPoFoIIIIYiIiFBYspeenq6QLxZK8eLi4gpG6subSCRCdHS0Qo5NKVZqaiqSk5MVdvyIiAi537xQipebm6vQv+nY2Ngy9d1XNIUlkpqamti8eTPevXuHGzduYObMmSUa1SZPX79+VfgfZ1xcnEKPTxWvuGl+fpaSkqKQloUfxcXF0QsDzxISEkr0GeTm5irk6cWP8qeVoviTkZFRomsSIQQxMTEKjOh/UwhR/CrptSQ+Pl6hT58IIUqdYygskaxUqRKcnZ0BAFZWVjA3N+eleVYsFnPyh5menq7UdwzqYMaMGejevTsCAgJkKq/oZAH43zylFH/OnDmDhg0b4uzZszIllFx9T3FR/yh2YWFhsLe3x8aNG2VKKNPS0pCXl6fwuL59+0a7xPDM2dkZ06dPl+lJpkgkUmgrdb7U1FSFPSUpqxInkhKJBHXq1MG8efMKbb927Rq0tbUZH2E/ffoUEokEVatWLX2kpVTSOZzK4uLFizh27BiuX7/Oyfmooq5cuQIXF5diE8rs7GzOWoSUvX+LOggMDMTAgQOLTSgJIZx9XsnJybS1mmfx8fH4448/ZEoouWopzMvLQ2ZmJifnophlZ2dj69atcHBwKDah5CKJ5ONcJVGqUduHDx/GtGnTEBYWBjMzM7x69Qqurq5YsmRJkdn+ExIS4Orqin379qFVq1ZyC1xWkZGRnPzyHzx4gIkTJxb8e/jw4XKbAoCSzfnz5xEYGFhoW7du3bB06dJCq5MA35M7LvupXb9+XWm/BMq7p0+fwsfHp9C2+vXrY+nSpejXr1+h6btycnIKTTytaIGBgYyT5FOK9/XrV+zcubPQNisrK8ydOxeTJk0qNOUTIQQfPnzgbJBUXFwc7t69y8m5qKLWr19fqNuTjo4OJkyYgHnz5qFKlSqFyoaHh7OujCVvhoaGsLOz4+RcJVGqRFIkEqFWrVoYNWoUxo4dCxcXF/Tu3btgdZB8OTk56NSpE8aPH49ffvlFbkGXxKdPnxTeHPzgwQPcvHkTp0+fxuLFi7Fy5UqFno8quZ8TyqioKE77IvXq1QshISGcnY+Szc8JZXJyskJG8bNZuXIlTp06xdn5KNn8nFDm5ubi06dPnJ3/ypUrmDt3Lmfno2TDlFB++PChYGllRRMKhahbt67STQVUqj6SmpqamDdvHrZs2YLu3bujcePG2LJlS6EyhBCMHj0aHTp04C2JBKDwPi35LZGnT58GALRs2VKh56NK5+dH3lz0dfoR7fOknH5+5M11P2daL5TTz4+8ue7nzFViQpVMTk5OoUfekZGRnH5W+eu3K5tSD7YZPnw4MjMzQQjBiRMniiwJd//+fZw6dQoXL16Es7MznJ2d8ebNmzIHrGzy+1MtXrwY3t7e6N69O7y9vbF48WKeI6OY5N/p0+lXqB8FBgZi3rx5ePjwId+hUEokPj4eK1aswLFjx/gOhVIiOTk52LFjB1atWkUbJQCUetmNqVOnAvg+woxpXeE2bdooRUdygUCg0F98/koE+Y+zvb290aNHD4Wdjyo9V1dXLF++HO3atUNERARn/Voo5WZvb48///wTw4cPR0pKCmJjY/kOiVICJiYmmDlzJn7//Xfo6OggKCiIs3Mr26NL6n80NDQwcuRILFq0CA4ODnj79i2nyZ0yLslcqoj+/PNPeHt749GjRxCJRNi/f7+845IbXV1dhR6/VatW2L17NwYNGgQAtEVDCbm6usLPzw937txB+/btIRAIoKOjw2kMyvjHr+7s7e1x8OBBfPjwAaNHj4aWlpbCvy9+xnQTTvHLxMQEy5YtQ2hoKJYuXQpTU1POvy+0tbU5PR9VPA0NDfz666/4+PEjDhw4UDCYlsu6oa2trZQ3GSUebLNv3z5Mnz4dfn5+cHFxwapVq7Bnzx58+fIFWlpaioqz1GJjYzlZwvDnUdsXL15Ehw4dFH5e6n/Gjh1baPopV1dXLFu2rCB5/FFaWhrCwsI4iUtDQwNVq1ZVykcS6mD//v2YOXNmwb8dHBywePFiDB8+vMh3llgs5nQUddWqVelNBk8+fPiA5s2bF/z7/9q7n9+k/TiO46/PSgcFim1B2JAMtot/gsa7d2PizYTEeNP9A3rxaIz/gwcPnjz7V/gP6GkuaFwi4IGUEUa/h29YZtwm62gH4/k4EuiHpE37+vzo+3NyBNLzvL++//Xr19TW0FarVTmOk0pb+Fuz2Tx+GdOyLLXbbb148eLUSizfv39PrWSY53lqNBqptHURF5ra/vTpk549e6YPHz7o7t27kqTd3V29fftW79+/15MnTxL5k5dRLBZTCZL37t3Tx48fFYahqtWq7t+/n3ib+NM0FJycwj6r95bP5xNf9jDluq6KxWLi7eB001HGaYB8/PixMpnTb32WZclxnFRqjNq2rVKptJAjDKtgWt7nXwFyynXd1IKk7/sLOTCzKowxxwHy5cuX2tnZOfO7ruumFiRd102lnYuaOUh+/vxZjx490ps3b/Tw4cPjz0ulknZ3d/X69Wu12+2Fm6opFArKZrOJ3wAsy9KDBw8YXbhCd+7c0dOnT88NkFOWZcn3/VRuAJVKJfE2cLZGo6F3796dGyBPqlQq2t/fT/x/VSoVQuQVyuVyevXq1T8D5FQQBKkMSpRKJULkFWu323r+/Pm5AXKqWCzKtu3EX7rJZDIqlUqJthFXrDqSy6bX68201dFlVKtVVavVRNvAfKVRfLpQKGh7ezvRNjBfURTpy5cviT4Y1tbWdPv27YXreON8+/v7iZcC2tnZUT6fT7QNzFcaG1xsbGws7KDESgyfeZ73xy4F85bNZhf2BONs2Ww20fBvjPlrFwQsPmNM4uuQbt26RYhcQpubm4met3K5TIhcQr7vJ3recrmcyuVyYse/rJUIktMHQxLTzsYYFswvsZs3bya2qL1er/P25ZIqFAqJdQ49z9ONGzcSOTaSlclkEuscZrNZ1Wq1RI6NZKWRMRZ5GczKpB/btrW9vT3XE22M0dbWVuolQzA/xhg1m825l3CoVqvyfX+ux0S6arXaTGvnLqJYLKper8/1mEhXqVSa+zm0bVutVosBiSW2vr6uVqs118BnjFGr1Uq9/NRFrcQayZOGw6H29vYuvf7JsixtbW0lOmWO9BwdHenbt28aDAaXPtbm5uZCT0NgdlEU6efPn3N5ycL3fdXr9YUeWcDs+v2+Op3OpSs/OI6jZrM504tgWHxhGGpvb+/SWydalqVms7kUSx1WLkhK/+9XeXBwEPvh4Hle4mtlkL4oitTv9/Xjx49YuzI5jqNGo7HwvUdc3GAwUKfT0Wg0uvBvp9Ohi1q6A/GNRiN1Op1YHVBjjGq1msrlMp2La+bo6EgHBwf69etXrN/7vq+NjY2lyRgrGSSnDg8P1e121ev1/hkcjDHyPE9BEFAo9pobj8fq9XrqdrszjVwXi0UFQSDXdXkgXGOTyUS/f/9Wt9udqc5kLpdTEATyPI8py2ssiiINBgN1u92Ztl3NZDIKgoBakStgOByq2+2q3+/PlDF835fv+0uXMVY6SE5NJhOFYajhcKgwDDWZTBRFkSzLUi6XUy6Xk+M4S9M7wHxEUaThcHh8XYzHY0VRpLW1Na2vr8txHDmOw8NgBY1GI4VhqDAMNRqNFEWRjDGybfv4umBkevWMx+Pj6+Lw8FCTyUTGGGUymT+eJXQ4V8s0Y0xzxmkZI5/PL22HkyAJAACAWJYz/gIAAODKESQBAAAQC0ESAAAAsRAkAQAAEAtBEgAAALEQJAEAABALQRIAAACxECQBAAAQC0ESAAAAsRAkAQAAEAtBEgAAALEQJAEAABALQRIAAACxECQBAAAQC0ESAAAAsRAkAQAAEAtBEgAAALEQJAEAABALQRIAAACxECQBAAAQC0ESAAAAsRAkAQAAEMt/ZL1Gj8PSv9sAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -713,7 +713,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHiCAYAAAB4GX3vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOgklEQVR4nO3dd3QUZfs+8Gt3U3bTKyQhQEgPHUUUFBUEFHvBgkjoHQFD770XQZo0gSCKCgIWBEFQEFBEQFoqCZ0AaSSk7+78/uAbfvAmQCaZ2dlyfc7JOe8Lee65UUmuPPMUlSAIAoiIiIjIZqiVboCIiIiITIsBkIiIiMjGMAASERER2RgGQCIiIiIbwwBIREREZGMYAImIiIhsDAMgERERkY1hACQiIiKyMQyARERERDaGAZCIiIjIxjAAEhEREdkYBkAiIiIiG8MASERERGRjGACJiIiIbAwDIBEREZGNYQAkIiIisjEMgEREREQ2hgGQiIiIyMYwABIRERHZGAZAIiIiIhvDAEhERERkYxgAiYiIiGwMAyARERGRjWEAJCIiIrIxDIBERERENoYBkIiIiMjGMAASERER2RgGQCIiIiIbwwBIREREZGPslG6AiKpGEAQUFRWhsLAQhYWF0Ov1EAQBRqMRKpXq7oeDgwN0Oh20Wi3s7OygUqmUbp2IiBTCAEhkYQRBQG5uLnJzc1FQUICioiIIgiCqhlqthk6ng06ng4eHB7RarUzdEhGROVIJYr9zEJEiioqKkJWVhaysLBgMBklra7VaeHl5wd3dHRqNRtLaRERkfhgAicyYIAjIyclBRkYG8vPzZX+eSqWCu7s7fH194ejoKPvziIhIGQyARGaquLgYV65cQV5eniLP9/X1ha+vL9Rq7hUjIrI2DIBEZkYQBKSnp+PGjRui1/ZJzcHBATVq1ICzs7OifRARkbQYAInMSEFBAS5fvoyioiKlW7mPh4cH/P39uT6QiMhKMAASmYmcnBxcunRJ8Vm/B3F0dERQUBDs7e2VboWIiKqIAZDIDGRmZuLq1atKt/FIdnZ2CAoK4rExREQWjgGQSGEZGRm4du2a0m1UmEajQZ06dRgCiYgsGLf3ESkoMzPTosIfABgMBqSmpprdOkUiIqo4BkAiheTn51vEa9/yGAwGXLx4EUajUelWiIioEhgAiRRgMBhw6dIlpduokqKiIly/fl3pNoiIqBIYAIkUcO3aNZSUlCjdRpVlZGTg9u3bSrdBREQiMQASmVhOTg6ys7OVbkMyly5dgl6vV7oNIiISgQGQyIQMBgMuX76sdBuSMhgMFreRhYjI1jEAEplQVlaWVW6cuHXrFoqLi5Vug4iIKogBkMhESu/4tVaZmZlKt0BERBXEAEhkIjk5OVa9Vi4zM9MqZzeJiKwRAyCRiVjz7B8AGI1GZGVlKd0GERFVAAMgkQkUFBSgoKBA6TZkl5GRoXQLRERUAQyARCaQl5endAsmUVxcbBXnGxIRWTsGQCITyM/PV7oFk7GFmU4iIkvHAEhkAqYKRV26dEGDBg3w+eef3/frgiDgww8/RIMGDbBkyRJZe2AAJCIyfwyARDLT6/UmeS0qCAISEhIQEBCApKSk+35v+/btuHHjBgAgKipK1j5sabaTiMhSMQASycxUM2IXLlxAXl4e3njjjfsCYF5eHhYtWoQ33ngDAFCvXj1Z+ygoKIAgCLI+g4iIqoYBkEhmproh4+zZs3B0dET79u1x8eLFu89dsWIFIiIi4OvrC09PT/j5+cnah9FohMFgkLxuXFwcZs6ciZs3b0pem4jI1tgp3QCRtTPV4chxcXEIDw9HUFAQdDodUlJSoNPpsGnTJmzatAnr169H3bp1TdKLFH9mo9GII0eOYNu2bdi2bRsSEhLg4OCA4cOHS9AhEZFtYwAkkpmpAuDZs2dRt25dqFQqhIeHIykpCTt37kSHDh0QHByMs2fP4plnnjFJL5X9MxcXF+P333/H1q1bsX37dly7du2+3w8LC4OdHb9sERFVFb+SElmJuLg4vPzyywCA8PBwbNy4EdeuXcOsWbNQUlKC5ORk9OrVS+Euy8rNzcXOnTuxdetW/Pzzz8jJyXng58q9gYWIyFYwABLJTK2Wf6ntpUuXkJube/cVb2RkJDZt2oSJEyfC1dUVZ86cgV6vN9kr4Ef9mW/cuIEffvgB27Ztw549e1BUVFShugyARETSYAAkkpkpAuDZs2dhb2+P0NBQAMDrr7+O1q1bw8PDA8Cd2UE3NzcEBgbK3gtQ/p85JSUFW7duxbZt23Dw4MFK7RR2c3NDUVERHB0dpWiTiMhmMQASyczBwUH2Z8TFxSE0NBT29vYAAHt7e3h6et73+6aaPVOr1dBoNBAEASdOnMC2bduwdetWnDp1qsq1hw8fjlGjRiEkJARRUVH3fURGRsLV1VWCPwERkfVTCTywi0hWer0e8fHxSrdhMmq1GitXrsS2bdtw4cIFkz47MDDwbiCsW7fu3f/t6+tr0j6IiMwdZwCJZGZnZwd7e3uT3AZiDjw9PeHp6YlLly6Z/NmXL1/G5cuXsXv37vt+3dvbu8yMYd26dVGzZk2oVCqT90lEpDTOABKZwMWLFx+6u9Wa1KpVC25ubjh48CA6depk8llAMZydnREZGVkmHIaEhNx9nU5EZI0YAIlMID09HWlpaUq3YRIRERF3w1N2djb69u2Lb775RuGuxCndUHPva+SoqChERETAyclJ6fbIzBgMBhQVFaGgoADFxcUwGo0QBAGCIEClUt1dF6vVaqHVauHg4MCZZ1IcAyCRCRQUFODcuXNKtyE7BwcHhIeH3/drgiAgNjYWAwYMQF5enkKdSUOlUqF27dplXiVHRUXdt+mGrFtJSQlu3bqF/Px8FBQUiF7eoVKpoNVqodPp4OLiAldXVwZCMjkGQCITKCgowIULF6DX65VuRVb+/v7w9vYu9/eSkpLw4Ycf4ujRoybuyjSqV69e5lVyVFQUAgIC+M3dCgiCgNzcXGRmZuL27duS1tZoNHfXzvKIIzIVBkAiGRmNRmzatAmjRo1CdHQ0PvjgA6Vbko1arUZERAQ0Gs0DP6e4uBgTJ07E7NmzK3UOoCVyc3MrNxjWqVPnof+syDzo9Xqkp6cjKysLBoNB9uc5OTnB29sbbm5u/MGBZMUASCSTP//8EzExMfjnn38A3AlIx44ds9pv+j4+PvDz86vQ5+7duxedO3fG1atXZe7KfDk6OiI8PLzMkTXh4eGcBTIDgiAgKysLaWlpJrvP+17Ozs4ICAjgfwskGwZAIomdO3cOo0aNwubNm8v83pgxY9CxY0cFupJfeHi4qEOvMzIy0LNnT2zbtk2+piyQWq1GcHBwubOGbm5uSrdnEwoLC3HlyhUUFBQo2odKpYKvry98fHxMcqMQ2RYGQCKJZGVlYfr06fjss88euCjcxcUFBw4cgJ2ddR3B6e7ujpo1a4oeJwgCVq1ahSFDhjz0m221atVQUlKCrKysqrRp8WrUqFFuMKxWrRpfF0pAEATcuHEDN2/eVLqV+zg4OCAwMJA70ElSDIBEVVRSUoLPP/8ckyZNQmZm5iM//91338WECRNM0JlpaDQahIWFVSnUxsXFoWPHjvjvv//K/f3FixdjwIABuHHjBuLi4sp8XLlypdLPtgaenp5lXiVHRUWhVq1anDmqIIPBgIsXL5r1TvXAwMC793sTVRUDIFElCYKAH3/8EcOHD0diYqKosT/++COCgoLkaczEgoKC4OLiUuU6RUVFGD16ND799NMyv7dnzx688MILDxybk5OD+Ph4nD179r5gmJKSosj6LXPh5OSEiIiIMkfW3HtvNN3Z6JGamoqioiKlW3kkPz8/+Pj4KN0GWQEGQKJKOH78OIYOHYp9+/ZVaryPjw/++OMPiw8n3t7e8Pf3l7Tmzp070bVrV1y/fv3ur125cgUBAQGiaxUWFiIpKem+UHj27FkkJiZaxDd7udjZ2SE0NLTMq+TIyEg4Ozsr3Z5J6fV6pKSkoLi4WOlWKqx69eq835qqjAGQSIQrV65g3LhxWL9+fZWPMRk7dqxFHwvj6OiIkJAQWV4x3rhxA926dcOOHTvg7u6OrKwsSde4GQwGpKamlvs62Vau7HuQ/z3ouvTjQec7WjJLDH+lGAKpqhgAiSogLy8Pc+fOxdy5c5Gfny9JTZVKhRMnTljkGi2NRoPg4GBZj6gQBAFLlizB999/X+mZ1so88+rVq+UGw3tnJG2Rr69vuesMa9SoYZEbUARBwIULFyQ/1NmUpFp+QbaJAZDoIYxGI2JjYzF27FjJz6xzc3PDmjVr0KpVK1y7dk3S2nLSaDSoU6cOtFqtSZ6Xk5NjFsefZGZmlrvO8Pz580q3pihXV1dERkaWuR6vTp06Zr3bPSMjw6L+3pVHig1YZLsYAIkeYN++fRg6dCiOHz8uaV2NRoM+ffpg0qRJd1/hZGZmWsShyHZ2dggKCjJZ+LME+fn5SEhIKLPOMCkpyeqv/nuY0nuh//dVckREhOL//RQWFuLcuXNWcRuNq6sratWqZZGzsKQsBkCi/5GQkIARI0bghx9+kLz2K6+8grlz5yIqKqrM7+Xk5ODSpUtm+03J0dERQUFB3D1aQSUlJTh37lyZV8nx8fFmfdSI3FQq1QMPunZ3d5f9+UajEefOnbOqTUA1atSAp6en0m2QhWEAJPo/GRkZmDx5MpYvXy75zE3Dhg0xf/58tGnT5qGfV1BQgMuXL5vdNycPDw/4+/tb7TV2pmQ0GnH58uUyr5Lj4uKQkZGhdHuK8vf3L3NkTVRUFKpXry7ZDNf169fN7qDnqlKpVAgPD+cPZyQKAyDZvKKiIixZsgTTpk1Ddna2pLX9/Pwwbdo0dO3atcLhSRAEpKen48aNG4rPBjo4OKBGjRo2dzSIUm7evFnmVXJcXBwuX76sdGuK8vDwKHfGMCgoSNQmKoPBgISEBIs/fqk8Yu7iJgIYAMmGCYKA77//HiNGjEBKSoqktXU6HYYNG4YRI0ZUepdecXExrly5otjrQl9fX/j6+lrkLmVrk5ubi/j4+DIzhsnJyVYZZipKp9Pdd9B16UdYWFi591Jbw8aPB1Gr1YiMjOTfV6owBkCySf/88w9iYmLw559/Sl67c+fOmD59eqXuxv1fgiAgJycHGRkZkh0/8zAqlQru7u7w8fFRfKE+PVpRUVGZg67j4uKQkJCAwsJCpdtTjEajQUhIyH2vklu2bImioqIH3tNtDQICAuDl5aV0G2QhGADJply8eBFjxozBxo0bJa/97LPPYv78+WjatKnktYE73+yzsrKQlZUFg8EgaW2tVgsvLy+4u7tznZ8VMBgMuHDhwn2vkUs/bt26pXR7ivj222/L3XxlTRwcHBAWFsYdwVQhDIBkE3JzczFr1iwsWLBA8pmR0NBQzJ07F2+88YZJvvAKgoDc3Fzk5uaioKAARUVFotcKqtVq6HQ66HQ6eHh4cLbPRgiCgLS0tDIzhmfPnkVaWprS7cnq2LFjNrFJgodDU0UxAJJV0+v1+OKLLzB+/HjcuHFD0tqenp6YMGEC+vfvX+56I1MRBAFFRUUoLCxEYWEh9Ho9BEFAXl4edDod1Go1VCoVHBwcoNPpoNVqYWdnx1kCuk92dna5N6CkpqYqvhmpquzs7CQ/z9NccTMIVRQDIFmtX3/9FUOHDsXp06clrWtnZ4eBAwdi/PjxZr3epkOHDujYsSPeeecdpVshC1ZQUIDExMQyr5ITExMtZj1dixYtsGLFCtnqG41GvPHGG2jVqhViYmLu/vrBgwcxcOBAzJo1Cy+++KJsz7+Xk5MTgoODTfIssmwMgGR1zpw5g2HDhmHnzp2S137zzTcxe/ZshIeHS15bSidPnkSjRo3QoEEDi71vmMybXq9HSkpKmSNr4uPjze5+3TFjxqBjx46yPmP79u2YOXMmdu3aBXd3dyQkJKBLly7o27cvunbtKuuz76VSqVC3bl3O8NMjMQCS1bhx4wYmTpyIlStXSn40xmOPPYYFCxbgueeek7SuXDp06IAtW7YAADZv3sxZQDIZQRBw+fLlcl8nK3UA8zfffIO6devK+gy9Xo9XX30Vb7zxBt566y106tQJrVq1wrhx42R9bnlCQ0O5rpceiQGQLF5hYSEWLlyIGTNmIDc3V9LaNWrUwMyZM9GpUyeLmUUrnf0rxVlAMhfp6enlBsOLFy/K+ty//vrLJIeZf/vtt/jss89QrVo11KhRAwsXLlRkVz2vhqOKYAAkiyUIAjZt2oTRo0fjwoULktZ2dnbGyJEjMXToUDg5OUlaW273zv6V4iwgmbPbt28jISGhzLE1ycnJkhx5dPLkSZO8Es3Pz8ezzz6LmjVrYuPGjfd97UhLS8Po0aORmZkJjUaDPn36yLYukBtBqCIYAMkiHTp0CDExMfj7778lratSqdC9e3dMnToV/v7+ktY2hf+d/SvFWUCyRMXFxUhOTi4zYxgfH4+CgoIK1TDlDuCxY8di165dcHV1xc6dO+Ho6Hj3927evImMjAxERkYiIyMD7733Hn788UdZfsD08vJCQECA5HXJutgp3QCRGCkpKRg1ahS+++47yWu/8MILmD9/frkBylJMmTKl3F8/deoUtm7dyllAsigODg6oW7dumfV7RqPx7kHX//uRlZV13+e6ubmZpNfFixfjwIED2LhxI3r16oXvv//+vo0npVcrAoC3tzfc3d2Rk5MjSwDkvA5VBKcDyCJkZ2dj+PDhiIqKkjz8RUZG4qeffsLu3bstOvydPHmyzKvfe02ePNmm740l66FWq1GtWjX4+fmV+bCzu39ewxSvfrds2YLY2FgsXrwYERER+Oijj7B27doHHpNz5swZCILA17SkKM4AklkrKSnBypUrMXHiRGRkZEha28fHB5MnT0avXr2s4oaAB83+leIsIFmizMzMMreWxMXFVXjdb05Ojqz9HThwANOnT8ecOXPu/gD54YcfYt26dfjpp5/w1ltv3ff52dnZGDNmDCZPnixbTzwChiqCawDJLAmCgJ9//hnDhg1DQkKCpLUdHBwwePBgjBkzBh4eHpLWVsqD1v79L64FJHMkCAKuXr1a5rDpuLg4SW7wkWsTyJkzZ9CtWzcMGjQIH3300X2/t2TJEuzcuRPbt2+/uxO4uLgYvXr1QocOHfDaa69J3k8pbgKhimAAJLPz33//YejQofjtt98kr/3ee+9h1qxZqFOnjuS1lVTezt8H+e6779ChQweZOyIqy2Aw3Hd49L0fUh/hdK8jR45Ap9PJVr8iBEHAyJEjERQUhP79+8v6rICAALO+pYjMAwMgmY2rV69i/PjxWLt2reSLmJ988kksWLAALVq0kLSuOajo7F8pzgKS3AoLC5GYmFjm1W1iYiKKi4tN3s+WLVsUv73n2LFj6Nq16319zJgxQ5a+QkJCFA+8ZP64BpAUl5eXh/nz52P27NnIz8+XtHatWrUwe/ZsvP/++1a7LuZRa//+F9cCklRu3bqF+Pj4Mq9uU1NTzWrD0cmTJxUPgI899hhOnjwp+3NUKhVvAaEK4QwgKcZoNOLLL7/EmDFjcOXKFUlru7q6YsyYMRg8eLBV/yQsdvavFGcBqaIEQcD169fLfW179epVpdurkFatWuGzzz5Tug2T0Ol0CAkJUboNsgCcASRF/P777xg6dCiOHTsmaV21Wo3evXtj8uTJqFatmqS1zZHY2b9SnAWk/yXmbD1Lc/DgQaVbMBlLu7mIlMMZQDKppKQkjBgxAtu2bZO8dvv27TF37lzUq1dP8trmqLKzf6U4C2ib/vd2jdLXtwkJCRW+XcMSnThxQpF7eU2tVq1aJjv8miwbZwDJJDIzMzFlyhQsXboUer1e0tr169fHvHnzZLtX01xVdvav1KlTp/D9999zR7CVun37NuLj48vM5kl1v66lSU1NRWhoqNJtyMrOzg6urq5Kt0EWgjOAJKvi4mIsXboUU6ZMQXZ2tqS1q1WrhmnTpqFbt25lTv+3dlWd/StVv359/Pfff5wFtGDp6enlvra9ePGi0q0pys3NDVFRUahbty6ioqLw8ssvQ6PRSP4DqDnx8/ODj4+P0m2QhbCt75pkMoIgYNu2bRgxYgSSk5Mlra3VahETE4NRo0bZ7E+7VZ39K3X69GnOAloAQRBw+fLlcm/ESE9PV7o9Rfn5+SEqKqrMh7+/f5md/zdv3sT169cV6lReKpUKnp6eSrdBFoQzgCS5o0ePIiYmBgcOHJC8dqdOnTBjxgzUqlVL8tqWQqrZv1KcBTQfer3+7kHJ9x6tEh8fj9u3byvdnmJUKhWCgoLKDXpiQo/BYEB8fLzk54yaA29vb/j7+yvdBlkQzgCSZC5duoSxY8diw4YNktd+5plnsGDBAjzxxBOS17Y0Us3+leIsoOkVFBQgISGhzGvbpKQkRQ5KNhf29vYICwu7G+5KX9+Gh4dLsrtVo9HAy8tL8nvFzQFv/iCxGACpynJzczFnzhzMmzcPhYWFktYODg7GnDlz8Pbbb1vtQc5i3Lx5E7dv30a7du3u+/WjR48iMzOzQjXq1q2LwMDA+37t8OHDDIAyyM7OLnd9XmpqqlXOQlWUs7NzubN5wcHBsLe3l/XZ1apVQ05ODkpKSmR9jin5+fnB0dFR6TbIwvAVMFWawWDA2rVrMW7cOMnX1bi7u2PChAkYMGAAv7BVQLt27bB79+4Kfe6aNWvQvXt3mTuyHYIgIC0trczavLi4OKSlpSndnqJ8fHzKDXqBgYGKLjnIz89HSkqKYs+XkpOTE+rUqcMfkEk0zgBSpezevRtDhw7FqVOnJK1rZ2eH/v37Y8KECfD29pa0NlFVGAwGnD9/vtwZvVu3bindnqJq1qx5X8ArfXVrrjtSnZycUK1aNdy4cUPpVqpErVajZs2aDH9UKQyAJMrZs2cxfPhw7NixQ/Lab7zxBubMmaP4nZ1k24qKipCUlFQm5CUkJEi+xMGSaDQahISE3A13pR+RkZFwcXFRuj3RfH19kZuba9GHX9eoUUP2V+ZkvRgAqUJu3LiBSZMmYeXKlZIfItu4cWMsWLAArVq1krQu0cPk5uaWOSj57NmzSElJscmDkktptVpERkaWeW0bFhYGBwcHpduTjEqlQs2aNZGSkmKRZwN6e3vD3d1d6TbIgjEA0kMVFhZi0aJFmDFjBnJyciStHRAQgOnTp6Nz5842cUUTKePmzZtl1ubFxcXh8uXLSremKA8Pj3Jf29auXdtmjgRycHBAcHCwxYVAb29v+Pn5Kd0GWTgGQCqXIAj49ttvMXLkSFy4cEHS2k5OThgxYgSGDRsGZ2dnSWuTbTIajbh06VK56/Os8cgPMfz9/cu8to2KikL16tW5dgx3QmCdOnVw/vx5i9gZXBr++O+OqooBkMo4fPgwYmJi8Ndff0laV6VSoUuXLpg2bRpq1KghaW2yDSUlJTh37lyZkBcfH4+8vDyl21OMSqVCcHBwmZAXGRkJDw8Ppdsze46OjggJCcH58+fNep0nr3ojKTEA0l3nz5/HqFGj8M0330heu1WrVpg/fz6aNGkieW2yPvn5+XcPSr731W1ycrJFzNLIxcHBAeHh4WWCXnh4OHQ6ndLtWTQ7OzsEBwfj2rVryMrKUrqd+9jZ2SEgIABubm5Kt0JWhAGQcOvWLcyYMQOLFi1CUVGRpLXDw8Mxb948vPrqq3xlQWVkZmaW+9r2woULNn1QsouLS5m1eVFRUahTpw7s7PhlWy5qtRo1atSAh4cHrly5Yha3snh5eaF69epcJ02S41cSG6bX67Fy5UpMnDhR8gvlvby8MGnSJPTt25fHFNg4QRBw9erVcoOe1AeIW5pq1aqVe1ByjRo1+AOTQgRBwO+//45Vq1Zh5cqVip0V6OjoiNTUVCxevBiTJ0/mpg+SHAOgDRIEAb/88guGDRuGuLg4SWvb29tj0KBBGDt2rKhL2snyGQwGpKamljlWJT4+XvId5Jamdu3a5QY9HnZuXo4fP45hw4Zh7969aNOmDapVqwZ3d3fcvHkTt27dMsmstIODA7y9veHl5YWCggKsXLkSGzduxMiRIxETE8ONcyQZBkAbc/LkSQwbNqzC14aJ0aFDB8yaNQshISGS1ybzUVRUhMTExDLHqiQmJkq+hMCS2NnZITQ0tMyr24iICH7TNnOXL1/G2LFjsWHDhrshr/TrmKOjIwIDA+Hv749bt24hMzNT8o0iKpUK7u7u8PLygk6nuzv7GxwcDADIy8vDhAkT8Pnnn2PatGmIjo7mK2GqMgZAG5GWlobx48fjiy++gNFolLT2E088gQULFuCZZ56RtC4pKycnp9zXtikpKZL/N2RJdDodIiMjyxytEhoayuUOFiY3NxezZ8/G/Pnzy4S60NDQ+/6/RqOBl5fX3Zm57OxsFBQUoKCgoFIzg/b29tDpdHBxcYG7u3u5gc7FxQXVq1e/u1Ti6tWr6N69OxYtWoR58+ahTZs2op9LVIoB0Mrl5+djwYIFmDVrluTHZNSsWROzZs3CBx98YDMHx1obQRBw48aNMiHv7NmzuHr1qtLtKcrLy6vc17a1atXif+8WTq/XY82aNZgwYcID1/g97E2GTqe7u+taEASUlJSgoKAAhYWFKC4uhtFohNFohCAIUKvVUKvV0Gg00Gq1dz8qOoMXEhJSZq3sf//9h7Zt26J9+/aYO3cu6tWrV8E/OdH/xwBoQYxGY4W/8RiNRmzcuBFjxoyR/MYDFxcXjBkzBkOGDOHRExZo165dOHTo0N2wZ25HXphajRo1yoS8unXrwtfXlxsxrIwgCNixYweGDx/+yPXPFV3KolKp4ODgAAcHB1muZgsJCcGhQ4fK/b1ffvkFu3btQs+ePblRhERjALQQRqMRHTt2xPLly+Hl5fXQz92/fz9iYmLw77//StqDWq1Gz549MWXKFFSvXl3S2mQ63377rdItmJxarb57UPK9r24jIyN5tpqNuHeDR0WUrr9T2qOCqNFo5EYRqhQGQAvx+eef49tvv0WNGjWwYMGCcj8nOTkZI0aMwNatWyV/frt27TB//nzUr19f8tokXl5eHuLj4+/O4v33339Kt2QWHB0dERERUWZGLywsDFqtVun2SAHlbfB4lOrVq8PFxUXmzirmf9ciPgg3ipBYKsGWT1u1EMnJyWjUqBHy8/Nhb2+Ps2fP3vdFITMzE1OnTsXSpUslvyWhXr16mDdvHl566SVJ61LFZGRklFmbFxcXh4sXLyrdmqLc3NzKXZ9Xp04dftMjAA/f4PEoTz/9NP7880+ZOhPnr7/+QvPmzUWPa9SoETeK0ENxBtDMGQwGdOvWDfn5+QDu3IU6cuRIbNmyBcXFxVi+fDkmT54s+TouX19fTJ06FT169ODNAzITBAFXrlwpc6xKXFwcbt68qXR7iqpevXqZtXlRUVHw9/fn+jwql16vx+rVqzFx4sRKH+JsTkdZVbaXezeKzJkzh29vqAx+ZzdzCxcuLPOT6Pfff4/p06dj/fr1SEpKkvR5jo6OiImJwahRo7g2SmJ6vR4pKSllQl58fDxyc3OVbk8xKpUKtWvXLnOsSlRUFA8TpwoTBAE///wzRowYUeUD7s0pAPr4+MDV1bXSXyNKN4r06NEDU6ZM4UYRuouvgM1YXFwcmjRpYrLDdTt27IiZM2eidu3aJnmetSooKEBiYmKZoJeYmGgWd4sqxd7eHmFhYWVCXkREBJycnJRujyyY2A0ej/Lll1+iU6dOktSSQpMmTXDixIkq13F2dsaIESMwdOhQbhQh25wBFAQBRUVFKCwsRGFhIfR6PQRBgNFohEqlgkqlglqtvntQp1arhZ2dnUlfOen1ekRHR5sk/LVo0QILFizAk08+KfuzrMmtW7fKrM2Li4tDamqqSa6MMlfOzs6IjIws8+o2ODiYByWTLNRqtaT3mZvTDCBwpx8pAmBBQQHy8/O5rIcA2EgAFAQBubm5yM3NRUFBAYqKikR/gy49xFOn08HDw0P2HYWzZs3C0aNHZX1GnTp1MHv2bHTo0IHrqR5AEASkpaWVeyPGtWvXlG5PUd7e3mWOVYmKikJgYCAPSiaTatSoEY4cOYLJkydj9uzZVb6pxhwDoBQ1YmNj0aJFCwk6Imtg1a+Ai4qKkJWVhaysLBgMBklra7VaeHl5PfAKn6o4ceIEmjVrJvmO3lLu7u4YN24cPv74Yzg6OsryDEtjNBpx/vz5coNedna20u0pqmbNmuXuuPX19VW6NaIyDh8+jOjoaCQnJ1dqvJubG7Kzs83qh+JVq1ahd+/elR7fv39/zJkzh6996T5WFwBLZ/vS09Pv7pyVU+kl3j4+PpLMChYXF+OJJ57AyZMnJejufhqNBv369cPEiRPh4+MjeX1LUFxcjKSkpDKvbhMSEiS/4N2SaDQahISElAl5kZGRcHV1Vbo9IlFmzpyJMWPGVGpskyZNcOzYMYk7qpq9e/fihRdeqNRYDw8PxMfH8/B+KsOqXgEXFxfjypUrkt95+zCCICA7OxvZ2dnw9fWFr69vlV5/TZkyRZbw9+qrr2Lu3LmIjIyUvLY5un37NuLj48scrXLu3DnJZ4MtTWBgIJ555pn7Xt+GhoZyNpiswqlTpzBp0qRKjze3179A1XrKzs5G7969sW3bNrOa1STlWcUMoCAISE9Px40bNxRffG9vb48aNWpU6hT5I0eOoHnz5lVev3KvRo0aYf78+ZX+6dHc3bx5s9zXtpcuXVK6NbO1Zs0adO/eXek2iCRXXFyMJ598skobJkaOHIlZs2ZJ15QEDAYDdDpdlZYFrV27Fl27dpWuKbJ4Fj8DWFBQgMuXL5vsqJRHKSkpwfnz5+Hh4QF/f/8Krw8sKChAly5dJAt/fn5+mD59Orp06WLxNyMIgoBLly6VCXlnz55FRkaG0u0pyt/fH1FRUUhKSmLoJZs3ZcqUKu+WNccZQI1Ggzp16iAxMbHSNQYNGoRWrVrxmC+6y6IDYE5ODi5duqT4rF95srOzUVBQgKCgoAodfTFu3DjEx8dX+bk6nQ7Dhw/H8OHDzeYuy4rS6/U4d+5cmWNV4uPjTfpa39yoVCrUqVOnzLEqkZGR8PDwAHDnrmYGQLJlf//9N2bOnFnlOhW9e9fUQkJCqhQAc3Nz0a1bN+zZs4e79AmABQfAzMxMXL16Vek2HqqoqAjnzp1DUFDQQzeIHDhwAJ9++mmVn6fVanH27FkEBQVVuZac8vPzkZCQUGZGLykpSbadz5bA3t4e4eHhZY5WCQ8Ph06nU7o9IrOVn5+P6OhoSd6gmOMMICBNMN23bx+WLFmCQYMGSdARWTqLDIAZGRkWcwabXq9Hamoq6tSpU24IvH37Nrp27SrJLGZhYSF++eUXfPTRR2axczMrK6vc9Xnnz583y1lbU3FxcSn3WJXg4GAe0EpUCaNHjxY9OxYSEoKgoCD89ttvd3/NwcEBNWrUkLo9SfxvMNVqtXjvvfcQGxsrqs7IkSPx4osvIiIiQsr2yAJZ3HebzMxMiwl/pQwGA1JTUxEcHFxmp+WIESOQkpIi2bNGjBiBjRs3lrk/WC6CIODatWtl1ubFxcXh+vXrJunBXPn6+pYb9AIDA7kbj0gie/fuxWeffSZqjEqlwvr169G8eXMsW7YMI0aMQEFBAerUqWO2a6bvDYDNmjVDbGwswsPDkZ+fj82bN1e4TmFhIaKjo3Hw4EH+wGnjLOrffn5+vtm/9n0Qg8GAixcvIiQk5O76i927d2P58uWSPuf27dv4559/IAiCpCHDYDDg/PnzZY5ViYuLQ05OjmTPsUS1atW6b21e6f/29vZWujUiq3br1q1K7WwdPnw4nn76aQDAwIED0a5dO3Tp0gVeXl4SdyidkJAQ2NnZYdKkSRg5cuTd8LZ8+XIcOHBA1A/cR44cwaxZszBu3Di52iULYDEB0Gg0Wvwi96KiIly/fh3+/v64deuWbEdxFBcX4++//8ZTTz0lemxRURESExPLhLyEhASz2WmtBI1Gg7CwsDKzeRERERa32YbIWgwZMkT094X69etjypQp9/1aeHg4Dhw4IMl9u3IJDg7GkSNH0KRJk/t+3cfHB6tWrcLrr78uqt7kyZPxyiuvlKlHtsNiAuC1a9esYoNARkYGXFxcMGTIEFy+fPmRn6/VauHq6goXF5e7H6X/X6fT4fTp0/jvv//KjIuPj39oAMzJyUF8fHyZV7cpKSmSnkNoaXQ6HSIjI8sEvdDQUDg4OCjdHhH9nx9++AHr1q0TNcbOzg6xsbHlHnpuZ2eHpk2bStSd9BwdHR8Y1l577TV069YNa9eurXA9vV6P6OhoHD16lIfA2yiLCIA5OTnIyspSug3JXLp0CY8//jhatGhxX6D734Dn7Oz8wDUa8fHx+PDDD8sNf8Cdf2aCINw9KPl/X91euXJFzj+i2fP09CxzrEpUVBRq1arFIxKIzNzNmzfRq1cv0eMmTZpktTNeCxcuxN69e3HhwoUKjzl9+jQmTJiA2bNny9gZmSuzvwnEYDAgISHB6mal3N3dUbNmTdHjBEHAmjVrMHjw4IfedVytWjXo9XpkZmZWpU2LFxAQUGZtXlRUFKpVq2ZVGzHatWuH3bt3V+hzeRMIWTJBENChQwd8//33osY9+eST+PPPP61648O+ffvQunVrUWNUKhX279+PZ555RqauyFyZ/d+ErKwsqwt/wJ3Fy9WrVxf1WjEzMxO9evWq0Be+GzduVKU9i6JWqxEcHFzmtW1kZCTc3d2Vbo+IJLRx40bR4U+n02H9+vVWHf4AoFWrVhg8eDAWLVpU4TGCIKBLly7477//uJ7Zxpj13wZBEKz6qq/MzEz4+flV6HN///13fPTRRzb96tbR0fHuQcn3foSHhz/0oG0isg6XL1/GwIEDRY+bNWuWzZx7N3PmTOzcuRMJCQkVHpOSkoLhw4dLfioFmTezDoC5ublWsfHjQTIzM+Hr6/vQc6dKSkowadIkzJw502YOT3Z1dS33WBVzPqOLiOQlCAJ69OiBW7duiRrXunXrSoVGS6XT6RAbG4sWLVrAYDBUeNznn3+ON998Ey+++KKM3ZE5MesAmJ6ernQLsjIajcjOzn7geXHnzp3Dhx9+iCNHjpi4M9OoXr16uQclBwQEWNX6PCKqus8//xy//vqrqDFubm5Yu3atzW3satasGcaMGYOpU6eKGte9e3ecPn0anp6eMnVG5sRsA2BhYeFDNzlYi/T09DIBUBAEfPnll+jfvz9u376tUGfSCQoKKjfomfOhq0RkPpKTkzFs2DDR4xYtWoRatWrJ0JH5GzduHH766SccP368wmOuXr2KgQMHYuPGjTJ2RubCbAOgNQSfiigpKUFJSQns7e0B3Nkc0r9/f3z11VcKdyaOnZ1dmYOS69ati4iICDg5OSndHhFZKIPBgC5duoieEHj99dfRpUsXmboyfw4ODoiNjcXjjz+O4uLiCo/76quv8NZbb6FDhw4ydkfmwGwDYEFBgdItmExBQQHs7e1x6NAhdOrUCefPn1e6pQdycnJCZGRkmWNVQkJC7oZYIiKpzJs3D4cOHRI1xsfHBytXrrT5pST169fHtGnTMGLECFHj+vbti2eeeabCmxTJMpltADTF61+9Xo/XXnsNzz77LEaPHn3f702ZMgWHDx/Gl19+Kfudrnl5eVi4cCGmTJkiatGunLy9vct9bVuzZk2bW09DRMo4deoUJkyYIHrc559/jurVq8vQkeWJiYnBDz/8gD///LPCYzIyMtC7d29s377d5kO0NTPLAKjX602y+9fOzg49evTAnDlz0K9fP3h4eAAAVq9ejd27d2PDhg2yhz/gzlmHWVlZCAwMFHWKuxQCAwPLhLy6devC19fXpH0QEd2ruLgYnTt3FvX6EgA++ugjvPPOOzJ1ZXk0Gg3WrVuHRo0aIS8vr8LjfvzxR6xbtw7dunWTsTtSklneBJKbm2uyIFRSUoKXX34Zb7/9Nvr164effvoJkydPxqpVq9C4cWOT9KBSqVC3bl0AwH///YetW7di27ZtOHnypCT11Wo1QkJCyhyrEhkZCVdXV0meQcriTSBkbcaOHYsZM2aIGlOjRg2cPn367g/z9P+tWLECffv2FTXG1dUVJ0+eRFBQkDxNkaLMcgZQ7E98VWFvb49u3bphxYoVqFev3t0z90wV/oA7u371ej3s7e3RuHFjNG7cGJMnT8a5c+ewfft2bNu2DX/++WelzgGcPXs2Bg8ezMu+ichi/PXXX5g1a5bocV988QXD3wP07t0b27Ztw86dOys8Jjc3F926dcNvv/3GpT9WyCz/jZr66rd33nkHarUaH3/8MQYPHoy2bdua9PkAyg13ISEhiImJwf79+5GWlobVq1fjlVdeERXmcnJyGP6IyGLk5+ejS5cuor8P9OvXD+3atZOpK8unUqmwevVq0QH5999/x+LFi+VpihRllgHQ1G+lHR0d8cQTT6Bx48bo3LmzSZ9d6lFf7KpVq4YePXrgp59+ws2bN/Htt9/iww8/fORdt2fPnpWyTSIiWY0aNQqJiYmixoSEhGDu3LkydWQ9atSogaVLl4oeN2rUKMTHx8vQESmJAfD/JCUloUGDBiZ/bmW4urri3XffxcaNG3Hjxg3s2rUL/fr1g7+/f5nPjYuLU6BDIiLxfvvtN9GzTWq1GrGxsXB2dpapK+vSsWNHvPvuu6LGFBYWIjo6Gnq9XqauSAlmGQBNvdagsLAQqampdzdiKKGyf2YHBwe0a9cOy5Ytw+XLl/HXX39h1KhRdy8+T05Otur7lInIOty6datSO06HDx+OFi1ayNCRdVKpVFi2bJnoY3L++ecfzJw5U6auSAkMgADi4+NhMBgQFRVl0ufeS4qzltRqNZ588knMnDkT8fHxiIuLw9SpU5GZmSlBh0RE8hk8eDAuXbokakyDBg0wefJkmTqyXj4+Pli9erXocVOmTMGxY8dk6IiUYJYB0MHBwaTPi4uLg5OTE2rXrm3S55ZSqVSws5N+Q3ZkZCRGjRrFA1GJyKxt374d69evFzXG3t4esbGx3ORWSa+++qro46D0ej2io6NRWFgoU1dkSmYZAHU6nUmf17FjR/z999+KbXN3cnLiaetEZJNu3ryJ3r17ix43adIkkx7XZY0+/fRT0RMfZ86cqdTtLGR+zDIA2tnZ2dS9sqYOvERE5kAQBPTp0wc3btwQNe6pp54Sfb8tleXm5oZ169aJHjdv3jwcOHBA+obIpMwyAAJ3ZsVshS39WYmISn355ZfYunWrqDE6nQ7r16+XZdmMLXr++ecxZMgQUWMEQUDXrl1x+/ZteZoikzDbAGhLs2K29GclIgKAS5cu4eOPPxY9bvbs2QgPD5ehI9s1Y8YMREZGihqTkpKCYcOGydQRmYLZBkAXFxelWzAJe3t7m3rdTUQkCAJ69OiBW7duiRrXunVrDBgwQKaubJdOp0NsbCw0Go2ocStWrBB1tRyZF7MNgFqt1iZejfr4+CjdAhGRSS1fvhy7d+8WNcbNzQ1r167lnbQyeeKJJzBmzBjR43r06MGjxiyUWf9NsvZwpFareXE5EdmUpKQkDB8+XPS4zz77DLVq1ZKhIyo1btw4PPbYY6LGXL16FQMHDpSpI5KTWQdAV1dXq3496uXlJXrKnYjIUhkMBnTp0gX5+fmixr3xxhuIjo6WqSsq5eDgUKmzFb/++mt89913MnVFcjHrAKhSqeDt7a10G7Lx8vJSugUiIpOZO3cuDh8+LGqMj48PVq5cybNSTaRevXqYNm2a6HH9+vVDWlqaDB2RXMw6AAKAp6enVa75cHd3N/mNJ0RESjl58mSlDhBesWIFqlWrJkNH9CCffPIJWrZsKWpMRkYGevXqBUEQZOqKpGb2BylpNBoEBgbi4sWLSrciGbVajR9++AGOjo5wcXGBi4sLXF1d7/7vez/4ipiILF1xcTGio6NRUlIialznzp3x9ttvy9QVPYhGo8G6devQsGFD5OXlVXjcTz/9hLVr14q+Yo6UYfYBELiz+8vT0xNZWVlKtyKJmjVr4siRI4iNjX3k5+p0ujKh8H/DYnn///HHH0doaKgJ/jRERA83efJk/Pfff6LGBAYG4rPPPpOpI3qU4OBgLFiwAH369BE1bvDgwWjdujWCgoLkaYwkYxEBEAD8/f1x+/Zt0T9Bmhtvb2+4urpi0aJF+O2333DlypWHfn5BQQEKCgpw8+bNCj/D0dER8fHxVW2ViKjKDh8+jFmzZoke98UXX/CUBIX16tUL27Ztwy+//FLhMbdv30bXrl2xd+9eq1y+ZU0s5t+OWq1GzZo1lW6jShwcHFC9enUAgIeHB9asWSPLc4YMGcKfvohIcXl5eejSpQuMRqOocf3790fbtm1l6ooqSqVSYfXq1fD09BQ17o8//uDsrQWwmAAI3LkzNyAgQOk2KkWj0aB27dr3/UT04osvip5efxRfX1+MHj1a0ppERJUxatQoJCUliRoTGhqKOXPmyNQRiRUQEIClS5eKHjd69Gi+iTJzFhUAgTtHp/j7+yvdhigajQZ16tQp92yluXPnok6dOpI9a8qUKXB3d5esHhFRZfz2229YsmSJqDFqtRqxsbFwdnaWqSuqjA8++ADvvvuuqDGFhYXo3LmzxS/bsmYWFwCBO+voLGUm0M7ODnXq1IFWqy33911dXbF27VpJnqXT6dC+fXtJahERVVZ2dja6du0qetyIESPQvHlz6RuiKlGpVFi2bBn8/PxEjTt69ChmzpwpU1dUVRYZAIE7M4G1atUy68NBHR0dERIS8sDwV+q5557DkCFDqvy8goICREVFYeLEibh9+3aV6xERVcbgwYNx+fJlUWMaNmyISZMmydMQVZmPjw9Wr14tetzUqVPx77//ytARVZXFBkDgzvEwwcHBoq+tMQUPDw8EBwdX+Cq7GTNmIDw8vMrPLSgowJQpUxAeHo61a9fCYDBUuSYRUUVt27atQkdc3cve3r5SV5CRab3yyivo0aOHqDF6vR7R0dEoLCyUqSuqLIsOgMCd156hoaGoXr26WcwG2tvbIygoCIGBgaIOcdbpdFi/fr1k2+avXbuG7t27o2nTpti7d68kNYmIHubGjRvo3bu36HGTJ09Go0aNZOiIpLZgwQLUrl1b1JizZ89i/PjxMnVElWXxARC4sz7B19cXYWFhii4eLu3BxcWlUuOfeuopjBw5UtKeTpw4gRdeeAGvv/46EhISJK1NRFRKEAT07dtX1JmlwJ2ve8OHD5epK5Kam5sb1q1bJ3rc/PnzsX//fukbokqzigBYysHBAUFBQahZsyacnJxM8kyVSgUPD4+7s5BVncGbOHEiGjRoIFF3/9+PP/6I+vXr4+OPP0Z6errk9YnItn355ZfYunWrqDE6nQ6xsbGws7OYOwkIwPPPP49PPvlE1BhBENC1a1fk5ubK1BWJZVUBELgTyNzd3REcHIywsDD4+PjIcp+uVqtFQEAAIiMjERgY+MiNHhXl6OiI9evXy/IFUa/XY8mSJQgNDcW8efNQVFQk+TOIyPZcunQJAwcOFD1uzpw5CAsLk6Ejktv06dMRFRUlakxqaiqGDRsmU0ckltUFwHs5OjrCz88PkZGRqFWrFjw9PaHVaiu1VlCtVsPZ2Rk+Pj4ICQlBaGgovLy8ZAmXTZo0wYQJEySvW+rWrVsYPnw4oqKisHnzZgiCINuziMi6GY1GdO/eHTk5OaLGvfDCC+jfv79MXZHcSmdvxX4PXLlypair5Ug+KsEGv/sLgoCioiIUFhaisLAQer0egiAgLy8POp0OarUaKpUKDg4O0Ol00Gq1sLOzM+kmk5KSEjRv3twk2+effvppLFiwAM2aNZP9WSSPdu3aYffu3RX63DVr1qB79+4yd0S2YunSpaJn/9zd3XHq1CmLv96T7ixbmjJliqgx/v7+OH36NLy8vGTqiirCqmcAH0SlUkGr1cLDwwN+fn4IDAxEzZo1MWHCBBw5cgQ1a9ZEYGAgqlWrBldXV9jb25t8h7G9vT3Wr19vkmMRDh48iCeffBKdOnXCxYsXZX8eEVmHpKSkSm3g+Oyzzxj+rMS4cePw2GOPiRpz7do1DBgwQKaOqKJsMgCW5/Tp0/juu+8wefJk0ReXy6VevXqYOnVqub83depUhIaGSvq8r776CuHh4RgzZozo1zlEZFtKz3crKCgQNe7NN99E586dZeqKTK2yZzhu2rQJ3377rUxdUUUwAP6f0insM2fOYMuWLQp38//FxMSgRYsW9/3aO++8g3HjxuHMmTP49NNP4enpKdnzioqKMHPmTISFhWHFihXQ6/WS1SYi6zF37lz89ddfosb4+vpixYoVZnFmK0mnXr16mD59uuhx/fr1w7Vr12ToiCqCARD/f/avlDnNAmo0Gqxfv/7usTb29vaYPXs2gDvH3gwZMgTJyckYMmSIpDuHb9y4gb59+6Jx48bYtWuXZHWJyPL9999/mDhxouhxK1asQLVq1WToiJQ2ZMgQtGzZUtSYzMxM9OrVixsRFcIACJRZwGpus4ChoaF3Q9/HH3+MkJCQ+37fy8sLn376Kc6ePYu33npL0mefOXMGL730El566SWcPn1a0tpEZHmKiooQHR2NkpISUeOio6Ml//pE5kOj0WDdunWiL2P4+eef8cUXX8jUFT2MzQfA/539K2VOs4AA0L9/f7z33nsYN27cAz8nLCwM33//PX7//XfRi3IfZdeuXWjUqBH69u2L69evS1qbiCzH5MmTcfLkSVFjAgMDsWjRIpk6InMRHByMBQsWiB43ZMgQpKamytARPYzNB8AHbV83t1lAtVqNr7/+ukLr/Z577jn8888/iI2NRY0aNSTrwWg0YsWKFQgLC8PMmTNFL/4mIst26NChu28jxFi7di08PDykb4jMTq9evdC+fXtRY27fvo1u3bqZ1aSLLbDpAPig2b9S5jYLKOaaObVajc6dOyMxMRFTpkyR9I7k3NxcjBkzBpGRkfjqq6/M6p8REckjLy8PXbp0Ef33fcCAAWjTpo1MXZG5UalUWL16tejNiX/88QdniU3MpgPgow6vNLdZwMpwcnLC+PHjkZSUhB49eki6++7ixYvo1KkTmjdvjoMHD0pWl4jMz8iRI5GcnCxqzL3rl8l2BAQEYNmyZaLHjR49GnFxcTJ0ROWx2QDYuXPnh87+lerSpQu2bdsmf0My8/f3x+rVq3H8+HG88MILktY+cuQInnnmGbz77rtISUmRtDYRKW/Pnj1YunSpqDFqtRqxsbGSvn0gy/HBBx/gvffeEzWmshuMqHJsNgBW9NqsgoIC7Ny5U+ZuTKdRo0bYvXs3fvrpJ0RGRkpae/PmzYiKisLw4cORnZ0taW0iUkZ2dja6desmetzIkSPRvHlzGToiS7Fs2TL4+fmJGnP06FHMmDFDpo7oXjYZAE+fPi1qJ+uPP/5oVevcVCoVXnnlFZw8eRJLly6Fj4+PZLWLi4sxb948hIaGYsmSJfxJjsjCDRo0CJcvXxY1pmHDhpU6J5Csi7e3N1avXi163LRp0/Dvv//K0BHdyyYDoNiLq69evWrxawHLY29vj/79+yM5ORkjRoyAg4ODZLUzMjLw8ccfo0GDBvjxxx950CeRBdq6dSs2bNggaoy9vT02bNhgknvMyfy98sor6Nmzp6gxpdcMFhYWytQVATYYAB+18/dBzG1HsJTc3d0xe/ZsxMfHi16z8SgJCQl4/fXX0aZNG5w4cULS2kQknxs3bqBPnz6ix02ZMgUNGzaUoSOyVAsWLEBQUJCoMWfPnn3oubdUdTYXAMXO/pWyhh3Bj1KnTh188803OHjwIJ588klJa+/duxePPfYYunfvjqtXr0pam4ikJQgC+vTpg5s3b4oa17x5cwwfPlymrshSubq6Yt26daJPoViwYAH++OMPmboimwqAlZ39K2XNs4D3atGiBQ4fPoyvv/4atWvXlqyuIAhYu3YtwsLCMGXKFOTl5UlWm4iks2HDBtGnHzg5OWH9+vXQaDTyNEUW7bnnnsOQIUNEjREEAV27dkVubq48Tdk4mwqAlZ39K2ULs4ClVCoVPvjgA8THx2PWrFlwdXWVrHZ+fj4mTpyI8PBwrF+/3iZCNZGluHjxIj7++GPR4+bMmYOwsDAZOiJrMX36dERFRYkac/78eQwdOlSmjmybzQTAqs7+lbKVWcBSWq327gGw/fr1E3UbyaNcvXoVXbt2RdOmTbFv3z7J6hJR5RiNRnTv3h05OTmixrVp0wb9+vWTqSuyFjqdDrGxsaJniVetWoUdO3bI1JXtspkAWNXZv1K2NAt4r2rVqmHZsmU4efKk6HseH+X48eNo3bo13nzzTSQmJkpam4gqbtmyZfjtt99EjXF3d8cXX3wh6Q+HZL2aNm1aqc0dPXv2REZGhgwd2S6b+Bsr1exfKVubBbxXvXr1sGPHDuzatQv169eXtPb27dtRr149DB48mH/RiUwsMTERI0aMED1u8eLFqFmzpgwdkbUaO3YsHn/8cVFjrl27hgEDBsjUkW2yiQAo1exfKVudBbxXu3btcOLECaxcuRLVq1eXrK5er8dnn32G0NBQfPrppyguLpasNhGVT6/Xo0uXLigoKBA17q233sJHH30kU1dkrezt7REbGyv6rMhvvvkG33zzjUxd2R6rD4Dp6em4desW2rZte9+Hvb19hWv4+/uXGX/o0CEZu7YMGo0GvXr1QlJSEsaOHQutVitZ7ezsbMTExKBu3br4/vvveZA0kYzmzJmDv/76S9QYX19frFixQvTRHkQAULduXUyfPl30uP79++PatWsydGSDBBvl7e0tAKjQR3R0tNLtWoSLFy8KH330UYX/uYr5aNmypXDkyBGl/4hmq23bthX+Z7lmzRql2yUzcuLECcHe3l7038mtW7cq3TpZOL1eLzz77LOi/9t7+eWXBaPRqHT7Fs/qZwDJdGrWrIkNGzbgyJEjaNmypaS1Dxw4gGbNmqFz5864dOmSpLWJbFVRURE6d+4s+s7uLl264M0335SnKbIZGo0G69atg4uLi6hxO3bswJo1a8r9PUEQUFJSgtzcXNy4cQOXL1/GpUuXcPHiRVy4cAGXLl3C5cuXkZaWhuzsbBQWFtrsGyYGQJLcE088gT/++ANbtmxBSEiIpLW//PJLhIeHY9y4cTwclKiKJk2ahFOnTokaU7NmTSxatEimjsjW1KlTBwsWLBA97pNPPkFqaioAoKCgAGlpaUhNTUVcXBwSEhJw4cIF3LhxA9nZ2bh16xZycnKQm5uLW7duITs7G+np6bh8+TKSk5Nx9uxZJCcn48qVK8jJybGZQMgASLJQqVR4++23cebMGcyfPx8eHh6S1S4sLMT06dMRFhaGVatWwWAwSFabyFYcOnQIc+bMET1u7dq1cHd3l6EjslU9e/YUfbzY+++/D3t7eyQnJ+PcuXNIT09HXl5epU7oEAQBhYWFyMrKwsWLFxEfH4+0tDQUFRWJrmVJGABJVo6OjoiJiUFycjIGDRoEOzs7yWpfv34dvXv3RpMmTbB7927J6hJZu7y8PERHR4v+Zjlw4EC88MILMnVFtkqlUmH16tXw9PR85Oc+/vjj+PPPP/HJJ5/cfYUrNYPBgPT0dCQlJSElJQW3bt2yyllBBkAyCW9vbyxatAhnzpzBG2+8IWntU6dOoV27dnj55Zdx9uxZSWsTWaMRI0bg3LlzosaEhYVh9uzZMnVEti4gIADLly9/4O87ODjgs88+w7p16+Du7m6yQJafn49Lly7h/PnzVncsGQMgmVR4eDi2bduGffv2oUmTJpLW/uWXX9CwYUP069cPN27ckLQ2kbXYvXs3li1bJmqMWq1GbGwsnJycZOqK6M5r3ffff7/Mrz///PM4dOgQWrVqpUBXd+Tl5SEpKQk3b960mtlABkBSxPPPP4+jR49i3bp1CAgIkKyuwWDA559/jtDQUMyePVuW1wNElio7OxvdunUTPW7UqFF46qmnZOiI6H5Lly6Fn58fAMDFxQWrV6/G4sWLRR8aLQdBEHD9+nUkJyeLPjTdHDEAkmLUajW6dOmCxMRETJ48WdLZhdzcXIwaNQqRkZHYtGmT1fzERlQVgwYNwpUrV0SNadSoESZOnChTR0T38/b2xpo1a1C7dm3s2bMHTz75pNItlVFUVISUlBTk5OQo3UqVMACS4pydnTFhwgQkJSWhe/fukt4scOHCBXTs2BEtWrTA4cOHJatLZGm+//57bNiwQdSY0iu7HBwcZOqKqKzWrVvj559/hrOzs9KtPJAgCLh48SIyMzOVbqXSGADJbAQEBGDNmjU4duwYWrduLWntv/76Cy1atMAHH3xw9+woIltx/fp19OnTR/S4KVOmoGHDhjJ0RFS+wsJCpKamWsxbm6tXryIjI0PpNiqFAZDMTuPGjbFnzx788MMPiIiIkLT2N998g8jISIwcORK3bt2StDaRORIEAX369EF6erqocS1atMDw4cNl6oqorKKiIqSmplrc2a7Xrl2zyJlABkAySyqVCq+99hpOnTqFxYsXw9vbW7LaxcXFmDNnDkJDQ7Fs2TLo9XrJahOZm9jYWGzfvl3UGCcnJ6xfvx4ajUamrojuZzQaceHCBYsLf6WuXr1qcRtDGADJrNnb22PgwIFITk7GsGHDJF2LlJ6ejgEDBqBhw4b4+eefLeaVA1FFXbx4EYMGDRI9bu7cuQgNDZWhI6LyXb9+3eLP2bt48WKlbiJRCgMgWQQPDw/MnTsXcXFxePfddyWtHRcXh1dffRXt2rXDyZMnJa1NpBSj0Yhu3bqJ3qnYtm1b9OvXT6auiMrKzc212HV09yopKcG1a9eUbqPCGADJogQHB+Pbb7/Fn3/+iWbNmklae8+ePWjcuDF69uxpUX+JicqzdOlS7N27V9QYd3d3fPHFF5LuxCd6GL1ej8uXLyvdhmSysrIs5ngYBkCySE8//TQOHz6Mr776CrVq1ZKsriAIWLNmDcLCwjB16lTk5+dLVpvIVBITEzFy5EjR45YsWYLAwEAZOiIq37Vr1yx23d+DXL582SL+TAyAZLHUajU6duyI+Ph4zJgxAy4uLpLVzsvLw4QJExAeHo4NGzZY1LoOsm16vR7R0dGiF6S//fbb6NSpk0xdEZVVXFxslacxGI1GZGVlKd3GIzEAksXT6XQYPXo0kpOT0adPH6jV0v1nfeXKFURHR6NZs2b4448/JKtLJJfZs2fj77//FjWmWrVq+Pzzz/nql0zKGtb9PUhGRobZbyxkACSrUb16dXz++ef477//8NJLL0la+99//8Xzzz+Pt99+G0lJSZLWJpLKiRMnMHnyZNHjVq5cCV9fXxk6IiqfwWCwiFmyyiopKUFubq7SbTwUAyBZnfr16+OXX37BL7/8gnr16klae+vWrahXrx4++eQTizz4k6xXUVEROnfujJKSElHjunbtijfeeEOmrojKl52dbfVLa8Qevm5qDIBktV566SWcOHECK1asQLVq1SSrW1JSgoULFyI0NBQLFy60+LOryDpMnDgRp0+fFjWmVq1aWLhwoTwNET2EuYcjKeTn56OwsFDpNh6IAZCsmp2dHXr37o2kpCSMHj0ajo6OktXOysrCJ598gnr16mHbtm1mv96DrNfBgwcxd+5c0ePWrl0Ld3d3GToierCSkhLRM9WWKi8vT+kWHogBkGyCm5sbZsyYgYSEBHz44YeS1k5OTsZbb72F559/Hv/++6+ktYke5fbt2+jSpYvo12kff/wxWrduLVNXRA8m55VpRqMRr732GhYsWHDfrx88eBBNmjTBrl27ZHt2ecz5KDEGQLIptWvXxsaNG/H333/j6aeflrT2/v370bRpU3Tp0sWqDjYl8zZixAicO3dO1Jjw8HDMmjVLpo6IHk7OUKRWq9GzZ098++23d4+YSUhIwNChQzF48GC8+OKLsj27PAyARGamWbNmOHDgAL777jvUqVNH0tqxsbEIDw/HhAkTcPv2bUlrE93r119/xfLly0WNUavViI2NhZOTk0xdET2c3KHolVdegYeHB7766iukpaWhf//+ePXVV9G1a1dZn1uekpIS6PV6kz+3IhgAyWapVCp06NABcXFxmDdvnqRroQoKCjB16lSEhYVhzZo1FnEqPFmWrKwsdO/eXfS40aNH48knn5ShI6JHEwRB1lfAwJ213927d8fGjRvRv39/1K1bF6NHj5b1mQ8j95+3shgAyeY5Ojpi6NChSE5OxsCBA6HRaCSrnZaWhp49e+Kxxx7Dnj17JKtLNGjQIFy5ckXUmMaNG2PChAkydUT0aHq93iQb5l599VUUFhZCEATMnj27zNf1wYMHo0WLFoiJiZG9F3M9KYIBkOj/+Pj4YPHixTh9+jRee+01SWufPHkSbdu2xauvvoq4uDhJa5Pt2bJlC7788ktRYxwcHBAbGwsHBweZuiJ6NFOdljB9+nQAd84bLO+H+k6dOmHGjBkm6cVczztkACT6H5GRkfjhhx/w22+/oXHjxpLW/vnnn9GgQQMMHDgQN2/elLQ22Ybr16+jT58+osdNmTIFDRo0kKEjooozRRhavHgxDhw4gI0bN8JgMOD7778v8znNmjWDs7Oz7L0Apgu9YjEAEj1A69atcfToUXzxxRfw9/eXrK7BYMDSpUsRGhqKuXPnoqioSLLaZN0EQUDv3r1F36HaokULDBs2TKauiMzHli1bEBsbi8WLFyMiIgIfffQR1q5dazPnDorBAEj0EBqNBt26dUNiYiImTpwInU4nWe2cnByMGDECUVFR+O6778z2p0QyH+vXr8cPP/wgaoyTkxPWr18v6dpWospSq+WLHQcOHMD06dMxc+ZMNGrUCADw4Ycf4vbt2/jpp59ke+6jqFQqxZ79MAyARBXg4uKCSZMmISkpCV27dpX0L3Rqairee+89PPPMM/jrr78kq0vW5cKFCxg8eLDocfPmzUNoaKgMHRGJJ1cYOnPmDIYOHYqYmBi0adPm7q+7uLjgww8/VPQ0BjlDb1WYZ1dEZqpGjRpYu3Ytjh49iueff17S2ocOHULz5s3RsWNHnD9/XtLaZNmMRiO6deuGnJwcUePatWuHvn37ytQVkXh2dnayhMB69erhyJEj+Oijj8r83sCBA/HTTz8pNgturhuvGACJKuGxxx7D3r17sX37doSFhUlae9OmTYiMjMTo0aNFf8Mn67RkyRLs27dP1Bh3d3esWbPGbF8/kW1SqVSSLqWprD59+mDo0KE4cOAAXnjhBZw+fVq2Z5nDn7c8DIBElaRSqfD666/j9OnTWLRoEby8vCSrXVRUhFmzZiE0NBSff/652Z4kT/JLSEjAyJEjRY9bunQpAgMDZeiIqGrM4RaaFStWYP/+/fjnn3/w22+/oX79+rI8x97eHnZ2drLUrioGQKIqcnBwwKBBg5CcnIyYmBjY29tLVvvmzZvo168fGjVqhJ07d0pWlyyDXq9HdHQ0CgsLRY1755138OGHH8rUFVHVmEMANBVz/rMyABJJxNPTE/Pnz8fZs2fxzjvvSFr77NmzaN++PV588UWcOnVK0tpkvmbPno0jR46IGlOtWjUsX76cr37JbJnrK1E5MAAS2ZDQ0FBs3rwZ+/fvR9OmTSWt/euvv6Jx48bo3bs30tLSJK1N5uX48eOYNGmS6HGrVq2Cr6+v9A0RScTe3l7SNyXmzFSHTVcGAyCRTFq2bIm///4bX375paRrsYxGI1atWoWwsDDMmDHDbC8ap8orKipCdHS06LWf3bp1w+uvvy5TV0TS8fHxUboF2Tk5OUGr1SrdxgMxABLJSK1Wo1OnTkhISMC0adPg4uIiWe3bt29j7NixiIiIwLVr1ySrS8qbMGGC6F2JtWrVwsKFC+VpiEhiHh4eZns+nlTMPeRa9z99IjPh5OSEsWPHIikpCb169ZL0C9+lS5dkPcKATOvgwYOYO3eu6HHr1q2Dm5ubDB0RSU+j0cDT01PpNmRjb28PV1dXpdt4KAZAIhPy8/PDypUrceLECbRt21bpdsjM3L59G126dBF9LeCgQYPQqlUrmboikoe3t7fSLcjG29vb7DdiMQASKaBBgwbYtWsXduzYgbp16yrdDpmJ4cOH49y5c6LGhIeHY+bMmTJ1RCQfBwcHuLu7K92G5NRqtUXMbjIAEilEpVKhffv2+O+//7B8+XLu3LRxu3btwueffy5qjEajwYYNG8z6qAmih/H391fsija5BAYGWsSfiQGQSGF2dnbo27cvkpKSMHLkSDg6OirdEplYVlYWunfvLnrc6NGj0axZMxk6IjINOzs7q7qxxtPT02LW4jIAEpkJd3d3zJo1C/Hx8fjggw9ke86FCxdkq02V8/HHH+Pq1auixjRp0gTjx4+XqSMi03F1dbWK9YD29vbw9/dXuo0KYwAkMjNBQUH4+uuvcfjwYTRv3lzy+lOnTkW3bt1w5coVyWuTeJs3b8bGjRtFjXFwcEBsbCwcHBxk6orItKpXr27x/z3XqlXLoo62sZxOiWzMU089hYMHD+Kbb75BUFCQZHUFQcC6desQHh6OSZMmIS8vT7LaJE5aWhr69u0retzUqVNlu7yeSAlqtRq1a9e2iLVz5QkICLC4K+4YAInMmEqlwnvvvYe4uDjMmTNH0rUl+fn5mDx5MsLCwrB27VoYDAbJatOjCYKA3r17IyMjQ9S4p59+GkOHDpWpKyLlODo6ok6dOhYXAv39/eHl5aV0G6IxABJZAK1Wi+HDhyM5ORkDBgyQ9AvktWvX0L17dzRt2hR79+6VrC493Lp16/Djjz+KGuPs7Iz169db3DdIoorSarWoU6cO7OzslG6lQgICAix2/SIDIJEF8fX1xZIlS3Dq1Cm88sorktY+ceIEXnjhBbzxxhtISEiQtDbd78KFCxg8eLDocfPmzUNISIgMHRGZD61Wi5CQELM+EUGlUqFWrVoWOfNXigGQyAJFRUXhp59+wu7du9GwYUNJa//www+oX78+Bg0ahPT0dElrE2A0GtG1a1fk5uaKGvfiiy+iT58+MnVFZF7s7e0RHBwMDw8PpVspw9HREcHBwRZz3MuDMAASWbA2bdrg2LFjkt8motfrsXjxYoSGhmL+/PkoKiqStL4tW7x4MX7//XdRYzw8PLBmzRqzv1qKSEoajQaBgYEICgqCvb290u1ApVLBz88PoaGhFrfhozwMgEQWTqPRoEaNGrLUvnXrFoYNG4a6deti8+bNou+opfvFx8dj1KhRosctXbpUtn/HRObOxcUFYWFhit6W5OzsjLCwMPj4+FjND2IMgET0SCkpKXj33XfRsmVLHDlyROl2LJJer0eXLl1QWFgoalyHDh3QsWNHmboisgxqtRrVq1dHaGgoPDw8TBbCnJycULNmTQQFBVn8OYX/iwGQiCrs4MGDePLJJ9GpUydcvHhR6XYsyqxZs0SH5+rVq2P58uVWM+NAVFVarRaBgYGIjIxEQEAAtFqt5M/QaDTw8fFBWFgYgoOD4e7ubpV/BxkAiUi0r776ChERERg7dqzozQy26NixY5g8ebLocatWrYKPj48MHRFZNo1GAy8vL4SGhiI0NBQ+Pj5wdnau1E0cKpUKWq0Wnp6eqFWrFiIjI+Hn52fWu5ClYBkH7RCR2SksLMSMGTOwevVqTJ06Fd27d7eYs7tMqbCwENHR0dDr9aLGdevWDa+99ppMXRFZD61WCz8/PwB3DljX6/UoLCxEQUEBSkpKYDQaIQgCBEGAWq2GSqWCnZ0dtFottFotHB0drXKG71E4A0hkY9q2bStpULtx4wb69OmDxo0bY9euXZLVtRYTJkzAmTNnRI2pXbs2Fi5cKE9DRFZMpVLB3t4erq6uqFatGmrUqIGaNWuiVq1aqF27NmrWrInAwED4+fnBw8MDWq3WJsMfAKgEK9/Wl56ejk6dOpXZvfj777+jpKSkQjX8/PzQoEGD+36tXr16+PTTTyXrk6gq2rVrh927d1foc9esWYOWLVti5MiR2Lp1q+S9vPTSS5g3bx7q1asneW1L8+eff+LZZ58VvXt67969aNWqlUxdERHZwCtgHx8fuLu747vvvqt0jbS0NKSlpd33a7169apqa0SKCQsLw/fff48//vgDQ4cOxb///itZ7Z07d+LXX39Fr169MHnyZFSvXl2y2pbk9u3b6NKli+jwN3jwYIY/IpKdTbwCnjBhgqT16tWrh3feeUfSmkRKeO6553DkyBHExsZKes6c0WjEihUrEBYWhlmzZok++sQaDBs2DCkpKaLGREREYObMmTJ1RET0/9lEAKxfvz7effddyepNnDixUjuNiMyRWq1G586dkZiYiKlTp8LZ2Vmy2rm5uRg9ejQiIiLw9ddf28xB0jt37sSKFStEjdFoNIiNjbWKGwaIyPzZTIqRahaQs39krZycnDBu3DgkJSWhR48eki6MvnjxIj788EM89dRTOHjwoGR1zVFWVhZ69OghetyYMWPQrFkzGToiIirLZgKgVLOAnP0ja+fv74/Vq1fj+PHjaNOmjaS1jxw5gmeeeQbvvfee6NejlmLgwIG4evWqqDFNmjTBuHHjZOqIiKgsm0oyVZ0F5Owf2ZJGjRrh119/xc8//4zIyEhJa3/33XeIiorC8OHDkZ2dLWltJX333Xf46quvRI1xcHBAbGys1V0zRUTmzaYCYFVnATn7R7ZGpVLh5ZdfxsmTJ7F06VJJb6UoLi7GvHnzEBoaiiVLllT4WCZzlZaWhn79+okeN23aNNSvX1+GjoiIHszm0kxlZwE5+0e2zN7eHv3790dycjJGjBgh6WxVRkYGPv74YzRo0AA//fSTRW4UEQQBvXr1QkZGhqhxzzzzDGJiYmTqiojowWwuAFZ2FpCzf0SAu7s7Zs+ejfj4eLz33nuS1k5ISMBrr72GNm3a4MSJE5LWltvatWvx008/iRrj7OyM9evXQ6PRyNQVEdGD2WSiETsLGBAQwNk/onvUqVMH33zzDQ4ePIinnnpK0tp79+7FY489hh49eojeTKGE8+fPY8iQIaLHzZ8/H8HBwdI3RERUATYZAOvXry/qdoLXXnuNs39E5WjRogUOHTqETZs2oXbt2pLVFQQBX3zxBcLCwjBlyhTk5eVJVltKRqMR3bp1Q25urqhxL730Enr37i1TV0REj2azqaZt27YV+jydToeXXnpJ5m6ILJdKpcL777+P+Ph4zJo1C66urpLVzs/Px8SJExEREYH169fDaDRKVlsKn332GX7//XdRYzw8PLB69WqbvYCeiMyDzQbADRs2VGgt4Pr16/Hmm2/K3xCRhdNqtRg5ciSSk5PRr18/SWfNr1y5gq5du+KJJ54QHbjkEh8fj9GjR4set2zZMkmv3SMiqgybDYDAo9cCcucvkXjVqlXDsmXLcPLkSbRv317S2seOHUOrVq3w5ptvIjExUdLaYuj1ekRHR4u+4/jdd9/FBx98IFNXREQVZ9MB8FE7grnzl6jy6tWrhx07dmDXrl1o0KCBpLW3b9+OevXqYciQIcjMzJS0dkXMnDkT//zzj6gx1atXx7Jly/jql4jMgs2nmwfNAnL2j0ga7dq1w/Hjx7Fq1SpRm68eRa/XY9GiRQgJCcGnn36K4uJiyWo/zLFjxzBlyhTR41avXi3pQdpERFVh8wHwQbOAnP0jko5Go0HPnj2RlJSEsWPHQqvVSlY7OzsbMTExqFu3Lr7//ntZD5IuLCxE586dodfrRY3r3r07Xn31VZm6IiISjwkHZWcBOftHJA9XV1dMmzYNiYmJ+OijjyStfe7cObzzzjt47rnncPToUUlrlxo/fjzOnj0rakzt2rXx6aefytIPEVFlMQCi7CwgZ/+I5FWzZk1s2LABR44cQcuWLSWtfeDAATzxxBPo3LkzLl26JGnd+fPnix63bt06uLm5SdYHEZEUmHL+T+ksIGf/iEzniSeewB9//IEtW7YgJCRE0tpffvklwsPDMX78eNEHNf+v27dvo2vXrqJfLw8ZMgTPP/98lZ5NRCQHBsD/UzoLyNk/ItNSqVR4++23cfbsWSxYsAAeHh6S1S4sLMS0adMQFhaGVatWwWAwVKrOsGHDkJKSImpMZGQkZsyYUannERHJTSXIuWLaTAmCgKKiIhQWFqKgoAAGgwFGoxH5+fnQ6XRQq9VQqVRwcHCAVquFTqeDnZ0dj28gs9WuXTvs3r27Qp+7Zs0adO/eXeaOKi8jIwNTp07F0qVLRW+2eJQGDRpg/vz5Fb4JCAB++eUXvPzyy6Keo9FocPjwYTzxxBNiWyQiMgk7pRswBUEQkJubi9zcXBQUFDz08NYHvSpSq9XQ6XTQ6XRwd3eHTqeTq10im+bt7Y2FCxeif//+GDFiBLZv3y5Z7VOnTqFdu3Z4+eWXMXfuXNStW/ehn5+ZmYkePXqIfs7YsWMZ/ojIrFn1u86ioiKkpaUhPj4eFy9eRFZWluiT+0sZjUbk5eUhPT0d586dQ3JyMjIzMyv9SomIHi48PBzbtm3Dvn370KRJE0lr79ixAw0bNkT//v1x48aNB37ewIEDce3aNVG1H3vsMYwbN66qLRIRycrqAqAgCLh16xZSUlKQlJSE9PR0WUJaYWEhrl69ivj4eFy+fLnSwZKIHu7555/H0aNHsW7dOgQEBEhW12AwYPny5QgLC8Ps2bPL/B3+7rvv8PXXX4uq6ejoiNjYWNjb20vWJxGRHKwqABYXF+P8+fO4dOkS8vPzTfJMQRCQnZ2N5ORkXL9+HUaj0STPJbIlarUaXbp0QWJiIiZPngwnJyfJaufk5GDUqFGIjIzEpk2bIAgCrl27hn79+omuNW3aNNSrV0+y3oiI5GIVAVAQBNy8eRNJSUnIy8tTrI/SHm7fvq1YD0TWzNnZGRMmTEBSUhK6d+8u6casCxcuoGPHjmjRogU6dOiAjIwMUeNbtmyJTz75RLJ+iIjkZPEBsKCg4O7smzlsaC4pKcH58+dx+fJlrg8kkklAQADWrFmDY8eOoXXr1pLW/uuvv3Do0CFRY5ydnbFu3TpoNBpJeyEikotFB8CcnBykpKSgqKhI6VbKyM7ORkpKiskuqCeyRY0bN8aePXvw448/IiIiQrE+FixYgODgYMWeT0QklsUGwMzMTFy8eNEsZv0epKioCCkpKdwgQiQjlUqFV199FadOncKSJUvg7e1t0ue3b98evXr1MukziYiqyiIDYEZGBq5evap0GxWi1+uRmprKEEgkM3t7ewwYMADJyckYNmwYHBwcZH+mp6cnVq9ezUPiicjiWFwAzMzMFH0ul9IMBgNSU1PN8lU1kbXx8PDA3LlzERcXh3fffVfWZy1btkzSo2mIiEzFogJgfn6+xcz8/S+DwYALFy7wmBgiEwkODsa3336LP//8E82aNZPlGXv27LG4H0iJiAALCoAGgwGXLl1Suo0qKS4uxvXr15Vug8imPP300zh8+DC++uor1KpVS9Laa9asQVhYGKZNm2ays0eJiKRgMQEwLS0NJSUlSrdRZRkZGQ+8b5iI5KFWq9GxY0fEx8dj5syZcHV1lax2Xl4exo8fj4iICGzYsIGz/ERkESwiAObk5CArK0vpNiRz+fJl6PV6pdsgsjk6nQ6jRo1CUlISevbsKWnty5cvIzo6Gs2aNcMff/whaW0iIqmZfQA0GAy4fPmy0m1IymAwcN0QkYKqV68Od3d3WWr/+++/eP755/H2228jKSlJlmcQEVWV2QfArKwsq3ylcuvWLR4STaSQ/fv3Y8GCBbI+Y+vWrahXrx4++eQTZGZmyvosIiKxzDoACoIg+j5OS8JvCkSml5ubi65du5rkEPmSkhIsXLgQoaGhWLhwIX/oIyKzYdYBMDc31yo2fjxIZmYm7wsmMrFhw4YhNTXVpM/MysrCJ598gnr16mHbtm1mfYMREdkGsw6A6enpSrcgK6PRiOzsbKXbILIZO3bswMqVKxV7fnJyMt566y08//zz+PfffxXrg4jIbANgYWGhTZyrZe0hl8hcZGZmVmrnb8+ePfH0009L2sv+/fvRtGlTdOnSxeo2uRGRZTDbAHj79m2lWzCJkpISq37NTWQuBgwYIHr3/eOPP45ly5bhwIED2Lx5M4KDgyXtKTY2FuHh4ZgwYYLNfM0jIvNgtgGwoKBAttr79+9HgwYNHvgxdOhQ2Z5dHjn/rEQEfPvtt9i0aZOoMY6OjoiNjYW9vT1UKhXeeecdnD17FvPmzZP0CJmCggJMnToVYWFhWLNmDdcFE5FJmG0AlPP1b7NmzbBv3777Pvbs2YPmzZvD09MTffr0ke3Z5bGFV91ESrl27Rr69esnetz06dNRt27d+37N0dERQ4cORXJyMj7++GNoNBqp2kRaWhp69uyJxx57DHv27JGsLhFRecwyAOr1ellfi2q1Wvj4+Nz98PT0xPz58xEfH4/Vq1cjPDxctmeXhzOARPIQBAE9e/YUfeRSy5YtMWTIkAf+vo+PDz777DOcOXMGr7/+ehW7vN/JkyfRtm1bvPrqq4iLi5O0NhFRKbMMgKYMRAaDAaNHj8bhw4exatUqk4c/4M4MII+FIJLemjVrsGPHDlFjXFxcsG7dugrN7kVERGD79u3Yu3cvGjduXMkuy/fzzz+jQYMGGDhwIG7evClpbSIiswyApjos9d7wt3r1akRERNz9vcGDB6NFixaIiYmRvQ9BEHg3MJHEUlNT8cknn4get2DBAtGbPVq1aoWjR49i7dq18Pf3F/3MBzEYDFi6dClCQ0Mxd+5cFBYWSlabiGybWQZAU1z99rDwBwCdOnXCjBkzZO+jFGcAiaRjNBrRrVs30Ttr27dvX6mjYgBAo9Gga9euSEpKwsSJE+Hk5FSpOuXJycnBiBEjEBUVhW+//ZZfL4ioymwyAJaGv0OHDmHVqlVlwh9wZ6OIs7OzrH3cyxrvOyZSyqJFi/DHH3+IGuPp6YnVq1dDpVJV6dnOzs6YNGkSEhMT0bVr1yrXu9f58+fx/vvv4+mnn8Zff/0lWV0isj1mGQCl/IL5vwwGA8aMGXM3/EVGRsr2LCIyvbNnz2L06NGixy1btgwBAQGS9VGjRg2sXbsW//77L1q1aiVZXQA4fPgwmjdvjo4dO+L8+fOS1iYi22BTAdBoNGLMmDHYt28fZs6cCV9fX6Snp9/3odQZXGq1Wf6rILIoJSUliI6ORlFRkahx77//Pj744ANZemrSpAl+++03bN++XfJNZps2bUJkZCRGjx6NnJwcSWsTkXUzy9QhVxg6ffo0duzYgYKCAvTv3x+tWrUq85GXlyfLsx9FzllPIlsxY8YM0Xfs+vn5YenSpTJ1dIdKpcLrr7+O06dP47PPPoOXl5dktYuKijBr1iyEhobi888/54YyIqoQswyADg4OstRt2LAhTp069dAPNzc3WZ79MCqVCnZ2diZ/LpE1+ffffzFt2jTR49asWQNvb28ZOirL3t4eH3/8MZKTkxETEwN7e3vJat+8eRP9+vVDo0aN8Msvv3CjCBE9lFkGQJ1Op3QL6NOnD4YOHYoDBw7ghRdewOnTp2V7lpOTE2cAiaqgoKAAnTt3Fj371bNnT7z88ssydfVgpYfPx8XF4Z133pG09tmzZ/Hyyy/jpZdewqlTpyStTUTWwywDoJ2dnaQ/GVfGihUrsH//fvzzzz/47bffUL9+fdmeZQ6Bl8iSjRs3TvStGUFBQViwYIFMHVVMSEgINm/ejP379+OJJ56QtPavv/6Kxo0bo3fv3khLS5O0NhFZPrMMgAAkPUPL3NnSn5VIan/88Qc+/fRTUWNUKhXWr18PV1dXmboSp2XLlvjrr7/w5ZdfombNmpLVNRqNWLVqFcLCwjB9+nReO0lEd5ltALSlWTFb+rMSSSk3Nxddu3YVvd7tk08+wbPPPitTV5WjVqvRqVMnJCQkYPr06XBxcZGs9u3btzFu3DhERETgyy+/5LmjRGS+AVDKL37mzN7eXvHX3USWaujQoaLPwYuKisL06dPlaUgCOp0OY8aMQVJSEnr37i3pqQiXLl1C586d8eSTT+LAgQOS1SUiy2O2AVCr1drEq1EfHx+lWyCySDt27MCqVatEjdFoNIiNjYVWq5WpK+n4+flhxYoVOHHiBNq1aydp7aNHj+LZZ59Fhw4dcO7cOUlrE5FlMNsACFh/OFKr1fDw8FC6DSKLk5GRgR49eogeN378eDRt2lSGjuTToEED7Nq1C7/88gvq1q0rae0tW7YgKioKQ4cORVZWlqS1ici8mXUAdHV1terXo15eXtBoNEq3QWRxBgwYIHpn6+OPP44xY8bI1JH8XnrpJfz3339Yvnw5fH19JatbUlKCBQsWIDQ0FJ999hlKSkokq01E5susA6BKpTLZAa1KkPI2ACJb8c033+Cbb74RNcbR0RGxsbEW/wOlnZ0d+vbti+TkZIwaNQqOjo6S1c7MzMTgwYNRv359bN++nQdJE1k5sw6AwJ0DU63xnlx3d3fZbjwhslbXrl1D//79RY+bMWOG5K9PleTm5oaZM2ciPj4eHTt2lLR2YmIi3nzzTbRu3RrHjh2TtDYRmQ+zv39Mo9EgMDAQFy9eVLoVyajVamzbtg2Ojo5wcXGBq6srXFxc7n7c+/95RRzRHYIgoGfPnsjMzBQ17tlnn8WQIUPkaUphQUFB+OqrrzBo0CDExMTg8OHDktX+/fff0bRpU0RHR2P69OmoUaOGZLWJSHkWkS7c3Nzg6elpNYuUa9WqhWPHjmHdunWP/FxHR8eHBsQH/f/HH38cYWFh8v9hiExk9erV2LFjh6gxLi4uWLdunVW+RbjXU089hYMHD2Lz5s0YOXIkUlNTJakrCALWr1+P7777DsOGDcPw4cNt5oguImunEixkoYfRaERSUpLFL1D29vaGv78/bt26hQYNGuDSpUuSP8PR0RHx8fEICgqSvDaZp3bt2mH37t0V+tw1a9age/fuMnckrdTUVDRs2BC3b98WNW7VqlXo2bOnTF2Zp6KiIixevBhTp05FTk6OpLX9/f0xffp0REdHcwMbkYWzmB+L1Wq1pFckKcHR0RHVq1cHcGcN4BdffCHLc4YMGcLwR1bDaDSia9euosPfK6+8UqmjYiydo6Mjhg0bhuTkZAwYMEDSoHbt2jV0794dTZs2xd69eyWrS0SmZzEBELhzZ25AQIDSbVSKRqNBrVq17nsV1aZNG/Tr10/S5/j6+mL06NGS1iRS0sKFC7F//35RY7y8vLBq1SqoVCqZujJ/vr6+WLJkCU6dOoVXX31V0tonTpzACy+8gNdffx0JCQmS1iYi07CoAAjc+cLu7++vdBuiaDQa1KlTp9wjG+bMmYPg4GDJnjV58mS4u7tLVo9ISWfOnKnU2X3Lli2zuK8TcomKisKPP/6IPXv2oFGjRpLW/vHHH1G/fn18/PHHSE9Pl7Q2EcnL4gIgcGcdnaXMBNrZ2aFOnToPvHqqdJG6FDMVWq0W7du3r3IdInNQUlKC6OhoFBUViRr3wQcf4P3335epK8v1wgsv4N9//8WaNWvg5+cnWV29Xo8lS5YgNDQU8+bNE/3vi4iUYZEBELgzE1irVi2zfsXj6OiIkJCQR9472rJlS3zyySdVfl5hYSHq1q2LCRMmiF4vRWRupk+fLvocOn9/fyxdulSmjiyfRqNB9+7dkZSUhAkTJkCn00lW+9atWxg+fDiioqKwefNmHiRNZOYsNgACd46HCQ4OlvQ0fKl4eHggODi4wjcPTJs2DZGRkVV+bkFBAaZOnYqwsDCsWbMGBoOhyjWJTO3o0aOYNm2a6HGrV6/mDTsV4OLigsmTJyMxMRHR0dGS1k5NTcW7776Lli1b4siRI5LWJiLpWHQABACdTofQ0FD4+fmZxWygvb09goKCEBgYKGr3nU6nw/r16yU7rywtLQ09e/bEY489hj179khSk8gUCgoKEB0dLfqHl169euHll1+WqSvrFBgYiPXr1+Po0aN47rnnJK198OBBPPnkk+jUqZNVHeRPZC0sPgACd+4M9vHxQVhYmKKHlPr6+laph2bNmmHUqFGS9nTy5Em0bdsWr776KuLi4iStTSSHsWPHiv5vtU6dOpg/f75MHVm/xx9/HPv27cO2bdskP0D+q6++Qnh4OMaMGSP5uYREVHlWEQBLOTg4oHbt2qhVqxacnJxM8kyVSgUPDw+EhoaievXqVZ7BmzBhAho2bChRd//fzz//jAYNGmDgwIG4efOm5PWJpPDHH39g4cKFosaoVCqsW7cOrq6u8jRlI1QqFd544w2cPn0aCxcuhKenp2S1i4qKMHPmTISFhWHFihXQ6/WS1SaiyrGqAAjc+SJWujYwLCwMvr6+spxYr9VqERAQgMjISAQGBj5yo0dFOTo6IjY2tsJrB8UwGAxYunQpQkNDMXfuXO7WI7OSm5uLrl27it48EBMTg2effVamrmyPg4MDBg8ejOTkZHzyySeSfi26ceMG+vbti8aNG2PXrl2S1SUi8awuAN6r9OaNyMhI1KpVC56entBqtZVaK6jRaODs7AwfHx+EhoYiNDQUXl5esoTLRo0aYcKECZLXLZWTk4MRI0YgKioK3377LXfrkVmIiYnB+fPnRY2pW7dupTaL0KN5eXlhwYIFOHv2LN5++21Ja585cwYvvfQSXnrpJZw+fVrS2kRUMRZzF7CUBEFAUVERCgsLUVhYCL1eD0EQYDQaoVKpoFKpoFar4eDgAK1WC61WK8uM3MPo9Xq0aNEC//zzj+zPat68ORYsWICnnnpK9meRPCz9LuCff/5Z9G0VdnZ2+Ouvv/D444/L1BXda//+/YiJicG///4raV21Wo1evXph8uTJd6/KJCL5WfUM4IOoVCpotVp4eHjAz88PgYGBqFmz5t31gzVr1kSNGjXg6+sLV1dXk4c/4M43t/Xr15vkiJvDhw+jefPm6Nixo+gZGKKqysjIQM+ePUWPGz9+PMOfCT377LM4cuQINmzYgMDAQMnqGo1GrFixAmFhYZg5cyYKCgokq01ED2aTAdBSREVFYfr06eX+3rRp0yTfrbdp0yZERkZi9OjR3K1HJtO/f3+kpaWJGtO0aVPeea0AtVqNjz76CAkJCZg6dSqcnZ0lq52bm4sxY8YgMjISX331FYxGo2S1iagsBkAzN2TIEDzzzDP3/drbb7+NsWPH4vTp01i0aJHku/VmzZqF0NBQfP7559ytR7LatGkTvv32W1Fj5NwoRRXj5OSEcePGISkpCT179pT0DNaLFy+iU6dOaN68OQ4ePChZXSK6HwOgmdNoNFi3bt3dY23s7e0xe/ZsAHd26w0aNEiW3Xo3b95Ev3790KhRI+zcuVOyukSlrl69iv79+4seN3PmTERFRcnQEYnl7++PVatW4cSJE2jTpo2ktY8cOYJnnnkG7777LlJSUiStTUQMgBYhJCQEc+fOBQAMHDgQoaGh9/2+nLv1zp49i/bt2+PFF1/EqVOnJK1NtksQBPTs2RNZWVmixj333HMYPHiwTF1RZTVs2BC//vorfv75Z8nD+ebNmxEVFYVhw4YhOztb0tpEtowB0EL07dsX77//PsaPH//AzwkNDcWWLVuwf/9+NG3aVNLn//rrr2jcuDF69+4ter0W0f9atWoVfvnlF1FjXFxcsG7dOsmuSyRpqVQqvPzyyzh58iSWLVsGHx8fyWoXFxdj/vz5CA0NxZIlS1BSUiJZbSJbxa+kFkKtVuOrr76q0Hq/li1b4u+//5Zlt96qVasQFhaGGTNmcLceVUpKSgpiYmJEj1u4cCGCgoKkb4gkZWdnh379+iE5ORkjRoyAg4ODZLUzMjLw8ccfo0GDBvjxxx95hilRFTAAWhAxMx/37tabNm2apLv1bt++jbFjxyIiIgIbN27kbj2qMIPBgK5duyIvL0/UuFdeecXszi6kh3N3d8fs2bMRHx+P999/X9LaCQkJeP3119GmTRucOHFC0tpiCYKA4uJi3Lp1C9evX8elS5dw4cIFpKamIiUlBefPn8fFixdx5coVZGRkIC8vDwaDQdGeiQAbPQjaFqWlpWHChAlYs2aN5IHtiSeewIIFC8rsVibTsZSDoOfPn49hw4aJGuPl5YXTp0/D399fpq7IFA4fPoyYmBj89ddfktZVqVTo2rUrpk2bhoCAAElrP0hBQQGys7ORn5+PwsLCSs1E2tvbQ6fTwcXFBe7u7rLcKkX0MJwBtBF+fn5YuXIlTpw4gbZt20pa+59//kHLli3RoUMHnDt3TtLaZD3OnDmDsWPHih63fPlyhj8r0Lx5cxw6dAibNm2S9FW+IAhYu3YtwsLCMHnyZNGzyxVlMBiQmZmJ5ORknDt3DhkZGSgoKKj0a+iSkhLk5OTg6tWriI+Px+XLl5Gfn8/X2mQyDIA2pkGDBti1axd27Ngh+W69LVu2ICoqCkOHDhW9u5OsW0lJCaKjo1FUVCRqXMeOHfHee+/J1BWZmkqlwvvvv4+4uDjMnj0bbm5uktXOz8/HpEmTEB4ejnXr1kn2pqOoqAiXL19GfHw8rl69isLCQknq3ksQBGRnZyMlJQVJSUnIyMhgECTZMQDaIJVKhfbt29/drefr6ytZ7ZKSEixYsAChoaH47LPPuFuPANy5uebYsWOixvj7+2PJkiUydURK0mq1GDFiBJKSktCvXz9JX39evXoV3bp1Q9OmTbFv375K1zEajbhx4waSkpKQnZ1tskBWXFyMa9euITk5Gfn5+SZ5JtkmBkAbVrpbLykpCSNHjpR0t15mZiYGDx6M+vXr44cffuBPszbsn3/+eeCVhg+zZs0aeHl5ydARmYtq1aph2bJlOHnyJF5++WVJax8/fhytW7fGm2++icTERFFj8/LykJycjBs3bkjakxhFRUVISUnB1atXuWmEZMEASHB3d8esWbOQkJCADz74QNLaiYmJeOONN/DCCy/g+PHjktYm81dQUIDo6GjR38B69+6N9u3by9QVmZu6devi559/xq+//ooGDRpIWnv79u2oV68eBg8ejIyMjId+rsFgwJUrV5Camori4mJJ+6iszMxMJCYm8n52khwDIN0VFBSEr7/+GocPH0bz5s0lrb1v3z48/vjj6NatG65cuSJpbTJfY8eORXx8vKgxderUwbx582TqiMxZ27Ztcfz4caxatQrVq1eXrK5er8dnn32G0NBQLFiwoNy1qHq9HqmpqWa5ftlgMODixYtIT09XuhWyIgyAVMZTTz2FgwcP4ptvvpF8t966desQHh6OSZMmybZbj8zD77//jk8//VTUGJVKhfXr18PV1VWmrsjcaTQa9OzZE0lJSRg3bhy0Wq1ktbOzszF06FDUq1cPW7Zsubs0paioCOfOnZNlg4eU0tLScO3aNS6pIUkwAFK5VCoV3nvvPdl2602ePBnh4eFYu3Yt17dYoZycHHTt2lX0uKFDh6Jly5bSN0QWx9XVFVOnTkViYiI6d+4sae1z586hQ4cOaN26NfLz85GammoxG9YyMjIYAkkSDID0UKW79ZKTk9G/f3/Jd+t1794dTZs2xd69eyWrS8qLiYnBhQsXRI2pV68epk6dKlNHZKlq1qyJ2NhY/PPPP3j22Wclrf3444/j4sWL0Ov1ktaVW2ZmJu9kpypjAKQK8fX1xdKlS3Hq1Cm88sorktY+ceIEXnjhBbzxxhtISEiQtDaZ3s8//4w1a9aIGmNnZ4fY2FhJX/eRdWnatCl+//13fP/99wgJCalyPQ8PD/Ts2dPiwl+pjIwM3Lp1S+k2yIIxAJIoUVFR+Omnn7B79240bNhQ0to//PAD6tevj0GDBj1ytx6Zp/T0dPTo0UP0uPHjx+Oxxx6ToSOyJiqVCm+99RbOnj2LTz/9FB4eHpWutXr1aosNf6WuXLliMa+uyfwwAFKltGnTBseOHcPq1avh5+cnWV29Xo/FixcjNDQU8+fPF31zBClHEAT0798f169fFzXuiSeewOjRo2XqiqyRg4MDhgwZguTkZAwePBh2dnaixrdt2xYREREydWc6RqMRly5d4npAqhQGQKo0jUaDHj16ICkpCePHj4dOp5OsdnZ2NoYNG4a6deti8+bN/AJnATZt2oTvvvtO1BitVovY2FjY29vL1BVZM29vbyxcuBBnzpzBm2++WaExOp0Os2bNkrcxE8rPz+cbE6oUBkCqMhcXF0yZMgUJCQmS79ZLSUnBu+++i5YtW+LIkSOS1ibpXL16FQMGDBA9bubMmYiMjJShI7Il4eHh2Lp1K37//fdHLiWYPn26pLcemYO0tDS+LSHRGABJMnLu1jt48CCefPJJdOrUCRcvXpS0NlWNIAjo0aOH6AN0n3/+eQwaNEimrsgWPffcc/jnn3+wfv161KhRo8zvu7m5oU2bNgp0Jr/MzEylWyALwwBIkivdrbd161aEhoZKWvurr75CREQExo4di9zcXElrU+WsXLkSO3fuFDXG1dUVa9euhVrNL0EkLbVajejoaCQmJmLKlClwcnK6+3uTJk2CSqVSsDv5ZGZm8kxVEoVffUkWKpUKb775Js6cOYNPP/0Unp6ektUuLCzEjBkzEBoaipUrV1r8Tj5Ldu7cOQwdOlT0uIULF0p6ywzR/3JycsL48eORlJSE7t27w8XFBW3btlW6LdkIgmCW19iR+WIAJFndu1tvyJAhonfrPcyNGzfQp08fNGnSBLt27ZKsLlWMwWBA165dRV/p9+qrr6Jbt24ydUV0v4CAAKxZswZnzpxRuhXZpaenc8McVRgDIJmEl5cXPv30U1G79Srq9OnTeOmll9C+fXub+CJvLj799FP8+eefosZ4e3tj1apVVvsajsyXLbwp0Ov1XBpDFcYASCYlZreeWDt37kTDhg3Rt29f0WfRkTinT5/G2LFjRY9bvny5pOdGElWE0WhEfn6+0m2YhNgZebJdDICkiNLderGxseXu1qsso9GIFStWICwsDLNmzUJhYaFktemO4uJiREdHo7i4WNS4Dz/8EO+++65MXRE9mNxfB/bv348GDRo88KMy62Qry1aCLlUdAyApRq1Wo3Pnznd36zk7O0tWOzc3F6NHj0ZkZCS+/vprrouR0LRp03D8+HFRYwICArBkyRKZOiJ6uIKCAlnrN2vWDPv27bvvY8+ePWjevDk8PT3Rp08fWZ9/r8LCQn69owphACTF/e9uPSnXh124cAEffvghmjdvjkOHDklW11b9888/mDFjhuhxa9askXQnOJEYcs+KabVa+Pj43P3w9PTE/PnzER8fj9WrVyM8PFzW599LEAS++aAKYQAks+Hv7481a9bg+PHjeOGFFySt/ffff+Ppp5/Ge++9h5SUFElr24qCggJER0eLPmusT58+eOmll2TqiujRTPla1GAwYPTo0Th8+DBWrVpl0vBXSu4ZT7IODIBkdho1aoTdu3fjp59+kvyasO+++w5RUVEYPnw4srOzJa1t7caMGYP4+HhRY4KDgzFv3jyZOiJ6NEEQUFJSYpJn3Rv+Vq9ejYiICAB3NmZ88MEH6NChA9566y1s3rxZ1j7Ers8l28QASGZJpVLhlVdewcmTJ7F06VL4+PhIVru4uBjz5s1DaGgoli5darJvDpZs3759WLhwoagxKpUK69evh4uLizxNEVWAqdbDPSj8AXdeEa9duxabN2/GV199hdWrV8v6A6jRaJStNlkPBkAya/b29ujfvz+SkpIwfPhwSS9xz8jIwMCBA9GgQQP89NNPXDj9ADk5OZU6uHnYsGF45plnZOiIqOJM8fe6NPwdOnQIq1atui/8AYBGo4FOpwNw5wdQo9Eoa1/8WkYVwQBIFsHDwwNz5sxBfHw83nvvPUlrJyQk4LXXXkPbtm3x33//SVrbGnzyySe4cOGCqDH16tXDlClTZOqIyHwYDAaMGTPmbvh70LKVnJwcvPPOO2jTpg26devGTVGkOAZAsih16tTBN998g4MHD+LJJ5+UtPZvv/2GJk2aoEePHrh69aqktS3Vjz/+iC+++ELUGDs7O2zYsAFarVamrogqTs5bZ4xGI8aMGYN9+/Zh5syZ8PX1RXp6+n0fpZum3NzcsGXLFvzyyy/YsWMH0tPTZeuLN+1QRTAAkkVq0aIFDh8+jK+//hq1a9eWrK4gCPjiiy8QFhaGKVOm2PSp+unp6ejVq5focRMmTECTJk1k6IhIPDnD0OnTp7Fjxw4UFBSgf//+aNWqVZmP//0a4uPjg/DwcPz777+y9aVW81s7PRr/KyGLpVKp8MEHHyA+Ph6zZs2Cq6urZLXz8/MxceJEREREIDY21uYWVQuCgH79+om+Uq9Zs2YYPXq0TF0RiadSqSRdO3yvhg0b4tSpUw/9cHNzQ3p6Om7fvg0AuH37Nv79918EBQXJ0hMAODo6ylabrAcDIFk8rVaLkSNHIjk5GX379pX0p98rV66gS5cueOKJJ/D7779LVtfcff3116KPqtBqtVi/fj3s7Oxk6oqocpycnBR9/vXr19G1a1e88847iI6ORseOHctsFJFS6YYToodhACSrUa1aNSxfvhwnT55E+/btJa197NgxtGrVCm+++SYSExMlrW1urly5ggEDBogeN2vWLMnPbSSSgtIBsF69eti8eTO2bNmC77//Hu+//75sz1KpVJwBpAphACSrU69ePezYsQO7du1C/fr1Ja29fft21KtXD0OGDEFmZqaktc2BIAjo2bOn6DPKWrVqhY8//liepoiqyJZmxHQ6HTeBUIWoBB4YRFbMYDDgiy++wPjx40WvZ3sUDw8PTJgwAQMGDJBtjVFFCIKAzZs3Izc3Fx4eHnB0dIRarYZGo4EgCDAYDDAajcjLy0N2djaaNWuGxo0bl/tNYsWKFejbt6+o57u6uuLUqVOSbsYhkpIgCDh79qxNnI/n4+MDPz8/pdsgC8AASDYhNzcXs2fPxvz58yW/KD00NBRz5szBm2++aZKfvAVBQG5uLnJzc1FQUFCpP49arYZOp4NOp4OHhwe0Wi3OnTuHRo0aid75/MUXX1TqoGgiU0pNTbWJXf1BQUG8fYcqhAGQbMrFixcxZswYbNy4UfLaLVu2xIIFC9C0aVPJawNAUVERsrKykJWVdfdsMalotVpotVpMmDABa9eurfC41157Ddu3b+crJzJ7ubm5og80tzQODg4ICwvj30eqEAZAskn//PMPYmJi8Oeff0pe+6OPPsKMGTNQs2bNKtcSBAE5OTnIyMhAfn6+BN09nEqlQlZWFgYNGoTjx48/9HO9vb1x+vRpvm4iiyAIAhITE6367u+AgAB4eXkp3QZZCG4CIZv0xBNPYP/+/diyZQtCQkIkrf3ll18iPDwc48ePR25ubqXrFBcX4/z587h06ZJJwh9w55ukh4cHYmNjsWjRooeubfz8888Z/shiqFQq+Pj4KN2GbNRqNTw8PJRugywIAyDZLJVKhbfffhtnzpzB/PnzJf3iWVhYiGnTpiEsLAyrV68W9cpWEATcvHkTSUlJiq5Zat26NQ4ePIhnn322zO99+OGH6NChgwJdEVWeh4eH1d6S4eXlZbV/NpIHXwET/Z+MjAxMmTIFy5Ytg16vl7R2gwYNMH/+fLRt2/ahn1dQUIDLly+jqKhI0udX1V9//YVPPvkEt2/fRkBAAE6fPs3L7MkiXb9+HTdv3lS6DUmpVCqEh4fD3t5e6VbIgvDHBaL/4+3tjUWLFuHMmTN44403JK196tQptGvXDq+88grOnj1b7ufk5OQgJSXF7MIfADz11FPYs2cPateujS+++ILhjyyWr6+v1R2UHBAQwPBHonEGkOgBfv/9d8TExDxyM4RYGo0GvXv3xqRJk1CtWjUAd2Yfr127Julz5KBWqxEcHAytVqt0K0SVVlhYiHPnzlnFuYCurq6oVasWd/6SaAyARA9hNBqxYcMGjBkzBlevXpW0tpubG1avXo3WrVtbRPgrpdFoUKdOHYZAsmiW8kPXw2g0GoSFhfH+baoUBkCiCsjLy8O8efMwZ84cyXbkqlQqnDhxwiIXbms0GgQHB1vdqzSyHYIg4MKFC7h9+7bSrVQaD32mqrC87zxECnB2dsbEiRORlJSEbt26SfK6ZcyYMRYZ/oA7V+xdvHgRRqNR6VaIKkWlUiEwMFDRaxyronr16gx/VCWcASSqhBMnTmDo0KHYu3dvpcb7+Pjgjz/+sPgA5e3tDX9/f6XbIKo0vV6PlJQUFBcXK91KhVWvXh2+vr5Kt0EWzjKnH4gU1rhxY+zZswc//PADIiIiRI9fu3atxYc/4M46Kkt+hUZkZ2dnUcsZ/Pz8GP5IEgyARJWkUqnw2muv4dSpU1i8eDG8vb0rNO7dd99FUFCQvM2Z0KVLlyQ/N5HIlEpDoLOzs9KtPFRgYKBV32ZCpsVXwEQSyc7OxvTp07Fo0aIH3jfq4uKCAwcOWN2uPXd3d0nuPiZSkiAIuHHjhtkdFO3o6IgaNWrAyclJ6VbIinAGkEgiHh4emDt3LuLi4h54TdqgQYOsLvwBwK1btyxqDRVReVQqFapXr46wsDCzCFul/YSEhJhFP2RdOANIJJODBw8iJiYGR44cAXDn6JRjx45Z7M7fR/Hx8YGfn5/SbRBJQhAEZGVlIS0tTZH1us7OzggICLCYtYlkeRgAiWRkNBrxzTffYNSoUejcuTM++OADpVuSjVqtRkREBDQajdKtEElGr9cjIyMDmZmZMBgMsj/P2dkZXl5ecHNz4+0eJCsGQCITKCgowIULF6x+s4S/v3+FN8MQWRJBEJCbm4vMzEzJd75rNBp4eXnB09PTYs8lJMtjfYuRiMyUtYc/4M6xMAyAZI1UKhXc3Nzg5uaGkpIS3Lp1C/n5+SgoKHjgpq+H1dJqtdDpdHBxcYGrqytn+8jkGACJTCAvL0/pFkyiuLgYJSUlsLe3V7oVItnY29vfdxyL0WhEYWEhCgoKUFxcDEEQYDQaIQgC1Go1VCoVNBoNtFottFotHBwcGPhIcQyARCYg1f3B5dm/fz8GDBjwwN9v164d5s+fL9vz/1dBQQEDINkUtVoNJycn7tQli8I1gEQmkJCQIPo1UUUVFhaWWZNkMBgwfvx4xMfHY/Xq1QgPD5fl2eXx9fVF9erVTfY8IiISjzOARDLT6/WyhT8Ad18rlTIYDBg9erQi4Q+Qd7aTiIikYZ0HkhGZkYKCApM9qzT8HT58GKtWrTJ5+APu/Hn5YoGIyLxxBpBIZqa6IePe8Ld69WpEREQAANLS0jB69GhkZmZCo9GgT58+ePHFF2Xrw2g0wmAwWOWNJ0RE1oJfoYlkZopbBB4U/oA7Z4yNHDkSkZGRyMjIwHvvvYeWLVvKumBdiZsTiIio4hgAiWQmdxgqDX+HDh0qE/6AO5syfH19AQDe3t5wd3dHTk4OAyARkQ3jGkAiC2YwGDBmzBgcOnQIq1atQmRk5EM//8yZMxAEgXf2EhHZOM4AEslMrZbn5yyj0YgxY8Zg3759mD9/Pnx9fZGenn7f53h6et69mzc7OxtjxozB5MmTZennXnL9mYmISBoMgEQykysMnT59Gjt27AAA9O/fv9zPOXjwINzc3FBcXIzBgwejZ8+eaNy4sSz93IsBkIjIvPEgaCKZ5ebm4sKFC4o9XxAEjBw5EkFBQQ8MilJSq9WIioriVVdERGaMM4BEMtPpdIo+//jx49i5cyfCw8Oxd+9eAMCMGTNkOyNQp9Mx/BERmTnOABKZgJxXwZkbXgVHRGT+uFCHyASUngU0JVv6sxIRWSoGQCITkPPMPXPDAEhEZP4YAIlMwNnZWekWTMLBwQH29vZKt0FERI/AAEhkAjqdziZmxry9vZVugYiIKoABkMhEfHx8lG5BVmq1Gp6enkq3QUREFcAASGQibm5usLOz3pOXvLy8eAA0EZGF4FdrIhNRqVRWPQvo5eWldAtERFRBDIBEJuTp6WmVs2Tu7u5wcHBQug0iIqog6/tORGTGNBoNAgMDlW5DUhqNBv7+/kq3QUREIjAAEpmYm5sbPDw8lG5DMjVr1rTqtY1ERNaIAZBIAf7+/lZxXp63tzdcXFyUboOIiERiACRSgEajQc2aNZVuo0ocHR155y8RkYViACRSiJOTEwICApRuo1I0Gg1q1apllRtaiIhsAb96EynIy8vL4jZQaDQa1KlTB46Ojkq3QkRElaQSBEFQugkiW5eZmYmrV68q3cYj2dnZISgoCFqtVulWiIioChgAicxETk4OLl26BHP9K+no6IigoCCr2LxCRGTrGACJzEhBQQEuX76MoqIipVu5j4eHB/z9/aHRaJRuhYiIJMAASGRmBEFAeno6bty4ofhsoIODA2rUqAFnZ2dF+yAiImkxABKZqeLiYly5cgV5eXmKPN/X1xe+vr7c6UtEZIUYAInMmCAIyMnJQUZGBvLz82V/nkqlgru7O3x9fbnLl4jIijEAElmIoqIiZGVlISsrCwaDQdLaWq0WXl5ecHd35zo/IiIbwABIZGEEQUBubi5yc3NRUFCAoqIi0WsF1Wo1dDoddDodPDw8eKwLEZGNYQAksnCCIKCoqAiFhYUoLCyEXq+HIAgwGo1QqVRQqVRQq9Wwt7eHTqeDVquFnZ0dVCqV0q0TEZFCGACJiIiIbAy39xERERHZGAZAIiIiIhvDAEhERERkYxgAiYiIiGwMAyARERGRjWEAJCIiIrIxDIBERERENoYBkIiIiMjGMAASERER2RgGQCIiIiIbwwBIREREZGMYAImIiIhsDAMgERERkY1hACQiIiKyMQyARERERDaGAZCIiIjIxjAAEhEREdkYBkAiIiIiG8MASERERGRjGACJiIiIbAwDIBEREZGNYQAkIiIisjEMgEREREQ2hgGQiIiIyMYwABIRERHZGAZAIiIiIhvDAEhERERkYxgAiYiIiGwMAyARERGRjfl/7fFM1nFAqDgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHiCAYAAAB4GX3vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOuklEQVR4nO3dd3RU1fc28GdmUmbSKykECOmho4CCoqKCotgRRST0Xg29915EpUiJQBBERQFFBFFAEPCLKEhLJZRQAqSRkEzKzNz3D37hBRMgN7l36vNZK2tpkrPvjsJkzyn7KARBEEBERERENkNp6gSIiIiIyLhYABIRERHZGBaARERERDaGBSARERGRjWEBSERERGRjWAASERER2RgWgEREREQ2hgUgERERkY1hAUhERERkY1gAEhEREdkYFoBERERENoYFIBEREZGNYQFIREREZGNYABIRERHZGBaARERERDaGBSARERGRjWEBSERERGRjWAASERER2RgWgEREREQ2hgUgERERkY1hAUhERERkY1gAEhEREdkYFoBERERENoYFIBEREZGNYQFIREREZGNYABIRERHZGBaARERERDaGBSARERGRjWEBSERERGRj7EydABFVjyAIKC4uRlFREYqKiqDT6SAIAgwGAxQKxd0PBwcHaDQaqNVq2NnZQaFQmDp1IiIyERaARBZGEATk5+cjPz8fWq0WxcXFEARBVAylUgmNRgONRgMPDw+o1WqZsiUiInOkEMT+5iAikyguLkZOTg5ycnKg1+slja1Wq+Hl5QV3d3eoVCpJYxMRkflhAUhkxgRBQF5eHrKyslBYWCj78xQKBdzd3eHr6wtHR0fZn0dERKbBApDITJWUlODKlSsoKCgwyfN9fX3h6+sLpZJnxYiIrA0LQCIzIwgCMjMzcePGDdF7+6Tm4OCAmjVrwtnZ2aR5EBGRtFgAEpkRrVaLy5cvo7i42NSp3MfDwwMBAQHcH0hEZCVYABKZiby8PKSnp5t81u9BHB0dERwcDHt7e1OnQkRE1cQCkMgMZGdn4+rVq6ZO45Hs7OwQHBzMtjFERBaOBSCRiWVlZeHatWumTqPSVCoV6tatyyKQiMiC8XgfkQllZ2dbVPEHAHq9HufPnze7fYpERFR5LACJTKSwsNAiln0rotfrcenSJRgMBlOnQkREVcACkMgE9Ho90tPTTZ1GtRQXF+P69eumToOIiKqABSCRCVy7dg2lpaWmTqPasrKycPv2bVOnQUREIrEAJDKyvLw85ObmmjoNyaSnp0On05k6DSIiEoEFIJER6fV6XL582dRpSEqv11vcQRYiIlvHApDIiHJycqzy4MStW7dQUlJi6jSIiKiSWAASGUnZHb/WKjs729QpEBFRJbEAJDKSvLw8q94rl52dbZWzm0RE1ogFIJGRWPPsHwAYDAbk5OSYOg0iIqoEFoBERqDVaqHVak2dhuyysrJMnQIREVUCC0AiIygoKDB1CkZRUlJiFf0NiYisHQtAIiMoLCw0dQpGYwsznURElo4FIJERGKso6tatGxo2bIjPP//8vs8LgoAPPvgADRs2xNKlS2XNgQUgEZH5YwFIJDOdTmeUZVFBEJCUlITAwECkpKTc97Xt27fjxo0bAIDo6GhZ87Cl2U4iIkvFApBIZsaaEbt48SIKCgrwxhtv3FcAFhQU4JNPPsEbb7wBAKhfv76seWi1WgiCIOsziIioelgAEsnMWDdknD17Fo6Ojmjfvj0uXbp097krV65EZGQkfH194enpCX9/f1nzMBgM0Ov1ksdNSEjAnDlzcPPmTcljExHZGjtTJ0Bk7YzVHDkhIQEREREIDg6GRqNBWloaNBoNNm/ejM2bN2P9+vWoV6+eUXKR4mc2GAw4evQotm3bhm3btiEpKQkODg4YNWqUBBkSEdk2FoBEMjNWAXj27FnUq1cPCoUCERERSElJwa5du9CxY0eEhITg7NmzePrpp42SS1V/5pKSEuzfvx9bt27F9u3bce3atfu+Hh4eDjs7vmwREVUXX0mJrERCQgJeeeUVAEBERAQ2btyIa9euYe7cuSgtLUVqair69Olj4izLy8/Px65du7B161b89NNPyMvLe+D3yn2AhYjIVrAAJJKZUin/Vtv09HTk5+ffXeKNiorC5s2bMWXKFLi6uuLMmTPQ6XRGWwJ+1M9848YN/PDDD9i2bRt+/fVXFBcXVyouC0AiImmwACSSmTEKwLNnz8Le3h5hYWEAgNdffx3PP/88PDw8ANyZHXRzc0NQUJDsuQAV/8xpaWnYunUrtm3bhkOHDlXppLCbmxuKi4vh6OgoRZpERDaLBSCRzBwcHGR/RkJCAsLCwmBvbw8AsLe3h6en531fN9bsmVKphEqlgiAIOHHiBLZt24atW7fi1KlT1Y49atQojB07FqGhoYiOjr7vIyoqCq6urhL8BERE1k8hsGEXkax0Oh0SExNNnYbRZGVl3Z3pu3jxolGfHRQUdLcgrFev3t1/9vX1NWoeRETmjjOARDKzs7ODvb29UW4DMQdhYWHw9PREenq60Z99+fJlXL58GXv27Lnv897e3uVmDOvVq4datWpBoVAYPU8iIlPjDCCREVy6dOmhp1utSe3ateHm5oZDhw6hS5cuRp8FFMPZ2RlRUVHlisPQ0NC7y+lERNaIBSCREWRmZiIjI8PUaRhFZGTk3eIpNzcX/fv3x9dff23irMQpO1Bz7zJydHQ0IiMj4eTkZOr0yMzo9XoUFxdDq9WipKQEBoMBgiBAEAQoFIq7+2LVajXUajUcHBw480wmxwKQyAi0Wi3OnTtn6jRk5+DggIiIiPs+JwgC4uPjMWjQIBQUFJgoM2koFArUqVOn3FJydHT0fYduyLqVlpbi1q1bKCwshFarFb29Q6FQQK1WQ6PRwMXFBa6uriwIyehYABIZgVarxalTp6x+9iggIADe3t4Vfi0lJQUffPABjh07ZuSsjMPPz6/cUnJ0dDQCAwP5y90KCIKA/Px8ZGdn4/bt25LGVqlU8PT0hKenJ1sckdGwACSSkcFgwObNmzF27Fg0btwYc+bMMXVKslEqlYiMjIRKpXrg95SUlGDKlCmYN29elfoAWiI3N7cKC8O6des+9L8VmQedTofMzEzk5ORAr9fL/jwnJyd4e3vDzc2NbxxIViwAiWTyxx9/IDY2Fn/99dfdz61fvx6PPfaYCbOSj4+PD/z9/Sv1vXv37kXXrl1x9epVmbMyX46OjoiIiCjXsiYiIoKzQGZAEATk5OQgIyPDaPd538vZ2RmBgYH8s0CyYQFIJLFz585h7Nix2LJlS7mvNW7cGPHx8Ua5HcTYIiIiRDW9zsrKQu/evbFt2zb5krJASqUSISEhFc4aurm5mTo9m1BUVIQrV65Aq9WaNA+FQgFfX1/4+PhY5WsGmRYLQCKJ5OTkYNasWfj0008fuil8zpw56NChgxEzk5+7uztq1aolepwgCFi9ejWGDx/+0F+2NWrUQGlpKXJycqqTpsWrWbNmhYVhjRo1uFwoAUEQcOPGDdy8edPUqdzHwcEBQUFBVr+HmIyLBSBRNZWWluLzzz/H1KlTkZ2d/cjvDwwMxLZt26DRaIyQnfxUKhXCw8NhZ1f1vvIJCQno3Lkz/v333wq//tlnn2HQoEG4ceMGEhISyn1cuXKlys+2Bp6enuWWkqOjo1G7dm3OHFWSXq/HpUuXzPqkelBQ0N37vYmqiwUgURUJgoAff/wRo0aNQnJysqixI0eORLdu3WTKzLiCg4Ph4uJS7TjFxcUYN24cPv7443Jf+/XXX/HCCy88cGxeXh4SExNx9uzZ+wrDtLQ0k+zfMhdOTk6IjIws17Lm3nuj6c5Bj/Pnz6O4uNjUqTySv78/fHx8TJ0GWQEWgERVcPz4cYwYMQL79u2r0nhnZ2f8/PPPFt87ztvbGwEBAZLG3LVrF7p3747r16/f/dyVK1cQGBgoOlZRURFSUlLuKwrPnj2L5ORki/hlLxc7OzuEhYWVW0qOioqCs7OzqdMzKp1Oh7S0NJSUlJg6lUrz8/Pj/dZUbSwAiUS4cuUKJk6ciPXr11e7jUm3bt0wcuRIiTIzPkdHR4SGhsqyxHjjxg306NEDO3fuhLu7O3JyciTd46bX63H+/PkKl5Nt5cq+B/lvo+uyjwf1d7Rkllj8lWERSNXFApCoEgoKCrBgwQIsWLAAhYWFksRUKBTYv38/vLy8JIlnTCqVCiEhIbK2qBAEAUuXLsX3339f5ZnWqjzz6tWrFRaG985I2iJfX98K9xnWrFnTIg+gCIKAixcvSt7U2Zik2n5BtokFINFDGAwGxMfHY8KECZL3rHNzc0NcXBzatGmDa9euSRpbTiqVCnXr1oVarTbK8/Ly8syi/Ul2dnaF+wwvXLhg6tRMytXVFVFRUeWux6tbt261DgbJLSsry6L+3lVEigNYZLtYABI9wL59+zBixAgcP35c0rgqlQr9+vXD1KlT7y7hZGdnW0RTZDs7OwQHBxut+LMEhYWFSEpKKrfPMCUlBTqdztTpmUzZvdD/XUqOjIw0+Z+foqIinDt3zipuo3F1dUXt2rUtchaWTIsFINF/JCUlYfTo0fjhhx8kj/3qq69iwYIFiI6OLve1vLw8pKenm+0vJUdHRwQHB/P0aCWVlpbi3Llz5ZaSExMTzbrViNwUCsUDG127u7vL/nyDwYBz585Z1SGgmjVrWvyBMjI+FoBE/ycrKwvTpk3DihUrJJ+5adSoERYtWoQXX3zxod+n1Wpx+fJls/vl5OHhgYCAAN5dKwGDwYDLly+XW0pOSEhAVlaWqdMzqYCAgHIta6Kjo+Hn5yfZDNf169fNrtFzdSkUCkRERPDNGYnCApBsXnFxMZYuXYqZM2ciNzdX0tj+/v6YOXMmunfvXuniSRAEZGZm4saNGyafDXRwcEDNmjVtrjWIqdy8ebPcUnJCQgIuX75s6tRMysPDo8IZw+DgYFGn0PV6PZKSkqyyN6SYu7iJABaAZMMEQcD333+P0aNHIy0tTdLYGo0GI0eOxOjRo6t8Sq+kpARXrlwx2XKhr68vfH19eZOEGcjPz0diYmK5GcPU1FSrLGYqS6PR3NfouuwjPDy8wnupreHgx4MolUpERUXx7ytVGgtAskl//fUXYmNj8ccff0geu2vXrpg1a1aV7sb9L0EQkJeXh6ysLMnazzyMQqGAu7s7fHx8TL5Rnx6tuLi4XKPrhIQEJCUloaioyNTpmYxKpUJoaOh9S8mtW7dGcXHxQ+/ptnSBgYEW2VaKTIMFINmUS5cuYfz48di4caPksZ955hksWrQIzZo1kzw2cOeXfU5ODnJycqDX6yWNrVar4eXlBXd3d+7zswJ6vR4XL168bxm57OPWrVumTs8kPv30U7Rp08bUacjKwcEB4eHhPBFMlcICkGxCfn4+5s6di8WLF0s+MxIWFoYFCxbgjTfeMMoLryAIyM/PR35+PrRaLYqLi0XvFVQqldBoNNBoNPDw8OBsn40QBAEZGRnlZgzPnj2LjIwMU6cnq6+//hr16tUzdRqyY3NoqiwWgGTVdDodvvjiC0yaNAk3btyQNLanpycmT56MgQMHVrjfyFgEQUBxcTGKiopQVFQEnU4HQRBw6dIl1KxZEyqVCgqFAg4ODtBoNFCr1bCzs+MsAd0nNze3whtQzp8/b/LDSFL4448/jNJmxtR4GIQqiwUgWa1ffvkFI0aMwOnTpyWNa2dnh8GDB2PSpElmvd+mY8eO6Ny5M9555x1Tp0IWTKvVIjk5udxScnJyssXsp/P19cXevXtli28wGPDGG2+gTZs2iI2Nvfv5Q4cOYfDgwZg7dy5eeukl2Z5/LycnJ4SEhBjlWWTZWACS1Tlz5gxGjhyJXbt2SR77zTffxLx58xARESF5bCmdPHkSjRs3RsOGDXHixAmeDCTJ6XQ6pKWllWtZk5iYaHb367Zq1QorV66U9Rnbt2/HnDlzsHv3bri7uyMpKQndunVD//790b17d1mffS+FQoF69epxhp8eiQUgWY0bN25gypQpWLVqleStMR577DEsXrwYzz77rKRx5dKxY0d89913AIAtW7ZwFpCMRhAEXL58ucLlZFM1YP7www8xZswYWZ+h0+nQoUMHvPHGG3jrrbfQpUsXtGnTBhMnTpT1uRUJCwvjvl56JBaAZPGKioqwZMkSzJ49G/n5+ZLGrlmzJubMmYMuXbpYzCxa2exfGc4CkrnIzMyssDC8dOmSrM8dP348OnfuLOszAOCbb77Bp59+iho1aqBmzZpYsmSJSU7V82o4qgwWgGSxBEHA5s2bMW7cOFy8eFHS2M7OzhgzZgxGjBgBJycnSWPL7d7ZvzKcBSRzdvv2bSQlJZVrW5OamipJy6OVK1eiVatWEmT6cIWFhXjmmWdQq1YtbNy48b7XjoyMDIwbNw7Z2dlQqVTo16+fbPsCeRCEKoMFIFmkw4cPIzY2Fv/73/8kjatQKNCzZ0/MmDEDAQEBksY2hv/O/pXhLCBZopKSEqSmppabMUxMTIRWq610nD179hilIJowYQJ2794NV1dX7Nq1C46Ojne/dvPmTWRlZSEqKgpZWVno1KkTfvzxR1neYHp5eSEwMFDyuGRd7EydAJEYaWlpGDt2LL799lvJY7/wwgtYtGhRhQWUpZg+fXqFnz916hS2bt3KWUCyKA4ODqhXr165/n0Gg+Fuo+v/fuTk5JSL4efnJ3uun332GQ4ePIiNGzeiT58++P777+9bdi67WhEAvL294e7ujry8PFkKQM7rUGVwOoAsQm5uLkaNGoXo6GjJi7+oqCjs2LEDe/bsseji7+TJk+WWfu81bdo0m743lqyHUqlEjRo14O/vX+7Dzs748xrfffcd4uPj8dlnnyEyMhIffvgh1q5d+8A2OWfOnIEgCFymJZPiDCCZtdLSUqxatQpTpkxBVlaWpLF9fHwwbdo09OnTB/b29pLGNoUHzf6V4SwgWaLs7Oxyt5YkJCRUet9vSUkJsrKy4OPjI0t+Bw8exKxZszB//vy7byA/+OADrFu3Djt27MBbb7113/fn5uZi/PjxmDZtmiz5AGALGKoU7gEksyQIAn766SeMHDkSSUlJksZ2cHDAsGHDMH78eHh4eEga21QetPfvv7gXkMyRIAi4evVquWbTCQkJktzgExcXhxYtWkiQ6f3OnDmDHj16YOjQofjwww/v+9rSpUuxa9cubN++/e5J4JKSEvTp0wcdO3bEa6+9Jnk+ZXgIhCqDBSCZnX///RcjRozAb7/9JnnsTp06Ye7cuahbt67ksU2popO/D/Ltt9+iY8eOMmdEVJ5er7+vefS9H1K3cLrXpEmT0KlTJ9niV4YgCBgzZgyCg4MxcOBAWZ8VGBho1rcUkXngEjCZjatXr2LSpElYu3at5JuYn3jiCSxevNgorSCM7VF7//5r+vTpePvttzkLSLIpKipCcnJyuaXb5ORklJSUGD0fufsMVsbx48exa9cuRERE3L2Wbvbs2bLcKqTRaCSPSdaHBSCZXEFBARYtWoR58+ahsLBQ0ti1a9fGvHnz8N5771ntvphH7f37L+4FJKncunULiYmJ5ZZuz58/b1YHjtLS0kydAh577DGcPHlS9ucoFAreAkKVwiVgMhmDwYAvv/wS48ePx5UrVySN7erqivHjx2PYsGFW/W64snv//ot7AamyBEHA9evXK1y2vXr1qqnTqxR/f3/s2bPH1GkYhUajQWhoqKnTIAvAGUAyif3792PEiBH4559/JI2rVCrRt29fTJs2DTVq1JA0tjkSO/tXhrOA9F9ieutZmoyMDOTn58PV1dXUqcjO0m4uItPhDCAZVUpKCkaPHo1t27ZJHrt9+/ZYsGAB6tevL3lsc1TV2b8ynAW0Tf+9XaNs+TYpKUnU7RqWZsuWLYiMjDR1GrKrXbs23NzcTJ0GWQDOAJJRZGdnY/r06Vi2bBl0Op2ksRs0aICFCxfKdq+muarq7F+ZU6dO4fvvv+eJYCt1+/ZtJCYmlpvNk+p+XUuTkZFh9QWgnZ2dTcxykjQ4A0iyKikpwbJlyzB9+nTk5uZKGrtGjRqYOXMmevToYZLu/6ZU3dm/Mg0aNMC///7LWUALlpmZWeGyrTmcfDUlNzc3REdHo169eoiOjsYrr7wClUol+RtQc+Lv7y9bw2uyPrb1W5OMRhAEbNu2DaNHj0ZqaqqksdVqNWJjYzF27Fibfbdb3dm/MqdPn+YsoAUQBAGXL1+u8EaMzMxMU6dnUv7+/oiOji73ERAQUO7k/82bN3H9+nUTZSovhUIBT09PU6dBFoQzgCS5Y8eOITY2FgcPHpQ8dpcuXTB79mzUrl1b8tiWQqrZvzKcBTQfOp3ubqPke1urJCYm4vbt26ZOz2QUCgWCg4MrLPTEFD16vR6JiYmS9xk1B97e3ggICDB1GmRBOANIkklPT8eECROwYcMGyWM//fTTWLx4MZo3by55bEsj1exfGc4CGp9Wq0VSUlK5ZduUlBSTNEo2F/b29ggPD79b3JUt30ZEREhyulWlUsHLy0vye8XNAW/+ILFYAFK15efnY/78+Vi4cCGKiookjR0SEoL58+fj7bffttpGzmLcvHkTt2/fRrt27e77/LFjx5CdnV2pGPXq1UNQUNB9nzty5AgLQBnk5uZWuD/v/PnzVjkLVVnOzs4VzuaFhITA3t5e1mfXqFEDeXl5KC0tlfU5xuTv7w9HR0dTp0EWhkvAVGV6vR5r167FxIkTJd9X4+7ujsmTJ2PQoEF8YauEdu3aVbrRbVxcHHr27ClzRrZDEARkZGSU25uXkJCAjIwMU6dnUj4+PhUWekFBQSbdclBYWGgWt4NIwcnJCXXr1uUbZBKNM4BUJXv27MGIESNw6tQpSePa2dlh4MCBmDx5Mry9vSWNTVQder0eFy5cqHBG79atW6ZOz6Rq1ap1X4FXtnRrridSnZycUKNGDdy4ccPUqVSLUqlErVq1WPxRlbAAJFHOnj2LUaNGYefOnZLHfuONNzB//nxZLkcnqqzi4mKkpKSUK/KSkpIk3+JgSVQqFUJDQ+8Wd2UfUVFRcHFxMXV6ovn6+iI/P9+im1/XrFlT9iVzsl4sAKlSbty4galTp2LVqlWSN5Ft0qQJFi9ejDZt2kgal+hh8vPzyzVKPnv2LNLS0myyUXIZtVqNqKiocsu24eHhcHBwMHV6klEoFKhVqxbS0tIssjegt7c33N3dTZ0GWTAWgPRQRUVF+OSTTzB79mzk5eVJGjswMBCzZs1C165doVKpJI1NVObmzZvl9uYlJCTg8uXLpk7NpDw8PCpctq1Tp47NtARycHBASEiIxRWB3t7e8Pf3N3UaZOFYAFKFBEHAN998gzFjxuDixYuSxnZycsLo0aMxcuRIODs7SxqbbJPBYEB6enqF+/OsseWHGAEBAeWWbaOjo+Hn58e9Y7hTBNatWxcXLlywiJPBZcUf/99RdbEApHKOHDmC2NhY/Pnnn5LGVSgU6NatG2bOnImaNWtKGptsQ2lpKc6dO1euyEtMTERBQYGp0zMZhUKBkJCQckVeVFQUPDw8TJ2e2XN0dERoaCguXLhg1vs8edUbSYkFIN114cIFjB07Fl9//bXksdu0aYNFixahadOmkscm61NYWHi3UfK9S7epqakWMUsjFwcHB0RERJQr9CIiIqDRaEydnkWzs7NDSEgIrl27hpycHFOncx87OzsEBgbCzc3N1KmQFWEBSLh16xZmz56NTz75BMXFxZLGjoiIwMKFC9GhQwcuWVA52dnZFS7bXrx40aYbJbu4uJTbmxcdHY26devCzo4v23JRKpWoWbMmPDw8kJ6ebvJ9gQaDAT4+PvDz8+M+aZIcX0lsmE6nw6pVqzBlyhTJL5T38vLC1KlT0b9/f7YpsHGCIODq1asVFnpSNxC3NDVq1KiwUXLNmjX5hslEBEHA/v37sWLFCnzxxRcm6xXo6OiIf//9F8uWLcO0adN46IMkxwLQBgmCgJ9//hkjR45EQkKCpLHt7e0xdOhQTJgwQdQl7WT59Ho9zp8/X66tSmJiouQnyC1NnTp1Kiz02OzcvBw/fhwjR47E3r178eKLL6JGjRpwd3fHzZs3cevWLaPMSjs4OMDb2xteXl7QarV49913sXHjRowZMwaxsbE8OEeSYQFoY06ePImRI0dW+towMTp27Ii5c+ciNDRU8thkPoqLi5GcnFyurUpycrLkWwgsiZ2dHcLCwsot3UZGRvKXtpm7fPkyJkyYgA0bNtwt8spexxwdHREUFISAgADcunUL2dnZkh8UUSgUcHd3h5eXFzQazd3Z35CQEABAQUEBJk+ejM8//xwzZ85ETEwMl4Sp2lgA2oiMjAxMmjQJX3zxBQwGg6SxmzdvjsWLF+Ppp5+WNC6ZVl5eXoXLtmlpaZL/GbIkGo0GUVFR5VqrhIWFcbuDhcnPz8e8efOwaNGickVdWFjYff+uUqng5eV1d2YuNzcXWq0WWq22SjOD9vb20Gg0cHFxgbu7e4UFnYuLC/z8/O5ulbh69Sp69uyJTz75BAsXLsSLL74o+rlEZVgAWrnCwkIsXrwYc+fOlbxNRq1atTB37ly8//77NtM41toIgoAbN26UK/LOnj2Lq1evmjo9k/Ly8qpw2bZ27dr8827hdDod4uLiMHny5Afu8XvYSoZGo7l76loQBJSWlkKr1aKoqAglJSUwGAwwGAwQBAFKpRJKpRIqlQpqtfruR2Vn8EJDQ8vtlf3333/Rtm1btG/fHgsWLED9+vUr+ZMT/X8sAC2IwWCo9C8eg8GAjRs3Yvz48ZLfeODi4oLx48dj+PDhbD1hgXbv3o3Dhw/fLfbMreWFsdWsWbNckVevXj34+vryIIaVEQQBO3fuxKhRox65/7myW1kUCgUcHBzg4OAgy9VsoaGhOHz4cIVf+/nnn7F792707t2bB0VINBaAFsJgMKBz585YsWIFvLy8Hvq9Bw4cQGxsLP7++29Jc1AqlejduzemT58OPz8/SWOT8XzzzTemTsHolErl3UbJ9y7dRkVFsbeajbj3gEdllO2/M7VHFaIGgwGrVq3iQRESjQWghfj888/xzTffoGbNmli8eHGF35OamorRo0dj69atkj+/Xbt2WLRoERo0aCB5bBKvoKAAiYmJd2fx/v33X1OnZBYcHR0RGRlZbkYvPDwcarXa1OmRCVR0wONR/Pz84OLiInNmlfPfvYgPwoMiJJZCsOVuqxYiNTUVjRs3RmFhIezt7XH27Nn7XhSys7MxY8YMLFu2TPJbEurXr4+FCxfi5ZdfljQuVU5WVla5vXkJCQm4dOmSqVMzKTc3twr359WtW5e/9AjAww94PMpTTz2FP/74Q6bMxPnzzz/RsmVL0eMaN27MgyL0UJwBNHN6vR49evRAYWEhgDt3oY4ZMwbfffcdSkpKsGLFCkybNk3yfVy+vr6YMWMGevXqxZsHZCYIAq5cuVKurUpCQgJu3rxp6vRMys/Pr9zevOjoaAQEBHB/HlVIp9NhzZo1mDJlSpWbOJtTK6uq5nLvQZH58+dz9YbK4W92M7dkyZJy70S///57zJo1C+vXr0dKSoqkz3N0dERsbCzGjh3LvVES0+l0SEtLK1fkJSYmIj8/39TpmYxCoUCdOnXKtVWJjo5mM3GqNEEQ8NNPP2H06NHVbnBvTgWgj48PXF1dq/waUXZQpFevXpg+fToPitBdXAI2YwkJCWjatKnRmut27twZc+bMQZ06dYzyPGul1WqRnJxcrtBLTk5GSUmJqdMzGXt7e4SHh5cr8iIjI+Hk5GTq9MiCiT3g8ShffvklunTpIkksKTRt2hQnTpyodhxnZ2eMHj0aI0aM4EERss0ZQEEQUFxcjKKiIhQVFUGn00EQBBgMBigUCigUCiiVyruNOtVqNezs7Iy65KTT6RATE2OU4q9Vq1ZYvHgxnnjiCdmfZU1u3bpVbm9eQkICzp8/b5Qro8yVs7MzoqKiyi3dhoSEsFEyyUKpVEp6n7k5zQACd/KRogDUarUoLCzkth4CYCMFoCAIyM/PR35+PrRaLYqLi0X/gi5r4qnRaODh4SH7icK5c+fi2LFjsj6jbt26mDdvHjp27Mj9VA8gCAIyMjIqvBHj2rVrpk7PpLy9vcu1VYmOjkZQUBAbJZNRNW7cGEePHsW0adMwb968at9UY44FoBQx4uPj0apVKwkyImtg1UvAxcXFyMnJQU5ODvR6vaSx1Wo1vLy8HniFT3WcOHECLVq0kPxEbxl3d3dMnDgRQ4YMgaOjoyzPsDQGgwEXLlyosNDLzc01dXomVatWrQpP3Pr6+po6NaJyjhw5gpiYGKSmplZpvJubG3Jzc83qTfHq1avRt2/fKo8fOHAg5s+fz2Vfuo/VFYBls32ZmZl3T87KqewSbx8fH0lmBUtKStC8eXOcPHlSguzup1KpMGDAAEyZMgU+Pj6Sx7cEJSUlSElJKbd0m5SUJPkF75ZEpVIhNDS0XJEXFRUFV1dXU6dHJMqcOXMwfvz4Ko1t2rQp/vnnH4kzqp69e/fihRdeqNJYDw8PJCYmsnk/lWNVS8AlJSW4cuWK5HfePowgCMjNzUVubi58fX3h6+tbreWv6dOny1L8dejQAQsWLEBUVJTksc3R7du3kZiYWK61yrlz5ySfDbY0QUFBePrpp+9bvg0LC+NsMFmFU6dOYerUqVUeb27Lv0D1csrNzUXfvn2xbds2s5rVJNOzihlAQRCQmZmJGzdumHzzvb29PWrWrFmlLvJHjx5Fy5Ytq71/5V6NGzfGokWLqvzu0dzdvHmzwmXb9PR0U6dmtuLi4tCzZ09Tp0EkuZKSEjzxxBPVOjAxZswYzJ07V7qkJKDX66HRaKq1LWjt2rXo3r27dEmRxbP4GUCtVovLly8brVXKo5SWluLChQvw8PBAQEBApfcHarVadOvWTbLiz9/fH7NmzUK3bt0s/mYEQRCQnp5ersg7e/YssrKyTJ2eSQUEBCA6OhopKSksesnmTZ8+vdqnZc1xBlClUqFu3bpITk6ucoyhQ4eiTZs2bPNFd1l0AZiXl4f09HSTz/pVJDc3F1qtFsHBwZVqfTFx4kQkJiZW+7kajQajRo3CqFGjzOYuy8rS6XQ4d+5cubYqiYmJRl3WNzcKhQJ169Yt11YlKioKHh4eAO7c1cwCkGzZ//73P8yZM6facSp7966xhYaGVqsAzM/PR48ePfDrr7/ylD4BsOACMDs7G1evXjV1Gg9VXFyMc+fOITg4+KEHRA4ePIiPP/642s9Tq9U4e/YsgoODqx1LToWFhUhKSio3o5eSkiLbyWdLYG9vj4iIiHKtVSIiIqDRaEydHpHZKiwsRExMjCQrKOY4AwhIU5ju27cPS5cuxdChQyXIiCydRRaAWVlZFtODTafT4fz586hbt26FReDt27fRvXt3SWYxi4qK8PPPP+PDDz80i5ObOTk5Fe7Pu3DhglnO2hqLi4tLhW1VQkJC2KCVqArGjRsnenYsNDQUwcHB+O233+5+zsHBATVr1pQ6PUn8tzBVq9Xo1KkT4uPjRcUZM2YMXnrpJURGRkqZHlkgi/ttk52dbTHFXxm9Xo/z588jJCSk3EnL0aNHIy0tTbJnjR49Ghs3bix3f7BcBEHAtWvXyu3NS0hIwPXr142Sg7ny9fWtsNALCgriaTwiiezduxeffvqpqDEKhQLr169Hy5YtsXz5cowePRparRZ169Y12z3T9xaALVq0QHx8PCIiIlBYWIgtW7ZUOk5RURFiYmJw6NAhvuG0cRb1f7+wsNDsl30fRK/X49KlSwgNDb27/2LPnj1YsWKFpM+5ffs2/vrrLwiCIGmRodfrceHChXJtVRISEpCXlyfZcyxR7dq179ubV/bP3t7epk6NyKrdunWrSidbR40ahaeeegoAMHjwYLRr1w7dunWDl5eXxBlKJzQ0FHZ2dpg6dSrGjBlzt3hbsWIFDh48KOoN99GjRzF37lxMnDhRrnTJAlhMAWgwGCx+k3txcTGuX7+OgIAA3Lp1S7ZWHCUlJfjf//6HJ598UvTY4uJiJCcnlyvykpKSzOaktSmoVCqEh4eXm82LjIy0uMM2RNZi+PDhon8vNGjQANOnT7/vcxERETh48KAk9+3KJSQkBEePHkXTpk3v+7yPjw9Wr16N119/XVS8adOm4dVXXy0Xj2yHxRSA165ds4oDAllZWXBxccHw4cNx+fLlR36/Wq2Gq6srXFxc7n6U/btGo8Hp06fx77//lhuXmJj40AIwLy8PiYmJ5ZZu09LSJO1DaGk0Gg2ioqLKFXphYWFwcHAwdXpE9H9++OEHrFu3TtQYOzs7xMfHV9j03M7ODs2aNZMoO+k5Ojo+sFh77bXX0KNHD6xdu7bS8XQ6HWJiYnDs2DE2gbdRFlEA5uXlIScnx9RpSCYhIQH169fHqlWr7ivo/lvgOTs7P3CPRmJiIj744IMKiz/gzn8zQRDuNkr+79LtlStX5PwRzZ6np2e5tirR0dGoXbs2WyQQmbmbN2+iT58+osdNnTrVame8lixZgr179+LixYuVHnP69GlMnjwZ8+bNkzEzMldmfxOIXq9HUlKS1c1Kubu7o1atWqLHCYKAuLg4DBs27KF3HdeoUQM6nQ7Z2dnVSdPiBQYGltubFx0djRo1aljVQYx27dphz549lfpe3gRClkwQBHTs2BHff/+9qHFPPPEE/vjjD6s++LBv3z48//zzosYoFAocOHAATz/9tExZkbky+78JOTk5Vlf8AXc2L/v5+YlaVszOzkafPn0q9cJ348aN6qRnUZRKJUJCQsot20ZFRcHd3d3U6RGRhDZu3Ci6+NNoNFi/fr1VF38A0KZNGwwbNgyffPJJpccIgoBu3brh33//5X5mG2PWfxsEQbDqq76ys7Ph7+9fqe/dv38/PvzwQ5teunV0dLzbKPnej4iIiIc22iYi63D58mUMHjxY9Li5c+faTN+7OXPmYNeuXUhKSqr0mLS0NIwaNUryrhRk3sy6AMzPz7eKgx8Pkp2dDV9f34f2nSotLcXUqVMxZ84cm2me7OrqWmFbFXPu0UVE8hIEAb169cKtW7dEjXv++eerVDRaKo1Gg/j4eLRq1Qp6vb7S4z7//HO8+eabeOmll2TMjsyJWReAmZmZpk5BVgaDAbm5uQ/sF3fu3Dl88MEHOHr0qJEzMw4/P78KGyUHBgZa1f48Iqq+zz//HL/88ouoMW5ubli7dq3NHexq0aIFxo8fjxkzZoga17NnT5w+fRqenp4yZUbmxGwLwKKioocecrAWmZmZ5QpAQRDw5ZdfYuDAgbh9+7aJMpNOcHBwhYWeOTddJSLzkZqaipEjR4oe98knn6B27doyZGT+Jk6ciB07duD48eOVHnP16lUMHjwYGzdulDEzMhdmWwBaQ+FTGaWlpSgtLYW9vT2AO4dDBg4ciE2bNpk4M3Hs7OzKNUquV68eIiMj4eTkZOr0iMhC6fV6dOvWTfSEwOuvv45u3brJlJX5c3BwQHx8PB5//HGUlJRUetymTZvw1ltvoWPHjjJmR+bAbAtArVZr6hSMRqvVwt7eHocPH0aXLl1w4cIFU6f0QE5OToiKiirXViU0NPRuEUtEJJWFCxfi8OHDosb4+Phg1apVNr+VpEGDBpg5cyZGjx4talz//v3x9NNPV/qQIlkmsy0AjbH8q9Pp8Nprr+GZZ57BuHHj7vva9OnTceTIEXz55Zey3+mal5eHJUuWYPr06aI27crJ29u7wmXbWrVq2dx+GiIyjVOnTmHy5Mmix33++efw8/OTISPLExsbix9++AF//PFHpcdkZWWhb9++2L59u80X0dbMLAtAnU5nlNO/dnZ26NWrF+bPn48BAwbAw8MDALBmzRrs2bMHGzZskL34A+4cwc/JyUFQUJCoLu5SCAoKKlfk1atXD76+vkbNg4joXiUlJejatauo5UsA+PDDD/HOO+/IlJXlUalUWLduHRo3boyCgoJKj/vxxx+xbt069OjRQ8bsyJTM8iaQ/Px8oxVCpaWleOWVV/D2229jwIAB2LFjB6ZNm4bVq1ejSZMmRslBoVCgXr16AIB///0XW7duxbZt23Dy5ElJ4iuVSoSGhpZrqxIVFQVXV1dJnkGmxZtAyNpMmDABs2fPFjWmZs2aOH369N038/T/rVy5Ev379xc1xtXVFSdPnkRwcLA8SZFJmeUMoNh3fNVhb2+PHj16YOXKlahfv/7dnnvGKv6AO6d+dTod7O3t0aRJEzRp0gTTpk3DuXPnsH37dmzbtg1//PFHlfoAzps3D8OGDeNl30RkMf7880/MnTtX9LgvvviCxd8D9O3bF9u2bcOuXbsqPSY/Px89evTAb7/9xq0/Vsgs/48a++q3d955B0qlEkOGDMGwYcPQtm1boz4fQIXFXWhoKGJjY3HgwAFkZGRgzZo1ePXVV0UVc3l5eSz+iMhiFBYWolu3bqJ/DwwYMADt2rWTKSvLp1AosGbNGtEF8v79+/HZZ5/JkxSZlFkWgMZelXZ0dETz5s3RpEkTdO3a1ajPLvOoF7saNWqgV69e2LFjB27evIlvvvkGH3zwwSPvuj179qyUaRIRyWrs2LFITk4WNSY0NBQLFiyQKSPrUbNmTSxbtkz0uLFjxyIxMVGGjMiUWAD+n5SUFDRs2NDoz60KV1dXvPvuu9i4cSNu3LiB3bt3Y8CAAQgICCj3vQkJCSbIkIhIvN9++030bJNSqUR8fDycnZ1lysq6dO7cGe+++66oMUVFRYiJiYFOp5MpKzIFsywAjb3XoKioCOfPn797EMMUqvozOzg4oF27dli+fDkuX76MP//8E2PHjr178XlqaqpV36dMRNbh1q1bVTpxOmrUKLRq1UqGjKyTQqHA8uXLRbfJ+euvvzBnzhyZsiJTYAEIIDExEXq9HtHR0UZ97r2k6LWkVCrxxBNPYM6cOUhMTERCQgJmzJiB7OxsCTIkIpLPsGHDkJ6eLmpMw4YNMW3aNJkysl4+Pj5Ys2aN6HHTp0/HP//8I0NGZApmWQA6ODgY9XkJCQlwcnJCnTp1jPrcMgqFAnZ20h/IjoqKwtixY9kQlYjM2vbt27F+/XpRY+zt7REfH89DblXUoUMH0e2gdDodYmJiUFRUJFNWZExmWQBqNBqjPq9z58743//+Z7Jj7k5OTuy2TkQ26ebNm+jbt6/ocVOnTjVquy5r9PHHH4ue+Dhz5kyVbmch82OWBaCdnZ1N3Str7IKXiMgcCIKAfv364caNG6LGPfnkk6Lvt6Xy3NzcsG7dOtHjFi5ciIMHD0qfEBmVWRaAwJ1ZMVthSz8rEVGZL7/8Elu3bhU1RqPRYP369bJsm7FFzz33HIYPHy5qjCAI6N69O27fvi1PUmQUZlsA2tKsmC39rEREAJCeno4hQ4aIHjdv3jxERETIkJHtmj17NqKiokSNSUtLw8iRI2XKiIzBbAtAFxcXU6dgFPb29ja13E1EJAgCevXqhVu3boka9/zzz2PQoEEyZWW7NBoN4uPjoVKpRI1buXKlqKvlyLyYbQGoVqttYmnUx8fH1CkQERnVihUrsGfPHlFj3NzcsHbtWt5JK5PmzZtj/Pjxosf16tWLrcYslFn/TbL24kipVPLiciKyKSkpKRg1apTocZ9++ilq164tQ0ZUZuLEiXjsscdEjbl69SoGDx4sU0YkJ7MuAF1dXa16edTLy0v0lDsRkaXS6/Xo1q0bCgsLRY174403EBMTI1NWVMbBwaFKvRW/+uorfPvttzJlRXIx6wJQoVDA29vb1GnIxsvLy9QpEBEZzYIFC3DkyBFRY3x8fLBq1Sr2SjWS+vXrY+bMmaLHDRgwABkZGTJkRHIx6wIQADw9Pa1yz4e7u7vRbzwhIjKVkydPVqmB8MqVK1GjRg0ZMqIH+eijj9C6dWtRY7KystCnTx8IgiBTViQ1s2+kpFKpEBQUhEuXLpk6FckUFhZi9+7dcHd3h4uLC1xcXODq6nr3n+/94BIxEVm6kpISxMTEoLS0VNS4rl274u2335YpK3oQlUqFdevWoVGjRigoKKj0uB07dmDt2rWir5gj0zD7AhC4c/rL09MTOTk5pk5FEtHR0Vi2bBni4+Mf+b0ajaZcUfjfYrGif3/88ccRFhZmhJ+GiOjhpk2bhn///VfUmKCgIHz66acyZUSPEhISgsWLF6Nfv36ixg0bNgzPP/88goOD5UmMJGMRBSAABAQE4Pbt26LfQZobb29vuLq64pNPPsFvv/2GK1euPPT7tVottFotbt68WelnODo6IjExsbqpEhFV25EjRzB37lzR47744gt2STCxPn36YNu2bfj5558rPeb27dvo3r079u7da5Xbt6yJxfzfUSqVqFWrlqnTqBYHBwf4+fkBADw8PBAXFyfLc4YPH853X0RkcgUFBejWrRsMBoOocQMHDkTbtm1lyooqS6FQYM2aNfD09BQ17vfff+fsrQWwmAIQuHNnbmBgoKnTqBKVSoU6derc947opZdeEj29/ii+vr4YN26cpDGJiKpi7NixSElJETUmLCwM8+fPlykjEiswMBDLli0TPW7cuHFciTJzFlUAAndapwQEBJg6DVFUKhXq1q1bYW+lBQsWoG7dupI9a/r06XB3d5csHhFRVfz2229YunSpqDFKpRLx8fFwdnaWKSuqivfffx/vvvuuqDFFRUXo2rWrxW/bsmYWVwACd/bRWcpMoJ2dHerWrQu1Wl3h111dXbF27VpJnqXRaNC+fXtJYhERVVVubi66d+8uetzo0aPRsmVL6ROialEoFFi+fDn8/f1FjTt27BjmzJkjU1ZUXRZZAAJ3ZgJr165t1s1BHR0dERoa+sDir8yzzz6L4cOHV/t5Wq0W0dHRmDJlCm7fvl3teEREVTFs2DBcvnxZ1JhGjRph6tSp8iRE1ebj44M1a9aIHjdjxgz8/fffMmRE1WWxBSBwpz1MSEiI6GtrjMHDwwMhISGVvspu9uzZiIiIqPZztVotpk+fjoiICKxduxZ6vb7aMYmIKmvbtm2VanF1L3t7+ypdQUbG9eqrr6JXr16ixuh0OsTExKCoqEimrKiqLLoABO4se4aFhcHPz88sZgPt7e0RHByMoKAgUU2cNRoN1q9fL9mx+WvXrqFnz55o1qwZ9u7dK0lMIqKHuXHjBvr27St63LRp09C4cWMZMiKpLV68GHXq1BE15uzZs5g0aZJMGVFVWXwBCNzZn+Dr64vw8HCTbh4uy8HFxaVK45988kmMGTNG0pxOnDiBF154Aa+//jqSkpIkjU1EVEYQBPTv319Uz1LgzuveqFGjZMqKpObm5oZ169aJHrdo0SIcOHBA+oSoyqyiACzj4OCA4OBg1KpVC05OTkZ5pkKhgIeHx91ZyOrO4E2ZMgUNGzaUKLv/78cff0SDBg0wZMgQZGZmSh6fiGzbl19+ia1bt4oao9FoEB8fDzs7i7mTgAA899xz+Oijj0SNEQQB3bt3R35+vkxZkVhWVQACdwoyd3d3hISEIDw8HD4+PrLcp6tWqxEYGIioqCgEBQU98qBHZTk6OmL9+vWyvCDqdDosXboUYWFhWLhwIYqLiyV/BhHZnvT0dAwePFj0uPnz5yM8PFyGjEhus2bNQnR0tKgx58+fx8iRI2XKiMSyugLwXo6OjvD390dUVBRq164NT09PqNXqKu0VVCqVcHZ2ho+PD0JDQxEWFgYvLy9ZisumTZti8uTJksctc+vWLYwaNQrR0dHYsmULBEGQ7VlEZN0MBgN69uyJvLw8UeNeeOEFDBw4UKasSG5ls7difweuWrVK1NVyJB+FYIO//QVBQHFxMYqKilBUVASdTgdBEFBQUACNRgOlUgmFQgEHBwdoNBqo1WrY2dkZ9ZBJaWkpWrZsaZTj80899RQWL16MFi1ayP4skke7du2wZ8+eSn1vXFwcevbsKXNGZCuWLVsmevbP3d0dp06dsvjrPenOtqXp06eLGhMQEIDTp0/Dy8tLpqyoMqx6BvBBFAoF1Go1PDw84O/vj6CgINSqVQuTJ0/G0aNHUatWLQQFBaFGjRpwdXWFvb290U8Y29vbY/369UZpi3Do0CE88cQT6NKlCy5duiT784jIOqSkpFTpAMenn37K4s9KTJw4EY899pioMdeuXcOgQYNkyogqyyYLwIqcPn0a3377LaZNmyb64nK51K9fHzNmzKjwazNmzEBYWJikz9u0aRMiIiIwfvx40cs5RGRbyvq7abVaUePefPNNdO3aVaasyNiq2sNx8+bN+Oabb2TKiiqDBeD/KZvCPnPmDL777jsTZ/P/xcbGolWrVvd97p133sHEiRNx5swZfPzxx/D09JTsecXFxZgzZw7Cw8OxcuVK6HQ6yWITkfVYsGAB/vzzT1FjfH19sXLlSrPo2UrSqV+/PmbNmiV63IABA3Dt2jUZMqLKYAGI/z/7V8acZgFVKhXWr19/t62Nvb095s2bB+BO25vhw4cjNTUVw4cPl/Tk8I0bN9C/f380adIEu3fvliwuEVm+f//9F1OmTBE9buXKlahRo4YMGZGpDR8+HK1btxY1Jjs7G3369OFBRBNhAQiU28BqbrOAYWFhd4u+IUOGIDQ09L6ve3l54eOPP8bZs2fx1ltvSfrsM2fO4OWXX8bLL7+M06dPSxqbiCxPcXExYmJiUFpaKmpcTEyM5K9PZD5UKhXWrVsn+jKGn376CV988YVMWdHD2HwB+N/ZvzLmNAsIAAMHDkSnTp0wceLEB35PeHg4vv/+e+zfv1/0ptxH2b17Nxo3boz+/fvj+vXrksYmIssxbdo0nDx5UtSYoKAgfPLJJzJlROYiJCQEixcvFj1u+PDhOH/+vAwZ0cPYfAH4oOPr5jYLqFQq8dVXX1Vqv9+zzz6Lv/76C/Hx8ahZs6ZkORgMBqxcuRLh4eGYM2eO6M3fRGTZDh8+fHc1Qoy1a9fCw8ND+oTI7PTp0wft27cXNeb27dvo0aOHWU262AKbLgAfNPtXxtxmAcVcM6dUKtG1a1ckJydj+vTpkt6RnJ+fj/HjxyMqKgqbNm0yq/9GRCSPgoICdOvWTfTf90GDBuHFF1+UKSsyNwqFAmvWrBF9OPH333/nLLGR2XQB+KjmleY2C1gVTk5OmDRpElJSUtCrVy9JT99dunQJXbp0QcuWLXHo0CHJ4hKR+RkzZgxSU1NFjbl3/zLZjsDAQCxfvlz0uHHjxiEhIUGGjKgiNlsAdu3a9aGzf2W6deuGbdu2yZ+QzAICArBmzRocP34cL7zwgqSxjx49iqeffhrvvvsu0tLSJI1NRKb366+/YtmyZaLGKJVKxMfHS7r6QJbj/fffR6dOnUSNqeoBI6oamy0AK3ttllarxa5du2TOxngaN26MPXv2YMeOHYiKipI09pYtWxAdHY1Ro0YhNzdX0thEZBq5ubno0aOH6HFjxoxBy5YtZciILMXy5cvh7+8vasyxY8cwe/ZsmTKie9lkAXj69GlRJ1l//PFHq9rnplAo8Oqrr+LkyZNYtmwZfHx8JItdUlKChQsXIiwsDEuXLuU7OSILN3ToUFy+fFnUmEaNGlWpTyBZF29vb6xZs0b0uJkzZ+Lvv/+WISO6l00WgGIvrr569arF7wWsiL29PQYOHIjU1FSMHj0aDg4OksXOysrCkCFD0LBhQ/z4449s9ElkgbZu3YoNGzaIGmNvb48NGzYY5R5zMn+vvvoqevfuLWpM2TWDRUVFMmVFgA0WgI86+fsg5nYiWEru7u6YN28eEhMTRe/ZeJSkpCS8/vrrePHFF3HixAlJYxORfG7cuIF+/fqJHjd9+nQ0atRIhozIUi1evBjBwcGixpw9e/ahfW+p+myuABQ7+1fGGk4EP0rdunXx9ddf49ChQ3jiiSckjb1371489thj6NmzJ65evSppbCKSliAI6NevH27evClqXMuWLTFq1CiZsiJL5erqinXr1onuQrF48WL8/vvvMmVFNlUAVnX2r4w1zwLeq1WrVjhy5Ai++uor1KlTR7K4giBg7dq1CA8Px/Tp01FQUCBZbCKSzoYNG0R3P3BycsL69euhUqnkSYos2rPPPovhw4eLGiMIArp37478/Hx5krJxNlUAVnX2r4wtzAKWUSgUeP/995GYmIi5c+fC1dVVstiFhYWYMmUKIiIisH79epsoqoksxaVLlzBkyBDR4+bPn4/w8HAZMiJrMWvWLERHR4sac+HCBYwYMUKmjGybzRSA1Z39K2Mrs4Bl1Gr13QawAwYMEHUbyaNcvXoV3bt3R7NmzbBv3z7J4hJR1RgMBvTs2RN5eXmixr344osYMGCATFmRtdBoNIiPjxc9S7x69Wrs3LlTpqxsl80UgNWd/StjS7OA96pRowaWL1+OkydPir7n8VGOHz+O559/Hm+++SaSk5MljU1Elbd8+XL89ttvosa4u7vjiy++kPTNIVmvZs2aVelwR+/evZGVlSVDRrbLJv7GSjX7V8bWZgHvVb9+fezcuRO7d+9GgwYNJI29fft21K9fH8OGDeNfdCIjS05OxujRo0WP++yzz1CrVi0ZMiJrNWHCBDz++OOixly7dg2DBg2SKSPbZBMFoFSzf2VsdRbwXu3atcOJEyewatUq+Pn5SRZXp9Ph008/RVhYGD7++GOUlJRIFpuIKqbT6dCtWzdotVpR49566y18+OGHMmVF1sre3h7x8fGie0V+/fXX+Prrr2XKyvZYfQGYmZmJW7duoW3btvd92NvbVzpGQEBAufGHDx+WMWvLoFKp0KdPH6SkpGDChAlQq9WSxc7NzUVsbCzq1auH77//no2kiWQ0f/58/Pnnn6LG+Pr6YuXKlaJbexABQL169TBr1izR4wYOHIhr167JkJENEmyUt7e3AKBSHzExMaZO1yJcunRJ+PDDDyv931XMR+vWrYWjR4+a+kc0W23btq30f8u4uDhTp0tm5MSJE4K9vb3ov5Nbt241depk4XQ6nfDMM8+I/rP3yiuvCAaDwdTpWzyrnwEk46lVqxY2bNiAo0ePonXr1pLGPnjwIFq0aIGuXbsiPT1d0thEtqq4uBhdu3YVfWd3t27d8Oabb8qTFNkMlUqFdevWwcXFRdS4nTt3Ii4ursKvCYKA0tJS5Ofn48aNG7h8+TLS09Nx6dIlXLx4Eenp6bh8+TIyMjKQm5uLoqIim11hYgFIkmvevDl+//13fPfddwgNDZU09pdffomIiAhMnDiRzUGJqmnq1Kk4deqUqDG1atXCJ598IlNGZGvq1q2LxYsXix730Ucf4fz58wAArVaLjIwMnD9/HgkJCUhKSsLFixdx48YN5Obm4tatW8jLy0N+fj5u3bqF3NxcZGZm4vLly0hNTcXZs2eRmpqKK1euIC8vz2YKQhaAJAuFQoG3334bZ86cwaJFi+Dh4SFZ7KKiIsyaNQvh4eFYvXo19Hq9ZLGJbMXhw4cxf/580ePWrl0Ld3d3GTIiW9W7d2/R7cXKZqBTU1Nx7tw5ZGZmoqCgoEodOgRBQFFREXJycnDp0iUkJiYiIyMDxcXFomNZEhaAJCtHR0fExsYiNTUVQ4cOhZ2dnWSxr1+/jr59+6Jp06bYs2ePZHGJrF1BQQFiYmJE/7IcPHgwXnjhBZmyIlulUCiwZs0aeHp6PvJ7fXx8sGrVKowdOxYFBQUoKiqSPB+9Xo/MzEykpKQgLS0Nt27dsspZQRaAZBTe3t745JNPcObMGbzxxhuSxj516hTatWuHV155BWfPnpU0NpE1Gj16NM6dOydqTHh4OObNmydTRmTrAgMDsWLFiod+z8svv4xvv/0WLVu2NFpBVlhYiPT0dFy4cMHq2pKxACSjioiIwLZt27Bv3z40bdpU0tg///wzGjVqhAEDBuDGjRuSxiayFnv27MHy5ctFjVEqlYiPj4eTk5NMWREB7733Ht57771yn3dzc8OcOXMwf/58+Pj4mCCzO7PmKSkpuHnzptXMBrIAJJN47rnncOzYMaxbtw6BgYGSxdXr9fj8888RFhaGefPmybI8QGSpcnNz0aNHD9Hjxo4diyeffFKGjIjut2zZMvj7+9/996effhpbtmxBhw4dTN5zUhAEXL9+HampqaKbppsjFoBkMkqlEt26dUNycjKmTZsm6exCfn4+xo4di6ioKGzevNlq3rERVcfQoUNx5coVUWMaN26MKVOmyJQR0f28vb0RFxcHjUaDiRMnYtmyZQgICDB1WvcpLi5GWloa8vLyTJ1KtbAAJJNzdnbG5MmTkZKSgp49e0r6Lu/ixYvo3LkzWrVqhSNHjkgWl8jSfP/999iwYYOoMWVXdjk4OMiUFVF5zz//PPbs2YP33nsPSqV5limCIODSpUvIzs42dSpVZp7/ZckmBQYGIi4uDv/88w+ef/55SWP/+eefaNWqFd5///27vaOIbMX169fRr18/0eOmT5+ORo0ayZARUcWKiopw/vx5i2k1dPXqVWRlZZk6jSphAUhmp0mTJvj111/xww8/IDIyUtLYX3/9NaKiojBmzBjcunVL0thE5kgQBPTr1w+ZmZmixrVq1QqjRo2SKSui8oqLi3H+/HmL6+167do1i5wJZAFIZkmhUOC1117DqVOn8Nlnn8Hb21uy2CUlJZg/fz7CwsKwfPly6HQ6yWITmZv4+Hhs375d1BgnJyesX78eKpVKpqyI7mcwGHDx4kWLK/7KXL161eIOhrAAJLNmb2+PwYMHIzU1FSNHjpR0L1JmZiYGDRqERo0a4aeffuJBEbI6ly5dwtChQ0WPW7BgAcLCwmTIiKhi169ft/g+e5cuXarSTSSmwgKQLIKHhwcWLFiAhIQEvPvuu5LGTkhIQIcOHdCuXTucPHlS0thEpmIwGNCjRw/RJxXbtm2LAQMGyJQVUXn5+fkWu4/uXqWlpbh27Zqp06g0FoBkUUJCQvDNN9/gjz/+QIsWLSSN/euvv6JJkybo3bu3Rf0lJqrIsmXLsHfvXlFj3N3d8cUXX5i83xrZDp1Oh8uXL5s6Dcnk5ORYTHsYFoBkkZ566ikcOXIEmzZtQu3atSWLKwgC4uLiEB4ejhkzZqCwsFCy2ETGkpycjDFjxoget3TpUgQFBcmQEVHFrl27ZrH7/h7k8uXLFvEzsQAki6VUKtG5c2ckJiZi9uzZcHFxkSx2QUEBJk+ejIiICGzYsMGi9nWQbdPpdIiJiRG9If3tt99Gly5dZMqKqLySkhKr7MZgMBiQk5Nj6jQeiQUgWTyNRoNx48YhNTUV/fr1k7Rx6JUrVxATE4MWLVrg999/lywukVzmzZuH//3vf6LG1KhRA59//jmXfsmorGHf34NkZWWZ/cFCFoBkNfz8/PD555/j33//xcsvvyxp7L///hvPPfcc3n77baSkpEgam0gqJ06cwLRp00SPW7VqFXx9fWXIiKhier3eImbJqqq0tBT5+fmmTuOhWACS1WnQoAF+/vln/Pzzz6hfv76ksbdu3Yr69evjo48+ssjGn2S9iouL0bVrV5SWlooa1717d7zxxhsyZUVUsdzcXKvfWiO2+bqxsQAkq/Xyyy/jxIkTWLlyJWrUqCFZ3NLSUixZsgRhYWFYsmSJxfeuIuswZcoUnD59WtSY2rVrY8mSJfIkRPQQ5l4cSaGwsBBFRUWmTuOBWACSVbOzs0Pfvn2RkpKCcePGwdHRUbLYOTk5+Oijj1C/fn1s27bN7Pd7kPU6dOgQFixYIHrc2rVrLebOVbIepaWlomeqLVVBQYGpU3ggFoBkE9zc3DB79mwkJSXhgw8+kDR2amoq3nrrLTz33HP4+++/JY1N9Ci3b99Gt27dRC+nDRkyBM8//7xMWRE9mJxXphkMBrz22mtYvHjxfZ8/dOgQmjZtit27d8v27IqYcysxFoBkU+rUqYONGzfif//7H5566ilJYx84cADNmjVDt27drKqxKZm30aNH49y5c6LGREREYO7cuTJlRPRwchZFSqUSvXv3xjfffHO3xUxSUhJGjBiBYcOG4aWXXpLt2RVhAUhkZlq0aIGDBw/i22+/Rd26dSWNHR8fj4iICEyePBm3b9+WNDbRvX755ResWLFC1BilUon4+Hg4OTnJlBXRw8ldFL366qvw8PDApk2bkJGRgYEDB6JDhw7o3r27rM+tSGlpKXQ6ndGfWxksAMlmKRQKdOzYEQkJCVi4cKGke6G0Wi1mzJiB8PBwxMXFWURXeLIsOTk56Nmzp+hx48aNwxNPPCFDRkSPJgiCrEvAwJ293z179sTGjRsxcOBA1KtXD+PGjZP1mQ8j989bVSwAyeY5OjpixIgRSE1NxeDBg6FSqSSLnZGRgd69e+Oxxx7Dr7/+KllcoqFDh+LKlSuixjRp0gSTJ0+WKSOiR9PpdEY5MNehQwcUFRVBEATMmzev3Ov6sGHD0KpVK8TGxsqei7l2imABSPR/fHx88Nlnn+H06dN47bXXJI198uRJtG3bFh06dEBCQoKkscn2fPfdd/jyyy9FjXFwcEB8fDwcHBxkyoro0YzVLWHWrFkA7vQbrOhNfZcuXTB79myj5GKu/Q5ZABL9R1RUFH744Qf89ttvaNKkiaSxf/rpJzRs2BCDBw/GzZs3JY1NtuH69evo16+f6HHTp09Hw4YNZciIqPKMUQx99tlnOHjwIDZu3Ai9Xo/vv/++3Pe0aNECzs7OsucCGK/oFYsFINEDPP/88zh27Bi++OILBAQESBZXr9dj2bJlCAsLw4IFC1BcXCxZbLJugiCgb9++ou9QbdWqFUaOHClTVkTm47vvvkN8fDw+++wzREZG4sMPP8TatWttpu+gGCwAiR5CpVKhR48eSE5OxpQpU6DRaCSLnZeXh9GjRyM6Ohrffvut2b5LJPOxfv16/PDDD6LGODk5Yf369ZLubSWqKqVSvrLj4MGDmDVrFubMmYPGjRsDAD744APcvn0bO3bskO25j6JQKEz27IdhAUhUCS4uLpg6dSpSUlLQvXt3Sf9Cnz9/Hp06dcLTTz+NP//8U7K4ZF0uXryIYcOGiR63cOFChIWFyZARkXhyFUNnzpzBiBEjEBsbixdffPHu511cXPDBBx+YtBuDnEVvdZhnVkRmqmbNmli7di2OHTuG5557TtLYhw8fRsuWLdG5c2dcuHBB0thk2QwGA3r06IG8vDxR49q1a4f+/fvLlBWReHZ2drIUgfXr18fRo0fx4Ycflvva4MGDsWPHDpPNgpvrwSsWgERV8Nhjj2Hv3r3Yvn07wsPDJY29efNmREVFYdy4caJ/4ZN1Wrp0Kfbt2ydqjLu7O+Li4sx2+Ylsk0KhkHQrTVX169cPI0aMwMGDB/HCCy/g9OnTsj3LHH7eirAAJKoihUKB119/HadPn8Ynn3wCLy8vyWIXFxdj7ty5CAsLw+eff262neRJfklJSRgzZozoccuWLUNQUJAMGRFVjzncQrNy5UocOHAAf/31F3777Tc0aNBAlufY29vDzs5OltjVxQKQqJocHBwwdOhQpKamIjY2Fvb29pLFvnnzJgYMGIDGjRtj165dksUly6DT6RATE4OioiJR49555x188MEHMmVFVD3mUAAaizn/rCwAiSTi6emJRYsW4ezZs3jnnXckjX327Fm0b98eL730Ek6dOiVpbDJf8+bNw9GjR0WNqVGjBlasWMGlXzJb5rokKgcWgEQ2JCwsDFu2bMGBAwfQrFkzSWP/8ssvaNKkCfr27YuMjAxJY5N5OX78OKZOnSp63OrVq+Hr6yt9QkQSsbe3l3SlxJwZq9l0VbAAJJJJ69at8b///Q9ffvmlpHuxDAYDVq9ejfDwcMyePdtsLxqnqisuLkZMTIzovZ89evTA66+/LlNWRNLx8fExdQqyc3JyglqtNnUaD8QCkEhGSqUSXbp0QVJSEmbOnAkXFxfJYt++fRsTJkxAZGQkrl27JllcMr3JkyeLPpVYu3ZtLFmyRJ6EiCTm4eFhtv3xpGLuRa51/9cnMhNOTk6YMGECUlJS0KdPH0lf+NLT02VtYUDGdejQISxYsED0uHXr1sHNzU2GjIikp1Kp4Onpaeo0ZGNvbw9XV1dTp/FQLACJjMjf3x+rVq3CiRMn0LZtW1OnQ2bm9u3b6Natm+hrAYcOHYo2bdrIlBWRPLy9vU2dgmy8vb3N/iAWC0AiE2jYsCF2796NnTt3ol69eqZOh8zEqFGjcO7cOVFjIiIiMGfOHJkyIpKPg4MD3N3dTZ2G5JRKpUXMbrIAJDIRhUKB9u3b499//8WKFSt4ctPG7d69G59//rmoMSqVChs2bDDrVhNEDxMQEGCyK9rkEhQUZBE/EwtAIhOzs7ND//79kZKSgjFjxsDR0dHUKZGR5eTkoGfPnqLHjRs3Di1atJAhIyLjsLOzs6obazw9PS1mLy4LQCIz4e7ujrlz5yIxMRHvv/++bM+5ePGibLGpaoYMGYKrV6+KGtO0aVNMmjRJpoyIjMfV1dUq9gPa29sjICDA1GlUGgtAIjMTHByMr776CkeOHEHLli0ljz9jxgz06NEDV65ckTw2ibdlyxZs3LhR1BgHBwfEx8fDwcFBpqyIjMvPz8/i/zzXrl3bolrbWE6mRDbmySefxKFDh/D1118jODhYsriCIGDdunWIiIjA1KlTUVBQIFlsEicjIwP9+/cXPW7GjBmyXV5PZApKpRJ16tSxiL1zFQkMDLS4K+5YABKZMYVCgU6dOiEhIQHz58+XdG9JYWEhpk2bhvDwcKxduxZ6vV6y2PRogiCgb9++yMrKEjXuqaeewogRI2TKish0HB0dUbduXYsrAgMCAuDl5WXqNERjAUhkAdRqNUaNGoXU1FQMGjRI0hfIa9euoWfPnmjWrBn27t0rWVx6uHXr1uHHH38UNcbZ2Rnr16+3uF+QRJWlVqtRt25d2NnZmTqVSgkMDLTY/YssAIksiK+vL5YuXYpTp07h1VdflTT2iRMn8MILL+CNN95AUlKSpLHpfhcvXsSwYcNEj1u4cCFCQ0NlyIjIfKjVaoSGhpp1RwSFQoHatWtb5MxfGRaARBYoOjoaO3bswJ49e9CoUSNJY//www9o0KABhg4diszMTEljE2AwGNC9e3fk5+eLGvfSSy+hX79+MmVFZF7s7e0REhICDw8PU6dSjqOjI0JCQiym3cuDsAAksmAvvvgi/vnnH8lvE9HpdPjss88QFhaGRYsWobi4WNL4tuyzzz7D/v37RY3x8PBAXFyc2V8tRSQllUqFoKAgBAcHw97e3tTpQKFQwN/fH2FhYRZ34KMiLACJLJxKpULNmjVliX3r1i2MHDkS9erVw5YtW0TfUUv3S0xMxNixY0WPW7ZsmWz/j4nMnYuLC8LDw016W5KzszPCw8Ph4+NjNW/EWAAS0SOlpaXh3XffRevWrXH06FFTp2ORdDodunXrhqKiIlHjOnbsiM6dO8uUFZFlUCqV8PPzQ1hYGDw8PIxWhDk5OaFWrVoIDg62+D6F/8UCkIgq7dChQ3jiiSfQpUsXXLp0ydTpWJS5c+eKLp79/PywYsUKq5lxIKoutVqNoKAgREVFITAwEGq1WvJnqFQq+Pj4IDw8HCEhIXB3d7fKv4MsAIlItE2bNiEyMhITJkwQfZjBFv3zzz+YNm2a6HGrV6+Gj4+PDBkRWTaVSgUvLy+EhYUhLCwMPj4+cHZ2rtJNHAqFAmq1Gp6enqhduzaioqLg7+9v1qeQpWAZjXaIyOwUFRVh9uzZWLNmDWbMmIGePXtaTO8uYyoqKkJMTAx0Op2ocT169MBrr70mU1ZE1kOtVsPf3x/AnQbrOp0ORUVF0Gq1KC0thcFggCAIEAQBSqUSCoUCdnZ2UKvVUKvVcHR0tMoZvkfhDCCRjWnbtq2khdqNGzfQr18/NGnSBLt375YsrrWYPHkyzpw5I2pMnTp1sGTJEnkSIrJiCoUC9vb2cHV1RY0aNVCzZk3UqlULtWvXRp06dVCrVi0EBQXB398fHh4eUKvVNln8AYBCsPJjfZmZmejSpUu504v79+9HaWlppWL4+/ujYcOG932ufv36+PjjjyXLk6g62rVrhz179lTqe+Pi4tC6dWuMGTMGW7dulTyXl19+GQsXLkT9+vUlj21p/vjjDzzzzDOiT0/v3bsXbdq0kSkrIiIbWAL28fGBu7s7vv322yrHyMjIQEZGxn2f69OnT3VTIzKZ8PBwfP/99/j9998xYsQI/P3335LF3rVrF3755Rf06dMH06ZNg5+fn2SxLcnt27fRrVs30cXfsGHDWPwRkexsYgl48uTJksarX78+3nnnHUljEpnCs88+i6NHjyI+Pl7SPnMGgwErV65EeHg45s6dK7r1iTUYOXIk0tLSRI2JjIzEnDlzZMqIiOj/s4kCsEGDBnj33XclizdlypQqnTQiMkdKpRJdu3ZFcnIyZsyYAWdnZ8li5+fnY9y4cYiMjMRXX31lM42kd+3ahZUrV4oao1KpEB8fbxU3DBCR+bOZKkaqWUDO/pG1cnJywsSJE5GSkoJevXpJujH60qVL+OCDD/Dkk0/i0KFDksU1Rzk5OejVq5focePHj0eLFi1kyIiIqDybKQClmgXk7B9Zu4CAAKxZswbHjx/Hiy++KGnso0eP4umnn0anTp1EL49aisGDB+Pq1auixjRt2hQTJ06UKSMiovJsqpKp7iwgZ//IljRu3Bi//PILfvrpJ0RFRUka+9tvv0V0dDRGjRqF3NxcSWOb0rfffotNmzaJGuPg4ID4+Hiru2aKiMybTRWA1Z0F5Owf2RqFQoFXXnkFJ0+exLJlyyS9laKkpAQLFy5EWFgYli5dWum2TOYqIyMDAwYMED1u5syZaNCggQwZERE9mM1VM1WdBeTsH9kye3t7DBw4EKmpqRg9erSks1VZWVkYMmQIGjZsiB07dljkQRFBENCnTx9kZWWJGvf0008jNjZWpqyIiB7M5grAqs4CcvaPCHB3d8e8efOQmJiITp06SRo7KSkJr732Gl588UWcOHFC0thyW7t2LXbs2CFqjLOzM9avXw+VSiVTVkRED2aTFY3YWcDAwEDO/hHdo27duvj6669x6NAhPPnkk5LG3rt3Lx577DH06tVL9GEKU7hw4QKGDx8uetyiRYsQEhIifUJERJVgkwVggwYNRN1O8Nprr3H2j6gCrVq1wuHDh7F582bUqVNHsriCIOCLL75AeHg4pk+fjoKCAsliS8lgMKBHjx7Iz88XNe7ll19G3759ZcqKiOjRbLaqadu2baW+T6PR4OWXX5Y5GyLLpVAo8N577yExMRFz586Fq6urZLELCwsxZcoUREZGYv369TAYDJLFlsKnn36K/fv3ixrj4eGBNWvW2OwF9ERkHmy2ANywYUOl9gKuX78eb775pvwJEVk4tVqNMWPGIDU1FQMGDJB01vzKlSvo3r07mjdvLrrgkktiYiLGjRsnetzy5cslvXaPiKgqbLYABB69F5Anf4nEq1GjBpYvX46TJ0+iffv2ksb+559/0KZNG7z55ptITk6WNLYYOp0OMTExou84fvfdd/H+++/LlBURUeXZdAH4qBPBPPlLVHX169fHzp07sXv3bjRs2FDS2Nu3b0f9+vUxfPhwZGdnSxq7MubMmYO//vpL1Bg/Pz8sX76cS79EZBZsvrp50CwgZ/+IpNGuXTscP34cq1evFnX46lF0Oh0++eQThIaG4uOPP0ZJSYlksR/mn3/+wfTp00WPW7NmjaSNtImIqsPmC8AHzQJy9o9IOiqVCr1790ZKSgomTJgAtVotWezc3FzExsaiXr16+P7772VtJF1UVISuXbtCp9OJGtezZ0906NBBpqyIiMRjhYPys4Cc/SOSh6urK2bOnInk5GR8+OGHksY+d+4c3nnnHTz77LM4duyYpLHLTJo0CWfPnhU1pk6dOvj4449lyYeIqKpYAKL8LCBn/4jkVatWLWzYsAFHjx5F69atJY198OBBNG/eHF27dkV6erqkcRctWiR63Lp16+Dm5iZZHkREUmCV83/KZgE5+0dkPM2bN8fvv/+O7777DqGhoZLG/vLLLxEREYFJkyaJbtT8X7dv30b37t1FLy8PHz4czz33XLWeTUQkBxaA/6dsFpCzf0TGpVAo8Pbbb+Ps2bNYvHgxPDw8JItdVFSEmTNnIjw8HKtXr4Zer69SnJEjRyItLU3UmKioKMyePbtKzyMikptCkHPHtJkSBAHFxcUoKiqCVquFXq+HwWBAYWEhNBoNlEolFAoFHBwcoFarodFoYGdnx/YNZLbatWuHPXv2VOp74+Li0LNnT5kzqrqsrCzMmDEDy5YtE33Y4lEaNmyIRYsWVfomIAD4+eef8corr4h6jkqlwpEjR9C8eXOxKRIRGYWdqRMwBkEQkJ+fj/z8fGi12oc2b33QUpFSqYRGo4FGo4G7uzs0Go1c6RLZNG9vbyxZsgQDBw7E6NGjsX37dslinzp1Cu3atcMrr7yCBQsWoF69eg/9/uzsbPTq1Uv0cyZMmMDij4jMmlWvdRYXFyMjIwOJiYm4dOkScnJyRHfuL2MwGFBQUIDMzEycO3cOqampyM7OrvKSEhE9XEREBLZt24Z9+/ahadOmksbeuXMnGjVqhIEDB+LGjRsP/L7Bgwfj2rVromI/9thjmDhxYnVTJCKSldUVgIIg4NatW0hLS0NKSgoyMzNlKdKKiopw9epVJCYm4vLly1UuLIno4Z577jkcO3YM69atQ2BgoGRx9Xo9VqxYgfDwcMybN6/c3+Fvv/0WX331laiYjo6OiI+Ph729vWR5EhHJwaoKwJKSEly4cAHp6ekoLCw0yjMFQUBubi5SU1Nx/fp1GAwGozyXyJYolUp069YNycnJmDZtGpycnCSLnZeXh7FjxyIqKgqbN2+GIAi4du0aBgwYIDrWzJkzUb9+fclyIyKSi1UUgIIg4ObNm0hJSUFBQYHJ8ijL4fbt2ybLgciaOTs7Y/LkyUhJSUHPnj0lPZh18eJFdO7cGa1atULHjh2RlZUlanzr1q3x0UcfSZYPEZGcLL4A1Gq1d2ffzOFAc2lpKS5cuIDLly9zfyCRTAIDAxEXF4d//vkHzz//vKSx//zzTxw+fFjUGGdnZ6xbtw4qlUrSXIiI5GLRBWBeXh7S0tJQXFxs6lTKyc3NRVpamtEuqCeyRU2aNMGvv/6KH3/8EZGRkSbLY/HixQgJCTHZ84mIxLLYAjA7OxuXLl0yi1m/BykuLkZaWhoPiBDJSKFQoEOHDjh16hSWLl0Kb29voz6/ffv26NOnj1GfSURUXRZZAGZlZeHq1aumTqNSdDodzp8/zyKQSGb29vYYNGgQUlNTMXLkSDg4OMj+TE9PT6xZs4ZN4onI4lhcAZidnS26L5ep6fV6nD9/3iyXqomsjYeHBxYsWICEhAS8++67sj5r+fLlkramISIyFosqAAsLCy1m5u+/9Ho9Ll68yDYxREYSEhKCb775Bn/88QdatGghyzN+/fVXi3tDSkQEWFABqNfrkZ6ebuo0qqWkpATXr183dRpENuWpp57CkSNHsGnTJtSuXVvS2HFxcQgPD8fMmTON1nuUiEgKFlMAZmRkoLS01NRpVFtWVtYD7xsmInkolUp07twZiYmJmDNnDlxdXSWLXVBQgEmTJiEyMhIbNmzgLD8RWQSLKADz8vKQk5Nj6jQkc/nyZeh0OlOnQWRzNBoNxo4di5SUFPTu3VvS2JcvX0ZMTAxatGiB33//XdLYRERSM/sCUK/X4/Lly6ZOQ1J6vZ77hohMyM/PD+7u7rLE/vvvv/Hcc8/h7bffRkpKiizPICKqLrMvAHNycqxySeXWrVtsEk1kIgcOHMDixYtlfcbWrVtRv359fPTRR8jOzpb1WUREYpl1ASgIguj7OC0JfykQGV9+fj66d+9ulCbypaWlWLJkCcLCwrBkyRK+6SMis2HWBWB+fr5VHPx4kOzsbN4XTGRkI0eOxPnz5436zJycHHz00UeoX78+tm3bZtY3GBGRbTDrAjAzM9PUKcjKYDAgNzfX1GkQ2YydO3di1apVJnt+amoq3nrrLTz33HP4+++/TZYHEZHZFoBFRUU20VfL2otcInORnZ1dpZO/vXv3xlNPPSVpLgcOHECzZs3QrVs3qzvkRkSWwWwLwNu3b5s6BaMoLS216mVuInMxaNAg0afvH3/8cSxfvhwHDx7Eli1bEBISImlO8fHxiIiIwOTJk23mNY+IzIPZFoBarVa22AcOHEDDhg0f+DFixAjZnl0ROX9WIgK++eYbbN68WdQYR0dHxMfHw97eHgqFAu+88w7Onj2LhQsXStpCRqvVYsaMGQgPD0dcXBz3BRORUZhtASjn8m+LFi2wb9+++z5+/fVXtGzZEp6enujXr59sz66ILSx1E5nKtWvXMGDAANHjZs2ahXr16t33OUdHR4wYMQKpqakYMmQIVCqVVGkiIyMDvXv3xmOPPYZff/1VsrhERBUxywJQp9PJuiyqVqvh4+Nz98PT0xOLFi1CYmIi1qxZg4iICNmeXRHOABLJQxAE9O7dW3TLpdatW2P48OEP/LqPjw8+/fRTnDlzBq+//no1s7zfyZMn0bZtW3To0AEJCQmSxiYiKmOWBaAxCyK9Xo9x48bhyJEjWL16tdGLP+DODCDbQhBJLy4uDjt37hQ1xsXFBevWravU7F5kZCS2b9+OvXv3okmTJlXMsmI//fQTGjZsiMGDB+PmzZuSxiYiMssC0FjNUu8t/tasWYPIyMi7Xxs2bBhatWqF2NhY2fMQBIF3AxNJ7Pz58/joo49Ej1u8eLHowx5t2rTBsWPHsHbtWgQEBIh+5oPo9XosW7YMYWFhWLBgAYqKiiSLTUS2zSwLQGNc/faw4g8AunTpgtmzZ8ueRxnOABJJx2AwoEePHqJP1rZv375KrWIAQKVSoXv37khJScGUKVPg5ORUpTgVycvLw+jRoxEdHY1vvvmGrxdEVG02WQCWFX+HDx/G6tWryxV/wJ2DIs7OzrLmcS9rvO+YyFQ++eQT/P7776LGeHp6Ys2aNVAoFNV6trOzM6ZOnYrk5GR079692vHudeHCBbz33nt46qmn8Oeff0oWl4hsj1kWgFK+YP6XXq/H+PHj7xZ/UVFRsj2LiIzv7NmzGDdunOhxy5cvR2BgoGR51KxZE2vXrsXff/+NNm3aSBYXAI4cOYKWLVuic+fOuHDhgqSxicg22FQBaDAYMH78eOzbtw9z5syBr68vMjMz7/swVQ8updIs/1cQWZTS0lLExMSguLhY1Lj33nsP77//viw5NW3aFL/99hu2b98u+SGzzZs3IyoqCuPGjUNeXp6ksYnIupll1SFXMXT69Gns3LkTWq0WAwcORJs2bcp9FBQUyPLsR5Fz1pPIVsyePVv0Hbv+/v5YtmyZTBndoVAo8Prrr+P06dP49NNP4eXlJVns4uJizJ07F2FhYfj88895oIyIKsUsC0AHBwdZ4jZq1AinTp166Iebm5ssz34YhUIBOzs7oz+XyJr8/fffmDlzpuhxcXFx8Pb2liGj8uzt7TFkyBCkpqYiNjYW9vb2ksW+efMmBgwYgMaNG+Pnn3/mQREieiizLAA1Go2pU0C/fv0wYsQIHDx4EC+88AJOnz4t27OcnJw4A0hUDVqtFl27dhU9+9W7d2+88sorMmX1YGXN5xMSEvDOO+9IGvvs2bN45ZVX8PLLL+PUqVOSxiYi62GWBaCdnZ2k74yrYuXKlThw4AD++usv/Pbbb2jQoIFszzKHgpfIkk2cOFH0rRnBwcFYvHixTBlVTmhoKLZs2YIDBw6gefPmksb+5Zdf0KRJE/Tt2xcZGRmSxiYiy2eWBSAASXtomTtb+lmJpPb777/j448/FjVGoVBg/fr1cHV1lSkrcVq3bo0///wTX375JWrVqiVZXIPBgNWrVyM8PByzZs3itZNEdJfZFoC2NCtmSz8rkZTy8/PRvXt30fvdPvroIzzzzDMyZVU1SqUSXbp0QVJSEmbNmgUXFxfJYt++fRsTJ05EZGQkvvzyS/YdJSLzLQClfPEzZ/b29iZf7iayVCNGjBDdBy86OhqzZs2SJyEJaDQajB8/HikpKejbt6+kXRHS09PRtWtXPPHEEzh48KBkcYnI8phtAahWq21iadTHx8fUKRBZpJ07d2L16tWixqhUKsTHx0OtVsuUlXT8/f2xcuVKnDhxAu3atZM09rFjx/DMM8+gY8eOOHfunKSxicgymG0BCFh/caRUKuHh4WHqNIgsTlZWFnr16iV63KRJk9CsWTMZMpJPw4YNsXv3bvz888+oV6+epLG/++47REdHY8SIEcjJyZE0NhGZN7MuAF1dXa16edTLywsqlcrUaRBZnEGDBok+2fr4449j/PjxMmUkv5dffhn//vsvVqxYAV9fX8nilpaWYvHixQgLC8Onn36K0tJSyWITkfky6wJQoVAYrUGrKUh5GwCRrfj666/x9ddfixrj6OiI+Ph4i39DaWdnh/79+yM1NRVjx46Fo6OjZLGzs7MxbNgwNGjQANu3b2cjaSIrZ9YFIHCnYao13pPr7u4u240nRNbq2rVrGDhwoOhxs2fPlnz51JTc3NwwZ84cJCYmonPnzpLGTk5Oxptvvonnn38e//zzj6Sxich8mP39YyqVCkFBQbh06ZKpU5FMYWEhfv75Z7i7u8PFxQWurq5wcXG5+3Hvv/OKOKI7BEFA7969kZ2dLWrcM888g+HDh8uTlIkFBwdj06ZNGDp0KGJjY3HkyBHJYu/fvx/NmjVDTEwMZs2ahZo1a0oWm4hMzyKqCzc3N3h6elrNJuV69ephxYoVWLdu3SO/19HR8aEF4oP+/fHHH0d4eLj8PwyRkaxZswY7d+4UNcbFxQXr1q2zylWEez355JM4dOgQtmzZgjFjxuD8+fOSxBUEAevXr8e3336LkSNHYtSoUTbToovI2ikEC9noYTAYkJKSYvEblL29vREQEIBbt26hYcOGSE9Pl/wZjo6OSExMRHBwsOSxyTy1a9cOe/bsqdT3xsXFoWfPnjJnJK3z58+jUaNGuH37tqhxq1evRu/evWXKyjwVFxfjs88+w4wZM5CXlydp7ICAAMyaNQsxMTE8wEZk4SzmbbFSqZT0iiRTcHR0hJ+fH4A7ewC/+OILWZ4zfPhwFn9kNQwGA7p37y66+Hv11Ver1CrG0jk6OmLkyJFITU3FoEGDJC3Url27hp49e6JZs2bYu3evZHGJyPgspgAE7tyZGxgYaOo0qkSlUqF27dr3LUW9+OKLGDBggKTP8fX1xbhx4ySNSWRKS5YswYEDB0SN8fLywurVq6FQKGTKyvz5+vpi6dKlOHXqFDp06CBp7BMnTuCFF17A66+/jqSkJEljE5FxWFQBCNx5YQ8ICDB1GqKoVCrUrVu3wpYN8+fPR0hIiGTPmjZtGtzd3SWLR2RKZ86cqVLvvuXLl1vc64RcoqOj8eOPP+LXX39F48aNJY39448/okGDBhgyZAgyMzMljU1E8rK4AhC4s4/OUmYC7ezsULdu3QdePVW2SV2KmQq1Wo327dtXOw6ROSgtLUVMTAyKi4tFjXv//ffx3nvvyZSV5XrhhRfw999/Iy4uDv7+/pLF1el0WLp0KcLCwrBw4ULR/7+IyDQssgAE7swE1q5d26yXeBwdHREaGvrIe0dbt26Njz76qNrPKyoqQr169TB58mTR+6WIzM2sWbNE96ELCAjAsmXLZMrI8qlUKvTs2RMpKSmYPHkyNBqNZLFv3bqFUaNGITo6Glu2bGEjaSIzZ7EFIHCnPUxISIik3fCl4uHhgZCQkErfPDBz5kxERUVV+7larRYzZsxAeHg44uLioNfrqx2TyNiOHTuGmTNnih63Zs0a3rBTCS4uLpg2bRqSk5MRExMjaezz58/j3XffRevWrXH06FFJYxORdCy6AAQAjUaDsLAw+Pv7m8VsoL29PYKDgxEUFCTq9J1Go8H69esl61eWkZGB3r1747HHHsOvv/4qSUwiY9BqtYiJiRH95qVPnz545ZVXZMrKOgUFBWH9+vU4duwYnn32WUljHzp0CE888QS6dOliVY38iayFxReAwJ07g318fBAeHm7SJqW+vr7VyqFFixYYO3aspDmdPHkSbdu2RYcOHZCQkCBpbCI5TJgwQfSf1bp162LRokUyZWT9Hn/8cezbtw/btm2TvIH8pk2bEBERgfHjx0vel5CIqs4qCsAyDg4OqFOnDmrXrg0nJyejPFOhUMDDwwNhYWHw8/Or9gze5MmT0ahRI4my+/9++uknNGzYEIMHD8bNmzclj08khd9//x1LliwRNUahUGDdunVwdXWVJykboVAo8MYbb+D06dNYsmQJPD09JYtdXFyMOXPmIDw8HCtXroROp5MsNhFVjVUVgMCdF7GyvYHh4eHw9fWVpWO9Wq1GYGAgoqKiEBQU9MiDHpXl6OiI+Pj4Su8dFEOv12PZsmUICwvDggULeFqPzEp+fj66d+8u+vBAbGwsnnnmGZmysj0ODg4YNmwYUlNT8dFHH0n6WnTjxg30798fTZo0we7duyWLS0TiWV0BeK+ymzeioqJQu3ZteHp6Qq1WV2mvoEqlgrOzM3x8fBAWFoawsDB4eXnJUlw2btwYkydPljxumby8PIwePRrR0dH45ptveFqPzEJsbCwuXLggaky9evWqdFiEHs3LywuLFy/G2bNn8fbbb0sa+8yZM3j55Zfx8ssv4/Tp05LGJqLKsZi7gKUkCAKKi4tRVFSEoqIi6HQ6CIIAg8EAhUIBhUIBpVIJBwcHqNVqqNVqWWbkHkan06FVq1b466+/ZH9Wy5YtsXjxYjz55JOyP4vkYel3Af/000+ib6uws7PDn3/+iccff1ymrOheBw4cQGxsLP7++29J4yqVSvTp0wfTpk27e1UmEcnPqmcAH0ShUECtVsPDwwP+/v4ICgpCrVq17u4frFWrFmrWrAlfX1+4uroavfgD7vxyW79+vVFa3Bw5cgQtW7ZE586dRc/AEFVXVlYWevfuLXrcpEmTWPwZ0TPPPIOjR49iw4YNCAoKkiyuwWDAypUrER4ejjlz5kCr1UoWm4gezCYLQEsRHR2NWbNmVfi1mTNnSn5ab/PmzYiKisK4ceN4Wo+MZuDAgcjIyBA1plmzZrzz2gSUSiU+/PBDJCUlYcaMGXB2dpYsdn5+PsaPH4+oqChs2rQJBoNBsthEVB4LQDM3fPhwPP300/d97u2338aECRNw+vRpfPLJJ5Kf1ps7dy7CwsLw+eef87QeyWrz5s345ptvRI2R86AUVY6TkxMmTpyIlJQU9O7dW9IerJcuXUKXLl3QsmVLHDp0SLK4RHQ/FoBmTqVSYd26dXfb2tjb22PevHkA7pzWGzp0qCyn9W7evIkBAwagcePG2LVrl2RxicpcvXoVAwcOFD1uzpw5iI6OliEjEisgIACrV6/GiRMn8OKLL0oa++jRo3j66afx7rvvIi0tTdLYRMQC0CKEhoZiwYIFAIDBgwcjLCzsvq/LeVrv7NmzaN++PV566SWcOnVK0thkuwRBQO/evZGTkyNq3LPPPothw4bJlBVVVaNGjfDLL7/gp59+krw437JlC6KjozFy5Ejk5uZKGpvIlrEAtBD9+/fHe++9h0mTJj3we8LCwvDdd9/hwIEDaNasmaTP/+WXX9CkSRP07dtX9H4tov9avXo1fv75Z1FjXFxcsG7dOsmuSyRpKRQKvPLKKzh58iSWL18OHx8fyWKXlJRg0aJFCAsLw9KlS1FaWipZbCJbxVdSC6FUKrFp06ZK7fdr3bo1/ve//8lyWm/16tUIDw/H7NmzeVqPqiQtLQ2xsbGixy1ZsgTBwcHSJ0SSsrOzw4ABA5CamorRo0fDwcFBsthZWVkYMmQIGjZsiB9//JE9TImqgQWgBREz83Hvab2ZM2dKelrv9u3bmDBhAiIjI7Fx40ae1qNK0+v16N69OwoKCkSNe/XVV82udyE9nLu7O+bNm4fExES89957ksZOSkrC66+/jhdffBEnTpyQNLZYgiCgpKQEt27dwvXr15Geno6LFy/i/PnzSEtLw4ULF3Dp0iVcuXIFWVlZKCgogF6vN2nORICNNoK2RRkZGZg8eTLi4uIkL9iaN2+OxYsXlzutTMZjKY2gFy1ahJEjR4oa4+XlhdOnTyMgIECmrMgYjhw5gtjYWPz555+SxlUoFOjevTtmzpyJwMBASWM/iFarRW5uLgoLC1FUVFSlmUh7e3toNBq4uLjA3d1dlluliB6GM4A2wt/fH6tWrcKJEyfQtm1bSWP/9ddfaN26NTp27Ihz585JGpusx5kzZzBhwgTR41asWMHizwq0bNkShw8fxubNmyVdyhcEAWvXrkV4eDimTZsmena5svR6PbKzs5Gamopz584hKysLWq22ysvQpaWlyMvLw9WrV5GYmIjLly+jsLCQy9pkNCwAbUzDhg2xe/du7Ny5U/LTet999x2io6MxYsQI0ac7ybqVlpYiJiYGxcXFosZ17twZnTp1kikrMjaFQoH33nsPCQkJmDdvHtzc3CSLXVhYiKlTpyIiIgLr1q2TbKWjuLgYly9fRmJiIq5evYqioiJJ4t5LEATk5uYiLS0NKSkpyMrKYiFIsmMBaIMUCgXat29/97Ser6+vZLFLS0uxePFihIWF4dNPP+VpPQJw5+aaf/75R9SYgIAALF26VKaMyJTUajVGjx6NlJQUDBgwQNLlz6tXr6JHjx5o1qwZ9u3bV+U4BoMBN27cQEpKCnJzc41WkJWUlODatWtITU1FYWGhUZ5JtokFoA0rO62XkpKCMWPGSHpaLzs7G8OGDUODBg3www8/8N2sDfvrr78eeKXhw8TFxcHLy0uGjMhc1KhRA8uXL8fJkyfxyiuvSBr7+PHjeP755/Hmm28iOTlZ1NiCggKkpqbixo0bkuYkRnFxMdLS0nD16lUeGiFZsAAkuLu7Y+7cuUhKSsL7778vaezk5GS88cYbeOGFF3D8+HFJY5P502q1iImJEf0LrG/fvmjfvr1MWZG5qVevHn766Sf88ssvaNiwoaSxt2/fjvr162PYsGHIysp66Pfq9XpcuXIF58+fR0lJiaR5VFV2djaSk5N5PztJjgUg3RUcHIyvvvoKR44cQcuWLSWNvW/fPjz++OPo0aMHrly5ImlsMl8TJkxAYmKiqDF169bFwoULZcqIzFnbtm1x/PhxrF69Gn5+fpLF1el0+PTTTxEWFobFixdXuBdVp9Ph/PnzZrl/Wa/X49KlS8jMzDR1KmRFWABSOU8++SQOHTqEr7/+WvLTeuvWrUNERASmTp0q22k9Mg/79+/Hxx9/LGqMQqHA+vXr4erqKlNWZO5UKhV69+6NlJQUTJw4EWq1WrLYubm5GDFiBOrXr4/vvvvu7taU4uJinDt3TpYDHlLKyMjAtWvXuKWGJMECkCqkUCjQqVMn2U7rTZs2DREREVi7di33t1ihvLw8dO/eXfS4ESNGoHXr1tInRBbH1dUVM2bMQHJyMrp27Spp7HPnzqFjx454/vnnUVBQgPPnz1vMgbWsrCwWgSQJFoD0UGWn9VJTUzFw4EDJT+v17NkTzZo1w969eyWLS6YXGxuLixcvihpTv359zJgxQ6aMyFLVqlUL8fHx+Ouvv/DMM89IGjssLAzp6enQ6XSSxpVbdnY272SnamMBSJXi6+uLZcuW4dSpU3j11VcljX3ixAm88MILeOONN5CUlCRpbDK+n376CXFxcaLG2NnZIT4+XtLlPrIuzZo1w/79+/H9998jNDS02vFcXV3Ru3dviyv+ymRlZeHWrVumToMsGAtAEiU6Oho7duzAnj170KhRI0lj//DDD2jQoAGGDh36yNN6ZJ4yMzPRq1cv0eMmTZqExx57TIaMyJooFAq89dZbOHv2LD7++GN4eHhUOdbQoUMlvSPdFK5cuWIxS9dkflgAUpW8+OKL+Oeff7BmzRr4+/tLFlen0+Gzzz5DWFgYFi1aJPrmCDIdQRAwcOBAXL9+XdS45s2bY9y4cTJlRdbIwcEBw4cPR2pqKoYNGwY7OztR42vVqoW33npLpuyMx2AwID09nfsBqUpYAFKVqVQq9OrVCykpKZg0aRI0Go1ksXNzczFy5EjUq1cPW7Zs4QucBdi8eTO+/fZbUWPUajXi4+Nhb28vU1Zkzby9vbFkyRKcOXMGb775ZqXHDRs2DI6OjvIlZkSFhYVcMaEqYQFI1ebi4oLp06cjKSlJ8tN6aWlpePfdd9G6dWscPXpU0tgknatXr2LQoEGix82ZMwdRUVEyZES2JCIiAlu3bsX+/fsfuZXgscceQ7t27YyUmXFkZGRwtYREYwFIkpHztN6hQ4fwxBNPoEuXLrh06ZKksal6BEFAr169RDfQfe655zB06FCZsiJb9Oyzz+Kvv/7C+vXrUbNmzQq/56OPPoJCoTByZvLLzs42dQpkYVgAkuTKTutt3boVYWFhksbetGkTIiMjMWHCBOTn50sam6pm1apV2LVrl6gxrq6uWLt2LZRKvgSRtJRKJWJiYpCcnIzp06fDycnp7tdef/11NGnSxHTJySg7O5s9VUkUvvqSLBQKBd58802cOXMGH3/8MTw9PSWLXVRUhNmzZyMsLAyrVq2y2DYO1uDcuXMYMWKE6HFLliyR9JYZov9ycnLCpEmTkJKSgp49e0Kj0WDw4MGmTks2giCY5TV2ZL5YAJKs7j2tN3z4cNGn9R7mxo0b6NevH5o2bYrdu3dLFpcqR6/Xo3v37qKv9OvQoQN69OghU1ZE9wsMDERcXBxOnjyJgIAAU6cjq8zMTB6Yo0pjAUhG4eXlhY8//lj0ab3KOH36NF5++WW0b98eZ86ckTQ2PdjHH3+MP/74Q9QYb29vrF692ir3YJF5s4XtBjqdjltjqNKs/28EmRUxp/XE2rVrFxo1aoT+/fuL7kVH4pw+fRoTJkwQPW7FihWS9o0kqgyDwYDCwkJTp2EUYmfkyXaxACSTKDutFx8f/8DTelVhMBiwcuVKhIeHY+7cuSgqKpIsNt1RUlKCmJgYlJSUiBr3wQcf4N1335UpK6IHk/t14MCBA2jYsOEDP6qyT7aqbKXQpepjAUgmo1Qq0bVr17un9aS8lik/Px/jxo1DVFQUvvrqK+6LkdDMmTNx/PhxUWMCAwOxdOlSmTIiejitVitr/BYtWmDfvn33ffz6669o2bIlPD090a9fP1mff6+ioiK+3lGlsAAkk/vvaT0p94ddvHgRH3zwAVq2bInDhw9LFtdW/fXXX5g9e7bocXFxcZKeBCcSQ+5ZMbVaDR8fn7sfnp6eWLRoERITE7FmzRpERETI+vx7CYLAlQ+qFBaAZDYCAgIQFxeH48eP44UXXpA09v/+9z889dRT6NSpE9LS0iSNbSu0Wi1iYmJE9xrr168fXn75ZZmyIno0Yy6L6vV6jBs3DkeOHMHq1auNWvyVkXvGk6wDC0AyO40bN8aePXuwY8cOya8J+/bbbxEdHY1Ro0YhNzdX0tjWbvz48UhMTBQ1JiQkBAsXLpQpI6JHEwQBpaWlRnnWvcXfmjVrEBkZCeDOwYz3338fHTt2xFtvvYUtW7bImofY/blkm1gAkllSKBR49dVXcfLkSSxbtgw+Pj6SxS4pKcHChQsRFhaGZcuWGe2XgyXbt28flixZImqMQqHA+vXr4eLiIk9SRJVgrP1wDyr+gDtLxGvXrsWWLVuwadMmrFmzRtY3oAaDQbbYZD1YAJJZs7e3x8CBA5GSkoJRo0bBwcFBsthZWVkYPHgwGjZsiB07dnDj9APk5eVVqXHzyJEj8fTTT8uQEVHlGePvdVnxd/jwYaxevfq+4g8AVCoVNBoNgDtvQA0Gg6x58bWMKoMFIFkEDw8PzJ8/H4mJiejUqZOksZOSkvDaa6+hbdu2+PfffyWNbQ0++ugjXLx4UdSY+vXrY/r06TJlRGQ+9Ho9xo8ff7f4e9C2lby8PLzzzjt48cUX0aNHDx6KIpNjAUgWpW7duvj6669x6NAhPPHEE5LG/u2339C0aVP06tULV69elTS2pfrxxx/xxRdfiBpjZ2eHDRs2QK1Wy5QVUeXJeeuMwWDA+PHjsW/fPsyZMwe+vr7IzMy876Ps0JSbmxu+++47/Pzzz9i5cycyMzNly4s37VBlsAAki9SqVSscOXIEX331FerUqSNZXEEQ8MUXXyA8PBzTp0+36a76mZmZ6NOnj+hxkydPRtOmTWXIiEg8OYuh06dPY+fOndBqtRg4cCDatGlT7uO/ryE+Pj6IiIjA33//LVtetnDtHVUf/5SQxVIoFHj//feRmJiIuXPnwtXVVbLYhYWFmDJlCiIjIxEfH29zm6oFQcCAAQNEX6nXokULjBs3TqasiMRTKBSS7h2+V6NGjXDq1KmHfri5uSEzMxO3b98GANy+fRt///03goODZckJABwdHWWLTdaDBSBZPLVajTFjxiA1NRX9+/eX9N3vlStX0K1bNzRv3hz79++XLK65++qrr0S3qlCr1Vi/fj3s7OxkyoqoapycnEz6/OvXr6N79+545513EBMTg86dO5c7KCKlsgMnRA/DApCsRo0aNbBixQqcPHkS7du3lzT2P//8gzZt2uDNN99EcnKypLHNzZUrVzBo0CDR4+bOnSt530YiKZi6AKxfvz62bNmC7777Dt9//z3ee+892Z6lUCg4A0iVwgKQrE79+vWxc+dO7N69Gw0aNJA09vbt21G/fn0MHz4c2dnZksY2B4IgoHfv3qJ7lLVp0wZDhgyRJymiarKlGTGNRsNDIFQpCoENg8iK6fV6fPHFF5g0aZLo/WyP4uHhgcmTJ2PQoEGy7TGqDEEQsHbtWqSkpKC0tBSCINz9KPtFoFAooFKpYGdnhzfffBPNmzev8JfEypUr0b9/f1HPd3V1xalTpyQ9jEMkJUEQcPbsWZvoj+fj4wN/f39Tp0EWgAUg2YT8/HzMmzcPixYtkvyi9LCwMMyfPx9vvvmmUd55C4KA/Px85OfnQ6vVVunnUSqV0Gg00Gg08PDwgFqtxrlz59C4cWPRJ5+/+OKLKjWKJjKm8+fP28Sp/uDgYN6+Q5XCApBsyqVLlzB+/Hhs3LhR8titW7fG4sWL0axZM8ljA0BxcTFycnKQk5Nzt7eYVNRqNZRKJSZNmoRNmzZVetxrr72G7du3c8mJzF5+fr7ohuaWxsHBAeHh4fz7SJXCApBs0l9//YXY2Fj88ccfksf+8MMPMXv2bNSqVavasQRBQF5eHrKyslBYWChBdg+nUCjwxx9/YMKECcjKynro93p7e+P06dNcbiKLIAgCkpOTrfru78DAQHh5eZk6DbIQPARCNql58+Y4cOAAvvvuO4SGhkoa+8svv0RERAQmTZqE/Pz8KscpKSnBhQsXkJ6ebpTiD7jzS/Kpp57Cli1b8NJLLz30ez///HMWf2QxFAoFfHx8TJ2GbJRKJTw8PEydBlkQzgCSzSsuLsayZcswY8YM0adfH8XPzw8zZ85Ejx49oFKpKjVGEARkZmbixo0bJt20LggCduzYgTlz5pQrZD/44ANZltGJ5KTX65GUlGSVjd15+IPEYgFI9H+ysrIwffp0LF++HDqdTtLYDRs2xKJFi9C2bduHfp9Wq8Xly5dRXFws6fOr4+rVq5g2bRoOHz4M4M4y0+nTp3mZPVmk69ev4+bNm6ZOQ1IKhQIRERGwt7c3dSpkQVgAEv1HcnIyRo8eje3bt0se+5VXXsGCBQtQr169cl/Ly8tDenq6WbaqMBgM+Pbbb7Fo0SJs3br1kcvDRObKYDDg3LlzZvUmq7pq1qzJN2QkGgtAogfYv38/YmNjcfz4cUnjqlQq9O3bF1OnTkWNGjUA3Jl9vHbtmqTPkcOtW7fw+OOPQ61WmzoVoiorKirCuXPnzPLNlliurq6oXbs2T/6SaCwAiR7CYDBgw4YNGD9+PK5evSppbDc3N6xZswbPP/+8RRR/ZVQqFerWrcsikCyapbzpehiVSoXw8HDev01VwlPARA+hVCrRrVs3JCcnY+rUqZLeKZqfnw8/Pz+L+yWk1+tx/vx5q1pCI9vj5eVl8Q2Ta9WqxeKPqowFIFElODs7Y8qUKUhJSUGPHj0kWW6JiYmx2J5der0ely5dssrTlGQbFAoFgoKCTHqNY3X4+flZfAFLpsUlYKIqOHHiBEaMGIG9e/dWabyzszN+/vlni9+47e3tjYCAAFOnQVRlOp0OaWlpKCkpMXUqlebn5wdfX19Tp0EWjjOARFXQpEkT/Prrr/jhhx8QGRkpevyAAQMsvvgD7uyjun37tqnTIKoyOzs7hISEwNHR0dSpVIq/vz+LP5IEC0CiKlIoFHjttddw6tQpfPbZZ/D29q7UuMDAQHTq1Enm7IwnPT1d8r6JRMZUVgQ6OzubOpWHCgoKsurbTMi4WAASVZO9vT0GDx6M1NRUjBw58pHNWIcMGQKNRmOk7OSn1+st7iAL0X+pVCoEBweb5eyao6MjQkJCeNUbSYp7AIkkdu7cOYwdOxZbtmwp97XGjRsjPj4eSqX1vfeKiIiw2A31RPcqLi7GlStXjHYH94MoFArUqFED3t7eVvmaQabFApBIJocOHUJsbCyOHj1693Px8fFo2rSpCbOSD+8iJWsiCAJycnKQkZFhktPuzs7OCAwMtJi9iWR5WAASychgMODrr7/G2LFj0ahRI8yZM8fUKclGqVQiMjISKpXK1KkQSUan0yErKwvZ2dnQ6/WyP8/Z2RleXl5wc3Pj7R4kKxaAREag1Wpx6tQpSRtJm6OAgIBKH4YhsiSCICA/Px/Z2dmSn3xXqVTw8vKCp6cnt1GQ0bCFOJGRWHvxB9xpC8MCkKyRQqGAm5sb3NzcUFpailu3bqGwsBBarRalpaWiY6nVamg0Gri4uMDV1ZWzfWR0LACJjKCgoMDUKRhFSUkJSktLH3kSmsiS2dvb39eOxWAwoKioCFqtFiUlJRAEAQaDAYIgQKlUQqFQQKVSQa1WQ61Ww8HBgQUfmRwLQCIjkPM04YEDBzBo0KAHfr1du3ZYtGiRbM//L61WywKQbIpSqYSTk5NNzPKT9eAeQCIjSEpKEr1MVFlFRUXl9iTp9XpMmjQJiYmJWLNmDSIiImR5dkV8fX3h5+dntOcREZF4nAEkkplOp5Ot+ANwd1mpjF6vx7hx40xS/AHyznYSEZE02FmSSGZardZozyor/o4cOYLVq1cbvfgD7vy8XFggIjJvnAEkkllJSYlRnnNv8bdmzRpERkYCADIyMjBu3DhkZ2dDpVKhX79+eOmll2TLw2AwQK/Xw86OLy9EROaKr9BEMjPGLQIPKv6AOz3GxowZg6ioKGRlZaFTp05o3bq1rBvWTXFzAhERVR4LQCKZyV0MlRV/hw8fLlf8AXcOZZRdcO/t7Q13d3fk5eWxACQismHcA0hkwfR6PcaPH4/Dhw9j9erViIqKeuj3nzlzBoIg8M5eIiIbxxlAIpkplfK8zzIYDBg/fjz27duHRYsWwdfXF5mZmfd9j6en5927eXNzczF+/HhMmzZNlnzuJdfPTERE0mABSCQzuYqh06dPY+fOnQCAgQMHVvg9hw4dgpubG0pKSjBs2DD07t0bTZo0kSWfe7EAJCIyb2wETSSz/Px8XLx40WTPFwQBY8aMQXBw8AMLRSkplUpER0fzqisiIjPGGUAimWk0GpM+//jx49i1axciIiKwd+9eAMDs2bNl6xGo0WhY/BERmTnOABIZgZxXwZkbXgVHRGT+uFGHyAhMPQtoTLb0sxIRWSoWgERGIGfPPXPDApCIyPyxACQyAmdnZ1OnYBQODg6wt7c3dRpERPQILACJjECj0djEzJi3t7epUyAiokpgAUhkJD4+PqZOQVZKpRKenp6mToOIiCqBBSCRkbi5ucHOzno7L3l5ebEBNBGRheCrNZGRKBQKq54F9PLyMnUKRERUSSwAiYzI09PTKmfJ3N3d4eDgYOo0iIiokqzvNxGRGVOpVAgKCjJ1GpJSqVQICAgwdRpERCQCC0AiI3Nzc4OHh4ep05BMrVq1rHpvIxGRNWIBSGQCAQEBVtEvz9vbGy4uLqZOg4iIRGIBSGQCKpUKtWrVMnUa1eLo6Mg7f4mILBQLQCITcXJyQmBgoKnTqBKVSoXatWtb5YEWIiJbwFdvIhPy8vKyuAMUKpUKdevWhaOjo6lTISKiKlIIgiCYOgkiW5ednY2rV6+aOo1HsrOzQ3BwMNRqtalTISKiamABSGQm8vLykJ6eDnP9K+no6Ijg4GCrOLxCRGTrWAASmRGtVovLly+juLjY1Kncx8PDAwEBAVCpVKZOhYiIJMACkMjMCIKAzMxM3Lhxw+SzgQ4ODqhZsyacnZ1NmgcREUmLBSCRmSopKcGVK1dQUFBgkuf7+vrC19eXJ32JiKwQC0AiMyYIAvLy8pCVlYXCwkLZn6dQKODu7g5fX1+e8iUismIsAIksRHFxMXJycpCTkwO9Xi9pbLVaDS8vL7i7u3OfHxGRDWABSGRhBEFAfn4+8vPzodVqUVxcLHqvoFKphEajgUajgYeHB9u6EBHZGBaARBZOEAQUFxejqKgIRUVF0Ol0EAQBBoMBCoUCCoUCSqUS9vb20Gg0UKvVsLOzg0KhMHXqRERkIiwAiYiIiGwMj/cRERER2RgWgEREREQ2hgUgERERkY1hAUhERERkY1gAEhEREdkYFoBERERENoYFIBEREZGNYQFIREREZGNYABIRERHZGBaARERERDaGBSARERGRjWEBSERERGRjWAASERER2RgWgEREREQ2hgUgERERkY1hAUhERERkY1gAEhEREdkYFoBERERENoYFIBEREZGNYQFIREREZGNYABIRERHZGBaARERERDaGBSARERGRjWEBSERERGRjWAASERER2RgWgEREREQ2hgUgERERkY1hAUhERERkY1gAEhEREdmY/weQ7ljbht8sSAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -801,7 +801,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHiCAYAAAB4GX3vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSgklEQVR4nOzdZ3RUVReA4Xcy6QVC7z0JCR0FFASVKmDDAoJI6L1K7713kA6hBAsoCoigCIIi7QOkQypVeodAema+H0MUTIDc5N6p+1lrljqZs+9GJeycso/OaDQaEUIIIYQQDsPJ0gkIIYQQQgjzkgJQCCGEEMLBSAEohBBCCOFgpAAUQgghhHAwUgAKIYQQQjgYKQCFEEIIIRyMFIBCCCGEEA5GCkAhhBBCCAcjBaAQQgghhIORAlAIIYQQwsFIASiEEEII4WCkABRCCCGEcDBSAAohhBBCOBgpAIUQQgghHIwUgEIIIYQQDkYKQCGEEEIIByMFoBBCCCGEg5ECUAghhBDCwUgBKIQQQgjhYKQAFEIIIYRwMFIACiGEEEI4GCkAhRBCCCEcjBSAQgghhBAORgpAIYQQQggHIwWgEEIIIYSDkQJQCCGEEMLBSAEohBBCCOFgpAAUQgghhHAwUgAKIYQQQjgYZ0snIITIGoPRyMPEZO4lJHM/PomEFAMGo5EUoxEdOvQ6cHLS4eWiJ7ubC77uLrjrndDpdJZOXQghhIVIASiEjTEYjVx7mMC1R/HcjU8iJiEZw+OvpZZ0xic+/2SZl/q+i5MOX3cXcri7UCSbB9ndXDTPWwghhPXQGY1G44s/JoSwtIeJyZy/H8v5e7EkGozoeLrQy4zUGL5uzpTw9aJwNndcnGRniBBC2DspAIWwYkajkSsP44m++4jbcUmqFH3P46SDIj4eBOT0xsdNFgiEEMJeSQEohJV6lJjMkev3uRGbaNbnpi4Zl87lTemc3uidZK+gEELYGykAhbAyBqOR6DuPOH07BqNR2xm/F/Fy0fNS/uzk8XSzYBZCCCHUJgWgEFbkbnwSh67eIyYx2dKpPKVYNg8q5M2Gi172BwohhD2QAlAIK3ElJp4DV+9afNYvPTrA29WZmoVz4uGit3Q6QgghskgKQCGswNl7jzh6/YGl03guHeCqd6JWkZxkk7YxQghh06QAFMLCztx9xLEb1l38pdIBzk463iiaS4pAIYSwYbKhRwgLOnvPdoo/MC1NJxuM7Lp42+r2KQohhMg4KQCFsJA7cYlWv+ybHiOQZDCy//IdUgyygCCEELZICkAhLCDZYODAlXvYaoc9IxCTmMKpWzGWTkUIIUQmSAEohAUcu/6A2OQUqzvtq1T03UfceJRg6TSEEEIoJAWgEGZ2OSaeCw/iLJ2Gag5evUdCisHSaQghhFBACkAhzCgpxcDha/csnYaqElMMHL9+39JpCCGEUEAKQCHM6Pz9WJLs7OCEEfg7Jp7YpBRLpyKEECKDpAAUwkyMRiPRdx9ZOg1N6DC1tBFCCGEbpAAUwkyuPIwnLtk+98oZgbN3Y0k22OevTwgh7I0UgEKYSdQd+54hSzYauXDffg63CCGEPZMCUAgzuBefxJ34JEunoTl7XeIWQgh7IwWgEGZwM9YxeuU9SkohLlkOgwghhLWTAlAIM7gbn2Szt34oddcBZjqFEMLWSQEohBncjks0y60fwz/7gI8CC/LdgllPvW80Ghnc7G0+CizIN3OnavZ8HXA3TgpAIYSwdlIACqGxhGSDWU7/Go1GzoedIk/BwlyIDH/qazvXf8udG9cAKFmmvHY5AHfiEjWLL4QQQh1SAAqhsbvx5imIrp4/S9yjh9T+oBkXI8P+eT/u4UO+mjWJ2h98AkCpshU0zeNOfBJGo301uxZCCHsjBaAQGntophsyzpw6jqubOzXfbsLVC+dISjQdPPlu4SxKBJYlR568ZMuRk9wFCmmaR4rRqMndwGFhYUyaNImbN2+qHlsIIRyNs6UTEMLepRiM6EDzPYBnT5+gWOkgCpYohbuHJ5fOROHm4cnWb1YxZd3P/Lh8ESU1nv1LlaLCDKDBYODAgQNs2LCBDRs2EBERgaurKwMGDFAhQyGEcGxSAAqhMTWKoYw4e+oEJctWQKfTUax0EBejItizeSP1mn5G4ZL+nD11nMq16pgll5RM3necmJjI77//zvr169m4cSNXr1596uv+/v44O8u3LSGEyCr5TiqEnTgXdpJa7zQBoFjpMmwOXcbNK5foPX0eSYmJ/B0dyUede1s2yXTExMTwyy+/sH79ejZv3syDBw+e+dmgoCAzZiaEEPZLCkAhNKbXad8B8NrfF3j04P4/S7wlgsryy9cr6TJ2Gl4+2Thz8jjJSUmULGeeJWC90/N/zTdu3ODHH39kw4YNbN++nYSEjDXKlgJQCCHUIQWgEBrTO+m03/936jjOLq4U9Q8E4M0mzahWryE+vjlNXz99Au/svuQrXFTjTEzSK3rPnj3L+vXr2bBhA3v27MnUSeFs2bKRkJCAm5ubGmkKIYTDkgJQCI15u+g1f8bZUyco6l8aZxcXAJxdXMiWI9e/Xz99ghJB5TTPA0zFn5veCaPRyNGjR9mwYQPr16/nxIkTWY49YMAABg8eTKlSpQgKCnrqFRgYiI+Pjwq/AiGEsH86ozTsEkJTCckGNp+5buk0zMZbl8KWBdPZsGEDFy5cMOuzCxcu/E9BWKZMmX/+Pk+ePGbNQwghrJ3MAAqhMTdnJzycncxyG4il6YAC2X3IkSMHf//9t9mff+nSJS5dusS2bdueej9XrlxpZgzLlClDkSJF0Jlhj6YQQlgbmQEUwgwOXLnL5Zh4s9wHbGmvFspBQW939uzZQ8uWLc0+C6iEl5cXgYGBaYrDUqVK4fJ4OV0IIeyRFIBCmEHUnYecuBlj6TTMolGpvHg4m/Y93rt3jy5durB27VoLZ6WMi4sLfn5+Ty0jBwUFUbp0aTw9PS2dnrA2Dx/C8eNw9ChERUFcHMTHQ3IyuLmBuzvkzAkVK0KlSlCyJDjJRVzCsqQAFMIM7sUnsePCLUunoTkvFz1vlcz71HtGo5HQ0FC6d+/Oo0ePLJSZOnQ6HcWKFUuzlBwUFESOHDksnZ4wl8uXYc0aOHAADh6E8+fBaASdDlIblRseb/nQ6Uwvo9FUEAJ4epqKwZdfhvr1oXHjf8cJYSZSAAphBnFxcey+fI8Y81wLbDEV82ajVA6vdL8WFRXFp59+yqFDh8yclXnky5cvzVJyUFAQBQsWlH2G9iA5GbZsgcWL4eef/y3sUrLwm9rZ2RQ3Tx7o0AHat4dSpdTLWYjnkAJQCA0ZDAbWrFnD4MGD+aB1B974rKOlU9KMs05HY7+8OD9naSsxMZFRo0YxZcqUTPUBtEXZsmVLtzAsUaIEer32LYJEFl2/DnPmwLJlcPMm6PVZK/qeJTXuG29Ajx7w0UemAlMIjUgBKIRGdu/eTd++fTl48CAATk5OfH/iHAa9/R0u0AH+Ob0olydbhj6/Y8cOWrVqxZUrV7RNzIq5ubkREBCQpmVNQECANLq2BgYDLF8OfftCbKw2RV96UgvBN9+EpUvBz888zxUORwpAIVR25swZBg8ezLp169J8revwsdT7rIMFstJew5J58VTQ9Pr27dt06NCBDRs2aJeUDXJycqJkyZLpzhpmy5axAltkUViYaUl2717L5eDsbDooMmoU9O8Prq6Wy0XYJSkAhVDJ3bt3mTBhAnPnziUpKSndz3h6+xC6/yQ6Z/uZBdQBhX3cqVpQ+SEIo9HI0qVL6dOnD3Fxcc/8XN68eUlKSuLu3btZyNT2FSpUKN3CMG/evLLPUA1JSTBhgukF/x7asCSdDgICYNUqeOUVS2cj7IgUgEJkUVJSEosWLWL06NHcuXPnhZ9v1KwlHcZOM0Nm5uGmd6JeiTy46TPf1iIsLIwWLVpw7NixdL/+xRdf0L17d27cuEFYWFia1+XLlzP9bHuQI0eONEvJQUFBFC1aFCdpN5IxMTHw4Yfw22+mE7vWRK83FYKrV0Pz5pbORtgJKQCFyCSj0cimTZsYMGAAkZGRisYu27KTHCVLa5SZeb1WOCf5vLK+Zy0hIYEhQ4Ywa9asNF/bvn07devWfebYBw8eEB4ezunTp58qDM+ePYvBYP83sDyLp6cnpUuXTtOyxs/PTxpdP+n6dWjQAE6dMt9eP6VSW8lMnw79+lk6G2EHpAAUIhOOHDlCv3792LlzZ6bG58ydh9A9x0g0YtO3g/jl8KJCXnX3pf3yyy+0adOG69f/vT/58uXLFCxYUHGs+Ph4oqKinioKT58+TWRkJAkJCWqmbVOcnZ3x8/NLs5QcGBiIl1f6bXzs1vXrUKsWnDtnHUu+GTFxIgwZYukshI2TAlAIBS5fvszw4cNZtWpVltuY9B0+itc+66xSZualA7xd9dQplge9k/p7z27cuEHbtm3ZsmUL2bNn5+7du6rucUtJSeHcuXPpLic/ePBAtefYov82uk595cqVy9Kpqe/mTVPxd+aM7RR/qaZMgYEDLZ2FsGFSAAqRAY8ePWLatGlMmzaN2NhYVWLqdDp+Px7GLRfbOtmpA1ycdLxRLDc+rtrdXmA0Gpk3bx4//PBDpmdaM/PMK1eupFsYPjkj6Yjy5MmT7j7DQoUK2eYBFKMRGjWC7dutd9n3RX791XSTiBCZIAWgEM9hMBgIDQ1l2LBhqvesy5YtGyEhIVSu24hjN2xj1kkHODvpeKNoLrK5mWcP2YMHD6yi/cmdO3fS3Wd4/vx5S6dmUT4+PgQGBqa5Hq9EiRI4W/P1ZvPnmxou2yonJ8idG06fBnucnRWakwJQiGfYuXMn/fr148iRI6rG1ev1dO7cmdGjR5MnTx4Azt57xNHr1l0E6gBXvRO1iuQ0W/FnC2JjY4mIiEizzzAqKopkW1tWVJGrq+s/ja6ffJUuXRp3d3fLJnf6NFSuDImJls0jq/R6ePdd+OEHuTVEKCYFoBD/ERERwcCBA/nxxx9Vj/32228zbdo0goKC0nztSkw8B67exWiFB0NMe/6cqVk4Jx4Kmj07sqSkJM6cOZNmKTk8PJxHjx5ZOj2L0el0z2x0nT17du0TSEiAKlUgPNz29v09y/Ll0LatpbMQNkYKQCEeu337NmPGjGHhwoWqz9xUqFCBGTNmUK9eved+7m58Eoeu3iMm0br+YCqWzYMKebPhkoVef8LEYDBw6dKlNEvJYWFh3L5929LpWVSBAgXStKwJCgoiX7586u0zHDUKxo2zvl5/WeHhAVFRUKiQpTMRNkQKQOHwEhISmDdvHuPHj+fevXuqxs6fPz/jx4+nTZs26PUZmzkzGI1E33nE6dsxFp8N9HLR81L+7OTxlLtpzeHmzZtplpLDwsK4dOmSpVOzKF9f33RnDIsXL66s0fXDh1CwoKnpsz3R600ngidOtHQmwoZIASgcltFo5IcffmDgwIGcPXtW1dgeHh7079+fgQMH4u3tnakYjxKTOXz9PjdjzbtPKXWepXQub0rn9NakzYtQJiYmhvDw8DQzhtHR0Q7d6NrDw+OpRtepL39/f1zTuzt3wQLTwQ97/GMve3a4cgU8PS2dibARUgAKh3Tw4EH69u3L7t27VY/dqlUrJkyYQJEiRbIcy2g0cuVhPNF3H3E7Lgkd2s4IOumgiI8H/jm95KCHDUhISEjT6DosLIyIiAji4+MtnZ7F6PV6SpUq9dRS8us1a1KsXj1Tw2d7/GNPp4NFi6BTJ0tnImyEFIDCoVy8eJGhQ4fy1VdfqR779ddfZ8aMGVSpUkX12AAPE5M5fz+W8/diSTQYVSkGU2P4urlQwteTwtnccZG7Y21eSkoKFy5ceGoZOfV1//59S6dnET/36EHDefMsnYZ2dDrw84OICDkRLDJECkDhEGJiYpg8eTIzZ85UfWbEz8+PadOm8f7775ulIa7BaOTawwSuPUrgbnwiMQnJpC4Cpj79yd/UT2aU+r6Lkw5fdxdyuLtQJJsH2WW2zyEYjUauXbuWZsbw9OnTXLt2zdLpaepOlSrkOHLEdps+Z5Q0hxYZJAWgsGvJycksX76cESNGcOPGDVVj58iRg5EjR9KtW7f09xuZicFo5GFiMvcSkrkfn0RCigGD0UjMo1g8PTxwdtLh5KTDy0WPr5sL2d1dcNc72ebtDUIz9+7dS/cGlHPnzmX52kNLcwYSXV3R2Xrfvxdxdob+/WHSJEtnImyAFIDCbv3666/069ePkydPqhrX2dmZHj16MGLECHLmzKlqbDV9/PHHtGjRgo8++sjSqQgbFhcXR2RkZJql5MjISJKSkiydXobU8fXlN5VP+D/JAJQB3gemPPH+VuBd4CugqWZP/4/XX4c//jDX04QNkwJQ2J1Tp07Rv39/fvnlF9VjN2nShClTphAQEKB6bDUdP36cihUrUr58eY4ePaqsVYYQGZCcnMzZs2fTtKwJDw/n4cOHlk7vKdP9/Oh35oymhz9WAT2BC0AO4BhQCxgJ9Nfsqenw9IQHD0ytYYR4DikAhd24ceMGo0aNYsmSJaq3xnjppZeYOXMmb7zxhqpxtfLxxx/z/fffA7Bu3TqZBRRmYzQauXTpUrrLyTdv3rRITrtLl+a1M2c0vfkjGQgAWgPtgVcxzQjO1+yJz3HqFJQpY4knCxsiBaCwefHx8cyePZuJEycSo3KD10KFCjFp0iRatmxpM7NoqbN/qWQWUFiLW7dupVsYXrx4UdPn3smThxxmKD4XA0OBQkBxYD1gkXm4FSugTRtLPFnYECkAhc0yGo2sWbOGIUOGcOHCBVVje3l5MWjQIPr164enjTVWfXL2L5XMAgpr9vDhQyIiItK0rYmOjiZFhVO7BicndGZomP0QyAP4AfsBrye+9jfQCriB6VDKCDTaF+jiAn37wuTJWkQXdkQKQGGT9u7dS9++ffnf//6nalydTke7du0YN24cBQoUUDW2Ofx39i+VzAIKW5SYmEh0dHSaGcPw8HDi4uIyFMMFMNfZ3zbAWsAXOAe4P/G1q8B1oBKmIvAlIIKni0RVuLhAly4wd67akYWdcbZ0AkIocfbsWQYPHsx3332neuy6desyY8aMdAsoWzF27Nh03z9x4gTr16+XWUBhU1xdXSlTpgxl/rOfzWAw/NPo+r+vu3fvPvXZ7C4uYIbTyiOAzZhm/uoBIUD3J75e4PELIC+QE7iDBgWg0QgZLI6FY5PpAGET7t27x4ABAwgKClK9+AsMDOSnn35i27ZtNl38HT9+PM3S75PGjBnj0PfGCvvh5ORE3rx5yZ8/f5qXs/PT8xpOZuh3uQyYAWwCKgJ9gKnAs8rOQ5hax2T9sshnkIU9kQEyAyisWlJSEkuWLGHUqFHcvn1b1di5c+dmzJgxdOzYERcX278J41mzf6lkFlDYojt37qS5tSQsLCzD+37vadz8+WdMM33fYDr5C6Z2MNOB1UC7/3z+NhCMqWjUhE4HHh5aRRd2RPYACqtkNBrZvHkz/fv3JyIiQtXYrq6u9O7dm6FDh+Lr66tqbEt51t6//5K9gMIaGY1Grly5kqbZdFhYmCo3+Bh0OnQa/FH3F/AGMAHo/Z+vjQTWAGH8exI4AagPdMR0IEQTLi7Qpw9MnarVE4SdkBlAYXWOHTtGv379+O2331SP3axZMyZPnkyJEiVUj21JL5r9S3XixAl++OEHPv74Y40zEiKtlJSUp5pHP/lSu4XTk2Jy5CDbnTuqx30Z08nf9Ix9/EplxHRIpA4aFn9g6nXo56flE4SdkBlAYTWuXLnCiBEjWLFihep3j77yyivMnDmTGjVqqBrXGmR09i+VzAIKrcXHxxMZGZlm6TYyMpJEC9zH+7+AAKqdPatpI+gX2Q28DlR44r3VQHktHnb0KNjwfmZhHjIDKCzu0aNHzJgxgylTphAbG6tq7KJFizJlyhQ++eQTdGbYDG4JGZ39SyV7AYVa7t+/T3h4eJql23PnzlnVgaP/GY1UU6GfYFbUxHTwQ3NublC2rDmeJGyczAAKizEYDHz55ZcMHTqUy5cvqxrbx8eHoUOH0rt3bzzseEO00tm/VDILKDLKaDRy/fr1dJdtr1y5Yun0MqRxrlxsVvkQmdWqXh327rV0FsIGyAygsIjff/+dfv36cfjwYVXjOjk50alTJ8aMGUPevHlVjW2NlM7+pZJZQPFfSnrr2Zrfbt/GqNejs/AsoOZcXEwFoBAZIDOAwqyioqIYOHAgGzZsUD12o0aNmDZtGmUdZPkjs7N/qWQW0DH993aN1OXbiIiIDN+uYYvuV6hAtlOnwN6LwB9/hHfftXQWwgbIDKAwizt37jB27Fjmz59PssobscuVK8f06dN56623VI1r7TI7+5dKTgTbt4cPHxIeHp5mNk+t+3VtzV81alD7+HFLp6GtwoWhcWNLZyFshMwACk0lJiYyf/58xo4dy71791SNnTdvXsaPH0/btm3TdP+3d1md/UtVrlw5jh07JrOANuzWrVvpLttevHjR0qlZVLZs2QgKCqJMmTIEBQXx9ltvUaZhQ7h61dKpaUOngxkz4PPPLZ2JsBFSAApNGI1GNmzYwMCBA4mOjlY1tru7O3379mXw4MH4+PioGttWfPzxx8+99k2J7777TmYBrZzRaOTSpUvp3ohx69YtS6dnUfnz5ycoKCjNq0CBAmlP/k+bBoMHgxWdUFaNh4epuM2e3dKZCBshBaBQ3aFDh+jbty9//vmn6rFbtmzJxIkTKVq0qOqxbYVas3+pZBbQeiQnJ//TKPnJ1irh4eE8fPislsP2T6fTUbx48XQLvRw5cmQ80N27ULAgxMdrl6wlODtDt24wZ46lMxE2RApAoZq///6bYcOGsXr1atVj16xZk5kzZ1K1alXVY9saNWf/UsksoHnFxcURERGRZtk2KirKIo2SrYWLiwv+/v7/FHepy7cBAQF4enqq85DPP4e5c+1rFtDZGcLDoVQpS2cibIgUgCLLYmJimDp1KtOnTyde5Z+sS5YsydSpU/nwww/ttpGzEjdv3qRVq1Zpbko5dOgQdzJ41VWZMmUoXLjwU++VK1eOGTNmqJanMLl37166+/POnTun+m03tsTLyyvd2bySJUvi4uKi7cMfPoTy5eHvv+3nRPD06dCvn6WzEDZGCkCRaSkpKaxYsYLhw4dz/fp1VWNnz56dkSNH0r17d9zc3FSNbY8aNGjAtm3bMvTZkJAQ2rVrp3FGjsNoNHLt2rU0e/PCwsK4du2apdOzqNy5c6db6BUuXNiyWw7+9z+oUcP2ZwGdneG112DHDpAtHEIhxzo6KVSzbds2+vXrx4kTJ1SN6+zsTLdu3Rg5ciS5cuVSNbYQWZGSksL58+fTndG7f/++pdOzqCJFijxV4KUu3ebOndvSqaXvlVdg9GgYNQpsdQ5EpwNPT/jySyn+RKZIASgUOX36NAMGDGDLli2qx37//feZOnUqAQEBqscWIqMSEhKIiopKU+RFRESovsXBluj1ekqVKvVPcZf6CgwMxNvb29LpKTdkCGzeDH/9BSr3JjULoxGWLTP1/hMiE6QAFBly48YNRo8ezZIlS1RvIlupUiVmzpxJ7dq1VY0rxPPExMSkaZR8+vRpzp4965CNklO5u7sTGBiYZtnW398fV1dXS6enHmdn+PZb09VpN27YXhHYty80bWrpLIQNkwJQPFd8fDxz5sxh4sSJPHjwQNXYBQsWZMKECbRq1Qq9Xq9qbCFS3bx5M83evLCwMC5dumTp1CzK19c33WXbYsWKOU5LoKJF4c8/Tfvobt2ynSKwVy/TwQ8hskAKQJEuo9HIt99+y6BBg7hw4YKqsT09PRk4cCD9+/fHy8tL1djCMRkMBv7+++909+fdvn3b0ulZVIECBdIs2wYFBZEvXz45WQ9QsiTs3g116sCVK9ZfBPbrZ2poLf/tRBZJASjS2LdvH3379mX//v2qxtXpdLRu3Zrx48dTqFAhVWMLx5CUlMSZM2fSFHnh4eE8evTI0ulZjE6no2TJkmmKvMDAQHx9fS2dnvUrVQoOHoRGjeDYMetrD+PkZNrzN3Mm9Olj6WyEnZACUPzj/PnzDB48mLVr16oeu3bt2syYMYPKlSurHlvYn9jY2H8aJT+5dBsdHU1SUpKl07MYV1dXAgIC0hR6AQEBeHh4WDo925Y3L+zaZWoUvXQp6PXWUQg6OUGePKYDH++8Y+lshB2RAlBw//59Jk6cyJw5c0hISFA1dkBAANOnT+edd96R5SaRxp07d9Jdtr1w4YJDN0r29vZOszcvKCiIEiVK4Ows37Y14+UFS5ZAcDDG9u3RRUVZrk2MXo/RYEDXrRtMmADZslkmD2G35DuJA0tOTmbJkiWMGjVK9Qvlc+bMyejRo+nSpYv2nf2FVTMajVy5ciXdQk/tBuK2Jm/evOk2Si5UqJD8wGQhRqORLffvs8zPj/WtWsHYsaYi0Fx7A1P/u5cuze62bfkyKooxsbHklwJQqEwKQAdkNBr5+eef6d+/P2FhYarGdnFxoVevXgwbNkzZJe3C5qWkpHDu3Lk0bVXCw8NVP0Fua4oVK5ZuoSfNzq3LkSNH6N+/Pzt27KBevXowfDg0awaTJsGaNZCQYCrQtLhBxNnZVGT6+ZlO+XbuTPawMJYMGMBXX33FoEGD6Nu3rxycE6qRAtDBHD9+nP79+2f42jAlPv74YyZPnkwpuZDcriUkJBAZGZmmrUpkZKTqWwhsibOzM35+fmmWbkuXLi1/aFu5S5cuMWzYMFavXv3P1oN/vo8FBMCKFTBnDnzzDSxaBEeP/luwZUXq4Q43N2jeHDp2NPUlfDwLWLJkSQAePXrEyJEjWbRoEePHjyc4OFhaZ4kskwLQQVy7do0RI0awfPlyDCr/9Fq1alVmzpxJzZo1VY0rLOvBgwfpLtuePXtW9f+HbImHhweBgYFpWqv4+fnJdgcbExMTw5QpU5gxY0aaW178/Pye/nC2bNC5s+l19KjpCrb9+01/n3oC3dnZVND99/CITvfvoZLUPYXFikHVqlCvHrRoke4eP29vb/Lly/fPVokrV67Qrl075syZw/Tp002zlEJkkhSAdi42NpaZM2cyefJk1dtkFClShMmTJ9O8eXPHaRxrZ4xGIzdu3EhT5J0+fZorV65YOj2LypkzZ7rLtkWLFpX/321ccnIyISEhjBw5khs3bqT7meeuZFSqZHqBqaA7fx6OHDEVg5GREB8PsbGQmGi6r9fDA3LmhIoVTeMqVMjwoY5SpUql2St77Ngx6tevT6NGjZg2bRply5bNUCwhniQFoA0xGAwZ/oPHYDDw1VdfMXToUNVvPPD29mbo0KH06dNHWk/YoK1bt7J3795/ir27d+9aOiWLKlSoUJoir0yZMuTJk0cOYtgZo9HIli1bGDBgwAv3P2d4K4tOByVKmF4ffqhClmnz2Lt3b7pf+/nnn9m6dSsdOnRgzJgx5M+fX/XnC/slBaCNMBgMtGjRgoULF5IzZ87nfnbXrl307duXv/76S9UcnJyc6NChA2PHjiVfvnyqxhbm8+2331o6BbNzcnL6p1Hyk0u3gYGBZJPTlQ7hyQMeGZG6/87SXlSIGgwGlixZIgdFhGJSANqIRYsW8e2331KoUCFmzpyZ7meio6MZOHAg69evV/35DRo0YMaMGZQrV0712EK5R48eER4e/s8s3rFjxyydklVwc3OjdOnSaWb0/P39cXd3t3R6wgLSO+DxIvny5cPb21vjzDImzV7EZ5CDIkIpndGRu63aiOjoaCpWrEhsbCwuLi6cPn36qW8Kd+7cYdy4ccyfP1/1WxLKli3L9OnTadiwoapxRcbcvn07zd68sLAwLl68aOnULCpbtmzp7s8rUaKE/KEngOcf8HiR1157jd27d2uUmTL79++nevXqisdVrFhRDoqI55IZQCuXkpJC27ZtiY2NBUx3oQ4aNIjvv/+exMREFi5cyJgxY1Tfx5UnTx7GjRtH+/bt5eYBjRmNRi5fvpymrUpYWBg3b960dHoWlS9fvjR784KCgihQoIDszxPpSk5OZtmyZYwaNeqZBzxexJpaWWU2lycPikydOlVWb0Qa8ie7lZs9e3aan0R/+OEHJkyYwKpVq4iKilL1eW5ubvTt25fBgwfL3iiVJScnc/bs2TRFXnh4ODExMZZOz2J0Oh3FihVL01YlKChImomLDDMajWzevJmBAwdmucG9NRWAuXPnxsfHJ9PfI1IPirRv356xY8fKQRHxD1kCtmJhYWFUrlzZbM11W7RowaRJkyhWrJhZnmev4uLiiIyMTFPoRUZGkpiYaOn0LMbFxQV/f/80RV7p0qXx9PS0dHrChik94PEiX375JS1btlQllhoqV67M0aNHsxzHy8uLgQMH0q9fPzkoIhxzBjAlBSIiTC2bjh6FmzchLs7UukmvB3d3U9umkiX/bfdUoMC/VzSaQ3JyMsHBwWYp/mrUqMHMmTN55ZVXNH+WPbl//36avXlhYWGcO3cuw5vN7ZGXlxeBgYFplm5LliwpjZKFJpycnFS9z9yaZgDBlI8aBWBcXByxsbGyrUcADlIAJifDli2weTMcOgSnTpmudARwcTH18TQYTC+dznQ7j073dEP3nDnhpZdMjdtbtIDy5bXNefLkyRw6dEjTZ5QoUYIpU6bw8ccfy36qZzAajVy7di3dGzGuXr1q6fQsKleuXGnaqgQFBVG4cGFplCzMqmLFihw4cIAxY8YwZcqULN9UY40FoBoxQkNDqVGjhgoZCXtg10vA0dGwfDksW2aa5cvq1Y2pt/kkJ5uKwS5dTNc3+violzPA0aNHqVatmuonelNlz56d4cOH07NnT9zc3DR5hq0xGAycP38+3ULv3r17lk7PoooUKZLuids8efJYOjUh0ti3bx/BwcFER0dnany2bNm4d++eVf1QvHTpUjp16pTp8d26dWPq1Kmy7CueYncFoNEIGzbA7Nmwa9e/1y+q7ck7vFu0gAEDICgo63ETExOpWrUqx48fz3qw/9Dr9XTt2pVRo0aRO3du1ePbgsTERKKiotIs3UZERChuFWFP9Ho9pUqVSlPkBQYG4qP2TzhCaGzSpEkMHTo0U2MrV67M4cOHVc4oa3bs2EHdunUzNdbX15fw8HBp3i/SsKsl4HPnTLNyv/5qKvxAm+IPTMvFYNo3uHq16TVkCAwdatpDmFljx47VpPh75513mDZtGoGBgarHtkYPHz4kPDw8TWuVM2fOkKLV/xQ2onDhwtSsWfOp5Vs/Pz+ZDRZ24cSJE4wePTrT461t+ReyltO9e/fo1KkTGzZssKpZTWF5djEDmJwMs2bBiBGmgi8ry7xZkXolZEgIvPmm8vEHDhygevXqWd6/8qSKFSsyY8aMTP/0aO1u3ryZ7rLt33//benUrFZISAjt2rWzdBpCqC4xMZFXXnklSwcmBg0axOTJk9VLSgUpKSl4eHhkaVvQihUraNOmjXpJCZtn8zOAR45AcLDpYIelS1mjES5cgNq1oU0b0zJ09uwZGxsXF0fr1q1VK/7y58/PhAkTaN26tc3fjGA0Gvn777/TFHmnT5/m9u3blk7PogoUKEBQUBBRUVFS9AqHN3bs2CyflrXGGUC9Xk+JEiWIjIzMdIxevXpRu3ZtafMl/mHTBeCmTdC0qWnGz9LFX6rU1cXVq+F//zMtRxcu/OJxw4cPJzw8PMvP9/DwYMCAAQwYMMBq7rLMqOTkZM6cOZOmrUp4eDiPHj2ydHoWo9PpKFGiRJq2KoGBgfj6+gKmu5qlABSO7H//+x+TJk3KcpyM3r1rbqVKlcpSARgTE0Pbtm3Zvn27nNIXgA0XgEuXQufOpr+3luLvSSkpEBVlahuzfTuULfvsz/7555/MmjUry890d3fn9OnTFC9ePMuxtBQbG0tERESaGb2oqCjNTj7bAhcXFwICAtK0VgkICMDDw8PS6QlhtWJjYwkODlZlBcUaZwBBncJ0586dzJs3j169eqmQkbB1NlkALlgA3btbOosXS042tZ+pVQv+/DP9IvDhw4e0adNGlcbB8fHx/Pzzz3z22WdWcXLz7t276e7PO3/+vEM3Svb29k63rUrJkiWlQasQmTBkyBDFs2OlSpWiePHi/Pbbb/+85+rqSqFChdROTxX/LUzd3d1p1qwZoaGhiuIMGjSIt956i9KlS6uZnrBBNvenzZIltlH8pUpJgQcP4PXXYc8e+O8h3IEDB3L27FnVnjdw4EC++uqrNPcHa8VoNHL16tU0e/PCwsK4fv26WXKwVnny5Em30CtcuLCcxhNCJTt27GDu3LmKxuh0OlatWkX16tVZsGABAwcOJC4ujhIlSljtnuknC8Bq1aoRGhpKQEAAsbGxrFu3LsNx4uPjCQ4OZs+ePfIDp4Ozqf/6Bw9Ct26WzkK5lBS4fx8++MB0aCW1Tcy2bdtYuHChqs96+PAhBw8exGg0qlpkpKSkcP78+TRtVcLCwnjw4IFqz7FFRYsWfWpvXurf58qVy9KpCWHX7t+/n6mTrQMGDOC1114DoEePHjRo0IDWrVuTM2dOlTNUT6lSpXB2dmb06NEMGjTon+Jt4cKF/Pnnn4p+4D5w4ACTJ09m+PDhWqUrbIDNtIF59Mh0/drFi9r19tOakxP06mVqWXP//n3KlSvHpUuXNHnWvn37ePXVVxWPS0hIIDIyMk2RFxERYZZ7ia2VXq/H398/zWxe6dKlreKwTYMGDdi2bVuGPittYIS9aNu2LStXrlQ0ply5chw6dChN38vk5GSOHj1KlSpVVMxQPQkJCZw+fZrKlSun+dqmTZt47733FMVzdnbmwIED6cYTjsFmZgA//9zUYkXFFnlmZzCYWsM0agTffNMnQ8Wfu7s7Pj4+eHt7//NK/WcPDw9OnjzJsWPH0owLDw9/bgH44MEDwsPD0yzdnj17VtU+hLbGw8ODwMDANIWen58frq6ulk5PCPHYjz/+qLj4c3Z2JjQ0NN2m587OzlZb/AG4ubk9s1h79913adu2LStWrMhwvOTkZIKDg9MthoVjsIkCcONG06lfe+DkBC1bGujVqxpLltR4qqD7b4Hn5eX1zD0a4eHhfPrpp+kWf2Aq8IxG4z+Nkv+7dHv58mUtf5lWL0eOHGnaqgQFBVG0aFFpkSCElbt58yYdO3ZUPG706NF2O+M1e/ZsduzYwYULFzI85uTJk4wcOZIpU6ZomJmwVla/BPzgARQvDvfuWWe7l8zQ66FZM/j6a+VjjUYjISEh9O7dm9jY2Gd+Lm/evCQnJ3Pnzp0sZGr7ChYsmGZvXlBQEHnz5rWrgxiyBCwchdFo5OOPP+aHH35QNO6VV15h9+7ddn3wYefOndSpU0fRGJ1Ox65du6hZs6ZGWQlrZfW/E1assK/iD0x7GNesgUmTQElT9jt37tCxY8cMfeO7ceNGFjK0LU5OTpQsWTLNsm1gYCDZM3oVixDCJnz11VeKiz8PDw9WrVpl18UfQO3atenduzdz5szJ8Bij0Ujr1q05duyYVexnFuZj1b8bUlJgxgz7Kv5SOTnBvHkwbVrGPv/777/z2WefOfTSrZub2z+Nkp98BQQE4J56tFoIYbcuXbpEjx49FI+bPHmyw/S9mzRpEr/88gsREREZHnP27FkGDBigelcKYd2sugDctAns9XarlBRYtAhGjYLn/dCVlJTE6NGjmTRpksM0T/bx8Um3rYo19+gSQmjLaDTSvn177t+/r2hcnTp1MlU02ioPDw9CQ0OpUaMGKQpaZixatIgmTZrw1ltvaZidsCZWXQDOmGHaL2erbV9e5NEjWLXq2Y2tz5w5w6effsqBAwfMm5iZ5MuXL91GyQULFrSr/XlCiKxbtGgRv/76q6Ix2bJlY8WKFQ53sKtatWoMHTqUcePGKRrXrl07Tp48SY4cOTTKTFgTqy0AT5wAM11mYVGzZqUtAI1GI19++SXdunXj4cOHlklMRcWLF0+30LPmpqtCCOsRHR1N//79FY+bM2cORYsW1SAj6zd8+HB++uknjhw5kuExV65coUePHnz11VcaZiashdUWgDt2mPbJ2XNLOqMRzpyBK1egYEHTe/fv36dbt258nZkjwhbk7OycplFymTJlKF26NJ6enpZOTwhho1JSUmjduvVzux6k57333qN169YaZWX9XF1dCQ0N5eWXXyYxMTHD477++ms++OADPv74Yw2zE9bAagvAAwfAUVYBDx6E99+HvXv30rJlS86fP2/plJ7J09OTwMDANG1VSpUqhYuLi6XTE0LYmenTp7N3715FY3Lnzs2SJUscfitJuXLlGD9+PAMHDlQ0rkuXLtSsWZP8+fNrlJmwBlZbAO7ZY469f8lAaeBt4L+XiXcBtgH7gLyaZeDsDPv2GTh2bDxjx45VtGlXS7ly5Up32bZIkSIOt59GCGEZJ06cYOTIkYrHLVq0iHz58mmQke3p27cvP/74I7sV7Km6ffs2nTp1YuPGjQ5fRNszqywA79wxXfumPWdgMNAHGAXkevz+JGAdsBctiz8wFbl//JHAq6/epXDhwoq6uKuhcOHCaYq8MmXKkCdPHrPmIYQQT0pMTKRVq1aKli8BPvvsMz766CONsrI9er2elStXUrFiRR49epThcZs2bWLlypW0bdtWw+yEJVnlTSC//GK6L9c8EgE/oAMwEvgK6AhsB2qYJQMvL9ONJzqdkWPHjrF+/Xo2bNjA8ePHVYnv5OREqVKl0rRVCQwMxMfHR5VnCMuSm0CEvRk2bBgTJ05UNKZQoUKcPHkSX19fbZKyYYsXL6ZLly6Kxvj4+HD8+HGKFy+uTVLCoqxyBjAqyrT/zzylqSswEBgLVMFUCH6JuYo/MLWDuXED8ufXUalSJSpVqsSYMWM4c+YMGzduZMOGDezevTtTfQCnTJlC79695bJvIYTN2L9/P5MnT1Y8bvny5VL8PUOnTp3YsGEDv/zyS4bHxMTE0LZtW3777TfZ+mOHrPK/aGysqf+f+XQA9MC7mJZ/zb98EBeX9r1SpUrRt29fdu3axbVr11i2bBlvv/22omLuwYMHUvwJIWxGbGwsrVu3xqCwBUTXrl1p0KCBRlnZPp1Ox7JlyxQXyL///jtffPGFNkkJi7LKAjA+3twngN2B2phm/fqY88H/SK8AfFLevHlp3749P/30Ezdv3uTbb7/l008/feFdt6dPn1YxSyGE0NbgwYOJjIxUNKZUqVJMy+i9mg6sUKFCzJ8/X/G4wYMHEx4erkFGwpKssgC0zK7E48ArlngwoOzX7OPjQ9OmTfnqq6+4ceMGW7dupWvXrhQoUCDNZ8PCwlTMUgghtPPbb78pnm1ycnIiNDQULy8vjbKyLy1atKBp06aKxsTHxxMcHExycrJGWQlLsMoC0MPD3EVgHBAOvGzOhz4ls72SXV1dadCgAQsWLODSpUvs37+fwYMH/3PxeXR0NElJSSpmKoQQ6rt//36mTpwOGDCAGjXMt2fb1ul0OhYsWKC4Tc7BgweZNGmSRlkJS7DKAtDT09z3/x4FUoCXzPnQp3h4ZD2Gk5MTr7zyCpMmTSI8PJywsDDGjRvHnTt3sh5cCCE01Lt3b/7++29FY8qXL8+YMWM0ysh+5c6dm2XLlikeN3bsWA4fPqxBRsISrLIA9Pc39wzgYcAb8DfnQ//h5QV5NWg3GBgYyODBg6UhqhDCqm3cuJFVq1YpGuPi4kJoaKgccsukd955R3E7qOTkZIKDg4mPj9coK2FOVlkAVq1q7id2B2KwxL8Onc7065UT9kIIR3Tz5k06deqkeNzo0aOpVKmS+gk5kFmzZlGsWDFFY06dOpWp21mE9bHKsiNXLiha1NJZmIdeD9WrWzoLIYQwP6PRSOfOnblx44aica+++qri+21FWtmyZWPlypWKx02fPp0///xT/YSEWVllAQhQs6a5ewFaRnIyVKtm6SyEEML8vvzyS9avX69ojIeHB6tWrcLZ2SrvMbA5b775Jn369FE0xmg00qZNGx4+fKhNUsIsrLYArFbNUu1gzE8KQCGEo/n777/p2bOn4nFTpkwhICBAg4wc18SJEwkMDFQ05uzZs/Tv31+jjIQ5WG0BWLs2KGwEb3N0OihZEgoWtHQmQghhPkajkfbt23P//n1F4+rUqUP37t01yspxeXh4EBoail7hstvixYsVXS0nrIvVFoAVKsBrr9n/MvDnn1s6AyGEMK+FCxeybds2RWOyZcvGihUr5E5ajVStWpWhQ4cqHte+fXtpNWajrPp3Ur9+5u4HaF5eXtCmjaWzEEII84mKimLAgAGKx82dO5eijnI60EKGDx/OSy8p64d75coVevTooVFGQktWXQC+9x4UKWLpLLSh10OXLuDtbelMhBDCPFJSUmjdujWxsbGKxr3//vsEBwdrlJVI5erqmqneit988w3fffedRlkJrVh1AajXQ9++pr1y9sZgAPmhSQjhSKZNm8a+ffsUjcmdOzdLlixBZ49/EFihsmXLMn78eMXjunbtyrVr1zTISGjFqgtAgHbtwNfXvopAvR6aNweF/TeFEMJmHT9+PFMNhBcvXkxeLa5KEs/0+eefU6tWLUVjbt++TceOHTE6SvsOO2D1jZSyZYMVK6BJE0tnog4nJ8iRw0CZMktYtswZb29vvL298fHx+efvn3wpPZUlhBDWJjExkeDgYJKSkhSNa9WqFR9++KFGWYln0ev1rFy5kgoVKvDo0aMMj/vpp59YsWKF4ivmhGVYfQEI8P770KEDLF9u+61hDAb46isnvvpqHyNGhL7w8x4eHmmKwv8Wi+n988svv4yfn58ZfkVCCPF8Y8aM4dixY4rGFC5cmLlz52qUkXiRkiVLMnPmTDp37qxoXO/evalTpw7FixfXJjGhGpsoAAFmz4bffoOLF233ZLCTE/TsCQ0aQLVqc/jtt9+4fPnyc8fExcURFxfHzZs3M/wcNzc3wsPDs5quEEJk2b59+5g8ebLiccuXL8fX11f9hESGdezYkQ0bNvDzzz9neMzDhw9p06YNO3bskJY9Vs5m/ut4ecHatbZ7O4heD/7+kPp90NfXl5CQEE2e1adPH/npSwhhcY8ePaJ169YYFC7ddOvWjfr162uUlcgonU7HsmXLyJEjh6Jxf/zxh8ze2gCbKQABqlaFhQstnYVyej1kzw4bNoC7+7/vv/XWW4qn118kT548DBkyRNWYQgiRGYMHDyYqKkrRGD8/P6ZOnapRRkKpggULMn/+fMXjhgwZIitRVs6mCkCATp1g3jxLZ5Fxer3pIMuuXZDeVYvTpk2jRIkSqj1v7NixZM+eXbV4QgiRGb/99hvzFH6zdnJyIjQ0FC8vL42yEpnRvHlzmjZtqmhMfHw8rVq1UnzwR5iPzRWAAN27w6JFptYw1twextkZcuc2FX9ly6b/GR8fH1asWKHK8zw8PGjUqJEqsYQQIrPu3btHm0xcczRw4ECqV6+ufkIiS3Q6HQsWLCB//vyKxh06dIhJkyZplJXIKpssAAE6dzYtqbq6Wud9wXo9+PnBoUNQrtzzP/vGG2/Qp0+fLD8zLi6OoKAgRo0axcOHD7McTwghMqN3795cunRJ0ZgKFSowevRobRISWZY7d26WLVumeNy4ceP466+/NMhIZJXNFoBguipu717T0qq1zASmFqOtWsH+/VC4cMbGTZw4kYCAgCw/Py4ujrFjxxIQEMCKFStIsdUj00IIm7RhwwZCQ1/c4upJLi4umbqCTJjX22+/Tfv27RWNSU5OJjg4mPj4eI2yEpll0wUgwEsvwZEjMGUKuLmZll0tRaeDokVhxw5T82olW/E8PDxYtWqVasfmr169Srt27ahSpQo7duxQJaYQQjzPjRs36NSpk+JxY8aMoWLFihpkJNQ2c+ZMiim8xur06dOMGDFCo4xEZtl8AQjg4gIDBkBYGNSubXrPnO2HnJ1Nr+HD4fTpf3NQ6tVXX2XQoEGq5nb06FHq1q3Le++9R0REhKqxhRAildFopEuXLop6loLp+96AAQM0ykqoLVu2bKxcuVLxuBkzZrBr1y71ExKZZhcFYKoSJWDrVvj+e3jtNdN7Wu0PdHIyzfi5u5uWe48dg7Fjn27zkhmjRo2ifPny6iT5hE2bNlGuXDl69uzJrVu3VI8vhHBsX375JevXr1c0xsPDg9DQUJwtuXQjFHvzzTf5/PPPFY0xGo20adOGmJgYjbISStlVAQimouzDD00nbyMjTTODuXKZvqbG95jUGBUrmk4iX79uuqKuTJmsxwbTLR6rVq3S5BticnIy8+bNw8/Pj+nTp5OQkKD6M4QQjufvv/+mR48eisdNnToVf39/DTISWpswYQJBQUGKxpw7d47+/ftrlJFQyu4KwCf5+8OkSXD1qunEcNu2ULmy6eRwKhcX0yxh6pKxTmf6Z2fnp2cPfX2hbl3o1w+OHoXDh009CbNlUz/vypUrM3LkSPUDP3b//n0GDBhAUFAQ69atw2ir16sIISzOYDDQrl07Hjx4oGhc3bp16datm0ZZCa2lzt7qFS6zLVmyRNHVckI7OqMD/umfnAwREaZC7uhRuHkT4uPh7t1YvLw88PDQ4e4OJUtCpUqmV8GC5j1pnJSURPXq1c1yfP61115j5syZVKtWTfNnCW00aNCAbdu2ZeizISEhtGvXTuOMhKOYP3++4tm/7Nmzc+LECYoUKaJRVsJcRo0axdixYxWNKVCgACdPniRnzpwaZSUywiELwGdp1qwZTZs2VdzxXCunTp3i5ZdfNttS7aeffsqkSZMoWrSoWZ4n1CMFoLCEqKgoKlasSFxcnKJxq1atIjg4WKOshDklJSXx6quvcvjwYUXjmjdvzjfffKNRViIj7HoJWImTJ0/y3XffMWbMGMUXl2ulbNmyjBs3Lt2vjRs3Dj8/P1Wf9/XXXxMQEMDQoUMVL+cIIRxLan83pcVfkyZNaNWqlUZZCXPLbA/HNWvW8O2332qUlcgIKQAfS53CPnXqFN9//72Fs/lX3759qVGjxlPvffTRRwwfPpxTp04xa9YscuTIodrzEhISmDRpEv7+/ixevJjk5GTVYgsh7Me0adPYv3+/ojF58uRh8eLF6Kylc79QRdmyZZkwYYLicV27duXq1asaZCQyQgpA/p39S2VNs4B6vZ5Vq1bh6ekJmH7amjJlCgCurq706dOH6Oho+vTpo+rJ4Rs3btClSxcqVarE1q1bVYsrhLB9x44dY9SoUYrHLV68mLx582qQkbC0Pn36UKtWLUVj7ty5Q8eOHeUgooVIAQhpNrBa2yygn5/fP0Vfz549KVWq1FNfz5kzJ7NmzeL06dN88MEHqj771KlTNGzYkIYNG3Ly5ElVYwshbE9CQgLBwcEkJSUpGhccHKz69ydhPfR6PStXrsTLy0vRuM2bN7N8+XKNshLP4/AF4H9n/1JZ0ywgQLdu3WjWrBnDhw9/5mf8/f354Ycf+P3333nppZdUff7WrVupWLEiXbp04fr166rGFkLYjjFjxnD8+HFFYwoXLsycOXM0ykhYi5IlSzJz5kzF4/r06cO5c+c0yEg8j8MXgM86vm5ts4BOTk588803Gdrv98Ybb3Dw4EFCQ0MpVKiQajkYDAYWL16Mv78/kyZNUrz5Wwhh2/bu3fvPaoQSK1aswNfXV/2EhNXp2LEjjRo1UjTm4cOHtG3b1qomXRyBQxeAz5r9S2Vts4BOCi44dnJyolWrVkRGRjJ27FjF0/LPExMTw9ChQwkMDOTrr7+2qn9HQghtPHr0iNatWyv+/d69e3fq1aunUVbC2uh0OpYtW6b4cOIff/whs8Rm5tAF4IuaV1rbLGBmeHp6MmLECKKiomjfvr2qp+8uXrxIy5YtqV69Onv27FEtrhDC+gwaNIjo6GhFY57cvywcR8GCBVmwYIHicUOGDCEsLEyDjER6HLYAbNWq1XNn/1K1bt2aDRs2aJ+QxgoUKMCyZcs4cuQIdevWVTX2gQMHqFmzJk2bNuXs2bOqxhZCWN727duZP3++ojFOTk6EhoaquvogbEfz5s1p1qyZojGZPWAkMsdhC8CM3poQFxfHL7/8onE25lOxYkW2bdvGTz/9RGBgoKqx161bR1BQEAMGDODevXuqxhZCWMa9e/do27at4nGDBg2ievXqGmQkbMWCBQvInz+/ojGHDh1i4sSJGmUknuSQBeDJkycVnWTdtGmTXe1z0+l0vP322xw/fpz58+eTO3du1WInJiYyffp0/Pz8mDdvnvwkJ4SN69WrF5cuXVI0pkKFCpnqEyjsS65cuVi2bJnicePHj+evv/7SICPxJIcsAJVeXH3lyhWb3wuYHhcXF7p160Z0dDQDBw7E1dVVtdi3b9+mZ8+elC9fnk2bNkmjTyFs0Pr161m9erWiMS4uLqxevVrx1WDCPr399tt06NBB0ZjUawbj4+M1ykqAAxaALzr5+yzWdiJYTdmzZ2fKlCmEh4cr3rPxIhEREbz33nvUq1ePo0ePqhpbCKGdGzdu0LlzZ8Xjxo4dS4UKFTTISNiqmTNnUrx4cUVjTp8+/dy+tyLrHK4AVDr7l8oeTgS/SIkSJVi7di179uzhlVdeUTX2jh07eOmll2jXrh1XrlxRNbYQQl1Go5HOnTtz8+ZNReOqV6/OgAEDNMpK2CofHx9WrlypuAvFzJkz+eOPPzTKSjhUAZjZ2b9U9jwL+KQaNWqwb98+vvnmG4oVK6ZaXKPRyIoVK/D392fs2LE8evRItdhCCPWsXr1acfcDT09PVq1ahV6v1yYpYdPeeOMN+vTpo2iM0WikTZs2xMTEaJOUg3OoAjCzs3+pHGEWMJVOp6N58+aEh4czefJkfHx8VIsdGxvLqFGjCAgIYNWqVQ5RVAthKy5evEjPnj0Vj5s6dSr+/v4aZCTsxYQJEwgKClI05vz58/Tr10+jjBybwxSAWZ39S+Uos4Cp3N3d/2kA27VrV0W3kbzIlStXaNOmDVWqVGHnzp2qxRVCZI7BYKBdu3Y8ePBA0bh69erRtWtXjbIS9sLDw4PQ0FDFs8RLly5ly5YtGmXluBymAMzq7F8qR5oFfFLevHlZsGABx48fV3zP44scOXKEOnXq0KRJEyIjI1WNLYTIuAULFvDbb78pGpM9e3aWL1+u6g+Hwn5VqVIlU4c7OnTowO3btzXIyHE5xO9YtWb/UjnaLOCTypYty5YtW9i6dSvlypVTNfbGjRspW7YsvXv3lt/oQphZZGQkAwcOVDzuiy++oEiRIhpkJOzVsGHDePnllxWNuXr1Kt27d9coI8fkEAWgWrN/qRx1FvBJDRo04OjRoyxZsoR8+fKpFjc5OZm5c+fi5+fHrFmzSExMVC22ECJ9ycnJtG7dmri4OEXjPvjgAz777DONshL2ysXFhdDQUMW9IteuXcvatWs1ysrx2H0BeOvWLe7fv0/9+vWferm4uGQ4RoECBdKM37t3r4ZZ2wa9Xk/Hjh2Jiopi2LBhuLu7qxb73r179O3blzJlyvDDDz9II2khNDR16lT279+vaEyePHlYvHix4tYeQgCUKVOGCRMmKB7XrVs3rl69qkFGDsjooHLlymUEMvQKDg62dLo24eLFi8bPPvssw/9elbxq1aplPHDggKV/iVarfv36Gf53GRISYul0hRU5evSo0cXFRfHvyfXr11s6dWHjkpOTja+//rri//caN25sNBgMlk7f5jlnuYIU4rEiRYqwevVqevXqRb9+/fjzzz9Vi/3nn39SrVo1PvvsMyZOnCh7joRQQUJCAq1atVJ8Z3fr1q1p0qSJNkkJh6HX61m5ciUVKlTg4cOHGR63ZcsWQkJC0r9izmiEK1fg6FHT6+xZiI83vVJSwN3d9MqTBypVMr1KlwZnxyuHHO9XLDRXtWpV/vjjD9avX8/AgQM5c+aMarG//PJL1q1bR79+/Rg0aJCq/QmFcDSjR4/mxIkTisYUKVKEOXPmaJSRcDQlSpRg5syZdOrUSdG4zz//nLp161KiRAk4dgzWrIGDB+HwYbh71/QhvR50OlNRaDCY/urkZHrpdJD6g4+rK5QtC1WqwNtvQ+PGoGCbmK2y+z2AwjJ0Oh0ffvghp06dYsaMGfj6+qoWOz4+ngkTJuDv78/SpUtJSUlRLbYQjmLv3r1MnTpV8bgVK1aQPXt2DTISjqpDhw6K24u1ePtt8m3YAJUrm2bxpk+H3377t/gD04xfcrLpr6n7yA0G03tPznonJsKRI7BiBTRpAgULwpAhEB2d1V+aVZMCUGjKzc2Nvn37Eh0dTa9evXBWcZr9+vXrdOrUicqVK7Nt2zbV4gph7x49ekRwcLDidlY9evSgbt26GmUlHJVOp2PZsmXkyJHjhZ+t4evLudq1WbJxI579+sHx46YvJCdnPZHUGLduwbRp4O8Pr78OP/zwbwFpR6QAFGaRK1cu5syZw6lTp3j//fdVjX3ixAkaNGhA48aNOX36tKqxhbBHmdma4e/vz5QpUzTKSDi6ggULsnDhwmd+3Q1YGxDA7pgYiv/5p2lPX+rSrhZSV5b27oWPPoK33oJz57R5loVIASjMKiAggA0bNrBz504qV66sauyff/6ZChUq0LVrV27cuKFqbCHsxbZt21iwYIGiMU5OToSGhuLp6alRVkLAJ598wieffJLm/bc9PbmZJw9No6LQpS7rmktqIbhzJwQFmWYGzfl8DUkBKCzizTff5NChQ6xcuZKCBQuqFjclJYVFixbh5+fHlClTiI+PVy22ELbu3r17tG3bVvG4wYMH8+qrr2qQkRBPmz9/Pvnz5wcgG/BL/vz8FBuLz5076Cy5DJucDAkJMGiQad/hkSOWy0UlUgAKi3FycqJ169ZERkYyZswYVWcXYmJiGDx4MIGBgaxZs0YaSQsB9OrVi8uXLysaU7FiRUaNGqVRRkI8LVeuXISEhODn5sa5fPlocPOm6QvWctjPaISwMKheHTZtsnQ2WSIFoLA4Ly8vRo4cSVRUFO3atVP1ZoELFy7QokULatSowb59+1SLK4St+eGHH1i9erWiMalXdrm6umqUlRBpNS5WjPBs2ch5+7ZpydfapKSYTg6//z4sWWLpbDJNCkBhNQoWLEhISAiHDx+mTp06qsbev38/NWrUoHnz5pyzs428QrzI9evX6dy5s+JxY8eOpUKFChpkJMQznDoFtWqhv3PHuvfaGY2mV+fO8JzDK9ZMCkBhdSpVqsT27dv58ccfKV26tKqx165dS2BgIIMGDeL+/fuqxhbCGhmNRjp37sytW7cUjatRowYDBgzQKCsh0hEebmq78uCB9Sz5ZkS3brB0qaWzUEwKQGGVdDod7777LidOnOCLL74gV65cqsVOTExk6tSp+Pn5sWDBApKt+adMIbIoNDSUjRs3Khrj6enJqlWr0Ov1GmUlxH/ExZmaMN+/b1vFX6quXeHQIUtnoYgUgMKqubi40KNHD6Kjo+nfv7+qe5Fu3bpF9+7dqVChAps3b5aDIsLuXLx4kV69eikeN23aNPz8/DTISIhnGDwYoqJss/hL9ckn8OiRpbPIMCkAhU3w9fVl2rRphIWF0bRpU1Vjh4WF8c4779CgQQOOp3aVF8LGGQwG2rZty4MHDxSNq1+/Pl27dtUoKyHSsXUrzJ2rXVNnc0hJgfPnoW9fS2eSYVIACptSsmRJvv32W3bv3k21atVUjb19+3YqVapEhw4duHr1qqqxhTC3+fPns2PHDkVjsmfPzvLly1U9iS/Ec926BZ99Bk52UI4YDKZTwT/+aOlMMsQO/o0LR/Taa6+xb98+vv76a4oWLapaXKPRSEhICP7+/owbN47Y2FjVYgthLpGRkQwaNEjxuHnz5lG4cGENMhLiGXr1grt3bXv270k6HbRpYzrIYuWkABQ2y8nJiRYtWhAeHs7EiRPx9vZWLfajR48YOXIkAQEBrF69GoO9fHMSdi85OZng4GDi4uIUjfvwww9p2bKlRlkJkY7z52HNGtve9/dfRiPcuwcrVlg6kxeSAlDYPA8PD4YMGUJ0dDSdO3fGScWlhMuXLxMcHEy1atX4448/VIsrhFamTJnC//73P0Vj8ubNy6JFi2TpV5jXvHn2sfSbnpkzrb6wtdN/88IR5cuXj0WLFnHs2DEaNmyoauy//vqLN998kw8//JCoqChVYwuhlqNHjzJmzBjF45YsWUKePHk0yEiIZ4iJgcWLrb5IyhSjES5ehJ9+snQmzyUFoLA75cqV4+eff+bnn3+mbNmyqsZev349ZcuW5fPPP+fOnTuqxhYiKxISEmjVqhVJSUmKxrVp04b3339fo6yEeIaVK22qZYpiej1Mn27pLJ5LCkBhtxo2bMjRo0dZvHgxefPmVS1uUlISs2fPxs/Pj9mzZ5OYmKhabCEya9SoUZw8eVLRmKJFizJ79mxtEhLieez9/7uUFNi9G06csHQmzyQFoLBrzs7OdOrUiaioKIYMGYKbm5tqse/evcvnn39O2bJl2bBhgzSSFhazZ88epk2bpnjcihUryJ49uwYZCfEcly/D2bOmpVJ75uQEO3daOotnkgJQOIRs2bIxceJEIiIi+PTTT1WNHR0dzQcffMCbb77JX3/9pWpsIV7k4cOHtG7dWvFJ9Z49e1KnTh2NshLiOQ4c0Cy0AQgE/tsEaSvgCnyn2ZPTodNp+mvNKikAhUMpVqwYX331Ff/73/947bXXVI29a9cuqlSpQuvWrbl06ZKqsYV4loEDB3LmzBlFYwICApg8ebJGGQnxAgcOgLOzJqGdgCHAQuDu4/eOAU2BiY//ajYpKbBnjzmfqIgUgMIhVatWjT///JPvvvuOEiVKqBo7NDSUgIAARo4cycOHD1WNLcSTfv31VxYuXKhojJOTE6GhoXh6emqUlRAvsG8fJCdrFr4lkBuYC1wC3gZaAf01e+JznD8PVnpgUApA4bB0Oh0ff/wxYWFhTJ8+XdW9UHFxcYwbNw5/f39CQkJIscdWB8Ki7t69S7t27RSPGzJkCK+88ooGGQmRAQYDHDyo6SOcMS0BzwUaAy89/nuL0fjXm1lSAAqH5+bmRr9+/YiOjqZHjx7o9XrVYl+7do0OHTrw0ksvsX37dtXiCtGrVy8uX76saEylSpUYOXKkRhkJkQE3boAZrthsCcQCRuAb4L/f1T8AcgAfa52ITgeRkVo/JVOkABTisdy5c/PFF19w8uRJ3n33XVVjHz9+nPr16/POO+8QFhamamzheL7//nu+/PJLRWNcXV0JDQ3F1dVVo6yEyAAz3a/e4/Ffb5G2+APoBYSaIxG9HhRey2guUgAK8R+BgYH8+OOP/Pbbb1SqVEnV2Js3b6Z8+fL06NGDmzdvqhpbOIbr16/TuXNnxePGjh1L+fLlNchICAXMUAyNADYD+4FkICSdz9QGfDTPBNMMoBSAQtiWOnXqcOjQIZYvX06BAgVUi5uSksL8+fPx8/Nj2rRpJCQkqBZb2Dej0UinTp24ffu2onE1atSgf3+LbIEXwqyWATOATUBFoA8wFVB2P45jkAJQiOfQ6/W0bduWyMhIRo0ahYeHh2qxHzx4wMCBAwkKCuK7776TRtLihVatWsWPP/6oaIynpyerVq1SdW+rEJmm4vfQ//oZ6A58Cbz6+L2ewANgtWZPfQGjUdNfc1ZIAShEBnh7ezN69GiioqJo06YNOp1Otdjnzp2jWbNm1KxZk/3796sWV9iXCxcu0Lt3b8Xjpk+fjp+fnwYZCZEJGrUf+gtTj7+pwIdPvJ8NUxE4GbBIL4aUFCkAhbAHhQoVYsWKFRw6dIg333xT1dh79+6levXqtGjRgvPnz6saW9g2g8FA27ZtefDggaJxDRo0oEuXLhplJUQm5M2rSRH4MvAQSO9HpLFAJOkfBtGc0QgBAZZ48gtJAShEJrz00kvs2LGDjRs34u/vr2rsNWvWEBgYyJAhQxT/gS/s07x589ip8E7R7NmzExISoupstRBZ5uQEVataOgvewjRjuAUoDGjaqc8Kfr3pkQJQiEzS6XS89957nDx5kjlz5pAzZ07VYickJDB58mT8/PxYtGgRyRp2zRfWLSIigkGD/nuz6YvNnz+fwoULa5CREFlUvbpmV8Fl1FbgJqZegZcAzUq04sVBxT8b1CQFoBBZ5OrqSq9evYiOjqZv3764uLioFvvmzZt07dqVihUr8ssvv6gWV9iG5ORkgoODiY+PVzTuo48+4tNPP9UoKyGyqFo1Ta+Csxp6Pah857yapAAUQiU5cuRgxowZnD59mo8++kjV2KdPn6ZRo0a89dZbnDhxQtXYwnpNmTKFAwcOKBqTN29eFi5cKEu/wnpVq2bpDMzDaLTqX6sUgEKozM/Pj3Xr1rFr1y6qVKmiauxff/2VSpUq0alTJ65du6ZqbGFdjhw5wujRoxWPW7p0KXny5FE/ISHUUqgQlCxpapJszwwGqF3b0lk8kxSAQmikVq1a/O9//+PLL79UdS+WwWBg6dKl+Pv7M3HiROKstMu8yLyEhASCg4MV7/1s27Yt7733nkZZCaGiPn0snYG29HqoWROs+PYdKQCF0JCTkxMtW7YkIiKC8ePH4+3trVrshw8fMmzYMEqXLs3Vq1dViyssb+TIkZw8eVLRmKJFizJ79mxtEhJCbW3bgpeXpbPQTkoKWPntO1IACmEGnp6eDBs2jKioKDp27IiTk3q/9f7++2/FxYKwXnv27GHatGmKx61cuZJs2bJpkJEQGvD2hs6dTTNl9kang6JF4Z13LJ3Jc0kBKIQZ5c+fnyVLlnD06FHq169v6XSElXn48CGtW7dWfC1gr169qG3Fe42ESFePHqZ9cvaob1+rL26lABTCAsqXL8/WrVvZsmULZcqUsXQ6wkoMGDCAM2fOKBoTEBDApEmTNMpICA0VLw7Nm1t9oaSITge+vqYlbisnBaAQFqLT6WjUqBHHjh1j4cKFcnLTwW3dupVFixYpGqPX61m9ejWeGt2vKoTm5s41NUpWcVuMRRmNsGoV2MB2DDv5Ny6E7XJ2dqZLly5ERUUxaNAg3NzcLJ2SMLO7d+/Srl07xeOGDBlCNSvuMybEC+XODatX28dSsJMTdOoE775r6UwyRApAIaxE9uzZmTx5MuHh4TRv3lyz51y4cEGz2CJzevbsyZUrVxSNqVy5MiNGjNAoIyHM6K23oFcv254F1OtNS9ozZ1o6kwyz4X/bQtin4sWL880337Bv3z6qV6+uevxx48bRtm1bLl++rHpsody6dev46quvFI1xdXUlNDQUV1dXjbISwswmTwZ/f9veD7h2rU21tpECUAgr9eqrr7Jnzx7Wrl1L8eLFVYtrNBpZuXIlAQEBjB49mkePHqkWWyhz7do1unTponjcuHHjKFeunAYZCWEhHh6wYQNkz26bReDChaDyzU9akwJQCCum0+lo1qwZYWFhTJ06VdU+b7GxsYwZMwZ/f39WrFhBSkqKarHFixmNRjp16sTt27cVjXvttdfo16+fRlkJYUGBgbBrl+kAhS0VgQsWQMeOls5CMSkAhbAB7u7uDBgwgOjoaLp3745exW+OV69epV27dlSpUoUdO3aoFlc838qVK9m0aZOiMV5eXqxatUrV//5CWJWyZeHPP02HQ5ydLZ3Ns+l0ptfixdC1q6WzyRQpAIWwIXny5GHevHmcOHGCt99+W9XYR48epW7durz//vtERESoGls87cKFC/Tu3VvxuOnTp1OqVCkNMhLCipQtC4cOgZ+fdc4E6vXg5gY//mg69WujpAAUwgYFBQXx008/sW3bNipUqKBq7B9//JFy5crRq1cvbt26pWpsAQaDgTZt2hATE6No3FtvvUXnzp01ykoIK1O4MOzfD61amf7ZWgpBnQ6CgmDvXqu/6u1FpAAUwobVq1ePw4cPq36bSHJyMl988QV+fn7MmDGDhIQEVeM7si+++ILff/9d0RhfX19CQkLQ6XTaJCWENcqeHVasgB07THfrWvL/f2dncHeHqVPhyBGoXNlyuahECkAhbJxer6dQoUKaxL5//z79+/enTJkyrFu3TvEdteJp4eHhDB48WPG4+fPna/bfWAirV7s2nD4Nw4ebCjFz7g1MnXmsU8eUQ//+1r03UQEpAIUQL3T27FmaNm1KrVq1OHDggKXTsUnJycm0bt2a+Ph4ReM+/vhjWrRooVFWQtgId3cYOxaOHTMtC7u7m2YEtWoenVr4vfYafP89/PILlCihzbMsRApAIUSG7dmzh1deeYWWLVty8eJFS6djUyZPnqy4eM6XLx8LFy6UpV8hUpUpA8uXw/XrsGgRVKxoet/ZOetLxKkze7lzw8CBEBUFf/wBH35o2eVnjUgBKIRQ7Ouvv6Z06dIMGzZM8WEGR3T48GHGjBmjeNzSpUvJnTu3BhkJYeOyZTOdwD182DQr2L8/1K0LOXL8+xm93lTU6fX/FnBOTqb3XFz+/ZyrK7z0ErRrBxs3wtWrMHGi6RSyHbOPhWwhhNnFx8czceJEli1bxrhx42jXrh3OdrI3Rk3x8fEEBweTnJysaFzbtm1510YulRfCoipUML0AjEZTAXf0qOl19izEx5teKSmmpWN3d8iTBypVMr0CAuxmX58SjvcrFsLB1a9fn507dyouSJ7lxo0bdO7cmblz5zJjxgzeeustVeLai5EjR3Lq1ClFY4oVK8bs2bO1SUgIe6bTQcGCplfjxpbOxqrpjHZ+rO/WrVu0bNkyzenF33//naSkpAzFyJ8/P+XLl3/qvbJlyzJr1izV8hQiKxo0aMC2bdsy9NmQkBBq1arFoEGDWL9+veq5NGzYkOnTp1O2bFnVY9ua3bt38/rrrys+Pb1jxw5q166tUVZCCOEAM4C5c+cme/bsfPfdd5mOce3aNa5du/bUex1t8N4/IVL5+/vzww8/8Mcff9CvXz/++usv1WL/8ssv/Prrr3Ts2JExY8aQL18+1WLbkocPH9K6dWvFxV/v3r2l+BNCaM4hDoGMHDlS1Xhly5blo48+UjWmEJbwxhtvcODAAUJDQ1XtM2cwGFi8eDH+/v5MnjxZcesTe9C/f3/Onj2raEzp0qWZNGmSRhkJIcS/HKIALFeuHE2bNlUt3qhRo3DSqveQEGbm5OREq1atiIyMZNy4cXh5eakWOyYmhiFDhlC6dGm++eYbh2kk/csvv7B48WJFY/R6PaGhoXh4eGiUlRBC/Mthqhi1ZgFl9k/YK09PT4YPH05UVBTt27dXtffcxYsX+fTTT3n11VfZs2ePanGt0d27d2nfvr3icUOHDqVatWoaZCSEEGk5TAGo1iygzP4Je1egQAGWLVvGkSNHqFevnqqxDxw4QM2aNWnWrJni5VFb0aNHD65cuaJoTOXKlRk+fLhGGQkhRFoOVclkdRZQZv+EI6lYsSK//vormzdvJjAwUNXY3333HUFBQQwYMIB79+6pGtuSvvvuO77++mtFY1xdXQkNDcXV1VWjrIQQIi2HKgCzOgsos3/C0eh0Oho3bszx48eZP3++qrdSJCYmMn36dPz8/Jg3b16G2zJZq2vXrtG1a1fF48aPH0+5cuU0yEgIIZ7N4aqZzM4CyuyfcGQuLi5069aN6OhoBg4cqOps1e3bt+nZsyfly5fnp59+ssmDIkajkY4dO3L79m1F42rWrEnfvn01ykoIIZ7N4QrAzM4CyuyfEJA9e3amTJlCeHg4zZo1UzV2REQE7777LvXq1ePo0aOqxtbaihUr+OmnnxSN8fLyYtWqVej1eo2yEkKIZ3PIikbpLGDBggVl9k+IJ5QoUYK1a9eyZ88eXn31VVVj79ixg5deeon27dsrPkxhCefPn6dPnz6Kx82YMYOSJUuqn5AQQmSAQxaA5cqVU3Q7wbvvviuzf0Kko0aNGuzdu5c1a9ZQrFgx1eIajUaWL1+Ov78/Y8eO5dGjR6rFVpPBYKBt27bExMQoGtewYUM6deqkUVZCCPFiDlvV1K9fP0Of8/DwoGHDhhpnI4Tt0ul0fPLJJ4SHhzN58mR8fHxUix0bG8uoUaMoXbo0q1atwmAwqBZbDXPnzuX3339XNMbX15dly5ap2mdRCCGUctgCcPXq1RnaC7hq1SqaNGmifUJC2Dh3d3cGDRpEdHQ0Xbt2VXXW/PLly7Rp04aqVasqLri0Eh4ezpAhQxSPW7BggarX7gkhRGY4bAEIL94LKCd/hVAub968LFiwgOPHj9OoUSNVYx8+fJjatWvTpEkTIiMjVY2tRHJyMsHBwYrvOG7atCnNmzfXKCshhMg4hy4AX3QiWE7+CpF5ZcuWZcuWLWzdupXy5curGnvjxo2ULVuWPn36cOfOHVVjZ8SkSZM4ePCgojH58uVjwYIFsvQrhLAKDl/dPGsWUGb/hFBHgwYNOHLkCEuXLlV0+OpFkpOTmTNnDqVKlWLWrFkkJiaqFvt5Dh8+zNixYxWPW7ZsmaqNtIUQIiscvgB81iygzP4JoR69Xk+HDh2Iiopi2LBhuLu7qxb73r179O3blzJlyvDDDz9o2kg6Pj6eVq1akZycrGhcu3bteOeddzTKSgghlJMKh7SzgDL7J4Q2fHx8GD9+PJGRkXz22Weqxj5z5gwfffQRb7zxBocOHVI1dqoRI0Zw+vRpRWOKFSvGrFmzNMlHCCEySwpA0s4CyuyfENoqUqQIq1ev5sCBA9SqVUvV2H/++SdVq1alVatW/P3336rGnTFjhuJxK1euJFu2bKrlIYQQapAq57HUWUCZ/RPCfKpWrcoff/zB999/T6lSpVSN/eWXXxIQEMCIESMUN2r+r4cPH9KmTRvFy8t9+vThzTffzNKzhRBCC1IAPpY6Cyizf0KYl06n48MPP+T06dPMnDkTX19f1WLHx8czfvx4/P39Wbp0KSkpKZmK079/f86ePatoTGBgIBMnTszU84QQQms6o5Y7pq2VIRkehMPdo6ZXwk1IiSf24V08PL3Q6T1A7w7eJSFHJdPLoxBI+wZhpRo0aMC2bdsy9NmQkBDatWuncUaZd/v2bcaNG8f8+fMVH7Z4kfLlyzNjxowM3wQE8PPPP9O4cWNFz9Hr9ezbt4+qVasqTVEIIczC2dIJmIUhCS5vhiub4fYheHDK9B6AzgUwgNGIJwa4A+icME2OGsH4eMbAxRdyvgS5qkKxFpCjokV+KULYu1y5cjF79my6devGwIED2bhxo2qxT5w4QYMGDWjcuDHTpk2jTJkyz/38nTt3aN++veLnDBs2TIo/IYRVs++1zgdRcHQw/FAA/vwAzq6Ee0f/Lf4AjEmPi7wn7hg1GsCY/G/xB5B0D67vgLAZ8HMl+LkyRC2GpAdm+aUI4WgCAgLYsGEDO3fupHLlyqrG3rJlCxUqVKBbt27cuHHjmZ/r0aMHV69eVRT7pZdeYvjw4VlNUQghNGV/BaDRCBe/h2214KcACJsOibcff02F5aTUGHePw8Gu8H0+2NcW7itrDSGEyJg333yTQ4cOsXLlSgoWLKha3JSUFBYuXIi/vz9TpkxJc63bd999xzfffKMoppubG6Ghobi4uKiWpxBCaMG+CsCH52BnA9j9Mdzca3rPmLlN3y9mAIxgiIfzX8KWinBsBKQouxtUCPFiTk5OtG7dmsjISMaMGYOnp6dqsR88eMDgwYMJDAxkzZo1GI1Grl69SteuXRXHGj9+PGXLllUtNyGE0Ip9FICGJDg9FX4Kguu/p75pvucbk02vUxPhpzJwfaf5ni2EA/Hy8mLkyJFERUXRrl07Ve/VvXDhAi1atKBGjRp8/PHH3L59W9H4WrVq8fnnn6uWjxBCaMn2C8A7h0378Y4OBkOCOsu8mWaARxfhtzqwrw0k3rdgLkLYr4IFCxISEsLhw4epU6eOqrH379/P3r17FY3x8vJi5cqV6PV6VXMRQgit2HYBeOlH+LWGqaUL1tLN5vGS8/kv4ddX4ZF6NxEIIZ5WqVIltm/fzqZNmyhdurTF8pg5cyYlS5a02POFEEIp2y0AoxbDriZgSNRwn18WGFMgJhq2VoV7Jy2djRB2S6fT8c4773DixAnmzZtHrly5zPr8Ro0a0bFjR7M+Uwghsso2C8DI+XCwC6ZZP2uZ+UuHMRkSbsH21+HeKUtnI4Rdc3FxoXv37kRHR9O/f39cXV01f2aOHDlYtmyZqnsRhRDCHGyvAIxaDId6WDqLjDOmmHoFbn8d7odbOhsh7J6vry/Tpk0jLCyMpk2bavqsBQsWqNqaRgghzMW2CsBbB+BgN0tnoZwxBZLum5aspU2MEGZRsmRJvv32W3bv3k21atU0ecb27dsVN4oWQghrYDsFYNJD2NPcdu/jNaZAzOObSYQQZvPaa6+xb98+vv76a4oWLapq7JCQEPz9/Rk/fjyxsbGqxhZCCC3ZTgF4+HN4dME6D3xkmAEi5sDVXy2diBAOxcnJiRYtWhAeHs6kSZPw8fFRLfajR48YMWIEpUuXZvXq1RgMZuxBKoQQmWQbBeCljXBmGWZt7qwZJ9jbEuJvWToRIRyOh4cHgwcPJioqig4dOqga+9KlSwQHB1OtWjX++OMPVWMLIYTarL8ATHpgumsXG136TcMAiXfhr16WTkQIh5UvXz6yZ8+uSey//vqLN998kw8//JCoqChNniGEEFll/QXgmeWQdA+rbveilDEFLqwxLWkLIcxu165dzJw5U9NnrF+/nrJly/L5559z584dTZ8lhBBKWXcBaEiB8JnYVfGXSucEkfMsnYUQDicmJoY2bdpgNGr/fSUpKYnZs2fj5+fH7NmzSUxM1PyZQgiREdZdAF7+EWLt9Co1YwpELTKdbhZCmE3//v05d+6cWZ959+5dPv/8c8qWLcuGDRvMUnwKIcTzWHcBGDYDdHZ8uXryIzi70tJZCOEwtmzZwpIlSyz2/OjoaD744APefPNN/vrrL4vlIYQQ1lsA3j0Ot/bYeNuXDAifZekMhHAId+7cydTJ3w4dOvDaa6+pmsuuXbuoUqUKrVu35tKlS6rGFkKIjLDeAvD6Tqw5PXUY4dFZiL1s6USEsHvdu3dXfGvHyy+/zIIFC/jzzz9Zt24dJUuWVDWn0NBQAgICGDlyJA8fynYQIYT5WG+FdfuAZrd+bDkKupbPfjWbq8ljn+32QTM/UAjH8u2337JmzRpFY9zc3AgNDcXFxQWdTsdHH33E6dOnmT59uqotZOLi4hg3bhz+/v6EhISQkmLnqx5CCKtgvQXgzd2aLf/WLgNX5z/9uvQF1C8HuX1gRBNNHps+nbOp2BVCaOLq1at07dpV8bgJEyZQpkyZp95zc3OjX79+REdH07NnT/R69fYoX7t2jQ4dOvDSSy+xfft21eIKIUR6rLMATLgNsRc1C+/hCvl9/33lyQb9v4YjF2DHUCiv7nWhz2dMgVv7zPhAIRyH0WikQ4cOivvw1apViz59+jzz67lz52bu3LmcOnWK9957L4tZPu348ePUr1+fd955h7CwMFVjCyFEKussAM24JJpigM8WwLYT8Ju5iz8AjKZfr9EerrkTwrqEhISwZcsWRWO8vb1ZuXJlhmb3SpcuzcaNG9mxYweVKlXKZJbp27x5M+XLl6dHjx7cvHlT1dhCCGGdBWBMFOa4+i3FAK2eKP4qPFH8fTALcnSEj2drngakPIL4G2Z4kBCO49y5c3z++eeKx82cOVPxYY/atWtz6NAhVqxYQYECBRQ/81lSUlKYP38+fn5+TJs2jfj4eNViCyEcm3UWgCmxmvf/Sy3+fn1c/FUs9vTXezWAUOXbhrKQUJwZHyaEfTMYDLRt21bxydpGjRplqlUMgF6vp02bNkRFRTFq1Cg8PT0zFSc9Dx48YODAgQQFBfHtt99KI2khRJZZZwGYHIeWM4Cpxd/WE7B9SNriD6B2WfBx1yyFtJJjzfgwIezbnDlz+OOPPxSNyZEjB8uWLUOXxe4DXl5ejB49msjISNq0aZPleE86f/48n3zyCa+99hr79+9XLa4QwvFYZwGoUfsXMBV/wQv/Lf4qFdfsUcpo+GsWwpGcPn2aIUOGKB63YMECChYsqFoehQoVYsWKFfz111/Url1btbgA+/bto3r16rRo0YLz58+rGlsI4RisswDUuwPqL3EYHhd/G/6CL7tCAV+4du/pV4qlzmLoPSz0YCHsR1JSEsHBwSQkJCga98knn9C8eXNNcqpcuTK//fYbGzduJCAgQNXYa9asITAwkCFDhvDgwQNVYwsh7JuVFoCemvQAPHgWvt4LsQnQeBoU6J72FWOprXhSAAqRZRMnTlR8x27+/PmZP3++RhmZ6HQ63nvvPU6ePMncuXPJmTOnarETEhKYPHkyfn5+LFq0iOTkZNViCyHsl3UWgD7+aDED+IofGL96/svXS/XHvpjeC9zzWuDBQtiPv/76i/HjxyseFxISQq5cuTTIKC0XFxd69uxJdHQ0ffv2xcXFRbXYN2/epGvXrlSsWJGff/5ZDooIIZ7LOgvAXNUsnQFvTYamc2HLMSjcAw6e0epJOshVFXTW+Z9CCFsQFxdHq1atFM9+dejQgcaNG2uU1bPlyJGDGTNmEBYWxkcffaRq7NOnT9O4cWMaNmzIiRMnVI0thLAf1ll1uOUEz3SO5prR1sFwcxHEroBL86BqKY0epNND7uoaBRfCMQwfPlzxrRnFixdn5syZGmWUMaVKlWLdunXs2rWLqlWrqhr7119/pVKlSnTq1Ilr166pGlsIYfusswAEyPOa5r0ArYIxGXK/YukshLBZf/zxB7NmzVI0RqfTsWrVKnx8fDTKSplatWqxf/9+vvzyS4oUKaJaXIPBwNKlS/H392fChAnExUm/USGEifUWgLmqgaPsYbGCJW8hbFFMTAxt2rRRvN/t888/5/XXX9coq8xxcnKiZcuWREREMGHCBLy9vVWL/fDhQ4YPH07p0qX58ssvMRjk6kkhHJ31FoD56wD2/k1KB96lwEO9q6OEcCT9+vVT3AcvKCiICRMmaJOQCjw8PBg6dChRUVF06tQJJyf1vk3//ffftGrVildeeYU///xTtbhCCNtjvQWgb3nIU9P+l4EDld9VKoSALVu2sHTpUkVj9Ho9oaGhuLub85qfzMmfPz+LFy/m6NGjNGjQQNXYhw4d4vXXX+fjjz/mzBnNTrgJIayY9RaAAIH9NOkHaDWcvaBEa0tnIYTNuX37Nu3bt1c8bsSIEVSpUkWDjLRTvnx5tm7dys8//0yZMmVUjf39998TFBREv379uHv3rqqxhRDWzboLwELvgmdRtLwX2GJ0evDvAi7q7fMRwlF0795d8cnWl19+maFDh2qUkfYaNmzIsWPHWLhwIXny5FEtblJSEjNnzsTPz4+5c+eSlJSkWmwhhPWy7gLQSQ+BfS2dhTaMRgjoaekshLA5a9euZe3atYrGuLm5ERoaqmrjZUtwdnamS5cuREdHM3jwYNzc3FSLfefOHXr37k25cuXYuHGjNJIWws5ZdwEIUKotuPpiV7OAOj0U+wS8ilo6EyFsytWrV+nWrZvicRMnTlR9+dSSsmXLxqRJkwgPD6dFixaqxo6MjKRJkybUqVOHw4cPqxpbCGE9dEZb+DHv0o+w631LZ6ESJwyuOVn0dy+cvfLh7e2Nj48P3t7e/7ye/GdnZ2dLJyxsQIMGDdi2bVuGPhsSEkK7du00zkh9RqORd955hy1btiga9/rrr7Nz505VT9Nam/3799O3b1/27dunalydTkdwcDATJkygUKFCqsYWQliWbVQXhd+DUh3hTAi23xrGgNNrX3Nw6NesXDnyhZ92c3N7boH4rH9++eWX8ff3N8OvRwjzWLZsmeLiz9vbm5UrV9p18Qfw6quvsmfPHtatW8egQYM4d+6cKnGNRiOrVq3iu+++o3///gwYMEDV/oRCCMuxjRlAgORHsLk8xF604ZPBTlC6F7w8i/v371O+fHn+/vtv1Z/i5uZGeHg4xYsXVz22sE72PgN47tw5KlSowMOHDxWNW7p0KR06dNAoK+uUkJDAF198wbhx43jw4IGqsQsUKMCECRMIDg5Gr7fzFl1C2Dnb+bHY2QtqKtv4bVV0esgWAJUmAZA9e3aWL1+uyaP69OkjxZ+wGwaDgTZt2igu/t5+++1MtYqxdW5ubvTv35/o6Gi6d++uaqF29epV2rVrR5UqVdixY4dqcYUQ5mc7BSBArqpQdYGls1BOpweX7FBrPej/bUBbr149unbtquqj8uTJw5AhQ1SNKYQlzZ49m127dikakzNnTpYuXYpOZ0eHxxTKkycP8+bN48SJE7zzzjuqxj569Ch169blvffeIyIiQtXYQgjzsK0CEMCvk20VgTo9uGSD+n9C9sA0X546dSolS5ZU7XFjxowhe/bsqsUTwpJOnTqVqd59CxYsoEABuWIRTFffbdq0ie3bt1OxYkVVY2/atIly5crRs2dPbt26pWpsIYS2bK8ABPDvCtWWYGoNY8U/4eucwS0P1N8N2dNvQZG6SV2NmQp3d3caNWqU5ThCWIOkpCSCg4NJSEhQNK558+Z88sknGmVlu+rWrctff/1FSEgI+fPnVy1ucnIy8+bNw8/Pj+nTpyv+7yWEsAzbLAAB/DrC6xvBydU67wvW6cHHHxoeembxl6pWrVp8/nnW7wSOj4+nTJkyjBw5UvF+KSGszYQJExT3oStQoADz58/XKCPbp9fradeuHVFRUYwcORIPDw/VYt+/f58BAwYQFBTEunXrpJG0EFbOdgtAgMLvQoN9kC0Iq5kJTC1GSwSbcvPMWO+s8ePHExiYdolYqbi4OMaNG4e/vz8hISGkpNjqiWnhyA4dOsT48eMVj1u2bBk5c+bUICP74u3tzZgxY4iMjCQ4OFjV2OfOnaNp06bUqlWLAwcOqBpbCKEe2y4AAXJWhkZHoPJUcHI3LbtajA68ikHdnfDqcnDN+F48Dw8PVq1apVq/smvXrtGhQwdeeukltm/frkpMIcwhLi6O4OBgxT+8dOzYkcaNG2uUlX0qXLgwq1at4tChQ7zxxhuqxt6zZw+vvPIKLVu25OLFi6rGFkJkne0XgABOzhDUH94Jg/x1H79pxmVhnbPpVW4EvH0K8r2ZqTDVqlVj8ODBqqZ2/Phx6tevzzvvvENYWJiqsYXQwrBhwxT/v1qiRAlmzJihUUb27+WXX2bnzp1s2LBB9QbyX3/9NQEBAQwdOlT1voRCiMyzjwIwlXdxePNnqPUD5K1pek+z/YGP/9Xp3U3LvY2PQ4UxT7V5yYyRI0dSoUIFFfJ72ubNmylfvjw9evTg5s2bqscXQg1//PEHs2fPVjRGp9OxcuVKfHx8tEnKQeh0Ot5//31OnjzJ7NmzyZEjh2qxExISmDRpEv7+/ixevJjk5GTVYgshMse+CkAAnQ6KfAD1fod3o6HMINNJXFBheVj3b4yclaHaUvjwBrwaAtmDshjbxM3NjdDQUFxcXFSJ96SUlBTmz5+Pn58f06ZNk9N6wqrExMTQpk0bxYcH+vbty+uvv65RVo7H1dWV3r17Ex0dzeeff67q96IbN27QpUsXKlWqxNatW1WLK4RQzv4KwCf5lIKKE+CDK/D6j1CqPeR4GZzc/v2MzuVxUZf6r0IH6B8v6z4xe+iaE/LXg6ABptm+hofArwO4qD/rULFiRUaOfPE9wZn14MEDBg4cSFBQEN9++62c1hNWoW/fvpw/f17RmDJlymTqsIh4sZw5czJz5kxOnz7Nhx9+qGrsU6dO0bBhQxo2bMjJkydVjS2EyBjbuQtYTYYUiImEu0dNr4SbkBIHKfGmok/vbnp5l4IclUwvD/M2lU1OTqZGjRocPHhQ82dVr16dmTNn8uqrr2r+LKENW78LePPmzYpvq3B2dmb//v28/PLLGmUlnrRr1y769u3LX3/9pWpcJycnOnbsyJgxY8iXL5+qsYUQz+aYBaCNCAsLo3LlymZbqm3evDmTJk2Se4RtkC0XgLdv36ZcuXJcu3ZN0bgxY8ZoOlMu0jIYDHz99dcMGTKES5cuqRrbx8eHIUOG0KdPH1X7Ewoh0mffS8A2LigoiAkTJqT7tfHjx6t+Wm/NmjUEBgYyZMgQOa0nzKZbt26Ki78qVarIndcW4OTkxGeffUZERATjxo3Dy8tLtdgxMTEMHTqUwMBAvv76awwGg2qxhRBpSQFo5fr06UPNmjWfeu/DDz9k2LBhnDx5kjlz5qh+Wm/y5Mn4+fmxaNEiOa0nNLVmzRq+/fZbRWO0PCglMsbT05Phw4cTFRVFhw4dVLnKMtXFixdp2bIl1atXZ8+eParFFUI8TQpAK6fX61m5ciWenp4AuLi4MGXKFMB0Wq9Xr16anNa7efMmXbt2pWLFivzyyy+qxRUi1ZUrV+jWrZvicZMmTSIoSJ1T9yJrChQowNKlSzl69Cj16tVTNfaBAweoWbMmTZs25ezZs6rGFkJIAWgTSpUqxbRp0wDo0aMHfn5+T31dy9N6p0+fplGjRrz11lucOHFC1djCcRmNRjp06MDdu3cVjXvjjTfo3bu3RlmJzKpQoQK//vormzdvVr04X7duHUFBQfTv35979+6pGlsIRyYFoI3o0qULn3zyCSNGjHjmZ/z8/Pj+++/ZtWsXVapUUfX5v/76K5UqVaJTp06K92sJ8V9Lly7l559/VjTG29ublStXqnZdolCXTqejcePGHD9+nAULFpA7d27VYicmJjJjxgz8/PyYN28eSUlJqsUWwlHJd1Ib4eTkxNdff52h/X61atXif//7H6tXr6Zw4cKq5WAwGFi6dCn+/v5MnDiRuLg41WILx3H27Fn69u2reNzs2bPlhLoNcHZ2pmvXrkRHRzNw4EBcXV1Vi3379m169uxJ+fLl2bRpk/QwFSILpA2MnYuNjWXWrFlMmjSJR48eqRq7SJEiTJo0iRYtWsisjIXZShuYlJQUateuzZ9//qlo3Ntvv82mTZtUPWwgzOPcuXMMGTKEtWvXqh67Tp06zJgxg0qVKqkeO8OMRnh0Du4cMfWVjYl63Fc2FgxJoPcwvdxygm/Fx71lK4JLNsvlLARSADqMa9euMXLkSEJCQlRvr1C1alVmzpyZ5rSyMB9bKQBnzJhB//79FY3JmTMnJ0+epEAB8zZjF+rat28fffv2Zf/+/arG1el0tGnThvHjx1OwYEFVYz/T3aNw7ku4tQ/uHoOUxz9c65wBAxj/+z1WZ7pkwJgCPP4j17Mo5KoC+RtA8RZSEAqzk2kbB5E/f36WLFnC0aNHqV+/vqqxDx48SK1atfj44485c+aMqrGF/Th16hTDhg1TPG7hwoVS/NmB6tWrs3fvXtasWaPqUr7RaGTFihX4+/szZswY1Vc6/pH0AKIWwZZK8HNliJgDt/b+W/wBGJPTKf4AjKav8cR8S+xF+HsDHOwK3+eDfW3h5l7TjKIQZiAFoIMpX748W7duZcuWLaqf1vv+++8JCgqiX79+ik93CvuWlJREcHCw4lttWrRoQbNmzTTKSpibTqfjk08+ISwsjClTppAtm3qzXrGxsYwePZqAgABWrlyp3krHg0hTcfZ9XjjYDe4dN71vVKNHqgEwgiEezn8J216Dn0pDxBem5WMhNCQFoAPS6XQ0atTon9N6efLkUS12UlISM2fOxM/Pj7lz58ppPQGYbq45fPiwojEFChRg3rx5GmUkLMnd3Z2BAwcSFRVF165d0ev1qsW+cuUKbdu2pUqVKuzcuTPzgVIS4MRY2FzWVJwZEjDN4Gk0Q5daUMZEw1+94edKcOt/2jxLCKQAdGipp/WioqIYNGiQqqf17ty5Q+/evSlXrhw//vijnNZzYAcPHnzmlYbPExISQs6cOTXISFiLvHnzsmDBAo4fP07jxo1VjX3kyBHq1KlDkyZNiIyMVDb4xp+wpTycGP14WdecNyI9LjIfRMCv1eFgD9PysxAqkwJQkD17diZPnkxERATNmzdXNXZkZCTvv/8+devW5ciRI6rGFtYvLi6O4OBgUlJSFI3r1KkTjRo10igrYW3KlCnD5s2b+fXXXylfvryqsTdu3EjZsmXp3bs3t2/ffv6Hkx7C/zrC9tfh4Vk0m+3LiNQDI9EL4Ud/uPyT5XIRdkkKQPGP4sWL880337Bv3z6qV6+uauydO3fy8ssv07ZtWy5fvqxqbGG9hg0bRnh4uKIxJUqUYPr06RplJKxZ/fr1OXLkCEuXLiVfvnyqxU1OTmbu3Ln4+fkxc+bM9Peixl03FX5nV5j+2ajshxbNGA2QcAv+eA/CZ1s6G2FHpAAUabz66qvs2bOHtWvXqn5ab+XKlQQEBDB69GjtTusJq/D7778za9YsRWN0Oh2rVq3Cx8dHo6yEtdPr9XTo0IGoqCiGDx+Ou7u7arHv3btHv379KFu2LN9///2/W1NizsDWanDvhPUUfk95fFjk8OdwuJ+cFBaqkAJQpEun09GsWTPNTuuNGTOGgIAAVqxYoXh5UFi/Bw8e0KZNG8Xj+vXrR61atdRPSNgcHx8fxo0bR2RkJK1atVI19pkzZ/j444+pU6cOyfciYFtNiLti5r1+mRQ+03RIRIpAkUVSAIrnSj2tFx0dTbdu3VQ/rdeuXTuqVKnCjh07VIsrLK9v375cuHBB0ZiyZcsybtw4jTIStqpIkSKEhoZy8OBBXn/9dVVjv1qhIM47apuWWG2h+EsV+QUcUdZQXYj/kgJQZEiePHmYP38+J06c4O2331Y19tGjR6lbty7vv/8+ERERqsYW5rd582ZCQkIUjXF2diY0NFTV5T5hX6pUqcLvv//ODz/8QKlSpbIczze7N2Pqh0PCTdsq/lKFz4SL31k6C2HDpAAUigQFBfHTTz+xbds2KlSooGrsH3/8kXLlytGrV68Xn9YTVunWrVu0b99e8bgRI0bw0ksvaZCRsCc6nY4PPviA06dPM2vWLHx9fTMda+PEV3F9cMQ2iz8AdLC/A8ResnQiwkZJASgypV69ehw+fJhly5aRP39+1eImJyfzxRdf4Ofnx4wZMxTfHCEsx2g00q1bN65fv65oXNWqVRkyZIhGWQl75OrqSp8+fYiOjqZ37944OzsrGv/ea/mo5bsDi7Z5yTIjpMTC3s+ecf2cEM8nBaDINL1eT/v27YmKimLEiBF4eHioFvvevXv079+fMmXKsG7dOmkkbQPWrFnDd98pW5Jyd3cnNDQUFxcXjbIS9ixXrlzMnj2bU6dO0aRJkwyN8XKDr7oZ0Ol02iZnDsZkuPEHhCs7bS8ESAEoVODt7c3YsWOJiIhQ/bTe2bNnadq0KbVq1eLAgQOqxhbquXLlCt27d1c8btKkSQQGBmqQkXAkAQEBrF+/nt9///2FWwmW9syPl+6OlbZ7yaSjg02tbIRQQApAoRotT+vt2bOHV155hZYtW3Lx4kVVY4usMRqNtG/fnrt37yoa9+abb9KrVy+NshKO6I033uDgwYOsWrWKQoUKpfm6ryd8UvkOOnsq/lJFzLV0BsLGSAEoVJd6Wm/9+vX4+fmpGvvrr7+mdOnSDBs2jJiYGFVji8xZsmQJv/zyi6IxPj4+rFixAicn+RYk1OXk5ERwcDCRkZGMHTsWT0/Pf742t3cFnLDVQx/PYUyGM0sh8b6lMxE2RL77Ck3odDqaNGnCqVOnmDVrFjly5FAtdnx8PBMnTsTPz48lS5aQnGyH39BtxJkzZ+jXr5/icbNnz1b1lhkh/svT05MRI0YQFRVFu3bt8PZyp0Xla5hu1bBDKfFwdrmlsxA2RApAoaknT+v16dNH8Wm957lx4wadO3emcuXKbN26VbW4ImNSUlJo06aN4iv93nnnHdq2batRVkI8rWDBgoSEhHBp31yck25YOh0NGU29AQ12uLwtNCEFoDCLnDlzMmvWLEWn9TLq5MmTNGzYkEaNGnHq1ClVY4tnmzVrFrt371Y0JleuXCxdutQ+TmAKm5L96irQqXeTkVWKvQRXtlg6C2EjpAAUZqXktJ5Sv/zyCxUqVKBLly6Ke9EJZU6ePMmwYcMUj1u4cKGqfSOFyJCUeLj9P/s6+ZsenQvc+N3SWQgbIQWgsIjU03qhoaHpntbLLIPBwOLFi/H392fy5MnEx8erFluYJCYmEhwcTGJioqJxn376KU2bNtUoKyGe4+4xTW/82HIUdC2f/WpmrgO6xiS4tc9MDxO2TgpAYTFOTk60atXqn9N6Xl5eqsWOiYlhyJAhBAYG8s0330gjaRWNHz+eI0eOKBpTsGBB5s2bp1FGQrzA7QOAdtsOapeBq/Offl36AuqXg9w+MKKJZo9O685hMMjBOPFiUgAKi/vvaT0194dduHCBTz/9lOrVq7N3717V4jqqgwcPMnHiRMXjQkJCVD0JLoQitw9ouv/PwxXy+/77ypMN+n8NRy7AjqFQvqhmj07LkAD3ZS+0eDEpAIXVKFCgACEhIRw5coS6deuqGvt///sfr732Gs2aNePs2bOqxnYUcXFxBAcHk5KibB9V586dadiwoUZZCZEBN3drugT8pBQDfLYAtp2A38xd/AGgM+13FOIFpAAUVqdixYps27aNn376SfVrwr777juCgoIYMGAA9+7dUzW2vRs6dCjh4eGKxpQsWZLp06drlJEQGWA0wiPz3B6UYoBWTxR/FR4XfzFxUHUEVBoC5QfB0h0aJqFzhphoDR8g7IUUgMIq6XQ63n77bY4fP878+fPJnTu3arETExOZPn06fn5+zJ8/n6SkJNVi26udO3cye/ZsRWN0Oh2rVq3C29tbm6SEyAhDIuZo/pxa/P36uPirWOzfr3m6wR/D4egk+N9YmPQj3NbyIqOUOA2DC3shBaCwai4uLnTr1o2oqCgGDBiAq6urarFv375Njx49KF++PD/99JMcFHmGBw8eZKpxc//+/alZs6YGGQmhgBmKodTib+sJ2D7k6eIPQO9kKgIB4pNMn9fuu41RCkCRIVIACpvg6+vL1KlTCQ8Pp1mzZqrGjoiI4N1336V+/focO3ZM1dj24PPPP+fChQuKxpQtW5axY8dqlJEQSmjbdDzFAMEL/y3+KhVP/3P3HkHFIVC4Jwx8x3Q6WDvSaF28mBSAwqaUKFGCtWvXsmfPHl555RVVY//2229UrlyZ9u3bc+XKFVVj26pNmzaxfLmy+0WdnZ1ZvXo17u7uGmUlhAJ6D81CGx4Xfxv+gi+7QgFfuHbv6VfK49VnXy84NgnOzYav98L1+1plpdP01yzshxSAwibVqFGDffv28c0331CsWLEXD8ggo9HI8uXL8ff3Z+zYsYrvubUnt27domPHjorHjRw5ksqVK2uQkRCZ4OSCVn/UHTxrKuZiE6DxNCjQPe0r5j+rsfmymw6H7FJ2nkoZZ08Ngwt7IQWgsFk6nY7mzZsTHh7O5MmT8fFRb00lNjaWUaNGUbp0aUJDQzEYtN9Ebk2MRiNdu3ZVfKVetWrVGDJkiEZZCZEJOh34+GkS+hU/MH71/Jevl2m270GsacyDWFPxV7qAJimZbgPJpm73BGGfpAAUNs/d3Z1BgwYRHR1Nly5dcHJS73/ry5cv07p1a6pWrcrvv/+uWlxr980337Bu3TpFY9zd3Vm1ahXOzs4aZSVEJuV5zdQexUIu3YHXx5n2ANYcCz0a/NsiRhO5qmkYXNgLKQCF3cibNy8LFy7k+PHjNGrUSNXYhw8fpnbt2jRp0oTIyEhVY1uby5cv0717d8XjJk+erHrfRiFUkasaGJU1MFfTyyVMLWCOTYLjk6FrPQ0fpvcEn9IaPkDYCykAhd0pW7YsW7ZsYevWrZQrV07V2Bs3bqRs2bL06dOHO3fuqBrbGhiNRjp06KC4SXbt2rXp2bOnNkkJkVW5qqFl4xWrkqsKOGl37Z2wHzqjND8TdiwlJYXly5czYsQIxfvZXsTX15eRI0fSvXt3VfsTKmZIZtNX00i6eZD8btfw1MfirEvGWZeMER3JRmeSDc7cTcrBtYQCVHgjmHJVG5j2Rv3H4sWL6dKli6LH+/j4cOLECVUP4wihKkMSfOv9uCm0HdM5Q1B/qDTJ0pkIGyAFoHAIMTExTJkyhRkzZhAfH69qbD8/P6ZOnUqTJk3QpVNUqc6QBJc3w5UtcPsgPDhleg9A5wIYwWjgn9sPdE6YJvuN/y6DueaAHC+ZZkaKNYccFThz5gwVK1ZUfPJ5+fLlmWoULYRZ7agP13dadCnYLGr/CgXqWzoLYQOkABQO5eLFiwwdOpSvvvpK9di1atVi5syZVKlSRfXYADyIgrMhEL0MEm+bftrP6gX3qTFyvMSjQq3oPWMfIaHfZnj4u+++y8aNG81T+AqRFZc3wx/vWDoLDT0+7fxORLqz+0L8lxSAwiEdPHiQvn37snv3btVjf/bZZ0ycOJEiRYpkPZjRCH9/DxFz4OZu0Ok1msF4PEOod+OcoTqfjj/M/tPP71SbK1cuTp48Sf78+TXIRwiVGQ2wyR8ensNu9wNWWwx+nSydhbARcghEOKSqVauya9cuvv/+e0qVKqVq7C+//JKAgABGjBhBTEwWbnx/eBZ2NIDdTeHmXtN7mi1fGTDdIRpPCf5k7/CHfDMkADeXZ49YtGiRFH/CduicILCfpbPQjkt2KP6ZpbMQNkQKQOGwdDodH374IadOnWLGjBn4+vqqFjs+Pp7x48fj7+/PsmXLSElRULgZkuD0FPipDNz4PfVN1XJ7IWMyOmMKn5SL4saKPDR6Oe21Up9++ikff/yx+XISQg0lgsHZ29JZqE+nB/9ucgOIUESWgIV47Pbt24wdO5YFCxaQnJzFvXX/Ub58eWbMmEH9+i/YnH3nL9gXDPfDsIplqsdLzj9H5Kf5tGs8iIOCBQty8uRJcuTIYenshFDu+Cg4OQ6r+P2lFr0HvBsFnoUsnYmwITIDKMRjuXLlYs6cOZw6dYr3339f1dgnTpygQYMGvP3225w+fTr9D13aCL/WgAcRWM0fTo+XnBsG3uTsonz4FXRn+fLlUvwJ21V2KGQvZ9GbQVRXZb4Uf0IxmQEU4hl+//13+vbty5EjR1SNq9fr6dSpE6NHjyZv3rymN6MWwsHU2zes9LekzpkUl5zo6+0A37KWzkaIzLsfBj9Xsv2+gDo9FHoXav0gJ3+FYlIACvEcBoOB1atXM3ToUK5cuaJq7GzZsrFs2TKaVrgGf/VSNbZmdHpwyQb1d0P2MpbORojMi5wPh3pYOosscAK33PDOaXDLZelkhA2SJWAhnsPJyYnWrVsTGRnJ6NGj8fRUb5N1TEwM1XMfs53iD0xLwkkPYNvrj5eqhbBR/t2gwFumH2pskgFqfCnFn8g0KQCFyAAvLy9GjRpFVFQUbdu2VaXx8bg+71D4qg1e2WRMgaR7sOsDSFH3VhUhzEang+qrwdvPNvcDVpoiN36ILJECUAgFChYsyPLlyzl8+DB16tTJdJy8OT0ZVPOo7e7bMaaYZgCPDrV0JkJknnseqPcHeJewrSKw4kQoM9DSWQgbJwWgEJlQqVIltm/fzo8//kjp0qUVj/9lQiDOCZdt/F5SA0TMgqvbLJ2IEJnnkQ/q/QnZg6x8OfjxD4uVp0PZIZZNRdgFKQCFyCSdTse7777LiRMn+OKLL8iVK2N7cdo3yEnlbIdNV1PZPCfY+xkk3LZ0IkJknkc+qL8H8tXhn0LLmuj0pleNbyDIjm8zEWYlp4CFUMm9e/eYMGECc+bMISkpKd3PZPOAm0s9cdXFYbXtXpTS6aFYc9OGdCFsmSEJTk6AUxNM/2xUtyF85uggW2l4dSXkfsXSyQg7IjOAQqjE19eXadOmERYW9sxr0kZ/VhgXeyr+wLSMff4beHTR0pkIkTVOLlBhNDQ+AbksXGzpnMHJFSpOgEbHpPgTqpMCUAiVlSpViu+++47du3dTrVq1f97XO0G3OvHo7Kn4S6XTmfqqCWEPsgdC/V3wyjJwzmbmvYGPn5W3Frx9yrTfT+9qxucLRyFLwEJoyGAwsHbtWgYPHkz39/IzsPoBS6ekHWcf+OAKuHhbOhMh1BN3HSLnQvRSSLj5z/3YqkuNm/dNCOgBRT603S4BwiZIASiEGcTFxeG843Vc7h8BbPnk7/PooMo8COhm6USEUJ8hGa5sgeglpr+iMxVoWSkGdS5gTAK3vODXEUq1A++SqqUsxPNIASiEOdw9Cj9XtnQWGtOBdyl4L8rSiQihrdjLcGEN3D4Idw7Cw3OY9vXqwMn58RZf47/voTP9feqhEr0n5KgEOV+G/PWgYGPTOCHMSP6PE8Icru/EtOXWHlq/PIsRHkZD3FXwKGDpZITQjmehp9uxJD+Cu8fh3lF4EGm6IccQbzpVrHcHJ3dwywm+FU2Fn3cJ0MkWfGFZUgAKYQ63DjxeLlI/9Jaj8Pa0Z3+96SvwrTmvG759EAq/Z8YHCmFhzl6Qp7rpJYSNkAJQCHO4tUezWz9ql4Gr/zmAm2KAtovhyAUY0USTx6ZP5wy3/ycFoBBCWDkpAIXQWvwtiP1bs/AerqZXqhQDfLbAVPztGArli2r26LSMKXBrvxkfKIQQIjNkE4IQWrtz0GyPSi3+tp2A38xd/AFghNsH7OSaOyGEsF8yAyiE1mKiMMcBkBQDtHqi+KvwuPj7+za0Wgg37oOzHkZ8YNoXqJnkhxB/03S/qhBCCKskBaAQWkuONZ3403BWLLX4+/Vx8Vex2L9fc3aC2Z9BpeKmIvClYdC4Ini5a5YOpMRpGFwIIURWSQEohNZS4jD1AdMo/OPib+sJ+G3I08UfQIEcphdA3uyQ0xvuPJICUAghHJnsARTChqUYIHihqfjbPsQ0y/c8h86CwQhFcpklPSGEEFZKZgCF0JreAy0aABoeF38b/oJ1vaCAL1y79/Rn8mQD/eMf827HmD6/rKPqqaSl9zDDQ4QQQmSWFIBCaM3ZU5P9fwfPwtd7TX/f+BmNoO8uAV8vSEiCD2bBkPegRoDqqaQlBaAQQlg1KQCF0JqPP1qcAH7FD4xfvfhzRiO0WQx1ykKrWqqnkZazN7jnMcODhBBCZJYUgEJoLWdViz5+TySs3Q8VisCGQ6b3VnfVqkegDnJVk3tOhRDi/+3dT4hVZRzH4e+ZOzNOOjk6M5ihlmnqiISVWYIhFObWdiIthIL+UJvCTUTL9goRLfqzKWgnLSKIVhkF0SKihUTSxiiwiLBF5nhvizNuc0a959x73+eBy8DM4vzuYpjPvO+55x1wAhD6bWo+Wb2lr6eB/J9HdyXdDxq6WNVJ5p2HCjDo/JsOTZg/WMfRqOst1iuAAAw0AQhNmH+4vhmvBHPtbnkDcH22gKEJdzyefh8F174qmd6e3HZn24MAcB1WAKEJ6/cu3Rs34tvACy+3PQEAyyAAoSm7Tya52vYU/TM+nWw70fYUACyDAISmbDqarN7c9hT9UXWSHS8k42vangSAZRCA0JSxTrLwSpKq7UluvV4v2flS21MAsEwCEJq07elkYiYjFYFVJ9l6PFmzpe1JAFgmAQhNmpxJDryfZFQeCTOWTM4l+063PQgAKyAAoWlbnky2P5PR+PXrJgc/TFbNtT0IACswCn+BYPg8eCpZc9eQnw4yVt/TuPFw24MAsEICENowMZ0c/Gh4TwepOsnaXcneN9qeBIAbIAChLfOPJPvfanuKlas6yeS65NCZpDPV9jQA3AABCG3a8Vzy0JttT7F8Vaf+FPPhs/UKIABDSQBC23a+mOx/O/WjYQb48TDVeLJqQ/LE2WRmd9vTAHATql5vWG9CghFz4ePky2NJbzHpDdiRcdfu+Xvss2T1pranAeAmWQGEQbH5aHLkq2TtQgZmJfDap5TvOZEc+Vr8AYwIK4AwaLpXknOnku9fr1cCe4stDVIl09uSA+8lGw61NAMA/SAAYVD9/XPyzbPJb5+nXqzvNnPdarz+uue1ZM+rSWdVM9cFoDECEAZZr5dcOJOcO51c/KLeku3L/YFLgdmZSrY+lSycTGYW+nAdAAaBAIRhcemn5Py7yfl3ksu/1yt1N7U9XC0F5WIyuy+59/nk7mPJxO23bGQABpMAhGHTvZL88kny66fJH98mf/2QdP+tf1ZNJOklvW7qLeMqyVhSVUvfX1o9nFxfR9/s/mTr8WTdfa28FQDaIQBh2HUXk0s/Jn9+V78uX0yu/lO/qk69rduZqj/Qse7+ZPaBZGrjUhQCUCIBCABQGM8BBAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACiMAAQAKIwABAAojAAEACjMf4KMQeVyGV1hAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHiCAYAAAB4GX3vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSdklEQVR4nOzdZ3RUVReA4Xcy6SH03ksSEjpKEQQVEBRExQKCSui99957R6RDKAEVFQVEUARBQcoHSIdUei+hJaRn5vsxRMEEyE3unbqftWapkzn7blTCzin76IxGoxEhhBBCCOEwnCydgBBCCCGEMC8pAIUQQgghHIwUgEIIIYQQDkYKQCGEEEIIByMFoBBCCCGEg5ECUAghhBDCwUgBKIQQQgjhYKQAFEIIIYRwMFIACiGEEEI4GCkAhRBCCCEcjBSAQgghhBAORgpAIYQQQggHIwWgEEIIIYSDkQJQCCGEEMLBSAEohBBCCOFgpAAUQgghhHAwUgAKIYQQQjgYKQCFEEIIIRyMFIBCCCGEEA5GCkAhhBBCCAcjBaAQQgghhIORAlAIIYQQwsFIASiEEEII4WCkABRCCCGEcDBSAAohhBBCOBgpAIUQQgghHIwUgEIIIYQQDkYKQCGEEEIIByMFoBBCCCGEg3G2dAJCiKwxGI3EJCZzPyGZB/FJJKQYMBiNpBiN6NCh14GTkw4vFz053FzI6e6Cu94JnU5n6dSFEEJYiBSAQtgYg9HIjZgEbjyK5158EtEJyRgefy21pDM+8fkny7zU912cdOR0dyGXuwvFsnuQw81F87yFEEJYD53RaDS++GNCCEuLSUzmwoNYLtyPJdFgRMfThV5mpMbI6eZMqZxeFM3ujouT7AwRQgh7JwWgEFbMaDRyLSaeyHuPiIpLUqXoex4nHRTz9sAvdza83WSBQAgh7JUUgEJYqUeJyRy9+YBbsYlmfW7qknHZPNkomzsbeifZKyiEEPZGCkAhrIzBaCTy7iPOREVjNGo74/ciXi56XiqYg3yebhbMQgghhNqkABTCityLT+Lw9ftEJyZbOpWnlMjuQaX82XHRy/5AIYSwB1IACmElrkXHc/D6PYvP+qVHB2RzdaZO0dx4uOgtnY4QQogskgJQCCtw7v4jjt18aOk0nksHuOqdqFssN9mlbYwQQtg0KQCFsLCz9x5x/JZ1F3+pdICzk47Xi+eRIlAIIWyYbOgRwoLO3bed4g9MS9PJBiO7L0VZ3T5FIYQQGScFoBAWcjcu0eqXfdNjBJIMRg5cvUuKQRYQhBDCFkkBKIQFJBsMHLx2H1vtsGcEohNTOH0n2tKpCCGEyAQpAIWwgOM3HxKbnGJ1p32Virz3iFuPEiydhhBCCIWkABTCzK5Gx3PxYZyl01DNoev3SUgxWDoNIYQQCkgBKIQZJaUYOHLjvqXTUFViioETNx9YOg0hhBAKSAEohBldeBBLkp0dnDACl6PjiU1KsXQqQgghMkgKQCHMxGg0EnnvkaXT0IQOU0sbIYQQtkEKQCHM5FpMPHHJ9rlXzgicuxdLssE+f31CCGFvpAAUwkwi7tr3DFmy0cjFB/ZzuEUIIeyZFIBCmMH9+CTuxidZOg3N2esStxBC2BspAIUwg9uxjtEr71FSCnHJchhECCGsnRSAQpjBvfgkm731Q6l7DjDTKYQQtk4KQCHMICou0Sy3foz8/AM+8i/M9wvnPPW+0WhkaIt3+Mi/MN/Mm67Z83XAvTgpAIUQwtpJASiExhKSDWY5/Ws0GrkQcpp8hYtyMTz0qa/t2vAdd2/dAKB0uYra5QDcjUvULL4QQgh1SAEohMbuxZunILp+4Rxxj2Ko90ELLoWH/PN+XEwMX82ZQr0PPgGgTPlKmuZxNz4Jo9G+ml0LIYS9kQJQCI3FmOmGjLOnT+Dq5k6dd5px/eJ5khJNB0++XzSHUv7lyZUvP9lz5SZvoSKa5pFiNGpyN3BISAhTpkzh9u3bqscWQghH42zpBISwdykGIzrQfA/guTMnKVE2gMKlyuDu4cmVsxG4eXiy7ZvVTFv/Cz+tWExpjWf/UqWoMANoMBg4ePAgGzduZOPGjYSFheHq6sqgQYNUyFAIIRybFIBCaEyNYigjzp0+SenyldDpdJQoG8CliDD2btnEm80/p2hpX86dPkHVuvXNkktKJu87TkxM5I8//mDDhg1s2rSJ69evP/V1X19fnJ3l25YQQmSVfCcVwk6cDzlF3abNAChRthxbgpdz+9oV+sycT1JiIpcjw/moSx/LJpmO6Ohofv31VzZs2MCWLVt4+PDhMz8bEBBgxsyEEMJ+SQEohMb0Ou07AN64fJFHDx/8s8RbKqA8v369iq7jZ+DlnZ2zp06QnJRE6QrmWQLWOz3/13zr1i1++uknNm7cyI4dO0hIyFijbCkAhRBCHVIACqExvZNO+/1/p0/g7OJKcV9/AN5o1oIab76Nd87cpq+fOUm2HDkpULS4xpmYpFf0njt3jg0bNrBx40b27t2bqZPC2bNnJyEhATc3NzXSFEIIhyUFoBAay+ai1/wZ506fpLhvWZxdXABwdnEhe648/379zElKBVTQPA8wFX9ueieMRiPHjh1j48aNbNiwgZMnT2Y59qBBgxg6dChlypQhICDgqZe/vz/e3t4q/AqEEML+6YzSsEsITSUkG9hy9qal0zCbpNvX2L9+DRs3buTixYtmfXbRokX/KQjLlSv3z9/ny5fPrHkIIYS1kxlAITTm5uyEh7OTWW4DsTQd4F+mFKG5cnH58mWzP//KlStcuXKF7du3P/V+njx50swYlitXjmLFiqEzwx5NIYSwNjIDKIQZHLx2j6vR8Wa5D9jSXimSi8LZ3Nm7dy+fffaZ2WcBlfDy8sLf3z9NcVimTBlcHi+nCyGEPZICUAgziLgbw8nb0ZZOwywal8mPh7Np3+P9+/fp2rUr3377rYWzUsbFxQUfH5+nlpEDAgIoW7Ysnp6elk5PWJuYGDhxAo4dg4gIiIuD+HhITgY3N3B3h9y5oXJlqFIFSpcGJ7mIS1iWFIBCmMH9+CR2Xrxj6TQ05+Wi563S+Z96z2g0EhwcTI8ePXj06JGFMlOHTqejRIkSaZaSAwICyJUrl6XTE+Zy9SqsWwcHD8KhQ3DhAhiNoNNBaqNyw+MtHzqd6WU0mgpCAE9PUzH48svQsCE0afLvOCHMRApAIcwgLi6OX89cwJgtp6VT0VTl/Nkpk8sr3a9FRETw6aefcvjwYTNnZR4FChRIs5QcEBBA4cKFZZ+hPUhOhq1bYckS+OWXfwu7lCzc9e3sbIqbLx907AgdOkCZMurlLMRzSAEohIYMBgPr1q1j6NChlK9SlU4zFls6Jc0463Q08cmP83OWthITExkzZgzTpk3LVB9AW5Q9e/Z0C8NSpUqh12vfIkhk0c2b8MUXsHw53L4Nen3Wir5nSY37+uvQsyd89JGpwBRCI1IACqGRv/76i/79+3Po0KF/3pv21Y/4vPyKBbPShg7wze1FhXzZM/T5nTt30rp1a65du6ZtYlbMzc0NPz+/NC1r/Pz8pNG1NTAYYMUK6N8fYmO1KfrSk1oIvvEGLFsGPj7mea5wOFIACqGys2fPMnToUNavX5/maxUqV2XMN5txssMN4G+Xzo+ngqbXUVFRdOzYkY0bN2qXlA1ycnKidOnS6c4aZs+esQJbZFFIiGlJdt8+y+Xg7Gw6KDJmDAwcCK6ulstF2CUpAIVQyb1795g0aRLz5s0jKSnpmZ/rN30edd772IyZaUsHFPV2p3ph5YcgjEYjy5Yto2/fvsTFxT3zc/nz5ycpKYl79+5lIVPbV6RIkXQLw/z588s+QzUkJcGkSaYX/Htow5J0OvDzg9WroWZNS2cj7IgUgEJkUVJSEosXL2bs2LHcvXv3hZ8vWLgws7fsxs3DPtqJuOmdeLNUPtz0mZ/VDAkJoVWrVhw/fjzdr3/55Zf06NGDW7duERISkuZ19erVTD/bHuTKlSvNUnJAQADFixe3y9lmTURHw4cfwu+/m07sWhO93lQIrlkDLVtaOhthJ6QAFCKTjEYjmzdvZtCgQYSHhysa23XwCBq276FRZub1atHcFPDK+p61hIQEhg0bxpw5c9J8bceOHTRo0OCZYx8+fEhoaChnzpx5qjA8d+4cBoP938DyLJ6enpQtWzZNyxofHx9pdP2kmzehUSM4fdp8e/2USm0lM3MmDBhg6WyEHZACUIhMOHr0KAMGDGDXrl2ZGu/l5cXS7fvxyJ3Xpm8H8cnlRaX86u5L+/XXX2nbti03b/57f/LVq1cpXLiw4ljx8fFEREQ8VRSeOXOG8PBwEhIS1Ezbpjg7O+Pj45NmKdnf3x8vr/Tb+Nitmzehbl04f946lnwzYvJkGDbM0lkIGycFoBAKXL16lZEjR7J69eostzH5vE07Phg2SaXMzEsHZHPVU79EPvRO6u89u3XrFu3atWPr1q3kyJGDe/fuqbrHLSUlhfPnz6e7nPzw4UPVnmOL/tvoOvWVJ08eS6emvtu3TcXf2bO2U/ylmjYNBg+2dBbChkkBKEQGPHr0iBkzZjBjxgxiY2NVianT6dj85z4S8pdQJZ656AAXJx2vl8iLt6t2txcYjUbmz5/Pjz/+mOmZ1sw889q1a+kWhk/OSDqifPnypbvPsEiRIrZ5AMVohMaNYccO6132fZHffjPdJCJEJkgBKMRzGAwGgoODGTFihOo967Jnz05QUBBVGzTm+C3bmHXSAc5OOl4vnofsbubZQ/bw4UOraH9y9+7ddPcZXrhwwdKpWZS3tzf+/v5prscrVaoUztZ8vdmCBaaGy7bKyQny5oUzZ8AeZ2eF5qQAFOIZdu3axYABAzh69KiqcfV6PV26dGHs2LHky5cPgHP3H3HspnUXgTrAVe9E3WK5zVb82YLY2FjCwsLS7DOMiIgg2daWFVXk6ur6T6PrJ19ly5bF3d3dssmdOQNVq0JiomXzyCq9Ht59F378UW4NEYpJASjEf4SFhTF48GB++ukn1WO/8847zJgxg4CAgDRfuxYdz8Hr9zAasbqDIaY9f87UKZobDwXNnh1ZUlISZ8+eTbOUHBoayqNHjyydnsXodLpnNrrOkSOH9gkkJEC1ahAaanv7/p5lxQpo187SWQgbIwWgEI9FRUUxbtw4Fi1apPrMTaVKlZg1axZvvvnmcz93Lz6Jw9fvE51oXX8wlcjuQaX82XHJQq8/YWIwGLhy5UqapeSQkBCioqIsnZ5FFSpUKE3LmoCAAAoUKKDePsMxY2DCBOvr9ZcVHh4QEQFFilg6E2FDpAAUDi8hIYH58+czceJE7t+/r2rsggULMnHiRNq2bYten7GZM4PRSOTdR5yJirb4bKCXi56XCuYgn6fcTWsOt2/fTrOUHBISwpUrVyydmkXlzJkz3RnDkiVLKmt0HRMDhQubmj7bE73edCJ48mRLZyJsiBSAwmEZjUZ+/PFHBg8ezLlz51SN7eHhwcCBAxk8eDDZsmXLVIxHickcufmA27Hm3aeUOs9SNk82yubOpkmbF6FMdHQ0oaGhaWYMIyMjHbrRtYeHx1ONrlNfvr6+uKZ3d+7ChaaDH/b4x16OHHDtGnjaxw1DQntSAAqHdOjQIfr3789ff/2leuzWrVszadIkihUrluVYRqORazHxRN57RFRcEjq0nRF00kExbw98c3vJQQ8bkJCQkKbRdUhICGFhYcTHx1s6PYvR6/WUKVPmqaXk1+rUocSbb5oaPtvjH3s6HSxeDJ07WzoTYSOkABQO5dKlSwwfPpyvvvpK9divvfYas2bNolq1aqrHBohJTObCg1gu3I8l0WBUpRhMjZHTzYVSOT0pmt0dF7k71ualpKRw8eLFp5aRU18PHjywdHoWsbRnTzrNn2/pNLSj04GPD4SFyYlgkSFSAAqHEB0dzdSpU5k9e7bqMyM+Pj7MmDGD999/3ywNcQ1GIzdiErjxKIF78YlEJySTugiY+vQnf1M/mVHq+y5OOnK6u5DL3YVi2T3IIbN9DsFoNHLjxo00M4Znzpzhxo0blk5PU3uqVaPO0aO22/Q5o6Q5tMggKQCFXUtOTmbFihWMGjWKW7duqRo7V65cjB49mu7du6e/38hMDEYjMYnJ3E9I5kF8EgkpBgxGI1cuX6Jg4aK46J1wctLh5aInp5sLOdxdcNc72ebtDUIz9+/fT/cGlPPnz2f52kNrcMfFhTxJSZZOQ1vOzjBwIEyZYulMhA2QAlDYrd9++40BAwZw6tQpVeM6OzvTs2dPRo0aRe7cuVWNraaPP/6YVq1a8dFHH1k6FWHD4uLiCA8PT7OUHB4eTpKNFFT5cuXi1r17msU3AOWA94FpT7y/DXgX+AportnT/+O11+DPP831NGHDpAAUduf06dMMHDiQX3/9VfXYzZo1Y9q0afj5+akeW00nTpygcuXKVKxYkWPHjilrlSFEBiQnJ3Pu3Lk0LWtCQ0OJiYmxdHpPec3Xlz8jIzU9/LEa6AVcBHIBx4G6wGhgoGZPTYenJzx8aGoNI8RzSAEo7MatW7cYM2YMS5cuVb01xksvvcTs2bN5/fXXVY2rlY8//pgffvgBgPXr18ssoDAbo9HIlStX0l1Ovn37tkVy6lK2LIvPntX05o9kwA9oA3QAXsE0I7hAsyc+x+nTUK6cJZ4sbIgUgMLmxcfHM3fuXCZPnky0yg1eixQpwpQpU/jss89sZhYtdfYvlcwCCmtx586ddAvDS5cuafrcufny0ccMxecSYDhQBCgJbAAsMg+3ciW0bWuJJwsbIgWgsFlGo5F169YxbNgwLl68qGpsLy8vhgwZwoABA/C0scaqT87+pZJZQGHNYmJiCAsLS9O2JjIykhQVTu3+ptPR0Ax/1MUA+QAf4ADg9cTXLgOtgVuAMzAKjfYFurhA//4wdaoW0YUdkQJQ2KR9+/bRv39//ve//6kaV6fT0b59eyZMmEChQoVUjW0O/539SyWzgMIWJSYmEhkZmWbGMDQ0lLi4uAzHuQwU1S7Nf7QFvgVyAucB9ye+dh24CVTBVAS+BITxdJGoChcX6NoV5s1TO7KwM86WTkAIJc6dO8fQoUP5/vvvVY/doEEDZs2alW4BZSvGjx+f7vsnT55kw4YNMgsobIqrqyvlypWj3H/2sxkMhn8aXf/3de8/p31dXV0pkqj9dYqjgC2YZv7eBIKAHk98vdDjF0B+IDdwFw0KQKMRFBTHwnHJdICwCffv32fQoEEEBASoXvz5+/vz888/s337dpsu/k6cOJFm6fdJ48aNc+h7Y4X9cHJyIn/+/BQsWDDNy9n56XkNc3S7XA7MAjYDlYG+wHTgWU1yDmNqHZP1yyKfQRb2RAbIDKCwaklJSSxdupQxY8YQFRWlauy8efMybtw4OnXqhIuL7d+E8azZv1QyCyhs0d27d9PcWhISEpLhfb8JiYncBApqlN8vmGb6vsF08hdM7WBmAmuA9v/5fBQQiKlo1IROBx4eWkUXdkQKQGGVjEYjW7ZsYeDAgYSFhaka29XVlT59+jB8+HBy5sypamxLedHsX6px48bxwQcfyF5AYVWMRiPXrl1L02w6JCRElRt8QnQ6CmowK/Y3poMc04EPn3g/O6YicCqmtjCpJ4ETgA+AYUBt1bN5ghSAIgOkABRW5/jx4wwYMIDff/9d9dgtWrRg6tSplCpVSvXYlvSi2b9UJ0+e5Mcff+Tjjz/WOCMh0kpJSXmqefSTL7VbOD3pTK5c1Lt7V/W4L2M6+Zue8Y9fqYyYDonUx3QaWDPJyeDjo+UThJ2QU8DCaly7do1Ro0axcuVK1e8erVmzJrNnz6Z2bU1/7raIZ538fRY5ESy0Fh8fT3h4eJql2/DwcBLNcCDjv3r4+TH/3DlNG0G/yF/Aa0ClJ95bA1TU4mHHjoEN72cW5iEzgMLiHj16xKxZs5g2bRqxsbGqxi5evDjTpk3jk08+Qaczx3Zw88vo7F8q2Qso1PLgwQNCQ0PTLN2eP3/eqg4chQCo0E8wK+pgOvihOTc3KF/eHE8SNk5mAIXFGAwG1q5dy/Dhw7l69aqqsb29vRk+fDh9+vTBw473wyid/Usls4Aio4xGIzdv3kx32fbatWuWTi9DCuXNy7U7dyydhnnUqgX79lk6C2EDZAZQWMQff/zBgAEDOHLkiKpxnZyc6Ny5M+PGjSN//vyqxrZGSmf/UsksoPgvJb31bM31O3d4oNeTw8KzgJpzcTEVgEJkgMwACrOKiIhg8ODBbNy4UfXYjRs3ZsaMGZR3kOWPzM7+pZJZQMf039s1Updvw8LCFN2uYWv2V6rEK6dPW3wpWHM//QTvvmvpLIQNkBlAYRZ3795l/PjxLFiwgGSVN2JXqFCBmTNn8tZbb6ka19pldvYvlZwItm8xMTGEhoammc1T635dWxNSuzavnDhh6TS0VbQoNGli6SyEjZAZQKGpxMREFixYwPjx47l//76qsfPnz8/EiRNp165dmu7/9i6rs3+pKlSowPHjx2UW0IbduXMn3WXbS5cuWTo1i8qePTsBAQGUK1eOgIAA3nnrLcq9/TZcv27p1LSh08GsWdCvn6UzETZCCkChCaPRyMaNGxk8eDCRkZGqxnZ3d6d///4MHToUb29vVWPbio8//jhDjZ8z4vvvv5dZQCtnNBq5cuVKujdi3HGUww3PULBgQQICAtK8ChUqlPbk/4wZMHQoWNEJZdV4eJiK2xw5LJ2JsBFSAArVHT58mP79+7Nnzx7VY3/22WdMnjyZ4sWLqx7bVqg1+5dKZgGtR3Jy8j+Nkp9srRIaGkpMzLNaDts/nU5HyZIl0y30cuXKlfFA9+5B4cIQH69dspbg7Azdu8MXX1g6E2FDpAAUqrl8+TIjRoxgzZo1qseuU6cOs2fPpnr16qrHtjVqzv6lkllA84qLiyMsLCzNsm1ERIRFGiVbCxcXF3x9ff8p7lKXb/38/PD09FTnIf36wbx59jUL6OwMoaFQpoylMxE2RApAkWXR0dFMnz6dmTNnEq/yT9alS5dm+vTpfPjhh3bbyFmJ27dv07p16zQ3pRw+fJi7Gbzqqly5chQtWvSp9ypUqMCsWbNUy1OY3L9/P939eefPn1f9thtb4uXlle5sXunSpXFxcdH24TExULEiXL5sPyeCZ86EAQMsnYWwMVIAikxLSUlh5cqVjBw5kps3b6oaO0eOHIwePZoePXrg5uamamx71KhRI7Zv356hzwYFBdG+fXuNM3IcRqORGzdupNmbFxISwo0bNyydnkXlzZs33UKvaNGilt1y8L//Qe3atj8L6OwMr74KO3eCbOEQCjnW0Umhmu3btzNgwABOnjypalxnZ2e6d+/O6NGjyZMnj6qxhciKlJQULly4kO6M3oMHDyydnkUVK1bsqQIvdek2b968lk4tfTVrwtixMGYM2OociE4Hnp6wdq0UfyJTpAAUipw5c4ZBgwaxdetW1WO///77TJ8+HT8/P9VjC5FRCQkJREREpCnywsLCVN/iYEv0ej1lypT5p7hLffn7+5MtWzZLp6fcsGGwZQv8/Teo3JvULIxGWL7c1PtPiEyQAlBkyK1btxg7dixLly5VvYlslSpVmD17NvXq1VM1rhDPEx0dnaZR8pkzZzh37pxDNkpO5e7ujr+/f5plW19fX1xdXS2dnnqcneG770xXp926ZXtFYP/+0Ly5pbMQNkwKQPFc8fHxfPHFF0yePJmHDx+qGrtw4cJMmjSJ1q1bo9frVY0tRKrbt2+n2ZsXEhLClStXLJ2aReXMmTPdZdsSJUo4Tkug4sVhzx7TPro7d2ynCOzd23TwQ4gskAJQpMtoNPLdd98xZMgQLl68qGpsT09PBg8ezMCBA/Hy8lI1tnBMBoOBy5cvp7s/LyoqytLpWVShQoXSLNsGBARQoEABOVkPULo0/PUX1K8P165ZfxE4YICpobX8txNZJAWgSGP//v3079+fAwcOqBpXp9PRpk0bJk6cSJEiRVSNLRxDUlISZ8+eTVPkhYaG8ujRI0unZzE6nY7SpUunKfL8/f3JmTOnpdOzfmXKwKFD0LgxHD9ufe1hnJxMe/5mz4a+fS2djbATUgCKf1y4cIGhQ4fy7bffqh67Xr16zJo1i6pVq6oeW9if2NjYfxolP7l0GxkZSVJSkqXTsxhXV1f8/PzSFHp+fn54eHhYOj3blj8/7N5tahS9bBno9dZRCDo5Qb58pgMfTZtaOhthR6QAFDx48IDJkyfzxRdfkJCQoGpsPz8/Zs6cSdOmTWW5SaRx9+7ddJdtL1686NCNkrNly5Zmb15AQAClSpXC2Vm+bWvGywuWLoXAQAzt2+MUGWm5NjF6PYaUFJy6d4dJkyB7dsvkIeyWfCdxYMnJySxdupQxY8aofqF87ty5GTt2LF27dtW+s7+wakajkWvXrqVb6KndQNzW5M+fP91GyUWKFJEfmCzEaDSy9cEDFvv6sjkwEMaPNxWB5tobmPrfvWxZtrRrx88REYyLjaWgFIBCZVIAOiCj0cgvv/zCwIEDCQkJUTW2i4sLvXv3ZsSIEcouaRc2LyUlhfPnz6dpqxIaGqr6CXJbU6JEiXQLPWl2bl2OHj3KwIED2blzJ2+++SaMHAktWsCUKbBuHSQkmAo0LW4QcXY2FZk+PqZTvl26UCIkhKWDBvHVV18xZMgQ+vfvLwfnhGqkAHQwJ06cYODAgRm+NkyJjz/+mKlTp1JGLiS3awkJCYSHh6dpqxIeHq76FgJb4uzsjI+PT5ql27Jly8of2lbuypUrjBgxgjVr1vyz9eCf72N+frByJXzxBXzzDSxeDMeO/VuwZUXq4Q43N2jZEjp1MvUlfDwLWLp0aQAePXrE6NGjWbx4MRMnTiQwMFBaZ4kskwLQQdy4cYNRo0axYsUKDCr/9Fq9enVmz55NnTp1VI0rLOvhw4fpLtueO3dO9f+HbImHhwf+/v5pWqv4+PjIdgcbEx0dzbRp05g1a1aaW158fHye/nD27NCli+l17JjpCrYDB0x/n3oC3dnZVND99/CITvfvoZLUPYUlSkD16vDmm9CqVbp7/LJly0aBAgX+2Spx7do12rdvzxdffMHMmTNNs5RCZJIUgHYuNjaW2bNnM3XqVNXbZBQrVoypU6fSsmVLx2kca2eMRiO3bt1KU+SdOXOGa9euWTo9i8qdO3e6y7bFixeX/99tXHJyMkFBQYwePZpbt26l+5nnrmRUqWJ6gamgu3ABjh41FYPh4RAfD7GxkJhouq/XwwNy54bKlU3jKlXK8KGOMmXKpNkre/z4cRo2bEjjxo2ZMWMG5cuXz1AsIZ4kBaANMRgMGf6Dx2Aw8NVXXzF8+HDVbzzIli0bw4cPp2/fvtJ6wgZt27aNffv2/VPs3bt3z9IpWVSRIkXSFHnlypUjX758chDDzhiNRrZu3cqgQYNeuP85w1tZdDooVcr0+vBDFbJMm8e+ffvS/dovv/zCtm3b6NixI+PGjaNgwYKqP1/YLykAbYTBYKBVq1YsWrSI3LlzP/ezu3fvpn///vz999+q5uDk5ETHjh0ZP348BQoUUDW2MJ/vvvvO0imYnZOT0z+Nkp9cuvX39ye7nK50CE8e8MiI1P13lvaiQtRgMLB06VI5KCIUkwLQRixevJjvvvuOIkWKMHv27HQ/ExkZyeDBg9mwYYPqz2/UqBGzZs2iQoUKqscWyj169IjQ0NB/ZvGOHz9u6ZSsgpubG2XLlk0zo+fr64u7u7ul0xMWkN4BjxcpUKAA2bJl0zizjEmzF/EZ5KCIUEpndORuqzYiMjKSypUrExsbi4uLC2fOnHnqm8Ldu3eZMGECCxYsUP2WhPLlyzNz5kzefvttVeOKjImKikqzNy8kJIRLly5ZOjWLyp49e7r780qVKiV/6Ang+Qc8XuTVV1/lr7/+0igzZQ4cOECtWrUUj6tcubIcFBHPJTOAVi4lJYV27doRGxsLmO5CHTJkCD/88AOJiYksWrSIcePGqb6PK1++fEyYMIEOHTrIzQMaMxqNXL16NU1blZCQEG7fvm3p9CyqQIECafbmBQQEUKhQIdmfJ9KVnJzM8uXLGTNmzDMPeLyINbWyymwuTx4UmT59uqzeiDTkT3YrN3fu3DQ/if74449MmjSJ1atXExERoerz3Nzc6N+/P0OHDpW9USpLTk7m3LlzaYq80NBQoqOjLZ2exeh0OkqUKJGmrUpAQIA0ExcZZjQa2bJlC4MHD85yg3trKgDz5s2Lt7d3pr9HpB4U6dChA+PHj5eDIuIfsgRsxUJCQqhatarZmuu2atWKKVOmUKJECbM8z17FxcURHh6eptALDw8nMTHR0ulZjIuLC76+vmmKvLJly+Lp6Wnp9IQNU3rA40XWrl3LZ599pkosNVStWpVjx45lOY6XlxeDBw9mwIABclBEOOYMYEoKhIWZWjYdOwa3b0NcnKl1k14P7u6mtk2lS//b7qlQoX+vaDSH5ORkAgMDzVL81a5dm9mzZ1OzZk3Nn2VPHjx4kGZvXkhICOfPn8/wZnN75OXlhb+/f5ql29KlS0ujZKEJJycnVe8zt6YZQDDlo0YBGBcXR2xsrGzrEYCDFIDJybB1K2zZAocPw+nTpisdAVxcTH08DQbTS6cz3c6j0z3d0D13bnjpJVPj9latoGJFbXOeOnUqhw8f1vQZpUqVYtq0aXz88ceyn+oZjEYjN27cSPdGjOvXr1s6PYvKkydPmrYqAQEBFC1aVBolC7OqXLkyBw8eZNy4cUybNi3LN9VYYwGoRozg4GBq166tQkbCHtj1EnBkJKxYAcuXm2b5snp1Y+ptPsnJpmKwa1fT9Y3e3urlDHDs2DFq1Kih+oneVDly5GDkyJH06tULNzc3TZ5hawwGAxcuXEi30Lt//76l07OoYsWKpXviNl++fJZOTYg09u/fT2BgIJGRkZkanz17du7fv29VPxQvW7aMzp07Z3p89+7dmT59uiz7iqfYXQFoNMLGjTB3Luze/e/1i2p78g7vVq1g0CAICMh63MTERKpXr86JEyeyHuw/9Ho93bp1Y8yYMeTNm1f1+LYgMTGRiIiINEu3YWFhiltF2BO9Xk+ZMmXSFHn+/v54q/0TjhAamzJlCsOHD8/U2KpVq3LkyBGVM8qanTt30qBBg0yNzZkzJ6GhodK8X6RhV0vA58+bZuV++81U+IE2xR+YlovBtG9wzRrTa9gwGD7ctIcws8aPH69J8de0aVNmzJiBv7+/6rGtUUxMDKGhoWlaq5w9e5YUrf6nsBFFixalTp06Ty3f+vj4yGywsAsnT55k7NixmR5vbcu/kLWc7t+/T+fOndm4caNVzWoKy7OLGcDkZJgzB0aNMhV8WVnmzYrUKyGDguCNN5SPP3jwILVq1cry/pUnVa5cmVmzZmX6p0drd/v27XSXbS9fvmzp1KxWUFAQ7du3t3QaQqguMTGRmjVrZunAxJAhQ5g6dap6SakgJSUFDw+PLG0LWrlyJW3btlUvKWHzbH4G8OhRCAw0HeywdClrNMLFi1CvHrRta1qGzpEjY2Pj4uJo06aNasVfwYIFmTRpEm3atLH5mxGMRiOXL19OU+SdOXOGqKgoS6dnUYUKFSIgIICIiAgpeoXDGz9+fJZPy1rjDKBer6dUqVKEh4dnOkbv3r2pV6+etPkS/7DpAnDzZmje3DTjZ+niL1Xq6uKaNfC//5mWo4sWffG4kSNHEhoamuXne3h4MGjQIAYNGmQ1d1lmVHJyMmfPnk3TViU0NJRHjx5ZOj2L0el0lCpVKk1bFX9/f3LmzAmY7mqWAlA4sv/9739MmTIly3EyeveuuZUpUyZLBWB0dDTt2rVjx44dckpfADZcAC5bBl26mP7eWoq/J6WkQESEqW3Mjh1QvvyzP7tnzx7mzJmT5We6u7tz5swZSpYsmeVYWoqNjSUsLCzNjF5ERIRmJ59tgYuLC35+fmlaq/j5+eHh4WHp9ISwWrGxsQQGBqqygmKNM4CgTmG6a9cu5s+fT+/evVXISNg6mywAFy6EHj0sncWLJSeb2s/UrQt79qRfBMbExNC2bVtVGgfHx8fzyy+/8Pnnn1vFyc179+6luz/vwoULDt0oOVu2bOm2VSldurQ0aBUiE4YNG6Z4dqxMmTKULFmS33///Z/3XF1dKVKkiNrpqeK/ham7uzstWrQgODhYUZwhQ4bw1ltvUbZsWTXTEzbI5v60WbrUNoq/VCkp8PAhvPYa7N0L/z2EO3jwYM6dO6fa8wYPHsxXX32V5v5grRiNRq5fv55mb15ISAg3b940Sw7WKl++fOkWekWLFpXTeEKoZOfOncybN0/RGJ1Ox+rVq6lVqxYLFy5k8ODBxMXFUapUKavdM/1kAVijRg2Cg4Px8/MjNjaW9evXZzhOfHw8gYGB7N27V37gdHA29V//0CHo3t3SWSiXkgIPHsAHH5gOraS2idm+fTuLFi1S9VkxMTEcOnQIo9GoapGRkpLChQsX0rRVCQkJ4eHDh6o9xxYVL178qb15qX+fJ08eS6cmhF178OBBpk62Dho0iFdffRWAnj170qhRI9q0aUPu3LlVzlA9ZcqUwdnZmbFjxzJkyJB/irdFixaxZ88eRT9wHzx4kKlTpzJy5Eit0hU2wGbawDx6ZLp+7dIl7Xr7ac3JCXr3NrWsefDgARUqVODKlSuaPGv//v288sorisclJCQQHh6epsgLCwszy73E1kqv1+Pr65tmNq9s2bJWcdimUaNGbN++PUOflTYwwl60a9eOVatWKRpToUIFDh8+nKbvZXJyMseOHaNatWoqZqiehIQEzpw5Q9WqVdN8bfPmzbz33nuK4jk7O3Pw4MF04wnHYDMzgP36mVqsqNgiz+wMBlNrmMaN4Ztv+mao+HN3d8fb25ts2bL980r9Zw8PD06dOsXx48fTjAsNDX1uAfjw4UNCQ0PTLN2eO3dO1T6EtsbDwwN/f/80hZ6Pjw+urq6WTk8I8dhPP/2kuPhzdnYmODg43abnzs7OVlv8Abi5uT2zWHv33Xdp164dK1euzHC85ORkAgMD0y2GhWOwiQJw0ybTqV974OQEn376gL59K7F06dKnCrr/FnheXl7P3KMRGhrKp59+mm7xB6YCz2g0/tMo+b9Lt1evXtXyl2n1cuXKlaatSkBAAMWLF5cWCUJYudu3b9OpUyfF48aOHWu3M15z585l586dXLx4McNjTp06xejRo5k2bZqGmQlrZfVLwA8fQsmScP++dbZ7yQy9Hlq0gK+/Vj7WaDQSFBREnz59iI2Nfebn8ufPT3JyMnfv3s1CpravcOHCafbmBQQEkD9/frs6iCFLwMJRGI1GPv74Y3788UdF42rWrMlff/1l1wcfdu3aRf369RWN0el07N69mzp16miUlbBWVv87YeVK+yr+wLSHcd06mDIFlDRlv3v3Lp06dcrQN75bt25lIUPb4uTkROnSpdMs2/r7+5Mjo1exCCFswldffaW4+PPw8GD16tV2XfwB1KtXjz59+vDFF19keIzRaKRNmzYcP37cKvYzC/Ox6t8NKSkwa5Z9FX+pnJxg/nyYMSNjn//jjz/4/PPPHXrp1s3N7Z9GyU++/Pz8cE89Wi2EsFtXrlyhZ8+eisdNnTrVYfreTZkyhV9//ZWwsLAMjzl37hyDBg1SvSuFsG5WXQBu3gz2ertVSgosXgxjxsDzfuhKSkpi7NixTJkyxWGaJ3t7e6fbVsWae3QJIbRlNBrp0KEDDx48UDSufv36mSoabZWHhwfBwcHUrl2bFAUtMxYvXkyzZs146623NMxOWBOrLgBnzTLtl7PVti8v8ugRrF797MbWZ8+e5dNPP+XgwYPmTcxMChQokG6j5MKFC9vV/jwhRNYtXryY3377TdGY7Nmzs3LlSoc72FWjRg2GDx/OhAkTFI1r3749p06dIleuXBplJqyJ1RaAJ0+CmS6zsKg5c9IWgEajkbVr19K9e3diYmIsk5iKSpYsmW6hZ81NV4UQ1iMyMpKBAwcqHvfFF19QvHhxDTKyfiNHjuTnn3/m6NGjGR5z7do1evbsyVdffaVhZsJaWG0BuHOnaZ+cPbekMxrh7Fm4dg0KFza99+DBA7p3787XmTkibEHOzs5pGiWXK1eOsmXL4unpaen0hBA2KiUlhTZt2jy360F63nvvPdq0aaNRVtbP1dWV4OBgXn75ZRITEzM87uuvv+aDDz7g448/1jA7YQ2stgA8eBAcZRXw0CF4/33Yt28fn332GRcuXLB0Ss/k6emJv79/mrYqZcqUwcXFxdLpCSHszMyZM9m3b5+iMXnz5mXp0qUOv5WkQoUKTJw4kcGDBysa17VrV+rUqUPBggU1ykxYA6stAPfuNcfev2SgLPAO8N/LxLsC24H9QH7NMnB2hv37kzl+fDLjx49XtGlXS3ny5El32bZYsWIOt59GCGEZJ0+eZPTo0YrHLV68mAIFCmiQke3p378/P/30E38p2FMVFRVF586d2bRpk8MX0fbMKgvAu3dN175pzxkYCvQFxgB5Hr8/BVgP7EPL4g9MRe4ff1ymVq17FC1aVFEXdzUULVo0TZFXrlw58uXLZ9Y8hBDiSYmJibRu3VrR8iXA559/zkcffaRRVrZHr9ezatUqKleuzKNHjzI8bvPmzaxatYp27dppmJ2wJKu8CeTXX0335ZpHIuADdARGA18BnYAdQG2zZODlZbrxRKczcvz4cTZs2MDGjRs5ceKEKvGdnJwoU6ZMmrYq/v7+eHt7q/IMYVlyE4iwNyNGjGDy5MmKxhQpUoRTp06RM2dObZKyYUuWLKFr166Kxnh7e3PixAlKliypTVLCoqxyBjAiwrT/zzylqSswGBgPVMNUCK7FXMUfmNrB3LoFBQvqqFKlClWqVGHcuHGcPXuWTZs2sXHjRv76669M9QGcNm0affr0kcu+hRA248CBA0ydOlXxuBUrVkjx9wydO3dm48aN/PrrrxkeEx0dTbt27fj9999l648dssr/orGxpv5/5tMR0APvYlr+Nf/yQVxc2vfKlClD//792b17Nzdu3GD58uW88847ioq5hw8fSvEnhLAZsbGxtGnTBoPCFhDdunWjUaNGGmVl+3Q6HcuXL1dcIP/xxx98+eWX2iQlLMoqC8D4eHOfAHYH6mGa9etrzgf/I70C8En58+enQ4cO/Pzzz9y+fZvvvvuOTz/99IV33Z45c0bFLIUQQltDhw4lPDxc0ZgyZcowI6P3ajqwIkWKsGDBAsXjhg4dSmhoqAYZCUuyygLQMrsSTwA1LfFgQNmv2dvbm+bNm/PVV19x69Yttm3bRrdu3ShUqFCaz4aEhKiYpRBCaOf3339XPNvk5OREcHAwXl5eGmVlX1q1akXz5s0VjYmPjycwMJDk5GSNshKWYJUFoIeHuYvAOCAUeNmcD31KZnslu7q60qhRIxYuXMiVK1c4cOAAQ4cO/efi88jISJKSklTMVAgh1PfgwYNMnTgdNGgQtWubb8+2rdPpdCxcuFBxm5xDhw4xZcoUjbISlmCVBaCnp7nv/z0GpAAvmfOhT/HwyHoMJycnatasyZQpUwgNDSUkJIQJEyZw9+7drAcXQggN9enTh8uXLysaU7FiRcaNG6dRRvYrb968LF++XPG48ePHc+TIEQ0yEpZglQWgr6+5ZwCPANkAX3M+9B9eXpBfg3aD/v7+DB06VBqiCiGs2qZNm1i9erWiMS4uLgQHB8sht0xq2rSp4nZQycnJBAYGEh8fr1FWwpyssgCsXt3cT+wBRGOJfx06nenXKyfshRCO6Pbt23Tu3FnxuLFjx1KlShX1E3Igc+bMoUSJEorGnD59OlO3swjrY5VlR548ULy4pbMwD70eatWydBZCCGF+RqORLl26cOvWLUXjXnnlFcX324q0smfPzqpVqxSPmzlzJnv27FE/IWFWVlkAAtSpY+5egJaRnAw1alg6CyGEML+1a9eyYcMGRWM8PDxYvXo1zs5WeY+BzXnjjTfo27evojFGo5G2bdsSExOjTVLCLKy2AKxRw1LtYMxPCkAhhKO5fPkyvXr1Ujxu2rRp+Pn5aZCR45o8eTL+/v6Kxpw7d46BAwdqlJEwB6stAOvVA4WN4G2OTgelS0PhwpbORAghzMdoNNKhQwcePHigaFz9+vXp0aOHRlk5Lg8PD4KDg9ErXHZbsmSJoqvlhHWx2gKwUiV49VX7Xwbu18/SGQghhHktWrSI7du3KxqTPXt2Vq5cKXfSaqR69eoMHz5c8bgOHTpIqzEbZdW/kwYMMHc/QPPy8oK2bS2dhRBCmE9ERASDBg1SPG7evHkUd5TTgRYycuRIXnpJWT/ca9eu0bNnT40yElqy6gLwvfegWDFLZ6ENvR66doVs2SydiRBCmEdKSgpt2rQhNjZW0bj333+fwMBAjbISqVxdXTPVW/Gbb77h+++/1ygroRWrLgD1eujf37RXzt4YDCA/NAkhHMmMGTPYv3+/ojF58+Zl6dKl6OzxDwIrVL58eSZOnKh4XLdu3bhx44YGGQmtWHUBCNC+PeTMaV9FoF4PLVuCwv6bQghhs06cOJGpBsJLliwhvxZXJYln6tevH3Xr1lU0Jioqik6dOmF0lPYddsDqGyllzw4rV0KzZpbORB1OTpAz5wPKlVvJ8uXZyJbN9PL29v7n7598KT2VJYQQ1iYxMZHAwECSkpIUjWvdujUffvihRlmJZ9Hr9axatYpKlSrx6NGjDI/7+eefWblypeIr5oRlWH0BCPD++9CxI6xYYfutYQwG+PrrHHz11VFGjQp+4ec9PDzSFIX/LRbT++eXX34ZHx8fM/yKhBDi+caNG8fx48cVjSlatCjz5s3TKCPxIqVLl2b27Nl06dJF0bg+ffpQv359SpYsqU1iQjU2UQACzJ0Lv/8Oly7Z7slgJyfo1QsaNYIaNb7g999/5+rVq88dExcXR1xcHLdv387wc9zc3AgNDc1qukIIkWX79+9n6tSpisetWLGCnDlzqp+QyLBOnTqxceNGfvnllwyPiYmJoW3btuzcuVNa9lg5m/mv4+UF335ru7eD6PXg6wup3wdz5sxJUFCQJs/q27ev/PQlhLC4R48e0aZNGwwKl266d+9Ow4YNNcpKZJROp2P58uXkypVL0bg///xTZm9tgM0UgADVq8OiRZbOQjm9HnLkgI0bwd393/ffeustxdPrL5IvXz6GDRumakwhhMiMoUOHEhERoWiMj48P06dP1ygjoVThwoVZsGCB4nHDhg2TlSgrZ1MFIEDnzjB/vqWzyDi93nSQZfduSO+qxRkzZlCqVCnVnjd+/Hhy5MihWjwhhMiM33//nfkKv1k7OTkRHByMl5eXRlmJzGjZsiXNmzdXNCY+Pp7WrVsrPvgjzMfmCkCAHj1g8WJTaxhrbg/j7Ax585qKv/Ll0/+Mt7c3K1euVOV5Hh4eNG7cWJVYQgiRWffv36dtJq45Gjx4MLVq1VI/IZElOp2OhQsXUrBgQUXjDh8+zJQpUzTKSmSVTRaAAF26mJZUXV2t875gvR58fODwYahQ4fmfff311+nbt2+WnxkXF0dAQABjxowhJiYmy/GEECIz+vTpw5UrVxSNqVSpEmPHjtUmIZFlefPmZfny5YrHTZgwgb///luDjERW2WwBCKar4vbtMy2tWstMYGox2ro1HDgARYtmbNzkyZPx8/PL8vPj4uIYP348fn5+rFy5khRbPTIthLBJGzduJDj4xS2unuTi4pKpK8iEeb3zzjt06NBB0Zjk5GQCAwOJj4/XKCuRWTZdAAK89BIcPQrTpoGbm2nZ1VJ0OiheHHbuNDWvVrIVz8PDg9WrV6t2bP769eu0b9+eatWqsXPnTlViCiHE89y6dYvOnTsrHjdu3DgqV66sQUZCbbNnz6aEwmuszpw5w6hRozTKSGSWzReAAC4uMGgQhIRAvXqm98zZfsjZ2fQaORLOnPk3B6VeeeUVhgwZompux44do0GDBrz33nuEhYWpGlsIIVIZjUa6du2qqGcpmL7vDRo0SKOshNqyZ8/OqlWrFI+bNWsWu3fvVj8hkWl2UQCmKlUKtm2DH36AV181vafV/kAnJ9OMn7u7abn3+HEYP/7pNi+ZMWbMGCpWrKhOkk/YvHkzFSpUoFevXty5c0f1+EIIx7Z27Vo2bNigaIyHhwfBwcE4W3LpRij2xhtv0K9fP0VjjEYjbdu2JTo6WqOshFJ2VQCCqSj78EPTydvwcNPMYJ48pq+p8T0mNUblyqaTyDdvmq6oK1cu67HBdIvH6tWrNfmGmJyczPz58/Hx8WHmzJkkJCSo/gwhhOO5fPkyPXv2VDxu+vTp+Pr6apCR0NqkSZMICAhQNOb8+fMMHDhQo4yEUnZXAD7J1xemTIHr100nhtu1g6pVTSeHU7m4mGYJU5eMdTrTPzs7Pz17mDMnNGgAAwbAsWNw5IipJ2H27OrnXbVqVUaPHq1+4McePHjAoEGDCAgIYP369Rht9XoVIYTFGQwG2rdvz8OHDxWNa9CgAd27d9coK6G11NlbvcJltqVLlyq6Wk5oR2d0wD/9k5MhLMxUyB07BrdvQ3w83LsXi5eXBx4eOtzdoXRpqFLF9Cpc2LwnjZOSkqhVq5ZZjs+/+uqrzJ49mxo1amj+LKGNRo0asX379gx9NigoiPbt22uckXAUCxYsUDz7lyNHDk6ePEmxYsU0ykqYy5gxYxg/fryiMYUKFeLUqVPkzp1bo6xERjhkAfgsLVq0oHnz5oo7nmvl9OnTvPzyy2Zbqv3000+ZMmUKxYsXN8vzhHqkABSWEBERQeXKlYmLi1M0bvXq1QQGBmqUlTCnpKQkXnnlFY4cOaJoXMuWLfnmm280ykpkhF0vAStx6tQpvv/+e8aNG6f44nKtlC9fngkTJqT7tQkTJuDj46Pq877++mv8/PwYPny44uUcIYRjSe3vprT4a9asGa1bt9YoK2Fume3huG7dOr777juNshIZIQXgY6lT2KdPn+aHH36wcDb/6t+/P7Vr137qvY8++oiRI0dy+vRp5syZQ65cuVR7XkJCAlOmTMHX15clS5aQnJysWmwhhP2YMWMGBw4cUDQmX758LFmyBJ21dO4XqihfvjyTJk1SPK5bt25cv35dg4xERkgByL+zf6msaRZQr9ezevVqPD09AdNPW9OmTQPA1dWVvn37EhkZSd++fVU9OXzr1i26du1KlSpV2LZtm2pxhRC27/jx44wZM0bxuCVLlpA/f34NMhKW1rdvX+rWratozN27d+nUqZMcRLQQKQAhzQZWa5sF9PHx+afo69WrF2XKlHnq67lz52bOnDmcOXOGDz74QNVnnz59mrfffpu3336bU6dOqRpbCGF7EhISCAwMJCkpSdG4wMBA1b8/Ceuh1+tZtWoVXl5eisZt2bKFFStWaJSVeB6HLwD/O/uXyppmAQG6d+9OixYtGDly5DM/4+vry48//sgff/zBSy+9pOrzt23bRuXKlenatSs3b95UNbYQwnaMGzeOEydOKBpTtGhRvvjiC40yEtaidOnSzJ49W/G4vn37cv78eQ0yEs/j8AXgs46vW9ssoJOTE998802G9vu9/vrrHDp0iODgYIoUKaJaDgaDgSVLluDr68uUKVMUb/4WQti2ffv2/bMaocTKlSvJmTOn+gkJq9OpUycaN26saExMTAzt2rWzqkkXR+DQBeCzZv9SWdssoJOCC46dnJxo3bo14eHhjB8/XvG0/PNER0czfPhw/P39+frrr63q35EQQhuPHj2iTZs2in+/9+jRgzfffFOjrIS10el0LF++XPHhxD///FNmic3MoQvAFzWvtLZZwMzw9PRk1KhRRERE0KFDB1VP3126dInPPvuMWrVqsXfvXtXiCiGsz5AhQ4iMjFQ05sn9y8JxFC5cmIULFyoeN2zYMEJCQjTISKTHYQvA1q1bP3f2L1WbNm3YuHGj9glprFChQixfvpyjR4/SoEEDVWMfPHiQOnXq0Lx5c86dO6dqbCGE5e3YsYMFCxYoGuPk5ERwcLCqqw/CdrRs2ZIWLVooGpPZA0Yicxy2AMzorQlxcXH8+uuvGmdjPpUrV2b79u38/PPP+Pv7qxp7/fr1BAQEMGjQIO7fv69qbCGEZdy/f5927dopHjdkyBBq1aqlQUbCVixcuJCCBQsqGnP48GEmT56sUUbiSQ5ZAJ46dUrRSdbNmzfb1T43nU7HO++8w4kTJ1iwYAF58+ZVLXZiYiIzZ87Ex8eH+fPny09yQti43r17c+XKFUVjKlWqlKk+gcK+5MmTh+XLlyseN3HiRP7++28NMhJPcsgCUOnF1deuXbP5vYDpcXFxoXv37kRGRjJ48GBcXV1Vix0VFUWvXr2oWLEimzdvlkafQtigDRs2sGbNGkVjXFxcWLNmjeKrwYR9euedd+jYsaOiManXDMbHx2uUlQAHLABfdPL3WaztRLCacuTIwbRp0wgNDVW8Z+NFwsLCeO+993jzzTc5duyYqrGFENq5desWXbp0UTxu/PjxVKpUSYOMhK2aPXs2JUuWVDTmzJkzz+17K7LO4QpApbN/qezhRPCLlCpVim+//Za9e/dSs2ZNVWPv3LmTl156ifbt23Pt2jVVYwsh1GU0GunSpQu3b99WNK5WrVoMGjRIo6yErfL29mbVqlWKu1DMnj2bP//8U6OshEMVgJmd/Utlz7OAT6pduzb79+/nm2++oUSJEqrFNRqNrFy5El9fX8aPH8+jR49Uiy2EUM+aNWsUdz/w9PRk9erV6PV6bZISNu3111+nb9++isYYjUbatm1LdHS0Nkk5OIcqADM7+5fKEWYBU+l0Olq2bEloaChTp07F29tbtdixsbGMGTMGPz8/Vq9e7RBFtRC24tKlS/Tq1UvxuOnTp+Pr66tBRsJeTJo0iYCAAEVjLly4wIABAzTKyLE5TAGY1dm/VI4yC5jK3d39nwaw3bp1U3QbyYtcu3aNtm3bUq1aNXbt2qVaXCFE5hgMBtq3b8/Dhw8VjXvzzTfp1q2bRlkJe+Hh4UFwcLDiWeJly5axdetWjbJyXA5TAGZ19i+VI80CPil//vwsXLiQEydOKL7n8UWOHj1K/fr1adasGeHh4arGFkJk3MKFC/n9998VjcmRIwcrVqxQ9YdDYb+qVauWqcMdHTt2JCoqSoOMHJdD/I5Va/YvlaPNAj6pfPnybN26lW3btlGhQgVVY2/atIny5cvTp08f+Y0uhJmFh4czePBgxeO+/PJLihUrpkFGwl6NGDGCl19+WdGY69ev06NHD40yckwOUQCqNfuXylFnAZ/UqFEjjh07xtKlSylQoIBqcZOTk5k3bx4+Pj7MmTOHxMRE1WILIdKXnJxMmzZtiIuLUzTugw8+4PPPP9coK2GvXFxcCA4OVtwr8ttvv+Xbb7/VKCvHY/cF4J07d3jw4AENGzZ86uXi4pLhGIUKFUozft++fRpmbRv0ej2dOnUiIiKCESNG4O7urlrs+/fv079/f8qVK8ePP/4ojaSF0ND06dM5cOCAojH58uVjyZIlilt7CAFQrlw5Jk2apHhc9+7duX79ugYZOSCjg8qTJ48RyNArMDDQ0unahEuXLhk///zzDP97VfKqW7eu8eDBg5b+JVqthg0bZvjfZVBQkKXTFVbk2LFjRhcXF8W/Jzds2GDp1IWNS05ONr722muK/99r0qSJ0WAwWDp9m+ec5QpSiMeKFSvGmjVr6N27NwMGDGDPnj2qxd6zZw81atTg888/Z/LkybLnSAgVJCQk0Lp1a8V3drdp04ZmzZppk5RwGHq9nlWrVlGpUiViYmIyPG7r1q0EBQWlf8Wc0QjXrsGxY6bXuXMQH296paSAu7vplS8fVKliepUtC86OVw453q9YaK569er8+eefbNiwgcGDB3P27FnVYq9du5b169czYMAAhgwZomp/QiEczdixYzl58qSiMcWKFeOLL77QKCPhaEqVKsXs2bPp3LmzonH9+vWjQYMGlCpVCo4fh3Xr4NAhOHIE7t0zfUivB53OVBQaDKa/OjmZXjodpP7g4+oK5ctDtWrwzjvQpAko2CZmq+x+D6CwDJ1Ox4cffsjp06eZNWsWOXPmVC12fHw8kyZNwtfXl2XLlpGSkqJabCEcxb59+5g+fbricStXriRHjhwaZCQcVceOHRW3F/ugaVNybdwIVauaZvFmzoTff/+3+APTjF9ysumvqfvIDQbTe0/OeicmwtGjsHIlNGsGhQvDsGEQGZnVX5pVkwJQaMrNzY3+/fsTGRlJ7969cVZxmv3mzZt07tyZqlWrsn37dtXiCmHvHj16RGBgoOJ2Vj179qRBgwYaZSUclU6nY/ny5eTKleuFn82bKxc/1KtH8MaN5BwwAE6cMH0hOTnriaTGuHMHZswAX1947TX48cd/C0g7IgWgMIs8efLwxRdfcPr0ad5//31VY588eZJGjRrRpEkTzpw5o2psIexRZrZm+Pr6Mm3aNI0yEo6ucOHCLFq06Lmfed/Pj1MPH/Lhnj2mPX2pS7taSF1Z2rcPPvoI3noLzp/X5lkWIgWgMCs/Pz82btzIrl27qFq1qqqxf/nlFypVqkS3bt24deuWqrGFsBfbt29n4cKFisY4OTkRHByMp6enRlkJAZ988gmffPJJmveze3mxKm9eNoSHUyB1WddcUgvBXbsgIMA0M2jO52tICkBhEW+88QaHDx9m1apVFC5cWLW4KSkpLF68GB8fH6ZNm0Z8fLxqsYWwdffv36ddu3aKxw0dOpRXXnlFg4yEeNqCBQsoWLDgP//coFAhTj56RJt797Box8nkZEhIgCFDTPsOjx61ZDaqkAJQWIyTkxNt2rQhPDyccePGqTq7EB0dzdChQ/H392fdunXSSFoIoHfv3ly9elXRmMqVKzNmzBiNMhLiaXny5CEoKAgPd3fm5c/PbzdvUhz+nYmzNKMRQkKgVi3YvNnS2WSJFIDC4ry8vBg9ejQRERG0b99e1ZsFLl68SKtWrahduzb79+9XLa4QtubHH39kzZo1isakXtnl6uqqUVZCpNWkRAkueHvT6+5dnLTa45cVKSmmk8Pvvw9Ll1o6m0yTAlBYjcKFCxMUFMSRI0eoX7++qrEPHDhA7dq1admyJeftbCOvEC9y8+ZNunTponjc+PHjqVSpkgYZCfEMp09D3brkv3vXuvfaGY2mV5cu8ILDK9ZKCkBhdapUqcKOHTv46aefKFu2rKqxv/32W/z9/RkyZAgPHjxQNbYQ1shoNNKlSxfu3LmjaFzt2rUZNGiQRlkJkY7QUFPblYcPrWfJNyO6d4dlyyydhWJSAAqrpNPpePfddzl58iRffvklefLkUS12YmIi06dPx8fHh4ULF5JszT9lCpFFwcHBbNq0SdEYT09PVq9ejV6v1ygrIf4jLs7UhPnBA9sq/lJ16waHD1s6C0WkABRWzcXFhZ49exIZGcnAgQNV3Yt0584devToQaVKldiyZYscFBF259KlS/Tu3VvxuBkzZuDj46NBRkI8w9ChEBFhm8Vfqk8+gUePLJ1FhkkBKGxCzpw5mTFjBiEhITRv3lzV2CEhITRt2pRGjRpxIrWrvBA2zmAw0K5dOx4+fKhoXMOGDenWrZtGWQmRjm3bYN487Zo6m0NKCly4AP37WzqTDJMCUNiU0qVL89133/HXX39Ro0YNVWPv2LGDKlWq0LFjR65fv65qbCHMbcGCBezcuVPRmBw5crBixQpVT+IL8Vx37sDnn4OTHZQjBoPpVPBPP1k6kwyxg3/jwhG9+uqr7N+/n6+//prixYurFtdoNBIUFISvry8TJkwgNjZWtdhCmEt4eDhDhgxRPG7+/PkULVpUg4yEeIbeveHePdue/XuSTgdt25oOslg5KQCFzXJycqJVq1aEhoYyefJksmXLplrsR48eMXr0aPz8/FizZg0Ge/nmJOxecnIygYGBxMXFKRr34Ycf8tlnn2mUlRDpuHAB1q2z7X1//2U0wv37sHKlpTN5ISkAhc3z8PBg2LBhREZG0qVLF5xUXEq4evUqgYGB1KhRgz///FO1uEJoZdq0afzvf/9TNCZ//vwsXrxYln6Fec2fbx9Lv+mZPdvqC1s7/TcvHFGBAgVYvHgxx48f5+2331Y19t9//80bb7zBhx9+SEREhKqxhVDLsWPHGDdunOJxS5cuJV++fBpkJMQzREfDkiVWXyRlitEIly7Bzz9bOpPnkgJQ2J0KFSrwyy+/8Msvv1C+fHlVY2/YsIHy5cvTr18/7t69q2psIbIiISGB1q1bk5SUpGhc27Ztef/99zXKSohnWLXKplqmKKbXw8yZls7iuaQAFHbr7bff5tixYyxZsoT8+fOrFjcpKYm5c+fi4+PD3LlzSUxMVC22EJk1ZswYTp06pWhM8eLFmTt3rjYJCfE89v7/XUoK/PUXnDxp6UyeSQpAYdecnZ3p3LkzERERDBs2DDc3N9Vi37t3j379+lG+fHk2btwojaSFxezdu5cZM2YoHrdy5Upy5MihQUZCPMfVq3DunGmp1J45OcGuXZbO4pmkABQOIXv27EyePJmwsDA+/fRTVWNHRkbywQcf8MYbb/D333+rGluIF4mJiaFNmzaKT6r36tWL+vXra5SVEM9x8KBmoQ2AP/DfJkjbAFfge82enA6dTtNfa1ZJASgcSokSJfjqq6/43//+x6uvvqpq7N27d1OtWjXatGnDlStXVI0txLMMHjyYs2fPKhrj5+fH1KlTNcpIiBc4eBCcnTUJ7QQMAxYB9x6/dxxoDkx+/FezSUmBvXvN+URFpAAUDqlGjRrs2bOH77//nlKlSqkaOzg4GD8/P0aPHk1MTIyqsYV40m+//caiRYsUjXFyciI4OBhPT0+NshLiBfbvh+RkzcJ/BuQF5gFXgHeA1sBAzZ74HBcugJUeGJQCUDgsnU7Hxx9/TEhICDNnzlR1L1RcXBwTJkzA19eXoKAgUuyx1YGwqHv37tG+fXvF44YNG0bNmjU1yEiIDDAY4NAhTR/hjGkJeB7QBHjp8d9bjMa/3sySAlA4PDc3NwYMGEBkZCQ9e/ZEr9erFvvGjRt07NiRl156iR07dqgWV4jevXtz9epVRWOqVKnC6NGjNcpIiAy4dQvMcMXmZ0AsYAS+Af77Xf0DIBfwsdaJ6HQQHq71UzJFCkAhHsubNy9ffvklp06d4t1331U19okTJ2jYsCFNmzYlJCRE1djC8fzwww+sXbtW0RhXV1eCg4NxdXXVKCshMsBM96v3fPzXO6Qt/gB6A8HmSESvB4XXMpqLFIBC/Ie/vz8//fQTv//+O1WqVFE19pYtW6hYsSI9e/bk9u3bqsYWjuHmzZt06dJF8bjx48dTsWJFDTISQgEzFEOjgC3AASAZCErnM/UAb80zwTQDKAWgELalfv36HD58mBUrVlCoUCHV4qakpLBgwQJ8fHyYMWMGCQkJqsUW9s1oNNK5c2eioqIUjatduzYDB1pkC7wQZrUcmAVsBioDfYHpgLL7cRyDFIBCPIder6ddu3aEh4czZswYPDw8VIv98OFDBg8eTEBAAN9//700khYvtHr1an766SdFYzw9PVm9erWqe1uFyDQVv4f+1y9AD2At8Mrj93oBD4E1mj31BYxGTX/NWSEFoBAZkC1bNsaOHUtERARt27ZFp9OpFvv8+fO0aNGCOnXqcODAAdXiCvty8eJF+vTpo3jczJkz8fHx0SAjITJBo/ZDf2Pq8Tcd+PCJ97NjKgKnAhbpxZCSIgWgEPagSJEirFy5ksOHD/PGG2+oGnvfvn3UqlWLVq1aceHCBVVjC9tmMBho164dDx8+VDSuUaNGdO3aVaOshMiE/Pk1KQJfBmKA9H5EGg+Ek/5hEM0ZjeDnZ4knv5AUgEJkwksvvcTOnTvZtGkTvr6+qsZet24d/v7+DBs2TPEf+MI+zZ8/n10K7xTNkSMHQUFBqs5WC5FlTk5Qvbqls+AtTDOGW4GigKad+qzg15seKQCFyCSdTsd7773HqVOn+OKLL8idO7dqsRMSEpg6dSo+Pj4sXryYZA275gvrFhYWxpAh/73Z9MUWLFhA0aJFNchIiCyqVUuzq+AyahtwG1OvwCuAZiVayZKg4p8NapICUIgscnV1pXfv3kRGRtK/f39cXFxUi3379m26detG5cqV+fXXX1WLK2xDcnIygYGBxMfHKxr30Ucf8emnn2qUlRBZVKOGplfBWQ29HlS+c15NUgAKoZJcuXIxa9Yszpw5w0cffaRq7DNnztC4cWPeeustTp48qWpsYb2mTZvGwYMHFY3Jnz8/ixYtkqVfYb1q1LB0BuZhNFr1r1UKQCFU5uPjw/r169m9ezfVqlVTNfZvv/1GlSpV6Ny5Mzdu3FA1trAuR48eZezYsYrHLVu2jHz58qmfkBBqKVIESpc2NUm2ZwYD1Ktn6SyeSQpAITRSt25d/ve//7F27VpV92IZDAaWLVuGr68vkydPJs5Ku8yLzEtISCAwMFDx3s927drx3nvvaZSVECrq29fSGWhLr4c6dcCKb9+RAlAIDTk5OfHZZ58RFhbGxIkTyZYtm2qxY2JiGDFiBGXLluX69euqxRWWN3r0aE6dOqVoTPHixZk7d642CQmhtnbtwMvL0lloJyUFrPz2HSkAhTADT09PRowYQUREBJ06dcLJSb3fepcvX1ZcLAjrtXfvXmbMmKF43KpVq8iePbsGGQmhgWzZoEsX00yZvdHpoHhxaNrU0pk8lxSAQphRwYIFWbp0KceOHaNhw4aWTkdYmZiYGNq0aaP4WsDevXtTz4r3GgmRrp49Tfvk7FH//lZf3EoBKIQFVKxYkW3btrF161bKlStn6XSElRg0aBBnz55VNMbPz48pU6ZolJEQGipZElq2tPpCSRGdDnLmNC1xWzkpAIWwEJ1OR+PGjTl+/DiLFi2Sk5sObtu2bSxevFjRGL1ez5o1a/DU6H5VITQ3b56pUbKK22IsymiE1avBBrZj2Mm/cSFsl7OzM127diUiIoIhQ4bg5uZm6ZSEmd27d4/27dsrHjds2DBqWHGfMSFeKG9eWLPGPpaCnZygc2d4911LZ5IhUgAKYSVy5MjB1KlTCQ0NpWXLlpo95+LFi5rFFpnTq1cvrl27pmhM1apVGTVqlEYZCWFGb70FvXvb9iygXm9a0p4929KZZJgN/9sWwj6VLFmSb775hv3791OrVi3V40+YMIF27dpx9epV1WML5davX89XX32laIyrqyvBwcG4urpqlJUQZjZ1Kvj62vZ+wG+/tanWNlIACmGlXnnlFfbu3cu3335LyZIlVYtrNBpZtWoVfn5+jB07lkePHqkWWyhz48YNunbtqnjchAkTqFChggYZCWEhHh6wcSPkyGGbReCiRaDyzU9akwJQCCum0+lo0aIFISEhTJ8+XdU+b7GxsYwbNw5fX19WrlxJSkqKarHFixmNRjp37kxUVJSica+++ioDBgzQKCshLMjfH3bvNh2gsKUicOFC6NTJ0lkoJgWgEDbA3d2dQYMGERkZSY8ePdCr+M3x+vXrtG/fnmrVqrFz507V4ornW7VqFZs3b1Y0xsvLi9WrV6v6318Iq1K+POzZYzoc4uxs6WyeTaczvZYsgW7dLJ1NpkgBKIQNyZcvH/Pnz+fkyZO88847qsY+duwYDRo04P333ycsLEzV2OJpFy9epE+fPorHzZw5kzJlymiQkRBWpHx5OHwYfHyscyZQrwc3N/jpJ9OpXxslBaAQNiggIICff/6Z7du3U6lSJVVj//TTT1SoUIHevXtz584dVWMLMBgMtG3blujoaEXj3nrrLbp06aJRVkJYmaJF4cABaN3a9M/WUgjqdBAQAPv2Wf1Vby8iBaAQNuzNN9/kyJEjqt8mkpyczJdffomPjw+zZs0iISFB1fiO7Msvv+SPP/5QNCZnzpwEBQWh0+m0SUoIa5QjB6xcCTt3mu7WteT//87O4O4O06fD0aNQtarlclGJFIBC2Di9Xk+RIkU0if3gwQMGDhxIuXLlWL9+veI7asXTQkNDGTp0qOJxCxYs0Oy/sRBWr149OHMGRo40FWLm3BuYOvNYv74ph4EDrXtvogJSAAohXujcuXM0b96cunXrcvDgQUunY5OSk5Np06YN8fHxisZ9/PHHtGrVSqOshLAR7u4wfjwcP25aFnZ3N80IatU8OrXwe/VV+OEH+PVXKFVKm2dZiBSAQogM27t3LzVr1uSzzz7j0qVLlk7HpkydOlVx8VygQAEWLVokS79CpCpXDlasgJs3YfFiqFzZ9L6zc9aXiFNn9vLmhcGDISIC/vwTPvzQssvPGpECUAih2Ndff03ZsmUZMWKE4sMMjujIkSOMGzdO8bhly5aRN29eDTISwsZlz246gXvkiGlWcOBAaNAAcuX69zN6vamo0+v/LeCcnEzvubj8+zlXV3jpJWjfHjZtguvXYfJk0ylkO2YfC9lCCLOLj49n8uTJLF++nAkTJtC+fXuc7WRvjJri4+MJDAwkOTlZ0bh27drxro1cKi+ERVWqZHoBGI2mAu7YMdPr3DmIjze9UlJMS8fu7pAvH1SpYnr5+dnNvj4lHO9XLISDa9iwIbt27VJckDzLrVu36NKlC/PmzWPWrFm89dZbqsS1F6NHj+b06dOKxpQoUYK5c+dqk5AQ9kyng8KFTa8mTSydjVXTGe38WN+dO3f47LPP0pxe/OOPP0hKSspQjIIFC1KxYsWn3itfvjxz5sxRLU8hsqJRo0Zs3749Q58NCgqibt26DBkyhA0bNqiey9tvv83MmTMpX7686rFtzV9//cVrr72m+PT0zp07qVevnkZZCSGEA8wA5s2blxw5cvD9999nOsaNGze4cePGU+91ssF7/4RI5evry48//siff/7JgAED+Pvvv1WL/euvv/Lbb7/RqVMnxo0bR4ECBVSLbUtiYmJo06aN4uKvT58+UvwJITTnEIdARo8erWq88uXL89FHH6kaUwhLeP311zl48CDBwcGq9pkzGAwsWbIEX19fpk6dqrj1iT0YOHAg586dUzSmbNmyTJkyRaOMhBDiXw5RAFaoUIHmzZurFm/MmDE4adV7SAgzc3JyonXr1oSHhzNhwgS8vLxUix0dHc2wYcMoW7Ys33zzjcM0kv71119ZsmSJojF6vZ7g4GA8PDw0ykoIIf7lMFWMWrOAMvsn7JWnpycjR44kIiKCDh06qNp77tKlS3z66ae88sor7N27V7W41ujevXt06NBB8bjhw4dTo0YNDTISQoi0HKYAVGsWUGb/hL0rVKgQy5cv5+jRo7z55puqxj548CB16tShRYsWipdHbUXPnj25du2aojFVq1Zl5MiRGmUkhBBpOVQlk9VZQJn9E46kcuXK/Pbbb2zZsgV/f39VY3///fcEBAQwaNAg7t+/r2psS/r+++/5+uuvFY1xdXUlODgYV1dXjbISQoi0HKoAzOosoMz+CUej0+lo0qQJJ06cYMGCBareSpGYmMjMmTPx8fFh/vz5GW7LZK1u3LhBt27dFI+bOHEiFSpU0CAjIYR4NoerZjI7Cyizf8KRubi40L17dyIjIxk8eLCqs1VRUVH06tWLihUr8vPPP9vkQRGj0UinTp2IiopSNK5OnTr0799fo6yEEOLZHK4AzOwsoMz+CQE5cuRg2rRphIaG0qJFC1Vjh4WF8e677/Lmm29y7NgxVWNrbeXKlfz888+Kxnh5ebF69Wr0er1GWQkhxLM5ZEWjdBawcOHCMvsnxBNKlSrFt99+y969e3nllVdUjb1z505eeuklOnTooPgwhSVcuHCBvn37Kh43a9YsSpcurX5CQgiRAQ5ZAFaoUEHR7QTvvvuuzP4JkY7atWuzb98+1q1bR4kSJVSLazQaWbFiBb6+vowfP55Hjx6pFltNBoOBdu3aER0drWjc22+/TefOnTXKSgghXsxhq5qGDRtm6HMeHh68/fbbGmcjhO3S6XR88sknhIaGMnXqVLy9vVWLHRsby5gxYyhbtiyrV6/GYDCoFlsN8+bN448//lA0JmfOnCxfvlzVPotCCKGUwxaAa9asydBewNWrV9OsWTPtExLCxrm7uzNkyBAiIyPp1q2bqrPmV69epW3btlSvXl1xwaWV0NBQhg0bpnjcwoULVb12TwghMsNhC0B48V5AOfkrhHL58+dn4cKFnDhxgsaNG6sa+8iRI9SrV49mzZoRHh6uamwlkpOTCQwMVHzHcfPmzWnZsqVGWQkhRMY5dAH4ohPBcvJXiMwrX748W7duZdu2bVSsWFHV2Js2baJ8+fL07duXu3fvqho7I6ZMmcKhQ4cUjSlQoAALFy6UpV8hhFVw+OrmWbOAMvsnhDoaNWrE0aNHWbZsmaLDVy+SnJzMF198QZkyZZgzZw6JiYmqxX6eI0eOMH78eMXjli9frmojbSGEyAqHLwCfNQsos39CqEev19OxY0ciIiIYMWIE7u7uqsW+f/8+/fv3p1y5cvz444+aNpKOj4+ndevWJCcnKxrXvn17mjZtqlFWQgihnFQ4pJ0FlNk/IbTh7e3NxIkTCQ8P5/PPP1c19tmzZ/noo494/fXXOXz4sKqxU40aNYozZ84oGlOiRAnmzJmjST5CCJFZUgCSdhZQZv+E0FaxYsVYs2YNBw8epG7duqrG3rNnD9WrV6d169ZcvnxZ1bizZs1SPG7VqlVkz55dtTyEEEINUuU8ljoLKLN/QphP9erV+fPPP/nhhx8oU6aMqrHXrl2Ln58fo0aNUtyo+b9iYmJo27at4uXlvn378sYbb2Tp2UIIoQUpAB9LnQWU2T8hzEun0/Hhhx9y5swZZs+eTc6cOVWLHR8fz8SJE/H19WXZsmWkpKRkKs7AgQM5d+6cojH+/v5Mnjw5U88TQgit6Yxa7pi2VoZkeBgK946ZXgm3ISWe2Jh7eHh6odN7gN4dspWGXFVML48iIO0bhJVq1KgR27dvz9Bng4KCaN++vcYZZV5UVBQTJkxgwYIFig9bvEjFihWZNWtWhm8CAvjll19o0qSJoufo9Xr2799P9erVlaYohBBm4WzpBMzCkARXt8C1LRB1GB6eNr0HoHMBDGA04okB7gI6J0yTo0YwPp4xcMkJuV+CPNWhRCvIVdkivxQh7F2ePHmYO3cu3bt3Z/DgwWzatEm12CdPnqRRo0Y0adKEGTNmUK5cued+/u7du3To0EHxc0aMGCHFnxDCqtn3WufDCDg2FH4sBHs+gHOr4P6xf4s/AGPS4yLviTtGjQYwJv9b/AEk3YebOyFkFvxSBX6pChFLIOmhWX4pQjgaPz8/Nm7cyK5du6hataqqsbdu3UqlSpXo3r07t27deubnevbsyfXr1xXFfumllxg5cmRWUxRCCE3ZXwFoNMKlH2B7XfjZD0JmQmLU46+psJyUGuPeCTjUDX4oAPvbwQNlrSGEEBnzxhtvcPjwYVatWkXhwoVVi5uSksKiRYvw9fVl2rRpaa51+/777/nmm28UxXRzcyM4OBgXFxfV8hRCCC3YVwEYcx52NYK/Pobb+0zvGTO36fvFDIARDPFwYS1srQzHR0GKsrtBhRAv5uTkRJs2bQgPD2fcuHF4enqqFvvhw4cMHToUf39/1q1bh9Fo5Pr163Tr1k1xrIkTJ1K+fHnVchNCCK3YRwFoSIIz0+HnALj5R+qb5nu+Mdn0Oj0Zfi4HN3eZ79lCOBAvLy9Gjx5NREQE7du3V/Ve3YsXL9KqVStq167Nxx9/TFRUlKLxdevWpV+/fqrlI4QQWrL9AvDuEdN+vGNDwZCgzjJvphng0SX4vT7sbwuJDyyYixD2q3DhwgQFBXHkyBHq16+vauwDBw6wb98+RWO8vLxYtWoVer1e1VyEEEIrtl0AXvkJfqttaumCtXSzebzkfGEt/PYKPFLvJgIhxNOqVKnCjh072Lx5M2XLlrVYHrNnz6Z06dIWe74QQihluwVgxBLY3QwMiRru88sCYwpER8K26nD/lKWzEcJu6XQ6mjZtysmTJ5k/fz558uQx6/MbN25Mp06dzPpMIYTIKtssAMMXwKGumGb9rGXmLx3GZEi4Azteg/unLZ2NEHbNxcWFHj16EBkZycCBA3F1ddX8mbly5WL58uWq7kUUQghzsL0CMGIJHO5p6Swyzphi6hW44zV4EGrpbISwezlz5mTGjBmEhITQvHlzTZ+1cOFCVVvTCCGEudhWAXjnIBzqbukslDOmQNID05K1tIkRwixKly7Nd999x19//UWNGjU0ecaOHTsUN4oWQghrYDsFYFIM7G1pu/fxGlMg+vHNJEIIs3n11VfZv38/X3/9NcWLF1c1dlBQEL6+vkycOJHY2FhVYwshhJZspwA80g8eXbTOAx8ZZoCwL+D6b5ZORAiH4uTkRKtWrQgNDWXKlCl4e3urFvvRo0eMGjWKsmXLsmbNGgwGM/YgFUKITLKNAvDKJji7HLM2d9aME+z7DOLvWDoRIRyOh4cHQ4cOJSIigo4dO6oa+8qVKwQGBlKjRg3+/PNPVWMLIYTarL8ATHpoumsXG136TcMAiffg796WTkQIh1WgQAFy5MihSey///6bN954gw8//JCIiAhNniGEEFll/QXg2RWQdB+rbveilDEFLq4zLWkLIcxu9+7dzJ49W9NnbNiwgfLly9OvXz/u3r2r6bOEEEIp6y4ADSkQOhu7Kv5S6ZwgfL6lsxDC4URHR9O2bVuMRu2/ryQlJTF37lx8fHyYO3cuiYmJmj9TCCEywroLwKs/QaydXqVmTIGIxabTzUIIsxk4cCDnz5836zPv3btHv379KF++PBs3bjRL8SmEEM9j3QVgyCzQ2fHl6smP4NwqS2chhMPYunUrS5cutdjzIyMj+eCDD3jjjTf4+++/LZaHEEJYbwF47wTc2WvjbV8yIHSOpTMQwiHcvXs3Uyd/O3bsyKuvvqpqLrt376ZatWq0adOGK1euqBpbCCEywnoLwJu7sOb01GGER+cg9qqlExHC7vXo0UPxrR0vv/wyCxcuZM+ePaxfv57SpUurmlNwcDB+fn6MHj2amBjZDiKEMB/rrbCiDmp268fWY6D77NmvFvM0eeyzRR0y8wOFcCzfffcd69atUzTGzc2N4OBgXFxc0Ol0fPTRR5w5c4aZM2eq2kImLi6OCRMm4OvrS1BQECkpdr7qIYSwCtZbAN7+S7Pl33rl4PqCp19XvoSGFSCvN4xqpslj06dzNhW7QghNXL9+nW7duikeN2nSJMqVK/fUe25ubgwYMIDIyEh69eqFXq/eHuUbN27QsWNHXnrpJXbs2KFaXCGESI91FoAJURB7SbPwHq5QMOe/r3zZYeDXcPQi7BwOFdW9LvT5jClwZ78ZHyiE4zAajXTs2FFxH766devSt2/fZ349b968zJs3j9OnT/Pee+9lMcunnThxgoYNG9K0aVNCQkJUjS2EEKmsswA045JoigE+XwjbT8Lv5i7+ADCafr1Ge7jmTgjrEhQUxNatWxWNyZYtG6tWrcrQ7F7ZsmXZtGkTO3fupEqVKpnMMn1btmyhYsWK9OzZk9u3b6saWwghrLMAjI7AHFe/pRig9RPFX6Unir8P5kCuTvDxXM3TgJRHEH/LDA8SwnGcP3+efv36KR43e/ZsxYc96tWrx+HDh1m5ciWFChVS/MxnSUlJYcGCBfj4+DBjxgzi4+NViy2EcGzWWQCmxGre/y+1+PvtcfFXucTTX+/dCIKVbxvKQkJxZnyYEPbNYDDQrl07xSdrGzdunKlWMQB6vZ62bdsSERHBmDFj8PT0zFSc9Dx8+JDBgwcTEBDAd999J42khRBZZp0FYHIcWs4AphZ/207CjmFpiz+AeuXB212zFNJKjjXjw4Swb1988QV//vmnojG5cuVi+fLl6LLYfcDLy4uxY8cSHh5O27ZtsxzvSRcuXOCTTz7h1Vdf5cCBA6rFFUI4HussADVq/wKm4i9w0b/FX5WSmj1KGQ1/zUI4kjNnzjBs2DDF4xYuXEjhwoVVy6NIkSKsXLmSv//+m3r16qkWF2D//v3UqlWLVq1aceHCBVVjCyEcg3UWgHp3QP0lDsPj4m/j37C2GxTKCTfuP/1KsdRZDL2HhR4shP1ISkoiMDCQhIQEReM++eQTWrZsqUlOVatW5ffff2fTpk34+fmpGnvdunX4+/szbNgwHj58qGpsIYR9s9IC0FOTHoCHzsHX+yA2AZrMgEI90r6iLbUVTwpAIbJs8uTJiu/YLViwIAsWLNAoIxOdTsd7773HqVOnmDdvHrlz51YtdkJCAlOnTsXHx4fFixeTnJysWmwhhP2yzgLQ2xctZgBr+oDxq+e/cnqp/tgX03uBe34LPFgI+/H3338zceJExeOCgoLIkyePBhml5eLiQq9evYiMjKR///64uLioFvv27dt069aNypUr88svv8hBESHEc1lnAZinhqUz4K2p0HwebD0ORXvCobNaPUkHeaqDzjr/UwhhC+Li4mjdurXi2a+OHTvSpEkTjbJ6tly5cjFr1ixCQkL46KOPVI195swZmjRpwttvv83JkydVjS2EsB/WWXW45QbPdI7mmtG2oXB7McSuhCvzoXoZjR6k00PeWhoFF8IxjBw5UvGtGSVLlmT27NkaZZQxZcqUYf369ezevZvq1aurGvu3336jSpUqdO7cmRs3bqgaWwhh+6yzAATI96rmvQCtgjEZ8ta0dBZC2Kw///yTOXPmKBqj0+lYvXo13t7eGmWlTN26dTlw4ABr166lWLFiqsU1GAwsW7YMX19fJk2aRFyc9BsVQphYbwGYpwY4yh4WK1jyFsIWRUdH07ZtW8X73fr168drr72mUVaZ4+TkxGeffUZYWBiTJk0iW7ZsqsWOiYlh5MiRlC1blrVr12IwyNWTQjg66y0AC9YH7P2blA6ylQEP9a6OEsKRDBgwQHEfvICAACZNmqRNQirw8PBg+PDhRERE0LlzZ5yc1Ps2ffnyZVq3bk3NmjXZs2ePanGFELbHegvAnBUhXx37Xwb2V35XqRACtm7dyrJlyxSN0ev1BAcH4+5uzmt+MqdgwYIsWbKEY8eO0ahRI1VjHz58mNdee42PP/6Ys2c1O+EmhLBi1lsAAvgP0KQfoNVw9oJSbSydhRA2Jyoqig4dOigeN2rUKKpVq6ZBRtqpWLEi27Zt45dffqFcuXKqxv7hhx8ICAhgwIAB3Lt3T9XYQgjrZt0FYJF3wbM4Wt4LbDE6Pfh2BRf19vkI4Sh69Oih+GTryy+/zPDhwzXKSHtvv/02x48fZ9GiReTLl0+1uElJScyePRsfHx/mzZtHUlKSarGFENbLugtAJz3497d0FtowGsGvl6WzEMLmfPvtt3z77beKxri5uREcHKxq42VLcHZ2pmvXrkRGRjJ06FDc3NxUi3337l369OlDhQoV2LRpkzSSFsLOWXcBCFCmHbjmxK5mAXV6KPEJeBW3dCZC2JTr16/TvXt3xeMmT56s+vKpJWXPnp0pU6YQGhpKq1atVI0dHh5Os2bNqF+/PkeOHFE1thDCeuiMtvBj3pWfYPf7ls5CJU48SM5F0I0+ZMtZgGzZsuHt7U22bNn+eT35z87OzpZOWNiARo0asX379gx9NigoiPbt22uckfqMRiNNmzZl69atisa99tpr7Nq1S9XTtNbmwIED9O/fn/3796saV6fTERgYyKRJkyhSpIiqsYUQlmUb1UXR96BMJzgbhO23hjGQo+E3nBz+NatWjX7hp93c3J5bID7rn19++WV8fX3N8OsRwjyWL1+uuPjLli0bq1atsuviD+CVV15h7969rF+/niFDhnD+/HlV4hqNRlavXs3333/PwIEDGTRokKr9CYUQlmMbM4AAyY9gS0WIvWTDJ4OdoGxveHkODx48oGLFily+fFn1p7i5uREaGkrJkiVVjy2sk73PAJ4/f55KlSoRExOjaNyyZcvo2LGjRllZp4SEBL788ksmTJjAw4cPVY1dqFAhJk2aRGBgIHq9nbfoEsLO2c6Pxc5eUEfZxm+rotNDdj+oMgWAHDlysGLFCk0e1bdvXyn+hN0wGAy0bdtWcfH3zjvvZKpVjK1zc3Nj4MCBREZG0qNHD1ULtevXr9O+fXuqVavGzp07VYsrhDA/2ykAAfJUh+oLLZ2Fcjo9uOSAuhtA/28D2jfffJNu3bqp+qh8+fIxbNgwVWMKYUlz585l9+7disbkzp2bZcuWodPZ0eExhfLly8f8+fM5efIkTZs2VTX2sWPHaNCgAe+99x5hYWGqxhZCmIdtFYAAPp1tqwjU6cElOzTcAzn803x5+vTplC5dWrXHjRs3jhw5cqgWTwhLOn36dKZ69y1cuJBCheSKRTBdfbd582Z27NhB5cqVVY29efNmKlSoQK9evbhz546qsYUQ2rK9AhDAtxvUWIqpNYwV/4Svcwa3fNDwL8iRfguK1E3qasxUuLu707hx4yzHEcIaJCUlERgYSEJCgqJxLVu25JNPPtEoK9vVoEED/v77b4KCgihYsKBqcZOTk5k/fz4+Pj7MnDlT8X8vIYRl2GYBCODTCV7bBE6u1nlfsE4P3r7w9uFnFn+p6tatS79+Wb8TOD4+nnLlyjF69GjF+6WEsDaTJk1S3IeuUKFCLFiwQKOMbJ9er6d9+/ZEREQwevRoPDw8VIv94MEDBg0aREBAAOvXr5dG0kJYOdstAAGKvguN9kP2AKxmJjC1GC0VaMrNM2O9syZOnIi/f9olYqXi4uKYMGECvr6+BAUFkZJiqyemhSM7fPgwEydOVDxu+fLl5M6dW4OM7Eu2bNkYN24c4eHhBAYGqhr7/PnzNG/enLp163Lw4EFVYwsh1GPbBSBA7qrQ+ChUnQ5O7qZlV4vRgVcJaLALXlkBrhnfi+fh4cHq1atV61d248YNOnbsyEsvvcSOHTtUiSmEOcTFxREYGKj4h5dOnTrRpEkTjbKyT0WLFmX16tUcPnyY119/XdXYe/fupWbNmnz22WdcunRJ1dhCiKyz/QIQwMkZAgZC0xAo2ODxm2ZcFtY5m14VRsE7p6HAG5kKU6NGDYYOHapqaidOnKBhw4Y0bdqUkJAQVWMLoYURI0Yo/n+1VKlSzJo1S6OM7N/LL7/Mrl272Lhxo+oN5L/++mv8/PwYPny46n0JhRCZZx8FYKpsJeGNX6Duj5C/juk9zfYHPv5Xp3c3Lfc2OQGVxj3V5iUzRo8eTaVKlVTI72lbtmyhYsWK9OzZk9u3b6seXwg1/Pnnn8ydO1fRGJ1Ox6pVq/D29tYmKQeh0+l4//33OXXqFHPnziVXrlyqxU5ISGDKlCn4+vqyZMkSkpOTVYsthMgc+yoAAXQ6KPYBvPkHvBsJ5YaYTuKCCsvDun9j5K4KNZbBh7fglSDIEZDF2CZubm4EBwfj4uKiSrwnpaSksGDBAnx8fJgxY4ac1hNWJTo6mrZt2yo+PNC/f39ee+01jbJyPK6urvTp04fIyEj69eun6veiW7du0bVrV6pUqcK2bdtUiyuEUM7+CsAneZeBypPgg2vw2k9QpgPkehmc3P79jM7lcVGX+q9CB+gfL+s+MXvomhsKvgkBg0yzfW8fBp+O4KL+rEPlypUZPfrF9wRn1sOHDxk8eDABAQF89913clpPWIX+/ftz4cIFRWPKlSuXqcMi4sVy587N7NmzOXPmDB9++KGqsU+fPs3bb7/N22+/zalTp1SNLYTIGNu5C1hNhhSIDod7x0yvhNuQEgcp8aaiT+9uemUrA7mqmF4e5m0qm5ycTO3atTl06JDmz6pVqxazZ8/mlVde0fxZQhu2fhfwli1bFN9W4ezszIEDB3j55Zc1yko8affu3fTv35+///5b1bhOTk506tSJcePGUaBAAVVjCyGezTELQBsREhJC1apVzbZU27JlS6ZMmSL3CNsgWy4Ao6KiqFChAjdu3FA0bty4cZrOlIu0DAYDX3/9NcOGDePKlSuqxvb29mbYsGH07dtX1f6EQoj02fcSsI0LCAhg0qRJ6X5t4sSJqp/WW7duHf7+/gwbNkxO6wmz6d69u+Lir1q1anLntQU4OTnx+eefExYWxoQJE/Dy8lItdnR0NMOHD8ff35+vv/4ag8GgWmwhRFpSAFq5vn37UqdOnafe+/DDDxkxYgSnTp3iiy++UP203tSpU/Hx8WHx4sVyWk9oat26dXz33XeKxmh5UEpkjKenJyNHjiQiIoKOHTuqcpVlqkuXLvHZZ59Rq1Yt9u7dq1pcIcTTpAC0cnq9nlWrVuHp6QmAi4sL06ZNA0yn9Xr37q3Jab3bt2/TrVs3KleuzK+//qpaXCFSXbt2je7duyseN2XKFAIC1Dl1L7KmUKFCLFu2jGPHjvHmm2+qGvvgwYPUqVOH5s2bc+7cOVVjCyGkALQJZcqUYcaMGQD07NkTHx+fp76u5Wm9M2fO0LhxY9566y1OnjypamzhuIxGIx07duTevXuKxr3++uv06dNHo6xEZlWqVInffvuNLVu2qF6cr1+/noCAAAYOHMj9+/dVjS2EI5MC0EZ07dqVTz75hFGjRj3zMz4+Pvzwww/s3r2batWqqfr83377jSpVqtC5c2fF+7WE+K9ly5bxyy+/KBqTLVs2Vq1apdp1iUJdOp2OJk2acOLECRYuXEjevHlVi52YmMisWbPw8fFh/vz5JCUlqRZbCEcl30lthJOTE19//XWG9vvVrVuX//3vf6xZs4aiRYuqloPBYGDZsmX4+voyefJk4uLiVIstHMe5c+fo37+/4nFz586VE+o2wNnZmW7duhEZGcngwYNxdXVVLXZUVBS9evWiYsWKbN68WXqYCpEF0gbGzsXGxjJnzhymTJnCo0ePVI1drFgxpkyZQqtWrWRWxsJspQ1MSkoK9erVY8+ePYrGvfPOO2zevFnVwwbCPM6fP8+wYcP49ttvVY9dv359Zs2aRZUqVVSPnWFGIzw6D3ePmvrKRkc87isbC4Yk0HuYXm65IWflx71lK4NLdsvlLARSADqMGzduMHr0aIKCglRvr1C9enVmz56d5rSyMB9bKQBnzZrFwIEDFY3JnTs3p06dolAh8zZjF+rav38//fv358CBA6rG1el0tG3blokTJ1K4cGFVYz/TvWNwfi3c2Q/3jkPK4x+udc6AAYz//R6rM10yYEwBHv+R61kc8lSDgo2gZCspCIXZybSNgyhYsCBLly7l2LFjNGzYUNXYhw4dom7dunz88cecPXtW1djCfpw+fZoRI0YoHrdo0SIp/uxArVq12LdvH+vWrVN1Kd9oNLJy5Up8fX0ZN26c6isd/0h6CBGLYWsV+KUqhH0Bd/b9W/wBGJPTKf4AjKav8cR8S+wluLwRDnWDHwrA/nZwe59pRlEIM5AC0MFUrFiRbdu2sXXrVtVP6/3www8EBAQwYMAAxac7hX1LSkoiMDBQ8a02rVq1okWLFhplJcxNp9PxySefEBISwrRp08ieXb1Zr9jYWMaOHYufnx+rVq1Sb6XjYbipOPshPxzqDvdPmN43qtEj1QAYwRAPF9bC9lfh57IQ9qVp+VgIDUkB6IB0Oh2NGzf+57Revnz5VIudlJTE7Nmz8fHxYd68eXJaTwCmm2uOHDmiaEyhQoWYP3++RhkJS3J3d2fw4MFERETQrVs39Hq9arGvXbtGu3btqFatGrt27cp8oJQEODketpQ3FWeGBEwzeBrN0KUWlNGR8Hcf+KUK3PmfNs8SAikAHVrqab2IiAiGDBmi6mm9u3fv0qdPHypUqMBPP/0kp/Uc2KFDh555peHzBAUFkTt3bg0yEtYif/78LFy4kBMnTtCkSRNVYx89epT69evTrFkzwsPDlQ2+tQe2VoSTYx8v65rzRqTHRebDMPitFhzqaVp+FkJlUgAKcuTIwdSpUwkLC6Nly5aqxg4PD+f999+nQYMGHD16VNXYwvrFxcURGBhISkqKonGdO3emcePGGmUlrE25cuXYsmULv/32GxUrVlQ19qZNmyhfvjx9+vQhKirq+R9OioH/dYIdr0HMOTSb7cuI1AMjkYvgJ1+4+rPlchF2SQpA8Y+SJUvyzTffsH//fmrVqqVq7F27dvHyyy/Trl07rl69qmpsYb1GjBhBaGioojGlSpVi5syZGmUkrFnDhg05evQoy5Yto0CBAqrFTU5OZt68efj4+DB79uz096LG3TQVfudWmv7ZqOyHFs0YDZBwB/58D0LnWjobYUekABRpvPLKK+zdu5dvv/1W9dN6q1atws/Pj7Fjx2p3Wk9YhT/++IM5c+YoGqPT6Vi9ejXe3t4aZSWsnV6vp2PHjkRERDBy5Ejc3d1Vi33//n0GDBhA+fLl+eGHH/7dmhJ9FrbVgPsnrafwe8rjwyJH+sGRAXJSWKhCCkCRLp1OR4sWLTQ7rTdu3Dj8/PxYuXKl4uVBYf0ePnxI27ZtFY8bMGAAdevWVT8hYXO8vb2ZMGEC4eHhtG7dWtXYZ8+e5eOPP6Z+/fok3wuD7XUg7pqZ9/plUuhs0yERKQJFFkkBKJ4r9bReZGQk3bt3V/20Xvv27alWrRo7d+5ULa6wvP79+3Px4kVFY8qXL8+ECRM0ykjYqmLFihEcHMyhQ4d47bXXVI1dtnQRnHfVMy2x2kLxlyr8SziqrKG6EP8lBaDIkHz58rFgwQJOnjzJO++8o2rsY8eO0aBBA95//33CwsJUjS3Mb8uWLQQFBSka4+zsTHBwsKrLfcK+VKtWjT/++IMff/yRMmXKZDmet7c34xqGQMJt2yr+UoXOhkvfWzoLYcOkABSKBAQE8PPPP7N9+3YqVaqkauyffvqJChUq0Lt37xef1hNW6c6dO3To0EHxuFGjRvHSSy9pkJGwJzqdjg8++IAzZ84wZ84ccubMmelYw9vXpIDhqG0WfwDo4EBHiL1i6USEjZICUGTKm2++yZEjR1i+fDkFCxZULW5ycjJffvklPj4+zJo1S/HNEcJyjEYj3bt35+bNm4rGVa9enWHDhmmUlbBHrq6u9O3bl8jISPr06YOzs7Oi8cWLFqRvld+xaJuXLDNCSizs+/wZ188J8XxSAIpM0+v1dOjQgYiICEaNGoWHh4dqse/fv8/AgQMpV64c69evl0bSNmDdunV8/72yJSl3d3eCg4NxcXHRKCthz/LkycPcuXM5ffo0zZo1y/C4qS2ScXezgz/+jMlw608IVXbaXgiQAlCoIFu2bIwfP56wsDDVT+udO3eO5s2bU7duXQ4ePKhqbKGea9eu0aNHD8XjpkyZgr+/vwYZCUfi5+fHhg0b+OOPP164laBmhYK0fPmulbZ7yaRjQ02tbIRQQApAoRotT+vt3buXmjVr8tlnn3Hp0iVVY4usMRqNdOjQgXv37ika98Ybb9C7d2+NshKO6PXXX+fQoUOsXr2aIkWKpPuZ2c3vosMOl0zD5lk6A2FjpAAUqks9rbdhwwZ8fHxUjf31119TtmxZRowYQXR0tKqxReYsXbqUX3/9VdEYb29vVq5ciZOTfAsS6nJyciIwMJDw8HDGjx+Pp6fnP19r/lYlavvY6qGP5zAmw9llkPjA0pkIGyLffYUmdDodzZo14/Tp08yZM4dcuXKpFjs+Pp7Jkyfj4+PD0qVLSU62w2/oNuLs2bMMGDBA8bi5c+eqesuMEP/l6enJqFGjiIiIoH379nh4eDD1vetgj7N/ACnxcG6FpbMQNkQKQKGpJ0/r9e3bV/Fpvee5desWXbp0oWrVqmzbtk21uCJjUlJSaNu2reIr/Zo2bUq7du00ykqIpxUuXJigoCAu7PmC0jlvWzodDRlNvQENdrS3UWhKCkBhFrlz52bOnDmKT+tlxKlTp3j77bdp3Lgxp0+fVjW2eLY5c+bw119/KRqTJ08eli1bhk6n0ygrIdKXP2o16NS7ycgqxV6Ba1stnYWwEVIACrNSclpPqV9//ZVKlSrRtWtXxb3ohDKnTp1ixIgRisctWrRI1b6RQmRISjxE/c++Tv6mR+cCt/6wdBbCRkgBKCwi9bRecHDwM0/rZYbBYGDJkiX4+voydepU4uPjVYstTBITEwkMDCQxMVHRuE8//ZTmzZtrlJUQz3HvuKY3fmw9BrrPnv1qYa4DusYkuLPfTA8Ttk4KQGExTk5OtG7d+p/Tel5eXqrFjo6OZtiwYfj7+/PNN99II2kVTZw4kaNHjyoaU7hwYebPn69RRkK8QNRBQLttB/XKwfUFT7+ufAkNK0BebxjVTLNHp3X3CBjkYJx4MSkAhcX997SemvvDLl68yKeffkqtWrXYt2+fanEd1aFDh5g8ebLicUFBQaqeBBdCkaiDmu7/83CFgjn/feXLDgO/hqMXYedwqFhcs0enZUiAB7IXWryYFIDCahQqVIigoCCOHj1KgwYNVI39v//9j1dffZUWLVpw7tw5VWM7iri4OAIDA0lJUbaPqkuXLrz99tsaZSVEBtz+S9Ml4CelGODzhbD9JPxu7uIPAJ1pv6MQLyAFoLA6lStXZvv27fz888+qXxP2/fffExAQwKBBg7h//76qse3d8OHDCQ0NVTSmdOnSzJw5U6OMhMgAoxEemef2oBQDtH6i+Kv0uPiLjoPqo6DKMKg4BJbt1DAJnTNER2r4AGEvpAAUVkmn0/HOO+9w4sQJFixYQN68eVWLnZiYyMyZM/Hx8WHBggUkJSWpFtte7dq1i7lz5yoao9PpWL16NdmyZdMmKSEywpCIOZo/pxZ/vz0u/iqX+Pdrnm7w50g4NgX+Nx6m/ARRWl5klBKnYXBhL6QAFFbNxcWF7t27ExERwaBBg3B1dVUtdlRUFD179qRixYr8/PPPclDkGR4+fJipxs0DBw6kTp06GmQkhAJmKIZSi79tJ2HHsKeLPwC9k6kIBIhPMn1eu+82RikARYZIAShsQs6cOZk+fTqhoaG0aNFC1dhhYWG8++67NGzYkOPHj6sa2x7069ePixcvKhpTvnx5xo8fr1FGQiihbdPxFAMELvq3+KtSMv3P3X8ElYdB0V4wuKnpdLB2pNG6eDEpAIVNKVWqFN9++y179+6lZs2aqsb+/fffqVq1Kh06dODatWuqxrZVmzdvZsUKZfeLOjs7s2bNGtzd3TXKSggF9B6ahTY8Lv42/g1ru0GhnHDj/tOvlMerzzm94PgUOD8Xvt4HNx9olZVO01+zsB9SAAqbVLt2bfbv388333xDiRIlXjwgg4xGIytWrMDX15fx48crvufWnty5c4dOnTopHjd69GiqVq2qQUZCZIKTC1r9UXfonKmYi02AJjOgUI+0r+j/rMYWyGE6HLJb2XkqZZw9NQwu7IUUgMJm6XQ6WrZsSWhoKFOnTsXbW701ldjYWMaMGUPZsmUJDg7GYNB+E7k1MRqNdOvWTfGVejVq1GDYsGEaZSVEJuh04O2jSeiaPmD86vmvnF6m2b6HsaYxD2NNxV/ZQpqkZLoNJLu63ROEfZICUNg8d3d3hgwZQmRkJF27dsXJSb3/ra9evUqbNm2oXr06f/zxh2pxrd0333zD+vXrFY1xd3dn9erVODs7a5SVEJmU71VTexQLuXIXXptg2gNYZzz0bPRvixhN5KmhYXBhL6QAFHYjf/78LFq0iBMnTtC4cWNVYx85coR69erRrFkzwsPDVY1tba5evUqPHj0Uj5s6darqfRuFUEWeGmBU1sBcTS+XMrWAOT4FTkyFbm9q+DC9J3iX1fABwl5IASjsTvny5dm6dSvbtm2jQoUKqsbetGkT5cuXp2/fvty9e1fV2NbAaDTSsWNHxU2y69WrR69evbRJSoisylMDLRuvWJU81cBJu2vvhP3QGaX5mbBjKSkprFixglGjRinez/YiOXPmZPTo0fTo0UPV/oSKGZJZs3QG50IPQfwNSI41XXtlSDbtf9I5g5MzuOYC90K891EgVWs1Mn3tP5YsWULXrl0VPd7b25uTJ0+qehhHCFUZkuC7bI+bQtsxnTMEDIQqUyydibABUgAKhxAdHc20adOYNWsW8fHxqsb28fFh+vTpNGvWDF06RZXqDElwdQtc2wpRh+DhadN7ADoXwAhGA//cfqBzwjTZb/x3Gcw1F+R6yTQzUqIl5KrE2bNnqVy5suKTzytWrMhUo2ghzGpnQ7i5y6JLwWZR7zco1NDSWQgbIAWgcCiXLl1i+PDhfPXVV6rHrlu3LrNnz6ZatWqqxwbgYQScC4LI5ZAYZfppP6sX3KfGyPUS9/K3ptes/Xz1zXcZHv7uu++yadMm8xS+QmTF1S3wZ1NLZ6Ghx6edm4alO7svxH9JASgc0qFDh+jfvz9//fWX6rE///xzJk+eTLFixbIezGiEyz9A2Bdw+y/Q6TWawXg8Q6h3Y/3ZWnSddZSou/efOyJPnjycOnWKggULapCPECozGmCzL8Scx273A9ZYAj6dLZ2FsBFyCEQ4pOrVq7N7925++OEHypQpo2rstWvX4ufnx6hRo4iOzsKN7zHnYGcj+Ks53N5nek+z5SsDpjtE4/m41B5OT4rmvTf8njti8eLFUvwJ26FzAv8Bls5COy45oOTnls5C2BCZARQOLyEhgQULFjBhwgTFp19fpECBAkycOJF27dqh12fwZJ4hCUJnw4kxpoIvq8u8mWQ0wuqD+ei94hHRMbFPfe3TTz/VZBldCE0lxcCGwpCchR/MrJFODwGDocpkS2cibIgUgEI8FhUVxfjx41m4cCHJyeoWXRUrVmTWrFk0bPiCzdl3/4b9gfAgBKtYptLpuXgrhXbBBdl15AYAhQsX5tSpU+TKlcvCyQmRCSfGwKkJWMXvL7XoPeDdCPAsYulMhA2RAlCI/wgPD2fw4MFs2rRJ9dhNmjRhxowZlCtXLu0Xr2yCv1o8nvWzrpOKBqMT8//Mx9C1D9iwYSNvvfWWpVMSInNSEuDX6vAwxGKz66qruQLKyEl8oYwUgEI8wx9//EH//v05evSoqnH1ej2dO3dm7Nix5M+f3/RmxCI4lHr7hpX+ltQ5cys+F/k/2AU5y1s6GyEy70EI/FLF9vsC6vRQ5F2o+6Oc/BWKSQEoxHMYDAbWrFnD8OHDuXbtmqqxs2fPzvLly2le6Qb83VvV2JrR6cElOzT8C3KkM4sphK0IXwCHe1o6iyxwAre80PQMuOWxdDLCBskpYCGew8nJiTZt2hAeHs7YsWPx9PRULXZ0dDRl3Y/ZTvEHpqXppIew/TV4GGbpbITIPN/uUOgt0w81NskAtddK8ScyTQpAITLAy8uLMWPGEBERQbt27VRpfNz+06ZUip6qQnZmZkyBpPuw+wNIUfdWFSHMRqeDWmsgm4+pIbqtqTJNbvwQWSIFoBAKFC5cmBUrVnDkyBHq16+f6TheXl5MaHDUdvftGFNMM4DHhls6EyEyzz0fvPknZCtlW0Vg5clQbrClsxA2TgpAITKhSpUq7Nixg59++omyZcsqHj/0s7IUcr9mdad9lTFA2By4vt3SiQiReR4F4M09kCPAypeDH/+wWHUmlB9m2VSEXZBDIEJkUVJSEkuWLGHs2LFERUW98PNFCuYmfPJdPN3MkJzmZCO6sBNJ0bDnI7ixA6s7ia/TA4+XrEu2tHQ2wk7IDKAQWeTi4kLPnj2JjIxk4MCBuLi4PPfzUz6Ox9PNRpd+0zBAYhT83cfSiQiRNS7e8MYWqDDatBxsNUvCOvD2NZ28l+JPqEhmAIVQ2dmzZxk6dCjr169P87WXyxfl4NArONndj15O8P558Cpu6USEyLoHofC/jnBnr+Vy0Dmb7i+uONZ0h7He1XK5CLtkd38MCWFpZcqU4fvvv+evv/6iRo0aT31tdst4Oyz+MB1mCV9g6SyEUEcOf2i4G2ouB+fsZt4b+PhZ+evCO6dN+/2k+BMakBlAITRkMBj49ttvGTp0KC8HFOTHwIOWTkk7zt7wwTVwyWbpTIRQT9xNCJ8Hkcsg4bapGNTi8FZq3PxvgF9PKPah7XYJEDZBCkAhzCAuLo7oza+RP/koYMsnf59HB9Xmg193SycihPoMyXBtK0QuNf0VnalAy0oxqHMBYxK45QefTlCmPWQrrVrKQjyPFIBCmMO9Y/BLVUtnoTEdZCsD70VYOhEhtBV7FS6ug6hDcPcQxJzHdHJYB07Ojw8RG/99D53p743JpvF6T8hVBXK/DAXfhMJNTOOEMCP5P04Ic7i5C9OWW4OlM9GQEWIiIe46eBSydDJCaMezCAQM+Pefkx/BvRNw/xg8DDfdkGOIB0MS6N3ByR3cckPOyqbCL1sp0wEPISxICkAhzOHOwcfLReqH3noM3pnx7K83rwnfmfO64ahDUPQ9Mz5QCAtz9oJ8tUwvIWyEFIBCmMOdvZrd+lGvHFz/zwHcFAO0WwJHL8KoZpo8Nn06Z4j6nxSAQghh5aQAFEJr8Xcg9rJm4T1cTa9UKQb4fKGp+Ns5HCqaszWfMQXuHDDjA4UQQmSGbEIQQmt3D5ntUanF3/aT8Lu5iz8AjBB1EIz2vNdRCCFsn8wACqG16AjMcQAkxQCtnyj+Kj0u/i5HQetFcOsBOOth1AemfYGaSY6B+NvgUUDDhwghhMgKKQCF0FpyrOnEn4azYqnF32+Pi7/KJf79mrMTzP0cqpQ0FYEvjYAmlcHLXbN0ICVOw+BCCCGySgpAIbSWEoepD5hG4R8Xf9tOwu/Dni7+AArlMr0A8ueA3Nng7iMpAIUQwpHJHkAhbFiKAQIXmYq/HcNMs3zPc/gcGIxQLI9Z0hNCCGGlZAZQCK3pPdCiAaDhcfG38W9Y3xsK5YQb95/+TL7soH/8Y15UtOnzyzupnkpaeg8zPEQIIURmSQEohNacPTXZ/3foHHy9z/T3TZ7RCPreUsjpBQlJ8MEcGPYe1PZTPZW0pAAUQgirJgWgEFrz9kWLE8A1fcD41Ys/ZzRC2yVQvzy0rqt6Gmk5ZwP3fGZ4kBBCiMySAlAIreWubtHH7w2Hbw9ApWKw8bDpvTXdtOoRqIM8NeSeUyGEsHJSAAqhNfe84FlM09tAnqdOWTCsNdPDdHrIK/ehCiGEtZMf04Uwh7yvmooje2dMNs0Aiv+3dz8hVpVxHIe/Z+7MOOnkjI6YodakaSMSVmYJglCYW9uJtBAK+kNtCjcRLdsrRLTozypoJy0iiFYZBdEiooVE0sYosIiwReZ4b4szrp1R57733vd54DIwszi/WQzz4X3fcw7AQBOA0A+bHmsP49VgruyWNwA3ZgsY+uGuJ7Par4Irr0mmdyZ33F16EABuwAog9MOGfUtn40Z8G3jh1dITALAMAhD6Zc+pJNdKT7F6xqeTHSdLTwHAMghA6Jetx5K120pPsTqaTrLrpWR8XelJAFgGAQj9MtZJFl5L0pSe5Pbr9ZLdr5SeAoBlEoDQTzueTSZmMlIR2HSS+RPJuu2lJwFgmQQg9NPkTHLwwySj8kiYsWRyLtl/pvQgAKyAAIR+2/50svO5jMafXzc59FGyZq70IACswCj8B4Lh88jpZN09Q/52kLH2TOOWI6UHAWCFBCCUMDGdHPp4eN8O0nSS9Q8k+94qPQkAN0EAQimbHk8OvFN6ipVrOsnkbHL4bNKZKj0NADdBAEJJu15IHn279BTL13Tau5iPnGtXAAEYSgIQStv9cnLg3bSPhhngx8M048mazclT55KZPaWnAeAWNL3esB5CghFz8ZPkq+NJbzHpDdgr466f+Xvi82Tt1tLTAHCLrADCoNh2LDn6dbJ+IQOzEnj9LuX7TiZHvxF/ACPCCiAMmu7V5Pzp5Ic325XA3mKhQZpkekdy8INk8+FCMwCwGgQgDKp/fkm+fT75/Yu0i/Xd/ly3GW+/7n0j2ft60lnTn+sC0DcCEAZZr5dcPJucP5Nc+rLdkl2V84FLgdmZSuafSRZOJTMLq3AdAAaBAIRhcfnn5ML7yYX3kit/tCt1t7Q93CwF5WKycX9y/4vJvceTiTtv28gADCYBCMOmezX59dPkt8+SP79L/v4x6f7X/qyZSNJLet20W8ZNkrGkaZa+v7R6OLmhjb6NB5L5E8nsg0V+FQDKEIAw7LqLyeWfkr++bz9XLiXX/m0/Tafd1u1MtTd0zD6UbHw4mdqyFIUA1EgAAgBUxnMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACrzP7b1RDqMh+SIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -863,7 +863,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHiCAYAAAB4GX3vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTDElEQVR4nOzdZ3RUVReA4Xdm0kNC6L0nISFUpQiKCgKK/VNBEAm9IyC9995BOoQSLCAooIIiCjaK9J5KESH0GkjPzPdjDIIJkJvcO3U/a81SJ3P23aiEnVP20ZlMJhNCCCGEEMJp6K2dgBBCCCGEsCwpAIUQQgghnIwUgEIIIYQQTkYKQCGEEEIIJyMFoBBCCCGEk5ECUAghhBDCyUgBKIQQQgjhZKQAFEIIIYRwMlIACiGEEEI4GSkAhRBCCCGcjBSAQgghhBBORgpAIYQQQggnIwWgEEIIIYSTkQJQCCGEEMLJSAEohBBCCOFkpAAUQgghhHAyUgAKIYQQQjgZKQCFEEIIIZyMFIBCCCGEEE5GCkAhhBBCCCcjBaAQQgghhJORAlAIIYQQwslIASiEEEII4WSkABRCCCGEcDJSAAohhBBCOBkpAIUQQgghnIwUgEIIIYQQTkYKQCGEEEIIJyMFoBBCCCGEk3GxdgJCiNwxmkzcTUnjVnIat5NSSU43YjSZSDeZ0KHDoAO9Xoe3q4G87q74ebjiYdCj0+msnboQQggrkQJQCDtjNJm4dDeZS/eSuJmUSnxyGsZ/vpZR0pke+PyDZV7G+656HX4eruTzcKWUryd53V01z1sIIYTt0JlMJtOTPyaEsLa7KWmcvZ3A2VsJpBhN6Hi40MuJjBh+7i6U8/OmpK8HrnrZGSKEEI5OCkAhbJjJZCLubhKxN+9xPTFVlaLvcfQ6KOXjSWD+PPi4ywKBEEI4KikAhbBR91LSOHT5NlcSUiz63Iwl44oF8lAxfx4MetkrKIQQjkYKQCFsjNFkIvbGPU5ej8dk0nbG70m8XQ08VTQvhbzcrZiFEEIItUkBKIQNuZmUyv6Lt4hPSbN2Kg8p4+tJ1cK+uBpkf6AQQjgCKQCFsBFx8UnsvXjT6rN+WdEBedxceK5kfjxdDdZORwghRC5JASiEDTh96x6HL9+xdhqPpQPcDHrql8qPr7SNEUIIuyYFoBBWdurmPY5cse3iL4MOcNHreKF0ASkChRDCjsmGHiGs6PQt+yn+wLw0nWY08du56za3T1EIIUT2SQEohJXcSEyx+WXfrJiAVKOJPRdukG6UBQQhhLBHUgAKYQVpRiN7425hrx32TEB8SjonrsVbOxUhhBA5IAWgEFZw5PIdEtLSbe60r1KxN+9x5V6ytdMQQgihkBSAQljYhfgk/rqTaO00VLPv4i2S043WTkMIIYQCUgAKYUGp6UYOXrpl7TRUlZJu5Ojl29ZOQwghhAJSAAphQWdvJ5DqYAcnTMDf8UkkpKZbOxUhhBDZJAWgEBZiMpmIvXnP2mloQoe5pY0QQgj7IAWgEBYSdzeJxDTH3CtnAk7fTCDN6Ji/PiGEcDRSAAphITE3HHuGLM1k4q/bjnO4RQghHJkUgEJYwK2kVG4kpVo7Dc056hK3EEI4GikAhbCAqwnO0SvvXmo6iWlyGEQIIWydFIBCWMDNpFS7vfVDqZtOMNMphBD2TgpAISzgemKKRW79GP7h/3g3qDjrFsx66H2TycTg5q/xblBxvpg7VbPn64CbiVIACiGErZMCUAiNJacZLXL612QycTbiBIWKl+Sv6MiHvrZjw5fcuHIJgPKVqmiXA3AjMUWz+EIIIdQhBaAQGruZZJmC6OLZ0yTeu0uD/zXnXHTE/fcT797ls1mTaPC/9wGoEFJV0zxuJKViMjlWs2shhHA0UgAKobG7Froh49SJo7i5e/Dca29z8a8zpKaYD56sWziLckEh5CtUGN98+SlYrISmeaSbTJrcDRwREcGkSZO4evWq6rGFEMLZuFg7ASEcXbrRhA403wN4+uQxylQMpni5Cnh4enH+VAzunl5s/WIVU9Z/zzfLF1Fe49m/DOkqzAAajUb27t3Lxo0b2bhxI1FRUbi5uTFgwAAVMhRCCOcmBaAQGlOjGMqO0yeOUT6kKjqdjjIVgzkXE8XOzZto1OxDSpYP4PSJo9So39AiuaTn8L7jlJQUfvnlFzZs2MCmTZu4ePHiQ18PCAjAxUW+bQkhRG7Jd1IhHMSZiOPUf/1tAMpUrMTm8GVcjTtP7+nzSE1J4e/YaN7t0tu6SWYhPj6eH374gQ0bNrB582bu3LnzyM8GBwdbMDMhhHBcUgAKoTGDTvsOgJf+/ot7d27fX+ItFxzCD5+vpOvYaXj7+HLq+FHSUlMpX9kyS8AG/eN/zVeuXOGbb75h48aN/PTTTyQnZ69RthSAQgihDikAhdCYQa/Tfv/fiaO4uLpROiAIgBffbk7tRq/g45ff/PWTx8iT148iJUtrnIlZVkXv6dOn2bBhAxs3bmTnzp05Oins6+tLcnIy7u7uaqQphBBOSwpAITSWx9Wg+TNOnzhG6YCKuLi6AuDi6opvvgL/fv3kMcoFV9Y8DzAXf+4GPSaTicOHD7Nx40Y2bNjAsWPHch17wIABDB48mAoVKhAcHPzQKygoCB8fHxV+BUII4fh0JmnYJYSmktOMbD512dppWEweXTpbFkxn48aN/PXXXxZ9dsmSJe8XhJUqVbr/94UKFbJoHkIIYetkBlAIjbm76PF00VvkNhBr0wHF8vqQL18+/v77b4s///z585w/f55t27Y99H6BAgUyzRhWqlSJUqVKobPAHk0hhLA1MgMohAXsjbvJhfgki9wHbG3PlMhH8Twe7Ny5k1atWll8FlAJb29vgoKCMhWHFSpUwPWf5XQhhHBEUgAKYQExN+5y7Gq8tdOwiKYVCuPpYt73eOvWLbp27cratWutnJUyrq6u+Pv7P7SMHBwcTMWKFfHy8rJ2esLW3L0LR4/C4cMQEwOJiZCUBGlp4O4OHh6QPz9UqwbVq0P58qCXi7iEdUkBKIQF3EpKZftf16ydhua8XQ28XL7wQ++ZTCbCw8Pp0aMH9+7ds1Jm6tDpdJQpUybTUnJwcDD58uWzdnrCUi5cgDVrYO9e2LcPzp4Fkwl0OshoVG78Z8uHTmd+mUzmghDAy8tcDD79NDRuDK+++u84ISxECkAhLCAxMZE/Ltwi3jLXAltNtcK+VMjnneXXYmJi+OCDD9i/f7+Fs7KMIkWKZFpKDg4Opnjx4rLP0BGkpcGWLbB4MXz//b+FXXouflO7uJjjFioEHTtChw5QoYJ6OQvxGFIACqEho9HImjVrGDx4MP9r05EXPuxk7ZQ046LT8ap/YVwes7SVkpLCqFGjmDJlSo76ANojX1/fLAvDcuXKYTBo3yJI5NLlyzBnDixbBlevgsGQu6LvUTLivvAC9OwJ775rLjCF0IgUgEJo5I8//qBv377s27cPAL1ez1fHzmA0ON7hAh0QkN+byoV8s/X57du307p1a+Li4rRNzIa5u7sTGBiYqWVNYGCgNLq2BUYjLF8OfftCQoI2RV9WMgrBF1+EpUvB398yzxVORwpAIVR26tQpBg8ezPr16zN9rdvwsTT6sKMVstLeK+UL46Wg6fX169fp2LEjGzdu1C4pO6TX6ylfvnyWs4a+vtkrsEUuRUSYl2R37bJeDi4u5oMio0ZB//7g5ma9XIRDkgJQCJXcvHmTCRMmMHfuXFJTU7P8jFceH8L3HEfn4jizgDqgpI8HtYorPwRhMplYunQpffr0ITEx8ZGfK1y4MKmpqdy8eTMXmdq/EiVKZFkYFi5cWPYZqiE1FSZMML/g30Mb1qTTQWAgrFoFdepYOxvhQKQAFCKXUlNTWbRoEaNHj+bGjRtP/HzT5q3oOHaaBTKzDHeDnkblCuFuyHlbi4iICFq2bMmRI0ey/Ponn3xCjx49uHLlChEREZleFy5cyPGzHUG+fPkyLSUHBwdTunRp9NJuJHvi4+Gdd+Dnn80ndm2JwWAuBFevhhYtrJ2NcBBSAAqRQyaTiW+//ZYBAwYQHR2taOyyLTvIV76iRplZ1rMl81PEO/d71pKTkxkyZAizZs3K9LWffvqJl1566ZFj79y5Q2RkJCdPnnyoMDx9+jRGo+PfwPIoXl5eVKxYMVPLGn9/f2l0/aDLl6FJEzhxwnJ7/ZTKaCUzfTr062ftbIQDkAJQiBw4dOgQ/fr1Y8eOHTkan79gIcJ3HiHFhF3fDuKfz5uqhdXdl/bDDz/Qtm1bLl/+9/7kCxcuULx4ccWxkpKSiImJeagoPHnyJNHR0SQnJ6uZtl1xcXHB398/01JyUFAQ3t5Zt/FxWJcvQ/36cOaMbSz5ZsfEiTBkiLWzEHZOCkAhFLhw4QLDhw9n1apVuW5j0nf4KJ79sItKmVmWDsjjZqBhmUIY9OrvPbty5Qrt2rVjy5Yt5M2bl5s3b6q6xy09PZ0zZ85kuZx8584d1Z5jj/7b6DrjVaBAAWunpr6rV83F36lT9lP8ZZgyBQYOtHYWwo5JAShENty7d49p06Yxbdo0EhISVImp0+n45WgE11zt62SnDnDV63ihTEF83LS7vcBkMjFv3jy+/vrrHM+05uSZcXFxWRaGD85IOqNChQpluc+wRIkS9nkAxWSCpk3hp59sd9n3SX780XyTiBA5IAWgEI9hNBoJDw9n2LBhqves8/X1JSwsjBovNeXIFfuYddIBLnodL5QugK+7ZfaQ3blzxyban9y4cSPLfYZnz561dmpW5ePjQ1BQUKbr8cqVK4eLLV9vNn++ueGyvdLroWBBOHkSHHF2VmhOCkAhHmHHjh3069ePQ4cOqRrXYDDQpUsXRo8eTaFChQA4fesehy/bdhGoA9wMeuqXym+x4s8eJCQkEBUVlWmfYUxMDGn2tqyoIjc3t/uNrh98VaxYEQ8PD+smd/Ik1KgBKSnWzSO3DAZ44w34+mu5NUQoJgWgEP8RFRXFwIED+eabb1SP/dprrzFt2jSCg4MzfS0uPom9F29issGDIeY9fy48VzI/ngqaPTuz1NRUTp06lWkpOTIyknv37lk7PavR6XSPbHSdN29e7RNIToaaNSEy0v72/T3K8uXQrp21sxB2RgpAIf5x/fp1xowZw8KFC1WfualatSozZsygUaNGj/3czaRU9l+8RXyKbf3BVMbXk6qFfXHNRa8/YWY0Gjl//nympeSIiAiuX79u7fSsqlixYpla1gQHB1OkSBH19hmOGgXjxtler7/c8PSEmBgoUcLamQg7IgWgcHrJycnMmzeP8ePHc+vWLVVjFy1alPHjx9O2bVsMhuzNnBlNJmJv3OPk9XirzwZ6uxp4qmheCnnJ3bSWcPXq1UxLyREREZw/f97aqVmVn59fljOGZcuWVdbo+u5dKF7c3PTZkRgM5hPBEydaOxNhR6QAFE7LZDLx9ddfM3DgQE6fPq1qbE9PT/r378/AgQPJkydPjmLcS0nj4OXbXE2w7D6ljHmWigXyUDF/Hk3avAhl4uPjiYyMzDRjGBsb69SNrj09PR9qdJ3xCggIwC2ru3MXLDAf/HDEP/by5oW4OPDysnYmwk5IASic0r59++jbty9//PGH6rFbt27NhAkTKFWqVK5jmUwm4u4mEXvzHtcTU9Gh7YygXgelfDwJyO8tBz3sQHJycqZG1xEREURFRZGUlGTt9KzGYDBQoUKFh5aSn3/uOco0amRu+OyIf+zpdLBoEXTubO1MhJ2QAlA4lXPnzjF06FA+++wz1WM///zzzJgxg5o1a6oeG+BuShpnbydw9lYCKUaTKsVgRgw/d1fK+XlR0tcDV7k71u6lp6fz119/PbSMnPG6ffu2tdOziu979uSVefOsnYZ2dDrw94eoKDkRLLJFCkDhFOLj45k8eTIzZ85UfWbE39+fadOm8dZbb1mkIa7RZOLS3WQu3UvmZlIK8clpZCwCZjz9wd/UD2aU8b6rXoefhyv5PFwp5etJXpntcwomk4lLly5lmjE8efIkly5dsnZ6mrpRsyb5Dh2y36bP2SXNoUU2SQEoHFpaWhrLly9nxIgRXLlyRdXY+fLlY+TIkXTv3j3r/UYWYjSZuJuSxq3kNG4npZKcbsRoMhF/LwEvT09c9Dr0eh3ergb83F3J6+GKh0Fvn7c3CM3cunUryxtQzpw5k+trD63NBUhxc0Nn733/nsTFBfr3h0mTrJ2JsANSAAqH9eOPP9KvXz+OHz+ualwXFxd69uzJiBEjyJ8/v6qx1fTee+/RsmVL3n33XWunIuxYYmIi0dHRmZaSo6OjSU1NtXZ62dLQz4+fVT7h/yAjUAl4C5jywPtbgTeAz4Bmmj39P55/Hn791VJPE3ZMCkDhcE6cOEH//v354YcfVI/99ttvM2XKFAIDA1WPraajR49SrVo1qlSpwuHDh5W1yhAiG9LS0jh9+nSmljWRkZHcvXvX2uk9ZLq/P/1OndL08Mcq4CPgLyAfcASoD4wE+mv21Cx4ecGdO+bWMEI8hhSAwmFcuXKFUaNGsWTJEtVbYzz11FPMnDmTF154QdW4Wnnvvff46quvAFi/fr3MAgqLMZlMnD9/Psvl5KtXr1olpz8qVuTZU6c0vfkjDQgE2gAdgGcwzwjO1+yJj3HiBFSqZI0nCzsiBaCwe0lJScyePZuJEycSr3KD1xIlSjBp0iRatWplN7NoGbN/GWQWUNiKa9euZVkYnjt3TtPn3ihUiHwWKD4XA0OBEkBZYANglXm4FSugbVtrPFnYESkAhd0ymUysWbOGIUOG8Ndff6ka29vbm0GDBtGvXz+87Kyx6oOzfxlkFlDYsrt37xIVFZWpbU1sbCzpKpzaNer16CzQMPsuUAjwB/YA3g987W+gNXAF86GUEWi0L9DVFfr2hcmTtYguHIgUgMIu7dq1i759+/Lnn3+qGlen09G+fXvGjRtHsWLFVI1tCf+d/csgs4DCHqWkpBAbG5tpxjAyMpLExMRsxXAFLHX2ty2wFvADzgAeD3ztInAZqI65CHwKiOLhIlEVrq7QtSvMnat2ZOFgXKydgBBKnD59msGDB7Nu3TrVY7/00kvMmDEjywLKXowdOzbL948dO8aGDRtkFlDYFTc3NypVqkSl/+xnMxqN9xtd//d18+bNhz6b19UVLHBaeQSwGfPMXyMgDOjxwNeL/fMCKAzkB26gQQFoMkE2i2Ph3GQ6QNiFW7duMWDAAIKDg1Uv/oKCgvjuu+/Ytm2bXRd/R48ezbT0+6AxY8Y49b2xwnHo9XoKFy5M0aJFM71cXB6e19BboN/lMmAG8C1QDegDTAUeVXbux9w6JveXRT6CLOyJbJAZQGHTUlNTWbJkCaNGjeL69euqxi5YsCBjxoyhU6dOuLra/00Yj5r9yyCzgMIe3bhxI9OtJREREdne93tL4+bP32Oe6fsC88lfMLeDmQ6sBtr/5/PXgVDMRaMmdDrw9NQqunAgsgdQ2CSTycTmzZvp378/UVFRqsZ2c3Ojd+/eDB06FD8/P1VjW8uj9v79l+wFFLbIZDIRFxeXqdl0RESEKjf4GHU6dBr8UXcAeAGYAPT+z9dGAmuACP49CZwMNAY6YT4QoglXV+jTB6ZO1eoJwkHIDKCwOUeOHKFfv378/PPPqsdu3rw5kydPply5cqrHtqYnzf5lOHbsGF9//TXvvfeexhkJkVl6evpDzaMffKndwulB8fny4Xvjhupxn8Z88jcrY/95ZTBhPiTSEA2LPzD3OvT31/IJwkHIDKCwGXFxcYwYMYIVK1aofvdonTp1mDlzJvXq1VM1ri3I7uxfBpkFFFpLSkoiOjo609JtdHQ0KVa4j/fPwEBqnz6taSPoJ/kDeB6o+sB7q4EqWjzs8GGw4/3MwjJkBlBY3b1795gxYwZTpkwhISFB1dilS5dmypQpvP/+++gssBncGrI7+5dB9gIKtdy+fZvIyMhMS7dnzpyxqQNHf5pM1Fahn2BuPIf54Ifm3N0hJMQSTxJ2TmYAhdUYjUY+/fRThg4dyoULF1SN7ePjw9ChQ+nduzeeDrwhWunsXwaZBRTZZTKZuHz5cpbLtnFxcdZOL1teLVCAzSofIrNZdevCrl3WzkLYAZkBFFbxyy+/0K9fPw4ePKhqXL1eT+fOnRkzZgyFCxdWNbYtUjr7l0FmAcV/KemtZ29+vn4dk8GAzsqzgJpzdTUXgEJkg8wACouKiYlh4MCBbNy4UfXYTZs2Zdq0aYQ4yfJHTmf/MsgsoHP67+0aGcu3UVFR2b5dwx7drloV3xMnwNGLwG++gTfesHYWwg7IDKCwiBs3bjB27Fjmz59PmsobsStXrsz06dN5+eWXVY1r63I6+5dBTgQ7trt37xIZGZlpNk+t+3XtzYF69Whw9Ki109BWyZLw6qvWzkLYCZkBFJpKSUlh/vz5jB07llu3bqkau3DhwowfP5527dpl6v7v6HI7+5ehcuXKHDlyRGYB7di1a9eyXLY9d+6ctVOzKl9fX4KDg6lUqRLBwcG89vLLVHrlFbh40dqpaUOngxkz4OOPrZ2JsBNSAApNmEwmNm7cyMCBA4mNjVU1toeHB3379mXw4MH4+PioGttevPfee4+99k2JdevWySygjTOZTJw/fz7LGzGuXbtm7fSsqmjRogQHB2d6FStWLPPJ/2nTYPBgsKETyqrx9DQXt3nzWjsTYSekABSq279/P3379uX3339XPXarVq2YOHEipUuXVj22vVBr9i+DzALajrS0tPuNkh9srRIZGcndu49qOez4dDodZcuWzbLQy5cvX/YD3bwJxYtDUpJ2yVqDiwt07w5z5lg7E2FHpAAUqvn7778ZNmwYq1evVj32c889x8yZM6lVq5bqse2NmrN/GWQW0LISExOJiorKtGwbExNjlUbJtsLV1ZWAgID7xV3G8m1gYCBeXl7qPOTjj2HuXMeaBXRxgchIqFDB2pkIOyIFoMi1+Ph4pk6dyvTp00lS+Sfr8uXLM3XqVN555x2HbeSsxNWrV2ndunWmm1L279/PjWxedVWpUiVKliz50HuVK1dmxowZquUpzG7dupXl/rwzZ86oftuNPfH29s5yNq98+fK4urpq+/C7d6FKFfj7b8c5ETx9OvTrZ+0shJ2RAlDkWHp6OitWrGD48OFcvnxZ1dh58+Zl5MiR9OjRA3d3d1VjO6ImTZqwbdu2bH02LCyM9u3ba5yR8zCZTFy6dCnT3ryIiAguXbpk7fSsqmDBglkWeiVLlrTuloM//4R69ex/FtDFBZ59FrZvB9nCIRRyrqOTQjXbtm2jX79+HDt2TNW4Li4udO/enZEjR1KgQAFVYwuRG+np6Zw9ezbLGb3bt29bOz2rKlWq1EMFXsbSbcGCBa2dWtbq1IHRo2HUKLDXORCdDry84NNPpfgTOSIFoFDk5MmTDBgwgC1btqge+6233mLq1KkEBgaqHluI7EpOTiYmJiZTkRcVFaX6Fgd7YjAYqFChwv3iLuMVFBREnjx5rJ2eckOGwObNcOAAqNyb1CJMJli2zNz7T4gckAJQZMuVK1cYPXo0S5YsUb2JbPXq1Zk5cyYNGjRQNa4QjxMfH5+pUfLJkyc5ffq0UzZKzuDh4UFQUFCmZduAgADc3NysnZ56XFzgyy/NV6dduWJ/RWDfvtCsmbWzEHZMCkDxWElJScyZM4eJEydy584dVWMXL16cCRMm0Lp1awwGg6qxhchw9erVTHvzIiIiOH/+vLVTsyo/P78sl23LlCnjPC2BSpeG338376O7ds1+isBevcwHP4TIBSkARZZMJhNffvklgwYN4q+//lI1tpeXFwMHDqR///54e3urGls4J6PRyN9//53l/rzr169bOz2rKlasWKZl2+DgYIoUKSIn6wHKl4c//oCGDSEuzvaLwH79zA2t5b+dyCUpAEUmu3fvpm/fvuzZs0fVuDqdjjZt2jB+/HhKlCihamzhHFJTUzl16lSmIi8yMpJ79+5ZOz2r0el0lC9fPlORFxQUhJ+fn7XTs30VKsC+fdC0KRw5YnvtYfR6856/mTOhTx9rZyMchBSA4r6zZ88yePBg1q5dq3rsBg0aMGPGDGrUqKF6bOF4EhIS7jdKfnDpNjY2ltTUVGunZzVubm4EBgZmKvQCAwPx9PS0dnr2rXBh+O03c6PopUvBYLCNQlCvh0KFzAc+Xn/d2tkIByIFoOD27dtMnDiROXPmkJycrGrswMBApk+fzuuvvy7LTSKTGzduZLls+9dffzl1o+Q8efJk2psXHBxMuXLlcHGRb9ua8faGJUsgNBRThw7oYmKs1ybGYMBkNKLr3h0mTABfX+vkIRyWfCdxYmlpaSxZsoRRo0apfqF8/vz5GT16NF27dtW+s7+waSaTibi4uCwLPbUbiNubwoULZ9kouUSJEvIDk5WYTCa23L7NMn9/NrRuDWPHmotAS+0NzPjvXrEif7Rrx6cxMYxJSKCoFIBCZVIAOiGTycT3339P//79iYiIUDW2q6srvXr1YtiwYcouaRd2Lz09nTNnzmRqqxIZGan6CXJ7U6ZMmSwLPWl2blsOHTpE//792b59O40aNYLhw6F5c5g0CdasgeRkc4GmxQ0iLi7mItPf33zKt0sX8kZEsGTAAD777DMGDRpE37595eCcUI0UgE7m6NGj9O/fP9vXhinx3nvvMXnyZCrIheQOLTk5mejo6ExtVaKjo1XfQmBPXFxc8Pf3z7R0W7FiRflD28adP3+eYcOGsXr16vtbD+5/HwsMhBUrYM4c+OILWLQIDh/+t2DLjYzDHe7u0KIFdOpk7kv4zyxg+fLlAbh37x4jR45k0aJFjB8/ntDQUGmdJXJNCkAncenSJUaMGMHy5csxqvzTa61atZg5cybPPfecqnGFdd25cyfLZdvTp0+r/v+QPfH09CQoKChTaxV/f3/Z7mBn4uPjmTJlCjNmzMh0y4u/v//DH/b1hS5dzK/Dh81XsO3ZY/77jBPoLi7mgu6/h0d0un8PlWTsKSxTBmrVgkaNoGXLLPf45cmThyJFitzfKhEXF0f79u2ZM2cO06dPN89SCpFDUgA6uISEBGbOnMnkyZNVb5NRqlQpJk+eTIsWLZyncayDMZlMXLlyJVORd/LkSeLi4qydnlXlz58/y2Xb0qVLy//vdi4tLY2wsDBGjhzJlStXsvzMY1cyqlc3v8Bc0J09C4cOmYvB6GhISoKEBEhJMd/X6+kJ+fNDtWrmcVWrZvtQR4UKFTLtlT1y5AiNGzemadOmTJs2jZCQkGzFEuJBUgDaEaPRmO0/eIxGI5999hlDhw5V/caDPHnyMHToUPr06SOtJ+zQ1q1b2bVr1/1i7+bNm9ZOyapKlCiRqcirVKkShQoVkoMYDsZkMrFlyxYGDBjwxP3P2d7KotNBuXLm1zvvqJBl5jx27dqV5de+//57tm7dSseOHRkzZgxFixZV/fnCcUkBaCeMRiMtW7Zk4cKF5M+f/7Gf/e233+jbty8HDhxQNQe9Xk/Hjh0ZO3YsRYoUUTW2sJwvv/zS2ilYnF6vv98o+cGl26CgIHzldKVTePCAR3Zk7L+zticVokajkSVLlshBEaGYFIB2YtGiRXz55ZeUKFGCmTNnZvmZ2NhYBg4cyIYNG1R/fpMmTZgxYwaVK1dWPbZQ7t69e0RGRt6fxTty5Ii1U7IJ7u7uVKxYMdOMXkBAAB4eHtZOT1hBVgc8nqRIkSLkyZNH48yyJ9NexEeQgyJCKZ3Jmbut2onY2FiqVatGQkICrq6unDx58qFvCjdu3GDcuHHMnz9f9VsSQkJCmD59Oq+88oqqcUX2XL9+PdPevIiICM6dO2ft1KzK19c3y/155cqVkz/0BPD4Ax5P8uyzz/LHH39olJkye/bsoW7duorHVatWTQ6KiMeSGUAbl56eTrt27UhISADMd6EOGjSIr776ipSUFBYuXMiYMWNU38dVqFAhxo0bR4cOHeTmAY2ZTCYuXLiQqa1KREQEV69etXZ6VlWkSJFMe/OCg4MpVqyY7M8TWUpLS2PZsmWMGjXqkQc8nsSWWlnlNJcHD4pMnTpVVm9EJvInu42bPXt2pp9Ev/76ayZMmMCqVauIiYlR9Xnu7u707duXwYMHy94olaWlpXH69OlMRV5kZCTx8fHWTs9qdDodZcqUydRWJTg4WJqJi2wzmUxs3ryZgQMH5rrBvS0VgAULFsTHxyfH3yMyDop06NCBsWPHykERcZ8sAduwiIgIatSoYbHmui1btmTSpEmUKVPGIs9zVImJiURHR2cq9KKjo0lJSbF2elbj6upKQEBApiKvYsWKeHl5WTs9YceUHvB4kk8//ZRWrVqpEksNNWrU4PDhw7mO4+3tzcCBA+nXr58cFBHOOQOYng5RUeaWTYcPw9WrkJhobt1kMICHh7ltU/ny/7Z7Klbs3ysaLSEtLY3Q0FCLFH/16tVj5syZ1KlTR/NnOZLbt29n2psXERHBmTNnsr3Z3BF5e3sTFBSUaem2fPny0ihZaEKv16t6n7ktzQCCOR81CsDExEQSEhJkW48AnKQATEuDLVtg82bYvx9OnDBf6Qjg6mru42k0ml86nfl2Hp3u4Ybu+fPDU0+ZG7e3bAlVqmib8+TJk9m/f7+mzyhXrhxTpkzhvffek/1Uj2Aymbh06VKWN2JcvHjR2ulZVYECBTK1VQkODqZkyZLSKFlYVLVq1di7dy9jxoxhypQpub6pxhYLQDVihIeHU69ePRUyEo7AoZeAY2Nh+XJYtsw8y5fbqxszbvNJSzMXg127mq9v9PFRL2eAw4cPU7t2bdVP9GbImzcvw4cP56OPPsLd3V2TZ9gbo9HI2bNnsyz0bt26Ze30rKpUqVJZnrgtVKiQtVMTIpPdu3cTGhpKbGxsjsb7+vpy69Ytm/qheOnSpXTu3DnH47t3787UqVNl2Vc8xOEKQJMJNm6E2bPht9/+vX5RbQ/e4d2yJQwYAMHBuY+bkpJCrVq1OHr0aO6D/YfBYKBbt26MGjWKggULqh7fHqSkpBATE5Np6TYqKkpxqwhHYjAYqFChQqYiLygoCB+1f8IRQmOTJk1i6NChORpbo0YNDh48qHJGubN9+3ZeeumlHI318/MjMjJSmveLTBxqCfjMGfOs3I8/mgs/0Kb4A/NyMZj3Da5ebX4NGQJDh5r3EObU2LFjNSn+Xn/9daZNm0ZQUJDqsW3R3bt3iYyMzNRa5dSpU6Rr9T+FnShZsiTPPffcQ8u3/v7+MhssHMKxY8cYPXp0jsfb2vIv5C6nW7du0blzZzZu3GhTs5rC+hxiBjAtDWbNghEjzAVfbpZ5cyPjSsiwMHjxReXj9+7dS926dXO9f+VB1apVY8aMGTn+6dHWXb16Nctl27///tvaqdmssLAw2rdvb+00hFBdSkoKderUydWBiUGDBjF58mT1klJBeno6np6eudoWtGLFCtq2bateUsLu2f0M4KFDEBpqPthh7VLWZIK//oIGDaBtW/MydN682RubmJhImzZtVCv+ihYtyoQJE2jTpo3d34xgMpn4+++/MxV5J0+e5Pr169ZOz6qKFStGcHAwMTExUvQKpzd27Nhcn5a1xRlAg8FAuXLliI6OznGMXr160aBBA2nzJe6z6wLw22+hWTPzjJ+1i78MGauLq1fDn3+al6NLlnzyuOHDhxMZGZnr53t6ejJgwAAGDBhgM3dZZldaWhqnTp3K1FYlMjKSe/fuWTs9q9HpdJQrVy5TW5WgoCD8/PwA813NUgAKZ/bnn38yadKkXMfJ7t27llahQoVcFYDx8fG0a9eOn376SU7pC8COC8ClS6FLF/Pf20rx96D0dIiJMbeN+eknCAl59Gd///13Zs2aletnenh4cPLkScqWLZvrWFpKSEggKioq04xeTEyMZief7YGrqyuBgYGZWqsEBgbi6elp7fSEsFkJCQmEhoaqsoJiizOAoE5humPHDubNm0evXr1UyEjYO7ssABcsgB49rJ3Fk6WlmdvP1K8Pv/+edRF49+5d2rZtq0rj4KSkJL7//ns+/PBDmzi5efPmzSz35509e9apGyXnyZMny7Yq5cuXlwatQuTAkCFDFM+OVahQgbJly/Lzzz/ff8/NzY0SJUqonZ4q/luYenh40Lx5c8LDwxXFGTRoEC+//DIVK1ZUMz1hh+zuT5slS+yj+MuQng537sDzz8POnfDfQ7gDBw7k9OnTqj1v4MCBfPbZZ5nuD9aKyWTi4sWLmfbmRUREcPnyZYvkYKsKFSqUZaFXsmRJOY0nhEq2b9/O3LlzFY3R6XSsWrWKunXrsmDBAgYOHEhiYiLlypWz2T3TDxaAtWvXJjw8nMDAQBISEli/fn224yQlJREaGsrOnTvlB04nZ1f/9fftg+7drZ2FcunpcPs2/O9/5kMrGW1itm3bxsKFC1V91t27d9m3bx8mk0nVIiM9PZ2zZ89maqsSERHBnTt3VHuOPSpduvRDe/My/r5AgQLWTk0Ih3b79u0cnWwdMGAAzz77LAA9e/akSZMmtGnThvz586ucoXoqVKiAi4sLo0ePZtCgQfeLt4ULF/L7778r+oF77969TJ48meHDh2uVrrADdtMG5t498/Vr585p19tPa3o99Oplbllz+/ZtKleuzPnz5zV51u7du3nmmWcUj0tOTiY6OjpTkRcVFWWRe4ltlcFgICAgINNsXsWKFW3isE2TJk3Ytm1btj4rbWCEo2jXrh0rV65UNKZy5crs378/U9/LtLQ0Dh8+TM2aNVXMUD3JycmcPHmSGjVqZPrat99+y5tvvqkonouLC3v37s0ynnAOdjMD+PHH5hYrKrbIszij0dwapmlT+OKLPtkq/jw8PPDx8SFPnjz3Xxn/7OnpyfHjxzly5EimcZGRkY8tAO/cuUNkZGSmpdvTp0+r2ofQ3nh6ehIUFJSp0PP398fNzc3a6Qkh/vHNN98oLv5cXFwIDw/Psum5i4uLzRZ/AO7u7o8s1t544w3atWvHihUrsh0vLS2N0NDQLIth4RzsogDctMl86tcR6PXQqpWRXr1qs2RJvYcKuv8WeN7e3o/coxEZGckHH3yQZfEH5gLPZDLdb5T836XbCxcuaPnLtHn58uXL1FYlODiY0qVLS4sEIWzc1atX6dSpk+Jxo0ePdtgZr9mzZ7N9+3b++uuvbI85fvw4I0eOZMqUKRpmJmyVzS8B37kDZcvCrVu22e4lJwwGaN4cPv9c+ViTyURYWBi9e/cmISHhkZ8rXLgwaWlp3LhxIxeZ2r/ixYtn2psXHBxM4cKFHeoghiwBC2dhMpl47733+PrrrxWNq1OnDn/88YdDH3zYsWMHDRs2VDRGp9Px22+/8dxzz2mUlbBVNv87YcUKxyr+wLyHcc0amDQJlDRlv3HjBp06dcrWN74rV67kIkP7otfrKV++fKZl26CgIPJm9yoWIYRd+OyzzxQXf56enqxatcqhiz+ABg0a0Lt3b+bMmZPtMSaTiTZt2nDkyBGb2M8sLMemfzekp8OMGY5V/GXQ62HePJg2LXuf/+WXX/jwww+deunW3d39fqPkB1+BgYF4ZBytFkI4rPPnz9OzZ0/F4yZPnuw0fe8mTZrEDz/8QFRUVLbHnD59mgEDBqjelULYNpsuAL/9Fhz1dqv0dFi0CEaNgsf90JWamsro0aOZNGmS0zRP9vHxybKtii336BJCaMtkMtGhQwdu376taFzDhg1zVDTaK09PT8LDw6lXrx7pClpmLFq0iLfffpuXX35Zw+yELbHpAnDGDPN+OXtt+/Ik9+7BqlWPbmx96tQpPvjgA/bu3WvZxCykSJEiWTZKLl68uEPtzxNC5N6iRYv48ccfFY3x9fVlxYoVTnewq3bt2gwdOpRx48YpGte+fXuOHz9Ovnz5NMpM2BKbLQCPHQMLXWZhVbNmZS4ATSYTn376Kd27d+fu3bvWSUxFZcuWzbLQs+Wmq0II2xEbG0v//v0Vj5szZw6lS5fWICPbN3z4cL777jsOHTqU7TFxcXH07NmTzz77TMPMhK2w2QJw+3bzPjlHbklnMsGpUxAXB8WLm9+7ffs23bt35/OcHBG2IhcXl0yNkitVqkTFihXx8vKydnpCCDuVnp5OmzZtHtv1ICtvvvkmbdq00Sgr2+fm5kZ4eDhPP/00KSkp2R73+eef87///Y/33ntPw+yELbDZAnDvXnCWVcB9++Ctt2DXrl20atWKs2fPWjulR/Ly8iIoKChTW5UKFSrg6upq7fSEEA5m+vTp7Nq1S9GYggULsmTJEqffSlK5cmXGjx/PwIEDFY3r2rUrzz33HEWLFtUoM2ELbLYA3LnTEnv/0oCKwGvAfy8T7wpsA3YDhTXLwMUFdu82cuTIeMaOHato066WChQokOWybalSpZxuP40QwjqOHTvGyJEjFY9btGgRRYoU0SAj+9O3b1+++eYb/lCwp+r69et07tyZTZs2OX0R7chssgC8ccN87Zv2XIDBQB9gFFDgn/cnAeuBXWhZ/IG5yP3112SeeeYmJUuWVNTFXQ0lS5bMVORVqlSJQoUKWTQPIYR4UEpKCq1bt1a0fAnw4Ycf8u6772qUlf0xGAysXLmSatWqce/evWyP+/bbb1m5ciXt2rXTMDthTTZ5E8gPP5jvy7WMFMAf6AiMBD4DOgE/AfUskoG3t/nGE53OxJEjR9iwYQMbN27k6NGjqsTX6/VUqFAhU1uVoKAgfHx8VHmGsC65CUQ4mmHDhjFx4kRFY0qUKMHx48fx8/PTJik7tnjxYrp27apojI+PD0ePHqVs2bLaJCWsyiZnAGNizPv/LFOaugEDgbFATcyF4KdYqvgDczuYK1egaFEd1atXp3r16owZM4ZTp06xadMmNm7cyB9//JGjPoBTpkyhd+/ectm3EMJu7Nmzh8mTJyset3z5cin+HqFz585s3LiRH374Idtj4uPjadeuHT///LNs/XFANvlfNCHB3P/PcjoCBuANzMu/ll8+SEzM/F6FChXo27cvv/32G5cuXWLZsmW89tprioq5O3fuSPEnhLAbCQkJtGnTBqPCFhDdunWjSZMmGmVl/3Q6HcuWLVNcIP/yyy988skn2iQlrMomC8CkJEufAPYAGmCe9etjyQffl1UB+KDChQvToUMHvvvuO65evcqXX37JBx988MS7bk+ePKlilkIIoa3BgwcTHR2taEyFChWYlt17NZ1YiRIlmD9/vuJxgwcPJjIyUoOMhDXZZAFonV2JR4E61ngwoOzX7OPjQ7Nmzfjss8+4cuUKW7dupVu3bhQrVizTZyMiIlTMUgghtPPzzz8rnm3S6/WEh4fj7e2tUVaOpWXLljRr1kzRmKSkJEJDQ0lLS9MoK2ENNlkAenpaughMBCKBpy350IfktFeym5sbTZo0YcGCBZw/f549e/YwePDg+xefx8bGkpqaqmKmQgihvtu3b+foxOmAAQOoV89ye7btnU6nY8GCBYrb5Ozbt49JkyZplJWwBpssAL28LH3/72EgHXjKkg99iKdn7mPo9Xrq1KnDpEmTiIyMJCIignHjxnHjxo3cBxdCCA317t2bv//+W9GYKlWqMGbMGI0yclwFCxZk2bJliseNHTuWgwcPapCRsAabLAADAiw9A3gQyAMEWPKh93l7Q2EN2g0GBQUxePBgaYgqhLBpmzZtYtWqVYrGuLq6Eh4eLofccuj1119X3A4qLS2N0NBQkpKSNMpKWJJNFoC1aln6iT2AeKzxr0OnM/965YS9EMIZXb16lc6dOyseN3r0aKpXr65+Qk5k1qxZlClTRtGYEydO5Oh2FmF7bLLsKFAASpe2dhaWYTBA3brWzkIIISzPZDLRpUsXrly5omjcM888o/h+W5GZr68vK1euVDxu+vTp/P777+onJCzKJgtAgOees3QvQOtIS4Pata2dhRBCWN6nn37Khg0bFI3x9PRk1apVuLjY5D0GdufFF1+kT58+isaYTCbatm3L3bt3tUlKWITNFoC1a1urHYzlSQEohHA2f//9Nx999JHicVOmTCEwMFCDjJzXxIkTCQoKUjTm9OnT9O/fX6OMhCXYbAHYoAEobARvd3Q6KF8eihe3diZCCGE5JpOJDh06cPv2bUXjGjZsSI8ePTTKynl5enoSHh6OQeGy2+LFixVdLSdsi80WgFWrwrPPOv4y8McfWzsDIYSwrIULF7Jt2zZFY3x9fVmxYoXcSauRWrVqMXToUMXjOnToIK3G7JRN/07q18/S/QAty9sb2ra1dhZCCGE5MTExDBgwQPG4uXPnUtpZTgdayfDhw3nqKWX9cOPi4ujZs6dGGQkt2XQB+OabUKqUtbPQhsEAXbtCnjzWzkQIISwjPT2dNm3akJCQoGjcW2+9RWhoqEZZiQxubm456q34xRdfsG7dOo2yElqx6QLQYIC+fc175RyN0QjyQ5MQwplMmzaN3bt3KxpTsGBBlixZgs4R/yCwQSEhIYwfP17xuG7dunHp0iUNMhJasekCEKB9e/Dzc6wi0GCAFi1AYf9NIYSwW0ePHs1RA+HFixdTWIurksQjffzxx9SvX1/RmOvXr9OpUydMztK+wwHYfCMlX19YsQLeftvamahDr4d8+YxUqrSEZctcyJMnD3ny5MHHx+f+3z/4UnoqSwghbE1KSgqhoaGkpqYqGte6dWveeecdjbISj2IwGFi5ciVVq1bl3r172R733XffsWLFCsVXzAnrsPkCEOCtt6BjR1i+3P5bwxiN8Nlnej77bDcjRoQ/8fOenp6ZisL/FotZ/fPTTz+Nv7+/BX5FQgjxeGPGjOHIkSOKxpQsWZK5c+dqlJF4kvLlyzNz5ky6dOmiaFzv3r1p2LAhZcuW1SYxoRq7KAABZs+Gn3+Gc+fs92SwXg8ffQRNmkDt2nP4+eefuXDhwmPHJCYmkpiYyNWrV7P9HHd3dyIjI3ObrhBC5Nru3buZPHmy4nHLly/Hz89P/YREtnXq1ImNGzfy/fffZ3vM3bt3adu2Ldu3b5eWPTbObv7reHvD2rX2ezuIwQABAZDxfdDPz4+wsDBNntWnTx/56UsIYXX37t2jTZs2GBUu3XTv3p3GjRtrlJXILp1Ox7Jly8iXL5+icb/++qvM3toBuykAAWrVgoULrZ2FcgYD5M0LGzeCh8e/77/88suKp9efpFChQgwZMkTVmEIIkRODBw8mJiZG0Rh/f3+mTp2qUUZCqeLFizN//nzF44YMGSIrUTbOrgpAgM6dYd48a2eRfQaD+SDLb79BVlctTps2jXLlyqn2vLFjx5I3b17V4gkhRE78/PPPzFP4zVqv1xMeHo63t7dGWYmcaNGiBc2aNVM0JikpidatWys++CMsx+4KQIAePWDRInNrGFtuD+PiAgULmou/kJCsP+Pj48OKFStUeZ6npydNmzZVJZYQQuTUrVu3aJuDa44GDhxI3bp11U9I5IpOp2PBggUULVpU0bj9+/czadIkjbISuWWXBSBAly7mJVU3N9u8L9hgAH9/2L8fKld+/GdfeOEF+vTpk+tnJiYmEhwczKhRo7h7926u4wkhRE707t2b8+fPKxpTtWpVRo8erU1CItcKFizIsmXLFI8bN24cBw4c0CAjkVt2WwCC+aq4XbvMS6u2MhOYUYy2bg179kDJktkbN3HiRAIDA3P9/MTERMaOHUtgYCArVqwg3V6PTAsh7NLGjRsJD39yi6sHubq65ugKMmFZr732Gh06dFA0Ji0tjdDQUJKSkjTKSuSUXReAAE89BYcOwZQp4O5uXna1Fp0OSpeG7dvNzauVbMXz9PRk1apVqh2bv3jxIu3bt6dmzZps375dlZhCCPE4V65coXPnzorHjRkzhmrVqmmQkVDbzJkzKaPwGquTJ08yYsQIjTISOWX3BSCAqysMGAAREdCggfk9S7YfcnExv4YPh5Mn/81BqWeeeYZBgwapmtvhw4d56aWXePPNN4mKilI1thBCZDCZTHTt2lVRz1Iwf98bMGCARlkJtfn6+rJy5UrF42bMmMFvv/2mfkIixxyiAMxQrhxs3QpffQXPPmt+T6v9gXq9ecbPw8O83HvkCIwd+3Cbl5wYNWoUVapUUSfJB3z77bdUrlyZjz76iGvXrqkeXwjh3D799FM2bNigaIynpyfh4eG4WHPpRij24osv8vHHHysaYzKZaNu2LfHx8RplJZRyqAIQzEXZO++YT95GR5tnBgsUMH9Nje8xGTGqVTOfRL582XxFXaVKuY8N5ls8Vq1apck3xLS0NObNm4e/vz/Tp08nOTlZ9WcIIZzP33//Tc+ePRWPmzp1KgEBARpkJLQ2YcIEgoODFY05c+YM/fv31ygjoZTDFYAPCgiASZPg4kXzieF27aBGDfPJ4QyuruZZwowlY53O/M8uLg/PHvr5wUsvQb9+cPgwHDxo7kno66t+3jVq1GDkyJHqB/7H7du3GTBgAMHBwaxfvx6TvV6vIoSwOqPRSPv27blz546icS+99BLdu3fXKCuhtYzZW4PCZbYlS5YoulpOaEdncsI//dPSICrKXMgdPgxXr0JSEty8mYC3tyeenjo8PKB8eahe3fwqXtyyJ41TU1OpW7euRY7PP/vss8ycOZPatWtr/iyhjSZNmrBt27ZsfTYsLIz27dtrnJFwFvPnz1c8+5c3b16OHTtGqVKlNMpKWMqoUaMYO3asojHFihXj+PHj5M+fX6OsRHY4ZQH4KM2bN6dZs2aKO55r5cSJEzz99NMWW6r94IMPmDRpEqVLl7bI84R6pAAU1hATE0O1atVITExUNG7VqlWEhoZqlJWwpNTUVJ555hkOHjyoaFyLFi344osvNMpKZIdDLwErcfz4cdatW8eYMWMUX1yulZCQEMaNG5fl18aNG4e/v7+qz/v8888JDAxk6NChipdzhBDOJaO/m9Li7+2336Z169YaZSUsLac9HNesWcOXX36pUVYiO6QA/EfGFPaJEyf46quvrJzNv/r27Uu9evUeeu/dd99l+PDhnDhxglmzZpEvXz7VnpecnMykSZMICAhg8eLFpKWlqRZbCOE4pk2bxp49exSNKVSoEIsXL0ZnK537hSpCQkKYMGGC4nHdunXj4sWLGmQkskMKQP6d/ctgS7OABoOBVatW4eXlBZh/2poyZQoAbm5u9OnTh9jYWPr06aPqyeErV67QtWtXqlevztatW1WLK4Swf0eOHGHUqFGKxy1evJjChQtrkJGwtj59+lC/fn1FY27cuEGnTp3kIKKVSAEImTaw2tosoL+///2i76OPPqJChQoPfT1//vzMmjWLkydP8r///U/VZ584cYJXXnmFV155hePHj6saWwhhf5KTkwkNDSU1NVXRuNDQUNW/PwnbYTAYWLlyJd7e3orGbd68meXLl2uUlXgcpy8A/zv7l8GWZgEBunfvTvPmzRk+fPgjPxMQEMDXX3/NL7/8wlNPPaXq87du3Uq1atXo2rUrly9fVjW2EMJ+jBkzhqNHjyoaU7JkSebMmaNRRsJWlC9fnpkzZyoe16dPH86cOaNBRuJxnL4AfNTxdVubBdTr9XzxxRfZ2u/3wgsvsG/fPsLDwylRooRqORiNRhYvXkxAQACTJk1SvPlbCGHfdu3adX81QokVK1bg5+enfkLC5nTq1ImmTZsqGnP37l3atWtnU5MuzsCpC8BHzf5lsLVZQL2CC471ej2tW7cmOjqasWPHKp6Wf5z4+HiGDh1KUFAQn3/+uU39OxJCaOPevXu0adNG8e/3Hj160KhRI42yErZGp9OxbNkyxYcTf/31V5kltjCnLgCf1LzS1mYBc8LLy4sRI0YQExNDhw4dVD19d+7cOVq1akXdunXZuXOnanGFELZn0KBBxMbGKhrz4P5l4TyKFy/OggULFI8bMmQIERERGmQksuK0BWDr1q0fO/uXoU2bNmzcuFH7hDRWrFgxli1bxqFDh3jppZdUjb13716ee+45mjVrxunTp1WNLYSwvp9++on58+crGqPX6wkPD1d19UHYjxYtWtC8eXNFY3J6wEjkjNMWgNm9NSExMZEffvhB42wsp1q1amzbto3vvvuOoKAgVWOvX7+e4OBgBgwYwK1bt1SNLYSwjlu3btGuXTvF4wYNGkTdunU1yEjYiwULFlC0aFFFY/bv38/EiRM1ykg8yCkLwOPHjys6yfrtt9861D43nU7Ha6+9xtGjR5k/fz4FCxZULXZKSgrTp0/H39+fefPmyU9yQti5Xr16cf78eUVjqlatmqM+gcKxFChQgGXLlikeN378eA4cOKBBRuJBTlkAKr24Oi4uzu73AmbF1dWV7t27Exsby8CBA3Fzc1Mt9vXr1/noo4+oUqUK3377rTT6FMIObdiwgdWrVysa4+rqyurVqxVfDSYc02uvvUbHjh0Vjcm4ZjApKUmjrAQ4YQH4pJO/j2JrJ4LVlDdvXqZMmUJkZKTiPRtPEhUVxZtvvkmjRo04fPiwqrGFENq5cuUKXbp0UTxu7NixVK1aVYOMhL2aOXMmZcuWVTTm5MmTj+17K3LP6QpApbN/GRzhRPCTlCtXjrVr17Jz507q1Kmjauzt27fz1FNP0b59e+Li4lSNLYRQl8lkokuXLly9elXRuLp16zJgwACNshL2ysfHh5UrVyruQjFz5kx+/fVXjbISTlUA5nT2L4MjzwI+qF69euzevZsvvviCMmXKqBbXZDKxYsUKAgICGDt2LPfu3VMtthBCPatXr1bc/cDLy4tVq1ZhMBi0SUrYtRdeeIE+ffooGmMymWjbti3x8fHaJOXknKoAzOnsXwZnmAXMoNPpaNGiBZGRkUyePBkfHx/VYickJDBq1CgCAwNZtWqVUxTVQtiLc+fO8dFHHykeN3XqVAICAjTISDiKCRMmEBwcrGjM2bNn6devn0YZOTenKQBzO/uXwVlmATN4eHjcbwDbrVs3RbeRPElcXBxt27alZs2a7NixQ7W4QoicMRqNtG/fnjt37iga16hRI7p166ZRVsJReHp6Eh4erniWeOnSpWzZskWjrJyX0xSAuZ39y+BMs4APKly4MAsWLODo0aOK73l8kkOHDtGwYUPefvttoqOjVY0thMi+BQsW8PPPPysakzdvXpYvX67qD4fCcdWsWTNHhzs6duzI9evXNcjIeTnF71i1Zv8yONss4INCQkLYsmULW7dupXLlyqrG3rRpEyEhIfTu3Vt+owthYdHR0QwcOFDxuE8++YRSpUppkJFwVMOGDePpp59WNObixYv06NFDo4yck1MUgGrN/mVw1lnABzVp0oTDhw+zZMkSihQpolrctLQ05s6di7+/P7NmzSIlJUW12EKIrKWlpdGmTRsSExMVjfvf//7Hhx9+qFFWwlG5uroSHh6uuFfk2rVrWbt2rUZZOR+HLwCvXbvG7du3ady48UMvV1fXbMcoVqxYpvG7du3SMGv7YDAY6NSpEzExMQwbNgwPDw/VYt+6dYu+fftSqVIlvv76a2kkLYSGpk6dyp49exSNKVSoEIsXL1bc2kMIgEqVKjFhwgTF47p3787Fixc1yMgJmZxUgQIFTEC2XqGhodZO1y6cO3fO9OGHH2b736uSV/369U179+619i/RZjVu3Djb/y7DwsKsna6wIYcPHza5uroq/j25YcMGa6cu7FxaWprp+eefV/z/3quvvmoyGo3WTt/uueS6ghTiH6VKlWL16tX06tWLfv368fvvv6sW+/fff6d27dp8+OGHTJw4UfYcCaGC5ORkWrdurfjO7jZt2vD2229rk5RwGgaDgZUrV1K1alXu3r2b7XFbtmwhLCws6yvmTCaIi4PDh82v06chKcn8Sk8HDw/zq1AhqF7d/KpYEVycrxxyvl+x0FytWrX49ddf2bBhAwMHDuTUqVOqxf70009Zv349/fr1Y9CgQar2JxTC2YwePZpjx44pGlOqVCnmzJmjUUbC2ZQrV46ZM2fSuXNnReM+/vhjXnrpJcqVKwdHjsCaNbBvHxw8CDdvmj9kMIBOZy4KjUbzX/V680ung4wffNzcICQEataE116DV18FBdvE7JXD7wEU1qHT6XjnnXc4ceIEM2bMwM/PT7XYSUlJTJgwgYCAAJYuXUp6erpqsYVwFrt27WLq1KmKx61YsYK8efNqkJFwVh07dlTcXqzla69RZONGqFHDPIs3fTr8/PO/xR+YZ/zS0sx/zdhHbjSa33tw1jslBQ4dghUr4O23oXhxGDIEYmNz+0uzaVIACk25u7vTt29fYmNj6dWrFy4qTrNfvnyZzp07U6NGDbZt26ZaXCEc3b179wgNDVXczqpnz5689NJLGmUlnJVOp2PZsmXky5fviZ+t5+fHmQYNWLJpE179+sHRo+YvpKXlPpGMGNeuwbRpEBAAzz8PX3/9bwHpQKQAFBZRoEAB5syZw4kTJ3jrrbdUjX3s2DGaNGnCq6++ysmTJ1WNLYQjysnWjICAAKZMmaJRRsLZFS9enIULFz7y6+7A2sBA/oiPp+zvv5v39GUs7WohY2Vp1y549114+WU4c0abZ1mJFIDCogIDA9m4cSM7duygRo0aqsb+/vvvqVq1Kt26dePKlSuqxhbCUWzbto0FCxYoGqPX6wkPD8fLy0ujrISA999/n/fffz/T+695eXG1UCGaxcSgy1jWtZSMQnDHDggONs8MWvL5GpICUFjFiy++yP79+1m5ciXFixdXLW56ejqLFi3C39+fKVOmkJSUpFpsIezdrVu3aNeuneJxgwcP5plnntEgIyEeNn/+fIoWLQqAL/BD0aJ8l5CAz40b6Ky5DJuWBsnJMGiQed/hoUPWy0UlUgAKq9Hr9bRp04bo6GjGjBmj6uxCfHw8gwcPJigoiDVr1kgjaSGAXr16ceHCBUVjqlWrxqhRozTKSIiHFShQgLCwMPzd3TlTpAhNrl41f8FWDvuZTBARAXXrwrffWjubXJECUFidt7c3I0eOJCYmhvbt26t6s8Bff/1Fy5YtqVevHrt371YtrhD25uuvv2b16tWKxmRc2eXm5qZRVkJk9mqZMkT6+pL/+nXzkq+tSU83nxx+6y1YssTa2eSYFIDCZhQvXpywsDAOHjxIw4YNVY29Z88e6tWrR4sWLTjjYBt5hXiSy5cv06VLF8Xjxo4dS9WqVTXISIhHOHEC6tfHcOOGbe+1M5nMry5d4DGHV2yZFIDC5lSvXp2ffvqJb775hooVK6oae+3atQQFBTFo0CBu376tamwhbJHJZKJLly5cu3ZN0bh69eoxYMAAjbISIguRkea2K3fu2M6Sb3Z07w5Ll1o7C8WkABQ2SafT8cYbb3Ds2DE++eQTChQooFrslJQUpk6dir+/PwsWLCDNln/KFCKXwsPD2bRpk6IxXl5erFq1CoPBoFFWQvxHYqK5CfPt2/ZV/GXo1g3277d2FopIAShsmqurKz179iQ2Npb+/furuhfp2rVr9OjRg6pVq7J582Y5KCIczrlz5+jVq5ficdOmTcPf31+DjIR4hMGDISbGPou/DO+/D/fuWTuLbJMCUNgFPz8/pk2bRkREBM2aNVM1dkREBK+//jpNmjThaEZXeSHsnNFopF27dty5c0fRuMaNG9OtWzeNshIiC1u3wty52jV1toT0dDh7Fvr2tXYm2SYFoLAr5cuX58svv+SPP/6gdu3aqsb+6aefqF69Oh07duTixYuqxhbC0ubPn8/27dsVjcmbNy/Lly9X9SS+EI917Rp8+CHoHaAcMRrNp4K/+cbamWSLA/wbF87o2WefZffu3Xz++eeULl1atbgmk4mwsDACAgIYN24cCQkJqsUWwlKio6MZNGiQ4nHz5s2jZMmSGmQkxCP06gU3b9r37N+DdDpo29Z8kMXGSQEo7JZer6dly5ZERkYyceJE8uTJo1rse/fuMXLkSAIDA1m9ejVGR/nmJBxeWloaoaGhJCYmKhr3zjvv0KpVK42yEiILZ8/CmjX2ve/vv0wmuHULVqywdiZPJAWgsHuenp4MGTKE2NhYunTpgl7FpYQLFy4QGhpK7dq1+fXXX1WLK4RWpkyZwp9//qloTOHChVm0aJEs/QrLmjfPMZZ+szJzps0Xtg76b144oyJFirBo0SKOHDnCK6+8omrsAwcO8OKLL/LOO+8QExOjamwh1HL48GHGjBmjeNySJUsoVKiQBhkJ8Qjx8bB4sc0XSTliMsG5c/Ddd9bO5LGkABQOp3Llynz//fd8//33hISEqBp7w4YNhISE8PHHH3Pjxg1VYwuRG8nJybRu3ZrU1FRF49q2bctbb72lUVZCPMLKlXbVMkUxgwGmT7d2Fo8lBaBwWK+88gqHDx9m8eLFFC5cWLW4qampzJ49G39/f2bPnk1KSopqsYXIqVGjRnH8+HFFY0qXLs3s2bO1SUiIx3H0/+/S0+GPP+DYMWtn8khSAAqH5uLiQufOnYmJiWHIkCG4u7urFvvmzZt8/PHHhISEsHHjRmkkLaxm586dTJs2TfG4FStWkDdvXg0yEuIxLlyA06fNS6WOTK+HHTusncUjSQEonIKvry8TJ04kKiqKDz74QNXYsbGx/O9//+PFF1/kwIEDqsYW4knu3r1LmzZtFJ9U/+ijj2jYsKFGWQnxGHv3ahbaCAQB/22CtBVwA9Zp9uQs6HSa/lpzSwpA4VTKlCnDZ599xp9//smzzz6rauzffvuNmjVr0qZNG86fP69qbCEeZeDAgZw6dUrRmMDAQCZPnqxRRkI8wd694OKiSWg9MARYCNz8570jQDNg4j9/tZj0dNi505JPVEQKQOGUateuze+//866desoV66cqrHDw8MJDAxk5MiR3L17V9XYQjzoxx9/ZOHChYrG6PV6wsPD8fLy0igrIZ5g925IS9MsfCugIDAXOA+8BrQG+mv2xMc4exZs9MCgFIDCael0Ot577z0iIiKYPn26qnuhEhMTGTduHAEBAYSFhZHuiK0OhFXdvHmT9u3bKx43ZMgQ6tSpo0FGQmSD0Qj79mn6CBfMS8BzgVeBp/75e6vR+NebU1IACqfn7u5Ov379iI2NpWfPnhgMBtViX7p0iY4dO/LUU0/x008/qRZXiF69enHhwgVFY6pXr87IkSM1ykiIbLhyBSxwxWYrIAEwAV8A//2u/j8gH/Ce1onodBAdrfVTckQKQCH+UbBgQT755BOOHz/OG2+8oWrso0eP0rhxY15//XUiIiJUjS2cz1dffcWnn36qaIybmxvh4eG4ublplJUQ2WCh+9V7/vPXa2Qu/gB6AeGWSMRgAIXXMlqKFIBC/EdQUBDffPMNP//8M9WrV1c19ubNm6lSpQo9e/bk6tWrqsYWzuHy5ct06dJF8bixY8dSpUoVDTISQgELFEMjgM3AHiANCMviMw0AH80zwTwDKAWgEPalYcOG7N+/n+XLl1OsWDHV4qanpzN//nz8/f2ZNm0aycnJqsUWjs1kMtG5c2euX7+uaFy9evXo398qW+CFsKhlwAzgW6Aa0AeYCii7H8c5SAEoxGMYDAbatWtHdHQ0o0aNwtPTU7XYd+7cYeDAgQQHB7Nu3TppJC2eaNWqVXzzzTeKxnh5ebFq1SpV97YKkWMqfg/9r++BHsCnwDP/vPcRcAdYrdlTn8Bk0vTXnBtSAAqRDXny5GH06NHExMTQtm1bdDqdarHPnDlD8+bNee6559izZ49qcYVj+euvv+jdu7ficdOnT8ff31+DjITIAY3aDx3A3ONvKvDOA+/7Yi4CJwNW6cWQni4FoBCOoESJEqxYsYL9+/fz4osvqhp7165d1K1bl5YtW3L27FlVYwv7ZjQaadeuHXfu3FE0rkmTJnTt2lWjrITIgcKFNSkCnwbuAln9iDQWiCbrwyCaM5kgMNAaT34iKQCFyIGnnnqK7du3s2nTJgICAlSNvWbNGoKCghgyZIjiP/CFY5o3bx47FN4pmjdvXsLCwlSdrRYi1/R6qFXL2lnwMuYZwy1ASUDTTn028OvNihSAQuSQTqfjzTff5Pjx48yZM4f8+fOrFjs5OZnJkyfj7+/PokWLSNOwa76wbVFRUQwa9N+bTZ9s/vz5lCxZUoOMhMilunU1uwouu7YCVzH3CjwPaFailS0LKv7ZoCYpAIXIJTc3N3r16kVsbCx9+/bF1dVVtdhXr16lW7duVKtWjR9++EG1uMI+pKWlERoaSlJSkqJx7777Lh988IFGWQmRS7Vra3oVnM0wGEDlO+fVJAWgECrJly8fM2bM4OTJk7z77ruqxj558iRNmzbl5Zdf5tixY6rGFrZrypQp7N27V9GYwoULs3DhQln6Fbardm1rZ2AZJpNN/1qlABRCZf7+/qxfv57ffvuNmjVrqhr7xx9/pHr16nTu3JlLly6pGlvYlkOHDjF69GjF45YuXUqhQoXUT0gItZQoAeXLm5skOzKjERo0sHYWjyQFoBAaqV+/Pn/++SeffvqpqnuxjEYjS5cuJSAggIkTJ5Joo13mRc4lJycTGhqqeO9nu3btePPNNzXKSggV9elj7Qy0ZTDAc8+BDd++IwWgEBrS6/W0atWKqKgoxo8fT548eVSLfffuXYYNG0bFihW5ePGianGF9Y0cOZLjx48rGlO6dGlmz56tTUJCqK1dO/D2tnYW2klPBxu/fUcKQCEswMvLi2HDhhETE0OnTp3Q69X7rff3338rLhaE7dq5cyfTpk1TPG7lypX4+vpqkJEQGsiTB7p0Mc+UORqdDkqXhtdft3YmjyUFoBAWVLRoUZYsWcLhw4dp3LixtdMRNubu3bu0adNG8bWAvXr1ooEN7zUSIks9e5r3yTmivn1tvriVAlAIK6hSpQpbt25ly5YtVKpUydrpCBsxYMAATp06pWhMYGAgkyZN0igjITRUtiy0aGHzhZIiOh34+ZmXuG2cFIBCWIlOp6Np06YcOXKEhQsXyslNJ7d161YWLVqkaIzBYGD16tV4aXS/qhCamzvX3ChZxW0xVmUywapVYAfbMRzk37gQ9svFxYWuXbsSExPDoEGDcHd3t3ZKwsJu3rxJ+/btFY8bMmQItW24z5gQT1SwIKxe7RhLwXo9dO4Mb7xh7UyyRQpAIWxE3rx5mTx5MpGRkbRo0UKz5/z111+axRY589FHHxEXF6doTI0aNRgxYoRGGQlhQS+/DL162fcsoMFgXtKeOdPamWSbHf/bFsIxlS1bli+++ILdu3dTt25d1eOPGzeOdu3aceHCBdVjC+XWr1/PZ599pmiMm5sb4eHhuLm5aZSVEBY2eTIEBNj3fsC1a+2qtY0UgELYqGeeeYadO3eydu1aypYtq1pck8nEypUrCQwMZPTo0dy7d0+12EKZS5cu0bVrV8Xjxo0bR+XKlTXISAgr8fSEjRshb177LAIXLgSVb37SmhSAQtgwnU5H8+bNiYiIYOrUqar2eUtISGDMmDEEBASwYsUK0tPTVYstnsxkMtG5c2euX7+uaNyzzz5Lv379NMpKCCsKCoLffjMfoLCnInDBAujUydpZKCYFoBB2wMPDgwEDBhAbG0uPHj0wqPjN8eLFi7Rv356aNWuyfft21eKKx1u5ciXffvutojHe3t6sWrVK1f/+QtiUkBD4/Xfz4RAXF2tn82g6nfm1eDF062btbHJECkAh7EihQoWYN28ex44d47XXXlM19uHDh3nppZd46623iIqKUjW2eNhff/1F7969FY+bPn06FSpU0CAjIWxISAjs3w/+/rY5E2gwgLs7fPON+dSvnZICUAg7FBwczHfffce2bduoWrWqqrG/+eYbKleuTK9evbh27ZqqsQUYjUbatm1LfHy8onEvv/wyXbp00SgrIWxMyZKwZw+0bm3+Z1spBHU6CA6GXbts/qq3J5ECUAg71qhRIw4ePKj6bSJpaWl88skn+Pv7M2PGDJKTk1WN78w++eQTfvnlF0Vj/Pz8CAsLQ6fTaZOUELYob15YsQK2bzffrWvN//9dXMDDA6ZOhUOHoEYN6+WiEikAhbBzBoOBEiVKaBL79u3b9O/fn0qVKrF+/XrFd9SKh0VGRjJ48GDF4+bPn6/Zf2MhbF6DBnDyJAwfbi7ELLk3MGPmsWFDcw79+9v23kQFpAAUQjzR6dOnadasGfXr12fv3r3WTscupaWl0aZNG5KSkhSNe++992jZsqVGWQlhJzw8YOxYOHLEvCzs4WGeEdSqeXRG4ffss/DVV/DDD1CunDbPshIpAIUQ2bZz507q1KlDq1atOHfunLXTsSuTJ09WXDwXKVKEhQsXytKvEBkqVYLly+HyZVi0CKpVM7/v4pL7JeKMmb2CBWHgQIiJgV9/hXfese7ys0akABRCKPb5559TsWJFhg0bpvgwgzM6ePAgY8aMUTxu6dKlFCxYUIOMhLBzvr7mE7gHD5pnBfv3h5degnz5/v2MwWAu6gyGfws4vd78nqvrv59zc4OnnoL27WHTJrh4ESZONJ9CdmCOsZAthLC4pKQkJk6cyLJlyxg3bhzt27fHxUH2xqgpKSmJ0NBQ0tLSFI1r164db9jJpfJCWFXVquYXgMlkLuAOHza/Tp+GpCTzKz3dvHTs4QGFCkH16uZXYKDD7OtTwvl+xUI4ucaNG7Njxw7FBcmjXLlyhS5dujB37lxmzJjByy+/rEpcRzFy5EhOnDihaEyZMmWYPXu2NgkJ4ch0Oihe3Px69VVrZ2PTdCYHP9Z37do1WrVqlen04i+//EJqamq2YhQtWpQqVao89F5ISAizZs1SLU8hcqNJkyZs27YtW58NCwujfv36DBo0iA0bNqieyyuvvML06dMJCQlRPba9+eOPP3j++ecVn57evn07DRo00CgrIYRwghnAggULkjdvXtatW5fjGJcuXeLSpUsPvdfJDu/9EyJDQEAAX3/9Nb/++iv9+vXjwIEDqsX+4Ycf+PHHH+nUqRNjxoyhSJEiqsW2J3fv3qVNmzaKi7/evXtL8SeE0JxTHAIZOXKkqvFCQkJ49913VY0phDW88MIL7N27l/DwcFX7zBmNRhYvXkxAQACTJ09W3PrEEfTv35/Tp08rGlOxYkUmTZqkUUZCCPEvpygAK1euTLNmzVSLN2rUKPRa9R4SwsL0ej2tW7cmOjqacePG4e3trVrs+Ph4hgwZQsWKFfniiy+cppH0Dz/8wOLFixWNMRgMhIeH4+npqVFWQgjxL6epYtSaBZTZP+GovLy8GD58ODExMXTo0EHV3nPnzp3jgw8+4JlnnmHnzp2qxbVFN2/epEOHDorHDR06lNq1a2uQkRBCZOY0BaBas4Ay+yccXbFixVi2bBmHDh2iUaNGqsbeu3cvzz33HM2bN1e8PGovevbsSVxcnKIxNWrUYPjw4RplJIQQmTlVJZPbWUCZ/RPOpFq1avz4449s3ryZoKAgVWOvW7eO4OBgBgwYwK1bt1SNbU3r1q3j888/VzTGzc2N8PBw3NzcNMpKCCEyc6oCMLezgDL7J5yNTqfj1Vdf5ejRo8yfP1/VWylSUlKYPn06/v7+zJs3L9ttmWzVpUuX6Natm+Jx48ePp3LlyhpkJIQQj+Z01UxOZwFl9k84M1dXV7p3705sbCwDBw5Udbbq+vXrfPTRR1SpUoXvvvvOLg+KmEwmOnXqxPXr1xWNe+655+jbt69GWQkhxKM5XQGY01lAmf0TAvLmzcuUKVOIjIykefPmqsaOiorijTfeoFGjRhw+fFjV2FpbsWIF3333naIx3t7erFq1CoPBoFFWQgjxaE5Z0SidBSxevLjM/gnxgHLlyrF27Vp27tzJM888o2rs7du389RTT9GhQwfFhyms4ezZs/Tp00fxuBkzZlC+fHn1ExJCiGxwygKwcuXKim4neOONN2T2T4gs1KtXj127drFmzRrKlCmjWlyTycTy5csJCAhg7Nix3Lt3T7XYajIajbRr1474+HhF41555RU6d+6sUVZCCPFkTlvVNG7cOFuf8/T05JVXXtE4GyHsl06n4/333ycyMpLJkyfj4+OjWuyEhARGjRpFxYoVWbVqFUajUbXYapg7dy6//PKLojF+fn4sW7ZM1T6LQgihlNMWgKtXr87WXsBVq1bx9ttva5+QEHbOw8ODQYMGERsbS7du3VSdNb9w4QJt27alVq1aigsurURGRjJkyBDF4xYsWKDqtXtCCJETTlsAwpP3AsrJXyGUK1y4MAsWLODo0aM0bdpU1dgHDx6kQYMGvP3220RHR6saW4m0tDRCQ0MV33HcrFkzWrRooVFWQgiRfU5dAD7pRLCc/BUi50JCQtiyZQtbt26lSpUqqsbetGkTISEh9OnThxs3bqgaOzsmTZrEvn37FI0pUqQICxYskKVfIYRNcPrq5lGzgDL7J4Q6mjRpwqFDh1i6dKmiw1dPkpaWxpw5c6hQoQKzZs0iJSVFtdiPc/DgQcaOHat43LJly1RtpC2EELnh9AXgo2YBZfZPCPUYDAY6duxITEwMw4YNw8PDQ7XYt27dom/fvlSqVImvv/5a00bSSUlJtG7dmrS0NEXj2rdvz+uvv65RVkIIoZxUOGSeBZTZPyG04ePjw/jx44mOjubDDz9UNfapU6d49913eeGFF9i/f7+qsTOMGDGCkydPKhpTpkwZZs2apUk+QgiRU1IAknkWUGb/hNBWqVKlWL16NXv37qV+/fqqxv7999+pVasWrVu35u+//1Y17owZMxSPW7lyJb6+vqrlIYQQapAq5x8Zs4Ay+yeE5dSqVYtff/2Vr776igoVKqga+9NPPyUwMJARI0YobtT8X3fv3qVt27aKl5f79OnDiy++mKtnCyGEFqQA/EfGLKDM/glhWTqdjnfeeYeTJ08yc+ZM/Pz8VIudlJTE+PHjCQgIYOnSpaSnp+coTv/+/Tl9+rSiMUFBQUycODFHzxNCCK3pTFrumLZRRqORa9eucenSJS5dukRCQgJpaWncuXMHLy8vXF1dcXFxIV++fBQtWpSiRYvi4+Mj7RuEzWrSpAnbtm3L1mfDwsJo3769xhnl3PXr1xk3bhzz589XfNjiSapUqcKMGTOyfRMQwPfff8+rr76q6DkGg4Hdu3dTq1YtpSkKIYRFuFg7AUtIT08nJiaG6Oho4uLiuHr16v0rpfR6/f1lnYy/6nQ6dDodJpPp/nseHh4ULVqUEiVKULlyZYoWLWqdX4wQDq5AgQLMnj2b7t27M3DgQDZt2qRa7GPHjtGkSRNeffVVpk2bRqVKlR77+Rs3btChQwfFzxk2bJgUf0IIm+bQM4DXr1/n0KFDHDx4kMTERPR6fa7vEs2IUbRoUZ5++mmqVKmCu7u7ShkLkTOONAP4X7/88gt9+/bl0KFDqsY1GAx07tyZ0aNHU7hw4Sw/88EHH/DFF18oivvUU0+xZ88eXF1d1UhTCCE04XAFoMlkIiIigj///JNz587dn8nTisFgoEqVKtSrV49ChQpp9hwhHseRC0Awb9tYvXo1Q4cOJS4uTtXYvr6+DB06lN69ez/Un3DdunU0b95cUSx3d3cOHDhASEiIqjkKIYTaHOq0w82bN/n0009Zt27d/fYPWte36enpHD16lEWLFrF9+3bV9ywJIcwz723atCE6OpoxY8bg5eWlWuw7d+4wePBggoKCWLNmDSaTiYsXL9KtWzfFscaPHy/FnxDCLjjEDGB6ejp79uxhx44dmEymXC/z5pROpyNv3ry8+eablCtXzio5COfk6DOA/xUXF8eIESNYsWKF6j/kPfPMM+j1enbt2qVoXP369dmxYwcGg0HVfIQQQgt2PwN48eJFFi9ezE8//UR6errVij8wzzbevn2b8PBwNm7cSFJSktVyEcKRFS9enLCwMA4ePEjDhg1Vjb1nzx7FxZ+3tzcrV66U4k8IYTfsugCMiooiLCyMa9euWTuV+zJmI44ePUpYWBi3b9+2ckZCOK7q1avz008/8e2331KxYkWr5TFz5kzKly9vtecLIYRSdlsA7t+/nzVr1pCenq75Pr+cMJlM3Lhxg6VLl3LlyhVrpyOEw9LpdLz++uscO3aMefPmUaBAAYs+v2nTpnTq1MmizxRCiNyyywJw7969bN682dppPJHRaCQhIYEVK1ZIESiExlxdXenRowexsbH0798fNzc3zZ+ZL18+li1bJk3ihRB2x+4KwP379/P9999bO41sM5lMJCcns3LlSptaqhbCUfn5+TFt2jQiIiJo1qyZps9asGABxYsX1/QZQgihBbsqAC9cuMCWLVusnYZiJpOJpKQk1qxZI21ihLCQ8uXL8+WXX/LHH39Qu3ZtTZ7x008/cfHiRU1iCyGEluymAExJSWH9+vXWTiPHMvYE/vTTT9ZORQin8uyzz7J7924+//xzSpcurWrssLAwAgICGD9+PAkJCarGFkIILdlNAbh161Zu375tkwc+sstkMvHnn39y6tQpa6cihFPR6/W0bNmSyMhIJk2ahI+Pj2qx7927x4gRI6hYsSKrV6+2aisqIYTILrsoACMjIzl48KBdF38ZdDodX3/9tcwWCGEFnp6eDB48mJiYGDp27Khq7PPnzxMaGkrt2rX59ddfVY0thBBqs/kCMDk5mU2bNlk7DdWYTCYSExPt6iCLEI6mSJEi5M2bV5PYBw4c4MUXX+Sdd94hJiZGk2cIIURu2XwBeOjQIYe7UcNkMnH8+HFu3bpl7VSEcEq//fYbM2fO1PQZGzZsICQkhI8//pgbN25o+iwhhFDKpgtAo9HI7t27rZ2GJnQ6HXv37rV2GkI4nfj4eNq2bWuRLSWpqanMnj0bf39/Zs+eTUpKiubPFEKI7LDpAjAqKoo7d+5YOw1NmEwmDhw4IH8gCGFh/fv358yZMxZ95s2bN/n4448JCQlh48aNDrGfWQhh32y6ANy9e7dDd9hPSUnh8OHD1k5DCKexZcsWlixZYrXnx8bG8r///Y8XX3yRAwcOWC0PIYSw2QLw8uXL/P333w7/k/KePXusnYIQTuHGjRs5OvnbsWNHnn32WVVz+e2336hZsyZt2rTh/PnzqsYWQojssNkC8MyZMw49+5fh5s2bDrvMLYQt6dGjh+JbO55++mkWLFjA77//zvr16ylfvryqOYWHhxMYGMjIkSO5e/euqrGFEOJxXKydwKPExcVpFjs6OprPP//8kV+vVKkSzZs31+z5/xUXF4evr6/FnieEs/nyyy9Zs2aNojHu7u6Eh4fj6uoKwLvvvsvrr7/OvHnzGDduHLdv31Ylt8TERMaNG8fSpUsZP348bdu2xWAwqBJbCCEexWYLwHPnzmm2/FuuXDn69ev30Hsmk4mNGzdy6dIlXnjhBU2emxW9Xs+FCxcICgqy2DOFcCYXL16kW7duisdNmDCBSpUqPfSeu7s7/fr1o02bNowdO5YFCxaQnp6uSp6XLl2iY8eOzJ07lxkzZtCoUSNV4gohRFZscgk4ISFBtZ+us+Lq6oqPj8/9l7e3Nz/++COXLl2iTZs2FClSRLNn/5fRaJQ9QEJoxGQy0bFjR8V9+OrXr0+fPn0e+fWCBQsyd+5cTpw4wZtvvpnLLB929OhRGjduzOuvv05ERISqsYUQIoNNFoBaLv/+l9Fo5Ouvv+bUqVOEhoZatPjLcOHCBYc/7CKENYSFhbFlyxZFY/LkycPKlSuztQxbsWJFNm3axPbt26levXoOs8za5s2bqVKlCj179uTq1auqxhZCCJssAK9fv26R5zxY/LVp04aiRYve/9qaNWuYPHkya9eu1TyP1NRU7t27p/lzhHAmZ86c4eOPP1Y8bubMmYoPezRo0ID9+/ezYsUKihUrpviZj5Kens78+fPx9/dn2rRpDncrkhDCemyyAExNTUWv1za1xxV/AHXq1OF///ufpjk8KDU11WLPEsLRGY1G2rVrp/hkbdOmTXPUKgbAYDDQtm1bYmJiGDVqFF5eXjmKk5U7d+4wcOBAgoOD+fLLL2XFQAiRazZZAKalpWka/7/Lvv8t/sB8UMTNzU3TPB4kBaAQ6pkzZw6//vqrojH58uVj2bJluW4/5e3tzejRo4mOjqZt27aqtrM6e/Ys77//Ps8++6z0EBVC5IpNFoBaMhqNbNiw4X7xp+ZyTW44Q89DISzh5MmTDBkyRPG4BQsWULx4cdXyKFGiBCtWrODAgQM0aNBAtbhgviWpbt26tGzZkrNnz6oaWwjhHGyyAHRx0aY7TUbxFxkZyTvvvEOePHmIj49/6GU0GjV59pNo9WsWwpmkpqYSGhpKcnKyonHvv/8+LVq00CSnGjVq8PPPP7Np0yYCAwNVjb1mzRqCgoIYMmSINJQXQihik1WHq6urJoVYXFwcx44dA+Czzz7L8jODBg3C09NT9Wc/SUazWSFEzk2cOFHxHbtFixZl/vz5GmVkptPpePPNN2natCmLFi1i9OjRilvTPEpycjKTJ08mLCyMsWPH0rFjR/mBUgjxRDb5XaJAgQKaxC1ZsiSjR4/WJHZuuLq64u3tbe00hLBrBw4cYPz48YrHhYWFafY9579cXV356KOP+PDDDxk/fjyffPKJavt/r169Srdu3fjkk0+YPn06r7zyimwtEUI8kk0uAZcoUcLaKbB69WrWrVtHTEwMM2bM4MKFC5o9q0SJEvKNWohcSExMpHXr1ooPkHXs2JFXX31Vo6weLV++fMyYMYOIiAjeffddVWOfPHmSV199lVdeeeX+iocQQvyXTc4Aenp6kjdvXk1vA3mS1q1bW+Q5er2ekiVLWuRZQjiq4cOHK741o2zZssycOVOjjLKnQoUKrF+/nt9//51+/fqxb98+1WL/+OOPVK9enQ4dOjB27Ngsux0IIZyXTc4AApQuXdopZsWMRqNNzHgKYa9+/fVXZs2apWiMTqdj1apV+Pj4aJSVMvXr12fPnj18+umnlCpVSrW4RqORpUuXEhAQwIQJE0hMTFQtthDCvtlsAahmOwZbJwWgEDkTHx9P27ZtFTdG/vjjj3n++ec1yipn9Ho9rVq1IioqigkTJpAnTx7VYt+9e5fhw4dTsWJFPv30U6t1OxBC2A6bLQDLlSvnFN3u8+XLZzOzEELYm379+inugxccHMyECRO0SUgFnp6eDB06lJiYGDp37qzqrUh///03rVu3pk6dOvz++++qxRVC2B+bLQCLFClCqVKlHH4Z+JlnnrF2CkLYpS1btrB06VJFYwwGA+Hh4Xh4eGiUlXqKFi3K4sWLOXz4ME2aNFE19v79+3n++ed57733OHXqlKqxhRD2wWYLQIB69eo59Cygm5sb1atXt3YaQtid69ev06FDB8XjRowYQc2aNTXISDtVqlRh69atfP/991SqVEnV2F999RXBwcH069ePmzdvqhpbCGHbbLoADAwMJG/evNZOQxM6nY6nn37aovcNC+EoevTowaVLlxSNefrppxk6dKhGGWnvlVde4ciRIyxcuJBChQqpFjc1NZWZM2fi7+/P3Llz5V5yIZyETReAer3eoZdI69SpY+0UhLA7a9euZe3atYrGuLu7Ex4ebvc37ri4uNC1a1diY2MZPHgw7u7uqsW+ceMGvXv3pnLlymzatMmhV1+EEDZeAIL5Hk172K+jhE6nIyQkxGFnN4XQysWLF+nevbvicRMnTlR9+dSafH19mTRpEpGRkbRs2VLV2NHR0bz99ts0bNiQgwcPqhpbCGE7dCY7+DEvKiqKNWvWWDsNVeh0Ojw8PDAYDPj4+JAnT577f814PfjPcqenyI4mTZqwbdu2bH02LCyM9u3ba5yR+kwmE6+//jpbtmxRNO75559nx44dqp6mtTV79uyhb9++7N69W9W4Op2O0NBQJkyYIO2qhHAwdlFdVKxYkaeeeopDhw7Z/bKEyWTi3XffZfz48axcufKJn3d3d39sgfiof3766acJCAjQ/hckhIUsW7ZMcfGXJ08eVq5c6dDFH5i7CezcuZP169czaNAgzpw5o0pck8nEqlWrWLduHf3792fAgAGq9icUQliPXcwAAqSkpLBw4UJu375tt0WgTqejdu3avPLKK9y+fZsqVarw999/q/4cd3d3IiMjKVu2rOqxhW1y9BnAM2fOULVqVe7evato3NKlS+nYsaNGWdmm5ORkPvnkE8aNG8edO3dUjV2sWDEmTJhAaGgoBoNB1dhCCMuymx+L3dzceO+996ydRo7pdDoKFChAo0aNAMibNy/Lly/X5Fl9+vSR4k84DKPRSNu2bRUXf6+99lqOWsXYO3d3d/r3709sbCw9evRQtVC7ePEi7du3p2bNmmzfvl21uEIIy7ObAhDMV6a99tpr1k5DsYx9f++///5De/oaNWpEt27dVH1WoUKFGDJkiKoxhbCm2bNn89tvvykakz9/fpYuXerwjeQfp1ChQsybN49jx47x+uuvqxr78OHDvPTSS7z55ptERUWpGlsIYRl2VQCCuZfXq6++au00sk2n0+Hu7k67du0oWLBgpq9PnTqV8uXLq/a8MWPGyOli4TBOnDiRo959CxYsoFixYhpkZH+Cg4P59ttv+emnn6hWrZqqsb/99lsqV67MRx99xLVr11SNLYTQlt0VgAC1atVS/SdaLeh0Ory9vWnfvv0jG7dmbFJXY6bCw8ODpk2b5jqOELYgNTWV0NBQkpOTFY1r0aIF77//vkZZ2a+XXnqJAwcOEBYWRtGiRVWLm5aWxrx58/D392f69OmK/3sJIazDLgtAMM8EtmjRAoPBYJPLPBl7/jp16vTErv3169fn448/zvUzk5KSqFSpEiNHjlS8X0oIWzNhwgTFfeiKFSvG/PnzNcrI/hkMBtq3b09MTAwjR47E09NTtdi3b99mwIABBAcHs379ers9rCeEs7DbAhDM7WE6dOig6rVIuZVRjFarVo0OHTrg6+ubrXHjx48nKCgo189PTExk3LhxBAQEEBYWRnp6eq5jCmFp+/fvZ/z48YrHLVu2jPz582uQkWPJkycPY8aMITo6mtDQUFVjnzlzhmbNmlG/fn327t2ramwhhHrsugAE80/8Xbp0oXHjxhgMBqv3+/Lz86NNmza89dZbim4w8fT0ZNWqVarlf+nSJTp27MhTTz3FTz/9pEpMISwhMTGR0NBQxT+8dOrUya72B9uCkiVLsmrVKvbv388LL7ygauydO3dSp04dWrVqxblz51SNLYTIPbsvAMF8Z3C9evXo2bMn5cqVA7DosrBer0ev1/P888/TvXv3HLdgqV27NoMHD1Y1t6NHj9K4cWNef/11IiIiVI0thBaGDRum+P/VcuXKMWPGDI0ycnxPP/00O3bsYOPGjao3kP/8888JDAxk6NChqvclFELknEMUgBn8/Pxo1aoVzZs3p3Tp0oB2hWBGXBcXF6pVq0bXrl1p0KBBrq9uGzlyJFWrVlUjxYds3ryZKlWq0LNnT65evap6fCHU8OuvvzJ79mxFY3Q6HStXrsTHx0ebpJyETqfjrbfe4vjx48yePZt8+fKpFjs5OZlJkyYREBDA4sWLSUtLUy22ECJn7OYmkJy4ceMGhw4d4uDBgyQkJKDX6zEajbmKmRGjWLFi1KxZk5CQENzd3VXK2OzIkSPUqlWL1NRUVeNm8PX1Zfjw4fTq1Uv13IV1OMJNIPHx8VStWpWzZ88qGtevXz+mT5+uTVJO7MaNG4wfP5558+ap/r0oJCSEGTNm8PLLL6saVwiRfQ5dAGYwGo3ExMQQExNDXFwcV65cub+/KGPPnclkun9qTafTodPpHnrP09OTYsWKUbx4cSpXrkyRIkU0zXn8+PGMGDFC02eUK1eOyZMn06xZM5s8SS2yzxEKwE6dOrFs2TJFYypVqsSBAwcU7bcVysTGxjJo0CC+/vpr1WO//PLLTJ8+ncqVK6seWwjxeE5RAP6X0Wjk+vXrXLp0iUuXLpGQkEBaWhppaWnodDpcXFxwcXEhX758FC1alKJFi1p8eSktLY169eqxb98+zZ9Vt25dZs6cyTPPPKP5s4Q27L0A3Lx5s+Leni4uLuzZs4enn35ao6zEg3777Tf69u3LgQMHVI2r1+vp1KkTY8aM0fwHayHEv5yyALQXERER1KhRw2KNVVu0aMGkSZPkHmE7ZM8F4PXr16lcuTKXLl1SNG7MmDGMHDlSo6xEVoxGI59//jlDhgzh/Pnzqsb28fFhyJAh9OnTR9X+hEKIrDnUIRBHExwczIQJE7L82vjx41U/rbdmzRqCgoIYMmSInNYTFtO9e3fFxV/NmjXlzmsr0Ov1fPjhh0RFRTFu3Di8vb1Vix0fH8/QoUMJCgri888/z/V+bSHE40kBaOP69OnDc88999B777zzDsOGDeP48ePMmTNH9dN6kydPxt/fn0WLFslpPaGpNWvW8OWXXyoa4+7uTnh4OK6urhplJZ7Ey8uL4cOHExMTQ8eOHVXdQ3zu3DlatWpF3bp12blzp2pxhRAPkwLQxhkMBlauXImXlxcArq6uTJkyBQA3Nzd69epFbGwsH3/8sap/IF69epVu3bpRrVo1fvjhB9XiCpEhLi6O7t27Kx43adIkgoODNchIKFWsWDGWLl3K4cOHadSokaqx9+7dy3PPPUezZs04ffq0qrGFEFIA2oUKFSowbdo0AHr27Im/v/9DX8+fPz8zZ87k5MmTvPPOO6o+++TJkzRt2pSXX36ZY8eOqRpbOC+TyUTHjh25efOmonEvvPACvXv31igrkVNVq1blxx9/ZPPmzaoX5+vXryc4OJj+/ftz69YtVWML4cykALQTXbt25f33339saxh/f3+++uorfvvtN2rWrKnq83/88UeqV69O586dFe/XEuK/li5dyvfff69oTJ48eVi5cqXVr3sUWdPpdLz66qscPXqUBQsWULBgQdVip6SkMGPGDPz9/TXpSyiEM5LvpHZCr9fz+eefZ2u/X/369fnzzz9ZvXo1JUuWVC0Ho9HI0qVLCQgIYOLEiSQmJqoWWziP06dP07dvX8XjZs+eLSfU7YCLiwvdunUjNjaWgQMH4ubmplrs69ev89FHH1GlShW+/fZbpImFEDknbWAcXEJCArNmzWLSpEncu3dP1dilSpVi0qRJtGzZUmZlrMxe2sCkp6fToEEDfv/9d0XjXnvtNb799ltpWG6Hzpw5w5AhQ1i7dq3qsRs2bMiMGTOoXr266rGzzWSCe2fgxiG4eRjiYyA9EdITwJgKBk/zyz0/+FWDfNUhXzVw9bVezkIgBaDTuHTpEiNHjiQsLEz19gq1atVi5syZmU4rC8uxlwJwxowZ9O/fX9GY/Pnzc/z4cYoVK6ZRVsISdu/eTd++fdmzZ4+qcXU6HW3btmX8+PEUL15c1diPdPMwnPkUru2Gm0cg/Z8frnUugBFM//0eqwOdAUzpwD9/5HqVhgI1oWgTKNtSCkJhcTJt4ySKFi3KkiVLOHz4MI0bN1Y19r59+6hfvz7vvfcep06dUjW2cBwnTpxg2LBhisctXLhQij8HULduXXbt2sWaNWtUXco3mUysWLGCgIAAxowZo/pKx32pdyBmEWypDt/XgKg5cG3Xv8UfgCkti+IPwGT+Gg/MtyScg783wr5u8FUR2N0Oru4yzygKYQFSADqZKlWqsHXrVrZs2aL6ab2vvvqK4OBg+vXrp/h0p3BsqamphIaGKr7VpmXLljRv3lyjrISl6XQ63n//fSIiIpgyZQq+vurNeiUkJDB69GgCAwNZuXKleisdd6LNxdlXhWFfd7h11Py+SY0eqUbABMYkOPspbHsWvqsIUZ+Yl4+F0JAUgE5Ip9PRtGnT+6f1ChUqpFrs1NRUZs6cib+/P3PnzpXTegIw31xz8OBBRWOKFSvGvHnzNMpIWJOHhwcDBw4kJiaGbt26YTAYVIsdFxdHu3btqFmzJjt27Mh5oPRkODYWNoeYizNjMuYZPI1m6DIKyvhYONAbvq8O1/7U5llCIAWgU8s4rRcTE8OgQYNUPa1348YNevfuTeXKlfnmm2/ktJ4T27dv3yOvNHycsLAw8ufPr0FGwlYULlyYBQsWcPToUV599VVVYx86dIiGDRvy9ttvEx0drWzwld9hSxU4NvqfZV1L3oj0T5F5Jwp+rAv7epqXn4VQmRSAgrx58zJ58mSioqJo0aKFqrGjo6N56623eOmllzh06JCqsYXtS0xMJDQ0lPT0dEXjOnfuTNOmTTXKStiaSpUqsXnzZn788UeqVKmiauxNmzYREhJC7969uX79+uM/nHoX/uwEPz0Pd0+j2WxfdmQcGIldCN8EwIXvrJeLcEhSAIr7ypYtyxdffMHu3bupW7euqrF37NjB008/Tbt27bhw4YKqsYXtGjZsGJGRkYrGlCtXjunTp2uUkbBljRs35tChQyxdupQiRYqoFjctLY25c+fi7+/PzJkzs96LmnjZXPidXmH+Z5OyH1o0YzJC8jX49U2InG3tbIQDkQJQZPLMM8+wc+dO1q5dq/ppvZUrVxIYGMjo0aO1O60nbMIvv/zCrFmzFI3R6XSsWrUKHx8fjbISts5gMNCxY0diYmIYPnw4Hh4eqsW+desW/fr1IyQkhK+++urfrSnxp2Brbbh1zHYKv4f8c1jk4MdwsJ+cFBaqkAJQZEmn09G8eXPNTuuNGTOGwMBAVqxYoXh5UNi+O3fu0LZtW8Xj+vXrR/369dVPSNgdHx8fxo0bR3R0NK1bt1Y19qlTp3jvvfdo2LAhabeiYNtzkBhn4b1+ORQ503xIRIpAkUtSAIrHyjitFxsbS/fu3VU/rde+fXtq1qzJ9u3bVYsrrK9v37789ddfisaEhIQwbtw4jTIS9qpUqVKEh4ezb98+nn/+eVVjP1O1OC7bG5iXWO2h+MsQ/QkcUtZQXYj/kgJQZEuhQoWYP38+x44d47XXXlM19uHDh3nppZd46623iIqKUjW2sLzNmzcTFhamaIyLiwvh4eGqLvcJx1KzZk1++eUXvv76aypUqJDreH558zCmcSQkX7Wv4i9D5Ew4t87aWQg7JgWgUCQ4OJjvvvuObdu2UbVqVVVjf/PNN1SuXJlevXo9+bSesEnXrl2jQ4cOiseNGDGCp556SoOMhCPR6XT873//4+TJk8yaNQs/P78cx9o08Rnc7hyyz+IPAB3s6QgJ562diLBTUgCKHGnUqBEHDx5k2bJlFC1aVLW4aWlpfPLJJ/j7+zNjxgzFN0cI6zGZTHTv3p3Lly8rGlerVi2GDBmiUVbCEbm5udGnTx9iY2Pp3bs3Li4uisa/+WwR6vttx6ptXnLNBOkJsOvDR1w/J8TjSQEocsxgMNChQwdiYmIYMWIEnp6eqsW+desW/fv3p1KlSqxfv14aSduBNWvWsG6dsiUpDw8PwsPDcXV11Sgr4cgKFCjA7NmzOXHiBG+//Xa2xni7w2fdjeh0Om2TswRTGlz5FSKVnbYXAqQAFCrIkycPY8eOJSoqSvXTeqdPn6ZZs2bUr1+fvXv3qhpbqCcuLo4ePXooHjdp0iSCgoI0yEg4k8DAQDZs2MAvv/zyxK0ESz8qirfuho22e8mhw4PNrWyEUEAKQKEaLU/r7dy5kzp16tCqVSvOnTunamyROyaTiQ4dOnDz5k1F41588UV69eqlUVbCGb3wwgvs27ePVatWUaJEiUxf9/OC92vcQOdIxV+GqLnWzkDYGSkAheoyTutt2LABf39/VWN//vnnVKxYkWHDhhEfH69qbJEzS5Ys4YcfflA0xsfHhxUrVqDXy7cgoS69Xk9oaCjR0dGMHTsWLy+v+1+b27sqeuz10MdjmNLg1FJIuW3tTIQdke++QhM6nY63336bEydOMGvWLPLly6da7KSkJCZOnIi/vz9LliwhLc0Bv6HbiVOnTtGvXz/F42bPnq3qLTNC/JeXlxcjRowgJiaG9u3bk8fbg5Y1LmG+VcMBpSfB6eXWzkLYESkAhaYePK3Xp08fxaf1HufKlSt06dKFGjVqsHXrVtXiiuxJT0+nbdu2iq/0e/3112nXrp1GWQnxsOLFixMWFsb53XNxSb1i7XQ0ZDL3BjQ64PK20IQUgMIi8ufPz6xZsxSd1suu48eP88orr9C0aVNOnDihamzxaLNmzeKPP/5QNKZAgQIsXbrUMU5gCruS9+Iq0Kl3k5FNSjgPcVusnYWwE1IACotSclpPqR9++IGqVavStWtXxb3ohDLHjx9n2LBhisctXLhQ1b6RQmRLehJc/9OxTv5mRecKV36xdhbCTkgBKKwi47ReeHh4lqf1cspoNLJ48WICAgKYPHkySUlJqsUWZikpKYSGhpKSkqJo3AcffECzZs00ykqIx7h5RNMbP7YcBl2rR7+aW+qArikVru220MOEvZMCUFiNXq+ndevW90/reXt7qxY7Pj6eIUOGEBQUxBdffCGNpFU0fvx4Dh06pGhM8eLFmTdvnkYZCfEE1/cC2m07aFAJLs5/+HX+E2hcGQr6wIi3NXt0ZjcOglEOxoknkwJQWN1/T+upuT/sr7/+4oMPPqBu3brs2rVLtbjOat++fUycOFHxuLCwMFVPgguhyPW9mu7/83SDon7/vgr5Qv/P4dBfsH0oVCmt2aMzMybDbdkLLZ5MCkBhM4oVK0ZYWBiHDh3ipZdeUjX2n3/+ybPPPkvz5s05ffq0qrGdRWJiIqGhoaSnK9tH1aVLF1555RWNshIiG67+oekS8IPSjfDhAth2DH62dPEHgM6831GIJ5ACUNicatWqsW3bNr777jvVrwlbt24dwcHBDBgwgFu3bqka29ENHTqUyMhIRWPKly/P9OnTNcpIiGwwmeCeZW4PSjdC6weKv6r/FH/xiVBrBFQfAlUGwdLtGiahc4H4WA0fIByFFIDCJul0Ol577TWOHj3K/PnzKViwoGqxU1JSmD59Ov7+/syfP5/U1FTVYjuqHTt2MHv2bEVjdDodq1atIk+ePNokJUR2GFOwRPPnjOLvx3+Kv2pl/v2alzv8OhwOT4I/x8Kkb+C6lhcZpSdqGFw4CikAhU1zdXWle/fuxMTEMGDAANzc3FSLff36dXr27EmVKlX47rvv5KDII9y5cydHjZv79+/Pc889p0FGQihggWIoo/jbegx+GvJw8Qdg0JuLQICkVPPntftuY5ICUGSLFIDCLvj5+TF16lQiIyNp3ry5qrGjoqJ44403aNy4MUeOHFE1tiP4+OOP+euvvxSNCQkJYezYsRplJIQS2jYdTzdC6MJ/i7/qZbP+3K17UG0IlPwIBr5uPh2sHWm0Lp5MCkBhV8qVK8fatWvZuXMnderUUTX2zz//TI0aNejQoQNxcXGqxrZX3377LcuXK7tf1MXFhdWrV+Ph4aFRVkIoYPDULLTxn+Jv4wH4tBsU84NLtx5+pf+z+uznDUcmwZnZ8PkuuHxbq6x0mv6aheOQAlDYpXr16rF7926++OILypQp8+QB2WQymVi+fDkBAQGMHTtW8T23juTatWt06tRJ8biRI0dSo0YNDTISIgf0rmj1R92+0+ZiLiEZXp0GxXpkfsX/ZzW2SF7z4ZDflJ2nUsbFS8PgwlFIASjslk6no0WLFkRGRjJ58mR8fNRbU0lISGDUqFFUrFiR8PBwjEbtN5HbEpPJRLdu3RRfqVe7dm2GDBmiUVZC5IBOBz7+moSu4w+mzx7/8vM2z/bdSTCPuZNgLv4qFtMkJfNtIL7qdk8QjkkKQGH3PDw8GDRoELGxsXTt2hW9Xr3/rS9cuECbNm2oVasWv/zyi2pxbd0XX3zB+vXrFY3x8PBg1apVuLi4aJSVEDlU6FlzexQrOX8Dnh9n3gP43Fjo2eTfFjGaKFBbw+DCUUgBKBxG4cKFWbhwIUePHqVp06aqxj548CANGjTg7bffJjo6WtXYtubChQv06NFD8bjJkyer3rdRCFUUqA0mZQ3M1fR0OXMLmCOT4Ohk6NZIw4cZvMCnooYPEI5CCkDhcEJCQtiyZQtbt26lcuXKqsbetGkTISEh9OnThxs3bqga2xaYTCY6duyouEl2gwYN+Oijj7RJSojcKlAbLRuv2JQCNUGv3bV3wnHoTNL8TDiw9PR0li9fzogRIxTvZ3sSPz8/Ro4cSY8ePVTtT6iYMY1vP5tG6tV9FHW/hJchARddGi66NEzoSDO5kGZ04WZqPi4lF6PqC6FUrtXEvDfqPxYvXkzXrl0VPd7Hx4djx46pehhHCFUZU+HLPP80hXZgOhcI7g/VJ1k7E2EHpAAUTiE+Pp4pU6YwY8YMkpKSVI3t7+/P1KlTefvtt9FlUVSpzpgKFzZD3Ba4vg/unDC/B6BzBUxgMnL/9gOdHvNkv+nfZTC3fJDvKfPMSJkWkK8qp06dolq1aopPPi9fvjxHjaKFsKjtjeHyDqsuBVtEgx+hWGNrZyHsgBSAwqmcO3eOoUOH8tlnn6keu379+sycOZOaNWuqHhuAOzFwOgxil0HKdfNP+7m94D4jRr6nuFeiNb1n7CYs/MtsD3/jjTfYtGmTZQpfIXLjwmb49XVrZ6Ghf047vx6V5ey+EP8lBaBwSvv27aNv37788ccfqsf+8MMPmThxIqVKlcp9MJMJ/v4KoubA1T9AZ9BoBuOfGUKDO2eMdflg/EH2nHx8p9oCBQpw/PhxihYtqkE+QqjMZIRvA+DuGRx2P2DtxeDf2dpZCDshh0CEU6pVqxa//fYbX331FRUqVFA19qeffkpgYCAjRowgPj4XN77fPQ3bm8AfzeDqLvN7mi1fGTHfIZpEOX5n1/C7fDEkEHfXR49YtGiRFH/Cfuj0ENTP2lloxzUvlP3Q2lkIOyIFoHBaOp2Od955hxMnTjBjxgz8/PxUi52UlMT48eMJCAhg2bJlpKcrKNyMqXByCnxXCa78kvGmark9kSkNnSmd9yvHcGVFIZo+nflaqQ8++ID33nvPcjkJoYZyoeCSx9pZqE9ngIDucgOIUESWgIX4x/Xr1xk7diwLFiwgLS2Xe+v+o0qVKsyYMYPGjZ+wOfvGAdgdCrcjsIllqn+WnL+PKkqLaZe4kwjFixfn+PHj5MuXz9rZCaHc0VFwfBw28ftLLQZPeCMGvEpYOxNhR2QGUIh/FChQgDlz5nDixAneeustVWMfO3aMJk2a8Nprr3Hy5MmsP3R+E/xYD+5EYTN/OP2z5PxK0FVOLyqCf3EPli9fLsWfsF8hQyFvZaveDKK6mvOl+BOKyQygEI/wyy+/0LdvXw4dOqRqXIPBQOfOnRk9ejSFCxc2vxmzEPZl3L5ho78ldS6ku+bH0Gg7+IVYOxshcu52BHxf3f77AuoMUOINqP+1nPwVikkBKMRjGI1GVq9ezdChQ4mLi1M1tq+vL8uWLaNZ1UtwoJeqsTWjM4CrLzT+A/JWsnY2QuRc9HzY39PaWeSCHtwLwusnwb2AtZMRdkiWgIV4DL1eT5s2bYiOjmb06NF4eam3yTo+Pp66BY/YT/EH5iXh1Duw7fl/lqqFsFMB3aHYy+YfauySEep9KsWfyDEpAIXIBm9vb0aNGkVMTAzt2rVTpfHxuD6vU/KiHV7ZZEqH1Fvw2/8gXd1bVYSwGJ0O6q6GPP72uR+w+hS58UPkihSAQihQvHhxli9fzsGDB2nYsGGO4xTO78Wg5w7b774dU7p5BvDwUGtnIkTOeRSCRr9CnnL2VQRWmwiVBlo7C2HnpAAUIgeqV6/OTz/9xDfffEPFihUVj/9hQhAuyRfs/F5SI0TNgovbrJ2IEDnnWQQa/Q55g218OfifHxZrTIeQIdZNRTgEKQCFyCGdTscbb7zBsWPH+OSTTyhQIHt7cTo0yU8N34Pmq6nsnh52fQjJ162diBA551kEGu+EIg25X2jZEp3B/Kr3BQQ78G0mwqLkFLAQKrl16xYTJkxgzpw5pKamZvkZX0+4utQLN10iNtvuRSmdAcq0MG9IF8KeGVPh+AQ4McH8zyZ1G8LnjA58K8IzK6FgHWsnIxyIzAAKoRI/Pz+mTZtGRETEI69JG/1hSVwdqfgD8zL22S/g3jlrZyJE7uhdoepoePUYFLBysaVzAb0bVJsATY9I8SdUJwWgECqrUKEC69at448//qB27dr33zfooXvDJHSOVPxl0OnMfdWEcAR5g6Dxb1BnGbj4Wnhv4D/PKlwfXjth3u9ncLPg84WzkCVgITRkNBpZu3YtgwcPpsebRRlYd6+1U9KOiw/8Lw5c81g7EyHUk3gZoudC7FJIvnr/fmzVZcQt/CIE9oRS79hvlwBhF6QAFMICEhMTcdn+PK63DwH2fPL3cXRQcx4Edrd2IkKoz5gGcVsgdon5r+jMBVpuikGdK5hSwb0w+HeCCu0hT3nVUhbicaQAFMISbh6G72tYOwuN6SBPBXgzxtqJCKGthAvw1xq4vg9u7IO7ZzDv69WB3uWfLb6mf99DZ/77jEMlBi/IVx3yPw1FG0HxV83jhLAg+T9OCEu4vAPzlltHaP3yKCa4GwuJF8GzmLWTEUI7XiUebseSdg9uHoVbh+FOtPmGHGOS+VSxwQP0HuCeH/yqmQu/POVAJ1vwhXVJASiEJVzb+89ykfqhtxyG16Y9+uvN6sCXlrxu+Po+KPmmBR8ohJW5eEOhuuaXEHZCCkAhLOHaTs1u/WhQCS7+5wBuuhHaLYZDf8GItzV5bNZ0LnD9TykAhRDCxkkBKITWkq5Bwt+ahfd0M78ypBvhwwXm4m/7UKhSWrNHZ2ZKh2t7LPhAIYQQOSGbEITQ2o19FntURvG37Rj8bOniDwATXN/rINfcCSGE45IZQCG0Fh+DJQ6ApBuh9QPFX9V/ir+/r0PrhXDlNrgYYMT/zPsCNZN2F5Kumu9XFUIIYZOkABRCa2kJ5hN/Gs6KZRR/P/5T/FUr8+/XXPQw+0OoXtZcBD41DF6tBt4emqUD6YkaBhdCCJFbUgAKobX0RMx9wDQK/0/xt/UY/Dzk4eIPoFg+8wugcF7Inwdu3JMCUAghnJnsARTCjqUbIXShufj7aYh5lu9x9p8GowlKFbBIekIIIWyUzAAKoTWDJ1o0ADT+U/xtPADre0ExP7h06+HPFPIFwz8/5l2PN39+WSfVU8nM4GmBhwghhMgpKQCF0JqLlyb7//adhs93mf/+1Uc0gr65BPy8ITkV/jcLhrwJ9QJVTyUzKQCFEMKmSQEohNZ8AtDiBHAdfzB99uTPmUzQdjE0DIHW9VVPIzOXPOBRyAIPEkIIkVNSAAqhtfy1rPr4ndGwdg9ULQUb95vfW91Nqx6BOihQW+45FUIIGycFoBBa8ygIXqU0vQ3kcZ6rCMZPLfQwnQEKyn2oQghh6+THdCEsoeCz5uLI0ZnSzDOAQgghbJoUgEJYQsHa5s14zqCAdZe8hRBCPJksAQthCUUaovVVcNangzwVwLOYtRMRQgjxBDIDKIQl5Pt/e3cPWlcZx3H8d3LzRhObmEoptNUYbU0pUrUGC4WCULvWrRSHgoIv6KJ0EXF0b0HEwZdJcCsOIoiTFQVxEHEoYnGpKFQRqYO16b0OJ92TprnPvff5fOASSIbzzxDy5Xmec86htbNxI74NvPxq6QkAWAcBCP1y4GySm6Wn2Drjs8nSmdJTALAOAhD6ZffJZNue0lNsjaaT7HspGZ8pPQkA6yAAoV/GOsnya0ma0pPceb1esv+V0lMAsE4CEPpp6dlkYi4jFYFNJ1k8nczsLT0JAOskAKGfJueSIx8mGZVHwowlkzuSw+dLDwLABghA6Le9TycPPJfR+PPrJkc/SqZ2lB4EgA0Yhf9AMHweO5fM3DvkbwcZa8807jpeehAANkgAQgkTs8nRj4f37SBNJ9n+UHLordKTAHAbBCCUcs8Tyco7pafYuKaTTM4nxy4knenS0wBwGwQglLTvheTxt0tPsX5Np72L+fjFdgUQgKEkAKG0/S8nK++mfTTMAD8ephlPpnYmT11M5g6UngaATWh6vWE9hAQj5sonyVenkt5q0huwV8bdOvP35OfJtt2lpwFgk6wAwqDYczI58XWyfTkDsxJ46y7l+88kJ74RfwAjwgogDJrujeTSueSHN9uVwN5qoUGaZHYpOfJBsvNYoRkA2AoCEAbVP78k3z6f/P5F2sX6bn+u24y3Xw++kRx8PelM9ee6APSNAIRB1uslVy4kl84nV79st2S35HzgWmB2ppPFZ5Lls8nc8hZcB4BBIABhWFz7Obn8fnL5veT6H+1K3aa2h5u1oFxNFg4nD76Y3Hcqmbjrjo0MwGASgDBsujeSXz9Nfvss+fO75O8fk+5/7c+aiSS9pNdNu2XcJBlLmmbt+2urh5N3t9G3sJIsnk7mHy7yqwBQhgCEYdddTa79lPz1ffu5fjW5+W/7aTrttm5nur2hY/6RZOHRZHrXWhQCUCMBCABQGc8BBACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKjM/7MbIUMSWYP6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHiCAYAAAB4GX3vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTAUlEQVR4nOzdZ3RUVReA4Xcy6SH03ksSEkJViiCoIKAonx0EldA7AtJ7712kQyjBAoIUERRBUJEivafSIdTQAumZ+X6MQTABcpN7p+5nrVnqZM6+G5Wwc8o+OqPRaEQIIYQQQjgMJ0snIIQQQgghzEsKQCGEEEIIByMFoBBCCCGEg5ECUAghhBDCwUgBKIQQQgjhYKQAFEIIIYRwMFIACiGEEEI4GCkAhRBCCCEcjBSAQgghhBAORgpAIYQQQggHIwWgEEIIIYSDkQJQCCGEEMLBSAEohBBCCOFgpAAUQgghhHAwUgAKIYQQQjgYKQCFEEIIIRyMFIBCCCGEEA5GCkAhhBBCCAcjBaAQQgghhIORAlAIIYQQwsFIASiEEEII4WCkABRCCCGEcDBSAAohhBBCOBgpAIUQQgghHIwUgEIIIYQQDkYKQCGEEEIIByMFoBBCCCGEg5ECUAghhBDCwUgBKIQQQgjhYJwtnYAQInsMRiMPklK4m5jCvYRkElMNGIxGUo1GdOjQ68DJSYeXi55cbi7kdnfBXe+ETqezdOpCCCEsRApAIWyMwWjk2oNErj1M4E5CMrGJKRj++VpaSWd87POPl3lp77s46cjt7kIedxdK5PQgl5uL5nkLIYSwHjqj0Wh8/seEEJb2ICmF8/fiOH83jiSDER1PFnpZkRYjt5szZXJ7UTynOy5OsjNECCHsnRSAQlgxo9FI9IMEou48JCY+WZWi71mcdFDC2wO/vDnwdpMFAiGEsFdSAAphpR4mpXDk+j1uxCWZ9blpS8bl8+WgfN4c6J1kr6AQQtgbKQCFsDIGo5Go2w85HROL0ajtjN/zeLnoeaFwLgp4ulkwCyGEEGqTAlAIK3InIZmDV+8Sm5Ri6VSeUCqnB5UL5sRFL/sDhRDCHkgBKISViI5NYP/VOxaf9cuIDsjh6kzd4nnxcNFbOh0hhBDZJAWgEFbg7N2HHL1+39JpPJMOcNU7Ua9EXnJK2xghhLBpUgAKYWFn7jzk2A3rLv7S6ABnJx2vlswnRaAQQtgw2dAjhAWdvWs7xR+YlqZTDEb+vBhjdfsUhRBCZJ4UgEJYyO34JKtf9s2IEUg2GNl35TapBllAEEIIWyQFoBAWkGIwsD/6LrbaYc8IxCalcupWrKVTEUIIkQVSAAphAceu3ycuJdXqTvsqFXXnITceJlo6DSGEEApJASiEmV2JTeDC/XhLp6GaA1fvkphqsHQaQgghFJACUAgzSk41cPjaXUunoaqkVAPHr9+zdBpCCCEUkAJQCDM6fy+OZDs7OGEELsUmEJecaulUhBBCZJIUgEKYidFoJOrOQ0unoQkdppY2QgghbIMUgEKYSfSDBOJT7HOvnBE4eyeOFIN9/vqEEMLeSAEohJlE3rbvGbIUo5EL9+zncIsQQtgzKQCFMIO7CcncTki2dBqas9clbiGEsDdSAAphBjfjHKNX3sPkVOJT5DCIEEJYOykAhTCDOwnJNnvrh1J3HGCmUwghbJ0UgEKYQUx8kllu/Rj22ft86F+UNfNmPvG+0WhkUPO3+dC/KN/NnqLZ83XAnXgpAIUQwtpJASiExhJTDGY5/Ws0GjkfeooCRYtzISLsia/tXP89t29cA6BshUra5QDcjk/SLL4QQgh1SAEohMbuJJinILp6/izxDx9Q//3mXIwIffR+/IMHfDNzIvXf/xiAcoGVNc3jdkIyRqN9NbsWQgh7IwWgEBp7YKYbMs6cOo6rmzt1336PqxfOkZxkOniyZv5MyvgHkqdAQXLmyUv+IsU0zSPVaNTkbuDQ0FAmTpzIzZs3VY8thBCOxtnSCQhh71INRnSg+R7As6dPUKp8AEXLlMPdw5PLZyJx8/Bk63crmLz2Z35cuoCyGs/+pUlVYQbQYDCwf/9+NmzYwIYNGwgPD8fV1ZX+/furkKEQQjg2KQCF0JgaxVBmnD11grKBldHpdJQqH8DFyHB2b95Iw2afUbysL2dPHadavQZmySU1i/cdJyUl8fvvv7N+/Xo2btzI1atXn/i6r68vzs7ybUsIIbJLvpMKYSfOhZ6kXtP3AChVvgKbQ5ZwM/oyvabNITkpiUtREXzYuZdlk8xAbGwsv/zyC+vXr2fz5s3cv3//qZ8NCAgwY2ZCCGG/pAAUQmN6nfYdAK9dusDD+/ceLfGWCQjkl2+X02XMVLy8c3Lm5HFSkpMpW9E8S8B6p2f/mm/cuMGPP/7Ihg0b2L59O4mJmWuULQWgEEKoQwpAITSmd9Jpv//v1HGcXVwp6esPwGvvNadmwzfxzp3X9PXTJ8iRKzeFipfUOBOTjIres2fPsn79ejZs2MDu3buzdFI4Z86cJCYm4ubmpkaaQgjhsKQAFEJjOVz0mj/j7KkTlPQtj7OLCwDOLi7kzJPv36+fPkGZgIqa5wGm4s9N74TRaOTo0aNs2LCB9evXc+LEiWzH7t+/P4MGDaJcuXIEBAQ88fL398fb21uFX4EQQtg/nVEadgmhqcQUA5vPXLd0GmaTfDOavWtXsmHDBi5cuGDWZxcvXvxRQVihQoVHf1+gQAGz5iGEENZOZgCF0JibsxMezk5muQ3E0nSAf7kyhOXJw6VLl8z+/MuXL3P58mW2bdv2xPv58uVLN2NYoUIFSpQogc4MezSFEMLayAygEGawP/oOV2ITzHIfsKW9VCwPRXO4s3v3bj799FOzzwIq4eXlhb+/f7risFy5crj8s5wuhBD2SApAIcwg8vYDTtyMtXQaZtGkXEE8nE37Hu/evUuXLl1YvXq1hbNSxsXFBR8fnyeWkQMCAihfvjyenp6WTk9YmwcP4PhxOHoUIiMhPh4SEiAlBdzcwN0d8uaFKlWgalUoWxac5CIuYVlSAAphBncTktlx4Zal09Ccl4ueN8oWfOI9o9FISEgI3bt35+HDhxbKTB06nY5SpUqlW0oOCAggT548lk5PmMuVK7BqFezfDwcOwPnzYDSCTgdpjcoN/2z50OlML6PRVBACeHqaisEXX4RGjeCtt/4dJ4SZSAEohBnEx8fzy+nzGHPktnQqmqpSMCfl8nhl+LXIyEg++eQTDh48aOaszKNQoULplpIDAgIoWrSo7DO0BykpsGULLFwIP//8b2GXmo27vp2dTXELFIAOHaB9eyhXTr2chXgGKQCF0JDBYGDVqlUMGjSIwKrV6Dh1gaVT0oyzTsdbPgVxfsbSVlJSEiNHjmTy5MlZ6gNoi3LmzJlhYVimTBn0eu1bBIlsun4dvvwSliyBmzdBr89e0fc0aXFffRV69IAPPzQVmEJoRApAITTy119/0adPHw4cOPDovcnfrMPnxZcsmJU2dIBvXi8qFsiZqc/v2LGDVq1aER0drW1iVszNzQ0/P790LWv8/Pyk0bU1MBhg6VLo0wfi4rQp+jKSVgi+9hosXgw+PuZ5rnA4UgAKobIzZ84waNAg1q5dm+5rFatUY+R3m3Cyww3gb5YtiKeCptcxMTF06NCBDRs2aJeUDXJycqJs2bIZzhrmzJm5AltkU2ioaUl2zx7L5eDsbDooMnIk9OsHrq6Wy0XYJSkAhVDJnTt3GD9+PLNnzyY5Ofmpn/tiymzqvvORGTPTlg4o7u1OjaLKD0EYjUYWL15M7969iY+Pf+rnChYsSHJyMnfu3MlGpravWLFiGRaGBQsWlH2GakhOhvHjTS/499CGJel04OcHK1ZArVqWzkbYESkAhcim5ORkFixYwKhRo7h9+/ZzP1+4aFFmbP4TNw/7aCfipneiYZkCuOmzPqsZGhpKy5YtOXbsWIZf/+qrr+jevTs3btwgNDQ03evKlStZfrY9yJMnT7ql5ICAAEqWLGmXs82aiI2FDz6A334zndi1Jnq9qRBcuRJatLB0NsJOSAEoRBYZjUY2bdpE//79iYiIUDS2y4ChNGrXXaPMzOvl4nkp5JX9PWuJiYkMHjyYmTNnpvva9u3bef3115869v79+4SFhXH69OknCsOzZ89iMNj/DSxP4+npSfny5dO1rPHx8ZFG14+7fh0aN4ZTp8y310+ptFYy06ZB376WzkbYASkAhciCI0eO0LdvX3bu3Jml8V5eXizathePvPlt+nYQnzxeVC6o7r60X375hTZt2nD9+r/3J1+5coWiRYsqjpWQkEBkZOQTReHp06eJiIggMTFRzbRtirOzMz4+PumWkv39/fHyyriNj926fh3q1YNz56xjyTczJkyAwYMtnYWwcVIACqHAlStXGDZsGCtWrMh2G5PPWrfl/cHjVcrMvHRADlc9DUoVQO+k/t6zGzdu0LZtW7Zs2UKuXLm4c+eOqnvcUlNTOXfuXIbLyffv31ftObbov42u01758uWzdGrqu3nTVPydOWM7xV+ayZNhwABLZyFsmBSAQmTCw4cPmTp1KlOnTiUuLk6VmDqdjk1/7CGxYClV4pmLDnBx0vFqqfx4u2p3e4HRaGTOnDmsW7cuyzOtWXlmdHR0hoXh4zOSjqhAgQIZ7jMsVqyYbR5AMRqhSRPYvt16l32f59dfTTeJCJEFUgAK8QwGg4GQkBCGDh2qes+6nDlzEhwcTLXXm3Dshm3MOukAZycdr5bMR0438+whu3//vlW0P7l9+3aG+wzPnz9v6dQsytvbG39//3TX45UpUwZna77ebO5cU8NlW+XkBPnzw+nTYI+zs0JzUgAK8RQ7d+6kb9++HDlyRNW4er2ezp07M2rUKAoUKADA2bsPOXrduotAHeCqd6JeibxmK/5sQVxcHOHh4en2GUZGRpJia8uKKnJ1dX3U6PrxV/ny5XF3d7dscqdPQ7VqkJRk2TyyS6+H//0P1q2TW0OEYlIACvEf4eHhDBgwgB9//FH12G+//TZTp04lICAg3deiYxPYf/UORiNWdzDEtOfPmbrF8+KhoNmzI0tOTubMmTPplpLDwsJ4+PChpdOzGJ1O99RG17ly5dI+gcREqF4dwsJsb9/f0yxdCm3bWjoLYWOkABTiHzExMYwePZr58+erPnNTuXJlpk+fTsOGDZ/5uTsJyRy8epfYJOv6g6lUTg8qF8yJSzZ6/QkTg8HA5cuX0y0lh4aGEhMTY+n0LKpIkSLpWtYEBARQqFAh9fYZjhwJY8daX6+/7PDwgMhIKFbM0pkIGyIFoHB4iYmJzJkzh3HjxnH37l1VYxcuXJhx48bRpk0b9PrMzZwZjEaibj/kdEysxWcDvVz0vFA4FwU85W5ac7h582a6peTQ0FAuX75s6dQsKnfu3BnOGJYuXVpZo+sHD6BoUVPTZ3ui15tOBE+YYOlMhA2RAlA4LKPRyLp16xgwYABnz55VNbaHhwf9+vVjwIAB5MiRI0sxHialcPj6PW7GmXefUto8S/l8OSifN4cmbV6EMrGxsYSFhaWbMYyKinLoRtceHh5PNLpOe/n6+uKa0d258+aZDn7Y4x97uXJBdDR42scNQ0J7UgAKh3TgwAH69OnDX3/9pXrsVq1aMX78eEqUKJHtWEajkegHCUTdeUhMfDI6tJ0RdNJBCW8PfPN6yUEPG5CYmJiu0XVoaCjh4eEkJCRYOj2L0ev1lCtX7oml5Ffq1qVUw4amhs/2+MeeTgcLFkCnTpbORNgIKQCFQ7l48SJDhgzhm2++UT32K6+8wvTp06levbrqsQEeJKVw/l4c5+/GkWQwqlIMpsXI7eZCmdyeFM/pjovcHWvzUlNTuXDhwhPLyGmve/fuWTo9i1jUowcd58yxdBra0enAxwfCw+VEsMgUKQCFQ4iNjWXSpEnMmDFD9ZkRHx8fpk6dyrvvvmuWhrgGo5FrDxK59jCROwlJxCamkLYImPb0x39TP55R2vsuTjpyu7uQx92FEjk9yCWzfQ7BaDRy7dq1dDOGp0+f5tq1a5ZOT1O7qlen7pEjttv0ObOkObTIJCkAhV1LSUlh6dKlDB8+nBs3bqgaO0+ePIwYMYJu3bplvN/ITAxGIw+SUribmMK9hGQSUw0YjEYuX7pI4aLFcdE74eSkw8tFT243F3K5u+Cud7LN2xuEZu7evZvhDSjnzp3L9rWH1uCWiwv5kpMtnYa2nJ2hXz+YONHSmQgbIAWgsFu//vorffv25eTJk6rGdXZ2pkePHgwfPpy8efOqGltNH330ES1btuTDDz+0dCrChsXHxxMREZFuKTkiIoJkGymoCuTJw407dzSLbwAqAO8Ckx97fyvwP+AboJlmT/+PV16BP/4w19OEDZMCUNidU6dO0a9fP3755RfVY7/33ntMnjwZPz8/1WOr6fjx41SpUoVKlSpx9OhRZa0yhMiElJQUzp49m65lTVhYGA8ePLB0ek94xdeXP6KiND38sQL4HLgA5AGOAfWAEUA/zZ6aAU9PuH/f1BpGiGeQAlDYjRs3bjBy5EgWLVqkemuMF154gRkzZvDqq6+qGlcrH330ET/88AMAa9eulVlAYTZGo5HLly9nuJx88+ZNi+TUuXx5Fpw5o+nNHymAH9AaaA+8hGlGcK5mT3yGU6egQgVLPFnYECkAhc1LSEhg1qxZTJgwgViVG7wWK1aMiRMn8umnn9rMLFra7F8amQUU1uLWrVsZFoYXL17U9LmzChSglxmKz4XAEKAYUBpYD1hkHm7ZMmjTxhJPFjZECkBhs4xGI6tWrWLw4MFcuHBB1dheXl4MHDiQvn374mljjVUfn/1LI7OAwpo9ePCA8PDwdG1roqKiSFXh1O6vOh2NzPBH3QOgAOAD7AO8HvvaJaAVcANwBoaj0b5AFxfo0wcmTdIiurAjUgAKm7Rnzx769OnD33//rWpcnU5Hu3btGDt2LEWKFFE1tjn8d/YvjcwCCluUlJREVFRUuhnDsLAw4uPjMx3nElBcuzQfaQOsBnID5wD3x752FbgOVMVUBL4AhPNkkagKFxfo0gVmz1Y7srAzzpZOQAglzp49y6BBg1izZo3qsV9//XWmT5+eYQFlK8aMGZPh+ydOnGD9+vUyCyhsiqurKxUqVKDCf/azGQyGR42u//u685/Tvq6urhRL0v46xeHAZkwzfw2BYKD7Y18v8s8LoCCQF7iNBgWg0QgKimPhuGQ6QNiEu3fv0r9/fwICAlQv/vz9/fnpp5/Ytm2bTRd/x48fT7f0+7jRo0c79L2xwn44OTlRsGBBChcunO7l7PzkvIY5ul0uAaYDm4AqQG9gCvC0JjkHMbWOyf5lkU8hC3siE2QGUFi15ORkFi1axMiRI4mJiVE1dv78+Rk9ejQdO3bExcX2b8J42uxfGpkFFLbo9u3b6W4tCQ0NzfS+38SkJK4DhTXK72dMM33fYTr5C6Z2MNOAlUC7/3w+BgjCVDRqQqcDDw+togs7IgWgsEpGo5HNmzfTr18/wsPDVY3t6upKr169GDJkCLlz51Y1tqU8b/YvzejRo3n//fdlL6CwKkajkejo6HTNpkNDQ1W5wSdUp6OwBrNihzAd5JgCfPDY+zkxFYGTMLWFSTsJnAi8DwwG6qiezWOkABSZIAWgsDrHjh2jb9++/Pbbb6rHbt68OZMmTaJMmTKqx7ak583+pTlx4gTr1q3jo48+0jgjIdJLTU19onn04y+1Wzg97nSePNS/fVv1uC9iOvmbkTH/vNIYMR0SaYDpNLBmUlLAx0fLJwg7IaeAhdWIjo5m+PDhLFu2TPW7R2vVqsWMGTOoU0fTn7st4mknf59GTgQLrSUkJBAREZFu6TYiIoIkMxzI+K/ufn7MOXtW00bQz/MX8ApQ+bH3VgKVtHjY0aNgw/uZhXnIDKCwuIcPHzJ9+nQmT55MXFycqrFLlizJ5MmT+fjjj9HpzLEd3PwyO/uXRvYCCrXcu3ePsLCwdEu3586ds6oDR6EAKvQTzI66mA5+aM7NDQIDzfEkYeNkBlBYjMFg4Ouvv2bIkCFcuXJF1dje3t4MGTKEXr164WHH+2GUzv6lkVlAkVlGo5Hr169nuGwbHR1t6fQypUj+/ETfumXpNMyjdm3Ys8fSWQgbIDOAwiJ+//13+vbty+HDh1WN6+TkRKdOnRg9ejQFCxZUNbY1Ujr7l0ZmAcV/KemtZ2uu3rrFPb2eXBaeBdSci4upABQiE2QGUJhVZGQkAwYMYMOGDarHbtKkCVOnTiXQQZY/sjr7l0ZmAR3Tf2/XSFu+DQ8PV3S7hq3ZW7kyL506ZfGlYM39+CP873+WzkLYAJkBFGZx+/ZtxowZw9y5c0lReSN2xYoVmTZtGm+88Yaqca1dVmf/0siJYPv24MEDwsLC0s3mqXW/rq0JrVOHl44ft3Qa2ipeHN56y9JZCBshM4BCU0lJScydO5cxY8Zw9+5dVWMXLFiQcePG0bZt23Td/+1ddmf/0lSsWJFjx47JLKANu3XrVobLthcvXrR0ahaVM2dOAgICqFChAgEBAbz9xhtUePNNuHrV0qlpQ6eD6dPhiy8snYmwEVIACk0YjUY2bNjAgAEDiIqKUjW2u7s7ffr0YdCgQXh7e6sa21Z89NFHmWr8nBlr1qyRWUArZzQauXz5coY3YtxylMMNT1G4cGECAgLSvYoUKZL+5P/UqTBoEFjRCWXVeHiYittcuSydibARUgAK1R08eJA+ffqwa9cu1WN/+umnTJgwgZIlS6oe21aoNfuXRmYBrUdKSsqjRsmPt1YJCwvjwYOntRy2fzqdjtKlS2dY6OXJkyfzge7cgaJFISFBu2QtwdkZunWDL7+0dCbChkgBKFRz6dIlhg4dysqVK1WPXbduXWbMmEGNGjVUj21r1Jz9SyOzgOYVHx9PeHh4umXbyMhIizRKthYuLi74+vo+Ku7Slm/9/Pzw9PRU5yFffAGzZ9vXLKCzM4SFQblyls5E2BApAEW2xcbGMmXKFKZNm0aCyj9Zly1blilTpvDBBx/YbSNnJW7evEmrVq3S3ZRy8OBBbmfyqqsKFSpQvHjxJ96rWLEi06dPVy1PYXL37t0M9+edO3dO9dtubImXl1eGs3lly5bFxcVF24c/eACVKsGlS/ZzInjaNOjb19JZCBsjBaDIstTUVJYtW8awYcO4fv26qrFz5crFiBEj6N69O25ubqrGtkeNGzdm27ZtmfpscHAw7dq10zgjx2E0Grl27Vq6vXmhoaFcu3bN0ulZVP78+TMs9IoXL27ZLQd//w116tj+LKCzM7z8MuzYAbKFQyjkWEcnhWq2bdtG3759OXHihKpxnZ2d6datGyNGjCBfvnyqxhYiO1JTUzl//nyGM3r37t2zdHoWVaJEiScKvLSl2/z581s6tYzVqgWjRsHIkWCrcyA6HXh6wtdfS/EnskQKQKHI6dOn6d+/P1u2bFE99rvvvsuUKVPw8/NTPbYQmZWYmEhkZGS6Ii88PFz1LQ62RK/XU65cuUfFXdrL39+fHDlyWDo95QYPhs2b4dAhULk3qVkYjbBkian3nxBZIAWgyJQbN24watQoFi1apHoT2apVqzJjxgzq16+valwhniU2NjZdo+TTp09z9uxZh2yUnMbd3R1/f/90y7a+vr64urpaOj31ODvD99+brk67ccP2isA+faBZM0tnIWyYFIDimRISEvjyyy+ZMGEC9+/fVzV20aJFGT9+PK1atUKv16saW4g0N2/eTLc3LzQ0lMuXL1s6NYvKnTt3hsu2pUqVcpyWQCVLwq5dpn10t27ZThHYs6fp4IcQ2SAFoMiQ0Wjk+++/Z+DAgVy4cEHV2J6engwYMIB+/frh5eWlamzhmAwGA5cuXcpwf15MTIyl07OoIkWKpFu2DQgIoFChQnKyHqBsWfjrL2jQAKKjrb8I7NvX1NBa/tuJbJICUKSzd+9e+vTpw759+1SNq9PpaN26NePGjaNYsWKqxhaOITk5mTNnzqQr8sLCwnj48KGl07MYnU5H2bJl0xV5/v7+5M6d29LpWb9y5eDAAWjSBI4ds772ME5Opj1/M2ZA796WzkbYCSkAxSPnz59n0KBBrF69WvXY9evXZ/r06VSrVk312ML+xMXFPWqU/PjSbVRUFMnJyZZOz2JcXV3x8/NLV+j5+fnh4eFh6fRsW8GC8OefpkbRixeDXm8dhaCTExQoYDrw0bSppbMRdkQKQMG9e/eYMGECX375JYmJiarG9vPzY9q0aTRt2lSWm0Q6t2/fznDZ9sKFCw7dKDlHjhzp9uYFBARQpkwZnJ3l27ZmvLxg0SIICsLQrh1OUVGWaxOj12NITcWpWzcYPx5y5rRMHsJuyXcSB5aSksKiRYsYOXKk6hfK582bl1GjRtGlSxftO/sLq2Y0GomOjs6w0FO7gbitKViwYIaNkosVKyY/MFmI0Whky717LPD1ZVNQEIwZYyoCzbU3MO2/e/nybG7blp8iIxkdF0dhKQCFyqQAdEBGo5Gff/6Zfv36ERoaqmpsFxcXevbsydChQ5Vd0i5sXmpqKufOnUvXViUsLEz1E+S2plSpUhkWetLs3LocOXKEfv36sWPHDho2bAjDhkHz5jBxIqxaBYmJpgJNixtEnJ1NRaaPj+mUb+fOlAoNZVH//nzzzTcMHDiQPn36yME5oRopAB3M8ePH6devX6avDVPio48+YtKkSZSTC8ntWmJiIhEREenaqkRERKi+hcCWODs74+Pjk27ptnz58vKHtpW7fPkyQ4cOZeXKlY+2Hjz6PubnB8uWwZdfwnffwYIFcPTovwVbdqQd7nBzgxYtoGNHU1/Cf2YBy5YtC8DDhw8ZMWIECxYsYNy4cQQFBUnrLJFtUgA6iGvXrjF8+HCWLl2KQeWfXmvUqMGMGTOoW7euqnGFZd2/fz/DZduzZ8+q/v+QLfHw8MDf3z9daxUfHx/Z7mBjYmNjmTx5MtOnT093y4uPj8+TH86ZEzp3Nr2OHjVdwbZvn+nv006gOzubCrr/Hh7R6f49VJK2p7BUKahRAxo2hJYtM9zjlyNHDgoVKvRoq0R0dDTt2rXjyy+/ZNq0aaZZSiGySApAOxcXF8eMGTOYNGmS6m0ySpQowaRJk2jRooXjNI61M0ajkRs3bqQr8k6fPk10dLSl07OovHnzZrhsW7JkSfn/3calpKQQHBzMiBEjuHHjRoafeeZKRtWqpheYCrrz5+HIEVMxGBEBCQkQFwdJSab7ej08IG9eqFLFNK5y5Uwf6ihXrly6vbLHjh2jUaNGNGnShKlTpxIYGJipWEI8TgpAG2IwGDL9B4/BYOCbb75hyJAhqt94kCNHDoYMGULv3r2l9YQN2rp1K3v27HlU7N25c8fSKVlUsWLF0hV5FSpUoECBAnIQw84YjUa2bNlC//79n7v/OdNbWXQ6KFPG9PrgAxWyTJ/Hnj17Mvzazz//zNatW+nQoQOjR4+mcOHCqj9f2C8pAG2EwWCgZcuWzJ8/n7x58z7zs3/++Sd9+vTh0KFDqubg5OREhw4dGDNmDIUKFVI1tjCf77//3tIpmJ2Tk9OjRsmPL936+/uTU05XOoTHD3hkRtr+O0t7XiFqMBhYtGiRHBQRikkBaCMWLFjA999/T7FixZgxY0aGn4mKimLAgAGsX79e9ec3btyY6dOnU7FiRdVjC+UePnxIWFjYo1m8Y8eOWTolq+Dm5kb58uXTzej5+vri7u5u6fSEBWR0wON5ChUqRI4cOTTOLHPS7UV8CjkoIpTSGR2526qNiIqKokqVKsTFxeHi4sLp06ef+KZw+/Ztxo4dy9y5c1W/JSEwMJBp06bx5ptvqhpXZE5MTEy6vXmhoaFcvHjR0qlZVM6cOTPcn1emTBn5Q08Azz7g8Twvv/wyf/31l0aZKbNv3z5q166teFyVKlXkoIh4JpkBtHKpqam0bduWuLg4wHQX6sCBA/nhhx9ISkpi/vz5jB49WvV9XAUKFGDs2LG0b99ebh7QmNFo5MqVK+naqoSGhnLz5k1Lp2dRhQoVSrc3LyAggCJFisj+PJGhlJQUlixZwsiRI596wON5rKmVVVZzefygyJQpU2T1RqQjf7JbuVmzZqX7SXTdunWMHz+eFStWEBkZqerz3Nzc6NOnD4MGDZK9USpLSUnh7Nmz6Yq8sLAwYmNjLZ2exeh0OkqVKpWurUpAQIA0ExeZZjQa2bx5MwMGDMh2g3trKgDz58+Pt7d3lr9HpB0Uad++PWPGjJGDIuIRWQK2YqGhoVSrVs1szXVbtmzJxIkTKVWqlFmeZ6/i4+OJiIhIV+hFRESQlJRk6fQsxsXFBV9f33RFXvny5fH09LR0esKGKT3g8Txff/01n376qSqx1FCtWjWOHj2a7TheXl4MGDCAvn37ykER4ZgzgKmpEB5uatl09CjcvAnx8abWTXo9uLub2jaVLftvu6ciRf69otEcUlJSCAoKMkvxV6dOHWbMmEGtWrU0f5Y9uXfvXrq9eaGhoZw7dy7Tm83tkZeXF/7+/umWbsuWLSuNkoUmnJycVL3P3JpmAMGUjxoFYHx8PHFxcbKtRwAOUgCmpMCWLbB5Mxw8CKdOma50BHBxMfXxNBhML53OdDuPTvdkQ/e8eeGFF0yN21u2hEqVtM150qRJHDx4UNNnlClThsmTJ/PRRx/JfqqnMBqNXLt2LcMbMa5evWrp9CwqX7586dqqBAQEULx4cWmULMyqSpUq7N+/n9GjRzN58uRs31RjjQWgGjFCQkKoU6eOChkJe2DXS8BRUbB0KSxZYprly+7VjWm3+aSkmIrBLl1M1zd6e6uXM8DRo0epWbOm6id60+TKlYthw4bx+eef4+bmpskzbI3BYOD8+fMZFnp37961dHoWVaJEiQxP3BYoUMDSqQmRzt69ewkKCiIqKipL43PmzMndu3et6ofixYsX06lTpyyP79atG1OmTJFlX/EEuysAjUbYsAFmzYI///z3+kW1PX6Hd8uW0L8/BARkP25SUhI1atTg+PHj2Q/2H3q9nq5duzJy5Ejy58+venxbkJSURGRkZLql2/DwcMWtIuyJXq+nXLly6Yo8f39/vNX+CUcIjU2cOJEhQ4ZkaWy1atU4fPiwyhllz44dO3j99dezNDZ37tyEhYVJ836Rjl0tAZ87Z5qV+/VXU+EH2hR/YFouBtO+wZUrTa/Bg2HIENMewqwaM2aMJsVf06ZNmTp1Kv7+/qrHtkYPHjwgLCwsXWuVM2fOkKrV/xQ2onjx4tStW/eJ5VsfHx+ZDRZ24cSJE4waNSrL461t+Reyl9Pdu3fp1KkTGzZssKpZTWF5djEDmJICM2fC8OGmgi87y7zZkXYlZHAwvPaa8vH79++ndu3a2d6/8rgqVaowffr0LP/0aO1u3ryZ4bLtpUuXLJ2a1QoODqZdu3aWTkMI1SUlJVGrVq1sHZgYOHAgkyZNUi8pFaSmpuLh4ZGtbUHLli2jTZs26iUlbJ7NzwAeOQJBQaaDHZYuZY1GuHAB6teHNm1My9C5cmVubHx8PK1bt1at+CtcuDDjx4+ndevWNn8zgtFo5NKlS+mKvNOnTxMTE2Pp9CyqSJEiBAQEEBkZKUWvcHhjxozJ9mlZa5wB1Ov1lClThoiIiCzH6NmzJ/Xr15c2X+IRmy4AN22CZs1MM36WLv7SpK0urlwJf/9tWo4uXvz544YNG0ZYWFi2n+/h4UH//v3p37+/1dxlmVkpKSmcOXMmXVuVsLAwHj58aOn0LEan01GmTJl0bVX8/f3JnTs3YLqrWQpA4cj+/vtvJk6cmO04mb1719zKlSuXrQIwNjaWtm3bsn37djmlLwAbLgAXL4bOnU1/by3F3+NSUyEy0tQ2Zvt2CAx8+md37drFzJkzs/1Md3d3Tp8+TenSpbMdS0txcXGEh4enm9GLjIzU7OSzLXBxccHPzy9daxU/Pz88PDwsnZ4QVisuLo6goCBVVlCscQYQ1ClMd+7cyZw5c+jZs6cKGQlbZ5MF4Lx50L27pbN4vpQUU/uZevVg166Mi8AHDx7Qpk0bVRoHJyQk8PPPP/PZZ59ZxcnNO3fuZLg/7/z58w7dKDlHjhwZtlUpW7asNGgVIgsGDx6seHasXLlylC5dmt9+++3Re66urhQrVkzt9FTx38LU3d2d5s2bExISoijOwIEDeeONNyhfvrya6QkbZHN/2ixaZBvFX5rUVLh/H155BXbvhv8ewh0wYABnz55V7XkDBgzgm2++SXd/sFaMRiNXr15NtzcvNDSU69evmyUHa1WgQIEMC73ixYvLaTwhVLJjxw5mz56taIxOp2PFihXUrl2befPmMWDAAOLj4ylTpozV7pl+vACsWbMmISEh+Pn5ERcXx9q1azMdJyEhgaCgIHbv3i0/cDo4m/qvf+AAdOtm6SyUS02Fe/fg/fdNh1bS2sRs27aN+fPnq/qsBw8ecODAAYxGo6pFRmpqKufPn0/XViU0NJT79++r9hxbVLJkySf25qX9fb58+SydmhB27d69e1k62dq/f39efvllAHr06EHjxo1p3bo1efPmVTlD9ZQrVw5nZ2dGjRrFwIEDHxVv8+fPZ9euXYp+4N6/fz+TJk1i2LBhWqUrbIDNtIF5+NB0/drFi9r19tOakxP07GlqWXPv3j0qVqzI5cuXNXnW3r17eemllxSPS0xMJCIiIl2RFx4ebpZ7ia2VXq/H19c33Wxe+fLlreKwTePGjdm2bVumPittYIS9aNu2LcuXL1c0pmLFihw8eDBd38uUlBSOHj1K9erVVcxQPYmJiZw+fZpq1aql+9qmTZt45513FMVzdnZm//79GcYTjsFmZgC/+MLUYkXFFnlmZzCYWsM0aQLffdc7U8Wfu7s73t7e5MiR49Er7Z89PDw4efIkx44dSzcuLCzsmQXg/fv3CQsLS7d0e/bsWVX7ENoaDw8P/P390xV6Pj4+uLq6Wjo9IcQ/fvzxR8XFn7OzMyEhIRk2PXd2drba4g/Azc3tqcXa//73P9q2bcuyZcsyHS8lJYWgoKAMi2HhGGyiANy40XTq1x44OcEnn9yjd+/KLFq06ImC7r8FnpeX11P3aISFhfHJJ59kWPyBqcAzGo2PGiX/d+n2ypUrWv4yrV6ePHnStVUJCAigZMmS0iJBCCt38+ZNOnbsqHjcqFGj7HbGa9asWezYsYMLFy5keszJkycZMWIEkydP1jAzYa2sfgn4/n0oXRru3rXOdi9ZoddD8+bw7bfKxxqNRoKDg+nVqxdxcXFP/VzBggVJSUnh9u3b2cjU9hUtWjTd3ryAgAAKFixoVwcxZAlYOAqj0chHH33EunXrFI2rVasWf/31l10ffNi5cycNGjRQNEan0/Hnn39St25djbIS1srqfycsW2ZfxR+Y9jCuWgUTJ4KSpuy3b9+mY8eOmfrGd+PGjWxkaFucnJwoW7ZsumVbf39/cmX2KhYhhE345ptvFBd/Hh4erFixwq6LP4D69evTq1cvvvzyy0yPMRqNtG7dmmPHjlnFfmZhPlb9uyE1FaZPt6/iL42TE8yZA1OnZu7zv//+O5999plDL926ubk9apT8+MvPzw/3tKPVQgi7dfnyZXr06KF43KRJkxym793EiRP55ZdfCA8Pz/SYs2fP0r9/f9W7UgjrZtUF4KZNYK+3W6WmwoIFMHIkPOuHruTkZEaNGsXEiRMdpnmyt7d3hm1VrLlHlxBCW0ajkfbt23Pv3j1F4xo0aJClotFWeXh4EBISQp06dUhV0DJjwYIFvPfee7zxxhsaZiesiVUXgNOnm/bL2Wrbl+d5+BBWrHh6Y+szZ87wySefsH//fvMmZiaFChXKsFFy0aJF7Wp/nhAi+xYsWMCvv/6qaEzOnDlZtmyZwx3sqlmzJkOGDGHs2LGKxrVr146TJ0+SJ08ejTIT1sRqC8ATJ8BMl1lY1MyZ6QtAo9HI119/Tbdu3Xjw4IFlElNR6dKlMyz0rLnpqhDCekRFRdGvXz/F47788ktKliypQUbWb9iwYfz0008cOXIk02Oio6Pp0aMH33zzjYaZCWthtQXgjh2mfXL23JLOaIQzZyA6GooWNb137949unXrxrdZOSJsQc7OzukaJVeoUIHy5cvj6elp6fSEEDYqNTWV1q1bP7PrQUbeeecdWrdurVFW1s/V1ZWQkBBefPFFkpKSMj3u22+/5f333+ejjz7SMDthDay2ANy/HxxlFfDAAXj3XdizZw+ffvop58+ft3RKT+Xp6Ym/v3+6tirlypXDxcXF0ukJIezMtGnT2LNnj6Ix+fPnZ9GiRQ6/laRixYqMGzeOAQMGKBrXpUsX6tatS+HChTXKTFgDqy0Ad+82x96/FKA88Dbw38vEuwDbgL1AQc0ycHaGvXtTOHZsAmPGjFG0aVdL+fLly3DZtkSJEg63n0YIYRknTpxgxIgRisctWLCAQoUKaZCR7enTpw8//vgjfynYUxUTE0OnTp3YuHGjwxfR9swqC8Dbt03XvmnPGRgE9AZGAvn+eX8isBbYg5bFH5iK3N9/v0Tt2ncoXry4oi7uaihevHi6Iq9ChQoUKFDArHkIIcTjkpKSaNWqlaLlS4DPPvuMDz/8UKOsbI9er2f58uVUqVKFhw8fZnrcpk2bWL58OW3bttUwO2FJVnkTyC+/mO7LNY8kwAfoAIwAvgE6AtuBOmbJwMvLdOOJTmfk2LFjrF+/ng0bNnD8+HFV4js5OVGuXLl0bVX8/f3x9vZW5RnCsuQmEGFvhg4dyoQJExSNKVasGCdPniR37tzaJGXDFi5cSJcuXRSN8fb25vjx45QuXVqbpIRFWeUMYGSkaf+feUpTV2AAMAaojqkQ/BpzFX9gagdz4wYULqyjatWqVK1aldGjR3PmzBk2btzIhg0b+Ouvv7LUB3Dy5Mn06tVLLvsWQtiMffv2MWnSJMXjli5dKsXfU3Tq1IkNGzbwyy+/ZHpMbGwsbdu25bfffpOtP3bIKv+LxsWZ+v+ZTwdAD/wP0/Kv+ZcP4uPTv1euXDn69OnDn3/+ybVr11iyZAlvv/22omLu/v37UvwJIWxGXFwcrVu3xqCwBUTXrl1p3LixRlnZPp1Ox5IlSxQXyL///jtfffWVNkkJi7LKAjAhwdwngN2B+phm/Xqb88GPZFQAPq5gwYK0b9+en376iZs3b/L999/zySefPPeu29OnT6uYpRBCaGvQoEFEREQoGlOuXDmmZvZeTQdWrFgx5s6dq3jcoEGDCAsL0yAjYUlWWQBaZlficaCWJR4MKPs1e3t706xZM7755htu3LjB1q1b6dq1K0WKFEn32dDQUBWzFEII7fz222+KZ5ucnJwICQnBy8tLo6zsS8uWLWnWrJmiMQkJCQQFBZGSkqJRVsISrLIA9PAwdxEYD4QBL5rzoU/Iaq9kV1dXGjduzLx587h8+TL79u1j0KBBjy4+j4qKIjk5WcVMhRBCfffu3cvSidP+/ftTp4759mzbOp1Ox7x58xS3yTlw4AATJ07UKCthCVZZAHp6mvv+36NAKvCCOR/6BA+P7MdwcnKiVq1aTJw4kbCwMEJDQxk7diy3b9/OfnAhhNBQr169uHTpkqIxlSpVYvTo0RplZL/y58/PkiVLFI8bM2YMhw8f1iAjYQlWWQD6+pp7BvAwkAPwNedDH/HygoIatBv09/dn0KBB0hBVCGHVNm7cyIoVKxSNcXFxISQkRA65ZVHTpk0Vt4NKSUkhKCiIhIQEjbIS5mSVBWCNGuZ+YncgFkv869DpTL9eOWEvhHBEN2/epFOnTorHjRo1iqpVq6qfkAOZOXMmpUqVUjTm1KlTWbqdRVgfqyw78uWDkiUtnYV56PVQu7alsxBCCPMzGo107tyZGzduKBr30ksvKb7fVqSXM2dOli9frnjctGnT2LVrl/oJCbOyygIQoG5dc/cCtIyUFKhZ09JZCCGE+X399desX79e0RgPDw9WrFiBs7NV3mNgc1577TV69+6taIzRaKRNmzY8ePBAm6SEWVhtAVizpqXawZifFIBCCEdz6dIlPv/8c8XjJk+ejJ+fnwYZOa4JEybg7++vaMzZs2fp16+fRhkJc7DaArB+fVDYCN7m6HRQtiwULWrpTIQQwnyMRiPt27fn3r17isY1aNCA7t27a5SV4/Lw8CAkJAS9wmW3hQsXKrpaTlgXqy0AK1eGl1+2/2XgL76wdAZCCGFe8+fPZ9u2bYrG5MyZk2XLlsmdtBqpUaMGQ4YMUTyuffv20mrMRln176S+fc3dD9C8vLygTRtLZyGEEOYTGRlJ//79FY+bPXs2JR3ldKCFDBs2jBdeUNYPNzo6mh49emiUkdCSVReA77wDJUpYOgtt6PXQpQvkyGHpTIQQwjxSU1Np3bo1cXFxisa9++67BAUFaZSVSOPq6pql3orfffcda9as0SgroRWrLgD1eujTx7RXzt4YDCA/NAkhHMnUqVPZu3evojH58+dn0aJF6OzxDwIrFBgYyLhx4xSP69q1K9euXdMgI6EVqy4AAdq1g9y57asI1OuhRQtQ2H9TCCFs1vHjx7PUQHjhwoUU1OKqJPFUX3zxBfXq1VM0JiYmho4dO2J0lPYddsDqGynlzAnLlsF771k6E3U4OUHu3PeoUGEZS5bkIEcO08vb2/vR3z/+UnoqSwghrE1SUhJBQUEkJycrGteqVSs++OADjbIST6PX61m+fDmVK1fm4cOHmR73008/sWzZMsVXzAnLsPoCEODdd6FDB1i61PZbwxgM8O23ufjmmyMMHx7y3M97eHikKwr/Wyxm9M8vvvgiPj4+ZvgVCSHEs40ePZpjx44pGlO8eHFmz56tUUbiecqWLcuMGTPo3LmzonG9evWiQYMGlC5dWpvEhGpsogAEmDULfvsNLl603ZPBTk7w+efQuDHUrPklv/32G1euXHnmmPj4eOLj47l582amn+Pm5kZYWFh20xVCiGzbu3cvkyZNUjxu6dKl5M6dW/2ERKZ17NiRDRs28PPPP2d6zIMHD2jTpg07duyQlj1Wzmb+63h5werVtns7iF4Pvr6Q9n0wd+7cBAcHa/Ks3r17y09fQgiLe/jwIa1bt8agcOmmW7duNGrUSKOsRGbpdDqWLFlCnjx5FI37448/ZPbWBthMAQhQowbMn2/pLJTT6yFXLtiwAdzd/33/jTfeUDy9/jwFChRg8ODBqsYUQoisGDRoEJGRkYrG+Pj4MGXKFI0yEkoVLVqUuXPnKh43ePBgWYmycjZVAAJ06gRz5lg6i8zT600HWf78EzK6anHq1KmUKVNGteeNGTOGXLlyqRZPCCGy4rfffmOOwm/WTk5OhISE4OXlpVFWIitatGhBs2bNFI1JSEigVatWig/+CPOxuQIQoHt3WLDA1BrGmtvDODtD/vym4i8wMOPPeHt7s2zZMlWe5+HhQZMmTVSJJYQQWXX37l3aZOGaowEDBlC7dm31ExLZotPpmDdvHoULF1Y07uDBg0ycOFGjrER22WQBCNC5s2lJ1dXVOu8L1uvBxwcOHoSKFZ/92VdffZXevXtn+5nx8fEEBAQwcuRIHjx4kO14QgiRFb169eLy5cuKxlSuXJlRo0Zpk5DItvz587NkyRLF48aOHcuhQ4c0yEhkl80WgGC6Km7PHtPSqrXMBKYVo61awb59ULx45sZNmDABPz+/bD8/Pj6eMWPG4Ofnx7Jly0i11SPTQgibtGHDBkJCnt/i6nEuLi5ZuoJMmNfbb79N+/btFY1JSUkhKCiIhIQEjbISWWXTBSDACy/AkSMweTK4uZmWXS1Fp4OSJWHHDlPzaiVb8Tw8PFixYoVqx+avXr1Ku3btqF69Ojt27FAlphBCPMuNGzfo1KmT4nGjR4+mSpUqGmQk1DZjxgxKKbzG6vTp0wwfPlyjjERW2XwBCODiAv37Q2go1K9ves+c7YecnU2vYcPg9Ol/c1DqpZdeYuDAgarmdvToUV5//XXeeecdwsPDVY0thBBpjEYjXbp0UdSzFEzf9/r3769RVkJtOXPmZPny5YrHTZ8+nT///FP9hESW2UUBmKZMGdi6FX74AV5+2fSeVvsDnZxMM37u7qbl3mPHYMyYJ9u8ZMXIkSOpVKmSOkk+ZtOmTVSsWJHPP/+cW7duqR5fCOHYvv76a9avX69ojIeHByEhIThbculGKPbaa6/xxRdfKBpjNBpp06YNsbGxGmUllLKrAhBMRdkHH5hO3kZEmGYG8+UzfU2N7zFpMapUMZ1Evn7ddEVdhQrZjw2mWzxWrFihyTfElJQU5syZg4+PD9OmTSMxMVH1ZwghHM+lS5fo0aOH4nFTpkzB19dXg4yE1saPH09AQICiMefOnaNfv34aZSSUsrsC8HG+vjBxIly9ajox3LYtVKtmOjmcxsXFNEuYtmSs05n+2dn5ydnD3Lnh9dehb184ehQOHzb1JMyZU/28q1WrxogRI9QP/I979+7Rv39/AgICWLt2LUZbvV5FCGFxBoOBdu3acf/+fUXjXn/9dbp166ZRVkJrabO3eoXLbIsWLVJ0tZzQjs7ogH/6p6RAeLipkDt6FG7ehIQEuHMnDi8vDzw8dLi7Q9myULWq6VW0qHlPGicnJ1O7dm2zHJ9/+eWXmTFjBjVr1tT8WUIbjRs3Ztu2bZn6bHBwMO3atdM4I+Eo5s6dq3j2L1euXJw4cYISJUpolJUwl5EjRzJmzBhFY4oUKcLJkyfJmzevRlmJzHDIAvBpmjdvTrNmzRR3PNfKqVOnePHFF822VPvJJ58wceJESpYsaZbnCfVIASgsITIykipVqhAfH69o3IoVKwgKCtIoK2FOycnJvPTSSxw+fFjRuBYtWvDdd99plJXIDLteAlbi5MmTrFmzhtGjRyu+uFwrgYGBjB07NsOvjR07Fh8fH1Wf9+233+Ln58eQIUMUL+cIIRxLWn83pcXfe++9R6tWrTTKSphbVns4rlq1iu+//16jrERmSAH4j7Qp7FOnTvHDDz9YOJt/9enThzp16jzx3ocffsiwYcM4deoUM2fOJE+ePKo9LzExkYkTJ+Lr68vChQtJSUlRLbYQwn5MnTqVffv2KRpToEABFi5ciM5aOvcLVQQGBjJ+/HjF47p27crVq1c1yEhkhhSA/Dv7l8aaZgH1ej0rVqzA09MTMP20NXnyZABcXV3p3bs3UVFR9O7dW9WTwzdu3KBLly5UrVqVrVu3qhZXCGH7jh07xsiRIxWPW7hwIQULFtQgI2FpvXv3pl69eorG3L59m44dO8pBRAuRAhDSbWC1tllAHx+fR0Xf559/Trly5Z74et68eZk5cyanT5/m/fffV/XZp06d4s033+TNN9/k5MmTqsYWQtiexMREgoKCSE5OVjQuKChI9e9Pwnro9XqWL1+Ol5eXonGbN29m6dKlGmUlnsXhC8D/zv6lsaZZQIBu3brRvHlzhg0b9tTP+Pr6sm7dOn7//XdeeOEFVZ+/detWqlSpQpcuXbh+/bqqsYUQtmP06NEcP35c0ZjixYvz5ZdfapSRsBZly5ZlxowZisf17t2bc+fOaZCReBaHLwCfdnzd2mYBnZyc+O677zK13+/VV1/lwIEDhISEUKxYMdVyMBgMLFy4EF9fXyZOnKh487cQwrbt2bPn0WqEEsuWLSN37tzqJySsTseOHWnSpImiMQ8ePKBt27ZWNeniCBy6AHza7F8aa5sFdFJwwbGTkxOtWrUiIiKCMWPGKJ6Wf5bY2FiGDBmCv78/3377rVX9OxJCaOPhw4e0bt1a8e/37t2707BhQ42yEtZGp9OxZMkSxYcT//jjD5klNjOHLgCf17zS2mYBs8LT05Phw4cTGRlJ+/btVT19d/HiRT799FNq167N7t27VYsrhLA+AwcOJCoqStGYx/cvC8dRtGhR5s2bp3jc4MGDCQ0N1SAjkRGHLQBbtWr1zNm/NK1bt2bDhg3aJ6SxIkWKsGTJEo4cOcLrr7+uauz9+/dTt25dmjVrxtmzZ1WNLYSwvO3btzN37lxFY5ycnAgJCVF19UHYjhYtWtC8eXNFY7J6wEhkjcMWgJm9NSE+Pp5ffvlF42zMp0qVKmzbto2ffvoJf39/VWOvXbuWgIAA+vfvz927d1WNLYSwjLt379K2bVvF4wYOHEjt2rU1yEjYinnz5lG4cGFFYw4ePMiECRM0ykg8ziELwJMnTyo6ybpp0ya72uem0+l4++23OX78OHPnziV//vyqxU5KSmLatGn4+PgwZ84c+UlOCBvXs2dPLl++rGhM5cqVs9QnUNiXfPnysWTJEsXjxo0bx6FDhzTISDzOIQtApRdXR0dH2/xewIy4uLjQrVs3oqKiGDBgAK6urqrFjomJ4fPPP6dSpUps2rRJGn0KYYPWr1/PypUrFY1xcXFh5cqViq8GE/bp7bffpkOHDorGpF0zmJCQoFFWAhywAHzeyd+nsbYTwWrKlSsXkydPJiwsTPGejecJDw/nnXfeoWHDhhw9elTV2EII7dy4cYPOnTsrHjdmzBgqV66sQUbCVs2YMYPSpUsrGnP69Oln9r0V2edwBaDS2b809nAi+HnKlCnD6tWr2b17N7Vq1VI19o4dO3jhhRdo164d0dHRqsYWQqjLaDTSuXNnbt68qWhc7dq16d+/v0ZZCVvl7e3N8uXLFXehmDFjBn/88YdGWQmHKgCzOvuXxp5nAR9Xp04d9u7dy3fffUepUqVUi2s0Glm2bBm+vr6MGTOGhw8fqhZbCKGelStXKu5+4OnpyYoVK9Dr9dokJWzaq6++Su/evRWNMRqNtGnThtjYWG2ScnAOVQBmdfYvjSPMAqbR6XS0aNGCsLAwJk2ahLe3t2qx4+LiGDlyJH5+fqxYscIhimohbMXFixf5/PPPFY+bMmUKvr6+GmQk7MX48eMJCAhQNOb8+fP07dtXo4wcm8MUgNmd/UvjKLOAadzd3R81gO3ataui20ieJzo6mjZt2lC9enV27typWlwhRNYYDAbatWvH/fv3FY1r2LAhXbt21SgrYS88PDwICQlRPEu8ePFitmzZolFWjsthCsDszv6lcaRZwMcVLFiQefPmcfz4ccX3PD7PkSNHaNCgAe+99x4RERGqxhZCZN68efP47bffFI3JlSsXS5cuVfWHQ2G/qlevnqXDHR06dCAmJkaDjByXQ/yOVWv2L42jzQI+LjAwkC1btrB161YqVqyoauyNGzcSGBhIr1695De6EGYWERHBgAEDFI/76quvKFGihAYZCXs1dOhQXnzxRUVjrl69Svfu3TXKyDE5RAGo1uxfGkedBXxc48aNOXr0KIsWLaJQoUKqxU1JSWH27Nn4+Pgwc+ZMkpKSVIsthMhYSkoKrVu3Jj4+XtG4999/n88++0yjrIS9cnFxISQkRHGvyNWrV7N69WqNsnI8dl8A3rp1i3v37tGoUaMnXi4uLpmOUaRIkXTj9+zZo2HWtkGv19OxY0ciIyMZOnQo7u7uqsW+e/cuffr0oUKFCqxbt04aSQuhoSlTprBv3z5FYwoUKMDChQsVt/YQAqBChQqMHz9e8bhu3bpx9epVDTJyQEYHlS9fPiOQqVdQUJCl07UJFy9eNH722WeZ/veq5FWvXj3j/v37Lf1LtFqNGjXK9L/L4OBgS6crrMjRo0eNLi4uin9Prl+/3tKpCxuXkpJifOWVVxT/v/fWW28ZDQaDpdO3ec7ZriCF+EeJEiVYuXIlPXv2pG/fvuzatUu12Lt27aJmzZp89tlnTJgwQfYcCaGCxMREWrVqpfjO7tatW/Pee+9pk5RwGHq9nuXLl1O5cmUePHiQ6XFbtmwhODg44yvmjEaIjoajR02vs2chIcH0Sk0Fd3fTq0ABqFrV9CpfHpwdrxxyvF+x0FyNGjX4448/WL9+PQMGDODMmTOqxf76669Zu3Ytffv2ZeDAgar2JxTC0YwaNYoTJ04oGlOiRAm+/PJLjTISjqZMmTLMmDGDTp06KRr3xRdf8Prrr1OmTBk4dgxWrYIDB+DwYbhzx/QhvR50OlNRaDCY/urkZHrpdJD2g4+rKwQGQvXq8Pbb8NZboGCbmK2y+z2AwjJ0Oh0ffPABp06dYvr06eTOnVu12AkJCYwfPx5fX18WL15MamqqarGFcBR79uxhypQpisctW7aMXLlyaZCRcFQdOnRQ3F7s/aZNybNhA1SrZprFmzYNfvvt3+IPTDN+KSmmv6btIzcYTO89PuudlARHjsCyZfDee1C0KAweDFFR2f2lWTUpAIWm3Nzc6NOnD1FRUfTs2RNnFafZr1+/TqdOnahWrRrbtm1TLa4Q9u7hw4cEBQUpbmfVo0cPXn/9dY2yEo5Kp9OxZMkS8uTJ89zP5s+Thx/q1ydkwwZy9+0Lx4+bvpCSkv1E0mLcugVTp4KvL7zyCqxb928BaUekABRmkS9fPr788ktOnTrFu+++q2rsEydO0LhxY9566y1Onz6tamwh7FFWtmb4+voyefJkjTISjq5o0aLMnz//mZ9518+Pk/fv88GuXaY9fWlLu1pIW1naswc+/BDeeAPOndPmWRYiBaAwKz8/PzZs2MDOnTupVq2aqrF//vlnKleuTNeuXblx44aqsYWwF9u2bWPevHmKxjg5ORESEoKnp6dGWQkBH3/8MR9//HG693N6ebE8f37WR0RQKG1Z11zSCsGdOyEgwDQzaM7na0gKQGERr732GgcPHmT58uUULVpUtbipqaksWLAAHx8fJk+eTEJCgmqxhbB1d+/epW3btorHDRo0iJdeekmDjIR40ty5cylcuPCjf369SBFOPHxI6zt3sGjHyZQUSEyEgQNN+w6PHLFkNqqQAlBYjJOTE61btyYiIoLRo0erOrsQGxvLoEGD8Pf3Z9WqVdJIWgigZ8+eXLlyRdGYKlWqMHLkSI0yEuJJ+fLlIzg4GA93d2YXLMiv169TEv6dibM0oxFCQ6F2bdi0ydLZZIsUgMLivLy8GDFiBJGRkbRr107VmwUuXLhAy5YtqVOnDnv37lUtrhC2Zt26daxcuVLRmLQru1xdXTXKSoj03ipVivPe3nx++zZOWu3xy47UVNPJ4XffhUWLLJ1NlkkBKKxG0aJFCQ4O5vDhwzRo0EDV2Pv27aNOnTq0aNGCc3a2kVeI57l+/TqdO3dWPG7MmDFUrlxZg4yEeIpTp6BePQrevm3de+2MRtOrc2d4zuEVayUFoLA6VatWZfv27fz444+UL19e1dirV6/G39+fgQMHcu/ePVVjC2GNjEYjnTt35tatW4rG1alTh/79+2uUlRAZCAsztV25f996lnwzo1s3WLzY0lkoJgWgsEo6nY7//e9/nDhxgq+++op8+fKpFjspKYkpU6bg4+PDvHnzSLHmnzKFyKaQkBA2btyoaIynpycrVqxAr9drlJUQ/xEfb2rCfO+ebRV/abp2hYMHLZ2FIlIACqvm4uJCjx49iIqKol+/fqruRbp16xbdu3encuXKbN68WQ6KCLtz8eJFevbsqXjc1KlT8fHx0SAjIZ5i0CCIjLTN4i/Nxx/Dw4eWziLTpAAUNiF37txMnTqV0NBQmjVrpmrs0NBQmjZtSuPGjTme1lVeCBtnMBho27Yt9+/fVzSuUaNGdO3aVaOshMjA1q0we7Z2TZ3NITUVzp+HPn0snUmmSQEobErZsmX5/vvv+euvv6hZs6aqsbdv307VqlXp0KEDV69eVTW2EOY2d+5cduzYoWhMrly5WLp0qaon8YV4plu34LPPwMkOyhGDwXQq+McfLZ1JptjBv3HhiF5++WX27t3Lt99+S8mSJVWLazQaCQ4OxtfXl7FjxxIXF6dabCHMJSIigoEDByoeN2fOHIoXL65BRkI8Rc+ecOeObc/+PU6ngzZtTAdZrJwUgMJmOTk50bJlS8LCwpgwYQI5cuRQLfbDhw8ZMWIEfn5+rFy5EoO9fHMSdi8lJYWgoCDi4+MVjfvggw/49NNPNcpKiAycPw+rVtn2vr//Mhrh7l1YtszSmTyXFIDC5nl4eDB48GCioqLo3LkzTiouJVy5coWgoCBq1qzJH3/8oVpcIbQyefJk/v77b0VjChYsyIIFC2TpV5jXnDn2sfSbkRkzrL6wtdN/88IRFSpUiAULFnDs2DHefPNNVWMfOnSI1157jQ8++IDIyEhVYwuhlqNHjzJ69GjF4xYtWkSBAgU0yEiIp4iNhYULrb5IyhKjES5ehJ9+snQmzyQFoLA7FStW5Oeff+bnn38mMDBQ1djr168nMDCQL774gtu3b6saW4jsSExMpFWrViQnJysa16ZNG959912NshLiKZYvt6mWKYrp9TBtmqWzeCYpAIXdevPNNzl69CgLFy6kYMGCqsVNTk5m1qxZ+Pj4MGvWLJKSklSLLURWjRw5kpMnTyoaU7JkSWbNmqVNQkI8i73/f5eaCn/9BSdOWDqTp5ICUNg1Z2dnOnXqRGRkJIMHD8bNzU212Hfu3OGLL74gMDCQDRs2SCNpYTG7d+9m6tSpisctW7aMXLlyaZCREM9w5QqcPWtaKrVnTk6wc6els3gqKQCFQ8iZMycTJkwgPDycTz75RNXYUVFRvP/++7z22mscOnRI1dhCPM+DBw9o3bq14pPqn3/+OQ0aNNAoKyGeYf9+zUIbAH/gv02QtgKuwBrNnpwBnU7TX2t2SQEoHEqpUqX45ptv+Pvvv3n55ZdVjf3nn39SvXp1WrduzeXLl1WNLcTTDBgwgDNnziga4+fnx6RJkzTKSIjn2L8fnJ01Ce0EDAbmA3f+ee8Y0AyY8M9fzSY1FXbvNucTFZECUDikmjVrsmvXLtasWUOZMmVUjR0SEoKfnx8jRozgwYMHqsYW4nG//vor8+fPVzTGycmJkJAQPD09NcpKiOfYuxdSUjQL/ymQH5gNXAbeBloB/TR74jOcPw9WemBQCkDhsHQ6HR999BGhoaFMmzZN1b1Q8fHxjB07Fl9fX4KDg0m1x1YHwqLu3LlDu3btFI8bPHgwtWrV0iAjITLBYIADBzR9hDOmJeDZwFvAC//8vcVo/OvNKikAhcNzc3Ojb9++REVF0aNHD/R6vWqxr127RocOHXjhhRfYvn27anGF6NmzJ1euXFE0pmrVqowYMUKjjITIhBs3wAxXbH4KxAFG4Dvgv9/V3wfyAB9pnYhOBxERWj8lS6QAFOIf+fPn56uvvuLkyZP873//UzX28ePHadSoEU2bNiU0NFTV2MLx/PDDD3z99deKxri6uhISEoKrq6tGWQmRCWa6X73HP3+9RfriD6AnEGKORPR6UHgto7lIASjEf/j7+/Pjjz/y22+/UbVqVVVjb968mUqVKtGjRw9u3rypamzhGK5fv07nzp0VjxszZgyVKlXSICMhFDBDMTQc2AzsA1KA4Aw+Ux/w1jwTTDOAUgAKYVsaNGjAwYMHWbp0KUWKFFEtbmpqKnPnzsXHx4epU6eSmJioWmxh34xGI506dSImJkbRuDp16tCvn0W2wAthVkuA6cAmoArQG5gCKLsfxzFIASjEM+j1etq2bUtERAQjR47Ew8NDtdj3799nwIABBAQEsGbNGmkkLZ5rxYoV/Pjjj4rGeHp6smLFClX3tgqRZSp+D/2vn4HuwNfAS/+89zlwH1ip2VOfw2jU9NecHVIACpEJOXLkYNSoUURGRtKmTRt0Op1qsc+dO0fz5s2pW7cu+/btUy2usC8XLlygV69eisdNmzYNHx8fDTISIgs0aj90CFOPvynAB4+9nxNTETgJsEgvhtRUKQCFsAfFihVj2bJlHDx4kNdee03V2Hv27KF27dq0bNmS8+fPqxpb2DaDwUDbtm25f/++onGNGzemS5cuGmUlRBYULKhJEfgi8ADI6EekMUAEGR8G0ZzRCH5+lnjyc0kBKEQWvPDCC+zYsYONGzfi6+urauxVq1bh7+/P4MGDFf+BL+zTnDlz2KnwTtFcuXIRHBys6my1ENnm5AQ1alg6C97ANGO4BSgOaNqpzwp+vRmRAlCILNLpdLzzzjucPHmSL7/8krx586oWOzExkUmTJuHj48OCBQtI0bBrvrBu4eHhDBz435tNn2/u3LkUL15cg4yEyKbatTW7Ci6ztgI3MfUKvAxoVqKVLg0q/tmgJikAhcgmV1dXevbsSVRUFH369MHFxUW12Ddv3qRr165UqVKFX375RbW4wjakpKQQFBREQkKConEffvghn3zyiUZZCZFNNWtqehWc1dDrQeU759UkBaAQKsmTJw/Tp0/n9OnTfPjhh6rGPn36NE2aNOGNN97gxIkTqsYW1mvy5Mns379f0ZiCBQsyf/58WfoV1qtmTUtnYB5Go1X/WqUAFEJlPj4+rF27lj///JPq1aurGvvXX3+latWqdOrUiWvXrqkaW1iXI0eOMGrUKMXjFi9eTIECBdRPSAi1FCsGZcuamiTbM4MB6te3dBZPJQWgEBqpV68ef//9N19//bWqe7EMBgOLFy/G19eXCRMmEG+lXeZF1iUmJhIUFKR472fbtm155513NMpKCBX17m3pDLSl10PdumDFt+9IASiEhpycnPj0008JDw9n3Lhx5MiRQ7XYDx48YOjQoZQvX56rV6+qFldY3ogRIzh58qSiMSVLlmTWrFnaJCSE2tq2BS8vS2ehndRUsPLbd6QAFMIMPD09GTp0KJGRkXTs2BEnJ/V+6126dElxsSCs1+7du5k6dariccuXLydnzpwaZCSEBnLkgM6dTTNl9kang5IloWlTS2fyTFIACmFGhQsXZtGiRRw9epRGjRpZOh1hZR48eEDr1q0VXwvYs2dP6lvxXiMhMtSjh2mfnD3q08fqi1spAIWwgEqVKrF161a2bNlChQoVLJ2OsBL9+/fnzJkzisb4+fkxceJEjTISQkOlS0OLFlZfKCmi00Hu3KYlbisnBaAQFqLT6WjSpAnHjh1j/vz5cnLTwW3dupUFCxYoGqPX61m5ciWeGt2vKoTmZs82NUpWcVuMRRmNsGIF2MB2DDv5Ny6E7XJ2dqZLly5ERkYycOBA3NzcLJ2SMLM7d+7Qrl07xeMGDx5MTSvuMybEc+XPDytX2sdSsJMTdOoE//ufpTPJFCkAhbASuXLlYtKkSYSFhdGiRQvNnnPhwgXNYous+fzzz4mOjlY0plq1agwfPlyjjIQwozfegJ49bXsWUK83LWnPmGHpTDLNhv9tC2GfSpcuzXfffcfevXupXbu26vHHjh1L27ZtuXLliuqxhXJr167lm2++UTTG1dWVkJAQXF1dNcpKCDObNAl8fW17P+Dq1TbV2kYKQCGs1EsvvcTu3btZvXo1pUuXVi2u0Whk+fLl+Pn5MWrUKB4+fKhabKHMtWvX6NKli+JxY8eOpWLFihpkJISFeHjAhg2QK5dtFoHz54PKNz9pTQpAIayYTqejefPmhIaGMmXKFFX7vMXFxTF69Gh8fX1ZtmwZqampqsUWz2c0GunUqRMxMTGKxr388sv07dtXo6yEsCB/f/jzT9MBClsqAufNg44dLZ2FYlIACmED3N3d6d+/P1FRUXTv3h29it8cr169Srt27ahevTo7duxQLa54tuXLl7Np0yZFY7y8vFixYoWq//2FsCqBgbBrl+lwiLOzpbN5Op3O9Fq4ELp2tXQ2WSIFoBA2pECBAsyZM4cTJ07w9ttvqxr76NGjvP7667z77ruEh4erGls86cKFC/Tq1UvxuGnTplGuXDkNMhLCigQGwsGD4ONjnTOBej24ucGPP5pO/dooKQCFsEEBAQH89NNPbNu2jcqVK6sa+8cff6RixYr07NmTW7duqRpbgMFgoE2bNsTGxioa98Ybb9C5c2eNshLCyhQvDvv2QatWpn+2lkJQp4OAANizx+qvenseKQCFsGENGzbk8OHDqt8mkpKSwldffYWPjw/Tp08nMTFR1fiO7KuvvuL3339XNCZ37twEBwej0+m0SUoIa5QrFyxbBjt2mO7WteT//87O4O4OU6bAkSNQrZrlclGJFIBC2Di9Xk+xYsU0iX3v3j369etHhQoVWLt2reI7asWTwsLCGDRokOJxc+fO1ey/sRBWr359OH0ahg0zFWLm3BuYNvPYoIEph379rHtvogJSAAohnuvs2bM0a9aMevXqsX//fkunY5NSUlJo3bo1CQkJisZ99NFHtGzZUqOshLAR7u4wZgwcO2ZaFnZ3N80IatU8Oq3we/ll+OEH+OUXKFNGm2dZiBSAQohM2717N7Vq1eLTTz/l4sWLlk7HpkyaNElx8VyoUCHmz58vS79CpKlQAZYuhevXYcECqFLF9L6zc/aXiNNm9vLnhwEDIDIS/vgDPvjAssvPGpECUAih2Lfffkv58uUZOnSo4sMMjujw4cOMHj1a8bjFixeTP39+DTISwsblzGk6gXv4sGlWsF8/eP11yJPn38/o9aaiTq//t4BzcjK95+Ly7+dcXeGFF6BdO9i4Ea5ehQkTTKeQ7Zh9LGQLIcwuISGBCRMmsGTJEsaOHUu7du1wtpO9MWpKSEggKCiIlJQURePatm3L/2zkUnkhLKpyZdMLwGg0FXBHj5peZ89CQoLplZpqWjp2d4cCBaBqVdPLz89u9vUp4Xi/YiEcXKNGjdi5c6figuRpbty4QefOnZk9ezbTp0/njTfeUCWuvRgxYgSnTp1SNKZUqVLMmjVLm4SEsGc6HRQtanq99Zals7FqOqOdH+u7desWn376abrTi7///jvJycmZilG4cGEqVar0xHuBgYHMnDlTtTyFyI7GjRuzbdu2TH02ODiYevXqMXDgQNavX696Lm+++SbTpk0jMDBQ9di25q+//uKVV15RfHp6x44d1K9fX6OshBDCAWYA8+fPT65cuVizZk2WY1y7do1r16498V5HG7z3T4g0vr6+rFu3jj/++IO+ffty6NAh1WL/8ssv/Prrr3Ts2JHRo0dTqFAh1WLbkgcPHtC6dWvFxV+vXr2k+BNCaM4hDoGMGDFC1XiBgYF8+OGHqsYUwhJeffVV9u/fT0hIiKp95gwGAwsXLsTX15dJkyYpbn1iD/r168fZs2cVjSlfvjwTJ07UKCMhhPiXQxSAFStWpFmzZqrFGzlyJE5a9R4SwsycnJxo1aoVERERjB07Fi8vL9Vix8bGMnjwYMqXL893333nMI2kf/nlFxYuXKhojF6vJyQkBA8PD42yEkKIfzlMFaPWLKDM/gl75enpybBhw4iMjKR9+/aq9p67ePEin3zyCS+99BK7d+9WLa41unPnDu3bt1c8bsiQIdSsWVODjIQQIj2HKQDVmgWU2T9h74oUKcKSJUs4cuQIDRs2VDX2/v37qVu3Ls2bN1e8PGorevToQXR0tKIx1apVY9iwYRplJIQQ6TlUJZPdWUCZ/ROOpEqVKvz6669s3rwZf39/VWOvWbOGgIAA+vfvz927d1WNbUlr1qzh22+/VTTG1dWVkJAQXF1dNcpKCCHSc6gCMLuzgDL7JxyNTqfjrbfe4vjx48ydO1fVWymSkpKYNm0aPj4+zJkzJ9NtmazVtWvX6Nq1q+Jx48aNo2LFihpkJIQQT+dw1UxWZwFl9k84MhcXF7p160ZUVBQDBgxQdbYqJiaGzz//nEqVKvHTTz/Z5EERo9FIx44diYmJUTSubt269OnTR6OshBDi6RyuAMzqLKDM/gkBuXLlYvLkyYSFhdG8eXNVY4eHh/O///2Phg0bcvToUVVja23ZsmX89NNPisZ4eXmxYsUK9Hq9RlkJIcTTOWRFo3QWsGjRojL7J8RjypQpw+rVq9m9ezcvvfSSqrF37NjBCy+8QPv27RUfprCE8+fP07t3b8Xjpk+fTtmyZdVPSAghMsEhC8CKFSsqup3gf//7n8z+CZGBOnXqsGfPHlatWkWpUqVUi2s0Glm6dCm+vr6MGTOGhw8fqhZbTQaDgbZt2xIbG6to3JtvvkmnTp00ykoIIZ7PYauaRo0aZepzHh4evPnmmxpnI4Tt0ul0fPzxx4SFhTFp0iS8vb1Vix0XF8fIkSMpX748K1aswGAwqBZbDbNnz+b3339XNCZ37twsWbJE1T6LQgihlMMWgCtXrszUXsAVK1bw3nvvaZ+QEDbO3d2dgQMHEhUVRdeuXVWdNb9y5Qpt2rShRo0aigsurYSFhTF48GDF4+bNm6fqtXtCCJEVDlsAwvP3AsrJXyGUK1iwIPPmzeP48eM0adJE1diHDx+mfv36vPfee0RERKgaW4mUlBSCgoIU33HcrFkzWrRooVFWQgiReQ5dAD7vRLCc/BUi6wIDA9myZQtbt26lUqVKqsbeuHEjgYGB9O7dm9u3b6saOzMmTpzIgQMHFI0pVKgQ8+bNk6VfIYRVcPjq5mmzgDL7J4Q6GjduzJEjR1i8eLGiw1fPk5KSwpdffkm5cuWYOXMmSUlJqsV+lsOHDzNmzBjF45YsWaJqI20hhMgOhy8AnzYLKLN/QqhHr9fToUMHIiMjGTp0KO7u7qrFvnv3Ln369KFChQqsW7dO00bSCQkJtGrVipSUFEXj2rVrR9OmTTXKSgghlJMKh/SzgDL7J4Q2vL29GTduHBEREXz22Weqxj5z5gwffvghr776KgcPHlQ1dprhw4dz+vRpRWNKlSrFzJkzNclHCCGySgpA0s8CyuyfENoqUaIEK1euZP/+/dSrV0/V2Lt27aJGjRq0atWKS5cuqRp3+vTpisctX76cnDlzqpaHEEKoQaqcf6TNAsrsnxDmU6NGDf744w9++OEHypUrp2rsr7/+Gj8/P4YPH664UfN/PXjwgDZt2iheXu7duzevvfZatp4thBBakALwH2mzgDL7J4R56XQ6PvjgA06fPs2MGTPInTu3arETEhIYN24cvr6+LF68mNTU1CzF6devH2fPnlU0xt/fnwkTJmTpeUIIoTWdUcsd01bKYDBw69Ytrl27xrVr14iLiyMlJYX79+/j6emJi4sLzs7O5MmTh8KFC1O4cGG8vb2lfYOwWo0bN2bbtm2Z+mxwcDDt2rXTOKOsi4mJYezYscydO1fxYYvnqVSpEtOnT8/0TUAAP//8M2+99Zai5+j1evbu3UuNGjWUpiiEEGbhbOkEzCE1NZXIyEgiIiKIjo7m5s2bj66UcnJyerSsk/ZXnU6HTqfDaDQ+es/d3Z3ChQtTrFgxKlasSOHChS3zixHCzuXLl49Zs2bRrVs3BgwYwMaNG1WLfeLECRo3bsxbb73F1KlTqVChwjM/f/v2bdq3b6/4OUOHDpXiTwhh1ex6BjAmJoYjR45w+PBh4uPjcXJyyvZdomkxChcuzIsvvkilSpVwc3NTKWMhssaeZgD/6/fff6dPnz4cOXJE1bh6vZ5OnToxatQoChYsmOFnPvnkE7777jtFcV944QX27duHi4uLGmkKIYQm7K4ANBqNhIaG8vfff3Px4sVHM3la0ev1VKpUiTp16lCgQAHNniPEs9hzAQimbRsrV65kyJAhREdHqxo7Z86cDBkyhF69ej3Rn3DNmjU0b95cUSw3NzcOHTpEYGCgqjkKIYTa7Oq0w507d/j6669Zs2bNo/YPWte3qampHD9+nAULFrBjxw7V9ywJIUwz761btyYiIoLRo0fj6empWuz79+8zaNAg/P39WbVqFUajkatXr9K1a1fFscaNGyfFnxDCJtjFDGBqair79u1j586dGI3GbC/zZpVOpyNXrly88847lClTxiI5CMdk7zOA/xUdHc3w4cNZtmyZ6j/kvfTSSzg5ObFnzx5F4+rVq8fOnTvR6/Wq5iOEEFqw+RnAq1evsnDhQrZv305qaqrFij8wzTbeu3ePkJAQNmzYQEJCgsVyEcKeFS1alODgYA4fPkyDBg1Ujb1v3z7FxZ+XlxfLly+X4k8IYTNsugAMDw8nODiYW7duWTqVR9JmI44fP05wcDD37t2zcEZC2K+qVauyfft2Nm3aRPny5S2Wx4wZMyhbtqzFni+EEErZbAF48OBBVq1aRWpqqub7/LLCaDRy+/ZtFi9ezI0bNyydjhB2S6fT0bRpU06cOMGcOXPIly+fWZ/fpEkTOnbsaNZnCiFEdtlkAbh//342b95s6TSey2AwEBcXx7Jly6QIFEJjLi4udO/enaioKPr164erq6vmz8yTJw9LliyRJvFCCJtjcwXgwYMH+fnnny2dRqYZjUYSExNZvny5VS1VC2GvcufOzdSpUwkNDaVZs2aaPmvevHkULVpU02cIIYQWbKoAvHLlClu2bLF0GooZjUYSEhJYtWqVtIkRwkzKli3L999/z19//UXNmjU1ecb27du5evWqJrGFEEJLNlMAJiUlsXbtWkunkWVpewK3b99u6VSEcCgvv/wye/fu5dtvv6VkyZKqxg4ODsbX15dx48YRFxenamwhhNCSzRSAW7du5d69e1Z54COzjEYjf//9N2fOnLF0KkI4FCcnJ1q2bElYWBgTJ07E29tbtdgPHz5k+PDhlC9fnpUrV1q0FZUQQmSWTRSAYWFhHD582KaLvzQ6nY5169bJbIEQFuDh4cGgQYOIjIykQ4cOqsa+fPkyQUFB1KxZkz/++EPV2EIIoTarLwATExPZuHGjpdNQjdFoJD4+3qYOsghhbwoVKkSuXLk0iX3o0CFee+01PvjgAyIjIzV5hhBCZJfVF4BHjhyxuxs1jEYjJ0+e5O7du5ZORQiH9OeffzJjxgxNn7F+/XoCAwP54osvuH37tqbPEkIIpay6ADQYDOzdu9fSaWhCp9Oxf/9+S6chhMOJjY2lTZs2ZtlSkpyczKxZs/Dx8WHWrFkkJSVp/kwhhMgMqy4Aw8PDuX//vqXT0ITRaOTQoUPyB4IQZtavXz/OnTtn1mfeuXOHL774gsDAQDZs2GAX+5mFELbNqgvAvXv32nWH/aSkJI4ePWrpNIRwGFu2bGHRokUWe35UVBTvv/8+r732GocOHbJYHkIIYbUF4PXr17l06ZLd/6S8b98+S6cghEO4fft2lk7+dujQgZdfflnVXP7880+qV69O69atuXz5sqqxhRAiM6y2ADx37pxdz/6luXPnjt0ucwthTbp376741o4XX3yRefPmsWvXLtauXUvZsmVVzSkkJAQ/Pz9GjBjBgwcPVI0thBDP4mzpBJ4mOjpas9gRERF8++23T/16hQoVaN68uWbP/6/o6Ghy5sxptucJ4Wi+//57Vq1apWiMm5sbISEhuLi4APDhhx/StGlT5syZw9ixY7l3754qucXHxzN27FgWL17MuHHjaNOmDXq9XpXYQgjxNFZbAF68eFGz5d8yZcrQt2/fJ94zGo1s2LCBa9eu8eqrr2ry3Iw4OTlx5coV/P39zfZMIRzJ1atX6dq1q+Jx48ePp0KFCk+85+bmRt++fWndujVjxoxh3rx5pKamqpLntWvX6NChA7Nnz2b69Ok0bNhQlbhCCJERq1wCjouLU+2n64y4uLjg7e396OXl5cWvv/7KtWvXaN26NYUKFdLs2f9lMBhkD5AQGjEajXTo0EFxH7569erRu3fvp349f/78zJ49m1OnTvHOO+9kM8snHT9+nEaNGtG0aVNCQ0NVjS2EEGmssgDUcvn3vwwGA+vWrePMmTMEBQWZtfhLc+XKFbs/7CKEJQQHB7NlyxZFY3LkyMHy5csztQxbvnx5Nm7cyI4dO6hatWoWs8zY5s2bqVSpEj169ODmzZuqxhZCCKssAGNiYszynMeLv9atW1O4cOFHX1u1ahWTJk1i9erVmueRnJzMw4cPNX+OEI7k3LlzfPHFF4rHzZgxQ/Fhj/r163Pw4EGWLVtGkSJFFD/zaVJTU5k7dy4+Pj5MnTrV7m5FEkJYjlUWgMnJyTg5aZvas4o/gFq1avH+++9rmsPjkpOTzfYsIeydwWCgbdu2ik/WNmnSJEutYgD0ej1t2rQhMjKSkSNH4unpmaU4Gbl//z4DBgwgICCA77//XlYMhBDZZpUFYEpKiqbx/7vs+9/iD0wHRVxdXTXN43FSAAqhni+//JI//vhD0Zg8efKwZMmSbLef8vLyYtSoUURERNCmTRtV21mdP3+ejz/+mJdffll6iAohssUqC0AtGQwG1q9f/6j4U3O5JjscoeehEOZw+vRpBg8erHjcvHnzKFq0qGp5FCtWjGXLlnHo0CHq16+vWlww3ZJUu3ZtWrZsyfnz51WNLYRwDFZZADo7a9OdJq34CwsL44MPPiBHjhzExsY+8TIYDJo8+3m0+jUL4UiSk5MJCgoiMTFR0biPP/6YFi1aaJJTtWrV+O2339i4cSN+fn6qxl61ahX+/v4MHjxYGsoLIRSxyqrDxcVFk0IsOjqaEydOAPDNN99k+JmBAwfi4eGh+rOfJ63ZrBAi6yZMmKD4jt3ChQszd+5cjTIy0el0vPPOOzRp0oQFCxYwatQoxa1pniYxMZFJkyYRHBzMmDFj6NChg/xAKYR4Lqv8LpEvXz5N4hYvXpxRo0ZpEjs7XFxc8PLysnQaQti0Q4cOMW7cOMXjgoODNfue818uLi58/vnnfPbZZ4wbN46vvvpKtf2/N2/epGvXrnz11VdMmzaNN998U7aWCCGeyiqXgIsVK2bpFFi5ciVr1qwhMjKS6dOnc+XKFc2eVaxYMflGLUQ2xMfH06pVK8UHyDp06MBbb72lUVZPlydPHqZPn05oaCgffvihqrFPnz7NW2+9xZtvvvloxUMIIf7LKmcAPTw8yJUrl6a3gTxPq1atzPIcJycnihcvbpZnCWGvhg0bpvjWjNKlSzNjxgyNMsqccuXKsXbtWnbt2kXfvn05cOCAarF//fVXqlatSvv27RkzZkyG3Q6EEI7LKmcAAUqWLOkQs2IGg8EqZjyFsFV//PEHM2fOVDRGp9OxYsUKvL29NcpKmXr16rFv3z6+/vprSpQooVpcg8HA4sWL8fX1Zfz48cTHx6sWWwhh26y2AFSzHYO1kwJQiKyJjY2lTZs2ihsjf/HFF7zyyisaZZU1Tk5OfPrpp4SHhzN+/Hhy5MihWuwHDx4wbNgwypcvz9dff22xbgdCCOthtQVgmTJlHKLbfZ48eaxmFkIIW9O3b1/FffACAgIYP368NgmpwMPDgyFDhhAZGUmnTp1UvRXp0qVLtGrVilq1arFr1y7V4gohbI/VFoCFChWiRIkSdr8M/NJLL1k6BSFs0pYtW1i8eLGiMXq9npCQENzd3TXKSj2FCxdm4cKFHD16lMaNG6sa++DBg7zyyit89NFHnDlzRtXYQgjbYLUFIECdOnXsehbQ1dWVqlWrWjoNIWxOTEwM7du3Vzxu+PDhVK9eXYOMtFOpUiW2bt3Kzz//TIUKFVSN/cMPPxAQEEDfvn25c+eOqrGFENbNqgtAPz8/cuXKZek0NKHT6XjxxRfNet+wEPaie/fuXLt2TdGYF198kSFDhmiUkfbefPNNjh07xvz58ylQoIBqcZOTk5kxYwY+Pj7Mnj1b7iUXwkFYdQHo5ORk10uktWrVsnQKQtic1atXs3r1akVj3NzcCAkJsfkbd5ydnenSpQtRUVEMGjQINzc31WLfvn2bXr16UbFiRTZu3GjXqy9CCCsvAMF0j6Yt7NdRQqfTERgYaLezm0Jo5erVq3Tr1k3xuAkTJqi+fGpJOXPmZOLEiYSFhdGyZUtVY0dERPDee+/RoEEDDh8+rGpsIYT10Blt4Me88PBwVq1aZek0VJF2qMXV1ZW8efOSI0cOvL29yZEjx6PX4/8sd3qKzGjcuDHbtm3L1GeDg4Np166dxhmpz2g00rRpU7Zs2aJo3CuvvMLOnTtVPU1rbfbt20efPn3Yu3evqnF1Oh1BQUGMHz9e2lUJYWdsorooX748L7zwAkeOHLH5ZQmj0fjoHtDly5c/9/Nubm7PLBCf9s8vvvgivr6+2v+ChDCTJUuWKC7+cuTIwfLly+26+ANTN4Hdu3ezdu1aBg4cyLlz51SJazQaWbFiBWvWrKFfv370799f1f6EQgjLsYkZQICkpCTmz5/PvXv3bLYI1Ol01KxZkzfffJN79+5RqVIlLl26pPpz3NzcCAsLo3Tp0qrHFtbJ3mcAz507R+XKlXnw4IGicYsXL6ZDhw4aZWWdEhMT+eqrrxg7diz3799XNXaRIkUYP348QUFB6PV6VWMLIczLZn4sdnV15aOPPrJ0Glmm0+nIly8fDRs2BCBXrlwsXbpUk2f17t1bij9hNwwGA23atFFc/L399ttZahVj69zc3OjXrx9RUVF0795d1ULt6tWrtGvXjurVq7Njxw7V4gohzM9mCkAwXZn29ttvWzoNxXQ6He7u7nz88cdP7Olr2LAhXbt2VfVZBQoUYPDgwarGFMKSZs2axZ9//qloTN68eVm8eLHdN5J/lgIFCjBnzhxOnDhB06ZNVY199OhRXn/9dd555x3Cw8NVjS2EMA+bKgDB1MvrrbfesnQamabT6XBzc6Nt27bkz58/3denTJlC2bJlVXve6NGj5XSxsBunTp3KUu++efPmUaRIEQ0ysj0BAQFs2rSJ7du3U6VKFVVjb9q0iYoVK/L5559z69YtVWMLIbRlcwUgQI0aNVT/iVYLOp0OLy8v2rVr99TGrWmb1NWYqXB3d6dJkybZjiOENUhOTiYoKIjExERF41q0aMHHH3+sUVa26/XXX+fQoUMEBwdTuHBh1eKmpKQwZ84cfHx8mDZtmuL/XkIIy7DJAhBMM4EtWrRAr9db5TJP2p6/jh07Prdrf7169fjiiy+y/cyEhAQqVKjAiBEjFO+XEsLajB8/XnEfuiJFijB37lyNMrJ9er2edu3aERkZyYgRI/Dw8FAt9r179+jfvz8BAQGsXbvWZg/rCeEobLYABFN7mPbt26t6LVJ2pRWjVapUoX379uTMmTNT48aNG4e/v3+2nx8fH8/YsWPx9fUlODiY1NTUbMcUwtwOHjzIuHHjFI9bsmQJefPm1SAj+5IjRw5Gjx5NREQEQUFBqsY+d+4czZo1o169euzfv1/V2EII9dh0AQimn/g7d+5Mo0aN0Ov1Fu/3lTt3blq3bs27776r6AYTDw8PVqxYoVr+165do0OHDrzwwgts375dlZhCmEN8fDxBQUGKf3jp2LGjTe0PtgbFixdnxYoVHDx4kFdffVXV2Lt376ZWrVp8+umnXLx4UdXYQojss/kCEEx3BtepU4cePXpQpkwZALMuCzs5OeHk5MQrr7xCt27dstyCpWbNmgwaNEjV3I4fP06jRo1o2rQpoaGhqsYWQgtDhw5V/P9qmTJlmD59ukYZ2b8XX3yRnTt3smHDBtUbyH/77bf4+fkxZMgQ1fsSCiGyzi4KwDS5c+fm008/pXnz5pQsWRLQrhBMi+vs7EyVKlXo0qUL9evXz/bVbSNGjKBy5cpqpPiEzZs3U6lSJXr06MHNmzdVjy+EGv744w9mzZqlaIxOp2P58uV4e3trk5SD0Ol0vPvuu5w8eZJZs2aRJ08e1WInJiYyceJEfH19WbhwISkpKarFFkJkjc3cBJIVt2/f5siRIxw+fJi4uDicnJwwGAzZipkWo0iRIlSvXp3AwEDc3NxUytjk2LFj1KhRg+TkZFXjpsmZMyfDhg2jZ8+equcuLMMebgKJjY2lcuXKnD9/XtG4vn37Mm3aNG2ScmC3b99m3LhxzJkzR/XvRYGBgUyfPp033nhD1bhCiMyz6wIwjcFgIDIyksjISKKjo7lx48aj/UVpe+6MRuOjU2s6nQ6dTvfEex4eHhQpUoSiRYtSsWJFChUqpGnO48aNY/jw4Zo+o0yZMkyaNIlmzZpZ5UlqkXn2UAB27NiRJUuWKBpToUIFDh06pGi/rVAmKiqKgQMHsm7dOtVjv/HGG0ybNo2KFSuqHlsI8WwOUQD+l8FgICYmhmvXrnHt2jXi4uJISUkhJSUFnU6Hs7Mzzs7O5MmTh8KFC1O4cGGzLy+lpKRQp04dDhw4oPmzateuzYwZM3jppZc0f5bQhq0XgJs3b1bc29PZ2Zl9+/bx4osvapSVeNyff/5Jnz59OHTokKpxnZyc6NixI6NHj9b8B2shxL8csgC0FaGhoVSrVs1sjVVbtGjBxIkT5R5hG2TLBWBMTAwVK1bk2rVrisaNHj2aESNGaJSVyIjBYODbb79l8ODBXL58WdXY3t7eDB48mN69e6van1AIkTG7OgRibwICAhg/fnyGXxs3bpzqp/VWrVqFv78/gwcPltN6wmy6deumuPirXr263HltAU5OTnz22WeEh4czduxYvLy8VIsdGxvLkCFD8Pf359tvv832fm0hxLNJAWjlevfuTd26dZ9474MPPmDo0KGcPHmSL7/8UvXTepMmTcLHx4cFCxbIaT2hqVWrVvH9998rGuPm5kZISAguLi4aZSWex9PTk2HDhhEZGUmHDh1U3UN88eJFPv30U2rXrs3u3btViyuEeJIUgFZOr9ezfPlyPD09AXBxcWHy5MkAuLq60rNnT6Kiovjiiy9U/QPx5s2bdO3alSpVqvDLL7+oFleINNHR0XTr1k3xuIkTJxIQEKBBRkKpIkWKsHjxYo4ePUrDhg1Vjb1//37q1q1Ls2bNOHv2rKqxhRBSANqEcuXKMXXqVAB69OiBj4/PE1/PmzcvM2bM4PTp03zwwQeqPvv06dM0adKEN954gxMnTqgaWzguo9FIhw4duHPnjqJxr776Kr169dIoK5FVlStX5tdff2Xz5s2qF+dr164lICCAfv36cffuXVVjC+HIpAC0EV26dOHjjz9+ZmsYHx8ffvjhB/7880+qV6+u6vN//fVXqlatSqdOnRTv1xLivxYvXszPP/+saEyOHDlYvny5xa97FBnT6XS89dZbHD9+nHnz5pE/f37VYiclJTF9+nR8fHw06UsohCOS76Q2wsnJiW+//TZT+/3q1avH33//zcqVKylevLhqORgMBhYvXoyvry8TJkwgPj5etdjCcZw9e5Y+ffooHjdr1iw5oW4DnJ2d6dq1K1FRUQwYMABXV1fVYsfExPD5559TqVIlNm3ahDSxECLrpA2MnYuLi2PmzJlMnDiRhw8fqhq7RIkSTJw4kZYtW8qsjIXZShuY1NRU6tevz65duxSNe/vtt9m0aZM0LLdB586dY/DgwaxevVr12A0aNGD69OlUrVpV9diZZjTCw3Nw+wjcOQqxkZAaD6lxYEgGvYfp5ZYXcleBPFUhTxVwyWm5nIVACkCHce3aNUaMGEFwcLDq7RVq1KjBjBkz0p1WFuZjKwXg9OnT6devn6IxefPm5eTJkxQpUkSjrIQ57N27lz59+rBv3z5V4+p0Otq0acO4ceMoWrSoqrGf6s5ROPc13NoLd45B6j8/XOucAQMY//s9Vgc6PRhTgX/+yPUsCfmqQ+HGULqlFITC7GTaxkEULlyYRYsWcfToURo1aqRq7AMHDlCvXj0++ugjzpw5o2psYT9OnTrF0KFDFY+bP3++FH92oHbt2uzZs4dVq1apupRvNBpZtmwZvr6+jB49WvWVjkeS70PkAthSFX6uBuFfwq09/xZ/AMaUDIo/AKPpazw23xJ3ES5tgANd4YdCsLct3NxjmlEUwgykAHQwlSpVYuvWrWzZskX103o//PADAQEB9O3bV/HpTmHfkpOTCQoKUnyrTcuWLWnevLlGWQlz0+l0fPzxx4SGhjJ58mRy5lRv1isuLo5Ro0bh5+fH8uXL1VvpuB9hKs5+KAgHusHd46b3jWr0SDUARjAkwPmvYdvL8FN5CP/KtHwshIakAHRAOp2OJk2aPDqtV6BAAdViJycnM2PGDHx8fJg9e7ac1hOA6eaaw4cPKxpTpEgR5syZo1FGwpLc3d0ZMGAAkZGRdO3aFb1er1rs6Oho2rZtS/Xq1dm5c2fWA6UmwokxsDnQVJwZEjHN4Gk0Q5dWUMZGwaFe8HNVuPW3Ns8SAikAHVraab3IyEgGDhyo6mm927dv06tXLypWrMiPP/4op/Uc2IEDB556peGzBAcHkzdvXg0yEtaiYMGCzJs3j+PHj/PWW2+pGvvIkSM0aNCA9957j4iICGWDb+yCLZXgxKh/lnXNeSPSP0Xm/XD4tTYc6GFafhZCZVIACnLlysWkSZMIDw+nRYsWqsaOiIjg3Xff5fXXX+fIkSOqxhbWLz4+nqCgIFJTUxWN69SpE02aNNEoK2FtKlSowObNm/n111+pVKmSqrE3btxIYGAgvXr1IiYm5tkfTn4Af3eE7a/Ag7NoNtuXGWkHRqLmw4++cOUny+Ui7JIUgOKR0qVL891337F3715q166tauydO3fy4osv0rZtW65cuaJqbGG9hg4dSlhYmKIxZcqUYdq0aRplJKxZo0aNOHLkCIsXL6ZQoUKqxU1JSWH27Nn4+PgwY8aMjPeixl83FX5nl5n+2ajshxbNGA2QeAv+eAfCZlk6G2FHpAAU6bz00kvs3r2b1atXq35ab/ny5fj5+TFq1CjtTusJq/D7778zc+ZMRWN0Oh0rVqzA29tbo6yEtdPr9XTo0IHIyEiGDRuGu7u7arHv3r1L3759CQwM5Icffvh3a0rsGdhaE+6esJ7C7wn/HBY5/AUc7isnhYUqpAAUGdLpdDRv3lyz03qjR4/Gz8+PZcuWKV4eFNbv/v37tGnTRvG4vn37Uq9ePfUTEjbH29ubsWPHEhERQatWrVSNfebMGT766CMaNGhAyp1w2FYX4qPNvNcvi8JmmA6JSBEoskkKQPFMaaf1oqKi6Natm+qn9dq1a0f16tXZsWOHanGF5fXp04cLFy4oGhMYGMjYsWM1ykjYqhIlShASEsKBAwd45ZVXVI1dvmwxnHfWNy2x2kLxlybiKziirKG6EP8lBaDIlAIFCjB37lxOnDjB22+/rWrso0eP8vrrr/Puu+8SHh6uamxhfps3byY4OFjRGGdnZ0JCQlRd7hP2pXr16vz++++sW7eOcuXKZTuet7c3oxuFQuJN2yr+0oTNgItrLJ2FsGFSAApFAgIC+Omnn9i2bRuVK1dWNfaPP/5IxYoV6dmz5/NP6wmrdOvWLdq3b6943PDhw3nhhRc0yEjYE51Ox/vvv8/p06eZOXMmuXPnznKsIe1qUchwxDaLPwB0sK8DxF22dCLCRkkBKLKkYcOGHD58mCVLllC4cGHV4qakpPDVV1/h4+PD9OnTFd8cISzHaDTSrVs3rl+/rmhcjRo1GDx4sEZZCXvk6upK7969iYqKolevXjg7OysaX7J4YXpX/Q2LtnnJNiOkxsGez55y/ZwQzyYFoMgyvV5P+/btiYyMZPjw4Xh4eKgW++7du/Tr148KFSqwdu1aaSRtA1atWsWaNcqWpNzd3QkJCcHFxUWjrIQ9y5cvH7NmzeLUqVO89957mR43qXkK7m528MefMQVu/AFhyk7bCwFSAAoV5MiRgzFjxhAeHq76ab2zZ8/SrFkz6tWrx/79+1WNLdQTHR1N9+7dFY+bOHEi/v7+GmQkHImfnx/r16/n999/f+5WgloVC9PixdtW2u4li44OMrWyEUIBKQCFarQ8rbd7925q1arFp59+ysWLF1WNLbLHaDTSvn177ty5o2jca6+9Rs+ePTXKSjiiV199lQMHDrBixQqKFSuW4WdmNLuNDjtcMg2fbekMhI2RAlCoLu203vr16/Hx8VE19rfffkv58uUZOnQosbGxqsYWWbNo0SJ++eUXRWO8vb1ZtmwZTk7yLUioy8nJiaCgICIiIhgzZgyenp6PvtbsjcrU8bHVQx/PYEyBM4sh6Z6lMxE2RL77Ck3odDree+89Tp06xcyZM8mTJ49qsRMSEpgwYQI+Pj4sWrSIlBQ7/IZuI86cOUPfvn0Vj5s1a5aqt8wI8V+enp4MHz6cyMhI2rVrh4eHB5PeuQr2OPsHkJoAZ5daOgthQ6QAFJp6/LRe7969FZ/We5YbN27QuXNnqlWrxtatW1WLKzInNTWVNm3aKL7Sr2nTprRt21ajrIR4UtGiRQkODub8ri8pm/umpdPRkNHUG9BgR3sbhaakABRmkTdvXmbOnKn4tF5mnDx5kjfffJMmTZpw6tQpVWOLp5s5cyZ//fWXojH58uVj8eLF6HQ6jbISImMFY1aATr2bjKxS3GWI3mLpLISNkAJQmJWS03pK/fLLL1SuXJkuXboo7kUnlDl58iRDhw5VPG7+/Pmq9o0UIlNSEyDmb/s6+ZsRnQvc+N3SWQgbIQWgsIi003ohISFPPa2XFQaDgYULF+Lr68ukSZNISEhQLbYwSUpKIigoiKSkJEXjPvnkE5o1a6ZRVkI8w51jmt74seUo6D59+qu5uQ7oGpPh1l4zPUzYOikAhcU4OTnRqlWrR6f1vLy8VIsdGxvL4MGD8ff357vvvpNG0ioaN24cR44cUTSmaNGizJkzR6OMhHiOmP2AdtsO6leAq3OffF3+ChpVhPzeMPw9zR6d3u3DYJCDceL5pAAUFvff03pq7g+7cOECn3zyCbVr12bPnj2qxXVUBw4cYMKECYrHBQcHq3oSXAhFYvZruv/PwxUK5/73VSAn9PsWjlyAHUOgUknNHp2eIRHuyV5o8XxSAAqrUaRIEYKDgzly5Aivv/66qrH//vtvXn75ZZo3b87Zs2dVje0o4uPjCQoKIjVV2T6qzp078+abb2qUlRCZcPMvTZeAH5dqgM/mwbYT8Ju5iz8AdKb9jkI8hxSAwupUqVKFbdu28dNPP6l+TdiaNWsICAigf//+3L17V9XY9m7IkCGEhYUpGlO2bFmmTZumUUZCZILRCA/Nc3tQqgFaPVb8Vf6n+IuNhxrDoepgqDQQFu/QMAmdM8RGafgAYS+kABRWSafT8fbbb3P8+HHmzp1L/vz5VYudlJTEtGnT8PHxYe7cuSQnJ6sW217t3LmTWbNmKRqj0+lYsWIFOXLk0CYpITLDkIQ5mj+nFX+//lP8VSn179c83eCPYXB0Ivw9Bib+CDFaXmSUGq9hcGEvpAAUVs3FxYVu3boRGRlJ//79cXV1VS12TEwMPXr0oFKlSvz0009yUOQp7t+/n6XGzf369aNu3boaZCSEAmYohtKKv60nYPvgJ4s/AL2TqQgESEg2fV677zZGKQBFpkgBKGxC7ty5mTJlCmFhYTRv3lzV2OHh4fzvf/+jUaNGHDt2TNXY9uCLL77gwoULisYEBgYyZswYjTISQgltm46nGiBo/r/FX9XSGX/u7kOoMhiKfw4DmppOB2tHGq2L55MCUNiUMmXKsHr1anbv3k2tWrVUjf3bb79RrVo12rdvT3R0tKqxbdWmTZtYulTZ/aLOzs6sXLkSd3d3jbISQgG9h2ahDf8UfxsOwdddoUhuuHb3yVfqP6vPub3g2EQ4Nwu+3QPX72mVlU7TX7OwH1IACptUp04d9u7dy3fffUepUqWePyCTjEYjS5cuxdfXlzFjxii+59ae3Lp1i44dOyoeN2LECKpVq6ZBRkJkgZMLWv1Rd+CsqZiLS4S3pkKR7ulfsf9ZjS2Uy3Q45E9l56mUcfbUMLiwF1IACpul0+lo0aIFYWFhTJo0CW9v9dZU4uLiGDlyJOXLlyckJASDQftN5NbEaDTStWtXxVfq1axZk8GDB2uUlRBZoNOBt48moWv5gPGbZ79ye5lm++7HmcbcjzMVf+WLaJKS6TaQnOp2TxD2SQpAYfPc3d0ZOHAgUVFRdOnSBScn9f63vnLlCq1bt6ZGjRr8/vvvqsW1dt999x1r165VNMbd3Z0VK1bg7OysUVZCZFGBl03tUSzk8m14ZaxpD2DdMdCj8b8tYjSRr6aGwYW9kAJQ2I2CBQsyf/58jh8/TpMmTVSNffjwYerXr897771HRESEqrGtzZUrV+jevbvicZMmTVK9b6MQqshXE4zKGpir6cUyphYwxybC8UnQtaGGD9N7gnd5DR8g7IUUgMLuBAYGsmXLFrZu3UrFihVVjb1x40YCAwPp3bs3t2/fVjW2NTAajXTo0EFxk+z69evz+eefa5OUENmVryZaNl6xKvmqg5N2194J+6EzSvMzYcdSU1NZunQpw4cPV7yf7Xly587NiBEj6N69u6r9CRUzpLBy0VTOhh2AhGuQEme69sqQYtr/pHMGJ2dwzQPuRXjnwyCq1W5s+tp/LFy4kC5duih6vLe3NydOnFD1MI4QqjIkw/c5/mkKbcd0zhDQD6pOtHQmwgZIASgcQmxsLJMnT2b69OkkJCSoGtvHx4cpU6bw3nvvocugqFKdIRmubIboLRBzAO6fMr0HoHMBjGA08Oj2A50Tpsl+47/LYK55IM8LppmRUi0gT2XOnDlDlSpVFJ98Xrp0aZYaRQthVjsawfWdFl0KNov6v0KRRpbOQtgAKQCFQ7l48SJDhgzhm2++UT12vXr1mDFjBtWrV1c9NgD3I+FsMEQtgaQY00/72b3gPi1Gnhe4U7AVn0/fyzfffZ/p4f/73//YuHGjeQpfIbLjymb4o6mls9DQP6edm4ZnOLsvxH9JASgc0oEDB+jTpw9//fWX6rE/++wzJkyYQIkSJbIfzGiESz9A+Jdw8y/Q6TWawfhnhlDvxtozteky/Qgxt+8+c0S+fPk4efIkhQsX1iAfIVRmNMAmX3hwDrvdD1hzIfh0snQWwkbIIRDhkGrUqMGff/7JDz/8QLly5VSN/fXXX+Pn58fw4cOJjc3Gje8PzsKOxvBXM7i5x/SeZstXBkx3iCbwUZldnBofyzuv+T1zxIIFC6T4E7ZD5wT+fS2dhXZcckHpzyydhbAhMgMoHF5iYiJz585l7Nixik+/Pk+hQoUYN24cbdu2Ra/P5Mk8QzKEzYDjI00FX3aXebPIaIQV+wvQc+lDYh/EPfG1Tz75RJNldCE0lfwA1heFlGz8YGaNdHoIGABVJ1g6E2FDpAAU4h8xMTGMGTOGefPmkZKibtFVqVIlpk+fTqNGz9mcffsQ7A2Ce6FYxTKVTs+FG6m0DSnMzsPXAChatCgnT54kT548Fk5OiCw4PhJOjsUqfn+pRe8B/4sEz2KWzkTYECkAhfiPiIgIBgwYwMaNG1WP/dZbbzF16lQqVKiQ/ouXN8Jfzf+Z9bOuk4oGoxNz/ijAoK/vsX79Bt544w1LpyRE1qQmwi814H6oxWbXVVdrKZSTk/hCGSkAhXiK33//nT59+nDkyBFV4+r1ejp16sSoUaMoWLCg6c3I+XAg7fYNK/0tqXPmRkIeCr6/E3IHWjobIbLuXij8XNX2+wLq9FDsf1BvnZz8FYpJASjEMxgMBlauXMmQIUOIjo5WNXbOnDlZsmQJzSpfg0M9VY2tGZ0eXHJCo78gVwazmELYioi5cLCHpbPIBidwyw9NT4NbPksnI2yQnAIW4hmcnJxo3bo1ERERjBo1Ck9PT9Vix8bGUt79qO0Uf2Bamk6+D9tegfvhls5GiKzz7QZF3jD9UGOTDFDnayn+RJZJAShEJnh5eTFy5EgiIyNp27atKo2P233SlMqxk1TIzsyMqZB8F/58H1LVvVVFCLPR6aD2SsjhY2qIbmuqTpYbP0S2SAEohAJFixZl6dKlHD58mAYNGmQ5jpeXF2NfP2K7+3aMqaYZwKNDLJ2JEFnnXgAa/gE5ythWEVhlAlQYYOkshI2TAlCILKhatSrbt2/nxx9/pHz58orHD/q0PEXco63utK8yBgifCVe3WToRIbLOoxA03AW5Aqx8OfifHxarTYPAwZZNRdgFOQQiRDYlJyezcOFCRo0aRUxMzHM/X6xwXiIm3MbTzQzJaU42ogs7kRwLuz6Ea9uxupP4Oj3wz5J16RaWzkbYCZkBFCKbXFxc6NGjB1FRUfTr1w8XF5dnfn7iRwl4utno0m86BkiKgUO9LJ2IENnj4g2vbYaKI0zLwVazJKwDb1/TyXsp/oSKZAZQCJWdOXOGQYMGsXbt2nRfezGwOPsHXcbJ7n70coJ3z4FXSUsnIkT23QuDvzvArd2Wy0HnbLq/uNIo0x3GelfL5SLskt39MSSEpZUrV441a9bw119/UbNmzSe+NqNFgh0Wf5gOs0TMtXQWQqgjlz80+hNqLQHnnGbeG/jPswrWg7dPmfb7SfEnNCAzgEJoyGAwsHr1agYNGsSLAYVZF7Tf0ilpx9kb3o8GlxyWzkQI9cRfh4jZELUYEm+aikEtDm+lxS34Gvj1gBIf2G6XAGETpAAUwgzi4+OJ3fQKBVOOALZ88vdZdFB9Dvh1s3QiQqjPkALRWyBqkemv6EwFWnaKQZ0LGJPBrSD4dIRy7SBHWdVSFuJZpAAUwhzuHIWfq1k6C43pIEc5eCfS0okIoa24K3BhFcQcgNsH4ME5TCeHdeDk/M8hYuO/76Ez/b0xxTRe7wl5qkLeF6FwQyj6lmmcEGYk/8cJYQ7Xd2LacmuwdCYaMsKDKIi/Ch5FLJ2MENrxLAYBff/955SHcOc43D0K9yNMN+QYEsCQDHp3cHIHt7yQu4qp8MtRxnTAQwgLkgJQCHO4tf+f5SL1Q285Cm9PffrXm9WC78153XDMASj+jhkfKISFOXtBgdqmlxA2QgpAIczh1m7Nbv2oXwGu/ucAbqoB2i6EIxdg+HuaPDZjOmeI+VsKQCGEsHJSAAqhtYRbEHdJs/AerqZXmlQDfDbPVPztGAKVzNmaz5gKt/aZ8YFCCCGyQjYhCKG12wfM9qi04m/bCfjN3MUfAEaI2Q9Ge97rKIQQtk9mAIXQWmwk5jgAkmqAVo8Vf5X/Kf4uxUCr+XDjHjjrYfj7pn2Bmkl5AAk3waOQhg8RQgiRHVIACqG1lDjTiT8NZ8XSir9f/yn+qpT692vOTjDrM6ha2lQEvjAU3qoCXu6apQOp8RoGF0IIkV1SAAqhtdR4TH3ANAr/T/G39QT8NvjJ4g+gSB7TC6BgLsibA24/lAJQCCEcmewBFMKGpRogaL6p+Ns+2DTL9ywHz4LBCCXymSU9IYQQVkpmAIXQmt4DLRoAGv4p/jYcgrU9oUhuuHb3yc8UyAn6f37Mi4k1fX5JR9VTSU/vYYaHCCGEyCopAIXQmrOnJvv/DpyFb/eY/v6tpzSCvrMIcntBYjK8PxMGvwN1/FRPJT0pAIUQwqpJASiE1rx90eIEcC0fMH7z/M8ZjdBmITQIhFb1VE8jPecc4F7ADA8SQgiRVVIACqG1vDUs+vjdEbB6H1QuARsOmt5b2VWrHoE6yFdT7jkVQggrJwWgEFpzzw+eJTS9DeRZ6pYHw9dmephOD/nlPlQhhLB28mO6EOaQ/2VTcWTvjCmmGUAhhBBWTQpAIcwhf03TZjxHkM+yS95CCCGeT5aAhTCHQg3Q+io4y9NBjnLgUcTSiQghhHgOmQEUwhzyVPlnb5ydLwP7f2HpDIQQQmSCFIBCmEtAPyDV0lloxzkHlG1t6SyEEEJkghSAQphLsXf5f3v3DiJXGYdx+D179kY2ZteNhICJrtHElSBe4mIgEBBiWu1CsBAUvKCV2IhY2icgYuGlEuyChQhiZURBLEQsghhsIgpRRGJhzDpjcSb9bjY738x8zwOHgZni/KcY5sd3btmxr/QU26Npk4MvJtMLpScBYAMEIAzLVJusvpKkKT3JzdfvJ4deLj0FABskAGGYDjyTzCxmoiKwaZOV08nC/tKTALBBAhCGaXYxOfpBkkm5JcxUMrs7OXK29CAAbIIAhGHb/2Ry97OZjJ9fLzn2YTK3u/QgAGzCJPwDwfh5+EyycMeYPx1kqjunce+J0oMAsEkCEEqY2Zkc+2h8nw7StMmue5MH3iw9CQA3QABCKbc9mqy9XXqKzWvaZHYpOX4uaedLTwPADRCAUNLB55NH3io9xcY1bXcV84nz3QogAGNJAEJph15K1t5Jd2uYEb49TDOdzO1JHj+fLN5XehoAtqDp98f1JCSYMJc+Tr48lfTXk/6IPTLu+jl/j32W7Li99DQAbJEVQBgV+55ITn6V7FrNyKwEXr9K+a6nk5Nfiz+ACWEFEEZN71py4Uzy/RvdSmB/vdAgTbLzQHL0/WTP8UIzALAdBCCMqr9/Tr55Lvnt83SL9b3h7LeZ7l4Pv54cfi1p54azXwCGRgDCKOv3k0vnkgtnk8tfdIdkt+X8wEFgtvPJylPJ6qvJ4uo27AeAUSAAYVxc+Sm5+F5y8d3k6u/dSt2WDg83g6BcT5aPJPe8kNx5Kpm55aaNDMBoEoAwbnrXkl8+SX79NPnj2+SvH5Lev91nzUySftLvpTtk3CSZSppm8P5g9XD21i76lteSldPJ0v1FvgoAZQhAGHe99eTKj8mf33Xb1cvJf/90W9N2h3Xb+e6CjqUHk+WHkvm9gygEoEYCEACgMu4DCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFCZ/wEm4CKTEKbU9QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -914,7 +914,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHiCAYAAAB4GX3vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTDElEQVR4nOzdZ3RUVReA4Xdm0kNC6L0nISFUpQiKCgKK/VNBEAm9IyC9995BOoQSLCAooIIiCjaK9J5KESH0GkjPzPdjDIIJkJvcO3U/a81SJ3P23aiEnVP20ZlMJhNCCCGEEMJp6K2dgBBCCCGEsCwpAIUQQgghnIwUgEIIIYQQTkYKQCGEEEIIJyMFoBBCCCGEk5ECUAghhBDCyUgBKIQQQgjhZKQAFEIIIYRwMlIACiGEEEI4GSkAhRBCCCGcjBSAQgghhBBORgpAIYQQQggnIwWgEEIIIYSTkQJQCCGEEMLJSAEohBBCCOFkpAAUQgghhHAyUgAKIYQQQjgZKQCFEEIIIZyMFIBCCCGEEE5GCkAhhBBCCCcjBaAQQgghhJORAlAIIYQQwslIASiEEEII4WSkABRCCCGEcDJSAAohhBBCOBkpAIUQQgghnIwUgEIIIYQQTkYKQCGEEEIIJyMFoBBCCCGEk3GxdgJCiNwxmkzcTUnjVnIat5NSSU43YjSZSDeZ0KHDoAO9Xoe3q4G87q74ebjiYdCj0+msnboQQggrkQJQCDtjNJm4dDeZS/eSuJmUSnxyGsZ/vpZR0pke+PyDZV7G+656HX4eruTzcKWUryd53V01z1sIIYTt0JlMJtOTPyaEsLa7KWmcvZ3A2VsJpBhN6Hi40MuJjBh+7i6U8/OmpK8HrnrZGSKEEI5OCkAhbJjJZCLubhKxN+9xPTFVlaLvcfQ6KOXjSWD+PPi4ywKBEEI4KikAhbBR91LSOHT5NlcSUiz63Iwl44oF8lAxfx4MetkrKIQQjkYKQCFsjNFkIvbGPU5ej8dk0nbG70m8XQ08VTQvhbzcrZiFEEIItUkBKIQNuZmUyv6Lt4hPSbN2Kg8p4+tJ1cK+uBpkf6AQQjgCKQCFsBFx8UnsvXjT6rN+WdEBedxceK5kfjxdDdZORwghRC5JASiEDTh96x6HL9+xdhqPpQPcDHrql8qPr7SNEUIIuyYFoBBWdurmPY5cse3iL4MOcNHreKF0ASkChRDCjsmGHiGs6PQt+yn+wLw0nWY08du56za3T1EIIUT2SQEohJXcSEyx+WXfrJiAVKOJPRdukG6UBQQhhLBHUgAKYQVpRiN7425hrx32TEB8SjonrsVbOxUhhBA5IAWgEFZw5PIdEtLSbe60r1KxN+9x5V6ytdMQQgihkBSAQljYhfgk/rqTaO00VLPv4i2S043WTkMIIYQCUgAKYUGp6UYOXrpl7TRUlZJu5Ojl29ZOQwghhAJSAAphQWdvJ5DqYAcnTMDf8UkkpKZbOxUhhBDZJAWgEBZiMpmIvXnP2mloQoe5pY0QQgj7IAWgEBYSdzeJxDTH3CtnAk7fTCDN6Ji/PiGEcDRSAAphITE3HHuGLM1k4q/bjnO4RQghHJkUgEJYwK2kVG4kpVo7Dc056hK3EEI4GikAhbCAqwnO0SvvXmo6iWlyGEQIIWydFIBCWMDNpFS7vfVDqZtOMNMphBD2TgpAISzgemKKRW79GP7h/3g3qDjrFsx66H2TycTg5q/xblBxvpg7VbPn64CbiVIACiGErZMCUAiNJacZLXL612QycTbiBIWKl+Sv6MiHvrZjw5fcuHIJgPKVqmiXA3AjMUWz+EIIIdQhBaAQGruZZJmC6OLZ0yTeu0uD/zXnXHTE/fcT797ls1mTaPC/9wGoEFJV0zxuJKViMjlWs2shhHA0UgAKobG7Froh49SJo7i5e/Dca29z8a8zpKaYD56sWziLckEh5CtUGN98+SlYrISmeaSbTJrcDRwREcGkSZO4evWq6rGFEMLZuFg7ASEcXbrRhA403wN4+uQxylQMpni5Cnh4enH+VAzunl5s/WIVU9Z/zzfLF1Fe49m/DOkqzAAajUb27t3Lxo0b2bhxI1FRUbi5uTFgwAAVMhRCCOcmBaAQGlOjGMqO0yeOUT6kKjqdjjIVgzkXE8XOzZto1OxDSpYP4PSJo9So39AiuaTn8L7jlJQUfvnlFzZs2MCmTZu4ePHiQ18PCAjAxUW+bQkhRG7Jd1IhHMSZiOPUf/1tAMpUrMTm8GVcjTtP7+nzSE1J4e/YaN7t0tu6SWYhPj6eH374gQ0bNrB582bu3LnzyM8GBwdbMDMhhHBcUgAKoTGDTvsOgJf+/ot7d27fX+ItFxzCD5+vpOvYaXj7+HLq+FHSUlMpX9kyS8AG/eN/zVeuXOGbb75h48aN/PTTTyQnZ69RthSAQgihDikAhdCYQa/Tfv/fiaO4uLpROiAIgBffbk7tRq/g45ff/PWTx8iT148iJUtrnIlZVkXv6dOn2bBhAxs3bmTnzp05Oins6+tLcnIy7u7uaqQphBBOSwpAITSWx9Wg+TNOnzhG6YCKuLi6AuDi6opvvgL/fv3kMcoFV9Y8DzAXf+4GPSaTicOHD7Nx40Y2bNjAsWPHch17wIABDB48mAoVKhAcHPzQKygoCB8fHxV+BUII4fh0JmnYJYSmktOMbD512dppWEweXTpbFkxn48aN/PXXXxZ9dsmSJe8XhJUqVbr/94UKFbJoHkIIYetkBlAIjbm76PF00VvkNhBr0wHF8vqQL18+/v77b4s///z585w/f55t27Y99H6BAgUyzRhWqlSJUqVKobPAHk0hhLA1MgMohAXsjbvJhfgki9wHbG3PlMhH8Twe7Ny5k1atWll8FlAJb29vgoKCMhWHFSpUwPWf5XQhhHBEUgAKYQExN+5y7Gq8tdOwiKYVCuPpYt73eOvWLbp27cratWutnJUyrq6u+Pv7P7SMHBwcTMWKFfHy8rJ2esLW3L0LR4/C4cMQEwOJiZCUBGlp4O4OHh6QPz9UqwbVq0P58qCXi7iEdUkBKIQF3EpKZftf16ydhua8XQ28XL7wQ++ZTCbCw8Pp0aMH9+7ds1Jm6tDpdJQpUybTUnJwcDD58uWzdnrCUi5cgDVrYO9e2LcPzp4Fkwl0OshoVG78Z8uHTmd+mUzmghDAy8tcDD79NDRuDK+++u84ISxECkAhLCAxMZE/Ltwi3jLXAltNtcK+VMjnneXXYmJi+OCDD9i/f7+Fs7KMIkWKZFpKDg4Opnjx4rLP0BGkpcGWLbB4MXz//b+FXXouflO7uJjjFioEHTtChw5QoYJ6OQvxGFIACqEho9HImjVrGDx4MP9r05EXPuxk7ZQ046LT8ap/YVwes7SVkpLCqFGjmDJlSo76ANojX1/fLAvDcuXKYTBo3yJI5NLlyzBnDixbBlevgsGQu6LvUTLivvAC9OwJ775rLjCF0IgUgEJo5I8//qBv377s27cPAL1ez1fHzmA0ON7hAh0QkN+byoV8s/X57du307p1a+Li4rRNzIa5u7sTGBiYqWVNYGCgNLq2BUYjLF8OfftCQoI2RV9WMgrBF1+EpUvB398yzxVORwpAIVR26tQpBg8ezPr16zN9rdvwsTT6sKMVstLeK+UL46Wg6fX169fp2LEjGzdu1C4pO6TX6ylfvnyWs4a+vtkrsEUuRUSYl2R37bJeDi4u5oMio0ZB//7g5ma9XIRDkgJQCJXcvHmTCRMmMHfuXFJTU7P8jFceH8L3HEfn4jizgDqgpI8HtYorPwRhMplYunQpffr0ITEx8ZGfK1y4MKmpqdy8eTMXmdq/EiVKZFkYFi5cWPYZqiE1FSZMML/g30Mb1qTTQWAgrFoFdepYOxvhQKQAFCKXUlNTWbRoEaNHj+bGjRtP/HzT5q3oOHaaBTKzDHeDnkblCuFuyHlbi4iICFq2bMmRI0ey/Ponn3xCjx49uHLlChEREZleFy5cyPGzHUG+fPkyLSUHBwdTunRp9NJuJHvi4+Gdd+Dnn80ndm2JwWAuBFevhhYtrJ2NcBBSAAqRQyaTiW+//ZYBAwYQHR2taOyyLTvIV76iRplZ1rMl81PEO/d71pKTkxkyZAizZs3K9LWffvqJl1566ZFj79y5Q2RkJCdPnnyoMDx9+jRGo+PfwPIoXl5eVKxYMVPLGn9/f2l0/aDLl6FJEzhxwnJ7/ZTKaCUzfTr062ftbIQDkAJQiBw4dOgQ/fr1Y8eOHTkan79gIcJ3HiHFhF3fDuKfz5uqhdXdl/bDDz/Qtm1bLl/+9/7kCxcuULx4ccWxkpKSiImJeagoPHnyJNHR0SQnJ6uZtl1xcXHB398/01JyUFAQ3t5Zt/FxWJcvQ/36cOaMbSz5ZsfEiTBkiLWzEHZOCkAhFLhw4QLDhw9n1apVuW5j0nf4KJ79sItKmVmWDsjjZqBhmUIY9OrvPbty5Qrt2rVjy5Yt5M2bl5s3b6q6xy09PZ0zZ85kuZx8584d1Z5jj/7b6DrjVaBAAWunpr6rV83F36lT9lP8ZZgyBQYOtHYWwo5JAShENty7d49p06Yxbdo0EhISVImp0+n45WgE11zt62SnDnDV63ihTEF83LS7vcBkMjFv3jy+/vrrHM+05uSZcXFxWRaGD85IOqNChQpluc+wRIkS9nkAxWSCpk3hp59sd9n3SX780XyTiBA5IAWgEI9hNBoJDw9n2LBhqves8/X1JSwsjBovNeXIFfuYddIBLnodL5QugK+7ZfaQ3blzxyban9y4cSPLfYZnz561dmpW5ePjQ1BQUKbr8cqVK4eLLV9vNn++ueGyvdLroWBBOHkSHHF2VmhOCkAhHmHHjh3069ePQ4cOqRrXYDDQpUsXRo8eTaFChQA4fesehy/bdhGoA9wMeuqXym+x4s8eJCQkEBUVlWmfYUxMDGn2tqyoIjc3t/uNrh98VaxYEQ8PD+smd/Ik1KgBKSnWzSO3DAZ44w34+mu5NUQoJgWgEP8RFRXFwIED+eabb1SP/dprrzFt2jSCg4MzfS0uPom9F29issGDIeY9fy48VzI/ngqaPTuz1NRUTp06lWkpOTIyknv37lk7PavR6XSPbHSdN29e7RNIToaaNSEy0v72/T3K8uXQrp21sxB2RgpAIf5x/fp1xowZw8KFC1WfualatSozZsygUaNGj/3czaRU9l+8RXyKbf3BVMbXk6qFfXHNRa8/YWY0Gjl//nympeSIiAiuX79u7fSsqlixYpla1gQHB1OkSBH19hmOGgXjxtler7/c8PSEmBgoUcLamQg7IgWgcHrJycnMmzeP8ePHc+vWLVVjFy1alPHjx9O2bVsMhuzNnBlNJmJv3OPk9XirzwZ6uxp4qmheCnnJ3bSWcPXq1UxLyREREZw/f97aqVmVn59fljOGZcuWVdbo+u5dKF7c3PTZkRgM5hPBEydaOxNhR6QAFE7LZDLx9ddfM3DgQE6fPq1qbE9PT/r378/AgQPJkydPjmLcS0nj4OXbXE2w7D6ljHmWigXyUDF/Hk3avAhl4uPjiYyMzDRjGBsb69SNrj09PR9qdJ3xCggIwC2ru3MXLDAf/HDEP/by5oW4OPDysnYmwk5IASic0r59++jbty9//PGH6rFbt27NhAkTKFWqVK5jmUwm4u4mEXvzHtcTU9Gh7YygXgelfDwJyO8tBz3sQHJycqZG1xEREURFRZGUlGTt9KzGYDBQoUKFh5aSn3/uOco0amRu+OyIf+zpdLBoEXTubO1MhJ2QAlA4lXPnzjF06FA+++wz1WM///zzzJgxg5o1a6oeG+BuShpnbydw9lYCKUaTKsVgRgw/d1fK+XlR0tcDV7k71u6lp6fz119/PbSMnPG6ffu2tdOziu979uSVefOsnYZ2dDrw94eoKDkRLLJFCkDhFOLj45k8eTIzZ85UfWbE39+fadOm8dZbb1mkIa7RZOLS3WQu3UvmZlIK8clpZCwCZjz9wd/UD2aU8b6rXoefhyv5PFwp5etJXpntcwomk4lLly5lmjE8efIkly5dsnZ6mrpRsyb5Dh2y36bP2SXNoUU2SQEoHFpaWhrLly9nxIgRXLlyRdXY+fLlY+TIkXTv3j3r/UYWYjSZuJuSxq3kNG4npZKcbsRoMhF/LwEvT09c9Dr0eh3ergb83F3J6+GKh0Fvn7c3CM3cunUryxtQzpw5k+trD63NBUhxc0Nn733/nsTFBfr3h0mTrJ2JsANSAAqH9eOPP9KvXz+OHz+ualwXFxd69uzJiBEjyJ8/v6qx1fTee+/RsmVL3n33XWunIuxYYmIi0dHRmZaSo6OjSU1NtXZ62dLQz4+fVT7h/yAjUAl4C5jywPtbgTeAz4Bmmj39P55/Hn791VJPE3ZMCkDhcE6cOEH//v354YcfVI/99ttvM2XKFAIDA1WPraajR49SrVo1qlSpwuHDh5W1yhAiG9LS0jh9+nSmljWRkZHcvXvX2uk9ZLq/P/1OndL08Mcq4CPgLyAfcASoD4wE+mv21Cx4ecGdO+bWMEI8hhSAwmFcuXKFUaNGsWTJEtVbYzz11FPMnDmTF154QdW4Wnnvvff46quvAFi/fr3MAgqLMZlMnD9/Psvl5KtXr1olpz8qVuTZU6c0vfkjDQgE2gAdgGcwzwjO1+yJj3HiBFSqZI0nCzsiBaCwe0lJScyePZuJEycSr3KD1xIlSjBp0iRatWplN7NoGbN/GWQWUNiKa9euZVkYnjt3TtPn3ihUiHwWKD4XA0OBEkBZYANglXm4FSugbVtrPFnYESkAhd0ymUysWbOGIUOG8Ndff6ka29vbm0GDBtGvXz+87Kyx6oOzfxlkFlDYsrt37xIVFZWpbU1sbCzpKpzaNer16CzQMPsuUAjwB/YA3g987W+gNXAF86GUEWi0L9DVFfr2hcmTtYguHIgUgMIu7dq1i759+/Lnn3+qGlen09G+fXvGjRtHsWLFVI1tCf+d/csgs4DCHqWkpBAbG5tpxjAyMpLExMRsxXAFLHX2ty2wFvADzgAeD3ztInAZqI65CHwKiOLhIlEVrq7QtSvMnat2ZOFgXKydgBBKnD59msGDB7Nu3TrVY7/00kvMmDEjywLKXowdOzbL948dO8aGDRtkFlDYFTc3NypVqkSl/+xnMxqN9xtd//d18+bNhz6b19UVLHBaeQSwGfPMXyMgDOjxwNeL/fMCKAzkB26gQQFoMkE2i2Ph3GQ6QNiFW7duMWDAAIKDg1Uv/oKCgvjuu+/Ytm2bXRd/R48ezbT0+6AxY8Y49b2xwnHo9XoKFy5M0aJFM71cXB6e19BboN/lMmAG8C1QDegDTAUeVXbux9w6JveXRT6CLOyJbJAZQGHTUlNTWbJkCaNGjeL69euqxi5YsCBjxoyhU6dOuLra/00Yj5r9yyCzgMIe3bhxI9OtJREREdne93tL4+bP32Oe6fsC88lfMLeDmQ6sBtr/5/PXgVDMRaMmdDrw9NQqunAgsgdQ2CSTycTmzZvp378/UVFRqsZ2c3Ojd+/eDB06FD8/P1VjW8uj9v79l+wFFLbIZDIRFxeXqdl0RESEKjf4GHU6dBr8UXcAeAGYAPT+z9dGAmuACP49CZwMNAY6YT4QoglXV+jTB6ZO1eoJwkHIDKCwOUeOHKFfv378/PPPqsdu3rw5kydPply5cqrHtqYnzf5lOHbsGF9//TXvvfeexhkJkVl6evpDzaMffKndwulB8fny4Xvjhupxn8Z88jcrY/95ZTBhPiTSEA2LPzD3OvT31/IJwkHIDKCwGXFxcYwYMYIVK1aofvdonTp1mDlzJvXq1VM1ri3I7uxfBpkFFFpLSkoiOjo609JtdHQ0KVa4j/fPwEBqnz6taSPoJ/kDeB6o+sB7q4EqWjzs8GGw4/3MwjJkBlBY3b1795gxYwZTpkwhISFB1dilS5dmypQpvP/+++gssBncGrI7+5dB9gIKtdy+fZvIyMhMS7dnzpyxqQNHf5pM1Fahn2BuPIf54Ifm3N0hJMQSTxJ2TmYAhdUYjUY+/fRThg4dyoULF1SN7ePjw9ChQ+nduzeeDrwhWunsXwaZBRTZZTKZuHz5cpbLtnFxcdZOL1teLVCAzSofIrNZdevCrl3WzkLYAZkBFFbxyy+/0K9fPw4ePKhqXL1eT+fOnRkzZgyFCxdWNbYtUjr7l0FmAcV/KemtZ29+vn4dk8GAzsqzgJpzdTUXgEJkg8wACouKiYlh4MCBbNy4UfXYTZs2Zdq0aYQ4yfJHTmf/MsgsoHP67+0aGcu3UVFR2b5dwx7drloV3xMnwNGLwG++gTfesHYWwg7IDKCwiBs3bjB27Fjmz59PmsobsStXrsz06dN5+eWXVY1r63I6+5dBTgQ7trt37xIZGZlpNk+t+3XtzYF69Whw9Ki109BWyZLw6qvWzkLYCZkBFJpKSUlh/vz5jB07llu3bqkau3DhwowfP5527dpl6v7v6HI7+5ehcuXKHDlyRGYB7di1a9eyXLY9d+6ctVOzKl9fX4KDg6lUqRLBwcG89vLLVHrlFbh40dqpaUOngxkz4OOPrZ2JsBNSAApNmEwmNm7cyMCBA4mNjVU1toeHB3379mXw4MH4+PioGttevPfee4+99k2JdevWySygjTOZTJw/fz7LGzGuXbtm7fSsqmjRogQHB2d6FStWLPPJ/2nTYPBgsKETyqrx9DQXt3nzWjsTYSekABSq279/P3379uX3339XPXarVq2YOHEipUuXVj22vVBr9i+DzALajrS0tPuNkh9srRIZGcndu49qOez4dDodZcuWzbLQy5cvX/YD3bwJxYtDUpJ2yVqDiwt07w5z5lg7E2FHpAAUqvn7778ZNmwYq1evVj32c889x8yZM6lVq5bqse2NmrN/GWQW0LISExOJiorKtGwbExNjlUbJtsLV1ZWAgID7xV3G8m1gYCBeXl7qPOTjj2HuXMeaBXRxgchIqFDB2pkIOyIFoMi1+Ph4pk6dyvTp00lS+Sfr8uXLM3XqVN555x2HbeSsxNWrV2ndunWmm1L279/PjWxedVWpUiVKliz50HuVK1dmxowZquUpzG7dupXl/rwzZ86oftuNPfH29s5yNq98+fK4urpq+/C7d6FKFfj7b8c5ETx9OvTrZ+0shJ2RAlDkWHp6OitWrGD48OFcvnxZ1dh58+Zl5MiR9OjRA3d3d1VjO6ImTZqwbdu2bH02LCyM9u3ba5yR8zCZTFy6dCnT3ryIiAguXbpk7fSsqmDBglkWeiVLlrTuloM//4R69ex/FtDFBZ59FrZvB9nCIRRyrqOTQjXbtm2jX79+HDt2TNW4Li4udO/enZEjR1KgQAFVYwuRG+np6Zw9ezbLGb3bt29bOz2rKlWq1EMFXsbSbcGCBa2dWtbq1IHRo2HUKLDXORCdDry84NNPpfgTOSIFoFDk5MmTDBgwgC1btqge+6233mLq1KkEBgaqHluI7EpOTiYmJiZTkRcVFaX6Fgd7YjAYqFChwv3iLuMVFBREnjx5rJ2eckOGwObNcOAAqNyb1CJMJli2zNz7T4gckAJQZMuVK1cYPXo0S5YsUb2JbPXq1Zk5cyYNGjRQNa4QjxMfH5+pUfLJkyc5ffq0UzZKzuDh4UFQUFCmZduAgADc3NysnZ56XFzgyy/NV6dduWJ/RWDfvtCsmbWzEHZMCkDxWElJScyZM4eJEydy584dVWMXL16cCRMm0Lp1awwGg6qxhchw9erVTHvzIiIiOH/+vLVTsyo/P78sl23LlCnjPC2BSpeG338376O7ds1+isBevcwHP4TIBSkARZZMJhNffvklgwYN4q+//lI1tpeXFwMHDqR///54e3urGls4J6PRyN9//53l/rzr169bOz2rKlasWKZl2+DgYIoUKSIn6wHKl4c//oCGDSEuzvaLwH79zA2t5b+dyCUpAEUmu3fvpm/fvuzZs0fVuDqdjjZt2jB+/HhKlCihamzhHFJTUzl16lSmIi8yMpJ79+5ZOz2r0el0lC9fPlORFxQUhJ+fn7XTs30VKsC+fdC0KRw5YnvtYfR6856/mTOhTx9rZyMchBSA4r6zZ88yePBg1q5dq3rsBg0aMGPGDGrUqKF6bOF4EhIS7jdKfnDpNjY2ltTUVGunZzVubm4EBgZmKvQCAwPx9PS0dnr2rXBh+O03c6PopUvBYLCNQlCvh0KFzAc+Xn/d2tkIByIFoOD27dtMnDiROXPmkJycrGrswMBApk+fzuuvvy7LTSKTGzduZLls+9dffzl1o+Q8efJk2psXHBxMuXLlcHGRb9ua8faGJUsgNBRThw7oYmKs1ybGYMBkNKLr3h0mTABfX+vkIRyWfCdxYmlpaSxZsoRRo0apfqF8/vz5GT16NF27dtW+s7+waSaTibi4uCwLPbUbiNubwoULZ9kouUSJEvIDk5WYTCa23L7NMn9/NrRuDWPHmotAS+0NzPjvXrEif7Rrx6cxMYxJSKCoFIBCZVIAOiGTycT3339P//79iYiIUDW2q6srvXr1YtiwYcouaRd2Lz09nTNnzmRqqxIZGan6CXJ7U6ZMmSwLPWl2blsOHTpE//792b59O40aNYLhw6F5c5g0CdasgeRkc4GmxQ0iLi7mItPf33zKt0sX8kZEsGTAAD777DMGDRpE37595eCcUI0UgE7m6NGj9O/fP9vXhinx3nvvMXnyZCrIheQOLTk5mejo6ExtVaKjo1XfQmBPXFxc8Pf3z7R0W7FiRflD28adP3+eYcOGsXr16vtbD+5/HwsMhBUrYM4c+OILWLQIDh/+t2DLjYzDHe7u0KIFdOpk7kv4zyxg+fLlAbh37x4jR45k0aJFjB8/ntDQUGmdJXJNCkAncenSJUaMGMHy5csxqvzTa61atZg5cybPPfecqnGFdd25cyfLZdvTp0+r/v+QPfH09CQoKChTaxV/f3/Z7mBn4uPjmTJlCjNmzMh0y4u/v//DH/b1hS5dzK/Dh81XsO3ZY/77jBPoLi7mgu6/h0d0un8PlWTsKSxTBmrVgkaNoGXLLPf45cmThyJFitzfKhEXF0f79u2ZM2cO06dPN89SCpFDUgA6uISEBGbOnMnkyZNVb5NRqlQpJk+eTIsWLZyncayDMZlMXLlyJVORd/LkSeLi4qydnlXlz58/y2Xb0qVLy//vdi4tLY2wsDBGjhzJlStXsvzMY1cyqlc3v8Bc0J09C4cOmYvB6GhISoKEBEhJMd/X6+kJ+fNDtWrmcVWrZvtQR4UKFTLtlT1y5AiNGzemadOmTJs2jZCQkGzFEuJBUgDaEaPRmO0/eIxGI5999hlDhw5V/caDPHnyMHToUPr06SOtJ+zQ1q1b2bVr1/1i7+bNm9ZOyapKlCiRqcirVKkShQoVkoMYDsZkMrFlyxYGDBjwxP3P2d7KotNBuXLm1zvvqJBl5jx27dqV5de+//57tm7dSseOHRkzZgxFixZV/fnCcUkBaCeMRiMtW7Zk4cKF5M+f/7Gf/e233+jbty8HDhxQNQe9Xk/Hjh0ZO3YsRYoUUTW2sJwvv/zS2ilYnF6vv98o+cGl26CgIHzldKVTePCAR3Zk7L+zticVokajkSVLlshBEaGYFIB2YtGiRXz55ZeUKFGCmTNnZvmZ2NhYBg4cyIYNG1R/fpMmTZgxYwaVK1dWPbZQ7t69e0RGRt6fxTty5Ii1U7IJ7u7uVKxYMdOMXkBAAB4eHtZOT1hBVgc8nqRIkSLkyZNH48yyJ9NexEeQgyJCKZ3Jmbut2onY2FiqVatGQkICrq6unDx58qFvCjdu3GDcuHHMnz9f9VsSQkJCmD59Oq+88oqqcUX2XL9+PdPevIiICM6dO2ft1KzK19c3y/155cqVkz/0BPD4Ax5P8uyzz/LHH39olJkye/bsoW7duorHVatWTQ6KiMeSGUAbl56eTrt27UhISADMd6EOGjSIr776ipSUFBYuXMiYMWNU38dVqFAhxo0bR4cOHeTmAY2ZTCYuXLiQqa1KREQEV69etXZ6VlWkSJFMe/OCg4MpVqyY7M8TWUpLS2PZsmWMGjXqkQc8nsSWWlnlNJcHD4pMnTpVVm9EJvInu42bPXt2pp9Ev/76ayZMmMCqVauIiYlR9Xnu7u707duXwYMHy94olaWlpXH69OlMRV5kZCTx8fHWTs9qdDodZcqUydRWJTg4WJqJi2wzmUxs3ryZgQMH5rrBvS0VgAULFsTHxyfH3yMyDop06NCBsWPHykERcZ8sAduwiIgIatSoYbHmui1btmTSpEmUKVPGIs9zVImJiURHR2cq9KKjo0lJSbF2elbj6upKQEBApiKvYsWKeHl5WTs9YceUHvB4kk8//ZRWrVqpEksNNWrU4PDhw7mO4+3tzcCBA+nXr58cFBHOOQOYng5RUeaWTYcPw9WrkJhobt1kMICHh7ltU/ny/7Z7Klbs3ysaLSEtLY3Q0FCLFH/16tVj5syZ1KlTR/NnOZLbt29n2psXERHBmTNnsr3Z3BF5e3sTFBSUaem2fPny0ihZaEKv16t6n7ktzQCCOR81CsDExEQSEhJkW48AnKQATEuDLVtg82bYvx9OnDBf6Qjg6mru42k0ml86nfl2Hp3u4Ybu+fPDU0+ZG7e3bAlVqmib8+TJk9m/f7+mzyhXrhxTpkzhvffek/1Uj2Aymbh06VKWN2JcvHjR2ulZVYECBTK1VQkODqZkyZLSKFlYVLVq1di7dy9jxoxhypQpub6pxhYLQDVihIeHU69ePRUyEo7AoZeAY2Nh+XJYtsw8y5fbqxszbvNJSzMXg127mq9v9PFRL2eAw4cPU7t2bdVP9GbImzcvw4cP56OPPsLd3V2TZ9gbo9HI2bNnsyz0bt26Ze30rKpUqVJZnrgtVKiQtVMTIpPdu3cTGhpKbGxsjsb7+vpy69Ytm/qheOnSpXTu3DnH47t3787UqVNl2Vc8xOEKQJMJNm6E2bPht9/+vX5RbQ/e4d2yJQwYAMHBuY+bkpJCrVq1OHr0aO6D/YfBYKBbt26MGjWKggULqh7fHqSkpBATE5Np6TYqKkpxqwhHYjAYqFChQqYiLygoCB+1f8IRQmOTJk1i6NChORpbo0YNDh48qHJGubN9+3ZeeumlHI318/MjMjJSmveLTBxqCfjMGfOs3I8/mgs/0Kb4A/NyMZj3Da5ebX4NGQJDh5r3EObU2LFjNSn+Xn/9daZNm0ZQUJDqsW3R3bt3iYyMzNRa5dSpU6Rr9T+FnShZsiTPPffcQ8u3/v7+MhssHMKxY8cYPXp0jsfb2vIv5C6nW7du0blzZzZu3GhTs5rC+hxiBjAtDWbNghEjzAVfbpZ5cyPjSsiwMHjxReXj9+7dS926dXO9f+VB1apVY8aMGTn+6dHWXb16Nctl27///tvaqdmssLAw2rdvb+00hFBdSkoKderUydWBiUGDBjF58mT1klJBeno6np6eudoWtGLFCtq2bateUsLu2f0M4KFDEBpqPthh7VLWZIK//oIGDaBtW/MydN682RubmJhImzZtVCv+ihYtyoQJE2jTpo3d34xgMpn4+++/MxV5J0+e5Pr169ZOz6qKFStGcHAwMTExUvQKpzd27Nhcn5a1xRlAg8FAuXLliI6OznGMXr160aBBA2nzJe6z6wLw22+hWTPzjJ+1i78MGauLq1fDn3+al6NLlnzyuOHDhxMZGZnr53t6ejJgwAAGDBhgM3dZZldaWhqnTp3K1FYlMjKSe/fuWTs9q9HpdJQrVy5TW5WgoCD8/PwA813NUgAKZ/bnn38yadKkXMfJ7t27llahQoVcFYDx8fG0a9eOn376SU7pC8COC8ClS6FLF/Pf20rx96D0dIiJMbeN+eknCAl59Gd///13Zs2aletnenh4cPLkScqWLZvrWFpKSEggKioq04xeTEyMZief7YGrqyuBgYGZWqsEBgbi6elp7fSEsFkJCQmEhoaqsoJiizOAoE5humPHDubNm0evXr1UyEjYO7ssABcsgB49rJ3Fk6WlmdvP1K8Pv/+edRF49+5d2rZtq0rj4KSkJL7//ns+/PBDmzi5efPmzSz35509e9apGyXnyZMny7Yq5cuXlwatQuTAkCFDFM+OVahQgbJly/Lzzz/ff8/NzY0SJUqonZ4q/luYenh40Lx5c8LDwxXFGTRoEC+//DIVK1ZUMz1hh+zuT5slS+yj+MuQng537sDzz8POnfDfQ7gDBw7k9OnTqj1v4MCBfPbZZ5nuD9aKyWTi4sWLmfbmRUREcPnyZYvkYKsKFSqUZaFXsmRJOY0nhEq2b9/O3LlzFY3R6XSsWrWKunXrsmDBAgYOHEhiYiLlypWz2T3TDxaAtWvXJjw8nMDAQBISEli/fn224yQlJREaGsrOnTvlB04nZ1f/9fftg+7drZ2FcunpcPs2/O9/5kMrGW1itm3bxsKFC1V91t27d9m3bx8mk0nVIiM9PZ2zZ89maqsSERHBnTt3VHuOPSpduvRDe/My/r5AgQLWTk0Ih3b79u0cnWwdMGAAzz77LAA9e/akSZMmtGnThvz586ucoXoqVKiAi4sLo0ePZtCgQfeLt4ULF/L7778r+oF77969TJ48meHDh2uVrrADdtMG5t498/Vr585p19tPa3o99Oplbllz+/ZtKleuzPnz5zV51u7du3nmmWcUj0tOTiY6OjpTkRcVFWWRe4ltlcFgICAgINNsXsWKFW3isE2TJk3Ytm1btj4rbWCEo2jXrh0rV65UNKZy5crs378/U9/LtLQ0Dh8+TM2aNVXMUD3JycmcPHmSGjVqZPrat99+y5tvvqkonouLC3v37s0ynnAOdjMD+PHH5hYrKrbIszij0dwapmlT+OKLPtkq/jw8PPDx8SFPnjz3Xxn/7OnpyfHjxzly5EimcZGRkY8tAO/cuUNkZGSmpdvTp0+r2ofQ3nh6ehIUFJSp0PP398fNzc3a6Qkh/vHNN98oLv5cXFwIDw/Psum5i4uLzRZ/AO7u7o8s1t544w3atWvHihUrsh0vLS2N0NDQLIth4RzsogDctMl86tcR6PXQqpWRXr1qs2RJvYcKuv8WeN7e3o/coxEZGckHH3yQZfEH5gLPZDLdb5T836XbCxcuaPnLtHn58uXL1FYlODiY0qVLS4sEIWzc1atX6dSpk+Jxo0ePdtgZr9mzZ7N9+3b++uuvbI85fvw4I0eOZMqUKRpmJmyVzS8B37kDZcvCrVu22e4lJwwGaN4cPv9c+ViTyURYWBi9e/cmISHhkZ8rXLgwaWlp3LhxIxeZ2r/ixYtn2psXHBxM4cKFHeoghiwBC2dhMpl47733+PrrrxWNq1OnDn/88YdDH3zYsWMHDRs2VDRGp9Px22+/8dxzz2mUlbBVNv87YcUKxyr+wLyHcc0amDQJlDRlv3HjBp06dcrWN74rV67kIkP7otfrKV++fKZl26CgIPJm9yoWIYRd+OyzzxQXf56enqxatcqhiz+ABg0a0Lt3b+bMmZPtMSaTiTZt2nDkyBGb2M8sLMemfzekp8OMGY5V/GXQ62HePJg2LXuf/+WXX/jwww+deunW3d39fqPkB1+BgYF4ZBytFkI4rPPnz9OzZ0/F4yZPnuw0fe8mTZrEDz/8QFRUVLbHnD59mgEDBqjelULYNpsuAL/9Fhz1dqv0dFi0CEaNgsf90JWamsro0aOZNGmS0zRP9vHxybKtii336BJCaMtkMtGhQwdu376taFzDhg1zVDTaK09PT8LDw6lXrx7pClpmLFq0iLfffpuXX35Zw+yELbHpAnDGDPN+OXtt+/Ik9+7BqlWPbmx96tQpPvjgA/bu3WvZxCykSJEiWTZKLl68uEPtzxNC5N6iRYv48ccfFY3x9fVlxYoVTnewq3bt2gwdOpRx48YpGte+fXuOHz9Ovnz5NMpM2BKbLQCPHQMLXWZhVbNmZS4ATSYTn376Kd27d+fu3bvWSUxFZcuWzbLQs+Wmq0II2xEbG0v//v0Vj5szZw6lS5fWICPbN3z4cL777jsOHTqU7TFxcXH07NmTzz77TMPMhK2w2QJw+3bzPjlHbklnMsGpUxAXB8WLm9+7ffs23bt35/OcHBG2IhcXl0yNkitVqkTFihXx8vKydnpCCDuVnp5OmzZtHtv1ICtvvvkmbdq00Sgr2+fm5kZ4eDhPP/00KSkp2R73+eef87///Y/33ntPw+yELbDZAnDvXnCWVcB9++Ctt2DXrl20atWKs2fPWjulR/Ly8iIoKChTW5UKFSrg6upq7fSEEA5m+vTp7Nq1S9GYggULsmTJEqffSlK5cmXGjx/PwIEDFY3r2rUrzz33HEWLFtUoM2ELbLYA3LnTEnv/0oCKwGvAfy8T7wpsA3YDhTXLwMUFdu82cuTIeMaOHato066WChQokOWybalSpZxuP40QwjqOHTvGyJEjFY9btGgRRYoU0SAj+9O3b1+++eYb/lCwp+r69et07tyZTZs2OX0R7chssgC8ccN87Zv2XIDBQB9gFFDgn/cnAeuBXWhZ/IG5yP3112SeeeYmJUuWVNTFXQ0lS5bMVORVqlSJQoUKWTQPIYR4UEpKCq1bt1a0fAnw4Ycf8u6772qUlf0xGAysXLmSatWqce/evWyP+/bbb1m5ciXt2rXTMDthTTZ5E8gPP5jvy7WMFMAf6AiMBD4DOgE/AfUskoG3t/nGE53OxJEjR9iwYQMbN27k6NGjqsTX6/VUqFAhU1uVoKAgfHx8VHmGsC65CUQ4mmHDhjFx4kRFY0qUKMHx48fx8/PTJik7tnjxYrp27apojI+PD0ePHqVs2bLaJCWsyiZnAGNizPv/LFOaugEDgbFATcyF4KdYqvgDczuYK1egaFEd1atXp3r16owZM4ZTp06xadMmNm7cyB9//JGjPoBTpkyhd+/ectm3EMJu7Nmzh8mTJyset3z5cin+HqFz585s3LiRH374Idtj4uPjadeuHT///LNs/XFANvlfNCHB3P/PcjoCBuANzMu/ll8+SEzM/F6FChXo27cvv/32G5cuXWLZsmW89tprioq5O3fuSPEnhLAbCQkJtGnTBqPCFhDdunWjSZMmGmVl/3Q6HcuWLVNcIP/yyy988skn2iQlrMomC8CkJEufAPYAGmCe9etjyQffl1UB+KDChQvToUMHvvvuO65evcqXX37JBx988MS7bk+ePKlilkIIoa3BgwcTHR2taEyFChWYlt17NZ1YiRIlmD9/vuJxgwcPJjIyUoOMhDXZZAFonV2JR4E61ngwoOzX7OPjQ7Nmzfjss8+4cuUKW7dupVu3bhQrVizTZyMiIlTMUgghtPPzzz8rnm3S6/WEh4fj7e2tUVaOpWXLljRr1kzRmKSkJEJDQ0lLS9MoK2ENNlkAenpaughMBCKBpy350IfktFeym5sbTZo0YcGCBZw/f549e/YwePDg+xefx8bGkpqaqmKmQgihvtu3b+foxOmAAQOoV89ye7btnU6nY8GCBYrb5Ozbt49JkyZplJWwBpssAL28LH3/72EgHXjKkg99iKdn7mPo9Xrq1KnDpEmTiIyMJCIignHjxnHjxo3cBxdCCA317t2bv//+W9GYKlWqMGbMGI0yclwFCxZk2bJliseNHTuWgwcPapCRsAabLAADAiw9A3gQyAMEWPKh93l7Q2EN2g0GBQUxePBgaYgqhLBpmzZtYtWqVYrGuLq6Eh4eLofccuj1119X3A4qLS2N0NBQkpKSNMpKWJJNFoC1aln6iT2AeKzxr0OnM/965YS9EMIZXb16lc6dOyseN3r0aKpXr65+Qk5k1qxZlClTRtGYEydO5Oh2FmF7bLLsKFAASpe2dhaWYTBA3brWzkIIISzPZDLRpUsXrly5omjcM888o/h+W5GZr68vK1euVDxu+vTp/P777+onJCzKJgtAgOees3QvQOtIS4Pata2dhRBCWN6nn37Khg0bFI3x9PRk1apVuLjY5D0GdufFF1+kT58+isaYTCbatm3L3bt3tUlKWITNFoC1a1urHYzlSQEohHA2f//9Nx999JHicVOmTCEwMFCDjJzXxIkTCQoKUjTm9OnT9O/fX6OMhCXYbAHYoAEobARvd3Q6KF8eihe3diZCCGE5JpOJDh06cPv2bUXjGjZsSI8ePTTKynl5enoSHh6OQeGy2+LFixVdLSdsi80WgFWrwrPPOv4y8McfWzsDIYSwrIULF7Jt2zZFY3x9fVmxYoXcSauRWrVqMXToUMXjOnToIK3G7JRN/07q18/S/QAty9sb2ra1dhZCCGE5MTExDBgwQPG4uXPnUtpZTgdayfDhw3nqKWX9cOPi4ujZs6dGGQkt2XQB+OabUKqUtbPQhsEAXbtCnjzWzkQIISwjPT2dNm3akJCQoGjcW2+9RWhoqEZZiQxubm456q34xRdfsG7dOo2yElqx6QLQYIC+fc175RyN0QjyQ5MQwplMmzaN3bt3KxpTsGBBlixZgs4R/yCwQSEhIYwfP17xuG7dunHp0iUNMhJasekCEKB9e/Dzc6wi0GCAFi1AYf9NIYSwW0ePHs1RA+HFixdTWIurksQjffzxx9SvX1/RmOvXr9OpUydMztK+wwHYfCMlX19YsQLeftvamahDr4d8+YxUqrSEZctcyJMnD3ny5MHHx+f+3z/4UnoqSwghbE1KSgqhoaGkpqYqGte6dWveeecdjbISj2IwGFi5ciVVq1bl3r172R733XffsWLFCsVXzAnrsPkCEOCtt6BjR1i+3P5bwxiN8Nlnej77bDcjRoQ/8fOenp6ZisL/FotZ/fPTTz+Nv7+/BX5FQgjxeGPGjOHIkSOKxpQsWZK5c+dqlJF4kvLlyzNz5ky6dOmiaFzv3r1p2LAhZcuW1SYxoRq7KAABZs+Gn3+Gc+fs92SwXg8ffQRNmkDt2nP4+eefuXDhwmPHJCYmkpiYyNWrV7P9HHd3dyIjI3ObrhBC5Nru3buZPHmy4nHLly/Hz89P/YREtnXq1ImNGzfy/fffZ3vM3bt3adu2Ldu3b5eWPTbObv7reHvD2rX2ezuIwQABAZDxfdDPz4+wsDBNntWnTx/56UsIYXX37t2jTZs2GBUu3XTv3p3GjRtrlJXILp1Ox7Jly8iXL5+icb/++qvM3toBuykAAWrVgoULrZ2FcgYD5M0LGzeCh8e/77/88suKp9efpFChQgwZMkTVmEIIkRODBw8mJiZG0Rh/f3+mTp2qUUZCqeLFizN//nzF44YMGSIrUTbOrgpAgM6dYd48a2eRfQaD+SDLb79BVlctTps2jXLlyqn2vLFjx5I3b17V4gkhRE78/PPPzFP4zVqv1xMeHo63t7dGWYmcaNGiBc2aNVM0JikpidatWys++CMsx+4KQIAePWDRInNrGFtuD+PiAgULmou/kJCsP+Pj48OKFStUeZ6npydNmzZVJZYQQuTUrVu3aJuDa44GDhxI3bp11U9I5IpOp2PBggUULVpU0bj9+/czadIkjbISuWWXBSBAly7mJVU3N9u8L9hgAH9/2L8fKld+/GdfeOEF+vTpk+tnJiYmEhwczKhRo7h7926u4wkhRE707t2b8+fPKxpTtWpVRo8erU1CItcKFizIsmXLFI8bN24cBw4c0CAjkVt2WwCC+aq4XbvMS6u2MhOYUYy2bg179kDJktkbN3HiRAIDA3P9/MTERMaOHUtgYCArVqwg3V6PTAsh7NLGjRsJD39yi6sHubq65ugKMmFZr732Gh06dFA0Ji0tjdDQUJKSkjTKSuSUXReAAE89BYcOwZQp4O5uXna1Fp0OSpeG7dvNzauVbMXz9PRk1apVqh2bv3jxIu3bt6dmzZps375dlZhCCPE4V65coXPnzorHjRkzhmrVqmmQkVDbzJkzKaPwGquTJ08yYsQIjTISOWX3BSCAqysMGAAREdCggfk9S7YfcnExv4YPh5Mn/81BqWeeeYZBgwapmtvhw4d56aWXePPNN4mKilI1thBCZDCZTHTt2lVRz1Iwf98bMGCARlkJtfn6+rJy5UrF42bMmMFvv/2mfkIixxyiAMxQrhxs3QpffQXPPmt+T6v9gXq9ecbPw8O83HvkCIwd+3Cbl5wYNWoUVapUUSfJB3z77bdUrlyZjz76iGvXrqkeXwjh3D799FM2bNigaIynpyfh4eG4WHPpRij24osv8vHHHysaYzKZaNu2LfHx8RplJZRyqAIQzEXZO++YT95GR5tnBgsUMH9Nje8xGTGqVTOfRL582XxFXaVKuY8N5ls8Vq1apck3xLS0NObNm4e/vz/Tp08nOTlZ9WcIIZzP33//Tc+ePRWPmzp1KgEBARpkJLQ2YcIEgoODFY05c+YM/fv31ygjoZTDFYAPCgiASZPg4kXzieF27aBGDfPJ4QyuruZZwowlY53O/M8uLg/PHvr5wUsvQb9+cPgwHDxo7kno66t+3jVq1GDkyJHqB/7H7du3GTBgAMHBwaxfvx6TvV6vIoSwOqPRSPv27blz546icS+99BLdu3fXKCuhtYzZW4PCZbYlS5YoulpOaEdncsI//dPSICrKXMgdPgxXr0JSEty8mYC3tyeenjo8PKB8eahe3fwqXtyyJ41TU1OpW7euRY7PP/vss8ycOZPatWtr/iyhjSZNmrBt27ZsfTYsLIz27dtrnJFwFvPnz1c8+5c3b16OHTtGqVKlNMpKWMqoUaMYO3asojHFihXj+PHj5M+fX6OsRHY4ZQH4KM2bN6dZs2aKO55r5cSJEzz99NMWW6r94IMPmDRpEqVLl7bI84R6pAAU1hATE0O1atVITExUNG7VqlWEhoZqlJWwpNTUVJ555hkOHjyoaFyLFi344osvNMpKZIdDLwErcfz4cdatW8eYMWMUX1yulZCQEMaNG5fl18aNG4e/v7+qz/v8888JDAxk6NChipdzhBDOJaO/m9Li7+2336Z169YaZSUsLac9HNesWcOXX36pUVYiO6QA/EfGFPaJEyf46quvrJzNv/r27Uu9evUeeu/dd99l+PDhnDhxglmzZpEvXz7VnpecnMykSZMICAhg8eLFpKWlqRZbCOE4pk2bxp49exSNKVSoEIsXL0ZnK537hSpCQkKYMGGC4nHdunXj4sWLGmQkskMKQP6d/ctgS7OABoOBVatW4eXlBZh/2poyZQoAbm5u9OnTh9jYWPr06aPqyeErV67QtWtXqlevztatW1WLK4Swf0eOHGHUqFGKxy1evJjChQtrkJGwtj59+lC/fn1FY27cuEGnTp3kIKKVSAEImTaw2tosoL+///2i76OPPqJChQoPfT1//vzMmjWLkydP8r///U/VZ584cYJXXnmFV155hePHj6saWwhhf5KTkwkNDSU1NVXRuNDQUNW/PwnbYTAYWLlyJd7e3orGbd68meXLl2uUlXgcpy8A/zv7l8GWZgEBunfvTvPmzRk+fPgjPxMQEMDXX3/NL7/8wlNPPaXq87du3Uq1atXo2rUrly9fVjW2EMJ+jBkzhqNHjyoaU7JkSebMmaNRRsJWlC9fnpkzZyoe16dPH86cOaNBRuJxnL4AfNTxdVubBdTr9XzxxRfZ2u/3wgsvsG/fPsLDwylRooRqORiNRhYvXkxAQACTJk1SvPlbCGHfdu3adX81QokVK1bg5+enfkLC5nTq1ImmTZsqGnP37l3atWtnU5MuzsCpC8BHzf5lsLVZQL2CC471ej2tW7cmOjqasWPHKp6Wf5z4+HiGDh1KUFAQn3/+uU39OxJCaOPevXu0adNG8e/3Hj160KhRI42yErZGp9OxbNkyxYcTf/31V5kltjCnLgCf1LzS1mYBc8LLy4sRI0YQExNDhw4dVD19d+7cOVq1akXdunXZuXOnanGFELZn0KBBxMbGKhrz4P5l4TyKFy/OggULFI8bMmQIERERGmQksuK0BWDr1q0fO/uXoU2bNmzcuFH7hDRWrFgxli1bxqFDh3jppZdUjb13716ee+45mjVrxunTp1WNLYSwvp9++on58+crGqPX6wkPD1d19UHYjxYtWtC8eXNFY3J6wEjkjNMWgNm9NSExMZEffvhB42wsp1q1amzbto3vvvuOoKAgVWOvX7+e4OBgBgwYwK1bt1SNLYSwjlu3btGuXTvF4wYNGkTdunU1yEjYiwULFlC0aFFFY/bv38/EiRM1ykg8yCkLwOPHjys6yfrtt9861D43nU7Ha6+9xtGjR5k/fz4FCxZULXZKSgrTp0/H39+fefPmyU9yQti5Xr16cf78eUVjqlatmqM+gcKxFChQgGXLlikeN378eA4cOKBBRuJBTlkAKr24Oi4uzu73AmbF1dWV7t27Exsby8CBA3Fzc1Mt9vXr1/noo4+oUqUK3377rTT6FMIObdiwgdWrVysa4+rqyurVqxVfDSYc02uvvUbHjh0Vjcm4ZjApKUmjrAQ4YQH4pJO/j2JrJ4LVlDdvXqZMmUJkZKTiPRtPEhUVxZtvvkmjRo04fPiwqrGFENq5cuUKXbp0UTxu7NixVK1aVYOMhL2aOXMmZcuWVTTm5MmTj+17K3LP6QpApbN/GRzhRPCTlCtXjrVr17Jz507q1Kmjauzt27fz1FNP0b59e+Li4lSNLYRQl8lkokuXLly9elXRuLp16zJgwACNshL2ysfHh5UrVyruQjFz5kx+/fVXjbISTlUA5nT2L4MjzwI+qF69euzevZsvvviCMmXKqBbXZDKxYsUKAgICGDt2LPfu3VMtthBCPatXr1bc/cDLy4tVq1ZhMBi0SUrYtRdeeIE+ffooGmMymWjbti3x8fHaJOXknKoAzOnsXwZnmAXMoNPpaNGiBZGRkUyePBkfHx/VYickJDBq1CgCAwNZtWqVUxTVQtiLc+fO8dFHHykeN3XqVAICAjTISDiKCRMmEBwcrGjM2bNn6devn0YZOTenKQBzO/uXwVlmATN4eHjcbwDbrVs3RbeRPElcXBxt27alZs2a7NixQ7W4QoicMRqNtG/fnjt37iga16hRI7p166ZRVsJReHp6Eh4erniWeOnSpWzZskWjrJyX0xSAuZ39y+BMs4APKly4MAsWLODo0aOK73l8kkOHDtGwYUPefvttoqOjVY0thMi+BQsW8PPPPysakzdvXpYvX67qD4fCcdWsWTNHhzs6duzI9evXNcjIeTnF71i1Zv8yONss4INCQkLYsmULW7dupXLlyqrG3rRpEyEhIfTu3Vt+owthYdHR0QwcOFDxuE8++YRSpUppkJFwVMOGDePpp59WNObixYv06NFDo4yck1MUgGrN/mVw1lnABzVp0oTDhw+zZMkSihQpolrctLQ05s6di7+/P7NmzSIlJUW12EKIrKWlpdGmTRsSExMVjfvf//7Hhx9+qFFWwlG5uroSHh6uuFfk2rVrWbt2rUZZOR+HLwCvXbvG7du3ady48UMvV1fXbMcoVqxYpvG7du3SMGv7YDAY6NSpEzExMQwbNgwPDw/VYt+6dYu+fftSqVIlvv76a2kkLYSGpk6dyp49exSNKVSoEIsXL1bc2kMIgEqVKjFhwgTF47p3787Fixc1yMgJmZxUgQIFTEC2XqGhodZO1y6cO3fO9OGHH2b736uSV/369U179+619i/RZjVu3Djb/y7DwsKsna6wIYcPHza5uroq/j25YcMGa6cu7FxaWprp+eefV/z/3quvvmoyGo3WTt/uueS6ghTiH6VKlWL16tX06tWLfv368fvvv6sW+/fff6d27dp8+OGHTJw4UfYcCaGC5ORkWrdurfjO7jZt2vD2229rk5RwGgaDgZUrV1K1alXu3r2b7XFbtmwhLCws6yvmTCaIi4PDh82v06chKcn8Sk8HDw/zq1AhqF7d/KpYEVycrxxyvl+x0FytWrX49ddf2bBhAwMHDuTUqVOqxf70009Zv349/fr1Y9CgQar2JxTC2YwePZpjx44pGlOqVCnmzJmjUUbC2ZQrV46ZM2fSuXNnReM+/vhjXnrpJcqVKwdHjsCaNbBvHxw8CDdvmj9kMIBOZy4KjUbzX/V680ung4wffNzcICQEataE116DV18FBdvE7JXD7wEU1qHT6XjnnXc4ceIEM2bMwM/PT7XYSUlJTJgwgYCAAJYuXUp6erpqsYVwFrt27WLq1KmKx61YsYK8efNqkJFwVh07dlTcXqzla69RZONGqFHDPIs3fTr8/PO/xR+YZ/zS0sx/zdhHbjSa33tw1jslBQ4dghUr4O23oXhxGDIEYmNz+0uzaVIACk25u7vTt29fYmNj6dWrFy4qTrNfvnyZzp07U6NGDbZt26ZaXCEc3b179wgNDVXczqpnz5689NJLGmUlnJVOp2PZsmXky5fviZ+t5+fHmQYNWLJpE179+sHRo+YvpKXlPpGMGNeuwbRpEBAAzz8PX3/9bwHpQKQAFBZRoEAB5syZw4kTJ3jrrbdUjX3s2DGaNGnCq6++ysmTJ1WNLYQjysnWjICAAKZMmaJRRsLZFS9enIULFz7y6+7A2sBA/oiPp+zvv5v39GUs7WohY2Vp1y549114+WU4c0abZ1mJFIDCogIDA9m4cSM7duygRo0aqsb+/vvvqVq1Kt26dePKlSuqxhbCUWzbto0FCxYoGqPX6wkPD8fLy0ujrISA999/n/fffz/T+695eXG1UCGaxcSgy1jWtZSMQnDHDggONs8MWvL5GpICUFjFiy++yP79+1m5ciXFixdXLW56ejqLFi3C39+fKVOmkJSUpFpsIezdrVu3aNeuneJxgwcP5plnntEgIyEeNn/+fIoWLQqAL/BD0aJ8l5CAz40b6Ky5DJuWBsnJMGiQed/hoUPWy0UlUgAKq9Hr9bRp04bo6GjGjBmj6uxCfHw8gwcPJigoiDVr1kgjaSGAXr16ceHCBUVjqlWrxqhRozTKSIiHFShQgLCwMPzd3TlTpAhNrl41f8FWDvuZTBARAXXrwrffWjubXJECUFidt7c3I0eOJCYmhvbt26t6s8Bff/1Fy5YtqVevHrt371YtrhD25uuvv2b16tWKxmRc2eXm5qZRVkJk9mqZMkT6+pL/+nXzkq+tSU83nxx+6y1YssTa2eSYFIDCZhQvXpywsDAOHjxIw4YNVY29Z88e6tWrR4sWLTjjYBt5hXiSy5cv06VLF8Xjxo4dS9WqVTXISIhHOHEC6tfHcOOGbe+1M5nMry5d4DGHV2yZFIDC5lSvXp2ffvqJb775hooVK6oae+3atQQFBTFo0CBu376tamwhbJHJZKJLly5cu3ZN0bh69eoxYMAAjbISIguRkea2K3fu2M6Sb3Z07w5Ll1o7C8WkABQ2SafT8cYbb3Ds2DE++eQTChQooFrslJQUpk6dir+/PwsWLCDNln/KFCKXwsPD2bRpk6IxXl5erFq1CoPBoFFWQvxHYqK5CfPt2/ZV/GXo1g3277d2FopIAShsmqurKz179iQ2Npb+/furuhfp2rVr9OjRg6pVq7J582Y5KCIczrlz5+jVq5ficdOmTcPf31+DjIR4hMGDISbGPou/DO+/D/fuWTuLbJMCUNgFPz8/pk2bRkREBM2aNVM1dkREBK+//jpNmjThaEZXeSHsnNFopF27dty5c0fRuMaNG9OtWzeNshIiC1u3wty52jV1toT0dDh7Fvr2tXYm2SYFoLAr5cuX58svv+SPP/6gdu3aqsb+6aefqF69Oh07duTixYuqxhbC0ubPn8/27dsVjcmbNy/Lly9X9SS+EI917Rp8+CHoHaAcMRrNp4K/+cbamWSLA/wbF87o2WefZffu3Xz++eeULl1atbgmk4mwsDACAgIYN24cCQkJqsUWwlKio6MZNGiQ4nHz5s2jZMmSGmQkxCP06gU3b9r37N+DdDpo29Z8kMXGSQEo7JZer6dly5ZERkYyceJE8uTJo1rse/fuMXLkSAIDA1m9ejVGR/nmJBxeWloaoaGhJCYmKhr3zjvv0KpVK42yEiILZ8/CmjX2ve/vv0wmuHULVqywdiZPJAWgsHuenp4MGTKE2NhYunTpgl7FpYQLFy4QGhpK7dq1+fXXX1WLK4RWpkyZwp9//qloTOHChVm0aJEs/QrLmjfPMZZ+szJzps0Xtg76b144oyJFirBo0SKOHDnCK6+8omrsAwcO8OKLL/LOO+8QExOjamwh1HL48GHGjBmjeNySJUsoVKiQBhkJ8Qjx8bB4sc0XSTliMsG5c/Ddd9bO5LGkABQOp3Llynz//fd8//33hISEqBp7w4YNhISE8PHHH3Pjxg1VYwuRG8nJybRu3ZrU1FRF49q2bctbb72lUVZCPMLKlXbVMkUxgwGmT7d2Fo8lBaBwWK+88gqHDx9m8eLFFC5cWLW4qampzJ49G39/f2bPnk1KSopqsYXIqVGjRnH8+HFFY0qXLs3s2bO1SUiIx3H0/+/S0+GPP+DYMWtn8khSAAqH5uLiQufOnYmJiWHIkCG4u7urFvvmzZt8/PHHhISEsHHjRmkkLaxm586dTJs2TfG4FStWkDdvXg0yEuIxLlyA06fNS6WOTK+HHTusncUjSQEonIKvry8TJ04kKiqKDz74QNXYsbGx/O9//+PFF1/kwIEDqsYW4knu3r1LmzZtFJ9U/+ijj2jYsKFGWQnxGHv3ahbaCAQB/22CtBVwA9Zp9uQs6HSa/lpzSwpA4VTKlCnDZ599xp9//smzzz6rauzffvuNmjVr0qZNG86fP69qbCEeZeDAgZw6dUrRmMDAQCZPnqxRRkI8wd694OKiSWg9MARYCNz8570jQDNg4j9/tZj0dNi505JPVEQKQOGUateuze+//866desoV66cqrHDw8MJDAxk5MiR3L17V9XYQjzoxx9/ZOHChYrG6PV6wsPD8fLy0igrIZ5g925IS9MsfCugIDAXOA+8BrQG+mv2xMc4exZs9MCgFIDCael0Ot577z0iIiKYPn26qnuhEhMTGTduHAEBAYSFhZHuiK0OhFXdvHmT9u3bKx43ZMgQ6tSpo0FGQmSD0Qj79mn6CBfMS8BzgVeBp/75e6vR+NebU1IACqfn7u5Ov379iI2NpWfPnhgMBtViX7p0iY4dO/LUU0/x008/qRZXiF69enHhwgVFY6pXr87IkSM1ykiIbLhyBSxwxWYrIAEwAV8A//2u/j8gH/Ce1onodBAdrfVTckQKQCH+UbBgQT755BOOHz/OG2+8oWrso0eP0rhxY15//XUiIiJUjS2cz1dffcWnn36qaIybmxvh4eG4ublplJUQ2WCh+9V7/vPXa2Qu/gB6AeGWSMRgAIXXMlqKFIBC/EdQUBDffPMNP//8M9WrV1c19ubNm6lSpQo9e/bk6tWrqsYWzuHy5ct06dJF8bixY8dSpUoVDTISQgELFEMjgM3AHiANCMviMw0AH80zwTwDKAWgEPalYcOG7N+/n+XLl1OsWDHV4qanpzN//nz8/f2ZNm0aycnJqsUWjs1kMtG5c2euX7+uaFy9evXo398qW+CFsKhlwAzgW6Aa0AeYCii7H8c5SAEoxGMYDAbatWtHdHQ0o0aNwtPTU7XYd+7cYeDAgQQHB7Nu3TppJC2eaNWqVXzzzTeKxnh5ebFq1SpV97YKkWMqfg/9r++BHsCnwDP/vPcRcAdYrdlTn8Bk0vTXnBtSAAqRDXny5GH06NHExMTQtm1bdDqdarHPnDlD8+bNee6559izZ49qcYVj+euvv+jdu7ficdOnT8ff31+DjITIAY3aDx3A3ONvKvDOA+/7Yi4CJwNW6cWQni4FoBCOoESJEqxYsYL9+/fz4osvqhp7165d1K1bl5YtW3L27FlVYwv7ZjQaadeuHXfu3FE0rkmTJnTt2lWjrITIgcKFNSkCnwbuAln9iDQWiCbrwyCaM5kgMNAaT34iKQCFyIGnnnqK7du3s2nTJgICAlSNvWbNGoKCghgyZIjiP/CFY5o3bx47FN4pmjdvXsLCwlSdrRYi1/R6qFXL2lnwMuYZwy1ASUDTTn028OvNihSAQuSQTqfjzTff5Pjx48yZM4f8+fOrFjs5OZnJkyfj7+/PokWLSNOwa76wbVFRUQwa9N+bTZ9s/vz5lCxZUoOMhMilunU1uwouu7YCVzH3CjwPaFailS0LKv7ZoCYpAIXIJTc3N3r16kVsbCx9+/bF1dVVtdhXr16lW7duVKtWjR9++EG1uMI+pKWlERoaSlJSkqJx7777Lh988IFGWQmRS7Vra3oVnM0wGEDlO+fVJAWgECrJly8fM2bM4OTJk7z77ruqxj558iRNmzbl5Zdf5tixY6rGFrZrypQp7N27V9GYwoULs3DhQln6Fbardm1rZ2AZJpNN/1qlABRCZf7+/qxfv57ffvuNmjVrqhr7xx9/pHr16nTu3JlLly6pGlvYlkOHDjF69GjF45YuXUqhQoXUT0gItZQoAeXLm5skOzKjERo0sHYWjyQFoBAaqV+/Pn/++SeffvqpqnuxjEYjS5cuJSAggIkTJ5Joo13mRc4lJycTGhqqeO9nu3btePPNNzXKSggV9elj7Qy0ZTDAc8+BDd++IwWgEBrS6/W0atWKqKgoxo8fT548eVSLfffuXYYNG0bFihW5ePGianGF9Y0cOZLjx48rGlO6dGlmz56tTUJCqK1dO/D2tnYW2klPBxu/fUcKQCEswMvLi2HDhhETE0OnTp3Q69X7rff3338rLhaE7dq5cyfTpk1TPG7lypX4+vpqkJEQGsiTB7p0Mc+UORqdDkqXhtdft3YmjyUFoBAWVLRoUZYsWcLhw4dp3LixtdMRNubu3bu0adNG8bWAvXr1ooEN7zUSIks9e5r3yTmivn1tvriVAlAIK6hSpQpbt25ly5YtVKpUydrpCBsxYMAATp06pWhMYGAgkyZN0igjITRUtiy0aGHzhZIiOh34+ZmXuG2cFIBCWIlOp6Np06YcOXKEhQsXyslNJ7d161YWLVqkaIzBYGD16tV4aXS/qhCamzvX3ChZxW0xVmUywapVYAfbMRzk37gQ9svFxYWuXbsSExPDoEGDcHd3t3ZKwsJu3rxJ+/btFY8bMmQItW24z5gQT1SwIKxe7RhLwXo9dO4Mb7xh7UyyRQpAIWxE3rx5mTx5MpGRkbRo0UKz5/z111+axRY589FHHxEXF6doTI0aNRgxYoRGGQlhQS+/DL162fcsoMFgXtKeOdPamWSbHf/bFsIxlS1bli+++ILdu3dTt25d1eOPGzeOdu3aceHCBdVjC+XWr1/PZ599pmiMm5sb4eHhuLm5aZSVEBY2eTIEBNj3fsC1a+2qtY0UgELYqGeeeYadO3eydu1aypYtq1pck8nEypUrCQwMZPTo0dy7d0+12EKZS5cu0bVrV8Xjxo0bR+XKlTXISAgr8fSEjRshb177LAIXLgSVb37SmhSAQtgwnU5H8+bNiYiIYOrUqar2eUtISGDMmDEEBASwYsUK0tPTVYstnsxkMtG5c2euX7+uaNyzzz5Lv379NMpKCCsKCoLffjMfoLCnInDBAujUydpZKCYFoBB2wMPDgwEDBhAbG0uPHj0wqPjN8eLFi7Rv356aNWuyfft21eKKx1u5ciXffvutojHe3t6sWrVK1f/+QtiUkBD4/Xfz4RAXF2tn82g6nfm1eDF062btbHJECkAh7EihQoWYN28ex44d47XXXlM19uHDh3nppZd46623iIqKUjW2eNhff/1F7969FY+bPn06FSpU0CAjIWxISAjs3w/+/rY5E2gwgLs7fPON+dSvnZICUAg7FBwczHfffce2bduoWrWqqrG/+eYbKleuTK9evbh27ZqqsQUYjUbatm1LfHy8onEvv/wyXbp00SgrIWxMyZKwZw+0bm3+Z1spBHU6CA6GXbts/qq3J5ECUAg71qhRIw4ePKj6bSJpaWl88skn+Pv7M2PGDJKTk1WN78w++eQTfvnlF0Vj/Pz8CAsLQ6fTaZOUELYob15YsQK2bzffrWvN//9dXMDDA6ZOhUOHoEYN6+WiEikAhbBzBoOBEiVKaBL79u3b9O/fn0qVKrF+/XrFd9SKh0VGRjJ48GDF4+bPn6/Zf2MhbF6DBnDyJAwfbi7ELLk3MGPmsWFDcw79+9v23kQFpAAUQjzR6dOnadasGfXr12fv3r3WTscupaWl0aZNG5KSkhSNe++992jZsqVGWQlhJzw8YOxYOHLEvCzs4WGeEdSqeXRG4ffss/DVV/DDD1CunDbPshIpAIUQ2bZz507q1KlDq1atOHfunLXTsSuTJ09WXDwXKVKEhQsXytKvEBkqVYLly+HyZVi0CKpVM7/v4pL7JeKMmb2CBWHgQIiJgV9/hXfese7ys0akABRCKPb5559TsWJFhg0bpvgwgzM6ePAgY8aMUTxu6dKlFCxYUIOMhLBzvr7mE7gHD5pnBfv3h5degnz5/v2MwWAu6gyGfws4vd78nqvrv59zc4OnnoL27WHTJrh4ESZONJ9CdmCOsZAthLC4pKQkJk6cyLJlyxg3bhzt27fHxUH2xqgpKSmJ0NBQ0tLSFI1r164db9jJpfJCWFXVquYXgMlkLuAOHza/Tp+GpCTzKz3dvHTs4QGFCkH16uZXYKDD7OtTwvl+xUI4ucaNG7Njxw7FBcmjXLlyhS5dujB37lxmzJjByy+/rEpcRzFy5EhOnDihaEyZMmWYPXu2NgkJ4ch0Oihe3Px69VVrZ2PTdCYHP9Z37do1WrVqlen04i+//EJqamq2YhQtWpQqVao89F5ISAizZs1SLU8hcqNJkyZs27YtW58NCwujfv36DBo0iA0bNqieyyuvvML06dMJCQlRPba9+eOPP3j++ecVn57evn07DRo00CgrIYRwghnAggULkjdvXtatW5fjGJcuXeLSpUsPvdfJDu/9EyJDQEAAX3/9Nb/++iv9+vXjwIEDqsX+4Ycf+PHHH+nUqRNjxoyhSJEiqsW2J3fv3qVNmzaKi7/evXtL8SeE0JxTHAIZOXKkqvFCQkJ49913VY0phDW88MIL7N27l/DwcFX7zBmNRhYvXkxAQACTJ09W3PrEEfTv35/Tp08rGlOxYkUmTZqkUUZCCPEvpygAK1euTLNmzVSLN2rUKPRa9R4SwsL0ej2tW7cmOjqacePG4e3trVrs+Ph4hgwZQsWKFfniiy+cppH0Dz/8wOLFixWNMRgMhIeH4+npqVFWQgjxL6epYtSaBZTZP+GovLy8GD58ODExMXTo0EHV3nPnzp3jgw8+4JlnnmHnzp2qxbVFN2/epEOHDorHDR06lNq1a2uQkRBCZOY0BaBas4Ay+yccXbFixVi2bBmHDh2iUaNGqsbeu3cvzz33HM2bN1e8PGovevbsSVxcnKIxNWrUYPjw4RplJIQQmTlVJZPbWUCZ/RPOpFq1avz4449s3ryZoKAgVWOvW7eO4OBgBgwYwK1bt1SNbU3r1q3j888/VzTGzc2N8PBw3NzcNMpKCCEyc6oCMLezgDL7J5yNTqfj1Vdf5ejRo8yfP1/VWylSUlKYPn06/v7+zJs3L9ttmWzVpUuX6Natm+Jx48ePp3LlyhpkJIQQj+Z01UxOZwFl9k84M1dXV7p3705sbCwDBw5Udbbq+vXrfPTRR1SpUoXvvvvOLg+KmEwmOnXqxPXr1xWNe+655+jbt69GWQkhxKM5XQGY01lAmf0TAvLmzcuUKVOIjIykefPmqsaOiorijTfeoFGjRhw+fFjV2FpbsWIF3333naIx3t7erFq1CoPBoFFWQgjxaE5Z0SidBSxevLjM/gnxgHLlyrF27Vp27tzJM888o2rs7du389RTT9GhQwfFhyms4ezZs/Tp00fxuBkzZlC+fHn1ExJCiGxwygKwcuXKim4neOONN2T2T4gs1KtXj127drFmzRrKlCmjWlyTycTy5csJCAhg7Nix3Lt3T7XYajIajbRr1474+HhF41555RU6d+6sUVZCCPFkTlvVNG7cOFuf8/T05JVXXtE4GyHsl06n4/333ycyMpLJkyfj4+OjWuyEhARGjRpFxYoVWbVqFUajUbXYapg7dy6//PKLojF+fn4sW7ZM1T6LQgihlNMWgKtXr87WXsBVq1bx9ttva5+QEHbOw8ODQYMGERsbS7du3VSdNb9w4QJt27alVq1aigsurURGRjJkyBDF4xYsWKDqtXtCCJETTlsAwpP3AsrJXyGUK1y4MAsWLODo0aM0bdpU1dgHDx6kQYMGvP3220RHR6saW4m0tDRCQ0MV33HcrFkzWrRooVFWQgiRfU5dAD7pRLCc/BUi50JCQtiyZQtbt26lSpUqqsbetGkTISEh9OnThxs3bqgaOzsmTZrEvn37FI0pUqQICxYskKVfIYRNcPrq5lGzgDL7J4Q6mjRpwqFDh1i6dKmiw1dPkpaWxpw5c6hQoQKzZs0iJSVFtdiPc/DgQcaOHat43LJly1RtpC2EELnh9AXgo2YBZfZPCPUYDAY6duxITEwMw4YNw8PDQ7XYt27dom/fvlSqVImvv/5a00bSSUlJtG7dmrS0NEXj2rdvz+uvv65RVkIIoZxUOGSeBZTZPyG04ePjw/jx44mOjubDDz9UNfapU6d49913eeGFF9i/f7+qsTOMGDGCkydPKhpTpkwZZs2apUk+QgiRU1IAknkWUGb/hNBWqVKlWL16NXv37qV+/fqqxv7999+pVasWrVu35u+//1Y17owZMxSPW7lyJb6+vqrlIYQQapAq5x8Zs4Ay+yeE5dSqVYtff/2Vr776igoVKqga+9NPPyUwMJARI0YobtT8X3fv3qVt27aKl5f79OnDiy++mKtnCyGEFqQA/EfGLKDM/glhWTqdjnfeeYeTJ08yc+ZM/Pz8VIudlJTE+PHjCQgIYOnSpaSnp+coTv/+/Tl9+rSiMUFBQUycODFHzxNCCK3pTFrumLZRRqORa9eucenSJS5dukRCQgJpaWncuXMHLy8vXF1dcXFxIV++fBQtWpSiRYvi4+Mj7RuEzWrSpAnbtm3L1mfDwsJo3769xhnl3PXr1xk3bhzz589XfNjiSapUqcKMGTOyfRMQwPfff8+rr76q6DkGg4Hdu3dTq1YtpSkKIYRFuFg7AUtIT08nJiaG6Oho4uLiuHr16v0rpfR6/f1lnYy/6nQ6dDodJpPp/nseHh4ULVqUEiVKULlyZYoWLWqdX4wQDq5AgQLMnj2b7t27M3DgQDZt2qRa7GPHjtGkSRNeffVVpk2bRqVKlR77+Rs3btChQwfFzxk2bJgUf0IIm+bQM4DXr1/n0KFDHDx4kMTERPR6fa7vEs2IUbRoUZ5++mmqVKmCu7u7ShkLkTOONAP4X7/88gt9+/bl0KFDqsY1GAx07tyZ0aNHU7hw4Sw/88EHH/DFF18oivvUU0+xZ88eXF1d1UhTCCE04XAFoMlkIiIigj///JNz587dn8nTisFgoEqVKtSrV49ChQpp9hwhHseRC0Awb9tYvXo1Q4cOJS4uTtXYvr6+DB06lN69ez/Un3DdunU0b95cUSx3d3cOHDhASEiIqjkKIYTaHOq0w82bN/n0009Zt27d/fYPWte36enpHD16lEWLFrF9+3bV9ywJIcwz723atCE6OpoxY8bg5eWlWuw7d+4wePBggoKCWLNmDSaTiYsXL9KtWzfFscaPHy/FnxDCLjjEDGB6ejp79uxhx44dmEymXC/z5pROpyNv3ry8+eablCtXzio5COfk6DOA/xUXF8eIESNYsWKF6j/kPfPMM+j1enbt2qVoXP369dmxYwcGg0HVfIQQQgt2PwN48eJFFi9ezE8//UR6errVij8wzzbevn2b8PBwNm7cSFJSktVyEcKRFS9enLCwMA4ePEjDhg1Vjb1nzx7FxZ+3tzcrV66U4k8IYTfsugCMiooiLCyMa9euWTuV+zJmI44ePUpYWBi3b9+2ckZCOK7q1avz008/8e2331KxYkWr5TFz5kzKly9vtecLIYRSdlsA7t+/nzVr1pCenq75Pr+cMJlM3Lhxg6VLl3LlyhVrpyOEw9LpdLz++uscO3aMefPmUaBAAYs+v2nTpnTq1MmizxRCiNyyywJw7969bN682dppPJHRaCQhIYEVK1ZIESiExlxdXenRowexsbH0798fNzc3zZ+ZL18+li1bJk3ihRB2x+4KwP379/P9999bO41sM5lMJCcns3LlSptaqhbCUfn5+TFt2jQiIiJo1qyZps9asGABxYsX1/QZQgihBbsqAC9cuMCWLVusnYZiJpOJpKQk1qxZI21ihLCQ8uXL8+WXX/LHH39Qu3ZtTZ7x008/cfHiRU1iCyGEluymAExJSWH9+vXWTiPHMvYE/vTTT9ZORQin8uyzz7J7924+//xzSpcurWrssLAwAgICGD9+PAkJCarGFkIILdlNAbh161Zu375tkwc+sstkMvHnn39y6tQpa6cihFPR6/W0bNmSyMhIJk2ahI+Pj2qx7927x4gRI6hYsSKrV6+2aisqIYTILrsoACMjIzl48KBdF38ZdDodX3/9tcwWCGEFnp6eDB48mJiYGDp27Khq7PPnzxMaGkrt2rX59ddfVY0thBBqs/kCMDk5mU2bNlk7DdWYTCYSExPt6iCLEI6mSJEi5M2bV5PYBw4c4MUXX+Sdd94hJiZGk2cIIURu2XwBeOjQIYe7UcNkMnH8+HFu3bpl7VSEcEq//fYbM2fO1PQZGzZsICQkhI8//pgbN25o+iwhhFDKpgtAo9HI7t27rZ2GJnQ6HXv37rV2GkI4nfj4eNq2bWuRLSWpqanMnj0bf39/Zs+eTUpKiubPFEKI7LDpAjAqKoo7d+5YOw1NmEwmDhw4IH8gCGFh/fv358yZMxZ95s2bN/n4448JCQlh48aNDrGfWQhh32y6ANy9e7dDd9hPSUnh8OHD1k5DCKexZcsWlixZYrXnx8bG8r///Y8XX3yRAwcOWC0PIYSw2QLw8uXL/P333w7/k/KePXusnYIQTuHGjRs5OvnbsWNHnn32WVVz+e2336hZsyZt2rTh/PnzqsYWQojssNkC8MyZMw49+5fh5s2bDrvMLYQt6dGjh+JbO55++mkWLFjA77//zvr16ylfvryqOYWHhxMYGMjIkSO5e/euqrGFEOJxXKydwKPExcVpFjs6OprPP//8kV+vVKkSzZs31+z5/xUXF4evr6/FnieEs/nyyy9Zs2aNojHu7u6Eh4fj6uoKwLvvvsvrr7/OvHnzGDduHLdv31Ylt8TERMaNG8fSpUsZP348bdu2xWAwqBJbCCEexWYLwHPnzmm2/FuuXDn69ev30Hsmk4mNGzdy6dIlXnjhBU2emxW9Xs+FCxcICgqy2DOFcCYXL16kW7duisdNmDCBSpUqPfSeu7s7/fr1o02bNowdO5YFCxaQnp6uSp6XLl2iY8eOzJ07lxkzZtCoUSNV4gohRFZscgk4ISFBtZ+us+Lq6oqPj8/9l7e3Nz/++COXLl2iTZs2FClSRLNn/5fRaJQ9QEJoxGQy0bFjR8V9+OrXr0+fPn0e+fWCBQsyd+5cTpw4wZtvvpnLLB929OhRGjduzOuvv05ERISqsYUQIoNNFoBaLv/+l9Fo5Ouvv+bUqVOEhoZatPjLcOHCBYc/7CKENYSFhbFlyxZFY/LkycPKlSuztQxbsWJFNm3axPbt26levXoOs8za5s2bqVKlCj179uTq1auqxhZCCJssAK9fv26R5zxY/LVp04aiRYve/9qaNWuYPHkya9eu1TyP1NRU7t27p/lzhHAmZ86c4eOPP1Y8bubMmYoPezRo0ID9+/ezYsUKihUrpviZj5Kens78+fPx9/dn2rRpDncrkhDCemyyAExNTUWv1za1xxV/AHXq1OF///ufpjk8KDU11WLPEsLRGY1G2rVrp/hkbdOmTXPUKgbAYDDQtm1bYmJiGDVqFF5eXjmKk5U7d+4wcOBAgoOD+fLLL2XFQAiRazZZAKalpWka/7/Lvv8t/sB8UMTNzU3TPB4kBaAQ6pkzZw6//vqrojH58uVj2bJluW4/5e3tzejRo4mOjqZt27aqtrM6e/Ys77//Ps8++6z0EBVC5IpNFoBaMhqNbNiw4X7xp+ZyTW44Q89DISzh5MmTDBkyRPG4BQsWULx4cdXyKFGiBCtWrODAgQM0aNBAtbhgviWpbt26tGzZkrNnz6oaWwjhHGyyAHRx0aY7TUbxFxkZyTvvvEOePHmIj49/6GU0GjV59pNo9WsWwpmkpqYSGhpKcnKyonHvv/8+LVq00CSnGjVq8PPPP7Np0yYCAwNVjb1mzRqCgoIYMmSINJQXQihik1WHq6urJoVYXFwcx44dA+Czzz7L8jODBg3C09NT9Wc/SUazWSFEzk2cOFHxHbtFixZl/vz5GmVkptPpePPNN2natCmLFi1i9OjRilvTPEpycjKTJ08mLCyMsWPH0rFjR/mBUgjxRDb5XaJAgQKaxC1ZsiSjR4/WJHZuuLq64u3tbe00hLBrBw4cYPz48YrHhYWFafY9579cXV356KOP+PDDDxk/fjyffPKJavt/r169Srdu3fjkk0+YPn06r7zyimwtEUI8kk0uAZcoUcLaKbB69WrWrVtHTEwMM2bM4MKFC5o9q0SJEvKNWohcSExMpHXr1ooPkHXs2JFXX31Vo6weLV++fMyYMYOIiAjeffddVWOfPHmSV199lVdeeeX+iocQQvyXTc4Aenp6kjdvXk1vA3mS1q1bW+Q5er2ekiVLWuRZQjiq4cOHK741o2zZssycOVOjjLKnQoUKrF+/nt9//51+/fqxb98+1WL/+OOPVK9enQ4dOjB27Ngsux0IIZyXTc4AApQuXdopZsWMRqNNzHgKYa9+/fVXZs2apWiMTqdj1apV+Pj4aJSVMvXr12fPnj18+umnlCpVSrW4RqORpUuXEhAQwIQJE0hMTFQtthDCvtlsAahmOwZbJwWgEDkTHx9P27ZtFTdG/vjjj3n++ec1yipn9Ho9rVq1IioqigkTJpAnTx7VYt+9e5fhw4dTsWJFPv30U6t1OxBC2A6bLQDLlSvnFN3u8+XLZzOzEELYm379+inugxccHMyECRO0SUgFnp6eDB06lJiYGDp37qzqrUh///03rVu3pk6dOvz++++qxRVC2B+bLQCLFClCqVKlHH4Z+JlnnrF2CkLYpS1btrB06VJFYwwGA+Hh4Xh4eGiUlXqKFi3K4sWLOXz4ME2aNFE19v79+3n++ed57733OHXqlKqxhRD2wWYLQIB69eo59Cygm5sb1atXt3YaQtid69ev06FDB8XjRowYQc2aNTXISDtVqlRh69atfP/991SqVEnV2F999RXBwcH069ePmzdvqhpbCGHbbLoADAwMJG/evNZOQxM6nY6nn37aovcNC+EoevTowaVLlxSNefrppxk6dKhGGWnvlVde4ciRIyxcuJBChQqpFjc1NZWZM2fi7+/P3Llz5V5yIZyETReAer3eoZdI69SpY+0UhLA7a9euZe3atYrGuLu7Ex4ebvc37ri4uNC1a1diY2MZPHgw7u7uqsW+ceMGvXv3pnLlymzatMmhV1+EEDZeAIL5Hk172K+jhE6nIyQkxGFnN4XQysWLF+nevbvicRMnTlR9+dSafH19mTRpEpGRkbRs2VLV2NHR0bz99ts0bNiQgwcPqhpbCGE7dCY7+DEvKiqKNWvWWDsNVeh0Ojw8PDAYDPj4+JAnT577f814PfjPcqenyI4mTZqwbdu2bH02LCyM9u3ba5yR+kwmE6+//jpbtmxRNO75559nx44dqp6mtTV79uyhb9++7N69W9W4Op2O0NBQJkyYIO2qhHAwdlFdVKxYkaeeeopDhw7Z/bKEyWTi3XffZfz48axcufKJn3d3d39sgfiof3766acJCAjQ/hckhIUsW7ZMcfGXJ08eVq5c6dDFH5i7CezcuZP169czaNAgzpw5o0pck8nEqlWrWLduHf3792fAgAGq9icUQliPXcwAAqSkpLBw4UJu375tt0WgTqejdu3avPLKK9y+fZsqVarw999/q/4cd3d3IiMjKVu2rOqxhW1y9BnAM2fOULVqVe7evato3NKlS+nYsaNGWdmm5ORkPvnkE8aNG8edO3dUjV2sWDEmTJhAaGgoBoNB1dhCCMuymx+L3dzceO+996ydRo7pdDoKFChAo0aNAMibNy/Lly/X5Fl9+vSR4k84DKPRSNu2bRUXf6+99lqOWsXYO3d3d/r3709sbCw9evRQtVC7ePEi7du3p2bNmmzfvl21uEIIy7ObAhDMV6a99tpr1k5DsYx9f++///5De/oaNWpEt27dVH1WoUKFGDJkiKoxhbCm2bNn89tvvykakz9/fpYuXerwjeQfp1ChQsybN49jx47x+uuvqxr78OHDvPTSS7z55ptERUWpGlsIYRl2VQCCuZfXq6++au00sk2n0+Hu7k67du0oWLBgpq9PnTqV8uXLq/a8MWPGyOli4TBOnDiRo959CxYsoFixYhpkZH+Cg4P59ttv+emnn6hWrZqqsb/99lsqV67MRx99xLVr11SNLYTQlt0VgAC1atVS/SdaLeh0Ory9vWnfvv0jG7dmbFJXY6bCw8ODpk2b5jqOELYgNTWV0NBQkpOTFY1r0aIF77//vkZZ2a+XXnqJAwcOEBYWRtGiRVWLm5aWxrx58/D392f69OmK/3sJIazDLgtAMM8EtmjRAoPBYJPLPBl7/jp16vTErv3169fn448/zvUzk5KSqFSpEiNHjlS8X0oIWzNhwgTFfeiKFSvG/PnzNcrI/hkMBtq3b09MTAwjR47E09NTtdi3b99mwIABBAcHs379ers9rCeEs7DbAhDM7WE6dOig6rVIuZVRjFarVo0OHTrg6+ubrXHjx48nKCgo189PTExk3LhxBAQEEBYWRnp6eq5jCmFp+/fvZ/z48YrHLVu2jPz582uQkWPJkycPY8aMITo6mtDQUFVjnzlzhmbNmlG/fn327t2ramwhhHrsugAE80/8Xbp0oXHjxhgMBqv3+/Lz86NNmza89dZbim4w8fT0ZNWqVarlf+nSJTp27MhTTz3FTz/9pEpMISwhMTGR0NBQxT+8dOrUya72B9uCkiVLsmrVKvbv388LL7ygauydO3dSp04dWrVqxblz51SNLYTIPbsvAMF8Z3C9evXo2bMn5cqVA7DosrBer0ev1/P888/TvXv3HLdgqV27NoMHD1Y1t6NHj9K4cWNef/11IiIiVI0thBaGDRum+P/VcuXKMWPGDI0ycnxPP/00O3bsYOPGjao3kP/8888JDAxk6NChqvclFELknEMUgBn8/Pxo1aoVzZs3p3Tp0oB2hWBGXBcXF6pVq0bXrl1p0KBBrq9uGzlyJFWrVlUjxYds3ryZKlWq0LNnT65evap6fCHU8OuvvzJ79mxFY3Q6HStXrsTHx0ebpJyETqfjrbfe4vjx48yePZt8+fKpFjs5OZlJkyYREBDA4sWLSUtLUy22ECJn7OYmkJy4ceMGhw4d4uDBgyQkJKDX6zEajbmKmRGjWLFi1KxZk5CQENzd3VXK2OzIkSPUqlWL1NRUVeNm8PX1Zfjw4fTq1Uv13IV1OMJNIPHx8VStWpWzZ88qGtevXz+mT5+uTVJO7MaNG4wfP5558+ap/r0oJCSEGTNm8PLLL6saVwiRfQ5dAGYwGo3ExMQQExNDXFwcV65cub+/KGPPnclkun9qTafTodPpHnrP09OTYsWKUbx4cSpXrkyRIkU0zXn8+PGMGDFC02eUK1eOyZMn06xZM5s8SS2yzxEKwE6dOrFs2TJFYypVqsSBAwcU7bcVysTGxjJo0CC+/vpr1WO//PLLTJ8+ncqVK6seWwjxeE5RAP6X0Wjk+vXrXLp0iUuXLpGQkEBaWhppaWnodDpcXFxwcXEhX758FC1alKJFi1p8eSktLY169eqxb98+zZ9Vt25dZs6cyTPPPKP5s4Q27L0A3Lx5s+Leni4uLuzZs4enn35ao6zEg3777Tf69u3LgQMHVI2r1+vp1KkTY8aM0fwHayHEv5yyALQXERER1KhRw2KNVVu0aMGkSZPkHmE7ZM8F4PXr16lcuTKXLl1SNG7MmDGMHDlSo6xEVoxGI59//jlDhgzh/Pnzqsb28fFhyJAh9OnTR9X+hEKIrDnUIRBHExwczIQJE7L82vjx41U/rbdmzRqCgoIYMmSInNYTFtO9e3fFxV/NmjXlzmsr0Ov1fPjhh0RFRTFu3Di8vb1Vix0fH8/QoUMJCgri888/z/V+bSHE40kBaOP69OnDc88999B777zzDsOGDeP48ePMmTNH9dN6kydPxt/fn0WLFslpPaGpNWvW8OWXXyoa4+7uTnh4OK6urhplJZ7Ey8uL4cOHExMTQ8eOHVXdQ3zu3DlatWpF3bp12blzp2pxhRAPkwLQxhkMBlauXImXlxcArq6uTJkyBQA3Nzd69epFbGwsH3/8sap/IF69epVu3bpRrVo1fvjhB9XiCpEhLi6O7t27Kx43adIkgoODNchIKFWsWDGWLl3K4cOHadSokaqx9+7dy3PPPUezZs04ffq0qrGFEFIA2oUKFSowbdo0AHr27Im/v/9DX8+fPz8zZ87k5MmTvPPOO6o+++TJkzRt2pSXX36ZY8eOqRpbOC+TyUTHjh25efOmonEvvPACvXv31igrkVNVq1blxx9/ZPPmzaoX5+vXryc4OJj+/ftz69YtVWML4cykALQTXbt25f33339saxh/f3+++uorfvvtN2rWrKnq83/88UeqV69O586dFe/XEuK/li5dyvfff69oTJ48eVi5cqXVr3sUWdPpdLz66qscPXqUBQsWULBgQdVip6SkMGPGDPz9/TXpSyiEM5LvpHZCr9fz+eefZ2u/X/369fnzzz9ZvXo1JUuWVC0Ho9HI0qVLCQgIYOLEiSQmJqoWWziP06dP07dvX8XjZs+eLSfU7YCLiwvdunUjNjaWgQMH4ubmplrs69ev89FHH1GlShW+/fZbpImFEDknbWAcXEJCArNmzWLSpEncu3dP1dilSpVi0qRJtGzZUmZlrMxe2sCkp6fToEEDfv/9d0XjXnvtNb799ltpWG6Hzpw5w5AhQ1i7dq3qsRs2bMiMGTOoXr266rGzzWSCe2fgxiG4eRjiYyA9EdITwJgKBk/zyz0/+FWDfNUhXzVw9bVezkIgBaDTuHTpEiNHjiQsLEz19gq1atVi5syZmU4rC8uxlwJwxowZ9O/fX9GY/Pnzc/z4cYoVK6ZRVsISdu/eTd++fdmzZ4+qcXU6HW3btmX8+PEUL15c1diPdPMwnPkUru2Gm0cg/Z8frnUugBFM//0eqwOdAUzpwD9/5HqVhgI1oWgTKNtSCkJhcTJt4ySKFi3KkiVLOHz4MI0bN1Y19r59+6hfvz7vvfcep06dUjW2cBwnTpxg2LBhisctXLhQij8HULduXXbt2sWaNWtUXco3mUysWLGCgIAAxowZo/pKx32pdyBmEWypDt/XgKg5cG3Xv8UfgCkti+IPwGT+Gg/MtyScg783wr5u8FUR2N0Oru4yzygKYQFSADqZKlWqsHXrVrZs2aL6ab2vvvqK4OBg+vXrp/h0p3BsqamphIaGKr7VpmXLljRv3lyjrISl6XQ63n//fSIiIpgyZQq+vurNeiUkJDB69GgCAwNZuXKleisdd6LNxdlXhWFfd7h11Py+SY0eqUbABMYkOPspbHsWvqsIUZ+Yl4+F0JAUgE5Ip9PRtGnT+6f1ChUqpFrs1NRUZs6cib+/P3PnzpXTegIw31xz8OBBRWOKFSvGvHnzNMpIWJOHhwcDBw4kJiaGbt26YTAYVIsdFxdHu3btqFmzJjt27Mh5oPRkODYWNoeYizNjMuYZPI1m6DIKyvhYONAbvq8O1/7U5llCIAWgU8s4rRcTE8OgQYNUPa1348YNevfuTeXKlfnmm2/ktJ4T27dv3yOvNHycsLAw8ufPr0FGwlYULlyYBQsWcPToUV599VVVYx86dIiGDRvy9ttvEx0drWzwld9hSxU4NvqfZV1L3oj0T5F5Jwp+rAv7epqXn4VQmRSAgrx58zJ58mSioqJo0aKFqrGjo6N56623eOmllzh06JCqsYXtS0xMJDQ0lPT0dEXjOnfuTNOmTTXKStiaSpUqsXnzZn788UeqVKmiauxNmzYREhJC7969uX79+uM/nHoX/uwEPz0Pd0+j2WxfdmQcGIldCN8EwIXvrJeLcEhSAIr7ypYtyxdffMHu3bupW7euqrF37NjB008/Tbt27bhw4YKqsYXtGjZsGJGRkYrGlCtXjunTp2uUkbBljRs35tChQyxdupQiRYqoFjctLY25c+fi7+/PzJkzs96LmnjZXPidXmH+Z5OyH1o0YzJC8jX49U2InG3tbIQDkQJQZPLMM8+wc+dO1q5dq/ppvZUrVxIYGMjo0aO1O60nbMIvv/zCrFmzFI3R6XSsWrUKHx8fjbISts5gMNCxY0diYmIYPnw4Hh4eqsW+desW/fr1IyQkhK+++urfrSnxp2Brbbh1zHYKv4f8c1jk4MdwsJ+cFBaqkAJQZEmn09G8eXPNTuuNGTOGwMBAVqxYoXh5UNi+O3fu0LZtW8Xj+vXrR/369dVPSNgdHx8fxo0bR3R0NK1bt1Y19qlTp3jvvfdo2LAhabeiYNtzkBhn4b1+ORQ503xIRIpAkUtSAIrHyjitFxsbS/fu3VU/rde+fXtq1qzJ9u3bVYsrrK9v37789ddfisaEhIQwbtw4jTIS9qpUqVKEh4ezb98+nn/+eVVjP1O1OC7bG5iXWO2h+MsQ/QkcUtZQXYj/kgJQZEuhQoWYP38+x44d47XXXlM19uHDh3nppZd46623iIqKUjW2sLzNmzcTFhamaIyLiwvh4eGqLvcJx1KzZk1++eUXvv76aypUqJDreH558zCmcSQkX7Wv4i9D5Ew4t87aWQg7JgWgUCQ4OJjvvvuObdu2UbVqVVVjf/PNN1SuXJlevXo9+bSesEnXrl2jQ4cOiseNGDGCp556SoOMhCPR6XT873//4+TJk8yaNQs/P78cx9o08Rnc7hyyz+IPAB3s6QgJ562diLBTUgCKHGnUqBEHDx5k2bJlFC1aVLW4aWlpfPLJJ/j7+zNjxgzFN0cI6zGZTHTv3p3Lly8rGlerVi2GDBmiUVbCEbm5udGnTx9iY2Pp3bs3Li4uisa/+WwR6vttx6ptXnLNBOkJsOvDR1w/J8TjSQEocsxgMNChQwdiYmIYMWIEnp6eqsW+desW/fv3p1KlSqxfv14aSduBNWvWsG6dsiUpDw8PwsPDcXV11Sgr4cgKFCjA7NmzOXHiBG+//Xa2xni7w2fdjeh0Om2TswRTGlz5FSKVnbYXAqQAFCrIkycPY8eOJSoqSvXTeqdPn6ZZs2bUr1+fvXv3qhpbqCcuLo4ePXooHjdp0iSCgoI0yEg4k8DAQDZs2MAvv/zyxK0ESz8qirfuho22e8mhw4PNrWyEUEAKQKEaLU/r7dy5kzp16tCqVSvOnTunamyROyaTiQ4dOnDz5k1F41588UV69eqlUVbCGb3wwgvs27ePVatWUaJEiUxf9/OC92vcQOdIxV+GqLnWzkDYGSkAheoyTutt2LABf39/VWN//vnnVKxYkWHDhhEfH69qbJEzS5Ys4YcfflA0xsfHhxUrVqDXy7cgoS69Xk9oaCjR0dGMHTsWLy+v+1+b27sqeuz10MdjmNLg1FJIuW3tTIQdke++QhM6nY63336bEydOMGvWLPLly6da7KSkJCZOnIi/vz9LliwhLc0Bv6HbiVOnTtGvXz/F42bPnq3qLTNC/JeXlxcjRowgJiaG9u3bk8fbg5Y1LmG+VcMBpSfB6eXWzkLYESkAhaYePK3Xp08fxaf1HufKlSt06dKFGjVqsHXrVtXiiuxJT0+nbdu2iq/0e/3112nXrp1GWQnxsOLFixMWFsb53XNxSb1i7XQ0ZDL3BjQ64PK20IQUgMIi8ufPz6xZsxSd1suu48eP88orr9C0aVNOnDihamzxaLNmzeKPP/5QNKZAgQIsXbrUMU5gCruS9+Iq0Kl3k5FNSjgPcVusnYWwE1IACotSclpPqR9++IGqVavStWtXxb3ohDLHjx9n2LBhisctXLhQ1b6RQmRLehJc/9OxTv5mRecKV36xdhbCTkgBKKwi47ReeHh4lqf1cspoNLJ48WICAgKYPHkySUlJqsUWZikpKYSGhpKSkqJo3AcffECzZs00ykqIx7h5RNMbP7YcBl2rR7+aW+qArikVru220MOEvZMCUFiNXq+ndevW90/reXt7qxY7Pj6eIUOGEBQUxBdffCGNpFU0fvx4Dh06pGhM8eLFmTdvnkYZCfEE1/cC2m07aFAJLs5/+HX+E2hcGQr6wIi3NXt0ZjcOglEOxoknkwJQWN1/T+upuT/sr7/+4oMPPqBu3brs2rVLtbjOat++fUycOFHxuLCwMFVPgguhyPW9mu7/83SDon7/vgr5Qv/P4dBfsH0oVCmt2aMzMybDbdkLLZ5MCkBhM4oVK0ZYWBiHDh3ipZdeUjX2n3/+ybPPPkvz5s05ffq0qrGdRWJiIqGhoaSnK9tH1aVLF1555RWNshIiG67+oekS8IPSjfDhAth2DH62dPEHgM6831GIJ5ACUNicatWqsW3bNr777jvVrwlbt24dwcHBDBgwgFu3bqka29ENHTqUyMhIRWPKly/P9OnTNcpIiGwwmeCeZW4PSjdC6weKv6r/FH/xiVBrBFQfAlUGwdLtGiahc4H4WA0fIByFFIDCJul0Ol577TWOHj3K/PnzKViwoGqxU1JSmD59Ov7+/syfP5/U1FTVYjuqHTt2MHv2bEVjdDodq1atIk+ePNokJUR2GFOwRPPnjOLvx3+Kv2pl/v2alzv8OhwOT4I/x8Kkb+C6lhcZpSdqGFw4CikAhU1zdXWle/fuxMTEMGDAANzc3FSLff36dXr27EmVKlX47rvv5KDII9y5cydHjZv79+/Pc889p0FGQihggWIoo/jbegx+GvJw8Qdg0JuLQICkVPPntftuY5ICUGSLFIDCLvj5+TF16lQiIyNp3ry5qrGjoqJ44403aNy4MUeOHFE1tiP4+OOP+euvvxSNCQkJYezYsRplJIQS2jYdTzdC6MJ/i7/qZbP+3K17UG0IlPwIBr5uPh2sHWm0Lp5MCkBhV8qVK8fatWvZuXMnderUUTX2zz//TI0aNejQoQNxcXGqxrZX3377LcuXK7tf1MXFhdWrV+Ph4aFRVkIoYPDULLTxn+Jv4wH4tBsU84NLtx5+pf+z+uznDUcmwZnZ8PkuuHxbq6x0mv6aheOQAlDYpXr16rF7926++OILypQp8+QB2WQymVi+fDkBAQGMHTtW8T23juTatWt06tRJ8biRI0dSo0YNDTISIgf0rmj1R92+0+ZiLiEZXp0GxXpkfsX/ZzW2SF7z4ZDflJ2nUsbFS8PgwlFIASjslk6no0WLFkRGRjJ58mR8fNRbU0lISGDUqFFUrFiR8PBwjEbtN5HbEpPJRLdu3RRfqVe7dm2GDBmiUVZC5IBOBz7+moSu4w+mzx7/8vM2z/bdSTCPuZNgLv4qFtMkJfNtIL7qdk8QjkkKQGH3PDw8GDRoELGxsXTt2hW9Xr3/rS9cuECbNm2oVasWv/zyi2pxbd0XX3zB+vXrFY3x8PBg1apVuLi4aJSVEDlU6FlzexQrOX8Dnh9n3gP43Fjo2eTfFjGaKFBbw+DCUUgBKBxG4cKFWbhwIUePHqVp06aqxj548CANGjTg7bffJjo6WtXYtubChQv06NFD8bjJkyer3rdRCFUUqA0mZQ3M1fR0OXMLmCOT4Ohk6NZIw4cZvMCnooYPEI5CCkDhcEJCQtiyZQtbt26lcuXKqsbetGkTISEh9OnThxs3bqga2xaYTCY6duyouEl2gwYN+Oijj7RJSojcKlAbLRuv2JQCNUGv3bV3wnHoTNL8TDiw9PR0li9fzogRIxTvZ3sSPz8/Ro4cSY8ePVTtT6iYMY1vP5tG6tV9FHW/hJchARddGi66NEzoSDO5kGZ04WZqPi4lF6PqC6FUrtXEvDfqPxYvXkzXrl0VPd7Hx4djx46pehhHCFUZU+HLPP80hXZgOhcI7g/VJ1k7E2EHpAAUTiE+Pp4pU6YwY8YMkpKSVI3t7+/P1KlTefvtt9FlUVSpzpgKFzZD3Ba4vg/unDC/B6BzBUxgMnL/9gOdHvNkv+nfZTC3fJDvKfPMSJkWkK8qp06dolq1aopPPi9fvjxHjaKFsKjtjeHyDqsuBVtEgx+hWGNrZyHsgBSAwqmcO3eOoUOH8tlnn6keu379+sycOZOaNWuqHhuAOzFwOgxil0HKdfNP+7m94D4jRr6nuFeiNb1n7CYs/MtsD3/jjTfYtGmTZQpfIXLjwmb49XVrZ6Ghf047vx6V5ey+EP8lBaBwSvv27aNv37788ccfqsf+8MMPmThxIqVKlcp9MJMJ/v4KoubA1T9AZ9BoBuOfGUKDO2eMdflg/EH2nHx8p9oCBQpw/PhxihYtqkE+QqjMZIRvA+DuGRx2P2DtxeDf2dpZCDshh0CEU6pVqxa//fYbX331FRUqVFA19qeffkpgYCAjRowgPj4XN77fPQ3bm8AfzeDqLvN7mi1fGTHfIZpEOX5n1/C7fDEkEHfXR49YtGiRFH/Cfuj0ENTP2lloxzUvlP3Q2lkIOyIFoHBaOp2Od955hxMnTjBjxgz8/PxUi52UlMT48eMJCAhg2bJlpKcrKNyMqXByCnxXCa78kvGmark9kSkNnSmd9yvHcGVFIZo+nflaqQ8++ID33nvPcjkJoYZyoeCSx9pZqE9ngIDucgOIUESWgIX4x/Xr1xk7diwLFiwgLS2Xe+v+o0qVKsyYMYPGjZ+wOfvGAdgdCrcjsIllqn+WnL+PKkqLaZe4kwjFixfn+PHj5MuXz9rZCaHc0VFwfBw28ftLLQZPeCMGvEpYOxNhR2QGUIh/FChQgDlz5nDixAneeustVWMfO3aMJk2a8Nprr3Hy5MmsP3R+E/xYD+5EYTN/OP2z5PxK0FVOLyqCf3EPli9fLsWfsF8hQyFvZaveDKK6mvOl+BOKyQygEI/wyy+/0LdvXw4dOqRqXIPBQOfOnRk9ejSFCxc2vxmzEPZl3L5ho78ldS6ku+bH0Gg7+IVYOxshcu52BHxf3f77AuoMUOINqP+1nPwVikkBKMRjGI1GVq9ezdChQ4mLi1M1tq+vL8uWLaNZ1UtwoJeqsTWjM4CrLzT+A/JWsnY2QuRc9HzY39PaWeSCHtwLwusnwb2AtZMRdkiWgIV4DL1eT5s2bYiOjmb06NF4eam3yTo+Pp66BY/YT/EH5iXh1Duw7fl/lqqFsFMB3aHYy+YfauySEep9KsWfyDEpAIXIBm9vb0aNGkVMTAzt2rVTpfHxuD6vU/KiHV7ZZEqH1Fvw2/8gXd1bVYSwGJ0O6q6GPP72uR+w+hS58UPkihSAQihQvHhxli9fzsGDB2nYsGGO4xTO78Wg5w7b774dU7p5BvDwUGtnIkTOeRSCRr9CnnL2VQRWmwiVBlo7C2HnpAAUIgeqV6/OTz/9xDfffEPFihUVj/9hQhAuyRfs/F5SI0TNgovbrJ2IEDnnWQQa/Q55g218OfifHxZrTIeQIdZNRTgEKQCFyCGdTscbb7zBsWPH+OSTTyhQIHt7cTo0yU8N34Pmq6nsnh52fQjJ162diBA551kEGu+EIg25X2jZEp3B/Kr3BQQ78G0mwqLkFLAQKrl16xYTJkxgzpw5pKamZvkZX0+4utQLN10iNtvuRSmdAcq0MG9IF8KeGVPh+AQ4McH8zyZ1G8LnjA58K8IzK6FgHWsnIxyIzAAKoRI/Pz+mTZtGRETEI69JG/1hSVwdqfgD8zL22S/g3jlrZyJE7uhdoepoePUYFLBysaVzAb0bVJsATY9I8SdUJwWgECqrUKEC69at448//qB27dr33zfooXvDJHSOVPxl0OnMfdWEcAR5g6Dxb1BnGbj4Wnhv4D/PKlwfXjth3u9ncLPg84WzkCVgITRkNBpZu3YtgwcPpsebRRlYd6+1U9KOiw/8Lw5c81g7EyHUk3gZoudC7FJIvnr/fmzVZcQt/CIE9oRS79hvlwBhF6QAFMICEhMTcdn+PK63DwH2fPL3cXRQcx4Edrd2IkKoz5gGcVsgdon5r+jMBVpuikGdK5hSwb0w+HeCCu0hT3nVUhbicaQAFMISbh6G72tYOwuN6SBPBXgzxtqJCKGthAvw1xq4vg9u7IO7ZzDv69WB3uWfLb6mf99DZ/77jEMlBi/IVx3yPw1FG0HxV83jhLAg+T9OCEu4vAPzlltHaP3yKCa4GwuJF8GzmLWTEUI7XiUebseSdg9uHoVbh+FOtPmGHGOS+VSxwQP0HuCeH/yqmQu/POVAJ1vwhXVJASiEJVzb+89ykfqhtxyG16Y9+uvN6sCXlrxu+Po+KPmmBR8ohJW5eEOhuuaXEHZCCkAhLOHaTs1u/WhQCS7+5wBuuhHaLYZDf8GItzV5bNZ0LnD9TykAhRDCxkkBKITWkq5Bwt+ahfd0M78ypBvhwwXm4m/7UKhSWrNHZ2ZKh2t7LPhAIYQQOSGbEITQ2o19FntURvG37Rj8bOniDwATXN/rINfcCSGE45IZQCG0Fh+DJQ6ApBuh9QPFX9V/ir+/r0PrhXDlNrgYYMT/zPsCNZN2F5Kumu9XFUIIYZOkABRCa2kJ5hN/Gs6KZRR/P/5T/FUr8+/XXPQw+0OoXtZcBD41DF6tBt4emqUD6YkaBhdCCJFbUgAKobX0RMx9wDQK/0/xt/UY/Dzk4eIPoFg+8wugcF7Inwdu3JMCUAghnJnsARTCjqUbIXShufj7aYh5lu9x9p8GowlKFbBIekIIIWyUzAAKoTWDJ1o0ADT+U/xtPADre0ExP7h06+HPFPIFwz8/5l2PN39+WSfVU8nM4GmBhwghhMgpKQCF0JqLlyb7//adhs93mf/+1Uc0gr65BPy8ITkV/jcLhrwJ9QJVTyUzKQCFEMKmSQEohNZ8AtDiBHAdfzB99uTPmUzQdjE0DIHW9VVPIzOXPOBRyAIPEkIIkVNSAAqhtfy1rPr4ndGwdg9ULQUb95vfW91Nqx6BOihQW+45FUIIGycFoBBa8ygIXqU0vQ3kcZ6rCMZPLfQwnQEKyn2oQghh6+THdCEsoeCz5uLI0ZnSzDOAQgghbJoUgEJYQsHa5s14zqCAdZe8hRBCPJksAQthCUUaovVVcNangzwVwLOYtRMRQgjxBDIDKIQl5Pt/e3cPWlcZx3H8d3LzRhObmEoptNUYbU0pUrUGC4WCULvWrRSHgoIv6KJ0EXF0b0HEwZdJcCsOIoiTFQVxEHEoYnGpKFQRqYO16b0OJ92TprnPvff5fOASSIbzzxDy5Xmec86htbNxI74NvPxq6QkAWAcBCP1y4GySm6Wn2Drjs8nSmdJTALAOAhD6ZffJZNue0lNsjaaT7HspGZ8pPQkA6yAAoV/GOsnya0ma0pPceb1esv+V0lMAsE4CEPpp6dlkYi4jFYFNJ1k8nczsLT0JAOskAKGfJueSIx8mGZVHwowlkzuSw+dLDwLABghA6Le9TycPPJfR+PPrJkc/SqZ2lB4EgA0Yhf9AMHweO5fM3DvkbwcZa8807jpeehAANkgAQgkTs8nRj4f37SBNJ9n+UHLordKTAHAbBCCUcs8Tyco7pafYuKaTTM4nxy4knenS0wBwGwQglLTvheTxt0tPsX5Np72L+fjFdgUQgKEkAKG0/S8nK++mfTTMAD8ephlPpnYmT11M5g6UngaATWh6vWE9hAQj5sonyVenkt5q0huwV8bdOvP35OfJtt2lpwFgk6wAwqDYczI58XWyfTkDsxJ46y7l+88kJ74RfwAjwgogDJrujeTSueSHN9uVwN5qoUGaZHYpOfJBsvNYoRkA2AoCEAbVP78k3z6f/P5F2sX6bn+u24y3Xw++kRx8PelM9ee6APSNAIRB1uslVy4kl84nV79st2S35HzgWmB2ppPFZ5Lls8nc8hZcB4BBIABhWFz7Obn8fnL5veT6H+1K3aa2h5u1oFxNFg4nD76Y3Hcqmbjrjo0MwGASgDBsujeSXz9Nfvss+fO75O8fk+5/7c+aiSS9pNdNu2XcJBlLmmbt+2urh5N3t9G3sJIsnk7mHy7yqwBQhgCEYdddTa79lPz1ffu5fjW5+W/7aTrttm5nur2hY/6RZOHRZHrXWhQCUCMBCABQGc8BBACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKiMAAQAqIwABACojAAEAKjM/7MbIUMSWYP6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHiCAYAAAB4GX3vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTAUlEQVR4nOzdZ3RUVReA4Xcy6SH03ksSEkJViiCoIKAonx0EldA7AtJ7712kQyjBAoIUERRBUJEivafSIdTQAumZ+X6MQTABcpN7p+5nrVnqZM6+G5Wwc8o+OqPRaEQIIYQQQjgMJ0snIIQQQgghzEsKQCGEEEIIByMFoBBCCCGEg5ECUAghhBDCwUgBKIQQQgjhYKQAFEIIIYRwMFIACiGEEEI4GCkAhRBCCCEcjBSAQgghhBAORgpAIYQQQggHIwWgEEIIIYSDkQJQCCGEEMLBSAEohBBCCOFgpAAUQgghhHAwUgAKIYQQQjgYKQCFEEIIIRyMFIBCCCGEEA5GCkAhhBBCCAcjBaAQQgghhIORAlAIIYQQwsFIASiEEEII4WCkABRCCCGEcDBSAAohhBBCOBgpAIUQQgghHIwUgEIIIYQQDkYKQCGEEEIIByMFoBBCCCGEg5ECUAghhBDCwUgBKIQQQgjhYJwtnYAQInsMRiMPklK4m5jCvYRkElMNGIxGUo1GdOjQ68DJSYeXi55cbi7kdnfBXe+ETqezdOpCCCEsRApAIWyMwWjk2oNErj1M4E5CMrGJKRj++VpaSWd87POPl3lp77s46cjt7kIedxdK5PQgl5uL5nkLIYSwHjqj0Wh8/seEEJb2ICmF8/fiOH83jiSDER1PFnpZkRYjt5szZXJ7UTynOy5OsjNECCHsnRSAQlgxo9FI9IMEou48JCY+WZWi71mcdFDC2wO/vDnwdpMFAiGEsFdSAAphpR4mpXDk+j1uxCWZ9blpS8bl8+WgfN4c6J1kr6AQQtgbKQCFsDIGo5Go2w85HROL0ajtjN/zeLnoeaFwLgp4ulkwCyGEEGqTAlAIK3InIZmDV+8Sm5Ri6VSeUCqnB5UL5sRFL/sDhRDCHkgBKISViI5NYP/VOxaf9cuIDsjh6kzd4nnxcNFbOh0hhBDZJAWgEFbg7N2HHL1+39JpPJMOcNU7Ua9EXnJK2xghhLBpUgAKYWFn7jzk2A3rLv7S6ABnJx2vlswnRaAQQtgw2dAjhAWdvWs7xR+YlqZTDEb+vBhjdfsUhRBCZJ4UgEJYyO34JKtf9s2IEUg2GNl35TapBllAEEIIWyQFoBAWkGIwsD/6LrbaYc8IxCalcupWrKVTEUIIkQVSAAphAceu3ycuJdXqTvsqFXXnITceJlo6DSGEEApJASiEmV2JTeDC/XhLp6GaA1fvkphqsHQaQgghFJACUAgzSk41cPjaXUunoaqkVAPHr9+zdBpCCCEUkAJQCDM6fy+OZDs7OGEELsUmEJecaulUhBBCZJIUgEKYidFoJOrOQ0unoQkdppY2QgghbIMUgEKYSfSDBOJT7HOvnBE4eyeOFIN9/vqEEMLeSAEohJlE3rbvGbIUo5EL9+zncIsQQtgzKQCFMIO7CcncTki2dBqas9clbiGEsDdSAAphBjfjHKNX3sPkVOJT5DCIEEJYOykAhTCDOwnJNnvrh1J3HGCmUwghbJ0UgEKYQUx8kllu/Rj22ft86F+UNfNmPvG+0WhkUPO3+dC/KN/NnqLZ83XAnXgpAIUQwtpJASiExhJTDGY5/Ws0GjkfeooCRYtzISLsia/tXP89t29cA6BshUra5QDcjk/SLL4QQgh1SAEohMbuJJinILp6/izxDx9Q//3mXIwIffR+/IMHfDNzIvXf/xiAcoGVNc3jdkIyRqN9NbsWQgh7IwWgEBp7YKYbMs6cOo6rmzt1336PqxfOkZxkOniyZv5MyvgHkqdAQXLmyUv+IsU0zSPVaNTkbuDQ0FAmTpzIzZs3VY8thBCOxtnSCQhh71INRnSg+R7As6dPUKp8AEXLlMPdw5PLZyJx8/Bk63crmLz2Z35cuoCyGs/+pUlVYQbQYDCwf/9+NmzYwIYNGwgPD8fV1ZX+/furkKEQQjg2KQCF0JgaxVBmnD11grKBldHpdJQqH8DFyHB2b95Iw2afUbysL2dPHadavQZmySU1i/cdJyUl8fvvv7N+/Xo2btzI1atXn/i6r68vzs7ybUsIIbJLvpMKYSfOhZ6kXtP3AChVvgKbQ5ZwM/oyvabNITkpiUtREXzYuZdlk8xAbGwsv/zyC+vXr2fz5s3cv3//qZ8NCAgwY2ZCCGG/pAAUQmN6nfYdAK9dusDD+/ceLfGWCQjkl2+X02XMVLy8c3Lm5HFSkpMpW9E8S8B6p2f/mm/cuMGPP/7Ihg0b2L59O4mJmWuULQWgEEKoQwpAITSmd9Jpv//v1HGcXVwp6esPwGvvNadmwzfxzp3X9PXTJ8iRKzeFipfUOBOTjIres2fPsn79ejZs2MDu3buzdFI4Z86cJCYm4ubmpkaaQgjhsKQAFEJjOVz0mj/j7KkTlPQtj7OLCwDOLi7kzJPv36+fPkGZgIqa5wGm4s9N74TRaOTo0aNs2LCB9evXc+LEiWzH7t+/P4MGDaJcuXIEBAQ88fL398fb21uFX4EQQtg/nVEadgmhqcQUA5vPXLd0GmaTfDOavWtXsmHDBi5cuGDWZxcvXvxRQVihQoVHf1+gQAGz5iGEENZOZgCF0JibsxMezk5muQ3E0nSAf7kyhOXJw6VLl8z+/MuXL3P58mW2bdv2xPv58uVLN2NYoUIFSpQogc4MezSFEMLayAygEGawP/oOV2ITzHIfsKW9VCwPRXO4s3v3bj799FOzzwIq4eXlhb+/f7risFy5crj8s5wuhBD2SApAIcwg8vYDTtyMtXQaZtGkXEE8nE37Hu/evUuXLl1YvXq1hbNSxsXFBR8fnyeWkQMCAihfvjyenp6WTk9YmwcP4PhxOHoUIiMhPh4SEiAlBdzcwN0d8uaFKlWgalUoWxac5CIuYVlSAAphBncTktlx4Zal09Ccl4ueN8oWfOI9o9FISEgI3bt35+HDhxbKTB06nY5SpUqlW0oOCAggT548lk5PmMuVK7BqFezfDwcOwPnzYDSCTgdpjcoN/2z50OlML6PRVBACeHqaisEXX4RGjeCtt/4dJ4SZSAEohBnEx8fzy+nzGHPktnQqmqpSMCfl8nhl+LXIyEg++eQTDh48aOaszKNQoULplpIDAgIoWrSo7DO0BykpsGULLFwIP//8b2GXmo27vp2dTXELFIAOHaB9eyhXTr2chXgGKQCF0JDBYGDVqlUMGjSIwKrV6Dh1gaVT0oyzTsdbPgVxfsbSVlJSEiNHjmTy5MlZ6gNoi3LmzJlhYVimTBn0eu1bBIlsun4dvvwSliyBmzdBr89e0fc0aXFffRV69IAPPzQVmEJoRApAITTy119/0adPHw4cOPDovcnfrMPnxZcsmJU2dIBvXi8qFsiZqc/v2LGDVq1aER0drW1iVszNzQ0/P790LWv8/Pyk0bU1MBhg6VLo0wfi4rQp+jKSVgi+9hosXgw+PuZ5rnA4UgAKobIzZ84waNAg1q5dm+5rFatUY+R3m3Cyww3gb5YtiKeCptcxMTF06NCBDRs2aJeUDXJycqJs2bIZzhrmzJm5AltkU2ioaUl2zx7L5eDsbDooMnIk9OsHrq6Wy0XYJSkAhVDJnTt3GD9+PLNnzyY5Ofmpn/tiymzqvvORGTPTlg4o7u1OjaLKD0EYjUYWL15M7969iY+Pf+rnChYsSHJyMnfu3MlGpravWLFiGRaGBQsWlH2GakhOhvHjTS/499CGJel04OcHK1ZArVqWzkbYESkAhcim5ORkFixYwKhRo7h9+/ZzP1+4aFFmbP4TNw/7aCfipneiYZkCuOmzPqsZGhpKy5YtOXbsWIZf/+qrr+jevTs3btwgNDQ03evKlStZfrY9yJMnT7ql5ICAAEqWLGmXs82aiI2FDz6A334zndi1Jnq9qRBcuRJatLB0NsJOSAEoRBYZjUY2bdpE//79iYiIUDS2y4ChNGrXXaPMzOvl4nkp5JX9PWuJiYkMHjyYmTNnpvva9u3bef3115869v79+4SFhXH69OknCsOzZ89iMNj/DSxP4+npSfny5dO1rPHx8ZFG14+7fh0aN4ZTp8y310+ptFYy06ZB376WzkbYASkAhciCI0eO0LdvX3bu3Jml8V5eXizathePvPlt+nYQnzxeVC6o7r60X375hTZt2nD9+r/3J1+5coWiRYsqjpWQkEBkZOQTReHp06eJiIggMTFRzbRtirOzMz4+PumWkv39/fHyyriNj926fh3q1YNz56xjyTczJkyAwYMtnYWwcVIACqHAlStXGDZsGCtWrMh2G5PPWrfl/cHjVcrMvHRADlc9DUoVQO+k/t6zGzdu0LZtW7Zs2UKuXLm4c+eOqnvcUlNTOXfuXIbLyffv31ftObbov42u01758uWzdGrqu3nTVPydOWM7xV+ayZNhwABLZyFsmBSAQmTCw4cPmTp1KlOnTiUuLk6VmDqdjk1/7CGxYClV4pmLDnBx0vFqqfx4u2p3e4HRaGTOnDmsW7cuyzOtWXlmdHR0hoXh4zOSjqhAgQIZ7jMsVqyYbR5AMRqhSRPYvt16l32f59dfTTeJCJEFUgAK8QwGg4GQkBCGDh2qes+6nDlzEhwcTLXXm3Dshm3MOukAZycdr5bMR0438+whu3//vlW0P7l9+3aG+wzPnz9v6dQsytvbG39//3TX45UpUwZna77ebO5cU8NlW+XkBPnzw+nTYI+zs0JzUgAK8RQ7d+6kb9++HDlyRNW4er2ezp07M2rUKAoUKADA2bsPOXrduotAHeCqd6JeibxmK/5sQVxcHOHh4en2GUZGRpJia8uKKnJ1dX3U6PrxV/ny5XF3d7dscqdPQ7VqkJRk2TyyS6+H//0P1q2TW0OEYlIACvEf4eHhDBgwgB9//FH12G+//TZTp04lICAg3deiYxPYf/UORiNWdzDEtOfPmbrF8+KhoNmzI0tOTubMmTPplpLDwsJ4+PChpdOzGJ1O99RG17ly5dI+gcREqF4dwsJsb9/f0yxdCm3bWjoLYWOkABTiHzExMYwePZr58+erPnNTuXJlpk+fTsOGDZ/5uTsJyRy8epfYJOv6g6lUTg8qF8yJSzZ6/QkTg8HA5cuX0y0lh4aGEhMTY+n0LKpIkSLpWtYEBARQqFAh9fYZjhwJY8daX6+/7PDwgMhIKFbM0pkIGyIFoHB4iYmJzJkzh3HjxnH37l1VYxcuXJhx48bRpk0b9PrMzZwZjEaibj/kdEysxWcDvVz0vFA4FwU85W5ac7h582a6peTQ0FAuX75s6dQsKnfu3BnOGJYuXVpZo+sHD6BoUVPTZ3ui15tOBE+YYOlMhA2RAlA4LKPRyLp16xgwYABnz55VNbaHhwf9+vVjwIAB5MiRI0sxHialcPj6PW7GmXefUto8S/l8OSifN4cmbV6EMrGxsYSFhaWbMYyKinLoRtceHh5PNLpOe/n6+uKa0d258+aZDn7Y4x97uXJBdDR42scNQ0J7UgAKh3TgwAH69OnDX3/9pXrsVq1aMX78eEqUKJHtWEajkegHCUTdeUhMfDI6tJ0RdNJBCW8PfPN6yUEPG5CYmJiu0XVoaCjh4eEkJCRYOj2L0ev1lCtX7oml5Ffq1qVUw4amhs/2+MeeTgcLFkCnTpbORNgIKQCFQ7l48SJDhgzhm2++UT32K6+8wvTp06levbrqsQEeJKVw/l4c5+/GkWQwqlIMpsXI7eZCmdyeFM/pjovcHWvzUlNTuXDhwhPLyGmve/fuWTo9i1jUowcd58yxdBra0enAxwfCw+VEsMgUKQCFQ4iNjWXSpEnMmDFD9ZkRHx8fpk6dyrvvvmuWhrgGo5FrDxK59jCROwlJxCamkLYImPb0x39TP55R2vsuTjpyu7uQx92FEjk9yCWzfQ7BaDRy7dq1dDOGp0+f5tq1a5ZOT1O7qlen7pEjttv0ObOkObTIJCkAhV1LSUlh6dKlDB8+nBs3bqgaO0+ePIwYMYJu3bplvN/ITAxGIw+SUribmMK9hGQSUw0YjEYuX7pI4aLFcdE74eSkw8tFT243F3K5u+Cud7LN2xuEZu7evZvhDSjnzp3L9rWH1uCWiwv5kpMtnYa2nJ2hXz+YONHSmQgbIAWgsFu//vorffv25eTJk6rGdXZ2pkePHgwfPpy8efOqGltNH330ES1btuTDDz+0dCrChsXHxxMREZFuKTkiIoJkGymoCuTJw407dzSLbwAqAO8Ckx97fyvwP+AboJlmT/+PV16BP/4w19OEDZMCUNidU6dO0a9fP3755RfVY7/33ntMnjwZPz8/1WOr6fjx41SpUoVKlSpx9OhRZa0yhMiElJQUzp49m65lTVhYGA8ePLB0ek94xdeXP6KiND38sQL4HLgA5AGOAfWAEUA/zZ6aAU9PuH/f1BpGiGeQAlDYjRs3bjBy5EgWLVqkemuMF154gRkzZvDqq6+qGlcrH330ET/88AMAa9eulVlAYTZGo5HLly9nuJx88+ZNi+TUuXx5Fpw5o+nNHymAH9AaaA+8hGlGcK5mT3yGU6egQgVLPFnYECkAhc1LSEhg1qxZTJgwgViVG7wWK1aMiRMn8umnn9rMLFra7F8amQUU1uLWrVsZFoYXL17U9LmzChSglxmKz4XAEKAYUBpYD1hkHm7ZMmjTxhJPFjZECkBhs4xGI6tWrWLw4MFcuHBB1dheXl4MHDiQvn374mljjVUfn/1LI7OAwpo9ePCA8PDwdG1roqKiSFXh1O6vOh2NzPBH3QOgAOAD7AO8HvvaJaAVcANwBoaj0b5AFxfo0wcmTdIiurAjUgAKm7Rnzx769OnD33//rWpcnU5Hu3btGDt2LEWKFFE1tjn8d/YvjcwCCluUlJREVFRUuhnDsLAw4uPjMx3nElBcuzQfaQOsBnID5wD3x752FbgOVMVUBL4AhPNkkagKFxfo0gVmz1Y7srAzzpZOQAglzp49y6BBg1izZo3qsV9//XWmT5+eYQFlK8aMGZPh+ydOnGD9+vUyCyhsiqurKxUqVKDCf/azGQyGR42u//u685/Tvq6urhRL0v46xeHAZkwzfw2BYKD7Y18v8s8LoCCQF7iNBgWg0QgKimPhuGQ6QNiEu3fv0r9/fwICAlQv/vz9/fnpp5/Ytm2bTRd/x48fT7f0+7jRo0c79L2xwn44OTlRsGBBChcunO7l7PzkvIY5ul0uAaYDm4AqQG9gCvC0JjkHMbWOyf5lkU8hC3siE2QGUFi15ORkFi1axMiRI4mJiVE1dv78+Rk9ejQdO3bExcX2b8J42uxfGpkFFLbo9u3b6W4tCQ0NzfS+38SkJK4DhTXK72dMM33fYTr5C6Z2MNOAlUC7/3w+BgjCVDRqQqcDDw+togs7IgWgsEpGo5HNmzfTr18/wsPDVY3t6upKr169GDJkCLlz51Y1tqU8b/YvzejRo3n//fdlL6CwKkajkejo6HTNpkNDQ1W5wSdUp6OwBrNihzAd5JgCfPDY+zkxFYGTMLWFSTsJnAi8DwwG6qiezWOkABSZIAWgsDrHjh2jb9++/Pbbb6rHbt68OZMmTaJMmTKqx7ak583+pTlx4gTr1q3jo48+0jgjIdJLTU19onn04y+1Wzg97nSePNS/fVv1uC9iOvmbkTH/vNIYMR0SaYDpNLBmUlLAx0fLJwg7IaeAhdWIjo5m+PDhLFu2TPW7R2vVqsWMGTOoU0fTn7st4mknf59GTgQLrSUkJBAREZFu6TYiIoIkMxzI+K/ufn7MOXtW00bQz/MX8ApQ+bH3VgKVtHjY0aNgw/uZhXnIDKCwuIcPHzJ9+nQmT55MXFycqrFLlizJ5MmT+fjjj9HpzLEd3PwyO/uXRvYCCrXcu3ePsLCwdEu3586ds6oDR6EAKvQTzI66mA5+aM7NDQIDzfEkYeNkBlBYjMFg4Ouvv2bIkCFcuXJF1dje3t4MGTKEXr164WHH+2GUzv6lkVlAkVlGo5Hr169nuGwbHR1t6fQypUj+/ETfumXpNMyjdm3Ys8fSWQgbIDOAwiJ+//13+vbty+HDh1WN6+TkRKdOnRg9ejQFCxZUNbY1Ujr7l0ZmAcV/KemtZ2uu3rrFPb2eXBaeBdSci4upABQiE2QGUJhVZGQkAwYMYMOGDarHbtKkCVOnTiXQQZY/sjr7l0ZmAR3Tf2/XSFu+DQ8PV3S7hq3ZW7kyL506ZfGlYM39+CP873+WzkLYAJkBFGZx+/ZtxowZw9y5c0lReSN2xYoVmTZtGm+88Yaqca1dVmf/0siJYPv24MEDwsLC0s3mqXW/rq0JrVOHl44ft3Qa2ipeHN56y9JZCBshM4BCU0lJScydO5cxY8Zw9+5dVWMXLFiQcePG0bZt23Td/+1ddmf/0lSsWJFjx47JLKANu3XrVobLthcvXrR0ahaVM2dOAgICqFChAgEBAbz9xhtUePNNuHrV0qlpQ6eD6dPhiy8snYmwEVIACk0YjUY2bNjAgAEDiIqKUjW2u7s7ffr0YdCgQXh7e6sa21Z89NFHmWr8nBlr1qyRWUArZzQauXz5coY3YtxylMMNT1G4cGECAgLSvYoUKZL+5P/UqTBoEFjRCWXVeHiYittcuSydibARUgAK1R08eJA+ffqwa9cu1WN/+umnTJgwgZIlS6oe21aoNfuXRmYBrUdKSsqjRsmPt1YJCwvjwYOntRy2fzqdjtKlS2dY6OXJkyfzge7cgaJFISFBu2QtwdkZunWDL7+0dCbChkgBKFRz6dIlhg4dysqVK1WPXbduXWbMmEGNGjVUj21r1Jz9SyOzgOYVHx9PeHh4umXbyMhIizRKthYuLi74+vo+Ku7Slm/9/Pzw9PRU5yFffAGzZ9vXLKCzM4SFQblyls5E2BApAEW2xcbGMmXKFKZNm0aCyj9Zly1blilTpvDBBx/YbSNnJW7evEmrVq3S3ZRy8OBBbmfyqqsKFSpQvHjxJ96rWLEi06dPVy1PYXL37t0M9+edO3dO9dtubImXl1eGs3lly5bFxcVF24c/eACVKsGlS/ZzInjaNOjb19JZCBsjBaDIstTUVJYtW8awYcO4fv26qrFz5crFiBEj6N69O25ubqrGtkeNGzdm27ZtmfpscHAw7dq10zgjx2E0Grl27Vq6vXmhoaFcu3bN0ulZVP78+TMs9IoXL27ZLQd//w116tj+LKCzM7z8MuzYAbKFQyjkWEcnhWq2bdtG3759OXHihKpxnZ2d6datGyNGjCBfvnyqxhYiO1JTUzl//nyGM3r37t2zdHoWVaJEiScKvLSl2/z581s6tYzVqgWjRsHIkWCrcyA6HXh6wtdfS/EnskQKQKHI6dOn6d+/P1u2bFE99rvvvsuUKVPw8/NTPbYQmZWYmEhkZGS6Ii88PFz1LQ62RK/XU65cuUfFXdrL39+fHDlyWDo95QYPhs2b4dAhULk3qVkYjbBkian3nxBZIAWgyJQbN24watQoFi1apHoT2apVqzJjxgzq16+valwhniU2NjZdo+TTp09z9uxZh2yUnMbd3R1/f/90y7a+vr64urpaOj31ODvD99+brk67ccP2isA+faBZM0tnIWyYFIDimRISEvjyyy+ZMGEC9+/fVzV20aJFGT9+PK1atUKv16saW4g0N2/eTLc3LzQ0lMuXL1s6NYvKnTt3hsu2pUqVcpyWQCVLwq5dpn10t27ZThHYs6fp4IcQ2SAFoMiQ0Wjk+++/Z+DAgVy4cEHV2J6engwYMIB+/frh5eWlamzhmAwGA5cuXcpwf15MTIyl07OoIkWKpFu2DQgIoFChQnKyHqBsWfjrL2jQAKKjrb8I7NvX1NBa/tuJbJICUKSzd+9e+vTpw759+1SNq9PpaN26NePGjaNYsWKqxhaOITk5mTNnzqQr8sLCwnj48KGl07MYnU5H2bJl0xV5/v7+5M6d29LpWb9y5eDAAWjSBI4ds772ME5Opj1/M2ZA796WzkbYCSkAxSPnz59n0KBBrF69WvXY9evXZ/r06VSrVk312ML+xMXFPWqU/PjSbVRUFMnJyZZOz2JcXV3x8/NLV+j5+fnh4eFh6fRsW8GC8OefpkbRixeDXm8dhaCTExQoYDrw0bSppbMRdkQKQMG9e/eYMGECX375JYmJiarG9vPzY9q0aTRt2lSWm0Q6t2/fznDZ9sKFCw7dKDlHjhzp9uYFBARQpkwZnJ3l27ZmvLxg0SIICsLQrh1OUVGWaxOj12NITcWpWzcYPx5y5rRMHsJuyXcSB5aSksKiRYsYOXKk6hfK582bl1GjRtGlSxftO/sLq2Y0GomOjs6w0FO7gbitKViwYIaNkosVKyY/MFmI0Whky717LPD1ZVNQEIwZYyoCzbU3MO2/e/nybG7blp8iIxkdF0dhKQCFyqQAdEBGo5Gff/6Zfv36ERoaqmpsFxcXevbsydChQ5Vd0i5sXmpqKufOnUvXViUsLEz1E+S2plSpUhkWetLs3LocOXKEfv36sWPHDho2bAjDhkHz5jBxIqxaBYmJpgJNixtEnJ1NRaaPj+mUb+fOlAoNZVH//nzzzTcMHDiQPn36yME5oRopAB3M8ePH6devX6avDVPio48+YtKkSZSTC8ntWmJiIhEREenaqkRERKi+hcCWODs74+Pjk27ptnz58vKHtpW7fPkyQ4cOZeXKlY+2Hjz6PubnB8uWwZdfwnffwYIFcPTovwVbdqQd7nBzgxYtoGNHU1/Cf2YBy5YtC8DDhw8ZMWIECxYsYNy4cQQFBUnrLJFtUgA6iGvXrjF8+HCWLl2KQeWfXmvUqMGMGTOoW7euqnGFZd2/fz/DZduzZ8+q/v+QLfHw8MDf3z9daxUfHx/Z7mBjYmNjmTx5MtOnT093y4uPj8+TH86ZEzp3Nr2OHjVdwbZvn+nv006gOzubCrr/Hh7R6f49VJK2p7BUKahRAxo2hJYtM9zjlyNHDgoVKvRoq0R0dDTt2rXjyy+/ZNq0aaZZSiGySApAOxcXF8eMGTOYNGmS6m0ySpQowaRJk2jRooXjNI61M0ajkRs3bqQr8k6fPk10dLSl07OovHnzZrhsW7JkSfn/3calpKQQHBzMiBEjuHHjRoafeeZKRtWqpheYCrrz5+HIEVMxGBEBCQkQFwdJSab7ej08IG9eqFLFNK5y5Uwf6ihXrly6vbLHjh2jUaNGNGnShKlTpxIYGJipWEI8TgpAG2IwGDL9B4/BYOCbb75hyJAhqt94kCNHDoYMGULv3r2l9YQN2rp1K3v27HlU7N25c8fSKVlUsWLF0hV5FSpUoECBAnIQw84YjUa2bNlC//79n7v/OdNbWXQ6KFPG9PrgAxWyTJ/Hnj17Mvzazz//zNatW+nQoQOjR4+mcOHCqj9f2C8pAG2EwWCgZcuWzJ8/n7x58z7zs3/++Sd9+vTh0KFDqubg5OREhw4dGDNmDIUKFVI1tjCf77//3tIpmJ2Tk9OjRsmPL936+/uTU05XOoTHD3hkRtr+O0t7XiFqMBhYtGiRHBQRikkBaCMWLFjA999/T7FixZgxY0aGn4mKimLAgAGsX79e9ec3btyY6dOnU7FiRdVjC+UePnxIWFjYo1m8Y8eOWTolq+Dm5kb58uXTzej5+vri7u5u6fSEBWR0wON5ChUqRI4cOTTOLHPS7UV8CjkoIpTSGR2526qNiIqKokqVKsTFxeHi4sLp06ef+KZw+/Ztxo4dy9y5c1W/JSEwMJBp06bx5ptvqhpXZE5MTEy6vXmhoaFcvHjR0qlZVM6cOTPcn1emTBn5Q08Azz7g8Twvv/wyf/31l0aZKbNv3z5q166teFyVKlXkoIh4JpkBtHKpqam0bduWuLg4wHQX6sCBA/nhhx9ISkpi/vz5jB49WvV9XAUKFGDs2LG0b99ebh7QmNFo5MqVK+naqoSGhnLz5k1Lp2dRhQoVSrc3LyAggCJFisj+PJGhlJQUlixZwsiRI596wON5rKmVVVZzefygyJQpU2T1RqQjf7JbuVmzZqX7SXTdunWMHz+eFStWEBkZqerz3Nzc6NOnD4MGDZK9USpLSUnh7Nmz6Yq8sLAwYmNjLZ2exeh0OkqVKpWurUpAQIA0ExeZZjQa2bx5MwMGDMh2g3trKgDz58+Pt7d3lr9HpB0Uad++PWPGjJGDIuIRWQK2YqGhoVSrVs1szXVbtmzJxIkTKVWqlFmeZ6/i4+OJiIhIV+hFRESQlJRk6fQsxsXFBV9f33RFXvny5fH09LR0esKGKT3g8Txff/01n376qSqx1FCtWjWOHj2a7TheXl4MGDCAvn37ykER4ZgzgKmpEB5uatl09CjcvAnx8abWTXo9uLub2jaVLftvu6ciRf69otEcUlJSCAoKMkvxV6dOHWbMmEGtWrU0f5Y9uXfvXrq9eaGhoZw7dy7Tm83tkZeXF/7+/umWbsuWLSuNkoUmnJycVL3P3JpmAMGUjxoFYHx8PHFxcbKtRwAOUgCmpMCWLbB5Mxw8CKdOma50BHBxMfXxNBhML53OdDuPTvdkQ/e8eeGFF0yN21u2hEqVtM150qRJHDx4UNNnlClThsmTJ/PRRx/JfqqnMBqNXLt2LcMbMa5evWrp9CwqX7586dqqBAQEULx4cWmULMyqSpUq7N+/n9GjRzN58uRs31RjjQWgGjFCQkKoU6eOChkJe2DXS8BRUbB0KSxZYprly+7VjWm3+aSkmIrBLl1M1zd6e6uXM8DRo0epWbOm6id60+TKlYthw4bx+eef4+bmpskzbI3BYOD8+fMZFnp37961dHoWVaJEiQxP3BYoUMDSqQmRzt69ewkKCiIqKipL43PmzMndu3et6ofixYsX06lTpyyP79atG1OmTJFlX/EEuysAjUbYsAFmzYI///z3+kW1PX6Hd8uW0L8/BARkP25SUhI1atTg+PHj2Q/2H3q9nq5duzJy5Ejy58+venxbkJSURGRkZLql2/DwcMWtIuyJXq+nXLly6Yo8f39/vNX+CUcIjU2cOJEhQ4ZkaWy1atU4fPiwyhllz44dO3j99dezNDZ37tyEhYVJ836Rjl0tAZ87Z5qV+/VXU+EH2hR/YFouBtO+wZUrTa/Bg2HIENMewqwaM2aMJsVf06ZNmTp1Kv7+/qrHtkYPHjwgLCwsXWuVM2fOkKrV/xQ2onjx4tStW/eJ5VsfHx+ZDRZ24cSJE4waNSrL461t+Reyl9Pdu3fp1KkTGzZssKpZTWF5djEDmJICM2fC8OGmgi87y7zZkXYlZHAwvPaa8vH79++ndu3a2d6/8rgqVaowffr0LP/0aO1u3ryZ4bLtpUuXLJ2a1QoODqZdu3aWTkMI1SUlJVGrVq1sHZgYOHAgkyZNUi8pFaSmpuLh4ZGtbUHLli2jTZs26iUlbJ7NzwAeOQJBQaaDHZYuZY1GuHAB6teHNm1My9C5cmVubHx8PK1bt1at+CtcuDDjx4+ndevWNn8zgtFo5NKlS+mKvNOnTxMTE2Pp9CyqSJEiBAQEEBkZKUWvcHhjxozJ9mlZa5wB1Ov1lClThoiIiCzH6NmzJ/Xr15c2X+IRmy4AN22CZs1MM36WLv7SpK0urlwJf/9tWo4uXvz544YNG0ZYWFi2n+/h4UH//v3p37+/1dxlmVkpKSmcOXMmXVuVsLAwHj58aOn0LEan01GmTJl0bVX8/f3JnTs3YLqrWQpA4cj+/vtvJk6cmO04mb1719zKlSuXrQIwNjaWtm3bsn37djmlLwAbLgAXL4bOnU1/by3F3+NSUyEy0tQ2Zvt2CAx8+md37drFzJkzs/1Md3d3Tp8+TenSpbMdS0txcXGEh4enm9GLjIzU7OSzLXBxccHPzy9daxU/Pz88PDwsnZ4QVisuLo6goCBVVlCscQYQ1ClMd+7cyZw5c+jZs6cKGQlbZ5MF4Lx50L27pbN4vpQUU/uZevVg166Mi8AHDx7Qpk0bVRoHJyQk8PPPP/PZZ59ZxcnNO3fuZLg/7/z58w7dKDlHjhwZtlUpW7asNGgVIgsGDx6seHasXLlylC5dmt9+++3Re66urhQrVkzt9FTx38LU3d2d5s2bExISoijOwIEDeeONNyhfvrya6QkbZHN/2ixaZBvFX5rUVLh/H155BXbvhv8ewh0wYABnz55V7XkDBgzgm2++SXd/sFaMRiNXr15NtzcvNDSU69evmyUHa1WgQIEMC73ixYvLaTwhVLJjxw5mz56taIxOp2PFihXUrl2befPmMWDAAOLj4ylTpozV7pl+vACsWbMmISEh+Pn5ERcXx9q1azMdJyEhgaCgIHbv3i0/cDo4m/qvf+AAdOtm6SyUS02Fe/fg/fdNh1bS2sRs27aN+fPnq/qsBw8ecODAAYxGo6pFRmpqKufPn0/XViU0NJT79++r9hxbVLJkySf25qX9fb58+SydmhB27d69e1k62dq/f39efvllAHr06EHjxo1p3bo1efPmVTlD9ZQrVw5nZ2dGjRrFwIEDHxVv8+fPZ9euXYp+4N6/fz+TJk1i2LBhWqUrbIDNtIF5+NB0/drFi9r19tOakxP07GlqWXPv3j0qVqzI5cuXNXnW3r17eemllxSPS0xMJCIiIl2RFx4ebpZ7ia2VXq/H19c33Wxe+fLlreKwTePGjdm2bVumPittYIS9aNu2LcuXL1c0pmLFihw8eDBd38uUlBSOHj1K9erVVcxQPYmJiZw+fZpq1aql+9qmTZt45513FMVzdnZm//79GcYTjsFmZgC/+MLUYkXFFnlmZzCYWsM0aQLffdc7U8Wfu7s73t7e5MiR49Er7Z89PDw4efIkx44dSzcuLCzsmQXg/fv3CQsLS7d0e/bsWVX7ENoaDw8P/P390xV6Pj4+uLq6Wjo9IcQ/fvzxR8XFn7OzMyEhIRk2PXd2drba4g/Azc3tqcXa//73P9q2bcuyZcsyHS8lJYWgoKAMi2HhGGyiANy40XTq1x44OcEnn9yjd+/KLFq06ImC7r8FnpeX11P3aISFhfHJJ59kWPyBqcAzGo2PGiX/d+n2ypUrWv4yrV6ePHnStVUJCAigZMmS0iJBCCt38+ZNOnbsqHjcqFGj7HbGa9asWezYsYMLFy5keszJkycZMWIEkydP1jAzYa2sfgn4/n0oXRru3rXOdi9ZoddD8+bw7bfKxxqNRoKDg+nVqxdxcXFP/VzBggVJSUnh9u3b2cjU9hUtWjTd3ryAgAAKFixoVwcxZAlYOAqj0chHH33EunXrFI2rVasWf/31l10ffNi5cycNGjRQNEan0/Hnn39St25djbIS1srqfycsW2ZfxR+Y9jCuWgUTJ4KSpuy3b9+mY8eOmfrGd+PGjWxkaFucnJwoW7ZsumVbf39/cmX2KhYhhE345ptvFBd/Hh4erFixwq6LP4D69evTq1cvvvzyy0yPMRqNtG7dmmPHjlnFfmZhPlb9uyE1FaZPt6/iL42TE8yZA1OnZu7zv//+O5999plDL926ubk9apT8+MvPzw/3tKPVQgi7dfnyZXr06KF43KRJkxym793EiRP55ZdfCA8Pz/SYs2fP0r9/f9W7UgjrZtUF4KZNYK+3W6WmwoIFMHIkPOuHruTkZEaNGsXEiRMdpnmyt7d3hm1VrLlHlxBCW0ajkfbt23Pv3j1F4xo0aJClotFWeXh4EBISQp06dUhV0DJjwYIFvPfee7zxxhsaZiesiVUXgNOnm/bL2Wrbl+d5+BBWrHh6Y+szZ87wySefsH//fvMmZiaFChXKsFFy0aJF7Wp/nhAi+xYsWMCvv/6qaEzOnDlZtmyZwx3sqlmzJkOGDGHs2LGKxrVr146TJ0+SJ08ejTIT1sRqC8ATJ8BMl1lY1MyZ6QtAo9HI119/Tbdu3Xjw4IFlElNR6dKlMyz0rLnpqhDCekRFRdGvXz/F47788ktKliypQUbWb9iwYfz0008cOXIk02Oio6Pp0aMH33zzjYaZCWthtQXgjh2mfXL23JLOaIQzZyA6GooWNb137949unXrxrdZOSJsQc7OzukaJVeoUIHy5cvj6elp6fSEEDYqNTWV1q1bP7PrQUbeeecdWrdurVFW1s/V1ZWQkBBefPFFkpKSMj3u22+/5f333+ejjz7SMDthDay2ANy/HxxlFfDAAXj3XdizZw+ffvop58+ft3RKT+Xp6Ym/v3+6tirlypXDxcXF0ukJIezMtGnT2LNnj6Ix+fPnZ9GiRQ6/laRixYqMGzeOAQMGKBrXpUsX6tatS+HChTXKTFgDqy0Ad+82x96/FKA88Dbw38vEuwDbgL1AQc0ycHaGvXtTOHZsAmPGjFG0aVdL+fLly3DZtkSJEg63n0YIYRknTpxgxIgRisctWLCAQoUKaZCR7enTpw8//vgjfynYUxUTE0OnTp3YuHGjwxfR9swqC8Dbt03XvmnPGRgE9AZGAvn+eX8isBbYg5bFH5iK3N9/v0Tt2ncoXry4oi7uaihevHi6Iq9ChQoUKFDArHkIIcTjkpKSaNWqlaLlS4DPPvuMDz/8UKOsbI9er2f58uVUqVKFhw8fZnrcpk2bWL58OW3bttUwO2FJVnkTyC+/mO7LNY8kwAfoAIwAvgE6AtuBOmbJwMvLdOOJTmfk2LFjrF+/ng0bNnD8+HFV4js5OVGuXLl0bVX8/f3x9vZW5RnCsuQmEGFvhg4dyoQJExSNKVasGCdPniR37tzaJGXDFi5cSJcuXRSN8fb25vjx45QuXVqbpIRFWeUMYGSkaf+feUpTV2AAMAaojqkQ/BpzFX9gagdz4wYULqyjatWqVK1aldGjR3PmzBk2btzIhg0b+Ouvv7LUB3Dy5Mn06tVLLvsWQtiMffv2MWnSJMXjli5dKsXfU3Tq1IkNGzbwyy+/ZHpMbGwsbdu25bfffpOtP3bIKv+LxsWZ+v+ZTwdAD/wP0/Kv+ZcP4uPTv1euXDn69OnDn3/+ybVr11iyZAlvv/22omLu/v37UvwJIWxGXFwcrVu3xqCwBUTXrl1p3LixRlnZPp1Ox5IlSxQXyL///jtfffWVNkkJi7LKAjAhwdwngN2B+phm/Xqb88GPZFQAPq5gwYK0b9+en376iZs3b/L999/zySefPPeu29OnT6uYpRBCaGvQoEFEREQoGlOuXDmmZvZeTQdWrFgx5s6dq3jcoEGDCAsL0yAjYUlWWQBaZlficaCWJR4MKPs1e3t706xZM7755htu3LjB1q1b6dq1K0WKFEn32dDQUBWzFEII7fz222+KZ5ucnJwICQnBy8tLo6zsS8uWLWnWrJmiMQkJCQQFBZGSkqJRVsISrLIA9PAwdxEYD4QBL5rzoU/Iaq9kV1dXGjduzLx587h8+TL79u1j0KBBjy4+j4qKIjk5WcVMhRBCfffu3cvSidP+/ftTp4759mzbOp1Ox7x58xS3yTlw4AATJ07UKCthCVZZAHp6mvv+36NAKvCCOR/6BA+P7MdwcnKiVq1aTJw4kbCwMEJDQxk7diy3b9/OfnAhhNBQr169uHTpkqIxlSpVYvTo0RplZL/y58/PkiVLFI8bM2YMhw8f1iAjYQlWWQD6+pp7BvAwkAPwNedDH/HygoIatBv09/dn0KBB0hBVCGHVNm7cyIoVKxSNcXFxISQkRA65ZVHTpk0Vt4NKSUkhKCiIhIQEjbIS5mSVBWCNGuZ+YncgFkv869DpTL9eOWEvhHBEN2/epFOnTorHjRo1iqpVq6qfkAOZOXMmpUqVUjTm1KlTWbqdRVgfqyw78uWDkiUtnYV56PVQu7alsxBCCPMzGo107tyZGzduKBr30ksvKb7fVqSXM2dOli9frnjctGnT2LVrl/oJCbOyygIQoG5dc/cCtIyUFKhZ09JZCCGE+X399desX79e0RgPDw9WrFiBs7NV3mNgc1577TV69+6taIzRaKRNmzY8ePBAm6SEWVhtAVizpqXawZifFIBCCEdz6dIlPv/8c8XjJk+ejJ+fnwYZOa4JEybg7++vaMzZs2fp16+fRhkJc7DaArB+fVDYCN7m6HRQtiwULWrpTIQQwnyMRiPt27fn3r17isY1aNCA7t27a5SV4/Lw8CAkJAS9wmW3hQsXKrpaTlgXqy0AK1eGl1+2/2XgL76wdAZCCGFe8+fPZ9u2bYrG5MyZk2XLlsmdtBqpUaMGQ4YMUTyuffv20mrMRln176S+fc3dD9C8vLygTRtLZyGEEOYTGRlJ//79FY+bPXs2JR3ldKCFDBs2jBdeUNYPNzo6mh49emiUkdCSVReA77wDJUpYOgtt6PXQpQvkyGHpTIQQwjxSU1Np3bo1cXFxisa9++67BAUFaZSVSOPq6pql3orfffcda9as0SgroRWrLgD1eujTx7RXzt4YDCA/NAkhHMnUqVPZu3evojH58+dn0aJF6OzxDwIrFBgYyLhx4xSP69q1K9euXdMgI6EVqy4AAdq1g9y57asI1OuhRQtQ2H9TCCFs1vHjx7PUQHjhwoUU1OKqJPFUX3zxBfXq1VM0JiYmho4dO2J0lPYddsDqGynlzAnLlsF771k6E3U4OUHu3PeoUGEZS5bkIEcO08vb2/vR3z/+UnoqSwghrE1SUhJBQUEkJycrGteqVSs++OADjbIST6PX61m+fDmVK1fm4cOHmR73008/sWzZMsVXzAnLsPoCEODdd6FDB1i61PZbwxgM8O23ufjmmyMMHx7y3M97eHikKwr/Wyxm9M8vvvgiPj4+ZvgVCSHEs40ePZpjx44pGlO8eHFmz56tUUbiecqWLcuMGTPo3LmzonG9evWiQYMGlC5dWpvEhGpsogAEmDULfvsNLl603ZPBTk7w+efQuDHUrPklv/32G1euXHnmmPj4eOLj47l582amn+Pm5kZYWFh20xVCiGzbu3cvkyZNUjxu6dKl5M6dW/2ERKZ17NiRDRs28PPPP2d6zIMHD2jTpg07duyQlj1Wzmb+63h5werVtns7iF4Pvr6Q9n0wd+7cBAcHa/Ks3r17y09fQgiLe/jwIa1bt8agcOmmW7duNGrUSKOsRGbpdDqWLFlCnjx5FI37448/ZPbWBthMAQhQowbMn2/pLJTT6yFXLtiwAdzd/33/jTfeUDy9/jwFChRg8ODBqsYUQoisGDRoEJGRkYrG+Pj4MGXKFI0yEkoVLVqUuXPnKh43ePBgWYmycjZVAAJ06gRz5lg6i8zT600HWf78EzK6anHq1KmUKVNGteeNGTOGXLlyqRZPCCGy4rfffmOOwm/WTk5OhISE4OXlpVFWIitatGhBs2bNFI1JSEigVatWig/+CPOxuQIQoHt3WLDA1BrGmtvDODtD/vym4i8wMOPPeHt7s2zZMlWe5+HhQZMmTVSJJYQQWXX37l3aZOGaowEDBlC7dm31ExLZotPpmDdvHoULF1Y07uDBg0ycOFGjrER22WQBCNC5s2lJ1dXVOu8L1uvBxwcOHoSKFZ/92VdffZXevXtn+5nx8fEEBAQwcuRIHjx4kO14QgiRFb169eLy5cuKxlSuXJlRo0Zpk5DItvz587NkyRLF48aOHcuhQ4c0yEhkl80WgGC6Km7PHtPSqrXMBKYVo61awb59ULx45sZNmDABPz+/bD8/Pj6eMWPG4Ofnx7Jly0i11SPTQgibtGHDBkJCnt/i6nEuLi5ZuoJMmNfbb79N+/btFY1JSUkhKCiIhIQEjbISWWXTBSDACy/AkSMweTK4uZmWXS1Fp4OSJWHHDlPzaiVb8Tw8PFixYoVqx+avXr1Ku3btqF69Ojt27FAlphBCPMuNGzfo1KmT4nGjR4+mSpUqGmQk1DZjxgxKKbzG6vTp0wwfPlyjjERW2XwBCODiAv37Q2go1K9ves+c7YecnU2vYcPg9Ol/c1DqpZdeYuDAgarmdvToUV5//XXeeecdwsPDVY0thBBpjEYjXbp0UdSzFEzf9/r3769RVkJtOXPmZPny5YrHTZ8+nT///FP9hESW2UUBmKZMGdi6FX74AV5+2fSeVvsDnZxMM37u7qbl3mPHYMyYJ9u8ZMXIkSOpVKmSOkk+ZtOmTVSsWJHPP/+cW7duqR5fCOHYvv76a9avX69ojIeHByEhIThbculGKPbaa6/xxRdfKBpjNBpp06YNsbGxGmUllLKrAhBMRdkHH5hO3kZEmGYG8+UzfU2N7zFpMapUMZ1Evn7ddEVdhQrZjw2mWzxWrFihyTfElJQU5syZg4+PD9OmTSMxMVH1ZwghHM+lS5fo0aOH4nFTpkzB19dXg4yE1saPH09AQICiMefOnaNfv34aZSSUsrsC8HG+vjBxIly9ajox3LYtVKtmOjmcxsXFNEuYtmSs05n+2dn5ydnD3Lnh9dehb184ehQOHzb1JMyZU/28q1WrxogRI9QP/I979+7Rv39/AgICWLt2LUZbvV5FCGFxBoOBdu3acf/+fUXjXn/9dbp166ZRVkJrabO3eoXLbIsWLVJ0tZzQjs7ogH/6p6RAeLipkDt6FG7ehIQEuHMnDi8vDzw8dLi7Q9myULWq6VW0qHlPGicnJ1O7dm2zHJ9/+eWXmTFjBjVr1tT8WUIbjRs3Ztu2bZn6bHBwMO3atdM4I+Eo5s6dq3j2L1euXJw4cYISJUpolJUwl5EjRzJmzBhFY4oUKcLJkyfJmzevRlmJzHDIAvBpmjdvTrNmzRR3PNfKqVOnePHFF822VPvJJ58wceJESpYsaZbnCfVIASgsITIykipVqhAfH69o3IoVKwgKCtIoK2FOycnJvPTSSxw+fFjRuBYtWvDdd99plJXIDLteAlbi5MmTrFmzhtGjRyu+uFwrgYGBjB07NsOvjR07Fh8fH1Wf9+233+Ln58eQIUMUL+cIIRxLWn83pcXfe++9R6tWrTTKSphbVns4rlq1iu+//16jrERmSAH4j7Qp7FOnTvHDDz9YOJt/9enThzp16jzx3ocffsiwYcM4deoUM2fOJE+ePKo9LzExkYkTJ+Lr68vChQtJSUlRLbYQwn5MnTqVffv2KRpToEABFi5ciM5aOvcLVQQGBjJ+/HjF47p27crVq1c1yEhkhhSA/Dv7l8aaZgH1ej0rVqzA09MTMP20NXnyZABcXV3p3bs3UVFR9O7dW9WTwzdu3KBLly5UrVqVrVu3qhZXCGH7jh07xsiRIxWPW7hwIQULFtQgI2FpvXv3pl69eorG3L59m44dO8pBRAuRAhDSbWC1tllAHx+fR0Xf559/Trly5Z74et68eZk5cyanT5/m/fffV/XZp06d4s033+TNN9/k5MmTqsYWQtiexMREgoKCSE5OVjQuKChI9e9Pwnro9XqWL1+Ol5eXonGbN29m6dKlGmUlnsXhC8D/zv6lsaZZQIBu3brRvHlzhg0b9tTP+Pr6sm7dOn7//XdeeOEFVZ+/detWqlSpQpcuXbh+/bqqsYUQtmP06NEcP35c0ZjixYvz5ZdfapSRsBZly5ZlxowZisf17t2bc+fOaZCReBaHLwCfdnzd2mYBnZyc+O677zK13+/VV1/lwIEDhISEUKxYMdVyMBgMLFy4EF9fXyZOnKh487cQwrbt2bPn0WqEEsuWLSN37tzqJySsTseOHWnSpImiMQ8ePKBt27ZWNeniCBy6AHza7F8aa5sFdFJwwbGTkxOtWrUiIiKCMWPGKJ6Wf5bY2FiGDBmCv78/3377rVX9OxJCaOPhw4e0bt1a8e/37t2707BhQ42yEtZGp9OxZMkSxYcT//jjD5klNjOHLgCf17zS2mYBs8LT05Phw4cTGRlJ+/btVT19d/HiRT799FNq167N7t27VYsrhLA+AwcOJCoqStGYx/cvC8dRtGhR5s2bp3jc4MGDCQ0N1SAjkRGHLQBbtWr1zNm/NK1bt2bDhg3aJ6SxIkWKsGTJEo4cOcLrr7+uauz9+/dTt25dmjVrxtmzZ1WNLYSwvO3btzN37lxFY5ycnAgJCVF19UHYjhYtWtC8eXNFY7J6wEhkjcMWgJm9NSE+Pp5ffvlF42zMp0qVKmzbto2ffvoJf39/VWOvXbuWgIAA+vfvz927d1WNLYSwjLt379K2bVvF4wYOHEjt2rU1yEjYinnz5lG4cGFFYw4ePMiECRM0ykg8ziELwJMnTyo6ybpp0ya72uem0+l4++23OX78OHPnziV//vyqxU5KSmLatGn4+PgwZ84c+UlOCBvXs2dPLl++rGhM5cqVs9QnUNiXfPnysWTJEsXjxo0bx6FDhzTISDzOIQtApRdXR0dH2/xewIy4uLjQrVs3oqKiGDBgAK6urqrFjomJ4fPPP6dSpUps2rRJGn0KYYPWr1/PypUrFY1xcXFh5cqViq8GE/bp7bffpkOHDorGpF0zmJCQoFFWAhywAHzeyd+nsbYTwWrKlSsXkydPJiwsTPGejecJDw/nnXfeoWHDhhw9elTV2EII7dy4cYPOnTsrHjdmzBgqV66sQUbCVs2YMYPSpUsrGnP69Oln9r0V2edwBaDS2b809nAi+HnKlCnD6tWr2b17N7Vq1VI19o4dO3jhhRdo164d0dHRqsYWQqjLaDTSuXNnbt68qWhc7dq16d+/v0ZZCVvl7e3N8uXLFXehmDFjBn/88YdGWQmHKgCzOvuXxp5nAR9Xp04d9u7dy3fffUepUqVUi2s0Glm2bBm+vr6MGTOGhw8fqhZbCKGelStXKu5+4OnpyYoVK9Dr9dokJWzaq6++Su/evRWNMRqNtGnThtjYWG2ScnAOVQBmdfYvjSPMAqbR6XS0aNGCsLAwJk2ahLe3t2qx4+LiGDlyJH5+fqxYscIhimohbMXFixf5/PPPFY+bMmUKvr6+GmQk7MX48eMJCAhQNOb8+fP07dtXo4wcm8MUgNmd/UvjKLOAadzd3R81gO3ataui20ieJzo6mjZt2lC9enV27typWlwhRNYYDAbatWvH/fv3FY1r2LAhXbt21SgrYS88PDwICQlRPEu8ePFitmzZolFWjsthCsDszv6lcaRZwMcVLFiQefPmcfz4ccX3PD7PkSNHaNCgAe+99x4RERGqxhZCZN68efP47bffFI3JlSsXS5cuVfWHQ2G/qlevnqXDHR06dCAmJkaDjByXQ/yOVWv2L42jzQI+LjAwkC1btrB161YqVqyoauyNGzcSGBhIr1695De6EGYWERHBgAEDFI/76quvKFGihAYZCXs1dOhQXnzxRUVjrl69Svfu3TXKyDE5RAGo1uxfGkedBXxc48aNOXr0KIsWLaJQoUKqxU1JSWH27Nn4+Pgwc+ZMkpKSVIsthMhYSkoKrVu3Jj4+XtG4999/n88++0yjrIS9cnFxISQkRHGvyNWrV7N69WqNsnI8dl8A3rp1i3v37tGoUaMnXi4uLpmOUaRIkXTj9+zZo2HWtkGv19OxY0ciIyMZOnQo7u7uqsW+e/cuffr0oUKFCqxbt04aSQuhoSlTprBv3z5FYwoUKMDChQsVt/YQAqBChQqMHz9e8bhu3bpx9epVDTJyQEYHlS9fPiOQqVdQUJCl07UJFy9eNH722WeZ/veq5FWvXj3j/v37Lf1LtFqNGjXK9L/L4OBgS6crrMjRo0eNLi4uin9Prl+/3tKpCxuXkpJifOWVVxT/v/fWW28ZDQaDpdO3ec7ZriCF+EeJEiVYuXIlPXv2pG/fvuzatUu12Lt27aJmzZp89tlnTJgwQfYcCaGCxMREWrVqpfjO7tatW/Pee+9pk5RwGHq9nuXLl1O5cmUePHiQ6XFbtmwhODg44yvmjEaIjoajR02vs2chIcH0Sk0Fd3fTq0ABqFrV9CpfHpwdrxxyvF+x0FyNGjX4448/WL9+PQMGDODMmTOqxf76669Zu3Ytffv2ZeDAgar2JxTC0YwaNYoTJ04oGlOiRAm+/PJLjTISjqZMmTLMmDGDTp06KRr3xRdf8Prrr1OmTBk4dgxWrYIDB+DwYbhzx/QhvR50OlNRaDCY/urkZHrpdJD2g4+rKwQGQvXq8Pbb8NZboGCbmK2y+z2AwjJ0Oh0ffPABp06dYvr06eTOnVu12AkJCYwfPx5fX18WL15MamqqarGFcBR79uxhypQpisctW7aMXLlyaZCRcFQdOnRQ3F7s/aZNybNhA1SrZprFmzYNfvvt3+IPTDN+KSmmv6btIzcYTO89PuudlARHjsCyZfDee1C0KAweDFFR2f2lWTUpAIWm3Nzc6NOnD1FRUfTs2RNnFafZr1+/TqdOnahWrRrbtm1TLa4Q9u7hw4cEBQUpbmfVo0cPXn/9dY2yEo5Kp9OxZMkS8uTJ89zP5s+Thx/q1ydkwwZy9+0Lx4+bvpCSkv1E0mLcugVTp4KvL7zyCqxb928BaUekABRmkS9fPr788ktOnTrFu+++q2rsEydO0LhxY9566y1Onz6tamwh7FFWtmb4+voyefJkjTISjq5o0aLMnz//mZ9518+Pk/fv88GuXaY9fWlLu1pIW1naswc+/BDeeAPOndPmWRYiBaAwKz8/PzZs2MDOnTupVq2aqrF//vlnKleuTNeuXblx44aqsYWwF9u2bWPevHmKxjg5ORESEoKnp6dGWQkBH3/8MR9//HG693N6ebE8f37WR0RQKG1Z11zSCsGdOyEgwDQzaM7na0gKQGERr732GgcPHmT58uUULVpUtbipqaksWLAAHx8fJk+eTEJCgmqxhbB1d+/epW3btorHDRo0iJdeekmDjIR40ty5cylcuPCjf369SBFOPHxI6zt3sGjHyZQUSEyEgQNN+w6PHLFkNqqQAlBYjJOTE61btyYiIoLRo0erOrsQGxvLoEGD8Pf3Z9WqVdJIWgigZ8+eXLlyRdGYKlWqMHLkSI0yEuJJ+fLlIzg4GA93d2YXLMiv169TEv6dibM0oxFCQ6F2bdi0ydLZZIsUgMLivLy8GDFiBJGRkbRr107VmwUuXLhAy5YtqVOnDnv37lUtrhC2Zt26daxcuVLRmLQru1xdXTXKSoj03ipVivPe3nx++zZOWu3xy47UVNPJ4XffhUWLLJ1NlkkBKKxG0aJFCQ4O5vDhwzRo0EDV2Pv27aNOnTq0aNGCc3a2kVeI57l+/TqdO3dWPG7MmDFUrlxZg4yEeIpTp6BePQrevm3de+2MRtOrc2d4zuEVayUFoLA6VatWZfv27fz444+UL19e1dirV6/G39+fgQMHcu/ePVVjC2GNjEYjnTt35tatW4rG1alTh/79+2uUlRAZCAsztV25f996lnwzo1s3WLzY0lkoJgWgsEo6nY7//e9/nDhxgq+++op8+fKpFjspKYkpU6bg4+PDvHnzSLHmnzKFyKaQkBA2btyoaIynpycrVqxAr9drlJUQ/xEfb2rCfO+ebRV/abp2hYMHLZ2FIlIACqvm4uJCjx49iIqKol+/fqruRbp16xbdu3encuXKbN68WQ6KCLtz8eJFevbsqXjc1KlT8fHx0SAjIZ5i0CCIjLTN4i/Nxx/Dw4eWziLTpAAUNiF37txMnTqV0NBQmjVrpmrs0NBQmjZtSuPGjTme1lVeCBtnMBho27Yt9+/fVzSuUaNGdO3aVaOshMjA1q0we7Z2TZ3NITUVzp+HPn0snUmmSQEobErZsmX5/vvv+euvv6hZs6aqsbdv307VqlXp0KEDV69eVTW2EOY2d+5cduzYoWhMrly5WLp0qaon8YV4plu34LPPwMkOyhGDwXQq+McfLZ1JptjBv3HhiF5++WX27t3Lt99+S8mSJVWLazQaCQ4OxtfXl7FjxxIXF6dabCHMJSIigoEDByoeN2fOHIoXL65BRkI8Rc+ecOeObc/+PU6ngzZtTAdZrJwUgMJmOTk50bJlS8LCwpgwYQI5cuRQLfbDhw8ZMWIEfn5+rFy5EoO9fHMSdi8lJYWgoCDi4+MVjfvggw/49NNPNcpKiAycPw+rVtn2vr//Mhrh7l1YtszSmTyXFIDC5nl4eDB48GCioqLo3LkzTiouJVy5coWgoCBq1qzJH3/8oVpcIbQyefJk/v77b0VjChYsyIIFC2TpV5jXnDn2sfSbkRkzrL6wtdN/88IRFSpUiAULFnDs2DHefPNNVWMfOnSI1157jQ8++IDIyEhVYwuhlqNHjzJ69GjF4xYtWkSBAgU0yEiIp4iNhYULrb5IyhKjES5ehJ9+snQmzyQFoLA7FStW5Oeff+bnn38mMDBQ1djr168nMDCQL774gtu3b6saW4jsSExMpFWrViQnJysa16ZNG959912NshLiKZYvt6mWKYrp9TBtmqWzeCYpAIXdevPNNzl69CgLFy6kYMGCqsVNTk5m1qxZ+Pj4MGvWLJKSklSLLURWjRw5kpMnTyoaU7JkSWbNmqVNQkI8i73/f5eaCn/9BSdOWDqTp5ICUNg1Z2dnOnXqRGRkJIMHD8bNzU212Hfu3OGLL74gMDCQDRs2SCNpYTG7d+9m6tSpisctW7aMXLlyaZCREM9w5QqcPWtaKrVnTk6wc6els3gqKQCFQ8iZMycTJkwgPDycTz75RNXYUVFRvP/++7z22mscOnRI1dhCPM+DBw9o3bq14pPqn3/+OQ0aNNAoKyGeYf9+zUIbAH/gv02QtgKuwBrNnpwBnU7TX2t2SQEoHEqpUqX45ptv+Pvvv3n55ZdVjf3nn39SvXp1WrduzeXLl1WNLcTTDBgwgDNnziga4+fnx6RJkzTKSIjn2L8fnJ01Ce0EDAbmA3f+ee8Y0AyY8M9fzSY1FXbvNucTFZECUDikmjVrsmvXLtasWUOZMmVUjR0SEoKfnx8jRozgwYMHqsYW4nG//vor8+fPVzTGycmJkJAQPD09NcpKiOfYuxdSUjQL/ymQH5gNXAbeBloB/TR74jOcPw9WemBQCkDhsHQ6HR999BGhoaFMmzZN1b1Q8fHxjB07Fl9fX4KDg0m1x1YHwqLu3LlDu3btFI8bPHgwtWrV0iAjITLBYIADBzR9hDOmJeDZwFvAC//8vcVo/OvNKikAhcNzc3Ojb9++REVF0aNHD/R6vWqxr127RocOHXjhhRfYvn27anGF6NmzJ1euXFE0pmrVqowYMUKjjITIhBs3wAxXbH4KxAFG4Dvgv9/V3wfyAB9pnYhOBxERWj8lS6QAFOIf+fPn56uvvuLkyZP873//UzX28ePHadSoEU2bNiU0NFTV2MLx/PDDD3z99deKxri6uhISEoKrq6tGWQmRCWa6X73HP3+9RfriD6AnEGKORPR6UHgto7lIASjEf/j7+/Pjjz/y22+/UbVqVVVjb968mUqVKtGjRw9u3rypamzhGK5fv07nzp0VjxszZgyVKlXSICMhFDBDMTQc2AzsA1KA4Aw+Ux/w1jwTTDOAUgAKYVsaNGjAwYMHWbp0KUWKFFEtbmpqKnPnzsXHx4epU6eSmJioWmxh34xGI506dSImJkbRuDp16tCvn0W2wAthVkuA6cAmoArQG5gCKLsfxzFIASjEM+j1etq2bUtERAQjR47Ew8NDtdj3799nwIABBAQEsGbNGmkkLZ5rxYoV/Pjjj4rGeHp6smLFClX3tgqRZSp+D/2vn4HuwNfAS/+89zlwH1ip2VOfw2jU9NecHVIACpEJOXLkYNSoUURGRtKmTRt0Op1qsc+dO0fz5s2pW7cu+/btUy2usC8XLlygV69eisdNmzYNHx8fDTISIgs0aj90CFOPvynAB4+9nxNTETgJsEgvhtRUKQCFsAfFihVj2bJlHDx4kNdee03V2Hv27KF27dq0bNmS8+fPqxpb2DaDwUDbtm25f/++onGNGzemS5cuGmUlRBYULKhJEfgi8ADI6EekMUAEGR8G0ZzRCH5+lnjyc0kBKEQWvPDCC+zYsYONGzfi6+urauxVq1bh7+/P4MGDFf+BL+zTnDlz2KnwTtFcuXIRHBys6my1ENnm5AQ1alg6C97ANGO4BSgOaNqpzwp+vRmRAlCILNLpdLzzzjucPHmSL7/8krx586oWOzExkUmTJuHj48OCBQtI0bBrvrBu4eHhDBz435tNn2/u3LkUL15cg4yEyKbatTW7Ci6ztgI3MfUKvAxoVqKVLg0q/tmgJikAhcgmV1dXevbsSVRUFH369MHFxUW12Ddv3qRr165UqVKFX375RbW4wjakpKQQFBREQkKConEffvghn3zyiUZZCZFNNWtqehWc1dDrQeU759UkBaAQKsmTJw/Tp0/n9OnTfPjhh6rGPn36NE2aNOGNN97gxIkTqsYW1mvy5Mns379f0ZiCBQsyf/58WfoV1qtmTUtnYB5Go1X/WqUAFEJlPj4+rF27lj///JPq1aurGvvXX3+latWqdOrUiWvXrqkaW1iXI0eOMGrUKMXjFi9eTIECBdRPSAi1FCsGZcuamiTbM4MB6te3dBZPJQWgEBqpV68ef//9N19//bWqe7EMBgOLFy/G19eXCRMmEG+lXeZF1iUmJhIUFKR472fbtm155513NMpKCBX17m3pDLSl10PdumDFt+9IASiEhpycnPj0008JDw9n3Lhx5MiRQ7XYDx48YOjQoZQvX56rV6+qFldY3ogRIzh58qSiMSVLlmTWrFnaJCSE2tq2BS8vS2ehndRUsPLbd6QAFMIMPD09GTp0KJGRkXTs2BEnJ/V+6126dElxsSCs1+7du5k6dariccuXLydnzpwaZCSEBnLkgM6dTTNl9kang5IloWlTS2fyTFIACmFGhQsXZtGiRRw9epRGjRpZOh1hZR48eEDr1q0VXwvYs2dP6lvxXiMhMtSjh2mfnD3q08fqi1spAIWwgEqVKrF161a2bNlChQoVLJ2OsBL9+/fnzJkzisb4+fkxceJEjTISQkOlS0OLFlZfKCmi00Hu3KYlbisnBaAQFqLT6WjSpAnHjh1j/vz5cnLTwW3dupUFCxYoGqPX61m5ciWeGt2vKoTmZs82NUpWcVuMRRmNsGIF2MB2DDv5Ny6E7XJ2dqZLly5ERkYycOBA3NzcLJ2SMLM7d+7Qrl07xeMGDx5MTSvuMybEc+XPDytX2sdSsJMTdOoE//ufpTPJFCkAhbASuXLlYtKkSYSFhdGiRQvNnnPhwgXNYous+fzzz4mOjlY0plq1agwfPlyjjIQwozfegJ49bXsWUK83LWnPmGHpTDLNhv9tC2GfSpcuzXfffcfevXupXbu26vHHjh1L27ZtuXLliuqxhXJr167lm2++UTTG1dWVkJAQXF1dNcpKCDObNAl8fW17P+Dq1TbV2kYKQCGs1EsvvcTu3btZvXo1pUuXVi2u0Whk+fLl+Pn5MWrUKB4+fKhabKHMtWvX6NKli+JxY8eOpWLFihpkJISFeHjAhg2QK5dtFoHz54PKNz9pTQpAIayYTqejefPmhIaGMmXKFFX7vMXFxTF69Gh8fX1ZtmwZqampqsUWz2c0GunUqRMxMTGKxr388sv07dtXo6yEsCB/f/jzT9MBClsqAufNg44dLZ2FYlIACmED3N3d6d+/P1FRUXTv3h29it8cr169Srt27ahevTo7duxQLa54tuXLl7Np0yZFY7y8vFixYoWq//2FsCqBgbBrl+lwiLOzpbN5Op3O9Fq4ELp2tXQ2WSIFoBA2pECBAsyZM4cTJ07w9ttvqxr76NGjvP7667z77ruEh4erGls86cKFC/Tq1UvxuGnTplGuXDkNMhLCigQGwsGD4ONjnTOBej24ucGPP5pO/dooKQCFsEEBAQH89NNPbNu2jcqVK6sa+8cff6RixYr07NmTW7duqRpbgMFgoE2bNsTGxioa98Ybb9C5c2eNshLCyhQvDvv2QatWpn+2lkJQp4OAANizx+qvenseKQCFsGENGzbk8OHDqt8mkpKSwldffYWPjw/Tp08nMTFR1fiO7KuvvuL3339XNCZ37twEBwej0+m0SUoIa5QrFyxbBjt2mO7WteT//87O4O4OU6bAkSNQrZrlclGJFIBC2Di9Xk+xYsU0iX3v3j369etHhQoVWLt2reI7asWTwsLCGDRokOJxc+fO1ey/sRBWr359OH0ahg0zFWLm3BuYNvPYoIEph379rHtvogJSAAohnuvs2bM0a9aMevXqsX//fkunY5NSUlJo3bo1CQkJisZ99NFHtGzZUqOshLAR7u4wZgwcO2ZaFnZ3N80IatU8Oq3we/ll+OEH+OUXKFNGm2dZiBSAQohM2717N7Vq1eLTTz/l4sWLlk7HpkyaNElx8VyoUCHmz58vS79CpKlQAZYuhevXYcECqFLF9L6zc/aXiNNm9vLnhwEDIDIS/vgDPvjAssvPGpECUAih2Lfffkv58uUZOnSo4sMMjujw4cOMHj1a8bjFixeTP39+DTISwsblzGk6gXv4sGlWsF8/eP11yJPn38/o9aaiTq//t4BzcjK95+Ly7+dcXeGFF6BdO9i4Ea5ehQkTTKeQ7Zh9LGQLIcwuISGBCRMmsGTJEsaOHUu7du1wtpO9MWpKSEggKCiIlJQURePatm3L/2zkUnkhLKpyZdMLwGg0FXBHj5peZ89CQoLplZpqWjp2d4cCBaBqVdPLz89u9vUp4Xi/YiEcXKNGjdi5c6figuRpbty4QefOnZk9ezbTp0/njTfeUCWuvRgxYgSnTp1SNKZUqVLMmjVLm4SEsGc6HRQtanq99Zals7FqOqOdH+u7desWn376abrTi7///jvJycmZilG4cGEqVar0xHuBgYHMnDlTtTyFyI7GjRuzbdu2TH02ODiYevXqMXDgQNavX696Lm+++SbTpk0jMDBQ9di25q+//uKVV15RfHp6x44d1K9fX6OshBDCAWYA8+fPT65cuVizZk2WY1y7do1r16498V5HG7z3T4g0vr6+rFu3jj/++IO+ffty6NAh1WL/8ssv/Prrr3Ts2JHRo0dTqFAh1WLbkgcPHtC6dWvFxV+vXr2k+BNCaM4hDoGMGDFC1XiBgYF8+OGHqsYUwhJeffVV9u/fT0hIiKp95gwGAwsXLsTX15dJkyYpbn1iD/r168fZs2cVjSlfvjwTJ07UKCMhhPiXQxSAFStWpFmzZqrFGzlyJE5a9R4SwsycnJxo1aoVERERjB07Fi8vL9Vix8bGMnjwYMqXL893333nMI2kf/nlFxYuXKhojF6vJyQkBA8PD42yEkKIfzlMFaPWLKDM/gl75enpybBhw4iMjKR9+/aq9p67ePEin3zyCS+99BK7d+9WLa41unPnDu3bt1c8bsiQIdSsWVODjIQQIj2HKQDVmgWU2T9h74oUKcKSJUs4cuQIDRs2VDX2/v37qVu3Ls2bN1e8PGorevToQXR0tKIx1apVY9iwYRplJIQQ6TlUJZPdWUCZ/ROOpEqVKvz6669s3rwZf39/VWOvWbOGgIAA+vfvz927d1WNbUlr1qzh22+/VTTG1dWVkJAQXF1dNcpKCCHSc6gCMLuzgDL7JxyNTqfjrbfe4vjx48ydO1fVWymSkpKYNm0aPj4+zJkzJ9NtmazVtWvX6Nq1q+Jx48aNo2LFihpkJIQQT+dw1UxWZwFl9k84MhcXF7p160ZUVBQDBgxQdbYqJiaGzz//nEqVKvHTTz/Z5EERo9FIx44diYmJUTSubt269OnTR6OshBDi6RyuAMzqLKDM/gkBuXLlYvLkyYSFhdG8eXNVY4eHh/O///2Phg0bcvToUVVja23ZsmX89NNPisZ4eXmxYsUK9Hq9RlkJIcTTOWRFo3QWsGjRojL7J8RjypQpw+rVq9m9ezcvvfSSqrF37NjBCy+8QPv27RUfprCE8+fP07t3b8Xjpk+fTtmyZdVPSAghMsEhC8CKFSsqup3gf//7n8z+CZGBOnXqsGfPHlatWkWpUqVUi2s0Glm6dCm+vr6MGTOGhw8fqhZbTQaDgbZt2xIbG6to3JtvvkmnTp00ykoIIZ7PYauaRo0aZepzHh4evPnmmxpnI4Tt0ul0fPzxx4SFhTFp0iS8vb1Vix0XF8fIkSMpX748K1aswGAwqBZbDbNnz+b3339XNCZ37twsWbJE1T6LQgihlMMWgCtXrszUXsAVK1bw3nvvaZ+QEDbO3d2dgQMHEhUVRdeuXVWdNb9y5Qpt2rShRo0aigsurYSFhTF48GDF4+bNm6fqtXtCCJEVDlsAwvP3AsrJXyGUK1iwIPPmzeP48eM0adJE1diHDx+mfv36vPfee0RERKgaW4mUlBSCgoIU33HcrFkzWrRooVFWQgiReQ5dAD7vRLCc/BUi6wIDA9myZQtbt26lUqVKqsbeuHEjgYGB9O7dm9u3b6saOzMmTpzIgQMHFI0pVKgQ8+bNk6VfIYRVcPjq5mmzgDL7J4Q6GjduzJEjR1i8eLGiw1fPk5KSwpdffkm5cuWYOXMmSUlJqsV+lsOHDzNmzBjF45YsWaJqI20hhMgOhy8AnzYLKLN/QqhHr9fToUMHIiMjGTp0KO7u7qrFvnv3Ln369KFChQqsW7dO00bSCQkJtGrVipSUFEXj2rVrR9OmTTXKSgghlJMKh/SzgDL7J4Q2vL29GTduHBEREXz22Weqxj5z5gwffvghr776KgcPHlQ1dprhw4dz+vRpRWNKlSrFzJkzNclHCCGySgpA0s8CyuyfENoqUaIEK1euZP/+/dSrV0/V2Lt27aJGjRq0atWKS5cuqRp3+vTpisctX76cnDlzqpaHEEKoQaqcf6TNAsrsnxDmU6NGDf744w9++OEHypUrp2rsr7/+Gj8/P4YPH664UfN/PXjwgDZt2iheXu7duzevvfZatp4thBBakALwH2mzgDL7J4R56XQ6PvjgA06fPs2MGTPInTu3arETEhIYN24cvr6+LF68mNTU1CzF6devH2fPnlU0xt/fnwkTJmTpeUIIoTWdUcsd01bKYDBw69Ytrl27xrVr14iLiyMlJYX79+/j6emJi4sLzs7O5MmTh8KFC1O4cGG8vb2lfYOwWo0bN2bbtm2Z+mxwcDDt2rXTOKOsi4mJYezYscydO1fxYYvnqVSpEtOnT8/0TUAAP//8M2+99Zai5+j1evbu3UuNGjWUpiiEEGbhbOkEzCE1NZXIyEgiIiKIjo7m5s2bj66UcnJyerSsk/ZXnU6HTqfDaDQ+es/d3Z3ChQtTrFgxKlasSOHChS3zixHCzuXLl49Zs2bRrVs3BgwYwMaNG1WLfeLECRo3bsxbb73F1KlTqVChwjM/f/v2bdq3b6/4OUOHDpXiTwhh1ex6BjAmJoYjR45w+PBh4uPjcXJyyvZdomkxChcuzIsvvkilSpVwc3NTKWMhssaeZgD/6/fff6dPnz4cOXJE1bh6vZ5OnToxatQoChYsmOFnPvnkE7777jtFcV944QX27duHi4uLGmkKIYQm7K4ANBqNhIaG8vfff3Px4sVHM3la0ev1VKpUiTp16lCgQAHNniPEs9hzAQimbRsrV65kyJAhREdHqxo7Z86cDBkyhF69ej3Rn3DNmjU0b95cUSw3NzcOHTpEYGCgqjkKIYTa7Oq0w507d/j6669Zs2bNo/YPWte3qampHD9+nAULFrBjxw7V9ywJIUwz761btyYiIoLRo0fj6empWuz79+8zaNAg/P39WbVqFUajkatXr9K1a1fFscaNGyfFnxDCJtjFDGBqair79u1j586dGI3GbC/zZpVOpyNXrly88847lClTxiI5CMdk7zOA/xUdHc3w4cNZtmyZ6j/kvfTSSzg5ObFnzx5F4+rVq8fOnTvR6/Wq5iOEEFqw+RnAq1evsnDhQrZv305qaqrFij8wzTbeu3ePkJAQNmzYQEJCgsVyEcKeFS1alODgYA4fPkyDBg1Ujb1v3z7FxZ+XlxfLly+X4k8IYTNsugAMDw8nODiYW7duWTqVR9JmI44fP05wcDD37t2zcEZC2K+qVauyfft2Nm3aRPny5S2Wx4wZMyhbtqzFni+EEErZbAF48OBBVq1aRWpqqub7/LLCaDRy+/ZtFi9ezI0bNyydjhB2S6fT0bRpU06cOMGcOXPIly+fWZ/fpEkTOnbsaNZnCiFEdtlkAbh//342b95s6TSey2AwEBcXx7Jly6QIFEJjLi4udO/enaioKPr164erq6vmz8yTJw9LliyRJvFCCJtjcwXgwYMH+fnnny2dRqYZjUYSExNZvny5VS1VC2GvcufOzdSpUwkNDaVZs2aaPmvevHkULVpU02cIIYQWbKoAvHLlClu2bLF0GooZjUYSEhJYtWqVtIkRwkzKli3L999/z19//UXNmjU1ecb27du5evWqJrGFEEJLNlMAJiUlsXbtWkunkWVpewK3b99u6VSEcCgvv/wye/fu5dtvv6VkyZKqxg4ODsbX15dx48YRFxenamwhhNCSzRSAW7du5d69e1Z54COzjEYjf//9N2fOnLF0KkI4FCcnJ1q2bElYWBgTJ07E29tbtdgPHz5k+PDhlC9fnpUrV1q0FZUQQmSWTRSAYWFhHD582KaLvzQ6nY5169bJbIEQFuDh4cGgQYOIjIykQ4cOqsa+fPkyQUFB1KxZkz/++EPV2EIIoTarLwATExPZuHGjpdNQjdFoJD4+3qYOsghhbwoVKkSuXLk0iX3o0CFee+01PvjgAyIjIzV5hhBCZJfVF4BHjhyxuxs1jEYjJ0+e5O7du5ZORQiH9OeffzJjxgxNn7F+/XoCAwP54osvuH37tqbPEkIIpay6ADQYDOzdu9fSaWhCp9Oxf/9+S6chhMOJjY2lTZs2ZtlSkpyczKxZs/Dx8WHWrFkkJSVp/kwhhMgMqy4Aw8PDuX//vqXT0ITRaOTQoUPyB4IQZtavXz/OnTtn1mfeuXOHL774gsDAQDZs2GAX+5mFELbNqgvAvXv32nWH/aSkJI4ePWrpNIRwGFu2bGHRokUWe35UVBTvv/8+r732GocOHbJYHkIIYbUF4PXr17l06ZLd/6S8b98+S6cghEO4fft2lk7+dujQgZdfflnVXP7880+qV69O69atuXz5sqqxhRAiM6y2ADx37pxdz/6luXPnjt0ucwthTbp376741o4XX3yRefPmsWvXLtauXUvZsmVVzSkkJAQ/Pz9GjBjBgwcPVI0thBDP4mzpBJ4mOjpas9gRERF8++23T/16hQoVaN68uWbP/6/o6Ghy5sxptucJ4Wi+//57Vq1apWiMm5sbISEhuLi4APDhhx/StGlT5syZw9ixY7l3754qucXHxzN27FgWL17MuHHjaNOmDXq9XpXYQgjxNFZbAF68eFGz5d8yZcrQt2/fJ94zGo1s2LCBa9eu8eqrr2ry3Iw4OTlx5coV/P39zfZMIRzJ1atX6dq1q+Jx48ePp0KFCk+85+bmRt++fWndujVjxoxh3rx5pKamqpLntWvX6NChA7Nnz2b69Ok0bNhQlbhCCJERq1wCjouLU+2n64y4uLjg7e396OXl5cWvv/7KtWvXaN26NYUKFdLs2f9lMBhkD5AQGjEajXTo0EFxH7569erRu3fvp349f/78zJ49m1OnTvHOO+9kM8snHT9+nEaNGtG0aVNCQ0NVjS2EEGmssgDUcvn3vwwGA+vWrePMmTMEBQWZtfhLc+XKFbs/7CKEJQQHB7NlyxZFY3LkyMHy5csztQxbvnx5Nm7cyI4dO6hatWoWs8zY5s2bqVSpEj169ODmzZuqxhZCCKssAGNiYszynMeLv9atW1O4cOFHX1u1ahWTJk1i9erVmueRnJzMw4cPNX+OEI7k3LlzfPHFF4rHzZgxQ/Fhj/r163Pw4EGWLVtGkSJFFD/zaVJTU5k7dy4+Pj5MnTrV7m5FEkJYjlUWgMnJyTg5aZvas4o/gFq1avH+++9rmsPjkpOTzfYsIeydwWCgbdu2ik/WNmnSJEutYgD0ej1t2rQhMjKSkSNH4unpmaU4Gbl//z4DBgwgICCA77//XlYMhBDZZpUFYEpKiqbx/7vs+9/iD0wHRVxdXTXN43FSAAqhni+//JI//vhD0Zg8efKwZMmSbLef8vLyYtSoUURERNCmTRtV21mdP3+ejz/+mJdffll6iAohssUqC0AtGQwG1q9f/6j4U3O5JjscoeehEOZw+vRpBg8erHjcvHnzKFq0qGp5FCtWjGXLlnHo0CHq16+vWlww3ZJUu3ZtWrZsyfnz51WNLYRwDFZZADo7a9OdJq34CwsL44MPPiBHjhzExsY+8TIYDJo8+3m0+jUL4UiSk5MJCgoiMTFR0biPP/6YFi1aaJJTtWrV+O2339i4cSN+fn6qxl61ahX+/v4MHjxYGsoLIRSxyqrDxcVFk0IsOjqaEydOAPDNN99k+JmBAwfi4eGh+rOfJ63ZrBAi6yZMmKD4jt3ChQszd+5cjTIy0el0vPPOOzRp0oQFCxYwatQoxa1pniYxMZFJkyYRHBzMmDFj6NChg/xAKYR4Lqv8LpEvXz5N4hYvXpxRo0ZpEjs7XFxc8PLysnQaQti0Q4cOMW7cOMXjgoODNfue818uLi58/vnnfPbZZ4wbN46vvvpKtf2/N2/epGvXrnz11VdMmzaNN998U7aWCCGeyiqXgIsVK2bpFFi5ciVr1qwhMjKS6dOnc+XKFc2eVaxYMflGLUQ2xMfH06pVK8UHyDp06MBbb72lUVZPlydPHqZPn05oaCgffvihqrFPnz7NW2+9xZtvvvloxUMIIf7LKmcAPTw8yJUrl6a3gTxPq1atzPIcJycnihcvbpZnCWGvhg0bpvjWjNKlSzNjxgyNMsqccuXKsXbtWnbt2kXfvn05cOCAarF//fVXqlatSvv27RkzZkyG3Q6EEI7LKmcAAUqWLOkQs2IGg8EqZjyFsFV//PEHM2fOVDRGp9OxYsUKvL29NcpKmXr16rFv3z6+/vprSpQooVpcg8HA4sWL8fX1Zfz48cTHx6sWWwhh26y2AFSzHYO1kwJQiKyJjY2lTZs2ihsjf/HFF7zyyisaZZU1Tk5OfPrpp4SHhzN+/Hhy5MihWuwHDx4wbNgwypcvz9dff22xbgdCCOthtQVgmTJlHKLbfZ48eaxmFkIIW9O3b1/FffACAgIYP368NgmpwMPDgyFDhhAZGUmnTp1UvRXp0qVLtGrVilq1arFr1y7V4gohbI/VFoCFChWiRIkSdr8M/NJLL1k6BSFs0pYtW1i8eLGiMXq9npCQENzd3TXKSj2FCxdm4cKFHD16lMaNG6sa++DBg7zyyit89NFHnDlzRtXYQgjbYLUFIECdOnXsehbQ1dWVqlWrWjoNIWxOTEwM7du3Vzxu+PDhVK9eXYOMtFOpUiW2bt3Kzz//TIUKFVSN/cMPPxAQEEDfvn25c+eOqrGFENbNqgtAPz8/cuXKZek0NKHT6XjxxRfNet+wEPaie/fuXLt2TdGYF198kSFDhmiUkfbefPNNjh07xvz58ylQoIBqcZOTk5kxYwY+Pj7Mnj1b7iUXwkFYdQHo5ORk10uktWrVsnQKQtic1atXs3r1akVj3NzcCAkJsfkbd5ydnenSpQtRUVEMGjQINzc31WLfvn2bXr16UbFiRTZu3GjXqy9CCCsvAMF0j6Yt7NdRQqfTERgYaLezm0Jo5erVq3Tr1k3xuAkTJqi+fGpJOXPmZOLEiYSFhdGyZUtVY0dERPDee+/RoEEDDh8+rGpsIYT10Blt4Me88PBwVq1aZek0VJF2qMXV1ZW8efOSI0cOvL29yZEjx6PX4/8sd3qKzGjcuDHbtm3L1GeDg4Np166dxhmpz2g00rRpU7Zs2aJo3CuvvMLOnTtVPU1rbfbt20efPn3Yu3evqnF1Oh1BQUGMHz9e2lUJYWdsorooX748L7zwAkeOHLH5ZQmj0fjoHtDly5c/9/Nubm7PLBCf9s8vvvgivr6+2v+ChDCTJUuWKC7+cuTIwfLly+26+ANTN4Hdu3ezdu1aBg4cyLlz51SJazQaWbFiBWvWrKFfv370799f1f6EQgjLsYkZQICkpCTmz5/PvXv3bLYI1Ol01KxZkzfffJN79+5RqVIlLl26pPpz3NzcCAsLo3Tp0qrHFtbJ3mcAz507R+XKlXnw4IGicYsXL6ZDhw4aZWWdEhMT+eqrrxg7diz3799XNXaRIkUYP348QUFB6PV6VWMLIczLZn4sdnV15aOPPrJ0Glmm0+nIly8fDRs2BCBXrlwsXbpUk2f17t1bij9hNwwGA23atFFc/L399ttZahVj69zc3OjXrx9RUVF0795d1ULt6tWrtGvXjurVq7Njxw7V4gohzM9mCkAwXZn29ttvWzoNxXQ6He7u7nz88cdP7Olr2LAhXbt2VfVZBQoUYPDgwarGFMKSZs2axZ9//qloTN68eVm8eLHdN5J/lgIFCjBnzhxOnDhB06ZNVY199OhRXn/9dd555x3Cw8NVjS2EMA+bKgDB1MvrrbfesnQamabT6XBzc6Nt27bkz58/3denTJlC2bJlVXve6NGj5XSxsBunTp3KUu++efPmUaRIEQ0ysj0BAQFs2rSJ7du3U6VKFVVjb9q0iYoVK/L5559z69YtVWMLIbRlcwUgQI0aNVT/iVYLOp0OLy8v2rVr99TGrWmb1NWYqXB3d6dJkybZjiOENUhOTiYoKIjExERF41q0aMHHH3+sUVa26/XXX+fQoUMEBwdTuHBh1eKmpKQwZ84cfHx8mDZtmuL/XkIIy7DJAhBMM4EtWrRAr9db5TJP2p6/jh07Prdrf7169fjiiy+y/cyEhAQqVKjAiBEjFO+XEsLajB8/XnEfuiJFijB37lyNMrJ9er2edu3aERkZyYgRI/Dw8FAt9r179+jfvz8BAQGsXbvWZg/rCeEobLYABFN7mPbt26t6LVJ2pRWjVapUoX379uTMmTNT48aNG4e/v3+2nx8fH8/YsWPx9fUlODiY1NTUbMcUwtwOHjzIuHHjFI9bsmQJefPm1SAj+5IjRw5Gjx5NREQEQUFBqsY+d+4czZo1o169euzfv1/V2EII9dh0AQimn/g7d+5Mo0aN0Ov1Fu/3lTt3blq3bs27776r6AYTDw8PVqxYoVr+165do0OHDrzwwgts375dlZhCmEN8fDxBQUGKf3jp2LGjTe0PtgbFixdnxYoVHDx4kFdffVXV2Lt376ZWrVp8+umnXLx4UdXYQojss/kCEEx3BtepU4cePXpQpkwZALMuCzs5OeHk5MQrr7xCt27dstyCpWbNmgwaNEjV3I4fP06jRo1o2rQpoaGhqsYWQgtDhw5V/P9qmTJlmD59ukYZ2b8XX3yRnTt3smHDBtUbyH/77bf4+fkxZMgQ1fsSCiGyzi4KwDS5c+fm008/pXnz5pQsWRLQrhBMi+vs7EyVKlXo0qUL9evXz/bVbSNGjKBy5cpqpPiEzZs3U6lSJXr06MHNmzdVjy+EGv744w9mzZqlaIxOp2P58uV4e3trk5SD0Ol0vPvuu5w8eZJZs2aRJ08e1WInJiYyceJEfH19WbhwISkpKarFFkJkjc3cBJIVt2/f5siRIxw+fJi4uDicnJwwGAzZipkWo0iRIlSvXp3AwEDc3NxUytjk2LFj1KhRg+TkZFXjpsmZMyfDhg2jZ8+equcuLMMebgKJjY2lcuXKnD9/XtG4vn37Mm3aNG2ScmC3b99m3LhxzJkzR/XvRYGBgUyfPp033nhD1bhCiMyz6wIwjcFgIDIyksjISKKjo7lx48aj/UVpe+6MRuOjU2s6nQ6dTvfEex4eHhQpUoSiRYtSsWJFChUqpGnO48aNY/jw4Zo+o0yZMkyaNIlmzZpZ5UlqkXn2UAB27NiRJUuWKBpToUIFDh06pGi/rVAmKiqKgQMHsm7dOtVjv/HGG0ybNo2KFSuqHlsI8WwOUQD+l8FgICYmhmvXrnHt2jXi4uJISUkhJSUFnU6Hs7Mzzs7O5MmTh8KFC1O4cGGzLy+lpKRQp04dDhw4oPmzateuzYwZM3jppZc0f5bQhq0XgJs3b1bc29PZ2Zl9+/bx4osvapSVeNyff/5Jnz59OHTokKpxnZyc6NixI6NHj9b8B2shxL8csgC0FaGhoVSrVs1sjVVbtGjBxIkT5R5hG2TLBWBMTAwVK1bk2rVrisaNHj2aESNGaJSVyIjBYODbb79l8ODBXL58WdXY3t7eDB48mN69e6van1AIkTG7OgRibwICAhg/fnyGXxs3bpzqp/VWrVqFv78/gwcPltN6wmy6deumuPirXr263HltAU5OTnz22WeEh4czduxYvLy8VIsdGxvLkCFD8Pf359tvv832fm0hxLNJAWjlevfuTd26dZ9474MPPmDo0KGcPHmSL7/8UvXTepMmTcLHx4cFCxbIaT2hqVWrVvH9998rGuPm5kZISAguLi4aZSWex9PTk2HDhhEZGUmHDh1U3UN88eJFPv30U2rXrs3u3btViyuEeJIUgFZOr9ezfPlyPD09AXBxcWHy5MkAuLq60rNnT6Kiovjiiy9U/QPx5s2bdO3alSpVqvDLL7+oFleINNHR0XTr1k3xuIkTJxIQEKBBRkKpIkWKsHjxYo4ePUrDhg1Vjb1//37q1q1Ls2bNOHv2rKqxhRBSANqEcuXKMXXqVAB69OiBj4/PE1/PmzcvM2bM4PTp03zwwQeqPvv06dM0adKEN954gxMnTqgaWzguo9FIhw4duHPnjqJxr776Kr169dIoK5FVlStX5tdff2Xz5s2qF+dr164lICCAfv36cffuXVVjC+HIpAC0EV26dOHjjz9+ZmsYHx8ffvjhB/7880+qV6+u6vN//fVXqlatSqdOnRTv1xLivxYvXszPP/+saEyOHDlYvny5xa97FBnT6XS89dZbHD9+nHnz5pE/f37VYiclJTF9+nR8fHw06UsohCOS76Q2wsnJiW+//TZT+/3q1avH33//zcqVKylevLhqORgMBhYvXoyvry8TJkwgPj5etdjCcZw9e5Y+ffooHjdr1iw5oW4DnJ2d6dq1K1FRUQwYMABXV1fVYsfExPD5559TqVIlNm3ahDSxECLrpA2MnYuLi2PmzJlMnDiRhw8fqhq7RIkSTJw4kZYtW8qsjIXZShuY1NRU6tevz65duxSNe/vtt9m0aZM0LLdB586dY/DgwaxevVr12A0aNGD69OlUrVpV9diZZjTCw3Nw+wjcOQqxkZAaD6lxYEgGvYfp5ZYXcleBPFUhTxVwyWm5nIVACkCHce3aNUaMGEFwcLDq7RVq1KjBjBkz0p1WFuZjKwXg9OnT6devn6IxefPm5eTJkxQpUkSjrIQ57N27lz59+rBv3z5V4+p0Otq0acO4ceMoWrSoqrGf6s5ROPc13NoLd45B6j8/XOucAQMY//s9Vgc6PRhTgX/+yPUsCfmqQ+HGULqlFITC7GTaxkEULlyYRYsWcfToURo1aqRq7AMHDlCvXj0++ugjzpw5o2psYT9OnTrF0KFDFY+bP3++FH92oHbt2uzZs4dVq1apupRvNBpZtmwZvr6+jB49WvWVjkeS70PkAthSFX6uBuFfwq09/xZ/AMaUDIo/AKPpazw23xJ3ES5tgANd4YdCsLct3NxjmlEUwgykAHQwlSpVYuvWrWzZskX103o//PADAQEB9O3bV/HpTmHfkpOTCQoKUnyrTcuWLWnevLlGWQlz0+l0fPzxx4SGhjJ58mRy5lRv1isuLo5Ro0bh5+fH8uXL1VvpuB9hKs5+KAgHusHd46b3jWr0SDUARjAkwPmvYdvL8FN5CP/KtHwshIakAHRAOp2OJk2aPDqtV6BAAdViJycnM2PGDHx8fJg9e7ac1hOA6eaaw4cPKxpTpEgR5syZo1FGwpLc3d0ZMGAAkZGRdO3aFb1er1rs6Oho2rZtS/Xq1dm5c2fWA6UmwokxsDnQVJwZEjHN4Gk0Q5dWUMZGwaFe8HNVuPW3Ns8SAikAHVraab3IyEgGDhyo6mm927dv06tXLypWrMiPP/4op/Uc2IEDB556peGzBAcHkzdvXg0yEtaiYMGCzJs3j+PHj/PWW2+pGvvIkSM0aNCA9957j4iICGWDb+yCLZXgxKh/lnXNeSPSP0Xm/XD4tTYc6GFafhZCZVIACnLlysWkSZMIDw+nRYsWqsaOiIjg3Xff5fXXX+fIkSOqxhbWLz4+nqCgIFJTUxWN69SpE02aNNEoK2FtKlSowObNm/n111+pVKmSqrE3btxIYGAgvXr1IiYm5tkfTn4Af3eE7a/Ag7NoNtuXGWkHRqLmw4++cOUny+Ui7JIUgOKR0qVL891337F3715q166tauydO3fy4osv0rZtW65cuaJqbGG9hg4dSlhYmKIxZcqUYdq0aRplJKxZo0aNOHLkCIsXL6ZQoUKqxU1JSWH27Nn4+PgwY8aMjPeixl83FX5nl5n+2ajshxbNGA2QeAv+eAfCZlk6G2FHpAAU6bz00kvs3r2b1atXq35ab/ny5fj5+TFq1CjtTusJq/D7778zc+ZMRWN0Oh0rVqzA29tbo6yEtdPr9XTo0IHIyEiGDRuGu7u7arHv3r1L3759CQwM5Icffvh3a0rsGdhaE+6esJ7C7wn/HBY5/AUc7isnhYUqpAAUGdLpdDRv3lyz03qjR4/Gz8+PZcuWKV4eFNbv/v37tGnTRvG4vn37Uq9ePfUTEjbH29ubsWPHEhERQatWrVSNfebMGT766CMaNGhAyp1w2FYX4qPNvNcvi8JmmA6JSBEoskkKQPFMaaf1oqKi6Natm+qn9dq1a0f16tXZsWOHanGF5fXp04cLFy4oGhMYGMjYsWM1ykjYqhIlShASEsKBAwd45ZVXVI1dvmwxnHfWNy2x2kLxlybiKziirKG6EP8lBaDIlAIFCjB37lxOnDjB22+/rWrso0eP8vrrr/Puu+8SHh6uamxhfps3byY4OFjRGGdnZ0JCQlRd7hP2pXr16vz++++sW7eOcuXKZTuet7c3oxuFQuJN2yr+0oTNgItrLJ2FsGFSAApFAgIC+Omnn9i2bRuVK1dWNfaPP/5IxYoV6dmz5/NP6wmrdOvWLdq3b6943PDhw3nhhRc0yEjYE51Ox/vvv8/p06eZOXMmuXPnznKsIe1qUchwxDaLPwB0sK8DxF22dCLCRkkBKLKkYcOGHD58mCVLllC4cGHV4qakpPDVV1/h4+PD9OnTFd8cISzHaDTSrVs3rl+/rmhcjRo1GDx4sEZZCXvk6upK7969iYqKolevXjg7OysaX7J4YXpX/Q2LtnnJNiOkxsGez55y/ZwQzyYFoMgyvV5P+/btiYyMZPjw4Xh4eKgW++7du/Tr148KFSqwdu1aaSRtA1atWsWaNcqWpNzd3QkJCcHFxUWjrIQ9y5cvH7NmzeLUqVO89957mR43qXkK7m528MefMQVu/AFhyk7bCwFSAAoV5MiRgzFjxhAeHq76ab2zZ8/SrFkz6tWrx/79+1WNLdQTHR1N9+7dFY+bOHEi/v7+GmQkHImfnx/r16/n999/f+5WgloVC9PixdtW2u4li44OMrWyEUIBKQCFarQ8rbd7925q1arFp59+ysWLF1WNLbLHaDTSvn177ty5o2jca6+9Rs+ePTXKSjiiV199lQMHDrBixQqKFSuW4WdmNLuNDjtcMg2fbekMhI2RAlCoLu203vr16/Hx8VE19rfffkv58uUZOnQosbGxqsYWWbNo0SJ++eUXRWO8vb1ZtmwZTk7yLUioy8nJiaCgICIiIhgzZgyenp6PvtbsjcrU8bHVQx/PYEyBM4sh6Z6lMxE2RL77Ck3odDree+89Tp06xcyZM8mTJ49qsRMSEpgwYQI+Pj4sWrSIlBQ7/IZuI86cOUPfvn0Vj5s1a5aqt8wI8V+enp4MHz6cyMhI2rVrh4eHB5PeuQr2OPsHkJoAZ5daOgthQ6QAFJp6/LRe7969FZ/We5YbN27QuXNnqlWrxtatW1WLKzInNTWVNm3aKL7Sr2nTprRt21ajrIR4UtGiRQkODub8ri8pm/umpdPRkNHUG9BgR3sbhaakABRmkTdvXmbOnKn4tF5mnDx5kjfffJMmTZpw6tQpVWOLp5s5cyZ//fWXojH58uVj8eLF6HQ6jbISImMFY1aATr2bjKxS3GWI3mLpLISNkAJQmJWS03pK/fLLL1SuXJkuXboo7kUnlDl58iRDhw5VPG7+/Pmq9o0UIlNSEyDmb/s6+ZsRnQvc+N3SWQgbIQWgsIi003ohISFPPa2XFQaDgYULF+Lr68ukSZNISEhQLbYwSUpKIigoiKSkJEXjPvnkE5o1a6ZRVkI8w51jmt74seUo6D59+qu5uQ7oGpPh1l4zPUzYOikAhcU4OTnRqlWrR6f1vLy8VIsdGxvL4MGD8ff357vvvpNG0ioaN24cR44cUTSmaNGizJkzR6OMhHiOmP2AdtsO6leAq3OffF3+ChpVhPzeMPw9zR6d3u3DYJCDceL5pAAUFvff03pq7g+7cOECn3zyCbVr12bPnj2qxXVUBw4cYMKECYrHBQcHq3oSXAhFYvZruv/PwxUK5/73VSAn9PsWjlyAHUOgUknNHp2eIRHuyV5o8XxSAAqrUaRIEYKDgzly5Aivv/66qrH//vtvXn75ZZo3b87Zs2dVje0o4uPjCQoKIjVV2T6qzp078+abb2qUlRCZcPMvTZeAH5dqgM/mwbYT8Ju5iz8AdKb9jkI8hxSAwupUqVKFbdu28dNPP6l+TdiaNWsICAigf//+3L17V9XY9m7IkCGEhYUpGlO2bFmmTZumUUZCZILRCA/Nc3tQqgFaPVb8Vf6n+IuNhxrDoepgqDQQFu/QMAmdM8RGafgAYS+kABRWSafT8fbbb3P8+HHmzp1L/vz5VYudlJTEtGnT8PHxYe7cuSQnJ6sW217t3LmTWbNmKRqj0+lYsWIFOXLk0CYpITLDkIQ5mj+nFX+//lP8VSn179c83eCPYXB0Ivw9Bib+CDFaXmSUGq9hcGEvpAAUVs3FxYVu3boRGRlJ//79cXV1VS12TEwMPXr0oFKlSvz0009yUOQp7t+/n6XGzf369aNu3boaZCSEAmYohtKKv60nYPvgJ4s/AL2TqQgESEg2fV677zZGKQBFpkgBKGxC7ty5mTJlCmFhYTRv3lzV2OHh4fzvf/+jUaNGHDt2TNXY9uCLL77gwoULisYEBgYyZswYjTISQgltm46nGiBo/r/FX9XSGX/u7kOoMhiKfw4DmppOB2tHGq2L55MCUNiUMmXKsHr1anbv3k2tWrVUjf3bb79RrVo12rdvT3R0tKqxbdWmTZtYulTZ/aLOzs6sXLkSd3d3jbISQgG9h2ahDf8UfxsOwdddoUhuuHb3yVfqP6vPub3g2EQ4Nwu+3QPX72mVlU7TX7OwH1IACptUp04d9u7dy3fffUepUqWePyCTjEYjS5cuxdfXlzFjxii+59ae3Lp1i44dOyoeN2LECKpVq6ZBRkJkgZMLWv1Rd+CsqZiLS4S3pkKR7ulfsf9ZjS2Uy3Q45E9l56mUcfbUMLiwF1IACpul0+lo0aIFYWFhTJo0CW9v9dZU4uLiGDlyJOXLlyckJASDQftN5NbEaDTStWtXxVfq1axZk8GDB2uUlRBZoNOBt48moWv5gPGbZ79ye5lm++7HmcbcjzMVf+WLaJKS6TaQnOp2TxD2SQpAYfPc3d0ZOHAgUVFRdOnSBScn9f63vnLlCq1bt6ZGjRr8/vvvqsW1dt999x1r165VNMbd3Z0VK1bg7OysUVZCZFGBl03tUSzk8m14ZaxpD2DdMdCj8b8tYjSRr6aGwYW9kAJQ2I2CBQsyf/58jh8/TpMmTVSNffjwYerXr897771HRESEqrGtzZUrV+jevbvicZMmTVK9b6MQqshXE4zKGpir6cUyphYwxybC8UnQtaGGD9N7gnd5DR8g7IUUgMLuBAYGsmXLFrZu3UrFihVVjb1x40YCAwPp3bs3t2/fVjW2NTAajXTo0EFxk+z69evz+eefa5OUENmVryZaNl6xKvmqg5N2194J+6EzSvMzYcdSU1NZunQpw4cPV7yf7Xly587NiBEj6N69u6r9CRUzpLBy0VTOhh2AhGuQEme69sqQYtr/pHMGJ2dwzQPuRXjnwyCq1W5s+tp/LFy4kC5duih6vLe3NydOnFD1MI4QqjIkw/c5/mkKbcd0zhDQD6pOtHQmwgZIASgcQmxsLJMnT2b69OkkJCSoGtvHx4cpU6bw3nvvocugqFKdIRmubIboLRBzAO6fMr0HoHMBjGA08Oj2A50Tpsl+47/LYK55IM8LppmRUi0gT2XOnDlDlSpVFJ98Xrp0aZYaRQthVjsawfWdFl0KNov6v0KRRpbOQtgAKQCFQ7l48SJDhgzhm2++UT12vXr1mDFjBtWrV1c9NgD3I+FsMEQtgaQY00/72b3gPi1Gnhe4U7AVn0/fyzfffZ/p4f/73//YuHGjeQpfIbLjymb4o6mls9DQP6edm4ZnOLsvxH9JASgc0oEDB+jTpw9//fWX6rE/++wzJkyYQIkSJbIfzGiESz9A+Jdw8y/Q6TWawfhnhlDvxtozteky/Qgxt+8+c0S+fPk4efIkhQsX1iAfIVRmNMAmX3hwDrvdD1hzIfh0snQWwkbIIRDhkGrUqMGff/7JDz/8QLly5VSN/fXXX+Pn58fw4cOJjc3Gje8PzsKOxvBXM7i5x/SeZstXBkx3iCbwUZldnBofyzuv+T1zxIIFC6T4E7ZD5wT+fS2dhXZcckHpzyydhbAhMgMoHF5iYiJz585l7Nixik+/Pk+hQoUYN24cbdu2Ra/P5Mk8QzKEzYDjI00FX3aXebPIaIQV+wvQc+lDYh/EPfG1Tz75RJNldCE0lfwA1heFlGz8YGaNdHoIGABVJ1g6E2FDpAAU4h8xMTGMGTOGefPmkZKibtFVqVIlpk+fTqNGz9mcffsQ7A2Ce6FYxTKVTs+FG6m0DSnMzsPXAChatCgnT54kT548Fk5OiCw4PhJOjsUqfn+pRe8B/4sEz2KWzkTYECkAhfiPiIgIBgwYwMaNG1WP/dZbbzF16lQqVKiQ/ouXN8Jfzf+Z9bOuk4oGoxNz/ijAoK/vsX79Bt544w1LpyRE1qQmwi814H6oxWbXVVdrKZSTk/hCGSkAhXiK33//nT59+nDkyBFV4+r1ejp16sSoUaMoWLCg6c3I+XAg7fYNK/0tqXPmRkIeCr6/E3IHWjobIbLuXij8XNX2+wLq9FDsf1BvnZz8FYpJASjEMxgMBlauXMmQIUOIjo5WNXbOnDlZsmQJzSpfg0M9VY2tGZ0eXHJCo78gVwazmELYioi5cLCHpbPIBidwyw9NT4NbPksnI2yQnAIW4hmcnJxo3bo1ERERjBo1Ck9PT9Vix8bGUt79qO0Uf2Bamk6+D9tegfvhls5GiKzz7QZF3jD9UGOTDFDnayn+RJZJAShEJnh5eTFy5EgiIyNp27atKo2P233SlMqxk1TIzsyMqZB8F/58H1LVvVVFCLPR6aD2SsjhY2qIbmuqTpYbP0S2SAEohAJFixZl6dKlHD58mAYNGmQ5jpeXF2NfP2K7+3aMqaYZwKNDLJ2JEFnnXgAa/gE5ythWEVhlAlQYYOkshI2TAlCILKhatSrbt2/nxx9/pHz58orHD/q0PEXco63utK8yBgifCVe3WToRIbLOoxA03AW5Aqx8OfifHxarTYPAwZZNRdgFOQQiRDYlJyezcOFCRo0aRUxMzHM/X6xwXiIm3MbTzQzJaU42ogs7kRwLuz6Ea9uxupP4Oj3wz5J16RaWzkbYCZkBFCKbXFxc6NGjB1FRUfTr1w8XF5dnfn7iRwl4utno0m86BkiKgUO9LJ2IENnj4g2vbYaKI0zLwVazJKwDb1/TyXsp/oSKZAZQCJWdOXOGQYMGsXbt2nRfezGwOPsHXcbJ7n70coJ3z4FXSUsnIkT23QuDvzvArd2Wy0HnbLq/uNIo0x3GelfL5SLskt39MSSEpZUrV441a9bw119/UbNmzSe+NqNFgh0Wf5gOs0TMtXQWQqgjlz80+hNqLQHnnGbeG/jPswrWg7dPmfb7SfEnNCAzgEJoyGAwsHr1agYNGsSLAYVZF7Tf0ilpx9kb3o8GlxyWzkQI9cRfh4jZELUYEm+aikEtDm+lxS34Gvj1gBIf2G6XAGETpAAUwgzi4+OJ3fQKBVOOALZ88vdZdFB9Dvh1s3QiQqjPkALRWyBqkemv6EwFWnaKQZ0LGJPBrSD4dIRy7SBHWdVSFuJZpAAUwhzuHIWfq1k6C43pIEc5eCfS0okIoa24K3BhFcQcgNsH4ME5TCeHdeDk/M8hYuO/76Ez/b0xxTRe7wl5qkLeF6FwQyj6lmmcEGYk/8cJYQ7Xd2LacmuwdCYaMsKDKIi/Ch5FLJ2MENrxLAYBff/955SHcOc43D0K9yNMN+QYEsCQDHp3cHIHt7yQu4qp8MtRxnTAQwgLkgJQCHO4tf+f5SL1Q285Cm9PffrXm9WC78153XDMASj+jhkfKISFOXtBgdqmlxA2QgpAIczh1m7Nbv2oXwGu/ucAbqoB2i6EIxdg+HuaPDZjOmeI+VsKQCGEsHJSAAqhtYRbEHdJs/AerqZXmlQDfDbPVPztGAKVzNmaz5gKt/aZ8YFCCCGyQjYhCKG12wfM9qi04m/bCfjN3MUfAEaI2Q9Ge97rKIQQtk9mAIXQWmwk5jgAkmqAVo8Vf5X/Kf4uxUCr+XDjHjjrYfj7pn2Bmkl5AAk3waOQhg8RQgiRHVIACqG1lDjTiT8NZ8XSir9f/yn+qpT692vOTjDrM6ha2lQEvjAU3qoCXu6apQOp8RoGF0IIkV1SAAqhtdR4TH3ANAr/T/G39QT8NvjJ4g+gSB7TC6BgLsibA24/lAJQCCEcmewBFMKGpRogaL6p+Ns+2DTL9ywHz4LBCCXymSU9IYQQVkpmAIXQmt4DLRoAGv4p/jYcgrU9oUhuuHb3yc8UyAn6f37Mi4k1fX5JR9VTSU/vYYaHCCGEyCopAIXQmrOnJvv/DpyFb/eY/v6tpzSCvrMIcntBYjK8PxMGvwN1/FRPJT0pAIUQwqpJASiE1rx90eIEcC0fMH7z/M8ZjdBmITQIhFb1VE8jPecc4F7ADA8SQgiRVVIACqG1vDUs+vjdEbB6H1QuARsOmt5b2VWrHoE6yFdT7jkVQggrJwWgEFpzzw+eJTS9DeRZ6pYHw9dmephOD/nlPlQhhLB28mO6EOaQ/2VTcWTvjCmmGUAhhBBWTQpAIcwhf03TZjxHkM+yS95CCCGeT5aAhTCHQg3Q+io4y9NBjnLgUcTSiQghhHgOmQEUwhzyVPlnb5ydLwP7f2HpDIQQQmSCFIBCmEtAPyDV0lloxzkHlG1t6SyEEEJkghSAQphLsXf5f3v3DiJXGYdx+D179kY2ZteNhICJrtHElSBe4mIgEBBiWu1CsBAUvKCV2IhY2icgYuGlEuyChQhiZURBLEQsghhsIgpRRGJhzDpjcSb9bjY738x8zwOHgZni/KcY5sd3btmxr/QU26Npk4MvJtMLpScBYAMEIAzLVJusvpKkKT3JzdfvJ4deLj0FABskAGGYDjyTzCxmoiKwaZOV08nC/tKTALBBAhCGaXYxOfpBkkm5JcxUMrs7OXK29CAAbIIAhGHb/2Ry97OZjJ9fLzn2YTK3u/QgAGzCJPwDwfh5+EyycMeYPx1kqjunce+J0oMAsEkCEEqY2Zkc+2h8nw7StMmue5MH3iw9CQA3QABCKbc9mqy9XXqKzWvaZHYpOX4uaedLTwPADRCAUNLB55NH3io9xcY1bXcV84nz3QogAGNJAEJph15K1t5Jd2uYEb49TDOdzO1JHj+fLN5XehoAtqDp98f1JCSYMJc+Tr48lfTXk/6IPTLu+jl/j32W7Li99DQAbJEVQBgV+55ITn6V7FrNyKwEXr9K+a6nk5Nfiz+ACWEFEEZN71py4Uzy/RvdSmB/vdAgTbLzQHL0/WTP8UIzALAdBCCMqr9/Tr55Lvnt83SL9b3h7LeZ7l4Pv54cfi1p54azXwCGRgDCKOv3k0vnkgtnk8tfdIdkt+X8wEFgtvPJylPJ6qvJ4uo27AeAUSAAYVxc+Sm5+F5y8d3k6u/dSt2WDg83g6BcT5aPJPe8kNx5Kpm55aaNDMBoEoAwbnrXkl8+SX79NPnj2+SvH5Lev91nzUySftLvpTtk3CSZSppm8P5g9XD21i76lteSldPJ0v1FvgoAZQhAGHe99eTKj8mf33Xb1cvJf/90W9N2h3Xb+e6CjqUHk+WHkvm9gygEoEYCEACgMu4DCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFAZAQgAUBkBCABQGQEIAFCZ/wEm4CKTEKbU9QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1032,7 +1032,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUxfvHP0dXSqhKEQQElCJVFGmhSVOKgKhIUZQiWOgY+CLSEenSq/Tee++9t9BrSAKBhPSe+/z+yG+W3dvdu0tySSjzfr2eV26nPjs7O/PMM3MXC0lCIpFIJBKJRPJSkya1FZBIJBKJRCKRJB1p1EkkEolEIpG8AkijTiKRSCQSieQVQBp1EolEIpFIJK8A0qiTSCQSiUQieQWQRp1EIpFIJBLJK4A06iQSiUQikUheAV4bo44kgoODIX+WTyKRSCQSyavIa2PUhYSEwM3NDSEhIamtikQikUgkEonLeW2MOsmrxeHDhzFlypTUVkMikUgkkhcGadS9BOTIkQOrVq1KbTVeKGrUqIFff/01tdWQpCJbt27FkiVLUlsNfPPNNzh+/Hhqq/FacunSJXh5eZnGP3jwAIcPH05BjSSS1MXyuvzv1+DgYLi5uSEoKAjZsmVLbXUShMViQdmyZXHhwoXUVuWFwWKxAIA8I/kCERMTgzRp0iBt2rQpUt+L0gcsFgvKlCmDS5cupaoeryOO+kCWLFkQFhaW6n1EIkkppKfOSXx8fFJbBUkqsWbNGnh6erqkrIMHD76yE0yGDBnw+eefp7YaLwU7duzAxIkTk638sWPHYvv27clS9smTJxEbG5ssZbuasLCw1FYh2fD19UVoaGhqqyF5wXghjbozZ86gRo0acHd3R+vWrRETE6PE7d+/HwULFkStWrVQt27dFNFnz549KFCggEu2WEhi2rRpCA8Pd4FmLz8kXwgj59mzZ6aGe6tWrVC6dOkk13Hy5Em4u7tj7ty5pmnOnz+PyMjIRJV/+fJl7N+/P5HaJQ3Rn3fs2JEq9ackvr6+OHHiRJLKaNiwIXr27OlU2piYmAQbJ3379kWjRo0So5pdHj9+jE8++QRDhw51edkpiY+PD9KlS4c7d+44TPvo0SO0a9cOt27dSgHNAKvVioULF8JqtdpNlz9/flStWlUXfvXqVaxevTq51EsRzpw5g7Vr16a2Gi8lL6RRV6BAAezYsQMHDhxAsWLFsH79ek38119/jf3792PPnj0poo/w0jgzADji3Llz6N69O4YNG+Yw7YMHDxSDR2wzqDl69CgCAwM1YStXrsTRo0eTrKcjOnbsiGbNmiW5nFatWiFNmoR1w169eiW5XsGcOXNgsVhQpEgRFChQwGXlGuHv7w8gftA1giQqVKiAX375JVHlf/jhh6hdu3ai9UsKmTNnTpV6EwpJtGjRQjnKEBwcjDVr1himE8/Llo8//hhVqlRR0qn/JgcNGjRAlixZkq18ZyAJi8WCadOmAUCKGTi2eHl5wdfXN8nl7N+/H3Fxcdi8ebPDtLVq1cLixYvx2WefJbleZ1i5ciU6dOiAlStXOkwrtvyPHj2K8+fPAwBKlSqFr776Cn/99VeS9Dh27FiS8gPAkydP8PDhwwTn++ijj9CyZUtNmJ+fn1P9rlWrVjqb4UXmxo0b8Pb2dl2BfMH5888/uXbtWuV63759LFy4MKtXr86JEyea5ouMjGRQUJAiXl5eBMCgoCCn637w4AG///57jh8/ngC4ZMmSRN/HunXr+PTpUx47dowA+NtvvylxCxYsYEhIiCa9j48PAXDq1KkEwHLlyunKBMDatWvrwpLyWH19fVm7dm0GBwfbTWdWT1RUFAcMGMCIiAi7+aOionj16tVE6SvyiHwTJ07k1atXE1SG4NNPP9WVZ1afM5w7d4537941jNu2bZtS1pMnT3TxsbGxBMBPP/1UFxceHs69e/eSJPfu3cu4uLgk6ZkYpk6dysePHxvGOWrDDBkycMSIEYmqt3Tp0ly1apUmzNPT0+H9xsXF0Wq1asJCQ0MJgHXq1NHoHBYWpkk3ZcoUAuCzZ8905arrjYuLIwCWLl06QfeUkGeVlHdEsGfPHsbGxurSPX78mAB49uxZJezAgQO691/cZ/78+QmA33zzjWndu3btIgDdmOYKbO9LfR0VFcXNmzfbTU/Gj8W//vorAXDChAm6OqxWq+a5p0+fngCYN29eXdqjR4/y3Llzib8hA2bPnk0AnDVrli4uLCyMc+bMYVhYmObejD4nZSzYsmULAXDLli2JLsNWr6Tmy5w5MwHw9OnTjI6Otps3Q4YMCarv7t27HDVqlGl8ZGQkp02bphtPSHLAgAE8c+YMAfCXX35JUL1CX1eO2y+0UXf//n1WrVpV8wBDQkIYFRXFqKgoNmzYkKdPnzbMO3jwYE3nFuLIqIuOjubTp0/52WefKXm6detGAFy6dKlhnsjISF0nW7t2LUeOHKlcA2CDBg149OhRAuDvv/9Okoqx2bVrV03+y5cvEwB//PFHAmD58uV19QLgO++8owsTHaRo0aIsUqSI3fu1Zfjw4QTAjRs32k1n1hEXL15MAJwxYwZJ0s/Pj+XLl6efn59h/qQadcHBwUl6KYyMuqJFi3Ly5Mm6+hKiW2RkJO/cucPIyEglbvv27Ur8tWvXlPBnz54RAOfPn08ArFq1qhIXGxvLGzdusEuXLgSgTJhGA35yGnViEmncuDFXr16tG9xcaRg7ynvz5k3D+u7fv6/RCwBr1KjBR48eKWHCqKtdu7auH5FU3uNvvvmGAAwNdHW9MTExBMAyZcqQjDcIjIwnMn7sEsapuowLFy7Qy8vL6ft3BnWe/fv3EwDHjRunS7dz504C4KBBgzR5v/zyS006seDIly+fQ6Puu+++IwDeuHEjQTq/9957bNCggd009oy6gQMHEgBv3brFpUuXsmPHjrr0169f1zz3zp07a951khw9ejQBMCoqiqR9oy6hz+bq1as8fPiwafzly5cVJ4LRO962bVsC4BdffOGUUTd58mRWr16dK1eudFpHknznnXcIgLNnz9bFxcbG8ssvv9SMYWaYtY/VauWuXbuczif6n5A+ffrYzevIqIuNjWXjxo15+fJlkmTVqlUJwNBoI8lBgwYRAPfv32+qKwCmSZPGbr0kuXnzZk0fsL3XtWvX8vvvv3dYjhkvrFEXFBTEmjVr8vr166Zppk2bxrlz5xrGJdZTZzvJC4MLAJctW0byueEjAMDKlSuzb9++ikdN/aCsVisBsGLFiopR16NHD5LkvXv3lLT//vuvUua8efOcMuoKFiyoGAXVq1dXyhJ1JnQyMDLqfH19eeDAAf7999989OgRN2/ebFr25MmTCYDdu3fn1q1bOWvWLALgnDlzdLrbTsy3b9/mkCFDHOpom9dIl6JFi3LgwIGasIiICFqtVsbExPDmzZumegBg+vTpdfU5g2153333nRK3Y8cOJVzdr48fP67JU61aNSUuT548mme7aNEiAuBff/1lWrearVu3snnz5qb6hoWF8f333+eVK1fs3pcwhoTYes5s23Dy5MmaZy7ixESZEMwmcnX4/fv3dROhOk2TJk0YERHB1q1bE9AbdUFBQfT19SUArl69WpnUbt++bVefiIgIAs89df/73/8IgM2aNTPN9+TJE7v9bfjw4fz5558JgMuXL1fS/vnnnzx//jwBsF+/fjrvopmO4nPPnj116Xbv3k0AmncF0O8MiEk1b968BMCvv/7atE5h1N28eZOxsbF2J2+j/N9++y3j4uK4bds23WLZrC+QZLly5QhAWRAbjQ3OjB316tUj8NzTaGbUqcfYe/fucfny5UpceHi4biFrpL+aCxcuaHSaOXMmSfLnn39W5rkqVaoQAN9++20l3bhx4wyft717dITII4y6qKgohoeHk3zuiGjRooXSDk+ePOEHH3xAb29vVq5cmRkzZjRccIeEhNDHx4dLliwhAO7cudNu/QEBAVy6dCmbNWumuZcaNWooae/cuaPpJwCYMWNGhoaGmi6wxE5Y8+bNefDgQb777rsEYLgDotbHSF/bdg4MDCTw3F74888/NUaavT5sdJ1QXkijLjY2ll988QV3796ti1MbZd9++y0PHDjgVJlBQUHK4G3E06dPuX79esOXQXhJli9frnhKHE0y6s/qVca0adMIPDfqxGQkxHZAKlWqlPLZ1nsGxBt1YiWuFmFcmXWOlStXKlsuDx484LJly+jp6akYdeqVnbpci8XCr7/+WlO2h4cHmzVrptlOFSLKA6Dzoti2WeXKlQ31jY6O1mwHOTNo2T4L0R6TJk1i7969CYAPHz7UlSG8QBkzZiRJJa36We7atct0RWekl/DWqdutW7duSh5bo6569eokycOHDythlSpV0qQRRp23tzfHjx+vu2dB7ty5Nfd65MgRkmS/fv1YvXp1njp1igDYsWNH3b1ERkayRIkSXLRokc4Isl3B2+v/RvFk/ORgtk2/ZcsW7t69W1kUOHrfxPZHiRIllG1q23TiKAMAZWWuHog9PDwM+4PZM1Z/FkadMAbV+m7fvl3RD4BimBm1VUhIiGn/Bp57ygCwVatWGr2sViuDgoI045htO4h+u2/fPt64cUPZ0rI16oD4LWqB8EgKEUZdREQEW7VqxRUrVihxbdq0UcoUOx5LlixhzZo1lbHK39/ftF3VMnToUJLkxYsXNc/M3rP46aefDPuIMGAdjR1CZzHmGBl1Y8eO5fvvv6/kL1q0qKacatWqEYgf5+Pi4hgREaEsGmzrCwsL03mfhagNvadPnyqf33jjDdP7cOYejahQoQI/+OADTRlikfTRRx8pZTx48EDpfyLdxx9/TCB+XBJhf/75p6Zudb8U3khh+DjTF4zuRxjWdevWZWhoqJI3Y8aMBMD27dvryj5w4ADbt29PIN6oU5cZFhbGZcuW6YxBEe+MUXfr1i0CYNu2bTXxsbGxymLNrA8fOHBAuVbvMCSEF9KoW7p0KXPmzEl3d3e6u7tz+fLl7Ny5M8n48waVK1fmp59+atcFa4sjo054RIykc+fOBLSrZiB+cBZnTcxerNu3b7NXr166NFWqVOGmTZt0hpBYidnryKGhofT39ydgbtSJTgvEr/jEdnRMTIxGP/VnQGuEiZWZbdmFCxdWPqv1F6svtfz+++/K5+LFizN37tycMGGCLt2qVauUz8uWLePmzZtptVr53nvvmb4E9gYt2/sTHoYGDRqwZs2apvqKZ5wpUyY+evTI9LmanTUx0qtmzZq8ceOGqb5i0lCLGPSEVKhQQXP95Zdf8siRI2zatCkBcO3atYbtkD17dmUwAuLP6/Xs2VNJK4w6ABoD69q1a3b7oTDqAgICNB4L8ZzF5+DgYF28p6en0laVK1fmwoULTdtRPDcAui0YIeptbSFqD7gQtVFnKwEBAYbh06dP10w8ao+lWs/SpUtrjHAhI0aM0IWp+529d9EZEcaRWXyfPn001ytWrNB4CoX07NmTAQEBurIE0dHRmvDWrVuTpGaRK0QYdWoRniVhCJw4ccKpd0csftQLIrVezrad1Wq1O7YK1OP5woULdenmz59v6AkUIs72qsOuX7/Ozz//XBN28uRJHjx4kFar1XB3yEjURpSZqN9ns3sMDAzk7du3NXPhoUOHTNtS7ASJOLFb8NVXX9nVRWyHi3yNGjVSrsUWt1gc/Pjjj8yWLZvdvmArq1ev1jwv4R0HwLRp0yrhYocmLi6Ohw8fNhxvhfz222/KZ7WHWYTt3LmTsbGxDAsL48WLFw11NTPqLl68qEn38OFDzpw5U7lWz70AlHlq7969bN26NU+dOqV7Z4x4IY265MCRUefMy2Q0WCVV1FumzghJjVFVqFAhQ6OuYcOGhvltDTXbe1d3rE2bNvG///7TlZEjRw7DspcuXaoLUxt1zrSxWtasWaO5/vvvvxXjxKxtxo8fr/HAqVc+AFi/fn27bS62vTNkyEA3NzdNnHrg+++//xLUj8ThZ1t9HfU9Z0XdJ8aNG8dr165pDEMzg+bEiRPK54EDB/KXX37RtIO9+xFbjT/88IPdtLYGat68eZWzQWo9BGrjTRzMB+DQi+VIxowZYxqnXlSY9S2SbNCggSYsMXq4u7sblmHrjXVGunTpYmqQJkZsDfDu3bubpl28eDH37t3rVLnCY9yyZUsC4LFjx0jGb1NeuHBBMRRspVu3bnz8+LHiCRKSI0cOzViQLVs2u/WPHDnS4fMFwAIFCihh6i1OZ2X69Om6fiG+HJfacv78eZLPvfdA/M6F7fxhq3/9+vWVz+rxQhxlMBO1UXfw4EFNXLt27ZTPRh5MZ+/JdqFnlrdDhw6cMWNGgtuMfP5lIiMxMvCF1/Wzzz7T6GO7ve6siHdG3T72kEYdqRvIXmQxmpjEN5WcEVujznZCFt8KA+x7Noykf//+ujBHnkchRkadkSFkT8SXNOxJ/fr1la2EhIp69Ve0aFHu2LGDV69eZWhoKMeOHZvgfrRp0yZDb0BiRG3UJUTE+SEAikHnjKi3RR2J2ttmJuKZ2Hrd1JOsvcE1uUWgDrM9Z5jYclPrnozEaOfBnqjHC3uSLl06zfXRo0cZFBSkeJrV3mO1NGvWjBkyZDCMS4wRbCbh4eEuK8vIK/+iiD1PXmrpr/ZmG3nd7Yn6fDdg/33q169fgnVztJC09SADYKdOnQz1UR+7SKwcOnTIoa0jjTrGnx1KyU6cmnL48GHFPfwiidq4eNlEeDPseRGTW9QGZ0qIrafNVWJ7IPpFEaPJJleuXEku11lPV0qJI6+rrdSqVStR9dieX+7Ro0eCy7D1pL8o8qLq9TqI2pNoK+JLhwkR2yM4CRX1mXjxjfqkiNHZZ1ukUUcq31Z5XcTojJ8UKVLMRX22U4rrRfxslBQpL5KIL7y8KPLjjz86tHUsJInXgODgYLi5uSEoKAjZsmXTxD158gRvvfVWKmkmkUgkEolEYp+ffvoJs2fPtpvmhfw3YSnNy/LPqSUSiUQikbyezJkzx2EaadQBOHToUGqrIJFIJBKJRJIkXlijrk+fPqhRowa+++47REdHK+GxsbH4/vvvUaNGDfz+++8uqcuRO1MikUgkEonkRSfBRt3Dhw8xcOBA1K5dGyVLlkSpUqVQu3ZtDBw4EF5eXi5R6ty5c3j06BEOHTqEUqVKYfXq1Urcpk2b8M477+DQoUMIDw/H0aNHk1yf2miUSCQSiUQieRlJkFF3+PBhlCxZEuvWrUO5cuXQvn17tG3bFuXKlcP69etRunRpHDlyJMlKHTt2DPXr1wcANGzYUGO42YtTExUVheDgYI2YERUVlWSdJRKJRCKRSFKTdAlJ3LNnT/z000+YMGGCaXyPHj1w6tSpJCkVGBiI/PnzAwDc3NwQEBCgiRPfXrWNUzNq1CgMGTLEqfpEXRKJRCKRSCQvKwny1F2+fBldu3Y1je/SpQsuX76cZKVy5MiheNYCAwORM2dOp+LUeHh4ICgoSBF7W8OffvppknWWSCQSiUQiSU0SZNTly5fP7hm2Y8eOIV++fElWqkqVKti5cycAYMeOHahWrZpTcWoyZsyIbNmyacQMq9WaZJ0lEolEIpFIUpMEbb/26dMHXbt2xZkzZ/DZZ5/h7bffhsViwaNHj7Br1y7MmTMHEydOTLJSFSpUQN68eVGjRg0UKlQIffv2RZcuXTBz5kw0adIE69evR40aNVChQgWXeNnSpHlhvwQskUgkEolE4hQJ/o8SK1aswIQJE3DmzBnExcUBANKmTYtKlSqhV69eaN26dbIomlTs/UeJ8PBwZM6cOZU0k0gkEolEInGMI5Mt0f8mLCYmBk+fPgUA5M6dG+nTp09MMSmGPaMOACwWSypoJZFIJBJXUL16dRw+fDi11ZBIkg1/f3/T7xEIEr3vmD59euTLlw/58uV74Q261MKe13LNmjUpqImezp07p2r9Alf8zqDEtYwdOza1VXApefPmRceOHROcb/jw4cmgzcvD119/jV9++SW11XCa5P7PQI0aNUrW8iUSRzgy6IAX+D9KvArYM5xq166dgproeeONNzTXP/74o/L5iy++SFSZbdq0SXCe999/X3NdqVIlXZqPP/44UfqkNkb3ombkyJEppEnyMXjw4BSr6/r163bjCxcurAsrX748fH19E/VfY/r27at89vPzQ5cuXRAYGKhL5+xPJ6mxXQh/8MEHCS4jqTiqc9iwYSmkSTxJMcpu3LjhQk20uLu7AwD69+/vVPoePXokui5Xjwm2OqdNmxYDBw7UpatSpYpL6zVD/U6lBgcOHHB5me+8806C0vv7+yeqHqcXpnxNCAoKIgAGBQUZxgNwuezcudM0zt/f3zB86NChLtXhv//+41dffcX33ntPE75s2TLNtbe3N/PkyUMA7NChQ6LqIsly5colOE/t2rUJgM+ePSNJhoaGatJs3brVMG/dunV5/fr1ZHl2iZWrV68qnz/66CO7aQMDA3Vhffr0SXTd2bNn14WVKVNGc71kyRLDvMHBwcrnsWPHOl3niBEjktReW7ZsUT7HxsYqnzdu3Kh8btWqFcPDwx2+p0a6/P7778o7XqhQIcN8Rv3LdlwQxMXF6dJGRUXxiy++oJubm1P3fObMGU6dOlW57t69Oz/44INEt2GjRo0012+++SY//PBDh/kctefNmzf566+/Oiyne/fuCdZ58eLFujAxRqvlwIEDpmU8ffqUderUYbp06QzHcXUfSqzExMSwf//+Gl1atmxpN09AQECi69u+fTvXrVtnN83s2bOdLu+PP/7QXOfJk4dWq1UTFhcXR5Ls2rVrgnTNmjWrLqxEiRKm6fv166d5RvXr10/y82nRokWC0oeEhDhMU6BAAd04OW7cONP0hw4dcrr+JUuWmL53bdu2tZvXWaSn7v957733EpWvUKFCGi/ArVu3AACZM2dWvkhiRLp0xl88HjRoEBo2bJgoXYzo0KEDVq5ciQsXLihhQUFBqFOnjiZdnjx5sGXLFgBAwYIFDcsyC1eTmLOJ/P9jneJbyEZtY7T1kSFDBpQoUSLB9QHQ/OeTLFmyJDh/njx5DH+TUe39qFy5st0yjL51XaNGDdP0X3/9tWmcp6cnDh48CCD+jKtgwYIFyuc6derovKlXrlyBt7c3smbNqoQlZOXp7PMmqZx3Ut931apVlc9p06ZFjx49MHv2bE07VqpUSedZNkJ9VnbcuHG6um7fvo2YmBhdvpo1azp1D8Dz+y1UqBBCQ0Ph7e2NDBkyYNOmTVixYoUmrdl/qqlYsSIyZcoEIN4LPXnyZNPDzwMGDMCqVat0XqxRo0Ypn4sVK6bTUf2+O8v06dOxbNky0/i8efPqwmbPno1y5coBiL8vIP5H4R3RqlUrzbX42Slbz9JHH31kWkauXLmwa9cuTTvPmjULb7/9NgCgXr16Tn0B7s033zT1gqRLl07zbG7fvo1FixbhypUrhunv37+vPNvEQBLNmze3m+ann37Czz//7FR5Ru+nbZi4FuNLkSJFAAAlS5Y0LFPMd0bHrq5fv4633nrLMJ8YZ4WnsEOHDkrcwIED4eHhgc8//9z8ZgxwZqwKDw9H48aNAcTfq+0WZmRkpOYZP3z4UDNOWiwWu14ys3fXCKPdLNEu33zzDW7fvq1pv7CwMKfLViv0WuDIU2e1Wvn9999rPAfOSKFChbh7924C4Pjx40nGW+FZsmRRyurUqRPr1avHQ4cOccyYMbxw4QJJ0tvbW7fKJcmGDRs6rLdgwYKcOnUqHz9+zD179jhl3RcrVowAaLVa+ejRI0262NhYkuT+/fsZHR2tiRPew4kTJ2rCd+3axX79+mnqSsgqUuSpWbMmATA0NFTRVZ1m69atmvsQq61Ro0bp0gJgkSJFNNfnzp3jmDFjNGFhYWEcPXo0FyxYoGkL27xm0qRJE8O61WH9+vVjly5dTMuwbWcgftU8c+ZMWiwWFi5cWNFnzpw5jI6OZtOmTQmA7777rq5eq9XKwYMHa+5Hrc++fft0OqsRYeqVvNE9qmXUqFGaa+ERPnHihK6e0NBQWiwWHjlyhJ999hkBrbdSjfCIWSwWxZOg1qVy5cqa8tOlS6dpz9jYWPbs2ZP+/v66d93eM7PVxayd3n33XV25JDXeRpIab1HVqlU5evRokuTFixcJgGfPniVJ/u9//zNsXxFvq6O6HuFJEpIlSxaS5IQJE/jgwQPDct98801dmZcuXdKE3bx5k6dOnVKuO3bsqEn/+++/MyoqSnnnK1asSCB+d8C2vq5du2q8HST56aefEoj3sEZGRpIkL1y4YPc5DBgwgABYpUoVw/YnyYiICB47dowk+cYbb2jK27Fjh0634sWLa9qzfPnymvrFGHfw4EFNPb/88otpv/H19dV49CZPnmz3PRIixjqjuOnTpyv9wXZHp2fPnpprUfeAAQN4+/ZtRkVFEQDfeustXflWq9W0Ld9++20CYN68efnvv/9y7NixSv4hQ4Zoyvnvv/+UfMuXL9fpP2zYMJLk0qVLCcR7JW3b7YsvviAAbtu2jWvXrlXiT506RR8fH12Zv/32m2Fb5cyZU1O2j48Px40bp9QjvPonT57U9THb6759+xp6X//55x82btyYERERSljjxo1ZqlQpXdrKlSvTz89PVzYAduvWjcuWLVOeg2iD//3vf8qulb3+bssLZ9SdPn2a1atXZ82aNfnVV18xOjpaE79v3z6+8847dHd3Z506dZwu15FRJ7h165bS2K1atdI9HD8/P811oUKFSJKnTp1SHsr777/PWbNm0c/PjxaLhVeuXDGtz3ZgIMlLly4p12+++abh4PHRRx9pyjEbJNQIo46MH3TU6dQTp7q8wYMHMzIyklOnTuXp06c1eXbv3s3Y2FieOnWKt2/fNtTFnm4ivlq1agSgDOwk+eTJExYoUEAz0Knx8fFRdFaXd+LECXbr1s2wDfbt26eEie08W50fPHjAZcuWccKECXb1/uKLLzT53nnnHd399uvXj507dzbMP2/ePMOtPEFUVBSjo6P5+PFjnj59WgkXk5rtVqItRu1v9nwc5VGn/+abbzTXo0ePVj7XqlWLd+7c4axZs+zWQ5L//POP8syB+K1jNVarlS1bttTcu7rMu3fvasrv1KmT4b0a0bhxY4d9VHDixAmeO3dOp0ORIkVMy1+1apVm23fHjh3cuHGjXZ2sVqsy8QLxCxzbscpWv7Rp0yqDvzoua9asmnwzZ87UbamLCUZc37lzR1fPzZs3FWOnRIkSvH37tqYMsRAURl2lSpUIgPPnz9ekmz9/vq5sksoRkAkTJijxzhp1u3fvttuegowZMyp5lyxZwsOHD+ue9XvvvUcy/p17/PixTk8zo+7u3busU6cOnz59ymHDhun6XVRUFJ8+fapcHzhwQHMkp0KFCjx06BBXrFihhG3ZsoWkdh4qUaKEshhQ162+h7Vr17Jo0aLKtahn4MCBmjbMkycPyefGmqN3pXjx4gTix1Vb1P3V3hgkRBh1VquV27dvVxaPBQoUUPIIg0b0z5IlSyplG23Pi+dpNB6uW7dOGYuMdF+yZInGoD158qSmL06bNo1A/Dhua9QFBAQY3mtsbKxmTBTbw/Xq1TNtm19++UUTFxYWxuvXr5OkMj7279/f8D6MeOGMOl9fX4aFhZEkPTw8uHLlSk38vn372Lt3b4flREZGMigoSBEvLy8Cjo26mzdvEgC/++47TTjwfHWu9kIIoy6xCIPt559/1pQ1Y8YMAuDcuXNJxg8IEydOVAw+M6PuyZMnfPbsmeGLJrwoJHWrHtvVmlH4mTNnNHn27NljeE+rV69m06ZNlcnw5s2b9PLyYvny5Vm9enXdyydW7DExMZpyxGrUyKhTc/ToUS5cuJDDhw9nXFycqVFHkpcvX+a3335rer9GYQULFiQQf3bI3d2dAPj5559r0sycOZMZMmTQhJ05c0ZjSKrl2LFjyqBWoUIFpwZYkhw4cCCB50YkAJYuXVqX7uzZs1y1apXhvYWHh5veb9GiRXV5bty4wTNnzjA8PJyxsbHcsmWL4nVRD2ANGzY0bD+j+7JarQwODlbS5ciRw+G9q8tUD/Bt27Y1nIzNuHDhAgsVKkSLxaKkFd5iZ/Kr28nV2KvfVj+xQ2Br1GXLls3p8o3qE/3x5s2bysKjUqVK9Pb2NmwjYdT16NGDgPZcqW3Zx44dU4yjhQsXEgD//fdfJf78+fOGeYURklCjrnDhwkpZe/fuNTTqOnbsqMt35MgR7tixg6S5UZcU1q1bRx8fH+X622+/JQBu3rxZCbPXF8Q7XLduXQLxRp3aYyQ8koMGDdKUJ4y6e/fuKQakPd5//31THRwZdaVLl+aGDRuUHR5h1KkBtEbdlClTCDzftSldurSm7OPHjxvWZ3tG0xWIsbt///7K7lDp0qWVHQ81op+RVHYv1q5dq3jaWrVqpbtvIbZGnS23bt3SzY32eOGMOjV//vkn165dqwnbt28fCxcuzOrVq3PixImmeQcPHmw4mToy6sTB+3bt2mnCjx49qryEVquVvXr1IgB+9dVXiby7eIRRp3YDk/Gra+C5UacGMDfqBPv37+fVq1c1adRG3cOHDwmAGTJkYOXKlQ3rsH05zp49q2nLvXv3JuxmSU6fPl338okBzdbQctaos8XWkHKG+fPnc/ny5ZowMekLj62Xlxejo6NpsVi4fft2kvaNQYF6O7179+5csWKFJm1CjDoxgQsv5tq1aw23GO3pQz43pNUcO3aMjx49Ms2jRny5YMOGDUpaYeja1uuMkZQzZ067aQQLFy7k2bNnlW3bBg0aGNbpDJkzZ9akVRt2jvQtVqyYU3UkFHv1i7YWBuWuXbsMjTo3NzfT8qOjoxkREWG3PnFg+9atW4pRJ8ab5cuX69pNHOxXj9VTpkxhx44dOXPmTFNd/Pz8WKpUKY1xY2bURUREMCwsLMFGnZeXF7dt28ZTp06RjB/HAbBLly48d+4cvb29GRUVZbeMJ0+esGPHjg7TJQWxYPby8lLCnOmLly9f1uR7+vQpvb29uW3bNgLgn3/+qSlPGHXOIr74ZoTt8REzxDbr33//rYuzNeqsVqvi1CHjF5TimI06j219tl9scAXiWNMff/xBMn58VO8mqQkICFB2q0aOHEkAXLduHcl4g9PWs+fh4eG0UZdQXlij7v79+6xatapu+zUkJIRRUVGMiopiw4YNddszgsR66sQqs3379g51vHnzpm4bL6GIb1Sp3fSkfaOuQIEC3LRpkyYsU6ZMDjuzcM+Tz79hunDhQsO027Zt4/nz5zVhtkad0YrFEcKlnSNHDubOnZtk/DPdv3+/Lq1oG/XWbkJI6gseFBTEwMBAxaNg9KyN6mjSpAlr1KihXG/evFlZKISEhGjSVqtWjfv27WO9evV0WyxGDBo0iACYP39+AlDc9PYw0jEsLEwx4Mzq6dWrl91yhSdWfHN28eLFhvU6egYff/yxzqB2hPAS2L4fCXnmuXLl0qT19PRktmzZuHr1arv5APD7779PkL7O4kh/sTAgnxt1gwYN4owZM9iuXTsC+q3shNYnjLqbN28q3mT1wk+chxRYrVZu27bN7tksZ7lz5w4B8McffzRczInJ0GyXwBFxcXH8888/Hc4DLwJJGb/Eomvw4MGa8sSZOme5e/cup06dahgXExOjGIr2FvixsbEcNWqU6fj5zjvvJEgno3YR87srjTrhCffw8EhQPmFgHj161G66kydPvlpGna+vL6tVq6YTf39/BgUFsWbNmg4nrGnTphkaPUY4e6bO09OTQPzPeqQmwqibM2eOU+nFQVl7qI26xGBr1BkZYo4QP+WwYMGCROvhLGvWrOGPP/7okrLMJixXDiLOIIy6fPnyEQBv3LjhME9K62hbb0rWfejQIU6ZMsWptFevXrXrSTLj7t27piv2pOKovQICApSzbGqjTp3f2a1sknzrrbd053XURp0oU73IDQ4O1i34XMmJEyeUe7RFjB+enp7JVv+Lwpw5cxRvT0IRxrHa2ALAatWquUi750Zd1apVE12Gq4w6wZgxY5QzkklFvF/qc4nOYLVaDc8g2iLOtW/YsCGxKhpi/LsaKUDevHkN/6VLXFwcmjdvjj///NPw5yqCg4OVny44dOgQunbt6lK9xNfRCxQo4NJyE0pCfxpkzJgxDn/Y8bfffkvSD2Pa8qL/a7UWLVqgRYsWLinL7F7TpUuH2NhYl9SRED0qVqyILVu2GP7LuxcNs584SA6qV6+O6tWrO5X2gw8+SNSP/hr9yLGrWLp0qd0fWc6RI4fymaRhmn79+jld3+PHj3VhTZs2xeLFi5EnTx4AwOnTp1GqVCklPmvWrMrPmCQH9n5svGvXrvj4449Nf27jVUL9g/AJpUiRIrr+cfToUZf+yLUYi8z6YWrQt29fl/3AcdGiRQHY/5kpIywWi1M/mJ83b15YrVbXz6MuNRFdwNKlS5kzZ066u7vT3d1d2Zbp3LkzyfhDuZUrV+ann37KPn36OF2us546Mt51nZznJ5zh4cOHzJ07Nx8+fJiqeqgRnrq8efMS0H5jzllS0lOXEvj6+jrlLXMV4kyQl5cX796961SePXv2aM7xpRRA/M8BSJIHseV06NCh1FZF8hoizlt++umniS7jiy++UM4nOwtS0Puf2nZAYrCQL5CZnYwEBwfDzc0NQUFBL4V340XE398fuXPnxs6dO/Hxxx879SOjtkyfPh3dunXDggUL0L59+2TQUiKRSCTJjdVqRdq0aVG1alXNj7knN+3bt8eiRYteKA/hi0Sqbb9KXj5y5cqV5Bfp+++/x+3bt+3+dwSJRCKRvNio/7tKSrJw4UIsXLgwRet8mZCeOolEIpFIJAlm7969+PjjjxP1rxYlyYM06iQSiUQikUheAfT/UVwikUgkEolE8tLx2njqSCIkJARZs2Z94X+KQyKRSCQSiSShvDZGnUQikUgkEsmrjNx+lUgkEolEInkFkEadRCKRSCQSySuANOokEolEIpFIXgGkUSeRSCQSiUTyCiCNOolEIpFIJJJXAGnUSSQSiUQikbwCSKNOIpFIJBKJ5BVAGnUSiUQikUgkrwDSqJNIJBKJRCJ5BZBGnUQikUgkEskrgDTqJBKJRCKRSF4BpFEnkUgkEolE8gogjTqJRCKRSCSSVwBp1EkkEolEIpG8AryURt29e/eQJ08e1KpVC7Vq1cKTJ09SWyWJRCKRSCSSVCVdaiuQWNzd3bF69Wqn05NESEgIsmbNCovFkoyaSSQSiUQikaQ8L6WnDgCOHDmCGjVqYMCAASCpi4+KikJwcLAi3t7ecHNzQ0hISCpoK5FIJBKJRJK8vJRGXb58+XDr1i0cPHgQfn5+WLdunS7NqFGj4ObmpkjBggVTQVOJROIKwsPD4e3tndpqSCQSyQvNS2nUZcyYEZkzZ4bFYkHLli1x/vx5XRoPDw8EBQUp4uXllfKKSiQSl9CwYUO88847qa3GK8O5c+ewfv361FYj1SCJY8eOpbYaEonLeSmNOvUW6sGDB1GsWDFdmowZMyJbtmwakUgkLyeHDh1KbRVeKSpWrIgvv/wyWco+efIkcufOjYiIiGQp3xUsW7YMVatWxeHDh1NbFYmTxMbG4siRI6mtxgvPS2nUHT58GJUqVUKNGjXg7e2NNm3apLZKEolE8kLy5MkTWCwWlxnGjx8/NjzHLJg8eTL8/f1f6O1yodvjx49TWROJswwbNgzVq1fHw4cP7aYLCAhAdHR0Cmn14vFSGnWNGjXCmTNncOjQISxcuBDp0r20X+KVSCSSZOXWrVsA4JLt1oCAAOTNmxdTp041TWO1WgHghf6VAaGb0FXNiBEjUKpUqSSV7+Pjg5iYmCSVERMTg9jY2CSV8Spx7949AEBYWJgu7vTp04pnOFeuXCnu6Onduzfq16+fonWa8VIadS8Kvr6+qeoOfvLkCfz8/FKtfiNIYtmyZYaD5YuGv78/3n33Xdy/f9+l5W7YsAG7du1yaZmuIDo6OtVWsE+ePEFUVFSq1O2IO3fuoFSpUggODk5tVV54goKCAMDueTThxXtRjLrQ0FDs3btXE5YmTfzUZzRO/e9//8PVq1eTVGeBAgXQs2fPJJWRP3/+FDlHevv2bVgsFly6dClZyvf09ERISAhu376dpPHHzBC3Wq2oXLkyunfvroRt2rQp0fUA8dvzz549s5uGJPbt2wcAGD9+/Asz5kujLhFERUXB09MTVatWRfXq1ZXw06dP44033kBoaKhT5QwePBhfffWVYdyQIUM0ln9kZCQiIyM1ad566y28/fbbAOI7dlxcXEJvxeVs2rQJbdq0wdKlSwHEr67sTZb37t1zur2M6rpz506i8gLAgQMH8ODBA6xatcrpPCQdtnPz5s1dtmoLDw9P9HPds2cPLly4oGy75c+fH2+99ZbdPAEBAShTpozdrTOLxaIZQJ3hrbfewrfffpugPGZ1A8D8+fMxZsyYJJcHAHPnzsXVq1dx6tQpl5SXUvj4+NjdBjXj2rVrduMtFgvGjRtnGOdMfS+aUde1a1fUrVtX8x7ZM+pcxcGDB5XPYWFhGD16tFLfs2fPDD1Oap4+fZoi28PHjx8HAOzfv98w/sqVK9izZ0+iyy9dujSaN2+OYsWK4ddff1XCr1+/jiZNmui8kSTRoUMHeHp6asLFM7NF9Dd1v06K8RgZGYk2bdrgp59+sptu5cqVqFOnjkNj7uHDh7h582ai9Uko0qhLBD169EDp0qUVd7Bg9uzZiIyMxO3btx2W4e/vj6FDh5r+gPJff/2l6Sy5cuVC/vz5Tctr0qRJgrehhcFw8+ZNWCwWw28RO8Px48dx/fp1AM+/xBIYGAgAKFKkCNzd3U3zFilSBI0aNUpUvU2bNkX58uUTlRd4PqCbDRZG6evUqZOi2/2ZM2dGx44dnUq7fft2xcPg4+ODevXqoXz58qhZsyaA+D4nPC1m7N69G1euXMHKlSvtpps2bZpTOqnZtm1bgvOY0bFjR/Tv39/p9AEBAU6nJYnTp0+bxt24ccPpssyYOXOmw0lD8O233+oMJD8/PxQoUADTp0/HnTt3cOLECU385cuX0bx5c5QtW1b3zf/atWs7rHPx4sV24+0ZbGKSdfa9chUPHjyAxWLRed4fPHgAIN77YrFYQFLRzcfHJ9n0Ud9/zZo14eHhoXg4c+bMiTJlyiS4zKCgIAwcODDZF/BPnz5FmjRp4OnpiTJlyqBevXoO85DEwIEDcffuXURFRSE6OhqzZ88GEL+ABuK/RCP4888/sXnzZt0CMjw8HAsXLsSXX36piRN9znZhYWaYHz16FOPHj9eFBwYG2vVKivIdjRmPHj0CEN9W9ihYsCBKlChhN40j+vTpgzNnzjiVVhp1CeDBgwfYunUrLly4kOgy5s2bh4sXL6JixYoJyhceHm7XHbx161bNtZ+fH0qVKmV3pZc5c2a0bdtW8VAcPnwYjx8/hsViwd69e1GpUiXNADlp0iT8+eefunI+/fRTfPDBBwCMXzy1sRgTE4Pw8HDMmzdP8TwafQPt4cOHhj9D88svv8BisSj1hISE4OzZs0o8SaxYsQJWqxXHjx9XvISzZs3C77//rhkAEmrUDR8+3HQ1a0ZcXBwsFgvWrl0LIN7DVLZsWc0qHgDWrFmjrC7XrFmDixcvKnErVqwAEP8N0N9//920rkaNGqFUqVK4c+cOChQokCA9w8PDdYPjqlWr7HoySpUqhXPnzgEANm7cCIvFgh07dpimj4yMdNqzZLFY0LNnT7Rs2VK38DHbGouLi8Mff/yhDMbh4eGIjo7GqVOnkCtXLmzfvt2putetW4fKlSsrz+jKlSvYsmULAGD69Ol4//33TbfsL126ZNhm0dHR8PDwUM79dO3aFXPnzsWUKVMc6rN8+XIA0BhuYiw4deoU3nvvPVSpUkWT58MPP8SGDRtw6dIlfP3115q45N4GV3vqpk+fDovFovO62HL37l1MnDgRJ0+edJhWzdy5c7F7924AwOeffw4AyrUtEydO1OgHxE+WZixevBjBwcFYv349JkyY4LROYtwS48r169eVMUptjNk6BQT2Fl6//vorRo4cqXjX7DF79mzNlwru3buHc+fOYdeuXbh58ybq1aun6ccbNmxQPp88eRIksWbNGl25Dx8+1Jyb7NevH4D493vkyJGoVq0aMmXKhNKlS6Nz586a+1a3vVgcm509vHHjhmb7We1dPXHiBEaOHAng+Rk7kpq+Xa1aNfTu3VtXboMGDVC2bFnDOtUkxgvuDEuWLLE7L58/fx5Zs2ZV+lFoaCjGjRuHjz76yLkK+JoQFBREAAwKCtLFxcXF8cMPP+SBAwdM8zdr1owACIClSpVSPqubUFyfP3+eJDl06FAWL15cF28rJHnz5k1eu3aNJHnixAnTstWow2zj58yZQwCcOXOmErZv3z6WKFGCcXFxmjyLFi0iAE6ZMoW7du0iAFauXJkA+Oeff9rVwTZ82bJlBMCJEyca5jFrA6vValhmbGwsHz9+TB8fH4dtSJK///675hk1btyYt27dUtJduXJFSSt07dChg+6ebFmzZo1pnWbtERsbq3yuXbu2Js7NzU1Jf/HiRQLgkCFDNGm+++475fOhQ4ecrrdGjRqGuorP/v7+mnx3794lAHbv3p3Lly9X9AXAunXrmtZjJs+ePWO7du24Zs0atmvXjr6+vkrcpUuXTPXv3r07K1WqpKsjbdq0dp/733//zZYtWyphv/76q1JG8eLF+c033xi23b1799i8eXP26dOHALh7926S5NixYwmAK1eu1Oiyd+9eduzYkQB47NgxXr9+nST5ySefcMeOHUo7VqlShffu3SNJWq1Wnjx5kkuXLjV8FgAYGBio6GS1WhkdHa1cq/uQ+tldu3ZN6bsirkKFCixQoAAjIyMN26pXr14kyezZsythT548IQCePn2ajx49UnQrV66c4TOqW7eu0jfNaNWqFQHwwYMHSj3Lly83Tb9p0yadrg8fPuS2bds06W7evMnVq1drwkT6o0ePKp8//PBDBgUFMSAggGPGjGHNmjUJgLly5SIAXr9+nZMmTTLsE126dDHtaydOnGCDBg1otVoZFhbGDRs2KPm2b9/ORYsW0Wq1avL4+PjwzJkzyvWBAwc0z6datWokyW7duhEAN2zYQAC8evWqoX4iTF23EWo9AgICGBwcbHhPDRo04Icffqhct23bljNmzGCLFi0IgCNHjtToIebRUaNGafT58ccfWb58eYdjg7pfib67fft23rp1SwkPDQ3VveMXLlxQrn/++WfDdyl//vymY4QgICBACT9+/DgPHz7MsLAwTZqIiAgCoLu7uxL233//EQCzZs3KmjVrkiQnTJhAAJp3293dXXn3SXLLli06PYz0UvPLL78oaZYsWaK0OQDu2rXL7nMnSWnUkQwLCyMAlihRgkeOHCFJRkZGKoYEaX8iEwaJuBZGnbj+/fff2bt3b9P86rRk/AAhrsPCwpROZvaC234myblz5xJ4btQFBwcrg9u0adOUiQwAFy5cqITv3LmTAPjxxx8TAJs0aaKrz8/PjwMGDGBwcLCu7hUrVhAAx48fb6iXWRsIQzMsLIy//vqrEv71118b3qdRG9pOgABYrFgxXr58Wbk+d+4cIyIiSJJLlizR6Ve7dm2OHDlS0Yckjxw5Yljnw4cPNQPCypUreeDAASVePXiLAUJcZ8uWjXv37qXVatUY8baTgpHcuHGDYWFhjIyMVOr29PS0m8es7SpXrkx3d3flWhh1tv3by8uLDx48cPguAPGGtL34uLg4xsXFsVq1asozefbsmamu6dKlS9B9qY06W9m/fz+vXLnCwMBAJaxBgwYEwE2bNrFjx44cMGAAAfDzzz/X6KUWMYEJ46B06dI8e/asEi8Wc+J96Nq1q6nOaqNu/PjxBMCSJUuSJNetW6dJK8YkYdSp3w8hJUqUMG2vo0eP0s3NTblWT+jq/leuXDk+efJEM96IRRAQP/mruXnzJp89e0aSbN68OQGtUbdy5UqePHmSK1as4OrVq3nx4kWSZHR0tKGexYoVU9rKarXy+vXrijG6d+9eLly40Km+CICFChVyKp2tMWEmsbGxivEn2kjEqRdfQkqWLKnpf7bx//77ry5s69atyufg4GA+fvxYd7+xsbE0o0iRIkq6xYsXM3PmzE7dm62MGTNG0299fHwIgM2aNXO6/W1FjL8//vijJvyzzz4jaWzUmZXljA5qjOLd3Nx4+/ZtJc2sWbMIaI26OnXq6MoURp36vQDA77//XnGOqGXDhg0aY3348OHMkCGD7tnZvpPqsSpbtmymz1y5R4cpXhHsGXW2q5gyZcrwyy+/1DWomZQqVYrdu3dXrjdv3qxZETjT6dSft23bZpr25s2bbNq0KT/99FMlTO3RmTp1KkNCQhSjbuLEiRw6dKhTerRu3ZoeHh4EwIoVK+peCtv0P/zwg8YLpk7z/vvvMy4uThOnvraVefPmEQD/+usv0zTCg2IkT548ob+/vy68WLFivHLlii68Q4cOiocSiJ/MWrdurVx//vnnvHv3LqdMmcKffvrJtN6CBQsatg0AhoeHO9V3Bg4c6HRfMeo7RhOJrThjLAJQPFFqURvFasMlsfLuu+9q3o9OnTopkwUQ7zFLSvlt27blnj177KaZMWOG8rls2bIEoKyQc+TIkeA6bY26N954g6GhoZpJUf3M1Ne7d+9WvLRqL2toaChXrlypSevj48MBAwYwffr0SX4ORmL7fIVn8OnTp5rwzz77jN7e3pqxoUyZMpoFaLt27ZTPZp5uM0NKbYTMnj3bMI3Ze2crzhp158+fdypdZGQkmzZtSgDcsmWL5v0YMWKE3byff/65U3WoPTyFCxcmANavX1+TRjggBOvXr+fq1avZuXNnl/WHqlWratpb/Z46WryZya+//sp+/fqxU6dOhvHCe+zMc3amD5jNX2rJmTOnaTqSys6FOkztfEiMiHeYJOfPn08AukUcAM28Jo06FfaMOiNjQEiWLFlc9oKYidrDdOfOnSSX5+bmphh1rpC0adPqXjQjsTUchJcCALt16+bUgKY2jl0lYivaVhYsWKB8njlzZqLLFys2W3F25Z8S4szWSEqKuu0BsF69eqmuk3rbI6GSOXNm3YodAEePHq0LI40nGLNwtai3GVNC7ty5Q5KmE/j+/ft5+vRp5Vq9A+BIjhw5wpCQEIfpzIyUY8eOpUo/qVKlSrLX4YzBsHjxYpLk1atXNd7+5JL+/fvz4cOHyV6P7Xtkz0HizLhx8uRJp+q1PZYk5ODBgzo7wM/Pz2X3KxaVZqKuSxp1KuwZdeozP6khtqtgV0jevHldWl5ijJ633347wXlS0vhwpeErRYqRjBo1ShemPoOjFnH04UWTzZs3293STayotyXtidg1kaIXcXQmpaR9+/Ypfo8pNScMGjRIs+v1ooh6y14adSrsGXW9evVK1YfWsGHDVO84r6MkxTsnRYozoj5oLkWKFClJkaxZszq0dSxkMn1v9wUjODgYbm5uCAoKQrZs2TRxn332menX4CUSiSSxFC5c2PSnKyQSiSShODLZ5O/UIWm/Pi2RSCRmSINOIpGkJNKoQ/L/GKdEIpFIJBJJcvPSGnV9+vRBjRo18N133yXZ0yaNOolEIpFIJC87L6VRd+7cOTx69AiHDh1CqVKlDP9/alRUFIKDgzViRoMGDZJTXYlEIpFIJJJk56U06o4dO4b69esDABo2bIijR4/q0owaNQpubm6KFCxY0LS8HDlyJJuuEolEIpFIJClBihp1Xl5e6NixY5LLCQwMVL7B6ubmpvwDbzUeHh4ICgpSxOifwwteky8ASyQSiUQieYVJUaMuICAACxYsSHI5OXLkULZTAwMDkTNnTl2ajBkzIlu2bBoxQxp1EolEIpFIXnbSubKwjRs32o2/c+eOS+qpUqUKxo0bh/bt22PHjh2oVq2aS8qVSCQSiUQieVlxqVHXvHlzWCwWu54vi8WS5HoqVKiAvHnzokaNGihUqBD69u2bpPKkp04ikUgkEsnLjku3X/Ply4c1a9bAarUaytmzZ11W19ixY3Ho0CEsWbIEGTJkcFm5EokkeejQoUOylj9z5sxkLV8iSQnkztOLTdGiRVNbBbu41KirVKmSXcPNkRcvtXjvvfdSWwWnOH/+vMvKkt/4Nady5cqprYJT/PPPPy/k+2TG/Pnzk7X8zp07J7mMLl26uECTV4OsWbOmtgoJpn379qmtgo4CBQokKH2xYsWSSRP7fPXVV4bhderUSWFNXE+aNK4zdfr374/ChQsDAGrWrJng/M2aNXOZLka41Kjr27cvqlatahpfrFgx7Nu3z5VVuoTWrVu7pJzkMgZWrVqFy5cvo1y5cokuY8eOHZpre9vgH3zwQaLrscfAgQM1159//jkaNWqULHUlFh8fHyxcuNDp9OnTpzeNS+jvH96/f9/ptMOHD0efPn3spgkNDcXgwYMTpIMjdu7ciVmzZqFnz57Ytm1bgvK64uhFYrH3nNRkzpxZ+fzdd9/hxIkT+PXXX5NLrWTDkbfH39/fMFxteHft2tWpulw5YZoxbtw4p9K1atXKYZoOHTqgYsWKidblnXfeSVD6/PnzJ2jxlVoLbqMvHD569Ah58uRxKn+FChWUz2vWrHGYvmTJkpg7dy4AYNasWU5qaYyjPrh161a78Z06dXK6rnbt2mH69OmoXbs2unXr5nS+t956CwASlMeWyZMnO07E14SgoCACYFBQkGF8jhw5CECRDz74QHNtJsOGDVM+kzRM07JlS06ZMsUwrlKlSg7r2LFjh6KnUXzZsmXZoEEDAuCYMWN08SEhISTJ/PnzK2G5c+c2rW/evHmaa5F279699PT0NMzTokULw/AyZcpw9uzZBMC//vpLCT937hyDgoLYo0cPJax69eqavK1bt3bqGdjK8OHDEx1Pkjdu3LCb/8yZM8rnt956S/kcGBioSdejRw/Onz+fADhixAglvGPHjqZ1O3uPO3fuVPpE27ZtNXHbtm2j1WolSUZGRuryHjhwIFHtKnRUs3v37gTlTWy9jiR79ux2y0+XLp1T5fTq1YsAOHnyZM19li1bVpPu4sWLTpV38eJF+vv7K9e1a9fmL7/8wgkTJmjSZcuWjQULFkz0/VerVo0PHz5U2uLo0aNOPcdly5axd+/enDFjBtetW8fjx48rafr06WOYVx1euHBhlixZ0mk9Fy9ezGPHjiWq3zmTbtOmTU6VZfuuJkRGjx5tGpcmTRpdWKVKlQz1T5s2LQHtGFK7dm2GhYXp0qrHSSPJnDlzou/H3vMmyRMnTujCFyxYoAsLDg4mABYsWJAkOWvWLE18s2bNGBoaqlz/+uuvJKmMVeq0v/32G8+ePau0kSO5f/++3T4i5v/EPFOjNhGsWLHCqTwXLlzgZ599RgBOjZm//PKLLmzMmDFKW9lDGnUqduzYoTSg6MiffPIJgfhJ+cKFC3z27BmnTJnCgQMH0s/PjyR58eJF3rhxg6S2U3l6enLRokUMDAykl5eXJm716tUEwObNmyth3333HcuUKaN7mGFhYYqORh1g1apVHDJkCAFwzZo1BMC+ffvy888/JwCGhoaSJCMiIpR2+PTTTzVlXLx4kdmyZSPw3KirWLEiAbBAgQJKZzTTIyoqSjHeAPDLL79UyhJG0MKFC+nh4cHPPvtMKefu3busWrUqgfiJSV1mZGQkfXx8DO+5SpUqhuFZsmSh1Wq1+8LMmzePfn5+pi+seuAxkujoaObKlYtdunTRTO627dKrVy/FqJsxY4YSvnnzZl2ZZ86cIUl26tRJE75+/XpNuxQvXpwAeOrUKU3fBcCaNWsq/dA2Tsi2bdsUnTt27Mhz5845NSip79Fe+WZSpEgRkmTXrl1N09gzaoYPH64xUIsWLaqJ/+mnn3S6tG3blvv376ebmxtHjRrFwMBAhwZ77969CYCHDx/W3KPaWOjevTtJskaNGk63l+31kiVLNOmyZctGksyePbsSVrhwYR46dMhhHZUrV2ZUVJRST86cOUmSgwYN4v79+zVG/CeffMKzZ88aPkeSPHnypJL2+vXrhvV5e3srnz/77DPd5C2kdu3adtsjb968mrj69evbbUfbsKtXr3LLli2aMNt3SxjpRjqsXbtWCbt06ZLdNhaLsnLlyjEmJkYJP3XqlMbgUuu5fPlyAvHjqK3+v/32mxKWP39+h+/U4MGD7erXr18/5XPPnj15+fJldunSxTS90fhpNO6R5Pnz5w3Dr127ZtiuggsXLmjilyxZQpL87bffNG0guHPnDhcsWKAJc3bBIIyd4cOHc+XKlZq4smXLkiSfPXumyyfm27///tupemzvc9WqVbr47t27G+YRRt2+ffs0cWfPntVcX758WdcHsmTJYvS6GiKNOhVqo05NbGys0/WI/FmzZjWMj46O5tq1a5VVdcuWLTV1qr1ks2fP1tVt1MlWr17N2NhY3rp1i3fv3iUQ790LCQnhli1bdDrMmTOHPj4+ymB06dIlks+9lUIH4UUcMWIEv/jiC4aHhytlbN261bCjq6/PnTunvGzqz7aIQbJq1aps1KgRAfCPP/7QldmsWTMCoK+vr2ZQGjduHC9cuMD+/fvz4cOHpu0kPJU3b94kSe7Zs8fuCzt37lxdvO3zePr0qSavOm3v3r3p4+PDXLly0cvLixs2bOD169eViWfgwIFK2tu3b5Mkr1y5otNHPTjfu3ePBw4c0LXh2bNnNc9Hje29CaOuU6dOOuM2ffr0hvcCgB9//LFh+cLrZOvNUosw6khqjAIhOXPmpNVq5aVLl1isWDHmzJlTiVPfV1hYGOfOnassGoQR1KlTJ5LaCcgMET9y5EjdxCe8FbZGnSAuLk7px+Hh4Xz8+LHpPRcoUMD0GSxatEiT9n//+x9JcuPGjaxduzbTpEnDU6dOMS4uTleuMDDFJDFo0CBNPcKos73nt956y7RNBOoJRq23bZ+0WCwEwGfPnpmmmzp1KufNm8c//vhDd/9RUVGMjY3VGOoBAQGmbWlbR7Vq1XRtC4BbtmxRdivE4tHeOx4REcEnT56QpDLBGy10QkNDOXHiRGWBLBbAAvW1rc4dO3bU6aE26t555x3dc7BYLBpv2J9//smuXbtq5gu1qI264OBgkjTdHQKg6bd3795VDImlS5fq2kr9TglPJPl83K5YsaLShraoyxLvjVg42Bp1RtjumJUrV06Zw+/fv8+MGTNq3jOBeh5VY7vTJBwOzuxeVKlShYcOHdKUFxwcrFuMGC1ySPKHH34gAM1CzbadypUrpwlr0qQJgfgFj7NIo06F2i2aWET+ESNG2E0nXOzCs2b0gO2VnylTJmU788KFC5o0MTExTukaFxfHW7duKdelSpUiAGUFK7b1Nm3aZFcXZ3W3pwcAdu3a1TBerHiXL1+uhAlPo5GBQz5/gYSsWrXK9B7UHgOjeAAcO3asYnipefTokSbvhQsXuGHDBgLxBoIRwqgbOnSoktfb21tXZ+/evUmSR44cIQAeP37csDxHXLx4UTMYCaOuc+fOmsH97bffNrz3/fv3c8mSJYyOjjYsX5QhBiDbyQ2I97SpiYuLY2RkJFu1akUArFChgiYuNjbWbl/q0KEDgecLEGHUqes1w6zPimcmBl5nMZoAHjx4oFnE2NYpJuwpU6bYLVt4nevVq6cp49q1a9y/fz+B+G0ZdT22z5GMby+zd0VNXFwcPTw86O/vr9Fb7f0m47f1hXdQne7WrVscN24cIyMj7d6/GnVcTEwMnzx5wk2bNvHOnTum/WndunVK/nPnzvHrr78mAB48eFDZWhUTochTs2ZNpkuXzvTeS5cuTQCavmems4+Pj2bcvX37Nrdu3UoyfhE2dOhQkuTVq1cZGRlJkhrjVm3UFSpUyFQnkV4Y7g8ePFDC1Lstp06d0ukbGxtratiRVBbQ6ucUExPDkSNHKuMT+fz9Xr16tbIdSj4ft6tWrepQf7VewqGxYsUK03wCYdQJT5ottv3QqG5bfH19DeOWLl3K0NBQZTdB7fUVOynO3OfatWu5d+9e3b2HhoZyx44djIiIIBDviReI9+uTTz7RlBsdHU0gfqfHWaRRp8LRROIMwPPtGWf58ccfOX78eE0ZzgyAZPzZEFfx8OFDrl+/nlarlWvWrKHVauX+/ftNPWzq7TK1fmYeHXtcvnxZGfxsiYuL46JFixgXF6eEiS1bewasmPCnT59umubZs2eMiooybXMRfvLkScP8tpMd+dzbNmvWLMM84tyS2Jq1rbdBgwbs16+fqc5Jxcyos8XZd8GRUeeIvXv3KkcZBKJdq1evbphHGO3Cs6A26s6cOcOJEyea1rdnzx7u2rVLuVZvy/Tt21cxDpxF5PXw8DCd5Nq1a8d58+Yp1//99x8BcNq0aQ7LDwkJ0XjsBFarlXPmzNFMalOmTOHVq1ed1t0Rzj7PL7/8kqNGjTItp3Dhwhw7dqzDOmwZOnQoW7VqRTJ+jGjcuLEycaqJjY1VDD3xPIVRZ7VaTd9fNcKoU7d1sWLFHOZzlrCwMMXT9fvvv5OMv3f1gsYW0afEokgcR2nbtq3ihBDvjlk77t+/n7t27SLwfNuVjN9lUC+U1fj5+WnGW7FDsX37dmXxLd7R//77z1T/ffv28ZNPPuHq1as14cKb6Ijp06cnej5OyDyqRpxnUx9FcESJEiXYrFkz9u7dm1FRUYZGnRo/Pz9GREQo11arldmzZ+fGjRudvDtzpFFng9jDTyxPnz512lNmBmC82hZxSdHPlRgZQ5GRkUm+f2cQ58zMvEckuW7dOqdXhMOHD+eECRN04WKgt4fRM7lw4YLdQ61HjhxRBkV7g3py4KxRN2LECA4cONBhecJb2aRJE3bt2lXx7Ca1r+7bt0/5ko8twkt18OBB5V6SAhB/OPnOnTusWLGiss3mbN6E3qfwPtueIbJHo0aN6OHhkaB6kor63sTxheSswxH//vsvAfPdA5LKNm6DBg0SpId419ULNbOFZmIRXxIRRt2yZcuUIyNGCMNi6dKlStjkyZMVT6qaXbt2cfv27Xbrf/bsWYK80C8zjoy6Jk2aGMaJM3FG3k9nURt1RvNKcuLS/yjxKlCmTBlcvXo10flz5cqVZB1OnTqV4N82Sg0yZMiAjRs3Kl/VBuL/525K0L59exw5csTuV9mbNWuG9evXo2nTpg7Ls/25FUHjxo1x5coVu3lv3LiBdOm0r1LZsmXt5lH/9E9K/9TH22+/DQBwd3e3m27AgAEJKtdisWD69OmJ1suWWrVqmca5u7uDJC5evKjUnRSo+smJM2fOJDj/d999l6D0rVq1wowZMxKUz9HPMiQHq1atQmhoKADg4sWLCAgISHEd1IjfEWzcuLFpGvEsE/tTKxaLBd7e3rBYLMk+nn3zzTd24ytXrowLFy7gww8/VMLMfmKnXr16DuvLnj07qlevnjAlX1IOHTpk+lMycXFxKTbu9ujRI0XqUUhREzIVcdZTFxoa6nD/PDUpX758iq/WX2fi4uKUw+DJAfD823EpifBEqb8okVjUnjo1AGixWJKkpyPi4uI4cOBAQ89FSqH+8oQk4SS1/9kiziGJM27O4oxXPqnYeuokLx7dunVLsqfu9OnTqbarJj11NmTOnDlJP0yZ3Jw7dy61VXitSJMmDbJnz56sdaTGDzCLH9nNkycP2rZti7/++svldXTs2BFffvmly8tVkyZNGgwfPjxZ63BGB0ni8fPzM/WoJIb06dMnqjxX6pCadUhcQ1I8eZUqVcLo0aNT5T+cSKNOIklFgoKCkCVLllTVYdGiRS4px3YQFL8WL5HYw9n/WPAqkDdvXgDxk77kxcRVhnf//v1dUk5CeemMunv37qFy5cooXbo0gPgzH6/ToCB5tciWLVtqqyCRSFKIIkWKwNvbG/ny5UttVSQmCKMuNf+tYVJ46Yw6IP6Q9OrVq+2miYqKQlRUlHIdHByc3GpJJBKJ5CWladOm8PT0TPZ68ufPn+x1SBKP2Dlx9v9Fv2i8lIdBjhw5gho1amDAgAGmrtJRo0bBzc1NkYIFC6awlhLJ60GOHDmQKVMm/P7776mtikSSaEaMGIGQkJDUVkOSyvz111+YNm0aypQpk9qqJAoLX7KTm1FRUYiNjcWbb76JTp06oXHjxmjRooVhOltPXcGCBREUFCS3vCQSiUQikdhlyJAh8PLywpw5c1JbFad5YY26R48eoVWrVrrwjRs3ImfOnACAbdu24dixYxg6dKjD8oKDg+Hm5iaNOolEIpFIJK8kL+yZurx58+Lw4cO6cLV7/ODBgyhZsmRKqiWRSCQSiUTyQvLSnak7fPgwKlWqhBo1asDb2xtt2rRxKl/WrFkRFBSErFmzJrOGEolEIpFIJCnPC7v9KpFIJBKJRCJxnpfOUyeRSCQSiUQi0SONOolEIpFIJJJXAGnUSSQSiUQikbwCSKNOIpFIJBKJ5BVAGnUSiUQikUgkrwDSqJNIJBKJRCJ5BZBGnUQikUgkEskrgDTqJBKJRCKRSF4BpFEnkUgkEolE8gogjTqJRCKRSCSSVwBp1EkkEolEIpG8AkijTiKRSCQSieQVQBp1EolEIpFIJK8A0qiTSCQSiUQieQWQRp1EIpFIJBLJK4A06iQSiUQikUheAV5Ko+7evXvIkycPatWqhVq1auHJkycO85BEcHAwSKaAhhKJRCKRSCQpS7rUViCxuLu7Y/Xq1U6nDwkJgZubG4KCgpAtW7Zk1EwikUgkEokk5XkpPXUAcOTIEdSoUQMDBgww9L5FRUUhODhYIxKJRCJJHYKDg/Hff/+lthovDQMHDsSgQYNSWw3JS4aFL+F+ZFRUFGJjY/Hmm2+iU6dOaNy4MVq0aKFJ89dff2HIkCG6vNJTJ5FIJClPx44dMX/+fPj6+iJv3ryprY5LIIlNmzahSZMmsFgsLi1blPcSTtGSVOSl9NRlzJgRmTNnhsViQcuWLXH+/HldGg8PDwQFBSni5eWV8opKXjkCAgJw7dq11FYjwQQFBaW2CpLXnGfPngEArFZrKmsChIWFoV+/foiJiUlSOVu2bEGzZs2wfPlyF2kmednZv38/pk+fnmr1v5RGXUhIiPL54MGDKFasmC5NxowZkS1bNo1IJEkhNjYWuXLlQsmSJROULzw8PJk00rJnzx4cOnRIF37q1Clkz54dR44cSRE9Xnbu3LkDi8WCx48fO50nKCgIa9euTUatkhdfX194enoCAE6cOIFOnTq5vA7hcUqTJnmmncePH+P69etOpZ06dSr++ecfbNmyJUl1CkM1ICAg0WVEREQgKioqSXpIXhxq166Nbt26OZX2yZMnLn/2L6VRd/jwYVSqVAk1atSAt7c32rRp49Lyt2zZYjg5SrQ8e/YMsbGxqVJ3bGwsPvnkE5w7dw4AEBgYiOPHjye6PJL44YcfcOnSJdM0u3fv1lxnypQJHh4eAOIHdSMPhL+/PzJnzowFCxYkWjdnqVevHmrWrKkLF5P15cuXk1S+p6cnpkyZkqQyXgYqVKgAAFi5cqXTebJnz46WLVsiIiIiudRKVooUKYLSpUsDANq0aYM5c+a4vA7xflgsFpBEdHS0S8svXrw4PvjggwTp4iqSskX65ptvomjRoi7UxhySGDBgAHx8fOym8/HxgcViwalTp3Dr1q1k1enChQs4c+aM0+nFeGZETEwMmjRpkqw6Hz9+HKGhoS4p66233kLz5s0BAJMmTTJth1WrVjk/HvE1ISgoiAAYFBTkMC0AJlfTPHz4kGFhYSRJPz8/jho1ilar1TDtjBkz2LlzZ7vlhYWFEQC3bNnicl0dAYCdOnVSru/du8ehQ4eyVq1ayVpv586dOXToUALgl19+SZKsU6dOkp6Z1WolAFatWtU0zdatWzV9w/bzgAEDdHmuXr1KAGzfvn2idXMWoc+TJ08IgEeOHCFJ/vfffwTAGTNmkCTnzp3L0aNHJ7j83Llza9r43Xff5fr16xOt75IlSwiAMTExpmnmzp3Ly5cvJ7qOxCDa8e+//1bCTp06xSdPnjAsLIyzZ8/WvbMiT2hoKEly+/btBKC868lNVFQUAXDJkiVcu3YtW7ZsmaD86r5ctGhR03dp7dq1PHbsWKJ0/OKLLwiAfn5+nDlzpsvbx9lx22q1skGDBgTAdevWJaquwMBAXr9+nYsWLSIA/vvvv4kqhzTX2zY8KiqKf//9N2NjYxNdl6+vr2bcNCImJoZ//PGHUj8ArlixItF1OiIh8+3JkycJgKtWrTKMv379OgGwXbt2rlRRAwB+9dVXduPV9xMWFmZqd5jNJ47KtKufU6leAZJi1IWGhjIwMNAlegCgu7s7SfKbb74hAPr4+DilhxH37t0jAH7zzTcu0U/g5+dnd7Il4/XLnz8/SfLGjRuaQYAkt23bxps3b7pUL1GvEDF5vfPOO0ky6uLi4nRG3aNHjzhv3jwCYEREhKlRJwzCypUr68oVRl2HDh2UsK5du/Ls2bOJ1tUMoc+hQ4cIgH369CGpN+oSu2jJnj27Jh8Afvjhh4nWt3bt2hpDyAgAfOONNxyWFRUVxfDwcMVICAgIIACePHlSSXP37l0uXrzYYVlGRp241759+xKAztAUeUJCQkiSX331FQHw3r17uvKtVqvpQo6M74vjx49nVFSUQ10F4n4bNWrE9OnTEwD9/f2dzq/uE0WKFCEAjhw50m66hNK4cWNl0dG0aVPFwEsoa9eu5dGjR011u3v3rt38ixcvVtLOnDkzQXUHBQWxU6dOLFOmDAGkqFE3ffp0uwaNPTp16sTu3bvrjLro6GhGR0dr0ooFs1qGDBniVD1xcXE8d+6cJuzw4cN88uSJLu3Zs2fp7e1teP8zZswwNCTXrVtHAKaLUjHeJqe/CgDLly+vXFutVsbExCjtaFt/vnz5nDLWANBisThM54iXcvs1pSlSpAiyZ8+uCbtw4UKiXe4HDhyAxWLB0aNHAcCwHLGtCMApV+/y5cvRs2fPROljxFtvvYXff//d6fRG7vxGjRqhVKlSpnlu377tsNwJEyZg3rx5pttaYgvH2XM6Zj9tY/sMtmzZgrx586Jjx44A4s/FmX27TWzlkERAQIDDrfsZM2agffv2TumbFIz0ffjwoWFaksr5oIRw6dIlPHr0CADw66+/YtGiRYbpmjdvDovFgurVqyMyMtKhnmrMtuni4uIQFxcHAKhatSrefPNNZM6cGXv37sXVq1cBQDnAvnHjRhQpUgRt27ZFSEgIAgMDUbhwYdy8edO03vv372uur169qpznNTt2sGDBAlgsFuXLNOp7u3v3Lp48eYI0adKgfv36pvVu27YNvXr1wrRp0zThY8aMwdChQwHE97n+/fvj1KlTuHfvniavOPyfK1cuAMDRo0d1X+5ZsWIFFi9ebKoDAAwYMMBufEhICL755hunv4Qj3jGjdzUyMhJt27ZFQEAAevXqhWzZspn2yRYtWqBq1aqm9WzduhWBgYHK9YULF/Dvv/8q1+qxqkuXLk7pLpg9ezZmz56tO8pgO36cO3fO7pGLHTt24OzZs7hw4YLTdYuzV6Jv20ISy5YtM9xanj17NqZOnaoLf++995AzZ04AgJ+fH86cOYMHDx7o0g0ePNgpHSdNmoQKFSpg/fr1Slj16tWRJ08eXdqKFStq5oe4uDil73bt2hVff/218n7bon6voqOjMXHiRFitVqxZs8aufocOHYLFYjHdfo6JiTGcjyMiIjTjujpN6dKlkT59emTIkMGwTF9fX8NwZ8fbnTt3OpVOrdxrQVI8deJ6wIABvH79Ovfu3UsAXLNmjWkZmzZtYlRUFLds2cJ9+/Zx+/btmlWJWry9vUmST5484YcffqispoTY01l46mx1dpYzZ87w9u3bJOM9U8LTAYAlSpTQpN2zZ49mu03U2bNnT+7fv1+jh9qrZevl/Ouvv1i3bl0CcLh9J8qoXr26Lgwq71jhwoUJgEOHDuW2bduUtFFRUYo3QLTrwoULdfXExMRoPHXCKyXE39+f27ZtM/TUbd68mQD40UcfsXr16kr4smXLePr0aQLg999/r9E/IR6uPHnyOOWJFfUKT53QU+2pE94x274ivAABAQGm5Rt56oSsXr1aV2737t11bSXk8ePHii737t1jREQEPT09FU/L06dPOWfOHE2ZGTNm5M8//0yr1cqlS5cSAAsUKKArf/To0Txy5AgBsFevXrr4s2fPcs+ePQTAP/74g56ensySJYvi2TJ6nwAwbdq07Nq1KwFwwoQJmr5t9F4D4IMHDxgXF6d4c9WSJUsWw3Zeu3atxhsxZ84ctmvXTqPTtWvXNGUJT52tqHUz6isAlPFMpBHbr0bjiXpMEv1q+vTppn1Gjdjy3Lp1Kz/77DMCzz11n3zyCYF4r6yoY8aMGQTAp0+fGuqg5tmzZ4b3/uDBA+VaeFLGjBmjSXfz5k2dd8mMcePGGbbz5MmTHepIkl5eXpp4o75mVsbEiRM1749Z+iVLlpAkY2Njefz4cU2cGAObN2+uq0N8/umnnwz1mzBhgl0PM0nl/TAaJ8z0FaL2aNm27c2bN3XvuODff/8lAKZJk0aT5uHDhxwyZIhGZ/W2spEnW4wJtnTp0oVA/K4CAJYrV87wPtTXtWvX5tOnT03v/6OPPlLi1P3Kw8ND44m210eMkEadihs3bnDu3LlKA/r4+ChbpELKlSunnC0SsnnzZk05t2/fJgBlq8aRPHz4kOTzyXfq1Kma+ODgYJ2uR44cYVxcnM6oi42NZdGiRdmzZ0+lMwsD6+uvvyZJenp68sGDByT1L/VHH32kfC5evLimTrOXFQD37dunuS5btqzyWW2Q2eYbM2aM3edm1KHVYR9//DHJ51tGQk6dOkXy+RYfSZ47d44A2KVLF6WsqlWrcv/+/YyOjibw3KizfUb+/v7KVovty6vuM2qpUaOG8tnWqCtbtqzpPR86dIh79uzR3W+lSpUYExPD8PBwBgUF8a+//tKcrxHp1EZdZGSkcn5pxowZrFKlihK3Y8cO7t69W7OIUG9dxcbGctKkSXR3d1cmZLPnYO85GaUVBp96ABSDs+37ZVtGt27dmCVLFuV69+7dmrSjRo3i4cOHlbJs69+wYYOh3rt27TLsc61bt9altVgsSt322qJmzZoEwNmzZ9ttKzJ+GycyMpJr1qwh8Hziss1z/PhxZRtK3T/NdBCiPk6hDv/+++81+tgaddevX+fx48d54MABJfzkyZNcsGABgXijbteuXfT19SVJnj59mgULFuQ///zDlStX8s6dO4yIiGD9+vUN9frhhx8Mw7/++msC4J07dzTtpNbNarWyefPm/O2333T579y5w1OnTmneBVJv1Nk+i+vXr3PEiBGG72ZijLovvviCZcuWVcbhHj16mNbv5eWlHEew1Utt1DVu3Finm4ibMWMG/fz8+PvvvxMAV65cqcQ9evSIgH2jTr3ws5WDBw8atgtJhoeHM3PmzJoy/fz8lOuiRYsq40upUqVM6xDnxO3J6NGj6e/vz71795o+T/W7IRCLBwB89913+fDhQ43RB4BFihTR3ZsY/8TioXz58ly5ciW9vLx0z9BMD09PT807mDZtWrt62x6XUfcFe0ij7v/ZunWrchZFyKxZsxx2LqPGvnz5stP5gOdGnRgkbVdKgYGByiA3d+5cxaPRvn17/v3336blivNDZp1u8uTJhuHqjnry5ElOnTpV42kgqegg5OOPPzbV48033yRJ3rlzRxfXq1cvpkmThmfPniUQP/m98cYbbNu2rdIetm1sW0auXLmYMWNGTdi3336rSUtSqaNr1666snx8fAiA7733nrIasyfnz59XPptN2GoRRp3wHJQtW5ZWq1V3/kc9wZFkmzZt7Ja7d+9ektQYZmaTpJkIrykQb9QB4NixYzWTiFr8/f0ZGRlpWl6VKlV47Ngx5dq2r5jJlClTTOPUHoA33niDWbNmNU07cuRIjWHbvHlzTbwwtGxl586duv6l9hYaSY4cOQz7pK2oDXyjPk2SzZo1IwDlTJM4x+RM223cuNFhGmEk9u/fXxNu2+fURt2oUaMMy1IbdaNHjyYAFitWjCRZvnx5XfrGjRsr3jlnpVWrVgTA+/fv02q18uzZsxrjlYw3JJwtz9YQNnoW4ktG4nr37t3KpO/n58fhw4cb5p00aZLyHNXjx+DBg5XP4hyhmfTu3Vv5rPbECoR32Da8c+fOmnDh4TQS4eHOlSuX4p0HoHzBwJHs27dPqTcoKIj16tWjn58fg4OD6e7urkkr5ly1lChRwnCRpBZn5s+///5bqc+RUTd06FCGhISY9r8FCxbo5oMWLVpo3s1GjRoZ5v3ggw8017YedFvp16+fUqYjow6AxtOsfub2kEbd/2PUoG3btnWqowvx9PTkDz/8oNmKckaEUff5558bxgtPixB7Kym1VKpUSXdvkyZNMkyrHsiNRL29ausKdySZMmXSrNgSK2Kl7Wz6QoUKKZ/Dw8NZvHhxAvFfVJkzZ47hllhipGHDhg7T/PDDDyRJNzc3AvEe327duhEAr169yhEjRugGQWf0GzJkiG673hViu5VhK+Lbxq4UWw+1vf5kL37kyJEar5KzsmPHjgT1LyHqw9kJFfFFIttvGwLxxrYr3hu15M+fnzlz5tSE2Rp1tl5vIzl16pRu0QXA8D6E2C681CI8n2r58ssvlfadNm2aLv7PP/9kRESE0/deoEABu/EkWalSJV34/PnzHRoOY8eOJQCNpwoAs2XLlqjnJLxsAHjjxg1OnjxZt4AX29K2edXGmqtFvTW5fPlyAuD48eNZtWpVXVoj494ZqVChgsM0PXr04LvvvksA/OWXXxymt7fo+fXXXw3tAKvVyk8//ZRFihRhiRIlXNJ+ZcuWZe3atXn79m2njDpbEWOUPaRRR5oODIntlAmVM2fO2I3v2bNniuhhT3bt2pWk/OLcWVLE09PT9LyHI8mfP78uzPYbu8kpzgzu6jMWQPxWemo/95dR/vrrL82Wk7OyadMm3aTsjJQsWTLV7zkhYnteVC07d+50uhzhoUtuKVWqlOmW5f37911Wj7PeKiMRP9eS0mI7ZqSEkPG7SgMHDkyW8h0Z34kRR17aNm3akEz4gi4pkhijzplvIUujjjTdYkgpsXWfv4hiNqhKST4Rvz0mJWVEnGl9neVle8/NzkemtKi/IPWqi9jCfdVEfWb6RZWhQ4c6tHWkUUe6zLUqRYorxd45RSmuF2nUSZHy+or49u2LLM4YdfJ36gDT38KRSFKTkydPprYKrxWvw79Ak0gkxpj9ntyLhDO2ioVM5C/ovmQEBwfDzc0NQUFByJYtmyauaNGiuHv3bippJpFIJBKJROIYRyab9NTBcSNJJBKJRCKRvOi8tEZdnz59UKNGDXz33Xem/0bIWaRRJ5FIJBKJ5GXnpTTqzp07h0ePHuHQoUMoVaoUVq9erUsTFRWF4OBgjZjRsmXL5FRXIpFIJBKJJNlxuVEXERGBw4cPw9PTUxcXGRmJhQsXJrmOY8eOKf8Qu2HDhjh69KguzahRo+Dm5qZIwYIFTct78803k6yTRCKRSCQSSWriUqPuxo0bKFmyJGrWrIkPP/wQtWrV0nyjJCgoCD/88EOS6wkMDFS+7ODm5oaAgABdGg8PDwQFBSni5eVlWl66dOmSrJNEIpFIJBJJcvHGG284TONSo65///748MMP4efnh+vXryNbtmyoVq0aHjx44MpqkCNHDmU7NTAwEDlz5tSlyZgxI7Jly6YRMzJkyOBS/SQSiUQikUhcSenSpR2mcalRd/ToUYwcORK5c+dGsWLFsHHjRjRq1Ag1atTAnTt3XFZPlSpVsHPnTgDAjh07UK1aNZeVLZFIJBKJRPKikTZtWodpXLrvGBERodvKnDp1KtKkSQN3d3csXbrUJfVUqFABefPmRY0aNVCoUCH07dvXJeVKJBKJRCKRvIikuFH3wQcf4PTp0yhZsqQm/N9//wVJNG3a1GV1jR071mVlvQw/aVKnTh3s3bs3tdWQSCQSiUSSCjhj1Ll0+/XLL7/EsmXLDOOmTJmCb7/99qUwoF5EYmJiXFreokWLXFqeRCJ5tdiyZUtqqyCRvHB4eXml2ruR4kadh4cHtm7daho/bdo0WK1WV1bpEl6GL0oMGzbMpeW1bdvWpeUlhMRsw7/99tvJoImeunXrpkg9RmzevDnV6k4uVq5cmeA8xYsXTwZNEoftF6ycOaicUvTq1cvwm/+JJSIiQnMdFBTksrLNcHd3Vz7b7vAkhkqVKtmN37dvX5LrSG4aNWqE2rVrY8iQISlSX+vWrVOknleFd955B40bN06Qg6pw4cKmcYMHD3a6HKd+qYOvCUFBQQTAoKAgXVxERAQBEACzZs2qfHYkQ4cOdSpd165dnS5TLf/995/y+f79+4kqw0xIKp9Xr16d4PylSpWyG+/r62sad/DgwQTX9+zZMzZt2pQWi4VVq1bVxZ86dUoXVqlSpQTXs2TJEpe1ceHChfnTTz85lfb999/XPJPEip+fH99++23T+M6dOyufa9euze7du7vsfo1kxYoVCc4ze/Zs5fN7771nN22ePHmUtraXzt3dXflcv35903R16tTRXFepUkVzbYtt/qdPn/L06dMua7+aNWuaxk2fPt0lfWbz5s2G99O+fXvN9ZYtW1zeP9R1lixZMtHlBAcHk6RDHUly+vTp7Nu3r8vuoXfv3knK37JlS81Y//3335Mkz5075/L2NpI+ffrQw8PDMK5FixaJLtdoTLYnbdu21YWlS5fOMK29Mc5IZs2aZRh++PDhBN+XvfffSGbOnMng4GDl2va5Wq1Wp+v29PR0aOtIo+7/EY1Wr149pxvYWUNLXb76QduGXb58WZcvKipKGXSXLl2aqJfr0aNHpjrlypXLUD8zeffddwmApUuX5pEjR5TwS5cucdSoUXbvuWnTpgTACxcuOFXXnDlzDF+kW7duKeFjxozh/fv3SZKjR4/WDAzq/GrJkiWLaZ2RkZGsX78+nz17potT368z8scff2iMKHsiBnJ1WNq0aRP8rEmyWrVqpvFdunRRPnfu3NnwOTk7SRkNwkJ++OEHAtD1WS8vL82g1rFjR13e8+fPK3p+/fXXdnUoUqQIAbBZs2aG8UuXLqW/vz+joqIIgBkzZuShQ4dYpEgRxsTE6NL369dPc+3IqLt06ZJhfI4cORL87Mye5yeffGIYJ4w6dR8jybZt27JQoUIJqsN2HATAtWvX6tJ17dqV1apVM9UpMfcnPguj7rvvviMA5syZ0zAdAC5YsIA3btwgEG+wC3x8fEzrSpcuneZeS5QooYnPly+fUzqvXLlSMxGrF6m2iziSHD9+vGE/B8BNmzYxMDBQc3+jRo0iSXp7ezulz/fff5/gdv/vv/+YPXt2AuDgwYNJkjt27ODUqVM16QYOHKh8rlu3rsNyixYtavrMAHDixImmeSdNmqS5vnz5sqYNihcvrnwuWLCgQ13UBj5JBgQEGPY/knz8+DFPnz7NRo0aOdVnBTt37nSYfubMmSSp2BYhISFKXO/evUmSx48fT1C99pBG3f8jGu7p06fctGmTcq0enH19ffngwQPDTqv+/PbbbzN37tyGcS1btuSxY8dIknfu3NE9NNHx5s6da1dPe/Lmm29qrh8/fmzYQQCwb9++unLHjRunud69e7fyQlavXp1AvKeOjO/UTZs21elHkm5ubhpvWYcOHQiA169f15SfLVs2w/s4c+aMYYdWG6kxMTGauCdPnhCIXyWqjbp//vlHmYAbNWqkGB1quX37tqasJk2aaOJjY2M1A8b27dvtPgczo27x4sW6sGvXrmnar1WrVobGuDMvvr+/v2n8Tz/9pDzDGTNmaOocMmQIT5486bCfjRs3jkFBQYyOjmZAQIChcTd+/HgC4PLly3X6qcu3HWj/++8/kuSvv/5KAFy4cKGpHjt27FAmmhkzZhimuXDhglLn5MmTef78edP36ZdfflEG13LlyhGAxnixNQqMyhEk1XujLs/MgJo2bRpJahZJaoR30t3dXWecCg9tt27dTNtDXa76HSfJjz76SKdP+fLlNddqo/DatWvcsmULhw8frrs/8VkYdQJ1/1enmzFjBuPi4pQxfe3atRrdzHZQ0qdPr0n35MkTnj17lseOHePixYsNdx/EOH779m1dG8+ePZtLly7VPf+LFy/ywIEDuvFEpOnVq5fh82rcuDEBMC4uTpdn7Nix/P777w3HjpMnT2qeQenSpTX5unXrZtivrFYrZ8yYwYiICKU+9ft26dIlPn36VLk+duyY3b4qFtdGz6xz584cNmwYSSpG8MSJEzXlh4eH63QkyXLlynHr1q2KUff3339z/vz5dnV58OABSfLp06dKOfaMOoE9r1n69OkN8/z+++92dRFGnRjTIiIi6OHhwRMnTihlxMXFOTUWOIM06v4f24YT12qjzijt3r17efToUU14dHQ0o6OjNemCg4MZEhKiqdPIqHOE2G5Sv7T3799XVl2iQ6vTPHnyhPv27eOBAwfYo0cP9ujRgyQZExNDq9Wq6F6wYEHFSHrnnXeU/Oo2E+5q20HeqG2sViutViu7d+/O2bNnGxp106ZNM1yR3rhxgyTZs2dPli1b1rQe9QBoi9qomzFjBsPCwgjErz4FZ8+e5YEDB+jj46PLb7VaFePEdpASiDIrVqzIoKAg/vPPP8p2dv/+/Q2NOlG2OuzOnTtK+RkyZNDdw+HDhzWrYCEjRoxQPrdt21bXPrbyww8/kCQfPHigefZAvAEmmD9/Phs3bsxBgwbpypg1a5amnYyMurFjxxKI92oYtZttm3p4eGjKnDJlitJXzO6HpLJdGhoayujoaA4cOFBpsyJFiij3aIbZ+xcYGMhjx45pDKpJkyY5LEegnhwHDBjA0aNHOxy0Ae2RgXfffZckNVuwadOmVRYb6q0YIN5LosZqtRoaCOK9NMJ2vPv7778JgK1bt9akq1ixouHzEJ7TU6dOKXWmTZvWbpuLzx988IGmDc2MOkcY7YIA8V5ae9gadbly5eLTp085fPhwzftqhDO6JeZezNL9888/StzDhw/p6+urGcNs87Vp04YAeOvWLbv1CU+neGaRkZEE4hdbaudAeHi4xkutNqyF8WVPf29vb93co05vtM2oLtf2yFDXrl3ZunVru+1qtNg1wuzd9Pb2NtTLkVF37tw5pS3PnDljWKeRMSm4deuWznlhD2nU/T+2DSkmC/Git2rVSonbu3cvlyxZoitjwIABdHNzU66LFy+unJUywnb71hl8fX15/vx5fvHFF/z000+V8OnTp2vK2bx5MwsUKEAAmtWKGQBYrFgx5To8PFxZ3du22e7du03b8fDhw4rXyRa1Uffee+9xwYIFSlyPHj34448/Mk2aNE61RWxsLGNjY+2mmTt3rtImYrV048aNBL0gJPns2TNGRUWRpG5yEINepUqVlLB9+/YR0Bt1wvAWqAcZYdQdPnyYd+/eNdTjzz//VNJXrlyZAJTzW126dDGcwIH47azTp08zf/78hoOKSGfULurzpkKOHz+uSSMmjL179ypphLdb7fkrXry4rk4zrFYrz549q1yXLVtWo4M4kqA26tTYeknMEB6nv//+2zD+448/VurcvXu3aTm292NkBBhN6rYSFRXFR48eMXPmzMr9P3z4kJMmTeLNmzf56NEjw/ovXLhAPz8/u/f6xhtvJNiQsFqtHDFiBB8/fqxJU6FCBcNJSCw8BM+ePVO2FwWBgYEE4s9DqutztVHXoEEDAs89402aNLGbT7yrwitXvnx503axxRndEnMvZunmzZtHAFyzZo1T+cS2p6M+QsZ7Go3SiW3D7Nmz29Xv6dOnvHjxol391VSqVEkxCocMGcLt27cbpitWrJhSlq1RZ08ftV5mhpOa+/fvs1WrVrojFGaoPdL58+fn+vXrEzyvk+TGjRsJxB+rEDthiUEadf+P0QPYunUrvb29GR4e7tCASAxWq1WzHZHUsvz8/Hjw4EElTLjz/f39HeafPHkyb968qQn77LPPCEA3KCcWtVFnxltvvZXkthCojbpDhw65pExbhEfWyKjr16+fMlFs2LCBfn5+igdSYGvU2eP8+fOKIRcTE8OIiAhGRUWxadOmytaHbbnOThz58uUzjBNGXaZMmdigQQNu2rRJl2bbtm0EtGdFSGru6datWwwICNDp5ywxMTHKubgSJUoo4eIcpzC6E0pISAgfPnxoGr927Vq+8cYbhp5cNUb3I7zdgm3btnH//v2a9EC812PFihXKRJjaOPNsFi1apKRzc3NT0qsnXnucPXtWaVNRju32q9ozRJLr16/nv//+67Bs8eUcYShYrVYOGzZMZ5jaEhUVpbxH48aN072Ty5cv5969ew3zOtNmW7du5ZAhQ5xOby9dXFwcV61aZepxNVpk2OvnzuLr66up09F9uGJuE6j7lu25bIFYbBhhtEB1hEi3a9cuu+n++ecfNm/eXLlu166dS+89IUij7v9JrQdAxnsVbA0qV9CwYUMC8d8cTQzbt29npkyZEuzZMkN8m86eUTd37lxTAyOhCKNu+PDhLinPCHHOTm3U7d+/X2fUCRe8LQkx6hKC+lykIwAwb968hnHi/pyZTMn4bV1br5kRK1eu1JwpcRYAysRIxk9Wrlp0JAUgfrtXTZ8+fey2/+HDhw2N5NTm008/5ZQpUxymO3XqFI8fP65s0ZJUtpkTguintp46q9XKoUOH0tfXN0HlWa1Wrl692uHWuyuZNWsWd+7c6XR68SUQRyR2Xkqp+Sy1jDry+Rk59fGcwMBAu/OLKCOpRrUjxMK+Vq1aCc6bVKRR9/+kplGXXIifbjC755TmwYMH7NChQ7J4PY0QRp34QkByILbZHBl1tgf0BWJLzNVGHUn++OOPTg9cb7/9tmm8vTNYKc2LpIua0NBQzYFzMl7XxHoQXycWLFjAefPmsX///q/cGGxGeHg4w8LCHKa7desWL1++nODyU2o+++STT9i4cWPTeHF8wRWoz9QJLl686NROlCChRt2wYcOUXwlICOJoVUIMfVfxerxBfD2NujVr1hCI/+LG60hKGHVkfN+pX7++ch0REcGmTZvS29tb+Zah+luYasR5tOQw6pw1gID4b6tKJKlJXFycU15eiWPsHalISaKiopwyXp3ByKhLKOIbqCkx36fW4tNCkniJuHfvHipXrqz8svuqVauQJ08eh/mCg4Ph5uaGoKAg3a/EA4DFYgEAvGTNIbHDzZs3UaJECVy9ehUffPBBstWzfPly1KtXD7lz59bFBQYGYsqUKRg4cKDSx9QcO3YM9evXx5MnT5ApU6Zk01Eikbw+hISEIG3atHjzzTdTWxWXUbx4cdy6dStJc3RcXByCg4ORM2dOAK/mfP9SGnV9+vTB6tWrE5TPkVHXt29flCpVCj/88IOrVJVIJBKJROICXGHUCV5lJ45L//drSnHkyBHUqFEDAwYMMH0oUVFRCA4O1og9/vnnH2nQSSQSiUTyAvLVV1+ltgovBS+dUZcvXz7cunULBw8ehJ+fH9atW2eYbtSoUXBzc1OkYMGCKaypRCKRSCQSVzBixAhERUW5rLyiRYu6rKwXiRd2+/XRo0do1aqVLnzjxo3Kfvi2bdtw7NgxDB06VJcuKipK0wGCg4NRsGBB0+1XiUQikUgkrz5eXl7Ili0b3NzcUlsVl5MutRUwI2/evDh8+LAuPCQkRPl88OBBlCxZ0jB/xowZkTFjxmTTTyKRSCQSycvHq7xz99Jtvx4+fBiVKlVCjRo14O3tjTZt2qS2ShKJRCKRSCSpzgu7/epqSCIkJARZs2Y1/GkJiUQikUgkkpeZ18aok0gkEolEInmVeem2XyUSiUQikUgkeqRRJ5FIJBKJRPIKII06iUQikUgkklcAadRJJBKJRCKRvAJIo04ikUgkEonkFUAadRKJRCKRSCSvANKok0gkEolEInkFkEadRCKRSCQSySuANOokEolEIpFIXgGkUSeRSCQSiUTyCiCNOolEIpFIJJJXAGnUSSQSiUQikbwCSKNOIpFIJBKJ5BVAGnUSiUQikUgkrwDSqJNIJBKJRCJ5BXhtjDqSCA4OBsnUVkUikUgkEonE5bw2Rl1ISAjc3NwQEhKS2qpIJBKJRCKRuJzXxqiTSCQSiQSI37nZtWtXaqshkbgcadRJJBKJ5LVi4cKFqF+/Pvbv35/aqkgkLkUadRLJa46XlxdGjBiR2mpIJCnGo0ePAADPnj1LtjpCQkLw4MEDl5UXGBiINm3aICwszGVl2iM2NhaxsbEpUpfEdUijTiJ5zenQoQP+97//ITo6OrVVkUhSlOT84lz16tXx7rvvuqy8BQsWYNmyZdi4caPLyrRHvnz5kD9//hSpS+I6Xkqj7t69e8iTJw9q1aqFWrVq4cmTJ6mtUqLo0qULPvnkk9RWQ8fBgwcxd+7c1FZDkkLExcUBACwWSyprIhEsXboU9+/fT7byW7Ro8Vo/b3HvyWnUXbx4MdnKTgmePn2aInPrvHnzMHXq1GSv53UhXWorkFjc3d2xevVq0/ioqChERUUp18HBwSmhVoKYNWtWaqtgiLu7OwDgxx9/TGVNJKmBh4cH6tevj9q1a6e2Kq8t3333Hd5//31cu3YtyWVFREQgPDwcuXLlwtixY7Fv3z5s3brVBVq+vLzOBq0zREREuLzMPXv24KOPPoKbm5smXMwz3bt3d3mdryMvpacOAI4cOYIaNWpgwIABhqutUaNGwc3NTZGCBQumgpYpR2RkJIKCguymWbFiBSwWi+KZSSjnz5/H0aNHE5X3VcFqtb6y50xu3LgBABg9ejTq1KmTytokH3fv3oXFYsHt27cN4yMiIrBhw4YEl+vv748dO3YkVT2FwMBAl5RTs2ZN5M6dGwDQt2/fF9agi4uLQ7Vq1XD69OnUViXRWCwWzJ8/XxNWvHhxbNmyJZU0MiYsLEzj9LDl4MGDLq+zXr16aNeuncvLTW2uXbum8cr+/fffaNCggXJNMkV/H/elNOry5cuHW7du4eDBg/Dz88O6det0aTw8PBAUFKSIl5eX0+VfvnzZdMBPLVatWmX3JXR3d0f27NntljFt2jQAQExMTKJ0qFChAqpVq5agPCNHjsTevXsBABcuXMCkSZMSVXdqUb9+ffzwww/K9TfffIP06dM7lTcuLg4ZM2bE5s2bk0s9lyC8FmXKlMHTp0+dyvP48WNYLBbkyJEDq1atQlxcHCIjI5NTTZchvvG4Z88ew3gPDw80b94cPj4+AAAfHx+cP39ek+bw4cP4/PPPAQDR0dEgiZYtW6Jhw4YJGmtSAmEkHTt2zDSNj48PPD097Zbz448/6voySZd92SA4OBhHjx7F//73v0TlJ4m9e/e6ZAJdu3YtLBaL6b3NnTsXH374Ia5evYq6detq3psxY8Zo0t66dQsDBgxIsk6CyMhIWK3WJJWRJUsWZMqUyam0rvyyh7PvRrFixVCvXr0k1XXv3j3ExsYiKioKp06dAhDvmLBYLE6Pc4KDBw9i0KBBhnElS5ZEuXLllOs//vgDO3fuVK6rVKmCbNmyJeIOEglfcrZu3cpBgwY5TBcUFEQADAoKMow/d+4cc+XKxZCQEAIgAB46dIgxMTEkSavVyg0bNrBXr166vGFhYXzy5IlDHSZOnEh1k4t6HOHp6UkAHDhwoGkaZ8pyd3cnAEZERJimiYuLMyzr+PHjdutYtmwZDxw4YFevN99806n7VXPnzh2n2ja5sL1n2+tRo0Zx0aJFhnnDw8MJgLVq1XK6vitXrrB+/fpKv7OHt7c3fX19nS7bDNEvAPDevXtO9aXNmzcr6XLkyMEOHTpo8ty+fZtz5szR5QsNDWXdunX58OFDJWzdunW8ceOG3fp27dpFDw8PWq1WhoSEJPAOtcyfP58AOHPmTMP4r7/+mgA4btw4+vv7M0uWLJp7O3jwoKaNAPCvv/5i0aJFlfClS5cyNDQ00TqKcqKiogzj16xZQwCMjIxUwmJiYpgnTx7u37/fsKyePXsqn22fccaMGZXrdOnScenSpYY6pUmTRhP2zz//EADDwsJIktHR0VyyZAmtVquh3l5eXlyxYoVh3LNnzwiADRo0MIx3xMaNGwmAGzdu1MXFxMRwyJAhytg3ZswYAuCiRYsYEBDAgIAATfr27dsTAK9evWpYl207TpkyRQn/4IMPdGnKlCljV/eAgADd+3LixAmePHlSuRbzBwD26NHDQWsYI8Yke+94aGgoW7VqpUm3Zs0ap8qPjIzksmXLdOH79+8nAJYvX14XZ6SLs3Ojbd0lS5bk2bNnGRkZSQD08PDgL7/8ovTRP/74gwC4d+9ewzKioqL4ww8/0M/Pz1Cf3bt369pCxAUHBxvqnpB7iYiI0NUdGxvLDBkycOvWrU6V8VIadaLxSPKPP/7gggULHOZxZNR16dKFAHju3DlNZx4xYgRJcs6cOUpYdHQ079y5o+QtV66c0mnmz59vqkPhwoUdPuy7d+/S29tbE3b27FkCYNeuXU3LttdxDh8+zD/++MPQqAsKCmJ4eLhyvW/fPrsvmVkdZnHq8EyZMpnmv3z5Mh8/fmyYP2fOnIZ5nj17ppv0IiMjNc84LCyMZ86cMczvDEl5YcUA6u7urtNRTIK2tGjRggA0Ro8gIiKCgYGBJONfdNu6q1evznXr1vHx48cEwPnz5+smqzt37ugGtcQYdVu2bFHSZc+enWnTptXkKV68uHIdHBxMAPz222+5Y8cOAmD//v2VtKIcf39/Jf2gQYN45coVXZoJEyYQgKbPJhRh1M2YMcMwXhh1ANikSRNde3Tu3Fln1JUpU0Zj1AFg5syZdWULI/zYsWOGhpOPjw8nTZqklNG3b19dGnXbT58+ndu3bydJPn36lAD4xRdfaNKrDQEzo05cf/rpp3YnX7VRFxUVpeR7+vQpyedG3pEjRwzbtlSpUqZ9K7FG3a5du+jj48NZs2YRAOfOnatLs379es27LPRUi4+Pj5JeLFKmTZumhIWFhSmLLdu848aN47Jly0yNOgAcNWoUSXLIkCGa+YMkv/32W807oM4vUBt1+fPnt9sm9+7d49ixY3XhPj4+Gp3URiMZPz6IuVAtw4YNY1xcnOlzFQwcOJAAdI4We/OHvfnGiIcPHxq+O7dv31byValShQBYr1491qtXT3nuwqjbs2ePki8kJERZgAnjUz0+2ervaG5MyBxhS8OGDXVpxfhp9E4a8VIadVu3bmXFihVZvXp1tmvXzimvhiOj7ueffyYAzYANgD/99BNJsmTJkkrYxx9/TADKalSE9+vXjwA0k5GaIkWKEHi+urbXQdQrXWHUff/996b3J/IdPXqUf/31l8Zwe+ONNxTjwnZCBMASJUoo17t373bYcQcMGMCRI0dqjDB1HqvVykGDBvHJkydK+H///We3c4u46OhopYxOnTpp6o2IiODatWsVzx0ANm3aVCkjLCxMeZkFYoJWs379elMPiKBDhw5cuHChUnezZs00eoqJw949RUREKO2u5t1331XyhIaG8uTJk0pb2jPqxOKBJP/991/TwePw4cPK5/fee09Txvbt2wmAgwcP5rFjxzh9+nSnjLrdu3ezSpUqjIiIYFxcnMawcHNzY5o0aTR5ChQooFzfuHFDNyga6Q2A3t7erFatmt00ABgQEMCDBw/SarXSarWyc+fOXLlypUZn8d7cvn1bEy76YqZMmfjhhx8yNjZWE6826oz0VY8RVquVAFi6dGmdUad+HxYsWMArV64QAJcvX27Yxp988okuf4sWLXjw4EFNOiPdrl69qhjMdevWdZjeUfu+++67pt6K4sWLs169epp3WryTAwYMIBBv5Aji4uK4cuVKZcI0e18CAwMJQFn8Gj271atXawwfodf777/PmTNnEgA///xzhoeHa8a51atXa+7v/fff193z8ePHlfTCqLNto9atWxu2V7Zs2ZTPZkYdAK5YsYJAvNEhOH78OAsVKqS0Y2BgIM+fP6+r31mjzs/PT0mn9v5FRkbS19dXo4/tzpNZP2nXrh3btGlDALxw4YKSPm3atBoD7qeffjJ8xkZ9Ljg4WDPGxsXFKQsUEXb+/Hll8dCyZUuePn2aFSpUMOxDaqNOyGeffca6desSiDfqPDw8CDw36kJDQ5UxjCQPHDhAQO9AsS03Li6O3bp1M3yfxOdnz55prkX728Oo7dS7h7YOH8MyHKZ4RXBk1Jl15h9//NE03nbV1rFjRwLx3r61a9eyUaNGSvnPnj3jO++8QwBKuMh3+vRpktqtz0mTJil51d5Dkjx//rxuC9VWtw8//FCJEx6yWrVqEXhu1AmjA4CypbRo0SIl7OnTp8oK3Kx9bOuPjIzk3LlzCYA//PCDabudPHmSsbGxvHnzpqbTtm7dmm+88QZ37dqlyye2oQHwrbfeUj77+fnx/v37uvTZs2dnsWLFFD19fX156dIlAvEryX379jE0NJR79+7lhx9+SABcsGABjx49qivLaKBWX2/ZskVZBYvVr3qrIywsjJ06deLp06c1+StVqkQATJcuHUn7Rp3Id+3aNbvPwLbdo6OjWa9ePW7cuFHxAg0ePFiJF/0C0Bp1V69eJQDevXuXZcuWVcI7derErVu3Gj7bHTt2kKTS18eMGaPTV0hERIRihAtp2rSp5nrixIk8c+aMLq+YDDZt2sRmzZpp3tdnz55p7iNdunQEwIsXL7J+/fqcN2+epqx9+/Yp/Tw6Otq0rwvjT23UxcTEEIg36t577z1dHnVf+uyzzwg8X/yJfjFo0CDeunXLtF4AzJcvH7Nnz67xjtnKF198QQCKl1SMIfbK7d27Nx89emQa78wYCUBZlIhJU7yX5HPPqFhc2pa7fv16Xrx4kV5eXrpy8+bNSzJ+shXe6SZNmhjqpfZwAvGGltVq5eHDh3VGnZnExcWRJL///nvT98tRWwDg9evX7carjTp1+MmTJ1mzZk3DZ6A26vLly6cbHwSnTp1S0hUuXJjkc+/uiRMnNGX37NlTySf6jyNRH7MxayMAvH//Phs3bsywsDDD+7FdtIv5c9u2bZrwixcvGuqh3u1Qz51qKVWqlGLULV26VNlWF0bdd999p9FLGHWO+v7o0aNN3xf1tfC8qWX//v26PkzGe3DVfTkoKIhffPGF7r1whDTq/h97nbh+/fqG4baWuPrFFJ+FAWWbRv3iTZ48mQCYO3duJaxu3bq8evUqZ82apTHqxDawrdfOrIORz8/LiMmtefPmTr28QsQq0kj69++vuf7ggw8clqc2KABoPDP2RBgZtlKiRAmOHDnSqTLEhCeMOACsXLmy8llsP9lK9uzZ+fnnn2vCxDanELG11LRpU967d09jmP7++++aNEYDwKZNm5gvXz4C4Pjx453uoyQ1RoytGBlV6megNkaMjGOxtaoW24FXLb6+vsyTJ49y/dtvvxmmU3uFEyriTFTjxo11cWIRYybjx4831Vu9TWckBQoU0HhxhJFVunRpp3Xv27dvou/baMFhJh999JHDsc2RiPHLnjEJxI8DZ8+e1Rh16nO4ZuUuWbLEoQ5iIfT3339rwoXX2Z6Is4ddu3Z16n6XLFlCUmvUtWvXTuNtTmqb2raBo3S5c+fm/v37dfOQ4Pbt2zx//rxyrV7wCk+92B0YMWKEYR22hpc9MTLq7D3rtm3baq7FTpXtuT0zmTFjhmH4d999R5IsWLCg3XdeLJzVIow6tXd8ypQpTht1RsZaQvuGGrXBLkR4wsUuolE+I6RR9/+44iU1E7FSMJPu3bvbjbc95wfEbx+cP3+e7du3Nx3czIyg1BbhjUqopMT9ZM6cOVnKFStE22doL4/tYfPE1m3UbuptErWI1bIjsTVw1aI2XIH4rSJXt+fYsWMTnTdr1qyG4eJYRULEbJK0J3369Em07snVP82kTp06ytjpjNSoUUP5vHTpUtN0J0+e1OwUJJeIxduXX37pVPqvv/5a50GyFVfNF8WLF1eOVCRGbMcFo3FCHK1xVJZwLDgj06dP57x585SjB0D8AiIhup88eZLVq1dPUvtVrFgx0c9i+PDh3LJli913PkOGDCS129lC1Gdt1SKOEDgjMTExjIuL022JCxEebrPnboY06khN50wNUa+sjER9vkJI3rx5U1Xn1BCzbbyXQdq1a5fgPGIraPXq1Vy8eHGi6165cmWq37+rRb2F+bJJ7969U12HlBAzjygQ/2UIs8lMinNy6dIlzda5+mxsQiUxeW23clNacubMyWHDhiVrHSQ1uzqORO2pdiSOvN9G3juhkz2kUUcq52JeVGnQoEGq6/AiiPjmoxQpUl5+ET81ISVxYnauVYrrJDGL8eQWR1hIEq8BwcHBcHNzQ1BQkO6HACMjI/HGG2+kkmYSiUQikUgkjnFksr2U/1HC1byq//ZJIpFIJBLJ64M06vD832dJJBKJRCKRvKy8tEZdnz59UKNGDXz33XeIjo5OUlni/8JJJBKJRCKRvKy8lEbduXPn8OjRIxw6dAilSpXC6tWrdWmioqIQHBysETMS+w/uJRKJRCKRSF4UXG7UXb16FfPnz8e1a9cAANeuXcPPP/+Mjh07Yu/evS6p49ixY6hfvz4AoGHDhjh69KguzahRo+Dm5qZIwYIFTcsTZUkkEolEIpG8rLjUqNu+fTvKly+PPn36oEKFCti+fTtq1qyJW7du4cGDB2jQoIFLDLvAwEDlG6xubm4ICAjQpfHw8EBQUJAiXl5epuW99dZbSdZJIpFIJBKJJDVxqVE3dOhQ9O3bF/7+/pg/fz7atGmDTp06YdeuXdi9ezf69euH0aNHJ7meHDlyKNupgYGByJkzpy5NxowZkS1bNo2YkSbNS7kLLZFIJBKJRKLgUmvmypUr+P777wEArVu3RkhICFq2bKnEf/vtt7h48WKS66lSpQp27twJANixYweqVauWpPIaN26cZJ0kEolEIpFIUpNkc1GlSZMGmTJlQvbs2ZWwrFmzIigoKMllV6hQAXnz5kWNGjXg6empMRwTQ6ZMmZKsk0QikUgkEklqks6VhRUuXBi3bt1CsWLFAMR/oaFQoUJKvJeXF/Lly+eSusaOHeuSciQSiUQikUheBVzqqfv5558RFxenXJcpUwbp0j23G7dt24Y6deq4sspkYfDgwaZxWbJkSUFNnvOa/Dc3iUQiSVHc3NxSWwXJa8SwYcOStXyXGnVdu3bF559/bho/YsQIzJkzx5VVJgsff/wxfvvtN8O4pJ7fexHYvHlzgv7X7aBBg5Jcp4eHB9zd3QGk/n/wKFOmTJLy2/vSjRkzZsywG3/ixAls2rTJbpq//voLs2fPVq4//fTTBOvxurB48eJkLX/BggUOn2lqkSNHDpeUM2TIEABAhgwZXFKes5w4ccJhmiJFihiGJ+bdXrhwYYLzvEx06tQpwXnWr1/vekWSmb///ts0zhVn+Z1hy5YtDtPkypUr0eU3bNjQcSK+JgQFBREAg4KCDOMBKLJt2zZdmJDjx48bhgPg7du3TeMA8MqVK7qwEiVKaK7/+OMPdu7cmQC4bt06JdxMHyOpVauWaVzZsmVJkg8fPlTCypQpY7e8hQsXkiQbNmyohJ05c0aTpkCBAnbLIMkOHToQAK9du8aFCxdyxowZhmkrVaqkC6tRo4Zp2Xv37nW6bUqWLMmAgADlukePHk7nFfLXX3+ZxmXKlMkwPDAw0G6Zd+7csfuMCxQowLi4OEZERGja1FG5ySEzZ87U6Jo+fXoCYIUKFZJUbu3atQ3DJ06cSADMkCGDwzLmzJnD1q1bMzw8XBP+wQcfKJ8vX77MOXPmJEi3ihUraq7FODJp0iRNuNEzrFKlitP1DB482Kl0jRo1Yp06dQzjcuTIoXy+fv2603V36tRJcz1o0CAC4KhRo1KkX5UqVYoAeO/ePV2cbbsWLFjQsIyPPvoowfXae++++OILzfWECRP45MkTtmvXLkn3umvXLuWzum8C8XPMokWLNGHLli1LdF2RkZF247Nly8ZHjx5pwrZt22aY1mKxOF3vl19+aRj+yy+/OF2GkR4hISG6sEGDBjE6Otq0HPWYb09EHzSSXr166cLu3LnjdF8SMn/+fLvxw4cPZ//+/Q3jGjRo4NDWkb/lYYA9d7y9nz8pWrSo3XLfe+895fP48eMBxHuw1IwYMUI5d2j7BQ5fX1+75Qvef/99h2nU28hidVGqVCnDtE2aNAEA1K5dG0C8x6hixYqaNPnz59f9Z46hQ4di/fr1uHr1KgAoW8gWiwXt2rVTVtVdu3aFv78/zp07BwBYs2YNtm/fjvbt2wMAypYtq1uZHzx4EAUKFNDoBUDJYwRJeHp6ajwZdevW1aRp1KgRpkyZYloGAPz5558YM2YMOnfuDCD+m95A/Le7zZ6Rm5sbJk2aZLdce3h5eSlfPgoLC8O9e/eUcm0R7ZKUFaEZRYsWRYsWLTRha9asAQC8++67SpijNgSAy5cvK5979uyJN9980zCd6Df23j1fX18cPHgQP/74I1asWIE33ngDJBEVFYV9+/Zh//79StrSpUvjxx9/VK4XLlyo8YCK/mrGV199pXhr1R79J0+eAAAmTJig8xhlyZIFnTt3xtatW/Hs2TPTss3u0fbYypYtW0w9aBaLRflcokQJ07rmzZuneHurV6+OWbNmaeJjY2M1OnXr1g2PHz82LQ947vUaOnSo3ftcuHAhrl27hnXr1uni0qdPb5jHx8cHvXr1AgBUrlzZMI16XBsxYgRq1KhhV19HqNsSAHr06IHcuXMnybvXqlUr1KtXT7m2PdLzySef6N7dtGnTaq7v3r3rsJ7MmTMDiP95L3tcvHgRb7/9tnI9evRo1K9fH8OGDVPOxwv+++8/092qDBky4MqVK8p1o0aNDNPlz5/fMFxdrtjxM0qbJUsWREZGYseOHUpYx44dkT59euzatQtbt27VpG/Tpo1d77W/vz+A+Hnm0qVLpunGjBmD2bNna+blIkWKwGq1atLduXNHeb5Tp05VwqtUqWL393IF77//vu6n38SzpDPHsJzxcr0KOPLULV++nOfPn+f27duVMNhYyW5ubjxx4oSpha3OQ5Jubm4EwLZt2/KXX36h1WrVxMfExGjyzJgxgyS5fft2AvGr7EGDBvHdd9811clW2rdvz/DwcFosFvbp04dAvAekfv36BMBy5crpynrw4IGmLVasWKEpMzAwkCQZHR3NJUuW0Gq16nT55JNPdGG2CH3u3btHkjx69CgBsGfPnobPZOfOnQTA//3vfzoPBkl+/PHHhu3+1ltv8c033zR8PoKHDx9yx44dXL9+PQHw559/JgB+/fXXSppixYoZrswEVquVcXFx/PrrrwmAd+/eJUm+9957BMC6detq6p45cyYBsHjx4rpyb9++TZL08/PjwoULCYBFihQxbUs1tmV5enpy3LhxOs/Xrl27nPam9ezZ0277kWRAQADHjx9PX19fAmCzZs2UtOPHj9fkffvtt7l+/Xo2aNCAN2/e5PLlyzW6W61WPn78mHPmzKGHh4cm74QJEzh58mSeP39eE37p0iWn2kfdTh9//LGu3ey16dWrVzlu3DiNp+7o0aOGadX07t1bCe/cubPDZyZk2LBhzJ07tyZs3rx5fPz4se5ZDBs2jAB0fV30H9t3Q8j333/P1atXkyQfPHig1GubduDAgQTAf/75hwD466+/2tVd1Hf48GHGxsZq0gYFBSnl2LaVCCtZsiQBKF4jdX8ShISE8LfffmNkZCT9/f2VeOF5PXjwIGfOnMlHjx4xLi5Oub88efLY1fmTTz4xjPvqq6+Uz0uWLDHU+9y5c5o8jryF+/bt0+S39eSS5NatWzVha9asUT6fOnVKk//IkSO0Wq0sX768oR4k+eeffxrqcuTIEbv92PZ524YJz1bu3Ll5//59TZyt90/IyJEjlc9TpkxRPqu9osJTde3aNa5evZrt27fnvHnzmDFjRo1urVq1IqCfw9T1DRo0SOk70dHRvHLlCi9evKjEi3n5iy++MMxve+9hYWGm7aHmwoULujmfJL/55htNueXKldNci3dTHSa88sOHD9c9H93zcpjiFcGRUWeE7UO9ffu2oVG3aNEipVOpH+DmzZsJgEOGDNGVaVSPmrCwMLs6Xb58mQcPHtTpEhoaqqSNiYlh//79GRwcrORVG3XCKLJ9IUjy4MGDiiEVERHhsH1EZzN6CQQRERFcu3atcn337l0C4IIFCwzLDw0NZZ06dfjw4UPGxMRw//79nDBhgjIQPXr0iBs2bNDUS5KRkZGMjIxkbGwsT58+zYMHD/Ls2bOGdaxdu5YAlEFv1apVSpyfnx+PHz/OuXPnmt4TSZ1RJ7aD1S50kpw1axYB7bbE48eP+ccffyiGsiAqKorR0dHcunUre/ToYVivQJR19uxZHjt2TAl/+vQpz549azoACVFv16nTqq9r1aplWr8w6po2baqkN9qeN2LTpk3s37+/LjwsLEyZ7CZMmGCou/raGS5cuMBnz57pyjLCNk5t1DlKS1LZqpkxYwYjIyNN8wDg2LFjlc/+/v48efKk4XskrqOjo0mScXFx9Pb21sTZGgwk6ePjw+DgYFP9jx07phhh3t7eSrrg4GAOHjyYR44cIQD+/vvvOt2B59vjzrTNpk2bNO+YOo0w6vz8/AiATZo0cfh89+3bx9WrV9NqtfLAgQOm6Uhyz5497Nu3LwEwbdq0/PTTTzVlb9iwQXNf3377raKL2b29+eabyuciRYpw7969iiF56NAh3rhxQ3OMBoCip7gePHiwZmuPpGLE9+vXj8+ePdMduyCfGwcnT55UwtTpnj59yhMnTpAkN27cqNFBHLl5/Pix6bOyDVdv/QmHhdC7d+/ehuVERkYyJCSEly5dYps2bQjEG3Xt27fnzz//TJKGi8KIiAidEW3EpUuX6O7urrwTAlEmEG90GzF58mRFh+XLl/Pp06dK3Pz58/n555+bzmdi+11w6tQpLl682LCejh07KotYksr7Lfr3r7/+SiD+SEH16tWVuV9dd8OGDfn48WPGxcU5bBNp1NmhcePG7N69u+ah2p6pU3vRSLJFixb85ZdfSD436oYOHarEJ2QSMgIAM2fOrCuvVatWpoagOq3aU3Hjxg22atVKGdBtsVqtdttL1L1u3Tqd927z5s1O3Y+3t7fOoEkMiW1XsQL+559/El1+69atCTw36vbt26cMyLdv3+bFixdJPjfqWrRoQQBs3bp1gvU10014Uczi3dzclGvhtRWiXnmq71N9beZNJamc2VFPioIPP/yQAFioUKEE39fSpUsVo0F9LwBYrVo1zXViyJo1K7Nly2YYZ1tuQo06seBST5pGeWzbmtSfk7RXj+D69eu8fv26cu3l5cXLly/r6rRnnJvVExkZySZNmugWrkLUZ5xsefjwIT09PZ2qT5wtE/1R7e11JZ6engwMDGRISIjyzgrUHjsxbpvpEBAQoIyPAPjee+8Z1me1WjVnOA8dOkSSfP/995k+fXplou7Tp49m0W3L9u3buWfPHuX6t99+IwDFcBMY6WtrsIo5Ss3jx48Vb5uaU6dOsWDBgpr+JM4ii/HTzKhTI3ZFRo4cqQkX57tbtGjBAwcO6J5JYrHVKzGoz6eriYmJMX23nWH//v3KYkkYdVWqVNGkOXnyJK9du0YArF+/vtNlv3RG3d27d5k7d266u7vT3d2dfn5+TuVLjFEnUD9U9ZbPV199xb1795rmu3//PgFovCceHh66lWpCOHv2LB8+fKhcL1++XHNtj0mTJhm+tInFqLMnxyDsDJs2beKVK1cSnE8MKM5OPEYIo05sK1+9epVA/IFYNZ6engTAixcvsl+/fgwJCUmwvonh2bNnmrrUWw8AGB4eTh8fHz569Ih79uzhli1bSD6/5+vXr+tWwmaY9YnffvstwXofPnyYAPh/7Z13fBTF+8c/RyeUUKSD0psU6S0hFGnSu0hXmnwRpEoRUFERKyCg0qX3XkNvIdSA1AAJkEgIkIRc+iW5e35/5Lfj7u1eS7skPO/Xa165nfrszOzMZ2Y2d/v371fkVaZMGTIYDOI6R44cDudNlCRWbO1CSzx69MiqqBs9erRDZVsTdZZsqFKlCk2fPt2hcuTo9XpRb/bYZivc3H7pFQxHkfK5ceOG6Cfh4eGaR1dpjcFgEG0t7e7bY4M1USexY8cOAiBOTkwmU4oWtI6IujNnzojFGaDc/U4OsbGxdPDgQfEKjbxf9ujRwyFRJ/1jTN++fVNkkzkRERF27WzZIq36oHTqJ/3jyMyZM1VxpJ1XLRFuiUwp6nr37m0zXlxcHOn1euECAwNTRdRpXb+pZCRRl9ZYu68ff/yRACi27319fVNlBzItuHnzpkrUaXH16lXFgsQetOpJr9db3A22xf3791X5V6tWTVzv3LlTFSc16N69Ow0aNEjhd/78eerUqVOq5C/VU548eRTXWnHSGyDpXSlr4UDSKyDSLnR0dLRdgtFafo6GpRepJepSG0nUyY9fJVu07D106BAZjUa6dOlSqogdoqRXAL799lshVImSdrG0To3Cw8Opfv36FBgYqPCXXg3Ytm1bqtiU2ly6dEm1650aJCQk0KhRoyg4OJhevXplcYy8du2a5isclsh0s+/jx4+pZMmS5ObmRjNmzLA4cVr6aoDUEHXffvstDRgwINn3kFVYuHCheMFaYsiQIfTzzz87yaK0w9rAbjQaxS5dZsBc1CV3MtaiRYsWtHz58lTLzxxzUZdZadSoEa1Zs0ZMrhlJ1N29e5fCwsIshvfu3ZsqV66cauVZu89bt25ZPQ1JD06dOmXxvSyJzCDqmDcDHRERMhEGgwGJiYlwcXHByJEj8cEHH6i+YkGKZzAYxHVERATKlSsHvV7v8JfHSv/WnsmqiklFslIfCAsLQ9GiRbFv3z40btxY8XUGGR2dToeqVavC19fX2aakKlr9a+zYsbh69SouX77sLLPShazwbOl0OlSuXBkPHz5MtzKnT5+OBQsW4Nq1a4qvmNLpdMiXLx+ioqLSzRYm45Cqv/2amgQHB6NPnz4q/3379qFIkSIAgN69e+PixYuaoi537tw2v5/HERz5BQYm67Fo0aI0+d43Z1CkSJFMPYFOnDjR2SakOi9fvlR9J5qzf3mFcQzz7xVNa2bPno1SpUqhXr16Cn9fX1/+6bM3mEy3UxcZGYkCBQoASPri3ho1alj9wlmJiIgIuLq6Jmunbvfu3ahVqxaqVKmSLJsZhmEYbbLCTt2ff/6Jjh07onz58s42hXnDyXSi7vDhw/jyyy/h4uKCChUqYPXq1ciRw/aGY0pEHcMwDJM2ZAVRxzAZhQx7/GqJTp06Wfz5EYZhGCZz8ffff8NoNDrbDIbJEmS6nbrkwjt1DMMwDMNkZSz/QjbDMAzDMAyTaXhjduqISPyThfl/mTEMwzAMw2R23hhRxzAMwzAMk5Xh41eGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgswBsj6ogIERERICJnm8IwDMMwDJPqvDGiLjIyEq6uroiMjHS2KQzDMAzDMKnOGyPqGIbJuBgMBuh0Ohw8eNDZpjAMw2RaMqWoe/LkCYoVK4ZWrVqhVatWePXqlbNNYhgmBYSHhwMAVqxY4VxDGIZhMjE5nG1AcvHw8MCOHTucbQbDMAzDMEyGIFPu1AHAhQsX4O7ujpkzZ2r+84PBYEBERITCMQzDMAzDZFUypagrVaoUHj16hLNnz+Lly5fYvXu3Ks78+fPh6uoqXLly5ZxgKcMw9qDT6ZxtAsMwTKYnU4q63LlzI1++fNDpdOjduzdu3LihijNjxgzo9XrhAgMD099QhmEYhmGYdCJTijr515KcPXsWlStXVsXJnTs3ChYsqHAMk1KePXvmbBOyND4+Ps42gWEYGQcOHMCAAQOcbUaqExUVBb1e72wzUp1MKerOnz+PBg0awN3dHc+ePcNHH33kbJOcwpo1a/Dxxx8nO723tzfOnDmTihY5ByLCqlWrkJiYmKbl3L59G2XLlsWePXvStJw3mYCAAGebwDCMjL59+2LLli3ONiPVKVWqFAoVKuRsM1KdTCnqOnXqhGvXruHcuXNYt24dcuTItP/EmyI+/vhjrFmzJtnpmzVrhlatWqn8y5Qpg8WLF6fAsvTl4MGDGDFiRIrqwh6ePn0KALhz506almMN6fvc1q1b53DaixcvIiQkJA2sYlKb+Ph45MmTB6dOnUpW+kuXLiE6OjqVrco6GI1G7Nixg39h6A0mKirK2SakCZlS1KU17u7uGDx4sMLvyZMnMJlMTrIobTE/UgwKCsIXX3yR4nzv3LmDoKAgzbDz58/D398/xWUAEJNXWk9iUvtny5byx6ZHjx746aefHE4XExMDANi8ebPDaZs3b47333/f4XTpQVr/o4TRaIROp8s034MXGhoKg8GA33//3Wq88PBwPHr0SOXftGlTjBgxIq3My/SsXr0affv2xfHjx51mQ1hYmMovKioK9+/fd4I1yefevXuK74rdvHkzpk+f7kSL3mxY1Glw/vx5bNiwQVxHRkaiQoUK+O6771Rx79y5g3r16onJNqPQokULu4+lO3funCY21KpVC++8845mmLu7OypVqgRfX1/Ex8enqBxptU1E8PPzQ6lSpXD58uUU5QlAJeJTU9Tt3bsX06ZNS3b65O4wPHz4UHxOSEjAL7/8kqrH1ps3b0abNm1U9kVHR6frynjNmjXw9vYW19I9bty40a700tcgJfedm/v376fKl6L7+fkhISHBYnjLli1RpUoVcZ0nTx7x/pOvr2+Kyzfn9evXmD59OoxGY7LzeP78OWJjYzXD0usf2l6/fg0ATvvZyGPHjqFo0aK4efOmwr9Hjx6oUaOGU2zSwsfHx2r/A4CaNWuiXr164vqjjz7CggULUt0WIsKpU6eSNfbpdDqMHj062WVv2bIFs2fPTnZ6S1y+fDnF858KekPQ6/UEgPR6vc24AEheNS9fviQA1KZNG6pXrx75+vqq4s6ZM0eRx5UrV+jkyZMUFRVFPj4+qXYfluwMDw+ndevWWbyHOXPmEAAymUyqOObdAADlzZuX7ty5Q3Xr1qXY2FgRlpCQQHv27HHYPjlPnjxRlD169GhVnIULF9KjR4/sKmfTpk0EgEqXLi3yrF69uiLOtWvXaNSoUXblR0QUFhZGAGjTpk3Cb9euXSL/n376ye68tLBUN7Z4/fo1AaAOHToQEdGOHTsoICCAVq1aRQDIaDSq0nh7e9MPP/xAAMjFxUX4S2m2bNmiSuPi4kLLly932D7pvjZu3Kjwz5YtGwGguLg4hX9kZCSZTCbxjKXWkGSeV1xcHAEgDw8P4RcWFmYzfXLtAUDFixe3Gc/Ly4v+/fdfatasGS1evFj4BwUFifL/97//ERFRly5d6Pvvv6eEhAQyGAwKO7Xsfu+99yyWGx8fTzdu3LAY3qJFC3rvvfcIAEVERAj/8ePHEwC6dOkSEREdP36cXF1dKT4+noiIgoODKSAgQHF/Up/08/OjlStXEgD64IMPVGXeunWLANCOHTsoKCiIxo8fT+fOnaOoqCjLFfj/xMTE0MmTJ23Gk1iwYAEBoJ07d9Ljx4/pt99+szutHC8vLwoICKAlS5ZQcHCwKjw+Pl6zn0nlA6BmzZoJ/4IFCxIA6tu3Lz158sRhW+yZ3+zh+fPn9NVXXyn6k5+fH125ckUV11IfTG2k8ffQoUM24+r1es25To4jdqbFPUlzzJQpU8jX15cSExNTJV8WdTJev35NROoGDAkJIQBUtGhRMci+evVKEXf69Omk1+spJCRE4d+7d+8Ud4ajR4+KQVOOVIZer6ehQ4cSAFX55nHPnz9PRP91KGui7uOPPyYAdPv2bRH2008/EQDaunUr3b1716rd8ry9vLzIZDKRp6enolwA1LhxY820NWrUsKt+Nm7cqMpTErDSg12jRg3h9/3339Pz58+t5nnv3j0CQEOGDKGtW7fS6dOnafv27RbrTKfT0ZIlS+yyV7o/eR7BwcG0b98+i/FNJhPNnj2bbt68qRB1Uj7NmzcnABQfH08bNmygx48fq8oyF3VLliwhALR+/XpN+8qVKyeur127RgBowoQJwh7z9vfx8VHVj6+vL/3888+a9RYTE0MAaNKkSXTnzh1VeEBAAEVHR5PRaKR58+ZRZGSktSpV2S/PSxKNHh4edPnyZdq8eTMBsFjnyRF1ISEhQuxIaaOioggAzZ0712I5b731logfHh5OsbGx9Pz5c8Xz8dFHH4nr2rVrC7usiTq5//bt26lly5airadNm6YSbERJIvvChQuKPPz9/UW4JOq8vb2JiITtoaGhKnt8fX0JAP38888q23LlykVGo5EqV65Mp06doujoaBH2zTff0MCBA8V1z549Ldb5uXPnKCYmhkaPHk0AqHz58rRmzRqbbTVv3jwCQPPnz6eGDRsSALpy5QoVKFCAoqKi6MqVK3T69Gmb+QCgnDlzEgDq3LmzKrxfv36i3xERPXz4kI4dO6YQdQBo9+7dFBwcLESd5ORi02g0ksFgIJPJRM+ePdO0pVOnTgo/X19fKl26NHXr1o0AKNLJx0ej0UjffvuteMa6dOmiOaaaPw/SIlPyf/HiheLa1jhricDAQIXIuX//vshX3r6AelGakJBAAKhw4cKKeADEOCZfRB49elS0ndY8K0+vRVxcHD148EAhIs05f/48AVAseKSFm4eHh+j3qQGLuv9n3bp1otPLG9BkMokB0NydOHFCfJ45cyYVKVKEAFCJEiWEf9WqVcXgPmTIEHrnnXeIKGknz1onIEqa9PLkyUMAqH///qpwLZtevnypCCMixQQhrWatPaiAUtTdunWLTCYTBQQE0NSpUxXpzp49S/7+/nTjxg0R/5dfflGUcebMGQJAH374IU2ePFnT7vDwcJUNFSpUIKKkAefYsWOadfT69WuVaDB3JpNJfJbEbPfu3RV57N27V1yHhITQ6dOnCQANHz5cpK1WrZqqztavX09r164VfvbsYkp9UbKNiMTEIvHs2TPavXu3uI6IiCAA1KhRIwLUoi5HjhwEQAze8rzkNstF3e+//04AaMOGDSob5Xn4+fmp7lt6Xm7evCnSmIteaXfQUl979eqV1XDpOnfu3ASAvvzyS4qKiqJcuXKRl5eXwl5pgJw3b54i7fz582n27NnUp08fAkC1atVSlGW+w65VZ/ZSr149EV/rvuS7lAaDQQg+c1ehQgUhOq0583bSKjc+Pp7++ecfVbrOnTsT8N8i0FJ6AGLRdOfOHZowYQIBIC8vL7GQkOcjL+Py5csEgIoVK0YGg0GRZ548eYSoB5IWytLnefPmKUTd22+/rbDx/PnzFB0dLSbvQYMGUceOHRX5u7u7W20redy6desSABoxYgQBSYtYrbaPjY2lTz/9VDGHyPNp06YNxcbGUkJCAhElCQRL7fXtt9+q6rlZs2YqUSeNEWPHjhXXTZo0Ec+tXHgCoMqVKytsnjlzpiKvd999V4S5u7tT9uzZ6dKlS2IX7Msvv1QIbGvP59KlSxX+Bw4cUOwwS3neuXOHEhISaNq0aRQYGKjZHmFhYWLxINXbmDFjRPiyZctEvqtWrSJvb28xzzZt2pSGDRtGefLkEe1k6bmYMWMGAcq5W3Lh4eEEQHHiZZ5eCynM2mJi9uzZBCSNz9IcfeXKFQIgxv4+ffqIeScoKEiVh16vFzv01mBR9/+MGjWKAChWqVu2bFEIouS4t99+W+UnHUFs3ryZ7t+/T71796bWrVtT8+bNFTZpDcZytMp78eIFtWjRQlxLA5/kjh8/TvPnz1elCwkJobi4OKpcubLwq1SpEgFJom7RokUEgAYPHqxKmy1bNmrQoIG4Ll++vEIM2eN69OhBZ8+eVd0bEdGff/5JAOjTTz+lOnXq0NOnTwkAPXjwQCGgLTn5qvjSpUsEJO2OPH36VDF5yCcKe5ylNhg3bhy1bt3aYl+Ux5V2QeV5Xrx4UdXmLi4uinTmos6SfeZxXFxcyNPTk/z9/Wnx4sUEqI9KQ0NDrd4jEVGnTp0IALVr145ev35NwcHBtG3bNrvq7ebNmxQeHk7ly5fXDPf09KQCBQqo/KdPny4G5WHDhtE333xDf/31FxGRot9aq5cqVaoors1F3TvvvENly5ZVxGnbti3FxcXRzz//LI4SpYmvRYsWYtGTN29eYael8r/44gvq1auXQ8+GPf2PKGmXTSuevD9JcSVRJ+3w26o3IOnUYeLEiZphL1++VIhUov8mLQCa44E8fsmSJcXn7777TvFclilThoiIWrduLRYtgwYNEkfqltysWbNo7dq1ilcxGjRoQB06dFDEk4S+JOqkY2D5vej1ejGOSKcV8tc9gKSdIalPEBFt2bJFVUfW7JX3YbmT71JpOb1eT9evXxd5yClVqpQq/rJly1SLG7mTXpWw5CZPnqwQ5HIXGBgoPrdq1YoA0OHDh+nAgQOK+rx+/Trt2bOHXr58qTg1IiJFu965c4eIlKIOgGInURK5UtvJRZ20eJeuJZF77Ngxle3S4vWjjz4S9efv7y/EnmSfRMWKFRXpJ02aROb4+vrSvXv36MMPP1TEtXfekpD6ZMeOHVVlmMOi7v+xVLF9+/a1WfnJdfPmzRPHs1qdxnzwkSawxMRE+uKLLzTzlASPJVenTh2LYdKOmrlbuHCh+CzfCZK7d955J1Xq5N69e7R161ZxHRcXZ3WSTImTjk3kTlo12eOs9Rvgv/fbXrx4Qb/++qtmX/voo48Uk6756v7ff/8Vx/9yV7FiRdWuqbkLDg6mBw8eKPzk4lA6SmvatClNnz6dPvnkE1X/adasmeZ9S7sbcrdmzRq76046DnfESUdZABSDpPk7mvKdWXud0Wikffv2WQz/7rvvCPjvqMR8Z2j9+vWUP3/+VO2ftpz8PqV+phXP29tbcS2fBOXu6tWrVsvr3bs3TZo0STPM/N4PHz7sUH3IRd38+fMVx83S/cmvmzZtqpi8bbndu3erdgvNnbQAl941tVS2PS42NpZy5crlUBpLom7cuHFW08k3IiRRFx4erjluOMO1bNmS+vfvL67lAr9JkyZ09uxZcR0fH69o18WLF1OVKlVoyJAhijwrVKhgsTzp/XGt9pP6pNZrQNJY2bdvX1GHQNLuphRHeu1Kq61Kly4tXkOwpSvsdf/++y+tWLFCdT/WYFH3/1iqVHd39zTt8D169FBca/0ThtzFxcVZfd/B398/2bZs2LDBZhxLoi613KxZsxTXWscRGcVZOj6TO/n7fn///bfYKXSWM9/xM3eSaLHmiEi1mwUkvf/j7DYBoNrhtsdJR7zJddmzZ0/3+xwzZoz4fOrUKYunCs7uc8lx5jtJiYmJqjjm7wXbcvLdP0ecJbFszcnfEU1vJx3hZVa3c+fOVM1Pay7Veg9beo8agGJjwdxpHd2aO+kIPqW2W1pUW4NFHZHVlb2bm1u6duiPPvqIjh8/rtgdy0jO0iqf3ZvjpKMedhnHde7cWfyzgLlr3Lix0+1705w9C2R26eNsHSdLTr5ISqmbPXs27d+/P8X5yHcJJWcLHZFzv1KbiNL8i0eBpO+dcnV1hV6vV/0O7Nq1azF8+PA0t4FhGIZhGCa52JJsTv/y4dy5c+PevXtOtSEr/P4pwzAMwzBvNun2o6mTJk3S9Dcajfjhhx9QtGhRAMCvv/6aXiYxDMMwDMNkGdJN1C1cuBB169ZFoUKFFP5EhHv37iFfvnwOHcNOmTIFly5dwttvv401a9YgV65cybbNySfQDMMwDMMwKSbdjl+/++476PV6zJ49G6dOnRIue/bsWLt2LU6dOoWTJ0/alZePjw+Cg4Nx7tw51KxZEzt27EiRbea/8ckwDMMwDJPZSDdRN2PGDGzduhWffvoppkyZYvNHgq1x8eJFtG/fHgDQsWNHeHl5qeIYDAbxo9ySs0R4eHiybWEYhmEYhskIpOs/SjRq1AjXrl3Dq1ev0LBhQ9y6dStZ//kaHh4u/oPV1dUVYWFhqjjz58+Hq6urcOXKlbOY36VLlxy2gWEYhmEYJiOR7v/9mj9/fvz999+YMWMG2rVrB6PR6HAehQsXFjtv4eHhKFKkiCrOjBkzoNfrhQsMDLSYX0p2DRmGYRiGYTICTvtKkw8//BBXr17Frl278M477ziUtmnTpvD09AQAHD16FC1atFDFyZ07NwoWLKhwlkjJP1kwDMMwDMNkBJz6PXVly5ZF9+7dkS9fPofS1atXDyVLloS7uzvu3r2L3r17p8iOL774IkXpGYZhGIZh0hJrr5FJpNtXmqQ2P//8c6rlVaJEiVTLi2EYhmEYJrWxduIo4fRflMgItG7dGn/99ZfVOB4eHihTpkw6WcQ4m6FDhzrbBIZxCBcXl3Qt7/333xefx4wZky5l1q5dO13KsZfy5cvbFS+zvuJTuXJlZ5vAyNi1a5fNOCzqAJQqVQqjRo2yGuf06dMYMGBAOlmUPKZMmYLZs2djz549dqfx8PBIO4NscP/+/VTLq2vXrhbDVq5caTP9zJkzFdc1a9a0q9ydO3faFc8e+vTpk+I8mjRpkuy08+bNS3H5ANCjRw/8/vvvqZLXm0DLli1TJZ+8efOmSj72cuzYMfH5jz/+QLdu3cT1smXLcOvWrVQtb9y4cTh16lSq5plSOnfubFe8gwcPprElqcv3338PwLG+6ebmZndcInL4XfqMygcffGB33H/++SfZ5RQrVgxVq1a1GY9FnQNY+qkze+nRo4f4bC4izKlWrZrD+et0OnzzzTfo3r07AMurrKtXrwIAxo4di9OnTztcDpD09TRaPH/+HFFRUTbTHzt2LFV2Flq2bAk/Pz8hwvbu3auKY4/QGTduHOrXr49ly5YBgOqrdnr27IlffvkFAET9AkCbNm2Sbbs5K1asAACsXbtWFWbvzuF7771nV7zFixer/OT3vHr1ahCRGNwdoVy5cpr/ke4IkydPFp8/+OADVK9eHYB18S7RtWtXdOjQAU+ePNEM//777zOE6MyXLx+IyK5Fhz3Y/KHvbNaH+9evX4vPHh4euHnzpl1lSuXOmjVL+OfPnx+1atWymb5AgQKK62fPnqnieHt7Y82aNVi8eDGKFi0KPz8/q/ElqlSpovlqjV6vF5/d3d1t2ghYfv6kZyZnzpyqsM6dO6N///7Yu3cv8ufPb1c5ac2QIUNUflqLyRkzZsDf3x9//PGHwv/hw4cW8x47dqxdNqxatQpA8n/J6euvv1YsQKOjoxETEwN/f3/N+PJ+ac5PP/2Eo0ePJssOCUcW9jly/PfGm6U51BKrV6+2LyK9Iej1egJAer3eYpyrV68SAGrbti0REQEgAFS1alUR5/PPPycAVKNGDZo8ebKIM3z4cPFZy12/fp1MJpO4Xr58uSrOunXr6KuvviIAVL16dXry5InF/L7++mtKSEhQ+E2dOlXYGRMTQ3v27CEAlDdvXgoICCAAVLZsWbp16xYBoG+++YaIiDw9Pa3aruV8fHyoY8eOCr9Tp04REVFsbKzCv3v37qr0Z8+epcjISAJA5cuXt1rWl19+KT7PmDFDESYRHx9PFy9eJCKiFy9eUHBwMM2ePZsOHTqkaEu5q1SpEvXu3VuRT0REBHXt2pWCgoIUcU+cOCHqbeTIkXTo0CFycXGhxMREh+tOclOmTBGfv/vuO2FDcHCwIt7GjRuJiMjb25uOHj0q4knhOp1OfI6Li1OV06pVK2rXrh0BoBUrVljsf99//z0BoH79+imeC0fva/z48XTv3j1xnS1bNiIiVX8dMmSI+DxixAjRXwEonpXExETxfIWEhCjyWLRoEQGgPn36CL8xY8YobB88eDDVq1ePANCGDRuIiBT5y13fvn3tvk+tupH3VVvOxcWFiIhev36tCitYsKDD9d62bVuV39y5c6lTp05UvXp1q20pjXkVK1YkIOmZlcdfsmQJXbt2TVzHxMRojqF//PEHAaC1a9cSEdGoUaOs2pyQkEB37tyhzz77jOrVq6dpozl+fn6KMHn/lzuTyUQeHh6a+ZUoUcJiGwKghw8fEpA0Dt+7d4/CwsIU4d26dSMANG7cOAKSxqWlS5fS0KFDRZxnz54Jmy9dukQA6LPPPrP5TNWqVUvkq+U2bNhAzZo1U/gVK1bMrj4yaNAgxV8g6Xm1VueSX7t27azabu9YIfH222/bFf+ff/5R5G3+/EpYGosPHz5sMe/ff/+diIguX74s/PLly0eA/c+y+bhmyeXNm1dh94YNG+xKJ7l79+5pPnPmsKiTYTKZaPbs2fT06VMiIsqRIwf179+f4uPjRZwHDx5QzZo1KTIykoj+62ibNm2y2Bjbt28X6SW/FStWUM6cOals2bJ08uRJ8vT0FHF69uxJZ8+eJaKkiVxK4+npSdWrVycgSRSZd+Jp06Yp7ufIkSMEgObMmaO61127dinuq3r16vThhx/a7FixsbEijbz8UaNGCf+YmBhFGvNrAHTmzBkiShJjiYmJdPPmTQKSBIi1wYKI6J9//hEDgr20bt1a5DFv3jwCQHXr1iWTyURGo1Ezzdq1a+nZs2e0aNEiMhqN9M8//xCQJOrkOPJgSjaHhIQo0krCjYiEAJfcrl27NO0rWbIkASCj0ahZV3K/yMhI8vb2FmJu5cqVqniSQPryyy8dur/ixYtT7dq1xfX48eMVabNnz6647tOnjypvX19fxTURUZMmTcT9RUREiOdIivPJJ5/Qn3/+SQBo9erV4tmQi7rY2FhKTEyk+vXrq/rLo0ePaP369Yp7Wb58uUJUb9u2jYKCgihbtmyKeJ9//jkREbm4uCj85W0BQDFZyF2HDh1o27ZtREQqwQCA/v33X6pataq4btiwoWY+0uTeq1cvioiI0Gx7OUePHqXAwEDxvAGgwMBAEW4wGGjatGkUFBSkao/Hjx9bzFfi5MmTBIDOnTtHRERGo5F++eUXlV3ly5en6dOna+Zh6x78/f1VfbtJkya0ZMkSVbrkijqpHd977z1F2RMnTqTWrVtTSEgIde/enc6fP08AaNmyZSr75URGRlLJkiVVAsXS+GAtjp+fH/Xq1YsA0N27dxXxc+fOrYjbpEkTunfvHp07d44A0I8//ij6uRRH6n+dOnWihw8firnH0v1I17du3aJcuXIRAGrRogURET179owCAwPJ29ubduzYQR9//DEdPXqUFixYoMqnXLlyYrywpz7u3LlDT548UdjRunVri33n559/pgULFtChQ4cU/m5ubuJzXFycxfuUNifq1q1LAKhIkSJ04MABRV5fffWV6pm31m5EJOpix44ddqWz9cyZw6IuhZw6dYoAqHZXJGc+QU6dOpWApEkoLi6ODAaDzTKk1d/9+/fp66+/JgDk7e2t2m0wF3XSCmXu3Ll23YtcpLVp08aujiUfBCUkEZczZ06xYj99+rQiH/nDSZQk7gCQu7u7ZpnHjx+nb7/9VsSPjIwUE489xMbG0ujRowmAmHjq1q1rd3qipPoZOXKkqly5rQMGDKAWLVqI68GDB1OjRo0s1qG0YpZEDZF6F2n37t2a9rx+/VrsBsjzlsSeVnm7d+8mAIpdMclt2LCBfHx8KCEhQfP+Fi9eTEDSDoQ83cOHDykuLo6OHz8uBmmJBQsW0KVLl8R1QkKCoq80atSINm3apCirZMmSRETUuHFjApJ2XORIz9zHH39MV65cISBp51jaaR87dqyqrqT+rMW1a9dozZo1tG/fPmGbed01aNCAAFB0dDS9ePFC+G/dulXEle7bz8+PHj9+rKq/2bNnE5C0qyNH6vsAaP369bRo0SJVWq1dOAB07Ngx0TZEJHaTgaSdYGsMHjyYAIgFhha9e/emwYMHExGpFg+WkBbFcoAkse3j40P+/v5W00tlfPTRR9SpUydVuCReJVEsR5rAy5YtS0RELVu2VNTX+++/T0RExYsXF/fRo0cPzTEHANWpU8eqrURE58+fV/Rpe+qoTp06qjK3bNlCFy5cEHGePHmiucvk5+cnThjkghxQi7qHDx+K8KtXr5LJZKKHDx+SyWQSYy0RUVBQkGLBLsf8fqQdrISEBLEzO2HCBJv19OrVK3r+/Lm4ltrmxo0b5OLiIjYhcuTIQW3atKFq1apZrceVK1cq8pPbOmTIEOFnLurkQl/O1KlTVQvokydPUnR0NF24cEGMQxUqVFCklcbrCRMmUGhoqOKUQnL58uUT8efMmUOAegdRErnSOCB9PnfuHPn4+NisX1EHdsfM5KSVqNNCWgX6+/tTYmKiIsz8eMIehg0bJib+2NhYWr58uehgX3/9Na1bt05zsnBU1BH991AMHz6cmjRpotohMCdv3rwqf6PRSM2bNxfHoeZ5y1dHEiaTiSpWrEjHjh2jO3fu0LRp0wiAYsJPKdu2bSMA4qFr2rRpquQrrx9pV/TQoUO0b98+zTj2ILWpJMBs0b9/f5o9ezYR/Sfq1q5dS8ePH1fEM5lM5OnpqRCO0dHRNGXKFM12kdsuR1q9rl69Wvi9fPmSgKSj6uQiF3XfffedZn3FxsZSnTp16Pbt20REQoRKAu9///ufKs2LFy/E0as9jBw5UuzGEZHmTp/cHmsLDHn9xcfHq0SqeRwt/7///ls1UaxatYqIiPbt26cYZ+ztZ6GhobRy5Uqb8eyxMzVJzTLkolue5+nTp2nYsGGqMuXx8ubNS5s3b3a4zIkTJ1KuXLlsxpPKyps3L3Xu3NlmPMn5+/tTUFAQzZo1S9GXzEWdrQ0Dg8FAERERdtlZu3ZtcZ2YmCjE1IULFwgATZ482WY+5oSGhtLp06cVfpcuXbJ4tG8PWn1HWmxKrn379gSA8uTJk6wyzEUdUdIutvzk6/Lly+JVKnNRJ73uJN/5BiA2bHQ6ncV7sQcWdWnAs2fPVIJGQjoiWLdund35vXjxgqZPn645GRAlPWSzZ89WPaDSCiU5oi46Olr4ffrpp6ky0F6+fFm8d+csAgICiChJXMtXuSkBAJUoUYJWrlxpc7Xbvn17u/KUBktppeYIkqizxbNnzxQ7Spb4999/Vbsv27dvt1twOoJc1JlMJov1qYU0SC5fvjxVbSJKEk4lSpRIVlp7np3t27fTzp07raaV78Dq9XqL48HDhw/FUU9qAyTtpKQlaSEcbeUZFhZGX331Fb3//vtpLlrlNknvm1rj2LFjdObMGQoICKB58+ZZbHdzUZdaPHjwgF6/fq0ZlhJRlxbUqlWLypcvr/AzmUy0aNEi8Q73wYMHaceOHYrTEUfQEnWWOHv2LAGgAgUKKPylRZjUVhEREWInXHq9h0WdDdJT1FlDOsKSv0OVVkRFRVHbtm0VL+zaYsSIEVSsWDGVv7XjqzcdIOmfDGzFcbT+/Pz86OTJkw7bs3//fvHie1phMpno4MGDFieY5CIXdcnB398/1W1KKSmZZM3TpsdOmTVCQkIsTvCphTNEnYTRaLTrlZjUwF5R50h+aSHqrCG9U5hRRF16IP0zkb0sWrRIvEtpjnlbGY1GMX4ltx0z7S9KZFZcXV0B2PfN0CklX758OH78uENpVqxYIb5aQ86hQ4cQGxubWqZlKSiZ/5pvi4oVK6JixYoOp+vSpQu6dOmSBhb9h06nc+j7mRwhJd/XV6FChVS0hDGnaNGizjYhWXTo0MGurxXJli1bun1RcJcuXTBo0KBUzbNQoUJ48eJFun1Jc+7cuQGov5omK2Prq4HMGT9+vMWwR48eIT4+Ptl5a8GiLp0ZNGgQcufObfeXVmYUcufOLR5gxnEWL16cZuIvKxETE5Pl+tmpU6fw4sWLZKVt3LgxLl++nMoWvXkcOXLE2Sao2L9/f6rmt2XLFjRs2BDFihVLN2HaoEEDLF++HIMHD06X8jICBw8edOgL/q1RqVIli2E1atRAv379HM5TR2/ITBMREQFXV1fo9fp02SVjGIZJKXq9Hs+fPxdfvjxw4EC0bdsWH3/8sZMtSzsaNWqEq1ev8iKIYZIBizqGYRgmwxAfH4/ExMR0/y1bhskK8PErwzAMk2HIlStXuh0fMkxW443ZqSMiREZGokCBAqrf9WQYhmEYhsnsvDGijmEYhmEYJiuT8v+fZRiGYRiGYZwOizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCzAGyPqiAgREREgImebwjAMwzAMk+q8MaIuMjISrq6uiIyMdLYpDMMwDMMwqc4bI+oYhnEeCQkJWL58Oe+UMwzDpCEs6hiGSXOWLVuG0aNH49ixY842hWEYOzhx4gRMJpOzzWAchEUdwzBpTnR0NAAgNjbWyZYwDGOLy5cv4/3338eKFSucbYqKly9fOtuEDA2LOobJBMTExOD69evONiPZ6HQ6AODjV8YmRIQ9e/akWV9JSEhAo0aN8M8//6RJ/lmBsLAwAEBwcLCTLVFy69YtlChRAocPH3a2KRkWFnWZmL/++gsffvihs81wCOm/kDMrDx48wIEDBzTD4uPjxWCY2gwfPhwNGjRIk7zTg8wk6rZt24bAwEBnm/HGsm3bNvTs2RP79u1Lk/yfPXuGq1evYv78+WmSf0bFx8cnw4y9JpMpWUe7fn5+AJDugtxkMuHVq1fpWmZyyZCi7tq1a3B3d4eHhwf69euHhIQEEXb69GmUK1cOrVq1Qtu2bdPNJm9vbxQqVAhxcXHpVqYtxowZg61btzrbDIdYsGABXF1dkZiYmKJ84uLioNPpcPDgwVSyzD7effdddO3aVTOsb9++KFq0aJqUe/v27TTJN7nExcVh2LBhdotYSdT16tULUVFRDpcXHx+P8PBwh9Mlh/79+6Njx47pUlZm49y5c3j9+nWK8rh9+zYMBoPF8JCQEACAXq9PUTm22LJlC4KCgtK0jOSydOlSHD16NNXy2717N+rXr4+ePXs6nDYsLAxXr161O/6VK1ewbds2q3Fy5MgBNzc3q3Hi4+MRHx9vd7lpyffff4/ixYtnqPnfEhlS1JUpUwZHjx7FmTNnULlyZezZs0cR3r9/f5w+fRonTpxIN5sWL14MvV6P58+fJzuPlA6GziA8PByPHj2yGic2NhZXrlzBvXv3bOYnDVRGoxEAsG/fPuh0Ouzfv98hu6S6XLlypUPpUoo1MZpWOwvW6NKlC7y8vCyGJyQkICAgINXLPXHiBP7++28sWbLErvg+Pj7is7TadoRevXqhcOHCDqdzhOfPn8PX1xcA0mzHNSWMHTsWQ4cO1Qx7/vy5YhcmNjY2TXZFW7ZsicaNGyc7fWJiImrXro1JkybZjCstBFJKcHAwli5dCiBpx0UuFrt162bXuGWJiIgIhxaor169wpMnT2zGGzduHDp27IjffvstVdpx8uTJAJKOL3U6Hf73v//ZnbZdu3Zo1KiR3fEbN26M/v37W41DRLh48aLVOGXKlEHJkiXFdXBwMKZMmWIz36+//losDFKLM2fOAIBigyk12bVrl3jvOKVkSFFXsmRJuLi4AABy5syJHDlyKMJ37twJd3d3LFq0yGIeBoMBERERCpcSpAdLPtDEx8eLSUDO0aNH0b59ezx9+lT43blzB0WKFEmV1VdMTIxDDzoRISgoCM+fP8fTp08REhKCNWvW2CWk3NzcUKVKFZX/o0ePcPfuXQCAi4sLGjdujJo1azpkEwB0794dQNLgmpwdnNTAZDJh+/btICK8/fbb+O2332ymISLEx8drDuhp8V2Iltr74MGDGDt2LICk3TPzHZCJEyfinXfeSXV7zCfcTz75BLt377YYX2tHOT4+Hjqdzi4xbO+ObGJiolgwSJhMJnz44Yfw9va2mvadd95B9erVAaSeoEgNvv/+e7i5ueGPP/7AunXrNOOULl0adevWFdcuLi5i4jYYDOjWrRv+/fdfi2UsWLAAHTt2RKFChXDt2jVERUVBp9Nh1qxZqriPHj2yS5hoIbWNtPN89OhRHDp0SBHHnrHtxYsXqnaWM3PmTCHkhgwZgnHjxiExMRFfffUV3nvvPRHv2rVr6NKliyLt999/b3f7u7q6YvDgwXbFBZL6WIUKFSyGh4SE4Pz58+J60qRJdotOg8Fg8UjTvE6XLVtmV55AkhC05G/vRsXjx4+h0+msLkDNCQkJUeQ/depUsSC01D6PHj3CV199Zdcp3pkzZ3DkyBHs2bMHuXPnBpA0tzp6LBwYGIjQ0FCH0sh5+fIlevfujalTpyY7DwWUgXn69Ck1b96c4uPjhV9kZCQZDAYyGAzUsWNHunr1qmbauXPnEgCV0+v1dpUbHBys8Pvwww8JAD1+/Jh+//13AkCjR48mAFSwYEFFXKmsjz/+mE6fPk3Xr1+nffv2EQD6/vvvRbz4+Hi6dOmSXXXh7+9P06dPJ5PJRADo66+/FuXIMRqN1KBBA6pYsSJNnTqViIjq1KmjWRf2NL+leJK/wWBQ5BcUFETDhg2j999/XxE/MTGR5s+fT02bNiUAFBsbq8hHcoGBgXbVR1BQEAGgHj16qMIMBgO9ePFCM93Lly9p6dKldPv2beG3Zs0aAkCHDx8mAJQtWzab9bF48WLx2dPTUxE2Y8YMOnr0KBER+fn5UVxcHN26dYs2btwo8jEajXT69GkiIurXrx99+eWXVu+3evXqoh28vb3JZDKJMqtXr04dO3YkAFS8eHEiIjKZTHTz5k2L7ffy5Ut69OgRERH98MMP9NtvvynCHz16REajUeG3e/duat++PRERHTx4UPRD+b0DoPPnz9OzZ89EulevXinCb9y4QXFxccL/gw8+sHrv8vzNefXqFa1bt47++ecfEa9+/fpERBQREUHXr1+nnTt3ivRGo5GGDx9Oz58/F3kMHDiQ6tWrp7CxdOnSNm2yl/DwcLviJSYm0r59+4goqQ9LfdT8Gbl3754qrXn9SNePHj2iDRs2EACaOHGixbLl+Y8aNYp27dqlWeeS36BBg+j333+ndevW0ZMnT8hgMNDNmzdpyJAh1LNnTyJKGt8SExNF2oSEBPLy8iIAVLduXVq9erVmGdKztX79ek1bw8PDCQDNmjXL5v3In9OEhARq3Lixqj4rV66sSCt/1rSQj1EAKEeOHBbjWrJLIjIyUtEXtcbo2bNn25339OnTNcPKly9PAOitt94iAKTT6YgoaW54++23FXH3798vyv7qq68oW7ZsFueAOnXqEBHRtWvXxFym1abS/Ddv3jxFHL1eL8ZPiYSEBM05avDgwcJvwYIFijSHDh2iVatW0b179xye25o0aSLiW3pO2rVrRwDo/v37dOfOHSIiOnbsGI0fP54AUN68eenu3buqdF5eXnTz5k1xHRQURFWrVlXMT//++6/C5vv371OfPn0Uz44jZFhRp9frqWXLluTr62sxzrJly2jVqlWaYXFxcaTX64ULDAy0Kupev35NQ4cOpZiYGM1OIYm6Bw8eaD54V65cEXHlok76fODAAQJA3377rYg3ffp0AkChoaE266NVq1ZCDAGghg0bqmx4+fIlRUVFqR4ILXvl7vfff9csU56XOZJ/t27dFHm5u7uLz69fvxbxhw8frogXExNDiYmJKlsk4ZOQkEBxcXHk5eVFFy5cUJXv6elJAChfvnyqsIEDB2ravHfvXkVZBoOBAgIC6JdffiEAtG3bNgIsizqtCcFaPUt+Q4YMUdXj0qVLCQBdv35dFebj40MJCQmKsqtVq0YAqH///gSAVq9erVmmlM8XX3yhOTAajUY6ePAgFShQQGW3JChCQkIIAM2fP5+IiAYMGEB79+6lQoUKiTRDhw4lIEnAWrPj9OnTVL9+fYX/pUuXCIBYeCVX1FlrAyISQrdNmzbC//Tp06q8LLXp559/TkRJfXHVqlXk5+cn0uj1epo8ebKYAGJjY8XYMmfOHJG/JKxbt25t9f4OHTpEpUqVIgB0+fJlUddaz4iUd1RUFE2YMIHu3Lkj/FesWKFY0J49e1Z1P1Lfa9myJR0+fFgxqQD2iTpzZ/58S3GlRQAR0cyZMy2mv3jxIhERPXjwgKZNm0YAaMOGDYqynz59SnFxcWKCLVmypOiz5lgqJ3/+/Cq/qlWrKtLWqFGDAJDJZCIvLy/y9/dXtBMAOnjwoFhgS+NFdHQ0FShQgEaPHk1ERDlz5hQLjGLFitGoUaNEmdHR0YqypEWSlps5c6bVviO/5ypVqij8IiMjKT4+nt555x1FntmzZ1fUExHRixcv6MqVKzRixAjh/9VXX2n2A/O0WnYvWLCAPDw8KCYmRgjFb775RhHf1dWVgKQFtURcXJzm2CUfR81FneS/efNm8fnBgwf0ySefKBan8vHW3ElzbPny5VX3KvU5uU2S2DXvx0DSmB8fH6+6hyVLlhAAWrduHRElaYDZs2eLeE+fPhVzaqtWrSgsLEws4O0lQ4q6xMRE6tKlCx0/flwVJhdlAwYMoDNnztiVp16vJ8CyqPv2228JAJUpU0azE0uTqTTgWBpoibQ7uDQYfP3117RmzRq6ffs29e7dmwDQv//+K9KaTCZ6+vSpqIeAgADFTkflypUJ0BZ1v/zyS7JEnbS78+zZMzp37pzmfZhjK0/JnT9/3mJ8afWoVY/SA6ZV/uPHj2nevHmaYdJAC0CsHCdNmkQ5c+ZUlSMJE8lt3bpVfO7Vq5eiXUJDQ63ep9Y9Sn5Vq1ZV2WouuqS+MWjQIAJAc+bMUdyXPA8A1KBBA4u2yHemzMuVJnTJHT16VBVPGpjk5eTKlYt0Op3mvVpq33Llymn6N2rUSOX322+/0b179+jAgQNERHT27FmqUaOGWK1K8U6ePClWytbawJJN0q4skPRMhoWF2ezDrVu3Vjwn69evV4SbTCaqXbu2pg09evQQ19LOLBHRwoULqVGjRprP06RJk8Rn810LyXXs2FGzHs3duXPnbMapVKmS4nrUqFFigQOAIiIi6OHDhw4990+fPhWff/75Z9WzZu4qV65MkydPVvht2LBBcWICgAYMGEDFihVTtbunpyctXryYbty44ZCd5s9HQECAYg4wD5eLwr59+yrC3dzcxPXx48fF5+7du9ssv3PnzhbDHBF11apVI6KknXjJr0uXLipRZ95Xjxw5Ij6PHDlSfO7QoYP4LJ2uEBE9f/5c+Pv7+1u9N/lJ0dChQy22j4S0cWHu36lTJ+EniTqTyUQ9e/bUzE86Ffrnn38oNjZWLFZtObmo8/T0pGHDhondPK26k7v//e9/4vOsWbPE57Vr1xIRifF906ZNFBwcrErfpk0bVX9Zvny5Xe0v+oFDsdOJTZs2UZEiRcjDw4M8PDxoy5YtNGrUKCIiWrFiBTVq1IiaNWtGU6ZMsTtPe0WdVmciSjoiA5JWu7YGBq2wiRMnEvDf9neuXLmEqJNv5//5558EJAm9ihUrEgDFYOGoCwgIsCseEYnBjIgUA5bk16FDB6pRo4ZmZ7TmtAYUa858pQZo74Sa13t8fDxt3LjRrodPenht2RIZGWlz0JLa0NxPPrGZ22ptcQCA+vXrp+h/VapUSXYfkMr18/MTu5iWXNWqVSlXrlwqf0nQAVANurYEr6POXHhqOfkqWKutrU2SKa1H+Y6LuZPvBIwcOVIh6rZv305ERH369FH1h7Sw1V6XN29eq+EVKlSwWOdp6Vq0aEHAf69FWHLmz5l8d9Jet3r1avL19bXa7nLhY+6spbXHeXh4WAybNWsW/fXXXzRmzBgCkhYRQUFBlJiYSBEREeJ4H0h6FUM6gty9e7fI4+2339a8J0dsbNu2LS1btizF7Wqp3CtXrtCmTZsUp2VA0omP+a7Y8OHDKTIykq5cuWJ3uS4uLnbFk0SdrX6n5aQ20nLye1i1apVmnKZNm6rGrgEDBpDRaKSFCxdSXFycpn6RkyFFXVqQHFF36NAhIiIaN26c8OvVq5fFRktMTKT79+/b3QGkwT0wMJACAgLo8OHDYsK4ceNGih8eAJo7VLYeNPkqTCvcliBJKxcQEKBZL4MGDaJ169ZppjEajRbzK1KkiF3lrl27Nln2ai0ATp48SX/88QfVrVvXZt+QtvzLlSuXYlF35syZVGsH8yN36QgpPZ38fUHJeXt7p0vZ5kcxttpc7jZt2qS4LlSokOJYKSM78yPWjOLMd9ZsLVyS4+Tjn7OdljiR2yftjMmP9bSctbHRme7dd99VXEunU+auY8eOincmU7N+zU+87HXWFnz2OPNdc3NnfuysBYu6/0dL1Jk/LLbcwoULU9yhLHVgZzv57lzp0qWdYoPWkSU7duzYpbVzZB5whpO/diK5tBC37Kw7R0+lHHVjxoyxqXVY1BFp7kxJ7u7du3ZX+IQJE5zeqdixS2/33nvvOd0GduzS0pm/1pHRnCMnROwyt7OFjigT/G5PKhAREQFXV1fo9XoULFhQEebp6YkOHTpopuvQoUOqfrM3wzAMwzBMcrAl2TLklw+nN9a+JZoFHcMwDMMwmYEMK+qmTJkCd3d3DBw4UPH7b4mJiRg2bBjc3d0xYcKEVCkrpb9DyjAMwzAM42wypKjz8fFBcHAwzp07h5o1a2LHjh0ibP/+/ShbtizOnTuHmJgYh352xBKO/iwIwzAMwzBMRiNDirqLFy+iffv2AICOHTsqhJu1MDmO/PZrXFxcKlrPMAzDMAyT/uRISeLXr1/j77//xsOHD1GqVCkMHToU5cqVS7FR4eHhKF26NICkH0wOCwtThEn/6GAeJmf+/Pn4+uuv7SovNjY2hRYzDMMwDMM4F4d26kqXLo3Q0FAAwOPHj1GzZk0sWLAADx8+xF9//YXatWvj/v37KTaqcOHCYmctPDwcRYoUsStMzowZM6DX64ULDAy0WB7v1DEMwzAMk9lxSNQFBwfDaDQCAGbOnInq1avDz88Pnp6eePToEdzd3TF79uwUG9W0aVN4enoCSPrv0xYtWtgVJid37twoWLCgwlmiZMmSKbaZYRiGYRjGmST7nbpLly5h9uzZcHFxAZAkor788kt4e3un2Kh69eqhZMmScHd3x927d9G7d2+MHj0aANC1a1cEBgbC3d0defPmRbNmzVJcnk6nS3EeDMMwDMMwaUXx4sVtxnH4nTpJABkMBpQoUUIRVqJECbx69crRLDX5+eefFdd//fUXACBHjhz4+++/U6UMCf5KE4ZhGIZhMjJVqlSxGcfhnbq2bduifv36iIiIwIMHDxRhAQEBeOuttxzN0ulY+/LhzMKwYcOcbQKTxalTp46zTcgyrF271qH4Z86cSRtDmBSTK1cuZ5vAZAG+/PJLm3HsOVV0SNTNnTsXvXv3Rvfu3TFlyhRx9Cqxf/9+uLu7O5JlhqBPnz7ONsEiDRo0sCterVq1kl2GtfcgLf0jir188sknKUpvL1u3bk2XcjICefLk0fTPly+fxTRz585Ncbn9+vVzOE3FihUdTrN3714cOXLE4XTJwdJxRqNGjdJ0LBs6dKhD8fkVESAmJgZnz561GN6xY8dk5RsQEJBckwAAf/75p8rvxYsXKcozPfnwww+xePFi3L59O13LXb58earlZc+7/MkZi9KLly9fYt68eQo/re/PzZHDjsNVm78Om0XQ6/UEgPR6vWb48+fP0/yHeN9//32H0zRo0EBx3aZNG814//77r8283nnnHZXf/fv36erVq1Z/PFjLv0qVKhbT5M6dW3wODQ3VjHP06FGrthYqVMhiWN68eQkAzZs3jwBQo0aNiIioe/fuyWqX7Nmz0969e1X+JUuWTPM+kRy3atUqWrRoEZUsWVLRPuZ9Rd6G5u24fft2q2X89ttvKr9vvvnGYVsPHDjgcBote7Wcpft1xFl6ns6dO0fnzp1Lsza0dH9ubm7i/oOCgoR/QkKCZvwJEybYXeZnn31GFy5csBi+cOHCNLtfyQ0dOjTZaePj4+n8+fMWw22NKZIrXbo0ERFNmzaNWrVqZVdfs+bWrl1rd/va6/z8/CgwMNBieM+ePVOlPZo2baqYB0eMGJHiPH/88UdasWKFzXhGo9Fi2I4dO2ym//zzzwkAFS1alIiI6tSpYzV+hw4dUqXOrLnk1p/EyJEjhZ/JZKKHDx8q4nXt2tWm1mFRJ0OrssuUKUMXL1602ShyUeXp6UlHjx6lGzdu0JAhQ4R/586dxedZs2bZ1dgeHh6K69evX6viTJs2zaL9kouNjaVx48ZZ7EybN2+22Nnk18uXLycAVK9ePVXc+fPn05MnT+jVq1eK9D/99JNmvtmyZdMsMzAwUPN+6tSpQ5GRkTR16lQRD/hP1FlrR2uuRIkSmuk+/PBDi2nq1q1LI0eOJB8fH/rwww9p586dIuyzzz4Tn6V7XLp0qfBzcXGxak+xYsWshq9atUrzfhs2bEj169e32MaWrrWct7e3yu/58+eKhYmPj4/VPBYuXKgqZ9OmTZoC2pq9llyLFi1UftWrV6dDhw5ZTefm5iY+yyfHihUris83btxQCaB9+/ZZzLNMmTLUrl07xT106dJFM+7UqVNV95cnTx66cuUKvX79WrNtteqjf//+NHfuXM0yxo0bR5s2bVL4xcXFWazX4sWLExHRxo0b6ffff9eMY2mBZsl5eXkprrdu3Wp1Ii9XrpxV/4SEBM3xT3JHjhyxak/z5s0JAH333Xd2jf1y9+mnn1oMkwuQIkWKUKFChRR5Ll26lGrUqGE1f3nfk9rbml3yfvv333/b3SYlSpSgokWLimtzUWcymVRpLPWx+/fvi8+1a9cWn5csWSLys7aIkO7PfJyV6s/Ly4veeecdUXfLli1T1NOWLVsIAP36669ERPTee+9ZvXd751zJyZ9nubt8+bL4PGbMGAoMDKRffvmFgCR9UbVqVRFeoUIFzTzy5ctHNWvWJAB07949UV/x8fEW+0DDhg3p5cuXqr6r6ss2Y2QR7BF10iDcu3dvAkCtW7em6Ohoi7t4UqeSd1B5YxCRQtR16dKFZs+eTQA0hU5kZKQQcaNGjaKzZ8+K1YhWOZKLiIgQ/kOHDhU7WObppE69f/9+WrlyJRUpUkRha/bs2Qn4T1TMmTOHiIgWL14s7JfKmTZtmqoMo9FotQ3M7bH0EJrHX7RoEcXGxgr/uLg4Onz4sIizePFii+VID4NWOc+ePRODBRGJXaX+/fsTEdG3335rdUCSc/bsWREm/yztOF6/fl2IOenvixcvFAKvWrVqBIACAgKEMPntt9/o8OHDBICmT59OgHVR17ZtWwJA27Zts1iflupJvsrUWsho5WNtUJT6g9xPEi0XLlwQi5yePXtSs2bNCACFh4dbtA8AffXVVxQaGkp37twhd3d34V+iRAkCQBs2bCAiolKlSokwnU6nELvyZ1IS22vXriUiosTERDp+/DgREYWEhCjKjomJUexCy53UJvK66dq1KwFJiw6tevzzzz/pl19+IRcXF7pz546qT9mq602bNtFXX32l8Ltx4wZ5eXkRESnGJyBJFBERHT9+nPz8/BRh0sKGiMSibOXKlSJ848aNot2stbnknj9/rrLZWrv++uuvFBwcrPKPiYmhI0eOUJkyZchkMok8Nm/eTD4+PlSkSBER99GjR1ZtevTokWYda9m0e/duApKEYP/+/RUTub+/v/gcHBysEKoGg4EMBoOq7Szd95w5c8jX15cSExNt1tW8efPEcykXdebxYmJiLNbBggULFPE9PDxUdbFnzx6FACIi0T+lRWpMTAwFBASIOJZEnaX7lvKNiYmhxMREunDhAj148IAAkK+vryJ9+/btCUia56TF5pAhQ2jr1q0EgH755RciIlq1ahUBSQss87JiY2M1Rd3gwYMtLr6uXbtG48eP17RbGm+0kPrx999/T0T/aQ+5O3r0KPXv358A0OPHjxXppQ0TiQ0bNpBOp6P4+HjN8szJcKLu6tWr5ObmRi1btqS+ffuqbuTUqVNUtmxZ8vDwoDZt2tidrz2iLi4ujh49ekQff/wxAVAMtHIFLW/cffv20aVLl4iIaOjQoWIVLjFz5kwRv2vXruLY68cff6T58+crdsiI/tsxu3r1KhERRUdH07p16yw+wM2aNRNlPXnyhOLi4lSirnPnzqIOvvjiC0pMTNS8/ydPntClS5coISGBoqOjLdZTSEgIJSYm0uDBg6lq1ariIbKFed2FhoaSj48P5cyZ0+qAtn79ept5WyoHAI0ePZqAJGEl+RUuXFiVzmQy0bRp0ygoKIiI1KKuSZMmKhslrly5IsLOnDlDQNIR9ahRo0TZfn5+dOTIESHkiIg++ugjApKOWxITExWrNnOkI42VK1dq3u+ePXvELlRcXBxVrFiRBg4cqIpnqZ42btxIffr0IQB069Ytzf5ORFSgQAHNvggk7RqcOXOGpk+fripnx44dCruHDx9OQNJKNSYmhl69eqUI15qkX7x4IcKlBZCWIAoLCxO7pzqdTnE0N2TIEHEU88cffxAAWrNmjWadS8eezZs3JyKyuGshibp3332X+vXrR0T/vQ5gLnAcQXrVgIgUwkJ6hiVRN2HCBDp06JAirVzYA1CIIiKigQMHirA///xTs3wtm4H/dqCzZctGlSpVIgAUFRVlsY/ly5dP5QdA7BpphdlTV3JRR0RkMBho0KBBos2kPiLtUlpCXub8+fPp5cuXBCSJO6L/6n7cuHFEROTr6yvGfaKkeWvYsGFW606+Q/3ZZ5/R06dPFfGlRbVWfUhIJ0I9e/akvn37UocOHVT2E6l33Pr27UsTJ06kyMhIRXzpVESLhQsXinnI3EaipGdDEkSLFi0SeToi6uxBLuquXbtGQNLO6ePHjwkA3bx5U5UGAJUtW5a8vLzEhoCWqLNm461bt+jp06cKv99//52IiEqXLm31Hm7duqXY5NAqUxJ1/v7+irTmos5RMpyoe/78uRAUM2bMoG3btinCT506RZMnT7aZT1xcHOn1euGkozprok7i8ePH1KNHD5WgTE6nNBgM4hika9eu4ojgr7/+UuVLlPQw3rp1S5XPmDFjqHbt2kSUNJBJg7n59jkRiXefJk6cSABo5syZdtmaXGx1cAnpPufOnavw1+v1imMV8/iWRKi1cuTv1/3xxx9iQpNWdxUqVLCZj7mok7/XZI40iLq4uAhRN3XqVCHqfHx8RFxph4noP1Fn/mBrERwcTFWrVqXg4GCF/4ULF4RwkHaezCdwoqRJRT5Iy48hgSRRl5iYSMeOHSOiJPEuf29NYsOGDdS4cWMiIrp9+zbt2LGD7t27pxBccizV2bBhwwiAVSErpf3f//5HACgsLEyEtWrVigBYXYAA/+0wR0REEAA6fPgwmUwmMhqNYtflyZMnmumlHZSWLVsKP39/f9U7bvIJXqJHjx4EQCwSHJ3MiJJ2SKRdRCkP6aiUiOjgwYMEJB2FmRMREUEdOnSgZ8+eWexf0jhy8OBBzXAtm4Gk91APHjxIvr6+FBERIfqkXIQSJe36nT17ViEe5PUmtaFWmD11JR3xSkdwRCTe27t7964QddLumSU6depktUxpgfHHH3/YtMn8Xsz9Bg8ebDFNrVq1rIo6aRdoxIgRmmXJFziSn4+PD8XExCji+/v7U0BAgN33IiEXdRLSWCOVt3TpUk3bAFDlypUdfg6kY1BzUWeN6OhoxekO0X+irnz58iobfHx86MGDB+LEQB4mLQilkysisnsjQ0JrfvP29qbixYur7JROFZJLhhN1cubMmUO7du1S+J06dYrKly9Pbm5u4p0dLSytqO0RdZbw8fFRvGtkL1KDjhgxgkwmk5g8Jdq3b08tWrRwyBZJRPz444+qMEnUTZo0iYCkdwnSknXr1lG5cuVsxrNVb5ZEnaMkJiYqVqrmA/HmzZstTuJyJFG3evVqun79uk2boqKiKCYmRlPU3bhxQ8TT6/V0+/ZtIiIKCAigESNGOCxcUxPpnqSjSzndunUjAKoVuyNoTQRE/x3lRUVF2bQtNjaWTpw4oQiT/slB2n3Q4uXLlzZ3aWyxYMECzQnwxYsXFBkZKV5/MKdXr14EJL1vS5T8/izHx8dHJepTMqZJos58l0/CkjDJkSOHZnxpMWUNKc/GjRuTXq9XLHguXLhAXl5edOLECdq7d69jN/P/SKLu3r17dos6oqRdVmu2379/X3OxZAmtujMYDFZfU/H29havf1jKY9OmTao+r9UmqdHfzBk7dqzFPM1fZZCQdoT/+OMPiouLowkTJlCNGjXsLlMSdZGRkeKf+myJOi0kUXfs2DGLdSON1/LTIWkjRr4ZIb3n6QifffYZVapUyWY8afczuWRYUff06VNq3ry5arcsMjJSvLfQsWNHi5NNSnbqbDFo0CCqXr26Q2n27t1rdfJKDvHx8ZqDjCTqpPfxvvzyy1QtN7mkl6gzT2/PLpgW0ruE0jtWREmDrvnusTlyUffXX38RYP2Yw9nYI+rseUHXEi9evLBLRFuzTQvpP3RTKtrSCukFcPk//rRt29bJVinx9/enSpUqqf5BQ6J58+ZUsWJFhR8Aat++vWb82NhYsTNpCalNre2wpgS5qOvYsWOqiTpHSQ1RZW8eAChnzpwKvz///DNZ4scaJpPJorA1Go20YsUK1QL1zz//1BR79pJaok56FcqaqPPz86NWrVqp3uEePHgwhYSECD/pmyTSgrCwMDpw4ECy0zv8ixKpRXBwsOb3w+3btw85cuTA4MGDsWbNGuTMmVMRnj9/fvG5W7duuHnzpuZ3ueXOnRu5c+dOfcMBrF+/3uE03bp1S3U7zOvGHCICAGTLluxfg0tVvvnmGwQHB6d7uRUqVEhWujFjxqBAgQJo06aN8GvSpAmaNGlidx4jR47EBx98gLJlyybLhvSgZs2auHv3rmbYu+++i3379qXoWbLnp22Sw4QJEzBmzJg0e85TyuLFi1GrVi2UKVMGABAZGZnhbK1QoQIePXpkMfzChQsqv8DAQBQtWlQzfp48eVCqVCmrZfr5+SF//vyq7zlNC9asWYOdO3c65QuCT548iSdPnqQ4j4iIiGSllX5aMzWx9n2J2bJlw4gRI1T+Q4YMwYMHD9C/f/9klSnNY6mFtXuoWLEiTp06pfDLnTs31q1bp/D77LPPMGXKlFS1S6Jw4cLo3LlzstM7TdSVLFkS58+fV/kbjUb06NEDc+bMQdWqVVXhERERKFiwIADg3LlzGDNmTJrbmtlo3rw5AKBSpUoAMs4Xl9r6gsi7d++m6k+2HThwQLEIcJScOXMm65c6pEFIp9NBp9NlaEEHJInX8ePHa4Z98803GDBggHjm0psRI0bg1q1bmmE6nc7iFzFnBIoVK4ZZs2aJ65T0xYxESvtzen4JbMmSJfG///3P7rh37txJtbJbt26drnlIi4eMRt68efHLL7+kOB9pPAXs/BJeM6QvZ7e1GWIPkydPxuTJk1OcT1rgNFFniW3btsHLywuRkZGYN28ePv30U/Tv3x+jR4/GX3/9hW3btmH58uXIkSMHWrRogZYtWzrb5AxH27ZtERcXh+joaHz99df46KOPnG2SXdSoUSNV80vJaiclSDuDWaFv5siRA7Vr13Za+StWrHBa2UzmJLk7O1u3boWXl1cqW5M+HDlyJEW/KpSRcXd3x/Hjx5EjRw689957mDt3Lj7//HOH85k0aRIKFy4Md3d3vPXWW+jVq1fqG5sB0FFq721mUCIiIuDq6gq9Xu+0XQfGMQ4fPoy7d+9m2BWRNRISElJlRZge/P777xg/fjw2bNiAgQMHOtschkkRQ4cOxbp163D//n1Uq1bN2eYwKcRkMuHly5coWbKks03JFGS4nTqGkejUqRM6derkbDOSRWYRdADEu00Z7X0vhmGYbNmysaBzABZ1DPOGM3ToUBgMhix7HMEwDPOmwKKOYd5wcuTIgbFjxzrbDIZJFaR/nsko/yDGMOkJizqGYRgmy7BgwQJUrVoVVapUcbYpDJPu8D9KMAzDMAzDZAEyxrfSMgzDMAzDMCnijdmpIyJERkaiQIEC/K4FwzAMwzBZjjdG1DEMwzAMw2Rl+PiVYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC/DGiDoiQkREBIjI2aYwDMMwDMOkOm+MqIuMjISrqysiIyOdbQrDMAzDvJEQEUwmk7PNyLK8MaIutQkNDcW2bducbQbDMAzDZBrmzJmD7NmzO9uMLAuLumQyePBg9O/f39lmMFmY27dv49ChQ842wynExMRg4MCBCA8Pd7YpDMMkg9evX6NMmTJ49OiRwn/Dhg1OsujNgEVdMgkJCXG2CUwWp3bt2ujcubOzzXAK+/fvx6ZNm7BmzRpnm8IwTDK4dOkSgoKCsHHjRgQFBYk5U6fTOdmyrA2LumQi/cMF/+MF40xevXrlbBPSFH6+bBMeHq7aDdEiNjY2HaxhGCU6nQ5lypRB6dKlnW3KGwGLumSSnpNNv379cPjwYZvxgoODkZCQkKKy9Ho9jEZjivLIqERHR2epezt9+jSKFy+OS5cuKfyJiI8tnUxYWBi2b9+eLmW5ubmhSpUqVuOcPn0aLi4uuHPnTrrYxKQ/9+7dg06nw4sXL5Kdx0cffYQLFy6kij3mc2RK56Y3CW9v72T/M0mGFHXXrl2Du7s7PDw80K9fP0VnOH36NMqVK4dWrVqhbdu2TrQyifQQd9u3b8egQYOsxjl79ixKlSqFsWPHpqisQoUKYfLkySnKI6OSP39+5MiRA3q93tmmpArSBP3gwQOF/9KlS1G4cGFEREQ4w6wMS3BwMNq0aZOq/wFPRDh48KBqHPj444/Rr18/xMfHO5Sfj48PevToASLC2rVrcfv2bZtp7BFq3t7eAP7rK0SETZs2vTETbXx8PPr27Ytnz56lW5nLly9H165d07yc48ePY+PGjdi1axcA4MqVK8nOa/PmzRg6dGhqmQbA8ePW2NhYFC5cWLVYBYDOnTsL0Xn37l2751+j0WjXuP/kyRPcunXLIXu1ICL89ttvqsX18+fPYTAYrKa9desWmjVrhj///DNZZWdIUVemTBkcPXoUZ86cQeXKlbFnzx5FeP/+/XH69GmcOHHCYh4GgwEREREKlxrcuHEDcXFxNjuTr68vPvnkE0U8nU6HhQsXJqvcsLAwDBgwAK1atdIM9/DwAJD0gMvZvn27yu/MmTPQ6XQIDg7WzOvAgQMO2WYymRT3GRcX51B6g8GAjRs3imsiwrx58xAYGOhQPtYICgoSn5M76D169Ag6nQ6HDx/GmDFjQESIi4tz2tfkWOqDp0+fBgBNu4xGY6otRF6/fo358+fbnV9YWJjdglqaCDZu3IjQ0NBk2Xf06FEkJiaK61WrVuHUqVM4deqUXemjoqI0d3YPHTokBubdu3ejS5cu2Lt3ryLOuXPnAAC//vqrZt6bNm2CTqdTDfCff/459u7di/j4eAwfPhz16tWzy1Y5ERERmDVrlsJ26bP0X4fe3t4YOHAgFi5ciEePHmnu7C5fvhw3btxwuPzkcu3aNezZs0c1ngDAixcvoNPpVGOZNWJiYvDy5UsASWJ5x44d+Pnnn1PVZmuMHj1aMZZu27YNvr6+mnHPnj2L999/P1nltGvXzuai/9ixY4pnIT2wNC6Yi7xmzZph1apV4jowMBDh4eFYunQp7t+/j3379om8Dh06hP/973949OgR3n33XUyePBkxMTE2FydTp05FoUKFNMPk2qBChQqoU6eOuB40aBC++OILq3lr4efnh0mTJmH69OnCb9KkSShdurTNtpLGu6dPnzpcLpBBRV3JkiXh4uICAMiZMydy5MihCN+5cyfc3d2xaNEii3nMnz8frq6uwpUrVy5VbKtXr55iN0w66jIYDPDy8sK6desAAOPGjcPq1asRFRWlSL9+/fpkl71lyxacOXPGahzzLdt+/fqhXbt2Cr+DBw8CgMX3cPz8/Bya+LNnz47Ro0cDSFrp5M2bF1u2bLEopFeuXImzZ8+K6wULFmDQoEFiAjEYDJgzZw6GDBli9wRsjdjYWJQpU0YzbM2aNRg8eLBd+Zw8eRIA8MEHH+Cvv/5CXFwc6tevj4IFC6bYRjlhYWGiLC3u37+PIUOG4LPPPgOgHiSla/M2jI+PR44cOZK9AjTPb9q0aZg5cyYePnxoV/qiRYuiUKFC+OWXX+wu8/r16xg+fDgA4LPPPkOnTp3sSnf79m107NgR//vf/zB37lx8+umnCAsLU8SJiYnBiRMnsHfvXty7dw9A0gDfqlUrBAcHo0CBAsiRIwfOnz8PAEhMTMSAAQPQuXNnzJkzB8B/A7B53pKgfvz4MYCk3VO5cJLGiZiYGE378+TJI8qUs3TpUuTPn9/qvc+fPx/ff/+9sBv4b1yQRJ1Ubnh4OKpUqQJ3d3dVPqNHj0a9evVgMpnSZXe7YcOG6NmzJ7Jnz65qZ39/fwBJC874+Hi7dkDbtm2LEiVKALAsMEaMGJGsF/cTEhIcXsz1798f9evX1wwbP3681U0KOUWLFsWnn35qMdz8fh4+fIj27dvjhx9+sCv/1Fr0SfnYql9vb2+MGjVKXEvxY2JiUKNGDXTv3l2xsWM0GoVY/+2335AvXz7kypVL1R4Gg0HYsH//fs2yT58+DVdXV9y8eVMzfOPGjfjxxx9V/kajEVOnTrW44JSeW3k//euvvwCoN17MsbfeLJEhRZ1EQEAAjh8/ji5dugi/hg0bwtfXFydOnMCRI0dw7do1zbQzZsyAXq8Xztauz+vXr20+pFJl37lzR9HxCxcujHbt2qFFixZi69rSxCq/fvbsmeroDEjqjA0aNMDdu3et2qNFQECAzTiSbeYCUG6buXgMDAzEq1evEB0drfCXOvyKFSsA/Df4DhgwAK6urqJzX7lyBcWKFUNkZCRGjhwpdhaB/yZE84H69OnTaNOmDRYvXmzxXs6dOyfKtMSCBQsshn388cd2/4u9eVvqdDohBiyRkJCAY8eOWY0TGhoqdryICEWLFrX4asGdO3dQo0YNq4sDqX3LlSsHf39/7NixAwDErpD5zjcRqVa6+/fvR/HixcX1d999h2zZlMOF1F7WJoHNmzdDp9MpXtKfMmUK/Pz8LKYxRxIUS5YswZEjR+Dn56d5jEZEYkdWWkwtX74c33zzDf7880+xaybZO2nSJLz//vvo0aMHatasCQA4ceIEzpw5g1KlSol8pZX6+fPnsWXLFgCwuMstIbWB0WjEv//+i3HjxmHSpEkW49nL3LlzFc+guZgEIES2vF0kERoeHq5Z99aOeb/55hsUKlQIRASdTqdY1F66dEnzq51iY2Oh0+ksPltEhNevX1ss8+jRo4praZETGxuLihUronDhwhbTSkhHzlJ5gLq+5TtEtvDz8xNzxIcffqhYzIWFhQkBb42YmBg8e/ZMtQsjiW173qMKCwsTCzP5CYSE+fMoPQv2Hj2ntaiz1eelcUY+H4SGhor8TCaT5q5jZGQkoqOjxXiWJ08eMXdIac03GqSNhPv37yv8g4KCrB5DX7t2DT///DPmzZsn/AwGA3766ScYjUbRjvL/3jev1/nz51udu7KcqIuIiMDgwYOxZs0a5MyZU/jnz58fuXLlQq5cudCtWzeLCjt37twoWLCgwlmjSJEiit2c4OBghUC6d++eGCzllS01lHTcItkuDfpffvklRowYoSiLiBATE4OyZcuiWrVqwl86FvTz88P169ct7mj4+vpCr9ejXbt2dm/RhoaGonXr1vjtt9+EECMiGAwGlCtXDpcuXVIMKK1bt1akf/vtt1G8eHHkz58f9erVEw+D/AuYdTqd6qEpX748AKBly5YICQlRtcOOHTvEjqulTjxhwgQAwKJFi/DkyROcOHFCiPmWLVuiUqVKivgTJ05UPGz//POPIvzp06do0aKFYnL85ptvxA6mJewZ7GbNmoW9e/eiatWqGDZsGIoVK4b27dtb3c2aOHEiZs6ciYCAAFVfMadWrVoqv4CAAIUok9djpUqV0LdvX83JX+Kzzz5Drly5EBQUhOPHj4OI8PXXXyv+s3b58uUAkuqyffv2mjslJ06cwKpVqxS705IIatCggSKu+Q62NeS7ugBQuXJllC1bVlwTEX788Ue0bNkSZcqUwfjx49G3b19VPuaLGfMJUevYDwC8vLzg7++v6p/Lli3D5cuXhQ1SHnfv3lXsNkhCQL4rZ2nCM79XAPj777+h0+mQmJgo0m3cuBE3btwQO+RAUp3qdDrs3LkTwH8LLTmDBg1C5cqVVf4S8+fPR/v27dGiRQvhJ31X4r59+wD8t+MAACNHjtT8EnZJiA8ePBienp6KsJ9//hnZsmVDkSJFRD9wc3NT5SFvQ+leXr58iWfPniEmJgZGoxFeXl4W70UiOjpaCK7ffvsNDx8+hK+vr+KdLZ1Oh5cvX1o9oqxcubI49ZDeX/Px8QEAvPvuu6hYsSJq166t+keFgIAARV8rW7Ysypcvj7CwMNGekqiTXp2wl6ZNmyruwZy4uDiFmIuPj0eBAgWg0+kUY82kSZPEqYjRaETjxo3h7e2Nb7/9Fq9fv0ZUVBTi4+NhMpkwb948izu3mzdvVs3J5nbJd7f69eunCKtfv744gZA/i9KCF0h6l07rHwf79euH/PnzY/Xq1WJ8ko6/pWfe1dUVOp1ObKZImxexsbGK+W/evHliN10LqZ/4+vqiZ8+eMJlM+OuvvzBt2jQcPnxYkZenpye2bNmi+MaMr7/+GjNnzlTdv/l9JwvKgCQmJlKXLl3o+PHjqjC9Xi8+DxgwgM6cOWNXnnq9ngAo0ssBQACoRYsW9N1334lrIqIrV66IawDUtGlT8Xnw4MGKMEvOZDIRAKpUqRItXrxYEUZEdPz4cQJAe/fupdu3bxMA+uSTT6hgwYKa+dWqVYsA0Oeff66wXypr8eLF4p4BUK9evVR5nDp1ip48eWLV7sqVK6vy17LDmps1a5amv7e3t+L68uXLREQUExOjiivZ0KBBA5WfeTc29+vZs6dm+SdPntQsJygoiAIDAxV5/vPPP7RkyRKL9zhq1Cir9eTj46PIb//+/aIfdezYkQBYbAutezN35cqVo0OHDhER0YcffqgKv3XrFi1YsIAAUPv27YmIyMfHhw4dOqSKO2fOHPE5OjqaiIjefvttRZyLFy9S6dKlCQDdv3+fIiIiRNjIkSOFvd26dbNYHzExMbRt2zbN53Hr1q2K+OPHj1fl8eTJEyIiOnjwoM0+CICyZ89OAGjnzp1ERKpna8yYMTRsAoSlAQAAH51JREFU2DDNtM2aNaMzZ86Iazc3N0X4woUL6a233qJ+/fpZtUEaf9q1a6e4ttW+kitUqJDiul69euLz3LlzVfHDwsI08x09erTKLzw83K56lPfJ9957j4CkMSc6Opp69uxJefPmpV27dini9+nThwDl8wuAJk+eLMZGLRcbG0tERBUrViQAiv4k9efp06er+o/BYBDx2rZta/d9jR07VrM/yvuFPG8AtGPHDlVfsKctAdDSpUuJiKhJkybCr3fv3rRq1SqVDU+ePKFvvvlG0QbyvPLmzUsAaN++fXT06FGKj4+nrl27Kvp3UFCQqh3j4uIIAOXMmZMAUOHChQkAlSlTRtHHXFxcaO/evSLtvHnz6PXr17Rw4ULRTvJ89+3bRwBU86nW52zZslFoaKjFelq+fDklJiaKaxcXF4txBw4cSFFRUQSA3n//fSIi0ul0Fp8byU2cOFF8HjBggKqe/P39qWbNmqTX6+n06dOK8D179tCnn35KAOjvv/+mGzdu2NX+9erVIyKicuXKUcOGDWn48OF04sQJAkCtW7fW7Iu2yJCibtOmTVSkSBHy8PAgDw8P2rJli5g0V6xYQY0aNaJmzZrRlClT7M7TXlFn7q5evUozZ860e1Cw5IxGo8Wwly9f0rp16wgALVu2jPr27UsAqFq1ajbzHTJkiMr+e/fu2WXTyZMn6enTpzbjWauf1HTDhg2joKAgunv3ripMeojr1Kkj/FxdXRU2arVl6dKlqXv37prlLVy40Oq9EhF5enrS9u3b7bLfVj29fv2aiJIGB7m/NIhay5eI7FpAEJFqQDJ3HTp0sLtNz507R0RE77zzjsK/bt26ijhaadetW2ex7uVC29/fn6Kjo2nChAlicmjcuLFN227fvk0JCQl29y9p0pKEpCN9s1KlSnT27FmL4fY8q5K7efOmsEVyx44ds3uB6KirXr26XfGkxaQ97tdff6VatWpR/fr1CQA9fPgw2fb5+PhYDZdP5nKRYp4HUdKGwNdff60pcO11f//9t+j3WmOKrecVsH/MtCQ6pDzkeHh4KMKXLVummadk35dffimEHpAk6p4/f65q819++UXhlz9/fgKgWshZc4ULFxbiEEgS64sWLSIANGHCBM001uZEc/fBBx841IaSqNPpdHTr1i270li739jYWPH5+PHjYhNGclu2bFFcjx071m5bzevHfFFtMBiIiOjVq1fiszUypKhLC5Ir6lLLyQcmLScJOUsPqjUXGBiouJavpqy5o0eP2hVPWjlkBFe8eHFNfyJSrGLlTlpx2uPkfcHWLqa1tFpu165dyeprkhi0N760I2XJlStXTjEAW3OHDx8Wu0pp5XLlykVTp04lIGlCPXbsWJqUkzt3bsV9OZr+wIEDaVoPzna5cuVyOI2081asWLFkl2t+cmHu5ONZq1atLMY7ePCg3WOaPe6HH36ghg0bUsOGDR1Omxpzio+PD33yySf01ltvUXx8vMPpK1WqpLj+9NNPaefOnap4+fLlS5P+ZMslp17tddImCQDauHGjXWnKli1rMUwuDLXmaPM5xt6FlD2uQYMGoj8NGDDAptZhUff/pHUHNj9Oygju/fffd7oNqeXkR80pcfK+4MhqC4DieM6Sa968ebLsGjp0aKrWV40aNZzeZuntsmXLlqL05keu7DKWmzRpkup411lu1apVqZrftGnTUpxHly5dnF4vmdVdvnzZofiObCQ46myh+/9JLMsTEREBV1dX6PV61cv6ly9fRpMmTZxkGZORqFatmsXvkmIYhmHePN5++227vlkiPbAl2TLsf7+mJ458vQKTtWFBxzAMw8ix9SsQGQkWddD+GgGGYRiGYZiU/J5uesOiDsn/OQ6GYRiGYZiMQoYVdVOmTIG7uzsGDhyo+KLTxMREDBs2DO7u7uJLaVOKPd/izTAMwzAMk5HJkKLOx8cHwcHBOHfuHGrWrCl+5ghI+vmismXL4ty5c4iJibH4jeIGgwEREREKZ4k35H9FGIZhGIbJwjgk6nx8fBS/b7dhwwa0aNEC5cqVg5ubm/hJoJRy8eJFtG/fHgDQsWNHhXCzFiZn/vz5cHV1Fa5cuXIWy+OdOoZhGIZhMjsOibpPPvkET548AQCsXLkSo0aNQsOGDTFr1iw0atQII0eOxOrVq1NsVHh4uPjaEVdXV8XvVloLkzNjxgzo9XrhAgMDLZb3/PnzFNvMMAzDMAzjTHI4EtnX11f8ePqyZcuwcOFCjBo1SoQ3atQI3333HT7++OMUGVW4cGFxXBoeHo4iRYrYFSYnd+7cyJ07t13llSpVCnfu3EmRzQzDMAzDMM7EoZ26vHnz4tWrVwCAZ8+eqb6wt0mTJorj2eTStGlTeHp6AgCOHj2KFi1a2BWWXL744osU58EwDMMwDONMHBJ1nTp1wh9//AEA8PDwUPwDAwBs27YNlStXTrFR9erVQ8mSJeHu7o67d++id+/eGD16NACga9euCAwMhLu7O/LmzYtmzZqluLxcuXKlOA+GYRiGYRin4sjvpz579ozKly9PLVu2pEmTJlHevHnJzc2NRo4cSS1btqRcuXLRwYMHHcky3bD226+nT592+m/L2eMKFSrkdBveRPf999873QZ27NixY8fOFg7t1JUuXRo+Pj5o1qwZjhw5AiLC5cuX4enpibJly+LChQv44IMPHMmScYCffvrJ2SZket577z3xuXDhwnalySzH8++//76zTWAYuylRooTFsM6dO2Pw4MHpaE36EhIS4mwTmFSmV69eKc7D/Hfpk4PD31NXqFAh/PDDD7hz5w5iY2NhMBjw5MkTbNy4EQ0bNkyxQZmZtm3bpmp+t27dUlwPGjTIrnTr16+3Gl6jRg2beRQrVsyuspJDzZo1Lf6DS3pi7Wtu5GTLlnG+zlF6p1WLhQsX2kzftGnTVLQm7dBqm/79+1tNU7t27bQyJ1UJDg62GDZv3rx0tMS5jBkzxmLYkiVLHMqrc+fOKTUnXSlatKjKr3LlykhMTEzVcvLkyWM13J4529G2sEVQUJDdcRcvXox69eop/EqVKgUg6XUvczp27Kjy69Spk4MWpj7m93D48GFVnIcPH0Kv16e8sDQ46cyQWDt+PXXqlF3bnh06dLC5Lbpt27ZU3WaVPo8aNYoMBoMi/O+//6Zjx46p0gUHB1vMs2zZsrRjxw6L4XPnzqWrV6+Kst966y3NeJGRkZr+S5cuJQA0cOBAunz5smac0aNH08aNGwkAffPNN8L/1KlTlD17dlX84sWL21Vf7777rs04devWFX8XL17scDvY4yzVb2hoqNV0vXr1ok6dOtm0JSAgQNRbuXLlRFhCQoLVtD/++CM9e/bM7vs4dOgQzZ8/32L4rFmzVH5NmzZVXLdo0YIGDBiginft2jW6fv26xbzLli1LX375pcIvMTHRqr3m9z9w4ECr7eEsR0QW22HevHmKa/Mx5/fff091ex4/fiw++/r62p2uc+fOVsOlZ03uZsyYYbM9JQYNGmQx7379+imuP/jgA4fve/DgwSmqt0OHDiUrXfny5TXHlHPnzlkca7SeIcldvHjRYtj+/fsths2YMcPm2DZixAj666+/rMb5+uuvHbr/Fy9eiP7frl072rp1q8W4REQff/yxws/d3Z0AqOZD6X6JiO7evSv8VqxYQQDI1dXVLvtu3Lih8nNxcbGZrlevXhbDrl27provrXu1Z66xBYs6+k/U1alTx2pldu3a1apwICJ6/fq1uC5YsKAifNy4cQSAvvvuO1qyZAn16NFD8+FdsmQJDR06lIiIhg4dSgDoypUriknrk08+EfZLfqtXr6ZRo0aRyWQSfp999hkBoCJFitCFCxcoKCiIQkJCRLi58Hr+/LmizqKioqhRo0ai0x4/fpz69OlDRKQSRbdv36YXL14QAPrtt99U9oWEhNDnn39OBoNBTLQ//fSTov6MRqO43rBhA7m5uVkU02PHjiUioj/++INu3LghHvIKFSpYbKM6deqQ0Wgkk8lk9wQpvwd743/xxRfieubMmRQXF2czn7///lsMDEuWLLH6QO/du5cA0Lfffkvly5cXYdYWFSaTyaF7MW8/rXD5xDtz5kwyGo307NkzYYeHhwfFxcVZzbtUqVKKNgdApUuXVpVty3YiolevXtHChQupePHiimdc/j5qsWLFqF+/flSlShVF+h9++MFmnUycOFHTf+jQoYrnztw9efJEde8bN26kX3/9VRFv3rx51KxZM+rQoQP9+uuvtGXLFtU9JiQkkJeXl9V+DiSJWnOROH78eMW1v7+/ol6t1XHt2rUV15ZEXVBQED158kSz3aOiohRl1ahRQxH+888/i/qxJupMJhPdv3+f9Ho9RUdH01dffWV3v5bcpUuXHE5jqT/269ePwsPD6caNG3Tu3Dmr6aSx4MCBA8Lvzp074r5v3rwp3vPOnTs3AaDhw4fTqlWrFPmMGTOGAOuLRU9PT/FZGscl9+uvv2q2d3x8PAGg/PnzExHZFHUmk0lTCFlyISEhQtT17NlTZYNcHBGpRZ2bm5vCTgBi8SlHClu+fDn9+OOPdttIRIo5ErAt6s6fP29V1P3zzz+UN29eRRkfffSRuH777bdVdru4uNDx48cV+dSuXZtskeFE3dWrV8nNzY1atmxJffv2pfj4eEX4qVOnqGzZsuTh4UFt2rSxO197RN2MGTNo1KhRikqUC4qNGzdSREQE/fvvv6KRc+XKRUCSkCAiCg8PF/GnTZumeKg2bdpEAGjBggVERJqdYODAgRbvQT5pTJgwQfjLO4q53+TJkwmA6h9YtAYmT09Pi+WeOHFCiAI5kriQRCgR0dOnTxVxteyTRN2PP/6oCu/WrRsBSTuORKQp6nLnzk3Xrl1T5CmJXmsr8Dp16oj40m6hPQ+59Pnbb78Vn7VWz4MHDxb5nzhxgoCkHS2JmzdvirgjR45ULBLWrVsn+sT69est2kJEtG/fPmGPlAcRUXx8PM2YMYNiYmIUu6mbNm1StYfctW7d2mJZcr8RI0Yowq9cuSKuN2/erGiPH3/8kQICAoiIaMmSJeJZWLNmjYizefNmevz4sVh9SwP1e++9pyqbiGjr1q1iMpP6iVb/Mufzzz/XjLd7924qU6YMAaBjx47Ro0ePiCipz5vvICQmJlqsP0t1Ky3KiIjy5cunaac8/p9//qkIky8SbaUFQI8ePaJLly6JcG9vb0X41KlTxefKlSuLeDt27KBRo0ZZvD8A1LhxY8W1tDvWp08f4VevXj2FfZIo0XqWiIjee+89cd29e3eKjo4WaaWdVk9PT8XiT6seEhMThfiwV+BJu5Lm40XRokUdHhestYt5fvI5zVJ6SYA0a9aMgP8W8ZbqQLr3GzduKHbvjxw5Ij5PmzZNkf6XX37RbG/J78MPPyQioj///FMVR9r9ktthMBjIz8+PChYsSDdv3qSAgADNeouNjRWiaerUqURE4oTHzc2NwsLC6NKlS7R161YiIho+fLgi/cqVKwkAGY1GKl26tMVnXzrhWb58uWa7AEkbEXv37lUs8LXiSs8uAMqWLZsqn1evXomx23zhJNlKRNSzZ09FGWvWrKHw8HCF3cuXLycgaVfeXNStX79e817lZDhR9/z5c/Fgz5gxg7Zt26YIP3XqFE2ePNnhfK2JupMnTxLw33a0XDwREV2/fl1VmS9evKB58+aJtF988YWinNKlS4uHV8pr8+bNBKhFnbe3t9jVu379utX7kPIaP3688Lt586ZK4EjxpAHu0KFDivBcuXIJsWFpYLGXJUuW0OvXr23aLGfnzp0EJIm6sWPHKsK7dOlCQNI2PdF/nbx69eo2bT1z5oxiN8DcyVc6RqNR8wjR2uAt7xvXrl2jihUriuv+/fsrbJEGtePHj6vqY+TIkWQ0Gik0NFSsPNevX0+ffvopAaCzZ8+KfC9evCgEjMT9+/dF3o8fP6YVK1bYXffm91e2bFmru2lyISc/EpWQBsSNGzdabBdb3Lx5k/r160cmk4n27NlDQUFBKlslpKPn/fv308GDBwkAderUyWr+JpOJ1q5dSz/++KMqbObMmZrtRJS089m3b1+Fn2SPfEfGPGzXrl10/vx5Rbp///2XfHx8VGVIafbv3y8GfzkBAQEUEhIiFjlaaS09F9LRXIMGDQgATZkyRcSVizpreUpOEnXS7poklKUxddmyZfT06VNFXq9evVIc78rzJyJ6+PChRdulnYyHDx+Sn58fAaCcOXNafP4lAfPVV1/Z9ZqBVPagQYMUpyolS5a0mVbrXizVodS/JJeQkCDieXt7U7du3VTppcWfVOcjR44kov8EjqW2I0qaQydOnEidOnWi6Oho+v7776lXr14qUbdjxw4iIipVqhTVrVtXCGwiotDQUDF//fHHH4p0Uh+2NRZL+ZjXm7Tgv3jxoihD2qFftGiRKo9hw4YRANqzZ49YJEoEBATQ0aNHNcsOCgqikiVL0r///iv8IiMjqVixYgT8N2dLWHqWAaWou337tvgsF4zSfK7V9+TlS683WSMqKopMJhP9888/Ig83Nzeb6YgyoKiTM2fOHNq1a5fC79SpU1S+fHlyc3OjhQsXWkwbFxdHer1euMDAQMUAJMdgMNCQIUPo5cuXwm/y5Mli+9kaYWFh5OLiQrdu3SIiooiICAJA77//vogjNcr27dsJ+O9oUuoEQUFBoqPZQspLLuosxatevTrNnTuXANDhw4dt5plWPHv2TBzzSMhFnTkPHz6kYcOGqSY4+XsJtjB/qOrXry8mNznWjswsDd5lypShihUrijxWrVpFJ0+epNjYWLvq48WLF4qBXTrG3rBhA0VHR9Pu3buJiOjx48diADSZTKr6sKc8b29vldiS7uXo0aOauwZadRwVFUXNmzengIAAOn36tGIR4ePjQwDo3r17dt2/I2jZs27dOgKSXkmQJg1bos4a0g7i48ePHbLJ/LPWtT1cuXKFTp486VAa8/IAUNWqVVXh0usVn376Kb399tt07949Ed+WqLt58yZt2LCB/P39KS4uTrw7ZTAYKCYmhgwGA3l7eztkp/S5S5cummFy7t+/T+3atVP00ePHj9O7776rWYYksqV5wdZzLfUdaWIeOXKkGJ8B5c6W9Fl6PUSn01m1Xb5Dam6LtONrDUlwSgvcTz/91GYaW0gLIOkezU9evvvuO8172bVrl0g3evRo4S+912gLKW21atUsxo+IiKBevXpRWFiYKuzixYuUI0cOioqKslmWPUinQ5bsNL8GQLVq1VK1Z968eRXpr169Su+++y7Fx8fTokWLqF+/frRjxw7FyURyuHXrluYpmSUyrKh7+vQpNW/eXHX8GhkZSQaDgQwGA3Xs2NGi6pXEjLnTEnWpSWJiIhUoUICOHDki/KSyo6Oj6YcffhDvVFy7do3q1q1L8fHxdos6aZC2R9RVq1aN5syZQwAU9pizbds2u7Z1U5OoqCjq2rUrvXr1yqF09k6a8tVSVFQUGQwGWrx4MT158kQzT/MX/M3FxP3798UuhNFo1NxRSS7SMZ+l4+/UxsvLi7y8vFT+vXv3ppIlS9L169fF0Yezkb9PI2EymcRzLx3jpETUEZFD7blr1y66fPkyEaWOqEsJ8n5arVo1VbjJZKIffviBIiMjhd+FCxcISNpxs5TnZ599pvI3Go2KfJJjJ1HSokYaA4mSdlvMd/iSg8lkoo0bN4oFU1RUlHjXSjqmO3/+vMKW8PBwMWFKO9LSAl2y+6233qKEhATFqwTSiYq19paHNW/eXFzLF3TW2Lt3L8XGxtLMmTMpNDQ0GTWixnw+lWMymTRtM5lMdPLkSZWwSEhIsKs/FCtWjEqVKiXeYc2oSMfWElJ7tWrVSrwrLoXv2LGDfH19nWWqVZxWw8+fP6cWLVqoXGhoKOn1emrZsqXNSlu2bBmtWrVKM8yRnbq0JjQ01ObRlPRfpraQXu5NTVGXmXBk0pRPvtZITExU/INGVFSU4r/G0hqTyUSnTp1K83IyKwkJCYp/4JEjvTc4ffr0dLYqCfM+kidPHmrWrFm6l29NpGmxePFi8f5geiC9s+kM9Ho9TZo0SVPUyTl69CgBULxKIok6S1gbI2rVqiX+qYyI6OXLl7R27drk30gmJSEhgRISElTvk2U0wsLCFCdK5m0rfz82I5MDTqJkyZI4f/68yt9oNKJHjx6YM2cOqlatqgqPiIgQX9B37tw5i991lDt3buTOnTt1jU4mRYoUwUcffZQqeUk/aVagQAG74hMRAECn06VK+ZmJnj172hUve/bsiut8+fKhS5cueP36NV6+fJkWpinQ6XRo1apVmpeTWcmRIwdKliypGZY/f37cvXsXVapUSWerkggLC1Ncx8TEpGv5I0aMwMqVKwE49ox/9tlnaWWSJgcOHEBoaGi6lilh7xe6tm/fXoyX9jJ9+nSLP1Vp/j2jxYoVw9ChQx3KPyuQI0eSzFi/fj0ePXrkZGssU7hwYatfSL927VqsXbs2/QxKJhnnW1X/n23btsHLywvz5s1Dq1atsHXrVgAQv/26bds2NG7cGM2bN0eZMmXQsmVLZ5qbatj7Rbh169bFihUrMGvWLLviS7+gYG/+GZ127dqlWd53797Fw4cPxXWhQoU0FxZMxqJGjRpi4khvzCcCnU6Xrguo+fPni188sfXlzM7ExcUlQ41BhQoVSpV85s+fj27duqVKXlmdfPnyoW7dus42I8ujI0eXJpmUiIgIuLq6Qq/Xp8pPcaQ2L168wM2bN9G+fftUyU+n08HDwwOnT59GcHCwxZ2OzEZ8fDwMBoPdO5UM8yaQmJiI7Nmzv5E78vZw9epVNGrUCKGhociVKxd0Oh3y5ctnM51Op8Nbb71l9ZdcmKyJp6cnChQoYHEnNqPCoi6Lsm/fPjRr1ixNf+6LYRgmK8OijslsOO2dOiZt4SMBhmEYhnmzyHDv1DEMwzBMRiG9/6mEYVIC79QxDMMwjAZvyNtJTBaCd+oYhmEYhmGyAG/MP0oQESIjI1GgQAH+DzGGYRiGYbIcb4yoYxiGYRiGycrw8SvDMAzDMEwWgEUdwzAMwzBMFoBFHcMwDMMwTBaAv9IE//0TBcMwDMMwTEbF1j97sqgDEBISguLFizvbDIZhGIZhGIvY+qlTFnUAcuXKBQAIDAx8I34XNisRERGBcuXKcdtlQrjtMi/cdpkTbrfMT4ECBayGs6gDxFZmwYIFuaNnUrjtMi/cdpkXbrvMCbdb1oX/UYJhGIZhGCYLwKKOYRiGYRgmC8CiDkDu3Lkxd+5c5M6d29mmMA7CbZd54bbLvHDbZU643bI+/DNhDMMwDMMwWQDeqWMYhmEYhskCsKhjGIZhGIbJArCoYxiGYRiGyQKwqGMYhmEYhskCsKgDMGXKFLi7u2PgwIGIj493tjnM/3Pt2jW4u7vDw8MD/fr1Q0JCArZu3YpmzZqhTZs2CAwMBADcvXsXbm5uaNasGY4fPw4AiIqKQvfu3eHm5oYffvjBmbfxRrN582YUK1YMALjtMhGnT59G27Zt4eHhgb1793LbZQJMJhOGDh0Kd3d3tGzZEn5+ftxubyL0hnP9+nUaOHAgERF9++23tHHjRidbxEg8f/6coqOjiYhoxowZtG3bNmrcuDEZDAY6f/48jRw5koiIunfvTg8ePCC9Xk/NmjUjIqJff/2VVqxYQUREHTp0oMDAQOfcxBuM0WikXr16Ub169Sg+Pp7bLpMQGxtLXbp0IYPBQETEbZdJuHbtGvXv35+IiDw9Penzzz/ndnsDeeN36i5evIj27dsDADp27AgvLy8nW8RIlCxZEi4uLgCAnDlz4sGDB3j33XeRK1cutGjRArdu3QIAPH/+HFWqVEHBggVRtGhRhISEKNq1Xbt28Pb2dtp9vKls2rQJffr0QbZs2fDw4UNuu0yCl5cX8ubNi65du6Jnz564cuUKt10moGzZsgAAIkJ4eDiKFSvG7fYG8saLuvDwcPEbeK6urggLC3OyRYw5AQEBOH78ONzc3BS/V2g0GgEkDWISUhtyuzoXo9GIbdu2oX///gCUz5kUDnDbZURevHiBx48fY//+/Rg1ahS++uorbrtMwFtvvYVs2bKhRo0amDZtGlq1asXt9gbyxou6woULIyIiAkDSxFOkSBEnW8TIiYiIwODBg7FmzRoUL15ctBUAZM+eHQCQLdt/3VhqQ25X57Jhwwb069dPtI28PQBuu4xMoUKF4Obmhly5cqFNmzbw8fHhtssEHD16FHnz5sX9+/exc+dOLFq0iNvtDeSNF3VNmzaFp6cngKSHokWLFk62iJEwGo0YOHAg5syZg6pVq6Jy5cq4e/cu4uPjceHCBdSpUwdA0jHtw4cPERERgbCwMLz11luKdj1+/DiaNWvmzFt547h79y7WrVuHjh074uHDh1i+fDm3XSahcePGuHv3LgDAx8cH7du357bLJBQuXBhAkjAPCQnhdnsTceobfRmEyZMnk5ubG3300Ufi5WDG+WzatImKFClCHh4e5OHhQVu2bKHNmzdT06ZNqVWrVhQQEEBERHfu3KEWLVpQ06ZNydPTk4iIIiIiqFu3btS8eXOaP3++M2/jjadBgwZERNx2mYglS5aQu7s7eXh4kJ+fH7ddJiAxMZEGDBhALVu2pCZNmtCFCxe43d5A+LdfGYZhGIZhsgBv/PErwzAMwzBMVoBFHcMwDMMwTBaARR3DMAzDMEwWgEUdwzAMwzBMFoBFHcMwDMMwTBaARR3DMAzDMEwWgEUdwzAMwzBMFoBFHcMwDMMwTBaARR3DMAzDMEwWgEUdwzAMwzBMFuD/AMHrsdAB1l9qAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUxfvHP0dXSqhKEQQElCJVFGmhSVOKgKhIUZQiWOgY+CLSEenSq/Tee++9t9BrSAKBhPSe+/z+yG+W3dvdu0tySSjzfr2eV26nPjs7O/PMM3MXC0lCIpFIJBKJRPJSkya1FZBIJBKJRCKRJB1p1EkkEolEIpG8AkijTiKRSCQSieQVQBp1EolEIpFIJK8A0qiTSCQSiUQieQWQRp1EIpFIJBLJK4A06iQSiUQikUheAV4bo44kgoODIX+WTyKRSCQSyavIa2PUhYSEwM3NDSEhIamtikQikUgkEonLeW2MOsmrxeHDhzFlypTUVkMikUgkkhcGadS9BOTIkQOrVq1KbTVeKGrUqIFff/01tdWQpCJbt27FkiVLUlsNfPPNNzh+/Hhqq/FacunSJXh5eZnGP3jwAIcPH05BjSSS1MXyuvzv1+DgYLi5uSEoKAjZsmVLbXUShMViQdmyZXHhwoXUVuWFwWKxAIA8I/kCERMTgzRp0iBt2rQpUt+L0gcsFgvKlCmDS5cupaoeryOO+kCWLFkQFhaW6n1EIkkppKfOSXx8fFJbBUkqsWbNGnh6erqkrIMHD76yE0yGDBnw+eefp7YaLwU7duzAxIkTk638sWPHYvv27clS9smTJxEbG5ssZbuasLCw1FYh2fD19UVoaGhqqyF5wXghjbozZ86gRo0acHd3R+vWrRETE6PE7d+/HwULFkStWrVQt27dFNFnz549KFCggEu2WEhi2rRpCA8Pd4FmLz8kXwgj59mzZ6aGe6tWrVC6dOkk13Hy5Em4u7tj7ty5pmnOnz+PyMjIRJV/+fJl7N+/P5HaJQ3Rn3fs2JEq9ackvr6+OHHiRJLKaNiwIXr27OlU2piYmAQbJ3379kWjRo0So5pdHj9+jE8++QRDhw51edkpiY+PD9KlS4c7d+44TPvo0SO0a9cOt27dSgHNAKvVioULF8JqtdpNlz9/flStWlUXfvXqVaxevTq51EsRzpw5g7Vr16a2Gi8lL6RRV6BAAezYsQMHDhxAsWLFsH79ek38119/jf3792PPnj0poo/w0jgzADji3Llz6N69O4YNG+Yw7YMHDxSDR2wzqDl69CgCAwM1YStXrsTRo0eTrKcjOnbsiGbNmiW5nFatWiFNmoR1w169eiW5XsGcOXNgsVhQpEgRFChQwGXlGuHv7w8gftA1giQqVKiAX375JVHlf/jhh6hdu3ai9UsKmTNnTpV6EwpJtGjRQjnKEBwcjDVr1himE8/Llo8//hhVqlRR0qn/JgcNGjRAlixZkq18ZyAJi8WCadOmAUCKGTi2eHl5wdfXN8nl7N+/H3Fxcdi8ebPDtLVq1cLixYvx2WefJbleZ1i5ciU6dOiAlStXOkwrtvyPHj2K8+fPAwBKlSqFr776Cn/99VeS9Dh27FiS8gPAkydP8PDhwwTn++ijj9CyZUtNmJ+fn1P9rlWrVjqb4UXmxo0b8Pb2dl2BfMH5888/uXbtWuV63759LFy4MKtXr86JEyea5ouMjGRQUJAiXl5eBMCgoCCn637w4AG///57jh8/ngC4ZMmSRN/HunXr+PTpUx47dowA+NtvvylxCxYsYEhIiCa9j48PAXDq1KkEwHLlyunKBMDatWvrwpLyWH19fVm7dm0GBwfbTWdWT1RUFAcMGMCIiAi7+aOionj16tVE6SvyiHwTJ07k1atXE1SG4NNPP9WVZ1afM5w7d4537941jNu2bZtS1pMnT3TxsbGxBMBPP/1UFxceHs69e/eSJPfu3cu4uLgk6ZkYpk6dysePHxvGOWrDDBkycMSIEYmqt3Tp0ly1apUmzNPT0+H9xsXF0Wq1asJCQ0MJgHXq1NHoHBYWpkk3ZcoUAuCzZ8905arrjYuLIwCWLl06QfeUkGeVlHdEsGfPHsbGxurSPX78mAB49uxZJezAgQO691/cZ/78+QmA33zzjWndu3btIgDdmOYKbO9LfR0VFcXNmzfbTU/Gj8W//vorAXDChAm6OqxWq+a5p0+fngCYN29eXdqjR4/y3Llzib8hA2bPnk0AnDVrli4uLCyMc+bMYVhYmObejD4nZSzYsmULAXDLli2JLsNWr6Tmy5w5MwHw9OnTjI6Otps3Q4YMCarv7t27HDVqlGl8ZGQkp02bphtPSHLAgAE8c+YMAfCXX35JUL1CX1eO2y+0UXf//n1WrVpV8wBDQkIYFRXFqKgoNmzYkKdPnzbMO3jwYE3nFuLIqIuOjubTp0/52WefKXm6detGAFy6dKlhnsjISF0nW7t2LUeOHKlcA2CDBg149OhRAuDvv/9Okoqx2bVrV03+y5cvEwB//PFHAmD58uV19QLgO++8owsTHaRo0aIsUqSI3fu1Zfjw4QTAjRs32k1n1hEXL15MAJwxYwZJ0s/Pj+XLl6efn59h/qQadcHBwUl6KYyMuqJFi3Ly5Mm6+hKiW2RkJO/cucPIyEglbvv27Ur8tWvXlPBnz54RAOfPn08ArFq1qhIXGxvLGzdusEuXLgSgTJhGA35yGnViEmncuDFXr16tG9xcaRg7ynvz5k3D+u7fv6/RCwBr1KjBR48eKWHCqKtdu7auH5FU3uNvvvmGAAwNdHW9MTExBMAyZcqQjDcIjIwnMn7sEsapuowLFy7Qy8vL6ft3BnWe/fv3EwDHjRunS7dz504C4KBBgzR5v/zyS006seDIly+fQ6Puu+++IwDeuHEjQTq/9957bNCggd009oy6gQMHEgBv3brFpUuXsmPHjrr0169f1zz3zp07a951khw9ejQBMCoqiqR9oy6hz+bq1as8fPiwafzly5cVJ4LRO962bVsC4BdffOGUUTd58mRWr16dK1eudFpHknznnXcIgLNnz9bFxcbG8ssvv9SMYWaYtY/VauWuXbuczif6n5A+ffrYzevIqIuNjWXjxo15+fJlkmTVqlUJwNBoI8lBgwYRAPfv32+qKwCmSZPGbr0kuXnzZk0fsL3XtWvX8vvvv3dYjhkvrFEXFBTEmjVr8vr166Zppk2bxrlz5xrGJdZTZzvJC4MLAJctW0byueEjAMDKlSuzb9++ikdN/aCsVisBsGLFiopR16NHD5LkvXv3lLT//vuvUua8efOcMuoKFiyoGAXVq1dXyhJ1JnQyMDLqfH19eeDAAf7999989OgRN2/ebFr25MmTCYDdu3fn1q1bOWvWLALgnDlzdLrbTsy3b9/mkCFDHOpom9dIl6JFi3LgwIGasIiICFqtVsbExPDmzZumegBg+vTpdfU5g2153333nRK3Y8cOJVzdr48fP67JU61aNSUuT548mme7aNEiAuBff/1lWrearVu3snnz5qb6hoWF8f333+eVK1fs3pcwhoTYes5s23Dy5MmaZy7ixESZEMwmcnX4/fv3dROhOk2TJk0YERHB1q1bE9AbdUFBQfT19SUArl69WpnUbt++bVefiIgIAs89df/73/8IgM2aNTPN9+TJE7v9bfjw4fz5558JgMuXL1fS/vnnnzx//jwBsF+/fjrvopmO4nPPnj116Xbv3k0AmncF0O8MiEk1b968BMCvv/7atE5h1N28eZOxsbF2J2+j/N9++y3j4uK4bds23WLZrC+QZLly5QhAWRAbjQ3OjB316tUj8NzTaGbUqcfYe/fucfny5UpceHi4biFrpL+aCxcuaHSaOXMmSfLnn39W5rkqVaoQAN9++20l3bhx4wyft717dITII4y6qKgohoeHk3zuiGjRooXSDk+ePOEHH3xAb29vVq5cmRkzZjRccIeEhNDHx4dLliwhAO7cudNu/QEBAVy6dCmbNWumuZcaNWooae/cuaPpJwCYMWNGhoaGmi6wxE5Y8+bNefDgQb777rsEYLgDotbHSF/bdg4MDCTw3F74888/NUaavT5sdJ1QXkijLjY2ll988QV3796ti1MbZd9++y0PHDjgVJlBQUHK4G3E06dPuX79esOXQXhJli9frnhKHE0y6s/qVca0adMIPDfqxGQkxHZAKlWqlPLZ1nsGxBt1YiWuFmFcmXWOlStXKlsuDx484LJly+jp6akYdeqVnbpci8XCr7/+WlO2h4cHmzVrptlOFSLKA6Dzoti2WeXKlQ31jY6O1mwHOTNo2T4L0R6TJk1i7969CYAPHz7UlSG8QBkzZiRJJa36We7atct0RWekl/DWqdutW7duSh5bo6569eokycOHDythlSpV0qQRRp23tzfHjx+vu2dB7ty5Nfd65MgRkmS/fv1YvXp1njp1igDYsWNH3b1ERkayRIkSXLRokc4Isl3B2+v/RvFk/ORgtk2/ZcsW7t69W1kUOHrfxPZHiRIllG1q23TiKAMAZWWuHog9PDwM+4PZM1Z/FkadMAbV+m7fvl3RD4BimBm1VUhIiGn/Bp57ygCwVatWGr2sViuDgoI045htO4h+u2/fPt64cUPZ0rI16oD4LWqB8EgKEUZdREQEW7VqxRUrVihxbdq0UcoUOx5LlixhzZo1lbHK39/ftF3VMnToUJLkxYsXNc/M3rP46aefDPuIMGAdjR1CZzHmGBl1Y8eO5fvvv6/kL1q0qKacatWqEYgf5+Pi4hgREaEsGmzrCwsL03mfhagNvadPnyqf33jjDdP7cOYejahQoQI/+OADTRlikfTRRx8pZTx48EDpfyLdxx9/TCB+XBJhf/75p6Zudb8U3khh+DjTF4zuRxjWdevWZWhoqJI3Y8aMBMD27dvryj5w4ADbt29PIN6oU5cZFhbGZcuW6YxBEe+MUXfr1i0CYNu2bTXxsbGxymLNrA8fOHBAuVbvMCSEF9KoW7p0KXPmzEl3d3e6u7tz+fLl7Ny5M8n48waVK1fmp59+atcFa4sjo054RIykc+fOBLSrZiB+cBZnTcxerNu3b7NXr166NFWqVOGmTZt0hpBYidnryKGhofT39ydgbtSJTgvEr/jEdnRMTIxGP/VnQGuEiZWZbdmFCxdWPqv1F6svtfz+++/K5+LFizN37tycMGGCLt2qVauUz8uWLePmzZtptVr53nvvmb4E9gYt2/sTHoYGDRqwZs2apvqKZ5wpUyY+evTI9LmanTUx0qtmzZq8ceOGqb5i0lCLGPSEVKhQQXP95Zdf8siRI2zatCkBcO3atYbtkD17dmUwAuLP6/Xs2VNJK4w6ABoD69q1a3b7oTDqAgICNB4L8ZzF5+DgYF28p6en0laVK1fmwoULTdtRPDcAui0YIeptbSFqD7gQtVFnKwEBAYbh06dP10w8ao+lWs/SpUtrjHAhI0aM0IWp+529d9EZEcaRWXyfPn001ytWrNB4CoX07NmTAQEBurIE0dHRmvDWrVuTpGaRK0QYdWoRniVhCJw4ccKpd0csftQLIrVezrad1Wq1O7YK1OP5woULdenmz59v6AkUIs72qsOuX7/Ozz//XBN28uRJHjx4kFar1XB3yEjURpSZqN9ns3sMDAzk7du3NXPhoUOHTNtS7ASJOLFb8NVXX9nVRWyHi3yNGjVSrsUWt1gc/Pjjj8yWLZvdvmArq1ev1jwv4R0HwLRp0yrhYocmLi6Ohw8fNhxvhfz222/KZ7WHWYTt3LmTsbGxDAsL48WLFw11NTPqLl68qEn38OFDzpw5U7lWz70AlHlq7969bN26NU+dOqV7Z4x4IY265MCRUefMy2Q0WCVV1FumzghJjVFVqFAhQ6OuYcOGhvltDTXbe1d3rE2bNvG///7TlZEjRw7DspcuXaoLUxt1zrSxWtasWaO5/vvvvxXjxKxtxo8fr/HAqVc+AFi/fn27bS62vTNkyEA3NzdNnHrg+++//xLUj8ThZ1t9HfU9Z0XdJ8aNG8dr165pDEMzg+bEiRPK54EDB/KXX37RtIO9+xFbjT/88IPdtLYGat68eZWzQWo9BGrjTRzMB+DQi+VIxowZYxqnXlSY9S2SbNCggSYsMXq4u7sblmHrjXVGunTpYmqQJkZsDfDu3bubpl28eDH37t3rVLnCY9yyZUsC4LFjx0jGb1NeuHBBMRRspVu3bnz8+LHiCRKSI0cOzViQLVs2u/WPHDnS4fMFwAIFCihh6i1OZ2X69Om6fiG+HJfacv78eZLPvfdA/M6F7fxhq3/9+vWVz+rxQhxlMBO1UXfw4EFNXLt27ZTPRh5MZ+/JdqFnlrdDhw6cMWNGgtuMfP5lIiMxMvCF1/Wzzz7T6GO7ve6siHdG3T72kEYdqRvIXmQxmpjEN5WcEVujznZCFt8KA+x7Noykf//+ujBHnkchRkadkSFkT8SXNOxJ/fr1la2EhIp69Ve0aFHu2LGDV69eZWhoKMeOHZvgfrRp0yZDb0BiRG3UJUTE+SEAikHnjKi3RR2J2ttmJuKZ2Hrd1JOsvcE1uUWgDrM9Z5jYclPrnozEaOfBnqjHC3uSLl06zfXRo0cZFBSkeJrV3mO1NGvWjBkyZDCMS4wRbCbh4eEuK8vIK/+iiD1PXmrpr/ZmG3nd7Yn6fDdg/33q169fgnVztJC09SADYKdOnQz1UR+7SKwcOnTIoa0jjTrGnx1KyU6cmnL48GHFPfwiidq4eNlEeDPseRGTW9QGZ0qIrafNVWJ7IPpFEaPJJleuXEku11lPV0qJI6+rrdSqVStR9dieX+7Ro0eCy7D1pL8o8qLq9TqI2pNoK+JLhwkR2yM4CRX1mXjxjfqkiNHZZ1ukUUcq31Z5XcTojJ8UKVLMRX22U4rrRfxslBQpL5KIL7y8KPLjjz86tHUsJInXgODgYLi5uSEoKAjZsmXTxD158gRvvfVWKmkmkUgkEolEYp+ffvoJs2fPtpvmhfw3YSnNy/LPqSUSiUQikbyezJkzx2EaadQBOHToUGqrIJFIJBKJRJIkXlijrk+fPqhRowa+++47REdHK+GxsbH4/vvvUaNGDfz+++8uqcuRO1MikUgkEonkRSfBRt3Dhw8xcOBA1K5dGyVLlkSpUqVQu3ZtDBw4EF5eXi5R6ty5c3j06BEOHTqEUqVKYfXq1Urcpk2b8M477+DQoUMIDw/H0aNHk1yf2miUSCQSiUQieRlJkFF3+PBhlCxZEuvWrUO5cuXQvn17tG3bFuXKlcP69etRunRpHDlyJMlKHTt2DPXr1wcANGzYUGO42YtTExUVheDgYI2YERUVlWSdJRKJRCKRSFKTdAlJ3LNnT/z000+YMGGCaXyPHj1w6tSpJCkVGBiI/PnzAwDc3NwQEBCgiRPfXrWNUzNq1CgMGTLEqfpEXRKJRCKRSCQvKwny1F2+fBldu3Y1je/SpQsuX76cZKVy5MiheNYCAwORM2dOp+LUeHh4ICgoSBF7W8OffvppknWWSCQSiUQiSU0SZNTly5fP7hm2Y8eOIV++fElWqkqVKti5cycAYMeOHahWrZpTcWoyZsyIbNmyacQMq9WaZJ0lEolEIpFIUpMEbb/26dMHXbt2xZkzZ/DZZ5/h7bffhsViwaNHj7Br1y7MmTMHEydOTLJSFSpUQN68eVGjRg0UKlQIffv2RZcuXTBz5kw0adIE69evR40aNVChQgWXeNnSpHlhvwQskUgkEolE4hQJ/o8SK1aswIQJE3DmzBnExcUBANKmTYtKlSqhV69eaN26dbIomlTs/UeJ8PBwZM6cOZU0k0gkEolEInGMI5Mt0f8mLCYmBk+fPgUA5M6dG+nTp09MMSmGPaMOACwWSypoJZFIJBJXUL16dRw+fDi11ZBIkg1/f3/T7xEIEr3vmD59euTLlw/58uV74Q261MKe13LNmjUpqImezp07p2r9Alf8zqDEtYwdOza1VXApefPmRceOHROcb/jw4cmgzcvD119/jV9++SW11XCa5P7PQI0aNUrW8iUSRzgy6IAX+D9KvArYM5xq166dgproeeONNzTXP/74o/L5iy++SFSZbdq0SXCe999/X3NdqVIlXZqPP/44UfqkNkb3ombkyJEppEnyMXjw4BSr6/r163bjCxcurAsrX748fH19E/VfY/r27at89vPzQ5cuXRAYGKhL5+xPJ6mxXQh/8MEHCS4jqTiqc9iwYSmkSTxJMcpu3LjhQk20uLu7AwD69+/vVPoePXokui5Xjwm2OqdNmxYDBw7UpatSpYpL6zVD/U6lBgcOHHB5me+8806C0vv7+yeqHqcXpnxNCAoKIgAGBQUZxgNwuezcudM0zt/f3zB86NChLtXhv//+41dffcX33ntPE75s2TLNtbe3N/PkyUMA7NChQ6LqIsly5colOE/t2rUJgM+ePSNJhoaGatJs3brVMG/dunV5/fr1ZHl2iZWrV68qnz/66CO7aQMDA3Vhffr0SXTd2bNn14WVKVNGc71kyRLDvMHBwcrnsWPHOl3niBEjktReW7ZsUT7HxsYqnzdu3Kh8btWqFcPDwx2+p0a6/P7778o7XqhQIcN8Rv3LdlwQxMXF6dJGRUXxiy++oJubm1P3fObMGU6dOlW57t69Oz/44INEt2GjRo0012+++SY//PBDh/kctefNmzf566+/Oiyne/fuCdZ58eLFujAxRqvlwIEDpmU8ffqUderUYbp06QzHcXUfSqzExMSwf//+Gl1atmxpN09AQECi69u+fTvXrVtnN83s2bOdLu+PP/7QXOfJk4dWq1UTFhcXR5Ls2rVrgnTNmjWrLqxEiRKm6fv166d5RvXr10/y82nRokWC0oeEhDhMU6BAAd04OW7cONP0hw4dcrr+JUuWmL53bdu2tZvXWaSn7v957733EpWvUKFCGi/ArVu3AACZM2dWvkhiRLp0xl88HjRoEBo2bJgoXYzo0KEDVq5ciQsXLihhQUFBqFOnjiZdnjx5sGXLFgBAwYIFDcsyC1eTmLOJ/P9jneJbyEZtY7T1kSFDBpQoUSLB9QHQ/OeTLFmyJDh/njx5DH+TUe39qFy5st0yjL51XaNGDdP0X3/9tWmcp6cnDh48CCD+jKtgwYIFyuc6derovKlXrlyBt7c3smbNqoQlZOXp7PMmqZx3Ut931apVlc9p06ZFjx49MHv2bE07VqpUSedZNkJ9VnbcuHG6um7fvo2YmBhdvpo1azp1D8Dz+y1UqBBCQ0Ph7e2NDBkyYNOmTVixYoUmrdl/qqlYsSIyZcoEIN4LPXnyZNPDzwMGDMCqVat0XqxRo0Ypn4sVK6bTUf2+O8v06dOxbNky0/i8efPqwmbPno1y5coBiL8vIP5H4R3RqlUrzbX42Slbz9JHH31kWkauXLmwa9cuTTvPmjULb7/9NgCgXr16Tn0B7s033zT1gqRLl07zbG7fvo1FixbhypUrhunv37+vPNvEQBLNmze3m+ann37Czz//7FR5Ru+nbZi4FuNLkSJFAAAlS5Y0LFPMd0bHrq5fv4633nrLMJ8YZ4WnsEOHDkrcwIED4eHhgc8//9z8ZgxwZqwKDw9H48aNAcTfq+0WZmRkpOYZP3z4UDNOWiwWu14ys3fXCKPdLNEu33zzDW7fvq1pv7CwMKfLViv0WuDIU2e1Wvn9999rPAfOSKFChbh7924C4Pjx40nGW+FZsmRRyurUqRPr1avHQ4cOccyYMbxw4QJJ0tvbW7fKJcmGDRs6rLdgwYKcOnUqHz9+zD179jhl3RcrVowAaLVa+ejRI0262NhYkuT+/fsZHR2tiRPew4kTJ2rCd+3axX79+mnqSsgqUuSpWbMmATA0NFTRVZ1m69atmvsQq61Ro0bp0gJgkSJFNNfnzp3jmDFjNGFhYWEcPXo0FyxYoGkL27xm0qRJE8O61WH9+vVjly5dTMuwbWcgftU8c+ZMWiwWFi5cWNFnzpw5jI6OZtOmTQmA7777rq5eq9XKwYMHa+5Hrc++fft0OqsRYeqVvNE9qmXUqFGaa+ERPnHihK6e0NBQWiwWHjlyhJ999hkBrbdSjfCIWSwWxZOg1qVy5cqa8tOlS6dpz9jYWPbs2ZP+/v66d93eM7PVxayd3n33XV25JDXeRpIab1HVqlU5evRokuTFixcJgGfPniVJ/u9//zNsXxFvq6O6HuFJEpIlSxaS5IQJE/jgwQPDct98801dmZcuXdKE3bx5k6dOnVKuO3bsqEn/+++/MyoqSnnnK1asSCB+d8C2vq5du2q8HST56aefEoj3sEZGRpIkL1y4YPc5DBgwgABYpUoVw/YnyYiICB47dowk+cYbb2jK27Fjh0634sWLa9qzfPnymvrFGHfw4EFNPb/88otpv/H19dV49CZPnmz3PRIixjqjuOnTpyv9wXZHp2fPnpprUfeAAQN4+/ZtRkVFEQDfeustXflWq9W0Ld9++20CYN68efnvv/9y7NixSv4hQ4Zoyvnvv/+UfMuXL9fpP2zYMJLk0qVLCcR7JW3b7YsvviAAbtu2jWvXrlXiT506RR8fH12Zv/32m2Fb5cyZU1O2j48Px40bp9QjvPonT57U9THb6759+xp6X//55x82btyYERERSljjxo1ZqlQpXdrKlSvTz89PVzYAduvWjcuWLVOeg2iD//3vf8qulb3+bssLZ9SdPn2a1atXZ82aNfnVV18xOjpaE79v3z6+8847dHd3Z506dZwu15FRJ7h165bS2K1atdI9HD8/P811oUKFSJKnTp1SHsr777/PWbNm0c/PjxaLhVeuXDGtz3ZgIMlLly4p12+++abh4PHRRx9pyjEbJNQIo46MH3TU6dQTp7q8wYMHMzIyklOnTuXp06c1eXbv3s3Y2FieOnWKt2/fNtTFnm4ivlq1agSgDOwk+eTJExYoUEAz0Knx8fFRdFaXd+LECXbr1s2wDfbt26eEie08W50fPHjAZcuWccKECXb1/uKLLzT53nnnHd399uvXj507dzbMP2/ePMOtPEFUVBSjo6P5+PFjnj59WgkXk5rtVqItRu1v9nwc5VGn/+abbzTXo0ePVj7XqlWLd+7c4axZs+zWQ5L//POP8syB+K1jNVarlS1bttTcu7rMu3fvasrv1KmT4b0a0bhxY4d9VHDixAmeO3dOp0ORIkVMy1+1apVm23fHjh3cuHGjXZ2sVqsy8QLxCxzbscpWv7Rp0yqDvzoua9asmnwzZ87UbamLCUZc37lzR1fPzZs3FWOnRIkSvH37tqYMsRAURl2lSpUIgPPnz9ekmz9/vq5sksoRkAkTJijxzhp1u3fvttuegowZMyp5lyxZwsOHD+ue9XvvvUcy/p17/PixTk8zo+7u3busU6cOnz59ymHDhun6XVRUFJ8+fapcHzhwQHMkp0KFCjx06BBXrFihhG3ZsoWkdh4qUaKEshhQ162+h7Vr17Jo0aLKtahn4MCBmjbMkycPyefGmqN3pXjx4gTix1Vb1P3V3hgkRBh1VquV27dvVxaPBQoUUPIIg0b0z5IlSyplG23Pi+dpNB6uW7dOGYuMdF+yZInGoD158qSmL06bNo1A/Dhua9QFBAQY3mtsbKxmTBTbw/Xq1TNtm19++UUTFxYWxuvXr5OkMj7279/f8D6MeOGMOl9fX4aFhZEkPTw8uHLlSk38vn372Lt3b4flREZGMigoSBEvLy8Cjo26mzdvEgC/++47TTjwfHWu9kIIoy6xCIPt559/1pQ1Y8YMAuDcuXNJxg8IEydOVAw+M6PuyZMnfPbsmeGLJrwoJHWrHtvVmlH4mTNnNHn27NljeE+rV69m06ZNlcnw5s2b9PLyYvny5Vm9enXdyydW7DExMZpyxGrUyKhTc/ToUS5cuJDDhw9nXFycqVFHkpcvX+a3335rer9GYQULFiQQf3bI3d2dAPj5559r0sycOZMZMmTQhJ05c0ZjSKrl2LFjyqBWoUIFpwZYkhw4cCCB50YkAJYuXVqX7uzZs1y1apXhvYWHh5veb9GiRXV5bty4wTNnzjA8PJyxsbHcsmWL4nVRD2ANGzY0bD+j+7JarQwODlbS5ciRw+G9q8tUD/Bt27Y1nIzNuHDhAgsVKkSLxaKkFd5iZ/Kr28nV2KvfVj+xQ2Br1GXLls3p8o3qE/3x5s2bysKjUqVK9Pb2NmwjYdT16NGDgPZcqW3Zx44dU4yjhQsXEgD//fdfJf78+fOGeYURklCjrnDhwkpZe/fuNTTqOnbsqMt35MgR7tixg6S5UZcU1q1bRx8fH+X622+/JQBu3rxZCbPXF8Q7XLduXQLxRp3aYyQ8koMGDdKUJ4y6e/fuKQakPd5//31THRwZdaVLl+aGDRuUHR5h1KkBtEbdlClTCDzftSldurSm7OPHjxvWZ3tG0xWIsbt///7K7lDp0qWVHQ81op+RVHYv1q5dq3jaWrVqpbtvIbZGnS23bt3SzY32eOGMOjV//vkn165dqwnbt28fCxcuzOrVq3PixImmeQcPHmw4mToy6sTB+3bt2mnCjx49qryEVquVvXr1IgB+9dVXiby7eIRRp3YDk/Gra+C5UacGMDfqBPv37+fVq1c1adRG3cOHDwmAGTJkYOXKlQ3rsH05zp49q2nLvXv3JuxmSU6fPl338okBzdbQctaos8XWkHKG+fPnc/ny5ZowMekLj62Xlxejo6NpsVi4fft2kvaNQYF6O7179+5csWKFJm1CjDoxgQsv5tq1aw23GO3pQz43pNUcO3aMjx49Ms2jRny5YMOGDUpaYeja1uuMkZQzZ067aQQLFy7k2bNnlW3bBg0aGNbpDJkzZ9akVRt2jvQtVqyYU3UkFHv1i7YWBuWuXbsMjTo3NzfT8qOjoxkREWG3PnFg+9atW4pRJ8ab5cuX69pNHOxXj9VTpkxhx44dOXPmTFNd/Pz8WKpUKY1xY2bURUREMCwsLMFGnZeXF7dt28ZTp06RjB/HAbBLly48d+4cvb29GRUVZbeMJ0+esGPHjg7TJQWxYPby8lLCnOmLly9f1uR7+vQpvb29uW3bNgLgn3/+qSlPGHXOIr74ZoTt8REzxDbr33//rYuzNeqsVqvi1CHjF5TimI06j219tl9scAXiWNMff/xBMn58VO8mqQkICFB2q0aOHEkAXLduHcl4g9PWs+fh4eG0UZdQXlij7v79+6xatapu+zUkJIRRUVGMiopiw4YNddszgsR66sQqs3379g51vHnzpm4bL6GIb1Sp3fSkfaOuQIEC3LRpkyYsU6ZMDjuzcM+Tz79hunDhQsO027Zt4/nz5zVhtkad0YrFEcKlnSNHDubOnZtk/DPdv3+/Lq1oG/XWbkJI6gseFBTEwMBAxaNg9KyN6mjSpAlr1KihXG/evFlZKISEhGjSVqtWjfv27WO9evV0WyxGDBo0iACYP39+AlDc9PYw0jEsLEwx4Mzq6dWrl91yhSdWfHN28eLFhvU6egYff/yxzqB2hPAS2L4fCXnmuXLl0qT19PRktmzZuHr1arv5APD7779PkL7O4kh/sTAgnxt1gwYN4owZM9iuXTsC+q3shNYnjLqbN28q3mT1wk+chxRYrVZu27bN7tksZ7lz5w4B8McffzRczInJ0GyXwBFxcXH8888/Hc4DLwJJGb/Eomvw4MGa8sSZOme5e/cup06dahgXExOjGIr2FvixsbEcNWqU6fj5zjvvJEgno3YR87srjTrhCffw8EhQPmFgHj161G66kydPvlpGna+vL6tVq6YTf39/BgUFsWbNmg4nrGnTphkaPUY4e6bO09OTQPzPeqQmwqibM2eOU+nFQVl7qI26xGBr1BkZYo4QP+WwYMGCROvhLGvWrOGPP/7okrLMJixXDiLOIIy6fPnyEQBv3LjhME9K62hbb0rWfejQIU6ZMsWptFevXrXrSTLj7t27piv2pOKovQICApSzbGqjTp3f2a1sknzrrbd053XURp0oU73IDQ4O1i34XMmJEyeUe7RFjB+enp7JVv+Lwpw5cxRvT0IRxrHa2ALAatWquUi750Zd1apVE12Gq4w6wZgxY5QzkklFvF/qc4nOYLVaDc8g2iLOtW/YsCGxKhpi/LsaKUDevHkN/6VLXFwcmjdvjj///NPw5yqCg4OVny44dOgQunbt6lK9xNfRCxQo4NJyE0pCfxpkzJgxDn/Y8bfffkvSD2Pa8qL/a7UWLVqgRYsWLinL7F7TpUuH2NhYl9SRED0qVqyILVu2GP7LuxcNs584SA6qV6+O6tWrO5X2gw8+SNSP/hr9yLGrWLp0qd0fWc6RI4fymaRhmn79+jld3+PHj3VhTZs2xeLFi5EnTx4AwOnTp1GqVCklPmvWrMrPmCQH9n5svGvXrvj4449Nf27jVUL9g/AJpUiRIrr+cfToUZf+yLUYi8z6YWrQt29fl/3AcdGiRQHY/5kpIywWi1M/mJ83b15YrVbXz6MuNRFdwNKlS5kzZ066u7vT3d1d2Zbp3LkzyfhDuZUrV+ann37KPn36OF2us546Mt51nZznJ5zh4cOHzJ07Nx8+fJiqeqgRnrq8efMS0H5jzllS0lOXEvj6+jrlLXMV4kyQl5cX796961SePXv2aM7xpRRA/M8BSJIHseV06NCh1FZF8hoizlt++umniS7jiy++UM4nOwtS0Puf2nZAYrCQL5CZnYwEBwfDzc0NQUFBL4V340XE398fuXPnxs6dO/Hxxx879SOjtkyfPh3dunXDggUL0L59+2TQUiKRSCTJjdVqRdq0aVG1alXNj7knN+3bt8eiRYteKA/hi0Sqbb9KXj5y5cqV5Bfp+++/x+3bt+3+dwSJRCKRvNio/7tKSrJw4UIsXLgwRet8mZCeOolEIpFIJAlm7969+PjjjxP1rxYlyYM06iQSiUQikUheAfT/UVwikUgkEolE8tLx2njqSCIkJARZs2Z94X+KQyKRSCQSiSShvDZGnUQikUgkEsmrjNx+lUgkEolEInkFkEadRCKRSCQSySuANOokEolEIpFIXgGkUSeRSCQSiUTyCiCNOolEIpFIJJJXAGnUSSQSiUQikbwCSKNOIpFIJBKJ5BVAGnUSiUQikUgkrwDSqJNIJBKJRCJ5BZBGnUQikUgkEskrgDTqJBKJRCKRSF4BpFEnkUgkEolE8gogjTqJRCKRSCSSVwBp1EkkEolEIpG8AryURt29e/eQJ08e1KpVC7Vq1cKTJ09SWyWJRCKRSCSSVCVdaiuQWNzd3bF69Wqn05NESEgIsmbNCovFkoyaSSQSiUQikaQ8L6WnDgCOHDmCGjVqYMCAASCpi4+KikJwcLAi3t7ecHNzQ0hISCpoK5FIJBKJRJK8vJRGXb58+XDr1i0cPHgQfn5+WLdunS7NqFGj4ObmpkjBggVTQVOJROIKwsPD4e3tndpqSCQSyQvNS2nUZcyYEZkzZ4bFYkHLli1x/vx5XRoPDw8EBQUp4uXllfKKSiQSl9CwYUO88847qa3GK8O5c+ewfv361FYj1SCJY8eOpbYaEonLeSmNOvUW6sGDB1GsWDFdmowZMyJbtmwakUgkLyeHDh1KbRVeKSpWrIgvv/wyWco+efIkcufOjYiIiGQp3xUsW7YMVatWxeHDh1NbFYmTxMbG4siRI6mtxgvPS2nUHT58GJUqVUKNGjXg7e2NNm3apLZKEolE8kLy5MkTWCwWlxnGjx8/NjzHLJg8eTL8/f1f6O1yodvjx49TWROJswwbNgzVq1fHw4cP7aYLCAhAdHR0Cmn14vFSGnWNGjXCmTNncOjQISxcuBDp0r20X+KVSCSSZOXWrVsA4JLt1oCAAOTNmxdTp041TWO1WgHghf6VAaGb0FXNiBEjUKpUqSSV7+Pjg5iYmCSVERMTg9jY2CSV8Spx7949AEBYWJgu7vTp04pnOFeuXCnu6Onduzfq16+fonWa8VIadS8Kvr6+qeoOfvLkCfz8/FKtfiNIYtmyZYaD5YuGv78/3n33Xdy/f9+l5W7YsAG7du1yaZmuIDo6OtVWsE+ePEFUVFSq1O2IO3fuoFSpUggODk5tVV54goKCAMDueTThxXtRjLrQ0FDs3btXE5YmTfzUZzRO/e9//8PVq1eTVGeBAgXQs2fPJJWRP3/+FDlHevv2bVgsFly6dClZyvf09ERISAhu376dpPHHzBC3Wq2oXLkyunfvroRt2rQp0fUA8dvzz549s5uGJPbt2wcAGD9+/Asz5kujLhFERUXB09MTVatWRfXq1ZXw06dP44033kBoaKhT5QwePBhfffWVYdyQIUM0ln9kZCQiIyM1ad566y28/fbbAOI7dlxcXEJvxeVs2rQJbdq0wdKlSwHEr67sTZb37t1zur2M6rpz506i8gLAgQMH8ODBA6xatcrpPCQdtnPz5s1dtmoLDw9P9HPds2cPLly4oGy75c+fH2+99ZbdPAEBAShTpozdrTOLxaIZQJ3hrbfewrfffpugPGZ1A8D8+fMxZsyYJJcHAHPnzsXVq1dx6tQpl5SXUvj4+NjdBjXj2rVrduMtFgvGjRtnGOdMfS+aUde1a1fUrVtX8x7ZM+pcxcGDB5XPYWFhGD16tFLfs2fPDD1Oap4+fZoi28PHjx8HAOzfv98w/sqVK9izZ0+iyy9dujSaN2+OYsWK4ddff1XCr1+/jiZNmui8kSTRoUMHeHp6asLFM7NF9Dd1v06K8RgZGYk2bdrgp59+sptu5cqVqFOnjkNj7uHDh7h582ai9Uko0qhLBD169EDp0qUVd7Bg9uzZiIyMxO3btx2W4e/vj6FDh5r+gPJff/2l6Sy5cuVC/vz5Tctr0qRJgrehhcFw8+ZNWCwWw28RO8Px48dx/fp1AM+/xBIYGAgAKFKkCNzd3U3zFilSBI0aNUpUvU2bNkX58uUTlRd4PqCbDRZG6evUqZOi2/2ZM2dGx44dnUq7fft2xcPg4+ODevXqoXz58qhZsyaA+D4nPC1m7N69G1euXMHKlSvtpps2bZpTOqnZtm1bgvOY0bFjR/Tv39/p9AEBAU6nJYnTp0+bxt24ccPpssyYOXOmw0lD8O233+oMJD8/PxQoUADTp0/HnTt3cOLECU385cuX0bx5c5QtW1b3zf/atWs7rHPx4sV24+0ZbGKSdfa9chUPHjyAxWLRed4fPHgAIN77YrFYQFLRzcfHJ9n0Ud9/zZo14eHhoXg4c+bMiTJlyiS4zKCgIAwcODDZF/BPnz5FmjRp4OnpiTJlyqBevXoO85DEwIEDcffuXURFRSE6OhqzZ88GEL+ABuK/RCP4888/sXnzZt0CMjw8HAsXLsSXX36piRN9znZhYWaYHz16FOPHj9eFBwYG2vVKivIdjRmPHj0CEN9W9ihYsCBKlChhN40j+vTpgzNnzjiVVhp1CeDBgwfYunUrLly4kOgy5s2bh4sXL6JixYoJyhceHm7XHbx161bNtZ+fH0qVKmV3pZc5c2a0bdtW8VAcPnwYjx8/hsViwd69e1GpUiXNADlp0iT8+eefunI+/fRTfPDBBwCMXzy1sRgTE4Pw8HDMmzdP8TwafQPt4cOHhj9D88svv8BisSj1hISE4OzZs0o8SaxYsQJWqxXHjx9XvISzZs3C77//rhkAEmrUDR8+3HQ1a0ZcXBwsFgvWrl0LIN7DVLZsWc0qHgDWrFmjrC7XrFmDixcvKnErVqwAEP8N0N9//920rkaNGqFUqVK4c+cOChQokCA9w8PDdYPjqlWr7HoySpUqhXPnzgEANm7cCIvFgh07dpimj4yMdNqzZLFY0LNnT7Rs2VK38DHbGouLi8Mff/yhDMbh4eGIjo7GqVOnkCtXLmzfvt2putetW4fKlSsrz+jKlSvYsmULAGD69Ol4//33TbfsL126ZNhm0dHR8PDwUM79dO3aFXPnzsWUKVMc6rN8+XIA0BhuYiw4deoU3nvvPVSpUkWT58MPP8SGDRtw6dIlfP3115q45N4GV3vqpk+fDovFovO62HL37l1MnDgRJ0+edJhWzdy5c7F7924AwOeffw4AyrUtEydO1OgHxE+WZixevBjBwcFYv349JkyY4LROYtwS48r169eVMUptjNk6BQT2Fl6//vorRo4cqXjX7DF79mzNlwru3buHc+fOYdeuXbh58ybq1aun6ccbNmxQPp88eRIksWbNGl25Dx8+1Jyb7NevH4D493vkyJGoVq0aMmXKhNKlS6Nz586a+1a3vVgcm509vHHjhmb7We1dPXHiBEaOHAng+Rk7kpq+Xa1aNfTu3VtXboMGDVC2bFnDOtUkxgvuDEuWLLE7L58/fx5Zs2ZV+lFoaCjGjRuHjz76yLkK+JoQFBREAAwKCtLFxcXF8cMPP+SBAwdM8zdr1owACIClSpVSPqubUFyfP3+eJDl06FAWL15cF28rJHnz5k1eu3aNJHnixAnTstWow2zj58yZQwCcOXOmErZv3z6WKFGCcXFxmjyLFi0iAE6ZMoW7du0iAFauXJkA+Oeff9rVwTZ82bJlBMCJEyca5jFrA6vValhmbGwsHz9+TB8fH4dtSJK///675hk1btyYt27dUtJduXJFSSt07dChg+6ebFmzZo1pnWbtERsbq3yuXbu2Js7NzU1Jf/HiRQLgkCFDNGm+++475fOhQ4ecrrdGjRqGuorP/v7+mnx3794lAHbv3p3Lly9X9AXAunXrmtZjJs+ePWO7du24Zs0atmvXjr6+vkrcpUuXTPXv3r07K1WqpKsjbdq0dp/733//zZYtWyphv/76q1JG8eLF+c033xi23b1799i8eXP26dOHALh7926S5NixYwmAK1eu1Oiyd+9eduzYkQB47NgxXr9+nST5ySefcMeOHUo7VqlShffu3SNJWq1Wnjx5kkuXLjV8FgAYGBio6GS1WhkdHa1cq/uQ+tldu3ZN6bsirkKFCixQoAAjIyMN26pXr14kyezZsythT548IQCePn2ajx49UnQrV66c4TOqW7eu0jfNaNWqFQHwwYMHSj3Lly83Tb9p0yadrg8fPuS2bds06W7evMnVq1drwkT6o0ePKp8//PBDBgUFMSAggGPGjGHNmjUJgLly5SIAXr9+nZMmTTLsE126dDHtaydOnGCDBg1otVoZFhbGDRs2KPm2b9/ORYsW0Wq1avL4+PjwzJkzyvWBAwc0z6datWokyW7duhEAN2zYQAC8evWqoX4iTF23EWo9AgICGBwcbHhPDRo04Icffqhct23bljNmzGCLFi0IgCNHjtToIebRUaNGafT58ccfWb58eYdjg7pfib67fft23rp1SwkPDQ3VveMXLlxQrn/++WfDdyl//vymY4QgICBACT9+/DgPHz7MsLAwTZqIiAgCoLu7uxL233//EQCzZs3KmjVrkiQnTJhAAJp3293dXXn3SXLLli06PYz0UvPLL78oaZYsWaK0OQDu2rXL7nMnSWnUkQwLCyMAlihRgkeOHCFJRkZGKoYEaX8iEwaJuBZGnbj+/fff2bt3b9P86rRk/AAhrsPCwpROZvaC234myblz5xJ4btQFBwcrg9u0adOUiQwAFy5cqITv3LmTAPjxxx8TAJs0aaKrz8/PjwMGDGBwcLCu7hUrVhAAx48fb6iXWRsIQzMsLIy//vqrEv71118b3qdRG9pOgABYrFgxXr58Wbk+d+4cIyIiSJJLlizR6Ve7dm2OHDlS0Yckjxw5Yljnw4cPNQPCypUreeDAASVePXiLAUJcZ8uWjXv37qXVatUY8baTgpHcuHGDYWFhjIyMVOr29PS0m8es7SpXrkx3d3flWhh1tv3by8uLDx48cPguAPGGtL34uLg4xsXFsVq1asozefbsmamu6dKlS9B9qY06W9m/fz+vXLnCwMBAJaxBgwYEwE2bNrFjx44cMGAAAfDzzz/X6KUWMYEJ46B06dI8e/asEi8Wc+J96Nq1q6nOaqNu/PjxBMCSJUuSJNetW6dJK8YkYdSp3w8hJUqUMG2vo0eP0s3NTblWT+jq/leuXDk+efJEM96IRRAQP/mruXnzJp89e0aSbN68OQGtUbdy5UqePHmSK1as4OrVq3nx4kWSZHR0tKGexYoVU9rKarXy+vXrijG6d+9eLly40Km+CICFChVyKp2tMWEmsbGxivEn2kjEqRdfQkqWLKnpf7bx//77ry5s69atyufg4GA+fvxYd7+xsbE0o0iRIkq6xYsXM3PmzE7dm62MGTNG0299fHwIgM2aNXO6/W1FjL8//vijJvyzzz4jaWzUmZXljA5qjOLd3Nx4+/ZtJc2sWbMIaI26OnXq6MoURp36vQDA77//XnGOqGXDhg0aY3348OHMkCGD7tnZvpPqsSpbtmymz1y5R4cpXhHsGXW2q5gyZcrwyy+/1DWomZQqVYrdu3dXrjdv3qxZETjT6dSft23bZpr25s2bbNq0KT/99FMlTO3RmTp1KkNCQhSjbuLEiRw6dKhTerRu3ZoeHh4EwIoVK+peCtv0P/zwg8YLpk7z/vvvMy4uThOnvraVefPmEQD/+usv0zTCg2IkT548ob+/vy68WLFivHLlii68Q4cOiocSiJ/MWrdurVx//vnnvHv3LqdMmcKffvrJtN6CBQsatg0AhoeHO9V3Bg4c6HRfMeo7RhOJrThjLAJQPFFqURvFasMlsfLuu+9q3o9OnTopkwUQ7zFLSvlt27blnj177KaZMWOG8rls2bIEoKyQc+TIkeA6bY26N954g6GhoZpJUf3M1Ne7d+9WvLRqL2toaChXrlypSevj48MBAwYwffr0SX4ORmL7fIVn8OnTp5rwzz77jN7e3pqxoUyZMpoFaLt27ZTPZp5uM0NKbYTMnj3bMI3Ze2crzhp158+fdypdZGQkmzZtSgDcsmWL5v0YMWKE3byff/65U3WoPTyFCxcmANavX1+TRjggBOvXr+fq1avZuXNnl/WHqlWratpb/Z46WryZya+//sp+/fqxU6dOhvHCe+zMc3amD5jNX2rJmTOnaTqSys6FOkztfEiMiHeYJOfPn08AukUcAM28Jo06FfaMOiNjQEiWLFlc9oKYidrDdOfOnSSX5+bmphh1rpC0adPqXjQjsTUchJcCALt16+bUgKY2jl0lYivaVhYsWKB8njlzZqLLFys2W3F25Z8S4szWSEqKuu0BsF69eqmuk3rbI6GSOXNm3YodAEePHq0LI40nGLNwtai3GVNC7ty5Q5KmE/j+/ft5+vRp5Vq9A+BIjhw5wpCQEIfpzIyUY8eOpUo/qVKlSrLX4YzBsHjxYpLk1atXNd7+5JL+/fvz4cOHyV6P7Xtkz0HizLhx8uRJp+q1PZYk5ODBgzo7wM/Pz2X3KxaVZqKuSxp1KuwZdeozP6khtqtgV0jevHldWl5ijJ633347wXlS0vhwpeErRYqRjBo1ShemPoOjFnH04UWTzZs3293STayotyXtidg1kaIXcXQmpaR9+/Ypfo8pNScMGjRIs+v1ooh6y14adSrsGXW9evVK1YfWsGHDVO84r6MkxTsnRYozoj5oLkWKFClJkaxZszq0dSxkMn1v9wUjODgYbm5uCAoKQrZs2TRxn332menX4CUSiSSxFC5c2PSnKyQSiSShODLZ5O/UIWm/Pi2RSCRmSINOIpGkJNKoQ/L/GKdEIpFIJBJJcvPSGnV9+vRBjRo18N133yXZ0yaNOolEIpFIJC87L6VRd+7cOTx69AiHDh1CqVKlDP9/alRUFIKDgzViRoMGDZJTXYlEIpFIJJJk56U06o4dO4b69esDABo2bIijR4/q0owaNQpubm6KFCxY0LS8HDlyJJuuEolEIpFIJClBihp1Xl5e6NixY5LLCQwMVL7B6ubmpvwDbzUeHh4ICgpSxOifwwteky8ASyQSiUQieYVJUaMuICAACxYsSHI5OXLkULZTAwMDkTNnTl2ajBkzIlu2bBoxQxp1EolEIpFIXnbSubKwjRs32o2/c+eOS+qpUqUKxo0bh/bt22PHjh2oVq2aS8qVSCQSiUQieVlxqVHXvHlzWCwWu54vi8WS5HoqVKiAvHnzokaNGihUqBD69u2bpPKkp04ikUgkEsnLjku3X/Ply4c1a9bAarUaytmzZ11W19ixY3Ho0CEsWbIEGTJkcFm5EokkeejQoUOylj9z5sxkLV8iSQnkztOLTdGiRVNbBbu41KirVKmSXcPNkRcvtXjvvfdSWwWnOH/+vMvKkt/4Nady5cqprYJT/PPPPy/k+2TG/Pnzk7X8zp07J7mMLl26uECTV4OsWbOmtgoJpn379qmtgo4CBQokKH2xYsWSSRP7fPXVV4bhderUSWFNXE+aNK4zdfr374/ChQsDAGrWrJng/M2aNXOZLka41Kjr27cvqlatahpfrFgx7Nu3z5VVuoTWrVu7pJzkMgZWrVqFy5cvo1y5cokuY8eOHZpre9vgH3zwQaLrscfAgQM1159//jkaNWqULHUlFh8fHyxcuNDp9OnTpzeNS+jvH96/f9/ptMOHD0efPn3spgkNDcXgwYMTpIMjdu7ciVmzZqFnz57Ytm1bgvK64uhFYrH3nNRkzpxZ+fzdd9/hxIkT+PXXX5NLrWTDkbfH39/fMFxteHft2tWpulw5YZoxbtw4p9K1atXKYZoOHTqgYsWKidblnXfeSVD6/PnzJ2jxlVoLbqMvHD569Ah58uRxKn+FChWUz2vWrHGYvmTJkpg7dy4AYNasWU5qaYyjPrh161a78Z06dXK6rnbt2mH69OmoXbs2unXr5nS+t956CwASlMeWyZMnO07E14SgoCACYFBQkGF8jhw5CECRDz74QHNtJsOGDVM+kzRM07JlS06ZMsUwrlKlSg7r2LFjh6KnUXzZsmXZoEEDAuCYMWN08SEhISTJ/PnzK2G5c+c2rW/evHmaa5F279699PT0NMzTokULw/AyZcpw9uzZBMC//vpLCT937hyDgoLYo0cPJax69eqavK1bt3bqGdjK8OHDEx1Pkjdu3LCb/8yZM8rnt956S/kcGBioSdejRw/Onz+fADhixAglvGPHjqZ1O3uPO3fuVPpE27ZtNXHbtm2j1WolSUZGRuryHjhwIFHtKnRUs3v37gTlTWy9jiR79ux2y0+XLp1T5fTq1YsAOHnyZM19li1bVpPu4sWLTpV38eJF+vv7K9e1a9fmL7/8wgkTJmjSZcuWjQULFkz0/VerVo0PHz5U2uLo0aNOPcdly5axd+/enDFjBtetW8fjx48rafr06WOYVx1euHBhlixZ0mk9Fy9ezGPHjiWq3zmTbtOmTU6VZfuuJkRGjx5tGpcmTRpdWKVKlQz1T5s2LQHtGFK7dm2GhYXp0qrHSSPJnDlzou/H3vMmyRMnTujCFyxYoAsLDg4mABYsWJAkOWvWLE18s2bNGBoaqlz/+uuvJKmMVeq0v/32G8+ePau0kSO5f/++3T4i5v/EPFOjNhGsWLHCqTwXLlzgZ599RgBOjZm//PKLLmzMmDFKW9lDGnUqduzYoTSg6MiffPIJgfhJ+cKFC3z27BmnTJnCgQMH0s/PjyR58eJF3rhxg6S2U3l6enLRokUMDAykl5eXJm716tUEwObNmyth3333HcuUKaN7mGFhYYqORh1g1apVHDJkCAFwzZo1BMC+ffvy888/JwCGhoaSJCMiIpR2+PTTTzVlXLx4kdmyZSPw3KirWLEiAbBAgQJKZzTTIyoqSjHeAPDLL79UyhJG0MKFC+nh4cHPPvtMKefu3busWrUqgfiJSV1mZGQkfXx8DO+5SpUqhuFZsmSh1Wq1+8LMmzePfn5+pi+seuAxkujoaObKlYtdunTRTO627dKrVy/FqJsxY4YSvnnzZl2ZZ86cIUl26tRJE75+/XpNuxQvXpwAeOrUKU3fBcCaNWsq/dA2Tsi2bdsUnTt27Mhz5845NSip79Fe+WZSpEgRkmTXrl1N09gzaoYPH64xUIsWLaqJ/+mnn3S6tG3blvv376ebmxtHjRrFwMBAhwZ77969CYCHDx/W3KPaWOjevTtJskaNGk63l+31kiVLNOmyZctGksyePbsSVrhwYR46dMhhHZUrV2ZUVJRST86cOUmSgwYN4v79+zVG/CeffMKzZ88aPkeSPHnypJL2+vXrhvV5e3srnz/77DPd5C2kdu3adtsjb968mrj69evbbUfbsKtXr3LLli2aMNt3SxjpRjqsXbtWCbt06ZLdNhaLsnLlyjEmJkYJP3XqlMbgUuu5fPlyAvHjqK3+v/32mxKWP39+h+/U4MGD7erXr18/5XPPnj15+fJldunSxTS90fhpNO6R5Pnz5w3Dr127ZtiuggsXLmjilyxZQpL87bffNG0guHPnDhcsWKAJc3bBIIyd4cOHc+XKlZq4smXLkiSfPXumyyfm27///tupemzvc9WqVbr47t27G+YRRt2+ffs0cWfPntVcX758WdcHsmTJYvS6GiKNOhVqo05NbGys0/WI/FmzZjWMj46O5tq1a5VVdcuWLTV1qr1ks2fP1tVt1MlWr17N2NhY3rp1i3fv3iUQ790LCQnhli1bdDrMmTOHPj4+ymB06dIlks+9lUIH4UUcMWIEv/jiC4aHhytlbN261bCjq6/PnTunvGzqz7aIQbJq1aps1KgRAfCPP/7QldmsWTMCoK+vr2ZQGjduHC9cuMD+/fvz4cOHpu0kPJU3b94kSe7Zs8fuCzt37lxdvO3zePr0qSavOm3v3r3p4+PDXLly0cvLixs2bOD169eViWfgwIFK2tu3b5Mkr1y5otNHPTjfu3ePBw4c0LXh2bNnNc9Hje29CaOuU6dOOuM2ffr0hvcCgB9//LFh+cLrZOvNUosw6khqjAIhOXPmpNVq5aVLl1isWDHmzJlTiVPfV1hYGOfOnassGoQR1KlTJ5LaCcgMET9y5EjdxCe8FbZGnSAuLk7px+Hh4Xz8+LHpPRcoUMD0GSxatEiT9n//+x9JcuPGjaxduzbTpEnDU6dOMS4uTleuMDDFJDFo0CBNPcKos73nt956y7RNBOoJRq23bZ+0WCwEwGfPnpmmmzp1KufNm8c//vhDd/9RUVGMjY3VGOoBAQGmbWlbR7Vq1XRtC4BbtmxRdivE4tHeOx4REcEnT56QpDLBGy10QkNDOXHiRGWBLBbAAvW1rc4dO3bU6aE26t555x3dc7BYLBpv2J9//smuXbtq5gu1qI264OBgkjTdHQKg6bd3795VDImlS5fq2kr9TglPJPl83K5YsaLShraoyxLvjVg42Bp1RtjumJUrV06Zw+/fv8+MGTNq3jOBeh5VY7vTJBwOzuxeVKlShYcOHdKUFxwcrFuMGC1ySPKHH34gAM1CzbadypUrpwlr0qQJgfgFj7NIo06F2i2aWET+ESNG2E0nXOzCs2b0gO2VnylTJmU788KFC5o0MTExTukaFxfHW7duKdelSpUiAGUFK7b1Nm3aZFcXZ3W3pwcAdu3a1TBerHiXL1+uhAlPo5GBQz5/gYSsWrXK9B7UHgOjeAAcO3asYnipefTokSbvhQsXuGHDBgLxBoIRwqgbOnSoktfb21tXZ+/evUmSR44cIQAeP37csDxHXLx4UTMYCaOuc+fOmsH97bffNrz3/fv3c8mSJYyOjjYsX5QhBiDbyQ2I97SpiYuLY2RkJFu1akUArFChgiYuNjbWbl/q0KEDgecLEGHUqes1w6zPimcmBl5nMZoAHjx4oFnE2NYpJuwpU6bYLVt4nevVq6cp49q1a9y/fz+B+G0ZdT22z5GMby+zd0VNXFwcPTw86O/vr9Fb7f0m47f1hXdQne7WrVscN24cIyMj7d6/GnVcTEwMnzx5wk2bNvHOnTum/WndunVK/nPnzvHrr78mAB48eFDZWhUTochTs2ZNpkuXzvTeS5cuTQCavmems4+Pj2bcvX37Nrdu3UoyfhE2dOhQkuTVq1cZGRlJkhrjVm3UFSpUyFQnkV4Y7g8ePFDC1Lstp06d0ukbGxtratiRVBbQ6ucUExPDkSNHKuMT+fz9Xr16tbIdSj4ft6tWrepQf7VewqGxYsUK03wCYdQJT5ottv3QqG5bfH19DeOWLl3K0NBQZTdB7fUVOynO3OfatWu5d+9e3b2HhoZyx44djIiIIBDviReI9+uTTz7RlBsdHU0gfqfHWaRRp8LRROIMwPPtGWf58ccfOX78eE0ZzgyAZPzZEFfx8OFDrl+/nlarlWvWrKHVauX+/ftNPWzq7TK1fmYeHXtcvnxZGfxsiYuL46JFixgXF6eEiS1bewasmPCnT59umubZs2eMiooybXMRfvLkScP8tpMd+dzbNmvWLMM84tyS2Jq1rbdBgwbs16+fqc5Jxcyos8XZd8GRUeeIvXv3KkcZBKJdq1evbphHGO3Cs6A26s6cOcOJEyea1rdnzx7u2rVLuVZvy/Tt21cxDpxF5PXw8DCd5Nq1a8d58+Yp1//99x8BcNq0aQ7LDwkJ0XjsBFarlXPmzNFMalOmTOHVq1ed1t0Rzj7PL7/8kqNGjTItp3Dhwhw7dqzDOmwZOnQoW7VqRTJ+jGjcuLEycaqJjY1VDD3xPIVRZ7VaTd9fNcKoU7d1sWLFHOZzlrCwMMXT9fvvv5OMv3f1gsYW0afEokgcR2nbtq3ihBDvjlk77t+/n7t27SLwfNuVjN9lUC+U1fj5+WnGW7FDsX37dmXxLd7R//77z1T/ffv28ZNPPuHq1as14cKb6Ijp06cnej5OyDyqRpxnUx9FcESJEiXYrFkz9u7dm1FRUYZGnRo/Pz9GREQo11arldmzZ+fGjRudvDtzpFFng9jDTyxPnz512lNmBmC82hZxSdHPlRgZQ5GRkUm+f2cQ58zMvEckuW7dOqdXhMOHD+eECRN04WKgt4fRM7lw4YLdQ61HjhxRBkV7g3py4KxRN2LECA4cONBhecJb2aRJE3bt2lXx7Ca1r+7bt0/5ko8twkt18OBB5V6SAhB/OPnOnTusWLGiss3mbN6E3qfwPtueIbJHo0aN6OHhkaB6kor63sTxheSswxH//vsvAfPdA5LKNm6DBg0SpId419ULNbOFZmIRXxIRRt2yZcuUIyNGCMNi6dKlStjkyZMVT6qaXbt2cfv27Xbrf/bsWYK80C8zjoy6Jk2aGMaJM3FG3k9nURt1RvNKcuLS/yjxKlCmTBlcvXo10flz5cqVZB1OnTqV4N82Sg0yZMiAjRs3Kl/VBuL/525K0L59exw5csTuV9mbNWuG9evXo2nTpg7Ls/25FUHjxo1x5coVu3lv3LiBdOm0r1LZsmXt5lH/9E9K/9TH22+/DQBwd3e3m27AgAEJKtdisWD69OmJ1suWWrVqmca5u7uDJC5evKjUnRSo+smJM2fOJDj/d999l6D0rVq1wowZMxKUz9HPMiQHq1atQmhoKADg4sWLCAgISHEd1IjfEWzcuLFpGvEsE/tTKxaLBd7e3rBYLMk+nn3zzTd24ytXrowLFy7gww8/VMLMfmKnXr16DuvLnj07qlevnjAlX1IOHTpk+lMycXFxKTbu9ujRI0XqUUhREzIVcdZTFxoa6nD/PDUpX758iq/WX2fi4uKUw+DJAfD823EpifBEqb8okVjUnjo1AGixWJKkpyPi4uI4cOBAQ89FSqH+8oQk4SS1/9kiziGJM27O4oxXPqnYeuokLx7dunVLsqfu9OnTqbarJj11NmTOnDlJP0yZ3Jw7dy61VXitSJMmDbJnz56sdaTGDzCLH9nNkycP2rZti7/++svldXTs2BFffvmly8tVkyZNGgwfPjxZ63BGB0ni8fPzM/WoJIb06dMnqjxX6pCadUhcQ1I8eZUqVcLo0aNT5T+cSKNOIklFgoKCkCVLllTVYdGiRS4px3YQFL8WL5HYw9n/WPAqkDdvXgDxk77kxcRVhnf//v1dUk5CeemMunv37qFy5cooXbo0gPgzH6/ToCB5tciWLVtqqyCRSFKIIkWKwNvbG/ny5UttVSQmCKMuNf+tYVJ46Yw6IP6Q9OrVq+2miYqKQlRUlHIdHByc3GpJJBKJ5CWladOm8PT0TPZ68ufPn+x1SBKP2Dlx9v9Fv2i8lIdBjhw5gho1amDAgAGmrtJRo0bBzc1NkYIFC6awlhLJ60GOHDmQKVMm/P7776mtikSSaEaMGIGQkJDUVkOSyvz111+YNm0aypQpk9qqJAoLX7KTm1FRUYiNjcWbb76JTp06oXHjxmjRooVhOltPXcGCBREUFCS3vCQSiUQikdhlyJAh8PLywpw5c1JbFad5YY26R48eoVWrVrrwjRs3ImfOnACAbdu24dixYxg6dKjD8oKDg+Hm5iaNOolEIpFIJK8kL+yZurx58+Lw4cO6cLV7/ODBgyhZsmRKqiWRSCQSiUTyQvLSnak7fPgwKlWqhBo1asDb2xtt2rRxKl/WrFkRFBSErFmzJrOGEolEIpFIJCnPC7v9KpFIJBKJRCJxnpfOUyeRSCQSiUQi0SONOolEIpFIJJJXAGnUSSQSiUQikbwCSKNOIpFIJBKJ5BVAGnUSiUQikUgkrwDSqJNIJBKJRCJ5BZBGnUQikUgkEskrgDTqJBKJRCKRSF4BpFEnkUgkEolE8gogjTqJRCKRSCSSVwBp1EkkEolEIpG8AkijTiKRSCQSieQVQBp1EolEIpFIJK8A0qiTSCQSiUQieQWQRp1EIpFIJBLJK4A06iQSiUQikUheAV5Ko+7evXvIkycPatWqhVq1auHJkycO85BEcHAwSKaAhhKJRCKRSCQpS7rUViCxuLu7Y/Xq1U6nDwkJgZubG4KCgpAtW7Zk1EwikUgkEokk5XkpPXUAcOTIEdSoUQMDBgww9L5FRUUhODhYIxKJRCJJHYKDg/Hff/+lthovDQMHDsSgQYNSWw3JS4aFL+F+ZFRUFGJjY/Hmm2+iU6dOaNy4MVq0aKFJ89dff2HIkCG6vNJTJ5FIJClPx44dMX/+fPj6+iJv3ryprY5LIIlNmzahSZMmsFgsLi1blPcSTtGSVOSl9NRlzJgRmTNnhsViQcuWLXH+/HldGg8PDwQFBSni5eWV8opKXjkCAgJw7dq11FYjwQQFBaW2CpLXnGfPngEArFZrKmsChIWFoV+/foiJiUlSOVu2bEGzZs2wfPlyF2kmednZv38/pk+fnmr1v5RGXUhIiPL54MGDKFasmC5NxowZkS1bNo1IJEkhNjYWuXLlQsmSJROULzw8PJk00rJnzx4cOnRIF37q1Clkz54dR44cSRE9Xnbu3LkDi8WCx48fO50nKCgIa9euTUatkhdfX194enoCAE6cOIFOnTq5vA7hcUqTJnmmncePH+P69etOpZ06dSr++ecfbNmyJUl1CkM1ICAg0WVEREQgKioqSXpIXhxq166Nbt26OZX2yZMnLn/2L6VRd/jwYVSqVAk1atSAt7c32rRp49Lyt2zZYjg5SrQ8e/YMsbGxqVJ3bGwsPvnkE5w7dw4AEBgYiOPHjye6PJL44YcfcOnSJdM0u3fv1lxnypQJHh4eAOIHdSMPhL+/PzJnzowFCxYkWjdnqVevHmrWrKkLF5P15cuXk1S+p6cnpkyZkqQyXgYqVKgAAFi5cqXTebJnz46WLVsiIiIiudRKVooUKYLSpUsDANq0aYM5c+a4vA7xflgsFpBEdHS0S8svXrw4PvjggwTp4iqSskX65ptvomjRoi7UxhySGDBgAHx8fOym8/HxgcViwalTp3Dr1q1k1enChQs4c+aM0+nFeGZETEwMmjRpkqw6Hz9+HKGhoS4p66233kLz5s0BAJMmTTJth1WrVjk/HvE1ISgoiAAYFBTkMC0AJlfTPHz4kGFhYSRJPz8/jho1ilar1TDtjBkz2LlzZ7vlhYWFEQC3bNnicl0dAYCdOnVSru/du8ehQ4eyVq1ayVpv586dOXToUALgl19+SZKsU6dOkp6Z1WolAFatWtU0zdatWzV9w/bzgAEDdHmuXr1KAGzfvn2idXMWoc+TJ08IgEeOHCFJ/vfffwTAGTNmkCTnzp3L0aNHJ7j83Llza9r43Xff5fr16xOt75IlSwiAMTExpmnmzp3Ly5cvJ7qOxCDa8e+//1bCTp06xSdPnjAsLIyzZ8/WvbMiT2hoKEly+/btBKC868lNVFQUAXDJkiVcu3YtW7ZsmaD86r5ctGhR03dp7dq1PHbsWKJ0/OKLLwiAfn5+nDlzpsvbx9lx22q1skGDBgTAdevWJaquwMBAXr9+nYsWLSIA/vvvv4kqhzTX2zY8KiqKf//9N2NjYxNdl6+vr2bcNCImJoZ//PGHUj8ArlixItF1OiIh8+3JkycJgKtWrTKMv379OgGwXbt2rlRRAwB+9dVXduPV9xMWFmZqd5jNJ47KtKufU6leAZJi1IWGhjIwMNAlegCgu7s7SfKbb74hAPr4+DilhxH37t0jAH7zzTcu0U/g5+dnd7Il4/XLnz8/SfLGjRuaQYAkt23bxps3b7pUL1GvEDF5vfPOO0ky6uLi4nRG3aNHjzhv3jwCYEREhKlRJwzCypUr68oVRl2HDh2UsK5du/Ls2bOJ1tUMoc+hQ4cIgH369CGpN+oSu2jJnj27Jh8Afvjhh4nWt3bt2hpDyAgAfOONNxyWFRUVxfDwcMVICAgIIACePHlSSXP37l0uXrzYYVlGRp241759+xKAztAUeUJCQkiSX331FQHw3r17uvKtVqvpQo6M74vjx49nVFSUQ10F4n4bNWrE9OnTEwD9/f2dzq/uE0WKFCEAjhw50m66hNK4cWNl0dG0aVPFwEsoa9eu5dGjR011u3v3rt38ixcvVtLOnDkzQXUHBQWxU6dOLFOmDAGkqFE3ffp0uwaNPTp16sTu3bvrjLro6GhGR0dr0ooFs1qGDBniVD1xcXE8d+6cJuzw4cN88uSJLu3Zs2fp7e1teP8zZswwNCTXrVtHAKaLUjHeJqe/CgDLly+vXFutVsbExCjtaFt/vnz5nDLWANBisThM54iXcvs1pSlSpAiyZ8+uCbtw4UKiXe4HDhyAxWLB0aNHAcCwHLGtCMApV+/y5cvRs2fPROljxFtvvYXff//d6fRG7vxGjRqhVKlSpnlu377tsNwJEyZg3rx5pttaYgvH2XM6Zj9tY/sMtmzZgrx586Jjx44A4s/FmX27TWzlkERAQIDDrfsZM2agffv2TumbFIz0ffjwoWFaksr5oIRw6dIlPHr0CADw66+/YtGiRYbpmjdvDovFgurVqyMyMtKhnmrMtuni4uIQFxcHAKhatSrefPNNZM6cGXv37sXVq1cBQDnAvnHjRhQpUgRt27ZFSEgIAgMDUbhwYdy8edO03vv372uur169qpznNTt2sGDBAlgsFuXLNOp7u3v3Lp48eYI0adKgfv36pvVu27YNvXr1wrRp0zThY8aMwdChQwHE97n+/fvj1KlTuHfvniavOPyfK1cuAMDRo0d1X+5ZsWIFFi9ebKoDAAwYMMBufEhICL755hunv4Qj3jGjdzUyMhJt27ZFQEAAevXqhWzZspn2yRYtWqBq1aqm9WzduhWBgYHK9YULF/Dvv/8q1+qxqkuXLk7pLpg9ezZmz56tO8pgO36cO3fO7pGLHTt24OzZs7hw4YLTdYuzV6Jv20ISy5YtM9xanj17NqZOnaoLf++995AzZ04AgJ+fH86cOYMHDx7o0g0ePNgpHSdNmoQKFSpg/fr1Slj16tWRJ08eXdqKFStq5oe4uDil73bt2hVff/218n7bon6voqOjMXHiRFitVqxZs8aufocOHYLFYjHdfo6JiTGcjyMiIjTjujpN6dKlkT59emTIkMGwTF9fX8NwZ8fbnTt3OpVOrdxrQVI8deJ6wIABvH79Ovfu3UsAXLNmjWkZmzZtYlRUFLds2cJ9+/Zx+/btmlWJWry9vUmST5484YcffqispoTY01l46mx1dpYzZ87w9u3bJOM9U8LTAYAlSpTQpN2zZ49mu03U2bNnT+7fv1+jh9qrZevl/Ouvv1i3bl0CcLh9J8qoXr26Lgwq71jhwoUJgEOHDuW2bduUtFFRUYo3QLTrwoULdfXExMRoPHXCKyXE39+f27ZtM/TUbd68mQD40UcfsXr16kr4smXLePr0aQLg999/r9E/IR6uPHnyOOWJFfUKT53QU+2pE94x274ivAABAQGm5Rt56oSsXr1aV2737t11bSXk8ePHii737t1jREQEPT09FU/L06dPOWfOHE2ZGTNm5M8//0yr1cqlS5cSAAsUKKArf/To0Txy5AgBsFevXrr4s2fPcs+ePQTAP/74g56ensySJYvi2TJ6nwAwbdq07Nq1KwFwwoQJmr5t9F4D4IMHDxgXF6d4c9WSJUsWw3Zeu3atxhsxZ84ctmvXTqPTtWvXNGUJT52tqHUz6isAlPFMpBHbr0bjiXpMEv1q+vTppn1Gjdjy3Lp1Kz/77DMCzz11n3zyCYF4r6yoY8aMGQTAp0+fGuqg5tmzZ4b3/uDBA+VaeFLGjBmjSXfz5k2dd8mMcePGGbbz5MmTHepIkl5eXpp4o75mVsbEiRM1749Z+iVLlpAkY2Njefz4cU2cGAObN2+uq0N8/umnnwz1mzBhgl0PM0nl/TAaJ8z0FaL2aNm27c2bN3XvuODff/8lAKZJk0aT5uHDhxwyZIhGZ/W2spEnW4wJtnTp0oVA/K4CAJYrV87wPtTXtWvX5tOnT03v/6OPPlLi1P3Kw8ND44m210eMkEadihs3bnDu3LlKA/r4+ChbpELKlSunnC0SsnnzZk05t2/fJgBlq8aRPHz4kOTzyXfq1Kma+ODgYJ2uR44cYVxcnM6oi42NZdGiRdmzZ0+lMwsD6+uvvyZJenp68sGDByT1L/VHH32kfC5evLimTrOXFQD37dunuS5btqzyWW2Q2eYbM2aM3edm1KHVYR9//DHJ51tGQk6dOkXy+RYfSZ47d44A2KVLF6WsqlWrcv/+/YyOjibw3KizfUb+/v7KVovty6vuM2qpUaOG8tnWqCtbtqzpPR86dIh79uzR3W+lSpUYExPD8PBwBgUF8a+//tKcrxHp1EZdZGSkcn5pxowZrFKlihK3Y8cO7t69W7OIUG9dxcbGctKkSXR3d1cmZLPnYO85GaUVBp96ABSDs+37ZVtGt27dmCVLFuV69+7dmrSjRo3i4cOHlbJs69+wYYOh3rt27TLsc61bt9altVgsSt322qJmzZoEwNmzZ9ttKzJ+GycyMpJr1qwh8Hziss1z/PhxZRtK3T/NdBCiPk6hDv/+++81+tgaddevX+fx48d54MABJfzkyZNcsGABgXijbteuXfT19SVJnj59mgULFuQ///zDlStX8s6dO4yIiGD9+vUN9frhhx8Mw7/++msC4J07dzTtpNbNarWyefPm/O2333T579y5w1OnTmneBVJv1Nk+i+vXr3PEiBGG72ZijLovvviCZcuWVcbhHj16mNbv5eWlHEew1Utt1DVu3Finm4ibMWMG/fz8+PvvvxMAV65cqcQ9evSIgH2jTr3ws5WDBw8atgtJhoeHM3PmzJoy/fz8lOuiRYsq40upUqVM6xDnxO3J6NGj6e/vz71795o+T/W7IRCLBwB89913+fDhQ43RB4BFihTR3ZsY/8TioXz58ly5ciW9vLx0z9BMD09PT807mDZtWrt62x6XUfcFe0ij7v/ZunWrchZFyKxZsxx2LqPGvnz5stP5gOdGnRgkbVdKgYGByiA3d+5cxaPRvn17/v3336blivNDZp1u8uTJhuHqjnry5ElOnTpV42kgqegg5OOPPzbV48033yRJ3rlzRxfXq1cvpkmThmfPniUQP/m98cYbbNu2rdIetm1sW0auXLmYMWNGTdi3336rSUtSqaNr1666snx8fAiA7733nrIasyfnz59XPptN2GoRRp3wHJQtW5ZWq1V3/kc9wZFkmzZt7Ja7d+9ektQYZmaTpJkIrykQb9QB4NixYzWTiFr8/f0ZGRlpWl6VKlV47Ngx5dq2r5jJlClTTOPUHoA33niDWbNmNU07cuRIjWHbvHlzTbwwtGxl586duv6l9hYaSY4cOQz7pK2oDXyjPk2SzZo1IwDlTJM4x+RM223cuNFhGmEk9u/fXxNu2+fURt2oUaMMy1IbdaNHjyYAFitWjCRZvnx5XfrGjRsr3jlnpVWrVgTA+/fv02q18uzZsxrjlYw3JJwtz9YQNnoW4ktG4nr37t3KpO/n58fhw4cb5p00aZLyHNXjx+DBg5XP4hyhmfTu3Vv5rPbECoR32Da8c+fOmnDh4TQS4eHOlSuX4p0HoHzBwJHs27dPqTcoKIj16tWjn58fg4OD6e7urkkr5ly1lChRwnCRpBZn5s+///5bqc+RUTd06FCGhISY9r8FCxbo5oMWLVpo3s1GjRoZ5v3ggw8017YedFvp16+fUqYjow6AxtOsfub2kEbd/2PUoG3btnWqowvx9PTkDz/8oNmKckaEUff5558bxgtPixB7Kym1VKpUSXdvkyZNMkyrHsiNRL29ausKdySZMmXSrNgSK2Kl7Wz6QoUKKZ/Dw8NZvHhxAvFfVJkzZ47hllhipGHDhg7T/PDDDyRJNzc3AvEe327duhEAr169yhEjRugGQWf0GzJkiG673hViu5VhK+Lbxq4UWw+1vf5kL37kyJEar5KzsmPHjgT1LyHqw9kJFfFFIttvGwLxxrYr3hu15M+fnzlz5tSE2Rp1tl5vIzl16pRu0QXA8D6E2C681CI8n2r58ssvlfadNm2aLv7PP/9kRESE0/deoEABu/EkWalSJV34/PnzHRoOY8eOJQCNpwoAs2XLlqjnJLxsAHjjxg1OnjxZt4AX29K2edXGmqtFvTW5fPlyAuD48eNZtWpVXVoj494ZqVChgsM0PXr04LvvvksA/OWXXxymt7fo+fXXXw3tAKvVyk8//ZRFihRhiRIlXNJ+ZcuWZe3atXn79m2njDpbEWOUPaRRR5oODIntlAmVM2fO2I3v2bNniuhhT3bt2pWk/OLcWVLE09PT9LyHI8mfP78uzPYbu8kpzgzu6jMWQPxWemo/95dR/vrrL82Wk7OyadMm3aTsjJQsWTLV7zkhYnteVC07d+50uhzhoUtuKVWqlOmW5f37911Wj7PeKiMRP9eS0mI7ZqSEkPG7SgMHDkyW8h0Z34kRR17aNm3akEz4gi4pkhijzplvIUujjjTdYkgpsXWfv4hiNqhKST4Rvz0mJWVEnGl9neVle8/NzkemtKi/IPWqi9jCfdVEfWb6RZWhQ4c6tHWkUUe6zLUqRYorxd45RSmuF2nUSZHy+or49u2LLM4YdfJ36gDT38KRSFKTkydPprYKrxWvw79Ak0gkxpj9ntyLhDO2ioVM5C/ovmQEBwfDzc0NQUFByJYtmyauaNGiuHv3bippJpFIJBKJROIYRyab9NTBcSNJJBKJRCKRvOi8tEZdnz59UKNGDXz33Xem/0bIWaRRJ5FIJBKJ5GXnpTTqzp07h0ePHuHQoUMoVaoUVq9erUsTFRWF4OBgjZjRsmXL5FRXIpFIJBKJJNlxuVEXERGBw4cPw9PTUxcXGRmJhQsXJrmOY8eOKf8Qu2HDhjh69KguzahRo+Dm5qZIwYIFTct78803k6yTRCKRSCQSSWriUqPuxo0bKFmyJGrWrIkPP/wQtWrV0nyjJCgoCD/88EOS6wkMDFS+7ODm5oaAgABdGg8PDwQFBSni5eVlWl66dOmSrJNEIpFIJBJJcvHGG284TONSo65///748MMP4efnh+vXryNbtmyoVq0aHjx44MpqkCNHDmU7NTAwEDlz5tSlyZgxI7Jly6YRMzJkyOBS/SQSiUQikUhcSenSpR2mcalRd/ToUYwcORK5c+dGsWLFsHHjRjRq1Ag1atTAnTt3XFZPlSpVsHPnTgDAjh07UK1aNZeVLZFIJBKJRPKikTZtWodpXLrvGBERodvKnDp1KtKkSQN3d3csXbrUJfVUqFABefPmRY0aNVCoUCH07dvXJeVKJBKJRCKRvIikuFH3wQcf4PTp0yhZsqQm/N9//wVJNG3a1GV1jR071mVlvQw/aVKnTh3s3bs3tdWQSCQSiUSSCjhj1Ll0+/XLL7/EsmXLDOOmTJmCb7/99qUwoF5EYmJiXFreokWLXFqeRCJ5tdiyZUtqqyCRvHB4eXml2ruR4kadh4cHtm7daho/bdo0WK1WV1bpEl6GL0oMGzbMpeW1bdvWpeUlhMRsw7/99tvJoImeunXrpkg9RmzevDnV6k4uVq5cmeA8xYsXTwZNEoftF6ycOaicUvTq1cvwm/+JJSIiQnMdFBTksrLNcHd3Vz7b7vAkhkqVKtmN37dvX5LrSG4aNWqE2rVrY8iQISlSX+vWrVOknleFd955B40bN06Qg6pw4cKmcYMHD3a6HKd+qYOvCUFBQQTAoKAgXVxERAQBEACzZs2qfHYkQ4cOdSpd165dnS5TLf/995/y+f79+4kqw0xIKp9Xr16d4PylSpWyG+/r62sad/DgwQTX9+zZMzZt2pQWi4VVq1bVxZ86dUoXVqlSpQTXs2TJEpe1ceHChfnTTz85lfb999/XPJPEip+fH99++23T+M6dOyufa9euze7du7vsfo1kxYoVCc4ze/Zs5fN7771nN22ePHmUtraXzt3dXflcv35903R16tTRXFepUkVzbYtt/qdPn/L06dMua7+aNWuaxk2fPt0lfWbz5s2G99O+fXvN9ZYtW1zeP9R1lixZMtHlBAcHk6RDHUly+vTp7Nu3r8vuoXfv3knK37JlS81Y//3335Mkz5075/L2NpI+ffrQw8PDMK5FixaJLtdoTLYnbdu21YWlS5fOMK29Mc5IZs2aZRh++PDhBN+XvfffSGbOnMng4GDl2va5Wq1Wp+v29PR0aOtIo+7/EY1Wr149pxvYWUNLXb76QduGXb58WZcvKipKGXSXLl2aqJfr0aNHpjrlypXLUD8zeffddwmApUuX5pEjR5TwS5cucdSoUXbvuWnTpgTACxcuOFXXnDlzDF+kW7duKeFjxozh/fv3SZKjR4/WDAzq/GrJkiWLaZ2RkZGsX78+nz17potT368z8scff2iMKHsiBnJ1WNq0aRP8rEmyWrVqpvFdunRRPnfu3NnwOTk7SRkNwkJ++OEHAtD1WS8vL82g1rFjR13e8+fPK3p+/fXXdnUoUqQIAbBZs2aG8UuXLqW/vz+joqIIgBkzZuShQ4dYpEgRxsTE6NL369dPc+3IqLt06ZJhfI4cORL87Mye5yeffGIYJ4w6dR8jybZt27JQoUIJqsN2HATAtWvX6tJ17dqV1apVM9UpMfcnPguj7rvvviMA5syZ0zAdAC5YsIA3btwgEG+wC3x8fEzrSpcuneZeS5QooYnPly+fUzqvXLlSMxGrF6m2iziSHD9+vGE/B8BNmzYxMDBQc3+jRo0iSXp7ezulz/fff5/gdv/vv/+YPXt2AuDgwYNJkjt27ODUqVM16QYOHKh8rlu3rsNyixYtavrMAHDixImmeSdNmqS5vnz5sqYNihcvrnwuWLCgQ13UBj5JBgQEGPY/knz8+DFPnz7NRo0aOdVnBTt37nSYfubMmSSp2BYhISFKXO/evUmSx48fT1C99pBG3f8jGu7p06fctGmTcq0enH19ffngwQPDTqv+/PbbbzN37tyGcS1btuSxY8dIknfu3NE9NNHx5s6da1dPe/Lmm29qrh8/fmzYQQCwb9++unLHjRunud69e7fyQlavXp1AvKeOjO/UTZs21elHkm5ubhpvWYcOHQiA169f15SfLVs2w/s4c+aMYYdWG6kxMTGauCdPnhCIXyWqjbp//vlHmYAbNWqkGB1quX37tqasJk2aaOJjY2M1A8b27dvtPgczo27x4sW6sGvXrmnar1WrVobGuDMvvr+/v2n8Tz/9pDzDGTNmaOocMmQIT5486bCfjRs3jkFBQYyOjmZAQIChcTd+/HgC4PLly3X6qcu3HWj/++8/kuSvv/5KAFy4cKGpHjt27FAmmhkzZhimuXDhglLn5MmTef78edP36ZdfflEG13LlyhGAxnixNQqMyhEk1XujLs/MgJo2bRpJahZJaoR30t3dXWecCg9tt27dTNtDXa76HSfJjz76SKdP+fLlNddqo/DatWvcsmULhw8frrs/8VkYdQJ1/1enmzFjBuPi4pQxfe3atRrdzHZQ0qdPr0n35MkTnj17lseOHePixYsNdx/EOH779m1dG8+ePZtLly7VPf+LFy/ywIEDuvFEpOnVq5fh82rcuDEBMC4uTpdn7Nix/P777w3HjpMnT2qeQenSpTX5unXrZtivrFYrZ8yYwYiICKU+9ft26dIlPn36VLk+duyY3b4qFtdGz6xz584cNmwYSSpG8MSJEzXlh4eH63QkyXLlynHr1q2KUff3339z/vz5dnV58OABSfLp06dKOfaMOoE9r1n69OkN8/z+++92dRFGnRjTIiIi6OHhwRMnTihlxMXFOTUWOIM06v4f24YT12qjzijt3r17efToUU14dHQ0o6OjNemCg4MZEhKiqdPIqHOE2G5Sv7T3799XVl2iQ6vTPHnyhPv27eOBAwfYo0cP9ujRgyQZExNDq9Wq6F6wYEHFSHrnnXeU/Oo2E+5q20HeqG2sViutViu7d+/O2bNnGxp106ZNM1yR3rhxgyTZs2dPli1b1rQe9QBoi9qomzFjBsPCwgjErz4FZ8+e5YEDB+jj46PLb7VaFePEdpASiDIrVqzIoKAg/vPPP8p2dv/+/Q2NOlG2OuzOnTtK+RkyZNDdw+HDhzWrYCEjRoxQPrdt21bXPrbyww8/kCQfPHigefZAvAEmmD9/Phs3bsxBgwbpypg1a5amnYyMurFjxxKI92oYtZttm3p4eGjKnDJlitJXzO6HpLJdGhoayujoaA4cOFBpsyJFiij3aIbZ+xcYGMhjx45pDKpJkyY5LEegnhwHDBjA0aNHOxy0Ae2RgXfffZckNVuwadOmVRYb6q0YIN5LosZqtRoaCOK9NMJ2vPv7778JgK1bt9akq1ixouHzEJ7TU6dOKXWmTZvWbpuLzx988IGmDc2MOkcY7YIA8V5ae9gadbly5eLTp085fPhwzftqhDO6JeZezNL9888/StzDhw/p6+urGcNs87Vp04YAeOvWLbv1CU+neGaRkZEE4hdbaudAeHi4xkutNqyF8WVPf29vb93co05vtM2oLtf2yFDXrl3ZunVru+1qtNg1wuzd9Pb2NtTLkVF37tw5pS3PnDljWKeRMSm4deuWznlhD2nU/T+2DSkmC/Git2rVSonbu3cvlyxZoitjwIABdHNzU66LFy+unJUywnb71hl8fX15/vx5fvHFF/z000+V8OnTp2vK2bx5MwsUKEAAmtWKGQBYrFgx5To8PFxZ3du22e7du03b8fDhw4rXyRa1Uffee+9xwYIFSlyPHj34448/Mk2aNE61RWxsLGNjY+2mmTt3rtImYrV048aNBL0gJPns2TNGRUWRpG5yEINepUqVlLB9+/YR0Bt1wvAWqAcZYdQdPnyYd+/eNdTjzz//VNJXrlyZAJTzW126dDGcwIH47azTp08zf/78hoOKSGfULurzpkKOHz+uSSMmjL179ypphLdb7fkrXry4rk4zrFYrz549q1yXLVtWo4M4kqA26tTYeknMEB6nv//+2zD+448/VurcvXu3aTm292NkBBhN6rYSFRXFR48eMXPmzMr9P3z4kJMmTeLNmzf56NEjw/ovXLhAPz8/u/f6xhtvJNiQsFqtHDFiBB8/fqxJU6FCBcNJSCw8BM+ePVO2FwWBgYEE4s9DqutztVHXoEEDAs89402aNLGbT7yrwitXvnx503axxRndEnMvZunmzZtHAFyzZo1T+cS2p6M+QsZ7Go3SiW3D7Nmz29Xv6dOnvHjxol391VSqVEkxCocMGcLt27cbpitWrJhSlq1RZ08ftV5mhpOa+/fvs1WrVrojFGaoPdL58+fn+vXrEzyvk+TGjRsJxB+rEDthiUEadf+P0QPYunUrvb29GR4e7tCASAxWq1WzHZHUsvz8/Hjw4EElTLjz/f39HeafPHkyb968qQn77LPPCEA3KCcWtVFnxltvvZXkthCojbpDhw65pExbhEfWyKjr16+fMlFs2LCBfn5+igdSYGvU2eP8+fOKIRcTE8OIiAhGRUWxadOmytaHbbnOThz58uUzjBNGXaZMmdigQQNu2rRJl2bbtm0EtGdFSGru6datWwwICNDp5ywxMTHKubgSJUoo4eIcpzC6E0pISAgfPnxoGr927Vq+8cYbhp5cNUb3I7zdgm3btnH//v2a9EC812PFihXKRJjaOPNsFi1apKRzc3NT0qsnXnucPXtWaVNRju32q9ozRJLr16/nv//+67Bs8eUcYShYrVYOGzZMZ5jaEhUVpbxH48aN072Ty5cv5969ew3zOtNmW7du5ZAhQ5xOby9dXFwcV61aZepxNVpk2OvnzuLr66up09F9uGJuE6j7lu25bIFYbBhhtEB1hEi3a9cuu+n++ecfNm/eXLlu166dS+89IUij7v9JrQdAxnsVbA0qV9CwYUMC8d8cTQzbt29npkyZEuzZMkN8m86eUTd37lxTAyOhCKNu+PDhLinPCHHOTm3U7d+/X2fUCRe8LQkx6hKC+lykIwAwb968hnHi/pyZTMn4bV1br5kRK1eu1JwpcRYAysRIxk9Wrlp0JAUgfrtXTZ8+fey2/+HDhw2N5NTm008/5ZQpUxymO3XqFI8fP65s0ZJUtpkTguintp46q9XKoUOH0tfXN0HlWa1Wrl692uHWuyuZNWsWd+7c6XR68SUQRyR2Xkqp+Sy1jDry+Rk59fGcwMBAu/OLKCOpRrUjxMK+Vq1aCc6bVKRR9/+kplGXXIifbjC755TmwYMH7NChQ7J4PY0QRp34QkByILbZHBl1tgf0BWJLzNVGHUn++OOPTg9cb7/9tmm8vTNYKc2LpIua0NBQzYFzMl7XxHoQXycWLFjAefPmsX///q/cGGxGeHg4w8LCHKa7desWL1++nODyU2o+++STT9i4cWPTeHF8wRWoz9QJLl686NROlCChRt2wYcOUXwlICOJoVUIMfVfxerxBfD2NujVr1hCI/+LG60hKGHVkfN+pX7++ch0REcGmTZvS29tb+Zah+luYasR5tOQw6pw1gID4b6tKJKlJXFycU15eiWPsHalISaKiopwyXp3ByKhLKOIbqCkx36fW4tNCkniJuHfvHipXrqz8svuqVauQJ08eh/mCg4Ph5uaGoKAg3a/EA4DFYgEAvGTNIbHDzZs3UaJECVy9ehUffPBBstWzfPly1KtXD7lz59bFBQYGYsqUKRg4cKDSx9QcO3YM9evXx5MnT5ApU6Zk01Eikbw+hISEIG3atHjzzTdTWxWXUbx4cdy6dStJc3RcXByCg4ORM2dOAK/mfP9SGnV9+vTB6tWrE5TPkVHXt29flCpVCj/88IOrVJVIJBKJROICXGHUCV5lJ45L//drSnHkyBHUqFEDAwYMMH0oUVFRCA4O1og9/vnnH2nQSSQSiUTyAvLVV1+ltgovBS+dUZcvXz7cunULBw8ehJ+fH9atW2eYbtSoUXBzc1OkYMGCKaypRCKRSCQSVzBixAhERUW5rLyiRYu6rKwXiRd2+/XRo0do1aqVLnzjxo3Kfvi2bdtw7NgxDB06VJcuKipK0wGCg4NRsGBB0+1XiUQikUgkrz5eXl7Ili0b3NzcUlsVl5MutRUwI2/evDh8+LAuPCQkRPl88OBBlCxZ0jB/xowZkTFjxmTTTyKRSCQSycvHq7xz99Jtvx4+fBiVKlVCjRo14O3tjTZt2qS2ShKJRCKRSCSpzgu7/epqSCIkJARZs2Y1/GkJiUQikUgkkpeZ18aok0gkEolEInmVeem2XyUSiUQikUgkeqRRJ5FIJBKJRPIKII06iUQikUgkklcAadRJJBKJRCKRvAJIo04ikUgkEonkFUAadRKJRCKRSCSvANKok0gkEolEInkFkEadRCKRSCQSySuANOokEolEIpFIXgGkUSeRSCQSiUTyCiCNOolEIpFIJJJXAGnUSSQSiUQikbwCSKNOIpFIJBKJ5BVAGnUSiUQikUgkrwDSqJNIJBKJRCJ5BXhtjDqSCA4OBsnUVkUikUgkEonE5bw2Rl1ISAjc3NwQEhKS2qpIJBKJRCKRuJzXxqiTSCQSiQSI37nZtWtXaqshkbgcadRJJBKJ5LVi4cKFqF+/Pvbv35/aqkgkLkUadRLJa46XlxdGjBiR2mpIJCnGo0ePAADPnj1LtjpCQkLw4MEDl5UXGBiINm3aICwszGVl2iM2NhaxsbEpUpfEdUijTiJ5zenQoQP+97//ITo6OrVVkUhSlOT84lz16tXx7rvvuqy8BQsWYNmyZdi4caPLyrRHvnz5kD9//hSpS+I6Xkqj7t69e8iTJw9q1aqFWrVq4cmTJ6mtUqLo0qULPvnkk9RWQ8fBgwcxd+7c1FZDkkLExcUBACwWSyprIhEsXboU9+/fT7byW7Ro8Vo/b3HvyWnUXbx4MdnKTgmePn2aInPrvHnzMHXq1GSv53UhXWorkFjc3d2xevVq0/ioqChERUUp18HBwSmhVoKYNWtWaqtgiLu7OwDgxx9/TGVNJKmBh4cH6tevj9q1a6e2Kq8t3333Hd5//31cu3YtyWVFREQgPDwcuXLlwtixY7Fv3z5s3brVBVq+vLzOBq0zREREuLzMPXv24KOPPoKbm5smXMwz3bt3d3mdryMvpacOAI4cOYIaNWpgwIABhqutUaNGwc3NTZGCBQumgpYpR2RkJIKCguymWbFiBSwWi+KZSSjnz5/H0aNHE5X3VcFqtb6y50xu3LgBABg9ejTq1KmTytokH3fv3oXFYsHt27cN4yMiIrBhw4YEl+vv748dO3YkVT2FwMBAl5RTs2ZN5M6dGwDQt2/fF9agi4uLQ7Vq1XD69OnUViXRWCwWzJ8/XxNWvHhxbNmyJZU0MiYsLEzj9LDl4MGDLq+zXr16aNeuncvLTW2uXbum8cr+/fffaNCggXJNMkV/H/elNOry5cuHW7du4eDBg/Dz88O6det0aTw8PBAUFKSIl5eX0+VfvnzZdMBPLVatWmX3JXR3d0f27NntljFt2jQAQExMTKJ0qFChAqpVq5agPCNHjsTevXsBABcuXMCkSZMSVXdqUb9+ffzwww/K9TfffIP06dM7lTcuLg4ZM2bE5s2bk0s9lyC8FmXKlMHTp0+dyvP48WNYLBbkyJEDq1atQlxcHCIjI5NTTZchvvG4Z88ew3gPDw80b94cPj4+AAAfHx+cP39ek+bw4cP4/PPPAQDR0dEgiZYtW6Jhw4YJGmtSAmEkHTt2zDSNj48PPD097Zbz448/6voySZd92SA4OBhHjx7F//73v0TlJ4m9e/e6ZAJdu3YtLBaL6b3NnTsXH374Ia5evYq6detq3psxY8Zo0t66dQsDBgxIsk6CyMhIWK3WJJWRJUsWZMqUyam0rvyyh7PvRrFixVCvXr0k1XXv3j3ExsYiKioKp06dAhDvmLBYLE6Pc4KDBw9i0KBBhnElS5ZEuXLllOs//vgDO3fuVK6rVKmCbNmyJeIOEglfcrZu3cpBgwY5TBcUFEQADAoKMow/d+4cc+XKxZCQEAIgAB46dIgxMTEkSavVyg0bNrBXr166vGFhYXzy5IlDHSZOnEh1k4t6HOHp6UkAHDhwoGkaZ8pyd3cnAEZERJimiYuLMyzr+PHjdutYtmwZDxw4YFevN99806n7VXPnzh2n2ja5sL1n2+tRo0Zx0aJFhnnDw8MJgLVq1XK6vitXrrB+/fpKv7OHt7c3fX19nS7bDNEvAPDevXtO9aXNmzcr6XLkyMEOHTpo8ty+fZtz5szR5QsNDWXdunX58OFDJWzdunW8ceOG3fp27dpFDw8PWq1WhoSEJPAOtcyfP58AOHPmTMP4r7/+mgA4btw4+vv7M0uWLJp7O3jwoKaNAPCvv/5i0aJFlfClS5cyNDQ00TqKcqKiogzj16xZQwCMjIxUwmJiYpgnTx7u37/fsKyePXsqn22fccaMGZXrdOnScenSpYY6pUmTRhP2zz//EADDwsJIktHR0VyyZAmtVquh3l5eXlyxYoVh3LNnzwiADRo0MIx3xMaNGwmAGzdu1MXFxMRwyJAhytg3ZswYAuCiRYsYEBDAgIAATfr27dsTAK9evWpYl207TpkyRQn/4IMPdGnKlCljV/eAgADd+3LixAmePHlSuRbzBwD26NHDQWsYI8Yke+94aGgoW7VqpUm3Zs0ap8qPjIzksmXLdOH79+8nAJYvX14XZ6SLs3Ojbd0lS5bk2bNnGRkZSQD08PDgL7/8ovTRP/74gwC4d+9ewzKioqL4ww8/0M/Pz1Cf3bt369pCxAUHBxvqnpB7iYiI0NUdGxvLDBkycOvWrU6V8VIadaLxSPKPP/7gggULHOZxZNR16dKFAHju3DlNZx4xYgRJcs6cOUpYdHQ079y5o+QtV66c0mnmz59vqkPhwoUdPuy7d+/S29tbE3b27FkCYNeuXU3LttdxDh8+zD/++MPQqAsKCmJ4eLhyvW/fPrsvmVkdZnHq8EyZMpnmv3z5Mh8/fmyYP2fOnIZ5nj17ppv0IiMjNc84LCyMZ86cMczvDEl5YcUA6u7urtNRTIK2tGjRggA0Ro8gIiKCgYGBJONfdNu6q1evznXr1vHx48cEwPnz5+smqzt37ugGtcQYdVu2bFHSZc+enWnTptXkKV68uHIdHBxMAPz222+5Y8cOAmD//v2VtKIcf39/Jf2gQYN45coVXZoJEyYQgKbPJhRh1M2YMcMwXhh1ANikSRNde3Tu3Fln1JUpU0Zj1AFg5syZdWULI/zYsWOGhpOPjw8nTZqklNG3b19dGnXbT58+ndu3bydJPn36lAD4xRdfaNKrDQEzo05cf/rpp3YnX7VRFxUVpeR7+vQpyedG3pEjRwzbtlSpUqZ9K7FG3a5du+jj48NZs2YRAOfOnatLs379es27LPRUi4+Pj5JeLFKmTZumhIWFhSmLLdu848aN47Jly0yNOgAcNWoUSXLIkCGa+YMkv/32W807oM4vUBt1+fPnt9sm9+7d49ixY3XhPj4+Gp3URiMZPz6IuVAtw4YNY1xcnOlzFQwcOJAAdI4We/OHvfnGiIcPHxq+O7dv31byValShQBYr1491qtXT3nuwqjbs2ePki8kJERZgAnjUz0+2ervaG5MyBxhS8OGDXVpxfhp9E4a8VIadVu3bmXFihVZvXp1tmvXzimvhiOj7ueffyYAzYANgD/99BNJsmTJkkrYxx9/TADKalSE9+vXjwA0k5GaIkWKEHi+urbXQdQrXWHUff/996b3J/IdPXqUf/31l8Zwe+ONNxTjwnZCBMASJUoo17t373bYcQcMGMCRI0dqjDB1HqvVykGDBvHJkydK+H///We3c4u46OhopYxOnTpp6o2IiODatWsVzx0ANm3aVCkjLCxMeZkFYoJWs379elMPiKBDhw5cuHChUnezZs00eoqJw949RUREKO2u5t1331XyhIaG8uTJk0pb2jPqxOKBJP/991/TwePw4cPK5/fee09Txvbt2wmAgwcP5rFjxzh9+nSnjLrdu3ezSpUqjIiIYFxcnMawcHNzY5o0aTR5ChQooFzfuHFDNyga6Q2A3t7erFatmt00ABgQEMCDBw/SarXSarWyc+fOXLlypUZn8d7cvn1bEy76YqZMmfjhhx8yNjZWE6826oz0VY8RVquVAFi6dGmdUad+HxYsWMArV64QAJcvX27Yxp988okuf4sWLXjw4EFNOiPdrl69qhjMdevWdZjeUfu+++67pt6K4sWLs169epp3WryTAwYMIBBv5Aji4uK4cuVKZcI0e18CAwMJQFn8Gj271atXawwfodf777/PmTNnEgA///xzhoeHa8a51atXa+7v/fff193z8ePHlfTCqLNto9atWxu2V7Zs2ZTPZkYdAK5YsYJAvNEhOH78OAsVKqS0Y2BgIM+fP6+r31mjzs/PT0mn9v5FRkbS19dXo4/tzpNZP2nXrh3btGlDALxw4YKSPm3atBoD7qeffjJ8xkZ9Ljg4WDPGxsXFKQsUEXb+/Hll8dCyZUuePn2aFSpUMOxDaqNOyGeffca6desSiDfqPDw8CDw36kJDQ5UxjCQPHDhAQO9AsS03Li6O3bp1M3yfxOdnz55prkX728Oo7dS7h7YOH8MyHKZ4RXBk1Jl15h9//NE03nbV1rFjRwLx3r61a9eyUaNGSvnPnj3jO++8QwBKuMh3+vRpktqtz0mTJil51d5Dkjx//rxuC9VWtw8//FCJEx6yWrVqEXhu1AmjA4CypbRo0SIl7OnTp8oK3Kx9bOuPjIzk3LlzCYA//PCDabudPHmSsbGxvHnzpqbTtm7dmm+88QZ37dqlyye2oQHwrbfeUj77+fnx/v37uvTZs2dnsWLFFD19fX156dIlAvEryX379jE0NJR79+7lhx9+SABcsGABjx49qivLaKBWX2/ZskVZBYvVr3qrIywsjJ06deLp06c1+StVqkQATJcuHUn7Rp3Id+3aNbvPwLbdo6OjWa9ePW7cuFHxAg0ePFiJF/0C0Bp1V69eJQDevXuXZcuWVcI7derErVu3Gj7bHTt2kKTS18eMGaPTV0hERIRihAtp2rSp5nrixIk8c+aMLq+YDDZt2sRmzZpp3tdnz55p7iNdunQEwIsXL7J+/fqcN2+epqx9+/Yp/Tw6Otq0rwvjT23UxcTEEIg36t577z1dHnVf+uyzzwg8X/yJfjFo0CDeunXLtF4AzJcvH7Nnz67xjtnKF198QQCKl1SMIfbK7d27Nx89emQa78wYCUBZlIhJU7yX5HPPqFhc2pa7fv16Xrx4kV5eXrpy8+bNSzJ+shXe6SZNmhjqpfZwAvGGltVq5eHDh3VGnZnExcWRJL///nvT98tRWwDg9evX7carjTp1+MmTJ1mzZk3DZ6A26vLly6cbHwSnTp1S0hUuXJjkc+/uiRMnNGX37NlTySf6jyNRH7MxayMAvH//Phs3bsywsDDD+7FdtIv5c9u2bZrwixcvGuqh3u1Qz51qKVWqlGLULV26VNlWF0bdd999p9FLGHWO+v7o0aNN3xf1tfC8qWX//v26PkzGe3DVfTkoKIhffPGF7r1whDTq/h97nbh+/fqG4baWuPrFFJ+FAWWbRv3iTZ48mQCYO3duJaxu3bq8evUqZ82apTHqxDawrdfOrIORz8/LiMmtefPmTr28QsQq0kj69++vuf7ggw8clqc2KABoPDP2RBgZtlKiRAmOHDnSqTLEhCeMOACsXLmy8llsP9lK9uzZ+fnnn2vCxDanELG11LRpU967d09jmP7++++aNEYDwKZNm5gvXz4C4Pjx453uoyQ1RoytGBlV6megNkaMjGOxtaoW24FXLb6+vsyTJ49y/dtvvxmmU3uFEyriTFTjxo11cWIRYybjx4831Vu9TWckBQoU0HhxhJFVunRpp3Xv27dvou/baMFhJh999JHDsc2RiPHLnjEJxI8DZ8+e1Rh16nO4ZuUuWbLEoQ5iIfT3339rwoXX2Z6Is4ddu3Z16n6XLFlCUmvUtWvXTuNtTmqb2raBo3S5c+fm/v37dfOQ4Pbt2zx//rxyrV7wCk+92B0YMWKEYR22hpc9MTLq7D3rtm3baq7FTpXtuT0zmTFjhmH4d999R5IsWLCg3XdeLJzVIow6tXd8ypQpTht1RsZaQvuGGrXBLkR4wsUuolE+I6RR9/+44iU1E7FSMJPu3bvbjbc95wfEbx+cP3+e7du3Nx3czIyg1BbhjUqopMT9ZM6cOVnKFStE22doL4/tYfPE1m3UbuptErWI1bIjsTVw1aI2XIH4rSJXt+fYsWMTnTdr1qyG4eJYRULEbJK0J3369Em07snVP82kTp06ytjpjNSoUUP5vHTpUtN0J0+e1OwUJJeIxduXX37pVPqvv/5a50GyFVfNF8WLF1eOVCRGbMcFo3FCHK1xVJZwLDgj06dP57x585SjB0D8AiIhup88eZLVq1dPUvtVrFgx0c9i+PDh3LJli913PkOGDCS129lC1Gdt1SKOEDgjMTExjIuL022JCxEebrPnboY06khN50wNUa+sjER9vkJI3rx5U1Xn1BCzbbyXQdq1a5fgPGIraPXq1Vy8eHGi6165cmWq37+rRb2F+bJJ7969U12HlBAzjygQ/2UIs8lMinNy6dIlzda5+mxsQiUxeW23clNacubMyWHDhiVrHSQ1uzqORO2pdiSOvN9G3juhkz2kUUcq52JeVGnQoEGq6/AiiPjmoxQpUl5+ET81ISVxYnauVYrrJDGL8eQWR1hIEq8BwcHBcHNzQ1BQkO6HACMjI/HGG2+kkmYSiUQikUgkjnFksr2U/1HC1byq//ZJIpFIJBLJ64M06vD832dJJBKJRCKRvKy8tEZdnz59UKNGDXz33XeIjo5OUlni/8JJJBKJRCKRvKy8lEbduXPn8OjRIxw6dAilSpXC6tWrdWmioqIQHBysETMS+w/uJRKJRCKRSF4UXG7UXb16FfPnz8e1a9cAANeuXcPPP/+Mjh07Yu/evS6p49ixY6hfvz4AoGHDhjh69KguzahRo+Dm5qZIwYIFTcsTZUkkEolEIpG8rLjUqNu+fTvKly+PPn36oEKFCti+fTtq1qyJW7du4cGDB2jQoIFLDLvAwEDlG6xubm4ICAjQpfHw8EBQUJAiXl5epuW99dZbSdZJIpFIJBKJJDVxqVE3dOhQ9O3bF/7+/pg/fz7atGmDTp06YdeuXdi9ezf69euH0aNHJ7meHDlyKNupgYGByJkzpy5NxowZkS1bNo2YkSbNS7kLLZFIJBKJRKLgUmvmypUr+P777wEArVu3RkhICFq2bKnEf/vtt7h48WKS66lSpQp27twJANixYweqVauWpPIaN26cZJ0kEolEIpFIUpNkc1GlSZMGmTJlQvbs2ZWwrFmzIigoKMllV6hQAXnz5kWNGjXg6empMRwTQ6ZMmZKsk0QikUgkEklqks6VhRUuXBi3bt1CsWLFAMR/oaFQoUJKvJeXF/Lly+eSusaOHeuSciQSiUQikUheBVzqqfv5558RFxenXJcpUwbp0j23G7dt24Y6deq4sspkYfDgwaZxWbJkSUFNnvOa/Dc3iUQiSVHc3NxSWwXJa8SwYcOStXyXGnVdu3bF559/bho/YsQIzJkzx5VVJgsff/wxfvvtN8O4pJ7fexHYvHlzgv7X7aBBg5Jcp4eHB9zd3QGk/n/wKFOmTJLy2/vSjRkzZsywG3/ixAls2rTJbpq//voLs2fPVq4//fTTBOvxurB48eJkLX/BggUOn2lqkSNHDpeUM2TIEABAhgwZXFKes5w4ccJhmiJFihiGJ+bdXrhwYYLzvEx06tQpwXnWr1/vekWSmb///ts0zhVn+Z1hy5YtDtPkypUr0eU3bNjQcSK+JgQFBREAg4KCDOMBKLJt2zZdmJDjx48bhgPg7du3TeMA8MqVK7qwEiVKaK7/+OMPdu7cmQC4bt06JdxMHyOpVauWaVzZsmVJkg8fPlTCypQpY7e8hQsXkiQbNmyohJ05c0aTpkCBAnbLIMkOHToQAK9du8aFCxdyxowZhmkrVaqkC6tRo4Zp2Xv37nW6bUqWLMmAgADlukePHk7nFfLXX3+ZxmXKlMkwPDAw0G6Zd+7csfuMCxQowLi4OEZERGja1FG5ySEzZ87U6Jo+fXoCYIUKFZJUbu3atQ3DJ06cSADMkCGDwzLmzJnD1q1bMzw8XBP+wQcfKJ8vX77MOXPmJEi3ihUraq7FODJp0iRNuNEzrFKlitP1DB482Kl0jRo1Yp06dQzjcuTIoXy+fv2603V36tRJcz1o0CAC4KhRo1KkX5UqVYoAeO/ePV2cbbsWLFjQsIyPPvoowfXae++++OILzfWECRP45MkTtmvXLkn3umvXLuWzum8C8XPMokWLNGHLli1LdF2RkZF247Nly8ZHjx5pwrZt22aY1mKxOF3vl19+aRj+yy+/OF2GkR4hISG6sEGDBjE6Otq0HPWYb09EHzSSXr166cLu3LnjdF8SMn/+fLvxw4cPZ//+/Q3jGjRo4NDWkb/lYYA9d7y9nz8pWrSo3XLfe+895fP48eMBxHuw1IwYMUI5d2j7BQ5fX1+75Qvef/99h2nU28hidVGqVCnDtE2aNAEA1K5dG0C8x6hixYqaNPnz59f9Z46hQ4di/fr1uHr1KgAoW8gWiwXt2rVTVtVdu3aFv78/zp07BwBYs2YNtm/fjvbt2wMAypYtq1uZHzx4EAUKFNDoBUDJYwRJeHp6ajwZdevW1aRp1KgRpkyZYloGAPz5558YM2YMOnfuDCD+m95A/Le7zZ6Rm5sbJk2aZLdce3h5eSlfPgoLC8O9e/eUcm0R7ZKUFaEZRYsWRYsWLTRha9asAQC8++67SpijNgSAy5cvK5979uyJN9980zCd6Df23j1fX18cPHgQP/74I1asWIE33ngDJBEVFYV9+/Zh//79StrSpUvjxx9/VK4XLlyo8YCK/mrGV199pXhr1R79J0+eAAAmTJig8xhlyZIFnTt3xtatW/Hs2TPTss3u0fbYypYtW0w9aBaLRflcokQJ07rmzZuneHurV6+OWbNmaeJjY2M1OnXr1g2PHz82LQ947vUaOnSo3ftcuHAhrl27hnXr1uni0qdPb5jHx8cHvXr1AgBUrlzZMI16XBsxYgRq1KhhV19HqNsSAHr06IHcuXMnybvXqlUr1KtXT7m2PdLzySef6N7dtGnTaq7v3r3rsJ7MmTMDiP95L3tcvHgRb7/9tnI9evRo1K9fH8OGDVPOxwv+++8/092qDBky4MqVK8p1o0aNDNPlz5/fMFxdrtjxM0qbJUsWREZGYseOHUpYx44dkT59euzatQtbt27VpG/Tpo1d77W/vz+A+Hnm0qVLpunGjBmD2bNna+blIkWKwGq1atLduXNHeb5Tp05VwqtUqWL393IF77//vu6n38SzpDPHsJzxcr0KOPLULV++nOfPn+f27duVMNhYyW5ubjxx4oSpha3OQ5Jubm4EwLZt2/KXX36h1WrVxMfExGjyzJgxgyS5fft2AvGr7EGDBvHdd9811clW2rdvz/DwcFosFvbp04dAvAekfv36BMBy5crpynrw4IGmLVasWKEpMzAwkCQZHR3NJUuW0Gq16nT55JNPdGG2CH3u3btHkjx69CgBsGfPnobPZOfOnQTA//3vfzoPBkl+/PHHhu3+1ltv8c033zR8PoKHDx9yx44dXL9+PQHw559/JgB+/fXXSppixYoZrswEVquVcXFx/PrrrwmAd+/eJUm+9957BMC6detq6p45cyYBsHjx4rpyb9++TZL08/PjwoULCYBFihQxbUs1tmV5enpy3LhxOs/Xrl27nPam9ezZ0277kWRAQADHjx9PX19fAmCzZs2UtOPHj9fkffvtt7l+/Xo2aNCAN2/e5PLlyzW6W61WPn78mHPmzKGHh4cm74QJEzh58mSeP39eE37p0iWn2kfdTh9//LGu3ey16dWrVzlu3DiNp+7o0aOGadX07t1bCe/cubPDZyZk2LBhzJ07tyZs3rx5fPz4se5ZDBs2jAB0fV30H9t3Q8j333/P1atXkyQfPHig1GubduDAgQTAf/75hwD466+/2tVd1Hf48GHGxsZq0gYFBSnl2LaVCCtZsiQBKF4jdX8ShISE8LfffmNkZCT9/f2VeOF5PXjwIGfOnMlHjx4xLi5Oub88efLY1fmTTz4xjPvqq6+Uz0uWLDHU+9y5c5o8jryF+/bt0+S39eSS5NatWzVha9asUT6fOnVKk//IkSO0Wq0sX768oR4k+eeffxrqcuTIEbv92PZ524YJz1bu3Ll5//59TZyt90/IyJEjlc9TpkxRPqu9osJTde3aNa5evZrt27fnvHnzmDFjRo1urVq1IqCfw9T1DRo0SOk70dHRvHLlCi9evKjEi3n5iy++MMxve+9hYWGm7aHmwoULujmfJL/55htNueXKldNci3dTHSa88sOHD9c9H93zcpjiFcGRUWeE7UO9ffu2oVG3aNEipVOpH+DmzZsJgEOGDNGVaVSPmrCwMLs6Xb58mQcPHtTpEhoaqqSNiYlh//79GRwcrORVG3XCKLJ9IUjy4MGDiiEVERHhsH1EZzN6CQQRERFcu3atcn337l0C4IIFCwzLDw0NZZ06dfjw4UPGxMRw//79nDBhgjIQPXr0iBs2bNDUS5KRkZGMjIxkbGwsT58+zYMHD/Ls2bOGdaxdu5YAlEFv1apVSpyfnx+PHz/OuXPnmt4TSZ1RJ7aD1S50kpw1axYB7bbE48eP+ccffyiGsiAqKorR0dHcunUre/ToYVivQJR19uxZHjt2TAl/+vQpz549azoACVFv16nTqq9r1aplWr8w6po2baqkN9qeN2LTpk3s37+/LjwsLEyZ7CZMmGCou/raGS5cuMBnz57pyjLCNk5t1DlKS1LZqpkxYwYjIyNN8wDg2LFjlc/+/v48efKk4XskrqOjo0mScXFx9Pb21sTZGgwk6ePjw+DgYFP9jx07phhh3t7eSrrg4GAOHjyYR44cIQD+/vvvOt2B59vjzrTNpk2bNO+YOo0w6vz8/AiATZo0cfh89+3bx9WrV9NqtfLAgQOm6Uhyz5497Nu3LwEwbdq0/PTTTzVlb9iwQXNf3377raKL2b29+eabyuciRYpw7969iiF56NAh3rhxQ3OMBoCip7gePHiwZmuPpGLE9+vXj8+ePdMduyCfGwcnT55UwtTpnj59yhMnTpAkN27cqNFBHLl5/Pix6bOyDVdv/QmHhdC7d+/ehuVERkYyJCSEly5dYps2bQjEG3Xt27fnzz//TJKGi8KIiAidEW3EpUuX6O7urrwTAlEmEG90GzF58mRFh+XLl/Pp06dK3Pz58/n555+bzmdi+11w6tQpLl682LCejh07KotYksr7Lfr3r7/+SiD+SEH16tWVuV9dd8OGDfn48WPGxcU5bBNp1NmhcePG7N69u+ah2p6pU3vRSLJFixb85ZdfSD436oYOHarEJ2QSMgIAM2fOrCuvVatWpoagOq3aU3Hjxg22atVKGdBtsVqtdttL1L1u3Tqd927z5s1O3Y+3t7fOoEkMiW1XsQL+559/El1+69atCTw36vbt26cMyLdv3+bFixdJPjfqWrRoQQBs3bp1gvU10014Uczi3dzclGvhtRWiXnmq71N9beZNJamc2VFPioIPP/yQAFioUKEE39fSpUsVo0F9LwBYrVo1zXViyJo1K7Nly2YYZ1tuQo06seBST5pGeWzbmtSfk7RXj+D69eu8fv26cu3l5cXLly/r6rRnnJvVExkZySZNmugWrkLUZ5xsefjwIT09PZ2qT5wtE/1R7e11JZ6engwMDGRISIjyzgrUHjsxbpvpEBAQoIyPAPjee+8Z1me1WjVnOA8dOkSSfP/995k+fXplou7Tp49m0W3L9u3buWfPHuX6t99+IwDFcBMY6WtrsIo5Ss3jx48Vb5uaU6dOsWDBgpr+JM4ii/HTzKhTI3ZFRo4cqQkX57tbtGjBAwcO6J5JYrHVKzGoz6eriYmJMX23nWH//v3KYkkYdVWqVNGkOXnyJK9du0YArF+/vtNlv3RG3d27d5k7d266u7vT3d2dfn5+TuVLjFEnUD9U9ZbPV199xb1795rmu3//PgFovCceHh66lWpCOHv2LB8+fKhcL1++XHNtj0mTJhm+tInFqLMnxyDsDJs2beKVK1cSnE8MKM5OPEYIo05sK1+9epVA/IFYNZ6engTAixcvsl+/fgwJCUmwvonh2bNnmrrUWw8AGB4eTh8fHz569Ih79uzhli1bSD6/5+vXr+tWwmaY9YnffvstwXofPnyYAPh/7Z13fBTF+8c/RyeUUKSD0psU6S0hFGnSu0hXmnwRpEoRUFERKyCg0qX3XkNvIdSA1AAJkEgIkIRc+iW5e35/5Lfj7u1eS7skPO/Xa165nfrszOzMZ2Y2d/v371fkVaZMGTIYDOI6R44cDudNlCRWbO1CSzx69MiqqBs9erRDZVsTdZZsqFKlCk2fPt2hcuTo9XpRb/bYZivc3H7pFQxHkfK5ceOG6Cfh4eGaR1dpjcFgEG0t7e7bY4M1USexY8cOAiBOTkwmU4oWtI6IujNnzojFGaDc/U4OsbGxdPDgQfEKjbxf9ujRwyFRJ/1jTN++fVNkkzkRERF27WzZIq36oHTqJ/3jyMyZM1VxpJ1XLRFuiUwp6nr37m0zXlxcHOn1euECAwNTRdRpXb+pZCRRl9ZYu68ff/yRACi27319fVNlBzItuHnzpkrUaXH16lXFgsQetOpJr9db3A22xf3791X5V6tWTVzv3LlTFSc16N69Ow0aNEjhd/78eerUqVOq5C/VU548eRTXWnHSGyDpXSlr4UDSKyDSLnR0dLRdgtFafo6GpRepJepSG0nUyY9fJVu07D106BAZjUa6dOlSqogdoqRXAL799lshVImSdrG0To3Cw8Opfv36FBgYqPCXXg3Ytm1bqtiU2ly6dEm1650aJCQk0KhRoyg4OJhevXplcYy8du2a5isclsh0s+/jx4+pZMmS5ObmRjNmzLA4cVr6aoDUEHXffvstDRgwINn3kFVYuHCheMFaYsiQIfTzzz87yaK0w9rAbjQaxS5dZsBc1CV3MtaiRYsWtHz58lTLzxxzUZdZadSoEa1Zs0ZMrhlJ1N29e5fCwsIshvfu3ZsqV66cauVZu89bt25ZPQ1JD06dOmXxvSyJzCDqmDcDHRERMhEGgwGJiYlwcXHByJEj8cEHH6i+YkGKZzAYxHVERATKlSsHvV7v8JfHSv/WnsmqiklFslIfCAsLQ9GiRbFv3z40btxY8XUGGR2dToeqVavC19fX2aakKlr9a+zYsbh69SouX77sLLPShazwbOl0OlSuXBkPHz5MtzKnT5+OBQsW4Nq1a4qvmNLpdMiXLx+ioqLSzRYm45Cqv/2amgQHB6NPnz4q/3379qFIkSIAgN69e+PixYuaoi537tw2v5/HERz5BQYm67Fo0aI0+d43Z1CkSJFMPYFOnDjR2SakOi9fvlR9J5qzf3mFcQzz7xVNa2bPno1SpUqhXr16Cn9fX1/+6bM3mEy3UxcZGYkCBQoASPri3ho1alj9wlmJiIgIuLq6Jmunbvfu3ahVqxaqVKmSLJsZhmEYbbLCTt2ff/6Jjh07onz58s42hXnDyXSi7vDhw/jyyy/h4uKCChUqYPXq1ciRw/aGY0pEHcMwDJM2ZAVRxzAZhQx7/GqJTp06Wfz5EYZhGCZz8ffff8NoNDrbDIbJEmS6nbrkwjt1DMMwDMNkZSz/QjbDMAzDMAyTaXhjduqISPyThfl/mTEMwzAMw2R23hhRxzAMwzAMk5Xh41eGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgswBsj6ogIERERICJnm8IwDMMwDJPqvDGiLjIyEq6uroiMjHS2KQzDMAzDMKnOGyPqGIbJuBgMBuh0Ohw8eNDZpjAMw2RaMqWoe/LkCYoVK4ZWrVqhVatWePXqlbNNYhgmBYSHhwMAVqxY4VxDGIZhMjE5nG1AcvHw8MCOHTucbQbDMAzDMEyGIFPu1AHAhQsX4O7ujpkzZ2r+84PBYEBERITCMQzDMAzDZFUypagrVaoUHj16hLNnz+Lly5fYvXu3Ks78+fPh6uoqXLly5ZxgKcMw9qDT6ZxtAsMwTKYnU4q63LlzI1++fNDpdOjduzdu3LihijNjxgzo9XrhAgMD099QhmEYhmGYdCJTijr515KcPXsWlStXVsXJnTs3ChYsqHAMk1KePXvmbBOyND4+Ps42gWEYGQcOHMCAAQOcbUaqExUVBb1e72wzUp1MKerOnz+PBg0awN3dHc+ePcNHH33kbJOcwpo1a/Dxxx8nO723tzfOnDmTihY5ByLCqlWrkJiYmKbl3L59G2XLlsWePXvStJw3mYCAAGebwDCMjL59+2LLli3ONiPVKVWqFAoVKuRsM1KdTCnqOnXqhGvXruHcuXNYt24dcuTItP/EmyI+/vhjrFmzJtnpmzVrhlatWqn8y5Qpg8WLF6fAsvTl4MGDGDFiRIrqwh6ePn0KALhz506almMN6fvc1q1b53DaixcvIiQkJA2sYlKb+Ph45MmTB6dOnUpW+kuXLiE6OjqVrco6GI1G7Nixg39h6A0mKirK2SakCZlS1KU17u7uGDx4sMLvyZMnMJlMTrIobTE/UgwKCsIXX3yR4nzv3LmDoKAgzbDz58/D398/xWUAEJNXWk9iUvtny5byx6ZHjx746aefHE4XExMDANi8ebPDaZs3b47333/f4XTpQVr/o4TRaIROp8s034MXGhoKg8GA33//3Wq88PBwPHr0SOXftGlTjBgxIq3My/SsXr0affv2xfHjx51mQ1hYmMovKioK9+/fd4I1yefevXuK74rdvHkzpk+f7kSL3mxY1Glw/vx5bNiwQVxHRkaiQoUK+O6771Rx79y5g3r16onJNqPQokULu4+lO3funCY21KpVC++8845mmLu7OypVqgRfX1/Ex8enqBxptU1E8PPzQ6lSpXD58uUU5QlAJeJTU9Tt3bsX06ZNS3b65O4wPHz4UHxOSEjAL7/8kqrH1ps3b0abNm1U9kVHR6frynjNmjXw9vYW19I9bty40a700tcgJfedm/v376fKl6L7+fkhISHBYnjLli1RpUoVcZ0nTx7x/pOvr2+Kyzfn9evXmD59OoxGY7LzeP78OWJjYzXD0usf2l6/fg0ATvvZyGPHjqFo0aK4efOmwr9Hjx6oUaOGU2zSwsfHx2r/A4CaNWuiXr164vqjjz7CggULUt0WIsKpU6eSNfbpdDqMHj062WVv2bIFs2fPTnZ6S1y+fDnF858KekPQ6/UEgPR6vc24AEheNS9fviQA1KZNG6pXrx75+vqq4s6ZM0eRx5UrV+jkyZMUFRVFPj4+qXYfluwMDw+ndevWWbyHOXPmEAAymUyqOObdAADlzZuX7ty5Q3Xr1qXY2FgRlpCQQHv27HHYPjlPnjxRlD169GhVnIULF9KjR4/sKmfTpk0EgEqXLi3yrF69uiLOtWvXaNSoUXblR0QUFhZGAGjTpk3Cb9euXSL/n376ye68tLBUN7Z4/fo1AaAOHToQEdGOHTsoICCAVq1aRQDIaDSq0nh7e9MPP/xAAMjFxUX4S2m2bNmiSuPi4kLLly932D7pvjZu3Kjwz5YtGwGguLg4hX9kZCSZTCbxjKXWkGSeV1xcHAEgDw8P4RcWFmYzfXLtAUDFixe3Gc/Ly4v+/fdfatasGS1evFj4BwUFifL/97//ERFRly5d6Pvvv6eEhAQyGAwKO7Xsfu+99yyWGx8fTzdu3LAY3qJFC3rvvfcIAEVERAj/8ePHEwC6dOkSEREdP36cXF1dKT4+noiIgoODKSAgQHF/Up/08/OjlStXEgD64IMPVGXeunWLANCOHTsoKCiIxo8fT+fOnaOoqCjLFfj/xMTE0MmTJ23Gk1iwYAEBoJ07d9Ljx4/pt99+szutHC8vLwoICKAlS5ZQcHCwKjw+Pl6zn0nlA6BmzZoJ/4IFCxIA6tu3Lz158sRhW+yZ3+zh+fPn9NVXXyn6k5+fH125ckUV11IfTG2k8ffQoUM24+r1es25To4jdqbFPUlzzJQpU8jX15cSExNTJV8WdTJev35NROoGDAkJIQBUtGhRMci+evVKEXf69Omk1+spJCRE4d+7d+8Ud4ajR4+KQVOOVIZer6ehQ4cSAFX55nHPnz9PRP91KGui7uOPPyYAdPv2bRH2008/EQDaunUr3b1716rd8ry9vLzIZDKRp6enolwA1LhxY820NWrUsKt+Nm7cqMpTErDSg12jRg3h9/3339Pz58+t5nnv3j0CQEOGDKGtW7fS6dOnafv27RbrTKfT0ZIlS+yyV7o/eR7BwcG0b98+i/FNJhPNnj2bbt68qRB1Uj7NmzcnABQfH08bNmygx48fq8oyF3VLliwhALR+/XpN+8qVKyeur127RgBowoQJwh7z9vfx8VHVj6+vL/3888+a9RYTE0MAaNKkSXTnzh1VeEBAAEVHR5PRaKR58+ZRZGSktSpV2S/PSxKNHh4edPnyZdq8eTMBsFjnyRF1ISEhQuxIaaOioggAzZ0712I5b731logfHh5OsbGx9Pz5c8Xz8dFHH4nr2rVrC7usiTq5//bt26lly5airadNm6YSbERJIvvChQuKPPz9/UW4JOq8vb2JiITtoaGhKnt8fX0JAP38888q23LlykVGo5EqV65Mp06doujoaBH2zTff0MCBA8V1z549Ldb5uXPnKCYmhkaPHk0AqHz58rRmzRqbbTVv3jwCQPPnz6eGDRsSALpy5QoVKFCAoqKi6MqVK3T69Gmb+QCgnDlzEgDq3LmzKrxfv36i3xERPXz4kI4dO6YQdQBo9+7dFBwcLESd5ORi02g0ksFgIJPJRM+ePdO0pVOnTgo/X19fKl26NHXr1o0AKNLJx0ej0UjffvuteMa6dOmiOaaaPw/SIlPyf/HiheLa1jhricDAQIXIuX//vshX3r6AelGakJBAAKhw4cKKeADEOCZfRB49elS0ndY8K0+vRVxcHD148EAhIs05f/48AVAseKSFm4eHh+j3qQGLuv9n3bp1otPLG9BkMokB0NydOHFCfJ45cyYVKVKEAFCJEiWEf9WqVcXgPmTIEHrnnXeIKGknz1onIEqa9PLkyUMAqH///qpwLZtevnypCCMixQQhrWatPaiAUtTdunWLTCYTBQQE0NSpUxXpzp49S/7+/nTjxg0R/5dfflGUcebMGQJAH374IU2ePFnT7vDwcJUNFSpUIKKkAefYsWOadfT69WuVaDB3JpNJfJbEbPfu3RV57N27V1yHhITQ6dOnCQANHz5cpK1WrZqqztavX09r164VfvbsYkp9UbKNiMTEIvHs2TPavXu3uI6IiCAA1KhRIwLUoi5HjhwEQAze8rzkNstF3e+//04AaMOGDSob5Xn4+fmp7lt6Xm7evCnSmIteaXfQUl979eqV1XDpOnfu3ASAvvzyS4qKiqJcuXKRl5eXwl5pgJw3b54i7fz582n27NnUp08fAkC1atVSlGW+w65VZ/ZSr149EV/rvuS7lAaDQQg+c1ehQgUhOq0583bSKjc+Pp7++ecfVbrOnTsT8N8i0FJ6AGLRdOfOHZowYQIBIC8vL7GQkOcjL+Py5csEgIoVK0YGg0GRZ548eYSoB5IWytLnefPmKUTd22+/rbDx/PnzFB0dLSbvQYMGUceOHRX5u7u7W20redy6desSABoxYgQBSYtYrbaPjY2lTz/9VDGHyPNp06YNxcbGUkJCAhElCQRL7fXtt9+q6rlZs2YqUSeNEWPHjhXXTZo0Ec+tXHgCoMqVKytsnjlzpiKvd999V4S5u7tT9uzZ6dKlS2IX7Msvv1QIbGvP59KlSxX+Bw4cUOwwS3neuXOHEhISaNq0aRQYGKjZHmFhYWLxINXbmDFjRPiyZctEvqtWrSJvb28xzzZt2pSGDRtGefLkEe1k6bmYMWMGAcq5W3Lh4eEEQHHiZZ5eCynM2mJi9uzZBCSNz9IcfeXKFQIgxv4+ffqIeScoKEiVh16vFzv01mBR9/+MGjWKAChWqVu2bFEIouS4t99+W+UnHUFs3ryZ7t+/T71796bWrVtT8+bNFTZpDcZytMp78eIFtWjRQlxLA5/kjh8/TvPnz1elCwkJobi4OKpcubLwq1SpEgFJom7RokUEgAYPHqxKmy1bNmrQoIG4Ll++vEIM2eN69OhBZ8+eVd0bEdGff/5JAOjTTz+lOnXq0NOnTwkAPXjwQCGgLTn5qvjSpUsEJO2OPH36VDF5yCcKe5ylNhg3bhy1bt3aYl+Ux5V2QeV5Xrx4UdXmLi4uinTmos6SfeZxXFxcyNPTk/z9/Wnx4sUEqI9KQ0NDrd4jEVGnTp0IALVr145ev35NwcHBtG3bNrvq7ebNmxQeHk7ly5fXDPf09KQCBQqo/KdPny4G5WHDhtE333xDf/31FxGRot9aq5cqVaoors1F3TvvvENly5ZVxGnbti3FxcXRzz//LI4SpYmvRYsWYtGTN29eYael8r/44gvq1auXQ8+GPf2PKGmXTSuevD9JcSVRJ+3w26o3IOnUYeLEiZphL1++VIhUov8mLQCa44E8fsmSJcXn7777TvFclilThoiIWrduLRYtgwYNEkfqltysWbNo7dq1ilcxGjRoQB06dFDEk4S+JOqkY2D5vej1ejGOSKcV8tc9gKSdIalPEBFt2bJFVUfW7JX3YbmT71JpOb1eT9evXxd5yClVqpQq/rJly1SLG7mTXpWw5CZPnqwQ5HIXGBgoPrdq1YoA0OHDh+nAgQOK+rx+/Trt2bOHXr58qTg1IiJFu965c4eIlKIOgGInURK5UtvJRZ20eJeuJZF77Ngxle3S4vWjjz4S9efv7y/EnmSfRMWKFRXpJ02aROb4+vrSvXv36MMPP1TEtXfekpD6ZMeOHVVlmMOi7v+xVLF9+/a1WfnJdfPmzRPHs1qdxnzwkSawxMRE+uKLLzTzlASPJVenTh2LYdKOmrlbuHCh+CzfCZK7d955J1Xq5N69e7R161ZxHRcXZ3WSTImTjk3kTlo12eOs9Rvgv/fbXrx4Qb/++qtmX/voo48Uk6756v7ff/8Vx/9yV7FiRdWuqbkLDg6mBw8eKPzk4lA6SmvatClNnz6dPvnkE1X/adasmeZ9S7sbcrdmzRq76046DnfESUdZABSDpPk7mvKdWXud0Wikffv2WQz/7rvvCPjvqMR8Z2j9+vWUP3/+VO2ftpz8PqV+phXP29tbcS2fBOXu6tWrVsvr3bs3TZo0STPM/N4PHz7sUH3IRd38+fMVx83S/cmvmzZtqpi8bbndu3erdgvNnbQAl941tVS2PS42NpZy5crlUBpLom7cuHFW08k3IiRRFx4erjluOMO1bNmS+vfvL67lAr9JkyZ09uxZcR0fH69o18WLF1OVKlVoyJAhijwrVKhgsTzp/XGt9pP6pNZrQNJY2bdvX1GHQNLuphRHeu1Kq61Kly4tXkOwpSvsdf/++y+tWLFCdT/WYFH3/1iqVHd39zTt8D169FBca/0ThtzFxcVZfd/B398/2bZs2LDBZhxLoi613KxZsxTXWscRGcVZOj6TO/n7fn///bfYKXSWM9/xM3eSaLHmiEi1mwUkvf/j7DYBoNrhtsdJR7zJddmzZ0/3+xwzZoz4fOrUKYunCs7uc8lx5jtJiYmJqjjm7wXbcvLdP0ecJbFszcnfEU1vJx3hZVa3c+fOVM1Pay7Veg9beo8agGJjwdxpHd2aO+kIPqW2W1pUW4NFHZHVlb2bm1u6duiPPvqIjh8/rtgdy0jO0iqf3ZvjpKMedhnHde7cWfyzgLlr3Lix0+1705w9C2R26eNsHSdLTr5ISqmbPXs27d+/P8X5yHcJJWcLHZFzv1KbiNL8i0eBpO+dcnV1hV6vV/0O7Nq1azF8+PA0t4FhGIZhGCa52JJsTv/y4dy5c+PevXtOtSEr/P4pwzAMwzBvNun2o6mTJk3S9Dcajfjhhx9QtGhRAMCvv/6aXiYxDMMwDMNkGdJN1C1cuBB169ZFoUKFFP5EhHv37iFfvnwOHcNOmTIFly5dwttvv401a9YgV65cybbNySfQDMMwDMMwKSbdjl+/++476PV6zJ49G6dOnRIue/bsWLt2LU6dOoWTJ0/alZePjw+Cg4Nx7tw51KxZEzt27EiRbea/8ckwDMMwDJPZSDdRN2PGDGzduhWffvoppkyZYvNHgq1x8eJFtG/fHgDQsWNHeHl5qeIYDAbxo9ySs0R4eHiybWEYhmEYhskIpOs/SjRq1AjXrl3Dq1ev0LBhQ9y6dStZ//kaHh4u/oPV1dUVYWFhqjjz58+Hq6urcOXKlbOY36VLlxy2gWEYhmEYJiOR7v/9mj9/fvz999+YMWMG2rVrB6PR6HAehQsXFjtv4eHhKFKkiCrOjBkzoNfrhQsMDLSYX0p2DRmGYRiGYTICTvtKkw8//BBXr17Frl278M477ziUtmnTpvD09AQAHD16FC1atFDFyZ07NwoWLKhwlkjJP1kwDMMwDMNkBJz6PXVly5ZF9+7dkS9fPofS1atXDyVLloS7uzvu3r2L3r17p8iOL774IkXpGYZhGIZh0hJrr5FJpNtXmqQ2P//8c6rlVaJEiVTLi2EYhmEYJrWxduIo4fRflMgItG7dGn/99ZfVOB4eHihTpkw6WcQ4m6FDhzrbBIZxCBcXl3Qt7/333xefx4wZky5l1q5dO13KsZfy5cvbFS+zvuJTuXJlZ5vAyNi1a5fNOCzqAJQqVQqjRo2yGuf06dMYMGBAOlmUPKZMmYLZs2djz549dqfx8PBIO4NscP/+/VTLq2vXrhbDVq5caTP9zJkzFdc1a9a0q9ydO3faFc8e+vTpk+I8mjRpkuy08+bNS3H5ANCjRw/8/vvvqZLXm0DLli1TJZ+8efOmSj72cuzYMfH5jz/+QLdu3cT1smXLcOvWrVQtb9y4cTh16lSq5plSOnfubFe8gwcPprElqcv3338PwLG+6ebmZndcInL4XfqMygcffGB33H/++SfZ5RQrVgxVq1a1GY9FnQNY+qkze+nRo4f4bC4izKlWrZrD+et0OnzzzTfo3r07AMurrKtXrwIAxo4di9OnTztcDpD09TRaPH/+HFFRUTbTHzt2LFV2Flq2bAk/Pz8hwvbu3auKY4/QGTduHOrXr49ly5YBgOqrdnr27IlffvkFAET9AkCbNm2Sbbs5K1asAACsXbtWFWbvzuF7771nV7zFixer/OT3vHr1ahCRGNwdoVy5cpr/ke4IkydPFp8/+OADVK9eHYB18S7RtWtXdOjQAU+ePNEM//777zOE6MyXLx+IyK5Fhz3Y/KHvbNaH+9evX4vPHh4euHnzpl1lSuXOmjVL+OfPnx+1atWymb5AgQKK62fPnqnieHt7Y82aNVi8eDGKFi0KPz8/q/ElqlSpovlqjV6vF5/d3d1t2ghYfv6kZyZnzpyqsM6dO6N///7Yu3cv8ufPb1c5ac2QIUNUflqLyRkzZsDf3x9//PGHwv/hw4cW8x47dqxdNqxatQpA8n/J6euvv1YsQKOjoxETEwN/f3/N+PJ+ac5PP/2Eo0ePJssOCUcW9jly/PfGm6U51BKrV6+2LyK9Iej1egJAer3eYpyrV68SAGrbti0REQEgAFS1alUR5/PPPycAVKNGDZo8ebKIM3z4cPFZy12/fp1MJpO4Xr58uSrOunXr6KuvviIAVL16dXry5InF/L7++mtKSEhQ+E2dOlXYGRMTQ3v27CEAlDdvXgoICCAAVLZsWbp16xYBoG+++YaIiDw9Pa3aruV8fHyoY8eOCr9Tp04REVFsbKzCv3v37qr0Z8+epcjISAJA5cuXt1rWl19+KT7PmDFDESYRHx9PFy9eJCKiFy9eUHBwMM2ePZsOHTqkaEu5q1SpEvXu3VuRT0REBHXt2pWCgoIUcU+cOCHqbeTIkXTo0CFycXGhxMREh+tOclOmTBGfv/vuO2FDcHCwIt7GjRuJiMjb25uOHj0q4knhOp1OfI6Li1OV06pVK2rXrh0BoBUrVljsf99//z0BoH79+imeC0fva/z48XTv3j1xnS1bNiIiVX8dMmSI+DxixAjRXwEonpXExETxfIWEhCjyWLRoEQGgPn36CL8xY8YobB88eDDVq1ePANCGDRuIiBT5y13fvn3tvk+tupH3VVvOxcWFiIhev36tCitYsKDD9d62bVuV39y5c6lTp05UvXp1q20pjXkVK1YkIOmZlcdfsmQJXbt2TVzHxMRojqF//PEHAaC1a9cSEdGoUaOs2pyQkEB37tyhzz77jOrVq6dpozl+fn6KMHn/lzuTyUQeHh6a+ZUoUcJiGwKghw8fEpA0Dt+7d4/CwsIU4d26dSMANG7cOAKSxqWlS5fS0KFDRZxnz54Jmy9dukQA6LPPPrP5TNWqVUvkq+U2bNhAzZo1U/gVK1bMrj4yaNAgxV8g6Xm1VueSX7t27azabu9YIfH222/bFf+ff/5R5G3+/EpYGosPHz5sMe/ff/+diIguX74s/PLly0eA/c+y+bhmyeXNm1dh94YNG+xKJ7l79+5pPnPmsKiTYTKZaPbs2fT06VMiIsqRIwf179+f4uPjRZwHDx5QzZo1KTIykoj+62ibNm2y2Bjbt28X6SW/FStWUM6cOals2bJ08uRJ8vT0FHF69uxJZ8+eJaKkiVxK4+npSdWrVycgSRSZd+Jp06Yp7ufIkSMEgObMmaO61127dinuq3r16vThhx/a7FixsbEijbz8UaNGCf+YmBhFGvNrAHTmzBkiShJjiYmJdPPmTQKSBIi1wYKI6J9//hEDgr20bt1a5DFv3jwCQHXr1iWTyURGo1Ezzdq1a+nZs2e0aNEiMhqN9M8//xCQJOrkOPJgSjaHhIQo0krCjYiEAJfcrl27NO0rWbIkASCj0ahZV3K/yMhI8vb2FmJu5cqVqniSQPryyy8dur/ixYtT7dq1xfX48eMVabNnz6647tOnjypvX19fxTURUZMmTcT9RUREiOdIivPJJ5/Qn3/+SQBo9erV4tmQi7rY2FhKTEyk+vXrq/rLo0ePaP369Yp7Wb58uUJUb9u2jYKCgihbtmyKeJ9//jkREbm4uCj85W0BQDFZyF2HDh1o27ZtREQqwQCA/v33X6pataq4btiwoWY+0uTeq1cvioiI0Gx7OUePHqXAwEDxvAGgwMBAEW4wGGjatGkUFBSkao/Hjx9bzFfi5MmTBIDOnTtHRERGo5F++eUXlV3ly5en6dOna+Zh6x78/f1VfbtJkya0ZMkSVbrkijqpHd977z1F2RMnTqTWrVtTSEgIde/enc6fP08AaNmyZSr75URGRlLJkiVVAsXS+GAtjp+fH/Xq1YsA0N27dxXxc+fOrYjbpEkTunfvHp07d44A0I8//ij6uRRH6n+dOnWihw8firnH0v1I17du3aJcuXIRAGrRogURET179owCAwPJ29ubduzYQR9//DEdPXqUFixYoMqnXLlyYrywpz7u3LlDT548UdjRunVri33n559/pgULFtChQ4cU/m5ubuJzXFycxfuUNifq1q1LAKhIkSJ04MABRV5fffWV6pm31m5EJOpix44ddqWz9cyZw6IuhZw6dYoAqHZXJGc+QU6dOpWApEkoLi6ODAaDzTKk1d/9+/fp66+/JgDk7e2t2m0wF3XSCmXu3Ll23YtcpLVp08aujiUfBCUkEZczZ06xYj99+rQiH/nDSZQk7gCQu7u7ZpnHjx+nb7/9VsSPjIwUE489xMbG0ujRowmAmHjq1q1rd3qipPoZOXKkqly5rQMGDKAWLVqI68GDB1OjRo0s1qG0YpZEDZF6F2n37t2a9rx+/VrsBsjzlsSeVnm7d+8mAIpdMclt2LCBfHx8KCEhQfP+Fi9eTEDSDoQ83cOHDykuLo6OHz8uBmmJBQsW0KVLl8R1QkKCoq80atSINm3apCirZMmSRETUuHFjApJ2XORIz9zHH39MV65cISBp51jaaR87dqyqrqT+rMW1a9dozZo1tG/fPmGbed01aNCAAFB0dDS9ePFC+G/dulXEle7bz8+PHj9+rKq/2bNnE5C0qyNH6vsAaP369bRo0SJVWq1dOAB07Ngx0TZEJHaTgaSdYGsMHjyYAIgFhha9e/emwYMHExGpFg+WkBbFcoAkse3j40P+/v5W00tlfPTRR9SpUydVuCReJVEsR5rAy5YtS0RELVu2VNTX+++/T0RExYsXF/fRo0cPzTEHANWpU8eqrURE58+fV/Rpe+qoTp06qjK3bNlCFy5cEHGePHmiucvk5+cnThjkghxQi7qHDx+K8KtXr5LJZKKHDx+SyWQSYy0RUVBQkGLBLsf8fqQdrISEBLEzO2HCBJv19OrVK3r+/Lm4ltrmxo0b5OLiIjYhcuTIQW3atKFq1apZrceVK1cq8pPbOmTIEOFnLurkQl/O1KlTVQvokydPUnR0NF24cEGMQxUqVFCklcbrCRMmUGhoqOKUQnL58uUT8efMmUOAegdRErnSOCB9PnfuHPn4+NisX1EHdsfM5KSVqNNCWgX6+/tTYmKiIsz8eMIehg0bJib+2NhYWr58uehgX3/9Na1bt05zsnBU1BH991AMHz6cmjRpotohMCdv3rwqf6PRSM2bNxfHoeZ5y1dHEiaTiSpWrEjHjh2jO3fu0LRp0wiAYsJPKdu2bSMA4qFr2rRpquQrrx9pV/TQoUO0b98+zTj2ILWpJMBs0b9/f5o9ezYR/Sfq1q5dS8ePH1fEM5lM5OnpqRCO0dHRNGXKFM12kdsuR1q9rl69Wvi9fPmSgKSj6uQiF3XfffedZn3FxsZSnTp16Pbt20REQoRKAu9///ufKs2LFy/E0as9jBw5UuzGEZHmTp/cHmsLDHn9xcfHq0SqeRwt/7///ls1UaxatYqIiPbt26cYZ+ztZ6GhobRy5Uqb8eyxMzVJzTLkolue5+nTp2nYsGGqMuXx8ubNS5s3b3a4zIkTJ1KuXLlsxpPKyps3L3Xu3NlmPMn5+/tTUFAQzZo1S9GXzEWdrQ0Dg8FAERERdtlZu3ZtcZ2YmCjE1IULFwgATZ482WY+5oSGhtLp06cVfpcuXbJ4tG8PWn1HWmxKrn379gSA8uTJk6wyzEUdUdIutvzk6/Lly+JVKnNRJ73uJN/5BiA2bHQ6ncV7sQcWdWnAs2fPVIJGQjoiWLdund35vXjxgqZPn645GRAlPWSzZ89WPaDSCiU5oi46Olr4ffrpp6ky0F6+fFm8d+csAgICiChJXMtXuSkBAJUoUYJWrlxpc7Xbvn17u/KUBktppeYIkqizxbNnzxQ7Spb4999/Vbsv27dvt1twOoJc1JlMJov1qYU0SC5fvjxVbSJKEk4lSpRIVlp7np3t27fTzp07raaV78Dq9XqL48HDhw/FUU9qAyTtpKQlaSEcbeUZFhZGX331Fb3//vtpLlrlNknvm1rj2LFjdObMGQoICKB58+ZZbHdzUZdaPHjwgF6/fq0ZlhJRlxbUqlWLypcvr/AzmUy0aNEi8Q73wYMHaceOHYrTEUfQEnWWOHv2LAGgAgUKKPylRZjUVhEREWInXHq9h0WdDdJT1FlDOsKSv0OVVkRFRVHbtm0VL+zaYsSIEVSsWDGVv7XjqzcdIOmfDGzFcbT+/Pz86OTJkw7bs3//fvHie1phMpno4MGDFieY5CIXdcnB398/1W1KKSmZZM3TpsdOmTVCQkIsTvCphTNEnYTRaLTrlZjUwF5R50h+aSHqrCG9U5hRRF16IP0zkb0sWrRIvEtpjnlbGY1GMX4ltx0z7S9KZFZcXV0B2PfN0CklX758OH78uENpVqxYIb5aQ86hQ4cQGxubWqZlKSiZ/5pvi4oVK6JixYoOp+vSpQu6dOmSBhb9h06nc+j7mRwhJd/XV6FChVS0hDGnaNGizjYhWXTo0MGurxXJli1bun1RcJcuXTBo0KBUzbNQoUJ48eJFun1Jc+7cuQGov5omK2Prq4HMGT9+vMWwR48eIT4+Ptl5a8GiLp0ZNGgQcufObfeXVmYUcufOLR5gxnEWL16cZuIvKxETE5Pl+tmpU6fw4sWLZKVt3LgxLl++nMoWvXkcOXLE2Sao2L9/f6rmt2XLFjRs2BDFihVLN2HaoEEDLF++HIMHD06X8jICBw8edOgL/q1RqVIli2E1atRAv379HM5TR2/ITBMREQFXV1fo9fp02SVjGIZJKXq9Hs+fPxdfvjxw4EC0bdsWH3/8sZMtSzsaNWqEq1ev8iKIYZIBizqGYRgmwxAfH4/ExMR0/y1bhskK8PErwzAMk2HIlStXuh0fMkxW443ZqSMiREZGokCBAqrf9WQYhmEYhsnsvDGijmEYhmEYJiuT8v+fZRiGYRiGYZwOizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCwAizqGYRiGYZgsAIs6hmEYhmGYLACLOoZhGIZhmCzAGyPqiAgREREgImebwjAMwzAMk+q8MaIuMjISrq6uiIyMdLYpDMMwDMMwqc4bI+oYhnEeCQkJWL58Oe+UMwzDpCEs6hiGSXOWLVuG0aNH49ixY842hWEYOzhx4gRMJpOzzWAchEUdwzBpTnR0NAAgNjbWyZYwDGOLy5cv4/3338eKFSucbYqKly9fOtuEDA2LOobJBMTExOD69evONiPZ6HQ6AODjV8YmRIQ9e/akWV9JSEhAo0aN8M8//6RJ/lmBsLAwAEBwcLCTLVFy69YtlChRAocPH3a2KRkWFnWZmL/++gsffvihs81wCOm/kDMrDx48wIEDBzTD4uPjxWCY2gwfPhwNGjRIk7zTg8wk6rZt24bAwEBnm/HGsm3bNvTs2RP79u1Lk/yfPXuGq1evYv78+WmSf0bFx8cnw4y9JpMpWUe7fn5+AJDugtxkMuHVq1fpWmZyyZCi7tq1a3B3d4eHhwf69euHhIQEEXb69GmUK1cOrVq1Qtu2bdPNJm9vbxQqVAhxcXHpVqYtxowZg61btzrbDIdYsGABXF1dkZiYmKJ84uLioNPpcPDgwVSyzD7effdddO3aVTOsb9++KFq0aJqUe/v27TTJN7nExcVh2LBhdotYSdT16tULUVFRDpcXHx+P8PBwh9Mlh/79+6Njx47pUlZm49y5c3j9+nWK8rh9+zYMBoPF8JCQEACAXq9PUTm22LJlC4KCgtK0jOSydOlSHD16NNXy2717N+rXr4+ePXs6nDYsLAxXr161O/6VK1ewbds2q3Fy5MgBNzc3q3Hi4+MRHx9vd7lpyffff4/ixYtnqPnfEhlS1JUpUwZHjx7FmTNnULlyZezZs0cR3r9/f5w+fRonTpxIN5sWL14MvV6P58+fJzuPlA6GziA8PByPHj2yGic2NhZXrlzBvXv3bOYnDVRGoxEAsG/fPuh0Ouzfv98hu6S6XLlypUPpUoo1MZpWOwvW6NKlC7y8vCyGJyQkICAgINXLPXHiBP7++28sWbLErvg+Pj7is7TadoRevXqhcOHCDqdzhOfPn8PX1xcA0mzHNSWMHTsWQ4cO1Qx7/vy5YhcmNjY2TXZFW7ZsicaNGyc7fWJiImrXro1JkybZjCstBFJKcHAwli5dCiBpx0UuFrt162bXuGWJiIgIhxaor169wpMnT2zGGzduHDp27IjffvstVdpx8uTJAJKOL3U6Hf73v//ZnbZdu3Zo1KiR3fEbN26M/v37W41DRLh48aLVOGXKlEHJkiXFdXBwMKZMmWIz36+//losDFKLM2fOAIBigyk12bVrl3jvOKVkSFFXsmRJuLi4AABy5syJHDlyKMJ37twJd3d3LFq0yGIeBoMBERERCpcSpAdLPtDEx8eLSUDO0aNH0b59ezx9+lT43blzB0WKFEmV1VdMTIxDDzoRISgoCM+fP8fTp08REhKCNWvW2CWk3NzcUKVKFZX/o0ePcPfuXQCAi4sLGjdujJo1azpkEwB0794dQNLgmpwdnNTAZDJh+/btICK8/fbb+O2332ymISLEx8drDuhp8V2Iltr74MGDGDt2LICk3TPzHZCJEyfinXfeSXV7zCfcTz75BLt377YYX2tHOT4+Hjqdzi4xbO+ObGJiolgwSJhMJnz44Yfw9va2mvadd95B9erVAaSeoEgNvv/+e7i5ueGPP/7AunXrNOOULl0adevWFdcuLi5i4jYYDOjWrRv+/fdfi2UsWLAAHTt2RKFChXDt2jVERUVBp9Nh1qxZqriPHj2yS5hoIbWNtPN89OhRHDp0SBHHnrHtxYsXqnaWM3PmTCHkhgwZgnHjxiExMRFfffUV3nvvPRHv2rVr6NKliyLt999/b3f7u7q6YvDgwXbFBZL6WIUKFSyGh4SE4Pz58+J60qRJdotOg8Fg8UjTvE6XLVtmV55AkhC05G/vRsXjx4+h0+msLkDNCQkJUeQ/depUsSC01D6PHj3CV199Zdcp3pkzZ3DkyBHs2bMHuXPnBpA0tzp6LBwYGIjQ0FCH0sh5+fIlevfujalTpyY7DwWUgXn69Ck1b96c4uPjhV9kZCQZDAYyGAzUsWNHunr1qmbauXPnEgCV0+v1dpUbHBys8Pvwww8JAD1+/Jh+//13AkCjR48mAFSwYEFFXKmsjz/+mE6fPk3Xr1+nffv2EQD6/vvvRbz4+Hi6dOmSXXXh7+9P06dPJ5PJRADo66+/FuXIMRqN1KBBA6pYsSJNnTqViIjq1KmjWRf2NL+leJK/wWBQ5BcUFETDhg2j999/XxE/MTGR5s+fT02bNiUAFBsbq8hHcoGBgXbVR1BQEAGgHj16qMIMBgO9ePFCM93Lly9p6dKldPv2beG3Zs0aAkCHDx8mAJQtWzab9bF48WLx2dPTUxE2Y8YMOnr0KBER+fn5UVxcHN26dYs2btwo8jEajXT69GkiIurXrx99+eWXVu+3evXqoh28vb3JZDKJMqtXr04dO3YkAFS8eHEiIjKZTHTz5k2L7ffy5Ut69OgRERH98MMP9NtvvynCHz16REajUeG3e/duat++PRERHTx4UPRD+b0DoPPnz9OzZ89EulevXinCb9y4QXFxccL/gw8+sHrv8vzNefXqFa1bt47++ecfEa9+/fpERBQREUHXr1+nnTt3ivRGo5GGDx9Oz58/F3kMHDiQ6tWrp7CxdOnSNm2yl/DwcLviJSYm0r59+4goqQ9LfdT8Gbl3754qrXn9SNePHj2iDRs2EACaOHGixbLl+Y8aNYp27dqlWeeS36BBg+j333+ndevW0ZMnT8hgMNDNmzdpyJAh1LNnTyJKGt8SExNF2oSEBPLy8iIAVLduXVq9erVmGdKztX79ek1bw8PDCQDNmjXL5v3In9OEhARq3Lixqj4rV66sSCt/1rSQj1EAKEeOHBbjWrJLIjIyUtEXtcbo2bNn25339OnTNcPKly9PAOitt94iAKTT6YgoaW54++23FXH3798vyv7qq68oW7ZsFueAOnXqEBHRtWvXxFym1abS/Ddv3jxFHL1eL8ZPiYSEBM05avDgwcJvwYIFijSHDh2iVatW0b179xye25o0aSLiW3pO2rVrRwDo/v37dOfOHSIiOnbsGI0fP54AUN68eenu3buqdF5eXnTz5k1xHRQURFWrVlXMT//++6/C5vv371OfPn0Uz44jZFhRp9frqWXLluTr62sxzrJly2jVqlWaYXFxcaTX64ULDAy0Kupev35NQ4cOpZiYGM1OIYm6Bw8eaD54V65cEXHlok76fODAAQJA3377rYg3ffp0AkChoaE266NVq1ZCDAGghg0bqmx4+fIlRUVFqR4ILXvl7vfff9csU56XOZJ/t27dFHm5u7uLz69fvxbxhw8frogXExNDiYmJKlsk4ZOQkEBxcXHk5eVFFy5cUJXv6elJAChfvnyqsIEDB2ravHfvXkVZBoOBAgIC6JdffiEAtG3bNgIsizqtCcFaPUt+Q4YMUdXj0qVLCQBdv35dFebj40MJCQmKsqtVq0YAqH///gSAVq9erVmmlM8XX3yhOTAajUY6ePAgFShQQGW3JChCQkIIAM2fP5+IiAYMGEB79+6lQoUKiTRDhw4lIEnAWrPj9OnTVL9+fYX/pUuXCIBYeCVX1FlrAyISQrdNmzbC//Tp06q8LLXp559/TkRJfXHVqlXk5+cn0uj1epo8ebKYAGJjY8XYMmfOHJG/JKxbt25t9f4OHTpEpUqVIgB0+fJlUddaz4iUd1RUFE2YMIHu3Lkj/FesWKFY0J49e1Z1P1Lfa9myJR0+fFgxqQD2iTpzZ/58S3GlRQAR0cyZMy2mv3jxIhERPXjwgKZNm0YAaMOGDYqynz59SnFxcWKCLVmypOiz5lgqJ3/+/Cq/qlWrKtLWqFGDAJDJZCIvLy/y9/dXtBMAOnjwoFhgS+NFdHQ0FShQgEaPHk1ERDlz5hQLjGLFitGoUaNEmdHR0YqypEWSlps5c6bVviO/5ypVqij8IiMjKT4+nt555x1FntmzZ1fUExHRixcv6MqVKzRixAjh/9VXX2n2A/O0WnYvWLCAPDw8KCYmRgjFb775RhHf1dWVgKQFtURcXJzm2CUfR81FneS/efNm8fnBgwf0ySefKBan8vHW3ElzbPny5VX3KvU5uU2S2DXvx0DSmB8fH6+6hyVLlhAAWrduHRElaYDZs2eLeE+fPhVzaqtWrSgsLEws4O0lQ4q6xMRE6tKlCx0/flwVJhdlAwYMoDNnztiVp16vJ8CyqPv2228JAJUpU0azE0uTqTTgWBpoibQ7uDQYfP3117RmzRq6ffs29e7dmwDQv//+K9KaTCZ6+vSpqIeAgADFTkflypUJ0BZ1v/zyS7JEnbS78+zZMzp37pzmfZhjK0/JnT9/3mJ8afWoVY/SA6ZV/uPHj2nevHmaYdJAC0CsHCdNmkQ5c+ZUlSMJE8lt3bpVfO7Vq5eiXUJDQ63ep9Y9Sn5Vq1ZV2WouuqS+MWjQIAJAc+bMUdyXPA8A1KBBA4u2yHemzMuVJnTJHT16VBVPGpjk5eTKlYt0Op3mvVpq33Llymn6N2rUSOX322+/0b179+jAgQNERHT27FmqUaOGWK1K8U6ePClWytbawJJN0q4skPRMhoWF2ezDrVu3Vjwn69evV4SbTCaqXbu2pg09evQQ19LOLBHRwoULqVGjRprP06RJk8Rn810LyXXs2FGzHs3duXPnbMapVKmS4nrUqFFigQOAIiIi6OHDhw4990+fPhWff/75Z9WzZu4qV65MkydPVvht2LBBcWICgAYMGEDFihVTtbunpyctXryYbty44ZCd5s9HQECAYg4wD5eLwr59+yrC3dzcxPXx48fF5+7du9ssv3PnzhbDHBF11apVI6KknXjJr0uXLipRZ95Xjxw5Ij6PHDlSfO7QoYP4LJ2uEBE9f/5c+Pv7+1u9N/lJ0dChQy22j4S0cWHu36lTJ+EniTqTyUQ9e/bUzE86Ffrnn38oNjZWLFZtObmo8/T0pGHDhondPK26k7v//e9/4vOsWbPE57Vr1xIRifF906ZNFBwcrErfpk0bVX9Zvny5Xe0v+oFDsdOJTZs2UZEiRcjDw4M8PDxoy5YtNGrUKCIiWrFiBTVq1IiaNWtGU6ZMsTtPe0WdVmciSjoiA5JWu7YGBq2wiRMnEvDf9neuXLmEqJNv5//5558EJAm9ihUrEgDFYOGoCwgIsCseEYnBjIgUA5bk16FDB6pRo4ZmZ7TmtAYUa858pQZo74Sa13t8fDxt3LjRrodPenht2RIZGWlz0JLa0NxPPrGZ22ptcQCA+vXrp+h/VapUSXYfkMr18/MTu5iWXNWqVSlXrlwqf0nQAVANurYEr6POXHhqOfkqWKutrU2SKa1H+Y6LuZPvBIwcOVIh6rZv305ERH369FH1h7Sw1V6XN29eq+EVKlSwWOdp6Vq0aEHAf69FWHLmz5l8d9Jet3r1avL19bXa7nLhY+6spbXHeXh4WAybNWsW/fXXXzRmzBgCkhYRQUFBlJiYSBEREeJ4H0h6FUM6gty9e7fI4+2339a8J0dsbNu2LS1btizF7Wqp3CtXrtCmTZsUp2VA0omP+a7Y8OHDKTIykq5cuWJ3uS4uLnbFk0SdrX6n5aQ20nLye1i1apVmnKZNm6rGrgEDBpDRaKSFCxdSXFycpn6RkyFFXVqQHFF36NAhIiIaN26c8OvVq5fFRktMTKT79+/b3QGkwT0wMJACAgLo8OHDYsK4ceNGih8eAJo7VLYeNPkqTCvcliBJKxcQEKBZL4MGDaJ169ZppjEajRbzK1KkiF3lrl27Nln2ai0ATp48SX/88QfVrVvXZt+QtvzLlSuXYlF35syZVGsH8yN36QgpPZ38fUHJeXt7p0vZ5kcxttpc7jZt2qS4LlSokOJYKSM78yPWjOLMd9ZsLVyS4+Tjn7OdljiR2yftjMmP9bSctbHRme7dd99VXEunU+auY8eOincmU7N+zU+87HXWFnz2OPNdc3NnfuysBYu6/0dL1Jk/LLbcwoULU9yhLHVgZzv57lzp0qWdYoPWkSU7duzYpbVzZB5whpO/diK5tBC37Kw7R0+lHHVjxoyxqXVY1BFp7kxJ7u7du3ZX+IQJE5zeqdixS2/33nvvOd0GduzS0pm/1pHRnCMnROwyt7OFjigT/G5PKhAREQFXV1fo9XoULFhQEebp6YkOHTpopuvQoUOqfrM3wzAMwzBMcrAl2TLklw+nN9a+JZoFHcMwDMMwmYEMK+qmTJkCd3d3DBw4UPH7b4mJiRg2bBjc3d0xYcKEVCkrpb9DyjAMwzAM42wypKjz8fFBcHAwzp07h5o1a2LHjh0ibP/+/ShbtizOnTuHmJgYh352xBKO/iwIwzAMwzBMRiNDirqLFy+iffv2AICOHTsqhJu1MDmO/PZrXFxcKlrPMAzDMAyT/uRISeLXr1/j77//xsOHD1GqVCkMHToU5cqVS7FR4eHhKF26NICkH0wOCwtThEn/6GAeJmf+/Pn4+uuv7SovNjY2hRYzDMMwDMM4F4d26kqXLo3Q0FAAwOPHj1GzZk0sWLAADx8+xF9//YXatWvj/v37KTaqcOHCYmctPDwcRYoUsStMzowZM6DX64ULDAy0WB7v1DEMwzAMk9lxSNQFBwfDaDQCAGbOnInq1avDz88Pnp6eePToEdzd3TF79uwUG9W0aVN4enoCSPrv0xYtWtgVJid37twoWLCgwlmiZMmSKbaZYRiGYRjGmST7nbpLly5h9uzZcHFxAZAkor788kt4e3un2Kh69eqhZMmScHd3x927d9G7d2+MHj0aANC1a1cEBgbC3d0defPmRbNmzVJcnk6nS3EeDMMwDMMwaUXx4sVtxnH4nTpJABkMBpQoUUIRVqJECbx69crRLDX5+eefFdd//fUXACBHjhz4+++/U6UMCf5KE4ZhGIZhMjJVqlSxGcfhnbq2bduifv36iIiIwIMHDxRhAQEBeOuttxzN0ulY+/LhzMKwYcOcbQKTxalTp46zTcgyrF271qH4Z86cSRtDmBSTK1cuZ5vAZAG+/PJLm3HsOVV0SNTNnTsXvXv3Rvfu3TFlyhRx9Cqxf/9+uLu7O5JlhqBPnz7ONsEiDRo0sCterVq1kl2GtfcgLf0jir188sknKUpvL1u3bk2XcjICefLk0fTPly+fxTRz585Ncbn9+vVzOE3FihUdTrN3714cOXLE4XTJwdJxRqNGjdJ0LBs6dKhD8fkVESAmJgZnz561GN6xY8dk5RsQEJBckwAAf/75p8rvxYsXKcozPfnwww+xePFi3L59O13LXb58earlZc+7/MkZi9KLly9fYt68eQo/re/PzZHDjsNVm78Om0XQ6/UEgPR6vWb48+fP0/yHeN9//32H0zRo0EBx3aZNG814//77r8283nnnHZXf/fv36erVq1Z/PFjLv0qVKhbT5M6dW3wODQ3VjHP06FGrthYqVMhiWN68eQkAzZs3jwBQo0aNiIioe/fuyWqX7Nmz0969e1X+JUuWTPM+kRy3atUqWrRoEZUsWVLRPuZ9Rd6G5u24fft2q2X89ttvKr9vvvnGYVsPHDjgcBote7Wcpft1xFl6ns6dO0fnzp1Lsza0dH9ubm7i/oOCgoR/QkKCZvwJEybYXeZnn31GFy5csBi+cOHCNLtfyQ0dOjTZaePj4+n8+fMWw22NKZIrXbo0ERFNmzaNWrVqZVdfs+bWrl1rd/va6/z8/CgwMNBieM+ePVOlPZo2baqYB0eMGJHiPH/88UdasWKFzXhGo9Fi2I4dO2ym//zzzwkAFS1alIiI6tSpYzV+hw4dUqXOrLnk1p/EyJEjhZ/JZKKHDx8q4nXt2tWm1mFRJ0OrssuUKUMXL1602ShyUeXp6UlHjx6lGzdu0JAhQ4R/586dxedZs2bZ1dgeHh6K69evX6viTJs2zaL9kouNjaVx48ZZ7EybN2+22Nnk18uXLycAVK9ePVXc+fPn05MnT+jVq1eK9D/99JNmvtmyZdMsMzAwUPN+6tSpQ5GRkTR16lQRD/hP1FlrR2uuRIkSmuk+/PBDi2nq1q1LI0eOJB8fH/rwww9p586dIuyzzz4Tn6V7XLp0qfBzcXGxak+xYsWshq9atUrzfhs2bEj169e32MaWrrWct7e3yu/58+eKhYmPj4/VPBYuXKgqZ9OmTZoC2pq9llyLFi1UftWrV6dDhw5ZTefm5iY+yyfHihUris83btxQCaB9+/ZZzLNMmTLUrl07xT106dJFM+7UqVNV95cnTx66cuUKvX79WrNtteqjf//+NHfuXM0yxo0bR5s2bVL4xcXFWazX4sWLExHRxo0b6ffff9eMY2mBZsl5eXkprrdu3Wp1Ii9XrpxV/4SEBM3xT3JHjhyxak/z5s0JAH333Xd2jf1y9+mnn1oMkwuQIkWKUKFChRR5Ll26lGrUqGE1f3nfk9rbml3yfvv333/b3SYlSpSgokWLimtzUWcymVRpLPWx+/fvi8+1a9cWn5csWSLys7aIkO7PfJyV6s/Ly4veeecdUXfLli1T1NOWLVsIAP36669ERPTee+9ZvXd751zJyZ9nubt8+bL4PGbMGAoMDKRffvmFgCR9UbVqVRFeoUIFzTzy5ctHNWvWJAB07949UV/x8fEW+0DDhg3p5cuXqr6r6ss2Y2QR7BF10iDcu3dvAkCtW7em6Ohoi7t4UqeSd1B5YxCRQtR16dKFZs+eTQA0hU5kZKQQcaNGjaKzZ8+K1YhWOZKLiIgQ/kOHDhU7WObppE69f/9+WrlyJRUpUkRha/bs2Qn4T1TMmTOHiIgWL14s7JfKmTZtmqoMo9FotQ3M7bH0EJrHX7RoEcXGxgr/uLg4Onz4sIizePFii+VID4NWOc+ePRODBRGJXaX+/fsTEdG3335rdUCSc/bsWREm/yztOF6/fl2IOenvixcvFAKvWrVqBIACAgKEMPntt9/o8OHDBICmT59OgHVR17ZtWwJA27Zts1iflupJvsrUWsho5WNtUJT6g9xPEi0XLlwQi5yePXtSs2bNCACFh4dbtA8AffXVVxQaGkp37twhd3d34V+iRAkCQBs2bCAiolKlSokwnU6nELvyZ1IS22vXriUiosTERDp+/DgREYWEhCjKjomJUexCy53UJvK66dq1KwFJiw6tevzzzz/pl19+IRcXF7pz546qT9mq602bNtFXX32l8Ltx4wZ5eXkRESnGJyBJFBERHT9+nPz8/BRh0sKGiMSibOXKlSJ848aNot2stbnknj9/rrLZWrv++uuvFBwcrPKPiYmhI0eOUJkyZchkMok8Nm/eTD4+PlSkSBER99GjR1ZtevTokWYda9m0e/duApKEYP/+/RUTub+/v/gcHBysEKoGg4EMBoOq7Szd95w5c8jX15cSExNt1tW8efPEcykXdebxYmJiLNbBggULFPE9PDxUdbFnzx6FACIi0T+lRWpMTAwFBASIOJZEnaX7lvKNiYmhxMREunDhAj148IAAkK+vryJ9+/btCUia56TF5pAhQ2jr1q0EgH755RciIlq1ahUBSQss87JiY2M1Rd3gwYMtLr6uXbtG48eP17RbGm+0kPrx999/T0T/aQ+5O3r0KPXv358A0OPHjxXppQ0TiQ0bNpBOp6P4+HjN8szJcKLu6tWr5ObmRi1btqS+ffuqbuTUqVNUtmxZ8vDwoDZt2tidrz2iLi4ujh49ekQff/wxAVAMtHIFLW/cffv20aVLl4iIaOjQoWIVLjFz5kwRv2vXruLY68cff6T58+crdsiI/tsxu3r1KhERRUdH07p16yw+wM2aNRNlPXnyhOLi4lSirnPnzqIOvvjiC0pMTNS8/ydPntClS5coISGBoqOjLdZTSEgIJSYm0uDBg6lq1ariIbKFed2FhoaSj48P5cyZ0+qAtn79ept5WyoHAI0ePZqAJGEl+RUuXFiVzmQy0bRp0ygoKIiI1KKuSZMmKhslrly5IsLOnDlDQNIR9ahRo0TZfn5+dOTIESHkiIg++ugjApKOWxITExWrNnOkI42VK1dq3u+ePXvELlRcXBxVrFiRBg4cqIpnqZ42btxIffr0IQB069Ytzf5ORFSgQAHNvggk7RqcOXOGpk+fripnx44dCruHDx9OQNJKNSYmhl69eqUI15qkX7x4IcKlBZCWIAoLCxO7pzqdTnE0N2TIEHEU88cffxAAWrNmjWadS8eezZs3JyKyuGshibp3332X+vXrR0T/vQ5gLnAcQXrVgIgUwkJ6hiVRN2HCBDp06JAirVzYA1CIIiKigQMHirA///xTs3wtm4H/dqCzZctGlSpVIgAUFRVlsY/ly5dP5QdA7BpphdlTV3JRR0RkMBho0KBBos2kPiLtUlpCXub8+fPp5cuXBCSJO6L/6n7cuHFEROTr6yvGfaKkeWvYsGFW606+Q/3ZZ5/R06dPFfGlRbVWfUhIJ0I9e/akvn37UocOHVT2E6l33Pr27UsTJ06kyMhIRXzpVESLhQsXinnI3EaipGdDEkSLFi0SeToi6uxBLuquXbtGQNLO6ePHjwkA3bx5U5UGAJUtW5a8vLzEhoCWqLNm461bt+jp06cKv99//52IiEqXLm31Hm7duqXY5NAqUxJ1/v7+irTmos5RMpyoe/78uRAUM2bMoG3btinCT506RZMnT7aZT1xcHOn1euGkozprok7i8ePH1KNHD5WgTE6nNBgM4hika9eu4ojgr7/+UuVLlPQw3rp1S5XPmDFjqHbt2kSUNJBJg7n59jkRiXefJk6cSABo5syZdtmaXGx1cAnpPufOnavw1+v1imMV8/iWRKi1cuTv1/3xxx9iQpNWdxUqVLCZj7mok7/XZI40iLq4uAhRN3XqVCHqfHx8RFxph4noP1Fn/mBrERwcTFWrVqXg4GCF/4ULF4RwkHaezCdwoqRJRT5Iy48hgSRRl5iYSMeOHSOiJPEuf29NYsOGDdS4cWMiIrp9+zbt2LGD7t27pxBccizV2bBhwwiAVSErpf3f//5HACgsLEyEtWrVigBYXYAA/+0wR0REEAA6fPgwmUwmMhqNYtflyZMnmumlHZSWLVsKP39/f9U7bvIJXqJHjx4EQCwSHJ3MiJJ2SKRdRCkP6aiUiOjgwYMEJB2FmRMREUEdOnSgZ8+eWexf0jhy8OBBzXAtm4Gk91APHjxIvr6+FBERIfqkXIQSJe36nT17ViEe5PUmtaFWmD11JR3xSkdwRCTe27t7964QddLumSU6depktUxpgfHHH3/YtMn8Xsz9Bg8ebDFNrVq1rIo6aRdoxIgRmmXJFziSn4+PD8XExCji+/v7U0BAgN33IiEXdRLSWCOVt3TpUk3bAFDlypUdfg6kY1BzUWeN6OhoxekO0X+irnz58iobfHx86MGDB+LEQB4mLQilkysisnsjQ0JrfvP29qbixYur7JROFZJLhhN1cubMmUO7du1S+J06dYrKly9Pbm5u4p0dLSytqO0RdZbw8fFRvGtkL1KDjhgxgkwmk5g8Jdq3b08tWrRwyBZJRPz444+qMEnUTZo0iYCkdwnSknXr1lG5cuVsxrNVb5ZEnaMkJiYqVqrmA/HmzZstTuJyJFG3evVqun79uk2boqKiKCYmRlPU3bhxQ8TT6/V0+/ZtIiIKCAigESNGOCxcUxPpnqSjSzndunUjAKoVuyNoTQRE/x3lRUVF2bQtNjaWTpw4oQiT/slB2n3Q4uXLlzZ3aWyxYMECzQnwxYsXFBkZKV5/MKdXr14EJL1vS5T8/izHx8dHJepTMqZJos58l0/CkjDJkSOHZnxpMWUNKc/GjRuTXq9XLHguXLhAXl5edOLECdq7d69jN/P/SKLu3r17dos6oqRdVmu2379/X3OxZAmtujMYDFZfU/H29havf1jKY9OmTao+r9UmqdHfzBk7dqzFPM1fZZCQdoT/+OMPiouLowkTJlCNGjXsLlMSdZGRkeKf+myJOi0kUXfs2DGLdSON1/LTIWkjRr4ZIb3n6QifffYZVapUyWY8afczuWRYUff06VNq3ry5arcsMjJSvLfQsWNHi5NNSnbqbDFo0CCqXr26Q2n27t1rdfJKDvHx8ZqDjCTqpPfxvvzyy1QtN7mkl6gzT2/PLpgW0ruE0jtWREmDrvnusTlyUffXX38RYP2Yw9nYI+rseUHXEi9evLBLRFuzTQvpP3RTKtrSCukFcPk//rRt29bJVinx9/enSpUqqf5BQ6J58+ZUsWJFhR8Aat++vWb82NhYsTNpCalNre2wpgS5qOvYsWOqiTpHSQ1RZW8eAChnzpwKvz///DNZ4scaJpPJorA1Go20YsUK1QL1zz//1BR79pJaok56FcqaqPPz86NWrVqp3uEePHgwhYSECD/pmyTSgrCwMDpw4ECy0zv8ixKpRXBwsOb3w+3btw85cuTA4MGDsWbNGuTMmVMRnj9/fvG5W7duuHnzpuZ3ueXOnRu5c+dOfcMBrF+/3uE03bp1S3U7zOvGHCICAGTLluxfg0tVvvnmGwQHB6d7uRUqVEhWujFjxqBAgQJo06aN8GvSpAmaNGlidx4jR47EBx98gLJlyybLhvSgZs2auHv3rmbYu+++i3379qXoWbLnp22Sw4QJEzBmzJg0e85TyuLFi1GrVi2UKVMGABAZGZnhbK1QoQIePXpkMfzChQsqv8DAQBQtWlQzfp48eVCqVCmrZfr5+SF//vyq7zlNC9asWYOdO3c65QuCT548iSdPnqQ4j4iIiGSllX5aMzWx9n2J2bJlw4gRI1T+Q4YMwYMHD9C/f/9klSnNY6mFtXuoWLEiTp06pfDLnTs31q1bp/D77LPPMGXKlFS1S6Jw4cLo3LlzstM7TdSVLFkS58+fV/kbjUb06NEDc+bMQdWqVVXhERERKFiwIADg3LlzGDNmTJrbmtlo3rw5AKBSpUoAMs4Xl9r6gsi7d++m6k+2HThwQLEIcJScOXMm65c6pEFIp9NBp9NlaEEHJInX8ePHa4Z98803GDBggHjm0psRI0bg1q1bmmE6nc7iFzFnBIoVK4ZZs2aJ65T0xYxESvtzen4JbMmSJfG///3P7rh37txJtbJbt26drnlIi4eMRt68efHLL7+kOB9pPAXs/BJeM6QvZ7e1GWIPkydPxuTJk1OcT1rgNFFniW3btsHLywuRkZGYN28ePv30U/Tv3x+jR4/GX3/9hW3btmH58uXIkSMHWrRogZYtWzrb5AxH27ZtERcXh+joaHz99df46KOPnG2SXdSoUSNV80vJaiclSDuDWaFv5siRA7Vr13Za+StWrHBa2UzmJLk7O1u3boWXl1cqW5M+HDlyJEW/KpSRcXd3x/Hjx5EjRw689957mDt3Lj7//HOH85k0aRIKFy4Md3d3vPXWW+jVq1fqG5sB0FFq721mUCIiIuDq6gq9Xu+0XQfGMQ4fPoy7d+9m2BWRNRISElJlRZge/P777xg/fjw2bNiAgQMHOtschkkRQ4cOxbp163D//n1Uq1bN2eYwKcRkMuHly5coWbKks03JFGS4nTqGkejUqRM6derkbDOSRWYRdADEu00Z7X0vhmGYbNmysaBzABZ1DPOGM3ToUBgMhix7HMEwDPOmwKKOYd5wcuTIgbFjxzrbDIZJFaR/nsko/yDGMOkJizqGYRgmy7BgwQJUrVoVVapUcbYpDJPu8D9KMAzDMAzDZAEyxrfSMgzDMAzDMCnijdmpIyJERkaiQIEC/K4FwzAMwzBZjjdG1DEMwzAMw2Rl+PiVYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC8CijmEYhmEYJgvAoo5hGIZhGCYLwKKOYRiGYRgmC/DGiDoiQkREBIjI2aYwDMMwDMOkOm+MqIuMjISrqysiIyOdbQrDMAzDvJEQEUwmk7PNyLK8MaIutQkNDcW2bducbQbDMAzDZBrmzJmD7NmzO9uMLAuLumQyePBg9O/f39lmMFmY27dv49ChQ842wynExMRg4MCBCA8Pd7YpDMMkg9evX6NMmTJ49OiRwn/Dhg1OsujNgEVdMgkJCXG2CUwWp3bt2ujcubOzzXAK+/fvx6ZNm7BmzRpnm8IwTDK4dOkSgoKCsHHjRgQFBYk5U6fTOdmyrA2LumQi/cMF/+MF40xevXrlbBPSFH6+bBMeHq7aDdEiNjY2HaxhGCU6nQ5lypRB6dKlnW3KGwGLumSSnpNNv379cPjwYZvxgoODkZCQkKKy9Ho9jEZjivLIqERHR2epezt9+jSKFy+OS5cuKfyJiI8tnUxYWBi2b9+eLmW5ubmhSpUqVuOcPn0aLi4uuHPnTrrYxKQ/9+7dg06nw4sXL5Kdx0cffYQLFy6kij3mc2RK56Y3CW9v72T/M0mGFHXXrl2Du7s7PDw80K9fP0VnOH36NMqVK4dWrVqhbdu2TrQyifQQd9u3b8egQYOsxjl79ixKlSqFsWPHpqisQoUKYfLkySnKI6OSP39+5MiRA3q93tmmpArSBP3gwQOF/9KlS1G4cGFEREQ4w6wMS3BwMNq0aZOq/wFPRDh48KBqHPj444/Rr18/xMfHO5Sfj48PevToASLC2rVrcfv2bZtp7BFq3t7eAP7rK0SETZs2vTETbXx8PPr27Ytnz56lW5nLly9H165d07yc48ePY+PGjdi1axcA4MqVK8nOa/PmzRg6dGhqmQbA8ePW2NhYFC5cWLVYBYDOnTsL0Xn37l2751+j0WjXuP/kyRPcunXLIXu1ICL89ttvqsX18+fPYTAYrKa9desWmjVrhj///DNZZWdIUVemTBkcPXoUZ86cQeXKlbFnzx5FeP/+/XH69GmcOHHCYh4GgwEREREKlxrcuHEDcXFxNjuTr68vPvnkE0U8nU6HhQsXJqvcsLAwDBgwAK1atdIM9/DwAJD0gMvZvn27yu/MmTPQ6XQIDg7WzOvAgQMO2WYymRT3GRcX51B6g8GAjRs3imsiwrx58xAYGOhQPtYICgoSn5M76D169Ag6nQ6HDx/GmDFjQESIi4tz2tfkWOqDp0+fBgBNu4xGY6otRF6/fo358+fbnV9YWJjdglqaCDZu3IjQ0NBk2Xf06FEkJiaK61WrVuHUqVM4deqUXemjoqI0d3YPHTokBubdu3ejS5cu2Lt3ryLOuXPnAAC//vqrZt6bNm2CTqdTDfCff/459u7di/j4eAwfPhz16tWzy1Y5ERERmDVrlsJ26bP0X4fe3t4YOHAgFi5ciEePHmnu7C5fvhw3btxwuPzkcu3aNezZs0c1ngDAixcvoNPpVGOZNWJiYvDy5UsASWJ5x44d+Pnnn1PVZmuMHj1aMZZu27YNvr6+mnHPnj2L999/P1nltGvXzuai/9ixY4pnIT2wNC6Yi7xmzZph1apV4jowMBDh4eFYunQp7t+/j3379om8Dh06hP/973949OgR3n33XUyePBkxMTE2FydTp05FoUKFNMPk2qBChQqoU6eOuB40aBC++OILq3lr4efnh0mTJmH69OnCb9KkSShdurTNtpLGu6dPnzpcLpBBRV3JkiXh4uICAMiZMydy5MihCN+5cyfc3d2xaNEii3nMnz8frq6uwpUrVy5VbKtXr55iN0w66jIYDPDy8sK6desAAOPGjcPq1asRFRWlSL9+/fpkl71lyxacOXPGahzzLdt+/fqhXbt2Cr+DBw8CgMX3cPz8/Bya+LNnz47Ro0cDSFrp5M2bF1u2bLEopFeuXImzZ8+K6wULFmDQoEFiAjEYDJgzZw6GDBli9wRsjdjYWJQpU0YzbM2aNRg8eLBd+Zw8eRIA8MEHH+Cvv/5CXFwc6tevj4IFC6bYRjlhYWGiLC3u37+PIUOG4LPPPgOgHiSla/M2jI+PR44cOZK9AjTPb9q0aZg5cyYePnxoV/qiRYuiUKFC+OWXX+wu8/r16xg+fDgA4LPPPkOnTp3sSnf79m107NgR//vf/zB37lx8+umnCAsLU8SJiYnBiRMnsHfvXty7dw9A0gDfqlUrBAcHo0CBAsiRIwfOnz8PAEhMTMSAAQPQuXNnzJkzB8B/A7B53pKgfvz4MYCk3VO5cJLGiZiYGE378+TJI8qUs3TpUuTPn9/qvc+fPx/ff/+9sBv4b1yQRJ1Ubnh4OKpUqQJ3d3dVPqNHj0a9evVgMpnSZXe7YcOG6NmzJ7Jnz65qZ39/fwBJC874+Hi7dkDbtm2LEiVKALAsMEaMGJGsF/cTEhIcXsz1798f9evX1wwbP3681U0KOUWLFsWnn35qMdz8fh4+fIj27dvjhx9+sCv/1Fr0SfnYql9vb2+MGjVKXEvxY2JiUKNGDXTv3l2xsWM0GoVY/+2335AvXz7kypVL1R4Gg0HYsH//fs2yT58+DVdXV9y8eVMzfOPGjfjxxx9V/kajEVOnTrW44JSeW3k//euvvwCoN17MsbfeLJEhRZ1EQEAAjh8/ji5dugi/hg0bwtfXFydOnMCRI0dw7do1zbQzZsyAXq8Xztauz+vXr20+pFJl37lzR9HxCxcujHbt2qFFixZi69rSxCq/fvbsmeroDEjqjA0aNMDdu3et2qNFQECAzTiSbeYCUG6buXgMDAzEq1evEB0drfCXOvyKFSsA/Df4DhgwAK6urqJzX7lyBcWKFUNkZCRGjhwpdhaB/yZE84H69OnTaNOmDRYvXmzxXs6dOyfKtMSCBQsshn388cd2/4u9eVvqdDohBiyRkJCAY8eOWY0TGhoqdryICEWLFrX4asGdO3dQo0YNq4sDqX3LlSsHf39/7NixAwDErpD5zjcRqVa6+/fvR/HixcX1d999h2zZlMOF1F7WJoHNmzdDp9MpXtKfMmUK/Pz8LKYxRxIUS5YswZEjR+Dn56d5jEZEYkdWWkwtX74c33zzDf7880+xaybZO2nSJLz//vvo0aMHatasCQA4ceIEzpw5g1KlSol8pZX6+fPnsWXLFgCwuMstIbWB0WjEv//+i3HjxmHSpEkW49nL3LlzFc+guZgEIES2vF0kERoeHq5Z99aOeb/55hsUKlQIRASdTqdY1F66dEnzq51iY2Oh0+ksPltEhNevX1ss8+jRo4praZETGxuLihUronDhwhbTSkhHzlJ5gLq+5TtEtvDz8xNzxIcffqhYzIWFhQkBb42YmBg8e/ZMtQsjiW173qMKCwsTCzP5CYSE+fMoPQv2Hj2ntaiz1eelcUY+H4SGhor8TCaT5q5jZGQkoqOjxXiWJ08eMXdIac03GqSNhPv37yv8g4KCrB5DX7t2DT///DPmzZsn/AwGA3766ScYjUbRjvL/3jev1/nz51udu7KcqIuIiMDgwYOxZs0a5MyZU/jnz58fuXLlQq5cudCtWzeLCjt37twoWLCgwlmjSJEiit2c4OBghUC6d++eGCzllS01lHTcItkuDfpffvklRowYoSiLiBATE4OyZcuiWrVqwl86FvTz88P169ct7mj4+vpCr9ejXbt2dm/RhoaGonXr1vjtt9+EECMiGAwGlCtXDpcuXVIMKK1bt1akf/vtt1G8eHHkz58f9erVEw+D/AuYdTqd6qEpX748AKBly5YICQlRtcOOHTvEjqulTjxhwgQAwKJFi/DkyROcOHFCiPmWLVuiUqVKivgTJ05UPGz//POPIvzp06do0aKFYnL85ptvxA6mJewZ7GbNmoW9e/eiatWqGDZsGIoVK4b27dtb3c2aOHEiZs6ciYCAAFVfMadWrVoqv4CAAIUok9djpUqV0LdvX83JX+Kzzz5Drly5EBQUhOPHj4OI8PXXXyv+s3b58uUAkuqyffv2mjslJ06cwKpVqxS705IIatCggSKu+Q62NeS7ugBQuXJllC1bVlwTEX788Ue0bNkSZcqUwfjx49G3b19VPuaLGfMJUevYDwC8vLzg7++v6p/Lli3D5cuXhQ1SHnfv3lXsNkhCQL4rZ2nCM79XAPj777+h0+mQmJgo0m3cuBE3btwQO+RAUp3qdDrs3LkTwH8LLTmDBg1C5cqVVf4S8+fPR/v27dGiRQvhJ31X4r59+wD8t+MAACNHjtT8EnZJiA8ePBienp6KsJ9//hnZsmVDkSJFRD9wc3NT5SFvQ+leXr58iWfPniEmJgZGoxFeXl4W70UiOjpaCK7ffvsNDx8+hK+vr+KdLZ1Oh5cvX1o9oqxcubI49ZDeX/Px8QEAvPvuu6hYsSJq166t+keFgIAARV8rW7Ysypcvj7CwMNGekqiTXp2wl6ZNmyruwZy4uDiFmIuPj0eBAgWg0+kUY82kSZPEqYjRaETjxo3h7e2Nb7/9Fq9fv0ZUVBTi4+NhMpkwb948izu3mzdvVs3J5nbJd7f69eunCKtfv744gZA/i9KCF0h6l07rHwf79euH/PnzY/Xq1WJ8ko6/pWfe1dUVOp1ObKZImxexsbGK+W/evHliN10LqZ/4+vqiZ8+eMJlM+OuvvzBt2jQcPnxYkZenpye2bNmi+MaMr7/+GjNnzlTdv/l9JwvKgCQmJlKXLl3o+PHjqjC9Xi8+DxgwgM6cOWNXnnq9ngAo0ssBQACoRYsW9N1334lrIqIrV66IawDUtGlT8Xnw4MGKMEvOZDIRAKpUqRItXrxYEUZEdPz4cQJAe/fupdu3bxMA+uSTT6hgwYKa+dWqVYsA0Oeff66wXypr8eLF4p4BUK9evVR5nDp1ip48eWLV7sqVK6vy17LDmps1a5amv7e3t+L68uXLREQUExOjiivZ0KBBA5WfeTc29+vZs6dm+SdPntQsJygoiAIDAxV5/vPPP7RkyRKL9zhq1Cir9eTj46PIb//+/aIfdezYkQBYbAutezN35cqVo0OHDhER0YcffqgKv3XrFi1YsIAAUPv27YmIyMfHhw4dOqSKO2fOHPE5OjqaiIjefvttRZyLFy9S6dKlCQDdv3+fIiIiRNjIkSOFvd26dbNYHzExMbRt2zbN53Hr1q2K+OPHj1fl8eTJEyIiOnjwoM0+CICyZ89OAGjnzp1ERKpna8yYMTRsAoSlAQAAH51JREFU2DDNtM2aNaMzZ86Iazc3N0X4woUL6a233qJ+/fpZtUEaf9q1a6e4ttW+kitUqJDiul69euLz3LlzVfHDwsI08x09erTKLzw83K56lPfJ9957j4CkMSc6Opp69uxJefPmpV27dini9+nThwDl8wuAJk+eLMZGLRcbG0tERBUrViQAiv4k9efp06er+o/BYBDx2rZta/d9jR07VrM/yvuFPG8AtGPHDlVfsKctAdDSpUuJiKhJkybCr3fv3rRq1SqVDU+ePKFvvvlG0QbyvPLmzUsAaN++fXT06FGKj4+nrl27Kvp3UFCQqh3j4uIIAOXMmZMAUOHChQkAlSlTRtHHXFxcaO/evSLtvHnz6PXr17Rw4ULRTvJ89+3bRwBU86nW52zZslFoaKjFelq+fDklJiaKaxcXF4txBw4cSFFRUQSA3n//fSIi0ul0Fp8byU2cOFF8HjBggKqe/P39qWbNmqTX6+n06dOK8D179tCnn35KAOjvv/+mGzdu2NX+9erVIyKicuXKUcOGDWn48OF04sQJAkCtW7fW7Iu2yJCibtOmTVSkSBHy8PAgDw8P2rJli5g0V6xYQY0aNaJmzZrRlClT7M7TXlFn7q5evUozZ860e1Cw5IxGo8Wwly9f0rp16wgALVu2jPr27UsAqFq1ajbzHTJkiMr+e/fu2WXTyZMn6enTpzbjWauf1HTDhg2joKAgunv3ripMeojr1Kkj/FxdXRU2arVl6dKlqXv37prlLVy40Oq9EhF5enrS9u3b7bLfVj29fv2aiJIGB7m/NIhay5eI7FpAEJFqQDJ3HTp0sLtNz507R0RE77zzjsK/bt26ijhaadetW2ex7uVC29/fn6Kjo2nChAlicmjcuLFN227fvk0JCQl29y9p0pKEpCN9s1KlSnT27FmL4fY8q5K7efOmsEVyx44ds3uB6KirXr26XfGkxaQ97tdff6VatWpR/fr1CQA9fPgw2fb5+PhYDZdP5nKRYp4HUdKGwNdff60pcO11f//9t+j3WmOKrecVsH/MtCQ6pDzkeHh4KMKXLVummadk35dffimEHpAk6p4/f65q819++UXhlz9/fgKgWshZc4ULFxbiEEgS64sWLSIANGHCBM001uZEc/fBBx841IaSqNPpdHTr1i270li739jYWPH5+PHjYhNGclu2bFFcjx071m5bzevHfFFtMBiIiOjVq1fiszUypKhLC5Ir6lLLyQcmLScJOUsPqjUXGBiouJavpqy5o0eP2hVPWjlkBFe8eHFNfyJSrGLlTlpx2uPkfcHWLqa1tFpu165dyeprkhi0N760I2XJlStXTjEAW3OHDx8Wu0pp5XLlykVTp04lIGlCPXbsWJqUkzt3bsV9OZr+wIEDaVoPzna5cuVyOI2081asWLFkl2t+cmHu5ONZq1atLMY7ePCg3WOaPe6HH36ghg0bUsOGDR1Omxpzio+PD33yySf01ltvUXx8vMPpK1WqpLj+9NNPaefOnap4+fLlS5P+ZMslp17tddImCQDauHGjXWnKli1rMUwuDLXmaPM5xt6FlD2uQYMGoj8NGDDAptZhUff/pHUHNj9Oygju/fffd7oNqeXkR80pcfK+4MhqC4DieM6Sa968ebLsGjp0aKrWV40aNZzeZuntsmXLlqL05keu7DKWmzRpkup411lu1apVqZrftGnTUpxHly5dnF4vmdVdvnzZofiObCQ46myh+/9JLMsTEREBV1dX6PV61cv6ly9fRpMmTZxkGZORqFatmsXvkmIYhmHePN5++227vlkiPbAl2TLsf7+mJ458vQKTtWFBxzAMw8ix9SsQGQkWddD+GgGGYRiGYZiU/J5uesOiDsn/OQ6GYRiGYZiMQoYVdVOmTIG7uzsGDhyo+KLTxMREDBs2DO7u7uJLaVOKPd/izTAMwzAMk5HJkKLOx8cHwcHBOHfuHGrWrCl+5ghI+vmismXL4ty5c4iJibH4jeIGgwEREREKZ4k35H9FGIZhGIbJwjgk6nx8fBS/b7dhwwa0aNEC5cqVg5ubm/hJoJRy8eJFtG/fHgDQsWNHhXCzFiZn/vz5cHV1Fa5cuXIWy+OdOoZhGIZhMjsOibpPPvkET548AQCsXLkSo0aNQsOGDTFr1iw0atQII0eOxOrVq1NsVHh4uPjaEVdXV8XvVloLkzNjxgzo9XrhAgMDLZb3/PnzFNvMMAzDMAzjTHI4EtnX11f8ePqyZcuwcOFCjBo1SoQ3atQI3333HT7++OMUGVW4cGFxXBoeHo4iRYrYFSYnd+7cyJ07t13llSpVCnfu3EmRzQzDMAzDMM7EoZ26vHnz4tWrVwCAZ8+eqb6wt0mTJorj2eTStGlTeHp6AgCOHj2KFi1a2BWWXL744osU58EwDMMwDONMHBJ1nTp1wh9//AEA8PDwUPwDAwBs27YNlStXTrFR9erVQ8mSJeHu7o67d++id+/eGD16NACga9euCAwMhLu7O/LmzYtmzZqluLxcuXKlOA+GYRiGYRin4sjvpz579ozKly9PLVu2pEmTJlHevHnJzc2NRo4cSS1btqRcuXLRwYMHHcky3bD226+nT592+m/L2eMKFSrkdBveRPf999873QZ27NixY8fOFg7t1JUuXRo+Pj5o1qwZjhw5AiLC5cuX4enpibJly+LChQv44IMPHMmScYCffvrJ2SZket577z3xuXDhwnalySzH8++//76zTWAYuylRooTFsM6dO2Pw4MHpaE36EhIS4mwTmFSmV69eKc7D/Hfpk4PD31NXqFAh/PDDD7hz5w5iY2NhMBjw5MkTbNy4EQ0bNkyxQZmZtm3bpmp+t27dUlwPGjTIrnTr16+3Gl6jRg2beRQrVsyuspJDzZo1Lf6DS3pi7Wtu5GTLlnG+zlF6p1WLhQsX2kzftGnTVLQm7dBqm/79+1tNU7t27bQyJ1UJDg62GDZv3rx0tMS5jBkzxmLYkiVLHMqrc+fOKTUnXSlatKjKr3LlykhMTEzVcvLkyWM13J4529G2sEVQUJDdcRcvXox69eop/EqVKgUg6XUvczp27Kjy69Spk4MWpj7m93D48GFVnIcPH0Kv16e8sDQ46cyQWDt+PXXqlF3bnh06dLC5Lbpt27ZU3WaVPo8aNYoMBoMi/O+//6Zjx46p0gUHB1vMs2zZsrRjxw6L4XPnzqWrV6+Kst966y3NeJGRkZr+S5cuJQA0cOBAunz5smac0aNH08aNGwkAffPNN8L/1KlTlD17dlX84sWL21Vf7777rs04devWFX8XL17scDvY4yzVb2hoqNV0vXr1ok6dOtm0JSAgQNRbuXLlRFhCQoLVtD/++CM9e/bM7vs4dOgQzZ8/32L4rFmzVH5NmzZVXLdo0YIGDBiginft2jW6fv26xbzLli1LX375pcIvMTHRqr3m9z9w4ECr7eEsR0QW22HevHmKa/Mx5/fff091ex4/fiw++/r62p2uc+fOVsOlZ03uZsyYYbM9JQYNGmQx7379+imuP/jgA4fve/DgwSmqt0OHDiUrXfny5TXHlHPnzlkca7SeIcldvHjRYtj+/fsths2YMcPm2DZixAj666+/rMb5+uuvHbr/Fy9eiP7frl072rp1q8W4REQff/yxws/d3Z0AqOZD6X6JiO7evSv8VqxYQQDI1dXVLvtu3Lih8nNxcbGZrlevXhbDrl27provrXu1Z66xBYs6+k/U1alTx2pldu3a1apwICJ6/fq1uC5YsKAifNy4cQSAvvvuO1qyZAn16NFD8+FdsmQJDR06lIiIhg4dSgDoypUriknrk08+EfZLfqtXr6ZRo0aRyWQSfp999hkBoCJFitCFCxcoKCiIQkJCRLi58Hr+/LmizqKioqhRo0ai0x4/fpz69OlDRKQSRbdv36YXL14QAPrtt99U9oWEhNDnn39OBoNBTLQ//fSTov6MRqO43rBhA7m5uVkU02PHjiUioj/++INu3LghHvIKFSpYbKM6deqQ0Wgkk8lk9wQpvwd743/xxRfieubMmRQXF2czn7///lsMDEuWLLH6QO/du5cA0Lfffkvly5cXYdYWFSaTyaF7MW8/rXD5xDtz5kwyGo307NkzYYeHhwfFxcVZzbtUqVKKNgdApUuXVpVty3YiolevXtHChQupePHiimdc/j5qsWLFqF+/flSlShVF+h9++MFmnUycOFHTf+jQoYrnztw9efJEde8bN26kX3/9VRFv3rx51KxZM+rQoQP9+uuvtGXLFtU9JiQkkJeXl9V+DiSJWnOROH78eMW1v7+/ol6t1XHt2rUV15ZEXVBQED158kSz3aOiohRl1ahRQxH+888/i/qxJupMJhPdv3+f9Ho9RUdH01dffWV3v5bcpUuXHE5jqT/269ePwsPD6caNG3Tu3Dmr6aSx4MCBA8Lvzp074r5v3rwp3vPOnTs3AaDhw4fTqlWrFPmMGTOGAOuLRU9PT/FZGscl9+uvv2q2d3x8PAGg/PnzExHZFHUmk0lTCFlyISEhQtT17NlTZYNcHBGpRZ2bm5vCTgBi8SlHClu+fDn9+OOPdttIRIo5ErAt6s6fP29V1P3zzz+UN29eRRkfffSRuH777bdVdru4uNDx48cV+dSuXZtskeFE3dWrV8nNzY1atmxJffv2pfj4eEX4qVOnqGzZsuTh4UFt2rSxO197RN2MGTNo1KhRikqUC4qNGzdSREQE/fvvv6KRc+XKRUCSkCAiCg8PF/GnTZumeKg2bdpEAGjBggVERJqdYODAgRbvQT5pTJgwQfjLO4q53+TJkwmA6h9YtAYmT09Pi+WeOHFCiAI5kriQRCgR0dOnTxVxteyTRN2PP/6oCu/WrRsBSTuORKQp6nLnzk3Xrl1T5CmJXmsr8Dp16oj40m6hPQ+59Pnbb78Vn7VWz4MHDxb5nzhxgoCkHS2JmzdvirgjR45ULBLWrVsn+sT69est2kJEtG/fPmGPlAcRUXx8PM2YMYNiYmIUu6mbNm1StYfctW7d2mJZcr8RI0Yowq9cuSKuN2/erGiPH3/8kQICAoiIaMmSJeJZWLNmjYizefNmevz4sVh9SwP1e++9pyqbiGjr1q1iMpP6iVb/Mufzzz/XjLd7924qU6YMAaBjx47Ro0ePiCipz5vvICQmJlqsP0t1Ky3KiIjy5cunaac8/p9//qkIky8SbaUFQI8ePaJLly6JcG9vb0X41KlTxefKlSuLeDt27KBRo0ZZvD8A1LhxY8W1tDvWp08f4VevXj2FfZIo0XqWiIjee+89cd29e3eKjo4WaaWdVk9PT8XiT6seEhMThfiwV+BJu5Lm40XRokUdHhestYt5fvI5zVJ6SYA0a9aMgP8W8ZbqQLr3GzduKHbvjxw5Ij5PmzZNkf6XX37RbG/J78MPPyQioj///FMVR9r9ktthMBjIz8+PChYsSDdv3qSAgADNeouNjRWiaerUqURE4oTHzc2NwsLC6NKlS7R161YiIho+fLgi/cqVKwkAGY1GKl26tMVnXzrhWb58uWa7AEkbEXv37lUs8LXiSs8uAMqWLZsqn1evXomx23zhJNlKRNSzZ09FGWvWrKHw8HCF3cuXLycgaVfeXNStX79e817lZDhR9/z5c/Fgz5gxg7Zt26YIP3XqFE2ePNnhfK2JupMnTxLw33a0XDwREV2/fl1VmS9evKB58+aJtF988YWinNKlS4uHV8pr8+bNBKhFnbe3t9jVu379utX7kPIaP3688Lt586ZK4EjxpAHu0KFDivBcuXIJsWFpYLGXJUuW0OvXr23aLGfnzp0EJIm6sWPHKsK7dOlCQNI2PdF/nbx69eo2bT1z5oxiN8DcyVc6RqNR8wjR2uAt7xvXrl2jihUriuv+/fsrbJEGtePHj6vqY+TIkWQ0Gik0NFSsPNevX0+ffvopAaCzZ8+KfC9evCgEjMT9+/dF3o8fP6YVK1bYXffm91e2bFmru2lyISc/EpWQBsSNGzdabBdb3Lx5k/r160cmk4n27NlDQUFBKlslpKPn/fv308GDBwkAderUyWr+JpOJ1q5dSz/++KMqbObMmZrtRJS089m3b1+Fn2SPfEfGPGzXrl10/vx5Rbp///2XfHx8VGVIafbv3y8GfzkBAQEUEhIiFjlaaS09F9LRXIMGDQgATZkyRcSVizpreUpOEnXS7poklKUxddmyZfT06VNFXq9evVIc78rzJyJ6+PChRdulnYyHDx+Sn58fAaCcOXNafP4lAfPVV1/Z9ZqBVPagQYMUpyolS5a0mVbrXizVodS/JJeQkCDieXt7U7du3VTppcWfVOcjR44kov8EjqW2I0qaQydOnEidOnWi6Oho+v7776lXr14qUbdjxw4iIipVqhTVrVtXCGwiotDQUDF//fHHH4p0Uh+2NRZL+ZjXm7Tgv3jxoihD2qFftGiRKo9hw4YRANqzZ49YJEoEBATQ0aNHNcsOCgqikiVL0r///iv8IiMjqVixYgT8N2dLWHqWAaWou337tvgsF4zSfK7V9+TlS683WSMqKopMJhP9888/Ig83Nzeb6YgyoKiTM2fOHNq1a5fC79SpU1S+fHlyc3OjhQsXWkwbFxdHer1euMDAQMUAJMdgMNCQIUPo5cuXwm/y5Mli+9kaYWFh5OLiQrdu3SIiooiICAJA77//vogjNcr27dsJ+O9oUuoEQUFBoqPZQspLLuosxatevTrNnTuXANDhw4dt5plWPHv2TBzzSMhFnTkPHz6kYcOGqSY4+XsJtjB/qOrXry8mNznWjswsDd5lypShihUrijxWrVpFJ0+epNjYWLvq48WLF4qBXTrG3rBhA0VHR9Pu3buJiOjx48diADSZTKr6sKc8b29vldiS7uXo0aOauwZadRwVFUXNmzengIAAOn36tGIR4ePjQwDo3r17dt2/I2jZs27dOgKSXkmQJg1bos4a0g7i48ePHbLJ/LPWtT1cuXKFTp486VAa8/IAUNWqVVXh0usVn376Kb399tt07949Ed+WqLt58yZt2LCB/P39KS4uTrw7ZTAYKCYmhgwGA3l7eztkp/S5S5cummFy7t+/T+3atVP00ePHj9O7776rWYYksqV5wdZzLfUdaWIeOXKkGJ8B5c6W9Fl6PUSn01m1Xb5Dam6LtONrDUlwSgvcTz/91GYaW0gLIOkezU9evvvuO8172bVrl0g3evRo4S+912gLKW21atUsxo+IiKBevXpRWFiYKuzixYuUI0cOioqKslmWPUinQ5bsNL8GQLVq1VK1Z968eRXpr169Su+++y7Fx8fTokWLqF+/frRjxw7FyURyuHXrluYpmSUyrKh7+vQpNW/eXHX8GhkZSQaDgQwGA3Xs2NGi6pXEjLnTEnWpSWJiIhUoUICOHDki/KSyo6Oj6YcffhDvVFy7do3q1q1L8fHxdos6aZC2R9RVq1aN5syZQwAU9pizbds2u7Z1U5OoqCjq2rUrvXr1yqF09k6a8tVSVFQUGQwGWrx4MT158kQzT/MX/M3FxP3798UuhNFo1NxRSS7SMZ+l4+/UxsvLi7y8vFT+vXv3ppIlS9L169fF0Yezkb9PI2EymcRzLx3jpETUEZFD7blr1y66fPkyEaWOqEsJ8n5arVo1VbjJZKIffviBIiMjhd+FCxcISNpxs5TnZ599pvI3Go2KfJJjJ1HSokYaA4mSdlvMd/iSg8lkoo0bN4oFU1RUlHjXSjqmO3/+vMKW8PBwMWFKO9LSAl2y+6233qKEhATFqwTSiYq19paHNW/eXFzLF3TW2Lt3L8XGxtLMmTMpNDQ0GTWixnw+lWMymTRtM5lMdPLkSZWwSEhIsKs/FCtWjEqVKiXeYc2oSMfWElJ7tWrVSrwrLoXv2LGDfH19nWWqVZxWw8+fP6cWLVqoXGhoKOn1emrZsqXNSlu2bBmtWrVKM8yRnbq0JjQ01ObRlPRfpraQXu5NTVGXmXBk0pRPvtZITExU/INGVFSU4r/G0hqTyUSnTp1K83IyKwkJCYp/4JEjvTc4ffr0dLYqCfM+kidPHmrWrFm6l29NpGmxePFi8f5geiC9s+kM9Ho9TZo0SVPUyTl69CgBULxKIok6S1gbI2rVqiX+qYyI6OXLl7R27drk30gmJSEhgRISElTvk2U0wsLCFCdK5m0rfz82I5MDTqJkyZI4f/68yt9oNKJHjx6YM2cOqlatqgqPiIgQX9B37tw5i991lDt3buTOnTt1jU4mRYoUwUcffZQqeUk/aVagQAG74hMRAECn06VK+ZmJnj172hUve/bsiut8+fKhS5cueP36NV6+fJkWpinQ6XRo1apVmpeTWcmRIwdKliypGZY/f37cvXsXVapUSWerkggLC1Ncx8TEpGv5I0aMwMqVKwE49ox/9tlnaWWSJgcOHEBoaGi6lilh7xe6tm/fXoyX9jJ9+nSLP1Vp/j2jxYoVw9ChQx3KPyuQI0eSzFi/fj0ePXrkZGssU7hwYatfSL927VqsXbs2/QxKJhnnW1X/n23btsHLywvz5s1Dq1atsHXrVgAQv/26bds2NG7cGM2bN0eZMmXQsmVLZ5qbatj7Rbh169bFihUrMGvWLLviS7+gYG/+GZ127dqlWd53797Fw4cPxXWhQoU0FxZMxqJGjRpi4khvzCcCnU6Xrguo+fPni188sfXlzM7ExcUlQ41BhQoVSpV85s+fj27duqVKXlmdfPnyoW7dus42I8ujI0eXJpmUiIgIuLq6Qq/Xp8pPcaQ2L168wM2bN9G+fftUyU+n08HDwwOnT59GcHCwxZ2OzEZ8fDwMBoPdO5UM8yaQmJiI7Nmzv5E78vZw9epVNGrUCKGhociVKxd0Oh3y5ctnM51Op8Nbb71l9ZdcmKyJp6cnChQoYHEnNqPCoi6Lsm/fPjRr1ixNf+6LYRgmK8OijslsOO2dOiZt4SMBhmEYhnmzyHDv1DEMwzBMRiG9/6mEYVIC79QxDMMwjAZvyNtJTBaCd+oYhmEYhmGyAG/MP0oQESIjI1GgQAH+DzGGYRiGYbIcb4yoYxiGYRiGycrw8SvDMAzDMEwWgEUdwzAMwzBMFoBFHcMwDMMwTBaAv9IE//0TBcMwDMMwTEbF1j97sqgDEBISguLFizvbDIZhGIZhGIvY+qlTFnUAcuXKBQAIDAx8I34XNisRERGBcuXKcdtlQrjtMi/cdpkTbrfMT4ECBayGs6gDxFZmwYIFuaNnUrjtMi/cdpkXbrvMCbdb1oX/UYJhGIZhGCYLwKKOYRiGYRgmC8CiDkDu3Lkxd+5c5M6d29mmMA7CbZd54bbLvHDbZU643bI+/DNhDMMwDMMwWQDeqWMYhmEYhskCsKhjGIZhGIbJArCoYxiGYRiGyQKwqGMYhmEYhskCsKgDMGXKFLi7u2PgwIGIj493tjnM/3Pt2jW4u7vDw8MD/fr1Q0JCArZu3YpmzZqhTZs2CAwMBADcvXsXbm5uaNasGY4fPw4AiIqKQvfu3eHm5oYffvjBmbfxRrN582YUK1YMALjtMhGnT59G27Zt4eHhgb1793LbZQJMJhOGDh0Kd3d3tGzZEn5+ftxubyL0hnP9+nUaOHAgERF9++23tHHjRidbxEg8f/6coqOjiYhoxowZtG3bNmrcuDEZDAY6f/48jRw5koiIunfvTg8ePCC9Xk/NmjUjIqJff/2VVqxYQUREHTp0oMDAQOfcxBuM0WikXr16Ub169Sg+Pp7bLpMQGxtLXbp0IYPBQETEbZdJuHbtGvXv35+IiDw9Penzzz/ndnsDeeN36i5evIj27dsDADp27AgvLy8nW8RIlCxZEi4uLgCAnDlz4sGDB3j33XeRK1cutGjRArdu3QIAPH/+HFWqVEHBggVRtGhRhISEKNq1Xbt28Pb2dtp9vKls2rQJffr0QbZs2fDw4UNuu0yCl5cX8ubNi65du6Jnz564cuUKt10moGzZsgAAIkJ4eDiKFSvG7fYG8saLuvDwcPEbeK6urggLC3OyRYw5AQEBOH78ONzc3BS/V2g0GgEkDWISUhtyuzoXo9GIbdu2oX///gCUz5kUDnDbZURevHiBx48fY//+/Rg1ahS++uorbrtMwFtvvYVs2bKhRo0amDZtGlq1asXt9gbyxou6woULIyIiAkDSxFOkSBEnW8TIiYiIwODBg7FmzRoUL15ctBUAZM+eHQCQLdt/3VhqQ25X57Jhwwb069dPtI28PQBuu4xMoUKF4Obmhly5cqFNmzbw8fHhtssEHD16FHnz5sX9+/exc+dOLFq0iNvtDeSNF3VNmzaFp6cngKSHokWLFk62iJEwGo0YOHAg5syZg6pVq6Jy5cq4e/cu4uPjceHCBdSpUwdA0jHtw4cPERERgbCwMLz11luKdj1+/DiaNWvmzFt547h79y7WrVuHjh074uHDh1i+fDm3XSahcePGuHv3LgDAx8cH7du357bLJBQuXBhAkjAPCQnhdnsTceobfRmEyZMnk5ubG3300Ufi5WDG+WzatImKFClCHh4e5OHhQVu2bKHNmzdT06ZNqVWrVhQQEEBERHfu3KEWLVpQ06ZNydPTk4iIIiIiqFu3btS8eXOaP3++M2/jjadBgwZERNx2mYglS5aQu7s7eXh4kJ+fH7ddJiAxMZEGDBhALVu2pCZNmtCFCxe43d5A+LdfGYZhGIZhsgBv/PErwzAMwzBMVoBFHcMwDMMwTBaARR3DMAzDMEwWgEUdwzAMwzBMFoBFHcMwDMMwTBaARR3DMAzDMEwWgEUdwzAMwzBMFoBFHcMwDMMwTBaARR3DMAzDMEwWgEUdwzAMwzBMFuD/AMHrsdAB1l9qAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1061,7 +1061,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADawUlEQVR4nOydd3gUxRvHv0Ek9AjITyK9SRMBESkhNAUBKQKCFAuiUpRe1AACClJFEKT33jtSQgsJhN47CRAIJaRf+iW5e39/xB13b/dKkkuOHO/ned4nt7NT3p2dnfnOzN7FhYgIDMMwDMMwTI4ml6MdYBiGYRiGYTIPizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOgMNFXWxsLOrXr4+CBQvi+vXrinOpqano3bs3PD09MWTIEBFeqFAhNGvWDM2aNcO1a9dsKoeIEBMTA/4HGgzDMAzDOCMOF3X58uXD3r178emnn6rO7dmzB6VKlYKfnx8SEhLg7+8PAKhSpQp8fHzg4+ODmjVr2lRObGws3NzcEBsba1f/GYZhGIZhXgQcLupy586N4sWLa547deoUWrVqBQBo3bq1EHX37t1DkyZNMGDAACQlJWmm1ev1iImJURjDMAzDMIyz4nBRZ4no6GgULlwYAODm5obIyEgAQGBgIHx9feHu7o758+drpp0yZQrc3NyElS5dOtv8ZhiGYRiGyW5eaFFXpEgRscIWHR2NokWLAgCKFSsGAOjatSsuX76smdbLyws6nU5YcHBwtvjMMAzDMAzjCF5oUdegQQN4e3sDAA4ePAgPDw/Ex8fDYDAAAHx9fVGpUiXNtK6urihcuLDCGIZhGIZhnJUXQtS1bdsW3t7e+O6777By5Ur069cPANC+fXsEBwfD09MT+fLlQ8OGDREQEIB69eqhSZMm2Ldvn+JbsQzDMAzDMC8rLvSS/MZHTEwM3NzcoNPpeNWOYRiGYRin44VYqWMYhmEYhmEyB4s6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLCoYxiGYRiGcQJY1DEMwzAMwzgBLOoYhmEYhmGcABZ1DMMwDMMwTgCLOoZhGIZhGCeARR3DMAzDMIwT4HBRFxsbi/r166NgwYK4fv264lxqaip69+4NT09PDBkyRITPmjULHh4eaNeuHXQ6XXa7zDAMwzAM88KRYVH3+PFjjBkzBs2bN0e1atVQvXp1NG/eHGPGjEFwcLDN+eTLlw979+7Fp59+qjq3Z88elCpVCn5+fkhISIC/vz/CwsKwZ88enDhxAj169MC8efMyegkMwzAMwzBOQ+6MJDpx4gTatGmD0qVLo1WrVmjVqhWICKGhodi5cyfmzp2L/fv3w8PDw7oDuXOjePHimudOnTqFdu3aAQBat24Nf39/REdHo1mzZnBxcUHr1q3x1VdfaabV6/XQ6/XiOCYmxqwPZ8+exZIlS6z6yjAMwzAM4whq1aqFgQMHWoyTIVE3bNgwfPvtt5g1a5bZ80OHDsW5c+cykr0gOjoahQsXBgC4ubkhMjJSM0yLKVOm4Ndff7W5nKtXr2bKV4ZhGIZhmKzCzc3NapwMibrr169j7dq1Zs/369cPCxcuzEjWCooUKSJW2KKjo1G0aFEUKVIEgYGBijAtvLy8MHz4cHEcExOD0qVLa8aVVhsZhmEYhmFyKhl6p87d3R3+/v5mz586dQru7u4ZdkqiQYMG8Pb2BgAcPHgQHh4eeO+99+Dj46MI08LV1RWFCxdWGMMwDMMwjLOSoZW6kSNHon///rhw4QJatmyJN954Ay4uLggJCcGhQ4ewdOlSzJ492+b82rZti8uXL+POnTvo168fTp06hUWLFqF9+/bYuXMnPD09UadOHTRs2BAA0L59e3h4eKBIkSJYt25dRi6BYRiGYRjGqXAhIspIwk2bNmHWrFm4cOECDAYDAOCVV15B3bp1MXz4cHTr1s2ujmaWmJgYuLm5QafT8aodwzAMwzBOR4ZFnURKSgrCw8MBAK+//jpeffVVuzhmb1jUMQzDMAzjzGRo+1XOq6++apf35xiGYRiGYZiM4/D/KMEwDMMwDMNkHhZ1DMMwDMMwTgCLOoZhGIZhGCeARR3DMAzDMIwTwKKOYRiGYRjGCWBRxzAMwzAM4wSwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnAAWdQzDMAzDME7ACyHqRo4cCU9PT/Tq1QvJyckiPCYmBh06dEDz5s0xYsQIEV6oUCE0a9YMzZo1w7Vr1xzhMsMwDMMwzAuFw0XdpUuXEBISAj8/P1SvXh1bt24V5xYtWoSOHTvi2LFjSExMxJkzZwAAVapUgY+PD3x8fFCzZk1Huc4wDMMwDPPC4HBRd+rUKbRq1QoA0Lp1a/j7+4tz9+/fR+3atQEA7777Lvz8/AAA9+7dQ5MmTTBgwAAkJSVp5qvX6xETE6MwhmEYhmEYZ8Xhoi46OhqFCxcGALi5uSEyMlKcq1atGo4ePQoAOHz4MKKjowEAgYGB8PX1hbu7O+bPn6+Z75QpU+Dm5iasdOnSWXshDMMwDMMwDsThoq5IkSJiFS06OhpFixYV57799lvcuHEDH374IQoWLIgSJUoAAIoVKwYA6Nq1Ky5fvqyZr5eXF3Q6nbDg4OCsvRCGYRiGYRgH4nBR16BBA3h7ewMADh48CA8PD3Euf/78WLlyJQ4fPgwAaNeuHeLj42EwGAAAvr6+qFSpkma+rq6uKFy4sMIYhmEYhmGcFYeLujp16qBEiRLw9PTEzZs30aVLF/Tr1w8AcPnyZTRr1gwffPABPD09Ua5cOQQEBKBevXpo0qQJ9u3bhyFDhthUTqFChaDT6VCoUKGsvByGYRiGYRiH4EJE5GgnGIZhGIZhmMzh8JU6hmEYhmEYJvOwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnAAWdQzDMAzDME4AizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJcLioi42NRf369VGwYEFcv35dcS41NRW9e/eGp6cnhgwZIsILFSqEZs2aoVmzZrh27ZpN5RARYmJiQER29Z9hGIZhGOZFwOGiLl++fNi7dy8+/fRT1bk9e/agVKlS8PPzQ0JCAvz9/QEAVapUgY+PD3x8fFCzZk2byomNjYWbmxtiY2Pt6j/DMAzDMMyLgMNFXe7cuVG8eHHNc6dOnUKrVq0AAK1btxai7t69e2jSpAkGDBiApKQkzbR6vR4xMTEKYxiGYRiGcVYcLuosER0djcKFCwMA3NzcEBkZCQAIDAyEr68v3N3dMX/+fM20U6ZMgZubm7DSpUtnm98MwzAMwzDZzQst6ooUKSJW2KKjo1G0aFEAQLFixQAAXbt2xeXLlzXTenl5QafTCQsODs4WnxmGYRiGYRzBCy3qGjRoAG9vbwDAwYMH4eHhgfj4eBgMBgCAr68vKlWqpJnW1dUVhQsXVhjDMAzDMIyz8kKIurZt28Lb2xvfffcdVq5ciX79+gEA2rdvj+DgYHh6eiJfvnxo2LAhAgICUK9ePTRp0gT79u1TfCuWYRiGYRjmZcWFXpLf+IiJiYGbmxt0Oh2v2jEMwzAM43S8ECt1DMMwDMMwTOZgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLCoYxiGYRiGcQJY1DEMwzAMwzgBDhd1sbGxqF+/PgoWLIjr168rzqWmpqJ3797w9PTEkCFDRPisWbPg4eGBdu3aQafTZbfLDMMwDMMwLxy5He1Avnz5sHfvXowaNUp1bs+ePShVqhRWrlyJ7777Dv7+/qhcuTL27NmDEydOYP369Zg3bx5Gjx6tSqvX66HX68VxTEyMWR8eP36Mixcv2ueCGIZhGIZh7Mwbb7yB+vXrW4yTJaIuODgY48ePx/Lly63GzZ07N4oXL6557tSpU2jXrh0AoHXr1vD390d0dDSaNWsGFxcXtG7dGl999ZVm2ilTpuDXX3+1yV8/Pz/07NnTprgMwzAMwzDZTfv27bF7926LcbJE1EVGRmLVqlU2iTpLREdHo3DhwgAANzc3REZGaoZp4eXlheHDh4vjmJgYlC5dWjNup06dEBoamilfGYZhGIZhsoo8efJYjZMhUWdNKd6/fz8j2aooUqSI2DaNjo5G0aJFUaRIEQQGBirCtHB1dYWrq6tN5eTNmxd58+a1i88MwzAMwzCOIEOi7pNPPoGLiwuIyGwcFxeXDDsl0aBBA3h7e6NJkyY4ePAg+vTpg0qVKmHGjBkYN24cDh48CA8Pj0yXwzAMwzAMk9PJ0Ldf3d3dsW3bNhiNRk1L75cO2rZtC29vb3z33XdYuXIl+vXrByBt/zg4OBienp7Ily8fGjZsiOLFi6N9+/bw8PDAhg0b8P3332fkEhiGYRiGYZwKF7K03GaGDh06oHbt2vjtt980z1+5cgV16tSB0WjMtIP2IiYmBm5ubtDpdOKdPIZhGIZhGGchQ9uvo0aNQnx8vNnzlSpVwrFjxzLsFMMwDMMwDJM+MrRSlxPhlTqGYRiGYZwZh/9HCYZhGIZhGCbzsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLwQom7kyJHw9PREr169kJycLMJjYmLQoUMHNG/eHCNGjBDhhQoVQrNmzdCsWTNcu3bNES4zDMMwDMO8UDhc1F26dAkhISHw8/ND9erVsXXrVnFu0aJF6NixI44dO4bExEScOXMGAFClShX4+PjAx8cHNWvWdJTrDMMwDMMwLwwOF3WnTp1Cq1atAACtW7eGv7+/OHf//n3Url0bAPDuu+/Cz88PAHDv3j00adIEAwYMQFJSkma+er0eMTExCmMYhmEYhnFWHC7qoqOjUbhwYQCAm5sbIiMjxblq1arh6NGjAIDDhw8jOjoaABAYGAhfX1+4u7tj/vz5mvlOmTIFbm5uwkqXLp21F8IwDMMwDONAHC7qihQpIlbRoqOjUbRoUXHu22+/xY0bN/Dhhx+iYMGCKFGiBACgWLFiAICuXbvi8uXLmvl6eXlBp9MJCw4OztoLYRiGYRiGcSAOF3UNGjSAt7c3AODgwYPw8PAQ5/Lnz4+VK1fi8OHDAIB27dohPj4eBoMBAODr64tKlSpp5uvq6orChQsrjGEYhmEYxllxuKirU6cOSpQoAU9PT9y8eRNdunRBv379AACXL19Gs2bN8MEHH8DT0xPlypVDQEAA6tWrhyZNmmDfvn0YMmSITeUUKlQIOp0OhQoVysrLYRiGYRiGcQguRESOdoJhGIZhGIbJHA5fqWMYhmEYhmEyD4s6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLCoYxiGYRiGcQJY1DEMwzAMwzgBLOoYhmEYhmGcABZ1DMMwDMMwTgCLOoZhGIZhGCeARR3DMAzDMIwTwKKOYRiGYRjGCWBRxzAMwzAM4wSwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnIAcKeqCgoJQvHhxNGvWDM2aNUNYWJjVNESEmJgYEFE2eMgwDMMwDJO95Ha0AxmladOm2Lp1q83xY2Nj4ebmBp1Oh8KFC2ehZwzDMAzDMNlPjlypA4CTJ0/C09MTo0eP1lx90+v1iImJURjDMAzjeGJjY7Fp0yZHu8EwTkeOFHXu7u4IDAyEr68vQkNDsWPHDlWcKVOmwM3NTVjp0qUd4CnDMAxjypAhQ9C9e3dERkY62hWGcSpypKhzdXVFgQIF4OLigi5duuDy5cuqOF5eXtDpdMKCg4Oz31GGYRhGRUREBADAYDA42BOGcS5ypKiLjY0Vn319fVGpUiVVHFdXVxQuXFhhDMO8HDx79gwuLi7Yv3+/o11h/iU1NRWXLl1ytBt2hYiwd+9e/gJeBjh58iSCgoIc7YbTkSNF3YkTJ1C3bl14enriyZMn6Nmzp6NdYhizrF69GvHx8Y5246XiwYMHAIDDhw872BNGYvz48Xj33XfFKh2AHC+G9u3bh/bt2/P7gRmgcePGqFy5sqPdcDpypKhr06YNLly4AD8/P6xevRq5c+fYL/Fa5MiRI1i8eLGj3cgSUlNTMX78eCQmJjraFZuJjo7GW2+9la7Z5f379/HVV19h9OjRIuzChQtZIvL27t2LQ4cOqcJf5tUEFxeXbCnHaDQiPDxcHMfHx+fYgV6n0+HkyZN2z/fmzZsA0r7ElhMgImzdutXiFrH0TqBcqDK2k5qa6mgX0k1cXByMRqNd8goODrb7WJAjRd3Lwocffoh+/fqlO92xY8cQEhKSBR4pmT17Nm7fvp2htPv27cNvv/2GBQsW2NmrrMPf3x8BAQFYs2aNzWmkAUyn04mw9957D19//bXd/Wvfvj1atWqlCt+zZw/at2+Pbdu2ZSr/qKgonD17NlN5yDEajXj69Knd8rMXUVFRmD17drpEcMGCBVG8eHEkJycDAEaNGoXu3bvjyZMn6S6fiLB8+XKHDXjdunVD48aN7Z6vVJ+5cv037GSF6N69ezeGDx+e6XyOHz+Orl27YsmSJVbj2tpW0iP+IiMj7f5Fkvj4eLi4uGDVqlV2zfdFYtu2bUhISMiy/AsVKoRx48aZPd+rVy+8+uqrNuVVpkwZtGnTxl6uAWBRp4mnpye+/PJLR7uRYVq0aIEPPvggy8sZNmyYSkRERkaKrS8grdMeM2aMKq00YNnrRektW7agVq1airCUlBQMGDDALh2j0WjEtGnTAGgPRAkJCbhz544qXOrsTdNkVAxnBGkFKSoqKlP5fPzxx6hfv749XAIA/PrrryhZsmSWrNxkZlVyxIgRGDZsWLq+XCWtOKekpAD4r87nz5+P7t27p6t8b29vfPPNN1i0aFG60kls374dnTt3thovKSlJUzjevXs3Q+VaQ1rdkIu6rKBjx46YNWtWpvOJi4sDAIv9R3pE6dGjR/H666/jwoULNsUvVqwYihUrZnP+tiD9tNeuXbvsmm9WER4eLlay7t+/b/W5fvjwIT799FMUKFAgS/3au3ev2XPr169P14TMz88PAHDmzBmEhoZm2jcWdRqcOHEiXasxGSUiIgKzZ88Wx8HBwXBxcVGIIlu4fv26Shw9fPjQHi5aRV7usWPHULNmTVSoUAERERGoWrUqAOCvv/6ye7nR0dGK42HDhuHq1auKMF9fXyxcuNCmDp6I4OLigqVLl4oweWd+7Ngx+Pr6AoBYrXJxccGQIUMAAM2bNxfXq4Vp5+/i4gKj0YjTp09b9S2z2GswvXXrlj3cEUidWUZWpPz9/fHjjz+mKw0R4dGjR1bjSQJt8uTJ6fZLGnSkv5MnT1Ztwx47dgw3btwwm4e0yiCJColRo0bhhx9+sOpD9+7dNX/myZR8+fKhU6dOAIDPP/8cNWvWVPieUXQ6Ha5fv64K15rgpLeslJQU7N69W/PcvHnz0KdPn3TlZwlzvmlNQmy5jmvXrgEAAgMDFeEtWrRAjx49MuBh+rEkQq9evYoVK1aI45CQELvs+Ny8eRNHjx7NUNrixYujTp06CA4ORsWKFbFgwQLMmTNHrIgDaeNop06dEBcXh6SkJIv5ERGuXLkijq3Fz04aNGiAJk2aqMIfPHiA+/fv25wPi7p0YjQasXv3bvj7+1t9kP39/fHkyROEhYXhl19+UcUfMmQIhg0bhmfPngGAaPjp+cZeeHg4atasiV9//VW1QpYdSOVcvXoVLVq0ENtpu3btEitXlurp6dOncHFxMbs6sHjxYri4uCi2K3fu3IkiRYrg559/FmGSYImKisrQgyr5KHVqBw4cQLFixeDt7Y1x48YpOpE9e/aIz3PmzAERKbYlr169Ch8fH0W+WqJu8eLFaNiwoUqM2oot/x5P7oNUR0+ePMG9e/dU8QoUKGDXQdGUwMBAIVSuXLmCY8eOAQA6deqElStXAkh7vsy1lytXruD58+cAgI8++ggzZswQW8pHjx7F8uXLVWkiIyPFf56ZPHkyypYta1XYSfdq0aJFYuXNVgICArBu3TpNobpkyRLExMSgRYsWePvtt83mYe76//jjD8yfPx8AsGPHDtW7ndeuXUNAQEC6Vr/37t2L5ORkrFu3TggxqXzTFao7d+7g/v37ijoxFZ4A0LZtWyEQr1y5IgYkaXKRmb5pxowZ6NixoxBIcgYOHKgQJdK1PH78OMPlmeLn54e8efNi0aJFmDRpksVruXXrlmb9mN7fY8eOYePGjVbLJiLs2LFD871Ze1CrVi3x/MfExMDd3R3u7u5wcXHBmTNnMpxvjRo1LO4czZ8/HzNnzoRerxercseOHRMT94CAALHy/ccff2DIkCGK13aWL1+OnTt3okuXLqq6PXjwIA4cOKCIW7t2bVy7dg1PnjxBvnz5sH37dpuu48KFC6KPMb3viYmJms98WFiYTe1Peqa0dnsqVKiAihUr2uQjAIBeEnQ6HQEgnU5nNS4AklfNgQMHaPPmzUREtGrVKnF+06ZNZvMICQkhAFS8eHH66quvCABdvnyZunTpQjdu3KACBQpQ7dq1CQA9efJEkfe8efM0/SAi2rt3LyUnJ1NKSgoREQUFBYl4UlwAVLhwYU2/9Ho9/fHHH6IeduzYQf7+/qp4DRs2pBkzZlBYWJjVenr27Bn5+fkp/Fi6dKn4nC9fPlXabdu2EQB67733CADNmjWLVqxYQTNmzCAiojVr1tDFixdV10ZE9NNPP4mwmTNnEhFR6dKlFXFHjx5Nhw8fJgA0ZswYIiIyGAw0duxYioiIUPhy9OhRioyMJADUsGFDIiL67LPPFPmtW7dOcTx58mTx2WAwiM8RERHic0BAAF27do0A0DfffENEREajkQBQrVq16McffyQAdPz4cbN1bI7t27cTALpz5w5FRkYq7ocpCxcuJAC0cuVKVbwtW7ZQTEyMxfQSr732muL8o0ePKDk52SZ/nz9/TgCoWbNmRERUrVo1RX3K22779u018wBAb775JhERFSxYUJUOAJ0+fZqMRqOqPcrjnD9/nojSniXpvsjp0aOHIu3OnTvp2rVrtGvXLgIg6lt6BuV5m7Nbt24RAOrbt68Iu3r1quZ1Ss/GtGnTVNcvv5Y8efIQALpy5QrFxcVp1icR0S+//ELLly/XrE/pWZGnKVWqlDi+efOmKn6dOnWIiOj8+fMEQNV/5M2bV1XnREQfffQRAaBx48ZRhw4dCACFhoaKdJs3b6YbN27QnDlzqFOnTpp1M2TIEM0yU1NTVdd//fp1Gjp0KAFQ9GPx8fE0evRoio6OptjYWM1yiIj27NlDAOj3338XYX/88Yfm/Z0zZ46IExcXR+PHjycA1LJlSxH+119/EQDasGGDCJP6Ha3nzjR87dq1IuzBgweq+Ddv3hTtwZSPPvqIOnbsSM+ePSMA9MknnxAR0eDBgwkA/f333yLvr7/+WnV9EyZMMFtPppj2CdauT7LKlSur2o38mQUg2ubUqVNFPtOnT1c8U1rPvMTPP/9MAOjIkSN0+vRpAkCDBw+26brk/pQsWVJxnfJ7LS/zlVdeEZ8fPnxIqampFuvAWj1ZGo9FfJuuxgmwRdSFh4fTyZMnRQVeunRJVdl//vmnOP7zzz/Jz8+P3n//fRo6dCjp9XoiIvHgSPb5558TANH4ihYtqurwicyLuvj4eCJKE5cAqEiRIgSkiYmHDx+qfJQ+GwwGIkobpBo3bkwDBgyg33//3WKjl5DCK1SoIMKkwcxgMNDcuXNFnPLly6sG0SVLlojPefPmVeR9//594UedOnVUA8vy5cstNnZ52DvvvKMKk+zIkSME/CfqLl++rOi4/P396f79+wSAOnbsqFkvkpmKOrmdOnVKfG7UqJHi3JtvvkkAqF69etSqVStKTk4mAFS7dm0h6iQhq0VSUhLFxMRQVFQUeXt7i/AaNWoQABowYAABoC1btogynzx5QgBo8eLF9ODBA/ryyy9FXR0/flzEkwaUr776ymxbCAsLo8jISJo0aRLlz59fdR8GDBhg1net9iSZXDhIJhcmgYGBRET0/vvv09KlS1X+FShQwOz9mjt3Lh07dkwRJk2sANC5c+cUz6gp0mTLnA0dOpQ2b95MAOjhw4dm25+WSfdNXnZAQABduHCB7t27R0RE06ZNIwD0yy+/CJ8SExPNXm/BggUpPDzc6vMiZ+zYsZp1Q0RUsmRJcezu7k6bNm0SPklmMBho5cqVBKT1g3IkUWfq84cffkgAqFixYuK5+PHHH2nSpEkUEBCg8t9oNNLTp08VeUsi7bXXXiOitEnSTz/9RJMmTbJY78uWLRN5zJw5U3UtCQkJFBQUpChLEnWTJk0ym1ayv/76i4jS+vDOnTuL8CJFitDp06epaNGiNHXqVALSRF1YWBjduXNHMRmVOHv2LG3dulUVblr2e++9R61btxbnpfuxcOFCMkVKI/WJHTt2FBNMW+yXX36h999/n0aPHi3yjIyMVIkMaTL/wQcfUL169RRllytXju7fv6/yydRu3LihCjt79qzieOzYsWKSOmPGDBHetWtXxXNuWodeXl4i7NChQwSABg0aJM5369aNfHx8VPWn5e8XX3xBRESLFi0SYbdv3xafpfYDgBISEghIm9BYyhMA9evXj54+fSrao/zc4sWLNX1T5Gk1hpNgi6irV6+eogLlAz2QNhvLly+fOJYLPAC0fft2SkxMpOvXryvCpQFMPqMw1yEAabOmBw8eiPM6nY6uXLmiSnfnzh169OiRImzChAnic+vWrRUNGwCNHDlSfI6OjhafT5w4QQBo/vz5RKRsSGfPnhWi7cyZM7R3716VL6aiztXVVXEsRx5eq1YtAqBaHdEyrfRvvfWWuLem9vrrryvSmq78mTP5rFUy+SzZ1JYtW2ZTvgDE4Fu8eHFF+LVr18T1LV68mD766CMiIqpfvz4BoI8//lhchyTkzNmUKVNs8iU0NJSAtEmGfAAuUaIEJSUlme309Xo93blzh4D/RLV0XT4+PuTn5ydWn7XumTmTTxSktia/f/LPclEXGxuryqtKlSpmyzl37pxi8maKrfdSsrt379ocV5q5a10XkCYgKlSoQMB/K5am+Wvdl6ZNm6rCtK5n7ty5qrDGjRsr0ri5uYlj03Yq2YABAxS7FvPmzaMbN24Q0X+iTloJAdIGtRYtWpitlw0bNqjCpJWtZ8+e0YULF2j9+vU0bNgwcV4SY7bU+8cffyzqQy4CJJNEppyMiDrTcGl1G4BYFTMdZyzdL8kePnyo6bc8XatWrQhQizqtVdzM2O3btxV+SosOWr7LJ5EAaOLEiVS8eHF655130lWmvC3J7fHjx4p6efvtt8Xn1q1bq+pIvnggTdQLFSokVj6BtEUKIqJBgwbRkiVLKDg4WHPseO2118QKvDWTxHTp0qXFGJuUlGQ1XXx8vOJYS7CbwqJOhrwzA9TCxNRmzZqlOC5WrBgBMLtEb03USeLv77//ppYtW4rzWh0eABo4cKBKYLm4uFj0+fvvv9cMlz9k8q1FyTw9PQkArVixQjGLlGzfvn0Wyz137hwREXXq1CldD7Opmc7YbLVx48bZHFdaPbSl3gC1+Ldk0taaqR0/flwhyAHlgC9NJtIzu06PycU+AAoKClJNWiSTtv0k8/Ly0rwvT58+pVq1agnxKDetdjpv3jyz/snzMO3oMmuNGjWiHTt2EBFpCsSstE2bNlk8r9UWbbW5c+eK1TFz7crUrK14WbPk5GQh6kwH9IyavA6GDx+u8NVWUde2bVsiShM4X3zxhdl4RCTK2L17NwFpQkTCnKibM2eOZj8tF3XS1rE5S0xMpG7dummeq1y5stjSNbW7d+9qTiyWLFlCRGmr7fa4D5JJOy/S8WeffUb/+9//hGjNCpPvhsjts88+o+rVq1tNLyEXdabjt/S6jrQ7lVXXAqRNjG0ZNypVqqQ4XrBggVWtw6JOhr1umHz5XW6mWxiSzZ4922L50vaZqVkSGuk1020hczZw4EDFVh9b1pk926Q1M9fGstOsDXqSFS5cOEvKP3fuHH3wwQcOr4estqxsV927d1eJfntaw4YNFcdaEwYtK1GiBFWtWpUA5Qq+qWmtgo8dO5Y2bdqk2hWRm7SqaMmstW/5u8L2MmkHxt6Wnt0Je1iZMmUylX7Hjh3022+/WRT0OcH+/vtvq1qHRd2/OPJGzZo1y+E+pMdMt8nYssakF5/Z2OxpUVFRDvfBXia9R5YdpvXlnvSYrZOWnGDybU627DNbRB3/pMkLwN69e7PtJ0jswaBBgxztwktB9erVHe0C44QUKVLE0S7YjT/++CPbysrs7zSeOnXKTp44Hq3fIWSyHlt0Aos6IN0/9mtvjhw54tDyGYZhciI5SVzY81/sMYw5XP7d9nN6YmJi4ObmBp1Oh8KFCyvOVa1aVfNH/xiGYRiGYV4UrEk2XqkDEBsb62gXGIZhGIZhMkW2irrExEScOHECN2/eVJ1LSkrC6tWrs9MdQXr/FRDDMAzDMMyLRraJurt376JatWpo0qQJatasiWbNmon/eQqk/RNo+f/3zE5Mt2MZhmEYhmFyGtkm6n766SfUrFkToaGhuHPnDgoXLgwPDw+r/1zbHCNHjoSnpyd69eql+GfrGaF9+/aZSs8wDMMwDONosk3U+fv7Y/LkyXj99ddRqVIl7N69G23atIGnpyfu37+frrwuXbqEkJAQ+Pn5oXr16ti6dWumfMuVi18tZBiGYRgmZ5NtaiYxMRG5c+dWhM2bNw8dOnRA06ZNcffuXZvzOnXqFFq1agUAaN26Nfz9/VVx9Ho9YmJiFGaOnPQbcQzDMAzDvHzkz5/fapxsE3VVq1bF+fPnVeFz585Fx44d0aFDB5vzio6OFu/Bubm5ITIyUhVnypQpcHNzE1a6dGmz+fFKHcMwDMMwLzK2/CB9tqmZTp06YcOGDZrn/v77b/To0cPq769IFClSRKy8RUdHo2jRoqo4Xl5e0Ol0woKDg83mx6KOYRiGYZgXmYiICKtxsk3NeHl5Yd++fWbPz58/H0aj0aa8GjRoAG9vbwDAwYMH4eHhoYrj6uqKwoULK8wcefLksalcxj5YWjVlGIZhGEaNLf/9KkcuUdWpUwclSpSAp6cnbt68iS5dumQqv8GDB9vJM8YW8ubN62gXmBeYIUOGONoFhmFyOK+88kqW5T116lS75VWoUCGb4xYvXtx6JHpJ0Ol0BIB0Op3qXHx8PAFwWluzZk2W5V2yZEnxuUqVKvTRRx/Rzz//bDHN0qVLHV4nttjo0aMd7oMzWKFChdIV/+LFiw73OadY//797ZbX/fv3HX49L6r169cvQ+maN2/ucN+1bMeOHQ73Iatt586dWZZ3bGys3fJ69OiRzXHPnj1rVeuwqCMig8EgKo2IzFaoXq/P0E1LSkoSnxs0aGBzugULFtAvv/xCV65coUuXLmW40fj5+dkU74033khXvq1ataIxY8aI461bt4o6tZTu8uXLWfawTZ48WXy2RTwGBQXR66+/Lo5/+OEHzbyc0WrUqJGp9HPmzLEp3p9//mn23NSpUxXH7u7uZDQa7X6tQ4cOtUs+JUqUyNJJkiVzcXFRHB85csTqs5YeM81r/vz5qjgeHh4UEBCQJddXpEgRVVm2ph0xYgRt2LCB3n///XSV2aNHD6txpDFDHnby5EnauHGjqq3WqVNHcbx8+fJ014O/vz9t27bNLnX6zz//aIbLxzx5n2dqn376KQGg1q1bZ9oXHx8fs/lrWffu3alKlSqqcFvbvFy4VqhQwWLcL774gsaPH2/ztdgyzqUnr6dPn1qNFxwcbJPWYVH3L7Y0GEvn5DflwoULigYlTyd/mMxZ5cqVNf0cO3ZshhpNZGSkTfFKly5tNU61atUIANWsWVP4FR8fTz/99BMlJyeLsH379pnN49atW2bPFS9e3Oy5unXr0sSJExUizNI9WrZsmU0PlLyz2bBhAwGgKVOm0O+//57pBzY9It7URowYkaF01atXtymeuQ4/b968BIBq165tMX1iYqLiWEsEbN68WfXcLFy4UHzW6/UUHBwsjo8dO2bxOcuonTp1yqZ4AwYMoN27d4tnoWHDhorzJUuWJCKismXLms3DUvvMjG3fvl189vb2VvVdAKhixYoUFBSkSmvaDkuUKKGKY5rX2bNnFcfvvvsu+fj4mO3Drl+/Trly5VK1I7n99ddfqrBGjRpR48aNqWrVqorwkJAQVdxx48YpJpJAmliQsLaCYnqNclGXkpJCq1ev1kxjms7f31+Ey+syNDRUEU/etrWsYMGCKmGjNS7JTa/XW5xwNm3a1Oz1SiYXoyNHjqSIiAgCQJ07dxbhY8eOpcDAQAJAbdq0sdo+W7RooZikySchiYmJRKQWL+b8u3Llitk6ICKLE0XJdu3aJT6/9dZbVtuFr6+v1TwB0OzZsy3eH1OzNq5K9OzZ02yc8PBwlR4wB4u6f7HWyPr3709EpOho5J2saR6mx4cPHyYfHx+rqxCWyOiSb3R0tCrs9OnTmo0vLi6OduzYQUajkVq2bEkAaM+ePSJOQkICAWkdvDXCw8M1l8Bv376tOK5Xr574LBd1GzdupJiYGJo4cSItXrxY5HvgwAFFfcm3jYiIVq1aRUuWLLFZ1B0/fpyANNHo7e1NQJq4MxUC8g7ryJEjinPVq1cXM175NbRr105VptaWzKBBg4iI6PfffxeD1siRI9N1n1evXk137tzRbMO5c+emR48ekcFgoIiICDpx4oSqnUoWGhpK9+/fJ6PRSIsWLVKdnzdvHoWGhqrSHj9+XHRgM2bMIAC0ZcsWVTz5So+pD5Koc3NzIyBtC8WWbRT5YFSxYkXxWdr6PX36NLm6uqrSTZw4UXzetWuX8Ee6jvr16yvilypVioiIEhMTKS4ujhYvXqw436pVK8VgklHTui8pKSmaz5lceMonVvK0GzduVF1HeHi4YpA1TWMq6syVKT9fuXJli9cQExMjPn/11Vd08eJFkac5UffRRx9Rrly5aN68eSLupk2byM/PT7M+vvrqK4v1OmPGDGrVqhUBoF69einOHTp0SDON6bVcvnxZhIeHh6viDhs2jD799FNFuqtXr6quUWL//v0EpPUNcsxdw/Tp08WxaV8uT2cpD0mAyutR6v+kONKCQJs2bTRFtmRvvvkmxcXFKZ7VsLAwzbbTqFEjTf++//57zfhLlixR+b5lyxarz9DDhw8JSBPg8nZprj6k+J6enlbjmrs/RYsWVb1uQmRZMEoYjUY6f/68mBzLJ+fpgUXdv8grz3Q2ERMToxn3zJkzojGa5kFENGfOHJozZ45mWWXKlKEuXbooytm9e7fV65DiPnr0iO7du0ezZ8+moKAg2rVrF9WsWZMA0GeffabyX6shAWnbXXKf5EiiTqo7eTpJhFhDS8Tevn1b0RFKQhFQCqIdO3Zo5ilfYTKtFznyrY/BgwfTwYMHNetB2p4ePnw4GY1G8vb2JqPRKPK5fPkyrVq1SlWOPJ8GDRqIevr6668JAHXp0kWxtSENJKazeQAUGBgoypM66fHjxytWyySho2VSGzStDyBN7EVGRpq9R9u2baMmTZpo1mFycrKqLLnAjouLoyFDhhCQtmIiiSFp0DEVdfJ7I19hkc5HRUUREdHgwYPFM2Z6PYB6VfDBgwc0bNgwio6OVszif/nlFwJAN2/eJCJSrWLJB4zbt28Lf8yJOtNnxHQrUkIaILTs3XffNXtOns/z58/pyZMnwgeDwaB5/x4/fkzNmzenoKAgzTZw6NAhlagrW7asKh4RiR2GXr16kV6vp7p16xIA6tq1qyJvKdzUZ2mwrVOnDhERDRw4kIYPH06XLl1SrdpK90RCEjxnz56lo0ePChHRvn17s4JWC/lKsNwKFiwo4hiNRho9ejQ9f/5c4b98FfKtt96ivHnzqupp7ty5qjK1nh2JGTNm0BdffEFERDNnztRsL+bIkyePZj1LbXzbtm2K8qWxSquf6tixIwGg3r17my1P/rwTkXjlaPPmzRZFXaNGjUS9apUtRz7uyeP4+/vTjz/+qJhcSZQvX16RZuvWrRafn7i4OEX6Dz/80OrzRkRiRXHTpk2qOLt376anT58q8u3bt68izqeffkpvv/22Zt7ysH79+tH06dPJy8vL7L0gIjpz5oxme7MEi7p/sXQD4uPjFXHz589PAOjEiRMEgIYNG0ZERAUKFLDpQX38+DGlpKTQgwcP0vWAa/kpZ8WKFQQoVx+kB12rEQNpS/XSZ3lHT/SfqJOv9BERPXr0SLEiYA3T1QxpNUl6X0J+XfIBWevhJiLFyqGlepFEXc+ePcloNIovxEjv7owaNYqI0u4HkLYiaQ2tzggAvf/++0RElJKSIgaKkydPKkSd9MULuYiVtqvu378vyjAajTRnzhxKSEgQoo6IxDsfGzdupEePHpGfn59ogwMHDtT001Kbt3RtckzftTx8+LDi/E8//USAUtRFRkZSr169xLNjrY3Pnj2bPvjgA3EcFhZGAwYMEIP5mTNnaP/+/VSmTBmVOPD19VXkJb3zduDAAUpNTVX527ZtW5F2//79YjXy+fPnIk6pUqXEfZVfu+kzYqnupDwuXLhA165dM9t2LA0yRCRWIeUTDVuQ5yVvc6btpXXr1tS3b19xnJKSIgSktH3YpUsXRd4rV6606LMldDodbd++XRUuiToJSUR06NDB5ryJ/lt5NzU3NzfN+H379hWTW6K0emvTpg2lpqYqxKSUz8OHD1V52FoH6RV1Wq/OEKW98vLzzz+Lfrhu3bpUtWpVTX969+5NAOjo0aOUmppqtR2Z881U1En5AmnvP0rodDrRn+3fv18lSqKiomjixIl07tw5UZ60qmmOmJgYMaklItU75qtWraLDhw9Thw4dNH2PjIzUfCXItM3Jkb4ckydPHjp16pRZ36RJLZA2+fHy8hLH8oWaMWPGiPFg+PDhFq83M7Co+xdzIkFr9Sw0NJSCgoIoJSWF+vfvL7aiAgMDbRIGEvJVA2lbxxpjx46lKlWqWIwjX0IH0kTd8+fPKTQ0lCIiIsSqzcmTJ8VnANSpUydFPtLKUnR0NPn4+NCMGTNsvjY50hcjpJeIJVEXEhIitgHl9S8NGCdPntTM7+TJk6r71alTJ9XDGRYWRrVr11YM1oGBgfT06VOqW7eu4j2F1NRUm65FXu7Ro0fF7LdevXqa8eVbCikpKWJFThpYpfco5KJOjrTlS0Q0btw4IUQkJLEwduxYRbrcuXOne7Ddt28fLVq0SBUeFBREQ4cOJaPRSAEBAarzclHXp08fzTLT64stPHr0iO7evasKNxqNtHfvXrODl/R+kPRemtFopLCwMEUcSZCZftmmXLlymnnOmzdP8UUheR4SACh//vzis6kVKVKE/P39hWiViI6OVtxzWzGtc2kAi4qKsrm9x8XFEQBav3692fwl4ZtZNm7cSEWLFhXH8pW69PLs2TPhn7Vn1BSdTkd6vV4VLuX36NEjs+esMXv27HQL4UuXLtGsWbPo7NmzitVkS8jzf/ToETVt2lS1emVLWjlaIluKKy0OZIR79+6JFTJLVKpUSeGX6SqrLUh5SBYdHa0p0onSXuMBoFqdM2XKlCkiv27dulFycjK1bt1ajHNyjEYjzZ8/3+Z7kRFY1P2LOVGXlRiNRho7diyFhITYPe/IyEj6559/KF++fDZtXdy4cUPV0OQrdfbg22+/JQCaA/Gbb75Jrq6uRJRWL6arL6bs379fsS1uNBrTvZKREUzbhbTd8N5772nGl//khBy9Xk8Gg4H8/f2pYMGCZjs1+XVJYtZ0UFm7dq0qvemWeVYSFhZGffr0Ib1eT8nJyQoRLTFhwoQMCZOsQFrBTUpKMhtHmlFLSO9X/vjjjzaXYyrqIiMjRf8THx9PvXr1okaNGtHjx4/pm2++odOnT2fgaswzbtw4mjJlijh++PChpjjLKLt27aLt27dTVFSU4t04e5EZUUf0X38jCbxPPvkkU/5IOyBaL63b+qzFx8fTqFGjsvzZzEz+QNoXaUxJSUmhxo0b06VLl0RYcHAwDR06VFPo2htTUUeU/us0FXWWMBqNFBERYTXPlJQU2rFjB/Xs2ZPu3btnsy9ZBYu6fzG9yZ999hl17949u9x7IbG3qIuIiKBJkyZpii+9Xm9xkH1R0OoMXn/9ddq5c6dmfEnUtWnTJjvcU5Bdos4ZSU1NVfUVSUlJZt9r0+Kff/5RbCkz6SOj268SBoOB9Hq9eEfadCcivaSmptKtW7c0z3l7e9PVq1dtzutFFnXnzp2zujrlCMyJOnPb6lqYfnPaGXEhIsJLQExMDNzc3KDT6TT/ZZiLiwsA4CWpDpsYN24cJk6ciISEBOTLl8/R7rwQPHz4EJGRkahTp45N8fv3749FixbhwoULePfdd7PYOyWff/451q1bx22ayZE8f/4cJUqUQIcOHbBr164M56PX61GoUCEcOHAALVq0sKOHGadx48aIiorCjRs3siR/ZxzPKleujMDAQMU1bd++HbVq1ULFihVtyoOIkJqaKv41qDPVj0RuRzvwolCzZk00btzY0W68UIwfPx7ffvstCzoZZcuWRdmyZW2OL3UauXJl/3/kW716NZYvX57t5TKMPShatChKliyJUaNGZSofV1dXJCcn28kr+3DixAlHu5DjKFCggCqsc+fO6crDxcUFr776Kl577bV0p80psKj7l6tXrzrahReOV155BWXKlHG0GzmaUaNG4fbt26hWrVq2l50rVy4xI2WYnMarr76Kx48fO9qNHMmXX36JkiVLOtoNu7J7924cOnTILnlFRUXZJZ8XEd5+ZRiGYRiGcQKyf0+IYRiGYRiGsTsvzUodESE2NhaFChUSL5EyDMMwDMM4Cy+NqGMYhmEYhnFmePuVYRiGYRjGCWBRxzAMwzAM4wSwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnAAWdQzDMAzDME4AizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJeGlEHREhJiYGRORoVxiGYRiGYezOSyPqYmNj4ebmhtjYWEe7wjAMY5HIyEikpqY62g2GYXIYL42oYxiGySkUK1YMffv2dbQbDMPkMHKkqAsKCkLx4sXRrFkzNGvWDGFhYY52iWGchkePHiE+Pt7Rbrz07N+/39EuMAyTw8iRog4AmjZtCh8fH/j4+KB48eKOdodhnIayZcuiXbt2jnbjpYff/2XkEBG8vb2zrV3odDrodLpsKYuxHzlW1J08eRKenp4YPXq0ZiPX6/WIiYlRGGMboaGhuHv3rqPdYDKIv78/3njjDSQnJ9sU32AwICQkRBHm4+OTBZ45N/v27YOHh4ej3WDSQWpqKhISErIkb51OhwcPHtgtv40bN+Kjjz6Ct7e3xXhJSUmoUaMGrl27lqnyXnvtNbz22muZyoPJfnKkqHN3d0dgYCB8fX0RGhqKHTt2qOJMmTIFbm5uwkqXLu0ATy1z/fp1uLi44NGjR452RUHVqlVRpUoVR7vBZJCZM2ciNDQU4eHhNsWfMGEC3N3dYTAYstgzbZKTk2E0Gh1Sdnq5ffu22QniwIED4e/vn80e2UZQUBDc3d3h4+ODvXv3mo3Xtm1bDBw40OZ8jx07huLFi+fYL3V0794dBQoUUIV7e3vDxcUFLi4uOHfuXIbybtSoESpUqJBZFwWhoaEA0r5EY4l79+7h5s2bmD17ttk4t27dwuPHj+3mmz2pV68eVq5c6Wg3ciw5UtS5urqiQIECcHFxQZcuXXD58mVVHC8vL7F8rNPpEBwcnP2OWkF6Z+bs2bMO9kRJVFSUo11gshFfX18AyBZhZTQakZiYqAhzdXXFK6+8gnv37tmtnGfPnsHFxQXr1q1DYGCg6rz080bp3cqqVq2a2a3pzG6LXbhwQdwLaxgMBmzatMnmMjdv3oyQkBA0b94c7du3Nxtv//79mDdvnk15AsD06dMRHh6eI35VQKtf27Ztm2bcdevWic+HDx/WjJOamoqUlBRF2IEDB4TounnzJgDAxcUFf/75Z4Z8zgi2tInq1au/kAsdAHD+/Hn079/fbvnFx8fj4MGDANLeF/b09LT4zvDWrVtz7CQFyKGiTt6B+Pr6olKlSqo4rq6uKFy4sMLszc6dO/HLL79g2LBhmj5Yw8XFxea4ISEhL/Q7Nj///DOWLVvmaDcUREREwMXFBdevX8+yMohIdN7ZyZMnT/DRRx8hIiJCdU5qV/ZoL0lJSXZdSZ4wYQLy58+vea5Fixaa4deuXbModuLj49GmTRs8f/5chEnbXp9//jkqV66siH/27Fm4ubnh66+/Rq5cuRTb1ESExYsX49ixYwDSBhhTEXr+/HlNPyRRLOV348YNhU/WeO+999C0aVOb4i5YsADdu3fH8ePHbYpvT8EeEhKCX3/91Wz7Onv2LG7dumW38mxBa7Ig5+rVqyhatKhZgWaKLX1z/fr1kSdPHkVYmzZt0K1bN1Xc1atXo0iRIvj1119tKt8emLsGvV6fbT7YQo0aNVCyZElFmD19/OGHH9C6dWskJCRgwYIFOHHiBM6cOaMZ9/z58+jatStmzZplt/Il5s+fb1VIE5F4VpOSkjB8+PB0vx6QI0XdiRMnULduXXh6euLJkyfo2bOnXfO/ceMG7t+/D6PRiLFjx4qZ18OHD8USOAB06tQJkyZNwuzZs+22yhAfH4+kpCRF2OPHj+Hu7o7ly5cDAJYtW6Z6B0rOsmXLcOTIEaSkpNitM1+5ciXWrFlj9vy0adPw7bffWsxj7Nixio7m4cOHYhVlz549aN26NZ48eWIXfwHg0qVLAIBNmzbZLU9Tli9fjho1aqRrEFu8eDF+//13AEBCQoIQZhERETa/y7hp0yZ4e3tjwoQJImzs2LHimjOC1iD9+eefo2zZsunOKzk5Gc+ePVOFb9++3Wwac53XO++8g6ZNmyIuLg67d+9WnT969CgOHDiApUuX2uSbJPJXrVoFAIrn7eDBg+jXrx9atGiBkJAQ1KtXD4MGDVKkT0xM1LxPUv25urrCx8cHb7/9NmrWrIno6GirW2ZaWBKEFy5cAADFioPBYEDz5s1VbWDs2LHw8vJShEVERCAkJAQuLi5YsWKFRT9SUlIUbeP777/HhAkT4OXlhQMHDiji7t27F/Xr10f16tUBANHR0ahVq5bNOyWbNm3K0Mv5AwYMMDtZAICAgAAAwOXLl2E0GnH06NF0TapNSU1NxcWLFwEAuXLlwv3798W5p0+faqaJjo5WPK9aXL58GW+++aZd3vNbtmyZaiUxLi4OefPmzXTeEtHR0Rg7dqzmOHPnzh2b2v3NmzfN1pk8TkbHsocPH4rP1u659DxpTZbN8fz5c8W4FRAQICaFckaNGmV1y7tv37545ZVXMGPGDGzatAmzZs0S/ZTN0EuCTqcjAKTT6azGBUAA6Ny5cwSA+vbtS2PGjBHho0aNIr1eL44lSy9Sui1bthARUWRkJAEgV1dXRTx/f38CQP369RPpmjVrZjVfAFSjRg168OABERE9f/6cFi9erIi7atUqOnTokGZ6rbCgoCCrZf7555+acfLmzavIV16O9LlHjx5mr8sSR48epfDwcEXYwYMHCQB99913GcqTiGjixIn02muv0aVLl+jHH3+kmJgYxXnJ7+PHj9ucp5Tmzp07ijooVaqUze3o3XffVd0nAFSyZEnq0qULAaBBgwbRhAkTrObVpEkTAkClS5empKQkRb6vv/46AaBHjx7R/PnzreZ19epVatSoEfXo0UPzWmrUqGG2bQEQZUj37smTJ+Jcnz59CAB16NCBiIhCQ0Pp6tWrNGDAAAJAEydOFHmePHlSka/RaCSj0Ujr1q2jRYsWKc7J+4StW7eK8KtXrxIAql+/Prm4uNCOHTsU6VJSUhTXId0/APTLL7+Izy4uLmbv67FjxwgA3b9/X8Q/fPiw1T5FOt+5c2cCQElJSRQeHk4A6OOPPzZbv1r24YcfEhGRwWBQlWs0GgkATZ06VYR16NBBlUdERAQREY0ePVqRx88//0wA6PPPP6fly5cTAIqOjta8JqmP7tmzJx0+fNhsPFOioqIof/78FutLuq/Tp0+nwYMHq/zfvXs3lS9fnlavXk1ERF999ZU4N2XKFCIi2rdvHwUFBdGVK1dU6QcPHky3bt0iAFStWjVVvRcoUMCmceK7774jAHTlyhXVudmzZxMAWr9+vcU8rl27Jsoy7a+ePn2q8OvRo0eiLyIiOnPmDK1du5ZGjRol4qSmppota9iwYQSAzpw5ozoHgKpUqaIKT0xMpICAAEU8rXEhJSWFANDcuXMJAM2aNcvidRMR3b59mwwGgyJM6t8SEhLIy8uLANCRI0c00/v4+Gj2C2XLlqWFCxeK48OHD1OZMmU0nxlz91k+PpprB/J7s2LFCgJACxYsICKilJQUMhqNVuuARd2/hIWF0YgRI2jjxo2qB/bNN99UhW3atEkVJufBgwcUExNDRqORpk+frlmulG7cuHG0e/duWrlypQh7+PChuIFdu3YlIE2gSZ3se++9RxEREdS5c2eKi4vTzNfUt48//pgAUGJiIo0bN051ftOmTZScnKx5PfK4O3bsMHstAKh8+fK0ZMkSio2NVcTJly+fZuOXW69evRRpZs2aRXv37tW8Z6ble3h4iOPt27cr8pWErZwLFy7QiRMnyGg00t69exUPzJMnTyg2Nlbl36+//mr2ug8dOkQGg4GeP39ON2/eJKK0dmf6IErx5T6eOnVKfL527ZrmNf7111/Uq1cvSkhIUJQ7Y8YM0S5KlSpFn3zyidl2SUR07949MhqNlJqaSoMHD6aqVasq6kmeThJ19evX18xrxowZFBYWRo8fP6aPP/6YWrRooSi7Ro0adOvWLWrTpg1t2bKFKlSoQAAoLCxMsw6l9il9njlzptn2XLp0abP35sSJE4pzqampdPr0aQKguF7TPmHz5s0ivH///op4jRs3VhyPGzdOURclS5bU9FXus2lbmDBhAgGgf/75x2La27dvm213QNrgbCrqfvvtN7p3757FfAFQy5YtiYhEevl9Tk1NVdz/ESNGWBR18jD5pEWrLlauXElHjx4VZc2fP58AUKtWrcR1bNmyhS5cuEDBwcF05swZKlKkiHiWg4OD6cKFCxbbukSjRo2s1oM8D7mo69Onj7i24sWL0x9//GExvZaos8VHIqK+ffsSAHrllVcU4Tt27KCBAwcSkDlR9+zZM4Uv69atIwA0Z84ciz4bjUaKi4ujqVOnKkTToEGDCPhP1KWkpNCTJ08UeSUkJFBgYCANHz6cjEYjde/eXVEPpvUi913uQ9++fSk1NZWePXumuubSpUuLCcTAgQPJx8dHnPPw8CAAFBISIsT/8uXLFemNRiNdvXqVKlWqJMqTFlEknwoVKiSOmzZtSgDI29vbrP+m2NIO5OelSdDChQuF2Bw+fLhmOkUeVmM4CdZEndQ4bTV55691kwBQrly5xLkhQ4bQjh07NGcokq1evVpx/PfffxMRkaenJwGgypUri072vffeE53L1q1byWAwkNFopOjoaLMdidQQJ06cqDp/9uxZAtJmpfI0gwYNEishkk2ePJni4+MVos1cPeXKlYuWLVtGQ4YMMdv45fbZZ59RQkICpaamUvHixW3qCKW8SpUqJY5Nfbb0kK1Zs4aANKFOROI+1K5dW5XHF198oZmH3FxdXQkA3bhxQ4TVq1eP5s2bp0gjXxUyNVOhLk8nrejKzc/Pz2xeISEhVLVqVYqJiRGDoKmwkez27duK+pJE3TvvvENA2kqqXq+n0NBQRTqps9SyTp06abaLIUOGiLqSW5s2bcRnqUM2NXNihYjo4sWLqvCUlBQxOSpUqJDiXHR0NAUEBJBer9ec1FmyqKgo6tatGy1atEhz8ie3adOmEQA6cOCAuKeTJk2yqZzOnTtbbXfS6malSpUU/YS1vFu1akWfffaZqh6JSLFyC6StOrZv316VR3h4uEJMAP/1Kebuk/zz559/Lo4//PBDAkA1a9bUTCut2Gi1nVu3blGjRo0oKSnJan2Zs0OHDqnC5P2quYmG3OrWrWvx2k05deoUValShb799lsRLzQ0lDZs2CAmbJK1aNGC7t27R0RpQvj9999X5CWtMAP/ibrU1FQ6fPiwStStXbuWgLTVMEv1VL9+fbH67OvrK8qShKYk6qSVeHkf9fvvv1Pz5s0124y0GgekrZbKz5v2j/LJanJysvDB3JhXsWJFhU9vvfWW4ryfnx99+eWXZtvZl19+qWo/BoOBHj58SO+//77Z+yod379/n6ZPn262DT579owWLlxIe/bsoejoaMqTJ4/i/Pjx4wkALVq0SNGHWoNF3b+k56EH0lS8aZi8oVlKS0R0+fJlVbj0gElWs2ZNxVJ/5cqVKT4+ngAotnqkTtCaNWvWzOw5acvnyy+/FGGmS/WS/fTTT+LzqlWr0l1/ttSR6SqZtMKxZs0a1UxVWoGR5/3999+bLddgMIitEgCKuLZey6FDh1QrYrZeu/RZvjJrav/88w9NmDCBZsyYQcOGDVOki4qKUsU/evSo2bzk203r16+32Ve5wKtVq5b43LBhQ9q7d6/N+UiC0J62f/9+zfDExETq1q2bKlzrdQnJ5IOCtG2clfbTTz8RUdpKU0bSyyeLWWVSH2UqzMyJuuvXr6vCjh8/bnNZ6fXPnKiXVm9v3LhBBw4coAcPHtCuXbsyXR+rVq0Sn6dPn57pup0xYwYBaRNJ+URCLq579+5NgHIVX27y9iNfeZKLOn9/f9qxY4fYupWEv6n9/fffipVaLZO2MeWrYJUrVyYgTcDL76P8+ZRW0LQss8+b6WTE1KSVTy0rU6aMxbTt2rVLlz4gIsXrItIrMh07dtScRMuFv/yVC1Pz8vJS7EpYg0Xdv2SmYZne2IcPH2YorbTXbs5KlSpFI0eOzLBv0oqfo016WCzF0eqItWbQe/bsUdSbn58fNWzYUDPPxo0bk8FgENvQWiZ/Fyor7PHjxxlKZ62+pM5Vy+QrnvLP6THT1S2t95LMmbu7u93rsVq1ambPSdt3crt7967Z+NIKWnaZJOr+97//ZWu56TH59mNWm+kKjS1ma/tzc3NzeF1m1D766CMCoHqlwZxJSCvScvv0008JgOLdcLlJ78bZYseOHSMiUuy+ABArYjnFrIk6ALR06VKb85MvFADKibA9zRos6v7FXhWenZ1hTjb5e1PZafIvGDjCtASHLRYXF+fwe8ZmP5O/YM3GZg+z91hmzsaPH696Z5kt+++zOVz+bQROT0xMDNzc3KDT6TR/sy4zX29nGIZhGEeycOFC+Pr6Yv369Y52hclCrEk2FnX/wqKOYRiGYZgXGWuSLUf++LC9eUl0LcMwDMMwTgyLOmTP/7xkGIZhGIbJSljUIe1/uDIMwzAMw+Rk7C7qbt26hRUrVuD27dsAgNu3b2PAgAHo06cPjh49au/i7MKCBQsc7QLDMAzDMEymsKuoO3DgAGrXro2RI0eiTp06OHDgAJo0aYLAwEA8evQIH330kd2E3ciRI+Hp6YlevXohOTk5U3lVqlTJLj4xDMMwDMM4CruKut9++w2jRo1CREQEVqxYgZ49e+K7777DoUOHcPjwYfz444+YOnVqpsu5dOkSQkJC4Ofnh+rVq2Pr1q2Zyq9bt26Z9olhGIZhGMaR2FXU3bhxA7179waQJpRiY2PRpUsXcb5Hjx64evVqpss5deoUWrVqBQBo3bo1/P39VXH0ej1iYmIUxjAMwzAM46xk2RclcuXKhbx58+K1114TYYUKFYJOp8t03tHR0eK35tzc3BAZGamKM2XKFLi5uQkrXbp0pstlGIZhGIZ5UbGrqCtXrhwCAwPF8alTp1CmTBlxHBwcDHd390yXU6RIEbHyFh0djaJFi6rieHl5QafTCQsODs50uQzDMAzDMC8qdhV1AwYMgMFgEMdvv/02cufOLY7379+PFi1aZLqcBg0awNvbGwBw8OBBeHh4qOK4urqicOHCCrOVoUOHZtpHxnlYvXq1o11gGOZfKlSo4NDyO3fu7NDyGcYiVv877AvKiBEjqHHjxtSzZ0/S6/VW4+t0OgJAOp1Ode7IkSOKf5g7adIks/9Mt3Dhwnb5p7wxMTH01ltvWYxTpkyZLPmHwC4uLumKf/36dTp37hwNHz7cYjwPD49M+RUfH09jxoxx+D9Mllvbtm2JKOv/SbYjLTIy0uE+2Mv++usvh5Q7aNAgAkBXr151eB04uyUkJGiGh4eHZ0v569evd3gdZKW9yP1d165dqXr16g73w1FWo0YNq1onx4q69GJJ1Pn4+CgqbvLkyWYrde3atXZ7cM6ePasKb9euHdWoUYMAUI8ePTTTVqxYkbZu3Zrhsi0NfDNnzlSFRUVFERHRnDlzLOa7YsWKTNcJEVH79u0JAO3atYsAUOnSpbP94VmwYAFt3LhR+CQ/t3Tp0nTn9+WXX1o87+fnl+3XKFl0dLTDygZAtWrVUhxPnDgxw3klJiba1Ok/fvxYfO7QoQO1bNkyXeWYTozkmMYdOnQoTZ06VVGePeqtTZs2VuNIfYmWLVq0SHFsaTKbUStQoIBm+Pr160mv12ue+/jjjy3mqVXHlsIzY4mJiYrjzz//nHx9fe1eTnrt77//tinemjVr6JNPPklX3ubqsUiRInT9+nWqVq2aQ645ICCAiIiMRqNV3ytUqCDC3nrrLerevbvZNB07dswW/8eOHUvff/89/fnnnxnOY+DAgVa1Dos6IkpNTVVUnLwDNrXLly9rhm/ZskV8rlevHgGg3r17m00rYZpPTEyMWK2aNWuWZlktW7Ykg8GgCt+8eTPVrl3bYqOoXbs27dixQ/PcDz/8oKoLIG3Ql9dT3759Vb43bNiQVq1apQgrXbo0paSk2NRYv/zyS8W9OnbsGF28eJEA0JIlS1TxpQHNzc0tSx7AZ8+eKdqIFD5p0iRVm5F3CuZWM5OSklSD6IgRIyggIID8/f2JiCg0NFR1jfHx8fTgwQMiSuvMtmzZQrNmzaJq1arRrVu3FO2uatWqNHfuXDIajZpty5zFxMSowkzbrmTyldTIyEiz5TRt2tSmsq9cuUKRkZG0bNkyEXb//v0M3zciEmJh+vTpInz06NHic7Vq1YiI6O233yYA5O3tTeHh4dSqVSvy9PSkDz74QMT96aefzNZZQkICNWvWTJSr9UwfPHhQ3I9ly5bRN998k657Y8lsEXWmA6Bc5KWmptLXX3+tqDutPLy8vNLlV9euXcXn5ORkzTibNm1SlSfdjytXrli9xwMGDFCEFSpUKN31+vPPPxMA+vrrr80KNVNRR0SKCdgvv/ySoXsn7xffe+89i3H/97//iZVgc/fq3Xff1bx+IrK4wyJN4r/77jur7eD1118nIqKoqCh6//33NePcuHFDcRwXF6cSgblz57a5nuS7aHFxceIZi42NpSdPnohzVapUof79+wvfv//+e3Fu4sSJFBkZSZUqVaLdu3erxndzk4uMWFBQEG3btk0cy9uKhLRo9NFHH1nMS6/Xiz7s559/pjNnzlBSUhJZg0Xdv8grc8aMGWYr+vz585rhRETLly8nALRw4UIiItq9e7c4n5ycrChHq1xXV1ciItFRHDx4UJwbNWoUnTt3jgBQ69atNWcrpnlKK11yq127tlmhlZqaSkREd+7cUYRLoo6I6N69e2K7Wx6nUaNGisYs90cSs02bNqVly5bRq6++SnPmzKHt27cTABo2bJjZ+3bmzBmz15qcnEzR0dFUsmRJTeGnZUOHDhVtQW4jRoxQHD9//lyzfWiFyWeBw4cP15xFE5EQde3bt6dOnTppXm///v0JAPXv31+IAWtIZRw7dkwzXLI1a9Zo1klcXJz4vHXrVrp37x4REVWqVEmEDxw4kADQ7t276f3336fXXnvNbDkTJkxQiE0A1KBBA1q0aJEQ4REREaK9SeTPn1/4M3ToUEWdzpkzh6KioqzeX3N1o3UPnz59Si1btlQMFkSk6OQNBgPFx8ebLSc2Npbu3Lljtt79/Pws3jNT34YMGUIAqE6dOiKsXr16dPr0aZUPclFXtmxZ8Vne/kzLktp+xYoViYjEIFy2bFkiIho5cqSIu3btWtq2bRudOHHCYp1PmjSJFixYII7j4+Pp2rVrot/QSrNlyxbVuXv37tGsWbMUkxutSSoR0dWrV6lkyZKq+yEdL1y4UHyuWrWqpg/S4Lpz506zfppu9RKRoj4ePHigOD948GCLddW6dWsqWLAgEf33fDVu3Ficl8TSDz/8IMLatWsnyvn6669p165dKn89PT2JSC12icjsdjUAOnnypOjrzLUZyYoVKybqWRJGo0aNUrRBrbZtGpae7VP56wwGg0H1HElj5PDhw0VYWFiYYoz77bffFGlCQkLEuXz58ikmHtZ2hU6dOkUVK1ZUhZs+51p1KSHtRPz+++8Wy5IIDAyklJQU1bWbg0Xdv8gr859//qHffvtNs6IfPXokPjdq1IgA0CuvvEJEalG3Z88es41bq9z58+cTEdG4ceMIAO3fv5+++uorEV96Z+Tjjz8mIqKgoCCLD1Bqaipt3rxZEad27dpERIqBStp6ktDr9dS4cWPxTp9c1Ml5/vw5LViwgPLly0c7d+4kg8FAQ4cOpVq1atGHH34o4knvbLVu3VqR3t/fn4A0oWUN+SAn91WOLZ2ExJMnTxTbqJKQbdOmDa1cudJs3lphn332mfg8fPhwsyJ03bp1BKRtPZlDGhROnTpltU4kUlJSaNu2barw1atXU65cuRQ+3Lt3j0aNGkWVK1emBg0aEKAcuOTs3btXhEuibs+ePZp1IwmyXr16EVHaquK5c+do0KBBdPToURG3devWBPy3ymeOQ4cOibJnzZqlKKty5cris9w6duyo6Zu5ztUSpnHv3r0rwr7++mub0lq6j6ZtQ/osiVn5RGHkyJFERNSxY0f6+++/RR5SXa5bt07R5qTJn5S3XPBJZVWoUIGIiG7evEkAqE+fPgrf6tWrJ45PnjxJQNr7pWfOnFHVuzT5MBqNmisJTZs2penTp9PEiROFSNu3bx8RKQdYCWnluG/fvqTX6+nhw4dmn30AlCdPHlW9BgQEUGpqKo0cOZLCwsI0+4Lnz59TmzZtKDY2VnVPJDMV9ETKVXqi/yYBFStWVEw8ypQpQ3v27KHg4GBN36V8pk2bpnleErft2rVT1ampv927dyei/yaFQNoqolZcAFS3bl0C0t5DNI1DRPTqq68SkLZKKIXLRZ20giRfyTYVdfLdDnnZ8hV0ayv6Un26u7tr1oHUNuWizrTMCRMmKMKTkpIIAO3du5eISCEA5Str0vh+9epVRX8lrc6/8847YjEgPaIuNjaWJkyYYHZHQnr2MwqLun85efIk/fHHHwSALl68SEREr7/+uqrREf13k6QVKGk7MjQ0lKpXry4a8/HjxwlI27KSqFy5Mo0YMUIct2rVSuQ3b948IiIhxK5cuaLwURJ1PXv2FGFanZ3psfwLGb///rsqXkJCgmq7Ue6bOVFnK1InLW09SUidtSWRIyGJW63OT+LIkSN08uRJOnXqFAFpYlur45OQb2FLvnz22WeaeWuVK820u3XrRkDaatTTp08V8UuVKqUYDJYtW6Y545TYuHGj8Mde3L59mxISElThUttOSEggDw8PatWqlSrO9evX6eOPP6aIiAjq27ev5qBt2uFb4ty5c9SgQQPVKp0WGzZsIMC6qLt48SJt2LBBc2XTUudqCa24UphcWGkhbfW+9957ZldbzfUpt27donnz5lFERIQIMzdL//bbbxV9mqVr/fPPP2nAgAHinDSB1BJ1Dx48oJiYGHH8/PlzAtK2wkx9T+/gk5KSQsuXL1fUi1Y+58+fV3wB7tChQzRv3jw6dOiQIl5oaKhiwL1z5w7NnTtXVW54eLhiQp4rVy5VHOmcfAVQa6VOy2fgv9VPo9FIy5YtE7szRGljwc8//6wqMyEhQSHITa8N+G8Sb85fAOJ+9e3b12LblWzQoEGa+X3++edERBQcHEyXL19WpJXvLki7WfKVOmkioFV+oUKFRPi0adMof/789Msvv1CXLl0UfpUrV05V36dOnRL9qilPnz4l4L9JghzpnXT5mKeFJK4bNWpERGkT38TERLHiHRwcrIgfHh5Oe/bsoeTkZHH9J06cUNWlLf1OcHCw4v7Xr1/foq+2wKJOhtFopJs3b6rCpQo37TylpWFJ1Gnlt23bNosDWFhYmHhApBdBidKWXLVYuHChohPz8vKiEydO0OnTp0VYREQERUREiOMqVaqIwcFaZyrnm2++IQBiJpsZ9u/fr9rmIiLFTNES0oywWLFiNg0kBoOBUlNT6fr16xav88yZM3T8+HEh6rp166YZTyuPO3fu0MyZM8VkQF7n27dvp02bNlFqamq6ls6JKNMi2lY6d+4sBq7MAEBzwMos1kTd2rVrVRMfLd8yIuoGDhyouiYpfXx8vMW08fHxNGrUKIvfyjcn6sz5rkVcXBzt379fHPv7+4uVwQMHDtCiRYss+kmUNqD17duXnjx5YjWulu/pFXWW8ssObt++TQAUrw+Y+lG9enXS6XRim/PIkSNUpkwZWrt2rYgbFBSkqDO5qMsIWnUgrTBK38A3l+b9998XYeZW/Uzv2eDBg1X5BQYGUmJiomY5r732muKc1OdJK1Xly5cXCwNa5QcFBYlV6ClTpohwqQ8CQF26dLFYH+nFYDDQlClTrD6v0uReEnUSRqNRMSZrER0dTaNHj1aN8dIuF1GaoF++fLnFfOzZh7KoswFzs7SkpCTq0aOHeAfpRUVaqTPF2oMTHx9P3t7eWemazSQlJdHOnTspLi7O7KzNHLZ0EAaDgYYNG0aPHz/WPN+1a1ez7/4ZjUbVbC4nEBkZqRioXjSkn44wJ+psoVy5cmLQO336tNVO2hKrV6+2m/iwh6hzFJJfc+fOpT///DPT+dk6UbMXGzZsoLt376rCpW8lmr6baguZFXXlypVTfFmMiMSXNJYuXaqZRqfTqVbOTbeG5f5ZE3XmAP7bRZI4duwYARDvUsq3P8+fP08LFixQ5RMdHU1169ZV9JXy9xO7du2q8jc7MBqN1K5dOzp79qzd8oyPj0+X1nj+/LlNuxe28OL1GFlEVoi6nEKvXr3Mijpz243ORE67X0wakqibPXu2CEvvgPSiIrXJiRMnKo7lFC9e/IVstzdu3KCTJ0/aLb+YmJgM9csvEpkVdfZk5syZYpVRQnpXTHrnzh7PUExMDN26dYuA/7bzM4L0JRD5Lgn32Rnnv3/3wFikWLFijnYhwyxduhTjx49XhRORA7xhmIwTGRmZrv8O86KyfPlyNGrUCFWqVDEb5+7du0hKSspGr2yjevXqds2vUKFCds3vZWf48OGqsMaNG+PIkSPInz8/Fi5caJdyChUqhKpVq+LixYuoXbt2hvPJkycPAKBEiRIi7J133sHVq1cz6+JLCYs6Gzh06BAqV64sji9evIiwsDAHepQ+8ubNq/D/ZaNHjx4oWbKko91g0slHH32Ed955B926dRNhRYoUcaBH9uPrr79WHN+9excuLi6KsNdeey0bPWKcnRYtWuD58+cAgLZt29ot3zp16mQq/Ztvvoldu3ahZcuWIuzixYswGo2Zde2lxIVekuWamJgYuLm5QafTOcVMn2EYhnkxcHFxQcWKFREYGOhoV5iXnFyOdoBhGIZhGIbJPDlO1AUFBaF48eJo1qwZmjVrlqO2QRmGYRjnpF27do52gWFy5jt1TZs2xdatWy3G0ev10Ov14jgmJiar3WIYhmFeQqKjo1GwYEFHu8EwOW+lDgBOnjwJT09PjB492uw3OKdMmQI3NzdhpUuXzmYvGYZhmJcBNzc3vPLKK452g2Fy3hcl9Ho9UlNTkT9/fnz33Xdo27YtOnfurBlPvlJHREhOTsbrr7+u+pYZwzAMwzBMTueF3X4NCQnBp59+qgrfvXs3ihYtCgDo0qULTp06pSnqXF1d4erqmuV+MgzDMAzDvAi8sKKuRIkSOHHihCo8NjZWfPb19UW1atWy0y2GYRiGYZgXkhz3Tt2JEydQt25deHp64smTJ+jZs6ejXWIYhmEYhnE4Oe6dOoZhGIZhGEZNjlupYxiGYRiGYdSwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnAAWdQzDMAzDME4AizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ+ClEXVEhJiYGBCRo11hGIZhGIaxOy+NqIuNjYWbmxtiY2Md7QrDMAzDMIzdeWlEHcMwLy7JyckoVKgQfHx8HO0KwzBMjiVHirqgoCAUL14czZo1Q7NmzRAWFuZolxiGyQRRUVGIi4vD7NmzHe0KwzBMjiW3ox3IKE2bNsXWrVsd7QbDMAzDMMwLQY5cqQOAkydPwtPTE6NHj9b88oNer0dMTIzCGIZhGIZhnJUcKerc3d0RGBgIX19fhIaGYseOHao4U6ZMgZubm7DSpUs7wFOGYWzBxcXF0S4wDMPkeHKkqHN1dUWBAgXg4uKCLl264PLly6o4Xl5e0Ol0woKDg7PfUYZhGIZhmGwiR4o6+c+S+Pr6olKlSqo4rq6uKFy4sMIYJrPcvHmTf+swC/Hz83O0CwzDyFi/fj2aNm3qaDfsTnh4OJ4/f+5oN+xOjhR1J06cQN26deHp6YknT56gZ8+ejnbJIUyfPh0ffPBBhtMfPnwYe/bssaNHjsFgMGDq1KnQ6/VZWs6lS5dQo0YNbNq0KUvLsUZiYqLTCsvIyEhHu8AwjIxvvvkGvr6+jnbD7hQvXhwlSpRwtBt2J0eKujZt2uDChQvw8/PD6tWrkTt3jv0Sb6b46aefcPTo0Qynb9myJTp06KAKd3FxwZgxYzLjWraye/dueHl5YenSpVlazpMnTwAA9+7dy9JyLJGUlIT8+fNj7ty56U67e/ful/o1hNjY2BwjhhMTE+Hi4qL5vrAt7NmzB1FRUXb2ynlITk7G3LlzYTQaHe0Kw9iVHCnqsppixYqhYcOGijB/f38kJyc7yKP0YzQabe6w7ty5owr7888/M+2Dj48Pbt++rXlu+/btuHTpUqbLACDuS0pKil3yM4dUn7lyZf6xKV++PH744Yd0p0tMTAQA7N+/P91pO3bsiCZNmqQ7XXaQ1V+USE1NReHChTFt2rQsLcdeREdHAwDWrFljMd7Tp09x6tQpcRwXF4fk5GR06NABn3/+eVa6mKNZtGgRBg8ejH379jmkfCLC1atXVeGhoaE57ge4fX198eDBA3E8efJktGnTxoEeqYmJiclR43dmYFGnQWRkJE6fPi2Oo6Oj4eHhgZ9++kkV9+DBg3BxcXnhfgC5UKFCqFu3rjhOTU1FaGioZtzWrVtniQ/NmzdHtWrVNM916dIF7777Lg4dOpTpn5uRVl9SUlLE/di7d2+m8gSAR48eKVZ27CnqgoKCMH/+/EznI2E0GqHT6azGk7eBuLg49O3bFwkJCZr5ZWRVa9iwYXBxcVF1oE+ePLG4SmjvFbRBgwZh3bp14thgMAAADhw4YFP6Bw8eICAgQHPCYwvHjh1DYGBghtIC/4lcHx8fi//a8N1330WjRo3EcaFChcT7T8+ePctw+UDaPTFtU/fu3UOjRo3E5CIjXLx4EREREZrnjh8/ni2rqZL/jhrot23bhlq1auHkyZOibQJAq1at0Lx5c4f4pMXOnTuRlJRkMU7Tpk1RpUoVcTxmzBibn7P0YDAYsGTJkgytrrq5uaFTp04ZLnvChAn46KOPMpzeHJs3b7b/vy6llwSdTkcASKfTWY0LgORVExYWRgCoUaNGBIBOnDihivvTTz8p8ti5cyctX76cnj9/Ttu3b7ffhZjx88mTJzRmzBgyGo2a19CjRw8CQCkpKar0ps0AAOXNm5eOHj1KACg6Olqci4uLoylTppDBYEiXfxJGo5EOHjyoKLtLly6qtJ06dSIfHx8baoFo/fr1BIBeffVVkWeJEiUUcbZu3UpvvvmmTfkRET1//pwA0OzZs0XYtm3bRP7ffPONIn5CQoJNdSKhVTe2EBkZSQDoo48+IiKiqVOn0pUrV+i3334jAJo+rFy5ksqXL08AKH/+/CJ83rx5BIBWr16t6Z+Xl1e6/ZOua+rUqZrhjx8/VoRfu3aNkpOTRX3bq0syzUuv1xMAatq0qQg7e/aseF7Mpc+oP6bPpl6v14y3YcMGunbtGgGg77//XoQ/ffpU5NGtWzfhf5MmTSg8PFzUo6mPcr9r1qxp1r/Y2FjaunWrVf8BUGRkpAgfNGgQAaAzZ84QEdGqVasIACUlJRER0fXr1+ns2bNElPasr1ixghITE4mI6OTJk9S3b18CQLVr11aVefr0aQJAS5YsoQsXLlC5cuVo0aJFFBISYtZPifDwcFq0aJHVeBLTpk0jALR161by9/enDh062JxWzsaNG+nSpUv05Zdf0vXr11Xno6Ki6OrVq2bLB0C5cuUS4YULFyYA5OrqSsePH09Xn7J27VrV8yURHx9Pz58/tzmvq1evUrNmzRTt4MyZM7Rjxw5VXHkbNBqNdn2O5SxatIgA0ObNm0WYXq/XfIavXLmieObkPiUnJ6vCrGGPazKt/9DQUDGW/PPPP5SQkJCp/CVY1P1LamoqnTp1iojUNzAiIoIAUO7cuQkAffvtt6q4Xl5edO/ePbp69SolJiaK8MaNG4u8kpKSKDY2Nl1+G41G+uOPPzT9lso4f/48ffzxxwSAQkNDNa9BOj5y5AgREd28edOqqOvTpw8BUHRWY8eOFYO2t7e3yqewsDAhHKW8jUYjLVq0iPR6PW3evFlRLgCqXr265rVVqlTJpjpau3atKk8AFBYWRmFhYUREVK1aNQJAqamp1LhxY7pw4YLFPG/fvk0A6Msvv6TBgwfTjz/+qCrH1N8hQ4bY5K8UX57HrVu3aPr06Wbjp6amUvXq1Wnv3r0KUSflU79+fQJAsbGx9Mknn4j7LI8DgPLlyyfC//77bwJAa9as0fTvf//7nzhevXo1AaDixYsTEVFKSgpt3rxZ0aH6+vqq6mffvn1UtmxZzXqLiYkhAOTh4UG7du1Snff19aVnz55RfHw8NWnShB4+fEhEZHagS0hIoNTUVM36DQwMFKJo/vz5NHDgQAJAy5Yt08wrI6IuICCA1q1bp0h/584dAkBfffWV1XIA0I0bN+jZs2cKUff2229TrVq1xLGrq6vwy5Kok8INBgONHDmSAFDfvn2JiOjrr78mABQVFaXw5+7duzRz5kxFHvfv3xfnBw8eTADo1KlTlJCQIOJERESo/Lly5QoBoNGjR6t8y5MnD6WmphIAGjdunBjgANBvv/1GvXr1EscNGzY0W+eLFy+m0NBQ+vTTT0X8H374geLi4izeq2+//ZYA0ODBg+mdd94hAKINRkRE0JYtW2jx4sUW8zC9phYtWqjON2jQQFEnJ06coIULFypEHQCaPHky3bp1S4g6yb744guRV2xsLAUGBlJqaiodPnxY05e6desqwvz8/AhIm+QCoGvXrolzUVFRQjDHx8dT06ZNxTNmKui0ngej0Sj6SSlc3m4NBoOiH0oPR48epfj4eHF86tQpke+KFSsU1zx16lRKSEgQbVCaAGk9F/v37ycA9ODBAxE2d+5cEffmzZuiDzGtW3N9QVBQEK1cuVKxYGLK9u3bCQDdunVLhEl15eHhQQBo0KBBtlWOFVjU/Yv0kN27d09xA1NSUqhSpUqajVtaHQFAPXv21Izz1ltvEQA6e/asyMdgMNDChQvFjIEo7YGNiYlR+CStygCgsmXLqnzWKk8SMfJrkD8QR48e1Uxrmm++fPkUoi4pKYn++ecfMThItnTpUjp58iRt2rRJhPXv359iY2PF8eLFiwkAvfnmm9S9e3dNv4OCglQ+vPLKK0SUNlhPmzaNDAaDGNClB+/OnTti9cCcJScni8/h4eEEgD7++GMiSusAbt++Tb/++qsQKNeuXaN169YRkCbq5AORaZ21b99eCGppAEtOThYrF1pIKzMAxHWULl1acR8uXrxI48aNE8fSoPfee+8RoBZ1kslXK7XaiVzUSZ3Z2rVrzbYtojRhZnrdf/75JwEgX19fkWbLli2KeO+++67FQUFaATd33jT8559/FhOsjRs3KvyVBETXrl0VaVu2bEkNGjSgt99+mwAIcS+ZvI6J0iZwUVFRijimz6VEbGysYpL2xhtvCP+1ruvixYsi3dWrV1UTK7mNGTPGYps2LcdcnUkrZ6bp2rVrR0DaymlISAg9e/bMrN+jR48mAPTPP//QkCFDCIB4PuTPlak/586dE8fyvkxqh3JRKPkDgCZNmqQQdaVLlyaitF2C+Ph4WrBgAT179kw815UqVaImTZoo8nd1ddW8ZzqdTtE3ARCiThJ6169fF+cePXok0j579ozy5s1LgYGBFBsbqxAPQJqoCwgIECsyUl+jdb9M+1EAVLFiRZWoA6BYJJDbkCFDhGCW8jadCHt5eSnSFC5cmIxGI6WkpFDRokUJSBM1UnsbNmyYQphpmbSi9N133ynCx44dq0i7cOFCAkCnT5+myMhIKlasmNnV4WvXrgmhKtVrmTJlxPn58+eLfJcsWaIYbxo0aCD6RSJS1JfpcyHVx+HDh1XXJfWxkydPVvlnmh9R2oqffGyZNm2a5rUR/bcYkidPHjp37hwlJSXRkiVLCPhPI3z66adirDx9+rQqj8uXL4tFG0uwqPuXzp07E/CfAAFAQ4cOFTPtjNprr72mCvvqq68IAP39999i5UWr0Vy9etXsOSLtDvjZs2eK47t37yqO9+7dS+XKlVOlu3DhgmK2LLdr167RTz/9REDaVpBWnLp164rP7u7uYuXIVqtTpw798ccfmtvHkydPJgBUo0YNAiBWhI4fP25T3nIhOWfOHPHZ39+fSpUqJY5v3LhBISEhNvts7h5IqyrmMK130+tds2aN2U5JMnOiTqu9yMPy5ctHU6ZMIR8fH1EXpqJO3uFJqymm+UqzSyBt9nv8+HHNVVgtW7dunWLyZGrSapCpjRo1SrSr3r17U926dalbt25ERJQvXz6r9wWAGMjkecoHbq00+fPnp2fPnlH58uUpOjqaAgIC6OHDh+L80qVLKTk5mfLnz08AqEiRImbLL1euHLm5uaXr2bCl/RGRSoxKJp/USXGliUjlypVtqjcA1LlzZxo2bJjmuQcPHihEHBHR+fPnxbFWfyDv36SVJCBtUJVPkkuWLElERC4uLqJuP/jgA0pKSrLob+7cucWzL+9XChUqpIjn7u5OAMQkVj7pkq7l6tWr1KFDBwKUk3ktK1KkCBERLViwQBF+6NAhi+kqVqyoGW7qj6mFhYXRypUrCVCLOq340iptRs3Dw4Nu3LiheU6+Wi9Ngvft20c7duwQ4QaDgYYPH05DhgyhGzduKJ4lIlLcV39/f826lK8kShM2ALR9+3aVCJbXgyRete5FQEAAAaBevXqJ+tu3b58Il/IiUgt2ADR8+HBVX3/gwAH6559/0j0eAiBPT0+Rz9atWwkAlS9fXlWGKSzq/sVSxWbmAbBkw4YNU2wbyBuNlk8eHh5kNBopLCyMXFxcNPN89OhRhv0x3T6TTD5rljq2rDJ/f39FnQcGBtLnn3+epWVm1Cy1GyBthcdgMNDWrVvpnXfeUW0NSjZjxgzxOTg4WHFu586dosNOr504cUK8hyKZXPy0bdtWfJaEhnyVwtJ1y7cDJTMty94m97dVq1bi87FjxxTxzK1sWLK4uDhq3ry52fM//PADATD73E2fPl1Rt9lhcXFx4rPBYDA7IZHeVbNm1tpZ69atqWvXrjblJQkkW00SVkDarof0DrBkps9NgwYNFCt91qx79+6K9za1LG/evARA1d9Ye861TFpRtodZapcAxIoP8J+o279/P+3cudNuPmTWqlatqhnu5uamWHUz3davUKECAVA9W9I7wlpmKo617p+3t7cqTNpKlibM0uRWeu0KSBOo8vcGTe3QoUM26Qpb7fjx4/Thhx+qrscSLOr+xVylSu/EZZXJt+6AtPc6LPmkNUOQm/QORUZs1KhRVuNktaj74osvsjR/e5otq7jyQbBx48Y0adIkh/psD+Fhrm1Onz7d4fcEAC1fvtzhPmSHyVfHN23aZHbbzMfHx+G+ZtbkAlYy6Ytctprp1rutJl9xtNUsba1ntWlt7eYkM7canFHTaju//vqrxXtmbkcKsG2Mkt7pzKzvNWvWVIVZg0UdkcVlfGmvPrusR48eNHToUIc+VJYsV65cDveBzbGW2e0bNjZnt5wurF5Gk76AZC8rVqxYpvOQrxJKZg0XIsf+xDoRZfkPjwJpPz7o5uYGnU6n+j+wo0ePxpQpU7LcB4ZhGIZhmIxiTbI5/MeHXV1dcevWLYf6kNkf6WQYhmEYhnE02fZPU4cPH64ZLv0z9mLFigGwz7+nSi8OXqxkGIZhGIbJNNkm6mbPno1atWrhtddeU4QTEW7duoUCBQqkaxt25MiROHPmDMqUKYMVK1YgT548GfaNRR3DMAzDMDmdbBN1v//+O5YsWYKZM2eiRYsWIvzVV1/FypUrUb16dZvzunTpEkJCQuDn54fff/8dW7duRc+ePRVx9Ho99Hq9OLb0/0VZ1DEMwzAMk9PJtnfqvLy8sGnTJgwYMAAjR45ESkpKhvM6deoUWrVqBSDtn9H7+/ur4kyZMgVubm7CSpcubTa/mzdvZtgXhmEYhmGYF4Fs/aJEvXr1cOHCBYSFheG9997DtWvXMvTN1+joaPENVjc3N0RGRqrieHl5QafTCQsODjab36NHj9LtA8MwDMMwzItEtm2/ShQsWBCrVq3Cxo0b0bJlSxgMhnTnUaRIEbGdGh0djaJFi6riuLq6wtXV1ab8kpOT0+0DwzAMwzDMi4TDftKke/fuOH/+PLZv346yZcumK22DBg3g7e0NADh48CA8PDwy5UvdunUzlZ5hGIZhGCYrKV68uNU4Dv2dulKlSqFjx44oUKBAutLVqVMHJUqUgKenJ27evIkuXbpkyo9vvvkmU+kZhmEYhmGyEtN/nKBFtm+/2os//vjDbnlpbd8yDMMwzMtMnjx5+PWkF4i2bdtajePw/yjxItC6dWuLP3kCAIGBgfjuu++yyaOM8eqrrzrahXSxf/9+u+Xl5uZm9tzAgQOtpq9QoYLieOrUqZn2Kb3Y+g6oJSx9y9saffv2zXT5TPqxZfZtC9IPuGcXd+7cEZ+joqLw1ltviePatWtnSZkzZ87MknwzyldffWVTvPHjx2exJ1lD+fLlbY6bN29em+POmjUrI+7keJYtW5ap9Lb8cwYWdf9SqFAhi+crVqyIJk2a2K28N9980+L59DxMEkOHDkV0dLTVmdX27dsBAB06dLD7z7kMGjQI69atsxqvd+/e6fptQkvUr19f8duHpjRq1MhqHtLKr9RJv/LKK6o4uXOrF7bDw8NtddMqK1euBJC5Qd5au5J49913VWFlypQRn/PkyYMJEyZkyIdBgwZh7dq1GUprT4YNG+ZoFyySN29ezJo1y24TiMz+3mbv3r0Vx61bt7YY/6233sKIESPg5+eH1157TfFbocOHD8+QPz/++KPZc/fu3cPw4cPx119/ibDff/893WVMmjQp3WnMYenVIfkkzVpdZhdafZgWISEh6N27N1avXq0IHzx4sNk07du3t9mPoUOHpvtdenN4eXlh9erVGXre27dvD09Pz0yVf+PGDZvj1qtXL8PlfPHFF7bdP3pJ0Ol0BIB0Op3ZOJ988gkBoHLlytH+/fsJgDAiIqPRSPXq1VOEp8cCAwPF54ULF1qMW6VKFRo8eLDZ8w0aNKAJEyYowkaNGiWuZd68efTHH3+Ic7///rv4fPbsWQJAAwcOJCKi1q1bp/taFi1apArr3LkzERElJCRYTe/n50dPnz7NcF1KduvWLTIajXThwgV65513KDk5mf7++2/6888/CQB5enpSamqq1XyIiK5du0ZnzpwhALR7927F+c2bN9O5c+cIAH377bfUv39/AmDTtdpibm5uZDQa6dy5c/Tw4UPFuS5dutCDBw+oWbNmBIBWrVpF58+f18xHurfm7OeffzZ7/yZPnkwAqGTJkhQZGUlElKF7NHjwYNqxY4cizNvbm44fP26xPcuPg4KCxOeEhATRRq9evaqI16dPH1Ve/fr1o8DAQCIiAkAFChSgsmXLivN6vZ5CQkIyfc+8vb0zlb5AgQJERBQVFWWXNvTaa69ZPH/48GGL56X6AkAff/yx4hgAffHFF+Lzli1bVP1nSkoK9ejRQ7RR0/RadujQIfrss880fZAsNTVVUc79+/ctxpfsypUr4pkxvc433niDANClS5c008r7TgB04cIFzXgDBw4kAPTNN9+ozi1atIhSUlIoOTlZ9CslS5akVatW2eV+Z8S+/PJLVdi3336rWUcS5tqIqUljrDWLjY0lIqIyZcrYFL9Vq1Z08OBBcazX6xX9kkRSUpJmetOxXG5//vknRUZGUsWKFTNcpykpKTbHjYyMFJ9nzZqVrnIuXrxoVrso7pdNsZwAW0SdXq8XN5rov8Z78uRJEWfJkiUEgM6dO6fojDds2GD2ZuTPn1+kl8KkfABQnTp1qHLlypSSkiIESN++fYmI6L333hPxevfuLT4fPnxYJVbkoo6I6MCBA4q8rl+/Tjdv3qTo6Gh69dVX6cKFC0Rk/mHQsqFDh9K2bdsoNTWVLl++rDgXHx9PRGpRd+PGDVU+x48fJyKi+fPn04ULF0THXrRoUVXc0NBQ8Tk8PJy6du2qeqC1iIiIoMTEREW9y61WrVp08+ZN2r17tyJdcHCwqFtJWD969EgIiu+++47i4+PpxIkTZvO2ZH5+fjRgwABKTEwUYWvXrlWUL4+/bds2zeuTzksDhlQfpuXdvn2bDh06RA0bNhTtTt7+JJs6dSoBoE8//VSzHFtt8ODBZDAYaMGCBQSAcuXKpcjLxcWFTp06Rffu3RNp5s2bpyiLiOj9998nAGQwGETHLD2jAKh58+ZicjR79mwR3r9/f1HemjVr6NatW1SnTh1Vexk7dqzK919//ZV+/PFHRVjz5s01r1Orbh4/fqw4Hj16tNl6atWqFRFpizpT0V2rVi3NPKTrArQHr+TkZHr8+DE9e/aMiNLEzPfff0/t2rUTcX777Te6du0aERGdPHlSlG96Px48eGD1uZP8lkSd/B6bWrFixUQ6nU4nfNCqZzmmom7Pnj0EgKpVq6ZK17RpU838/ve//5m9h/J2VqdOHVHuP//8o6prafL4888/U2RkpGJCJicgIIAA0F9//WW2TMkiIyMVg7+p3b9/n9q0aUMAaNq0abRu3TpFnZjaDz/8QN999x0BoO7du4tnVDovn4D99NNPVLduXYXv0rnr168rjvv27auq15kzZ9K0adOoZcuWZv2RKF26NAFpk1ZL9SHRp08f+u233xR+VapUSdNXuZk+F/IJ3rlz51Rp7969Szt37lRNrgFQzZo1VWG2LBoAoF9++YWIiL7++msCQOvXr7cpnWSWtIuiDmyK5QTYIuqI0gSJ0WgkIiJ/f38xq5AwGo10+/Ztcdy+fXsCQL6+vpo3okWLFpSUlCTiS7PppUuXkre3N/n6+qp8ePz4MSUnJ4vyPv/8cwLSBueRI0eK8gwGg6Isc6Ju3LhxVuvn4sWLdOfOHZGX1OmZe8AkpPCQkBBFHcrTGI1Gcnd3V4T5+/sr8pE6UXOd8Mcff6wo39fXl+bOnWv1uiTOnz8vruno0aMEgGrXrm1zeiISqztyASavAyBthdXaw6mVdu/evSLMdMa7fft2TX/27NlDs2fPVuRDRFSwYEGz5S1evJgAbVG3atUq6ty5s6J9m14foF7FmDBhAvn7+wsxNHjwYEXar776Shzv2rVLkT8Aqlq1qnjmAFDevHmJ6D9RJ52TGDRoEAFpq3SrV68mALRp0ybReQ8YMEBVV1qiTkJagSpevLhihU8ev3LlygSkrdhOmDBBtHfTAYmI6JdffqFJkybRmjVrNDv88uXL0/3798UkKC4uTpwrWbKkyOfmzZsiXKoLU5NWXqUBo1+/fhafVzlvvvkmARCCTyI1NVVxP6R8oqOjreabkJBAI0aMEJMpCSld9+7daeLEiXThwgV6+vSpZh7W+hxJOPfu3VuEBQQEUFRUlGrC16RJE838rIk6o9FIQJqYlvPkyRPRfp89e0ZxcXHk4eFBDx8+VPlvyqVLl8hgMJgt85VXXqG2bduK+L/99ptmvPv371Pnzp0JAAUHByvKdXV1VcTdu3cvGQwGio2NpU6dOtHz589p8ODBFBYWpvBzxowZZleCTK9HEmyJiYli/Pvuu+9U6YxGo1jxJyLasGEDLVy4UByXKlWKANDcuXMJSBOf1vpLU7+WLl2q6SsAioqKosjISNq3b58iXN4mTNM2btxYHBsMBqpevTrt37+fGjduTPfu3aOkpCTKnz8/AaB9+/bRs2fPFG1lwoQJNHz4cNU1SKvyRES//vorARCTEWvWtGlT+vzzz83Wg6pebI6Zw7FV1KWX5ORk+ueff4gobdCXL9OPHTtW8dARkVi9WLFihc1lSEvmd+7cEVuAYWFhojFJ28amok4a5MaPH29zWZLvLVq0sOkB0wpPTk4mADRmzBjRiUm+AmmrMqYDtTT4DRs2jIYMGSLi5smTh4jStnbi4uJsvg4txo8fT0DGRR0RqUQ+kbIjGTZsGAUHB1PNmjWpfPny9PDhQ8XgbFpXYWFh1L9/f1V9SO0ESJtJWwMAFSpUiIiISpQooegQ5ISGhlLt2rUVq5/bt28n4L+ZuLnrMxqN9OjRI0VY9+7dRbzr168TkLbVL5GYmKjaPpMTEBAgxI2Ur7u7OxH991qAKc+ePSMA9Pfff1NqaiotXLiQUlNTxbPx/fffq9KsW7fO4gBh7pol6tatK+pATnx8PI0aNYpmz55ttm+R8oqMjKRp06ZpihkpTkJCgqKdS+HSSovc+vfvT1FRUVS+fHkhRuVpoqOjLV6jNKjo9XqzcR48eCDuuVa92MrBgwcV+VhCXl/m0mzdulXRbiSSkpLo2LFjdP78eSIi1bbo/fv3iYjEliMRaa7ISH6kZzCVkMSyJUx3OayJF9NrkLZw5f0RoBR1Wv2snEuXLmluo5srXyI4OJhmzJhBRCQWM0aOHGk1H1N27dpFjRo1IoPBQBcvXiS9Xk+FChWi06dPU1BQED148ICOHj2arjwlX4OCgkSYqaiTj21yoqKiFAsw5ihfvrwq7YQJE+jevXtElDbWffDBB2ZF3YwZMwhQLwRJYlna2cjos8aiLgtYtWoVffbZZ5rn5s2bRwBo9erVNue3detWAtJmHqYYDAbxfsGxY8cU56TGPGHCBJvLkhrSmTNn6NatWxYFCVHaCtjVq1dV4Y8fP1YN5l999RV98MEHZssOCAgQK5RRUVHk7e1ts9+2EBcXR+PHjxcCcsmSJXbJV96ZSoOJVpz0PKTypfldu3ZZjf/kyROKiIggov9EncFgEKJai9WrV4vtIEssW7ZMMcMmSttmAUDLly9XhO/bt49SUlKs5mkOAFSiRAkiShO869at04z38OFD1YAlvWc4ZMiQDJcvERISQqGhoeJYeocyI9hy38uWLUsVKlQwmzY2NlbRhubPn08xMTGaeU2ePFkMuvYmowONo8pISEggf39/VZ4pKSmK/lRawZbHu3z5MiUkJKS7zKdPn9LZs2etxgPSVufOnDlDAQEBZuNJuzu9evUiAOK+m7Z/U1FnLyZOnKgaWyROnDiRYVGXFWhduzQJlCavw4cPJ3d3d5o4cWKGyqhQoYJN9RsdHS12mOSiTq/X04oVKxQLHcuXL6fnz58TACpTpozZa7EFFnXZjLTUbLqFlxVI26n79u2zOY2bm5uqIcm3Axk1AKhZs2ZW4wCgJ0+e2JRncnIy9e/fnz744APN1UFLSO9sZCVhYWHUsGFDCg8Pt2u+clGXXgwGA/36669WV6gygl6vp7t372YorS3PjtFo1FxVkae9cuWKw5/D3bt30+HDh7O0jKy4RlvzfPz4seJViKxEvipjr/zy5s2brW3kRRN1N27coCtXrpg9f/HiRbFwkFG0VuosAYC8vLzMnpPndejQIXr8+LHmOVvJsT8+nFMxGo0AgFy5sv7XZN566y3ExMRY/bkWOXfu3EFERIQirHDhwrh165bid6mY/zhz5oziN7osYetPjrz66qtYsGBBhvxZvHgxZsyYkaG0tvL666/D398/S/J2d3fPULpcuXJh3LhxdvYmjTx58qBy5cpZkjcAuLi4WI3zzjvvZFn5tpKen63IiZQsWRIlS5bMtvI6deqUbWW9DFj7maw6depkkyf/QRZ+2mfevHnQ6XTi+MMPP8x0eS5kqUQnIiYmBm5ubtDpdHb7sc+MEBISgnbt2sHb25v/k8VLRJkyZWA0GvH48WNHu/JCs3//frz77rt44403HO2K3ejVqxcuXryIW7dupTtt7ty5YTAYxMAgiT9n7raz4hqfPn2KXLlyoUSJEnbLM7NER0ejQIECdvvR+KpVq2LYsGGoUKEC3N3d8fbbb9slX0vExMSgUqVKOHbsGGrUqJHl5b0IzJkzB0OGDMnyZ9DFxQW1atXC5cuX05eORR3DZD3ZuULLOA+XL1+Gv78/vv/+ewBpHX2bNm2wb98+B3uWdbwMwpVhrPHkyRO4ubmhYMGC6UrHoo5hGCaHkJiYiFdffdXm/wyQEwkMDER4eDgaNGjgaFcYJsfBoo5hGIZhGMYJ4L0ghmEYhmEYJ+ClWakjIsTGxqJQoUI2fdOMYRiGYRgmJ/HSiDqGYRiGYRhnhrdfGYZhGIZhnAAWdQzDMAzDME4AizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLCoYxiGYRiGcQJY1DEMwzAMwzgBL42oIyLExMSAiBztCsMwDMMwjN15aURdbGws3NzcEBsb62hXGIZhGIZh7M5LI+oYhnEciYmJmDx5MgwGg6NdYRiGcVpY1DEMk+X8/fffGDNmDA4cOOBoVxiGsQIRYe3atUhNTXW0K0w6YVHHMEyWk5KSAgA8SDBMDuDEiRP44osv8PfffzvaFRWXL1/md+MtwKKOYXIA4eHh2LVrl6PdyDAuLi6OdoHJIaSkpODPP//MsglAYmIiXFxccPjw4SzJ3xmIj48HAOh0Ogd7ouTMmTOoU6cONm/e7GhXXlhY1OVghg4dipIlSzrajXSRnJyMa9eu2SWvpKSkbJ+x+fv7Y+7cuZrnoqKicP369Swpt3v37vjkk0+yJO/sQBJ1OWGGPXnyZLu1USb9rFmzBiNGjMCWLVuyJP/Q0FAAwJIlS7Ik/xeVnTt34smTJ452A0DaPciIYHz27BkAICgoyM4eWUav1+PcuXPZWmZGeSFF3YULF+Dp6YmmTZuiW7duYusGAHx8fFC6dGk0a9YMH3zwQbb5tG3bNri4uCAmJibbyrTGX3/9hadPnzrajXQxcuRIvPPOO4p7GhwcnO584uLikC9fPixevNie7lnFw8MDgwcP1jzXvHlz1KxZM0vKDQkJyZJ8M0p4eDgKFCiAO3fu2BRfEnWdOnVCREREusuLiIjINqE1ZswYtGzZMlvKymksW7YMDx8+zFQe27dvR3R0tNnzSUlJAKDoI+yJNLHYvHmzze03u/nkk08wdepUu+U3Y8YMdOrUCa1atUJISAgSExNtTnv//n1s2rTJ5vhr1qzBsGHDLMZ54403UKlSJYtxnj17JkScKdm98j9ixAi8//77SEhIyNZyM8ILKepKliyJgwcP4vjx46hUqRJ27typOP/ZZ5/Bx8cHR44cyTaftm/fDgAZGpAkfH19c8RKhZz79+/j4MGDFuPcu3cPixcvhre3t9X8pIHZaDQCAH777TeUKVMGv/zyS7r8kn6axt4v3iclJWX4G5pXrlyxqy9yzLUbFxcXrFixwmw6nU6HQ4cO2d2fM2fOICEhwebOft26deLz48ePxWdbfzvS09MT77zzTvodTQeXL18Wbf1F2i42Go0wGAyoUaMGSpcurRnnzJkzuH//vji+du2aEEfpQX4vdDqdagv022+/Rbly5dKdr0RKSgq6dOmCb775xiYf7MGFCxfQrl07EBESEhJw9uxZca5q1aqib5fQ6/WKurTE5cuXERUVZbMv169fx/Hjx63G27VrF7y8vNCmTRu7iNsFCxYAAMLCwuDu7o6OHTvanNbDwwPdu3e3Of6XX36J2bNnq8JNV9fCw8Mt5vPmm2/izTffFMdnz55Fp06dLKbR6/V4++2309UXExH0er3FOJL4z4pv7xMRxo0bZ7+JO73gjBs3jrZv3y6Ojx07RuXKlaPGjRvT7NmzzaZLSkoinU4nLDg4mACQTqfLkB89evQgAPTgwQNKTk6mgIAACg8Pp/Xr11NkZKQi7vjx4wkA+fj4iLCTJ08SAFq1alWGypdz/vx5io+PJwBk7hampqaSwWAgIqLY2FiaNWsWnTlzhlasWEF+fn7UuHFjGjhwoNWy8uXLp1nG4cOHac+ePUREwg9bmlOzZs0IACUmJqrSnjhxwmp6iadPnxIA+uSTT2xOY474+HgaOXIk6fV6AkBffPGF2biSr3q9nu7du0dPnz5VnXv48GG6yjcYDOJemaNatWqa9QuAateuTUREgYGBFBQUpDjfvn17m+5Levnnn38IAP36669EROTq6kpeXl4UHBysGV9+ny9fvkxEJNrwzJkzrZZna/t68OABhYSEKMJiYmIIAP355582lQGASpQoYbWs7EK6h5bqwPQcAPrf//5HRETh4eEEgPz9/c2W8fHHH4s8tm3bRo8ePSIA9P7772uWc/36dc18kpOTSa/Xmy0nKSmJAFCTJk2IiOjnn3+mESNGKOLMnTuXANDq1avN5nP48GGKjY01e7569erUuXNn8RkApaSk0JdffqmoSwBUoUIFRdqvv/7a5mcGANWtW9emuFJ8S3nfunWL5s+fn6F+8cqVKxQXF6d5rnz58gSAihcvrvAhNDRU9bwYjUZxDyZMmECvvvqqps+bNm2iO3fu2HSNly5dEm3LXBw5QUFBqjiff/65CJs2bZpmujt37hAAcnFxMZu3xJQpU8jLy4umTJkiyrlw4YJmu/rwww/N6gcfHx+6du2a1fLM8eTJEwJAXbt2zXAecl5oUffw4UNq1KgRJScni7DY2FjS6/Wk1+updevWdP78ec20krAyNVtE3ZEjR+jcuXOKsO7duxMACgoKokGDBonBVKtxSmF9+vShKVOm0PLly2nPnj0EgH7//XcRLzIykubMmWNTXezZs4dy585NBoNBCA+pHH9/f7p16xYREaWkpIjwWrVqKfzRstDQUEX9mmLu4ZPCQ0JCFPlJ4tU0TXR0NNWoUYMKFixIACghIUHTt9u3b9tUH8+ePSMA1LFjR9W50NBQOnLkiGa6S5cu0TvvvEMbNmwQYbNnzyYAtHnzZosdQmJiovBz6NCh4vOwYcMU19KyZUv6+eefiYho+/btFBISQqtXr6ZPP/1U5BUXF0eTJ08mg8FAuXLlogYNGli83qpVqxIAMhgM9OeffypEcenSpVWDflxcHP3yyy9m79/Fixdp7969RETUoEEDatGiheL8xo0bVQOEl5eXyEtqz5Kok5e/cOFCOnTokEh3+fJllag7e/asEOZt27a1eO3y/OU8ePCALl68SB07dqQtW7aIeLly5SIiovv379OyZcto7dq1In1sbCwBULQPrefC3d3dqk/mxHhiYqJC7B86dIhSU1Ot5qfT6einn36i1NRUCgsLE6LG1LeNGzdarB+pjwBAly5donHjxinaqVRWdHS0Zh307duXtm/fbrFvy5UrFzVq1Ii6d+9OO3fupNDQUFq9ejXlzp1bPD937tyh0NBQkTYqKopmzpxJAOiNN96gTp06aZYxZ84cAkBr1qzRrKeAgAACQD179jRbl1K+H330kfj89OlTql+/vqo+K1WqpEhrbgIl1e3mzZvJaDSKcnLnzi3OR0REUHx8PBGl9e9JSUlERPT8+XOKi4tTXW9gYCAdP36cjEajEN+mNnr0aLPXaXrNkpA1pVy5cuK+yfs4S/UPpIm6V155xewYULBgQSIiWrFiBS1cuFA806bxpf7it99+U5T74MEDmjRpkiJucnKyqj8jIsWYZyrqhgwZQi1btqRbt26Z7fMkIiMjyWg0injvvvsuARD9+8cff6xK07JlSwJA3t7etHXrViIimjhxIrm6uop8Vq5cSUSk6Dfnz59P69atE8eSuJVPiiRRJ/m8a9cuAqB4PtPDCyvqdDodNWnSRHMmIDF//nxatmyZ5rn0rtRduXKFANCNGzc0G8Vnn31GQJqA0nrwlixZIuJKYX369BGfpZWNiRMninjSzOPZs2dW60Na4ZKuo169eiof7t27p+g4pGvQ8lduffr00SzzwoULZh8QKbxixYqKvORCd8+ePaLzk1b8JLtx4wY9ePBA5cuYMWOIKG0l7tq1azR9+nTNWdnGjRvN+vbee+8pwuPi4ujx48fUr18/RVkhISG0a9cuMdBYE3WW6lDrvBTWqFEjla/SQLt8+XLVub///puioqIUZVepUkWR99SpU8UKlFa58pUXed4xMTH0448/avr99ddfE9F/ncwXX3xBkZGRBIB+/PFHcnNzE2lq1qxJAKh///5m6yYxMZFGjx6tCpeEf+fOnQkAtWnTRrO+tere0v0wjSetTsjt0KFDqrzM3VMXFxe6desWhYeHU4UKFYQITk5OJm9vbypbtiyVLl2aiNIEpjTBbNu2rch/w4YNIr+UlBRRZkpKiqLz79u3r4h39OhRRRpz91gSN+vXr1c8f3nz5hXHfn5+4vOQIUOIiBTtcdCgQeTr66vI2xZRZ2ryPAEIYfn666+LtFqrZJLNnTuXiIh27txJXbp0IQC0du1aRdk7duygp0+fUqVKlUQ6qf2Zay+22FtvvaVIK63sPXz4kPr06aOYoCxcuFA8G9IEQaojqT+rVq2aqi0CoLfffluE+fj40Pnz58XxjBkzzPqXHlFXuXJlRdiZM2fo2bNnVLZsWUWekhCV+3jx4kVavHgxfffddyJ8woQJmu1A6/pMrUiRIgSA7ty5IybOWpNAQDnhkFZzTcuVt5/p06dr+vL999+Lz1Iblq8cy9u1OStXrpzqWlu1aqXySRLIclu3bp34LF/wkJBWQKUJi7u7O9WpU0fEO3DgAHXs2FEc79+/X0wMbOWFFHWpqanUrl07Onz4sOqcXJT16NGDjh8/blOeOp2OAPOibtKkSZodp4Qk6uQrNObia53bv3+/aNQNGjSgRYsWiUHtyZMnIm1CQoK44VFRUbRhwwZNISl1PHIrU6ZMhkRdnjx5iIjIz89PsZJomk9YWJhYgbC1w5w/f74QorYaEVH+/PnN3ouNGzeK7XDTc/LVtHnz5hFR2kqUVjmm4WPGjFEcHzt2TOS7YMECqz6bC3vrrbdUvsqFlZb17t1bcV2mos6SdevWzWzblHfSWu05MjKSVq5cqUovbcFoXWt62oM5q1y5Mq1Zs4b69OlDer1erOJcv35dcU+9vLxo8eLFFusbSFuB1ipn4MCB4nP37t3p4MGDNvv4yiuvEBHRb7/9pgiXtnxMfYiOjqZPPvlEHO/YsUO0UUl0az1rlStXFp/v37+fqXqVJiqWzPRZ++qrrxSrNXfv3hUr27aWK4kfIE3YWYvv7u6uClu6dKlYgb127RoBaSt8pvEMBgMNHjyY3NzcqGPHjoqVSlvN3PNhel4e9r///U9xXpr0ALD6fJuaNBHQMknUxcbG0r1798gcAKhKlSpkNBpp8+bNYkJQqlQplagzbavy50Iu6uT3RXqt5NmzZ4qJxJIlS2y+znfeecdsO5KQP+9S+IMHDxRjniTqTMc7uUk7GMuXL6eHDx+qdgzMmVzUjR07VrN9ynek5PbDDz+Iz/KFjFq1atGDBw/ERHP9+vV0+vRpVXoPDw9FnyG1pfTwQoq69evXU9GiRalp06bUtGlT2rhxI/Xt25eIiJYsWUL16tWjhg0b0siRI23OMzOiLj4+nho3bkxAxkWdtLIhN2lG+vjxY5H2p59+IiBtG1KKV7hw4XR1EHLbu3evTfHkfmtdgzzMdGZvb5M6cLlNmjRJseWhVe8XL16kESNGmPXb1LRWckzt+vXrdO7cOavxpCVzuZ05c8asr6NGjbKYX7du3SgiIoLu379PwcHBCmGYETMajbRr1y6qVatWpu+P/H0XAHTx4kW73v8OHTpYjaPVmcvvtalQsZddvXpVsapmavKVOQCKWbd8i1iyhw8fml1xfdFMeuUhu0wSg56enhbjnT17VnG8adOmdJeVO3dui6s4REQDBgwwe97apM+ayVfxTG3UqFEKUREbG0vr16+no0eP0rlz5+jMmTOiXVWtWpVOnDhBAGjWrFmqujS9pvT6aW6CnB57/PixZnjHjh2pcePGqomMOTEWEBBgducsM1a+fHkiIpW4ssX69+9vUzxz/X+DBg2obt26irBPP/2UwsLCqFy5chQYGGhV67yQoi4ryIiok15clN4DA9JWtczdqPDwcJo4caLNDeDTTz8lIG2gmDlzJnXs2JG+/fZbAqB4Hyo7TL7VqtW5Ef3XAVgTJFnpo7n61ZrBA6DAwMBMlyuJ7/Sa1uqa/L0QSyZtt0tWqlSpTF1DelcOXnSTtszlJl9hyEp78803zZ6Tnl9ntNy5czvcB1vMlpXB9Jq8/3sRTcs/a2OItH2fU61UqVJiB83eJu2spdeyug+aMGGCVa3Dou5f5C/tyk3+QqU1+/nnnx3e0LPK5O9/OMp69uzpcB/Y2NhePiN6sUWd1jhVtGhRh/vFZl/z8PCwqnVY1JH623lyO3DggM0VLn+ngo2NjY3NOUzrpfgXyUxfO2FzXrOGC1EO+zXcDBITEwM3NzfodDoULlxYce7AgQNo06aNgzxjGIZhGIaxjjXJ9kL+R4nsJqv+cTTDMAzDMEx28cKKupEjR8LT0xO9evVCcnKyCE9NTUXv3r3h6emJIUOG2KUsFnUMwzAMw+R0XkhRd+nSJYSEhMDPzw/Vq1fH1q1bxbk9e/agVKlS8PPzQ0JCAvz9/TXz0Ov1iImJUZg5suL/uTEMwzAMw2QnL6SoO3XqFFq1agUAaN26tUK4WTonZ8qUKXBzcxNm7h9hA0B8fLwdvWcYhmEYhsl+MiXqoqKiMHv2bPzwww+YNGkSgoOD7eJUdHS0+DKDm5sbIiMjbTonx8vLCzqdTpgl3/R6vV38ZhiGYRiGcRTpEnVvvvkmIiIiAAAPHjxA9erVMW3aNAQEBGDRokWoWbMmbt++nWmnihQpIrZLo6OjUbRoUZvOyXF1dUXhwoUVZo5XXnkl0z4zDMMwDMM4knSJupCQEPH+2ejRo1G1alXcu3cP3t7e/2/vzONrutb//wlKUTMtLW5bVbeqWrOQiFKqhrRmqobSKr1fqoa6lFKtDrgUVYqaSkhUBxQxJYRIzWPEPEciIXMiOcn5/P7Ib297n7PPlIQT8bxfr/XK3mt81rDXetazds7G+fPn4e3tjYkTJ+ZaqKZNm2Lr1q0AgMDAQDRv3typsJxSsWLFXOchCIIgCILgTnJ8/PrPP/9g4sSJKFGiBIBsy9iECRMQFhaWa6Hq1auHypUrw9vbG+Hh4ejatSs++ugjAECnTp1w7do1eHt7o3jx4vD09Mx1eSaTKdd5CIIgCIIg3C+aNGniME4RVzP18PAAkP0e2lNPPaULe+qppxATE+NqlobMmDFDd//zzz8DAIoUKYLly5fnSRkKotQJgpCfGTRoEH755Rd3iyEIghspUsSxyuaypa5169aoX78+EhMTcfbsWV3Y1atXH8qjzFq1arlbBJu89NJLTsWbNm3afZYkf/P000+7W4QCz9dff+1uEQoMSUlJLsXv37//fZLk4eHbb79F9erV8zzfsWPH5ir95MmTrfzGjRuXqzzdwaBBgx5oeUWLFn2g5d2PsZNXfPrpp4iPj9f5/fnnn1bx8lypmzRpErp27Yq3334bo0ePVo9eFTZs2ABvb29XsswX1KtXDwMGDLjv5dSsWdPlNCVLlnQqnrPKnyX9+vVDSEiIzfADBw7kKF+FDRs25Cq9s1huMAoyS5YsUc3wO3fuVP3r169vGD8iIsLq0zKlSpVyudycfFFw2LBhOSrnQX29sGXLlob+AQEBut/HzGueeOIJm2F+fn64dOkSBg8erPrZWpBeeOEFl8p9/fXXbYa99tprLuX1oBk5ciT8/Pxshq9bt86pfCpXrozjx4+r9999912u5Hruuees/L755ptc5Tl69GisWrXKZnjnzp1zlb9C7dq1ERkZCbPZjEWLFuVJnp06dULDhg0dxouNjc2T8oDs35otW7as3Tj2/lkyryhWrFiO0s2cORNlypTR+fn6+mLChAk6P2eUOsdfhy0gJCQkEAATEhJsxoGND+hOmTLF4Ud2//e//6nXDRo0IAD27duXXbp0Uf07dOjg8sd7lbwUt2HDBqs4vr6+duUHwMOHD3PgwIGGHweOi4vjY489ZvPjwUb+9erVs/Lr3Lkz33//fQYEBOjSFylSxCquyWSyKeu8efN46tQpw7CpU6eyd+/eBMCzZ88SABs1akSSvHHjBgMDA11u4yeffNKwnq+88orDtO3btycA9uzZ0268Z555Rr0uWrSoyzJq3ZIlSxgXF8cjR47o5G7QoAHLli1r2IfaeCEhIczKyrJbRlhYmJWf5dibOnWq3TwaNGjAzMxMnV+FChVYuXJlu+kcPY+Ka9asmaF/6dKlnW7LN99809B/9+7d3LNnj85vzJgxTuf7119/8fXXX7dbR0u/zp078++//zack4ziN27cmJMnT7ZZxqRJk3T3t2/ftuoPrbtz547dOjkzD2pdx44drfwuXrzoUh5al5GRwdOnT9sMd/bZb9asmbom3Lhxw6mxZs8tW7bMqf51xZGk2Wy2Gd65c2f1ulixYjkup2nTprrxFhkZ6XTar7/+Wr2uXbu2ev3jjz8yMTGRfn5+LFmypM30Sv2M1h57dVecn58fAXDixIkkybp169qNP2rUqFz1ieLeeust3f3s2bPV63379rmc3w8//KC2/8mTJ3VtYDmO/Pz8bOov6pzhMEYBwRWlrlSpUup1SEgIT5w4YdgZ2sVDm15Lv379VP8OHTqwWrVqBMAZM2YYdq5WhjZt2rBXr15WD7tlup07d+r8P/74Y6s4JDl27FgCYLdu3VinTh0rWY3qSFKnWKalpREAvby8rOLevHlTzev06dOMiIhQ2/727dtW+Xp4eNgsUyvPq6++ymnTpvHEiRMkyWPHjvHVV1/l3bt3CWRPcPbqYakYK+77778nALZt25Yk1bZ+6623uHHjRt2kZekiIiIYHR2tlrlr1y41bPfu3VbxDx8+rF6XKFGCALhgwQLDvH/77Te2bNlSvVcURqW9fvnlF8P6NmzYkG3atFH72FZ72utve5MTSd66dUu9d6QYXr161aqc2NhYZmVl6Raixx9/XL3+/fffHcr3559/cty4cYZjcMiQIVZpPTw8WL9+ffVe+0wqStEHH3zAO3fu8NSpU2zevDlTUlKsNhaXLl3Syap1CxcuZGJioq6tOnXqZBg3JSXFSsaxY8fSCG1+lvmMGDHCSqkbNmwYO3fuzKSkJK5Zs0YXlpGRQZKsWLEi+/fvrwt76qmn1DIPHjxo87m0VSdLt3jxYiuZHfXrr7/+auW3d+9efvLJJwTAzMxMVb4nnniCH374IcuVK6fG1T6DRi4wMJA7duxgTEyMzXZW3Keffqq7125yRowYoV5///33vH79uk7ePXv26PJMS0vjuXPnbMrl6+vL48ePO9VW48aNI6BX6lJTU3VxtHONpRs7diyPHj2q3lsqdST50UcfWY3X4cOHc+3ataqfn58fr169qt5rN8A//vij3bbV1nHdunU8f/48O3TowG+//ZZAtoFEISsrS53TFEURyF57lfE9c+ZMkrS7sQ4JCeHnn3/u1NhV3KFDhwzXDu3GyGQykcxe4w4ePEiS/OeffwiA7733Hi9fvswvv/zSKo8pU6awR48eBLLnFS2KwUShQoUKBMDTp09b9ZUR+U6pO3jwIL28vNiiRQt2795dnYgUgoKCWLVqVfr4+LBVq1ZO5+uMUnf+/HlOmTJFtWgFBwerYUYTDpk9YN9//331+vHHH9flqV1AOnbsqFqxpk+fTiDbyqTNT1Ek/vjjD5JkWFiYTeURAD09PdWyZs6cybNnzxruqEkyODiYAHj9+nWmpKQwPDxcJ+uCBQvYv39/njt3jgEBAUxKSiJJJiYmMiIiQlXaFi5cyBs3brBQoUIE7lmhHGEpz9atW/l///d/hrJq4//888828wwMDGR8fLzNcgCwdevWBLItgIpfuXLlSJLHjx9nYmKiWk8AXL16NUnatURZEhISooZplbp33nlHnWhnzZrFJk2aqEodSb777rsEshX6CxcucPz48TSbzTSbzdywYQPNZjNNJhN37NjBxYsXE7i3YFrWd+jQofTx8SEAxsfHEwALFSpkFc9WO61atUq9Dg0NtVlnZfdtlEeRIkXUMW1ZTvXq1dVJkCQHDBhAIHsxPnLkiNUudObMmVb5axXpFi1aqPU+efIkN23apCpMmzZtUtN4eHjoFmLtMzl//nwC4NKlSw3H186dOwmANWvWJEk2bNjQcDwoira2rd5++221LY8cOWLVjllZWepu3BbaNFpL+5o1a5iSkqJT6rRzAUmdxRzIVsKN8lYWIC3KhsxovNt6JrTjxyiukZ+yYNnKmyQzMjJ47tw5w/YpX768GtdsNnPp0qVs0qSJ6qc8D+vXr7fb1pblKgr9559/zoSEBB44cIAA+J///Idk9tygzPskOXHiRJvtpKBY9RU3efJkkjS0yFjmcfjwYaampqoKpPYEyCjt/v37dX7KMxsaGqqLbzTuTSYTMzIyCIC9e/fWhSlzPnlvTQWgjnXANaXOkuPHj1v5aZW6Q4cOEcjevAUFBRG4Z71KTk5maGioTkHu1auXagwwUuoiIyN1yqnWHT58mH/99Zeh3FWqVLFZh6ysLI4ZM4ZRUVGGbRAYGMiMjAxVCXWk1KWnpzM5OdmwLCPynVJ38+ZNdWIeN24cAwICdOFBQUEcNWqUw3zu3r3LhIQE1V27do2AfaVOQdkNWO7oHA3KmJgYxsXF6fzOnTunLgSdOnVSdzvTpk1jenq67hiSJJOSkvjZZ59ZKbPKsZoih9LxlhM5SVWpU3bj48aNc1jnnBAZGcmIiAg+/fTTNge4FlttFxwcrDs6sYx/5coVl+Sy7Kf58+fT39+fZrOZNWvWJACWL1/eYT6WSp3WNG5JXFycGqZYDMaMGaPueg8fPqzGNVLqLly44FCevXv3EoBqCVAYMGAAv//+e6anp7NPnz4EsneTp0+fVo+XSPK1117j8OHDbbbTqlWreO3aNXbs2JFpaWncsmWLYZ8pVkCSnDx5MmvVqsVp06Zx8+bNhnLbajNFqVMUCHtpFcvlrVu31DDFLzU11W76cuXK0WQyqZuaL7/8khcuXGBoaKg67nbs2GGYXtmVK0d2cXFxrF27trobV5y/vz9J8uzZs7x+/TpJqgp9ZGSk3Xawx1dffcWSJUtatYeC8tpHUFCQVVplvK5cuVJn/VDIyMhQN1WWx762ylP8ChUqxObNm3PGjBn8559/1PoXL15cF3/t2rX09vbmqlWrrPJUnkOjZ97Ztho5ciSB7OM/BWVcHTp0SFXq0tPT7eZjVObvv/+uplOUuk8//dQwfVZWlrpuWeapoMz1VatWNcxDsUAatYeCVqm7ceMGr127pov39ddfW6UdO3as1QZ+4cKF/PXXX+22iRGFCxfWyZOYmMgtW7borNS5UeqMUJS6pKQkVakbOnQoSXL37t2GynpwcDAPHDig8zNS6hRGjx7N0aNH68IUo8bKlSsJgCNHjlTjO2vIUNBuMhWUZ9dSz7BU6lwl3yl1Wr744gvdcQyZrdQ9++yz9PLy0p1FW2L5PoninFHqyGyl0JIJEybwP//5j8uDUjmy8vX15Z07d1inTh31YSSdm+xjYmJUjf7MmTOqJaZ79+5WcRWlTpnwxo8f77SsOUFRJByh1NPWBGtLqXOVbdu26Y57FyxYoAuvUaMGlyxZ4jAfRakbNmwYP/74Y4cy7dmzhwcOHNApdYMHDyYA9f03kjxy5AhnzJhB8p41xdlxaXR0pCUpKUlnYbZHamqqziKnXXgVlPeiZs2apfrdvXtXtwt1hK02U1430B7b20p7+vRp9ujRQ2dtatWqFQHY3cX6+/vrrDz//POPzlpI0u6xhvJuj9EC+Mcff3D//v1csmSJlRWMpHpEpih5OR3PWiZNmqRTwDIyMvjLL7/YtEKlpaXZzU+x9Lmq1BUuXNgwvj0LhmWeiuKlWKzI7KO/IUOGsHv37oYbVkvMZjNv376tU+wVpe706dOqNdeRUhcTE8MaNWrYlD0rK4tTpkxx+jkljdtux44d6ngwQjmqs5VHRkYG//3vf3P//v1WZRUpUsRh+bnl5Zdftpmnsg7MmzfPUI5Bgwbx2LFjearUuYKi1Gk3q5Yom2zFIktSjT9p0iTVT3mNyhUsyzSbzYYGiwKr1F25coXNmjWzslglJSUxPT2d6enpbNeunXqObUluLHWOsNxNOSIzM5Nt27blsWPHDMO1Oy5XCAwMNKyPotQp74VMmDDB5bxd4e7du3YnKgVHD3NeKXWW6W1ZYRyhHIVv2LBB9RsxYgQbNGhgN51iERozZoz6cu7JkydzJMODwJ5SpxyraI89XWXnzp2qJUeL2Wx2aKG0NwYUS7SlhSS/0LVrVwLQWVMsX89wN3///beqABlhS6mzZem+cOGC+vqCLZQ8T506lTOhHWCk1FmuI0bYU1hyQk7mL7PZrFNAnc3DSKlr3rx5nit1t27dUo9wLYmOjuZzzz2nOx0gqb47vGzZMpLZGw171nVL8kqpGz9+PAFw+/btNtv1999/t9poXrlyhUD2e3kK1atXd7ltU1JS7G5gFfbu3cu33nrLpby1uPzjw3lFVFQUunXrZuW/fv16FClSBH379sXSpUvx2GOP6cK1PwXg6+uLY8eOoUGDBlb5FCtWLMf/XuyIy5cvIzU11en4hQsXRmBgoM3wnP7GWtu2be2Gm81mAPd+MPp+UaxYMTzzzDMO49WoUQMXLly4r7IY0apVqxyl69+/P9atW6f7mZ5Zs2a5lMeUKVNQq1Yt1K5dO0cyPEhIWvkpz1BuxpCtn9Hw8PDA888/n+N8582bh169eln9tFJ+YciQIVi3bh0qVKgAAAgODs53v5XVvn17xMfHW/2cgsLVq1etfpx9zZo1hnMuADz//PMO+9TPzw/PPPPMA3km/vvf/+LYsWNu+b73oEGDEBwc7FIaDw8P3e+3DRw4EDdu3HA6rZbg4GD1s555RaVKlVCpUiXDsCeffBIXL1608ld+Nkj5pOfjjz/uUpnaeUm5vl9rWufOnZGRkaHTO6pXr241NzZq1AhXr151Ke8SJUo4NVc1a9YMmzZtcilvLW5T6ipXrow9e/ZY+WdlZeGdd97BF198gRdffNEqPDExUf29mZCQEAwZMuS+y2pJhQoV1Ik6P1K5cmUAUCfq+63UOUt4eLih4qCwbNky3L17N8/K6969u9oWOaFq1ao4fPhwrmQoUaIEPvzww1zlcb+ZM2cOhg8fbhg2b948NGnSxOZEfr+pXLkyoqKiDMNKliyJdu3aPWCJnOeNN97QjXcfHx83SmMbWwodAFSrVs3Kr2fPnrkqr3fv3rlK7whtm7/11ltWP+rqTLq8YPHixbnOIzdfESlSpIhzv2t2n6lVq1aetO2DWscsDUlGrFixAl999dUDkMZ1cvzt1/tFQEAAQkND8dVXX6Fly5bw9/cHAPXbrwEBAWjcuDGaNWuGZ555Bi1atHCnuPmSQYMGYevWrXjvvfcAZGv++YGiRYvatZ72799f7ee8ICAgAHPmzMmz/JylXLlyAIwXxIeNihUrYuTIkW4r/+zZs3n6I6XCo4OrSsDy5cvx/vvv3ydp7i/Dhg3D5s2b3S3GfUHZmHt4eKBmzZooXLhwjvpp8ODBqF+/Pho3bgwgd1+SKlGiRI5/8P9+48G83p7kUxITE1GmTBkkJCQ8kF+Wzi+kpaWhePHi7hYjRwwfPhyBgYE4c+aMu0Vxmd27d8PLywuFCuW7fZMVc+fOxfDhw7Fy5Ur06dPH3eIIQq4YMGAAli9fjoiIiHz9CUjBOZKSkhAUFARfX988y/PmzZt44okncvRlnfyO+22zwn3lYVXoALjFypZXiAVZEAQh95QqVSpPFToAqFKlSp7ml58QpU4QHnHee+897NixI88nTkFwJ4/IIZQg6BClThAeccqVK4c///zT3WIIQp4gypzwKCNKnSAIglBgmDhxImJjY1GjRg13iyIIDxz5RwlBEARBEIQCQP7/1zxBEARBEATBIY+MpY4kkpKSUKpUqXzzY7yCIAiCIAh5xSOj1AmCIAiCIBRk5PhVEARBEAShACBKnSAIgiAIQgFAlDpBEARBEIQCgCh1giAIgiAIBQBR6gRBEARBEAoAotQJgiAIgiAUAESpEwRBEARBKACIUicIgiAIglAAEKVOEARBEAShACBKnSAIgiAIQgFAlDpBEARBEIQCgCh1giAIgiAIBQBR6gRBEARBEAoAotQJgiAIgiAUAESpEwRBEARBKACIUicIgiAIglAAeGSUOpJITEwESXeLIgiCIAiCkOc8MkpdUlISypQpg6SkJHeLIgiCIAiCkOc8MkqdIAiCIAjuJS0tDWfPnnW3GAUWUepyyMmTJzF48GB3iyEIgiAI+RKj150GDBiAWrVquUGaRwNR6nLIwIEDsWjRIneLIRRgfv31VwwbNszdYriFK1euwMPDA6dOnXK3KIIg5IBLly6hUKFC2Llzp85///79bpLo0aCIuwV4WJF/uBDuN/369QMAzJ07182SPHjCwsIAAIGBgXj55ZfdLI0gCK5y5swZAEBISAhIokyZMmjYsKGbpSr4iKUulzwI5c5sNosSKVhhNpvh5+cnY+MR58SJE1i9erXdOGazGZs2bZKxUsCJiopytwhWeHh44I033kCjRo3Ue+H+kS+VukOHDsHb2xs+Pj7o0aMHTCaTGhYcHIxq1aqhZcuWaN26tdtkfJCTY+HChTFq1CiH8X777TfcvHkzV2Vt2rQJsbGxucojv7Jz506cO3fO3WLkGatWrUKfPn3w559/6vxTUlLw+++/u0eofI7ZbH4g5fzzzz944403XJ4nSLqcpm7dunj33Xftxlm+fDk6dOiAoKAgl/IWco7JZEJycvIDK2/Dhg2oUqUKTp48meM8PDw88PXXX+eJPLlZI2/dumWY3mQyFfiNSVZWFiZMmIDExMQcpc+XSt0zzzyDwMBA7Nq1Cy+88ILVotWzZ08EBwdjx44d7hFQgysDbN++fUhJSclROcuXL0dsbKxNpe3jjz9G9+7d4evr6zAvs9msHm9Z0qFDB3Tt2jVHMuZ3WrdujRdffBHnz5/PcR6nT5/OQ4lyh/LQWy4co0ePRteuXXHr1i13iJVv2bVrFwoXLpynin1iYiJ69epl9VNJn3zyCXbs2IGYmBjDdBkZGTh48KCV/48//ohChQohMzMTzz//PGbMmJEncioWHO2Y8fT0xJUrV/Ik/wfB3r17c6yUR0VFwcPDA4GBgXkslW18fX1RqlQpp+KazWakpqbmqJx3330Xr7zyCo4fPw4AuHz5co7yUVi2bFmu0isoa6OlZc7y/vbt28jIyFDvY2Ji8NRTT2HBggVWeRYtWhRTp06F2WzGt99+6/RPlMXExOCvv/5yGG/t2rWYPXu2ep+QkJAjxTw1NRXFihVDaGio6nfnzh2MGjXKYf/s3bsXU6dOxbfffutyuUA+VeoqV66MEiVKAAAee+wxFCmif/Vv3bp18Pb21jW+Jenp6UhMTNS5vGDKlCm4ePGiQ2Vu0aJF8PDw0A3WZs2aYdCgQTkq986dO6hUqRKefvppw/D58+cDgNUiUq9ePXTr1s0qrqenp82X0G/cuOGSbHv37kV0dDSA7Ac5ICBAZ111xNmzZ1GnTh1V4c3KyoKHhwdWrVrlkhz2WLhwoXqtXcgyMjKcfmi3bduG2rVro1evXvDw8EBmZiZOnDhh9SJwXuBofGVkZGDbtm2GYcoYMOqDwMDAHG8sLAkKCoKHh4dL7Tdx4kSXNkKjRo3C9u3bAQBxcXHqOHNEeno6unXrphvLe/bsAeBYMVcW1w0bNiAiIkKnSJhMJnTo0EHdGPj7+8Pf3x9r167V5XHo0CEAwKRJkwzL+Oyzz9CoUSOrtvvtt9/U9JcuXcKYMWOsZHO0Kdm3bx88PDx0bZWVlQUg2+oPZFsSw8LCsHDhQixatMhQwSxZsiQmTJhgt6y8ZOzYsfD09MSBAweslM3Tp0/Dy8vL7pxvyalTp1SLtbKQbtmyRRcnKirK5gY3t1iWVadOHZvyf/nllyhZsqRT+Z45c0Z3mrJ69Wq71jmTyYTevXvj+vXrTuWfV5YwW0qdJRUrVkSPHj3U+/j4eABAaGgoJkyYgCZNmiAhIUENX7t2LQ4ePIjx48ejUqVKOHr0KDZs2GC3jK5du+Kdd96x8s/KysKyZctUWXv06IERI0ao4WXLlsVzzz1nN28jrl+/joyMDN2607ZtW8ycOROvv/663bTKfJPjfmA+5sqVK2zWrBkzMjJUv6SkJKanpzM9PZ3t2rXjwYMHDdNOmjSJAKxcQkJCrmQCwMaNG7N+/foEwMzMTK5fv57h4eEcOHAgK1WqRJJ84403rMoDwPr16ztVTkxMDM1ms5pO62zJBYDVqlUz9NcyZswYAuDu3btt5uNsO6WlpREAn3rqKZJkWFgYAbBTp04MDg5W45nNZl66dIkkWaxYMfbp00cN++STTwiAYWFhujxffvll9uzZk6mpqU7JYosrV67o2m/btm1q2Ouvv26zTS35+eefdfkocub1Y7Rx40YOHDjQZt7ff/+9To4VK1bowrt3704A3Lhxo84/JSWFADhgwACHMmRkZPDixYvqfUxMjNV46devHwEwIiLCZj5paWncuXMnSf041j7TRvj7+6txvb29SZJPPPGE020dGhpq9dy0atWKAPjnn3+SJE+cOMFOnTqxWrVqHDduHEny1KlTBMAdO3ao6SZNmkSSjIyMVP369etHkly4cCEB8JdfftGV/9hjjxEAP/zwQ6amphKA2g4k+eabbxIA4+LidOlatGhh93nv2LGjlZ9lPOX51j5/I0aMIAD+/fffJMnt27cTAMePH29znCn+MTExXLVqFUly9+7djIqKUuNkZWUxOTnZsA+2bdvm0rNrr9579uwhAH7yySc8fPgw9+/f73R+JLlv3z4C4IgRI3Rxnn322Rw9vxcuXOD69eudLt/oXku9evUIQJ3zHeVbpUoVq3y//vprAuCGDRt08Q8dOkQAHDJkiFN5P//88w7jOcPGjRt1cil1r1GjhlW7FCpUSL0/d+4cAdDX11dNt2jRIjVunTp1GBISYjVeoqOjdeX//vvv6jpmWabC4sWLdW2mlTMzM9Nmn926dYsAuHXrVsO6h4eHW633xYsXJwCWLVvWbrvt3LmTADh27Fi78WyRLy11QPYxQd++fbF06VI89thjqv8TTzyBokWLomjRovD19cWxY8cM048bNw4JCQmqu3btmt3yNm/ejJCQELtxqNl5UKNF+/r6onbt2liyZImVpSwtLU3deVji7++PadOmWfnfunULlSpVwi+//GJXHqN87dUzPj4eKSkp2LVrl64+ly5dsvpnDMsXr1euXImNGzfi559/RkpKihpX2f1ER0fjyJEjOitHy5YtcfjwYQDAnDlz8Nxzz2HWrFlIT0/XWeFosaNT/p46dQr+/v547bXXbNapS5cuVv8dGh8frzPLW1o7SKo7XeUdo4yMDNWaYQta7JyMdqBpaWnIzMxEREQEIiMjcfHiRbRp0wbp6ek28924cSM8PDyQkpKC69evo2PHjliyZIlh3EmTJmHs2LF25VDuO3bsiP/+97947rnnYDKZkJmZCQCIjIzUxY+Pj7d6B2/kyJF4/vnn1fv33nsPLVq0AAB112zZHkZ89tlnaNWqFS5evKjzd+UYOy4uDsC9Y+Z58+bBz8/PMN7MmTNhNpsN+1KxqCpyf/bZZ9iwYQOuXbumHnVEREQAgO59XcUiqoQBjq0PSnhWVpZ6DK7dtdtqO6PjWpPJpJ40aI9zgOx3YLVkZmZi+vTpAPTH8j/88AOA7HeSZ8+ercpnJEdsbKzuiKh///7o06cPzGYzWrRoAS8vLzVs0qRJeOKJJ6zyuHPnDtq0aWP17AHZc/uBAwewePFi1c/oBX+tlfWbb75RZatfvz4aN25sFd8eSj1TU1PVa5JqPY8ePeowj9mzZ6sWzUaNGsHX11fNKzg4GD///LNT/6jg7++PpUuX6vwKFcpeih3NQQrKazhr1qxxKj5wb0yeOXMGx48fV58rILtdlLJJIioq6oG8f6qsYUo7XrhwQZ2bLctX4pw8eVJ3AqaQmJiIZcuWITk5GWlpaejSpQuGDh2qS7t7927s3r1bTaOsE5anF3/88YfVCaGWCxcuAAD+/vtv1e/UqVPw8PDA9evXVdmV9c9IVg8PD/z44482y8jxP5TkSBW8z2RmZrJjx47cvn27VZjWgtS7d2/u2rXLqTwTEhLsWqDw/zXy+Ph4JiUl0d/fnwsWLCCZbbXo168fhw8fTgBs2rQpX3vtNQLQ7d4VZ7SLUMqoV68eExISuGTJEl1YcnIy3333XSYkJPDkyZMEwEGDBqlya92ECRPUnfaaNWt08lt2qT2ZgoODefv2bQLgxIkTGRAQoAvfv38/jx07ZpU/AI4ePZqHDx9WLZaK0+78Fafsamy1ieL++ecfktRZwCzjzp07ly1atOAHH3ygS29Z51KlSqn3nTt31uX10UcfEQDPnj2r83/zzTftjqGffvrJSl7tuFHKbtOmjZX8R48e1eVlMpkYFxdHf39/9uzZkwB4+fJlPvPMM4Z1t+xPratbt65qBSXJHj16GO5ilbFkWU8lzoIFC+jt7c2oqCiWK1dOV3b16tUJgB06dCAA3rx5k3379iUAnjlzhiTZuHFjdawpaHfbWqeMK1toLXUAVCuj1inWPqPxYuQ8PDwIgL///jtJslOnTrrwq1ev0s/PzzDt7NmzGRQUpN73799fF7548WJGREQwMjKSY8aMYdGiRQlkW5sXLFhAINtSqNC2bVvduLHXv0rbh4aGqv1SokQJDhs2TM0HgGrNUtwLL7xgM9+///5b158AaDKZ7LabYmnQjou6devq7s1mM8PDw63mxZiYGG7fvp3Xr19no0aNdP626q3NV7GovfPOO7r+8vT0tLJ2Wtb58OHDqvUaAGfNmsVJkyapllvF/fTTT7x8+bJhXlFRUTqZlOtJkybRbDbr8lHWJOV+0KBBnDVrllXd5syZo8quPDutWrXizZs3mZKSYvPZMJIDMLbUnTx5kh9++CEBcOjQoYyLizNsXyDbgg+AlStXJgB++umnBMDNmzdz/fr1PHbsGGNiYgiA06dPN1xLy5Qpo1pDN2zYoJPLUmbttYeHh1V9FGs2kG2py8rKUu+V9jJyQ4cOZXJyMgHwjTfe0I0fxS1cuFD3vHTp0oXXr1/X5WHUTleuXCFJq/X02rVrnDZtGoHs+eX48eO65xAAH3/8cStZFUveiRMneOPGDcbHx6unBJ999pnNMWCPfKnU+fn5sXz58vTx8aGPjw/XrFnDwYMHkyQXLVrERo0a0dPTk6NHj3Y6T2eVOqNJ5a+//rLqCFvxbTntg//iiy9albFixQp1YlEWD+0EZsspD5DWT6nrsmXL7KYNCgqyOpq01Qau1tcZ17p1a929cqRitIArxyevvPKK6qcc9WofOq2su3bt4q1bt2y2o6IYW9Z1yZIlnD9/vppfZmYmBw0apB595aSd1q5da3O8NW3alADUSdAoX5KMjo62W36NGjVIUlUStU5RwIB7St2QIUP40ksvWcV9+umn1esLFy6QvKfUKW7evHnq9ZkzZ7h582b1vkuXLjx58iSTk5NtKnVHjx5V219ZwNLT09W6KoqQPXfy5EmStBpHtlzhwoUJgOvWrbPZV8oRr6Xz9PTkrl27bOY9ceJEp2RQNi6K4j99+nRVkTDawFk6o4VBcb169bLyW7x4sbpJ1DqtgqY4ZcF2xsXFxTEiIkLd3JrNZi5atEgNb9CggdN5xcbG2gwbOXIkSfK5554jAL799ttqWPv27QmARYoUsZrPjx07psYrVqyY07IodbE8BtWGK8djitPOSUD2ptHZOXPgwIEkafUcNm3a1KpOc+fO1cVRFBdLt2rVKtatW5cnTpxgmTJlVP+hQ4daKdskeeTIEZ1f6dKlCcBwgzl48GDd/dKlS3XjWvFPSUnh+vXrCYBTp05V/bWvRWjjFypUiN99953NdpozZw7XrFnjVJt6e3urbfP666/b3KxYuldffVW9/te//mXVTop84eHhug0eAK5evZoVKlQgkK2YBwcHO1Vm2bJl1dczFKd99SMn5Eul7n6QU6XO3o7AFafdZVi6n376SafUKf7KImTPKe/Qaf20E5o9t3PnTrVcey49PT1P2sAZ5+npyQkTJjj14Fk+dCR5+PBhqzBbioXlZKzko1wrirjlLs+WszeOgHvWuh9++MGlNnE0RrUuJCTEZn0Vpyh1zo4R5f0QrdMqBZ9//rlh2o4dOzqUBcieEJXJXmkjZ2SbMWOGTpFw5BTrWatWrQw3Do7c7t27XU5jTw6tU5QWdzoja74tpzyHygZ3ypQpOS7X6JnVukuXLqnXltZVxb311luMi4vj5cuXCYA+Pj65aov27duTzH537sKFCy6nd3YMA+Dp06dt5nH79m31vXEjRdyeGzhwoE6hNVLq+vfvr55cKK5kyZIErBUbV/uxYcOGBGxvlM6fP+903oqi6axTTqAAMDAw0Kk01apVsxmmteJt377dylL/66+/6u5d2dTYc3/++ScPHDhAkpw3bx5PnTrlUNcRpe7/kxcdYM85u1tQdp+uOO1OCIBqbnfkZs+e7VQ8o+PE/Obyqg+1+WzatMmltBkZGXbDu3fv7vRRodYFBATojn/ywikvMTtyyisHD8r9+9//vm8Kjj0rlzNuxowZD7QtHgZXpUqV+16G8jK7I/fTTz85bc253y4v5iPl2A5wTQGy5YYOHco6deq4vW0etHPWMGO02VKc8g9UwL3jaXuuVq1aeVoH7dzjCFHq6Pw7OQXN5fXAc6f7+OOP8ySfq1ev5jht7dq13d4O4sSJK3jOlrVL3INxzr5e8SCcIzzIAv7zzP+fxMRElClTBgkJCShdurQuzM/PD3369HGTZIIgCIIg5FfKly+PO3fuuFsMAHD4qwP59idNHiS2fnJEEARBEIRHm/yi0DmDKHXQ/9aMIAiCIAjCw0i+VepGjx4Nb29v9OnTR/dDg5mZmRgwYAC8vb3xySef5ElZD+oj34IgCIIgCPeLfKnUHTlyBFFRUQgJCUHt2rXV7yEC2V8qqFq1KkJCQpCammr1C+s5QZQ6QRAEQRAedlxS6o4cOYJLly6p9ytXrkTz5s1RrVo1eHl5ufTJEnvs27cPbdu2BQC0a9dOp7jZC9OSnp6OxMREnbOFKHWCIAiCIDzsuKTUDRo0SP1W3uLFizF48GA0bNgQn3/+ORo1aoQPP/zQ5jcrXSE+Pl79D9UyZcroXlK0F6bl22+/RZkyZVRXrVo1m+VZfvdNEARBEAThYcP2F2sNOHPmDGrUqAEA+Omnn/DDDz9g8ODBanijRo0wdepUDBw4MFdClStXTrWsxcfHo3z58k6FaRk3bhxGjhyp3icmJtpU7JSPIwuCIAiCIDysuGSpK168OGJiYgAAN27cQJMmTXThTZo00R3P5pSmTZti69atAIDAwEA0b97cqTAtxYoVQ+nSpXXOFlOnTs21zIIgCIIgCO7EJaXurbfewvz58wEAPj4+un9gAICAgAC88MILuRaqXr16qFy5Mry9vREeHo6uXbvio48+AgB06tQJ165dg7e3N4oXLw5PT89cl1e1atVc5yEIgiAIguBOXPqiRGRkJJo3b47q1aujYcOGmD9/Pho0aICXXnoJZ86cQVhYGP744w+0b9/+fsqcI+x9UWL37t3w8fFxk2RCfqdixYqIjY11txiCIAjCI06eflHi6aefxpEjR+Dp6YktW7aAJPbv34+tW7eiatWq2Lt3b75U6BzxsHwpTfv+opAz6tWr53KayMjI+yBJ3lOlShV3iyAIeULNmjXx5ptvuluM+8b+/fvdLYKQx/j6+rpbhGwcfh22gJCQkEAATEhIsAoLDg52+0d6jdzcuXN19ykpKU6l+/LLL90ue351r732mnpdvXp1p9KQdLvcijt06JDNsA0bNjhMX6RIEbfXwRlXtmxZt8twv9ymTZtshg0ZMsTt8j0o16dPH5tha9euZd++fZ3Oq0OHDm6vjyvOaE7517/+xUuXLrldNks3duzYPM1v586dTsdt3769lZ+HhwcBcMCAAVZhxYoVc1s7denSxem4/fr1s/JbtmwZMzMzHaZ1hCh1zDulLjU1ld98802eDRLy3oP/0Ucf8e7du7pwT09P/uc//7FKd+LECbv5/vbbbzbDWrVqxRkzZjAuLs5uHkeOHDH0b9KkCQGwdevWXL16tWGcdu3aqQprw4YNdXW83w/eq6++ql47q/xq+8EZ17ZtW5faTOvq1avnUJadO3fy7bfftgpLSkpyKNeWLVucrsfgwYNZqVIlm+HNmzfPcX1mz57N7777zma6qlWrsmnTpjq/O3fu2C3r9u3bhv75bZNDkv7+/oZhX331ld20LVq0yHN5AgIC1Gt7c4Ole/PNN10u66WXXlKvbc0xycnJJMn33nvP6XyNFn9Hrl27drlqNyOlwpUxYOn33Xff2ZxrbM0pALhx40abYYsXL7YZVqVKFWZkZDiUdeHChXbDe/bs6VLdo6KieODAAXU8vPPOOzbjpqenc9CgQTo/b29vArBaDwFw1qxZPHnyJL28vKzawNmN4vTp0638SpQo4TCdPaVu8+bNDvtfwZmxYw9R6kgGBQU51dkdO3Z02NixsbE2w59//nkC4KhRo9isWTO2atXKKs6rr76qTlAk1UV11apVNJlMajwfHx9VfsWvdu3aBECz2az6devWTTfg9+3bx9OnT6t+lgvriRMn1HwPHjzI8PBwXbgyuZDkCy+8oAv766+/eOXKFQLgJ598QrPZzHPnzqnhykIWFRWlLh7aB4gko6Oj1XtFybO1eLz33nsMCQlhnTp1OHfuXIdKjdK+hw4dYkpKCn/88Uen+l3bxs7Gf+yxx9T7IUOG8PDhww7zWbZsGbt27UoA7N+/v90Hev369QTAqVOn8tlnn1XDbCnSAJiWluZSXSzHl6VLTU3V9U3JkiUZHR3Nbdu2sWXLlgTAZs2aMT4+3um869SpQwB85plnmJqaqgvTjmtb8oaGhqrKIEmeOnWKmZmZVjv4J5980iq95eJh5JRn2MhFRETYDPvrr7+s6t6tWzedkgPolbpy5cpx1apVVnWMjY3lp59+6lDWypUrW+VvqSj99ttvun6w19+WCr4tRSokJIRbtmwxtDpp5x6SLFSokC68W7duavvYs+SZzWauWrWKq1evZlBQkKHlw5Fbu3aty2ks+8KybosWLXKomJ8/f54k+X//93+q39atW9V6L168mGvWrNGlGTBggNX6U7RoUQKwa93btm2bzbCZM2ca9ve1a9cIZCsyJpOJP//8s936JCUlcejQoU63W0xMDG/cuEEA7Ny5s5UMDRo00LXxwIEDdeGKwpaenq4bNwCYlZVlNbcsWrSIFStWdGm+tzT0lCxZ0m6alStX2lXqjh8/bnfsKH5a/xIlSjAwMFAXp1SpUnREvlPqDh48SC8vL7Zo0YLdu3dnRkaGLjwoKIhVq1alj48PW7Vq5XS+9pQ6xRw8btw4q4YuVaqUej1p0iSeO3fO5oNCUreA9e7dm+PHj1fv/fz8CIDff/89SRoOgj59+uhkS05O5pUrV0iSWVlZarxPPvlEjWM5KLR+I0eOJACuXr3aMFx7PXToUMO2u3v3LidPnsz09HSrMMUK0qlTJ9UvICCAqampduVbt24dAWuljiR9fX0JgDdv3iRJm7vUtWvX6vJUdp1GyrLi6tatq8afN2+e0w+5cq09Eurdu7dV3EKFCpEkMzMz1ePQzz//XC1Tu0hbKggrVqxQlboVK1bYlIWkqiRYKnVRUVEEshcYrcW2d+/eVv3hTL0t42vb1rI+2jFmNpv57LPPMjAwkGazmY0bN1aV9Pfff1+N9+6773LLli185ZVXCEDtw6efftqqbJLs27ev2m6KVdhS3szMTKvnXDuGIiMjGR8fz4yMDJ01cNu2bVy+fDlNJhPT0tLYvXt3Xf7Hjh2zadmw1bYvv/yy1RiyRBv/m2++YVpaGjMzM0lStymyTKudDxS3fft2Ll68mLdv32ZSUhL37dunCx8zZox6/cILL6h5DRs2zEpOS9e4cWPdvaLUacfx888/b7NuRu1Qt25dXfiNGzd0YwPItrRa9oXZbNaVk5CQwA8++IBA9jztzPg+c+YMAeOjMGefD2f6tHz58rp77Zpmqz5Hjx4lkL0pAsCBAwda5Ws2m3n9+nWS5PDhwwlkKxfaOFqlQNv3APi///3Pbh/Vq1ePJLlgwQKrOMrzqq17ZGSkWv7KlSt1GxmtS05OZmRkJIF7691///tfNTw8PJyzZs1ijx49SJLvv/++Lv3o0aMJQGfkSE9P55kzZwz7YOHChTbH46pVqzh06FDd2DaK60ipu3jxorqeG1mAk5OTeevWLXXTSmbPU126dGFwcDBv3bqllqucXvXv35/bt2/X5TNhwgSrsWY19hzGeMDcvHmTKSkpJMlx48YxICBAFx4UFMRRo0a5nK8zSt348eNJUrfziYuL46JFi/jaa6+pEy1JhoWF8dlnn+XWrVsJgJ999pmuHCUteW9wKFaUadOmkbyn1M2bN0+1JCg7ZyO0lgqtUvfbb79x1apVurhKPGWC27Rpk1V4hw4ddHFzgslk4htvvMFTp07ZjGOUv1ap8/Hx0YV36tSJABgdHU2S6jsdpUuXVvNSrE6W/O9//+P169dtPnyvvPKKGjc1NdWp4yxtHZKTk9Vr7bEVkG1d0k7Op06dIgAuX77cqj2qVKnC5ORkneXi119/VRevP//8U/VfsmQJH3/8cV0bhYWFqWm2bdvG9u3bO932RnWMiYkxrDdJVqtWTTepWIbPmjWLQPamJacolomsrCyOHj2aBw4csJJVYcqUKeqz8sUXXxAA27RpYzf/pKQkNm7cmE2aNLEKUzZe27dv1/mbzWa1P2JjY1V/RR7tQmQZ1qVLF06fPp2JiYmqorJ//37DNlLSfP755+rRo5aNGzcyLCyMoaGhNtPaeoYVpU5ZKJQFEdArdfbyVJylUqccu129epVXr15ly5YtrdrwyJEj6hxp+SyR1I1zSxSl7vz58+pxnb25SjnimjRpkpUya+TOnj1LAFbv7j311FMO0xrVxVYbWh4vmkwmNZ5iPbLk2LFjBO5tXD788EOS1M2BWkwmk6rg7d27V41z48YNdUNjqdQtWLBAJ2uVKlXUfENDQxkTE0OSnD9/vi6dsibbqrtWaVXmKa1T5sg5c+bw9u3bJKkqg3PmzLHKTznmnj59Ovfs2UOTycRLly6pck6dOtUqjbbsI0eOqH7a+Va7Fmg3SApambVKnVZx7tu3r6qQKev5xYsXbT6XV69e5S+//GIor5bQ0FCaTCZdXwLQ6SC2yHdKnZYvvviCv//+u84vKCiIzz77LL28vPjDDz/YTHv37l0mJCSoTjEpGyl1ypHp0aNHVb82bdrYnDy0KPlu2bKF5D2l7o033lDjKB1iS6mLjIxUjzYcoeQ1fPhwh/Fq1aqlKnWbN2/Whd++fZt3797V5Xm/OHDgAHfu3KnzU5S6adOm6ayRJNX3vhTLoMlkYkREhO49JEfYmojr1Kmji2d5xOfM5G0pQ7du3Thq1ChVCdVy+vRpq1347t27deNwzpw56mRx8+ZNTpw4kWazmYsXL1aV15SUFPXYRtuulnlbMn/+fPbr18+wbb777jvevn1bbWdbE5HJZFLHeVhYGOfOnatTTpRF20jpyC1G8ihK5I4dO9Rn96233spxGcuXLyegf/XAGZksr43unWHFihWcNWuWS2ksywPAmjVrWoWHhoYSAHv16kUAup2/I6XO39+fvXr14rp163jixAn1GOzGjRs8d+4cb9++rbOCOCOncv3yyy8bhmlRrExJSUkks+daxbpuhBL/yy+/tGobI6dYiyZPnsxbt26plnflPeWaNWuqcRUFVrupsyf7smXL1LC0tDSXF2bFyu7p6Ukg+1UUhbi4ON0mwxmU+USR4fXXX1eVy6ioKMbExKiWTkuWLl2qpvvXv/6l+tevX9+lufi5556zGV95bcfS2kbe2/ApCmBusVVPW88yoLe2GsUlqR7np6SkqCcuH330Ed97770cy2o2m7l8+XImJyfbNGRY1SPHpd1nrly5wmbNmlkdvyYlJTE9PZ3p6els164dDx48aJjelgneSKkzIj09nfHx8S7LrZzzK7sg8t4AiImJYZs2bdTF/48//iCQ/W5SxYoVnXpA/vnnH6eVun//+9+qJcNSqdMyfPhw1bz/oFAm1PDwcJfSObtoHj58WI179uxZRkdHs3379ty1a5dhnuXKlbOr1G3bto1hYWEks9/705rLc8uiRYsIgOvWrcuzPO2xYsUK/vrrr1b+L774IoFsi9uwYcNcyvPy5ct5JZ6OWrVqWfV5RkYGlyxZQrPZrCp1tiyVzmA2m10ah+PGjVOtr3mh1OUG7TitVauWVXhaWhrbtGmj659ffvnFoVLXtm1bw7y0G9+cyElmz2Ha5ycsLIz79u3LUb5aTCYTx44dy8TERJLZpz6Klaxw4cIEwD179ljJoig3ymKvVe4BsEKFCkxKSuK2bdtIku3atVOfH3v9baQEOKvUmc1mfv3114yMjORLL71k9yTEWcxmM0+cOGFz7rp79y7Pnj1r5W8ymfjDDz9YyR0XF+eUXNpNR06fDa11M7dkZGSor/ZosafUWb4LOn78eHU85DfcptTdvHmTzZs3t3K3b99mQkICW7RoYai1a/npp59smjJdsdTdby5fvqxaX2zhrFK3f/9+l5S6iRMnErhnSXzYcWXRnDx5stW7hEbcvHlT9594165d0/3H5P3GZDJx3rx5upd83UFqaqpbng97mM1m9d0wI5R3WD/44IMHLFk2RgtBpUqVHnj5yvPuLJ07d2ZwcLBhmNaKn1coyrk7OHToEEeMGGGo1GlRLLZRUVGqn6LU2cKRUqftk7Nnz3LkyJEOresFjejoaEZHR6v/4JBfuXDhAnfv3q3eW/at8qpOfiffSZiZmcmOHTtavZuhoF10evfubWh5sZXOXUqdMzir1CnvlowYMcJuPGVCUd6BCgwMzCtR3cr9VLQs87569arVsbGQ/9i8ebP6Hu6D5vz587pj8djYWNVS9CDQ/rNO7dq1H1i5rhIdHZ0n1ricovzDmD2ljqTV+gCAFStWtJmvt7c3p0+fbhiWlpZm+M9ljyq3bt3i+vXr3S2G01iOk9TUVPU9w/xMEeQzAgICEBoaiqSkJHz11VcYOnQoevbsiY8++gg///wzAgICsHDhQhQpUgTNmzdHixYt3C1ynlC6dGmnPkVVv359fP755xg9erTDuCRRo0YNAMCTTz6ZaxnzA3Xr1sXx48fvS94hISEoVqyYel+tWjVUq1btvpQl5B3t2rVzW9nK86VQoUKFB1r+5MmTcf36dYSEhKB169YPtGxXePLJJx+KOcjyE5KO2L17t82wxx9/PLfiFCgqVaqETp06uVuMHFO8eHEUL17c3WI4xKVvvz7M2Pv2a37g0qVL2LNnD/r27Zsn+Xl4eKBBgwY4cOAAjh49mqPPY+VHkpKSEBcXh+rVq7tbFEHIN0RHR6NChQooUiTf7dPzBUFBQWjVqhVu3rwJs9mMIkWKOKVkenh4oGLFioiJiXkAUgr5iTVr1qB06dIP3adPRakroCxduhRt2rRB1apV3S2KIAjCQ4kodcLDhmzrCijvv/++u0UQBEEQBOEBUsjdAgiCIAhCfuWDDz5wtwiC4DRiqRMEQRAEAx6Rt5OEAoRY6gRBEARBEAoAj8w/SpBEUlISSpUqBQ8PD3eLIwiCIAiCkKc8MkqdIAiCIAhCQUaOXwVBEARBEAoAotQJgiAIgiAUAESpEwRBEARBKADIT5rg3j9RCIIgCIIg5Fcc/bOnKHUAYmNjH4qPTQuCIAiC8Oji6FOnotQBKFq0KADg2rVrj8R3YQsSiYmJqFatmvTdQ4j03cOL9N3DifTbw0+pUqXshotSB6imzNKlS8tAf0iRvnt4kb57eJG+eziRfiu4yD9KCIIgCIIgFABEqRMEQRAEQSgAiFIHoFixYpg0aRKKFSvmblEEF5G+e3iRvnt4kb57OJF+K/jIZ8IEQRAEQRAKAGKpEwRBEARBKACIUicIgiAIglAAEKVOEARBEAShACBKnSAIgiAIQgFAlDoAo0ePhre3N/r06YOMjAx3iyP8fw4dOgRvb2/4+PigR48eMJlM8Pf3h6enJ1q1aoVr164BAMLDw+Hl5QVPT09s374dAJCcnIy3334bXl5e+O6779xZjUea1atXo1KlSgAgffcQERwcjNatW8PHxwd//fWX9N1DgNlsRv/+/eHt7Y0WLVrgwoUL0m+PInzEOXz4MPv06UOS/Prrr7lq1So3SyQo3Lx5kykpKSTJcePGMSAggI0bN2Z6ejr37NnDDz/8kCT59ttv8+zZs0xISKCnpydJcubMmVy0aBFJ8s033+S1a9fcU4lHmKysLHbp0oX16tVjRkaG9N1DQlpaGjt27Mj09HSSlL57SDh06BB79uxJkty6dStHjBgh/fYI8shb6vbt24e2bdsCANq1a4fQ0FA3SyQoVK5cGSVKlAAAPPbYYzh79ixefvllFC1aFM2bN8eJEycAADdv3kTNmjVRunRpVKhQAbGxsbp+bdOmDcLCwtxWj0cVPz8/dOvWDYUKFcK5c+ek7x4SQkNDUbx4cXTq1AmdO3fGgQMHpO8eAqpWrQoAIIn4+HhUqlRJ+u0R5JFX6uLj49Vv4JUpUwZ37txxs0SCJVevXsX27dvh5eWl+15hVlYWgOxJTEHpQ+lX95KVlYWAgAD07NkTgP45U8IB6bv8SHR0NC5duoQNGzZg8ODBmDx5svTdQ0DFihVRqFAhvPTSS/jss8/QsmVL6bdHkEdeqStXrhwSExMBZC885cuXd7NEgpbExET07dsXS5cuxZNPPqn2FQAULlwYAFCo0L1hrPSh9Kt7WblyJXr06KH2jbY/AOm7/EzZsmXh5eWFokWLolWrVjhy5Ij03UNAYGAgihcvjoiICKxbtw6zZ8+WfnsEeeSVuqZNm2Lr1q0Ash+K5s2bu1kiQSErKwt9+vTBF198gRdffBEvvPACwsPDkZGRgb1796Ju3boAso9pz507h8TERNy5cwcVK1bU9ev27dvh6enpzqo8coSHh2PFihVo164dzp07h4ULF0rfPSQ0btwY4eHhAIAjR46gbdu20ncPCeXKlQOQrZjHxsZKvz2KuPWNvnzCqFGj6OXlxXfffVd9OVhwP35+fixfvjx9fHzo4+PDNWvWcPXq1WzatClbtmzJq1evkiRPnTrF5s2bs2nTpty6dStJMjExkb6+vmzWrBm//fZbd1bjkadBgwYkKX33EPHjjz/S29ubPj4+vHDhgvTdQ0BmZiZ79+7NFi1asEmTJty7d6/02yOIfPtVEARBEAShAPDIH78KgiAIgiAUBESpEwRBEARBKACIUicIgiAIglAAEKVOEARBEAShACBKnSAIgiAIQgFAlDpBEARBEIQCgCh1giAIgiAIBQBR6gRBEARBEAoAotQJgiAIgiAUAESpEwRBEARBKAD8P0oqhvIhrYhbAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADawUlEQVR4nOydd3gUxRvHv0Ek9AjITyK9SRMBESkhNAUBKQKCFAuiUpRe1AACClJFEKT33jtSQgsJhN47CRAIJaRf+iW5e39/xB13b/dKkkuOHO/ned4nt7NT3p2dnfnOzN7FhYgIDMMwDMMwTI4ml6MdYBiGYRiGYTIPizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOgMNFXWxsLOrXr4+CBQvi+vXrinOpqano3bs3PD09MWTIEBFeqFAhNGvWDM2aNcO1a9dsKoeIEBMTA/4HGgzDMAzDOCMOF3X58uXD3r178emnn6rO7dmzB6VKlYKfnx8SEhLg7+8PAKhSpQp8fHzg4+ODmjVr2lRObGws3NzcEBsba1f/GYZhGIZhXgQcLupy586N4sWLa547deoUWrVqBQBo3bq1EHX37t1DkyZNMGDAACQlJWmm1ev1iImJURjDMAzDMIyz4nBRZ4no6GgULlwYAODm5obIyEgAQGBgIHx9feHu7o758+drpp0yZQrc3NyElS5dOtv8ZhiGYRiGyW5eaFFXpEgRscIWHR2NokWLAgCKFSsGAOjatSsuX76smdbLyws6nU5YcHBwtvjMMAzDMAzjCF5oUdegQQN4e3sDAA4ePAgPDw/Ex8fDYDAAAHx9fVGpUiXNtK6urihcuLDCGIZhGIZhnJUXQtS1bdsW3t7e+O6777By5Ur069cPANC+fXsEBwfD09MT+fLlQ8OGDREQEIB69eqhSZMm2Ldvn+JbsQzDMAzDMC8rLvSS/MZHTEwM3NzcoNPpeNWOYRiGYRin44VYqWMYhmEYhmEyB4s6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLCoYxiGYRiGcQJY1DEMwzAMwzgBLOoYhmEYhmGcABZ1DMMwDMMwTgCLOoZhGIZhGCeARR3DMAzDMIwT4HBRFxsbi/r166NgwYK4fv264lxqaip69+4NT09PDBkyRITPmjULHh4eaNeuHXQ6XXa7zDAMwzAM88KRYVH3+PFjjBkzBs2bN0e1atVQvXp1NG/eHGPGjEFwcLDN+eTLlw979+7Fp59+qjq3Z88elCpVCn5+fkhISIC/vz/CwsKwZ88enDhxAj169MC8efMyegkMwzAMwzBOQ+6MJDpx4gTatGmD0qVLo1WrVmjVqhWICKGhodi5cyfmzp2L/fv3w8PDw7oDuXOjePHimudOnTqFdu3aAQBat24Nf39/REdHo1mzZnBxcUHr1q3x1VdfaabV6/XQ6/XiOCYmxqwPZ8+exZIlS6z6yjAMwzAM4whq1aqFgQMHWoyTIVE3bNgwfPvtt5g1a5bZ80OHDsW5c+cykr0gOjoahQsXBgC4ubkhMjJSM0yLKVOm4Ndff7W5nKtXr2bKV4ZhGIZhmKzCzc3NapwMibrr169j7dq1Zs/369cPCxcuzEjWCooUKSJW2KKjo1G0aFEUKVIEgYGBijAtvLy8MHz4cHEcExOD0qVLa8aVVhsZhmEYhmFyKhl6p87d3R3+/v5mz586dQru7u4ZdkqiQYMG8Pb2BgAcPHgQHh4eeO+99+Dj46MI08LV1RWFCxdWGMMwDMMwjLOSoZW6kSNHon///rhw4QJatmyJN954Ay4uLggJCcGhQ4ewdOlSzJ492+b82rZti8uXL+POnTvo168fTp06hUWLFqF9+/bYuXMnPD09UadOHTRs2BAA0L59e3h4eKBIkSJYt25dRi6BYRiGYRjGqXAhIspIwk2bNmHWrFm4cOECDAYDAOCVV15B3bp1MXz4cHTr1s2ujmaWmJgYuLm5QafT8aodwzAMwzBOR4ZFnURKSgrCw8MBAK+//jpeffVVuzhmb1jUMQzDMAzjzGRo+1XOq6++apf35xiGYRiGYZiM4/D/KMEwDMMwDMNkHhZ1DMMwDMMwTgCLOoZhGIZhGCeARR3DMAzDMIwTwKKOYRiGYRjGCWBRxzAMwzAM4wSwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnAAWdQzDMAzDME7ACyHqRo4cCU9PT/Tq1QvJyckiPCYmBh06dEDz5s0xYsQIEV6oUCE0a9YMzZo1w7Vr1xzhMsMwDMMwzAuFw0XdpUuXEBISAj8/P1SvXh1bt24V5xYtWoSOHTvi2LFjSExMxJkzZwAAVapUgY+PD3x8fFCzZk1Huc4wDMMwDPPC4HBRd+rUKbRq1QoA0Lp1a/j7+4tz9+/fR+3atQEA7777Lvz8/AAA9+7dQ5MmTTBgwAAkJSVp5qvX6xETE6MwhmEYhmEYZ8Xhoi46OhqFCxcGALi5uSEyMlKcq1atGo4ePQoAOHz4MKKjowEAgYGB8PX1hbu7O+bPn6+Z75QpU+Dm5iasdOnSWXshDMMwDMMwDsThoq5IkSJiFS06OhpFixYV57799lvcuHEDH374IQoWLIgSJUoAAIoVKwYA6Nq1Ky5fvqyZr5eXF3Q6nbDg4OCsvRCGYRiGYRgH4nBR16BBA3h7ewMADh48CA8PD3Euf/78WLlyJQ4fPgwAaNeuHeLj42EwGAAAvr6+qFSpkma+rq6uKFy4sMIYhmEYhmGcFYeLujp16qBEiRLw9PTEzZs30aVLF/Tr1w8AcPnyZTRr1gwffPABPD09Ua5cOQQEBKBevXpo0qQJ9u3bhyFDhthUTqFChaDT6VCoUKGsvByGYRiGYRiH4EJE5GgnGIZhGIZhmMzh8JU6hmEYhmEYJvOwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnAAWdQzDMAzDME4AizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJcLioi42NRf369VGwYEFcv35dcS41NRW9e/eGp6cnhgwZIsILFSqEZs2aoVmzZrh27ZpN5RARYmJiQER29Z9hGIZhGOZFwOGiLl++fNi7dy8+/fRT1bk9e/agVKlS8PPzQ0JCAvz9/QEAVapUgY+PD3x8fFCzZk2byomNjYWbmxtiY2Pt6j/DMAzDMMyLgMNFXe7cuVG8eHHNc6dOnUKrVq0AAK1btxai7t69e2jSpAkGDBiApKQkzbR6vR4xMTEKYxiGYRiGcVYcLuosER0djcKFCwMA3NzcEBkZCQAIDAyEr68v3N3dMX/+fM20U6ZMgZubm7DSpUtnm98MwzAMwzDZzQst6ooUKSJW2KKjo1G0aFEAQLFixQAAXbt2xeXLlzXTenl5QafTCQsODs4WnxmGYRiGYRzBCy3qGjRoAG9vbwDAwYMH4eHhgfj4eBgMBgCAr68vKlWqpJnW1dUVhQsXVhjDMAzDMIyz8kKIurZt28Lb2xvfffcdVq5ciX79+gEA2rdvj+DgYHh6eiJfvnxo2LAhAgICUK9ePTRp0gT79u1TfCuWYRiGYRjmZcWFXpLf+IiJiYGbmxt0Oh2v2jEMwzAM43S8ECt1DMMwDMMwTOZgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLCoYxiGYRiGcQJY1DEMwzAMwzgBDhd1sbGxqF+/PgoWLIjr168rzqWmpqJ3797w9PTEkCFDRPisWbPg4eGBdu3aQafTZbfLDMMwDMMwLxy5He1Avnz5sHfvXowaNUp1bs+ePShVqhRWrlyJ7777Dv7+/qhcuTL27NmDEydOYP369Zg3bx5Gjx6tSqvX66HX68VxTEyMWR8eP36Mixcv2ueCGIZhGIZh7Mwbb7yB+vXrW4yTJaIuODgY48ePx/Lly63GzZ07N4oXL6557tSpU2jXrh0AoHXr1vD390d0dDSaNWsGFxcXtG7dGl999ZVm2ilTpuDXX3+1yV8/Pz/07NnTprgMwzAMwzDZTfv27bF7926LcbJE1EVGRmLVqlU2iTpLREdHo3DhwgAANzc3REZGaoZp4eXlheHDh4vjmJgYlC5dWjNup06dEBoamilfGYZhGIZhsoo8efJYjZMhUWdNKd6/fz8j2aooUqSI2DaNjo5G0aJFUaRIEQQGBirCtHB1dYWrq6tN5eTNmxd58+a1i88MwzAMwzCOIEOi7pNPPoGLiwuIyGwcFxeXDDsl0aBBA3h7e6NJkyY4ePAg+vTpg0qVKmHGjBkYN24cDh48CA8Pj0yXwzAMwzAMk9PJ0Ldf3d3dsW3bNhiNRk1L75cO2rZtC29vb3z33XdYuXIl+vXrByBt/zg4OBienp7Ily8fGjZsiOLFi6N9+/bw8PDAhg0b8P3332fkEhiGYRiGYZwKF7K03GaGDh06oHbt2vjtt980z1+5cgV16tSB0WjMtIP2IiYmBm5ubtDpdOKdPIZhGIZhGGchQ9uvo0aNQnx8vNnzlSpVwrFjxzLsFMMwDMMwDJM+MrRSlxPhlTqGYRiGYZwZh/9HCYZhGIZhGCbzsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLwQom7kyJHw9PREr169kJycLMJjYmLQoUMHNG/eHCNGjBDhhQoVQrNmzdCsWTNcu3bNES4zDMMwDMO8UDhc1F26dAkhISHw8/ND9erVsXXrVnFu0aJF6NixI44dO4bExEScOXMGAFClShX4+PjAx8cHNWvWdJTrDMMwDMMwLwwOF3WnTp1Cq1atAACtW7eGv7+/OHf//n3Url0bAPDuu+/Cz88PAHDv3j00adIEAwYMQFJSkma+er0eMTExCmMYhmEYhnFWHC7qoqOjUbhwYQCAm5sbIiMjxblq1arh6NGjAIDDhw8jOjoaABAYGAhfX1+4u7tj/vz5mvlOmTIFbm5uwkqXLp21F8IwDMMwDONAHC7qihQpIlbRoqOjUbRoUXHu22+/xY0bN/Dhhx+iYMGCKFGiBACgWLFiAICuXbvi8uXLmvl6eXlBp9MJCw4OztoLYRiGYRiGcSAOF3UNGjSAt7c3AODgwYPw8PAQ5/Lnz4+VK1fi8OHDAIB27dohPj4eBoMBAODr64tKlSpp5uvq6orChQsrjGEYhmEYxllxuKirU6cOSpQoAU9PT9y8eRNdunRBv379AACXL19Gs2bN8MEHH8DT0xPlypVDQEAA6tWrhyZNmmDfvn0YMmSITeUUKlQIOp0OhQoVysrLYRiGYRiGcQguRESOdoJhGIZhGIbJHA5fqWMYhmEYhmEyD4s6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLCoYxiGYRiGcQJY1DEMwzAMwzgBLOoYhmEYhmGcABZ1DMMwDMMwTgCLOoZhGIZhGCeARR3DMAzDMIwTwKKOYRiGYRjGCWBRxzAMwzAM4wSwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnIAcKeqCgoJQvHhxNGvWDM2aNUNYWJjVNESEmJgYEFE2eMgwDMMwDJO95Ha0AxmladOm2Lp1q83xY2Nj4ebmBp1Oh8KFC2ehZwzDMAzDMNlPjlypA4CTJ0/C09MTo0eP1lx90+v1iImJURjDMAzjeGJjY7Fp0yZHu8EwTkeOFHXu7u4IDAyEr68vQkNDsWPHDlWcKVOmwM3NTVjp0qUd4CnDMAxjypAhQ9C9e3dERkY62hWGcSpypKhzdXVFgQIF4OLigi5duuDy5cuqOF5eXtDpdMKCg4Oz31GGYRhGRUREBADAYDA42BOGcS5ypKiLjY0Vn319fVGpUiVVHFdXVxQuXFhhDMO8HDx79gwuLi7Yv3+/o11h/iU1NRWXLl1ytBt2hYiwd+9e/gJeBjh58iSCgoIc7YbTkSNF3YkTJ1C3bl14enriyZMn6Nmzp6NdYhizrF69GvHx8Y5246XiwYMHAIDDhw872BNGYvz48Xj33XfFKh2AHC+G9u3bh/bt2/P7gRmgcePGqFy5sqPdcDpypKhr06YNLly4AD8/P6xevRq5c+fYL/Fa5MiRI1i8eLGj3cgSUlNTMX78eCQmJjraFZuJjo7GW2+9la7Z5f379/HVV19h9OjRIuzChQtZIvL27t2LQ4cOqcJf5tUEFxeXbCnHaDQiPDxcHMfHx+fYgV6n0+HkyZN2z/fmzZsA0r7ElhMgImzdutXiFrH0TqBcqDK2k5qa6mgX0k1cXByMRqNd8goODrb7WJAjRd3Lwocffoh+/fqlO92xY8cQEhKSBR4pmT17Nm7fvp2htPv27cNvv/2GBQsW2NmrrMPf3x8BAQFYs2aNzWmkAUyn04mw9957D19//bXd/Wvfvj1atWqlCt+zZw/at2+Pbdu2ZSr/qKgonD17NlN5yDEajXj69Knd8rMXUVFRmD17drpEcMGCBVG8eHEkJycDAEaNGoXu3bvjyZMn6S6fiLB8+XKHDXjdunVD48aN7Z6vVJ+5cv037GSF6N69ezeGDx+e6XyOHz+Orl27YsmSJVbj2tpW0iP+IiMj7f5Fkvj4eLi4uGDVqlV2zfdFYtu2bUhISMiy/AsVKoRx48aZPd+rVy+8+uqrNuVVpkwZtGnTxl6uAWBRp4mnpye+/PJLR7uRYVq0aIEPPvggy8sZNmyYSkRERkaKrS8grdMeM2aMKq00YNnrRektW7agVq1airCUlBQMGDDALh2j0WjEtGnTAGgPRAkJCbhz544qXOrsTdNkVAxnBGkFKSoqKlP5fPzxx6hfv749XAIA/PrrryhZsmSWrNxkZlVyxIgRGDZsWLq+XCWtOKekpAD4r87nz5+P7t27p6t8b29vfPPNN1i0aFG60kls374dnTt3thovKSlJUzjevXs3Q+VaQ1rdkIu6rKBjx46YNWtWpvOJi4sDAIv9R3pE6dGjR/H666/jwoULNsUvVqwYihUrZnP+tiD9tNeuXbvsmm9WER4eLlay7t+/b/W5fvjwIT799FMUKFAgS/3au3ev2XPr169P14TMz88PAHDmzBmEhoZm2jcWdRqcOHEiXasxGSUiIgKzZ88Wx8HBwXBxcVGIIlu4fv26Shw9fPjQHi5aRV7usWPHULNmTVSoUAERERGoWrUqAOCvv/6ye7nR0dGK42HDhuHq1auKMF9fXyxcuNCmDp6I4OLigqVLl4oweWd+7Ngx+Pr6AoBYrXJxccGQIUMAAM2bNxfXq4Vp5+/i4gKj0YjTp09b9S2z2GswvXXrlj3cEUidWUZWpPz9/fHjjz+mKw0R4dGjR1bjSQJt8uTJ6fZLGnSkv5MnT1Ztwx47dgw3btwwm4e0yiCJColRo0bhhx9+sOpD9+7dNX/myZR8+fKhU6dOAIDPP/8cNWvWVPieUXQ6Ha5fv64K15rgpLeslJQU7N69W/PcvHnz0KdPn3TlZwlzvmlNQmy5jmvXrgEAAgMDFeEtWrRAjx49MuBh+rEkQq9evYoVK1aI45CQELvs+Ny8eRNHjx7NUNrixYujTp06CA4ORsWKFbFgwQLMmTNHrIgDaeNop06dEBcXh6SkJIv5ERGuXLkijq3Fz04aNGiAJk2aqMIfPHiA+/fv25wPi7p0YjQasXv3bvj7+1t9kP39/fHkyROEhYXhl19+UcUfMmQIhg0bhmfPngGAaPjp+cZeeHg4atasiV9//VW1QpYdSOVcvXoVLVq0ENtpu3btEitXlurp6dOncHFxMbs6sHjxYri4uCi2K3fu3IkiRYrg559/FmGSYImKisrQgyr5KHVqBw4cQLFixeDt7Y1x48YpOpE9e/aIz3PmzAERKbYlr169Ch8fH0W+WqJu8eLFaNiwoUqM2oot/x5P7oNUR0+ePMG9e/dU8QoUKGDXQdGUwMBAIVSuXLmCY8eOAQA6deqElStXAkh7vsy1lytXruD58+cAgI8++ggzZswQW8pHjx7F8uXLVWkiIyPFf56ZPHkyypYta1XYSfdq0aJFYuXNVgICArBu3TpNobpkyRLExMSgRYsWePvtt83mYe76//jjD8yfPx8AsGPHDtW7ndeuXUNAQEC6Vr/37t2L5ORkrFu3TggxqXzTFao7d+7g/v37ijoxFZ4A0LZtWyEQr1y5IgYkaXKRmb5pxowZ6NixoxBIcgYOHKgQJdK1PH78OMPlmeLn54e8efNi0aJFmDRpksVruXXrlmb9mN7fY8eOYePGjVbLJiLs2LFD871Ze1CrVi3x/MfExMDd3R3u7u5wcXHBmTNnMpxvjRo1LO4czZ8/HzNnzoRerxercseOHRMT94CAALHy/ccff2DIkCGK13aWL1+OnTt3okuXLqq6PXjwIA4cOKCIW7t2bVy7dg1PnjxBvnz5sH37dpuu48KFC6KPMb3viYmJms98WFiYTe1Peqa0dnsqVKiAihUr2uQjAIBeEnQ6HQEgnU5nNS4AklfNgQMHaPPmzUREtGrVKnF+06ZNZvMICQkhAFS8eHH66quvCABdvnyZunTpQjdu3KACBQpQ7dq1CQA9efJEkfe8efM0/SAi2rt3LyUnJ1NKSgoREQUFBYl4UlwAVLhwYU2/9Ho9/fHHH6IeduzYQf7+/qp4DRs2pBkzZlBYWJjVenr27Bn5+fkp/Fi6dKn4nC9fPlXabdu2EQB67733CADNmjWLVqxYQTNmzCAiojVr1tDFixdV10ZE9NNPP4mwmTNnEhFR6dKlFXFHjx5Nhw8fJgA0ZswYIiIyGAw0duxYioiIUPhy9OhRioyMJADUsGFDIiL67LPPFPmtW7dOcTx58mTx2WAwiM8RERHic0BAAF27do0A0DfffENEREajkQBQrVq16McffyQAdPz4cbN1bI7t27cTALpz5w5FRkYq7ocpCxcuJAC0cuVKVbwtW7ZQTEyMxfQSr732muL8o0ePKDk52SZ/nz9/TgCoWbNmRERUrVo1RX3K22779u018wBAb775JhERFSxYUJUOAJ0+fZqMRqOqPcrjnD9/nojSniXpvsjp0aOHIu3OnTvp2rVrtGvXLgIg6lt6BuV5m7Nbt24RAOrbt68Iu3r1quZ1Ss/GtGnTVNcvv5Y8efIQALpy5QrFxcVp1icR0S+//ELLly/XrE/pWZGnKVWqlDi+efOmKn6dOnWIiOj8+fMEQNV/5M2bV1XnREQfffQRAaBx48ZRhw4dCACFhoaKdJs3b6YbN27QnDlzqFOnTpp1M2TIEM0yU1NTVdd//fp1Gjp0KAFQ9GPx8fE0evRoio6OptjYWM1yiIj27NlDAOj3338XYX/88Yfm/Z0zZ46IExcXR+PHjycA1LJlSxH+119/EQDasGGDCJP6Ha3nzjR87dq1IuzBgweq+Ddv3hTtwZSPPvqIOnbsSM+ePSMA9MknnxAR0eDBgwkA/f333yLvr7/+WnV9EyZMMFtPppj2CdauT7LKlSur2o38mQUg2ubUqVNFPtOnT1c8U1rPvMTPP/9MAOjIkSN0+vRpAkCDBw+26brk/pQsWVJxnfJ7LS/zlVdeEZ8fPnxIqampFuvAWj1ZGo9FfJuuxgmwRdSFh4fTyZMnRQVeunRJVdl//vmnOP7zzz/Jz8+P3n//fRo6dCjp9XoiIvHgSPb5558TANH4ihYtqurwicyLuvj4eCJKE5cAqEiRIgSkiYmHDx+qfJQ+GwwGIkobpBo3bkwDBgyg33//3WKjl5DCK1SoIMKkwcxgMNDcuXNFnPLly6sG0SVLlojPefPmVeR9//594UedOnVUA8vy5cstNnZ52DvvvKMKk+zIkSME/CfqLl++rOi4/P396f79+wSAOnbsqFkvkpmKOrmdOnVKfG7UqJHi3JtvvkkAqF69etSqVStKTk4mAFS7dm0h6iQhq0VSUhLFxMRQVFQUeXt7i/AaNWoQABowYAABoC1btogynzx5QgBo8eLF9ODBA/ryyy9FXR0/flzEkwaUr776ymxbCAsLo8jISJo0aRLlz59fdR8GDBhg1net9iSZXDhIJhcmgYGBRET0/vvv09KlS1X+FShQwOz9mjt3Lh07dkwRJk2sANC5c+cUz6gp0mTLnA0dOpQ2b95MAOjhw4dm25+WSfdNXnZAQABduHCB7t27R0RE06ZNIwD0yy+/CJ8SExPNXm/BggUpPDzc6vMiZ+zYsZp1Q0RUsmRJcezu7k6bNm0SPklmMBho5cqVBKT1g3IkUWfq84cffkgAqFixYuK5+PHHH2nSpEkUEBCg8t9oNNLTp08VeUsi7bXXXiOitEnSTz/9RJMmTbJY78uWLRN5zJw5U3UtCQkJFBQUpChLEnWTJk0ym1ayv/76i4jS+vDOnTuL8CJFitDp06epaNGiNHXqVALSRF1YWBjduXNHMRmVOHv2LG3dulUVblr2e++9R61btxbnpfuxcOFCMkVKI/WJHTt2FBNMW+yXX36h999/n0aPHi3yjIyMVIkMaTL/wQcfUL169RRllytXju7fv6/yydRu3LihCjt79qzieOzYsWKSOmPGDBHetWtXxXNuWodeXl4i7NChQwSABg0aJM5369aNfHx8VPWn5e8XX3xBRESLFi0SYbdv3xafpfYDgBISEghIm9BYyhMA9evXj54+fSrao/zc4sWLNX1T5Gk1hpNgi6irV6+eogLlAz2QNhvLly+fOJYLPAC0fft2SkxMpOvXryvCpQFMPqMw1yEAabOmBw8eiPM6nY6uXLmiSnfnzh169OiRImzChAnic+vWrRUNGwCNHDlSfI6OjhafT5w4QQBo/vz5RKRsSGfPnhWi7cyZM7R3716VL6aiztXVVXEsRx5eq1YtAqBaHdEyrfRvvfWWuLem9vrrryvSmq78mTP5rFUy+SzZ1JYtW2ZTvgDE4Fu8eHFF+LVr18T1LV68mD766CMiIqpfvz4BoI8//lhchyTkzNmUKVNs8iU0NJSAtEmGfAAuUaIEJSUlme309Xo93blzh4D/RLV0XT4+PuTn5ydWn7XumTmTTxSktia/f/LPclEXGxuryqtKlSpmyzl37pxi8maKrfdSsrt379ocV5q5a10XkCYgKlSoQMB/K5am+Wvdl6ZNm6rCtK5n7ty5qrDGjRsr0ri5uYlj03Yq2YABAxS7FvPmzaMbN24Q0X+iTloJAdIGtRYtWpitlw0bNqjCpJWtZ8+e0YULF2j9+vU0bNgwcV4SY7bU+8cffyzqQy4CJJNEppyMiDrTcGl1G4BYFTMdZyzdL8kePnyo6bc8XatWrQhQizqtVdzM2O3btxV+SosOWr7LJ5EAaOLEiVS8eHF655130lWmvC3J7fHjx4p6efvtt8Xn1q1bq+pIvnggTdQLFSokVj6BtEUKIqJBgwbRkiVLKDg4WHPseO2118QKvDWTxHTp0qXFGJuUlGQ1XXx8vOJYS7CbwqJOhrwzA9TCxNRmzZqlOC5WrBgBMLtEb03USeLv77//ppYtW4rzWh0eABo4cKBKYLm4uFj0+fvvv9cMlz9k8q1FyTw9PQkArVixQjGLlGzfvn0Wyz137hwREXXq1CldD7Opmc7YbLVx48bZHFdaPbSl3gC1+Ldk0taaqR0/flwhyAHlgC9NJtIzu06PycU+AAoKClJNWiSTtv0k8/Ly0rwvT58+pVq1agnxKDetdjpv3jyz/snzMO3oMmuNGjWiHTt2EBFpCsSstE2bNlk8r9UWbbW5c+eK1TFz7crUrK14WbPk5GQh6kwH9IyavA6GDx+u8NVWUde2bVsiShM4X3zxhdl4RCTK2L17NwFpQkTCnKibM2eOZj8tF3XS1rE5S0xMpG7dummeq1y5stjSNbW7d+9qTiyWLFlCRGmr7fa4D5JJOy/S8WeffUb/+9//hGjNCpPvhsjts88+o+rVq1tNLyEXdabjt/S6jrQ7lVXXAqRNjG0ZNypVqqQ4XrBggVWtw6JOhr1umHz5XW6mWxiSzZ4922L50vaZqVkSGuk1020hczZw4EDFVh9b1pk926Q1M9fGstOsDXqSFS5cOEvKP3fuHH3wwQcOr4estqxsV927d1eJfntaw4YNFcdaEwYtK1GiBFWtWpUA5Qq+qWmtgo8dO5Y2bdqk2hWRm7SqaMmstW/5u8L2MmkHxt6Wnt0Je1iZMmUylX7Hjh3022+/WRT0OcH+/vtvq1qHRd2/OPJGzZo1y+E+pMdMt8nYssakF5/Z2OxpUVFRDvfBXia9R5YdpvXlnvSYrZOWnGDybU627DNbRB3/pMkLwN69e7PtJ0jswaBBgxztwktB9erVHe0C44QUKVLE0S7YjT/++CPbysrs7zSeOnXKTp44Hq3fIWSyHlt0Aos6IN0/9mtvjhw54tDyGYZhciI5SVzY81/sMYw5XP7d9nN6YmJi4ObmBp1Oh8KFCyvOVa1aVfNH/xiGYRiGYV4UrEk2XqkDEBsb62gXGIZhGIZhMkW2irrExEScOHECN2/eVJ1LSkrC6tWrs9MdQXr/FRDDMAzDMMyLRraJurt376JatWpo0qQJatasiWbNmon/eQqk/RNo+f/3zE5Mt2MZhmEYhmFyGtkm6n766SfUrFkToaGhuHPnDgoXLgwPDw+r/1zbHCNHjoSnpyd69eql+GfrGaF9+/aZSs8wDMMwDONosk3U+fv7Y/LkyXj99ddRqVIl7N69G23atIGnpyfu37+frrwuXbqEkJAQ+Pn5oXr16ti6dWumfMuVi18tZBiGYRgmZ5NtaiYxMRG5c+dWhM2bNw8dOnRA06ZNcffuXZvzOnXqFFq1agUAaN26Nfz9/VVx9Ho9YmJiFGaOnPQbcQzDMAzDvHzkz5/fapxsE3VVq1bF+fPnVeFz585Fx44d0aFDB5vzio6OFu/Bubm5ITIyUhVnypQpcHNzE1a6dGmz+fFKHcMwDMMwLzK2/CB9tqmZTp06YcOGDZrn/v77b/To0cPq769IFClSRKy8RUdHo2jRoqo4Xl5e0Ol0woKDg83mx6KOYRiGYZgXmYiICKtxsk3NeHl5Yd++fWbPz58/H0aj0aa8GjRoAG9vbwDAwYMH4eHhoYrj6uqKwoULK8wcefLksalcxj5YWjVlGIZhGEaNLf/9KkcuUdWpUwclSpSAp6cnbt68iS5dumQqv8GDB9vJM8YW8ubN62gXmBeYIUOGONoFhmFyOK+88kqW5T116lS75VWoUCGb4xYvXtx6JHpJ0Ol0BIB0Op3qXHx8PAFwWluzZk2W5V2yZEnxuUqVKvTRRx/Rzz//bDHN0qVLHV4nttjo0aMd7oMzWKFChdIV/+LFiw73OadY//797ZbX/fv3HX49L6r169cvQ+maN2/ucN+1bMeOHQ73Iatt586dWZZ3bGys3fJ69OiRzXHPnj1rVeuwqCMig8EgKo2IzFaoXq/P0E1LSkoSnxs0aGBzugULFtAvv/xCV65coUuXLmW40fj5+dkU74033khXvq1ataIxY8aI461bt4o6tZTu8uXLWfawTZ48WXy2RTwGBQXR66+/Lo5/+OEHzbyc0WrUqJGp9HPmzLEp3p9//mn23NSpUxXH7u7uZDQa7X6tQ4cOtUs+JUqUyNJJkiVzcXFRHB85csTqs5YeM81r/vz5qjgeHh4UEBCQJddXpEgRVVm2ph0xYgRt2LCB3n///XSV2aNHD6txpDFDHnby5EnauHGjqq3WqVNHcbx8+fJ014O/vz9t27bNLnX6zz//aIbLxzx5n2dqn376KQGg1q1bZ9oXHx8fs/lrWffu3alKlSqqcFvbvFy4VqhQwWLcL774gsaPH2/ztdgyzqUnr6dPn1qNFxwcbJPWYVH3L7Y0GEvn5DflwoULigYlTyd/mMxZ5cqVNf0cO3ZshhpNZGSkTfFKly5tNU61atUIANWsWVP4FR8fTz/99BMlJyeLsH379pnN49atW2bPFS9e3Oy5unXr0sSJExUizNI9WrZsmU0PlLyz2bBhAwGgKVOm0O+//57pBzY9It7URowYkaF01atXtymeuQ4/b968BIBq165tMX1iYqLiWEsEbN68WfXcLFy4UHzW6/UUHBwsjo8dO2bxOcuonTp1yqZ4AwYMoN27d4tnoWHDhorzJUuWJCKismXLms3DUvvMjG3fvl189vb2VvVdAKhixYoUFBSkSmvaDkuUKKGKY5rX2bNnFcfvvvsu+fj4mO3Drl+/Trly5VK1I7n99ddfqrBGjRpR48aNqWrVqorwkJAQVdxx48YpJpJAmliQsLaCYnqNclGXkpJCq1ev1kxjms7f31+Ey+syNDRUEU/etrWsYMGCKmGjNS7JTa/XW5xwNm3a1Oz1SiYXoyNHjqSIiAgCQJ07dxbhY8eOpcDAQAJAbdq0sdo+W7RooZikySchiYmJRKQWL+b8u3Llitk6ICKLE0XJdu3aJT6/9dZbVtuFr6+v1TwB0OzZsy3eH1OzNq5K9OzZ02yc8PBwlR4wB4u6f7HWyPr3709EpOho5J2saR6mx4cPHyYfHx+rqxCWyOiSb3R0tCrs9OnTmo0vLi6OduzYQUajkVq2bEkAaM+ePSJOQkICAWkdvDXCw8M1l8Bv376tOK5Xr574LBd1GzdupJiYGJo4cSItXrxY5HvgwAFFfcm3jYiIVq1aRUuWLLFZ1B0/fpyANNHo7e1NQJq4MxUC8g7ryJEjinPVq1cXM175NbRr105VptaWzKBBg4iI6PfffxeD1siRI9N1n1evXk137tzRbMO5c+emR48ekcFgoIiICDpx4oSqnUoWGhpK9+/fJ6PRSIsWLVKdnzdvHoWGhqrSHj9+XHRgM2bMIAC0ZcsWVTz5So+pD5Koc3NzIyBtC8WWbRT5YFSxYkXxWdr6PX36NLm6uqrSTZw4UXzetWuX8Ee6jvr16yvilypVioiIEhMTKS4ujhYvXqw436pVK8VgklHTui8pKSmaz5lceMonVvK0GzduVF1HeHi4YpA1TWMq6syVKT9fuXJli9cQExMjPn/11Vd08eJFkac5UffRRx9Rrly5aN68eSLupk2byM/PT7M+vvrqK4v1OmPGDGrVqhUBoF69einOHTp0SDON6bVcvnxZhIeHh6viDhs2jD799FNFuqtXr6quUWL//v0EpPUNcsxdw/Tp08WxaV8uT2cpD0mAyutR6v+kONKCQJs2bTRFtmRvvvkmxcXFKZ7VsLAwzbbTqFEjTf++//57zfhLlixR+b5lyxarz9DDhw8JSBPg8nZprj6k+J6enlbjmrs/RYsWVb1uQmRZMEoYjUY6f/68mBzLJ+fpgUXdv8grz3Q2ERMToxn3zJkzojGa5kFENGfOHJozZ45mWWXKlKEuXbooytm9e7fV65DiPnr0iO7du0ezZ8+moKAg2rVrF9WsWZMA0GeffabyX6shAWnbXXKf5EiiTqo7eTpJhFhDS8Tevn1b0RFKQhFQCqIdO3Zo5ilfYTKtFznyrY/BgwfTwYMHNetB2p4ePnw4GY1G8vb2JqPRKPK5fPkyrVq1SlWOPJ8GDRqIevr6668JAHXp0kWxtSENJKazeQAUGBgoypM66fHjxytWyySho2VSGzStDyBN7EVGRpq9R9u2baMmTZpo1mFycrKqLLnAjouLoyFDhhCQtmIiiSFp0DEVdfJ7I19hkc5HRUUREdHgwYPFM2Z6PYB6VfDBgwc0bNgwio6OVszif/nlFwJAN2/eJCJSrWLJB4zbt28Lf8yJOtNnxHQrUkIaILTs3XffNXtOns/z58/pyZMnwgeDwaB5/x4/fkzNmzenoKAgzTZw6NAhlagrW7asKh4RiR2GXr16kV6vp7p16xIA6tq1qyJvKdzUZ2mwrVOnDhERDRw4kIYPH06XLl1SrdpK90RCEjxnz56lo0ePChHRvn17s4JWC/lKsNwKFiwo4hiNRho9ejQ9f/5c4b98FfKtt96ivHnzqupp7ty5qjK1nh2JGTNm0BdffEFERDNnztRsL+bIkyePZj1LbXzbtm2K8qWxSquf6tixIwGg3r17my1P/rwTkXjlaPPmzRZFXaNGjUS9apUtRz7uyeP4+/vTjz/+qJhcSZQvX16RZuvWrRafn7i4OEX6Dz/80OrzRkRiRXHTpk2qOLt376anT58q8u3bt68izqeffkpvv/22Zt7ysH79+tH06dPJy8vL7L0gIjpz5oxme7MEi7p/sXQD4uPjFXHz589PAOjEiRMEgIYNG0ZERAUKFLDpQX38+DGlpKTQgwcP0vWAa/kpZ8WKFQQoVx+kB12rEQNpS/XSZ3lHT/SfqJOv9BERPXr0SLEiYA3T1QxpNUl6X0J+XfIBWevhJiLFyqGlepFEXc+ePcloNIovxEjv7owaNYqI0u4HkLYiaQ2tzggAvf/++0RElJKSIgaKkydPKkSd9MULuYiVtqvu378vyjAajTRnzhxKSEgQoo6IxDsfGzdupEePHpGfn59ogwMHDtT001Kbt3RtckzftTx8+LDi/E8//USAUtRFRkZSr169xLNjrY3Pnj2bPvjgA3EcFhZGAwYMEIP5mTNnaP/+/VSmTBmVOPD19VXkJb3zduDAAUpNTVX527ZtW5F2//79YjXy+fPnIk6pUqXEfZVfu+kzYqnupDwuXLhA165dM9t2LA0yRCRWIeUTDVuQ5yVvc6btpXXr1tS3b19xnJKSIgSktH3YpUsXRd4rV6606LMldDodbd++XRUuiToJSUR06NDB5ryJ/lt5NzU3NzfN+H379hWTW6K0emvTpg2lpqYqxKSUz8OHD1V52FoH6RV1Wq/OEKW98vLzzz+Lfrhu3bpUtWpVTX969+5NAOjo0aOUmppqtR2Z881U1En5AmnvP0rodDrRn+3fv18lSqKiomjixIl07tw5UZ60qmmOmJgYMaklItU75qtWraLDhw9Thw4dNH2PjIzUfCXItM3Jkb4ckydPHjp16pRZ36RJLZA2+fHy8hLH8oWaMWPGiPFg+PDhFq83M7Co+xdzIkFr9Sw0NJSCgoIoJSWF+vfvL7aiAgMDbRIGEvJVA2lbxxpjx46lKlWqWIwjX0IH0kTd8+fPKTQ0lCIiIsSqzcmTJ8VnANSpUydFPtLKUnR0NPn4+NCMGTNsvjY50hcjpJeIJVEXEhIitgHl9S8NGCdPntTM7+TJk6r71alTJ9XDGRYWRrVr11YM1oGBgfT06VOqW7eu4j2F1NRUm65FXu7Ro0fF7LdevXqa8eVbCikpKWJFThpYpfco5KJOjrTlS0Q0btw4IUQkJLEwduxYRbrcuXOne7Ddt28fLVq0SBUeFBREQ4cOJaPRSAEBAarzclHXp08fzTLT64stPHr0iO7evasKNxqNtHfvXrODl/R+kPRemtFopLCwMEUcSZCZftmmXLlymnnOmzdP8UUheR4SACh//vzis6kVKVKE/P39hWiViI6OVtxzWzGtc2kAi4qKsrm9x8XFEQBav3692fwl4ZtZNm7cSEWLFhXH8pW69PLs2TPhn7Vn1BSdTkd6vV4VLuX36NEjs+esMXv27HQL4UuXLtGsWbPo7NmzitVkS8jzf/ToETVt2lS1emVLWjlaIluKKy0OZIR79+6JFTJLVKpUSeGX6SqrLUh5SBYdHa0p0onSXuMBoFqdM2XKlCkiv27dulFycjK1bt1ajHNyjEYjzZ8/3+Z7kRFY1P2LOVGXlRiNRho7diyFhITYPe/IyEj6559/KF++fDZtXdy4cUPV0OQrdfbg22+/JQCaA/Gbb75Jrq6uRJRWL6arL6bs379fsS1uNBrTvZKREUzbhbTd8N5772nGl//khBy9Xk8Gg4H8/f2pYMGCZjs1+XVJYtZ0UFm7dq0qvemWeVYSFhZGffr0Ib1eT8nJyQoRLTFhwoQMCZOsQFrBTUpKMhtHmlFLSO9X/vjjjzaXYyrqIiMjRf8THx9PvXr1okaNGtHjx4/pm2++odOnT2fgaswzbtw4mjJlijh++PChpjjLKLt27aLt27dTVFSU4t04e5EZUUf0X38jCbxPPvkkU/5IOyBaL63b+qzFx8fTqFGjsvzZzEz+QNoXaUxJSUmhxo0b06VLl0RYcHAwDR06VFPo2htTUUeU/us0FXWWMBqNFBERYTXPlJQU2rFjB/Xs2ZPu3btnsy9ZBYu6fzG9yZ999hl17949u9x7IbG3qIuIiKBJkyZpii+9Xm9xkH1R0OoMXn/9ddq5c6dmfEnUtWnTJjvcU5Bdos4ZSU1NVfUVSUlJZt9r0+Kff/5RbCkz6SOj268SBoOB9Hq9eEfadCcivaSmptKtW7c0z3l7e9PVq1dtzutFFnXnzp2zujrlCMyJOnPb6lqYfnPaGXEhIsJLQExMDNzc3KDT6TT/ZZiLiwsA4CWpDpsYN24cJk6ciISEBOTLl8/R7rwQPHz4EJGRkahTp45N8fv3749FixbhwoULePfdd7PYOyWff/451q1bx22ayZE8f/4cJUqUQIcOHbBr164M56PX61GoUCEcOHAALVq0sKOHGadx48aIiorCjRs3siR/ZxzPKleujMDAQMU1bd++HbVq1ULFihVtyoOIkJqaKv41qDPVj0RuRzvwolCzZk00btzY0W68UIwfPx7ffvstCzoZZcuWRdmyZW2OL3UauXJl/3/kW716NZYvX57t5TKMPShatChKliyJUaNGZSofV1dXJCcn28kr+3DixAlHu5DjKFCggCqsc+fO6crDxcUFr776Kl577bV0p80psKj7l6tXrzrahReOV155BWXKlHG0GzmaUaNG4fbt26hWrVq2l50rVy4xI2WYnMarr76Kx48fO9qNHMmXX36JkiVLOtoNu7J7924cOnTILnlFRUXZJZ8XEd5+ZRiGYRiGcQKyf0+IYRiGYRiGsTsvzUodESE2NhaFChUSL5EyDMMwDMM4Cy+NqGMYhmEYhnFmePuVYRiGYRjGCWBRxzAMwzAM4wSwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnAAWdQzDMAzDME4AizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJeGlEHREhJiYGRORoVxiGYRiGYezOSyPqYmNj4ebmhtjYWEe7wjAMY5HIyEikpqY62g2GYXIYL42oYxiGySkUK1YMffv2dbQbDMPkMHKkqAsKCkLx4sXRrFkzNGvWDGFhYY52iWGchkePHiE+Pt7Rbrz07N+/39EuMAyTw8iRog4AmjZtCh8fH/j4+KB48eKOdodhnIayZcuiXbt2jnbjpYff/2XkEBG8vb2zrV3odDrodLpsKYuxHzlW1J08eRKenp4YPXq0ZiPX6/WIiYlRGGMboaGhuHv3rqPdYDKIv78/3njjDSQnJ9sU32AwICQkRBHm4+OTBZ45N/v27YOHh4ej3WDSQWpqKhISErIkb51OhwcPHtgtv40bN+Kjjz6Ct7e3xXhJSUmoUaMGrl27lqnyXnvtNbz22muZyoPJfnKkqHN3d0dgYCB8fX0RGhqKHTt2qOJMmTIFbm5uwkqXLu0ATy1z/fp1uLi44NGjR452RUHVqlVRpUoVR7vBZJCZM2ciNDQU4eHhNsWfMGEC3N3dYTAYstgzbZKTk2E0Gh1Sdnq5ffu22QniwIED4e/vn80e2UZQUBDc3d3h4+ODvXv3mo3Xtm1bDBw40OZ8jx07huLFi+fYL3V0794dBQoUUIV7e3vDxcUFLi4uOHfuXIbybtSoESpUqJBZFwWhoaEA0r5EY4l79+7h5s2bmD17ttk4t27dwuPHj+3mmz2pV68eVq5c6Wg3ciw5UtS5urqiQIECcHFxQZcuXXD58mVVHC8vL7F8rNPpEBwcnP2OWkF6Z+bs2bMO9kRJVFSUo11gshFfX18AyBZhZTQakZiYqAhzdXXFK6+8gnv37tmtnGfPnsHFxQXr1q1DYGCg6rz080bp3cqqVq2a2a3pzG6LXbhwQdwLaxgMBmzatMnmMjdv3oyQkBA0b94c7du3Nxtv//79mDdvnk15AsD06dMRHh6eI35VQKtf27Ztm2bcdevWic+HDx/WjJOamoqUlBRF2IEDB4TounnzJgDAxcUFf/75Z4Z8zgi2tInq1au/kAsdAHD+/Hn079/fbvnFx8fj4MGDANLeF/b09LT4zvDWrVtz7CQFyKGiTt6B+Pr6olKlSqo4rq6uKFy4sMLszc6dO/HLL79g2LBhmj5Yw8XFxea4ISEhL/Q7Nj///DOWLVvmaDcUREREwMXFBdevX8+yMohIdN7ZyZMnT/DRRx8hIiJCdU5qV/ZoL0lJSXZdSZ4wYQLy58+vea5Fixaa4deuXbModuLj49GmTRs8f/5chEnbXp9//jkqV66siH/27Fm4ubnh66+/Rq5cuRTb1ESExYsX49ixYwDSBhhTEXr+/HlNPyRRLOV348YNhU/WeO+999C0aVOb4i5YsADdu3fH8ePHbYpvT8EeEhKCX3/91Wz7Onv2LG7dumW38mxBa7Ig5+rVqyhatKhZgWaKLX1z/fr1kSdPHkVYmzZt0K1bN1Xc1atXo0iRIvj1119tKt8emLsGvV6fbT7YQo0aNVCyZElFmD19/OGHH9C6dWskJCRgwYIFOHHiBM6cOaMZ9/z58+jatStmzZplt/Il5s+fb1VIE5F4VpOSkjB8+PB0vx6QI0XdiRMnULduXXh6euLJkyfo2bOnXfO/ceMG7t+/D6PRiLFjx4qZ18OHD8USOAB06tQJkyZNwuzZs+22yhAfH4+kpCRF2OPHj+Hu7o7ly5cDAJYtW6Z6B0rOsmXLcOTIEaSkpNitM1+5ciXWrFlj9vy0adPw7bffWsxj7Nixio7m4cOHYhVlz549aN26NZ48eWIXfwHg0qVLAIBNmzbZLU9Tli9fjho1aqRrEFu8eDF+//13AEBCQoIQZhERETa/y7hp0yZ4e3tjwoQJImzs2LHimjOC1iD9+eefo2zZsunOKzk5Gc+ePVOFb9++3Wwac53XO++8g6ZNmyIuLg67d+9WnT969CgOHDiApUuX2uSbJPJXrVoFAIrn7eDBg+jXrx9atGiBkJAQ1KtXD4MGDVKkT0xM1LxPUv25urrCx8cHb7/9NmrWrIno6GirW2ZaWBKEFy5cAADFioPBYEDz5s1VbWDs2LHw8vJShEVERCAkJAQuLi5YsWKFRT9SUlIUbeP777/HhAkT4OXlhQMHDiji7t27F/Xr10f16tUBANHR0ahVq5bNOyWbNm3K0Mv5AwYMMDtZAICAgAAAwOXLl2E0GnH06NF0TapNSU1NxcWLFwEAuXLlwv3798W5p0+faqaJjo5WPK9aXL58GW+++aZd3vNbtmyZaiUxLi4OefPmzXTeEtHR0Rg7dqzmOHPnzh2b2v3NmzfN1pk8TkbHsocPH4rP1u659DxpTZbN8fz5c8W4FRAQICaFckaNGmV1y7tv37545ZVXMGPGDGzatAmzZs0S/ZTN0EuCTqcjAKTT6azGBUAA6Ny5cwSA+vbtS2PGjBHho0aNIr1eL44lSy9Sui1bthARUWRkJAEgV1dXRTx/f38CQP369RPpmjVrZjVfAFSjRg168OABERE9f/6cFi9erIi7atUqOnTokGZ6rbCgoCCrZf7555+acfLmzavIV16O9LlHjx5mr8sSR48epfDwcEXYwYMHCQB99913GcqTiGjixIn02muv0aVLl+jHH3+kmJgYxXnJ7+PHj9ucp5Tmzp07ijooVaqUze3o3XffVd0nAFSyZEnq0qULAaBBgwbRhAkTrObVpEkTAkClS5empKQkRb6vv/46AaBHjx7R/PnzreZ19epVatSoEfXo0UPzWmrUqGG2bQEQZUj37smTJ+Jcnz59CAB16NCBiIhCQ0Pp6tWrNGDAAAJAEydOFHmePHlSka/RaCSj0Ujr1q2jRYsWKc7J+4StW7eK8KtXrxIAql+/Prm4uNCOHTsU6VJSUhTXId0/APTLL7+Izy4uLmbv67FjxwgA3b9/X8Q/fPiw1T5FOt+5c2cCQElJSRQeHk4A6OOPPzZbv1r24YcfEhGRwWBQlWs0GgkATZ06VYR16NBBlUdERAQREY0ePVqRx88//0wA6PPPP6fly5cTAIqOjta8JqmP7tmzJx0+fNhsPFOioqIof/78FutLuq/Tp0+nwYMHq/zfvXs3lS9fnlavXk1ERF999ZU4N2XKFCIi2rdvHwUFBdGVK1dU6QcPHky3bt0iAFStWjVVvRcoUMCmceK7774jAHTlyhXVudmzZxMAWr9+vcU8rl27Jsoy7a+ePn2q8OvRo0eiLyIiOnPmDK1du5ZGjRol4qSmppota9iwYQSAzpw5ozoHgKpUqaIKT0xMpICAAEU8rXEhJSWFANDcuXMJAM2aNcvidRMR3b59mwwGgyJM6t8SEhLIy8uLANCRI0c00/v4+Gj2C2XLlqWFCxeK48OHD1OZMmU0nxlz91k+PpprB/J7s2LFCgJACxYsICKilJQUMhqNVuuARd2/hIWF0YgRI2jjxo2qB/bNN99UhW3atEkVJufBgwcUExNDRqORpk+frlmulG7cuHG0e/duWrlypQh7+PChuIFdu3YlIE2gSZ3se++9RxEREdS5c2eKi4vTzNfUt48//pgAUGJiIo0bN051ftOmTZScnKx5PfK4O3bsMHstAKh8+fK0ZMkSio2NVcTJly+fZuOXW69evRRpZs2aRXv37tW8Z6ble3h4iOPt27cr8pWErZwLFy7QiRMnyGg00t69exUPzJMnTyg2Nlbl36+//mr2ug8dOkQGg4GeP39ON2/eJKK0dmf6IErx5T6eOnVKfL527ZrmNf7111/Uq1cvSkhIUJQ7Y8YM0S5KlSpFn3zyidl2SUR07949MhqNlJqaSoMHD6aqVasq6kmeThJ19evX18xrxowZFBYWRo8fP6aPP/6YWrRooSi7Ro0adOvWLWrTpg1t2bKFKlSoQAAoLCxMsw6l9il9njlzptn2XLp0abP35sSJE4pzqampdPr0aQKguF7TPmHz5s0ivH///op4jRs3VhyPGzdOURclS5bU9FXus2lbmDBhAgGgf/75x2La27dvm213QNrgbCrqfvvtN7p3757FfAFQy5YtiYhEevl9Tk1NVdz/ESNGWBR18jD5pEWrLlauXElHjx4VZc2fP58AUKtWrcR1bNmyhS5cuEDBwcF05swZKlKkiHiWg4OD6cKFCxbbukSjRo2s1oM8D7mo69Onj7i24sWL0x9//GExvZaos8VHIqK+ffsSAHrllVcU4Tt27KCBAwcSkDlR9+zZM4Uv69atIwA0Z84ciz4bjUaKi4ujqVOnKkTToEGDCPhP1KWkpNCTJ08UeSUkJFBgYCANHz6cjEYjde/eXVEPpvUi913uQ9++fSk1NZWePXumuubSpUuLCcTAgQPJx8dHnPPw8CAAFBISIsT/8uXLFemNRiNdvXqVKlWqJMqTFlEknwoVKiSOmzZtSgDI29vbrP+m2NIO5OelSdDChQuF2Bw+fLhmOkUeVmM4CdZEndQ4bTV55691kwBQrly5xLkhQ4bQjh07NGcokq1evVpx/PfffxMRkaenJwGgypUri072vffeE53L1q1byWAwkNFopOjoaLMdidQQJ06cqDp/9uxZAtJmpfI0gwYNEishkk2ePJni4+MVos1cPeXKlYuWLVtGQ4YMMdv45fbZZ59RQkICpaamUvHixW3qCKW8SpUqJY5Nfbb0kK1Zs4aANKFOROI+1K5dW5XHF198oZmH3FxdXQkA3bhxQ4TVq1eP5s2bp0gjXxUyNVOhLk8nrejKzc/Pz2xeISEhVLVqVYqJiRGDoKmwkez27duK+pJE3TvvvENA2kqqXq+n0NBQRTqps9SyTp06abaLIUOGiLqSW5s2bcRnqUM2NXNihYjo4sWLqvCUlBQxOSpUqJDiXHR0NAUEBJBer9ec1FmyqKgo6tatGy1atEhz8ie3adOmEQA6cOCAuKeTJk2yqZzOnTtbbXfS6malSpUU/YS1vFu1akWfffaZqh6JSLFyC6StOrZv316VR3h4uEJMAP/1Kebuk/zz559/Lo4//PBDAkA1a9bUTCut2Gi1nVu3blGjRo0oKSnJan2Zs0OHDqnC5P2quYmG3OrWrWvx2k05deoUValShb799lsRLzQ0lDZs2CAmbJK1aNGC7t27R0RpQvj9999X5CWtMAP/ibrU1FQ6fPiwStStXbuWgLTVMEv1VL9+fbH67OvrK8qShKYk6qSVeHkf9fvvv1Pz5s0124y0GgekrZbKz5v2j/LJanJysvDB3JhXsWJFhU9vvfWW4ryfnx99+eWXZtvZl19+qWo/BoOBHj58SO+//77Z+yod379/n6ZPn262DT579owWLlxIe/bsoejoaMqTJ4/i/Pjx4wkALVq0SNGHWoNF3b+k56EH0lS8aZi8oVlKS0R0+fJlVbj0gElWs2ZNxVJ/5cqVKT4+ngAotnqkTtCaNWvWzOw5acvnyy+/FGGmS/WS/fTTT+LzqlWr0l1/ttSR6SqZtMKxZs0a1UxVWoGR5/3999+bLddgMIitEgCKuLZey6FDh1QrYrZeu/RZvjJrav/88w9NmDCBZsyYQcOGDVOki4qKUsU/evSo2bzk203r16+32Ve5wKtVq5b43LBhQ9q7d6/N+UiC0J62f/9+zfDExETq1q2bKlzrdQnJ5IOCtG2clfbTTz8RUdpKU0bSyyeLWWVSH2UqzMyJuuvXr6vCjh8/bnNZ6fXPnKiXVm9v3LhBBw4coAcPHtCuXbsyXR+rVq0Sn6dPn57pup0xYwYBaRNJ+URCLq579+5NgHIVX27y9iNfeZKLOn9/f9qxY4fYupWEv6n9/fffipVaLZO2MeWrYJUrVyYgTcDL76P8+ZRW0LQss8+b6WTE1KSVTy0rU6aMxbTt2rVLlz4gIsXrItIrMh07dtScRMuFv/yVC1Pz8vJS7EpYg0Xdv2SmYZne2IcPH2YorbTXbs5KlSpFI0eOzLBv0oqfo016WCzF0eqItWbQe/bsUdSbn58fNWzYUDPPxo0bk8FgENvQWiZ/Fyor7PHjxxlKZ62+pM5Vy+QrnvLP6THT1S2t95LMmbu7u93rsVq1ambPSdt3crt7967Z+NIKWnaZJOr+97//ZWu56TH59mNWm+kKjS1ma/tzc3NzeF1m1D766CMCoHqlwZxJSCvScvv0008JgOLdcLlJ78bZYseOHSMiUuy+ABArYjnFrIk6ALR06VKb85MvFADKibA9zRos6v7FXhWenZ1hTjb5e1PZafIvGDjCtASHLRYXF+fwe8ZmP5O/YM3GZg+z91hmzsaPH696Z5kt+++zOVz+bQROT0xMDNzc3KDT6TR/sy4zX29nGIZhGEeycOFC+Pr6Yv369Y52hclCrEk2FnX/wqKOYRiGYZgXGWuSLUf++LC9eUl0LcMwDMMwTgyLOmTP/7xkGIZhGIbJSljUIe1/uDIMwzAMw+Rk7C7qbt26hRUrVuD27dsAgNu3b2PAgAHo06cPjh49au/i7MKCBQsc7QLDMAzDMEymsKuoO3DgAGrXro2RI0eiTp06OHDgAJo0aYLAwEA8evQIH330kd2E3ciRI+Hp6YlevXohOTk5U3lVqlTJLj4xDMMwDMM4CruKut9++w2jRo1CREQEVqxYgZ49e+K7777DoUOHcPjwYfz444+YOnVqpsu5dOkSQkJC4Ofnh+rVq2Pr1q2Zyq9bt26Z9olhGIZhGMaR2FXU3bhxA7179waQJpRiY2PRpUsXcb5Hjx64evVqpss5deoUWrVqBQBo3bo1/P39VXH0ej1iYmIUxjAMwzAM46xk2RclcuXKhbx58+K1114TYYUKFYJOp8t03tHR0eK35tzc3BAZGamKM2XKFLi5uQkrXbp0pstlGIZhGIZ5UbGrqCtXrhwCAwPF8alTp1CmTBlxHBwcDHd390yXU6RIEbHyFh0djaJFi6rieHl5QafTCQsODs50uQzDMAzDMC8qdhV1AwYMgMFgEMdvv/02cufOLY7379+PFi1aZLqcBg0awNvbGwBw8OBBeHh4qOK4urqicOHCCrOVoUOHZtpHxnlYvXq1o11gGOZfKlSo4NDyO3fu7NDyGcYiVv877AvKiBEjqHHjxtSzZ0/S6/VW4+t0OgJAOp1Ode7IkSOKf5g7adIks/9Mt3Dhwnb5p7wxMTH01ltvWYxTpkyZLPmHwC4uLumKf/36dTp37hwNHz7cYjwPD49M+RUfH09jxoxx+D9Mllvbtm2JKOv/SbYjLTIy0uE+2Mv++usvh5Q7aNAgAkBXr151eB04uyUkJGiGh4eHZ0v569evd3gdZKW9yP1d165dqXr16g73w1FWo0YNq1onx4q69GJJ1Pn4+CgqbvLkyWYrde3atXZ7cM6ePasKb9euHdWoUYMAUI8ePTTTVqxYkbZu3Zrhsi0NfDNnzlSFRUVFERHRnDlzLOa7YsWKTNcJEVH79u0JAO3atYsAUOnSpbP94VmwYAFt3LhR+CQ/t3Tp0nTn9+WXX1o87+fnl+3XKFl0dLTDygZAtWrVUhxPnDgxw3klJiba1Ok/fvxYfO7QoQO1bNkyXeWYTozkmMYdOnQoTZ06VVGePeqtTZs2VuNIfYmWLVq0SHFsaTKbUStQoIBm+Pr160mv12ue+/jjjy3mqVXHlsIzY4mJiYrjzz//nHx9fe1eTnrt77//tinemjVr6JNPPklX3ubqsUiRInT9+nWqVq2aQ645ICCAiIiMRqNV3ytUqCDC3nrrLerevbvZNB07dswW/8eOHUvff/89/fnnnxnOY+DAgVa1Dos6IkpNTVVUnLwDNrXLly9rhm/ZskV8rlevHgGg3r17m00rYZpPTEyMWK2aNWuWZlktW7Ykg8GgCt+8eTPVrl3bYqOoXbs27dixQ/PcDz/8oKoLIG3Ql9dT3759Vb43bNiQVq1apQgrXbo0paSk2NRYv/zyS8W9OnbsGF28eJEA0JIlS1TxpQHNzc0tSx7AZ8+eKdqIFD5p0iRVm5F3CuZWM5OSklSD6IgRIyggIID8/f2JiCg0NFR1jfHx8fTgwQMiSuvMtmzZQrNmzaJq1arRrVu3FO2uatWqNHfuXDIajZpty5zFxMSowkzbrmTyldTIyEiz5TRt2tSmsq9cuUKRkZG0bNkyEXb//v0M3zciEmJh+vTpInz06NHic7Vq1YiI6O233yYA5O3tTeHh4dSqVSvy9PSkDz74QMT96aefzNZZQkICNWvWTJSr9UwfPHhQ3I9ly5bRN998k657Y8lsEXWmA6Bc5KWmptLXX3+tqDutPLy8vNLlV9euXcXn5ORkzTibNm1SlSfdjytXrli9xwMGDFCEFSpUKN31+vPPPxMA+vrrr80KNVNRR0SKCdgvv/ySoXsn7xffe+89i3H/97//iZVgc/fq3Xff1bx+IrK4wyJN4r/77jur7eD1118nIqKoqCh6//33NePcuHFDcRwXF6cSgblz57a5nuS7aHFxceIZi42NpSdPnohzVapUof79+wvfv//+e3Fu4sSJFBkZSZUqVaLdu3erxndzk4uMWFBQEG3btk0cy9uKhLRo9NFHH1nMS6/Xiz7s559/pjNnzlBSUhJZg0Xdv8grc8aMGWYr+vz585rhRETLly8nALRw4UIiItq9e7c4n5ycrChHq1xXV1ciItFRHDx4UJwbNWoUnTt3jgBQ69atNWcrpnlKK11yq127tlmhlZqaSkREd+7cUYRLoo6I6N69e2K7Wx6nUaNGisYs90cSs02bNqVly5bRq6++SnPmzKHt27cTABo2bJjZ+3bmzBmz15qcnEzR0dFUsmRJTeGnZUOHDhVtQW4jRoxQHD9//lyzfWiFyWeBw4cP15xFE5EQde3bt6dOnTppXm///v0JAPXv31+IAWtIZRw7dkwzXLI1a9Zo1klcXJz4vHXrVrp37x4REVWqVEmEDxw4kADQ7t276f3336fXXnvNbDkTJkxQiE0A1KBBA1q0aJEQ4REREaK9SeTPn1/4M3ToUEWdzpkzh6KioqzeX3N1o3UPnz59Si1btlQMFkSk6OQNBgPFx8ebLSc2Npbu3Lljtt79/Pws3jNT34YMGUIAqE6dOiKsXr16dPr0aZUPclFXtmxZ8Vne/kzLktp+xYoViYjEIFy2bFkiIho5cqSIu3btWtq2bRudOHHCYp1PmjSJFixYII7j4+Pp2rVrot/QSrNlyxbVuXv37tGsWbMUkxutSSoR0dWrV6lkyZKq+yEdL1y4UHyuWrWqpg/S4Lpz506zfppu9RKRoj4ePHigOD948GCLddW6dWsqWLAgEf33fDVu3Ficl8TSDz/8IMLatWsnyvn6669p165dKn89PT2JSC12icjsdjUAOnnypOjrzLUZyYoVKybqWRJGo0aNUrRBrbZtGpae7VP56wwGg0H1HElj5PDhw0VYWFiYYoz77bffFGlCQkLEuXz58ikmHtZ2hU6dOkUVK1ZUhZs+51p1KSHtRPz+++8Wy5IIDAyklJQU1bWbg0Xdv8gr859//qHffvtNs6IfPXokPjdq1IgA0CuvvEJEalG3Z88es41bq9z58+cTEdG4ceMIAO3fv5+++uorEV96Z+Tjjz8mIqKgoCCLD1Bqaipt3rxZEad27dpERIqBStp6ktDr9dS4cWPxTp9c1Ml5/vw5LViwgPLly0c7d+4kg8FAQ4cOpVq1atGHH34o4knvbLVu3VqR3t/fn4A0oWUN+SAn91WOLZ2ExJMnTxTbqJKQbdOmDa1cudJs3lphn332mfg8fPhwsyJ03bp1BKRtPZlDGhROnTpltU4kUlJSaNu2barw1atXU65cuRQ+3Lt3j0aNGkWVK1emBg0aEKAcuOTs3btXhEuibs+ePZp1IwmyXr16EVHaquK5c+do0KBBdPToURG3devWBPy3ymeOQ4cOibJnzZqlKKty5cris9w6duyo6Zu5ztUSpnHv3r0rwr7++mub0lq6j6ZtQ/osiVn5RGHkyJFERNSxY0f6+++/RR5SXa5bt07R5qTJn5S3XPBJZVWoUIGIiG7evEkAqE+fPgrf6tWrJ45PnjxJQNr7pWfOnFHVuzT5MBqNmisJTZs2penTp9PEiROFSNu3bx8RKQdYCWnluG/fvqTX6+nhw4dmn30AlCdPHlW9BgQEUGpqKo0cOZLCwsI0+4Lnz59TmzZtKDY2VnVPJDMV9ETKVXqi/yYBFStWVEw8ypQpQ3v27KHg4GBN36V8pk2bpnleErft2rVT1ampv927dyei/yaFQNoqolZcAFS3bl0C0t5DNI1DRPTqq68SkLZKKIXLRZ20giRfyTYVdfLdDnnZ8hV0ayv6Un26u7tr1oHUNuWizrTMCRMmKMKTkpIIAO3du5eISCEA5Str0vh+9epVRX8lrc6/8847YjEgPaIuNjaWJkyYYHZHQnr2MwqLun85efIk/fHHHwSALl68SEREr7/+uqrREf13k6QVKGk7MjQ0lKpXry4a8/HjxwlI27KSqFy5Mo0YMUIct2rVSuQ3b948IiIhxK5cuaLwURJ1PXv2FGFanZ3psfwLGb///rsqXkJCgmq7Ue6bOVFnK1InLW09SUidtSWRIyGJW63OT+LIkSN08uRJOnXqFAFpYlur45OQb2FLvnz22WeaeWuVK820u3XrRkDaatTTp08V8UuVKqUYDJYtW6Y545TYuHGj8Mde3L59mxISElThUttOSEggDw8PatWqlSrO9evX6eOPP6aIiAjq27ev5qBt2uFb4ty5c9SgQQPVKp0WGzZsIMC6qLt48SJt2LBBc2XTUudqCa24UphcWGkhbfW+9957ZldbzfUpt27donnz5lFERIQIMzdL//bbbxV9mqVr/fPPP2nAgAHinDSB1BJ1Dx48oJiYGHH8/PlzAtK2wkx9T+/gk5KSQsuXL1fUi1Y+58+fV3wB7tChQzRv3jw6dOiQIl5oaKhiwL1z5w7NnTtXVW54eLhiQp4rVy5VHOmcfAVQa6VOy2fgv9VPo9FIy5YtE7szRGljwc8//6wqMyEhQSHITa8N+G8Sb85fAOJ+9e3b12LblWzQoEGa+X3++edERBQcHEyXL19WpJXvLki7WfKVOmkioFV+oUKFRPi0adMof/789Msvv1CXLl0UfpUrV05V36dOnRL9qilPnz4l4L9JghzpnXT5mKeFJK4bNWpERGkT38TERLHiHRwcrIgfHh5Oe/bsoeTkZHH9J06cUNWlLf1OcHCw4v7Xr1/foq+2wKJOhtFopJs3b6rCpQo37TylpWFJ1Gnlt23bNosDWFhYmHhApBdBidKWXLVYuHChohPz8vKiEydO0OnTp0VYREQERUREiOMqVaqIwcFaZyrnm2++IQBiJpsZ9u/fr9rmIiLFTNES0oywWLFiNg0kBoOBUlNT6fr16xav88yZM3T8+HEh6rp166YZTyuPO3fu0MyZM8VkQF7n27dvp02bNlFqamq6ls6JKNMi2lY6d+4sBq7MAEBzwMos1kTd2rVrVRMfLd8yIuoGDhyouiYpfXx8vMW08fHxNGrUKIvfyjcn6sz5rkVcXBzt379fHPv7+4uVwQMHDtCiRYss+kmUNqD17duXnjx5YjWulu/pFXWW8ssObt++TQAUrw+Y+lG9enXS6XRim/PIkSNUpkwZWrt2rYgbFBSkqDO5qMsIWnUgrTBK38A3l+b9998XYeZW/Uzv2eDBg1X5BQYGUmJiomY5r732muKc1OdJK1Xly5cXCwNa5QcFBYlV6ClTpohwqQ8CQF26dLFYH+nFYDDQlClTrD6v0uReEnUSRqNRMSZrER0dTaNHj1aN8dIuF1GaoF++fLnFfOzZh7KoswFzs7SkpCTq0aOHeAfpRUVaqTPF2oMTHx9P3t7eWemazSQlJdHOnTspLi7O7KzNHLZ0EAaDgYYNG0aPHz/WPN+1a1ez7/4ZjUbVbC4nEBkZqRioXjSkn44wJ+psoVy5cmLQO336tNVO2hKrV6+2m/iwh6hzFJJfc+fOpT///DPT+dk6UbMXGzZsoLt376rCpW8lmr6baguZFXXlypVTfFmMiMSXNJYuXaqZRqfTqVbOTbeG5f5ZE3XmAP7bRZI4duwYARDvUsq3P8+fP08LFixQ5RMdHU1169ZV9JXy9xO7du2q8jc7MBqN1K5dOzp79qzd8oyPj0+X1nj+/LlNuxe28OL1GFlEVoi6nEKvXr3Mijpz243ORE67X0wakqibPXu2CEvvgPSiIrXJiRMnKo7lFC9e/IVstzdu3KCTJ0/aLb+YmJgM9csvEpkVdfZk5syZYpVRQnpXTHrnzh7PUExMDN26dYuA/7bzM4L0JRD5Lgn32Rnnv3/3wFikWLFijnYhwyxduhTjx49XhRORA7xhmIwTGRmZrv8O86KyfPlyNGrUCFWqVDEb5+7du0hKSspGr2yjevXqds2vUKFCds3vZWf48OGqsMaNG+PIkSPInz8/Fi5caJdyChUqhKpVq+LixYuoXbt2hvPJkycPAKBEiRIi7J133sHVq1cz6+JLCYs6Gzh06BAqV64sji9evIiwsDAHepQ+8ubNq/D/ZaNHjx4oWbKko91g0slHH32Ed955B926dRNhRYoUcaBH9uPrr79WHN+9excuLi6KsNdeey0bPWKcnRYtWuD58+cAgLZt29ot3zp16mQq/Ztvvoldu3ahZcuWIuzixYswGo2Zde2lxIVekuWamJgYuLm5QafTOcVMn2EYhnkxcHFxQcWKFREYGOhoV5iXnFyOdoBhGIZhGIbJPDlO1AUFBaF48eJo1qwZmjVrlqO2QRmGYRjnpF27do52gWFy5jt1TZs2xdatWy3G0ev10Ov14jgmJiar3WIYhmFeQqKjo1GwYEFHu8EwOW+lDgBOnjwJT09PjB492uw3OKdMmQI3NzdhpUuXzmYvGYZhmJcBNzc3vPLKK452g2Fy3hcl9Ho9UlNTkT9/fnz33Xdo27YtOnfurBlPvlJHREhOTsbrr7+u+pYZwzAMwzBMTueF3X4NCQnBp59+qgrfvXs3ihYtCgDo0qULTp06pSnqXF1d4erqmuV+MgzDMAzDvAi8sKKuRIkSOHHihCo8NjZWfPb19UW1atWy0y2GYRiGYZgXkhz3Tt2JEydQt25deHp64smTJ+jZs6ejXWIYhmEYhnE4Oe6dOoZhGIZhGEZNjlupYxiGYRiGYdSwqGMYhmEYhnECWNQxDMMwDMM4ASzqGIZhGIZhnAAWdQzDMAzDME4AizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ+ClEXVEhJiYGBCRo11hGIZhGIaxOy+NqIuNjYWbmxtiY2Md7QrDMAzDMIzdeWlEHcMwLy7JyckoVKgQfHx8HO0KwzBMjiVHirqgoCAUL14czZo1Q7NmzRAWFuZolxiGyQRRUVGIi4vD7NmzHe0KwzBMjiW3ox3IKE2bNsXWrVsd7QbDMAzDMMwLQY5cqQOAkydPwtPTE6NHj9b88oNer0dMTIzCGIZhGIZhnJUcKerc3d0RGBgIX19fhIaGYseOHao4U6ZMgZubm7DSpUs7wFOGYWzBxcXF0S4wDMPkeHKkqHN1dUWBAgXg4uKCLl264PLly6o4Xl5e0Ol0woKDg7PfUYZhGIZhmGwiR4o6+c+S+Pr6olKlSqo4rq6uKFy4sMIYJrPcvHmTf+swC/Hz83O0CwzDyFi/fj2aNm3qaDfsTnh4OJ4/f+5oN+xOjhR1J06cQN26deHp6YknT56gZ8+ejnbJIUyfPh0ffPBBhtMfPnwYe/bssaNHjsFgMGDq1KnQ6/VZWs6lS5dQo0YNbNq0KUvLsUZiYqLTCsvIyEhHu8AwjIxvvvkGvr6+jnbD7hQvXhwlSpRwtBt2J0eKujZt2uDChQvw8/PD6tWrkTt3jv0Sb6b46aefcPTo0Qynb9myJTp06KAKd3FxwZgxYzLjWraye/dueHl5YenSpVlazpMnTwAA9+7dy9JyLJGUlIT8+fNj7ty56U67e/ful/o1hNjY2BwjhhMTE+Hi4qL5vrAt7NmzB1FRUXb2ynlITk7G3LlzYTQaHe0Kw9iVHCnqsppixYqhYcOGijB/f38kJyc7yKP0YzQabe6w7ty5owr7888/M+2Dj48Pbt++rXlu+/btuHTpUqbLACDuS0pKil3yM4dUn7lyZf6xKV++PH744Yd0p0tMTAQA7N+/P91pO3bsiCZNmqQ7XXaQ1V+USE1NReHChTFt2rQsLcdeREdHAwDWrFljMd7Tp09x6tQpcRwXF4fk5GR06NABn3/+eVa6mKNZtGgRBg8ejH379jmkfCLC1atXVeGhoaE57ge4fX198eDBA3E8efJktGnTxoEeqYmJiclR43dmYFGnQWRkJE6fPi2Oo6Oj4eHhgZ9++kkV9+DBg3BxcXnhfgC5UKFCqFu3rjhOTU1FaGioZtzWrVtniQ/NmzdHtWrVNM916dIF7777Lg4dOpTpn5uRVl9SUlLE/di7d2+m8gSAR48eKVZ27CnqgoKCMH/+/EznI2E0GqHT6azGk7eBuLg49O3bFwkJCZr5ZWRVa9iwYXBxcVF1oE+ePLG4SmjvFbRBgwZh3bp14thgMAAADhw4YFP6Bw8eICAgQHPCYwvHjh1DYGBghtIC/4lcHx8fi//a8N1330WjRo3EcaFChcT7T8+ePctw+UDaPTFtU/fu3UOjRo3E5CIjXLx4EREREZrnjh8/ni2rqZL/jhrot23bhlq1auHkyZOibQJAq1at0Lx5c4f4pMXOnTuRlJRkMU7Tpk1RpUoVcTxmzBibn7P0YDAYsGTJkgytrrq5uaFTp04ZLnvChAn46KOPMpzeHJs3b7b/vy6llwSdTkcASKfTWY0LgORVExYWRgCoUaNGBIBOnDihivvTTz8p8ti5cyctX76cnj9/Ttu3b7ffhZjx88mTJzRmzBgyGo2a19CjRw8CQCkpKar0ps0AAOXNm5eOHj1KACg6Olqci4uLoylTppDBYEiXfxJGo5EOHjyoKLtLly6qtJ06dSIfHx8baoFo/fr1BIBeffVVkWeJEiUUcbZu3UpvvvmmTfkRET1//pwA0OzZs0XYtm3bRP7ffPONIn5CQoJNdSKhVTe2EBkZSQDoo48+IiKiqVOn0pUrV+i3334jAJo+rFy5ksqXL08AKH/+/CJ83rx5BIBWr16t6Z+Xl1e6/ZOua+rUqZrhjx8/VoRfu3aNkpOTRX3bq0syzUuv1xMAatq0qQg7e/aseF7Mpc+oP6bPpl6v14y3YcMGunbtGgGg77//XoQ/ffpU5NGtWzfhf5MmTSg8PFzUo6mPcr9r1qxp1r/Y2FjaunWrVf8BUGRkpAgfNGgQAaAzZ84QEdGqVasIACUlJRER0fXr1+ns2bNElPasr1ixghITE4mI6OTJk9S3b18CQLVr11aVefr0aQJAS5YsoQsXLlC5cuVo0aJFFBISYtZPifDwcFq0aJHVeBLTpk0jALR161by9/enDh062JxWzsaNG+nSpUv05Zdf0vXr11Xno6Ki6OrVq2bLB0C5cuUS4YULFyYA5OrqSsePH09Xn7J27VrV8yURHx9Pz58/tzmvq1evUrNmzRTt4MyZM7Rjxw5VXHkbNBqNdn2O5SxatIgA0ObNm0WYXq/XfIavXLmieObkPiUnJ6vCrGGPazKt/9DQUDGW/PPPP5SQkJCp/CVY1P1LamoqnTp1iojUNzAiIoIAUO7cuQkAffvtt6q4Xl5edO/ePbp69SolJiaK8MaNG4u8kpKSKDY2Nl1+G41G+uOPPzT9lso4f/48ffzxxwSAQkNDNa9BOj5y5AgREd28edOqqOvTpw8BUHRWY8eOFYO2t7e3yqewsDAhHKW8jUYjLVq0iPR6PW3evFlRLgCqXr265rVVqlTJpjpau3atKk8AFBYWRmFhYUREVK1aNQJAqamp1LhxY7pw4YLFPG/fvk0A6Msvv6TBgwfTjz/+qCrH1N8hQ4bY5K8UX57HrVu3aPr06Wbjp6amUvXq1Wnv3r0KUSflU79+fQJAsbGx9Mknn4j7LI8DgPLlyyfC//77bwJAa9as0fTvf//7nzhevXo1AaDixYsTEVFKSgpt3rxZ0aH6+vqq6mffvn1UtmxZzXqLiYkhAOTh4UG7du1Snff19aVnz55RfHw8NWnShB4+fEhEZHagS0hIoNTUVM36DQwMFKJo/vz5NHDgQAJAy5Yt08wrI6IuICCA1q1bp0h/584dAkBfffWV1XIA0I0bN+jZs2cKUff2229TrVq1xLGrq6vwy5Kok8INBgONHDmSAFDfvn2JiOjrr78mABQVFaXw5+7duzRz5kxFHvfv3xfnBw8eTADo1KlTlJCQIOJERESo/Lly5QoBoNGjR6t8y5MnD6WmphIAGjdunBjgANBvv/1GvXr1EscNGzY0W+eLFy+m0NBQ+vTTT0X8H374geLi4izeq2+//ZYA0ODBg+mdd94hAKINRkRE0JYtW2jx4sUW8zC9phYtWqjON2jQQFEnJ06coIULFypEHQCaPHky3bp1S4g6yb744guRV2xsLAUGBlJqaiodPnxY05e6desqwvz8/AhIm+QCoGvXrolzUVFRQjDHx8dT06ZNxTNmKui0ngej0Sj6SSlc3m4NBoOiH0oPR48epfj4eHF86tQpke+KFSsU1zx16lRKSEgQbVCaAGk9F/v37ycA9ODBAxE2d+5cEffmzZuiDzGtW3N9QVBQEK1cuVKxYGLK9u3bCQDdunVLhEl15eHhQQBo0KBBtlWOFVjU/Yv0kN27d09xA1NSUqhSpUqajVtaHQFAPXv21Izz1ltvEQA6e/asyMdgMNDChQvFjIEo7YGNiYlR+CStygCgsmXLqnzWKk8SMfJrkD8QR48e1Uxrmm++fPkUoi4pKYn++ecfMThItnTpUjp58iRt2rRJhPXv359iY2PF8eLFiwkAvfnmm9S9e3dNv4OCglQ+vPLKK0SUNlhPmzaNDAaDGNClB+/OnTti9cCcJScni8/h4eEEgD7++GMiSusAbt++Tb/++qsQKNeuXaN169YRkCbq5AORaZ21b99eCGppAEtOThYrF1pIKzMAxHWULl1acR8uXrxI48aNE8fSoPfee+8RoBZ1kslXK7XaiVzUSZ3Z2rVrzbYtojRhZnrdf/75JwEgX19fkWbLli2KeO+++67FQUFaATd33jT8559/FhOsjRs3KvyVBETXrl0VaVu2bEkNGjSgt99+mwAIcS+ZvI6J0iZwUVFRijimz6VEbGysYpL2xhtvCP+1ruvixYsi3dWrV1UTK7mNGTPGYps2LcdcnUkrZ6bp2rVrR0DaymlISAg9e/bMrN+jR48mAPTPP//QkCFDCIB4PuTPlak/586dE8fyvkxqh3JRKPkDgCZNmqQQdaVLlyaitF2C+Ph4WrBgAT179kw815UqVaImTZoo8nd1ddW8ZzqdTtE3ARCiThJ6169fF+cePXok0j579ozy5s1LgYGBFBsbqxAPQJqoCwgIECsyUl+jdb9M+1EAVLFiRZWoA6BYJJDbkCFDhGCW8jadCHt5eSnSFC5cmIxGI6WkpFDRokUJSBM1UnsbNmyYQphpmbSi9N133ynCx44dq0i7cOFCAkCnT5+myMhIKlasmNnV4WvXrgmhKtVrmTJlxPn58+eLfJcsWaIYbxo0aCD6RSJS1JfpcyHVx+HDh1XXJfWxkydPVvlnmh9R2oqffGyZNm2a5rUR/bcYkidPHjp37hwlJSXRkiVLCPhPI3z66adirDx9+rQqj8uXL4tFG0uwqPuXzp07E/CfAAFAQ4cOFTPtjNprr72mCvvqq68IAP39999i5UWr0Vy9etXsOSLtDvjZs2eK47t37yqO9+7dS+XKlVOlu3DhgmK2LLdr167RTz/9REDaVpBWnLp164rP7u7uYuXIVqtTpw798ccfmtvHkydPJgBUo0YNAiBWhI4fP25T3nIhOWfOHPHZ39+fSpUqJY5v3LhBISEhNvts7h5IqyrmMK130+tds2aN2U5JMnOiTqu9yMPy5ctHU6ZMIR8fH1EXpqJO3uFJqymm+UqzSyBt9nv8+HHNVVgtW7dunWLyZGrSapCpjRo1SrSr3r17U926dalbt25ERJQvXz6r9wWAGMjkecoHbq00+fPnp2fPnlH58uUpOjqaAgIC6OHDh+L80qVLKTk5mfLnz08AqEiRImbLL1euHLm5uaXr2bCl/RGRSoxKJp/USXGliUjlypVtqjcA1LlzZxo2bJjmuQcPHihEHBHR+fPnxbFWfyDv36SVJCBtUJVPkkuWLElERC4uLqJuP/jgA0pKSrLob+7cucWzL+9XChUqpIjn7u5OAMQkVj7pkq7l6tWr1KFDBwKUk3ktK1KkCBERLViwQBF+6NAhi+kqVqyoGW7qj6mFhYXRypUrCVCLOq340iptRs3Dw4Nu3LiheU6+Wi9Ngvft20c7duwQ4QaDgYYPH05DhgyhGzduKJ4lIlLcV39/f826lK8kShM2ALR9+3aVCJbXgyRete5FQEAAAaBevXqJ+tu3b58Il/IiUgt2ADR8+HBVX3/gwAH6559/0j0eAiBPT0+Rz9atWwkAlS9fXlWGKSzq/sVSxWbmAbBkw4YNU2wbyBuNlk8eHh5kNBopLCyMXFxcNPN89OhRhv0x3T6TTD5rljq2rDJ/f39FnQcGBtLnn3+epWVm1Cy1GyBthcdgMNDWrVvpnXfeUW0NSjZjxgzxOTg4WHFu586dosNOr504cUK8hyKZXPy0bdtWfJaEhnyVwtJ1y7cDJTMty94m97dVq1bi87FjxxTxzK1sWLK4uDhq3ry52fM//PADATD73E2fPl1Rt9lhcXFx4rPBYDA7IZHeVbNm1tpZ69atqWvXrjblJQkkW00SVkDarof0DrBkps9NgwYNFCt91qx79+6K9za1LG/evARA1d9Ye861TFpRtodZapcAxIoP8J+o279/P+3cudNuPmTWqlatqhnu5uamWHUz3davUKECAVA9W9I7wlpmKo617p+3t7cqTNpKlibM0uRWeu0KSBOo8vcGTe3QoUM26Qpb7fjx4/Thhx+qrscSLOr+xVylSu/EZZXJt+6AtPc6LPmkNUOQm/QORUZs1KhRVuNktaj74osvsjR/e5otq7jyQbBx48Y0adIkh/psD+Fhrm1Onz7d4fcEAC1fvtzhPmSHyVfHN23aZHbbzMfHx+G+ZtbkAlYy6Ytctprp1rutJl9xtNUsba1ntWlt7eYkM7canFHTaju//vqrxXtmbkcKsG2Mkt7pzKzvNWvWVIVZg0UdkcVlfGmvPrusR48eNHToUIc+VJYsV65cDveBzbGW2e0bNjZnt5wurF5Gk76AZC8rVqxYpvOQrxJKZg0XIsf+xDoRZfkPjwJpPz7o5uYGnU6n+j+wo0ePxpQpU7LcB4ZhGIZhmIxiTbI5/MeHXV1dcevWLYf6kNkf6WQYhmEYhnE02fZPU4cPH64ZLv0z9mLFigGwz7+nSi8OXqxkGIZhGIbJNNkm6mbPno1atWrhtddeU4QTEW7duoUCBQqkaxt25MiROHPmDMqUKYMVK1YgT548GfaNRR3DMAzDMDmdbBN1v//+O5YsWYKZM2eiRYsWIvzVV1/FypUrUb16dZvzunTpEkJCQuDn54fff/8dW7duRc+ePRVx9Ho99Hq9OLb0/0VZ1DEMwzAMk9PJtnfqvLy8sGnTJgwYMAAjR45ESkpKhvM6deoUWrVqBSDtn9H7+/ur4kyZMgVubm7CSpcubTa/mzdvZtgXhmEYhmGYF4Fs/aJEvXr1cOHCBYSFheG9997DtWvXMvTN1+joaPENVjc3N0RGRqrieHl5QafTCQsODjab36NHj9LtA8MwDMMwzItEtm2/ShQsWBCrVq3Cxo0b0bJlSxgMhnTnUaRIEbGdGh0djaJFi6riuLq6wtXV1ab8kpOT0+0DwzAMwzDMi4TDftKke/fuOH/+PLZv346yZcumK22DBg3g7e0NADh48CA8PDwy5UvdunUzlZ5hGIZhGCYrKV68uNU4Dv2dulKlSqFjx44oUKBAutLVqVMHJUqUgKenJ27evIkuXbpkyo9vvvkmU+kZhmEYhmGyEtN/nKBFtm+/2os//vjDbnlpbd8yDMMwzMtMnjx5+PWkF4i2bdtajePw/yjxItC6dWuLP3kCAIGBgfjuu++yyaOM8eqrrzrahXSxf/9+u+Xl5uZm9tzAgQOtpq9QoYLieOrUqZn2Kb3Y+g6oJSx9y9saffv2zXT5TPqxZfZtC9IPuGcXd+7cEZ+joqLw1ltviePatWtnSZkzZ87MknwzyldffWVTvPHjx2exJ1lD+fLlbY6bN29em+POmjUrI+7keJYtW5ap9Lb8cwYWdf9SqFAhi+crVqyIJk2a2K28N9980+L59DxMEkOHDkV0dLTVmdX27dsBAB06dLD7z7kMGjQI69atsxqvd+/e6fptQkvUr19f8duHpjRq1MhqHtLKr9RJv/LKK6o4uXOrF7bDw8NtddMqK1euBJC5Qd5au5J49913VWFlypQRn/PkyYMJEyZkyIdBgwZh7dq1GUprT4YNG+ZoFyySN29ezJo1y24TiMz+3mbv3r0Vx61bt7YY/6233sKIESPg5+eH1157TfFbocOHD8+QPz/++KPZc/fu3cPw4cPx119/ibDff/893WVMmjQp3WnMYenVIfkkzVpdZhdafZgWISEh6N27N1avXq0IHzx4sNk07du3t9mPoUOHpvtdenN4eXlh9erVGXre27dvD09Pz0yVf+PGDZvj1qtXL8PlfPHFF7bdP3pJ0Ol0BIB0Op3ZOJ988gkBoHLlytH+/fsJgDAiIqPRSPXq1VOEp8cCAwPF54ULF1qMW6VKFRo8eLDZ8w0aNKAJEyYowkaNGiWuZd68efTHH3+Ic7///rv4fPbsWQJAAwcOJCKi1q1bp/taFi1apArr3LkzERElJCRYTe/n50dPnz7NcF1KduvWLTIajXThwgV65513KDk5mf7++2/6888/CQB5enpSamqq1XyIiK5du0ZnzpwhALR7927F+c2bN9O5c+cIAH377bfUv39/AmDTtdpibm5uZDQa6dy5c/Tw4UPFuS5dutCDBw+oWbNmBIBWrVpF58+f18xHurfm7OeffzZ7/yZPnkwAqGTJkhQZGUlElKF7NHjwYNqxY4cizNvbm44fP26xPcuPg4KCxOeEhATRRq9evaqI16dPH1Ve/fr1o8DAQCIiAkAFChSgsmXLivN6vZ5CQkIyfc+8vb0zlb5AgQJERBQVFWWXNvTaa69ZPH/48GGL56X6AkAff/yx4hgAffHFF+Lzli1bVP1nSkoK9ejRQ7RR0/RadujQIfrss880fZAsNTVVUc79+/ctxpfsypUr4pkxvc433niDANClS5c008r7TgB04cIFzXgDBw4kAPTNN9+ozi1atIhSUlIoOTlZ9CslS5akVatW2eV+Z8S+/PJLVdi3336rWUcS5tqIqUljrDWLjY0lIqIyZcrYFL9Vq1Z08OBBcazX6xX9kkRSUpJmetOxXG5//vknRUZGUsWKFTNcpykpKTbHjYyMFJ9nzZqVrnIuXrxoVrso7pdNsZwAW0SdXq8XN5rov8Z78uRJEWfJkiUEgM6dO6fojDds2GD2ZuTPn1+kl8KkfABQnTp1qHLlypSSkiIESN++fYmI6L333hPxevfuLT4fPnxYJVbkoo6I6MCBA4q8rl+/Tjdv3qTo6Gh69dVX6cKFC0Rk/mHQsqFDh9K2bdsoNTWVLl++rDgXHx9PRGpRd+PGDVU+x48fJyKi+fPn04ULF0THXrRoUVXc0NBQ8Tk8PJy6du2qeqC1iIiIoMTEREW9y61WrVp08+ZN2r17tyJdcHCwqFtJWD969EgIiu+++47i4+PpxIkTZvO2ZH5+fjRgwABKTEwUYWvXrlWUL4+/bds2zeuTzksDhlQfpuXdvn2bDh06RA0bNhTtTt7+JJs6dSoBoE8//VSzHFtt8ODBZDAYaMGCBQSAcuXKpcjLxcWFTp06Rffu3RNp5s2bpyiLiOj9998nAGQwGETHLD2jAKh58+ZicjR79mwR3r9/f1HemjVr6NatW1SnTh1Vexk7dqzK919//ZV+/PFHRVjz5s01r1Orbh4/fqw4Hj16tNl6atWqFRFpizpT0V2rVi3NPKTrArQHr+TkZHr8+DE9e/aMiNLEzPfff0/t2rUTcX777Te6du0aERGdPHlSlG96Px48eGD1uZP8lkSd/B6bWrFixUQ6nU4nfNCqZzmmom7Pnj0EgKpVq6ZK17RpU838/ve//5m9h/J2VqdOHVHuP//8o6prafL4888/U2RkpGJCJicgIIAA0F9//WW2TMkiIyMVg7+p3b9/n9q0aUMAaNq0abRu3TpFnZjaDz/8QN999x0BoO7du4tnVDovn4D99NNPVLduXYXv0rnr168rjvv27auq15kzZ9K0adOoZcuWZv2RKF26NAFpk1ZL9SHRp08f+u233xR+VapUSdNXuZk+F/IJ3rlz51Rp7969Szt37lRNrgFQzZo1VWG2LBoAoF9++YWIiL7++msCQOvXr7cpnWSWtIuiDmyK5QTYIuqI0gSJ0WgkIiJ/f38xq5AwGo10+/Ztcdy+fXsCQL6+vpo3okWLFpSUlCTiS7PppUuXkre3N/n6+qp8ePz4MSUnJ4vyPv/8cwLSBueRI0eK8gwGg6Isc6Ju3LhxVuvn4sWLdOfOHZGX1OmZe8AkpPCQkBBFHcrTGI1Gcnd3V4T5+/sr8pE6UXOd8Mcff6wo39fXl+bOnWv1uiTOnz8vruno0aMEgGrXrm1zeiISqztyASavAyBthdXaw6mVdu/evSLMdMa7fft2TX/27NlDs2fPVuRDRFSwYEGz5S1evJgAbVG3atUq6ty5s6J9m14foF7FmDBhAvn7+wsxNHjwYEXar776Shzv2rVLkT8Aqlq1qnjmAFDevHmJ6D9RJ52TGDRoEAFpq3SrV68mALRp0ybReQ8YMEBVV1qiTkJagSpevLhihU8ev3LlygSkrdhOmDBBtHfTAYmI6JdffqFJkybRmjVrNDv88uXL0/3798UkKC4uTpwrWbKkyOfmzZsiXKoLU5NWXqUBo1+/fhafVzlvvvkmARCCTyI1NVVxP6R8oqOjreabkJBAI0aMEJMpCSld9+7daeLEiXThwgV6+vSpZh7W+hxJOPfu3VuEBQQEUFRUlGrC16RJE838rIk6o9FIQJqYlvPkyRPRfp89e0ZxcXHk4eFBDx8+VPlvyqVLl8hgMJgt85VXXqG2bduK+L/99ptmvPv371Pnzp0JAAUHByvKdXV1VcTdu3cvGQwGio2NpU6dOtHz589p8ODBFBYWpvBzxowZZleCTK9HEmyJiYli/Pvuu+9U6YxGo1jxJyLasGEDLVy4UByXKlWKANDcuXMJSBOf1vpLU7+WLl2q6SsAioqKosjISNq3b58iXN4mTNM2btxYHBsMBqpevTrt37+fGjduTPfu3aOkpCTKnz8/AaB9+/bRs2fPFG1lwoQJNHz4cNU1SKvyRES//vorARCTEWvWtGlT+vzzz83Wg6pebI6Zw7FV1KWX5ORk+ueff4gobdCXL9OPHTtW8dARkVi9WLFihc1lSEvmd+7cEVuAYWFhojFJ28amok4a5MaPH29zWZLvLVq0sOkB0wpPTk4mADRmzBjRiUm+AmmrMqYDtTT4DRs2jIYMGSLi5smTh4jStnbi4uJsvg4txo8fT0DGRR0RqUQ+kbIjGTZsGAUHB1PNmjWpfPny9PDhQ8XgbFpXYWFh1L9/f1V9SO0ESJtJWwMAFSpUiIiISpQooegQ5ISGhlLt2rUVq5/bt28n4L+ZuLnrMxqN9OjRI0VY9+7dRbzr168TkLbVL5GYmKjaPpMTEBAgxI2Ur7u7OxH991qAKc+ePSMA9Pfff1NqaiotXLiQUlNTxbPx/fffq9KsW7fO4gBh7pol6tatK+pATnx8PI0aNYpmz55ttm+R8oqMjKRp06ZpihkpTkJCgqKdS+HSSovc+vfvT1FRUVS+fHkhRuVpoqOjLV6jNKjo9XqzcR48eCDuuVa92MrBgwcV+VhCXl/m0mzdulXRbiSSkpLo2LFjdP78eSIi1bbo/fv3iYjEliMRaa7ISH6kZzCVkMSyJUx3OayJF9NrkLZw5f0RoBR1Wv2snEuXLmluo5srXyI4OJhmzJhBRCQWM0aOHGk1H1N27dpFjRo1IoPBQBcvXiS9Xk+FChWi06dPU1BQED148ICOHj2arjwlX4OCgkSYqaiTj21yoqKiFAsw5ihfvrwq7YQJE+jevXtElDbWffDBB2ZF3YwZMwhQLwRJYlna2cjos8aiLgtYtWoVffbZZ5rn5s2bRwBo9erVNue3detWAtJmHqYYDAbxfsGxY8cU56TGPGHCBJvLkhrSmTNn6NatWxYFCVHaCtjVq1dV4Y8fP1YN5l999RV98MEHZssOCAgQK5RRUVHk7e1ts9+2EBcXR+PHjxcCcsmSJXbJV96ZSoOJVpz0PKTypfldu3ZZjf/kyROKiIggov9EncFgEKJai9WrV4vtIEssW7ZMMcMmSttmAUDLly9XhO/bt49SUlKs5mkOAFSiRAkiShO869at04z38OFD1YAlvWc4ZMiQDJcvERISQqGhoeJYeocyI9hy38uWLUsVKlQwmzY2NlbRhubPn08xMTGaeU2ePFkMuvYmowONo8pISEggf39/VZ4pKSmK/lRawZbHu3z5MiUkJKS7zKdPn9LZs2etxgPSVufOnDlDAQEBZuNJuzu9evUiAOK+m7Z/U1FnLyZOnKgaWyROnDiRYVGXFWhduzQJlCavw4cPJ3d3d5o4cWKGyqhQoYJN9RsdHS12mOSiTq/X04oVKxQLHcuXL6fnz58TACpTpozZa7EFFnXZjLTUbLqFlxVI26n79u2zOY2bm5uqIcm3Axk1AKhZs2ZW4wCgJ0+e2JRncnIy9e/fnz744APN1UFLSO9sZCVhYWHUsGFDCg8Pt2u+clGXXgwGA/36669WV6gygl6vp7t372YorS3PjtFo1FxVkae9cuWKw5/D3bt30+HDh7O0jKy4RlvzfPz4seJViKxEvipjr/zy5s2brW3kRRN1N27coCtXrpg9f/HiRbFwkFG0VuosAYC8vLzMnpPndejQIXr8+LHmOVvJsT8+nFMxGo0AgFy5sv7XZN566y3ExMRY/bkWOXfu3EFERIQirHDhwrh165bid6mY/zhz5oziN7osYetPjrz66qtYsGBBhvxZvHgxZsyYkaG0tvL666/D398/S/J2d3fPULpcuXJh3LhxdvYmjTx58qBy5cpZkjcAuLi4WI3zzjvvZFn5tpKen63IiZQsWRIlS5bMtvI6deqUbWW9DFj7maw6depkkyf/QRZ+2mfevHnQ6XTi+MMPP8x0eS5kqUQnIiYmBm5ubtDpdHb7sc+MEBISgnbt2sHb25v/k8VLRJkyZWA0GvH48WNHu/JCs3//frz77rt44403HO2K3ejVqxcuXryIW7dupTtt7ty5YTAYxMAgiT9n7raz4hqfPn2KXLlyoUSJEnbLM7NER0ejQIECdvvR+KpVq2LYsGGoUKEC3N3d8fbbb9slX0vExMSgUqVKOHbsGGrUqJHl5b0IzJkzB0OGDMnyZ9DFxQW1atXC5cuX05eORR3DZD3ZuULLOA+XL1+Gv78/vv/+ewBpHX2bNm2wb98+B3uWdbwMwpVhrPHkyRO4ubmhYMGC6UrHoo5hGCaHkJiYiFdffdXm/wyQEwkMDER4eDgaNGjgaFcYJsfBoo5hGIZhGMYJ4L0ghmEYhmEYJ+ClWakjIsTGxqJQoUI2fdOMYRiGYRgmJ/HSiDqGYRiGYRhnhrdfGYZhGIZhnAAWdQzDMAzDME4AizqGYRiGYRgngEUdwzAMwzCME8CijmEYhmEYxglgUccwDMMwDOMEsKhjGIZhGIZxAljUMQzDMAzDOAEs6hiGYRiGYZwAFnUMwzAMwzBOAIs6hmEYhmEYJ4BFHcMwDMMwjBPAoo5hGIZhGMYJYFHHMAzDMAzjBLCoYxiGYRiGcQJY1DEMwzAMwzgBL42oIyLExMSAiBztCsMwDMMwjN15aURdbGws3NzcEBsb62hXGIZhGIZh7M5LI+oYhnEciYmJmDx5MgwGg6NdYRiGcVpY1DEMk+X8/fffGDNmDA4cOOBoVxiGsQIRYe3atUhNTXW0K0w6YVHHMEyWk5KSAgA8SDBMDuDEiRP44osv8PfffzvaFRWXL1/md+MtwKKOYXIA4eHh2LVrl6PdyDAuLi6OdoHJIaSkpODPP//MsglAYmIiXFxccPjw4SzJ3xmIj48HAOh0Ogd7ouTMmTOoU6cONm/e7GhXXlhY1OVghg4dipIlSzrajXSRnJyMa9eu2SWvpKSkbJ+x+fv7Y+7cuZrnoqKicP369Swpt3v37vjkk0+yJO/sQBJ1OWGGPXnyZLu1USb9rFmzBiNGjMCWLVuyJP/Q0FAAwJIlS7Ik/xeVnTt34smTJ452A0DaPciIYHz27BkAICgoyM4eWUav1+PcuXPZWmZGeSFF3YULF+Dp6YmmTZuiW7duYusGAHx8fFC6dGk0a9YMH3zwQbb5tG3bNri4uCAmJibbyrTGX3/9hadPnzrajXQxcuRIvPPOO4p7GhwcnO584uLikC9fPixevNie7lnFw8MDgwcP1jzXvHlz1KxZM0vKDQkJyZJ8M0p4eDgKFCiAO3fu2BRfEnWdOnVCREREusuLiIjINqE1ZswYtGzZMlvKymksW7YMDx8+zFQe27dvR3R0tNnzSUlJAKDoI+yJNLHYvHmzze03u/nkk08wdepUu+U3Y8YMdOrUCa1atUJISAgSExNtTnv//n1s2rTJ5vhr1qzBsGHDLMZ54403UKlSJYtxnj17JkScKdm98j9ixAi8//77SEhIyNZyM8ILKepKliyJgwcP4vjx46hUqRJ27typOP/ZZ5/Bx8cHR44cyTaftm/fDgAZGpAkfH19c8RKhZz79+/j4MGDFuPcu3cPixcvhre3t9X8pIHZaDQCAH777TeUKVMGv/zyS7r8kn6axt4v3iclJWX4G5pXrlyxqy9yzLUbFxcXrFixwmw6nU6HQ4cO2d2fM2fOICEhwebOft26deLz48ePxWdbfzvS09MT77zzTvodTQeXL18Wbf1F2i42Go0wGAyoUaMGSpcurRnnzJkzuH//vji+du2aEEfpQX4vdDqdagv022+/Rbly5dKdr0RKSgq6dOmCb775xiYf7MGFCxfQrl07EBESEhJw9uxZca5q1aqib5fQ6/WKurTE5cuXERUVZbMv169fx/Hjx63G27VrF7y8vNCmTRu7iNsFCxYAAMLCwuDu7o6OHTvanNbDwwPdu3e3Of6XX36J2bNnq8JNV9fCw8Mt5vPmm2/izTffFMdnz55Fp06dLKbR6/V4++2309UXExH0er3FOJL4z4pv7xMRxo0bZ7+JO73gjBs3jrZv3y6Ojx07RuXKlaPGjRvT7NmzzaZLSkoinU4nLDg4mACQTqfLkB89evQgAPTgwQNKTk6mgIAACg8Pp/Xr11NkZKQi7vjx4wkA+fj4iLCTJ08SAFq1alWGypdz/vx5io+PJwBk7hampqaSwWAgIqLY2FiaNWsWnTlzhlasWEF+fn7UuHFjGjhwoNWy8uXLp1nG4cOHac+ePUREwg9bmlOzZs0IACUmJqrSnjhxwmp6iadPnxIA+uSTT2xOY474+HgaOXIk6fV6AkBffPGF2biSr3q9nu7du0dPnz5VnXv48GG6yjcYDOJemaNatWqa9QuAateuTUREgYGBFBQUpDjfvn17m+5Levnnn38IAP36669EROTq6kpeXl4UHBysGV9+ny9fvkxEJNrwzJkzrZZna/t68OABhYSEKMJiYmIIAP355582lQGASpQoYbWs7EK6h5bqwPQcAPrf//5HRETh4eEEgPz9/c2W8fHHH4s8tm3bRo8ePSIA9P7772uWc/36dc18kpOTSa/Xmy0nKSmJAFCTJk2IiOjnn3+mESNGKOLMnTuXANDq1avN5nP48GGKjY01e7569erUuXNn8RkApaSk0JdffqmoSwBUoUIFRdqvv/7a5mcGANWtW9emuFJ8S3nfunWL5s+fn6F+8cqVKxQXF6d5rnz58gSAihcvrvAhNDRU9bwYjUZxDyZMmECvvvqqps+bNm2iO3fu2HSNly5dEm3LXBw5QUFBqjiff/65CJs2bZpmujt37hAAcnFxMZu3xJQpU8jLy4umTJkiyrlw4YJmu/rwww/N6gcfHx+6du2a1fLM8eTJEwJAXbt2zXAecl5oUffw4UNq1KgRJScni7DY2FjS6/Wk1+updevWdP78ec20krAyNVtE3ZEjR+jcuXOKsO7duxMACgoKokGDBonBVKtxSmF9+vShKVOm0PLly2nPnj0EgH7//XcRLzIykubMmWNTXezZs4dy585NBoNBCA+pHH9/f7p16xYREaWkpIjwWrVqKfzRstDQUEX9mmLu4ZPCQ0JCFPlJ4tU0TXR0NNWoUYMKFixIACghIUHTt9u3b9tUH8+ePSMA1LFjR9W50NBQOnLkiGa6S5cu0TvvvEMbNmwQYbNnzyYAtHnzZosdQmJiovBz6NCh4vOwYcMU19KyZUv6+eefiYho+/btFBISQqtXr6ZPP/1U5BUXF0eTJ08mg8FAuXLlogYNGli83qpVqxIAMhgM9OeffypEcenSpVWDflxcHP3yyy9m79/Fixdp7969RETUoEEDatGiheL8xo0bVQOEl5eXyEtqz5Kok5e/cOFCOnTokEh3+fJllag7e/asEOZt27a1eO3y/OU8ePCALl68SB07dqQtW7aIeLly5SIiovv379OyZcto7dq1In1sbCwBULQPrefC3d3dqk/mxHhiYqJC7B86dIhSU1Ot5qfT6einn36i1NRUCgsLE6LG1LeNGzdarB+pjwBAly5donHjxinaqVRWdHS0Zh307duXtm/fbrFvy5UrFzVq1Ii6d+9OO3fupNDQUFq9ejXlzp1bPD937tyh0NBQkTYqKopmzpxJAOiNN96gTp06aZYxZ84cAkBr1qzRrKeAgAACQD179jRbl1K+H330kfj89OlTql+/vqo+K1WqpEhrbgIl1e3mzZvJaDSKcnLnzi3OR0REUHx8PBGl9e9JSUlERPT8+XOKi4tTXW9gYCAdP36cjEajEN+mNnr0aLPXaXrNkpA1pVy5cuK+yfs4S/UPpIm6V155xewYULBgQSIiWrFiBS1cuFA806bxpf7it99+U5T74MEDmjRpkiJucnKyqj8jIsWYZyrqhgwZQi1btqRbt26Z7fMkIiMjyWg0injvvvsuARD9+8cff6xK07JlSwJA3t7etHXrViIimjhxIrm6uop8Vq5cSUSk6Dfnz59P69atE8eSuJVPiiRRJ/m8a9cuAqB4PtPDCyvqdDodNWnSRHMmIDF//nxatmyZ5rn0rtRduXKFANCNGzc0G8Vnn31GQJqA0nrwlixZIuJKYX369BGfpZWNiRMninjSzOPZs2dW60Na4ZKuo169eiof7t27p+g4pGvQ8lduffr00SzzwoULZh8QKbxixYqKvORCd8+ePaLzk1b8JLtx4wY9ePBA5cuYMWOIKG0l7tq1azR9+nTNWdnGjRvN+vbee+8pwuPi4ujx48fUr18/RVkhISG0a9cuMdBYE3WW6lDrvBTWqFEjla/SQLt8+XLVub///puioqIUZVepUkWR99SpU8UKlFa58pUXed4xMTH0448/avr99ddfE9F/ncwXX3xBkZGRBIB+/PFHcnNzE2lq1qxJAKh///5m6yYxMZFGjx6tCpeEf+fOnQkAtWnTRrO+tere0v0wjSetTsjt0KFDqrzM3VMXFxe6desWhYeHU4UKFYQITk5OJm9vbypbtiyVLl2aiNIEpjTBbNu2rch/w4YNIr+UlBRRZkpKiqLz79u3r4h39OhRRRpz91gSN+vXr1c8f3nz5hXHfn5+4vOQIUOIiBTtcdCgQeTr66vI2xZRZ2ryPAEIYfn666+LtFqrZJLNnTuXiIh27txJXbp0IQC0du1aRdk7duygp0+fUqVKlUQ6qf2Zay+22FtvvaVIK63sPXz4kPr06aOYoCxcuFA8G9IEQaojqT+rVq2aqi0CoLfffluE+fj40Pnz58XxjBkzzPqXHlFXuXJlRdiZM2fo2bNnVLZsWUWekhCV+3jx4kVavHgxfffddyJ8woQJmu1A6/pMrUiRIgSA7ty5IybOWpNAQDnhkFZzTcuVt5/p06dr+vL999+Lz1Iblq8cy9u1OStXrpzqWlu1aqXySRLIclu3bp34LF/wkJBWQKUJi7u7O9WpU0fEO3DgAHXs2FEc79+/X0wMbOWFFHWpqanUrl07Onz4sOqcXJT16NGDjh8/blOeOp2OAPOibtKkSZodp4Qk6uQrNObia53bv3+/aNQNGjSgRYsWiUHtyZMnIm1CQoK44VFRUbRhwwZNISl1PHIrU6ZMhkRdnjx5iIjIz89PsZJomk9YWJhYgbC1w5w/f74QorYaEVH+/PnN3ouNGzeK7XDTc/LVtHnz5hFR2kqUVjmm4WPGjFEcHzt2TOS7YMECqz6bC3vrrbdUvsqFlZb17t1bcV2mos6SdevWzWzblHfSWu05MjKSVq5cqUovbcFoXWt62oM5q1y5Mq1Zs4b69OlDer1erOJcv35dcU+9vLxo8eLFFusbSFuB1ipn4MCB4nP37t3p4MGDNvv4yiuvEBHRb7/9pgiXtnxMfYiOjqZPPvlEHO/YsUO0UUl0az1rlStXFp/v37+fqXqVJiqWzPRZ++qrrxSrNXfv3hUr27aWK4kfIE3YWYvv7u6uClu6dKlYgb127RoBaSt8pvEMBgMNHjyY3NzcqGPHjoqVSlvN3PNhel4e9r///U9xXpr0ALD6fJuaNBHQMknUxcbG0r1798gcAKhKlSpkNBpp8+bNYkJQqlQplagzbavy50Iu6uT3RXqt5NmzZ4qJxJIlS2y+znfeecdsO5KQP+9S+IMHDxRjniTqTMc7uUk7GMuXL6eHDx+qdgzMmVzUjR07VrN9ynek5PbDDz+Iz/KFjFq1atGDBw/ERHP9+vV0+vRpVXoPDw9FnyG1pfTwQoq69evXU9GiRalp06bUtGlT2rhxI/Xt25eIiJYsWUL16tWjhg0b0siRI23OMzOiLj4+nho3bkxAxkWdtLIhN2lG+vjxY5H2p59+IiBtG1KKV7hw4XR1EHLbu3evTfHkfmtdgzzMdGZvb5M6cLlNmjRJseWhVe8XL16kESNGmPXb1LRWckzt+vXrdO7cOavxpCVzuZ05c8asr6NGjbKYX7du3SgiIoLu379PwcHBCmGYETMajbRr1y6qVatWpu+P/H0XAHTx4kW73v8OHTpYjaPVmcvvtalQsZddvXpVsapmavKVOQCKWbd8i1iyhw8fml1xfdFMeuUhu0wSg56enhbjnT17VnG8adOmdJeVO3dui6s4REQDBgwwe97apM+ayVfxTG3UqFEKUREbG0vr16+no0eP0rlz5+jMmTOiXVWtWpVOnDhBAGjWrFmqujS9pvT6aW6CnB57/PixZnjHjh2pcePGqomMOTEWEBBgducsM1a+fHkiIpW4ssX69+9vUzxz/X+DBg2obt26irBPP/2UwsLCqFy5chQYGGhV67yQoi4ryIiok15clN4DA9JWtczdqPDwcJo4caLNDeDTTz8lIG2gmDlzJnXs2JG+/fZbAqB4Hyo7TL7VqtW5Ef3XAVgTJFnpo7n61ZrBA6DAwMBMlyuJ7/Sa1uqa/L0QSyZtt0tWqlSpTF1DelcOXnSTtszlJl9hyEp78803zZ6Tnl9ntNy5czvcB1vMlpXB9Jq8/3sRTcs/a2OItH2fU61UqVJiB83eJu2spdeyug+aMGGCVa3Dou5f5C/tyk3+QqU1+/nnnx3e0LPK5O9/OMp69uzpcB/Y2NhePiN6sUWd1jhVtGhRh/vFZl/z8PCwqnVY1JH623lyO3DggM0VLn+ngo2NjY3NOUzrpfgXyUxfO2FzXrOGC1EO+zXcDBITEwM3NzfodDoULlxYce7AgQNo06aNgzxjGIZhGIaxjjXJ9kL+R4nsJqv+cTTDMAzDMEx28cKKupEjR8LT0xO9evVCcnKyCE9NTUXv3r3h6emJIUOG2KUsFnUMwzAMw+R0XkhRd+nSJYSEhMDPzw/Vq1fH1q1bxbk9e/agVKlS8PPzQ0JCAvz9/TXz0Ov1iImJUZg5suL/uTEMwzAMw2QnL6SoO3XqFFq1agUAaN26tUK4WTonZ8qUKXBzcxNm7h9hA0B8fLwdvWcYhmEYhsl+MiXqoqKiMHv2bPzwww+YNGkSgoOD7eJUdHS0+DKDm5sbIiMjbTonx8vLCzqdTpgl3/R6vV38ZhiGYRiGcRTpEnVvvvkmIiIiAAAPHjxA9erVMW3aNAQEBGDRokWoWbMmbt++nWmnihQpIrZLo6OjUbRoUZvOyXF1dUXhwoUVZo5XXnkl0z4zDMMwDMM4knSJupCQEPH+2ejRo1G1alXcu3cP3t7e/2/vzONrutb//wlKUTMtLW5bVbeqWrOQiFKqhrRmqobSKr1fqoa6lFKtDrgUVYqaSkhUBxQxJYRIzWPEPEciIXMiOcn5/P7Ib297n7PPlIQT8bxfr/XK3mt81rDXetazds7G+fPn4e3tjYkTJ+ZaqKZNm2Lr1q0AgMDAQDRv3typsJxSsWLFXOchCIIgCILgTnJ8/PrPP/9g4sSJKFGiBIBsy9iECRMQFhaWa6Hq1auHypUrw9vbG+Hh4ejatSs++ugjAECnTp1w7do1eHt7o3jx4vD09Mx1eSaTKdd5CIIgCIIg3C+aNGniME4RVzP18PAAkP0e2lNPPaULe+qppxATE+NqlobMmDFDd//zzz8DAIoUKYLly5fnSRkKotQJgpCfGTRoEH755Rd3iyEIghspUsSxyuaypa5169aoX78+EhMTcfbsWV3Y1atXH8qjzFq1arlbBJu89NJLTsWbNm3afZYkf/P000+7W4QCz9dff+1uEQoMSUlJLsXv37//fZLk4eHbb79F9erV8zzfsWPH5ir95MmTrfzGjRuXqzzdwaBBgx5oeUWLFn2g5d2PsZNXfPrpp4iPj9f5/fnnn1bx8lypmzRpErp27Yq3334bo0ePVo9eFTZs2ABvb29XsswX1KtXDwMGDLjv5dSsWdPlNCVLlnQqnrPKnyX9+vVDSEiIzfADBw7kKF+FDRs25Cq9s1huMAoyS5YsUc3wO3fuVP3r169vGD8iIsLq0zKlSpVyudycfFFw2LBhOSrnQX29sGXLlob+AQEBut/HzGueeOIJm2F+fn64dOkSBg8erPrZWpBeeOEFl8p9/fXXbYa99tprLuX1oBk5ciT8/Pxshq9bt86pfCpXrozjx4+r9999912u5Hruuees/L755ptc5Tl69GisWrXKZnjnzp1zlb9C7dq1ERkZCbPZjEWLFuVJnp06dULDhg0dxouNjc2T8oDs35otW7as3Tj2/lkyryhWrFiO0s2cORNlypTR+fn6+mLChAk6P2eUOsdfhy0gJCQkEAATEhJsxoGND+hOmTLF4Ud2//e//6nXDRo0IAD27duXXbp0Uf07dOjg8sd7lbwUt2HDBqs4vr6+duUHwMOHD3PgwIGGHweOi4vjY489ZvPjwUb+9erVs/Lr3Lkz33//fQYEBOjSFylSxCquyWSyKeu8efN46tQpw7CpU6eyd+/eBMCzZ88SABs1akSSvHHjBgMDA11u4yeffNKwnq+88orDtO3btycA9uzZ0268Z555Rr0uWrSoyzJq3ZIlSxgXF8cjR47o5G7QoAHLli1r2IfaeCEhIczKyrJbRlhYmJWf5dibOnWq3TwaNGjAzMxMnV+FChVYuXJlu+kcPY+Ka9asmaF/6dKlnW7LN99809B/9+7d3LNnj85vzJgxTuf7119/8fXXX7dbR0u/zp078++//zack4ziN27cmJMnT7ZZxqRJk3T3t2/ftuoPrbtz547dOjkzD2pdx44drfwuXrzoUh5al5GRwdOnT9sMd/bZb9asmbom3Lhxw6mxZs8tW7bMqf51xZGk2Wy2Gd65c2f1ulixYjkup2nTprrxFhkZ6XTar7/+Wr2uXbu2ev3jjz8yMTGRfn5+LFmypM30Sv2M1h57dVecn58fAXDixIkkybp169qNP2rUqFz1ieLeeust3f3s2bPV63379rmc3w8//KC2/8mTJ3VtYDmO/Pz8bOov6pzhMEYBwRWlrlSpUup1SEgIT5w4YdgZ2sVDm15Lv379VP8OHTqwWrVqBMAZM2YYdq5WhjZt2rBXr15WD7tlup07d+r8P/74Y6s4JDl27FgCYLdu3VinTh0rWY3qSFKnWKalpREAvby8rOLevHlTzev06dOMiIhQ2/727dtW+Xp4eNgsUyvPq6++ymnTpvHEiRMkyWPHjvHVV1/l3bt3CWRPcPbqYakYK+77778nALZt25Yk1bZ+6623uHHjRt2kZekiIiIYHR2tlrlr1y41bPfu3VbxDx8+rF6XKFGCALhgwQLDvH/77Te2bNlSvVcURqW9fvnlF8P6NmzYkG3atFH72FZ72utve5MTSd66dUu9d6QYXr161aqc2NhYZmVl6Raixx9/XL3+/fffHcr3559/cty4cYZjcMiQIVZpPTw8WL9+ffVe+0wqStEHH3zAO3fu8NSpU2zevDlTUlKsNhaXLl3Syap1CxcuZGJioq6tOnXqZBg3JSXFSsaxY8fSCG1+lvmMGDHCSqkbNmwYO3fuzKSkJK5Zs0YXlpGRQZKsWLEi+/fvrwt76qmn1DIPHjxo87m0VSdLt3jxYiuZHfXrr7/+auW3d+9efvLJJwTAzMxMVb4nnniCH374IcuVK6fG1T6DRi4wMJA7duxgTEyMzXZW3Keffqq7125yRowYoV5///33vH79uk7ePXv26PJMS0vjuXPnbMrl6+vL48ePO9VW48aNI6BX6lJTU3VxtHONpRs7diyPHj2q3lsqdST50UcfWY3X4cOHc+3ataqfn58fr169qt5rN8A//vij3bbV1nHdunU8f/48O3TowG+//ZZAtoFEISsrS53TFEURyF57lfE9c+ZMkrS7sQ4JCeHnn3/u1NhV3KFDhwzXDu3GyGQykcxe4w4ePEiS/OeffwiA7733Hi9fvswvv/zSKo8pU6awR48eBLLnFS2KwUShQoUKBMDTp09b9ZUR+U6pO3jwIL28vNiiRQt2795dnYgUgoKCWLVqVfr4+LBVq1ZO5+uMUnf+/HlOmTJFtWgFBwerYUYTDpk9YN9//331+vHHH9flqV1AOnbsqFqxpk+fTiDbyqTNT1Ek/vjjD5JkWFiYTeURAD09PdWyZs6cybNnzxruqEkyODiYAHj9+nWmpKQwPDxcJ+uCBQvYv39/njt3jgEBAUxKSiJJJiYmMiIiQlXaFi5cyBs3brBQoUIE7lmhHGEpz9atW/l///d/hrJq4//888828wwMDGR8fLzNcgCwdevWBLItgIpfuXLlSJLHjx9nYmKiWk8AXL16NUnatURZEhISooZplbp33nlHnWhnzZrFJk2aqEodSb777rsEshX6CxcucPz48TSbzTSbzdywYQPNZjNNJhN37NjBxYsXE7i3YFrWd+jQofTx8SEAxsfHEwALFSpkFc9WO61atUq9Dg0NtVlnZfdtlEeRIkXUMW1ZTvXq1dVJkCQHDBhAIHsxPnLkiNUudObMmVb5axXpFi1aqPU+efIkN23apCpMmzZtUtN4eHjoFmLtMzl//nwC4NKlSw3H186dOwmANWvWJEk2bNjQcDwoira2rd5++221LY8cOWLVjllZWepu3BbaNFpL+5o1a5iSkqJT6rRzAUmdxRzIVsKN8lYWIC3KhsxovNt6JrTjxyiukZ+yYNnKmyQzMjJ47tw5w/YpX768GtdsNnPp0qVs0qSJ6qc8D+vXr7fb1pblKgr9559/zoSEBB44cIAA+J///Idk9tygzPskOXHiRJvtpKBY9RU3efJkkjS0yFjmcfjwYaampqoKpPYEyCjt/v37dX7KMxsaGqqLbzTuTSYTMzIyCIC9e/fWhSlzPnlvTQWgjnXANaXOkuPHj1v5aZW6Q4cOEcjevAUFBRG4Z71KTk5maGioTkHu1auXagwwUuoiIyN1yqnWHT58mH/99Zeh3FWqVLFZh6ysLI4ZM4ZRUVGGbRAYGMiMjAxVCXWk1KWnpzM5OdmwLCPynVJ38+ZNdWIeN24cAwICdOFBQUEcNWqUw3zu3r3LhIQE1V27do2AfaVOQdkNWO7oHA3KmJgYxsXF6fzOnTunLgSdOnVSdzvTpk1jenq67hiSJJOSkvjZZ59ZKbPKsZoih9LxlhM5SVWpU3bj48aNc1jnnBAZGcmIiAg+/fTTNge4FlttFxwcrDs6sYx/5coVl+Sy7Kf58+fT39+fZrOZNWvWJACWL1/eYT6WSp3WNG5JXFycGqZYDMaMGaPueg8fPqzGNVLqLly44FCevXv3EoBqCVAYMGAAv//+e6anp7NPnz4EsneTp0+fVo+XSPK1117j8OHDbbbTqlWreO3aNXbs2JFpaWncsmWLYZ8pVkCSnDx5MmvVqsVp06Zx8+bNhnLbajNFqVMUCHtpFcvlrVu31DDFLzU11W76cuXK0WQyqZuaL7/8khcuXGBoaKg67nbs2GGYXtmVK0d2cXFxrF27trobV5y/vz9J8uzZs7x+/TpJqgp9ZGSk3Xawx1dffcWSJUtatYeC8tpHUFCQVVplvK5cuVJn/VDIyMhQN1WWx762ylP8ChUqxObNm3PGjBn8559/1PoXL15cF3/t2rX09vbmqlWrrPJUnkOjZ97Ztho5ciSB7OM/BWVcHTp0SFXq0tPT7eZjVObvv/+uplOUuk8//dQwfVZWlrpuWeapoMz1VatWNcxDsUAatYeCVqm7ceMGr127pov39ddfW6UdO3as1QZ+4cKF/PXXX+22iRGFCxfWyZOYmMgtW7borNS5UeqMUJS6pKQkVakbOnQoSXL37t2GynpwcDAPHDig8zNS6hRGjx7N0aNH68IUo8bKlSsJgCNHjlTjO2vIUNBuMhWUZ9dSz7BU6lwl3yl1Wr744gvdcQyZrdQ9++yz9PLy0p1FW2L5PoninFHqyGyl0JIJEybwP//5j8uDUjmy8vX15Z07d1inTh31YSSdm+xjYmJUjf7MmTOqJaZ79+5WcRWlTpnwxo8f77SsOUFRJByh1NPWBGtLqXOVbdu26Y57FyxYoAuvUaMGlyxZ4jAfRakbNmwYP/74Y4cy7dmzhwcOHNApdYMHDyYA9f03kjxy5AhnzJhB8p41xdlxaXR0pCUpKUlnYbZHamqqziKnXXgVlPeiZs2apfrdvXtXtwt1hK02U1430B7b20p7+vRp9ujRQ2dtatWqFQHY3cX6+/vrrDz//POPzlpI0u6xhvJuj9EC+Mcff3D//v1csmSJlRWMpHpEpih5OR3PWiZNmqRTwDIyMvjLL7/YtEKlpaXZzU+x9Lmq1BUuXNgwvj0LhmWeiuKlWKzI7KO/IUOGsHv37oYbVkvMZjNv376tU+wVpe706dOqNdeRUhcTE8MaNWrYlD0rK4tTpkxx+jkljdtux44d6ngwQjmqs5VHRkYG//3vf3P//v1WZRUpUsRh+bnl5Zdftpmnsg7MmzfPUI5Bgwbx2LFjearUuYKi1Gk3q5Yom2zFIktSjT9p0iTVT3mNyhUsyzSbzYYGiwKr1F25coXNmjWzslglJSUxPT2d6enpbNeunXqObUluLHWOsNxNOSIzM5Nt27blsWPHDMO1Oy5XCAwMNKyPotQp74VMmDDB5bxd4e7du3YnKgVHD3NeKXWW6W1ZYRyhHIVv2LBB9RsxYgQbNGhgN51iERozZoz6cu7JkydzJMODwJ5SpxyraI89XWXnzp2qJUeL2Wx2aKG0NwYUS7SlhSS/0LVrVwLQWVMsX89wN3///beqABlhS6mzZem+cOGC+vqCLZQ8T506lTOhHWCk1FmuI0bYU1hyQk7mL7PZrFNAnc3DSKlr3rx5nit1t27dUo9wLYmOjuZzzz2nOx0gqb47vGzZMpLZGw171nVL8kqpGz9+PAFw+/btNtv1999/t9poXrlyhUD2e3kK1atXd7ltU1JS7G5gFfbu3cu33nrLpby1uPzjw3lFVFQUunXrZuW/fv16FClSBH379sXSpUvx2GOP6cK1PwXg6+uLY8eOoUGDBlb5FCtWLMf/XuyIy5cvIzU11en4hQsXRmBgoM3wnP7GWtu2be2Gm81mAPd+MPp+UaxYMTzzzDMO49WoUQMXLly4r7IY0apVqxyl69+/P9atW6f7mZ5Zs2a5lMeUKVNQq1Yt1K5dO0cyPEhIWvkpz1BuxpCtn9Hw8PDA888/n+N8582bh169eln9tFJ+YciQIVi3bh0qVKgAAAgODs53v5XVvn17xMfHW/2cgsLVq1etfpx9zZo1hnMuADz//PMO+9TPzw/PPPPMA3km/vvf/+LYsWNu+b73oEGDEBwc7FIaDw8P3e+3DRw4EDdu3HA6rZbg4GD1s555RaVKlVCpUiXDsCeffBIXL1608ld+Nkj5pOfjjz/uUpnaeUm5vl9rWufOnZGRkaHTO6pXr241NzZq1AhXr151Ke8SJUo4NVc1a9YMmzZtcilvLW5T6ipXrow9e/ZY+WdlZeGdd97BF198gRdffNEqPDExUf29mZCQEAwZMuS+y2pJhQoV1Ik6P1K5cmUAUCfq+63UOUt4eLih4qCwbNky3L17N8/K6969u9oWOaFq1ao4fPhwrmQoUaIEPvzww1zlcb+ZM2cOhg8fbhg2b948NGnSxOZEfr+pXLkyoqKiDMNKliyJdu3aPWCJnOeNN97QjXcfHx83SmMbWwodAFSrVs3Kr2fPnrkqr3fv3rlK7whtm7/11ltWP+rqTLq8YPHixbnOIzdfESlSpIhzv2t2n6lVq1aetO2DWscsDUlGrFixAl999dUDkMZ1cvzt1/tFQEAAQkND8dVXX6Fly5bw9/cHAPXbrwEBAWjcuDGaNWuGZ555Bi1atHCnuPmSQYMGYevWrXjvvfcAZGv++YGiRYvatZ72799f7ee8ICAgAHPmzMmz/JylXLlyAIwXxIeNihUrYuTIkW4r/+zZs3n6I6XCo4OrSsDy5cvx/vvv3ydp7i/Dhg3D5s2b3S3GfUHZmHt4eKBmzZooXLhwjvpp8ODBqF+/Pho3bgwgd1+SKlGiRI5/8P9+48G83p7kUxITE1GmTBkkJCQ8kF+Wzi+kpaWhePHi7hYjRwwfPhyBgYE4c+aMu0Vxmd27d8PLywuFCuW7fZMVc+fOxfDhw7Fy5Ur06dPH3eIIQq4YMGAAli9fjoiIiHz9CUjBOZKSkhAUFARfX988y/PmzZt44okncvRlnfyO+22zwn3lYVXoALjFypZXiAVZEAQh95QqVSpPFToAqFKlSp7ml58QpU4QHnHee+897NixI88nTkFwJ4/IIZQg6BClThAeccqVK4c///zT3WIIQp4gypzwKCNKnSAIglBgmDhxImJjY1GjRg13iyIIDxz5RwlBEARBEIQCQP7/1zxBEARBEATBIY+MpY4kkpKSUKpUqXzzY7yCIAiCIAh5xSOj1AmCIAiCIBRk5PhVEARBEAShACBKnSAIgiAIQgFAlDpBEARBEIQCgCh1giAIgiAIBQBR6gRBEARBEAoAotQJgiAIgiAUAESpEwRBEARBKACIUicIgiAIglAAEKVOEARBEAShACBKnSAIgiAIQgFAlDpBEARBEIQCgCh1giAIgiAIBQBR6gRBEARBEAoAotQJgiAIgiAUAESpEwRBEARBKACIUicIgiAIglAAeGSUOpJITEwESXeLIgiCIAiCkOc8MkpdUlISypQpg6SkJHeLIgiCIAiCkOc8MkqdIAiCIAjuJS0tDWfPnnW3GAUWUepyyMmTJzF48GB3iyEIgiAI+RKj150GDBiAWrVquUGaRwNR6nLIwIEDsWjRIneLIRRgfv31VwwbNszdYriFK1euwMPDA6dOnXK3KIIg5IBLly6hUKFC2Llzp85///79bpLo0aCIuwV4WJF/uBDuN/369QMAzJ07182SPHjCwsIAAIGBgXj55ZfdLI0gCK5y5swZAEBISAhIokyZMmjYsKGbpSr4iKUulzwI5c5sNosSKVhhNpvh5+cnY+MR58SJE1i9erXdOGazGZs2bZKxUsCJiopytwhWeHh44I033kCjRo3Ue+H+kS+VukOHDsHb2xs+Pj7o0aMHTCaTGhYcHIxq1aqhZcuWaN26tdtkfJCTY+HChTFq1CiH8X777TfcvHkzV2Vt2rQJsbGxucojv7Jz506cO3fO3WLkGatWrUKfPn3w559/6vxTUlLw+++/u0eofI7ZbH4g5fzzzz944403XJ4nSLqcpm7dunj33Xftxlm+fDk6dOiAoKAgl/IWco7JZEJycvIDK2/Dhg2oUqUKTp48meM8PDw88PXXX+eJPLlZI2/dumWY3mQyFfiNSVZWFiZMmIDExMQcpc+XSt0zzzyDwMBA7Nq1Cy+88ILVotWzZ08EBwdjx44d7hFQgysDbN++fUhJSclROcuXL0dsbKxNpe3jjz9G9+7d4evr6zAvs9msHm9Z0qFDB3Tt2jVHMuZ3WrdujRdffBHnz5/PcR6nT5/OQ4lyh/LQWy4co0ePRteuXXHr1i13iJVv2bVrFwoXLpynin1iYiJ69epl9VNJn3zyCXbs2IGYmBjDdBkZGTh48KCV/48//ohChQohMzMTzz//PGbMmJEncioWHO2Y8fT0xJUrV/Ik/wfB3r17c6yUR0VFwcPDA4GBgXkslW18fX1RqlQpp+KazWakpqbmqJx3330Xr7zyCo4fPw4AuHz5co7yUVi2bFmu0isoa6OlZc7y/vbt28jIyFDvY2Ji8NRTT2HBggVWeRYtWhRTp06F2WzGt99+6/RPlMXExOCvv/5yGG/t2rWYPXu2ep+QkJAjxTw1NRXFihVDaGio6nfnzh2MGjXKYf/s3bsXU6dOxbfffutyuUA+VeoqV66MEiVKAAAee+wxFCmif/Vv3bp18Pb21jW+Jenp6UhMTNS5vGDKlCm4ePGiQ2Vu0aJF8PDw0A3WZs2aYdCgQTkq986dO6hUqRKefvppw/D58+cDgNUiUq9ePXTr1s0qrqenp82X0G/cuOGSbHv37kV0dDSA7Ac5ICBAZ111xNmzZ1GnTh1V4c3KyoKHhwdWrVrlkhz2WLhwoXqtXcgyMjKcfmi3bduG2rVro1evXvDw8EBmZiZOnDhh9SJwXuBofGVkZGDbtm2GYcoYMOqDwMDAHG8sLAkKCoKHh4dL7Tdx4kSXNkKjRo3C9u3bAQBxcXHqOHNEeno6unXrphvLe/bsAeBYMVcW1w0bNiAiIkKnSJhMJnTo0EHdGPj7+8Pf3x9r167V5XHo0CEAwKRJkwzL+Oyzz9CoUSOrtvvtt9/U9JcuXcKYMWOsZHO0Kdm3bx88PDx0bZWVlQUg2+oPZFsSw8LCsHDhQixatMhQwSxZsiQmTJhgt6y8ZOzYsfD09MSBAweslM3Tp0/Dy8vL7pxvyalTp1SLtbKQbtmyRRcnKirK5gY3t1iWVadOHZvyf/nllyhZsqRT+Z45c0Z3mrJ69Wq71jmTyYTevXvj+vXrTuWfV5YwW0qdJRUrVkSPHj3U+/j4eABAaGgoJkyYgCZNmiAhIUENX7t2LQ4ePIjx48ejUqVKOHr0KDZs2GC3jK5du+Kdd96x8s/KysKyZctUWXv06IERI0ao4WXLlsVzzz1nN28jrl+/joyMDN2607ZtW8ycOROvv/663bTKfJPjfmA+5sqVK2zWrBkzMjJUv6SkJKanpzM9PZ3t2rXjwYMHDdNOmjSJAKxcQkJCrmQCwMaNG7N+/foEwMzMTK5fv57h4eEcOHAgK1WqRJJ84403rMoDwPr16ztVTkxMDM1ms5pO62zJBYDVqlUz9NcyZswYAuDu3btt5uNsO6WlpREAn3rqKZJkWFgYAbBTp04MDg5W45nNZl66dIkkWaxYMfbp00cN++STTwiAYWFhujxffvll9uzZk6mpqU7JYosrV67o2m/btm1q2Ouvv26zTS35+eefdfkocub1Y7Rx40YOHDjQZt7ff/+9To4VK1bowrt3704A3Lhxo84/JSWFADhgwACHMmRkZPDixYvqfUxMjNV46devHwEwIiLCZj5paWncuXMnSf041j7TRvj7+6txvb29SZJPPPGE020dGhpq9dy0atWKAPjnn3+SJE+cOMFOnTqxWrVqHDduHEny1KlTBMAdO3ao6SZNmkSSjIyMVP369etHkly4cCEB8JdfftGV/9hjjxEAP/zwQ6amphKA2g4k+eabbxIA4+LidOlatGhh93nv2LGjlZ9lPOX51j5/I0aMIAD+/fffJMnt27cTAMePH29znCn+MTExXLVqFUly9+7djIqKUuNkZWUxOTnZsA+2bdvm0rNrr9579uwhAH7yySc8fPgw9+/f73R+JLlv3z4C4IgRI3Rxnn322Rw9vxcuXOD69eudLt/oXku9evUIQJ3zHeVbpUoVq3y//vprAuCGDRt08Q8dOkQAHDJkiFN5P//88w7jOcPGjRt1cil1r1GjhlW7FCpUSL0/d+4cAdDX11dNt2jRIjVunTp1GBISYjVeoqOjdeX//vvv6jpmWabC4sWLdW2mlTMzM9Nmn926dYsAuHXrVsO6h4eHW633xYsXJwCWLVvWbrvt3LmTADh27Fi78WyRLy11QPYxQd++fbF06VI89thjqv8TTzyBokWLomjRovD19cWxY8cM048bNw4JCQmqu3btmt3yNm/ejJCQELtxqNl5UKNF+/r6onbt2liyZImVpSwtLU3deVji7++PadOmWfnfunULlSpVwi+//GJXHqN87dUzPj4eKSkp2LVrl64+ly5dsvpnDMsXr1euXImNGzfi559/RkpKihpX2f1ER0fjyJEjOitHy5YtcfjwYQDAnDlz8Nxzz2HWrFlIT0/XWeFosaNT/p46dQr+/v547bXXbNapS5cuVv8dGh8frzPLW1o7SKo7XeUdo4yMDNWaYQta7JyMdqBpaWnIzMxEREQEIiMjcfHiRbRp0wbp6ek28924cSM8PDyQkpKC69evo2PHjliyZIlh3EmTJmHs2LF25VDuO3bsiP/+97947rnnYDKZkJmZCQCIjIzUxY+Pj7d6B2/kyJF4/vnn1fv33nsPLVq0AAB112zZHkZ89tlnaNWqFS5evKjzd+UYOy4uDsC9Y+Z58+bBz8/PMN7MmTNhNpsN+1KxqCpyf/bZZ9iwYQOuXbumHnVEREQAgO59XcUiqoQBjq0PSnhWVpZ6DK7dtdtqO6PjWpPJpJ40aI9zgOx3YLVkZmZi+vTpAPTH8j/88AOA7HeSZ8+ercpnJEdsbKzuiKh///7o06cPzGYzWrRoAS8vLzVs0qRJeOKJJ6zyuHPnDtq0aWP17AHZc/uBAwewePFi1c/oBX+tlfWbb75RZatfvz4aN25sFd8eSj1TU1PVa5JqPY8ePeowj9mzZ6sWzUaNGsHX11fNKzg4GD///LNT/6jg7++PpUuX6vwKFcpeih3NQQrKazhr1qxxKj5wb0yeOXMGx48fV58rILtdlLJJIioq6oG8f6qsYUo7XrhwQZ2bLctX4pw8eVJ3AqaQmJiIZcuWITk5GWlpaejSpQuGDh2qS7t7927s3r1bTaOsE5anF3/88YfVCaGWCxcuAAD+/vtv1e/UqVPw8PDA9evXVdmV9c9IVg8PD/z44482y8jxP5TkSBW8z2RmZrJjx47cvn27VZjWgtS7d2/u2rXLqTwTEhLsWqDw/zXy+Ph4JiUl0d/fnwsWLCCZbbXo168fhw8fTgBs2rQpX3vtNQLQ7d4VZ7SLUMqoV68eExISuGTJEl1YcnIy3333XSYkJPDkyZMEwEGDBqlya92ECRPUnfaaNWt08lt2qT2ZgoODefv2bQLgxIkTGRAQoAvfv38/jx07ZpU/AI4ePZqHDx9WLZaK0+78Fafsamy1ieL++ecfktRZwCzjzp07ly1atOAHH3ygS29Z51KlSqn3nTt31uX10UcfEQDPnj2r83/zzTftjqGffvrJSl7tuFHKbtOmjZX8R48e1eVlMpkYFxdHf39/9uzZkwB4+fJlPvPMM4Z1t+xPratbt65qBSXJHj16GO5ilbFkWU8lzoIFC+jt7c2oqCiWK1dOV3b16tUJgB06dCAA3rx5k3379iUAnjlzhiTZuHFjdawpaHfbWqeMK1toLXUAVCuj1inWPqPxYuQ8PDwIgL///jtJslOnTrrwq1ev0s/PzzDt7NmzGRQUpN73799fF7548WJGREQwMjKSY8aMYdGiRQlkW5sXLFhAINtSqNC2bVvduLHXv0rbh4aGqv1SokQJDhs2TM0HgGrNUtwLL7xgM9+///5b158AaDKZ7LabYmnQjou6devq7s1mM8PDw63mxZiYGG7fvp3Xr19no0aNdP626q3NV7GovfPOO7r+8vT0tLJ2Wtb58OHDqvUaAGfNmsVJkyapllvF/fTTT7x8+bJhXlFRUTqZlOtJkybRbDbr8lHWJOV+0KBBnDVrllXd5syZo8quPDutWrXizZs3mZKSYvPZMJIDMLbUnTx5kh9++CEBcOjQoYyLizNsXyDbgg+AlStXJgB++umnBMDNmzdz/fr1PHbsGGNiYgiA06dPN1xLy5Qpo1pDN2zYoJPLUmbttYeHh1V9FGs2kG2py8rKUu+V9jJyQ4cOZXJyMgHwjTfe0I0fxS1cuFD3vHTp0oXXr1/X5WHUTleuXCFJq/X02rVrnDZtGoHs+eX48eO65xAAH3/8cStZFUveiRMneOPGDcbHx6unBJ999pnNMWCPfKnU+fn5sXz58vTx8aGPjw/XrFnDwYMHkyQXLVrERo0a0dPTk6NHj3Y6T2eVOqNJ5a+//rLqCFvxbTntg//iiy9albFixQp1YlEWD+0EZsspD5DWT6nrsmXL7KYNCgqyOpq01Qau1tcZ17p1a929cqRitIArxyevvPKK6qcc9WofOq2su3bt4q1bt2y2o6IYW9Z1yZIlnD9/vppfZmYmBw0apB595aSd1q5da3O8NW3alADUSdAoX5KMjo62W36NGjVIUlUStU5RwIB7St2QIUP40ksvWcV9+umn1esLFy6QvKfUKW7evHnq9ZkzZ7h582b1vkuXLjx58iSTk5NtKnVHjx5V219ZwNLT09W6KoqQPXfy5EmStBpHtlzhwoUJgOvWrbPZV8oRr6Xz9PTkrl27bOY9ceJEp2RQNi6K4j99+nRVkTDawFk6o4VBcb169bLyW7x4sbpJ1DqtgqY4ZcF2xsXFxTEiIkLd3JrNZi5atEgNb9CggdN5xcbG2gwbOXIkSfK5554jAL799ttqWPv27QmARYoUsZrPjx07psYrVqyY07IodbE8BtWGK8djitPOSUD2ptHZOXPgwIEkafUcNm3a1KpOc+fO1cVRFBdLt2rVKtatW5cnTpxgmTJlVP+hQ4daKdskeeTIEZ1f6dKlCcBwgzl48GDd/dKlS3XjWvFPSUnh+vXrCYBTp05V/bWvRWjjFypUiN99953NdpozZw7XrFnjVJt6e3urbfP666/b3KxYuldffVW9/te//mXVTop84eHhug0eAK5evZoVKlQgkK2YBwcHO1Vm2bJl1dczFKd99SMn5Eul7n6QU6XO3o7AFafdZVi6n376SafUKf7KImTPKe/Qaf20E5o9t3PnTrVcey49PT1P2sAZ5+npyQkTJjj14Fk+dCR5+PBhqzBbioXlZKzko1wrirjlLs+WszeOgHvWuh9++MGlNnE0RrUuJCTEZn0Vpyh1zo4R5f0QrdMqBZ9//rlh2o4dOzqUBcieEJXJXmkjZ2SbMWOGTpFw5BTrWatWrQw3Do7c7t27XU5jTw6tU5QWdzoja74tpzyHygZ3ypQpOS7X6JnVukuXLqnXltZVxb311luMi4vj5cuXCYA+Pj65aov27duTzH537sKFCy6nd3YMA+Dp06dt5nH79m31vXEjRdyeGzhwoE6hNVLq+vfvr55cKK5kyZIErBUbV/uxYcOGBGxvlM6fP+903oqi6axTTqAAMDAw0Kk01apVsxmmteJt377dylL/66+/6u5d2dTYc3/++ScPHDhAkpw3bx5PnTrlUNcRpe7/kxcdYM85u1tQdp+uOO1OCIBqbnfkZs+e7VQ8o+PE/Obyqg+1+WzatMmltBkZGXbDu3fv7vRRodYFBATojn/ywikvMTtyyisHD8r9+9//vm8Kjj0rlzNuxowZD7QtHgZXpUqV+16G8jK7I/fTTz85bc253y4v5iPl2A5wTQGy5YYOHco6deq4vW0etHPWMGO02VKc8g9UwL3jaXuuVq1aeVoH7dzjCFHq6Pw7OQXN5fXAc6f7+OOP8ySfq1ev5jht7dq13d4O4sSJK3jOlrVL3INxzr5e8SCcIzzIAv7zzP+fxMRElClTBgkJCShdurQuzM/PD3369HGTZIIgCIIg5FfKly+PO3fuuFsMAHD4qwP59idNHiS2fnJEEARBEIRHm/yi0DmDKHXQ/9aMIAiCIAjCw0i+VepGjx4Nb29v9OnTR/dDg5mZmRgwYAC8vb3xySef5ElZD+oj34IgCIIgCPeLfKnUHTlyBFFRUQgJCUHt2rXV7yEC2V8qqFq1KkJCQpCammr1C+s5QZQ6QRAEQRAedlxS6o4cOYJLly6p9ytXrkTz5s1RrVo1eHl5ufTJEnvs27cPbdu2BQC0a9dOp7jZC9OSnp6OxMREnbOFKHWCIAiCIDzsuKTUDRo0SP1W3uLFizF48GA0bNgQn3/+ORo1aoQPP/zQ5jcrXSE+Pl79D9UyZcroXlK0F6bl22+/RZkyZVRXrVo1m+VZfvdNEARBEAThYcP2F2sNOHPmDGrUqAEA+Omnn/DDDz9g8ODBanijRo0wdepUDBw4MFdClStXTrWsxcfHo3z58k6FaRk3bhxGjhyp3icmJtpU7JSPIwuCIAiCIDysuGSpK168OGJiYgAAN27cQJMmTXThTZo00R3P5pSmTZti69atAIDAwEA0b97cqTAtxYoVQ+nSpXXOFlOnTs21zIIgCIIgCO7EJaXurbfewvz58wEAPj4+un9gAICAgAC88MILuRaqXr16qFy5Mry9vREeHo6uXbvio48+AgB06tQJ165dg7e3N4oXLw5PT89cl1e1atVc5yEIgiAIguBOXPqiRGRkJJo3b47q1aujYcOGmD9/Pho0aICXXnoJZ86cQVhYGP744w+0b9/+fsqcI+x9UWL37t3w8fFxk2RCfqdixYqIjY11txiCIAjCI06eflHi6aefxpEjR+Dp6YktW7aAJPbv34+tW7eiatWq2Lt3b75U6BzxsHwpTfv+opAz6tWr53KayMjI+yBJ3lOlShV3iyAIeULNmjXx5ptvuluM+8b+/fvdLYKQx/j6+rpbhGwcfh22gJCQkEAATEhIsAoLDg52+0d6jdzcuXN19ykpKU6l+/LLL90ue351r732mnpdvXp1p9KQdLvcijt06JDNsA0bNjhMX6RIEbfXwRlXtmxZt8twv9ymTZtshg0ZMsTt8j0o16dPH5tha9euZd++fZ3Oq0OHDm6vjyvOaE7517/+xUuXLrldNks3duzYPM1v586dTsdt3769lZ+HhwcBcMCAAVZhxYoVc1s7denSxem4/fr1s/JbtmwZMzMzHaZ1hCh1zDulLjU1ld98802eDRLy3oP/0Ucf8e7du7pwT09P/uc//7FKd+LECbv5/vbbbzbDWrVqxRkzZjAuLs5uHkeOHDH0b9KkCQGwdevWXL16tWGcdu3aqQprw4YNdXW83w/eq6++ql47q/xq+8EZ17ZtW5faTOvq1avnUJadO3fy7bfftgpLSkpyKNeWLVucrsfgwYNZqVIlm+HNmzfPcX1mz57N7777zma6qlWrsmnTpjq/O3fu2C3r9u3bhv75bZNDkv7+/oZhX331ld20LVq0yHN5AgIC1Gt7c4Ole/PNN10u66WXXlKvbc0xycnJJMn33nvP6XyNFn9Hrl27drlqNyOlwpUxYOn33Xff2ZxrbM0pALhx40abYYsXL7YZVqVKFWZkZDiUdeHChXbDe/bs6VLdo6KieODAAXU8vPPOOzbjpqenc9CgQTo/b29vArBaDwFw1qxZPHnyJL28vKzawNmN4vTp0638SpQo4TCdPaVu8+bNDvtfwZmxYw9R6kgGBQU51dkdO3Z02NixsbE2w59//nkC4KhRo9isWTO2atXKKs6rr76qTlAk1UV11apVNJlMajwfHx9VfsWvdu3aBECz2az6devWTTfg9+3bx9OnT6t+lgvriRMn1HwPHjzI8PBwXbgyuZDkCy+8oAv766+/eOXKFQLgJ598QrPZzHPnzqnhykIWFRWlLh7aB4gko6Oj1XtFybO1eLz33nsMCQlhnTp1OHfuXIdKjdK+hw4dYkpKCn/88Uen+l3bxs7Gf+yxx9T7IUOG8PDhww7zWbZsGbt27UoA7N+/v90Hev369QTAqVOn8tlnn1XDbCnSAJiWluZSXSzHl6VLTU3V9U3JkiUZHR3Nbdu2sWXLlgTAZs2aMT4+3um869SpQwB85plnmJqaqgvTjmtb8oaGhqrKIEmeOnWKmZmZVjv4J5980iq95eJh5JRn2MhFRETYDPvrr7+s6t6tWzedkgPolbpy5cpx1apVVnWMjY3lp59+6lDWypUrW+VvqSj99ttvun6w19+WCr4tRSokJIRbtmwxtDpp5x6SLFSokC68W7duavvYs+SZzWauWrWKq1evZlBQkKHlw5Fbu3aty2ks+8KybosWLXKomJ8/f54k+X//93+q39atW9V6L168mGvWrNGlGTBggNX6U7RoUQKwa93btm2bzbCZM2ca9ve1a9cIZCsyJpOJP//8s936JCUlcejQoU63W0xMDG/cuEEA7Ny5s5UMDRo00LXxwIEDdeGKwpaenq4bNwCYlZVlNbcsWrSIFStWdGm+tzT0lCxZ0m6alStX2lXqjh8/bnfsKH5a/xIlSjAwMFAXp1SpUnREvlPqDh48SC8vL7Zo0YLdu3dnRkaGLjwoKIhVq1alj48PW7Vq5XS+9pQ6xRw8btw4q4YuVaqUej1p0iSeO3fO5oNCUreA9e7dm+PHj1fv/fz8CIDff/89SRoOgj59+uhkS05O5pUrV0iSWVlZarxPPvlEjWM5KLR+I0eOJACuXr3aMFx7PXToUMO2u3v3LidPnsz09HSrMMUK0qlTJ9UvICCAqampduVbt24dAWuljiR9fX0JgDdv3iRJm7vUtWvX6vJUdp1GyrLi6tatq8afN2+e0w+5cq09Eurdu7dV3EKFCpEkMzMz1ePQzz//XC1Tu0hbKggrVqxQlboVK1bYlIWkqiRYKnVRUVEEshcYrcW2d+/eVv3hTL0t42vb1rI+2jFmNpv57LPPMjAwkGazmY0bN1aV9Pfff1+N9+6773LLli185ZVXCEDtw6efftqqbJLs27ev2m6KVdhS3szMTKvnXDuGIiMjGR8fz4yMDJ01cNu2bVy+fDlNJhPT0tLYvXt3Xf7Hjh2zadmw1bYvv/yy1RiyRBv/m2++YVpaGjMzM0lStymyTKudDxS3fft2Ll68mLdv32ZSUhL37dunCx8zZox6/cILL6h5DRs2zEpOS9e4cWPdvaLUacfx888/b7NuRu1Qt25dXfiNGzd0YwPItrRa9oXZbNaVk5CQwA8++IBA9jztzPg+c+YMAeOjMGefD2f6tHz58rp77Zpmqz5Hjx4lkL0pAsCBAwda5Ws2m3n9+nWS5PDhwwlkKxfaOFqlQNv3APi///3Pbh/Vq1ePJLlgwQKrOMrzqq17ZGSkWv7KlSt1GxmtS05OZmRkJIF7691///tfNTw8PJyzZs1ijx49SJLvv/++Lv3o0aMJQGfkSE9P55kzZwz7YOHChTbH46pVqzh06FDd2DaK60ipu3jxorqeG1mAk5OTeevWLXXTSmbPU126dGFwcDBv3bqllqucXvXv35/bt2/X5TNhwgSrsWY19hzGeMDcvHmTKSkpJMlx48YxICBAFx4UFMRRo0a5nK8zSt348eNJUrfziYuL46JFi/jaa6+pEy1JhoWF8dlnn+XWrVsJgJ999pmuHCUteW9wKFaUadOmkbyn1M2bN0+1JCg7ZyO0lgqtUvfbb79x1apVurhKPGWC27Rpk1V4hw4ddHFzgslk4htvvMFTp07ZjGOUv1ap8/Hx0YV36tSJABgdHU2S6jsdpUuXVvNSrE6W/O9//+P169dtPnyvvPKKGjc1NdWp4yxtHZKTk9Vr7bEVkG1d0k7Op06dIgAuX77cqj2qVKnC5ORkneXi119/VRevP//8U/VfsmQJH3/8cV0bhYWFqWm2bdvG9u3bO932RnWMiYkxrDdJVqtWTTepWIbPmjWLQPamJacolomsrCyOHj2aBw4csJJVYcqUKeqz8sUXXxAA27RpYzf/pKQkNm7cmE2aNLEKUzZe27dv1/mbzWa1P2JjY1V/RR7tQmQZ1qVLF06fPp2JiYmqorJ//37DNlLSfP755+rRo5aNGzcyLCyMoaGhNtPaeoYVpU5ZKJQFEdArdfbyVJylUqccu129epVXr15ly5YtrdrwyJEj6hxp+SyR1I1zSxSl7vz58+pxnb25SjnimjRpkpUya+TOnj1LAFbv7j311FMO0xrVxVYbWh4vmkwmNZ5iPbLk2LFjBO5tXD788EOS1M2BWkwmk6rg7d27V41z48YNdUNjqdQtWLBAJ2uVKlXUfENDQxkTE0OSnD9/vi6dsibbqrtWaVXmKa1T5sg5c+bw9u3bJKkqg3PmzLHKTznmnj59Ovfs2UOTycRLly6pck6dOtUqjbbsI0eOqH7a+Va7Fmg3SApambVKnVZx7tu3r6qQKev5xYsXbT6XV69e5S+//GIor5bQ0FCaTCZdXwLQ6SC2yHdKnZYvvviCv//+u84vKCiIzz77LL28vPjDDz/YTHv37l0mJCSoTjEpGyl1ypHp0aNHVb82bdrYnDy0KPlu2bKF5D2l7o033lDjKB1iS6mLjIxUjzYcoeQ1fPhwh/Fq1aqlKnWbN2/Whd++fZt3797V5Xm/OHDgAHfu3KnzU5S6adOm6ayRJNX3vhTLoMlkYkREhO49JEfYmojr1Kmji2d5xOfM5G0pQ7du3Thq1ChVCdVy+vRpq1347t27deNwzpw56mRx8+ZNTpw4kWazmYsXL1aV15SUFPXYRtuulnlbMn/+fPbr18+wbb777jvevn1bbWdbE5HJZFLHeVhYGOfOnatTTpRF20jpyC1G8ihK5I4dO9Rn96233spxGcuXLyegf/XAGZksr43unWHFihWcNWuWS2ksywPAmjVrWoWHhoYSAHv16kUAup2/I6XO39+fvXr14rp163jixAn1GOzGjRs8d+4cb9++rbOCOCOncv3yyy8bhmlRrExJSUkks+daxbpuhBL/yy+/tGobI6dYiyZPnsxbt26plnflPeWaNWuqcRUFVrupsyf7smXL1LC0tDSXF2bFyu7p6Ukg+1UUhbi4ON0mwxmU+USR4fXXX1eVy6ioKMbExKiWTkuWLl2qpvvXv/6l+tevX9+lufi5556zGV95bcfS2kbe2/ApCmBusVVPW88yoLe2GsUlqR7np6SkqCcuH330Ed97770cy2o2m7l8+XImJyfbNGRY1SPHpd1nrly5wmbNmlkdvyYlJTE9PZ3p6els164dDx48aJjelgneSKkzIj09nfHx8S7LrZzzK7sg8t4AiImJYZs2bdTF/48//iCQ/W5SxYoVnXpA/vnnH6eVun//+9+qJcNSqdMyfPhw1bz/oFAm1PDwcJfSObtoHj58WI179uxZRkdHs3379ty1a5dhnuXKlbOr1G3bto1hYWEks9/705rLc8uiRYsIgOvWrcuzPO2xYsUK/vrrr1b+L774IoFsi9uwYcNcyvPy5ct5JZ6OWrVqWfV5RkYGlyxZQrPZrCp1tiyVzmA2m10ah+PGjVOtr3mh1OUG7TitVauWVXhaWhrbtGmj659ffvnFoVLXtm1bw7y0G9+cyElmz2Ha5ycsLIz79u3LUb5aTCYTx44dy8TERJLZpz6Klaxw4cIEwD179ljJoig3ymKvVe4BsEKFCkxKSuK2bdtIku3atVOfH3v9baQEOKvUmc1mfv3114yMjORLL71k9yTEWcxmM0+cOGFz7rp79y7Pnj1r5W8ymfjDDz9YyR0XF+eUXNpNR06fDa11M7dkZGSor/ZosafUWb4LOn78eHU85DfcptTdvHmTzZs3t3K3b99mQkICW7RoYai1a/npp59smjJdsdTdby5fvqxaX2zhrFK3f/9+l5S6iRMnErhnSXzYcWXRnDx5stW7hEbcvHlT9594165d0/3H5P3GZDJx3rx5upd83UFqaqpbng97mM1m9d0wI5R3WD/44IMHLFk2RgtBpUqVHnj5yvPuLJ07d2ZwcLBhmNaKn1coyrk7OHToEEeMGGGo1GlRLLZRUVGqn6LU2cKRUqftk7Nnz3LkyJEOresFjejoaEZHR6v/4JBfuXDhAnfv3q3eW/at8qpOfiffSZiZmcmOHTtavZuhoF10evfubWh5sZXOXUqdMzir1CnvlowYMcJuPGVCUd6BCgwMzCtR3cr9VLQs87569arVsbGQ/9i8ebP6Hu6D5vz587pj8djYWNVS9CDQ/rNO7dq1H1i5rhIdHZ0n1ricovzDmD2ljqTV+gCAFStWtJmvt7c3p0+fbhiWlpZm+M9ljyq3bt3i+vXr3S2G01iOk9TUVPU9w/xMEeQzAgICEBoaiqSkJHz11VcYOnQoevbsiY8++gg///wzAgICsHDhQhQpUgTNmzdHixYt3C1ynlC6dGmnPkVVv359fP755xg9erTDuCRRo0YNAMCTTz6ZaxnzA3Xr1sXx48fvS94hISEoVqyYel+tWjVUq1btvpQl5B3t2rVzW9nK86VQoUKFB1r+5MmTcf36dYSEhKB169YPtGxXePLJJx+KOcjyE5KO2L17t82wxx9/PLfiFCgqVaqETp06uVuMHFO8eHEUL17c3WI4xKVvvz7M2Pv2a37g0qVL2LNnD/r27Zsn+Xl4eKBBgwY4cOAAjh49mqPPY+VHkpKSEBcXh+rVq7tbFEHIN0RHR6NChQooUiTf7dPzBUFBQWjVqhVu3rwJs9mMIkWKOKVkenh4oGLFioiJiXkAUgr5iTVr1qB06dIP3adPRakroCxduhRt2rRB1apV3S2KIAjCQ4kodcLDhmzrCijvv/++u0UQBEEQBOEBUsjdAgiCIAhCfuWDDz5wtwiC4DRiqRMEQRAEAx6Rt5OEAoRY6gRBEARBEAoAj8w/SpBEUlISSpUqBQ8PD3eLIwiCIAiCkKc8MkqdIAiCIAhCQUaOXwVBEARBEAoAotQJgiAIgiAUAESpEwRBEARBKADIT5rg3j9RCIIgCIIg5Fcc/bOnKHUAYmNjH4qPTQuCIAiC8Oji6FOnotQBKFq0KADg2rVrj8R3YQsSiYmJqFatmvTdQ4j03cOL9N3DifTbw0+pUqXshotSB6imzNKlS8tAf0iRvnt4kb57eJG+eziRfiu4yD9KCIIgCIIgFABEqRMEQRAEQSgAiFIHoFixYpg0aRKKFSvmblEEF5G+e3iRvnt4kb57OJF+K/jIZ8IEQRAEQRAKAGKpEwRBEARBKACIUicIgiAIglAAEKVOEARBEAShACBKnSAIgiAIQgFAlDoAo0ePhre3N/r06YOMjAx3iyP8fw4dOgRvb2/4+PigR48eMJlM8Pf3h6enJ1q1aoVr164BAMLDw+Hl5QVPT09s374dAJCcnIy3334bXl5e+O6779xZjUea1atXo1KlSgAgffcQERwcjNatW8PHxwd//fWX9N1DgNlsRv/+/eHt7Y0WLVrgwoUL0m+PInzEOXz4MPv06UOS/Prrr7lq1So3SyQo3Lx5kykpKSTJcePGMSAggI0bN2Z6ejr37NnDDz/8kCT59ttv8+zZs0xISKCnpydJcubMmVy0aBFJ8s033+S1a9fcU4lHmKysLHbp0oX16tVjRkaG9N1DQlpaGjt27Mj09HSSlL57SDh06BB79uxJkty6dStHjBgh/fYI8shb6vbt24e2bdsCANq1a4fQ0FA3SyQoVK5cGSVKlAAAPPbYYzh79ixefvllFC1aFM2bN8eJEycAADdv3kTNmjVRunRpVKhQAbGxsbp+bdOmDcLCwtxWj0cVPz8/dOvWDYUKFcK5c+ek7x4SQkNDUbx4cXTq1AmdO3fGgQMHpO8eAqpWrQoAIIn4+HhUqlRJ+u0R5JFX6uLj49Vv4JUpUwZ37txxs0SCJVevXsX27dvh5eWl+15hVlYWgOxJTEHpQ+lX95KVlYWAgAD07NkTgP45U8IB6bv8SHR0NC5duoQNGzZg8ODBmDx5svTdQ0DFihVRqFAhvPTSS/jss8/QsmVL6bdHkEdeqStXrhwSExMBZC885cuXd7NEgpbExET07dsXS5cuxZNPPqn2FQAULlwYAFCo0L1hrPSh9Kt7WblyJXr06KH2jbY/AOm7/EzZsmXh5eWFokWLolWrVjhy5Ij03UNAYGAgihcvjoiICKxbtw6zZ8+WfnsEeeSVuqZNm2Lr1q0Ash+K5s2bu1kiQSErKwt9+vTBF198gRdffBEvvPACwsPDkZGRgb1796Ju3boAso9pz507h8TERNy5cwcVK1bU9ev27dvh6enpzqo8coSHh2PFihVo164dzp07h4ULF0rfPSQ0btwY4eHhAIAjR46gbdu20ncPCeXKlQOQrZjHxsZKvz2KuPWNvnzCqFGj6OXlxXfffVd9OVhwP35+fixfvjx9fHzo4+PDNWvWcPXq1WzatClbtmzJq1evkiRPnTrF5s2bs2nTpty6dStJMjExkb6+vmzWrBm//fZbd1bjkadBgwYkKX33EPHjjz/S29ubPj4+vHDhgvTdQ0BmZiZ79+7NFi1asEmTJty7d6/02yOIfPtVEARBEAShAPDIH78KgiAIgiAUBESpEwRBEARBKACIUicIgiAIglAAEKVOEARBEAShACBKnSAIgiAIQgFAlDpBEARBEIQCgCh1giAIgiAIBQBR6gRBEARBEAoAotQJgiAIgiAUAESpEwRBEARBKAD8P0oqhvIhrYhbAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1088,7 +1088,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADZqElEQVR4nOydd3wUxfvHP6EYUEgMiBQBaYIgIIgoLQFBI3wFRFFEuoB0ASGKQQTpvUoVEaSX0KWEGhJIQAIJvSTUUEILuYSUS+7u+f2R3w67d3stueSS43m/Xs8rtzOzM8/Ozs58Zmbv4kZEBIZhGIZhGCZPk8/ZDjAMwzAMwzBZh0UdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYFyDXijo/Pz94e3ujc+fOSEtLE+E6nQ49evSAt7c3hgwZIsKLFi2KZs2aoVmzZjh37pzN5RAREhISwP9Yg2EYhmGYvEyuFHURERGIjY1FSEgIatSogYCAABG3c+dOlC1bFiEhIUhOTkZoaCgAoFq1aggKCkJQUBBq1aplc1mJiYnw9PREYmKiw6+DYRiGYRgmp8iVoi4sLAy+vr4AgJYtWwrhZinu2rVr8PHxQf/+/ZGammo2b61Wi4SEBIUxDMMwDMPkdXKlqIuPj4eHhwcAwNPTE3FxcVbjoqOjERwcjNKlS2PhwoVm8548eTI8PT2FlStXLhuvhGEYhmEYJmfIlaLOy8tLrKDFx8ejWLFiVuOKFy8OAPj6668RGRlpNm9/f39oNBphMTEx2XQVDMMwDMMwOUeuFHUNGjTAvn37AACBgYFo3LixxbikpCTo9XoAQHBwMKpUqWI2b3d3d3h4eCiMYRiGYRgmr5MrRV3dunVRqlQpeHt74+LFi2jfvj369u0LAGjTpg1iYmLg7e2NwoULo2HDhoiKikL9+vXh4+OD3bt3K74VyzAMwzAM8yLgRi/4b3kkJCTA09MTGo2GV+0YhmEYhsmz5MqVOoZhGIZhGMY+WNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAugN2i7s6dO/j111/x0UcfoXr16qhRowY++ugj/Prrr4iJiXGYY35+fvD29kbnzp2RlpYmwnU6HXr06AFvb28MGTJEhM+ePRuNGzdG69atodFoHOYHwzAMwzBMXqCAPYmPHj2KVq1aoVy5cvD19YWvry+ICA8fPsS2bdvwxx9/YM+ePWjcuHGWnIqIiEBsbCxCQkIwceJEBAQEoFOnTgCAnTt3omzZslixYgW+//57hIaG4q233sLOnTtx9OhRrF27FgsWLMDIkSNV89ZqtdBqteI4ISFBNV1CQgJ+//33LF0HwzAMwzCMI3jnnXfQq1cvi2nsEnU//vgjevfujdmzZ5uNHzp0KE6ePGlPtiaEhYXB19cXANCyZUssX75ciLqwsDC0bt1axIWGhiI+Ph7NmjWDm5sbWrZsie7du5vNe/LkyRg7dqxVH7RaLfbu3Zul62AYhmEYhnEEWq3WsaLu/PnzWL16tdn4vn37YvHixfZkqUp8fDzKlCkDAPD09ERcXJwizsPDQxGnFmYOf39/DBs2TBwnJCSgXLlyJulKlCiBixcvZvlaGIZhGIZhcgK73qkrXbo0QkNDzcaHhYWhdOnSWXbKy8tLbIvGx8ejWLFiFuMspTfG3d0dHh4eCmMYhmEYhsnr2CXq/Pz80K9fPwwaNAjbt2/H8ePHceLECWzfvh2DBg1C//798fPPP2fZqQYNGmDfvn0AgMDAQMU7empx77//PoKCglTTMwzDMAzDvAjYtf06YMAAFC9eHLNnz8aSJUug1+sBAPnz50e9evWwcuVKdOjQIctO1a1bF6VKlYK3tzfKly+Pn376CX379sWSJUvQpk0bbNu2Dd7e3qhbty4aNmwIAGjTpg0aN24MLy8vrFmzJss+MAzDMAzD5CXciIgyc2J6ejoeP34MAHjttddQsGBBhzqWUyQkJMDT0xMajYa3YhmGYRiGybPYtVInp2DBgg55f45hGIZhGIbJOvwfJRiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYF4BFHcMwDMMwjAvAoo5hGIZhGMYFYFHHMAzDMAzjArCoYxiGYRiGcQFY1DEMwzAMw7gALOoYhmEYhmFcABZ1DMMwDMMwLkCuFHV+fn7w9vZG586dkZaWpojT6XTo0aMHvL29MWTIEBFetGhRNGvWDM2aNcO5c+dy2mWGYRiGYRinkutEXUREBGJjYxESEoIaNWogICBAEb9z506ULVsWISEhSE5ORmhoKACgWrVqCAoKQlBQEGrVquUM1xmGYRiGYZxGrhN1YWFh8PX1BQC0bNlSiDZr8deuXYOPjw/69++P1NRUs/lrtVokJCQojGEYhmEYJq+T60RdfHw8PDw8AACenp6Ii4uzKT46OhrBwcEoXbo0Fi5caDb/yZMnw9PTU1i5cuWy6UoYhmEYhmFyDqeJutjYWDRp0sTEiEisnsXHx6NYsWKK87y8vFTjixcvDgD4+uuvERkZabZcf39/aDQaYTExMdlwdQzDMAzDMDlLAWcVXKpUKRw9etQkPCIiAjNnzkS3bt0QGBiIxo0bK+IbNGiAffv2wcfHB4GBgejZsyeSkpJQqFAh5M+fH8HBwahSpYrZct3d3eHu7u7w62EYhmEYhnEmuW77tW7duihVqhS8vb1x8eJFtG/fHgDQt29fAECbNm0QExMDb29vFC5cGA0bNkRUVBTq168PHx8f7N69W/GtWGsULVoUGo0GRYsWzZbrYRiGYRiGyQnciIic7QTDMAzDMAyTNXLdSh3DMAzDMAxjPyzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYF4BFHcMwDMMwjAvAoo5hGIZhGMYFYFHHMAzDMAzjArCoYxiGYRiGcQFyrajz8/ODt7c3OnfujLS0NBGu0+nQo0cPeHt7Y8iQISK8aNGiaNasGZo1a4Zz587ZXA4RISEhAUTkUP8ZhmEYhmFyklwp6iIiIhAbG4uQkBDUqFEDAQEBIm7nzp0oW7YsQkJCkJycjNDQUABAtWrVEBQUhKCgINSqVcvmshITE+Hp6YnExESHXwfDMAzDMExOkStFXVhYGHx9fQEALVu2FMLNUty1a9fg4+OD/v37IzU11WzeWq0WCQkJCmMYhmEYhsnr5EpRFx8fDw8PDwCAp6cn4uLirMZFR0cjODgYpUuXxsKFC83mPXnyZHh6egorV65cNl4JwzAMwzBMzpArRZ2Xl5dYQYuPj0exYsWsxhUvXhwA8PXXXyMyMtJs3v7+/tBoNMJiYmKy6SoYhmEYhmFyjlwp6ho0aIB9+/YBAAIDA9G4cWOLcUlJSdDr9QCA4OBgVKlSxWze7u7u8PDwUBjDMAzDMExeJ1eKurp166JUqVLw9vbGxYsX0b59e/Tt2xcA0KZNG8TExMDb2xuFCxdGw4YNERUVhfr168PHxwe7d+9WfCuWYRiGYRjmRcCNXvDf8khISICnpyc0Gg2v2jEMwzAMk2fJlSt1DMMwDMMwjH2wqGMYhmEYhnEBWNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVyAXCvq/Pz84O3tjc6dOyMtLU2E63Q69OjRA97e3hgyZIgInz17Nho3bozWrVtDo9E4w2WGYRiGYRinUcDZDqgRERGB2NhYhISEYOLEiQgICECnTp0AADt37kTZsmWxYsUKfP/99wgNDcVbb72FnTt34ujRo1i7di0WLFiAkSNHquat1Wqh1WrFcUJCgtl0wcHBjr84hmEYhmEYOylRogTq1KljMY3DRV1MTAzGjBmDv//+O9N5hIWFwdfXFwDQsmVLLF++XIi6sLAwtG7dWsSFhoYiPj4ezZo1g5ubG1q2bInu3bubzXvy5MkYO3asVR/i4uKEDwzDMAzDMM6kTZs22LFjh8U0Dhd1cXFx+Oeff7Ik6uLj41GmTBkAgKenJ+Li4hRxHh4eiji1MHP4+/tj2LBh4jghIQHlypUzSff666/j1q1bmb4GhmEYhmEYR1G4cGGraewWddZU4vXr1+3N0gQvLy+xLRofH49ixYpZjPPy8kJ0dLRqemPc3d3h7u5u1Yf8+fOjfPnyWbkMhmEYhmGYHMNuUdeuXTu4ubmBiMymcXNzy5JTDRo0wMyZM9GtWzcEBgaicePGirh9+/bBx8cHgYGB6NmzJ6pUqYLp06dj9OjRJukZhmEYhmFeBOz+9mvp0qWxefNmGAwGVTt9+nSWnapbty5KlSoFb29vXLx4Ee3bt0ffvn0BZOwpx8TEwNvbG4ULF0bDhg1RokQJtGnTBo0bN8a6deswYMCALPvAMAzDMAyTl3AjS0tuKrRt2xZ16tTBuHHjVOPPnDmDunXrwmAwOMTB7CYhIQGenp7QaDTivTyGYRiGYZi8ht3brz/99BOSkpLMxlepUgWHDx/OklMMwzAMwzCMfdi9Uudq8EodwzAMwzCuQK79jxIMwzAMwzCM7bCoYxiGYRiGcQFY1DEMwzAMw7gALOoYhmEYhmFcABZ1DMMwDMMwLgCLOoZhGIZhGBeARR3DMAzDMIwLwKKOYRiGYRjGBWBRxzAMwzAM4wLkSlHn5+cHb29vdO7cGWlpaYo4nU6HHj16wNvbG0OGDBHhRYsWRbNmzdCsWTOcO3cup11mGIZhGIZxKrlO1EVERCA2NhYhISGoUaMGAgICFPE7d+5E2bJlERISguTkZISGhgIAqlWrhqCgIAQFBaFWrVrOcJ1hGIZhGMZp5DpRFxYWBl9fXwBAy5YthWizFn/t2jX4+Pigf//+SE1NNZu/VqtFQkKCwhiGYRiGYfI6uU7UxcfHw8PDAwDg6emJuLg4m+Kjo6MRHByM0qVLY+HChWbznzx5Mjw9PYWVK1cum66EYRiGYRgm53CaqIuNjUWTJk1MjIjE6ll8fDyKFSumOM/Ly0s1vnjx4gCAr7/+GpGRkWbL9ff3h0ajERYTE5MNV8cwDMMwDJOzFHBWwaVKlcLRo0dNwiMiIjBz5kx069YNgYGBaNy4sSK+QYMG2LdvH3x8fBAYGIiePXsiKSkJhQoVQv78+REcHIwqVaqYLdfd3R3u7u4Ovx6GYRiGYRhnkuu2X+vWrYtSpUrB29sbFy9eRPv27QEAffv2BQC0adMGMTEx8Pb2RuHChdGwYUNERUWhfv368PHxwe7duxXfirVG0aJFodFoULRo0Wy5HoZhGIZhmJzAjYjI2U4wDMMwDMMwWSPXrdQxDMMwDMMw9sOijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYF4BFHcMwDMMwjAvAoo5hGIZhGMYFYFHHMAzDMAzjArCoYxiGYRiGcQFY1DEMwzAMw7gALOoYhmEYhmFcABZ1DMMwDMMwLgCLOoZhGIZhGBfghRd1RISEhAQQkbNdYRiGYRiGyTQvvKhLTEyEp6cnEhMTne0KwzAMwzBMpnnhRR3DMAzjHB49eoQNGzY42w2GcRlY1DEMwzBO4ZtvvkHHjh2d7QbDuAws6hiGcXn0er2zXWBUePLkibNdYBiXgkUdwzAuzZkzZ1CgQAGEh4c72xUGgFardbl7ceHCBVy+fNnZbuQ51q5dC61W62w3XAoWdQyTg2i1WixZsoS/bZ2DREREAABOnTrlZE8YAPjxxx9Rv359pKamOtsVh1GzZk1Ur17d2W7kKc6cOYPOnTtjypQpznbFpWBRl8dYt24d1qxZ42w3soX169fj6NGjznbDZu7evYs33ngDsbGxNp8za9Ys9OvXD6GhoQAyflLn0KFDDhd56enp+OWXX5CUlGQSd/nyZVy8eNGh5eUF3NzccqScxMREPHv2TByHh4fj9OnTOVK2I9Hr9di5c6fD87106RIAwGAw5Ng9yQrR0dE4ceKEs91wKHq93ukTy5SUFABAfHy8U/2wl5SUFOF7Vrl79y7i4uIckpcEi7o8RqdOndClSxe7ziEirFu3DjqdLpu8yuDq1auYOnVqps//9ttv4e3t7UCPspft27fj3r17CAwMtPmchIQEABmiCwC2bduGFi1aYM+ePQ71bc+ePZg6dSr++OMPk7jq1avjnXfeyXIZe/fudei7ardu3XJYXo7izJkzdn07U6/Xw8PDA0WLFhVh9evXR7169TJVfnh4OI4fP56pc7PKokWL0LZtW4SFhTk0X0lM5MuXL1uFhZ+fH1atWpXlfN566y00aNDAAR5lEB8fb/OWY2pqqsOfC4PBgAIFCmD27NkOzTezOFrYX79+PVsmyhKvvfYaSpQoYTb+77//hpubG9LS0qzmVbZsWbz55puOdI9Fna2MHDkSpUqVcrYbmeLIkSPo1KkTlixZkq3lfP755/jll19MwsPDw2EwGAAAP/30U47Mzs+fP48iRYooZoFEhKFDhzrk3Zf09HRMnDgRgHqnFBcXh+vXr5uESx2NdM6DBw8AAI8fP86yT2rlZFfHFh4ejlatWmHRokUOyW/Pnj2oUKEC/vvvP4fkJycrdVCnTh27vp1padXhgw8+wPbt2+0qv379+mjYsKFd50jExcWhatWquH37tsV0aWlpqisPUtt09G94Sn2BnOxopzNnzkS3bt0cnm9W8fLyQqtWrWxK2717d1SoUMGh5Ut1HRAQ4NB8swupH01JSUFMTIzV9JUrV0aLFi2yTbQmJyer7oBIrF+/HgBsXs2TVvVPnTpl9Vm1hTwj6k6dOgVvb280bdoUHTp0ECsdABAUFIRy5cqhWbNmaNGiRbaUP3nyZNHJZSexsbGYN2+eOD579izc3NzsGvSJCJGRkeJY6pQ1Go3D/FTDeNXm1q1b+Pfff1G/fn3Mnz8fP/30E2bMmJEtZcfFxSkGhtWrVyMpKQlnz55VpJs7dy569eplU55ubm6KlS75PdiwYQPu3bsH4Pk7W25ubpg+fToAoHjx4qhcubLFvAGlyIuLi8OFCxds8s3ZSG3JUc+EtCWXmVWJo0ePYujQoVbTycV3eno67t69a1cZWeXkyZMYPHiwwodFixapihxLXL16Fa+++qrVbZugoCBERUVh3bp1FtO9//77ePnllwE8X2UwGAwmExB7SUhIUPRDEmoTDntF3cOHDxEUFKQa16FDh2yfwKanp2dp5+Pw4cOK4z///FO1nkNCQjJdRmY4ffo0li9fLo7v3LmDhw8fZjnf/fv3m7zyYcs9P378OCpXroxdu3ahffv2KF++PM6fP2/yWsCSJUtMdiW2bNmimueNGzfEs5Oenq7QEo5AvhJtD++//76qgL9x4waioqJszifPiLo33ngDgYGBOHLkCKpUqYJt27Yp4r/55hsEBQXh4MGDTvFv165dCAkJsbqsfuLECdy8eRNxcXHw9/c36dB79uyJIUOGIDk5GQDE1o9a52iO5cuXo27duggJCUFsbGyWO2dbMX5IK1SogDZt2gAArl27ZrOga9iwIX777TfVuPDwcLi5uSmuJSkpSYgoqd6kB0qj0UCj0YCIMrUa8NdffwEAduzYgRIlSmDPnj0YO3as4j7PmTNHfF62bJnJA3j48GFx/4x9kN8bHx8f1KxZ024fgYzZo9qKii3XfOTIEZN0c+fOzdb2cu/ePfEu4oMHDzB8+HAAwKBBgzB69GgAGZMEc4Ln7NmzQlR/9tlnmDt3LjZu3Agg41lcsWKFyTm3b9/Gv//+K84pW7aszf6uX7/e7s7/zJkzOHDggCIsX758uHHjBgICArB48WIMGDAA+/btsyvftWvXQqPR4OTJk7h27ZrJ6t/9+/dx7tw58XMh1u7juXPnAGTcE2nCo9PpRJu4f/++Iv2tW7dw4cIFxRcd1Npe+/btUbduXQAZE59r164BeL5SR0SZbmOffPIJPvroI9W4TZs2oV+/foqwxMREh767JPU3/fr1w9WrV82mi4+Px5UrV6zmJ00GjVF7fg8dOoSNGzdm+tUHS31CvXr10LNnTwAZPzdTrlw5lCxZEm5ubjZdhzl8fX3NvvLh5uaGDh06IDQ0FPHx8dDpdNBqtdi5cydu3rwJIGMiI43ttWrVQtu2bRV59OvXD4MHD1b8RI7BYEBqaipGjRql2AqtVKkSateuDQAoU6YMypQpY9M1JCUlqe5EARniUFqZk9q3m5sbkpKSbKo3qW9RuzeVKlVC1apVbfJRyiTPMXr0aNqyZYs4Pnz4MFWoUIGaNGlCc+bMsXhuamoqaTQaYTExMQSANBqNxfMAkLy6zp49S7NmzSIiops3b4r4H374wWwesbGxBIDc3NxowIABBICOHTtGn3/+OZ05c4bc3d2pYsWKBICSkpKIiOjXX38lALR//35VP3Q6HW3bto30ej3pdDoiIho5cqRIB4C2bdtGAGjKlCmqfl25coX++usvMhgMpNfrady4cZSYmKhIExISQtWqVaODBw+avb7KlSsTANqzZ4/CVwA0ZMgQxbGlOpbsypUr1LlzZ9JoNHTy5ElatWoV1ahRwySPBw8emOQt1Ztk1atXJ71eTwCoYcOG4tyJEyfSzZs3FX4EBQVRXFwcAaDatWsTEdHnn3+uyO/PP/9UHEv3s0SJEhQcHCzC5W1Do9HQTz/9RAAoODiYiIjmz59PAGjVqlUW68YaJUuWJACUnJxMSUlJtH37dgJAEydONFvPRET79+8nALR+/Xq6fPkyhYSEEBHRO++8Y9GXAwcOEAAaNWoUERHFxcXRkydPbPI1ISFB4YO/v7/JvSci8vLyomrVqqnmAYDc3d2JiMjDw0NxnvQ5NDSUiIiWLVtmkrdxXS9YsIDGjBljtq4ku3fvHoWEhNDAgQPpjTfeICJSPHtPnjwxOUduRYoUoTJlyhAAGj9+PAGgvn37klarNXudxvdBamuBgYHk5eVFAMjX15e+//57VZ+nTZtGRER79uyh7t27my2jWLFi4nNqair98ssv4lj+3Eth+fPnJyKiO3fuEADasGGDIt/XX39dtb7r1KlDAGju3Ln07rvvEgBRfwaDgVatWkUXLlwgf39/GjRokGq9FC1aVLV9Sr7Ibd++faKNyDl69CitXr2aHjx4QAaDQbUcY9+Nw9TarYS5Z9o4zGAwmH32pedaQqfTibTjx483Sf/s2TPxPBvTqVMn+vDDDyk9PZ0AUIMGDYiIaOjQoeJ+SHl37NjR5NpWrlxpto7k6PV6RXuW+hjj6wsNDSUANGzYMAIg+va+ffua9AmzZ8+mggULmq1rKWz48OHic4MGDWjRokUEgNasWWOS1vizNaZNm6YoPz4+XsS9//77Ip+PPvqIANCzZ8+odevWIvzevXuUnJys6re56zJO8/DhQ6t+5jlRd+vWLWrUqBGlpaWJsMTERNJqtaTVaqlly5YUHh5u9vwxY8aoVqQ5UafX6+nff/8V6UJCQkxuwOXLl8Vxy5Yt6cqVK1S7dm3q27evyDc1NVVxXr9+/QiA8KdQoUKK+EePHhGRdVE3aNAgAjLEhBRuLGi2bNlCAOjLL78kIqKkpCQqX748NW3alFavXi3SzZs3TwiS3377TVEPH3/8sUgXERFBREQpKSlCfIaHhyvKlHc+AETHodZwdTodBQYGmu0oPT09xWdJbMjzaN++vUneUr2o+SSJOnln+umnn9LJkyfFvWzWrJnZawFMRZ3cNm3apBouHzQHDBhAgwYNEqJOfh8uX75stv0+ffqU0tLS6PTp0xQVFSXaqHSul5cX5cuXj1q1akVAhqhr06aNaOOS2AOguGfz5s1T1J/UwcrRarUUExNDGzdupOnTpxPwXNTZ0zlKA7lkn3zyidl7BYDOnTtHRESffPKJECjy8qQBXjqW57N69WqTe9W8eXNF+p07d9rUoarZoUOH6IMPPhDnWhN15szf358MBgPt2bOHzp49KwZFY7/k93rfvn0m+Wi1WpOw6dOnExGJPkaOvG+TW0pKCv3888+KsODgYPrhhx9M0v33338EgL777jtF3pKok/d9RERVqlQxeZZ//vlnmjdvHm3dulX1mowHM0mkSdf29OlT6t+/P1WvXt1iPZu7t9OmTSODwUC3b982mdBaO9c4/2vXrimeJym8evXqtHbtWhFmMBjo2LFjtGLFCpMy4uLiaPLkyaIOnz17RkRkcn8HDhxIHh4e4jxJ1H711Vdm27Ikpj788ENFe7Jmy5cvpzfeeIPmzZsn8oyNjTUZO6UJcLly5Wjw4MH0119/iTxq1aolBPSxY8cIeC7qJCtVqpRJHzF79mzKnz+/SXuMjIw0ez8+/PBDRT9gXA9yASjxzz//0PDhw03qjoho6tSpqvf7+PHjimdSGjuOHj2qSAdkjCvW2tF3331HMTExdO3aNZM0ixcvVvVNkafVFLkIjUZDPj4+dOXKFbNpFi5cSMuWLTMbb+9K3dKlSxWVatzYVq5cSR06dBDHLVu2JB8fH3E8atQoSklJIY1GozhPWtUyJzL//fdfInou0Pbt20cREREiXqfT0fnz503OS0pKolGjRpl9MKdOnapYSZLbt99+S7t37yYANHLkSCGWHj9+rBh4x40bR3FxcVSuXDlFg5WbmhAyfhgkZsyYYXPHoibqjNM8evTIZPABMmaA0mdpVdKWMtX8W7x4sdn0CxcutPl6/vjjDwJA3bt3N1s/LVu2pEWLFolrlbe3GzduUNmyZW0uz5xJ4hKAol7y589P69atI6Lns1G5DR48mO7du2fid6lSpWjIkCF06dIl0fGau19qduLECbPH8jyIlKIuPj7eJC9pYFQzg8FAI0aMUK13W32VbNmyZfTjjz9mqv67d+9uMrE5c+aMwq+4uDj67LPPRJjaRGjlypWq7Zfouahr3bo1+fj4EBFRhQoVVP1JTk4WK4KSvfrqqybpqlevLkSdVAfSpFqqd/nkITk5WYg6NZM/o5J9++234l7t2rWLDh48KCZ6FStWJKKM3Rtb6tmWe/vhhx+qprPlXCKimjVrmoT//fffBECs0gIZOzYAqEmTJiLs7NmzRETUu3dvkzzWrFlDycnJFq9LmsBYEnWOsDt37ijy1Ov1RKScKEsmvz4AYsdKPlm3ZnPmzBH1pXbtauH169cXn9VEndw2bdpkcq83bdpE/v7+dOLECbPjma1jiHy1cty4cWQwGKyOkYBpf7Zw4UKT+2pyn62myCXodDpq3bo1HThwwCROLsi+/fZbOnLkiM35SmLLnKibOHGiolLNNSzJpBUSY5s1a5ZquDlRt3PnTiJ63sj27dsntloA0O+//656XmhoKH366acWfZTPYMyZfLVPrYMpX768xYdKWuI3ZzNnziSijK1zWx9sQCnqjB8WuVkbXMePHy+2NuwtEwB16tTJbPq2bdvafD3GkwR5ncrvt7l6lga8rJq83RqvNJYoUcKmDsiSnzqdjpo2bSpWCazZyZMnzcbJt9ul7SZHWc2aNcXAeu7cOYfmbcnef/99hbjMrH311VcmYR4eHqoTPSISr3sYm7GoBkD58uVTTWu8ywBkrM5Jok5akcmqySdXcoF5+vRpu0SdTqejlJQUq+kA0GuvvaYIkzB3nvHk3djkok7N/vnnH/r999/N9k3R0dGq4Q8ePKBTp06ZhI8cOdKqz5kxSfhKx/7+/uTp6Ulvv/22Q8uRzNK4aywa1cyaqAOgWDQxTvfSSy859HqioqIsLr6Yay8LFiywqmnyjKhbu3YtFStWjJo2bUpNmzal9evXU58+fYgoYzWtfv361LBhQ/Lz87MrX2uirkGDBg65iS1btlQNN9cZ7dixg4jMN8DixYurhv/2229WfbG2RQHAZAvXkqnNzsyJTrkVKVLEoQ+K3DK7YpKbzVJ7cKRJqwpys1UAA6A333zTJEzarrXVFixY4LR6bt26NR08eNDp9zu7zZJoffnll7OU98cffyxeCXGUtWjRQjU8X758Nos6S69NyE1tcn7//n1avXq12N1Rs9mzZ2fpGtUEclZt69at4j1GR1mNGjVMtudzs/Xr14+WLl1K//zzj9N9yYrJt77NkWdEXXZhSdRJ7yI5w7Zt20ZEOTOIu6IZv6fhCmb8hZDsMvl2pqPMmc+SveboWXluNfn7lXnBzK0UAuZ3PLLD5O/GsrHlpNki6vLMT5o4g+z4Fzm2smnTpjzxL3RyK7NmzXK2Cw6nZMmSOVKOo39sFnDus2QvtvwSvCvw+eefO9sFu7D0e37Sz9vkBI7+t04MYyu2aAIWdWaw9wdBHY2r/n9XhmEYR7N06VJnu8AwuQK3/9/ie2FJSEiAp6cnNBoNPDw8RPj9+/dt/lFChmEYhmGY7MaaZOOVOjM48h+VMwzDMAzDZDcOEXUpKSk4evSoyf92A4DU1FSsXLnSEcXAz88P3t7e6Ny5s+K9F51Ohx49esDb2xtDhgxxSFks6hiGYRiGyUtkWdRdvXoV1atXh4+PD2rVqoVmzZop/legRqPBd999l9ViEBERgdjYWISEhKBGjRoICAgQcTt37kTZsmUREhKC5ORkhIaGms1Hq9UiISFBYWrY+894GYZhGIZhnEmWlcuIESNQq1YtPHz4EFeuXIGHhwcaN26M27dvO8I/QVhYGHx9fQEALVu2VAg3S3HGTJ48GZ6ensLKlSunmq5UqVIO9J5hGIZhGCZ7ybKoCw0NxaRJk/Daa6+hSpUq2LFjB1q1agVvb29cv37dET4CAOLj48UXGTw9PRVfK7cUZ4y/vz80Go2wmJgY1XT8cyIMwzAMw+QlCmQ1g5SUFBQooMxmwYIFyJcvH5o2bYq1a9dmtQgAgJeXl9gqjY+PR7FixWyKM8bd3R3u7u5Wy2NRxzAMwzBMbuGll16ymibLK3Vvv/02wsPDTcL/+OMPfP7552jbtm1WiwAANGjQAPv27QMABAYGonHjxjbFZRZ+p45hGIZhmNxCrVq1rKbJsnL54osvsG7dOtW4+fPn49tvv7X6uyq2ULduXZQqVQre3t64ePEi2rdvj759+wIA2rRpg5iYGHh7e6Nw4cJo2LBhlsvjlTqGYRiGYXILT58+tZqGf3zYzI8PAyzsGIZhGIbJPfCPDzO5grlz5zrbBUaFKlWqONsFi3z00UfOdoFhGCZX8Morr1hNw6KOcShvv/224njq1KkAYPanY/ISvXr1crYLDmf58uU5Wt6AAQPsSv/DDz9kkye5m/Lly9t9TuXKlR1Sdp8+fRyST17C1t9SbdasWaby/+qrrzJ1XnYyf/78HC+zevXqOVbW4MGDrabx9vbOVN4TJ07EO++8k6lzjYmIiLA5bWBgoPVE9IKj0WgIAGk0GpM4ACRVkfTZ2M6ePWs2zpIlJCSIzyVLlrT5vICAAOrduzddvXqVDhw4kKmy7TF3d3eb03p5edGWLVsUYRKHDh0ye97LL7+cbf6PHz9efL5586bV9BcvXqTy5cuL465du4rPI0eOzPb6tmQLFixweJ7BwcEW4ytVquTQ8k6ePGk2zsfHxyQsKSnJ4dc8ZcoUh+SzePHiTLWJDz74wGqaXr162ZUnEdH9+/cVYS1atMjUdSUnJyuO165dq5ouPT3d4fcmqzZ37lz68ccfraZr166dSf1ZSv/ee+9RcnIyTZ48WREeFhZG4eHhFBYWJsLq169vcv6vv/5q13V07NiRjh07lqU2JFlQUJDZNiN97tKli9nzW7ZsSQCoZ8+eWbo3r7/+Ol26dMkkvFSpUnbnNX36dKtphg8frrh/1vKx51lOT08nIqLSpUtnqU6k+3D79m2r6a5fv26TpmFRl0VRR0RUs2ZN1birV68KgRAZGUl///23ap5paWlWb2jFihVVfaxVq1amGtKSJUtsSmepY1GrCyIirVZLq1evph07dogwnU5n9rxXXnnFbFzRokXNxjVu3JiGDh1Kb7zxhggrU6aMIk1qaqr4fOvWLZuu4cyZM+J448aNBIB+//138vf3z/IDbKupXbelOjRnlStXVhVLkl28eNHi+R9//LFN5QwdOpSKFCkijgsVKkSNGzdWpHn//fdNnqUmTZqIz/fu3aO4uDhxPGHCBIvPXmYtJSXFpnT+/v4WRe+qVauEf5999plqmnfeecckrF69elbLlkSd2qAhnwS2atVK9AsGg0GRzvgYAH3//fdW25pxnRsfN27cmBYtWmT23pw9e9bqRE1tguLp6UmtWrUyCf/rr79MwsaNG0d+fn6KsLi4ONHfHD9+3GzZb731lkndSNfy1ltvKdqgZP369SMiokmTJpmcR0SK5+i7775TXEflypVpzpw5BCjbu2TFixdX9GEAaMuWLaLfVGtDWq2WoqKizF7jSy+9ZPb+qYUPGDBATAq8vb1F+KBBg2j//v0EgPr27Wu13Y4aNYrKli0rjuXXZTAYTPrX4sWLKybekn366af0+PFjIiJVAavX6636Im8fmzZtUk0jhY8fP96uvkZC7XkyNrU2rZaXJeF/7do1k7HfHHlG1IWHh1OTJk3Ix8eHvv76a0pLS1PEHz58mMqWLUtNmzal5s2b25xvVkRduXLliIjoyZMnIuzGjRuK8yRRp5bn7t27affu3VZnvJaIjo62uSHKbc+ePYrj2rVri4enatWqIvzChQsUGhpKx48fV/h//vx5u/wkItLr9arnFSlShN59911xLB/05s6dq+gA7t69S6tXr6Z27dqZvVd3796lQoUKEZDR+W3fvp1++OEHm0XduXPnCAC9+uqrtHfvXgJAy5cvp3379inSDh06VHyeMGGCIq5169ZUuXJlAtQFmlpHJrekpCRKSkqi5s2bU+HChS22QzVbvXo1TZw4kQwGg7gGue3du5eio6OJiGjTpk2i/RunW7p0KR06dIhSUlIoPDxctayoqCgiIurQoYPiHkqTmD/++IOAjBUM4zJWr15t0n6k44kTJxIRCXE4evRoIbIt2SeffCI+e3h4mMTLhb7c5CvfDx48MPFHrY6JiB48eEBarVYR17RpUypevLhJuwCgaOvmTBJ1gwcPFqvfjRo1IiBj4mIO6Xy5wJGvUsj7KslSUlIUA63xNasdS/Tv31/1GZIPxGp1KPW7AGjYsGF06tQps/UtiboBAwaI+yQxduxYswOeubq9ffs2ERFVqVLFxMe33npL9VxJ1Bk/t2rl9e7dm4hI9HV37twRom7FihU0atQoRR4XL14kIqJLly6JVStJABGpT9yJiO7duyeOZ82apYiXi1ZzdUFE9OjRIwIyxgMJ+TNGRPTff/8RABo4cCBt377dbL1+/vnnlJ6eTt9++60IS0xMtFhXr732Go0bN04cz5gxgwDQ7NmzRdpnz57RV199ZbFNmns+69evT6VKlTKbPiAggAD7RN3Tp0+Fb2pCVz4uSL4+ePDAbH5ygoODacWKFQRAMUmWtwdr5BlRd//+fUpKSiIiIn9/f9q4caMi/vDhwzR8+HCr+aSmppJGoxEWExMjOhlj5JX+8OFDxY2YNWsW6fV6kVYaPKQZRI0aNYjIVNRNnz6dfvnlF0U50jnu7u5Up04dRTnbt2+3ek1S2tOnT9OFCxdo0qRJFBkZSQcPHjTbkKSH/u233yYgY3YmLVeHhIRQ9+7dFR2OWp1I50tbGbZivLVUpEgRevbsmRjgR48eLQa+xYsXi3QlSpSwWgcS0oxYLv7loq5hw4b077//qj5g0qy7Z8+eZDAYaOvWreJeGwwGOnr0KP3111+KlbPLly8r8hkyZIhYLZBEyT///CPiJ06cKD4vWrTI4oMu1YX8Oq2ZHGNRJx9Ajbl16xbVrVtXCIi//vpLtZ7VytJqtWKgee+994Sok67PWNRJrF+/Xqz8EBF5enoSkDGhICJauHChqD81H8aOHas4vnjxInXr1o3u379PgwcPFuHt27cXbSItLc1kNUe+fWntmoGMbUk5P//8s4gbMGCAaC/Lly9XnNegQQMCIES/mvXp04eADFEntTnpmS1btqzZ+9ehQweaMWOGIkwSdVOmTFG9HuPrJCKxQlm0aFEiIvriiy8IyFiBldO7d2/V/KQVkNdee42IiDp37kzfffcdhYaGCjEspX/48KFqfe/YsYNCQ0OFqFuyZIkYA2xBmgwZm1zwRkZG0ogRI0S5kqhr2LChov+RVmXlbe3SpUuq5fXv39/El2vXrlGBAgXo7t27JvfAuI81RuqLjetYaq9t27ZV5Hn//n3FsfxzuXLlCMjYmjeHsRCTxr49e/bQ7t27zbZZSRjFx8erli1HCnv77bcVou7JkydUt25dunfvnolfxtdvqf8rXbo0EZFCDKml27x5MwHPdwWSkpIoNTWVTpw4YbIzM2rUKAoODlb4tGPHDpM8jetIrfyKFSvSwoULqXXr1uZvPGU8h6NGjbKYxqSe7EqdSxg9erRYnpY4fPgwVahQgZo0aUJz5swxe+6YMWNUb641USc/BkwHO0lESB3vhx9+SEQkls6tERUVRWlpaSarIbZgKW3r1q2pYsWKqp0CAOrcubMYPKSthdOnT1O3bt1UOy7j82vUqEHJycli1cdW5L5IA8fRo0cJAM2cOVPMzOTbv6+//rrNdSBtIaiJOi8vL9JqteI8aavoo48+IqLns9cVK1bYfB3yjkyqTyKihIQEIa5jY2NF/KRJk8RWsfF7iMb38ubNmybbXfLPcXFxtGPHDrp+/brq+caizhakgdS4nV+7dk2R1zvvvKOIl9r/e++9R8uWLSMgY2Bs3749nTx50uQa1Fi9erVoE0REcXFx1Lp1a4qPjyeijK21DRs2kIeHBy1evFiRZ2BgoCIvacA4e/YsJSQk0N69exXx+fPnV9Tj//73P7MDkLGtW7fOxPeIiAgCTAd26ZwlS5bQhg0bRBuQ3lcyNqndS+1Ino+0jW0rkqiTKF68uGp7+OWXX6h48eLiODU1lVJTUxVlFy5cWJH3rl27LLZdS8TExAiBJ8c4H6kt/vnnnzbnTZTR96nVrdSO1MqdOnWqosxbt24p0o8ePdrsdfr6+hKQsVtjDbk/xn2sMSkpKfTll1+a1LHBYCA/Pz+x8tixY0fV8YqIxIrxggULKCUlRbwTZs0/Y4wFy8CBA8VnSdQRZfS1kl9jx46l9evXK/I5ffo0DRkyhGJiYsRk98iRIxZ9unLlisIv+fu+e/fupW+//Vb08TNnzjQ5f/v27SYrftKYI00YzdXDoEGDzPplvPot93PYsGEi3YwZM+i7775T7TcdSZ4Tdbdu3aJGjRqZbL8mJiaSVqslrVZLLVu2pPDwcNXzM7tSR0SUL18+0bnodDpF2qdPn9Lp06fJYDBQly5dKCIigogyBuTly5fbfH1yUVexYkWbzvH29ra65Ww8eBBlvNuQkpJCFy9eFKsXAQEBRPS887p165YiH/n53bp1o//++8/mazPOR1qxkAZwg8FAq1evprS0NLGqcufOHZG+SZMmFvOT36upU6cSAMV90mq1VL58eTpx4oQIu3TpEt29e5feeOMNunr1qghPSEiwaclbXu6yZcvE+04//PCDxfSTJk2iJ0+e0PXr18WXbeTbu+Zwc3OjSpUqqV4zEYklezmRkZEirXSuNeLj46l169aKrQaJrl27UkREBF27dk11gJREnSRm9+3bp1oHjiQ6OprOnTtnEq7Vak1W9eVIz/SxY8eIKGMAlVY6jP01fjfReKAiyuhffH19TV5qll+ztJ21YcMGxTta8q1inU5Hfn5+9OTJE0U+27dvp9jYWNsq5f8xFnXr168XAkat3zOHmliVX5u07Z1VRo8eLbbMiEixUmcPKSkpdOfOHRNRZ8s1GwwGIUrkGL9eI0d6r9J45VENuT/yfsccjx49os6dO9PZs2dNnie5z/L+Tu7ngwcPqFKlSmKl0Fb/jJFE3ZgxY0zSykWdPRgMBkWfbKtfCQkJYlyzpQ6N8wAyvvAQFhZmtq8HMt5DtYT8VQLJtzZt2ojVXWP+/PNPm4R/Zsl1ou7+/fvUuHFjE3vy5AlpNBry8fGhK1euWMxj4cKFtGzZMpvKs/WdOiKiAgUKOHwwMiY9PZ169+5Nt2/ftjqbsoe0tDSKioqi7777TqwiWkuvNnNy1ICclpYmti/lqzISM2fOJOD5rPro0aOKbRNjDh06RGfOnBHHBoPBrq2azGJcHydOnLA4s5OLOjnStQ0bNozq1q1rtjytVismNM2aNaMCBQoo4qOiomjr1q0m5124cIGAjPe5sptvvvlGiH21Z3XevHmKQcGZSDNnS8jfadRoNGLV4/Tp0zaXY9xOzp8/TwaDgfR6vfhG4N69e2nGjBn05ZdfZu5izLB3716qVq2aOE5LS6OxY8cqVuFsIT09XXXw27p1K82cOZM0Gg0dPnw4q+6akFlRJyGtjDRv3pyAjF8eyArA821lOdI7pfL3Mc0xefJk8YUCe16Ct4es9NXA83fG5cTFxVHJkiXFe7REGQsRX3/9tdkVUEdifE3STpM9O0VyAWa8OGPMvXv3TBaQ1Ni0aRN1797drJDLSXKdqDOHTqej1q1bK16SlSMXZd9++63VpVz5ebaKuvHjx1PBggXt9Ny1cPQqy8yZMxViTMJgMNi9IuEMjOtD+ubc0aNHLabfvXt3TrmoKLtOnTo5Xm5uRq/Xi614cyQkJJgMWNI382zF19eXpk2bZrd/TOa3XyWePXtGqamp4ideEhMTs+RPVFQUPXr0yCT80aNHihf8rSGJwOxatclKX33o0CGxS5KbML6mHj16EJDxc1X25gHY9wWEvEKeEXVr166lYsWKUdOmTalp06Zi66NPnz5ERLR06VKqX78+NWzYkPz8/GzO1x5Rxzx/B43J4Ny5c+JdMVuQfr7FGQCgn3/+2SllM0xmyaqok5C+vOHIHZCsIL1LZs8WuD244vhlfE1PnjyhadOm2SXONBqNySsJrgT/71cL//u1b9+++Oeff5Camuok73Ifd+7cQeHChVG8eHFnu5IneeWVV5CcnAxnPHZPnz6Fh4cH8ufPn+NlM0xmuXHjBipVqoRr166hUqVKznbHoej1+mx7HqX/Xe5KQ7yjrmnWrFkYPny4S9WNBIs6C6KOYRzN+vXrsXjxYgQFBTnbFYZhXJg+ffrg1q1btv1rqTzCypUrUbVqVTRo0MDZruRaWNSxqGMYhmEYxgXI52wHGIZhGIZhmKzzwq/UERESExNRtGhRsV/PMAzDMAyT13jhRR3DMAzDMIwrwNuvDMMwDMMwLgCLOoZhGIZhGBeARR3DMAzDMIwLwKKOYRiGYRjGBWBRxzAMwzAM4wKwqGMYhmEYhnEBWNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVyAF17UERESEhJARM52hWEYhmEYJtO88KIuMTERnp6eSExMdLYrDMMwDMMwmcZlRN3NmzdRokQJNGvWDM2aNcOjR4+c7RLDMEyW0Gq1uHfvnrPdYBgmj1DA2Q44kqZNmyIgIMBiGq1WC61WK44TEhKy2y2GYZhM0a1bN2zcuJFfD2EYxiZcZqUOAI4dOwZvb2+MHDnSbCc4efJkeHp6CitXrlwOe8kweYfExERcvXrV2W68sBw6dMjZLjAMk4dwGVFXunRpREdHIzg4GA8fPsTWrVtV0/n7+0Oj0QiLiYnJYU8ZJu/QsmVLVKtWzdluMAzz/+zfvz/H3gF/+PAhnj59miNlMY7BZUSdu7s7XnnlFbi5uaF9+/aIjIw0m87Dw0NhjHWOHz/OXybJo7Ro0QL+/v42p79z5454ReH48ePZ5ZZL07FjR4wdO9bZbjA2Eh8fj/T09GzJOywszGHb5waDAb6+vujTp4/VtNWrV8f27duzVF7JkiVRqlSpLOXB5CwuI+rkgiM4OBhVqlRxojeZJzQ0FG5ubrh//76zXVHQsGFDdO7c2dluMJng0KFDmDJlis3py5Urh969e2ejR+ZJTU1VvPPqKLJjwA4ODjY7WG/YsAG///67w8t0BG+99RaWLFmC6dOnm/Xfz88Pb7/9ts15hoeHw83NDfHx8Q7yMmfx8vLCt99+axL+9ttvw83NDUWLFs1UvqdPn0ajRo3w119/wWAwZNVNcb/u3LljNe3ly5fxyy+/mI2/cOECrl27ZjWftLQ02x10AJcuXYKbmxsePHiQo+W6Ci4j6o4ePYp69erB29sbd+/eRadOnZztUqbYuXMngIyGnduIiopytgtMDhEcHJwj5RiLgMKFC6NQoUI4ceKEw8qIjIzESy+9hK1bt+L69euKOCLC48ePYTAY7BJ++/btQ9OmTbFlyxaH+SlhMBgwc+ZMpKam2pT+0KFDJtdliejoaPTr1w8///wzLly4oJpm5syZuHLlis15rlq1CgDsOscZpKWlIS4uTjVO7ZUd6XqePXtmNk/jL9vduHEDBw8eBADxKwx9+vRB/vz5M+VzdlGzZs1cs/iRlpYmBKv0TIWHhzss/8OHD4tvkffq1Qt//vmn2bTHjx/HxYsXHVZ2TuMyoq5Vq1Y4deoUQkJCsHLlShQo4Jwv9h4+fBjffPMNpkyZAjc3N7vPt+ecW7du2Z1/TnH58mXUqVMHKSkpznZFQERwc3PD5s2bs62MtLQ0nD9/PtvyN8fixYvx448/Ojxf4/Z44cIFh6w4AMDevXvh5eWlKiwaNGiges6FCxewZ88es3k+ffoUDRs2xMOHD0WYNDh8+eWXqFy5siL9/PnzUaJECXz22Wd46aWXTPKaPn06Tp8+DSJSfGkhNjYWAKyuJqSkpICIsHv3bpu34A4cOAA/Pz/MmzfPpvQtWrRA9erVbUprTFa2BRMSEjB06FCzKznBwcGIiIjIdP6ZISUlxaIY7tSpE4oXLy6OiUjUQWbq4sqVK/D09MTu3btFWM2aNfHxxx8DANavX69I/8svv6BgwYJ2lyP31x7MjSdJSUmZ9iE7cHd3x5gxYwA8v0ZH/ixZ8+bN0bhxYwDA33//jb59+5pN27BhQ7zzzjsOK1ti//79cHNzQ3Jystk0BoNB7FRotVr06dPH/tVvesHRaDQEgDQajcV0MTExdOzYMSIimj17Np0+fZqIiO7fv09RUVEiXdmyZQkAvfrqq5SZ6vX39ycAdPDgQRH29OlTSklJUaTbtWsXAaCTJ0+STqejSZMmmaSRMBgM1L9/f7p27RolJiba7RMREQCqVq2aOE5KSqI2bdpQbGysavo+ffoQAIqIiDCb55MnTwgAbdu2jYiI0tLSaN++fUREdOXKFWrevDmtW7cuU/6qodfrCQA1atTIYXka88MPPxAASk9Pt/mc7t2708aNG8lgMNCdO3fEPbpw4QI9fPjQpjwAEACKi4sT53bv3p0MBoOIsxUAVL58eUW+q1evpps3bxIAmjNnjs15ScifEYnx48cTANqxY4fJdZjzV4pLSkpSbRurV68mAPTHH3+IsPnz55vN96uvvrIp7q+//iIAdPToUSIiWr58OQGg1157jbRarVk/AdDatWsJAO3evZuuXLlCer1e9dr0ej3p9Xr6999/CQCNGzdO5GHunPT0dJFGp9ORwWAgIqJRo0bRr7/+qkh74sQJhV8A6MSJE3T16lXKnz8/ffLJJyb+y0lJSSGdTieOJf/atm0r0h8/fpyIiA4cOKDI4/Hjx/Tmm2/SzZs3Va9DjsFgoMWLF6vWqzXy589PxYsXNxtfoEAB4dOzZ8/I29tb+Onm5maS3lp7/Oeff0R8165dFecYn28tLwmdTkfFixen/fv3m8SlpaURAGrSpInFPORlx8TEKMKlftAWX2xJc+XKFZo8ebJq3LFjxygtLc0mX2vUqEFERN26dRPPlkRiYiJdvnzZaj6W8s+XL5/4bOma7O0vk5KSKDIyUhzHxcXRP//8Y5KuY8eOBMDiM+Dn50cAaPjw4bR9+3YCQJMmTbLZF6KMWcoLja2irnjx4gSAkpOTCQAVLFiQpkyZIhqAn58fxcbGZlnUSflJou7GjRsEgKpWrapIJ938gIAAMQjMnDlTNc9Hjx4RAKpVqxYBoP79+9OzZ8+IiCgoKEh0HjqdjlJTU6l379706NEjE7/kok4SlcOGDVMVdn379iUA9Mknn5ith/PnzxMA6tWrFxE9HySioqKoaNGidj9ccv777z+TTuDZs2cEgMqUKZOpPIme1/vJkydpyJAhlJycrIiXfE5NTbU5T+kc6forVaokwkuXLm31fPnAPnjwYCIiatq0KQEgrVYr4qpVq2bToCqlX7Fihfj81VdfUWRkJAGgvn370oQJE0zaiDEpKSlUo0YNmjp1KgEQkyIJSdTt3LnTpGwANGLECCLKuJcARHuRrhMA1a5dm4gyJlenTp2i9u3bEwCaO3euyFNN1Gm1Wlq2bBk1aNDA7ADXvHlzEf7tt98SABo7diwBoGnTpinq1VwdAhkiGADNmjWLAND06dNV66t48eJUtWpV2rlzJwGgAQMGiDwePnxIBoNBiDaJSZMmKcqSBgC16/nll19MxEWNGjVUr1/tfEnASchFp2RhYWFERDRjxgxFHj/++CMBoI4dO9Ls2bMJeD4BMebQoUOijgMCAmwSBUREd+/etWvAVhNbAwYMoEqVKtH169dN0hApB2zjupP6Y2tlWOvTEhISCAD5+vqaxEnPsz2i7sCBA4pwnU6n8OXWrVvi+SIiCgkJoYULF9LQoUNFGksCu1q1aqrX9ODBAwJA/v7+JnH37t2je/fuKXytWbMmERF17dqVAFCxYsXEJO3jjz+2aSyIj4+nGzduqNaFvaLuyJEjImzw4MHUoEEDRTkFCxakU6dO0ddff63Ir0OHDgSAEhISFPlKk8Tp06cTANX+s1y5cqJ8SdRJgjklJcXs5E7hv9UULo4lUafX62nIkCG0atUqk4dSmvHJTZphAOqi7saNG/T48WMyGAw0efJkevz4sUmZ8s7533//pZEjR4ow+WqHFLZp0ybatm0bAaApU6bQiRMnqHPnzoo8Hz58qOqrPB8ionz58oljf39/iomJocDAQDp8+LDJgyCJOnMPiCTqJAsPDzeZeV64cIEAUM+ePVXPUct77969NHLkSNMbaaYeJS5fvqzIc9euXSbnREZGUmBgIBkMBtqyZYtiAL1165bobOW2ZMkS1XKrVq1KJ06coLS0NIqKihKDhNqDLJ1Tu3Zt8fnevXtWO586derQxo0b6dNPPxVp33nnHQoMDBQrENLMXrLx48cr8nj8+LEQ5Zs2baI///xTpHV3dxefO3ToIERdy5YtCQB16dJFkdf27dtp7969pNPpqE2bNrR06VKT+lq7di317NmTJkyYIATy6NGjTepCMrn/ltqHNOmSTL6a+Mcff5ikl4syc22tWbNmJvF16tQhAGLgkezEiROq9xR4LgSlv926dSO9Xm+ymiull0SdmkkiVmLQoEGK+IIFCyryIiLavHkzrV27VuwCWDJjX9T8e/XVV+mjjz6yKOrkYVFRURbLmzVrFoWEhJjUe7t27QgATZgwgebNm0c3btyg8+fP07p168jDw0OIvVOnTpnUmTmsXb/8Go3TJycni4E5MTHRprq0Vs9qyPuZ27dvi/DQ0FDavXs3AdZFnXyF3pqo27BhAwGgGTNmWPTZYDDQ/fv3TSYlb731luKaEhISKDY2VqzsS+du3bqVZs+erShD7mutWrWI6PlKnZeXF73yyism9fb48WOTHacdO3YQAKpSpQoBoC1bttDTp09FvHT+0aNHzd6D6Oho2rRpk03Pg7TqXb16dapQoYIiTlrIMNYUhQoVUuSttotVvnx5ES+N65MnTxZj8MCBA03OMYZFnQVRJ5/52WI9evQQnz09Pc12ipJ17dqVAgICFCtKxmlGjRqlON69e7ci3YYNGxSirmbNmqLc1NRUMhgMdPz4cZN8mzVrpnjw3377bUX8yJEjRWOtXLmyCE9ISKCiRYvSwIEDTRr/3bt3xXWYG4Dff/99KliwoBB0wHNR179/f9VzJPErzYisdYry+pGQZj2WOlYpXEo7b948IiIhTqpXr26Sx4QJEyzeY7lNnDhRfC5fvrxYjZXCpHtnbF5eXmavsUyZMqrnNGnShIDnkwvJxo8fTz///LPYmmvYsCEBUAhDyeSi7ptvvhGiTp5WGozfe+89EWZOMAFQTBzktnjxYtVweZsoXbq0apro6GjVcCKi/fv3q4ab84+I6MyZM2QwGMjHx8fi/TS2ixcvUpkyZRRtW25ubm7ic+vWrU3aoK3lyDEWdQBo5cqVqtcqnyCasyVLlpgtyzitJFLlFhYWJtqJZKdPn7Z4LfLPUrsFnq/yS6t8xvbkyROz9bZ48WLq3bu3wn95f2eLqU3mW7RoQQBUJ3jGVqlSJZvuoYRWq6WyZctSYGCgSPfxxx9TQEAAPX361CSPw4cPExHRwYMH6aWXXlKspsm3WCVRZzAYaNeuXYqVfQC0fv16Ap7v9JjzuWPHjtSmTRsCQPHx8aIsSUgZtxNplwmAWLUDQO+++674HBMToxCZP//8s8U6HTNmDAGgsmXLKq61cOHCqunXrFlj9pr0ej19+umnFp8L42s6deoUxcXF0ZYtW8ymlVYV79+/T8OGDRP3pWDBgor0QUFBNGfOHFq1ahWlpaVR/vz5FfETJkwgIGNcl78KYg0WdRZEXZcuXezqBOSzCknUybfhLJ2r1+tV33kZPXq04rhz584UFhameCCljvijjz4S4cZiUM0++OADs3GDBw8WjVC+FSpfTZKbJByLFStG9+/fNyvqJJOWqAHQd999R0Sk2G4ytvv37yuOpZlaWFgY/fTTT4r7lpKSYvIASDM5tYfQYDCILQggo3OTp7Hl3q9bt05R/7ZYgwYNFJ21sbCW2/r162n58uXk7e0tVhkB86KuUaNGquHy1ZU7d+7Y7GuVKlXI19eXAFMBaGsdZZft2bNHNTw1NVW1jRu/UyS30NBQ8blEiRLZ7rvEG2+8kS35G4v6zPh3/fp1OnLkiEmcmqg7ePCgSZjauebKUguXJpdqZrzqpBa/aNEiSktLM1kpyYxJQs2ccLenXuPi4gjIEPs3btwQ/a3aBEs+oZXb1atXxWsCQ4YMEbsLcuE2Z84cWrFihViFUhMkQMbrAXLxpWYeHh4EKEWdFCeVLR3L36uUr9oZ2+bNm7NUl506dbIYbzxRkcwWYU5k+g6ipbTS61kAxOsl77//PgEwEXX169cXn+UriMbWu3dvxcKKNVjUWRB1WWlokqiTbsLt27czlc/3339vMX7RokVZ8jO3WFRUlOqqg2Rq7wN17drVZNDq3r276CyBjAe6d+/eqnm+/fbblJCQIL7UoWYjRozItmv+8MMPFS9a22oVKlTIdPuUtk6zYsbi1Vqnmt1WsWJFs3HSICQ3S9ub0splTpm0peXM+rNk8nfjstvUJl7WTG0XQs3mzp3r9LrMCTt79iwRkeqrD1L/aq6ftTYRl5u0tfm///1PhDVo0ECx0io3uSjJLWaLqPv9999tzm/YsGH0zjvviGNJ1JkzcxNya2YNFnU5IOrq1q3r9Aac223ixIkWZ+T22Icffuj068luy2r7ZMsd1qdPH8WqNRtbVkz6FmZ2l/PXX3+ZvFed10x6bSmvmTXc/r8BvLAkJCTA09MTGo3G5F+GZeZ35iSkPBkmOzh//jxq1qzpbDcYhslFVKlSBa1atcIff/zhbFeYbMKaZGNRl02ijmEYhmEYxpFYk2wu8x8lGIZhGIZhXmRcStT5+fnB29sbnTt3zvF/QswwDMMwDONMXEbURUREIDY2FiEhIahRowYCAgKylN8LvivNMAzDMEweI0dE3aVLl7B8+XJcvnwZQMY/e+/fvz969uyp+CfZWSEsLAy+vr4AgJYtWyI0NFQ1nVarRUJCgsLUuH//vkP8YhiGYRiGyQmyXdTt3bsXderUgZ+fH+rWrYu9e/fCx8cH0dHRuH37Nj799FOHCLv4+HjxRQdPT0/ExcWppps8eTI8PT2FlStXTjXdyy+/nGWfGIZhGIZhcopsF3Xjxo3DTz/9hCdPnmD58uXo1KkTvv/+e+zfvx8HDhzAzz//jClTpmS5HC8vL7HqFh8fj2LFiqmm8/f3h0ajERYTE6Oa7tVXX82yTwzDMAzDMDlFtou6CxcuoEePHgCADh06IDExEe3btxfx3377Lc6ePZvlcho0aIB9+/YBAAIDA9G4cWPVdO7u7vDw8FAYwzAMwzBMXidHvyiRL18+FCpUSLEKVrRoUYf8SG/dunVRqlQpeHt74+LFiwrhyDAMwzAM4+oUyO4CKlSogOjoaFSpUgVAxhcaypcvL+JjYmJQunRph5Q1Y8YMh+TDMAzDMAyT18j2lbr+/ftDr9eL45o1a6JAgedacs+ePWjevHl2u5FlChcu7GwXmFzCvHnznO0Cw7zwfPPNN852gWFyH7b+43tXRaPREADSaDQmcZD9E92mTZua/Qe7Xbp0ccg/6tVoNFSsWDGLaYoUKeL0fygMgJ4+fUqRkZHZWsbUqVNp/vz5Tr9Wuf3vf/8zaRuuZF5eXlS6dGmn++EI++mnn5xSbufOnSl//vz0999/O70OXNnS0tJUw0+cOOF03/K65eY+7pVXXnG6D86yatWqWdU0LvPjw85kyJAhDsnHw8MDmzdvNgnv1auX+PzRRx+pntutWzd89tlnmSq3YsWKZuM6deqkGv7qq6/i3XfftZiv2s/KvP766zb75ebmhoEDB4ov0owdO9bmcx3NjBkzsGrVKuzatcskbs6cOWbPM3e98+fPt1qesyhZsqTTyv70008Vx/K2by+jRo2yKd2NGzfE51WrVtldTpMmTRTHq1evhk6nU+xISGzduhUHDx60uwxLTJgwwWqarl27mo1LTU1VHC9fvjzLPtnK3r17TcqXMNfXSRQsWFA1/IMPPrC5/Ndee82mdNOmTROfP/74YwQHB9tcRnYxdepUm9LNmDEDw4cPd0iZjRo1wvHjxy2msXbfskJcXByePXuGCxcuAIDJGPT222+L17s8PT1F+KxZs7LNJ1uZP38+2rVrh5CQkEznYVPdOnbdK+/hiJW627dvq4Zv375drKzly5ePAFD37t0VaU6fPq2YHRmXC4CSk5OpTZs2BICWLl0qwgcMGCA+z507l1atWmVy7vDhw6l58+YW1X9oaKjZuAcPHtDs2bNNwiXeffddcbxlyxaTNMbnnT59mhYtWmR1RlKwYEGKiYkR5Wzfvl3MzCtXrmySvnXr1tk6Q5L7Ir+u+fPnExHR2bNnVc/bsWOHarjBYKBatWopwlasWEERERF09epVIiK6dOmSIn7dunX04MEDevDgARER3bhxgw4dOkRVq1alKVOm0MqVK+njjz8W6Q8fPkxHjx4lIqJff/3Vpuv08vKievXqKcKWL19uNr2vry8BoH379qnebwB05MgRm8peunQppaSk0MKFC0XY+vXrM33PiIgSEhIIAE2bNk2Ef//99+JzixYtFH4TEZ0/f54qVaqkSAeAqlSpYvZePnnyhICMVQSJf/75R5EuISFBxH3wwQd04MAB8vHxyXLbnD59utU0YWFhFutJfo/N3ceBAwfa5dc333wjPiclJammOXjwoNny/vzzT6v31zjs888/N5ufmpUoUUJ8joyMpMmTJ6umk7efp0+fKsqoWrVqpu7b/v37rfbNclu5cqXV6yciatasmUm7s7TjIfUNnTp1stoGmjRpQkREt27dMptfXFyc+FysWDG6ceNGpupHsh49eij8koiOjqb79++LuLZt21JQUBD17NmTAJCnp6fivJEjR9L3339Pv//+uyJ/W8YjuRUvXtxs3NKlSxUrxfI2LHH8+HECQN7e3hbLSUxMpHnz5hEAGjRoEB07doxSUlLIGizqHCDqzDVwIhKCaejQoYpjAOIGGd90eR716tUjIqLPP/+cgAyRJcVt3bqVfvjhBwIyxIXa4GmcZ6tWrUzShIaG0uLFi81eAxFR0aJFVcOTk5OFCJEaq7mOISAggIiIDAaDCNu1axc1adKEfH19Ff6b4+LFi/T48WMTP8+dO0dpaWmUmppK77//Po0YMcKmB/SHH35QFeV9+vRRHN+9e1e1bUhcuXJFhJUtW1Z83rFjB33xxReq9SqJup9//pl+/fVX1euV0u/du9dsnciRty85xoJfPjmQm5eXlxi827dvTwcOHDDxRfLbzc1N5Gs80ElWo0YN0uv1irB3332XRowYQV999RUBoIULF1JqaqrC38aNGxMAun79uqJtfv311zRp0iTVNmCu7ardM+M0ISEh1KZNG5NzpP4BAGm1WtqwYYOijNatW4u0165do4cPH4rjFStWWPSHSDkA9+7d2+QcIKNDlz7LBzFJZB49elSEyUXCyZMnxWdjURcSEmK2jyAihQj4+eefaevWrWaFmWQdO3akSZMmieOEhAQ6ffo0PX78WLVtABkTD+O48PBw+vPPP60KeiKipUuXUoMGDQgAvfXWWybXojaZkW/fySdWREQPHz5ULUsu6uLi4hRlBAQEUIUKFcSxn5+f4lx3d3fFcd26dQkA3bhxw6xwrVGjBpUoUYIKFy5s0m7r1KlDEydOVK1TIqJ169YpwhITEyk9Pd1sPe7Zs4fu3Lmj6JfN3a/GjRuLOv7f//5HgHKSNHjwYMW5vr6+JvfEXpOE9ocffqj6DBm347S0NIqNjTURdWrnSO3NVl/mzZunWLzYs2cPARnPolr+8udVQhrn/P39rbZvooyxRavVql67an3YnNJFsVXUNWvWjJYsWaJa+Tdv3hSf5bMAIlNRJ+9cjctRK3fHjh1ERNSuXTvRSN59910qUqQIEZF4b2fRokVERDRnzhzVhiEdP3nyxGT1KDQ0lIiIxo4dSwBoxowZJg/Rtm3b6LPPPjP7kEisXLmSOnfuTOXKlSMiokOHDtHXX39NQMYAbe6arYUbY7y6eO7cObN5Sauklh6ce/fuUUBAgMk9bdKkCf35559W/ZR3iG+88Ybi/qkNhkTPB3RL2Fofcs6cOUORkZGKMLl/AOjs2bP09OlTOnbsmPATUIq6kydPqvoirc7mz5+fiIjS09NN0hj7HRkZSb/99hvNmjVLhEkCZuHChRavJyIiQuT3ww8/KMoqWbKkarnffPONST5yn+ypVyBDwErIBwG5iDPm8OHDqnUhRy7Cvv/+e1VRJw0cUh7bt2+nihUrEhGRXq9XXE96ejp9+umnBEAhfMPCwmjYsGHiWD6RUasfc3UEgDw8PBQ+SabT6YiISKfTqfan7733Ho0bN478/PyoZMmSwi8i5cqPcf0tW7aMEhMTTQSQsV9dunRR9f3q1avk7+9PqampBEDUDwDasmULLVu2jPz9/YmIFJNmuamJOunebd26VfF+HxFRkyZNxHFUVBTt3r1biL3hw4cLPw0GA3l4eCgmzcZYaj9qz9vatWvFcffu3clgMKimLViwIAGgO3fuqJalVg+NGjUSaaXdEfkK7pAhQxTnylen5flIq9jW3iEHIMbdQ4cOWawDY6Q2phbXrVs3qlWrlkndfPzxx2IlTrrnVapUoadPnwphdfDgQZFe6tulFX+JSpUqiXJr1qyp8EGn05G/v7/YRTC23r1729w3qdZHps90ESyJuitXrogZrTQDkcSV3OSdp06nIwD0zjvvEBFRYmIivfnmm3Tx4kUiyhhwAdB3330nyilTpgwNHDhQHNeuXVvkt337diJ6LriePn1KBoNBdObSw7F8+XIiItq7d69qxwc835qQjuUdPBHRxo0bCcgQdXfv3qVnz56Z1ImlDsYeLHVg0kBtCePV0bNnz5qkiYiIoI0bN9LFixcVszbJateurUgvFz7Sdtpnn31ms/9SWJkyZQgAtWzZkhITExVxwPPZ7oMHD2jdunUWr/O9995zSH1LJCYmmgg+uf+vvvoq7du3jwDQo0ePTNK0bNmSgoODyd/fn4KDg1XzsNXf2NhYevPNNxWDijmkVSdrou7EiRO0cuVKs9dnPGDZApAh1M3lZe1cIGNFWo0WLVqINN9//71iG1Rqv5KA6tu3r8VypIGlY8eOog1Lq3zSxO2///6jChUqkFarJW9vb2ratKnZa7p3757qCvWMGTMU6TPTJ6SkpNCSJUvEoKpWPlHGqoaURq/X09atW2n48OF0/vx5RbqoqCjF1lRAQICYEMu5ePEiJSYmmr0vclEnTW4BiG0wqV6Jnk9KpFccjP0/evQo/ffff4prbt26tcmrHKmpqUJwmusTzdWvvP6lnZA1a9ZY7J8kU1uZBp6L4+joaIqIiKDY2FhxzqBBg0Ra6ZWg/v37i3hpx8Fa+dKk+b///lOEywUpkLGSqtPpaNOmTYq2Ikfywxj57ok15OmePHlCt27dEuGdOnVSpDUYDLRixQqKj483K+qkVXQiU1En59atW4pV1NKlS1v11eq1ZDmHPI4lUSdx4cIFodINBoNi8L9//z4REXl4eBAAsdVUs2ZNs/mtX7/e4nJqTEyM2DaQBjydTkdXrlwxSZuWlkZTpkyhtLQ0IsrYDv3yyy8pPDxcsXp1/fp1Sk5OFseS/0lJSSJMLurM4ShRd+XKFUWHJ6HRaFTFpDHyZW0A4iE0h16vp5SUFIqKirJ4DSdPnqTdu3cLUSd929UYtTyOHz9O8+fPF4OqnClTptC+ffsoJSVFsbJljZSUFItt05EAECtAmUW+iuxIpM7fnKhbtmwZnT592mIexqKucuXKNpVdvXp1Wrt2rdm8LHHo0CFaunSp2Xj5O5B9+vQRok5aeSciIerGjBljNp89e/YIsfHkyRNx/v3796lz5842bd+MGjXK5m1+oqyJOkv55QT169cnIGMVVI5cwOj1egoKChLbX1988QWVL19ePL8Gg4GCgoIc5r+bm5vdok56Z9vNzU2sigUGBtok6jp06GCS36VLl0ze25L62urVqyvaUdu2bcVkAwB9+eWXYoxRK//o0aP00ksvWfQrPj5eMcbWqlXLXHUJ9Hq9WCU25vDhw6ri3hhzdWw8WTDGYDDQb7/9ZjL+SK/vEGVMJEaMGGG1/Hbt2ln10xZY1Nkg6tQwbgSSqDMYDNSlSxc6duyYo111KGqN2BZRFx4eTlFRUdntnk1s2rSJEhMT6cKFC3adZ0vnazAYqHfv3uJ9QWOaNGmi2EaRk5qaalVk5kbWr19PN2/ezFIeer1erCI7EmuizhaA5+/A7d6926YVQnP4+voqtqIyyyeffCLaY9++fVVF3e7du62KOmcgCYo///xTvF6SFQDQa6+95gDPrJOcnEzjx483EQPyVRNzK0PmyKqo+/nnn82KOh8fH9VzEhMTLb46JMd4q1NN1KkhrUatWbNGET5r1iwCMrZcgYwvfkhs3LiRNm/ebJLXwYMHqX79+oqwH3/8UfgkvxZbRZ0jmD9/vtiNcwRpaWl07949m9Pfv3/f5L3izMKizsGiLq+g9tBfuHCBgIyXqF2ZnFwRYByDJOrkHS8A6tq1q815SCsAuQnpPdVq1arRlStXTN6RJSI6deoUARnvIeUmoqOj6d9//3VYfo8ePVK8g5XXyK5+RafT2T1RWrhwIc2dO1cRdu3aNQKef5vUVlFnDoPBQI8fPxZfZLK2Um4JaXJj/A6e8SsyjHWy/d+EvSgUKVIECQkJznbDZu7cuQM3NzdFWI0aNaDT6ZA/f34necUwtvPgwQPF/5G2hnF7zw0sXboUf//9N0aOHAk3Nzfx+1teXl4izXvvvYeIiAirvwuZ01SuXBmVK1d2WH62/mbci0Zm+uP+/fubhFWqVAl79uxBlSpVsGLFiiz75ebmhuLFi+P7779HrVq1ULdu3UznVaJECQCm15rZ3159kXEjInK2E47g5s2bqF+/Pt555x0AwKZNm0RDsURCQgI8PT2h0Wjg4eFhc3knTpwAAHz44YcAgOjoaISGhqJbt26Z8J7JSQYNGoRr165hz549znaFsZGkpCTUqFEDu3fvFs+4K0JE2LZtG9q1a5crRShjHul+5fYhVRrzVq5cafFHqXMSjUaDAwcOoH379iIsMTERr7zyCvLl4/+RYA8uJer8/PwQEBBgMZ1Wq4VWqxXHCQkJKFeunN2ijmEYhmEk8oqoAzJ85EmDa+JSEvjYsWPw9vbGyJEjzT5YkydPhqenp7By5crlsJcMwzAM4zxY0LkuLiPqSpcujejoaAQHB+Phw4fYunWrajp/f39oNBphMTExOewpwzAM42oY/99ihnEGee6LErGxsfjqq69Mwnfs2IFixYoBANq3b4+wsDB8+eWXJunc3d3h7u6e7X4yDMMwLw7bt29HYmKis91gXnDynKgrVaoUjh49ahIuf5iCg4NRvXr1nHSLYRiGeYHhBQMmN+Ay269Hjx5FvXr14O3tjbt376JTp042nVe0aFFoNBoULVo0mz1kGIZhGIbJPlzm268MwzAMwzAvMi6zUscwDMMwDPMiw6KOYRiGYRjGBWBRxzAMwzAM4wKwqGMYhmEYhnEBWNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYF4BFHcMwDMMwjAvwwos6IkJCQgKIyNmuMAzDMAzDZJoXXtQlJibC09MTiYmJznaFYRiGYRgm07zwoo5hmNyHu7s75s2b52w3GIZh8hQuI+pu3ryJEiVKoFmzZmjWrBkePXrkbJcYhskkaWlpGD9+vLPdYBiGyVMUcLYDjqRp06YICAhwthsMwzAMwzA5jsus1AHAsWPH4O3tjZEjR5r94oNWq0VCQoLCGIZhGIZh8jouI+pKly6N6OhoBAcH4+HDh9i6datqusmTJ8PT01NYuXLlcthThmFsgb+RzjAMYx8uI+rc3d3xyiuvwM3NDe3bt0dkZKRqOn9/f2g0GmExMTE56yjDMAzDMEw24DKiTv6TJMHBwahSpYpqOnd3d3h4eCiMYTLLf//952wXXJYnT5442wWGYZCxw9WkSRNnu+FQiAgnT550thsOx2VE3dGjR1GvXj14e3vj7t276NSpk7NdcgotW7ZEr169Mn3+77//juvXrzvQI+cwe/Zs3Lx5M1vL2LFjBz788EPs378/W8uxhMFgQHx8vNPKz270er2zXWCYF56RI0fi2LFjznbDoaxevRoffPABTpw44WxXHIrLiLpWrVrh1KlTCAkJwcqVK1GggGO/2GswGJCenu7QPLODwMBA/P3335k6l4gwduxYE0G8fft2uLm55amfiRk2bBi++uqrbC3j9u3bAIDY2NhsLccSI0eOhJeXl93n3bt3DytXrswGjxxLdr1X9/Dhw2zJNzv45ptv8PLLL2fq3NOnTyMsLMzBHrkO4eHh2L59u7PdYJyA1H/npb7AFlxG1GU333zzDV566SVF2MmTJ/HgwQMneWQ/ycnJFgdJKe7EiROKFZLdu3cDyBACWSEuLs6s4Lx69SoWLFiQpfyN0el0Ds3PGIPBAADIly9rj1FKSgrc3NywadMmu8/ds2dPpsr84osv0L1790ydm5Nkh6iLiopCyZIl88zPH23cuBEpKSkW0xARVq9eLdp8WloaHj16hHr16qFRo0Y54WaepH79+mjXrp3Tyr906RI0Go0izGAwYOXKlaJ/yQts2LBBMen39fXFwIEDneiREp1OZzL5dnNzA+B6X8hiUWcjagPABx98gA8++MAk/MSJE3Bzc8O5c+dywjWbeeWVVzBx4kRxHBcXh6dPn4pjeeM290WTrNC3b1/06tULz549M4n75JNPMGjQIFy6dAnh4eFZKke6Djc3N+zevRtubm4YMWJElvIEMoSnvKOVPhsMhix1DNL26fr167Pkn3GeloSA2k/5zJ49G2vXrjUJ1+v10Gq1dvsgrfCePXtWEf706VOb25cjBrbWrVtjw4YN4vjOnTsAgIiICJvOP3HiBM6fPy/OswedTocFCxY4ZBvZ0vbXkSNH0LVrVyxatAgA0LVrV7z++utZLtNgMMBgMJhMXh89eoRKlSrh7t27mc47ODgYcXFxqmXu3bs30/nmJWrUqAFfX18kJSWJsM2bN6N79+6KNutM/vnnH6tpOnbsiG+//VYc79+/HwsXLnS4L5GRkdi3b5/d540YMQKlS5dWjbOl7z558iTc3Nwc/p7v5s2bs/QMqUIvOBqNhgCQRqOxmA4AGVeXFAaAZs+eLcLffvttAkAfffSRIv2WLVto0qRJ9PDhQ1q5cqXDrsGcnwcOHFD4BYA++OAD1bRERDqdToRt27ZNhPfp04cAUGRkJL3//vvUokULRZk7duyg/fv3W/XN19dXta5PnjypqEu1ZjlhwgT66aefrJZBRKTX603yM87zyJEjBICePXtmU5537twhADRnzhwRNnPmTJG3n5+fIn1cXBwZDAab8r537x4BoC+//NKm9HLeffddcW03btygnj17iuuvU6eOSXqDwWC2TszV/aeffqoabg1z5dSoUYMA0M6dOxXhFy5coPj4eMW5ycnJdper5kf+/PnF8aFDhwgA+fv7E1FGuw8ODrb7Omxh5cqVBIDWrFlDOp2OoqKiVNM9evSIxo8fT3/99ZfJdRuXP3z4cAJA169fpxMnThAR0c6dOwkATZgwgYiIihQpYpPfBoOBli1bRikpKarxtWvXFnkEBgaK8DVr1hAAmjt3LhER/fvvvwSA7t27R0RE58+fp6CgIFHGwoULxbO2e/du6tSpEwEgb29vkzIXLFhAACgsLIxWr15Nb731Fk2dOpWSkpLMXofE8ePHafv27aTT6aymJVK2+T59+tD8+fPJYDDY/OwSZfQNU6ZMoXXr1tGPP/6omubgwYOUlpZmtnwA9ODBAyIi+vvvv0XYjz/+aNczsGXLFoqIiFCNS05Opps3b9qcV3BwMJUrV07h4549e2jXrl2q11G3bl0iInr27FmmnxdLaLVak3z1ej0lJiaapH3y5AmdP39eHL/33nvivJSUFEpPT6fJkycTANqyZYvVsocNG0YAKCQkJNP+37p1y6RdAaBatWrR7t276fHjx5nOW5GnQ3LJw1gTdcHBwaqNiUj5QJYvX552795NRERVq1YlANSiRQu6desWhYaGUmJiokgriRsioqSkJHr69KldPqekpNDvv/9usZMICgpS+CwN5pZE3datW1UHArmos1QPv//+u4lISklJofv37xPRc3Gg0WgoKCiIjh8/blKPkqk1fls7Cbk4ldvTp0/pxo0bRETUvXt3AkCXL1+mhg0b0r///msxz7NnzxIA6tOnD3Xs2JEGDBhAEydOFHmXKVNGpH369CkBoIULF9rkr5qoW7VqFW3cuNHsOYGBgVSmTBkx6BIRffXVVwSApkyZIvw6fPgw1a5dm/R6PRERpaam2i3qLIn/06dPE1GGqIiNjVU9Tzr3+vXrFoW2fOCQPksDeUhICEVHR1NqairVqVOHzp49S0QZ7UttAI6Pj6f09HSRb758+UTc1KlThagbNGgQeXt7EwC6cuWKST7GEwRbWb9+PZ06dYqWLFlCAOivv/6ipk2bEgBKSEgwSd+1a1cCQBUqVBDiaN++fSb1KE0u5P1IUFCQEHUTJ04kIlNRJ9XXP//8I8JSUlLo9OnTBIBGjRql8Ofu3bu0fPlyRR6zZs0S8evWrSMgYzKblJRERYsWFUJM7jMR0blz5wiAmJTJ8yxbtiw9evSIgAxBKj1nAGjfvn1UokQJRf+iRnJyMk2aNInS09MVeW/fvl20ATXk7VjeP5cuXZqqVq1KaWlp9OWXX9L169ct3utPPvnEYhuJjo4WcSEhIZSYmEjdunVTlAmAxowZQ3///bdC1BnnqdfrhZDftWsXabVaRVlqPly6dIkAUMmSJUV7kYiLi6Pbt28TUcZYWLt2bdFHVq5cWbUfNe4LQkJCCHgu6mbPni3SPXnyhI4ePWqx/tRITEwU46lEvXr1FOXr9XoaOnSoOL5586YQ8zVr1iQAtGrVKiJSijoA1KxZM9FPrl69mgDQpk2b6O7du3T37l0Tf6SJlNrk7/Hjx7RkyRK6c+eO2eu5ffs2AaAlS5YowqWxAwA1bdrUxtqxDIs6C6Lu4cOHBIB+/vlnk8bcunVr1cb+5ptv0ltvvSU+u7u7m6T58MMPRQORZkI6nY7mzJmjEGpxcXEmfsmFVa9evUx8NvcASoOTJOqkmbYULwkRtQdXEnVnzpxRxIWHh9Ply5cV5/Tt25d++OEH0uv1lD9/fkV6qVPZsmWLCP/xxx9VfZaLT/l1ScydO5du3bolVhhSUlJIr9fTo0ePaP369WY7IwCKmeSFCxcIAFWsWFHkc/HiRRo+fLgQC6dPn6Y///xT1LlanqVLlyYiotKlS1OzZs1E+JQpUygpKYlSU1PNtMDnqzny65MfGwwGmjlzJq1fv17ES52WtOplMBjo66+/NnvNUgeZnJxsdgAyNyhJ4Zs3b6aLFy/ShAkTRNivv/4q0rz22muq50kmiU618o0HZMmkWbhxeLdu3Sg+Pp6ADMEkJywsjABQ165dxblubm5Uvnx5+t///ify8Pf3V+QZHh6uyOfGjRuif5DMeBCViImJUQgIKb0k6uQ2a9YsMZBGRUXRgQMHqF27doo0vXv3JgBihUCyfPnyic+FChUiALRhwwYxkEqizrjMESNGmNTxtm3bKDQ0lADQkCFD6MaNGxQdHU1EpqIQAHXs2JEAUL9+/cQz1rdvXypWrJhIExoaatKWIiIixLEk4CR78803FX3aBx98ID4fOHBAIeqGDh1KRBn9cmJiIv3++++k1Wpp4cKFoi0a+zxgwAAiyhAf0sSGKEMAjB8/XqRbtWqVybkXL14kANSwYUPFSmbfvn3p888/J71eT7GxsYrnHcgQy1I9EBFVq1ZNxE2dOlX0JcuWLVNt82qiLiwszEQ8AqB69erRp59+Kq5N7RmW9/WS6fV6Sk5Optdee40A0LRp0+iHH34QbSUqKkrVN8mkcUq+kguA5s2bJyZNUt1J/uzbt48A0NWrV02eH71eT+vWrRMr2VI/e+zYMZNnSvL/5ZdfFsfSZFXeHwGgwoULE9FzUSffqZg2bZoiTx8fH9X6IyLy8/MjAHTkyBERptPpKDExkapUqUIAqFSpUibnSYSHh4u816xZQxqNRqxuS+Nk1apVxXO1YcMGkzxOnjwpFkgswaLOgqiTGra8Y+nWrRvdvXvXYoOXbrI5K126tEnYZ599RgDozz//VAzyr7zyisKnxYsXK84zRq08aatR6jSNO41Dhw6Rm5ubyXlEROPGjRPH8gHGXFmS3bx5U3Fsrc7UbNGiRWKWLIWFhISYbCFKs/sBAwaIrW9LJj3gAMQ2EJAhfOQd8JEjRygmJsYmX6UH2lx8tWrVLLY/eb3K646IqE6dOorjbdu2meSv1+upQ4cOZsvfvn07EZHJ6sCZM2eoR48eCt+JSAwS0sAGQHRschs5cqTi3H379tGqVatM7hEAxeAvr3Nppq9mY8aMUQ3v3LmzEAAdOnSgqlWrUuvWrRW+FCpUSByrtW9JpEi2d+9esX0oCaDXX39dkaZXr160adMmqlevHiUlJdH169eFcPv6669p06ZNVp8NyXr27Gn3M6FmmzZtEp/NiToAimcZyBB1x44dM0knbU8bm5eXl/i8YcMG1TQHDhxQ9DcGg0Eh6oxFAACx6geAXn31VfH54MGDQnQAGcLT+NpWrFhBc+fOtVg/khiS2oOxsAQsizoA1KNHD9LpdGJVB8iYCFoqV5oAyMPeeust8Rw1b95c9Tw1sSftcpizFStW0ObNm8WxHLW237dv3yy1ufbt29OVK1dU47799luTMCKlALx79y599dVX1KtXL0pOThZ18vLLLxMRUZs2bRRtyHjFvFu3borjgQMHis9PnjxRxP3555+iz5fnM336dEU6+dghceXKFdq2bRv99NNPBDxf5UxOTlaMFWr1TkR06tQpWrBggcm4bYtVqlRJ5CM9I/IdIXOwqLMg6iShZWzStoc5M34PwR77+eefFTMG44ZinL5jx45ERBZnVqNHj86UL9JMQs2WLl1q8VxpBUwycx2ANXv77bdpxIgRigf0wIEDma7f7DJrog7IWI199uwZ/frrr/TZZ58RUcbSvXE6aTsQgElnYO7abemkr127Rm+88YYirHr16gRkrC5IYdLKrDSztmTSe2nG4cZb+Y42aQUAADVo0EB8lm/dSnVub97y7TJjk0/IGjVqpJomKSkpR9qcZPLVx++++85sO+zRo4dN+Xl4eKiGe3p6is/GAtGcGQ++1kwuHGfPnk3FixdXxBtf219//UXz5s2zOf9ly5ap9pVqExZ52Lvvvive9bPVunbtSgkJCWbjpVV2Yxs8eLDdbeDLL780qaeDBw+KVUxnm/EESm7GK2bh4eH0xRdfOKzsTz75RLF1K9mMGTPM3g+ijPdCpWNpt87X15eePXtmVmRv27ZNsduWVd+DgoIUk3rJN0uwqLMg6sy9U6C2DO5IMx4s5Eu+aunv379vMT97O9bssKtXr2bqvFKlSjndd1v9DAwMtJpOvur75ZdfWuzs8oL98ssvqiJGbQvJGSZtdb1IZq6fMDdJzUsmbbnLTW3b1ZLNmTMnU2WPHTvW7nPk7zbnpEnb93nV1FZ0M2vSaz/GZjy+S6+0AFD98p5kBQsWtFqm9I52Vn2XT14ls4bb/xf8wpKQkABPT09oNBqTfxkm/Y6NMRUqVMj2/1Yg59dff8WlS5ewZcuWHCuTYRiGYV5EevTogRUrVmQpj5IlS2b5d2yLFi2q+BeoAKz+BEuuFHVEZFZQORpzoi4uLg7FixfPER8YhmEYhmGsYU2y5cofH3Z3d8elS5ec6kNe+JdgDMMwDMMwEo79B6l2MmzYMNVwvV6PKVOmiJWyWbNm5aRbDMMwDMMweQ6niro5c+bg3XffxauvvqoIJyJcunQJr7zyil3bsH5+fjhx4gTKly+P5cuXm/yvVnvIqe1fhmEYhmEYR+BUUTdx4kQsXboUM2fORPPmzUV4wYIFsWLFCtSoUcPmvCIiIhAbG4uQkBBMnDgRAQEB6NSpk0k6rVar+D+Wav8Dk2EYhmEYJq/h1Hfq/P39sWHDBvTv3x9+fn5Zeo8tLCwMvr6+AICWLVsiNDRUNd3kyZPh6ekprFy5cpkuk2EYhmEYJrfg9C9K1K9fH6dOncKjR4/w/vvv49y5c5na+oyPjxffXvX09ERcXJxqOn9/f2g0GmExMTFZ8p9hGIZhGCY34NTtV4kiRYrgn3/+wfr16/HJJ59Ar9fbnYeXl5fYSo2Pj0exYsVU07m7u8Pd3T1L/jIMwzAMw+Q2nL5SJ6djx44IDw/Hli1b8Oabb9p1boMGDbBv3z4AQGBgIBo3bpwlXwwGQ5bOZxiGYRiGcRReXl5W0+SKlTo5ZcuWRdmyZe0+r27duihVqhS8vb1Rvnx5/PTTT1nyIxf+JjPDMAzDMC8onp6eVtPkOlGXFWbMmOGwvAoUKIB3330XZ86ccVieDMMwDJOXeOONN3D37l1nu8EA+Oyzz6ymyVXbr7mJEiVKIDIy0mKa4OBgbNq0KWccyiQ1a9Z0tgs206JFixwpZ8GCBVbTVK1aVXE8duzY7HKHeYHx8fFxtgtZ5vbt2+Lz48eP0bp1a3FcqVIlZ7jkdFq2bOlsFxyGcV9oiY4dO9qcdtGiRZlxJ08TGBiYpfPnzJljNQ2Luizg7e2Nd99912H5VahQwWp59rJjxw48ffoU06ZNsyl9WFgY4uPj7S4HAL755huTsMKFC6NPnz42nb9jx45MlauGJbH98ccfWz1/3rx5AIAOHTrYVe6jR4/sSp9XGD16NH744YdMnZsbXmVo27ats11QJV++jC547969OHTokJO9yWDx4sWKY3P/+UeiXLlyGD9+PLZv347ixYuLn5YCgMGDB2fq/n/99ddm4/R6PdLS0hQ/R/XRRx/ZXYa/v7/d52SFU6dO5Wh5WSU2NhZff/21iZCYOnWq2XNsnZg3b94c/fr1y7Rvxq9orV27FgMGDMhUXr179860HwBsHlsBKJ4Ne/n8889RoIANm6v0gqPRaAgAaTQa1fhZs2YRAAJAf//9t/gsr7o5c+Yowu2xCxcuiM9//fWXxbTt2rWjjh07mo0PCAigt99+WxF248YNIiJKSUmhMWPGiPDTp0+Lzx4eHlS1alXFNWXmWh49emQS9uTJE5vzs6fcOnXqqIYfO3aMnj17Rk+ePKFKlSrRrVu3aNu2bTRo0CACQAULFrRYjoeHh/DlzJkzdOLECQJA69evV6TbtWsXBQQEEAAaN24cNW/enADQw4cPM90WatSoIT4vXLiQdDodhYSE0GeffaZIFxoaSikpKQSAChUqRLt27aL79+8TAKpbt64i7YcffmhSzldffWWXXydPnsxSuzA+7+TJkxQeHm42fZEiRRTHT58+FZ/Pnj1LPXr0IAAUGBioSKf2bIwZM4aioqLIYDAQAKpfv74i3mAw0MmTJzN9zyQLCQkxCdu/f7/V86R28/TpU9X6lT+z9tg777xjNs7f39+u+2V8/OWXX4rPS5cuNekz9Xo9ff/99wSAZs+ebVO7CQ4OpkaNGpktUwqTM3z4cNX0LVu2VJwXGxtr9ToXLlyomqZ06dIEgDw9PalXr15Wr2PevHkEgAYMGKAoJzk5WVHekiVLstzmOnTokKnz1J7/7777zmJ9W2oPctPpdDb5oNVq7epPBg8eTE2aNBHHer1efI6JiVH1U2qD1uqaiGjo0KGZvg9r1qyxOa3cRx8fH7vKCQ0NNXkG1GBRZ0XUEWXchA8//FB8BjIGcolz586JB/rJkycizfz5863eYHmectH4xhtvUL169Uir1dLjx48JAE2cOFGRHlAOZAaDgZYtW6aIl0SdRMWKFcVDYTAYaM+ePfTkyRNat24dlShRQqTbtGmTzY1t8+bNFB4eTkRE5cuXF+GrVq0yuUYA9O6775qtj6CgIDpy5Aj17NlThLu5uSnSbdiwQTyEmzZtookTJ4q4W7dumb2P8fHx4j4bi18A9Morr9DVq1dp48aNivNu3rxJaWlpBID69OlDQMZAsWPHDgJA48ePp7i4ODpx4gQ9ePDA7k7hjz/+oOnTpys6Kjm+vr6q7UatndarV0+kW7FiBV26dElx7rRp0yg5OZmaN29OGzZssLkjkihcuLDV9J06dTI5f+PGjWbb/fnz5xXCqlu3bop4IqJvv/2WAFB0dDQdOXKEAFBCQoJI06hRIzEBmzlzpggfO3asKG/BggV069YtxfMi8fHHH9Orr76q8PvEiRMmourPP/80ud7//e9/Jm0cAF2+fFlxfO3aNZM0fn5+BIASExMVeUhCfsKECXa3p759+9Lo0aMVYZMmTaJnz57R+fPniYioS5cu1KpVK4XIrVixIu3evZuIiO7du0dAhgAwvhdqx8asW7eOANCsWbOIiCgqKsqsv9WrVxfnPXz4kC5fvqxan8b89NNPBIDee+89IiIaOHAgAVD0B9J55tq19HnlypWqaSpXrqwo+/bt27RixQoCQFOnTiUA9NprrynyjIiIoOPHjxOQIYDlWPNJsmfPnikmM2rtZvv27eJ448aN9N9//5lN37p1axo/fjwBoLZt2xKgFIWbN28WnwcNGkQffPCBqt9Xr15VHE+fPl18btWqFRERff/997RhwwbKnz+/qi/58uUzydeaERE9evSIihcvTtHR0UREJveGiGjGjBniHOn+HDx40Gy+TZs2FecWL16cgIyxcdasWZSUlGSSXt6/SiZNGK2ZVD9SX9i7d2+brx8AxcXFmTwDarCos0HUpaSkUFpaGhERnT9/nm7fvm2S5sKFC2KQkDpicwq+evXqYuZGROTu7k5AxiD877//0tGjR03yv379Oun1eiIi0ul0VKpUKdGgq1SpIj4br/YZi7r33ntPtYM0xmAwUEBAALVr107kNW3aNJNrqVGjhuK82bNnKx5ECfk5Bw4coKCgIEVYkSJFTHyQ4goUKKBIe/r0aSFIbt68SUREMTExNHDgQFFH1rh69apY1ZLEgJoPlpBWWffs2SPCjFcFateubVJnxp2d2jXLkWb/anFy+vXrR2fPnqXFixcTkDFJkOcJZKweqZWnZosXLxYTCYm33nqLAFCxYsUIADVs2NDkvEePHikGVonXX3+dXn75ZXF87NgxOnLkiIkvqampJnUhibpr164p/JHEfZcuXcR1b926lZYuXUqAUtRZqmOJMmXKEAAqWbKkYjWhVKlSJudv2LCBFi9eTElJSSZ1WblyZUpNTaVatWrR9u3b6eDBg2KQaNGihUin1WrpwoULJnn379+fANDu3bvp3r17ihV9NZMPNkRksvq4b98+1eslej7IDBkyRBGenp4unidJuNhSh0REqampNGTIECFWjc9r1aoVTZkyhcLCwujhw4eqeRhfozGTJk0iQLmCcfLkScXk6O2331bNq379+orwAwcOqNarvG+Vc/jwYdLpdBQfH0+JiYk0ffp0GjVqlIiXRJ1xnd6+fZvu379PRKRY8ZRMWl2SkE+G5Obn50fbtm0jAIpnVC3tuHHjKD09nVJTU6lNmzZ0/fp1GjRoEN2+fVtRt+PHjxeTc7V7IX8GihYtKs6T16ExaWlpirF1xIgRdPjwYRN/vby8FD5LwhNQikA5c+fONbk3cnF69uxZIQCN66RSpUom53bp0sUkbNiwYTR48GAaMGAALVmyhPR6vSi3Q4cO9N9//ynynz9/Pq1du1b1PkhIq/o//vijxWdasqZNm9IXX3yhWgdqsKizQdTZi8FgoC1btpDBYKDY2FgKDQ0VW0qjR4+mK1euKNL/8ccfBChXtqwhDT5Ez4UcEdGpU6fEoAKYijpJyNiKVD8AVAeWd955R5Fe8uXjjz9WhEvbQdJASURiptKnTx8xA5QjlbF582aqUKGCOJYGAWlrN7NIq5GSELVX1BFlrP7JkbZBJdu6davoPL/66iuKjIykmJgYs4PV/v37xZaVhPFM0Bp79uwhIGN7kkjZoV2/fl2RdsSIETRu3DixAikNNPIZrBz5itmdO3coNTVVsTosTX6kcl999VVxrNVqhWBT49atW/To0SPF+dL1SoOdJOIlpJXRGTNmUFpaGs2fP5/0ej3t3LlTDGjGjBkzhry8vFR9MBgMihU8yY/PP/9c1S85kZGR9N1339GuXbsoJSXFJF4u6g4ePEhLliwxSSOtfCxatIgePHggwqV2ZW5blYjou+++U4hYaXtHvj2lhvTKwLFjx8ymefDggar4tJd///1XdVKshlTGkydPhBCSo9VqadWqVSb3iyijb9iwYQPdu3dPkReQMamWnlvg+Uqf2isB0vNgL9LuzaRJk8ymka80W6tP43R+fn505coVAkBBQUFm082dO9fiMxcZGUmrV6+2ej3Gou7s2bO0aNEiIsoQPuZEnTX69+9PI0aMoEePHtG1a9fo6NGj5O7uTqmpqXTu3Dk6evSoSZ9lCUnUNWrUyMR/uZUtW9akvtPS0sxOMORIOzQTJkwQYf/88w/t2rVLHP/000/iVR7je3vs2DECTFeUS5YsqUib2WeMRV02iDo1Nm3aRM2aNVONk5T/mjVrbM5v5MiRZm94WlqaWMlKSEhQxEnvotmDvHFt2bJF8Y6CsajT6XT0999/m3S0z549UwxSRCTe65M6XmMePHhAsbGx4njjxo0K0ZBV0tLSyN/fXwy2aqs69iINvpKoNndtUv3lz5/fpnyl1Vxb711kZKSirEKFCikEtTFxcXHUsmVLevr0qdiaVyMqKoq++OILSk9PF2GS6DSeUR8/fpzu3Lljk79qyK9Xo9HQ4sWLVdNdu3bNZIX233//FR1nVrl69apYjTP2yx7kos4c0jMhrQBISO2qXbt2YkInCbFDhw6p5hUWFkY+Pj5m72VWyGwdOKuM6OhoMZi2bdtWhMfHxysEuHyQLVGiBD179oxOnz6dqTJ37Nhhtb+Syrp7966YhKkhTbokASWtuMufQ2P/HXl/Bg8ebPadLmksyoyoczT79u0TkyI5bdu2pSJFiogVQWkhJTOoiTo1DAYDffHFFyb3wmAw0NKlS0mr1Yq4NWvWUHR0NIs6R5BTos4S0krR2rVrs70s6SVpewBAvr6+4lhagQSev2vIZCC9Uzlo0CCL6aQH9vHjxzble+bMGfroo49o2LBhdvskiYHs5Ouvv6bNmzc7NM+sDEzp6enk7+9Pz549c6hPRBmTDXNi3RKSqGvevLnFdGpCQHre2rVrp3jXx1kcPnyY1q1bl61lOPoapRXJNm3aWE27c+dOk12O7MDR15hdos4SuUnUGQwGWrNmDel0OtX4Bw8eqO4K2YP0LqM1USdRqlQps+Ok8X06dOgQRUVFqcbZikv9+HBeRfqXZNLPG2QnEyZMwIgRI+w6JzQ0FDVq1BDHbm5uKFmyJP766y+X+j0mR1CsWDEcOHDA5n9TV7x4cZvS1a5dO9M/efHgwQObfok8K2zcuDFb87eXAgUKYNKkSdmS9+uvv56p89zc3GxKV7BgQYvxL7/8MqpWrYqrV69myg9H0KxZM6eVnVkKFSoEAKhWrZrVtPLf2stO6tWrl+d+6iQ34+bmhk6dOpmNf/311zP9/GaW+/fvm41btWoVjh49Ko4z89M8xrCoywV06NABS5Yssen307JKvnz57B7gGzZsqBreq1cvR7jkctj6W01du3bNZk8yyOlOzFEcOHDA7v8BnZt56aWXAADdu3d3sicvJkWLFsWpU6dQq1YtZ7siCAkJQWpqqsPya9GiBapVq4ZOnTpBr9c7LF9LdO7cGbNmzULdunVzpDxnU7t2bQCO+bH8Ll26oEuXLmbjy5QpY3eebv+/zPfCkpCQAE9PT2g0Gnh4eDjbHeYFQavVomDBgjmyOsvkfYgI/v7++OGHH/DGG29g2LBhmD17dq74YefsQlrZdOVrZBhzxMTEoEiRIvDy8rLrPBZ1LOoYhslj6PV6PHv2LNu31Z3JyZMnUaBAgRdmBYhhHAGLOhZ1DMMwDMO4ALz3wzAMwzAM4wK88Ct1RITExEQULVrU5m+nMQzDMAzD5DZeeFHHMAzDMAzjCvD2K8MwDMMwjAvAoo5hGIZhGMYFYFHHMAzDMAzjArCoYxiGYRiGcQFY1DEMwzAMw7gALOoYhmEYhmFcABZ1DMMwDMMwLgCLOoZhGIZhGBeARR3DMAzDMIwLwKKOYRiGYRjGBWBRxzAMwzAM4wKwqGMYhmEYhnEBWNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgX4IUXdUSEhIQEEJGzXWEYhmEYhsk0L7yoS0xMhKenJxITE53tCsMwDMMwTKZ54UUdwzA5CxFh5MiRuHfvnrNdYRiGcSlY1DEMk6M8ePAAkydPxsCBA53tCsMwZtDpdJg9ezZ0Op2zXWHsgEUdwzAMwzAKAgICMGzYMKxevdrZriiIjY3F+fPnne1GroVFHcPkQfbt24fw8HBnu8Ew2cajR48wYcKEbPsS2x9//AE3N7dsydsVSE1NBQBotVone6LknXfeQa1atZztRq6FRV0WyW0NvmzZsmjcuLGz3bCLsLAwPHv2LMv5aDSaHL8fa9euxdixY1Xjrl27hnPnzmVLuZ9++inq16+fLXnnFOnp6c52wSJJSUlo1aoVHjx44GxXXkiGDh2K3377DXfu3MmW/BcuXAgASElJyZb8cxtEhDVr1uDixYvOdgUAEBERkak+IC4uLhu8sU5gYKAQurmZPCPqTp06BW9vbzRt2hQdOnRQNIagoCCUK1cOzZo1Q4sWLXLMp0uXLqFQoUI4cuRIjpVpjbt37yI0NNTZbthFo0aN0KtXL3F88+bNTH0b+dVXX0Xz5s0d6ZpVOnfujN9//101rkqVKqhdu3aO+uMsqlatipEjR9p1zq5du/Dvv//aXdajR48QEhJi93n2cvjwYezduxd//fVXtpdlL46YBGWF5cuX4/jx41nKY8mSJYiPjzcbL/Xx2b2a9vLLL2dr/pllzJgxqF69usPyW7RoEbp06YJ33nkHN27csFj3gLLeT506Zdc27HfffYdx48aZjU9ISMB7772HUaNGWcwnJCQkVyycPHz4EC1btsSIESOc7YpV8oyoe+ONNxAYGIgjR46gSpUq2LZtmyL+m2++QVBQEA4ePGgxH61Wi4SEBIVllsuXLwMA/vvvv0znsXPnTuj1+kyf7wz++ecf3L5922y8TqfDunXr0KtXL5tnNtHR0eLcihUrwsPDI1O+OVrQxsXF5YpOxRYWLVpkdQDcs2cPbt265fCyo6KiMHnyZJvSHj58WHyWT4gePnxoU11/8skn8PHxsd9JO9i8eTPCwsIAZL+osIenT59i7969KFq0KK5evWoSf+/ePWzevFkc37hxQzWdOYgIKSkpSE5OFv3SkydPTCZZPXv2RMOGDTPdd92/fx/9+vXDkCFDLPoCOK7+/fz84OfnBwA4d+4coqKiRJybm5tJX3XlyhWbVoWePn2KQ4cO2exHSkoKpk2bBoPBYDHduHHjcPnyZbz99ts4ffq0zfmbQz5mVqpUCR9++KHN577//vvo2rWrzelXrFiBMWPGKMLS0tJw6dIlAM+3dqUxVI24uDj4+Pjgl19+EWFt27a1WvaUKVPQrFkzm30FMtq4pbYs9UvZ9Y39H3/8EREREY7JjPIgo0ePpi1btojjw4cPU4UKFahJkyY0Z84ci+eOGTOGAJiYRqOx24/NmzcTAJo+fToZDAY6fvw4PXv2jKZPn043btww8RkArVmzRoQdO3aMANCCBQvsLluOwWCgnTt3kl6vF9djTFpaGsXHx5NerycioqCgIFq+fDktWrSI1qxZQ4sXLyYA9O+//1otDwDVrFnTJP9BgwbR06dPaeLEicKPnTt3EhGRXq8ng8FgNr+6desSEdGjR4/EuUeOHKG4uDib68HctdtLYmIide7cmTQaDQGgzz77zGqZ6enpFB4eTvfv3zeJ02q1dpUfHx9vtq6M85bToEEDAkAGg4EMBgNt2bJF3G/5ea+//rpd/pgjNTVV1Z9WrVrRyy+/TDdu3KBnz56ZnFe5cmWR3s/PT5FH69atrZZbpEgRm+7zmTNn6O7du4qw6OhoAkCLFy9WPUen05HBYFD0DRMnTrRaVk5w8+ZNAkDVq1cnALR3716TNHXq1FHUjXQNDx48ICKiokWLUo8ePcyWMXXqVHFOly5dFHnIkcL+/vtv1XySk5Mt9qm3b98mANS+fXsiImrTpg0NHTpUkaZ9+/YEwOQeSuh0Olq5cqXZZyU5OZkA0IoVK+jZs2eK61AbA+7cuWNyjZUqVTJ7DRKffPKJXf3OpEmTCAAdPHhQNT4pKYn69eun8O2ll16yKe/IyEiz9SX5KTciojt37piMV+np6TRkyBDxrJjrW6dNm2ZSb0TqbaZ///4EgPR6PcXGxhIA+vzzz1V9TUtLo/3795ukMfZdDSne+JqMuXLlChUtWlSMOSNHjqRbt27RqVOnTNIat1c5Fy5coI0bN1osS47aeACA3nrrLZvzsESeE3W3bt2iRo0aUVpamghLTEwkrVZLWq2WWrZsSeHh4WbPT01NJY1GIywmJsYmURcZGUmrV69WhAUEBBAAmjFjBi1btkzcGEudoK+vL40YMYLGjx9PgYGBBIDGjBkj0t25c4emTJliU1389ttvVLRoUTp8+DABED4AoI0bN9KlS5eIiEQ5AOi3335T+GNsbdu2pStXrlgsFwBVrFhREbZ3714CQDVq1KBBgwYpRN2HH35IAOjXX39VnNOlSxf6/vvvCQDVqVOHiIgePHig8Kd58+Y21YX8moxJSkqiFStWqJ5z7tw5evXVV2ncuHEibMWKFVY7MyKix48fi/jJkyeLzyNHjlT48+WXX9LEiRNJr9fTrFmzKCUlhbp27Uo//PCDyOv06dO0YMECMRDNnDnTpms9c+YMLV++nIiei7revXuL+CVLlhARUUhICFWtWlX1enQ6HY0ePZoSEhJoz549BIDu3bsn4o8fP07BwcFElCHOdTodXb9+nQDQnj17TOpefv+8vb1p/vz5YuBNTU1VxPv5+dF///1H9+/fJwDk5uZm8bqJ1EXd+fPn6fDhw1SzZk1atmyZ8OOVV14hIqLw8HBaunQpDR06VJR96dIlAiDau1T3xmaLqEtISDAR0EREN27cEH3LnTt36MiRI1bzIiJauHAhbd68mYgy2uOVK1coNDRU4dcnn3xCDx8+VJxXtmxZVVHXoEEDunDhgsn9T0lJoaioKHHs4+Mj0hQoUECRhxy5H3Xq1KFq1apRQEAARUdH09KlSxXnREZGUkxMjDj33r17QrS89tpr9MEHH6iW8eWXX1oUdV27diUAtH37dtX4hw8fqt7Pu3fvqobL27y565Y4fvw4nT59mohI9PkS6enpdPXqVVG/t2/fJqKMfujq1atiYSEwMJCIMp6JP/74gwwGA928eZNKly6t6p8tAKCXX35ZNe7jjz9WzVMt/19//VWEm+sHtVotAaAWLVoQEVG/fv1o5cqVdOjQIdX0DRs2JACk0+mEqHvzzTdp5cqVJpODn376STEmya9PLe+EhARRp/K+R41Hjx7Rs2fPqFOnTgSAtmzZQgCoQoUKlC9fPtW6lnRC06ZN6eeffya9Xk8nTpxQ+DNz5kxKTEykhw8fir5g9erVNHDgQJHP06dPCQD9888/RJSxICNfjNHpdKIPltqQveQpUafRaMjHx8ei6Fi4cKHo1G3NE1AXddKMffjw4aoNadOmTQSAxo8fr/oQDhs2TKSVwuQPljQTkYQW0fPZVFJSklXfpXymT59OABSzbLm/8ge0fv36inPN2fXr11XrQ8rLeAYriToA1KdPH/F5x44dinwvXLhARBn3SR5esWJFCg8Pp4oVK6peQ1paGm3dupX27NlD7733nsX6MGbYsGEEgC5fvkxEGYP3uXPnxKAg2cOHD2nZsmW0fPlyi52ZcXnmOmDjsAMHDhCgFIASbm5uBICCgoIIAP3vf/8jIqL79+/T1KlTrZadkJBAtWrVMgmfPHmyanqJhQsXihn56NGjxWfg+WAqv3fS6onUdkeNGiVWv8xdt9RxrlmzxiTcz8+PAFDJkiUJyLyos1T/5nzq2bMnAaBixYoRkXkRAICqVatGFy5coH379hHwfBUgOjqawsLCCACNHTuWiIh27typqLvatWsrfFi4cKHC99jYWEpPTyciomvXrinK3bBhAwGgfPnyiXLk9sUXX5DBYKBKlSoRACEIvvrqK6pfv75I9+abb5KHh4eiTkaOHCmOhw8fTuPHjzcRdfJVS0v1LVn+/PkVx9LAnz9/fnFuy5YtzZ6/cuVKIiKaP38+vfHGGwQoxZbBYKBZs2ZRUlKSOOe1116j33//3aSdWLqfaiZfZZdf48aNG6lOnTqUkpJiEidNbqT6MRgM9Morr4hrb9euHQGg8PBw+uKLLwiAEHXDhw+nI0eO0C+//EIAxM6PObMFtbRhYWF0+fJlatGihdXnJCgoiKZNmyYEtdRe1fJNS0sj4Ll4suT79evXxf1MS0sTok5ucmHXtm1bES5NzIzLkCNN0GrUqCHimzRpQgBo0KBBqnVka13rdDq6c+eOIv7MmTM0bdo0k/Pk/efWrVtN8rt69SoBoK5duxIRUfXq1al48eIi3bhx42jgwIHiOCAggBITE2269+L67ErtRHQ6HbVu3ZoOHDhgEicXZN9++63Ns2HpXEBd1MkVtNrNlkSdXMSYS68Wd/DgQQJAv/zyC5UtW5ZmzpxJzZo1I0Ap6h4+fCga/PXr12ndunWK2bBk0szDuJG9//774vj9998XHa0lO3nyJBFlLJnv2rWLDAYD/fnnnyK+SpUqRJTRYeh0OrOiTs0k4WKrEZFiS9f4Phw5coRmzpypGicflAoXLkxEGSuEauX873//Uxx/9dVXiuPdu3eLPCUxYsln47Bdu3YRAPr999+tto+iRYsqjuPj4xXXZWvdff311za3y0KFCimOZ82aZbat7Ny5k4CMVUlpJdbcdWfGtmzZQnXq1KH09HRxHwIDAyk+Pl7UTb9+/cjf31+1THnYjRs3VMuQhCSQsa2yaNEim/0zJ5YTExMJAL3xxht05coVs/UiIa1QSgOPpWfn6NGjquFqEyE1e+mll6ymadq0qeJY2nYCMkTP5MmTTbanLZm05War1axZ0yTs5MmTtGXLFtLpdGJCJK3wy+3WrVtUpUoVAkATJkywW9RJW9TXr18Xkxe5hYSEEBEpVvrc3d0V9/Ty5cvi+OLFi6rlmHsFSL7TomZEGWNSaGgomUOeds2aNRQXFyfCrIm6b775RnyWBKix3blzh3Q6HV28eFExOZUmO7ZYRESEaPdq/hCRSf0bDAaTlWqJHj16qObVqFEj8fnvv/8mg8GgmOhYq2ui55Ms40WIlStXUvfu3U3OM+dLgQIFaO/evWKnoEePHhQZGamaVr7TJaW1hzwj6tauXUvFihWjpk2bUtOmTWn9+vXUp08fIiJaunQp1a9fnxo2bKh4R8cWLIm69PR0kwqXZtQpKSmiUWdW1L355psmYR999BEBULyLJIkNNX/stXr16ollcEs2e/Zshd9z585VxL/11lsUFRVFwPOVQsmsiTp7bfv27SZhQ4cOFe9ymKvzCxcu0Pr1603i1Fa0gIwZpzVfwsPDaffu3VbTLViwwCTMeNXSWvuQW3x8PF24cIEiIyNFm82KaTQa1UmAsRkLW2tmTjDba+XLlydAOdCYsydPnqjWqyP8MGf16tWj8+fP25ze+PkhIiHyAVDVqlXp5MmTDn927DXpfT1LZu+kLKtmvPpnzjp37qw4tlfUAUohYGzSYoGl8+WTW+l1CGP77bffVMOlHQJzJu+3z58/T7NmzaLAwEAKCwujgIAAhW/SO4TySZ18FVayzDwnBQsWzNL97N69Ox0/flw1rnDhwjR06FCTsVFtEaN37952TTDsMUlz2Htet27dbEpXsmRJ8aqEsclXKYGMidbt27epYMGCYqfLEnlG1GUXlkSd8fs/8hvepk0bcWyp0zl37pyJ6LHlwb18+TJ9//339NFHH4llZLXl3uw0NREit/DwcAJAHTt2zFG/JGvXrp3ZrW9zJp9JZ9bee++9TJ1n6yxRzbZt2yY+v/7661m+htq1azvlntlqahMecyZtr8tNvjrN9mLakiVLHJpfs2bNiCh7JwtZMTXf5KtzdevWNYm3Z2LiTPvss89Uw+UrkY40a2OfOTOeWDjaRo8ebVXTsKizIOrMzSbMbeeoma+vr9MfiOwy4xdFc9rMPehsbGxs2WHS9npuNCLLglNN1OV1k38p40WwGjVqWNU0bv/fEF5YEhIS4OnpCY1GY/LbaOZ+H8nHxwfBwcE54R7DMAzDWOXjjz/GgQMHnO0Gk81Yk2ws6jIh6hiGYRiGYXIaa5Itz/xHCYZhGIZhGMY8eUrU+fn5wdvbG507d0ZaWpoI1+l06NGjB7y9vS3+2xmGYRiGYRhXJc+IuoiICMTGxiIkJAQ1atRAQECAiNu5cyfKli2LkJAQJCcnW/z/n478368MwzAMwzC5hTwj6sLCwuDr6wsAaNmypUK4WYozZvLkyfD09BRWrlw51XQv+KuGDMMwDMPkMRwu6p4+fYo5c+Zg4MCBmDBhAmJiYhySb3x8vPgig6enJ+Li4myKM8bf3x8ajUaYOf90Op1D/GYYhmEYhskJsizqypQpgydPngAAbty4gRo1amDq1KmIior6v/bOO7yK4uvjJwihKKGIiBAUpCkdBAwhBUMLSkfgxwsCKiKIgBSRXgRpUQRBuhQFgkFBQAmEREpCpKQAgRAgkVQSAgkppNyU+33/uM+uu3f3lhRyU87neeZ5dqeenZmdOXNm7l7avn07tWvXjsLCwoosaJ06dcSt0pSUFKpbt65ZYfpUrVqVbGxsZE6N3NzcIsvMMAzDMAxTUhRZqUtISKD8/HwiIlqwYAG98cYbFBERQV5eXhQeHk6Ojo60ePHiIgtqZ2dHXl5eRER0+vRp6tGjh1lhhYUtdQzDMAzDlCWKdfv18uXLtHjxYqpRowYR6axiixYtokuXLhU5706dOlGDBg3I0dGRQkNDafjw4fTpp58SEdHAgQMpJiaGHB0dqXr16tS9e/cil8eWOoZhGIZhSgvdunUzGadycRQkfKRXo9HQyy+/LAt7+eWX6dGjR8VRDH377bey++3btxMRUeXKlWnfvn3FUoYAK3UMwzAMYx7VqlWj7OxsS4tRrnnuuedMxikWS12vXr2oc+fOlJaWRnfv3pWFRUdHU7169YqjmBJFsDaWRho1amRWvPXr1z9jSZiKypgxY0qknJo1a5ZIOZZkxIgRlhahTLF06dJnkm+XLl0KndbPz68YJbEcEydOLHTaTp06FTiNoa9PPAt+/fXXEiuroEyfPp1SUlJkftu2bVPEq1zZtB2uyErd0qVLafjw4TR48GCaM2eOQhk6ceIEOTo6FrWYEsfGxobOnz//zMvRt2yaQ7Vq1cyKV7Vq1QLnTaT7RMzzzz+vGubo6Ei3bt1SDTPXWvrRRx8VSq6CEB0d/czLKC0In9955ZVXyNnZWfQXzrqqxR83blyRyizMX+gVpsy0tLQS+7yQoUkpIiLimZXZtWtXsrW1VQ3z9vamK1eu0I4dO8jNzY2IdEdN1FiwYMEzk7G0sWzZMpowYYLB8Ndff92sfC5evCh+79TOzo569+5daJmqV6+u8Pvss8+KtIPUokULOnLkSKHTm8tLL71EiYmJpNVqaceOHYXO54UXXhCvfXx8DMaTKs+rVq0qdHlSIiMj6cmTJ8WSlyXYuHEj1apVi/r37y/6DR06lNauXSuLZ45SR6jgpKamgoiQmpqqGj59+nQQkcIdOHBA1V/qVqxYIV4PGjQIRIRJkyZh/Pjxor+Li4vJfPTd66+/Lru/cOGCIo6npyf27NljNJ+MjAxVfwDYt28fOnXqpAjr378/AKimu3btmsLv7NmzGDdunHjv5uYGT09PRbw9e/bAw8NDNd/WrVsjKioKDg4OirBvvvkG586dAxFh8uTJsmd48uQJ/P39C1y/QvoaNWrI/Fq0aGEyXatWrUBEaNq0qdF4DRs2NFuWRYsWmZQ1NDQUSUlJmDp1qsxfPw8vLy8AENvkl19+QUxMjEkZJk6cKLsfO3as7F5ariGXmZmp8Js0aZLJZzPU36Tu7bffLlQ9P//88+K1vb29QRn0/b777jvxunLlykbrTeifau6vv/7CggULZH6+vr4YOnSobByKj48HEWHo0KHo1auXSRn79esnXu/fv18W9sknn0Cj0RiUKSoqCo0bNzYYPnPmTLP6reAGDhyo8IuNjS1QHvrPunbtWoPhb731lln53LhxAwAQExOD7OxszJ8/v9AyRUREKPx8fX2xd+/eQue5aNEis/p+Ud2rr74q62tRUVFmpx02bJh4PXfuXPE6MTERiYmJ2LdvnyJN165dxevff/9dNd/s7Gyxzxty0nfbnHEiICCgWOpLf8xydHQU5/ojR44UOL8hQ4aI8kdHR4v+Dx8+VDzToUOHjOozAMBKnQmlbuvWrYpG+O233wCodyCpAiONI0WqKLq4uMDW1hZEhA0bNijyW7lypXg9ePBgjBkzRqHUqXX+J0+eiIqns7OzqqxS+X744QcQEapVqyaTVT/Nt99+K/P/7LPPUKtWLRARgoODFeUJ5ObmwtvbG1qtFgAQGxsrmxj37dsHLy8vWVmdO3cGkW4CAIBp06aJYWvXroWPjw8AIDMzE126dEFYWJhqfes/w5tvvqlaH0IddOnSBQAwZcoUEBH69OmD06dPY968eQZfzFu3biElJUUsc+nSpWLY7Nmzjda94JYtW6aad3p6unitNkFK+eyzz1TLWLhwIYj+U+qEhcWdO3cM9mWp01fqlixZgrS0NHFR8vXXXxvsZ9I6ldb96tWrAQA9e/bEK6+8omj3X375xWAbCu7EiRNYsmQJunfvrghbuHChIm27du1k97t27RKvBfmvXLmCpKQknDp1Ch999JGiXvXrtlKlSrKw7Oxs+Pj4gIgwZ84cg/IfPnwYAHDmzBmD7SkgvONDhgyRKWyG+tPRo0dRs2ZNJCYmKsKmTJkCAPjqq69Qs2ZNo/1JTW6tVosZM2aY7DNC/ernY6pNz58/r/CLjY0VF5kAkJ+fj8uXL4NIrhi4urri3XffNSpTTk4OTpw4oahj4R0x5Pr06SO7b9asmeyZPvnkExARXnvtNWzZsgVarVZcWG/ZsgV37tzBTz/9pMi3TZs2qFq1Ko4fPy7zX7x4MQCgTZs2Mv8vvvhCkUdcXJzsPjw83OBz/N///Z84VhMRbG1tFXXx4YcfytIkJyfjyy+/hLu7u+jn6ekpe3/0lToBrVYry0u6AMvPz8ePP/6IsLAwvPvuu6hWrZrqO6DWz//991+z+5SDg4Nq+M6dO422eW5ursIvICBA1AtmzpwpPuOFCxcAAGlpaWLcBw8e4LffflPk0a9fP3G+d3d3lz2rMMYLSp0w39+6dUtRL2qUGaUuICAADg4OcHJywogRI5CTkyMLP3v2LGxtbeHs7AwXFxez8zWl1Gk0Gnz55Zeixeedd94Rw06dOqVoLABo1KgRnJycAEC1k+ordcKL8v3334OIZCtxAKJV5P79+wCAI0eOyF50faXuxx9/FGVftGgRsrKyFNaEAwcOAAAmTJiA559/HoBuxfro0SOZrO+++y48PT3xxx9/ICQkRFTKIiMj8e+//yInJweRkZHYv3+/OJCsWbMGRIQmTZoYrftvv/1WlGffvn3IzMzEkCFDxEFZmNwfPHgAQK7UGSIoKEisJwH9NhJW8vorLgAICwsTlTPBkrl//34AUKzkpROiPsuXLxfDBKXuueeek/WHcePGyRQ+qawnTpzA33//La7MHj16hCtXrgDQrebu3r2rWrYhpW7btm0gIgQGBgL4T6kLCwtTrSMhTLjWV2qEdEePHgWRTkFbvHixIg/BT2hDQalr2LChrJ0OHz4MIsLnn3+OqKgobN++XfZcahYP6SAnWNnmzJmDsLAwnDx5EhqNBgDwyy+/iGnatWsnm5ylk9I777wDIp1FUR+NRgNXV1cQ6ZQIaZ299tprin4UEhICIt1CQRrX29sbn376KYgIfn5+inIMkZCQACKdUnfp0iUxv5CQEAQFBSnaMCMjQ5ZeGjZ9+nRZWPv27RXyC0RGRsqseobyJCJYWVmJ9aMfXy1/4V6qFBvKGwDS09PFfqSPEM/V1RVJSUlivyQivPjii+L19evXDdaxvkV8zJgxqFevHogIWVlZsgkeAFJSUvD666/j3r17Mjnmz58v3gtK3datWwHoxif9OpMiVRQFpa5t27YgIkRGRiIhIUH2vEK/16+z3Nxc3L59W/W9FhRa4V6QTUpubi5ycnJARJg1a5ZqXQPAlStXxHth/iIixTwiLd/Ozk61PwHA06dPERUVpfBXG9MAoHr16rJ8bty4gYcPH2LAgAGi7EI96stBRMjLy0NgYKBsUanf7/T9MjIyRIPJxo0bFbICOmPQ1atXVcv19fVFSkoKNm7cCCLDSp3Q1jk5OYr32RhlRqmLj48XH2z+/Pnw8PCQhZ89exazZ882mU92djZSU1NFJ2w9GVLqBIRBVbDSCah1AikpKSlISkqS+UVHR4sTSK9evUSlbv369cjJyUFeXp4sv8TERCxbtkxUqPTLTklJARGJFj9BqZMiKHXPPfecOEg9Cy5evCjK37RpU6Nx3dzcxGcIDg4W/ZOTk7F+/XoMGTIERDqlFQA+//xzEOkm/oKg30YjR47EsWPHkJ2dLZvgTaGv1ElN5fpIFSJBcbt48aK43acmn/61KZycnBRxIyIi0L17d9y+fVvMr3bt2sjPzxdXkgBEa0h6ejoAYNWqVap9ee7cufDy8kJycjK+/vprWZ8D/pukTpw4gevXr4uDlGDR1UdQ6vQRtt7Xr19v8Hml7UdECA0NFcOErfns7Gyj6Xv06IGsrCxxQXHy5Elcu3YNoaGh+Oqrr0BEojKoz5IlS0D0n7Xz6tWraNWqFS5evKg6Bvj5+SE/P18mOwCxP0jbwxTZ2dmyCblly5aq/ahu3boGn33YsGFYuXKlzKIM6KwMQl82tCBW65fS9pg3bx5CQkLw888/A4C4fStw5MgRuLi4yMZtIb0wJknjmxpX9RG24latWqXIQ18ZM4T+ViCg21Hw9/c3Wg9SsrKyxDYHlEod8N+xDjUSEhLE90xQRgTrshRBjtTUVNy9e1fmN3v2bHGuEOrWzc1NpmQAusXO3r17jdaJGvp18PTpUxw7dkw2bxlT6gSFy9xxTr9M6XVCQoJMqRbQaDSitdSQHEQktpWfnx8++OAD2bb+zp07AUCcX6XxpYYYcwgMDBTzyMvLAwBxZ+rSpUuyuPpKXUEpM0qdlCVLluDIkSMyv7Nnz6JJkyZwcHDAhg0bDKaVbotJnSmlDoDCOggA+/fvF1fwBemkT58+BRGhd+/eSE5ORseOHWWrUHPyi42NFRv++vXr4n7+wYMHFXEFpU44z6D2LMUJEeHDDz80Gkew6Okr6AKDBw+WdW5BqQsICCiQLFevXsX9+/dlk5AUBwcHuLm5mcxHUOpmzZqFefPmATDeTp6enrh3755MqVMb0H///XccO3YMADBs2DBUrlzZrOfSaDSiUmaI4OBgg9YNffStCGqohcXExJiVP6A+QQEQt9L+/PNPg2mFsqOiojBy5EhZHxYUXGOLlb1798rqQn8wzc3NRUREhMH0wpkc/frUarVYt24dbt26BW9vb6OyA8CXX34JIsK5c+cMlmWKoKAgTJs2Tebn5eWFyMhI1fg5OTkyZUMfYTzq1auXargxpU4NwbpkDCF9vXr14OvrKxu3Bw0ahNWrV6NTp06YOHGi0XwAXRskJibKntGQImCMBw8eGI17+fJlcdvcHNSUuujoaJw/f95gGmFbUVg8qL0zI0eOxJ49e2R+anIL435xYs74YEip8/DwQFJSUrEpdYWVvWPHjjIlzVBZhvwOHToEIt3ZWnMRdp6kZaqNnRVOqYuKioK9vb1CKUlPT4dGoxG3SQxN/IW11JlCOOdiLvn5+XjvvfdkFiopMTExooXKXLRaLY4ePapYnQD/vdxdunSRrRaeFbGxsQYtHgLCeUFDE7nw4xLhbIFwGL+gSp2A8GKao8CpIZypE87yAbptTFdXV6PpZs2aJSp1wlZdacUcpa5Dhw6Fzj88PNygFc+YQiWVTQ3hiIIxS50lkcouLGb0lUpLImy1rVu3TjXcmLVIjejoaPHYgiGE9OHh4YUT2gSFVQSKojTos3v3boVSZw7S+c3QQkgfNbmFs3HFSXR0NK5du6YadvnyZXTo0AG5ubky/+bNm8vkSE9PL9AcVNxKnXA+U22uJNL98EuKtbU1xo4dK94LOwuGxjI1cnNzER0dbTLejRs30Lt370LP0aVudomPj0ePHj0ULikpCampqXBychIPdxtiy5Yt+Omnn8wqz9SZOnN5+vSpqhm4tCAodcJqQa0zlzTCmURD7SmsWIRVn6DUCefCCorwQhf22e/fv48uXbqYtI7pI1XqoqKi8McffxSq/JJAei5GDSLdmRhLYEyu9PR0nD59uoQlMp8hQ4aIk0JOTg4OHjxYKt5BKWlpaQZlSkpKQkhIiMzP09NTPM9XGPbu3ftMFVtpf5k0aRImTJhQ4HRFRTj7KhyHKAzu7u6oUqWKyXhqcufn55eKhc727duLVKfFrdQJ86AaeXl5Jt9N4ciFoV0mS1LqlDpD5OXlYcCAAQa3N6RK2ejRo42at/XTFYdSV9rp0KGDbIVSWkhLSzMYdu/ePXz44YeiubqoSt38+fPFT7KUJFKlrixgbNDcsmVLgbZbi5PS1neZ0k1hJ//iVOpKkrIqtzkUt1In/FiuKAQGBpa6hRkAFOt/vz5LPDw8yN/fn1asWEE9e/YUvw4t/P+rh4cHdevWjezt7alRo0bk5ORkSXFLHT4+PnT16lUaPHiwpUWRYewfA5o3b067d++mSpV03RRAkcpatWoVnTx5skh5FAbhq+m1atUq8bKLmylTphj8WO6zxs/PjxITEy1SNlNxWLJkSYl89Le4WbduHe3du9fSYjxzfvjhB2rfvn2h0k6ZMoV27NhBdnZ2RZajc+fOhfoI+7PGCkWdKcs4aWlpVKtWLUpNTSUbGxtLi/PMAUDZ2dmqX0Av7Vy4cIGcnZ0pOTmZ6tSpY2lxzCY/P58uXrxYZhYawkBVwYcGpozD/bj8EBgYSDVq1KA333yzWPLLzc2l2NhYatq0abHkV5pgpa6CKXUMYwqeDJnyAPdjpiJixh+JMQxTkfjmm2/K5QqWYRimvMOWOrbUMQzDlDvYUsdURNhSxzAMw5Q79u3bR6GhoZYWg2FKFLbUsaWOYRiGYZhyQJn5pAnDMAzDMAxjmApvqQNA6enpVLNmzVL5zRmGYRiGYRhzqPBKHcMwDMMwTHmAt18ZhmEYhmHKAazUMQzDMAzDlANYqWMYhmEYhikHsFLHMAzDMAxTDmCljmEYhmEYphzASh3DMAzDMEw5gJU6hmEYhmGYcgArdQzDMAzDMOUAVuoYhmEYhmHKAazUMQzDMAzDlANYqWMYhmEYhikHsFLHMAzDMAxTDmCljmEYhmEYphzASh3DMAzDMEw5gJU6hmEYhmGYcgArdQzDMAzDMOWACq/UAaC0tDQCYGlRGIZhGIZhCk2FV+rS09OpVq1alJ6ebmlRGIZhGIZhCk2FV+oYhmEYhik5wsPDKTw83NJilEtYqStGwsPDqWXLlmz1YxiGYSo8ACgpKUnh36JFC2rRooUFJCr/sFJXjOzatYvu3btHQUFBlhaFKYd06dKFtm/fbmkxSpzHjx+TlZUVnThxwtKiMAxTANavX0/16tWjp0+fWlqUCgMrdc8AKysrS4vAlEMCAwNp8uTJlhajxImLiyMior/++svCkjAMUxDOnj1LRERZWVnk5uZGkZGRlhWoAsBKXTFSkr+gTUpK4l/sMjKCgoLo9OnTlhaDsRAajYamTZtm8vjH8ePHKSEhoYSkYkqaW7duFWluSE9PJ61WW4wS6Qwdc+fOpVGjRhVrvoySMqPUBQYGkqOjIzk7O9PIkSMpNzdXDDt37hw1btyYevbsSb169bKYjMKL9Kwtdenp6VSvXj3asGGD0Xi5ubm0YsUK0mg0hS4rJSWFtm3bVuj0pZlTp07RyZMnLS1GsfHWW2+Rq6urwv/06dN0/fp1C0hUegFAT548KZGyRo0aRfPmzStwuvT0dNk4Z4o///yTNm/ebPJ9HTx4MA0aNKjA8pQHtFotZWZmlmiZ//77b4ktwMPDw6lt27ZFOqZhY2NDixcvLhZ59OfE/Px8s9JpNBqKiIhQ+Gu1Wnr8+HGxyFZayc/Pp/Hjx1NUVFSh0pcZpa5Ro0Z0+vRpOn/+PDVv3pz++OMPWfioUaPo3Llz5OPjYxkBJRhT6vRX0Z6enpScnFyg/IU8Lly4QLdv36b4+HhFnJycHLK2tqYlS5bQTz/9ZDLPqKgoCg4OVvjPmDGDpkyZQg8fPiyQjGWB/v3703vvvUd//vlnodJrtVry9fW1yERREFxdXaljx46WFqPQPItFkpubG9WtW5eys7OLLc9Dhw7R//3f/yn8PTw8aO3atQbTBQYGUnR0tMLfxsaGRo0aRZs2bSr2Onj06JF43b17d9qxY0ex5v+syM3NpWPHjhU6/ZdffknPP/98MUpknFu3blGzZs3o0KFDZsWPjY0tlAL41VdfkZWVlfijhDt37hQ4DynFddRBX6kz9Gy3bt2S3U+ePJmaN2+uiLds2TJ66aWXSKvVkr+/P23evNlsWfbu3UsxMTFG40RGRlL79u0pLS2NiHTK5d27d80uQ0qNGjVkynFmZiaNHDmSLly4YDRdREQE/fzzz7Ro0aJClVtmlLoGDRpQjRo1iIioSpUqVLlyZVn477//To6OjrRx40aj+Wg0GkpLS5O5ojJv3jw6duyYaocFIJqy9+7dSzY2NrKVxrvvvqs6EZjDH3/8Qa1bt6amTZsqwqSDttRSl5ubS1ZWVorVfJMmTahz586KfIQDrgUxxyclJdHhw4fF+ytXrpCvr6/B+AAoJydH5vfqq6/Szz//LN7b2tpS27ZtzZbBFFu2bBGvpQNgVlYWPXjwwKw8duzYQU5OTuTs7CxOFF5eXs9kYWFquywwMLDAeYaHhxfbdm1eXh5ZWVnRnj17zIr/zz//0IABAyglJcXsMrZv3y5aIB4+fGj2JxESExOpVatW4uInMzNTbCNjSp1Wq6WEhATKz88nNzc3un37thgGgHx9falVq1ai9WH06NHk7u5u9vMIdOnShV577TXVsKNHj9L06dNVw/z8/Exa4a2srFStLpUq/Tf0X7p0iT799FM6ePAg/fDDD4q4TZo0oXbt2hktpzhxdHQkOzs7Onr0qHieUmDNmjU0ZMgQhRJgjL1799Lly5eJSDdPqOHp6Wlywi8MwlgSGhpKREQLFiygatWqqca9f/8+NW7cWDbuGSIiIoJu3Lgh3utb5vTnIq1WS3Z2dnTp0iWz5C4uy6I5+fj4+FDbtm1lY9GVK1eIiOju3btUs2ZNGjduHBH9d0ZPq9VSjx49aNq0aTR58mT6+++/KSQkxGg5H374IQ0ePFjhf/z4cXEnY8+ePRQSEiL2l8mTJ1OrVq1U88vLyzM6L2ZlZdHKlSvF+7lz59Lhw4fJ2dnZqJwChV7IoYwRFRUFe3t75OTkiH7p6enQaDTQaDRwdXVFQECAwfRLly4FESlcampqoWUS8pg9ezaICH5+fjh27Bj+/vtvTJ48GUI1jxs3DkSEsLAwWdr27dubVc7du3cBALGxsQr59ZHG+fbbb0X/p0+fgojwzjvvqD6DPsOGDQMRoU+fPmbJqJaXcD9v3jzk5uaK/mFhYUhLS8PcuXMVZRMRGjZsqMijZ8+eOHHihNmyqJGeni6rO2n99OrVS7Ue1Jg/f76iDQzVY2HJz8/HggULjLa1qb4g+MfFxcn8rayszJY1KCgI2dnZAACtVovdu3cjKytLDM/MzAQRwcXFxWAeWq0WBw4cQE5Ojkze8PBwo2Vfv35djNuoUSMAQI0aNcyWfe/evYo6srW1BREhOTkZALBnzx60b98eRAQ3NzcAwPLly0FE2L59u5guMDAQALBmzRrRLyUlBYDhtpf6f/PNN6p9vaDtmpKSAiLCF198Ifr99ttvICKsW7dOlkeDBg0U6Vq0aGFWOdLwjIwMrFy5Enl5eTh37hxCQkLEOPn5+YiNjVWkBYDDhw8XaHyVytK6dWtZ2OjRo0FEuHz5Mn799VeEhoaanR8AvPbaawafUehbBeH7779HfHy8wXAvLy8QERYtWqSQRZ/Lly+DiDBt2jST5ernY2NjI9YLEWHGjBmy+MKYZ+z9BHTvKBGhXbt2JmUwB1dXV/E9IyJ06tRJIf/u3btBRNixY4eYrm3btiAi2NnZyeI6OTmBiJCVlaU6j0sJCwvD0aNHxXsiQsuWLRUyStMuXrwYRIQzZ84gJSUFzZs3N9heRIRBgwYZfHZ9mUaNGiXzy8nJQX5+viJdWFgYiAgffPCBwbyNUWYsdUREaWlp9MEHH9CePXuoSpUqov8LL7xA1tbWZG1tTYMGDTJ6fmj+/PmUmpoqOmOrs6CgIJPn1qRAYmoePHgwubi4qG5rpKamUmxsrGoe69atozlz5ij8/f39qWXLluTp6Wm0fOHXRZCskH799VfxWqr9Z2dnU0JCgqK+srKyFKueM2fOyLYYnzx5Qn379qXjx4/TX3/9JbMMCgQFBcm2bdesWUP9+/cXLRtvvPEG1a5dm9atWydLJ1gH1VYq586do4EDBxKRbrUmfU4ioqlTp1Lv3r1lfk+ePJG1s/5WCADR6iNYcFJSUigrK0tRvn46U8THx1NeXh75+PhQUlISubu7m1yp9e/fX3z2DRs20KpVq1TjxcXFUfv27U3KINCoUSPq0KGDaNY3JP+BAwdk9ZWbm0udO3emGTNmEJHO6vDRRx/R8uXLKS4uzuxzX/7+/jRmzBhF/zbneICAYLkR+uLChQsV/Uer1VJMTAwtX76csrOzVa3xwvsn1MGHH34oWj6+/PJLIiJxm+TTTz8V04WFhRGRbktVwMrKyuxvUxrbhpWidvYoKCiI7t+/T1qtVrQw3r9/Xwx///33xWutVktubm5EJLfyCt8Gi4yMJBcXF6OWvvT0dPL39xfvN27cSIsWLSJvb2/q2bOnzHq3fv16srW1VVhe09PTacSIEfTJJ58onikhIYH+/PNP2RgrWLSk91LLuWAJBUCjRo2iDh06GJRfDaG9pXUivOdxcXGUkZFhNP3Nmzdp5MiRpNVqKSMjg2bOnEmdOnUiIl2f7NevHwUGBpo8UhMaGkpOTk6yHQrBelrQHymcPXvW7B0nYVwJCAigCxcuyOr20aNHYn8AQLdv36b8/HxVeQoqo7GxUhh7hTgnT54U89dPJ9SRtF9KCQgIEN/Ntm3b0tChQ2Xhd+/eJW9vb7p3755ROa2srKh27dqibIbOtx0/flyW1srKinbu3CmLk5+fr5hLUlNTydramsaOHauaryBDoSiUKmgB8vLyMGDAAHh7eyvCpKvA0aNH4/z582bnm5qaCiJ1S12lSpVAREhPT0dUVBR8fHwwdOhQMXzs2LFo2bKlqH3PmjULRIQ9e/YoVhDe3t6qqwoinaUuMTER3333nSwsOjoaXbt2RWpqKvbv3w8iwqZNm+Dv76/Iq2/fvli5ciWICJGRkYiJiVFdwWRkZICI4OTkhH79+qnKNHbsWBDpLI4NGzYUw1q0aIEtW7YgIyMDX331lSLthQsXkJiYqGoRkbrp06djzpw5qmULdSikFVCLW7duXbRu3RpTp05FpUqVZPGkNGrUSOa3Y8cOWV59+vRRbaM2bdoY7TuChVFwPj4+4vXDhw9FeT7//HOjK0oASE5ORkBAAP766y9F/zCUdu3atarhM2fOxNOnTw3WnX7eUqRWzPHjx2PZsmX4999/QUTo0KEDAJ3VTui3RITPPvtMYakbM2YMiAhTp04V8xasFvpu3rx5RutZaqkjIiQkJCjyyMzMBAA8efJEtQxD7vHjx6p1lJaWJloL9N3du3fx1ltvife+vr6y8PT0dFy7dg1bt27Fxo0bRf/Vq1eL14mJiYr2kbJixQqjcsfHxxtsz3Xr1hnsM/r+np6eRvuG1A0ePNhgvu+//z6ICNHR0QAAjUYDPz8/JCUlyeJHRUXhyJEjuHnzJl588UWT8hERateurQi/dOmSeH3gwAG8/vrryMvLU+0/Qrxly5bJ8k1OTkaTJk0U5S1atAharVaRj1arRc2aNcX+IX1XIiMj8f3334v31apVU/R5aZsKY++3334LLy8vAEBgYKAYfvXqVdy/f1/1edLS0mT1NmjQIPH+n3/+AZHcUnf79m18/PHH4vuZn59vsG8IedWvXx9EhIkTJ4KI8Pfff2Pbtm24ceMGrly5IvZn4b0T0Gg0ICJs27YNAMTnFPpBx44dRWsgEeHo0aPi9fbt2xEcHGywzwOAi4uLWe+1tN0N9a2IiAgMHz5cvD906BAWLVoEIuVcIFilw8LCxGeWhn/zzTfIy8sDEcHe3l4WLtTpiBEjRL/nn39eJl9QUBBu3bqFyMhI3L59G0SEUaNGqba/KcqMUnfw4EHUrVsXzs7OcHZ2xqFDhzBp0iQAwM6dO9G1a1d0794dc+bMKVC+xpS65557TtZwgoIjYE7nMrfjSRtZCBMGoZMnT4rXUhOuIRcQEKDYovXw8FC8RIZkateundE4agpdcbjx48fL7hs1aiSap/Xj7tq1S+F369YtxYssTXvu3DlcunRJodQJbvPmzar1sWrVKixevFjMLyMjA927d5cpvMbaV60+b968KeYnbInru8jISIP5AkCVKlWMlu/p6WlWPwUglqVWr/pxBaVO2k7CtYuLi6wdiAh37txBeHi4QaVuxowZCA8PF9sQAB49eiQ+54ULF0w+Q1BQEADIFAVznFCOvr90ANZ3p0+fRteuXcV74diF4N577z2zyhaOIgj3P/zwAzIyMqDVamVKo5obMGCAwbBVq1Yp/FxcXHDkyBGz5IqLizO7/lJTU+Hr64uRI0eKfVbah6pXr252XoJCoOa+//57WV0JyovUrVy5UuwzWq0WGo0GX3zxhcE87e3tDYbdu3dPMSf8/PPPYvjixYvRsWNHo88DGF7IqMXVf68EfynXrl2ThWdnZ6vmN3r0aNja2uLw4cPo1q2brB8Iyoe0DH1DgbW1NYgI9erVU+St3zc/+ugjse2F+dTe3h5PnjxRKHXW1taigYKIZMcYfvzxR6N1pNbmhpywyBSeT1qmMbdw4UIQKcfBkJAQcYwcOXKk6pghNcoEBASYLau+IeTGjRsG298cyoxS96wwptQZa4i+ffua3WjGXmRDYStXrpQpdQXJ183NTaHUGZukpE7/vJmaEyxbJeW2bdtWqLrVarUICQlRhBVEKZW2kf4KtyjtK4SbimMonWA9M+YGDhyIU6dOmZWfYOU15TIzM8VB3JCTKnlSd+LECZP5161bV+y7P//8MwCgTZs2JtPNnTtXPK9WEDdt2jTFJGfKDRs2DG+//bZ437t37wKXKzhhN6A0uU8++cTsuIIC+7///Q9EhB49ehS6XKkFSs25u7uL14Ym+H79+gGAwipXWHfz5k08fvwYkZGRaNGiRYHSAsCBAwfMivvgwQPRSiR1eXl5yMvLw+HDh6HVajFv3rwCyfDGG2+gS5cu4r2Li4tCEXR0dDRoLHj55ZcLVJ6bm5uqv3A+Vd9Jx2I1BbKwbsiQIeK1vlXbmBOUujp16sj8pfNI06ZNVXfenoVzd3cXdyeXL19u9PcC4nxSQB2o3FFYpa44nLlKgto2qbmds6K64mo/aT7mDtCCM7UVePv2bfj5+RVYpsuXL+P8+fPFVlf6FlJjzpR1oiw6c5RGduquVatWINL9gOlZl9W5c2fx2tjCLDU1VfXYR0m7mzdvFmt+Z86cKXIeLi4uZm9hsvvPqRkHStJNnz5dvDYFK3UGlLrc3FyLdyR2hXdqq97COEu/zOzYsWNHpPvlqKVlqKiuf//+FpdBcKawAir2f02lpaVRrVq1KDU1lWxsbET/+Ph4atiwoQUlYxiGYRiG+Q9TKluZ+qRJSfKs/+qLYRiGYRimOGGlzgDSL64zDMMwDMOUdsqU5jJnzhxydHSkMWPGyD7amJeXRxMmTCBHR0fxA6lFhZU6hmEYhmHKEmVGcwkODqaEhATy9fWl1q1b02+//SaGnThxgmxtbcnX15cyMzMNfm2ayPz/fmWljmEYhmGYskSRNZfg4GDZX9Xs37+fevToQY0bNyYHBwfFXzIVln/++Yf69u1LRESurq4yxc1YmD6rV6+mWrVqia5x48aq8fhMHcMwDMMwZYkiK3Uff/yx+H+ju3btokmTJlGXLl1o4cKF1LVrV/rkk09o9+7dRS2GUlJSxF+n1qpVS/bfesbC9DH3v18L+t92DMMwDMMwlqRyUTO4c+cONWvWjIiItmzZQhs2bKBJkyaJ4V27dqVvvvmGPvrooyKVU6dOHXGrNCUlherWrWtWmD5Vq1alqlWrmiyPlTqGYRiGYcoSRbbUVa9enR49ekRERHFxcfT222/Lwt9++23Z9mxhsbOzIy8vLyIiOn36NPXo0cOssMJSr169IufBMAzDMAxTUhRZqevfvz9t3bqViIicnZ1lP2AgIvLw8KDmzZsXtRjq1KkTNWjQgBwdHSk0NJSGDx9On376KRERDRw4kGJiYsjR0ZGqV69O3bt3L3J5fKaOYRiGYZiyRJH/UeLBgwfUo0cPevXVV6lLly60detWeuutt+jNN9+kO3fu0KVLl+jo0aP07rvvFpfMxYqhf5QgYsWOUad+/fqUmJhoaTEYhinDzJo1i9avX29pMZgyxjP/R4mGDRtScHAwde/enU6dOkUA6MqVK+Tl5UW2trZ08eLFUqvQlQc6dOhgaREqHA8fPrS0CAxTIZg+fbqlRXhmLFiwwNIilFoePHhgaREKjL29vaVF0GHuH9+XV1JTU0FESE1NVYRRKfjzXn23Zs0a2f2ZM2fMSrdixQqLy27Mubu7W1yGF1980ax4palvfPnllwbDrKysjKbt0qVLsclRq1atZ/qc1atXt3hdPwvXtm1bg2F2dnYlLs9HH31U4mU6OTkZDLt+/brZ72VZc2lpaVi1apXCX6PRWFw2fTdw4MBize/w4cNGw+Pi4sRr/blhypQp4nX//v0VaZ9//nmL1NHHH39sdtzhw4cr/Hbv3g2tVmsyrSn4C7vFgPDrXzWSkpLIx8en2Mr66quvxGt3d3eqXFn+A+ZZs2bRwIEDFen0t5almNoCGDt2LEVERNDJkycLKC3R6NGjxWtDH3omIvrf//4nXrdu3ZqIiIYNG1bg8orCihUrSrS8u3fvGg2fNm2ayTzWrVtHbm5u4r20P0j7ihpXr141mb9A+/bticiwZVjazgXl9OnTtGzZMqNxhg4dKru/c+eO0fiGtsd//PHHAsn2LOnYsSN5e3vTd999pxoOI9ssRalvQ8ycOZPy8/OJSDe2mMsXX3xhNFztQ+5OTk7itf45bCLdGJCTk0Pt27c3ud1kSWrVqkVvvPGGzO+dd94xK63+2E2ke7+sra0LLIdwvlyN8ePHGwyzsbGR/TuTGrVr1zZ5Lt7W1ta4gHq8//774g8a161bR5s2bTIYVzo3EBE1atRIvFabk5KSkmjXrl00ceJE0a9+/fpERGbvGqrN6TNnzixwGkPMmzdP4ffhhx8Wz5GvYjZ8lTkKa6lr1qyZeO3q6mpUqzamfbdo0QJEhNmzZ+Pdd99VtZ6MGTMGXbt2RbNmzWRy3bhxA2fPnhXvDxw4oJC9UaNG6N27NzZu3KjId8OGDZgzZw4yMjJQpUoV0X/fvn2qKwOtVoujR4/i1KlTitXJwoULcfz4cVm6SpUqyWQBgMePH2P16tUgIkyYMAEtWrTA2rVrZfGEVZybm5us7jp27AgipbVS6vz8/DB16lRMnToV+fn5Zq2awsLCkJaWhiNHjpgV31TfMBX/r7/+QnR0tMl8zClHv70NXbdp00Y17bfffmvWMwwdOhQAMHLkSJn/66+/LuZ19+5dWdjNmzcRFxeHXr16iX5qbWLO+5abmyu7f/Tokcl68ff3R6dOnWTyqZXTrl07hd/o0aNN1okhq9Z7772HX375xWC6bdu2gYjQqVMnAMCTJ09ARFi0aJEs3rp168Trv//+Wxa2fv16AFD4G3LSd1bNTZw4EQAwduxYEBHu3btnMG7dunVl97NmzVKNFxAQAC8vL8TGxirCIiMjVfup4Nzd3cV+UadOHYOyaLVabNq0CZ6enkZlNuTGjBlT4DRSl52dLevfH3zwAVJSUjBs2DCj1uW6desCAG7cuKHot0LfVWuz3bt3q+Z38OBBjB8/XjVMGG+JCE2aNJGFzZ8/X7X+hTZr0qQJABhsY8ElJiaib9++ZtebdCy5f/++QgahfKGepGHffPONwb7z4osvQorgv3fvXrz66quK9p48ebJCtl27diE+Pl7hb2zeadasGfz8/AyGt2rVSnZ/9epV9OzZU7XtpX7+/v6yexsbG5iizCh1AQEBcHBwgJOTE0aMGIGcnBxZ+NmzZ2FrawtnZ2e4uLiYna85Sp30pRVc7969QaTbwkpKSsKxY8fg7Oys2nmlebm4uMgm0p07d4odBoCioYkIixcvlsmVnp6O5ORk8bmFeOfPn1eUJ6Cm1Gm1WjH8hx9+EDt/WlqaGOfs2bOq9ebv7w9PT0+Fv3SyFfIPDw9HYGCgGOf7778HkXzglsosKHXr1q0DACQkJIBItwUA6PqC2oszYcIEg21Yo0YNowMMAPzxxx9mD0jC9dy5cw2+uESEHj16AADy8vLEQTckJEQsU1DqiQgzZswwWI4p2dXSAMDy5cvxzjvvAABsbW0VfcXNzc1o/sJWxvLlywEAo0aNkoVLlTrpttErr7wia4ePP/5YbM9p06Zh/vz5ICLUqVNHjLNixQr88ssvmDlzptj3DNXFo0ePMHPmTHTo0AFEhM6dO6vWS15eHrKysmSyvPrqq2K8uLg4ZGdnA4BMWUlPT8exY8cAAHFxcXj55Zdl+cfHxyM0NFRRX87OzgAAX19fxTtMpJv0hWext7eXyeXj46N4P3NzcxVtTKRbeElZsGCBLPy9997D3LlzkZWVhcePH5vsSwJ//fWX+PxCWLdu3WRx+/XrJ7ufPXs2iHQLSMGvSpUqMvmMvUMAYG1tLQsX2gQAateuDSJ1xVSf8PBwMcycRd3YsWPxyiuvgIiwfft2k/H1XU5Ojjg/ZGRkyGQR8lVz0jlKGPPHjh2reB5j9Uak26p99OgRAMDDwwNEOqVEWrZUCdq0aZMs/bx584yW07dvXwDqSp3Q7tJ2uHfvHlauXAkiwuXLlw0ulAGIBgH9Be60adOQn5+P/v37i++gNK0wf0qNHJUrV0ZcXByePn2qWn8C+s/v4+ODvn37ypSnnTt3AgC6du0qi2tMqVu7dq2o1LVv314Rvnr1aqSnp4tjfFBQEABg5syZ8PLywsOHD0UZP//8cxDpdAx9pW7p0qWKPqLoMyZjlBLi4+PFl2b+/Pnw8PCQhZ89exazZ88ucL7mKHWAbjXt6OgIIp2WffnyZTRr1kzWiR48eICWLVsiKioKRISePXsq8kpMTJTdG1Lqjh49Ksbx8/MzKL+Xl5cYT6rUbd68GVevXhXvBaVOOiBLOXfuHIgIV65cEQf0Pn36FKQqRY4cOYIFCxYYDBcsFcILKyDIdeXKFVm4sGoaPHgwAOD+/fsgIgwYMEBMExwcLFNSBTw8PHD9+nWjq2aB3Nxc0VJhzElllSoy69evl8UbP368TJbNmzeDiBATEyOrKyKdlQaAzNopLUdwHh4e+Oqrr0BEaN68uZhP69atxTRTp07Fb7/9pqiL6OhoEBFGjBgh+qkpdV9//TU2bNggDurCQAoA+/fvl8WVKnXSdmzQoIGifHMJDAwEEeHhw4fYuHEjLly4oKgLQVERBtpDhw5h4cKFINKdVzFGcnIy3njjDXz88ceKMEHh0yc7OxuNGjVCv379kJmZCQAypU5YiAhK3YULF0CkW2i88cYbiI6ORmxsLDQaDQDgxx9/lPUD4L930N7eHsePH1fIEBMTg0uXLsHd3R35+fmyMH0r3++//65Ib6pPG4qvf7ZvxIgRsvvly5eDiHDhwgXExsbif//7n2LBFxISYlBJByCzbOojKHUA8N1335mUW1DwtVqtbCGj5saOHYuGDRuCiMT6L4jLy8uDi4sLiJRKnfBuqDmpUpeSkgIinYJhqs0AyMYofR48eAAAiIqKQr169UCkO5conEPTV2qEeYdIdwb3pZdeEvO9dOkSUlJSAEBcaAnu77//VrShIdTOfQvPvW3bNjFe5cqVTfbFdevWiQsVYe5ds2YNbt68qZrOxsYG7dq1E+/z8/NliwOpMiUYNrZv3w7AsFJXv3590a927dpITU2FVqsVlbo5c+Yonvfo0aMAgIyMDGzevFl1rpISHByM7OxsBAcHy/LRf+9V68pkjFLIkiVLcOTIEZnf2bNn0aRJEzg4OGDDhg0G02ZnZyM1NVV0MTExIFJX6rp06YLNmzeL94Iy8uTJE6PyCVtFQucAIE6A0nsiw0pdZmamWS+MoEAKg5IhhEn6wIEDBvMVJkrBUldYpc4Uubm52LZtm6KDSuWKiIgQ/TUaDapXry4OJIBuRZiYmCimuXHjhtEy9bcdDE0M+tt8huLrX9evXx+AzjI0aNAgrF27Vpz8BbRarey5BL8zZ87IXnLBagHo+vXvv/+OJ0+eyCb6uLg4WZ9NSUkRtzEMkZubC3t7e1y7dk30E7b45syZg1OnTomWoV27doHov0WAoNQBuoGxQ4cO+PTTT3H9+nVxC0eAiDBu3DijshQGaRsIfXXLli0g0v1gSFBaTSl1xhAmTHO4efMmiHRHEDIyMkCkVOrmzJljdtkajQbjx4+XTTTmsmzZMpPKjhBWo0YNTJo0yez4wcHBGD58OI4cOYJr166J46C/vz/CwsKQlZWFrVu3mpyopHkK11LlxpAsmzZtQs2aNQHo3peHDx9i7NixqFevnmoZghIKANeuXVN9h4UJ+4MPPsCgQYPE+MJ8QESikiE4YQH9yiuviOm1Wi3eeecdccyWIrUahoWFyfIydzfJ0FiVnZ2NhIQEs/KQcvLkSTEve3t7ccfr0aNHSE5OxoQJE1TbQLA0688L5sxRQrwXXnjBaPwff/wRLVu2VA1r1aoVmjZtas4jmkQ40qM/bglb24KiqX8USlDqpAYXKQ8fPgSRzriydetW8f1///33FQp/QTh06BAyMzMVu5OGKHNKXVRUlKwzCqSnp0Oj0UCj0cDV1RUBAQGq6ZcuXar6kqspdfpotVqTCp0hiHRmcOk9ESEqKgpDhgwRTeiHDh0CkW4FaO4LM2/ePLOVuoMHD5rMNy8vD6+//rrM8lcS9OnTx6iFT42JEyeapdRJld+4uDjExsZiypQpqhYRIpKdMVQbWE+fPo3r168D0L3Mwoq2ODBkLXoWpKWlYerUqbLtLgCi2f/UqVPo06ePaGE2h8TERLMHoIIgHHmQvq+5ubn45ZdfoNVqi0Wpy87OFreDTJGTk4MhQ4bg/v37yMrKApHul5xA4ZS6oiBseRl7t7/++muZBVeQ0VD86tWrK7ZRAd04GBwcXCg5peVdvnxZ9t74+voatLgUhMjISHz33XfivY+PD6pVqyarH+H857hx4/D06VPcunVLVUYAcHBwAJHOKh8YGIj4+HhcuHAB3bt3BwBRqdPf5gcg/jozOTlZtoVprlLn4eGB4OBgjB8/XnZmuiiEhYXhyZMnqkp4dnY2/v33X4V/ZmYmtm3bpkjz8OFDREVFmSyTiETluaTGNmMkJiYiLy9P5ifsmgj1LFXqfv31V5lSd+LECfzwww+WEN0klq9dPeLj49GjRw+FS0pKQmpqKpycnHDnzh2jeWzZsgU//fSTalhBLHXPkri4OCxdutTo6tZSSl1ZwlylDgD27t2LTZs2mYz3+PFj8fA6ke7QrvTTA8+aqKgonDhx4pmXY4qkpCRLi6BAo9Hgn3/+UQ0TVsozZswoWaGgU/CISNzSFQ7t79+/v0TKP3/+vEmlTo3vvvvO4OSUkZFRJAuDGoLFvKTJzs6WWcvu3LkjKnX6vPDCC2jYsKF4L1Xq1BB2V9SUOmG7U7DiabVaLFiwwKRVvbwRGRlp9u6TpdBqtTh06JC4g/TWW2/JZBWsnNKdjtJI6axdFfLy8jBgwAB4e3urhkuVstGjR5ttZTJ2ps7SmPsCCOdpjD0zK3UFR7+eoqOj4evrW+zlMMXH6dOnVSfXkuCff/6RbcHpn5l71hRGqStpHj58KPvRVEmjvx2qf+4V0C0cpJZmQakzZH0+c+YMGjZsqHreSavVKrZlKzI3btwQfyRQ2tFX6gCd0am0U2a+U+fh4UH+/v60YsUK6tmzJ/36669E9N/3eTw8PKhbt25kb29PjRo1kn0HqaxSpUoVs+LNnTuXFi9eLH73xxgAqGPHjkWUrPTQtm1bItJ9S6m4uXTpEl25ckW8b9y4MTk4OBR7OUzx0bdvX6pWrZpFyrazs6Pq1auL9wX9dldRMfY9stJC/fr1qXPnzpYWQ/xuZ5s2bRRh1tbWqmOvoW+I9e7dm+Li4lS/x2dlZSXrExWddu3aUadOnSwthlmotXeDBg0sIEnBKPJ/v5Z1jP33q6W5c+cO3bx5k4YPH17kvLZv306TJ0+mw4cPU9++fSkpKYmaNm1aDFJaFgB09+5datWqlaVFYRiLk5WVRTk5OVSrVi1Li1IqGT16NJ0/f54ePHhAt27dojfffFNVGZPi6OhIfn5+lJubq/rBYKZ88u+//5K7uzstXLjQ0qIUCFbqSrFSV5zk5ubSpk2baMaMGfTcc89ZWhyGYZgygaDU5eXl8djJlHp42VFBqFKlCs2aNcvSYjAMwzAM84woM2fqGIZhGKakEf5nt1j+l5NhnjG8/VpBtl8ZhmEYhinfsKWOYRiGYRimHFDhLXUAKD09nWrWrMnmdYZhGIZhyiwVXqljGIZhGIYpD/D2K8MwDMMwTDmAlTqGYRiGYZhyACt1DMMwDMMw5QD++LARhB9RMAzDMAzDWBpTP+pkpc4Ijx8/pvr161taDIZhGIZhGJPf1GWlzgjW1tZERBQTE8MfJi4jpKWlUePGjbnNyhjcbmUTbreyB7dZ2aZmzZpGw1mpM4Jg4rSxseHOX8bgNiubcLuVTbjdyh7cZuUT/qEEwzAMwzBMOYCVOoZhGIZhmHIAK3VGqFq1Ki1dupSqVq1qaVEYM+E2K5twu5VNuN3KHtxm5Rv+mzCGYRiGYZhyAFvqGIZhGIZhygGs1DEMwzAMw5QDWKljGIZhGIYpB7BSxzAMwzAMUw5gpc4Ac+bMIUdHRxozZgzl5ORYWhyGiAIDA8nR0ZGcnZ1p5MiRlJubS7/++it1796dXFxcKCYmhoiIQkNDycHBgbp3707e3t5ERPT06VMaPHgwOTg40Jo1ayz5GBUWd3d3eumll4iIuN3KCOfOnaNevXqRs7MzHTt2jNutlKPVamn8+PHk6OhITk5OFBERwW1W0QCjICgoCGPGjAEArFy5EgcOHLCwRAwAxMfHIyMjAwAwf/58eHh4oFu3btBoNPDz88Mnn3wCABg8eDDu3r2L1NRUdO/eHQCwfv167Ny5EwDQr18/xMTEWOYhKij5+fkYNmwYOnXqhJycHG63MkBWVhYGDBgAjUYDANxuZYDAwECMGjUKAODl5YUvvviC26yCwZY6Ff755x/q27cvERG5urqSv7+/hSViiIgaNGhANWrUICKiKlWq0N27d6lNmzZkbW1NPXr0oJCQECIiio+PpxYtWpCNjQ29+OKL9PjxY1mb9unThy5dumSx56iIHDx4kN5//32qVKkS3bt3j9utDODv70/Vq1engQMH0tChQ+nq1avcbqUcW1tbIiICQCkpKfTSSy9xm1UwWKlTISUlRfxPvFq1alFycrKFJWKkREdHk7e3Nzk4OMj+uzA/P5+IdAOagNB+3KaWIz8/nzw8PGjUqFFEJH+/hHAibrfSxsOHD+n+/ft04sQJmjRpEi1btozbrZRTr149qlSpEr355ps0d+5c6tmzJ7dZBYOVOhXq1KlDaWlpRKSbgOrWrWthiRiBtLQ0+uCDD2jPnj1Uv359sZ2IiJ577jkiIqpU6b9uLbQft6nl2L9/P40cOVJsF2lbEHG7lVZq165NDg4OZG1tTS4uLhQcHMztVso5ffo0Va9encLCwuj333+njRs3cptVMFipU8HOzo68vLyISPeS9OjRw8ISMUS6VeaYMWNoyZIl1LJlS2revDmFhoZSTk4OXbx4kdq3b09Eum3ae/fuUVpaGiUnJ1O9evVkbert7U3du3e35KNUKEJDQ+nnn38mV1dXunfvHu3YsYPbrQzQrVs3Cg0NJSKi4OBg6tu3L7dbGaBOnTpEpFPKHz9+zG1W0bDoib5SzOzZs+Hg4ID/+7//Ew8KM5bl4MGDqFu3LpydneHs7IxDhw7B3d0ddnZ26NmzJ6KjowEAt27dQo8ePWBnZwcvLy8AQFpaGgYNGgR7e3usXr3ako9RoXnrrbcAgNutjLB582Y4OjrC2dkZERER3G6lnLy8PIwePRpOTk54++23cfHiRW6zCgb/9yvDMAzDMEw5gLdfGYZhGIZhygGs1DEMwzAMw5QDWKljGIZhGIYpB7BSxzAMwzAMUw5gpY5hGIZhGKYcwEodwzAMwzBMOYCVOoZhGIZhmHIAK3UMwzAMwzDlAFbqGIZhGIZhygGs1DEMwzAMw5QD/h8uHEU/DLl0TQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADZqElEQVR4nOydd3wUxfvHP6EYUEgMiBQBaYIgIIgoLQFBI3wFRFFEuoB0ASGKQQTpvUoVEaSX0KWEGhJIQAIJvSTUUEILuYSUS+7u+f2R3w67d3stueSS43m/Xs8rtzOzM8/Ozs58Zmbv4kZEBIZhGIZhGCZPk8/ZDjAMwzAMwzBZh0UdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYFyDXijo/Pz94e3ujc+fOSEtLE+E6nQ49evSAt7c3hgwZIsKLFi2KZs2aoVmzZjh37pzN5RAREhISwP9Yg2EYhmGYvEyuFHURERGIjY1FSEgIatSogYCAABG3c+dOlC1bFiEhIUhOTkZoaCgAoFq1aggKCkJQUBBq1aplc1mJiYnw9PREYmKiw6+DYRiGYRgmp8iVoi4sLAy+vr4AgJYtWwrhZinu2rVr8PHxQf/+/ZGammo2b61Wi4SEBIUxDMMwDMPkdXKlqIuPj4eHhwcAwNPTE3FxcVbjoqOjERwcjNKlS2PhwoVm8548eTI8PT2FlStXLhuvhGEYhmEYJmfIlaLOy8tLrKDFx8ejWLFiVuOKFy8OAPj6668RGRlpNm9/f39oNBphMTEx2XQVDMMwDMMwOUeuFHUNGjTAvn37AACBgYFo3LixxbikpCTo9XoAQHBwMKpUqWI2b3d3d3h4eCiMYRiGYRgmr5MrRV3dunVRqlQpeHt74+LFi2jfvj369u0LAGjTpg1iYmLg7e2NwoULo2HDhoiKikL9+vXh4+OD3bt3K74VyzAMwzAM8yLgRi/4b3kkJCTA09MTGo2GV+0YhmEYhsmz5MqVOoZhGIZhGMY+WNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAugN2i7s6dO/j111/x0UcfoXr16qhRowY++ugj/Prrr4iJiXGYY35+fvD29kbnzp2RlpYmwnU6HXr06AFvb28MGTJEhM+ePRuNGzdG69atodFoHOYHwzAMwzBMXqCAPYmPHj2KVq1aoVy5cvD19YWvry+ICA8fPsS2bdvwxx9/YM+ePWjcuHGWnIqIiEBsbCxCQkIwceJEBAQEoFOnTgCAnTt3omzZslixYgW+//57hIaG4q233sLOnTtx9OhRrF27FgsWLMDIkSNV89ZqtdBqteI4ISFBNV1CQgJ+//33LF0HwzAMwzCMI3jnnXfQq1cvi2nsEnU//vgjevfujdmzZ5uNHzp0KE6ePGlPtiaEhYXB19cXANCyZUssX75ciLqwsDC0bt1axIWGhiI+Ph7NmjWDm5sbWrZsie7du5vNe/LkyRg7dqxVH7RaLfbu3Zul62AYhmEYhnEEWq3WsaLu/PnzWL16tdn4vn37YvHixfZkqUp8fDzKlCkDAPD09ERcXJwizsPDQxGnFmYOf39/DBs2TBwnJCSgXLlyJulKlCiBixcvZvlaGIZhGIZhcgK73qkrXbo0QkNDzcaHhYWhdOnSWXbKy8tLbIvGx8ejWLFiFuMspTfG3d0dHh4eCmMYhmEYhsnr2CXq/Pz80K9fPwwaNAjbt2/H8ePHceLECWzfvh2DBg1C//798fPPP2fZqQYNGmDfvn0AgMDAQMU7empx77//PoKCglTTMwzDMAzDvAjYtf06YMAAFC9eHLNnz8aSJUug1+sBAPnz50e9evWwcuVKdOjQIctO1a1bF6VKlYK3tzfKly+Pn376CX379sWSJUvQpk0bbNu2Dd7e3qhbty4aNmwIAGjTpg0aN24MLy8vrFmzJss+MAzDMAzD5CXciIgyc2J6ejoeP34MAHjttddQsGBBhzqWUyQkJMDT0xMajYa3YhmGYRiGybPYtVInp2DBgg55f45hGIZhGIbJOvwfJRiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYF4BFHcMwDMMwjAvAoo5hGIZhGMYFYFHHMAzDMAzjArCoYxiGYRiGcQFY1DEMwzAMw7gALOoYhmEYhmFcABZ1DMMwDMMwLkCuFHV+fn7w9vZG586dkZaWpojT6XTo0aMHvL29MWTIEBFetGhRNGvWDM2aNcO5c+dy2mWGYRiGYRinkutEXUREBGJjYxESEoIaNWogICBAEb9z506ULVsWISEhSE5ORmhoKACgWrVqCAoKQlBQEGrVquUM1xmGYRiGYZxGrhN1YWFh8PX1BQC0bNlSiDZr8deuXYOPjw/69++P1NRUs/lrtVokJCQojGEYhmEYJq+T60RdfHw8PDw8AACenp6Ii4uzKT46OhrBwcEoXbo0Fi5caDb/yZMnw9PTU1i5cuWy6UoYhmEYhmFyDqeJutjYWDRp0sTEiEisnsXHx6NYsWKK87y8vFTjixcvDgD4+uuvERkZabZcf39/aDQaYTExMdlwdQzDMAzDMDlLAWcVXKpUKRw9etQkPCIiAjNnzkS3bt0QGBiIxo0bK+IbNGiAffv2wcfHB4GBgejZsyeSkpJQqFAh5M+fH8HBwahSpYrZct3d3eHu7u7w62EYhmEYhnEmuW77tW7duihVqhS8vb1x8eJFtG/fHgDQt29fAECbNm0QExMDb29vFC5cGA0bNkRUVBTq168PHx8f7N69W/GtWGsULVoUGo0GRYsWzZbrYRiGYRiGyQnciIic7QTDMAzDMAyTNXLdSh3DMAzDMAxjPyzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYF4BFHcMwDMMwjAvAoo5hGIZhGMYFYFHHMAzDMAzjArCoYxiGYRiGcQFyrajz8/ODt7c3OnfujLS0NBGu0+nQo0cPeHt7Y8iQISK8aNGiaNasGZo1a4Zz587ZXA4RISEhAUTkUP8ZhmEYhmFyklwp6iIiIhAbG4uQkBDUqFEDAQEBIm7nzp0oW7YsQkJCkJycjNDQUABAtWrVEBQUhKCgINSqVcvmshITE+Hp6YnExESHXwfDMAzDMExOkStFXVhYGHx9fQEALVu2FMLNUty1a9fg4+OD/v37IzU11WzeWq0WCQkJCmMYhmEYhsnr5EpRFx8fDw8PDwCAp6cn4uLirMZFR0cjODgYpUuXxsKFC83mPXnyZHh6egorV65cNl4JwzAMwzBMzpArRZ2Xl5dYQYuPj0exYsWsxhUvXhwA8PXXXyMyMtJs3v7+/tBoNMJiYmKy6SoYhmEYhmFyjlwp6ho0aIB9+/YBAAIDA9G4cWOLcUlJSdDr9QCA4OBgVKlSxWze7u7u8PDwUBjDMAzDMExeJ1eKurp166JUqVLw9vbGxYsX0b59e/Tt2xcA0KZNG8TExMDb2xuFCxdGw4YNERUVhfr168PHxwe7d+9WfCuWYRiGYRjmRcCNXvDf8khISICnpyc0Gg2v2jEMwzAMk2fJlSt1DMMwDMMwjH2wqGMYhmEYhnEBWNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVyAXCvq/Pz84O3tjc6dOyMtLU2E63Q69OjRA97e3hgyZIgInz17Nho3bozWrVtDo9E4w2WGYRiGYRinUcDZDqgRERGB2NhYhISEYOLEiQgICECnTp0AADt37kTZsmWxYsUKfP/99wgNDcVbb72FnTt34ujRo1i7di0WLFiAkSNHquat1Wqh1WrFcUJCgtl0wcHBjr84hmEYhmEYOylRogTq1KljMY3DRV1MTAzGjBmDv//+O9N5hIWFwdfXFwDQsmVLLF++XIi6sLAwtG7dWsSFhoYiPj4ezZo1g5ubG1q2bInu3bubzXvy5MkYO3asVR/i4uKEDwzDMAzDMM6kTZs22LFjh8U0Dhd1cXFx+Oeff7Ik6uLj41GmTBkAgKenJ+Li4hRxHh4eiji1MHP4+/tj2LBh4jghIQHlypUzSff666/j1q1bmb4GhmEYhmEYR1G4cGGraewWddZU4vXr1+3N0gQvLy+xLRofH49ixYpZjPPy8kJ0dLRqemPc3d3h7u5u1Yf8+fOjfPnyWbkMhmEYhmGYHMNuUdeuXTu4ubmBiMymcXNzy5JTDRo0wMyZM9GtWzcEBgaicePGirh9+/bBx8cHgYGB6NmzJ6pUqYLp06dj9OjRJukZhmEYhmFeBOz+9mvp0qWxefNmGAwGVTt9+nSWnapbty5KlSoFb29vXLx4Ee3bt0ffvn0BZOwpx8TEwNvbG4ULF0bDhg1RokQJtGnTBo0bN8a6deswYMCALPvAMAzDMAyTl3AjS0tuKrRt2xZ16tTBuHHjVOPPnDmDunXrwmAwOMTB7CYhIQGenp7QaDTivTyGYRiGYZi8ht3brz/99BOSkpLMxlepUgWHDx/OklMMwzAMwzCMfdi9Uudq8EodwzAMwzCuQK79jxIMwzAMwzCM7bCoYxiGYRiGcQFY1DEMwzAMw7gALOoYhmEYhmFcABZ1DMMwDMMwLgCLOoZhGIZhGBeARR3DMAzDMIwLwKKOYRiGYRjGBWBRxzAMwzAM4wLkSlHn5+cHb29vdO7cGWlpaYo4nU6HHj16wNvbG0OGDBHhRYsWRbNmzdCsWTOcO3cup11mGIZhGIZxKrlO1EVERCA2NhYhISGoUaMGAgICFPE7d+5E2bJlERISguTkZISGhgIAqlWrhqCgIAQFBaFWrVrOcJ1hGIZhGMZp5DpRFxYWBl9fXwBAy5YthWizFn/t2jX4+Pigf//+SE1NNZu/VqtFQkKCwhiGYRiGYfI6uU7UxcfHw8PDAwDg6emJuLg4m+Kjo6MRHByM0qVLY+HChWbznzx5Mjw9PYWVK1cum66EYRiGYRgm53CaqIuNjUWTJk1MjIjE6ll8fDyKFSumOM/Ly0s1vnjx4gCAr7/+GpGRkWbL9ff3h0ajERYTE5MNV8cwDMMwDJOzFHBWwaVKlcLRo0dNwiMiIjBz5kx069YNgYGBaNy4sSK+QYMG2LdvH3x8fBAYGIiePXsiKSkJhQoVQv78+REcHIwqVaqYLdfd3R3u7u4Ovx6GYRiGYRhnkuu2X+vWrYtSpUrB29sbFy9eRPv27QEAffv2BQC0adMGMTEx8Pb2RuHChdGwYUNERUWhfv368PHxwe7duxXfirVG0aJFodFoULRo0Wy5HoZhGIZhmJzAjYjI2U4wDMMwDMMwWSPXrdQxDMMwDMMw9sOijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYF4BFHcMwDMMwjAvAoo5hGIZhGMYFYFHHMAzDMAzjArCoYxiGYRiGcQFY1DEMwzAMw7gALOoYhmEYhmFcABZ1DMMwDMMwLgCLOoZhGIZhGBfghRd1RISEhAQQkbNdYRiGYRiGyTQvvKhLTEyEp6cnEhMTne0KwzAMwzBMpnnhRR3DMAzjHB49eoQNGzY42w2GcRlY1DEMwzBO4ZtvvkHHjh2d7QbDuAws6hiGcXn0er2zXWBUePLkibNdYBiXgkUdwzAuzZkzZ1CgQAGEh4c72xUGgFardbl7ceHCBVy+fNnZbuQ51q5dC61W62w3XAoWdQyTg2i1WixZsoS/bZ2DREREAABOnTrlZE8YAPjxxx9Rv359pKamOtsVh1GzZk1Ur17d2W7kKc6cOYPOnTtjypQpznbFpWBRl8dYt24d1qxZ42w3soX169fj6NGjznbDZu7evYs33ngDsbGxNp8za9Ys9OvXD6GhoQAyflLn0KFDDhd56enp+OWXX5CUlGQSd/nyZVy8eNGh5eUF3NzccqScxMREPHv2TByHh4fj9OnTOVK2I9Hr9di5c6fD87106RIAwGAw5Ng9yQrR0dE4ceKEs91wKHq93ukTy5SUFABAfHy8U/2wl5SUFOF7Vrl79y7i4uIckpcEi7o8RqdOndClSxe7ziEirFu3DjqdLpu8yuDq1auYOnVqps//9ttv4e3t7UCPspft27fj3r17CAwMtPmchIQEABmiCwC2bduGFi1aYM+ePQ71bc+ePZg6dSr++OMPk7jq1avjnXfeyXIZe/fudei7ardu3XJYXo7izJkzdn07U6/Xw8PDA0WLFhVh9evXR7169TJVfnh4OI4fP56pc7PKokWL0LZtW4SFhTk0X0lM5MuXL1uFhZ+fH1atWpXlfN566y00aNDAAR5lEB8fb/OWY2pqqsOfC4PBgAIFCmD27NkOzTezOFrYX79+PVsmyhKvvfYaSpQoYTb+77//hpubG9LS0qzmVbZsWbz55puOdI9Fna2MHDkSpUqVcrYbmeLIkSPo1KkTlixZkq3lfP755/jll19MwsPDw2EwGAAAP/30U47Mzs+fP48iRYooZoFEhKFDhzrk3Zf09HRMnDgRgHqnFBcXh+vXr5uESx2NdM6DBw8AAI8fP86yT2rlZFfHFh4ejlatWmHRokUOyW/Pnj2oUKEC/vvvP4fkJycrdVCnTh27vp1padXhgw8+wPbt2+0qv379+mjYsKFd50jExcWhatWquH37tsV0aWlpqisPUtt09G94Sn2BnOxopzNnzkS3bt0cnm9W8fLyQqtWrWxK2717d1SoUMGh5Ut1HRAQ4NB8swupH01JSUFMTIzV9JUrV0aLFi2yTbQmJyer7oBIrF+/HgBsXs2TVvVPnTpl9Vm1hTwj6k6dOgVvb280bdoUHTp0ECsdABAUFIRy5cqhWbNmaNGiRbaUP3nyZNHJZSexsbGYN2+eOD579izc3NzsGvSJCJGRkeJY6pQ1Go3D/FTDeNXm1q1b+Pfff1G/fn3Mnz8fP/30E2bMmJEtZcfFxSkGhtWrVyMpKQlnz55VpJs7dy569eplU55ubm6KlS75PdiwYQPu3bsH4Pk7W25ubpg+fToAoHjx4qhcubLFvAGlyIuLi8OFCxds8s3ZSG3JUc+EtCWXmVWJo0ePYujQoVbTycV3eno67t69a1cZWeXkyZMYPHiwwodFixapihxLXL16Fa+++qrVbZugoCBERUVh3bp1FtO9//77ePnllwE8X2UwGAwmExB7SUhIUPRDEmoTDntF3cOHDxEUFKQa16FDh2yfwKanp2dp5+Pw4cOK4z///FO1nkNCQjJdRmY4ffo0li9fLo7v3LmDhw8fZjnf/fv3m7zyYcs9P378OCpXroxdu3ahffv2KF++PM6fP2/yWsCSJUtMdiW2bNmimueNGzfEs5Oenq7QEo5AvhJtD++//76qgL9x4waioqJszifPiLo33ngDgYGBOHLkCKpUqYJt27Yp4r/55hsEBQXh4MGDTvFv165dCAkJsbqsfuLECdy8eRNxcXHw9/c36dB79uyJIUOGIDk5GQDE1o9a52iO5cuXo27duggJCUFsbGyWO2dbMX5IK1SogDZt2gAArl27ZrOga9iwIX777TfVuPDwcLi5uSmuJSkpSYgoqd6kB0qj0UCj0YCIMrUa8NdffwEAduzYgRIlSmDPnj0YO3as4j7PmTNHfF62bJnJA3j48GFx/4x9kN8bHx8f1KxZ024fgYzZo9qKii3XfOTIEZN0c+fOzdb2cu/ePfEu4oMHDzB8+HAAwKBBgzB69GgAGZMEc4Ln7NmzQlR/9tlnmDt3LjZu3Agg41lcsWKFyTm3b9/Gv//+K84pW7aszf6uX7/e7s7/zJkzOHDggCIsX758uHHjBgICArB48WIMGDAA+/btsyvftWvXQqPR4OTJk7h27ZrJ6t/9+/dx7tw58XMh1u7juXPnAGTcE2nCo9PpRJu4f/++Iv2tW7dw4cIFxRcd1Npe+/btUbduXQAZE59r164BeL5SR0SZbmOffPIJPvroI9W4TZs2oV+/foqwxMREh767JPU3/fr1w9WrV82mi4+Px5UrV6zmJ00GjVF7fg8dOoSNGzdm+tUHS31CvXr10LNnTwAZPzdTrlw5lCxZEm5ubjZdhzl8fX3NvvLh5uaGDh06IDQ0FPHx8dDpdNBqtdi5cydu3rwJIGMiI43ttWrVQtu2bRV59OvXD4MHD1b8RI7BYEBqaipGjRql2AqtVKkSateuDQAoU6YMypQpY9M1JCUlqe5EARniUFqZk9q3m5sbkpKSbKo3qW9RuzeVKlVC1apVbfJRyiTPMXr0aNqyZYs4Pnz4MFWoUIGaNGlCc+bMsXhuamoqaTQaYTExMQSANBqNxfMAkLy6zp49S7NmzSIiops3b4r4H374wWwesbGxBIDc3NxowIABBICOHTtGn3/+OZ05c4bc3d2pYsWKBICSkpKIiOjXX38lALR//35VP3Q6HW3bto30ej3pdDoiIho5cqRIB4C2bdtGAGjKlCmqfl25coX++usvMhgMpNfrady4cZSYmKhIExISQtWqVaODBw+avb7KlSsTANqzZ4/CVwA0ZMgQxbGlOpbsypUr1LlzZ9JoNHTy5ElatWoV1ahRwySPBw8emOQt1Ztk1atXJ71eTwCoYcOG4tyJEyfSzZs3FX4EBQVRXFwcAaDatWsTEdHnn3+uyO/PP/9UHEv3s0SJEhQcHCzC5W1Do9HQTz/9RAAoODiYiIjmz59PAGjVqlUW68YaJUuWJACUnJxMSUlJtH37dgJAEydONFvPRET79+8nALR+/Xq6fPkyhYSEEBHRO++8Y9GXAwcOEAAaNWoUERHFxcXRkydPbPI1ISFB4YO/v7/JvSci8vLyomrVqqnmAYDc3d2JiMjDw0NxnvQ5NDSUiIiWLVtmkrdxXS9YsIDGjBljtq4ku3fvHoWEhNDAgQPpjTfeICJSPHtPnjwxOUduRYoUoTJlyhAAGj9+PAGgvn37klarNXudxvdBamuBgYHk5eVFAMjX15e+//57VZ+nTZtGRER79uyh7t27my2jWLFi4nNqair98ssv4lj+3Eth+fPnJyKiO3fuEADasGGDIt/XX39dtb7r1KlDAGju3Ln07rvvEgBRfwaDgVatWkUXLlwgf39/GjRokGq9FC1aVLV9Sr7Ibd++faKNyDl69CitXr2aHjx4QAaDQbUcY9+Nw9TarYS5Z9o4zGAwmH32pedaQqfTibTjx483Sf/s2TPxPBvTqVMn+vDDDyk9PZ0AUIMGDYiIaOjQoeJ+SHl37NjR5NpWrlxpto7k6PV6RXuW+hjj6wsNDSUANGzYMAIg+va+ffua9AmzZ8+mggULmq1rKWz48OHic4MGDWjRokUEgNasWWOS1vizNaZNm6YoPz4+XsS9//77Ip+PPvqIANCzZ8+odevWIvzevXuUnJys6re56zJO8/DhQ6t+5jlRd+vWLWrUqBGlpaWJsMTERNJqtaTVaqlly5YUHh5u9vwxY8aoVqQ5UafX6+nff/8V6UJCQkxuwOXLl8Vxy5Yt6cqVK1S7dm3q27evyDc1NVVxXr9+/QiA8KdQoUKK+EePHhGRdVE3aNAgAjLEhBRuLGi2bNlCAOjLL78kIqKkpCQqX748NW3alFavXi3SzZs3TwiS3377TVEPH3/8sUgXERFBREQpKSlCfIaHhyvKlHc+AETHodZwdTodBQYGmu0oPT09xWdJbMjzaN++vUneUr2o+SSJOnln+umnn9LJkyfFvWzWrJnZawFMRZ3cNm3apBouHzQHDBhAgwYNEqJOfh8uX75stv0+ffqU0tLS6PTp0xQVFSXaqHSul5cX5cuXj1q1akVAhqhr06aNaOOS2AOguGfz5s1T1J/UwcrRarUUExNDGzdupOnTpxPwXNTZ0zlKA7lkn3zyidl7BYDOnTtHRESffPKJECjy8qQBXjqW57N69WqTe9W8eXNF+p07d9rUoarZoUOH6IMPPhDnWhN15szf358MBgPt2bOHzp49KwZFY7/k93rfvn0m+Wi1WpOw6dOnExGJPkaOvG+TW0pKCv3888+KsODgYPrhhx9M0v33338EgL777jtF3pKok/d9RERVqlQxeZZ//vlnmjdvHm3dulX1mowHM0mkSdf29OlT6t+/P1WvXt1iPZu7t9OmTSODwUC3b982mdBaO9c4/2vXrimeJym8evXqtHbtWhFmMBjo2LFjtGLFCpMy4uLiaPLkyaIOnz17RkRkcn8HDhxIHh4e4jxJ1H711Vdm27Ikpj788ENFe7Jmy5cvpzfeeIPmzZsn8oyNjTUZO6UJcLly5Wjw4MH0119/iTxq1aolBPSxY8cIeC7qJCtVqpRJHzF79mzKnz+/SXuMjIw0ez8+/PBDRT9gXA9yASjxzz//0PDhw03qjoho6tSpqvf7+PHjimdSGjuOHj2qSAdkjCvW2tF3331HMTExdO3aNZM0ixcvVvVNkafVFLkIjUZDPj4+dOXKFbNpFi5cSMuWLTMbb+9K3dKlSxWVatzYVq5cSR06dBDHLVu2JB8fH3E8atQoSklJIY1GozhPWtUyJzL//fdfInou0Pbt20cREREiXqfT0fnz503OS0pKolGjRpl9MKdOnapYSZLbt99+S7t37yYANHLkSCGWHj9+rBh4x40bR3FxcVSuXDlFg5WbmhAyfhgkZsyYYXPHoibqjNM8evTIZPABMmaA0mdpVdKWMtX8W7x4sdn0CxcutPl6/vjjDwJA3bt3N1s/LVu2pEWLFolrlbe3GzduUNmyZW0uz5xJ4hKAol7y589P69atI6Lns1G5DR48mO7du2fid6lSpWjIkCF06dIl0fGau19qduLECbPH8jyIlKIuPj7eJC9pYFQzg8FAI0aMUK13W32VbNmyZfTjjz9mqv67d+9uMrE5c+aMwq+4uDj67LPPRJjaRGjlypWq7Zfouahr3bo1+fj4EBFRhQoVVP1JTk4WK4KSvfrqqybpqlevLkSdVAfSpFqqd/nkITk5WYg6NZM/o5J9++234l7t2rWLDh48KCZ6FStWJKKM3Rtb6tmWe/vhhx+qprPlXCKimjVrmoT//fffBECs0gIZOzYAqEmTJiLs7NmzRETUu3dvkzzWrFlDycnJFq9LmsBYEnWOsDt37ijy1Ov1RKScKEsmvz4AYsdKPlm3ZnPmzBH1pXbtauH169cXn9VEndw2bdpkcq83bdpE/v7+dOLECbPjma1jiHy1cty4cWQwGKyOkYBpf7Zw4UKT+2pyn62myCXodDpq3bo1HThwwCROLsi+/fZbOnLkiM35SmLLnKibOHGiolLNNSzJpBUSY5s1a5ZquDlRt3PnTiJ63sj27dsntloA0O+//656XmhoKH366acWfZTPYMyZfLVPrYMpX768xYdKWuI3ZzNnziSijK1zWx9sQCnqjB8WuVkbXMePHy+2NuwtEwB16tTJbPq2bdvafD3GkwR5ncrvt7l6lga8rJq83RqvNJYoUcKmDsiSnzqdjpo2bSpWCazZyZMnzcbJt9ul7SZHWc2aNcXAeu7cOYfmbcnef/99hbjMrH311VcmYR4eHqoTPSISr3sYm7GoBkD58uVTTWu8ywBkrM5Jok5akcmqySdXcoF5+vRpu0SdTqejlJQUq+kA0GuvvaYIkzB3nvHk3djkok7N/vnnH/r999/N9k3R0dGq4Q8ePKBTp06ZhI8cOdKqz5kxSfhKx/7+/uTp6Ulvv/22Q8uRzNK4aywa1cyaqAOgWDQxTvfSSy859HqioqIsLr6Yay8LFiywqmnyjKhbu3YtFStWjJo2bUpNmzal9evXU58+fYgoYzWtfv361LBhQ/Lz87MrX2uirkGDBg65iS1btlQNN9cZ7dixg4jMN8DixYurhv/2229WfbG2RQHAZAvXkqnNzsyJTrkVKVLEoQ+K3DK7YpKbzVJ7cKRJqwpys1UAA6A333zTJEzarrXVFixY4LR6bt26NR08eNDp9zu7zZJoffnll7OU98cffyxeCXGUtWjRQjU8X758Nos6S69NyE1tcn7//n1avXq12N1Rs9mzZ2fpGtUEclZt69at4j1GR1mNGjVMtudzs/Xr14+WLl1K//zzj9N9yYrJt77NkWdEXXZhSdRJ7yI5w7Zt20ZEOTOIu6IZv6fhCmb8hZDsMvl2pqPMmc+SveboWXluNfn7lXnBzK0UAuZ3PLLD5O/GsrHlpNki6vLMT5o4g+z4Fzm2smnTpjzxL3RyK7NmzXK2Cw6nZMmSOVKOo39sFnDus2QvtvwSvCvw+eefO9sFu7D0e37Sz9vkBI7+t04MYyu2aAIWdWaw9wdBHY2r/n9XhmEYR7N06VJnu8AwuQK3/9/ie2FJSEiAp6cnNBoNPDw8RPj9+/dt/lFChmEYhmGY7MaaZOOVOjM48h+VMwzDMAzDZDcOEXUpKSk4evSoyf92A4DU1FSsXLnSEcXAz88P3t7e6Ny5s+K9F51Ohx49esDb2xtDhgxxSFks6hiGYRiGyUtkWdRdvXoV1atXh4+PD2rVqoVmzZop/legRqPBd999l9ViEBERgdjYWISEhKBGjRoICAgQcTt37kTZsmUREhKC5ORkhIaGms1Hq9UiISFBYWrY+894GYZhGIZhnEmWlcuIESNQq1YtPHz4EFeuXIGHhwcaN26M27dvO8I/QVhYGHx9fQEALVu2VAg3S3HGTJ48GZ6ensLKlSunmq5UqVIO9J5hGIZhGCZ7ybKoCw0NxaRJk/Daa6+hSpUq2LFjB1q1agVvb29cv37dET4CAOLj48UXGTw9PRVfK7cUZ4y/vz80Go2wmJgY1XT8cyIMwzAMw+QlCmQ1g5SUFBQooMxmwYIFyJcvH5o2bYq1a9dmtQgAgJeXl9gqjY+PR7FixWyKM8bd3R3u7u5Wy2NRxzAMwzBMbuGll16ymibLK3Vvv/02wsPDTcL/+OMPfP7552jbtm1WiwAANGjQAPv27QMABAYGonHjxjbFZRZ+p45hGIZhmNxCrVq1rKbJsnL54osvsG7dOtW4+fPn49tvv7X6uyq2ULduXZQqVQre3t64ePEi2rdvj759+wIA2rRpg5iYGHh7e6Nw4cJo2LBhlsvjlTqGYRiGYXILT58+tZqGf3zYzI8PAyzsGIZhGIbJPfCPDzO5grlz5zrbBUaFKlWqONsFi3z00UfOdoFhGCZX8Morr1hNw6KOcShvv/224njq1KkAYPanY/ISvXr1crYLDmf58uU5Wt6AAQPsSv/DDz9kkye5m/Lly9t9TuXKlR1Sdp8+fRyST17C1t9SbdasWaby/+qrrzJ1XnYyf/78HC+zevXqOVbW4MGDrabx9vbOVN4TJ07EO++8k6lzjYmIiLA5bWBgoPVE9IKj0WgIAGk0GpM4ACRVkfTZ2M6ePWs2zpIlJCSIzyVLlrT5vICAAOrduzddvXqVDhw4kKmy7TF3d3eb03p5edGWLVsUYRKHDh0ye97LL7+cbf6PHz9efL5586bV9BcvXqTy5cuL465du4rPI0eOzPb6tmQLFixweJ7BwcEW4ytVquTQ8k6ePGk2zsfHxyQsKSnJ4dc8ZcoUh+SzePHiTLWJDz74wGqaXr162ZUnEdH9+/cVYS1atMjUdSUnJyuO165dq5ouPT3d4fcmqzZ37lz68ccfraZr166dSf1ZSv/ee+9RcnIyTZ48WREeFhZG4eHhFBYWJsLq169vcv6vv/5q13V07NiRjh07lqU2JFlQUJDZNiN97tKli9nzW7ZsSQCoZ8+eWbo3r7/+Ol26dMkkvFSpUnbnNX36dKtphg8frrh/1vKx51lOT08nIqLSpUtnqU6k+3D79m2r6a5fv26TpmFRl0VRR0RUs2ZN1birV68KgRAZGUl///23ap5paWlWb2jFihVVfaxVq1amGtKSJUtsSmepY1GrCyIirVZLq1evph07dogwnU5n9rxXXnnFbFzRokXNxjVu3JiGDh1Kb7zxhggrU6aMIk1qaqr4fOvWLZuu4cyZM+J448aNBIB+//138vf3z/IDbKupXbelOjRnlStXVhVLkl28eNHi+R9//LFN5QwdOpSKFCkijgsVKkSNGzdWpHn//fdNnqUmTZqIz/fu3aO4uDhxPGHCBIvPXmYtJSXFpnT+/v4WRe+qVauEf5999plqmnfeecckrF69elbLlkSd2qAhnwS2atVK9AsGg0GRzvgYAH3//fdW25pxnRsfN27cmBYtWmT23pw9e9bqRE1tguLp6UmtWrUyCf/rr79MwsaNG0d+fn6KsLi4ONHfHD9+3GzZb731lkndSNfy1ltvKdqgZP369SMiokmTJpmcR0SK5+i7775TXEflypVpzpw5BCjbu2TFixdX9GEAaMuWLaLfVGtDWq2WoqKizF7jSy+9ZPb+qYUPGDBATAq8vb1F+KBBg2j//v0EgPr27Wu13Y4aNYrKli0rjuXXZTAYTPrX4sWLKybekn366af0+PFjIiJVAavX6636Im8fmzZtUk0jhY8fP96uvkZC7XkyNrU2rZaXJeF/7do1k7HfHHlG1IWHh1OTJk3Ix8eHvv76a0pLS1PEHz58mMqWLUtNmzal5s2b25xvVkRduXLliIjoyZMnIuzGjRuK8yRRp5bn7t27affu3VZnvJaIjo62uSHKbc+ePYrj2rVri4enatWqIvzChQsUGhpKx48fV/h//vx5u/wkItLr9arnFSlShN59911xLB/05s6dq+gA7t69S6tXr6Z27dqZvVd3796lQoUKEZDR+W3fvp1++OEHm0XduXPnCAC9+uqrtHfvXgJAy5cvp3379inSDh06VHyeMGGCIq5169ZUuXJlAtQFmlpHJrekpCRKSkqi5s2bU+HChS22QzVbvXo1TZw4kQwGg7gGue3du5eio6OJiGjTpk2i/RunW7p0KR06dIhSUlIoPDxctayoqCgiIurQoYPiHkqTmD/++IOAjBUM4zJWr15t0n6k44kTJxIRCXE4evRoIbIt2SeffCI+e3h4mMTLhb7c5CvfDx48MPFHrY6JiB48eEBarVYR17RpUypevLhJuwCgaOvmTBJ1gwcPFqvfjRo1IiBj4mIO6Xy5wJGvUsj7KslSUlIUA63xNasdS/Tv31/1GZIPxGp1KPW7AGjYsGF06tQps/UtiboBAwaI+yQxduxYswOeubq9ffs2ERFVqVLFxMe33npL9VxJ1Bk/t2rl9e7dm4hI9HV37twRom7FihU0atQoRR4XL14kIqJLly6JVStJABGpT9yJiO7duyeOZ82apYiXi1ZzdUFE9OjRIwIyxgMJ+TNGRPTff/8RABo4cCBt377dbL1+/vnnlJ6eTt9++60IS0xMtFhXr732Go0bN04cz5gxgwDQ7NmzRdpnz57RV199ZbFNmns+69evT6VKlTKbPiAggAD7RN3Tp0+Fb2pCVz4uSL4+ePDAbH5ygoODacWKFQRAMUmWtwdr5BlRd//+fUpKSiIiIn9/f9q4caMi/vDhwzR8+HCr+aSmppJGoxEWExMjOhlj5JX+8OFDxY2YNWsW6fV6kVYaPKQZRI0aNYjIVNRNnz6dfvnlF0U50jnu7u5Up04dRTnbt2+3ek1S2tOnT9OFCxdo0qRJFBkZSQcPHjTbkKSH/u233yYgY3YmLVeHhIRQ9+7dFR2OWp1I50tbGbZivLVUpEgRevbsmRjgR48eLQa+xYsXi3QlSpSwWgcS0oxYLv7loq5hw4b077//qj5g0qy7Z8+eZDAYaOvWreJeGwwGOnr0KP3111+KlbPLly8r8hkyZIhYLZBEyT///CPiJ06cKD4vWrTI4oMu1YX8Oq2ZHGNRJx9Ajbl16xbVrVtXCIi//vpLtZ7VytJqtWKgee+994Sok67PWNRJrF+/Xqz8EBF5enoSkDGhICJauHChqD81H8aOHas4vnjxInXr1o3u379PgwcPFuHt27cXbSItLc1kNUe+fWntmoGMbUk5P//8s4gbMGCAaC/Lly9XnNegQQMCIES/mvXp04eADFEntTnpmS1btqzZ+9ehQweaMWOGIkwSdVOmTFG9HuPrJCKxQlm0aFEiIvriiy8IyFiBldO7d2/V/KQVkNdee42IiDp37kzfffcdhYaGCjEspX/48KFqfe/YsYNCQ0OFqFuyZIkYA2xBmgwZm1zwRkZG0ogRI0S5kqhr2LChov+RVmXlbe3SpUuq5fXv39/El2vXrlGBAgXo7t27JvfAuI81RuqLjetYaq9t27ZV5Hn//n3FsfxzuXLlCMjYmjeHsRCTxr49e/bQ7t27zbZZSRjFx8erli1HCnv77bcVou7JkydUt25dunfvnolfxtdvqf8rXbo0EZFCDKml27x5MwHPdwWSkpIoNTWVTpw4YbIzM2rUKAoODlb4tGPHDpM8jetIrfyKFSvSwoULqXXr1uZvPGU8h6NGjbKYxqSe7EqdSxg9erRYnpY4fPgwVahQgZo0aUJz5swxe+6YMWNUb641USc/BkwHO0lESB3vhx9+SEQkls6tERUVRWlpaSarIbZgKW3r1q2pYsWKqp0CAOrcubMYPKSthdOnT1O3bt1UOy7j82vUqEHJycli1cdW5L5IA8fRo0cJAM2cOVPMzOTbv6+//rrNdSBtIaiJOi8vL9JqteI8aavoo48+IqLns9cVK1bYfB3yjkyqTyKihIQEIa5jY2NF/KRJk8RWsfF7iMb38ubNmybbXfLPcXFxtGPHDrp+/brq+caizhakgdS4nV+7dk2R1zvvvKOIl9r/e++9R8uWLSMgY2Bs3749nTx50uQa1Fi9erVoE0REcXFx1Lp1a4qPjyeijK21DRs2kIeHBy1evFiRZ2BgoCIvacA4e/YsJSQk0N69exXx+fPnV9Tj//73P7MDkLGtW7fOxPeIiAgCTAd26ZwlS5bQhg0bRBuQ3lcyNqndS+1Ino+0jW0rkqiTKF68uGp7+OWXX6h48eLiODU1lVJTUxVlFy5cWJH3rl27LLZdS8TExAiBJ8c4H6kt/vnnnzbnTZTR96nVrdSO1MqdOnWqosxbt24p0o8ePdrsdfr6+hKQsVtjDbk/xn2sMSkpKfTll1+a1LHBYCA/Pz+x8tixY0fV8YqIxIrxggULKCUlRbwTZs0/Y4wFy8CBA8VnSdQRZfS1kl9jx46l9evXK/I5ffo0DRkyhGJiYsRk98iRIxZ9unLlisIv+fu+e/fupW+//Vb08TNnzjQ5f/v27SYrftKYI00YzdXDoEGDzPplvPot93PYsGEi3YwZM+i7775T7TcdSZ4Tdbdu3aJGjRqZbL8mJiaSVqslrVZLLVu2pPDwcNXzM7tSR0SUL18+0bnodDpF2qdPn9Lp06fJYDBQly5dKCIigogyBuTly5fbfH1yUVexYkWbzvH29ra65Ww8eBBlvNuQkpJCFy9eFKsXAQEBRPS887p165YiH/n53bp1o//++8/mazPOR1qxkAZwg8FAq1evprS0NLGqcufOHZG+SZMmFvOT36upU6cSAMV90mq1VL58eTpx4oQIu3TpEt29e5feeOMNunr1qghPSEiwaclbXu6yZcvE+04//PCDxfSTJk2iJ0+e0PXr18WXbeTbu+Zwc3OjSpUqqV4zEYklezmRkZEirXSuNeLj46l169aKrQaJrl27UkREBF27dk11gJREnSRm9+3bp1oHjiQ6OprOnTtnEq7Vak1W9eVIz/SxY8eIKGMAlVY6jP01fjfReKAiyuhffH19TV5qll+ztJ21YcMGxTta8q1inU5Hfn5+9OTJE0U+27dvp9jYWNsq5f8xFnXr168XAkat3zOHmliVX5u07Z1VRo8eLbbMiEixUmcPKSkpdOfOHRNRZ8s1GwwGIUrkGL9eI0d6r9J45VENuT/yfsccjx49os6dO9PZs2dNnie5z/L+Tu7ngwcPqFKlSmKl0Fb/jJFE3ZgxY0zSykWdPRgMBkWfbKtfCQkJYlyzpQ6N8wAyvvAQFhZmtq8HMt5DtYT8VQLJtzZt2ojVXWP+/PNPm4R/Zsl1ou7+/fvUuHFjE3vy5AlpNBry8fGhK1euWMxj4cKFtGzZMpvKs/WdOiKiAgUKOHwwMiY9PZ169+5Nt2/ftjqbsoe0tDSKioqi7777TqwiWkuvNnNy1ICclpYmti/lqzISM2fOJOD5rPro0aOKbRNjDh06RGfOnBHHBoPBrq2azGJcHydOnLA4s5OLOjnStQ0bNozq1q1rtjytVismNM2aNaMCBQoo4qOiomjr1q0m5124cIGAjPe5sptvvvlGiH21Z3XevHmKQcGZSDNnS8jfadRoNGLV4/Tp0zaXY9xOzp8/TwaDgfR6vfhG4N69e2nGjBn05ZdfZu5izLB3716qVq2aOE5LS6OxY8cqVuFsIT09XXXw27p1K82cOZM0Gg0dPnw4q+6akFlRJyGtjDRv3pyAjF8eyArA821lOdI7pfL3Mc0xefJk8YUCe16Ct4es9NXA83fG5cTFxVHJkiXFe7REGQsRX3/9tdkVUEdifE3STpM9O0VyAWa8OGPMvXv3TBaQ1Ni0aRN1797drJDLSXKdqDOHTqej1q1bK16SlSMXZd9++63VpVz5ebaKuvHjx1PBggXt9Ny1cPQqy8yZMxViTMJgMNi9IuEMjOtD+ubc0aNHLabfvXt3TrmoKLtOnTo5Xm5uRq/Xi614cyQkJJgMWNI382zF19eXpk2bZrd/TOa3XyWePXtGqamp4ideEhMTs+RPVFQUPXr0yCT80aNHihf8rSGJwOxatclKX33o0CGxS5KbML6mHj16EJDxc1X25gHY9wWEvEKeEXVr166lYsWKUdOmTalp06Zi66NPnz5ERLR06VKqX78+NWzYkPz8/GzO1x5Rxzx/B43J4Ny5c+JdMVuQfr7FGQCgn3/+2SllM0xmyaqok5C+vOHIHZCsIL1LZs8WuD244vhlfE1PnjyhadOm2SXONBqNySsJrgT/71cL//u1b9+++Oeff5Camuok73Ifd+7cQeHChVG8eHFnu5IneeWVV5CcnAxnPHZPnz6Fh4cH8ufPn+NlM0xmuXHjBipVqoRr166hUqVKznbHoej1+mx7HqX/Xe5KQ7yjrmnWrFkYPny4S9WNBIs6C6KOYRzN+vXrsXjxYgQFBTnbFYZhXJg+ffrg1q1btv1rqTzCypUrUbVqVTRo0MDZruRaWNSxqGMYhmEYxgXI52wHGIZhGIZhmKzzwq/UERESExNRtGhRsV/PMAzDMAyT13jhRR3DMAzDMIwrwNuvDMMwDMMwLgCLOoZhGIZhGBeARR3DMAzDMIwLwKKOYRiGYRjGBWBRxzAMwzAM4wKwqGMYhmEYhnEBWNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVyAF17UERESEhJARM52hWEYhmEYJtO88KIuMTERnp6eSExMdLYrDMMwDMMwmcZlRN3NmzdRokQJNGvWDM2aNcOjR4+c7RLDMEyW0Gq1uHfvnrPdYBgmj1DA2Q44kqZNmyIgIMBiGq1WC61WK44TEhKy2y2GYZhM0a1bN2zcuJFfD2EYxiZcZqUOAI4dOwZvb2+MHDnSbCc4efJkeHp6CitXrlwOe8kweYfExERcvXrV2W68sBw6dMjZLjAMk4dwGVFXunRpREdHIzg4GA8fPsTWrVtV0/n7+0Oj0QiLiYnJYU8ZJu/QsmVLVKtWzdluMAzz/+zfvz/H3gF/+PAhnj59miNlMY7BZUSdu7s7XnnlFbi5uaF9+/aIjIw0m87Dw0NhjHWOHz/OXybJo7Ro0QL+/v42p79z5454ReH48ePZ5ZZL07FjR4wdO9bZbjA2Eh8fj/T09GzJOywszGHb5waDAb6+vujTp4/VtNWrV8f27duzVF7JkiVRqlSpLOXB5CwuI+rkgiM4OBhVqlRxojeZJzQ0FG5ubrh//76zXVHQsGFDdO7c2dluMJng0KFDmDJlis3py5Urh969e2ejR+ZJTU1VvPPqKLJjwA4ODjY7WG/YsAG///67w8t0BG+99RaWLFmC6dOnm/Xfz88Pb7/9ts15hoeHw83NDfHx8Q7yMmfx8vLCt99+axL+9ttvw83NDUWLFs1UvqdPn0ajRo3w119/wWAwZNVNcb/u3LljNe3ly5fxyy+/mI2/cOECrl27ZjWftLQ02x10AJcuXYKbmxsePHiQo+W6Ci4j6o4ePYp69erB29sbd+/eRadOnZztUqbYuXMngIyGnduIiopytgtMDhEcHJwj5RiLgMKFC6NQoUI4ceKEw8qIjIzESy+9hK1bt+L69euKOCLC48ePYTAY7BJ++/btQ9OmTbFlyxaH+SlhMBgwc+ZMpKam2pT+0KFDJtdliejoaPTr1w8///wzLly4oJpm5syZuHLlis15rlq1CgDsOscZpKWlIS4uTjVO7ZUd6XqePXtmNk/jL9vduHEDBw8eBADxKwx9+vRB/vz5M+VzdlGzZs1cs/iRlpYmBKv0TIWHhzss/8OHD4tvkffq1Qt//vmn2bTHjx/HxYsXHVZ2TuMyoq5Vq1Y4deoUQkJCsHLlShQo4Jwv9h4+fBjffPMNpkyZAjc3N7vPt+ecW7du2Z1/TnH58mXUqVMHKSkpznZFQERwc3PD5s2bs62MtLQ0nD9/PtvyN8fixYvx448/Ojxf4/Z44cIFh6w4AMDevXvh5eWlKiwaNGiges6FCxewZ88es3k+ffoUDRs2xMOHD0WYNDh8+eWXqFy5siL9/PnzUaJECXz22Wd46aWXTPKaPn06Tp8+DSJSfGkhNjYWAKyuJqSkpICIsHv3bpu34A4cOAA/Pz/MmzfPpvQtWrRA9erVbUprTFa2BRMSEjB06FCzKznBwcGIiIjIdP6ZISUlxaIY7tSpE4oXLy6OiUjUQWbq4sqVK/D09MTu3btFWM2aNfHxxx8DANavX69I/8svv6BgwYJ2lyP31x7MjSdJSUmZ9iE7cHd3x5gxYwA8v0ZH/ixZ8+bN0bhxYwDA33//jb59+5pN27BhQ7zzzjsOK1ti//79cHNzQ3Jystk0BoNB7FRotVr06dPH/tVvesHRaDQEgDQajcV0MTExdOzYMSIimj17Np0+fZqIiO7fv09RUVEiXdmyZQkAvfrqq5SZ6vX39ycAdPDgQRH29OlTSklJUaTbtWsXAaCTJ0+STqejSZMmmaSRMBgM1L9/f7p27RolJiba7RMREQCqVq2aOE5KSqI2bdpQbGysavo+ffoQAIqIiDCb55MnTwgAbdu2jYiI0tLSaN++fUREdOXKFWrevDmtW7cuU/6qodfrCQA1atTIYXka88MPPxAASk9Pt/mc7t2708aNG8lgMNCdO3fEPbpw4QI9fPjQpjwAEACKi4sT53bv3p0MBoOIsxUAVL58eUW+q1evpps3bxIAmjNnjs15ScifEYnx48cTANqxY4fJdZjzV4pLSkpSbRurV68mAPTHH3+IsPnz55vN96uvvrIp7q+//iIAdPToUSIiWr58OQGg1157jbRarVk/AdDatWsJAO3evZuuXLlCer1e9dr0ej3p9Xr6999/CQCNGzdO5GHunPT0dJFGp9ORwWAgIqJRo0bRr7/+qkh74sQJhV8A6MSJE3T16lXKnz8/ffLJJyb+y0lJSSGdTieOJf/atm0r0h8/fpyIiA4cOKDI4/Hjx/Tmm2/SzZs3Va9DjsFgoMWLF6vWqzXy589PxYsXNxtfoEAB4dOzZ8/I29tb+Onm5maS3lp7/Oeff0R8165dFecYn28tLwmdTkfFixen/fv3m8SlpaURAGrSpInFPORlx8TEKMKlftAWX2xJc+XKFZo8ebJq3LFjxygtLc0mX2vUqEFERN26dRPPlkRiYiJdvnzZaj6W8s+XL5/4bOma7O0vk5KSKDIyUhzHxcXRP//8Y5KuY8eOBMDiM+Dn50cAaPjw4bR9+3YCQJMmTbLZF6KMWcoLja2irnjx4gSAkpOTCQAVLFiQpkyZIhqAn58fxcbGZlnUSflJou7GjRsEgKpWrapIJ938gIAAMQjMnDlTNc9Hjx4RAKpVqxYBoP79+9OzZ8+IiCgoKEh0HjqdjlJTU6l379706NEjE7/kok4SlcOGDVMVdn379iUA9Mknn5ith/PnzxMA6tWrFxE9HySioqKoaNGidj9ccv777z+TTuDZs2cEgMqUKZOpPIme1/vJkydpyJAhlJycrIiXfE5NTbU5T+kc6forVaokwkuXLm31fPnAPnjwYCIiatq0KQEgrVYr4qpVq2bToCqlX7Fihfj81VdfUWRkJAGgvn370oQJE0zaiDEpKSlUo0YNmjp1KgEQkyIJSdTt3LnTpGwANGLECCLKuJcARHuRrhMA1a5dm4gyJlenTp2i9u3bEwCaO3euyFNN1Gm1Wlq2bBk1aNDA7ADXvHlzEf7tt98SABo7diwBoGnTpinq1VwdAhkiGADNmjWLAND06dNV66t48eJUtWpV2rlzJwGgAQMGiDwePnxIBoNBiDaJSZMmKcqSBgC16/nll19MxEWNGjVUr1/tfEnASchFp2RhYWFERDRjxgxFHj/++CMBoI4dO9Ls2bMJeD4BMebQoUOijgMCAmwSBUREd+/etWvAVhNbAwYMoEqVKtH169dN0hApB2zjupP6Y2tlWOvTEhISCAD5+vqaxEnPsz2i7sCBA4pwnU6n8OXWrVvi+SIiCgkJoYULF9LQoUNFGksCu1q1aqrX9ODBAwJA/v7+JnH37t2je/fuKXytWbMmERF17dqVAFCxYsXEJO3jjz+2aSyIj4+nGzduqNaFvaLuyJEjImzw4MHUoEEDRTkFCxakU6dO0ddff63Ir0OHDgSAEhISFPlKk8Tp06cTANX+s1y5cqJ8SdRJgjklJcXs5E7hv9UULo4lUafX62nIkCG0atUqk4dSmvHJTZphAOqi7saNG/T48WMyGAw0efJkevz4sUmZ8s7533//pZEjR4ow+WqHFLZp0ybatm0bAaApU6bQiRMnqHPnzoo8Hz58qOqrPB8ionz58oljf39/iomJocDAQDp8+LDJgyCJOnMPiCTqJAsPDzeZeV64cIEAUM+ePVXPUct77969NHLkSNMbaaYeJS5fvqzIc9euXSbnREZGUmBgIBkMBtqyZYtiAL1165bobOW2ZMkS1XKrVq1KJ06coLS0NIqKihKDhNqDLJ1Tu3Zt8fnevXtWO586derQxo0b6dNPPxVp33nnHQoMDBQrENLMXrLx48cr8nj8+LEQ5Zs2baI///xTpHV3dxefO3ToIERdy5YtCQB16dJFkdf27dtp7969pNPpqE2bNrR06VKT+lq7di317NmTJkyYIATy6NGjTepCMrn/ltqHNOmSTL6a+Mcff5ikl4syc22tWbNmJvF16tQhAGLgkezEiROq9xR4LgSlv926dSO9Xm+ymiull0SdmkkiVmLQoEGK+IIFCyryIiLavHkzrV27VuwCWDJjX9T8e/XVV+mjjz6yKOrkYVFRURbLmzVrFoWEhJjUe7t27QgATZgwgebNm0c3btyg8+fP07p168jDw0OIvVOnTpnUmTmsXb/8Go3TJycni4E5MTHRprq0Vs9qyPuZ27dvi/DQ0FDavXs3AdZFnXyF3pqo27BhAwGgGTNmWPTZYDDQ/fv3TSYlb731luKaEhISKDY2VqzsS+du3bqVZs+erShD7mutWrWI6PlKnZeXF73yyism9fb48WOTHacdO3YQAKpSpQoBoC1bttDTp09FvHT+0aNHzd6D6Oho2rRpk03Pg7TqXb16dapQoYIiTlrIMNYUhQoVUuSttotVvnx5ES+N65MnTxZj8MCBA03OMYZFnQVRJ5/52WI9evQQnz09Pc12ipJ17dqVAgICFCtKxmlGjRqlON69e7ci3YYNGxSirmbNmqLc1NRUMhgMdPz4cZN8mzVrpnjw3377bUX8yJEjRWOtXLmyCE9ISKCiRYvSwIEDTRr/3bt3xXWYG4Dff/99KliwoBB0wHNR179/f9VzJPErzYisdYry+pGQZj2WOlYpXEo7b948IiIhTqpXr26Sx4QJEyzeY7lNnDhRfC5fvrxYjZXCpHtnbF5eXmavsUyZMqrnNGnShIDnkwvJxo8fTz///LPYmmvYsCEBUAhDyeSi7ptvvhGiTp5WGozfe+89EWZOMAFQTBzktnjxYtVweZsoXbq0apro6GjVcCKi/fv3q4ab84+I6MyZM2QwGMjHx8fi/TS2ixcvUpkyZRRtW25ubm7ic+vWrU3aoK3lyDEWdQBo5cqVqtcqnyCasyVLlpgtyzitJFLlFhYWJtqJZKdPn7Z4LfLPUrsFnq/yS6t8xvbkyROz9bZ48WLq3bu3wn95f2eLqU3mW7RoQQBUJ3jGVqlSJZvuoYRWq6WyZctSYGCgSPfxxx9TQEAAPX361CSPw4cPExHRwYMH6aWXXlKspsm3WCVRZzAYaNeuXYqVfQC0fv16Ap7v9JjzuWPHjtSmTRsCQPHx8aIsSUgZtxNplwmAWLUDQO+++674HBMToxCZP//8s8U6HTNmDAGgsmXLKq61cOHCqunXrFlj9pr0ej19+umnFp8L42s6deoUxcXF0ZYtW8ymlVYV79+/T8OGDRP3pWDBgor0QUFBNGfOHFq1ahWlpaVR/vz5FfETJkwgIGNcl78KYg0WdRZEXZcuXezqBOSzCknUybfhLJ2r1+tV33kZPXq04rhz584UFhameCCljvijjz4S4cZiUM0++OADs3GDBw8WjVC+FSpfTZKbJByLFStG9+/fNyvqJJOWqAHQd999R0Sk2G4ytvv37yuOpZlaWFgY/fTTT4r7lpKSYvIASDM5tYfQYDCILQggo3OTp7Hl3q9bt05R/7ZYgwYNFJ21sbCW2/r162n58uXk7e0tVhkB86KuUaNGquHy1ZU7d+7Y7GuVKlXI19eXAFMBaGsdZZft2bNHNTw1NVW1jRu/UyS30NBQ8blEiRLZ7rvEG2+8kS35G4v6zPh3/fp1OnLkiEmcmqg7ePCgSZjauebKUguXJpdqZrzqpBa/aNEiSktLM1kpyYxJQs2ccLenXuPi4gjIEPs3btwQ/a3aBEs+oZXb1atXxWsCQ4YMEbsLcuE2Z84cWrFihViFUhMkQMbrAXLxpWYeHh4EKEWdFCeVLR3L36uUr9oZ2+bNm7NUl506dbIYbzxRkcwWYU5k+g6ipbTS61kAxOsl77//PgEwEXX169cXn+UriMbWu3dvxcKKNVjUWRB1WWlokqiTbsLt27czlc/3339vMX7RokVZ8jO3WFRUlOqqg2Rq7wN17drVZNDq3r276CyBjAe6d+/eqnm+/fbblJCQIL7UoWYjRozItmv+8MMPFS9a22oVKlTIdPuUtk6zYsbi1Vqnmt1WsWJFs3HSICQ3S9ub0splTpm0peXM+rNk8nfjstvUJl7WTG0XQs3mzp3r9LrMCTt79iwRkeqrD1L/aq6ftTYRl5u0tfm///1PhDVo0ECx0io3uSjJLWaLqPv9999tzm/YsGH0zjvviGNJ1JkzcxNya2YNFnU5IOrq1q3r9Aac223ixIkWZ+T22Icffuj068luy2r7ZMsd1qdPH8WqNRtbVkz6FmZ2l/PXX3+ZvFed10x6bSmvmTXc/r8BvLAkJCTA09MTGo3G5F+GZeZ35iSkPBkmOzh//jxq1qzpbDcYhslFVKlSBa1atcIff/zhbFeYbMKaZGNRl02ijmEYhmEYxpFYk2wu8x8lGIZhGIZhXmRcStT5+fnB29sbnTt3zvF/QswwDMMwDONMXEbURUREIDY2FiEhIahRowYCAgKylN8LvivNMAzDMEweI0dE3aVLl7B8+XJcvnwZQMY/e+/fvz969uyp+CfZWSEsLAy+vr4AgJYtWyI0NFQ1nVarRUJCgsLUuH//vkP8YhiGYRiGyQmyXdTt3bsXderUgZ+fH+rWrYu9e/fCx8cH0dHRuH37Nj799FOHCLv4+HjxRQdPT0/ExcWppps8eTI8PT2FlStXTjXdyy+/nGWfGIZhGIZhcopsF3Xjxo3DTz/9hCdPnmD58uXo1KkTvv/+e+zfvx8HDhzAzz//jClTpmS5HC8vL7HqFh8fj2LFiqmm8/f3h0ajERYTE6Oa7tVXX82yTwzDMAzDMDlFtou6CxcuoEePHgCADh06IDExEe3btxfx3377Lc6ePZvlcho0aIB9+/YBAAIDA9G4cWPVdO7u7vDw8FAYwzAMwzBMXidHvyiRL18+FCpUSLEKVrRoUYf8SG/dunVRqlQpeHt74+LFiwrhyDAMwzAM4+oUyO4CKlSogOjoaFSpUgVAxhcaypcvL+JjYmJQunRph5Q1Y8YMh+TDMAzDMAyT18j2lbr+/ftDr9eL45o1a6JAgedacs+ePWjevHl2u5FlChcu7GwXmFzCvHnznO0Cw7zwfPPNN852gWFyH7b+43tXRaPREADSaDQmcZD9E92mTZua/Qe7Xbp0ccg/6tVoNFSsWDGLaYoUKeL0fygMgJ4+fUqRkZHZWsbUqVNp/vz5Tr9Wuf3vf/8zaRuuZF5eXlS6dGmn++EI++mnn5xSbufOnSl//vz0999/O70OXNnS0tJUw0+cOOF03/K65eY+7pVXXnG6D86yatWqWdU0LvPjw85kyJAhDsnHw8MDmzdvNgnv1auX+PzRRx+pntutWzd89tlnmSq3YsWKZuM6deqkGv7qq6/i3XfftZiv2s/KvP766zb75ebmhoEDB4ov0owdO9bmcx3NjBkzsGrVKuzatcskbs6cOWbPM3e98+fPt1qesyhZsqTTyv70008Vx/K2by+jRo2yKd2NGzfE51WrVtldTpMmTRTHq1evhk6nU+xISGzduhUHDx60uwxLTJgwwWqarl27mo1LTU1VHC9fvjzLPtnK3r17TcqXMNfXSRQsWFA1/IMPPrC5/Ndee82mdNOmTROfP/74YwQHB9tcRnYxdepUm9LNmDEDw4cPd0iZjRo1wvHjxy2msXbfskJcXByePXuGCxcuAIDJGPT222+L17s8PT1F+KxZs7LNJ1uZP38+2rVrh5CQkEznYVPdOnbdK+/hiJW627dvq4Zv375drKzly5ePAFD37t0VaU6fPq2YHRmXC4CSk5OpTZs2BICWLl0qwgcMGCA+z507l1atWmVy7vDhw6l58+YW1X9oaKjZuAcPHtDs2bNNwiXeffddcbxlyxaTNMbnnT59mhYtWmR1RlKwYEGKiYkR5Wzfvl3MzCtXrmySvnXr1tk6Q5L7Ir+u+fPnExHR2bNnVc/bsWOHarjBYKBatWopwlasWEERERF09epVIiK6dOmSIn7dunX04MEDevDgARER3bhxgw4dOkRVq1alKVOm0MqVK+njjz8W6Q8fPkxHjx4lIqJff/3Vpuv08vKievXqKcKWL19uNr2vry8BoH379qnebwB05MgRm8peunQppaSk0MKFC0XY+vXrM33PiIgSEhIIAE2bNk2Ef//99+JzixYtFH4TEZ0/f54qVaqkSAeAqlSpYvZePnnyhICMVQSJf/75R5EuISFBxH3wwQd04MAB8vHxyXLbnD59utU0YWFhFutJfo/N3ceBAwfa5dc333wjPiclJammOXjwoNny/vzzT6v31zjs888/N5ufmpUoUUJ8joyMpMmTJ6umk7efp0+fKsqoWrVqpu7b/v37rfbNclu5cqXV6yciatasmUm7s7TjIfUNnTp1stoGmjRpQkREt27dMptfXFyc+FysWDG6ceNGpupHsh49eij8koiOjqb79++LuLZt21JQUBD17NmTAJCnp6fivJEjR9L3339Pv//+uyJ/W8YjuRUvXtxs3NKlSxUrxfI2LHH8+HECQN7e3hbLSUxMpHnz5hEAGjRoEB07doxSUlLIGizqHCDqzDVwIhKCaejQoYpjAOIGGd90eR716tUjIqLPP/+cgAyRJcVt3bqVfvjhBwIyxIXa4GmcZ6tWrUzShIaG0uLFi81eAxFR0aJFVcOTk5OFCJEaq7mOISAggIiIDAaDCNu1axc1adKEfH19Ff6b4+LFi/T48WMTP8+dO0dpaWmUmppK77//Po0YMcKmB/SHH35QFeV9+vRRHN+9e1e1bUhcuXJFhJUtW1Z83rFjB33xxReq9SqJup9//pl+/fVX1euV0u/du9dsnciRty85xoJfPjmQm5eXlxi827dvTwcOHDDxRfLbzc1N5Gs80ElWo0YN0uv1irB3332XRowYQV999RUBoIULF1JqaqrC38aNGxMAun79uqJtfv311zRp0iTVNmCu7ardM+M0ISEh1KZNG5NzpP4BAGm1WtqwYYOijNatW4u0165do4cPH4rjFStWWPSHSDkA9+7d2+QcIKNDlz7LBzFJZB49elSEyUXCyZMnxWdjURcSEmK2jyAihQj4+eefaevWrWaFmWQdO3akSZMmieOEhAQ6ffo0PX78WLVtABkTD+O48PBw+vPPP60KeiKipUuXUoMGDQgAvfXWWybXojaZkW/fySdWREQPHz5ULUsu6uLi4hRlBAQEUIUKFcSxn5+f4lx3d3fFcd26dQkA3bhxw6xwrVGjBpUoUYIKFy5s0m7r1KlDEydOVK1TIqJ169YpwhITEyk9Pd1sPe7Zs4fu3Lmj6JfN3a/GjRuLOv7f//5HgHKSNHjwYMW5vr6+JvfEXpOE9ocffqj6DBm347S0NIqNjTURdWrnSO3NVl/mzZunWLzYs2cPARnPolr+8udVQhrn/P39rbZvooyxRavVql67an3YnNJFsVXUNWvWjJYsWaJa+Tdv3hSf5bMAIlNRJ+9cjctRK3fHjh1ERNSuXTvRSN59910qUqQIEZF4b2fRokVERDRnzhzVhiEdP3nyxGT1KDQ0lIiIxo4dSwBoxowZJg/Rtm3b6LPPPjP7kEisXLmSOnfuTOXKlSMiokOHDtHXX39NQMYAbe6arYUbY7y6eO7cObN5Sauklh6ce/fuUUBAgMk9bdKkCf35559W/ZR3iG+88Ybi/qkNhkTPB3RL2Fofcs6cOUORkZGKMLl/AOjs2bP09OlTOnbsmPATUIq6kydPqvoirc7mz5+fiIjS09NN0hj7HRkZSb/99hvNmjVLhEkCZuHChRavJyIiQuT3ww8/KMoqWbKkarnffPONST5yn+ypVyBDwErIBwG5iDPm8OHDqnUhRy7Cvv/+e1VRJw0cUh7bt2+nihUrEhGRXq9XXE96ejp9+umnBEAhfMPCwmjYsGHiWD6RUasfc3UEgDw8PBQ+SabT6YiISKfTqfan7733Ho0bN478/PyoZMmSwi8i5cqPcf0tW7aMEhMTTQSQsV9dunRR9f3q1avk7+9PqampBEDUDwDasmULLVu2jPz9/YmIFJNmuamJOunebd26VfF+HxFRkyZNxHFUVBTt3r1biL3hw4cLPw0GA3l4eCgmzcZYaj9qz9vatWvFcffu3clgMKimLViwIAGgO3fuqJalVg+NGjUSaaXdEfkK7pAhQxTnylen5flIq9jW3iEHIMbdQ4cOWawDY6Q2phbXrVs3qlWrlkndfPzxx2IlTrrnVapUoadPnwphdfDgQZFe6tulFX+JSpUqiXJr1qyp8EGn05G/v7/YRTC23r1729w3qdZHps90ESyJuitXrogZrTQDkcSV3OSdp06nIwD0zjvvEBFRYmIivfnmm3Tx4kUiyhhwAdB3330nyilTpgwNHDhQHNeuXVvkt337diJ6LriePn1KBoNBdObSw7F8+XIiItq7d69qxwc835qQjuUdPBHRxo0bCcgQdXfv3qVnz56Z1ImlDsYeLHVg0kBtCePV0bNnz5qkiYiIoI0bN9LFixcVszbJateurUgvFz7Sdtpnn31ms/9SWJkyZQgAtWzZkhITExVxwPPZ7oMHD2jdunUWr/O9995zSH1LJCYmmgg+uf+vvvoq7du3jwDQo0ePTNK0bNmSgoODyd/fn4KDg1XzsNXf2NhYevPNNxWDijmkVSdrou7EiRO0cuVKs9dnPGDZApAh1M3lZe1cIGNFWo0WLVqINN9//71iG1Rqv5KA6tu3r8VypIGlY8eOog1Lq3zSxO2///6jChUqkFarJW9vb2ratKnZa7p3757qCvWMGTMU6TPTJ6SkpNCSJUvEoKpWPlHGqoaURq/X09atW2n48OF0/vx5RbqoqCjF1lRAQICYEMu5ePEiJSYmmr0vclEnTW4BiG0wqV6Jnk9KpFccjP0/evQo/ffff4prbt26tcmrHKmpqUJwmusTzdWvvP6lnZA1a9ZY7J8kU1uZBp6L4+joaIqIiKDY2FhxzqBBg0Ra6ZWg/v37i3hpx8Fa+dKk+b///lOEywUpkLGSqtPpaNOmTYq2Ikfywxj57ok15OmePHlCt27dEuGdOnVSpDUYDLRixQqKj483K+qkVXQiU1En59atW4pV1NKlS1v11eq1ZDmHPI4lUSdx4cIFodINBoNi8L9//z4REXl4eBAAsdVUs2ZNs/mtX7/e4nJqTEyM2DaQBjydTkdXrlwxSZuWlkZTpkyhtLQ0IsrYDv3yyy8pPDxcsXp1/fp1Sk5OFseS/0lJSSJMLurM4ShRd+XKFUWHJ6HRaFTFpDHyZW0A4iE0h16vp5SUFIqKirJ4DSdPnqTdu3cLUSd929UYtTyOHz9O8+fPF4OqnClTptC+ffsoJSVFsbJljZSUFItt05EAECtAmUW+iuxIpM7fnKhbtmwZnT592mIexqKucuXKNpVdvXp1Wrt2rdm8LHHo0CFaunSp2Xj5O5B9+vQRok5aeSciIerGjBljNp89e/YIsfHkyRNx/v3796lz5842bd+MGjXK5m1+oqyJOkv55QT169cnIGMVVI5cwOj1egoKChLbX1988QWVL19ePL8Gg4GCgoIc5r+bm5vdok56Z9vNzU2sigUGBtok6jp06GCS36VLl0ze25L62urVqyvaUdu2bcVkAwB9+eWXYoxRK//o0aP00ksvWfQrPj5eMcbWqlXLXHUJ9Hq9WCU25vDhw6ri3hhzdWw8WTDGYDDQb7/9ZjL+SK/vEGVMJEaMGGG1/Hbt2ln10xZY1Nkg6tQwbgSSqDMYDNSlSxc6duyYo111KGqN2BZRFx4eTlFRUdntnk1s2rSJEhMT6cKFC3adZ0vnazAYqHfv3uJ9QWOaNGmi2EaRk5qaalVk5kbWr19PN2/ezFIeer1erCI7EmuizhaA5+/A7d6926YVQnP4+voqtqIyyyeffCLaY9++fVVF3e7du62KOmcgCYo///xTvF6SFQDQa6+95gDPrJOcnEzjx483EQPyVRNzK0PmyKqo+/nnn82KOh8fH9VzEhMTLb46JMd4q1NN1KkhrUatWbNGET5r1iwCMrZcgYwvfkhs3LiRNm/ebJLXwYMHqX79+oqwH3/8UfgkvxZbRZ0jmD9/vtiNcwRpaWl07949m9Pfv3/f5L3izMKizsGiLq+g9tBfuHCBgIyXqF2ZnFwRYByDJOrkHS8A6tq1q815SCsAuQnpPdVq1arRlStXTN6RJSI6deoUARnvIeUmoqOj6d9//3VYfo8ePVK8g5XXyK5+RafT2T1RWrhwIc2dO1cRdu3aNQKef5vUVlFnDoPBQI8fPxZfZLK2Um4JaXJj/A6e8SsyjHWy/d+EvSgUKVIECQkJznbDZu7cuQM3NzdFWI0aNaDT6ZA/f34necUwtvPgwQPF/5G2hnF7zw0sXboUf//9N0aOHAk3Nzfx+1teXl4izXvvvYeIiAirvwuZ01SuXBmVK1d2WH62/mbci0Zm+uP+/fubhFWqVAl79uxBlSpVsGLFiiz75ebmhuLFi+P7779HrVq1ULdu3UznVaJECQCm15rZ3159kXEjInK2E47g5s2bqF+/Pt555x0AwKZNm0RDsURCQgI8PT2h0Wjg4eFhc3knTpwAAHz44YcAgOjoaISGhqJbt26Z8J7JSQYNGoRr165hz549znaFsZGkpCTUqFEDu3fvFs+4K0JE2LZtG9q1a5crRShjHul+5fYhVRrzVq5cafFHqXMSjUaDAwcOoH379iIsMTERr7zyCvLl4/+RYA8uJer8/PwQEBBgMZ1Wq4VWqxXHCQkJKFeunN2ijmEYhmEk8oqoAzJ85EmDa+JSEvjYsWPw9vbGyJEjzT5YkydPhqenp7By5crlsJcMwzAM4zxY0LkuLiPqSpcujejoaAQHB+Phw4fYunWrajp/f39oNBphMTExOewpwzAM42oY/99ihnEGee6LErGxsfjqq69Mwnfs2IFixYoBANq3b4+wsDB8+eWXJunc3d3h7u6e7X4yDMMwLw7bt29HYmKis91gXnDynKgrVaoUjh49ahIuf5iCg4NRvXr1nHSLYRiGeYHhBQMmN+Ay269Hjx5FvXr14O3tjbt376JTp042nVe0aFFoNBoULVo0mz1kGIZhGIbJPlzm268MwzAMwzAvMi6zUscwDMMwDPMiw6KOYRiGYRjGBWBRxzAMwzAM4wKwqGMYhmEYhnEBWNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgXgEUdwzAMwzCMC8CijmEYhmEYxgVgUccwDMMwDOMCsKhjGIZhGIZxAVjUMQzDMAzDuAAs6hiGYRiGYVwAFnUMwzAMwzAuAIs6hmEYhmEYF4BFHcMwDMMwjAvwwos6IkJCQgKIyNmuMAzDMAzDZJoXXtQlJibC09MTiYmJznaFYRiGYRgm07zwoo5hmNyHu7s75s2b52w3GIZh8hQuI+pu3ryJEiVKoFmzZmjWrBkePXrkbJcYhskkaWlpGD9+vLPdYBiGyVMUcLYDjqRp06YICAhwthsMwzAMwzA5jsus1AHAsWPH4O3tjZEjR5r94oNWq0VCQoLCGIZhGIZh8jouI+pKly6N6OhoBAcH4+HDh9i6datqusmTJ8PT01NYuXLlcthThmFsgb+RzjAMYx8uI+rc3d3xyiuvwM3NDe3bt0dkZKRqOn9/f2g0GmExMTE56yjDMAzDMEw24DKiTv6TJMHBwahSpYpqOnd3d3h4eCiMYTLLf//952wXXJYnT5442wWGYZCxw9WkSRNnu+FQiAgnT550thsOx2VE3dGjR1GvXj14e3vj7t276NSpk7NdcgotW7ZEr169Mn3+77//juvXrzvQI+cwe/Zs3Lx5M1vL2LFjBz788EPs378/W8uxhMFgQHx8vNPKz270er2zXWCYF56RI0fi2LFjznbDoaxevRoffPABTpw44WxXHIrLiLpWrVrh1KlTCAkJwcqVK1GggGO/2GswGJCenu7QPLODwMBA/P3335k6l4gwduxYE0G8fft2uLm55amfiRk2bBi++uqrbC3j9u3bAIDY2NhsLccSI0eOhJeXl93n3bt3DytXrswGjxxLdr1X9/Dhw2zJNzv45ptv8PLLL2fq3NOnTyMsLMzBHrkO4eHh2L59u7PdYJyA1H/npb7AFlxG1GU333zzDV566SVF2MmTJ/HgwQMneWQ/ycnJFgdJKe7EiROKFZLdu3cDyBACWSEuLs6s4Lx69SoWLFiQpfyN0el0Ds3PGIPBAADIly9rj1FKSgrc3NywadMmu8/ds2dPpsr84osv0L1790ydm5Nkh6iLiopCyZIl88zPH23cuBEpKSkW0xARVq9eLdp8WloaHj16hHr16qFRo0Y54WaepH79+mjXrp3Tyr906RI0Go0izGAwYOXKlaJ/yQts2LBBMen39fXFwIEDneiREp1OZzL5dnNzA+B6X8hiUWcjagPABx98gA8++MAk/MSJE3Bzc8O5c+dywjWbeeWVVzBx4kRxHBcXh6dPn4pjeeM290WTrNC3b1/06tULz549M4n75JNPMGjQIFy6dAnh4eFZKke6Djc3N+zevRtubm4YMWJElvIEMoSnvKOVPhsMhix1DNL26fr167Pkn3GeloSA2k/5zJ49G2vXrjUJ1+v10Gq1dvsgrfCePXtWEf706VOb25cjBrbWrVtjw4YN4vjOnTsAgIiICJvOP3HiBM6fPy/OswedTocFCxY4ZBvZ0vbXkSNH0LVrVyxatAgA0LVrV7z++utZLtNgMMBgMJhMXh89eoRKlSrh7t27mc47ODgYcXFxqmXu3bs30/nmJWrUqAFfX18kJSWJsM2bN6N79+6KNutM/vnnH6tpOnbsiG+//VYc79+/HwsXLnS4L5GRkdi3b5/d540YMQKlS5dWjbOl7z558iTc3Nwc/p7v5s2bs/QMqUIvOBqNhgCQRqOxmA4AGVeXFAaAZs+eLcLffvttAkAfffSRIv2WLVto0qRJ9PDhQ1q5cqXDrsGcnwcOHFD4BYA++OAD1bRERDqdToRt27ZNhPfp04cAUGRkJL3//vvUokULRZk7duyg/fv3W/XN19dXta5PnjypqEu1ZjlhwgT66aefrJZBRKTX603yM87zyJEjBICePXtmU5537twhADRnzhwRNnPmTJG3n5+fIn1cXBwZDAab8r537x4BoC+//NKm9HLeffddcW03btygnj17iuuvU6eOSXqDwWC2TszV/aeffqoabg1z5dSoUYMA0M6dOxXhFy5coPj4eMW5ycnJdper5kf+/PnF8aFDhwgA+fv7E1FGuw8ODrb7Omxh5cqVBIDWrFlDOp2OoqKiVNM9evSIxo8fT3/99ZfJdRuXP3z4cAJA169fpxMnThAR0c6dOwkATZgwgYiIihQpYpPfBoOBli1bRikpKarxtWvXFnkEBgaK8DVr1hAAmjt3LhER/fvvvwSA7t27R0RE58+fp6CgIFHGwoULxbO2e/du6tSpEwEgb29vkzIXLFhAACgsLIxWr15Nb731Fk2dOpWSkpLMXofE8ePHafv27aTT6aymJVK2+T59+tD8+fPJYDDY/OwSZfQNU6ZMoXXr1tGPP/6omubgwYOUlpZmtnwA9ODBAyIi+vvvv0XYjz/+aNczsGXLFoqIiFCNS05Opps3b9qcV3BwMJUrV07h4549e2jXrl2q11G3bl0iInr27FmmnxdLaLVak3z1ej0lJiaapH3y5AmdP39eHL/33nvivJSUFEpPT6fJkycTANqyZYvVsocNG0YAKCQkJNP+37p1y6RdAaBatWrR7t276fHjx5nOW5GnQ3LJw1gTdcHBwaqNiUj5QJYvX552795NRERVq1YlANSiRQu6desWhYaGUmJiokgriRsioqSkJHr69KldPqekpNDvv/9usZMICgpS+CwN5pZE3datW1UHArmos1QPv//+u4lISklJofv37xPRc3Gg0WgoKCiIjh8/blKPkqk1fls7Cbk4ldvTp0/pxo0bRETUvXt3AkCXL1+mhg0b0r///msxz7NnzxIA6tOnD3Xs2JEGDBhAEydOFHmXKVNGpH369CkBoIULF9rkr5qoW7VqFW3cuNHsOYGBgVSmTBkx6BIRffXVVwSApkyZIvw6fPgw1a5dm/R6PRERpaam2i3qLIn/06dPE1GGqIiNjVU9Tzr3+vXrFoW2fOCQPksDeUhICEVHR1NqairVqVOHzp49S0QZ7UttAI6Pj6f09HSRb758+UTc1KlThagbNGgQeXt7EwC6cuWKST7GEwRbWb9+PZ06dYqWLFlCAOivv/6ipk2bEgBKSEgwSd+1a1cCQBUqVBDiaN++fSb1KE0u5P1IUFCQEHUTJ04kIlNRJ9XXP//8I8JSUlLo9OnTBIBGjRql8Ofu3bu0fPlyRR6zZs0S8evWrSMgYzKblJRERYsWFUJM7jMR0blz5wiAmJTJ8yxbtiw9evSIgAxBKj1nAGjfvn1UokQJRf+iRnJyMk2aNInS09MVeW/fvl20ATXk7VjeP5cuXZqqVq1KaWlp9OWXX9L169ct3utPPvnEYhuJjo4WcSEhIZSYmEjdunVTlAmAxowZQ3///bdC1BnnqdfrhZDftWsXabVaRVlqPly6dIkAUMmSJUV7kYiLi6Pbt28TUcZYWLt2bdFHVq5cWbUfNe4LQkJCCHgu6mbPni3SPXnyhI4ePWqx/tRITEwU46lEvXr1FOXr9XoaOnSoOL5586YQ8zVr1iQAtGrVKiJSijoA1KxZM9FPrl69mgDQpk2b6O7du3T37l0Tf6SJlNrk7/Hjx7RkyRK6c+eO2eu5ffs2AaAlS5YowqWxAwA1bdrUxtqxDIs6C6Lu4cOHBIB+/vlnk8bcunVr1cb+5ptv0ltvvSU+u7u7m6T58MMPRQORZkI6nY7mzJmjEGpxcXEmfsmFVa9evUx8NvcASoOTJOqkmbYULwkRtQdXEnVnzpxRxIWHh9Ply5cV5/Tt25d++OEH0uv1lD9/fkV6qVPZsmWLCP/xxx9VfZaLT/l1ScydO5du3bolVhhSUlJIr9fTo0ePaP369WY7IwCKmeSFCxcIAFWsWFHkc/HiRRo+fLgQC6dPn6Y///xT1LlanqVLlyYiotKlS1OzZs1E+JQpUygpKYlSU1PNtMDnqzny65MfGwwGmjlzJq1fv17ES52WtOplMBjo66+/NnvNUgeZnJxsdgAyNyhJ4Zs3b6aLFy/ShAkTRNivv/4q0rz22muq50kmiU618o0HZMmkWbhxeLdu3Sg+Pp6ADMEkJywsjABQ165dxblubm5Uvnx5+t///ify8Pf3V+QZHh6uyOfGjRuif5DMeBCViImJUQgIKb0k6uQ2a9YsMZBGRUXRgQMHqF27doo0vXv3JgBihUCyfPnyic+FChUiALRhwwYxkEqizrjMESNGmNTxtm3bKDQ0lADQkCFD6MaNGxQdHU1EpqIQAHXs2JEAUL9+/cQz1rdvXypWrJhIExoaatKWIiIixLEk4CR78803FX3aBx98ID4fOHBAIeqGDh1KRBn9cmJiIv3++++k1Wpp4cKFoi0a+zxgwAAiyhAf0sSGKEMAjB8/XqRbtWqVybkXL14kANSwYUPFSmbfvn3p888/J71eT7GxsYrnHcgQy1I9EBFVq1ZNxE2dOlX0JcuWLVNt82qiLiwszEQ8AqB69erRp59+Kq5N7RmW9/WS6fV6Sk5Optdee40A0LRp0+iHH34QbSUqKkrVN8mkcUq+kguA5s2bJyZNUt1J/uzbt48A0NWrV02eH71eT+vWrRMr2VI/e+zYMZNnSvL/5ZdfFsfSZFXeHwGgwoULE9FzUSffqZg2bZoiTx8fH9X6IyLy8/MjAHTkyBERptPpKDExkapUqUIAqFSpUibnSYSHh4u816xZQxqNRqxuS+Nk1apVxXO1YcMGkzxOnjwpFkgswaLOgqiTGra8Y+nWrRvdvXvXYoOXbrI5K126tEnYZ599RgDozz//VAzyr7zyisKnxYsXK84zRq08aatR6jSNO41Dhw6Rm5ubyXlEROPGjRPH8gHGXFmS3bx5U3Fsrc7UbNGiRWKWLIWFhISYbCFKs/sBAwaIrW9LJj3gAMQ2EJAhfOQd8JEjRygmJsYmX6UH2lx8tWrVLLY/eb3K646IqE6dOorjbdu2meSv1+upQ4cOZsvfvn07EZHJ6sCZM2eoR48eCt+JSAwS0sAGQHRschs5cqTi3H379tGqVatM7hEAxeAvr3Nppq9mY8aMUQ3v3LmzEAAdOnSgqlWrUuvWrRW+FCpUSByrtW9JpEi2d+9esX0oCaDXX39dkaZXr160adMmqlevHiUlJdH169eFcPv6669p06ZNVp8NyXr27Gn3M6FmmzZtEp/NiToAimcZyBB1x44dM0knbU8bm5eXl/i8YcMG1TQHDhxQ9DcGg0Eh6oxFAACx6geAXn31VfH54MGDQnQAGcLT+NpWrFhBc+fOtVg/khiS2oOxsAQsizoA1KNHD9LpdGJVB8iYCFoqV5oAyMPeeust8Rw1b95c9Tw1sSftcpizFStW0ObNm8WxHLW237dv3yy1ufbt29OVK1dU47799luTMCKlALx79y599dVX1KtXL0pOThZ18vLLLxMRUZs2bRRtyHjFvFu3borjgQMHis9PnjxRxP3555+iz5fnM336dEU6+dghceXKFdq2bRv99NNPBDxf5UxOTlaMFWr1TkR06tQpWrBggcm4bYtVqlRJ5CM9I/IdIXOwqLMg6iShZWzStoc5M34PwR77+eefFTMG44ZinL5jx45ERBZnVqNHj86UL9JMQs2WLl1q8VxpBUwycx2ANXv77bdpxIgRigf0wIEDma7f7DJrog7IWI199uwZ/frrr/TZZ58RUcbSvXE6aTsQgElnYO7abemkr127Rm+88YYirHr16gRkrC5IYdLKrDSztmTSe2nG4cZb+Y42aQUAADVo0EB8lm/dSnVub97y7TJjk0/IGjVqpJomKSkpR9qcZPLVx++++85sO+zRo4dN+Xl4eKiGe3p6is/GAtGcGQ++1kwuHGfPnk3FixdXxBtf219//UXz5s2zOf9ly5ap9pVqExZ52Lvvvive9bPVunbtSgkJCWbjpVV2Yxs8eLDdbeDLL780qaeDBw+KVUxnm/EESm7GK2bh4eH0xRdfOKzsTz75RLF1K9mMGTPM3g+ijPdCpWNpt87X15eePXtmVmRv27ZNsduWVd+DgoIUk3rJN0uwqLMg6sy9U6C2DO5IMx4s5Eu+aunv379vMT97O9bssKtXr2bqvFKlSjndd1v9DAwMtJpOvur75ZdfWuzs8oL98ssvqiJGbQvJGSZtdb1IZq6fMDdJzUsmbbnLTW3b1ZLNmTMnU2WPHTvW7nPk7zbnpEnb93nV1FZ0M2vSaz/GZjy+S6+0AFD98p5kBQsWtFqm9I52Vn2XT14ls4bb/xf8wpKQkABPT09oNBqTfxkm/Y6NMRUqVMj2/1Yg59dff8WlS5ewZcuWHCuTYRiGYV5EevTogRUrVmQpj5IlS2b5d2yLFi2q+BeoAKz+BEuuFHVEZFZQORpzoi4uLg7FixfPER8YhmEYhmGsYU2y5cofH3Z3d8elS5ec6kNe+JdgDMMwDMMwEo79B6l2MmzYMNVwvV6PKVOmiJWyWbNm5aRbDMMwDMMweQ6niro5c+bg3XffxauvvqoIJyJcunQJr7zyil3bsH5+fjhx4gTKly+P5cuXm/yvVnvIqe1fhmEYhmEYR+BUUTdx4kQsXboUM2fORPPmzUV4wYIFsWLFCtSoUcPmvCIiIhAbG4uQkBBMnDgRAQEB6NSpk0k6rVar+D+Wav8Dk2EYhmEYJq/h1Hfq/P39sWHDBvTv3x9+fn5Zeo8tLCwMvr6+AICWLVsiNDRUNd3kyZPh6ekprFy5cpkuk2EYhmEYJrfg9C9K1K9fH6dOncKjR4/w/vvv49y5c5na+oyPjxffXvX09ERcXJxqOn9/f2g0GmExMTFZ8p9hGIZhGCY34NTtV4kiRYrgn3/+wfr16/HJJ59Ar9fbnYeXl5fYSo2Pj0exYsVU07m7u8Pd3T1L/jIMwzAMw+Q2nL5SJ6djx44IDw/Hli1b8Oabb9p1boMGDbBv3z4AQGBgIBo3bpwlXwwGQ5bOZxiGYRiGcRReXl5W0+SKlTo5ZcuWRdmyZe0+r27duihVqhS8vb1Rvnx5/PTTT1nyIxf+JjPDMAzDMC8onp6eVtPkOlGXFWbMmOGwvAoUKIB3330XZ86ccVieDMMwDJOXeOONN3D37l1nu8EA+Oyzz6ymyVXbr7mJEiVKIDIy0mKa4OBgbNq0KWccyiQ1a9Z0tgs206JFixwpZ8GCBVbTVK1aVXE8duzY7HKHeYHx8fFxtgtZ5vbt2+Lz48eP0bp1a3FcqVIlZ7jkdFq2bOlsFxyGcV9oiY4dO9qcdtGiRZlxJ08TGBiYpfPnzJljNQ2Luizg7e2Nd99912H5VahQwWp59rJjxw48ffoU06ZNsyl9WFgY4uPj7S4HAL755huTsMKFC6NPnz42nb9jx45MlauGJbH98ccfWz1/3rx5AIAOHTrYVe6jR4/sSp9XGD16NH744YdMnZsbXmVo27ats11QJV++jC547969OHTokJO9yWDx4sWKY3P/+UeiXLlyGD9+PLZv347ixYuLn5YCgMGDB2fq/n/99ddm4/R6PdLS0hQ/R/XRRx/ZXYa/v7/d52SFU6dO5Wh5WSU2NhZff/21iZCYOnWq2XNsnZg3b94c/fr1y7Rvxq9orV27FgMGDMhUXr179860HwBsHlsBKJ4Ne/n8889RoIANm6v0gqPRaAgAaTQa1fhZs2YRAAJAf//9t/gsr7o5c+Yowu2xCxcuiM9//fWXxbTt2rWjjh07mo0PCAigt99+WxF248YNIiJKSUmhMWPGiPDTp0+Lzx4eHlS1alXFNWXmWh49emQS9uTJE5vzs6fcOnXqqIYfO3aMnj17Rk+ePKFKlSrRrVu3aNu2bTRo0CACQAULFrRYjoeHh/DlzJkzdOLECQJA69evV6TbtWsXBQQEEAAaN24cNW/enADQw4cPM90WatSoIT4vXLiQdDodhYSE0GeffaZIFxoaSikpKQSAChUqRLt27aL79+8TAKpbt64i7YcffmhSzldffWWXXydPnsxSuzA+7+TJkxQeHm42fZEiRRTHT58+FZ/Pnj1LPXr0IAAUGBioSKf2bIwZM4aioqLIYDAQAKpfv74i3mAw0MmTJzN9zyQLCQkxCdu/f7/V86R28/TpU9X6lT+z9tg777xjNs7f39+u+2V8/OWXX4rPS5cuNekz9Xo9ff/99wSAZs+ebVO7CQ4OpkaNGpktUwqTM3z4cNX0LVu2VJwXGxtr9ToXLlyomqZ06dIEgDw9PalXr15Wr2PevHkEgAYMGKAoJzk5WVHekiVLstzmOnTokKnz1J7/7777zmJ9W2oPctPpdDb5oNVq7epPBg8eTE2aNBHHer1efI6JiVH1U2qD1uqaiGjo0KGZvg9r1qyxOa3cRx8fH7vKCQ0NNXkG1GBRZ0XUEWXchA8//FB8BjIGcolz586JB/rJkycizfz5863eYHmectH4xhtvUL169Uir1dLjx48JAE2cOFGRHlAOZAaDgZYtW6aIl0SdRMWKFcVDYTAYaM+ePfTkyRNat24dlShRQqTbtGmTzY1t8+bNFB4eTkRE5cuXF+GrVq0yuUYA9O6775qtj6CgIDpy5Aj17NlThLu5uSnSbdiwQTyEmzZtookTJ4q4W7dumb2P8fHx4j4bi18A9Morr9DVq1dp48aNivNu3rxJaWlpBID69OlDQMZAsWPHDgJA48ePp7i4ODpx4gQ9ePDA7k7hjz/+oOnTpys6Kjm+vr6q7UatndarV0+kW7FiBV26dElx7rRp0yg5OZmaN29OGzZssLkjkihcuLDV9J06dTI5f+PGjWbb/fnz5xXCqlu3bop4IqJvv/2WAFB0dDQdOXKEAFBCQoJI06hRIzEBmzlzpggfO3asKG/BggV069YtxfMi8fHHH9Orr76q8PvEiRMmourPP/80ud7//e9/Jm0cAF2+fFlxfO3aNZM0fn5+BIASExMVeUhCfsKECXa3p759+9Lo0aMVYZMmTaJnz57R+fPniYioS5cu1KpVK4XIrVixIu3evZuIiO7du0dAhgAwvhdqx8asW7eOANCsWbOIiCgqKsqsv9WrVxfnPXz4kC5fvqxan8b89NNPBIDee+89IiIaOHAgAVD0B9J55tq19HnlypWqaSpXrqwo+/bt27RixQoCQFOnTiUA9NprrynyjIiIoOPHjxOQIYDlWPNJsmfPnikmM2rtZvv27eJ448aN9N9//5lN37p1axo/fjwBoLZt2xKgFIWbN28WnwcNGkQffPCBqt9Xr15VHE+fPl18btWqFRERff/997RhwwbKnz+/qi/58uUzydeaERE9evSIihcvTtHR0UREJveGiGjGjBniHOn+HDx40Gy+TZs2FecWL16cgIyxcdasWZSUlGSSXt6/SiZNGK2ZVD9SX9i7d2+brx8AxcXFmTwDarCos0HUpaSkUFpaGhERnT9/nm7fvm2S5sKFC2KQkDpicwq+evXqYuZGROTu7k5AxiD877//0tGjR03yv379Oun1eiIi0ul0VKpUKdGgq1SpIj4br/YZi7r33ntPtYM0xmAwUEBAALVr107kNW3aNJNrqVGjhuK82bNnKx5ECfk5Bw4coKCgIEVYkSJFTHyQ4goUKKBIe/r0aSFIbt68SUREMTExNHDgQFFH1rh69apY1ZLEgJoPlpBWWffs2SPCjFcFateubVJnxp2d2jXLkWb/anFy+vXrR2fPnqXFixcTkDFJkOcJZKweqZWnZosXLxYTCYm33nqLAFCxYsUIADVs2NDkvEePHikGVonXX3+dXn75ZXF87NgxOnLkiIkvqampJnUhibpr164p/JHEfZcuXcR1b926lZYuXUqAUtRZqmOJMmXKEAAqWbKkYjWhVKlSJudv2LCBFi9eTElJSSZ1WblyZUpNTaVatWrR9u3b6eDBg2KQaNGihUin1WrpwoULJnn379+fANDu3bvp3r17ihV9NZMPNkRksvq4b98+1eslej7IDBkyRBGenp4unidJuNhSh0REqampNGTIECFWjc9r1aoVTZkyhcLCwujhw4eqeRhfozGTJk0iQLmCcfLkScXk6O2331bNq379+orwAwcOqNarvG+Vc/jwYdLpdBQfH0+JiYk0ffp0GjVqlIiXRJ1xnd6+fZvu379PRKRY8ZRMWl2SkE+G5Obn50fbtm0jAIpnVC3tuHHjKD09nVJTU6lNmzZ0/fp1GjRoEN2+fVtRt+PHjxeTc7V7IX8GihYtKs6T16ExaWlpirF1xIgRdPjwYRN/vby8FD5LwhNQikA5c+fONbk3cnF69uxZIQCN66RSpUom53bp0sUkbNiwYTR48GAaMGAALVmyhPR6vSi3Q4cO9N9//ynynz9/Pq1du1b1PkhIq/o//vijxWdasqZNm9IXX3yhWgdqsKizQdTZi8FgoC1btpDBYKDY2FgKDQ0VW0qjR4+mK1euKNL/8ccfBChXtqwhDT5Ez4UcEdGpU6fEoAKYijpJyNiKVD8AVAeWd955R5Fe8uXjjz9WhEvbQdJASURiptKnTx8xA5QjlbF582aqUKGCOJYGAWlrN7NIq5GSELVX1BFlrP7JkbZBJdu6davoPL/66iuKjIykmJgYs4PV/v37xZaVhPFM0Bp79uwhIGN7kkjZoV2/fl2RdsSIETRu3DixAikNNPIZrBz5itmdO3coNTVVsTosTX6kcl999VVxrNVqhWBT49atW/To0SPF+dL1SoOdJOIlpJXRGTNmUFpaGs2fP5/0ej3t3LlTDGjGjBkzhry8vFR9MBgMihU8yY/PP/9c1S85kZGR9N1339GuXbsoJSXFJF4u6g4ePEhLliwxSSOtfCxatIgePHggwqV2ZW5blYjou+++U4hYaXtHvj2lhvTKwLFjx8ymefDggar4tJd///1XdVKshlTGkydPhBCSo9VqadWqVSb3iyijb9iwYQPdu3dPkReQMamWnlvg+Uqf2isB0vNgL9LuzaRJk8ymka80W6tP43R+fn505coVAkBBQUFm082dO9fiMxcZGUmrV6+2ej3Gou7s2bO0aNEiIsoQPuZEnTX69+9PI0aMoEePHtG1a9fo6NGj5O7uTqmpqXTu3Dk6evSoSZ9lCUnUNWrUyMR/uZUtW9akvtPS0sxOMORIOzQTJkwQYf/88w/t2rVLHP/000/iVR7je3vs2DECTFeUS5YsqUib2WeMRV02iDo1Nm3aRM2aNVONk5T/mjVrbM5v5MiRZm94WlqaWMlKSEhQxEnvotmDvHFt2bJF8Y6CsajT6XT0999/m3S0z549UwxSRCTe65M6XmMePHhAsbGx4njjxo0K0ZBV0tLSyN/fXwy2aqs69iINvpKoNndtUv3lz5/fpnyl1Vxb711kZKSirEKFCikEtTFxcXHUsmVLevr0qdiaVyMqKoq++OILSk9PF2GS6DSeUR8/fpzu3Lljk79qyK9Xo9HQ4sWLVdNdu3bNZIX233//FR1nVrl69apYjTP2yx7kos4c0jMhrQBISO2qXbt2YkInCbFDhw6p5hUWFkY+Pj5m72VWyGwdOKuM6OhoMZi2bdtWhMfHxysEuHyQLVGiBD179oxOnz6dqTJ37Nhhtb+Syrp7966YhKkhTbokASWtuMufQ2P/HXl/Bg8ebPadLmksyoyoczT79u0TkyI5bdu2pSJFiogVQWkhJTOoiTo1DAYDffHFFyb3wmAw0NKlS0mr1Yq4NWvWUHR0NIs6R5BTos4S0krR2rVrs70s6SVpewBAvr6+4lhagQSev2vIZCC9Uzlo0CCL6aQH9vHjxzble+bMGfroo49o2LBhdvskiYHs5Ouvv6bNmzc7NM+sDEzp6enk7+9Pz549c6hPRBmTDXNi3RKSqGvevLnFdGpCQHre2rVrp3jXx1kcPnyY1q1bl61lOPoapRXJNm3aWE27c+dOk12O7MDR15hdos4SuUnUGQwGWrNmDel0OtX4Bw8eqO4K2YP0LqM1USdRqlQps+Ok8X06dOgQRUVFqcbZikv9+HBeRfqXZNLPG2QnEyZMwIgRI+w6JzQ0FDVq1BDHbm5uKFmyJP766y+X+j0mR1CsWDEcOHDA5n9TV7x4cZvS1a5dO9M/efHgwQObfok8K2zcuDFb87eXAgUKYNKkSdmS9+uvv56p89zc3GxKV7BgQYvxL7/8MqpWrYqrV69myg9H0KxZM6eVnVkKFSoEAKhWrZrVtPLf2stO6tWrl+d+6iQ34+bmhk6dOpmNf/311zP9/GaW+/fvm41btWoVjh49Ko4z89M8xrCoywV06NABS5Yssen307JKvnz57B7gGzZsqBreq1cvR7jkctj6W01du3bNZk8yyOlOzFEcOHDA7v8BnZt56aWXAADdu3d3sicvJkWLFsWpU6dQq1YtZ7siCAkJQWpqqsPya9GiBapVq4ZOnTpBr9c7LF9LdO7cGbNmzULdunVzpDxnU7t2bQCO+bH8Ll26oEuXLmbjy5QpY3eebv+/zPfCkpCQAE9PT2g0Gnh4eDjbHeYFQavVomDBgjmyOsvkfYgI/v7++OGHH/DGG29g2LBhmD17dq74YefsQlrZdOVrZBhzxMTEoEiRIvDy8rLrPBZ1LOoYhslj6PV6PHv2LNu31Z3JyZMnUaBAgRdmBYhhHAGLOhZ1DMMwDMO4ALz3wzAMwzAM4wK88Ct1RITExEQULVrU5m+nMQzDMAzD5DZeeFHHMAzDMAzjCvD2K8MwDMMwjAvAoo5hGIZhGMYFYFHHMAzDMAzjArCoYxiGYRiGcQFY1DEMwzAMw7gALOoYhmEYhmFcABZ1DMMwDMMwLgCLOoZhGIZhGBeARR3DMAzDMIwLwKKOYRiGYRjGBWBRxzAMwzAM4wKwqGMYhmEYhnEBWNQxDMMwDMO4ACzqGIZhGIZhXAAWdQzDMAzDMC4AizqGYRiGYRgX4IUXdUSEhIQEEJGzXWEYhmEYhsk0L7yoS0xMhKenJxITE53tCsMwDMMwTKZ54UUdwzA5CxFh5MiRuHfvnrNdYRiGcSlY1DEMk6M8ePAAkydPxsCBA53tCsMwZtDpdJg9ezZ0Op2zXWHsgEUdwzAMwzAKAgICMGzYMKxevdrZriiIjY3F+fPnne1GroVFHcPkQfbt24fw8HBnu8Ew2cajR48wYcKEbPsS2x9//AE3N7dsydsVSE1NBQBotVone6LknXfeQa1atZztRq6FRV0WyW0NvmzZsmjcuLGz3bCLsLAwPHv2LMv5aDSaHL8fa9euxdixY1Xjrl27hnPnzmVLuZ9++inq16+fLXnnFOnp6c52wSJJSUlo1aoVHjx44GxXXkiGDh2K3377DXfu3MmW/BcuXAgASElJyZb8cxtEhDVr1uDixYvOdgUAEBERkak+IC4uLhu8sU5gYKAQurmZPCPqTp06BW9vbzRt2hQdOnRQNIagoCCUK1cOzZo1Q4sWLXLMp0uXLqFQoUI4cuRIjpVpjbt37yI0NNTZbthFo0aN0KtXL3F88+bNTH0b+dVXX0Xz5s0d6ZpVOnfujN9//101rkqVKqhdu3aO+uMsqlatipEjR9p1zq5du/Dvv//aXdajR48QEhJi93n2cvjwYezduxd//fVXtpdlL46YBGWF5cuX4/jx41nKY8mSJYiPjzcbL/Xx2b2a9vLLL2dr/pllzJgxqF69usPyW7RoEbp06YJ33nkHN27csFj3gLLeT506Zdc27HfffYdx48aZjU9ISMB7772HUaNGWcwnJCQkVyycPHz4EC1btsSIESOc7YpV8oyoe+ONNxAYGIgjR46gSpUq2LZtmyL+m2++QVBQEA4ePGgxH61Wi4SEBIVllsuXLwMA/vvvv0znsXPnTuj1+kyf7wz++ecf3L5922y8TqfDunXr0KtXL5tnNtHR0eLcihUrwsPDI1O+OVrQxsXF5YpOxRYWLVpkdQDcs2cPbt265fCyo6KiMHnyZJvSHj58WHyWT4gePnxoU11/8skn8PHxsd9JO9i8eTPCwsIAZL+osIenT59i7969KFq0KK5evWoSf+/ePWzevFkc37hxQzWdOYgIKSkpSE5OFv3SkydPTCZZPXv2RMOGDTPdd92/fx/9+vXDkCFDLPoCOK7+/fz84OfnBwA4d+4coqKiRJybm5tJX3XlyhWbVoWePn2KQ4cO2exHSkoKpk2bBoPBYDHduHHjcPnyZbz99ts4ffq0zfmbQz5mVqpUCR9++KHN577//vvo2rWrzelXrFiBMWPGKMLS0tJw6dIlAM+3dqUxVI24uDj4+Pjgl19+EWFt27a1WvaUKVPQrFkzm30FMtq4pbYs9UvZ9Y39H3/8EREREY7JjPIgo0ePpi1btojjw4cPU4UKFahJkyY0Z84ci+eOGTOGAJiYRqOx24/NmzcTAJo+fToZDAY6fvw4PXv2jKZPn043btww8RkArVmzRoQdO3aMANCCBQvsLluOwWCgnTt3kl6vF9djTFpaGsXHx5NerycioqCgIFq+fDktWrSI1qxZQ4sXLyYA9O+//1otDwDVrFnTJP9BgwbR06dPaeLEicKPnTt3EhGRXq8ng8FgNr+6desSEdGjR4/EuUeOHKG4uDib68HctdtLYmIide7cmTQaDQGgzz77zGqZ6enpFB4eTvfv3zeJ02q1dpUfHx9vtq6M85bToEEDAkAGg4EMBgNt2bJF3G/5ea+//rpd/pgjNTVV1Z9WrVrRyy+/TDdu3KBnz56ZnFe5cmWR3s/PT5FH69atrZZbpEgRm+7zmTNn6O7du4qw6OhoAkCLFy9WPUen05HBYFD0DRMnTrRaVk5w8+ZNAkDVq1cnALR3716TNHXq1FHUjXQNDx48ICKiokWLUo8ePcyWMXXqVHFOly5dFHnIkcL+/vtv1XySk5Mt9qm3b98mANS+fXsiImrTpg0NHTpUkaZ9+/YEwOQeSuh0Olq5cqXZZyU5OZkA0IoVK+jZs2eK61AbA+7cuWNyjZUqVTJ7DRKffPKJXf3OpEmTCAAdPHhQNT4pKYn69eun8O2ll16yKe/IyEiz9SX5KTciojt37piMV+np6TRkyBDxrJjrW6dNm2ZSb0TqbaZ///4EgPR6PcXGxhIA+vzzz1V9TUtLo/3795ukMfZdDSne+JqMuXLlChUtWlSMOSNHjqRbt27RqVOnTNIat1c5Fy5coI0bN1osS47aeACA3nrrLZvzsESeE3W3bt2iRo0aUVpamghLTEwkrVZLWq2WWrZsSeHh4WbPT01NJY1GIywmJsYmURcZGUmrV69WhAUEBBAAmjFjBi1btkzcGEudoK+vL40YMYLGjx9PgYGBBIDGjBkj0t25c4emTJliU1389ttvVLRoUTp8+DABED4AoI0bN9KlS5eIiEQ5AOi3335T+GNsbdu2pStXrlgsFwBVrFhREbZ3714CQDVq1KBBgwYpRN2HH35IAOjXX39VnNOlSxf6/vvvCQDVqVOHiIgePHig8Kd58+Y21YX8moxJSkqiFStWqJ5z7tw5evXVV2ncuHEibMWKFVY7MyKix48fi/jJkyeLzyNHjlT48+WXX9LEiRNJr9fTrFmzKCUlhbp27Uo//PCDyOv06dO0YMECMRDNnDnTpms9c+YMLV++nIiei7revXuL+CVLlhARUUhICFWtWlX1enQ6HY0ePZoSEhJoz549BIDu3bsn4o8fP07BwcFElCHOdTodXb9+nQDQnj17TOpefv+8vb1p/vz5YuBNTU1VxPv5+dF///1H9+/fJwDk5uZm8bqJ1EXd+fPn6fDhw1SzZk1atmyZ8OOVV14hIqLw8HBaunQpDR06VJR96dIlAiDau1T3xmaLqEtISDAR0EREN27cEH3LnTt36MiRI1bzIiJauHAhbd68mYgy2uOVK1coNDRU4dcnn3xCDx8+VJxXtmxZVVHXoEEDunDhgsn9T0lJoaioKHHs4+Mj0hQoUECRhxy5H3Xq1KFq1apRQEAARUdH09KlSxXnREZGUkxMjDj33r17QrS89tpr9MEHH6iW8eWXX1oUdV27diUAtH37dtX4hw8fqt7Pu3fvqobL27y565Y4fvw4nT59mohI9PkS6enpdPXqVVG/t2/fJqKMfujq1atiYSEwMJCIMp6JP/74gwwGA928eZNKly6t6p8tAKCXX35ZNe7jjz9WzVMt/19//VWEm+sHtVotAaAWLVoQEVG/fv1o5cqVdOjQIdX0DRs2JACk0+mEqHvzzTdp5cqVJpODn376STEmya9PLe+EhARRp/K+R41Hjx7Rs2fPqFOnTgSAtmzZQgCoQoUKlC9fPtW6lnRC06ZN6eeffya9Xk8nTpxQ+DNz5kxKTEykhw8fir5g9erVNHDgQJHP06dPCQD9888/RJSxICNfjNHpdKIPltqQveQpUafRaMjHx8ei6Fi4cKHo1G3NE1AXddKMffjw4aoNadOmTQSAxo8fr/oQDhs2TKSVwuQPljQTkYQW0fPZVFJSklXfpXymT59OABSzbLm/8ge0fv36inPN2fXr11XrQ8rLeAYriToA1KdPH/F5x44dinwvXLhARBn3SR5esWJFCg8Pp4oVK6peQ1paGm3dupX27NlD7733nsX6MGbYsGEEgC5fvkxEGYP3uXPnxKAg2cOHD2nZsmW0fPlyi52ZcXnmOmDjsAMHDhCgFIASbm5uBICCgoIIAP3vf/8jIqL79+/T1KlTrZadkJBAtWrVMgmfPHmyanqJhQsXihn56NGjxWfg+WAqv3fS6onUdkeNGiVWv8xdt9RxrlmzxiTcz8+PAFDJkiUJyLyos1T/5nzq2bMnAaBixYoRkXkRAICqVatGFy5coH379hHwfBUgOjqawsLCCACNHTuWiIh27typqLvatWsrfFi4cKHC99jYWEpPTyciomvXrinK3bBhAwGgfPnyiXLk9sUXX5DBYKBKlSoRACEIvvrqK6pfv75I9+abb5KHh4eiTkaOHCmOhw8fTuPHjzcRdfJVS0v1LVn+/PkVx9LAnz9/fnFuy5YtzZ6/cuVKIiKaP38+vfHGGwQoxZbBYKBZs2ZRUlKSOOe1116j33//3aSdWLqfaiZfZZdf48aNG6lOnTqUkpJiEidNbqT6MRgM9Morr4hrb9euHQGg8PBw+uKLLwiAEHXDhw+nI0eO0C+//EIAxM6PObMFtbRhYWF0+fJlatGihdXnJCgoiKZNmyYEtdRe1fJNS0sj4Ll4suT79evXxf1MS0sTok5ucmHXtm1bES5NzIzLkCNN0GrUqCHimzRpQgBo0KBBqnVka13rdDq6c+eOIv7MmTM0bdo0k/Pk/efWrVtN8rt69SoBoK5duxIRUfXq1al48eIi3bhx42jgwIHiOCAggBITE2269+L67ErtRHQ6HbVu3ZoOHDhgEicXZN9++63Ns2HpXEBd1MkVtNrNlkSdXMSYS68Wd/DgQQJAv/zyC5UtW5ZmzpxJzZo1I0Ap6h4+fCga/PXr12ndunWK2bBk0szDuJG9//774vj9998XHa0lO3nyJBFlLJnv2rWLDAYD/fnnnyK+SpUqRJTRYeh0OrOiTs0k4WKrEZFiS9f4Phw5coRmzpypGicflAoXLkxEGSuEauX873//Uxx/9dVXiuPdu3eLPCUxYsln47Bdu3YRAPr999+tto+iRYsqjuPj4xXXZWvdff311za3y0KFCimOZ82aZbat7Ny5k4CMVUlpJdbcdWfGtmzZQnXq1KH09HRxHwIDAyk+Pl7UTb9+/cjf31+1THnYjRs3VMuQhCSQsa2yaNEim/0zJ5YTExMJAL3xxht05coVs/UiIa1QSgOPpWfn6NGjquFqEyE1e+mll6ymadq0qeJY2nYCMkTP5MmTTbanLZm05War1axZ0yTs5MmTtGXLFtLpdGJCJK3wy+3WrVtUpUoVAkATJkywW9RJW9TXr18Xkxe5hYSEEBEpVvrc3d0V9/Ty5cvi+OLFi6rlmHsFSL7TomZEGWNSaGgomUOeds2aNRQXFyfCrIm6b775RnyWBKix3blzh3Q6HV28eFExOZUmO7ZYRESEaPdq/hCRSf0bDAaTlWqJHj16qObVqFEj8fnvv/8mg8GgmOhYq2ui55Ms40WIlStXUvfu3U3OM+dLgQIFaO/evWKnoEePHhQZGamaVr7TJaW1hzwj6tauXUvFihWjpk2bUtOmTWn9+vXUp08fIiJaunQp1a9fnxo2bKh4R8cWLIm69PR0kwqXZtQpKSmiUWdW1L355psmYR999BEBULyLJIkNNX/stXr16ollcEs2e/Zshd9z585VxL/11lsUFRVFwPOVQsmsiTp7bfv27SZhQ4cOFe9ymKvzCxcu0Pr1603i1Fa0gIwZpzVfwsPDaffu3VbTLViwwCTMeNXSWvuQW3x8PF24cIEiIyNFm82KaTQa1UmAsRkLW2tmTjDba+XLlydAOdCYsydPnqjWqyP8MGf16tWj8+fP25ze+PkhIiHyAVDVqlXp5MmTDn927DXpfT1LZu+kLKtmvPpnzjp37qw4tlfUAUohYGzSYoGl8+WTW+l1CGP77bffVMOlHQJzJu+3z58/T7NmzaLAwEAKCwujgIAAhW/SO4TySZ18FVayzDwnBQsWzNL97N69Ox0/flw1rnDhwjR06FCTsVFtEaN37952TTDsMUlz2Htet27dbEpXsmRJ8aqEsclXKYGMidbt27epYMGCYqfLEnlG1GUXlkSd8fs/8hvepk0bcWyp0zl37pyJ6LHlwb18+TJ9//339NFHH4llZLXl3uw0NREit/DwcAJAHTt2zFG/JGvXrp3ZrW9zJp9JZ9bee++9TJ1n6yxRzbZt2yY+v/7661m+htq1azvlntlqahMecyZtr8tNvjrN9mLakiVLHJpfs2bNiCh7JwtZMTXf5KtzdevWNYm3Z2LiTPvss89Uw+UrkY40a2OfOTOeWDjaRo8ebVXTsKizIOrMzSbMbeeoma+vr9MfiOwy4xdFc9rMPehsbGxs2WHS9npuNCLLglNN1OV1k38p40WwGjVqWNU0bv/fEF5YEhIS4OnpCY1GY/LbaOZ+H8nHxwfBwcE54R7DMAzDWOXjjz/GgQMHnO0Gk81Yk2ws6jIh6hiGYRiGYXIaa5Itz/xHCYZhGIZhGMY8eUrU+fn5wdvbG507d0ZaWpoI1+l06NGjB7y9vS3+2xmGYRiGYRhXJc+IuoiICMTGxiIkJAQ1atRAQECAiNu5cyfKli2LkJAQJCcnW/z/n478368MwzAMwzC5hTwj6sLCwuDr6wsAaNmypUK4WYozZvLkyfD09BRWrlw51XQv+KuGDMMwDMPkMRwu6p4+fYo5c+Zg4MCBmDBhAmJiYhySb3x8vPgig6enJ+Li4myKM8bf3x8ajUaYOf90Op1D/GYYhmEYhskJsizqypQpgydPngAAbty4gRo1amDq1KmIior6v/bOO7yK4uvjJwihKKGIiBAUpCkdBAwhBUMLSkfgxwsCKiKIgBSRXgRpUQRBuhQFgkFBQAmEREpCpKQAgRAgkVQSAgkppNyU+33/uM+uu3f3lhRyU87neeZ5dqeenZmdOXNm7l7avn07tWvXjsLCwoosaJ06dcSt0pSUFKpbt65ZYfpUrVqVbGxsZE6N3NzcIsvMMAzDMAxTUhRZqUtISKD8/HwiIlqwYAG98cYbFBERQV5eXhQeHk6Ojo60ePHiIgtqZ2dHXl5eRER0+vRp6tGjh1lhhYUtdQzDMAzDlCWKdfv18uXLtHjxYqpRowYR6axiixYtokuXLhU5706dOlGDBg3I0dGRQkNDafjw4fTpp58SEdHAgQMpJiaGHB0dqXr16tS9e/cil8eWOoZhGIZhSgvdunUzGadycRQkfKRXo9HQyy+/LAt7+eWX6dGjR8VRDH377bey++3btxMRUeXKlWnfvn3FUoYAK3UMwzAMYx7VqlWj7OxsS4tRrnnuuedMxikWS12vXr2oc+fOlJaWRnfv3pWFRUdHU7169YqjmBJFsDaWRho1amRWvPXr1z9jSZiKypgxY0qknJo1a5ZIOZZkxIgRlhahTLF06dJnkm+XLl0KndbPz68YJbEcEydOLHTaTp06FTiNoa9PPAt+/fXXEiuroEyfPp1SUlJkftu2bVPEq1zZtB2uyErd0qVLafjw4TR48GCaM2eOQhk6ceIEOTo6FrWYEsfGxobOnz//zMvRt2yaQ7Vq1cyKV7Vq1QLnTaT7RMzzzz+vGubo6Ei3bt1SDTPXWvrRRx8VSq6CEB0d/czLKC0In9955ZVXyNnZWfQXzrqqxR83blyRyizMX+gVpsy0tLQS+7yQoUkpIiLimZXZtWtXsrW1VQ3z9vamK1eu0I4dO8jNzY2IdEdN1FiwYMEzk7G0sWzZMpowYYLB8Ndff92sfC5evCh+79TOzo569+5daJmqV6+u8Pvss8+KtIPUokULOnLkSKHTm8tLL71EiYmJpNVqaceOHYXO54UXXhCvfXx8DMaTKs+rVq0qdHlSIiMj6cmTJ8WSlyXYuHEj1apVi/r37y/6DR06lNauXSuLZ45SR6jgpKamgoiQmpqqGj59+nQQkcIdOHBA1V/qVqxYIV4PGjQIRIRJkyZh/Pjxor+Li4vJfPTd66+/Lru/cOGCIo6npyf27NljNJ+MjAxVfwDYt28fOnXqpAjr378/AKimu3btmsLv7NmzGDdunHjv5uYGT09PRbw9e/bAw8NDNd/WrVsjKioKDg4OirBvvvkG586dAxFh8uTJsmd48uQJ/P39C1y/QvoaNWrI/Fq0aGEyXatWrUBEaNq0qdF4DRs2NFuWRYsWmZQ1NDQUSUlJmDp1qsxfPw8vLy8AENvkl19+QUxMjEkZJk6cKLsfO3as7F5ariGXmZmp8Js0aZLJZzPU36Tu7bffLlQ9P//88+K1vb29QRn0/b777jvxunLlykbrTeifau6vv/7CggULZH6+vr4YOnSobByKj48HEWHo0KHo1auXSRn79esnXu/fv18W9sknn0Cj0RiUKSoqCo0bNzYYPnPmTLP6reAGDhyo8IuNjS1QHvrPunbtWoPhb731lln53LhxAwAQExOD7OxszJ8/v9AyRUREKPx8fX2xd+/eQue5aNEis/p+Ud2rr74q62tRUVFmpx02bJh4PXfuXPE6MTERiYmJ2LdvnyJN165dxevff/9dNd/s7Gyxzxty0nfbnHEiICCgWOpLf8xydHQU5/ojR44UOL8hQ4aI8kdHR4v+Dx8+VDzToUOHjOozAMBKnQmlbuvWrYpG+O233wCodyCpAiONI0WqKLq4uMDW1hZEhA0bNijyW7lypXg9ePBgjBkzRqHUqXX+J0+eiIqns7OzqqxS+X744QcQEapVqyaTVT/Nt99+K/P/7LPPUKtWLRARgoODFeUJ5ObmwtvbG1qtFgAQGxsrmxj37dsHLy8vWVmdO3cGkW4CAIBp06aJYWvXroWPjw8AIDMzE126dEFYWJhqfes/w5tvvqlaH0IddOnSBQAwZcoUEBH69OmD06dPY968eQZfzFu3biElJUUsc+nSpWLY7Nmzjda94JYtW6aad3p6unitNkFK+eyzz1TLWLhwIYj+U+qEhcWdO3cM9mWp01fqlixZgrS0NHFR8vXXXxvsZ9I6ldb96tWrAQA9e/bEK6+8omj3X375xWAbCu7EiRNYsmQJunfvrghbuHChIm27du1k97t27RKvBfmvXLmCpKQknDp1Ch999JGiXvXrtlKlSrKw7Oxs+Pj4gIgwZ84cg/IfPnwYAHDmzBmD7SkgvONDhgyRKWyG+tPRo0dRs2ZNJCYmKsKmTJkCAPjqq69Qs2ZNo/1JTW6tVosZM2aY7DNC/ernY6pNz58/r/CLjY0VF5kAkJ+fj8uXL4NIrhi4urri3XffNSpTTk4OTpw4oahj4R0x5Pr06SO7b9asmeyZPvnkExARXnvtNWzZsgVarVZcWG/ZsgV37tzBTz/9pMi3TZs2qFq1Ko4fPy7zX7x4MQCgTZs2Mv8vvvhCkUdcXJzsPjw83OBz/N///Z84VhMRbG1tFXXx4YcfytIkJyfjyy+/hLu7u+jn6ekpe3/0lToBrVYry0u6AMvPz8ePP/6IsLAwvPvuu6hWrZrqO6DWz//991+z+5SDg4Nq+M6dO422eW5ursIvICBA1AtmzpwpPuOFCxcAAGlpaWLcBw8e4LffflPk0a9fP3G+d3d3lz2rMMYLSp0w39+6dUtRL2qUGaUuICAADg4OcHJywogRI5CTkyMLP3v2LGxtbeHs7AwXFxez8zWl1Gk0Gnz55Zeixeedd94Rw06dOqVoLABo1KgRnJycAEC1k+ordcKL8v3334OIZCtxAKJV5P79+wCAI0eOyF50faXuxx9/FGVftGgRsrKyFNaEAwcOAAAmTJiA559/HoBuxfro0SOZrO+++y48PT3xxx9/ICQkRFTKIiMj8e+//yInJweRkZHYv3+/OJCsWbMGRIQmTZoYrftvv/1WlGffvn3IzMzEkCFDxEFZmNwfPHgAQK7UGSIoKEisJwH9NhJW8vorLgAICwsTlTPBkrl//34AUKzkpROiPsuXLxfDBKXuueeek/WHcePGyRQ+qawnTpzA33//La7MHj16hCtXrgDQrebu3r2rWrYhpW7btm0gIgQGBgL4T6kLCwtTrSMhTLjWV2qEdEePHgWRTkFbvHixIg/BT2hDQalr2LChrJ0OHz4MIsLnn3+OqKgobN++XfZcahYP6SAnWNnmzJmDsLAwnDx5EhqNBgDwyy+/iGnatWsnm5ylk9I777wDIp1FUR+NRgNXV1cQ6ZQIaZ299tprin4UEhICIt1CQRrX29sbn376KYgIfn5+inIMkZCQACKdUnfp0iUxv5CQEAQFBSnaMCMjQ5ZeGjZ9+nRZWPv27RXyC0RGRsqseobyJCJYWVmJ9aMfXy1/4V6qFBvKGwDS09PFfqSPEM/V1RVJSUlivyQivPjii+L19evXDdaxvkV8zJgxqFevHogIWVlZsgkeAFJSUvD666/j3r17Mjnmz58v3gtK3datWwHoxif9OpMiVRQFpa5t27YgIkRGRiIhIUH2vEK/16+z3Nxc3L59W/W9FhRa4V6QTUpubi5ycnJARJg1a5ZqXQPAlStXxHth/iIixTwiLd/Ozk61PwHA06dPERUVpfBXG9MAoHr16rJ8bty4gYcPH2LAgAGi7EI96stBRMjLy0NgYKBsUanf7/T9MjIyRIPJxo0bFbICOmPQ1atXVcv19fVFSkoKNm7cCCLDSp3Q1jk5OYr32RhlRqmLj48XH2z+/Pnw8PCQhZ89exazZ882mU92djZSU1NFJ2w9GVLqBIRBVbDSCah1AikpKSlISkqS+UVHR4sTSK9evUSlbv369cjJyUFeXp4sv8TERCxbtkxUqPTLTklJARGJFj9BqZMiKHXPPfecOEg9Cy5evCjK37RpU6Nx3dzcxGcIDg4W/ZOTk7F+/XoMGTIERDqlFQA+//xzEOkm/oKg30YjR47EsWPHkJ2dLZvgTaGv1ElN5fpIFSJBcbt48aK43acmn/61KZycnBRxIyIi0L17d9y+fVvMr3bt2sjPzxdXkgBEa0h6ejoAYNWqVap9ee7cufDy8kJycjK+/vprWZ8D/pukTpw4gevXr4uDlGDR1UdQ6vQRtt7Xr19v8Hml7UdECA0NFcOErfns7Gyj6Xv06IGsrCxxQXHy5Elcu3YNoaGh+Oqrr0BEojKoz5IlS0D0n7Xz6tWraNWqFS5evKg6Bvj5+SE/P18mOwCxP0jbwxTZ2dmyCblly5aq/ahu3boGn33YsGFYuXKlzKIM6KwMQl82tCBW65fS9pg3bx5CQkLw888/A4C4fStw5MgRuLi4yMZtIb0wJknjmxpX9RG24latWqXIQ18ZM4T+ViCg21Hw9/c3Wg9SsrKyxDYHlEod8N+xDjUSEhLE90xQRgTrshRBjtTUVNy9e1fmN3v2bHGuEOrWzc1NpmQAusXO3r17jdaJGvp18PTpUxw7dkw2bxlT6gSFy9xxTr9M6XVCQoJMqRbQaDSitdSQHEQktpWfnx8++OAD2bb+zp07AUCcX6XxpYYYcwgMDBTzyMvLAwBxZ+rSpUuyuPpKXUEpM0qdlCVLluDIkSMyv7Nnz6JJkyZwcHDAhg0bDKaVbotJnSmlDoDCOggA+/fvF1fwBemkT58+BRGhd+/eSE5ORseOHWWrUHPyi42NFRv++vXr4n7+wYMHFXEFpU44z6D2LMUJEeHDDz80Gkew6Okr6AKDBw+WdW5BqQsICCiQLFevXsX9+/dlk5AUBwcHuLm5mcxHUOpmzZqFefPmATDeTp6enrh3755MqVMb0H///XccO3YMADBs2DBUrlzZrOfSaDSiUmaI4OBgg9YNffStCGqohcXExJiVP6A+QQEQt9L+/PNPg2mFsqOiojBy5EhZHxYUXGOLlb1798rqQn8wzc3NRUREhMH0wpkc/frUarVYt24dbt26BW9vb6OyA8CXX34JIsK5c+cMlmWKoKAgTJs2Tebn5eWFyMhI1fg5OTkyZUMfYTzq1auXargxpU4NwbpkDCF9vXr14OvrKxu3Bw0ahNWrV6NTp06YOHGi0XwAXRskJibKntGQImCMBw8eGI17+fJlcdvcHNSUuujoaJw/f95gGmFbUVg8qL0zI0eOxJ49e2R+anIL435xYs74YEip8/DwQFJSUrEpdYWVvWPHjjIlzVBZhvwOHToEIt3ZWnMRdp6kZaqNnRVOqYuKioK9vb1CKUlPT4dGoxG3SQxN/IW11JlCOOdiLvn5+XjvvfdkFiopMTExooXKXLRaLY4ePapYnQD/vdxdunSRrRaeFbGxsQYtHgLCeUFDE7nw4xLhbIFwGL+gSp2A8GKao8CpIZypE87yAbptTFdXV6PpZs2aJSp1wlZdacUcpa5Dhw6Fzj88PNygFc+YQiWVTQ3hiIIxS50lkcouLGb0lUpLImy1rVu3TjXcmLVIjejoaPHYgiGE9OHh4YUT2gSFVQSKojTos3v3boVSZw7S+c3QQkgfNbmFs3HFSXR0NK5du6YadvnyZXTo0AG5ubky/+bNm8vkSE9PL9AcVNxKnXA+U22uJNL98EuKtbU1xo4dK94LOwuGxjI1cnNzER0dbTLejRs30Lt370LP0aVudomPj0ePHj0ULikpCampqXBychIPdxtiy5Yt+Omnn8wqz9SZOnN5+vSpqhm4tCAodcJqQa0zlzTCmURD7SmsWIRVn6DUCefCCorwQhf22e/fv48uXbqYtI7pI1XqoqKi8McffxSq/JJAei5GDSLdmRhLYEyu9PR0nD59uoQlMp8hQ4aIk0JOTg4OHjxYKt5BKWlpaQZlSkpKQkhIiMzP09NTPM9XGPbu3ftMFVtpf5k0aRImTJhQ4HRFRTj7KhyHKAzu7u6oUqWKyXhqcufn55eKhc727duLVKfFrdQJ86AaeXl5Jt9N4ciFoV0mS1LqlDpD5OXlYcCAAQa3N6RK2ejRo42at/XTFYdSV9rp0KGDbIVSWkhLSzMYdu/ePXz44YeiubqoSt38+fPFT7KUJFKlrixgbNDcsmVLgbZbi5PS1neZ0k1hJ//iVOpKkrIqtzkUt1In/FiuKAQGBpa6hRkAFOt/vz5LPDw8yN/fn1asWEE9e/YUvw4t/P+rh4cHdevWjezt7alRo0bk5ORkSXFLHT4+PnT16lUaPHiwpUWRYewfA5o3b067d++mSpV03RRAkcpatWoVnTx5skh5FAbhq+m1atUq8bKLmylTphj8WO6zxs/PjxITEy1SNlNxWLJkSYl89Le4WbduHe3du9fSYjxzfvjhB2rfvn2h0k6ZMoV27NhBdnZ2RZajc+fOhfoI+7PGCkWdKcs4aWlpVKtWLUpNTSUbGxtLi/PMAUDZ2dmqX0Av7Vy4cIGcnZ0pOTmZ6tSpY2lxzCY/P58uXrxYZhYawkBVwYcGpozD/bj8EBgYSDVq1KA333yzWPLLzc2l2NhYatq0abHkV5pgpa6CKXUMYwqeDJnyAPdjpiJixh+JMQxTkfjmm2/K5QqWYRimvMOWOrbUMQzDlDvYUsdURNhSxzAMw5Q79u3bR6GhoZYWg2FKFLbUsaWOYRiGYZhyQJn5pAnDMAzDMAxjmApvqQNA6enpVLNmzVL5zRmGYRiGYRhzqPBKHcMwDMMwTHmAt18ZhmEYhmHKAazUMQzDMAzDlANYqWMYhmEYhikHsFLHMAzDMAxTDmCljmEYhmEYphzASh3DMAzDMEw5gJU6hmEYhmGYcgArdQzDMAzDMOUAVuoYhmEYhmHKAazUMQzDMAzDlANYqWMYhmEYhikHsFLHMAzDMAxTDmCljmEYhmEYphzASh3DMAzDMEw5gJU6hmEYhmGYcgArdQzDMAzDMOWACq/UAaC0tDQCYGlRGIZhGIZhCk2FV+rS09OpVq1alJ6ebmlRGIZhGIZhCk2FV+oYhmEYhik5wsPDKTw83NJilEtYqStGwsPDqWXLlmz1YxiGYSo8ACgpKUnh36JFC2rRooUFJCr/sFJXjOzatYvu3btHQUFBlhaFKYd06dKFtm/fbmkxSpzHjx+TlZUVnThxwtKiMAxTANavX0/16tWjp0+fWlqUCgMrdc8AKysrS4vAlEMCAwNp8uTJlhajxImLiyMior/++svCkjAMUxDOnj1LRERZWVnk5uZGkZGRlhWoAsBKXTFSkr+gTUpK4l/sMjKCgoLo9OnTlhaDsRAajYamTZtm8vjH8ePHKSEhoYSkYkqaW7duFWluSE9PJ61WW4wS6Qwdc+fOpVGjRhVrvoySMqPUBQYGkqOjIzk7O9PIkSMpNzdXDDt37hw1btyYevbsSb169bKYjMKL9Kwtdenp6VSvXj3asGGD0Xi5ubm0YsUK0mg0hS4rJSWFtm3bVuj0pZlTp07RyZMnLS1GsfHWW2+Rq6urwv/06dN0/fp1C0hUegFAT548KZGyRo0aRfPmzStwuvT0dNk4Z4o///yTNm/ebPJ9HTx4MA0aNKjA8pQHtFotZWZmlmiZ//77b4ktwMPDw6lt27ZFOqZhY2NDixcvLhZ59OfE/Px8s9JpNBqKiIhQ+Gu1Wnr8+HGxyFZayc/Pp/Hjx1NUVFSh0pcZpa5Ro0Z0+vRpOn/+PDVv3pz++OMPWfioUaPo3Llz5OPjYxkBJRhT6vRX0Z6enpScnFyg/IU8Lly4QLdv36b4+HhFnJycHLK2tqYlS5bQTz/9ZDLPqKgoCg4OVvjPmDGDpkyZQg8fPiyQjGWB/v3703vvvUd//vlnodJrtVry9fW1yERREFxdXaljx46WFqPQPItFkpubG9WtW5eys7OLLc9Dhw7R//3f/yn8PTw8aO3atQbTBQYGUnR0tMLfxsaGRo0aRZs2bSr2Onj06JF43b17d9qxY0ex5v+syM3NpWPHjhU6/ZdffknPP/98MUpknFu3blGzZs3o0KFDZsWPjY0tlAL41VdfkZWVlfijhDt37hQ4DynFddRBX6kz9Gy3bt2S3U+ePJmaN2+uiLds2TJ66aWXSKvVkr+/P23evNlsWfbu3UsxMTFG40RGRlL79u0pLS2NiHTK5d27d80uQ0qNGjVkynFmZiaNHDmSLly4YDRdREQE/fzzz7Ro0aJClVtmlLoGDRpQjRo1iIioSpUqVLlyZVn477//To6OjrRx40aj+Wg0GkpLS5O5ojJv3jw6duyYaocFIJqy9+7dSzY2NrKVxrvvvqs6EZjDH3/8Qa1bt6amTZsqwqSDttRSl5ubS1ZWVorVfJMmTahz586KfIQDrgUxxyclJdHhw4fF+ytXrpCvr6/B+AAoJydH5vfqq6/Szz//LN7b2tpS27ZtzZbBFFu2bBGvpQNgVlYWPXjwwKw8duzYQU5OTuTs7CxOFF5eXs9kYWFquywwMLDAeYaHhxfbdm1eXh5ZWVnRnj17zIr/zz//0IABAyglJcXsMrZv3y5aIB4+fGj2JxESExOpVatW4uInMzNTbCNjSp1Wq6WEhATKz88nNzc3un37thgGgHx9falVq1ai9WH06NHk7u5u9vMIdOnShV577TXVsKNHj9L06dNVw/z8/Exa4a2srFStLpUq/Tf0X7p0iT799FM6ePAg/fDDD4q4TZo0oXbt2hktpzhxdHQkOzs7Onr0qHieUmDNmjU0ZMgQhRJgjL1799Lly5eJSDdPqOHp6Wlywi8MwlgSGhpKREQLFiygatWqqca9f/8+NW7cWDbuGSIiIoJu3Lgh3utb5vTnIq1WS3Z2dnTp0iWz5C4uy6I5+fj4+FDbtm1lY9GVK1eIiOju3btUs2ZNGjduHBH9d0ZPq9VSjx49aNq0aTR58mT6+++/KSQkxGg5H374IQ0ePFjhf/z4cXEnY8+ePRQSEiL2l8mTJ1OrVq1U88vLyzM6L2ZlZdHKlSvF+7lz59Lhw4fJ2dnZqJwChV7IoYwRFRUFe3t75OTkiH7p6enQaDTQaDRwdXVFQECAwfRLly4FESlcampqoWUS8pg9ezaICH5+fjh27Bj+/vtvTJ48GUI1jxs3DkSEsLAwWdr27dubVc7du3cBALGxsQr59ZHG+fbbb0X/p0+fgojwzjvvqD6DPsOGDQMRoU+fPmbJqJaXcD9v3jzk5uaK/mFhYUhLS8PcuXMVZRMRGjZsqMijZ8+eOHHihNmyqJGeni6rO2n99OrVS7Ue1Jg/f76iDQzVY2HJz8/HggULjLa1qb4g+MfFxcn8rayszJY1KCgI2dnZAACtVovdu3cjKytLDM/MzAQRwcXFxWAeWq0WBw4cQE5Ojkze8PBwo2Vfv35djNuoUSMAQI0aNcyWfe/evYo6srW1BREhOTkZALBnzx60b98eRAQ3NzcAwPLly0FE2L59u5guMDAQALBmzRrRLyUlBYDhtpf6f/PNN6p9vaDtmpKSAiLCF198Ifr99ttvICKsW7dOlkeDBg0U6Vq0aGFWOdLwjIwMrFy5Enl5eTh37hxCQkLEOPn5+YiNjVWkBYDDhw8XaHyVytK6dWtZ2OjRo0FEuHz5Mn799VeEhoaanR8AvPbaawafUehbBeH7779HfHy8wXAvLy8QERYtWqSQRZ/Lly+DiDBt2jST5ernY2NjI9YLEWHGjBmy+MKYZ+z9BHTvKBGhXbt2JmUwB1dXV/E9IyJ06tRJIf/u3btBRNixY4eYrm3btiAi2NnZyeI6OTmBiJCVlaU6j0sJCwvD0aNHxXsiQsuWLRUyStMuXrwYRIQzZ84gJSUFzZs3N9heRIRBgwYZfHZ9mUaNGiXzy8nJQX5+viJdWFgYiAgffPCBwbyNUWYsdUREaWlp9MEHH9CePXuoSpUqov8LL7xA1tbWZG1tTYMGDTJ6fmj+/PmUmpoqOmOrs6CgIJPn1qRAYmoePHgwubi4qG5rpKamUmxsrGoe69atozlz5ij8/f39qWXLluTp6Wm0fOHXRZCskH799VfxWqr9Z2dnU0JCgqK+srKyFKueM2fOyLYYnzx5Qn379qXjx4/TX3/9JbMMCgQFBcm2bdesWUP9+/cXLRtvvPEG1a5dm9atWydLJ1gH1VYq586do4EDBxKRbrUmfU4ioqlTp1Lv3r1lfk+ePJG1s/5WCADR6iNYcFJSUigrK0tRvn46U8THx1NeXh75+PhQUlISubu7m1yp9e/fX3z2DRs20KpVq1TjxcXFUfv27U3KINCoUSPq0KGDaNY3JP+BAwdk9ZWbm0udO3emGTNmEJHO6vDRRx/R8uXLKS4uzuxzX/7+/jRmzBhF/zbneICAYLkR+uLChQsV/Uer1VJMTAwtX76csrOzVa3xwvsn1MGHH34oWj6+/PJLIiJxm+TTTz8V04WFhRGRbktVwMrKyuxvUxrbhpWidvYoKCiI7t+/T1qtVrQw3r9/Xwx///33xWutVktubm5EJLfyCt8Gi4yMJBcXF6OWvvT0dPL39xfvN27cSIsWLSJvb2/q2bOnzHq3fv16srW1VVhe09PTacSIEfTJJ58onikhIYH+/PNP2RgrWLSk91LLuWAJBUCjRo2iDh06GJRfDaG9pXUivOdxcXGUkZFhNP3Nmzdp5MiRpNVqKSMjg2bOnEmdOnUiIl2f7NevHwUGBpo8UhMaGkpOTk6yHQrBelrQHymcPXvW7B0nYVwJCAigCxcuyOr20aNHYn8AQLdv36b8/HxVeQoqo7GxUhh7hTgnT54U89dPJ9SRtF9KCQgIEN/Ntm3b0tChQ2Xhd+/eJW9vb7p3755ROa2srKh27dqibIbOtx0/flyW1srKinbu3CmLk5+fr5hLUlNTydramsaOHauaryBDoSiUKmgB8vLyMGDAAHh7eyvCpKvA0aNH4/z582bnm5qaCiJ1S12lSpVAREhPT0dUVBR8fHwwdOhQMXzs2LFo2bKlqH3PmjULRIQ9e/YoVhDe3t6qqwoinaUuMTER3333nSwsOjoaXbt2RWpqKvbv3w8iwqZNm+Dv76/Iq2/fvli5ciWICJGRkYiJiVFdwWRkZICI4OTkhH79+qnKNHbsWBDpLI4NGzYUw1q0aIEtW7YgIyMDX331lSLthQsXkJiYqGoRkbrp06djzpw5qmULdSikFVCLW7duXbRu3RpTp05FpUqVZPGkNGrUSOa3Y8cOWV59+vRRbaM2bdoY7TuChVFwPj4+4vXDhw9FeT7//HOjK0oASE5ORkBAAP766y9F/zCUdu3atarhM2fOxNOnTw3WnX7eUqRWzPHjx2PZsmX4999/QUTo0KEDAJ3VTui3RITPPvtMYakbM2YMiAhTp04V8xasFvpu3rx5RutZaqkjIiQkJCjyyMzMBAA8efJEtQxD7vHjx6p1lJaWJloL9N3du3fx1ltvife+vr6y8PT0dFy7dg1bt27Fxo0bRf/Vq1eL14mJiYr2kbJixQqjcsfHxxtsz3Xr1hnsM/r+np6eRvuG1A0ePNhgvu+//z6ICNHR0QAAjUYDPz8/JCUlyeJHRUXhyJEjuHnzJl588UWT8hERateurQi/dOmSeH3gwAG8/vrryMvLU+0/Qrxly5bJ8k1OTkaTJk0U5S1atAharVaRj1arRc2aNcX+IX1XIiMj8f3334v31apVU/R5aZsKY++3334LLy8vAEBgYKAYfvXqVdy/f1/1edLS0mT1NmjQIPH+n3/+AZHcUnf79m18/PHH4vuZn59vsG8IedWvXx9EhIkTJ4KI8Pfff2Pbtm24ceMGrly5IvZn4b0T0Gg0ICJs27YNAMTnFPpBx44dRWsgEeHo0aPi9fbt2xEcHGywzwOAi4uLWe+1tN0N9a2IiAgMHz5cvD906BAWLVoEIuVcIFilw8LCxGeWhn/zzTfIy8sDEcHe3l4WLtTpiBEjRL/nn39eJl9QUBBu3bqFyMhI3L59G0SEUaNGqba/KcqMUnfw4EHUrVsXzs7OcHZ2xqFDhzBp0iQAwM6dO9G1a1d0794dc+bMKVC+xpS65557TtZwgoIjYE7nMrfjSRtZCBMGoZMnT4rXUhOuIRcQEKDYovXw8FC8RIZkateundE4agpdcbjx48fL7hs1aiSap/Xj7tq1S+F369YtxYssTXvu3DlcunRJodQJbvPmzar1sWrVKixevFjMLyMjA927d5cpvMbaV60+b968KeYnbInru8jISIP5AkCVKlWMlu/p6WlWPwUglqVWr/pxBaVO2k7CtYuLi6wdiAh37txBeHi4QaVuxowZCA8PF9sQAB49eiQ+54ULF0w+Q1BQEADIFAVznFCOvr90ANZ3p0+fRteuXcV74diF4N577z2zyhaOIgj3P/zwAzIyMqDVamVKo5obMGCAwbBVq1Yp/FxcXHDkyBGz5IqLizO7/lJTU+Hr64uRI0eKfVbah6pXr252XoJCoOa+//57WV0JyovUrVy5UuwzWq0WGo0GX3zxhcE87e3tDYbdu3dPMSf8/PPPYvjixYvRsWNHo88DGF7IqMXVf68EfynXrl2ThWdnZ6vmN3r0aNja2uLw4cPo1q2brB8Iyoe0DH1DgbW1NYgI9erVU+St3zc/+ugjse2F+dTe3h5PnjxRKHXW1taigYKIZMcYfvzxR6N1pNbmhpywyBSeT1qmMbdw4UIQKcfBkJAQcYwcOXKk6pghNcoEBASYLau+IeTGjRsG298cyoxS96wwptQZa4i+ffua3WjGXmRDYStXrpQpdQXJ183NTaHUGZukpE7/vJmaEyxbJeW2bdtWqLrVarUICQlRhBVEKZW2kf4KtyjtK4SbimMonWA9M+YGDhyIU6dOmZWfYOU15TIzM8VB3JCTKnlSd+LECZP5161bV+y7P//8MwCgTZs2JtPNnTtXPK9WEDdt2jTFJGfKDRs2DG+//bZ437t37wKXKzhhN6A0uU8++cTsuIIC+7///Q9EhB49ehS6XKkFSs25u7uL14Ym+H79+gGAwipXWHfz5k08fvwYkZGRaNGiRYHSAsCBAwfMivvgwQPRSiR1eXl5yMvLw+HDh6HVajFv3rwCyfDGG2+gS5cu4r2Li4tCEXR0dDRoLHj55ZcLVJ6bm5uqv3A+Vd9Jx2I1BbKwbsiQIeK1vlXbmBOUujp16sj8pfNI06ZNVXfenoVzd3cXdyeXL19u9PcC4nxSQB2o3FFYpa44nLlKgto2qbmds6K64mo/aT7mDtCCM7UVePv2bfj5+RVYpsuXL+P8+fPFVlf6FlJjzpR1oiw6c5RGduquVatWINL9gOlZl9W5c2fx2tjCLDU1VfXYR0m7mzdvFmt+Z86cKXIeLi4uZm9hsvvPqRkHStJNnz5dvDYFK3UGlLrc3FyLdyR2hXdqq97COEu/zOzYsWNHpPvlqKVlqKiuf//+FpdBcKawAir2f02lpaVRrVq1KDU1lWxsbET/+Ph4atiwoQUlYxiGYRiG+Q9TKluZ+qRJSfKs/+qLYRiGYRimOGGlzgDSL64zDMMwDMOUdsqU5jJnzhxydHSkMWPGyD7amJeXRxMmTCBHR0fxA6lFhZU6hmEYhmHKEmVGcwkODqaEhATy9fWl1q1b02+//SaGnThxgmxtbcnX15cyMzMNfm2ayPz/fmWljmEYhmGYskSRNZfg4GDZX9Xs37+fevToQY0bNyYHBwfFXzIVln/++Yf69u1LRESurq4yxc1YmD6rV6+mWrVqia5x48aq8fhMHcMwDMMwZYkiK3Uff/yx+H+ju3btokmTJlGXLl1o4cKF1LVrV/rkk09o9+7dRS2GUlJSxF+n1qpVS/bfesbC9DH3v18L+t92DMMwDMMwlqRyUTO4c+cONWvWjIiItmzZQhs2bKBJkyaJ4V27dqVvvvmGPvrooyKVU6dOHXGrNCUlherWrWtWmD5Vq1alqlWrmiyPlTqGYRiGYcoSRbbUVa9enR49ekRERHFxcfT222/Lwt9++23Z9mxhsbOzIy8vLyIiOn36NPXo0cOssMJSr169IufBMAzDMAxTUhRZqevfvz9t3bqViIicnZ1lP2AgIvLw8KDmzZsXtRjq1KkTNWjQgBwdHSk0NJSGDx9On376KRERDRw4kGJiYsjR0ZGqV69O3bt3L3J5fKaOYRiGYZiyRJH/UeLBgwfUo0cPevXVV6lLly60detWeuutt+jNN9+kO3fu0KVLl+jo0aP07rvvFpfMxYqhf5QgYsWOUad+/fqUmJhoaTEYhinDzJo1i9avX29pMZgyxjP/R4mGDRtScHAwde/enU6dOkUA6MqVK+Tl5UW2trZ08eLFUqvQlQc6dOhgaREqHA8fPrS0CAxTIZg+fbqlRXhmLFiwwNIilFoePHhgaREKjL29vaVF0GHuH9+XV1JTU0FESE1NVYRRKfjzXn23Zs0a2f2ZM2fMSrdixQqLy27Mubu7W1yGF1980ax4palvfPnllwbDrKysjKbt0qVLsclRq1atZ/qc1atXt3hdPwvXtm1bg2F2dnYlLs9HH31U4mU6OTkZDLt+/brZ72VZc2lpaVi1apXCX6PRWFw2fTdw4MBize/w4cNGw+Pi4sRr/blhypQp4nX//v0VaZ9//nmL1NHHH39sdtzhw4cr/Hbv3g2tVmsyrSn4C7vFgPDrXzWSkpLIx8en2Mr66quvxGt3d3eqXFn+A+ZZs2bRwIEDFen0t5almNoCGDt2LEVERNDJkycLKC3R6NGjxWtDH3omIvrf//4nXrdu3ZqIiIYNG1bg8orCihUrSrS8u3fvGg2fNm2ayTzWrVtHbm5u4r20P0j7ihpXr141mb9A+/bticiwZVjazgXl9OnTtGzZMqNxhg4dKru/c+eO0fiGtsd//PHHAsn2LOnYsSN5e3vTd999pxoOI9ssRalvQ8ycOZPy8/OJSDe2mMsXX3xhNFztQ+5OTk7itf45bCLdGJCTk0Pt27c3ud1kSWrVqkVvvPGGzO+dd94xK63+2E2ke7+sra0LLIdwvlyN8ePHGwyzsbGR/TuTGrVr1zZ5Lt7W1ta4gHq8//774g8a161bR5s2bTIYVzo3EBE1atRIvFabk5KSkmjXrl00ceJE0a9+/fpERGbvGqrN6TNnzixwGkPMmzdP4ffhhx8Wz5GvYjZ8lTkKa6lr1qyZeO3q6mpUqzamfbdo0QJEhNmzZ+Pdd99VtZ6MGTMGXbt2RbNmzWRy3bhxA2fPnhXvDxw4oJC9UaNG6N27NzZu3KjId8OGDZgzZw4yMjJQpUoV0X/fvn2qKwOtVoujR4/i1KlTitXJwoULcfz4cVm6SpUqyWQBgMePH2P16tUgIkyYMAEtWrTA2rVrZfGEVZybm5us7jp27AgipbVS6vz8/DB16lRMnToV+fn5Zq2awsLCkJaWhiNHjpgV31TfMBX/r7/+QnR0tMl8zClHv70NXbdp00Y17bfffmvWMwwdOhQAMHLkSJn/66+/LuZ19+5dWdjNmzcRFxeHXr16iX5qbWLO+5abmyu7f/Tokcl68ff3R6dOnWTyqZXTrl07hd/o0aNN1okhq9Z7772HX375xWC6bdu2gYjQqVMnAMCTJ09ARFi0aJEs3rp168Trv//+Wxa2fv16AFD4G3LSd1bNTZw4EQAwduxYEBHu3btnMG7dunVl97NmzVKNFxAQAC8vL8TGxirCIiMjVfup4Nzd3cV+UadOHYOyaLVabNq0CZ6enkZlNuTGjBlT4DRSl52dLevfH3zwAVJSUjBs2DCj1uW6desCAG7cuKHot0LfVWuz3bt3q+Z38OBBjB8/XjVMGG+JCE2aNJGFzZ8/X7X+hTZr0qQJABhsY8ElJiaib9++ZtebdCy5f/++QgahfKGepGHffPONwb7z4osvQorgv3fvXrz66quK9p48ebJCtl27diE+Pl7hb2zeadasGfz8/AyGt2rVSnZ/9epV9OzZU7XtpX7+/v6yexsbG5iizCh1AQEBcHBwgJOTE0aMGIGcnBxZ+NmzZ2FrawtnZ2e4uLiYna85Sp30pRVc7969QaTbwkpKSsKxY8fg7Oys2nmlebm4uMgm0p07d4odBoCioYkIixcvlsmVnp6O5ORk8bmFeOfPn1eUJ6Cm1Gm1WjH8hx9+EDt/WlqaGOfs2bOq9ebv7w9PT0+Fv3SyFfIPDw9HYGCgGOf7778HkXzglsosKHXr1q0DACQkJIBItwUA6PqC2oszYcIEg21Yo0YNowMMAPzxxx9mD0jC9dy5cw2+uESEHj16AADy8vLEQTckJEQsU1DqiQgzZswwWI4p2dXSAMDy5cvxzjvvAABsbW0VfcXNzc1o/sJWxvLlywEAo0aNkoVLlTrpttErr7wia4ePP/5YbM9p06Zh/vz5ICLUqVNHjLNixQr88ssvmDlzptj3DNXFo0ePMHPmTHTo0AFEhM6dO6vWS15eHrKysmSyvPrqq2K8uLg4ZGdnA4BMWUlPT8exY8cAAHFxcXj55Zdl+cfHxyM0NFRRX87OzgAAX19fxTtMpJv0hWext7eXyeXj46N4P3NzcxVtTKRbeElZsGCBLPy9997D3LlzkZWVhcePH5vsSwJ//fWX+PxCWLdu3WRx+/XrJ7ufPXs2iHQLSMGvSpUqMvmMvUMAYG1tLQsX2gQAateuDSJ1xVSf8PBwMcycRd3YsWPxyiuvgIiwfft2k/H1XU5Ojjg/ZGRkyGQR8lVz0jlKGPPHjh2reB5j9Uak26p99OgRAMDDwwNEOqVEWrZUCdq0aZMs/bx584yW07dvXwDqSp3Q7tJ2uHfvHlauXAkiwuXLlw0ulAGIBgH9Be60adOQn5+P/v37i++gNK0wf0qNHJUrV0ZcXByePn2qWn8C+s/v4+ODvn37ypSnnTt3AgC6du0qi2tMqVu7dq2o1LVv314Rvnr1aqSnp4tjfFBQEABg5syZ8PLywsOHD0UZP//8cxDpdAx9pW7p0qWKPqLoMyZjlBLi4+PFl2b+/Pnw8PCQhZ89exazZ88ucL7mKHWAbjXt6OgIIp2WffnyZTRr1kzWiR48eICWLVsiKioKRISePXsq8kpMTJTdG1Lqjh49Ksbx8/MzKL+Xl5cYT6rUbd68GVevXhXvBaVOOiBLOXfuHIgIV65cEQf0Pn36FKQqRY4cOYIFCxYYDBcsFcILKyDIdeXKFVm4sGoaPHgwAOD+/fsgIgwYMEBMExwcLFNSBTw8PHD9+nWjq2aB3Nxc0VJhzElllSoy69evl8UbP368TJbNmzeDiBATEyOrKyKdlQaAzNopLUdwHh4e+Oqrr0BEaN68uZhP69atxTRTp07Fb7/9pqiL6OhoEBFGjBgh+qkpdV9//TU2bNggDurCQAoA+/fvl8WVKnXSdmzQoIGifHMJDAwEEeHhw4fYuHEjLly4oKgLQVERBtpDhw5h4cKFINKdVzFGcnIy3njjDXz88ceKMEHh0yc7OxuNGjVCv379kJmZCQAypU5YiAhK3YULF0CkW2i88cYbiI6ORmxsLDQaDQDgxx9/lPUD4L930N7eHsePH1fIEBMTg0uXLsHd3R35+fmyMH0r3++//65Ib6pPG4qvf7ZvxIgRsvvly5eDiHDhwgXExsbif//7n2LBFxISYlBJByCzbOojKHUA8N1335mUW1DwtVqtbCGj5saOHYuGDRuCiMT6L4jLy8uDi4sLiJRKnfBuqDmpUpeSkgIinYJhqs0AyMYofR48eAAAiIqKQr169UCkO5conEPTV2qEeYdIdwb3pZdeEvO9dOkSUlJSAEBcaAnu77//VrShIdTOfQvPvW3bNjFe5cqVTfbFdevWiQsVYe5ds2YNbt68qZrOxsYG7dq1E+/z8/NliwOpMiUYNrZv3w7AsFJXv3590a927dpITU2FVqsVlbo5c+Yonvfo0aMAgIyMDGzevFl1rpISHByM7OxsBAcHy/LRf+9V68pkjFLIkiVLcOTIEZnf2bNn0aRJEzg4OGDDhg0G02ZnZyM1NVV0MTExIFJX6rp06YLNmzeL94Iy8uTJE6PyCVtFQucAIE6A0nsiw0pdZmamWS+MoEAKg5IhhEn6wIEDBvMVJkrBUldYpc4Uubm52LZtm6KDSuWKiIgQ/TUaDapXry4OJIBuRZiYmCimuXHjhtEy9bcdDE0M+tt8huLrX9evXx+AzjI0aNAgrF27Vpz8BbRarey5BL8zZ87IXnLBagHo+vXvv/+OJ0+eyCb6uLg4WZ9NSUkRtzEMkZubC3t7e1y7dk30E7b45syZg1OnTomWoV27doHov0WAoNQBuoGxQ4cO+PTTT3H9+nVxC0eAiDBu3DijshQGaRsIfXXLli0g0v1gSFBaTSl1xhAmTHO4efMmiHRHEDIyMkCkVOrmzJljdtkajQbjx4+XTTTmsmzZMpPKjhBWo0YNTJo0yez4wcHBGD58OI4cOYJr166J46C/vz/CwsKQlZWFrVu3mpyopHkK11LlxpAsmzZtQs2aNQHo3peHDx9i7NixqFevnmoZghIKANeuXVN9h4UJ+4MPPsCgQYPE+MJ8QESikiE4YQH9yiuviOm1Wi3eeecdccyWIrUahoWFyfIydzfJ0FiVnZ2NhIQEs/KQcvLkSTEve3t7ccfr0aNHSE5OxoQJE1TbQLA0688L5sxRQrwXXnjBaPwff/wRLVu2VA1r1aoVmjZtas4jmkQ40qM/bglb24KiqX8USlDqpAYXKQ8fPgSRzriydetW8f1///33FQp/QTh06BAyMzMVu5OGKHNKXVRUlKwzCqSnp0Oj0UCj0cDV1RUBAQGq6ZcuXar6kqspdfpotVqTCp0hiHRmcOk9ESEqKgpDhgwRTeiHDh0CkW4FaO4LM2/ePLOVuoMHD5rMNy8vD6+//rrM8lcS9OnTx6iFT42JEyeapdRJld+4uDjExsZiypQpqhYRIpKdMVQbWE+fPo3r168D0L3Mwoq2ODBkLXoWpKWlYerUqbLtLgCi2f/UqVPo06ePaGE2h8TERLMHoIIgHHmQvq+5ubn45ZdfoNVqi0Wpy87OFreDTJGTk4MhQ4bg/v37yMrKApHul5xA4ZS6oiBseRl7t7/++muZBVeQ0VD86tWrK7ZRAd04GBwcXCg5peVdvnxZ9t74+voatLgUhMjISHz33XfivY+PD6pVqyarH+H857hx4/D06VPcunVLVUYAcHBwAJHOKh8YGIj4+HhcuHAB3bt3BwBRqdPf5gcg/jozOTlZtoVprlLn4eGB4OBgjB8/XnZmuiiEhYXhyZMnqkp4dnY2/v33X4V/ZmYmtm3bpkjz8OFDREVFmSyTiETluaTGNmMkJiYiLy9P5ifsmgj1LFXqfv31V5lSd+LECfzwww+WEN0klq9dPeLj49GjRw+FS0pKQmpqKpycnHDnzh2jeWzZsgU//fSTalhBLHXPkri4OCxdutTo6tZSSl1ZwlylDgD27t2LTZs2mYz3+PFj8fA6ke7QrvTTA8+aqKgonDhx4pmXY4qkpCRLi6BAo9Hgn3/+UQ0TVsozZswoWaGgU/CISNzSFQ7t79+/v0TKP3/+vEmlTo3vvvvO4OSUkZFRJAuDGoLFvKTJzs6WWcvu3LkjKnX6vPDCC2jYsKF4L1Xq1BB2V9SUOmG7U7DiabVaLFiwwKRVvbwRGRlp9u6TpdBqtTh06JC4g/TWW2/JZBWsnNKdjtJI6axdFfLy8jBgwAB4e3urhkuVstGjR5ttZTJ2ps7SmPsCCOdpjD0zK3UFR7+eoqOj4evrW+zlMMXH6dOnVSfXkuCff/6RbcHpn5l71hRGqStpHj58KPvRVEmjvx2qf+4V0C0cpJZmQakzZH0+c+YMGjZsqHreSavVKrZlKzI3btwQfyRQ2tFX6gCd0am0U2a+U+fh4UH+/v60YsUK6tmzJ/36669E9N/3eTw8PKhbt25kb29PjRo1kn0HqaxSpUoVs+LNnTuXFi9eLH73xxgAqGPHjkWUrPTQtm1bItJ9S6m4uXTpEl25ckW8b9y4MTk4OBR7OUzx0bdvX6pWrZpFyrazs6Pq1auL9wX9dldRMfY9stJC/fr1qXPnzpYWQ/xuZ5s2bRRh1tbWqmOvoW+I9e7dm+Li4lS/x2dlZSXrExWddu3aUadOnSwthlmotXeDBg0sIEnBKPJ/v5Z1jP33q6W5c+cO3bx5k4YPH17kvLZv306TJ0+mw4cPU9++fSkpKYmaNm1aDFJaFgB09+5datWqlaVFYRiLk5WVRTk5OVSrVi1Li1IqGT16NJ0/f54ePHhAt27dojfffFNVGZPi6OhIfn5+lJubq/rBYKZ88u+//5K7uzstXLjQ0qIUCFbqSrFSV5zk5ubSpk2baMaMGfTcc89ZWhyGYZgygaDU5eXl8djJlHp42VFBqFKlCs2aNcvSYjAMwzAM84woM2fqGIZhGKakEf5nt1j+l5NhnjG8/VpBtl8ZhmEYhinfsKWOYRiGYRimHFDhLXUAKD09nWrWrMnmdYZhGIZhyiwVXqljGIZhGIYpD/D2K8MwDMMwTDmAlTqGYRiGYZhyACt1DMMwDMMw5QD++LARhB9RMAzDMAzDWBpTP+pkpc4Ijx8/pvr161taDIZhGIZhGJPf1GWlzgjW1tZERBQTE8MfJi4jpKWlUePGjbnNyhjcbmUTbreyB7dZ2aZmzZpGw1mpM4Jg4rSxseHOX8bgNiubcLuVTbjdyh7cZuUT/qEEwzAMwzBMOYCVOoZhGIZhmHIAK3VGqFq1Ki1dupSqVq1qaVEYM+E2K5twu5VNuN3KHtxm5Rv+mzCGYRiGYZhyAFvqGIZhGIZhygGs1DEMwzAMw5QDWKljGIZhGIYpB7BSxzAMwzAMUw5gpc4Ac+bMIUdHRxozZgzl5ORYWhyGiAIDA8nR0ZGcnZ1p5MiRlJubS7/++it1796dXFxcKCYmhoiIQkNDycHBgbp3707e3t5ERPT06VMaPHgwOTg40Jo1ayz5GBUWd3d3eumll4iIuN3KCOfOnaNevXqRs7MzHTt2jNutlKPVamn8+PHk6OhITk5OFBERwW1W0QCjICgoCGPGjAEArFy5EgcOHLCwRAwAxMfHIyMjAwAwf/58eHh4oFu3btBoNPDz88Mnn3wCABg8eDDu3r2L1NRUdO/eHQCwfv167Ny5EwDQr18/xMTEWOYhKij5+fkYNmwYOnXqhJycHG63MkBWVhYGDBgAjUYDANxuZYDAwECMGjUKAODl5YUvvviC26yCwZY6Ff755x/q27cvERG5urqSv7+/hSViiIgaNGhANWrUICKiKlWq0N27d6lNmzZkbW1NPXr0oJCQECIiio+PpxYtWpCNjQ29+OKL9PjxY1mb9unThy5dumSx56iIHDx4kN5//32qVKkS3bt3j9utDODv70/Vq1engQMH0tChQ+nq1avcbqUcW1tbIiICQCkpKfTSSy9xm1UwWKlTISUlRfxPvFq1alFycrKFJWKkREdHk7e3Nzk4OMj+uzA/P5+IdAOagNB+3KaWIz8/nzw8PGjUqFFEJH+/hHAibrfSxsOHD+n+/ft04sQJmjRpEi1btozbrZRTr149qlSpEr355ps0d+5c6tmzJ7dZBYOVOhXq1KlDaWlpRKSbgOrWrWthiRiBtLQ0+uCDD2jPnj1Uv359sZ2IiJ577jkiIqpU6b9uLbQft6nl2L9/P40cOVJsF2lbEHG7lVZq165NDg4OZG1tTS4uLhQcHMztVso5ffo0Va9encLCwuj333+njRs3cptVMFipU8HOzo68vLyISPeS9OjRw8ISMUS6VeaYMWNoyZIl1LJlS2revDmFhoZSTk4OXbx4kdq3b09Eum3ae/fuUVpaGiUnJ1O9evVkbert7U3du3e35KNUKEJDQ+nnn38mV1dXunfvHu3YsYPbrQzQrVs3Cg0NJSKi4OBg6tu3L7dbGaBOnTpEpFPKHz9+zG1W0bDoib5SzOzZs+Hg4ID/+7//Ew8KM5bl4MGDqFu3LpydneHs7IxDhw7B3d0ddnZ26NmzJ6KjowEAt27dQo8ePWBnZwcvLy8AQFpaGgYNGgR7e3usXr3ako9RoXnrrbcAgNutjLB582Y4OjrC2dkZERER3G6lnLy8PIwePRpOTk54++23cfHiRW6zCgb/9yvDMAzDMEw5gLdfGYZhGIZhygGs1DEMwzAMw5QDWKljGIZhGIYpB7BSxzAMwzAMUw5gpY5hGIZhGKYcwEodwzAMwzBMOYCVOoZhGIZhmHIAK3UMwzAMwzDlAFbqGIZhGIZhygGs1DEMwzAMw5QD/h8uHEU/DLl0TQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1158,7 +1158,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 21, @@ -1257,7 +1257,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ70lEQVR4nO3df1yT5f4/8NfNVAaKU0TcKBDU1CamoqGYlVYqWqTWt6P5Iy2zxMzMzLI6DuxRpid/VCpmp6MpZfnILCmlOCZqSZKiJWFkniGoW6ToQA3U7fr+wYfl3IAN9oNtr+fjscfj3Neue3vf3J6z17mv+7puSQghQEREROSnAjxdABEREZEnMQwRERGRX2MYIiIiIr/GMERERER+jWGIiIiI/BrDEBEREfk1hiEiIiLya808XUBTZzKZcPr0aYSEhECSJE+XQ0RERHYQQqCiogIREREICKj72g/DUD1Onz6NyMhIT5dBREREDVBSUoIbb7yxzj4MQ/UICQkBUP3HbN26tYerISIiInuUl5cjMjLS/DteF4ahetQMjbVu3ZphiIiIyMvYc4sLb6AmIiIiv8YwRERERH6NYYiIiIj8Gu8ZchKj0YgrV654ugxykubNm0Mmk3m6DCIicgOGoUYSQkCv1+P8+fOeLoWcrE2bNlAqlVxfiojIxzEMNVJNEAoPD0dwcDB/OH2AEAKXLl1CaWkpAEClUnm4IiIiciWGoUYwGo3mINSuXTtPl0NOFBQUBAAoLS1FeHg4h8yIiHyYV91AvWfPHiQlJSEiIgKSJOHzzz+vs392djYkSbJ6/frrr06pp+YeoeDgYKd8HjUtNeeV94IREfk2r7oydPHiRfTq1QuPPvooHnzwQbv3KywstFgwsX379k6ti0NjvonnlYjIP3hVGBoxYgRGjBjh8H7h4eFo06aN8wsiIiKiBjGaBHK1ZSitqER4iBzxMaGQBXjm/4R6VRhqqD59+qCyshJqtRqvvPIKhgwZUmvfqqoqVFVVmbfLy8vdUSIREZHfyMzXITWjADpDpblNpZBDk6RGYqz7J6141T1DjlKpVFi7di22bNmCzz77DN26dcPdd9+NPXv21LrPokWLoFAozC8+sd4+69ev97qrb95YMxGRt8vM1yE5Pc8iCAGA3lCJ5PQ8ZObr3F6TT4ehbt26Ydq0aYiLi0NCQgJWr16Ne++9F2+++Wat+8yfPx8Gg8H8KikpcXmdRpNAzvGz+OLwKeQcPwujSbj8O6dMmWLz5vLExMR6942OjsaKFSss2saOHYvffvvNRdX+jQGGiMh7GU0CqRkFsPUrV9OWmlHglt/Ba/nFMNm1BgwYgPT09FrfDwwMRGBgoNvq8eSlwsTERKxbt86iraHHHhQUZJ6OTkREZEuutszqitC1BACdoRK52jIkdHbfkjU+fWXIlkOHDjWZRfQ8fakwMDAQSqXS4tW2bVsAQEpKCqKiohAYGIiIiAjMmjULADB48GCcOHECzz77rPlqEmB9xSYlJQW9e/fGf/7zH0RFRaFVq1ZITk6G0WjEkiVLoFQqER4ejtdee82ipmXLlqFnz55o2bIlIiMjMWPGDFy4cAFA9VIJjz76KAwGg/m7U1JSAACXL1/GvHnzcMMNN6Bly5bo378/srOzLT57/fr1iIqKQnBwMMaMGYOzZ8+64K9KRES1Ka2oPQg1pJ+zeNWVoQsXLuD33383b2u1Whw+fBihoaGIiorC/PnzcerUKWzYsAEAsGLFCkRHR6NHjx64fPky0tPTsWXLFmzZssVTh2BW36VCCdWXCoeqlW6/u/7TTz/F8uXL8fHHH6NHjx7Q6/X46aefAACfffYZevXqhSeeeALTpk2r83OOHz+OHTt2IDMzE8ePH8f/+3//D1qtFl27dsXu3buxb98+PPbYY7j77rsxYMAAAEBAQADefvttREdHQ6vVYsaMGZg3bx5Wr16NgQMHYsWKFViwYAEKCwsBAK1atQIAPProoygqKsLHH3+MiIgIbN26FYmJiThy5Ahuuukm7N+/H4899hhef/11PPDAA8jMzIRGo3HhX5GIiK4XHiJ3aj9n8aowdODAAYuZYHPmzAEATJ48GevXr4dOp0NxcbH5/cuXL2Pu3Lk4deoUgoKC0KNHD3z11VcYOXKk22u/XlO4VPjll1+aw0SNF154AS1btoRSqcQ999yD5s2bIyoqCvHx8QCA0NBQyGQyhISEQKlU1vn5JpMJ//nPfxASEgK1Wo0hQ4agsLAQ27dvR0BAALp164bFixcjOzvbHIZmz55t3j8mJgavvvoqkpOTsXr1arRo0QIKhQKSJFl89/Hjx7Fp0yacPHkSERERAIC5c+ciMzMT69atw+uvv4633noLw4cPx4svvggA6Nq1K/bt24fMzMxG/x2JiMg+8TGhUCnk0BsqbV4MkAAoFdXT7N3Jq8LQ4MGDIUTtN1WtX7/eYnvevHmYN2+ei6tqmKZwqXDIkCFIS0uzaAsNDcXFixexYsUKdOrUCYmJiRg5ciSSkpLQrJlj/1yio6MREhJi3u7QoQNkMhkCAgIs2mqeAQYAu3btwuuvv46CggKUl5fj6tWrqKysxMWLF9GyZUub35OXlwchBLp27WrRXlVVZX5MytGjRzFmzBiL9xMSEhiGiIjcSBYgQZOkRnJ6HiTAIhDVjIFoktRuHxHxqjDkS5rCpcKWLVuiS5cuVu2hoaEoLCxEVlYW/vvf/2LGjBn417/+hd27d6N58+Z2f/71fSVJstlmMpkAACdOnMDIkSMxffp0vPrqqwgNDcV3332HqVOn1vlIDJPJBJlMhoMHD1o9Q6zmylddIZqIiNwnMVaFtIlxVpOHlB5cZ4hhyEOa6qXCGkFBQbj//vtx//3346mnnkL37t1x5MgRxMXFoUWLFjAajU7/zgMHDuDq1atYunSp+erR5s2bLfrY+u4+ffrAaDSitLQUt99+u83PVqvV+OGHHyzart8mIiL3SIxVYahayRWo/V1TuFRYVVUFvV5v0dasWTN8+eWXMBqN6N+/P4KDg7Fx40YEBQWhY8eOAKqHv/bs2YNx48YhMDAQYWFhTqmnc+fOuHr1Kt555x0kJSXh+++/x5o1ayz6REdH48KFC9i5cyd69eqF4OBgdO3aFRMmTMAjjzyCpUuXok+fPjhz5gy+/fZb9OzZEyNHjsSsWbMwcOBALFmyBKNHj8Y333zDITIiIg+SBUhunT5fF7+bWt+U1FwqVCosh8KUCjnSJsa5/FJhZmYmVCqVxWvQoEFo06YN3nvvPdx222245ZZbsHPnTmRkZJjvv1m4cCGKiorQuXNnpz70tnfv3li2bBkWL16M2NhYfPjhh1i0aJFFn4EDB2L69OkYO3Ys2rdvjyVLlgAA1q1bh0ceeQTPPfccunXrhvvvvx/79+83ryA+YMAA/Pvf/8Y777yD3r1745tvvsErr7zitNqJiMh7SYI3U9SpvLwcCoUCBoPB4sn3AFBZWQmtVouYmBjI5Q2/t6cpPayO/uas80tERO5X1+/39ThM1gQ0pUuFRERE/obDZEREROTXGIaIiIjIrzEMOQFvu/JNPK9ERP6B9ww1Qs0CgpcuXeIT233QpUuXAFgvHklE5C/8ZYIPw1AjyGQytGnTxvw4ieDgYPNT3Ml7CSFw6dIllJaWok2bNlarWhMR+YPMfJ3VKtEqD64S7UoMQ41U88DQa5+vRb6hTZs29T6MlojIF2Xm65Ccnmf1hAS9oRLJ6XluWQvPnRiGGkmSJKhUKoSHh9f5/CzyLs2bN+cVISLyS0aTQGpGgc1HRQlUPyUhNaMAQ9VKnxkyYxhyEplMxh9PIiLyernaMouhsesJADpDJXK1ZT6zRh5nkxEREZFZaUXtQagh/bwBwxARERGZhYfY9/ghe/t5A4YhIiIiMouPCYVKIUdtdwNJqJ5VFh8T6s6yXIphiIiIiMxkARI0SWoAsApENduaJLXP3DwNMAwRERHRdRJjVUibGAelwnIoTKmQ+9y0eoCzyYiIiMiGxFgVhqqVXIGaiIiI/JcsQPKZ6fN14TAZERER+TWGISIiIvJrDENERETk1xiGiIiIyK8xDBEREZFf42wyIiIiL2U0Cb+Y+u5qDENEREReKDNfh9SMAosnzKsUcmiS1D63KKKrcZiMiIjIy2Tm65CcnmcRhABAb6hEcnoeMvN1HqrMOzEMEREReRGjSSA1owDCxns1bakZBTCabPUgWxiGiIiIvEiutszqitC1BACdoRK52jL3FeXlGIaIiIi8SGlF7UGoIf2IYYiIiMirhIfI6+/kQD9iGCIiIvIq8TGhUCnkqG0CvYTqWWXxMaHuLMurMQwRERF5EVmABE2SGgCsAlHNtiZJzfWGHMAwRERE5GUSY1VImxgHpcJyKEypkCNtYhzXGXIQF10kIiLyQomxKgxVK7kCtRMwDBEREXkpWYCEhM7tPF2G1+MwGREREfk1hiEiIiLyawxDRERE5NcYhoiIiMivMQwRERGRX2MYIiIiIr/GqfVEREQuYjQJrgPkBRiGiIiIXCAzX4fUjALoDH8/PV6lkEOTpOYK0U2MVw2T7dmzB0lJSYiIiIAkSfj888/r3Wf37t3o27cv5HI5OnXqhDVr1ri+UCIi8muZ+Tokp+dZBCEA0BsqkZyeh8x8nYcqI1u8KgxdvHgRvXr1wsqVK+3qr9VqMXLkSNx+++04dOgQXnrpJcyaNQtbtmxxcaVEROSvjCaB1IwCCBvv1bSlZhTAaLLVgzzBq4bJRowYgREjRtjdf82aNYiKisKKFSsAADfffDMOHDiAN998Ew8++KCLqiQiIn+Wqy2zuiJ0LQFAZ6hErraMj9JoIrzqypCjcnJyMGzYMIu24cOH48CBA7hy5YrNfaqqqlBeXm7xIiIisldpRe1BqCH9yPV8Ogzp9Xp06NDBoq1Dhw64evUqzpw5Y3OfRYsWQaFQmF+RkZHuKJWIiHxEeIjcqf3I9Xw6DAGAJFlOYRRC2GyvMX/+fBgMBvOrpKTE5TUSEZHviI8JhUohR20T6CVUzyqLjwl1Z1lUB58OQ0qlEnq93qKttLQUzZo1Q7t2tsdpAwMD0bp1a4sXERGRvWQBEjRJagCwCkQ125okNdcbakJ8OgwlJCQgKyvLou2bb75Bv3790Lx5cw9VRUREvi4xVoW0iXFQKiyHwpQKOdImxnGdoSbGq2aTXbhwAb///rt5W6vV4vDhwwgNDUVUVBTmz5+PU6dOYcOGDQCA6dOnY+XKlZgzZw6mTZuGnJwcvP/++9i0aZOnDoGIiPxEYqwKQ9VKrkDtBbwqDB04cABDhgwxb8+ZMwcAMHnyZKxfvx46nQ7FxcXm92NiYrB9+3Y8++yzWLVqFSIiIvD2229zWj0REbmFLEDi9HkvIImaO4rJpvLycigUChgMBt4/RERE5CUc+f326XuGiIiIiOrDMERERER+jWGIiIiI/BrDEBEREfk1hiEiIiLya141tZ6IiMjZjCbBtYD8HMMQERH5rcx8HVIzCqAz/P0EeZVCDk2SmqtE+xEOkxERkV/KzNchOT3PIggBgN5QieT0PGTm6zxUGbkbwxAREfkdo0kgNaMAtlYdrmlLzSiA0cR1if0BwxAREfmdXG2Z1RWhawkAOkMlcrVl7iuKPIZhiIiI/E5pRe1BqCH9yLsxDBERkd8JD5E7tR95N4YhIiLyO/ExoVAp5KhtAr2E6lll8TGh7iyLPIRhiIiI/I4sQIImSQ0AVoGoZluTpOZ6Q36CYYiIiPxSYqwKaRPjoFRYDoUpFXKkTYzjOkN+hIsuEhGR30qMVWGoWskVqP0cwxAREfk1WYCEhM7tPF0GeRCHyYiIiMivMQwRERGRX2MYIiIiIr/GMERERER+jWGIiIiI/BpnkxERUZNmNAlOfSeXYhgiIqImKzNfh9SMAosnzKsUcmiS1FwUkZyGw2RERNQkZebrkJyeZxGEAEBvqERyeh4y83Ueqox8DcMQERE1OUaTQGpGAYSN92raUjMKYDTZ6kHkGIYhIiJqcnK1ZVZXhK4lAOgMlcjVlrmvKPJZDENERNTklFbUHoQa0o+oLgxDRETU5ISHyOvv5EA/orowDBERUZMTHxMKlUKO2ibQS6ieVRYfE+rOsshHMQwREVGTIwuQoElSA4BVIKrZ1iSpud4QOQXDEBERNUmJsSqkTYyDUmE5FKZUyJE2MY7rDJHTcNFFIiJqshJjVRiqVnIFanIphiEiImrSZAESEjq383QZ5MM4TEZERER+jWGIiIiI/BrDEBEREfk1hiEiIiLyawxDRERE5NcYhoiIiMivcWo9ERE1itEkuA4QeTWGISIiarDMfB1SMwqgM/z99HiVQg5NkporRJPX4DAZERE1SGa+DsnpeRZBCAD0hkokp+chM1/nocqIHMMwREREDjOaBFIzCiBsvFfTlppRAKPJVg+ipoVhiIiIHJarLbO6InQtAUBnqESutsx9RRE1EMMQERE5rLSi9iDUkH5EnuR1YWj16tWIiYmBXC5H3759sXfv3lr7ZmdnQ5Ikq9evv/7qxoqJiHxPeIjcqf2IPMmrwtAnn3yC2bNn4+WXX8ahQ4dw++23Y8SIESguLq5zv8LCQuh0OvPrpptuclPFRES+KT4mFCqFHLVNoJdQPassPibUnWURNYhXhaFly5Zh6tSpePzxx3HzzTdjxYoViIyMRFpaWp37hYeHQ6lUml8ymazWvlVVVSgvL7d4ERGRJVmABE2SGgCsAlHNtiZJzfWGyCt4TRi6fPkyDh48iGHDhlm0Dxs2DPv27atz3z59+kClUuHuu+/Grl276uy7aNEiKBQK8ysyMrLRtRMR+aLEWBXSJsZBqbAcClMq5EibGMd1hshreM2ii2fOnIHRaESHDh0s2jt06AC9Xm9zH5VKhbVr16Jv376oqqrCxo0bcffddyM7Oxt33HGHzX3mz5+POXPmmLfLy8sZiIiIapEYq8JQtZIrUJNX85owVEOSLP8LJoSwaqvRrVs3dOvWzbydkJCAkpISvPnmm7WGocDAQAQGBjqvYCIiHycLkJDQuZ2nyyBqMK8ZJgsLC4NMJrO6ClRaWmp1taguAwYMwLFjx5xdHhEREXkprwlDLVq0QN++fZGVlWXRnpWVhYEDB9r9OYcOHYJKxXFsIiIiquZVw2Rz5szBpEmT0K9fPyQkJGDt2rUoLi7G9OnTAVTf73Pq1Cls2LABALBixQpER0ejR48euHz5MtLT07FlyxZs2bLFk4dBRERETYhXhaGxY8fi7NmzWLhwIXQ6HWJjY7F9+3Z07NgRAKDT6SzWHLp8+TLmzp2LU6dOISgoCD169MBXX32FkSNHeuoQiIiIqImRhBB8il4dysvLoVAoYDAY0Lp1a0+XQ0RERHZw5Pfba+4ZIiIiInIFrxomIyIixxlNgusAEdWBYYiIyIdl5uuQmlEAneHvp8erFHJoktRcIZro/3CYjIjIR2Xm65CcnmcRhABAb6hEcnoeMvN1HqqMqGlhGCIi8kFGk0BqRgFszZCpaUvNKIDRxDk0RAxDREQ+KFdbZnVF6FoCgM5QiVxtmfuKImqiHA5DnTp1wtmzZ63az58/j06dOjmlKCIiapzSitqDUEP6Efkyh8NQUVERjEajVXtVVRVOnTrllKKIiKhxwkPkTu1H5Mvsnk22bds283/++uuvoVAozNtGoxE7d+5EdHS0U4sjIqKGiY8JhUohh95QafO+IQmAUlE9zZ7I39kdhkaPHg0AkCQJkydPtnivefPmiI6OxtKlS51aHBERNYwsQIImSY3k9DxIgEUgqllhSJOk5npDRHBgmMxkMsFkMiEqKgqlpaXmbZPJhKqqKhQWFuK+++5zZa1EROSAxFgV0ibGQamwHApTKuRImxjHdYaI/g+fTVYPPpuMiLwdV6Amf+TI77fDK1DPmjULXbp0waxZsyzaV65cid9//x0rVqxw9COJiMiFZAESEjq383QZRE2Ww7PJtmzZgttuu82qfeDAgfj000+dUhQRERGRuzgchs6ePWsxk6xG69atcebMGacURUREROQuDoehLl26IDMz06p9x44dXHSRiIiIvI7D9wzNmTMHM2fOxJ9//om77roLALBz504sXbqU9wsRERGR13E4DD322GOoqqrCa6+9hldffRUAEB0djbS0NDzyyCNOL5CIiIjIlRo1tf7PP/9EUFAQWrVq5cyamhROrScid+D0dyLncunUegC4evUqsrOzcfz4cYwfPx4AcPr0abRu3dqngxERkStk5uuQmlFg8ZR5lUIOTZKaCyMSuYHDN1CfOHECPXv2xKhRo/DUU0/hzz//BAAsWbIEc+fOdXqBRES+LDNfh+T0PIsgBAB6QyWS0/OQma/zUGVE/sPhMPTMM8+gX79+OHfuHIKCgsztY8aMwc6dO51aHBGRLzOaBFIzCmw+SLWmLTWjAEYTHxRA5EoOD5N99913+P7779GiRQuL9o4dO+LUqVNOK4yIyNflasusrghdSwDQGSqRqy3jCtJELuTwlSGTyQSj0WjVfvLkSYSEhDilKCIif1BaUXsQakg/ImoYh8PQ0KFDLdYTkiQJFy5cgEajwciRI51ZGxGRTwsPkdffyYF+RNQwDg+TLV++HEOGDIFarUZlZSXGjx+PY8eOISwsDJs2bXJFjUREPik+JhQqhRx6Q6XN+4YkAEpF9TR7InIdh8NQREQEDh8+jI8//hgHDx6EyWTC1KlTMWHCBIsbqomIqG6yAAmaJDWS0/MgARaBqGaFIU2SmusNEbmYXYsuxsXFYefOnWjbti0WLlyIuXPnIjg42B31eRwXXSQiV+M6Q0TO58jvt11hKCgoCMeOHcONN94ImUwGnU6H8PBwpxXclDEMEZE7cAVqIudy+grUvXv3xqOPPopBgwZBCIE333yz1pWmFyxY4HjFRER+ThYgcfo8kYfYdWWosLAQGo0Gx48fR15eHtRqNZo1s85RkiQhLy/PJYV6Cq8MEREReR+nD5NdKyAgAHq9nsNkRERE1GQ58vtt1zpDcXFxOHfuHABAo9HwYaxERETkM+wKQ0ePHsXFixcBAAsXLsSFCxdcWhQRERGRu/AGaiIiIvJrvIG6HrxniIiIyPvwBmonYhgiIoDrABF5G6evM3Qtk8nU4MKIiLwRV4gm8m0OP7UeADZu3IjbbrsNEREROHHiBIDqB7h+8cUXTi2OiMjTMvN1SE7PswhCAKA3VCI5PQ+Z+ToPVUZEzuJwGEpLS8OcOXMwcuRInD9/HkajEQDQtm1brFixwtn1ERF5jNEkkJpRYPOJ8jVtqRkFMJocutuAiJoYh8PQO++8g/feew8vv/wyZDKZub1fv344cuSIU4sjIvKkXG2Z1RWhawkAOkMlcrVl7iuKiJzO4TCk1WrRp08fq/bAwEDzWkRERL6gtKL2INSQfkTUNDkchmJiYnD48GGr9h07dkCtVjujJiKiJiE8RO7UfkTUNDk8m+z555/HU089hcrKSgghkJubi02bNmHRokX497//7YoaiYg8Ij4mFCqFHHpDpc37hiQASkX1NHsi8l4Oh6FHH30UV69exbx583Dp0iWMHz8eN9xwA9566y2MGzfOFTUSEXmELECCJkmN5PQ8SIBFIKpZYUiTpOZ6Q0RerkFT66dNm4YTJ06gtLQUer0eJSUlmDp1qrNrs2n16tWIiYmBXC5H3759sXfv3jr77969G3379oVcLkenTp2wZs0at9RJRL4hMVaFtIlxUCosh8KUCjnSJsZxnSEiH+DwlaFrhYWFOasOu3zyySeYPXs2Vq9ejdtuuw3vvvsuRowYgYKCAkRFRVn112q1GDlyJKZNm4b09HR8//33mDFjBtq3b48HH3zQrbUTkfdKjFVhqFrJFaiJfJTDj+PwpP79+yMuLg5paWnmtptvvhmjR4/GokWLrPq/8MIL2LZtG44ePWpumz59On766Sfk5OTY9Z18HAcREZH3ceT3u0HDZJ5w+fJlHDx4EMOGDbNoHzZsGPbt22dzn5ycHKv+w4cPx4EDB3DlyhWb+1RVVaG8vNziRURERL7La8LQmTNnYDQa0aFDB4v2Dh06QK/X29xHr9fb7H/16lWcOXPG5j6LFi2CQqEwvyIjI51zAERERNQkeU0YqiFJlmP0Qgirtvr622qvMX/+fBgMBvOrpKSkkRUTERFRU2bXDdRvv/223R84a9asBhdTl7CwMMhkMqurQKWlpVZXf2oolUqb/Zs1a4Z27drZ3CcwMBCBgYHOKZqIiIiaPLvC0PLly+36MEmSXBaGWrRogb59+yIrKwtjxowxt2dlZWHUqFE290lISEBGRoZF2zfffIN+/fqhefPmLqmTiIiIvItdYUir1bq6DrvMmTMHkyZNQr9+/ZCQkIC1a9eiuLgY06dPB1A9xHXq1Cls2LABQPXMsZUrV2LOnDmYNm0acnJy8P7772PTpk2ePAwiIiJqQhq1zpC7jR07FmfPnsXChQuh0+kQGxuL7du3o2PHjgAAnU6H4uJic/+YmBhs374dzz77LFatWoWIiAi8/fbbXGOIyAcZTYLrABFRgzRonaGTJ09i27ZtKC4uxuXLly3eW7ZsmdOKawq4zhBR05eZr0NqRgF0hr+fHq9SyKFJUnOFaCI/5cjvt8NXhnbu3In7778fMTExKCwsRGxsLIqKiiCEQFxcXIOLJiJqiMx8HZLT86wepKo3VCI5PY+PzCCiejk8tX7+/Pl47rnnkJ+fD7lcji1btqCkpAR33nknHnroIVfUSERkk9EkkJpRYPOJ8jVtqRkFMJq8ZqF9IvIAh8PQ0aNHMXnyZABAs2bN8Ndff6FVq1ZYuHAhFi9e7PQCiYhqk6stsxgau54AoDNUIldb5r6iiMjrOByGWrZsiaqqKgBAREQEjh8/bn6vtlWdiYhcobSi9iDUkH5E5J8cvmdowIAB+P7776FWq3Hvvffiueeew5EjR/DZZ59hwIABrqiRiMim8BC5U/sRkX9yOAwtW7YMFy5cAACkpKTgwoUL+OSTT9ClSxe7F2ckInKG+JhQqBRy6A2VNu8bkgAoFdXT7ImIatOgqfX+hFPriZq2mtlkACwCUc0KQ5xNRuSfHPn9dvieoZKSEpw8edK8nZubi9mzZ2Pt2rWOV0pE1EiJsSqkTYyDUmE5FKZUyBmEiMguDg+TjR8/Hk888QQmTZoEvV6Pe+65B7GxsUhPT4der8eCBQtcUScRUa0SY1UYqlZyBWoiahCHrwzl5+cjPj4eALB582b07NkT+/btw0cffYT169c7uz4iIrvIAiQkdG6HUb1vQELndgxCRGQ3h8PQlStXEBgYCAD473//i/vvvx8A0L17d+h0OudWR0RERORiDoehHj16YM2aNdi7dy+ysrKQmJgIADh9+jTatWvn9AKJiIiIXMnhMLR48WK8++67GDx4MB5++GH06tULALBt2zbz8BkRERGRt2jQ1Hqj0Yjy8nK0bdvW3FZUVITg4GCEh4c7tUBP49R6IiIi7+PSp9YDgEwmswhCABAdHd2QjyIiIiLyKIfDUExMDCSp9lka//vf/xpVEBH5JqNJcOo7ETVJDoeh2bNnW2xfuXIFhw4dQmZmJp5//nln1UVEPiQzX4fUjAKLJ8yrFHJoktRcFJGIPM7hMPTMM8/YbF+1ahUOHDjQ6IKIyLfUPC7j+psT9YZKJKfncZVoIvI4h2eT1WbEiBHYsmWLsz6OiHyA0SSQmlFg8yGqNW2pGQUwmviIRCLyHKeFoU8//RShoXwyNBH9LVdbZjE0dj0BQGeoRK62zH1FERFdx+Fhsj59+ljcQC2EgF6vx59//onVq1c7tTgi8m6lFbUHoYb0IyJyBYfD0OjRoy22AwIC0L59ewwePBjdu3d3Vl1E5APCQ+T1d3KgHxGRKzgchjQajSvqICIfFB8TCpVCDr2h0uZ9QxIApaJ6mj0Rkac06p6hv/76C+Xl5RYvIqIasgAJmiQ1gOrgc62abU2SmusNEZFHORyGLl68iJkzZyI8PBytWrVC27ZtLV5ERNdKjFUhbWIclArLoTClQs5p9UTUJDg8TDZv3jzs2rULq1evxiOPPIJVq1bh1KlTePfdd/HGG2+4okYi8nKJsSoMVSu5AjURNUkOP6g1KioKGzZswODBg9G6dWvk5eWhS5cu2LhxIzZt2oTt27e7qlaP4INaiYiIvI8jv98OD5OVlZUhJiYGANC6dWuUlVWvDzJo0CDs2bOnAeUSEREReY7DYahTp04oKioCAKjVamzevBkAkJGRgTZt2jizNiIiIiKXczgMPfroo/jpp58AAPPnz8fq1asRGBiIZ599lg9qJSIiIq/j8D1D1ysuLsaBAwfQuXNn9OrVy1l1NRm8Z4iIiMj7OPL77fBssutFRUUhKiqqsR9DRERE5BF2D5N9++23UKvVNhdWNBgM6NGjB/bu3evU4oiIiIhcze4wtGLFCkybNs3mpSaFQoEnn3wSy5Ytc2pxROReRpNAzvGz+OLwKeQcPwujqVGj6EREXsHuYbKffvoJixcvrvX9YcOG4c0333RKUUTkfpn5OqRmFEBn+PsJ8iqFHJokNVeJJiKfZveVoT/++APNmzev9f1mzZrhzz//dEpRRORemfk6JKfnWQQhANAbKpGcnofMfJ2HKiMicj27w9ANN9yAI0eO1Pr+zz//DJWK/++RyNsYTQKpGQU2nypf05aaUcAhMyLyWXaHoZEjR2LBggWorKy0eu+vv/6CRqPBfffd59TiiMj1crVlVleEriUA6AyVyNWWua8oIiI3svueoVdeeQWfffYZunbtipkzZ6Jbt26QJAlHjx7FqlWrYDQa8fLLL7uyViJygdKK2oNQQ/oREXkbu8NQhw4dsG/fPiQnJ2P+/PmoWatRkiQMHz4cq1evRocOHVxWKBG5RniI3Kn9iIi8jUOLLnbs2BHbt2/HuXPn8Pvvv0MIgZtuuglt27Z1VX1E5GLxMaFQKeTQGypt3jckAVAq5IiPCXV3aUREbuHws8kAoG3btrj11lsRHx/PIETk5WQBEjRJagDVwedaNduaJDVkAde/S0TkGxoUhojItyTGqpA2MQ5KheVQmFIhR9rEOK4zREQ+rdHPJiMi35AYq8JQtRK52jKUVlQiPKR6aIxXhIjI1zEMEZGZLEBCQud2ni6DiMitOExGREREfs1rwtC5c+cwadIkKBQKKBQKTJo0CefPn69znylTpkCSJIvXgAED3FMwEREReQWvGSYbP348Tp48iczMTADAE088gUmTJiEjI6PO/RITE7Fu3TrzdosWLVxaJxEREXkXrwhDR48eRWZmJn744Qf0798fAPDee+8hISEBhYWF6NatW637BgYGQqlUuqtUIiIi8jJeMUyWk5MDhUJhDkIAMGDAACgUCuzbt6/OfbOzsxEeHo6uXbti2rRpKC0trbN/VVUVysvLLV5ERETku7wiDOn1eoSHh1u1h4eHQ6/X17rfiBEj8OGHH+Lbb7/F0qVL8eOPP+Kuu+5CVVVVrfssWrTIfF+SQqFAZGSkU46BiIiImiaPhqGUlBSrG5yvfx04cABA9TPQrieEsNleY+zYsbj33nsRGxuLpKQk7NixA7/99hu++uqrWveZP38+DAaD+VVSUtL4AyVyEqNJIOf4WXxx+BRyjp+F0WTrARpEROQIj94zNHPmTIwbN67OPtHR0fj555/xxx9/WL33559/OvRwWJVKhY4dO+LYsWO19gkMDERgYKDdn0nkLpn5OqRmFEBn+Pvp8SqFHJokNVeIJiJqBI+GobCwMISFhdXbLyEhAQaDAbm5uYiPjwcA7N+/HwaDAQMHDrT7+86ePYuSkhKoVPzhIO+Sma9Dcnqe1YNU9YZKJKfn8ZEZRESN4BX3DN18881ITEzEtGnT8MMPP+CHH37AtGnTcN9991nMJOvevTu2bt0KALhw4QLmzp2LnJwcFBUVITs7G0lJSQgLC8OYMWM8dShEDjOaBFIzCmw+Ub6mLTWjgENmREQN5BVhCAA+/PBD9OzZE8OGDcOwYcNwyy23YOPGjRZ9CgsLYTAYAAAymQxHjhzBqFGj0LVrV0yePBldu3ZFTk4OQkJCPHEIRA2Sqy2zGBq7ngCgM1QiV1vmvqKIiHyIV6wzBAChoaFIT0+vs48Qf/8/46CgIHz99deuLovI5Uorag9CDelHRESWvObKEJG/Cg+RO7UfERFZYhgiauLiY0KhUshR2yISEqpnlcXHhLqzLCIin8EwRNTEyQIkaJLUAGAViGq2NUlqyAJqX3OLiIhqxzBE5AUSY1VImxgHpcJyKEypkHNaPRFRI3nNDdRE/i4xVoWhaiVytWUorahEeEj10BivCBERNQ7DEJEXkQVISOjcztNlEBH5FA6TERERkV9jGCIiIiK/xjBEREREfo1hiIiIiPwawxARERH5NYYhIiIi8mucWk/kREaT4DpARERehmGIyEky83VIzSiAzvD30+NVCjk0SWquEE1E1IRxmIzICTLzdUhOz7MIQgCgN1QiOT0Pmfk6D1VGRET1YRgiaiSjSSA1owDCxns1bakZBTCabPUgIiJPYxgiaqRcbZnVFaFrCQA6QyVytWXuK4qIiOzGMETUSKUVtQehhvQjIiL3YhgiaqTwELlT+xERkXsxDBE1UnxMKFQKOWqbQC+helZZfEyoO8siIiI7MQwRNZIsQIImSQ0AVoGoZluTpOZ6Q0RETRTDEJETJMaqkDYxDkqF5VCYUiFH2sQ4rjNERNSEcdFFIidJjFVhqFrJFaiJiLwMwxCRE8kCJCR0bufpMoiIyAEcJiMiIiK/xjBEREREfo1hiIiIiPwawxARERH5NYYhIiIi8mucTUZ+x2gSnP5ORERmDEPkVzLzdUjNKLB4yrxKIYcmSc2FEYmI/BSHychvZObrkJyeZxGEAEBvqERyeh4y83UeqoyIiDyJYYj8gtEkkJpRAGHjvZq21IwCGE22ehARkS9jGCK/kKsts7oidC0BQGeoRK62zH1FERFRk8AwRH6htKL2INSQfkRE5DsYhsgvhIfI6+/kQD8iIvIdDEPkF+JjQqFSyFHbBHoJ1bPK4mNC3VkWERE1AQxD5BdkARI0SWoAsApENduaJDXXGyIi8kMMQ+Q3EmNVSJsYB6XCcihMqZAjbWIc1xkiIvJTXHSR/EpirApD1UquQE1ERGYMQ+R3ZAESEjq383QZRETURHCYjIiIiPwawxARERH5NYYhIiIi8msMQ0REROTXGIaIiIjIr3lNGHrttdcwcOBABAcHo02bNnbtI4RASkoKIiIiEBQUhMGDB+OXX35xbaFERETkVbwmDF2+fBkPPfQQkpOT7d5nyZIlWLZsGVauXIkff/wRSqUSQ4cORUVFhQsrpcYymgRyjp/FF4dPIef4WRhNwtMlERGRD5OEEF71S7N+/XrMnj0b58+fr7OfEAIRERGYPXs2XnjhBQBAVVUVOnTogMWLF+PJJ5+0uV9VVRWqqqrM2+Xl5YiMjITBYEDr1q2ddhxkW2a+DqkZBdAZ/n56vEohhyZJzRWiiYjIbuXl5VAoFHb9fnvNlSFHabVa6PV6DBs2zNwWGBiIO++8E/v27at1v0WLFkGhUJhfkZGR7iiXUB2EktPzLIIQAOgNlUhOz0Nmvs5DlRERkS/z2TCk1+sBAB06dLBo79Chg/k9W+bPnw+DwWB+lZSUuLROqmY0CaRmFMDWZcqattSMAg6ZERGR03k0DKWkpECSpDpfBw4caNR3SJLlM6eEEFZt1woMDETr1q0tXuR6udoyqytC1xIAdIZK5GrL3FcUERH5BY8+m2zmzJkYN25cnX2io6Mb9NlKpRJA9RUilerve01KS0utrhaR55VW1B6EGtKPiIjIXh4NQ2FhYQgLC3PJZ8fExECpVCIrKwt9+vQBUD0jbffu3Vi8eLFLvpMaLjxE7tR+RERE9vKae4aKi4tx+PBhFBcXw2g04vDhwzh8+DAuXLhg7tO9e3ds3boVQPXw2OzZs/H6669j69atyM/Px5QpUxAcHIzx48d76jCoFvExoVAp5KhtAFNC9ayy+JhQd5ZFRER+wKNXhhyxYMECfPDBB+btmqs9u3btwuDBgwEAhYWFMBgM5j7z5s3DX3/9hRkzZuDcuXPo378/vvnmG4SEhLi1dqqfLECCJkmN5PQ8SIDFjdQ1AUmTpIYsoPb7vYiIiBrC69YZcjdH1imgxuM6Q0RE5AyO/H57zZUh8g+JsSoMVSuRqy1DaUUlwkOqh8Z4RYiIiFyFYYiaHFmAhITO7TxdBhER+QmvuYGaiIiIyBUYhoiIiMivMQwRERGRX2MYIiIiIr/GMERERER+jWGIiIiI/Bqn1pPDjCbBdYCIiMhnMAyRQ7hCNBER+RoOk5HdMvN1SE7PswhCAKA3VCI5PQ+Z+ToPVUZERNRwDENkF6NJIDWjALYeZFfTlppRAKOJj7ojIiLvwjBEdsnVllldEbqWAKAzVCJXW+a+ooiIiJyAYYjsUlpRexBqSD8iIqKmgmGI7BIeIndqPyIioqaCYYjsEh8TCpVCjtom0EuonlUWHxPqzrKIiIgajWGI7CILkKBJUgOAVSCq2dYkqbneEBEReR2GIbJbYqwKaRPjoFRYDoUpFXKkTYzjOkNEROSVuOgiOSQxVoWhaiVXoCYiIp/BMEQOkwVISOjcztNlEBEROQWHyYiIiMivMQwRERGRX2MYIiIiIr/GMERERER+jWGIiIiI/Bpnk/kgo0lw6jsREZGdGIZ8TGa+DqkZBRZPmFcp5NAkqbkoIhERkQ0cJvMhmfk6JKfnWQQhANAbKpGcnofMfJ2HKiMiImq6GIZ8hNEkkJpRAGHjvZq21IwCGE22ehAREfkvhiEfkasts7oidC0BQGeoRK62zH1FEREReQGGIR9RWlF7EGpIPyIiIn/BMOQjwkPk9XdyoB8REZG/YBjyEfExoVAp5KhtAr2E6lll8TGh7iyLiIioyWMY8hGyAAmaJDUAWAWimm1NkprrDREREV2HYciHJMaqkDYxDkqF5VCYUiFH2sQ4rjNERERkAxdd9DGJsSoMVSu5AjUREZGdGIZ8kCxAQkLndp4ug4iIyCtwmIyIiIj8GsMQERER+TWGISIiIvJrDENERETk1xiGiIiIyK8xDBEREZFf49R6DzGaBNcCIiIiagIYhjwgM1+H1IwC6Ax/P0FepZBDk6TmKtFERERu5jXDZK+99hoGDhyI4OBgtGnTxq59pkyZAkmSLF4DBgxwbaH1yMzXITk9zyIIAYDeUInk9Dxk5us8VBkREZF/8powdPnyZTz00ENITk52aL/ExETodDrza/v27S6qsH5Gk0BqRgGEjfdq2lIzCmA02epBREREruA1w2SpqakAgPXr1zu0X2BgIJRKpQsqclyutszqitC1BACdoRK52jI+ToOIiMhNvObKUENlZ2cjPDwcXbt2xbRp01BaWlpn/6qqKpSXl1u8nKW0ovYg1JB+RERE1Hg+HYZGjBiBDz/8EN9++y2WLl2KH3/8EXfddReqqqpq3WfRokVQKBTmV2RkpNPqCQ+RO7UfERERNZ5Hw1BKSorVDc7Xvw4cONDgzx87dizuvfdexMbGIikpCTt27MBvv/2Gr776qtZ95s+fD4PBYH6VlJQ0+PuvFx8TCpVCjtom0EuonlUWHxPqtO8kIiKiunn0nqGZM2di3LhxdfaJjo522vepVCp07NgRx44dq7VPYGAgAgMDnfad15IFSNAkqZGcngcJsLiRuiYgaZLUXG+IiIjIjTwahsLCwhAWFua27zt79ixKSkqgUnluLZ/EWBXSJsZZrTOk5DpDREREHuE1s8mKi4tRVlaG4uJiGI1GHD58GADQpUsXtGrVCgDQvXt3LFq0CGPGjMGFCxeQkpKCBx98ECqVCkVFRXjppZcQFhaGMWPGePBIqgPRULWSK1ATERE1AV4ThhYsWIAPPvjAvN2nTx8AwK5duzB48GAAQGFhIQwGAwBAJpPhyJEj2LBhA86fPw+VSoUhQ4bgk08+QUhIiNvrv54sQOL0eSIioiZAEkJwhb86lJeXQ6FQwGAwoHXr1p4uh4iIiOzgyO+3T0+tJyIiIqoPwxARERH5NYYhIiIi8msMQ0REROTXGIaIiIjIrzEMERERkV9jGCIiIiK/xjBEREREfs1rVqD2lJo1KcvLyz1cCREREdmr5nfbnrWlGYbqUVFRAQCIjIz0cCVERETkqIqKCigUijr78HEc9TCZTDh9+jRCQkIgSc59kGp5eTkiIyNRUlLik4/64PF5P18/Rh6f9/P1Y+TxNZwQAhUVFYiIiEBAQN13BfHKUD0CAgJw4403uvQ7Wrdu7ZP/yGvw+Lyfrx8jj8/7+fox8vgapr4rQjV4AzURERH5NYYhIiIi8msMQx4UGBgIjUaDwMBAT5fiEjw+7+frx8jj836+fow8PvfgDdRERETk13hliIiIiPwawxARERH5NYYhIiIi8msMQ0REROTXGIbcpKioCFOnTkVMTAyCgoLQuXNnaDQaXL58uc79hBBISUlBREQEgoKCMHjwYPzyyy9uqtpxr732GgYOHIjg4GC0adPGrn2mTJkCSZIsXgMGDHBtoQ3UkOPzpnN47tw5TJo0CQqFAgqFApMmTcL58+fr3Kepn7/Vq1cjJiYGcrkcffv2xd69e+vsv3v3bvTt2xdyuRydOnXCmjVr3FRpwzhyfNnZ2VbnSpIk/Prrr26s2H579uxBUlISIiIiIEkSPv/883r38bbz5+gxetM5XLRoEW699VaEhIQgPDwco0ePRmFhYb37eeIcMgy5ya+//gqTyYR3330Xv/zyC5YvX441a9bgpZdeqnO/JUuWYNmyZVi5ciV+/PFHKJVKDB061PzMtKbm8uXLeOihh5CcnOzQfomJidDpdObX9u3bXVRh4zTk+LzpHI4fPx6HDx9GZmYmMjMzcfjwYUyaNKne/Zrq+fvkk08we/ZsvPzyyzh06BBuv/12jBgxAsXFxTb7a7VajBw5ErfffjsOHTqEl156CbNmzcKWLVvcXLl9HD2+GoWFhRbn66abbnJTxY65ePEievXqhZUrV9rV39vOH+D4MdbwhnO4e/duPPXUU/jhhx+QlZWFq1evYtiwYbh48WKt+3jsHArymCVLloiYmJha3zeZTEKpVIo33njD3FZZWSkUCoVYs2aNO0pssHXr1gmFQmFX38mTJ4tRo0a5tB5ns/f4vOkcFhQUCADihx9+MLfl5OQIAOLXX3+tdb+mfP7i4+PF9OnTLdq6d+8uXnzxRZv9582bJ7p3727R9uSTT4oBAwa4rMbGcPT4du3aJQCIc+fOuaE65wIgtm7dWmcfbzt/17PnGL35HJaWlgoAYvfu3bX28dQ55JUhDzIYDAgNDa31fa1WC71ej2HDhpnbAgMDceedd2Lfvn3uKNFtsrOzER4ejq5du2LatGkoLS31dElO4U3nMCcnBwqFAv379ze3DRgwAAqFot5am+L5u3z5Mg4ePGjxtweAYcOG1Xo8OTk5Vv2HDx+OAwcO4MqVKy6rtSEacnw1+vTpA5VKhbvvvhu7du1yZZlu5U3nr7G88RwaDAYAqPN3z1PnkGHIQ44fP4533nkH06dPr7WPXq8HAHTo0MGivUOHDub3fMGIESPw4Ycf4ttvv8XSpUvx448/4q677kJVVZWnS2s0bzqHer0e4eHhVu3h4eF11tpUz9+ZM2dgNBod+tvr9Xqb/a9evYozZ864rNaGaMjxqVQqrF27Flu2bMFnn32Gbt264e6778aePXvcUbLLedP5ayhvPYdCCMyZMweDBg1CbGxsrf08dQ4ZhhopJSXF5s1s174OHDhgsc/p06eRmJiIhx56CI8//ni93yFJksW2EMKqzZUacoyOGDt2LO69917ExsYiKSkJO3bswG+//YavvvrKiUdRO1cfH+DZc+jI8dmqqb5aPX3+6uPo395Wf1vtTYUjx9etWzdMmzYNcXFxSEhIwOrVq3HvvffizTffdEepbuFt589R3noOZ86ciZ9//hmbNm2qt68nzmEzl32yn5g5cybGjRtXZ5/o6Gjzfz59+jSGDBmChIQErF27ts79lEolgOqkrFKpzO2lpaVWydmVHD3GxlKpVOjYsSOOHTvmtM+siyuPrymcQ3uP7+eff8Yff/xh9d6ff/7pUK3uPn+1CQsLg0wms7pKUtffXqlU2uzfrFkztGvXzmW1NkRDjs+WAQMGID093dnleYQ3nT9naurn8Omnn8a2bduwZ88e3HjjjXX29dQ5ZBhqpLCwMISFhdnV99SpUxgyZAj69u2LdevWISCg7gtzMTExUCqVyMrKQp8+fQBU3yewe/duLF68uNG128uRY3SGs2fPoqSkxCI8uJIrj68pnEN7jy8hIQEGgwG5ubmIj48HAOzfvx8GgwEDBw60+/vcff5q06JFC/Tt2xdZWVkYM2aMuT0rKwujRo2yuU9CQgIyMjIs2r755hv069cPzZs3d2m9jmrI8dly6NAhj58rZ/Gm8+dMTfUcCiHw9NNPY+vWrcjOzkZMTEy9+3jsHLr09mwyO3XqlOjSpYu46667xMmTJ4VOpzO/rtWtWzfx2WefmbffeOMNoVAoxGeffSaOHDkiHn74YaFSqUR5ebm7D8EuJ06cEIcOHRKpqamiVatW4tChQ+LQoUOioqLC3OfaY6yoqBDPPfec2Ldvn9BqtWLXrl0iISFB3HDDDU3yGB09PiG86xwmJiaKW265ReTk5IicnBzRs2dPcd9991n08abz9/HHH4vmzZuL999/XxQUFIjZs2eLli1biqKiIiGEEC+++KKYNGmSuf///vc/ERwcLJ599llRUFAg3n//fdG8eXPx6aefeuoQ6uTo8S1fvlxs3bpV/PbbbyI/P1+8+OKLAoDYsmWLpw6hThUVFeb/jgEQy5YtE4cOHRInTpwQQnj/+RPC8WP0pnOYnJwsFAqFyM7OtvjNu3TpkrlPUzmHDENusm7dOgHA5utaAMS6devM2yaTSWg0GqFUKkVgYKC44447xJEjR9xcvf0mT55s8xh37dpl7nPtMV66dEkMGzZMtG/fXjRv3lxERUWJyZMni+LiYs8cQD0cPT4hvOscnj17VkyYMEGEhISIkJAQMWHCBKspvN52/latWiU6duwoWrRoIeLi4iym9U6ePFnceeedFv2zs7NFnz59RIsWLUR0dLRIS0tzc8WOceT4Fi9eLDp37izkcrlo27atGDRokPjqq688ULV9aqaRX/+aPHmyEMI3zp+jx+hN57C237xr//exqZxD6f8KJiIiIvJLnE1GREREfo1hiIiIiPwawxARERH5NYYhIiIi8msMQ0REROTXGIaIiIjIrzEMERERkV9jGCIiIiK/xjBERB6TnZ0NSZJw/vx5T5fiMVOmTMHo0aM9XQaRX2MYIvKwhvwYSpKEzz//3CX1uMrgwYMxe/Zsi7aBAwdCp9NBoVC4pYYpU6bgxRdftGo3Go0YOHAgHnzwQYt2g8GAyMhIvPLKK26pj4g8g2GIyI9duXLFo9/fokULKJVKSJLk8u8ymUz46quvbD7RXSaT4YMPPkBmZiY+/PBDc/vTTz+N0NBQLFiwwOX1uZunzz1RU8IwRNTEDB48GLNmzcK8efMQGhoKpVKJlJQU8/vR0dEAgDFjxkCSJPM2AGRkZKBv376Qy+Xo1KkTUlNTcfXqVfP7kiRhzZo1GDVqFFq2bImFCxfixhtvxJo1ayxqyMvLgyRJ+N///geg+grJE088gfDwcLRu3Rp33XUXfvrpJ3P/lJQU9O7dGxs3bkR0dDQUCgXGjRuHiooKANVXZHbv3o233noLkiRBkiQUFRXZHCbbsmULevTogcDAQERHR2Pp0qUWtUVHR+P111/HY489hpCQEERFRWHt2rX1/l2///57BAQEoH///jbfv+mmm7Bo0SI8/fTTOH36NL744gt8/PHH+OCDD9CiRQur/oWFhZAkCb/++qtF+7JlyxAdHQ0hBIxGI6ZOnYqYmBgEBQWhW7dueOutt+qsMzo6GitWrLBo6927t8W/gfrOx/WKioogSRI2b96MwYMHQy6XIz09HWfPnsXDDz+MG2+8EcHBwejZsyc2bdpksW99/x4B4Ndff8WgQYMgl8uhVqvx3//+1+rq5alTpzB27Fi0bdsW7dq1w6hRo1BUVFTn34LIXRiGiJqgDz74AC1btsT+/fuxZMkSLFy4EFlZWQCAH3/8EQCwbt066HQ68/bXX3+NiRMnYtasWSgoKMC7776L9evX47XXXrP4bI1Gg1GjRuHIkSN4/PHHMW7cOIurIQDw0UcfISEhAZ06dYIQAvfeey/0ej22b9+OgwcPIi4uDnfffTfKysrM+xw/fhyff/45vvzyS3z55ZfYvXs33njjDQDAW2+9hYSEBEybNg06nQ46nQ6RkZFWx33w4EH84x//wLhx43DkyBGkpKTgn//8J9avX2/Rb+nSpejXrx8OHTqEGTNmIDk52SqUXG/btm1ISkpCQEDt/7P39NNPo1evXnjkkUfwxBNPYMGCBejdu7fNvt26dUPfvn1t/u3Gjx8PSZJgMplw4403YvPmzSgoKMCCBQvw0ksvYfPmzXXWWhd7z4ctL7zwAmbNmoWjR49i+PDhqKysRN++ffHll18iPz8fTzzxBCZNmoT9+/db7FfXv0eTyYTRo0cjODgY+/fvx9q1a/Hyyy9b7H/p0iUMGTIErVq1wp49e/Ddd9+hVatWSExMxOXLlxv8tyBymsY/+J6IGmPy5Mli1KhR5u0777xTDBo0yKLPrbfeKl544QXzNgCxdetWiz633367eP311y3aNm7cKFQqlcV+s2fPtuiTl5cnJEkSRUVFQgghjEajuOGGG8SqVauEEELs3LlTtG7dWlRWVlrs17lzZ/Huu+8KIYTQaDQiODhYlJeXm99//vnnRf/+/S2O65lnnrH4jF27dgkA4ty5c0IIIcaPHy+GDh1q0ef5558XarXavN2xY0cxceJE87bJZBLh4eEiLS1N1KVr165i27ZtdfYRQoijR48KAKJnz57iypUrdfZdtmyZ6NSpk3m7sLBQABC//PJLrfvMmDFDPPjgg+bt689/x44dxfLlyy326dWrl9BoNEII+87H9bRarQAgVqxYUefxCCHEyJEjxXPPPWferu/f444dO0SzZs2ETqczv5+VlWXxb/T9998X3bp1EyaTydynqqpKBAUFia+//rremohcjVeGiJqgW265xWJbpVKhtLS0zn0OHjyIhQsXolWrVuZXzZWYS5cumfv169fPYr8+ffqge/fu5uGR3bt3o7S0FP/4xz/Mn3vhwgW0a9fO4rO1Wi2OHz9u/pzo6GiEhIQ4VPP1jh49ittuu82i7bbbbsOxY8dgNBrNbdf+fSRJglKprPO7jh49ipMnT+Kee+6pt4b//Oc/CA4OhlarxcmTJ83t06dPtzh+ABg3bhxOnDiBH374AQDw4Ycfonfv3lCr1eb91qxZg379+qF9+/Zo1aoV3nvvPRQXF9dbR23sPR+2XH/ujUYjXnvtNdxyyy3mz/vmm2+s6qvr32NhYSEiIyOhVCrN78fHx1vV/PvvvyMkJMRcb2hoKCorK+utmcgdmnm6ACKy1rx5c4vtmiGXuphMJqSmpuKBBx6wek8ul5v/c8uWLa3enzBhAj766CO8+OKL+OijjzB8+HCEhYWZP1elUiE7O9tqvzZt2jSq5usJIaxuphZCWPVz9Lu2bduGoUOHIigoqM7vz8nJwfLly7Fjxw4sWbIEU6dONd//snDhQsydO9eiv0qlwpAhQ/DRRx9hwIAB2LRpE5588knz+5s3b8azzz6LpUuXIiEhASEhIfjXv/5lNQx1rYCAAKtjvvZmZ3vPhy3Xn/ulS5di+fLlWLFiBXr27ImWLVti9uzZVkNXdf29bZ2z65lMJptDigDQvn37OvclcgeGISIv1Lx5c4srJQAQFxeHwsJCdOnSxeHPGz9+PF555RUcPHgQn376KdLS0iw+V6/Xo1mzZhY3azuqRYsWVjVfT61W47vvvrNo27dvH7p27QqZTNbg7/7iiy/w+OOP19nnr7/+wuTJk/Hkk0/innvuQdeuXREbG4t3330X06dPR3h4OMLDw632mzBhAl544QU8/PDDOH78OMaNG2d+b+/evRg4cCBmzJhhbqvvSkj79u2h0+nM2+Xl5dBqteZtZ52PmvpGjRqFiRMnAqgOLceOHcPNN99s92d0794dxcXF+OOPP9ChQwcAf9/Xdm3Nn3zyifmGb6KmhsNkRF4oOjoaO3fuhF6vx7lz5wAACxYswIYNG5CSkoJffvkFR48exSeffGLXGjkxMTEYOHAgpk6diqtXr1pMP7/nnnuQkJCA0aNH4+uvv0ZRURH27duHV155BQcOHHCo5v3796OoqAhnzpyxeSXnueeew86dO/Hqq6/it99+wwcffICVK1daXZFxRGlpKX788Ufcd999dfZ78cUXYTKZsHjxYgBAVFQUli5diueff77OWU8PPPAAysvLkZycjCFDhuCGG24wv9elSxccOHAAX3/9NX777Tf885//tAoK17vrrruwceNG7N27F/n5+Zg8ebJFEHTW+aipLysrC/v27cPRo0fx5JNPQq/XO/QZQ4cORefOnTF58mT8/PPP+P777803UNdcMZowYQLCwsIwatQo7N27F1qtFrt378YzzzxjMRRJ5CkMQ0ReaOnSpcjKykJkZCT69OkDABg+fDi+/PJLZGVl4dZbb8WAAQOwbNkydOzY0a7PnDBhAn766Sc88MADFsNJkiRh+/btuOOOO/DYY4+ha9euGDduHIqKisxXAuwxd+5cyGQyqNVqtG/f3uZ9M3Fxcdi8eTM+/vhjxMbGYsGCBVi4cCGmTJli9/dcLyMjA/3797d5VafG7t27sWrVKqxfv95iKGnatGnmkGhruA4AWrdujaSkJPz000+YMGGCxXvTp0/HAw88gLFjx6J///44e/asxVUiW+bPn4877rgD9913H0aOHInRo0ejc+fO5veddT4A4J///Cfi4uIwfPhwDB48GEql0uEFQGUyGT7//HNcuHABt956Kx5//HFzAK8Zng0ODsaePXsQFRWFBx54ADfffDMee+wx/PXXX7xSRE2CJGr7bzgRkQ+4//77MWjQIMybN8/TpfiN77//HoMGDcLvv/9uEeSImireM0REPm3QoEF4+OGHPV2GT9u6dStatWqFm266Cb///jueeeYZ3HbbbQxC5DV4ZYiIiBplw4YNePXVV1FSUoKwsDDcc889WLp0Kdq1a+fp0ojswjBEREREfo03UBMREZFfYxgiIiIiv8YwRERERH6NYYiIiIj8GsMQERER+TWGISIiIvJrDENERETk1xiGiIiIyK/9fxoT7Fb+kOKdAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ70lEQVR4nO3df1yT5f4/8NfNVAaKU0TcKBDU1CamoqGYlVYqWqTWt6P5Iy2zxMzMzLI6DuxRpid/VCpmp6MpZfnILCmlOCZqSZKiJWFkniGoW6ToQA3U7fr+wYfl3IAN9oNtr+fjscfj3Neue3vf3J6z17mv+7puSQghQEREROSnAjxdABEREZEnMQwRERGRX2MYIiIiIr/GMERERER+jWGIiIiI/BrDEBEREfk1hiEiIiLya808XUBTZzKZcPr0aYSEhECSJE+XQ0RERHYQQqCiogIREREICKj72g/DUD1Onz6NyMhIT5dBREREDVBSUoIbb7yxzj4MQ/UICQkBUP3HbN26tYerISIiInuUl5cjMjLS/DteF4ahetQMjbVu3ZphiIiIyMvYc4sLb6AmIiIiv8YwRERERH6NYYiIiIj8Gu8ZchKj0YgrV654ugxykubNm0Mmk3m6DCIicgOGoUYSQkCv1+P8+fOeLoWcrE2bNlAqlVxfiojIxzEMNVJNEAoPD0dwcDB/OH2AEAKXLl1CaWkpAEClUnm4IiIiciWGoUYwGo3mINSuXTtPl0NOFBQUBAAoLS1FeHg4h8yIiHyYV91AvWfPHiQlJSEiIgKSJOHzzz+vs392djYkSbJ6/frrr06pp+YeoeDgYKd8HjUtNeeV94IREfk2r7oydPHiRfTq1QuPPvooHnzwQbv3KywstFgwsX379k6ti0NjvonnlYjIP3hVGBoxYgRGjBjh8H7h4eFo06aN8wsiIiKiBjGaBHK1ZSitqER4iBzxMaGQBXjm/4R6VRhqqD59+qCyshJqtRqvvPIKhgwZUmvfqqoqVFVVmbfLy8vdUSIREZHfyMzXITWjADpDpblNpZBDk6RGYqz7J6141T1DjlKpVFi7di22bNmCzz77DN26dcPdd9+NPXv21LrPokWLoFAozC8+sd4+69ev97qrb95YMxGRt8vM1yE5Pc8iCAGA3lCJ5PQ8ZObr3F6TT4ehbt26Ydq0aYiLi0NCQgJWr16Ne++9F2+++Wat+8yfPx8Gg8H8KikpcXmdRpNAzvGz+OLwKeQcPwujSbj8O6dMmWLz5vLExMR6942OjsaKFSss2saOHYvffvvNRdX+jQGGiMh7GU0CqRkFsPUrV9OWmlHglt/Ba/nFMNm1BgwYgPT09FrfDwwMRGBgoNvq8eSlwsTERKxbt86iraHHHhQUZJ6OTkREZEuutszqitC1BACdoRK52jIkdHbfkjU+fWXIlkOHDjWZRfQ8fakwMDAQSqXS4tW2bVsAQEpKCqKiohAYGIiIiAjMmjULADB48GCcOHECzz77rPlqEmB9xSYlJQW9e/fGf/7zH0RFRaFVq1ZITk6G0WjEkiVLoFQqER4ejtdee82ipmXLlqFnz55o2bIlIiMjMWPGDFy4cAFA9VIJjz76KAwGg/m7U1JSAACXL1/GvHnzcMMNN6Bly5bo378/srOzLT57/fr1iIqKQnBwMMaMGYOzZ8+64K9KRES1Ka2oPQg1pJ+zeNWVoQsXLuD33383b2u1Whw+fBihoaGIiorC/PnzcerUKWzYsAEAsGLFCkRHR6NHjx64fPky0tPTsWXLFmzZssVTh2BW36VCCdWXCoeqlW6/u/7TTz/F8uXL8fHHH6NHjx7Q6/X46aefAACfffYZevXqhSeeeALTpk2r83OOHz+OHTt2IDMzE8ePH8f/+3//D1qtFl27dsXu3buxb98+PPbYY7j77rsxYMAAAEBAQADefvttREdHQ6vVYsaMGZg3bx5Wr16NgQMHYsWKFViwYAEKCwsBAK1atQIAPProoygqKsLHH3+MiIgIbN26FYmJiThy5Ahuuukm7N+/H4899hhef/11PPDAA8jMzIRGo3HhX5GIiK4XHiJ3aj9n8aowdODAAYuZYHPmzAEATJ48GevXr4dOp0NxcbH5/cuXL2Pu3Lk4deoUgoKC0KNHD3z11VcYOXKk22u/XlO4VPjll1+aw0SNF154AS1btoRSqcQ999yD5s2bIyoqCvHx8QCA0NBQyGQyhISEQKlU1vn5JpMJ//nPfxASEgK1Wo0hQ4agsLAQ27dvR0BAALp164bFixcjOzvbHIZmz55t3j8mJgavvvoqkpOTsXr1arRo0QIKhQKSJFl89/Hjx7Fp0yacPHkSERERAIC5c+ciMzMT69atw+uvv4633noLw4cPx4svvggA6Nq1K/bt24fMzMxG/x2JiMg+8TGhUCnk0BsqbV4MkAAoFdXT7N3Jq8LQ4MGDIUTtN1WtX7/eYnvevHmYN2+ei6tqmKZwqXDIkCFIS0uzaAsNDcXFixexYsUKdOrUCYmJiRg5ciSSkpLQrJlj/1yio6MREhJi3u7QoQNkMhkCAgIs2mqeAQYAu3btwuuvv46CggKUl5fj6tWrqKysxMWLF9GyZUub35OXlwchBLp27WrRXlVVZX5MytGjRzFmzBiL9xMSEhiGiIjcSBYgQZOkRnJ6HiTAIhDVjIFoktRuHxHxqjDkS5rCpcKWLVuiS5cuVu2hoaEoLCxEVlYW/vvf/2LGjBn417/+hd27d6N58+Z2f/71fSVJstlmMpkAACdOnMDIkSMxffp0vPrqqwgNDcV3332HqVOn1vlIDJPJBJlMhoMHD1o9Q6zmylddIZqIiNwnMVaFtIlxVpOHlB5cZ4hhyEOa6qXCGkFBQbj//vtx//3346mnnkL37t1x5MgRxMXFoUWLFjAajU7/zgMHDuDq1atYunSp+erR5s2bLfrY+u4+ffrAaDSitLQUt99+u83PVqvV+OGHHyzart8mIiL3SIxVYahayRWo/V1TuFRYVVUFvV5v0dasWTN8+eWXMBqN6N+/P4KDg7Fx40YEBQWhY8eOAKqHv/bs2YNx48YhMDAQYWFhTqmnc+fOuHr1Kt555x0kJSXh+++/x5o1ayz6REdH48KFC9i5cyd69eqF4OBgdO3aFRMmTMAjjzyCpUuXok+fPjhz5gy+/fZb9OzZEyNHjsSsWbMwcOBALFmyBKNHj8Y333zDITIiIg+SBUhunT5fF7+bWt+U1FwqVCosh8KUCjnSJsa5/FJhZmYmVCqVxWvQoEFo06YN3nvvPdx222245ZZbsHPnTmRkZJjvv1m4cCGKiorQuXNnpz70tnfv3li2bBkWL16M2NhYfPjhh1i0aJFFn4EDB2L69OkYO3Ys2rdvjyVLlgAA1q1bh0ceeQTPPfccunXrhvvvvx/79+83ryA+YMAA/Pvf/8Y777yD3r1745tvvsErr7zitNqJiMh7SYI3U9SpvLwcCoUCBoPB4sn3AFBZWQmtVouYmBjI5Q2/t6cpPayO/uas80tERO5X1+/39ThM1gQ0pUuFRERE/obDZEREROTXGIaIiIjIrzEMOQFvu/JNPK9ERP6B9ww1Qs0CgpcuXeIT233QpUuXAFgvHklE5C/8ZYIPw1AjyGQytGnTxvw4ieDgYPNT3Ml7CSFw6dIllJaWok2bNlarWhMR+YPMfJ3VKtEqD64S7UoMQ41U88DQa5+vRb6hTZs29T6MlojIF2Xm65Ccnmf1hAS9oRLJ6XluWQvPnRiGGkmSJKhUKoSHh9f5/CzyLs2bN+cVISLyS0aTQGpGgc1HRQlUPyUhNaMAQ9VKnxkyYxhyEplMxh9PIiLyernaMouhsesJADpDJXK1ZT6zRh5nkxEREZFZaUXtQagh/bwBwxARERGZhYfY9/ghe/t5A4YhIiIiMouPCYVKIUdtdwNJqJ5VFh8T6s6yXIphiIiIiMxkARI0SWoAsApENduaJLXP3DwNMAwRERHRdRJjVUibGAelwnIoTKmQ+9y0eoCzyYiIiMiGxFgVhqqVXIGaiIiI/JcsQPKZ6fN14TAZERER+TWGISIiIvJrDENERETk1xiGiIiIyK8xDBEREZFf42wyIiIiL2U0Cb+Y+u5qDENEREReKDNfh9SMAosnzKsUcmiS1D63KKKrcZiMiIjIy2Tm65CcnmcRhABAb6hEcnoeMvN1HqrMOzEMEREReRGjSSA1owDCxns1bakZBTCabPUgWxiGiIiIvEiutszqitC1BACdoRK52jL3FeXlGIaIiIi8SGlF7UGoIf2IYYiIiMirhIfI6+/kQD9iGCIiIvIq8TGhUCnkqG0CvYTqWWXxMaHuLMurMQwRERF5EVmABE2SGgCsAlHNtiZJzfWGHMAwRERE5GUSY1VImxgHpcJyKEypkCNtYhzXGXIQF10kIiLyQomxKgxVK7kCtRMwDBEREXkpWYCEhM7tPF2G1+MwGREREfk1hiEiIiLyawxDRERE5NcYhoiIiMivMQwRERGRX2MYIiIiIr/GqfVEREQuYjQJrgPkBRiGiIiIXCAzX4fUjALoDH8/PV6lkEOTpOYK0U2MVw2T7dmzB0lJSYiIiIAkSfj888/r3Wf37t3o27cv5HI5OnXqhDVr1ri+UCIi8muZ+Tokp+dZBCEA0BsqkZyeh8x8nYcqI1u8KgxdvHgRvXr1wsqVK+3qr9VqMXLkSNx+++04dOgQXnrpJcyaNQtbtmxxcaVEROSvjCaB1IwCCBvv1bSlZhTAaLLVgzzBq4bJRowYgREjRtjdf82aNYiKisKKFSsAADfffDMOHDiAN998Ew8++KCLqiQiIn+Wqy2zuiJ0LQFAZ6hErraMj9JoIrzqypCjcnJyMGzYMIu24cOH48CBA7hy5YrNfaqqqlBeXm7xIiIisldpRe1BqCH9yPV8Ogzp9Xp06NDBoq1Dhw64evUqzpw5Y3OfRYsWQaFQmF+RkZHuKJWIiHxEeIjcqf3I9Xw6DAGAJFlOYRRC2GyvMX/+fBgMBvOrpKTE5TUSEZHviI8JhUohR20T6CVUzyqLjwl1Z1lUB58OQ0qlEnq93qKttLQUzZo1Q7t2tsdpAwMD0bp1a4sXERGRvWQBEjRJagCwCkQ125okNdcbakJ8OgwlJCQgKyvLou2bb75Bv3790Lx5cw9VRUREvi4xVoW0iXFQKiyHwpQKOdImxnGdoSbGq2aTXbhwAb///rt5W6vV4vDhwwgNDUVUVBTmz5+PU6dOYcOGDQCA6dOnY+XKlZgzZw6mTZuGnJwcvP/++9i0aZOnDoGIiPxEYqwKQ9VKrkDtBbwqDB04cABDhgwxb8+ZMwcAMHnyZKxfvx46nQ7FxcXm92NiYrB9+3Y8++yzWLVqFSIiIvD2229zWj0REbmFLEDi9HkvIImaO4rJpvLycigUChgMBt4/RERE5CUc+f326XuGiIiIiOrDMERERER+jWGIiIiI/BrDEBEREfk1hiEiIiLya141tZ6IiMjZjCbBtYD8HMMQERH5rcx8HVIzCqAz/P0EeZVCDk2SmqtE+xEOkxERkV/KzNchOT3PIggBgN5QieT0PGTm6zxUGbkbwxAREfkdo0kgNaMAtlYdrmlLzSiA0cR1if0BwxAREfmdXG2Z1RWhawkAOkMlcrVl7iuKPIZhiIiI/E5pRe1BqCH9yLsxDBERkd8JD5E7tR95N4YhIiLyO/ExoVAp5KhtAr2E6lll8TGh7iyLPIRhiIiI/I4sQIImSQ0AVoGoZluTpOZ6Q36CYYiIiPxSYqwKaRPjoFRYDoUpFXKkTYzjOkN+hIsuEhGR30qMVWGoWskVqP0cwxAREfk1WYCEhM7tPF0GeRCHyYiIiMivMQwRERGRX2MYIiIiIr/GMERERER+jWGIiIiI/BpnkxERUZNmNAlOfSeXYhgiIqImKzNfh9SMAosnzKsUcmiS1FwUkZyGw2RERNQkZebrkJyeZxGEAEBvqERyeh4y83Ueqox8DcMQERE1OUaTQGpGAYSN92raUjMKYDTZ6kHkGIYhIiJqcnK1ZVZXhK4lAOgMlcjVlrmvKPJZDENERNTklFbUHoQa0o+oLgxDRETU5ISHyOvv5EA/orowDBERUZMTHxMKlUKO2ibQS6ieVRYfE+rOsshHMQwREVGTIwuQoElSA4BVIKrZ1iSpud4QOQXDEBERNUmJsSqkTYyDUmE5FKZUyJE2MY7rDJHTcNFFIiJqshJjVRiqVnIFanIphiEiImrSZAESEjq383QZ5MM4TEZERER+jWGIiIiI/BrDEBEREfk1hiEiIiLyawxDRERE5NcYhoiIiMivcWo9ERE1itEkuA4QeTWGISIiarDMfB1SMwqgM/z99HiVQg5NkporRJPX4DAZERE1SGa+DsnpeRZBCAD0hkokp+chM1/nocqIHMMwREREDjOaBFIzCiBsvFfTlppRAKPJVg+ipoVhiIiIHJarLbO6InQtAUBnqESutsx9RRE1EMMQERE5rLSi9iDUkH5EnuR1YWj16tWIiYmBXC5H3759sXfv3lr7ZmdnQ5Ikq9evv/7qxoqJiHxPeIjcqf2IPMmrwtAnn3yC2bNn4+WXX8ahQ4dw++23Y8SIESguLq5zv8LCQuh0OvPrpptuclPFRES+KT4mFCqFHLVNoJdQPassPibUnWURNYhXhaFly5Zh6tSpePzxx3HzzTdjxYoViIyMRFpaWp37hYeHQ6lUml8ymazWvlVVVSgvL7d4ERGRJVmABE2SGgCsAlHNtiZJzfWGyCt4TRi6fPkyDh48iGHDhlm0Dxs2DPv27atz3z59+kClUuHuu+/Grl276uy7aNEiKBQK8ysyMrLRtRMR+aLEWBXSJsZBqbAcClMq5EibGMd1hshreM2ii2fOnIHRaESHDh0s2jt06AC9Xm9zH5VKhbVr16Jv376oqqrCxo0bcffddyM7Oxt33HGHzX3mz5+POXPmmLfLy8sZiIiIapEYq8JQtZIrUJNX85owVEOSLP8LJoSwaqvRrVs3dOvWzbydkJCAkpISvPnmm7WGocDAQAQGBjqvYCIiHycLkJDQuZ2nyyBqMK8ZJgsLC4NMJrO6ClRaWmp1taguAwYMwLFjx5xdHhEREXkprwlDLVq0QN++fZGVlWXRnpWVhYEDB9r9OYcOHYJKxXFsIiIiquZVw2Rz5szBpEmT0K9fPyQkJGDt2rUoLi7G9OnTAVTf73Pq1Cls2LABALBixQpER0ejR48euHz5MtLT07FlyxZs2bLFk4dBRERETYhXhaGxY8fi7NmzWLhwIXQ6HWJjY7F9+3Z07NgRAKDT6SzWHLp8+TLmzp2LU6dOISgoCD169MBXX32FkSNHeuoQiIiIqImRhBB8il4dysvLoVAoYDAY0Lp1a0+XQ0RERHZw5Pfba+4ZIiIiInIFrxomIyIixxlNgusAEdWBYYiIyIdl5uuQmlEAneHvp8erFHJoktRcIZro/3CYjIjIR2Xm65CcnmcRhABAb6hEcnoeMvN1HqqMqGlhGCIi8kFGk0BqRgFszZCpaUvNKIDRxDk0RAxDREQ+KFdbZnVF6FoCgM5QiVxtmfuKImqiHA5DnTp1wtmzZ63az58/j06dOjmlKCIiapzSitqDUEP6Efkyh8NQUVERjEajVXtVVRVOnTrllKKIiKhxwkPkTu1H5Mvsnk22bds283/++uuvoVAozNtGoxE7d+5EdHS0U4sjIqKGiY8JhUohh95QafO+IQmAUlE9zZ7I39kdhkaPHg0AkCQJkydPtnivefPmiI6OxtKlS51aHBERNYwsQIImSY3k9DxIgEUgqllhSJOk5npDRHBgmMxkMsFkMiEqKgqlpaXmbZPJhKqqKhQWFuK+++5zZa1EROSAxFgV0ibGQamwHApTKuRImxjHdYaI/g+fTVYPPpuMiLwdV6Amf+TI77fDK1DPmjULXbp0waxZsyzaV65cid9//x0rVqxw9COJiMiFZAESEjq383QZRE2Ww7PJtmzZgttuu82qfeDAgfj000+dUhQRERGRuzgchs6ePWsxk6xG69atcebMGacURUREROQuDoehLl26IDMz06p9x44dXHSRiIiIvI7D9wzNmTMHM2fOxJ9//om77roLALBz504sXbqU9wsRERGR13E4DD322GOoqqrCa6+9hldffRUAEB0djbS0NDzyyCNOL5CIiIjIlRo1tf7PP/9EUFAQWrVq5cyamhROrScid+D0dyLncunUegC4evUqsrOzcfz4cYwfPx4AcPr0abRu3dqngxERkStk5uuQmlFg8ZR5lUIOTZKaCyMSuYHDN1CfOHECPXv2xKhRo/DUU0/hzz//BAAsWbIEc+fOdXqBRES+LDNfh+T0PIsgBAB6QyWS0/OQma/zUGVE/sPhMPTMM8+gX79+OHfuHIKCgsztY8aMwc6dO51aHBGRLzOaBFIzCmw+SLWmLTWjAEYTHxRA5EoOD5N99913+P7779GiRQuL9o4dO+LUqVNOK4yIyNflasusrghdSwDQGSqRqy3jCtJELuTwlSGTyQSj0WjVfvLkSYSEhDilKCIif1BaUXsQakg/ImoYh8PQ0KFDLdYTkiQJFy5cgEajwciRI51ZGxGRTwsPkdffyYF+RNQwDg+TLV++HEOGDIFarUZlZSXGjx+PY8eOISwsDJs2bXJFjUREPik+JhQqhRx6Q6XN+4YkAEpF9TR7InIdh8NQREQEDh8+jI8//hgHDx6EyWTC1KlTMWHCBIsbqomIqG6yAAmaJDWS0/MgARaBqGaFIU2SmusNEbmYXYsuxsXFYefOnWjbti0WLlyIuXPnIjg42B31eRwXXSQiV+M6Q0TO58jvt11hKCgoCMeOHcONN94ImUwGnU6H8PBwpxXclDEMEZE7cAVqIudy+grUvXv3xqOPPopBgwZBCIE333yz1pWmFyxY4HjFRER+ThYgcfo8kYfYdWWosLAQGo0Gx48fR15eHtRqNZo1s85RkiQhLy/PJYV6Cq8MEREReR+nD5NdKyAgAHq9nsNkRERE1GQ58vtt1zpDcXFxOHfuHABAo9HwYaxERETkM+wKQ0ePHsXFixcBAAsXLsSFCxdcWhQRERGRu/AGaiIiIvJrvIG6HrxniIiIyPvwBmonYhgiIoDrABF5G6evM3Qtk8nU4MKIiLwRV4gm8m0OP7UeADZu3IjbbrsNEREROHHiBIDqB7h+8cUXTi2OiMjTMvN1SE7PswhCAKA3VCI5PQ+Z+ToPVUZEzuJwGEpLS8OcOXMwcuRInD9/HkajEQDQtm1brFixwtn1ERF5jNEkkJpRYPOJ8jVtqRkFMJocutuAiJoYh8PQO++8g/feew8vv/wyZDKZub1fv344cuSIU4sjIvKkXG2Z1RWhawkAOkMlcrVl7iuKiJzO4TCk1WrRp08fq/bAwEDzWkRERL6gtKL2INSQfkTUNDkchmJiYnD48GGr9h07dkCtVjujJiKiJiE8RO7UfkTUNDk8m+z555/HU089hcrKSgghkJubi02bNmHRokX497//7YoaiYg8Ij4mFCqFHHpDpc37hiQASkX1NHsi8l4Oh6FHH30UV69exbx583Dp0iWMHz8eN9xwA9566y2MGzfOFTUSEXmELECCJkmN5PQ8SIBFIKpZYUiTpOZ6Q0RerkFT66dNm4YTJ06gtLQUer0eJSUlmDp1qrNrs2n16tWIiYmBXC5H3759sXfv3jr77969G3379oVcLkenTp2wZs0at9RJRL4hMVaFtIlxUCosh8KUCjnSJsZxnSEiH+DwlaFrhYWFOasOu3zyySeYPXs2Vq9ejdtuuw3vvvsuRowYgYKCAkRFRVn112q1GDlyJKZNm4b09HR8//33mDFjBtq3b48HH3zQrbUTkfdKjFVhqFrJFaiJfJTDj+PwpP79+yMuLg5paWnmtptvvhmjR4/GokWLrPq/8MIL2LZtG44ePWpumz59On766Sfk5OTY9Z18HAcREZH3ceT3u0HDZJ5w+fJlHDx4EMOGDbNoHzZsGPbt22dzn5ycHKv+w4cPx4EDB3DlyhWb+1RVVaG8vNziRURERL7La8LQmTNnYDQa0aFDB4v2Dh06QK/X29xHr9fb7H/16lWcOXPG5j6LFi2CQqEwvyIjI51zAERERNQkeU0YqiFJlmP0Qgirtvr622qvMX/+fBgMBvOrpKSkkRUTERFRU2bXDdRvv/223R84a9asBhdTl7CwMMhkMqurQKWlpVZXf2oolUqb/Zs1a4Z27drZ3CcwMBCBgYHOKZqIiIiaPLvC0PLly+36MEmSXBaGWrRogb59+yIrKwtjxowxt2dlZWHUqFE290lISEBGRoZF2zfffIN+/fqhefPmLqmTiIiIvItdYUir1bq6DrvMmTMHkyZNQr9+/ZCQkIC1a9eiuLgY06dPB1A9xHXq1Cls2LABQPXMsZUrV2LOnDmYNm0acnJy8P7772PTpk2ePAwiIiJqQhq1zpC7jR07FmfPnsXChQuh0+kQGxuL7du3o2PHjgAAnU6H4uJic/+YmBhs374dzz77LFatWoWIiAi8/fbbXGOIyAcZTYLrABFRgzRonaGTJ09i27ZtKC4uxuXLly3eW7ZsmdOKawq4zhBR05eZr0NqRgF0hr+fHq9SyKFJUnOFaCI/5cjvt8NXhnbu3In7778fMTExKCwsRGxsLIqKiiCEQFxcXIOLJiJqiMx8HZLT86wepKo3VCI5PY+PzCCiejk8tX7+/Pl47rnnkJ+fD7lcji1btqCkpAR33nknHnroIVfUSERkk9EkkJpRYPOJ8jVtqRkFMJq8ZqF9IvIAh8PQ0aNHMXnyZABAs2bN8Ndff6FVq1ZYuHAhFi9e7PQCiYhqk6stsxgau54AoDNUIldb5r6iiMjrOByGWrZsiaqqKgBAREQEjh8/bn6vtlWdiYhcobSi9iDUkH5E5J8cvmdowIAB+P7776FWq3Hvvffiueeew5EjR/DZZ59hwIABrqiRiMim8BC5U/sRkX9yOAwtW7YMFy5cAACkpKTgwoUL+OSTT9ClSxe7F2ckInKG+JhQqBRy6A2VNu8bkgAoFdXT7ImIatOgqfX+hFPriZq2mtlkACwCUc0KQ5xNRuSfHPn9dvieoZKSEpw8edK8nZubi9mzZ2Pt2rWOV0pE1EiJsSqkTYyDUmE5FKZUyBmEiMguDg+TjR8/Hk888QQmTZoEvV6Pe+65B7GxsUhPT4der8eCBQtcUScRUa0SY1UYqlZyBWoiahCHrwzl5+cjPj4eALB582b07NkT+/btw0cffYT169c7uz4iIrvIAiQkdG6HUb1vQELndgxCRGQ3h8PQlStXEBgYCAD473//i/vvvx8A0L17d+h0OudWR0RERORiDoehHj16YM2aNdi7dy+ysrKQmJgIADh9+jTatWvn9AKJiIiIXMnhMLR48WK8++67GDx4MB5++GH06tULALBt2zbz8BkRERGRt2jQ1Hqj0Yjy8nK0bdvW3FZUVITg4GCEh4c7tUBP49R6IiIi7+PSp9YDgEwmswhCABAdHd2QjyIiIiLyKIfDUExMDCSp9lka//vf/xpVEBH5JqNJcOo7ETVJDoeh2bNnW2xfuXIFhw4dQmZmJp5//nln1UVEPiQzX4fUjAKLJ8yrFHJoktRcFJGIPM7hMPTMM8/YbF+1ahUOHDjQ6IKIyLfUPC7j+psT9YZKJKfncZVoIvI4h2eT1WbEiBHYsmWLsz6OiHyA0SSQmlFg8yGqNW2pGQUwmviIRCLyHKeFoU8//RShoXwyNBH9LVdbZjE0dj0BQGeoRK62zH1FERFdx+Fhsj59+ljcQC2EgF6vx59//onVq1c7tTgi8m6lFbUHoYb0IyJyBYfD0OjRoy22AwIC0L59ewwePBjdu3d3Vl1E5APCQ+T1d3KgHxGRKzgchjQajSvqICIfFB8TCpVCDr2h0uZ9QxIApaJ6mj0Rkac06p6hv/76C+Xl5RYvIqIasgAJmiQ1gOrgc62abU2SmusNEZFHORyGLl68iJkzZyI8PBytWrVC27ZtLV5ERNdKjFUhbWIclArLoTClQs5p9UTUJDg8TDZv3jzs2rULq1evxiOPPIJVq1bh1KlTePfdd/HGG2+4okYi8nKJsSoMVSu5AjURNUkOP6g1KioKGzZswODBg9G6dWvk5eWhS5cu2LhxIzZt2oTt27e7qlaP4INaiYiIvI8jv98OD5OVlZUhJiYGANC6dWuUlVWvDzJo0CDs2bOnAeUSEREReY7DYahTp04oKioCAKjVamzevBkAkJGRgTZt2jizNiIiIiKXczgMPfroo/jpp58AAPPnz8fq1asRGBiIZ599lg9qJSIiIq/j8D1D1ysuLsaBAwfQuXNn9OrVy1l1NRm8Z4iIiMj7OPL77fBssutFRUUhKiqqsR9DRERE5BF2D5N9++23UKvVNhdWNBgM6NGjB/bu3evU4oiIiIhcze4wtGLFCkybNs3mpSaFQoEnn3wSy5Ytc2pxROReRpNAzvGz+OLwKeQcPwujqVGj6EREXsHuYbKffvoJixcvrvX9YcOG4c0333RKUUTkfpn5OqRmFEBn+PsJ8iqFHJokNVeJJiKfZveVoT/++APNmzev9f1mzZrhzz//dEpRRORemfk6JKfnWQQhANAbKpGcnofMfJ2HKiMicj27w9ANN9yAI0eO1Pr+zz//DJWK/++RyNsYTQKpGQU2nypf05aaUcAhMyLyWXaHoZEjR2LBggWorKy0eu+vv/6CRqPBfffd59TiiMj1crVlVleEriUA6AyVyNWWua8oIiI3svueoVdeeQWfffYZunbtipkzZ6Jbt26QJAlHjx7FqlWrYDQa8fLLL7uyViJygdKK2oNQQ/oREXkbu8NQhw4dsG/fPiQnJ2P+/PmoWatRkiQMHz4cq1evRocOHVxWKBG5RniI3Kn9iIi8jUOLLnbs2BHbt2/HuXPn8Pvvv0MIgZtuuglt27Z1VX1E5GLxMaFQKeTQGypt3jckAVAq5IiPCXV3aUREbuHws8kAoG3btrj11lsRHx/PIETk5WQBEjRJagDVwedaNduaJDVkAde/S0TkGxoUhojItyTGqpA2MQ5KheVQmFIhR9rEOK4zREQ+rdHPJiMi35AYq8JQtRK52jKUVlQiPKR6aIxXhIjI1zEMEZGZLEBCQud2ni6DiMitOExGREREfs1rwtC5c+cwadIkKBQKKBQKTJo0CefPn69znylTpkCSJIvXgAED3FMwEREReQWvGSYbP348Tp48iczMTADAE088gUmTJiEjI6PO/RITE7Fu3TrzdosWLVxaJxEREXkXrwhDR48eRWZmJn744Qf0798fAPDee+8hISEBhYWF6NatW637BgYGQqlUuqtUIiIi8jJeMUyWk5MDhUJhDkIAMGDAACgUCuzbt6/OfbOzsxEeHo6uXbti2rRpKC0trbN/VVUVysvLLV5ERETku7wiDOn1eoSHh1u1h4eHQ6/X17rfiBEj8OGHH+Lbb7/F0qVL8eOPP+Kuu+5CVVVVrfssWrTIfF+SQqFAZGSkU46BiIiImiaPhqGUlBSrG5yvfx04cABA9TPQrieEsNleY+zYsbj33nsRGxuLpKQk7NixA7/99hu++uqrWveZP38+DAaD+VVSUtL4AyVyEqNJIOf4WXxx+BRyjp+F0WTrARpEROQIj94zNHPmTIwbN67OPtHR0fj555/xxx9/WL33559/OvRwWJVKhY4dO+LYsWO19gkMDERgYKDdn0nkLpn5OqRmFEBn+Pvp8SqFHJokNVeIJiJqBI+GobCwMISFhdXbLyEhAQaDAbm5uYiPjwcA7N+/HwaDAQMHDrT7+86ePYuSkhKoVPzhIO+Sma9Dcnqe1YNU9YZKJKfn8ZEZRESN4BX3DN18881ITEzEtGnT8MMPP+CHH37AtGnTcN9991nMJOvevTu2bt0KALhw4QLmzp2LnJwcFBUVITs7G0lJSQgLC8OYMWM8dShEDjOaBFIzCmw+Ub6mLTWjgENmREQN5BVhCAA+/PBD9OzZE8OGDcOwYcNwyy23YOPGjRZ9CgsLYTAYAAAymQxHjhzBqFGj0LVrV0yePBldu3ZFTk4OQkJCPHEIRA2Sqy2zGBq7ngCgM1QiV1vmvqKIiHyIV6wzBAChoaFIT0+vs48Qf/8/46CgIHz99deuLovI5Uorag9CDelHRESWvObKEJG/Cg+RO7UfERFZYhgiauLiY0KhUshR2yISEqpnlcXHhLqzLCIin8EwRNTEyQIkaJLUAGAViGq2NUlqyAJqX3OLiIhqxzBE5AUSY1VImxgHpcJyKEypkHNaPRFRI3nNDdRE/i4xVoWhaiVytWUorahEeEj10BivCBERNQ7DEJEXkQVISOjcztNlEBH5FA6TERERkV9jGCIiIiK/xjBEREREfo1hiIiIiPwawxARERH5NYYhIiIi8mucWk/kREaT4DpARERehmGIyEky83VIzSiAzvD30+NVCjk0SWquEE1E1IRxmIzICTLzdUhOz7MIQgCgN1QiOT0Pmfk6D1VGRET1YRgiaiSjSSA1owDCxns1bakZBTCabPUgIiJPYxgiaqRcbZnVFaFrCQA6QyVytWXuK4qIiOzGMETUSKUVtQehhvQjIiL3YhgiaqTwELlT+xERkXsxDBE1UnxMKFQKOWqbQC+helZZfEyoO8siIiI7MQwRNZIsQIImSQ0AVoGoZluTpOZ6Q0RETRTDEJETJMaqkDYxDkqF5VCYUiFH2sQ4rjNERNSEcdFFIidJjFVhqFrJFaiJiLwMwxCRE8kCJCR0bufpMoiIyAEcJiMiIiK/xjBEREREfo1hiIiIiPwawxARERH5NYYhIiIi8mucTUZ+x2gSnP5ORERmDEPkVzLzdUjNKLB4yrxKIYcmSc2FEYmI/BSHychvZObrkJyeZxGEAEBvqERyeh4y83UeqoyIiDyJYYj8gtEkkJpRAGHjvZq21IwCGE22ehARkS9jGCK/kKsts7oidC0BQGeoRK62zH1FERFRk8AwRH6htKL2INSQfkRE5DsYhsgvhIfI6+/kQD8iIvIdDEPkF+JjQqFSyFHbBHoJ1bPK4mNC3VkWERE1AQxD5BdkARI0SWoAsApENduaJDXXGyIi8kMMQ+Q3EmNVSJsYB6XCcihMqZAjbWIc1xkiIvJTXHSR/EpirApD1UquQE1ERGYMQ+R3ZAESEjq383QZRETURHCYjIiIiPwawxARERH5NYYhIiIi8msMQ0REROTXGIaIiIjIr3lNGHrttdcwcOBABAcHo02bNnbtI4RASkoKIiIiEBQUhMGDB+OXX35xbaFERETkVbwmDF2+fBkPPfQQkpOT7d5nyZIlWLZsGVauXIkff/wRSqUSQ4cORUVFhQsrpcYymgRyjp/FF4dPIef4WRhNwtMlERGRD5OEEF71S7N+/XrMnj0b58+fr7OfEAIRERGYPXs2XnjhBQBAVVUVOnTogMWLF+PJJ5+0uV9VVRWqqqrM2+Xl5YiMjITBYEDr1q2ddhxkW2a+DqkZBdAZ/n56vEohhyZJzRWiiYjIbuXl5VAoFHb9fnvNlSFHabVa6PV6DBs2zNwWGBiIO++8E/v27at1v0WLFkGhUJhfkZGR7iiXUB2EktPzLIIQAOgNlUhOz0Nmvs5DlRERkS/z2TCk1+sBAB06dLBo79Chg/k9W+bPnw+DwWB+lZSUuLROqmY0CaRmFMDWZcqattSMAg6ZERGR03k0DKWkpECSpDpfBw4caNR3SJLlM6eEEFZt1woMDETr1q0tXuR6udoyqytC1xIAdIZK5GrL3FcUERH5BY8+m2zmzJkYN25cnX2io6Mb9NlKpRJA9RUilerve01KS0utrhaR55VW1B6EGtKPiIjIXh4NQ2FhYQgLC3PJZ8fExECpVCIrKwt9+vQBUD0jbffu3Vi8eLFLvpMaLjxE7tR+RERE9vKae4aKi4tx+PBhFBcXw2g04vDhwzh8+DAuXLhg7tO9e3ds3boVQPXw2OzZs/H6669j69atyM/Px5QpUxAcHIzx48d76jCoFvExoVAp5KhtAFNC9ayy+JhQd5ZFRER+wKNXhhyxYMECfPDBB+btmqs9u3btwuDBgwEAhYWFMBgM5j7z5s3DX3/9hRkzZuDcuXPo378/vvnmG4SEhLi1dqqfLECCJkmN5PQ8SIDFjdQ1AUmTpIYsoPb7vYiIiBrC69YZcjdH1imgxuM6Q0RE5AyO/H57zZUh8g+JsSoMVSuRqy1DaUUlwkOqh8Z4RYiIiFyFYYiaHFmAhITO7TxdBhER+QmvuYGaiIiIyBUYhoiIiMivMQwRERGRX2MYIiIiIr/GMERERER+jWGIiIiI/Bqn1pPDjCbBdYCIiMhnMAyRQ7hCNBER+RoOk5HdMvN1SE7PswhCAKA3VCI5PQ+Z+ToPVUZERNRwDENkF6NJIDWjALYeZFfTlppRAKOJj7ojIiLvwjBEdsnVllldEbqWAKAzVCJXW+a+ooiIiJyAYYjsUlpRexBqSD8iIqKmgmGI7BIeIndqPyIioqaCYYjsEh8TCpVCjtom0EuonlUWHxPqzrKIiIgajWGI7CILkKBJUgOAVSCq2dYkqbneEBEReR2GIbJbYqwKaRPjoFRYDoUpFXKkTYzjOkNEROSVuOgiOSQxVoWhaiVXoCYiIp/BMEQOkwVISOjcztNlEBEROQWHyYiIiMivMQwRERGRX2MYIiIiIr/GMERERER+jWGIiIiI/Bpnk/kgo0lw6jsREZGdGIZ8TGa+DqkZBRZPmFcp5NAkqbkoIhERkQ0cJvMhmfk6JKfnWQQhANAbKpGcnofMfJ2HKiMiImq6GIZ8hNEkkJpRAGHjvZq21IwCGE22ehAREfkvhiEfkasts7oidC0BQGeoRK62zH1FEREReQGGIR9RWlF7EGpIPyIiIn/BMOQjwkPk9XdyoB8REZG/YBjyEfExoVAp5KhtAr2E6lll8TGh7iyLiIioyWMY8hGyAAmaJDUAWAWimm1NkprrDREREV2HYciHJMaqkDYxDkqF5VCYUiFH2sQ4rjNERERkAxdd9DGJsSoMVSu5AjUREZGdGIZ8kCxAQkLndp4ug4iIyCtwmIyIiIj8GsMQERER+TWGISIiIvJrDENERETk1xiGiIiIyK8xDBEREZFf49R6DzGaBNcCIiIiagIYhjwgM1+H1IwC6Ax/P0FepZBDk6TmKtFERERu5jXDZK+99hoGDhyI4OBgtGnTxq59pkyZAkmSLF4DBgxwbaH1yMzXITk9zyIIAYDeUInk9Dxk5us8VBkREZF/8powdPnyZTz00ENITk52aL/ExETodDrza/v27S6qsH5Gk0BqRgGEjfdq2lIzCmA02epBREREruA1w2SpqakAgPXr1zu0X2BgIJRKpQsqclyutszqitC1BACdoRK52jI+ToOIiMhNvObKUENlZ2cjPDwcXbt2xbRp01BaWlpn/6qqKpSXl1u8nKW0ovYg1JB+RERE1Hg+HYZGjBiBDz/8EN9++y2WLl2KH3/8EXfddReqqqpq3WfRokVQKBTmV2RkpNPqCQ+RO7UfERERNZ5Hw1BKSorVDc7Xvw4cONDgzx87dizuvfdexMbGIikpCTt27MBvv/2Gr776qtZ95s+fD4PBYH6VlJQ0+PuvFx8TCpVCjtom0EuonlUWHxPqtO8kIiKiunn0nqGZM2di3LhxdfaJjo522vepVCp07NgRx44dq7VPYGAgAgMDnfad15IFSNAkqZGcngcJsLiRuiYgaZLUXG+IiIjIjTwahsLCwhAWFua27zt79ixKSkqgUnluLZ/EWBXSJsZZrTOk5DpDREREHuE1s8mKi4tRVlaG4uJiGI1GHD58GADQpUsXtGrVCgDQvXt3LFq0CGPGjMGFCxeQkpKCBx98ECqVCkVFRXjppZcQFhaGMWPGePBIqgPRULWSK1ATERE1AV4ThhYsWIAPPvjAvN2nTx8AwK5duzB48GAAQGFhIQwGAwBAJpPhyJEj2LBhA86fPw+VSoUhQ4bgk08+QUhIiNvrv54sQOL0eSIioiZAEkJwhb86lJeXQ6FQwGAwoHXr1p4uh4iIiOzgyO+3T0+tJyIiIqoPwxARERH5NYYhIiIi8msMQ0REROTXGIaIiIjIrzEMERERkV9jGCIiIiK/xjBEREREfs1rVqD2lJo1KcvLyz1cCREREdmr5nfbnrWlGYbqUVFRAQCIjIz0cCVERETkqIqKCigUijr78HEc9TCZTDh9+jRCQkIgSc59kGp5eTkiIyNRUlLik4/64PF5P18/Rh6f9/P1Y+TxNZwQAhUVFYiIiEBAQN13BfHKUD0CAgJw4403uvQ7Wrdu7ZP/yGvw+Lyfrx8jj8/7+fox8vgapr4rQjV4AzURERH5NYYhIiIi8msMQx4UGBgIjUaDwMBAT5fiEjw+7+frx8jj836+fow8PvfgDdRERETk13hliIiIiPwawxARERH5NYYhIiIi8msMQ0REROTXGIbcpKioCFOnTkVMTAyCgoLQuXNnaDQaXL58uc79hBBISUlBREQEgoKCMHjwYPzyyy9uqtpxr732GgYOHIjg4GC0adPGrn2mTJkCSZIsXgMGDHBtoQ3UkOPzpnN47tw5TJo0CQqFAgqFApMmTcL58+fr3Kepn7/Vq1cjJiYGcrkcffv2xd69e+vsv3v3bvTt2xdyuRydOnXCmjVr3FRpwzhyfNnZ2VbnSpIk/Prrr26s2H579uxBUlISIiIiIEkSPv/883r38bbz5+gxetM5XLRoEW699VaEhIQgPDwco0ePRmFhYb37eeIcMgy5ya+//gqTyYR3330Xv/zyC5YvX441a9bgpZdeqnO/JUuWYNmyZVi5ciV+/PFHKJVKDB061PzMtKbm8uXLeOihh5CcnOzQfomJidDpdObX9u3bXVRh4zTk+LzpHI4fPx6HDx9GZmYmMjMzcfjwYUyaNKne/Zrq+fvkk08we/ZsvPzyyzh06BBuv/12jBgxAsXFxTb7a7VajBw5ErfffjsOHTqEl156CbNmzcKWLVvcXLl9HD2+GoWFhRbn66abbnJTxY65ePEievXqhZUrV9rV39vOH+D4MdbwhnO4e/duPPXUU/jhhx+QlZWFq1evYtiwYbh48WKt+3jsHArymCVLloiYmJha3zeZTEKpVIo33njD3FZZWSkUCoVYs2aNO0pssHXr1gmFQmFX38mTJ4tRo0a5tB5ns/f4vOkcFhQUCADihx9+MLfl5OQIAOLXX3+tdb+mfP7i4+PF9OnTLdq6d+8uXnzxRZv9582bJ7p3727R9uSTT4oBAwa4rMbGcPT4du3aJQCIc+fOuaE65wIgtm7dWmcfbzt/17PnGL35HJaWlgoAYvfu3bX28dQ55JUhDzIYDAgNDa31fa1WC71ej2HDhpnbAgMDceedd2Lfvn3uKNFtsrOzER4ejq5du2LatGkoLS31dElO4U3nMCcnBwqFAv379ze3DRgwAAqFot5am+L5u3z5Mg4ePGjxtweAYcOG1Xo8OTk5Vv2HDx+OAwcO4MqVKy6rtSEacnw1+vTpA5VKhbvvvhu7du1yZZlu5U3nr7G88RwaDAYAqPN3z1PnkGHIQ44fP4533nkH06dPr7WPXq8HAHTo0MGivUOHDub3fMGIESPw4Ycf4ttvv8XSpUvx448/4q677kJVVZWnS2s0bzqHer0e4eHhVu3h4eF11tpUz9+ZM2dgNBod+tvr9Xqb/a9evYozZ864rNaGaMjxqVQqrF27Flu2bMFnn32Gbt264e6778aePXvcUbLLedP5ayhvPYdCCMyZMweDBg1CbGxsrf08dQ4ZhhopJSXF5s1s174OHDhgsc/p06eRmJiIhx56CI8//ni93yFJksW2EMKqzZUacoyOGDt2LO69917ExsYiKSkJO3bswG+//YavvvrKiUdRO1cfH+DZc+jI8dmqqb5aPX3+6uPo395Wf1vtTYUjx9etWzdMmzYNcXFxSEhIwOrVq3HvvffizTffdEepbuFt589R3noOZ86ciZ9//hmbNm2qt68nzmEzl32yn5g5cybGjRtXZ5/o6Gjzfz59+jSGDBmChIQErF27ts79lEolgOqkrFKpzO2lpaVWydmVHD3GxlKpVOjYsSOOHTvmtM+siyuPrymcQ3uP7+eff8Yff/xh9d6ff/7pUK3uPn+1CQsLg0wms7pKUtffXqlU2uzfrFkztGvXzmW1NkRDjs+WAQMGID093dnleYQ3nT9naurn8Omnn8a2bduwZ88e3HjjjXX29dQ5ZBhqpLCwMISFhdnV99SpUxgyZAj69u2LdevWISCg7gtzMTExUCqVyMrKQp8+fQBU3yewe/duLF68uNG128uRY3SGs2fPoqSkxCI8uJIrj68pnEN7jy8hIQEGgwG5ubmIj48HAOzfvx8GgwEDBw60+/vcff5q06JFC/Tt2xdZWVkYM2aMuT0rKwujRo2yuU9CQgIyMjIs2r755hv069cPzZs3d2m9jmrI8dly6NAhj58rZ/Gm8+dMTfUcCiHw9NNPY+vWrcjOzkZMTEy9+3jsHLr09mwyO3XqlOjSpYu46667xMmTJ4VOpzO/rtWtWzfx2WefmbffeOMNoVAoxGeffSaOHDkiHn74YaFSqUR5ebm7D8EuJ06cEIcOHRKpqamiVatW4tChQ+LQoUOioqLC3OfaY6yoqBDPPfec2Ldvn9BqtWLXrl0iISFB3HDDDU3yGB09PiG86xwmJiaKW265ReTk5IicnBzRs2dPcd9991n08abz9/HHH4vmzZuL999/XxQUFIjZs2eLli1biqKiIiGEEC+++KKYNGmSuf///vc/ERwcLJ599llRUFAg3n//fdG8eXPx6aefeuoQ6uTo8S1fvlxs3bpV/PbbbyI/P1+8+OKLAoDYsmWLpw6hThUVFeb/jgEQy5YtE4cOHRInTpwQQnj/+RPC8WP0pnOYnJwsFAqFyM7OtvjNu3TpkrlPUzmHDENusm7dOgHA5utaAMS6devM2yaTSWg0GqFUKkVgYKC44447xJEjR9xcvf0mT55s8xh37dpl7nPtMV66dEkMGzZMtG/fXjRv3lxERUWJyZMni+LiYs8cQD0cPT4hvOscnj17VkyYMEGEhISIkJAQMWHCBKspvN52/latWiU6duwoWrRoIeLi4iym9U6ePFnceeedFv2zs7NFnz59RIsWLUR0dLRIS0tzc8WOceT4Fi9eLDp37izkcrlo27atGDRokPjqq688ULV9aqaRX/+aPHmyEMI3zp+jx+hN57C237xr//exqZxD6f8KJiIiIvJLnE1GREREfo1hiIiIiPwawxARERH5NYYhIiIi8msMQ0REROTXGIaIiIjIrzEMERERkV9jGCIiIiK/xjBERB6TnZ0NSZJw/vx5T5fiMVOmTMHo0aM9XQaRX2MYIvKwhvwYSpKEzz//3CX1uMrgwYMxe/Zsi7aBAwdCp9NBoVC4pYYpU6bgxRdftGo3Go0YOHAgHnzwQYt2g8GAyMhIvPLKK26pj4g8g2GIyI9duXLFo9/fokULKJVKSJLk8u8ymUz46quvbD7RXSaT4YMPPkBmZiY+/PBDc/vTTz+N0NBQLFiwwOX1uZunzz1RU8IwRNTEDB48GLNmzcK8efMQGhoKpVKJlJQU8/vR0dEAgDFjxkCSJPM2AGRkZKBv376Qy+Xo1KkTUlNTcfXqVfP7kiRhzZo1GDVqFFq2bImFCxfixhtvxJo1ayxqyMvLgyRJ+N///geg+grJE088gfDwcLRu3Rp33XUXfvrpJ3P/lJQU9O7dGxs3bkR0dDQUCgXGjRuHiooKANVXZHbv3o233noLkiRBkiQUFRXZHCbbsmULevTogcDAQERHR2Pp0qUWtUVHR+P111/HY489hpCQEERFRWHt2rX1/l2///57BAQEoH///jbfv+mmm7Bo0SI8/fTTOH36NL744gt8/PHH+OCDD9CiRQur/oWFhZAkCb/++qtF+7JlyxAdHQ0hBIxGI6ZOnYqYmBgEBQWhW7dueOutt+qsMzo6GitWrLBo6927t8W/gfrOx/WKioogSRI2b96MwYMHQy6XIz09HWfPnsXDDz+MG2+8EcHBwejZsyc2bdpksW99/x4B4Ndff8WgQYMgl8uhVqvx3//+1+rq5alTpzB27Fi0bdsW7dq1w6hRo1BUVFTn34LIXRiGiJqgDz74AC1btsT+/fuxZMkSLFy4EFlZWQCAH3/8EQCwbt066HQ68/bXX3+NiRMnYtasWSgoKMC7776L9evX47XXXrP4bI1Gg1GjRuHIkSN4/PHHMW7cOIurIQDw0UcfISEhAZ06dYIQAvfeey/0ej22b9+OgwcPIi4uDnfffTfKysrM+xw/fhyff/45vvzyS3z55ZfYvXs33njjDQDAW2+9hYSEBEybNg06nQ46nQ6RkZFWx33w4EH84x//wLhx43DkyBGkpKTgn//8J9avX2/Rb+nSpejXrx8OHTqEGTNmIDk52SqUXG/btm1ISkpCQEDt/7P39NNPo1evXnjkkUfwxBNPYMGCBejdu7fNvt26dUPfvn1t/u3Gjx8PSZJgMplw4403YvPmzSgoKMCCBQvw0ksvYfPmzXXWWhd7z4ctL7zwAmbNmoWjR49i+PDhqKysRN++ffHll18iPz8fTzzxBCZNmoT9+/db7FfXv0eTyYTRo0cjODgY+/fvx9q1a/Hyyy9b7H/p0iUMGTIErVq1wp49e/Ddd9+hVatWSExMxOXLlxv8tyBymsY/+J6IGmPy5Mli1KhR5u0777xTDBo0yKLPrbfeKl544QXzNgCxdetWiz633367eP311y3aNm7cKFQqlcV+s2fPtuiTl5cnJEkSRUVFQgghjEajuOGGG8SqVauEEELs3LlTtG7dWlRWVlrs17lzZ/Huu+8KIYTQaDQiODhYlJeXm99//vnnRf/+/S2O65lnnrH4jF27dgkA4ty5c0IIIcaPHy+GDh1q0ef5558XarXavN2xY0cxceJE87bJZBLh4eEiLS1N1KVr165i27ZtdfYRQoijR48KAKJnz57iypUrdfZdtmyZ6NSpk3m7sLBQABC//PJLrfvMmDFDPPjgg+bt689/x44dxfLlyy326dWrl9BoNEII+87H9bRarQAgVqxYUefxCCHEyJEjxXPPPWferu/f444dO0SzZs2ETqczv5+VlWXxb/T9998X3bp1EyaTydynqqpKBAUFia+//rremohcjVeGiJqgW265xWJbpVKhtLS0zn0OHjyIhQsXolWrVuZXzZWYS5cumfv169fPYr8+ffqge/fu5uGR3bt3o7S0FP/4xz/Mn3vhwgW0a9fO4rO1Wi2OHz9u/pzo6GiEhIQ4VPP1jh49ittuu82i7bbbbsOxY8dgNBrNbdf+fSRJglKprPO7jh49ipMnT+Kee+6pt4b//Oc/CA4OhlarxcmTJ83t06dPtzh+ABg3bhxOnDiBH374AQDw4Ycfonfv3lCr1eb91qxZg379+qF9+/Zo1aoV3nvvPRQXF9dbR23sPR+2XH/ujUYjXnvtNdxyyy3mz/vmm2+s6qvr32NhYSEiIyOhVCrN78fHx1vV/PvvvyMkJMRcb2hoKCorK+utmcgdmnm6ACKy1rx5c4vtmiGXuphMJqSmpuKBBx6wek8ul5v/c8uWLa3enzBhAj766CO8+OKL+OijjzB8+HCEhYWZP1elUiE7O9tqvzZt2jSq5usJIaxuphZCWPVz9Lu2bduGoUOHIigoqM7vz8nJwfLly7Fjxw4sWbIEU6dONd//snDhQsydO9eiv0qlwpAhQ/DRRx9hwIAB2LRpE5588knz+5s3b8azzz6LpUuXIiEhASEhIfjXv/5lNQx1rYCAAKtjvvZmZ3vPhy3Xn/ulS5di+fLlWLFiBXr27ImWLVti9uzZVkNXdf29bZ2z65lMJptDigDQvn37OvclcgeGISIv1Lx5c4srJQAQFxeHwsJCdOnSxeHPGz9+PF555RUcPHgQn376KdLS0iw+V6/Xo1mzZhY3azuqRYsWVjVfT61W47vvvrNo27dvH7p27QqZTNbg7/7iiy/w+OOP19nnr7/+wuTJk/Hkk0/innvuQdeuXREbG4t3330X06dPR3h4OMLDw632mzBhAl544QU8/PDDOH78OMaNG2d+b+/evRg4cCBmzJhhbqvvSkj79u2h0+nM2+Xl5dBqteZtZ52PmvpGjRqFiRMnAqgOLceOHcPNN99s92d0794dxcXF+OOPP9ChQwcAf9/Xdm3Nn3zyifmGb6KmhsNkRF4oOjoaO3fuhF6vx7lz5wAACxYswIYNG5CSkoJffvkFR48exSeffGLXGjkxMTEYOHAgpk6diqtXr1pMP7/nnnuQkJCA0aNH4+uvv0ZRURH27duHV155BQcOHHCo5v3796OoqAhnzpyxeSXnueeew86dO/Hqq6/it99+wwcffICVK1daXZFxRGlpKX788Ufcd999dfZ78cUXYTKZsHjxYgBAVFQUli5diueff77OWU8PPPAAysvLkZycjCFDhuCGG24wv9elSxccOHAAX3/9NX777Tf885//tAoK17vrrruwceNG7N27F/n5+Zg8ebJFEHTW+aipLysrC/v27cPRo0fx5JNPQq/XO/QZQ4cORefOnTF58mT8/PPP+P777803UNdcMZowYQLCwsIwatQo7N27F1qtFrt378YzzzxjMRRJ5CkMQ0ReaOnSpcjKykJkZCT69OkDABg+fDi+/PJLZGVl4dZbb8WAAQOwbNkydOzY0a7PnDBhAn766Sc88MADFsNJkiRh+/btuOOOO/DYY4+ha9euGDduHIqKisxXAuwxd+5cyGQyqNVqtG/f3uZ9M3Fxcdi8eTM+/vhjxMbGYsGCBVi4cCGmTJli9/dcLyMjA/3797d5VafG7t27sWrVKqxfv95iKGnatGnmkGhruA4AWrdujaSkJPz000+YMGGCxXvTp0/HAw88gLFjx6J///44e/asxVUiW+bPn4877rgD9913H0aOHInRo0ejc+fO5veddT4A4J///Cfi4uIwfPhwDB48GEql0uEFQGUyGT7//HNcuHABt956Kx5//HFzAK8Zng0ODsaePXsQFRWFBx54ADfffDMee+wx/PXXX7xSRE2CJGr7bzgRkQ+4//77MWjQIMybN8/TpfiN77//HoMGDcLvv/9uEeSImireM0REPm3QoEF4+OGHPV2GT9u6dStatWqFm266Cb///jueeeYZ3HbbbQxC5DV4ZYiIiBplw4YNePXVV1FSUoKwsDDcc889WLp0Kdq1a+fp0ojswjBEREREfo03UBMREZFfYxgiIiIiv8YwRERERH6NYYiIiIj8GsMQERER+TWGISIiIvJrDENERETk1xiGiIiIyK/9fxoT7Fb+kOKdAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1349,7 +1349,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd3hURfd+N71vCiUJhE4iRTqE3lEUkN4+qgIWRD5AQEE6CIggHaRJUUSagAjSpNfQpPcSSgjpvWfn98f+zjC3bTYhFPnu+zz3SfaWuXOnnPPOOWdmDIwxBh06dOjQoUOHDh3/ati86gzo0KFDhw4dOnToeH7opE6HDh06dOjQoeMNgE7qdOjQoUOHDh063gDopE6HDh06dOjQoeMNgE7qdOjQoUOHDh063gDopE6HDh06dOjQoeMNgE7qdOjQoUOHDh063gDopE6HDh06dOjQoeMNwP8MqWOMISEhAfpayzp06NChQ4eONxH/M6QuMTERRqMRiYmJrzorOnTo0KFDhw4d+Y7XktSdPXsWDRo0QKNGjdClSxdkZmbyawcPHkRAQAAaN26MZs2avcJcvjlgjGHChAmIiIh41VnRoUOHDh06dOQRryWpK1KkCHbv3o1Dhw6hTJky2Lp1q+R6165dcfDgQfz999+vJoNvGB48eICJEydi2LBh+ZJeTExMvqSjQ4cOHTp06LAeryWp8/X1hYuLCwDA3t4ednZ2kuubN29GgwYNMHfuXM000tPTkZCQIDl0qIPiDLOysp47rWPHjsHHxwenTp167rR0vF6IjIxEaGjoq86GDh0vFOXLl8fmzZtfdTZ06MgTXktSR3jw4AH27duH1q1b83M1atTAjRs38Pfff2PXrl04e/as6rPTpk2D0WjkR0BAwMvK9r8O+Tl55OHDhwCAo0eP5luaOl4PFC9eHCVKlHjV2dCh44Xi2rVrGD58+KvORp7AGMPNmzdf2vtOnDihTz58zfDakrqEhAT06tULK1euhL29PT/v5uYGBwcHODg44IMPPsCFCxdUnx81ahTi4+P5QWRDhxJkoTMYDM+dlre3NwAgLCzsudN6HZCUlPSqs/DaIDU19VVnQYeOFwoiKP9WorJ06VIEBQXh3r17L/xd586dQ926dbFy5coX/q6Xibi4OGzZsuWlvjM/9eVrSeqys7PRo0cPjBs3DoGBgZJrohv1yJEjKFOmjGoajo6O8PDwkBw61JGRkZFvadGklsePH+dbmq8KV69ehbe39xtDUHW8HkhNTYXBYMgXF19mZiZmzpyJnTt3YuzYsfmQu38PLl26hJ07d+ZrmjTANZlM+Zruy8KNGzcAvBz5GxsbCwC4e/fuC3/Xy0T//v3RoUMHyQTNFwHGGNLT03H37l0UKVIEv/76a76k+1qSug0bNuD48eOYPHkyGjdujPXr1+OTTz7h12rVqoW6deuiSJEiaNiw4SvO7b8f+UnqKK03gQjdu3cPmZmZmrOCU1JScP/+/ZebqX8B4uPjER0dbfGex48fv/IJNefPn8dPP/300t/79OlTAMC6deueO621a9dixIgRaNWqFaZMmfLc6b1OYIzhwYMHOHz4MPbu3au4XqlSJbRq1Spf30mKPDekLiUlBenp6fmaj7zC1dUVAF7K0l0U6/6iyc/LxqNHjwDghdfp6tWr4eTkhNu3bwOAxTj07OxsqwcwryWp6969O6Kjo3Hw4EEcPHgQXbt2xZIlSwCYWXRISAiOHz+O77///pXkLzEx8bV3y8XExCAoKMgq0pFXUnfq1ClcvXpVNa2UlBSr03n69OlrOZM5Li4OgHbnXrJkCRo3bvzyMvQvQWBgIAoUKGDxnqJFi2pa2V8WqlWrhn79+r3090ZGRgIAnJ2dnzut5OTk507jdcWkSZNQvHhxNGrUCO+8885LeSfJr9y4Xz08PFCzZk3Va4yxHCeg7d27V5W05gU0wZDa2ItAdna2JOwpPybYvU6g70lLS3th7wgJCcGHH34IAIiKipK8Vw3Lli1Dq1atcOLEiRzTfi1J3esODw8P+Pv7v+psWMS+fftw8+ZNlCxZEhcvXrR4b14EGQDUrl0bFSpU4L/Dw8N5gHFuOvq7776L5s2b5+rdLwPkXtAidY8fP+bE71XAZDLh1q1b/PeRI0e4oHiRyKmdiJbNyMhITJw4UfUZKl8RO3bsUCxhlN+4d++exD2VmZmJffv2vdB3iiBLnZOT03OnlRsryZMnT17r2GLGGPbs2cPbysKFC1/Ie5KTkzXjQ/NiqcvOzsalS5dUr3Xv3l0SE66Gd955J99IK+VfzE+7du3yxSpM2LhxI6pUqYIffvgBwKsndfv370dAQEC+WQyzs7MBvFhS17FjR/6/NaSOZKo1+kYndXnEizRvX7169bnJQnx8PP9/zJgxFu/NLzPzoEGDuOk6Nx3szp07eXrfjBkz0LNnzzw9aw1ystTFxsa+UIGWmZmJPn368DKVY9asWQgMDOSj8m7dumHVqlVgjGkqmfzKl7UYPHgwJkyYgAcPHuR4b1ZWFlq3bo327dtblXZqaqqknVuLUqVKoWjRovz3d999hxYtWnA3yIsGkTpHR0cAwO7du3HgwIE8pSVvf9nZ2Thz5gxu3LiBvn37SiY/+fv7o1ixYnnM9YvH2bNn8e677/K2K7c2TZ06VXVJndwqcw8PD5QtW1b1mqUB7vTp03NdT+vXr9dMTw2bN2+GwWDIM0EhD9LMmTNx6NAhpKenY9u2baoW6SdPnqBWrVo5hkrIQd6fw4cPA8g/UhcTE4PGjRtzkmMtBg4ciEePHmH79u0oUKDAc1vfidS9SPer2B5IHlgqR+rH1gw2dFL3EkCCIjY21qqGUqFCBT5yY4yhZMmS+Ouvv6x6F2MM8fHxkgkltra2/P/09HQULFgQR48eRVJSEmbOnMlHJM87+1UUDrmZKUkNPLdu4K+++gpr167lv7Ozs7FkyRJkZWUhJSUFISEhuUpPjpwsdXFxcS80niQsLAxr1qzB6dOn+bmHDx9yEkzKj/JpY2PuzidOnEClSpWwYMECSXqZmZkYPHiwqoUsNxBdfvHx8YiMjITJZFKEJGRlZfEgamsGKbm1XNWuXRuenp5W35+enq4IFwCejYJfZIzftm3bYDAYcOfOHS7EqY+0bNkSTZs25fdmZmZaPftOrghSUlJQs2ZNvPXWW1i9enU+5f7lgOTHkydPVK9/88036N+/v+K8JWKfkJCAxo0bSyyzJpNJcyKBJUvdqFGjJPUk3i/mXwS52K3tczSTNLfEhiD2wV9//ZW397feektx75kzZ3D69GnFRAfGGObOnYvTp0+ryrfw8HAAz/p0fpG6DRs24NChQ7meeUqTQ7799ltER0crltO6ePFirrxQlix18fHxqF+/vmKQOnToUHTp0iVX+SZQe7ekS0g3U94sQSd1LwB///03zp8/D8Dc8B0dHfHzzz/D29tbM7A3MTERRYoUwZkzZwCAK3IKxh89erRV7541axY8PT0lExXExZvDw8MRFRWF+fPn49ChQxgxYgSuXbummd6BAwestoaI9+Umpo46XHx8fJ5ms5GS3LZtGz799FP8/PPPaN++PYKDg59raYL8tNTFxMRgw4YNVt3LGMOTJ09U31+sWDEei0ZuHRIGROpI4MiV+t27dzF//nwcP37cqnxoQazbUqVKoVChQhg/fjzc3d0l5W1vb88Flqik1OokKipKIrCsIcsUVvDTTz9ZZe0dNGiQJFyAQIo3L0u2ZGdnW2xjZNVYvHgxAKBMmTLcwqFl7Z81axY6dOiguVyTCHn7e94YuytXrryySU5UHlFRUTn2W/G6Jfl07949HDp0CP/88w+WLVsmCVeQo2/fvqhcubIifbXfBJHIqVmjCxcuDAAIDQ3FtWvXYDAYLMpbd3d3AM9kWnJyMs6dO2e1HEtKSoK3tzfq1q2Ly5cv8zYkj1+Nj4/nfUbe7m/cuIEhQ4agVq1a+PjjjxXvkJPu5yV18fHxGDhwID777DMAZgJz4sQJq7xhopygfIn5uXz5MipXrpyrAY4YU/fo0SMMHDgQkydPhsFgwJkzZ3Ds2DHMmjVL8sycOXOwceNGi+k2a9YMX3zxheI89bfr16/j559/Vn2WZLs1LmGd1P0/rl69+tzCzGQyITMzE82bN0e1atVgMpl4w9y2bRsAKCYEpKenw2Qy4dq1awgLC8OkSZMAPCNiJLCsVTjbt28HAIkrSbTUUaNwcHDgaWqNjAGgadOmeO+996x6d06k7uzZsxbNx3PmzEGrVq2sIh2ZmZlwcHAA8Ey507clJiZiz549/L68Qk6qZs2axck6YCZ1JpNJ8k379u1T3W6tbdu26Nq1K+Li4tC9e3fcvn1b0d6ePHmC48ePY9GiRfD39+dCV8uCSaSO6pFGc+SuFetdvC+3lrqpU6fy8gSkxIGsWzSLVG6to/Y/evRojBs3TvE8QT66prq1Bv369UPLli357/Xr16tOZNIKMiYLobUhFeIaYHZ2dhgxYoTqfefPn0fJkiUVs1KpXrV2uSECTNfv37+P7777TlWxy+VCbgZTaqhYsSJKlSolOXfp0qUXTvQePXrELUCRkZGa8o7ahfid8fHxOHv2rOqkMGpr0dHR+Pjjj1G/fn3NPKxevZqXuVxOifkRFavoIlarTyJ19+/f55b18uXLw8vLS9KnAPO+5iT3yXr83XffoXr16nyioByJiYno2LEjvvrqK2RmZiIpKQnBwcGoWLEi0tPTef7kXhhPT08MHToUgLLNiPpALRaP6omQ19izO3fu4J9//kGXLl34oIdQt25d9O3bV/NZk8mE9PR0yULLRIRFeUl5nTx5stUhTSKp++qrr7B48WIuuyhtrU0PLGH//v0K7wnwjNSdPn0avXv3Vu3nVH/WTNDUSd3/o0KFCihZsmSO91kaMTVv3lyijJKTk7n1QUvYOjk5oW/fvjxWhMgYdW5qiGlpaejfvz+WLVuGU6dO4ZdfflGktWbNGt6IRQFHyn38+PE8vs7BwYF3Ri1SR9+qpgzVykFO6sR7Tp48iRo1avAYE7W0iIzMnj0b3377rWqeAOCvv/6Cg4MD72D0HJWZaPFJSUmxODIGzJ1q2LBhCkEuul+zs7MxfPhwtGvXTnFdHBm2aNECs2fPVryDSMu5c+fw22+/oWzZsihSpIjknlKlSqFevXr47bffACBHUkdtjRQXjeaoPOSKkeqbiFjjxo0xceJE1bRFfPPNN3j33Xf57169eqF9+/aS8qJ2KndBESEOCQnB5MmTAagrPzWimZtwAGp7UVFR6NatG0qWLGm1RSE3LrJ9+/ahVKlSOHr0KP9mIpFyUvjPP/8AAMaOHYvdu3fz81QPu3fvViwSu3//fv4tVO9z587F119/jYMHD/L7fvzxR4SGhireqUaYGWM5kr0DBw7g008/BaC0TFeqVEnivsvKyrJ6KR+5nEhNTVWN9wwICOBWjMjISE2CTW1edJXHx8ejRo0aKFeunOJ+UoJEbrSWJ5JDSxYAz8gDILVAq+XZzc2Nv5fKtUKFCnB0dMSff/4pubdJkyZcrtM7SG5orQV36dIl/P7775gxYwb+/PNPJCUlwc3NDU5OTkhPT+d5EmWB3GNgidSJbeHkyZMwmUyKfmUN0UhNTUXv3r0lFvUyZcqgatWqikE85VktVIIwcOBAODk5SdZ2ozoTB/J07u7du+jdu7ckjUuXLuHHH39UpC26X+UTi95///0c85ZbyAdMavKR6sEaS7xO6gRkZGRg0aJFMBgMmgpFLvDi4uKQnp6Ov/76SxFEGx8fz++3FBP3888/805LBERuqUtISMCKFSvw8ccfY82aNdyit3z5cuzbtw8pKSno06cPH7mIHY/SmjRpEjZt2gTAHKRNyoUalVwAW4r/04o3IGRnZ0s6F3VctRE4vZc64KZNm1Qnd6xZswbvv/++gmR+9NFH2L59Oyevohvkjz/+QPny5S0umTJq1CjMnj1b4cIjpZ2amsoVho+PD79Ogp6+Uyw/LUGnNVrMzMzkZUptgRS+Wj0wxhSkTm6pkwsAOak7dOgQJkyYwK9v2bIFBoNBotDULJ0hISHYunWrxAVBiiE6OppbJwBlfc+ePVtV+Vljie7Xrx8aNGiAjIwMRVulb6fyjYqKQvfu3SX3aFltiexZQ+po0HT27FlcuXIFAFCiRAn4+voq4vvkFg2CaN0R3TEmkwnNmjXD8uXLAZj7065duzBnzhwAZjnRuHFjPH36FJ999hnatWunaGdqQl+02ADSdjpr1iyMHTsWbdq00bQGAVLCMmHCBJQsWTJHC83gwYNhNBoxZ84c/P3339i4cSMGDhyISpUqWbTYR0VFaVoxaXKJOHgguaOWHyoPSxN1GGOKCRgmk4kH7v/000+StlGiRAkuK8RyVWvXojKOiYmBk5MTLl++jHfffRfHjx/XLIfevXsjLS2Nh+Fcu3YNqampijYlvv/p06dITEyEm5sbl+/UPqh/mUwmdO3aVZKGvO+ptdtz586hTp06WLZsGUJDQ+Hn58evJSUloV+/fhZl7OzZs/Hzzz9zPSgOVOVtWHy/VpwreWfmzp3Ll3EBzLouIyMDiYmJ2LBhg4Swnjt3DoDZzbl27VpUqlSJu3xFiBMltPa6Ji9NXjBnzhxJTKd8IPzdd98pypK+Q7fU5QGff/45/58xhgMHDkhGyGvWrJFc9/LygpOTE2fwIhISEiwG/1MF2draKkbsdnZ2SExMRN26dQE8UziFCxdGeno6F3oDBgxAixYtFKMtsbPL3XCAuvs1MzMTPXv2xOrVq3H8+HFJjIBcYMobV0JCgmrQNoEUoDgpgiY2kODLqZP06dMHf/31l+ruIF999RW3VJESBJ5ZSywJdSK9kZGRePjwIV8EkgjClStXeCwOzZrMzs7mdUDfLZZJREQEIiMjER0dLVGi8g5MAkQc/dM91CaoDYkWyMTERO5+pffS95PASEpKQnZ2tsKFryUop0+fDsCsgHbu3Ilhw4Zxoaa2ptrIkSMV52JiYpCZmYlu3bqpvmPYsGEKt5OYNzk6duyIGTNmYMSIEfjpp59w9OhRODo6YtSoUZL7IiIicPr0acm3paam4sKFC7hw4QJ69uypae0gZWwNqSPLy9OnT3mbLlq0KJKTkxXtV6xTESJJFwmwPDg+NjZWEvqwceNGHDp0iLu6ExISrLLUffDBBxILlfj+4cOHY8qUKZoDOLFPZ2RkwM3NDdOmTQNgeYFxxhgWLVqExMREXLhwAc2bN0eXLl14+ILYD+QycunSpYqdhAg0kBGfF/Mhlg/wrDzkytnLy4v/v3btWsWexowxXLx4EYcOHUK/fv0UFhuyoEVGRnL5ammwkpycjNjYWL6NYoMGDXD+/HmLOz/88ccfSEpKgpeXF/7880+4uLjAz89PskRVZGQkDAYDvLy8EB0dzS11jo6OCkvdiRMnVEmBJUsdlQVZZvfu3YuMjAzJhJGYmBj89NNP6NSpk+p3/Pbbb9zzQqSc+o4aSFZfv34dPj4+qv2IBmjJyckSWePl5YXMzEyMGzcOXbt2lbyHyvrTTz+1uGoCydnExETNlQcA7fafnZ3N9Q5B9AKS21sL06ZNQ/PmzZGVlQVbW1vs2LFDJ3X5hZSUFDRt2hRNmjThW/DQzhaAttAmJCQkWLR2fffddwDMClOucOzs7FSDekuUKIGMjAzFSHb+/Pma78nOzlY0BjX3a1RUFNauXYu+ffuiXr16EnO1SBLDwsIUwclqLlpRWFAHoOccHR1RoEABfPrpp5z0yPMolh1NIAGeBROLuHbtGi5fvqw4T+W0dOlSSdyVCIqpqlevHooVK4batWsjNTWVK/lFixbxe8llKn4/CRixTiIiIlC4cGEULFhQYiGS75NIQldMjxQpkbphw4Zh8uTJkgkvUVFR/Lfc/UoKKCkpCaNGjYKnp6fEEhgTE6Nol9euXeOzhZOSkrBkyRLMnj2bx7oYjUauvPz9/VG6dGnVsoyOjkZqaqrFUIbBgwdLfl+8eBFfffWV6r2///47vvrqK8ycOVNyXs3yXatWLQmpK1iwIKpUqYIqVapIZknLIZI6S+EVU6ZM4evZRUREcGuN3ALIGENycrKmpQ4AV4oiaZIrkLi4OMmAjO6lvpSVlWUVqdu7d6/E5alGPrRc02IYRFRUlIS8hoaGYu7cuarvTE1N5cpRJJREykTZmZsYz59//hkXLlyQ1DMNxJ2dndG4cWPJkhYkU+TuYnd3dyxevBjly5dXJRgmk0lSf/IgeKqXyMhIFCpUCO7u7rxcDx06xOtITuqITL733nswmUzcc6IGsqjJ1/AUvyUyMhLe3t4oVKgQYmJiEBcXB6PRqCB1x44dQ926dXlst4irV6/iyJEj/Lec1J0+fZoTyWvXrsHW1laykxMRGK2Zmd27d+e6gP5a0p3yAbjaQspimxENKt7e3sjIyOBtVF63Xbt2VZBY+WCM+sKdO3csGhrIKyYfkC5ZsgRVq1aVxPvlZeeh+Ph4mEwmzJ07980gdcOHD0eDBg3Qo0cPyUguKysLffv2RYMGDfDf//4339+r5l4DzAJdLvAtjTYA4M8//8SxY8dUr6WkpPAAaicnJwWpi4mJUV1vJz09Henp6UhNTZU0JnLHqmHNmjWK2IHs7Gyu5Kmh0Kw8Ndy/fx8JCQlo06YNihQpopgVdenSJQnpoG8kEGl58OABV4JyV6TcUkGd+cSJE5IV27WsOhTMKoJG9CdPnsTu3bsRFxeHmTNnSuqSRo8iBgwYoDqrjoiT2DbmzJmDXbt2STrc06dPwRjjCp4gJ7/0DrEsSDiKgkD+bdHR0fw+ei+5IGlEmpyczHddOXr0qITUiZaOokWLStpaYmIiL5/r168DMJM6T09PFCpUCJcuXdLcDSIqKgqpqakICAjgZWWJ4JlMJrz//vtWTdUXobWgtlgvOe1qQSDFFxoaChsbGx7TOHfuXPzxxx8AzP1u7NixfEHc8PBwbv0R6z06Ohq9e/eGm5ubxZmWFSpUQPPmzSVETk7qYmNjJTG6VH/kJhWtsAQtt6XY/63dDYcxJnHPy79n586dGDJkCCfp5JlYsGABj8H09/eXKHD6HmtcbFqoUqUKXz5CtLCJ1jfSGVqWurS0NAwbNgzXrl2TuO8IjDE8ffoUjo6OcHBwULQ3GhRFRkaiYMGCnNRlZ2ejcePGqFOnDn8P5SMmJobnsUiRIihbtqzECyR+nzwvIqKionDixAlUqVIFu3fvRsGCBeHj44Po6GhERESgUKFCnNTJ61rNMjhnzhwJSZOTuuDgYB57e/XqVVSrVg2+vr4Anm1LBli33EZeSJ0asRLbTNWqVfn/3t7eyMzM5JsDyHX0hg0bFLPK09LSsGDBAvz444+YOnUq1zu7du2y+C1PnjzBqVOnFO+gPnjhwgWkp6ejTZs2FtPRAvU3Ozu7fz+pO3/+PMLDw3HkyBGUL19eMprZvn07ihYtiiNHjiAlJeW5l2eQg9wrgHIEKXedaZG6ggULAjCPcocMGaJ6j6iwHRwcEBoaivLly/NzJpNJYcIFpC7d3GykLJ+hl5aWlqslHBo2bAhPT08e3CuPH4yIiEDx4sUl52jl9pSUFK585s6dq7rWFKAkdTTClwtkceSW02rt8mfHjh2LESNG8LWNAHWhsXbtWoUw9fPz44RUbBvffvstZs6cKbGAUPwGAO5yUUN8fDxSUlIwYMAAxTVLVt6oqCiF4iISRXkVsX79evznP/8BYBaIYlk/fvxYQjYTExO5MiIBa29vj8zMTIwcORLe3t6SwY8IUgiurq6cVFla8DYtLU01PCAvsLW1lQj77OxsVauuHFRvFL80cuRIHD58GEOGDEHbtm3BGFNYgSMiIngfFgVt69atebC72AbkcHFxgaenZ46kTm3AQW0wKytL0We0FpIV1zpcvXo1KlasCACqoQwEuQVOnPkNPFM6P/30E7Kzs2E0GtG2bVvMnDmTuyfLli0rsdRRf3369CnCwsJw7dq151o3USS93t7evK9Rv6dvoEFT27ZtUb9+faSnp8NoNAJQHySaTCY8ffoUvr6+8Pf3x7Vr1yQhCDExMQgNDcWiRYtQoEABTuooJvrBgwdo2bIlrx+5+5XKRq2NiLsVqc2yjIqKwqlTp3DhwgUcOnQIBQsWhLe3N+7fv4+MjAwUKlQITk5OSEtLU1hlLbkTHz58iJEjR+Y407lFixacnIqy05oYMyInliasyPMotyKbTCbJIFgk9t7e3mCMce+LSMYpTk3u7k9JScEXX3yBzz77DGPHjuUkkayXYogEwdHREYcOHULt2rUVbmeSe1euXEHr1q0VE2LUQCRZBA0M/vrrLz7B8IVMlHj06BG++eYbNGnSBOXKlUP58uXRpEkTfPPNN/m2Bc2JEyf44rstW7aUEDdL10RQ3Jl4WIOYmBhuhZKPWCpVqgTAPFML0CZ1U6dOzfE9YlD+kydPkJWVJSF1WhAnXzzPCvhpaWm5nopuyTVFI0QRnTp1gouLC1xdXSUkSoxLFKFmqWOMSRQSnSfktGSJ3OxNAiI5ORnXrl3DH3/8oRB88u8g+Pr6coEgtzIeO3ZMkn9LllMR8fHxWLt2bY4zdOWIjo7meZFb6gAlkRKD4OWWOjlq1KjBLXRkUUlKSkJGRgZXympLjtjZ2fHydnZ25sKQ+osIIpjff/+9gtRpDYRygtFoRExMDIxGI95++20kJiZatcQH1T9ZMR4+fCgZML3//vuoUaOG5JmIiAhOHMS2kNOWfAQ1Uie3XsTFxVlc2iU7O1vhmrJmVt7EiRNx5coVjBgxQlMuHjhwQCHH5KROfBdZNHft2iUhLmXKlJF8F8mu8PBwDBw4EOXLl+fLMOUFooJ2cHDg4RFUf3LLxoIFC9C1a1ekpaVxUie6yQhE6goXLgx/f3+kpKRIBggnTpzARx99BODZ4CExMZGHMHz88cfYvXs3L9+UlBSJpQ4w75GsRrLIKACYLbpijDBg1sFinonUUZ8VLXVy2SY3BIh11b59e3z//fcSWa2GOnXq8IljIiGmbQsNBgNCQkJUB6VTpkzBunXrcgxdEiHqqXv37iEsLAyMMbRr1w4fffSRZDBL5avW75s0aaKwgsrvNZlMknAbQJ1weXp6YtmyZQCUhgMqk82bN1u9/eDbb79t1X3WyLNckbqjR4+iXLly2LJlCypXrozevXujZ8+eqFy5MrZu3YoKFSpouhtzg7i4OD6CJEFtzTUR06ZNg9Fo5IeaYiGII4HExES+hcz48eMl9xHJo7Vm1KbmL1q0CP3791c16RNatWrFlX7nzp05WdIKDqbJEoA0Ti+nBVe//vprzWtapE60VFoLxhh3Q4gQSac1pnmqy+HDh8Pe3h7Xr1/HyZMn+R6DBFJk//zzD/r06WMxTbkVgEZw0dHRqFWrFtq2basQfFodzGg0IjMzE59//rlk7z7AXJ40EpSXgyVcv35ddYHPnBAVFaWY5i4KN7Kavvvuu2jQoIHk2djY2Bw3/KYBGhHV+/fvIy0tjZM6ImKihbFChQp8iQFnZ2cuDNXCCIjwTZgwQeG2JytSbmE0GhEbGwt/f38EBQXh8ePHyM7OVuwCAECyv6xajBnNVPT391d1w4SHhyM8PBze3t4Sl5YloVuiRAkei+ji4gKj0Si5X05A1Cx1oowQLeCE3MhfeZyimHbTpk35hIjhw4fD0dFR01IHgM/YBaTkr2zZshLiRX2cLHUAJEsAyZf5yQk0qGvbti1SU1O5lYTIi9yyIS73QXpEjcSQ+9XX15dbvUXZuGXLFuzfvx+A2c1GpO7Bgwfw8/PDkiVLJO04OTkZDx8+lGxPl9NWZYDZIiQPd5k/f75kXTcidUSUChYsyNvN+fPnJYMmkdTRnqkEsgrmtNBxuXLlVEMbsrOzcejQIQBml63WDjH9+vWzemkZQLnYebVq1QCYFxNfsWKF5F4iqWrLdBkMBlXZPGjQIMlv+aQZNVJH5FGUuQaDAYwxTurUYrzVMH/+fKu2RuzduzcfPFlCrkjd0KFD0b9/f1y9ehVz5szBqFGjMHr0aMyZMwdXrlxBv3798jzKFuHl5cVHOHFxcZLRhKVrIkaNGoX4+Hh+WLIiyskNxQudPHlS9X7qrGqTA8gtJbcg0agQMMeinDlzBi1atECTJk34eWpM4r0AJGvxZGZm8u8nUicGioqNuV27dgrrX69evVCsWDFN96sWsbSErKwsVVKXFwQFBeH7779Hs2bNsGXLFi7469Spw2MQt27ditKlS6Ny5cpYsWIFgoODrU6fhN3169e5En3w4AGKFi2Kb775BoB2GdDaeIsWLVJYOOzt7XmHk7uhLUFrgoslt3KRIkUklrrExESEhYVJhAjlwdPTU2IdAMxETW5JbNWqlUU3MYEsRyTMxHgWsa2Jlrq3335b4WYSv09O6tTy8fTpU02BRv3RwcEBMTEx8Pb2hqurKx9Bjx8/Hvv378eXX37JnxGXH6FlIETcvn0bPj4+kv4pggh1oUKFrF7UND09nb+HLHUi5IRQjdSJdUn3U1na29ureg9Ea5/aUk1jx45FeHi4qvICzKSucOHCmvsJ16lTh+8EI29r7du3l8gFskwRKQakYQZBQUH8f3m7kKNDhw68D5QqVQqpqal8gH737l2kpaUprC6urq6cbJA7VY3UmUwmhIaGomjRotwd6ubmpiAAALBixQq4u7sjISFBIgdr167N74mOjsbjx48lCzurufUA9bg3MXZNDpoQRCBLHUHUJyKpK1KkiEXjgxbkpIdA1s2ckJqaipCQENUZ9Vr3A88GXzQglbc14JnsmD9/PgoVKoTNmzdLrtMzHTp04JMeRUuxo6OjwlNDv0UDApWbuKwTYwzZ2dmKfmypHdva2mLQoEFW1YNWe5EjV6Tu8uXLfIFKNXzyySdWs1NLqF27Nl/2YPfu3ahXr55V10Q4OjrCw8NDcmhBTurk8UjiopYPHjxAqVKlFGtgkXLTUsbyBhwYGIg///xT0uHovfJ4JXnjpZmgDx8+hI2NjWRBXLFxeHh4KMjHmjVrUL16dU1LXdmyZRWCf9OmTZJAWgKdS0tLe25SR0KIBG6LFi1w6tQpnv9Dhw5JZuPSaNLW1lY17ghQ70xkMRQn2Zw6dQoNGzbk5FCrgzk4OGi6exs3boybN2/CxsaGP6+21h7hxo0bsLGx0VSU4ohejkKFCkli6sLDw/n2RgSqCzHOSIRc+f/yyy85Wu+AZ+2bBJy47ZYYC8QY4yTB3d1dMbLv3LkzHB0dYTQaeT25urpizJgxaN26tYIEFipUSJUs9+7dG+fOncP48eORmJjIZxi6urry7ylYsCCaNGkisUyJdZyQkKDYReHKlSvw9PS0KDcAZV/VwrBhw7Bjxw5OsFxdXRWDN3lbkE+UAJQDPuCZq10rfEOsF7EeyOJRoEABFC5cWJPU+fj4aPYx4JknoXjx4hLiDJgJAIXLAGaLlaOjI548eYKwsDCFFVmUvTmV/ebNm7mFw9PTUyLT7ty5I7HGEuzt7fm3EAFU69PZ2dm4desWypYty5W6m5sb5s+fLynPFStWoEOHDvD390doaCgiIiJ436M+7OjoiCtXroAxJpk1rhXvqeaSpT6ipl8KFiwoWXtOXl+iN0v8VhcXlzyROrL8PXnyRGJEYIwpZtdqWa5v3LihOrGNlicRBzxE6uRuclGujRkzBr1795YMMu3t7dGhQwccPHgQS5cuBfDM2tquXTtVA1SRIkUk1jfg2WS2Dz74gJ8jvVS5cmXExcVxV2xGRgZSU1MlebNmsGypfxGsNV7kitT5+flZnJhw4sQJBSHKC6pWrQpfX180aNAAV69eRceOHTmrbtOmDR4+fIgGDRrA2dmZBxM+D+TkpmDBgujVqxf/LW5hRO4BuTAi8zh1aLlCl5O6Jk2awMHBQUKEqIOJjapEiRKanf/x48cKwiq+JyAgQNW15OTkhISEBNW9JQsXLqywINSrVw/Dhw9X3EtK4NChQwgPD8+R1IkzWOUNnUZ/ROpKly6NtLQ03Lp1C87OzrC3t5eUg1hnagG627dv5+UpkgGtmKM7d+5whckYw969eyVu34SEBNjb26suCQA8U6xiHkUhIEdgYCCqV68OAKouZEukrkCBAhJL3ePHjxXxiJR2r169NIWK2FacnZ0VwkwNRDLq1asHxpjEXSa6jYoVKwZ/f384OTnBwcEBAQEBkrIvVKgQZs+ejeTkZP5eR0dHTJ48Gfb29pIdDGjigZoCqlOnDm8bYWFh+OOPP7iljqDm0hNdQ4mJiYrwDEukTiRWlkhd586d+f8TJkxA1apV+YDJxcVF8azoOnVwcFCNqVOz2NCgU5xlLPZh0fJAfbZjx448TpDKVYvU2dnZ8f5UqlQp/PXXX3yGMPCMHHp7e6Nfv34S5ePg4CAhkqVKlUK/fv1w8eJFZGdnK5YZatq0KR8syuWeWj0uXLgQsbGxcHZ2RmpqKpcLW7Zs4QNvioUmUN1bmint5uaG9PR0lClThg+qqezFCWxUZtWqVcOVK1dw5MgRLgcpvwaDgZMAcfCgJtdLlCihSnZoEKum72hiRExMDP755x/Y2tpK2jeFisgHfq6urlZby1q0aMFn8BJ8fX0VbUYe/2xpC0o1QwGRXrEtEzGUkzrR2DF58mSsXr1a8t1EgBs1asTDRKg/ubm5qX67mjWM6ls0IJF1vmTJkjAajTwvtDKF2FYtWeqoXq0hdWIYliXkitQNHz4cn376KQYNGoRt27bh5MmTOHXqFLZt24ZBgwbhs88+U12QNC+YOXMmjhw5grVr18LBwYEHetvZ2WH16tU4cuQI5s2bly/vkpO6AgUKSBS6t7c3vv32W0ydOpUrILmA6datG54+fcr3Fhw7dqykEcorlhqBqLyokRkMBiQlJSE1NRV3797likCunB89eqQgdeJIzs3NDbt27VIsjOzk5ISjR4/i2rVripEfLV4pv19N4FMHaNOmDdLS0izGLQLmOEdaEkKurIh4URlQp/7nn3/494n5El02ajEgrVu35spKjEchN5EcWVlZvI4YY2jevLlkkUh3d3eLQeskyN3c3Hh+ChcuzJcUUcPIkSPh7++PIUOG8K2gCJZii3x8fCSWOjV3TVBQEBhjqFOnjiqpCwgI4GuQ2djYWPw28Xl5e6EyrlChAicSV65cQWBgID788ENJeYtubQ8PD3h7eyMrK4uPxMXYVhLOtra26NGjh+RdIqhviApSJHVlypSR9I9Vq1YhJCQEb731Fg+zSExMlAhzGxsbREdHw8vLS1XxisqA2q08DtDd3V2yJR59D5F1MeZQDeXLl0dsbKyCaMstYcAzGSK6xbZt24bz589j6tSpEgJGg24PDw+uSOh7KD8iCSQ5FRQUhPj4eFy/fh0tW7aUfC+5/pKSkuDr66sIWxH7rYeHBwoXLsxjqpo1aya518/Pj2+pJpb94cOH8eDBA4WF2c7ODp6enhJSJydocre9GIJBqFevHrZs2cJ/k8woXbo0b/9UF+LgldoNEdunT58qSB3pFx8fH0m/Fr9v0KBB+OSTT3Dv3j306dMHZ86cUZ0ZqxYOQO/z8vLixI2+sVKlSnx2prgoM2DuT2pxb2ok5Msvv4SLi4uqy9PSdn5qk1AIavHbVI4iySH5IF8NQq1v5hRqIJI6NXlCpFI0FHz11Vfw8/OTyAgiddSfKd1vv/0W8+fPh7OzM+9XWhPvRORE6jZv3my1wSxXpG7gwIFYs2YNzpw5g06dOqFu3bqoU6cOOnXqhDNnzmDNmjUW3bOvK0RSZ2trC3d3d4UiHD16tGQVezLB165dG5MmTYLRaJRUnsFgkATCkkCgURh1DtEiQx3MYDDw2A9qmJs2bUJISIjEZBwREQEPDw+LyzbUrl2bEyn5e4Bn5vhx48ahe/fu+OijjxQNzMnJSXVZCrlSKleuHDZt2qS53l25cuXw4YcfolixYoolPCh9yptI6sgyIgobS5Y6moFIBKRIkSISgS2ibdu22Lp1KzZt2sSVoqhoxCBjkdB06dJFsmAnCVZ3d3dukSxUqJCqhZPQqVMnPHr0CFWqVMHgwYN5YDqQs6VOnCghd5tWq1ZN0hbVSF3BggW5UHN2drYomHv27MmVnJz8+fr6Yvz48di7dy9GjRqFdevWcTegp6enRAmJZenu7s4tVSQgRVJH+RGfEckU5YPar1g35H4FoJi12qdPH9SsWRP29vaSWBoxbWrXnp6ekr5FZEFcY61Dhw64fv266hZbYplS223VqhUA86DEkpAuX748MjIyuDXp8uXLSEpKUg03IeuP2GZKliyJKlWqYNSoURKrB32b0WjkZUbtoGjRorCxsZFYUEQCY2dnx58Rz1McnJi3gwcP8r1+Reuivb29RDmWLl0a169f58sceXt7w8nJCUOGDJGQ0QYNGsDGxkYztszJyQkZGRlISUnBZ599JpkxSn2BZK8o/z777DP07dsXffr0kcSljR49GjNmzEBQUBCX1Wq7A1F5VqlShU/IofbcvHlzfPnll5yIN23aVELSxbY1f/58yVqC1atXl7gSCfXq1VMQMTWLk0jYu3btivj4eFSrVg0JCQm8DB0cHBQLgbu5uakONizF9FlakkhtpyUCtTuR6BKpE0MJqL+dOHFC4iFT8yyIckBtsE9yw9HRUZXUUfpi3x04cKBimRca8FO/pvImQxNjDI8ePUJ4eLhqGIAcaqRu7dq1vJ/lZq27XC9p0rVrV5w8eRIpKSl4/PgxHj9+jJSUFJw8eZIvCPlvg0gQXF1dYTAYcnRFkaAoVaoUxo4dm+Pm49TwSaCR9YCec3Jy4p1V7d0dO3ZE6dKlFZ3L3d1d4SLy8fGRzKaRu1NFoeDu7o5Vq1bhm2++wa+//op69epJYkYAc0dQG23ITdVlypRBx44dFa5pmhXk7+8PZ2dnhIaGKmZ8ksWD8ubu7g5PT088efJE8n00mcESqaPZq1RWnp6emiOhcuXKoW3btihRogT8/f2RmZnJFS9gJkzk2hQJzZgxYyRKmTqfq6srpk+fjitXrmjO/pKXjQhqJ3JLnbjWUaFChRAREYGMjAyFC69bt244e/asRLipkYeAgACuDMR7ly1bpojNsjR73GAwYMKECfDz84Ozs7Pm9mAECmuwtbXlZJOsNmq7GohhDCSEXVxc+LI4ROpEYuvt7c1H96ILVA7xu8W6ovYvJ3Vqs6KdnZ0RFBSksGBq7U3bp08frFixAm3atLFI6ihWMTw8HF999RUqVKigqlhtbW052RTfKb/3r7/+wunTpzkBdHd353mmdtC5c2fs37/fqmB+caBga2uL27dvS2ZkNmrUiNedmBc7OzuJfPHx8UFQUBCPdaV7Z8+eLYnXJGjNzqdviIuLg7OzM/773/+iXbt2mDt3LpydnREREcEXUhbr2mg0YuXKlWjfvr2EHPn4+GDEiBGwsbHh36pG6kgu2tracuVNFmB7e3vMnDkTHTp0QP369SW7EQHaMXVqoLp1dnZWEAy13V3EGGWDwcBlqLu7O/bs2YNevXrBYDCgQYMG3EUaGBgIo9Go2i4tkTrSV6NHj7b6eyhvgFTW0b664oSUSZMm4ffff8fp06clslkNooxWC8uh6xkZGZL67tmzJ/bv36+6XqgcBQoUwIwZMyT9TT7ITE5Ohre3NwoXLozixYujQ4cOqmlZcr/a29tzvZLTeqwi8rz4sL29Pfz8/ODn55erF76OkJM6EVozGQMCAjBu3DjFsgBaIOEonz0ImJcGuH37Nm9klgilPH8eHh4KwhUVFSWZ9SMXHvJ4oj59+kg6g1wR2tjYqJJWcQKJPN2cIM8TfYPcfQxIA6ZJcIhLpGgteklk1mg0aroX5URCzU1OxInS6NatG95++21JXsXgaHt7ewkxkrssLC3uSd8qt9SJy3KQ+youLk5hiVLbBYNCAghLlizB8uXLVUf4/fv3x9y5cwE8Kz9PT09eF9buRqCFVatWcRKX04Qgxhjfng+Q9h0qe6q/fv368fZnb2+Pfv36YeHChRaXChDrr3Hjxvx/Ih0FCxbk9WFvb481a9Zgz549ErcYCWMSzmSZ1VoWwtbWFh999BEcHBxUJz0QqP2kpqZa7FeMMV5P8fHx6N+/P0aPHq2wzrZs2RI1atTgMzIjIiJ4W6eBhJOTExo1asSVuqurK1avXq36Xnk/KV26tGY+RaXt4OAgIWskV9q2bQvAsoWa8qQGasvJyck8H1u2bOGWqIIFC/J3ibP+xTxrxUdSu1SbUCG2IXd3dzx48ECxL3HdunVx5MgRhas5N6SOrK1eXl683RQvXhyMMc3FccW/8vyIa4X6+vpi7ty52LdvH4xGo6qlztJSV9aQuRUrVkjkTXBwMG+3X3zxheTeUqVKKaxoHTt2RFpaGm8nWhDrQ00vUJxzuXLlJLG8P//8M5o0aZKjcSYhIUF1yy+5fpEvpZOTkUhr3c9du3YpZvDmhNdyR4mXDZHUiY03NDRUsTYTwWAwYOLEiVb7udetWydZmkREmTJlUKRIEYn7VQvyzuXh4aHaCcU05OZxUXipbVMzcOBAbNiwQTMPBNFdIQ/Uzwny7yBBLy7eSh1bayIIwRpSJwo3g8HA9w7NafFiESQwKGBVVGxqkzIIJ0+exK+//ootW7bg4sWLFtsMCXr5Nlyi8vH19QVjDOfPn1e4xdWsSWTJ8fb2xp49e/Dxxx+jQIECmu2tefPmuHXrFre4+vn55Rups7Gx4QTY19eXvzsoKEgyIUkNdK/BYOD5oXr18fHha1alpaXB398fAwcOtNiXRAXQunVrXvZkkalWrRo/N3DgQBQtWhQtWrSQuMWoDGvWrIn58+fz7ZRyWutL/B4R9F3BwcEWFTPBZDLx/pyVlYVly5ZJ9muVgyYxeHt7K4gxgUjMd999Z3GLN2vRoUMHTq7s7e1Vl8SgnTvkXgU5tMpCy+qqBrH+RNlvZ2enuj80EWRRVkybNk0xAQMwD/atNXLkxhjy2Wef4fjx46hQoQJsbGzQpUsXxT7SIqgMrB1oDx48GAEBAahZs6ZkMgbVhyVL3fjx48EYU9wjWmRr1aqFY8eOYcGCBXj06BH27dvH44/VrOlqcr5UqVKSGHQ1iORIrQ8GBwcrJnhpWf8WL16MVatWSc65u7urlkVOpC6nXXPk7bpMmTJo1qwZAgICNK18WtBJHaQdW9zyo1ixYqqBoXlB4cKF0b17dz5SVpvFZMn9SlCz1AHmFeDlgbBaaN26NQCz8m7UqJHiuo2NjWpHkwcck+vJz8/P6qUdCPJGTuUiKhg1UqemCLWWtaERraurq6TTzJo1i3dqS9YSrTxTvkShXLNmTfTt21d1GZPAwEB0794d7dq1y3HlcBpJVqlSRbLEhcFgwI0bN/Dw4UMJiY+JicG9e/dw8+ZN3Llzh6/lJwctO9OiRQt+jtqSmtuzTJkyPJ7L39+fWwTVXGJ5haOjI7cy9O7dW3M/WRG+vr6YPn06mjdvjgULFkhieIlsa60tJ4dcqT548AARERHckhMcHMxJlhZJo3ZlMBisXm9KxJ9//ilxW3bp0gWMMfj5+fGN6q0hKT/88IPCQqQGT09PXLhwAePGjeMKWy5v8ovAEwwGA99BxM7Ojr/PmvpWS0sN4gArp/Ly8PDgcb/yb/zzzz8V56icRJn19ddfq64e8KJgY2Mj0Rnr16+32M6pPHLjPQHMlnSxHZGHwJpF6YcMGSJZt+3OnTvYsWMHALMnpmrVqvj8889RpEgRSXpq5FaN1Fmz41JOljo5Hjx4gLVr16pe+/TTT3Nc3J4gJ2VyUifGoIpx8Vru16NHj+a4pI8WLK/u+D8CCjjfuXOn6kgtP1GxYkVNBfE8pK5x48YSF5IaSIgGBQVh3LhxuR4BtGnTBnFxcXy2pcFgwIULF6yySuQEW1tbHD9+XOJKUCN1BJFEzpw5E8OGDVNYAIYOHYpdu3ahSJEiXFEbjUYMHToUjDGsXr3aYsyVHOTypXyJisTZ2dniyNlazJ49mwtV+YxKmj0qup7v37+vuRioCDULBwW4qy17Azxb38rf3x9ly5ZFcnJynta1soSAgACEh4dbna64RAKRHkKJEiVy1RblyoSU95IlS7BlyxYULFgQ9+7dA5AzqZPjs88+syoPrVq14jsTAFJrEFnJLM1MBsz9UJypnRPIwvTZZ5/BxsZGQvTF63LXvhzfffedRQuOCConKvOYmJgcFxfODVq2bIlOnTph06ZNVi0PQdY3NYuK/JtsbW0xc+ZMyXqgrztIh1jad9karFq1Cp07d7aKYLi4uGDYsGGoXr06QkND4eTkhPfffz/HPqmm79RIHQ3Ad+7cqWlEyCmmTo6cVmywFvI+Kl/Yf/r06bhw4QKOHDkCNzc3zJs3D4MHD+ZGAHmbfZ6QNp3UwSywjUYjGjdunKNP/UWCKtZSXIm88q2NywgNDZV0THITWcLZs2cVG0rTtmta+ckLaEV3ufWShKvcmnbmzBmJtcre3h7FixfHqVOnFHEbNBON8kmKxGAwSBYztgZk0VKz1OUX5IHkahCJr1p8h7XI6T1kqSN3cX4TOuBZHVu7XlZ+Qqv+goKC+PIy9M1aFnu19i8qsT59+nBXvxbEBVpFqynJAXmc5MmTJ7Fz506r9xfWgoODgyKeCTAvQJ6SkpJjneRm+Sox3hHQLk857OzsrFqL1GAwoEmTJti0aZOq5VkOcaKbNVBbSia/kB878chRvHhxbN682eLsU2vg7u6e4+QnOdS8P7mFaGFcv349unbtytvOe++9p/lcTrNfXxSI1FWoUAFXrlxRLBTs6uqK3r1748iRI3BycsIXX3wh6XskR6pWrYpRo0ZZtWCxFnRSB7PLVXS7vioYDAZs375d050IKBWRfLKCFvIyYqtWrRqfYv4iobUtl5aljhbWlaNWrVqa76BOl1NsgyWQsiBll5+WBi00bdpUYskBzAJv2bJlGDBggMX9fXOCwWCAu7u7ZowfWY3ysh+wtahRowYOHjz4wi3kaqC+ZKkeK1asiJ9//llTPuTk3pLH5KhBXPpIXGONyLt866Xg4GBUq1btuUmdJeQ3yab+l9uBUHp6utUDbbK0WrNtW8GCBXHx4kWr5eeLwp07d/LsZssJufXEvE4Q+2TLli3h4uJi1XJpubXU5ReoXRctWhR//PGHqiXRkrwhUufm5pYr75EaXjtSd/bsWQwZMgQ2NjYoXLgw1q5dKxEEBw8eRK9evVC6dGnY2tryTdRfVzx69MjiJt9yULybFuQNQj6z8U0CKZb8EHpyS11e8DIsdXLs2LFD4SICzLNUaW2v50FERISm0ty3b5/FHWTyA1OnTsWYMWNyFduYX6C2kFP76tmzp+a1/LBUBwUFISMjA3/++Sfeffddfp7Intpg5d+24gAp2NzmW801t2/fPlXrFi3tYW18b07xrS8D1loKXza2bNmi8NK8Knh4eKjKQDXkNqYuv0Aes759+2rWqSVSl1OIRW7w2pG6IkWKYPfu3XBxccHo0aOxdetWBXPt2rWr1UuJvGpY2hkgL6CGUatWLfj4+OS4BMC/GUQ28oPUUad5HlJHliu17dxeFMT1C19U+lqoXLmyYmuh/Ia9vf0rIXTAs/b1PO/PL2utvb29YvmVAgUKIDk5+ZW4pvMbZA2Wr0+ZF8iXBiEEBwfj1KlTku0IdeQN7dq1+1fFEBJelaXOaDQiOzvbok6ga5YsddbGqFrCazf71dfXV2IJUSuAzZs3o0GDBnw9rf8lUHD71KlTNbe8eh0wYsQIPnLWchFevnxZsoSJHESi8tNSlx/uV2qfrzL+Ukf+YOLEiXyG3usIFxcXzXbWp08fzWWSXje4urqCMaZYmDy/UatWLb1fvkEQQxOswasidUDOg3ya4KZlqVu0aFG+TLZ77Sx1hAcPHmDfvn2KJSJq1KjBA+vbtm2L+vXrq8ZYpaenS/YHpQ2V/+0oUqTISw0AzStmzJiBGTNmWLwnp+UxiETlhyUnP92vcsvJy4it0/FioLZ5+r8F1sTr6dDxb0CNGjXQsWNHybmc1vRUg62tLU6cOIE6deq8dFKXE0h/aBkWrJ0xnxNemTYKDw9XDT7+448/YGdnh169emHlypWKGAwxaPuDDz7AhQsXVEndtGnTrJrhqeP1BXWC/LDUUTvKD0udPP5BJ3U6dOjQkXecPn1acS6vMY/EB15XUvei9cUr00a+vr6qK8hnZ2ejXbt2GDdunOqsyISEBK7kjxw5ojkjZtSoURg2bJjkufxak0bHy0F+kjoyjVsKes8J5cqVw9atWxVxD29yXKMOHTp0/JtApOl182iR+/V5DAvW4LWLqduwYQOOHz+OyZMno3Hjxli/fj0A8M2QN2zYgFq1aqFu3booUqQIGjZsqJqOo6MjPDw8JIeOfxfyk9QB5k6V202nRUycOBEXLlyQ5Gf79u04cOBAfmRPhw4dOnQ8Jyim8n/VUmdgrxudfUFISEiA0WhEfHy8TvD+JRg/fjwmTZqE9PT0fJ3yrUPH8+LYsWO4cuVKvszm1KFDR/7CYDDA3t6e7+P8OuDgwYNo0qQJQkJCXugMbZ3U6XhtkZ2djfDw8HxfFkaHDh06dLy5MBgMqF69Os6cOfOqsyJBZGTkC9lBRIQe4a3jtYWtra1O6HTo0KFDR65w7tw5FC9e/FVnQ4EXTegAndTp0KFDhw4dOt4gVK1a9VVn4ZXhtZsooUOHDh06dOjQoSP3+J+JqWOMITExEe7u7vqK4zp06NChQ4eONw7/M6ROhw4dOnTo0KHjTYbuftWhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwD/M6SOMYaEhAQwxl51VnTo0KFDhw4dOvId/zOkLjExEUajEYmJia86Kzp06NChQ4cOHfmO/xlSp0OHDh2vC2JiYnDu3LlXnQ0dOnS8YdBJnQ4dOnS8ZLRs2RLVq1d/1dnQoUPHGwad1Ol4Y8AYw/79+/W4SR0SmEwmDB06FI8fP37VWeG4ePHiq87C/yQYY7h58+arzoYOHS8MOqnT8cZgz549aNasGX7//fdXnRUdrxHu37+POXPmYMSIEa86Kxw2NmbRqw9AXi7WrFmDoKAgXL9+/VVnRYeOFwKd1L2GaNiwIZYuXfqqs/GvQ1RUFADgyZMnrzgnOl4nEHEyGAyvOCfPYGtrCwBITU19xTn53wJZ6cLCwl5xTl5fhIaG4s6dO686G68VVq1aBYPB8K8YhOmkLp/w/vvv45133snz81euXMGZM2cAAEeOHMEnn3ySX1l7bcAYw+jRo3Hv3r0Xkj5ZP0wm0wtJX8e/E9QeXidSR201JSXlFefkfwv29vYAgIyMjFecE7M8zM7OftXZUKBEiRIoU6bMq87Ga4UFCxYAALKysl5xTnLGa0nqzp49iwYNGqBRo0bo0qULMjMz+bWDBw8iICAAjRs3RrNmzV5hLqX466+/sHfv3jw/X7FiRdSsWTMfc/T6ISMjA9OmTUPv3r1fSPo6qdOhhtdBgctBBDM5OfkV5+TFITQ0FHPmzHnV2ZDAwcEBACQ6xRo8ePAAixYtyte8LF26FHZ2dkhLS8vXdHXkP4jM/Rvq6rUkdUWKFMHu3btx6NAhlClTBlu3bpVc79q1Kw4ePIi///771WTQAh48ePCqs/DaggTpixrtWCJ1r+uoWMeLR3p6OoDns9TNnj07Xy191FbfZFK3bds2DB069LUaZJGlLrfKuVu3bvj888/z9Vs2b94M4OW54C9cuPBS3vMmgnSHTuryCF9fX7i4uAAwd0I7OzvJ9c2bN6NBgwaYO3euZhrp6elISEiQHC8SNAK8f/++5j0hISE5xnK8ycSDLCYv6hstkbpevXop2pGO/w3kB6lbs2YNACA+Pj5f8vRvJHUmkwmDBg2yOnyCZC6V/+sAInVJSUm5eo4GpPm5eD3JqZdhSd61axeqVKmCffv2Wf3M62jhfhlYunQpDAaDRI+Qznqd2rIWXktSR3jw4AH27duH1q1b83M1atTAjRs38Pfff2PXrl04e/as6rPTpk2D0WjkR0BAgFXvHD9+PIKCgnKdV1IYlkZdwcHBqFatmsV0Hj58mOt3ayEzMxPe3t44cOBAvqVpCXFxcVi4cKFmMCkJCWstdYyxXAkW6oRqpG7t2rVWp6NDiipVqmDcuHGvOht5hjWkjjGGP//8U7Pt+vr6Asi//kkTJXIbU5eUlASDwfDS+rSIqKgoLFy4EIcPH7bqfiJ11liiWrZsieXLl+cpX0ePHkVQUJBVcoWUc27JmaOjI4D8I/XAMzn1MogCeZBCQ0OtfiYiIuJFZSffwBjD0aNHERcXl29pUjsUdY9uqcsHJCQkoFevXli5ciUfXQGAm5sbHBwc4ODggA8++EDTpDxq1CjEx8fzw1phPGnSJNy8eTPXndfawOenT59Kfh89elSibG7fvp2r94pITU0FYwzR0dFISUnBo0ePEBsb+9LiWr7++msMGjRIU3BQJ7E2nmXOnDlwdHS02rL3oi2Bz4MtW7bA0dFRQhoMBgNmz57Nf4eEhPCA3NcJFy5cwOTJk191NvIMEsSWSN369evRpk0b7Nq1S/V6fpO6vMbU0ft//vnnfMlHbhATEwPAeiKaG1K3e/duDBgwwGJaO3bsUJXLEydOxM2bNxEZGZnje6gt5JbUOTk5AchfUvcyrD+PHj3CihUr8hRvHB4e/qKylW9YuXIlGjRogJEjR+ZbmtRGSJ/ExcXlmdSdPn0aK1asyLe8WYPXktRlZ2ejR48eGDduHAIDAyXXRDfqkSNHNGfpODo6wsPDQ3JYg7p16wIADh06hEuXLlm9YCkJ6dyOvOWj02PHjuXqeUJGRgZcXFwwd+5cFChQAIGBgShVqhQAvDS3I327VhmIpM4aQf/LL78AsL4jkXC0ROqsFWqJiYmaI/+8TGufNm0aMjIyuNuH0hZDCIKDg/HFF1/kOm0dlmGN0rx16xYAbSuyj48PgPwjdXl1v1L7pefT09MxefLkl+Iqyyupe17rRmhoKIxGI1q3bo2BAwcqrlOZ0JJGlkBtwRKpCwkJUVzXstQxxqx6rxpeBqnbtGkTBgwYYNGLIQfpi1dlqfvqq694+FVOICPJb7/9luvJL4C5bcl1EdVHeno64uPj4eXlxZd4EevqyJEjOVoIa9Wqhf79++c6X8+D15LUbdiwAcePH8fkyZPRuHFjrF+/ni/xsWHDBtSqVQt169ZFkSJF0LBhw3x9N43Ir1+/jkqVKqF06dKq902bNg3/+c9/+G9S9CkpKXjy5AmWLVuWp/cvWbJE9XxWVhauXr2q+Rw1TBrBi2T0ZZE6sqhqNXTqdDdu3ICLi0uOo14xJocxhitXruCnn37SvN8aS6C1CsnDwwNBQUEwGAwSRX7jxg24u7srLK45gchCbGwsgGfKIb/WPXpRiiGn/PXr1w/16tXTvJ6ZmYkjR47kd7ZyBSobGxsbTdIWHR0NAHB2dsbdu3cVJImUYX7tSpFXS52c1P38888YN24cD7rPDU6ePAmDwWD1mmRE6qzNc24sdZYg5k+NQBE5yi9LXXBwMDp37gzALC8qVqzIPShymbV8+XIULFjQamIXGRnJyZI17tfo6Ogc+6AYxx0REYEhQ4bwMklKSuLeG8A6L4azszMAbTl+48YNfPjhhy/MIzJjxgzudcoJIkm/dOkS7t69m6t31a9fX6Fzqe+np6dzeU0QByjvv/8+j7V9nfBakrru3bsjOjoaBw8exMGDB9G1a1de8P3790dISAiOHz+O77//Pt/fTZVGHUXe4fbt24dr165h9OjRWLduHb7++mswxvhzKSkpaN26NT7++GNJo9caIYkNt2HDhnzhXLmraNmyZahQoYLmFjeUT7VNwvNC6saOHYuePXsiMDAQq1atsuoZInUk/OWQK0pxq6Rp06bh/PnzkuukFK5evQobGxtUrFgR/fr103w/pW9JiWgJ8+zsbKxevRpjxozhwowExKNHj/h99+/fR3JyssUJMVrpA2ZBGRISwmP8YmNjn5uQPX78GE5OTti+fftzpaOGnALKf/rpJxw/flzz+tSpU9GwYUNVC1diYiLq1q2LO3fugDHGyzkjIyNfA9KpfCmUQ82qRUo5KSkJpUuXxtdff82vpaWlcRKfXxMbqD3kNj25K5lIBsXoaeHWrVuKgcj+/fsBAJcuXbLq3UQMrB0YUR2K/TE0NFRR/jmRA7EtEOFQe15uWTpw4AAMBoOEiOdkqSM5TW360qVLuHLlCpe7clJ38OBB1XdroUSJEihcuLAk32KexJ0ukpOTUaBAAUn4TGZmJurVq8dl5/Hjx1GyZEm+nNb48eMxd+5cXL58GcCz/kv9z5oJIjRgkBMawtdff41Vq1bh1KlTVg1us7OzMXPmTKsttqSvHj58iO+//94iuRNlZ/Xq1TWNMGpgjCE8PFyxYgWlmZGRoWjr9A2MMSQlJfE+kVfcvHkz3xfLfy1J3auEnNQBUqXeokULlC9fnv/+7rvvkJmZKbHUEbESG4Q1DVqczEGrV69atQrJyclcmGzcuFH1WUvEIC+k7sqVK7h+/Tpu3bqFDz/80KpniNRpCQO5MKdyioqKwujRoxUxNUTqrly5IjlPljhxmZKbN2/yGBBLZa0m1OrXrw87Ozv07dsX3377LSZNmiS5XrduXfzzzz8Animo3LpcKJ+xsbEIDg7Gf//7XwBmQd6hQwfJvYMGDcKff/5pddoklCh4njGG06dPaxKGtLQ0SZu2BLVZ41OmTFHUyZ07dySDrCtXrsBkMnFlomaVPXPmDE6cOIFr165h5syZCAgIQEJCArp37251uIQ1kLcH+eSqCxcucJJNSvXGjRv8+jvvvINff/0VQP6ROmpHuSWv9C2keCkdcg+q4d69ewgMDMRHH30kOU8yy9qQBEuWulu3binKWc39WqJECYULVSR95AYXIcZ2UWybCMqP3FJHgxwxxpfyokVuxHq5efOmYjAib8dUD9bIA5EkrFmzBiEhIQCeye4uXbqgXLlyCA0NBWOMt41p06ZhwoQJAMxE5/jx45g6dSqAZ+2VLIlkiaa6pe+kMrBmFQgqox9++AFFihThef/yyy9x/vx5GI1GAEC9evXg6+uLqKgoToIZY1i7dq3EIn758mWMGDHC6iXIyPXav39/jBw50uKWbnkdEIeEhGDdunXIyspS1B19f3p6uqJ/UpsiXUbtYfHixRgzZozm+9Qs/CaTCUFBQWjevDkAc8iX3GiRF0+OTupkoE4tkrqcZs6KQkkkcqLws8YFQTFwgJnU3b9/Hx9++CH69OnDnxeVjQhLRIYEjyWEhIRISFdCQoImOdMCPb927VowxjB79mwJeZBb4miUS39Lliwpua71TdHR0bh9+zYqVKjABUBQUBCmTZtm8TlAXZjL4xjVBDQpdaqH6OhohIWFwWQy4ezZs6qTQ54+fcoVjUjq5Ni5c6fk98KFC9GmTRtERkbmyd138uRJ1KpVCx07dkRwcLDi+/7zn/+otmnGmEJhy5XY7du3MXbsWHzwwQeS8xUrVsTIkSO5xa1ixYqYN28eJ/pqwpcmOaWnp/M2EBMTg23btgFAvm28Ln+33B0sWozJakXKTH6/lpXq66+/Vgh1S2sjUjvK7XZV9Bz1aVEBad1Pk2/o3p07d+KDDz7gebPW2qAVUzdz5kwEBgYqQk7k7lcij3LlLqZHMdSXL1/m+c2J1JG1SE7qKF1xoh2Vk1xGREZG4tKlSxI53aRJE8XEtYEDB0rySxbTyMhI3Lx5E7t37+bfSANBgjipr0+fPvx/ygvdX6JECXz77bcSsjpx4kS+TJdYDpTfgQMH4uTJk5wE0LMk72jglxOpY4zxMrp79y5vn1evXsUPP/yAunXrKqzCFSpUQL169RAdHY1Dhw6hZ8+e+PHHH/l1eqcaYVeDq6srgGdud7kxIDExEYMHD0ZKSoqqrNeyfD18+BDTpk0DYwzBwcHo0aMHAKW8F2Pq5KRu7ty5OHPmDH8vyceBAwfi22+/1fymokWLSn4fPnwYVatWBfCs/3Xq1Ak//fQTGGM4duwY6tatC09PT80VPrSgk7r/R0ZGBkwmkyqpI2gJaJEoiErYGlInplmsWDHJNRKimzdv5uRI3inLlCmDvn37WhyxyBt+dnY2Hj16hA0bNgAwE8Xg4GAsXryY3xMfHy8R9lqB2CaTCePGjcOGDRt4B9i9ezd27tyJYcOGoW/fvgDMxEm+9dnOnTuxbNkyHr8SHR2N0qVLK4SznFhERkaibNmyuHbtGjIyMhTrZi1btkxTeMk7qdpISE3JkUKienz8+DGKFCmCKVOmoEaNGihRooTiGV9fXx6jSSNXtTiVggULKs4ZjUYUK1ZMIQzUQIqFvoVGtjdv3kRISAi++eYbyf1yEkmYOXMm3NzcJARULPtbt26hbNmyAMwKU2y71Mbu3LnDy+/cuXN8/UY16w4pubS0NN6+oqOj8dZbbwFQkm3GGLp27Yq2bdvmauFxed+QD4zE7yBSd+jQIdUBFH3HqVOnJBau7777TiHUmzVrpuoOys7O5tZmNYtpvXr14ODggHnz5imuUfuTL6F07NgxyYQBav/Dhw/HDz/8AOBZ++jRowe2b9/O5Ys1sWiAOqlLSEjAV199BUA5s19uqRNjlQjXrl3jAyZCRkYG3n77bVStWhUPHz6UKGm5+1WMF5PP1qR8bty4UUFsRZlIfblSpUo4efIkP5+UlKTaBug7Hz16xGOYIyIiEBQUhJYtWwIAmjdvzpU2gQZ08sD5W7duwWAwSPJ/4cIFhbxMSUnhBIQss2LZrFmzhrdlKnuSd2RxzGmCiFbMMj2fnZ2tKGdyPf/++++8jkV3NOXl5s2bOHv2bI7WaRqoUznHx8dj586dvM+sXLkS8+fPx/bt25Geng43NzfJ8/7+/gDMbUM0JNSrVw+jR49WtHf6fe3aNQmpnT59uqqHQRxwyOW5OGiX8wVRXjRq1IgPJmkgQ9fj4+NRv359nDhxAgkJCTh9+rRKKWlDJ3X/D0dHR3Ts2BFpaWkoWbKkKgnTChwVFa8YXyQqMlGIHD58GNu2bUNYWJhk/TTR5WQwGCQNhDqbnKzcuXMHq1evtmid+u233zBlyhR06tQJPXr0QL9+/RAQEICuXbvi+vXrOHTokOKZhIQESYMmN2HlypUl9z169AiTJ09G165dJeSWrBvUEeW7gri4uCAjIwMff/wxP3fgwAHcvXsXf/zxh+ReuXVLPrISLZyETp06YeLEiQCknUluqVMjw2oxgXJSR5Y5tbKrXLkyF/ZiRwXUCSPF2IgoVKgQr9OIiAhOCk+ePMnb2J49e2AwGLiQJKVNJJcIg9xSq6ZcAXALWUpKChISEuDt7Y3p06fz66LrPzMzU/VbypYty8skJSWFkzpaXkeEaKkTSR2Vf2xsLBISEjBixAhkZGTg5MmT2LBhA/744w/usrCEhIQETJ8+XWHtlFtVU1NTYWtrCycnJ24dvHnzJieX8jwbDAbUrl0bCxculAwE5Thw4ABCQ0MVSoTar5eXF6+jBw8ecEJ5/PhxZGZmchc9YLboffLJJ7zMqU5JJs2bN4+3927dunGiJcYL0b1EdogQ5JbUJScngzGGO3fuICIigrdxed8iWUUDZDWrYqNGjTB06FDJc1Rf169fR3BwsKT+xFjjkJAQrFixQmJZevjwIc6fP4+kpCQuc77//ns+q5zuFessJCSEyynRMhcQEMBdpMAzskHfJbrKRBIjriHIGMPQoUPh6+uLpUuXAgDeffddyfeeOHECcmzatEkxcImKikL79u0BmOtAHOwDZjlCdUEygeqE5A/lfcGCBZwsZGVlITU1FcHBwaozNbOysjipc3Jy0lzq5MGDB7y/i3VMebl58yZq1KjBB/Einjx5gq5du2LdunX8WXEA1apVK+5yprrLzs5Geno6PD09VfNz+vRpVKtWDbdv30ZGRgb/BnkMaVRUFEJCQlC+fHls2bKFk7H169djz549inTnz5/Pvyk+Pl6i58W05f2K2r98slZqairS0tIkgyyRC+R244TXltQNHz4cDRo0QI8ePSRWoqysLPTt2xcNGjSQCL3nATWirVu3IjU1FeXKlVO9L6e4CYPBIBnZkfCbMWOGRLg2atQI7dq1U8SWkNkZMDfYGTNmKN6hVcE5xewtWLAAmzdvxq+//ipZ46pcuXJYt24dAKlrQz5CSUhIwJYtW3Dx4kWMHTsWgNkSI46ExL1v6f/Dhw/DYDAorC5VqlTRXDdMdIcBSiJkjRLau3cvJkyYgLS0NEmnkysetVGjGlmhji4ndeJojNrHxYsX8dlnn0meJ4Wq5lKk5TK0zhUuXBgTJ07E/fv3UadOHXTs2BEAuItDTlqI1JGiOnDggMQKS+RP/u2kEJKTkzkBEwm2WNdZWVmaOwvQHpmbN2/GzJkzAZitQ97e3pgxYwbu3buHzMxMHpeXnp7O8xoeHs6VRnx8PJYuXYqZM2di165dkjXkxCUP4uLisGrVKnz77bfIzs7GuHHjEBYWhlmzZmHUqFGStQAB5VZ+qampcHFxgZOTU44xOqLSHzx4MHx9fbF69WrJPSNHjsTBgwe5YBaJAWBWUgDQtm1bXnfFixdHpUqVNN+7d+9eLF26FKNHjwbwjNyIbZX68Y0bN7gCE0MaqE+TPCVLvVp/Cg8Pl8y2z8zM5JaTlJQUfP311yhTpgwP4ndxcZHIJpGo//e//0VYWJjErUVQ8wCIcWxPnjyRzGg8dOgQoqKikJycjODgYB6HW7lyZdy5cwdBQUGoVq0axo4dq9q31Sx1Yr7FvvTkyRNJGVSsWBGAkiBReRHEVRGSkpIwZ84cPH36lM9Qlg+MrV04d8eOHVx+rV27Fp06dZK0PXFNT8qbXN5R3r/44gvUqlULgHkALF9CRLR+paenc/KYnJyMR48e4YsvvkC7du0kz9y4cQOff/45AChCeYBncp1CLUT88ccf2LBhA+bNm6fQPdRf6S+RnydPnlgkdSSPQ0NDJbJLjSxfu3YNABTxe2rhL+fOnePlHh8fL3ErP378mK89Kw/zoMEUTWIhxMXFSSz6ZFX+7rvvULx48dyvmZuru18Szp8/j/DwcBw5cgTly5fHpk2b+LXt27ejaNGiOHLkCFJSUizOvLMWIrsODQ3VJHUkQOUjSwIpYorhSElJQUREBL766iu0aNFCcb98hC92JMYYJ0aiJUfLdJ2TMhIDqeUxEdTZxPzIyaP4e8qUKQDMs43Ejp2Wlobu3bvj888/V4yG5Mux+Pj4qLosAXOjFsmx3HImV6KWEBERIbEQycuPApBF5MZSJ5K64OBgxSgTkJIWucUyODgY0dHR6Natm+S8fDT3zz//cMEj31yavo/Imtq0/ilTpmD69OlYuHAhPzdjxgyJgKNvTElJUXWXioorPj4en332Gby8vBT3acV9AuY1qD777DPcuHGDC/5Lly5xa0VISAj/jvj4eD7JJykpSRISIa5P+cUXX+DDDz/EmDFjsGvXLkyePBlffPGF5tI2Dx48kLjdU1JS4OzsrBqvlZObNzIyUkLgGWOYN28epk2bxl2F8hifkydPws/PDw0aNMCTJ08kbVIeDuDs7IxDhw7xsiJiJU4QIty6dQtZWVkICwtDTEwM/vjjD8yfPx8AMGzYME3ycOLECQW5qlixIipUqMB/BwYGcgtUcnIyH3BSeypVqpRERsjlx7lz53jMmCirxNhFgtySKrbnq1evomDBggqXW82aNXH//n3eP9ViZ8myA0hlXXx8PK97GoT0798fMTExsLe3R9OmTQGYred0v/gXgMSiI5JktZnFpUuX5vFcgPUxjTnFXyYmJvJy1yJ1am2ALPQi/Pz8+P9paWmcaJtMJkRERKBhw4bc8giYdd7GjRu5nFcjdVQu6enpCmvfmTNnAJh1kVxGU2wdtXnRE5Geni6RQV27doW9vT1CQ0P5t4eHh+PUqVNwdHSEvb09jh49Kkk/KSmJkz55qIra7N569epJtg0U+2BcXBz3qnXp0kXy3K1btxAdHc0HdYTbt29L6nbevHlISEhA0aJF4eHhgW3btsHHx8fqdfjyndQ9fPhQMcsqtzhx4gTeeecdAObtY0TiZulaXiEPhhUbNGHbtm2c+ctj3whE6sinn5ycrAgSFiFaDFxcXCSWOhHUaG1tbXNlqatVqxbf8kxUWHJSRySG8qq2OHCVKlUkv7VGDyEhIShZsqSiAcrvd3d3VywsDQDe3t4wmUwSYSgnWWJM2ODBgzVJOCC1/ABmwUIjxadPn3KrkggtUvf48WNOoKjuxHK6e/euav38/vvvAIBPPvkEERER8PHxwYgRI3Dr1i3UrFkTly9fxvr16yXPkJAjBAQEcIJBs89IcIpK5OrVqzh16pTCpRsdHY1Ro0Zh0KBB/Nz333+P5s2bw2QyYeDAgXzEKc62FiFfz+z8+fMKV5I1iIyM5K5XR0dHieV4xYoVcHFxQeXKlSXKNiUlBaGhoXB3d+flATyrFwJZFH7//XfV2MGiRYsiPT1dQrTIUqe2XIbofrYGMTExSE9Px759+7hCGDBgAG8DgHmkXrlyZTRp0gSMMYwfP55fk5PptLQ0/PDDDwplnJ6ejitXrnCiT7h79y5MJhNOnDiBtm3bAjDP2C9btizi4+MVpPH06dO4e/cutyrExsbiiy++4ETjyy+/xM2bNyWEWi3euGTJkopwDRFt2rTh8WbigKVAgQL8f7KoyncJSktLw+rVq1Xd4QQiXgQ1AhQTE8Pl5I0bN9CzZ08kJycjISGB9ykC6YDBgwdzyxqRuoSEBCQnJ+PmzZtYvHgx/v77bwnxFAd68jUc7ezsYGNjIxmYWjsTXWsJr5EjR8LNzU0SMqNF6sQyAKSDFnd3dz74F3Vceno6IiIiJP2jRo0aEhehnJyruV9F9O7dW/L77Nmz8Pf3V52IRHJp9erVOH78OJe9+/fvR2pqqsRS17BhQ2RmZqJEiRJc7j958gQPHz5EQEAAypQpoyB1AFTPAUqrPmCeQEPnidT5+PjAx8cHcXFxknAXMTSobt26CAwMVEyg0UKRIkVgNBpx5coVxMTEoFWrVpJwJS3kO6mLiYnJlSVFDXFxcbzBGI1GiZK1dE0EzRQSDy1069ZNsr+ss7Mzt7ZRpbRr1w4LFy6Eq6sr79xykAKiBp6cnKzaSL29vQGYTb1Vq1bF1atX8eDBA01SR98rHw2LAlrsRETaHB0dOREVG5qWq3b06NHo3LmzVe4Ara3Ahg8frpjFqob4+HjVCQJE0EQiJtax3NTu6uqKHTt28N/16tWTLCYZHBzMO6C9vT1mz56NJk2a4MiRI5pbzKlNnjCZTChatChXPKR8qawaNmwIe3t71dmt5I7p3LkzWrZsiY4dO2LGjBkoU6aMZp3LsXHjRsyaNQvAM6VIdU51zBhDhQoVkJ2djdq1a0ue17Lkuri4ICYmBosXL5YEwosKmuJkiAjVqFED3bt3BwDJ8j4iHBwc0KlTJ9Vr165dwz///INixYrBx8cHSUlJCAoKQlBQENLS0tC1a1f4+fkhPj6e53vYsGG4fPkyPv/8c3To0AHZ2dk4cOAAbG1tJTFMovtErX4bNGgA4NlMw127dmHq1KmalrrcbIAOPLMqyQdxmzZtQmxsLEaOHIkrV64gKCgIJUuWRHBwMG9TRqNRlUwnJiYq2lV6errqYuRq+1a7u7vDaDQiOztbEXRN99PAYMOGDZKt6n744QdJmra2tqoxVYULF5bIJmu2Rvrll18k+8gWL14cABSWDACoU6eORbny7rvvcg8CYFbSck9AVFSUpB+sXbsWbm5uiI+PVyyh07lzZ4waNQpTpkzhk528vLxgZ2eH+Ph4nDhxAtnZ2ahfv77moJL6DfDMpUZ9VxxYiwOM0qVLS0IlACjCdOQysHr16qhcuTISEhK4PFIjdba2toiJiZHIdzE21c3NDXXq1AEgddunp6cjJiZGcq548eIS7w8ZMsRnbt26hZEjR+LixYsKnUmD/mHDhvEF3t9//32oQTS6jBs3Dk+ePEGBAgVw8eJF7Nu3T1J3IvGkcITw8HA8ffoUhQsXRrFixcAYU+xEdfPmTfj5+aFJkyYSLqC2/qBowY6Pj8eNGzcQGBgIT09PBakTdRNg1mW3b99WlZvyPAUGBkoGG3v37uXcwRJyTer++OMPi0d+bDTt5eXFG2VcXJzkQyxdEzFt2jQYjUZ+5LQsiVh4Tk5OvHHUr1+fn9+zZw8mT56sasmrXbs2V6SipU6N1IkkpW7duihXrhx8fHw0FTzFz5QqVQopKSk8YF0UUCJRo/d7eHhwM7G1o8FNmzbxafmWMGLECMnvY8eOIS0tDZ9++qnqxAU57t27pxgdA+ZvNBgMErO3WF7y+DNXV1eULFmSC3QHBwcFWTxx4gQMBgMCAwN5J127dq1iiRVL0CJFJCBr1qyJzMxMNG7cmF+Tj0Y9PDywY8cOyXR/ciO5u7urTrogiPGcRCjlpE4cVQYHB+f0SQDMgkQ+MCLrBaF06dJccA4YMACnT5/m1mOaDStH06ZNNS32qamp2LVrFypXrswVg7e3NwYOHIg+ffpg1qxZMBqNiIuLk8zii46ORvHixeHk5IS0tDTVDeAtrWkFAFWrVoWXlxfOnj2LrKwsHpNlY2OjIHWkzHMDer+cJOzbtw/e3t74/vvvcffuXW6lFvuau7u7xGpHSExMVAy0crNAM2OM9zUitQQ3NzfY2dnxNmBpf1wAmgNaDw8PycQICmq3hF69ekl+EwmTk7qmTZuibNmyFkNMPD09MXr0aGzZsgWAmdTIrciRkZGqbtmnT58qZFFAQACmTp0KJycnrjsyMzNhNBqRkJCAQ4cOwcfHB+XLl0ehQoVU1wIVB5dqs6AzMjIU761fv75CuYshIl5eXnyyBMHPz4+Xv3yWq9hGypUrh/j4eM3YcCcnJz7jVrSKdu3aFVFRUbx+DAaDop3IiWZqaip69uyJ77//Hlu3bkVSUhKXGcHBwXzgTAOa6OhoVKtWjT+v5sUBzPImPDwc48aN47pAJJciqaOZzE+ePOGkjgYOcj6QmJiIjh07Yv/+/RKruhoothIwt4nr16+jZMmSnNSJllq1eL87d+4oZkYDZovkL7/8gs8//xy//fYbr1cR7733nsW8AXkgde3atUP79u3Rrl071WPYsGG5TVKB2rVr8xiF3bt3S0zYlq6JGDVqFOLj4/mR056NokAXBbzoHgDMhdq4cWOFKXzkyJGc7Hl5ecHZ2VnifpWDOo0YeyCPEyHQPUSWunTpgqioKAlhFN0N1GmbNWuG999/H8uXL7dqJXGCOCNXC/JZQbVr1+adyxpLHXUCOYKDg+Hh4SEhdWLdkfuNQESYGr+jo6OC1F25cgUFChSQKKR//vnHqu8kaO0gQZYVctGIo+5PPvlEsrCwu7s7bGxsJAKR6tzf358HLqtBXGtLTurIykJWmE6dOvH8lCtXjo8c1fZTNBgMClInt9QZjUZO3igNskRphSJUq1ZNUVfAM8ve5cuXUapUKd7PvL29MXjwYKxatQpeXl7w9PTE9evXMW7cOMnzRYoU4RMaRBJLe+jSZIp+/fph6tSp2L17NxITEzmZqVChAipXrowrV66gR48efLCTlpamIHVq8V6AtC7kIHeoXC7JJyOQ4jYajRg9ejTc3d355utyREVFSZbaAJ6toSUqMbKyyJGWlsaVWEZGhsTSYDAY4O3tLQk+B8wxmGpLqpAilZMROanLC0jhykM3iMRYInXUr9q1a8cH+vLBN637KCdYFy5cUChPsa9Q2dGsxPj4eBw6dAgNGzaEjY0NbG1tFZYqeRpq1+3t7RWWWWdnZ4XOEdO5fv26ol+R8r99+za36IaGhiIsLAypqamcTJHO0Zrg5OTkhG7duuHRo0eSwenp06dx//59LtfVZuvLQ3o2b94smSCUkpLCiVqNGjUUsWqMMUl9ae0MQRNw/Pz8eDsWSZ2ajKMQHF9fXy6vKlSooIhjpjagRtBdXV0xadIkbN++XZG3+/fvw8fHh5M6MUZSLT/37t1ThDMRevTogQULFqBr164ApP3Mw8OD701vCbkmdX5+fti8eTNMJpPqobZNVW5RtWpV+Pr6okGDBrh69So6duzIRxBt2rTBw4cP0aBBAzg7O2sKMkdHR3h4eEgOSxAFuigsRYLg5uaGwMBAGAwGRRCki4sLb5Tu7u5wdXXVtNQBZleng4MD2rRpw8+pWeqio6M5qROtkv/5z38k8TdkOfvwww/x66+/4vPPP+dlpmYRs4ScFjuUx7a4urpKTM5Go1E1gJ5w+fJlrF27VkLqChcujObNm+PDDz+E0WjUnDYvFx70mwSdwWBQkLqLFy/C19dXUn6nTp3S3B6pZ8+eGDJkiOSc1v6Y5E6Ru71cXV1Rq1YtyZ6caiSH6tzX11d1V4Djx4/j7bfflii61NRUhIWF8fonEh8WFgYvLy9s2LCB13lgYCCPQSWlOXz4cJ5WZGSkZBsiwGzlEGdee3h4cKVEQmrIkCEIDg5WzOQDzIRqxIgRqoOUt99+m5PaggULSix1IoxGo+oiooULF4aTkxMePXqE8+fPc4L16aefSu5bvnw5Ro0ahXfeeQdubm7chVOvXj0UKFAAMTExfPYnYCY+8vInUieOzAH1BXAJx44dg7+/P6pXrw7AbPlWG7yISv7bb79VLFxMa8sBZqUhtyqnp6cjKSlJUsYrV65UzVN6ejrefvttvmakvK3KSV2VKlXwzTffSNxh5LEgS4FYBjTTlyZoiPFlDx8+VFVsYpA9wcvLS+KyJNSsWROAethIgwYNFPFzVN6i+9XGxga3bt1CcnKywrp88eJFGI1GiXVbJO4iqTMajYiIiMCpU6fQqFEjxT0ixO+2JA8BcBLl4uKikF8icS9UqBCXI9WrV8elS5dQpkwZuLu781mVjRo1wt69e3n7pcEsuYm1diUiMlmkSBHVAQ2VpxqpywlBQUEIDAyEu7s7AgICcPv2bcXyKeKgWy4rK1WqBE9PTz6pT4vUqcXFipY66i+07FRMTAxvyyQz5VbILVu2ICkpCWPHjkXr1q0V74iKioKnpyeMRiM2bNggieVVyw8AHl9K0DLoiLzlnXfesTigJOSa1FWvXt0icaPtrZ4XM2fOxJEjR7B27Vo4ODhwU7adnR1Wr16NI0eOqI4k8wpRSCUkJPDforuvevXqnLzIC9fV1ZWTuoyMDLi4uCAlJUVhqaOOHhAQgPT0dAmpI4FGwhcwC1xS6M2aNQNgXo381KlTiqBqGxsb/PTTT2jXrh0WLFjA3yV2EDEoXQ2BgYGaS4bQshLymA+1BmnJWlehQgXuFidUqlQJe/fuhYuLi8JSJ0K+5hq1NfrG9PR0LhTLly8PW1tbPHnyBAULFuTEQSSG5CIV42J+/vlnzJw5UzKrSbQKqZEvuasuKipKMeJTG1gQqfPz84PBYEDfvn1x+PBhHDp0CDExMahTp47kfYMHDwZgFrykPMX6KlOmDAwGAxcmPj4+/H9aT1HMV1hYmGKSxq+//iqJYxFJuriDx8mTJ1UHIsuXL4enp6cqif344495PgoVKqRJ6kQiJH5/4cKF4ejoiIcPHyI5ORnz589Hdna2hAyobWu3evVq9O/fn3+L2kbdcguRFqmzJN8OHz6Mdu3aYdSoUZg1axbat2+vOstbrrjlZCanRacpZtjd3R3Vq1eXyB/AXD80aCEyRANgeX58fHywaNEidOjQAY8fP+bp0F83NzccOXIEjx8/5ktWiIqvUaNGvL/Xq1cPv/zyC79WpEgRVaImLqzbrVs3rFu3DgaDQeHefe+991CjRg3+zXLUq1dPYZGjQbAog3x8fLjeIovRoEGDuJz38PCQLEEhfh8RcDc3NxiNRpw+fRoZGRmcuAPqpM7Z2RkrVqzAgAEDNJfdIFBfkVvqKleurJB54r3UNkm2ODs7cz1BoLZGZFZLB4j1phbvTPvW0s49InJafeHMmTNo3LgxatasicKFCyMrK0thlS5YsCAaN24MX19fLrPou9566y1Uq1aNGxxEq5uou9VI1MOHDxEZGYnChQtzb0ijRo1gZ2cHLy8vXt5q8nnZsmVo1aqVxW8DzKSddATJkTlz5qiSsA8//FAiUy5cuCCJLRVB7SYwMFCxNJMWck3qRowYYdEEWKZMmXyJq3vZEBtGz549eeMQCQsJF8DcAJs0acJ/i0I1NTUVRqMRsbGxCkvdpk2bULp0adWYAYPBAJPJxJchIJCQqlu3LhhjaN26NRISErjriLbn0drDUfwGMvuSu0oONcsLoUyZMnj33XcVrgS1hmuNC1YkdaLr0cPDQ2Gpo/rQInU1atRArVq10L59e94RihcvzpWEp6cnJyY0KxAwWzeSkpIUQee2traa8WJqAkxOYNSInxoBojqjyRQrV65EgwYN0LBhQ55fSqt8+fKSWX707aK5n1wD9GzTpk1526b329jYYPz48ZozqeTBvR4eHjw9rZGnGsQyGT9+PNLT09G0aVOex4IFC0rcryJEki2WN1nqCF5eXoo2obYqfosWLXg/8fLyUsSopaam8pn0pNCpncsJe05LC3z44YdwcXHBsGHDYGNjw61g4qQLeWyonPiouevEOJz9+/djxowZcHNzw6lTpxAXFycp7+vXr3NXN8WWEVGU91d7e3ukp6djy5Yt2LNnDyezROBJ3vv7+/M05Naadu3aoWPHjrh+/bpE/hsMBqxZs0Zz0gxgHqSSK6xQoUKwtbXlsnTx4sV8EKbW79TaI5FYUQYVKFCAkzrq1w4ODjykxcPDQ9MKYm9vj507d2L58uUoVKgQJ8uiG04eBweYy++jjz7C0qVLNS0xgNl6LRI1R0dHuLu7o1KlSqozJYl8iP2gQYMGKFmyJBYvXqwg7bSclqXZw2PGjJGEUtja2irc6AUKFEB4eLhqXNf8+fMl8mTZsmWoWLEiVq9ejRMnTsDNzQ0fffQR/v77b8349kKFCmH//v14/Pgxr0PKs6+vr6R9BwQEqMa2q1mFk5KSYDKZUK1aNdSpUwcmk0ki26lu1Ehd//79rbKOyS2x06ZN4+voyneWEMu5ZMmSqFSpkmqMHfBMDpYpU8aq3YWAPJC6Bg0aKEyHIlxdXSVm6X8LqIPMmzePB2MDUgEozhSys7PD/v37+W8XFxeumOzs7ODv749FixbxVd4Bs5J77733cPv2bVWhDZiFoFwAUCci5U6CiIRLTkHxYmcoVaoUIiMj+QrrcshJnZOTEy5evIg+ffrwxigfxaltn2aN75++56OPPpIEA6u5X0m4ae1jW7x4cZw6dQqDBg2CjY0Ndu/ejV9++YWTOqPRyAXFBx98gLp166JOnTqwsbGxegaqpcB5eZ2pBZyr5b1Lly7YsWOHZMaVHKTw3dzcJHktUqSIQlBT2yhZsiQePnyIHj16cKX4/vvv48MPP8SQIUMwYcIERbsRiYWoMIxGIyfKakJTC1QmdnZ2mDBhAk+fFKAlS5189q6YL8qbra2thKDT1lI5wdPTU9VSRxYOKlNxlj3wrE61Fjz99ddfMWzYMMngD3gWXycScrkVl8qmWrVquHv3Lq9HeqZixYo4evQosrOzJcozKysLtra2sLOzg8FggIeHB0aNGgXA3N7i4uK4a5e+Q94OaWHw9957D/379+fPA2YZI64Tamtri3Xr1il2fQG0J820adNGU94kJSVJ9EmhQoVQpkwZXh5ie1MjdWrtkdqUKGMLFiyIO3fuwN3dnZM9BwcHLtOoTWqRz/feew8+Pj6czLq4uEjkAYU2aOVNawJKQkICQkJCeHsSw360iCDJc7GPtmvXDnfv3kWfPn0UA4YxY8bg2rVrkr4hXxxdTQbKB6aWZl4GBgZKJob0798fly5dQu/evRV9WT5Zh+Dh4QGDwQAbGxs+wYNITeHChbme2bhxIxwcHDipo75ct25dXn5EHMUyJMuqvC604kRzA09PT0mojWhtlfc3IoB///23YoFiOSjPWuE/angtFx9+FaAGTI2CKrh58+aYMGECEhMTVcksPUezMH/44QdMnTqVC5SbN2/CyckJ9evXl5i3rcHbb78NwEw0RRcbjRCJ1OXUGEVSR+Z9LSEjn2pduHBhvP3221i1ahUnuPL3qZG6YcOGSVZWVwMpthIlSkiUnIeHh2IxVOp48lX3tUZ977zzDry9vSWk7qOPPsLgwYPRs2dPHDlyRLHLhSV8/vnn2LVrF/z8/CRrvdF3iORfHtQuutjlcHBwwPvvv29x1iG1MYrVJDRq1EhhIRQVK43syBro7e2Nn376iZNyeWyVuAhpYmIi/04PDw8uHHND6qgvyRdSFi11RLTlbjdfX18eMyOPXyVl9vXXX0sUz8WLF63a/NrLy0ux4KvJZMKOHTuQnJzMSR21SflkHEC6qOyYMWPw888/o3v37nzZGRErVqxAaGioxTomEuPo6IiSJUvCz88PGRkZ2Lt3L/7880/s378fLi4usLGxkfQNtR0DxJmnRqORK5Xg4GB89dVXGD58OIKCgrhH4Pvvv0ft2rWxc+dOLFy4UDJ7vWLFioo21q1bN9UJMiJxGz9+vCRvWjHNcjLRuXNnfPzxx9wKLbY3MSyFoNYe//rrL8yZMwe2traIjIxEVFQUb/OtWrXi9Wpvb8/LkmZerlu3zuKsYmqnNEufoFYe1li13d3d4eTkxN9PVuACBQpoDjbVSJ2I9957j+/6A5hJxVtvvSWRsV9++aXkGbVylKdvzXIa1sDBwQHbtm1TeKvE8qQ6IFlBMeoAFOEB0dHRyMzMxOHDh3mZ08Q4er5Zs2aaBgFqGznF3VuCl5cXihUrxutRzX1NIHLdtGlTzclYBJLh1riACTqpk4EaxYoVKzBp0iQYjUaMHz9ec9REZMPFxQUGgwFDhw6Ft7e3xD3h7OyMI0eO4IMPPrA6H3FxcZwc2NnZSZi/0WiEh4cHX4crJ0UrCuWcliyQW37UgmLFzuHi4sLXLJMjp3eRkJCbrtWCin18fHD+/HlJPMf27dsV0/vlEEld5cqVMXfuXNja2ipmoeaEBQsWoHLlyggLC8P8+fOxb98+bpEmS9isWbPQq1cvhQVs48aNmjGC1oCIi9xS16ZNG4VJXm4lAp6RbrmSqFevHjIyMnD48GGsXbtWMmixs7PjEzCKFi3K8yCfqAKYJ9aQa1MU/FrlW61aNR6uQO9QE26XL1+GyWTC+vXrcfjwYaxatQrAs/JQE8LW1KnYvmi2fokSJeDg4AAXFxesXr0ap06dUgxixMFM0aJFuWVv8uTJ6Nmzp+b7nJ2dNWcJE4jUiX3L3t4eNjY2aNWqlURJiNss5WZWu52dHaZPnw5vb29cv36dk/b//ve/qvuP5hb+/v58CSX5AESsK0tr/3300UeSFRREYjRx4kRFPKOa7Hv77be566tAgQLw8fHh8rN9+/Z8kGFvb88HNuShsLOzs+gqJXkoHxA1adKEb99HUCNdWu2APBvkoShXrpzEjfr333/zGF/RVasGg8HA61YrxEI+iMqrpe7y5cu5XssRMHtL1PZVJRCpo3c6OjpqkrqYmBjY2dnB1taWtwdbW1v06NEDn376Kb788kv8+uuvmu+itpGb0BI5yNJKA2j5DGbALL/v3LmDhg0bWp2uwWBAcnKy5sLTqmCvGc6cOcPq16/PGjZsyDp37swyMjIk1w8cOMCKFi3KGjVqxJo2bWp1uvHx8QwAi4+PV70+ffp0BoBt2rQpV/mtVKkSA8DS0tIk54cPH84AMACsSJEiuUrTGpQvX54BYEajkaWnp7Nx48ax1q1bq96blpbG8yKCzolHamqq5HebNm1U01y2bBk7ffq0xTy2a9dOklZwcLAkDyaTif3+++8sMzNT8tzevXsV+SJkZmbyc1lZWRbfzxhjw4YNYwDY7Nmzc7y3XLlyrECBApJzauVG2Lx5MwPAHB0dc0z7edClSxcGgPXo0YNduXKF/28ymSTtTKtMOnfuzACww4cP5/iuRYsWsX379jHGGNu6dStr1qwZS09PZ0uWLGEA2IoVKzSfPXjwIAsNDZWcA8B8fHwk50wmE4uLi2OMMVa4cGEGgN29ezfHvBEWL17MALDFixdb/YyI3bt3MwCsePHizGQysZCQEBYWFqa4Ly0tjU2aNIklJSUxAKxixYqS9hAXF8dOnjyZq3eXLVuWvfXWW4rz1JYaNGiQYxrLli1jpUqVYgCYg4NDrt6fn1DrG5cvX2YA2KlTpyTno6OjJfcDYO7u7pppN2vWTLPfRUVFsWnTpjEAbPXq1Vblddy4cczBwYElJCSwLVu2MABs2rRpLCUlRZFXS6B6GjFihOKa+I0A2OPHjyXXw8LCWGxsrGq6JpOJLViwgEVERDDGzHJOS76FhIQwAGzAgAEW83r27FlFGpQ3k8nEoqOjWYECBRgAtm7dOsXz2dnZ/H5HR0dmMpksvk9M31okJiYyAMzJyUlyfu/evaxOnTrs8OHDDAA7cuQI13kpKSmMMXOZGQwGtnnzZv5cQkIC1zXWYteuXQwAe/jwIT+3Y8cOdvnyZc1nlixZwpo3b86/l+Qe8YHr168r3nHv3j2r8/Q8eO1I3ZMnT1hycjJjjLFRo0axDRs2SK4fOHCAffnll7lONydSR0Jiy5YtuUr32rVrbMiQIYoGv3DhQl7hZcuWzXV+cwIRpHnz5uV4r8lkUu1s//3vf1nt2rUV5In+DwwMzJG4WUKLFi0YAPb999+za9eusdTUVK7Mrc3v5s2b2dmzZyXXcyM4Jk+ezACwn376Kcd7s7OzFUJwz549bMeOHar3//XXXy+F1PXq1YsBYJ988gmLiopiANju3bsZY4z9+OOPvDxmzpyp+nyHDh0YAEU55garVq1iANiiRYty9dzOnTvZnTt3NK/b2dmpDoosYcGCBQwAW7NmTa7yQjh69CgDwMaPH2/V/dQeJ02alGulJUd2djbLzs5WnN++fTsDwBo1amR1Ws+bl+eF1vvlgzS1+8PCwlhUVJRm2jExMezQoUOa19etW8cAsFmzZlmV17CwMLZ//37GGGOxsbGsWrVq7NGjR1Y9K2LPnj0MANu4caPiWnJyMgPAhg8fzlatWpXrtK3FtWvXGAD2xRdf5PpZT09PSZ2VKFGCAWDbtm1TvZ/qzM/Pz6r0c9smqW/5+vpq3kPkeNOmTaxEiRIW06NBvxrptgRrDARqWLRoERs1ahTv0xUqVGAALLbtFw3lKnuvGGLwqb29vepCgJs3b8apU6fQqVMnbmZ/XrD/N+vnxiUHmN2ValONP/30U/z111/4888/n8usqwWavWfNpBStb5ozZw5+/PFHnDx5Eo6OjopAZEsbs1sDMpe3adNGdQ9aa/IrLt6bF9D7rKkDtZgLmjmmBkozt20mtxDdrz4+PhIXFAV4DxgwQBEnQ9Byv+YGFN+ptS2YFnJaAZ1cYWqzhbVAcVC5eUZE7dq1sXTpUvTp08eq+w0GA5KSkuDi4qJYDDm30IrrUXO/5gQPDw9FwPvLROvWrVVdlWoyWw61mYsivLy8LLqpKHbJ2vbo5+fH3+np6WlV7KUamjdvjoMHD6rmzcnJCba2tihVqpTVbSsvyCmmzhLOnz8vmdVKC7urLbsjwtp4unv37uWqDRsMBvTp0wf9+vXTvIfi0zt27KhwccthZ2eHBw8e5Ni+5FALK7EG8v5XtGhRXLlyJcclbF4kXjtSR3jw4AH27dunWJSzRo0anGy0bdsW9evXl6wXREhPT5eQFEt7vwJ5J3VasLGxQePGjV8YqaNGY2maujWgxrxgwQLesd577z3N2bm5AcX7yGdjWYMbN26o7gGZW5Dil0+8yA9Q/MaLJnWk8NUERaNGjbBu3TqLwo7iPJ6H1FWrVg3R0dH5FixN+Prrr/Hbb7/l6hnq12rrn1kDW1tbvj2YtXiesrMGeSF1avvEvkxs3749V/d37NhRMkPweRAYGKi6Z+uLhsFg0BxI29jYYPv27VbN/H8ePA+pK1GihITA0YBP3GVEDdb2+5zIoRooVja/kNOWoC8Sa9euxcmTJ/NMEvMDr4zUhYeHq04f/+OPP2BnZ4devXph5cqVijVixJHhBx98gAsXLqiSumnTpkmWE8kJ+U3qgGedLy+kJids2LABJ0+ezJViUyNq1PiysrL4t4srYj8PyFKXl1FLYGCg5v5/uQEJK7UlB54XL8tSR5YPtUkrdnZ2iu1u5CBSl1fLFiG/CR1g7qdqi5laApG65/2evMBoNGpuTfg8yAup+7dh/fr1ipnQz4OXTeisgTV7cz4vSAfmh7GgUaNGuHTpkiYJ6dOnD1avXv1C+v6bCB8fn1zNVH0ReGWkztfXF0ePHlWcz87ORrt27TBu3DhVpZ6QkMA785EjRxTbAxFGjRolmUWVkJBgkcF37NgR48ePt3ojdGvwIkldsWLFcpxRJ+LWrVuq5Io6s9bCxc+DgQMH4ssvv7TKHZNbWLsWYtOmTXH79m3NvQSfB7lZ3uN5QDPB8rI9D2DecsrHx+eFtMNXgbZt22LChAmSDcBfFuSLFucX/hdIna2t7Su1YLwpsLGxgZ+fn8VlM6zF/v37Lcr+VatW4erVq/nyLh0vB6+d+3XDhg04fvw4EhMTMXnyZHz22Wfo2rUrPvnkEyxZsgQbNmzA0qVLYWdnh3r16mnGXTg6OuZqJP/WW2/l6ygSeEbqXqV/naC24jnwjNSprTX3vBg2bJiEWOcXEhISclW3L4LQAS+P1JGbTb4MgbUIDAzE6tWr8zNLrxRVqlTJl60IXyf8L5A6HfmHs2fP5ssgzcbGJsc2t3Tp0hz3rtXx+uC1I3Xdu3dXXfeMVqvu37+/YiPg1xXklnudO8SLJHUvCmp7ir4KvCz3K1mH8mqp0/H6Qyd1OnKD3E4EeB7Q1pI6/h3QJcgLBFmT8iM27EWhffv2GDRokMXZRzrU8bImShCpy6ulTsfrD53U6dChIz+gS5AXiGbNmmH37t05bpf1KuHk5IT58+e/NtavfxOs2eg5P0Bxoy96BqaOVwed1OnQoSM/oEuQFwiDwYB33nnnhVtydLxavOj6HTBgwBsXQ6ZDCgqD0EmdDh06nge6BNGh4zlQo0YNLFq06FVnQ8cbgryuvadDhw4dwGs4UUKHjn8TTp8+/aqzoOMNgK+vLyZOnIhPPvnkVWdFhw4d/2IY2P+IXychIQFGo/GVrEKuQ4cOHTp06NDxoqG7X3Xo0KFDhw4dOt4A/M9Y6hhjSExMhLu7uz5xQYcOHTp06NDxxuF/htTp0KFDhw4dOnS8ydDdrzp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8A/mdIHWMMCQkJYIy96qzo0KFDhw4dOnTkO/5nSF1iYiKMRiMSExNfdVZ06MgXZGRkwGQyveps6NChQ4eO1wT/M6Tu346yZcti3rx5rzobOl4jODo6on///orzaWlpryA3OgiMMcTFxb3qbLxWSEtLQ0pKyqvOho5/KR48eIAjR45YdW9YWBi2bdv2gnP0+kIndf8S3L59G8OGDXuleYiPj4fBYMDRo0fzPe3MzEzcvHkzx/sMBgMmTZqU7+9/WcjMzMTUqVPzjXitXLlS8nvZsmVwdnZGUlJSvqSvhbNnzyI8PDzf0jt//jyio6Nz9UxCQoJmHuLj45Gdnf3c+bpx4wYuXLiQq2fmzZsHLy8vq0hMXFwcZs6cmS8W17lz5+LevXvPnY6IlJQUHDx48LnTqVy5MlxdXREdHY3t27c/f8Ys4Pjx4698YJOamopJkyYhPT0dAJCUlIRNmza90jy9zrh9+7bFgVDdunXRsGFDq9Lq3r072rVrl+v+P2jQIFSuXDlXz+QFp06dUshta2D197B/Kb788ktWv3599p///Ielp6fneH98fDwDwOLj4/P8zqysLHbjxg2L95w9e5YtWLDAqvRiY2PZ33//neN9JpOJAWDOzs5WpcsYY2+99RarUqWK1fczxtjw4cPZvn37NMvz9OnTDAD7+OOPFdd+/PFH9ujRI/776dOnqmmsWbOGubm5MZPJJDk/Y8YMBkDzOQIA5ubmltOnaCIjI4OdPXvW4j3Z2dksOzubPXz4MM/vYYyxO3fuMADs6NGj/Nzq1asZALZ69ernSjsjI4MBYA4ODpLz5cuXZwDYuXPnNJ+9e/cuy8jIYKGhoXl6d0JCAgPAGjVqpHn93r177O7du4prGzduZFWrVpWcy8zMZADYu+++q/lOk8nERo0axe7du8fPlS1blqmJsMzMTFa4cGG2bNkyxhhj6enpLDU11YovU8LOzk71HZbQuHFjBoD17duXZWZmWrz33XffZQDY1atX85Q/QlpaGgPAAgMD+bm5c+ey9u3bP1e6n332GQPAEhISnisdAAwAa968OQOg6P8ihgwZwgoVKpSn98TFxTEAbOjQoarXs7OzNd8dGxvLwsPD8/ReOX799VcGgLfBPn36MAAsJiZGca88P9euXWOFCxdmsbGx+ZKX50F6ejoLCQmx6t6jR4+y27dv5+k9ANjbb79t8ToAlpaWlmNawcHBDAC7f/++4tr27ds1ZSO9QwvXr19nUVFROb6fMH36dDZ58uRcv0cLffv2ZR999FGO9/0rSd25c+dYjx49GGOMTZkyha1duzbHZ/KD1PXv358BUAjq7OxsdvLkScZY7iqsbdu2DABLTk7m5x4/fszWrVsnuS8pKYkBYB4eHiw9PV2zYWdmZrL169ezJ0+e8HyULFnS6u+jZzp16qS4tnz5ctavXz9+z507d/i19PR0BoDVqlWLMfaMzGzYsEGRToMGDRgAdv36dcn5r776igFgmzdvVs3b3bt3Oam0tnwzMzPZkSNH+O/w8HC2efNmBoDNnz+fzZkzh1WsWFHyzNGjRxkAVrduXQYgz4I1KSmJtW7dmgFg1apVYykpKYwxc3sFwDZt2iS5Pyoqij169IglJSVZJUQjIiJUCa6HhwcDwNavX6+ZLwDM1taWAWCJiYm5/rZffvmFAVCQM8bMAwOqIwAKIW80GhkAlpGRwc+dO3eOAWA1a9Zkhw4dYv3795cIz6ioKFaqVCn+zoMHDzLGnrXXrVu3si5durCff/5Zkt6IESMYY4xVrFiRt5nDhw8zACwsLMyqb9X6DoLJZGJxcXEsNjaW+fv7s6tXr3KlAoAdOHDAqvTpvtWrV0uU0enTp1lWVpbqs6mpqWzLli2MMcZCQ0Ml5T558uQ8Kw8R77//PgPApkyZwrZu3WrVM1lZWeyTTz6RDBooL4GBgQyAgmTHx8ezBQsW8AFsTvkWZSbh+++/5/1Wi8w2adKETZs2TfVayZIlJe+Njo5m8fHxbMKECQqSefbsWbZq1SrN/K1fv54BYF988QVjjLGqVauqEo2DBw8yAJLBCslCse1kZ2ezY8eOab6PMbNM2LBhA/v777/ZqVOnJNcuX76sOshSg0gyqT9bIwfFert16xbbuXMnO336NGPMrCMaNGjALly4wEqWLMl++OEH1WfT0tJYp06dFOXk6urKAORoVGGMsfbt2zMA7O+//2ZhYWESYwO9h2SIWh60SD8AVqRIkRzfzxhjDx8+1GzHeemX8fHxzMXFhU2ZMiXHe/+VpG7hwoXc0nHmzBn2+eefK+5JS0tj8fHx/KBCViN1GzduZO7u7iwmJkai5B49esQaNWrER6lUGfI0Jk2axBWpWoVFRkay8+fP898mk4kNHDiQ3yt2wGLFivHns7KymMlkYmFhYQwA8/HxYZUqVZI0rMzMTLZp0yZmMpnY0qVLGQA2ceJEiYBftWoVA8Cys7PZ0aNHVYmTKEydnJwU18X0ALDixYvza5Q/FxcXxph5NERKNTw8nE2cOJEdOnSIMcbYiBEjGAD2448/StKfNm0aA8AKFizI1qxZk+P7tXDr1i1e1qTYmjZtyipVqsQAMBsbGwaAkwsAkrohywQdoiAcNWqUqpJ+/Pgxq127NitWrBhXZMOGDZOkM27cOHb16lX++9tvv2XZ2dk8jdq1azMAzMvLiwFgjx49Yrt372Znz55lK1euVLzz+vXrDADz9vbm59LT05nBYOBK+PDhw9xSIJaPmK8zZ85oliVjjLcdUdDNmjWLAWCVKlXi55YuXaogFmp1ReeePHnCLl68yBhjbNGiRQwA69WrFyelf/75J39G7Fd0EDmVHxkZGWz+/PkMAOvdu7fkne+++y5r06YNA6AYOGmBLJ9Enggmk4mNHTuWDRo0iAFg06dPZwDYyJEjWeXKlfk7lyxZwv7++282YsQIhVLOzs7m9/3222/c2lanTh3GGGMxMTEMABs8eDB/JiMjg1vSybp95swZFhISoloepNwePnzIjh8/zmbPns1+/fVXnl5oaKjESkiEuGPHjuzIkSNcQeZGEVE7p/IXZQtZVyMjI/n9sbGxrEePHgwwk+eclOuhQ4cYAHbp0iU2e/ZsZjQaGWOMOTs782dp0C+vM2dnZzZw4EBmMpkkAwvGnrUTOg+A+fn5qX67m5sbA7QHRYsXL5bI96JFizIA7MKFC5L7iMDt2bOHn/vyyy8ZAHb48GF+bvny5Twteb4JnTp1ktRVRESE5Nvs7OwkZXHjxg3WpUsXNmjQIK5TqGxbt27NHB0dOamn+goPD2fLly9n0dHRivfTe8mST0dycjK7ceMGA8AKFCjAALCiRYsyxsztbcGCBYo2O3z4cMYYY/fv32fh4eHM39+fAWClS5dmXl5ebO7cuezUqVOqlvBPPvmEAWBz5sxR1J1WWx46dCg/f+nSJdXyFZ978uQJb58mk4llZmayjz/+mD148IAxxrguFt/z5MkTFhsbq2hnIg4dOsQND6KnaMmSJczGxkZCULXwryR13377LReyt27dYt27d1fcM378eFUBp0bqdu3axa8bDAZ+nsjRxo0b2YMHDyQKSQQJfvEQrWklSpRgAFi3bt0YY0ySFgC2dOlSfi+dW7lyJXN0dGTdu3fnClwUMDR6nz17NgPAjh8/zsaNG8cAcKFAh4+PD+9c8oYWExPDxo8fz7p3786vBQUFsbFjx/LRtCiU1TrFpUuXJOdI2QwdOpR16dKFX9u+fTsbM2YMA8DGjBkjKcNvvvnGovJQe3dmZibr2rWrxOpH1zds2MA6d+6sqejE47vvvuPP/+c//5FcEzs4ndu0aRP77bffWGZmJouJieGkBAD75ZdfGGOMNW3aVJLON998w2rWrCk517dvX542kTE6SAnQce7cOebs7MytnydOnGAAmK+vL09DJGxkVZaXJVmqxPxmZWWxqlWrsp07dzLGzEqZyrRatWr8/eHh4ZK+4uHhwRh7Rk5q1qypyDdgtuqSW53OEeHev3+/al8VSZc4AKJDHAnLD2rv1A7Ea9SHvvrqK0Ubk+O7777jz61evZo9efKEDRo0iA0ZMoTdv39f9d2DBw9mhQoVUr3m7+8vsTSIFvW5c+eyixcvMgCsSpUq7NSpU7zfOzg4cOJVvnx55uPjwxgzu1cBs4uPrJFaR/HixSW/SSFRO6V2ToQdMA98unXrpuh3CQkJbPfu3ZrlRsTgk08+YYw9c4kCZqVMbWL+/Pls3bp1kvTFgU9sbCzLyspiWVlZLDExkYWHh7N79+7x+l25ciW/NyMjg9nb2/PfAwYMYF9//TX7/fffeb4eP37MAHP4CA3efvvtN3b+/Hl+TSwL+k1WIrIOimScBshhYWF8QLd//3722WefMVtbW1a+fHnWvHlz5uDgwABwz0F0dDRLSUlh//3vfyXp3Llzh3388ccMANu7d69qW6QwnPT0dPbpp5+yFStWMMYYa9GihaLeGXsWqgGATZo0iT19+lTRL6i8W7VqJTlH4QHkliadOHXqVEW90zNE4MQ6X7ZsmeRc06ZNJc/Ij0WLFvHrtra2rEyZMqr3qRl0yKNEA2Qqh6ysLEXZyPNOR3h4OHvvvfdYnz59OHGnaxRe8cMPP7ADBw6wrl27MhcXFwaAtWnThjHGJPqUrJyi/AGeke4rV66w06dPs0aNGknyQGE7Dx48YH5+fuz9999XfKsa/pWkbtGiRdxSd/r06ee21ImkhCo7JSWFW4/kx4ULF1irVq3Y06dP2bFjx1TvkY+S6Dh58iTbtm2b5BwpGDXy5ODgwEfhZMUAnlmXqAFv3bqVjRw5kgFgH330kWqeRCWycOFCxXfLjyVLljDGnlkM5AeNNA4cOMDPTZ06lVsq2rdvz9555x1+bcSIEezrr79mANiQIUPYo0eP+Ghk8ODBkrRJ6UREREgIilhHcsuQvPxatmypmm+xHIFnFgXGGHeZyjuWKMjpIAJI3ySWWUBAgOTemTNn8lGm/DvkJFzt+OGHHxhgdnGbTCa2c+dOBoAVK1aM533v3r0MACtVqpRk1D5t2jTWo0cPNmTIEPbbb79J0v3mm29YdHS0JD+kxFJSUliFChX4tXbt2iny9fnnn/ORcVBQEHNycpKQKjpsbGwk7YjI4qhRo7hiA8wC02Aw8HJkjEnyIPbBnMrM0tGpUyeJolSDeP+8efNY165d+W9y86kdpMC1jnnz5rFly5axU6dO8XOjRo1SWCRFFyoACWlnjLGffvqJAZBYBq09qN/RQIOs46NGjZLcV6tWLcl3ZWdnc0J08+ZN1XJbu3YtA8x9PDQ0VEIoyROxZs2aHPN4+/ZtVqJECda4cWP+jeLgR3T1i2UJgFWvXl3y+9y5c9zV+eGHHypIrnisX79eQgDISkRWe3FA8eWXX3K54+TkJJETQUFBbPr06VzhA2YLNFlkxWPhwoWKNicS0oULFyrqb8uWLbz+GWPcCi0e9+7d49bXvBzkNiYLFOkW+aBI/G5RH2gdjo6OFq+TJyendEqUKCHJx44dOyT9VOwvkZGRknP169dn27ZtU33P1KlT+f9ly5ZVGB0sHdHR0SwwMJD3LbLOyu+7ceMGS01N1Uxn165d7NixY9wCLYY8WcK/cvZr7dq1sWfPHgDA7t27Ua9ePcU9jo6O8PDwkBxaKFKkiOR3ZmYmXFxcMG3aNNX7f//9d+zYsQPt2rVTfTcATJkyBYcPH1bMaqtduzY6duwIwDxNu0KFCkhNTQUAPlNKhJOTExISEgCA/wXAZ5A9ePAAABAaGsrTCQ0NVc3Thg0b+P+ff/453n77bcU9hQsX5v+PHTsWfn5+mum1bt0a48aN47MW7e3tMXr0aD5b8N69e5JvunbtGjIzMwGYZ4MVLVoUAQEB/LeIp0+fAgDWrVuH5cuXK97NVJaNKFeunOT3mTNnVPPt7u7O//fy8sLly5f57/j4eMm99FttfcNff/0VAHD16lW0bNkShQoVwuXLl/HkyRM8fPhQcu/Dhw+RnJyML774QnJ+3bp1mDVrlmo+RZw9exYAEBISgubNmyM2NhYA4ODgwO+5f/8+DAYDKlasiIiICH5+1KhRWLt2LebMmYNu3bpJ0j137pyifpOTkwEALi4uuHLlCj+/detW/n/p0qXh6emJhQsXYsmSJQDMMyXT0tJQsmRJRf5NJhPKli0reS9gnglG3wIA9evXh7u7OxISEpCYmIgff/xRkgfCRx99pFZMAABfX18ULFhQ8zpgnp341Vdf8d8ZGRnIzs7GqFGjcPToUTx58kRyf0JCgmT22fHjxzXTltexHIMHD8aAAQNw+vRpAECZMmXw9OlT3Lp1S3Lf/PnzJb/F8ktNTUVISAgAqM7O9fb2xsWLFzXzsG3bNgwfPpx/06NHjwAAN2/ehKurK9atWwcA/B2AuYwiIiLwzz//AACGDh2Kli1bYuXKlTh//jzefvtt/PTTT7ztp6eno3HjxggNDYWfnx+AZzLs0qVLlooIABAVFYX79+/j4MGD/BuZsHj8zJkz+f/y5S6ovxAOHjyI27dvAwCysrIQFBSkeB+126dPnyIsLIyfJ93x9OlTtGzZEkOGDAEAFC1aFGfOnOGrAaSlpeH+/fv8OR8fHwQGBkpmQcfHx0vSJoSHhysWxr99+zZu3LgBQCr7ASAgIADXr18HYK7/okWLKmQOfVOTJk0U560FlRnJbXpHcnIyHj9+zO8T5beldkdQ03UA0LRpUwDm9j137twc0xHl9Z07d9CqVSusX79eoscAYOPGjYo2d/ToUbRt21Y13Z07dwIAevfujVu3buHbb7/NMS+EKVOm4M6dO2jZsiUAqd4TERERgZMnTyrO+/r6AgBiYmLw3nvvITU1FQEBAShVqpR1GbCK+r2GyM/ZryaTSTKaoplL8sPS6Bx4NgoVD9FXLz8yMjJYjRo1GGA2v0dFRSnuMRgMClP5O++8w2rWrMkYYywoKIi/Z8CAAQwAD/iVH3SvpYNiz8SDfPz4/9GN3My/aNEiZmNjw+Nl6PDw8OCxYoDZrURWGdGtwxhTuEopnoRG/fIjLS2N7d+/3+rRk3hQXAdgth5SLCBjjFWqVEniPvv111+ZyWSSxPrIj6JFi7IRI0ZIrHPiSJSCwwFzLJ1aGvJYPvlRpUoVyW+KGytdujTP+0cffcTKly+vaamVH+7u7opz6enpktgkraNGjRoKi7OTkxMDYNHt3aBBA4mbrFKlSuyDDz7gv2fNmsWKFi0qsRBZc/z999+S9kRWa7I6yg+5ezwqKkpiCdu6davk+siRI1mHDh2sysuBAwfYvXv3+G+59VcsQ1dXV9avXz/m5+ensFZrHQaDQREmAIDHZ9H3UKyr2iG3VterV4999913rFy5ctzzQX00ICCA7d69mwHm2EI7OzuFpYtCLt599132+eefMwCsa9euzMvLizVr1oz99ddfPO/W1ilNKrLm+OCDD1iBAgU0294XX3zBy6dbt24sODhYEhoCmC2oAQEBbMyYMezIkSP8PFkJxTALwGzxc3Nzk9TbkiVL+P9t2rTh3pC6desyGxsbtnjxYknadHz88ceqFjxqz2Ld0tG3b1/Jb7kX4HkOuSWNwjHKlSsnOU8WX9F6Sd4jd3d3Nnv2bEVbEeOZ5cdff/3FChQooCkngWdW2JIlSzJbW1tmMpnYw4cPJeWaG/nB2DMr2oQJE1jBggVZkSJFmJ2dnUX9ndPxxx9/8P979+7N/xfbHU2WFI9Tp04xOzs7VqdOHX6ucOHCVnOjfy2pyy1ymv0qEhI1Idy2bdsc3ZWFChXKMbaFDoqLodmgADQDzUU3sL29PZs4cSKvZHJ1ffDBB6xnz545vlfLJUmHWlyGeMyYMUMyC1U8REJIcYT0FzBPglCLj6JgfPHYuHEjY4xJhKR4xMXFsU2bNmnm08nJiSsX+eHu7s4FIJHGX375hR0/fpwVL15cQqAWL17MPvzwwxzLlSaHiB2T/hfbhBizJB4Uh6R1lChRgk/yKFOmDBs9ejQDnsXUmUwmVrRoUTZ06FA2ZMgQ1TTGjBnDXbRadW2JvIpHtWrVFLEzdBChkh+TJ09mJpOJu7MAMyFu2LAh/71y5UrVGFWtg2IV5bMm09LS2NWrVzWVvDjYAMxuKjHe8NNPP5Vc/+STTyTu5169emnmiWbu0u+wsDA2duxYxX2enp6sXLly7O7du8xgMGjG4qm1BfnArUOHDvydXl5ejDFpLBX1idTUVM1Bn1gHjDEeg9uqVSs+4Kxbty5zcnKSxFYCUpJM9de8eXPm5+fHJkyYwGeVqx3kvtc6LJEViuH08vLiS+yQa19+EKHs1KkTe+utt9jQoUMlA5hbt26xGjVqsAEDBkgGkzTzWn6QOxd41sdpYgFgJl0pKSnMycmJzZs3j3l6erLp06cr4ggBc9iB2qAeMJMkLy8vBREXlX5uj5wMFPLB0LFjx1h8fDyfIELH8ePHWaVKlXisNGDuW+KqC/LwEvnkG/G4d+8eK1asmCK+TDzIzdysWTMGmCeryO+RTxoRD3naovxZsGABCwgIYPb29szHx0fyXWK9WlPGWoMqS4QVMM+QLliwoOQcxS9bg3+l+/VFwNvbm/9PrggRnTp1gqenp8U0UlJSUKBAgRzfVahQIW4ednZ25ufJ7SUHuaoAs2nWz88PkZGRyMzMRGxsLPz9/XHw4EGrtkBr3bp1jnmzhEaNGsFoNKpec3Jy4v9Xr14dACTuiMjISNVv7Nu3r+IcuV+1viktLU3hrhIxffp0LFiwABUrVlRcS09Px+XLl3H37l3upuvZsyfq1q2L+Ph47ioCzOb91atXa76HILrhExMTUatWLf47IyOD/+/o6Kj6fPny5S2mn5iYCC8vL4wcORIxMTF8QVgqz9TUVDx69AhVq1a1WD/Nmzfn4QbVqlVT3LNq1SqL+aD2nZ2drdkfyI1Vp04dyXlvb28YDAZe5qVLl0Z0dLTEje7l5QUXFxfN97dq1Yr//8knn2DKlCkICQmBwWCQ3Ofo6Ihy5cpx974cFKpASEhIkLjF9u3bp7jOBPfYjz/+iMDAQNW0fXx8JL/9/PwU7iDAvPBwsWLFULJkSdSrV0/iMldzDxIyMzMVi+tSmW3ZsoW7dOzt7SX3eHt7w8nJSdK+1UBt18XFBQcPHsTKlSvh7e0NFxcXXLhwAYUKFYK/v7/kmf379/P/r169CsBchrGxsXBwcJCEPMi/pU2bNorzbm5u/P8aNWpo5pX6TWxsLK8PcgXKZTHVX2ZmJuLj42E0Gnm5bd++HWXKlEGhQoVw/vx5jBkzhj939+5d1XfXqVOHt/XGjRujRIkS3G0HmNuBs7MzLl++jIEDB8JoNCIhIUHitqT7Dh48iEaNGqm+Z8WKFYiNjUWJEiWwZcsWfv78+fOwsZGqcK02KcecOXMU58SFd+Vyul69eggMDFSEybRs2RIXL17ElClT+LkLFy5IQppIHlWqVAkTJkxQhBUQHj16hBIlSsDJyQmHDh2SXPviiy9QrFgxAICrqyuAZ/UrD5kR3ymiWbNmGDRokGLh38OHD/P/TSYTnJyckJmZCQ8PD1VZ1LdvXzRo0ED1G6idT548WbXPU76//fZbvPXWWwCU/bRQoUIK2SqGiuQEndT9P0RyFRkZqbhevHhxyT1qsJbU9ezZkwsqa0jdxo0b+f++vr7w9fWFyWTCrVu3YDKZ0Lt3byQkJEgapwg7Ozv+PzVGeWwVQashDhgwAKmpqahVq5Zqh7l//76EsGgJYooBBKBQxCIiIiKwadMmXLt2TfX6nj17MGrUKADArl27JNeqV6+OwYMHA1AqWMBMsvz9/VGyZElJ7JWdnR0SEhIkCishIQGVKlXSzCfB09MTf/zxB2bNmiVRSIA0fkSL1FlqNx4eHkhISICTkxNcXV0RExPDY7qSk5Ml8YXe3t48BujTTz+VpEPvLlq0KACotmdROKuBCIHJZNIkj2XKlAEARTl06NABwDPBV6pUKaSmpkri17y9vRETE6P5/j///JPHlsjzv3HjRsX2QGr1D0Cx24M81un27duSvhAfHy8hdY6Ojoo4GX9/f0ncYXBwMI+De//99zFy5Eh+zdbWFgC4oqLBB7VH8duGDx+OZcuWYd26dWjfvj3S09M1SV27du00FbuXlxcAcCJA7eSbb77BgQMHcObMGfTr148rG8A8iCtYsCAMBgOKFSuG5ORkODo6csUKPCvjzp07Y/r06QCeDXLS0tJgb2+vSers7Owkg0EA+PrrryXfX6FCBdVnAbMCpLhSyhMRDxrADhs2jLd54BmpE5U2kbPChQvjzJkzuHfvHvz9/VUJJ2AubwcHB95vvb290alTJ8k9VC6lS5eGra0tPDw8EBcXh4cPH+Ktt95ClSpVAAC9evUCANXYURGPHj2S9Lm0tDS89957/LeNjY3qIFYN8voYNGiQhMiqgQbaosyUx/oB5gGTOCihdtawYUOMHz9eEcNOeafzaruriPlt3LgxAHASrEbq5LIhODgYf/31F+bPn48SJUqofh9gbhvUHrVInYeHh+aAltqDp6engnATChcujNGjR/PvqFmzJlJSUtCzZ0+ed9KTe/bsAWMMo0eP1syzHDqp+3+IgiUqKkpxvVatWhYtCIC5MYrCTguzZs3i1h9LpG7mzJmKERWROgA8wL9mzZoAIAk4FyF2iICAAPz+++9Yvnw52rdvr7hXjdQ5Oztj8eLFvIzUlHnRokUlZVi8eHEJmSSIljsKiiUlVLFiRdy6dQtVq1bF06dP0blzZ6xYsUL1m8Rg9HfffRd//vknH2kGBgZywphTnYkCysfHByaTSWGpEy1thB49eqBu3br8t8FgQJs2bSRbubVo0QLt2rWTkDq5AgOg2mFFS5+7uzsXNvL2ZTKZ8PTpU173oqVLDKwX371t2zbs27dPtf4BMxkkhSMHtb3s7GxVgurn58eVmVj269ev58+SEi5dujQA6SDKy8tLMUkBMAfwUzA8CVS54O7UqRM++OADyTnRAk+wsbFRWOoaNmyoGBSR8Hd2dkZCQoJE2dja2iIrKwuA2Vo0YMAAPH78WBJ4feLECR7MXrJkSXz33Xf8GvUNIhtUJqVKlcLmzZvxyy+/YOfOnVi9ejW+//579O/fH926dUP9+vUtkjo5RIsCtUMizbVr1wZg7quNGzdG9erVsXz5ck1lRFZPOakji6+vry9GjhyJAwcOSAZalix1lJ6IadOm8f67Y8cOzYEmYCZyRFZFZUz5AcxtisrXycmJ70MrWuqozdIzgJnEyAkyWVXondQWjUajQtHLBxRly5bFxYsXcfbsWVSqVImn5e3tbdW2UTExMQrZK3oISpUqZXFCoAh5fbi4uKBTp06qfU8ONVImh0jqKM9i3t955x3J/TTIAdQnUbi5ufE20aJFC6SmpvK2rUbqAPNkqs6dOwMAPvjgA17eBoMBY8aM4YNPEVlZWRI9J+9X9erVQ5UqVTRJHZW/2oC5TJky+O2337iMov7k6+sLZ2dnLF++XDLJCHhGYHMDndT9P0RlK29U77zzDhwdHVUVshzibMTcvldO6r788ks+U5bg5+fHBQ+N7EqX/j/2zjrOquL945+7zSZLLV3SnSrdICKlNCIhKAh+EUSlBRERlFBJRZAOpUMQkO7upWOBhQ3Y7r3z+2N/zzCnbuzeZRec9+vFi70n55wz88xnnnlm5jWLXi/RY+Ll5YWOHTvCy8sL69ev5x4tQs+Aent7Kwqd2gg7OzvD2dlZ8Swmk0nxmzwS4tqUVPBpdFahQoV4F4i6i0KNuiC3adOGt1JFMakuXL6+vvj111/5b1HUUUtU9NSFhYXx7cDzd9muXTsMHTrUYhr/+ecfbNiwQeOpmzBhAv9eAQEBmpFV//77L/bu3YupU6di4MCB3BipRR2NXv7uu++4py5nzpxcbOTNmxejRo1CsWLF+Pl0z2bNmqFKlSqaEXft2rXDvHnzcOzYMYUXgCDBS/dQU6RIEZ5XxLSKeZCeh0SdiI+PDxdcqampmDVrFrZs2YLSpUujfv36/BjxeSzx9ttva7aVKVNG1yu+ceNGhaAh702uXLkQERGh8SCQKL58+bIiTxEmk8lQIFEepWehMuXq6op3330XFStWROvWrfHBBx8oznNzc7NL1G3evJl7+mkkI1Um1HWp9qgaQQLUkqgzmUxo3LgxvL29FSLeHlEHPPfi582b1+K5Xl5evIzTdbZv3461a9fy5/Lz8+Peu7Jly/KuYj8/P+6FJ/EvirgKFSpohBn9pkqd0ubr66t5j+oGRePGjXH48GEcOnQIb775Ji8Hrq6uvIwCaZ5TPXr16qURE6KIK1euHB8Vrh7pqX6H3t7eCAsL4/mT8o9eQ1yNnvd7xIgRaNy4MS/7ep46sZtx586dCsEi3levEe3t7c3T6u3tDQ8PDy4S9URdbGwsfv/9d6xZswZLly7FiBEjFPsnTZqErVu3Krb5+PigV69ePB/peeoGDBgAk8lkNRRLrzx6eHiga9euPG/TN3/jjTcApOVfKmMHDhzA7t27NV2ztiBF3f9jVEG8+eab2LlzJwDL3YWEq6ur7rXoGmpE0aHnyi5cuDAWLVrEvTllypThwotiV8Q+eGpBiogGWJ1J1CJUT9SJgk4PuqdonF1cXPjvGTNm4OrVq5p4PRJ6np6eOHnyJJ9GISAgwGK8HHHnzh1FHBIZBkui7sCBAxgwYAD/rSfCq1evzv8OCgpCeHg4vw69Z29vb5sLnFrUff3111i/fr3h8SVKlICnpye+/PJLzJs3j6cxR44cim/5999/o2XLlnj06JHCU0f3c3d3x3fffcdbpEZdv8S9e/f4tDeigRERu19FSJg+ePCAt+TFLn49UScO0f/oo48ApH37Hj16AEjzqA0dOlQTB0rXshYOAaTlsWnTpim2lSlTxtCrLU7HQp66okWL4ubNm5rG3owZMwy9BNagPErvgr6xtUahu7s7kpKSNGLcSNTlzJmTdwuSKF6xYgX27dvH7ZQtvQuAUoCK9/v8888xa9Ys9O7dW3G8+Izu7u6G5UUvX1IFnjt3bkXeUdtWLy8vvo2uU6JECXTu3Jnf38/Pj4t4UWzkyJEDv//+O3bv3s3fOzUMnZ2dsWvXLo0wo9/qrmw/Pz+NqFOLn5o1a/LvVrVqVcU3F0XdsGHDcOnSJWzevBlAmlMhJSUFS5Ys0dxD/Hbly5dHgwYNwBjTdMOqn8Pb2xu5c+fmjVp7RJ3aW3jr1i388MMP2Lt3L58ih4QK8DyPq689depU7lSw5qlzd3fn9S/lQ0qHXs8afW+TyYRevXrplitREI8dOxZPnz5FgQIFLHrqRO+qHvR99WyT2lHRpUsX7NmzB1988YXm2AYNGqBZs2a697CGFHX/j5Go02s1WMLV1VX3gxope1Eo6s1fBAB9+/blBaJcuXJwc3ODh4cHb3nnzp2bZzK9ilg0mmphaouo0yvo/fr1w/Lly7Fw4ULelUwFs0SJEmjfvr3CG+Xp6anxzJDhefPNN1GrVi1uKAsWLMjnZwJg6O0oUKCAwtOmZzzU30KvcA8fPlzRbSrG8FCLd/Xq1YiPj+cVvY+Pj82iTvT8qSsgvYaCOi/qeeo6deqEQoUK8Xg70VPXsWNH5M2bl7eE6R7WPFtFixZV5BW9uZUoH6vjnEaOHAkgrQLKnTs3GGOKeCRroq5Lly5gjMHDwwPLly9XzAmnxh5RB2gbJdQt7eTkpImZooYG8LwsvPnmm0hISNDMfUZxUvZw6tQpnDlzRuGlAewTdXpYCzN49uwZb1jmzp0bjRo14uXEmtgnxLwrlsm8efNi6NChmm45OoaeiSpjMdjf6P6UZ3PlyqXwMqkrU7KFetehPOTr64tvv/0W+fLl0wzA8PHxUVSeNNdlvXr1EBAQoBFmFDNFDVRR1Km9YepzxbTnzp1b8e1Fu+3t7Y2KFSvyrtVixYrB2dkZJpMJ+fLlU4gAsQyIsZAAMG/ePMO0UJmgd6cn6oy6vdU2S2/+NPFc8uqr65HXX38dH3/8sWafnqgzmUz821GaqQdJjNMmjOLTRUgUenh4YNKkSTwNlmLq6BijwUaWRF2LFi0Uv11dXdG0aVObnEX2IEXd/6Ou8Mi7oTdoQkSMfQKMPXVGQeWix0Nv1C1B6SBR4e3tjWvXrvFAYTIYevEOlox2ej11v//+O3r27IkPP/xQ08U1ZcoUuLq6asSEWtTVqVMH9+/fR5cuXRTbxVYrAHTt2pVPcGsp7bZ46vQqzenTp2PixIn8t9j6pdG3NCqLnsHNzc1mUSeODKRvQemwRdSJ8UCUNnpGX19fREdH49mzZ3B3d0eOHDlQsmRJhISEaDyjtlbeRL9+/XjwLuHs7IyTJ09i2bJliu1OTk6IiIjQ/U6AsvuHBkyUKFGCV4pio8dStyXwvAKyVdSpKxMSdTVq1ODeEELMexTz+eGHH/Lnyyg1a9ZE9erV+fNRHhK7Xy1h9A2tvYucOXMaeh2MutKN7mFrPqK8rRZ1tuRLSpvaA5YrVy40atSICwlqCADackONEjc3N3z22Wd48uQJzwsffvih7kh/Ly8vLFq0iOdvdc8HiSM9Uaf2oql/i3k8Z86cCmEv2iV6H7ly5cL69esxc+ZMxXW6d+/O7033r1atmsaODhw4kHvM9Hpw6N7A8zIl5j+1HSYs5ZerV68qGuRAmp13cXHRjeGlbybWMaIjhQZDODk5YcOGDZg9ezbPV05OTihSpAjvsRKx1rsEPM/Pavtgi6fOWlyh+rwDBw7YNIuCI5Ci7v9RGwTyRIjxVHqoKx83NzeNkfLw8DD0koiizlKQ6tixYzFmzBjekqTYI2rhWRJ1ljw0apFDI91EjEYQGqF+fio8ZAjbtWuHQ4cOIVeuXLpTTojeEiBNuHz00UeaaT/U6UyvqAPSDPDRo0dx8OBBXUFB3XI0Uq1AgQI2i7oiRYrw2B21qNPDFlFH9/bx8cGxY8fwzTffWI3zsCUGTaRBgwaYO3euYpvJZOIeDjV+fn4W3y/x/vvvIykpCX5+fjzfWku7CH1fe0VdjRo18Msvv3BvC3lQR44cycs7bevSpQuPOaxYsaLN97IXR3nqbOk2U0Pl2laRZq+oI8S8Kv5PiPmSRghv2bIFEydOhMlkUryTXLlyYd++fZgzZw6ANG8c7VenS89DpBbRevTt25fbIL1YNOC5LSMbJIq6ggULonPnzho7phZ1JDwo/Xq9LBT/LCKKEao/PvjgA93YSPJWWusu1PPUqUeJXrlyBXv27FG8V7UToFy5cprBJfnz50dycrLuqGx6FtHmUprNZjMXsCaTCSVLlsTgwYMV5xcvXlyxIhAAzJ49G/Pnz9d9XhH6duq4dVs8deopfQgjT12RIkXstr/pxX5L8IqirqApQ6u7X+vUqYOmTZsaLhui56mj4e96iKKOltvSo2DBgorpJsjYkIiz1P1qyeCr00XTD1B8X/Xq1TXdJdag51d76iije3l5GS6vBmhFHVU++/fvx5kzZ9CqVSvd8/S6X9WF0lKlSaMB9aD33axZM6SmpsLJyclw+TQ91O/CUverusIRu1/VLWpKV1hYmOHUD9a6X8eOHWu4pJo6Ler0nj171qIH68iRI9iwYYPG+FP6c+fOjbCwMLtEnbrryBqUH4oXL44hQ4bwucQoX02ZMgU5c+bEyJEj4e/vj6tXr2q8yp6enjZ16dgKGf/0euqsTf1iCx999BE8PT1tjt2h923rYDCj7le1UBLzGI0Qrly5Mh8IJFb4ZOcoD5jNZr5fnVdpVgCxe9DeLme1UCJBQ5U6CS5xMEjJkiUVSzISYn4V3wG9nxMnTmgEih6iqKN8ZOTZVou6UaNG4ZNPPtHsJ7siXkftqStfvjzKly+P8+fPY9u2bQgLC8uwUKHz9eook8nEB9EZzeFXvHhxzRJxauFnibCwME0IhSVRp+ep8/f3xxdffIEHDx7w+fXU52VWo1CPDIm6+Ph4nD59Grly5dJ4URISErB27VrN6K3sirqyosKqFkk0P5glUVe6dGk+lQGQ9kFtEXXWvIIialFHLUe9FpmlPnu9dNEkmUDaOpVqkWUNdUGnDE3brVVcamNC3yBPnjxo2LCh4Xl6njq18ba1QuratStatmyJDz/8ULOPDB/dx5aYCHXFY6n71Sju0cPDQ3NvMkh58uQxFN90PaOKbNKkSYbpVn8rddqMpj4h6tSpo5mEWISElVF4gh72eupIAKhFhuiBpvfo6+uriU0CrMes2Yta1FGabBV1NF8hkZ64HFdXV/Tt29fm4x3V/err64uSJUvyQQvWrifaNPqbri3aT/V12rVrh/DwcMX5tnjqRMqXL49p06Zh1qxZePToETp37owyZcrwQSFTp05FqVKlUKJECR7jrDfPmhpRPFGaChQoYHViaEAp6qj80SAYNWpRlytXLkWd9vjxYwDPbSyFPpjNZkO7/9lnn6FPnz52lVlrzyJ2l06ePJlPZVWmTBnNoCCR4sWLW4y/tYZeL5TY/aq2MWR7KJa7Vq1a+Pfff3nepjhx9XkvyksHZKD79fr16yhfvjwaNmyIypUro3Hjxoruw8jISLsMRlajbul4eXkhMDDQ0INB6FXAS5cuxdatW7lnzdPT09CIiBn2woULNs8ITpmICiPN2aPXhWvJ4OtVIur4JnvR634GjGMY1Khb8qIRsiTK9ESdOrbCVlG3evVq9OvXD6tWrcLKlSt1jxHnPbKG2ltmz9Q3oqeOxAd55ehdDRkyRDMvndG97UH9bI4O6s2VKxe8vb3t6j5Mb/crQSNWRYOuFstqMrv71VaRIY6EftGoPfDWoOP0ul9v3brFPabWnr1SpUpYt24dgOfi5M0330S9evX4FBNi+kTUjVx7PXUmkwlffPGFYgqTCRMm8HvlypULX331FUwmE38+SyJEhI6zdxos0Y6WK1cOjDG+go8aEpgUU6e29zQ1jtiQEc/R69I1mUyGMXr2Qt9BLHejR4/GrVu3bDpfHdPuCERPnbr+oPfn5OSE48ePKwQdYNz9+lKIuq+++gqVK1dGSEgIrl27Bl9fX9SrV093JMrLABkGqjQ9PT1RtmxZwxFAVKlSn78Y9JozZ060adNGEYRqi6cOgE2rFwDPuwXIU0ddKHpeBns9dTlz5sS7776LH374weqyYnqoM7A6kNmWWLQ1a9bwv0VRZymAXk/U6cU82kO3bt34N1aTHlFnS0ydGtFTV7JkSZw7dw5DhgwB8NyjbMsoTHtjofTQ697PCLlz57ar6xV4LtRtCYYGtB7VOnXqwNvbWxNYbokX5amzJgjoG6rTY6lcOAqqqMhm/fDDD5g9e7bh8XqeOg8PD035t+U70shBEmne3t44dOgQihUrZtUTLWKviFZj6TyyybZ46gDHiDpr0CS/lDYj26vXSPDw8NBMB+Ro6NulV5zRYCZHInrqAgICFHWq+M5ff/11jQNCHaNI2PuNM0K6LcGRI0fw3XffIU+ePChVqhQ2b96M1q1bo0GDBoZr5WVn1KPwrBnxkydPIjIyEkOGDAFjTLf7RGxVGxWmnj17Kn5THIk11N2vOXPmRHx8PD744AM8ffpUsVyRJSiNn3zyCRdSU6ZMwZgxYzBixAi7B0kA2ngxMhh6QbFGdOnShcfO2TKDOaAfU6euMNITUG7tfunpftWLqVPPsq6+DxmbqlWr8utRzKctoiOjrcVDhw5plkLKKNWrV1fMC2gL9E1t7XZRf/OCBQsiOjpaEWtF4tjIA+Zoz5hRTJ01RFEXGRmJyMhIjBgxwrDh4Ugo/1DaR4wYYTF+SU/UWZpI2BI5cuSAyWTSXU7PHlFnr6dOjaXKmcqgpXhhPeydYFav8WrE1KlTERISopkXkRg7dqxhiJSHhwcGDRpkV9rSw+XLl62uOW2Eu7s7Ll26hCdPnuDp06e6c9bZi+ipc3Nzw9WrV3kPmrVvZeSpc3QPhyXSXcPFx8drMtWcOXPg5OSERo0aGXZZZVeokuzYsSPmzp1rcUFtIO2jiR9Or9DQ3+ISJ2patGiB1NRUxRxvtqDufgWeZ0Z/f3+0bdsWXbt2xZo1ayxmKLpv6dKluefCXqOkRi1Y1J46WyvjadOmwdPT06b1dAHbul8dWbgc0f0qnrt582bNgtnisXrCggK3LVWWGel+FclovtBj6NChVlfmUENeB1u/pS2VX7du3RAREcGXFVLjaE8dkRFPHXlnf/jhh0xJmxq1p84a6u7XMmXK2BxeosbFxQVbt27VjR17EZ46W7xqTk5OuH//vsW4uL/++ksz/2N6vTjq6Yb0cHFxUczlqS4zluJpHeHZtwV1PL69WFobOD3oLYdpLTyDKFq0KAIDA9O1EoSjSLeoK1euHE6dOsWn2CB++eUXMMY0azBmd+ijtW7dWrPeqj3niwWU/ra2DI/e6C5rqD11etccPXq0ohtTz+uWGS0ItZBSe+psnRerSpUqFldeUGNL96sjsUfUkSfIUveru7u7riFVB5qL9OrVC0FBQRY9aOrK9WVn+PDhcHFxUaxraglbuvdcXFx4l3Z6r2EPju5+fRFQ+bU1ZkztqRsyZIjFd2wNvSXfRGxptJBtSK+Qsnae3hRNIuL0GentfgXSJujN7PKcFXksO6BeQxiw3YauWrUKJ06cyLzE2UC6a7yOHTvyZZ3UzJ49G927d7e58GcH6KOlN81qIw0oY6Fsxdb4onz58iFPnjwWY6lEY3H16lXdSRoJR3wrdSC1kafOVlFnL7Z0v2bG/Wxh2bJl+OmnnzTdP7YIQvVIVxFPT098++23FisGmuw3I0ba1ljPF4GXlxdGjRpls2C3Z5SyEeLURraMULSGUfertXJoacb6zIbKr72eOltFy7Bhw9KVLns8dfT+7PVC2XMPe0mPqHNzc0tXfrbnnP+qqKN1ZvVEnTVPXa5cufDWW29lavqskW5P3ahRozBq1CjD/XPnztVMXJqdoQrCVoOlRk/UpcfVb6unrn///lZbrqInSW8AhaOZPn06KlSooBkKT+mgikhv+Sl7GD58OJ+DSsSWKU0ciT2eukKFCvF1DgH7DLktXayW+PDDD9G3b990C9xHjx6l+97ZAUfEUZKo++uvvzTL/WQEez11NHURLa/0Ismop84SGWlUGs1TpwfZ98yIqUsvL8KDnp73+18Vde+99x4KFy6s+NbqFWBsZcGCBXyU94tCTj78/9Akh+kVP3qudKOZzi1h61BxT09PvpSZES+6uy137tx8Rngg7VmCg4M1HruMeuqmT5+uu11P1PXo0QN37tyxGDuSXuwRdWrsEVi0FmJ6hZXJZMqQx9IRnqmsxBGijr5B6dKl7V7vVY/0DpTw8vLKsh6Q9HrqMtsO2eNFy46i7kWOjLSHrPAGZwe8vb01E3Lb6qlT89FHH+Gjjz5yWNpsQYq6/6d+/foOMZZ63a/0f8GCBfmklUbYO72DLWl5kSNvRLZv344DBw7w32QkMjJZpCXoeUUB4+7ujm+++Qbbtm3DmTNnMuV+GekGsUWo0VxSL7O3LCtxRBc8eeocVT7TG1OXlWR292tGsUWoke2xN00ZiX97kdd0JP9VT50eL1NcshR1DsKW7teHDx9avY4juwuzWtQVK1aMr5UKZH5MHbnI9Z533759ePbsmUPvl9EC/uuvv9rUlUeizhEeov8ijvTUObLRBdgfU5eViEtz2cKLEnX07myJsaS0p1fov6zdr4Q9dcF/1VOnR3o9dVlB9k/hS4KeqCPDYY9Qc6QAs+VaVEk5aoZwS9g7+tVeLA12ycgcWUZkVDQPGDDApuOkpy5jOFLUWRvJbitqe0H/Z2dRlzt3blSvXh1jx4616fj0xiHZy7x58/D666/bZMPIU2fvqPjsNlDCXtKTr6gR7uTkZPP6wK8qLyovOwIp6hyEnqijAQEvar4fNeQ+tzSgolWrVvjzzz/5CMnMJLM9dS8aS55BR5LRmLr/Oo4QdUuXLsX8+fMdNkWO2l5klTfdHlxcXOwKYXhRXVYFChTA6NGjbTqWPHXp/Y6O9NTo1RmZhXoGAlugd5SampqtGxsvAump+w8SGxsLAMifPz/fRpVxVom6HDlyIC4uzmJBNplMDl8lwIjMFnVZVTFKUZe9cURMXf369Q0XTc8Iak/dq/SNO3bsiPPnz2fqtEL2kl5R16xZM1y5cuWlEN969OzZE0+fPrVraTyRl/W5HcXLFFOX+QsG/scQV4TIalEHPF9eJztA3a9605FIjKEKSAYup4/s2LpWe2ny58+PhQsXYsaMGVmZLIcyfvx43tjNLqQ3pm7GjBkIDg52aFp+/fVXjBw58oWEvri4uGDYsGHZsiy8DEhP3X8Y0Vi0aNEC5cuXt6l1FBAQgCdPnmRm0rIcV1dX3Llzx+GLwqt50V0FmS2a165diy1btmQbcf6y4YjJhx2NXtfbhx9+mFXJyRRMJlO2a4iQgKIVXmzFxcVF0QvjCIoUKYIpU6Y49JqSzIGWWpOi7j9E7969NZVGnjx5LK7iIHLz5k0exEuBv68ixYsXz7RrZ0Wl/f7776Nnz56Zeo+SJUvavT6q5DnZ2RC/DN05rxLDhw9HiRIlULNmzaxOiuQlYunSpdi9e3e2ahgakX2t3UvGH3/8kaHzxVF1AwcOzGBqJC+KZcuWZXUSJFbIjqKOPHXZKd7sv4Crq2u648ok/13y5MmDbt26ZXUybELG1EleOf7rI7UkSrJj61rmUYlEkhlka1F3+vRpNGjQAI0aNUKXLl34FCFr1qxBnTp10LRpUwQFBWVxKiXZhexYeUuyDzJ/SCTWWblyJX777besToYknWRrUVeoUCHs3LkT+/fvR6lSpbBx40YkJydjxowZ2L9/PyZNmpQpa3pKJBJJZiI9dZLsSvfu3dG/f/+sToYknWRrUZc/f34+esrV1RUuLi64ceMGKlasCDc3N9SrVw8XL17UPTcxMRFRUVGKf5JXG1pGy8/PL4tTIpFYRoo6iUSSGWRrUUfcv38fu3fvxjvvvIOIiAjFGphGi8NPmTIFfn5+/F+RIkVeVHIlWUS7du2wZs2alyagVfJiyJ8/P1xcXDBo0KCsTgrnyJEj+P7777M6GRKJ5BXDxLJBk/Hx48e6qxps3rwZLi4uaNu2LX777TeUKVMGV69exQ8//IBFixYBAOrUqYOjR49qzk1MTOST/wJAVFQUihQpgsjISLkwukQikUgkkleObDHWP3/+/Dh06JBme2pqKjp06IDx48ejTJkyAIBSpUrhypUrSEpKwsmTJ1GlShXda7q7u2fpSg4SiUQikUgkL5JsIeqMWLt2LY4cOYLo6GhMmjQJgwYNQteuXfHZZ5+hUaNG8PDwwNKlS226lo+PDyIjI1+ptRUlEolEIpFIiGzR/SqRSCQSiUQiyRgvxUAJiUQikUgkEollpKiTSCQSiUQieQWQok4ikUgkEonkFUCKOolEIpFIJJJXACnqJBKJRCKRSF4BpKiTSCQSiUQieQWQok4ikUgkEonkFUCKOolEIpFIJJJXACnqJBKJRCKRSF4BpKiTSCQSiUQieQWQok4ikUgkEonkFUCKOolEIpFIJJJXACnqJBKJRCKRSF4BpKiTSCQSiUQieQWQok4ikUgkEonkFeA/I+oYY4iKigJjLKuTIpFIJBKJROJw/jOiLjo6Gn5+foiOjs7qpEgkEolEIpE4nP+MqJNIJJLswurVq9GiRYusTsZ/jpSUFGzcuDGrkyGRZBpS1EkkEskLpk+fPti9e3dWJ+M/x8yZM9GxY0ecOXMmq5MikWQKUtRlQ8LCwpCYmJjVyXgpuXr1alYnQZLNYIzhu+++Q1hYWFYnhWMymbI6Cf9JKA/IMByJPTDGkJqamtXJsAkp6rIhefPmRYcOHbI6GS8dBw4cQIUKFbBjx46sTookG3H//n2MGTMGw4cPz+qkcKSoyxrovcsBcxJ7mD59OlxcXLI6GTYhRV02RQoT+7l79y4A4M6dO1mbEEm2girwpKSkLE7Jc5ycpOnNCqSok6SHtWvXAgDMZnMWp8Q60rJkE/bs2SMDeB2E9IJI9MhOFTmJupehkniVkO/dOmaz+aXpanxRkO1ITk7O4pRYR4o6BxEYGIhbt26l+/zmzZujY8eODkxR9iM1NRUmkwnz58/PlOtnp0pbIrEEiYuXoZJ4lZCizjqVKlVCgQIFsjoZ2ZKUlJSsToJVpKhzEOXLl0epUqWyOhnZGhr8sXr16ixOieS/BFXg2Un0kzc5O3UJ/xeQ3a/WuXr1KkJDQ7M6GdkKyi9S1EkkAiTqMjue6FXrfp05c+Yr90wvkuxoiKWoyxqkqJNkhOxoS9RIUSd5YWS2qMsKQ/3TTz/h0qVLmXqPRYsWAXg5DEp2hN5bdqrI1d2vNO2K9JBkLiTq7I0ZS0pK4gOxHEVISAhmzJjh0GtKMo7ZbEZkZKRim/TUOZDTp0+jQYMGaNSoEbp06YLk5GSsWbMGderUQdOmTREUFJTVSVSQ0ZZ3VlQ8GYkFtIeEhAQAr5an7rPPPkOjRo0y9R4eHh4AgJiYmEy9z6uKIwzxqlWrUKxYMQekJg21p+7Ro0cYM2YMhg4d6rB7SLSkN5ZxyJAhKFGihEPTMnDgQHz++ed4+vSpQ6+rx927d+Hs7Iz79+9n+r1edqZMmYKcOXMqhL8cKOFAChUqhJ07d2L//v0oVaoUNm7ciBkzZmD//v2YNGkSJk2alNVJVPDo0SP+9+PHj5EnTx67WngvOoD32LFjKFWqFLZt25bp93pR3a8vmsxuveXIkQMAEBUVlan3eVVxhKfuq6++cmiFqBZ1VO5fBk/Ay0x6Rd3hw4cBOLbRTfbwRdj8HTt2wGw2Y8+ePZl+r5edXbt2AXjuhACkp86h5M+fH56engAAV1dXXL9+HRUrVoSbmxvq1auHixcvZnEKlTx+/Jj/feDAAYSHh2P9+vU2n/+iM829e/cAANeuXXP4te/fv48VK1bw369i9+uLgDx1WTUL/u+//46jR49myb0dgSNEnaNb6nrdr+L2V4GQkBCsXLkyq5OhgMR0er+jI+1zVoyAlrG51qHvEh8fr9knRZ0DuX//Pnbv3o369evD19eXbzeKjUhMTERUVJTiX2ZCs02Ly3uRGI2Li7P5OnoZKTPJzMDh1q1b4/333+e/X5Soe1GGi1rYmX2/rPbU9e/fH3Xr1s2SezsCRxhi+tb2lGVLUBkgTx2lMbtXuk+fPrXZVnTv3h09e/bMVo2tjIo6Rw5seZGDZdLzDV4GAZMZUF0uRV0mEhUVhV69emHx4sXIly+fonJzdnbWPWfKlCnw8/Pj/4oUKWLTvUaOHIkKFSrYnUYqoKKoc3d3B/C8Ijhy5AgePHhg8TqvUhdbeHi44ndmi7oX3XX9okYuZrWn7mXHFk9damoqFi1aZJiHHC3q1BU6/W9N1CUlJaFZs2aZ4lm3RkxMDHLnzo2ffvrJpuNp0Ed2msg2vUIqMwQY2cH0rPNtMpkwYcIEh6VFD0fl9ZcN0hSiqJPdrw4kNTUVPXv2xPjx41GmTBmUKlUKV65cQVJSEg4fPowqVaronjdq1ChERkbyf7YOqJg6dWq6FoXXK/TUGqTCUa9ePdSoUcPidRwt6nbu3GmxcGamp44qQvo/s0UdFTi9gjdw4ECHe0FsrYgzSkZF3f79+xEQEPBSBPnaQnJyMpYvX25znrXFEK9ZswYffvgh/vrrL939me2pszUv3bt3D//++y8mT57skHTYA+W//fv323Q8vTNbhNCjR4/S/W7v3LmDoUOH2pQfKE3pLQvpEWBGZETUAWlhEfZij62KjY21+/ovmg0bNsDNzQ1Hjhxx2DUtibqXwYZme1G3du1aHDlyBJMmTULjxo2xfv16PuJw7NixGDt2rO557u7u8PX1VfyzBfqg9mZotZEGnhdW0VhZm7LAkaIuMjISb731FoYNG2Z4jCMFyb59+2AymXhhUBt1R4m6+Ph43YqaCpy478qVKzCZTFiwYEGG7qmHIw28Jcjjm968MXXqVISEhLwyXuBffvkFvXr1sjnOzxZPHb0bI2FBedlRFZ26G9BWUUddQ1nhMaC02rqwuT0VYaFChfD222+nK12DBw/Gzz//jGfPnlk9lt7by9z9mp6wj/Q02imvX79+XRErnp24cOECkpOT8eeffzrsmrL7NZPp3r07wsPDsW/fPuzbtw9du3ZFt27dcPToUezdu9fmblVbuHPnDgoWLAjg+QACW9ETdTR6xp4WqCMrXhIdDx8+RL58+dC/f3+HXVsPEk5PnjwB8NyQUDocJeo8PT11KwAy1KLBplFrmYGju19///13tG7dWrOd3mN6PXV0/quyNBJNAWFr/Kktos7aQAV6dzNmzMCWLVtsTqsR6e1+1cvjLwp630YhL2rs9YpZ8gAyxvDNN9/oziRgj3jMTqIuvZ66jPQQ2OupS0hIQNmyZR0+nYujoGmexFknMorsfn1F2LBhA0qWLImQkBAAsHuiSb2YOj1PnZpnz57h+++/579trbhjY2MRGBjIf5vNZnTu3FkxGpgMl5OTE0JDQ3Xd9ZRZM7P7Nb2eut9++w0mk0nXANOwcxG97tfMDNK2xxhHRERg8+bNFo/p378/duzYodlOz59Rwf9fXb3AHlFnVOlRXl6yZAnatWuX4TQZdb9aKxuU5xxVudhTGZIds9VTZ0/3qzU2bNiAr7/+Gh988IHhMbaIfHpv2SGmLr3XpDxgi0C7cuUKRo4caWjnb968iStXruieGxsbywdpidN7ZCfIJgYHBzvsmiTq6JlXrFjB62Up6l4iLl++DOB5gUmvu1nPU2epMh45ciRGjRrFf9tacffo0QPly5fnv589e4a//voLJ06cQMGCBTFgwACbCr9ehRcTE5Oh2CG6pjqWzl5Rt27dOgDQzO5thF73a2Z6p+wxxv369UP79u3TZRToufQmHw4JCUHTpk0tTmBK3/ZVEXX2jnK2JVDfWpeWoxsH6uksbPW+OFLUbd++HYUKFcK5c+dsOj6jnrqFCxemq4v13LlzeO+99xTX0sMW4WGLp+7WrVuaa1kSYOktV+n11NlzfOfOnTF16lSef9VloXTp0qhYsaLuuVkVUxcbG2t1QCFB9aUjPXVi92twcDDef/997uSxt9ylpqa+cLubaaLu6tWrWLx4MfcmBQYGYtCgQejXrx/+/fffzLqtw7A3Q+u1AKnwxcTEGGYGdQGNiIiw6X4nT54E8Nw40UhTyogLFy60SdRResVKy8fHB6VKlbIpHXqQQTQSdbGxsVa9VsHBwTz41ZZYGUC/a0pdGdtaOTdr1gxLly7VbI+NjcXEiRORkpJiV4uZJq4Vv3fDhg1tmvSZnkfPmF++fBl79+61GF+WEVFnTRQHBwfj9u3bdl/XEdgq2O3x1BldM7NEHX0T+sYvUtSRV//OnTs2HZ9RT92AAQPw999/a46z9m7FRp2lb26Lp45EjSVRV6pUKXz00Uf897p167hNe/bsGQYPHszrh+XLl8Pd3d1mGyWiF7JjC5QWe7pSKd/Y0+1sJB6Tk5MNGwJ79+61eSCNES1btrQ5rEoUdY4qo2L3q7qcie+vXbt22Lt3r2L/tGnTFN+lS5cuPCb6RZEpom7Hjh2oVq0aRowYgerVq2PHjh1o2LAhbt68ifv376NVq1bZTtipM0RMTAzc3NzQuXNnm85Xt7iB54UiPj7eZve1rVMVuLq6AnguAknUifch740lz5ieqAMy5s5Wz5Su7n7dunUr2rdvb9EQNmrUiLu8bV1GxxZPna2V4b///ovevXtrtv/888+YMGEC9uzZY5cxpsqE3gFjDAcPHsSQIUM0x6q/Bd1HLw+RUbNl/dn0DOywVgkULFgQr732mt3XJU6ePKmYoNoW1LGa1rDlm9MxRuXU0dNyGMXU2dP9GhUVhaSkJKxbty5dFZq9MVn2euqMYt3U381aORLLsJ6oo/vY0/1qlK9pPzWSbt++jU6dOuHGjRsA0rrf586di9WrVwMAD5eg+ftMJhPWrFljNR2AfsiOLdjTmCTIlhq9a71eAKNQoDFjxqB69eq6jo+pU6diypQpNqdLD3tGskZFRcHNzQ3x8fHpijk+duyYpn4RJx9W2w4xxGfLli04ffq0Yv/ChQsBPM+n9iw84CgyRdR98803+OKLLxAeHo7FixejR48eGDBgAHbt2oXdu3fjyy+/VMSRZUdiYmKQnJxsOMWBiNlsVnilIiIisH37dsVACVsLrq1dIdRapgxJok4USvXr1wdgXPjnz5/Pl425efOmbjxXerDmqSMsdXGTEQWeP9Py5cvRqlUrw3P0YurUlUBGR6ySt8JkMtllXNWiTjSu6gpZnUaqgCyJOgof0CMjnjqx8vv3338d7rF6/fXXFRNU24OtDSVbPHUkCPSuyRjLtJHO9g6UEEWdn58f3N3d0alTJ2zYsMHue9s7nZHaU/f1119btONGAyUobpmw9m71RF1SUhIGDx6M8PDwdIk6o7JAQoUqdrXYofP1RD7df9asWVbTId7DkaIuJSUFu3fv5r/pGLITSUlJiu9N31LP227UmCYPr54QjIuLQ1hYmE3P4QiioqK4V+/kyZM2NW5F6tSpg7Zt2yq2UX7Vc8bQ9ydnino/5c8XvYiASKaIusuXL6NPnz4A0tyP0dHRPCYCSBvReuHChcy4dbrR89TZiigikpKS0K9fP7Rp0wZff/01AMueOrFgurm54fz587rHpaamKrpJqDCS4CFRpxeLYFRRDBo0iLcq9UZerl692q7YOnXL02j0K0GjZK1BxqVXr174559/DI/T89SpW1rWDGhQUJDFSo6u5+zsnC5PHeUDqjzu3r2rETVqgyAaGTXUNWXJmGUkYF08p1mzZli7dq3d18gs7BV1W7duRY4cOZCamop58+YpxAblcyPh7OgAabXgyWhMna1hG3rYKurUnrpvvvlGEQ9M19q6dSsYY4b5Tt2Ys/Ydxe9E1zx06BDmzp2LGTNmaNJnCXpvM2fO1F3Ll7w99IzqtKvjhUUbR+da6p5+8OABv296u18tibqpU6eiRYsWuHnzpmI7iboRI0YovMEBAQEAoDuPq3ryeILuq+cZc6SoU+fLo0ePolevXoptUVFRfMaK5s2bo3LlynbfRz1QhL6HFHVGN3BygoeHB3LmzMm3+fj42Bz8nlXYIuri4+Px4MEDhdFJSkrSxKjYKurKlCljWMAXLlyIkiVL8qlWqPtV7anTE3XprZC6d++OsmXL2t0Va9T9qn4Htoq6jMTUqQuXJVEXGBiIokWLKtarVBsW0RuYke5XsetCvT6m+j3Z4qk7e/Ysqlevrntve7srRdTP6MhRZuk1/hnpfk1ISMD27dvxySef4JdffuHbSdTpGWOjfPr3339rWvm2ovYY2Svq1N6vjHS/2hqbSO/I0vE7duxA27ZtsXr1aoVwFb+B+n3q5evvvvuOp0/8JuoJzUUsVaT379/Hli1bFB42vXhWsvsk6tT1AL13ug6994SEBF4WLYm6IkWKoFixYopncORACRKM6q5RowF4FO9FAk3MR0aeOrX3TyQ9om7ChAm6jVL19+zduzeWL1+u+PZRUVEoVKiQJn22zEtK14mKisLkyZM18ZaWRB3VSer9dA1bRd2QIUPw888/A0gT5I6YNzZTRF3x4sUVLYWjR4+iaNGi/HdQUBAKFCiQGbd2GOouAjXffvstPD09UaRIEY2oUxscW0Vd7ty5De9HmYim8iBR16ZNGyQlJVkUdXriw9ZK4MGDB3ZP4WBr96utou7UqVM2ZXa97le1p9GSQSQvqThVTK5cuRTT29C14+Pj7TLGoqfu1q1bOHTokOYYo4WkbRF1QFrXvaX4w4x66iwRFxenGzoQGBiIfv366TYsRO+AuD8+Pt6ikLcUY6iH+t5U4dFgI7onXTM8PFxR+RvZgt69e2Pr1q02pYHYsmULtm3bxtOk7o631gATB19lFHun1KB3ZOl4mlz96dOnClEnVvTqcq9Xjn799VcAac8plgd1xWsymSx2v1I+atu2Ldq1a6ew1bly5dIcT++VyqLaG0XOCHXeE0Xd4cOHeZyXJfTisEUYY5g9ezZu376NTZs28WesV68eAMsNAPVobqN4MxKg9Nxi/jOyJUbvBkizA7GxsTaLGsYYJk6cqDs/Z2xsLC5evAiTyYTAwEBe51FaGWO6og6ATXGNYj01duxYHstni6eO8tWhQ4cUDV0jT51RQ2jHjh04fvw4APDl9zIa4pIpom7QoEEKo1ipUiVF6+Xvv/9G06ZNM+PW6UYdI/Hw4UOLx48bN47/rR4cof4o8fHxhplcLJh6RoagDH3s2DEAypZ6UFCQ3aLOnoBwtSvfGuru1xYtWuDjjz+26Kl7+PChYZqMBtWoC4pe96stnrrhw4fjjz/+QLdu3QCAz80EpLnZxclm6dpxcXF2TQIqeupKlSqFHj16aI7R80wA+iKGuo/EmBIAOHjwoOa6joqpA6CIFRUZNmwYqlevrhHR5cuXx+LFi3WFkdgNJ4qUyZMno02bNoZpovunV9RR2RbjECndcXFxyJMnDy/f165d42n39vbWva49c3i1a9cO77zzjmaaGvUoWCMo/6pXprHkPUtKSlIIWMKeWDTg+TuylI8on7u4uCjyndj4UIsFvfdHnrKHDx8q8pToXQHSyoyRd2T79u3IlSsXAgMD+T5x6gt614wxBAcHIzQ01KqoIzur3h4XF4cxY8bw6yYnJ1udFsvSqHYgzT5++umneO2119ChQwc8e/ZMIY4t2R31u1B71RhjqF69Oq5fvw7geT4U8196RR1g3HWrRhxVrKZVq1bYt28fgLSGPdWBorBOSUnh3a8ibm5uVu+tfkdqO0mTL4vQ+6H0Hj9+HAULFuR50Gg5QS8vL0ybNk1zv0ePHvFGJmmkjM4JmCmibuDAgRaN8uTJk/kokeyC+kUazZNz8+ZNjXuZ4hKAtAyhJ4xs6W7W89RR5qFCSX35YoG6d+8eL0R6MXB6RtgoPXoFWe/Y27dvIzY2FklJSRqjpPbUAWktb3XXnSjqChcujH79+ummySit+/bt44LzzJkz3PNjb/frzJkz0bdvX/5bbZDEaRhEUZdeT50RZCwtdb+GhobCZDJh+PDh6N69O6KiolCyZEkwxuDh4aG7Eoo93ZVxcXEaz7PIrl27MH78eM151H1iFBOqVwGIlZ5Y6Tx48IBXNnpkVNRRxX7p0iUwxnDv3j0+fQ2V++3bt+Pvv/9GuXLlsG7dOjg7O2umWaDrpmdSaPW59nrq7BlssGzZMrz++usa77C9Hk9bPHWUz52dnRWeOvEdRUREoGTJkmjZsqXh/UnUPXjwQFfUkR00m82Gg1woT164cIH3DImzC0RHR2PevHlwcnJCwYIFUaBAAauijt672iadPHkSO3fuVGxT2xHRHk6dOpWPjBRDMkSbqL5HYGCgovGjJ+qorFvrfk1KSlJ41uk5bRF1lrx/9C3EOvL69eswmUzcIyVCzyOml9792bNnFYNz1KKOnknPU+fm5gY/Pz906NBB9xkA43g4egdhYWG6HllAK0LJphg1MBISEjB9+nTFtsjISMTHx2tEXUYnmZeTD/8/6o9ntEZr6dKlUa1aNcPr6HW/AsZxYZa6Xx89eoRcuXJhxYoV/EPT/9HR0Zg4cSKAtDgKSy0ja912InrxEHru4Ndeew1FihRB7dq1UaNGDQDQdCmpUQuOBw8e4Msvv+RxILSkl3oYuJGoa9asGTp27AgAqFmzJh9EYclTZ0sFpq4w//77b2zcuBHAcyMUHx+foZg6PciY1apVS9GqE0WdWCmFhoYiKiqKr2ucM2dOiwHztqTXy8sL7777Lv+tZ7j1vG4kwk6dOsW3id/BmqgT90dFRSE8PNwwvfQN0zulCXnqSNCRhxZ4PgrQycmJv+tTp04hb9688PHx4ceZzWaFMLt37x5u3bplU3rENKlFna2eOjWW5tWkMrB8+XIAwIkTJzBs2DDFlEu2YMlTRxP20r7U1FRFTC09p5eXFyIjI3Hnzh0eSiKWydTUVKSkpCg8dXoxdWLFTvvVz0HlIjw8HPnz5wegbKzHxMTwqUno3pQPz5w5g08++URjJ6nypu1kG/UEkLoOEaf6GDlyJP87KSkJSUlJ8Pb2RuXKlbF06VIsWLCAe6mIq1ev6nrctm3bpjvQb+LEiYaeRXX3vT2eOrpXjx490KBBA8V2yiNiPUINPb1eBD27IA7koPfk7OzMRY9a1IlOFcLd3R1RUVG821oPdX6hMkR5WE/UDRw4EI8ePdLYWTrX0kCJwoULY8CAAfwdUV6ic0m0SlHnIMSPRy8X0G8NWeqaVQ8ZJ0jUqeehEo/NkyePYh8VjE2bNvHMHxUVBcYYoqOjkTdvXgQEBCg8dXqIBZjuZySUjMSs0TNduHABV65cUcSYJSQk6B6vFnU7d+7EDz/8gGHDhgFIW9N13rx5do2w1PsW9nS/qn/nz59f8Q5oDjYSj/QdDh06xNfSFe83ZswYTZ75+eefeTotiUrxvK+++or/LYo6sSVPcTxUefn7++s2HtTdCjExMbh27RqCg4Px7rvv4vz58zh69CgXnhQntnLlSrzxxhua61H5EL8x5VWaimbv3r2Goo3ElNF+yptGMZeWph/RQy3qxIr93Llzitg+UdTR+wgPD0dAQICi+1Wcw2rhwoUoXrw4SpUqZVh+jNJEzyrG8agHWi1fvpynOT2iju5BNmLIkCGYNWsWv8+ECRMsThVEGIk6CikYNGgQ5s+fz9Oj56krWrSoxvaIz1SzZk3kzZuXH2PU/WqLqKN3cv/+fYXdbdOmDQoXLozo6Gh4enoqzhFt5bx58wxj0dQVr97oUXVeGDt2rO61EhMTuW0MDQ1F7969MXDgQAwcOFBx3LVr1xTvzmQyYdu2bXjnnXc0U2+dP38eEyZM4L0j6udQ5xe9mDq1LVmyZAkeP36sOPfQoUOoUKEC+vbtq3Bo2OIciI2N1Z3jUm8exPj4eENPnZ+fn+Z40ZZ+8803GhF29epVzUTY6lAIPVEHpDVg1e+GzjXqfgXSGgoLFy7E1q1bce3aNXzxxRcAoPHU0bf67bffUKxYMR5yZStS1P0/4scTPWaiwLMWwOjm5qYwwCKUCdQVvmjQxMEkwPMuhidPnvAMHBkZyadYyJUrF0qUKIHbt29bFHVigU5MTMTVq1f5iBs1RpWSOPxfr3v54MGD/Fk2btyoO+9RSEgIbzGLkEckMDAQn3zyCdasWYM333zT8HlEYmNjNd9Fb6oKolGjRorj1RVM/vz5FZ6oVq1aYfTo0QCUwdBr167ViKVly5bhu+++06SBprbRu5+IWPGIlY0o6sTvEB8fj/DwcB6LKXrqLl++zOeTEr2ECQkJ6N69O8qVK4e5c+diw4YNqFatGurWrasYEHLhwgXD+bYWLlyI7du363psnjx5gtu3b6Np06YYMWIE3y5WljNmzEDx4sVx5coVlCxZEkDaAIKAgAAkJiYq1nP85ptvsHr1anTr1o17yhzR/UrlumPHjnj48CF69eqFsmXLKiprOi88PBz58uWDl5cX3yeKuqlTp/Ltts6mr17Pl97l9u3bUbJkSZw6dQq3b99GUlISevXqhe7duwNI+4Yk4kUsiTqyPU+fPsWoUaOQN29eAOCe7bi4OItTBamvo264UnzoH3/8wfPchg0buKdHFHVFihTRVIjidzx//jwiIiJ4GQwJCbHY/RoZGWk4cpnK2u3btxX7XFxc4OPjg5iYGMU3BbQeLCNRJ3b/AraJOqJ48eKK3zSBtDWCg4MV+ZMxxusaSieVdXWoi1qEqn/b0v3ap08fVKlSRZPXrl69ij/++ENxTVHU0XdQ1xuiV1/crzcBd0xMDC+zoaGh+OGHH3j69MqD6ED4+uuvMXToUMX+SZMm4X//+5/mHsDzdxAaGqprYyIjIw1Fndg4Mwql8PDwQPv27bF9+3YA2vkf6T3+9ddfuH//PurUqaPwKFtDirr/Ryz0ZPSAtI/0xx9/4Ntvv1WMitRDDLAkaEUKPU/d5cuXeZcIAD7UnaDunIcPH3KjERUVxSv2okWLonz58rhy5YpFUScWtvj4eDRu3FhxXxGj4ehi/IW61VOmTBksW7aMi7p9+/Zh0qRJutcpXbo0ACiWTtFbUJqOM2LSpEno168fkpKSNGlOSUkBYwwJCQm6bvAHDx7g3r17uH79usa4+fr6KoxxxYoV8dZbbwFIqxz0XOP03OJi448ePUKbNm3w3nvvKQJ59WLeCDFv+Pv787+Tk5Ph7OysK+pCQkJ49wN56mJjY1GpUiVUr14dN2/e5PnxypUryJEjB/fEqQ2WmL+rVq2qG1xPDBgwQFdIPHnyhBtb8fyoqChutKkb5sqVKyhTpgyAtCksQkJC+OAPIC2m5uuvv0b37t2xZs0axMTE4ObNm7qrp4g8e/ZMITr0ul/9/PwU77tRo0aKOa5Onz6tCKrPly+fYk42vcYEoJzEdcmSJfjjjz/w8OFDbsAJtahTd7vWrl0br732mqLcA2l5Te3Rp3vpvY+kpCReee7btw/ff/89T4vaE5qUlIQtW7bg7NmzmusAz8v9P//8o5hJX2/WfDF+j7pf3d3dkS9fPkUZCAwM5N2wIqKX1Fr3qxgSoZfeoKAghTB0cXGBt7c3oqOjNaEyYtn38vIyFHUkmsjm6815J14rLi4OHh4emDlzpqaxdPHiRc18f3qEhIQoGoXJycn8uT788ENs2LCB/1Z7e43iSomYmBg8e/aMT0avdw49k9HIazEOVrTJ9LdYR129elUjVNRzBIoMHjyYe/ZnzZqFL7/8kq9Eoyfq1Csz7dy5E3/88QfP23pTqIirbuTIkQNhYWG69ceOHTs0ou7SpUuoUaMGv4YYK6cmNTVV8Q6Nul/F+GS119YSUtT9P6JBLFy4sGJf3759MW7cOLRv397u65LLXc9T98477yiOzZcvn+I3DRy4desWd8FS/A6QJgIrVKiA06dPIyEhQSEEREQhEhcXZ3G6Fr3WZe7cuTFy5EjexarO0B07dsT+/fsV73Dt2rW6AaxUcYpud73K0Zqo6969Ox/cIK4+AaR5CXr27IkcOXLoxphdvHgRxYsX13hmgLQ5FMX3U758eb4O7o0bNxQt4GnTpqFSpUowm82abrGgoCBs374d69evV3h+9Vr0QNo7EEWG2KWQlJQEHx8fJCQkKLxpsbGxCAkJ4fmGPHUHDhwAkGY8SpcuzQ2ZehCDegoSOs8WaOoCkZYtW+LJkyf8/YmGvXfv3jxWjyrCR48eab7zvXv3+DfRM2SlS5fGiRMnAOh3RT59+hS5cuXCwoUL8fjxY/Tr10+TzqSkJHh6eioqdD8/P81ACNGbHRAQgDp16vB3JMZEiZBXyGw2o0+fPujbty+6dOmCNm3aaCpDPz8/TferGhoIFBYWhsDAQEydOhV37tzhU34Q4eHh+OGHHwCkVegk2Lp27cq9h9bmo6tfvz7atWuHhg0b6u4Xy72tnnTguafO19cXfn5+itH05cuXN+w1CAgIQHh4uEKQJScnY8uWLVwIhoaG8nRRWd+/fz8+//xz/vvBgweaaVF8fHwQHR2taQyLHktvb2/DAXN3797FoUOHeKyt3nFiWfXy8kJCQgJy5sypsfPqpaaMCAkJUdgr0asNpE0sTEJJTyiLqLvbY2JiUKxYMcWAMSPU+bhmzZoAlEIpLCwMM2bMwNWrV7kdCA0NxZUrVxAbG4sKFSrwrnri4sWLePz4seFSedT4p/dK31dP1Kl7RJ48eYK+ffuiRo0aiI2N1V2OU/S2FSxYEImJibrzcs6fP1+zdvmnn36qaAzFx8cbemqNusJFT929e/cUjS5xRgZrSFH3/4iCxGgxYbV4MIK6IypVqsQ/Bn0gsfWjNihiIDah7q6NiYnBnTt34Orqivz586NixYpcFOmJKDVGRorQy8QjRoxAYGAgihUrhqJFi3IjOnToUGzevBlFihTB48ePFe8wPj4ejRo1UlzH39+fixpxwWw9rIk6d3d37qHSmx5k1apVAPSXzxLFuXplEx8fH0UFW65cOeTPnx/58uXD5MmTFS3cXr16YeXKlXBxcVHMbA8oxVtERARq164NQNtCJtRxiL6+vjh16hT279+P5ORk+Pr6IiEhQTcPUiVBnjqjkaNqY6IeDWnPUlPqluiff/6Jpk2b4smTJzyvR0VFwcfHBz4+PkhNTcW2bdsQGhqqeL9FihRRNEbu3r1rc6CwnmeKvFJ///03vv/+eyxevFg3JkUdS+Xn58fz0cSJE/H6668r9tM7pjy3evVq3fK2YMECeHp6Ktb0pQqGxCiRK1cuTferGsqrjx49Qvny5QGkNQAGDBjA57UiwsPDcfLkSZQsWRIlSpRAamoqFx22QJ5V9dxwQFp5EsWHuiuN4kv1+OijjzBmzBgu6mztNq9YsSJu3LihaGRFRESgXbt2fBsJCS8vL+7JadasGWbMmIFly5YBSCuLhw4d4j0hz549g7e3N2JiYhAeHo5evXrx0c/iM3p5eemWt969eyM2NhZvv/22Ynu9evXw6aefAkiLj96xYwcOHTqkmBTc399fE9hP4kS95Jp6EF1ISIhihG1SUpLCXuuFvNiCn58foqKiFPZBXT5E1FO1VKpUCU5OTrzr3cfHBzt27MDnn3+OL774gou6Bw8eoGLFirrrXQNAw4YNUaBAAavln97X/fv34ebmBnd3d1y7do1/b2usWbNGt7yNGzcOT58+RXJyMh/89+OPP+peQ+/8Tp06cbF3/fp1wzpM/Xzk9Ren61mwYAF8fX3h4eEB4D8i6kaMGIEGDRqgZ8+e6Zp/S40lT529rFixgrfkqHBQl5fZbEZMTAx27NihqWT1RF2BAgU0RvDChQsoXLgwnJycFHF4FKth5LEDni9UrYaWqhJH8FWtWhXffvstHxYeGhqKkJAQzJs3D0Da3GRt27ZFgQIFkJycrBEsLVq0UPwuVKgQPvvsM7Rq1Qr/+9//cPjwYezZsweLFi3ixpCoVauWJo1ioLqHhwf/Tpa6NPXc56KwVrdMRWF1+vRpFChQACaTCWXKlNF0RwYEBKBy5cpo0aIFH7lLiGkKDQ1F27Zt4ePjYyjqIiIiFJ6n5ORk1K5dG40bN0ZycjJ8fHyQmJiImzdvombNmnwZPkoHkOapu3DhAj777DNuDETUHlp1vrpx44YiBMDDw8MwLyUmJmLnzp0wmUy4c+cOOnXqhICAADx79owbdyCtS5q6FVJTU7Fp0yZFec2fP78izvLWrVs2L0138OBBnDlzBhcuXECvXr3w4Ycf8gEtYveo3oALPVFXq1Yt7N27F6NGjdI0OkjUFS9enFe2gwcPVhwjTp9AZQR4nm/Voxnz5s3LBz7pxVo6OTlZHOGrfoarV6+icePGANLyvdH0Mpb4888/AaQFdYvoNZxEypYtq9nWtWtXhTDx9fU19MLoQaJOb+UHQGnnqlatisePH+Ovv/7SjfkFnoe3PH36VOGpU88bSQ0wZ2dnhbetR48eePjwIf/uavtduHBhntdGjhyJyMhING3aVOER1/PUEQMGDFD8XrZsGfea1qhRAw8fPtSIOiN7Yg+5c+fWjNy2tCpGQkICqlSpwn/7+/ujUqVK/DsVLVqUX8/JyYn/TV27e/futZomtSdaj5s3b3IvXZkyZXiPCmGU1z788EPDa/78889ISkpC9erVDafYMuKDDz5A27ZtkSdPHk0jXyQ6OlqRR1NTU3H37l1ev9y5cwc7duzAu+++iyZNmgCwc1Uo9hJy5swZ1rNnT8YYY99++y1bsWKF1XMiIyMZABYZGanZt3XrVgaA/1u8eLHit6V/DRs2ZAUKFGAA2KBBg1jv3r0V146NjWWurq42XctsNmu2+fr6MsYY+/vvv9lvv/3Gt3fs2JExxlh4eDjf9tlnnzEArFSpUrrXL1myJAPAnJ2d2QcffMAWLlzIADB3d3cWHR2tOAYA++qrrxhjjEVEROhej97l0aNHNftWrVrFEhMTmaenJ982ZMgQw+8zdepUftzGjRsZY0xzzRIlSrA8efIwACwqKooxxti+ffv4/hUrVvC/W7Rowf8uUqQI/7t06dIWv8Hvv//O/05JSeHp27Fjh+ZY4rPPPtNct3fv3orf8+bN05xfs2ZN1q1bNwaAX//XX39lw4cPVxzn5ubG3nzzTf5727ZtjDHGChcuzACwW7duMcaY4h4FCxa0Kc9R3qV/lCcAsNy5cyveXY0aNRTH5s6dm3344Yf8PVy9elVz/YMHD/K/8+XLx0qWLKm45z///MPKlSvHADAXFxdWtGhRm9LdpEkT/vcbb7zB/y5TpgwDwPLkycM+/vhjBoCZTCaWM2dOxfkNGjRQ/A4MDFTkx7i4OEVe2LNnD99H23bt2sW/e4UKFVhERATz8PDQpJXKgLe3t2L7kCFD+PfVe8bZs2frbm/atCljjLHly5dbfEcFCxZk7u7uuvu8vLwUv8uUKcPKlSvHEhISmIuLC5szZw5jjLFp06axL7/80ur3WLduHQPAKleuzNq3b88A8Pcvpvvw4cOsZcuW7OLFi1avOXHiRM22ypUr878bN27M/x40aBBzcnLSHF+7dm3+d69evRgAVqhQIfbZZ5+xfPnyMZPJxJYuXcoYY8zZ2ZkBYDExMaxZs2aaax07dowxxlhISIhuekeOHMnq1KnDALB79+7pHnP+/HnDb6e2eVu3bmVVqlRhABTfwMPDg/3yyy/M3d3d0Nbb869Lly6G+/Tys5ubG7t//z6rVasWA8CWL1/Ovv/+e75fbfsAsHr16vG/6TvR+Xr/fv75ZxYUFMRiYmIU20U7CKTVCcS5c+cYAFa1alUGgOXNm5cf5+/vr7BtRv/eeust5ubmxmbPns3mz5+ve4yvr6/u9jt37jDGmK4Ny5cvH//bqEyq/82bN49FRESwjz76iAFgY8aMYYmJiYZ1KLdPVo/IhsyZM4ctWbKEMcbYqVOn2ODBgzXHJCQksMjISP4vKCiIAfqi7tq1a2zw4MGsTZs2DAC7f/++7ktesGAB++WXX9iSJUv4tg4dOrC2bdsyAOz69eu66aXMpq5YLBXqDh06KLYzxtjdu3f5trFjxzLGmEIIHjp0iAHglX3z5s0Vld9vv/3GihcvzmbOnKk4t1KlSiwlJUWTngkTJvDjRHFG/8xmsyZdbdq0YadOneJpJqNUt25dFhoaavhNSZC8/fbbiu/8448/8mu3atWKlS9fngHgmTs0NJTvv3v3Lvvf//7H6tSpw5KSkvj2HTt2sP79+7Np06axx48f8+0kAIy+gZq3336bAWBr165VVPJz587VXIfSKaZB/L1lyxYWFxenEfJLlixh48eP11zv888/53/fv3+fMcbYxo0bmclkYvHx8YwxxlJSUtjRo0fZvHnzeF6w9o8aAvQvOjqaHTt2jAFgnTp14oILAFuzZo2mgaLO81988YVif2JiIv977969mvtfvnyZFS9enAFgc+bM0U2jWgwBacKW8rl6+86dOxmgrJCqVavGTp48yWbOnMkApSAAwIKDg3Xz5cKFC9kXX3zB87qYP5KSklhoaCj79ddf+T6xUWTtX3BwMPvkk08M9x8/fpydPXuWG3V1vvzrr78YALZ69WrdRgcA1r9/f/bkyRO2aNEiBoB/P7J1AFjXrl2Z2Wzmz1i5cmXm4+PDfvrpJ8O0VahQgQFg69evZ6dOneL21cvLi/Xo0YMB0IjBv/76S/Fur1+/zs6fP89GjBjBzp49y8aNG6f4XoMGDdLc96233uJ/Dx06lP+tVwaBNBtFAm3EiBE8X9DxTk5OLCQkhDGWVg+cPHmSMcbYpEmT+LF//PEHq1WrFn8/ZrOZ5ciRQ3Ov+fPn82c2m82KskP/7t27xxhLq5/U+xhLc1K0bNmSAWC7d+/mAmHDhg38uNjYWP49xX/Tp09nTZs2NSxvS5cuZZMmTWJLlixh+/fv52Vg6dKlGpFP/z744APNtnr16vFvGBgYyMxmM4uNjWUfffQRmz59Ort+/ToDnjeg33vvPfbvv/8qrlG8eHFmNptZ586dde87cuRITXmj7WL9S84dxhg7ceIEA8A++eQT9vHHH3M7IJYZyqfiv127dil+u7q6suDgYHbkyBHdtJG9Uv8jJ0D9+vUZADZ+/Hh2/vx5BqSJz8jISFa2bFl+/D///MOWLVumuEbHjh3531SPimWbHB6WeClF3eTJk9mGDRsYY4zduHGDde/eXXPM119/rfvi9UQdkZyczJKTkxljaRmpfv36/G8xY6xatYpv69ChA7t06RKrWbMmi4uLM7z2kSNHeEuBPG6jRo3i1/njjz8YY4y98847/F7bt29nW7ZsUVwnIiKCtW7dmrcKxPSZzWYWEBDAli1bxh4+fMhCQ0N5y0btiSBCQ0PZs2fPFNehf9OmTePHvfbaa6xgwYLMbDazJ0+esHXr1vF9ooF68OCB4vrUIiXhYcSePXsYkOZVE4mPj2dLly5l8fHxLD4+nu3cuZNVrFhRt5J9+vSp4lzarhYeefPmZY0aNWKMpRVysdXMGGPvvvuu4nsTjx8/ZtOnT1fcm7HnxsTSP1HcqK/dp08fvn3RokVs2rRpPG8BaRWoKEZtxVJ6evfuzVxdXdn+/fs16UpKSmITJkxgz549457Ezz//XPEMEyZMYGvWrNHckzw2ffv25ftnzpzJFi9ezBhj3NMq5tmaNWsyALoG99y5c+zTTz/VbL916xYLDAzUbH/69CmLiorSbK9ZsyZjjLGTJ0/qvo/Y2Fib3+uuXbsMjWtgYCAXBGRDjL4BMXLkSMV28ig9evSIMZbm7T99+rTmvKSkJO49Yoyxw4cPc2/1H3/8wS5fvswrGhIF5EWjxlKOHDk0zzBjxgyr+ZmE5sWLFxljzxuIpUuX5uLpu+++48cbiWYROn758uUsOjqaHThwQHNfsQEpeqapt6VatWp8Oz0bVe6iCNy9ezf/PnrQO5g+fbrufn9/f03adu7cyVJSUrg9DQ4OZvfv32crV67kx1APA2Np5VP0+hBUL+zevZvvF/M0Y4w9e/bMMD89evSI23XaN3DgQM0zTJ8+nQFpjbUPPviAeyqB5960Z8+esQcPHijuM2rUKKvf8sKFCyw2NpYdOXKEJScns7CwMMU1vvnmG8ZYWp1LvUQAWHJyMhs+fLgiv4je2R9//JExxlinTp24HSASEhJY586dWVBQkOIdq23m+fPnFXmLsTTHBOVbshVms5lNmjSJLVy4kCUnJzMgrQeoRIkSFsszCdUTJ07w88qXL88YY6xhw4a8jDOmrTtE7zaVXdHJRI4WS7yUom7u3LncU3fy5MkMe+r0OHXqFBcJX3/9NXvrrbf4PmohA1C00q2RmprKbty4wcxmM1uyZAl3LQcEBPBjEhMTDT1+RuhlXII8B9HR0VavQ91+ZLB27tzJ97Vo0YJ169bN8NwVK1YohJ69mM1m1qZNG/bbb7/ZfS515yUlJSm2z549m3Xp0kXjsk5OTlZ0rTKWJjboGycmJnJvmK1MnjyZfwexy6dv375s69atjDHGBZL6W5nNZnblyhUGgO3fv5/98MMPDAD75ZdfGJDWlc1YmkAWv4k1RGNRsWJFxe9Lly4xxtKEAXlEChUqpLlGTEwMO3DgAP9NgsOIpKQkNmfOHJaQkKC7v2fPngxI81SeOHGCMZZmUJcvX67wWl66dImXLb2urISEBJaamspGjRrFvdHNmzfn99m4cSNbtmwZmzBhAgPAqlSpwve9/fbb7LvvvlN0E6mFekah665Zs4YBz7tcNm3axH7//Xc2evRofqzay3TmzBlN/mSMsVKlSime0R7+/PNPBqSJPX9/f7Z+/Xq2efNmhVddJC4uTvPOO3fuzDZv3sw++ugj9uzZMzZ27FhFOk+cOMGCgoK4sBTFrS2Q0BQbC2azmR0/fpx7yRlj3Nu6detW5uHhwaZNm8aio6PZmDFj2MOHDxljjLVu3ZrbI+op6du3L08P1Qdiw1WEwkH0Gi6MPf++t27dYjNmzGBVq1blHj89UlNT2c2bNzXXqFatmq4o69ixI4uLi2NLlixhr7/+uuKexIMHD9j8+fNZQECA4TsuVaqUxjFAkLA5e/Ysu337tiLcQF0u/P39Wf78+dnHH3/Mrly5Yviclrhx4wY7evQoe/vttzWNKEv5JCkpiSUkJLDg4GDudImKirKpLu/YsSNr37697r6uXbuyVq1a8d/UMGjSpInu8XFxcVykAdrwAOLOnTusd+/evD4C0rqTGWPcQz5mzBjGWFr+3rt3Lw9H6NSpE/P09FQ0NkS72LJlS6vP/FKKOnVM3cqVK62eYymmzl6io6NZu3btWFBQUIYrg+3btytaG+mhTp06rFatWob7bDWqjDF27Ngx9vDhQ95NQDx58kTjCcsu3L5929A4vyiCgoKYm5sbGz9+PIuIiODeWLWht2S8qIIcPXo0A9K6BfQqd1sRDU5wcDDvCgCUntPk5GRWrVo1RZeyESkpKRY90taIi4uzWCkYvZ+nT58yANzDqiYhIYEbfJGIiAj23nvvsblz52r2paamsoSEBIuVcXp566232Pjx4xljac/cunVrBqR5HtWIXWtAWkyXo0lOTmZLlixhqampLCoqyia7ValSJUW6bM2LJKLIA9m4cWObziNRsX79es2+lJQU3jiLj49nP/74I0tJSbHpOcjT8f7777NNmzaxCxcuMMYYW7ZsmWF9QGnfvXu37n4KCciI/d+3bx97/Pgx++KLL9i4ceOsHj9v3jzeoyPy7Nkz9vjx43SlQfQcMpbmLV20aBFvBBKxsbF2ebPtxR7xn1lcvnzZJuFEscXEhg0bDPOJGvLEkcgjqBE1atQoFhsbq3FElC1blr3zzjs22d6XUtQxxtjnn3/O6tevz3r06GFT8KAjRd3LREhICDt06FBWJ+M/iV6X8/Hjx3UrdhGKLaKg6vSi1+LODsbTEkbpM5vNrF+/fuzq1atZkKqM079/fwaAd82JpKSksDlz5nCPaXbh6dOn7Pjx4+z27dt2NejMZjObM2cOe/bsGYuKirLJPjOWJjznz5/PUlNT05tkw/RMmjSJd2fbAjXKjBrc586dY8uXL3dUErMdT58+Zbdv335h9/vuu+/s6oXIDEhYUWiXEZGRkRbjwy1x9uxZw8bC9evXNb1N6cHEmJW1r14RoqKi+GSfepMVSiTZhdjYWKxevRr9+vXTXXvYVurXr4/Dhw9jw4YNfLqNw4cP4/bt2+jVq5eDUutYnjx5ArPZjAIFCmR1UhxKdHQ09u7di3bt2hkewxhDSkqKYmlCSdbAGMONGzf4iicSiaOIiYlRTM/laKSok0heURITEw3XCpVIJBLJq4fxDIMSieSlxt3dXbHGrkQikUhebV7aFSUkEolEIpFIJM/5z3S/MsYQHR0NHx+fDMUpSSQSiUQikWRH/jOiTiKRSCQSieRVRna/SiQSiUQikbwCSFEnkUgkEolE8gogRZ1EIpFIJBLJK4AUdRKJRCKRSCSvAFLUSSQSiUQikbwCSFEnkUgkEolE8gogRZ1EIpFIJBLJK4AUdRKJRCKRSCSvAFLUSSQSiUQikbwCSFEnkUgkEolE8gogRZ1EIpFIJBLJK4AUdRKJRCKRSCSvAFLUSSQSiUQikbwCSFEnkUgkEolE8grwnxF1jDFERUWBMZbVSZFIJBKJRCJxOP8ZURcdHQ0/Pz9ER0dndVIkEolEIpFIHM5/RtRJJBKJRPIq89dff+HSpUtZnQxJFmJi/5H+yKioKPj5UsuA2AAAyoZJREFU+SEyMhK+vr5ZnRyJRCKRSByKyWQCABlm9B9GeuokEolEIpFIXgGkqJNIJBKJ5CUiISEBFy9ezOpkSLIhUtRJJBKJRPISMWTIEFSpUkXRzSq7XCVANhV1p0+fRoMGDdCoUSN06dIFycnJfN++fftQpEgRNG7cGM2aNcvCVEokGWPv3r14+vRpVifjP8fgwYMxceLErE6GRKBq1aqYPn16VifjpeHs2bMAgNTUVL5NrCf1ePDgQaamSZI9yJairlChQti5cyf279+PUqVKYePGjYr9Xbt2xb59+7Bnz56sSeALIjQ0NKuTYBcnT55EiRIlkJiYmNVJSRcpKSkYPnw4wsPDX8j9mjZtiq5du76Qe0meM3fuXEyYMMFw/8WLFxEfH5/p6TCbzQgLC8v0+7wMXLhwASNGjMjqZLw0kJgThVxcXJzh8bt370aRIkVw7NixTE/bq0RSUhLy5s2L/fv3Z3VSbCZbirr8+fPD09MTAODq6goXFxfF/nXr1qFBgwb46aefsiJ5L4R///0X+fLlw+nTpy0el9ku94SEBFy+fNniMRs3bsS4cePw448/4u7duwgJCcnUNGUWZ86cwcyZM1+IFycpKQkAcPfu3Uy/l8R2GGOoUqUKBg0alOn3+vbbb5E3b16kpKRk+r2yM69qt+HTp09hMplw5swZh1+bRJ2Ydyw1RI4fPw4AePLkidVrh4SE4PHjxxlMYfZi+vTpfGSwPURGRiIsLAzffPNNJqQqc8iWoo64f/8+du/ejXfeeYdvq1WrFq5du4Y9e/Zgx44dhqInMTERUVFRin+2EhwcDLPZnOH02wJjTNcjR0Lq2rVrhucuWrQITk5OSEhI4Nt27NgBX19fhVs+I3z00UeoVKmSxWM6duyIb7/9lt/Tycl6toqLi+PCJrvg5uYGAC/E00iTYDs7O2f6vV4UV65cwZtvvvnSemoBICYmBgBeSBD6P//8A8ByZfxf4FV9/qtXrwIAli9fnuFrJScn46+//uIC2F5PHYV52DKdV0BAAAoUKJCR5GY75syZA8C2vBYbG4t9+/YBeC6aHz16lGlpczTZVtRFRUWhV69eWLx4MVxdXfl2b29vuLm5wc3NDe3atcP58+d1z58yZQr8/Pz4vyJFith034SEBJQuXRqbN29WbF+wYAFee+219D+QitOnT2PhwoVYtGgR8uXLh7Nnz+LOnTt8PwkjS+Jy5cqVAJSF+ZtvvkF0dDRiY2Mdkk5qZdriTSBDoyco586di/Hjx/PfXl5eaNy4sUPSmBFMJhMWL14M4Pk7fxGihBoZL7uoO3bsGLZv3w4AmDx5Mo4fP4779+9ncar0mThxotWJWSMjIwFAYXMyCyrblirj/wIRERFZnYRMxREN7Hnz5qFz5868+9SaqFPXGyTqstornJqaquuZDQ0NxbBhwzB79uxMSWNAQAAA2GSbBg4ciCZNmiAlJYU7HqSoyyCpqano2bMnxo8fjzJlyij2iR63gwcPolSpUrrXGDVqFCIjI/m/oKAgm+79+PFjxMbGaroQR4wYgdu3b1vtKrh27ZpNXr5atWphwIABOHXqFACgRo0aKFmyJN9vi6ijVocoQshAOkqY0POK3kAjqDDqBewOHjwYkyZNUmw7evSoA1KYfsgw/vLLLwCev7MX4UHMSk/dli1b0LZt2wxfZ/Xq1ahTpw7atGkD4LmXKzvCGMOECRPQvn17i8eRqFOHfGQGUtSlQe/8VYPKg7X6QD1YijGGmzdvKraRTSVRQrYrf/78vEtVzEfqRj3FCWe1F93FxQVjx47VbP/tt98wa9YsfPrpp9i7d6/D75s/f34AtoW7UO9YYmIirwuioqKy/N3ZSrYUdWvXrsWRI0cwadIkNG7cGGvWrMHHH3/M973++uuoW7cuChUqhIYNG+pew93dHb6+vop/tkCxBGoR4+7uDgAWu3EjIiJQrlw5TJ482aZ7AWkeKz2o/98WUSemlUSdLSLMHmzJ0CTSLI3CslVcZyapqamIioriXQwkXEVRt337dphMpkzrGrJH1P3444+aeJCNGzeme+Rsnz59sHXr1gzHMomjFTds2MA9zfTOrl+/ju+//z5D93AU9G2teU2seeqSkpJw5MgRh6SJynbJkiXx8OFDh1zT0aSkpODKlSs2H88Yw59//mlX+Ioo6jIzvo4xZlcYjh6pqalYtGgRz0dmsxk3btzQPZaey9K7WL9+PXLnzo3bt2/zbStWrEDp0qV59y0A5MyZE8DzwXNiPiYRIoo69RrnZCvsbbAyxmwW3cHBwZqG3aFDh2AymRS26tdff9Wc6+fnZ/Ha4eHhivdhD0ePHsXff/8NwDZRR/VXYmKiot7z8PBQ5M+UlJRsOaI4W4q67t27Izw8HPv27cO+ffvQtWtXLFiwAADQv39/nDhxAkeOHMEPP/zg8HuTqFNX5h4eHgCAatWqGRZSKlT2tDTUou7PP//Ejh07eMvKXlH37NkzTfpv3LiBzz77zNBgTpw4ET169LCYTiORKBpJSrOe4ShatCiAtLgrvXTEx8c7dIRRVFSUYQXu4+ODfPnyaWIZqQAnJiZyw2NJOJnN5nRXQvZ0v86fPx/Ac2OTmpqKjh074oMPPkjXvWkQktpYd+jQAX///TdOnz5tGNYgInZJvPvuuzwOLS4uDhMnTkTZsmUxatSodKXR0VAlZ62xI3rqYmJiFMcvWbIE7u7uqFevHo+HM7oGhUZYQizb9+7ds3q8rVjKk2azGSaTCb///rvFawwcOBBlypTBl19+iYoVKxq+t/j4eJhMJh6usmXLFnTp0gVr1qyxOb1iPsyo6Hr06JHhwC4KybG3O/Tq1au8PGzatAkffvghVq1aBSCtbJYpU0bx/YKCgjBs2DDewLbUyF23bh0ApQij6UrEUfhkm6jMiXmHvo0o6tTvkcRWYmIiHj58iMTERH4fS8yePRs5c+a0yQtfqFAh5MuXT7Ht559/BgBFo0XPM031ll7aAaBZs2aoUKGC1TToUbduXf7+goODNfujo6MxcOBALFu2DMDz75U/f36NV1FM+//+9z8UKVLEsLxdvHiRD1B5kWRLUZeVWPPU3b17F87OzrpTEdAHt2cqEqpgiS5duqB169Y8M1mKL9ATdfS3uG3AgAH46aefNK03YsKECdxIqRG7X81msyY9eqJHz4hRd9Zbb72Fbdu28e3U+hoxYgQaN25smEZbYIzhr7/+gtlshp+fH0aOHKl7THx8vK7nURR1ZPiNYhOTkpLg7OyMhQsXWk2X2WzWGDJ6Tlu6+ciAk7Gj/9Pr9aQ8px4Jt2nTJvTu3Ru1atVCtWrVFPvOnDmDUaNG8TyXmppqOEIuMDBQMWWIOs8UKlQoUxpkRiQmJuL1118HYPw9CaqIXV1d4ePjg8qVKyM4OBjTpk1Dnz59+HGBgYHc46umT58+6Nmzp8WKkDGmaPw4MoYvT548vEtcDT3/H3/8odkXEhKC6dOngzGGBQsW4MaNG7yhZVQuydZRw8OoUWwJMabO0nn79++3+v3KlStnOLBr7dq1hvdISEjQtQlRUVGoUKGCpjyQh4ZEFnkzW7RogdKlS2PWrFnc+2bJ03Xr1i0AaeVp5cqViIyM1G0U03OTeBSF6fr168EYsyjqyI5fv34dhQsXRtu2bVGrVi1N2tQChRovcXFxVuPRyLaKdomeLy4ujqdZT9SFh4ejdOnSmrQ/efIEz5494+83owMYqRt1yJAhXDQfOnQICxYswIwZMwA8r7+Sk5OxadMmxfliOaCGm5For1KlCt58803N9qNHj3KnwaxZs/DXX3/ZlPbNmzdrYv31kKJOhZGoI08doRdwTZnVkXNPiXFzmzZtUmRqPVFH6G2zFpB84sQJtGrVCkFBQZrWbEJCApo2bcq7AQg9I6vO5Bs3blR0L3z66af8b2p9UQyJXktKj8jISPTp0wdBQUH82hs3bkTnzp258d6yZYvmPD13ORkyMqZJSUkaIaWGCveGDRuspnXo0KHcI3v//n2YTCbegrNlpLCRqDObzcibN69hBW4EiToxbtRo5HJISAgWL16M7t274/vvv8fJkycBpFXmRgZWHPADKLvuGWN49OiRpgVcuXJlmEwmfP755zY/x+zZszF48GBs3LgRGzduNKx0rl+/zrtdrHkcqJKj7u6bN2+iYMGC+OqrrxTHhYeH47PPPuPdRhcuXMCZM2eQmprK851RrNyBAwdQoEABxQjblJQU7N69Gxs2bLA47YTZbMbo0aMtThv09OlTHj6wdetWxT5LjYlPPvkEI0aMUNgJOt5I1JGHhZ6V/lc3Vjdt2qTb7QYoRU+BAgVw6dIlrF27VmFHk5OT0bhxY3zyySd82+jRo1G9enX+OzY2VpPOoKAgXuap3OiJuly5cul6gtTln/IFvSMK4bh58yb/hpTfSTSIXig1JHrCwsLQs2dPfPLJJ9wO9enTBx06dODPJl5TbCgtWLAA69atsyjqqHzPmzePp9dsNmuOE6+xZcsWnvYLFy6gWLFiWLt2LVauXMnTrYfo1KByFxUVZdFjGR4ejoCAAHh6eirSlD9/fhQvXpwPdLBnuqw///wThw8fVmyLjIzEuXPnMGfOHIwfPx5bt27ldTk1rCylU7QflG/tDdGpW7cuDycbNmwYOnfubNN5CxYs4IP6LCFFnQoSdVeuXMGwYcOwe/duHD582CaPSnpEnbV4BcowS5YsQYcOHfDdd99p9iUkJGhaWKKoUxsiIw4ePIh//vkHRYsW1QxQSUhI0G0p2yLqOnbsqPitF9dA3ZC2zo/0/fffY8mSJShatCgflUznkuHTE0xGYnzTpk2KmDoygkaijgo3pXvixIkwmUxo2rSp5tidO3fy9JEoWrp0KQBtrOLdu3cRHh6OY8eOITAwEMBz0Ul5hdKUmpqKsLAwPvrUVnLkyAFA6amjvKt+Zx9++CH69evH8w49t6XRYGpRJ+ZFegZfX1/Mnj0bs2bNAvD8u1Br2RY+/fRTzJ07Fx07dkTHjh1Rv359xf5Hjx5h4MCBds0FSOmzNnghLCwMS5YsAZCW36tWrYqaNWti9uzZhh6JhIQE/Pbbb2jUqJFGuAUFBaFFixZ499130aVLFwBp3/fUqVOa+KkpU6ZgzJgxuulSl/F169bh3LlzCA8PR2xsLMqWLQvgeb41m81cnOt1UVNeMxJ15KlXizoxBvTevXuYPn06pk2bpnsNtdD+8ssv0bVrV8U8pHTM9evXceDAAQBp3annzp3jx4izE5jNZjx+/BhFixblMx/Qs8TFxWHXrl0Kb2V8fLyi4UmI5TMhIYF/c3rPJMCuXLmiqdxJgIiibvjw4WjXrh3/TXUFPV9YWBi/5q1bt7iniOws3VfdoIqOjlbUO2q7Rc9B+Y7uR9/r77//RvPmzRX5p127dlwUUY9KYGAgevbsqWvniMjISDx8+BC7du3i+ePx48fc7ugRHh6OXLlywcfHR5P2qKgoPtDhyJEjNg/I6tKli8YmREVF8WeeO3cu2rZtiy+//BLA83dqSdTplQOy044ib9686Natm2Z7XFycprGkhxR1KkgYbN68GbNmzUKLFi1Qv359jXjR+7hUqO0Zkm1NaFEGpFGyly5dwurVqzF69Gh+v5s3b8LJyQm7d+9WpOXy5ctYtGgRn3PH2r1EA3b79m1cvnxZd/Sr2FqyJOpiYmJsjjmjSsbIU6duoZE4IsRJjy3Nl6cXu3Tjxg106NCBtz4vXrzI38WAAQM0o3aB50aRxD51N+7duxdJSUmKmLTy5csDSIuVIYNNBlg9DUGJEiWQJ08e1KlTh59H75DiBEVRlx7oXYeEhCAlJQWTJk3irWtRbKxYsYJ7OahiskXUqUWUmHeofPn6+uLTTz/FsGHDNOVlxYoVit9btmyxySP69OlTxMbG8rT27t0bCxYssBj/9u+//6JRo0b8N4k6S54IIK0SovInVqaioI2NjUVqaioaNmwINzc3NG3aFB999JHu9cQuqxs3bmD8+PFwcXFB7dq1MW7cOJQuXRoTJ07k+cfIS6qe1/LJkyeoXr06evfujcuXL2saI5988gkCAgIQHR3NrylWmqKoGzJkCGrWrKl5D4BW1G3atAnr1q1DWFgYihcvjoMHD+L27duK/H7w4EFs27ZNI34pqP3Ro0eIjY3F6NGj+Tc9duwYGjVqpIg3I1ss5t2IiAjFXGurVq3ix8XHx6Nly5bo27ev7jsUEW3i4MGDuciie5H9CwkJMRR1ou2aOXMmtmzZgtDQUIVtpPfMGNPtBlaLOnXZ9/T0xNmzZ1GjRg3F9Qh1z43a/ly8eBF79uwxXE2HuuEp31hadSciIgL16tVDy5Yt+bbr168bHk/Xy507N3x9fXXrVvLUvffee2jdujWGDRtm0/dTExUVZZh2ese2eOrEb/Tmm2/i7t27GDRokNWBE2K8vfobPnjwgK8yoxeTKkVdOjHyFD158gRDhw7lv8nItG3bFtu3bwdjLF3xYNaE1q5du3iLnY7v3r07pkyZwitD6roU+///+OMPVKpUCR9++KEmzUaoW0C3bt1SiLpcuXIBeD4x8q1bt3QrP+q+9PHxwZQpUyzekyCjoyfqLl68iICAAIVHSh3LV6JECS6syKCZTCYsWLBAEbNgqdBRYY+JieFC+Pbt24r59QhLo1dHjhyJatWqcYNJrcwFCxZo8pdYoRl5eKmyPXjwIFxcXHja1EYhJSVFN57z2rVrirxJ3/nIkSPYunUrxo8fzwOaRbHw/vvvc0+IKNSB9Hvq6Ptaiid7//33Fb/btWuHd999F4wxMMYMjW7ZsmXx5ZdfIleuXAgMDOSjsU+cOGGY1qFDh+LAgQOaSUatxSuGhYXxc9TdhERcXBweP36MgwcPIjk52eIUPmLXcXBwsKIhsWvXLty8eRMTJkzg9sJogI063SSQgoKCFL0NdP6aNWsQFhaGw4cP828vNtRIqERHR2POnDk4c+YMAgMDMWjQIKSmpvJyGBMTgxMnTvDYp1WrVqFTp06KkcKMMcUIxoYNG+Kdd94x9IquXbsW3t7emDJliqaSE0WLOr8B2rjmHj168DxnzQsbGhrKy5ZYeS9atIj/ffz4cUWs7LNnzzTCicr6w4cP+fUofOXEiROKMtm/f38AaeVPr/eGvkloaCg6deqksX+JiYk4deoU6tSpgxw5ciAqKgrPnj0znJKKtsfFxeHHH3/k4QV67xJ4PqCD0qEejS/ajcjISE3j2Vrv1cOHD5EvXz74+vrq9o6Io2MPHTqEWbNmcU/r4MGDuf2yRmRkJMLDw3Ub/LaIumHDhuHHH3/UjMQ9efIk5s+fz9+T0Shj0cNJXeF0zyJFiqBu3bqK41evXs3L/AsVda/KMi+WRqvExMSgcOHC/HdERATCwsKwdetW9O7dG71799adAyspKQkNGjQwnBbAmqg7duwYFixYwFs6lgq8KNpWr16tOe79999HYmIiGGN49uyZJkBTLepEgdW8eXOeoW7evIlHjx6hVKlSGDBggOY+ycnJPJ16Adl6kBEW7/ns2TOsXLmSj5wSv42lliK1jE0mEwYOHKiIWbAk6iwZnh07dih+W4pNIi8dGTYyqJs2bVJ4sZycnBQVjNG0FmQwyTtJ31ZdOY0dOxb58uXD06dPsWfPHl4uy5UrB19fX/Ts2VOR9g0bNvCKx1bvsiVRRxWv+h3riTpLU3jUqVNHd/vVq1cxb948uLm56VbMJUuW5JXS3r17+eAmS6KOjDs9l62DT8TvKHpiIiMjuYcoLi7O5qlKLN2XGnQuLi68jDs5OWHv3r08HdeuXQNjzHAgwYULFxSxl5RvKdYzJiaG5zMxTo0QBcjChQsxf/58TJgwQdH9+sYbb2g8qmoxoTcyNS4uTnegiGiP1M8l2kFbRJ2I2qMm5qWLFy8iX758fOCH0VROwcHBOHXqlELUqa8bFBSEvHnzIjU1lb9ves6wsDBFA49EH2NMYdt8fHyQmJjIbd/Tp0+5cBCJiYnB7du3UbZsWfj6+uLYsWPIlSsXPvjgA4wcOdJw9HJcXJxiGTNrniZR1MXHxyM+Ph6rV69WlAG9Os1SnOidO3fw4MED1K1bl4s6dbyfkdAKDAzE3LlzMXToUKtOC+C5p44cFHrPpmcLSYydPn0au3bt0swOQOWcbI1Yl5jNZly7dg3FihVTnCPGllM5Euu4uLg4dO/encffxcbGvjhR5+7unu45ZIwYMWIEGjRogJ49eypUb0pKCvr06YMGDRooPGeOoEqVKhb3ixX4o0ePkDdvXgBpH5CGQxNkIO/du4dDhw4ZztcVGRmJypUrc3HUqlUr/O9//1Mcc+fOHcTGxqJgwYK6BYYMmLXWUExMDAoWLIh69eqhW7du6Ny5M8aNG8f3qz2Naq8ZFfg7d+5wb5EeycnJPJMaVWqtWrVS/KZCLxqHTp06oWfPnvy9T5s2DeXKldMYPjV0Db3WmCWj9eTJE3h7e3NXv0jr1q0BpBl9FxcXXpHoiTr1uq6iQb18+TJ8fHzQsGFD9O3bl1cKmzdvxtdff62bLjqfnpniz9Rd0mTsBw4ciObNm2PXrl2KynDlypWYPn06bt26hcqVKytEh62jymJiYnD+/Hnd9XEpFgwAKlasqEn/jRs3uHgxagi6ublp9lEr/dKlS3wqjkOHDimOoZFz9D0ePHhgcboY2kd55OrVq4iIiNAVV3pTx4geanGesqCgIBQsWBCAUtSJE4vrYYuYzJkzJ6+4KH6zRIkSCA4ORrly5TBr1iyLo0NFEUHPT0IkNjbWYh4QbQNVLN9++y2v3CyJBpHLly9rhFJsbCz8/f0V2/r06aPoqt6zZ49iv1ghPnnyBF988YVivyVRR2UZ0IooilUMDQ3F/fv3DRsYQJp31ZKoS01NVXRXm81m/n3CwsJ0B3KpPXU5cuTAxIkTLS4XCaTZhuTkZPj6+sLHx4fPZrB8+XJMnTrVMA7tn3/+UdhEa6JOfFeFChWCj48PunfvrlgrWe1FfO211zSNwNKlS3PRRmW5YcOG8PX1xdWrV7FgwQKFd85I1FGICqCsa4waqeSpy507t8YhERsbi/Pnz+vmZfFbhYaGarqTqbeMRJ1Y1uLj47Fy5UqLo4f16m4q648fP0a+fPlw584dx4u64cOH6/5LTU3F999/z39nlLNnz/JuiwoVKig8Slu2bEHhwoVx8OBBxMXFOWwiUKMKlXBzc1MYGSM3NUEZgyoos9mMwMBATYaPiIiAl5cXevfuDSAt1kjtgiWDWqlSJYWoc3Nzg5OTk27shhFPnz7F0aNHudfn22+/5fvUI+UePXqkW/nevn3b4r1EUWfU1VGiRAn+d3x8vGKQg9lsRv/+/fHvv/8CUE7Tcu3aNVy4cAGxsbGGgbdk0O0VdSEhIXB3d4ePj4/u/idPnuD3339HamoqL7wuLi48cJugZydRFx8fz+dvunjxIlq2bIn9+/fjrbfeQlxcHA4cOID27dvrGvmEhAT+zdV5Tux+PXnyJN9PsZVjx47VxKeNGDECABSjcenZbSE6OlqzuLWesBW7DxMSEvDkyROUKVNGd5oZkTx58igq/T59+vBK7t69e7wioO4qomDBgkhKSuL57cGDB4aj0r766iukpqYiNTWVdyPVrVsXn376qW7+yJs3ryJeVY04+ObmzZsaT52rq6uuqBM9Z7YsX5QjRw7NaFPg+Tq1+/fv1y1vRnF8K1as4HnVmqgTux7F1Q7U3mg16sbXtGnTNJO4BgUFaURdyZIlFdPi0PJYhCjqjx8/jh9//BFAmj1zc3OzGB4gCtSePXsqGq9iGVSXHb3riL0keu+gVq1a/O+QkBDFtFdUFkXMZrMifcnJyTbNCED209vb2+aJ9oG0ic0PHjzIf1sTdfReTSYTnj17xm2QKKLVMcj+/v6a73Hz5k3eexUWFgZvb2/kzJkTefLkwblz5zRTHlnqEiXE92QkYslTlzt3br70GpGYmIhq1arpdp16eHhwQRUaGopnz54hT548fD817G7evIk1a9YoxPzHH39s0QlB11RD1zxw4ADf73BRN2vWLOzduxdnz55V/KNYibNnzypGI6WXo0eP8iDLt956SyHcLO0TSUxMRFRUlOKfEcnJyYqKSj0nEQC88847ihdqzQirpxthjKF9+/YYO3YsH20DpIk6d3d3fm03NzeNp4im6KhYsaJCFObOnRteXl5c5avVvp6LmdBzVavPDw4O1hV1169ftyrqrLnCRcND4qdkyZIIDw9HRESEYnJU9ZJWf/75J4Dn3hk1YvermrCwMEU3usiTJ0/g7u5uuMrH9OnT+Yg8KqSpqamKQHvg+Wgo0VNH9wwJCeEji9u1a4fcuXMrzg8ICEC/fv34b3GwiqWuvNdff50bWHr3J0+e5K57goQuVRzU4rTUPSISExOjGRn9888/a/KJmPcuXLjA4wqtoRZ1NNoQAM6dO8dFRFBQkGIUYe7cuZGUlMQr2aCgIIXAGTx4MIC0rkyaxyw5OVkh/Pft24f4+Hi++Dfh5eXFu3KJnj17Yv369cifP7+iS/HRo0dc1IWHh+PTTz9Frly5NFMBAUoxHBISgrJlyyq8SMTs2bPRvXt3PHv2TNF6J8hb9vTpU42oS0pKwty5c/nUGERCQoIidlHsftVDtLOiqCMRkJycDC8vL80IV7GyognIAWVM3K1btzSiLk+ePLwnxBqi4PTx8UGRIkV0RzwXKlRIs23VqlVcEIrMnDnT4gTSOXLkQHR0NH/fUVFRukKibNmyqFy5MgCld5fqSdHjCEATm52UlKTbcyBSvnx5Xn7tFXVqrIk6I8++pXkW/fz8dD3RNNo4JiaG21yyr+oGrC2ibseOHThz5gwSExMNRV1MTAxCQ0Ph7+8PZ2dnniesedKdnJx4Yz8kJATPnj1TDMQRvfXqqXtWrFjBHVNDhgzRvb7eAD49jeFwUTd58mRERkZi3Lhx2Lt3L//n7OyMP/74A3v37uXelYwQERHBM6afn59CyFjaJ0Kzh9M/Gtaux+nTpwEAxYoVQ3R0NG9diR+NMt2lS5dQs2ZNqzPAU8uEKhnGGB4+fIhly5YpWiEk6tzc3ACkiTrxvsDzSrpChQqKVoS7uzvi4uK4p0D9LkRjYMskuWrIpS/SrFkznD17FjNnzjQ8LykpyeoSVqI3jIzd66+/rjuHmRpq4RmJOjJw6oEEZrMZz5490zXuQFpF6e7uzivbtm3bKlpy4nej76/nDSKDd/fuXezevRu7du1S3JO6DNzc3DTe0fz582PevHno0KEDTCYTzp07B5PJZOhtUUPdnupKknB3d0ehQoW4h5aMpz2ijvLgb7/9BgB8Yl8R0Yuq7iolXnvtNYWnGEgTZ0ZxTCtXrlTkx7feeov/7e7ujsTERF7eaB6uhg0bYvny5Zg9ezYYY6hZsyYva0lJSQpRRxVazZo1FeEBnp6eGlG3fPlydOzYETlz5tR0jVELngR1s2bNDCs90UtCsVxqYTR48GC8/fbbiImJ4ZWqnkCgaUtEXF1d4ezsjMaNGyu2q8VfbGyszUsL3rhxg4vUhw8f8neo5z0XRd1XX33FvV9ifrt586Ymv3p6eqZr/V0vLy8ULVpUd7Rl7ty5dc/Zv38/nJycFAPNoqKidKc/Iry9vTF06FBs3LiRd2XreXMDAgK46KRv5u/vz7+7OoSIMaYQJElJSVzk6YU8AGm2NL2eOjXWRJ3RfI/0DkTvFaEXdw2kvQ8aIU31q5eXl64zwpKoy5MnDzw9PTFjxgzUrFkTHh4eionC1Vy7do137VK6RY+qUV3p7e0NIO2biGEWQJoddXNzQ44cOXijXmzEPHnyBMWLFzdcq15vwKHet3C4qBs1ahTWrFmDQYMGYcSIETap5/Tg7+/PW3IRERGKj2xpnzqtkZGR/J+lmJXw8HBUrFgRN27cgLe3N59ouGrVqrzlQB+0YsWKqFixInf1Llu2TFfgVKlSBe+++65igsLY2FhNYYiLi4O7uzs3+kWLFlWIOlHAqpdgcXZ2VggXtUEn70ibNm0U8U62cu7cOU2Lt3///mjSpImiAlB7tsTuVyPE9Ny4cQPu7u6oXLky7t69y0cFid0vhFiJGok6qkjUwawUgCsWRhGz2Qx3d3cej/Hxxx/rek6A50v5WPJY3r17Fy1atAAAhadKjAOpXbu2oiL09/eHm5sbunbtCsYYRo0ahWLFiqF79+6G9xGhuNDSpUvrrkFMniia04sqV3tEXVRUFGrXro3+/ftzoaRGfKYLFy7wv7t168YHbOTNmxdjxoxRjJBWe+oI8q6J35w8uM2aNYObmxvvfnVxceHl/X//+x+/HyGKOj1vbpEiRRTxeJ6envwcNX5+fpruMfU6lr/++quurWSMoX79+vyZChcujKJFi2riw4C07+rk5MQnHxUrAfIohYWFIS4uTjfsQO3tUYcMREZGWp1va+3atfDy8kJERAS3RerypJ6kXfT+Ozs780EYISEhCqErirpevXqhWbNmFtNCkF0WfxcrVkw3xludNiIkJATFixdHs2bNDG2DyCeffKJ4x2Svp06dqjk2b968/Nno/ZYrVw5xcXFwc3ND8eLFFcffvXsXZrMZ48ePx5dffsl7PRo3boxx48Zh27Ztivn76JlJ1Hl5eWWqqDMa1UllVu2QcHZ21h1ACACHDx9Gp06d8PPPPyvqED0PrSWtoTdwimIwRbtLDetbt25xpwK9N9GG1a5dW/c+oiPixo0bmt4HV1dX3tVcokQJzeA6Hx8f/pyjRo1SrFuvFzP5QkQdkPbAp0+fRmhoKGrVqoWLFy/qGsaM8Oabb/K5pXbu3Il69erZtE/E3d0dvr6+in9GtGnTBpcuXeJGhgq/l5cXr5zElym2Rt566y18+umnuuuWbtiwgRdkS5W/u7s7ypQpg82bN2P06NGKzEPi6ejRo9yAUeC2tXVDxQKmzgxGnhzCx8dH1wvl5eWlEYhqYU2GyGiR5oSEBJQpU4a3YIcPH466detqCrO6mw9IE9VXrlxB8eLF+ZxMtkJCU68rjBBFXc6cOfk7r1GjBj7++GON4BArV1FwlClTRiGIxfcvDiJwdnZW/KZvT+8uNDQUuXPn1iw3ozaeBL0TsUtDDc3cLmLLmpuenp44deoUIiIirC7ALYo60eMxZ84cnkbynIwcOZIbfupGBZSeVjLIfn5+2LdvH65cuYLChQtj8+bN2LhxIxd1sbGxiklo9YwgCbSDBw/qhhcEBAQoKm0PDw+Np46gvCR26avfjZeXl8VKid6VkQcZSBN1Xbt21WwXeyBiYmIQFxenGz4iijpxQFiTJk1QrVo1/PTTT4qKUTymefPmAIBSpUrxbirxepZEXWhoKNzc3FCoUCG0adOGnxcUFITk5GSej8W8unTpUv4+xSUF9VB7Br28vFCsWDFFdxgh2kvyMhOlS5eGl5cXHj58qJmwFlA2eubMmaOwA0Z1EJBmZ8nWnjlzBiaTief/AgUKaGy46C0muxAaGoqcOXPCZDLh7bffxpAhQxQNeFHUZdRTZ4u3Vm/pKwpHoe9J79DZ2dlQTFMPGaD8/pYGn+nh6uqKuXPnonDhwhqP+KFDh5CSkoL3338fmzdv5lqF7Cx508S6xOj9iQ2IkJAQTb0XGxvLy37evHk1sdm+vr4KeyR++2PHjinqD2dnZ91wm0wb/ert7Y0lS5Zg1KhRaNGiRbonQTWievXqyJ8/P58K5L333uNdGW3btkVQUBAaNGiAHDlyWBydlF5EIUd/ixlNFB8+Pj5wdnZWqG4RKmxiTIq6IFMBbdu2Ldzc3BQimTJz4cKF0aRJE5w+fZp7HqyJOtHwqo816oogjCptb29v9OjRQ7GNjFblypXh7e2N5ORkhIaGIn/+/Lh48SKGDRumOJ4qSLGi7N69u8bDoBeHRenu06ePzXFaQJpBpS5xdetexM3NjYs6f39/fmy9evUwf/58jcdGDAAWl3CpWrWqQsiTYcuZM6emIhIrc71v6ufnBw8PD1SsWJEbISMPNXU7lC9f3lDUqY2LNaiCz5s3L+7evYu//vrL0PDt3r0bx48fN7y+j48P3yc2jmi4v7+/P68waXh/3759eRytn58fGjVqxL2dbdu2hbe3N9zd3bmnThyEY0nUvfvuu5pJrIG0byDmRWdnZ0NRR+XEkqgD9D0N1G2tJ+qePn2qaSzTdxAbZOLcd/Hx8YiOjtZtsJEtyJUrl6JbaNy4cbrfUoyNnjFjBv744w9Uq1aNC2Z7RF3x4sXx4MEDFC5cGP7+/nBxceGNIfLAGr3ft99+W7OtXLlyhvfz8vIytG1i2VLHGIoVql5a8uXLB39/fz7QRxR1uXPnxvTp03XvSeE/QJoNKly4MH9flmywj48Pz6chISGKhqiTk5Mijd7e3rwOsUXU2Sr61OKKug716jrqHSFRR7bZUh0lenFFW0XXEhv1lhqdLi4uGDRoED766CNNOfP29oazszOWLVuGGjVq8DJGgmvChAk4d+6cIg8bDZRT1xt6zgHalidPHhQuXBjLly/nvT2+vr78Oc1ms+L93r9/H02aNAGQVkb9/f1fnKdOpFu3bjh16hTWr1+vmYMlo9ConBUrVsDNzQ0LFiwAkPYBlyxZgoMHD9o84aC9kJH18vLiL1E08lQZqQvXtm3bNKP79EYuVahQQeEh0BvOnDt3bsUAAR8fH97KI0Pm5ORksVvOkugxGixAUMFXd615enrC19cXZ8+e5YNL6FomkwkxMTEYPnw4tm/fjlKlSqFSpUqGAoSeIyAgAP3791fENdB2kUOHDvFCUbhwYd1CRd2damrWrIkGDRoAsDyAxNXVVeGpo/vpGSdxHUpAOTBD3dp3dnbGtWvXFEHmhJgeuo84Alqc0oOmLdGrEHLkyIE8efLwJayMRJ0orGzhjTfeAABFt4+R6G/WrBlef/11w5HJrq6uPCRBbPFPnToVO3fuRIECBZCYmIhDhw5xD0jXrl35tzZKt5ubG4+pE4Oe9dJhJCAA7VQn9LdR9yulSyxr4ruhrmeqbMaOHYtZs2bh7t27GDVqFIDncZlimfT390doaKjCsJPdoa5PV1dXRWXEGENQUBA8PT1RtWpVxXugsuTp6am5JuUT8lYULVpUkZdz586N3r17w2QycVEnhoKIYlSv+1XcZjKZEBAQwLtHadkyS0s/3bx5U7H2rtjNqedQMMqbYiWaJ08enDx5kg9KMgrlEHn69CkPFaDGtouLC+rVq2foOadGv5+fH0JDQ1GyZEn+HS31lnh7e/M89+TJE42tE+2RGF5gi6jT8+SKUBlTd/OSF0/0hBNUh9F7oPxmzfFAqL1gABThI9ZEHaAvVtXbqEFDws3NzQ1Vq1ZV1DVGok5tA8Rvsn37dqxcuZLnPbLPPXv2VAhJI1EHpC2nuXjxYhw6dAj+/v66IWO2xJlmeJ66woULo3379oYVyMsIub3DwsJ4pSAaefLUqUcAvf3225o55tQrCHh5efHzKdheT9SFhYVh8+bNuov9UpqcnZ11R2iRwTUSdRMnTlSMGCMqVaqEgQMHAnieYXPkyAHGGJKSkrB8+XIuvKpVq8bjQagyEjPcjRs3uDfFqGCTsa9QoQJMJhOqVq2qELtq8VWvXj3eQi5YsKBuha1+/3oMHjxYs0oEffOUlBReAfv7+/PvLj5Dnjx5YDKZNPcX09uwYUM+6g143uWsJ8b0RJ2fnx9vtIiVFBkcscuWWtB0HRoVTcbZ399fEddir6euatWq/D50L2sVh6V1HslD9e677/JtHh4eaNmyJR/wIE4n4evrazVcwM3NDTExMUhNTbW5+1Xk7bffRkhICC+TYnk3mUxWPXVipe7n54dx48bhjz/+4Hngl19+Qb9+/TBx4kQMHToUxYoV4/cg0axeUD537twKwdS1a1f06dOHCxFq6IncuXMHXl5eOH36tKIBQR6yHDlyKJZvypUrF7fdFA8kxkACSi8KpVWsZNWeum3btuH333+Hi4sLIiIiNEKvcePG3G6RqLM0Cftrr72G77//no8SF4PN1fORMcYMwyuobJGAqFWrFreVoqizZc5GEpPh4eHo0aOHoaije5ItLFWqFBd1lsKW1J46S/lf9GZ6enoaihLCmqgrVaoUQkJC8MknnyhmIaDGh9hYOHnyJB+FbjKZ+HugOo6en7xQQFo8srpbXcxjn3/+OYC0eUppRRRLoo66XPVsktoOUbrU70i0wUYNOLWgom/SvHlztG7dGt27d+d5T7TzdG1fX19uR8xms6ZebN68Ofr06YPy5cvzRp0aW8YxyGXCdCDDRRPNAsoCqDfCh1BnIrWoq127Nm8tUAGwNGnwqlWrNHFcoqgD0roAadF44Lm3ysgjNX78eE2ALpAm5KiiocqKDLKrqyt69uypyIhUEHPlyoUJEyZolvKhbhKjET9i7KIeesKA4n4KFiyIkiVLcgNA+Pr6KgZIUHdk1apVuWcoT548mpFkrVq1wubNmzF//nx+Xw8PD268xee+ffu2orIKCAjA7du3Fd1CNKs7jYgzmjMNULb4xPvQdrFSLFu2LNavX4/vvvuObyOPodrw03t97bXXFFODeHt7K2JPjCokIG0iY9HLQxW4tZg6S96wJk2agDGmGfhD5zHGFOEKvr6+/F0YVbhubm58lLgYZ6Yn6tTbhg8fjg0bNiBv3rxcRInfwZKoI4EgDn7x8/PDN998w+eeBNK+2++//647iOHXX39FQkKCRtSp8fHxweLFi3ka9UbUPnnyBJ6ennB2dlbYLCcnJ+TLlw+enp6YMmUKjh07hnbt2iF//vz8GXLmzIkCBQpovq34vsi2iDFdak/d22+/jX79+vHQGPW7ExteNFO/LasBkJ0URYVoW9q2bYtGjRop0i/G/zo7O+Py5cuKOFiykfaKOoLEgViG9Ab6TJo0CeXKlcNXX33FhYWllZhEUccYsxouQzg5ORl6cxYsWIA1a9Zwe3L8+HGcOHFC03WcI0cOnkZxeiXy1InltlatWjz/NG3alNeN6h4OcWRwiRIlND1Aosf1xx9/5O+GbLHakyuGQFE5sGaTxHSpRZ0t4wLU7zUgIAAREREKgUrvQgwBoTxGXcGAUtStWbMGu3btUlxfbctJMxjVpSJS1OkQEBCA119/HZMnT+YFXDTG4gdTQ5mQ3O5i92tERARWrlzJ50WizGhpPiZnZ2dNy0Et6goUKKAQFKNHj8b27dsNR/EA+plYrMjUos4SOXPmxNdff63JcNQl36lTJ5w5cwZ3795VTCJKxt4oxs2SqCtUqBCcnJw079LNzQ1VqlThXa30DooUKYKdO3di7969us/u6+uLtm3bonr16tiyZQtmz54Nk8mEN954A++9955i6gEfHx+FtytnzpyaPOHn5wdPT08uiCyJOvEd64k6NR07dlQYMDpfbajIgIlzLKnvATz3+g0aNEhj4OfNm4d69eqhV69eKFSoEK9crBlQk8mkmUDUFiivi94i0VNnSdSJcUWEnqirVKkStm7dioiICPTq1Qvdu3fXlDG1Z95I1JHQEAWZLZWLGksiWI34XS3tVxMQEIAcOXLAyckJb7zxBjZt2gRnZ2eeN4zymygec+bMiW3btmHu3Ll8m9hAFPMyLbiuLm+vv/46vv76a/z666/cU2dN0AJp8319/fXXints2rSJf7vJkyfD2dlZ8RzdunXjfzs7O6NChQoKUVKqVCnkzp1bET5EAkM9wbUe9Gxi+dfz9DRv3hxXr15F6dKlufCxJOrE7lcAFqfkUqPOF+Rpp1kQ6P0VKFAAtWvX1oSKGHnZSdSp8zflj44dO2oaGpQWMU2urq6aBp3RuunivcaMGYNZs2YBUL4PChuwJVZQrJ+toa7P1KKuWrVq8PPzU3wn8jiL9XHHjh1RtmxZvPHGGwpRR/V+o0aN+GAkgvJIoUKFwBjDvXv3wBhTxMMaYf9EQP8RKEibhiWLmbJgwYJYv3697rQd9IFz5MgBFxcXhQvV19dXUyD2799vUSTqodclrK7kW7duzV3WZDiN2Lt3L5o0aaKo7KmAWKpsKDbKqBKj7SaTiU9lIBpPa6JOzxMxbtw4fPzxx4qWK2MMEydOxIQJE/i1qOuZCj8tFq2er4uggG0grdVOLXcPDw/NGrkEFTzRQDg5OcFsNvP3RxWsJVFH78HT01PhgaPKSc/4ixUlGWm1gBErfyMBAKSttbp79264ubnxrsHp06fzbpUCBQpg6dKliucQV0MwYsSIEWjZsiUKFSpk0bstQu8iZ86cqFGjBv799194e3tzMWdJ1BGiqNETdSaTiaefnksNva+5c+cq5sNTQ3lcLGPpEXX2YCTq8uXLh5CQEMOu9Xz58umOIiT7o64U/f39dT1o6sELYpkWBReVQb0KW5yuKDAwEMWLF1cscK5H1apVuUAh8uTJg0aNGmHXrl38vYjvn/a1aNFC1w526NABb731lsLWUB4bMmSI4Zxly5YtU/SOuLm5YdCgQZquaz2oLBjlZW9vb42osxYD/f333/OQBXW++OWXX9CpUyduM6mM0XtS23ijEbAkdtV5ngaLVa5cmTdyUlNTUbFiRYwePVpzHfVgQMBY1FWtWhVvvPEGjh8/Dnd3d95wGzJkCE6ePIkOHTrwgRv2iDpLg+WAtNAoPz8/HDt2jD+fujGs19NAThzRc1+mTBk+Cwa9n/bt26NWrVqoX7++7uTSdO30hLVJUWcF+jhqJd2xY0fd4ymzdujQATt37uRGsV27droeIqNRs5YgwylmMoqvYYwpYgyOHz/OYyguXbqkW7mT8XBycuICQhyMYUT79u3RvHlz3bg/ur8lKD5AnXEvX76MkJAQ3ffVvHlz3YkaR44cifLly3Nx9ttvv2HgwIE85sba7PR6c61Zg7pcxDgHZ2dnmM1m/g0KFiwIDw8PHquoBxnVX375RdECJbFoqUVfq1Yt/q3UHgKq3K11LbRu3RqTJk1CeHg4nJ2d8d577+G9997TPXb27Nk4f/681YYCQSM27927Z3FaAoLeRZEiRbBixQosXbqUT+cg7jc6D0h7b5UrV8bFixctxvZZok6dOli1ahXee+89i+9vzJgxaNq0qaLStVZhZBS1qHv06BGSkpIwYMAA7Nq1i3dpqhk8eLBuhW00WOHw4cOKyZGN0PMaA8/LnLXpcsS8ZIsnAkhr3FE3J70Hei+ipy5Hjhxo3rw5Dh06pBmIBUA3NpbEi6UK9f3331esyAFA4b20BHXHkfd/586dismuSeCIedqap+6rr77ig0nUYTcNGjRQTMni4eEBk8nE86k4Mj8iIkIzX+E///yDgIAALqh9fHzw5MkT/t4oDrVChQo8jrNIkSKGkzdTvdW0aVOcOnUKUVFRhqKOekuOHz8OV1dXHlfZvn177gkmqL7x9PREXFycZiAb7QP0BfWVK1e4E4byofhdyFM3atQow/rkgw8+wOHDhw2nJ8qTJ4/CnoshGiJ0/XRNT8OyGadOnWL169dnDRs2ZJ07d2ZJSUmK/Xv37mWFCxdmjRo1Yk2bNrX5upGRkQwAi4yMdHSSNYSEhLDk5GRWuXJlBoA1adLEodePi4tjAFj9+vUV2319fRkA9vjxY5uu06JFCzZt2jR24sQJBoC1bNmSDRo0iAFgX375JQPAunTpYlfaAPB/Dx8+tHjs5cuXGQC2ZMkSm66XHlatWsUAsOnTp1u8ttlstvva9N7KlCnDtw0ePNjutO7YsYMBYJs2bVJsv3TpEgPABg8erHteYGAgi4iIYOvXr2cAWPv27RX7Hz16xACwevXqMcaY5j3S7+joaAaALV682K50Zwa7du1iAFidOnUU281mM5s6dSp79OiR7nnz5s3jz3Pz5k129+5dNmXKlHSnw2w2s6CgIMU2a3kxI/nUHs6dO8cAsGLFiim2X716lX333Xd25+WbN28yAKxdu3Z2nUfPS/YIgOKd3bt3jwFgefPmtel6ERERLCYmxq40MMa4zSLbnpKSkqFvUbt2bQaAl5/0XMfe8+j4v//+m2+7cOGCRftkdA+z2cxWr15tuP/ixYts7Nix/PedO3cYAPbGG2+kK38PHTpUsf348eM2pddsNjOz2cwAsJEjR+rekzHGxo4dywCwH3/80fAYxtLqxVatWrEzZ86wlJQU3TTs27ePAWD37t2zeC09BgwYwACws2fP2n2uvSxcuJABYB07drT73Gwn6oKDg1lsbCxjjLFRo0axtWvXKvbv3buXff7553Zf90WKOqJWrVoMAJs0aZJDr2s2m9mXX37Jbty4odhepEgRBoCFh4fbdb2zZ88yAKx169ZszJgxDAD79ttvGQDWtWtXu64lVnzR0dFWj7969arFSiijoi4yMpK1b9+ehYWFGV47vQQFBTEArEiRInxbamoqS05Otvtahw4d0ryH1NRUNm7cON20i2zfvp0BYJ06dVJspzzfoEEDxpj2eXfv3s0uX77MGGMsISEhXcLW0Rw4cIABYM2bN7frvN9//50/X0hISKakLbuIuhs3bjAArHjx4g65XnJyMitatCjbu3evXefR86ampvK/Q0ND+X4Se+7u7g5JpxFxcXFs9+7dmrTZKibV1KxZk9cVJUuWTNc3/d///sdmzpxp8/F6eScwMDBD+a1OnTo2pZ3E65tvvskaNGjARo0aZdf9UlJSeJ1tCaPzo6KiWGpqquF506ZNYwDYzz//bPUemQk1Hk6ePJnp99q8eTMDwHr37m33udmu+1WchsPV1VV3JM+6detw/PhxdOrUSbN2XnaiU6dOCAoKStcSXZYwmUy6S9LQwslGQ7KNELtfx44di7Jly3L3r72rhfz000/8m9gSDyAGlGYGvr6+2LhxY6Zcm+IexHg5a/FrRujNSu/k5MTnArSEOEJZhN5/p06dAACzZs1SdDuISzHZE6ifmViLszRCzPMZmVE/I9StW1cxajezoO/qqJV8XFxcrK5lrcewYcPg6uqqWX2DoO45o7V8HUWOHDk0y4pt2rTJ7hVnCCojnp6euHz5crom11fP8ZYe7LXjav755x+LU8UQ9M0YY5rl40RKlCjB14oWcXZ2tmuKJDXWBi1Q93561gJ2JF9++SXu3r2riL/OLGhgmC0DOtRkO1FH3L9/H7t379Ys7l6rVi2+Tlr79u1Rv3593XioxMREhTGxZRkkRyPGObwIKPMbLR5uBB1PS7r06tUL+/btS1ca/ve//3FR54hKh4K/M4Pt27crRuPai7gyQVZCQkj93Z2dnZGUlMSNYXZuABH0TjMi6jJLoB48eJCPqtZjz549mS5gAOujX18UM2bM0GzTGy1vyzQMjoYG+aSH77//Hl9++SVcXFxemJB4//33NWuFUp42mppqw4YNFidNpgEX1rC1vFD824uGhI0tMbmZSfHixbF9+/YXci+aOsooPtYSWSbqHj9+zD0IIps3b4aLiwt69eqFxYsXayoqMZO2a9cO58+f1xV1U6ZM0cxF9qqTUVEnVhJU0B29rq+9PHnyJNPS0Lp1a76ES3qJjIzMUCvVERiJOqNt2RnykmRE1GUWemuCinh4eNg0BVBGyS6iTuT06dP4888/NSLowoULuqP7sjMtW7ZUTND8Ili2bJlmG+Vpo/enXuosvZD9sJafcuXKZXE1HmvUqFEDZ86csfs88vhamkHgVaNkyZIICwuzeX5CkSwTdfnz58ehQ4c021NTU9GhQweMHz9ed0H3qKgo3r1y8OBBw1GFo0aNwvDhwxXn2TPXz8uIn5+fZt1KWyBDnB1FXXYnq7r6ROgbvWwCTg96FnvLqt56wpmFtRn5MxsaPajXKM4qatSoodvdKa6qIrEPsst6U2c4EmdnZ0yaNEmx3FhmsHv3bt1F6q3xXxR1gPX12Y3Idt2va9euxZEjRxAdHY1JkyZh0KBB6Nq1Kz7++GMsWLAAa9euxa+//srX3DOaEsTd3T3bxAm9KPz8/NJVsbP/H2ItTpEiRd3LA02p8iqIumrVqmHNmjWGUwYZQV7qzO7+jI+PzxYespiYmHRP1yJ5OfD19UW7du0wadKkTL+XOswpM/D397e63J8e1BNCE89LLJPtRF337t11F6lfsGABgLRZvm2Z6fu/iHp2a3vOA4B33nmHb8uIIHZ0HFxgYKDNC0P/F6lcuTJq1qxp07q32R2TyZSugUU0H15m8yK6V23hVVprW6KPs7MzNm3alNXJyHJe1ICbV4VsJ+ok6adEiRKK0cO24uvri6SkJF1PT3o8dbdv37Zr/URr2DrR7X8VT09PnDp1KquTkaVk9oS/Eokka6hevTo+++wz3dUpJFqkqHuF6N+/f7rjItSCjjx+lhZ7N0J6ESRZwdKlS7ONJ00ikTgGZ2dnzJw5M6uT8dJgYkxYs+IVJioqCn5+foiMjMwWwe0vA5s2bUKrVq1kRSmRSCQSyUuAFHUSiUQikUgkrwBZP4xLIpFIJBKJRJJh/jOeOsYYoqOj4ePjI6fpkEgkEolE8srxnxF1EolEIpFIJK8ysvtVIpFIJBKJ5BVAijqJRCKRSCSSVwAp6iQSiUQikUheAaSok0gkEolEInkFkKJOIpFIJBKJ5BVAijqJRCKRSCSSVwAp6iQSiUQikUheAaSok0gkEolEInkFkKJOIpFIJBKJ5BVAijqJRCKRSCSSVwAp6iQSiUQikUheAaSok0gkEolEInkFkKJOIpFIJBKJ5BVAijqJRCKRSCSSV4D/jKhjjCEqKgqMsaxOikQikUgkEonD+c+IuujoaPj5+SE6OjqrkyKRSCQSiUTicP4zou6/xNOnTxEXF5fVyZBIJJKXktu3byMiIiKrkyGR2I0Uda8guXPnRt26dbM6GRKJRPJS8tprr0kbKnkpMbH/SJBZVFQU/Pz8EBkZCV9f36xOTqZiMpkAQMYPSiQSSTqQNlTysiI9dRKJRCKRSCRWGDx4MMaOHZvVybBItvTUnT59Gp999hmcnJwQEBCAFStWwNXVFQCwb98+9OrVC6+99hqcnZ2xZ88em64pPXUSiUSSPUlNTcWFCxdQvXr1rE4KAGlDJfq8DPkiW3rqChUqhJ07d2L//v0oVaoUNm7cqNjftWtX7Nu3z2ZBJ5FInnPv3j2sW7cuq5OhIDw8HElJSVmdDEkW8f3336NGjRoIDg7O6qRIJC812VLU5c+fH56engAAV1dXuLi4KPavW7cODRo0wE8//WR4jcTERERFRSn+/Rcwm81ZnQRJNqdJkybo1KmTQ6+5aNEiPHjwIN3n58mTB927d3dgirI3mzZtQvv27bM6GdmGq1evAgBiY2OzOCUSyctNthR1xP3797F792688847fFutWrVw7do17NmzBzt27MDp06d1z50yZQr8/Pz4vyJFiryoZDuEsLAwtG7d2m4xmpCQkEkpevVhjGH+/Pmv/HQwmeENGThwIFatWpWha6xfv95Bqcn+fPjhh9i8ebNshKlITk7O6iRIJBp2796NihUrZnUybCLbirqoqCj06tULixcv5vF0AODt7Q03Nze4ubmhXbt2OH/+vO75o0aNQmRkJP8XFBT0opJuFwkJCdiwYYNm+4oVK7Bjxw5s377drutlN0ESFRWF5cuXZ3UybOLs2bMYNGgQvvvuu3Sdf+PGDRw9etTBqXI8qampABwXF5Kamork5GSEh4en6/zsIGwYY9i/f/8Li5XJmzcvACAkJOSF3C+7Q7FK2cF+Zbd4qYSEBJw6dUp3X2hoKJ49e/aCU/TiSUxM1H3OXbt2vRCP9+jRo3HlypVMv48IYwyfffYZbt26Zdd52VLUpaamomfPnhg/fjzKlCmj2Cd6rg4ePIhSpUrpXsPd3R2+vr6Kf9mRcePG4d1338W9e/cU29MbkBkfH++wtDmC7du3o1evXumu8F8kKSkpAJDurvoyZcrYNLdVSkoKevToYXdhtYVixYrhxx9/tHgMiTp63oySmJgIIM27nB6yQ57dvHkzGjdujL///jvD14qOjrYas5gvXz4Aab0Rkue8iO5Xa5MKZzdv4bBhw1C7dm3ddOXLlw8FCxbMglS9WNq2bYtcuXJptvft2xebN2/O9PtnhdCPjo7GTz/9hE8++cSu87KlqFu7di2OHDmCSZMmoXHjxlizZg0+/vhjvu/1119H3bp1UahQITRs2DCLU5sxKA6JKtqMkh1auiJUYT99+hRAmsG0tYCsX78+Q3Fa9uLklFYcMttzdOfOHaxatQrHjx93+LXv37+PL774Qnef2WzGDz/8wJ/PUV31JOrSK9xf5NJ94eHhGDlypKa8kSdf7xmOHj2KNWvW2HyP//3vf+jUqZPFxgF56rJrD8KLJCEhATdu3ACQ+fbr5MmTCAgIsOghzW4DdgIDAwEYC97sHHKza9cuXLt2zSHX0YOcH46qP4kDBw7AZDLh8ePHALJG1NF3VY8psEa2FHXdu3dHeHg49u3bh3379qFr165YsGABAKB///44ceIEjhw5gh9++CGLU6pkxYoVmDZtml3nUOtL3QrT89TZkrHSYxSTkpIc4i3ZvXs3TCaTIg1U4T99+hSpqalwc3OzOMBF5L333kPz5s0znC4Rs9ls1chktqi7e/cugBfvoTp06BC+/PJL/ttRlQGNQk+vpy4mJsYh6bCFKVOmYOrUqZruLCp/YqgHkBZ/WLduXXTr1k2x3Ww2w2Qycbsk8ujRIwCWxYG3tzeAjIm6xMREbNq0Kd3nZxcGDBjAGziZ7akLCgpCUlKSxcZiVnrq1qxZA5PJpPCiOzs7A3BsOXny5AlGjRqla+tiY2N1G1rp+TYtW7ZEuXLl0pVGe3C0Ld22bRuA54I6K6D3/UqIupeV999/H1999ZVd51DhDQ4ORmhoKN+uJ+o8PT0Vg0b0IEGlrpwsUatWLT7a2BIDBgww7O6OjY3FkCFDACgrd1HUUdr0YuxSUlJ04yPVxnfp0qVcFKWHX375BeXKlcPDhw8BAB06dMD+/fuxbds2nlZLou727dsoXrw49zymB+pqf9GiTt0oUIs6k8lkd6Nk9uzZ6Ny5MwDHiDpHt7jVULlQe9GoIndzc1NsNxq8QXll0aJFiu0xMTF8JKcl0Uzni2XeXiZOnIgOHTrg9u3b6b7Gi6Bs2bIW7dahQ4f435ntqaOKUu2RnT9/PpYtWwbAcZ66hw8fwmQyYefOnYbHJCUlYeHChbxs/vrrrwCU3muq1MVyEhcXh2PHjtmcFsYY/vnnH36fzz77DN9//71uo6JQoULw8/NTbLtz5w68vb2xdetWm+9pL3FxcYiIiEDt2rVx+fJl3WPU9oHqSUfY0lOnTmHLli0AntsJqp+zwlNHZUGKupcMyjRNmjThcTYiYmZKSEjgLQgjKHPbkxEuXrxo03ELFy7ErVu3uCAS6d27N/eAiS1dqtiePn3K06bXCvzkk09QrVo1TeEUDSxjDL1798Z7772nSLu6YrUEtbweP36MlJQUbNq0CY0bN8Y777zDxaIlUbdq1Srcu3cPBw8etPmeahzlqWvSpAl+//13/P3331i/fr3VGDl1ntATHTNnzrQrDaKRd0T3q7Wu2Lt37+Krr75SlIuqVavaPBjHy8sLQJqnQsSoIqfv7OzsrCmLgNar061bN15R2iLqLL0zxhjmzJljGANG5TC7xYCpuX79ukW7JVbUmemp+/vvv/HBBx8A0DZABg0axPc56n2S2N69e7fhMT/99BMGDBjAhS2JFGuibtCgQahTp47NadmwYQNatWrFB97RtcgLKBIZGcnz+rFjx1C+fHn+LNbsXsuWLdG2bVub0yWSL18++Pv749SpUxo7RKExRt5KRzQGateujXbt2gF4LuooL2SFqJOeuixi1KhROHPmTLrPt9WA2JqpbFX3Fy5csKnVNWfOHG5oqlWrBgC6IzzFdyAaZqq8nj17xtOmVzBJmNEIJ3pe8f1Q5UbXBIA33ngDH374odXnAID27dvj7NmzPL3q6XDIkFryFtF7VQsoewq9kaiLjY3VFcxG7Nu3D/3798dvv/2Gn3/+2Wp3qjrN4vEkalxdXXHr1i2bvaGixzI8PDxdXddifrD2DJ988gmmTZumEEMXLlxAr169MHz4cN1zgoODcfPmTQDPn1P9nimfiXkLeO7RS01NVeRrtaiLjIxEfHy8Ik+pv+/+/ftx/fp1xfmWRN39+/cxZMgQQ+9/Zno14+PjrQ4osMa2bdsUnv3r169jy5YtmqkhxOeYOnWqTc+VngaR6IUODw/HrFmzdN+/o0SdWBbUouP69etISUnRxPaReImKikJiYiJMJhMXhWI50esWvH37tib/EhQSQPaV0mN0PDFx4kQEBgbye1trOO7atStd3jyz2awoX+r6izzoRo0+a/nhyZMnFsW1GhJ1L7o3JTExEfv37weQvl43QIo6AGmV7JIlS+xW4wkJCfj+++/x/vvvp+u+wcHB+Oeff3T3kZA6evQozGazzfEUlkRdcnIyvvrqK2zduhVVq1ZF27ZtrRZSihlKSUlBjhw5AChbucnJyejdu7diFJ9e5Sd2v+o9Cxlyqkj0DCt5V8SRzFToKlWqhKVLlxo+R3JyMjZv3sxjdz766CO8+eabimPIYFgSJkaibtasWYbnqDESde+88w4KFy5s83WIhIQELioIvbysFkzib/omrq6uKFWqFEqUKAGTyYQVK1bgn3/+MYxDFOe8M5vN6RIC9og6ggKYRYy8jEWLFkXp0qUBPM9flkTd6dOneR6OiYlB7ty5AaQJN3U6U1JScP36deTMmRPdu3dXdN/SMSEhIWCMoXHjxihbtiy/D2BZ1NExRmWfyoy1ijk91K1bF/7+/hm6xqhRoxQjvMuWLYsRI0bgypUrCuEm/n337l3DoHhi79698PT0tHuKCbFyPH36NIYNG4bRo0drjnNU9ytd58cff+QeYiCt3FepUgUrVqzgZdbd3R3Ac7sfFRXFBZi1fEC89tpr6NOnj+4+esfkmaP7Wss7lIfJntgzYt6e+nTEiBGK3+r6i75dekVd586d0aJFC5vSFB8fz+8fHR1t83OIaWOMGU5DI3Lx4kVF3Tlq1Cg0btwYT58+lZ66jHDixAn06dPH7lF4d+7cAZC2AoYoZGztmuvXr5/hPhIWc+fOxS+//KJbielBlYSeug8MDMS0adO4ixlQFoa1a9caeopiY2O5KBPjgO7du4elS5cadqGIMXV0L7VxEgtNjx49MGTIEF1RR61aHx8fvo1atpcvX8bhw4d10w7YNk0JVfiWRJ0YaxEcHMyPFb1EasN35MgRTJ48mf82EnX79u3T3G/btm26nhp1V2BUVJRCEOl1R9gi6tTxWcuXL0erVq10g53NZrMmX6anC1Ysd9ZEHRm4x48fIyIiwiaDK34PEmbq7lcxb9arV49350ZHR3OhHRkZiStXrsBkMilCDai7de/evbxypmdJSEhAQEAApkyZorgfPaelOER6L5TH1VDec6Soi42Nxbfffotz584p0rF//35FDFdYWJgm/44ePRqjRo3Cvn37sGbNGl2PG50j2gj1ca6uropYr+joaIWgPnHiBIDnq1DYimgTabStHo7y1KnrE3r24OBgJCYm4syZMzwf0DsQPXXqdFAZXb9+vWF3ozoG9KuvvsLFixe5wKT72eKpu3z5MrdJ9L3s8Q6LZXnnzp0Wy6q6QaauI4w8dbbOb0i23ZZ5IYODg/lz3rhxA05OTryHh1C/h+joaOTPn5/X/UeOHEHt2rXRvXt3iwPzqlSpgmLFivHfpCliYmI0DprvvvvOpjlUpahD2hJFQJqhevLkic0jXqgVmpiYqDAwtk6zYsl4iK3Fy5cv88pWHcCqhtzsMTExGDt2LG7fvo1vv/0WN27c4JlELFxiYejatatm+Six0FDBVnvq1Ny9excmkwl79+7lRmPJkiU8EJkqI0qraODPnz+POXPmKJ4/NjYW7dq1w6VLlwCkibq6deuiefPmigrPksERKwUjqGV86NAhw9geul9ERAQKFiyIb7/9FgC4Jwh4biirV6+Oxo0bo169ehg7diyAtO9Kz/3TTz8pjIVe0O/u3bt1PZCiwSRPnbhNr4GiroStHQ9oY5wePnzI88+mTZs0AtZIpKSkpGjyCmMMGzduVEwqai2migzctm3b4O/vj7179+oet3LlSt054Mi4q98FPf/9+/eRmJiI0NBQLF68GOfOneOirmLFijwmibpIUlJS+LWSk5MVnrrvvvsOPXr0AAAegE3Y4qmjhojJZEJsbCx+/fVXRYOD8rst3s2NGzfiyJEjVo/76aefMG7cOP7bbDYjICAAjRs3VsRw5c2bF1WrVlWcO2XKFHz//fdo0qQJunXrplseSayJlbY6X4waNQpFixbFn3/+CSDNA5UzZ04Aad+HbEOnTp00la0eFIAvijry8okNREJstFoLJ7h16xY6duyoawfVZYq82lT+L1++zL8d5QeyAevWrdPk0ZiYGNy5cwfvvfcet4UEvWt1DPK0adPQtWtXnu8jIyNhMpn4oLTExERcuXKFz/UmPkeHDh3435QXU1JScOPGDUXarl27hsWLF2ueX6xb3nrrLYs9KQEBAYp8pxZfVK5+//13BAYGYt26dViyZAnfb81Tlz9/fgDPRZMe9O4fPXrEr7dw4ULdY9ViODw8HHFxcTzMg85fvXo13nrrLYtp00tDZGSkRtTt3r3bpvh3KeqgFHXjxo3TTF9gBIk6UuX2ojcwAgCKFCmCMWPG8N9nzpzhGYOMmxFkMOLi4jB58mR07NgR48aNw6xZs3QzvnrbsWPHFBUlZbLY2FhuiMWKW6+FRBlv48aN3GhFREQopjLp2LEjChUqhFu3bul22YnGaffu3diyZQtvpbi7u+Po0aPYs2ePItDXUsG2RdTNmzcPQJq3ytvbG3379sX06dMVlRM9D3k0KX4kMjISNWrUUBxz7tw5XvkDaYYgKChIIapbtmzJ/yYvj1jRx8XF4enTp5pWrvjeyVMnPv/AgQM1AknPUxcfH4/4+HjDrh3x20RERKBw4cK8q0RvrVb1yGcyolWrVuVzsxGHDx9Gx44dFa30WrVqWWxUqY2taKTFSrtnz55o06aN4lzGGH8e9bugCpiuFxERwT3phQoVUlyDng1IqwQpTfHx8QpP3Y4dO/hqMWpPcUJCAkwmEx49eoR58+bpejHoHCcnJyxduhQff/yxIl7Jkqfu3r17aNKkCX+XHTt2RL169TTHiaSkpGjiZZctW8afLyAgQLHvxo0bFkW4pa46ym/379/XlM2TJ0/yZwCei6zffvsNxYoVw/jx4/mx1Kgy4syZM/Dy8oK/v78if1BDwtvbWzNtVNOmTflvskN3797VTHJ75coVjBw5Ehs3btRMHh8WFqbpCg0ODkZ8fDyv+EVRp+7yXbhwIfdIEjExMYaTVevlAfpujDFuU9SjrZOSklCxYkW+KoNY3imdwHP7mZqaijJlyihCV8qXL6/b66SuGyzFC8fHx8PPz49PU6ZOJ327X3/9FVWrVkWnTp3Qp08fmz11lHfVou7bb7/lDQMK6zl58iR/d2qPPkHll0Yrq0dVi4I+ODgYV69eRdOmTa16CkWnAV2T8ueTJ080ZVD3GlaP+A8giroLFy5oCk5KSgreeOMNXsimT5+OX3/91XDdWSPMZjMYY7h8+TImT56su1YmzaEkFlK6j4+PD2+xxMTE6FYE6oJDrcO9e/fqZny9bV27duV/i6JOz1OnZ9TJYP9fe2ceH/P1/f/XTNaZJJNNEhH7mtjVGgStLrZSqkFR1daupaW+1dpVVYtSPq1qUVql1F77LvZaSglqK0Fkk1U2Sd6/P/I7131vM5MIgvt8PPqozPKe9/uur3vOuefm5eXpmvfXrl0LIF/4aIk6fsVIz0zPxouXwoo6pcDQ4ueff8bIkSNlO/foN0g8Jycno02bNoiNjWUWHb1njo6OZsKRLATx8fG4du0a3NzcZC65jIwMjBgxAgkJCZp5BJVxi/fu3ZNZvNatW6fK46gl6vz9/REUFKQr6viVIf175syZyMnJgSRJqliY0aNHY/ny5QDyd+hVrFgRQP4EqKwDshYorVU0qWtBbY/uly8XiluiCfLGjRuymNUff/yRWTi0rCDAffcz3yZ5UUd1y8fU8dfSs+zwg3xsbCyysrLYaTmDBw+G0WjEoUOHcO/ePbZY5C119Gzz5s1j7hzeUrd582bWZ7Kzs/HGG29gz549WLZsmc3V/ZYtW7By5UpMmjRJFeQ+atQotGjRAoMHD4a/vz9+/vlnWdlYm6j1JkTgfnmvX78eTk5OCAwMROvWrWWfUY4L/fv3V12HdxPfuHEDHh4ebDMKANSvX5/9WyskJTc3V+UV4MnMzIQkSahTpw46deqEefPmAciv5xo1auCPP/5g1+GZMGGC6reio6NRqVIl9O3bF0B+CAGVH90D//tKYZOWlqabvkZpoaPP09/Ux5T1xY9VPXv21D1yjLfUAfmbk5KSkticprwWoJ5brHmm0tPTYTKZMHLkSHz22We6ljrlsxK2LHX0fX4DmCRJGDt2LPOk0Pg0e/Zsm9ZvKscpU6ZgxIgRrHxo4xj196VLlyIrKwsbN27E7t27MXr0aN1rzpw5k6XwatGiBWvHVK4xMTG6hiCeBxJ1iYmJmDVrFoYMGYLPP/+8SLOjjxw5EmFhYejZs6esEnNycvD2228jLCwMw4YNK5LfokDouLg4REZGIjExUVapN27cwNGjRzFu3Djk5ORg5MiRGDBggCy/En8dPRwcHNC3b1/UrVuXueOU6HWqWrVq4cMPP0RGRgZycnLg4eGBadOmqT5369YtmbWABoZz585pXltL1JHFCbBuqZMkSfP7NJjPnTtXU/iuXbsW3bp1Y8HOtix1ytxhfAfmBwprqzXeUtKiRQtMmjRJ97NK+vTpg7i4OHh5eTErAXXq5ORkloeKRJ3egNC1a1fMmDEDgNyN/uKLL8ruPT4+HqtXr8bMmTPZcVPKvHhKSx2gdlkoA861RF1aWhoSExPtiiflJ4TNmzcjOzsb7dq1k33m7NmzzIJHVp99+/ax90n05OXlMStWZmYmW1gB9ycjg8Ggqiele5f/22w247///mPPkpSUhFdeeYW9P2DAAFaOykmABlPeUkeQ6wYAcxHRJHnv3j1Zuer1X/71gIAAXLp0SRWm8eeff2LixImoXLkyJkyYwCaA7OxsVt+bN29m8Y0kJM6cOYN27drh7bffxhdffIEjR47gr7/+QpUqVbBjxw7Url1bdT+xsbGIj49Ht27d0LZtW4SHh2vu4k9MTER4eDi8vb1x8eJF1bFMJEK0xKy1wH6qo1OnTqFWrVq4deuWqr0mJiZaFYZAvggni9Jvv/2GtLQ01t6U8Z5aYiA9PV12n8rfS09Px8cff8zGj0GDBiEqKkpVz3x/HDNmDP73v/+pfuvWrVtskU2LUYpTzMrKwmeffSbLz0YLRyItLU1mPSMcHR1lgspoNCI5OVlm6aGysCbqfvvtN93YbXp+XnT+/PPPsnFDq+x4qPzfeOMNmes0JydHthHP398fsbGxuHjxIkaOHInc3FybsbP0W9OnT8d7772nel9rjOQXhhTzHBISgpiYGJsikdz3169fx8yZM1kCdhpfUlJS4OzsjAoVKgC4n5uVt4Tzz3Tr1i2MGDFCdsoQLViys7PZ2dpFbqkrVaoUG8yuXr2K6tWrY9q0abh48SJ++OEH1KpVq0gyMJ88eRK3b99GREQEqlevzlZDQH5sSunSpREREYH09HS74kRs4eLiAg8PD/z999+skd6+fRuXL19GcHAwM89KkiSzIihNuWXKlLH5W4sXL5YNgC+99JLsfb1UEhs3boTJZEJGRgZroCtXrsSWLVvYZ/Ly8nDt2jVUqlRJ8xr8TkWC73i0kjUYDGjYsCGmTZvGRB25ACtVqsSuExwcjPDwcNU1+YFDK5j51VdfxfLly9GgQQP8+uuvzPLA72rlxZrSjaMn6pKSkjBp0iT069cPHh4ecHV1xfDhwwFAFuRtNptZRn97SEpKwty5c2WWJmWKAEAu6rQGIV7g8lYD5UAdHx8vE+ZAfvlfvHiRlS0/uFIdKi1zdG9Vq1bF3LlzrcbU2bO7mk8ETbuiQ0JC2Gs04FCsFbkSWrZsyT7j7++PLl264NixY2wgBCATdfxEwbvX1q9fr+ofvDXj1q1bqFChAqtzPerUqSN79qioKJw+fRrA/TLj69ViseC3336TXYMmB6WlTumGI7TKt3z58rK/k5KS2Pg5ceJEVtepqamaya5J1FEZ/Pbbb/jss89Ye+rYsaNqjJo0aRIaNWqEZs2aoUmTJlixYgV7T2/HvLu7OywWCyszfhy5e/cucnNzC3ycH5XHf//9xyY+GmuAfNGTlJQkE9S9evXSDHOpUqUKJkyYwDwpY8eOZQtxHq1FH79YVT4bkB9fSwsxcrWdOnVKtbjgr8FviuLh265y5/3t27fxxRdfyKzWyjK9dOmSZjnn5OSoFmxXr15lY0RiYiIb/5TfV1rXlGVGKC1RQL7lnh+H+LavteC/d+8e6tevjz/++EPmmqb+Qwnw/fz8kJmZiapVq2LGjBn4999/db0ffCJ3SZLw8ccfY8GCBarP0W/MmjULH3zwAQDt+N+yZcsiMzPT5i5+5c5rug/e/WqxWJiVn7wS586dY3G5fJ3x3gDlPWdnZ7M+XuSi7vbt22wg+fTTTxEcHIzLly9j27ZtuHTpEsLCwmTBjoXl0KFDLNaoTZs2MuFm7b0HoUSJEjKLQnR0NH7//XdcuHCBmdwlSVLtZOFTUPCiTmk14cUHf+i7ciDVE3VBQUEwmUxIT09nlX3ixAm0bdsW3333HSRJwqVLl5CWlqYa+KizKFd+gFwgVahQAa1atcKWLVtw7Ngx/PLLL2ygpecJCQlhgvfff/+VTcAkVHiXiBY02U+aNAlxcXFsZUWuOkC+qlaKEb1V1JEjRzB+/Hj89NNPSEtLQ1ZWFmbPno3jx4/Ldh8WVNQBamuh0m0CgB04nZWVxdoM/7rWM2hNpMuXL1e1szt37qBq1aooW7YsAMgsvbRCVrotqc4uXryI999/H5mZmTAajTh9+jRcXV1lg4o9OZyo/bi5uWHr1q1wcHCQuQNOnz6NQYMGISMjAz///LOmxTIhIQFr1qxhkwtNbrw7PD4+XpZC4aeffsL8+fOxe/duVKlShbmv6LNKbCUibt68uawN0UTGD6z8oG42m1WDKZU5H1NXUFxcXGQ7nhMTE2UihtiwYYMsxhbIH4toLFaONceOHUOJEiUQGBgoEykWiwXjx4/HX3/9hevXr6vGA72J083NTWZZ5hdt6enpaN26tWwHHwDmWtaDRNC1a9dU3wXyxwLlxDp79mz06dNH9hrtOp84cSILk7h9+zY+/vhj1WJJK1SE3wAGQBV6w0/ederUgZeXF06fPm1V1OnBL3ArV64smyv5eiKXsVKA7d69W9cSrLS0JyQksOeKi4tDTk4OGjVqpLLUKfuo3nxKC1oSdU5OTkhNTZUJN17UZWVlqURdamoqswY7OzuzPkT9h7fU8Zw/f97mDu+MjAxZCpGlS5fK3uefc86cOVi4cKFsHiYojQ95SPRQGito3uYtdR4eHggMDFR9l/Il2moz1CaysrJYWT3UmLojR45g7NixTDC4uLhgzJgxBTq6RI+kpCRmtfH09JStDqy9x5OVlYWUlBTZf9YICAjAiRMnmOC4desWa8gUl5OUlKRa+fLJNXlRFxAQAEmSsH37dixdulQ2CEiSxFy1yjiDiRMnat6f0WhkljplZxkyZAhOnz7NxFGjRo1k75Pw5AcO2nDBCwFHR0eZhYi/NzLLV69eHZIkqRr9+fPnC5wSpmXLlixxsLOzM0qVKsXe4zuhMhaLJmF7kzIqV26urq4FFnXKQVx5T3369GGB6M8//zwGDx7M3uOtWQTVoVZeqXXr1qnc8/R3Xl4esrOzZRZaPRISEmTt/tSpU6hUqRJq1arF2hLBu0N4vvzyS/ZvmhBCQ0ORk5MDf39/2e5jf39/lC1bFv/++y/69u1r9fiq8+fPw2AwoGbNmgDklrqvv/6a9WtJktCvXz8MGDAAJ06cQKVKlWQimeqFbzt61K5dGwcPHoSfn5/s2ePj42E0GnVFXW5uruoYPRJSmZmZuHv3LkqXLs0sAPaSmZkps9jwE7EtkpOT2USnFLH79u1D2bJlVZuq+HLTitPUO5rJ3d1dV9RdvnxZthmIaNu2rdX7T0tLY54FLVFXqVIlZtEA8idCHx8flej9+uuvERcXhyZNmsjGDLPZLMuRB+TXc/fu3WVj1/r162XJkHn3FwDZ7lpfX1/UrFkTZ86c0RR1//zzD0spMn/+fFkZmM1mWZ81m82YNGkSdu3aBUA+No8cORJBQUGycm7UqBHu3Lmjm9eUX0QC+eO1si3VrFlTNUYr5zM9UUfjCImLoKAgpKamyn6DN0ikp6er5ileMGdnZ7MwAlui7ssvv7R5nN6WLVtk816vXr1kHjFlW3/33XdlrmZKrM97i7Sg31CWGy0g+Jg6Dw8PODk5Mc+Bm5sbhg4dqoq704PC2bKzs1nZ2uMNLLCoI8tNVlaWSjUGBAQ80FmGhLe3N2tESUlJssHI2ns8U6dOhaenJ/vPVmHUqlULQP5qzNfXF6dPn1Ztl//nn39UqQmoIQLqAs/KysLLL7+MXr16yVbTGRkZbBJSijotdyWtzui3tHZypqamIiIiAu7u7iyomuI2tEQd3Su/WlSKuv/++48FWZOlgAZApfm5WrVqKpehPdBk4eXlJZs4lbsutdA7h1aJcsUbHR1dYFHH57XSes6pU6fq1o+3tzcuX77MJh1HR0c2yNBKThkkroTPwWdPzj2C33G8bt06uLq6Asjvq1rueCWjRo1i7m+aZBo3bsyuocSeDShAfhyYj48Pa5vKwVTL4r9v3z6UL19eZjWl8caWZahq1ar4888/ERoaqhK0CQkJ8PHxkfVlvs3l5OSoRB3vJouOjoarqysLe+AnpU8//RQtW7Zk4nfnzp1sd2VMTIysLZ08eVI2fmqJHf439WJIz5w5o7Ku9e7dWzcuicb0qKgoTfemm5ubrH74/qRnlVeeGqEkNTUVly5dQnZ2tma4iHJcpzFN2U6MRiNKlCiBmTNnMis2fV8p6mJiYhAYGChrP3xfNZvNqjhpPs7Q19cXVatWxcWLF1WiLjU1FbVr12ZHGLq7u2PTpk1soUdHkBH0HM8//zxcXV1lAqNdu3bw8fGRibrnn38eJUuW1LVYKWP4oqOjZYLL09NTc65UJk2PiYmRLQaordKYQ/cZFBSELVu2oGfPnuyzvKVOS9TR+/Qd6mP0OS1R5+fnp+kSLleunCzcRKsdXr9+HV9//bWme1rJu+++i5UrV8oW40qOHDnC0uwo8xyS6KJxISUlhdUxlWFeXh68vb3ZfL5582ar90RkZ2fjzJkz8PX1fTiWutatW+O5555DSkqKbJcRkF+I/Iq7sDRp0oStSLZu3Srbim/tPZ7Ro0cjOTmZ/WdrEwetGkJDQ9GsWTNMnjwZ27dvZxa1Tp06ISwsDCdPnkT16tUB5Afc86sB5SqSnzj4wfru3bvMKmBPokvqZNTotUzwJBpXrFjBzLokeui3eHeLlg/f0dGRTfpAfmPi3YsdO3ZkgefKFS2hlXi5TJkystQdPLQLVCnq+GfUE3V6sYM8jo6OSE5ORo8ePdggef78ec38VIRW2fACn588CH9/f1nZ8Xh7e6NixYpwcXHBrVu3cOvWLSaMaOCl8xK//vprDBw40OozFeTcWT79A3DfAlq+fHnVapMXNYTBYICDgwPc3Nxw8+ZNmEwmNvHTBMO7kO3t///88w9zEQKQieyBAwey+CUldHQSkC+uqV9Zq08gf+crLWRMJpNskE9ISICvry+rvwoVKrDVtMlkQqdOnVSijmfBggVwdXVl98Dn95oyZQr27NnDRImnpyc7Ek9pPYiLi5NZYr7++mtdy70ynknJuHHjZJNzhQoVNEVgYGCgbHes1hFPSksdP46cOnVKFgtHkOVDj4MHD+L333+Hu7s7nn/+edX7yjAUKj+9eg4NDZWJitzcXNWYn5CQADc3NzRr1gzPPfccwsLC2Huurq7o0qWLTMT5+/vLBKzFYkGVKlU0RZ3SlUb3O2vWLCxatAizZ89mp4k4Oztj1KhR7LPOzs7MDb9hwwZYLBb4+PjIxl66b3tRWuq8vb01c5wmJCSozn/lF8uOjo4wGAxM1NF8R4sx3rrLW+LS09NVrmyqU36elCSJ3SeNP/yGw6FDh2o+36uvvoqRI0ciPT0dL774omYYxueff45Ro0ahU6dONj2IgYGB6Nq1q9XNjmXLltU8XYbnzp07SElJwZ07d1hbpbYgSRITdYmJibJnGz58OLOSGgwG2WIvOzsb//zzD2rWrKnZ15QUSNSNHz8er7/+Ojp16oSRI0eqBroNGzbIOkphqVevHkqWLImwsDBERkbi9ddfx4ABAwDkV2ZUVBTCwsJgMpl0DzV2cXGBxWKR/WeNtm3bwsnJCcOGDUNoaCgkSYKzszObXCpVqoQNGzZgxIgR+Oqrr7Bo0SJs2rRJtvpVWnD4QVQZ0E2WuuzsbDRs2BDdu3e3mSGdylvL5cwfoUVmXRI9JUuWhMFgkFlmtCZfBwcH9gxaRwStW7cOAQEB6NKlC86fP68pApo3b656zcnJCVu3bsUbb7yhik2jenF3d5e1J6XLXQuKwWvfvr1uLGdOTg6OHz8OHx8fVuavvPKK3Za6smXLolevXrKJTCtXFF92VatWRWZmJl588UUAkD1XYGAg/Pz8sHHjRly8eBGdO3cGkH8Q/IcffoiePXti+vTpVu+pS5cudt37+PHjVa/RCrNChQoqS4aeKAXy6+nGjRuwWCysjinu7/Tp0/j9998BFMxS5+fnx+qEn6wbNGigm0iaz43n7e3NLAda/fvKlSv44IMPUL9+fZlrhkQd9d34+HiUKFGCTW58G/7qq6/g7Oys2dZ5kpKSWJvSWqjRwG42m1G2bFnMmDFDFVDv6ekp+66Pj4+snxqNRpw7dw5lypTBF198YVXUvfjii7JJ3MfHR/Pznp6e7DecnJw0UyZQnjcgv53zFqQjR46gdOnSKrGldQIJ4evri5UrV2L37t1o2rSppmDu3bu36h4A2+KdclmmpKQgOTlZtUAzGo3w9vbG8ePH2QaNsWPHIiEhQdXvtL5buXJlJCcnq2Je9URdgwYN8Pbbb8PZ2Zntdv7xxx9lVrOUlBQ2V3To0AGAPJk5XU8Zn/Xqq6+qkuOeP38eLVq0UG2q8PHx0U1crzyakP9cXl4eXF1dVSJGWTaenp4yI096errMfQ7kL2CdnZ0xbtw4eHh4wN/fH71792aLROpjjo6OWLZsGQ4fPoxRo0YxLxoPCWSTyaR7tCKNb3QfysT6FPoB3Bea1vLA+vv7w2w2W/VI3b17F56enti4cSNrq9S+yVJ39+5dldU0ODgYoaGhmDx5Mg4dOiSzyNHRhcpk33oUWNTx//HpAoD8laVW7rXCMH36dERERGDp0qVwdnZmu+0cHR2xePFiRERE4Ntvvy2S3wLy456ys7NRtWpVtivN29sb9erVA5BvpXJxccH06dPRvn17vP3223Bzc2Mrl6ZNm8pW6IB8tcnvfExNTZVZ6o4ePYply5ahWrVq6NKli2aMCqBtqaPKJ0udp6cnE9aUsNhiscDT0xNpaWmsQWqZ4nn3qzUzLx0zpjfA0ndp+zbd74oVK1TuA7qGg4NDgUUd1VOFChV0xURQUBDraEB+2f/444925fs5cOAATp8+LVtVA/oB5SSK6tWrBxcXFwwaNAiAtrvWYrGgcuXKaN68OSRJQkBAAGbOnInAwEDZOZEFhT+0nM+VpTymqkKFCqpFhDVR5+HhwVLp+Pr6onTp0swKGBISwnZBU3+xBokfPz8/TUsdDdjEyJEjIUkSJEnCSy+9hF69esHb2xsjRoyQ3Z+SChUqYPbs2Th27Jjs2ejfZK0jSx1NAnyaFlqE8G1TGYIB5E/MvKhr0aKF7Og4qlOTyQSDwYCPPvpI1QaV46mXl5esXefl5SE4OBiDBw/GtWvXNGNyli5dyuqVn6DMZrOmpY53y1GIxYQJE9iCBMivm5CQECxYsABt27aFJEmyWMrQ0FBV+Xt4eOj2W4pxvXr1qq5ld+DAgbKQBBr7bC3OR48ejZdeegnJyclISkpSiQ8+7pHioNq3b6+5GYYXC1Q3JLYOHz4s272sXCBp9WEaB+xZUCpTBVWoUEEl6kaMGKHyVri4uKBkyZJYt24dPv74Y/a6lqijtqUsI97tT6KOD/lwcXFRWbRKlSolm+9u3LiBAwcOqIRUpUqVYLFYMHXqVMTGxso2NPB9rHv37mjcuDFcXV01dxPz1kRaGJYoUUJmkVMeu1itWjXZtZo1a8ZENIk6vt4oL2KNGjVQp04dGI1GGAwG9uy0CNTaDAHctzjSNUnUaUFj0pgxY9C4cWPZvHjhwgVcuXJF06KthUg+rAG5aXJzc1GhQgXk5ubK0jLwkKj76aefYDKZZLFP/Ir/xx9/RNeuXVlDoMrlc+0ZDAasWrVK95gxGqR5twINirylrlmzZpAkibn4ePcJfV7LzGxN1PGnTNC19KwpV65cQWpqKgsCt2ZZ4hsvnx+PX2X+/PPP7N/8QEqdmdIqKHFxcWF1QPfs7u4OR0dHleVFy8JYoUIFeHp6ylaK4eHhWLx4MYYNG8asP1SW7u7uWLFiBX788UcA9wcppXXSHtq1a6e5E5Jnzpw5qtf4naE8w4cPR8eOHVlsT9myZVVlZs0aRe2CJtWoqChNS6DJZMKhQ4fYYEnwq3ZKbl23bl02IPKiQCnq+ASyQL6IvHPnjizxsa3JXnmPQH6ZxMbGMlH3xRdfYPr06XjjjTdkLl5APuEonw24v9sNyBd1e/fuZakwgPsTubUyHjFiBPr27cu8Eh4eHpqix8fHB8nJyZqxlW+++SazktF44e3trbtQ8PT0hJOTExITE5lIHz9+vGzB7O7uDoPBgHfeeYcJQD5+eO7cuZqiWikitm/fzmKDgPwYTeU4xLvy+X9TW+V/RyvBL/3uH3/8gbt378r6ULVq1WS/Ry47LVfx3bt3mWCaOHEi2+RAr507d062AUp52oRWedPEbY+o40U1kC9ilFakBg0aqGLFnJ2dNccNLy8vWX0cOHCA3Y9S1DVs2JClEZMkCa6urrKFrKenp+oZaL6gvvvLL78gNzdXlsgeAItZ02rXen1DmfoHkLc/un9fX1+r7tOsrCzZmGexWNgcQvdvMBjQokUL/PHHH2xu/umnn2Qxe9QHyFOkZwBRCkWlqAsODmZjibK9kBeBEsMbDAa0atVK99l4hKjTgFZoFCCud6A2cF/U2ZrAU1JS0KVLF7bSM5vNkCRJdxIm+NU4NSI+joEaMVnq+MmNGpubmxsbEGyJOj6Qnti/f7+sQdG19I4B4lOG3L17l1lZtaD7dXBwwJtvvolz586hYsWK7JxYnvj4eERGRjKXe8WKFTFs2DBMnjxZc4KjTPX8PesxYMAAHDlyBPv27WMdSmtgXrRoEd566y3MmjULR44cwf/+9z+ZZfWNN96QCVVA21Jni40bN6p2pCrTWvTv3x+ffvqp7DV3d3fZqSjUll1dXbFu3Tp2TS1LpTXBQZMHnWVqjSZNmqgsDbwV6scff0RsbCzGjRsHf39/+Pv7y9LZKAd8LfeLEn6yX716tdVj4eg558+fj969e+P8+fMoWbIkunTpghEjRsDBwYFZMag/K/v1mTNnVBY7avNaSW55S52SBQsW4JdffkGjRo2wcOFCfPfdd9i/fz+qVq2qOfl5e3vLUpoA+S5wOsmDoEm8TJkybHxydHTERx99BHd3d/j6+so2KvHxOrxlk+8HVM7kugTy64vCCPSQJAkvvvgiatSowe7l3r17Ko9BdHQ0C3Xgd7eTW5qvZ61FBSAvf77fK910K1euxLx58zT7J7nJAbklxt3dnU3WvHiKj4+XlZM1S53efMJvCFCK5EqVKrFy69mzJ8aPHw83Nze89NJLsg0DZKlT8s8//7C6tlgsaNq0Kbsf5c5xT09P5hLNy8tTlY+3t7csltxsNrNyDg0NhYuLC9asWYOaNWvKXJy7du3CkCFDABRM1NWqVQsbNmxg3xkyZAiLawfuiz5+cwLdf8OGDVmqsqSkJNkGHkdHR8ycORPbt2+XidS9e/fi9ddfR/Xq1XHv3j1VTkEaC2lzlqOjIwYOHKjyUlA9UL1JkiQT1mQEGDduHDumjSBXNv1GSEiIzTmMEKJOA2rk1g6IJ5SiztoE3qJFC2bathWjQ/CNzdPTE76+vjJRRw2dRB0/GJQsWRI+Pj6oWLEiaxAlS5aE2WxGhQoVsHLlSpml0NHRkU1eJOpee+01VYAuNcx79+7h4sWLVo8hMpvNqkBcHrpfMm0HBwejW7dumjl8fH19YTKZsGbNGvTr1w9169bFrFmzEBQUpCnqnJ2d2b1qxZPwVlUvLy80atRIFhPKW2dowlPW2+DBg3V3+tHkUhhRB6gHdmVOO2dnZ1U8kouLC2rVqsVWsrt27dLcdKAl6viJfNasWSxhJpBviTh79qzM5WkNZTkZjUZcunQJO3fuhMFgYKLJ0dERt27dQvv27dG3b1989dVXMnHRokULleVOCyorZ2dndO7c2arljr+3bdu2IT09XZWOhMqC+oMyQLlGjRro0KGDbHcxb6lTMnr0aDg5OWlO9u+88w569erF/jYajazP8e5XmvS1XDi1atVSWUWcnZ0xadIkrF69mrXB/v37Y8aMGUhNTUWNGjV045H4tsD3Xy1RZzAYMGXKFMTGxqJDhw6qM4GVm6T48leKOn7zDLX3ihUrMsuVtbGE4K38/ESoPHS+du3azCqqhd7mGFqYlyhRAtOnT2eClrcca1njbHk4lBbpU6dOoUGDBuxeqMy7dOnCrJQODg6yPuns7MzG7o8++ojt5g0PD2e/TyKIFuVKS52Xlxe7f0mSVJtWnJ2dZZY7s9nM+lu5cuUQFBSEe/fuoUOHDrJx9/nnn2f9SCsFkbU5sUOHDqwNf/jhh7L+SGUUHR0tS3d2/fp1bNmyhZVHcnIyunTpwnYK0/F7Sqsoj1YeUXLbv/HGGwDyNzx9//337GQhQmmpkyRJ1p8NBgNMJhMmTpyoSs/15ZdfYuDAgWwcKMjZ8uo7FsDJyQkVKlTAJ598YvOz9lrq6tevj6CgIGYhs7abDsi3xmkNDBUrVpTllqMVdkREBBwdHWWDnouLC2JjY2E0GpmrLjAwEFevXoWfnx8MBgPatm2Lw4cP48iRI3BwcGBWKrpPLUFCHTUnJ8futCJ6KK1agLYrlCcgIEAlVPr06YNffvkFmzdvxu3bt9G+fXvZJKq1Om7atCnat2+PjRs3ygYfKgO+Q3fo0AEbNmywa/cRQROmPXFmWijdDuHh4ardkErhp7y/KlWqqIKuAduirkqVKrLjpawFvmuhNUBXqlRJc8cy1T3tCuXZtWuXXRN5QdyvythBb29vlXWDBllbrvMPPviALYysbZTo0KGDpgXPFtQPK1euzAZ25YpduamAhzYQUWA/b3Ffs2aN7oJDb4IlywtvWQXy+5efn5/KepmcnKwqb37ss+Yue/3117F27Vr8/fffNjdI8PCCg0Tj1KlT7crxZTAYWP/v3r07du/ezSZvIiQkBBEREShRogRGjBiBwYMH48cff0T//v1Z/9QS70OGDEFWVpZu+iLlGFW7dm389ddf7H5atmyJI0eOqCZ4vs+7uLiw/lK+fHk0a9YMubm5MBqNzPpD4pA2zmiJOrp/rfbv5OQkE6ZOTk6sToOCglC6dGlcuXIF7du31+2XISEhOHToELKyslibtJV3lJ5T2Z74sczV1RXffPMNwsPDmXCkcqXv0XhozQNnjeXLl+Pq1ats7qNyVC62SEzy7b1UqVLYt2+fbogVQUKd8oTauzkOEKJOF2uJU3maN2+O/fv3q1b2PDt37mQNlwYZW5Y63rzMExwcLBN17u7usuz7SqiDk2jx8fGRdQI3NzcsW7YMFStWhKOjIxOp5HpQDmj8tfTcrwVBS9Qpzd32UKtWLRZXSFY7R0dHtjLSO2idgsf5iXLcuHGqc4WXL1+ueSKHNerUqYOoqChda4gtAgMDkZiYiM6dO2PPnj1sIOR3fPfv3x8pKSkFPslFa6MM33YLEwfIY68l2hb2CDrgfjuyR3QrJ1wtwaDldu3SpYsq8BvIjxXz9/dnou5By47HyckJDRs2lNUvP3kcOXJElWxci7Zt22Lr1q2yYwn1cnwC9ycipfWvZ8+eqFSpEmrUqIFXXnlF05LBozWpW7PU8fTq1Qs9evSwuw0QK1euZONneHg4kpKSrOYf4zl9+jRLa+Lp6alyaQP5eRrnz5/PRIHJZFJZerXav9ls1j3z2xp8m7ZV105OTkx4kwWL7rN8+fJ4+eWXmVCgeUNpNfPy8mKbArt164YVK1bIrIGOjo4YPHgw5s2bh6ioKEiSxFySpUqVQlBQELy9vdGkSROrddekSZMCHS+njHPl2bJlC5vXlMcEenl5YenSpSwZNM0FhRV11CfoSD+aQxwdHTF16lTs3bsXW7ZsYfOksgxs5dTkGTJkCNq1a6d5frMu0jNCcnKyBEBKTk4u0uvm5ORIN27cYH/fvHlTAsD+q1SpkhQVFcXeHzdunARA+vPPPwv1e99//73s+p9++qnsbz0++OADCYA0ZcoU1XtRUVESAKlz587SyJEjJQDSpk2bdK917949m79nL/fu3ZNcXFxUv8c/U0F/KycnRwIglS9fXsrOzpZmzJghZWdna362SZMmEgDp+vXrD/QcD5PY2Fhp7dq1kiRJ0rlz5yQA0nPPPSf7TO3atQtcH8ry/e+//9i/9+7d+0D3vG3btkLVHTF27Fi7vkfX37FjhwRAcnBwsPmd2NhY2b3Vq1dP9Zk6depIAKTdu3cX6L5nz54tRUdHF+g7BSUhIYHde2Rk5EP7nZs3b0p5eXlFft2UlBR2/4cPHy7w9wFIHh4eVj8TGhoqAZDi4uIKe5u6REZGSgCkRYsWqd5r3bp1ofvhg6C8Rmpqqs3v7Nu3T3r//fel9PR0WX/QGgv595s2bSpJ0v0+Xr58ealr164SAOnEiRPSkSNHpFWrVtn1fHfv3pUASEaj0eb9li1bVgJg17NZ4/bt2xIA6eTJkw90HRpH3N3dZa8nJSVJM2fOlPUdvgxo/hw4cOAD/b4ewlL3gDg4OMjM18pVuvL8QbIcWQvktobSNcm7P5XZwXloxWxtZcxb6qxZWmytzguCo6OjzWzfgH0WGIJWRuHh4XBycpKlllBCCWDtDUJ9HPj5+bFA2nLlyqFevXqqzSf79+8v8DFtAGRnwJYrVw4jR47E9OnTC72K5a/7IEyaNAmTJk2y+/PUB+2Jg1UGaWtZ6sgaUFCrW0GPCisMfKhAQdySBcWeo9cKAz+2WHO/6nHp0iWbO0j79++PQ4cO6eZmexBCQkIQGRmpGeu5fv161Zj/OLBnh21YWBiLIT5+/DhSUlLQs2dPzdCMTp06IT09Hdu3b2fjP7W9SpUqsRjoUqVKISAgwC7rMXC/LSgtwloo3aiFhY7wfFDIYq7M/+jp6YkPP/xQ9XnK7uDo6Ih//vlHMyymKBCiroixNQm88847uHjxoiqnnb3wbtnu3bujd+/eeOeddwBonyNKUIfQEnUkaMLDw9nmAXsms0cphJSHltsiNTXVZtwicN90XtBjwx4XJpNJlvWe8PDwKPAEf/78eXh7e9t19ExB4SduvdxMRUlBBIhygaBVbvbG1D0OtDYuPEk4OjrCyclJc/erPdhzkszbb79tdTx8ULTOcwbyXawFcpUhPwjenpOFHiYkOPjE0jxr166FJEkYNmwYOwmB+lGlSpUwePBgODs72518nDAYDLh06ZJdISr0e0VpVHgQ6D7sEYiRkZGyXdT8ruCiptjtfj1+/DjCwsLQsmVLhIeHqxr7nj17UKZMGbRq1crmeZmPA1s7Hc1mM2bPnm2X4NCCt6AsW7ZM1sCtDfBkwdBauVJcXteuXe2ON9iwYYMstq+oUa6CC3r8nLu7u13WpmXLlmHo0KEFsgQ+LVSrVk03CfODrmR5Uccn3n5YFGSjhD3f1UtlUlwoSM6z4ojZbIbBYHgolrQnjaNHj6rOGS+OGAwGfPvttywmrHbt2ujUqRPGjBmDOnXqYN26dYWy8FeqVMmuDAFa1q/igN4RmDwFSUnyoBQPycsRFBSErVu3wmw249NPP8XatWtVwfrdunWzeZTS48LWDp6iYOfOnapjagD78unZWuXYK+q0ErAWJfv378fFixfRtGnTh/o79evXV6USeNY4ffo0O26rqMQtibomTZrI0l8UNfxuxYJgNBpZW7e2UaKw6WgeNkePHsUvv/xS4E0ExQWTyQQHB4cn9v6LG0OGDGGpOh4VJpMJa9eutfm5995774EWXcT777+P999//4GvU5TQecLFiWJnqaM8akC+QNISIatWrUJYWJgsR1RxgRdDv/3220P5jRdeeIEdQWUvlIvH1s4birHQOtT+UVKiRAndc30FRUutWrXYrkhybRXGLcZDok5v13FRsX379kLFsd26dQvdu3cHYP/u1+JErVq1ZEfCPWmYzeYHbmOC+8ydO7dI4sQeBj/++KPsdJWnCR8fn2K38Ct2oo64fv06duzYobIINWjQABcuXMDOnTuxZcsWXddOVlYWUlJSZP89St566y1VEs7HyQsvvABJkmzmagoPD0dKSspjF3WCx0P//v1x9OhR3YTK9kLuwYct6lq3bs0Wd5cuXcLVq1ft+l5AQACLa9U66J4GamFJejiYTCYh6gSCh8Bjc7/evn1bM+fT+vXr4ejoiN69e2PRokUqdyYfQ9KxY0ecOnVK0302depUVaLWR8X169ftOjC+uPIkBl8LigaDwVCg7OV6kKXOnt2oRYU9AfQ8lDtSaxMOBXwXV+vHk47JZCrUzleBQGCdxybqSpYsyY4w4cnNzcVrr72GcePGaboK+fPdIiIiMHDgQM3rjx49WpbKIiUlxa6M4kXBo/odomvXrnalBREIHhVk6SouO9W0oJNJ+HNpia+++gr169dnx/oJipaSJUsWOim3QCDQxyAVs6Uo7UakQ7wHDRqEbt26YcCAAfjhhx/w008/Yf78+XB0dESzZs1khxlbIyUlBZ6enkhOTi6SoE3Bo2HOnDkIDg6WZcIXPBnMnDkTnTt3fqgbJQRPJsnJyXB0dCx2QeYCwZNOsRN1Dwsh6gQCgUAgEDzNFNuNEgKBQCAQCAQC+3lmLHWSJCE1NRUeHh7PZKJZgUAgEAgETzfPjKgTCAQCgUAgeJoR7leBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKeGZEnSRJSElJgSRJj/tWBAKBQCAQCIqcZ0bUpaamwtPTE6mpqY/7VgQCgUAgEAiKnGdG1AmKJ/fu3YPBYMDPP//8uG9FIHjmSU9Px5QpU5Cbm/u4b0UgEBSCYinqjh8/jrCwMLRs2RLh4eG4d+8ee2/Pnj0oU6YMWrVqhdatWz/GuxQUBZmZmQCApUuXPuY7EQgE//vf/zBmzBhs27btcd+KQCAoBMVS1AUFBWHr1q3Yu3cvKleujLVr18re79atG/bs2YOdO3c+nhsUFBkk2EWso0BQOF577TXUrFmzSK5FFjpabAkEgieLYinqSpYsCbPZDABwcnKCo6Oj7P1Vq1YhLCwMs2fP1r1GVlYWUlJSZP8Jih/Z2dkAgLy8vMd8J3JycnKE0FSQk5OD8PBwXL58+XHfilVyc3ORlZX1uG/jkbFu3TqcPXu2SK7l7OwM4H6/FBQt3377Lb755pvHfRuCp5hiKeqI69evY8eOHejQoQN7rUGDBrhw4QJ27tyJLVu24Pjx45rfnTp1Kjw9Pdl/ZcqUeVS3LSgAxVXUOTk5YfDgwY/7NooVV69excqVKzF+/PjHfStWeffdd+Hq6vq4b+OJxMnJCQBkIS+ComPYsGH46KOPHvdtCIops2fPxt9///1A1yi2oi4lJQW9e/fGokWL2EADAO7u7nB2doazszM6duyIU6dOaX5/9OjRSE5OZv9FRUXZ/dtr164Vlr1HRHEQdT169MCyZctUry9cuPAx3E3xheqK74/FkcWLFz/uW3hiobp91ix1hw4dwsmTJwEA8fHxyMnJecx3JHgWGT58OJo2bfpA1yiWoi43Nxc9e/bEuHHjULVqVdl7vNiKiIhA5cqVNa/h4uICi8Ui+88eMjIy0LlzZwwcONDmZ//++2/MnTvXrusKtCkOom758uV488032d/kdlW6/YH8+9y+ffsz6ZpNT08HcN9F9zSSl5f31E/oOTk5SEhI0HyPYurS0tIe5S09dpo2bYrnnnsOAODn54cPPvjgMd9R0ZKcnIzevXsX23qVJAn//fff476NYsGD7jwvlqJuxYoVOHjwICZPnoxWrVrh999/x4ABA9h7jRo1QtOmTREUFIQWLVo88O/l5eXh7t27kCSJuR1u3rxp83uhoaF4//33H/j3HyYPGht25cqVQscn/fzzz+jdu7fVzxQHUafk7t27ALRF3apVq/Dyyy9j69at+PbbbxETE/Oob0/G3bt3MWLEiAcObJ88eTIcHBysfoZyPLq4uDzQbxUnYmJiZCKuZ8+exd4SqYe9/XT48OEoUaKE5nvUjoprPs+AgABMnTrV5udiY2Pxww8/FHrs27JlS6G+9zCJjo6GwWDAhQsXCvzdRYsW4ddff8WGDRuK5F5KlCiBPn36FMm1AGDv3r2oUqUK4uPji+yaTyoGg+GBvl8sRV2PHj2QkJCAPXv2YM+ePejWrRt++OEHAMB7772Ho0eP4uDBg/j666+L5PeWLVsGd3d3ZGZmMpFhj1q2Z0W/a9curFix4oHvsTBkZmbCyckJP/74o+b7eXl5uHjxotVrVKpUiQnqgpCbm4u+ffvi119/tfo5Ku+isHzNmTPngVxv8fHxMBgM2Lp1KwC1m3HJkiU4d+4cAGD37t0YNmwY3nvvvUL9VmZmJmJjYwt9r8TPP/+MmTNnqnaIF5Rx48bZFNY00RdW9Ny7d48J5keBrTYlSRJKliyJESNGsNeWL1/+sG/roZGcnGzX53bt2qX7eRJ1xTX8JDY2Fp9++in7e+PGjZoC9Ntvv8XAgQNx+PDhAl2fxvTiaImnZylMX09KSgIAeHl5Fcm9JCQkYMmSJUVyLSC/XnNycnDr1q0iu+aTQEZGBn744Yci9RAUS1H3qKGdtnfv3mUiw54CtmXZAIDWrVujW7duD3aDdpKamirbBUem9nXr1ml+vmfPnqhataquVZIGtgMHDhT4Xv744w/2b2sWhAex1CUmJsoGgQ8++ABvv/12ga9DREZGAgBLhJyQkIBDhw6x9/v06cM2CVAs5507dwr1W506dUJAQIDVz2hZAbOyspCRkcH+Nhrzu3BhLHXdunVD3bp1bVpltmzZgvPnz7OJvrDu106dOsHd3b1Q3y0MtuLCqBy3b99u81rz5s174BW01jUvXLiAX3/9FStXrgSQ74kwGAyFEhW3b9+263NkpePjjPPy8pCRkVFoS11MTAwWLFhQoO88KJmZmejQoYPmhiY/Pz8AwO+//16ga9JYVVhR98UXX+Dq1aua7z2oUKTFVGEmfxJ1Wt6HgvIwrLjUF+Pi4or82g9KXl7eQ0nxs3jxYpjNZgwcOBDr1q0rst8Qog6Am5sbgIKLOppQH+ZOMUmSEBoain379tn8rDJfla37IqvElStX8OWXX8LHxwf//vsve7+wguvcuXPo3r07+9vaIPAgoq58+fIICgpSvf7555+z+JiCQOXFdy69oFWy2BW2I9pK7rp//36ULFkSBw8elL1evXp1+Pj4sL9pkM7MzMSgQYNw5swZrFu3DkeOHLF5DytWrMCpU6cQGBjIXtOaeNq2bYuQkJAHtt5s3rz5gb5fUGy5IxMTEwHkt71NmzbJLNITJkyQ5cEkl19RWXDy8vIwaNAgtGvXDr1790Z4eDgAYPr06QBQKItmnTp17Pqcr68vgPzsAsTIkSNhNpsLLep69eqF995776HFI+bm5qpENdWvlnWH3tPbSKcH9Rt76jk2NlZmNcvMzMRnn30mW1jy5cEvxmicPXz4MAwGA4txHDt2LI4dO6b5e9TXC1PGZJUtilQ/1EYB4K+//ipQn7h69SqmTJnC/p4wYQICAwOLtagbNGgQTCZTkV/3zz//ZP+Oi4sToq4osVfU5eXlyXz+JOrWrFkDg8GAW7duQZIk+Pv7F9kJCVlZWTh8+DBGjx5t87MRERGyv/UaSU5ODpKTk1lsVFRUFMaMGYPExERUq1aNdVL6fkEFFwXUE9YmCBpkCiPq9ETG2LFj2U62gkDPqxz4/vvvP+zfv1/2Gk2I9nbEs2fPqsoFyLdekZi8du0aExK0rf3KlSuyz1+5coX9ZmxsLD7++GMA+RaJefPmYfTo0XjttdfQpEkTu+4LkAsIXtTPmTMH1atXZ39TPdo7MaxYsaJIXMyFRVk3OTk5MiFDou7ChQto37495s+fz96bOHEiXnzxRfY39fWi2hVKkzjdA0F9z15XamHw9PQEILfUkaWQ+lRBBTw9R2JiIj788MMid7NrtSNrfY/6mrX8fVohNnRKkVKoXLt2Df/73/9kr3Xt2hWdO3dmf5N7lMaymJgYODk5MU8JX6bVqlUDkC9qgPzxJDo6Gp9//jmL087JyZEJQbqunqiLiIhgFjkeSZLY69R3L1y4gFatWhV444QkSZg0aRL7u1GjRvjll19w69YtmdjT480338SYMWNYP5o4cSJu375d5KJOkiTN+LyoqCg0atSoQO2b5vKHuYFqwIAB2Lt3b5FcS4g62C/qZs6cCT8/P2RkZKBv375s4KLV2rVr1/Dvv/8iLi5OM5g3NTW1wFY96nT2mM3p2lFRUUhOTmYdRTlAdenSBV5eXmyQiIqKYi5oQJ1VvqCCSznYpqamQpIkrFy5UvX8SksdBQOfPn26QL+pRVRUlFXrQXR0NI4ePcr+vnHjBgD5ihoAKleujLCwMM1r2CvqatasiTfeeEP1+vr16/Hbb78BAOrWrcuEBN2DtRXihAkT2OS/Z88eANB1/RDbt2+3Wp/BwcGsjj744ANmkQTuiwCtZ75w4YJM8OTl5aFHjx4sxpFf5Nha2efk5MBgMLCg7okTJ8p2J9uLUnwOHToU5cqVY38rBZUWFLdLoq4oxIokSSzIXCksCiPqeJc2378++ugjmVUXAPr378/qhHfX0hhIotfe5/zvv//w999/s+c4ePAgZs2ahX79+qFHjx52PwNPenq6KvSA+iYRExODkiVLAtAOLCdRFxcXpykIo6KiUKJECWzfvl1TqCvbaNeuXTF06FDZ63Td3NxcXL58Gc8//zyA+25SEu4Ue6YUEpIkMctgeno6W9DVrVsXkiShbNmyaNiwIfs8jQlac0hOTg5atGiBNm3asPH2hx9+QHJyMoxGI5ujMjMzMWfOHMyYMQN79+5F165dC2Rp02qX165dQ79+/fDxxx/jo48+sjrH0XymbF80phSVqJs7dy78/PxUZb5gwQL89ddfzAOSmZkpC7HRguIQizreT6uNFQVC1OH+gJaenm51owR1wCtXrsgOoKcGajAYmEXH399f1nDv3bsHi8WC1157rUD3Rp3AwcEBV69eRdmyZREXF4dbt27pTs5ly5ZFSEiIruCgyZIXgbyoozKg79vq9Dt37pQJJ6Vl7tixYzAajQgPD8eECRPYijYhIYGVBz3LiRMnAOjHAQL5HX/QoEFW7wnIT0K7YMEC1YRA1KtXD40bN2Z/k5BUlpu1TTP8Z//++29s3LiR/b1mzRps2LCBfWbTpk2a16AE2vwqm77DJ9FV1oOW4OM3vihdsOfOncPLL7+M/fv3W30mvdU7xRzyz/zFF19gwIABCA4ORs+ePdnrKSkpyMvLQ2RkJJYuXYpevXqx92xZ+mhgJ8vZhAkTsGzZMpnAtAfl7/zyyy8A7tenPaJu1KhRAO4LB+VktHHjRqxatapA95Wamspc0fykk5OTw/62Jer4tmA0GtGyZUsA8hjPb775BomJifjpp58A5Mfw8Jum+HokYUhpJewVdRUqVEC9evVYmdJpI8uWLSv0ppMWLVowwUYo435tWTX4hRm1J4PBwE4hmjx5MpKSkrBz507NZ5UkCUePHmXuWy0rNR/Pyk/4ylx/tNBSCozExER2vdTUVPY5Ly8vXLhwAdHR0TJLI9WX1iKVxPiRI0fQokULnD9/HgMHDpSNb0B+vX7wwQesHWzduhWnT5/G7NmzNXO5SpIke2aqBz6rQUZGBhPR33zzDdavX8++q2zHVCbKMi+MpS4iIgJTpkzRXMjSHGPLU0B54ej3jxw5gsmTJ8vGBm9vbwD3y/jvv/8uMquaFk/l7tdHjZalLiEhQbZr9dtvv2UbI5Q7RqlB5+TksPdiY2NlK2EaFLQm9qioKMTFxUGSJNWqkbfULV++HFFRUdi5cyeCgoIwfvx4+Pv7a1qAoqOjNXcnaU3Yt27dkok6ZWyZNcvOxYsX8eKLL8p2IisHL34H7BdffIHQ0FAkJyfLRAf9BjVoa0Jy+vTpmDdvnu77BLkwlZY3QmkNoM+fOXPG6nX5CYefGOvVqyc7/aRLly7o2LGjLCfYmDFjMG7cONn1tNzTyntevXo1m0SAfKGstMIAcvfg//3f/8neI9dqSkqK1Ul77ty5mDx5sup1mrD5Z/7ss8+Y+OI3x9Bg/vPPP8sEHSB/Xq0dsdHR0QDAno9Og1G6ooF84fzqq68CyJ9w+E0c/GS0Z88e1k+pffMDty1LuJ6lrkOHDujatSuSk5PtXsnrWTIGDBjAxg9roi4vLw9GoxHffPMNtm/fjpSUFBZbqjUp9uvXDzk5OapNRHz50Bhoj6jLzc1VPatS1BHW3HvXrl3TfF3rlCClqLO1QSk9PR0eHh4A8ts79YsZM2YgJiYGCxcuhMlkwtGjRzXvUZIkNG7cGHXr1kVaWhobj/h/U5vIyMiQiYfr169j7NixrAyvXLkCLy8vtGnTRvYbfChAamoqq4/s7GxNMUJjwrlz51QLCb5v/P3336z9KNOfaF33zp07GD58OJ577jnVuLN06VK4urqyBSctkGvVqsU+M3XqVOYpAPIXT3/88QemTZsGLy8vmQileuDLkX82pcs0MzMTWVlZ6NKli6y9REVFoUWLFhgzZgwLQZkyZQo++eQTAPcXKcrrKecVCtOhsaBVq1YYN24cfHx8mDuZwhXo9+vVq4dWrVpBi2+//VbVB9LT0/HPP/9oft5ePvzwQ7s3/QhRB21RFxcXh27durETKYYNG8YKVU/U7dq1S7b5gCwDgPVBumzZsqhYsSI++ugjuLi44NixY2jcuDGys7NlaSRI+NDA/fnnnyMuLk42mfLQqpRX/koBERgYiOTkZKuWOmuijgTcjh072PeUok4rluzPP/+UiSrqbPRb1n6T6ssWVE72xo3YezxLpUqV2L+1rKGZmZkywcqLuilTpqgEk7JOsrOz2XWpTGfNmiX7TMOGDTFmzBjZa8oVHg3AWVlZyMvLk4kya3GO48aNUwlP4L771ZqljSZka+2dr4/WrVuzAfjEiRO4evUqE3W0Qib4drVhwwZs2bIFb7/9Nv78809s2bIF27Ztkwkmus/bt28z1xhwX1TxllFbx4rRBB4SEsLuny+Hw4cPIygoyK6UOnqijs8hZq38qB6+++47vPzyywCA0qVLA8ifxCIjI1VtQWtnLN92yepLr6Wlpan6YGxsLC5duoQpU6YgKChI9vzUx5XCm343OTkZBoOB5X/btWsXypcvL4tVvXnzpqyv8NYQpajjP6fnfqXFV0pKCrsPNzc33Lp1C7m5uXjxxRcRGRmpOT7wz37y5En2t5+fHxMR9LsZGRmy+zt//jw+//xzNG/enD17cnIyEhISZOPs9evX2biXmprK+np2drZMjFSsWBHAfaG9adMmlatOKSSobfMLQUAu6uj+qb/Fx8dj2LBhss9T/ZAH5caNGzAYDKhRowb0WLduHd544w12xi2/eOJFHZ8OisYjflGyevVqmEwm7Ny5E2vWrMGXX37J3uPrn0TXmDFjMG3aNABggl7PUkd9kMQk3SO/KCQrKdX9jRs3rO4wj4uLw7Bhw1C7dm3Z67169ZK9lpeXZ9VTomzPMTExmDVrlt3hDELUQTulCZGcnKxatSrNvfT++PHjmZrPyMjA8uXL2YrGVmBmWloa1qxZAyB/wj569Chu3Lghs9RR47p06VKBnxHIb8h8Ti4g3wqiFHXU4Gk1npeXh86dO2v6/Gny2bVrF7u2UjBorfoHDx6Md955R/Wb9LxFIeoIe0UdLz5poNCCP0eYvhMdHc0mxlmzZsk2Kuhl7ydSU1Nlq9mvv/6arXypPSoHbS1KlSol+/vGjRuQJAmurq744IMP2DUWLlxYoGPzlGRmZmLevHmaqW4aNGiAa9euaQZsE2lpabhx4waCg4PZ5p5Ro0ahfv36qFixImt3VAfUFlJSUrBlyxbExsaiY8eOaNu2LetXbdu2lVk+gPuiSylCLRYL7ty5I5tsbO1u4ydHshLxixKyii9YsAAXL17EgAEDZG24Xbt2LKSA6nTJkiX46quv2Gf4FDfWRB25oflxgCx1ly9fZuMIT1RUlMqlyZeLsoyuXr0qs162atUKAQEBqFKlCnNt8WEN9G9lO6VJkMZFWoBSqMP169fx/fffw2AwoHTp0rI23KpVKzYuKE8bICGiR3p6OivPHj16sAnazc2N9dnSpUsjKSlJc3ziJ++4uDhZXZJlmrfU2Wul5U9AiomJYSKaD9PIzs6WjRlXr17FunXrMHz4cN3rKq2eJI6Uabf4Nku73mfMmMFeu3z5ssxaR9byTZs2ITY2FufPn0fp0qVVbUkLElQ//PADW7Dwoo4/mpH6Ii/qKMaQhCX/LLylVjlnZ2RksOeMi4vDL7/8ggYNGiAyMpKNF1TnVOZ0PX5xR/dE81lsbCwLQdGCj4/kx3MKtThw4AAuXLiA7t27qzwDynRAN2/ehMFgwF9//cVSLtl70EKxFXUjR45EWFgYevbsKas0ciOEhYWpVhWFxcnJCU5OTkhLS1M1kMTERJUoUJp0tSxRQL7p+5VXXmHX4Zk/fz5atmwp+70qVarIPhMbGyuLqaPGpdWw7NmRuG3bNtUZp2XKlMHx48fx119/sddoUGnXrh2AfCva2rVrsWrVKtnvpKWlyToXNWpewJrNZs0BTylyMzMzcfToUbYasbaS4QUo3Z+1nUlKkalVVspE1tZOTVAOaAsXLkSpUqXYYKiMt7Al6k6ePClL6DtmzBjmFpg7dy7S0tKsThqhoaEAoErvkpWVxQbWRYsWsQl38+bNqo0HL730ktV75KH0KWSJUHLw4EGW4FaLtLQ0/P777zLXEF/+NGErj6z67rvv0LZtW924VKXIpHrWaks9evTAxIkT2d/WLHWLFy+WxfPRhMALC9rscuXKFSxfvhzz58+XCbPNmzczywQJlaCgIIwYMQJt27ZFYGCgTVEXFxeHxMREzf7v7+8PABgyZIimoL5x44ZqfOEttqmpqSwuj+BdVXybJssqfx/U/5SWuujoaMTHxzNRRu2c+oqLiwu+/fZb9nnl+EsLaOVCWi9OlkhPT2dlkpiYyHaZurm5sd8ODAxEVlaWzVMMKDSGkCQJkiTJRJ09JxAB9/PnAfJ5ZO3atZgzZw4AtagDwCxQPPxuXKU7mvqW0iqsJerICgfk17PZbEbTpk1x+/Ztdo8zZsxAQEAADhw4gGbNmqms6NYYO3YsOnbsiK5du7LrpaWlsbkRuG9ZvHnzJt555x0YDAa2uYpEES+E6HlbtmyJixcvst3bQH68H4X8xMbGYvfu3Th+/Dg6derEPB5Tp07FoEGDmNeN5melqNu+fTsLx4mNjWWLYR8fH2RmZsrEPp+Khq9bEo7NmzdHcHAwu1fehc7HIwNgGzl2797Nxn57k74XS1F38uRJ3L59GxEREahevbrMvbhhwwaULl0aERERSE9PV+XxKixubm54//330b59e9nriYmJqpWcchBQigbekvTCCy8AUK8sBwwYgH379snEQ0xMDPr378/+vn37NpvQ1qxZw55Va1BXTkpKa9amTZs0rT1ly5ZVvZadnS0ToXzDpRX24sWL4eHhIYvnIxfx8uXLUbFiRdy9exceHh6qAYdioHgyMjLYSQ6AukzJKnH58mWMHTtW9t69e/dkq0tlWSxatIi5An777Te4urqqRHa9evVkf1sTdcqs7PyAAkC2oxawbVWwFhy8f/9+fPTRR6rXKdWIn58fK0+tnH00IBmNRtmES5MkTUwNGjSweo88thYQb775pkwwKZk+fbpsIlHCp4uRJIm1BWp7ervVlEmEaTDVcpEr8wSaTCacPn1a8xglZSxacnIyxo0bp0ob89xzz+H27dvs/pKTk5Gamirb9JKYmMgGcGdnZ7bJITMzU7ZYUYq6jIwM+Pv7IzAwULM9ubq6YvLkycjKytJMWn3jxg1kZ2fL2vnmzZthsVhw9uxZpKWl2d0GaGzRyoWoFNAxMTHw8/NDp06dANyfmKhMMjIyrE5W58+fx+LFi1UnQ9gSdRkZGcwFB9y3vDk5ObGxgqyCSgsvYTKZUKJECZWoS0tLw+3bt2WiTi8+UAkfB6t3xKDS/Qpot/mhQ4ey8laOsXxqIh7eHckLTCB/rqLrHTp0CPPnz1e5Lw8dOoRmzZppxvPaghcxZEChsZrG4+TkZCxatIj9G7gfFsNbyxMTE2EwGFC7dm0cOXKE5XkE5AuQmJgYNn7wlu3Tp0/L4rLp9/lxPzExkYU3APllR20lLy8PJpNJFqbC98uCpnJycXFhi7qMjAw212dnZ7Pr2puGpUCi7uTJk7IV06+//opmzZqhTJkyaN68eZEdsXPo0CFWmG3atJEJN2vv8WRlZSElJUX2nzX0Jqo7d+7YtNQpJ2X+XMUGDRqgVKlSqslCawK+ffs2ypYtywawmJgY2W+TJeLWrVtwdnaGxWLRfR5KMArkB4m3b99e07LJuxLr168PQC2SeFF3584d5Obmah7/5eTkhL179+L8+fO4cuUKzGaz5rE0HTp0UMUlJiYmyjoUP6lduHABVapUwcKFC9GkSRPVKvbs2bOyo4P43GoGgwFr167FRx99hH/++YdZKpUra+UpCdZOTeBds25ubipXpnKAtTdWTw+l5W/x4sVsxZmbm8ssJ0r3K3A/EDgtLU3zSDhqQ2TVsIcHzSi/evVqZtnSgt+FnJ6ebjOljtICRWRlZeHKlStWj8Kj9unq6opatWrJctPpcfToUc2NJH369EFubi6zLBw7dgwWi4XF4t64cQMvvvgiE0MkZlxdXZGVlYW0tDS0a9cOjRs3Zvd89OhR5OTkMMFHn1Pi4uLCQj20Eu5u27YNly9fltUzTWTnz59HWloa3N3dcebMGVnsklbZkyAjoaGM2+JRilO6Hr2ekpKiEnX838OGDdM8JYbvc3oxdbxIJhGYmprKvkuWKr00QNWqVUNAQIDK/QrklxmNkRkZGbh69apsRyg/RvDJvfkFpzVRZ8u6T9C8pVykam0qAuRiQzl/VK1aVfa3r6+vpjhp3rw5LBaL1ROVtMai999/n23eSktLQ2ZmJiunpKQku8+eXr16NdavXw8vLy8WS8rDL+IontEW165dQ6tWrWRzu3JzAy/qyLLIb15ISEhgZUh1W5B8ePxcTOP72LFj2b/tHXcLJOreffddZkb/6aef0L9/fzRo0ACfffYZGjZsiH79+mHhwoUFuaQmSUlJrMF5enrKJklr7/FMnToVnp6e7D++wLTQ2yGpZalTijjl6pTvuB4eHujSpYtqt5JS1Dk7OyM+Ph4BAQFo3LgxSpYsiZs3b+pWZKVKlZgI04IXdXruYeXnqFz5DRqAfAt9UlISPv74Y+zYsUN1rczMTFU5apnpQ0JCZLEl9Bv8ZJWSkgJJkpCWlsba1PDhwzVdJV27dsXcuXPZ37yo43N4TZs2jWXxVsboODk5yXZwWQsEVg7YtlJjLFy4UFd4EBUqVNAVf8pV91tvvcUm55ycHGaR0CprW0mY6bvKVbsS/toFOY7Kzc0N1apVK1CoBIUCZGVl6bb/ChUqsH/XrVtXsy9kZWWhUqVKVtMIhYSEALjfZ61ZaAmyfv7xxx+yxQS5wQmKF+T7Cm+hpIWDi4sL0tPTsXv3bgQFBeGll17CihUrsGfPHjRu3Fi1i1lrwjcajUyg8jkehw0bhhdeeAFbtmxh44uSb775Bjdv3oS7uztq1Kgha6tlypRRxehRe6d6ev3111XX1Hpe4P5kSJNecnKyStQNHDiQ/VvZTwlblhClqCNRdvToUQwZMgTAfbGlJ4BCQkLg5+enKepeeOEF5pJPTk7GzZs30aJFC9StWxeAfCHHiyW+n+mJupMnT+Lnn3/W7ZOUuBhQx4QRWpZDZ2dnWdtRijqlq5YP3+CpVasWDAaD1XNk+TGYePnll/Hll1/Czc0NaWlpyMrKYmNpYmKiZpweL9gTExORnJyM119/HX/++Sd8fHxY/+Xh55G0tDS7hNWff/6JvXv3Wh3LY2JiVLuJL126xMbD+Ph4dj9UbgVZ0Gt5zXgeiqXuwoULbOffd999h1mzZmH27NkYOHAgvvnmG/zwww+yoMvC4u3tzR4gKSlJZuq19h7P6NGjmUpPTk4udGC4VkydrUmNH6RcXFwQGBgoixW5ceOGKhA/OzsbkiSxgSY1NRWTJ0/GZ599pvkbJUuWtJrPhhdr1lBanYD8zq0UWERiYiLLQ6TkyJEjzAJDgckkBvjjtmgnkLLB8+bxa9eu4a233oKHhwcLJldO8DRoK2OIaEAxGo2yAHg+Aa7yKB4nJydZTNGMGTMQERGhmeqCL7MSJUrYJXKUMRNKatSoYfUsWKXlkAbk3NxcJsy0rCrWLGL9+vVj7jh+R68WvPVZa6BXxjkC+eVEYwOfAkAvkbPSxcbHfCknftoRCADt27dX7TgDbG8ueeedd/D5558DuL9Rwp4cUWfPnoXRaESnTp1kRx4prQZkMdNzr/OWOsLd3Z2JpKFDhwKASlQp3f1AfpwfP8mS1SMwMFC2oNUSCuQBoEmdD924desWdu/eLfs8CYjU1FR4enrqnrfs4+OjqtOlS5ciLi6OTY4pKSmytt2gQQPWV6pUqcLctvPmzdMVETR2ZmZm4sMPP0RCQoJK1GlBZcGnruIhURcbGytzvyrnnH///ReSJKFChQpsUcuXMy+Smzdvjj///BM1a9bUFXXUbmfOnKn5Ph86kJiYiNTUVJX41Vr8KscXpagbOXIkXnnlFbZASkxMlInFKlWq4JtvvmFtS2/uXbJkCYthJG7dusXSPbm7u7MULrylrnnz5qq2xIvDVatWydqAyWRShc0ouXv3rl1iyNpJMb6+vvj6668RHR2NiIgIFmtO0NwWHx+PcuXKMe/NjBkzVHGq1rBleHooos5kMrEB6ubNm6rEho0bN7aZ0d4emjRpwhru1q1b0axZM7ve43FxcYHFYpH9Z43IyEh2WDuP0lJnT7AiP0gZDAbV4FKmTBls375dNjERwcHBAPLzuQHqRJM04AcEBFidgJQdTm/S1nKdxMfHs237SubMmaOaLBcuXMh2hC1duhQODg5sxUL30axZM/a81JGVZ1XybrKTJ09qunh5yM3Fm9vDw8OZe97R0ZGtTJXthLfsAep69fb2RvPmzTV3wfKv+fr62nXiBm9Z0qJ27dpWD7vnXTjAfQsbb6nLy8uTxYAoUYqBHj16YMWKFYiKilL1ZSUk6vQGHq1y8vLywvTp09G2bVvWB0aOHKk7WTVu3JgNgqGhodi8eTPbca20bNOkOWbMGPTp0wfTpk3Dhx9+KPuMrfOS33vvPfZctlKa8Jw5cwZBQUEqwe/v7486deqwDSTkZuVjRXmozfHWQXd3d9StWxcjRoxgCyOtMVXZd7KysmQTHpWjm5ubrI+7ubnh4sWL7EQLwmg0srQvyvFKacHhrRmlSpVC27ZtZS5bwtfXV3ODj7+/P7Mgx8bGysTNoEGD2Fjt6OjI+k1gYKCum3fv3r345JNPsHnzZsyaNQtz5sxBenq6akezUtRYszQB+YKiWrVqOHPmjCw8R2lRIVEcEhLC4hJ5YczHKrq7u6N9+/bw8PBgi6Pdu3fjrbfekl3Tzc1NloaHh+9rrVu3Zru59XjhhRfw999/qxb6SoEfHByMLVu24K+//kKtWrWQmJgoExJdu3aV7cDVE3W9e/eWjXd79+6VjV8xMTEYN24coqOj2bPk5OTAz8+PxdMRWpY4ol69epphTDxxcXE2Y5rLli0rMwyYzWZZ/3jvvfeYBRaAKu/m1atXYTAYcPbsWfj6+iI4OBiTJ09mBxTwlnZrLmb+9BAlNWvWRGpqql1zTYFEXdu2bfH9998DyB80lPnRVqxYoXKrFYZ69eqhZMmSCAsLQ2RkJF5//XV22Parr76KqKgohIWFwWQyqVwehSUkJAQ1a9ZUvb5u3Trs3LkTTk5OOHv2rG5OOB6lQNBLwaGcqE0mE8qXLw9AnrGbJo+vv/6aPW9AQIDVWBZlB9Y77JtvZLQabd++ve4xXVqbNPr27Yv33nuPNXaLxcIEJ1nqSpcujf3791s9YFsvuFcPmoh5l++YMWPYpODk5MRc42TxbNKkCYKDg5GQkIA2bdqw+9SrM3tEnRbKnaFUr3o0adKETaZmsxnfffed7H2la4KEXG5uLhMFeXl52LhxI/r27av5G3zCUCB/oHBxcUHp0qU1FwiDBw9m/6bnJOuREq1FE19ONMHm5eWhQYMGsvYN3Bc2GzduREZGBkqUKIGEhATWDpXlRy4ofsPIzJkzceXKFZw4cQLOzs5WT6C4desWQkND2X3zAoDKlkSh0gqYkpIiO25s9erVOHjwIBwcHPD3339j3759MBqNNo+Qo8UfLyjJYsC72HhocUb92d3dHZ9++im6dOmiGcfl5uYmuw9nZ2dUrlxZtokAyI9Ro40fynASpTDj41GDgoJgMBhULmJAf9InQkNDsXDhQlm/N5vNrO85ODiwMaVOnTpWF7FfffUVc3efO3cOGRkZMJvNOHjwIJv4+cTggO3USCEhIWjUqBFiYmJkli+lkFi/fj2Cg4NRqlQp/Pjjj6pxrF+/fmyxRQs3s9nMrtm4cWM899xzsu+UKlVKd5HH1x3vZqU+pBQOJpMJderUYYsEEnNkQFBiMBjg4+ODmzdvIjc3l/V9pUi2FrJBAjo4OFiVioM2ft28eVPWZrXGEL6fEZ9//jlycnKwePFiGAwGldeF59ixY0hKSrLqiShfvrysfj/88EPZObYWi0UWjmPNo2KxWPD9998jPT0dZ86cweTJk2ULHq3nIXr27KkZbnD79m1ZLKItCiTqpk2bhp07d6Jly5YoU6YMZsyYgbCwMPTv3x8tW7bEhAkTNFdshWH69OmIiIjA0qVL4ezsjB9++AFAvsBZvHgxIiIiZFvhiwKtCfrs2bP45Zdf4ObmhurVq9u0uABQmWf13ADKiTo4OJh1SL6xk3WkXbt2LADVzc2tQO5XvVVfmzZt8O677wLQzw1HYpd3wSkxGAxsUtCKZQkKCkJgYKBqgtyyZQvbmZqSkoIOHTponoShBU2GvGvE1dWVDW6Ojo5wc3ODo6MjXnnlFbRt2xZfffUV61g1atRgA6RS1NE1tAZ+pfuVp2vXrhg/frxqJ6HeitJkMmHChAlo27YtjEYjXn75ZaxevVp1DJqyPun+cnJyWJvJzc2Fo6MjK+M33ngDffv2xf79+1GhQgVV27UVR8cP4vScJpNJM3ZPa0Dmv0/lS+1hyZIl6N69O9q0aYOBAweyHcNubm6yOiSUixKyPnTv3l32Oh1bZTabre5IJNFDdckLq++//x5ly5ZF8+bNcfDgQSbu+BAC/lDzzp07yxaXBoOBtStr1lctSx0FdSuD1gmydlssFixZsgT79+/HlClTmGeCIMtCXl4eczHzv6UsX75OlRYsZehKRkYGOx3B2mJF2SY6d+4sy02pNd4qRV39+vUhSRLKlStn0zXOJzYm92toaCj279+Pffv2sWTshMFg0E3o6u7ujsqVK6vEFpB/bJ3SAEDXMZlMqvhZo9HInonaA/UNT09PmEwmlaU4MDAQnp6ezBsxefJk9O7dG0OHDlUt5smqtHr1aqSnp6vKneqaLK4kUHgrGJUd4e3tzfoPzVNKUadMA/Xuu++ykBoHBwfMnDlT8wg93gvEt7Vu3bqpPtuoUSMA961jLVu2xGeffQYHBwfWHvi60Juj3n//fc3XgXyRzHvjzGYzSpQowQxYFotFNldrzee0gMnKykKDBg3Ygo0vY4vFYlUQAvmiT5k5ICAggD2XPZs+CiTqSpUqhZMnTyI0NBRbtmxh5+Nt27YNpUuXxoEDB1SC5knCWhwadUa9RtOjRw8cPHgQKSkpKmuG3opQeS1+ZxrfcakReXl5se/k5uZqDnL0W8pn0fLtU0qFkSNHAtA/mmv58uXo2LGjpiWThxow7wrgE31q8corr2D48OGsc5coUYKJj9atW8s+q9yZqOUyc3V1Za87OTnh2rVrSEhIgNFoxKZNmxAWFsYEQrVq1XRFHZWt1i5YT09PnDt3Drt27VKVc4sWLTBhwgRVx9dLbuvt7Y3x48cza+zWrVtl+ZuIzMxMLF26VNOVR22CJvz+/ftj/Pjx+O2337Bw4UI0a9YMV65ckT2LVgxJTk4OS8GjvGcatEwmE2svPFqijndPUnvmFw7Lli3D5s2b8f3336vEPu/yq127tmo3nZeXl1XrjV57U0L1zz9rz549ce3aNRgMBmbNe+2112SneugtkghaUf/666+yVT9/yoyWpY4mF737p75hNpvRu3dvmdjlxwzqK66urqhYsSLzdGj9pvL569ati6NHj2LSpElo06aNZsqPtm3bAlBvKOLdVDQWkdWxadOmslMEtCx5SlHHY80zAeRb6PgdjNQHy5cvj7CwMLi5ualccXycLU9kZCScnZ1V/fv9999HgwYNVMYLrRNYeGhs5S11wP0Fu7I+qL23adMGkiRhzJgxWLJkCctlx58JW61aNeTm5qJdu3YwmUysTSs3/9Dr1Ib48B/lmMOLOhIiyjFNaekbN26crD1++OGHmhsm/P392djAL5C14mJbt26Nu3fvsrAjrf7OL1AoBlOJ2WxGTk6O6jzauLg41dhM7Y+e12AwwGAwYN68eYiIiNAUdcOHD8eCBQswZMgQGAwGzJgxA/7+/kyU7tq1C2fOnLErywBd/9NPP2WZD6iv2DoeDyhEnjovLy98+eWXOHv2LDIyMpCVlYX//vsPS5cuLVCuq+KI1jZsQk8sEd27d0doaCg8PDxUjUTPUqccpPQmfpqAvby82O+XKlVKs4HT6oK3rCxatEjzvun36D0tF23nzp1Ro0YNrFu3TtYgtXbqkOudd4eSK8fWCoUsWX5+fuzayvJYs2aNbDedlqgrVaqUzFLn6+urEhw0mPn7+7P39FKYKAV5rVq14O3tjeDgYDz//PMqYU739Mknn2DChAlshcffa6tWrWzGeCpJTU3Fm2++KYuZa9euHZYsWYLg4GAcPXqU7Ro0m82YMGGC1fNMtWJDHRwcZGVOuwSB+5ORg4MDRo8erUoBpHTnKX+D+oC9SUtpMbB06VIcOHBAU9RZw5a7myBrrrWYOoPBgDVr1qBhw4b46aefNHPZKaF2T/FxXbp0ASAXv1Q+vHihjRd8OfF9lyyM1s5G7ty5M+rWrYszZ87ILEiAfMetNRo2bIixY8eiZs2aqt22FouFbWDhx4H4+HhZiin6TRIR/v7+snGAt0ZSwLvZbIaLiwtMJpNsZzGgDh/Qch/yoQda467SO2IwGODr68smX4LEFl9OmzZtYt4hrfZuDaovame2RJ2t8ZL/vJeXl2wuoX6vfIYLFy7g6tWrmDNnDk6dOgUnJyeZUOQpV64cExD8XGINW4H+hNFoVFnK9fDy8oLZbGb939qGBgC6Z7I6ODiwfsb3QbPZrGonVH68BwTIzy3bvHlzzXbl7e2Nd955h42TQ4cORUxMDCuT559/HmXKlNG1wPPQwrdevXrMdU3tQW9zDU+xTD78uFAKn08++YS5VZSDIpC/aYAGI36wUA6YepY6pSjT6zQ0gZpMJjz33HPYvHkzWxEo6d27NyRJYo2rfv36ePvttzWvTbuc/Pz8cP78edUgCuSb9AkayNq1a6fp2tKyLnz55Zf45JNPbG7Xpk5brlw5lC5dGoMGDVKdd+ru7i6zFvID2/r16xEZGQkHBwf2up6o6du3L7799lu0b99eFn+nBb8if/XVV3H69GnZZ/Xcoh4eHhg/fjwiIyNx48YNWZtYsGABc1PYs9sSADp27Kh6bePGjSw2rWHDhjYtGfZAZbdgwQJZm6Y2nJOTA4PBoBLBWq4TXqzUrFkTy5Ytw+jRo+26D7JYVatWDe7u7ipRZ0sUU3tXTtZaWCwWuzdKvPvuu6rYLC02bdqE7du3M1c/DdS8O1aZiHfcuHFsEuAnO7KyLVy4kLmA9c6PTUlJYbmzatSowdqEUszZ+7xa4tlkMrHFBe929vX11RxnSGAHBATIxApZcf7v//5PtrHDYDAgPT1dlSpl1apVzE1vMBhw9OhRjBkzRtaH+GBzW7tfifj4eBw5cgT//PMP/vrrL9kmKv7afN3xoo4/v5bn9OnT7Czk999/H46OjsziYkvU2Vr8KEUdD7U1WrxSnQcGBqJ8+fJwc3NjVjFy6SrhY1614k4JGmMTEhLsHsuA+4t4LVG3bt06vPnmm1i9ejUbQ6j/67V7IjQ0VOXReeWVV1QbgwhXV1fVc5ElTynqCL2d/vbAW7KDg4Ph4uIiS+ED3K8/fvwkg4o9ok5/Kf8MwjdKWlnt2LEDL730kubKf+jQoWxHIT8BKidXvcFFKXSUHbt27dqIiYnBunXr8Mcff7D7o3gW+tvd3V0VQKk0ufMNd/To0XjttddkwdjVqlWTWV88PDx0U4jQfa5cuVLmQtESFaVKlcLUqVM1n5+HBoeyZcvCaDSyjQKHDh2STRy8oKKO9Ouvv8pOqaAJTE+oOTs7sxgLpaj7448/ZNnbQ0NDkZeXh99//13TLaq01ClXkt7e3vD29pbtYvb09LQZRM+TlpZmc5VcVNBAohRtvKhTQnF9yvgkpahWxr9Zg0QdtS8a1Bs2bIhWrVrZHETpOV588UXVCR9KwsPD7T5X0V7IPUnQQM0v8KiMqY/ym8z4AX3y5Mn4v//7P1gsFvYsehYLPQuSsl7tyccHaIsLV1dXNGzY0Kq1ELgvVhs3boxNmzahevXqsuen4HUPDw9239aEmKenJxo2bIizZ8/C09MTHh4emDx5MiZPnoyOHTvCYDDIrHcF7TO0YNTzOGmJuueff143AwNvWWzdurVMkFD5k+hX3qstUcfXn1LU1a9fH//9959qQVEQeNcsjZFaC4ErV64gISGhwCdMkEih5+a/37FjR9UilhYDSmut1n1v374da9euxZEjR/Dll18iPDxcd9ep0Whkba506dKYOXMmG+dfffVVvPnmm6o0Kz4+PvD09ERISAhL2WPLc0B06NABLVq0wJIlS3Q3TVCZ8OVNbnUh6ooAmkz0Vud16tTBvn37rJrL+YHsp59+wnvvvYe33noLI0aMwCeffMLeU3bsEydOQJIkODo6yhQ+8dJLL2HTpk2qXUTA/QZBgw8/CFC6FCW8CPrvv/9ULjZ6Dro2pZvg+fPPP20G4GtBqyFlQ1cexcTj4uKiObEoxa81lDF1r7/+uspCYDAYdAWJ0lKnl8SaFzje3t4s7see1a2tXXoFoV69elYTEtsSdVrnqOoNmNbcv7Yg9yuVL7lrGjduzPIWWuObb77BCy+8YFcKIqVF+GFA5cbXJd1b06ZNERERoSsOjEajylpiyw2lhOpIa6MEbVTSQiskxV6xRKKuRo0aKst+ly5dULt2baxYsQKvvvoq2xxlj3VNK05r3bp1qr5kr6XOXnjBTP+2ZTnSg/L0Uc7GorTULVy4ENWrV0e9evUwf/58VfL8gkLPqrVoL1OmjN1uVx7+JJeuXbsya7QeTk5OOHnypO6u8ICAAJQvX561gddee43FgtpawFA7cXNzkx176ebmphlz6erqylKgDBkyBN99953dljqLxaI6IUjJwIEDkZubq0pPFRAQIERdYbh48aIsmWz16tVx5swZ2UASEhLCBravv/4a/fr1s9pw+MGFREjz5s1Vk55ysLR1bMqwYcPQp08fWCwWnDp1SnYeolLU2SMe+E6rtfJSijotlGfn2kvlypWxbds2m25ae7l9+7ZdCZhtuV9tobTU6Yk6HqPRyERTQVwWRcGBAwesnt2qFHUHDx7E999/z+It+ZXyihUrCpRbryDQRETt19PTEzt27LA7hVHJkiXRr18/lljW398fV65csXq/DxMtSx1f98oUOHrQokfL3W0NZb3yCzM+95gSreB1e1231BeU/TA1NZWNlzSJhoSEwGKx2G3xUKLVj/RE3e7duwvV3/m2Q/8uqLgmKM6QFq0FFXX8fKP8rMViwaRJk5hVt7CizsnJCffu3WO/VZRjFW9s0EqmrYWWYYPQOguY6sbakY/A/Xm3MIsArbCKB8XFxUXzvG8h6gpJ5cqVVbn2lDu8+Fxt/JmLevADOcWd0f+PHDmCDRs24PPPPy9QAlQgv5NRh65du7ZsAFbutioKqNE/DFfg9OnT8frrr9s9qNvKh2gr0JjgE50WBhK/zZs3x+HDh3V3XykprIh8UEwmk9X6U07+oaGhTEglJibK6odf1Srp1auXZjJvexk9ejQ++ugj2USi3A1tD3x+PFuD+8NES9QVBovFYtPtqQXVK7VzsqbbsqprhZ3Y6v/t2rXDsWPHmKVOuUDUGpPCwsIQFxdXpHWkN0nrBdPbgr9vurY1oWGN6dOn45NPPtE8VQSwLer48UrP9Umv25PbTIvdu3dj1apVrL0Vpt3podyh+6Bojd80bunlaCV4S11BUfarh0m5cuXscqULUfeQaN68OYvzokbj6emJNm3a4PDhwyyDf6NGjVhC3qIUS2SNKWisgzWo0dsbj1MQTCaTLJ2GEr7zX7lypdAreiUWiwWOjo6FXoU6OzvDYrGgXLlyLPmpvd8DHr2lzhbKwHoeW2V+4sQJ/P7775g2bRratWv3QAP20KFDdRMdFwTqe3l5eY9k4NXDnpixhwlNPjQptG3bFqdOnbKaDBXIbw99+/ZFbGwsNm7cCMD2REyfGzNmDA4fPmy3a6qoRXdRlzV/PYPBgAsXLtgsPz1cXV1lG8sKKup49IQ5WUgLK+qaNWuGZs2aYd68eQCK1kBQ0N3DhaFZs2bIzc21uYHsQSx1EydOhIeHh9WzwosKvfQ7SoqdqDt+/DiGDx8Oo9GIgIAALF26VGbV2LNnD3r37o1KlSrBwcEBO3fufIx3qw8/wdNgRZ1PeSQTPV9RWm/CwsIwbtw4jBgxosiuSaLuUQuRpKQk2W/akwDaXiwWywNPJnq7/qxhj8Bo0aJFgU/ZeFD0YursoV69enB3d8e0adOsxkI+Smig9vPze6wC+vvvv8crr7xSoIlxxowZRXLsInBfrFNsn8Fg0HStarFw4UKsX7+eiTV7z5WeOHGiytr6KClqUacUB/akp7CXBxF1euVLYlqZxqWgvPfee/D09LSZm7EgkKhTbsYravQE3YkTJ9jJKA/igfL19bVrI+CjpNiJuqCgIGzduhVmsxmffvop1q5dq3LzdOvWTZbQs7hjMBgwbdo0vPbaa5rv0wRqK4auIDg6OqoyUz8ovNXjUWLvSr8wdO/e3W5XrR4dOnSw2w1DMXg0EFub8GwF1D4MqA0WdoFRpUqVInXTPCjUt5THkj1qSpQoIUu8aw9acTWFRS89Q0Hx8/NjuTDt+c2i9BTYi9FoRF5e3iPbMV4UKEVdQfNYamE0GrFz507NUzEKgqOjo+7JG4WFhObjEvz16tVj6cionVg7SuxJotjlqStZsiQTD05OTpoWjVWrViEsLEx17EtxZtSoUborO1pNFKWoexiQpe5Ri7qHSZkyZVSHaReUb7/9Vnb8kR5nzpyRZYIH1JncHzePMkbkUfDcc89hzZo1sl3mzyIkGh50Eh02bJjV4wKLA8rksQ8Kn4T7YUGLqNatW+PYsWNFtuP9hRdeKLJQlaLk9ddfx8KFCwuU5uhhQcm19XbWPmkU25H7+vXr2LFjB8aMGSN7vUGDBmw7eKdOndC8eXOWRJcnKytLtssvJSXl4d7wA0Cr5+Ii6vRcRNbSWghso4y7iI2NLXYDrjL26knHYDDoWsifJfr164ekpCRZPsenFWdn50LvStVi7ty5soTEDwMac4cNG6Y5n2kxbdo0m0c3FlcoVrM4QAmr7UmB9STw2ETd7du3NfOcrV+/Ho6OjujduzcWLVqkcgPxgqNjx444deqUZieYOnVqkbsfHxaPStQ5OjraNOsfOHBAN+8QmamFqCsaCpPP72FDVg5Rx08Xrq6uGDt2bKG/X9w29FgjIiIC27dvf9y3USCcnJwKHLYwatSoh3Q3zxb169cvViEjD8pjE3UlS5bUPF4lNzcXr732GsaNG6fprkxJSWHCJCIiQnXEBkEpEfjvFSZJ4qPgUYm65ORkm4MzHUOkxdNmxRGoofjF4mI1FhQPWrRogXr16j1wqMKjoG7duoVONSIQPOkUu5i6FStW4ODBg5g8eTJatWrFzjGkjNMrVqxAo0aN0LRpUwQFBeke7+Pi4gKLxSL7r7jyqESd2Wx+oOBhIeqefkaNGoU5c+bYdWaqoHD06dOnSHdwPwo8PT1x4sSJYrswFggE+Rikp8nuaIWUlBR4enoiOTm52Am8H374AQMHDsSiRYtU58wVJ+7du4cePXpgxowZhc7PJBA8Trp3746XXnoJ77777uO+FYFAIChyhKgrBpw/fx4hISG4ePGizZMSBAKBQCAQCLQotrtfnyWCg4OfqkBNgUAgEAgEj55iF1MnEAgEAoFAICg4z4z7VZIkpKamwsPD44nani8QCAQCgUBgD8+MqBMIBAKBQCB4mhHuV4FAIBAIBIKnACHqBAKBQCAQCJ4ChKgTCAQCgUAgeAoQKU1wfxOFQCAQCAQCQXHF1mZPIeoAxMfHw9/f/3HfhkAgEAgEAoEutg5QEKIOgLOzMwAgKiqq2J02IbBOSkoKypQpI+ruCUTU3ZOLqLsnF1F3TzYeHh5W3xeiDmCmTIvFIhr5E4qouycXUXdPLqLunlxE3T2diI0SAoFAIBAIBE8BQtQJBAKBQCAQPAUIUQfAxcUF48ePh4uLy+O+FUEBEXX35CLq7slF1N2Ti6i7pxtxTJhAIBAIBALBU4Cw1AkEAoFAIBA8BQhRJxAIBAKBQPAUIESdQCAQCAQCwVOAEHUARo4cibCwMPTs2RPZ2dmP+3YEGhw/fhxhYWFo2bIlwsPDce/ePfz+++8IDQ3FCy+8gKioKABAZGQkmjdvjtDQUOzYseMx37WAZ9myZfDz8wMAUXdPEHv27EHr1q3RsmVLrFu3TtTdE0BeXh769OmDsLAwtGjRApcvXxb19qwgPeOcOHFC6tmzpyRJkvT5559LS5cufcx3JNAiOjpaunv3riRJkjR69GhpxYoVUqNGjaSsrCxp//79Ur9+/SRJkqROnTpJ//77r5ScnCyFhoY+zlsWcOTm5kpdunSR6tWrJ2VnZ4u6e0LIyMiQOnToIGVlZUmSJIm6e0I4fvy41K1bN0mSJGnbtm3S8OHDRb09IzzzlrpDhw7h5ZdfBgC0adMGBw8efMx3JNCiZMmSMJvNAAAnJyf8+++/qFGjBpydndGsWTP8888/AIDo6GhUqVIFFosFvr6+iI+Pf5y3Lfj//Pbbb+jatSuMRiMuXrwo6u4J4eDBgzCZTHj11VfRuXNn/PXXX6LungBKly4NAJAkCUlJSfDz8xP19ozwzIu6pKQkdlSKp6cn7ty585jvSGCN69evY8eOHWjevLnsiJvc3FwA+YMYIeqzeJCbm4sVK1agW7duAOR9jt4HRN0VR2JiYnD16lVs2LAB/fv3x4QJE0TdPQGUKFECRqMRISEhGDVqFFq1aiXq7RnhmRd13t7eSElJAZA/2fj4+DzmOxLokZKSgt69e2PRokXw9/dn9QYADg4OAACj8X6TFvVZPPj1118RHh7O6obvc4Cou+KMl5cXmjdvDmdnZ7zwwgs4efKkqLsngK1bt8JkMuH8+fNYtWoVZs+eLertGeGZF3VNmjTBtm3bAOR3hGbNmj3mOxJokZubi549e2LcuHGoWrUqKleujMjISGRnZ+PAgQOoXbs2gHw37cWLF5GSkoI7d+6gRIkSj/nOBZGRkViyZAnatGmDixcvYv78+aLunhAaNWqEyMhIAMDJkyfx8ssvi7p7QvD29gaQL8zj4+NFvT0jiBMlkL/79ciRIyhbtiwWLVoEZ2fnx31LAgXLli3D0KFDUatWLQDAoEGDIEkSZs+eDVdXVyxZsgRlypRBZGQk+vfvj9zcXEyaNAkvvfTSY75zAU+DBg1w7NgxLF++XNTdE8L//vc//P777zAajVi4cCGOHj0q6q6Yk5ubi969e+PmzZvIysrCzJkzcf36dVFvzwBC1AkEAoFAIBA8BTzz7leBQCAQCASCpwEh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgK+H+EZXbbx5W8JQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd3hURfd+N71vCiUJhE4iRTqE3lEUkN4+qgIWRD5AQEE6CIggHaRJUUSagAjSpNfQpPcSSgjpvWfn98f+zjC3bTYhFPnu+zz3SfaWuXOnnPPOOWdmDIwxBh06dOjQoUOHDh3/ati86gzo0KFDhw4dOnToeH7opE6HDh06dOjQoeMNgE7qdOjQoUOHDh063gDopE6HDh06dOjQoeMNgE7qdOjQoUOHDh063gDopE6HDh06dOjQoeMNgE7qdOjQoUOHDh063gDopE6HDh06dOjQoeMNwP8MqWOMISEhAfpayzp06NChQ4eONxH/M6QuMTERRqMRiYmJrzorOnTo0KFDhw4d+Y7XktSdPXsWDRo0QKNGjdClSxdkZmbyawcPHkRAQAAaN26MZs2avcJcvjlgjGHChAmIiIh41VnRoUOHDh06dOQRryWpK1KkCHbv3o1Dhw6hTJky2Lp1q+R6165dcfDgQfz999+vJoNvGB48eICJEydi2LBh+ZJeTExMvqSjQ4cOHTp06LAeryWp8/X1hYuLCwDA3t4ednZ2kuubN29GgwYNMHfuXM000tPTkZCQIDl0qIPiDLOysp47rWPHjsHHxwenTp167rR0vF6IjIxEaGjoq86GDh0vFOXLl8fmzZtfdTZ06MgTXktSR3jw4AH27duH1q1b83M1atTAjRs38Pfff2PXrl04e/as6rPTpk2D0WjkR0BAwMvK9r8O+Tl55OHDhwCAo0eP5luaOl4PFC9eHCVKlHjV2dCh44Xi2rVrGD58+KvORp7AGMPNmzdf2vtOnDihTz58zfDakrqEhAT06tULK1euhL29PT/v5uYGBwcHODg44IMPPsCFCxdUnx81ahTi4+P5QWRDhxJkoTMYDM+dlre3NwAgLCzsudN6HZCUlPSqs/DaIDU19VVnQYeOFwoiKP9WorJ06VIEBQXh3r17L/xd586dQ926dbFy5coX/q6Xibi4OGzZsuWlvjM/9eVrSeqys7PRo0cPjBs3DoGBgZJrohv1yJEjKFOmjGoajo6O8PDwkBw61JGRkZFvadGklsePH+dbmq8KV69ehbe39xtDUHW8HkhNTYXBYMgXF19mZiZmzpyJnTt3YuzYsfmQu38PLl26hJ07d+ZrmjTANZlM+Zruy8KNGzcAvBz5GxsbCwC4e/fuC3/Xy0T//v3RoUMHyQTNFwHGGNLT03H37l0UKVIEv/76a76k+1qSug0bNuD48eOYPHkyGjdujPXr1+OTTz7h12rVqoW6deuiSJEiaNiw4SvO7b8f+UnqKK03gQjdu3cPmZmZmrOCU1JScP/+/ZebqX8B4uPjER0dbfGex48fv/IJNefPn8dPP/300t/79OlTAMC6deueO621a9dixIgRaNWqFaZMmfLc6b1OYIzhwYMHOHz4MPbu3au4XqlSJbRq1Spf30mKPDekLiUlBenp6fmaj7zC1dUVAF7K0l0U6/6iyc/LxqNHjwDghdfp6tWr4eTkhNu3bwOAxTj07OxsqwcwryWp6969O6Kjo3Hw4EEcPHgQXbt2xZIlSwCYWXRISAiOHz+O77///pXkLzEx8bV3y8XExCAoKMgq0pFXUnfq1ClcvXpVNa2UlBSr03n69OlrOZM5Li4OgHbnXrJkCRo3bvzyMvQvQWBgIAoUKGDxnqJFi2pa2V8WqlWrhn79+r3090ZGRgIAnJ2dnzut5OTk507jdcWkSZNQvHhxNGrUCO+8885LeSfJr9y4Xz08PFCzZk3Va4yxHCeg7d27V5W05gU0wZDa2ItAdna2JOwpPybYvU6g70lLS3th7wgJCcGHH34IAIiKipK8Vw3Lli1Dq1atcOLEiRzTfi1J3esODw8P+Pv7v+psWMS+fftw8+ZNlCxZEhcvXrR4b14EGQDUrl0bFSpU4L/Dw8N5gHFuOvq7776L5s2b5+rdLwPkXtAidY8fP+bE71XAZDLh1q1b/PeRI0e4oHiRyKmdiJbNyMhITJw4UfUZKl8RO3bsUCxhlN+4d++exD2VmZmJffv2vdB3iiBLnZOT03OnlRsryZMnT17r2GLGGPbs2cPbysKFC1/Ie5KTkzXjQ/NiqcvOzsalS5dUr3Xv3l0SE66Gd955J99IK+VfzE+7du3yxSpM2LhxI6pUqYIffvgBwKsndfv370dAQEC+WQyzs7MBvFhS17FjR/6/NaSOZKo1+kYndXnEizRvX7169bnJQnx8PP9/zJgxFu/NLzPzoEGDuOk6Nx3szp07eXrfjBkz0LNnzzw9aw1ystTFxsa+UIGWmZmJPn368DKVY9asWQgMDOSj8m7dumHVqlVgjGkqmfzKl7UYPHgwJkyYgAcPHuR4b1ZWFlq3bo327dtblXZqaqqknVuLUqVKoWjRovz3d999hxYtWnA3yIsGkTpHR0cAwO7du3HgwIE8pSVvf9nZ2Thz5gxu3LiBvn37SiY/+fv7o1ixYnnM9YvH2bNn8e677/K2K7c2TZ06VXVJndwqcw8PD5QtW1b1mqUB7vTp03NdT+vXr9dMTw2bN2+GwWDIM0EhD9LMmTNx6NAhpKenY9u2baoW6SdPnqBWrVo5hkrIQd6fw4cPA8g/UhcTE4PGjRtzkmMtBg4ciEePHmH79u0oUKDAc1vfidS9SPer2B5IHlgqR+rH1gw2dFL3EkCCIjY21qqGUqFCBT5yY4yhZMmS+Ouvv6x6F2MM8fHxkgkltra2/P/09HQULFgQR48eRVJSEmbOnMlHJM87+1UUDrmZKUkNPLdu4K+++gpr167lv7Ozs7FkyRJkZWUhJSUFISEhuUpPjpwsdXFxcS80niQsLAxr1qzB6dOn+bmHDx9yEkzKj/JpY2PuzidOnEClSpWwYMECSXqZmZkYPHiwqoUsNxBdfvHx8YiMjITJZFKEJGRlZfEgamsGKbm1XNWuXRuenp5W35+enq4IFwCejYJfZIzftm3bYDAYcOfOHS7EqY+0bNkSTZs25fdmZmZaPftOrghSUlJQs2ZNvPXWW1i9enU+5f7lgOTHkydPVK9/88036N+/v+K8JWKfkJCAxo0bSyyzJpNJcyKBJUvdqFGjJPUk3i/mXwS52K3tczSTNLfEhiD2wV9//ZW397feektx75kzZ3D69GnFRAfGGObOnYvTp0+ryrfw8HAAz/p0fpG6DRs24NChQ7meeUqTQ7799ltER0crltO6ePFirrxQlix18fHxqF+/vmKQOnToUHTp0iVX+SZQe7ekS0g3U94sQSd1LwB///03zp8/D8Dc8B0dHfHzzz/D29tbM7A3MTERRYoUwZkzZwCAK3IKxh89erRV7541axY8PT0lExXExZvDw8MRFRWF+fPn49ChQxgxYgSuXbummd6BAwestoaI9+Umpo46XHx8fJ5ms5GS3LZtGz799FP8/PPPaN++PYKDg59raYL8tNTFxMRgw4YNVt3LGMOTJ09U31+sWDEei0ZuHRIGROpI4MiV+t27dzF//nwcP37cqnxoQazbUqVKoVChQhg/fjzc3d0l5W1vb88Flqik1OokKipKIrCsIcsUVvDTTz9ZZe0dNGiQJFyAQIo3L0u2ZGdnW2xjZNVYvHgxAKBMmTLcwqFl7Z81axY6dOiguVyTCHn7e94YuytXrryySU5UHlFRUTn2W/G6Jfl07949HDp0CP/88w+WLVsmCVeQo2/fvqhcubIifbXfBJHIqVmjCxcuDAAIDQ3FtWvXYDAYLMpbd3d3AM9kWnJyMs6dO2e1HEtKSoK3tzfq1q2Ly5cv8zYkj1+Nj4/nfUbe7m/cuIEhQ4agVq1a+PjjjxXvkJPu5yV18fHxGDhwID777DMAZgJz4sQJq7xhopygfIn5uXz5MipXrpyrAY4YU/fo0SMMHDgQkydPhsFgwJkzZ3Ds2DHMmjVL8sycOXOwceNGi+k2a9YMX3zxheI89bfr16/j559/Vn2WZLs1LmGd1P0/rl69+tzCzGQyITMzE82bN0e1atVgMpl4w9y2bRsAKCYEpKenw2Qy4dq1awgLC8OkSZMAPCNiJLCsVTjbt28HAIkrSbTUUaNwcHDgaWqNjAGgadOmeO+996x6d06k7uzZsxbNx3PmzEGrVq2sIh2ZmZlwcHAA8Ey507clJiZiz549/L68Qk6qZs2axck6YCZ1JpNJ8k379u1T3W6tbdu26Nq1K+Li4tC9e3fcvn1b0d6ePHmC48ePY9GiRfD39+dCV8uCSaSO6pFGc+SuFetdvC+3lrqpU6fy8gSkxIGsWzSLVG6to/Y/evRojBs3TvE8QT66prq1Bv369UPLli357/Xr16tOZNIKMiYLobUhFeIaYHZ2dhgxYoTqfefPn0fJkiUVs1KpXrV2uSECTNfv37+P7777TlWxy+VCbgZTaqhYsSJKlSolOXfp0qUXTvQePXrELUCRkZGa8o7ahfid8fHxOHv2rOqkMGpr0dHR+Pjjj1G/fn3NPKxevZqXuVxOifkRFavoIlarTyJ19+/f55b18uXLw8vLS9KnAPO+5iT3yXr83XffoXr16nyioByJiYno2LEjvvrqK2RmZiIpKQnBwcGoWLEi0tPTef7kXhhPT08MHToUgLLNiPpALRaP6omQ19izO3fu4J9//kGXLl34oIdQt25d9O3bV/NZk8mE9PR0yULLRIRFeUl5nTx5stUhTSKp++qrr7B48WIuuyhtrU0PLGH//v0K7wnwjNSdPn0avXv3Vu3nVH/WTNDUSd3/o0KFCihZsmSO91kaMTVv3lyijJKTk7n1QUvYOjk5oW/fvjxWhMgYdW5qiGlpaejfvz+WLVuGU6dO4ZdfflGktWbNGt6IRQFHyn38+PE8vs7BwYF3Ri1SR9+qpgzVykFO6sR7Tp48iRo1avAYE7W0iIzMnj0b3377rWqeAOCvv/6Cg4MD72D0HJWZaPFJSUmxODIGzJ1q2LBhCkEuul+zs7MxfPhwtGvXTnFdHBm2aNECs2fPVryDSMu5c+fw22+/oWzZsihSpIjknlKlSqFevXr47bffACBHUkdtjRQXjeaoPOSKkeqbiFjjxo0xceJE1bRFfPPNN3j33Xf57169eqF9+/aS8qJ2KndBESEOCQnB5MmTAagrPzWimZtwAGp7UVFR6NatG0qWLGm1RSE3LrJ9+/ahVKlSOHr0KP9mIpFyUvjPP/8AAMaOHYvdu3fz81QPu3fvViwSu3//fv4tVO9z587F119/jYMHD/L7fvzxR4SGhireqUaYGWM5kr0DBw7g008/BaC0TFeqVEnivsvKyrJ6KR+5nEhNTVWN9wwICOBWjMjISE2CTW1edJXHx8ejRo0aKFeunOJ+UoJEbrSWJ5JDSxYAz8gDILVAq+XZzc2Nv5fKtUKFCnB0dMSff/4pubdJkyZcrtM7SG5orQV36dIl/P7775gxYwb+/PNPJCUlwc3NDU5OTkhPT+d5EmWB3GNgidSJbeHkyZMwmUyKfmUN0UhNTUXv3r0lFvUyZcqgatWqikE85VktVIIwcOBAODk5SdZ2ozoTB/J07u7du+jdu7ckjUuXLuHHH39UpC26X+UTi95///0c85ZbyAdMavKR6sEaS7xO6gRkZGRg0aJFMBgMmgpFLvDi4uKQnp6Ov/76SxFEGx8fz++3FBP3888/805LBERuqUtISMCKFSvw8ccfY82aNdyit3z5cuzbtw8pKSno06cPH7mIHY/SmjRpEjZt2gTAHKRNyoUalVwAW4r/04o3IGRnZ0s6F3VctRE4vZc64KZNm1Qnd6xZswbvv/++gmR+9NFH2L59Oyevohvkjz/+QPny5S0umTJq1CjMnj1b4cIjpZ2amsoVho+PD79Ogp6+Uyw/LUGnNVrMzMzkZUptgRS+Wj0wxhSkTm6pkwsAOak7dOgQJkyYwK9v2bIFBoNBotDULJ0hISHYunWrxAVBiiE6OppbJwBlfc+ePVtV+Vljie7Xrx8aNGiAjIwMRVulb6fyjYqKQvfu3SX3aFltiexZQ+po0HT27FlcuXIFAFCiRAn4+voq4vvkFg2CaN0R3TEmkwnNmjXD8uXLAZj7065duzBnzhwAZjnRuHFjPH36FJ999hnatWunaGdqQl+02ADSdjpr1iyMHTsWbdq00bQGAVLCMmHCBJQsWTJHC83gwYNhNBoxZ84c/P3339i4cSMGDhyISpUqWbTYR0VFaVoxaXKJOHgguaOWHyoPSxN1GGOKCRgmk4kH7v/000+StlGiRAkuK8RyVWvXojKOiYmBk5MTLl++jHfffRfHjx/XLIfevXsjLS2Nh+Fcu3YNqampijYlvv/p06dITEyEm5sbl+/UPqh/mUwmdO3aVZKGvO+ptdtz586hTp06WLZsGUJDQ+Hn58evJSUloV+/fhZl7OzZs/Hzzz9zPSgOVOVtWHy/VpwreWfmzp3Ll3EBzLouIyMDiYmJ2LBhg4Swnjt3DoDZzbl27VpUqlSJu3xFiBMltPa6Ji9NXjBnzhxJTKd8IPzdd98pypK+Q7fU5QGff/45/58xhgMHDkhGyGvWrJFc9/LygpOTE2fwIhISEiwG/1MF2draKkbsdnZ2SExMRN26dQE8UziFCxdGeno6F3oDBgxAixYtFKMtsbPL3XCAuvs1MzMTPXv2xOrVq3H8+HFJjIBcYMobV0JCgmrQNoEUoDgpgiY2kODLqZP06dMHf/31l+ruIF999RW3VJESBJ5ZSywJdSK9kZGRePjwIV8EkgjClStXeCwOzZrMzs7mdUDfLZZJREQEIiMjER0dLVGi8g5MAkQc/dM91CaoDYkWyMTERO5+pffS95PASEpKQnZ2tsKFryUop0+fDsCsgHbu3Ilhw4Zxoaa2ptrIkSMV52JiYpCZmYlu3bqpvmPYsGEKt5OYNzk6duyIGTNmYMSIEfjpp59w9OhRODo6YtSoUZL7IiIicPr0acm3paam4sKFC7hw4QJ69uypae0gZWwNqSPLy9OnT3mbLlq0KJKTkxXtV6xTESJJFwmwPDg+NjZWEvqwceNGHDp0iLu6ExISrLLUffDBBxILlfj+4cOHY8qUKZoDOLFPZ2RkwM3NDdOmTQNgeYFxxhgWLVqExMREXLhwAc2bN0eXLl14+ILYD+QycunSpYqdhAg0kBGfF/Mhlg/wrDzkytnLy4v/v3btWsWexowxXLx4EYcOHUK/fv0UFhuyoEVGRnL5ammwkpycjNjYWL6NYoMGDXD+/HmLOz/88ccfSEpKgpeXF/7880+4uLjAz89PskRVZGQkDAYDvLy8EB0dzS11jo6OCkvdiRMnVEmBJUsdlQVZZvfu3YuMjAzJhJGYmBj89NNP6NSpk+p3/Pbbb9zzQqSc+o4aSFZfv34dPj4+qv2IBmjJyckSWePl5YXMzEyMGzcOXbt2lbyHyvrTTz+1uGoCydnExETNlQcA7fafnZ3N9Q5B9AKS21sL06ZNQ/PmzZGVlQVbW1vs2LFDJ3X5hZSUFDRt2hRNmjThW/DQzhaAttAmJCQkWLR2fffddwDMClOucOzs7FSDekuUKIGMjAzFSHb+/Pma78nOzlY0BjX3a1RUFNauXYu+ffuiXr16EnO1SBLDwsIUwclqLlpRWFAHoOccHR1RoEABfPrpp5z0yPMolh1NIAGeBROLuHbtGi5fvqw4T+W0dOlSSdyVCIqpqlevHooVK4batWsjNTWVK/lFixbxe8llKn4/CRixTiIiIlC4cGEULFhQYiGS75NIQldMjxQpkbphw4Zh8uTJkgkvUVFR/Lfc/UoKKCkpCaNGjYKnp6fEEhgTE6Nol9euXeOzhZOSkrBkyRLMnj2bx7oYjUauvPz9/VG6dGnVsoyOjkZqaqrFUIbBgwdLfl+8eBFfffWV6r2///47vvrqK8ycOVNyXs3yXatWLQmpK1iwIKpUqYIqVapIZknLIZI6S+EVU6ZM4evZRUREcGuN3ALIGENycrKmpQ4AV4oiaZIrkLi4OMmAjO6lvpSVlWUVqdu7d6/E5alGPrRc02IYRFRUlIS8hoaGYu7cuarvTE1N5cpRJJREykTZmZsYz59//hkXLlyQ1DMNxJ2dndG4cWPJkhYkU+TuYnd3dyxevBjly5dXJRgmk0lSf/IgeKqXyMhIFCpUCO7u7rxcDx06xOtITuqITL733nswmUzcc6IGsqjJ1/AUvyUyMhLe3t4oVKgQYmJiEBcXB6PRqCB1x44dQ926dXlst4irV6/iyJEj/Lec1J0+fZoTyWvXrsHW1laykxMRGK2Zmd27d+e6gP5a0p3yAbjaQspimxENKt7e3sjIyOBtVF63Xbt2VZBY+WCM+sKdO3csGhrIKyYfkC5ZsgRVq1aVxPvlZeeh+Ph4mEwmzJ07980gdcOHD0eDBg3Qo0cPyUguKysLffv2RYMGDfDf//4339+r5l4DzAJdLvAtjTYA4M8//8SxY8dUr6WkpPAAaicnJwWpi4mJUV1vJz09Henp6UhNTZU0JnLHqmHNmjWK2IHs7Gyu5Kmh0Kw8Ndy/fx8JCQlo06YNihQpopgVdenSJQnpoG8kEGl58OABV4JyV6TcUkGd+cSJE5IV27WsOhTMKoJG9CdPnsTu3bsRFxeHmTNnSuqSRo8iBgwYoDqrjoiT2DbmzJmDXbt2STrc06dPwRjjCp4gJ7/0DrEsSDiKgkD+bdHR0fw+ei+5IGlEmpyczHddOXr0qITUiZaOokWLStpaYmIiL5/r168DMJM6T09PFCpUCJcuXdLcDSIqKgqpqakICAjgZWWJ4JlMJrz//vtWTdUXobWgtlgvOe1qQSDFFxoaChsbGx7TOHfuXPzxxx8AzP1u7NixfEHc8PBwbv0R6z06Ohq9e/eGm5ubxZmWFSpUQPPmzSVETk7qYmNjJTG6VH/kJhWtsAQtt6XY/63dDYcxJnHPy79n586dGDJkCCfp5JlYsGABj8H09/eXKHD6HmtcbFqoUqUKXz5CtLCJ1jfSGVqWurS0NAwbNgzXrl2TuO8IjDE8ffoUjo6OcHBwULQ3GhRFRkaiYMGCnNRlZ2ejcePGqFOnDn8P5SMmJobnsUiRIihbtqzECyR+nzwvIqKionDixAlUqVIFu3fvRsGCBeHj44Po6GhERESgUKFCnNTJ61rNMjhnzhwJSZOTuuDgYB57e/XqVVSrVg2+vr4Anm1LBli33EZeSJ0asRLbTNWqVfn/3t7eyMzM5JsDyHX0hg0bFLPK09LSsGDBAvz444+YOnUq1zu7du2y+C1PnjzBqVOnFO+gPnjhwgWkp6ejTZs2FtPRAvU3Ozu7fz+pO3/+PMLDw3HkyBGUL19eMprZvn07ihYtiiNHjiAlJeW5l2eQg9wrgHIEKXedaZG6ggULAjCPcocMGaJ6j6iwHRwcEBoaivLly/NzJpNJYcIFpC7d3GykLJ+hl5aWlqslHBo2bAhPT08e3CuPH4yIiEDx4sUl52jl9pSUFK585s6dq7rWFKAkdTTClwtkceSW02rt8mfHjh2LESNG8LWNAHWhsXbtWoUw9fPz44RUbBvffvstZs6cKbGAUPwGAO5yUUN8fDxSUlIwYMAAxTVLVt6oqCiF4iISRXkVsX79evznP/8BYBaIYlk/fvxYQjYTExO5MiIBa29vj8zMTIwcORLe3t6SwY8IUgiurq6cVFla8DYtLU01PCAvsLW1lQj77OxsVauuHFRvFL80cuRIHD58GEOGDEHbtm3BGFNYgSMiIngfFgVt69atebC72AbkcHFxgaenZ46kTm3AQW0wKytL0We0FpIV1zpcvXo1KlasCACqoQwEuQVOnPkNPFM6P/30E7Kzs2E0GtG2bVvMnDmTuyfLli0rsdRRf3369CnCwsJw7dq151o3USS93t7evK9Rv6dvoEFT27ZtUb9+faSnp8NoNAJQHySaTCY8ffoUvr6+8Pf3x7Vr1yQhCDExMQgNDcWiRYtQoEABTuooJvrBgwdo2bIlrx+5+5XKRq2NiLsVqc2yjIqKwqlTp3DhwgUcOnQIBQsWhLe3N+7fv4+MjAwUKlQITk5OSEtLU1hlLbkTHz58iJEjR+Y407lFixacnIqy05oYMyInliasyPMotyKbTCbJIFgk9t7e3mCMce+LSMYpTk3u7k9JScEXX3yBzz77DGPHjuUkkayXYogEwdHREYcOHULt2rUVbmeSe1euXEHr1q0VE2LUQCRZBA0M/vrrLz7B8IVMlHj06BG++eYbNGnSBOXKlUP58uXRpEkTfPPNN/m2Bc2JEyf44rstW7aUEDdL10RQ3Jl4WIOYmBhuhZKPWCpVqgTAPFML0CZ1U6dOzfE9YlD+kydPkJWVJSF1WhAnXzzPCvhpaWm5nopuyTVFI0QRnTp1gouLC1xdXSUkSoxLFKFmqWOMSRQSnSfktGSJ3OxNAiI5ORnXrl3DH3/8oRB88u8g+Pr6coEgtzIeO3ZMkn9LllMR8fHxWLt2bY4zdOWIjo7meZFb6gAlkRKD4OWWOjlq1KjBLXRkUUlKSkJGRgZXympLjtjZ2fHydnZ25sKQ+osIIpjff/+9gtRpDYRygtFoRExMDIxGI95++20kJiZatcQH1T9ZMR4+fCgZML3//vuoUaOG5JmIiAhOHMS2kNOWfAQ1Uie3XsTFxVlc2iU7O1vhmrJmVt7EiRNx5coVjBgxQlMuHjhwQCHH5KROfBdZNHft2iUhLmXKlJF8F8mu8PBwDBw4EOXLl+fLMOUFooJ2cHDg4RFUf3LLxoIFC9C1a1ekpaVxUie6yQhE6goXLgx/f3+kpKRIBggnTpzARx99BODZ4CExMZGHMHz88cfYvXs3L9+UlBSJpQ4w75GsRrLIKACYLbpijDBg1sFinonUUZ8VLXVy2SY3BIh11b59e3z//fcSWa2GOnXq8IljIiGmbQsNBgNCQkJUB6VTpkzBunXrcgxdEiHqqXv37iEsLAyMMbRr1w4fffSRZDBL5avW75s0aaKwgsrvNZlMknAbQJ1weXp6YtmyZQCUhgMqk82bN1u9/eDbb79t1X3WyLNckbqjR4+iXLly2LJlCypXrozevXujZ8+eqFy5MrZu3YoKFSpouhtzg7i4OD6CJEFtzTUR06ZNg9Fo5IeaYiGII4HExES+hcz48eMl9xHJo7Vm1KbmL1q0CP3791c16RNatWrFlX7nzp05WdIKDqbJEoA0Ti+nBVe//vprzWtapE60VFoLxhh3Q4gQSac1pnmqy+HDh8Pe3h7Xr1/HyZMn+R6DBFJk//zzD/r06WMxTbkVgEZw0dHRqFWrFtq2basQfFodzGg0IjMzE59//rlk7z7AXJ40EpSXgyVcv35ddYHPnBAVFaWY5i4KN7Kavvvuu2jQoIHk2djY2Bw3/KYBGhHV+/fvIy0tjZM6ImKihbFChQp8iQFnZ2cuDNXCCIjwTZgwQeG2JytSbmE0GhEbGwt/f38EBQXh8ePHyM7OVuwCAECyv6xajBnNVPT391d1w4SHhyM8PBze3t4Sl5YloVuiRAkei+ji4gKj0Si5X05A1Cx1oowQLeCE3MhfeZyimHbTpk35hIjhw4fD0dFR01IHgM/YBaTkr2zZshLiRX2cLHUAJEsAyZf5yQk0qGvbti1SU1O5lYTIi9yyIS73QXpEjcSQ+9XX15dbvUXZuGXLFuzfvx+A2c1GpO7Bgwfw8/PDkiVLJO04OTkZDx8+lGxPl9NWZYDZIiQPd5k/f75kXTcidUSUChYsyNvN+fPnJYMmkdTRnqkEsgrmtNBxuXLlVEMbsrOzcejQIQBml63WDjH9+vWzemkZQLnYebVq1QCYFxNfsWKF5F4iqWrLdBkMBlXZPGjQIMlv+aQZNVJH5FGUuQaDAYwxTurUYrzVMH/+fKu2RuzduzcfPFlCrkjd0KFD0b9/f1y9ehVz5szBqFGjMHr0aMyZMwdXrlxBv3798jzKFuHl5cVHOHFxcZLRhKVrIkaNGoX4+Hh+WLIiyskNxQudPHlS9X7qrGqTA8gtJbcg0agQMMeinDlzBi1atECTJk34eWpM4r0AJGvxZGZm8u8nUicGioqNuV27dgrrX69evVCsWDFN96sWsbSErKwsVVKXFwQFBeH7779Hs2bNsGXLFi7469Spw2MQt27ditKlS6Ny5cpYsWIFgoODrU6fhN3169e5En3w4AGKFi2Kb775BoB2GdDaeIsWLVJYOOzt7XmHk7uhLUFrgoslt3KRIkUklrrExESEhYVJhAjlwdPTU2IdAMxETW5JbNWqlUU3MYEsRyTMxHgWsa2Jlrq3335b4WYSv09O6tTy8fTpU02BRv3RwcEBMTEx8Pb2hqurKx9Bjx8/Hvv378eXX37JnxGXH6FlIETcvn0bPj4+kv4pggh1oUKFrF7UND09nb+HLHUi5IRQjdSJdUn3U1na29ureg9Ea5/aUk1jx45FeHi4qvICzKSucOHCmvsJ16lTh+8EI29r7du3l8gFskwRKQakYQZBQUH8f3m7kKNDhw68D5QqVQqpqal8gH737l2kpaUprC6urq6cbJA7VY3UmUwmhIaGomjRotwd6ubmpiAAALBixQq4u7sjISFBIgdr167N74mOjsbjx48lCzurufUA9bg3MXZNDpoQRCBLHUHUJyKpK1KkiEXjgxbkpIdA1s2ckJqaipCQENUZ9Vr3A88GXzQglbc14JnsmD9/PgoVKoTNmzdLrtMzHTp04JMeRUuxo6OjwlNDv0UDApWbuKwTYwzZ2dmKfmypHdva2mLQoEFW1YNWe5EjV6Tu8uXLfIFKNXzyySdWs1NLqF27Nl/2YPfu3ahXr55V10Q4OjrCw8NDcmhBTurk8UjiopYPHjxAqVKlFGtgkXLTUsbyBhwYGIg///xT0uHovfJ4JXnjpZmgDx8+hI2NjWRBXLFxeHh4KMjHmjVrUL16dU1LXdmyZRWCf9OmTZJAWgKdS0tLe25SR0KIBG6LFi1w6tQpnv9Dhw5JZuPSaNLW1lY17ghQ70xkMRQn2Zw6dQoNGzbk5FCrgzk4OGi6exs3boybN2/CxsaGP6+21h7hxo0bsLGx0VSU4ohejkKFCkli6sLDw/n2RgSqCzHOSIRc+f/yyy85Wu+AZ+2bBJy47ZYYC8QY4yTB3d1dMbLv3LkzHB0dYTQaeT25urpizJgxaN26tYIEFipUSJUs9+7dG+fOncP48eORmJjIZxi6urry7ylYsCCaNGkisUyJdZyQkKDYReHKlSvw9PS0KDcAZV/VwrBhw7Bjxw5OsFxdXRWDN3lbkE+UAJQDPuCZq10rfEOsF7EeyOJRoEABFC5cWJPU+fj4aPYx4JknoXjx4hLiDJgJAIXLAGaLlaOjI548eYKwsDCFFVmUvTmV/ebNm7mFw9PTUyLT7ty5I7HGEuzt7fm3EAFU69PZ2dm4desWypYty5W6m5sb5s+fLynPFStWoEOHDvD390doaCgiIiJ436M+7OjoiCtXroAxJpk1rhXvqeaSpT6ipl8KFiwoWXtOXl+iN0v8VhcXlzyROrL8PXnyRGJEYIwpZtdqWa5v3LihOrGNlicRBzxE6uRuclGujRkzBr1795YMMu3t7dGhQwccPHgQS5cuBfDM2tquXTtVA1SRIkUk1jfg2WS2Dz74gJ8jvVS5cmXExcVxV2xGRgZSU1MlebNmsGypfxGsNV7kitT5+flZnJhw4sQJBSHKC6pWrQpfX180aNAAV69eRceOHTmrbtOmDR4+fIgGDRrA2dmZBxM+D+TkpmDBgujVqxf/LW5hRO4BuTAi8zh1aLlCl5O6Jk2awMHBQUKEqIOJjapEiRKanf/x48cKwiq+JyAgQNW15OTkhISEBNW9JQsXLqywINSrVw/Dhw9X3EtK4NChQwgPD8+R1IkzWOUNnUZ/ROpKly6NtLQ03Lp1C87OzrC3t5eUg1hnagG627dv5+UpkgGtmKM7d+5whckYw969eyVu34SEBNjb26suCQA8U6xiHkUhIEdgYCCqV68OAKouZEukrkCBAhJL3ePHjxXxiJR2r169NIWK2FacnZ0VwkwNRDLq1asHxpjEXSa6jYoVKwZ/f384OTnBwcEBAQEBkrIvVKgQZs+ejeTkZP5eR0dHTJ48Gfb29pIdDGjigZoCqlOnDm8bYWFh+OOPP7iljqDm0hNdQ4mJiYrwDEukTiRWlkhd586d+f8TJkxA1apV+YDJxcVF8azoOnVwcFCNqVOz2NCgU5xlLPZh0fJAfbZjx448TpDKVYvU2dnZ8f5UqlQp/PXXX3yGMPCMHHp7e6Nfv34S5ePg4CAhkqVKlUK/fv1w8eJFZGdnK5YZatq0KR8syuWeWj0uXLgQsbGxcHZ2RmpqKpcLW7Zs4QNvioUmUN1bmint5uaG9PR0lClThg+qqezFCWxUZtWqVcOVK1dw5MgRLgcpvwaDgZMAcfCgJtdLlCihSnZoEKum72hiRExMDP755x/Y2tpK2jeFisgHfq6urlZby1q0aMFn8BJ8fX0VbUYe/2xpC0o1QwGRXrEtEzGUkzrR2DF58mSsXr1a8t1EgBs1asTDRKg/ubm5qX67mjWM6ls0IJF1vmTJkjAajTwvtDKF2FYtWeqoXq0hdWIYliXkitQNHz4cn376KQYNGoRt27bh5MmTOHXqFLZt24ZBgwbhs88+U12QNC+YOXMmjhw5grVr18LBwYEHetvZ2WH16tU4cuQI5s2bly/vkpO6AgUKSBS6t7c3vv32W0ydOpUrILmA6datG54+fcr3Fhw7dqykEcorlhqBqLyokRkMBiQlJSE1NRV3797likCunB89eqQgdeJIzs3NDbt27VIsjOzk5ISjR4/i2rVripEfLV4pv19N4FMHaNOmDdLS0izGLQLmOEdaEkKurIh4URlQp/7nn3/494n5El02ajEgrVu35spKjEchN5EcWVlZvI4YY2jevLlkkUh3d3eLQeskyN3c3Hh+ChcuzJcUUcPIkSPh7++PIUOG8K2gCJZii3x8fCSWOjV3TVBQEBhjqFOnjiqpCwgI4GuQ2djYWPw28Xl5e6EyrlChAicSV65cQWBgID788ENJeYtubQ8PD3h7eyMrK4uPxMXYVhLOtra26NGjh+RdIqhviApSJHVlypSR9I9Vq1YhJCQEb731Fg+zSExMlAhzGxsbREdHw8vLS1XxisqA2q08DtDd3V2yJR59D5F1MeZQDeXLl0dsbKyCaMstYcAzGSK6xbZt24bz589j6tSpEgJGg24PDw+uSOh7KD8iCSQ5FRQUhPj4eFy/fh0tW7aUfC+5/pKSkuDr66sIWxH7rYeHBwoXLsxjqpo1aya518/Pj2+pJpb94cOH8eDBA4WF2c7ODp6enhJSJydocre9GIJBqFevHrZs2cJ/k8woXbo0b/9UF+LgldoNEdunT58qSB3pFx8fH0m/Fr9v0KBB+OSTT3Dv3j306dMHZ86cUZ0ZqxYOQO/z8vLixI2+sVKlSnx2prgoM2DuT2pxb2ok5Msvv4SLi4uqy9PSdn5qk1AIavHbVI4iySH5IF8NQq1v5hRqIJI6NXlCpFI0FHz11Vfw8/OTyAgiddSfKd1vv/0W8+fPh7OzM+9XWhPvRORE6jZv3my1wSxXpG7gwIFYs2YNzpw5g06dOqFu3bqoU6cOOnXqhDNnzmDNmjUW3bOvK0RSZ2trC3d3d4UiHD16tGQVezLB165dG5MmTYLRaJRUnsFgkATCkkCgURh1DtEiQx3MYDDw2A9qmJs2bUJISIjEZBwREQEPDw+LyzbUrl2bEyn5e4Bn5vhx48ahe/fu+OijjxQNzMnJSXVZCrlSKleuHDZt2qS53l25cuXw4YcfolixYoolPCh9yptI6sgyIgobS5Y6moFIBKRIkSISgS2ibdu22Lp1KzZt2sSVoqhoxCBjkdB06dJFsmAnCVZ3d3dukSxUqJCqhZPQqVMnPHr0CFWqVMHgwYN5YDqQs6VOnCghd5tWq1ZN0hbVSF3BggW5UHN2drYomHv27MmVnJz8+fr6Yvz48di7dy9GjRqFdevWcTegp6enRAmJZenu7s4tVSQgRVJH+RGfEckU5YPar1g35H4FoJi12qdPH9SsWRP29vaSWBoxbWrXnp6ekr5FZEFcY61Dhw64fv266hZbYplS223VqhUA86DEkpAuX748MjIyuDXp8uXLSEpKUg03IeuP2GZKliyJKlWqYNSoURKrB32b0WjkZUbtoGjRorCxsZFYUEQCY2dnx58Rz1McnJi3gwcP8r1+Reuivb29RDmWLl0a169f58sceXt7w8nJCUOGDJGQ0QYNGsDGxkYztszJyQkZGRlISUnBZ599JpkxSn2BZK8o/z777DP07dsXffr0kcSljR49GjNmzEBQUBCX1Wq7A1F5VqlShU/IofbcvHlzfPnll5yIN23aVELSxbY1f/58yVqC1atXl7gSCfXq1VMQMTWLk0jYu3btivj4eFSrVg0JCQm8DB0cHBQLgbu5uakONizF9FlakkhtpyUCtTuR6BKpE0MJqL+dOHFC4iFT8yyIckBtsE9yw9HRUZXUUfpi3x04cKBimRca8FO/pvImQxNjDI8ePUJ4eLhqGIAcaqRu7dq1vJ/lZq27XC9p0rVrV5w8eRIpKSl4/PgxHj9+jJSUFJw8eZIvCPlvg0gQXF1dYTAYcnRFkaAoVaoUxo4dm+Pm49TwSaCR9YCec3Jy4p1V7d0dO3ZE6dKlFZ3L3d1d4SLy8fGRzKaRu1NFoeDu7o5Vq1bhm2++wa+//op69epJYkYAc0dQG23ITdVlypRBx44dFa5pmhXk7+8PZ2dnhIaGKmZ8ksWD8ubu7g5PT088efJE8n00mcESqaPZq1RWnp6emiOhcuXKoW3btihRogT8/f2RmZnJFS9gJkzk2hQJzZgxYyRKmTqfq6srpk+fjitXrmjO/pKXjQhqJ3JLnbjWUaFChRAREYGMjAyFC69bt244e/asRLipkYeAgACuDMR7ly1bpojNsjR73GAwYMKECfDz84Ozs7Pm9mAECmuwtbXlZJOsNmq7GohhDCSEXVxc+LI4ROpEYuvt7c1H96ILVA7xu8W6ovYvJ3Vqs6KdnZ0RFBSksGBq7U3bp08frFixAm3atLFI6ihWMTw8HF999RUqVKigqlhtbW052RTfKb/3r7/+wunTpzkBdHd353mmdtC5c2fs37/fqmB+caBga2uL27dvS2ZkNmrUiNedmBc7OzuJfPHx8UFQUBCPdaV7Z8+eLYnXJGjNzqdviIuLg7OzM/773/+iXbt2mDt3LpydnREREcEXUhbr2mg0YuXKlWjfvr2EHPn4+GDEiBGwsbHh36pG6kgu2tracuVNFmB7e3vMnDkTHTp0QP369SW7EQHaMXVqoLp1dnZWEAy13V3EGGWDwcBlqLu7O/bs2YNevXrBYDCgQYMG3EUaGBgIo9Go2i4tkTrSV6NHj7b6eyhvgFTW0b664oSUSZMm4ffff8fp06clslkNooxWC8uh6xkZGZL67tmzJ/bv36+6XqgcBQoUwIwZMyT9TT7ITE5Ohre3NwoXLozixYujQ4cOqmlZcr/a29tzvZLTeqwi8rz4sL29Pfz8/ODn55erF76OkJM6EVozGQMCAjBu3DjFsgBaIOEonz0ImJcGuH37Nm9klgilPH8eHh4KwhUVFSWZ9SMXHvJ4oj59+kg6g1wR2tjYqJJWcQKJPN2cIM8TfYPcfQxIA6ZJcIhLpGgteklk1mg0aroX5URCzU1OxInS6NatG95++21JXsXgaHt7ewkxkrssLC3uSd8qt9SJy3KQ+youLk5hiVLbBYNCAghLlizB8uXLVUf4/fv3x9y5cwE8Kz9PT09eF9buRqCFVatWcRKX04Qgxhjfng+Q9h0qe6q/fv368fZnb2+Pfv36YeHChRaXChDrr3Hjxvx/Ih0FCxbk9WFvb481a9Zgz549ErcYCWMSzmSZ1VoWwtbWFh999BEcHBxUJz0QqP2kpqZa7FeMMV5P8fHx6N+/P0aPHq2wzrZs2RI1atTgMzIjIiJ4W6eBhJOTExo1asSVuqurK1avXq36Xnk/KV26tGY+RaXt4OAgIWskV9q2bQvAsoWa8qQGasvJyck8H1u2bOGWqIIFC/J3ibP+xTxrxUdSu1SbUCG2IXd3dzx48ECxL3HdunVx5MgRhas5N6SOrK1eXl683RQvXhyMMc3FccW/8vyIa4X6+vpi7ty52LdvH4xGo6qlztJSV9aQuRUrVkjkTXBwMG+3X3zxheTeUqVKKaxoHTt2RFpaGm8nWhDrQ00vUJxzuXLlJLG8P//8M5o0aZKjcSYhIUF1yy+5fpEvpZOTkUhr3c9du3YpZvDmhNdyR4mXDZHUiY03NDRUsTYTwWAwYOLEiVb7udetWydZmkREmTJlUKRIEYn7VQvyzuXh4aHaCcU05OZxUXipbVMzcOBAbNiwQTMPBNFdIQ/Uzwny7yBBLy7eSh1bayIIwRpSJwo3g8HA9w7NafFiESQwKGBVVGxqkzIIJ0+exK+//ootW7bg4sWLFtsMCXr5Nlyi8vH19QVjDOfPn1e4xdWsSWTJ8fb2xp49e/Dxxx+jQIECmu2tefPmuHXrFre4+vn55Rups7Gx4QTY19eXvzsoKEgyIUkNdK/BYOD5oXr18fHha1alpaXB398fAwcOtNiXRAXQunVrXvZkkalWrRo/N3DgQBQtWhQtWrSQuMWoDGvWrIn58+fz7ZRyWutL/B4R9F3BwcEWFTPBZDLx/pyVlYVly5ZJ9muVgyYxeHt7K4gxgUjMd999Z3GLN2vRoUMHTq7s7e1Vl8SgnTvkXgU5tMpCy+qqBrH+RNlvZ2enuj80EWRRVkybNk0xAQMwD/atNXLkxhjy2Wef4fjx46hQoQJsbGzQpUsXxT7SIqgMrB1oDx48GAEBAahZs6ZkMgbVhyVL3fjx48EYU9wjWmRr1aqFY8eOYcGCBXj06BH27dvH44/VrOlqcr5UqVKSGHQ1iORIrQ8GBwcrJnhpWf8WL16MVatWSc65u7urlkVOpC6nXXPk7bpMmTJo1qwZAgICNK18WtBJHaQdW9zyo1ixYqqBoXlB4cKF0b17dz5SVpvFZMn9SlCz1AHmFeDlgbBaaN26NQCz8m7UqJHiuo2NjWpHkwcck+vJz8/P6qUdCPJGTuUiKhg1UqemCLWWtaERraurq6TTzJo1i3dqS9YSrTxTvkShXLNmTfTt21d1GZPAwEB0794d7dq1y3HlcBpJVqlSRbLEhcFgwI0bN/Dw4UMJiY+JicG9e/dw8+ZN3Llzh6/lJwctO9OiRQt+jtqSmtuzTJkyPJ7L39+fWwTVXGJ5haOjI7cy9O7dW3M/WRG+vr6YPn06mjdvjgULFkhieIlsa60tJ4dcqT548AARERHckhMcHMxJlhZJo3ZlMBisXm9KxJ9//ilxW3bp0gWMMfj5+fGN6q0hKT/88IPCQqQGT09PXLhwAePGjeMKWy5v8ovAEwwGA99BxM7Ojr/PmvpWS0sN4gArp/Ly8PDgcb/yb/zzzz8V56icRJn19ddfq64e8KJgY2Mj0Rnr16+32M6pPHLjPQHMlnSxHZGHwJpF6YcMGSJZt+3OnTvYsWMHALMnpmrVqvj8889RpEgRSXpq5FaN1Fmz41JOljo5Hjx4gLVr16pe+/TTT3Nc3J4gJ2VyUifGoIpx8Vru16NHj+a4pI8WLK/u+D8CCjjfuXOn6kgtP1GxYkVNBfE8pK5x48YSF5IaSIgGBQVh3LhxuR4BtGnTBnFxcXy2pcFgwIULF6yySuQEW1tbHD9+XOJKUCN1BJFEzpw5E8OGDVNYAIYOHYpdu3ahSJEiXFEbjUYMHToUjDGsXr3aYsyVHOTypXyJisTZ2dniyNlazJ49mwtV+YxKmj0qup7v37+vuRioCDULBwW4qy17Azxb38rf3x9ly5ZFcnJynta1soSAgACEh4dbna64RAKRHkKJEiVy1RblyoSU95IlS7BlyxYULFgQ9+7dA5AzqZPjs88+syoPrVq14jsTAFJrEFnJLM1MBsz9UJypnRPIwvTZZ5/BxsZGQvTF63LXvhzfffedRQuOCConKvOYmJgcFxfODVq2bIlOnTph06ZNVi0PQdY3NYuK/JtsbW0xc+ZMyXqgrztIh1jad9karFq1Cp07d7aKYLi4uGDYsGGoXr06QkND4eTkhPfffz/HPqmm79RIHQ3Ad+7cqWlEyCmmTo6cVmywFvI+Kl/Yf/r06bhw4QKOHDkCNzc3zJs3D4MHD+ZGAHmbfZ6QNp3UwSywjUYjGjdunKNP/UWCKtZSXIm88q2NywgNDZV0THITWcLZs2cVG0rTtmta+ckLaEV3ufWShKvcmnbmzBmJtcre3h7FixfHqVOnFHEbNBON8kmKxGAwSBYztgZk0VKz1OUX5IHkahCJr1p8h7XI6T1kqSN3cX4TOuBZHVu7XlZ+Qqv+goKC+PIy9M1aFnu19i8qsT59+nBXvxbEBVpFqynJAXmc5MmTJ7Fz506r9xfWgoODgyKeCTAvQJ6SkpJjneRm+Sox3hHQLk857OzsrFqL1GAwoEmTJti0aZOq5VkOcaKbNVBbSia/kB878chRvHhxbN682eLsU2vg7u6e4+QnOdS8P7mFaGFcv349unbtytvOe++9p/lcTrNfXxSI1FWoUAFXrlxRLBTs6uqK3r1748iRI3BycsIXX3wh6XskR6pWrYpRo0ZZtWCxFnRSB7PLVXS7vioYDAZs375d050IKBWRfLKCFvIyYqtWrRqfYv4iobUtl5aljhbWlaNWrVqa76BOl1NsgyWQsiBll5+WBi00bdpUYskBzAJv2bJlGDBggMX9fXOCwWCAu7u7ZowfWY3ysh+wtahRowYOHjz4wi3kaqC+ZKkeK1asiJ9//llTPuTk3pLH5KhBXPpIXGONyLt866Xg4GBUq1btuUmdJeQ3yab+l9uBUHp6utUDbbK0WrNtW8GCBXHx4kWr5eeLwp07d/LsZssJufXEvE4Q+2TLli3h4uJi1XJpubXU5ReoXRctWhR//PGHqiXRkrwhUufm5pYr75EaXjtSd/bsWQwZMgQ2NjYoXLgw1q5dKxEEBw8eRK9evVC6dGnY2tryTdRfVzx69MjiJt9yULybFuQNQj6z8U0CKZb8EHpyS11e8DIsdXLs2LFD4SICzLNUaW2v50FERISm0ty3b5/FHWTyA1OnTsWYMWNyFduYX6C2kFP76tmzp+a1/LBUBwUFISMjA3/++Sfeffddfp7Intpg5d+24gAp2NzmW801t2/fPlXrFi3tYW18b07xrS8D1loKXza2bNmi8NK8Knh4eKjKQDXkNqYuv0Aes759+2rWqSVSl1OIRW7w2pG6IkWKYPfu3XBxccHo0aOxdetWBXPt2rWr1UuJvGpY2hkgL6CGUatWLfj4+OS4BMC/GUQ28oPUUad5HlJHliu17dxeFMT1C19U+lqoXLmyYmuh/Ia9vf0rIXTAs/b1PO/PL2utvb29YvmVAgUKIDk5+ZW4pvMbZA2Wr0+ZF8iXBiEEBwfj1KlTku0IdeQN7dq1+1fFEBJelaXOaDQiOzvbok6ga5YsddbGqFrCazf71dfXV2IJUSuAzZs3o0GDBnw9rf8lUHD71KlTNbe8eh0wYsQIPnLWchFevnxZsoSJHESi8tNSlx/uV2qfrzL+Ukf+YOLEiXyG3usIFxcXzXbWp08fzWWSXje4urqCMaZYmDy/UatWLb1fvkEQQxOswasidUDOg3ya4KZlqVu0aFG+TLZ77Sx1hAcPHmDfvn2KJSJq1KjBA+vbtm2L+vXrq8ZYpaenS/YHpQ2V/+0oUqTISw0AzStmzJiBGTNmWLwnp+UxiETlhyUnP92vcsvJy4it0/FioLZ5+r8F1sTr6dDxb0CNGjXQsWNHybmc1vRUg62tLU6cOIE6deq8dFKXE0h/aBkWrJ0xnxNemTYKDw9XDT7+448/YGdnh169emHlypWKGAwxaPuDDz7AhQsXVEndtGnTrJrhqeP1BXWC/LDUUTvKD0udPP5BJ3U6dOjQkXecPn1acS6vMY/EB15XUvei9cUr00a+vr6qK8hnZ2ejXbt2GDdunOqsyISEBK7kjxw5ojkjZtSoURg2bJjkufxak0bHy0F+kjoyjVsKes8J5cqVw9atWxVxD29yXKMOHTp0/JtApOl182iR+/V5DAvW4LWLqduwYQOOHz+OyZMno3Hjxli/fj0A8M2QN2zYgFq1aqFu3booUqQIGjZsqJqOo6MjPDw8JIeOfxfyk9QB5k6V202nRUycOBEXLlyQ5Gf79u04cOBAfmRPhw4dOnQ8Jyim8n/VUmdgrxudfUFISEiA0WhEfHy8TvD+JRg/fjwmTZqE9PT0fJ3yrUPH8+LYsWO4cuVKvszm1KFDR/7CYDDA3t6e7+P8OuDgwYNo0qQJQkJCXugMbZ3U6XhtkZ2djfDw8HxfFkaHDh06dLy5MBgMqF69Os6cOfOqsyJBZGTkC9lBRIQe4a3jtYWtra1O6HTo0KFDR65w7tw5FC9e/FVnQ4EXTegAndTp0KFDhw4dOt4gVK1a9VVn4ZXhtZsooUOHDh06dOjQoSP3+J+JqWOMITExEe7u7vqK4zp06NChQ4eONw7/M6ROhw4dOnTo0KHjTYbuftWhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwA6qdOhQ4cOHTp06HgDoJM6HTp06NChQ4eONwD/M6SOMYaEhAQwxl51VnTo0KFDhw4dOvId/zOkLjExEUajEYmJia86Kzp06NChQ4cOHfmO/xlSp0OHDh2vC2JiYnDu3LlXnQ0dOnS8YdBJnQ4dOnS8ZLRs2RLVq1d/1dnQoUPHGwad1Ol4Y8AYw/79+/W4SR0SmEwmDB06FI8fP37VWeG4ePHiq87C/yQYY7h58+arzoYOHS8MOqnT8cZgz549aNasGX7//fdXnRUdrxHu37+POXPmYMSIEa86Kxw2NmbRqw9AXi7WrFmDoKAgXL9+/VVnRYeOFwKd1L2GaNiwIZYuXfqqs/GvQ1RUFADgyZMnrzgnOl4nEHEyGAyvOCfPYGtrCwBITU19xTn53wJZ6cLCwl5xTl5fhIaG4s6dO686G68VVq1aBYPB8K8YhOmkLp/w/vvv45133snz81euXMGZM2cAAEeOHMEnn3ySX1l7bcAYw+jRo3Hv3r0Xkj5ZP0wm0wtJX8e/E9QeXidSR201JSXlFefkfwv29vYAgIyMjFecE7M8zM7OftXZUKBEiRIoU6bMq87Ga4UFCxYAALKysl5xTnLGa0nqzp49iwYNGqBRo0bo0qULMjMz+bWDBw8iICAAjRs3RrNmzV5hLqX466+/sHfv3jw/X7FiRdSsWTMfc/T6ISMjA9OmTUPv3r1fSPo6qdOhhtdBgctBBDM5OfkV5+TFITQ0FHPmzHnV2ZDAwcEBACQ6xRo8ePAAixYtyte8LF26FHZ2dkhLS8vXdHXkP4jM/Rvq6rUkdUWKFMHu3btx6NAhlClTBlu3bpVc79q1Kw4ePIi///771WTQAh48ePCqs/DaggTpixrtWCJ1r+uoWMeLR3p6OoDns9TNnj07Xy191FbfZFK3bds2DB069LUaZJGlLrfKuVu3bvj888/z9Vs2b94M4OW54C9cuPBS3vMmgnSHTuryCF9fX7i4uAAwd0I7OzvJ9c2bN6NBgwaYO3euZhrp6elISEiQHC8SNAK8f/++5j0hISE5xnK8ycSDLCYv6hstkbpevXop2pGO/w3kB6lbs2YNACA+Pj5f8vRvJHUmkwmDBg2yOnyCZC6V/+sAInVJSUm5eo4GpPm5eD3JqZdhSd61axeqVKmCffv2Wf3M62jhfhlYunQpDAaDRI+Qznqd2rIWXktSR3jw4AH27duH1q1b83M1atTAjRs38Pfff2PXrl04e/as6rPTpk2D0WjkR0BAgFXvHD9+PIKCgnKdV1IYlkZdwcHBqFatmsV0Hj58mOt3ayEzMxPe3t44cOBAvqVpCXFxcVi4cKFmMCkJCWstdYyxXAkW6oRqpG7t2rVWp6NDiipVqmDcuHGvOht5hjWkjjGGP//8U7Pt+vr6Asi//kkTJXIbU5eUlASDwfDS+rSIqKgoLFy4EIcPH7bqfiJ11liiWrZsieXLl+cpX0ePHkVQUJBVcoWUc27JmaOjI4D8I/XAMzn1MogCeZBCQ0OtfiYiIuJFZSffwBjD0aNHERcXl29pUjsUdY9uqcsHJCQkoFevXli5ciUfXQGAm5sbHBwc4ODggA8++EDTpDxq1CjEx8fzw1phPGnSJNy8eTPXndfawOenT59Kfh89elSibG7fvp2r94pITU0FYwzR0dFISUnBo0ePEBsb+9LiWr7++msMGjRIU3BQJ7E2nmXOnDlwdHS02rL3oi2Bz4MtW7bA0dFRQhoMBgNmz57Nf4eEhPCA3NcJFy5cwOTJk191NvIMEsSWSN369evRpk0b7Nq1S/V6fpO6vMbU0ft//vnnfMlHbhATEwPAeiKaG1K3e/duDBgwwGJaO3bsUJXLEydOxM2bNxEZGZnje6gt5JbUOTk5AchfUvcyrD+PHj3CihUr8hRvHB4e/qKylW9YuXIlGjRogJEjR+ZbmtRGSJ/ExcXlmdSdPn0aK1asyLe8WYPXktRlZ2ejR48eGDduHAIDAyXXRDfqkSNHNGfpODo6wsPDQ3JYg7p16wIADh06hEuXLlm9YCkJ6dyOvOWj02PHjuXqeUJGRgZcXFwwd+5cFChQAIGBgShVqhQAvDS3I327VhmIpM4aQf/LL78AsL4jkXC0ROqsFWqJiYmaI/+8TGufNm0aMjIyuNuH0hZDCIKDg/HFF1/kOm0dlmGN0rx16xYAbSuyj48PgPwjdXl1v1L7pefT09MxefLkl+Iqyyupe17rRmhoKIxGI1q3bo2BAwcqrlOZ0JJGlkBtwRKpCwkJUVzXstQxxqx6rxpeBqnbtGkTBgwYYNGLIQfpi1dlqfvqq694+FVOICPJb7/9luvJL4C5bcl1EdVHeno64uPj4eXlxZd4EevqyJEjOVoIa9Wqhf79++c6X8+D15LUbdiwAcePH8fkyZPRuHFjrF+/ni/xsWHDBtSqVQt169ZFkSJF0LBhw3x9N43Ir1+/jkqVKqF06dKq902bNg3/+c9/+G9S9CkpKXjy5AmWLVuWp/cvWbJE9XxWVhauXr2q+Rw1TBrBi2T0ZZE6sqhqNXTqdDdu3ICLi0uOo14xJocxhitXruCnn37SvN8aS6C1CsnDwwNBQUEwGAwSRX7jxg24u7srLK45gchCbGwsgGfKIb/WPXpRiiGn/PXr1w/16tXTvJ6ZmYkjR47kd7ZyBSobGxsbTdIWHR0NAHB2dsbdu3cVJImUYX7tSpFXS52c1P38888YN24cD7rPDU6ePAmDwWD1mmRE6qzNc24sdZYg5k+NQBE5yi9LXXBwMDp37gzALC8qVqzIPShymbV8+XIULFjQamIXGRnJyZI17tfo6Ogc+6AYxx0REYEhQ4bwMklKSuLeG8A6L4azszMAbTl+48YNfPjhhy/MIzJjxgzudcoJIkm/dOkS7t69m6t31a9fX6Fzqe+np6dzeU0QByjvv/8+j7V9nfBakrru3bsjOjoaBw8exMGDB9G1a1de8P3790dISAiOHz+O77//Pt/fTZVGHUXe4fbt24dr165h9OjRWLduHb7++mswxvhzKSkpaN26NT7++GNJo9caIYkNt2HDhnzhXLmraNmyZahQoYLmFjeUT7VNwvNC6saOHYuePXsiMDAQq1atsuoZInUk/OWQK0pxq6Rp06bh/PnzkuukFK5evQobGxtUrFgR/fr103w/pW9JiWgJ8+zsbKxevRpjxozhwowExKNHj/h99+/fR3JyssUJMVrpA2ZBGRISwmP8YmNjn5uQPX78GE5OTti+fftzpaOGnALKf/rpJxw/flzz+tSpU9GwYUNVC1diYiLq1q2LO3fugDHGyzkjIyNfA9KpfCmUQ82qRUo5KSkJpUuXxtdff82vpaWlcRKfXxMbqD3kNj25K5lIBsXoaeHWrVuKgcj+/fsBAJcuXbLq3UQMrB0YUR2K/TE0NFRR/jmRA7EtEOFQe15uWTpw4AAMBoOEiOdkqSM5TW360qVLuHLlCpe7clJ38OBB1XdroUSJEihcuLAk32KexJ0ukpOTUaBAAUn4TGZmJurVq8dl5/Hjx1GyZEm+nNb48eMxd+5cXL58GcCz/kv9z5oJIjRgkBMawtdff41Vq1bh1KlTVg1us7OzMXPmTKsttqSvHj58iO+//94iuRNlZ/Xq1TWNMGpgjCE8PFyxYgWlmZGRoWjr9A2MMSQlJfE+kVfcvHkz3xfLfy1J3auEnNQBUqXeokULlC9fnv/+7rvvkJmZKbHUEbESG4Q1DVqczEGrV69atQrJyclcmGzcuFH1WUvEIC+k7sqVK7h+/Tpu3bqFDz/80KpniNRpCQO5MKdyioqKwujRoxUxNUTqrly5IjlPljhxmZKbN2/yGBBLZa0m1OrXrw87Ozv07dsX3377LSZNmiS5XrduXfzzzz8Animo3LpcKJ+xsbEIDg7Gf//7XwBmQd6hQwfJvYMGDcKff/5pddoklCh4njGG06dPaxKGtLQ0SZu2BLVZ41OmTFHUyZ07dySDrCtXrsBkMnFlomaVPXPmDE6cOIFr165h5syZCAgIQEJCArp37251uIQ1kLcH+eSqCxcucJJNSvXGjRv8+jvvvINff/0VQP6ROmpHuSWv9C2keCkdcg+q4d69ewgMDMRHH30kOU8yy9qQBEuWulu3binKWc39WqJECYULVSR95AYXIcZ2UWybCMqP3FJHgxwxxpfyokVuxHq5efOmYjAib8dUD9bIA5EkrFmzBiEhIQCeye4uXbqgXLlyCA0NBWOMt41p06ZhwoQJAMxE5/jx45g6dSqAZ+2VLIlkiaa6pe+kMrBmFQgqox9++AFFihThef/yyy9x/vx5GI1GAEC9evXg6+uLqKgoToIZY1i7dq3EIn758mWMGDHC6iXIyPXav39/jBw50uKWbnkdEIeEhGDdunXIyspS1B19f3p6uqJ/UpsiXUbtYfHixRgzZozm+9Qs/CaTCUFBQWjevDkAc8iX3GiRF0+OTupkoE4tkrqcZs6KQkkkcqLws8YFQTFwgJnU3b9/Hx9++CH69OnDnxeVjQhLRIYEjyWEhIRISFdCQoImOdMCPb927VowxjB79mwJeZBb4miUS39Lliwpua71TdHR0bh9+zYqVKjABUBQUBCmTZtm8TlAXZjL4xjVBDQpdaqH6OhohIWFwWQy4ezZs6qTQ54+fcoVjUjq5Ni5c6fk98KFC9GmTRtERkbmyd138uRJ1KpVCx07dkRwcLDi+/7zn/+otmnGmEJhy5XY7du3MXbsWHzwwQeS8xUrVsTIkSO5xa1ixYqYN28eJ/pqwpcmOaWnp/M2EBMTg23btgFAvm28Ln+33B0sWozJakXKTH6/lpXq66+/Vgh1S2sjUjvK7XZV9Bz1aVEBad1Pk2/o3p07d+KDDz7gebPW2qAVUzdz5kwEBgYqQk7k7lcij3LlLqZHMdSXL1/m+c2J1JG1SE7qKF1xoh2Vk1xGREZG4tKlSxI53aRJE8XEtYEDB0rySxbTyMhI3Lx5E7t37+bfSANBgjipr0+fPvx/ygvdX6JECXz77bcSsjpx4kS+TJdYDpTfgQMH4uTJk5wE0LMk72jglxOpY4zxMrp79y5vn1evXsUPP/yAunXrKqzCFSpUQL169RAdHY1Dhw6hZ8+e+PHHH/l1eqcaYVeDq6srgGdud7kxIDExEYMHD0ZKSoqqrNeyfD18+BDTpk0DYwzBwcHo0aMHAKW8F2Pq5KRu7ty5OHPmDH8vyceBAwfi22+/1fymokWLSn4fPnwYVatWBfCs/3Xq1Ak//fQTGGM4duwY6tatC09PT80VPrSgk7r/R0ZGBkwmkyqpI2gJaJEoiErYGlInplmsWDHJNRKimzdv5uRI3inLlCmDvn37WhyxyBt+dnY2Hj16hA0bNgAwE8Xg4GAsXryY3xMfHy8R9lqB2CaTCePGjcOGDRt4B9i9ezd27tyJYcOGoW/fvgDMxEm+9dnOnTuxbNkyHr8SHR2N0qVLK4SznFhERkaibNmyuHbtGjIyMhTrZi1btkxTeMk7qdpISE3JkUKienz8+DGKFCmCKVOmoEaNGihRooTiGV9fXx6jSSNXtTiVggULKs4ZjUYUK1ZMIQzUQIqFvoVGtjdv3kRISAi++eYbyf1yEkmYOXMm3NzcJARULPtbt26hbNmyAMwKU2y71Mbu3LnDy+/cuXN8/UY16w4pubS0NN6+oqOj8dZbbwFQkm3GGLp27Yq2bdvmauFxed+QD4zE7yBSd+jQIdUBFH3HqVOnJBau7777TiHUmzVrpuoOys7O5tZmNYtpvXr14ODggHnz5imuUfuTL6F07NgxyYQBav/Dhw/HDz/8AOBZ++jRowe2b9/O5Ys1sWiAOqlLSEjAV199BUA5s19uqRNjlQjXrl3jAyZCRkYG3n77bVStWhUPHz6UKGm5+1WMF5PP1qR8bty4UUFsRZlIfblSpUo4efIkP5+UlKTaBug7Hz16xGOYIyIiEBQUhJYtWwIAmjdvzpU2gQZ08sD5W7duwWAwSPJ/4cIFhbxMSUnhBIQss2LZrFmzhrdlKnuSd2RxzGmCiFbMMj2fnZ2tKGdyPf/++++8jkV3NOXl5s2bOHv2bI7WaRqoUznHx8dj586dvM+sXLkS8+fPx/bt25Geng43NzfJ8/7+/gDMbUM0JNSrVw+jR49WtHf6fe3aNQmpnT59uqqHQRxwyOW5OGiX8wVRXjRq1IgPJmkgQ9fj4+NRv359nDhxAgkJCTh9+rRKKWlDJ3X/D0dHR3Ts2BFpaWkoWbKkKgnTChwVFa8YXyQqMlGIHD58GNu2bUNYWJhk/TTR5WQwGCQNhDqbnKzcuXMHq1evtmid+u233zBlyhR06tQJPXr0QL9+/RAQEICuXbvi+vXrOHTokOKZhIQESYMmN2HlypUl9z169AiTJ09G165dJeSWrBvUEeW7gri4uCAjIwMff/wxP3fgwAHcvXsXf/zxh+ReuXVLPrISLZyETp06YeLEiQCknUluqVMjw2oxgXJSR5Y5tbKrXLkyF/ZiRwXUCSPF2IgoVKgQr9OIiAhOCk+ePMnb2J49e2AwGLiQJKVNJJcIg9xSq6ZcAXALWUpKChISEuDt7Y3p06fz66LrPzMzU/VbypYty8skJSWFkzpaXkeEaKkTSR2Vf2xsLBISEjBixAhkZGTg5MmT2LBhA/744w/usrCEhIQETJ8+XWHtlFtVU1NTYWtrCycnJ24dvHnzJieX8jwbDAbUrl0bCxculAwE5Thw4ABCQ0MVSoTar5eXF6+jBw8ecEJ5/PhxZGZmchc9YLboffLJJ7zMqU5JJs2bN4+3927dunGiJcYL0b1EdogQ5JbUJScngzGGO3fuICIigrdxed8iWUUDZDWrYqNGjTB06FDJc1Rf169fR3BwsKT+xFjjkJAQrFixQmJZevjwIc6fP4+kpCQuc77//ns+q5zuFessJCSEyynRMhcQEMBdpMAzskHfJbrKRBIjriHIGMPQoUPh6+uLpUuXAgDeffddyfeeOHECcmzatEkxcImKikL79u0BmOtAHOwDZjlCdUEygeqE5A/lfcGCBZwsZGVlITU1FcHBwaozNbOysjipc3Jy0lzq5MGDB7y/i3VMebl58yZq1KjBB/Einjx5gq5du2LdunX8WXEA1apVK+5yprrLzs5Geno6PD09VfNz+vRpVKtWDbdv30ZGRgb/BnkMaVRUFEJCQlC+fHls2bKFk7H169djz549inTnz5/Pvyk+Pl6i58W05f2K2r98slZqairS0tIkgyyRC+R244TXltQNHz4cDRo0QI8ePSRWoqysLPTt2xcNGjSQCL3nATWirVu3IjU1FeXKlVO9L6e4CYPBIBnZkfCbMWOGRLg2atQI7dq1U8SWkNkZMDfYGTNmKN6hVcE5xewtWLAAmzdvxq+//ipZ46pcuXJYt24dAKlrQz5CSUhIwJYtW3Dx4kWMHTsWgNkSI46ExL1v6f/Dhw/DYDAorC5VqlTRXDdMdIcBSiJkjRLau3cvJkyYgLS0NEmnkysetVGjGlmhji4ndeJojNrHxYsX8dlnn0meJ4Wq5lKk5TK0zhUuXBgTJ07E/fv3UadOHXTs2BEAuItDTlqI1JGiOnDggMQKS+RP/u2kEJKTkzkBEwm2WNdZWVmaOwvQHpmbN2/GzJkzAZitQ97e3pgxYwbu3buHzMxMHpeXnp7O8xoeHs6VRnx8PJYuXYqZM2di165dkjXkxCUP4uLisGrVKnz77bfIzs7GuHHjEBYWhlmzZmHUqFGStQAB5VZ+qampcHFxgZOTU44xOqLSHzx4MHx9fbF69WrJPSNHjsTBgwe5YBaJAWBWUgDQtm1bXnfFixdHpUqVNN+7d+9eLF26FKNHjwbwjNyIbZX68Y0bN7gCE0MaqE+TPCVLvVp/Cg8Pl8y2z8zM5JaTlJQUfP311yhTpgwP4ndxcZHIJpGo//e//0VYWJjErUVQ8wCIcWxPnjyRzGg8dOgQoqKikJycjODgYB6HW7lyZdy5cwdBQUGoVq0axo4dq9q31Sx1Yr7FvvTkyRNJGVSsWBGAkiBReRHEVRGSkpIwZ84cPH36lM9Qlg+MrV04d8eOHVx+rV27Fp06dZK0PXFNT8qbXN5R3r/44gvUqlULgHkALF9CRLR+paenc/KYnJyMR48e4YsvvkC7du0kz9y4cQOff/45AChCeYBncp1CLUT88ccf2LBhA+bNm6fQPdRf6S+RnydPnlgkdSSPQ0NDJbJLjSxfu3YNABTxe2rhL+fOnePlHh8fL3ErP378mK89Kw/zoMEUTWIhxMXFSSz6ZFX+7rvvULx48dyvmZuru18Szp8/j/DwcBw5cgTly5fHpk2b+LXt27ejaNGiOHLkCFJSUizOvLMWIrsODQ3VJHUkQOUjSwIpYorhSElJQUREBL766iu0aNFCcb98hC92JMYYJ0aiJUfLdJ2TMhIDqeUxEdTZxPzIyaP4e8qUKQDMs43Ejp2Wlobu3bvj888/V4yG5Mux+Pj4qLosAXOjFsmx3HImV6KWEBERIbEQycuPApBF5MZSJ5K64OBgxSgTkJIWucUyODgY0dHR6Natm+S8fDT3zz//cMEj31yavo/Imtq0/ilTpmD69OlYuHAhPzdjxgyJgKNvTElJUXWXioorPj4en332Gby8vBT3acV9AuY1qD777DPcuHGDC/5Lly5xa0VISAj/jvj4eD7JJykpSRISIa5P+cUXX+DDDz/EmDFjsGvXLkyePBlffPGF5tI2Dx48kLjdU1JS4OzsrBqvlZObNzIyUkLgGWOYN28epk2bxl2F8hifkydPws/PDw0aNMCTJ08kbVIeDuDs7IxDhw7xsiJiJU4QIty6dQtZWVkICwtDTEwM/vjjD8yfPx8AMGzYME3ycOLECQW5qlixIipUqMB/BwYGcgtUcnIyH3BSeypVqpRERsjlx7lz53jMmCirxNhFgtySKrbnq1evomDBggqXW82aNXH//n3eP9ViZ8myA0hlXXx8PK97GoT0798fMTExsLe3R9OmTQGYred0v/gXgMSiI5JktZnFpUuX5vFcgPUxjTnFXyYmJvJy1yJ1am2ALPQi/Pz8+P9paWmcaJtMJkRERKBhw4bc8giYdd7GjRu5nFcjdVQu6enpCmvfmTNnAJh1kVxGU2wdtXnRE5Geni6RQV27doW9vT1CQ0P5t4eHh+PUqVNwdHSEvb09jh49Kkk/KSmJkz55qIra7N569epJtg0U+2BcXBz3qnXp0kXy3K1btxAdHc0HdYTbt29L6nbevHlISEhA0aJF4eHhgW3btsHHx8fqdfjyndQ9fPhQMcsqtzhx4gTeeecdAObtY0TiZulaXiEPhhUbNGHbtm2c+ctj3whE6sinn5ycrAgSFiFaDFxcXCSWOhHUaG1tbXNlqatVqxbf8kxUWHJSRySG8qq2OHCVKlUkv7VGDyEhIShZsqSiAcrvd3d3VywsDQDe3t4wmUwSYSgnWWJM2ODBgzVJOCC1/ABmwUIjxadPn3KrkggtUvf48WNOoKjuxHK6e/euav38/vvvAIBPPvkEERER8PHxwYgRI3Dr1i3UrFkTly9fxvr16yXPkJAjBAQEcIJBs89IcIpK5OrVqzh16pTCpRsdHY1Ro0Zh0KBB/Nz333+P5s2bw2QyYeDAgXzEKc62FiFfz+z8+fMKV5I1iIyM5K5XR0dHieV4xYoVcHFxQeXKlSXKNiUlBaGhoXB3d+flATyrFwJZFH7//XfV2MGiRYsiPT1dQrTIUqe2XIbofrYGMTExSE9Px759+7hCGDBgAG8DgHmkXrlyZTRp0gSMMYwfP55fk5PptLQ0/PDDDwplnJ6ejitXrnCiT7h79y5MJhNOnDiBtm3bAjDP2C9btizi4+MVpPH06dO4e/cutyrExsbiiy++4ETjyy+/xM2bNyWEWi3euGTJkopwDRFt2rTh8WbigKVAgQL8f7KoyncJSktLw+rVq1Xd4QQiXgQ1AhQTE8Pl5I0bN9CzZ08kJycjISGB9ykC6YDBgwdzyxqRuoSEBCQnJ+PmzZtYvHgx/v77bwnxFAd68jUc7ezsYGNjIxmYWjsTXWsJr5EjR8LNzU0SMqNF6sQyAKSDFnd3dz74F3Vceno6IiIiJP2jRo0aEhehnJyruV9F9O7dW/L77Nmz8Pf3V52IRHJp9erVOH78OJe9+/fvR2pqqsRS17BhQ2RmZqJEiRJc7j958gQPHz5EQEAAypQpoyB1AFTPAUqrPmCeQEPnidT5+PjAx8cHcXFxknAXMTSobt26CAwMVEyg0UKRIkVgNBpx5coVxMTEoFWrVpJwJS3kO6mLiYnJlSVFDXFxcbzBGI1GiZK1dE0EzRQSDy1069ZNsr+ss7Mzt7ZRpbRr1w4LFy6Eq6sr79xykAKiBp6cnKzaSL29vQGYTb1Vq1bF1atX8eDBA01SR98rHw2LAlrsRETaHB0dOREVG5qWq3b06NHo3LmzVe4Ara3Ahg8frpjFqob4+HjVCQJE0EQiJtax3NTu6uqKHTt28N/16tWTLCYZHBzMO6C9vT1mz56NJk2a4MiRI5pbzKlNnjCZTChatChXPKR8qawaNmwIe3t71dmt5I7p3LkzWrZsiY4dO2LGjBkoU6aMZp3LsXHjRsyaNQvAM6VIdU51zBhDhQoVkJ2djdq1a0ue17Lkuri4ICYmBosXL5YEwosKmuJkiAjVqFED3bt3BwDJ8j4iHBwc0KlTJ9Vr165dwz///INixYrBx8cHSUlJCAoKQlBQENLS0tC1a1f4+fkhPj6e53vYsGG4fPkyPv/8c3To0AHZ2dk4cOAAbG1tJTFMovtErX4bNGgA4NlMw127dmHq1KmalrrcbIAOPLMqyQdxmzZtQmxsLEaOHIkrV64gKCgIJUuWRHBwMG9TRqNRlUwnJiYq2lV6errqYuRq+1a7u7vDaDQiOztbEXRN99PAYMOGDZKt6n744QdJmra2tqoxVYULF5bIJmu2Rvrll18k+8gWL14cABSWDACoU6eORbny7rvvcg8CYFbSck9AVFSUpB+sXbsWbm5uiI+PVyyh07lzZ4waNQpTpkzhk528vLxgZ2eH+Ph4nDhxAtnZ2ahfv77moJL6DfDMpUZ9VxxYiwOM0qVLS0IlACjCdOQysHr16qhcuTISEhK4PFIjdba2toiJiZHIdzE21c3NDXXq1AEgddunp6cjJiZGcq548eIS7w8ZMsRnbt26hZEjR+LixYsKnUmD/mHDhvEF3t9//32oQTS6jBs3Dk+ePEGBAgVw8eJF7Nu3T1J3IvGkcITw8HA8ffoUhQsXRrFixcAYU+xEdfPmTfj5+aFJkyYSLqC2/qBowY6Pj8eNGzcQGBgIT09PBakTdRNg1mW3b99WlZvyPAUGBkoGG3v37uXcwRJyTer++OMPi0d+bDTt5eXFG2VcXJzkQyxdEzFt2jQYjUZ+5LQsiVh4Tk5OvHHUr1+fn9+zZw8mT56sasmrXbs2V6SipU6N1IkkpW7duihXrhx8fHw0FTzFz5QqVQopKSk8YF0UUCJRo/d7eHhwM7G1o8FNmzbxafmWMGLECMnvY8eOIS0tDZ9++qnqxAU57t27pxgdA+ZvNBgMErO3WF7y+DNXV1eULFmSC3QHBwcFWTxx4gQMBgMCAwN5J127dq1iiRVL0CJFJCBr1qyJzMxMNG7cmF+Tj0Y9PDywY8cOyXR/ciO5u7urTrogiPGcRCjlpE4cVQYHB+f0SQDMgkQ+MCLrBaF06dJccA4YMACnT5/m1mOaDStH06ZNNS32qamp2LVrFypXrswVg7e3NwYOHIg+ffpg1qxZMBqNiIuLk8zii46ORvHixeHk5IS0tDTVDeAtrWkFAFWrVoWXlxfOnj2LrKwsHpNlY2OjIHWkzHMDer+cJOzbtw/e3t74/vvvcffuXW6lFvuau7u7xGpHSExMVAy0crNAM2OM9zUitQQ3NzfY2dnxNmBpf1wAmgNaDw8PycQICmq3hF69ekl+EwmTk7qmTZuibNmyFkNMPD09MXr0aGzZsgWAmdTIrciRkZGqbtmnT58qZFFAQACmTp0KJycnrjsyMzNhNBqRkJCAQ4cOwcfHB+XLl0ehQoVU1wIVB5dqs6AzMjIU761fv75CuYshIl5eXnyyBMHPz4+Xv3yWq9hGypUrh/j4eM3YcCcnJz7jVrSKdu3aFVFRUbx+DAaDop3IiWZqaip69uyJ77//Hlu3bkVSUhKXGcHBwXzgTAOa6OhoVKtWjT+v5sUBzPImPDwc48aN47pAJJciqaOZzE+ePOGkjgYOcj6QmJiIjh07Yv/+/RKruhoothIwt4nr16+jZMmSnNSJllq1eL87d+4oZkYDZovkL7/8gs8//xy//fYbr1cR7733nsW8AXkgde3atUP79u3Rrl071WPYsGG5TVKB2rVr8xiF3bt3S0zYlq6JGDVqFOLj4/mR056NokAXBbzoHgDMhdq4cWOFKXzkyJGc7Hl5ecHZ2VnifpWDOo0YeyCPEyHQPUSWunTpgqioKAlhFN0N1GmbNWuG999/H8uXL7dqJXGCOCNXC/JZQbVr1+adyxpLHXUCOYKDg+Hh4SEhdWLdkfuNQESYGr+jo6OC1F25cgUFChSQKKR//vnHqu8kaO0gQZYVctGIo+5PPvlEsrCwu7s7bGxsJAKR6tzf358HLqtBXGtLTurIykJWmE6dOvH8lCtXjo8c1fZTNBgMClInt9QZjUZO3igNskRphSJUq1ZNUVfAM8ve5cuXUapUKd7PvL29MXjwYKxatQpeXl7w9PTE9evXMW7cOMnzRYoU4RMaRBJLe+jSZIp+/fph6tSp2L17NxITEzmZqVChAipXrowrV66gR48efLCTlpamIHVq8V6AtC7kIHeoXC7JJyOQ4jYajRg9ejTc3d355utyREVFSZbaAJ6toSUqMbKyyJGWlsaVWEZGhsTSYDAY4O3tLQk+B8wxmGpLqpAilZMROanLC0jhykM3iMRYInXUr9q1a8cH+vLBN637KCdYFy5cUChPsa9Q2dGsxPj4eBw6dAgNGzaEjY0NbG1tFZYqeRpq1+3t7RWWWWdnZ4XOEdO5fv26ol+R8r99+za36IaGhiIsLAypqamcTJHO0Zrg5OTkhG7duuHRo0eSwenp06dx//59LtfVZuvLQ3o2b94smSCUkpLCiVqNGjUUsWqMMUl9ae0MQRNw/Pz8eDsWSZ2ajKMQHF9fXy6vKlSooIhjpjagRtBdXV0xadIkbN++XZG3+/fvw8fHh5M6MUZSLT/37t1ThDMRevTogQULFqBr164ApP3Mw8OD701vCbkmdX5+fti8eTNMJpPqobZNVW5RtWpV+Pr6okGDBrh69So6duzIRxBt2rTBw4cP0aBBAzg7O2sKMkdHR3h4eEgOSxAFuigsRYLg5uaGwMBAGAwGRRCki4sLb5Tu7u5wdXXVtNQBZleng4MD2rRpw8+pWeqio6M5qROtkv/5z38k8TdkOfvwww/x66+/4vPPP+dlpmYRs4ScFjuUx7a4urpKTM5Go1E1gJ5w+fJlrF27VkLqChcujObNm+PDDz+E0WjUnDYvFx70mwSdwWBQkLqLFy/C19dXUn6nTp3S3B6pZ8+eGDJkiOSc1v6Y5E6Ru71cXV1Rq1YtyZ6caiSH6tzX11d1V4Djx4/j7bfflii61NRUhIWF8fonEh8WFgYvLy9s2LCB13lgYCCPQSWlOXz4cJ5WZGSkZBsiwGzlEGdee3h4cKVEQmrIkCEIDg5WzOQDzIRqxIgRqoOUt99+m5PaggULSix1IoxGo+oiooULF4aTkxMePXqE8+fPc4L16aefSu5bvnw5Ro0ahXfeeQdubm7chVOvXj0UKFAAMTExfPYnYCY+8vInUieOzAH1BXAJx44dg7+/P6pXrw7AbPlWG7yISv7bb79VLFxMa8sBZqUhtyqnp6cjKSlJUsYrV65UzVN6ejrefvttvmakvK3KSV2VKlXwzTffSNxh5LEgS4FYBjTTlyZoiPFlDx8+VFVsYpA9wcvLS+KyJNSsWROAethIgwYNFPFzVN6i+9XGxga3bt1CcnKywrp88eJFGI1GiXVbJO4iqTMajYiIiMCpU6fQqFEjxT0ixO+2JA8BcBLl4uKikF8icS9UqBCXI9WrV8elS5dQpkwZuLu781mVjRo1wt69e3n7pcEsuYm1diUiMlmkSBHVAQ2VpxqpywlBQUEIDAyEu7s7AgICcPv2bcXyKeKgWy4rK1WqBE9PTz6pT4vUqcXFipY66i+07FRMTAxvyyQz5VbILVu2ICkpCWPHjkXr1q0V74iKioKnpyeMRiM2bNggieVVyw8AHl9K0DLoiLzlnXfesTigJOSa1FWvXt0icaPtrZ4XM2fOxJEjR7B27Vo4ODhwU7adnR1Wr16NI0eOqI4k8wpRSCUkJPDforuvevXqnLzIC9fV1ZWTuoyMDLi4uCAlJUVhqaOOHhAQgPT0dAmpI4FGwhcwC1xS6M2aNQNgXo381KlTiqBqGxsb/PTTT2jXrh0WLFjA3yV2EDEoXQ2BgYGaS4bQshLymA+1BmnJWlehQgXuFidUqlQJe/fuhYuLi8JSJ0K+5hq1NfrG9PR0LhTLly8PW1tbPHnyBAULFuTEQSSG5CIV42J+/vlnzJw5UzKrSbQKqZEvuasuKipKMeJTG1gQqfPz84PBYEDfvn1x+PBhHDp0CDExMahTp47kfYMHDwZgFrykPMX6KlOmDAwGAxcmPj4+/H9aT1HMV1hYmGKSxq+//iqJYxFJuriDx8mTJ1UHIsuXL4enp6cqif344495PgoVKqRJ6kQiJH5/4cKF4ejoiIcPHyI5ORnz589Hdna2hAyobWu3evVq9O/fn3+L2kbdcguRFqmzJN8OHz6Mdu3aYdSoUZg1axbat2+vOstbrrjlZCanRacpZtjd3R3Vq1eXyB/AXD80aCEyRANgeX58fHywaNEidOjQAY8fP+bp0F83NzccOXIEjx8/5ktWiIqvUaNGvL/Xq1cPv/zyC79WpEgRVaImLqzbrVs3rFu3DgaDQeHefe+991CjRg3+zXLUq1dPYZGjQbAog3x8fLjeIovRoEGDuJz38PCQLEEhfh8RcDc3NxiNRpw+fRoZGRmcuAPqpM7Z2RkrVqzAgAEDNJfdIFBfkVvqKleurJB54r3UNkm2ODs7cz1BoLZGZFZLB4j1phbvTPvW0s49InJafeHMmTNo3LgxatasicKFCyMrK0thlS5YsCAaN24MX19fLrPou9566y1Uq1aNGxxEq5uou9VI1MOHDxEZGYnChQtzb0ijRo1gZ2cHLy8vXt5q8nnZsmVo1aqVxW8DzKSddATJkTlz5qiSsA8//FAiUy5cuCCJLRVB7SYwMFCxNJMWck3qRowYYdEEWKZMmXyJq3vZEBtGz549eeMQCQsJF8DcAJs0acJ/i0I1NTUVRqMRsbGxCkvdpk2bULp0adWYAYPBAJPJxJchIJCQqlu3LhhjaN26NRISErjriLbn0drDUfwGMvuSu0oONcsLoUyZMnj33XcVrgS1hmuNC1YkdaLr0cPDQ2Gpo/rQInU1atRArVq10L59e94RihcvzpWEp6cnJyY0KxAwWzeSkpIUQee2traa8WJqAkxOYNSInxoBojqjyRQrV65EgwYN0LBhQ55fSqt8+fKSWX707aK5n1wD9GzTpk1526b329jYYPz48ZozqeTBvR4eHjw9rZGnGsQyGT9+PNLT09G0aVOex4IFC0rcryJEki2WN1nqCF5eXoo2obYqfosWLXg/8fLyUsSopaam8pn0pNCpncsJe05LC3z44YdwcXHBsGHDYGNjw61g4qQLeWyonPiouevEOJz9+/djxowZcHNzw6lTpxAXFycp7+vXr3NXN8WWEVGU91d7e3ukp6djy5Yt2LNnDyezROBJ3vv7+/M05Naadu3aoWPHjrh+/bpE/hsMBqxZs0Zz0gxgHqSSK6xQoUKwtbXlsnTx4sV8EKbW79TaI5FYUQYVKFCAkzrq1w4ODjykxcPDQ9MKYm9vj507d2L58uUoVKgQJ8uiG04eBweYy++jjz7C0qVLNS0xgNl6LRI1R0dHuLu7o1KlSqozJYl8iP2gQYMGKFmyJBYvXqwg7bSclqXZw2PGjJGEUtja2irc6AUKFEB4eLhqXNf8+fMl8mTZsmWoWLEiVq9ejRMnTsDNzQ0fffQR/v77b8349kKFCmH//v14/Pgxr0PKs6+vr6R9BwQEqMa2q1mFk5KSYDKZUK1aNdSpUwcmk0ki26lu1Ehd//79rbKOyS2x06ZN4+voyneWEMu5ZMmSqFSpkmqMHfBMDpYpU8aq3YWAPJC6Bg0aKEyHIlxdXSVm6X8LqIPMmzePB2MDUgEozhSys7PD/v37+W8XFxeumOzs7ODv749FixbxVd4Bs5J77733cPv2bVWhDZiFoFwAUCci5U6CiIRLTkHxYmcoVaoUIiMj+QrrcshJnZOTEy5evIg+ffrwxigfxaltn2aN75++56OPPpIEA6u5X0m4ae1jW7x4cZw6dQqDBg2CjY0Ndu/ejV9++YWTOqPRyAXFBx98gLp166JOnTqwsbGxegaqpcB5eZ2pBZyr5b1Lly7YsWOHZMaVHKTw3dzcJHktUqSIQlBT2yhZsiQePnyIHj16cKX4/vvv48MPP8SQIUMwYcIERbsRiYWoMIxGIyfKakJTC1QmdnZ2mDBhAk+fFKAlS5189q6YL8qbra2thKDT1lI5wdPTU9VSRxYOKlNxlj3wrE61Fjz99ddfMWzYMMngD3gWXycScrkVl8qmWrVquHv3Lq9HeqZixYo4evQosrOzJcozKysLtra2sLOzg8FggIeHB0aNGgXA3N7i4uK4a5e+Q94OaWHw9957D/379+fPA2YZI64Tamtri3Xr1il2fQG0J820adNGU94kJSVJ9EmhQoVQpkwZXh5ie1MjdWrtkdqUKGMLFiyIO3fuwN3dnZM9BwcHLtOoTWqRz/feew8+Pj6czLq4uEjkAYU2aOVNawJKQkICQkJCeHsSw360iCDJc7GPtmvXDnfv3kWfPn0UA4YxY8bg2rVrkr4hXxxdTQbKB6aWZl4GBgZKJob0798fly5dQu/evRV9WT5Zh+Dh4QGDwQAbGxs+wYNITeHChbme2bhxIxwcHDipo75ct25dXn5EHMUyJMuqvC604kRzA09PT0mojWhtlfc3IoB///23YoFiOSjPWuE/angtFx9+FaAGTI2CKrh58+aYMGECEhMTVcksPUezMH/44QdMnTqVC5SbN2/CyckJ9evXl5i3rcHbb78NwEw0RRcbjRCJ1OXUGEVSR+Z9LSEjn2pduHBhvP3221i1ahUnuPL3qZG6YcOGSVZWVwMpthIlSkiUnIeHh2IxVOp48lX3tUZ977zzDry9vSWk7qOPPsLgwYPRs2dPHDlyRLHLhSV8/vnn2LVrF/z8/CRrvdF3iORfHtQuutjlcHBwwPvvv29x1iG1MYrVJDRq1EhhIRQVK43syBro7e2Nn376iZNyeWyVuAhpYmIi/04PDw8uHHND6qgvyRdSFi11RLTlbjdfX18eMyOPXyVl9vXXX0sUz8WLF63a/NrLy0ux4KvJZMKOHTuQnJzMSR21SflkHEC6qOyYMWPw888/o3v37nzZGRErVqxAaGioxTomEuPo6IiSJUvCz88PGRkZ2Lt3L/7880/s378fLi4usLGxkfQNtR0DxJmnRqORK5Xg4GB89dVXGD58OIKCgrhH4Pvvv0ft2rWxc+dOLFy4UDJ7vWLFioo21q1bN9UJMiJxGz9+vCRvWjHNcjLRuXNnfPzxx9wKLbY3MSyFoNYe//rrL8yZMwe2traIjIxEVFQUb/OtWrXi9Wpvb8/LkmZerlu3zuKsYmqnNEufoFYe1li13d3d4eTkxN9PVuACBQpoDjbVSJ2I9957j+/6A5hJxVtvvSWRsV9++aXkGbVylKdvzXIa1sDBwQHbtm1TeKvE8qQ6IFlBMeoAFOEB0dHRyMzMxOHDh3mZ08Q4er5Zs2aaBgFqGznF3VuCl5cXihUrxutRzX1NIHLdtGlTzclYBJLh1riACTqpk4EaxYoVKzBp0iQYjUaMHz9ec9REZMPFxQUGgwFDhw6Ft7e3xD3h7OyMI0eO4IMPPrA6H3FxcZwc2NnZSZi/0WiEh4cHX4crJ0UrCuWcliyQW37UgmLFzuHi4sLXLJMjp3eRkJCbrtWCin18fHD+/HlJPMf27dsV0/vlEEld5cqVMXfuXNja2ipmoeaEBQsWoHLlyggLC8P8+fOxb98+bpEmS9isWbPQq1cvhQVs48aNmjGC1oCIi9xS16ZNG4VJXm4lAp6RbrmSqFevHjIyMnD48GGsXbtWMmixs7PjEzCKFi3K8yCfqAKYJ9aQa1MU/FrlW61aNR6uQO9QE26XL1+GyWTC+vXrcfjwYaxatQrAs/JQE8LW1KnYvmi2fokSJeDg4AAXFxesXr0ap06dUgxixMFM0aJFuWVv8uTJ6Nmzp+b7nJ2dNWcJE4jUiX3L3t4eNjY2aNWqlURJiNss5WZWu52dHaZPnw5vb29cv36dk/b//ve/qvuP5hb+/v58CSX5AESsK0tr/3300UeSFRREYjRx4kRFPKOa7Hv77be566tAgQLw8fHh8rN9+/Z8kGFvb88HNuShsLOzs+gqJXkoHxA1adKEb99HUCNdWu2APBvkoShXrpzEjfr333/zGF/RVasGg8HA61YrxEI+iMqrpe7y5cu5XssRMHtL1PZVJRCpo3c6OjpqkrqYmBjY2dnB1taWtwdbW1v06NEDn376Kb788kv8+uuvmu+itpGb0BI5yNJKA2j5DGbALL/v3LmDhg0bWp2uwWBAcnKy5sLTqmCvGc6cOcPq16/PGjZsyDp37swyMjIk1w8cOMCKFi3KGjVqxJo2bWp1uvHx8QwAi4+PV70+ffp0BoBt2rQpV/mtVKkSA8DS0tIk54cPH84AMACsSJEiuUrTGpQvX54BYEajkaWnp7Nx48ax1q1bq96blpbG8yKCzolHamqq5HebNm1U01y2bBk7ffq0xTy2a9dOklZwcLAkDyaTif3+++8sMzNT8tzevXsV+SJkZmbyc1lZWRbfzxhjw4YNYwDY7Nmzc7y3XLlyrECBApJzauVG2Lx5MwPAHB0dc0z7edClSxcGgPXo0YNduXKF/28ymSTtTKtMOnfuzACww4cP5/iuRYsWsX379jHGGNu6dStr1qwZS09PZ0uWLGEA2IoVKzSfPXjwIAsNDZWcA8B8fHwk50wmE4uLi2OMMVa4cGEGgN29ezfHvBEWL17MALDFixdb/YyI3bt3MwCsePHizGQysZCQEBYWFqa4Ly0tjU2aNIklJSUxAKxixYqS9hAXF8dOnjyZq3eXLVuWvfXWW4rz1JYaNGiQYxrLli1jpUqVYgCYg4NDrt6fn1DrG5cvX2YA2KlTpyTno6OjJfcDYO7u7pppN2vWTLPfRUVFsWnTpjEAbPXq1Vblddy4cczBwYElJCSwLVu2MABs2rRpLCUlRZFXS6B6GjFihOKa+I0A2OPHjyXXw8LCWGxsrGq6JpOJLViwgEVERDDGzHJOS76FhIQwAGzAgAEW83r27FlFGpQ3k8nEoqOjWYECBRgAtm7dOsXz2dnZ/H5HR0dmMpksvk9M31okJiYyAMzJyUlyfu/evaxOnTrs8OHDDAA7cuQI13kpKSmMMXOZGQwGtnnzZv5cQkIC1zXWYteuXQwAe/jwIT+3Y8cOdvnyZc1nlixZwpo3b86/l+Qe8YHr168r3nHv3j2r8/Q8eO1I3ZMnT1hycjJjjLFRo0axDRs2SK4fOHCAffnll7lONydSR0Jiy5YtuUr32rVrbMiQIYoGv3DhQl7hZcuWzXV+cwIRpHnz5uV4r8lkUu1s//3vf1nt2rUV5In+DwwMzJG4WUKLFi0YAPb999+za9eusdTUVK7Mrc3v5s2b2dmzZyXXcyM4Jk+ezACwn376Kcd7s7OzFUJwz549bMeOHar3//XXXy+F1PXq1YsBYJ988gmLiopiANju3bsZY4z9+OOPvDxmzpyp+nyHDh0YAEU55garVq1iANiiRYty9dzOnTvZnTt3NK/b2dmpDoosYcGCBQwAW7NmTa7yQjh69CgDwMaPH2/V/dQeJ02alGulJUd2djbLzs5WnN++fTsDwBo1amR1Ws+bl+eF1vvlgzS1+8PCwlhUVJRm2jExMezQoUOa19etW8cAsFmzZlmV17CwMLZ//37GGGOxsbGsWrVq7NGjR1Y9K2LPnj0MANu4caPiWnJyMgPAhg8fzlatWpXrtK3FtWvXGAD2xRdf5PpZT09PSZ2VKFGCAWDbtm1TvZ/qzM/Pz6r0c9smqW/5+vpq3kPkeNOmTaxEiRIW06NBvxrptgRrDARqWLRoERs1ahTv0xUqVGAALLbtFw3lKnuvGGLwqb29vepCgJs3b8apU6fQqVMnbmZ/XrD/N+vnxiUHmN2ValONP/30U/z111/4888/n8usqwWavWfNpBStb5ozZw5+/PFHnDx5Eo6OjopAZEsbs1sDMpe3adNGdQ9aa/IrLt6bF9D7rKkDtZgLmjmmBkozt20mtxDdrz4+PhIXFAV4DxgwQBEnQ9Byv+YGFN+ptS2YFnJaAZ1cYWqzhbVAcVC5eUZE7dq1sXTpUvTp08eq+w0GA5KSkuDi4qJYDDm30IrrUXO/5gQPDw9FwPvLROvWrVVdlWoyWw61mYsivLy8LLqpKHbJ2vbo5+fH3+np6WlV7KUamjdvjoMHD6rmzcnJCba2tihVqpTVbSsvyCmmzhLOnz8vmdVKC7urLbsjwtp4unv37uWqDRsMBvTp0wf9+vXTvIfi0zt27KhwccthZ2eHBw8e5Ni+5FALK7EG8v5XtGhRXLlyJcclbF4kXjtSR3jw4AH27dunWJSzRo0anGy0bdsW9evXl6wXREhPT5eQFEt7vwJ5J3VasLGxQePGjV8YqaNGY2maujWgxrxgwQLesd577z3N2bm5AcX7yGdjWYMbN26o7gGZW5Dil0+8yA9Q/MaLJnWk8NUERaNGjbBu3TqLwo7iPJ6H1FWrVg3R0dH5FixN+Prrr/Hbb7/l6hnq12rrn1kDW1tbvj2YtXiesrMGeSF1avvEvkxs3749V/d37NhRMkPweRAYGKi6Z+uLhsFg0BxI29jYYPv27VbN/H8ePA+pK1GihITA0YBP3GVEDdb2+5zIoRooVja/kNOWoC8Sa9euxcmTJ/NMEvMDr4zUhYeHq04f/+OPP2BnZ4devXph5cqVijVixJHhBx98gAsXLqiSumnTpkmWE8kJ+U3qgGedLy+kJids2LABJ0+ezJViUyNq1PiysrL4t4srYj8PyFKXl1FLYGCg5v5/uQEJK7UlB54XL8tSR5YPtUkrdnZ2iu1u5CBSl1fLFiG/CR1g7qdqi5laApG65/2evMBoNGpuTfg8yAup+7dh/fr1ipnQz4OXTeisgTV7cz4vSAfmh7GgUaNGuHTpkiYJ6dOnD1avXv1C+v6bCB8fn1zNVH0ReGWkztfXF0ePHlWcz87ORrt27TBu3DhVpZ6QkMA785EjRxTbAxFGjRolmUWVkJBgkcF37NgR48ePt3ojdGvwIkldsWLFcpxRJ+LWrVuq5Io6s9bCxc+DgQMH4ssvv7TKHZNbWLsWYtOmTXH79m3NvQSfB7lZ3uN5QDPB8rI9D2DecsrHx+eFtMNXgbZt22LChAmSDcBfFuSLFucX/hdIna2t7Su1YLwpsLGxgZ+fn8VlM6zF/v37Lcr+VatW4erVq/nyLh0vB6+d+3XDhg04fvw4EhMTMXnyZHz22Wfo2rUrPvnkEyxZsgQbNmzA0qVLYWdnh3r16mnGXTg6OuZqJP/WW2/l6ygSeEbqXqV/naC24jnwjNSprTX3vBg2bJiEWOcXEhISclW3L4LQAS+P1JGbTb4MgbUIDAzE6tWr8zNLrxRVqlTJl60IXyf8L5A6HfmHs2fP5ssgzcbGJsc2t3Tp0hz3rtXx+uC1I3Xdu3dXXfeMVqvu37+/YiPg1xXklnudO8SLJHUvCmp7ir4KvCz3K1mH8mqp0/H6Qyd1OnKD3E4EeB7Q1pI6/h3QJcgLBFmT8iM27EWhffv2GDRokMXZRzrU8bImShCpy6ulTsfrD53U6dChIz+gS5AXiGbNmmH37t05bpf1KuHk5IT58+e/NtavfxOs2eg5P0Bxoy96BqaOVwed1OnQoSM/oEuQFwiDwYB33nnnhVtydLxavOj6HTBgwBsXQ6ZDCgqD0EmdDh06nge6BNGh4zlQo0YNLFq06FVnQ8cbgryuvadDhw4dwGs4UUKHjn8TTp8+/aqzoOMNgK+vLyZOnIhPPvnkVWdFhw4d/2IY2P+IXychIQFGo/GVrEKuQ4cOHTp06NDxoqG7X3Xo0KFDhw4dOt4A/M9Y6hhjSExMhLu7uz5xQYcOHTp06NDxxuF/htTp0KFDhw4dOnS8ydDdrzp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8AdFKnQ4cOHTp06NDxBkAndTp06NChQ4cOHW8A/mdIHWMMCQkJYIy96qzo0KFDhw4dOnTkO/5nSF1iYiKMRiMSExNfdVZ06MgXZGRkwGQyveps6NChQ4eO1wT/M6Tu346yZcti3rx5rzobOl4jODo6on///orzaWlpryA3OgiMMcTFxb3qbLxWSEtLQ0pKyqvOho5/KR48eIAjR45YdW9YWBi2bdv2gnP0+kIndf8S3L59G8OGDXuleYiPj4fBYMDRo0fzPe3MzEzcvHkzx/sMBgMmTZqU7+9/WcjMzMTUqVPzjXitXLlS8nvZsmVwdnZGUlJSvqSvhbNnzyI8PDzf0jt//jyio6Nz9UxCQoJmHuLj45Gdnf3c+bpx4wYuXLiQq2fmzZsHLy8vq0hMXFwcZs6cmS8W17lz5+LevXvPnY6IlJQUHDx48LnTqVy5MlxdXREdHY3t27c/f8Ys4Pjx4698YJOamopJkyYhPT0dAJCUlIRNmza90jy9zrh9+7bFgVDdunXRsGFDq9Lq3r072rVrl+v+P2jQIFSuXDlXz+QFp06dUshta2D197B/Kb788ktWv3599p///Ielp6fneH98fDwDwOLj4/P8zqysLHbjxg2L95w9e5YtWLDAqvRiY2PZ33//neN9JpOJAWDOzs5WpcsYY2+99RarUqWK1fczxtjw4cPZvn37NMvz9OnTDAD7+OOPFdd+/PFH9ujRI/776dOnqmmsWbOGubm5MZPJJDk/Y8YMBkDzOQIA5ubmltOnaCIjI4OdPXvW4j3Z2dksOzubPXz4MM/vYYyxO3fuMADs6NGj/Nzq1asZALZ69ernSjsjI4MBYA4ODpLz5cuXZwDYuXPnNJ+9e/cuy8jIYKGhoXl6d0JCAgPAGjVqpHn93r177O7du4prGzduZFWrVpWcy8zMZADYu+++q/lOk8nERo0axe7du8fPlS1blqmJsMzMTFa4cGG2bNkyxhhj6enpLDU11YovU8LOzk71HZbQuHFjBoD17duXZWZmWrz33XffZQDY1atX85Q/QlpaGgPAAgMD+bm5c+ey9u3bP1e6n332GQPAEhISnisdAAwAa968OQOg6P8ihgwZwgoVKpSn98TFxTEAbOjQoarXs7OzNd8dGxvLwsPD8/ReOX799VcGgLfBPn36MAAsJiZGca88P9euXWOFCxdmsbGx+ZKX50F6ejoLCQmx6t6jR4+y27dv5+k9ANjbb79t8ToAlpaWlmNawcHBDAC7f/++4tr27ds1ZSO9QwvXr19nUVFROb6fMH36dDZ58uRcv0cLffv2ZR999FGO9/0rSd25c+dYjx49GGOMTZkyha1duzbHZ/KD1PXv358BUAjq7OxsdvLkScZY7iqsbdu2DABLTk7m5x4/fszWrVsnuS8pKYkBYB4eHiw9PV2zYWdmZrL169ezJ0+e8HyULFnS6u+jZzp16qS4tnz5ctavXz9+z507d/i19PR0BoDVqlWLMfaMzGzYsEGRToMGDRgAdv36dcn5r776igFgmzdvVs3b3bt3Oam0tnwzMzPZkSNH+O/w8HC2efNmBoDNnz+fzZkzh1WsWFHyzNGjRxkAVrduXQYgz4I1KSmJtW7dmgFg1apVYykpKYwxc3sFwDZt2iS5Pyoqij169IglJSVZJUQjIiJUCa6HhwcDwNavX6+ZLwDM1taWAWCJiYm5/rZffvmFAVCQM8bMAwOqIwAKIW80GhkAlpGRwc+dO3eOAWA1a9Zkhw4dYv3795cIz6ioKFaqVCn+zoMHDzLGnrXXrVu3si5durCff/5Zkt6IESMYY4xVrFiRt5nDhw8zACwsLMyqb9X6DoLJZGJxcXEsNjaW+fv7s6tXr3KlAoAdOHDAqvTpvtWrV0uU0enTp1lWVpbqs6mpqWzLli2MMcZCQ0Ml5T558uQ8Kw8R77//PgPApkyZwrZu3WrVM1lZWeyTTz6RDBooL4GBgQyAgmTHx8ezBQsW8AFsTvkWZSbh+++/5/1Wi8w2adKETZs2TfVayZIlJe+Njo5m8fHxbMKECQqSefbsWbZq1SrN/K1fv54BYF988QVjjLGqVauqEo2DBw8yAJLBCslCse1kZ2ezY8eOab6PMbNM2LBhA/v777/ZqVOnJNcuX76sOshSg0gyqT9bIwfFert16xbbuXMnO336NGPMrCMaNGjALly4wEqWLMl++OEH1WfT0tJYp06dFOXk6urKAORoVGGMsfbt2zMA7O+//2ZhYWESYwO9h2SIWh60SD8AVqRIkRzfzxhjDx8+1GzHeemX8fHxzMXFhU2ZMiXHe/+VpG7hwoXc0nHmzBn2+eefK+5JS0tj8fHx/KBCViN1GzduZO7u7iwmJkai5B49esQaNWrER6lUGfI0Jk2axBWpWoVFRkay8+fP898mk4kNHDiQ3yt2wGLFivHns7KymMlkYmFhYQwA8/HxYZUqVZI0rMzMTLZp0yZmMpnY0qVLGQA2ceJEiYBftWoVA8Cys7PZ0aNHVYmTKEydnJwU18X0ALDixYvza5Q/FxcXxph5NERKNTw8nE2cOJEdOnSIMcbYiBEjGAD2448/StKfNm0aA8AKFizI1qxZk+P7tXDr1i1e1qTYmjZtyipVqsQAMBsbGwaAkwsAkrohywQdoiAcNWqUqpJ+/Pgxq127NitWrBhXZMOGDZOkM27cOHb16lX++9tvv2XZ2dk8jdq1azMAzMvLiwFgjx49Yrt372Znz55lK1euVLzz+vXrDADz9vbm59LT05nBYOBK+PDhw9xSIJaPmK8zZ85oliVjjLcdUdDNmjWLAWCVKlXi55YuXaogFmp1ReeePHnCLl68yBhjbNGiRQwA69WrFyelf/75J39G7Fd0EDmVHxkZGWz+/PkMAOvdu7fkne+++y5r06YNA6AYOGmBLJ9Enggmk4mNHTuWDRo0iAFg06dPZwDYyJEjWeXKlfk7lyxZwv7++282YsQIhVLOzs7m9/3222/c2lanTh3GGGMxMTEMABs8eDB/JiMjg1vSybp95swZFhISoloepNwePnzIjh8/zmbPns1+/fVXnl5oaKjESkiEuGPHjuzIkSNcQeZGEVE7p/IXZQtZVyMjI/n9sbGxrEePHgwwk+eclOuhQ4cYAHbp0iU2e/ZsZjQaGWOMOTs782dp0C+vM2dnZzZw4EBmMpkkAwvGnrUTOg+A+fn5qX67m5sbA7QHRYsXL5bI96JFizIA7MKFC5L7iMDt2bOHn/vyyy8ZAHb48GF+bvny5Twteb4JnTp1ktRVRESE5Nvs7OwkZXHjxg3WpUsXNmjQIK5TqGxbt27NHB0dOamn+goPD2fLly9n0dHRivfTe8mST0dycjK7ceMGA8AKFCjAALCiRYsyxsztbcGCBYo2O3z4cMYYY/fv32fh4eHM39+fAWClS5dmXl5ebO7cuezUqVOqlvBPPvmEAWBz5sxR1J1WWx46dCg/f+nSJdXyFZ978uQJb58mk4llZmayjz/+mD148IAxxrguFt/z5MkTFhsbq2hnIg4dOsQND6KnaMmSJczGxkZCULXwryR13377LReyt27dYt27d1fcM378eFUBp0bqdu3axa8bDAZ+nsjRxo0b2YMHDyQKSQQJfvEQrWklSpRgAFi3bt0YY0ySFgC2dOlSfi+dW7lyJXN0dGTdu3fnClwUMDR6nz17NgPAjh8/zsaNG8cAcKFAh4+PD+9c8oYWExPDxo8fz7p3786vBQUFsbFjx/LRtCiU1TrFpUuXJOdI2QwdOpR16dKFX9u+fTsbM2YMA8DGjBkjKcNvvvnGovJQe3dmZibr2rWrxOpH1zds2MA6d+6sqejE47vvvuPP/+c//5FcEzs4ndu0aRP77bffWGZmJouJieGkBAD75ZdfGGOMNW3aVJLON998w2rWrCk517dvX542kTE6SAnQce7cOebs7MytnydOnGAAmK+vL09DJGxkVZaXJVmqxPxmZWWxqlWrsp07dzLGzEqZyrRatWr8/eHh4ZK+4uHhwRh7Rk5q1qypyDdgtuqSW53OEeHev3+/al8VSZc4AKJDHAnLD2rv1A7Ea9SHvvrqK0Ubk+O7777jz61evZo9efKEDRo0iA0ZMoTdv39f9d2DBw9mhQoVUr3m7+8vsTSIFvW5c+eyixcvMgCsSpUq7NSpU7zfOzg4cOJVvnx55uPjwxgzu1cBs4uPrJFaR/HixSW/SSFRO6V2ToQdMA98unXrpuh3CQkJbPfu3ZrlRsTgk08+YYw9c4kCZqVMbWL+/Pls3bp1kvTFgU9sbCzLyspiWVlZLDExkYWHh7N79+7x+l25ciW/NyMjg9nb2/PfAwYMYF9//TX7/fffeb4eP37MAHP4CA3efvvtN3b+/Hl+TSwL+k1WIrIOimScBshhYWF8QLd//3722WefMVtbW1a+fHnWvHlz5uDgwABwz0F0dDRLSUlh//3vfyXp3Llzh3388ccMANu7d69qW6QwnPT0dPbpp5+yFStWMMYYa9GihaLeGXsWqgGATZo0iT19+lTRL6i8W7VqJTlH4QHkliadOHXqVEW90zNE4MQ6X7ZsmeRc06ZNJc/Ij0WLFvHrtra2rEyZMqr3qRl0yKNEA2Qqh6ysLEXZyPNOR3h4OHvvvfdYnz59OHGnaxRe8cMPP7ADBw6wrl27MhcXFwaAtWnThjHGJPqUrJyi/AGeke4rV66w06dPs0aNGknyQGE7Dx48YH5+fuz9999XfKsa/pWkbtGiRdxSd/r06ee21ImkhCo7JSWFW4/kx4ULF1irVq3Y06dP2bFjx1TvkY+S6Dh58iTbtm2b5BwpGDXy5ODgwEfhZMUAnlmXqAFv3bqVjRw5kgFgH330kWqeRCWycOFCxXfLjyVLljDGnlkM5AeNNA4cOMDPTZ06lVsq2rdvz9555x1+bcSIEezrr79mANiQIUPYo0eP+Ghk8ODBkrRJ6UREREgIilhHcsuQvPxatmypmm+xHIFnFgXGGHeZyjuWKMjpIAJI3ySWWUBAgOTemTNn8lGm/DvkJFzt+OGHHxhgdnGbTCa2c+dOBoAVK1aM533v3r0MACtVqpRk1D5t2jTWo0cPNmTIEPbbb79J0v3mm29YdHS0JD+kxFJSUliFChX4tXbt2iny9fnnn/ORcVBQEHNycpKQKjpsbGwk7YjI4qhRo7hiA8wC02Aw8HJkjEnyIPbBnMrM0tGpUyeJolSDeP+8efNY165d+W9y86kdpMC1jnnz5rFly5axU6dO8XOjRo1SWCRFFyoACWlnjLGffvqJAZBYBq09qN/RQIOs46NGjZLcV6tWLcl3ZWdnc0J08+ZN1XJbu3YtA8x9PDQ0VEIoyROxZs2aHPN4+/ZtVqJECda4cWP+jeLgR3T1i2UJgFWvXl3y+9y5c9zV+eGHHypIrnisX79eQgDISkRWe3FA8eWXX3K54+TkJJETQUFBbPr06VzhA2YLNFlkxWPhwoWKNicS0oULFyrqb8uWLbz+GWPcCi0e9+7d49bXvBzkNiYLFOkW+aBI/G5RH2gdjo6OFq+TJyendEqUKCHJx44dOyT9VOwvkZGRknP169dn27ZtU33P1KlT+f9ly5ZVGB0sHdHR0SwwMJD3LbLOyu+7ceMGS01N1Uxn165d7NixY9wCLYY8WcK/cvZr7dq1sWfPHgDA7t27Ua9ePcU9jo6O8PDwkBxaKFKkiOR3ZmYmXFxcMG3aNNX7f//9d+zYsQPt2rVTfTcATJkyBYcPH1bMaqtduzY6duwIwDxNu0KFCkhNTQUAPlNKhJOTExISEgCA/wXAZ5A9ePAAABAaGsrTCQ0NVc3Thg0b+P+ff/453n77bcU9hQsX5v+PHTsWfn5+mum1bt0a48aN47MW7e3tMXr0aD5b8N69e5JvunbtGjIzMwGYZ4MVLVoUAQEB/LeIp0+fAgDWrVuH5cuXK97NVJaNKFeunOT3mTNnVPPt7u7O//fy8sLly5f57/j4eMm99FttfcNff/0VAHD16lW0bNkShQoVwuXLl/HkyRM8fPhQcu/Dhw+RnJyML774QnJ+3bp1mDVrlmo+RZw9exYAEBISgubNmyM2NhYA4ODgwO+5f/8+DAYDKlasiIiICH5+1KhRWLt2LebMmYNu3bpJ0j137pyifpOTkwEALi4uuHLlCj+/detW/n/p0qXh6emJhQsXYsmSJQDMMyXT0tJQsmRJRf5NJhPKli0reS9gnglG3wIA9evXh7u7OxISEpCYmIgff/xRkgfCRx99pFZMAABfX18ULFhQ8zpgnp341Vdf8d8ZGRnIzs7GqFGjcPToUTx58kRyf0JCgmT22fHjxzXTltexHIMHD8aAAQNw+vRpAECZMmXw9OlT3Lp1S3Lf/PnzJb/F8ktNTUVISAgAqM7O9fb2xsWLFzXzsG3bNgwfPpx/06NHjwAAN2/ehKurK9atWwcA/B2AuYwiIiLwzz//AACGDh2Kli1bYuXKlTh//jzefvtt/PTTT7ztp6eno3HjxggNDYWfnx+AZzLs0qVLlooIABAVFYX79+/j4MGD/BuZsHj8zJkz+f/y5S6ovxAOHjyI27dvAwCysrIQFBSkeB+126dPnyIsLIyfJ93x9OlTtGzZEkOGDAEAFC1aFGfOnOGrAaSlpeH+/fv8OR8fHwQGBkpmQcfHx0vSJoSHhysWxr99+zZu3LgBQCr7ASAgIADXr18HYK7/okWLKmQOfVOTJk0U560FlRnJbXpHcnIyHj9+zO8T5beldkdQ03UA0LRpUwDm9j137twc0xHl9Z07d9CqVSusX79eoscAYOPGjYo2d/ToUbRt21Y13Z07dwIAevfujVu3buHbb7/NMS+EKVOm4M6dO2jZsiUAqd4TERERgZMnTyrO+/r6AgBiYmLw3nvvITU1FQEBAShVqpR1GbCK+r2GyM/ZryaTSTKaoplL8sPS6Bx4NgoVD9FXLz8yMjJYjRo1GGA2v0dFRSnuMRgMClP5O++8w2rWrMkYYywoKIi/Z8CAAQwAD/iVH3SvpYNiz8SDfPz4/9GN3My/aNEiZmNjw+Nl6PDw8OCxYoDZrURWGdGtwxhTuEopnoRG/fIjLS2N7d+/3+rRk3hQXAdgth5SLCBjjFWqVEniPvv111+ZyWSSxPrIj6JFi7IRI0ZIrHPiSJSCwwFzLJ1aGvJYPvlRpUoVyW+KGytdujTP+0cffcTKly+vaamVH+7u7opz6enpktgkraNGjRoKi7OTkxMDYNHt3aBBA4mbrFKlSuyDDz7gv2fNmsWKFi0qsRBZc/z999+S9kRWa7I6yg+5ezwqKkpiCdu6davk+siRI1mHDh2sysuBAwfYvXv3+G+59VcsQ1dXV9avXz/m5+ensFZrHQaDQREmAIDHZ9H3UKyr2iG3VterV4999913rFy5ctzzQX00ICCA7d69mwHm2EI7OzuFpYtCLt599132+eefMwCsa9euzMvLizVr1oz99ddfPO/W1ilNKrLm+OCDD1iBAgU0294XX3zBy6dbt24sODhYEhoCmC2oAQEBbMyYMezIkSP8PFkJxTALwGzxc3Nzk9TbkiVL+P9t2rTh3pC6desyGxsbtnjxYknadHz88ceqFjxqz2Ld0tG3b1/Jb7kX4HkOuSWNwjHKlSsnOU8WX9F6Sd4jd3d3Nnv2bEVbEeOZ5cdff/3FChQooCkngWdW2JIlSzJbW1tmMpnYw4cPJeWaG/nB2DMr2oQJE1jBggVZkSJFmJ2dnUX9ndPxxx9/8P979+7N/xfbHU2WFI9Tp04xOzs7VqdOHX6ucOHCVnOjfy2pyy1ymv0qEhI1Idy2bdsc3ZWFChXKMbaFDoqLodmgADQDzUU3sL29PZs4cSKvZHJ1ffDBB6xnz545vlfLJUmHWlyGeMyYMUMyC1U8REJIcYT0FzBPglCLj6JgfPHYuHEjY4xJhKR4xMXFsU2bNmnm08nJiSsX+eHu7s4FIJHGX375hR0/fpwVL15cQqAWL17MPvzwwxzLlSaHiB2T/hfbhBizJB4Uh6R1lChRgk/yKFOmDBs9ejQDnsXUmUwmVrRoUTZ06FA2ZMgQ1TTGjBnDXbRadW2JvIpHtWrVFLEzdBChkh+TJ09mJpOJu7MAMyFu2LAh/71y5UrVGFWtg2IV5bMm09LS2NWrVzWVvDjYAMxuKjHe8NNPP5Vc/+STTyTu5169emnmiWbu0u+wsDA2duxYxX2enp6sXLly7O7du8xgMGjG4qm1BfnArUOHDvydXl5ejDFpLBX1idTUVM1Bn1gHjDEeg9uqVSs+4Kxbty5zcnKSxFYCUpJM9de8eXPm5+fHJkyYwGeVqx3kvtc6LJEViuH08vLiS+yQa19+EKHs1KkTe+utt9jQoUMlA5hbt26xGjVqsAEDBkgGkzTzWn6QOxd41sdpYgFgJl0pKSnMycmJzZs3j3l6erLp06cr4ggBc9iB2qAeMJMkLy8vBREXlX5uj5wMFPLB0LFjx1h8fDyfIELH8ePHWaVKlXisNGDuW+KqC/LwEvnkG/G4d+8eK1asmCK+TDzIzdysWTMGmCeryO+RTxoRD3naovxZsGABCwgIYPb29szHx0fyXWK9WlPGWoMqS4QVMM+QLliwoOQcxS9bg3+l+/VFwNvbm/9PrggRnTp1gqenp8U0UlJSUKBAgRzfVahQIW4ednZ25ufJ7SUHuaoAs2nWz88PkZGRyMzMRGxsLPz9/XHw4EGrtkBr3bp1jnmzhEaNGsFoNKpec3Jy4v9Xr14dACTuiMjISNVv7Nu3r+IcuV+1viktLU3hrhIxffp0LFiwABUrVlRcS09Px+XLl3H37l3upuvZsyfq1q2L+Ph47ioCzOb91atXa76HILrhExMTUatWLf47IyOD/+/o6Kj6fPny5S2mn5iYCC8vL4wcORIxMTF8QVgqz9TUVDx69AhVq1a1WD/Nmzfn4QbVqlVT3LNq1SqL+aD2nZ2drdkfyI1Vp04dyXlvb28YDAZe5qVLl0Z0dLTEje7l5QUXFxfN97dq1Yr//8knn2DKlCkICQmBwWCQ3Ofo6Ihy5cpx974cFKpASEhIkLjF9u3bp7jOBPfYjz/+iMDAQNW0fXx8JL/9/PwU7iDAvPBwsWLFULJkSdSrV0/iMldzDxIyMzMVi+tSmW3ZsoW7dOzt7SX3eHt7w8nJSdK+1UBt18XFBQcPHsTKlSvh7e0NFxcXXLhwAYUKFYK/v7/kmf379/P/r169CsBchrGxsXBwcJCEPMi/pU2bNorzbm5u/P8aNWpo5pX6TWxsLK8PcgXKZTHVX2ZmJuLj42E0Gnm5bd++HWXKlEGhQoVw/vx5jBkzhj939+5d1XfXqVOHt/XGjRujRIkS3G0HmNuBs7MzLl++jIEDB8JoNCIhIUHitqT7Dh48iEaNGqm+Z8WKFYiNjUWJEiWwZcsWfv78+fOwsZGqcK02KcecOXMU58SFd+Vyul69eggMDFSEybRs2RIXL17ElClT+LkLFy5IQppIHlWqVAkTJkxQhBUQHj16hBIlSsDJyQmHDh2SXPviiy9QrFgxAICrqyuAZ/UrD5kR3ymiWbNmGDRokGLh38OHD/P/TSYTnJyckJmZCQ8PD1VZ1LdvXzRo0ED1G6idT548WbXPU76//fZbvPXWWwCU/bRQoUIK2SqGiuQEndT9P0RyFRkZqbhevHhxyT1qsJbU9ezZkwsqa0jdxo0b+f++vr7w9fWFyWTCrVu3YDKZ0Lt3byQkJEgapwg7Ozv+PzVGeWwVQashDhgwAKmpqahVq5Zqh7l//76EsGgJYooBBKBQxCIiIiKwadMmXLt2TfX6nj17MGrUKADArl27JNeqV6+OwYMHA1AqWMBMsvz9/VGyZElJ7JWdnR0SEhIkCishIQGVKlXSzCfB09MTf/zxB2bNmiVRSIA0fkSL1FlqNx4eHkhISICTkxNcXV0RExPDY7qSk5Ml8YXe3t48BujTTz+VpEPvLlq0KACotmdROKuBCIHJZNIkj2XKlAEARTl06NABwDPBV6pUKaSmpkri17y9vRETE6P5/j///JPHlsjzv3HjRsX2QGr1D0Cx24M81un27duSvhAfHy8hdY6Ojoo4GX9/f0ncYXBwMI+De//99zFy5Eh+zdbWFgC4oqLBB7VH8duGDx+OZcuWYd26dWjfvj3S09M1SV27du00FbuXlxcAcCJA7eSbb77BgQMHcObMGfTr148rG8A8iCtYsCAMBgOKFSuG5ORkODo6csUKPCvjzp07Y/r06QCeDXLS0tJgb2+vSers7Owkg0EA+PrrryXfX6FCBdVnAbMCpLhSyhMRDxrADhs2jLd54BmpE5U2kbPChQvjzJkzuHfvHvz9/VUJJ2AubwcHB95vvb290alTJ8k9VC6lS5eGra0tPDw8EBcXh4cPH+Ktt95ClSpVAAC9evUCANXYURGPHj2S9Lm0tDS89957/LeNjY3qIFYN8voYNGiQhMiqgQbaosyUx/oB5gGTOCihdtawYUOMHz9eEcNOeafzaruriPlt3LgxAHASrEbq5LIhODgYf/31F+bPn48SJUqofh9gbhvUHrVInYeHh+aAltqDp6engnATChcujNGjR/PvqFmzJlJSUtCzZ0+ed9KTe/bsAWMMo0eP1syzHDqp+3+IgiUqKkpxvVatWhYtCIC5MYrCTguzZs3i1h9LpG7mzJmKERWROgA8wL9mzZoAIAk4FyF2iICAAPz+++9Yvnw52rdvr7hXjdQ5Oztj8eLFvIzUlHnRokUlZVi8eHEJmSSIljsKiiUlVLFiRdy6dQtVq1bF06dP0blzZ6xYsUL1m8Rg9HfffRd//vknH2kGBgZywphTnYkCysfHByaTSWGpEy1thB49eqBu3br8t8FgQJs2bSRbubVo0QLt2rWTkDq5AgOg2mFFS5+7uzsXNvL2ZTKZ8PTpU173oqVLDKwX371t2zbs27dPtf4BMxkkhSMHtb3s7GxVgurn58eVmVj269ev58+SEi5dujQA6SDKy8tLMUkBMAfwUzA8CVS54O7UqRM++OADyTnRAk+wsbFRWOoaNmyoGBSR8Hd2dkZCQoJE2dja2iIrKwuA2Vo0YMAAPH78WBJ4feLECR7MXrJkSXz33Xf8GvUNIhtUJqVKlcLmzZvxyy+/YOfOnVi9ejW+//579O/fH926dUP9+vUtkjo5RIsCtUMizbVr1wZg7quNGzdG9erVsXz5ck1lRFZPOakji6+vry9GjhyJAwcOSAZalix1lJ6IadOm8f67Y8cOzYEmYCZyRFZFZUz5AcxtisrXycmJ70MrWuqozdIzgJnEyAkyWVXondQWjUajQtHLBxRly5bFxYsXcfbsWVSqVImn5e3tbdW2UTExMQrZK3oISpUqZXFCoAh5fbi4uKBTp06qfU8ONVImh0jqKM9i3t955x3J/TTIAdQnUbi5ufE20aJFC6SmpvK2rUbqAPNkqs6dOwMAPvjgA17eBoMBY8aM4YNPEVlZWRI9J+9X9erVQ5UqVTRJHZW/2oC5TJky+O2337iMov7k6+sLZ2dnLF++XDLJCHhGYHMDndT9P0RlK29U77zzDhwdHVUVshzibMTcvldO6r788ks+U5bg5+fHBQ+N7EqX/j/2zjrOquL945+7zSZLLV3SnSrdICKlNCIhKAh+EUSlBRERlFBJRZAOpUMQkO7upWOBhQ3Y7r3z+2N/zzCnbuzeZRec9+vFi70n55wz88xnnnlm5jWLXi/RY+Ll5YWOHTvCy8sL69ev5x4tQs+Aent7Kwqd2gg7OzvD2dlZ8Swmk0nxmzwS4tqUVPBpdFahQoV4F4i6i0KNuiC3adOGt1JFMakuXL6+vvj111/5b1HUUUtU9NSFhYXx7cDzd9muXTsMHTrUYhr/+ecfbNiwQeOpmzBhAv9eAQEBmpFV//77L/bu3YupU6di4MCB3BipRR2NXv7uu++4py5nzpxcbOTNmxejRo1CsWLF+Pl0z2bNmqFKlSqaEXft2rXDvHnzcOzYMYUXgCDBS/dQU6RIEZ5XxLSKeZCeh0SdiI+PDxdcqampmDVrFrZs2YLSpUujfv36/BjxeSzx9ttva7aVKVNG1yu+ceNGhaAh702uXLkQERGh8SCQKL58+bIiTxEmk8lQIFEepWehMuXq6op3330XFStWROvWrfHBBx8oznNzc7NL1G3evJl7+mkkI1Um1HWp9qgaQQLUkqgzmUxo3LgxvL29FSLeHlEHPPfi582b1+K5Xl5evIzTdbZv3461a9fy5/Lz8+Peu7Jly/KuYj8/P+6FJ/EvirgKFSpohBn9pkqd0ubr66t5j+oGRePGjXH48GEcOnQIb775Ji8Hrq6uvIwCaZ5TPXr16qURE6KIK1euHB8Vrh7pqX6H3t7eCAsL4/mT8o9eQ1yNnvd7xIgRaNy4MS/7ep46sZtx586dCsEi3levEe3t7c3T6u3tDQ8PDy4S9URdbGwsfv/9d6xZswZLly7FiBEjFPsnTZqErVu3Krb5+PigV69ePB/peeoGDBgAk8lkNRRLrzx6eHiga9euPG/TN3/jjTcApOVfKmMHDhzA7t27NV2ztiBF3f9jVEG8+eab2LlzJwDL3YWEq6ur7rXoGmpE0aHnyi5cuDAWLVrEvTllypThwotiV8Q+eGpBiogGWJ1J1CJUT9SJgk4PuqdonF1cXPjvGTNm4OrVq5p4PRJ6np6eOHnyJJ9GISAgwGK8HHHnzh1FHBIZBkui7sCBAxgwYAD/rSfCq1evzv8OCgpCeHg4vw69Z29vb5sLnFrUff3111i/fr3h8SVKlICnpye+/PJLzJs3j6cxR44cim/5999/o2XLlnj06JHCU0f3c3d3x3fffcdbpEZdv8S9e/f4tDeigRERu19FSJg+ePCAt+TFLn49UScO0f/oo48ApH37Hj16AEjzqA0dOlQTB0rXshYOAaTlsWnTpim2lSlTxtCrLU7HQp66okWL4ubNm5rG3owZMwy9BNagPErvgr6xtUahu7s7kpKSNGLcSNTlzJmTdwuSKF6xYgX27dvH7ZQtvQuAUoCK9/v8888xa9Ys9O7dW3G8+Izu7u6G5UUvX1IFnjt3bkXeUdtWLy8vvo2uU6JECXTu3Jnf38/Pj4t4UWzkyJEDv//+O3bv3s3fOzUMnZ2dsWvXLo0wo9/qrmw/Pz+NqFOLn5o1a/LvVrVqVcU3F0XdsGHDcOnSJWzevBlAmlMhJSUFS5Ys0dxD/Hbly5dHgwYNwBjTdMOqn8Pb2xu5c+fmjVp7RJ3aW3jr1i388MMP2Lt3L58ih4QK8DyPq689depU7lSw5qlzd3fn9S/lQ0qHXs8afW+TyYRevXrplitREI8dOxZPnz5FgQIFLHrqRO+qHvR99WyT2lHRpUsX7NmzB1988YXm2AYNGqBZs2a697CGFHX/j5Go02s1WMLV1VX3gxope1Eo6s1fBAB9+/blBaJcuXJwc3ODh4cHb3nnzp2bZzK9ilg0mmphaouo0yvo/fr1w/Lly7Fw4ULelUwFs0SJEmjfvr3CG+Xp6anxzJDhefPNN1GrVi1uKAsWLMjnZwJg6O0oUKCAwtOmZzzU30KvcA8fPlzRbSrG8FCLd/Xq1YiPj+cVvY+Pj82iTvT8qSsgvYaCOi/qeeo6deqEQoUK8Xg70VPXsWNH5M2bl7eE6R7WPFtFixZV5BW9uZUoH6vjnEaOHAkgrQLKnTs3GGOKeCRroq5Lly5gjMHDwwPLly9XzAmnxh5RB2gbJdQt7eTkpImZooYG8LwsvPnmm0hISNDMfUZxUvZw6tQpnDlzRuGlAewTdXpYCzN49uwZb1jmzp0bjRo14uXEmtgnxLwrlsm8efNi6NChmm45OoaeiSpjMdjf6P6UZ3PlyqXwMqkrU7KFetehPOTr64tvv/0W+fLl0wzA8PHxUVSeNNdlvXr1EBAQoBFmFDNFDVRR1Km9YepzxbTnzp1b8e1Fu+3t7Y2KFSvyrtVixYrB2dkZJpMJ+fLlU4gAsQyIsZAAMG/ePMO0UJmgd6cn6oy6vdU2S2/+NPFc8uqr65HXX38dH3/8sWafnqgzmUz821GaqQdJjNMmjOLTRUgUenh4YNKkSTwNlmLq6BijwUaWRF2LFi0Uv11dXdG0aVObnEX2IEXd/6Ou8Mi7oTdoQkSMfQKMPXVGQeWix0Nv1C1B6SBR4e3tjWvXrvFAYTIYevEOlox2ej11v//+O3r27IkPP/xQ08U1ZcoUuLq6asSEWtTVqVMH9+/fR5cuXRTbxVYrAHTt2pVPcGsp7bZ46vQqzenTp2PixIn8t9j6pdG3NCqLnsHNzc1mUSeODKRvQemwRdSJ8UCUNnpGX19fREdH49mzZ3B3d0eOHDlQsmRJhISEaDyjtlbeRL9+/XjwLuHs7IyTJ09i2bJliu1OTk6IiIjQ/U6AsvuHBkyUKFGCV4pio8dStyXwvAKyVdSpKxMSdTVq1ODeEELMexTz+eGHH/Lnyyg1a9ZE9erV+fNRHhK7Xy1h9A2tvYucOXMaeh2MutKN7mFrPqK8rRZ1tuRLSpvaA5YrVy40atSICwlqCADackONEjc3N3z22Wd48uQJzwsffvih7kh/Ly8vLFq0iOdvdc8HiSM9Uaf2oql/i3k8Z86cCmEv2iV6H7ly5cL69esxc+ZMxXW6d+/O7033r1atmsaODhw4kHvM9Hpw6N7A8zIl5j+1HSYs5ZerV68qGuRAmp13cXHRjeGlbybWMaIjhQZDODk5YcOGDZg9ezbPV05OTihSpAjvsRKx1rsEPM/Pavtgi6fOWlyh+rwDBw7YNIuCI5Ci7v9RGwTyRIjxVHqoKx83NzeNkfLw8DD0koiizlKQ6tixYzFmzBjekqTYI2rhWRJ1ljw0apFDI91EjEYQGqF+fio8ZAjbtWuHQ4cOIVeuXLpTTojeEiBNuHz00UeaaT/U6UyvqAPSDPDRo0dx8OBBXUFB3XI0Uq1AgQI2i7oiRYrw2B21qNPDFlFH9/bx8cGxY8fwzTffWI3zsCUGTaRBgwaYO3euYpvJZOIeDjV+fn4W3y/x/vvvIykpCX5+fjzfWku7CH1fe0VdjRo18Msvv3BvC3lQR44cycs7bevSpQuPOaxYsaLN97IXR3nqbOk2U0Pl2laRZq+oI8S8Kv5PiPmSRghv2bIFEydOhMlkUryTXLlyYd++fZgzZw6ANG8c7VenS89DpBbRevTt25fbIL1YNOC5LSMbJIq6ggULonPnzho7phZ1JDwo/Xq9LBT/LCKKEao/PvjgA93YSPJWWusu1PPUqUeJXrlyBXv27FG8V7UToFy5cprBJfnz50dycrLuqGx6FtHmUprNZjMXsCaTCSVLlsTgwYMV5xcvXlyxIhAAzJ49G/Pnz9d9XhH6duq4dVs8deopfQgjT12RIkXstr/pxX5L8IqirqApQ6u7X+vUqYOmTZsaLhui56mj4e96iKKOltvSo2DBgorpJsjYkIiz1P1qyeCr00XTD1B8X/Xq1TXdJdag51d76iije3l5GS6vBmhFHVU++/fvx5kzZ9CqVSvd8/S6X9WF0lKlSaMB9aD33axZM6SmpsLJyclw+TQ91O/CUverusIRu1/VLWpKV1hYmOHUD9a6X8eOHWu4pJo6Ler0nj171qIH68iRI9iwYYPG+FP6c+fOjbCwMLtEnbrryBqUH4oXL44hQ4bwucQoX02ZMgU5c+bEyJEj4e/vj6tXr2q8yp6enjZ16dgKGf/0euqsTf1iCx999BE8PT1tjt2h923rYDCj7le1UBLzGI0Qrly5Mh8IJFb4ZOcoD5jNZr5fnVdpVgCxe9DeLme1UCJBQ5U6CS5xMEjJkiUVSzISYn4V3wG9nxMnTmgEih6iqKN8ZOTZVou6UaNG4ZNPPtHsJ7siXkftqStfvjzKly+P8+fPY9u2bQgLC8uwUKHz9eook8nEB9EZzeFXvHhxzRJxauFnibCwME0IhSVRp+ep8/f3xxdffIEHDx7w+fXU52VWo1CPDIm6+Ph4nD59Grly5dJ4URISErB27VrN6K3sirqyosKqFkk0P5glUVe6dGk+lQGQ9kFtEXXWvIIialFHLUe9FpmlPnu9dNEkmUDaOpVqkWUNdUGnDE3brVVcamNC3yBPnjxo2LCh4Xl6njq18ba1QuratStatmyJDz/8ULOPDB/dx5aYCHXFY6n71Sju0cPDQ3NvMkh58uQxFN90PaOKbNKkSYbpVn8rddqMpj4h6tSpo5mEWISElVF4gh72eupIAKhFhuiBpvfo6+uriU0CrMes2Yta1FGabBV1NF8hkZ64HFdXV/Tt29fm4x3V/err64uSJUvyQQvWrifaNPqbri3aT/V12rVrh/DwcMX5tnjqRMqXL49p06Zh1qxZePToETp37owyZcrwQSFTp05FqVKlUKJECR7jrDfPmhpRPFGaChQoYHViaEAp6qj80SAYNWpRlytXLkWd9vjxYwDPbSyFPpjNZkO7/9lnn6FPnz52lVlrzyJ2l06ePJlPZVWmTBnNoCCR4sWLW4y/tYZeL5TY/aq2MWR7KJa7Vq1a+Pfff3nepjhx9XkvyksHZKD79fr16yhfvjwaNmyIypUro3Hjxoruw8jISLsMRlajbul4eXkhMDDQ0INB6FXAS5cuxdatW7lnzdPT09CIiBn2woULNs8ITpmICiPN2aPXhWvJ4OtVIur4JnvR634GjGMY1Khb8qIRsiTK9ESdOrbCVlG3evVq9OvXD6tWrcLKlSt1jxHnPbKG2ltmz9Q3oqeOxAd55ehdDRkyRDMvndG97UH9bI4O6s2VKxe8vb3t6j5Mb/crQSNWRYOuFstqMrv71VaRIY6EftGoPfDWoOP0ul9v3brFPabWnr1SpUpYt24dgOfi5M0330S9evX4FBNi+kTUjVx7PXUmkwlffPGFYgqTCRMm8HvlypULX331FUwmE38+SyJEhI6zdxos0Y6WK1cOjDG+go8aEpgUU6e29zQ1jtiQEc/R69I1mUyGMXr2Qt9BLHejR4/GrVu3bDpfHdPuCERPnbr+oPfn5OSE48ePKwQdYNz9+lKIuq+++gqVK1dGSEgIrl27Bl9fX9SrV093JMrLABkGqjQ9PT1RtmxZwxFAVKlSn78Y9JozZ060adNGEYRqi6cOgE2rFwDPuwXIU0ddKHpeBns9dTlz5sS7776LH374weqyYnqoM7A6kNmWWLQ1a9bwv0VRZymAXk/U6cU82kO3bt34N1aTHlFnS0ydGtFTV7JkSZw7dw5DhgwB8NyjbMsoTHtjofTQ697PCLlz57ar6xV4LtRtCYYGtB7VOnXqwNvbWxNYbokX5amzJgjoG6rTY6lcOAqqqMhm/fDDD5g9e7bh8XqeOg8PD035t+U70shBEmne3t44dOgQihUrZtUTLWKviFZj6TyyybZ46gDHiDpr0CS/lDYj26vXSPDw8NBMB+Ro6NulV5zRYCZHInrqAgICFHWq+M5ff/11jQNCHaNI2PuNM0K6LcGRI0fw3XffIU+ePChVqhQ2b96M1q1bo0GDBoZr5WVn1KPwrBnxkydPIjIyEkOGDAFjTLf7RGxVGxWmnj17Kn5THIk11N2vOXPmRHx8PD744AM8ffpUsVyRJSiNn3zyCRdSU6ZMwZgxYzBixAi7B0kA2ngxMhh6QbFGdOnShcfO2TKDOaAfU6euMNITUG7tfunpftWLqVPPsq6+DxmbqlWr8utRzKctoiOjrcVDhw5plkLKKNWrV1fMC2gL9E1t7XZRf/OCBQsiOjpaEWtF4tjIA+Zoz5hRTJ01RFEXGRmJyMhIjBgxwrDh4Ugo/1DaR4wYYTF+SU/UWZpI2BI5cuSAyWTSXU7PHlFnr6dOjaXKmcqgpXhhPeydYFav8WrE1KlTERISopkXkRg7dqxhiJSHhwcGDRpkV9rSw+XLl62uOW2Eu7s7Ll26hCdPnuDp06e6c9bZi+ipc3Nzw9WrV3kPmrVvZeSpc3QPhyXSXcPFx8drMtWcOXPg5OSERo0aGXZZZVeokuzYsSPmzp1rcUFtIO2jiR9Or9DQ3+ISJ2patGiB1NRUxRxvtqDufgWeZ0Z/f3+0bdsWXbt2xZo1ayxmKLpv6dKluefCXqOkRi1Y1J46WyvjadOmwdPT06b1dAHbul8dWbgc0f0qnrt582bNgtnisXrCggK3LVWWGel+FclovtBj6NChVlfmUENeB1u/pS2VX7du3RAREcGXFVLjaE8dkRFPHXlnf/jhh0xJmxq1p84a6u7XMmXK2BxeosbFxQVbt27VjR17EZ46W7xqTk5OuH//vsW4uL/++ksz/2N6vTjq6Yb0cHFxUczlqS4zluJpHeHZtwV1PL69WFobOD3oLYdpLTyDKFq0KAIDA9O1EoSjSLeoK1euHE6dOsWn2CB++eUXMMY0azBmd+ijtW7dWrPeqj3niwWU/ra2DI/e6C5rqD11etccPXq0ohtTz+uWGS0ItZBSe+psnRerSpUqFldeUGNL96sjsUfUkSfIUveru7u7riFVB5qL9OrVC0FBQRY9aOrK9WVn+PDhcHFxUaxraglbuvdcXFx4l3Z6r2EPju5+fRFQ+bU1ZkztqRsyZIjFd2wNvSXfRGxptJBtSK+Qsnae3hRNIuL0GentfgXSJujN7PKcFXksO6BeQxiw3YauWrUKJ06cyLzE2UC6a7yOHTvyZZ3UzJ49G927d7e58GcH6KOlN81qIw0oY6Fsxdb4onz58iFPnjwWY6lEY3H16lXdSRoJR3wrdSC1kafOVlFnL7Z0v2bG/Wxh2bJl+OmnnzTdP7YIQvVIVxFPT098++23FisGmuw3I0ba1ljPF4GXlxdGjRpls2C3Z5SyEeLURraMULSGUfertXJoacb6zIbKr72eOltFy7Bhw9KVLns8dfT+7PVC2XMPe0mPqHNzc0tXfrbnnP+qqKN1ZvVEnTVPXa5cufDWW29lavqskW5P3ahRozBq1CjD/XPnztVMXJqdoQrCVoOlRk/UpcfVb6unrn///lZbrqInSW8AhaOZPn06KlSooBkKT+mgikhv+Sl7GD58OJ+DSsSWKU0ciT2eukKFCvF1DgH7DLktXayW+PDDD9G3b990C9xHjx6l+97ZAUfEUZKo++uvvzTL/WQEez11NHURLa/0Ismop84SGWlUGs1TpwfZ98yIqUsvL8KDnp73+18Vde+99x4KFy6s+NbqFWBsZcGCBXyU94tCTj78/9Akh+kVP3qudKOZzi1h61BxT09PvpSZES+6uy137tx8Rngg7VmCg4M1HruMeuqmT5+uu11P1PXo0QN37tyxGDuSXuwRdWrsEVi0FmJ6hZXJZMqQx9IRnqmsxBGijr5B6dKl7V7vVY/0DpTw8vLKsh6Q9HrqMtsO2eNFy46i7kWOjLSHrPAGZwe8vb01E3Lb6qlT89FHH+Gjjz5yWNpsQYq6/6d+/foOMZZ63a/0f8GCBfmklUbYO72DLWl5kSNvRLZv344DBw7w32QkMjJZpCXoeUUB4+7ujm+++Qbbtm3DmTNnMuV+GekGsUWo0VxSL7O3LCtxRBc8eeocVT7TG1OXlWR292tGsUWoke2xN00ZiX97kdd0JP9VT50eL1NcshR1DsKW7teHDx9avY4juwuzWtQVK1aMr5UKZH5MHbnI9Z533759ePbsmUPvl9EC/uuvv9rUlUeizhEeov8ijvTUObLRBdgfU5eViEtz2cKLEnX07myJsaS0p1fov6zdr4Q9dcF/1VOnR3o9dVlB9k/hS4KeqCPDYY9Qc6QAs+VaVEk5aoZwS9g7+tVeLA12ycgcWUZkVDQPGDDApuOkpy5jOFLUWRvJbitqe0H/Z2dRlzt3blSvXh1jx4616fj0xiHZy7x58/D666/bZMPIU2fvqPjsNlDCXtKTr6gR7uTkZPP6wK8qLyovOwIp6hyEnqijAQEvar4fNeQ+tzSgolWrVvjzzz/5CMnMJLM9dS8aS55BR5LRmLr/Oo4QdUuXLsX8+fMdNkWO2l5klTfdHlxcXOwKYXhRXVYFChTA6NGjbTqWPHXp/Y6O9NTo1RmZhXoGAlugd5SampqtGxsvAump+w8SGxsLAMifPz/fRpVxVom6HDlyIC4uzmJBNplMDl8lwIjMFnVZVTFKUZe9cURMXf369Q0XTc8Iak/dq/SNO3bsiPPnz2fqtEL2kl5R16xZM1y5cuWlEN969OzZE0+fPrVraTyRl/W5HcXLFFOX+QsG/scQV4TIalEHPF9eJztA3a9605FIjKEKSAYup4/s2LpWe2ny58+PhQsXYsaMGVmZLIcyfvx43tjNLqQ3pm7GjBkIDg52aFp+/fVXjBw58oWEvri4uGDYsGHZsiy8DEhP3X8Y0Vi0aNEC5cuXt6l1FBAQgCdPnmRm0rIcV1dX3Llzx+GLwqt50V0FmS2a165diy1btmQbcf6y4YjJhx2NXtfbhx9+mFXJyRRMJlO2a4iQgKIVXmzFxcVF0QvjCIoUKYIpU6Y49JqSzIGWWpOi7j9E7969NZVGnjx5LK7iIHLz5k0exEuBv68ixYsXz7RrZ0Wl/f7776Nnz56Zeo+SJUvavT6q5DnZ2RC/DN05rxLDhw9HiRIlULNmzaxOiuQlYunSpdi9e3e2ahgakX2t3UvGH3/8kaHzxVF1AwcOzGBqJC+KZcuWZXUSJFbIjqKOPHXZKd7sv4Crq2u648ok/13y5MmDbt26ZXUybELG1EleOf7rI7UkSrJj61rmUYlEkhlka1F3+vRpNGjQAI0aNUKXLl34FCFr1qxBnTp10LRpUwQFBWVxKiXZhexYeUuyDzJ/SCTWWblyJX777besToYknWRrUVeoUCHs3LkT+/fvR6lSpbBx40YkJydjxowZ2L9/PyZNmpQpa3pKJBJJZiI9dZLsSvfu3dG/f/+sToYknWRrUZc/f34+esrV1RUuLi64ceMGKlasCDc3N9SrVw8XL17UPTcxMRFRUVGKf5JXG1pGy8/PL4tTIpFYRoo6iUSSGWRrUUfcv38fu3fvxjvvvIOIiAjFGphGi8NPmTIFfn5+/F+RIkVeVHIlWUS7du2wZs2alyagVfJiyJ8/P1xcXDBo0KCsTgrnyJEj+P7777M6GRKJ5BXDxLJBk/Hx48e6qxps3rwZLi4uaNu2LX777TeUKVMGV69exQ8//IBFixYBAOrUqYOjR49qzk1MTOST/wJAVFQUihQpgsjISLkwukQikUgkkleObDHWP3/+/Dh06JBme2pqKjp06IDx48ejTJkyAIBSpUrhypUrSEpKwsmTJ1GlShXda7q7u2fpSg4SiUQikUgkL5JsIeqMWLt2LY4cOYLo6GhMmjQJgwYNQteuXfHZZ5+hUaNG8PDwwNKlS226lo+PDyIjI1+ptRUlEolEIpFIiGzR/SqRSCQSiUQiyRgvxUAJiUQikUgkEollpKiTSCQSiUQieQWQok4ikUgkEonkFUCKOolEIpFIJJJXACnqJBKJRCKRSF4BpKiTSCQSiUQieQWQok4ikUgkEonkFUCKOolEIpFIJJJXACnqJBKJRCKRSF4BpKiTSCQSiUQieQWQok4ikUgkEonkFUCKOolEIpFIJJJXACnqJBKJRCKRSF4BpKiTSCQSiUQieQWQok4ikUgkEonkFeA/I+oYY4iKigJjLKuTIpFIJBKJROJw/jOiLjo6Gn5+foiOjs7qpEgkEolEIpE4nP+MqJNIJJLswurVq9GiRYusTsZ/jpSUFGzcuDGrkyGRZBpS1EkkEskLpk+fPti9e3dWJ+M/x8yZM9GxY0ecOXMmq5MikWQKUtRlQ8LCwpCYmJjVyXgpuXr1alYnQZLNYIzhu+++Q1hYWFYnhWMymbI6Cf9JKA/IMByJPTDGkJqamtXJsAkp6rIhefPmRYcOHbI6GS8dBw4cQIUKFbBjx46sTookG3H//n2MGTMGw4cPz+qkcKSoyxrovcsBcxJ7mD59OlxcXLI6GTYhRV02RQoT+7l79y4A4M6dO1mbEEm2girwpKSkLE7Jc5ycpOnNCqSok6SHtWvXAgDMZnMWp8Q60rJkE/bs2SMDeB2E9IJI9MhOFTmJupehkniVkO/dOmaz+aXpanxRkO1ITk7O4pRYR4o6BxEYGIhbt26l+/zmzZujY8eODkxR9iM1NRUmkwnz58/PlOtnp0pbIrEEiYuXoZJ4lZCizjqVKlVCgQIFsjoZ2ZKUlJSsToJVpKhzEOXLl0epUqWyOhnZGhr8sXr16ixOieS/BFXg2Un0kzc5O3UJ/xeQ3a/WuXr1KkJDQ7M6GdkKyi9S1EkkAiTqMjue6FXrfp05c+Yr90wvkuxoiKWoyxqkqJNkhOxoS9RIUSd5YWS2qMsKQ/3TTz/h0qVLmXqPRYsWAXg5DEp2hN5bdqrI1d2vNO2K9JBkLiTq7I0ZS0pK4gOxHEVISAhmzJjh0GtKMo7ZbEZkZKRim/TUOZDTp0+jQYMGaNSoEbp06YLk5GSsWbMGderUQdOmTREUFJTVSVSQ0ZZ3VlQ8GYkFtIeEhAQAr5an7rPPPkOjRo0y9R4eHh4AgJiYmEy9z6uKIwzxqlWrUKxYMQekJg21p+7Ro0cYM2YMhg4d6rB7SLSkN5ZxyJAhKFGihEPTMnDgQHz++ed4+vSpQ6+rx927d+Hs7Iz79+9n+r1edqZMmYKcOXMqhL8cKOFAChUqhJ07d2L//v0oVaoUNm7ciBkzZmD//v2YNGkSJk2alNVJVPDo0SP+9+PHj5EnTx67WngvOoD32LFjKFWqFLZt25bp93pR3a8vmsxuveXIkQMAEBUVlan3eVVxhKfuq6++cmiFqBZ1VO5fBk/Ay0x6Rd3hw4cBOLbRTfbwRdj8HTt2wGw2Y8+ePZl+r5edXbt2AXjuhACkp86h5M+fH56engAAV1dXXL9+HRUrVoSbmxvq1auHixcvZnEKlTx+/Jj/feDAAYSHh2P9+vU2n/+iM829e/cAANeuXXP4te/fv48VK1bw369i9+uLgDx1WTUL/u+//46jR49myb0dgSNEnaNb6nrdr+L2V4GQkBCsXLkyq5OhgMR0er+jI+1zVoyAlrG51qHvEh8fr9knRZ0DuX//Pnbv3o369evD19eXbzeKjUhMTERUVJTiX2ZCs02Ly3uRGI2Li7P5OnoZKTPJzMDh1q1b4/333+e/X5Soe1GGi1rYmX2/rPbU9e/fH3Xr1s2SezsCRxhi+tb2lGVLUBkgTx2lMbtXuk+fPrXZVnTv3h09e/bMVo2tjIo6Rw5seZGDZdLzDV4GAZMZUF0uRV0mEhUVhV69emHx4sXIly+fonJzdnbWPWfKlCnw8/Pj/4oUKWLTvUaOHIkKFSrYnUYqoKKoc3d3B/C8Ijhy5AgePHhg8TqvUhdbeHi44ndmi7oX3XX9okYuZrWn7mXHFk9damoqFi1aZJiHHC3q1BU6/W9N1CUlJaFZs2aZ4lm3RkxMDHLnzo2ffvrJpuNp0Ed2msg2vUIqMwQY2cH0rPNtMpkwYcIEh6VFD0fl9ZcN0hSiqJPdrw4kNTUVPXv2xPjx41GmTBmUKlUKV65cQVJSEg4fPowqVaronjdq1ChERkbyf7YOqJg6dWq6FoXXK/TUGqTCUa9ePdSoUcPidRwt6nbu3GmxcGamp44qQvo/s0UdFTi9gjdw4ECHe0FsrYgzSkZF3f79+xEQEPBSBPnaQnJyMpYvX25znrXFEK9ZswYffvgh/vrrL939me2pszUv3bt3D//++y8mT57skHTYA+W//fv323Q8vTNbhNCjR4/S/W7v3LmDoUOH2pQfKE3pLQvpEWBGZETUAWlhEfZij62KjY21+/ovmg0bNsDNzQ1Hjhxx2DUtibqXwYZme1G3du1aHDlyBJMmTULjxo2xfv16PuJw7NixGDt2rO557u7u8PX1VfyzBfqg9mZotZEGnhdW0VhZm7LAkaIuMjISb731FoYNG2Z4jCMFyb59+2AymXhhUBt1R4m6+Ph43YqaCpy478qVKzCZTFiwYEGG7qmHIw28Jcjjm968MXXqVISEhLwyXuBffvkFvXr1sjnOzxZPHb0bI2FBedlRFZ26G9BWUUddQ1nhMaC02rqwuT0VYaFChfD222+nK12DBw/Gzz//jGfPnlk9lt7by9z9mp6wj/Q02imvX79+XRErnp24cOECkpOT8eeffzrsmrL7NZPp3r07wsPDsW/fPuzbtw9du3ZFt27dcPToUezdu9fmblVbuHPnDgoWLAjg+QACW9ETdTR6xp4WqCMrXhIdDx8+RL58+dC/f3+HXVsPEk5PnjwB8NyQUDocJeo8PT11KwAy1KLBplFrmYGju19///13tG7dWrOd3mN6PXV0/quyNBJNAWFr/Kktos7aQAV6dzNmzMCWLVtsTqsR6e1+1cvjLwp630YhL2rs9YpZ8gAyxvDNN9/oziRgj3jMTqIuvZ66jPQQ2OupS0hIQNmyZR0+nYujoGmexFknMorsfn1F2LBhA0qWLImQkBAAsHuiSb2YOj1PnZpnz57h+++/579trbhjY2MRGBjIf5vNZnTu3FkxGpgMl5OTE0JDQ3Xd9ZRZM7P7Nb2eut9++w0mk0nXANOwcxG97tfMDNK2xxhHRERg8+bNFo/p378/duzYodlOz59Rwf9fXb3AHlFnVOlRXl6yZAnatWuX4TQZdb9aKxuU5xxVudhTGZIds9VTZ0/3qzU2bNiAr7/+Gh988IHhMbaIfHpv2SGmLr3XpDxgi0C7cuUKRo4caWjnb968iStXruieGxsbywdpidN7ZCfIJgYHBzvsmiTq6JlXrFjB62Up6l4iLl++DOB5gUmvu1nPU2epMh45ciRGjRrFf9tacffo0QPly5fnv589e4a//voLJ06cQMGCBTFgwACbCr9ehRcTE5Oh2CG6pjqWzl5Rt27dOgDQzO5thF73a2Z6p+wxxv369UP79u3TZRToufQmHw4JCUHTpk0tTmBK3/ZVEXX2jnK2JVDfWpeWoxsH6uksbPW+OFLUbd++HYUKFcK5c+dsOj6jnrqFCxemq4v13LlzeO+99xTX0sMW4WGLp+7WrVuaa1kSYOktV+n11NlzfOfOnTF16lSef9VloXTp0qhYsaLuuVkVUxcbG2t1QCFB9aUjPXVi92twcDDef/997uSxt9ylpqa+cLubaaLu6tWrWLx4MfcmBQYGYtCgQejXrx/+/fffzLqtw7A3Q+u1AKnwxcTEGGYGdQGNiIiw6X4nT54E8Nw40UhTyogLFy60SdRResVKy8fHB6VKlbIpHXqQQTQSdbGxsVa9VsHBwTz41ZZYGUC/a0pdGdtaOTdr1gxLly7VbI+NjcXEiRORkpJiV4uZJq4Vv3fDhg1tmvSZnkfPmF++fBl79+61GF+WEVFnTRQHBwfj9u3bdl/XEdgq2O3x1BldM7NEHX0T+sYvUtSRV//OnTs2HZ9RT92AAQPw999/a46z9m7FRp2lb26Lp45EjSVRV6pUKXz00Uf897p167hNe/bsGQYPHszrh+XLl8Pd3d1mGyWiF7JjC5QWe7pSKd/Y0+1sJB6Tk5MNGwJ79+61eSCNES1btrQ5rEoUdY4qo2L3q7qcie+vXbt22Lt3r2L/tGnTFN+lS5cuPCb6RZEpom7Hjh2oVq0aRowYgerVq2PHjh1o2LAhbt68ifv376NVq1bZTtipM0RMTAzc3NzQuXNnm85Xt7iB54UiPj7eZve1rVMVuLq6AnguAknUifch740lz5ieqAMy5s5Wz5Su7n7dunUr2rdvb9EQNmrUiLu8bV1GxxZPna2V4b///ovevXtrtv/888+YMGEC9uzZY5cxpsqE3gFjDAcPHsSQIUM0x6q/Bd1HLw+RUbNl/dn0DOywVgkULFgQr732mt3XJU6ePKmYoNoW1LGa1rDlm9MxRuXU0dNyGMXU2dP9GhUVhaSkJKxbty5dFZq9MVn2euqMYt3U381aORLLsJ6oo/vY0/1qlK9pPzWSbt++jU6dOuHGjRsA0rrf586di9WrVwMAD5eg+ftMJhPWrFljNR2AfsiOLdjTmCTIlhq9a71eAKNQoDFjxqB69eq6jo+pU6diypQpNqdLD3tGskZFRcHNzQ3x8fHpijk+duyYpn4RJx9W2w4xxGfLli04ffq0Yv/ChQsBPM+n9iw84CgyRdR98803+OKLLxAeHo7FixejR48eGDBgAHbt2oXdu3fjyy+/VMSRZUdiYmKQnJxsOMWBiNlsVnilIiIisH37dsVACVsLrq1dIdRapgxJok4USvXr1wdgXPjnz5/Pl425efOmbjxXerDmqSMsdXGTEQWeP9Py5cvRqlUrw3P0YurUlUBGR6ySt8JkMtllXNWiTjSu6gpZnUaqgCyJOgof0CMjnjqx8vv3338d7rF6/fXXFRNU24OtDSVbPHUkCPSuyRjLtJHO9g6UEEWdn58f3N3d0alTJ2zYsMHue9s7nZHaU/f1119btONGAyUobpmw9m71RF1SUhIGDx6M8PDwdIk6o7JAQoUqdrXYofP1RD7df9asWVbTId7DkaIuJSUFu3fv5r/pGLITSUlJiu9N31LP227UmCYPr54QjIuLQ1hYmE3P4QiioqK4V+/kyZM2NW5F6tSpg7Zt2yq2UX7Vc8bQ9ydnino/5c8XvYiASKaIusuXL6NPnz4A0tyP0dHRPCYCSBvReuHChcy4dbrR89TZiigikpKS0K9fP7Rp0wZff/01AMueOrFgurm54fz587rHpaamKrpJqDCS4CFRpxeLYFRRDBo0iLcq9UZerl692q7YOnXL02j0K0GjZK1BxqVXr174559/DI/T89SpW1rWDGhQUJDFSo6u5+zsnC5PHeUDqjzu3r2rETVqgyAaGTXUNWXJmGUkYF08p1mzZli7dq3d18gs7BV1W7duRY4cOZCamop58+YpxAblcyPh7OgAabXgyWhMna1hG3rYKurUnrpvvvlGEQ9M19q6dSsYY4b5Tt2Ys/Ydxe9E1zx06BDmzp2LGTNmaNJnCXpvM2fO1F3Ll7w99IzqtKvjhUUbR+da6p5+8OABv296u18tibqpU6eiRYsWuHnzpmI7iboRI0YovMEBAQEAoDuPq3ryeILuq+cZc6SoU+fLo0ePolevXoptUVFRfMaK5s2bo3LlynbfRz1QhL6HFHVGN3BygoeHB3LmzMm3+fj42Bz8nlXYIuri4+Px4MEDhdFJSkrSxKjYKurKlCljWMAXLlyIkiVL8qlWqPtV7anTE3XprZC6d++OsmXL2t0Va9T9qn4Htoq6jMTUqQuXJVEXGBiIokWLKtarVBsW0RuYke5XsetCvT6m+j3Z4qk7e/Ysqlevrntve7srRdTP6MhRZuk1/hnpfk1ISMD27dvxySef4JdffuHbSdTpGWOjfPr3339rWvm2ovYY2Svq1N6vjHS/2hqbSO/I0vE7duxA27ZtsXr1aoVwFb+B+n3q5evvvvuOp0/8JuoJzUUsVaT379/Hli1bFB42vXhWsvsk6tT1AL13ug6994SEBF4WLYm6IkWKoFixYopncORACRKM6q5RowF4FO9FAk3MR0aeOrX3TyQ9om7ChAm6jVL19+zduzeWL1+u+PZRUVEoVKiQJn22zEtK14mKisLkyZM18ZaWRB3VSer9dA1bRd2QIUPw888/A0gT5I6YNzZTRF3x4sUVLYWjR4+iaNGi/HdQUBAKFCiQGbd2GOouAjXffvstPD09UaRIEY2oUxscW0Vd7ty5De9HmYim8iBR16ZNGyQlJVkUdXriw9ZK4MGDB3ZP4WBr96utou7UqVM2ZXa97le1p9GSQSQvqThVTK5cuRTT29C14+Pj7TLGoqfu1q1bOHTokOYYo4WkbRF1QFrXvaX4w4x66iwRFxenGzoQGBiIfv366TYsRO+AuD8+Pt6ikLcUY6iH+t5U4dFgI7onXTM8PFxR+RvZgt69e2Pr1q02pYHYsmULtm3bxtOk7o631gATB19lFHun1KB3ZOl4mlz96dOnClEnVvTqcq9Xjn799VcAac8plgd1xWsymSx2v1I+atu2Ldq1a6ew1bly5dIcT++VyqLaG0XOCHXeE0Xd4cOHeZyXJfTisEUYY5g9ezZu376NTZs28WesV68eAMsNAPVobqN4MxKg9Nxi/jOyJUbvBkizA7GxsTaLGsYYJk6cqDs/Z2xsLC5evAiTyYTAwEBe51FaGWO6og6ATXGNYj01duxYHstni6eO8tWhQ4cUDV0jT51RQ2jHjh04fvw4APDl9zIa4pIpom7QoEEKo1ipUiVF6+Xvv/9G06ZNM+PW6UYdI/Hw4UOLx48bN47/rR4cof4o8fHxhplcLJh6RoagDH3s2DEAypZ6UFCQ3aLOnoBwtSvfGuru1xYtWuDjjz+26Kl7+PChYZqMBtWoC4pe96stnrrhw4fjjz/+QLdu3QCAz80EpLnZxclm6dpxcXF2TQIqeupKlSqFHj16aI7R80wA+iKGuo/EmBIAOHjwoOa6joqpA6CIFRUZNmwYqlevrhHR5cuXx+LFi3WFkdgNJ4qUyZMno02bNoZpovunV9RR2RbjECndcXFxyJMnDy/f165d42n39vbWva49c3i1a9cO77zzjmaaGvUoWCMo/6pXprHkPUtKSlIIWMKeWDTg+TuylI8on7u4uCjyndj4UIsFvfdHnrKHDx8q8pToXQHSyoyRd2T79u3IlSsXAgMD+T5x6gt614wxBAcHIzQ01KqoIzur3h4XF4cxY8bw6yYnJ1udFsvSqHYgzT5++umneO2119ChQwc8e/ZMIY4t2R31u1B71RhjqF69Oq5fvw7geT4U8196RR1g3HWrRhxVrKZVq1bYt28fgLSGPdWBorBOSUnh3a8ibm5uVu+tfkdqO0mTL4vQ+6H0Hj9+HAULFuR50Gg5QS8vL0ybNk1zv0ePHvFGJmmkjM4JmCmibuDAgRaN8uTJk/kokeyC+kUazZNz8+ZNjXuZ4hKAtAyhJ4xs6W7W89RR5qFCSX35YoG6d+8eL0R6MXB6RtgoPXoFWe/Y27dvIzY2FklJSRqjpPbUAWktb3XXnSjqChcujH79+ummySit+/bt44LzzJkz3PNjb/frzJkz0bdvX/5bbZDEaRhEUZdeT50RZCwtdb+GhobCZDJh+PDh6N69O6KiolCyZEkwxuDh4aG7Eoo93ZVxcXEaz7PIrl27MH78eM151H1iFBOqVwGIlZ5Y6Tx48IBXNnpkVNRRxX7p0iUwxnDv3j0+fQ2V++3bt+Pvv/9GuXLlsG7dOjg7O2umWaDrpmdSaPW59nrq7BlssGzZMrz++usa77C9Hk9bPHWUz52dnRWeOvEdRUREoGTJkmjZsqXh/UnUPXjwQFfUkR00m82Gg1woT164cIH3DImzC0RHR2PevHlwcnJCwYIFUaBAAauijt672iadPHkSO3fuVGxT2xHRHk6dOpWPjBRDMkSbqL5HYGCgovGjJ+qorFvrfk1KSlJ41uk5bRF1lrx/9C3EOvL69eswmUzcIyVCzyOml9792bNnFYNz1KKOnknPU+fm5gY/Pz906NBB9xkA43g4egdhYWG6HllAK0LJphg1MBISEjB9+nTFtsjISMTHx2tEXUYnmZeTD/8/6o9ntEZr6dKlUa1aNcPr6HW/AsZxYZa6Xx89eoRcuXJhxYoV/EPT/9HR0Zg4cSKAtDgKSy0ja912InrxEHru4Ndeew1FihRB7dq1UaNGDQDQdCmpUQuOBw8e4Msvv+RxILSkl3oYuJGoa9asGTp27AgAqFmzJh9EYclTZ0sFpq4w//77b2zcuBHAcyMUHx+foZg6PciY1apVS9GqE0WdWCmFhoYiKiqKr2ucM2dOiwHztqTXy8sL7777Lv+tZ7j1vG4kwk6dOsW3id/BmqgT90dFRSE8PNwwvfQN0zulCXnqSNCRhxZ4PgrQycmJv+tTp04hb9688PHx4ceZzWaFMLt37x5u3bplU3rENKlFna2eOjWW5tWkMrB8+XIAwIkTJzBs2DDFlEu2YMlTRxP20r7U1FRFTC09p5eXFyIjI3Hnzh0eSiKWydTUVKSkpCg8dXoxdWLFTvvVz0HlIjw8HPnz5wegbKzHxMTwqUno3pQPz5w5g08++URjJ6nypu1kG/UEkLoOEaf6GDlyJP87KSkJSUlJ8Pb2RuXKlbF06VIsWLCAe6mIq1ev6nrctm3bpjvQb+LEiYaeRXX3vT2eOrpXjx490KBBA8V2yiNiPUINPb1eBD27IA7koPfk7OzMRY9a1IlOFcLd3R1RUVG821oPdX6hMkR5WE/UDRw4EI8ePdLYWTrX0kCJwoULY8CAAfwdUV6ic0m0SlHnIMSPRy8X0G8NWeqaVQ8ZJ0jUqeehEo/NkyePYh8VjE2bNvHMHxUVBcYYoqOjkTdvXgQEBCg8dXqIBZjuZySUjMSs0TNduHABV65cUcSYJSQk6B6vFnU7d+7EDz/8gGHDhgFIW9N13rx5do2w1PsW9nS/qn/nz59f8Q5oDjYSj/QdDh06xNfSFe83ZswYTZ75+eefeTotiUrxvK+++or/LYo6sSVPcTxUefn7++s2HtTdCjExMbh27RqCg4Px7rvv4vz58zh69CgXnhQntnLlSrzxxhua61H5EL8x5VWaimbv3r2Goo3ElNF+yptGMZeWph/RQy3qxIr93Llzitg+UdTR+wgPD0dAQICi+1Wcw2rhwoUoXrw4SpUqZVh+jNJEzyrG8agHWi1fvpynOT2iju5BNmLIkCGYNWsWv8+ECRMsThVEGIk6CikYNGgQ5s+fz9Oj56krWrSoxvaIz1SzZk3kzZuXH2PU/WqLqKN3cv/+fYXdbdOmDQoXLozo6Gh4enoqzhFt5bx58wxj0dQVr97oUXVeGDt2rO61EhMTuW0MDQ1F7969MXDgQAwcOFBx3LVr1xTvzmQyYdu2bXjnnXc0U2+dP38eEyZM4L0j6udQ5xe9mDq1LVmyZAkeP36sOPfQoUOoUKEC+vbtq3Bo2OIciI2N1Z3jUm8exPj4eENPnZ+fn+Z40ZZ+8803GhF29epVzUTY6lAIPVEHpDVg1e+GzjXqfgXSGgoLFy7E1q1bce3aNXzxxRcAoPHU0bf67bffUKxYMR5yZStS1P0/4scTPWaiwLMWwOjm5qYwwCKUCdQVvmjQxMEkwPMuhidPnvAMHBkZyadYyJUrF0qUKIHbt29bFHVigU5MTMTVq1f5iBs1RpWSOPxfr3v54MGD/Fk2btyoO+9RSEgIbzGLkEckMDAQn3zyCdasWYM333zT8HlEYmNjNd9Fb6oKolGjRorj1RVM/vz5FZ6oVq1aYfTo0QCUwdBr167ViKVly5bhu+++06SBprbRu5+IWPGIlY0o6sTvEB8fj/DwcB6LKXrqLl++zOeTEr2ECQkJ6N69O8qVK4e5c+diw4YNqFatGurWrasYEHLhwgXD+bYWLlyI7du363psnjx5gtu3b6Np06YYMWIE3y5WljNmzEDx4sVx5coVlCxZEkDaAIKAgAAkJiYq1nP85ptvsHr1anTr1o17yhzR/UrlumPHjnj48CF69eqFsmXLKiprOi88PBz58uWDl5cX3yeKuqlTp/Ltts6mr17Pl97l9u3bUbJkSZw6dQq3b99GUlISevXqhe7duwNI+4Yk4kUsiTqyPU+fPsWoUaOQN29eAOCe7bi4OItTBamvo264UnzoH3/8wfPchg0buKdHFHVFihTRVIjidzx//jwiIiJ4GQwJCbHY/RoZGWk4cpnK2u3btxX7XFxc4OPjg5iYGMU3BbQeLCNRJ3b/AraJOqJ48eKK3zSBtDWCg4MV+ZMxxusaSieVdXWoi1qEqn/b0v3ap08fVKlSRZPXrl69ij/++ENxTVHU0XdQ1xuiV1/crzcBd0xMDC+zoaGh+OGHH3j69MqD6ED4+uuvMXToUMX+SZMm4X//+5/mHsDzdxAaGqprYyIjIw1Fndg4Mwql8PDwQPv27bF9+3YA2vkf6T3+9ddfuH//PurUqaPwKFtDirr/Ryz0ZPSAtI/0xx9/4Ntvv1WMitRDDLAkaEUKPU/d5cuXeZcIAD7UnaDunIcPH3KjERUVxSv2okWLonz58rhy5YpFUScWtvj4eDRu3FhxXxGj4ehi/IW61VOmTBksW7aMi7p9+/Zh0qRJutcpXbo0ACiWTtFbUJqOM2LSpEno168fkpKSNGlOSUkBYwwJCQm6bvAHDx7g3r17uH79usa4+fr6KoxxxYoV8dZbbwFIqxz0XOP03OJi448ePUKbNm3w3nvvKQJ59WLeCDFv+Pv787+Tk5Ph7OysK+pCQkJ49wN56mJjY1GpUiVUr14dN2/e5PnxypUryJEjB/fEqQ2WmL+rVq2qG1xPDBgwQFdIPHnyhBtb8fyoqChutKkb5sqVKyhTpgyAtCksQkJC+OAPIC2m5uuvv0b37t2xZs0axMTE4ObNm7qrp4g8e/ZMITr0ul/9/PwU77tRo0aKOa5Onz6tCKrPly+fYk42vcYEoJzEdcmSJfjjjz/w8OFDbsAJtahTd7vWrl0br732mqLcA2l5Te3Rp3vpvY+kpCReee7btw/ff/89T4vaE5qUlIQtW7bg7NmzmusAz8v9P//8o5hJX2/WfDF+j7pf3d3dkS9fPkUZCAwM5N2wIqKX1Fr3qxgSoZfeoKAghTB0cXGBt7c3oqOjNaEyYtn38vIyFHUkmsjm6815J14rLi4OHh4emDlzpqaxdPHiRc18f3qEhIQoGoXJycn8uT788ENs2LCB/1Z7e43iSomYmBg8e/aMT0avdw49k9HIazEOVrTJ9LdYR129elUjVNRzBIoMHjyYe/ZnzZqFL7/8kq9Eoyfq1Csz7dy5E3/88QfP23pTqIirbuTIkQNhYWG69ceOHTs0ou7SpUuoUaMGv4YYK6cmNTVV8Q6Nul/F+GS119YSUtT9P6JBLFy4sGJf3759MW7cOLRv397u65LLXc9T98477yiOzZcvn+I3DRy4desWd8FS/A6QJgIrVKiA06dPIyEhQSEEREQhEhcXZ3G6Fr3WZe7cuTFy5EjexarO0B07dsT+/fsV73Dt2rW6AaxUcYpud73K0Zqo6969Ox/cIK4+AaR5CXr27IkcOXLoxphdvHgRxYsX13hmgLQ5FMX3U758eb4O7o0bNxQt4GnTpqFSpUowm82abrGgoCBs374d69evV3h+9Vr0QNo7EEWG2KWQlJQEHx8fJCQkKLxpsbGxCAkJ4fmGPHUHDhwAkGY8SpcuzQ2ZehCDegoSOs8WaOoCkZYtW+LJkyf8/YmGvXfv3jxWjyrCR48eab7zvXv3+DfRM2SlS5fGiRMnAOh3RT59+hS5cuXCwoUL8fjxY/Tr10+TzqSkJHh6eioqdD8/P81ACNGbHRAQgDp16vB3JMZEiZBXyGw2o0+fPujbty+6dOmCNm3aaCpDPz8/TferGhoIFBYWhsDAQEydOhV37tzhU34Q4eHh+OGHHwCkVegk2Lp27cq9h9bmo6tfvz7atWuHhg0b6u4Xy72tnnTguafO19cXfn5+itH05cuXN+w1CAgIQHh4uEKQJScnY8uWLVwIhoaG8nRRWd+/fz8+//xz/vvBgweaaVF8fHwQHR2taQyLHktvb2/DAXN3797FoUOHeKyt3nFiWfXy8kJCQgJy5sypsfPqpaaMCAkJUdgr0asNpE0sTEJJTyiLqLvbY2JiUKxYMcWAMSPU+bhmzZoAlEIpLCwMM2bMwNWrV7kdCA0NxZUrVxAbG4sKFSrwrnri4sWLePz4seFSedT4p/dK31dP1Kl7RJ48eYK+ffuiRo0aiI2N1V2OU/S2FSxYEImJibrzcs6fP1+zdvmnn36qaAzFx8cbemqNusJFT929e/cUjS5xRgZrSFH3/4iCxGgxYbV4MIK6IypVqsQ/Bn0gsfWjNihiIDah7q6NiYnBnTt34Orqivz586NixYpcFOmJKDVGRorQy8QjRoxAYGAgihUrhqJFi3IjOnToUGzevBlFihTB48ePFe8wPj4ejRo1UlzH39+fixpxwWw9rIk6d3d37qHSmx5k1apVAPSXzxLFuXplEx8fH0UFW65cOeTPnx/58uXD5MmTFS3cXr16YeXKlXBxcVHMbA8oxVtERARq164NQNtCJtRxiL6+vjh16hT279+P5ORk+Pr6IiEhQTcPUiVBnjqjkaNqY6IeDWnPUlPqluiff/6Jpk2b4smTJzyvR0VFwcfHBz4+PkhNTcW2bdsQGhqqeL9FihRRNEbu3r1rc6CwnmeKvFJ///03vv/+eyxevFg3JkUdS+Xn58fz0cSJE/H6668r9tM7pjy3evVq3fK2YMECeHp6Ktb0pQqGxCiRK1cuTferGsqrjx49Qvny5QGkNQAGDBjA57UiwsPDcfLkSZQsWRIlSpRAamoqFx22QJ5V9dxwQFp5EsWHuiuN4kv1+OijjzBmzBgu6mztNq9YsSJu3LihaGRFRESgXbt2fBsJCS8vL+7JadasGWbMmIFly5YBSCuLhw4d4j0hz549g7e3N2JiYhAeHo5evXrx0c/iM3p5eemWt969eyM2NhZvv/22Ynu9evXw6aefAkiLj96xYwcOHTqkmBTc399fE9hP4kS95Jp6EF1ISIhihG1SUpLCXuuFvNiCn58foqKiFPZBXT5E1FO1VKpUCU5OTrzr3cfHBzt27MDnn3+OL774gou6Bw8eoGLFirrrXQNAw4YNUaBAAavln97X/fv34ebmBnd3d1y7do1/b2usWbNGt7yNGzcOT58+RXJyMh/89+OPP+peQ+/8Tp06cbF3/fp1wzpM/Xzk9Ren61mwYAF8fX3h4eEB4D8i6kaMGIEGDRqgZ8+e6Zp/S40lT529rFixgrfkqHBQl5fZbEZMTAx27NihqWT1RF2BAgU0RvDChQsoXLgwnJycFHF4FKth5LEDni9UrYaWqhJH8FWtWhXffvstHxYeGhqKkJAQzJs3D0Da3GRt27ZFgQIFkJycrBEsLVq0UPwuVKgQPvvsM7Rq1Qr/+9//cPjwYezZsweLFi3ixpCoVauWJo1ioLqHhwf/Tpa6NPXc56KwVrdMRWF1+vRpFChQACaTCWXKlNF0RwYEBKBy5cpo0aIFH7lLiGkKDQ1F27Zt4ePjYyjqIiIiFJ6n5ORk1K5dG40bN0ZycjJ8fHyQmJiImzdvombNmnwZPkoHkOapu3DhAj777DNuDETUHlp1vrpx44YiBMDDw8MwLyUmJmLnzp0wmUy4c+cOOnXqhICAADx79owbdyCtS5q6FVJTU7Fp0yZFec2fP78izvLWrVs2L0138OBBnDlzBhcuXECvXr3w4Ycf8gEtYveo3oALPVFXq1Yt7N27F6NGjdI0OkjUFS9enFe2gwcPVhwjTp9AZQR4nm/Voxnz5s3LBz7pxVo6OTlZHOGrfoarV6+icePGANLyvdH0Mpb4888/AaQFdYvoNZxEypYtq9nWtWtXhTDx9fU19MLoQaJOb+UHQGnnqlatisePH+Ovv/7SjfkFnoe3PH36VOGpU88bSQ0wZ2dnhbetR48eePjwIf/uavtduHBhntdGjhyJyMhING3aVOER1/PUEQMGDFD8XrZsGfea1qhRAw8fPtSIOiN7Yg+5c+fWjNy2tCpGQkICqlSpwn/7+/ujUqVK/DsVLVqUX8/JyYn/TV27e/futZomtSdaj5s3b3IvXZkyZXiPCmGU1z788EPDa/78889ISkpC9erVDafYMuKDDz5A27ZtkSdPHk0jXyQ6OlqRR1NTU3H37l1ev9y5cwc7duzAu+++iyZNmgCwc1Uo9hJy5swZ1rNnT8YYY99++y1bsWKF1XMiIyMZABYZGanZt3XrVgaA/1u8eLHit6V/DRs2ZAUKFGAA2KBBg1jv3r0V146NjWWurq42XctsNmu2+fr6MsYY+/vvv9lvv/3Gt3fs2JExxlh4eDjf9tlnnzEArFSpUrrXL1myJAPAnJ2d2QcffMAWLlzIADB3d3cWHR2tOAYA++qrrxhjjEVEROhej97l0aNHNftWrVrFEhMTmaenJ982ZMgQw+8zdepUftzGjRsZY0xzzRIlSrA8efIwACwqKooxxti+ffv4/hUrVvC/W7Rowf8uUqQI/7t06dIWv8Hvv//O/05JSeHp27Fjh+ZY4rPPPtNct3fv3orf8+bN05xfs2ZN1q1bNwaAX//XX39lw4cPVxzn5ubG3nzzTf5727ZtjDHGChcuzACwW7duMcaY4h4FCxa0Kc9R3qV/lCcAsNy5cyveXY0aNRTH5s6dm3344Yf8PVy9elVz/YMHD/K/8+XLx0qWLKm45z///MPKlSvHADAXFxdWtGhRm9LdpEkT/vcbb7zB/y5TpgwDwPLkycM+/vhjBoCZTCaWM2dOxfkNGjRQ/A4MDFTkx7i4OEVe2LNnD99H23bt2sW/e4UKFVhERATz8PDQpJXKgLe3t2L7kCFD+PfVe8bZs2frbm/atCljjLHly5dbfEcFCxZk7u7uuvu8vLwUv8uUKcPKlSvHEhISmIuLC5szZw5jjLFp06axL7/80ur3WLduHQPAKleuzNq3b88A8Pcvpvvw4cOsZcuW7OLFi1avOXHiRM22ypUr878bN27M/x40aBBzcnLSHF+7dm3+d69evRgAVqhQIfbZZ5+xfPnyMZPJxJYuXcoYY8zZ2ZkBYDExMaxZs2aaax07dowxxlhISIhuekeOHMnq1KnDALB79+7pHnP+/HnDb6e2eVu3bmVVqlRhABTfwMPDg/3yyy/M3d3d0Nbb869Lly6G+/Tys5ubG7t//z6rVasWA8CWL1/Ovv/+e75fbfsAsHr16vG/6TvR+Xr/fv75ZxYUFMRiYmIU20U7CKTVCcS5c+cYAFa1alUGgOXNm5cf5+/vr7BtRv/eeust5ubmxmbPns3mz5+ve4yvr6/u9jt37jDGmK4Ny5cvH//bqEyq/82bN49FRESwjz76iAFgY8aMYYmJiYZ1KLdPVo/IhsyZM4ctWbKEMcbYqVOn2ODBgzXHJCQksMjISP4vKCiIAfqi7tq1a2zw4MGsTZs2DAC7f/++7ktesGAB++WXX9iSJUv4tg4dOrC2bdsyAOz69eu66aXMpq5YLBXqDh06KLYzxtjdu3f5trFjxzLGmEIIHjp0iAHglX3z5s0Vld9vv/3GihcvzmbOnKk4t1KlSiwlJUWTngkTJvDjRHFG/8xmsyZdbdq0YadOneJpJqNUt25dFhoaavhNSZC8/fbbiu/8448/8mu3atWKlS9fngHgmTs0NJTvv3v3Lvvf//7H6tSpw5KSkvj2HTt2sP79+7Np06axx48f8+0kAIy+gZq3336bAWBr165VVPJz587VXIfSKaZB/L1lyxYWFxenEfJLlixh48eP11zv888/53/fv3+fMcbYxo0bmclkYvHx8YwxxlJSUtjRo0fZvHnzeF6w9o8aAvQvOjqaHTt2jAFgnTp14oILAFuzZo2mgaLO81988YVif2JiIv977969mvtfvnyZFS9enAFgc+bM0U2jWgwBacKW8rl6+86dOxmgrJCqVavGTp48yWbOnMkApSAAwIKDg3Xz5cKFC9kXX3zB87qYP5KSklhoaCj79ddf+T6xUWTtX3BwMPvkk08M9x8/fpydPXuWG3V1vvzrr78YALZ69WrdRgcA1r9/f/bkyRO2aNEiBoB/P7J1AFjXrl2Z2Wzmz1i5cmXm4+PDfvrpJ8O0VahQgQFg69evZ6dOneL21cvLi/Xo0YMB0IjBv/76S/Fur1+/zs6fP89GjBjBzp49y8aNG6f4XoMGDdLc96233uJ/Dx06lP+tVwaBNBtFAm3EiBE8X9DxTk5OLCQkhDGWVg+cPHmSMcbYpEmT+LF//PEHq1WrFn8/ZrOZ5ciRQ3Ov+fPn82c2m82KskP/7t27xxhLq5/U+xhLc1K0bNmSAWC7d+/mAmHDhg38uNjYWP49xX/Tp09nTZs2NSxvS5cuZZMmTWJLlixh+/fv52Vg6dKlGpFP/z744APNtnr16vFvGBgYyMxmM4uNjWUfffQRmz59Ort+/ToDnjeg33vvPfbvv/8qrlG8eHFmNptZ586dde87cuRITXmj7WL9S84dxhg7ceIEA8A++eQT9vHHH3M7IJYZyqfiv127dil+u7q6suDgYHbkyBHdtJG9Uv8jJ0D9+vUZADZ+/Hh2/vx5BqSJz8jISFa2bFl+/D///MOWLVumuEbHjh3531SPimWbHB6WeClF3eTJk9mGDRsYY4zduHGDde/eXXPM119/rfvi9UQdkZyczJKTkxljaRmpfv36/G8xY6xatYpv69ChA7t06RKrWbMmi4uLM7z2kSNHeEuBPG6jRo3i1/njjz8YY4y98847/F7bt29nW7ZsUVwnIiKCtW7dmrcKxPSZzWYWEBDAli1bxh4+fMhCQ0N5y0btiSBCQ0PZs2fPFNehf9OmTePHvfbaa6xgwYLMbDazJ0+esHXr1vF9ooF68OCB4vrUIiXhYcSePXsYkOZVE4mPj2dLly5l8fHxLD4+nu3cuZNVrFhRt5J9+vSp4lzarhYeefPmZY0aNWKMpRVysdXMGGPvvvuu4nsTjx8/ZtOnT1fcm7HnxsTSP1HcqK/dp08fvn3RokVs2rRpPG8BaRWoKEZtxVJ6evfuzVxdXdn+/fs16UpKSmITJkxgz549457Ezz//XPEMEyZMYGvWrNHckzw2ffv25ftnzpzJFi9ezBhj3NMq5tmaNWsyALoG99y5c+zTTz/VbL916xYLDAzUbH/69CmLiorSbK9ZsyZjjLGTJ0/qvo/Y2Fib3+uuXbsMjWtgYCAXBGRDjL4BMXLkSMV28ig9evSIMZbm7T99+rTmvKSkJO49Yoyxw4cPc2/1H3/8wS5fvswrGhIF5EWjxlKOHDk0zzBjxgyr+ZmE5sWLFxljzxuIpUuX5uLpu+++48cbiWYROn758uUsOjqaHThwQHNfsQEpeqapt6VatWp8Oz0bVe6iCNy9ezf/PnrQO5g+fbrufn9/f03adu7cyVJSUrg9DQ4OZvfv32crV67kx1APA2Np5VP0+hBUL+zevZvvF/M0Y4w9e/bMMD89evSI23XaN3DgQM0zTJ8+nQFpjbUPPviAeyqB5960Z8+esQcPHijuM2rUKKvf8sKFCyw2NpYdOXKEJScns7CwMMU1vvnmG8ZYWp1LvUQAWHJyMhs+fLgiv4je2R9//JExxlinTp24HSASEhJY586dWVBQkOIdq23m+fPnFXmLsTTHBOVbshVms5lNmjSJLVy4kCUnJzMgrQeoRIkSFsszCdUTJ07w88qXL88YY6xhw4a8jDOmrTtE7zaVXdHJRI4WS7yUom7u3LncU3fy5MkMe+r0OHXqFBcJX3/9NXvrrbf4PmohA1C00q2RmprKbty4wcxmM1uyZAl3LQcEBPBjEhMTDT1+RuhlXII8B9HR0VavQ91+ZLB27tzJ97Vo0YJ169bN8NwVK1YohJ69mM1m1qZNG/bbb7/ZfS515yUlJSm2z549m3Xp0kXjsk5OTlZ0rTKWJjboGycmJnJvmK1MnjyZfwexy6dv375s69atjDHGBZL6W5nNZnblyhUGgO3fv5/98MMPDAD75ZdfGJDWlc1YmkAWv4k1RGNRsWJFxe9Lly4xxtKEAXlEChUqpLlGTEwMO3DgAP9NgsOIpKQkNmfOHJaQkKC7v2fPngxI81SeOHGCMZZmUJcvX67wWl66dImXLb2urISEBJaamspGjRrFvdHNmzfn99m4cSNbtmwZmzBhAgPAqlSpwve9/fbb7LvvvlN0E6mFekah665Zs4YBz7tcNm3axH7//Xc2evRofqzay3TmzBlN/mSMsVKlSime0R7+/PNPBqSJPX9/f7Z+/Xq2efNmhVddJC4uTvPOO3fuzDZv3sw++ugj9uzZMzZ27FhFOk+cOMGCgoK4sBTFrS2Q0BQbC2azmR0/fpx7yRlj3Nu6detW5uHhwaZNm8aio6PZmDFj2MOHDxljjLVu3ZrbI+op6du3L08P1Qdiw1WEwkH0Gi6MPf++t27dYjNmzGBVq1blHj89UlNT2c2bNzXXqFatmq4o69ixI4uLi2NLlixhr7/+uuKexIMHD9j8+fNZQECA4TsuVaqUxjFAkLA5e/Ysu337tiLcQF0u/P39Wf78+dnHH3/Mrly5Yviclrhx4wY7evQoe/vttzWNKEv5JCkpiSUkJLDg4GDudImKirKpLu/YsSNr37697r6uXbuyVq1a8d/UMGjSpInu8XFxcVykAdrwAOLOnTusd+/evD4C0rqTGWPcQz5mzBjGWFr+3rt3Lw9H6NSpE/P09FQ0NkS72LJlS6vP/FKKOnVM3cqVK62eYymmzl6io6NZu3btWFBQUIYrg+3btytaG+mhTp06rFatWob7bDWqjDF27Ngx9vDhQ95NQDx58kTjCcsu3L5929A4vyiCgoKYm5sbGz9+PIuIiODeWLWht2S8qIIcPXo0A9K6BfQqd1sRDU5wcDDvCgCUntPk5GRWrVo1RZeyESkpKRY90taIi4uzWCkYvZ+nT58yANzDqiYhIYEbfJGIiAj23nvvsblz52r2paamsoSEBIuVcXp566232Pjx4xljac/cunVrBqR5HtWIXWtAWkyXo0lOTmZLlixhqampLCoqyia7ValSJUW6bM2LJKLIA9m4cWObziNRsX79es2+lJQU3jiLj49nP/74I0tJSbHpOcjT8f7777NNmzaxCxcuMMYYW7ZsmWF9QGnfvXu37n4KCciI/d+3bx97/Pgx++KLL9i4ceOsHj9v3jzeoyPy7Nkz9vjx43SlQfQcMpbmLV20aBFvBBKxsbF2ebPtxR7xn1lcvnzZJuFEscXEhg0bDPOJGvLEkcgjqBE1atQoFhsbq3FElC1blr3zzjs22d6XUtQxxtjnn3/O6tevz3r06GFT8KAjRd3LREhICDt06FBWJ+M/iV6X8/Hjx3UrdhGKLaKg6vSi1+LODsbTEkbpM5vNrF+/fuzq1atZkKqM079/fwaAd82JpKSksDlz5nCPaXbh6dOn7Pjx4+z27dt2NejMZjObM2cOe/bsGYuKirLJPjOWJjznz5/PUlNT05tkw/RMmjSJd2fbAjXKjBrc586dY8uXL3dUErMdT58+Zbdv335h9/vuu+/s6oXIDEhYUWiXEZGRkRbjwy1x9uxZw8bC9evXNb1N6cHEmJW1r14RoqKi+GSfepMVSiTZhdjYWKxevRr9+vXTXXvYVurXr4/Dhw9jw4YNfLqNw4cP4/bt2+jVq5eDUutYnjx5ArPZjAIFCmR1UhxKdHQ09u7di3bt2hkewxhDSkqKYmlCSdbAGMONGzf4iicSiaOIiYlRTM/laKSok0heURITEw3XCpVIJBLJq4fxDIMSieSlxt3dXbHGrkQikUhebV7aFSUkEolEIpFIJM/5z3S/MsYQHR0NHx+fDMUpSSQSiUQikWRH/jOiTiKRSCQSieRVRna/SiQSiUQikbwCSFEnkUgkEolE8gogRZ1EIpFIJBLJK4AUdRKJRCKRSCSvAFLUSSQSiUQikbwCSFEnkUgkEolE8gogRZ1EIpFIJBLJK4AUdRKJRCKRSCSvAFLUSSQSiUQikbwCSFEnkUgkEolE8gogRZ1EIpFIJBLJK4AUdRKJRCKRSCSvAFLUSSQSiUQikbwCSFEnkUgkEolE8grwnxF1jDFERUWBMZbVSZFIJBKJRCJxOP8ZURcdHQ0/Pz9ER0dndVIkEolEIpFIHM5/RtRJJBKJRPIq89dff+HSpUtZnQxJFmJi/5H+yKioKPj5UsuA2AAAyoZJREFU+SEyMhK+vr5ZnRyJRCKRSByKyWQCABlm9B9GeuokEolEIpFIXgGkqJNIJBKJ5CUiISEBFy9ezOpkSLIhUtRJJBKJRPISMWTIEFSpUkXRzSq7XCVANhV1p0+fRoMGDdCoUSN06dIFycnJfN++fftQpEgRNG7cGM2aNcvCVEokGWPv3r14+vRpVifjP8fgwYMxceLErE6GRKBq1aqYPn16VifjpeHs2bMAgNTUVL5NrCf1ePDgQaamSZI9yJairlChQti5cyf279+PUqVKYePGjYr9Xbt2xb59+7Bnz56sSeALIjQ0NKuTYBcnT55EiRIlkJiYmNVJSRcpKSkYPnw4wsPDX8j9mjZtiq5du76Qe0meM3fuXEyYMMFw/8WLFxEfH5/p6TCbzQgLC8v0+7wMXLhwASNGjMjqZLw0kJgThVxcXJzh8bt370aRIkVw7NixTE/bq0RSUhLy5s2L/fv3Z3VSbCZbirr8+fPD09MTAODq6goXFxfF/nXr1qFBgwb46aefsiJ5L4R///0X+fLlw+nTpy0el9ku94SEBFy+fNniMRs3bsS4cePw448/4u7duwgJCcnUNGUWZ86cwcyZM1+IFycpKQkAcPfu3Uy/l8R2GGOoUqUKBg0alOn3+vbbb5E3b16kpKRk+r2yM69qt+HTp09hMplw5swZh1+bRJ2Ydyw1RI4fPw4AePLkidVrh4SE4PHjxxlMYfZi+vTpfGSwPURGRiIsLAzffPNNJqQqc8iWoo64f/8+du/ejXfeeYdvq1WrFq5du4Y9e/Zgx44dhqInMTERUVFRin+2EhwcDLPZnOH02wJjTNcjR0Lq2rVrhucuWrQITk5OSEhI4Nt27NgBX19fhVs+I3z00UeoVKmSxWM6duyIb7/9lt/Tycl6toqLi+PCJrvg5uYGAC/E00iTYDs7O2f6vV4UV65cwZtvvvnSemoBICYmBgBeSBD6P//8A8ByZfxf4FV9/qtXrwIAli9fnuFrJScn46+//uIC2F5PHYV52DKdV0BAAAoUKJCR5GY75syZA8C2vBYbG4t9+/YBeC6aHz16lGlpczTZVtRFRUWhV69eWLx4MVxdXfl2b29vuLm5wc3NDe3atcP58+d1z58yZQr8/Pz4vyJFith034SEBJQuXRqbN29WbF+wYAFee+219D+QitOnT2PhwoVYtGgR8uXLh7Nnz+LOnTt8PwkjS+Jy5cqVAJSF+ZtvvkF0dDRiY2Mdkk5qZdriTSBDoyco586di/Hjx/PfXl5eaNy4sUPSmBFMJhMWL14M4Pk7fxGihBoZL7uoO3bsGLZv3w4AmDx5Mo4fP4779+9ncar0mThxotWJWSMjIwFAYXMyCyrblirj/wIRERFZnYRMxREN7Hnz5qFz5868+9SaqFPXGyTqstornJqaquuZDQ0NxbBhwzB79uxMSWNAQAAA2GSbBg4ciCZNmiAlJYU7HqSoyyCpqano2bMnxo8fjzJlyij2iR63gwcPolSpUrrXGDVqFCIjI/m/oKAgm+79+PFjxMbGaroQR4wYgdu3b1vtKrh27ZpNXr5atWphwIABOHXqFACgRo0aKFmyJN9vi6ijVocoQshAOkqY0POK3kAjqDDqBewOHjwYkyZNUmw7evSoA1KYfsgw/vLLLwCev7MX4UHMSk/dli1b0LZt2wxfZ/Xq1ahTpw7atGkD4LmXKzvCGMOECRPQvn17i8eRqFOHfGQGUtSlQe/8VYPKg7X6QD1YijGGmzdvKraRTSVRQrYrf/78vEtVzEfqRj3FCWe1F93FxQVjx47VbP/tt98wa9YsfPrpp9i7d6/D75s/f34AtoW7UO9YYmIirwuioqKy/N3ZSrYUdWvXrsWRI0cwadIkNG7cGGvWrMHHH3/M973++uuoW7cuChUqhIYNG+pew93dHb6+vop/tkCxBGoR4+7uDgAWu3EjIiJQrlw5TJ482aZ7AWkeKz2o/98WUSemlUSdLSLMHmzJ0CTSLI3CslVcZyapqamIioriXQwkXEVRt337dphMpkzrGrJH1P3444+aeJCNGzeme+Rsnz59sHXr1gzHMomjFTds2MA9zfTOrl+/ju+//z5D93AU9G2teU2seeqSkpJw5MgRh6SJynbJkiXx8OFDh1zT0aSkpODKlSs2H88Yw59//mlX+Ioo6jIzvo4xZlcYjh6pqalYtGgRz0dmsxk3btzQPZaey9K7WL9+PXLnzo3bt2/zbStWrEDp0qV59y0A5MyZE8DzwXNiPiYRIoo69RrnZCvsbbAyxmwW3cHBwZqG3aFDh2AymRS26tdff9Wc6+fnZ/Ha4eHhivdhD0ePHsXff/8NwDZRR/VXYmKiot7z8PBQ5M+UlJRsOaI4W4q67t27Izw8HPv27cO+ffvQtWtXLFiwAADQv39/nDhxAkeOHMEPP/zg8HuTqFNX5h4eHgCAatWqGRZSKlT2tDTUou7PP//Ejh07eMvKXlH37NkzTfpv3LiBzz77zNBgTpw4ET169LCYTiORKBpJSrOe4ShatCiAtLgrvXTEx8c7dIRRVFSUYQXu4+ODfPnyaWIZqQAnJiZyw2NJOJnN5nRXQvZ0v86fPx/Ac2OTmpqKjh074oMPPkjXvWkQktpYd+jQAX///TdOnz5tGNYgInZJvPvuuzwOLS4uDhMnTkTZsmUxatSodKXR0VAlZ62xI3rqYmJiFMcvWbIE7u7uqFevHo+HM7oGhUZYQizb9+7ds3q8rVjKk2azGSaTCb///rvFawwcOBBlypTBl19+iYoVKxq+t/j4eJhMJh6usmXLFnTp0gVr1qyxOb1iPsyo6Hr06JHhwC4KybG3O/Tq1au8PGzatAkffvghVq1aBSCtbJYpU0bx/YKCgjBs2DDewLbUyF23bh0ApQij6UrEUfhkm6jMiXmHvo0o6tTvkcRWYmIiHj58iMTERH4fS8yePRs5c+a0yQtfqFAh5MuXT7Ht559/BgBFo0XPM031ll7aAaBZs2aoUKGC1TToUbduXf7+goODNfujo6MxcOBALFu2DMDz75U/f36NV1FM+//+9z8UKVLEsLxdvHiRD1B5kWRLUZeVWPPU3b17F87OzrpTEdAHt2cqEqpgiS5duqB169Y8M1mKL9ATdfS3uG3AgAH46aefNK03YsKECdxIqRG7X81msyY9eqJHz4hRd9Zbb72Fbdu28e3U+hoxYgQaN25smEZbYIzhr7/+gtlshp+fH0aOHKl7THx8vK7nURR1ZPiNYhOTkpLg7OyMhQsXWk2X2WzWGDJ6Tlu6+ciAk7Gj/9Pr9aQ8px4Jt2nTJvTu3Ru1atVCtWrVFPvOnDmDUaNG8TyXmppqOEIuMDBQMWWIOs8UKlQoUxpkRiQmJuL1118HYPw9CaqIXV1d4ePjg8qVKyM4OBjTpk1Dnz59+HGBgYHc46umT58+6Nmzp8WKkDGmaPw4MoYvT548vEtcDT3/H3/8odkXEhKC6dOngzGGBQsW4MaNG7yhZVQuydZRw8OoUWwJMabO0nn79++3+v3KlStnOLBr7dq1hvdISEjQtQlRUVGoUKGCpjyQh4ZEFnkzW7RogdKlS2PWrFnc+2bJ03Xr1i0AaeVp5cqViIyM1G0U03OTeBSF6fr168EYsyjqyI5fv34dhQsXRtu2bVGrVi1N2tQChRovcXFxVuPRyLaKdomeLy4ujqdZT9SFh4ejdOnSmrQ/efIEz5494+83owMYqRt1yJAhXDQfOnQICxYswIwZMwA8r7+Sk5OxadMmxfliOaCGm5For1KlCt58803N9qNHj3KnwaxZs/DXX3/ZlPbNmzdrYv31kKJOhZGoI08doRdwTZnVkXNPiXFzmzZtUmRqPVFH6G2zFpB84sQJtGrVCkFBQZrWbEJCApo2bcq7AQg9I6vO5Bs3blR0L3z66af8b2p9UQyJXktKj8jISPTp0wdBQUH82hs3bkTnzp258d6yZYvmPD13ORkyMqZJSUkaIaWGCveGDRuspnXo0KHcI3v//n2YTCbegrNlpLCRqDObzcibN69hBW4EiToxbtRo5HJISAgWL16M7t274/vvv8fJkycBpFXmRgZWHPADKLvuGWN49OiRpgVcuXJlmEwmfP755zY/x+zZszF48GBs3LgRGzduNKx0rl+/zrtdrHkcqJKj7u6bN2+iYMGC+OqrrxTHhYeH47PPPuPdRhcuXMCZM2eQmprK851RrNyBAwdQoEABxQjblJQU7N69Gxs2bLA47YTZbMbo0aMtThv09OlTHj6wdetWxT5LjYlPPvkEI0aMUNgJOt5I1JGHhZ6V/lc3Vjdt2qTb7QYoRU+BAgVw6dIlrF27VmFHk5OT0bhxY3zyySd82+jRo1G9enX+OzY2VpPOoKAgXuap3OiJuly5cul6gtTln/IFvSMK4bh58yb/hpTfSTSIXig1JHrCwsLQs2dPfPLJJ9wO9enTBx06dODPJl5TbCgtWLAA69atsyjqqHzPmzePp9dsNmuOE6+xZcsWnvYLFy6gWLFiWLt2LVauXMnTrYfo1KByFxUVZdFjGR4ejoCAAHh6eirSlD9/fhQvXpwPdLBnuqw///wThw8fVmyLjIzEuXPnMGfOHIwfPx5bt27ldTk1rCylU7QflG/tDdGpW7cuDycbNmwYOnfubNN5CxYs4IP6LCFFnQoSdVeuXMGwYcOwe/duHD582CaPSnpEnbV4BcowS5YsQYcOHfDdd99p9iUkJGhaWKKoUxsiIw4ePIh//vkHRYsW1QxQSUhI0G0p2yLqOnbsqPitF9dA3ZC2zo/0/fffY8mSJShatCgflUznkuHTE0xGYnzTpk2KmDoygkaijgo3pXvixIkwmUxo2rSp5tidO3fy9JEoWrp0KQBtrOLdu3cRHh6OY8eOITAwEMBz0Ul5hdKUmpqKsLAwPvrUVnLkyAFA6amjvKt+Zx9++CH69evH8w49t6XRYGpRJ+ZFegZfX1/Mnj0bs2bNAvD8u1Br2RY+/fRTzJ07Fx07dkTHjh1Rv359xf5Hjx5h4MCBds0FSOmzNnghLCwMS5YsAZCW36tWrYqaNWti9uzZhh6JhIQE/Pbbb2jUqJFGuAUFBaFFixZ499130aVLFwBp3/fUqVOa+KkpU6ZgzJgxuulSl/F169bh3LlzCA8PR2xsLMqWLQvgeb41m81cnOt1UVNeMxJ15KlXizoxBvTevXuYPn06pk2bpnsNtdD+8ssv0bVrV8U8pHTM9evXceDAAQBp3annzp3jx4izE5jNZjx+/BhFixblMx/Qs8TFxWHXrl0Kb2V8fLyi4UmI5TMhIYF/c3rPJMCuXLmiqdxJgIiibvjw4WjXrh3/TXUFPV9YWBi/5q1bt7iniOws3VfdoIqOjlbUO2q7Rc9B+Y7uR9/r77//RvPmzRX5p127dlwUUY9KYGAgevbsqWvniMjISDx8+BC7du3i+ePx48fc7ugRHh6OXLlywcfHR5P2qKgoPtDhyJEjNg/I6tKli8YmREVF8WeeO3cu2rZtiy+//BLA83dqSdTplQOy044ib9686Natm2Z7XFycprGkhxR1KkgYbN68GbNmzUKLFi1Qv359jXjR+7hUqO0Zkm1NaFEGpFGyly5dwurVqzF69Gh+v5s3b8LJyQm7d+9WpOXy5ctYtGgRn3PH2r1EA3b79m1cvnxZd/Sr2FqyJOpiYmJsjjmjSsbIU6duoZE4IsRJjy3Nl6cXu3Tjxg106NCBtz4vXrzI38WAAQM0o3aB50aRxD51N+7duxdJSUmKmLTy5csDSIuVIYNNBlg9DUGJEiWQJ08e1KlTh59H75DiBEVRlx7oXYeEhCAlJQWTJk3irWtRbKxYsYJ7OahiskXUqUWUmHeofPn6+uLTTz/FsGHDNOVlxYoVit9btmyxySP69OlTxMbG8rT27t0bCxYssBj/9u+//6JRo0b8N4k6S54IIK0SovInVqaioI2NjUVqaioaNmwINzc3NG3aFB999JHu9cQuqxs3bmD8+PFwcXFB7dq1MW7cOJQuXRoTJ07k+cfIS6qe1/LJkyeoXr06evfujcuXL2saI5988gkCAgIQHR3NrylWmqKoGzJkCGrWrKl5D4BW1G3atAnr1q1DWFgYihcvjoMHD+L27duK/H7w4EFs27ZNI34pqP3Ro0eIjY3F6NGj+Tc9duwYGjVqpIg3I1ss5t2IiAjFXGurVq3ix8XHx6Nly5bo27ev7jsUEW3i4MGDuciie5H9CwkJMRR1ou2aOXMmtmzZgtDQUIVtpPfMGNPtBlaLOnXZ9/T0xNmzZ1GjRg3F9Qh1z43a/ly8eBF79uwxXE2HuuEp31hadSciIgL16tVDy5Yt+bbr168bHk/Xy507N3x9fXXrVvLUvffee2jdujWGDRtm0/dTExUVZZh2ese2eOrEb/Tmm2/i7t27GDRokNWBE2K8vfobPnjwgK8yoxeTKkVdOjHyFD158gRDhw7lv8nItG3bFtu3bwdjLF3xYNaE1q5du3iLnY7v3r07pkyZwitD6roU+///+OMPVKpUCR9++KEmzUaoW0C3bt1SiLpcuXIBeD4x8q1bt3QrP+q+9PHxwZQpUyzekyCjoyfqLl68iICAAIVHSh3LV6JECS6syKCZTCYsWLBAEbNgqdBRYY+JieFC+Pbt24r59QhLo1dHjhyJatWqcYNJrcwFCxZo8pdYoRl5eKmyPXjwIFxcXHja1EYhJSVFN57z2rVrirxJ3/nIkSPYunUrxo8fzwOaRbHw/vvvc0+IKNSB9Hvq6Ptaiid7//33Fb/btWuHd999F4wxMMYMjW7ZsmXx5ZdfIleuXAgMDOSjsU+cOGGY1qFDh+LAgQOaSUatxSuGhYXxc9TdhERcXBweP36MgwcPIjk52eIUPmLXcXBwsKIhsWvXLty8eRMTJkzg9sJogI063SSQgoKCFL0NdP6aNWsQFhaGw4cP828vNtRIqERHR2POnDk4c+YMAgMDMWjQIKSmpvJyGBMTgxMnTvDYp1WrVqFTp06KkcKMMcUIxoYNG+Kdd94x9IquXbsW3t7emDJliqaSE0WLOr8B2rjmHj168DxnzQsbGhrKy5ZYeS9atIj/ffz4cUWs7LNnzzTCicr6w4cP+fUofOXEiROKMtm/f38AaeVPr/eGvkloaCg6deqksX+JiYk4deoU6tSpgxw5ciAqKgrPnj0znJKKtsfFxeHHH3/k4QV67xJ4PqCD0qEejS/ajcjISE3j2Vrv1cOHD5EvXz74+vrq9o6Io2MPHTqEWbNmcU/r4MGDuf2yRmRkJMLDw3Ub/LaIumHDhuHHH3/UjMQ9efIk5s+fz9+T0Shj0cNJXeF0zyJFiqBu3bqK41evXs3L/AsVda/KMi+WRqvExMSgcOHC/HdERATCwsKwdetW9O7dG71799adAyspKQkNGjQwnBbAmqg7duwYFixYwFs6lgq8KNpWr16tOe79999HYmIiGGN49uyZJkBTLepEgdW8eXOeoW7evIlHjx6hVKlSGDBggOY+ycnJPJ16Adl6kBEW7/ns2TOsXLmSj5wSv42lliK1jE0mEwYOHKiIWbAk6iwZnh07dih+W4pNIi8dGTYyqJs2bVJ4sZycnBQVjNG0FmQwyTtJ31ZdOY0dOxb58uXD06dPsWfPHl4uy5UrB19fX/Ts2VOR9g0bNvCKx1bvsiVRRxWv+h3riTpLU3jUqVNHd/vVq1cxb948uLm56VbMJUuW5JXS3r17+eAmS6KOjDs9l62DT8TvKHpiIiMjuYcoLi7O5qlKLN2XGnQuLi68jDs5OWHv3r08HdeuXQNjzHAgwYULFxSxl5RvKdYzJiaG5zMxTo0QBcjChQsxf/58TJgwQdH9+sYbb2g8qmoxoTcyNS4uTnegiGiP1M8l2kFbRJ2I2qMm5qWLFy8iX758fOCH0VROwcHBOHXqlELUqa8bFBSEvHnzIjU1lb9ves6wsDBFA49EH2NMYdt8fHyQmJjIbd/Tp0+5cBCJiYnB7du3UbZsWfj6+uLYsWPIlSsXPvjgA4wcOdJw9HJcXJxiGTNrniZR1MXHxyM+Ph6rV69WlAG9Os1SnOidO3fw4MED1K1bl4s6dbyfkdAKDAzE3LlzMXToUKtOC+C5p44cFHrPpmcLSYydPn0au3bt0swOQOWcbI1Yl5jNZly7dg3FihVTnCPGllM5Euu4uLg4dO/encffxcbGvjhR5+7unu45ZIwYMWIEGjRogJ49eypUb0pKCvr06YMGDRooPGeOoEqVKhb3ixX4o0ePkDdvXgBpH5CGQxNkIO/du4dDhw4ZztcVGRmJypUrc3HUqlUr/O9//1Mcc+fOHcTGxqJgwYK6BYYMmLXWUExMDAoWLIh69eqhW7du6Ny5M8aNG8f3qz2Naq8ZFfg7d+5wb5EeycnJPJMaVWqtWrVS/KZCLxqHTp06oWfPnvy9T5s2DeXKldMYPjV0Db3WmCWj9eTJE3h7e3NXv0jr1q0BpBl9FxcXXpHoiTr1uq6iQb18+TJ8fHzQsGFD9O3bl1cKmzdvxtdff62bLjqfnpniz9Rd0mTsBw4ciObNm2PXrl2KynDlypWYPn06bt26hcqVKytEh62jymJiYnD+/Hnd9XEpFgwAKlasqEn/jRs3uHgxagi6ublp9lEr/dKlS3wqjkOHDimOoZFz9D0ePHhgcboY2kd55OrVq4iIiNAVV3pTx4geanGesqCgIBQsWBCAUtSJE4vrYYuYzJkzJ6+4KH6zRIkSCA4ORrly5TBr1iyLo0NFEUHPT0IkNjbWYh4QbQNVLN9++y2v3CyJBpHLly9rhFJsbCz8/f0V2/r06aPoqt6zZ49iv1ghPnnyBF988YVivyVRR2UZ0IooilUMDQ3F/fv3DRsYQJp31ZKoS01NVXRXm81m/n3CwsJ0B3KpPXU5cuTAxIkTLS4XCaTZhuTkZPj6+sLHx4fPZrB8+XJMnTrVMA7tn3/+UdhEa6JOfFeFChWCj48PunfvrlgrWe1FfO211zSNwNKlS3PRRmW5YcOG8PX1xdWrV7FgwQKFd85I1FGICqCsa4waqeSpy507t8YhERsbi/Pnz+vmZfFbhYaGarqTqbeMRJ1Y1uLj47Fy5UqLo4f16m4q648fP0a+fPlw584dx4u64cOH6/5LTU3F999/z39nlLNnz/JuiwoVKig8Slu2bEHhwoVx8OBBxMXFOWwiUKMKlXBzc1MYGSM3NUEZgyoos9mMwMBATYaPiIiAl5cXevfuDSAt1kjtgiWDWqlSJYWoc3Nzg5OTk27shhFPnz7F0aNHudfn22+/5fvUI+UePXqkW/nevn3b4r1EUWfU1VGiRAn+d3x8vGKQg9lsRv/+/fHvv/8CUE7Tcu3aNVy4cAGxsbGGgbdk0O0VdSEhIXB3d4ePj4/u/idPnuD3339HamoqL7wuLi48cJugZydRFx8fz+dvunjxIlq2bIn9+/fjrbfeQlxcHA4cOID27dvrGvmEhAT+zdV5Tux+PXnyJN9PsZVjx47VxKeNGDECABSjcenZbSE6OlqzuLWesBW7DxMSEvDkyROUKVNGd5oZkTx58igq/T59+vBK7t69e7wioO4qomDBgkhKSuL57cGDB4aj0r766iukpqYiNTWVdyPVrVsXn376qW7+yJs3ryJeVY04+ObmzZsaT52rq6uuqBM9Z7YsX5QjRw7NaFPg+Tq1+/fv1y1vRnF8K1as4HnVmqgTux7F1Q7U3mg16sbXtGnTNJO4BgUFaURdyZIlFdPi0PJYhCjqjx8/jh9//BFAmj1zc3OzGB4gCtSePXsqGq9iGVSXHb3riL0keu+gVq1a/O+QkBDFtFdUFkXMZrMifcnJyTbNCED209vb2+aJ9oG0ic0PHjzIf1sTdfReTSYTnj17xm2QKKLVMcj+/v6a73Hz5k3eexUWFgZvb2/kzJkTefLkwblz5zRTHlnqEiXE92QkYslTlzt3br70GpGYmIhq1arpdp16eHhwQRUaGopnz54hT548fD817G7evIk1a9YoxPzHH39s0QlB11RD1zxw4ADf73BRN2vWLOzduxdnz55V/KNYibNnzypGI6WXo0eP8iDLt956SyHcLO0TSUxMRFRUlOKfEcnJyYqKSj0nEQC88847ihdqzQirpxthjKF9+/YYO3YsH20DpIk6d3d3fm03NzeNp4im6KhYsaJCFObOnRteXl5c5avVvp6LmdBzVavPDw4O1hV1169ftyrqrLnCRcND4qdkyZIIDw9HRESEYnJU9ZJWf/75J4Dn3hk1YvermrCwMEU3usiTJ0/g7u5uuMrH9OnT+Yg8KqSpqamKQHvg+Wgo0VNH9wwJCeEji9u1a4fcuXMrzg8ICEC/fv34b3GwiqWuvNdff50bWHr3J0+e5K57goQuVRzU4rTUPSISExOjGRn9888/a/KJmPcuXLjA4wqtoRZ1NNoQAM6dO8dFRFBQkGIUYe7cuZGUlMQr2aCgIIXAGTx4MIC0rkyaxyw5OVkh/Pft24f4+Hi++Dfh5eXFu3KJnj17Yv369cifP7+iS/HRo0dc1IWHh+PTTz9Frly5NFMBAUoxHBISgrJlyyq8SMTs2bPRvXt3PHv2TNF6J8hb9vTpU42oS0pKwty5c/nUGERCQoIidlHsftVDtLOiqCMRkJycDC8vL80IV7GyognIAWVM3K1btzSiLk+ePLwnxBqi4PTx8UGRIkV0RzwXKlRIs23VqlVcEIrMnDnT4gTSOXLkQHR0NH/fUVFRukKibNmyqFy5MgCld5fqSdHjCEATm52UlKTbcyBSvnx5Xn7tFXVqrIk6I8++pXkW/fz8dD3RNNo4JiaG21yyr+oGrC2ibseOHThz5gwSExMNRV1MTAxCQ0Ph7+8PZ2dnniesedKdnJx4Yz8kJATPnj1TDMQRvfXqqXtWrFjBHVNDhgzRvb7eAD49jeFwUTd58mRERkZi3Lhx2Lt3L//n7OyMP/74A3v37uXelYwQERHBM6afn59CyFjaJ0Kzh9M/Gtaux+nTpwEAxYoVQ3R0NG9diR+NMt2lS5dQs2ZNqzPAU8uEKhnGGB4+fIhly5YpWiEk6tzc3ACkiTrxvsDzSrpChQqKVoS7uzvi4uK4p0D9LkRjYMskuWrIpS/SrFkznD17FjNnzjQ8LykpyeoSVqI3jIzd66+/rjuHmRpq4RmJOjJw6oEEZrMZz5490zXuQFpF6e7uzivbtm3bKlpy4nej76/nDSKDd/fuXezevRu7du1S3JO6DNzc3DTe0fz582PevHno0KEDTCYTzp07B5PJZOhtUUPdnupKknB3d0ehQoW4h5aMpz2ijvLgb7/9BgB8Yl8R0Yuq7iolXnvtNYWnGEgTZ0ZxTCtXrlTkx7feeov/7e7ujsTERF7eaB6uhg0bYvny5Zg9ezYYY6hZsyYva0lJSQpRRxVazZo1FeEBnp6eGlG3fPlydOzYETlz5tR0jVELngR1s2bNDCs90UtCsVxqYTR48GC8/fbbiImJ4ZWqnkCgaUtEXF1d4ezsjMaNGyu2q8VfbGyszUsL3rhxg4vUhw8f8neo5z0XRd1XX33FvV9ifrt586Ymv3p6eqZr/V0vLy8ULVpUd7Rl7ty5dc/Zv38/nJycFAPNoqKidKc/Iry9vTF06FBs3LiRd2XreXMDAgK46KRv5u/vz7+7OoSIMaYQJElJSVzk6YU8AGm2NL2eOjXWRJ3RfI/0DkTvFaEXdw2kvQ8aIU31q5eXl64zwpKoy5MnDzw9PTFjxgzUrFkTHh4eionC1Vy7do137VK6RY+qUV3p7e0NIO2biGEWQJoddXNzQ44cOXijXmzEPHnyBMWLFzdcq15vwKHet3C4qBs1ahTWrFmDQYMGYcSIETap5/Tg7+/PW3IRERGKj2xpnzqtkZGR/J+lmJXw8HBUrFgRN27cgLe3N59ouGrVqrzlQB+0YsWKqFixInf1Llu2TFfgVKlSBe+++65igsLY2FhNYYiLi4O7uzs3+kWLFlWIOlHAqpdgcXZ2VggXtUEn70ibNm0U8U62cu7cOU2Lt3///mjSpImiAlB7tsTuVyPE9Ny4cQPu7u6oXLky7t69y0cFid0vhFiJGok6qkjUwawUgCsWRhGz2Qx3d3cej/Hxxx/rek6A50v5WPJY3r17Fy1atAAAhadKjAOpXbu2oiL09/eHm5sbunbtCsYYRo0ahWLFiqF79+6G9xGhuNDSpUvrrkFMniia04sqV3tEXVRUFGrXro3+/ftzoaRGfKYLFy7wv7t168YHbOTNmxdjxoxRjJBWe+oI8q6J35w8uM2aNYObmxvvfnVxceHl/X//+x+/HyGKOj1vbpEiRRTxeJ6envwcNX5+fpruMfU6lr/++quurWSMoX79+vyZChcujKJFi2riw4C07+rk5MQnHxUrAfIohYWFIS4uTjfsQO3tUYcMREZGWp1va+3atfDy8kJERAS3RerypJ6kXfT+Ozs780EYISEhCqErirpevXqhWbNmFtNCkF0WfxcrVkw3xludNiIkJATFixdHs2bNDG2DyCeffKJ4x2Svp06dqjk2b968/Nno/ZYrVw5xcXFwc3ND8eLFFcffvXsXZrMZ48ePx5dffsl7PRo3boxx48Zh27Ztivn76JlJ1Hl5eWWqqDMa1UllVu2QcHZ21h1ACACHDx9Gp06d8PPPPyvqED0PrSWtoTdwimIwRbtLDetbt25xpwK9N9GG1a5dW/c+oiPixo0bmt4HV1dX3tVcokQJzeA6Hx8f/pyjRo1SrFuvFzP5QkQdkPbAp0+fRmhoKGrVqoWLFy/qGsaM8Oabb/K5pXbu3Il69erZtE/E3d0dvr6+in9GtGnTBpcuXeJGhgq/l5cXr5zElym2Rt566y18+umnuuuWbtiwgRdkS5W/u7s7ypQpg82bN2P06NGKzEPi6ejRo9yAUeC2tXVDxQKmzgxGnhzCx8dH1wvl5eWlEYhqYU2GyGiR5oSEBJQpU4a3YIcPH466detqCrO6mw9IE9VXrlxB8eLF+ZxMtkJCU68rjBBFXc6cOfk7r1GjBj7++GON4BArV1FwlClTRiGIxfcvDiJwdnZW/KZvT+8uNDQUuXPn1iw3ozaeBL0TsUtDDc3cLmLLmpuenp44deoUIiIirC7ALYo60eMxZ84cnkbynIwcOZIbfupGBZSeVjLIfn5+2LdvH65cuYLChQtj8+bN2LhxIxd1sbGxiklo9YwgCbSDBw/qhhcEBAQoKm0PDw+Np46gvCR26avfjZeXl8VKid6VkQcZSBN1Xbt21WwXeyBiYmIQFxenGz4iijpxQFiTJk1QrVo1/PTTT4qKUTymefPmAIBSpUrxbirxepZEXWhoKNzc3FCoUCG0adOGnxcUFITk5GSej8W8unTpUv4+xSUF9VB7Br28vFCsWDFFdxgh2kvyMhOlS5eGl5cXHj58qJmwFlA2eubMmaOwA0Z1EJBmZ8nWnjlzBiaTief/AgUKaGy46C0muxAaGoqcOXPCZDLh7bffxpAhQxQNeFHUZdRTZ4u3Vm/pKwpHoe9J79DZ2dlQTFMPGaD8/pYGn+nh6uqKuXPnonDhwhqP+KFDh5CSkoL3338fmzdv5lqF7Cx508S6xOj9iQ2IkJAQTb0XGxvLy37evHk1sdm+vr4KeyR++2PHjinqD2dnZ91wm0wb/ert7Y0lS5Zg1KhRaNGiRbonQTWievXqyJ8/P58K5L333uNdGW3btkVQUBAaNGiAHDlyWBydlF5EIUd/ixlNFB8+Pj5wdnZWqG4RKmxiTIq6IFMBbdu2Ldzc3BQimTJz4cKF0aRJE5w+fZp7HqyJOtHwqo816oogjCptb29v9OjRQ7GNjFblypXh7e2N5ORkhIaGIn/+/Lh48SKGDRumOJ4qSLGi7N69u8bDoBeHRenu06ePzXFaQJpBpS5xdetexM3NjYs6f39/fmy9evUwf/58jcdGDAAWl3CpWrWqQsiTYcuZM6emIhIrc71v6ufnBw8PD1SsWJEbISMPNXU7lC9f3lDUqY2LNaiCz5s3L+7evYu//vrL0PDt3r0bx48fN7y+j48P3yc2jmi4v7+/P68waXh/3759eRytn58fGjVqxL2dbdu2hbe3N9zd3bmnThyEY0nUvfvuu5pJrIG0byDmRWdnZ0NRR+XEkqgD9D0N1G2tJ+qePn2qaSzTdxAbZOLcd/Hx8YiOjtZtsJEtyJUrl6JbaNy4cbrfUoyNnjFjBv744w9Uq1aNC2Z7RF3x4sXx4MEDFC5cGP7+/nBxceGNIfLAGr3ft99+W7OtXLlyhvfz8vIytG1i2VLHGIoVql5a8uXLB39/fz7QRxR1uXPnxvTp03XvSeE/QJoNKly4MH9flmywj48Pz6chISGKhqiTk5Mijd7e3rwOsUXU2Sr61OKKug716jrqHSFRR7bZUh0lenFFW0XXEhv1lhqdLi4uGDRoED766CNNOfP29oazszOWLVuGGjVq8DJGgmvChAk4d+6cIg8bDZRT1xt6zgHalidPHhQuXBjLly/nvT2+vr78Oc1ms+L93r9/H02aNAGQVkb9/f1fnKdOpFu3bjh16hTWr1+vmYMlo9ConBUrVsDNzQ0LFiwAkPYBlyxZgoMHD9o84aC9kJH18vLiL1E08lQZqQvXtm3bNKP79EYuVahQQeEh0BvOnDt3bsUAAR8fH97KI0Pm5ORksVvOkugxGixAUMFXd615enrC19cXZ8+e5YNL6FomkwkxMTEYPnw4tm/fjlKlSqFSpUqGAoSeIyAgAP3791fENdB2kUOHDvFCUbhwYd1CRd2damrWrIkGDRoAsDyAxNXVVeGpo/vpGSdxHUpAOTBD3dp3dnbGtWvXFEHmhJgeuo84Alqc0oOmLdGrEHLkyIE8efLwJayMRJ0orGzhjTfeAABFt4+R6G/WrBlef/11w5HJrq6uPCRBbPFPnToVO3fuRIECBZCYmIhDhw5xD0jXrl35tzZKt5ubG4+pE4Oe9dJhJCAA7VQn9LdR9yulSyxr4ruhrmeqbMaOHYtZs2bh7t27GDVqFIDncZlimfT390doaKjCsJPdoa5PV1dXRWXEGENQUBA8PT1RtWpVxXugsuTp6am5JuUT8lYULVpUkZdz586N3r17w2QycVEnhoKIYlSv+1XcZjKZEBAQwLtHadkyS0s/3bx5U7H2rtjNqedQMMqbYiWaJ08enDx5kg9KMgrlEHn69CkPFaDGtouLC+rVq2foOadGv5+fH0JDQ1GyZEn+HS31lnh7e/M89+TJE42tE+2RGF5gi6jT8+SKUBlTd/OSF0/0hBNUh9F7oPxmzfFAqL1gABThI9ZEHaAvVtXbqEFDws3NzQ1Vq1ZV1DVGok5tA8Rvsn37dqxcuZLnPbLPPXv2VAhJI1EHpC2nuXjxYhw6dAj+/v66IWO2xJlmeJ66woULo3379oYVyMsIub3DwsJ4pSAaefLUqUcAvf3225o55tQrCHh5efHzKdheT9SFhYVh8+bNuov9UpqcnZ11R2iRwTUSdRMnTlSMGCMqVaqEgQMHAnieYXPkyAHGGJKSkrB8+XIuvKpVq8bjQagyEjPcjRs3uDfFqGCTsa9QoQJMJhOqVq2qELtq8VWvXj3eQi5YsKBuha1+/3oMHjxYs0oEffOUlBReAfv7+/PvLj5Dnjx5YDKZNPcX09uwYUM+6g143uWsJ8b0RJ2fnx9vtIiVFBkcscuWWtB0HRoVTcbZ399fEddir6euatWq/D50L2sVh6V1HslD9e677/JtHh4eaNmyJR/wIE4n4evrazVcwM3NDTExMUhNTbW5+1Xk7bffRkhICC+TYnk3mUxWPXVipe7n54dx48bhjz/+4Hngl19+Qb9+/TBx4kQMHToUxYoV4/cg0axeUD537twKwdS1a1f06dOHCxFq6IncuXMHXl5eOH36tKIBQR6yHDlyKJZvypUrF7fdFA8kxkACSi8KpVWsZNWeum3btuH333+Hi4sLIiIiNEKvcePG3G6RqLM0Cftrr72G77//no8SF4PN1fORMcYMwyuobJGAqFWrFreVoqizZc5GEpPh4eHo0aOHoaije5ItLFWqFBd1lsKW1J46S/lf9GZ6enoaihLCmqgrVaoUQkJC8MknnyhmIaDGh9hYOHnyJB+FbjKZ+HugOo6en7xQQFo8srpbXcxjn3/+OYC0eUppRRRLoo66XPVsktoOUbrU70i0wUYNOLWgom/SvHlztG7dGt27d+d5T7TzdG1fX19uR8xms6ZebN68Ofr06YPy5cvzRp0aW8YxyGXCdCDDRRPNAsoCqDfCh1BnIrWoq127Nm8tUAGwNGnwqlWrNHFcoqgD0roAadF44Lm3ysgjNX78eE2ALpAm5KiiocqKDLKrqyt69uypyIhUEHPlyoUJEyZolvKhbhKjET9i7KIeesKA4n4KFiyIkiVLcgNA+Pr6KgZIUHdk1apVuWcoT548mpFkrVq1wubNmzF//nx+Xw8PD268xee+ffu2orIKCAjA7du3Fd1CNKs7jYgzmjMNULb4xPvQdrFSLFu2LNavX4/vvvuObyOPodrw03t97bXXFFODeHt7K2JPjCokIG0iY9HLQxW4tZg6S96wJk2agDGmGfhD5zHGFOEKvr6+/F0YVbhubm58lLgYZ6Yn6tTbhg8fjg0bNiBv3rxcRInfwZKoI4EgDn7x8/PDN998w+eeBNK+2++//647iOHXX39FQkKCRtSp8fHxweLFi3ka9UbUPnnyBJ6ennB2dlbYLCcnJ+TLlw+enp6YMmUKjh07hnbt2iF//vz8GXLmzIkCBQpovq34vsi2iDFdak/d22+/jX79+vHQGPW7ExteNFO/LasBkJ0URYVoW9q2bYtGjRop0i/G/zo7O+Py5cuKOFiykfaKOoLEgViG9Ab6TJo0CeXKlcNXX33FhYWllZhEUccYsxouQzg5ORl6cxYsWIA1a9Zwe3L8+HGcOHFC03WcI0cOnkZxeiXy1InltlatWjz/NG3alNeN6h4OcWRwiRIlND1Aosf1xx9/5O+GbLHakyuGQFE5sGaTxHSpRZ0t4wLU7zUgIAAREREKgUrvQgwBoTxGXcGAUtStWbMGu3btUlxfbctJMxjVpSJS1OkQEBCA119/HZMnT+YFXDTG4gdTQ5mQ3O5i92tERARWrlzJ50WizGhpPiZnZ2dNy0Et6goUKKAQFKNHj8b27dsNR/EA+plYrMjUos4SOXPmxNdff63JcNQl36lTJ5w5cwZ3795VTCJKxt4oxs2SqCtUqBCcnJw079LNzQ1VqlThXa30DooUKYKdO3di7969us/u6+uLtm3bonr16tiyZQtmz54Nk8mEN954A++9955i6gEfHx+FtytnzpyaPOHn5wdPT08uiCyJOvEd64k6NR07dlQYMDpfbajIgIlzLKnvATz3+g0aNEhj4OfNm4d69eqhV69eKFSoEK9crBlQk8mkmUDUFiivi94i0VNnSdSJcUWEnqirVKkStm7dioiICPTq1Qvdu3fXlDG1Z95I1JHQEAWZLZWLGksiWI34XS3tVxMQEIAcOXLAyckJb7zxBjZt2gRnZ2eeN4zymygec+bMiW3btmHu3Ll8m9hAFPMyLbiuLm+vv/46vv76a/z666/cU2dN0AJp8319/fXXints2rSJf7vJkyfD2dlZ8RzdunXjfzs7O6NChQoKUVKqVCnkzp1bET5EAkM9wbUe9Gxi+dfz9DRv3hxXr15F6dKlufCxJOrE7lcAFqfkUqPOF+Rpp1kQ6P0VKFAAtWvX1oSKGHnZSdSp8zflj44dO2oaGpQWMU2urq6aBp3RuunivcaMGYNZs2YBUL4PChuwJVZQrJ+toa7P1KKuWrVq8PPzU3wn8jiL9XHHjh1RtmxZvPHGGwpRR/V+o0aN+GAkgvJIoUKFwBjDvXv3wBhTxMMaYf9EQP8RKEibhiWLmbJgwYJYv3697rQd9IFz5MgBFxcXhQvV19dXUyD2799vUSTqodclrK7kW7duzV3WZDiN2Lt3L5o0aaKo7KmAWKpsKDbKqBKj7SaTiU9lIBpPa6JOzxMxbtw4fPzxx4qWK2MMEydOxIQJE/i1qOuZCj8tFq2er4uggG0grdVOLXcPDw/NGrkEFTzRQDg5OcFsNvP3RxWsJVFH78HT01PhgaPKSc/4ixUlGWm1gBErfyMBAKSttbp79264ubnxrsHp06fzbpUCBQpg6dKliucQV0MwYsSIEWjZsiUKFSpk0bstQu8iZ86cqFGjBv799194e3tzMWdJ1BGiqNETdSaTiaefnksNva+5c+cq5sNTQ3lcLGPpEXX2YCTq8uXLh5CQEMOu9Xz58umOIiT7o64U/f39dT1o6sELYpkWBReVQb0KW5yuKDAwEMWLF1cscK5H1apVuUAh8uTJg0aNGmHXrl38vYjvn/a1aNFC1w526NABb731lsLWUB4bMmSI4Zxly5YtU/SOuLm5YdCgQZquaz2oLBjlZW9vb42osxYD/f333/OQBXW++OWXX9CpUyduM6mM0XtS23ijEbAkdtV5ngaLVa5cmTdyUlNTUbFiRYwePVpzHfVgQMBY1FWtWhVvvPEGjh8/Dnd3d95wGzJkCE6ePIkOHTrwgRv2iDpLg+WAtNAoPz8/HDt2jD+fujGs19NAThzRc1+mTBk+Cwa9n/bt26NWrVqoX7++7uTSdO30hLVJUWcF+jhqJd2xY0fd4ymzdujQATt37uRGsV27droeIqNRs5YgwylmMoqvYYwpYgyOHz/OYyguXbqkW7mT8XBycuICQhyMYUT79u3RvHlz3bg/ur8lKD5AnXEvX76MkJAQ3ffVvHlz3YkaR44cifLly3Nx9ttvv2HgwIE85sba7PR6c61Zg7pcxDgHZ2dnmM1m/g0KFiwIDw8PHquoBxnVX375RdECJbFoqUVfq1Yt/q3UHgKq3K11LbRu3RqTJk1CeHg4nJ2d8d577+G9997TPXb27Nk4f/681YYCQSM27927Z3FaAoLeRZEiRbBixQosXbqUT+cg7jc6D0h7b5UrV8bFixctxvZZok6dOli1ahXee+89i+9vzJgxaNq0qaLStVZhZBS1qHv06BGSkpIwYMAA7Nq1i3dpqhk8eLBuhW00WOHw4cOKyZGN0PMaA8/LnLXpcsS8ZIsnAkhr3FE3J70Hei+ipy5Hjhxo3rw5Dh06pBmIBUA3NpbEi6UK9f3331esyAFA4b20BHXHkfd/586dismuSeCIedqap+6rr77ig0nUYTcNGjRQTMni4eEBk8nE86k4Mj8iIkIzX+E///yDgIAALqh9fHzw5MkT/t4oDrVChQo8jrNIkSKGkzdTvdW0aVOcOnUKUVFRhqKOekuOHz8OV1dXHlfZvn177gkmqL7x9PREXFycZiAb7QP0BfWVK1e4E4byofhdyFM3atQow/rkgw8+wOHDhw2nJ8qTJ4/CnoshGiJ0/XRNT8OyGadOnWL169dnDRs2ZJ07d2ZJSUmK/Xv37mWFCxdmjRo1Yk2bNrX5upGRkQwAi4yMdHSSNYSEhLDk5GRWuXJlBoA1adLEodePi4tjAFj9+vUV2319fRkA9vjxY5uu06JFCzZt2jR24sQJBoC1bNmSDRo0iAFgX375JQPAunTpYlfaAPB/Dx8+tHjs5cuXGQC2ZMkSm66XHlatWsUAsOnTp1u8ttlstvva9N7KlCnDtw0ePNjutO7YsYMBYJs2bVJsv3TpEgPABg8erHteYGAgi4iIYOvXr2cAWPv27RX7Hz16xACwevXqMcaY5j3S7+joaAaALV682K50Zwa7du1iAFidOnUU281mM5s6dSp79OiR7nnz5s3jz3Pz5k129+5dNmXKlHSnw2w2s6CgIMU2a3kxI/nUHs6dO8cAsGLFiim2X716lX333Xd25+WbN28yAKxdu3Z2nUfPS/YIgOKd3bt3jwFgefPmtel6ERERLCYmxq40MMa4zSLbnpKSkqFvUbt2bQaAl5/0XMfe8+j4v//+m2+7cOGCRftkdA+z2cxWr15tuP/ixYts7Nix/PedO3cYAPbGG2+kK38PHTpUsf348eM2pddsNjOz2cwAsJEjR+rekzHGxo4dywCwH3/80fAYxtLqxVatWrEzZ86wlJQU3TTs27ePAWD37t2zeC09BgwYwACws2fP2n2uvSxcuJABYB07drT73Gwn6oKDg1lsbCxjjLFRo0axtWvXKvbv3buXff7553Zf90WKOqJWrVoMAJs0aZJDr2s2m9mXX37Jbty4odhepEgRBoCFh4fbdb2zZ88yAKx169ZszJgxDAD79ttvGQDWtWtXu64lVnzR0dFWj7969arFSiijoi4yMpK1b9+ehYWFGV47vQQFBTEArEiRInxbamoqS05Otvtahw4d0ryH1NRUNm7cON20i2zfvp0BYJ06dVJspzzfoEEDxpj2eXfv3s0uX77MGGMsISEhXcLW0Rw4cIABYM2bN7frvN9//50/X0hISKakLbuIuhs3bjAArHjx4g65XnJyMitatCjbu3evXefR86ampvK/Q0ND+X4Se+7u7g5JpxFxcXFs9+7dmrTZKibV1KxZk9cVJUuWTNc3/d///sdmzpxp8/F6eScwMDBD+a1OnTo2pZ3E65tvvskaNGjARo0aZdf9UlJSeJ1tCaPzo6KiWGpqquF506ZNYwDYzz//bPUemQk1Hk6ePJnp99q8eTMDwHr37m33udmu+1WchsPV1VV3JM+6detw/PhxdOrUSbN2XnaiU6dOCAoKStcSXZYwmUy6S9LQwslGQ7KNELtfx44di7Jly3L3r72rhfz000/8m9gSDyAGlGYGvr6+2LhxY6Zcm+IexHg5a/FrRujNSu/k5MTnArSEOEJZhN5/p06dAACzZs1SdDuISzHZE6ifmViLszRCzPMZmVE/I9StW1cxajezoO/qqJV8XFxcrK5lrcewYcPg6uqqWX2DoO45o7V8HUWOHDk0y4pt2rTJ7hVnCCojnp6euHz5crom11fP8ZYe7LXjav755x+LU8UQ9M0YY5rl40RKlCjB14oWcXZ2tmuKJDXWBi1Q93561gJ2JF9++SXu3r2riL/OLGhgmC0DOtRkO1FH3L9/H7t379Ys7l6rVi2+Tlr79u1Rv3593XioxMREhTGxZRkkRyPGObwIKPMbLR5uBB1PS7r06tUL+/btS1ca/ve//3FR54hKh4K/M4Pt27crRuPai7gyQVZCQkj93Z2dnZGUlMSNYXZuABH0TjMi6jJLoB48eJCPqtZjz549mS5gAOujX18UM2bM0GzTGy1vyzQMjoYG+aSH77//Hl9++SVcXFxemJB4//33NWuFUp42mppqw4YNFidNpgEX1rC1vFD824uGhI0tMbmZSfHixbF9+/YXci+aOsooPtYSWSbqHj9+zD0IIps3b4aLiwt69eqFxYsXayoqMZO2a9cO58+f1xV1U6ZM0cxF9qqTUVEnVhJU0B29rq+9PHnyJNPS0Lp1a76ES3qJjIzMUCvVERiJOqNt2RnykmRE1GUWemuCinh4eNg0BVBGyS6iTuT06dP4888/NSLowoULuqP7sjMtW7ZUTND8Ili2bJlmG+Vpo/enXuosvZD9sJafcuXKZXE1HmvUqFEDZ86csfs88vhamkHgVaNkyZIICwuzeX5CkSwTdfnz58ehQ4c021NTU9GhQweMHz9ed0H3qKgo3r1y8OBBw1GFo0aNwvDhwxXn2TPXz8uIn5+fZt1KWyBDnB1FXXYnq7r6ROgbvWwCTg96FnvLqt56wpmFtRn5MxsaPajXKM4qatSoodvdKa6qIrEPsst6U2c4EmdnZ0yaNEmx3FhmsHv3bt1F6q3xXxR1gPX12Y3Idt2va9euxZEjRxAdHY1JkyZh0KBB6Nq1Kz7++GMsWLAAa9euxa+//srX3DOaEsTd3T3bxAm9KPz8/NJVsbP/H2ItTpEiRd3LA02p8iqIumrVqmHNmjWGUwYZQV7qzO7+jI+PzxYespiYmHRP1yJ5OfD19UW7du0wadKkTL+XOswpM/D397e63J8e1BNCE89LLJPtRF337t11F6lfsGABgLRZvm2Z6fu/iHp2a3vOA4B33nmHb8uIIHZ0HFxgYKDNC0P/F6lcuTJq1qxp07q32R2TyZSugUU0H15m8yK6V23hVVprW6KPs7MzNm3alNXJyHJe1ICbV4VsJ+ok6adEiRKK0cO24uvri6SkJF1PT3o8dbdv37Zr/URr2DrR7X8VT09PnDp1KquTkaVk9oS/Eokka6hevTo+++wz3dUpJFqkqHuF6N+/f7rjItSCjjx+lhZ7N0J6ESRZwdKlS7ONJ00ikTgGZ2dnzJw5M6uT8dJgYkxYs+IVJioqCn5+foiMjMwWwe0vA5s2bUKrVq1kRSmRSCQSyUuAFHUSiUQikUgkrwBZP4xLIpFIJBKJRJJh/jOeOsYYoqOj4ePjI6fpkEgkEolE8srxnxF1EolEIpFIJK8ysvtVIpFIJBKJ5BVAijqJRCKRSCSSVwAp6iQSiUQikUheAaSok0gkEolEInkFkKJOIpFIJBKJ5BVAijqJRCKRSCSSVwAp6iQSiUQikUheAaSok0gkEolEInkFkKJOIpFIJBKJ5BVAijqJRCKRSCSSVwAp6iQSiUQikUheAaSok0gkEolEInkFkKJOIpFIJBKJ5BVAijqJRCKRSCSSV4D/jKhjjCEqKgqMsaxOikQikUgkEonD+c+IuujoaPj5+SE6OjqrkyKRSCQSiUTicP4zou6/xNOnTxEXF5fVyZBIJJKXktu3byMiIiKrkyGR2I0Uda8guXPnRt26dbM6GRKJRPJS8tprr0kbKnkpMbH/SJBZVFQU/Pz8EBkZCV9f36xOTqZiMpkAQMYPSiQSSTqQNlTysiI9dRKJRCKRSCRWGDx4MMaOHZvVybBItvTUnT59Gp999hmcnJwQEBCAFStWwNXVFQCwb98+9OrVC6+99hqcnZ2xZ88em64pPXUSiUSSPUlNTcWFCxdQvXr1rE4KAGlDJfq8DPkiW3rqChUqhJ07d2L//v0oVaoUNm7cqNjftWtX7Nu3z2ZBJ5FInnPv3j2sW7cuq5OhIDw8HElJSVmdDEkW8f3336NGjRoIDg7O6qRIJC812VLU5c+fH56engAAV1dXuLi4KPavW7cODRo0wE8//WR4jcTERERFRSn+/Rcwm81ZnQRJNqdJkybo1KmTQ6+5aNEiPHjwIN3n58mTB927d3dgirI3mzZtQvv27bM6GdmGq1evAgBiY2OzOCUSyctNthR1xP3797F792688847fFutWrVw7do17NmzBzt27MDp06d1z50yZQr8/Pz4vyJFiryoZDuEsLAwtG7d2m4xmpCQkEkpevVhjGH+/Pmv/HQwmeENGThwIFatWpWha6xfv95Bqcn+fPjhh9i8ebNshKlITk7O6iRIJBp2796NihUrZnUybCLbirqoqCj06tULixcv5vF0AODt7Q03Nze4ubmhXbt2OH/+vO75o0aNQmRkJP8XFBT0opJuFwkJCdiwYYNm+4oVK7Bjxw5s377drutlN0ESFRWF5cuXZ3UybOLs2bMYNGgQvvvuu3Sdf+PGDRw9etTBqXI8qampABwXF5Kamork5GSEh4en6/zsIGwYY9i/f/8Li5XJmzcvACAkJOSF3C+7Q7FK2cF+Zbd4qYSEBJw6dUp3X2hoKJ49e/aCU/TiSUxM1H3OXbt2vRCP9+jRo3HlypVMv48IYwyfffYZbt26Zdd52VLUpaamomfPnhg/fjzKlCmj2Cd6rg4ePIhSpUrpXsPd3R2+vr6Kf9mRcePG4d1338W9e/cU29MbkBkfH++wtDmC7du3o1evXumu8F8kKSkpAJDurvoyZcrYNLdVSkoKevToYXdhtYVixYrhxx9/tHgMiTp63oySmJgIIM27nB6yQ57dvHkzGjdujL///jvD14qOjrYas5gvXz4Aab0Rkue8iO5Xa5MKZzdv4bBhw1C7dm3ddOXLlw8FCxbMglS9WNq2bYtcuXJptvft2xebN2/O9PtnhdCPjo7GTz/9hE8++cSu87KlqFu7di2OHDmCSZMmoXHjxlizZg0+/vhjvu/1119H3bp1UahQITRs2DCLU5sxKA6JKtqMkh1auiJUYT99+hRAmsG0tYCsX78+Q3Fa9uLklFYcMttzdOfOHaxatQrHjx93+LXv37+PL774Qnef2WzGDz/8wJ/PUV31JOrSK9xf5NJ94eHhGDlypKa8kSdf7xmOHj2KNWvW2HyP//3vf+jUqZPFxgF56rJrD8KLJCEhATdu3ACQ+fbr5MmTCAgIsOghzW4DdgIDAwEYC97sHHKza9cuXLt2zSHX0YOcH46qP4kDBw7AZDLh8ePHALJG1NF3VY8psEa2FHXdu3dHeHg49u3bh3379qFr165YsGABAKB///44ceIEjhw5gh9++CGLU6pkxYoVmDZtml3nUOtL3QrT89TZkrHSYxSTkpIc4i3ZvXs3TCaTIg1U4T99+hSpqalwc3OzOMBF5L333kPz5s0znC4Rs9ls1chktqi7e/cugBfvoTp06BC+/PJL/ttRlQGNQk+vpy4mJsYh6bCFKVOmYOrUqZruLCp/YqgHkBZ/WLduXXTr1k2x3Ww2w2Qycbsk8ujRIwCWxYG3tzeAjIm6xMREbNq0Kd3nZxcGDBjAGziZ7akLCgpCUlKSxcZiVnrq1qxZA5PJpPCiOzs7A3BsOXny5AlGjRqla+tiY2N1G1rp+TYtW7ZEuXLl0pVGe3C0Ld22bRuA54I6K6D3/UqIupeV999/H1999ZVd51DhDQ4ORmhoKN+uJ+o8PT0Vg0b0IEGlrpwsUatWLT7a2BIDBgww7O6OjY3FkCFDACgrd1HUUdr0YuxSUlJ04yPVxnfp0qVcFKWHX375BeXKlcPDhw8BAB06dMD+/fuxbds2nlZLou727dsoXrw49zymB+pqf9GiTt0oUIs6k8lkd6Nk9uzZ6Ny5MwDHiDpHt7jVULlQe9GoIndzc1NsNxq8QXll0aJFiu0xMTF8JKcl0Uzni2XeXiZOnIgOHTrg9u3b6b7Gi6Bs2bIW7dahQ4f435ntqaOKUu2RnT9/PpYtWwbAcZ66hw8fwmQyYefOnYbHJCUlYeHChbxs/vrrrwCU3muq1MVyEhcXh2PHjtmcFsYY/vnnH36fzz77DN9//71uo6JQoULw8/NTbLtz5w68vb2xdetWm+9pL3FxcYiIiEDt2rVx+fJl3WPU9oHqSUfY0lOnTmHLli0AntsJqp+zwlNHZUGKupcMyjRNmjThcTYiYmZKSEjgLQgjKHPbkxEuXrxo03ELFy7ErVu3uCAS6d27N/eAiS1dqtiePn3K06bXCvzkk09QrVo1TeEUDSxjDL1798Z7772nSLu6YrUEtbweP36MlJQUbNq0CY0bN8Y777zDxaIlUbdq1Srcu3cPBw8etPmeahzlqWvSpAl+//13/P3331i/fr3VGDl1ntATHTNnzrQrDaKRd0T3q7Wu2Lt37+Krr75SlIuqVavaPBjHy8sLQJqnQsSoIqfv7OzsrCmLgNar061bN15R2iLqLL0zxhjmzJljGANG5TC7xYCpuX79ukW7JVbUmemp+/vvv/HBBx8A0DZABg0axPc56n2S2N69e7fhMT/99BMGDBjAhS2JFGuibtCgQahTp47NadmwYQNatWrFB97RtcgLKBIZGcnz+rFjx1C+fHn+LNbsXsuWLdG2bVub0yWSL18++Pv749SpUxo7RKExRt5KRzQGateujXbt2gF4LuooL2SFqJOeuixi1KhROHPmTLrPt9WA2JqpbFX3Fy5csKnVNWfOHG5oqlWrBgC6IzzFdyAaZqq8nj17xtOmVzBJmNEIJ3pe8f1Q5UbXBIA33ngDH374odXnAID27dvj7NmzPL3q6XDIkFryFtF7VQsoewq9kaiLjY3VFcxG7Nu3D/3798dvv/2Gn3/+2Wp3qjrN4vEkalxdXXHr1i2bvaGixzI8PDxdXddifrD2DJ988gmmTZumEEMXLlxAr169MHz4cN1zgoODcfPmTQDPn1P9nimfiXkLeO7RS01NVeRrtaiLjIxEfHy8Ik+pv+/+/ftx/fp1xfmWRN39+/cxZMgQQ+9/Zno14+PjrQ4osMa2bdsUnv3r169jy5YtmqkhxOeYOnWqTc+VngaR6IUODw/HrFmzdN+/o0SdWBbUouP69etISUnRxPaReImKikJiYiJMJhMXhWI50esWvH37tib/EhQSQPaV0mN0PDFx4kQEBgbye1trOO7atStd3jyz2awoX+r6izzoRo0+a/nhyZMnFsW1GhJ1L7o3JTExEfv37weQvl43QIo6AGmV7JIlS+xW4wkJCfj+++/x/vvvp+u+wcHB+Oeff3T3kZA6evQozGazzfEUlkRdcnIyvvrqK2zduhVVq1ZF27ZtrRZSihlKSUlBjhw5AChbucnJyejdu7diFJ9e5Sd2v+o9Cxlyqkj0DCt5V8SRzFToKlWqhKVLlxo+R3JyMjZv3sxjdz766CO8+eabimPIYFgSJkaibtasWYbnqDESde+88w4KFy5s83WIhIQELioIvbysFkzib/omrq6uKFWqFEqUKAGTyYQVK1bgn3/+MYxDFOe8M5vN6RIC9og6ggKYRYy8jEWLFkXp0qUBPM9flkTd6dOneR6OiYlB7ty5AaQJN3U6U1JScP36deTMmRPdu3dXdN/SMSEhIWCMoXHjxihbtiy/D2BZ1NExRmWfyoy1ijk91K1bF/7+/hm6xqhRoxQjvMuWLYsRI0bgypUrCuEm/n337l3DoHhi79698PT0tHuKCbFyPH36NIYNG4bRo0drjnNU9ytd58cff+QeYiCt3FepUgUrVqzgZdbd3R3Ac7sfFRXFBZi1fEC89tpr6NOnj+4+esfkmaP7Wss7lIfJntgzYt6e+nTEiBGK3+r6i75dekVd586d0aJFC5vSFB8fz+8fHR1t83OIaWOMGU5DI3Lx4kVF3Tlq1Cg0btwYT58+lZ66jHDixAn06dPH7lF4d+7cAZC2AoYoZGztmuvXr5/hPhIWc+fOxS+//KJbielBlYSeug8MDMS0adO4ixlQFoa1a9caeopiY2O5KBPjgO7du4elS5cadqGIMXV0L7VxEgtNjx49MGTIEF1RR61aHx8fvo1atpcvX8bhw4d10w7YNk0JVfiWRJ0YaxEcHMyPFb1EasN35MgRTJ48mf82EnX79u3T3G/btm26nhp1V2BUVJRCEOl1R9gi6tTxWcuXL0erVq10g53NZrMmX6anC1Ysd9ZEHRm4x48fIyIiwiaDK34PEmbq7lcxb9arV49350ZHR3OhHRkZiStXrsBkMilCDai7de/evbxypmdJSEhAQEAApkyZorgfPaelOER6L5TH1VDec6Soi42Nxbfffotz584p0rF//35FDFdYWJgm/44ePRqjRo3Cvn37sGbNGl2PG50j2gj1ca6uropYr+joaIWgPnHiBIDnq1DYimgTabStHo7y1KnrE3r24OBgJCYm4syZMzwf0DsQPXXqdFAZXb9+vWF3ozoG9KuvvsLFixe5wKT72eKpu3z5MrdJ9L3s8Q6LZXnnzp0Wy6q6QaauI4w8dbbOb0i23ZZ5IYODg/lz3rhxA05OTryHh1C/h+joaOTPn5/X/UeOHEHt2rXRvXt3iwPzqlSpgmLFivHfpCliYmI0DprvvvvOpjlUpahD2hJFQJqhevLkic0jXqgVmpiYqDAwtk6zYsl4iK3Fy5cv88pWHcCqhtzsMTExGDt2LG7fvo1vv/0WN27c4JlELFxiYejatatm+Six0FDBVnvq1Ny9excmkwl79+7lRmPJkiU8EJkqI0qraODPnz+POXPmKJ4/NjYW7dq1w6VLlwCkibq6deuiefPmigrPksERKwUjqGV86NAhw9geul9ERAQKFiyIb7/9FgC4Jwh4biirV6+Oxo0bo169ehg7diyAtO9Kz/3TTz8pjIVe0O/u3bt1PZCiwSRPnbhNr4GiroStHQ9oY5wePnzI88+mTZs0AtZIpKSkpGjyCmMMGzduVEwqai2migzctm3b4O/vj7179+oet3LlSt054Mi4q98FPf/9+/eRmJiI0NBQLF68GOfOneOirmLFijwmibpIUlJS+LWSk5MVnrrvvvsOPXr0AAAegE3Y4qmjhojJZEJsbCx+/fVXRYOD8rst3s2NGzfiyJEjVo/76aefMG7cOP7bbDYjICAAjRs3VsRw5c2bF1WrVlWcO2XKFHz//fdo0qQJunXrplseSayJlbY6X4waNQpFixbFn3/+CSDNA5UzZ04Aad+HbEOnTp00la0eFIAvijry8okNREJstFoLJ7h16xY6duyoawfVZYq82lT+L1++zL8d5QeyAevWrdPk0ZiYGNy5cwfvvfcet4UEvWt1DPK0adPQtWtXnu8jIyNhMpn4oLTExERcuXKFz/UmPkeHDh3435QXU1JScOPGDUXarl27hsWLF2ueX6xb3nrrLYs9KQEBAYp8pxZfVK5+//13BAYGYt26dViyZAnfb81Tlz9/fgDPRZMe9O4fPXrEr7dw4ULdY9ViODw8HHFxcTzMg85fvXo13nrrLYtp00tDZGSkRtTt3r3bpvh3KeqgFHXjxo3TTF9gBIk6UuX2ojcwAgCKFCmCMWPG8N9nzpzhGYOMmxFkMOLi4jB58mR07NgR48aNw6xZs3QzvnrbsWPHFBUlZbLY2FhuiMWKW6+FRBlv48aN3GhFREQopjLp2LEjChUqhFu3bul22YnGaffu3diyZQtvpbi7u+Po0aPYs2ePItDXUsG2RdTNmzcPQJq3ytvbG3379sX06dMVlRM9D3k0KX4kMjISNWrUUBxz7tw5XvkDaYYgKChIIapbtmzJ/yYvj1jRx8XF4enTp5pWrvjeyVMnPv/AgQM1AknPUxcfH4/4+HjDrh3x20RERKBw4cK8q0RvrVb1yGcyolWrVuVzsxGHDx9Gx44dFa30WrVqWWxUqY2taKTFSrtnz55o06aN4lzGGH8e9bugCpiuFxERwT3phQoVUlyDng1IqwQpTfHx8QpP3Y4dO/hqMWpPcUJCAkwmEx49eoR58+bpejHoHCcnJyxduhQff/yxIl7Jkqfu3r17aNKkCX+XHTt2RL169TTHiaSkpGjiZZctW8afLyAgQLHvxo0bFkW4pa46ym/379/XlM2TJ0/yZwCei6zffvsNxYoVw/jx4/mx1Kgy4syZM/Dy8oK/v78if1BDwtvbWzNtVNOmTflvskN3797VTHJ75coVjBw5Ehs3btRMHh8WFqbpCg0ODkZ8fDyv+EVRp+7yXbhwIfdIEjExMYaTVevlAfpujDFuU9SjrZOSklCxYkW+KoNY3imdwHP7mZqaijJlyihCV8qXL6/b66SuGyzFC8fHx8PPz49PU6ZOJ327X3/9FVWrVkWnTp3Qp08fmz11lHfVou7bb7/lDQMK6zl58iR/d2qPPkHll0Yrq0dVi4I+ODgYV69eRdOmTa16CkWnAV2T8ueTJ080ZVD3GlaP+A8giroLFy5oCk5KSgreeOMNXsimT5+OX3/91XDdWSPMZjMYY7h8+TImT56su1YmzaEkFlK6j4+PD2+xxMTE6FYE6oJDrcO9e/fqZny9bV27duV/i6JOz1OnZ9TJYP9fe2ceH/P1/f/XTNaZJJNNEhH7mtjVGgStLrZSqkFR1daupaW+1dpVVYtSPq1qUVql1F77LvZaSglqK0Fkk1U2Sd6/P/I7131vM5MIgvt8PPqozPKe9/uur3vOuefm5eXpmvfXrl0LIF/4aIk6fsVIz0zPxouXwoo6pcDQ4ueff8bIkSNlO/foN0g8Jycno02bNoiNjWUWHb1njo6OZsKRLATx8fG4du0a3NzcZC65jIwMjBgxAgkJCZp5BJVxi/fu3ZNZvNatW6fK46gl6vz9/REUFKQr6viVIf175syZyMnJgSRJqliY0aNHY/ny5QDyd+hVrFgRQP4EqKwDshYorVU0qWtBbY/uly8XiluiCfLGjRuymNUff/yRWTi0rCDAffcz3yZ5UUd1y8fU8dfSs+zwg3xsbCyysrLYaTmDBw+G0WjEoUOHcO/ePbZY5C119Gzz5s1j7hzeUrd582bWZ7Kzs/HGG29gz549WLZsmc3V/ZYtW7By5UpMmjRJFeQ+atQotGjRAoMHD4a/vz9+/vlnWdlYm6j1JkTgfnmvX78eTk5OCAwMROvWrWWfUY4L/fv3V12HdxPfuHEDHh4ebDMKANSvX5/9WyskJTc3V+UV4MnMzIQkSahTpw46deqEefPmAciv5xo1auCPP/5g1+GZMGGC6reio6NRqVIl9O3bF0B+CAGVH90D//tKYZOWlqabvkZpoaPP09/Ux5T1xY9VPXv21D1yjLfUAfmbk5KSkticprwWoJ5brHmm0tPTYTKZMHLkSHz22We6ljrlsxK2LHX0fX4DmCRJGDt2LPOk0Pg0e/Zsm9ZvKscpU6ZgxIgRrHxo4xj196VLlyIrKwsbN27E7t27MXr0aN1rzpw5k6XwatGiBWvHVK4xMTG6hiCeBxJ1iYmJmDVrFoYMGYLPP/+8SLOjjxw5EmFhYejZs6esEnNycvD2228jLCwMw4YNK5LfokDouLg4REZGIjExUVapN27cwNGjRzFu3Djk5ORg5MiRGDBggCy/En8dPRwcHNC3b1/UrVuXueOU6HWqWrVq4cMPP0RGRgZycnLg4eGBadOmqT5369YtmbWABoZz585pXltL1JHFCbBuqZMkSfP7NJjPnTtXU/iuXbsW3bp1Y8HOtix1ytxhfAfmBwprqzXeUtKiRQtMmjRJ97NK+vTpg7i4OHh5eTErAXXq5ORkloeKRJ3egNC1a1fMmDEDgNyN/uKLL8ruPT4+HqtXr8bMmTPZcVPKvHhKSx2gdlkoA861RF1aWhoSExPtiiflJ4TNmzcjOzsb7dq1k33m7NmzzIJHVp99+/ax90n05OXlMStWZmYmW1gB9ycjg8Ggqiele5f/22w247///mPPkpSUhFdeeYW9P2DAAFaOykmABlPeUkeQ6wYAcxHRJHnv3j1Zuer1X/71gIAAXLp0SRWm8eeff2LixImoXLkyJkyYwCaA7OxsVt+bN29m8Y0kJM6cOYN27drh7bffxhdffIEjR47gr7/+QpUqVbBjxw7Url1bdT+xsbGIj49Ht27d0LZtW4SHh2vu4k9MTER4eDi8vb1x8eJF1bFMJEK0xKy1wH6qo1OnTqFWrVq4deuWqr0mJiZaFYZAvggni9Jvv/2GtLQ01t6U8Z5aYiA9PV12n8rfS09Px8cff8zGj0GDBiEqKkpVz3x/HDNmDP73v/+pfuvWrVtskU2LUYpTzMrKwmeffSbLz0YLRyItLU1mPSMcHR1lgspoNCI5OVlm6aGysCbqfvvtN93YbXp+XnT+/PPPsnFDq+x4qPzfeOMNmes0JydHthHP398fsbGxuHjxIkaOHInc3FybsbP0W9OnT8d7772nel9rjOQXhhTzHBISgpiYGJsikdz3169fx8yZM1kCdhpfUlJS4OzsjAoVKgC4n5uVt4Tzz3Tr1i2MGDFCdsoQLViys7PZ2dpFbqkrVaoUG8yuXr2K6tWrY9q0abh48SJ++OEH1KpVq0gyMJ88eRK3b99GREQEqlevzlZDQH5sSunSpREREYH09HS74kRs4eLiAg8PD/z999+skd6+fRuXL19GcHAwM89KkiSzIihNuWXKlLH5W4sXL5YNgC+99JLsfb1UEhs3boTJZEJGRgZroCtXrsSWLVvYZ/Ly8nDt2jVUqlRJ8xr8TkWC73i0kjUYDGjYsCGmTZvGRB25ACtVqsSuExwcjPDwcNU1+YFDK5j51VdfxfLly9GgQQP8+uuvzPLA72rlxZrSjaMn6pKSkjBp0iT069cPHh4ecHV1xfDhwwFAFuRtNptZRn97SEpKwty5c2WWJmWKAEAu6rQGIV7g8lYD5UAdHx8vE+ZAfvlfvHiRlS0/uFIdKi1zdG9Vq1bF3LlzrcbU2bO7mk8ETbuiQ0JC2Gs04FCsFbkSWrZsyT7j7++PLl264NixY2wgBCATdfxEwbvX1q9fr+ofvDXj1q1bqFChAqtzPerUqSN79qioKJw+fRrA/TLj69ViseC3336TXYMmB6WlTumGI7TKt3z58rK/k5KS2Pg5ceJEVtepqamaya5J1FEZ/Pbbb/jss89Ye+rYsaNqjJo0aRIaNWqEZs2aoUmTJlixYgV7T2/HvLu7OywWCyszfhy5e/cucnNzC3ycH5XHf//9xyY+GmuAfNGTlJQkE9S9evXSDHOpUqUKJkyYwDwpY8eOZQtxHq1FH79YVT4bkB9fSwsxcrWdOnVKtbjgr8FviuLh265y5/3t27fxxRdfyKzWyjK9dOmSZjnn5OSoFmxXr15lY0RiYiIb/5TfV1rXlGVGKC1RQL7lnh+H+LavteC/d+8e6tevjz/++EPmmqb+Qwnw/fz8kJmZiapVq2LGjBn4999/db0ffCJ3SZLw8ccfY8GCBarP0W/MmjULH3zwAQDt+N+yZcsiMzPT5i5+5c5rug/e/WqxWJiVn7wS586dY3G5fJ3x3gDlPWdnZ7M+XuSi7vbt22wg+fTTTxEcHIzLly9j27ZtuHTpEsLCwmTBjoXl0KFDLNaoTZs2MuFm7b0HoUSJEjKLQnR0NH7//XdcuHCBmdwlSVLtZOFTUPCiTmk14cUHf+i7ciDVE3VBQUEwmUxIT09nlX3ixAm0bdsW3333HSRJwqVLl5CWlqYa+KizKFd+gFwgVahQAa1atcKWLVtw7Ngx/PLLL2ygpecJCQlhgvfff/+VTcAkVHiXiBY02U+aNAlxcXFsZUWuOkC+qlaKEb1V1JEjRzB+/Hj89NNPSEtLQ1ZWFmbPno3jx4/Ldh8WVNQBamuh0m0CgB04nZWVxdoM/7rWM2hNpMuXL1e1szt37qBq1aooW7YsAMgsvbRCVrotqc4uXryI999/H5mZmTAajTh9+jRcXV1lg4o9OZyo/bi5uWHr1q1wcHCQuQNOnz6NQYMGISMjAz///LOmxTIhIQFr1qxhkwtNbrw7PD4+XpZC4aeffsL8+fOxe/duVKlShbmv6LNKbCUibt68uawN0UTGD6z8oG42m1WDKZU5H1NXUFxcXGQ7nhMTE2UihtiwYYMsxhbIH4toLFaONceOHUOJEiUQGBgoEykWiwXjx4/HX3/9hevXr6vGA72J083NTWZZ5hdt6enpaN26tWwHHwDmWtaDRNC1a9dU3wXyxwLlxDp79mz06dNH9hrtOp84cSILk7h9+zY+/vhj1WJJK1SE3wAGQBV6w0/ederUgZeXF06fPm1V1OnBL3ArV64smyv5eiKXsVKA7d69W9cSrLS0JyQksOeKi4tDTk4OGjVqpLLUKfuo3nxKC1oSdU5OTkhNTZUJN17UZWVlqURdamoqswY7OzuzPkT9h7fU8Zw/f97mDu+MjAxZCpGlS5fK3uefc86cOVi4cKFsHiYojQ95SPRQGito3uYtdR4eHggMDFR9l/Il2moz1CaysrJYWT3UmLojR45g7NixTDC4uLhgzJgxBTq6RI+kpCRmtfH09JStDqy9x5OVlYWUlBTZf9YICAjAiRMnmOC4desWa8gUl5OUlKRa+fLJNXlRFxAQAEmSsH37dixdulQ2CEiSxFy1yjiDiRMnat6f0WhkljplZxkyZAhOnz7NxFGjRo1k75Pw5AcO2nDBCwFHR0eZhYi/NzLLV69eHZIkqRr9+fPnC5wSpmXLlixxsLOzM0qVKsXe4zuhMhaLJmF7kzIqV26urq4FFnXKQVx5T3369GGB6M8//zwGDx7M3uOtWQTVoVZeqXXr1qnc8/R3Xl4esrOzZRZaPRISEmTt/tSpU6hUqRJq1arF2hLBu0N4vvzyS/ZvmhBCQ0ORk5MDf39/2e5jf39/lC1bFv/++y/69u1r9fiq8+fPw2AwoGbNmgDklrqvv/6a9WtJktCvXz8MGDAAJ06cQKVKlWQimeqFbzt61K5dGwcPHoSfn5/s2ePj42E0GnVFXW5uruoYPRJSmZmZuHv3LkqXLs0sAPaSmZkps9jwE7EtkpOT2USnFLH79u1D2bJlVZuq+HLTitPUO5rJ3d1dV9RdvnxZthmIaNu2rdX7T0tLY54FLVFXqVIlZtEA8idCHx8flej9+uuvERcXhyZNmsjGDLPZLMuRB+TXc/fu3WVj1/r162XJkHn3FwDZ7lpfX1/UrFkTZ86c0RR1//zzD0spMn/+fFkZmM1mWZ81m82YNGkSdu3aBUA+No8cORJBQUGycm7UqBHu3Lmjm9eUX0QC+eO1si3VrFlTNUYr5zM9UUfjCImLoKAgpKamyn6DN0ikp6er5ileMGdnZ7MwAlui7ssvv7R5nN6WLVtk816vXr1kHjFlW3/33XdlrmZKrM97i7Sg31CWGy0g+Jg6Dw8PODk5Mc+Bm5sbhg4dqoq704PC2bKzs1nZ2uMNLLCoI8tNVlaWSjUGBAQ80FmGhLe3N2tESUlJssHI2ns8U6dOhaenJ/vPVmHUqlULQP5qzNfXF6dPn1Ztl//nn39UqQmoIQLqAs/KysLLL7+MXr16yVbTGRkZbBJSijotdyWtzui3tHZypqamIiIiAu7u7iyomuI2tEQd3Su/WlSKuv/++48FWZOlgAZApfm5WrVqKpehPdBk4eXlJZs4lbsutdA7h1aJcsUbHR1dYFHH57XSes6pU6fq1o+3tzcuX77MJh1HR0c2yNBKThkkroTPwWdPzj2C33G8bt06uLq6Asjvq1rueCWjRo1i7m+aZBo3bsyuocSeDShAfhyYj48Pa5vKwVTL4r9v3z6UL19eZjWl8caWZahq1ar4888/ERoaqhK0CQkJ8PHxkfVlvs3l5OSoRB3vJouOjoarqysLe+AnpU8//RQtW7Zk4nfnzp1sd2VMTIysLZ08eVI2fmqJHf439WJIz5w5o7Ku9e7dWzcuicb0qKgoTfemm5ubrH74/qRnlVeeGqEkNTUVly5dQnZ2tma4iHJcpzFN2U6MRiNKlCiBmTNnMis2fV8p6mJiYhAYGChrP3xfNZvNqjhpPs7Q19cXVatWxcWLF1WiLjU1FbVr12ZHGLq7u2PTpk1soUdHkBH0HM8//zxcXV1lAqNdu3bw8fGRibrnn38eJUuW1LVYKWP4oqOjZYLL09NTc65UJk2PiYmRLQaordKYQ/cZFBSELVu2oGfPnuyzvKVOS9TR+/Qd6mP0OS1R5+fnp+kSLleunCzcRKsdXr9+HV9//bWme1rJu+++i5UrV8oW40qOHDnC0uwo8xyS6KJxISUlhdUxlWFeXh68vb3ZfL5582ar90RkZ2fjzJkz8PX1fTiWutatW+O5555DSkqKbJcRkF+I/Iq7sDRp0oStSLZu3Srbim/tPZ7Ro0cjOTmZ/WdrEwetGkJDQ9GsWTNMnjwZ27dvZxa1Tp06ISwsDCdPnkT16tUB5Afc86sB5SqSnzj4wfru3bvMKmBPokvqZNTotUzwJBpXrFjBzLokeui3eHeLlg/f0dGRTfpAfmPi3YsdO3ZkgefKFS2hlXi5TJkystQdPLQLVCnq+GfUE3V6sYM8jo6OSE5ORo8ePdggef78ec38VIRW2fACn588CH9/f1nZ8Xh7e6NixYpwcXHBrVu3cOvWLSaMaOCl8xK//vprDBw40OozFeTcWT79A3DfAlq+fHnVapMXNYTBYICDgwPc3Nxw8+ZNmEwmNvHTBMO7kO3t///88w9zEQKQieyBAwey+CUldHQSkC+uqV9Zq08gf+crLWRMJpNskE9ISICvry+rvwoVKrDVtMlkQqdOnVSijmfBggVwdXVl98Dn95oyZQr27NnDRImnpyc7Ek9pPYiLi5NZYr7++mtdy70ynknJuHHjZJNzhQoVNEVgYGCgbHes1hFPSksdP46cOnVKFgtHkOVDj4MHD+L333+Hu7s7nn/+edX7yjAUKj+9eg4NDZWJitzcXNWYn5CQADc3NzRr1gzPPfccwsLC2Huurq7o0qWLTMT5+/vLBKzFYkGVKlU0RZ3SlUb3O2vWLCxatAizZ89mp4k4Oztj1KhR7LPOzs7MDb9hwwZYLBb4+PjIxl66b3tRWuq8vb01c5wmJCSozn/lF8uOjo4wGAxM1NF8R4sx3rrLW+LS09NVrmyqU36elCSJ3SeNP/yGw6FDh2o+36uvvoqRI0ciPT0dL774omYYxueff45Ro0ahU6dONj2IgYGB6Nq1q9XNjmXLltU8XYbnzp07SElJwZ07d1hbpbYgSRITdYmJibJnGz58OLOSGgwG2WIvOzsb//zzD2rWrKnZ15QUSNSNHz8er7/+Ojp16oSRI0eqBroNGzbIOkphqVevHkqWLImwsDBERkbi9ddfx4ABAwDkV2ZUVBTCwsJgMpl0DzV2cXGBxWKR/WeNtm3bwsnJCcOGDUNoaCgkSYKzszObXCpVqoQNGzZgxIgR+Oqrr7Bo0SJs2rRJtvpVWnD4QVQZ0E2WuuzsbDRs2BDdu3e3mSGdylvL5cwfoUVmXRI9JUuWhMFgkFlmtCZfBwcH9gxaRwStW7cOAQEB6NKlC86fP68pApo3b656zcnJCVu3bsUbb7yhik2jenF3d5e1J6XLXQuKwWvfvr1uLGdOTg6OHz8OHx8fVuavvPKK3Za6smXLolevXrKJTCtXFF92VatWRWZmJl588UUAkD1XYGAg/Pz8sHHjRly8eBGdO3cGkH8Q/IcffoiePXti+vTpVu+pS5cudt37+PHjVa/RCrNChQoqS4aeKAXy6+nGjRuwWCysjinu7/Tp0/j9998BFMxS5+fnx+qEn6wbNGigm0iaz43n7e3NLAda/fvKlSv44IMPUL9+fZlrhkQd9d34+HiUKFGCTW58G/7qq6/g7Oys2dZ5kpKSWJvSWqjRwG42m1G2bFnMmDFDFVDv6ekp+66Pj4+snxqNRpw7dw5lypTBF198YVXUvfjii7JJ3MfHR/Pznp6e7DecnJw0UyZQnjcgv53zFqQjR46gdOnSKrGldQIJ4evri5UrV2L37t1o2rSppmDu3bu36h4A2+KdclmmpKQgOTlZtUAzGo3w9vbG8ePH2QaNsWPHIiEhQdXvtL5buXJlJCcnq2Je9URdgwYN8Pbbb8PZ2Zntdv7xxx9lVrOUlBQ2V3To0AGAPJk5XU8Zn/Xqq6+qkuOeP38eLVq0UG2q8PHx0U1crzyakP9cXl4eXF1dVSJGWTaenp4yI096errMfQ7kL2CdnZ0xbtw4eHh4wN/fH71792aLROpjjo6OWLZsGQ4fPoxRo0YxLxoPCWSTyaR7tCKNb3QfysT6FPoB3Bea1vLA+vv7w2w2W/VI3b17F56enti4cSNrq9S+yVJ39+5dldU0ODgYoaGhmDx5Mg4dOiSzyNHRhcpk33oUWNTx//HpAoD8laVW7rXCMH36dERERGDp0qVwdnZmu+0cHR2xePFiRERE4Ntvvy2S3wLy456ys7NRtWpVtivN29sb9erVA5BvpXJxccH06dPRvn17vP3223Bzc2Mrl6ZNm8pW6IB8tcnvfExNTZVZ6o4ePYply5ahWrVq6NKli2aMCqBtqaPKJ0udp6cnE9aUsNhiscDT0xNpaWmsQWqZ4nn3qzUzLx0zpjfA0ndp+zbd74oVK1TuA7qGg4NDgUUd1VOFChV0xURQUBDraEB+2f/444925fs5cOAATp8+LVtVA/oB5SSK6tWrBxcXFwwaNAiAtrvWYrGgcuXKaN68OSRJQkBAAGbOnInAwEDZOZEFhT+0nM+VpTymqkKFCqpFhDVR5+HhwVLp+Pr6onTp0swKGBISwnZBU3+xBokfPz8/TUsdDdjEyJEjIUkSJEnCSy+9hF69esHb2xsjRoyQ3Z+SChUqYPbs2Th27Jjs2ejfZK0jSx1NAnyaFlqE8G1TGYIB5E/MvKhr0aKF7Og4qlOTyQSDwYCPPvpI1QaV46mXl5esXefl5SE4OBiDBw/GtWvXNGNyli5dyuqVn6DMZrOmpY53y1GIxYQJE9iCBMivm5CQECxYsABt27aFJEmyWMrQ0FBV+Xt4eOj2W4pxvXr1qq5ld+DAgbKQBBr7bC3OR48ejZdeegnJyclISkpSiQ8+7pHioNq3b6+5GYYXC1Q3JLYOHz4s272sXCBp9WEaB+xZUCpTBVWoUEEl6kaMGKHyVri4uKBkyZJYt24dPv74Y/a6lqijtqUsI97tT6KOD/lwcXFRWbRKlSolm+9u3LiBAwcOqIRUpUqVYLFYMHXqVMTGxso2NPB9rHv37mjcuDFcXV01dxPz1kRaGJYoUUJmkVMeu1itWjXZtZo1a8ZENIk6vt4oL2KNGjVQp04dGI1GGAwG9uy0CNTaDAHctzjSNUnUaUFj0pgxY9C4cWPZvHjhwgVcuXJF06KthUg+rAG5aXJzc1GhQgXk5ubK0jLwkKj76aefYDKZZLFP/Ir/xx9/RNeuXVlDoMrlc+0ZDAasWrVK95gxGqR5twINirylrlmzZpAkibn4ePcJfV7LzGxN1PGnTNC19KwpV65cQWpqKgsCt2ZZ4hsvnx+PX2X+/PPP7N/8QEqdmdIqKHFxcWF1QPfs7u4OR0dHleVFy8JYoUIFeHp6ylaK4eHhWLx4MYYNG8asP1SW7u7uWLFiBX788UcA9wcppXXSHtq1a6e5E5Jnzpw5qtf4naE8w4cPR8eOHVlsT9myZVVlZs0aRe2CJtWoqChNS6DJZMKhQ4fYYEnwq3ZKbl23bl02IPKiQCnq+ASyQL6IvHPnjizxsa3JXnmPQH6ZxMbGMlH3xRdfYPr06XjjjTdkLl5APuEonw24v9sNyBd1e/fuZakwgPsTubUyHjFiBPr27cu8Eh4eHpqix8fHB8nJyZqxlW+++SazktF44e3trbtQ8PT0hJOTExITE5lIHz9+vGzB7O7uDoPBgHfeeYcJQD5+eO7cuZqiWikitm/fzmKDgPwYTeU4xLvy+X9TW+V/RyvBL/3uH3/8gbt378r6ULVq1WS/Ry47LVfx3bt3mWCaOHEi2+RAr507d062AUp52oRWedPEbY+o40U1kC9ilFakBg0aqGLFnJ2dNccNLy8vWX0cOHCA3Y9S1DVs2JClEZMkCa6urrKFrKenp+oZaL6gvvvLL78gNzdXlsgeAItZ02rXen1DmfoHkLc/un9fX1+r7tOsrCzZmGexWNgcQvdvMBjQokUL/PHHH2xu/umnn2Qxe9QHyFOkZwBRCkWlqAsODmZjibK9kBeBEsMbDAa0atVK99l4hKjTgFZoFCCud6A2cF/U2ZrAU1JS0KVLF7bSM5vNkCRJdxIm+NU4NSI+joEaMVnq+MmNGpubmxsbEGyJOj6Qnti/f7+sQdG19I4B4lOG3L17l1lZtaD7dXBwwJtvvolz586hYsWK7JxYnvj4eERGRjKXe8WKFTFs2DBMnjxZc4KjTPX8PesxYMAAHDlyBPv27WMdSmtgXrRoEd566y3MmjULR44cwf/+9z+ZZfWNN96QCVVA21Jni40bN6p2pCrTWvTv3x+ffvqp7DV3d3fZqSjUll1dXbFu3Tp2TS1LpTXBQZMHnWVqjSZNmqgsDbwV6scff0RsbCzGjRsHf39/+Pv7y9LZKAd8LfeLEn6yX716tdVj4eg558+fj969e+P8+fMoWbIkunTpghEjRsDBwYFZMag/K/v1mTNnVBY7avNaSW55S52SBQsW4JdffkGjRo2wcOFCfPfdd9i/fz+qVq2qOfl5e3vLUpoA+S5wOsmDoEm8TJkybHxydHTERx99BHd3d/j6+so2KvHxOrxlk+8HVM7kugTy64vCCPSQJAkvvvgiatSowe7l3r17Ko9BdHQ0C3Xgd7eTW5qvZ61FBSAvf77fK910K1euxLx58zT7J7nJAbklxt3dnU3WvHiKj4+XlZM1S53efMJvCFCK5EqVKrFy69mzJ8aPHw83Nze89NJLsg0DZKlT8s8//7C6tlgsaNq0Kbsf5c5xT09P5hLNy8tTlY+3t7csltxsNrNyDg0NhYuLC9asWYOaNWvKXJy7du3CkCFDABRM1NWqVQsbNmxg3xkyZAiLawfuiz5+cwLdf8OGDVmqsqSkJNkGHkdHR8ycORPbt2+XidS9e/fi9ddfR/Xq1XHv3j1VTkEaC2lzlqOjIwYOHKjyUlA9UL1JkiQT1mQEGDduHDumjSBXNv1GSEiIzTmMEKJOA2rk1g6IJ5SiztoE3qJFC2bathWjQ/CNzdPTE76+vjJRRw2dRB0/GJQsWRI+Pj6oWLEiaxAlS5aE2WxGhQoVsHLlSpml0NHRkU1eJOpee+01VYAuNcx79+7h4sWLVo8hMpvNqkBcHrpfMm0HBwejW7dumjl8fH19YTKZsGbNGvTr1w9169bFrFmzEBQUpCnqnJ2d2b1qxZPwVlUvLy80atRIFhPKW2dowlPW2+DBg3V3+tHkUhhRB6gHdmVOO2dnZ1U8kouLC2rVqsVWsrt27dLcdKAl6viJfNasWSxhJpBviTh79qzM5WkNZTkZjUZcunQJO3fuhMFgYKLJ0dERt27dQvv27dG3b1989dVXMnHRokULleVOCyorZ2dndO7c2arljr+3bdu2IT09XZWOhMqC+oMyQLlGjRro0KGDbHcxb6lTMnr0aDg5OWlO9u+88w569erF/jYajazP8e5XmvS1XDi1atVSWUWcnZ0xadIkrF69mrXB/v37Y8aMGUhNTUWNGjV045H4tsD3Xy1RZzAYMGXKFMTGxqJDhw6qM4GVm6T48leKOn7zDLX3ihUrMsuVtbGE4K38/ESoPHS+du3azCqqhd7mGFqYlyhRAtOnT2eClrcca1njbHk4lBbpU6dOoUGDBuxeqMy7dOnCrJQODg6yPuns7MzG7o8++ojt5g0PD2e/TyKIFuVKS52Xlxe7f0mSVJtWnJ2dZZY7s9nM+lu5cuUQFBSEe/fuoUOHDrJx9/nnn2f9SCsFkbU5sUOHDqwNf/jhh7L+SGUUHR0tS3d2/fp1bNmyhZVHcnIyunTpwnYK0/F7Sqsoj1YeUXLbv/HGGwDyNzx9//337GQhQmmpkyRJ1p8NBgNMJhMmTpyoSs/15ZdfYuDAgWwcKMjZ8uo7FsDJyQkVKlTAJ598YvOz9lrq6tevj6CgIGYhs7abDsi3xmkNDBUrVpTllqMVdkREBBwdHWWDnouLC2JjY2E0GpmrLjAwEFevXoWfnx8MBgPatm2Lw4cP48iRI3BwcGBWKrpPLUFCHTUnJ8futCJ6KK1agLYrlCcgIEAlVPr06YNffvkFmzdvxu3bt9G+fXvZJKq1Om7atCnat2+PjRs3ygYfKgO+Q3fo0AEbNmywa/cRQROmPXFmWijdDuHh4ardkErhp7y/KlWqqIKuAduirkqVKrLjpawFvmuhNUBXqlRJc8cy1T3tCuXZtWuXXRN5QdyvythBb29vlXWDBllbrvMPPviALYysbZTo0KGDpgXPFtQPK1euzAZ25YpduamAhzYQUWA/b3Ffs2aN7oJDb4IlywtvWQXy+5efn5/KepmcnKwqb37ss+Yue/3117F27Vr8/fffNjdI8PCCg0Tj1KlT7crxZTAYWP/v3r07du/ezSZvIiQkBBEREShRogRGjBiBwYMH48cff0T//v1Z/9QS70OGDEFWVpZu+iLlGFW7dm389ddf7H5atmyJI0eOqCZ4vs+7uLiw/lK+fHk0a9YMubm5MBqNzPpD4pA2zmiJOrp/rfbv5OQkE6ZOTk6sToOCglC6dGlcuXIF7du31+2XISEhOHToELKyslibtJV3lJ5T2Z74sczV1RXffPMNwsPDmXCkcqXv0XhozQNnjeXLl+Pq1ats7qNyVC62SEzy7b1UqVLYt2+fbogVQUKd8oTauzkOEKJOF2uJU3maN2+O/fv3q1b2PDt37mQNlwYZW5Y63rzMExwcLBN17u7usuz7SqiDk2jx8fGRdQI3NzcsW7YMFStWhKOjIxOp5HpQDmj8tfTcrwVBS9Qpzd32UKtWLRZXSFY7R0dHtjLSO2idgsf5iXLcuHGqc4WXL1+ueSKHNerUqYOoqChda4gtAgMDkZiYiM6dO2PPnj1sIOR3fPfv3x8pKSkFPslFa6MM33YLEwfIY68l2hb2CDrgfjuyR3QrJ1wtwaDldu3SpYsq8BvIjxXz9/dnou5By47HyckJDRs2lNUvP3kcOXJElWxci7Zt22Lr1q2yYwn1cnwC9ycipfWvZ8+eqFSpEmrUqIFXXnlF05LBozWpW7PU8fTq1Qs9evSwuw0QK1euZONneHg4kpKSrOYf4zl9+jRLa+Lp6alyaQP5eRrnz5/PRIHJZFJZerXav9ls1j3z2xp8m7ZV105OTkx4kwWL7rN8+fJ4+eWXmVCgeUNpNfPy8mKbArt164YVK1bIrIGOjo4YPHgw5s2bh6ioKEiSxFySpUqVQlBQELy9vdGkSROrddekSZMCHS+njHPl2bJlC5vXlMcEenl5YenSpSwZNM0FhRV11CfoSD+aQxwdHTF16lTs3bsXW7ZsYfOksgxs5dTkGTJkCNq1a6d5frMu0jNCcnKyBEBKTk4u0uvm5ORIN27cYH/fvHlTAsD+q1SpkhQVFcXeHzdunARA+vPPPwv1e99//73s+p9++qnsbz0++OADCYA0ZcoU1XtRUVESAKlz587SyJEjJQDSpk2bdK917949m79nL/fu3ZNcXFxUv8c/U0F/KycnRwIglS9fXsrOzpZmzJghZWdna362SZMmEgDp+vXrD/QcD5PY2Fhp7dq1kiRJ0rlz5yQA0nPPPSf7TO3atQtcH8ry/e+//9i/9+7d+0D3vG3btkLVHTF27Fi7vkfX37FjhwRAcnBwsPmd2NhY2b3Vq1dP9Zk6depIAKTdu3cX6L5nz54tRUdHF+g7BSUhIYHde2Rk5EP7nZs3b0p5eXlFft2UlBR2/4cPHy7w9wFIHh4eVj8TGhoqAZDi4uIKe5u6REZGSgCkRYsWqd5r3bp1ofvhg6C8Rmpqqs3v7Nu3T3r//fel9PR0WX/QGgv595s2bSpJ0v0+Xr58ealr164SAOnEiRPSkSNHpFWrVtn1fHfv3pUASEaj0eb9li1bVgJg17NZ4/bt2xIA6eTJkw90HRpH3N3dZa8nJSVJM2fOlPUdvgxo/hw4cOAD/b4ewlL3gDg4OMjM18pVuvL8QbIcWQvktobSNcm7P5XZwXloxWxtZcxb6qxZWmytzguCo6OjzWzfgH0WGIJWRuHh4XBycpKlllBCCWDtDUJ9HPj5+bFA2nLlyqFevXqqzSf79+8v8DFtAGRnwJYrVw4jR47E9OnTC72K5a/7IEyaNAmTJk2y+/PUB+2Jg1UGaWtZ6sgaUFCrW0GPCisMfKhAQdySBcWeo9cKAz+2WHO/6nHp0iWbO0j79++PQ4cO6eZmexBCQkIQGRmpGeu5fv161Zj/OLBnh21YWBiLIT5+/DhSUlLQs2dPzdCMTp06IT09Hdu3b2fjP7W9SpUqsRjoUqVKISAgwC7rMXC/LSgtwloo3aiFhY7wfFDIYq7M/+jp6YkPP/xQ9XnK7uDo6Ih//vlHMyymKBCiroixNQm88847uHjxoiqnnb3wbtnu3bujd+/eeOeddwBonyNKUIfQEnUkaMLDw9nmAXsms0cphJSHltsiNTXVZtwicN90XtBjwx4XJpNJlvWe8PDwKPAEf/78eXh7e9t19ExB4SduvdxMRUlBBIhygaBVbvbG1D0OtDYuPEk4OjrCyclJc/erPdhzkszbb79tdTx8ULTOcwbyXawFcpUhPwjenpOFHiYkOPjE0jxr166FJEkYNmwYOwmB+lGlSpUwePBgODs72518nDAYDLh06ZJdISr0e0VpVHgQ6D7sEYiRkZGyXdT8ruCiptjtfj1+/DjCwsLQsmVLhIeHqxr7nj17UKZMGbRq1crmeZmPA1s7Hc1mM2bPnm2X4NCCt6AsW7ZM1sCtDfBkwdBauVJcXteuXe2ON9iwYYMstq+oUa6CC3r8nLu7u13WpmXLlmHo0KEFsgQ+LVSrVk03CfODrmR5Uccn3n5YFGSjhD3f1UtlUlwoSM6z4ojZbIbBYHgolrQnjaNHj6rOGS+OGAwGfPvttywmrHbt2ujUqRPGjBmDOnXqYN26dYWy8FeqVMmuDAFa1q/igN4RmDwFSUnyoBQPycsRFBSErVu3wmw249NPP8XatWtVwfrdunWzeZTS48LWDp6iYOfOnapjagD78unZWuXYK+q0ErAWJfv378fFixfRtGnTh/o79evXV6USeNY4ffo0O26rqMQtibomTZrI0l8UNfxuxYJgNBpZW7e2UaKw6WgeNkePHsUvv/xS4E0ExQWTyQQHB4cn9v6LG0OGDGGpOh4VJpMJa9eutfm5995774EWXcT777+P999//4GvU5TQecLFiWJnqaM8akC+QNISIatWrUJYWJgsR1RxgRdDv/3220P5jRdeeIEdQWUvlIvH1s4birHQOtT+UVKiRAndc30FRUutWrXYrkhybRXGLcZDok5v13FRsX379kLFsd26dQvdu3cHYP/u1+JErVq1ZEfCPWmYzeYHbmOC+8ydO7dI4sQeBj/++KPsdJWnCR8fn2K38Ct2oo64fv06duzYobIINWjQABcuXMDOnTuxZcsWXddOVlYWUlJSZP89St566y1VEs7HyQsvvABJkmzmagoPD0dKSspjF3WCx0P//v1x9OhR3YTK9kLuwYct6lq3bs0Wd5cuXcLVq1ft+l5AQACLa9U66J4GamFJejiYTCYh6gSCh8Bjc7/evn1bM+fT+vXr4ejoiN69e2PRokUqdyYfQ9KxY0ecOnVK0302depUVaLWR8X169ftOjC+uPIkBl8LigaDwVCg7OV6kKXOnt2oRYU9AfQ8lDtSaxMOBXwXV+vHk47JZCrUzleBQGCdxybqSpYsyY4w4cnNzcVrr72GcePGaboK+fPdIiIiMHDgQM3rjx49WpbKIiUlxa6M4kXBo/odomvXrnalBREIHhVk6SouO9W0oJNJ+HNpia+++gr169dnx/oJipaSJUsWOim3QCDQxyAVs6Uo7UakQ7wHDRqEbt26YcCAAfjhhx/w008/Yf78+XB0dESzZs1khxlbIyUlBZ6enkhOTi6SoE3Bo2HOnDkIDg6WZcIXPBnMnDkTnTt3fqgbJQRPJsnJyXB0dCx2QeYCwZNOsRN1Dwsh6gQCgUAgEDzNFNuNEgKBQCAQCAQC+3lmLHWSJCE1NRUeHh7PZKJZgUAgEAgETzfPjKgTCAQCgUAgeJoR7leBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKeGZEnSRJSElJgSRJj/tWBAKBQCAQCIqcZ0bUpaamwtPTE6mpqY/7VgQCgUAgEAiKnGdG1AmKJ/fu3YPBYMDPP//8uG9FIHjmSU9Px5QpU5Cbm/u4b0UgEBSCYinqjh8/jrCwMLRs2RLh4eG4d+8ee2/Pnj0oU6YMWrVqhdatWz/GuxQUBZmZmQCApUuXPuY7EQgE//vf/zBmzBhs27btcd+KQCAoBMVS1AUFBWHr1q3Yu3cvKleujLVr18re79atG/bs2YOdO3c+nhsUFBkk2EWso0BQOF577TXUrFmzSK5FFjpabAkEgieLYinqSpYsCbPZDABwcnKCo6Oj7P1Vq1YhLCwMs2fP1r1GVlYWUlJSZP8Jih/Z2dkAgLy8vMd8J3JycnKE0FSQk5OD8PBwXL58+XHfilVyc3ORlZX1uG/jkbFu3TqcPXu2SK7l7OwM4H6/FBQt3377Lb755pvHfRuCp5hiKeqI69evY8eOHejQoQN7rUGDBrhw4QJ27tyJLVu24Pjx45rfnTp1Kjw9Pdl/ZcqUeVS3LSgAxVXUOTk5YfDgwY/7NooVV69excqVKzF+/PjHfStWeffdd+Hq6vq4b+OJxMnJCQBkIS+ComPYsGH46KOPHvdtCIops2fPxt9///1A1yi2oi4lJQW9e/fGokWL2EADAO7u7nB2doazszM6duyIU6dOaX5/9OjRSE5OZv9FRUXZ/dtr164Vlr1HRHEQdT169MCyZctUry9cuPAx3E3xheqK74/FkcWLFz/uW3hiobp91ix1hw4dwsmTJwEA8fHxyMnJecx3JHgWGT58OJo2bfpA1yiWoi43Nxc9e/bEuHHjULVqVdl7vNiKiIhA5cqVNa/h4uICi8Ui+88eMjIy0LlzZwwcONDmZ//++2/MnTvXrusKtCkOom758uV488032d/kdlW6/YH8+9y+ffsz6ZpNT08HcN9F9zSSl5f31E/oOTk5SEhI0HyPYurS0tIe5S09dpo2bYrnnnsOAODn54cPPvjgMd9R0ZKcnIzevXsX23qVJAn//fff476NYsGD7jwvlqJuxYoVOHjwICZPnoxWrVrh999/x4ABA9h7jRo1QtOmTREUFIQWLVo88O/l5eXh7t27kCSJuR1u3rxp83uhoaF4//33H/j3HyYPGht25cqVQscn/fzzz+jdu7fVzxQHUafk7t27ALRF3apVq/Dyyy9j69at+PbbbxETE/Oob0/G3bt3MWLEiAcObJ88eTIcHBysfoZyPLq4uDzQbxUnYmJiZCKuZ8+exd4SqYe9/XT48OEoUaKE5nvUjoprPs+AgABMnTrV5udiY2Pxww8/FHrs27JlS6G+9zCJjo6GwWDAhQsXCvzdRYsW4ddff8WGDRuK5F5KlCiBPn36FMm1AGDv3r2oUqUK4uPji+yaTyoGg+GBvl8sRV2PHj2QkJCAPXv2YM+ePejWrRt++OEHAMB7772Ho0eP4uDBg/j666+L5PeWLVsGd3d3ZGZmMpFhj1q2Z0W/a9curFix4oHvsTBkZmbCyckJP/74o+b7eXl5uHjxotVrVKpUiQnqgpCbm4u+ffvi119/tfo5Ku+isHzNmTPngVxv8fHxMBgM2Lp1KwC1m3HJkiU4d+4cAGD37t0YNmwY3nvvvUL9VmZmJmJjYwt9r8TPP/+MmTNnqnaIF5Rx48bZFNY00RdW9Ny7d48J5keBrTYlSRJKliyJESNGsNeWL1/+sG/roZGcnGzX53bt2qX7eRJ1xTX8JDY2Fp9++in7e+PGjZoC9Ntvv8XAgQNx+PDhAl2fxvTiaImnZylMX09KSgIAeHl5Fcm9JCQkYMmSJUVyLSC/XnNycnDr1q0iu+aTQEZGBn744Yci9RAUS1H3qKGdtnfv3mUiw54CtmXZAIDWrVujW7duD3aDdpKamirbBUem9nXr1ml+vmfPnqhataquVZIGtgMHDhT4Xv744w/2b2sWhAex1CUmJsoGgQ8++ABvv/12ga9DREZGAgBLhJyQkIBDhw6x9/v06cM2CVAs5507dwr1W506dUJAQIDVz2hZAbOyspCRkcH+Nhrzu3BhLHXdunVD3bp1bVpltmzZgvPnz7OJvrDu106dOsHd3b1Q3y0MtuLCqBy3b99u81rz5s174BW01jUvXLiAX3/9FStXrgSQ74kwGAyFEhW3b9+263NkpePjjPPy8pCRkVFoS11MTAwWLFhQoO88KJmZmejQoYPmhiY/Pz8AwO+//16ga9JYVVhR98UXX+Dq1aua7z2oUKTFVGEmfxJ1Wt6HgvIwrLjUF+Pi4or82g9KXl7eQ0nxs3jxYpjNZgwcOBDr1q0rst8Qog6Am5sbgIKLOppQH+ZOMUmSEBoain379tn8rDJfla37IqvElStX8OWXX8LHxwf//vsve7+wguvcuXPo3r07+9vaIPAgoq58+fIICgpSvf7555+z+JiCQOXFdy69oFWy2BW2I9pK7rp//36ULFkSBw8elL1evXp1+Pj4sL9pkM7MzMSgQYNw5swZrFu3DkeOHLF5DytWrMCpU6cQGBjIXtOaeNq2bYuQkJAHtt5s3rz5gb5fUGy5IxMTEwHkt71NmzbJLNITJkyQ5cEkl19RWXDy8vIwaNAgtGvXDr1790Z4eDgAYPr06QBQKItmnTp17Pqcr68vgPzsAsTIkSNhNpsLLep69eqF995776HFI+bm5qpENdWvlnWH3tPbSKcH9Rt76jk2NlZmNcvMzMRnn30mW1jy5cEvxmicPXz4MAwGA4txHDt2LI4dO6b5e9TXC1PGZJUtilQ/1EYB4K+//ipQn7h69SqmTJnC/p4wYQICAwOLtagbNGgQTCZTkV/3zz//ZP+Oi4sToq4osVfU5eXlyXz+JOrWrFkDg8GAW7duQZIk+Pv7F9kJCVlZWTh8+DBGjx5t87MRERGyv/UaSU5ODpKTk1lsVFRUFMaMGYPExERUq1aNdVL6fkEFFwXUE9YmCBpkCiPq9ETG2LFj2U62gkDPqxz4/vvvP+zfv1/2Gk2I9nbEs2fPqsoFyLdekZi8du0aExK0rf3KlSuyz1+5coX9ZmxsLD7++GMA+RaJefPmYfTo0XjttdfQpEkTu+4LkAsIXtTPmTMH1atXZ39TPdo7MaxYsaJIXMyFRVk3OTk5MiFDou7ChQto37495s+fz96bOHEiXnzxRfY39fWi2hVKkzjdA0F9z15XamHw9PQEILfUkaWQ+lRBBTw9R2JiIj788MMid7NrtSNrfY/6mrX8fVohNnRKkVKoXLt2Df/73/9kr3Xt2hWdO3dmf5N7lMaymJgYODk5MU8JX6bVqlUDkC9qgPzxJDo6Gp9//jmL087JyZEJQbqunqiLiIhgFjkeSZLY69R3L1y4gFatWhV444QkSZg0aRL7u1GjRvjll19w69YtmdjT480338SYMWNYP5o4cSJu375d5KJOkiTN+LyoqCg0atSoQO2b5vKHuYFqwIAB2Lt3b5FcS4g62C/qZs6cCT8/P2RkZKBv375s4KLV2rVr1/Dvv/8iLi5OM5g3NTW1wFY96nT2mM3p2lFRUUhOTmYdRTlAdenSBV5eXmyQiIqKYi5oQJ1VvqCCSznYpqamQpIkrFy5UvX8SksdBQOfPn26QL+pRVRUlFXrQXR0NI4ePcr+vnHjBgD5ihoAKleujLCwMM1r2CvqatasiTfeeEP1+vr16/Hbb78BAOrWrcuEBN2DtRXihAkT2OS/Z88eANB1/RDbt2+3Wp/BwcGsjj744ANmkQTuiwCtZ75w4YJM8OTl5aFHjx4sxpFf5Nha2efk5MBgMLCg7okTJ8p2J9uLUnwOHToU5cqVY38rBZUWFLdLoq4oxIokSSzIXCksCiPqeJc2378++ugjmVUXAPr378/qhHfX0hhIotfe5/zvv//w999/s+c4ePAgZs2ahX79+qFHjx52PwNPenq6KvSA+iYRExODkiVLAtAOLCdRFxcXpykIo6KiUKJECWzfvl1TqCvbaNeuXTF06FDZ63Td3NxcXL58Gc8//zyA+25SEu4Ue6YUEpIkMctgeno6W9DVrVsXkiShbNmyaNiwIfs8jQlac0hOTg5atGiBNm3asPH2hx9+QHJyMoxGI5ujMjMzMWfOHMyYMQN79+5F165dC2Rp02qX165dQ79+/fDxxx/jo48+sjrH0XymbF80phSVqJs7dy78/PxUZb5gwQL89ddfzAOSmZkpC7HRguIQizreT6uNFQVC1OH+gJaenm51owR1wCtXrsgOoKcGajAYmEXH399f1nDv3bsHi8WC1157rUD3Rp3AwcEBV69eRdmyZREXF4dbt27pTs5ly5ZFSEiIruCgyZIXgbyoozKg79vq9Dt37pQJJ6Vl7tixYzAajQgPD8eECRPYijYhIYGVBz3LiRMnAOjHAQL5HX/QoEFW7wnIT0K7YMEC1YRA1KtXD40bN2Z/k5BUlpu1TTP8Z//++29s3LiR/b1mzRps2LCBfWbTpk2a16AE2vwqm77DJ9FV1oOW4OM3vihdsOfOncPLL7+M/fv3W30mvdU7xRzyz/zFF19gwIABCA4ORs+ePdnrKSkpyMvLQ2RkJJYuXYpevXqx92xZ+mhgJ8vZhAkTsGzZMpnAtAfl7/zyyy8A7tenPaJu1KhRAO4LB+VktHHjRqxatapA95Wamspc0fykk5OTw/62Jer4tmA0GtGyZUsA8hjPb775BomJifjpp58A5Mfw8Jum+HokYUhpJewVdRUqVEC9evVYmdJpI8uWLSv0ppMWLVowwUYo435tWTX4hRm1J4PBwE4hmjx5MpKSkrBz507NZ5UkCUePHmXuWy0rNR/Pyk/4ylx/tNBSCozExER2vdTUVPY5Ly8vXLhwAdHR0TJLI9WX1iKVxPiRI0fQokULnD9/HgMHDpSNb0B+vX7wwQesHWzduhWnT5/G7NmzNXO5SpIke2aqBz6rQUZGBhPR33zzDdavX8++q2zHVCbKMi+MpS4iIgJTpkzRXMjSHGPLU0B54ej3jxw5gsmTJ8vGBm9vbwD3y/jvv/8uMquaFk/l7tdHjZalLiEhQbZr9dtvv2UbI5Q7RqlB5+TksPdiY2NlK2EaFLQm9qioKMTFxUGSJNWqkbfULV++HFFRUdi5cyeCgoIwfvx4+Pv7a1qAoqOjNXcnaU3Yt27dkok6ZWyZNcvOxYsX8eKLL8p2IisHL34H7BdffIHQ0FAkJyfLRAf9BjVoa0Jy+vTpmDdvnu77BLkwlZY3QmkNoM+fOXPG6nX5CYefGOvVqyc7/aRLly7o2LGjLCfYmDFjMG7cONn1tNzTyntevXo1m0SAfKGstMIAcvfg//3f/8neI9dqSkqK1Ul77ty5mDx5sup1mrD5Z/7ss8+Y+OI3x9Bg/vPPP8sEHSB/Xq0dsdHR0QDAno9Og1G6ooF84fzqq68CyJ9w+E0c/GS0Z88e1k+pffMDty1LuJ6lrkOHDujatSuSk5PtXsnrWTIGDBjAxg9roi4vLw9GoxHffPMNtm/fjpSUFBZbqjUp9uvXDzk5OapNRHz50Bhoj6jLzc1VPatS1BHW3HvXrl3TfF3rlCClqLO1QSk9PR0eHh4A8ts79YsZM2YgJiYGCxcuhMlkwtGjRzXvUZIkNG7cGHXr1kVaWhobj/h/U5vIyMiQiYfr169j7NixrAyvXLkCLy8vtGnTRvYbfChAamoqq4/s7GxNMUJjwrlz51QLCb5v/P3336z9KNOfaF33zp07GD58OJ577jnVuLN06VK4urqyBSctkGvVqsU+M3XqVOYpAPIXT3/88QemTZsGLy8vmQileuDLkX82pcs0MzMTWVlZ6NKli6y9REVFoUWLFhgzZgwLQZkyZQo++eQTAPcXKcrrKecVCtOhsaBVq1YYN24cfHx8mDuZwhXo9+vVq4dWrVpBi2+//VbVB9LT0/HPP/9oft5ePvzwQ7s3/QhRB21RFxcXh27durETKYYNG8YKVU/U7dq1S7b5gCwDgPVBumzZsqhYsSI++ugjuLi44NixY2jcuDGys7NlaSRI+NDA/fnnnyMuLk42mfLQqpRX/koBERgYiOTkZKuWOmuijgTcjh072PeUok4rluzPP/+UiSrqbPRb1n6T6ssWVE72xo3YezxLpUqV2L+1rKGZmZkywcqLuilTpqgEk7JOsrOz2XWpTGfNmiX7TMOGDTFmzBjZa8oVHg3AWVlZyMvLk4kya3GO48aNUwlP4L771ZqljSZka+2dr4/WrVuzAfjEiRO4evUqE3W0Qib4drVhwwZs2bIFb7/9Nv78809s2bIF27Ztkwkmus/bt28z1xhwX1TxllFbx4rRBB4SEsLuny+Hw4cPIygoyK6UOnqijs8hZq38qB6+++47vPzyywCA0qVLA8ifxCIjI1VtQWtnLN92yepLr6Wlpan6YGxsLC5duoQpU6YgKChI9vzUx5XCm343OTkZBoOB5X/btWsXypcvL4tVvXnzpqyv8NYQpajjP6fnfqXFV0pKCrsPNzc33Lp1C7m5uXjxxRcRGRmpOT7wz37y5En2t5+fHxMR9LsZGRmy+zt//jw+//xzNG/enD17cnIyEhISZOPs9evX2biXmprK+np2drZMjFSsWBHAfaG9adMmlatOKSSobfMLQUAu6uj+qb/Fx8dj2LBhss9T/ZAH5caNGzAYDKhRowb0WLduHd544w12xi2/eOJFHZ8OisYjflGyevVqmEwm7Ny5E2vWrMGXX37J3uPrn0TXmDFjMG3aNABggl7PUkd9kMQk3SO/KCQrKdX9jRs3rO4wj4uLw7Bhw1C7dm3Z67169ZK9lpeXZ9VTomzPMTExmDVrlt3hDELUQTulCZGcnKxatSrNvfT++PHjmZrPyMjA8uXL2YrGVmBmWloa1qxZAyB/wj569Chu3Lghs9RR47p06VKBnxHIb8h8Ti4g3wqiFHXU4Gk1npeXh86dO2v6/Gny2bVrF7u2UjBorfoHDx6Md955R/Wb9LxFIeoIe0UdLz5poNCCP0eYvhMdHc0mxlmzZsk2Kuhl7ydSU1Nlq9mvv/6arXypPSoHbS1KlSol+/vGjRuQJAmurq744IMP2DUWLlxYoGPzlGRmZmLevHmaqW4aNGiAa9euaQZsE2lpabhx4waCg4PZ5p5Ro0ahfv36qFixImt3VAfUFlJSUrBlyxbExsaiY8eOaNu2LetXbdu2lVk+gPuiSylCLRYL7ty5I5tsbO1u4ydHshLxixKyii9YsAAXL17EgAEDZG24Xbt2LKSA6nTJkiX46quv2Gf4FDfWRB25oflxgCx1ly9fZuMIT1RUlMqlyZeLsoyuXr0qs162atUKAQEBqFKlCnNt8WEN9G9lO6VJkMZFWoBSqMP169fx/fffw2AwoHTp0rI23KpVKzYuKE8bICGiR3p6OivPHj16sAnazc2N9dnSpUsjKSlJc3ziJ++4uDhZXZJlmrfU2Wul5U9AiomJYSKaD9PIzs6WjRlXr17FunXrMHz4cN3rKq2eJI6Uabf4Nku73mfMmMFeu3z5ssxaR9byTZs2ITY2FufPn0fp0qVVbUkLElQ//PADW7Dwoo4/mpH6Ii/qKMaQhCX/LLylVjlnZ2RksOeMi4vDL7/8ggYNGiAyMpKNF1TnVOZ0PX5xR/dE81lsbCwLQdGCj4/kx3MKtThw4AAuXLiA7t27qzwDynRAN2/ehMFgwF9//cVSLtl70EKxFXUjR45EWFgYevbsKas0ciOEhYWpVhWFxcnJCU5OTkhLS1M1kMTERJUoUJp0tSxRQL7p+5VXXmHX4Zk/fz5atmwp+70qVarIPhMbGyuLqaPGpdWw7NmRuG3bNtUZp2XKlMHx48fx119/sddoUGnXrh2AfCva2rVrsWrVKtnvpKWlyToXNWpewJrNZs0BTylyMzMzcfToUbYasbaS4QUo3Z+1nUlKkalVVspE1tZOTVAOaAsXLkSpUqXYYKiMt7Al6k6ePClL6DtmzBjmFpg7dy7S0tKsThqhoaEAoErvkpWVxQbWRYsWsQl38+bNqo0HL730ktV75KH0KWSJUHLw4EGW4FaLtLQ0/P777zLXEF/+NGErj6z67rvv0LZtW924VKXIpHrWaks9evTAxIkT2d/WLHWLFy+WxfPRhMALC9rscuXKFSxfvhzz58+XCbPNmzczywQJlaCgIIwYMQJt27ZFYGCgTVEXFxeHxMREzf7v7+8PABgyZIimoL5x44ZqfOEttqmpqSwuj+BdVXybJssqfx/U/5SWuujoaMTHxzNRRu2c+oqLiwu+/fZb9nnl+EsLaOVCWi9OlkhPT2dlkpiYyHaZurm5sd8ODAxEVlaWzVMMKDSGkCQJkiTJRJ09JxAB9/PnAfJ5ZO3atZgzZw4AtagDwCxQPPxuXKU7mvqW0iqsJerICgfk17PZbEbTpk1x+/Ztdo8zZsxAQEAADhw4gGbNmqms6NYYO3YsOnbsiK5du7LrpaWlsbkRuG9ZvHnzJt555x0YDAa2uYpEES+E6HlbtmyJixcvst3bQH68H4X8xMbGYvfu3Th+/Dg6derEPB5Tp07FoEGDmNeN5melqNu+fTsLx4mNjWWLYR8fH2RmZsrEPp+Khq9bEo7NmzdHcHAwu1fehc7HIwNgGzl2797Nxn57k74XS1F38uRJ3L59GxEREahevbrMvbhhwwaULl0aERERSE9PV+XxKixubm54//330b59e9nriYmJqpWcchBQigbekvTCCy8AUK8sBwwYgH379snEQ0xMDPr378/+vn37NpvQ1qxZw55Va1BXTkpKa9amTZs0rT1ly5ZVvZadnS0ToXzDpRX24sWL4eHhIYvnIxfx8uXLUbFiRdy9exceHh6qAYdioHgyMjLYSQ6AukzJKnH58mWMHTtW9t69e/dkq0tlWSxatIi5An777Te4urqqRHa9evVkf1sTdcqs7PyAAkC2oxawbVWwFhy8f/9+fPTRR6rXKdWIn58fK0+tnH00IBmNRtmES5MkTUwNGjSweo88thYQb775pkwwKZk+fbpsIlHCp4uRJIm1BWp7ervVlEmEaTDVcpEr8wSaTCacPn1a8xglZSxacnIyxo0bp0ob89xzz+H27dvs/pKTk5Gamirb9JKYmMgGcGdnZ7bJITMzU7ZYUYq6jIwM+Pv7IzAwULM9ubq6YvLkycjKytJMWn3jxg1kZ2fL2vnmzZthsVhw9uxZpKWl2d0GaGzRyoWoFNAxMTHw8/NDp06dANyfmKhMMjIyrE5W58+fx+LFi1UnQ9gSdRkZGcwFB9y3vDk5ObGxgqyCSgsvYTKZUKJECZWoS0tLw+3bt2WiTi8+UAkfB6t3xKDS/Qpot/mhQ4ey8laOsXxqIh7eHckLTCB/rqLrHTp0CPPnz1e5Lw8dOoRmzZppxvPaghcxZEChsZrG4+TkZCxatIj9G7gfFsNbyxMTE2EwGFC7dm0cOXKE5XkE5AuQmJgYNn7wlu3Tp0/L4rLp9/lxPzExkYU3APllR20lLy8PJpNJFqbC98uCpnJycXFhi7qMjAw212dnZ7Pr2puGpUCi7uTJk7IV06+//opmzZqhTJkyaN68eZEdsXPo0CFWmG3atJEJN2vv8WRlZSElJUX2nzX0Jqo7d+7YtNQpJ2X+XMUGDRqgVKlSqslCawK+ffs2ypYtywawmJgY2W+TJeLWrVtwdnaGxWLRfR5KMArkB4m3b99e07LJuxLr168PQC2SeFF3584d5Obmah7/5eTkhL179+L8+fO4cuUKzGaz5rE0HTp0UMUlJiYmyjoUP6lduHABVapUwcKFC9GkSRPVKvbs2bOyo4P43GoGgwFr167FRx99hH/++YdZKpUra+UpCdZOTeBds25ubipXpnKAtTdWTw+l5W/x4sVsxZmbm8ssJ0r3K3A/EDgtLU3zSDhqQ2TVsIcHzSi/evVqZtnSgt+FnJ6ebjOljtICRWRlZeHKlStWj8Kj9unq6opatWrJctPpcfToUc2NJH369EFubi6zLBw7dgwWi4XF4t64cQMvvvgiE0MkZlxdXZGVlYW0tDS0a9cOjRs3Zvd89OhR5OTkMMFHn1Pi4uLCQj20Eu5u27YNly9fltUzTWTnz59HWloa3N3dcebMGVnsklbZkyAjoaGM2+JRilO6Hr2ekpKiEnX838OGDdM8JYbvc3oxdbxIJhGYmprKvkuWKr00QNWqVUNAQIDK/QrklxmNkRkZGbh69apsRyg/RvDJvfkFpzVRZ8u6T9C8pVykam0qAuRiQzl/VK1aVfa3r6+vpjhp3rw5LBaL1ROVtMai999/n23eSktLQ2ZmJiunpKQku8+eXr16NdavXw8vLy8WS8rDL+IontEW165dQ6tWrWRzu3JzAy/qyLLIb15ISEhgZUh1W5B8ePxcTOP72LFj2b/tHXcLJOreffddZkb/6aef0L9/fzRo0ACfffYZGjZsiH79+mHhwoUFuaQmSUlJrMF5enrKJklr7/FMnToVnp6e7D++wLTQ2yGpZalTijjl6pTvuB4eHujSpYtqt5JS1Dk7OyM+Ph4BAQFo3LgxSpYsiZs3b+pWZKVKlZgI04IXdXruYeXnqFz5DRqAfAt9UlISPv74Y+zYsUN1rczMTFU5apnpQ0JCZLEl9Bv8ZJWSkgJJkpCWlsba1PDhwzVdJV27dsXcuXPZ37yo43N4TZs2jWXxVsboODk5yXZwWQsEVg7YtlJjLFy4UFd4EBUqVNAVf8pV91tvvcUm55ycHGaR0CprW0mY6bvKVbsS/toFOY7Kzc0N1apVK1CoBIUCZGVl6bb/ChUqsH/XrVtXsy9kZWWhUqVKVtMIhYSEALjfZ61ZaAmyfv7xxx+yxQS5wQmKF+T7Cm+hpIWDi4sL0tPTsXv3bgQFBeGll17CihUrsGfPHjRu3Fi1i1lrwjcajUyg8jkehw0bhhdeeAFbtmxh44uSb775Bjdv3oS7uztq1Kgha6tlypRRxehRe6d6ev3111XX1Hpe4P5kSJNecnKyStQNHDiQ/VvZTwlblhClqCNRdvToUQwZMgTAfbGlJ4BCQkLg5+enKepeeOEF5pJPTk7GzZs30aJFC9StWxeAfCHHiyW+n+mJupMnT+Lnn3/W7ZOUuBhQx4QRWpZDZ2dnWdtRijqlq5YP3+CpVasWDAaD1XNk+TGYePnll/Hll1/Czc0NaWlpyMrKYmNpYmKiZpweL9gTExORnJyM119/HX/++Sd8fHxY/+Xh55G0tDS7hNWff/6JvXv3Wh3LY2JiVLuJL126xMbD+Ph4dj9UbgVZ0Gt5zXgeiqXuwoULbOffd999h1mzZmH27NkYOHAgvvnmG/zwww+yoMvC4u3tzR4gKSlJZuq19h7P6NGjmUpPTk4udGC4VkydrUmNH6RcXFwQGBgoixW5ceOGKhA/OzsbkiSxgSY1NRWTJ0/GZ599pvkbJUuWtJrPhhdr1lBanYD8zq0UWERiYiLLQ6TkyJEjzAJDgckkBvjjtmgnkLLB8+bxa9eu4a233oKHhwcLJldO8DRoK2OIaEAxGo2yAHg+Aa7yKB4nJydZTNGMGTMQERGhmeqCL7MSJUrYJXKUMRNKatSoYfUsWKXlkAbk3NxcJsy0rCrWLGL9+vVj7jh+R68WvPVZa6BXxjkC+eVEYwOfAkAvkbPSxcbHfCknftoRCADt27dX7TgDbG8ueeedd/D5558DuL9Rwp4cUWfPnoXRaESnTp1kRx4prQZkMdNzr/OWOsLd3Z2JpKFDhwKASlQp3f1AfpwfP8mS1SMwMFC2oNUSCuQBoEmdD924desWdu/eLfs8CYjU1FR4enrqnrfs4+OjqtOlS5ciLi6OTY4pKSmytt2gQQPWV6pUqcLctvPmzdMVETR2ZmZm4sMPP0RCQoJK1GlBZcGnruIhURcbGytzvyrnnH///ReSJKFChQpsUcuXMy+Smzdvjj///BM1a9bUFXXUbmfOnKn5Ph86kJiYiNTUVJX41Vr8KscXpagbOXIkXnnlFbZASkxMlInFKlWq4JtvvmFtS2/uXbJkCYthJG7dusXSPbm7u7MULrylrnnz5qq2xIvDVatWydqAyWRShc0ouXv3rl1iyNpJMb6+vvj6668RHR2NiIgIFmtO0NwWHx+PcuXKMe/NjBkzVHGq1rBleHooos5kMrEB6ubNm6rEho0bN7aZ0d4emjRpwhru1q1b0axZM7ve43FxcYHFYpH9Z43IyEh2WDuP0lJnT7AiP0gZDAbV4FKmTBls375dNjERwcHBAPLzuQHqRJM04AcEBFidgJQdTm/S1nKdxMfHs237SubMmaOaLBcuXMh2hC1duhQODg5sxUL30axZM/a81JGVZ1XybrKTJ09qunh5yM3Fm9vDw8OZe97R0ZGtTJXthLfsAep69fb2RvPmzTV3wfKv+fr62nXiBm9Z0qJ27dpWD7vnXTjAfQsbb6nLy8uTxYAoUYqBHj16YMWKFYiKilL1ZSUk6vQGHq1y8vLywvTp09G2bVvWB0aOHKk7WTVu3JgNgqGhodi8eTPbca20bNOkOWbMGPTp0wfTpk3Dhx9+KPuMrfOS33vvPfZctlKa8Jw5cwZBQUEqwe/v7486deqwDSTkZuVjRXmozfHWQXd3d9StWxcjRoxgCyOtMVXZd7KysmQTHpWjm5ubrI+7ubnh4sWL7EQLwmg0srQvyvFKacHhrRmlSpVC27ZtZS5bwtfXV3ODj7+/P7Mgx8bGysTNoEGD2Fjt6OjI+k1gYKCum3fv3r345JNPsHnzZsyaNQtz5sxBenq6akezUtRYszQB+YKiWrVqOHPmjCw8R2lRIVEcEhLC4hJ5YczHKrq7u6N9+/bw8PBgi6Pdu3fjrbfekl3Tzc1NloaHh+9rrVu3Zru59XjhhRfw999/qxb6SoEfHByMLVu24K+//kKtWrWQmJgoExJdu3aV7cDVE3W9e/eWjXd79+6VjV8xMTEYN24coqOj2bPk5OTAz8+PxdMRWpY4ol69epphTDxxcXE2Y5rLli0rMwyYzWZZ/3jvvfeYBRaAKu/m1atXYTAYcPbsWfj6+iI4OBiTJ09mBxTwlnZrLmb+9BAlNWvWRGpqql1zTYFEXdu2bfH9998DyB80lPnRVqxYoXKrFYZ69eqhZMmSCAsLQ2RkJF5//XV22Parr76KqKgohIWFwWQyqVwehSUkJAQ1a9ZUvb5u3Trs3LkTTk5OOHv2rG5OOB6lQNBLwaGcqE0mE8qXLw9AnrGbJo+vv/6aPW9AQIDVWBZlB9Y77JtvZLQabd++ve4xXVqbNPr27Yv33nuPNXaLxcIEJ1nqSpcujf3791s9YFsvuFcPmoh5l++YMWPYpODk5MRc42TxbNKkCYKDg5GQkIA2bdqw+9SrM3tEnRbKnaFUr3o0adKETaZmsxnfffed7H2la4KEXG5uLhMFeXl52LhxI/r27av5G3zCUCB/oHBxcUHp0qU1FwiDBw9m/6bnJOuREq1FE19ONMHm5eWhQYMGsvYN3Bc2GzduREZGBkqUKIGEhATWDpXlRy4ofsPIzJkzceXKFZw4cQLOzs5WT6C4desWQkND2X3zAoDKlkSh0gqYkpIiO25s9erVOHjwIBwcHPD3339j3759MBqNNo+Qo8UfLyjJYsC72HhocUb92d3dHZ9++im6dOmiGcfl5uYmuw9nZ2dUrlxZtokAyI9Ro40fynASpTDj41GDgoJgMBhULmJAf9InQkNDsXDhQlm/N5vNrO85ODiwMaVOnTpWF7FfffUVc3efO3cOGRkZMJvNOHjwIJv4+cTggO3USCEhIWjUqBFiYmJkli+lkFi/fj2Cg4NRqlQp/Pjjj6pxrF+/fmyxRQs3s9nMrtm4cWM899xzsu+UKlVKd5HH1x3vZqU+pBQOJpMJderUYYsEEnNkQFBiMBjg4+ODmzdvIjc3l/V9pUi2FrJBAjo4OFiVioM2ft28eVPWZrXGEL6fEZ9//jlycnKwePFiGAwGldeF59ixY0hKSrLqiShfvrysfj/88EPZObYWi0UWjmPNo2KxWPD9998jPT0dZ86cweTJk2ULHq3nIXr27KkZbnD79m1ZLKItCiTqpk2bhp07d6Jly5YoU6YMZsyYgbCwMPTv3x8tW7bEhAkTNFdshWH69OmIiIjA0qVL4ezsjB9++AFAvsBZvHgxIiIiZFvhiwKtCfrs2bP45Zdf4ObmhurVq9u0uABQmWf13ADKiTo4OJh1SL6xk3WkXbt2LADVzc2tQO5XvVVfmzZt8O677wLQzw1HYpd3wSkxGAxsUtCKZQkKCkJgYKBqgtyyZQvbmZqSkoIOHTponoShBU2GvGvE1dWVDW6Ojo5wc3ODo6MjXnnlFbRt2xZfffUV61g1atRgA6RS1NE1tAZ+pfuVp2vXrhg/frxqJ6HeitJkMmHChAlo27YtjEYjXn75ZaxevVp1DJqyPun+cnJyWJvJzc2Fo6MjK+M33ngDffv2xf79+1GhQgVV27UVR8cP4vScJpNJM3ZPa0Dmv0/lS+1hyZIl6N69O9q0aYOBAweyHcNubm6yOiSUixKyPnTv3l32Oh1bZTabre5IJNFDdckLq++//x5ly5ZF8+bNcfDgQSbu+BAC/lDzzp07yxaXBoOBtStr1lctSx0FdSuD1gmydlssFixZsgT79+/HlClTmGeCIMtCXl4eczHzv6UsX75OlRYsZehKRkYGOx3B2mJF2SY6d+4sy02pNd4qRV39+vUhSRLKlStn0zXOJzYm92toaCj279+Pffv2sWTshMFg0E3o6u7ujsqVK6vEFpB/bJ3SAEDXMZlMqvhZo9HInonaA/UNT09PmEwmlaU4MDAQnp6ezBsxefJk9O7dG0OHDlUt5smqtHr1aqSnp6vKneqaLK4kUHgrGJUd4e3tzfoPzVNKUadMA/Xuu++ykBoHBwfMnDlT8wg93gvEt7Vu3bqpPtuoUSMA961jLVu2xGeffQYHBwfWHvi60Juj3n//fc3XgXyRzHvjzGYzSpQowQxYFotFNldrzee0gMnKykKDBg3Ygo0vY4vFYlUQAvmiT5k5ICAggD2XPZs+CiTqSpUqhZMnTyI0NBRbtmxh5+Nt27YNpUuXxoEDB1SC5knCWhwadUa9RtOjRw8cPHgQKSkpKmuG3opQeS1+ZxrfcakReXl5se/k5uZqDnL0W8pn0fLtU0qFkSNHAtA/mmv58uXo2LGjpiWThxow7wrgE31q8corr2D48OGsc5coUYKJj9atW8s+q9yZqOUyc3V1Za87OTnh2rVrSEhIgNFoxKZNmxAWFsYEQrVq1XRFHZWt1i5YT09PnDt3Drt27VKVc4sWLTBhwgRVx9dLbuvt7Y3x48cza+zWrVtl+ZuIzMxMLF26VNOVR22CJvz+/ftj/Pjx+O2337Bw4UI0a9YMV65ckT2LVgxJTk4OS8GjvGcatEwmE2svPFqijndPUnvmFw7Lli3D5s2b8f3336vEPu/yq127tmo3nZeXl1XrjV57U0L1zz9rz549ce3aNRgMBmbNe+2112SneugtkghaUf/666+yVT9/yoyWpY4mF737p75hNpvRu3dvmdjlxwzqK66urqhYsSLzdGj9pvL569ati6NHj2LSpElo06aNZsqPtm3bAlBvKOLdVDQWkdWxadOmslMEtCx5SlHHY80zAeRb6PgdjNQHy5cvj7CwMLi5ualccXycLU9kZCScnZ1V/fv9999HgwYNVMYLrRNYeGhs5S11wP0Fu7I+qL23adMGkiRhzJgxWLJkCctlx58JW61aNeTm5qJdu3YwmUysTSs3/9Dr1Ib48B/lmMOLOhIiyjFNaekbN26crD1++OGHmhsm/P392djAL5C14mJbt26Nu3fvsrAjrf7OL1AoBlOJ2WxGTk6O6jzauLg41dhM7Y+e12AwwGAwYN68eYiIiNAUdcOHD8eCBQswZMgQGAwGzJgxA/7+/kyU7tq1C2fOnLErywBd/9NPP2WZD6iv2DoeDyhEnjovLy98+eWXOHv2LDIyMpCVlYX//vsPS5cuLVCuq+KI1jZsQk8sEd27d0doaCg8PDxUjUTPUqccpPQmfpqAvby82O+XKlVKs4HT6oK3rCxatEjzvun36D0tF23nzp1Ro0YNrFu3TtYgtXbqkOudd4eSK8fWCoUsWX5+fuzayvJYs2aNbDedlqgrVaqUzFLn6+urEhw0mPn7+7P39FKYKAV5rVq14O3tjeDgYDz//PMqYU739Mknn2DChAlshcffa6tWrWzGeCpJTU3Fm2++KYuZa9euHZYsWYLg4GAcPXqU7Ro0m82YMGGC1fNMtWJDHRwcZGVOuwSB+5ORg4MDRo8erUoBpHTnKX+D+oC9SUtpMbB06VIcOHBAU9RZw5a7myBrrrWYOoPBgDVr1qBhw4b46aefNHPZKaF2T/FxXbp0ASAXv1Q+vHihjRd8OfF9lyyM1s5G7ty5M+rWrYszZ87ILEiAfMetNRo2bIixY8eiZs2aqt22FouFbWDhx4H4+HhZiin6TRIR/v7+snGAt0ZSwLvZbIaLiwtMJpNsZzGgDh/Qch/yoQda467SO2IwGODr68smX4LEFl9OmzZtYt4hrfZuDaovame2RJ2t8ZL/vJeXl2wuoX6vfIYLFy7g6tWrmDNnDk6dOgUnJyeZUOQpV64cExD8XGINW4H+hNFoVFnK9fDy8oLZbGb939qGBgC6Z7I6ODiwfsb3QbPZrGonVH68BwTIzy3bvHlzzXbl7e2Nd955h42TQ4cORUxMDCuT559/HmXKlNG1wPPQwrdevXrMdU3tQW9zDU+xTD78uFAKn08++YS5VZSDIpC/aYAGI36wUA6YepY6pSjT6zQ0gZpMJjz33HPYvHkzWxEo6d27NyRJYo2rfv36ePvttzWvTbuc/Pz8cP78edUgCuSb9AkayNq1a6fp2tKyLnz55Zf45JNPbG7Xpk5brlw5lC5dGoMGDVKdd+ru7i6zFvID2/r16xEZGQkHBwf2up6o6du3L7799lu0b99eFn+nBb8if/XVV3H69GnZZ/Xcoh4eHhg/fjwiIyNx48YNWZtYsGABc1PYs9sSADp27Kh6bePGjSw2rWHDhjYtGfZAZbdgwQJZm6Y2nJOTA4PBoBLBWq4TXqzUrFkTy5Ytw+jRo+26D7JYVatWDe7u7ipRZ0sUU3tXTtZaWCwWuzdKvPvuu6rYLC02bdqE7du3M1c/DdS8O1aZiHfcuHFsEuAnO7KyLVy4kLmA9c6PTUlJYbmzatSowdqEUszZ+7xa4tlkMrHFBe929vX11RxnSGAHBATIxApZcf7v//5PtrHDYDAgPT1dlSpl1apVzE1vMBhw9OhRjBkzRtaH+GBzW7tfifj4eBw5cgT//PMP/vrrL9kmKv7afN3xoo4/v5bn9OnT7Czk999/H46OjsziYkvU2Vr8KEUdD7U1WrxSnQcGBqJ8+fJwc3NjVjFy6SrhY1614k4JGmMTEhLsHsuA+4t4LVG3bt06vPnmm1i9ejUbQ6j/67V7IjQ0VOXReeWVV1QbgwhXV1fVc5ElTynqCL2d/vbAW7KDg4Ph4uIiS+ED3K8/fvwkg4o9ok5/Kf8MwjdKWlnt2LEDL730kubKf+jQoWxHIT8BKidXvcFFKXSUHbt27dqIiYnBunXr8Mcff7D7o3gW+tvd3V0VQKk0ufMNd/To0XjttddkwdjVqlWTWV88PDx0U4jQfa5cuVLmQtESFaVKlcLUqVM1n5+HBoeyZcvCaDSyjQKHDh2STRy8oKKO9Ouvv8pOqaAJTE+oOTs7sxgLpaj7448/ZNnbQ0NDkZeXh99//13TLaq01ClXkt7e3vD29pbtYvb09LQZRM+TlpZmc5VcVNBAohRtvKhTQnF9yvgkpahWxr9Zg0QdtS8a1Bs2bIhWrVrZHETpOV588UXVCR9KwsPD7T5X0V7IPUnQQM0v8KiMqY/ym8z4AX3y5Mn4v//7P1gsFvYsehYLPQuSsl7tyccHaIsLV1dXNGzY0Kq1ELgvVhs3boxNmzahevXqsuen4HUPDw9239aEmKenJxo2bIizZ8/C09MTHh4emDx5MiZPnoyOHTvCYDDIrHcF7TO0YNTzOGmJuueff143AwNvWWzdurVMkFD5k+hX3qstUcfXn1LU1a9fH//9959qQVEQeNcsjZFaC4ErV64gISGhwCdMkEih5+a/37FjR9UilhYDSmut1n1v374da9euxZEjR/Dll18iPDxcd9ep0Whkba506dKYOXMmG+dfffVVvPnmm6o0Kz4+PvD09ERISAhL2WPLc0B06NABLVq0wJIlS3Q3TVCZ8OVNbnUh6ooAmkz0Vud16tTBvn37rJrL+YHsp59+wnvvvYe33noLI0aMwCeffMLeU3bsEydOQJIkODo6yhQ+8dJLL2HTpk2qXUTA/QZBgw8/CFC6FCW8CPrvv/9ULjZ6Dro2pZvg+fPPP20G4GtBqyFlQ1cexcTj4uKiObEoxa81lDF1r7/+uspCYDAYdAWJ0lKnl8SaFzje3t4s7see1a2tXXoFoV69elYTEtsSdVrnqOoNmNbcv7Yg9yuVL7lrGjduzPIWWuObb77BCy+8YFcKIqVF+GFA5cbXJd1b06ZNERERoSsOjEajylpiyw2lhOpIa6MEbVTSQiskxV6xRKKuRo0aKst+ly5dULt2baxYsQKvvvoq2xxlj3VNK05r3bp1qr5kr6XOXnjBTP+2ZTnSg/L0Uc7GorTULVy4ENWrV0e9evUwf/58VfL8gkLPqrVoL1OmjN1uVx7+JJeuXbsya7QeTk5OOHnypO6u8ICAAJQvX561gddee43FgtpawFA7cXNzkx176ebmphlz6erqylKgDBkyBN99953dljqLxaI6IUjJwIEDkZubq0pPFRAQIERdYbh48aIsmWz16tVx5swZ2UASEhLCBravv/4a/fr1s9pw+MGFREjz5s1Vk55ysLR1bMqwYcPQp08fWCwWnDp1SnYeolLU2SMe+E6rtfJSijotlGfn2kvlypWxbds2m25ae7l9+7ZdCZhtuV9tobTU6Yk6HqPRyERTQVwWRcGBAwesnt2qFHUHDx7E999/z+It+ZXyihUrCpRbryDQRETt19PTEzt27LA7hVHJkiXRr18/lljW398fV65csXq/DxMtSx1f98oUOHrQokfL3W0NZb3yCzM+95gSreB1e1231BeU/TA1NZWNlzSJhoSEwGKx2G3xUKLVj/RE3e7duwvV3/m2Q/8uqLgmKM6QFq0FFXX8fKP8rMViwaRJk5hVt7CizsnJCffu3WO/VZRjFW9s0EqmrYWWYYPQOguY6sbakY/A/Xm3MIsArbCKB8XFxUXzvG8h6gpJ5cqVVbn2lDu8+Fxt/JmLevADOcWd0f+PHDmCDRs24PPPPy9QAlQgv5NRh65du7ZsAFbutioKqNE/DFfg9OnT8frrr9s9qNvKh2gr0JjgE50WBhK/zZs3x+HDh3V3XykprIh8UEwmk9X6U07+oaGhTEglJibK6odf1Srp1auXZjJvexk9ejQ++ugj2USi3A1tD3x+PFuD+8NES9QVBovFYtPtqQXVK7VzsqbbsqprhZ3Y6v/t2rXDsWPHmKVOuUDUGpPCwsIQFxdXpHWkN0nrBdPbgr9vurY1oWGN6dOn45NPPtE8VQSwLer48UrP9Umv25PbTIvdu3dj1apVrL0Vpt3podyh+6Bojd80bunlaCV4S11BUfarh0m5cuXscqULUfeQaN68OYvzokbj6emJNm3a4PDhwyyDf6NGjVhC3qIUS2SNKWisgzWo0dsbj1MQTCaTLJ2GEr7zX7lypdAreiUWiwWOjo6FXoU6OzvDYrGgXLlyLPmpvd8DHr2lzhbKwHoeW2V+4sQJ/P7775g2bRratWv3QAP20KFDdRMdFwTqe3l5eY9k4NXDnpixhwlNPjQptG3bFqdOnbKaDBXIbw99+/ZFbGwsNm7cCMD2REyfGzNmDA4fPmy3a6qoRXdRlzV/PYPBgAsXLtgsPz1cXV1lG8sKKup49IQ5WUgLK+qaNWuGZs2aYd68eQCK1kBQ0N3DhaFZs2bIzc21uYHsQSx1EydOhIeHh9WzwosKvfQ7SoqdqDt+/DiGDx8Oo9GIgIAALF26VGbV2LNnD3r37o1KlSrBwcEBO3fufIx3qw8/wdNgRZ1PeSQTPV9RWm/CwsIwbtw4jBgxosiuSaLuUQuRpKQk2W/akwDaXiwWywNPJnq7/qxhj8Bo0aJFgU/ZeFD0YursoV69enB3d8e0adOsxkI+Smig9vPze6wC+vvvv8crr7xSoIlxxowZRXLsInBfrFNsn8Fg0HStarFw4UKsX7+eiTV7z5WeOHGiytr6KClqUacUB/akp7CXBxF1euVLYlqZxqWgvPfee/D09LSZm7EgkKhTbsYravQE3YkTJ9jJKA/igfL19bVrI+CjpNiJuqCgIGzduhVmsxmffvop1q5dq3LzdOvWTZbQs7hjMBgwbdo0vPbaa5rv0wRqK4auIDg6OqoyUz8ovNXjUWLvSr8wdO/e3W5XrR4dOnSw2w1DMXg0EFub8GwF1D4MqA0WdoFRpUqVInXTPCjUt5THkj1qSpQoIUu8aw9acTWFRS89Q0Hx8/NjuTDt+c2i9BTYi9FoRF5e3iPbMV4UKEVdQfNYamE0GrFz507NUzEKgqOjo+7JG4WFhObjEvz16tVj6cionVg7SuxJotjlqStZsiQTD05OTpoWjVWrViEsLEx17EtxZtSoUborO1pNFKWoexiQpe5Ri7qHSZkyZVSHaReUb7/9Vnb8kR5nzpyRZYIH1JncHzePMkbkUfDcc89hzZo1sl3mzyIkGh50Eh02bJjV4wKLA8rksQ8Kn4T7YUGLqNatW+PYsWNFtuP9hRdeKLJQlaLk9ddfx8KFCwuU5uhhQcm19XbWPmkU25H7+vXr2LFjB8aMGSN7vUGDBmw7eKdOndC8eXOWRJcnKytLtssvJSXl4d7wA0Cr5+Ii6vRcRNbSWghso4y7iI2NLXYDrjL26knHYDDoWsifJfr164ekpCRZPsenFWdn50LvStVi7ty5soTEDwMac4cNG6Y5n2kxbdo0m0c3FlcoVrM4QAmr7UmB9STw2ETd7du3NfOcrV+/Ho6OjujduzcWLVqkcgPxgqNjx444deqUZieYOnVqkbsfHxaPStQ5OjraNOsfOHBAN+8QmamFqCsaCpPP72FDVg5Rx08Xrq6uGDt2bKG/X9w29FgjIiIC27dvf9y3USCcnJwKHLYwatSoh3Q3zxb169cvViEjD8pjE3UlS5bUPF4lNzcXr732GsaNG6fprkxJSWHCJCIiQnXEBkEpEfjvFSZJ4qPgUYm65ORkm4MzHUOkxdNmxRGoofjF4mI1FhQPWrRogXr16j1wqMKjoG7duoVONSIQPOkUu5i6FStW4ODBg5g8eTJatWrFzjGkjNMrVqxAo0aN0LRpUwQFBeke7+Pi4gKLxSL7r7jyqESd2Wx+oOBhIeqefkaNGoU5c+bYdWaqoHD06dOnSHdwPwo8PT1x4sSJYrswFggE+Rikp8nuaIWUlBR4enoiOTm52Am8H374AQMHDsSiRYtU58wVJ+7du4cePXpgxowZhc7PJBA8Trp3746XXnoJ77777uO+FYFAIChyhKgrBpw/fx4hISG4ePGizZMSBAKBQCAQCLQotrtfnyWCg4OfqkBNgUAgEAgEj55iF1MnEAgEAoFAICg4z4z7VZIkpKamwsPD44nani8QCAQCgUBgD8+MqBMIBAKBQCB4mhHuV4FAIBAIBIKnACHqBAKBQCAQCJ4ChKgTCAQCgUAgeAoQKU1wfxOFQCAQCAQCQXHF1mZPIeoAxMfHw9/f/3HfhkAgEAgEAoEutg5QEKIOgLOzMwAgKiqq2J02IbBOSkoKypQpI+ruCUTU3ZOLqLsnF1F3TzYeHh5W3xeiDmCmTIvFIhr5E4qouycXUXdPLqLunlxE3T2diI0SAoFAIBAIBE8BQtQJBAKBQCAQPAUIUQfAxcUF48ePh4uLy+O+FUEBEXX35CLq7slF1N2Ti6i7pxtxTJhAIBAIBALBU4Cw1AkEAoFAIBA8BQhRJxAIBAKBQPAUIESdQCAQCAQCwVOAEHUARo4cibCwMPTs2RPZ2dmP+3YEGhw/fhxhYWFo2bIlwsPDce/ePfz+++8IDQ3FCy+8gKioKABAZGQkmjdvjtDQUOzYseMx37WAZ9myZfDz8wMAUXdPEHv27EHr1q3RsmVLrFu3TtTdE0BeXh769OmDsLAwtGjRApcvXxb19qwgPeOcOHFC6tmzpyRJkvT5559LS5cufcx3JNAiOjpaunv3riRJkjR69GhpxYoVUqNGjaSsrCxp//79Ur9+/SRJkqROnTpJ//77r5ScnCyFhoY+zlsWcOTm5kpdunSR6tWrJ2VnZ4u6e0LIyMiQOnToIGVlZUmSJIm6e0I4fvy41K1bN0mSJGnbtm3S8OHDRb09IzzzlrpDhw7h5ZdfBgC0adMGBw8efMx3JNCiZMmSMJvNAAAnJyf8+++/qFGjBpydndGsWTP8888/AIDo6GhUqVIFFosFvr6+iI+Pf5y3Lfj//Pbbb+jatSuMRiMuXrwo6u4J4eDBgzCZTHj11VfRuXNn/PXXX6LungBKly4NAJAkCUlJSfDz8xP19ozwzIu6pKQkdlSKp6cn7ty585jvSGCN69evY8eOHWjevLnsiJvc3FwA+YMYIeqzeJCbm4sVK1agW7duAOR9jt4HRN0VR2JiYnD16lVs2LAB/fv3x4QJE0TdPQGUKFECRqMRISEhGDVqFFq1aiXq7RnhmRd13t7eSElJAZA/2fj4+DzmOxLokZKSgt69e2PRokXw9/dn9QYADg4OAACj8X6TFvVZPPj1118RHh7O6obvc4Cou+KMl5cXmjdvDmdnZ7zwwgs4efKkqLsngK1bt8JkMuH8+fNYtWoVZs+eLertGeGZF3VNmjTBtm3bAOR3hGbNmj3mOxJokZubi549e2LcuHGoWrUqKleujMjISGRnZ+PAgQOoXbs2gHw37cWLF5GSkoI7d+6gRIkSj/nOBZGRkViyZAnatGmDixcvYv78+aLunhAaNWqEyMhIAMDJkyfx8ssvi7p7QvD29gaQL8zj4+NFvT0jiBMlkL/79ciRIyhbtiwWLVoEZ2fnx31LAgXLli3D0KFDUatWLQDAoEGDIEkSZs+eDVdXVyxZsgRlypRBZGQk+vfvj9zcXEyaNAkvvfTSY75zAU+DBg1w7NgxLF++XNTdE8L//vc//P777zAajVi4cCGOHj0q6q6Yk5ubi969e+PmzZvIysrCzJkzcf36dVFvzwBC1AkEAoFAIBA8BTzz7leBQCAQCASCpwEh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgKEKJOIBAIBAKB4ClAiDqBQCAQCASCpwAh6gQCgUAgEAieAoSoEwgEAoFAIHgK+H+EZXbbx5W8JQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1410,7 +1410,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHFCAYAAAB/4rS/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9DklEQVR4nOzdd3hTdRfA8W+6C7RldrBK2ZS9QUGGlClT2TIUUJEpKoqogPKKoEJRZAoCMkX2HrKlbApiWUKBAi1lSAfdzX3/iIktHXQkvUl6Ps9zH9KbO06AJie/cX4aRVEUhBBCCCGExbNROwAhhBBCCGEcktgJIYQQQlgJSeyEEEIIIayEJHZCCCGEEFZCEjshhBBCCCshiZ0QQgghhJWQxE4IIYQQwkpIYieEEEIIYSUksRNCCCGEsBKS2AlhxZYuXYpGo8HJyYlbt26leb5ly5bUqFEj1b5y5cqh0WgMW8GCBalXrx5z5szh2YVqDh48aDhu6dKl6cbQunVrNBoN5cqVS7X/6dOnTJ8+ndq1a+Pq6oqLiwsVKlSgV69eHDp0KN17pLdldF9TiY6OZuzYsZQsWRInJyfq1KnDmjVrsnRuy5YtM30tYWFhzz22ffv2pnppQggrYKd2AEII04uPj+fTTz/ll19+ydLxL774It9++y0A9+7dY+bMmYwaNYrIyEg++eSTNMe7uLiwePFiBg8enGp/cHAwBw8exNXVNdX+5ORk2rZty59//smHH35Io0aNALh27Rpbt27lyJEjtGjRItU5X331Fa1atUpz7woVKmTpNRlLjx49OHXqFF9//TWVK1dm1apV9O3bF61WS79+/TI9d+7cuURGRqbaFxMTQ/v27alfvz6enp6pnitfvjwrV65Mta9w4cJGeR1CCCulCCGs1s8//6wASvv27RUbGxslMDAw1fMtWrRQqlevnmqft7e30qlTp1T7IiIiFDc3N6Vs2bKp9h84cEABlKFDhyqAcvXq1VTPf/rpp0rp0qWVDh06KN7e3ob9+/fvVwBlyZIl6cadnJyc5h7r1q3L8us2le3btyuAsmrVqlT7/fz8lJIlSypJSUnZvubSpUsVQPnpp59S7U/v30YIIZ5HumKFyAfGjx9PsWLF+Oijj3J0vqurK5UrV+b+/fvpPu/n50eZMmVYsmSJYZ9Wq2XZsmUMGjQIG5vUbzWPHj0CwMvLK93rPXu8udi4cSOFChWiZ8+eqfa/8cYb3Lt3jxMnTmT7mosXL6ZQoUL07t3bWGEKIfIx83z3FEIYlYuLC59++im7d+9m//792T4/KSmJkJAQKleunO7zNjY2DB48mOXLl5OcnAzAnj17uHPnDm+88Uaa4xs0aIC9vT1jxoxh5cqVhIaGPjcGrVZLUlJSmu15FEVJ97ycXOvixYtUq1YNO7vUo1hq1apleD47rl27xpEjR+jTpw+FChVK8/z169cpWrQodnZ2VKhQgYkTJxIbG5utewgh8hdJ7ITIJ9555x3Kly/PRx99lGYSxLNSJkO3b9/m3Xff5dGjR0ybNi3Dc9544w1CQ0PZtWsXAEuWLKFFixbpjoErV64c8+fP5969e7z++uuULFmSkiVLMmjQII4cOZLu9Xv37o29vX2a7c6dO5m+lmXLlqV7Xnrb8zx69IiiRYum2a/fp2+JzKrFixcDMGTIkDTPNWvWjJkzZ7J+/Xq2bNlCx44dmTFjBu3bt0er1WbrPkKI/EMmTwiRTzg4ODB16lT69evHr7/+mmnX344dO9IkOvPnz6dTp04ZnuPj40PLli1ZsmQJTZo0YfPmzfz0008ZHv/mm2/y6quvsmPHDo4fP87x48dZsWIFv/zyC9OnT+fDDz9Mdfz06dNp3bp1mut4eHhkeA+Azp07c+rUqUyPyQ6NRpOj556VlJTEsmXLqF69Ok2aNEnz/NSpU1P93LFjR8qVK8cHH3zA5s2b6d69e9aDFkLkG5LYCZGP9OnTh2+//ZaJEyfSo0ePDI9r1qwZs2bNIjk5mWvXrvHZZ58xcuRIqlevTrNmzTI8b8iQIbzxxhvMnDkTZ2dnXnvttUzjcXNzo2/fvvTt2xeAv/76izZt2jBx4kSGDRuWagZo+fLladCgQfZeMLrWNDc3t2yfl55ixYql2yr3+PFjw72yaseOHYSFhWVr3OPrr7/OBx98wPHjxyWxE0KkS7pihchHNBoN06dP5/r16yxcuDDD49zc3GjQoAGNGzfm9ddfZ8+ePdjb2/Puu+9m2g3Yo0cPChQowNdff02fPn1wdnbOVnzVq1enT58+JCYmcvXq1WydmxFjdsXWrFmTS5cupRmP9+effwKkqQmYmcWLF+Pg4MCAAQOy94Iw38klQgj1SYudEPlMmzZt8PPz44svvqBMmTJZOqdSpUqMHz+eKVOmsHbtWkML27OcnZ35/PPPOXz4MMOHD8/weo8ePcLFxQUHB4c0z12+fBmAkiVLZim25zFmV2z37t1ZtGgR69evT9WVvWzZMkqWLEnjxo2zdJ2wsDB27NhBjx49KFasWJbvv2zZMoB0u26FEAIksRMiX5o+fTr169cnPDyc6tWrZ+mcDz74gPnz5zNlyhR69eqFra1tuseNGzeOcePGZXqtAwcOMGbMGPr3788LL7xAsWLFCA8PZ/Xq1ezatYuBAwdSunTpVOdcu3aN48ePp7lW6dKl0xybUrFixbKVPGWmQ4cO+Pn5MXz4cCIjI6lYsaIh5hUrVqT6OxkyZAjLli3j+vXreHt7p7rOsmXLSEpKYujQoene58iRI/zvf/+je/fulC9fnri4OHbu3MnChQtp3bo1nTt3NsrrEUJYH0nshMiH6tatS9++fVm1alWWzylUqBCff/45I0aMYOXKlQwcODDH92/SpAlvvvkmBw4c4JdffuHhw4c4Ozvj6+vLDz/8kG5rX3orXgBMnDgxzUQDU9qwYQMTJ07k888/5/Hjx1StWpXVq1fTp0+fVMclJyeTnJyc7gzkJUuWUK5cOdq0aZPuPby8vLC1teXLL7/k4cOHaDQaKlWqxBdffMH7778vXbFCiAxplOfVPRBCCCGEEBZBvvYJIYQQQlgJSeyEEEIIIayEJHZCCCGEEFZCEjshhBBCCCshiZ0QQgghhJWQxE4IIYQQwkrkqzp2SUlJnDt3Dg8PD6kDJYQQQlgIrVbL/fv3qVu3LnZ2+Sp1ybZ89bdz7tw5GjVqpHYYQgghhMiBkydP0rBhQ7XDMGv5KrHz8PAAdP8xvLy8VI5GCCGEEFkRGhpKo0aNDJ/jImP5KrHTd796eXllurakEEIIIcyPDKN6PvkbEkIIIYSwEpLYCSGEEEJYCUnshBBCCCGsRL4aY5dVycnJJCYmqh2GMBJ7e3tsbW3VDkMIYWXks8J45H3aeCSxS0FRFMLCwnjy5InaoQgjK1y4MJ6enmg0GrVDEUJYOPmsMA15nzYOSexS0P+iuru7U6BAAfnPZQUURSEmJobw8HAAKXMjhMg1+awwLnmfNi5J7P6VnJxs+EUtVqyY2uEII3J2dgYgPDwcd3d3ae4XQuSYfFaYhrxPG49MnviXfpxEgQIFVI5EmIL+31XGwwghckM+K0xH3qeNQxK7Z0iTunWSf1chhDHJe4rxyd+pcUhiJ4QQQghhJSSxE2ksXbqUwoULqx1GtlhizEIIIYSxSWJnBQYPHoxGo0mztW/f/rnnlitXDn9//1T7evfuzdWrV00U7X8kGRNCCCGMSxI7I0vWKgRcf8TmwLsEXH9EslbJk/u2b9+e0NDQVNvq1atzdC1nZ2fc3d2NHKEQKouPVzuCfCcmJoakpCS1wxDZ9OjRI9zd3bl586bRrvnaa68xc+ZMo11PZEwSOyPadTGUZtP303fRccasCaTvouM0m76fXRdDTX5vR0dHPD09U21FihQBYPLkyZQtWxZHR0dKlizJ6NGjAWjZsiW3bt3ivffeM7TyQdqWtMmTJ1OnTh2WLFlC2bJlKVSoEMOHDyc5OZkZM2bg6emJu7s7//vf/1LFNHPmTGrWrEnBggUpU6YM7777LtHR0QAcPHiQN954g4iICMO9J0+eDEBCQgLjx4+nVKlSFCxYkMaNG3Pw4MFU1166dClly5alQIECdO/enUePHpngb1VYjTVroEABWLhQ7UjyjYCAALy8vChTpgz/+9//5HfUgkybNo3OnTtTrlw5wz6tVkvVqlX56KOPUh27e/duHBwcWLduXabX/Pzzz/nf//5HZGSkKUIWKUhiZyS7LoYyfMVZQiPiUu0Pi4hj+IqzeZLcpee3335j1qxZLFiwgGvXrrFp0yZq1qwJwIYNGyhdujRffPGFoZUvI9evX2fnzp3s2rWL1atXs2TJEjp16sSdO3c4dOgQ06dP59NPP+X48eOGc2xsbPj++++5ePEiy5YtY//+/YwfPx6AF154AX9/f1xdXQ33/uCDDwB44403+OOPP1izZg0XLlygZ8+etG/fnmvXrgFw4sQJ3nzzTd59910CAwNp1aoVU6dONdVfobB0CQkwfjxotbB5s9rR5AtBQUF06tSJyMhIwsLC+PTTTw1f7vJimIfIudjYWBYvXszQoUNT7bexsWHChAnMmzePf/75B4Dz58/Ts2dPvvrqK3r27JnpdWvVqkW5cuVYuXKlyWIXOpLYGUGyVmHK1iDS63TV75uyNcik3bLbtm2jUKFCqbYvv/yS27dv4+npSZs2bShbtiyNGjVi2LBhABQtWhRbW1tcXFwMrXwZ0Wq1LFmyBF9fXzp37kyrVq24cuUK/v7+VKlShTfeeIMqVaqkalkbO3YsrVq1wsfHh9atW/Pll1/y66+/AuDg4ICbmxsajcZw70KFCnH9+nVWr17NunXraN68ORUqVOCDDz6gWbNm/PzzzwDMnj2bdu3a8fHHH1O5cmVGjx5Nu3btTPZ3Kyzczz9DSIju8Z9/qhtLPhASEkK7du34559/aNKkCcuWLaNu3brExsYyb948qlatSpcuXTh06BCKkjdDVcR/7t+/j0ajYfbs2dStWxcnJyeqV6/O0aNHAdi5cyd2dnY0bdo0zbn9+/enePHifP/999y5c4dOnToxYMAAw5fy5+nSpUuOhwiJrJPEzghOBj9O01KXkgKERsRxMvixyWJo1aoVgYGBqbYRI0bQs2dPYmNjKV++PMOGDWPjxo05GvNSrlw5XFxcDD97eHjg6+uLjY1Nqn36JWEADhw4gJ+fH6VKlcLFxYWBAwfy6NEjnj59muF9zp49i6IoVK5cOVWSeujQIa5fvw7ApUuX0rzppPcmJAQJCfDVV//9HBICERHqxWPlHj16RLt27bhz5w7VqlVj27ZtDBw4kDNnznDgwAE6d+6Moihs3bqVli1b0qBBA1auXGn5BWkVBZ4+VWfLZnJ87tw5AObOncusWbM4f/485cqVo3///mi1Wg4fPkyDBg3SPdfOzo6PPvqI77//no4dO1KvXj2+//77LN+7UaNGnDx5kngZ72pSktgZQXhUxkldTo7LiYIFC1KxYsVUW9GiRSlTpgxXrlzhxx9/xNnZmXfffZeXXnop22+k9vb2qX7WaDTp7tNqtQDcunWLjh07UqNGDdavX8+ZM2f48ccfgcyrimu1WmxtbTlz5kyqJPXSpUvMnj0bQL7li6xbuhRu3wYvL9C3SP/1l6ohWaunT5/yyiuvcOnSJUqXLs3u3bsNS25pNBpatmzJli1buHz5Mu+88w7Ozs6cPXuW119/HR8fH2bMmGHo4rM4MTFQqJA6W0xMtkI9f/489vb27Nq1i5YtW1KlShW++OILbt++zd27d7l58yYlS5bM8Pz+/fsTExODoiisXr061dJf3bt3p0iRIrz22mvpnluqVCni4+MJCwvLVswie8wisZs3bx61atXC1dUVV1dXmjZtys6dOw3PK4rC5MmTKVmyJM7OzrRs2ZK/zOjN2d3FyajHGZuzszNdunTh+++/5+DBgwQEBPDnv11SDg4OJCcnG/2ep0+fJikpie+++44mTZpQuXJl7t27l+qY9O5dt25dkpOTCQ8PT5Oo6ruKfX19U43lA9L8LAQJCaCf0PPxx1Cnju6xdMcaXWJiIj179uT48eMULVqU3bt3U6ZMmXSPrVKlCvPmzeP27dtMnToVDw8P7t69y0cffUSZMmUYM2YMN27cyONXkH8EBgbSo0cPfHx8DPscHR0Nj2NjY3FyyvizauTIkQA8fPgwzXquo0ePZvny5Rmeq18PNiabyajIHrNI7EqXLs3XX3/N6dOnOX36NK1bt6Zr166G5G3GjBnMnDmTOXPmcOrUKTw9PfHz8yMqKkrlyHUa+RTFy82JjBZD0QBebk408ilqshj034JSbg8fPmTp0qUsXryYixcvcuPGDX755RecnZ3x9vYGdF2shw8f5u7duzx8+NBo8VSoUIGkpCR++OEHw33nz5+f6phy5coRHR3N77//zsOHD4mJiaFy5cr079+fgQMHsmHDBoKDgzl16hTTp09nx44dgO7NY9euXcyYMYOrV68yZ84cdu3aZbTYhZVI2Vo3bBjUqKHbf/GiqmFZG61Wy5AhQ9i5cyfOzs5s27YNX1/f555XvHhxJk6cyK1bt/j555+pWbMmT58+5fvvv6dSpUq8+uqrHDt2LA9egREUKADR0eps2VyzNjAwkDr6Lzn/Onv2LMWLF6dUqVIUL148w5bTzz77jO3bt3P8+HGSkpJYvHhxqudbtWqVasjOsx4/1g1HKlGiRLZiFtmkmKkiRYooP/30k6LVahVPT0/l66+/NjwXFxenuLm5KfPnz8/WNUNCQhRACQkJSfNcbGysEhQUpMTGxuYo3p1/3lPKfbRNKffRNsU7xabft/PPezm6blYMGjRIQTeUL9VWpUoVZePGjUrjxo0VV1dXpWDBgkqTJk2Uffv2Gc4NCAhQatWqpTg6Oir6/w4///yz4ubmZjhm0qRJSu3atdPcs2vXrqn2tWjRQhkzZozh55kzZypeXl6Ks7Oz0q5dO2X58uUKoPzzzz+GY9555x2lWLFiCqBMmjRJURRFSUhIUD7//HOlXLlyir29veLp6al0795duXDhguG8xYsXK6VLl1acnZ2Vzp07K99++22qmJ+V239fYWHi4xXF21tRQFH8/XX7li3T/dyihZqRWZ0PPvhAARRbW1tl27ZtOb6OVqtV9uzZo7Rv3z7V+9iyZcuMGG3uWfJ7SUxMjGJra6tMnTrVsC85OVmpV6+e8v777yuKoijffPNNmvd7RVGURYsWKc7OzkpAQICiKIoydepUpWzZskpCQkKq4w4cOKC8+uqr6d7/p59+UkqXLp1hfJn93Wb2+S1SM7vELikpSVm9erXi4OCg/PXXX8r169cVQDl79myq47p06aIMHDgwW9c2ZWKnKLrkrslX+1Ildk2+2mfSpE5kjSW/GYscWLhQl8R5eipKTIxu35kzun3FiimKVqtufFbim2++MUkCdvHiRaV3794KoBQtWlQJDw832rVzy5LfS06cOKHY2dkpVatWVY4dO6YEBQUpr732mlK+fHnDF+4LFy4odnZ2yuPHjw3n7dixQ3FwcFDWr19v2BcREaEULlxYWbx4cap7ZJbYDRo0SHnzzTczjE8SO+Owy9v2wYz9+eefNG3alLi4OAoVKsTGjRvx9fU1NMV7eHikOt7Dw4Nbt25les34+PhUs29M3XXbvoYXfr6enAx+THhUHO4uuu5XW5uMOmmFEEb37Ni6f8f1UK0a2NjAo0cQFqbrohU5tnz5cj788ENAN1xm4MCBRrt29erVWbFiBZcvX+b8+fOMHz/eUO5I5FxgYCBVq1bl448/5rXXXuPJkye88sorBAQEGIrS16xZkwYNGvDrr7/y9ttvc+bMGXr27MmMGTPo0aOH4Vqurq6MGjWKr7/+mkGDBqUZb/esuLg4Nm7cyO7du035EgVmMsYOdANqAwMDOX78OMOHD2fQoEEEBQUZnteviqCnKEqafc+aNm0abm5uhi0r4z5yy9ZGQ9MKxehapxRNKxSTpE6IvLZsGdy6pZsF+9Zb/+13doaKFXWPZZxdruzYsYM333wTgPfff9+Q4BmTnZ0d8+fPR6PRsHTpUg4fPmz0e+Q358+fp2bNmvTv35+7d+/y9OlT1q5dm2YJyc8++4zZs2ej1WqpX78+0dHRjBkzJs31vvjiC65evfrcpA5g8eLFNG7cmCZNmhjt9Yj0mU1i5+DgQMWKFWnQoAHTpk2jdu3azJ492zAT8tnp0eHh4Wla8Z41YcIEIiIiDFvKRFEIYYVS1q376KP/Wuv0ZAJFrgUEBPDaa6+RnJzMgAEDmDFjhsnu1aRJE976NzkfPnw4CQkJJrtXfhAYGEitWrWee1zHjh15++23uXv3brau365dO3r27MmOHTsoXbo0p06dMjxnb2/PDz/8kO2YRfaZTWL3LEVRiI+Px8fHB09PT/bu3Wt4LiEhgUOHDvHCCy9keg1HR0dDCRVXV9dMZ+sIIazA8uVw86aute7tt9M+/+9yelLyJGf0S4XFxsbSoUMHFi9enKpIuSlMmzaNEiVKEBQUJIvI54KiKPz5559ZSuwAxowZk2HJmozs3r2bBw8eEBMTw507d2jYsKHhubfeeosqVapk63oiZ8wisfvkk084cuQIN2/e5M8//2TixIkcPHiQ/v37o9FoGDt2LF999RUbN27k4sWLDB48mAIFCtCvXz+1QxdCmIuUY+vSa60DabHLhZRLhTVu3Jh169alKVJuCkWKFDEkdF988QXBwcEmv6c10mg0REZG0rFjR7VDESZmFpMn7t+/z4ABAwgNDcXNzY1atWqxa9cu/Pz8ABg/fjyxsbG8++67hjeVPXv2SAucEOI/+tY6D4/0W+vgvxa7v/4CrVY3mUI8V8qlwqpWrcr27dspWLBgnt2/f//+LFmyhAMHDjBy5Ei2bdv23DHWQuRXZpHYPVvk8FkajYbJkyczefLkvAlICGFZEhOf31oHUKECODrqlmEKDtb9LDKVcqmwUqVKpVoqLK9oNBrmzp1LrVq12LFjBxs3bkw1Q1MI8R/5uiqEsHxZaa0DsLPTlT0B6Y7NgsTERHr16sXx48cpUqQIu3fvpmzZsqrEUrVqVT766CNAt/qMuaw8JIS5kcROCGHZEhNh6lTd448+ev4SSzKBIss+/vhjduzYYVgqrHr16qrG88knn1C+fHnu3r3LpEmTVI1FURRV72+NjP13OnfuXHx8fHBycqJ+/focOXIkw2OPHj3Kiy++SLFixXB2dqZq1arMmjUrzXHr16/H19cXR0dHfH192bhxo1FjNgZJ7IQQli2rrXV6MoEiS54+fcrChQsBXTHi51UhyAvOzs78+OOPAHz//fcEBgbmeQz6CSOykL3x6f9OjTEpZ+3atYwdO5aJEydy7tw5mjdvTocOHbh9+3a6xxcsWJCRI0dy+PBhLl26xKeffsqnn35q+B0AXamf3r17M2DAAM6fP8+AAQPo1asXJ06cyHW8xqRR8tHXjjt37lCmTBlCQkIoXbp0qufi4uIIDg42ZPeW4HmDhwcNGsTSpUvzJhgzZ4n/viILEhOhcmVdYvfddzBu3PPP2bkTOnYEX1/dJAqRrl9++YWBAwdSoUIFrl27ZlaTFXr37s2vv/5K48aNOXbsmMlLrjwrNDSUJ0+e4O7uToECBczq78YSKYpCTEwM4eHhFC5cGK90VoXJ7PM7PY0bN6ZevXrMmzfPsK9atWp069aNadOmZSmuHj16ULBgQX755RdA9/8uMjKSnTt3Go5p3749RYoUYfXq1Vm6Zl4wi8kTImdCQ0MNj9euXcvnn3/OlStXDPucnxlAnpiYmCflCYTIM7/8okvq3N3hnXeydo6+xe7qVYiP102mEGksW7YMgIEDB5pd4jJr1ix27tzJiRMnWLRoEW9npaXWiPSF88PDw/P0vtaucOHChr/bjERFRREZGWn42dHREcdnfocTEhI4c+YMH3/8car9bdu2NSxT+jznzp3j2LFjTNUP80DXYvfee++lOq5du3b4+/tn6Zp5RRI7C5byF8DNzQ2NRmPYd/PmTby8vFi7di1z587l+PHjzJs3j1u3brFp06ZUXRj+/v74+/tz8+ZNw76ff/6ZGTNmEBwcTLly5Rg9ejTvvvtuXr00IZ4v5di68eOfP7ZOr3RpcHODiAhdcqcfcycMQkJC2L9/P4BR14A1lpIlSzJ16lTGjBnDxx9/TLdu3Z67EpExaTQavLy8cHd3JzExMc/ua83s7e2ztDTZs0uDTpo0KU3FjIcPH5KcnJzuGvPPrmL1rNKlS/PgwQOSkpKYPHkyQ4cONTwXFhaWo2vmNUnsMqBvGlaDMZv2P/roI7777jt+/vlnHB0dU40XyMiiRYuYNGkSc+bMoW7dupw7d45hw4ZRsGBBBg0aZJS4hMi1X37RlSzJTmsdgEaja7X74w/dBApJ7NL45ZdfUBSFFi1aUK5cObXDSde7777LsmXLOHv2LB988IGhuywv2draZikZEcYTFBREqVKlDD8/21qXUk7WmD9y5AjR0dEcP36cjz/+mIoVK9K3b99cXTOvSWKXgZiYGAoVKqTKvaOjo41W/HPs2LHZrvf05Zdf8t133xnO8/HxISgoiAULFkhiJ8zDs6112f190Sd2MoEiDUVRDN2w5vz7bmdnx/z582ncuDErVqzgjTfeoHXr1mqHJUzMxcUFV1fXTI8pXrw4tra2OVpj3sfHB4CaNWty//59Jk+ebEjsPD09c3TNvCazYq1cgwYNsnX8gwcPCAkJYciQIRQqVMiwTZ06levXr5soSiGyacWKnLXW6UnJkwydOHGCq1evUqBAAV577TW1w8lUw4YNDUNEhg8fTnx8vMoRCXPg4OBA/fr1U60xD7B3795sze7Wr1mv17Rp0zTX3LNnj1nMGE9JWuwyUKBAAaKjo1W7t7E82/JnY2OTplZQyjEiWq0W0HXHNm7cONVx0uUgzELK1roPP8x+ax1IyZNM6FvrevToYRHLNk6dOpXffvuNq1ev8s033/Dpp5+qHZIwA+PGjWPAgAE0aNCApk2bsnDhQm7fvs07/34RnDBhAnfv3mX58uUA/Pjjj5QtW5aqVasCurp23377LaNGjTJcc8yYMbz00ktMnz6drl27snnzZvbt28fRo0fz/gVmQhK7DGg0mjxdCzGvlChRgrCwsFTjAlJOpPDw8KBUqVLcuHGD/v37qxSlEJlYsQJu3IASJWD48JxdQ5/Y3bwJUVFgAQlMXoiPj2fNmjWAeXfDplS4cGFmzZpFv379mDp1Kn369KFixYpqhyVU1rt3bx49esQXX3xBaGgoNWrUYMeOHXh7ewO6qhIpa9pptVomTJhAcHAwdnZ2VKhQga+//jrVjOsXXniBNWvW8Omnn/LZZ59RoUIF1q5dm6YRRHVKPhISEqIASkhISJrnYmNjlaCgICU2NlaFyHLv559/Vtzc3Aw/BwcHK4By7ty5VMcFBQUpGo1G+frrr5W///5bmTNnjlKkSBHF29vbcMyiRYsUZ2dnxd/fX7ly5Ypy4cIFZcmSJcp3332XNy/GBCz931f8KyFBUcqXVxRQlG++yd21vLx01wkIME5sVmDdunUKoJQuXVpJSkpSO5ws02q1Sps2bRRAadu2raLVatUOSRhZZp/fIjUZY5fPVKtWjblz5/Ljjz9Su3ZtTp48yQcffJDqmKFDh/LTTz+xdOlSatasSYsWLVi6dKlhUKkQqlm5MvetdXrSHZuGvht2wIABFjX0QqPRMHfuXBwdHdmzZw/r1q1TOyQhVCMrT/xLViawbvLvawWSkqBqVbh+HWbM0I2vy43334eZM2H0aJg92zgxWrD79+9TqlQpkpOTuXz5MlWqVFE7pGybMmUKkydPxsvLi0uXLuHm5qZ2SMJIsrvyRH4mLXZCCMuwYoUuqSteHIxRLFta7FJZtWoVycnJNG7c2CKTOtDV7axYsSKhoaF89tlnaocjhCoksRNCmD+tNnd169IjJU9SsYTadc/j5OTE3LlzAd0sxzNnzqgckRB5TxI7IYT5O3FC11rn6pr7sXV6vr66VSgePIB8vubn+fPnOX/+PA4ODvTu3VvtcHLFz8+Pvn37otVqGT58eJryTkJYO0nshBDmb9Mm3Z+dOoGxVoQpUAAqVNA9zufdsfrWui5dulC0aFGVo8m9mTNnUqBAAU6dOmVY81aI/EISu2fItzvrJP+uFkxRYONG3eNu3Yx7bf04u3zcHZuYmMjKlSsBy+6GTcnT05PBgwcD4O/vr2osQuQ1Sez+ZW9vD+jWiBXWR//vqv93FhYkKAiuXQNHR+jQwbjXlgkU7N69m/DwcNzd3WnXrp3a4RjNmDFjANi2bRtXr15VORoh8o6sPPEvW1tbChcuTPi/Y20KFChgWJlBWC5FUYiJiSE8PJzChQtbVG0u8S99N2ybNsZfIUImUBi6Yfv162dVX3wqV67MK6+8wrZt2/j++++ZM2eO2iEJkScksUvB09MTwJDcCetRuHBhw7+vsDCm6oaF/1rs/vpLN/PWJn91Yjx+/JgtW7YA1tMNm9LYsWPZtm0bP//8M19++SVFihRROyQhTE4SuxQ0Gg1eXl64u7uTmJiodjjCSOzt7aWlzlKFhMCZM7rZq126GP/6lSqBgwNER8OtW5DPVldZu3YtCQkJ1KpVizp16qgdjtG1bt2aWrVqceHCBRYtWsT48ePVDkkIk5PELh22traSCAhhDvTdsC++CO7uxr++vb1uNYsLF3Tj7PJZYmcNtesyo9FoGDt2LG+++SY//PAD7733nlV1NwuRnvzV7yCEsCz6btju3U13j3w6geLKlSucOHECW1tb+vfvr3Y4JtO3b1/c3d25c+cOGzZsUDscIUxOEjshhHl69AgOH9Y9NsX4Or18OoFC31rXvn17PDw8VI7GdJycnBj+b1HrWbNmqRyNEKYniZ0Qwjxt2wbJyVCrFpQvb7r75MMWu+TkZH755RfAerthUxo+fDgODg6cOHGC48ePqx2OECYliZ0QwjzlRTcs/Ndid/ky5JNJUwcOHODOnTsULlyYzp07qx2OyXl4eNCvXz9AWu2E9ZPETghhfmJiYM8e3WNTdsMClC2rq4+XmAj5pJCtvhu2T58+ODk5qRxN3hg7diwA69ev5/bt2+oGI4QJSWInhDA/u3dDbCyUKwe1a5v2XhpNvuqOjYqKMkwiyA/dsHq1a9emVatWJCcnS7FiYdUksRNCmB99mZPu3XWJl6nlozVjf/vtN2JiYqhcuTKNGzdWO5w89d577wGwcOFCoqOjVY5GCNOQxE4IYV4SE2HrVt1jU3fD6uWjFruUtevy27KJnTp1omLFikRERBj+HoSwNpLYCSHMy+HD8M8/ULy4rjBxXsgnJU+Cg4M5dOgQGo2GAQMGqB1OnrOxsWHMmDEAzJ49G61Wq3JEQhifJHZCCPOi74bt0gXyagUYfYvdjRvw9Gne3FMF+hInrVu3pkyZMipHo47BgwdTuHBhrl27xvbt29UORwijk8ROCGE+FCX1+Lq8UqIE6Iv0BgXl3X3zkKIoLF++HMhfkyaeVahQIYYNGwaAv7+/usEIYQKS2AkhzMfp03DnDhQsCG3a5O29rXwCxR9//MH169cpVKgQPXr0UDscVY0cORJbW1v279/P+fPn1Q5HCKMyi8Ru2rRpNGzYEBcXF9zd3enWrRtXrlxJdczgwYPRaDSptiZNmqgUsRDCJPStdR06QF7XV7PyCRT6yQKvvfYaBQsWVDkadZUtW5ZXX30V0I21E8KamEVid+jQIUaMGMHx48fZu3cvSUlJtG3blqfPjHVp3749oaGhhm3Hjh0qRSyEMIm8Wm0iPVY8gSI2NpZff/0VyN/dsCnpCxavXLmS+/fvqxuMEEZkp3YAALt27Ur1888//4y7uztnzpzhpZdeMux3dHTE09Mzr8MTQuSFK1fg0iWwt4dOnfL+/lbcYrdp0yYiIyPx9vZO9Z6anzVt2pTGjRtz4sQJ5s2bx+TJk9UOSQijMIsWu2dFREQAULRo0VT7Dx48iLu7O5UrV2bYsGGEh4dnep34+HgiIyMNW1RUlMliFkLkkr4btlUrcHPL+/tXr677MywMHj7M+/ubkL4bduDAgdjYmOXbvir0BYvnzZtHXFycytEIYRxm9xuuKArjxo2jWbNm1NB/gwY6dOjAypUr2b9/P9999x2nTp2idevWxMfHZ3itadOm4ebmZth8fX3z4iUIIXJCzW5YgEKFwMdH99iKWu3u3bvH3r17AV1iJ/7To0cPSpcuTXh4OKtXr1Y7HCGMwuwSu5EjR3LhwoU0v2S9e/emU6dO1KhRg86dO7Nz506uXr2aaR2iCRMmEBERYdiCrLSMgRAW7949OHFC97hLF/Xi0I+zs6LEbsWKFWi1Wl588UUqVqyodjhmxd7enlGjRgEwa9YsFEVROSIhcs+sErtRo0axZcsWDhw4QOnSpTM91svLC29vb65du5bhMY6Ojri6uho2FxcXY4cshDCGzZt1fzZpAiVLqheHlZU8URQl1RJiIq1hw4ZRoEAB/vzzTw4cOKB2OELkmlkkdoqiMHLkSDZs2MD+/fvx0XeHZOLRo0eEhITg5eWVBxEKIUxK7W5YPSubQHHu3DmCgoJwcnKiV69eaodjlooUKcLgwYMBXaudEJbOLBK7ESNGsGLFClatWoWLiwthYWGEhYURGxsLQHR0NB988AEBAQHcvHmTgwcP0rlzZ4oXL053tT8IhBC58+QJ6FtKunVTM5LUXbFW0C23e/duQFcqyk2NCSkWQr9+7LZt2zLtBRLCEphFYjdv3jwiIiJo2bIlXl5ehm3t2rUA2Nra8ueff9K1a1cqV67MoEGDqFy5MgEBAdK9KoSl274dkpLA1xcqV1Y3lsqVwc4OIiMhJETdWIxA37XYunVrlSMxb5UrV6bTvyV2pGCxsHRmUcfueQNWnZ2dDd88hTAHN27cwMPDI99X8DcKfTes2q11AA4OULWqrsXu4kUoW1btiHIsPj6eo0ePApLYZcV7773H9u3b+fnnn/nyyy8pUqSI2iEJkSNm0WInhCX54YcfqFChAt7e3nz55Zf8888/aodkuWJjQV+g3FyGVVjJBIqTJ08SGxuLu7u7lHrKgtatW1OzZk1iYmL46aef1A7H4iRrFQKuP2Jz4F0Crj8iWWv5QxkslSR2QmTDsmXLGD16NKCbwPP5559TtmxZPvroI1mWKCf27YOnT6F0aahfX+1odKxkAoW+G7ZVq1ZoNBqVozF/Go3GsMzYDz/8QFJSkroBWZBdF0NpNn0/fRcdZ8yaQPouOk6z6fvZdTFU7dDyJUnshMiijRs38uabbwK6dSbXrFlDrVq1iI6OZsaMGZQrV46RI0dy69YtlSO1IPrVJrp1A3NJPqxkzdj9+/cDusROZE2/fv1wd3cnJCSE9evXqx2ORdh1MZThK84SGpF65Y6wiDiGrzgryZ0KJLETIgv27dtHnz590Gq1vPnmm8ycOZPevXsTGBjI1q1badKkCXFxcfz4449UrFiRN954gytXrqgdtnlLSoItW3SPzaUbFv5rsbt0SRejBYqNjSUgIACQ8XXZ4eTkxPDhwwHw9/dXNxgLkKxVmLI1iPQ6XfX7pmwNkm7ZPCaJnRDPcfz4cbp160ZCQgKvvvoqCxcuNHRtaTQaXnnlFY4dO8b+/ftp06YNSUlJLF26lGrVqtGrVy/OnTun8iswU3/8oVuTtUgRMKeF6cuVg4IFISEBLLT0xbFjx0hISKBUqVKy2kQ2DR8+HAcHB44fP87x48fVDidPZXec3Mngx2la6lJSgNCIOE4GPzZypCIzktgJkYk///yTDh068PTpU9q2bcvKlSuxtbVNc5xGo6FVq1bs3buX48eP07VrVxRFYd26ddSrV49OnTrxxx9/qPAKzJi+G7ZzZ12JEXNhYwPVq+seW+g4u5RlTmR8XfZ4eHjQr18/AL7//nuVo8k7ORknFx6VcVKXk+OEcUhiJ0QG/v77b9q2bcuTJ0944YUX2LBhA46Ojs89r3HjxmzatIkLFy7Qr18/bGxs2LFjB82aNaNly5bs2bNH1qRUFPNZbSI9Fr5mrIyvy52RI0cC8NtvvxEeHq5yNKaX03Fy7i5OWbp+Vo8ztrlz5+Lj44OTkxP169fnyJEjGR67YcMG/Pz8KFGiBK6urjRt2jRNmbWlS5ei0WjSbHFx5pW4SmInRDru3r1LmzZtCAsLo1atWmzbti3bNetq1qzJypUruXLlCsOGDcPe3p5Dhw7Rrl07mjVrxqNHj0wUvQUIDIRbt8DZGdq2VTuatCy45ElUVBSnTp0CJLHLqfr169OoUSMSExNZvHix2uGYVG7GyTXyKYqXmxMZtQlrAC83Jxr5FDVStFm3du1axo4dy8SJEzl37hzNmzenQ4cO3L59O93jDx8+jJ+fHzt27ODMmTO0atWKzp07pxlK4+rqSmhoaKrNyUmdxDUjktgJ8YyHDx/i5+fHrVu3qFixInv27MlVsdKKFSuycOFCbty4wdixY3F2dubYsWNMnz7diFFbGH03bLt2UKCAqqGky4JLnhw9epSkpCR8fHwoV66c2uFYrBEjRgAwf/58kpOTVY7GdHIzTs7WRsOkzroaic8md/qfJ3X2xdYm74cDzJw5kyFDhjB06FCqVauGv78/ZcqUYd68eeke7+/vz/jx42nYsCGVKlXiq6++olKlSmzdujXVcRqNBk9Pz1SbuZHETogUIiMjad++PZcuXaJ06dLs27cPDw8Po1y7dOnSzJo1i3Xr1gG6boJ822pnzt2w8F9X7N9/Q0yMurFkU8r6dSLnevXqRdGiRbl9+zY7duxQOxyTye04ufY1vJj3ej083VK3Wnm6OTHv9Xq0r+GV6xizKyEhgTNnztD2md6Atm3bcuzYsSxdQ6vVEhUVRdGiqVsbo6Oj8fb2pnTp0rzyyitmOTlOEjsh/hUbG0uXLl04c+YMxYsXZ+/evXh7exv9Ph07dqROnTo8ffo0Xw3ONrh+XdfFaWsLr7yidjTpc3eH4sV1YwEvXVI7mmzRj6+TMie54+TkxJAhQwDdlzBLkJPVH4wxTq59DS+OftSa1cOaMLtPHVYPa8LRj1qbJKmLiooiMjLSsMXHx6c55uHDhyQnJ6f5Uu7h4UFYWFiW7vPdd9/x9OlTevXqZdhXtWpVli5dypYtW1i9ejVOTk68+OKLXDOz2fOS2AkBJCYm0rNnTw4dOoSrqyu7d++matWqJrmXRqNh4sSJgG7WXWRkpEnuY7b03bAtWkDRvB97kyUajUVOoHjy5ImhBUFa7HLv7bffRqPRsGvXLq5fv652OJnK6eoPxhonZ2ujoWmFYnStU4qmFYqZrPvV19cXNzc3wzZt2rQMj312RriiKFmaJb569WomT57M2rVrcXd3N+xv0qQJr7/+OrVr16Z58+b8+uuvVK5cmR9++CHnL8gEJLET+V5ycjKDBg1i+/btODk5sW3bNurVq2fSe/bo0YOqVavy5MkTi2kNMBp9N2y3bqqG8VwWOIHi8OHDaLVaqlSpQsmSJdUOx+JVqFCB9u3bA7qxduYqN6s/mPM4ufQEBQURERFh2CZMmJDmmOLFi2Nra5umdS48PPy5Q2vWrl3LkCFD+PXXX2nTpk2mx9rY2NCwYUNpsRPCnCiKwsiRI1m9ejV2dnasX7+e5s2bm/y+NjY2hjekmTNnEmNh47hy7P590I9xsZTEzoJa7KTMifG9++67ACxZsoTY2FiVo0nLGKs/mOM4uYy4uLjg6upq2NIrQeXg4ED9+vXZu3dvqv179+7lhRdeyPDaq1evZvDgwaxatYpOnTo9NxZFUQgMDMTLy3z+fgDMqCqoEHlv4sSJzJ8/H41Gw4oVK+jYsWOe3btv375MnjyZ4OBgFi1axJgxY/Ls3qrZskU3bq1BAyhTRu1oMmeBa8bKxAnj69ChA97e3ty6dYtff/2VQYMGqR1SKtmZ1dq0QrEMj2tfwws/X09OBj8mPCoOdxdd96u5tNRl17hx4xgwYAANGjSgadOmLFy4kNu3b/POO+8AMGHCBO7evcvy5csBXVI3cOBAZs+eTZMmTQytfc7Ozri5uQEwZcoUmjRpQqVKlYiMjOT7778nMDCQH3/8UZ0XmQFpsRP51owZMwzjM+bPn0/v3r3z9P729vZ89NFHAHzzzTfpDgK2OpbSDQv/rT5x7x48Nv8lkR48eMCFCxcAaNmypbrBWBFbW1tDMpAXwyayOwHCmKs/5NU4ubzQu3dv/P39+eKLL6hTpw6HDx9mx44dhglxoaGhqWraLViwgKSkJEaMGIGXl5dhS/mF+8mTJ7z11ltUq1aNtm3bcvfuXQ4fPkyjRo3y/PVlRqPkoxL4d+7coUyZMoSEhFC6dGm1wxEqWrx4MUOHDgVg+vTpjB8/XpU44uPjKV++PPfu3WPBggW89dZbqsSRJyIjoUQJ3Rqsf/0Fvr5qR/R85crpCikfPgx50EWfG7/99hs9e/akRo0a/GlBrYyWIDw8nDJlypCQkMCpU6do0KCBSe6z62IoU7YGpWqB83JzYlJn3wy7QwOuP6Lvouevabt6WJNMW+zMnXx+Z5202Il858mTJ4wdOxbQNcerldQBODo68uGHHwLw9ddfk5SUpFosJrdzpy6pq1QJqlVTO5qssaAJFFLmxHTc3d3p2bMnQIYFbnMrpxMgzHn1B6EOSexEvrNo0SKio6OpUaMG//vf/9QOh2HDhlGiRAmCg4NZvXq12uGYzu+/6/7s0kVXTsQSWFDJExlfZ1r6SRSrVq3in3/+Meq1czMBwtJmtQrTk8RO5CuJiYmGosDjxo3LUk0jUytYsCDvvfceAF999RVarVbliExEXxKgdm1148gOC2mxu3fvHpcvX0aj0dCiRQu1w7FKTZs2pXbt2sTFxbF06VKjXjs3y3qBZc1qFaYniZ3IV3777Tfu3LmDh4cH/fr1UzscgxEjRlC4cGEuX77Mhg0b1A7HNPQFXitWVDeO7EhZ8sSMhyMfPHgQgLp16+ZqXWORMY1GY2i1mzdvnlG/gBljAkRerv4gzJskdiLfUBSFmTNnArpEKr36R2pxdXVl1KhRgK7VzurmNMXFwZ07uscVKqgbS3ZUrapb+uzJE7h7V+1oMiT16/JGv379cHV15dq1a/yuH1pgBMZY1gusa1aryDlJ7ES+cfToUU6fPo2Tk5OhfIE5GTNmDAULFuTcuXPs3LlT7XCMKzhY1+Ll4qKbGWspHB2hcmXdYzMeZ6cfXycTJ0yrUKFChjp2GZU+ycl6rTIBQhiTJHYi39C31g0cOJASZphcFCtWjOHDhwMwdepU62q1+/tv3Z8VKljOxAk9M59AcevWLW7cuIGtrW2erJqS3+l/R7ds2UJISEiq53K6XqtMgBDGJImdyBf+/vtvNm/eDGAodWKO3n//fRwdHQkICDCMm7IK+sTOksbX6Zn5BAp9a13Dhg1xcXFRORrrV61aNVq1aoVWq2XhwoWG/blZrxVkAoQwHknsRL4we/ZsFEWhY8eOVDPjGmqenp6GwslTp05VORoj0k+csKTxdXpmvmaslDnJe/pJFIsWLSIhIcEo67WCTIAQxiGJnbB6//zzD0uWLAF0JU7M3fjx47Gzs2P//v0EBASoHY5xWHKLnb4rNigIkpPVjeUZiqJIYWIVdO3aFS8vL+7fv8/GjRtzXa4kJZkAIXJLEjth9RYuXEhMTAy1atWyiA+/smXLMnDgQACzKKBsFJZY6kTPxwecnXUze4OD1Y4mlevXr3Pnzh3s7e154YUX1A4n37C3tzcs/zd37lyjrtcqRG5JYiesWkJCgtkVJM6Kjz/+GBsbG7Zv3865c+fUDid3kpLg5k3dY0vsirW1hX8XDifFouHmQN9a16RJEwoUKKByNPnLsGHDsLW15fDhw0SFZi3hz2pZEyFyQxI7YdV+/fVX7t27h6enJ3369FE7nCyrVKkSvXv3BnR17Sza7du65M7REUqVUjuanClbVvenmSV2UubE+LJarqRUqVJ069YNgGNbV0m5EmE2JLETVitlQeKRI0eaVUHirPjkk08AWL9+PZcuXVI5mlzQj68rXx5sLPQtp0wZ3Z9mlNgpiiITJ4wsu+VK9JMofvnlFz5srUv+pVyJUJuFvssK8XyHDh3i3LlzODs7m2VB4uepUaMG3bp1Q1EUpk2bpnY4OWfJ4+v09C12z9QtU9OlS5e4f/8+Tk5ONGnSRO1wLF5OypW0atWKKlWqEB0dzf2z+6RciTALktgJq6VvrRs8eDDFihVTOZqcmThxIgCrVq3ixo0bKkeTQymLE1sqM+yK1bfWvfjiixbXGm1uclquJOX6sXPnzqVddU8pVyJUJ4mdsEpXr15l69atgHkXJH6eBg0a0K5dO5KTk5kxY4ba4eSMJZc60TPDxE7KnBhPbsqVDBw4kAIFCnDx4kWOHj0q5UqE6iSxE1bJ398fgM6dO1NZv9anhdK32v3888/cNeOF6DNkycWJ9VKOsTODpd60Wq1hZRIZX5d7uSlXUrhwYfr37w9kvH6sEHlJEjthdR49esTSpUsByyhI/DzNmzfnpZdeIiEhgW+//VbtcLJHq7WOMXalS+v+jImBf/5RNxbgwoULPH78mIIFC9KgQQO1w7F4WS1DktFx+u7Y9evXExYWZrS4hMgJs0jspk2bZljn0N3dnW7dunHlypVUxyiKwuTJkylZsiTOzs60bNmSv/76S6WIhTlbsGABsbGx1K1blxYtWqgdjlHoW+0WLFhAeHi4ytFkQ2iorrBvylpwlsjZGdzddY/NoDtWP77upZdewt7eXuVozE9WS5boNfIpmqtyJXXq1KFp06YkJiayePHi3AUvRC6ZRWJ36NAhRowYwfHjx9m7dy9JSUm0bduWp0+fGo6ZMWMGM2fOZM6cOZw6dQpPT0/8/PyIiopSMXJhbuLj4/nhhx8AyypI/Dx+fn40bNiQ2NhYQzezRdCPr/P2BktPQMyo5Il+fJ10w6aV3ZIloFvGa1JnXyDn5Ur0rXYLFiwgKSkpNy9BiFwxi8Ru165dDB48mOrVq1O7dm1+/vlnbt++zZkzZwBda52/vz8TJ06kR48e1KhRg2XLlhETE8OqVatUjl6Yk7Vr1xIWFkbJkiXp1auX2uEYjUajMbTazZkzh3/MoDswS6yhG1bPTEqeJCUlcfjwYUAmTjwrJyVL9NrX8MpVuZLXXnuN4sWLExISwvbt23P+IoTIJbNI7J4VEREBQNGiumbv4OBgwsLCaNu2reEYR0dHWrRowbFjxzK8Tnx8PJGRkYZNWvesW8qCxKNGjcLBwUHliIyrc+fO1KhRg6ioKObMmaN2OFljDaVO9MxkZuzZs2eJjIykcOHC1KlTR9VYzElOS5ak1L6GV47LlTg5OTFkyBBAJlEIdZldYqcoCuPGjaNZs2bUqFEDwDAY1cPDI9WxHh4emQ5UnTZtGm5ubobN19fXdIEL1R04cIDz589ToEABwwLd1sTGxsawGsW8efPQarUqR5QF1tRiZyZdsfrxdS1atMDW1lbVWMxJbkqWpJSbciVvv/02Go2GPXv2cO3atSyfJ4QxmV1iN3LkSC5cuMDq1avTPPfseClFUTIdQzVhwgQiIiIMW1BQkNHjFeZD31r3xhtvGFp7rU2PHj0oVKgQoaGhnD17Vu1wnk9a7IxOxtelLzclS4zFx8eHjh07AjB//nyT3UeIzJhVYjdq1Ci2bNnCgQMHKK0vLwB4enoCpGmdCw8PT9OKl5KjoyOurq6GzcXFxTSBC9VdunSJ7du3o9FoGDNmjNrhmIyjoyPt2rUDYMuWLSpH8xyKYl0tdmYwxi4hIYGjR48Cktg9K7clS4xFP4liyZIlqSYACpFXzCKxUxSFkSNHsmHDBvbv34+Pj0+q5318fPD09GTv3r2GfQkJCRw6dIgXXnghr8MVZkg/U7RLly5UqlRJ3WBMrEuXLoAFJHaPHsG/42UpX17dWIxBn9jdvQsqzXo8deoUMTExFC9e3DBURejktmSJsbRr144KFSrw5MkTfv75Z5PeS4j0mEViN2LECFasWMGqVatwcXEhLCyMsLAwYmNjAV0X7NixY/nqq6/YuHEjFy9eZPDgwRQoUIB+/fqpHL1Q24MHD1i+fDlgHQWJn6djx47Y2Nhw/vx5bt26pXY4GdN3w5YqpasDZ+k8PHQlW7RauHdPlRD03bAtW7bExsYs3r7NhjFKlhglDltb3n//fQC+++47KX0i8pxZvDPMmzePiIgIWrZsiZeXl2Fbu3at4Zjx48czduxY3n33XRo0aMDdu3fZs2ePdK8K5s+fT1xcHPXr16d58+Zqh2NyxYsX58UXXwRg27ZtKkeTCWvqhgWwsflvBQqVumP1EyekzEn6cluyxFgGDx5MiRIluHnzJr/99lue3FMIPTu1AwBdV+zzaDQaJk+ezOTJk00fkLAYcXFxhtIf1lSQ+Hm6dOnCkSNH2LJlCyNGjFA7nPRZ08QJvbJlIThYN4Hi3+Q6r8TFxRnKO1n7+LpkrcLJ4MeER8Xh7qLrPs1qS1v7Gl74+Xrm+HxjcHZ2ZtSoUXz++efMmDGD3r1755v3JqE+s2ixEyKnVq9eTXh4OKVLl6Znz55qh5Nn9OPsDhw4QGRkpMrRZMDaWuxA1ZInAQEBxMfH4+XlRZUqVfL8/nklJytHPCs3JUuM5d1336VAgQKcO3eO33//Pc/vL/IvSeyExUpZkHj06NH5as3MypUrU7lyZRITE9m9e7fa4aTPWlvsQJWu2JRlTqy19Sc3K0eYm2LFihkKFn/zzTcqRyPyE0nshMXat28fFy9epGDBggwbNkztcPKc2c+OtcYWOxVr2Vn7+DpjrBxhbsaNG4etrS179uwhMDBQ7XBEPiGJnbBY+ta6IUOGULhwYXWDUYE+sduxY4f5zbyLioLwcN1ja2yxy+PELjo6mhMnTgDWO77OWCtHmJNy5coZ1qyWVjuRVySxExYpKCiIXbt2WX1B4sw0bdqUYsWK8fjx40zXTFaFvrWueHFwc1M3FmNSaYzdH3/8QVJSEmXLlk1T59NamMPKEabw4YcfArB27VrzLk8krIYkdsIiLV68GICuXbtS3hqK3+aAnZ0dnTp1AsywO9Yax9fBfy12//wD0dF5dtuU3bDWOr7OXFaOMLa6devSpk0bkpOTmTVrltrhiHxAEjthcbRaraHG4aBBg1SORl2dO3cGYPPmzVkqG5Rn9ImdNY2vA3B1/a8FMg8nUOSH9WHNZeUIUxg/fjwAixYt4tGjRypHI6ydJHbC4hw9epS7d+/i5uZGhw4d1A5HVe3atcPBwYG///6bK1euqB3Of6xx4oReHnfHRkREcObMGcC6EztzWTnCFNq0aUOdOnWIiYlh3rx5aocjrJwkdsLirFmzBoDu3bvj6OiocjTqcnFxMXzYm1V3rLV2xUKelzw5fPgwWq2WihUrUkafVFopc1k5wtg0Go1hrN33339vWC5TCFOQxE5YlMTERNatWwdA3759VY7GPOhnx27dulXlSFKw5ha7PJ4Za6llTpK1CgHXH7E58C4B1x9luUxJ+xpeHP2oNauHNWF2nzqsHtaEox+1ttikTq9nz554e3vz4MEDli1bpnY4wopJYicsyv79+3n48CHFixe3uA86U9GPszt27BgPHjxQORogLg7u3NE9tuYWuzxO7CypGza3q0eYw8oRxmZvb8+4ceMA+O6770hOTlY5ImGtJLETFmX16tWA7tuvnZ1ZLHWsujJlylCnTh20Wi07duxQOxzdWqqKAi4uUKKE2tEYXx6OsYuMjOTChQsAvPTSSya/nzFY0+oRxjZkyBCKFi3K33//zaZNm9QOR1gpSeyExYiLi2Pjxo2AdMM+y6xWoUg5vs4aS3Pk4Ri748ePo9VqKVeuHCVLljT5/XLLGlePMKaCBQsyYsQIAKZPn25eM9mt0Ny5c/Hx8cHJyYn69etz5MiRDI/dsGEDfn5+lChRAldXV5o2bZruco3r16/H19cXR0dHfH19DZ9J5kQSO2Exdu3aRWRkJKVLl+bFF19UOxyzok/sdu/eTVycygVcrXl8HaRO7LRak95KX3jaUv6/W+PqEcY2cuRInJycOHXqFIcPH1Y7HKu1du1axo4dy8SJEzl37hzNmzenQ4cO3M6gpf3w4cP4+fmxY8cOzpw5Q6tWrejcuTPnzp0zHBMQEEDv3r0ZMGAA58+fZ8CAAfTq1cuwKoy5kMROWAx9N2zv3r2xsZH/uinVq1ePkiVL8vTpUw4ePKhuMNY8IxagVCldS2R8PJh4TOMff/wBWE5iZ62rRxiTu7s7gwcPBmSZMVOaOXMmQ4YMYejQoVSrVg1/f3/KlCmTYbkZf39/xo8fT8OGDalUqRJfffUVlSpVSjUpzd/fHz8/PyZMmEDVqlWZMGECL7/8Mv7+/nn0qrIm25+O5cuXT7fA4pMnT/LtCgDC9KKjow2/YH369FE5GvOj0WjMpzvW2lvs7O3B698Zmibsjk1KSuL48eMAvPDCCya7jzFZ6+oRxvb++++j0WjYvn07Fy9eVDscixIVFUVkZKRhi4+PT3NMQkICZ86coW3btqn2t23bNsvLL2q1WqKioiha9L+C2AEBAWmu2a5dO7Nb0jHbid3NmzfTnc0THx/P3bt3jRKUEM/asmULsbGxVKxYkfr166sdjllKmdipOnbH2lvsIE9mxv75559ER0fj6upKjRo1THYfY7Lm1SOMqWLFirz66qsAfPvttypHY1l8fX1xc3MzbNOmTUtzzMOHD0lOTsbDwyPVfg8PD8LCwrJ0n++++46nT5/Sq1cvw76wsLBcXTOvZHlaYcpWgN27d+OWYmHv5ORkfv/9d8qVK2fU4ITQ0xcl7tOnj9WulZlbrVq1omDBgty9e5dz585Rr169vA8iKQlu3tQ9ttYWO9DNjD1+3KSJnb4btkmTJtja2prsPsakXz1i+IqzaCDVJApLXz3C2D788EN+++03Vq5cydSpUyldurTaIVmEoKAgSpUqZfg5syL1z35WKIqSpc+P1atXM3nyZDZv3oy7u7tRrpmXspzYdevWDdC9qGfX57S3t6dcuXJ89913Rg1OCIDHjx+za9cuQLphM+Pk5ETbtm3ZuHEjW7ZsUSexu31bl9w5OurGolmrPGixs7TxdXr61SOmbA1KNZHC082JSZ19Lb7QsLE0atSIFi1acOjQIWbPni3j7bLIxcUFV1fXTI8pXrw4tra2aVrSwsPD07S4PWvt2rUMGTKEdevW0aZNm1TPeXp65uiaeS3LXbFarRatVkvZsmUJDw83/KzVaomPj+fKlSu88sorpoxV5FMbN24kMTGRmjVrUr16dbXDMWuqj7PTd8OWLw/WPMElD0qeWNqM2JSsdfUIYxs/fjwACxYs4MmTJ+oGY0UcHByoX78+e/fuTbV/7969mY5XXb16NYMHD2bVqlV06tQpzfNNmzZNc809e/aY3RjYbFd4DQ4ONkUcFitZq3Ay+DHhUXG4u+jGjmSnmyE356t5b2Ocn1Upu2FF5jp16oRGo+HcuXPcuXMn77t3rH3ihJ6JW+zu3LnD7du3sbGxoVGjRia5h6npV48QGevQoQM1atTg4sWLLFiwgI8++kjtkKzGuHHjGDBgAA0aNKBp06YsXLiQ27dv88477wAwYcIE7t69y/LlywFdUjdw4EBmz55NkyZNDC1zzs7OhqFnY8aM4aWXXmL69Ol07dqVzZs3s2/fPo4eParOi8xAthO70aNHU7FiRUaPHp1q/5w5c/j777/NbtqvKe26GJqmu8ErG90NuTlfzXsb4/ysJoVhYWHs378fkMQuK0qUKMELL7zAH3/8wdatWxk+fHjeBpAfJk6AyVef0HfD1q5dGxcXF5PcQ6hPo9Hw4YcfMmjQIPz9/Rk7dmymY8ZE1vXu3ZtHjx7xxRdfEBoaSo0aNdixYwfe3t4AhIaGpqppt2DBApKSkhgxYoShiDTAoEGDWLp0KaCbnb5mzRo+/fRTPvvsMypUqMDatWtp3Lhxnr6259Eo2Zw+V6pUKbZs2ZJmZuLZs2fp0qULd/RrRJqhO3fuUKZMGUJCQnLdkqFfNufZvzx9ajLv9XqZJji5OV/Nexvr/KwmhXPmzGHUqFE0atTI7IpAmqvp06fz8ccf0759e3bu3Jm3N+/WDTZvhjlzIMWbo9V58AD0g6rj4nRjCo1o9OjR/PDDD4wcOZIffvjBqNcW5iUhIYHy5ctz9+5dfvrpJ4YMGaJ2SGbJmJ/f1i7bg2AePXqUakasnqurKw8fPjRKUOYut8vm5OZ8Ne9tjPOzu46kvijxs611yVqFgOuP2Bx4l4Drj/LtEkXp0Y+z279/P1FRUXl78/zSYle8ODj9W4vNBGWezGHihPyO5Q0HBwfee+89QFf6RGvi1UyE9ct2YlexYkXDDMWUdu7cmW8KFOd22ZzcnK/mvXN7fnaTwlu3bnHs2DE0Gk2qWkK7LobSbPp++i46zpg1gfRddJxm0/fn68XFU6patSoVK1YkISGBPXv25N2NtVq4cUP32NrH2Gk0JuuOjY6O5vz584B6iZ38juWtYcOG4ebmxuXLl9m2bZva4QgLl+3Ebty4cYwfP55JkyZx6NAhDh06xOeff87HH39s+NZh7XK7bE5uzlfz3rk9P7tJ4a+//grASy+9ZKhblN0Wv/xItVUoQkMhNhZsbeHfcSxWzUQTKE6ePElycjJlypShjD55zEPyO5b3XF1dDeNhZ8yYoXI0wtJlO7F78803+e6771i8eDGtWrWiVatWrFixgnnz5jFs2DBTxGh2crtsTm7OV/PeuT0/u0mhvhu2b9++QO67gfMTfWK3ffv2dFeKMQl9N6y3t27ZLWtnopIn+m5YNUooyO+YekaPHo2DgwN//PGH2S1RJSxLjgpNDR8+nDt37nD//n0iIyO5ceMGAwcONHZsZiu3y+bk5nw1753b87OTFF65coVz585hZ2dnWHont93Ievlh7NCLL75IkSJFePToEQEBAXlz0/xS6kTPRC12ao6vM9bvmMg+Ly8vBgwYACDFikWu5CixS0pKYt++fWzYsMGwJuW9e/eIjo42anDmSr9sDpAmwcnKsjm5OV/Ne+f2/OwkhfradX5+fhQvXhzIfTcy5J+xQ3Z2dnTs2BHIw+7Y/DJxQs8EY+ySk5MNibgaiZ0xfsdEzn3wwQcAbN68mcuXL6scjbBU2U7sbt26Rc2aNenatSsjRozgwYMHgG5cgP4/ZX6gXzbH0y11K5Snm9Nzy33k9nw1752b87OaFNpo0i9KnNtu5Pw2dijPx9nl1xY7I3bFBgUFERkZScGCBalVq5bRrptVuf0dE7lTtWpVunbtiqIo/O9//1M7HGGhsl3Hrlu3bri4uLB48WKKFSvG+fPnKV++PIcOHWLo0KFcu3bNVLHmminq4MjKE9k//3l17AIDA6lbty6Ojo6Eh4cb1gVM1io0m76fsIi4dMcAadAll0c/ap0mDv25GXUzZXaupYqIiKBEiRIkJiZy5coVKleubNob1q8PZ8/Cpk3Qtatp72UOrlyBqlWhUCGIjNTNlM2l+fPnM3z4cF5++WX27dtnhCCzJze/Y8I4zpw5Q4MGDQAICAigSZMmKkdkHqSOXdZle+WJo0eP8scff+Dg4JBqv7e3N3dNUM/J3OV22ZzcnK/mvXNzfvsaXvj5emaYFOpb6zp16pRqsWd9i9/wFWfRQKoPnud1A2dn7JC1LIPk5uZGy5Yt2bt3L1u3buX999833c0UJf+12Om7YqOjISICChfO9SXVnDgBufsdE8ZRv3593njjDX7++WdGjx7N8ePHsbHmdZeF0WX7f4tWq013lt2dO3dk6RuRZfqksGudUjStUMzwQaEoSqZrw+a0Gzi/jh3Ks+7YR490yQ1APqlnSYECUOzfLwFGGmdnDoWJcztUQ+TeV199hYuLC6dOnTKsZSpEVmW7xc7Pzw9/f38WLlwI6GpmRUdHM2nSJMNgbSFy6vjx49y6dYtChQrRqVOndI95Xotfeow5dii3Xdh5qXPnzowaNYqjR4/y6NEjihUzUWukvrWuVClwdjbNPcxR2bK6pDYkBHI5Ji40NJTg4GA0Go3q3W85+R0TxuPp6cnnn3/Ohx9+yMcff0yPHj1S9V4IkZlsJ3azZs2iVatW+Pr6EhcXR79+/bh27RrFixc31B0TIqf0rXVdu3alQIECGR6X3W5g/Yzc540dyqjMi1521rk1B97e3tSqVYsLFy6wY8cOQzkFo8tvM2L1ypSBc+eM0mKnb62rWbNmuss25rXcDtUQuTN69GgWLVrE1atXmTp1qhQuFlmW7a7YkiVLEhgYyIcffsjbb79N3bp1+frrrzl37hzu+kWxhciB5ORkw2oT6XXD5kZuy7yA5c6qzZPu2Pw2vk7PiLXs9EVp1eyGFebDwcGBWbNmAeDv78/Vq1dVjkhYiiwldvXq1eOff/4B4IsvvkBRFN544w3mzJnD3LlzGTp0KM657H45fPgwnTt3pmTJkmg0GjZt2pTq+cGDB6PRaFJtandXCOM6dOgQYWFhFClShLZt2xr9+rkZO2TJFfn1id2uXbuIj483zU30LXb5NbEzQskTcxhfJ8xLx44d6dChA4mJiYwbN07tcISFyFJid+nSJZ4+fQrAlClTTFKI+OnTp9SuXZs5c+ZkeEz79u0JDQ01bDt27DB6HEI9+m7YV199Nc2sa2NpX8OLox+1ZvWwJszuU4fVw5pw9KPWz+1GteSK/PXr18fLy4vo6GgOHTpkmpvk165YI7XYxcTEcPbsWUC9GbHCPM2aNQs7Ozu2b9/Ozp071Q5HWIAsjbGrU6cOb7zxBs2aNUNRFL799lsKFSqU7rGff/55jgLp0KEDHTp0yPQYR0dHPD09c3R9Yd4SEhL47bffgP/WhjWVnIwdsuRZtTY2NrzyyissWrSILVu2mKQ1NN92xRpp9YlTp06RlJSEl5cX5cqVy31cwmpUqVKFMWPG8N133zF27Fhefvllk33xFdYhSy12S5cupVixYmzbtg2NRsPOnTvZuHFjmu3Z7lNjO3jwIO7u7lSuXJlhw4YRHh6e6fHx8fFERkYatqioKJPGJ3Ju7969/PPPP3h6etKiRQu1w0nD0ivypxxnl82a5M8XFQX638X82mJ39y6kUwYqq1J2w2qMUOhYWJfPPvsMd3d3rl69mmmvlhCQxRa7KlWqGLrJbGxs+P333/N8okSHDh3o2bMn3t7eBAcH89lnn9G6dWvOnDmDo6NjuudMmzaNKVOm5GmcImf0M6p79eqFra2tytGkZaxZtWp5+eWXcXZ2JiQkhPPnz1OnTh3jXVzfWle8OJjBbM485eUFtraQlARhYbpyLzlgqokTllSaR2TMzc2NadOmMWTIEKZMmUL//v3x8PBQOyxhprI9eWLSpEkZdsOaUu/evenUqRM1atSgc+fO7Ny5k6tXr7J9+/YMz5kwYQIRERGGLSgoKA8jFlkVExPD5s2bAePPhjUWY8yqBd0HbcD1R2wOvEvA9Ud5NtnC2dnZ0AVr9Nmx+XV8HeiSOn0yl8PuWK1Wa5LEbtfFUJpN30/fRccZsyaQvouO02z6frOdvS0yN3jwYBo0aEBkZCQTJ05UOxxhxrI9eeKLL74wyeSJ7PLy8sLb2zvTtWkdHR1xdXU1bLIyhnnavn070dHReHt7m/VM59xW5Ff7g1bfHbt161bjXji/jq/Ty+UEisuXL/PPP//g7OxstJZUSy3NIzJmY2PD999/D8CSJUs4c+aMyhGJ3EhMTCQkJIQrV67w+LFxJ92ZzeSJ7Hr06BEhISF4eZlfUViRPSmXEDP38UU5rciv/6B9tn1O/0GbF0s1derUCY1Gw+nTp7l79y6lcthtmEZ+brGDXJc80Y+va9SoEfb29rkO53mleTToSvP4+XpKt6yFadq0Kf3792flypWMHj2ao0ePmv17pvhPdHQ0K1euZPXq1Zw8eTJV+anSpUvTtm1b3nrrLRo2bJir+5jN5Ino6GgCAwMJDAwEIDg4mMDAQG7fvk10dDQffPABAQEB3Lx5k4MHD9K5c2eKFy9O9+7dc3xPob7IyEhDd7q5dsM+K6N1bjNiLjXwPDw8aNy4MUCmQxiyTVrsdH/msMXO2PXrLLk0j3i+6dOnU7BgQY4dO8aqVavUDkdk0axZsyhXrhyLFi2idevWbNiwgcDAQK5cuUJAQACTJk0iKSkJPz8/2rdvn2lv5POYzeSJ06dP06pVK8PP+mKMgwYNYt68efz5558sX76cJ0+e4OXlRatWrVi7dq10r1q4TZs2ER8fT9WqValdu7ba4ZhEdj5oTb2EU4cOHTh+/Dh79+7lrbfeMs5F82txYr1cljwx9vg6Sy7NI56vVKlSfPLJJ0ycOJHx48fTtWtXVca9i+w5duwYBw4coGbNmuk+36hRI958803mz5/P4sWLOXToEJUqVcrRvbK9VqxWq83RjZ6nZcuWmZZh2L17t0nuK9RlSd2wOWVOH7Rt2rRh0qRJ7N+/n+Tk5NzPQI6Lgzt3dI+lKzbbp4aHhxu+mTdt2tQo4Vh6aR7xfOPGjWPx4sXcuHGDr7/+mqlTp6odkniOdevWZek4R0dH3n333VzdK9trxQL88ssvvPjii5QsWZJbt24BumZG/cxGIbLi4cOH7N27F7CcbticMKcP2kaNGuHi4sLjx485d+5c7i8YHAyKAi4uUKJE7q9niXLRFatvratevTpFihQxSjj60jwZfU3SAF5mXJpHPJ+TkxPfffcdAN9++y03btxQOSJhTrKd2M2bN49x48bRsWNHnjx5QvK/RTmLFCmCv7+/seMTVmz9+vUkJSVRt25dqlSponY4JmNOH7R2dnaGIQ/79u3L/QVTTpyw0hbX59J3xT58CDEx2TpVP77OmMuIGas0jzBvXbt2pU2bNsTHx/PBBx+oHY4wstzMes52YvfDDz+waNEiJk6cmKobp0GDBvz55585DkTkPym7Ya2ZuX3Q+vn5ARhaS3Mlv0+cAChcGPRjnLLZHWvsiRN6uS3NI8yfRqPB398fW1tbNm7cyO+//652SMKIcjMxNNtj7IKDg6lbt26a/Y6OjoZad0I8T2hoqGFB+t69e6scjenpP2inbA1KNZHC082JSZ198/SDVp/YHT16lJiYGAoUKJDzi+X3Uiega6ksWxaCgnSJXRZbn+Pi4gzfyo2d2EHOS/MIy1G9enXeffddfvjhB8aMGUNgYCB2dtn+WBcq6dWrV7r7FUXJVW27bP8P8PHxITAwEG9v71T7d+7cia+vb44DEfnLxo0bURSFxo0bp/m/ZK3M5YO2cuXKlC5dmjt37nD06FHDihQ5Ii12OmXK6BK7bIyzO3PmDAkJCbi7u1PBRImxvjSPsF5Tpkxh1apV/PXXX8ybN49Ro0apHZLIon379vHLL7+kmdWsKAqHDx/O8XWzndh9+OGHjBgxgri4OBRF4eTJk6xevZpp06bx008/5TgQkb/89ttvALz22msqR5K3zOGDVqPR4Ofnx88//8zevXtzl9hJi51ODiZQpOyGtdYZ4cL0ihQpwtSpUxk+fDiff/45ffv2pXjx4mqHJbKgZcuWFCpUiBYtWqR5Lr2e0azK9hi7N954g0mTJjF+/HhiYmLo168f8+fPZ/bs2VY/VkoYR3h4uKEb9tVXX1U5GstirLVmjTLOLikJbt7UPc7vLXY5KHliiokTIn8aNmwYtWvX5smTJ3z22WdqhyMysH79+lQ/b9iwId2kDmDXrl05vk+Oyp0MGzaMW7duER4eTlhYGCEhIQwZMiTHQYj8ZePGjWi1Who0aICPj4/a4VgMY641+/LLLwNw/vx5wsPDcxbQ7du65M7REYy1PJmlymaLnaIoRi9MLPIvW1tbwzqyCxcu5Pz58ypHJNLTr18/Zs2alekxmdXzzaocJXZ6xYsXN/oKFML65ddu2Nww9qLu7u7uhpU+cjybTt8NW7482OTqrcTyZXP1iatXr/Lw4UMcHR2pV6+eCQMT+cVLL71Er1690Gq1jBkzxigJgjCuLVu2MHnyZEaPHp3m3yc5OZmlS5dSrVq1XN8nn78bi7z28OFDDhw4AEhil1WmWmu2TZs2QC7q2cnEif+kbLHLwgeqvrWuYcOGODo6mjIykY/MmDEDJycnDh06xLRp09QORzyjXbt2HD58mI0bN9KjRw9iY2NJSEhg3rx5VKxYkXHjxhmlSoQkdiJPbdq0ieTkZOrWrWuymYDWxlSLuqccZ5ejb/cyceI/pUvr/oyLg0ePnnu4qerXifzN29ub2bNnAzBx4kQ2btyockTiWbVr1+b48ePcuHGDJk2a4OPjw6RJkwxD3KZMmZLre0hiJ/KUdMNmn6nWmm3evDkODg6EhIRw9erV7AcmLXb/cXQEDw/d4yx0x0piJ0zlrbfeMpQ8ef311wkMDFQ3IJFKREQES5Ys4e7du1y7do0nT57w+++/88knn+Di4mKUe0hiJ/LM48ePDeO5JLHLOlOtNVugQAFDYpGj7lhpsUstixMoHj16xOXLlwFo2rSpqaMS+dDMmTPx8/MjJiaGLl26cP/+fbVDEsCECRPw9vZm6dKlfPXVVzx48ICePXvSpk0bTp06ZbT7ZKmOnX62TVaMHj06x8EI67Z582aSkpKoWbMmlStXVjsci6FfazYsIi7dcXYadCtY5GStWT8/Pw4cOMDevXsZMWJE1k/UakG/8Li02OmULQunTj235Il+fF2VKlWeW28sWauoXtBaWB47OzvWrl1LkyZNuHr1Kt27d2f//v04OWXvy58wrk2bNvH999/Tv39/w5KsS5cu5bPPPqNVq1asXLmSrl275vo+WUrsnjc9V0+j0UhiJzKk74bt2bOnypFYFv1as8NXnEUDqZK73K416+fnxyeffMKBAwdISkrK+nJEoaEQGwu2tpBPVg55riy22GW1zMmui6FplqDzUmEJOmGZihQpwtatW2ncuDEBAQG8/fbbLF26VIphqygoKCjdv/8vv/wSb29vevfuzbfffsvIkSNzdZ8sdcUGBwdnabuh/wYvxDOePHliKIYr3bDZZ6pF3evWrUuRIkWIjIzMXleAfnydtzfY2+fo3lYniyVPsjK+ztjlbUT+VLlyZdatW4etrS3Lly/nm2++UTukfC2zpHro0KFs3LiRTz75JNf3kTF2Ik9s2bKFxMREfH19jVKnJz9qX8OLox+1ZvWwJszuU4fVw5pw9KPWuWq9sbW1NRQrztYqFDK+Lq0stNglJCQYEuiMEjtTlbcR+VObNm0MM2U//vhjtm7dqnJEIiMdOnTg4MGDub5OtteKBbhz5w5btmzh9u3bJCQkpHpu5syZuQ5KWB/phjUOU6w126ZNG3777Tf27dvH559/nrWTZEZsWllYVuzs2bPExcVRrFixDMeZZqe8jdrrDgvL8O6773Lx4kXmz59Pv379OHbsGDVr1lQ7rHzl9u3blNW/R2RCX7D87t27lMrhij7ZbrH7/fffqVKlCnPnzuW7777jwIED/PzzzyxZskSmVYt0RUZGsnv3bkC6Yc2Rvp5dQEAAUVFRWTtJ32Inid1/9F2x9+5BYmK6h6RcHzajbhlTlbcR+ZdGo+H777+nVatWREdH06VLFx48eKB2WCY3d+5cfHx8cHJyon79+hw5ciTDY0NDQ+nXrx9VqlTBxsaGsWPHpjlGP0bx2S0u7vm/iw0bNmTYsGGcPHkyw2MiIiJYtGgRNWrUYMOGDVl6jenJdmI3YcIE3n//fS5evIiTkxPr168nJCSEFi1aSGuMSNfWrVtJSEigSpUqVK9eXe1wxDPKly9P+fLlSUpK4tChQ1k7Sbpi03J3BwcH3coTd++me0hWJk6YqryNyN/s7e1Zt24dFSpU4ObNm7z66qtpetysydq1axk7diwTJ07k3LlzNG/enA4dOnA7g6ES8fHxlChRgokTJxqWW0yPq6sroaGhqbaszDa+dOkSbm5utG/fHg8PDzp16sSwYcMYNWoUr7/+OvXq1cPd3Z2lS5fyzTffGGoR5kS2E7tLly4xaNAgQDelOjY2lkKFCvHFF18wffr0HAcirFfKbliZkWWesrW8mKJIV2x6bGz+a7VLpztWUZQsTZzQl7fJ6DdFg252bE7K24j8rVixYmzduhVXV1eOHDnC8OHDrXZN2ZkzZzJkyBCGDh1KtWrV8Pf3p0yZMsybNy/d48uVK8fs2bMZOHAgbm5uGV5Xo9Hg6emZasuKokWL8u2333Lv3j3mzZtH5cqVefjwIdeuXQOgf//+nDlzhj/++IMOHTpk/wWnkO3ErmDBgsTHxwNQsmRJruvf4NGtAypESlFRUezcuROQblhzlnJ5sed69AgiInSPy5c3YVQWKJOZsTdu3OD+/fs4ODjQoEGDDC+hL28DpEnuclveRohq1aqxdu1abGxsWLJkCf7+/mqHlC1RUVFERkYaNn0+klJCQgJnzpyhbdu2qfa3bdvW0GqeU9HR0Xh7e1O6dGleeeUVzp07l63znZyc6NGjB7NmzWLOnDksXryYFStW8P7771OjRo1cxaaX7cSuSZMmhm+dnTp14v333+d///sfb775Jk2aNDFKUMJ67Nixg/j4eCpWrEitWrXUDkdkoHXr1mg0GoKCgrh3717mB+u/zJUqBc7Opg/OkmQyM1b/vlm/fv3ndt2YqryNEADt27fnu+++A+CDDz4wfPm2BL6+vri5uRm2adOmpTnm4cOHJCcn46Ff5u9fHh4ehIWF5fjeVatWZenSpWzZsoXVq1fj5OTEiy++aGh1y6o//vgDHx8fypYtS9myZfHw8OCjjz4iMjIyx7GllO1ZsTNnziQ6OhqAyZMnEx0dzdq1a6lYsWKWCxmL/GPdunWArrVOumHNV9GiRalfvz6nT59m3759DBw4MOODZXxdxrKQ2L3wwgtZulT7Gl74+XrKyhPCJMaMGcNff/3FTz/9RJ8+fQgICMDX11ftsJ4rKCgo1WxRR0fHDI999jNHUZRcfQ41adIkVQPWiy++SL169fjhhx+ytULX22+/TfXq1Vm/fj2Ojo6cOXOG77//ng0bNhAQEPDcFWmeJ9uJXfkUXS8FChRg7ty5uQpAWK+nT5+yY8cOQMqcWAI/Pz9Onz7N3r17M0/sZHxdxjIpeZLVFSdSMkV5GyFAl/T8+OOPXL16lcOHD9OlSxdOnDhBsWLm/f/NxcUFV1fXTI8pXrw4tra2aVrnwsPD07Ti5YaNjQ0NGzbMdovd9evX2bhxI5UqVQKgevXqDBgwgF69ejF69GhWrVqVu7iye0JISAh37twx/Hzy5EnGjh3LwoULcxWIsD47d+4kNjYWHx8f6tatq3Y44jlSTqDIdEC1tNhlLIMxdk+ePOGvv/4Cst5iJ4SpOTg4sH79enx8fLh+/TqvvfYaiRmU6rEkDg4O1K9fP82Y4b179xr1909RFAIDA/Hyyt7QiGrVqqVJOjUaDV988YVRCkhnO7Hr168fBw4cACAsLIw2bdpw8uRJPvnkE7744otcBySsh3TDWpYXX3wRZ2dnwsLCDElIuqTFLmMZdMUGBASgKAoVK1Y0aouBELlVvHhxtm7dSqFChTh48CCjRo2yipmy48aN46effmLJkiVcunSJ9957j9u3b/POO+8AutJtz/ZMBAYGEhgYSHR0NA8ePCAwMJCgoCDD81OmTGH37t3cuHGDwMBAhgwZQmBgoOGaWTV48GDeeuutNKVXIiIiMp2Rm2VKNhUuXFi5fPmyoiiKMnv2bOWFF15QFEVRdu/erfj4+GT3cnkqJCREAZSQkBC1Q7F6T58+VQoWLKgAysmTJ9UOR2RRu3btFECZNWtWxge5uysKKMqZM3kWl8WIjNT93YCiREQYdk+cOFEBlEGDBqkXmxCZ2Lp1q6LRaBRAmTx5spKcnKx2SKnk5PP7xx9/VLy9vRUHBwelXr16yqFDhwzPDRo0SGnRokWq49Et7JJq8/b2Njw/duxYpWzZsoqDg4NSokQJpW3btsqxY8ey/Vo0Go2i0WgUR0dHpW/fvsr06dOVr776SvH19VVWrVqV7es9K9uJXcGCBZXg4GBFURSlc+fOytdff60oiqLcunVLcXJyynVApiSJXd7ZsGGDAihly5ZVtFqt2uGILPrmm28UQOnYsWP6B6RMXJ48ydvgLEXhwrq/n4sXDbtatmypAMqCBQtUDEyIzOl//wGlXbt2SlhYmNohGVjT5/f9+/eVXbt2KdOnT1f69u2rVKtWTbGzs1Ps7e2VWrVqKf3791emT5+u7Ny5M0fXz3ZXbPXq1Zk/fz5Hjhxh7969tG/fHoB79+6Z/aBLkXf0RYmlG9ay6OvZHTp0KP2q9Ppu2OLFwRhdBtbome7YxMRETpw4AWRv4oQQee39999nwYIFODk5sXv3bmrXrp21ouUiW9zd3WnXrh3jx49n1apVBAUFERUVxR9//MHIkSMpXLgwW7ZsoU+fPjm6frYTu+nTp7NgwQJatmxJ3759DUtvbNmyhUaNGuUoCGFd4uLiDANAZTas+UjWKgRcf8TmwLsEXH9EsjbtOJqaNWvi7u7O06dPOX78eNqLyMSJ53smsTt//jyxsbEULlyYatWqqRiYEJnTaDS89dZbnD59murVq3P//n3atm3LJ598YhWTKsyZk5OTYT3ZOXPmcPToUZ48eZKja2W73EnLli15+PAhkZGRFClSxLD/rbfeokCBAjkKQliXPXv2EBUVRenSpSXZNxO7LoYyZWsQoRH/LVbt5ebEpM6+qYrd2tjY8PLLL7N69Wr27t3LSy+9lPpCMnHi+Z4peXL48GFANxvWxibb36WFyHPVq1fn5MmTjBs3jgULFjBt2jQOHDjA6tWrKVeunNrhiefI0buMra1tqqQOdOusubu7GyUoYdn03bCvvvqqfJCZgV0XQxm+4myqpA4gLCKO4SvOsutiaKr9mS4vJi12z/dMyZPff/8d0K3uIYSlKFCgAPPnz+fXX3/Fzc2N48ePU6dOHcP7uzBf2f7U9fHxoXz58hluIn+Lj49n8+bNgKwNaw6StQpTtgaRXvEC/b4pW4NSdcvq69mdOnUqbVeAtNg9X4qu2MTERA4dOgTAyy+/rGJQQuRMz549CQwMpEmTJkRERNCzZ0/eeecdYmNj1Q5NZCDbid3YsWMZM2aMYXv33Xdp2rQpERERvPXWW6aIUViQffv2ERkZiZeXlxRiNQMngx+naalLSQFCI+I4GfzYsK9MmTJUqVIFrVZrqFlpIC12z5eiK/bEiRM8ffqU4sWLy1rJwmKVK1eOw4cP8/HHH6PRaFiwYAGNGjXKvN6lUE22E7uUSd2YMWP44IMPWLlyJV988QVXrlzJcSCHDx+mc+fOlCxZEo1Gw6ZNm1I9rygKkydPpmTJkjg7O9OyZUv5T2WGpBvWvIRHZZzUZXacvjs21Yy4uDjQrzojLXYZ03fFhoTw+7/d2a1bt5bfB2HR7O3tmTZtGrt378bDw4OLFy/SsGFDFi1aZBUFja2J0d5pOnTowPr163N8/tOnT6lduzZz5sxJ9/kZM2Ywc+ZM5syZw6lTp/D09MTPz4+oqKgc31MYV0JCgiEhl25Y8+Du4pSj4/TdsanG2V2/rqtg5+ICJUoYLUarU7Ik2NhAYiKBu3cD0g0rrIefnx/nz5+nbdu2xMbG8tZbb9GnTx8iIiLUDk38y2iJ3W+//UbRokVzfH6HDh2YOnUqPXr0SPOcoij4+/szceJEevToQY0aNVi2bBkxMTG5XixXGM/+/ft58uQJHh4eNGvWTO1wBNDIpyhebk5kVElQg252bCOf1L+7LVu2xNbWlmvXrnHr1i3dzkuXdH9WrQpSmzBj9va65A64f/o0IImdsC4eHh7s3LmTGTNmYGdnx6+//kqdOnUM9RqFurKd2NWtW5d69eoZtrp16+Ll5cUnn3zCJ598YooYCQ4OJiwsjLZt2xr2OTo60qJFC44dO2aSe4rs03fD9ujRA1tbW5WjEQC2NhomdfYFSJPc6X+e1NkXW5vUz7q5udG4cWMgRXesPrGTWmzP9293bMnkZLy9vWVimbA6NjY2fPjhhxw9epRy5cpx8+ZNmjVrxowZM9BqtWqHl69lu45dt27dUv1sY2NDiRIlaNmyJVWrVjVWXKmEhYUBpFk828PD47/WhHTEx8cTHx9v+Fm6bU0nMTGRjRs3AtINa27a1/Bi3uv10tSx80ynjl1Kbdq04dixY+zdu5chQ4ZIYpcdZctCQABlgcJt2sjqK8JqNW7cmMDAQN5++23Wrl3LRx99hJ2dHePGjVM7tHwr24ndpEmTTBFHljz75qgoSqZvmNOmTWPKlCmmDksABw8e5PHjxxQvXjxtUVuhuvY1vPDz9eRk8GPCo+Jwd9F1vz7bUpeSn58fX3zxBb///jtarRYbSeyy7t+ZsWUBD+mGFVbOzc2N1atX4+fnx48//igVMlSWqzF2sbGxREZGptpMwdPTE/iv5U4vPDw8TSteShMmTCAiIsKwBQUFmSQ+kbob1s4u298XRB6wtdHQtEIxutYpRdMKxTJN6kD3TbxQoUI8fPiQ8+fOgX7Wu69vHkRr2aL+HW9cBilMLPIHjUbDkCFDOHXqFIUKFVI7nHwt24nd06dPGTlyJO7u7hQqVIgiRYqk2kzBx8cHT0/PVDP0EhISOHToUKa10hwdHXF1dTVsLi4uJokvv0tKSpJuWCtkb29Py5YtATi5bh3ExoKDA/j4qBuYBTj/6BEAVZydM/3yKYS1kfHV6st2Yjd+/Hj279/P3LlzcXR05KeffmLKlCmULFmS5cuX5ziQ6OhoAgMDCQwMBHQTJgIDA7l9+zYajYaxY8fy1VdfsXHjRi5evMjgwYMpUKAA/fr1y/E9hXEcPnyYBw8eULRoUUMiIKyDvp7d7X/LdlC5MkiL7HMdvHEDAG8ZWyeEyGPZfofeunUry5cvp2XLlrz55ps0b96cihUr4u3tzcqVK+nfv3+OAjl9+jStWrUy/KwfeDlo0CCWLl3K+PHjiY2N5d133+Wff/6hcePG7NmzR1rhzIC+G7Z79+7Y29urHI0wJn09u+SLF3U7ZHxdlmw8c4ZPAZeYGJJjYjkZGpPlsY1CCJEb2U7sHj9+jM+/XTGurq48fqxbiqhZs2YMHz48x4G0bNky0+rVGo2GyZMnM3ny5BzfQxhfcnIyGzZsAKQb1hpVq1aNkiVLUunePf0OdQOyADdv3uTsrVvEAAWAPp+v45RdMcPzXs+ZjSyEELmR7a7Y8uXLc/PmTQB8fX359ddfAV1LXuHChY0Zm7AAR48e5f79+xQuXFgGiVshjUaDn58fhnROErvn+v333wEIc9St5mF3906q58Mi4hi+4iy7LobmeWxCCOuX7cTujTfe4Pz584Bu1ql+rN17773Hhx9+aPQAhXnTd8N269YNBwcHlaMRptDm5ZclscsGfUHnkAK6yWSlIh+kel7fLzFlaxDJWlljUwhhXNnuin3vvfcMj1u1asXly5c5ffo0FSpUoHbt2kYNTpg3rVZrWB9YumGtV9vatSkCJAP/FC1KcbUDMmOKorB//34A7hQtBf+E4vVMYge65C40Io6TwY9pWqFYmueFECKncj29rWzZspT9txinyF8CAgIIDQ3F1dXVMMheWB/3f0t3BANnAwLo9e9yWSKtixcvEh4ejqOTM/c9KsL105RMJ7HTC4+Ky/A5IYTIiSx3xe7fvx9fX990ixBHRERQvXp1jhw5YtTghHlbu3YtAF26dMHR0VHlaITJ/LvixCVIVUtSpKXvhq3TsCmhbrr6dc92xabk7uKUJ3EJIfKPLCd2/v7+DBs2DFdX1zTPubm58fbbbzNz5kyjBifMV2JiImvWrAGgb9++KkcjTOqZxC6z2ev5nX7iRI/O7YnzKgWAV9TDNMdp0M2ObeRTNC/DE0LkA1lO7M6fP0/79u0zfL5t27acOXPGKEEJ87dv3z4ePHhAiRIlDEVshZX6dym+q7a23Lp1i+vXr6sckHlKTEzk0KFDAPi1aUPP7k0BdF2xKZJhfQW7SZ19pZ6dEMLospzY3b9/P9Pis3Z2djx4kHGXg7AuK1euBKB3795SlNja/dti51CrFvBfd6NI7eTJk0RHR1OsWDFq167NSy/XB6BgYhxucdGG4zzdnJj3ej2pYyeEMIksT54oVaoUf/75JxUrVkz3+QsXLuDlJW9U+UF0dLRhbdjXX39d5WiESUVEQKiu3lr5Tp3g3Dn27t3LO++8o3Jg5kffDdu6dWtsbGzA2RlKlIAHD1jexpObZSrJyhNCCJPLcotdx44d+fzzz4mLSzuLKzY2lkmTJvHKK68YNThhnjZt2kRMTAwVKlSgUaNGaocjTOnf1jpKlqT5v7/fv//+O4mJiSoGZZ70id3LL7/8385/ZxDXJoqudUrRtEIxSeqEECaV5cTu008/5fHjx1SuXJkZM2awefNmtmzZwvTp06lSpQqPHz9m4sSJpoxVmAl9N+zrr7+ORhY5t276xK5aNRo0aIC7uzsRERGGsWRC5+nTpwQEBADPJHb6UlC3b6sQlRAiP8pyYufh4cGxY8eoUaMGEyZMoHv37nTr1o1PPvmEGjVq8Mcff+Dh4WHKWIUZuH//Pnv27AGgf//+KkcjTC5FYmdra0uXLl0AXaut+M+RI0dITEzE29ubChUq/PeEJHZCiDyWrSXFvL292bFjBw8fPuTEiRMcP36chw8fsmPHDsqVK2eiEIU5Wbt2LVqtlkaNGlGpUiW1wxGmliKxA+jevTugS+y0Wq1aUZmdlN2wqVqx9YldSIgKUQkh8qMcrTxRpEgRGjZsaOxYhAVYsWIFIJMm8o1nErvWrVtTqFAh7t69y5kzZ+R94F/6mcKpumHBMMZOWuyEEHklWy12In+7evUqp06dwtbWlt69e6sdjjC12Fi4cUP3+N/EzsnJiY4dOwIYZkbndw8fPiQwMBBIJ7GTrlghRB6TxE5kmX7SRNu2bXF3d1c5GmFyV6/qCusWLgwpxs9269YNkHF2egcOHACgRo0aaccZ6xO7u3chKSmPIxNC5EeS2IksURTFkNjJpIl8Qt8N6+sLKcaNdezYEXt7ey5dusSVK1dUCs58pFvmRM/DA+zsQKs11AMUQghTksROZMmJEye4fv06BQsWNLTYCCv3zPg6PTc3N1q3bg1Idyz8N76uTZs2aZ+0tYXSpXWPpTtWCJEHJLETWaJvrevevTsFCxZUORqRJzJI7CD17Nj8TL92rq2tLS+99FL6B8k4OyFEHpLETjxXYmIia9asAaQbNl/JJLHr0qULGo2GEydOcPfu3TwOzHzou2EbNWqEq6tr+gdJyRMhRB6SxE481549e3j48CHu7u7pdzcJ65OUpJs8Aekmdl5eXjRp0gSALVu25GVkZiXTblg9KXkihMhDktiJ59J3w/bp0wc7uxyVPhSWJjgYEhJ0C9l7e6d7iH6sZX4dZ6coCvv37wcymDihp//7+/vvPIhKCJHfSWInMhUVFWUYRyVFifORoCDdn1WqgE36bxP6cXYHDhzgyZMneRSY+fjrr7+4f/8+zs7OhtbLdNWrp/vz1Cld+RghhDAhSexEpjZt2kRsbCyVKlWiQYMGaocj8ko64+uStQoB1x+xOfAuAdcfUb5CRXx9fUlKSmL79u0qBaoefTds8+bNcXR0zPjA2rXB0REeP5ZWOyGEyUliJzKVcgmxVGtgCuuWsoYdsOtiKM2m76fvouOMWRNI30XHaTZ9P7Ve9APy5+xY/cSJ5447dXD4r9XuxAkTRyWE0Js7dy4+Pj44OTlRv359jhw5kuGxoaGh9OvXjypVqmBjY8PYsWPTPW79+vX4+vri6OiIr6+vWQ5FkcROZCgsLMzQKiGzYfOZFC12uy6GMnzFWUIj4lIdEhYRx6H4cgDs3LmT2NjYPA5SPYmJiRw6dAh4zvg6PX1X7fHjJoxKCKG3du1axo4dy8SJEzl37hzNmzenQ4cO3M5gElN8fDwlSpRg4sSJ1K5dO91jAgIC6N27NwMGDOD8+fMMGDCAXr16ccLMvrBJYicytGbNGrRaLU2aNKFChQpqhyPyiqLA5csAJFepypStQaQ3MkwBHDwr4uBWgqdPnxpasPKDU6dOERUVRdGiRalTp87zT5DETog8NXPmTIYMGcLQoUOpVq0a/v7+lClThnnz5qV7fLly5Zg9ezYDBw7Ezc0t3WP8/f3x8/NjwoQJVK1alQkTJvDyyy/j7+9vwleSfZLYiQzpZ8PKpIl85u5diIoCW1tO2RZN01KXikaDY4XGQP6aHatPYlu3bo1NBpNLUmms+zvi/HnIRy2bQqghISGBM2fO0LZt21T727Zty7Fjx3J83YCAgDTXbNeuXa6uaQqS2Il0Xb58mdOnT2Nra0uvXr3UDkfkJX03bMWK3I/XPvdw58pNAV09u+TkZFNGZjYyXR82PWXLgqenrj7g2bMmjEwI6xYVFUVkZKRhi4+PT3PMw4cPSU5OxsPDI9V+Dw8PwsLCcnzvsLAwo1/TFCSxE+nSt9a1b9+eEiVKqByNyFP6UifVquHu4vTcw51KV8fFrTAPHz7kjz/+MHFw6nv69KnhG3qWEzuNRrpjhTACX19f3NzcDNu0adMyPPbZCX+KouR6EqAprmlsktiJNBRFMSR2MmkiH0oxcaKRT1G83JzI6G1LA5QsWohuXboA+WN27NGjR0lMTKRs2bJUrFgx6yfqu2PNbKC1EJYkKCiIiIgIwzZhwoQ0xxQvXhxbW9s0LWnh4eFpWtyyw9PT0+jXNAVJ7EQaAQEBBAcHU6hQIbp27ap2OCKvpSh1YmujYVJnXcmTZ5M7/c+TOvvSvXs3QDfOTrHyIrwpu2Gz9U1dWuyEyDUXFxdcXV0NW3o1JB0cHKhfvz579+5NtX/v3r288MILOb5306ZN01xzz549ubqmKcj6UCINfWtdjx49KFCggMrRiDz3THHi9jW8mPd6PaZsDUo1kcLTzYlJnX1pX8OLmPLtcHZ25ubNm1y4cCHDcgHWQF8CKMvdsHoNGuhW8QgJgXv3oGRJE0QnhAAYN24cAwYMoEGDBjRt2pSFCxdy+/Zt3nnnHQAmTJjA3bt3Wb58ueGcwMBAAKKjo3nw4AGBgYE4ODjg+289zzFjxvDSSy8xffp0unbtyubNm9m3bx9Hjx7N89eXKSUfCQkJUQAlJCRE7VDMVkJCglKsWDEFUHbv3q12OCKvPXyoKLqCJ4oSHZ3qqaRkrXLs74fKpnN3lGN/P1SSkrWpnu/atasCKJMmTcrDgPPWw4cPFY1GowBKaGho9i9Qq5bu73bDBuMHJ4QVy8nn948//qh4e3srDg4OSr169ZRDhw4Znhs0aJDSokWLVMejq+KUavP29k51zLp165QqVaoo9vb2StWqVZX169fn5mWZhEZRrLzfJIU7d+5QpkwZQkJCKF26tNrhmKVt27bRuXNnPD09CQkJwc5OGnXzlaNHoXlz3SzOW7eydeqyZcsYPHgwtWvXNnzztTa//fYbPXv2pHr16ly8eDH7F3j7bVi4EMaPh+nTjR+gEFZKPr+zTsbYiVT0S4j16dNHkrr8KJ01YrPqlVdewdbWlvPnzxMcHGzkwMxDjrth9fQTKGScnRDCRCwmsZs8eTIajSbV5unpqXZYViUyMpLNmzcDUpQ438pFYlesWDFeeuklwHpnx2Z5fdiM6CdQnD6tq2knhBBGZjGJHUD16tUJDQ01bH/++afaIVmVjRs3EhcXR5UqVainX7Rc5C8patjlRLdu3QDrXIXi1q1b/P3339ja2tKiRYucXaRqVXB1hZgYyElXrhBCPIdFJXZ2dnZ4enoaNimca1wplxAzt4KLIo+kKHWSE/rE7o8//iA8PNxIQZkHfWtdw4YNcXV1zdlFbGygUSPdY+mOFUKYgEUldteuXaNkyZL4+PjQp08fbty4kenx8fHxqZYeiYqKyqNILc+9e/cMH1z9+vVTORqhiuhouH1b9ziHLXZly5alXr16aLVatm7dasTg1Jfrblg9fXesFCoWQpiAxSR2jRs3Zvny5ezevZtFixYRFhbGCy+8wKNHjzI8Z9q0aamWHvHNYStEfrBmzRq0Wi0vvPAC5cuXVzscoYYrV3R/ligBxYrl+DLdu3cHrGecXbJW4djfD9m5RzdxomWr1rm7oBQqFkKYkMUkdh06dODVV1+lZs2atGnThu3btwO6EgsZmTBhQqqlR4L044dEGim7YUU+lYuJEynpu2P37t1r8a3kuy6G0mz6fl6b9iv/PAxHY+fIJ3/EsetiaM4vqu+KvXwZ/vnHOIEKIcS/LCaxe1bBggWpWbMm165dy/AYR0fHVEuPuLi45GGEluPSpUucPXsWOzs7evbsqXY4Qi1GSuyqV69OxYoViY+PZ/fu3UYITB27LoYyfMVZQiPiiLsVCIBjaV/Cn2oZvuJszpO7EiWgQgXd41OnjBOsEEL8y2ITu/j4eC5duoSXl5faoVg8fWtdhw4dKF68uMrRCNUYKbHTaDQWPzs2WaswZWsQ+urtcbfOA+BUrrZh35StQSRrc1jfXbpjhRAmYjGJ3QcffMChQ4cIDg7mxIkTvPbaa0RGRjJo0CC1Q7NoiqIYErv+/furHI1QVS5LnaSkH2e3fft2EhIScn29vHYy+LFhXVxtfAxxty4A4ORdB9CtNRQaEcfJ4Mc5u4G+ULFMoBBCGJnFJHZ37tyhb9++VKlShR49euDg4MDx48fx9vZWOzSLduzYMW7evImLiwudO3dWOxyhloQE+Ptv3WMjTDJq0qQJHh4eREREcPDgwVxfL6+FR8UZHkf/uQ8lMQ77YmVw8KiQ4XHZkrLFLv+s6iiEyAMWk9itWbOGe/fukZCQwN27d1m/fr3McjUC/RJir776KgUKFFA5GqGav/+G5GRwcYFSpXJ9ORsbG7p27QpY5uxYdxcnABRFS9RZXdkWl/qd09R31B+XbbVrg6MjPH78X0IthBBGYDGJnTC++Ph4fv31V0C6YfM9/fi6qlXBSMWp9ePsNm3ahFarNco180ojn6J4uTkRd+MMSf+EonEsSMHqrQzPawAvNyca+RTN2Q0cHEC/uot0xwohjEgSu3zs119/5fHjx5QuXZpWrVo9/wRhvYw0cSKl1q1b4+LiQmhoKKcsbPanrY2GSZ19iTqzDYBCtfywcXAGdEkdwKTOvtja5CIJlgkUQggTkMQun1IUhe+//x6A4cOHY2trq3JEQlUmSOwcHR3p2LEjYJmzY33sI4kNPgMaDS71XjHs93RzYt7r9WhfI5cz8vUTKCSxE0IYkZ3aAQh1nDhxgtOnT+Po6MiwYcPUDkeozQSJHehmx65du5ZNmzbx9ddfG/XapjZnzhwAXun0Cp982I3wqDjcXXTdr7lqqdPTt9idPw+xseDsnPtrCiHyPWmxy6d++OEHAPr27UuJEiVUjkaoSqvVrYIARk/sOnTogIODA1euXOGSPnm0AJGRkSxduhSAMWNG07RCMbrWKUXTCsWMk9QBlC0Lnp6QlARnzxrnmkKIfE8Su3woNDSUdevWATBq1CiVoxGqu3VL12Lk4ABGXifY1dWVl19+GbCs2bFLly4lOjqaatWqGeI3Oo1GumOFEEYniV0+tGDBAhITE3nxxRepp5+ZJ/IvfUta5cpgZ/zRGfrZsb+sWcfmwLsEXH+U8xUb8oBWqzW0aI8ePTpNiROj0nfHysxYIYSRyBi7fCYhIYEFCxYA0lon/mWi8XV6hSo3Bo2GSxfOMWLhPuxci+Pl5sSkzr65n4BgArt27eLvv//Gzc2NAQMGmPZmMjNWCGFk0mKXz/z222+EhYVRsmRJevTooXY4whyYMLHbdTGUibvu4FiyKgCxf+sSmLCIOIavOMuui6FGv2du6WeLDxkyhIIFC5r2Zg0agI0NhITAvXumvZcQIl+QxC6fSVnixN7eXuVohFkwUWKXrFWYsjUIBXCu1BSAmKsBgG6tVYApW4PMqlv2ypUr7N69G41Gw4gRI0x/w0KFoEYN3WPpjhVCGIEkdvnIqVOnOHHiBA4ODrz11ltqhyPMgaKYLLE7GfyY0AjdWqoFKuu6HONu/0lyXLTu1kBoRBwngx8b9b65oS9x0rlzZ8obeSJJhqQ7VghhRJLY5SP6AeG9e/fG3d1d5WiEWQgPh3/+0c3QrFzZuJeOijM8ti9SEvvi3qBoif231S6949QUERFhKHEyevTovLuxzIwVQhiRJHb5xP3791mzZg0gkyZECvrWuvLljV4g193FKdXPBX1bAPDk2Bq0ifEZHqcWfYkTX19fWrdunXc31rfYnT6tq2knhBC5IIldPrFw4UISExNp0qQJDRs2VDscYS6CgnR/mmDiRCOfoni5ORnWVnWp3wXbQsVIjrhP5KmNaAAvN91KDmrTarWGbthRo0aZtsTJs6pWBVdXiImBixfz7r5CCKskiV0+kJCQwLx58wBprRPPMOGMWFsbDZM6+wKgAWwcnCjS6k0AIgPWkRT5gEmdfY23kkMu5GmJk2fZ2ECjRrrH0h0rhMglSezygQ0bNhAaGoqnpyevvfaa2uEIc2LiGnbta3gx7/V6eLrpulsLVHsJx9LVUZLiKR+80Wzq2Olniw8dOtT0JU7SI4WKhRBGIgWK8wH9pIl33nkHBwcHlaMRZsXEiR3okjs/X09OBj8mPCqOJ83m8Ga3lzm8awuHDx/mpZdeMtm9syJliZN3331XnSBkAoUQwkikxc7KnTlzhmPHjmFvb8/bb7+tdjjCnERE/FcU14SJHei6ZZtWKEbXOqUY1LmlodzOqFGjSFJ5woAqJU6epU/sLl/WzVIWQogcksTOyulb63r27Imnp6fK0Qizcvmy7k8vL3Bzy9Nbf/nllxQpUoQLFy6waNGiPL13SqqVOHlWiRJQoYLu8alT6sUhhLB4kthZsfDwcFavXg3IpAmRDn03rK9vnt+6ePHifPHFFwB8+umnPH6sTpFi1UqcpEe6Y4UQRiCJnRVbtGgRCQkJNGzYkMb6Dw0h9ExY6iQr3nnnHWrUqMHjx4/5/PPP8/z+KUucjB49Om9LnKRHJlAIIYxAEjsrlZiYmKrEieofWsL85MHEiczY2dkZZqPOmzePCxcu5On99SVOChcuzOuvv56n905XyqXFFPNZP1cIYVkksbNSmzZt4u7du7i7u9OrVy+1wxHmSOXEDqBVq1a89tpraLVaxowZg5KHCY0+qRwyZIg6JU6eVbs2ODrC48fw999qRyOEsFCS2Fkp/YfW22+/jaOjo8rRCLMTFwfBwbrHKiZ2AN9++y1OTk4cPHiQ3377LU/uefnyZUOJkxEjRuTJPZ/LwQHq1dM9lu5YIUQOSWJnhQIDAzl69Ch2dna88847aocjzNHVq6DVQuHC4OGhaije3t58/PHHALz//vvExMSY/J76sXVdunTBx8fH5PfLspTdsUIIkQOS2FkhfYmTV199lZIlS6ocjTBLKbthzWD85YcffkjZsmUJCQlhxowZJr1XREQEy5YtA8xwtrjMjBVC5JIkdlbm4cOHrFy5ElC5LpcwbyqWOklPgQIF+O677wCYPn06N2/eNOr1k7UKAdcfsTnwLpO+/dF8Spw8S99id/48xMaqG4sQwiJJYmdlfvrpJ+Lj46lXrx5NmzZVOxxhrsxg4sSzXn31VVq1akVcXBwffPCB0a6762Iozabvp++i44xefZYf/+2GffnVQeY3W7xsWV3XeFISnD2rdjRCCAskiZ0VSUpKYu7cuYCUOBHPoXINu/RoNBpmz56Nra0t69evZ//+/YbnUra4BVx/RLI2a7Nnd10MZfiKs4RGxAEQe+MMSU9CsXEsyOboCuy6GGqS15JjGo2MsxNC5IokdlZk8+bNhISEULx4cfr06aN2OMJcJSXpJk+AWSV2ADVr1mT48OGAbihBUlJSqha3MWsC6bvoOM2m739uUpasVZiyNYiUKWDUma0AFKrdDhsHJ6ZsDcpykphnpFCxECIXJLGzIvpJE2+99RZOTk4qRyPMVnAwJCSAszN4e6sdTRpTpkyhWLFi/PXXX4z67OtULW56YRFxDF9xNtPk7mTw41TnJT4KIS74LKChUN2OKEBoRBwng9VZzixDMoFCCKOYO3cuPj4+ODk5Ub9+fY4cOZLp8YcOHaJ+/fo4OTlRvnx55s+fn+r5pUuXotFo0mxxcXEZXFEdkthZiQsXLnDo0CFsbW0NLR5CpEs/vq5KFbAxv7eAokWL8r///Q+ARf7TSYqJSHOMvo0tsxa38KjUb7ZRZ7cB4FypMfaFPTM8TnUNGuj+XUJC4N49taMRwiKtXbuWsWPHMnHiRM6dO0fz5s3p0KEDt2/fTvf44OBgOnbsSPPmzTl37hyffPIJo0ePZv369amOc3V1JTQ0NNVmbg0p5veuLnJE31rXvXt3SpcurXI0wqyZ4cSJZw0dOpRK1WqSHBfNkyO/pHvM81rc3F3+e7PVxj8l+s/fAXCp3znD48yCiwvUqKF7LN2xQuTIzJkzGTJkCEOHDqVatWr4+/tTpkwZw1Kbz5o/fz5ly5bF39+fatWqMXToUN58802+/fbbVMdpNBo8PT1TbeZGEjsr8PjxYylxIrLOzEqdpMfW1pbBH0wGIDpwNwn3r2d4bEYtbjU9nXG6d45HO2Zzd+FbKIlx2Bcvi1PZWgBoAC83Jxr5FDV2+Lkn3bFCpCsqKorIyEjDFh8fn+aYhIQEzpw5Q9u2bVPtb9u2LceOHUv3ugEBAWmOb9euHadPnyYxMdGwLzo6Gm9vb0qXLs0rr7zCuXPnjPCqjEsSOyuwePFiYmNjqV27Ns2aNVM7HGHuLKDFDqBVixYUqNYCUHi8b0GG68imbHF79OgRy5cvp0ePHni4l+DKL58R/edetDER2DgVosjLb+nGxfx7/KTOvtjamOHscZkZK0S6fH19cXNzM2zTpk1Lc8zDhw9JTk7G45lVdTw8PAgLC0v3umFhYeken5SUxMOHDwGoWrUqS5cuZcuWLaxevRonJydefPFFrl27ZqRXZxx2agcgcic5OZkff/wRkBInIgsUxWISu0Y+RanS5R0C/z5O/J0gYi4dpqBvC8PzGsDTzQl3TSSzZ69g06ZNHDlyhOTkZMMxZcqUoU6zNvztXI2nRSujsdW95Xm6OTGpsy/ta3jl9cvKGn1id/q0bhaznbxVCwEQFBREqVKlDD9nthb6s5+HiqJk+hmZ3vEp9zdp0oQm+t9N4MUXX6RevXr88MMPhvXZzYHFvVvMnTuXb775htDQUKpXr46/vz/NmzdXOyzVbN26lVu3blG0aFH69eundjjC3N29C1FRYGsLFSuqHU2mbG00fPV6C/oe68WTI7/wz4ElOFdsjMbekcTwYGKuBWDz8DwVPwlKdV6tWrXo1q0bXbt2pW7dumg0GpK1CieDHxMeFYe7i6771Sxb6vSqVgVXV4iMhIsXoU4dtSMSwiy4uLjg6uqa6THFixfH1tY2TetceHh4mlY5PU9Pz3SPt7Ozo1ixYumeY2NjQ8OGDaXFLjf0s1zmzp3Liy++yIIFC+jQoQNBQUGULVtW7fDynFarZerUqQAMGzYMZ2dnlSMSZk/fWlexIjg4qBtLFrSv4cWyWVPo5beX+H/CCF83iaTIByRHhgMQge7NtXnz5oZkzsfHJ811bG00NK2Q/puzWbKxgUaNYN8+XXesJHZCZJmDgwP169dn7969dO/e3bB/7969dO3aNd1zmjZtytatW1Pt27NnDw0aNMDe3j7dcxRFITAwkJo1axoveGNQLEijRo2Ud955J9W+qlWrKh9//HGWzg8JCVEAJSQkxBTh5blVq1YpgFKoUCHl/v37aocjLMHs2YoCitKtm9qRZMuGDRsVdBNhFUBxdnZWunXrpixdulR58OCB2uGZxqef6v6tBg9WOxIhVJfdz+81a9Yo9vb2yuLFi5WgoCBl7NixSsGCBZWbN28qiqIoH3/8sTJgwADD8Tdu3FAKFCigvPfee0pQUJCyePFixd7eXvntt98Mx0yePFnZtWuXcv36deXcuXPKG2+8odjZ2SknTpww7ovNJYtpsdPPcvn4449T7c9slkt8fHyqGTNRUVEmjTEvxcfH/7+9e4+LKf//AP6a7ldtJBXdtEQbSpFarHvuhaWsbbOuuVYsxaLUumS/ye66hK/NbYl1t7KM/SqXYpN+FqVFpWLSsqncSvX5/XG2YWq6bnVmxvv5eMyjM5/zOWfen/mcZt5zLp+DpUuXAgACAgJgaGjIc0RELsjJ+XWVubu7ITQ0FFlZWRg5ciQGDRoELS0tvsNqWnRlLCEN5uHhgadPnyIkJAQikQi2traIiYmB+T+DsotEIokx7SwtLRETEwN/f39s2rQJJiYm+P777zFu3DhxnWfPnmHGjBnIzc2Fnp4e7O3tceHCBfTs2bPZ21cTAWPVXGomYx49eoS2bdvi8uXLcHFxEZevXr0au3btQlpaWpVlgoODsXLlyirl2dnZcj/WW0REBBYsWABjY2PcvXsX2trafIdEZF1JCWBhAYhEwKFDwDsfWEQG/fUXUPGD7e+/AX19fuMhhEc5OTkwNTVViO/vpiZ3w53U5yqXJUuWoKCgQPxISUmRWk/e5OfnIzQ0FAAQEhJCSR2pm59/5pI6Y2Ng1Kja6xN+tW4NtG/PTScm8hsLIURuyE1i15CrXNTV1dGiRQvxQ1dXtzlCbXJr165Ffn4+bGxsMHnyZL7DIfKAMWDDBm569my5uHCCgMazI4TUm9wkdu9e5fIuoVAocWhW0WVlZeG7774DAISFhUGFxrcidZGQwI2Jpq4OzJzJdzSkrioSO7q1GCGkjuQqK1iwYAG8vLzg6OgIZ2dnbNu2DVlZWfDx8eE7tGazbNkyFBcXo1+/fhgxYgTf4RB58c+PAUyaxB3iI/Lh3QsoGANoAHJCSC3kKrGr7SoXRZecnIy9e/cCANatW0d3mSB1k50NHD7MTfv68hsLqR87O24v699/AykpwEcf8R0RIUTGyc2h2AqzZ89GZmYmiouLkZSUhL59+/IdUrMJCAgAYwyenp7o0aMH3+EQebFpE1BWBvTvD3Ttync0pD7U1IABA7jpr7/mNxZCiFyQu8TufXX27FkIhUKoqqpi1apVfIdD5MWLF8C2bdy0nx+voZAG+vZb7l6xx48DlUbGJ4SQyiixkwNlZWVYvHgxAGDOnDloXzEEAiG12bsXyM/nhs2gczLl00cfAQsWcNPz5wMvX/IbDyFEplFiJwd++ukn3LhxA3p6eli2bBnf4RB5wdjbiybmzweUlfmNhzTc8uWAqSmQmQmsXs13NIQQGUaJnYx79eqVOJlbunQpWrWSoxuZE34JhdwtxHR1gS+/5Dsa8m/o6LxN0tetA6TcaYcQQgBK7GTeDz/8gOzsbJiammLevHl8h0PkScWAxFOmAC1a8BoKaQTu7sDw4cCbN8CcOdweWUIIqYQSOxn29OlTrP7nsMs333wDTU1NniMiciMtDTh9mhv3jH4QKAaBAPjhB0BDA/jtN+DAAb4jIoTIIErsZNg333yDgoICdOvWDZMmTeI7HCJPvv+e+ztqFGBlxW8spPG0bw8sXcpN+/sDBQX8xkMIkTmU2Mmo9PR0bNq0CQA3GLEynfhO6io/H9i5k5umAYkVz6JFQIcOQG4uEBTEdzSEEBlDiZ2M+vrrr/HmzRsMHjwYQ4YM4TscIk927OCGxOjShRuUmCgWDQ1g40Zu+ocfgP/7P17DIYTIFkrsZFBiYiKio6MhEAiwbt06vsMh8qS09O2Xvq8v3VtUUQ0ZAkyYAJSXA7NmcX8JIQSU2MkcxhgWLVoEAPDy8oKdnR2/ARH5cvw48OABYGAAfPYZ39GQprR+PTcMypUrwI8/8h0NIURGUGInY2JiYhAXFwd1dXWEhobyHQ6RNxVjnc2cCdBV1IqtbVsgJISbDggAnjzhNx5CiEygxE6GlJaWim8d5uvrCzMzM54jInLl+nXg4kXuvqKzZ/MdDWkO8+YBXbsCf/8NBAbyHQ0hRAZQYidDdu7ciZSUFLRs2RJLlizhOxwibyr21k2YAJiY8BsLaR4qKsDmzdz0jh1AfDy/8RBCeEeJnYx48eIFVqxYAQBYtmwZPvjgA34DIvIlNxfYv5+bpiFO3i8ff8zdXQTgLqQoLeU3HkIIryixkxEREREQiUSwtLTEbDqMRuorMpK71ZSzM9CzJ9/RkOYWFga0bAn88cfbq6IJIe8lSuxkQF5eHsLCwgAAq1evhrq6Os8REblSXAxs2cJN+/nxGgrhiYEBsHYtN71iBfDoEb/xEEJ4Q4mdDAgJCcHz58/h6OiICRMm8B0OkTfR0UBeHtCuHTBmDN/REL5MnQo4OQFFRcDChXxHQwjhCSV2PLt+/Tq2bt0KgLt1mJISdQmpB8aADRu46blzAVVVXsMhPFJS4vbcKilxyf65c3xHRAjhAWURPCoqKoKHhwdKS0sxbtw49KfbP5H6uniRu6WUpiYwfTrf0RC+2dsDc+Zw03PmcIfpCSHvFUrseMIYg4+PD+7duwczMzNs27aN75CIPKrYW/fFF9zJ84SEhgJt2gB//gn85z98R0MIaWaU2PEkKioK+/btg7KyMvbv34+W9KVM6isjg7uFGADMn89vLER26OlxtxsDgG++4bYTQsh7gxI7HqSmpmLu3LkAgNDQULi4uPAcEZFLGzdyN38fPBiwseE7GiJLJk4E+vcHXr/m7k7BGN8REUKaCSV2zezVq1eYMGECXr16hUGDBiEgIIDvkIg8ev6cu9MAQEOckKoEAmDTJu5imlOngIMH+Y6IENJMKLFrZv7+/rh16xYMDQ2xZ88eugqWNMyuXUBBAdCxIzB0KN/REFnUuTPw1VfctKcnNxTO7dv8xkQIaXKUVTSjn3/+GVu3boVAIMDevXthZGTEd0hEHpWXv70v7Pz53PAWhEizYgU3vp2SEnDsGNClC3ehDZ13R4jCom+EZpKeno5p06YBAAIDAzF48GCeIyJy69dfgbt3uZPkvb35jobIMg0N4L//BW7eBMaO5c6127MHsLbmxj3MzeU7QkJII6PErhmUlJTA09MThYWFcHFxQUhICN8hEXlWMcTJtGmAjg6voRA5YWMDHD4M/P47d7HNmzfcOXjt2wNLlgD5+XxHSAhpJJTYNYOlS5ciMTER+vr62L9/P1RUVPgOicgbxoD//Q9wdweEQu7Q2j9XVhNSZz16AGfPctuSkxPw6hV3j9n27YE1a4AXL/iOkBDyL1Fi18ROnTqF8PBwAMCPP/4IMzMzniMicuXlS2D7dqBrV2DgwLfj1gUEABYWvIZG5Fj//kBCArc92doCz54BS5cCVlbcMDolJXxHSAhpIErsmtDDhw/h/c85UPPmzYO7uzu/ARH5kZ0NBAYCpqbAjBnArVuAtjZ3m6g7d4DVq/mOkMg7gQAYPZq7Jd3evdxeu8ePuXHvrK2B3buBsjK+oySE1BMldk2krKwMkyZNwtOnT2Fvb49vv/2W75CIrGMMuHQJGD8esLQEwsKAv//mptevBx4+5PamWFvzHSlRJMrKwKRJQGoqsHkzYGwMZGZyF+Z07QocOUIJHiFyhBK7JhIaGoq4uDjo6OjgwIEDUFdX5zskIqtev+bGpXNwAPr0AQ4d4r5IBwzgDpXdvQv4+3NXwRLSVNTUgFmzgHv3uB8V+vpASgowbhx3iHbVKkAk4jtKQkgtKLFrArGxsQgNDQUAREZGokOHDjxHRGTSo0fcOGNmZsDkyUByMjc8xfTp3PAUv/3GHSpTVuY7UvI+0dICFi8G0tOBZcu4BO/BA27azAz49FPuAp7ycr4jJYRIIWDs/bmJYE5ODkxNTZGdnY127do1yWv89ddfsLOzw6NHj/Dll1/ixx9/bJLXIXKIMSAnB7h2jdsrd/AgUFrKzTM15c6fmzYNaNWK3zgJederV9z2unUrcPny23IrK+78zy+/BFq35i8+8l5oju9vRUGJXSMqLy/HqFGjEBMTg06dOuHatWvQ1tZu9NchckIk4pK4dx95eZJ1+vTh7h7h7g7QMDhE1t26xSV4u3cDhYVcmZoaN/ixjw/Qty93UQYhjYwSu7qTm0OxFhYWEAgEEo/AwEC+w5IQERGBmJgYqKur48CBA5TUvU/y8oCYGCA0FHBzA9q2BUxMuEOpISHcvLw87rBqt27cl2BSEnDhAndoi5I6Ig9sbYEffuBOI9ixgxsXr6QEiI4G+vXjBkLesIG76IcQnm3evBmWlpbQ0NCAg4MDLl68WGP9uLg4ODg4QENDA+3bt0dkZGSVOocPH4aNjQ3U1dVhY2ODo0ePNlX4DcfkhLm5OQsJCWEikUj8KCoqqtc6srOzGQCWnZ3d6PFdvXqVqaioMABsy5Ytjb5+wrPycsaePWPs/n3Gfv+dsZMnGVu1irExYxgzNWWMO9Aq+VBSYszWlrHJkxnbuJGxK1cYe/mS75YQ0riSkhibMYMxbe23276GBmNeXoxdvsz97xDyL9X3+zs6Opqpqqqy7du3s5SUFObr68u0tbXZgwcPpNZPT09nWlpazNfXl6WkpLDt27czVVVVdujQIXGd+Ph4pqyszFavXs1SU1PZ6tWrmYqKCrty5UqjtLGxyM2hWAsLC/j5+cHPz6/B62iqXbmFd+9i+IAByM7JwfBhw7B582YI6HBE0/u3m+7r18DTp8CTJ9zfdx/SyirOh5NGIOCGIXF0fPuws+PGniPkfVBYCOzbB0RGAjduvC1XU+Ou6G7Rgvv77nRtf3V0uLusEPliaAhoajbqKuv7/e3k5ITu3btjy5Yt4rLOnTvD3d0da9asqVI/ICAAJ06cQGpqqrjMx8cHN27cQEJCAgDAw8MDhYWFOH36tLjO0KFDxXeVkhVydfwnLCwMoaGhMDU1xfjx47Fo0SKoqalVW7+4uBjFxcXi50VFRY0eE2MM6X364NLjx1zB6dPcuGNEMWlqchc3GBgAnTu/TeLs7QFdXb6jI4Q/LVpwpxjMnMndk3brVu4Q7atXwF9/cQ/yfjhzBhgypElWXVRUhMKK8zsBqKurVxlOrKSkBElJSVVO1xoyZAji4+OlrjchIQFDKsXs6uqKHTt24M2bN1BVVUVCQgL8/f2r1NlQcf9uGSE3iZ2vry+6d+8OfX19/P7771iyZAkyMjLw3//+t9pl1qxZg5UrVzZpXKWlpYC6Ol6B28CUaE9d86rt/a5pvpoal6RVPAwMJJ9LK2/kX6GEKByBgLsPrZMTsGkTl9AVFHB79Or79/nzhu+Zl4+DUYqpCfey2tjYSDwPCgpCcHCwRNmTJ09QVlaGNm3aSJS3adMGubm5Utebm5srtX5paSmePHkCY2PjautUt06+8JrYBQcH15p4JSYmwtHRUSJL7tq1K/T19fHpp58iLCwMraoZHmLJkiVYsGCB+PnDhw+rbBT/lqqqKuwePEBaWhqs6Y4AhBDylqYmN/YdIY0kJSUFbdu2FT+vafD/yqdEMcZqPE1KWv3K5fVdJx94Tezmzp0LT0/PGutYVHOj8169egEA7t27V21iV3kX7bu7bxsbJXWEEEJI09LV1UWLFi1qrGNgYABlZeUqe9Ly8vKq7HGrYGRkJLW+ioqKOMeork516+QLr4mdgYEBDAwMGrRscnIyAMDY2LgxQyKEEEKIHFNTU4ODgwOEQiHGjBkjLhcKhXBzc5O6jLOzM06ePClRdvbsWTg6OkJVVVVcRygUShxBPHv2LFxcXJqgFQ0nF+fYJSQk4MqVK+jfvz/09PSQmJgIf39/jB49Gma0m58QQggh71iwYAG8vLzg6OgIZ2dnbNu2DVlZWfDx8QHAnar18OFD7N69GwB3BezGjRuxYMECTJ8+HQkJCdixY4fE1a6+vr7o27cvwsLC4ObmhuPHj+PcuXO4dOkSL22sjlwkdhUD/q5cuRLFxcUwNzfH9OnTsXjxYr5DI4QQQoiM8fDwwNOnTxESEgKRSARbW1vExMTA3NwcACASiZCVlSWub2lpiZiYGPj7+2PTpk0wMTHB999/j3HjxonruLi4IDo6GsuWLcPy5cthZWWFAwcOwMnJqdnbVxO5GceuMdAtSQghhBD5Q9/fdUcjPxJCCCGEKAhK7AghhBBCFAQldoQQQgghCoISO0IIIYQQBUGJHSGEEEKIgqDEjhBCCCFEQVBiRwghhBCiICixI4QQQghREJTYEUIIIYQoCLm4pVhjKS8vB8DdSoQQQggh8qHie7vie5xU771K7B4/fgwA6NmzJ8+REEIIIaS+Hj9+DDMzM77DkGnv1b1iS0tLkZycjDZt2kBJqfGOQhcVFcHGxgYpKSnQ1dVttPXKEkVvI7VP/il6GxW9fYDit5Ha13Dl5eV4/Pgx7O3toaLyXu2Tqrf3KrFrKoWFhdDT00NBQQFatGjBdzhNQtHbSO2Tf4reRkVvH6D4baT2keZAF08QQgghhCgISuwIIYQQQhQEJXaNQF1dHUFBQVBXV+c7lCaj6G2k9sk/RW+jorcPUPw2UvtIc6Bz7AghhBBCFATtsSOEEEIIURCU2BFCCCGEKAhK7AghhBBCFAQldoQQQgghCoISuzpatWoVXFxcoKWlhQ8++EBqnaysLIwaNQra2towMDDA/PnzUVJSUuN6i4uLMW/ePBgYGEBbWxujR49GTk5OE7Sg7mJjYyEQCKQ+EhMTq11u8uTJVer36tWrGSOvHwsLiyrxBgYG1rgMYwzBwcEwMTGBpqYm+vXrh9u3bzdTxHWXmZmJqVOnwtLSEpqamrCyskJQUFCt26Os9+HmzZthaWkJDQ0NODg44OLFizXWj4uLg4ODAzQ0NNC+fXtERkY2U6T1s2bNGvTo0QO6urowNDSEu7s70tLSalymuv/TO3fuNFPU9RMcHFwlViMjoxqXkZf+A6R/nggEAsyZM0dqfVnvvwsXLmDUqFEwMTGBQCDAsWPHJOY39LPw8OHDsLGxgbq6OmxsbHD06NEmasH7ixK7OiopKcH48eMxa9YsqfPLysowYsQIvHjxApcuXUJ0dDQOHz6MhQsX1rhePz8/HD16FNHR0bh06RKeP3+OkSNHoqysrCmaUScuLi4QiUQSj2nTpsHCwgKOjo41Ljt06FCJ5WJiYpop6oYJCQmRiHfZsmU11l+3bh3Wr1+PjRs3IjExEUZGRhg8eDCKioqaKeK6uXPnDsrLy7F161bcvn0bERERiIyMxNKlS2tdVlb78MCBA/Dz88PXX3+N5ORk9OnTB8OGDUNWVpbU+hkZGRg+fDj69OmD5ORkLF26FPPnz8fhw4ebOfLaxcXFYc6cObhy5QqEQiFKS0sxZMgQvHjxotZl09LSJPqrQ4cOzRBxw3z00UcSsd68ebPauvLUfwCQmJgo0TahUAgAGD9+fI3LyWr/vXjxAt26dcPGjRulzm/IZ2FCQgI8PDzg5eWFGzduwMvLCxMmTMDVq1ebqhnvJ0bqJSoqiunp6VUpj4mJYUpKSuzhw4fisv379zN1dXVWUFAgdV3Pnj1jqqqqLDo6Wlz28OFDpqSkxH799ddGj72hSkpKmKGhIQsJCamxnre3N3Nzc2ueoBqBubk5i4iIqHP98vJyZmRkxNauXSsue/36NdPT02ORkZFNEGHjWrduHbO0tKyxjiz3Yc+ePZmPj49EWadOnVhgYKDU+osXL2adOnWSKJs5cybr1atXk8XYWPLy8hgAFhcXV22d8+fPMwAsPz+/+QL7F4KCgli3bt3qXF+e+48xxnx9fZmVlRUrLy+XOl+e+g8AO3r0qPh5Qz8LJ0yYwIYOHSpR5urqyjw9PRs95vcZ7bFrJAkJCbC1tYWJiYm4zNXVFcXFxUhKSpK6TFJSEt68eYMhQ4aIy0xMTGBra4v4+Pgmj7muTpw4gSdPnmDy5Mm11o2NjYWhoSE6duyI6dOnIy8vr+kD/BfCwsLQqlUr2NnZYdWqVTUeqszIyEBubq5Ef6mrq+OTTz6Rqf6qTkFBAVq2bFlrPVnsw5KSEiQlJUm89wAwZMiQat/7hISEKvVdXV1x7do1vHnzpslibQwFBQUAUKf+sre3h7GxMQYOHIjz5883dWj/yt27d2FiYgJLS0t4enoiPT292rry3H8lJSXYu3cvpkyZAoFAUGNdeeq/Cg39LKyuT+Xh81OeUGLXSHJzc9GmTRuJMn19faipqSE3N7faZdTU1KCvry9R3qZNm2qX4cOOHTvg6uoKU1PTGusNGzYMP/30E/73v/8hPDwciYmJGDBgAIqLi5sp0vrx9fVFdHQ0zp8/j7lz52LDhg2YPXt2tfUr+qRyP8taf0lz//59/PDDD/Dx8amxnqz24ZMnT1BWVlav917a/2SbNm1QWlqKJ0+eNFms/xZjDAsWLEDv3r1ha2tbbT1jY2Ns27YNhw8fxpEjR2BtbY2BAwfiwoULzRht3Tk5OWH37t04c+YMtm/fjtzcXLi4uODp06dS68tr/wHAsWPH8OzZsxp/DMtb/72roZ+F1fWprH9+yhsVvgPgU3BwMFauXFljncTExFrPK6sg7ZcZY6zWX2yNsUxdNKS9OTk5OHPmDA4ePFjr+j08PMTTtra2cHR0hLm5OU6dOoWxY8c2PPB6qE8b/f39xWVdu3aFvr4+Pv30U/FevOpU7pum6i9pGtKHjx49wtChQzF+/HhMmzatxmVloQ9rUt/3Xlp9aeWyZO7cufjjjz9w6dKlGutZW1vD2tpa/NzZ2RnZ2dn4z3/+g759+zZ1mPU2bNgw8XSXLl3g7OwMKysr7Nq1CwsWLJC6jDz2H8D9GB42bJjEEZzK5K3/pGnIZyGfn5/vi/c6sZs7dy48PT1rrGNhYVGndRkZGVU5ATQ/Px9v3ryp8gvl3WVKSkqQn58vsdcuLy8PLi4udXrd+mhIe6OiotCqVSuMHj263q9nbGwMc3Nz3L17t97LNtS/6dOKqz/v3bsnNbGruIIvNzcXxsbG4vK8vLxq+7ix1bd9jx49Qv/+/eHs7Ixt27bV+/X46ENpDAwMoKysXOWXfU3vvZGRkdT6KioqNSbufJo3bx5OnDiBCxcuoF27dvVevlevXti7d28TRNb4tLW10aVLl2q3LXnsPwB48OABzp07hyNHjtR7WXnpv4Z+FlbXp831+fm+eK8TOwMDAxgYGDTKupydnbFq1SqIRCLxhn727Fmoq6vDwcFB6jIODg5QVVWFUCjEhAkTAAAikQi3bt3CunXrGiWud9W3vYwxREVF4YsvvoCqqmq9X+/p06fIzs6W+Mdvav+mT5OTkwGg2ngtLS1hZGQEoVAIe3t7ANy5NHFxcQgLC2tYwPVUn/Y9fPgQ/fv3h4ODA6KioqCkVP8zL/joQ2nU1NTg4OAAoVCIMWPGiMuFQiHc3NykLuPs7IyTJ09KlJ09exaOjo4N2p6bEmMM8+bNw9GjRxEbGwtLS8sGrSc5OZn3vqqr4uJipKamok+fPlLny1P/vSsqKgqGhoYYMWJEvZeVl/5r6Gehs7MzhEKhxNGSs2fPNsmOjPcaTxdtyJ0HDx6w5ORktnLlSqajo8OSk5NZcnIyKyoqYowxVlpaymxtbdnAgQPZ9evX2blz51i7du3Y3LlzxevIyclh1tbW7OrVq+IyHx8f1q5dO3bu3Dl2/fp1NmDAANatWzdWWlra7G2s7Ny5cwwAS0lJkTrf2tqaHTlyhDHGWFFREVu4cCGLj49nGRkZ7Pz588zZ2Zm1bduWFRYWNmfYdRIfH8/Wr1/PkpOTWXp6Ojtw4AAzMTFho0ePlqj3bhsZY2zt2rVMT0+PHTlyhN28eZNNnDiRGRsby1wbHz58yD788EM2YMAAlpOTw0QikfjxLnnqw+joaKaqqsp27NjBUlJSmJ+fH9PW1maZmZmMMcYCAwOZl5eXuH56ejrT0tJi/v7+LCUlhe3YsYOpqqqyQ4cO8dWEas2aNYvp6emx2NhYib56+fKluE7l9kVERLCjR4+yP//8k926dYsFBgYyAOzw4cN8NKFWCxcuZLGxsSw9PZ1duXKFjRw5kunq6ipE/1UoKytjZmZmLCAgoMo8eeu/oqIi8fccAPHn5YMHDxhjdfss9PLykrhq/fLly0xZWZmtXbuWpaamsrVr1zIVFRV25cqVZm+fIqPEro68vb0ZgCqP8+fPi+s8ePCAjRgxgmlqarKWLVuyuXPnstevX4vnZ2RkVFnm1atXbO7cuaxly5ZMU1OTjRw5kmVlZTVjy6o3ceJE5uLiUu18ACwqKooxxtjLly/ZkCFDWOvWrZmqqiozMzNj3t7eMtOWypKSkpiTkxPT09NjGhoazNramgUFBbEXL15I1Hu3jYxxl/kHBQUxIyMjpq6uzvr27ctu3rzZzNHXLioqSur2Wvm3nLz14aZNm5i5uTlTU1Nj3bt3lxgOxNvbm33yyScS9WNjY5m9vT1TU1NjFhYWbMuWLc0ccd1U11fvbnuV2xcWFsasrKyYhoYG09fXZ71792anTp1q/uDryMPDgxkbGzNVVVVmYmLCxo4dy27fvi2eL8/9V+HMmTMMAEtLS6syT976r2I4lsoPb29vxljdPgs/+eQTcf0KP//8M7O2tmaqqqqsU6dOMpPIKhIBY/+cjUoIIYQQQuQaDXdCCCGEEKIgKLEjhBBCCFEQlNgRQgghhCgISuwIIYQQQhQEJXaEEEIIIQqCEjtCCCGEEAVBiR0hhBBCiIKgxI4Q0ihiY2MhEAjw7NkzvkPhzeTJk+Hu7s53GISQ9xgldoQ0ooZ8sQsEAhw7dqxJ4mkq/fr1g5+fn0SZi4sLRCIR9PT0miWGyZMnIzAwsEp5WVkZXFxcMG7cOInygoICmJqaYtmyZc0SHyGE8IESO0IUxJs3b3h9fTU1NRgZGUEgEDT5a5WXl+PUqVNwc3OrMk9ZWRm7du3Cr7/+ip9++klcPm/ePLRs2RIrVqxo8viaG999TwiRHZTYEdKE+vXrh/nz52Px4sVo2bIljIyMEBwcLJ5vYWEBABgzZgwEAoH4OQCcPHkSDg4O0NDQQPv27bFy5UqUlpaK5wsEAkRGRsLNzQ3a2toICQlBu3btEBkZKRHD9evXIRAIkJ6eDoDbczVjxgwYGhqiRYsWGDBgAG7cuCGuHxwcDDs7O+zZswcWFhbQ09ODp6cnioqKAHB7yuLi4vDdd99BIBBAIBAgMzNT6qHYw4cP46OPPoK6ujosLCwQHh4uEZuFhQVWr16NKVOmQFdXF2ZmZti2bVut7+vly5ehpKQEJycnqfM7dOiANWvWYN68eXj06BGOHz+O6Oho7Nq1C2pqalXqp6WlQSAQ4M6dOxLl69evh4WFBRhjKCsrw9SpU2FpaQlNTU1YW1vju+++qzFOCwsLbNiwQaLMzs5OYhuorT8qy8zMhEAgwMGDB9GvXz9oaGhg7969ePr0KSZOnIh27dpBS0sLXbp0wf79+yWWrW17BIA7d+6gd+/e0NDQgI2NDc6dO1dlr/LDhw/h4eEBfX19tGrVCm5ubsjMzKzxvSCENA9K7AhpYrt27YK2tjauXr2KdevWISQkBEKhEACQmJgIAIiKioJIJBI/P3PmDD7//HPMnz8fKSkp2Lp1K3bu3IlVq1ZJrDsoKAhubm64efMmpk2bBk9PT4m9VACwb98+ODs7o3379mCMYcSIEcjNzUVMTAySkpLQvXt3DBw4EH///bd4mfv37+PYsWP45Zdf8MsvvyAuLg5r164FAHz33XdwdnbG9OnTIRKJIBKJYGpqWqXdSUlJmDBhAjw9PXHz5k0EBwdj+fLl2Llzp0S98PBwODo6Ijk5GbNnz8asWbOqJFiVnThxAqNGjYKSUvUfYfPmzUO3bt3wxRdfYMaMGVixYgXs7Oyk1rW2toaDg4PU9+6zzz6DQCBAeXk52rVrh4MHDyIlJQUrVqzA0qVLcfDgwRpjrUld+0OagIAAzJ8/H6mpqXB1dcXr16/h4OCAX375Bbdu3cKMGTPg5eWFq1evSixX0/ZYXl4Od3d3aGlp4erVq9i2bRu+/vprieVfvnyJ/v37Q0dHBxcuXMClS5ego6ODoUOHoqSkpMHvBSGkkTBCSKPx9vZmbm5u4ueffPIJ6927t0SdHj16sICAAPFzAOzo0aMSdfr06cNWr14tUbZnzx5mbGwssZyfn59EnevXrzOBQMAyMzMZY4yVlZWxtm3bsk2bNjHGGPvtt99YixYt2OvXryWWs7KyYlu3bmWMMRYUFMS0tLRYYWGheP6iRYuYk5OTRLt8fX0l1nH+/HkGgOXn5zPGGPvss8/Y4MGDJeosWrSI2djYiJ+bm5uzzz//XPy8vLycGRoasi1btrCadOzYkZ04caLGOowxlpqaygCwLl26sDdv3tRYd/369ax9+/bi52lpaQwAu337drXLzJ49m40bN078vHL/m5ubs4iICIllunXrxoKCghhjdeuPyjIyMhgAtmHDhhrbwxhjw4cPZwsXLhQ/r217PH36NFNRUWEikUg8XygUSmyjO3bsYNbW1qy8vFxcp7i4mGlqarIzZ87UGhMhpGnRHjtCmljXrl0lnhsbGyMvL6/GZZKSkhASEgIdHR3xo2IP2cuXL8X1HB0dJZazt7dHp06dxIfg4uLikJeXhwkTJojX+/z5c7Rq1Upi3RkZGbh//754PRYWFtDV1a1XzJWlpqbi448/lij7+OOPcffuXZSVlYnL3n1/BAIBjIyManyt1NRU5OTkYNCgQbXG8OOPP0JLSwsZGRnIyckRl/v4+Ei0HwA8PT3x4MEDXLlyBQDw008/wc7ODjY2NuLlIiMj4ejoiNatW0NHRwfbt29HVlZWrXFUp679IU3lvi8rK8OqVavQtWtX8frOnj1bJb6atse0tDSYmprCyMhIPL9nz55VYr537x50dXXF8bZs2RKvX7+uNWZCSNNT4TsAQhSdqqqqxPOKw3o1KS8vx8qVKzF27Ngq8zQ0NMTT2traVeZPmjQJ+/btQ2BgIPbt2wdXV1cYGBiI12tsbIzY2Ngqy33wwQf/KubKGGNVLqRgjFWpV9/XOnHiBAYPHgxNTc0aXz8hIQERERE4ffo01q1bh6lTp4rPFwsJCcFXX30lUd/Y2Bj9+/fHvn370KtXL+zfvx8zZ84Uzz948CD8/f0RHh4OZ2dn6Orq4ttvv61yqPNdSkpKVdr87oUOde0PaSr3fXh4OCIiIrBhwwZ06dIF2tra8PPzq3J4tKb3W1qfVVZeXi71sDUAtG7dusZlCSFNjxI7QnimqqoqsQcLALp37460tDR8+OGH9V7fZ599hmXLliEpKQmHDh3Cli1bJNabm5sLFRUViQs16ktNTa1KzJXZ2Njg0qVLEmXx8fHo2LEjlJWVG/zax48fx7Rp02qs8+rVK3h7e2PmzJkYNGgQOnbsCFtbW2zduhU+Pj4wNDSEoaFhleUmTZqEgIAATJw4Effv34enp6d43sWLF+Hi4oLZs2eLy2rbQ9W6dWuIRCLx88LCQmRkZIifN1Z/VMTn5uaGzz//HACXgN29exedO3eu8zo6deqErKwsPH78GG3atAHw9jzQd2M+cOCA+GIPQohsoUOxhPDMwsICv/32G3Jzc5Gfnw8AWLFiBXbv3o3g4GDcvn0bqampOHDgQJ3GYLO0tISLiwumTp2K0tJSiSFBBg0aBGdnZ7i7u+PMmTPIzMxEfHw8li1bhmvXrtUr5qtXryIzMxNPnjyRuodt4cKF+O233xAaGoo///wTu3btwsaNG6vsKauPvLw8JCYmYuTIkTXWCwwMRHl5OcLCwgAAZmZmCA8Px6JFi2q8enPs2LEoLCzErFmz0L9/f7Rt21Y878MPP8S1a9dw5swZ/Pnnn1i+fHmVpKeyAQMGYM+ePbh48SJu3boFb29viaS2sfqjIj6hUIj4+HikpqZi5syZyM3Nrdc6Bg8eDCsrK3h7e+OPP/7A5cuXxRdPVOzJmzRpEgwMDODm5oaLFy8iIyMDcXFx8PX1lTjcTQjhByV2hPAsPDwcQqEQpqamsLe3BwC4urril19+gVAoRI8ePdCrVy+sX78e5ubmdVrnpEmTcOPGDYwdO1bikKVAIEBMTAz69u2LKVOmoGPHjvD09ERmZqZ4D01dfPXVV1BWVoaNjQ1at24t9Tyz7t274+DBg4iOjoatrS1WrFiBkJAQTJ48uc6vU9nJkyfh5OQkdW9bhbi4OGzatAk7d+6UOFw5ffp0ccIr7ZAwALRo0QKjRo3CjRs3MGnSJIl5Pj4+GDt2LDw8PODk5ISnT59K7L2TZsmSJejbty9GjhyJ4cOHw93dHVZWVuL5jdUfALB8+XJ0794drq6u6NevH4yMjOo9WLaysjKOHTuG58+fo0ePHpg2bZr4x0TFKQBaWlq4cOECzMzMMHbsWHTu3BlTpkzBq1evaA8eITJAwKr7hCOEEBkzevRo9O7dG4sXL+Y7lPfG5cuX0bt3b9y7d08iKSWEyCY6x44QIjd69+6NiRMn8h2GQjt69Ch0dHTQoUMH3Lt3D76+vvj4448pqSNETtAeO0IIIWK7d+9GaGgosrOzYWBggEGDBiE8PBytWrXiOzRCSB1QYkcIIYQQoiDo4glCCCGEEAVBiR0hhBBCiIKgxI4QQgghREFQYkcIIYQQoiAosSOEEEIIURCU2BFCCCGEKAhK7AghhBBCFAQldoQQQgghCoISO0IIIYQQBfH/vAbEUmAYw5kAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHFCAYAAAB/4rS/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9DklEQVR4nOzdd3hTdRfA8W+6C7RldrBK2ZS9QUGGlClT2TIUUJEpKoqogPKKoEJRZAoCMkX2HrKlbApiWUKBAi1lSAfdzX3/iIktHXQkvUl6Ps9zH9KbO06AJie/cX4aRVEUhBBCCCGExbNROwAhhBBCCGEcktgJIYQQQlgJSeyEEEIIIayEJHZCCCGEEFZCEjshhBBCCCshiZ0QQgghhJWQxE4IIYQQwkpIYieEEEIIYSUksRNCCCGEsBKS2AlhxZYuXYpGo8HJyYlbt26leb5ly5bUqFEj1b5y5cqh0WgMW8GCBalXrx5z5szh2YVqDh48aDhu6dKl6cbQunVrNBoN5cqVS7X/6dOnTJ8+ndq1a+Pq6oqLiwsVKlSgV69eHDp0KN17pLdldF9TiY6OZuzYsZQsWRInJyfq1KnDmjVrsnRuy5YtM30tYWFhzz22ffv2pnppQggrYKd2AEII04uPj+fTTz/ll19+ydLxL774It9++y0A9+7dY+bMmYwaNYrIyEg++eSTNMe7uLiwePFiBg8enGp/cHAwBw8exNXVNdX+5ORk2rZty59//smHH35Io0aNALh27Rpbt27lyJEjtGjRItU5X331Fa1atUpz7woVKmTpNRlLjx49OHXqFF9//TWVK1dm1apV9O3bF61WS79+/TI9d+7cuURGRqbaFxMTQ/v27alfvz6enp6pnitfvjwrV65Mta9w4cJGeR1CCCulCCGs1s8//6wASvv27RUbGxslMDAw1fMtWrRQqlevnmqft7e30qlTp1T7IiIiFDc3N6Vs2bKp9h84cEABlKFDhyqAcvXq1VTPf/rpp0rp0qWVDh06KN7e3ob9+/fvVwBlyZIl6cadnJyc5h7r1q3L8us2le3btyuAsmrVqlT7/fz8lJIlSypJSUnZvubSpUsVQPnpp59S7U/v30YIIZ5HumKFyAfGjx9PsWLF+Oijj3J0vqurK5UrV+b+/fvpPu/n50eZMmVYsmSJYZ9Wq2XZsmUMGjQIG5vUbzWPHj0CwMvLK93rPXu8udi4cSOFChWiZ8+eqfa/8cYb3Lt3jxMnTmT7mosXL6ZQoUL07t3bWGEKIfIx83z3FEIYlYuLC59++im7d+9m//792T4/KSmJkJAQKleunO7zNjY2DB48mOXLl5OcnAzAnj17uHPnDm+88Uaa4xs0aIC9vT1jxoxh5cqVhIaGPjcGrVZLUlJSmu15FEVJ97ycXOvixYtUq1YNO7vUo1hq1apleD47rl27xpEjR+jTpw+FChVK8/z169cpWrQodnZ2VKhQgYkTJxIbG5utewgh8hdJ7ITIJ9555x3Kly/PRx99lGYSxLNSJkO3b9/m3Xff5dGjR0ybNi3Dc9544w1CQ0PZtWsXAEuWLKFFixbpjoErV64c8+fP5969e7z++uuULFmSkiVLMmjQII4cOZLu9Xv37o29vX2a7c6dO5m+lmXLlqV7Xnrb8zx69IiiRYum2a/fp2+JzKrFixcDMGTIkDTPNWvWjJkzZ7J+/Xq2bNlCx44dmTFjBu3bt0er1WbrPkKI/EMmTwiRTzg4ODB16lT69evHr7/+mmnX344dO9IkOvPnz6dTp04ZnuPj40PLli1ZsmQJTZo0YfPmzfz0008ZHv/mm2/y6quvsmPHDo4fP87x48dZsWIFv/zyC9OnT+fDDz9Mdfz06dNp3bp1mut4eHhkeA+Azp07c+rUqUyPyQ6NRpOj556VlJTEsmXLqF69Ok2aNEnz/NSpU1P93LFjR8qVK8cHH3zA5s2b6d69e9aDFkLkG5LYCZGP9OnTh2+//ZaJEyfSo0ePDI9r1qwZs2bNIjk5mWvXrvHZZ58xcuRIqlevTrNmzTI8b8iQIbzxxhvMnDkTZ2dnXnvttUzjcXNzo2/fvvTt2xeAv/76izZt2jBx4kSGDRuWagZo+fLladCgQfZeMLrWNDc3t2yfl55ixYql2yr3+PFjw72yaseOHYSFhWVr3OPrr7/OBx98wPHjxyWxE0KkS7pihchHNBoN06dP5/r16yxcuDDD49zc3GjQoAGNGzfm9ddfZ8+ePdjb2/Puu+9m2g3Yo0cPChQowNdff02fPn1wdnbOVnzVq1enT58+JCYmcvXq1WydmxFjdsXWrFmTS5cupRmP9+effwKkqQmYmcWLF+Pg4MCAAQOy94Iw38klQgj1SYudEPlMmzZt8PPz44svvqBMmTJZOqdSpUqMHz+eKVOmsHbtWkML27OcnZ35/PPPOXz4MMOHD8/weo8ePcLFxQUHB4c0z12+fBmAkiVLZim25zFmV2z37t1ZtGgR69evT9WVvWzZMkqWLEnjxo2zdJ2wsDB27NhBjx49KFasWJbvv2zZMoB0u26FEAIksRMiX5o+fTr169cnPDyc6tWrZ+mcDz74gPnz5zNlyhR69eqFra1tuseNGzeOcePGZXqtAwcOMGbMGPr3788LL7xAsWLFCA8PZ/Xq1ezatYuBAwdSunTpVOdcu3aN48ePp7lW6dKl0xybUrFixbKVPGWmQ4cO+Pn5MXz4cCIjI6lYsaIh5hUrVqT6OxkyZAjLli3j+vXreHt7p7rOsmXLSEpKYujQoene58iRI/zvf/+je/fulC9fnri4OHbu3MnChQtp3bo1nTt3NsrrEUJYH0nshMiH6tatS9++fVm1alWWzylUqBCff/45I0aMYOXKlQwcODDH92/SpAlvvvkmBw4c4JdffuHhw4c4Ozvj6+vLDz/8kG5rX3orXgBMnDgxzUQDU9qwYQMTJ07k888/5/Hjx1StWpXVq1fTp0+fVMclJyeTnJyc7gzkJUuWUK5cOdq0aZPuPby8vLC1teXLL7/k4cOHaDQaKlWqxBdffMH7778vXbFCiAxplOfVPRBCCCGEEBZBvvYJIYQQQlgJSeyEEEIIIayEJHZCCCGEEFZCEjshhBBCCCshiZ0QQgghhJWQxE4IIYQQwkrkqzp2SUlJnDt3Dg8PD6kDJYQQQlgIrVbL/fv3qVu3LnZ2+Sp1ybZ89bdz7tw5GjVqpHYYQgghhMiBkydP0rBhQ7XDMGv5KrHz8PAAdP8xvLy8VI5GCCGEEFkRGhpKo0aNDJ/jImP5KrHTd796eXllurakEEIIIcyPDKN6PvkbEkIIIYSwEpLYCSGEEEJYCUnshBBCCCGsRL4aY5dVycnJJCYmqh2GMBJ7e3tsbW3VDkMIYWXks8J45H3aeCSxS0FRFMLCwnjy5InaoQgjK1y4MJ6enmg0GrVDEUJYOPmsMA15nzYOSexS0P+iuru7U6BAAfnPZQUURSEmJobw8HAAKXMjhMg1+awwLnmfNi5J7P6VnJxs+EUtVqyY2uEII3J2dgYgPDwcd3d3ae4XQuSYfFaYhrxPG49MnviXfpxEgQIFVI5EmIL+31XGwwghckM+K0xH3qeNQxK7Z0iTunWSf1chhDHJe4rxyd+pcUhiJ4QQQghhJSSxE2ksXbqUwoULqx1GtlhizEIIIYSxSWJnBQYPHoxGo0mztW/f/rnnlitXDn9//1T7evfuzdWrV00U7X8kGRNCCCGMSxI7I0vWKgRcf8TmwLsEXH9EslbJk/u2b9+e0NDQVNvq1atzdC1nZ2fc3d2NHKEQKouPVzuCfCcmJoakpCS1wxDZ9OjRI9zd3bl586bRrvnaa68xc+ZMo11PZEwSOyPadTGUZtP303fRccasCaTvouM0m76fXRdDTX5vR0dHPD09U21FihQBYPLkyZQtWxZHR0dKlizJ6NGjAWjZsiW3bt3ivffeM7TyQdqWtMmTJ1OnTh2WLFlC2bJlKVSoEMOHDyc5OZkZM2bg6emJu7s7//vf/1LFNHPmTGrWrEnBggUpU6YM7777LtHR0QAcPHiQN954g4iICMO9J0+eDEBCQgLjx4+nVKlSFCxYkMaNG3Pw4MFU1166dClly5alQIECdO/enUePHpngb1VYjTVroEABWLhQ7UjyjYCAALy8vChTpgz/+9//5HfUgkybNo3OnTtTrlw5wz6tVkvVqlX56KOPUh27e/duHBwcWLduXabX/Pzzz/nf//5HZGSkKUIWKUhiZyS7LoYyfMVZQiPiUu0Pi4hj+IqzeZLcpee3335j1qxZLFiwgGvXrrFp0yZq1qwJwIYNGyhdujRffPGFoZUvI9evX2fnzp3s2rWL1atXs2TJEjp16sSdO3c4dOgQ06dP59NPP+X48eOGc2xsbPj++++5ePEiy5YtY//+/YwfPx6AF154AX9/f1xdXQ33/uCDDwB44403+OOPP1izZg0XLlygZ8+etG/fnmvXrgFw4sQJ3nzzTd59910CAwNp1aoVU6dONdVfobB0CQkwfjxotbB5s9rR5AtBQUF06tSJyMhIwsLC+PTTTw1f7vJimIfIudjYWBYvXszQoUNT7bexsWHChAnMmzePf/75B4Dz58/Ts2dPvvrqK3r27JnpdWvVqkW5cuVYuXKlyWIXOpLYGUGyVmHK1iDS63TV75uyNcik3bLbtm2jUKFCqbYvv/yS27dv4+npSZs2bShbtiyNGjVi2LBhABQtWhRbW1tcXFwMrXwZ0Wq1LFmyBF9fXzp37kyrVq24cuUK/v7+VKlShTfeeIMqVaqkalkbO3YsrVq1wsfHh9atW/Pll1/y66+/AuDg4ICbmxsajcZw70KFCnH9+nVWr17NunXraN68ORUqVOCDDz6gWbNm/PzzzwDMnj2bdu3a8fHHH1O5cmVGjx5Nu3btTPZ3Kyzczz9DSIju8Z9/qhtLPhASEkK7du34559/aNKkCcuWLaNu3brExsYyb948qlatSpcuXTh06BCKkjdDVcR/7t+/j0ajYfbs2dStWxcnJyeqV6/O0aNHAdi5cyd2dnY0bdo0zbn9+/enePHifP/999y5c4dOnToxYMAAw5fy5+nSpUuOhwiJrJPEzghOBj9O01KXkgKERsRxMvixyWJo1aoVgYGBqbYRI0bQs2dPYmNjKV++PMOGDWPjxo05GvNSrlw5XFxcDD97eHjg6+uLjY1Nqn36JWEADhw4gJ+fH6VKlcLFxYWBAwfy6NEjnj59muF9zp49i6IoVK5cOVWSeujQIa5fvw7ApUuX0rzppPcmJAQJCfDVV//9HBICERHqxWPlHj16RLt27bhz5w7VqlVj27ZtDBw4kDNnznDgwAE6d+6Moihs3bqVli1b0qBBA1auXGn5BWkVBZ4+VWfLZnJ87tw5AObOncusWbM4f/485cqVo3///mi1Wg4fPkyDBg3SPdfOzo6PPvqI77//no4dO1KvXj2+//77LN+7UaNGnDx5kngZ72pSktgZQXhUxkldTo7LiYIFC1KxYsVUW9GiRSlTpgxXrlzhxx9/xNnZmXfffZeXXnop22+k9vb2qX7WaDTp7tNqtQDcunWLjh07UqNGDdavX8+ZM2f48ccfgcyrimu1WmxtbTlz5kyqJPXSpUvMnj0bQL7li6xbuhRu3wYvL9C3SP/1l6ohWaunT5/yyiuvcOnSJUqXLs3u3bsNS25pNBpatmzJli1buHz5Mu+88w7Ozs6cPXuW119/HR8fH2bMmGHo4rM4MTFQqJA6W0xMtkI9f/489vb27Nq1i5YtW1KlShW++OILbt++zd27d7l58yYlS5bM8Pz+/fsTExODoiisXr061dJf3bt3p0iRIrz22mvpnluqVCni4+MJCwvLVswie8wisZs3bx61atXC1dUVV1dXmjZtys6dOw3PK4rC5MmTKVmyJM7OzrRs2ZK/zOjN2d3FyajHGZuzszNdunTh+++/5+DBgwQEBPDnv11SDg4OJCcnG/2ep0+fJikpie+++44mTZpQuXJl7t27l+qY9O5dt25dkpOTCQ8PT5Oo6ruKfX19U43lA9L8LAQJCaCf0PPxx1Cnju6xdMcaXWJiIj179uT48eMULVqU3bt3U6ZMmXSPrVKlCvPmzeP27dtMnToVDw8P7t69y0cffUSZMmUYM2YMN27cyONXkH8EBgbSo0cPfHx8DPscHR0Nj2NjY3FyyvizauTIkQA8fPgwzXquo0ePZvny5Rmeq18PNiabyajIHrNI7EqXLs3XX3/N6dOnOX36NK1bt6Zr166G5G3GjBnMnDmTOXPmcOrUKTw9PfHz8yMqKkrlyHUa+RTFy82JjBZD0QBebk408ilqshj034JSbg8fPmTp0qUsXryYixcvcuPGDX755RecnZ3x9vYGdF2shw8f5u7duzx8+NBo8VSoUIGkpCR++OEHw33nz5+f6phy5coRHR3N77//zsOHD4mJiaFy5cr079+fgQMHsmHDBoKDgzl16hTTp09nx44dgO7NY9euXcyYMYOrV68yZ84cdu3aZbTYhZVI2Vo3bBjUqKHbf/GiqmFZG61Wy5AhQ9i5cyfOzs5s27YNX1/f555XvHhxJk6cyK1bt/j555+pWbMmT58+5fvvv6dSpUq8+uqrHDt2LA9egREUKADR0eps2VyzNjAwkDr6Lzn/Onv2LMWLF6dUqVIUL148w5bTzz77jO3bt3P8+HGSkpJYvHhxqudbtWqVasjOsx4/1g1HKlGiRLZiFtmkmKkiRYooP/30k6LVahVPT0/l66+/NjwXFxenuLm5KfPnz8/WNUNCQhRACQkJSfNcbGysEhQUpMTGxuYo3p1/3lPKfbRNKffRNsU7xabft/PPezm6blYMGjRIQTeUL9VWpUoVZePGjUrjxo0VV1dXpWDBgkqTJk2Uffv2Gc4NCAhQatWqpTg6Oir6/w4///yz4ubmZjhm0qRJSu3atdPcs2vXrqn2tWjRQhkzZozh55kzZypeXl6Ks7Oz0q5dO2X58uUKoPzzzz+GY9555x2lWLFiCqBMmjRJURRFSUhIUD7//HOlXLlyir29veLp6al0795duXDhguG8xYsXK6VLl1acnZ2Vzp07K99++22qmJ+V239fYWHi4xXF21tRQFH8/XX7li3T/dyihZqRWZ0PPvhAARRbW1tl27ZtOb6OVqtV9uzZo7Rv3z7V+9iyZcuMGG3uWfJ7SUxMjGJra6tMnTrVsC85OVmpV6+e8v777yuKoijffPNNmvd7RVGURYsWKc7OzkpAQICiKIoydepUpWzZskpCQkKq4w4cOKC8+uqr6d7/p59+UkqXLp1hfJn93Wb2+S1SM7vELikpSVm9erXi4OCg/PXXX8r169cVQDl79myq47p06aIMHDgwW9c2ZWKnKLrkrslX+1Ildk2+2mfSpE5kjSW/GYscWLhQl8R5eipKTIxu35kzun3FiimKVqtufFbim2++MUkCdvHiRaV3794KoBQtWlQJDw832rVzy5LfS06cOKHY2dkpVatWVY4dO6YEBQUpr732mlK+fHnDF+4LFy4odnZ2yuPHjw3n7dixQ3FwcFDWr19v2BcREaEULlxYWbx4cap7ZJbYDRo0SHnzzTczjE8SO+Owy9v2wYz9+eefNG3alLi4OAoVKsTGjRvx9fU1NMV7eHikOt7Dw4Nbt25les34+PhUs29M3XXbvoYXfr6enAx+THhUHO4uuu5XW5uMOmmFEEb37Ni6f8f1UK0a2NjAo0cQFqbrohU5tnz5cj788ENAN1xm4MCBRrt29erVWbFiBZcvX+b8+fOMHz/eUO5I5FxgYCBVq1bl448/5rXXXuPJkye88sorBAQEGIrS16xZkwYNGvDrr7/y9ttvc+bMGXr27MmMGTPo0aOH4Vqurq6MGjWKr7/+mkGDBqUZb/esuLg4Nm7cyO7du035EgVmMsYOdANqAwMDOX78OMOHD2fQoEEEBQUZnteviqCnKEqafc+aNm0abm5uhi0r4z5yy9ZGQ9MKxehapxRNKxSTpE6IvLZsGdy6pZsF+9Zb/+13doaKFXWPZZxdruzYsYM333wTgPfff9+Q4BmTnZ0d8+fPR6PRsHTpUg4fPmz0e+Q358+fp2bNmvTv35+7d+/y9OlT1q5dm2YJyc8++4zZs2ej1WqpX78+0dHRjBkzJs31vvjiC65evfrcpA5g8eLFNG7cmCZNmhjt9Yj0mU1i5+DgQMWKFWnQoAHTpk2jdu3azJ492zAT8tnp0eHh4Wla8Z41YcIEIiIiDFvKRFEIYYVS1q376KP/Wuv0ZAJFrgUEBPDaa6+RnJzMgAEDmDFjhsnu1aRJE976NzkfPnw4CQkJJrtXfhAYGEitWrWee1zHjh15++23uXv3brau365dO3r27MmOHTsoXbo0p06dMjxnb2/PDz/8kO2YRfaZTWL3LEVRiI+Px8fHB09PT/bu3Wt4LiEhgUOHDvHCCy9keg1HR0dDCRVXV9dMZ+sIIazA8uVw86aute7tt9M+/+9yelLyJGf0S4XFxsbSoUMHFi9enKpIuSlMmzaNEiVKEBQUJIvI54KiKPz5559ZSuwAxowZk2HJmozs3r2bBw8eEBMTw507d2jYsKHhubfeeosqVapk63oiZ8wisfvkk084cuQIN2/e5M8//2TixIkcPHiQ/v37o9FoGDt2LF999RUbN27k4sWLDB48mAIFCtCvXz+1QxdCmIuUY+vSa60DabHLhZRLhTVu3Jh169alKVJuCkWKFDEkdF988QXBwcEmv6c10mg0REZG0rFjR7VDESZmFpMn7t+/z4ABAwgNDcXNzY1atWqxa9cu/Pz8ABg/fjyxsbG8++67hjeVPXv2SAucEOI/+tY6D4/0W+vgvxa7v/4CrVY3mUI8V8qlwqpWrcr27dspWLBgnt2/f//+LFmyhAMHDjBy5Ei2bdv23DHWQuRXZpHYPVvk8FkajYbJkyczefLkvAlICGFZEhOf31oHUKECODrqlmEKDtb9LDKVcqmwUqVKpVoqLK9oNBrmzp1LrVq12LFjBxs3bkw1Q1MI8R/5uiqEsHxZaa0DsLPTlT0B6Y7NgsTERHr16sXx48cpUqQIu3fvpmzZsqrEUrVqVT766CNAt/qMuaw8JIS5kcROCGHZEhNh6lTd448+ev4SSzKBIss+/vhjduzYYVgqrHr16qrG88knn1C+fHnu3r3LpEmTVI1FURRV72+NjP13OnfuXHx8fHBycqJ+/focOXIkw2OPHj3Kiy++SLFixXB2dqZq1arMmjUrzXHr16/H19cXR0dHfH192bhxo1FjNgZJ7IQQli2rrXV6MoEiS54+fcrChQsBXTHi51UhyAvOzs78+OOPAHz//fcEBgbmeQz6CSOykL3x6f9OjTEpZ+3atYwdO5aJEydy7tw5mjdvTocOHbh9+3a6xxcsWJCRI0dy+PBhLl26xKeffsqnn35q+B0AXamf3r17M2DAAM6fP8+AAQPo1asXJ06cyHW8xqRR8tHXjjt37lCmTBlCQkIoXbp0qufi4uIIDg42ZPeW4HmDhwcNGsTSpUvzJhgzZ4n/viILEhOhcmVdYvfddzBu3PPP2bkTOnYEX1/dJAqRrl9++YWBAwdSoUIFrl27ZlaTFXr37s2vv/5K48aNOXbsmMlLrjwrNDSUJ0+e4O7uToECBczq78YSKYpCTEwM4eHhFC5cGK90VoXJ7PM7PY0bN6ZevXrMmzfPsK9atWp069aNadOmZSmuHj16ULBgQX755RdA9/8uMjKSnTt3Go5p3749RYoUYfXq1Vm6Zl4wi8kTImdCQ0MNj9euXcvnn3/OlStXDPucnxlAnpiYmCflCYTIM7/8okvq3N3hnXeydo6+xe7qVYiP102mEGksW7YMgIEDB5pd4jJr1ix27tzJiRMnWLRoEW9npaXWiPSF88PDw/P0vtaucOHChr/bjERFRREZGWn42dHREcdnfocTEhI4c+YMH3/8car9bdu2NSxT+jznzp3j2LFjTNUP80DXYvfee++lOq5du3b4+/tn6Zp5RRI7C5byF8DNzQ2NRmPYd/PmTby8vFi7di1z587l+PHjzJs3j1u3brFp06ZUXRj+/v74+/tz8+ZNw76ff/6ZGTNmEBwcTLly5Rg9ejTvvvtuXr00IZ4v5di68eOfP7ZOr3RpcHODiAhdcqcfcycMQkJC2L9/P4BR14A1lpIlSzJ16lTGjBnDxx9/TLdu3Z67EpExaTQavLy8cHd3JzExMc/ua83s7e2ztDTZs0uDTpo0KU3FjIcPH5KcnJzuGvPPrmL1rNKlS/PgwQOSkpKYPHkyQ4cONTwXFhaWo2vmNUnsMqBvGlaDMZv2P/roI7777jt+/vlnHB0dU40XyMiiRYuYNGkSc+bMoW7dupw7d45hw4ZRsGBBBg0aZJS4hMi1X37RlSzJTmsdgEaja7X74w/dBApJ7NL45ZdfUBSFFi1aUK5cObXDSde7777LsmXLOHv2LB988IGhuywv2draZikZEcYTFBREqVKlDD8/21qXUk7WmD9y5AjR0dEcP36cjz/+mIoVK9K3b99cXTOvSWKXgZiYGAoVKqTKvaOjo41W/HPs2LHZrvf05Zdf8t133xnO8/HxISgoiAULFkhiJ8zDs6112f190Sd2MoEiDUVRDN2w5vz7bmdnx/z582ncuDErVqzgjTfeoHXr1mqHJUzMxcUFV1fXTI8pXrw4tra2OVpj3sfHB4CaNWty//59Jk+ebEjsPD09c3TNvCazYq1cgwYNsnX8gwcPCAkJYciQIRQqVMiwTZ06levXr5soSiGyacWKnLXW6UnJkwydOHGCq1evUqBAAV577TW1w8lUw4YNDUNEhg8fTnx8vMoRCXPg4OBA/fr1U60xD7B3795sze7Wr1mv17Rp0zTX3LNnj1nMGE9JWuwyUKBAAaKjo1W7t7E82/JnY2OTplZQyjEiWq0W0HXHNm7cONVx0uUgzELK1roPP8x+ax1IyZNM6FvrevToYRHLNk6dOpXffvuNq1ev8s033/Dpp5+qHZIwA+PGjWPAgAE0aNCApk2bsnDhQm7fvs07/34RnDBhAnfv3mX58uUA/Pjjj5QtW5aqVasCurp23377LaNGjTJcc8yYMbz00ktMnz6drl27snnzZvbt28fRo0fz/gVmQhK7DGg0mjxdCzGvlChRgrCwsFTjAlJOpPDw8KBUqVLcuHGD/v37qxSlEJlYsQJu3IASJWD48JxdQ5/Y3bwJUVFgAQlMXoiPj2fNmjWAeXfDplS4cGFmzZpFv379mDp1Kn369KFixYpqhyVU1rt3bx49esQXX3xBaGgoNWrUYMeOHXh7ewO6qhIpa9pptVomTJhAcHAwdnZ2VKhQga+//jrVjOsXXniBNWvW8Omnn/LZZ59RoUIF1q5dm6YRRHVKPhISEqIASkhISJrnYmNjlaCgICU2NlaFyHLv559/Vtzc3Aw/BwcHK4By7ty5VMcFBQUpGo1G+frrr5W///5bmTNnjlKkSBHF29vbcMyiRYsUZ2dnxd/fX7ly5Ypy4cIFZcmSJcp3332XNy/GBCz931f8KyFBUcqXVxRQlG++yd21vLx01wkIME5sVmDdunUKoJQuXVpJSkpSO5ws02q1Sps2bRRAadu2raLVatUOSRhZZp/fIjUZY5fPVKtWjblz5/Ljjz9Su3ZtTp48yQcffJDqmKFDh/LTTz+xdOlSatasSYsWLVi6dKlhUKkQqlm5MvetdXrSHZuGvht2wIABFjX0QqPRMHfuXBwdHdmzZw/r1q1TOyQhVCMrT/xLViawbvLvawWSkqBqVbh+HWbM0I2vy43334eZM2H0aJg92zgxWrD79+9TqlQpkpOTuXz5MlWqVFE7pGybMmUKkydPxsvLi0uXLuHm5qZ2SMJIsrvyRH4mLXZCCMuwYoUuqSteHIxRLFta7FJZtWoVycnJNG7c2CKTOtDV7axYsSKhoaF89tlnaocjhCoksRNCmD+tNnd169IjJU9SsYTadc/j5OTE3LlzAd0sxzNnzqgckRB5TxI7IYT5O3FC11rn6pr7sXV6vr66VSgePIB8vubn+fPnOX/+PA4ODvTu3VvtcHLFz8+Pvn37otVqGT58eJryTkJYO0nshBDmb9Mm3Z+dOoGxVoQpUAAqVNA9zufdsfrWui5dulC0aFGVo8m9mTNnUqBAAU6dOmVY81aI/EISu2fItzvrJP+uFkxRYONG3eNu3Yx7bf04u3zcHZuYmMjKlSsBy+6GTcnT05PBgwcD4O/vr2osQuQ1Sez+ZW9vD+jWiBXWR//vqv93FhYkKAiuXQNHR+jQwbjXlgkU7N69m/DwcNzd3WnXrp3a4RjNmDFjANi2bRtXr15VORoh8o6sPPEvW1tbChcuTPi/Y20KFChgWJlBWC5FUYiJiSE8PJzChQtbVG0u8S99N2ybNsZfIUImUBi6Yfv162dVX3wqV67MK6+8wrZt2/j++++ZM2eO2iEJkScksUvB09MTwJDcCetRuHBhw7+vsDCm6oaF/1rs/vpLN/PWJn91Yjx+/JgtW7YA1tMNm9LYsWPZtm0bP//8M19++SVFihRROyQhTE4SuxQ0Gg1eXl64u7uTmJiodjjCSOzt7aWlzlKFhMCZM7rZq126GP/6lSqBgwNER8OtW5DPVldZu3YtCQkJ1KpVizp16qgdjtG1bt2aWrVqceHCBRYtWsT48ePVDkkIk5PELh22traSCAhhDvTdsC++CO7uxr++vb1uNYsLF3Tj7PJZYmcNtesyo9FoGDt2LG+++SY//PAD7733nlV1NwuRnvzV7yCEsCz6btju3U13j3w6geLKlSucOHECW1tb+vfvr3Y4JtO3b1/c3d25c+cOGzZsUDscIUxOEjshhHl69AgOH9Y9NsX4Or18OoFC31rXvn17PDw8VI7GdJycnBj+b1HrWbNmqRyNEKYniZ0Qwjxt2wbJyVCrFpQvb7r75MMWu+TkZH755RfAerthUxo+fDgODg6cOHGC48ePqx2OECYliZ0QwjzlRTcs/Ndid/ky5JNJUwcOHODOnTsULlyYzp07qx2OyXl4eNCvXz9AWu2E9ZPETghhfmJiYM8e3WNTdsMClC2rq4+XmAj5pJCtvhu2T58+ODk5qRxN3hg7diwA69ev5/bt2+oGI4QJSWInhDA/u3dDbCyUKwe1a5v2XhpNvuqOjYqKMkwiyA/dsHq1a9emVatWJCcnS7FiYdUksRNCmB99mZPu3XWJl6nlozVjf/vtN2JiYqhcuTKNGzdWO5w89d577wGwcOFCoqOjVY5GCNOQxE4IYV4SE2HrVt1jU3fD6uWjFruUtevy27KJnTp1omLFikRERBj+HoSwNpLYCSHMy+HD8M8/ULy4rjBxXsgnJU+Cg4M5dOgQGo2GAQMGqB1OnrOxsWHMmDEAzJ49G61Wq3JEQhifJHZCCPOi74bt0gXyagUYfYvdjRvw9Gne3FMF+hInrVu3pkyZMipHo47BgwdTuHBhrl27xvbt29UORwijk8ROCGE+FCX1+Lq8UqIE6Iv0BgXl3X3zkKIoLF++HMhfkyaeVahQIYYNGwaAv7+/usEIYQKS2AkhzMfp03DnDhQsCG3a5O29rXwCxR9//MH169cpVKgQPXr0UDscVY0cORJbW1v279/P+fPn1Q5HCKMyi8Ru2rRpNGzYEBcXF9zd3enWrRtXrlxJdczgwYPRaDSptiZNmqgUsRDCJPStdR06QF7XV7PyCRT6yQKvvfYaBQsWVDkadZUtW5ZXX30V0I21E8KamEVid+jQIUaMGMHx48fZu3cvSUlJtG3blqfPjHVp3749oaGhhm3Hjh0qRSyEMIm8Wm0iPVY8gSI2NpZff/0VyN/dsCnpCxavXLmS+/fvqxuMEEZkp3YAALt27Ur1888//4y7uztnzpzhpZdeMux3dHTE09Mzr8MTQuSFK1fg0iWwt4dOnfL+/lbcYrdp0yYiIyPx9vZO9Z6anzVt2pTGjRtz4sQJ5s2bx+TJk9UOSQijMIsWu2dFREQAULRo0VT7Dx48iLu7O5UrV2bYsGGEh4dnep34+HgiIyMNW1RUlMliFkLkkr4btlUrcHPL+/tXr677MywMHj7M+/ubkL4bduDAgdjYmOXbvir0BYvnzZtHXFycytEIYRxm9xuuKArjxo2jWbNm1NB/gwY6dOjAypUr2b9/P9999x2nTp2idevWxMfHZ3itadOm4ebmZth8fX3z4iUIIXJCzW5YgEKFwMdH99iKWu3u3bvH3r17AV1iJ/7To0cPSpcuTXh4OKtXr1Y7HCGMwuwSu5EjR3LhwoU0v2S9e/emU6dO1KhRg86dO7Nz506uXr2aaR2iCRMmEBERYdiCrLSMgRAW7949OHFC97hLF/Xi0I+zs6LEbsWKFWi1Wl588UUqVqyodjhmxd7enlGjRgEwa9YsFEVROSIhcs+sErtRo0axZcsWDhw4QOnSpTM91svLC29vb65du5bhMY6Ojri6uho2FxcXY4cshDCGzZt1fzZpAiVLqheHlZU8URQl1RJiIq1hw4ZRoEAB/vzzTw4cOKB2OELkmlkkdoqiMHLkSDZs2MD+/fvx0XeHZOLRo0eEhITg5eWVBxEKIUxK7W5YPSubQHHu3DmCgoJwcnKiV69eaodjlooUKcLgwYMBXaudEJbOLBK7ESNGsGLFClatWoWLiwthYWGEhYURGxsLQHR0NB988AEBAQHcvHmTgwcP0rlzZ4oXL053tT8IhBC58+QJ6FtKunVTM5LUXbFW0C23e/duQFcqyk2NCSkWQr9+7LZt2zLtBRLCEphFYjdv3jwiIiJo2bIlXl5ehm3t2rUA2Nra8ueff9K1a1cqV67MoEGDqFy5MgEBAdK9KoSl274dkpLA1xcqV1Y3lsqVwc4OIiMhJETdWIxA37XYunVrlSMxb5UrV6bTvyV2pGCxsHRmUcfueQNWnZ2dDd88hTAHN27cwMPDI99X8DcKfTes2q11AA4OULWqrsXu4kUoW1btiHIsPj6eo0ePApLYZcV7773H9u3b+fnnn/nyyy8pUqSI2iEJkSNm0WInhCX54YcfqFChAt7e3nz55Zf8888/aodkuWJjQV+g3FyGVVjJBIqTJ08SGxuLu7u7lHrKgtatW1OzZk1iYmL46aef1A7H4iRrFQKuP2Jz4F0Crj8iWWv5QxkslSR2QmTDsmXLGD16NKCbwPP5559TtmxZPvroI1mWKCf27YOnT6F0aahfX+1odKxkAoW+G7ZVq1ZoNBqVozF/Go3GsMzYDz/8QFJSkroBWZBdF0NpNn0/fRcdZ8yaQPouOk6z6fvZdTFU7dDyJUnshMiijRs38uabbwK6dSbXrFlDrVq1iI6OZsaMGZQrV46RI0dy69YtlSO1IPrVJrp1A3NJPqxkzdj9+/cDusROZE2/fv1wd3cnJCSE9evXqx2ORdh1MZThK84SGpF65Y6wiDiGrzgryZ0KJLETIgv27dtHnz590Gq1vPnmm8ycOZPevXsTGBjI1q1badKkCXFxcfz4449UrFiRN954gytXrqgdtnlLSoItW3SPzaUbFv5rsbt0SRejBYqNjSUgIACQ8XXZ4eTkxPDhwwHw9/dXNxgLkKxVmLI1iPQ6XfX7pmwNkm7ZPCaJnRDPcfz4cbp160ZCQgKvvvoqCxcuNHRtaTQaXnnlFY4dO8b+/ftp06YNSUlJLF26lGrVqtGrVy/OnTun8iswU3/8oVuTtUgRMKeF6cuVg4IFISEBLLT0xbFjx0hISKBUqVKy2kQ2DR8+HAcHB44fP87x48fVDidPZXec3Mngx2la6lJSgNCIOE4GPzZypCIzktgJkYk///yTDh068PTpU9q2bcvKlSuxtbVNc5xGo6FVq1bs3buX48eP07VrVxRFYd26ddSrV49OnTrxxx9/qPAKzJi+G7ZzZ12JEXNhYwPVq+seW+g4u5RlTmR8XfZ4eHjQr18/AL7//nuVo8k7ORknFx6VcVKXk+OEcUhiJ0QG/v77b9q2bcuTJ0944YUX2LBhA46Ojs89r3HjxmzatIkLFy7Qr18/bGxs2LFjB82aNaNly5bs2bNH1qRUFPNZbSI9Fr5mrIyvy52RI0cC8NtvvxEeHq5yNKaX03Fy7i5OWbp+Vo8ztrlz5+Lj44OTkxP169fnyJEjGR67YcMG/Pz8KFGiBK6urjRt2jRNmbWlS5ei0WjSbHFx5pW4SmInRDru3r1LmzZtCAsLo1atWmzbti3bNetq1qzJypUruXLlCsOGDcPe3p5Dhw7Rrl07mjVrxqNHj0wUvQUIDIRbt8DZGdq2VTuatCy45ElUVBSnTp0CJLHLqfr169OoUSMSExNZvHix2uGYVG7GyTXyKYqXmxMZtQlrAC83Jxr5FDVStFm3du1axo4dy8SJEzl37hzNmzenQ4cO3L59O93jDx8+jJ+fHzt27ODMmTO0atWKzp07pxlK4+rqSmhoaKrNyUmdxDUjktgJ8YyHDx/i5+fHrVu3qFixInv27MlVsdKKFSuycOFCbty4wdixY3F2dubYsWNMnz7diFFbGH03bLt2UKCAqqGky4JLnhw9epSkpCR8fHwoV66c2uFYrBEjRgAwf/58kpOTVY7GdHIzTs7WRsOkzroaic8md/qfJ3X2xdYm74cDzJw5kyFDhjB06FCqVauGv78/ZcqUYd68eeke7+/vz/jx42nYsCGVKlXiq6++olKlSmzdujXVcRqNBk9Pz1SbuZHETogUIiMjad++PZcuXaJ06dLs27cPDw8Po1y7dOnSzJo1i3Xr1gG6boJ822pnzt2w8F9X7N9/Q0yMurFkU8r6dSLnevXqRdGiRbl9+zY7duxQOxyTye04ufY1vJj3ej083VK3Wnm6OTHv9Xq0r+GV6xizKyEhgTNnztD2md6Atm3bcuzYsSxdQ6vVEhUVRdGiqVsbo6Oj8fb2pnTp0rzyyitmOTlOEjsh/hUbG0uXLl04c+YMxYsXZ+/evXh7exv9Ph07dqROnTo8ffo0Xw3ONrh+XdfFaWsLr7yidjTpc3eH4sV1YwEvXVI7mmzRj6+TMie54+TkxJAhQwDdlzBLkJPVH4wxTq59DS+OftSa1cOaMLtPHVYPa8LRj1qbJKmLiooiMjLSsMXHx6c55uHDhyQnJ6f5Uu7h4UFYWFiW7vPdd9/x9OlTevXqZdhXtWpVli5dypYtW1i9ejVOTk68+OKLXDOz2fOS2AkBJCYm0rNnTw4dOoSrqyu7d++matWqJrmXRqNh4sSJgG7WXWRkpEnuY7b03bAtWkDRvB97kyUajUVOoHjy5ImhBUFa7HLv7bffRqPRsGvXLq5fv652OJnK6eoPxhonZ2ujoWmFYnStU4qmFYqZrPvV19cXNzc3wzZt2rQMj312RriiKFmaJb569WomT57M2rVrcXd3N+xv0qQJr7/+OrVr16Z58+b8+uuvVK5cmR9++CHnL8gEJLET+V5ycjKDBg1i+/btODk5sW3bNurVq2fSe/bo0YOqVavy5MkTi2kNMBp9N2y3bqqG8VwWOIHi8OHDaLVaqlSpQsmSJdUOx+JVqFCB9u3bA7qxduYqN6s/mPM4ufQEBQURERFh2CZMmJDmmOLFi2Nra5umdS48PPy5Q2vWrl3LkCFD+PXXX2nTpk2mx9rY2NCwYUNpsRPCnCiKwsiRI1m9ejV2dnasX7+e5s2bm/y+NjY2hjekmTNnEmNh47hy7P590I9xsZTEzoJa7KTMifG9++67ACxZsoTY2FiVo0nLGKs/mOM4uYy4uLjg6upq2NIrQeXg4ED9+vXZu3dvqv179+7lhRdeyPDaq1evZvDgwaxatYpOnTo9NxZFUQgMDMTLy3z+fgDMqCqoEHlv4sSJzJ8/H41Gw4oVK+jYsWOe3btv375MnjyZ4OBgFi1axJgxY/Ls3qrZskU3bq1BAyhTRu1oMmeBa8bKxAnj69ChA97e3ty6dYtff/2VQYMGqR1SKtmZ1dq0QrEMj2tfwws/X09OBj8mPCoOdxdd96u5tNRl17hx4xgwYAANGjSgadOmLFy4kNu3b/POO+8AMGHCBO7evcvy5csBXVI3cOBAZs+eTZMmTQytfc7Ozri5uQEwZcoUmjRpQqVKlYiMjOT7778nMDCQH3/8UZ0XmQFpsRP51owZMwzjM+bPn0/v3r3z9P729vZ89NFHAHzzzTfpDgK2OpbSDQv/rT5x7x48Nv8lkR48eMCFCxcAaNmypbrBWBFbW1tDMpAXwyayOwHCmKs/5NU4ubzQu3dv/P39+eKLL6hTpw6HDx9mx44dhglxoaGhqWraLViwgKSkJEaMGIGXl5dhS/mF+8mTJ7z11ltUq1aNtm3bcvfuXQ4fPkyjRo3y/PVlRqPkoxL4d+7coUyZMoSEhFC6dGm1wxEqWrx4MUOHDgVg+vTpjB8/XpU44uPjKV++PPfu3WPBggW89dZbqsSRJyIjoUQJ3Rqsf/0Fvr5qR/R85crpCikfPgx50EWfG7/99hs9e/akRo0a/GlBrYyWIDw8nDJlypCQkMCpU6do0KCBSe6z62IoU7YGpWqB83JzYlJn3wy7QwOuP6Lvouevabt6WJNMW+zMnXx+Z5202Il858mTJ4wdOxbQNcerldQBODo68uGHHwLw9ddfk5SUpFosJrdzpy6pq1QJqlVTO5qssaAJFFLmxHTc3d3p2bMnQIYFbnMrpxMgzHn1B6EOSexEvrNo0SKio6OpUaMG//vf/9QOh2HDhlGiRAmCg4NZvXq12uGYzu+/6/7s0kVXTsQSWFDJExlfZ1r6SRSrVq3in3/+Meq1czMBwtJmtQrTk8RO5CuJiYmGosDjxo3LUk0jUytYsCDvvfceAF999RVarVbliExEXxKgdm1148gOC2mxu3fvHpcvX0aj0dCiRQu1w7FKTZs2pXbt2sTFxbF06VKjXjs3y3qBZc1qFaYniZ3IV3777Tfu3LmDh4cH/fr1UzscgxEjRlC4cGEuX77Mhg0b1A7HNPQFXitWVDeO7EhZ8sSMhyMfPHgQgLp16+ZqXWORMY1GY2i1mzdvnlG/gBljAkRerv4gzJskdiLfUBSFmTNnArpEKr36R2pxdXVl1KhRgK7VzurmNMXFwZ07uscVKqgbS3ZUrapb+uzJE7h7V+1oMiT16/JGv379cHV15dq1a/yuH1pgBMZY1gusa1aryDlJ7ES+cfToUU6fPo2Tk5OhfIE5GTNmDAULFuTcuXPs3LlT7XCMKzhY1+Ll4qKbGWspHB2hcmXdYzMeZ6cfXycTJ0yrUKFChjp2GZU+ycl6rTIBQhiTJHYi39C31g0cOJASZphcFCtWjOHDhwMwdepU62q1+/tv3Z8VKljOxAk9M59AcevWLW7cuIGtrW2erJqS3+l/R7ds2UJISEiq53K6XqtMgBDGJImdyBf+/vtvNm/eDGAodWKO3n//fRwdHQkICDCMm7IK+sTOksbX6Zn5BAp9a13Dhg1xcXFRORrrV61aNVq1aoVWq2XhwoWG/blZrxVkAoQwHknsRL4we/ZsFEWhY8eOVDPjGmqenp6GwslTp05VORoj0k+csKTxdXpmvmaslDnJe/pJFIsWLSIhIcEo67WCTIAQxiGJnbB6//zzD0uWLAF0JU7M3fjx47Gzs2P//v0EBASoHY5xWHKLnb4rNigIkpPVjeUZiqJIYWIVdO3aFS8vL+7fv8/GjRtzXa4kJZkAIXJLEjth9RYuXEhMTAy1atWyiA+/smXLMnDgQACzKKBsFJZY6kTPxwecnXUze4OD1Y4mlevXr3Pnzh3s7e154YUX1A4n37C3tzcs/zd37lyjrtcqRG5JYiesWkJCgtkVJM6Kjz/+GBsbG7Zv3865c+fUDid3kpLg5k3dY0vsirW1hX8XDifFouHmQN9a16RJEwoUKKByNPnLsGHDsLW15fDhw0SFZi3hz2pZEyFyQxI7YdV+/fVX7t27h6enJ3369FE7nCyrVKkSvXv3BnR17Sza7du65M7REUqVUjuanClbVvenmSV2UubE+LJarqRUqVJ069YNgGNbV0m5EmE2JLETVitlQeKRI0eaVUHirPjkk08AWL9+PZcuXVI5mlzQj68rXx5sLPQtp0wZ3Z9mlNgpiiITJ4wsu+VK9JMofvnlFz5srUv+pVyJUJuFvssK8XyHDh3i3LlzODs7m2VB4uepUaMG3bp1Q1EUpk2bpnY4OWfJ4+v09C12z9QtU9OlS5e4f/8+Tk5ONGnSRO1wLF5OypW0atWKKlWqEB0dzf2z+6RciTALktgJq6VvrRs8eDDFihVTOZqcmThxIgCrVq3ixo0bKkeTQymLE1sqM+yK1bfWvfjiixbXGm1uclquJOX6sXPnzqVddU8pVyJUJ4mdsEpXr15l69atgHkXJH6eBg0a0K5dO5KTk5kxY4ba4eSMJZc60TPDxE7KnBhPbsqVDBw4kAIFCnDx4kWOHj0q5UqE6iSxE1bJ398fgM6dO1NZv9anhdK32v3888/cNeOF6DNkycWJ9VKOsTODpd60Wq1hZRIZX5d7uSlXUrhwYfr37w9kvH6sEHlJEjthdR49esTSpUsByyhI/DzNmzfnpZdeIiEhgW+//VbtcLJHq7WOMXalS+v+jImBf/5RNxbgwoULPH78mIIFC9KgQQO1w7F4WS1DktFx+u7Y9evXExYWZrS4hMgJs0jspk2bZljn0N3dnW7dunHlypVUxyiKwuTJkylZsiTOzs60bNmSv/76S6WIhTlbsGABsbGx1K1blxYtWqgdjlHoW+0WLFhAeHi4ytFkQ2iorrBvylpwlsjZGdzddY/NoDtWP77upZdewt7eXuVozE9WS5boNfIpmqtyJXXq1KFp06YkJiayePHi3AUvRC6ZRWJ36NAhRowYwfHjx9m7dy9JSUm0bduWp0+fGo6ZMWMGM2fOZM6cOZw6dQpPT0/8/PyIiopSMXJhbuLj4/nhhx8AyypI/Dx+fn40bNiQ2NhYQzezRdCPr/P2BktPQMyo5Il+fJ10w6aV3ZIloFvGa1JnXyDn5Ur0rXYLFiwgKSkpNy9BiFwxi8Ru165dDB48mOrVq1O7dm1+/vlnbt++zZkzZwBda52/vz8TJ06kR48e1KhRg2XLlhETE8OqVatUjl6Yk7Vr1xIWFkbJkiXp1auX2uEYjUajMbTazZkzh3/MoDswS6yhG1bPTEqeJCUlcfjwYUAmTjwrJyVL9NrX8MpVuZLXXnuN4sWLExISwvbt23P+IoTIJbNI7J4VEREBQNGiumbv4OBgwsLCaNu2reEYR0dHWrRowbFjxzK8Tnx8PJGRkYZNWvesW8qCxKNGjcLBwUHliIyrc+fO1KhRg6ioKObMmaN2OFljDaVO9MxkZuzZs2eJjIykcOHC1KlTR9VYzElOS5ak1L6GV47LlTg5OTFkyBBAJlEIdZldYqcoCuPGjaNZs2bUqFEDwDAY1cPDI9WxHh4emQ5UnTZtGm5ubobN19fXdIEL1R04cIDz589ToEABwwLd1sTGxsawGsW8efPQarUqR5QF1tRiZyZdsfrxdS1atMDW1lbVWMxJbkqWpJSbciVvv/02Go2GPXv2cO3atSyfJ4QxmV1iN3LkSC5cuMDq1avTPPfseClFUTIdQzVhwgQiIiIMW1BQkNHjFeZD31r3xhtvGFp7rU2PHj0oVKgQoaGhnD17Vu1wnk9a7IxOxtelLzclS4zFx8eHjh07AjB//nyT3UeIzJhVYjdq1Ci2bNnCgQMHKK0vLwB4enoCpGmdCw8PT9OKl5KjoyOurq6GzcXFxTSBC9VdunSJ7du3o9FoGDNmjNrhmIyjoyPt2rUDYMuWLSpH8xyKYl0tdmYwxi4hIYGjR48Cktg9K7clS4xFP4liyZIlqSYACpFXzCKxUxSFkSNHsmHDBvbv34+Pj0+q5318fPD09GTv3r2GfQkJCRw6dIgXXnghr8MVZkg/U7RLly5UqlRJ3WBMrEuXLoAFJHaPHsG/42UpX17dWIxBn9jdvQsqzXo8deoUMTExFC9e3DBURejktmSJsbRr144KFSrw5MkTfv75Z5PeS4j0mEViN2LECFasWMGqVatwcXEhLCyMsLAwYmNjAV0X7NixY/nqq6/YuHEjFy9eZPDgwRQoUIB+/fqpHL1Q24MHD1i+fDlgHQWJn6djx47Y2Nhw/vx5bt26pXY4GdN3w5YqpasDZ+k8PHQlW7RauHdPlRD03bAtW7bExsYs3r7NhjFKlhglDltb3n//fQC+++47KX0i8pxZvDPMmzePiIgIWrZsiZeXl2Fbu3at4Zjx48czduxY3n33XRo0aMDdu3fZs2ePdK8K5s+fT1xcHPXr16d58+Zqh2NyxYsX58UXXwRg27ZtKkeTCWvqhgWwsflvBQqVumP1EyekzEn6cluyxFgGDx5MiRIluHnzJr/99lue3FMIPTu1AwBdV+zzaDQaJk+ezOTJk00fkLAYcXFxhtIf1lSQ+Hm6dOnCkSNH2LJlCyNGjFA7nPRZ08QJvbJlIThYN4Hi3+Q6r8TFxRnKO1n7+LpkrcLJ4MeER8Xh7qLrPs1qS1v7Gl74+Xrm+HxjcHZ2ZtSoUXz++efMmDGD3r1755v3JqE+s2ixEyKnVq9eTXh4OKVLl6Znz55qh5Nn9OPsDhw4QGRkpMrRZMDaWuxA1ZInAQEBxMfH4+XlRZUqVfL8/nklJytHPCs3JUuM5d1336VAgQKcO3eO33//Pc/vL/IvSeyExUpZkHj06NH5as3MypUrU7lyZRITE9m9e7fa4aTPWlvsQJWu2JRlTqy19Sc3K0eYm2LFihkKFn/zzTcqRyPyE0nshMXat28fFy9epGDBggwbNkztcPKc2c+OtcYWOxVr2Vn7+DpjrBxhbsaNG4etrS179uwhMDBQ7XBEPiGJnbBY+ta6IUOGULhwYXWDUYE+sduxY4f5zbyLioLwcN1ja2yxy+PELjo6mhMnTgDWO77OWCtHmJNy5coZ1qyWVjuRVySxExYpKCiIXbt2WX1B4sw0bdqUYsWK8fjx40zXTFaFvrWueHFwc1M3FmNSaYzdH3/8QVJSEmXLlk1T59NamMPKEabw4YcfArB27VrzLk8krIYkdsIiLV68GICuXbtS3hqK3+aAnZ0dnTp1AsywO9Yax9fBfy12//wD0dF5dtuU3bDWOr7OXFaOMLa6devSpk0bkpOTmTVrltrhiHxAEjthcbRaraHG4aBBg1SORl2dO3cGYPPmzVkqG5Rn9ImdNY2vA3B1/a8FMg8nUOSH9WHNZeUIUxg/fjwAixYt4tGjRypHI6ydJHbC4hw9epS7d+/i5uZGhw4d1A5HVe3atcPBwYG///6bK1euqB3Of6xx4oReHnfHRkREcObMGcC6EztzWTnCFNq0aUOdOnWIiYlh3rx5aocjrJwkdsLirFmzBoDu3bvj6OiocjTqcnFxMXzYm1V3rLV2xUKelzw5fPgwWq2WihUrUkafVFopc1k5wtg0Go1hrN33339vWC5TCFOQxE5YlMTERNatWwdA3759VY7GPOhnx27dulXlSFKw5ha7PJ4Za6llTpK1CgHXH7E58C4B1x9luUxJ+xpeHP2oNauHNWF2nzqsHtaEox+1ttikTq9nz554e3vz4MEDli1bpnY4wopJYicsyv79+3n48CHFixe3uA86U9GPszt27BgPHjxQORogLg7u3NE9tuYWuzxO7CypGza3q0eYw8oRxmZvb8+4ceMA+O6770hOTlY5ImGtJLETFmX16tWA7tuvnZ1ZLHWsujJlylCnTh20Wi07duxQOxzdWqqKAi4uUKKE2tEYXx6OsYuMjOTChQsAvPTSSya/nzFY0+oRxjZkyBCKFi3K33//zaZNm9QOR1gpSeyExYiLi2Pjxo2AdMM+y6xWoUg5vs4aS3Pk4Ri748ePo9VqKVeuHCVLljT5/XLLGlePMKaCBQsyYsQIAKZPn25eM9mt0Ny5c/Hx8cHJyYn69etz5MiRDI/dsGEDfn5+lChRAldXV5o2bZruco3r16/H19cXR0dHfH19DZ9J5kQSO2Exdu3aRWRkJKVLl+bFF19UOxyzok/sdu/eTVycygVcrXl8HaRO7LRak95KX3jaUv6/W+PqEcY2cuRInJycOHXqFIcPH1Y7HKu1du1axo4dy8SJEzl37hzNmzenQ4cO3M6gpf3w4cP4+fmxY8cOzpw5Q6tWrejcuTPnzp0zHBMQEEDv3r0ZMGAA58+fZ8CAAfTq1cuwKoy5kMROWAx9N2zv3r2xsZH/uinVq1ePkiVL8vTpUw4ePKhuMNY8IxagVCldS2R8PJh4TOMff/wBWE5iZ62rRxiTu7s7gwcPBmSZMVOaOXMmQ4YMYejQoVSrVg1/f3/KlCmTYbkZf39/xo8fT8OGDalUqRJfffUVlSpVSjUpzd/fHz8/PyZMmEDVqlWZMGECL7/8Mv7+/nn0qrIm25+O5cuXT7fA4pMnT/LtCgDC9KKjow2/YH369FE5GvOj0WjMpzvW2lvs7O3B698Zmibsjk1KSuL48eMAvPDCCya7jzFZ6+oRxvb++++j0WjYvn07Fy9eVDscixIVFUVkZKRhi4+PT3NMQkICZ86coW3btqn2t23bNsvLL2q1WqKioiha9L+C2AEBAWmu2a5dO7Nb0jHbid3NmzfTnc0THx/P3bt3jRKUEM/asmULsbGxVKxYkfr166sdjllKmdipOnbH2lvsIE9mxv75559ER0fj6upKjRo1THYfY7Lm1SOMqWLFirz66qsAfPvttypHY1l8fX1xc3MzbNOmTUtzzMOHD0lOTsbDwyPVfg8PD8LCwrJ0n++++46nT5/Sq1cvw76wsLBcXTOvZHlaYcpWgN27d+OWYmHv5ORkfv/9d8qVK2fU4ITQ0xcl7tOnj9WulZlbrVq1omDBgty9e5dz585Rr169vA8iKQlu3tQ9ttYWO9DNjD1+3KSJnb4btkmTJtja2prsPsakXz1i+IqzaCDVJApLXz3C2D788EN+++03Vq5cydSpUyldurTaIVmEoKAgSpUqZfg5syL1z35WKIqSpc+P1atXM3nyZDZv3oy7u7tRrpmXspzYdevWDdC9qGfX57S3t6dcuXJ89913Rg1OCIDHjx+za9cuQLphM+Pk5ETbtm3ZuHEjW7ZsUSexu31bl9w5OurGolmrPGixs7TxdXr61SOmbA1KNZHC082JSZ19Lb7QsLE0atSIFi1acOjQIWbPni3j7bLIxcUFV1fXTI8pXrw4tra2aVrSwsPD07S4PWvt2rUMGTKEdevW0aZNm1TPeXp65uiaeS3LXbFarRatVkvZsmUJDw83/KzVaomPj+fKlSu88sorpoxV5FMbN24kMTGRmjVrUr16dbXDMWuqj7PTd8OWLw/WPMElD0qeWNqM2JSsdfUIYxs/fjwACxYs4MmTJ+oGY0UcHByoX78+e/fuTbV/7969mY5XXb16NYMHD2bVqlV06tQpzfNNmzZNc809e/aY3RjYbFd4DQ4ONkUcFitZq3Ay+DHhUXG4u+jGjmSnmyE356t5b2Ocn1Upu2FF5jp16oRGo+HcuXPcuXMn77t3rH3ihJ6JW+zu3LnD7du3sbGxoVGjRia5h6npV48QGevQoQM1atTg4sWLLFiwgI8++kjtkKzGuHHjGDBgAA0aNKBp06YsXLiQ27dv88477wAwYcIE7t69y/LlywFdUjdw4EBmz55NkyZNDC1zzs7OhqFnY8aM4aWXXmL69Ol07dqVzZs3s2/fPo4eParOi8xAthO70aNHU7FiRUaPHp1q/5w5c/j777/NbtqvKe26GJqmu8ErG90NuTlfzXsb4/ysJoVhYWHs378fkMQuK0qUKMELL7zAH3/8wdatWxk+fHjeBpAfJk6AyVef0HfD1q5dGxcXF5PcQ6hPo9Hw4YcfMmjQIPz9/Rk7dmymY8ZE1vXu3ZtHjx7xxRdfEBoaSo0aNdixYwfe3t4AhIaGpqppt2DBApKSkhgxYoShiDTAoEGDWLp0KaCbnb5mzRo+/fRTPvvsMypUqMDatWtp3Lhxnr6259Eo2Zw+V6pUKbZs2ZJmZuLZs2fp0qULd/RrRJqhO3fuUKZMGUJCQnLdkqFfNufZvzx9ajLv9XqZJji5OV/Nexvr/KwmhXPmzGHUqFE0atTI7IpAmqvp06fz8ccf0759e3bu3Jm3N+/WDTZvhjlzIMWbo9V58AD0g6rj4nRjCo1o9OjR/PDDD4wcOZIffvjBqNcW5iUhIYHy5ctz9+5dfvrpJ4YMGaJ2SGbJmJ/f1i7bg2AePXqUakasnqurKw8fPjRKUOYut8vm5OZ8Ne9tjPOzu46kvijxs611yVqFgOuP2Bx4l4Drj/LtEkXp0Y+z279/P1FRUXl78/zSYle8ODj9W4vNBGWezGHihPyO5Q0HBwfee+89QFf6RGvi1UyE9ct2YlexYkXDDMWUdu7cmW8KFOd22ZzcnK/mvXN7fnaTwlu3bnHs2DE0Gk2qWkK7LobSbPp++i46zpg1gfRddJxm0/fn68XFU6patSoVK1YkISGBPXv25N2NtVq4cUP32NrH2Gk0JuuOjY6O5vz584B6iZ38juWtYcOG4ebmxuXLl9m2bZva4QgLl+3Ebty4cYwfP55JkyZx6NAhDh06xOeff87HH39s+NZh7XK7bE5uzlfz3rk9P7tJ4a+//grASy+9ZKhblN0Wv/xItVUoQkMhNhZsbeHfcSxWzUQTKE6ePElycjJlypShjD55zEPyO5b3XF1dDeNhZ8yYoXI0wtJlO7F78803+e6771i8eDGtWrWiVatWrFixgnnz5jFs2DBTxGh2crtsTm7OV/PeuT0/u0mhvhu2b9++QO67gfMTfWK3ffv2dFeKMQl9N6y3t27ZLWtnopIn+m5YNUooyO+YekaPHo2DgwN//PGH2S1RJSxLjgpNDR8+nDt37nD//n0iIyO5ceMGAwcONHZsZiu3y+bk5nw1753b87OTFF65coVz585hZ2dnWHont93Ievlh7NCLL75IkSJFePToEQEBAXlz0/xS6kTPRC12ao6vM9bvmMg+Ly8vBgwYACDFikWu5CixS0pKYt++fWzYsMGwJuW9e/eIjo42anDmSr9sDpAmwcnKsjm5OV/Ne+f2/OwkhfradX5+fhQvXhzIfTcy5J+xQ3Z2dnTs2BHIw+7Y/DJxQs8EY+ySk5MNibgaiZ0xfsdEzn3wwQcAbN68mcuXL6scjbBU2U7sbt26Rc2aNenatSsjRozgwYMHgG5cgP4/ZX6gXzbH0y11K5Snm9Nzy33k9nw1752b87OaFNpo0i9KnNtu5Pw2dijPx9nl1xY7I3bFBgUFERkZScGCBalVq5bRrptVuf0dE7lTtWpVunbtiqIo/O9//1M7HGGhsl3Hrlu3bri4uLB48WKKFSvG+fPnKV++PIcOHWLo0KFcu3bNVLHmminq4MjKE9k//3l17AIDA6lbty6Ojo6Eh4cb1gVM1io0m76fsIi4dMcAadAll0c/ap0mDv25GXUzZXaupYqIiKBEiRIkJiZy5coVKleubNob1q8PZ8/Cpk3Qtatp72UOrlyBqlWhUCGIjNTNlM2l+fPnM3z4cF5++WX27dtnhCCzJze/Y8I4zpw5Q4MGDQAICAigSZMmKkdkHqSOXdZle+WJo0eP8scff+Dg4JBqv7e3N3dNUM/J3OV22ZzcnK/mvXNzfvsaXvj5emaYFOpb6zp16pRqsWd9i9/wFWfRQKoPnud1A2dn7JC1LIPk5uZGy5Yt2bt3L1u3buX999833c0UJf+12Om7YqOjISICChfO9SXVnDgBufsdE8ZRv3593njjDX7++WdGjx7N8ePHsbHmdZeF0WX7f4tWq013lt2dO3dk6RuRZfqksGudUjStUMzwQaEoSqZrw+a0Gzi/jh3Ks+7YR490yQ1APqlnSYECUOzfLwFGGmdnDoWJcztUQ+TeV199hYuLC6dOnTKsZSpEVmW7xc7Pzw9/f38WLlwI6GpmRUdHM2nSJMNgbSFy6vjx49y6dYtChQrRqVOndI95Xotfeow5dii3Xdh5qXPnzowaNYqjR4/y6NEjihUzUWukvrWuVClwdjbNPcxR2bK6pDYkBHI5Ji40NJTg4GA0Go3q3W85+R0TxuPp6cnnn3/Ohx9+yMcff0yPHj1S9V4IkZlsJ3azZs2iVatW+Pr6EhcXR79+/bh27RrFixc31B0TIqf0rXVdu3alQIECGR6X3W5g/Yzc540dyqjMi1521rk1B97e3tSqVYsLFy6wY8cOQzkFo8tvM2L1ypSBc+eM0mKnb62rWbNmuss25rXcDtUQuTN69GgWLVrE1atXmTp1qhQuFlmW7a7YkiVLEhgYyIcffsjbb79N3bp1+frrrzl37hzu+kWxhciB5ORkw2oT6XXD5kZuy7yA5c6qzZPu2Pw2vk7PiLXs9EVp1eyGFebDwcGBWbNmAeDv78/Vq1dVjkhYiiwldvXq1eOff/4B4IsvvkBRFN544w3mzJnD3LlzGTp0KM657H45fPgwnTt3pmTJkmg0GjZt2pTq+cGDB6PRaFJtandXCOM6dOgQYWFhFClShLZt2xr9+rkZO2TJFfn1id2uXbuIj483zU30LXb5NbEzQskTcxhfJ8xLx44d6dChA4mJiYwbN07tcISFyFJid+nSJZ4+fQrAlClTTFKI+OnTp9SuXZs5c+ZkeEz79u0JDQ01bDt27DB6HEI9+m7YV199Nc2sa2NpX8OLox+1ZvWwJszuU4fVw5pw9KPWz+1GteSK/PXr18fLy4vo6GgOHTpkmpvk165YI7XYxcTEcPbsWUC9GbHCPM2aNQs7Ozu2b9/Ozp071Q5HWIAsjbGrU6cOb7zxBs2aNUNRFL799lsKFSqU7rGff/55jgLp0KEDHTp0yPQYR0dHPD09c3R9Yd4SEhL47bffgP/WhjWVnIwdsuRZtTY2NrzyyissWrSILVu2mKQ1NN92xRpp9YlTp06RlJSEl5cX5cqVy31cwmpUqVKFMWPG8N133zF27Fhefvllk33xFdYhSy12S5cupVixYmzbtg2NRsPOnTvZuHFjmu3Z7lNjO3jwIO7u7lSuXJlhw4YRHh6e6fHx8fFERkYatqioKJPGJ3Ju7969/PPPP3h6etKiRQu1w0nD0ivypxxnl82a5M8XFQX638X82mJ39y6kUwYqq1J2w2qMUOhYWJfPPvsMd3d3rl69mmmvlhCQxRa7KlWqGLrJbGxs+P333/N8okSHDh3o2bMn3t7eBAcH89lnn9G6dWvOnDmDo6NjuudMmzaNKVOm5GmcImf0M6p79eqFra2tytGkZaxZtWp5+eWXcXZ2JiQkhPPnz1OnTh3jXVzfWle8OJjBbM485eUFtraQlARhYbpyLzlgqokTllSaR2TMzc2NadOmMWTIEKZMmUL//v3x8PBQOyxhprI9eWLSpEkZdsOaUu/evenUqRM1atSgc+fO7Ny5k6tXr7J9+/YMz5kwYQIRERGGLSgoKA8jFlkVExPD5s2bAePPhjUWY8yqBd0HbcD1R2wOvEvA9Ud5NtnC2dnZ0AVr9Nmx+XV8HeiSOn0yl8PuWK1Wa5LEbtfFUJpN30/fRccZsyaQvouO02z6frOdvS0yN3jwYBo0aEBkZCQTJ05UOxxhxrI9eeKLL74wyeSJ7PLy8sLb2zvTtWkdHR1xdXU1bLIyhnnavn070dHReHt7m/VM59xW5Ff7g1bfHbt161bjXji/jq/Ty+UEisuXL/PPP//g7OxstJZUSy3NIzJmY2PD999/D8CSJUs4c+aMyhGJ3EhMTCQkJIQrV67w+LFxJ92ZzeSJ7Hr06BEhISF4eZlfUViRPSmXEDP38UU5rciv/6B9tn1O/0GbF0s1derUCY1Gw+nTp7l79y6lcthtmEZ+brGDXJc80Y+va9SoEfb29rkO53mleTToSvP4+XpKt6yFadq0Kf3792flypWMHj2ao0ePmv17pvhPdHQ0K1euZPXq1Zw8eTJV+anSpUvTtm1b3nrrLRo2bJir+5jN5Ino6GgCAwMJDAwEIDg4mMDAQG7fvk10dDQffPABAQEB3Lx5k4MHD9K5c2eKFy9O9+7dc3xPob7IyEhDd7q5dsM+K6N1bjNiLjXwPDw8aNy4MUCmQxiyTVrsdH/msMXO2PXrLLk0j3i+6dOnU7BgQY4dO8aqVavUDkdk0axZsyhXrhyLFi2idevWbNiwgcDAQK5cuUJAQACTJk0iKSkJPz8/2rdvn2lv5POYzeSJ06dP06pVK8PP+mKMgwYNYt68efz5558sX76cJ0+e4OXlRatWrVi7dq10r1q4TZs2ER8fT9WqValdu7ba4ZhEdj5oTb2EU4cOHTh+/Dh79+7lrbfeMs5F82txYr1cljwx9vg6Sy7NI56vVKlSfPLJJ0ycOJHx48fTtWtXVca9i+w5duwYBw4coGbNmuk+36hRI958803mz5/P4sWLOXToEJUqVcrRvbK9VqxWq83RjZ6nZcuWmZZh2L17t0nuK9RlSd2wOWVOH7Rt2rRh0qRJ7N+/n+Tk5NzPQI6Lgzt3dI+lKzbbp4aHhxu+mTdt2tQo4Vh6aR7xfOPGjWPx4sXcuHGDr7/+mqlTp6odkniOdevWZek4R0dH3n333VzdK9trxQL88ssvvPjii5QsWZJbt24BumZG/cxGIbLi4cOH7N27F7CcbticMKcP2kaNGuHi4sLjx485d+5c7i8YHAyKAi4uUKJE7q9niXLRFatvratevTpFihQxSjj60jwZfU3SAF5mXJpHPJ+TkxPfffcdAN9++y03btxQOSJhTrKd2M2bN49x48bRsWNHnjx5QvK/RTmLFCmCv7+/seMTVmz9+vUkJSVRt25dqlSponY4JmNOH7R2dnaGIQ/79u3L/QVTTpyw0hbX59J3xT58CDEx2TpVP77OmMuIGas0jzBvXbt2pU2bNsTHx/PBBx+oHY4wstzMes52YvfDDz+waNEiJk6cmKobp0GDBvz55585DkTkPym7Ya2ZuX3Q+vn5ARhaS3Mlv0+cAChcGPRjnLLZHWvsiRN6uS3NI8yfRqPB398fW1tbNm7cyO+//652SMKIcjMxNNtj7IKDg6lbt26a/Y6OjoZad0I8T2hoqGFB+t69e6scjenpP2inbA1KNZHC082JSZ198/SDVp/YHT16lJiYGAoUKJDzi+X3Uiega6ksWxaCgnSJXRZbn+Pi4gzfyo2d2EHOS/MIy1G9enXeffddfvjhB8aMGUNgYCB2dtn+WBcq6dWrV7r7FUXJVW27bP8P8PHxITAwEG9v71T7d+7cia+vb44DEfnLxo0bURSFxo0bp/m/ZK3M5YO2cuXKlC5dmjt37nD06FHDihQ5Ii12OmXK6BK7bIyzO3PmDAkJCbi7u1PBRImxvjSPsF5Tpkxh1apV/PXXX8ybN49Ro0apHZLIon379vHLL7+kmdWsKAqHDx/O8XWzndh9+OGHjBgxgri4OBRF4eTJk6xevZpp06bx008/5TgQkb/89ttvALz22msqR5K3zOGDVqPR4Ofnx88//8zevXtzl9hJi51ODiZQpOyGtdYZ4cL0ihQpwtSpUxk+fDiff/45ffv2pXjx4mqHJbKgZcuWFCpUiBYtWqR5Lr2e0azK9hi7N954g0mTJjF+/HhiYmLo168f8+fPZ/bs2VY/VkoYR3h4uKEb9tVXX1U5GstirLVmjTLOLikJbt7UPc7vLXY5KHliiokTIn8aNmwYtWvX5smTJ3z22WdqhyMysH79+lQ/b9iwId2kDmDXrl05vk+Oyp0MGzaMW7duER4eTlhYGCEhIQwZMiTHQYj8ZePGjWi1Who0aICPj4/a4VgMY641+/LLLwNw/vx5wsPDcxbQ7du65M7REYy1PJmlymaLnaIoRi9MLPIvW1tbwzqyCxcu5Pz58ypHJNLTr18/Zs2alekxmdXzzaocJXZ6xYsXN/oKFML65ddu2Nww9qLu7u7uhpU+cjybTt8NW7482OTqrcTyZXP1iatXr/Lw4UMcHR2pV6+eCQMT+cVLL71Er1690Gq1jBkzxigJgjCuLVu2MHnyZEaPHp3m3yc5OZmlS5dSrVq1XN8nn78bi7z28OFDDhw4AEhil1WmWmu2TZs2QC7q2cnEif+kbLHLwgeqvrWuYcOGODo6mjIykY/MmDEDJycnDh06xLRp09QORzyjXbt2HD58mI0bN9KjRw9iY2NJSEhg3rx5VKxYkXHjxhmlSoQkdiJPbdq0ieTkZOrWrWuymYDWxlSLuqccZ5ejb/cyceI/pUvr/oyLg0ePnnu4qerXifzN29ub2bNnAzBx4kQ2btyockTiWbVr1+b48ePcuHGDJk2a4OPjw6RJkwxD3KZMmZLre0hiJ/KUdMNmn6nWmm3evDkODg6EhIRw9erV7AcmLXb/cXQEDw/d4yx0x0piJ0zlrbfeMpQ8ef311wkMDFQ3IJFKREQES5Ys4e7du1y7do0nT57w+++/88knn+Di4mKUe0hiJ/LM48ePDeO5JLHLOlOtNVugQAFDYpGj7lhpsUstixMoHj16xOXLlwFo2rSpqaMS+dDMmTPx8/MjJiaGLl26cP/+fbVDEsCECRPw9vZm6dKlfPXVVzx48ICePXvSpk0bTp06ZbT7ZKmOnX62TVaMHj06x8EI67Z582aSkpKoWbMmlStXVjsci6FfazYsIi7dcXYadCtY5GStWT8/Pw4cOMDevXsZMWJE1k/UakG/8Li02OmULQunTj235Il+fF2VKlWeW28sWauoXtBaWB47OzvWrl1LkyZNuHr1Kt27d2f//v04OWXvy58wrk2bNvH999/Tv39/w5KsS5cu5bPPPqNVq1asXLmSrl275vo+WUrsnjc9V0+j0UhiJzKk74bt2bOnypFYFv1as8NXnEUDqZK73K416+fnxyeffMKBAwdISkrK+nJEoaEQGwu2tpBPVg55riy22GW1zMmui6FplqDzUmEJOmGZihQpwtatW2ncuDEBAQG8/fbbLF26VIphqygoKCjdv/8vv/wSb29vevfuzbfffsvIkSNzdZ8sdcUGBwdnabuh/wYvxDOePHliKIYr3bDZZ6pF3evWrUuRIkWIjIzMXleAfnydtzfY2+fo3lYniyVPsjK+ztjlbUT+VLlyZdatW4etrS3Lly/nm2++UTukfC2zpHro0KFs3LiRTz75JNf3kTF2Ik9s2bKFxMREfH19jVKnJz9qX8OLox+1ZvWwJszuU4fVw5pw9KPWuWq9sbW1NRQrztYqFDK+Lq0stNglJCQYEuiMEjtTlbcR+VObNm0MM2U//vhjtm7dqnJEIiMdOnTg4MGDub5OtteKBbhz5w5btmzh9u3bJCQkpHpu5syZuQ5KWB/phjUOU6w126ZNG3777Tf27dvH559/nrWTZEZsWllYVuzs2bPExcVRrFixDMeZZqe8jdrrDgvL8O6773Lx4kXmz59Pv379OHbsGDVr1lQ7rHzl9u3blNW/R2RCX7D87t27lMrhij7ZbrH7/fffqVKlCnPnzuW7777jwIED/PzzzyxZskSmVYt0RUZGsnv3bkC6Yc2Rvp5dQEAAUVFRWTtJ32Inid1/9F2x9+5BYmK6h6RcHzajbhlTlbcR+ZdGo+H777+nVatWREdH06VLFx48eKB2WCY3d+5cfHx8cHJyon79+hw5ciTDY0NDQ+nXrx9VqlTBxsaGsWPHpjlGP0bx2S0u7vm/iw0bNmTYsGGcPHkyw2MiIiJYtGgRNWrUYMOGDVl6jenJdmI3YcIE3n//fS5evIiTkxPr168nJCSEFi1aSGuMSNfWrVtJSEigSpUqVK9eXe1wxDPKly9P+fLlSUpK4tChQ1k7Sbpi03J3BwcH3coTd++me0hWJk6YqryNyN/s7e1Zt24dFSpU4ObNm7z66qtpetysydq1axk7diwTJ07k3LlzNG/enA4dOnA7g6ES8fHxlChRgokTJxqWW0yPq6sroaGhqbaszDa+dOkSbm5utG/fHg8PDzp16sSwYcMYNWoUr7/+OvXq1cPd3Z2lS5fyzTffGGoR5kS2E7tLly4xaNAgQDelOjY2lkKFCvHFF18wffr0HAcirFfKbliZkWWesrW8mKJIV2x6bGz+a7VLpztWUZQsTZzQl7fJ6DdFg252bE7K24j8rVixYmzduhVXV1eOHDnC8OHDrXZN2ZkzZzJkyBCGDh1KtWrV8Pf3p0yZMsybNy/d48uVK8fs2bMZOHAgbm5uGV5Xo9Hg6emZasuKokWL8u2333Lv3j3mzZtH5cqVefjwIdeuXQOgf//+nDlzhj/++IMOHTpk/wWnkO3ErmDBgsTHxwNQsmRJruvf4NGtAypESlFRUezcuROQblhzlnJ5sed69AgiInSPy5c3YVQWKJOZsTdu3OD+/fs4ODjQoEGDDC+hL28DpEnuclveRohq1aqxdu1abGxsWLJkCf7+/mqHlC1RUVFERkYaNn0+klJCQgJnzpyhbdu2qfa3bdvW0GqeU9HR0Xh7e1O6dGleeeUVzp07l63znZyc6NGjB7NmzWLOnDksXryYFStW8P7771OjRo1cxaaX7cSuSZMmhm+dnTp14v333+d///sfb775Jk2aNDFKUMJ67Nixg/j4eCpWrEitWrXUDkdkoHXr1mg0GoKCgrh3717mB+u/zJUqBc7Opg/OkmQyM1b/vlm/fv3ndt2YqryNEADt27fnu+++A+CDDz4wfPm2BL6+vri5uRm2adOmpTnm4cOHJCcn46Ff5u9fHh4ehIWF5fjeVatWZenSpWzZsoXVq1fj5OTEiy++aGh1y6o//vgDHx8fypYtS9myZfHw8OCjjz4iMjIyx7GllO1ZsTNnziQ6OhqAyZMnEx0dzdq1a6lYsWKWCxmL/GPdunWArrVOumHNV9GiRalfvz6nT59m3759DBw4MOODZXxdxrKQ2L3wwgtZulT7Gl74+XrKyhPCJMaMGcNff/3FTz/9RJ8+fQgICMDX11ftsJ4rKCgo1WxRR0fHDI999jNHUZRcfQ41adIkVQPWiy++SL169fjhhx+ytULX22+/TfXq1Vm/fj2Ojo6cOXOG77//ng0bNhAQEPDcFWmeJ9uJXfkUXS8FChRg7ty5uQpAWK+nT5+yY8cOQMqcWAI/Pz9Onz7N3r17M0/sZHxdxjIpeZLVFSdSMkV5GyFAl/T8+OOPXL16lcOHD9OlSxdOnDhBsWLm/f/NxcUFV1fXTI8pXrw4tra2aVrnwsPD07Ti5YaNjQ0NGzbMdovd9evX2bhxI5UqVQKgevXqDBgwgF69ejF69GhWrVqVu7iye0JISAh37twx/Hzy5EnGjh3LwoULcxWIsD47d+4kNjYWHx8f6tatq3Y44jlSTqDIdEC1tNhlLIMxdk+ePOGvv/4Cst5iJ4SpOTg4sH79enx8fLh+/TqvvfYaiRmU6rEkDg4O1K9fP82Y4b179xr1909RFAIDA/Hyyt7QiGrVqqVJOjUaDV988YVRCkhnO7Hr168fBw4cACAsLIw2bdpw8uRJPvnkE7744otcBySsh3TDWpYXX3wRZ2dnwsLCDElIuqTFLmMZdMUGBASgKAoVK1Y0aouBELlVvHhxtm7dSqFChTh48CCjRo2yipmy48aN46effmLJkiVcunSJ9957j9u3b/POO+8AutJtz/ZMBAYGEhgYSHR0NA8ePCAwMJCgoCDD81OmTGH37t3cuHGDwMBAhgwZQmBgoOGaWTV48GDeeuutNKVXIiIiMp2Rm2VKNhUuXFi5fPmyoiiKMnv2bOWFF15QFEVRdu/erfj4+GT3cnkqJCREAZSQkBC1Q7F6T58+VQoWLKgAysmTJ9UOR2RRu3btFECZNWtWxge5uysKKMqZM3kWl8WIjNT93YCiREQYdk+cOFEBlEGDBqkXmxCZ2Lp1q6LRaBRAmTx5spKcnKx2SKnk5PP7xx9/VLy9vRUHBwelXr16yqFDhwzPDRo0SGnRokWq49Et7JJq8/b2Njw/duxYpWzZsoqDg4NSokQJpW3btsqxY8ey/Vo0Go2i0WgUR0dHpW/fvsr06dOVr776SvH19VVWrVqV7es9K9uJXcGCBZXg4GBFURSlc+fOytdff60oiqLcunVLcXJyynVApiSJXd7ZsGGDAihly5ZVtFqt2uGILPrmm28UQOnYsWP6B6RMXJ48ydvgLEXhwrq/n4sXDbtatmypAMqCBQtUDEyIzOl//wGlXbt2SlhYmNohGVjT5/f9+/eVXbt2KdOnT1f69u2rVKtWTbGzs1Ps7e2VWrVqKf3791emT5+u7Ny5M0fXz3ZXbPXq1Zk/fz5Hjhxh7969tG/fHoB79+6Z/aBLkXf0RYmlG9ay6OvZHTp0KP2q9Ppu2OLFwRhdBtbome7YxMRETpw4AWRv4oQQee39999nwYIFODk5sXv3bmrXrp21ouUiW9zd3WnXrh3jx49n1apVBAUFERUVxR9//MHIkSMpXLgwW7ZsoU+fPjm6frYTu+nTp7NgwQJatmxJ3759DUtvbNmyhUaNGuUoCGFd4uLiDANAZTas+UjWKgRcf8TmwLsEXH9EsjbtOJqaNWvi7u7O06dPOX78eNqLyMSJ53smsTt//jyxsbEULlyYatWqqRiYEJnTaDS89dZbnD59murVq3P//n3atm3LJ598YhWTKsyZk5OTYT3ZOXPmcPToUZ48eZKja2W73EnLli15+PAhkZGRFClSxLD/rbfeokCBAjkKQliXPXv2EBUVRenSpSXZNxO7LoYyZWsQoRH/LVbt5ebEpM6+qYrd2tjY8PLLL7N69Wr27t3LSy+9lPpCMnHi+Z4peXL48GFANxvWxibb36WFyHPVq1fn5MmTjBs3jgULFjBt2jQOHDjA6tWrKVeunNrhiefI0buMra1tqqQOdOusubu7GyUoYdn03bCvvvqqfJCZgV0XQxm+4myqpA4gLCKO4SvOsutiaKr9mS4vJi12z/dMyZPff/8d0K3uIYSlKFCgAPPnz+fXX3/Fzc2N48ePU6dOHcP7uzBf2f7U9fHxoXz58hluIn+Lj49n8+bNgKwNaw6StQpTtgaRXvEC/b4pW4NSdcvq69mdOnUqbVeAtNg9X4qu2MTERA4dOgTAyy+/rGJQQuRMz549CQwMpEmTJkRERNCzZ0/eeecdYmNj1Q5NZCDbid3YsWMZM2aMYXv33Xdp2rQpERERvPXWW6aIUViQffv2ERkZiZeXlxRiNQMngx+naalLSQFCI+I4GfzYsK9MmTJUqVIFrVZrqFlpIC12z5eiK/bEiRM8ffqU4sWLy1rJwmKVK1eOw4cP8/HHH6PRaFiwYAGNGjXKvN6lUE22E7uUSd2YMWP44IMPWLlyJV988QVXrlzJcSCHDx+mc+fOlCxZEo1Gw6ZNm1I9rygKkydPpmTJkjg7O9OyZUv5T2WGpBvWvIRHZZzUZXacvjs21Yy4uDjQrzojLXYZ03fFhoTw+7/d2a1bt5bfB2HR7O3tmTZtGrt378bDw4OLFy/SsGFDFi1aZBUFja2J0d5pOnTowPr163N8/tOnT6lduzZz5sxJ9/kZM2Ywc+ZM5syZw6lTp/D09MTPz4+oqKgc31MYV0JCgiEhl25Y8+Du4pSj4/TdsanG2V2/rqtg5+ICJUoYLUarU7Ik2NhAYiKBu3cD0g0rrIefnx/nz5+nbdu2xMbG8tZbb9GnTx8iIiLUDk38y2iJ3W+//UbRokVzfH6HDh2YOnUqPXr0SPOcoij4+/szceJEevToQY0aNVi2bBkxMTG5XixXGM/+/ft58uQJHh4eNGvWTO1wBNDIpyhebk5kVElQg252bCOf1L+7LVu2xNbWlmvXrnHr1i3dzkuXdH9WrQpSmzBj9va65A64f/o0IImdsC4eHh7s3LmTGTNmYGdnx6+//kqdOnUM9RqFurKd2NWtW5d69eoZtrp16+Ll5cUnn3zCJ598YooYCQ4OJiwsjLZt2xr2OTo60qJFC44dO2aSe4rs03fD9ujRA1tbW5WjEQC2NhomdfYFSJPc6X+e1NkXW5vUz7q5udG4cWMgRXesPrGTWmzP9293bMnkZLy9vWVimbA6NjY2fPjhhxw9epRy5cpx8+ZNmjVrxowZM9BqtWqHl69lu45dt27dUv1sY2NDiRIlaNmyJVWrVjVWXKmEhYUBpFk828PD47/WhHTEx8cTHx9v+Fm6bU0nMTGRjRs3AtINa27a1/Bi3uv10tSx80ynjl1Kbdq04dixY+zdu5chQ4ZIYpcdZctCQABlgcJt2sjqK8JqNW7cmMDAQN5++23Wrl3LRx99hJ2dHePGjVM7tHwr24ndpEmTTBFHljz75qgoSqZvmNOmTWPKlCmmDksABw8e5PHjxxQvXjxtUVuhuvY1vPDz9eRk8GPCo+Jwd9F1vz7bUpeSn58fX3zxBb///jtarRYbSeyy7t+ZsWUBD+mGFVbOzc2N1atX4+fnx48//igVMlSWqzF2sbGxREZGptpMwdPTE/iv5U4vPDw8TSteShMmTCAiIsKwBQUFmSQ+kbob1s4u298XRB6wtdHQtEIxutYpRdMKxTJN6kD3TbxQoUI8fPiQ8+fOgX7Wu69vHkRr2aL+HW9cBilMLPIHjUbDkCFDOHXqFIUKFVI7nHwt24nd06dPGTlyJO7u7hQqVIgiRYqk2kzBx8cHT0/PVDP0EhISOHToUKa10hwdHXF1dTVsLi4uJokvv0tKSpJuWCtkb29Py5YtATi5bh3ExoKDA/j4qBuYBTj/6BEAVZydM/3yKYS1kfHV6st2Yjd+/Hj279/P3LlzcXR05KeffmLKlCmULFmS5cuX5ziQ6OhoAgMDCQwMBHQTJgIDA7l9+zYajYaxY8fy1VdfsXHjRi5evMjgwYMpUKAA/fr1y/E9hXEcPnyYBw8eULRoUUMiIKyDvp7d7X/LdlC5MkiL7HMdvHEDAG8ZWyeEyGPZfofeunUry5cvp2XLlrz55ps0b96cihUr4u3tzcqVK+nfv3+OAjl9+jStWrUy/KwfeDlo0CCWLl3K+PHjiY2N5d133+Wff/6hcePG7NmzR1rhzIC+G7Z79+7Y29urHI0wJn09u+SLF3U7ZHxdlmw8c4ZPAZeYGJJjYjkZGpPlsY1CCJEb2U7sHj9+jM+/XTGurq48fqxbiqhZs2YMHz48x4G0bNky0+rVGo2GyZMnM3ny5BzfQxhfcnIyGzZsAKQb1hpVq1aNkiVLUunePf0OdQOyADdv3uTsrVvEAAWAPp+v45RdMcPzXs+ZjSyEELmR7a7Y8uXLc/PmTQB8fX359ddfAV1LXuHChY0Zm7AAR48e5f79+xQuXFgGiVshjUaDn58fhnROErvn+v333wEIc9St5mF3906q58Mi4hi+4iy7LobmeWxCCOuX7cTujTfe4Pz584Bu1ql+rN17773Hhx9+aPQAhXnTd8N269YNBwcHlaMRptDm5ZclscsGfUHnkAK6yWSlIh+kel7fLzFlaxDJWlljUwhhXNnuin3vvfcMj1u1asXly5c5ffo0FSpUoHbt2kYNTpg3rVZrWB9YumGtV9vatSkCJAP/FC1KcbUDMmOKorB//34A7hQtBf+E4vVMYge65C40Io6TwY9pWqFYmueFECKncj29rWzZspT9txinyF8CAgIIDQ3F1dXVMMheWB/3f0t3BANnAwLo9e9yWSKtixcvEh4ejqOTM/c9KsL105RMJ7HTC4+Ky/A5IYTIiSx3xe7fvx9fX990ixBHRERQvXp1jhw5YtTghHlbu3YtAF26dMHR0VHlaITJ/LvixCVIVUtSpKXvhq3TsCmhbrr6dc92xabk7uKUJ3EJIfKPLCd2/v7+DBs2DFdX1zTPubm58fbbbzNz5kyjBifMV2JiImvWrAGgb9++KkcjTOqZxC6z2ev5nX7iRI/O7YnzKgWAV9TDNMdp0M2ObeRTNC/DE0LkA1lO7M6fP0/79u0zfL5t27acOXPGKEEJ87dv3z4ePHhAiRIlDEVshZX6dym+q7a23Lp1i+vXr6sckHlKTEzk0KFDAPi1aUPP7k0BdF2xKZJhfQW7SZ19pZ6dEMLospzY3b9/P9Pis3Z2djx4kHGXg7AuK1euBKB3795SlNja/dti51CrFvBfd6NI7eTJk0RHR1OsWDFq167NSy/XB6BgYhxucdGG4zzdnJj3ej2pYyeEMIksT54oVaoUf/75JxUrVkz3+QsXLuDlJW9U+UF0dLRhbdjXX39d5WiESUVEQKiu3lr5Tp3g3Dn27t3LO++8o3Jg5kffDdu6dWtsbGzA2RlKlIAHD1jexpObZSrJyhNCCJPLcotdx44d+fzzz4mLSzuLKzY2lkmTJvHKK68YNThhnjZt2kRMTAwVKlSgUaNGaocjTOnf1jpKlqT5v7/fv//+O4mJiSoGZZ70id3LL7/8385/ZxDXJoqudUrRtEIxSeqEECaV5cTu008/5fHjx1SuXJkZM2awefNmtmzZwvTp06lSpQqPHz9m4sSJpoxVmAl9N+zrr7+ORhY5t276xK5aNRo0aIC7uzsRERGGsWRC5+nTpwQEBADPJHb6UlC3b6sQlRAiP8pyYufh4cGxY8eoUaMGEyZMoHv37nTr1o1PPvmEGjVq8Mcff+Dh4WHKWIUZuH//Pnv27AGgf//+KkcjTC5FYmdra0uXLl0AXaut+M+RI0dITEzE29ubChUq/PeEJHZCiDyWrSXFvL292bFjBw8fPuTEiRMcP36chw8fsmPHDsqVK2eiEIU5Wbt2LVqtlkaNGlGpUiW1wxGmliKxA+jevTugS+y0Wq1aUZmdlN2wqVqx9YldSIgKUQkh8qMcrTxRpEgRGjZsaOxYhAVYsWIFIJMm8o1nErvWrVtTqFAh7t69y5kzZ+R94F/6mcKpumHBMMZOWuyEEHklWy12In+7evUqp06dwtbWlt69e6sdjjC12Fi4cUP3+N/EzsnJiY4dOwIYZkbndw8fPiQwMBBIJ7GTrlghRB6TxE5kmX7SRNu2bXF3d1c5GmFyV6/qCusWLgwpxs9269YNkHF2egcOHACgRo0aaccZ6xO7u3chKSmPIxNC5EeS2IksURTFkNjJpIl8Qt8N6+sLKcaNdezYEXt7ey5dusSVK1dUCs58pFvmRM/DA+zsQKs11AMUQghTksROZMmJEye4fv06BQsWNLTYCCv3zPg6PTc3N1q3bg1Idyz8N76uTZs2aZ+0tYXSpXWPpTtWCJEHJLETWaJvrevevTsFCxZUORqRJzJI7CD17Nj8TL92rq2tLS+99FL6B8k4OyFEHpLETjxXYmIia9asAaQbNl/JJLHr0qULGo2GEydOcPfu3TwOzHzou2EbNWqEq6tr+gdJyRMhRB6SxE481549e3j48CHu7u7pdzcJ65OUpJs8Aekmdl5eXjRp0gSALVu25GVkZiXTblg9KXkihMhDktiJ59J3w/bp0wc7uxyVPhSWJjgYEhJ0C9l7e6d7iH6sZX4dZ6coCvv37wcymDihp//7+/vvPIhKCJHfSWInMhUVFWUYRyVFifORoCDdn1WqgE36bxP6cXYHDhzgyZMneRSY+fjrr7+4f/8+zs7OhtbLdNWrp/vz1Cld+RghhDAhSexEpjZt2kRsbCyVKlWiQYMGaocj8ko64+uStQoB1x+xOfAuAdcfUb5CRXx9fUlKSmL79u0qBaoefTds8+bNcXR0zPjA2rXB0REeP5ZWOyGEyUliJzKVcgmxVGtgCuuWsoYdsOtiKM2m76fvouOMWRNI30XHaTZ9P7Ve9APy5+xY/cSJ5447dXD4r9XuxAkTRyWE0Js7dy4+Pj44OTlRv359jhw5kuGxoaGh9OvXjypVqmBjY8PYsWPTPW79+vX4+vri6OiIr6+vWQ5FkcROZCgsLMzQKiGzYfOZFC12uy6GMnzFWUIj4lIdEhYRx6H4cgDs3LmT2NjYPA5SPYmJiRw6dAh4zvg6PX1X7fHjJoxKCKG3du1axo4dy8SJEzl37hzNmzenQ4cO3M5gElN8fDwlSpRg4sSJ1K5dO91jAgIC6N27NwMGDOD8+fMMGDCAXr16ccLMvrBJYicytGbNGrRaLU2aNKFChQpqhyPyiqLA5csAJFepypStQaQ3MkwBHDwr4uBWgqdPnxpasPKDU6dOERUVRdGiRalTp87zT5DETog8NXPmTIYMGcLQoUOpVq0a/v7+lClThnnz5qV7fLly5Zg9ezYDBw7Ezc0t3WP8/f3x8/NjwoQJVK1alQkTJvDyyy/j7+9vwleSfZLYiQzpZ8PKpIl85u5diIoCW1tO2RZN01KXikaDY4XGQP6aHatPYlu3bo1NBpNLUmms+zvi/HnIRy2bQqghISGBM2fO0LZt21T727Zty7Fjx3J83YCAgDTXbNeuXa6uaQqS2Il0Xb58mdOnT2Nra0uvXr3UDkfkJX03bMWK3I/XPvdw58pNAV09u+TkZFNGZjYyXR82PWXLgqenrj7g2bMmjEwI6xYVFUVkZKRhi4+PT3PMw4cPSU5OxsPDI9V+Dw8PwsLCcnzvsLAwo1/TFCSxE+nSt9a1b9+eEiVKqByNyFP6UifVquHu4vTcw51KV8fFrTAPHz7kjz/+MHFw6nv69KnhG3qWEzuNRrpjhTACX19f3NzcDNu0adMyPPbZCX+KouR6EqAprmlsktiJNBRFMSR2MmkiH0oxcaKRT1G83JzI6G1LA5QsWohuXboA+WN27NGjR0lMTKRs2bJUrFgx6yfqu2PNbKC1EJYkKCiIiIgIwzZhwoQ0xxQvXhxbW9s0LWnh4eFpWtyyw9PT0+jXNAVJ7EQaAQEBBAcHU6hQIbp27ap2OCKvpSh1YmujYVJnXcmTZ5M7/c+TOvvSvXs3QDfOTrHyIrwpu2Gz9U1dWuyEyDUXFxdcXV0NW3o1JB0cHKhfvz579+5NtX/v3r288MILOb5306ZN01xzz549ubqmKcj6UCINfWtdjx49KFCggMrRiDz3THHi9jW8mPd6PaZsDUo1kcLTzYlJnX1pX8OLmPLtcHZ25ubNm1y4cCHDcgHWQF8CKMvdsHoNGuhW8QgJgXv3oGRJE0QnhAAYN24cAwYMoEGDBjRt2pSFCxdy+/Zt3nnnHQAmTJjA3bt3Wb58ueGcwMBAAKKjo3nw4AGBgYE4ODjg+289zzFjxvDSSy8xffp0unbtyubNm9m3bx9Hjx7N89eXKSUfCQkJUQAlJCRE7VDMVkJCglKsWDEFUHbv3q12OCKvPXyoKLqCJ4oSHZ3qqaRkrXLs74fKpnN3lGN/P1SSkrWpnu/atasCKJMmTcrDgPPWw4cPFY1GowBKaGho9i9Qq5bu73bDBuMHJ4QVy8nn948//qh4e3srDg4OSr169ZRDhw4Znhs0aJDSokWLVMejq+KUavP29k51zLp165QqVaoo9vb2StWqVZX169fn5mWZhEZRrLzfJIU7d+5QpkwZQkJCKF26tNrhmKVt27bRuXNnPD09CQkJwc5OGnXzlaNHoXlz3SzOW7eydeqyZcsYPHgwtWvXNnzztTa//fYbPXv2pHr16ly8eDH7F3j7bVi4EMaPh+nTjR+gEFZKPr+zTsbYiVT0S4j16dNHkrr8KJ01YrPqlVdewdbWlvPnzxMcHGzkwMxDjrth9fQTKGScnRDCRCwmsZs8eTIajSbV5unpqXZYViUyMpLNmzcDUpQ438pFYlesWDFeeuklwHpnx2Z5fdiM6CdQnD6tq2knhBBGZjGJHUD16tUJDQ01bH/++afaIVmVjRs3EhcXR5UqVainX7Rc5C8patjlRLdu3QDrXIXi1q1b/P3339ja2tKiRYucXaRqVXB1hZgYyElXrhBCPIdFJXZ2dnZ4enoaNimca1wplxAzt4KLIo+kKHWSE/rE7o8//iA8PNxIQZkHfWtdw4YNcXV1zdlFbGygUSPdY+mOFUKYgEUldteuXaNkyZL4+PjQp08fbty4kenx8fHxqZYeiYqKyqNILc+9e/cMH1z9+vVTORqhiuhouH1b9ziHLXZly5alXr16aLVatm7dasTg1Jfrblg9fXesFCoWQpiAxSR2jRs3Zvny5ezevZtFixYRFhbGCy+8wKNHjzI8Z9q0aamWHvHNYStEfrBmzRq0Wi0vvPAC5cuXVzscoYYrV3R/ligBxYrl+DLdu3cHrGecXbJW4djfD9m5RzdxomWr1rm7oBQqFkKYkMUkdh06dODVV1+lZs2atGnThu3btwO6EgsZmTBhQqqlR4L044dEGim7YUU+lYuJEynpu2P37t1r8a3kuy6G0mz6fl6b9iv/PAxHY+fIJ3/EsetiaM4vqu+KvXwZ/vnHOIEKIcS/LCaxe1bBggWpWbMm165dy/AYR0fHVEuPuLi45GGEluPSpUucPXsWOzs7evbsqXY4Qi1GSuyqV69OxYoViY+PZ/fu3UYITB27LoYyfMVZQiPiiLsVCIBjaV/Cn2oZvuJszpO7EiWgQgXd41OnjBOsEEL8y2ITu/j4eC5duoSXl5faoVg8fWtdhw4dKF68uMrRCNUYKbHTaDQWPzs2WaswZWsQ+urtcbfOA+BUrrZh35StQSRrc1jfXbpjhRAmYjGJ3QcffMChQ4cIDg7mxIkTvPbaa0RGRjJo0CC1Q7NoiqIYErv+/furHI1QVS5LnaSkH2e3fft2EhIScn29vHYy+LFhXVxtfAxxty4A4ORdB9CtNRQaEcfJ4Mc5u4G+ULFMoBBCGJnFJHZ37tyhb9++VKlShR49euDg4MDx48fx9vZWOzSLduzYMW7evImLiwudO3dWOxyhloQE+Ptv3WMjTDJq0qQJHh4eREREcPDgwVxfL6+FR8UZHkf/uQ8lMQ77YmVw8KiQ4XHZkrLFLv+s6iiEyAMWk9itWbOGe/fukZCQwN27d1m/fr3McjUC/RJir776KgUKFFA5GqGav/+G5GRwcYFSpXJ9ORsbG7p27QpY5uxYdxcnABRFS9RZXdkWl/qd09R31B+XbbVrg6MjPH78X0IthBBGYDGJnTC++Ph4fv31V0C6YfM9/fi6qlXBSMWp9ePsNm3ahFarNco180ojn6J4uTkRd+MMSf+EonEsSMHqrQzPawAvNyca+RTN2Q0cHEC/uot0xwohjEgSu3zs119/5fHjx5QuXZpWrVo9/wRhvYw0cSKl1q1b4+LiQmhoKKcsbPanrY2GSZ19iTqzDYBCtfywcXAGdEkdwKTOvtja5CIJlgkUQggTkMQun1IUhe+//x6A4cOHY2trq3JEQlUmSOwcHR3p2LEjYJmzY33sI4kNPgMaDS71XjHs93RzYt7r9WhfI5cz8vUTKCSxE0IYkZ3aAQh1nDhxgtOnT+Po6MiwYcPUDkeozQSJHehmx65du5ZNmzbx9ddfG/XapjZnzhwAXun0Cp982I3wqDjcXXTdr7lqqdPTt9idPw+xseDsnPtrCiHyPWmxy6d++OEHAPr27UuJEiVUjkaoSqvVrYIARk/sOnTogIODA1euXOGSPnm0AJGRkSxduhSAMWNG07RCMbrWKUXTCsWMk9QBlC0Lnp6QlARnzxrnmkKIfE8Su3woNDSUdevWATBq1CiVoxGqu3VL12Lk4ABGXifY1dWVl19+GbCs2bFLly4lOjqaatWqGeI3Oo1GumOFEEYniV0+tGDBAhITE3nxxRepp5+ZJ/IvfUta5cpgZ/zRGfrZsb+sWcfmwLsEXH+U8xUb8oBWqzW0aI8ePTpNiROj0nfHysxYIYSRyBi7fCYhIYEFCxYA0lon/mWi8XV6hSo3Bo2GSxfOMWLhPuxci+Pl5sSkzr65n4BgArt27eLvv//Gzc2NAQMGmPZmMjNWCGFk0mKXz/z222+EhYVRsmRJevTooXY4whyYMLHbdTGUibvu4FiyKgCxf+sSmLCIOIavOMuui6FGv2du6WeLDxkyhIIFC5r2Zg0agI0NhITAvXumvZcQIl+QxC6fSVnixN7eXuVohFkwUWKXrFWYsjUIBXCu1BSAmKsBgG6tVYApW4PMqlv2ypUr7N69G41Gw4gRI0x/w0KFoEYN3WPpjhVCGIEkdvnIqVOnOHHiBA4ODrz11ltqhyPMgaKYLLE7GfyY0AjdWqoFKuu6HONu/0lyXLTu1kBoRBwngx8b9b65oS9x0rlzZ8obeSJJhqQ7VghhRJLY5SP6AeG9e/fG3d1d5WiEWQgPh3/+0c3QrFzZuJeOijM8ti9SEvvi3qBoif231S6949QUERFhKHEyevTovLuxzIwVQhiRJHb5xP3791mzZg0gkyZECvrWuvLljV4g193FKdXPBX1bAPDk2Bq0ifEZHqcWfYkTX19fWrdunXc31rfYnT6tq2knhBC5IIldPrFw4UISExNp0qQJDRs2VDscYS6CgnR/mmDiRCOfoni5ORnWVnWp3wXbQsVIjrhP5KmNaAAvN91KDmrTarWGbthRo0aZtsTJs6pWBVdXiImBixfz7r5CCKskiV0+kJCQwLx58wBprRPPMOGMWFsbDZM6+wKgAWwcnCjS6k0AIgPWkRT5gEmdfY23kkMu5GmJk2fZ2ECjRrrH0h0rhMglSezygQ0bNhAaGoqnpyevvfaa2uEIc2LiGnbta3gx7/V6eLrpulsLVHsJx9LVUZLiKR+80Wzq2Olniw8dOtT0JU7SI4WKhRBGIgWK8wH9pIl33nkHBwcHlaMRZsXEiR3okjs/X09OBj8mPCqOJ83m8Ga3lzm8awuHDx/mpZdeMtm9syJliZN3331XnSBkAoUQwkikxc7KnTlzhmPHjmFvb8/bb7+tdjjCnERE/FcU14SJHei6ZZtWKEbXOqUY1LmlodzOqFGjSFJ5woAqJU6epU/sLl/WzVIWQogcksTOyulb63r27Imnp6fK0Qizcvmy7k8vL3Bzy9Nbf/nllxQpUoQLFy6waNGiPL13SqqVOHlWiRJQoYLu8alT6sUhhLB4kthZsfDwcFavXg3IpAmRDn03rK9vnt+6ePHifPHFFwB8+umnPH6sTpFi1UqcpEe6Y4UQRiCJnRVbtGgRCQkJNGzYkMb6Dw0h9ExY6iQr3nnnHWrUqMHjx4/5/PPP8/z+KUucjB49Om9LnKRHJlAIIYxAEjsrlZiYmKrEieofWsL85MHEiczY2dkZZqPOmzePCxcu5On99SVOChcuzOuvv56n905XyqXFFPNZP1cIYVkksbNSmzZt4u7du7i7u9OrVy+1wxHmSOXEDqBVq1a89tpraLVaxowZg5KHCY0+qRwyZIg6JU6eVbs2ODrC48fw999qRyOEsFCS2Fkp/YfW22+/jaOjo8rRCLMTFwfBwbrHKiZ2AN9++y1OTk4cPHiQ3377LU/uefnyZUOJkxEjRuTJPZ/LwQHq1dM9lu5YIUQOSWJnhQIDAzl69Ch2dna88847aocjzNHVq6DVQuHC4OGhaije3t58/PHHALz//vvExMSY/J76sXVdunTBx8fH5PfLspTdsUIIkQOS2FkhfYmTV199lZIlS6ocjTBLKbthzWD85YcffkjZsmUJCQlhxowZJr1XREQEy5YtA8xwtrjMjBVC5JIkdlbm4cOHrFy5ElC5LpcwbyqWOklPgQIF+O677wCYPn06N2/eNOr1k7UKAdcfsTnwLpO+/dF8Spw8S99id/48xMaqG4sQwiJJYmdlfvrpJ+Lj46lXrx5NmzZVOxxhrsxg4sSzXn31VVq1akVcXBwffPCB0a6762Iozabvp++i44xefZYf/+2GffnVQeY3W7xsWV3XeFISnD2rdjRCCAskiZ0VSUpKYu7cuYCUOBHPoXINu/RoNBpmz56Nra0t69evZ//+/YbnUra4BVx/RLI2a7Nnd10MZfiKs4RGxAEQe+MMSU9CsXEsyOboCuy6GGqS15JjGo2MsxNC5IokdlZk8+bNhISEULx4cfr06aN2OMJcJSXpJk+AWSV2ADVr1mT48OGAbihBUlJSqha3MWsC6bvoOM2m739uUpasVZiyNYiUKWDUma0AFKrdDhsHJ6ZsDcpykphnpFCxECIXJLGzIvpJE2+99RZOTk4qRyPMVnAwJCSAszN4e6sdTRpTpkyhWLFi/PXXX4z67OtULW56YRFxDF9xNtPk7mTw41TnJT4KIS74LKChUN2OKEBoRBwng9VZzixDMoFCCKOYO3cuPj4+ODk5Ub9+fY4cOZLp8YcOHaJ+/fo4OTlRvnx55s+fn+r5pUuXotFo0mxxcXEZXFEdkthZiQsXLnDo0CFsbW0NLR5CpEs/vq5KFbAxv7eAokWL8r///Q+ARf7TSYqJSHOMvo0tsxa38KjUb7ZRZ7cB4FypMfaFPTM8TnUNGuj+XUJC4N49taMRwiKtXbuWsWPHMnHiRM6dO0fz5s3p0KEDt2/fTvf44OBgOnbsSPPmzTl37hyffPIJo0ePZv369amOc3V1JTQ0NNVmbg0p5veuLnJE31rXvXt3SpcurXI0wqyZ4cSJZw0dOpRK1WqSHBfNkyO/pHvM81rc3F3+e7PVxj8l+s/fAXCp3znD48yCiwvUqKF7LN2xQuTIzJkzGTJkCEOHDqVatWr4+/tTpkwZw1Kbz5o/fz5ly5bF39+fatWqMXToUN58802+/fbbVMdpNBo8PT1TbeZGEjsr8PjxYylxIrLOzEqdpMfW1pbBH0wGIDpwNwn3r2d4bEYtbjU9nXG6d45HO2Zzd+FbKIlx2Bcvi1PZWgBoAC83Jxr5FDV2+Lkn3bFCpCsqKorIyEjDFh8fn+aYhIQEzpw5Q9u2bVPtb9u2LceOHUv3ugEBAWmOb9euHadPnyYxMdGwLzo6Gm9vb0qXLs0rr7zCuXPnjPCqjEsSOyuwePFiYmNjqV27Ns2aNVM7HGHuLKDFDqBVixYUqNYCUHi8b0GG68imbHF79OgRy5cvp0ePHni4l+DKL58R/edetDER2DgVosjLb+nGxfx7/KTOvtjamOHscZkZK0S6fH19cXNzM2zTpk1Lc8zDhw9JTk7G45lVdTw8PAgLC0v3umFhYeken5SUxMOHDwGoWrUqS5cuZcuWLaxevRonJydefPFFrl27ZqRXZxx2agcgcic5OZkff/wRkBInIgsUxWISu0Y+RanS5R0C/z5O/J0gYi4dpqBvC8PzGsDTzQl3TSSzZ69g06ZNHDlyhOTkZMMxZcqUoU6zNvztXI2nRSujsdW95Xm6OTGpsy/ta3jl9cvKGn1id/q0bhaznbxVCwEQFBREqVKlDD9nthb6s5+HiqJk+hmZ3vEp9zdp0oQm+t9N4MUXX6RevXr88MMPhvXZzYHFvVvMnTuXb775htDQUKpXr46/vz/NmzdXOyzVbN26lVu3blG0aFH69eundjjC3N29C1FRYGsLFSuqHU2mbG00fPV6C/oe68WTI7/wz4ElOFdsjMbekcTwYGKuBWDz8DwVPwlKdV6tWrXo1q0bXbt2pW7dumg0GpK1CieDHxMeFYe7i6771Sxb6vSqVgVXV4iMhIsXoU4dtSMSwiy4uLjg6uqa6THFixfH1tY2TetceHh4mlY5PU9Pz3SPt7Ozo1ixYumeY2NjQ8OGDaXFLjf0s1zmzp3Liy++yIIFC+jQoQNBQUGULVtW7fDynFarZerUqQAMGzYMZ2dnlSMSZk/fWlexIjg4qBtLFrSv4cWyWVPo5beX+H/CCF83iaTIByRHhgMQge7NtXnz5oZkzsfHJ811bG00NK2Q/puzWbKxgUaNYN8+XXesJHZCZJmDgwP169dn7969dO/e3bB/7969dO3aNd1zmjZtytatW1Pt27NnDw0aNMDe3j7dcxRFITAwkJo1axoveGNQLEijRo2Ud955J9W+qlWrKh9//HGWzg8JCVEAJSQkxBTh5blVq1YpgFKoUCHl/v37aocjLMHs2YoCitKtm9qRZMuGDRsVdBNhFUBxdnZWunXrpixdulR58OCB2uGZxqef6v6tBg9WOxIhVJfdz+81a9Yo9vb2yuLFi5WgoCBl7NixSsGCBZWbN28qiqIoH3/8sTJgwADD8Tdu3FAKFCigvPfee0pQUJCyePFixd7eXvntt98Mx0yePFnZtWuXcv36deXcuXPKG2+8odjZ2SknTpww7ovNJYtpsdPPcvn4449T7c9slkt8fHyqGTNRUVEmjTEvxcfH/7+9e4+LKf//AP6a7ldtJBXdtEQbSpFarHvuhaWsbbOuuVYsxaLUumS/ye66hK/NbYl1t7KM/SqXYpN+FqVFpWLSsqncSvX5/XG2YWq6bnVmxvv5eMyjM5/zOWfen/mcZt5zLp+DpUuXAgACAgJgaGjIc0RELsjJ+XWVubu7ITQ0FFlZWRg5ciQGDRoELS0tvsNqWnRlLCEN5uHhgadPnyIkJAQikQi2traIiYmB+T+DsotEIokx7SwtLRETEwN/f39s2rQJJiYm+P777zFu3DhxnWfPnmHGjBnIzc2Fnp4e7O3tceHCBfTs2bPZ21cTAWPVXGomYx49eoS2bdvi8uXLcHFxEZevXr0au3btQlpaWpVlgoODsXLlyirl2dnZcj/WW0REBBYsWABjY2PcvXsX2trafIdEZF1JCWBhAYhEwKFDwDsfWEQG/fUXUPGD7e+/AX19fuMhhEc5OTkwNTVViO/vpiZ3w53U5yqXJUuWoKCgQPxISUmRWk/e5OfnIzQ0FAAQEhJCSR2pm59/5pI6Y2Ng1Kja6xN+tW4NtG/PTScm8hsLIURuyE1i15CrXNTV1dGiRQvxQ1dXtzlCbXJr165Ffn4+bGxsMHnyZL7DIfKAMWDDBm569my5uHCCgMazI4TUm9wkdu9e5fIuoVAocWhW0WVlZeG7774DAISFhUGFxrcidZGQwI2Jpq4OzJzJdzSkrioSO7q1GCGkjuQqK1iwYAG8vLzg6OgIZ2dnbNu2DVlZWfDx8eE7tGazbNkyFBcXo1+/fhgxYgTf4RB58c+PAUyaxB3iI/Lh3QsoGANoAHJCSC3kKrGr7SoXRZecnIy9e/cCANatW0d3mSB1k50NHD7MTfv68hsLqR87O24v699/AykpwEcf8R0RIUTGyc2h2AqzZ89GZmYmiouLkZSUhL59+/IdUrMJCAgAYwyenp7o0aMH3+EQebFpE1BWBvTvD3Ttync0pD7U1IABA7jpr7/mNxZCiFyQu8TufXX27FkIhUKoqqpi1apVfIdD5MWLF8C2bdy0nx+voZAG+vZb7l6xx48DlUbGJ4SQyiixkwNlZWVYvHgxAGDOnDloXzEEAiG12bsXyM/nhs2gczLl00cfAQsWcNPz5wMvX/IbDyFEplFiJwd++ukn3LhxA3p6eli2bBnf4RB5wdjbiybmzweUlfmNhzTc8uWAqSmQmQmsXs13NIQQGUaJnYx79eqVOJlbunQpWrWSoxuZE34JhdwtxHR1gS+/5Dsa8m/o6LxN0tetA6TcaYcQQgBK7GTeDz/8gOzsbJiammLevHl8h0PkScWAxFOmAC1a8BoKaQTu7sDw4cCbN8CcOdweWUIIqYQSOxn29OlTrP7nsMs333wDTU1NniMiciMtDTh9mhv3jH4QKAaBAPjhB0BDA/jtN+DAAb4jIoTIIErsZNg333yDgoICdOvWDZMmTeI7HCJPvv+e+ztqFGBlxW8spPG0bw8sXcpN+/sDBQX8xkMIkTmU2Mmo9PR0bNq0CQA3GLEynfhO6io/H9i5k5umAYkVz6JFQIcOQG4uEBTEdzSEEBlDiZ2M+vrrr/HmzRsMHjwYQ4YM4TscIk927OCGxOjShRuUmCgWDQ1g40Zu+ocfgP/7P17DIYTIFkrsZFBiYiKio6MhEAiwbt06vsMh8qS09O2Xvq8v3VtUUQ0ZAkyYAJSXA7NmcX8JIQSU2MkcxhgWLVoEAPDy8oKdnR2/ARH5cvw48OABYGAAfPYZ39GQprR+PTcMypUrwI8/8h0NIURGUGInY2JiYhAXFwd1dXWEhobyHQ6RNxVjnc2cCdBV1IqtbVsgJISbDggAnjzhNx5CiEygxE6GlJaWim8d5uvrCzMzM54jInLl+nXg4kXuvqKzZ/MdDWkO8+YBXbsCf/8NBAbyHQ0hRAZQYidDdu7ciZSUFLRs2RJLlizhOxwibyr21k2YAJiY8BsLaR4qKsDmzdz0jh1AfDy/8RBCeEeJnYx48eIFVqxYAQBYtmwZPvjgA34DIvIlNxfYv5+bpiFO3i8ff8zdXQTgLqQoLeU3HkIIryixkxEREREQiUSwtLTEbDqMRuorMpK71ZSzM9CzJ9/RkOYWFga0bAn88cfbq6IJIe8lSuxkQF5eHsLCwgAAq1evhrq6Os8REblSXAxs2cJN+/nxGgrhiYEBsHYtN71iBfDoEb/xEEJ4Q4mdDAgJCcHz58/h6OiICRMm8B0OkTfR0UBeHtCuHTBmDN/REL5MnQo4OQFFRcDChXxHQwjhCSV2PLt+/Tq2bt0KgLt1mJISdQmpB8aADRu46blzAVVVXsMhPFJS4vbcKilxyf65c3xHRAjhAWURPCoqKoKHhwdKS0sxbtw49KfbP5H6uniRu6WUpiYwfTrf0RC+2dsDc+Zw03PmcIfpCSHvFUrseMIYg4+PD+7duwczMzNs27aN75CIPKrYW/fFF9zJ84SEhgJt2gB//gn85z98R0MIaWaU2PEkKioK+/btg7KyMvbv34+W9KVM6isjg7uFGADMn89vLER26OlxtxsDgG++4bYTQsh7gxI7HqSmpmLu3LkAgNDQULi4uPAcEZFLGzdyN38fPBiwseE7GiJLJk4E+vcHXr/m7k7BGN8REUKaCSV2zezVq1eYMGECXr16hUGDBiEgIIDvkIg8ev6cu9MAQEOckKoEAmDTJu5imlOngIMH+Y6IENJMKLFrZv7+/rh16xYMDQ2xZ88eugqWNMyuXUBBAdCxIzB0KN/REFnUuTPw1VfctKcnNxTO7dv8xkQIaXKUVTSjn3/+GVu3boVAIMDevXthZGTEd0hEHpWXv70v7Pz53PAWhEizYgU3vp2SEnDsGNClC3ehDZ13R4jCom+EZpKeno5p06YBAAIDAzF48GCeIyJy69dfgbt3uZPkvb35jobIMg0N4L//BW7eBMaO5c6127MHsLbmxj3MzeU7QkJII6PErhmUlJTA09MThYWFcHFxQUhICN8hEXlWMcTJtGmAjg6voRA5YWMDHD4M/P47d7HNmzfcOXjt2wNLlgD5+XxHSAhpJJTYNYOlS5ciMTER+vr62L9/P1RUVPgOicgbxoD//Q9wdweEQu7Q2j9XVhNSZz16AGfPctuSkxPw6hV3j9n27YE1a4AXL/iOkBDyL1Fi18ROnTqF8PBwAMCPP/4IMzMzniMicuXlS2D7dqBrV2DgwLfj1gUEABYWvIZG5Fj//kBCArc92doCz54BS5cCVlbcMDolJXxHSAhpIErsmtDDhw/h/c85UPPmzYO7uzu/ARH5kZ0NBAYCpqbAjBnArVuAtjZ3m6g7d4DVq/mOkMg7gQAYPZq7Jd3evdxeu8ePuXHvrK2B3buBsjK+oySE1BMldk2krKwMkyZNwtOnT2Fvb49vv/2W75CIrGMMuHQJGD8esLQEwsKAv//mptevBx4+5PamWFvzHSlRJMrKwKRJQGoqsHkzYGwMZGZyF+Z07QocOUIJHiFyhBK7JhIaGoq4uDjo6OjgwIEDUFdX5zskIqtev+bGpXNwAPr0AQ4d4r5IBwzgDpXdvQv4+3NXwRLSVNTUgFmzgHv3uB8V+vpASgowbhx3iHbVKkAk4jtKQkgtKLFrArGxsQgNDQUAREZGokOHDjxHRGTSo0fcOGNmZsDkyUByMjc8xfTp3PAUv/3GHSpTVuY7UvI+0dICFi8G0tOBZcu4BO/BA27azAz49FPuAp7ycr4jJYRIIWDs/bmJYE5ODkxNTZGdnY127do1yWv89ddfsLOzw6NHj/Dll1/ixx9/bJLXIXKIMSAnB7h2jdsrd/AgUFrKzTM15c6fmzYNaNWK3zgJederV9z2unUrcPny23IrK+78zy+/BFq35i8+8l5oju9vRUGJXSMqLy/HqFGjEBMTg06dOuHatWvQ1tZu9NchckIk4pK4dx95eZJ1+vTh7h7h7g7QMDhE1t26xSV4u3cDhYVcmZoaN/ixjw/Qty93UQYhjYwSu7qTm0OxFhYWEAgEEo/AwEC+w5IQERGBmJgYqKur48CBA5TUvU/y8oCYGCA0FHBzA9q2BUxMuEOpISHcvLw87rBqt27cl2BSEnDhAndoi5I6Ig9sbYEffuBOI9ixgxsXr6QEiI4G+vXjBkLesIG76IcQnm3evBmWlpbQ0NCAg4MDLl68WGP9uLg4ODg4QENDA+3bt0dkZGSVOocPH4aNjQ3U1dVhY2ODo0ePNlX4DcfkhLm5OQsJCWEikUj8KCoqqtc6srOzGQCWnZ3d6PFdvXqVqaioMABsy5Ytjb5+wrPycsaePWPs/n3Gfv+dsZMnGVu1irExYxgzNWWMO9Aq+VBSYszWlrHJkxnbuJGxK1cYe/mS75YQ0riSkhibMYMxbe23276GBmNeXoxdvsz97xDyL9X3+zs6Opqpqqqy7du3s5SUFObr68u0tbXZgwcPpNZPT09nWlpazNfXl6WkpLDt27czVVVVdujQIXGd+Ph4pqyszFavXs1SU1PZ6tWrmYqKCrty5UqjtLGxyM2hWAsLC/j5+cHPz6/B62iqXbmFd+9i+IAByM7JwfBhw7B582YI6HBE0/u3m+7r18DTp8CTJ9zfdx/SyirOh5NGIOCGIXF0fPuws+PGniPkfVBYCOzbB0RGAjduvC1XU+Ou6G7Rgvv77nRtf3V0uLusEPliaAhoajbqKuv7/e3k5ITu3btjy5Yt4rLOnTvD3d0da9asqVI/ICAAJ06cQGpqqrjMx8cHN27cQEJCAgDAw8MDhYWFOH36tLjO0KFDxXeVkhVydfwnLCwMoaGhMDU1xfjx47Fo0SKoqalVW7+4uBjFxcXi50VFRY0eE2MM6X364NLjx1zB6dPcuGNEMWlqchc3GBgAnTu/TeLs7QFdXb6jI4Q/LVpwpxjMnMndk3brVu4Q7atXwF9/cQ/yfjhzBhgypElWXVRUhMKK8zsBqKurVxlOrKSkBElJSVVO1xoyZAji4+OlrjchIQFDKsXs6uqKHTt24M2bN1BVVUVCQgL8/f2r1NlQcf9uGSE3iZ2vry+6d+8OfX19/P7771iyZAkyMjLw3//+t9pl1qxZg5UrVzZpXKWlpYC6Ol6B28CUaE9d86rt/a5pvpoal6RVPAwMJJ9LK2/kX6GEKByBgLsPrZMTsGkTl9AVFHB79Or79/nzhu+Zl4+DUYqpCfey2tjYSDwPCgpCcHCwRNmTJ09QVlaGNm3aSJS3adMGubm5Utebm5srtX5paSmePHkCY2PjautUt06+8JrYBQcH15p4JSYmwtHRUSJL7tq1K/T19fHpp58iLCwMraoZHmLJkiVYsGCB+PnDhw+rbBT/lqqqKuwePEBaWhqs6Y4AhBDylqYmN/YdIY0kJSUFbdu2FT+vafD/yqdEMcZqPE1KWv3K5fVdJx94Tezmzp0LT0/PGutYVHOj8169egEA7t27V21iV3kX7bu7bxsbJXWEEEJI09LV1UWLFi1qrGNgYABlZeUqe9Ly8vKq7HGrYGRkJLW+ioqKOMeork516+QLr4mdgYEBDAwMGrRscnIyAMDY2LgxQyKEEEKIHFNTU4ODgwOEQiHGjBkjLhcKhXBzc5O6jLOzM06ePClRdvbsWTg6OkJVVVVcRygUShxBPHv2LFxcXJqgFQ0nF+fYJSQk4MqVK+jfvz/09PSQmJgIf39/jB49Gma0m58QQggh71iwYAG8vLzg6OgIZ2dnbNu2DVlZWfDx8QHAnar18OFD7N69GwB3BezGjRuxYMECTJ8+HQkJCdixY4fE1a6+vr7o27cvwsLC4ObmhuPHj+PcuXO4dOkSL22sjlwkdhUD/q5cuRLFxcUwNzfH9OnTsXjxYr5DI4QQQoiM8fDwwNOnTxESEgKRSARbW1vExMTA3NwcACASiZCVlSWub2lpiZiYGPj7+2PTpk0wMTHB999/j3HjxonruLi4IDo6GsuWLcPy5cthZWWFAwcOwMnJqdnbVxO5GceuMdAtSQghhBD5Q9/fdUcjPxJCCCGEKAhK7AghhBBCFAQldoQQQgghCoISO0IIIYQQBUGJHSGEEEKIgqDEjhBCCCFEQVBiRwghhBCiICixI4QQQghREJTYEUIIIYQoCLm4pVhjKS8vB8DdSoQQQggh8qHie7vie5xU771K7B4/fgwA6NmzJ8+REEIIIaS+Hj9+DDMzM77DkGnv1b1iS0tLkZycjDZt2kBJqfGOQhcVFcHGxgYpKSnQ1dVttPXKEkVvI7VP/il6GxW9fYDit5Ha13Dl5eV4/Pgx7O3toaLyXu2Tqrf3KrFrKoWFhdDT00NBQQFatGjBdzhNQtHbSO2Tf4reRkVvH6D4baT2keZAF08QQgghhCgISuwIIYQQQhQEJXaNQF1dHUFBQVBXV+c7lCaj6G2k9sk/RW+jorcPUPw2UvtIc6Bz7AghhBBCFATtsSOEEEIIURCU2BFCCCGEKAhK7AghhBBCFAQldoQQQgghCoISuzpatWoVXFxcoKWlhQ8++EBqnaysLIwaNQra2towMDDA/PnzUVJSUuN6i4uLMW/ePBgYGEBbWxujR49GTk5OE7Sg7mJjYyEQCKQ+EhMTq11u8uTJVer36tWrGSOvHwsLiyrxBgYG1rgMYwzBwcEwMTGBpqYm+vXrh9u3bzdTxHWXmZmJqVOnwtLSEpqamrCyskJQUFCt26Os9+HmzZthaWkJDQ0NODg44OLFizXWj4uLg4ODAzQ0NNC+fXtERkY2U6T1s2bNGvTo0QO6urowNDSEu7s70tLSalymuv/TO3fuNFPU9RMcHFwlViMjoxqXkZf+A6R/nggEAsyZM0dqfVnvvwsXLmDUqFEwMTGBQCDAsWPHJOY39LPw8OHDsLGxgbq6OmxsbHD06NEmasH7ixK7OiopKcH48eMxa9YsqfPLysowYsQIvHjxApcuXUJ0dDQOHz6MhQsX1rhePz8/HD16FNHR0bh06RKeP3+OkSNHoqysrCmaUScuLi4QiUQSj2nTpsHCwgKOjo41Ljt06FCJ5WJiYpop6oYJCQmRiHfZsmU11l+3bh3Wr1+PjRs3IjExEUZGRhg8eDCKioqaKeK6uXPnDsrLy7F161bcvn0bERERiIyMxNKlS2tdVlb78MCBA/Dz88PXX3+N5ORk9OnTB8OGDUNWVpbU+hkZGRg+fDj69OmD5ORkLF26FPPnz8fhw4ebOfLaxcXFYc6cObhy5QqEQiFKS0sxZMgQvHjxotZl09LSJPqrQ4cOzRBxw3z00UcSsd68ebPauvLUfwCQmJgo0TahUAgAGD9+fI3LyWr/vXjxAt26dcPGjRulzm/IZ2FCQgI8PDzg5eWFGzduwMvLCxMmTMDVq1ebqhnvJ0bqJSoqiunp6VUpj4mJYUpKSuzhw4fisv379zN1dXVWUFAgdV3Pnj1jqqqqLDo6Wlz28OFDpqSkxH799ddGj72hSkpKmKGhIQsJCamxnre3N3Nzc2ueoBqBubk5i4iIqHP98vJyZmRkxNauXSsue/36NdPT02ORkZFNEGHjWrduHbO0tKyxjiz3Yc+ePZmPj49EWadOnVhgYKDU+osXL2adOnWSKJs5cybr1atXk8XYWPLy8hgAFhcXV22d8+fPMwAsPz+/+QL7F4KCgli3bt3qXF+e+48xxnx9fZmVlRUrLy+XOl+e+g8AO3r0qPh5Qz8LJ0yYwIYOHSpR5urqyjw9PRs95vcZ7bFrJAkJCbC1tYWJiYm4zNXVFcXFxUhKSpK6TFJSEt68eYMhQ4aIy0xMTGBra4v4+Pgmj7muTpw4gSdPnmDy5Mm11o2NjYWhoSE6duyI6dOnIy8vr+kD/BfCwsLQqlUr2NnZYdWqVTUeqszIyEBubq5Ef6mrq+OTTz6Rqf6qTkFBAVq2bFlrPVnsw5KSEiQlJUm89wAwZMiQat/7hISEKvVdXV1x7do1vHnzpslibQwFBQUAUKf+sre3h7GxMQYOHIjz5883dWj/yt27d2FiYgJLS0t4enoiPT292rry3H8lJSXYu3cvpkyZAoFAUGNdeeq/Cg39LKyuT+Xh81OeUGLXSHJzc9GmTRuJMn19faipqSE3N7faZdTU1KCvry9R3qZNm2qX4cOOHTvg6uoKU1PTGusNGzYMP/30E/73v/8hPDwciYmJGDBgAIqLi5sp0vrx9fVFdHQ0zp8/j7lz52LDhg2YPXt2tfUr+qRyP8taf0lz//59/PDDD/Dx8amxnqz24ZMnT1BWVlav917a/2SbNm1QWlqKJ0+eNFms/xZjDAsWLEDv3r1ha2tbbT1jY2Ns27YNhw8fxpEjR2BtbY2BAwfiwoULzRht3Tk5OWH37t04c+YMtm/fjtzcXLi4uODp06dS68tr/wHAsWPH8OzZsxp/DMtb/72roZ+F1fWprH9+yhsVvgPgU3BwMFauXFljncTExFrPK6sg7ZcZY6zWX2yNsUxdNKS9OTk5OHPmDA4ePFjr+j08PMTTtra2cHR0hLm5OU6dOoWxY8c2PPB6qE8b/f39xWVdu3aFvr4+Pv30U/FevOpU7pum6i9pGtKHjx49wtChQzF+/HhMmzatxmVloQ9rUt/3Xlp9aeWyZO7cufjjjz9w6dKlGutZW1vD2tpa/NzZ2RnZ2dn4z3/+g759+zZ1mPU2bNgw8XSXLl3g7OwMKysr7Nq1CwsWLJC6jDz2H8D9GB42bJjEEZzK5K3/pGnIZyGfn5/vi/c6sZs7dy48PT1rrGNhYVGndRkZGVU5ATQ/Px9v3ryp8gvl3WVKSkqQn58vsdcuLy8PLi4udXrd+mhIe6OiotCqVSuMHj263q9nbGwMc3Nz3L17t97LNtS/6dOKqz/v3bsnNbGruIIvNzcXxsbG4vK8vLxq+7ix1bd9jx49Qv/+/eHs7Ixt27bV+/X46ENpDAwMoKysXOWXfU3vvZGRkdT6KioqNSbufJo3bx5OnDiBCxcuoF27dvVevlevXti7d28TRNb4tLW10aVLl2q3LXnsPwB48OABzp07hyNHjtR7WXnpv4Z+FlbXp831+fm+eK8TOwMDAxgYGDTKupydnbFq1SqIRCLxhn727Fmoq6vDwcFB6jIODg5QVVWFUCjEhAkTAAAikQi3bt3CunXrGiWud9W3vYwxREVF4YsvvoCqqmq9X+/p06fIzs6W+Mdvav+mT5OTkwGg2ngtLS1hZGQEoVAIe3t7ANy5NHFxcQgLC2tYwPVUn/Y9fPgQ/fv3h4ODA6KioqCkVP8zL/joQ2nU1NTg4OAAoVCIMWPGiMuFQiHc3NykLuPs7IyTJ09KlJ09exaOjo4N2p6bEmMM8+bNw9GjRxEbGwtLS8sGrSc5OZn3vqqr4uJipKamok+fPlLny1P/vSsqKgqGhoYYMWJEvZeVl/5r6Gehs7MzhEKhxNGSs2fPNsmOjPcaTxdtyJ0HDx6w5ORktnLlSqajo8OSk5NZcnIyKyoqYowxVlpaymxtbdnAgQPZ9evX2blz51i7du3Y3LlzxevIyclh1tbW7OrVq+IyHx8f1q5dO3bu3Dl2/fp1NmDAANatWzdWWlra7G2s7Ny5cwwAS0lJkTrf2tqaHTlyhDHGWFFREVu4cCGLj49nGRkZ7Pz588zZ2Zm1bduWFRYWNmfYdRIfH8/Wr1/PkpOTWXp6Ojtw4AAzMTFho0ePlqj3bhsZY2zt2rVMT0+PHTlyhN28eZNNnDiRGRsby1wbHz58yD788EM2YMAAlpOTw0QikfjxLnnqw+joaKaqqsp27NjBUlJSmJ+fH9PW1maZmZmMMcYCAwOZl5eXuH56ejrT0tJi/v7+LCUlhe3YsYOpqqqyQ4cO8dWEas2aNYvp6emx2NhYib56+fKluE7l9kVERLCjR4+yP//8k926dYsFBgYyAOzw4cN8NKFWCxcuZLGxsSw9PZ1duXKFjRw5kunq6ipE/1UoKytjZmZmLCAgoMo8eeu/oqIi8fccAPHn5YMHDxhjdfss9PLykrhq/fLly0xZWZmtXbuWpaamsrVr1zIVFRV25cqVZm+fIqPEro68vb0ZgCqP8+fPi+s8ePCAjRgxgmlqarKWLVuyuXPnstevX4vnZ2RkVFnm1atXbO7cuaxly5ZMU1OTjRw5kmVlZTVjy6o3ceJE5uLiUu18ACwqKooxxtjLly/ZkCFDWOvWrZmqqiozMzNj3t7eMtOWypKSkpiTkxPT09NjGhoazNramgUFBbEXL15I1Hu3jYxxl/kHBQUxIyMjpq6uzvr27ctu3rzZzNHXLioqSur2Wvm3nLz14aZNm5i5uTlTU1Nj3bt3lxgOxNvbm33yyScS9WNjY5m9vT1TU1NjFhYWbMuWLc0ccd1U11fvbnuV2xcWFsasrKyYhoYG09fXZ71792anTp1q/uDryMPDgxkbGzNVVVVmYmLCxo4dy27fvi2eL8/9V+HMmTMMAEtLS6syT976r2I4lsoPb29vxljdPgs/+eQTcf0KP//8M7O2tmaqqqqsU6dOMpPIKhIBY/+cjUoIIYQQQuQaDXdCCCGEEKIgKLEjhBBCCFEQlNgRQgghhCgISuwIIYQQQhQEJXaEEEIIIQqCEjtCCCGEEAVBiR0hhBBCiIKgxI4Q0ihiY2MhEAjw7NkzvkPhzeTJk+Hu7s53GISQ9xgldoQ0ooZ8sQsEAhw7dqxJ4mkq/fr1g5+fn0SZi4sLRCIR9PT0miWGyZMnIzAwsEp5WVkZXFxcMG7cOInygoICmJqaYtmyZc0SHyGE8IESO0IUxJs3b3h9fTU1NRgZGUEgEDT5a5WXl+PUqVNwc3OrMk9ZWRm7du3Cr7/+ip9++klcPm/ePLRs2RIrVqxo8viaG999TwiRHZTYEdKE+vXrh/nz52Px4sVo2bIljIyMEBwcLJ5vYWEBABgzZgwEAoH4OQCcPHkSDg4O0NDQQPv27bFy5UqUlpaK5wsEAkRGRsLNzQ3a2toICQlBu3btEBkZKRHD9evXIRAIkJ6eDoDbczVjxgwYGhqiRYsWGDBgAG7cuCGuHxwcDDs7O+zZswcWFhbQ09ODp6cnioqKAHB7yuLi4vDdd99BIBBAIBAgMzNT6qHYw4cP46OPPoK6ujosLCwQHh4uEZuFhQVWr16NKVOmQFdXF2ZmZti2bVut7+vly5ehpKQEJycnqfM7dOiANWvWYN68eXj06BGOHz+O6Oho7Nq1C2pqalXqp6WlQSAQ4M6dOxLl69evh4WFBRhjKCsrw9SpU2FpaQlNTU1YW1vju+++qzFOCwsLbNiwQaLMzs5OYhuorT8qy8zMhEAgwMGDB9GvXz9oaGhg7969ePr0KSZOnIh27dpBS0sLXbp0wf79+yWWrW17BIA7d+6gd+/e0NDQgI2NDc6dO1dlr/LDhw/h4eEBfX19tGrVCm5ubsjMzKzxvSCENA9K7AhpYrt27YK2tjauXr2KdevWISQkBEKhEACQmJgIAIiKioJIJBI/P3PmDD7//HPMnz8fKSkp2Lp1K3bu3IlVq1ZJrDsoKAhubm64efMmpk2bBk9PT4m9VACwb98+ODs7o3379mCMYcSIEcjNzUVMTAySkpLQvXt3DBw4EH///bd4mfv37+PYsWP45Zdf8MsvvyAuLg5r164FAHz33XdwdnbG9OnTIRKJIBKJYGpqWqXdSUlJmDBhAjw9PXHz5k0EBwdj+fLl2Llzp0S98PBwODo6Ijk5GbNnz8asWbOqJFiVnThxAqNGjYKSUvUfYfPmzUO3bt3wxRdfYMaMGVixYgXs7Oyk1rW2toaDg4PU9+6zzz6DQCBAeXk52rVrh4MHDyIlJQUrVqzA0qVLcfDgwRpjrUld+0OagIAAzJ8/H6mpqXB1dcXr16/h4OCAX375Bbdu3cKMGTPg5eWFq1evSixX0/ZYXl4Od3d3aGlp4erVq9i2bRu+/vprieVfvnyJ/v37Q0dHBxcuXMClS5ego6ODoUOHoqSkpMHvBSGkkTBCSKPx9vZmbm5u4ueffPIJ6927t0SdHj16sICAAPFzAOzo0aMSdfr06cNWr14tUbZnzx5mbGwssZyfn59EnevXrzOBQMAyMzMZY4yVlZWxtm3bsk2bNjHGGPvtt99YixYt2OvXryWWs7KyYlu3bmWMMRYUFMS0tLRYYWGheP6iRYuYk5OTRLt8fX0l1nH+/HkGgOXn5zPGGPvss8/Y4MGDJeosWrSI2djYiJ+bm5uzzz//XPy8vLycGRoasi1btrCadOzYkZ04caLGOowxlpqaygCwLl26sDdv3tRYd/369ax9+/bi52lpaQwAu337drXLzJ49m40bN078vHL/m5ubs4iICIllunXrxoKCghhjdeuPyjIyMhgAtmHDhhrbwxhjw4cPZwsXLhQ/r217PH36NFNRUWEikUg8XygUSmyjO3bsYNbW1qy8vFxcp7i4mGlqarIzZ87UGhMhpGnRHjtCmljXrl0lnhsbGyMvL6/GZZKSkhASEgIdHR3xo2IP2cuXL8X1HB0dJZazt7dHp06dxIfg4uLikJeXhwkTJojX+/z5c7Rq1Upi3RkZGbh//754PRYWFtDV1a1XzJWlpqbi448/lij7+OOPcffuXZSVlYnL3n1/BAIBjIyManyt1NRU5OTkYNCgQbXG8OOPP0JLSwsZGRnIyckRl/v4+Ei0HwA8PT3x4MEDXLlyBQDw008/wc7ODjY2NuLlIiMj4ejoiNatW0NHRwfbt29HVlZWrXFUp679IU3lvi8rK8OqVavQtWtX8frOnj1bJb6atse0tDSYmprCyMhIPL9nz55VYr537x50dXXF8bZs2RKvX7+uNWZCSNNT4TsAQhSdqqqqxPOKw3o1KS8vx8qVKzF27Ngq8zQ0NMTT2traVeZPmjQJ+/btQ2BgIPbt2wdXV1cYGBiI12tsbIzY2Ngqy33wwQf/KubKGGNVLqRgjFWpV9/XOnHiBAYPHgxNTc0aXz8hIQERERE4ffo01q1bh6lTp4rPFwsJCcFXX30lUd/Y2Bj9+/fHvn370KtXL+zfvx8zZ84Uzz948CD8/f0RHh4OZ2dn6Orq4ttvv61yqPNdSkpKVdr87oUOde0PaSr3fXh4OCIiIrBhwwZ06dIF2tra8PPzq3J4tKb3W1qfVVZeXi71sDUAtG7dusZlCSFNjxI7QnimqqoqsQcLALp37460tDR8+OGH9V7fZ599hmXLliEpKQmHDh3Cli1bJNabm5sLFRUViQs16ktNTa1KzJXZ2Njg0qVLEmXx8fHo2LEjlJWVG/zax48fx7Rp02qs8+rVK3h7e2PmzJkYNGgQOnbsCFtbW2zduhU+Pj4wNDSEoaFhleUmTZqEgIAATJw4Effv34enp6d43sWLF+Hi4oLZs2eLy2rbQ9W6dWuIRCLx88LCQmRkZIifN1Z/VMTn5uaGzz//HACXgN29exedO3eu8zo6deqErKwsPH78GG3atAHw9jzQd2M+cOCA+GIPQohsoUOxhPDMwsICv/32G3Jzc5Gfnw8AWLFiBXbv3o3g4GDcvn0bqampOHDgQJ3GYLO0tISLiwumTp2K0tJSiSFBBg0aBGdnZ7i7u+PMmTPIzMxEfHw8li1bhmvXrtUr5qtXryIzMxNPnjyRuodt4cKF+O233xAaGoo///wTu3btwsaNG6vsKauPvLw8JCYmYuTIkTXWCwwMRHl5OcLCwgAAZmZmCA8Px6JFi2q8enPs2LEoLCzErFmz0L9/f7Rt21Y878MPP8S1a9dw5swZ/Pnnn1i+fHmVpKeyAQMGYM+ePbh48SJu3boFb29viaS2sfqjIj6hUIj4+HikpqZi5syZyM3Nrdc6Bg8eDCsrK3h7e+OPP/7A5cuXxRdPVOzJmzRpEgwMDODm5oaLFy8iIyMDcXFx8PX1lTjcTQjhByV2hPAsPDwcQqEQpqamsLe3BwC4urril19+gVAoRI8ePdCrVy+sX78e5ubmdVrnpEmTcOPGDYwdO1bikKVAIEBMTAz69u2LKVOmoGPHjvD09ERmZqZ4D01dfPXVV1BWVoaNjQ1at24t9Tyz7t274+DBg4iOjoatrS1WrFiBkJAQTJ48uc6vU9nJkyfh5OQkdW9bhbi4OGzatAk7d+6UOFw5ffp0ccIr7ZAwALRo0QKjRo3CjRs3MGnSJIl5Pj4+GDt2LDw8PODk5ISnT59K7L2TZsmSJejbty9GjhyJ4cOHw93dHVZWVuL5jdUfALB8+XJ0794drq6u6NevH4yMjOo9WLaysjKOHTuG58+fo0ePHpg2bZr4x0TFKQBaWlq4cOECzMzMMHbsWHTu3BlTpkzBq1evaA8eITJAwKr7hCOEEBkzevRo9O7dG4sXL+Y7lPfG5cuX0bt3b9y7d08iKSWEyCY6x44QIjd69+6NiRMn8h2GQjt69Ch0dHTQoUMH3Lt3D76+vvj4448pqSNETtAeO0IIIWK7d+9GaGgosrOzYWBggEGDBiE8PBytWrXiOzRCSB1QYkcIIYQQoiDo4glCCCGEEAVBiR0hhBBCiIKgxI4QQgghREFQYkcIIYQQoiAosSOEEEIIURCU2BFCCCGEKAhK7AghhBBCFAQldoQQQgghCoISO0IIIYQQBfH/vAbEUmAYw5kAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1460,7 +1460,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd3gU1dd+N71vCAlJ6F1CR3oJVaU3qVIUFQQEQYpUwUJVmqh0EARRQOlF4EcJLaGEDoGEmgIJKaT3Mt8f+c7lTtvdhIQEnPd5fCS7szN3bjnnvaddnSAIAjRo0KBBgwYNGjS81jAr6gZo0KBBgwYNGjRoeHlopE6DBg0aNGjQoOENgEbqNGjQoEGDBg0a3gBopE6DBg0aNGjQoOENgEbqNGjQoEGDBg0a3gBopE6DBg0aNGjQoOENgEbqNGjQoEGDBg0a3gBopE6DBg0aNGjQoOENwH+G1AmCgISEBGi1ljVo0KBBgwYNbyL+M6QuMTERer0eiYmJRd0UDRo0aNCgQYOGAkexJHWXL1+Gt7c32rRpg/79+yMzM5N95+Pjg3LlyqFt27bo0KFDEbbyzYEgCPjmm28QGRlZ1E3RoEGDBg0aNOQTxZLUlSlTBkeOHMGpU6dQtWpV7NmzR/T9gAED4OPjg+PHjxdNA98whISE4Pvvv8eECRMK5H7R0dEFch8NGjRo0KBBg+kolqTOw8MDdnZ2AABLS0tYWFiIvt+5cye8vb2xfPly1Xukp6cjISFB9J8GZVCcYXZ29kvf6+zZs3Bzc8P58+df+l4aiheePXuGx48fF3UzNGgoVLz11lv4559/iroZGjTkC8WS1BFCQkJw7NgxdOvWjX3WqFEjBAYG4vjx4zh8+DAuX76s+NsFCxZAr9ez/8qVK/eqmv3aQqfTvfQ9njx5AgA4d+7cS99LQ/FCxYoVUalSpaJuhgYNhYqgoCBMmTKlqJuRLwiCgDt37ryy5507d05LPixmKLakLiEhAUOHDsXGjRthaWnJPndwcICVlRWsrKzQo0cPXL9+XfH306dPR3x8PPsvNDT0VTX9tQMfs/iyKFGiBIAX5O51h2bhfYG0tLSiboIGDYUKIig5OTlF3JL8Yc2aNahZsyYePXpU6M+6fPkyWrVqhQ0bNhT6s14lYmNjX7mlNiwsrMDuVSxJXXZ2NgYPHozZs2ejevXqou94JXvmzBlUrVpV8R7W1tZwcnIS/adBGRkZGQV2LyKIT58+LbB7FhVu374NV1fXN4agaigeSE1NhU6nw44dO176XpmZmVi4cCH27duHadOmFUDrXh/cuHED+/fvL9B7ZmVlAXh9Sd29e/cAvJpNdVxcHAC8EgL5KvHpp5+iX79+BWrsUIIgCEhJScHDhw9Rrlw5/PHHHwVy32JJ6nbs2AFfX1/MmTMHbdu2xfbt2zFy5Ej2XZMmTdCiRQuUKVMGrVu3LuLWvv4oSFJH93oTSN3jx4+RmZmJqKgoxe9TUlLw4MGDV9yq4o+4uDjVPiOEhoYWeULNlStXsG7dulf+3GfPngFAgZC6P/74A9OnT0fPnj3xww8/vPT9ihMEQcCjR49w8uRJHDlyRPZ9vXr10KNHjwJ9JinyvJC6pKSkYmPFplj0pKSkQn8WxboTEX5TQLorPT29UJ/z22+/wd7eHvfv3wcA+Pv7q16bnZ2Nffv2mXTfYknqPvjgA8TExMDHxwc+Pj4YMGAA1qxZAwAYPnw4Ll68CF9fXyxatKhI2hcfH1/s3XLR0dGoUKECHj58aPRaImJ5jY3w9fXFrVu3FO+VkpJi8n3Cw8Nx9OjRPD37VSA2NhaA+uJevXo12rdv/yqb9FqgSpUqKFWqlMFrypcvjypVqryiFimjYcOG+Oyzz175c6l0kK2t7UvfKy/r7HXD7NmzUblyZbRv3x6dOnV6Jc/Mjyx0dHTE22+/rfhdTk6O0U3z4cOHcfjwYdMbaQBE6gqzPFVWVpYolv1NI3X0PoVJ1H19fTF8+HAAYBtgQ5bBNWvWoGfPnibFqhdLUlfc4ezsDA8Pj6JuhkGcOHECISEhqFKlCq5cuWLw2vzuSFq2bIk6deqwv8PDwzF+/HgAeVvoHTt2RMeOHfPVhsIEuRfU+ufp06eIj49/hS0SIzs7WxQUfeLECQwcOLDQn2tM4T1//pz9+9mzZ5g1a5ai5UNpY7Rv375Cj2e5f/++KMY2IyMD//77b6E+k0dBkrq8uIjCwsKKdfayIAg4ePAgm1+rV68ulOckJiYiOTlZ8bv8WOoAqCYn9O/fH9bW1gZ/27lzZ3Tu3DlPz1MDtf/q1avss06dOmHLli0Fcn8A+Pvvv9GoUSNmVClqUnf06FG4uroiIyOjQJI2qApEYZK6/v37s3/HxMQAMNyP5NUwRd9opC6fSE1NLbR737x5U6QY8wN+8L/99luD1xaU+3Xs2LHMtZQXZZPfmIy5c+eib9+++fqtKTBG6mJjYwtVoGVmZmLQoEEICQlR/H7x4sWoWbMmIwlDhw7F9u3bIQgCrly5UmhZaXmZL+PGjcPcuXNNSlTKyMhAz5490a9fP5PunZycnK91Uq1aNZQvX579vXDhQnTp0oXFIxU2aI2Qsj948CD+97//5ete0vmXnZ2N8+fP486dOxg8eLAoo71cuXLFOnvZ398f3bp1Y8lvUvf8t99+qygr8hr75OTkhMqVKyt+Z8hSN2fOnDyP086dO1Xvp4Tt27dDp9PlO56L3K4//fQTTp48ifT0dBw5coSFL/F48uQJGjRokOcwiODgYAAvKhwUlAyMjo5G48aN82xl/OKLLxATE4M9e/ZAr9fjww8/fKl2EKkrbPcrwRSdSevYlHmkkbpXANoVRkdHm0QG69ati3feeQdA7iCWKlXKZH+6IAiIiYkRkTpzc3P27/T0dNjZ2cHHxweJiYmYP38+25G8bEkTXsHmhfTSRM0ruZw1axZ27twpqrP3yy+/ICsrC8nJyS9dVsWY+zU2NrZQg2mfPHmCv/76SxRr8fjxYwQFBQHITeQAXpBPM7Pc5ezr64uGDRvip59+Et0vIyMDo0aNYjvD/IJ3+T1//hwRERHIyclh7SBkZWUxJUx9aQjGLBpSNG7cGCVLljT5+rS0NMVseVJqL7uRMoSdO3dCp9Ph7t27TIhTP3br1g3vvfceuzYjIwPbt2836b5ShZqSkoLmzZujZs2a+PPPPwuo9a8G1P/UP1J89913GDFihOxzQ9aL+Ph4tGjRQpZdqEYcSAYpWepmz54tGidArIiV1hW5Q02Z/wCYRS2/8aZ8LN2ff/7JwmNq1Kghu/by5cu4du2ajCjn5ORg0aJFOHfunKJMDg8PB/BC7hQUqSNZt3fv3jz9juThwoULkZiYiAsXLoi+v3z5cp42uIbcr7Gxsahfv77M4v3555+je/fueWo3gWL4DPUj6WZTaslqpK4QcPjwYTaxYmNj4eDggE2bNsHNzU01NiQhIQF6vZ79jsznycnJiIqKwjfffGPSs3/44Qe4urqKEhX44s0RERFITU3FypUrcfr0acycOdNgXaOjR4+aLJB44ZqXWB9acHFxcbLTQ0wBKYHdu3dj3Lhx2Lx5M3r06IFWrVq9lLWqIC110dHR2Lp1q0nXCoKA4OBg1p+8YK1UqRLeeustAGClfkixEKkjq5j0eY8ePcKaNWteujA077qqWLEiPD09MWPGDJQoUULU35aWlkwB8EpKSWFKlawprg+at6tXr2aC3RBGjRqF+vXryz4nN2h+rO/p6ekGXXVBQUEQBIElZHh5ecHHxweAermcxYsXY+DAgbh27ZrR50vnn5pb0VRcv369yMo/0bncUVFRquuW5jj/vSFS9/jxY/j5+eHatWtYsWIFAgMDVa/94IMPWLUF6ZiqtYcncmTB4uHu7s7acfv2beh0Oty+fVv1fg4ODgBeyLTExET4+fmZ7A5OSkpCqVKl0Lp1awQEBODGjRsAIKsSERMTwwL0pbKa6vS1atUKn376qewZtKYJL7uxjYuLw8cff4xx48YByB3jU6dOmeRq5J8dEREBQLwmbty4gUaNGuG3334zuT28+zUkJASffvopvv76a+h0Oly9ehXXr1/HkiVLRL9ZtWoVDhw4YPC+zZs3V9yUkK6+ffs21q9fr/hbmvemyEWN1P0/bty48dLCLCsrC6mpqejcuTOaNWuGnJwcJqhowE+fPi36TUpKCrKysnDnzh0kJCRg7ty5AF5Y12him+rfp9ggWrCAmNSR4rK2tmb/li5SHnmJdzNG6tSEEwm4ZcuWoXfv3jh79qzRZ6WkpMDKygoAmOCiBZ6UlIQTJ04AeDnXMpFZ6vv58+eLrGZxcXHIyckRvdPBgwcxZswY2b26d++OIUOGIDY2Fu+//z4CAgJkbtWwsDCcOnUKy5cvR8WKFZk7UO0d6P1pHKWkTnoSC12XV4vUzJkzRaUj+LGl+b1582YA8qw7+nvChAmYNGkSAGXiIbWq5iXebPTo0aLN0ubNmxUJk1p2GT2L3sUYeGJgY2ODiRMnKl53+fJlvPXWW/j6669Fn5NlRI3U0fhQex48eIDvv/9ekQhIiejLkrr69eujYsWKos+uXLlS6ETv0aNHrAxHVFSUKsGmOc/Pwfj4eJw/f14xE53mX0xMDMaOHYuWLVuqtmHbtm2qJU349vCymM/yVpo/UlIHALVr14aDg4MsjvPo0aNM7hOp++GHH9CiRQvV+MKEhAR069YNX375JTIyMpCYmIiGDRvCy8sL6enpbDMl9cK4urqy9Sjta14fKGVoE3ki5Df2LCgoCP7+/ujTpw82bdok+q5t27YG3ajkjeHXIvUZLy9ps/jNN9+Y7KHgSd3UqVPx22+/Yd68eewzAKqHHhjC+fPnFUkbkborV65gxIgRiuucxs+UrGaN1P0/6tWrhwoVKhi9zpDlp02bNszcDuQOAAkHNcuVvb09hgwZwnZ5RMbICkNEKTU1FR988AF+/vlnnDt3TrHg47p165hg5M3DJCgmT57MFJC1tTWboDSppO9Gf1+6dEn2LKV+4N1vKSkpomvOnTuHFi1aGHQJUTsWLFggU4Q89u/fD3t7e7Z46Z3pPXkTdUpKilGLR2hoKMaMGSMzbfOWuuzsbMycORO9evVi3xPp43eG3bp1w8qVK2X9Q9axq1evYvfu3ahVq5ZsvlWoUAFt27ZliQKUuaxG6miOkCKnhU+uJqmwpvEm0tC4cWNMnz5d8d485s+fLyod8f7776NLly4ixUd9JRWc9Mxbt25h6dKlAJSVn9R1y78PD7X1R8IuKioKH330ETw9PWUuNzWLgo2NjWobpDhy5Ahq1KiBU6dOsfHftWsX4uPjZRZt2mzMnz9fVJKDxuXo0aOizReQuymj8aFx/+WXX/DNN9+Izrr++eef8fDhQ1lfKpE6qodl7L0GDRoEQE5oGjZsKKoXmpmZaZJlFJC7i5KTkxUVYuXKlfHll18CyLXqqhFeInX8PIuLi0Pz5s0VXYzUH0S+TFXs0nnGjy1PaoyROrK8RUVFsbXQsGFDODk54dChQ6JrO3bsyOQjERTa7KjFHd+6dQsHDx7E8uXLceDAASQlJcHR0ZHJd2oTLwukSRPSucGTOl72nDp1Cjk5OTIjgCkbieTkZPTv3180b9566y00btxY5i4lnWdojo0ePRoODg6id6F5y69z+uzJkycYOnSo6B5Xr15VPGqUd79KZUjXrl0BqCfG5AfS/lSa++Qt0khdHiEIApYsWQKdTqcaXybdlURFRSElJQW7d++Gr6+v6LuEhAQ2GErZdSQ4tm/fzhbt3bt3AbywstAEj4+Px7Zt2zB+/Hj8+eefrCbVypUr8e+//yIlJQWfffYZ263ygofIzpIlS1g7rKys2LvQpJIKMkOBoko7aV4pZmdniwSCn58fAGXFKq3ifujQIbYz4rF27Vq0bNlSRjI/+eQT7Ny5k70nryh3796NBg0aGCyZMn36dKxcuVJW/oW31Hl6egJ4sfPmv6d34vtPTdCpEYfMzEz2/jQX6P9K4yAIAlNwtNClpE4qAKSWOn9/fyxcuJB9v2PHDuh0OpFSVxqv27dv499//8X8+fNl946JiRH1kXS9zJ8/X1FomeL6HDhwIJo0aYLU1FQZWaB3p/5NSUmRZQKrkToS4qaEGZDl4+rVq8zyUrFiRbi6usLFxUV0rdSiQeCJALmcgNz536VLF2zcuJG9y549e5ji2bJlC+rXr48nT55g/Pjx6NWrl4xIKJG39PR0kXubn6dz5szBxIkT0adPH/z111+q782P46xZs/DWW28ZtdCMHDkSDg4OWLx4MY4cOYKtW7di5MiRaNSokcHYoKioKFVSR3GXPDkjGakUCkHrUC3ZCMjtD2mSjCAIiI6ORrNmzbBq1SqRdbtSpUqMcBgjddRHycnJiI2Nha2tLfz9/dGxY0f4+vqqulU/+ugjpKSkMFl348YNJCUlyVy8/POfPXuGpKQkODg4wNraGunp6TJSl52dLbOAGSJ1hEuXLqFt27ZYtWoVgoODUaZMGdF79+3bV0ZSeSxduhR///03k8O8TJPKSn7dqK2hgIAAAMDy5csZcQZy9WZGRgbi4+OxZcsW0btRPO3NmzexYcMGvP3222wjwYO31Cm51IEXXpr8YMGCBaLi0NKNxnfffSfjC/QeGqnLByZPnsz+LQgCjh49KiIEvPmUkhjs7e3x/vvvy+7Fkzol0ABZWFjICIWFhQUL8gVeKCtPT0+kp6czoTdmzBh06dJFtjD5xc4nShB49ysfqNmjRw+sXr0ap06dEsVkGXPzxMfHyyY53yZahLRgUlJSkJGRgeXLlzPBZywIdOTIkfD19VU8HWT27NnM/bhy5Ur2OQUKGyqGTIqCSj6Qi5z6/PLly6w/y5Yty9pKY0BkgRfqz549Q0REBCIjI0VKVBoATe/MB4fTIidSR+SY75+EhASZpY7en0hdcnIyMjMz2TOlljopKE4kOTkZe/fuxejRo9m8VHKHzpo1S/ZZTEwMMjMz8cEHHyg+Y+bMmTh48KDsczVLUocOHTB79myMGjUK27dvh7+/P+zs7ETrFMh1s/j5+YneLTMzE5cuXcKlS5fQrVs3VWsHjZsppM7e3p49j0hd6dKlFQmFmkLiNzu8cpQWbI6Li0Pv3r3Z37t378b169fx+++/A8gdJ1MsdW3atBGROl4mzZ49G8uWLVOVU/x7ZWRkQKfTsQ2loVMLBEHAhg0bkJaWhtu3b6NTp04YMmQI6zNekUkt0evWrWNxo1LQnOfHmV/bx44dw6pVq9jfJGOlypkn4Js2bZKdXJSTk4ObN2/iwoUL+Pzzz2WkkDapUVFRsLCwgE6nUyR1JDeJ1NExiq1bt8a1a9cMks19+/YhOTkZJUuWxNGjR+Ho6IiKFSuKPA+RkZHQ6XQoWbIknj9/LiN19P6pqak4ceKEIikw5H4FcseS3O8nTpxAZmamqD5nTEwMdu7cySy9UmzatInFhJOsJX2gBOqTu3fvwtPTU3Ed0ZxJT08XyRoXFxdkZmZi1qxZ+PDDD3Hz5k32Hc2TMWPGsBpxSqA5n5iYaHCO03dSY0hWVpbM+sgndM2YMUP1nkBuGFKXLl2QlZUFnU6H3bt3M/loilVUI3UGkJyczGLKiNHzO2s1oU2Ij483GNNFpUZsbW0VSZ1SjEj58uWRkZEh28kuWLBA9TlZWVkygWNpaSlzv0ZGRmL//v0YPXo02rZtK5r4vMJ59OiRTAFKrZSAWFGToKB229vbQ6/Xi3ZKUoHDK5ozZ86wfyuRuoCAAFFtJgI9b9myZYwgS0Hut/bt26NSpUpo06YNkpOTGanjg2xJCfMWN14IECIjI+Hp6Ql3d3fRHOAVDt8+/n5EEomETJw4EVOmTBHFyMXExLC/qd+I1JGwSUpKwuTJk+Hm5oaMjAwRqZMq8Zs3b+LixYvsPTZs2IDVq1ezWB69Xs82B9WqVZMpQb5dqampBktnSAnZpUuX8NVXXylee+LECcyZM4cVHyfwrkhCixYtRPPSzc0NTZo0QZMmTRSJJIEndYaCvmfOnMl20M+ePWPrU/obQRBYVrAaKIuSHwepqyc2NlY05vQcWkvZ2dmyNaMk9C9evMhcwYCyRUkt4YcPg5CSzsePH+OHH35QvF9KSorihoWsy/xnpiZiAbnWysuXL4tI4dixYwHkytF3330Xn3/+OfuO+kNK6hwcHLB06VKULl1a0c2Xk5MjauPff/8t+p7WQnR0NEqVKgUHBwfWD0ePHmXEhCd1z58/Z2SSwhek9+VBZIUqIRD4d4mKioKLiwvc3NwQExOD2NhY6PV6maXu3Llz6NChA3bv3i17zo0bN3Ds2DH2t5TUnT17lrnMb9++DQsLC3h7e4t+T32mhI8//pgRH9IJhtaGlOgqZQLzpJ6v8efi4oKMjAwmC2kTQejevbuMxErbTfP2wYMHRpOgADkpXrlyJZo1a8a8btL2mgrSCatWrWLz+LW21E2ePBne3t4YPHiwSClmZWVh2LBh8Pb2ZoVuCxKurq7s37ywWb58uYyRSyeMFLt378bJkycVv0tJSWExRjY2Nnj48CGbiEDuRFba+aSlpSE9PR2pqaki0kT3UsKWLVuwbNky0WfZ2dlsMtJ9DCUo3L9/HzExMWjZsiUqV64sy4q6desWE9j8OxLIRXLv3j2myKTuG+niJSVy9uxZ0XFwaladOXPmyD6je964cQN+fn6IiYnBnDlzRIuVSB2PYcOGKWZfSd18ANjZm1JLHYFXtNL4Pt69TqC28cJbenpKdHQ0Ez7SmDoidcnJyfj5558B5Cbo0HjHxsaKlKKdnR2GDRvG/ubfgwKR9Xo9nJ2dUb58eVy6dEm1zheV7Slbtiybz2rX0rvy1ihTwe/AefDCk1/LhkDv+/jxY1hZWWHz5s0QBAELFixg8Y1paWmYP38+1q5dCyBXKdH48II2MjISvXr1QsmSJQ3GBL311lt49913RUROidTxa4rWy6+//gogl+RJ3flqbkuaB/z7GoMgCKKjx6Tvc+jQIUybNo0lBtHYL126FM2bNweQuwni1wJZ2nilnleF16hRIwwYMACAeG7x1jeSMbQ2pCUo0tLS8PXXXyM8PJxZX3kQqbO1tYW1tbWIFNPvgVwZ5erqCkdHRyQkJCA7OxsdO3ZEkyZNAKhb6jw8PFC9enVZ4hwANGjQQPS3lHBHR0fj7NmzqFKlCg4cOIBSpUrBxcUFMTExiIyMRKlSpWBjYyOKqSMouVZ//fVXvPvuu6rXtG7dmoVaBAYGomHDhizEgnd9muKOJNmtVrYGkJM6pfvyupnvL7LUlS5dGoBcRx84cEAmg1NTU7FgwQIsXrwYs2bNYnrHWCWG8PBwnD59WjY3aMyvX7+OtLQ0tGnTxuB91ED3tbCweP3dr1evXkVERATOnDmDmjVriirM79+/H2XLlsWZM2eQkpKiaCF6GfALXLqDlJIO6RFZBJrwixYtwpQpUxSv4S1zFhYWCA4OhpeXl+gapfR73qVryhFgBGlJlLS0tDxlLXXo0AGurq6sv6UEMDIyUhb4T9au2NhYpnxWr16Njz76SPEZ0v4ll5E08453JZGSUIN0hz5r1izMnj1b1LdKbt9//vlHRuJLly7NrCX83FiyZAmWLVsmEqB82RBDtdTi4+ORlJSEwYMHy74z5LqPjo5mmx2ppY7ayuPPP/9kz3j+/Lmor1NTU0WnjsTGxjLBRALWwsICmZmZGDduHPR6veo7kdXXwcEBbm5uAGAwASktLU2WpZtfWFhYiAhCdna2olVXCho3yo6dPn06fHx8MGPGDPTr1w+CIMhIZGRkJCMKPGnv3LkzqylpKEHHzs4Ozs7OBkldXFycbKPEIysrS7Zm1Oqb8e1fs2YNixHV6/Wq95cqEKklnOLQtmzZgqysLLi5uaFLly5Yvnw5e161atUU1+uzZ88QEhKCq1evvlR9QH7uuLi4sHkpJdy0aRo4cCDatWuHtLQ09u5qySURERFwd3dH6dKlcffuXVEIwvPnz/HgwQOsXLkSbm5ucHR0RGJiIiMRz549E7m9yVJHpA4AqlevrnjaD++Sv3Hjhmx9REdHw9/fHw8fPoSfnx/c3NxQsmRJPHr0CJmZmShVqpTMUkcwlMX86NEjjB071qDLEQDeffdd1s884SQ5aiiMhsiJoQLD0udLSa20JiZfSNzFxQWCILCNOq+jSXcp1XacMWMGvvrqK8ybNw/NmjUD8EIeKJ0eZW1tjePHj6NNmzbo06eP6DvaXNy6dQvvvvuuInGXQiqvgVydC+TG41MWcqGQurCwMMycORPt2rWDl5cXatasiXbt2mHmzJkFlvbu5+fH3BOdOnUSETdD3/GguDP+PzXwyjsmJoZV35bGYdFioywrNUudKWfS8oQsPDwc2dnZqFmzptHfJSQkMGX+MofJ55XUGUNkZCRT4oTOnTujRIkScHFxEWULqRVWVSJ1giDg1KlTos95N5CxGknSHTqNdXJyMm7cuIEdO3bIBB8f6M/Dw8OD9b2U8Pv5+Ynab+rh6vHx8di6datqQK4aYmJiZNYIPrmHJ1JmZmYs+B6QkzopmjdvzmJeyKKSnJyMjIwMppSVyLSlpSUjgba2tqwfKQ6RB1mhv/vuO1nM57Rp01TbZgjOzs6IjY2Fi4sLGjVqhMTERJOEII0/KZOnT5+KxqNly5bM8kKIjIxk1/AKhne5GIKdnR30er2IyEmtF7GxsQYLMmdnZ8tcomobTR4//vgjIiIiMGrUKNVaYEeOHJHFTEpJHR8XtWvXLgCAj4+PyGJWtWpVkQInmRMREYHPP/8cb7/9NvttfsB7cSwsLJiMJvkqJWyLFi1Cnz59kJ6ezkidIfcrkbrU1FQ4Ojqy70+ePIlPPvkEQK4MIlJHiQ0TJkzA6dOn2fOVSF21atUUY315C3P16tVlGZrBwcEi65CbmxtcXFzY3DNE6qSGAH5z1rNnT6xYscLoySrNmjVjOpDXIdnZ2bh79y4sLCxw9uxZRYvw3Llz8dtvvxm01EnBuzfv3r2LkJAQCIKAIUOGYOLEiaLNLM09JaLevHlzmRVUen9BEGT9rUTqSpQowcqwSMeQ7rdz506TynMBEB23aQimWEPzROrOnj0LLy8v7N69G/Xq1cOHH36IIUOGoF69etizZw9q1ar10lX8gVwhSTtsvV4v2skZ+o7HggULoNfr2X/lypVTfR7P3JOSklCtWjUAkMX5EIH48ccfAUBxl7Vu3ToMHTpU0aRPaNq0KWbOnAkzMzNRJpJacDClUQNiS520HAIgtjTOnj1btQ1paWmKGYe84DIVgiAgKipKRuqMxRxKQURp7ty5sLKyQkBAAM6ePSuLpyJCEhAQgFGjRhm8p9Q9RTu4mJgYNG7cGAMGDJAJn7p16yreS6/XIyMjA0OGDJFVlk9PT2dHCKmRQiXcvn3b6DsowZiljkhdp06dZLW5nj9/LiMDUpCgIjft48ePkZaWxixHRMT4GNNatWqxkgy2trZMGCodUUR99OOPP8pIHa2/vILkgYeHBypWrIiwsDDk5OSgZ8+esmv5qvVKG76YmBjY2tqiXLlyLCieR0REBJ49e4aSJUuKiJmh0iEVK1ZkRWDt7e3h7OwsWoNSRSR1vwJiGZGSkiJruynyl8i/dF3x9+7UqRNTbrNnz4a1tbXM8kibSp1OJyqxxF9XrVo1EfHiT42gOciffGJITiuBZHKvXr2QlpbGCBG1TdqnfBIB6RElj4ggCCJSB4hl4+HDh5kF5tatW4zUhYSEoHTp0li6dCnq1avHrk9OTkZISIjo/dTmOU+UrK2t4e7ujs8++4x9tmrVKtEmjUgd9aebmxvbDFy7dk20vnhS5+vrK2oPWVeNFWz38vJStNTn5OSw2Gdvb29VK/mYMWPydBQYv0a8vLwYAfr4449lRYCJNKslRUl1FABGzglSz4IaqQPEoTs6nQ6CILD2mlr2ZMOGDSaFoHzyyScGYzAJeSJ1EyZMwPDhwxEQEICffvoJ06dPx4wZM/DTTz/h9u3b+PTTTxVThPOKEiVKiALI+Z2foe94TJ8+HfHx8ew/Q1ZEqcWKBK/arpcmlRKpo92f1HXGuzkuXryIW7duoUuXLszUC7yYTPxuDgBWrFjB/p2Zmcl21yS4+MOBeaLXpUsXmUt31KhRqFq1KlJTUxUtdWrE0hCysrIUSV1+8NZbb2HmzJl47733sHv3braj69SpE1vAe/bsQZUqVeDl5YWVK1eKgnaNgRbhzZs3mbIJDAxE1apV8f333wNQF7ZWVlbIzMxUPBnC2tqaud14d4AxUHyU0v3UUK5cOcTExLD2kzLh5yvNJWdnZ9kaiYmJkYUF9OvXTzX5gQdZ6IhA8rXBeEszb6nz8vKS1Sbj30/qXlJSGDExMTh8+LBimygBhtyvLi4usLe3Z1baSZMm4ezZs6JNDr8eExMTZQooKCgILi4uqvEw1Pdubm4mVb4HcpUebbrI/crDFFLHywZSHnSNjY2NoqWQvwcpHh7ffvstI8NKGDNmDNzc3FTlYatWrViFgFKlSom+69u3r+i+ZMmNiIhgGwfe+sDPQWNu+U8++YSNQ+XKlZGamspI3sOHD5GSkiLKhAdyyTTJAPq/EqnLyclBcHAwypcvz0idg4ODYsb3li1b4OTkhMTERJEcbNq0KbsmJiYGT58+RZUqVdhn0r4iSN3w1G41uLm5oWHDhqL78mSDJ6M8qStZsmSeinwTeNLDPyc7O1u2kVciiGlpafDz8xPF4xkCzXNaZ7SJlepJ4IXsWLduHUqVKiVLkKLfDBo0iMXk80lXNjY2snGh8eSJNfUb75UTBEEUq04wFEJhbm6OTz75xKRxMDVGOE+k7tatWwatCiNHjjTJ/G8MzZo1Y0LiyJEjIkuDoe94WFtbw8nJSfSfGqTkhuJNCLzrJSwsDBUrVpSx+8aNGwN4oeyk1gfpoDVo0AC7d+8WKRd6rnSySpUyKcjQ0FCYm5uLglz54sd6vV62k1+1ahXq1Kmj6n6tWrWqrEbfwYMH0aVLF9m1bdu2BZDbfy9L6qh/6P8dOnTApUuX2ELev3+/6KB3UgSGagoquQhJ6PNW2Bs3bqBp06bMNK+2wCwtLVWzmdu2bYsHDx7AzMyM/d5QRnJISAgsLCxUU/v5uBop3NzcRJa6iIgI1KpVS3QNzRlyfys9n8fatWtNch2SgBoxYgSsra1FVk1+3WRlZTFl7uDgICMM/fr1Q8mSJeHs7MzWiqOjIxYsWIBu3brJ+sXFxUUx7mTkyJE4ffo0vv32WyQmJrJgdHt7e2ZldHNzQ8uWLfHdd9+x3/FKMjExUZatGxAQgBIlShiNyTP17NlZs2bh4MGDrP/I/cpDeuJFXFycjNwrxcCRklUqvguI43X4NUobShcXF5QoUUKV1JUsWdJg7B0lRVSsWFG2qS9XrpwoezMtLQ0ODg548uQJwsPD0a5dO9H1/Bwy1vcbNmxgbnyyepJMe/jwoWKmp6WlJetTkgVKmb/Z2dm4d+8eqlWrxvrMwcEB33//vYiY/fbbb+jSpQvKlCmDR48eicJQKOzA1taW6UU+sUPNK6IU00ZrRGmz5+bmJpKNLi4uouuk9UMJ9vb2In1hKvjMXykBlZ5AoWa5fvDggWg9Eijjl5dZdA+pW5jXk/PmzcPYsWNF7lVLS0t06dIFvr6+rEgxrfvOnTsrcpkyZcrI9Al5kPgsW9KrtWvXRnJyMrOcpqenIyUlRUTApJs3HkR6DRE/Aq0zY8gTqfP09DSYmODn5ycjRPlBgwYN4OHhAW9vbwQEBKBPnz7MhdO9e3eEhobC29sbtra2Jr+oIUjJjaurK0aPHs3+5i0E9H7SGBu6nhYyHfdFkBKFpk2bwsLCQuSqowWm0+nYIDdo0EB1RxMWFiYjrPxzypUrp0jcbGxsEBcXpziW7u7uMlLZsGFDUZkA/logNwsuPDzcKKnjaxtJdx2kmGjnV6VKFaSnpyMoKAh2dnawsLAQCUHeEqoUZ3Ds2DHWn7wQVjve5d69e6wfBUGQuX3J9UjWOCnIjcG3UVqKQHo9bQSkGwTAMKlzdXUVWeqePHkiix0jK8Gnn36qas3mx8DOzk6VHPMgoty4cWOkpaWJiABPeKtWrYqyZcvCzs4OVlZWKF26tMgl4ubmhrlz5yIxMZEpCUtLS0ybNg3m5uYikkXKWYls169fH+bm5nB0dMTTp0+xf/9+uLi4sDWj0+kU+5K3MCQmJsrcfrdv34azs7Oi4uXXh6HdM3/O45QpU1C7dm3Wx3Z2djJCyM9NGxsbRUudkiwgazzfZ7xc4d+fxqtPnz6MkFO/KpE6nU4Hc3Nz7N+/HxUrVkT9+vVx6tQp7Ny5k11DirREiRIYMWIEunXrxr6ztLQU9VG1atXw0Ucf4fr16yxTlMc777zDan5K+166cQFys/6Tk5NZtifJuz179mDIkCEAILO20tjzcbHSDQOFWlStWpWNNxECvvg59dnbb7+NO3fu4OjRo0wO0j1zcnLY+uRlkRJpbdq0KQvvUYKSEaNUqVKwsrJCYmIigoKCYG5uLiJ15MnhrXlA7hw01VL3/vvvi+reAblkXzqHpUYdQ0dQKulu8pLxc5ksX1KLKi/XZsyYgV9++UX03iSrmjdvzuYCfa9GaGnd8ESMYkn5vqe5U7lyZdjZ2bG5mp6ejri4OBEPMpbMx7fLEAqF1E2ePBmjRo3C2LFjsXfvXpw/fx4XLlzA3r17MXbsWIwePVo12zOvWLx4Mc6cOYOtW7fCysqKKVgLCwv8/vvvOHPmjChN/2UgdZW6urqKymOUKFECy5cvx/Lly5klTioE3n//fSQkJDBlOnnyZNGOS+pKIEHB765J2JiZmSExMRGZmZm4cuUKUwRlypQRDX5YWBgcHR1Fwo+fQPb29jh69Kgss9LGxgZ+fn4ICQmRTbikpCSZqd/a2lpR4NNnAwcOREZGhlG347Rp01hJCOlzpaSOFvW1a9eY8OMVGk9WlUhdhw4d2KL97LPPWP/TYepSmJubs2sEQUDLli1F5nZra2tZm3kSRIKcHwt3d3f2vkqYMWMGvLy8MHHiRGzatEkkzJWSCwglS5ZEdHQ0m7dKO/tq1apBEAQ0bNhQkdRVrVoVM2fOBJA73wwJHn7spdfRXGnUqBHrg7t376Jy5cr4+OOP2Rm8gDheysnJCS4uLsjOzmZuR95iQvPcwsKCHc2mJIRpDPh+J/crkOvO47/bsWMHrl+/Di8vL+a2T0xMFLlczM3NERsbq0rqeKJFlhfpJs/R0VE09jSvaY3wMYdKqFmzJmJjY0VxkoByEgmFTPBntu7ZswdBQUH4+eefsW3bNvY5n/VKfUz9Su3hZRvNnUqVKuHBgwe4cuUKWrduLZJb9evXB5ArO1xdXUXnBAPidWtvbw93d3cWW8dv9IDcNUNxmTx5vnz5Mm7evCmz4JqZmTFyQpY6qWGBziUmKLldmzRpIioyT5v0KlWqsD6guca3iyd1QO5conVA850sgqVKlRL1LT+3Zs2ahYkTJ+L8+fPo27cvbt68qZiIJ7VsAi82Fg4ODix0hMa2Xr167GQV6fmq9vb2iqROSRZ89tlnsLKyUnQDS+coD0OeO7oXL0epH/k2EKmTJuoorU3+d0qbVPrewcFBUZ4Q6eYJ//z581G/fn2R0YK+pw0T9fesWbOwbt062NrasusNbdAJSqSOH5vDhw+bHKudJ1L3+eefY/PmzfD390ffvn3RokULNG/eHH379oW/vz82b96cr6DvogZPEGjXL7VWjRs3ThQUTovT29sby5Ytg16vl00yfgGTNYJKi9D9+Wt4UmdlZSUigocOHYKvr6/IghgdHW3Utfz222/LjtziJwsJnHnz5mH06NEYOXKkbILZ2NgoEjbpJPPy8sLBgwdl1bSB3AVIyTWNGzeWHXpvCqnj+4MfM2ncBmWz0QL28PAQlcXhMXDgQBw/fhw7duxgC5pPTOF3bLwy//TTT0WWTp7UtWrVCkCuEOetNVKQm7FWrVr46KOPRC5hQ6TO1dVV5H6VZrK2adNGJICUSJ1erxe5vA1Z6QYMGMDiT6SWI3d3dyxevBj//vsvpk6digMHDjCS4ejoKIor4kMSHBwc2C5f6Zgnag+vMHghTO9H85efG+R+BeTWiX79+qFu3bowNzcXkS5+TZCilrpfifjxmXs9e/ZEWFiYKNgfkM9Jah8lbWRmZhr0atSqVQuZmZlMeQQGBiIjIwONGjWSXUvEkp8zZcuWRbVq1fDFF1+IPqd3c3JyYuuD3r18+fKwsLAQWSR4K5uZmRkbF35+EZHgLdPnz59ntTH5cbO0tBSR2cqVKyM4OJhtoMh1OGvWLJEr7+2334ZOp1ONLbO1tUVGRgaSk5MxfPhwUcFwGjfaNPHybcyYMRg/fjxGjBghiqWdNm0aVq1aherVqzNZrRR6QTKwXr16zMJIbv8OHTrg22+/Zeu6ffv2onXG64vvv/9eFPRfu3ZtUYwqzafmzZvLQgWUiBm9o7W1NXr37o2MjAzUrl0bqampbEwtLS0xadIk0e8cHR0VNxuG4t8MkTpDCQA0L3gdSOuVyB3wInbcz89PRGqVZBYvn5Q2+/S9lZWVIqmjMiI8PvzwQxmh/Pbbb0WhI3TfdevWAcgdrwcPHuD58+eKYQAEGlclUrd+/Xq2zpTapYY8lzQZMGAAzp8/j5SUFDx58gRPnjxBSkoKzp8/LwrYf53AEwQHBwfodDqDExV4IRz5g6gNge5HAoYWNE1MV1dXtjiVnt25c2eUL19etriUSF2NGjVExWSl8TC868nBwQE7d+7E1KlTsXLlSjRu3FjmirK2tlZ0M0kXf5UqVdClSxeZ1cLMzAwJCQks1f7ixYui9gEvLBjUNnt7e5QoUQKRkZGi96OzSg25X0k4U1/p9XrVmIWKFSuiffv2KFu2LNzd3SEIgmgBhYaGsvgJfhc4ceJEkWKjf9vb2+P777/Ho0ePVE3qSse2EUj5S3d3vMWrVKlSiIyMREZGhmxcBgwYAB8fH1FblXaKlStXZvONJ0R//vkncwsT9Ho9e46UrOh0OkyaNAmurq6wsrISEWIlkBvf3NyckU3K2pPGNrm7u4vOpiUhbG9vj19++QXAC1LHZ8GXKFGC7e7Vji4CxOPJrwnqL6mlTqkcgq2tLcqUKSOzbqhlEA4ePBg7duxA9+7dFWMECaTQw8PDMXXqVFSvXl3RgmJubs7Ghl8HUjnh4+ODGzdusI2Lo6Mjux/1a79+/eDn5ydyEaplo/IbBXNzczx58kREbJs2bcrkIk/ELC0tZZbA8uXLs3Gka7///nvFhCU1ckHjFxcXB1tbW3z88cf47LPPsGnTJtjY2CApKYmRK36snZyc8NNPP6FLly6yeORRo0ZBp9Oxd1UidbTuzczMmEWQ3Nrm5ub45ptv0LdvX3Tt2lW2kc1PpQFra2tZgp5SgpM0GYTG2sbGBseOHcOUKVOg0+nQtGlTtqmqW7cu9Hq94mbDUKIGyTOy/JsKahsvn8qVK4fw8HDRZnjJkiXYunUrLl++bFS+8GvEEKnLzMwUzYPPP/8c/v7+snNxle5fqVIlzJo1S2TN4+8L5FqtyThUunRpxWNEeSjpCktLS7b+8lLLM9/Fhy0tLeHp6QlPT0+TfMbFGTypk05etdpxpUuXxuLFi7F48WKTnkGDQ4PPE7eQkBAEBASwSWbIaiJtn5OTk8xidufOHVHKu1R48JM5KSkJ77//vohoSM/tVEtGkPaNKXEBam0isstPXp6UEchaygf8qtXuod85Ozurts1YnTsHBwfWVhq74cOHo2bNmqJ5zwdHm5ubi1xhUiFpqEYTPUtqqeOzpD08PBAZGYmnT5/KCLRSJiZZDglbt27F2rVrGanjx/aDDz5gFgMaE2dnZzYWptR9M4Rff/2VlZCRxuNI+ykiIgITJkxgf1N/63Q69m8av08//ZS119LSEiNHjsTmzZsVE3yk9wMgiu2idpQqVYqNh4uLC37//XecPXtW5BajeUV9SIpNjdTpdDr069dPFiMqBa2ttLQ0xRNPCIIgMGtyXFwcJkyYgB9//FEWnN2mTRvUqVOHxeVERETIMpktLS3RqFEjtlnz9PQUyREe0o1J6dKlDW6cCJaWlqhduzb7m/qNTogwVtLEkKUOyA2qp/5as2YNK3TO/44P3uflglrSC1nqlGSFNNwlKipKZv1q1KgRDhw4IFuHeSF15O52dXVlm9wKFSpAEATFDTe9l5IVr169eqI6mk5OTvjtt99w5MiRfJG6+fPnQ6/XGyyFsmPHDtGc7NChAyPL0pAtDw8PWbuHDBmC9PR0xfJEPPg5qNQeSiipU6cOm/fW1tZYsWIFGjZsaDSuOCEhQTGhTKpfpJnsxoxEaqTu4MGDqln/aiiWJ0q8aqiRumfPnim6EgGxhcIUbN261WCQvZubm8j9qgYlUqeWGk+QCmDewqT0fsOHD2dnXBoCn/lo6tFDBOmOm+7Fm7lp58xb6pQUnDFSp2SpoxpTamdeKoEEONWf4gmoUlIGwdfXF/v27cPRo0cRGBhoMGOSBL20tAy9t5WVFSPxgYGBKFOmjMjCwLs7CeSO9PLywtmzZzFo0CA4OzsrkjogN6QgPDyc3cvT07PASJ1Op2P38vT0ZM9u2LCh0crrdK1Op2NjS/dydnZm7r7U1FS4ublh6NChBoU0r5DfffddZjEgK1/Dhg3Z3Pvwww/h7u6Oli1bijYzJIzffvtt/P7774olL4y9D49SpUrBwsICzZo1Y+9miNTl5OSw9W9mZoalS5eqnqMLvIj9K1u2LJu/0jVAynfmzJkGwwBMRffu3dkZspaWloqhHB07doQgCEYzXtWII78WDfUXkJvkQzKWLz9hbm6OAQMGyJ6hZKlbuXKlrFYlkEu6DFni1dpsDJ9++ilu3LiBGjVqwMzMDBMmTFANKQFezEtjfUH4+OOP4eHhgTZt2ogSS+jdDblfJ06ciLi4ONlGgrcgenl54dy5c9i0aRNiYmJw4MAB2NnZQRAEUWINQYmMVqtWjSVSqMGYpa5+/foQBEFkCOEzh3n89ddfssLYNjY2inNQ+pmppE7N/dquXTt07NgRHh4esmQiY9BIHcSkjncL0kHNBYGSJUuie/fuLDhbqf6VIfcrQcn9CuTGG0jTydXQo0cPALm136SWHiBX2XTq1En2ORXX5dvbtGlT1KhRI8/9JH1HcvnxQkiJ1CkpQr6kCw9S/HZ2dqJF89tvvzFilZcyLCSsqV28AGnSpAnGjx+v6IKoWLEiunfvjnfffddoLTiyktauXVuULarT6RASEoKwsDCR2zs6Ohr3799HSEgIIiIiVElFYmIiAgICRPFStEFQskB4eHgwl2bp0qWZhYePdXlZkLUfyM3GNKW+39tvv42VK1eiffv22LJliyiZhdYUX3rA2PN5BAYGIj4+nimDJk2asHmttnHgLXUffvhhnqzVQO7JBHz8V9euXdlRTxQ/a+yederUwYYNG0w6icPJyQn379/H9OnT2dxXy7B9WQJP0Ol0THFbWloyy39+5pIaSec3NsaIjL29PdtASJXvX3/9JSvDwcsRwujRo3HkyBHTG/6S0Ol0olMHli5dqhhfSSDCmNf5uGLFCpF1nNaSKfJ93LhxLKYMyPUYUT97enqiZs2a+Oijj+Di4iIaIyVPnxKpk9ZcVYKxmDopoqOjReuPx8CBA00+l9oYqeMt0ErhWtLfb9u2LV81BAGgYA5dfM1BpO7cuXMFUiLFEN566y1VM3V+3a9ArnuOd9EpgbLUKleujCVLlhhVfubm5iI35zvvvIPk5GRER0ezdyios3fNzMxw/fp1kRVLidQReAIwd+5cTJw4UWaxnDFjBgICAkSlXZydnfHxxx8DyM0QNJUAAC8sGkqkztraWhYsnx/Mnz8f06dPByB2WwEvBAO/CQkODjapjJDSnCIhqaa8eVJXtWpV5OTkmFT2JC8oV64cnj59arIA48t+UJkCQpkyZYxWw+ehlsm7bt06/PvvvyhZsiQj8sbWrBRTp041qQ1t27YVrTHeakbjb6yGlU6nUyyLowayJn/22WdwcHCQZaAS2VKrAUrYuHGjyeNG/URkgy9lUxDo0KEDPvnkE/z2228mERlyqUrnPpVw4WFubo5169bl2WJSlKB+zu/pLIR169Zh0KBBJrmKra2tMXz4cNStWxdhYWEwMzODt7e30TWpZMRQmlfUBh8fH8XCw4B4TZsiC0ytM2kM0jUqLSU2d+5c3L17FwcPHoSDgwM2bdqEkSNHstJn0jlrSt06NWikDi9cApRhVVSggTS0EKWDbWpcRmRkpGinOXHiRKO/uXHjhuiMQSCX0PCEylisgCmgQrjS47nUSF1AQIDI7W1ubg43NzfcuHFDpGTr1q3L2i893gqA0fgMKUjhKiUYFBTMzMwMFnoFxJXo1Y7DMQWGSmoAL0gdkcbCWBt8Md5XDbVY4IoVKzIrGa0vtXICSgSCVyYTJkzAyZMnDbaDdwHypI5cn9Jzhq9du4bjx4/LYrfyCgsLC8XA8EqVKpmkEKXJToZA/UR9bihGi0eZMmUMWqQIOp0ODRs2xG+//WY0ThZ4MZ58fJ8hDB8+3KTr8gO+IHFBoVy5cjh27Bhat279UvextbU1GJeqhCZNmih6gPL6XMLevXvRs2dPNnfUTnkB8m6pKyjQ/CadI90o2djYoHfv3jh48CBsbGzw0UcfsXhP/veNGzfGnDlzDBYsNgaN1CFXuedVwZsKKoppCnQ6HXx8fAy6JaSKyFShlJ/THmrWrKmaKFKQUAuOJkUvJTlqZnhDhyLzdc/yC7KoKFnqCgs9e/YUnVMK5L7L9u3bMXny5DzFcCmhQoUKqnMjrwo4P2jfvj3OnDmjGFdT2CAFYGhOeHl5Yd++fYrhCIBx99bSpUuNtoNfY3wMGxEPaWJNvXr1ULNmzZcmda8S1Nd5XTNKR2apgU8YMYaSJUvi0aNHeTrSrzDw9OnTQltfeSmDUdzAb747dOiAmjVrmmSIMBZTV1jgqxYcOXJE0btEbVOSN3wM5MtahIsdqbt8+TK+/PJLmJmZwd3dHVu3bhUNlI+PD4YOHYoqVarA3NxcdG5bcURoaKjJpA4wvAsB5EJRmlH1JoF2a8aCp02BkqUuryALAJG6wrDUSfHPP/8oWh769+9fICWE6GgzJRw7dkz1BI6CwjfffIPp06fnOfanIEBzwdj86t69u+p3BdHuypUrQxAEnDhxQuTypPhLJeX8ulUcIAVbEO328/NTdJvRZs+UYq+APLyhKFAQJzAVBk6dOqVY/LgoYG9vb3JbjGW/FhbI8DB69GhVD4gppK4g2lzsSB0xXTs7O8yYMQN79uyRZacMGDDA5FIiRQ1Ts2NNBU2Itm3bokaNGkZdaG8CCoLU0aJ5GVInjakryJggNVhYWBQqeTT0Dm+99ZYsC7egodPpioTQ0bMBddeqKSjIsZG6bEqUKFEocYxFgbJly6J8+fIm1fQ0BrXY4QYNGuDu3btGk5E0GEfr1q1f2nVbFCgqS52jo6NRQkbr2BCpK4gYv2JH6qRHEil1wM6dO3HhwgX07duXVbr/r4DOP5w/f36hJ3W8DH744QccPnwYQUFBqoL8wYMHBhcCWagK0lL3MkpYGlOn4fXHzz//XCSuX1NhiNDNmjXrtbHU29jYIDg4uNCfU9ibEA2vFnnNkC6qmDpTQOE7ShtpS0tL/PXXX4plcvKKYkfqCCEhITh27Birb0Ro1KgRO7OvZ8+eaNWqlewoICD3xAH+1AE6FeB1B516UNwxZcoUo+cAGwsQJhJlLHHAFBRETJ0aqXsVblgNhYMvvviiqJuQb3z//fdF3QQNGgoEffr0kcWtPnz4MM+WK3NzcwQEBKBmzZrFTk+S/lDTF3RG78uiyLRRREQE+vbtK/t83759sLCwwNChQ7Fx40ZZDAZfL6dHjx64fv26IqlbsGABvvvuu4JvuIZXBloExc1SJ3UXaqROgwYNGvIPpULK0jNuTQVVjyhuljrSH4UdtlNk2sjDwwNnz56VfZ6dnY1evXph9uzZirERCQkJTMmfOXMGo0aNUrz/9OnTRdkyCQkJRo+g0VC8UJCkjtxY0vMX84LGjRtjz549smw1OsJHgwYNGjQULWiTXVxJXWEbAYrdiRI7duyAr68v5syZg7Zt22L79u0AgJEjR7LvmzRpghYtWqBMmTKqwZzW1tbssHulQ+81FH9QDEJBjZ0gCC9F6qZNm4bg4GBRbcDTp0/j6NGjBdE8DRo0aNBQQChu7lfSZ4VN6nRCcXvzQkJCQgL0ej3i4+M1gveaYPHixfjqq6+QkZHx2pVw0PBm4+rVq7h3716BlJXRoEFDwUKn08HKykoUV1/UOH/+PJo3b47r16/LCu0XJDRSp6HYQhAEJCUlmXxqhgYNGjRo0KDT6dCuXTucOHGiqJsiQkZGxksdAWYKtAhvDcUWOp1OI3QaNGjQoCFPePDggews8OKAwiZ0gEbqNGjQoEGDBg1vEArjPN3XBcUuUUKDBg0aNGjQoEFD3vGfiakTBAGJiYlwdHR8I47d0aBBgwYNGjRo4PGfIXUaNGjQoEGDBg1vMjT3qwYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AfjPkDpBEJCQkABBEIq6KRo0aNCgQYMGDQWO/wypS0xMhF6vR2JiYlE3RYMGDRo0aNCgocDxnyF1GjRo0FBcEBsbi6tXrxZ1MzRo0PCGQSN1GjRo0PCK0blzZ7z99ttF3QwNGjS8YdBInYY3BoIgwMfHR4ub1CBCTk4OJk+ejKdPnxZ1UxiuXbtW1E34T0IQBNy7d6+om6FBQ6FBI3Ua3hgcPXoU7dq1w+7du4u6KRqKER4/fowlS5Zg8uTJRd0UBjOzXNGrbUBeLbZs2YLq1asjMDCwqJuiQUOhQCN1xRBt27bFunXriroZrx2io6MBoFhZZDQUPYg46XS6Im7JC5ibmwMAUlNTi7gl/y0QmdNkhDqCg4Px4MGDom5GscKmTZug0+lei02YRuoKCF27dkXHjh3z/fvbt2/D398fAHDq1Cl89tlnBdW0YgNBEDBjxgw8evSoUO5P1o+cnJxCub+G1xM0H4oTqaO5mpKSUsQt+W/B0tISAJCRkVHELcmVh9nZ2UXdDBkqVqyIqlWrFnUzihV+/fVXAEBWVlYRt8Q4iiWpu3z5Mry9vdGmTRv0798fmZmZ7DsfHx+UK1cObdu2RYcOHYqwlWIcOnQIR48ezffva9eujcaNGxdgi4ofMjIysGDBAnz44YeFcn+N1GlQQnFQ4FIQwUxOTi7ilhQegoOD8dNPPxV1M0SwsrICkPc5ERISgpUrVxZoW9auXQsLCwukpaUV6H01FDyIzL0OY1UsSV2ZMmVw5MgRnDp1ClWrVsWePXtE3w8YMAA+Pj44fvx40TTQAEJCQoq6CcUWRM4La7djiNTl5OS8FrssDQWP9PR0AC9nqVu2bFmBWvporr7JpG7v3r2YMGFCsdpkkaUur8p54MCBGDNmTIG+y86dOwG8Ohe8lpyTf5BFVSN1+YSHhwfs7OwA5C5CCwsL0fc7d+6Et7c3li9frnqP9PR0JCQkiP4rTNAO8PHjx6rXXLhwAU+ePDF4n+Joji8o0O64sN7REKn78MMPmUDX8N9CQZC6zZs3AwDi4+MLpE2vI6nLycnBmDFjTA6fIJlL/V8cQDIgKSkpT7+jDWlBFq8nOfUqLMmHDx9GgwYN8L///c/k3xRHC/erwNq1a6HT6UR6hHRWcZrLaiiWpI4QEhKCY8eOoVu3buyzRo0aITAwEMePH8fhw4dx+fJlxd8uWLAAer2e/VeuXDmTnjl79mxUq1Ytz20lhWFo19WsWTOjtalCQ0Pz/Gw1ZGZmQq/X48SJEwV2T0OIi4vDL7/8ohpMSkLCVIuZIAh5WkS0CJVI3datW02+jwYx6tati1mzZhV1M/INU0idIAjYv3+/6tz18PAAUHDrkxIl8krqEhMTodPpXtma5hEdHY2VK1fi9OnTJl1PpM4US9R7772X7+SwM2fOoGrVqibJFVLOeSVn1tbWAAqO1AMv5NSrIArkQcqLJykyMrKwmlNgyMnJwZkzZxAbG1tg91y/fj0AManVLHUFgISEBAwdOhQbN24UWVgcHBxgZWUFKysr9OjRA9evX1f8/fTp0xEfH8/+M1UYz5kzB/fv30dcXFye2mtq4LN0oZw+fVqkbO7fv5+n5/JISUmBIAiIjo5GcnIyQkNDkZCQYNCiWZCYNm0axo0bh+DgYMXvaZHwMZKGsGzZMtjY2Jhs2StsS+DLYOfOnTA3NxeRBp1OhyVLlrC/L1y4gF9++aUommcQN2/exNy5c4u6GfkGCWJDpG7btm3o0aMH/v33X8XvC5rUUVvymigRFhYGAPjjjz8KpB15wfPnzwGY3ua8kLr//e9/BpPD4uLisH//fkVSNWfOHDx48IBlvxsCzYW8kjobGxsABUvqXoX1JywsDOvWrctXvHFERERhNavAsHHjRrRu3RpTpkwpsHvSeJA+iY2NzTepu3jxIiOJrwrFktRlZ2dj8ODBmD17NqpXry76jnej0g5NCdbW1nBychL9ZwpatmwJIDcD9fr160yIGkN+hfRvv/0m+vvs2bN5+j0hIyMD9vb2WLZsGdzc3FCtWjVUqVIFAGTu68ICvbtaH/CkzhQLBSkuUxcSLUZDpM5UoRYfH69KPvMTV/PDDz8gJyeHuX3IqsCTuGbNmmHcuHF5vrcGwzBFaVJBWrWxLVmyJICCi5nNr/uV2ke/T09Px7fffvtKXGVE6kxtM8nql7VuPH78GCVKlECPHj0wevRo2fe03qOioozei+aCIVLn5+cnC9dRs9QJgpBvi9arIHX//PMPPvvsM7aZNEV2kb4oKkvdV199ZXKoDLVx+/btJhsLeDx69Ei26aD5mp6ejvj4eLi4uLASL/xY+fj4GDX+NG3aFCNGjMhzu14GxZLU7dixA76+vpgzZw7atm2L7du3Y+TIkey7Jk2aoEWLFihTpgxat25doM92d3cHkFvPqH79+qhUqZLidXPmzEH//v3Z37RoUlJS8PTpU6xevdqk50ndPWvWrFG8LisrC7du3VK9D01McjOGh4ez714VqaOFqDbRadEFBgbCwcHB6IIgwZueno7s7GzcunXLoIvGFEugqaTb2dkZVatWhU6nEynyu3fvwtHREc+ePTPpPgQS4OQmIOVQUHWPCivY2lj7PvroIzRp0kT1+8zMTPj4+BRwq/IG3v2qRn5iYmIA5Fpk7t+/L1O0pAwLqr5ZfrNfpaRu8+bN+O6771jQfV7g6+sLnU5nsnegMC11hsDXTKNx4kFryxQSYoqlrkWLFujbty+A3HetXr06goKCAMhJ3dq1a+Hu7m6SlZDaSBYwU9yvkZGRRtcg3z/Pnj3DF198wTaNtImk9pnixbC1tQUAVZfm3bt3MWTIkELziCxevBhZWVkmyUaepF+/fj3Pni5vb2+ZrqZ7pqeny/qA36B069YNv//+e56e9ypQLEndBx98gJiYGPj4+MDHxwcDBgxgZGf48OG4ePEifH19sWjRogJ/Ng0aJTxI4zSOHDmC27dvY/bs2fj7778xceJECILAfpeSkoKuXbti9OjRoklvyg6pdevWbMFLXUVr165FnTp1VCuh00S8cuWK7DuK38kLZs6ciUGDBqFixYrYsGGDSb8hUkfCXwqpQr1x4wb799y5c2XxkaQUbt++DQsLC9SpU8egi4bub0iJKAlzQRCQlZWFDRs2YPr06WwhE5njk1uCg4ORkpJiMCFGCTSPYmNjcf78eRZ4HxMT89KWjLCwMNjZ2cmyxAsCxgLKN2/ejEuXLql+P2/ePLRr107RwpWQkICmTZvi/v37yMnJYW572iEXFKh/N23aBGtra0UlSmQhMTER1apVw9SpU9l3qampjMwVVGIDyYa83k/qSqY1YmyNBwYGijZ6AHDy5EkAMLhZ5EF99DKk7uHDhzI5YIwc8HOQCIfS76WWuhMnTkCn04m8LcYsdSSn/fz8AOTKqHv37jGyIJ2XFF9oqlWrfPny8PT0FLWb2pSQkICAgAB2bXJyMtzd3UUhGhkZGWjYsCGuXr0KADh37hyqVq3Kyml98803+PXXX3H79m0AL/qO1p8pCSK0YVDbdE+fPh1bt26Fn5+fbE4pISsrCwsXLjSZ3JMRIiQkBAsWLDBI7vi13Lhx4zzFwwuCgGfPnslCKnhSJ53rtP4EQUBycrKqrjMVd+7cMZo8mVcUS1JXlKCJxyttXiF16tQJtWvXZn8vW7YMGRkZIksdpY7zE0JNcfPkrXz58qLPBUHA+vXrkZSUxITQ33//rXgfQ7u9/Fjq7ty5g6CgIAQHB2P48OEm/YZIndoOTyrMSTBFRUVh1qxZMsJGSoEXdMALS1xOTg779507d5jiNUSSlIRa8+bNYWlpieHDh2PhwoX4/vvvRd+3aNGCEU6aH6buzAkkwOPi4tC8eXNMnDgRQK7g7tWrl+jaESNG5ImgkVAiBSMIAvz8/FQVV2pqqmrcoxRKWePffvstbt68Kfrs3r17WLhwIfv7xo0byMnJYQpViaT5+/vj4sWLuHv3Ln788UdUrFgRCQkJGDBgAJydnU1qnymQrg3p5uHatWvMwn337l32PoQOHTpg+/btAAqO1NE8ymtWPs1tUrx0H3IPKuHhw4eoUaMGPvnkE8XvTQ0nMOR+vXPnjmzd0fzjP69SpQrzuhB4Za+0aeVjuyi2jQe1R0rqDhw4AEAsv6ktauSG2pKUlIS7d+/Kwm+k85jktynyID09nc3FDRs24OLFi6I29evXD7Vq1cL9+/chCALrvwULFuDrr7+GIAgICwvDlStX8OOPPwJ40V9EOqUEWUrqTJlv1J4ff/wRrq6uAHJl9/jx43H58mXo9XoAuVau0qVLIzIyEmfOnAGQK3t+//13kbfk9u3bmD59usnJPVT5Yvjw4ZgxYwZbk0rIr+v6/Pnz+OOPP5CVlSUbOz6mTipD6QhK0mVEfH/++Wd89dVXqs9T2tTm5OSgZs2aeOeddwDkbkKGDBnCvhcEIV+hPhqpk0BqqQOAChUqmPQbQEzkeOGntkvhdyGVK1cWfff48WOMGDECQ4cOZfdVs9QZIjKmWOp8fX1FpCshISHPGUX0+02bNkEQBCxatEg0maUWHbIUkHuOYgAJau8UExODoKAgVK9enSmzmjVr4ocffjD4O0BZmF+4cEH0t5KA3rZtG4AX4xgTE4PQ0FBkZ2fjwoULimUewsPDmZuWt9RJceTIEdHf69evR+/evfHs2bM8xXDRXPLz80OLFi3Qp08f1KtXT5atOHDgQFSsWFHx91KhL1VigYGB+O6779CzZ0/R57Vr18b06dMhCAJCQ0NRr149/PTTTwaLvVKSU1paGmtjTEwMU8YFdT6nVPCTAiLwBJX+XaZMGfYZWW0AdSvVxIkTZUI9OztbNRSA5pEplg6l30lJnZpyS0lJYYlS1JZ9+/bh3XffZQpDyaWpBDX368KFC1GzZk2sXbtW9LnUUkfPk7rj+fvVqFEDQC7RVuojJUsdrTGptYzuy8dnUT9JZURERASuXLkiktPt2rUTkXsA+Pzzz0XtJVIXGRmJu3fv4uDBgwBy17TUa8In9fEbZWoTeS6qVauGOXPmMP3x/PlzzJs3DxkZGaxPSe5Re8eMGYNz586xPiY5R6TEVFLHVxwICQlhc+P27dv4+eef0aJFC5k+8fLyQuvWrREdHQ0fHx8MGzYMq1atYt/TM6V9qQZ7e3sAuZsRvn/4+9E4KMl6tTj44OBgzJkzB4IgoHnz5qwIvnQzwFvqpKRuxYoVuHTpEnsuycfx48dj8eLFqu8k5RAnTpxArVq1ALwghgMGDMDWrVshCAJOnTqFRo0awdHR0aAnRAkaqft/pKWlITs7W9FSR1BzE/BEgTelmkLq+HtKLXUkRPfs2cMmqnSSlS1bFoMGDTJIZKTPzszMxKNHj/Dnn38CyN1lt2zZEitWrGDXxMfHi4S9mtLIycnB9OnT8eeff7K2nThxAgcOHMCUKVMwbNgwALmKdMyYMaLfHjp0CCtWrGCxic+ePYOnp6csXk3qBoiKisJbb72FBw8eQBAEWRzFunXrVN130v5TMu0rmdRJWFJfPnnyBOXLl8f333+PZs2ayQg5AJQuXZplTRoidW5ubrLPnJ2dUbZsWaMbCkDuqud37zdu3MDs2bNF30tJJOGHH36AXq9nbY2KihL1Y1BQEFO6qamporlLpO3u3bus/65du2awLhgpufT0dEY4nj9/jrfeegtArmuJhyAI6NWrFzp16pSn01ukc1dKFvn3IFfkiRMnZBZi4MWaPnv2rOh3y5Ytkwn1tm3bKo4fT/aUFFCjRo2g0+kUw0to/klLKJ06dYrN0cjISLZmJk2ahJ9//ln0nsOGDcOxY8fY+jYlwQB4Qf54uZaQkIAZM2Yo3kdK6nhlSbh9+7YsLik9PR0NGjRA7dq1ERwcLLLUSUkdZfsD8mxNIl/btm1jJ1uQnOTlZWhoKMqUKYOGDRuKCHxqaqrixoLkU0hICEvmioyMhJeXFyu/1alTJzRs2FD0OxqTUaNGiT4PCgqCTqcTtf/GjRsyy2pKSgrrY7JY8oT3zz//ZPKM+p7WHVnmDZE6X19f1Zhu8gYIgiDrZ1rvu3btYvOa3xjTM4OCgnDhwgWjxJIsdfSc+Ph47N27l8mYjRs3YtWqVdi/fz/S09Ph4OAg+j2VLxMEQbRhb9GiBWbPni0j/9TWGzduiEjtnDlzFPXIrVu3ZKRO2heAnC/wVrcOHTowCyQle/LenLZt2+LKlStISUlRLdumBo3U/T9sbW3Rq1cvpKamonLlyookTM1yVbZsWfZvXhGpkbqTJ09i586dCAsLE9VPc3R0ZP/W6XSi51GWrHRBPHnyBH/99ZdBM/T27dvx7bffonv37ujbty+GDRuGypUrY/Dgwbh58yazktDun57DT9jExER07dqVKVxCWFgYFi5ciMGDB4sIE1lDaCLv3btX9Dt7e3tkZmZi7Nix7LPTp08jIiKCWWoIUpIlVR5KcRTvv/8+vv76a1EbADm5UOo3Q6SOFAUJSaVs5WrVqsmymqkvle5NyTk8SpUqxcjV06dPmbA8e/YsG69Dhw5Bp9OxOUECnXa4RBj4cQVeWGyk7079npqaivj4eJQqVUpUymTHjh2ieyhZeGrWrMkssImJicz1HxoaKrOA8qSOBHZMTAzro7i4OMTHx+PLL79Eeno6fH19sXfvXhw5csSkc5bj4+Px/fffy6yoUutnamoqzM3NYWNjw5T4gwcP2E6ax9WrV6HT6eDt7Y2ffvoJOTk5qta7s2fPIjw8XKZEaP66uLiwMXr06BELRyAhzpdpePLkCT755BPWhzSmNK9WrlzJagkOHDgQ06ZNY7/j+wN4IZfoO1NJHW+pEwQBd+/eFQXySzdMUguNEqlTKkdB7Xr48CGaNGmiGnPk6+uLVatWsbnz8OFDPH78GJcuXUJCQgJzmS9duhQTJkwQPZuXx/7+/mx98xvEsmXLMhcp8EI+Uz9++umn7Dt+jPkCv4IgYOzYsXBwcGCbZnK3Ec6fPy97t507d8os7FFRUYw0JiUlYdu2baJ4MHd3d/YeUlJHY0P/X7ZsGXtuZmYmEhMT0bJlS8Xs4qysLDZPbWxsVK3LoaGhzDLPjzFP6po1a4b3339f9tunT5/i/fffx5YtW9hvaV1duHABvXr1wrx58wC8IORZWVlIT09HiRIlFNtz4cIFNGvWDEFBQUhPT2fhOdLQkaioKJw/fx716tXDP//8w8jVrl27cPjwYdl9ly9fzt4pPj5epFP4e0vXFd9u6ecpKSlM30dHRzMXN5D3EI1iS+omT54Mb29vDB48WOS6ycrKwrBhw+Dt7Y3x48cXyLNoEh04cABpaWnw8vJSvM6Ym8Lc3JxlSQG5wlMQBMyZM0dk+Wvfvj369u2Lzz//XPR7fseRlZWlWBtMbYCNBduvWbMGBw4cwM6dO5krEcgtLEsWOz5eRboDSUxMxKFDhxAUFIRJkyYByK3Bw5uGDx06xP597NgxALkWBJ1OJ7O61K9fX0Y2CKTcCFIiZEr8yokTJzBv3jykpaWJyLVU8SjFnSmNMykuUgZE6vjdGO3g79+/L5qbgiCw/lTa+VPcCg8qoQHkugJnz56NR48ewdvbG/369QPwokimVOkRiSHydvLkSVGtQqngl36enJzMrAr8mPLHDGVlZYmy7njQGZl79uzB0qVLAQBDhw6Fm5sb5s6diwcPHiAzM5NZwnhSFxERwfoxPj4ea9aswfLly3H48GGRdY5280Du/FizZg2++eYbZGVlYdq0aQgLC8PixYvxzTffiCzQAGTxhCkpKbCzs4ONjY3MTSy15BJhBnJllF6vlxH4CRMm4Pjx46yMktR9QtaDXr16MWVZuXJlg4XJ//e//2Hjxo2MrJGljp+rRGKCgoLYfXk3O40pveM///wDQJnUPXnyRJTIlJ6eziwnKSkpmDRpEry8vFgcpb29vUhm8GP61Vdf4cmTJ4qkTilmiCcqkZGRonl27NgxREZGIj4+Hi1btmTW//r16+PBgweoXr06mjRpglmzZim6/JUsdXy7aS1ZWlri6dOnuHPnDvuO9IKUMAFiK+HQoUPZvxMTE7FixQokJydj3759AIB69eqJ2mRqTdSDBw+yd9q6dSs++OADlnBFbSbCQHJNuomld504cSKaN28OIHceSkt+8booLS2NjUlSUhLCwsLw5ZdfYsCAAaLfBAQEMLcyP8bUFtrEKW2E9+7di927d2PFihWy/qBNGM1pmvPh4eFIT09Xjb+l60JDQ0U6RXq8aHR0tGIsLaCc7X79+nVs2rQJQG5/8r95+vQp03mnTp0S/Y5IqpRUxsXFibx0S5cuRU5ODn788UdUqFAhz0ljxZLUXb16FREREThz5gxq1qzJhA8A7N+/H2XLlsWZM2eQkpICX1/fl34eH+sQHBxslNRRkLsULi4uAF4cGZacnIzIyEjMnj0b7733nux6qdChWAICTQpy4QHqpM5YwCgfSC2NiaBJxu9epc/hrYakqJs2bcpS/4FcAT1w4ECMHTtWNnGlrqySJUsqxnUBuaSAF6ZSUmdqNi6QS7T430tJHClJHkrWNCJvhkhdo0aN2DjwwpR3L1KgLQBm8YmKikLv3r1Fz5PGYt2+fZsJHiIa9CwSglJLHY9Fixbhu+++Ex2wPm/ePBFR4q2RSu5S3i0eHx+PESNGiMgnwVDszKxZszB69GjcvXuXzf9r164xq8GFCxfYe8TFxYnWEr8x4utTfvHFFxg1ahS+//57/Pvvv/jhhx/wxRdfqAYZh4aGir5LTU2Fra2tYryWMTdvUlISvvjiC/a3IAhYuXIlFi5cyO4ntWz4+fmhdOnSaNWqFSIiIkRrTUoidTodjh8/LnNrZWdnM2sZ4cGDB8jKykJ4eDhiYmLw999/45dffoGVlRUmT56sqhzOnTsnkx+1atUSkY9KlSoxeZScnIxly5YBeLEWK1euLHoPqfy4dOkS/P39AYhlFR+7SJCSbt7Seu/ePbi7u8sUeZMmTRAcHMz6Scl6mp2drWipS0hIYGNFmabDhg1DbGwsrKysmGWNLOrUjzz54EMa+E2ndIMK5PYV71o1NabRWDmdxMRE1u9KxJPaLJ1j/MaNQBm6QO548e7XqKgotGrVSlRj08rKCrt27WIEXBqfDbzol/T0dNlGlObGjRs3ZG2me5KsJTkQFhaGtLQ00VwYMmQILCwscP/+fXaf8PBwXLhwAdbW1rCyspLF1CYnJ7Nxmjlzpug7paxmb29v0bGBvCEnLi6OhRMMHDhQ9Ls7d+4gMjJSZpm9f/++aA6sXr0aiYmJKFOmDPR6Pf755x9YWVmZnBRS4KQuNDRUNcvKVPj5+TES1KlTJxFxM/RdfiGNn+NJFOHvv/9mO1qeVfMgBUeCKiUlxWD6Py+snJ2dZaSO/w7I3YnlxVLXpEkTVryZt8JJSR0RNhJ0mZmZMvezWnyIFBcuXEClSpVkJmZpux0cHGSFpYHc+DJBEERlFqQki1e048aNE2UjS/Hs2TMRGYmKimICOCIiQmZlUXoekEt4Hj9+zBYfKR5+fMPCwhTHhywoY8aMQXR0NNzc3DBz5kw8ePAA9erVw+3bt2XZriTkCGXLlmWnHdCumhY5b2m5fv06/Pz8ZHM4MjIS3377LXNDAbluhI4dOyInJwfDhw9nBCE5OVmRAEhjF2/fvm2SG1SKmJgYtpGysbERhSCsXbsW9vb2aNCgAeLj45myJVJHa4ziZrKyskRWEtrN79mzB7t27ZI9u1y5ckhPTxcRrdTUVGapk4LP6DX13TIyMnDixAk270aMGCFyXd++fRv169dH+/btIQgCpk+fzr5TItPLly+XhX6kp6fj1q1bMsvvvXv3kJOTg/Pnz7NY1bZt26JKlSqIj4+XKfTLly/j8ePHTNHFxMRgxIgRbPw///xz3Lp1S9RfSklBlSpVMkjqevfuzVyHvGzgNwW04ZAePJ+WloY//vjD4Drv0KGD6G+lWMXnz58zORkYGIhevXqxE4eklioiNRMnTkTdunUB5IZEAC9cbvfu3cOaNWtw8uRJkQ7hN3pt27YV3dfCwgJmZmaiepumnlKiFog/bdo0ODs7IzExkcllNVLH9wEgJnSOjo5sDfA6Lj09HZGRkaJNT6NGjUR9JiXnSu5XHrw1E8gtxVWuXDnFsCfaJP7+++84deoUk73Hjh1DamqqyP3avHlzZGVloVq1amzOhoeHIywsDOXLl0eVKlVw7tw5WRyylOgRlBLV2rZty+ZXXFwcgoKC4OrqCldXV8TFxYk8UBSDDOSGGlSpUkX1FCwpypYtCycnJwQFBSEzMxOdOnUyiVsVOKl7/vz5Sxfki4uLYxNGr9eLlKyh73ikp6cjISFB9J8a+vfvL8rms7W1ZRYCstr1798fy5cvh4ODg2JgO/0OyA2QB3IVkdIkJYteUFAQmjRpgvv37+Phw4eqpI7et1KlSiJLEy+g+YVKcUzW1tZsd8RPYjVX7YwZM9C9e3eT3AFqJTFmzZqlWrCZR2xsrKLbkWL2eCLGj7E0fsLe3h4HDhxglsiWLVuKsvCaNm3KBK6VlRWWLFmCTp064eTJk6qLSyl5IicnB5UqVWJB50TmSPl16NABlpaWivORkkXef/999OjRAwMGDMDcuXNRqVIlWZCvGrZt28Z2xtKYOBpjQRBQv359ALmnU/BQy8K0t7dHTEwMNmzYIIq54tcL9S2Rp3bt2mHQoEEAoGrVtrW1ZddIERAQgKtXr6JixYpwcXFBcnIyatSogRo1aiArKwsffPABPDw8EB8fz+bqmDFjcPPmTXz22Wfo06cPsrOz8b///Q+WlpaiUgm85UqpFEKbNm0AvCAOe/fuxfz582Fra6tI6vJaOJmspFIr4Z49exATE4Nx48bh1q1bqF69OipUqICWLVsyd7Wzs7OinOKVNSE9PV1kzSbUrFlT9pmjoyP0ej2ys7NFiQAA2MaK5tA///wjOtZo1apVqFOnDvvbwsJCsfB2qVKlRG2ndzKEdevWieLGyHIvzUYHcuezofO73333XVbmA8h18UlPG4qKihKRjb1797I+52OYgFx5/+233+K7775jGyRnZ2dYWFggISEBvr6+yM7ORqtWrUSKmwcfI00hAERoecXPb0q8vLxkyQr8Rgx4QS4JlFTCx0HTWPD6wsLCAjExMaK51LVrV/Zve3t75pLlE7/S0tIQGxsrkuvly5cXeX9I5xEyMjJw9+5djB8/Hv7+/oqGEiB300C1BDt16qR4De9+nzdvHsLDw+Hp6Ynbt2/j+PHjon7miSeFFUVERCAiIgLu7u4scUk6N4KCglC+fHl07doVffr0YZ8rWer4zUV8fDwCAwNRvXp1ODs7y0iddLOelJSE+/fvK8brSsMvqlevLpqXPj4+qv3II8+kbt++fQb/oyDpl0GJEiXYpIyLi2MkyNh3PBYsWAC9Xs/+MyQQAHEMAS/gmzZtyj4/efIk5s+fL0qMILRp04ZdS7u85ORkRUsdr/ibNGmCKlWqoESJEqoKnghZ5cqVkZKSwiwbvIDi/00LTK/XMwuBqbvBAwcOKJrjpeBdTkBufF16ejo+/vhjxUxQKR49eqQYC1G5cmWYmZmJBB3fX9Lxtre3R4UKFViGp7W1tYx0X7hwATqdDtWrV2eWtr/++kuxULMa1IgwCci3334bmZmZaNy4MfuOyBzB0dERe/bsEbktiMg7OjrKFC4P3lJDMYJSSx1vLeDnrSFUrVpVZgVKSUkRWeoqV67MhMtnn32GEydOsLFTK/bZtm1bUc0lHmlpaTh8+DDq1q3L1pmLiwvGjx+PkSNHYvHixdDr9YiPj2drPTMzE7GxsahQoQKsra2RlpaGjRs3yu5tqKYVkBvPVLJkSfj7+yMjI4PVTDMzM5OROt4FZSqIaElJwqFDh+Dq6opffvkFjx8/ZmSKd9s5ODgonmGZmJioaKkzpZAskEswabzoGESCvb296mZECWobWicnJzZnHj58yEI0DEFal5IUrjQG8b333kOVKlUMup/0ej0mT57MZFdSUpLMehcdHa0aViC11JUtWxbffPMNrKysmO7IyMhg8/LUqVNwc3ODl5cXSpUqpVgLlF/n0nJNQO64SOdJ06ZNZfKTt+R6eHgwiyehdOnScHR0REJCgqx0CU/qvLy8kJCQoJoYY2try2IU+c1ap06dEBUVxUidTqeTWbqk75GamorBgwfj559/xr///ou4uDhmlfX29mbWTCp9EhMTgwYNGrDfSxPyCFWrVkVERARmzpzJjAI8ueRjbWkeUWkpntRJ+UBycjJ69OiBAwcO4K+//lJ8NoEnZFlZWbh79y4qVarESB1viZb2C5BLUvl3JVy+fBk7duzA5MmTsXPnTnh4eMh+37lzZ4NtA/JB6nr16oXevXujV69eiv+pxZvlBc2aNWMutiNHjogEkaHveEyfPp2Z1uPj442SGqlAJ8YvjRnq2LEjWrduLTt4ffz48UwJuLi4wNbWVpXUAS/YPi+olCx1ZmZmLD6BFvuQIUMQEREhSgDgLWe0637nnXfQoUMHbNiwIU9FU2mHYwi8uVqn06Fhw4bMummKpa5GjRqKpK558+ZwcnISWQN4Vwq/KwPEpAjItcZJFc+tW7fg5uYm2uFeu3YtT4eiq50gQYqMXDS8EB01ahQGDx4sartUGBKRL1OmDLOyKYGvtUVzSkrqSIh9+OGH7F61atVic1lt0yBV6FL3q16vZ+SN7kVCWS0UgWosSUHzPiAgAJUqVWIC2cXFBaNGjcLq1avZRoxObuFRpkwZ2NjYIC0tTeQaoaN+SDaMGzcOixcvxvHjx5GSksIsdLVr10bdunUREBCA/v37s3mWlpYmi6lTivcCXsTMKoFIpVQuSd3ZZCmwt7fHnDlzWCas0tqLioqSBV1TDS2+ze3bt1dsU3p6umic+Fg5nU4HFxcXNgfIZbVo0SLF8hakSKVr18nJiREJUwtbS0EKV2pVJi+KoWQwMzMz6HQ6dO7cmW38pNajqKgohIWFyaw0165dkylPvl+JAERFRYlIXevWraHT6WBmZqY4V/h7SNsC5Pa9dF7Y2trK5BevF27fvi1bV6VLl4aTkxPu3bvHNpkPHjxAcHAw0tLSmA4joqYmy2xsbNCnTx9ERUWx9QLkuj+Dg4OZXFfK1peG9OzcuVO0aU5LS2Mbmfr168usvYIgiPpIiQQDubIvMzMTHh4eTJbwpE4pLpaSr9zd3dk6qFOnDj766CPRdTQHpATd1tYWnp6eWLp0KY4dO6ZYT9bFxYWROj4+jieZ/PVqsr5fv35YtGgRyxDmNxt6vZ5ZUg0hz6TO09MTO3fuRE5OjuJ/ebF+qKFBgwbw8PCAt7c3AgIC0KdPH7aj7t69O0JDQ+Ht7Q1bW1vVl7S2toaTk5PoP0PgSV1iYiL7m3cROjk5MYHQo0cP0e/t7e0ZqXNwcIC9vb2q+xXIjYNwd3cXmXqVSF1sbCwjdbwgHTRokIgwzpgxAzqdDp9//jn+/vtvTJ48mfWZsXeXwlhdHOkuw87OTmRydnJyUrWgArmm7i1btogEaenSpdG7d28MGzYMTk5OslpIBKnwoL9J0Ol0OplQvHHjBtzd3UWu20uXLinWIQNyXQLSgFm1TE/alUnjA8uWLYtGjRqJiKPSOBDR8vDwUDwVwN/fH3Xq1BEpOjoRQnquY0REBFxcXLBp0yb2rKpVqzIBTUqTspeBXPfC/PnzRc+kUiAEvV7PBC4JqSlTpqBTp06KwmnMmDGYPHmyKqkjYluqVCkRqeOh1+sVXR/u7u6wsbFBcHAwLl26BCcnJ9jY2MhiTZYvX45Jkyahffv2sLW1ZePXokULlCxZErGxsaIyO2lpaTKyRopaGk9q6PSGM2fOoGzZssxiu3fvXpm7DBAr+a+//lp0LBkAlogA5Mb1SF2tROr4PlZzeaalpaFWrVqsPpqU1EhJXYMGDTB58mRR6Q2KnSS5x/eBr68v9Ho9wsPDERUVJTuLVEmu8Qk7BGdnZ8W+bdSoEXtnKd555x2Z5YnkJJ+IZW5ujsDAQHaWK4+bN2/CyclJFP/Gb6J4UkcbzosXL4qIj5L3hlfoxk5IadeuHQBlUsfrJhcXFzbmDRs2RFBQECpXrgwnJyd2NFj79u3h4+PD3p/uR6Ruy5Ytim0g156rq6siSTVE6oyd01q3bl1Ur14djo6OKFOmDO7duyfa8AJit7JUdjRo0AClSpVi/MLT05OFGvD9o0TqwsPDERERAQ8PDzYmderUwYYNG0S6nmSmdOO9bds2PH36FBMmTECHDh1kz4iJiUGJEiWYZ4yynNXaAwBdunQR/a1WloXXkR07djTpdKg8k7qGDRsaJG50vNXLYvHixThz5gy2bt0KKysrtmu0sLDA77//jjNnzrD4poKAlNTRYPCkrmHDhoy88IseyF3AROoyMjIYqZNa6kiJly1bFhEREaJAc1IqfK0gJycnRuoo5mD48OHw9/dXtL6tWLECXbp0waJFi9g78QvEmHWqRo0aqtlYJ0+ehI+Pj0wgKwltQ9a6atWqwcHBQSToateujV27dsHGxkZmqeMhLYNCc41PHqAxq1mzJiwsLBAREQE3NzdGHPixI+LLuytXrFiB77//XmRx4C29SrFX0liH+/fvywioEskhIVO6dGnodDpMnDgRFy9exIULF5CUlISGDRuKFN3kyZMB5CosCljns+2qVq0KnU7H2liyZElZrCf//uHh4di/f7+oTVu3bhVlpzk5OTGhQ+2tXLky/v33X0Wh9euvv8LJyUnRMjhmzBimJA2ROn5u8GSLSF14eDgyMjKwaNEipKSkiN5p3Lhxsudu3rwZkyZNYu8idWempqbKstFJsUlJgCH5du7cOfTu3RvTpk3DypUr0a1bN0U3rlRxSwmlEkngkZ6ejpiYGDg4OKBVq1Zwc3MTPad58+aMCJKFi2J2pFnnLi4uWLZsGTp37ownT56w+/Cb1MOHDyM6OlrkruafRUSxUaNGIre4m5ubomWTjxMbPHgwdu/eDZ1OJyPA77//PiPVSqSuUaNGsthcGkdeBpUsWZLpLbI6jx07ls1fJycnVoYJECt2WjdkjfH390dmZqYoBkrJYm1nZ4e//voLkydPNkrqSDbY2tqKvEPe3t4ymcdfS+9Cn9nb28sstjTX6Fq+mgTB1tZWRPaU3OwVKlSAl5eXomtdmhgnxYULF9ChQwd4e3vDw8MDOTk5Mqu0m5sbunbtimrVqjH5RaSmevXqqFOnDquq4OHhwfpczf1KCAkJQXR0NNzd3dGqVSsAucTX3NwcDg4ObP4obbr/+OMPGQFTQokSJWQJROvWrYOlpaWMiA0fPlzk3g4ICFBN1KB5U7t2bVFZKkPIM6n76quv0KJFC9Xvq1atWiBxda8avKIeNmwY+5snLLRjBHIVktTKRkIwJSUFer0esbGxMkvd3r17Ua9ePcWYASLE0iwnstI0bdoUgiCgU6dOSExMZO4nSkxRUzY8mSArG7mrpJDWUOJRvnx5tGnTRqakpAQXMM0Fyy8i3l2l1+tlljoSdGpHnjVp0gTt2rXDwIED2UKoWrUqE07Ozs6MOPBnrVLxUmmauZmZmaprUckNJCVsShYHtUQYACz+bMmSJWjcuDGaNGnCrqd71apVC97e3uw3NN48CSe3BfVXx44dmeKiNlpaWmLhwoWiws88pAU39Xo961MloakG3nq6cOFCZGRkoFWrVowAuLm5iWLqePBxKzzZ4okgkCtMpTtrJeHXrl07tq6USF1aWhrLpCchTMpcaplQSzohfPrpp7CxscHo0aNhZmbGxocX3NKwDinxUXLXtWjRgr37yZMn8dNPP8HBwQFnzpzBs2fPRHPQ19eXkVGyrhFRlCoZ+vvw4cM4cuQII7M0b8iKVLJkSdYuKens1q0bBg0ahJCQEFFFAp1Oh23btrEjmZTw8ccfszVJ8WnUhqVLl7I1r0TqlOYjrU/eTebq6spIHfWLtbU1u0av16vKFgsLC5w4cQJr165FqVKlWGY+b/FUii21s7PDwIEDsWjRIoMJUU2bNhURNfIyKR3xB7xYV7zO6tChA2rVqoX169fLTjEhUqKW1ATkbhZ565yZmZnMTevq6oqAgABFN/+vv/4q8gBs3boV3t7e2L59O/z9/WFjY4OhQ4fi4MGDqnK1VKlSOHDgAIKCgpjepDZ7eHiI5nfZsmWZHuL1ntImMyUlBTk5OWjcuDEaNWoEQRBE+onuqxT/NnjwYJOsY1Ir88KFCxVr9lHbCW+99Ra8vLwUEyeAF4lP5cqVMylJAsgHqfP29lbNUgFyFRdvln5dQAvk559/RpkyZdjk4IUtb1UzNzcX7Xjs7e2ZYrKxsUHp0qWxatUqZlkBcklM+/btce3aNYMDJBVUJPCoLaS4addiqGgpICYcFStWRHx8vCxImSAldba2trhz5w5GjRrFFqN0Z6xUD8yUOcBbJnl3p5Kljiq7SxU4LeiyZcvixIkTGDFiBMzMzHDq1Cls3ryZKWS9Xs+Efc+ePdGxY0d07NgROp1OkZQqwVCyjSlZrErFlvv164eTJ08aDIAlYUFufUL58uVlgprmRoUKFRAdHY3+/fuz53bu3BljxozBl19+ialTp8rGmlcSvIBXstSZApp3FhYWmDp1KutnaqMhS500e5dvI2+B5rPWW7ZsadK8U7PUdevWDTqdjilraj8RWpp76enpii6of/75B19//bWsX8mNyW9cpASC1kLDhg3x5MkTVKlSBVZWViw7sWnTpjhx4gTS0tJEa5csJBS8XrFiRcyZMwdA7nxLSUlhyRektKTznchm//798eWXX7KTKYDcUAk+cNzc3By7d+8W1VskqG3k3nvvPdHpCzySk5NFCQ2lSpVCtWrVmCLl55vSZkppPtJaJKVvZmYGNzc3PHr0CHq9npEeS0tLJtOIlKkl97Rr1w7Ozs5s3O3t7UVWRaXj4HiCIZVbhJSUFJw5c4bNMd5DpLYJ5AkgoUuXLrh16xYGDhwos7JNnToVjx49Es1Laey7Uj9KPRKGQmqqVKkiMkYMGjQIp0+fRv/+/WXhC/zGVOm9gBexySTf3N3d2Vynum00vrGxsbC3t8e7777L+oTGg7+nWhybIUudqShRooSID/A6Uir3SZaeO3dOFisrBel2tfAfJRTL4sNFAVIuNCloAlOqfEpKiiybiv+dnZ0dKlasiNWrV2P+/PlsRxseHg4bGxv06tVL0extCE2aNAGQ64qWZiMCL86pNDYZpSnfTk5OqkJGWhLB3d0dNWrUwKpVq5iglboSlEjd2LFjVUtaEEi5eHh4iJQc73Im0ELgs0sBdUXSunVr6PV6JnidnZ0xYsQITJs2DR988AH+/fdfxSNg1DBlyhQcOXIEtWrVkhUstrCwEClKacFRqhemBEtLS1ktKyl4UscL3zZt2sgshLzFgKxBlNRQokQJ/Prrr2xu86UqALA6eEBusDtZ8vR6PVOUSjthNQsHKQWpZYtInZubG9uRS91upUqVQuvWrQFAFi9H9x0/frxo03X27FmTSpCUKFFClhwiCAL27NmD1NRUJvylxILfyfO11JYsWYI9e/agT58+jFDxWLNmDSIiIlTXHPCC1FlaWqJ06dJwd3dHamoq9u/fj2PHjuHQoUNsHvDkRlpM+9GjR+x4PCB3vOi5TZs2xXfffYfJkyejRYsWrHDwmjVr0KVLF2zfvh2LFi0SbV6qVasmIxe9evVSjLniM+K/++47kYVCTUZJycTgwYMxduxYtlnjny09O1rp90BupvGaNWtgZmaGuLg4PH/+nCnZbt26sbVqaWkpc03//vvvBrNsaZ5WqVJFNJ5KpM6UDZCtrS0sLS1lcYNubm6yjSLNRyVLHY/33ntPVF+RyD6/TqV9qUQgpd4GQ6QuL7CwsMDhw4dlmx++P2lek66zt7dnMcTS8IDnz58jKSkJR48eZX3u4uICDw8PJmu6dOmiuv5obihZ6kyFs7MzSpcuzTxhSuW6CDTWLVq0UNwc8qB1xhf5NwaN1ElASmvDhg1YsmQJnJyc8NVXX6kGPNLg2dvbQ6fTYeTIkdDr9aLBsrOzw+7du/Huu++a3I7k5GS2gzY3NxcJRScnJ+j1elag1pBbDxBbkQwpFkCeSq406fh7eHh45LvYNO0opQpd6ZSCEiVK4O7du/juu+/YZydOnJAlrEhB99br9ahVqxYWLFjAMuXygh9++AFeXl64desWFixYgNOnTzOLNQnLtWvXYty4cbId4R9//GHyUUBKIIUvtdT16tVL5gbjQwQIRLql86Rp06asUO2uXbtE5NLc3JzF6lWoUIG1QcnayGcS8655tT5u3LgxnJyc4OnpyZ6hRBJOnToFQRCwYcMGXLhwgRVxlgY25xV8UPI333wDIDeW1NzcHNbW1tiwYQNu3LjBnkPX80Lfw8ODubUmTpwoshhKYWVlZVR4K/UvzdMOHTqIFCof3mJqWRMgd0xnz54NvV6Pc+fOsXU7fPhwHDx40OT7qMHd3Z3FZdnb24sINz9WSsdEEQYPHozPP/+ckTqeuEydOlUWYqIkl728vJg1kzKpSdb07t2bbTIsLS0ZsaDsdTMzM4PZzTSO0jjLNm3ayFzMSqRLrVQHhTSRq75OnTqiDdq5c+dYEV5jpE6n0zHLqNpRmlKZq0RATSF1QUFBBsdTDR07dsTBgwdV+5rmNa09KysrFkOuROoINB/Mzc3xySefYPz48Zg9e7ZqcgjwQg+p9acpoHaSrFWKSXR1dcXTp08Nhq9JodPpkJmZqXhkqCqEYgZ/f3+hVatWQuvWrYV+/foJGRkZou9PnjwplC1bVmjTpo3Qvn17k+8bHx8vABDi4+MVv//hhx8EAMLOnTvz1N63335bACCkp6eLPp80aZIAQAAglClTJk/3NAW1a9cWAAguLi5Cenq6sHjxYuGjjz5SvDYtLY21hQd9xv/HXwtA6NGjh+I9t27dKly/ft1gG3v16iW6V9u2bWVtOHz4sJCVlSX6zMfHR9YuQmZmJvtM+jsl0DgsW7bM6LVNmjQRKlWqJPpMqd8IO3fuFAAINjY2Ru/9Mujfv78AQBg8eLBw69YtAQAb6ylTpoj6SalP+vbtKwAQzpw5Y/RZGzduZNcdOnRI6Nu3r5CZmSmsWbNGACCsX79e9bcXLlwQnj59KvoMgFC6dGnZtWlpaYIgCEKpUqUEAMLjx4+Nto2wevVqAYCwevVqk3/D4+jRowIAoWrVqoIgCMKNGzeEqKgo2XUZGRnCkiVLhJSUFAGAUKdOHdF8SExMNLoGpGjYsKHQtGlT2ec0l1q1amX0Hn/99ZfQrFkzAYBgaWmZp+cXJJTWxt27dwUAwuXLl0WfP3/+XHQ9AMHDw0P13p07d1Zdd/Hx8cKiRYsEAMKmTZtMauu3334r2NjYCElJScKuXbsEAMLChQuFtLQ04caNGybdQxBejNOUKVNk38XExIjWYnh4uOj76OhoITExUfG+OTk5wsaNG4WYmBijbbh48aIAQBgxYoTB6wICAoTs7GzRZ9S2nJwcITExUfD09BQACH/99Zfs99nZ2ex6U2WcIXmphKSkJMX7nz17VujZs6fg5+cnABDOnz8veHl5CQCE1NRUQRBy+8zT01M4dOgQ+11iYqIAQGjWrJnJbThx4oQAQCS7jh8/LgQFBan+5o8//hAGDBjA3jckJEQQBIHJiMDAQNH1p06dEsLCwkxu08vAeATgK0aZMmVw5MgR2NnZYcaMGdizZw87wJwwYMAA1SNT8gvh/3eAaofMq+Hvv//Gxo0bZXEq/I4sL3FIpoKsLvPnz4eVlZUoSFUKtRIMc+bMwZkzZ0THbvHXent7q+4QjLlWgRdFcn/55Rd07twZ5cuXl2VJKR0zRW43INeVwgfW8kGram4/HrSDMpZ9BihXsj99+rRqYHxhjKsSaEyoHACQG1wOiIO1V65cqdgnapY6JfAFkzt37sxi/agNhlxTFC7A4+TJk4o1p+h+ZJnIS6FfmkP57X+yXJOlSuqGJlhaWmLixIlMNnz44Yf46quvRPchC4+pkB7/RjBkCZVi4MCBGDhwINvFFye89dZbiglb0pIN0dHRBmNZt23bJjpTk4eTk5OozIgpGDNmDDp27Ah7e3u888476NKlCz7++GNYW1urjr8S6D2UrC1kJZo6dSoaNWoki5tW8kAQdDqdrFi5GoxZ6ghKiREeHh4sFMDBwUEUPiQFPxcLyvUqBT1XKp9btmzJYlBjY2Ph7OyMJUuW4LvvvmPvrdPpZOfh0hgonbWuhnbt2snmrFrNR8LgwYMxePBgljFOHhMKdZG6X3mdVtgodqSOXwhK6cBAbmHDCxcuoG/fvqrm5byCBjWvbrnKlSsrxtEMHz4cx48fx/bt2wtF+VOgt1rxZVPw9ddfY82aNTh69ChKliwpK2WilHmVF5AJnSrCA8qZslLodDpYWVkhIyPDpArahkBCK7+mdbWgXuDVkzoqA8MLIHLRfPHFF6JSODzyQurUQLEihgokK8FYvCAJQUMuLymIWBqqF2cITZs2xZ9//inbLKpBp9MhKysLZmZmIlJXkMgLqSNUqVLlpc/Zfhl8+OGH+Z5ThggOkEvclEIJCBRbayxJjEBncwK5pCi/7uZ27drB399fFvwP5M5HCwsLVKpUKU8xUHkFubLVQoIMwd/fX1TMnTJcjZ0CZCqpe/LkSZ50qE6nw+TJk/HBBx+oXkOEj99kqsHc3ByRkZFG51dBQVrAuGrVqggICDDJiFBYKHakjhASEoJjx46Jgn6B3JghOsS6Z8+eaNWqleICS09PN3qoMA9SfHkldWrQ6XRo0qQJtm/fnq/FZwzu7u4ICgpSjdEwFWTZ4VOwhwwZYnL6tCGQpS4/CywwMLBAClkTmZMmXhQEaFwLas6ogciLkqDw9vbGgQMHDGakE3F6GVJXt25dpKSkFPhcnj9/vux8RGN4WVJnZmZmUIkowRSr8MsgP6Tu/v37hdUck5DXM76HDRuGTZs2FcizK1eujMzMTJPKTRQ0lPQNkDt2x48fN5lo5hemWuqUUKZMGcX4VaUzg3mYSuqUSvEYw6JFi/L8G0NQO8ruVeD333/HtWvX8uzxK0gUGamLiIhQ3M3s27cPFhYWGDp0qKJbkw/679GjB65fv664yBYsWCAKqjeG/LpfDYEWn6FMmPxi+/btuHr1qsnlOADlWkr0vqT4AfWK43kFkbr87FoqVqwoK5KaH5BlSVpFvyDwqix1RCjUjufhD+VWAs3tvFjDlFAYm5Pp06eLzrY0BUTQX/Z98oOqVasquplfFvQuhU0eixK//fYbfvvttwK7X1EQOmN4FW422py9TGA/oUePHrh9+7aq3ps6dSp++OGHQnO/vmlwdnY26p0obBTZqvDw8FDMmsnOzkavXr0we/ZsWYYRkGtxI/PzmTNn2NE3UkyfPl1UiychIcFgnbFBgwZh3bp1ecpMMQYidYWxIDw9PfMUhxQaGqp4ogEpEZ7UFRSmTJmCsWPHFoqikh5qrYZWrVohIiLCaPZhfkCkrrAtdWRlzu87rFixAl5eXoWyuSgKUExtYZArY6AMxIJGfix1rxsKe538V2BmZoZy5crlSf6rYe/evQZPSFm4cCFOnTpVKPJTQ+Gg2G11duzYAV9fXyQmJmLOnDkYPXo0BgwYgJEjR2LNmjXYsWMH1q5dCwsLC7Rs2VJ1Z2RtbZ0n90ylSpVUDzrOL4hEqZ3r9iqhduwQES5jx7zkB5999plqkeOXQUZGRp6UX2EJpFflfqUahUpniJqC8uXL48cffyzIJhUpatSoIavP9rrjv0DqNBQcbt68aVLBc1NgTH7xZ0lrKP4odqTugw8+UIx3obNfhw8fzmK/ijtoB1SUQZPGQMrkddpF58XlXJh4Ve5XqnGn7ZbfXGikTkNe8DKFcvOKl43b1vBqoUmQQgRZ6tTOdSsO6N27N2bOnPnaEOXihFdlqSNSl19LnYbiD43UadCgoSCgSZBCRJs2bXD+/PlCTW9/WVhaWmLu3LmFEgT/puNVWQynTJkCR0fHV2YZ1PDqoZE6DRo0FAQ0CVLIaNq06Wvl2tSQdxT2+A4cONBoSR4NrzeIzGmkToMGDS8DTYJo0PAS6NOnD7Zu3VrUzdDwmoPIXEEFv2vQoOG/CZ1gKJ/5DUJCQgL0ej3i4+O1TB4NGjQUO/zyyy8YPHiwVhNMgwYN+YZG6jRo0KBBgwYNGt4AaO5XDRo0aNCgQYOGNwD/GUudIAhITEyEo6OjlrigQYMGDRo0aHjj8J8hdRo0aNCgQYMGDW8yNPerBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDG4D/DKkTBAEJCQkQBKGom6JBgwYNGjRo0FDg+M+QusTEROj1eiQmJhZ1U4oNcnJyNJKrQYMGDRo0vCH4z5A6DXKYm5ujb9++Rd0MDflEcnIysrKyiroZGjRo0KChmEAjdf9x7Nq1q6iboCGfcHBwwNChQ4u6GRo0aNCgoZhAI3UaNLzG2LFjR1E3QYMGDa8YT548QUZGRlE3Q0MxhEbqNPxnEBgYiHnz5hV1MwoUVlZWRd0EDRoYnj59Cmtrazx8+LCom/JGo2zZsvjss8+KuhkaiiGKJam7fPkyvL290aZNG/Tv3x+ZmZnsOx8fH5QrVw5t27ZFhw4dirCV/03ExcUVdRPyje7du+Prr78u6mYUCHJycgBopE5D8cLp06eRkZGBffv2iT5//vw5dDodDhw4UEQte/Nw+vTpQn+Gr68vIiMjC/05GgoOxZLUlSlTBkeOHMGpU6dQtWpV7NmzR/T9gAED4OPjg+PHjxdNA4sAERERSEtLK9I2PHv2DCVKlMCWLVvy9LvQ0FDExMQUUqtMR3p6OgC8ERm/KSkpAABra+sCve+BAwdw69atAr1nYSA6Orqom1DgIEL0OsPCwgIAkJ2dLfr87t27AID//e9/r7xNbxooOcrc3LzQn9W/f3+sWrWq0J+joeBQLEmdh4cH7OzsAACWlpZMUBB27twJb29vLF++vCiaVyTw9PREnz59Cux++cmafPr0KYDc3VteUL58edSoUSPPzyto0Dvzlt/XFUTqCtpS1717d9SpU6dA71nQ2LdvH9zc3BAYGFjUTSkwxMTEoE2bNpg5c2ZRN+WlQERDSuqioqIAACVLlnzlbXrTQJt7qV7MD/744w/88ssvqt+npKTkaUPeq1cv9O/f/6XbJcXly5excePGAr/vm4hiSeoIISEhOHbsGLp168Y+a9SoEQIDA3H8+HEcPnwYly9fVvxteno6EhISRP+97jh8+HCB3Ss/Vj8iQ/khEsXBskLtf92tIUBuOROg4C11rwOuXLkCAHj06FERt0SMu3fv5tsKTHPywYMHBdmkVw4zs1yVIiV1ISEhAIDY2FisX7/+lbersJGUlITq1asjICCg0J9FsrsgLHVDhw7FuHHjVL9PT09HbGysyffbu3cv/v7775dulxSNGjXCJ598YtK12dnZeWrzm4ZiS+oSEhIwdOhQbNy4EZaWluxzBwcHWFlZwcrKCj169MD169cVf79gwQLo9Xr2X7ly5Qq9zRkZGahSpQp8fHxMuv7JkyfYvHmzyfcvSHN7fkgduS/58SgoxMfHY/v27UavW79+fb4VH1nqipLUZWVlYeHChawv8ws1S11ycnKBlKlZunTpS9+jsEDzrzjV6Ltz5w68vLywefNm5OTkwM/PD40bNzZ5M0lkkGIlX1cYI3U//fQTRowYUaQhEE+fPoVOpytQS29YWBju3buHoKCgArunGgrSUmcMGRkZr10c9aeffgoXF5eibkaRoViSuuzsbAwePBizZ89G9erVRd/xQvLMmTOoWrWq4j2mT5+O+Ph49l9oaGihthnItUY9fPgQo0aNMun6vn374qOPPjJ6HZEQEpgFgfyQOiIShSFMxowZg4EDBxpUgmFhYRgxYgS6dOmSr2eQpe758+cYPXo0s3YVFM6dO4dt27YZvObgwYOYPn061q5d+1LP4i11MTExLJh50qRJ6NOnz0vHME6aNOmlfl+YoPn3Kt3oP//8s0EZ8uzZMwC55G7evHlo0aIF/P39cfbsWZPuT2tcSoYKEklJSahTp06hEg+193jy5Ino75fd1OQHSUlJOHLkCAsfoaSNDRs24MKFCy91b5JbJCOVsGbNmgKJKUxNTQUg31xv27YNZmZmOHTo0Es/A8jdYGRlZRUrq1dERITRa37//XcALzZKt2/fxpEjR1SvFwQBly5dQmZmJuvb1xnFktTt2LEDvr6+mDNnDtq2bYvt27dj5MiR7LsmTZqgRYsWKFOmDFq3bq14D2trazg5OYn+K2zQEWSm7gApzsSYciIFXhikLi/3pPfLi/vVVOFNSlGN1MXGxjJr69OnT/OlFEjhbNiwAatXr8bOnTtVr3306BFGjBiRJ8tJq1at8MEHHxi8RqfTAVB/T1PBW+pcXV3h7u4O4IVLsqAJqxSLFy/GyZMnC+x+eTmyjkjdq7LUZWVlYfz48RgyZIhJ1/OWelPfiWSAsfm2a9curFu3TvE7nU6HNWvWqP72+vXruHXrFlavXm1Sm/IDWpdSUifdZBgiP4WFIUOGoFOnTrJnDx8+HM2aNcO9e/dUw3mMIT4+HgBEpICfnxkZGRg1ahTee++9fN2fh5r7dd68eRAEAV27dpWRaEJMTIyii1hJB9FnxclS5+npicePH6t+z683kve1a9dGp06dVH+zadMmNGnSBA4ODiyWvzAxb948NGvWrNDuXyxJ3QcffICYmBj4+PjAx8cHAwYMYMJq+PDhuHjxInx9fbFo0aIibqkYSUlJor+nTJmCjh07qroVSfAZE3D0/cu4X1NTU0ULlwRDTk4OdDodrl69avQe9H6muF/T0tIQHR2dZ/cTCUcpiPRRO9q3b2/SfYFckn3lyhUmZE3ZjU2cOBHr1683mM4fHR1tMGkkKysL8+bNEz2PCPHLuoCJtPEEu169ejh69CgAICAggAm/p0+fYs6cOQXq8vrqq69EY3Dy5MmXEv7m5uYYP368Sde+SlJ37949nD9/HoDhDQpPxqRj+/333zMyL0VwcDD69OnDNkzGLHV9+vRRrE9GfbFkyRIIgoBz584hMTFRZF2k8c/LRi4zMxM3b940+Xo1S92rInWCIGDRokUyi86+ffuwd+9eAC8SvgCxx6J69epo1KhRvp4rJXV+fn6wtLTEnTt3AORa8QHAy8srX/fnoeZ+5eV7eHi44m+9vb1Rq1YtAMDu3bvZ50qWfZrvr8JSd/nyZdU2S6G2qQHE42nqxpZCA15VWM7XX3+dJ8twenp6nowLxZLUva4gwUxYtGgRjh49ioEDBypeTwNlTMDR5FQidVlZWdi+fbtMYR85cgTdunXDp59+CgCws7NDz5492fdS9ytvno6KilJcyETqTHER1a1bF25ubjKS9vDhQ2YeV4IaMSCrJiEvGbg1atRAw4YNWX/TuxuykNI7GlpMY8aMQcuWLVWJ67///ouvv/5aZD0hwVEYMXU3btxg/+7cuTMqVarE2jl79mzExMRg7969quNniuB4/PgxGyNK0sjJyUH79u1ZKIGp5DEpKQkJCQnsekMu6czMTKZ4SJkNGjRINXZm7NixuHjxokntMITq1avD29sbQO679+jRAxkZGYiOjmZlOgDxRoFXDoIgYOXKlewdJkyYgMmTJ7Pvv/76a+zatYuVkclvTB3N6eTkZPj7+6NVq1ZwcnJC+fLlZW1UI5hKmDp1KurWrWtyuAbNa6mCfP78uejvlJQU1XWTmpoqW+9SXLlyhZFtHgkJCZgyZYosBIY2O0BuGIfSvwk7duwwmWAQpKTuzJkzAHJdfwAYMX7rrbfydF8lqFnq+E1OZGQkwsLC2NqiNU8kUxAEUaa1UiIbjWF+Sd2JEyeMjiOhT58+Jlez4Atb//7776hYsSL7m9c3a9asMSlxRSnZLDY2FjNnzlTdOO7fvx9jx44VfbZ+/XqRYefs2bOieZdf2NjYYOLEiYiJiTEp5EQjdSYgKysLJUuWNFoXT0rqjMFUS52a+/XixYuwtLTEwIEDmdsgOTkZ2dnZ6NSpEw4ePIjffvuNXf/vv/+yf0uFdFpaGg4dOoSWLVuiVKlSKFu2rKwd9H7GCEliYiLu3bsHQG55e//99zFs2DCZ8pJa6gICAkQ7Mt5S97Ig65uSIDt58iSWLl0qIoCpqakypbRnzx52RJc0hoUEOgkEvr9orNX6cPjw4bK6jEpQstSpgYTzqVOn0KtXL8yYMUORPBjbqcbExKBSpUrMoubm5gbgxZiFhoaiZcuWaNeuneo99u/fjxYtWgDILXWj1+tNqrk3ffp0uLq6ymJjlBROdnY2VqxYgcGDB7PPoqOjTbJGG8KzZ8+wf/9+3Lx5E127doWXlxfs7e0BvBgPQRBkpE6v17Pf//TTT1iyZAn7npJ+THW/KkEQBEaIk5OTVV1vNE5mZmZYsGABI0XZ2dmqY0/E2NRYI5rXUpkmtQSdPHkSer1ekXi/++67KFWqlMHndOjQAc2bN5eRL3ou/f/w4cM4evQo7O3tUaJECQBiUhAcHCz6vbu7OwYMGID333/f4POloL6l59I40v8pLMIUpRwYGAgXFxcm89LT03Ht2jX2vZqljicg/v7+KFeuHH7//Xfs27cPFhYWIhn6/PlzUcKZ0gkgNCdSU1NN2oTycbiCIKBDhw4mleFKT09HSEiIyV4dfszGjh2L4OBgNr/4e8yYMQNz5841ej8lubNgwQLMnz9f5I738fFh/dSjRw+sWLGCfRcREYERI0bg888/Z595e3ujY8eOqs81tvldvXo1evfuDSA3XvLTTz9Fjx49jL6PRupMQFxcHJ4/f44ff/xR9l1gYCBbyDypkyobQRBkC/plSd2GDRvYv83MzCAIAhwcHDBlyhRZ+wHxzk5K6lJSUtC1a1dmAaP6RDdu3EB8fDx++uknJrikvxUEAe3bt8epU6cAQOTykZI6EjxqO2Fqa4sWLURuJiVS5+zsnK+yFmQVuX//vkyY9enTB5MmTWLtS0tLQ8eOHWX1tf7880/275MnT4pM/RTnSRYRfvHSWCspyezsbGzYsAG9e/c2qtzpeaZYXegaUvY//vgjXFxcsGzZMtF1xgQ3EVsis0TqiBzb2NjA19cXp06dwv379xXddp9//jn8/PyQk5PD1oinpyeAFwT15MmTMmsiua8uX75slHySdcDZ2RlAbp+3atUKb7/9tsHfmYqTJ08y13ZKSgpycnLYuEpJXUZGBiN1SmTr/v37AF6sk/wkSty+fZsp1JSUFFXrCL8WZ8yYwch19+7dVQk1zYnbt2+zd87IyFCcn5mZmfjnn39YOwh+fn4yhU2EkqzLz549w7Rp05CTk8PG2hBITly6dEn0Oa0Lal/nzp3RsWNHpKWloXTp0rCzs2MbTiITPMjSklfrlNRSR/1GZIPkDMnOpKQk3LlzB5cvX4adnZ1o03jkyBHExsayRI5p06ahQYMG7N70f0OkjgwQDx8+ZMSZ39RcunRJNE+Vjk/kvzcltILPmKeNsynx5cHBwRAEwWSXPE/qaLzoOdJ5JpWzdnZ2GDBggOgzpXAiug8v19u1a6daw5N0O53yYYrrl3S2GkaPHs02+Hq9Hvfu3VNNDBXd1+gV/zGcPn1aVuSQJs7Ro0eh0+lEgrdGjRoYNmwYADGpk2aYzZ8/X2ZVedmYOn6A09LSmNDlYyWAFzEDpITpeh7SHSuQG/hfr149bNmyBRMmTMBff/0FILcsAV9lPD09HSdPnmSEkN+VS0kdkaOPP/5YVHqDBAhdL/2dEqmLj483yaolBQn19evXo0qVKqLvPDw8ALyohZaamsosb/wC5IN1165dy1x0BEEQFEkdLXal2EFeIPFC/vDhw2jWrJnoPtS+vMSV8fMzPj4eEydOFLkLpKROem9qH80dGxsbAC9Ina2tLbu2WrVqqFu3ruwepGz55/IJOKdOnUL79u1FpDk7O5sp/0ePHslIXXx8PB4/fsz6lOKpiNTVqVOHCf1bt26hVatWL5Xl9tVXX4kUQVJSEhvXjIwMUT+mpaWxdvCxXATqO+rb8PBwVWuOGuHj50pmZibmz58v+j4xMRE5OTmsf3irIiC24EtB7+Lt7c3c+dbW1iIXMmHhwoVsrfD9S+SR+gF4MYcmTpwInU4HDw8P/PDDDyZVKeDnMU9gnz9/zuSYlHSmp6fDxsYGpUuXZkQ6OTlZRoCpb3jCFBYWhjNnzuDkyZPQ6XQYPny4TGbzpI6yKYHcTUyjRo3Y5pP6s2/fvqhZsybmzp2L1NRUEbkk6y+5Sqm95Co2xVJHMVseHh7M6xIcHMx+Q+ME5FrMlbJK+Xmc13hZkqNKsLKyYmFBV69eZRbDM2fOmOQuDQ8PR0ZGhmgMWrZsiSFDhsjkKr+REgQBqampbFNKUAotoM+k/ZKSkiLadNCaJJlE808pjj4xMVFWE9DU8lwODg64f/++rBqIEjRS9/8ICQlBw4YN0aZNG1mRQyn7pwEnwfX333/jzp07ImFz4sQJ0W82bdoEQLz7USJ1I0aMwKFDhxAREcEWklpMHb+IU1NTmSApU6aM6DqaaIZInZJrimKGvvjiCwAQCZ7PP/+cucLovWkB8KSOj3sRBIHFQP3vf//D0KFD2Xe0GH19fRUXtinuVz8/P1a30NfX12RzPt+PUuGVlpbGrBi8u1ZqIZT2Hx8zpGSpI0vAjh07cOPGDaSmpooE0OnTp6HT6fDo0SNcvXoVFy5cgI+PD7tm//79srYbg1J/8EJQSuoSExOxZ88eODs7QxAEmfWCxp0ndVKSbGlpKSJwpGyVSK21tTUrAcK/V1BQEFJSUlCyZEkEBATIykI4OzujUqVKaNq0KZKSklgcE5EI3ho7adIknDt3ThR/aAhq5XsiIiLYXH748CGLr0lOThat8dTUVEZ+lSx1NDdobAIDAzF69GgsWbIE8+bNg06nY0qIJ2+XLl1Cv379IAiCrC+l2YFOTk745JNP2HWG1kXVqlVFlgw1661SsDptloBcpSZdI7ycI/kjDVn56aef2L/ViuLyzwkLC2PyrV69enjnnXcAKJM6a2trkVs1OTlZJKsqVKjA/m1hYYEnT54gMjISTZs2RevWrbF161YAuR6S0qVLizZyPKlbvnw5Dh48yL67fPkyk4303qQfiHzx7aV1RvKXLL0kf3lSN2vWLBaLxm8GaNzS09PZ5vLhw4fMsMCHErm5uSkaFvh5zK/9du3aYceOHWzuzps3j2XfS0HXZGVloVu3brh79y4yMzPx22+/ISoqCm+//TbTtw8fPkStWrXg6upqsBSQIAgICgqSydytW7fK5jZvyeXlEK/jpe9++PBhFvdN48b3batWrdi/Q0JCMGfOHJk+5Y/SpO82btwoO72Dbx9vmAFekHsgdxOfkZHxepO6yZMnw9vbG4MHDxZNrqysLAwbNgze3t4mZ8sZgyAI8PPzY9YPKaSCh8gcv8urWbOmaELxwgl4MbAnT57ErVu3cOzYMSakaVJlZGRg/fr16Nq1Kzw9PVG/fn0AYlLXr18/Jph4E29qairb2UkVPbkSHR0dZe0h8ILSVFCaOC0WJVLHu6xDQkJYGwGI0rqJTP3xxx8sOwvIXUyCIKjGCfGEqUWLFqhfvz6ysrLQrl07rFy5UjVTqk2bNuzfDx48wPHjxxEeHi5zC6elpbH4HlpwSUlJRk/I2LJlCz788EMAwMyZM5krhcaa3mfAgAGoV68e7OzsRKZ9soT6+/uzvmnfvj0qVqyIzMxMNveMkTreYqikzPfs2cP6UKrA//zzT/Tu3Rvx8fGIi4tjSo1AFiBah9bW1ooWMLLwAi82Mkr9Z21tzcgWL2hJePfu3Ru+vr6qsa2BgYGoVasWKz2iVMaI5ujkyZMVy8/wwjsrK0u1f7Ozs1nQe4MGDdjn69evF1mbgoODWfulGwZ+l84Ts0OHDmHy5Mn4+uuvAeRmz2ZnZ4v67JtvvsE///yD8uXLy1yISvj999/ZM/j78OsnKysLDx48wI4dOxAWFobr16/L5gRdTxZsftMmzf6njSyVibh58yazrKtlufNy85dfflHsf7JYOTo64ttvv2WB8nzSgxqp44+wSk5OFvUFn1RiYWGBsmXLwt3dnVlYeU9LfHy8iHjwMXVKZ2NL45FpnpG8efz4MSpXrozz588zvUBrnObxO++8g7S0NCa7dTod5s6diy+//FJ0Tx7JyclsTYaEhLDf8tmXLi4uMnfh4sWL0bZtW/Y3kbqMjAxWkYLiu77++mvVKgG03kNCQnDw4EFmIABezEOpNSwmJkYWGkJwdXUFAFy7dg3+/v6wsbERHUFpaMPCrzfeGyeVWfzJTZMmTUJ8fLwsppowduxYzJ49W7RJTExMRFxcHJuXNI5KsvHOnTtITU1FSkoKRo4ciUqVKrE1Ru/Ko27duqrvRyiWpO7q1auIiIjAmTNnULNmTRanAeRaKMqWLYszZ84gJSUlz+eQKmHr1q2KGaqCIOD8+fOy4MS0tDRkZmaKdnYARBamyMhIUZAkLepOnTqhTp06ePfdd9l3pMCkEzI4OBgtWrRgE0YQBPzzzz/MvZqcnMyscnzGmNTNQwuSF9BSF21+ERkZKbPUSRcACfVatWohMDAQTZs2Rbdu3ZCdnY2dO3ciLi5O0TUF5ArSwYMHK2ap8eCF0pMnT5CRkYF169Ypln8AgCZNmrB/DxkyBO+88w5GjBgBS0tL0XepqamM1JHlwZTirVK38KZNm0TJH7SY1UBj7uTkJFKAWVlZbL44OTkZjf3hybsSkRo7diwTcFKiz2d3bd68mSlpQmJiIoKCgli/7Nq1C0+fPpVZt8hyBrwQ8kpuB0EQ2OfPnz9HamoqcnJycPXqVZQvX94kgcYTHKV4FZqjZ8+exbZt29g1mZmZ2LRpE6ysrJhSVnI58Yqd3JGGMHfuXDZ3pQSJD5/g17603bdv38aMGTNEm0v6bVhYmEhB00ZCCTSPeKt3y5YtZd8DQLly5VC/fn3RhtrW1lZUsqR169Zo3rw5+15K6gRBgCAISE9Px8qVK1G9enV07dpV1gZDiIqKQkxMDOrXr882nhERETAzMxOVB8nIyBB5IqSkLi0tDTY2NqIxM2apk0LJTUfvTH23detWXLlyBcOGDRPJ/7S0NJQsWVI1i3jOnDl49OgRzp8/z9Y0rVd+3gQHBzO5ISW8SgQ4OTmZPXPbtm3IycnBmDFjRNdYWloiNTUVw4cPx9y5c6HT6fDVV1+J5DitBT5M58CBA0azop8/f44DBw6wucvLeUNGmV27dok8OQQXFxdUqlQJ165dw7Vr11CnTh3RuMfHx8ti5Ki+qZLhQqfTYeHChaLPUlNTRbHK58+fVy3mTvHZPA958uQJkpOT2VyLiorC6NGj8ccff8h+P2fOHNjZ2aFUqVIsJv3x48fYtGmTLI57xYoVLP7YEPJM6lJTU3H27FlFF1laWlqejr1Sg5+fHyvS2KlTJ1GHGfouv1Aqi9CsWTNs2bIFzZs3l5GU1NRURYEv3TF36NCBBY+q7UyBF6RO6Ro/Pz/m5uStVWlpabhz5w5j82lpaYzUSa1NJCRSU1Nx+/Zt+Pj4YN++fSwb7GXg7u7OCOKzZ8+Qk5MjIw9EBoh41alTB+XKlcOpU6fQt29fDBo0CNnZ2aom/L/++kuV1H377bd49uyZyGJA8ViGiCAvCPz9/QHkWhL69OkjKmjNu1+nTJmCoUOHomHDhqr3JUiFgJmZGZo2bcrGJjs7WxbkzYN2vvfu3RO5coAX80Wv14sIkxI2btzIBJRaAD1Z0gwlSiits8TERJHllcD3LSB23ZCyVRKwiYmJTGk8f/4cdnZ2mDx5Mm7evIl69eqZJNB4pKamymJFpRaFx48f4++//4aVlRU+/vhjAC+CxpUIMy9o+VIKpsAQcePXvlLs3Jo1a0Skif83f1Ti/Pnz8ddff2Hq1Kmye9D4833g5+fH/r148WLZb/g5YWVlZVCJ822qV68eQkNDkZCQgOzsbCZjLSwsYGVlZbD+I4+IiAjs2rUL169fZ/M0IiICpUqVEsVtRUdHi5I9pP1L65iXecYsdVLwJWwIJJOlsrtNmzayTZCrqyvS09MVS7HQRtHc3JzpG2m8JZDbx2RJkhoBlEhdUlKSbMymT58u+ps2Khs3bsSsWbNk9wBerAXpZkxKiHicP38eDRs2RPfu3Vk5LZ7UqZ2uQWT4jz/+kMkkc3NzeHl5ISgoCDdv3kSdOnVEHqiEhASZXqtWrRoAcRwhoJ7MEBYWhvr167Pi9HFxcaqeGdL5v/76q+j3SUlJIkvd6tWrGQFUQnJyMnuPL7/8Eh9//DGuXLmCsmXLMo+CKZtIII+kLigoCF5eXmjdujXq1KmDtm3bighEfHw8E4wvg7i4OGZy1uv1sh2D2nc80tPTkZCQIPpPDUqk7sKFC6pFN6nMhRShoaGie9nb25vkAx82bBiysrJEgsHe3p65u5TesUWLFjhy5AhKlCgBnU7HLHX29vYyMzwtyJSUFNSuXRvt2rVDVlYW2+3TpM8vKE4gIiICdnZ2+PHHHxmRcHNzQ+nSpUXXm5ubszgRIDdQW6/XG6yyrbZTSkxMxBdffCEqEzFjxgwAubt3a2trzJ49W/Y7JdN2SEgI3NzcRDt2fqyDg4Nluy1vb2/FoFglUscrPTc3N8VsagCic4q/+OILGTklYaR2SgofezlmzBhGEtQUKc07Q6ROyeWZmZmJ69evw9nZWWQhkvZtaGgoUyzUFiVrZ0REBBOeZKlctmwZjhw5gho1ahgMvlbCtm3bjBIvf39/WeA0JVUolXlwdHRkczuvpI6fE9K4V14+Scn3qFGjEB8fjw4dOoiuISHPb7BtbW0xcOBAdgIPDyqLoZZ5rqSg+TmRnZ2tSOqio6MRGBgo2qRUr14doaGh7J15MmxnZ2c0fIEQERHBLBgkxyIiIuDh4SGaZ1FRUSIlLW3n8+fPYW1tLbLA7Nu3TxTDxG8alEid0gaKXH9SUufm5gYPDw/RqTWurq5IS0tTPBqSL8VC8j4hIQE9evTAhQsXWCjOyZMnGamTxiwqkboHDx6IqiT07dsXZcqUwfr163Hu3DlMmDCBxVAayrgnI4Z0TRg63cHR0RGNGzcG8MLCZyzhYtmyZaKTW5YuXYoRI0awv83NzVG5cmXcv38fAQEBqF27tkje8fyAQPpHGs/m4OCg2IZz587BxcUFvXv3hoWFBWJiYvJ07GJgYCASExPZfDK1Vh+Rvn379rHPevbsycZV6hlUQ55I3dSpU1GnTh1ERkYiMDAQTk5OaNmypUkxHXlBiRIlmJCLi4sTESVD3/FYsGAB9Ho9+49XlFJIzZwENcJIPnApaAdJMHbsCL9Tefr0qUiwN27cGIMGDYK7u7tiPBnF6Zibm8PW1paROj6Ik0DCULozoayoxo0bY/LkyYpERw28tYomfHx8PFMCdG9ra2vUq1dP5LZKTk4WZcIBubvk/FoOnz59qmqxdXZ2Frm6CWrv6urqKiLiagSe4OjoiP79+2PDhg0iYqNE6vg++Pjjj2UWOIIxixRlN/LEmAdvcQBeKAxeuPDzJDIyEidPnlSNWwTUSfWlS5dQo0YNUR9JLXUnT55EkyZNsHnzZuaGUbLUkVLR6/WyRKPq1auL+sXMzEwU+0LgXeem4NKlS4r1JQVBwLZt21C1alVRKSFra2tmBVKrpaaWpcoTGSmxMrTpHD58uGK73d3dYW9vL1LmlIFcqVIlWf88efIEVapUyVPZFF5mJCUlKco9Nzc3dO/eXdSOcuXKITQ0lMlQKakzFc+ePWObESKvaqSO78OEhATRfH727Bmz5JELGBB7P/g2KhV6T0hIULRk8ZnFBGobb0UqWbIk0tPTZclEPFJSUhAdHc1I//79+xEaGsr+/vnnn6HT6VC9enW22TMzM0NWVpZiuMG///4r2hRS33/66ado0aIFli5dqqpDCY6OjkyHSOetodIddnZ2ihtPMggR/vjjD0bcSpQoIVpXM2bMwPr169nf3bp1Q6VKlVj4StOmTWVEvWHDhjhy5Agr88PfzxAPIMTHx6NkyZLQ6XRwdXVFdHQ0YmJioNPpjFqY7ezsMHbsWCQlJbHnKm0OTYWtrS2L2TWl7UAeSZ2vry/mz58PV1dXVK1aFfv27UPnzp3h7e39Ug2XolmzZqwS85EjR0RxH4a+4zF9+nTEx8ez/wylyqtNaqniIbdMWlqaahkSXqHZ29sbFGD8TiEpKYkJBhcXFzbpXV1dRYu1adOmonskJSWJSF2TJk1ku0zaHUl3DCQoXFxcsGjRIhkZMARj536SK9XGxgYODg6iTLHExEQZIfH09FQlKVevXmWJBkq4f/8+4uPjFQsmOzo6irKICDTm0jIzrq6uoqrvagSeQETkk08+Ee0opUp6586dovgkQwRW6Ts+/opi4NQsddLFT+PPkwreOhUWFob27duzIHL+u8jISDafxo0bx45Rorlz6tQplC9fXkSMlAjzzZs3RRaKO3fuwMLCQrHuE5XA4FG2bFmRpS4nJ0dxXPkYLzXUrFkT+/btQ69evXDx4kVFQhUTE4Nr167hnXfeQWBgIGrXrg1AXKiU2jNy5EicPXsWO3fuxP3791WP4TJ0qLih8IzKlSvLPnv27Bns7e1lGwDKtAWgWPhUWnoHMBymIIUaub93756IrLi5uSEmJobJHF7GSuenoWSfiIgIUUHyn3/+GQcPHkTp0qVFsvbdd98VkdXo6GiRPIiMjGR9c+DAAZEsXLJkCVxdXVV1CY/SpUsjLCwM9+/fZ88/cOCAoqUOEJM6stRlZGSgW7duivdPSEhAYGCgbHNO6y00NBQDBgwQtdXe3l4Wz6gGJX2ktI54lC9fnul3qYU1PDxcVQ7Z2tqKTjEiVKxYUaQ/Bg8ezDb5jo6OqpulRYsWYe7cuawv3nvvPbRo0UK03u7du4fBgwfjvffeY15DflNv6oaC+rNEiRL45ptv4OvrCzc3N0XZ9sMPP7B/8x4jFxcXmJmZiY4zVTIw8OB1CJDbh1OmTMHjx49Fc8kQ8kTqUlNTZYRhxYoV6NGjB9q0aWNSALkpaNCgATw8PODt7Y2AgAD06dOHuRO6d++O0NBQeHt7w9bWVlWIW1tbw8nJSfSfGqRWI4LUB0+Bm7yilwrVvFjqpLEAJBhu3rzJ4h6kVkTpwcSJiYmwtbVlOzxPT08ZOVOLXaDFQWSKyIxSQKehtiuB+oEEqTQeQErgPDw8VE9HqF+/Prp27SpyP/GgoGtSvDycnJwUzez0LOmu2dXVVaR05s6dq2iJpjgmnnAbOhGBCF3dunXx008/iZQvub0sLCxQqlQpRVJXvnx5UQVzejclSJWmUvv5mnJSyw2fGVyyZEk2dl9++SX69esHAGjUqBGcnJxYsg5P6qSWOikcHBzw/PlzlChRgsVjDh06FBUqVMBnn32Gd955B7a2tiIS16JFC5ny4d+BQG4qQ/D29kb37t3RtWtXnDp1ShRXRggLC8OzZ8/g4eGBqlWrMiXMjzFlIq9cuRItW7bE+++/b9AKYwhKpK5Tp06oUKGC6gZAidSpFaNet24d/vjjD9mB8lS7beLEiejSpYvRdhpyJfHj5ezsjLi4OFy+fBlOTk4igsVnQFapUkXRKtaqVSt4enrif//7H65cuQJ3d3eEhYVh/PjxyMjIwFdffWXQsyB186WkpIjGztXVlbVj3LhxiIqKUjxSTQpPT0+UKVMGVapUYaf19OzZExkZGSJLvRqpS09Px/P/Y++6w6so3u6596aQHmqA0IvUhBp6702KIIiIIqLY209EpAsIKFhAQZpIVRBUUHov0qRL7xBKIAHS+81+f+R7h9nd2b17k5sC7nmePHC3zE5958yZd2YePFBNvxO++eYbJCUloW/fvjK3leLFi7OyrVKliqwfttlsqoHJiBEj2GkEPET9kSOi0717d2zevBnJyckqUn/58mXN9u7t7Y0mTZqojv8jt4XevXuznQ7IBvn5+anC27hxI9auXYt33nkHNpsNzZo1Q/Xq1Zkfm7LOU59Zo0YNSJIkGxAbVbtoupjEoIULF6JEiRLC9sUPVvv3788Gvr6+vihQoICMcE+dOhUffPCB8Jt16tRR7THp5eUFm81meOoVcJLUVa1alTmV85g5cyZ69Ohh6AgLo5g2bRr27NmDZcuWwcPDg52f6ebmhkWLFmHPnj2YMWOGS77FGxWts9oCAgJYJ9KpUyc24uU7Z0BbqeM7SoKvry/zSSC/Pw8PD5QsWZKRDjJctWrVwr59+zB27FhZGHFxcShQoAAuXboEu92OUqVK6apAfDwobCJYc+fOxe7du2UHtWcVROooz+hbBQoUwPfff68idUFBQbIRV58+fVRhrlmzRtMYApBthUIgpVCJ2rVrY+jQoaqNposUKQKr1cq2VtCS22nlHT81pqwLIsycORPvvfee7FnKmxkzZuDu3btCxVKkbtJvJdGn8GifL5EbgV5c+c7ParXi0KFDOHv2LMqXLy8rR/KBDA4OltV7R9P4tF1BZGQkK5vSpUvj0qVLmD17Nj788EMkJiayAduBAwcYgeXbp4jUVa5cGYmJiaoRLw8ifoMHD1b5exLCw8MRGRmpqsd83hQrVgxubm6ayhwPvTzx8PAQTmNt2LCB2QflOZNApi00unikRYsWGDBggGpWwt3dHRaLBdOnT8dff/2F2NhYTJ06FU8//bQwHD1Sx8clMDAQdrsdGzZsQNOmTWU2lny4QkND2ca6yjraoEEDlCxZEtu3b0d6erps8P7HH3+gatWqQjJRp04d1KpVS1i/lYOur7/+GnFxcUL/ORHRByCrL0q78swzz7B98uiektQBmTbFkatJu3btcOvWLfa9gIAAFuZTTz0lW+GZkpKiciGgGTUlskLqOnTogPj4eFy6dElF6iIiIjRJHbUZpfJGg8RVq1YxPzJSa319fVXhValSRXbqSXBwME6fPs18wZVES5ke3k58/PHHukd3EWibGJ6QKRfyTZo0CRs2bJCVpYeHB6t7vr6+skH///73P4SGhjKfbwKVU6VKlVQijjOuCgSnSF2vXr1ke07x+O6779C/f3/Dh3nnVyg7igULFmDhwoWIjo4WGgq6Rp2OUqkjgyHy2/P19WXvxcXFISYmRtVxU4H7+vqicePGsFgssukpmn4lHzv+PEoeRBKrV6/OrpFhoG/SNKmWAymlg0bd5cqVQ+fOnYXPBQYGYuTIkWwlKjXUMWPGIDg4WKXc3blzR9Y5ijpsHx8fzSliHx8fWd5T5xUdHY3ixYtj1qxZsoUv7u7u+OGHH5gjL4HC0FpuP3z4cPz9999wd3eHJEky8qmn1BFIFaZn3d3dWR2htiMiCfPnz1d1PlR3KMzmzZvjjz/+YB2JaDqaj+vVq1exc+dO4T1lnMkhnOpjUlISmwIqWbIkFixYwAyQI6WOn1qiuBYuXFhFkGjBD9+R8ufK8gbvzz//xPLly9GkSRN4eXkJF3107twZK1asYKq/1WrF6tWr2e72fLiffPIJ0tPTmSGn+sjbACNHtAGZdZDSTJ0FD8rTokWLau6VKfLlSk5OdkjqKD/JJijJBE8GLBYL/Pz88PHHH2uuanSk1E2ePBmzZ89m39m3b5+qE3Vzc8PVq1dl09HKOme322W2kHc7oeloEWn57rvvcPz4cdk9GoApv2Gz2VS27vz587qqCJ/fyncDAgKwcuVKtnE4oPapAzKJUGBgINtuSTlTNHbsWNa2qb4FBASwsJRKXVJSkuzcVXpH1A9kZfqV8jIuLg5RUVEYOHCgbD9Bvr3z9YviqJzVISWLByl1tDp6woQJ8PX1Rfv27R0uSFIuClKmkW+zhQsX1tzmivDyyy+zwTqvKittyocffohOnTrJCDZP6nx8fFi63nvvPUybNo35wPOgKVkfHx+VTRH1g47gFKkbMWKE6vByHrNmzcrSgdT5AZUrV8Yrr7yiqhCDBw9mx4DpkToiG3yl9vHxQXBwMJ555hmhkfTz82MVPjY2FhcvXlQZXWrw/Lc3b97MFKRXXnkFcXFxbLl9uXLlhI2UjvUhA1emTBlWGZVGRa+RT548mUnSV69exfr163H58mVs3bpVFcbEiROZ9E2GgcglH4+6devi3XfflXXoWiMUrWlfDw8PWQOglaWRkZGwWCx44403hNOzVqtV1sj5va9EGDJkiNDnCzBG6qijovKk6QQATCFVtqEPP/wQoaGhqtE4lROVX9myZdGjRw+WRzTVULJkSbz++uuydy0WC8qVKyfbuPP777/HmDFj4OnpicuXL8sOsyaQAU9MTGT5UKpUKRQqVIgp9bwa5O/vr5peI6LUoEEDeHl5oWXLlipfUSCTyNSuXVtzVSJf3l27dkX//v2ZURSRusKFC6Nv374yw9moUSOZIzaQuWqWnPKJ5FO5ubu7y47McoTPP/8cAQEBrG5UqFBBFTdqG+7u7prh8m2SVCQjpI5XDQB9X04ePKEKCgpirg/kW7V27VrcuHFDpugVL14cn3zyCV5//XWZTRHtnVeuXDnZdK2y7dSsWVMWB/5ZyiPR4IHaOP99IgVGlPSnnnqKuRgQ6tWrx+onr9aISF3BggVlfou8vaK8t9vtKFiwIObMmYPY2FiWTrJ5/ECTbIG/vz8LS6nUAY/8NefNm8fUL+WAlf+Go2s8iGDGxsbi/v37KF++vEwJ58tBOfNB8ejZsycrYxGpo/KiuIwaNQrR0dGaM2c8OnToIBsg6LlpBAQEsPv8Yg0aOLZv3162PcmMGTPY4hDlgIbqE29PeNLm6+vLFMjevXsL4wM8qtvUN/IzZTlO6p5kXLhwAfPnz5dl4q+//ip7RiTTU2GR4eAbMSl1q1evFm4b4uHhATc3N3h7e2Ps2LFYtGiRatqIDAdvkHx8fFC0aFFkZGTgyy+/lC0rd3NzUxmbUqVK4aWXXkKJEiWYwfrmm29USh1BpBTRyEWkTlSoUAFt27bVbVj0Db5De/jwIU6cOIEjR44gLCxM5jSvVZkXLVrEpuKBR0bcarWyPJo8eTLzczCydQKFV7RoUaF/Dw89X0L6fpMmTWSDHz5dSpJusVhQsWJFSJLECBYZcipH+rdnz56y6XNS9ihvyShQHIsWLYrp06fj4MGDmr5etMoLyHRYHj9+PCwWCypUqIC6deuqnicCkpiYiNatW2Px4sWM3FF94jsckS9gQEAAYmJisHPnTlgsFuzcuVPopN6gQQMcO3ZM86guvo4p66WjTVGV4LeXefrpp1GrVi0Aj0gddVwJCQnYvXu3oTMbixQpwnxjqWy8vb1lvqP16tVjCo6Hh4emfy/fHvi9KYnUzZ8/X0jClaqNUVLHxyMiIgJbtmxB0aJF2fYiTZo0QenSpbF27VpW/nxnzb9v5Jt8uztx4gReeeUVWVsLCAjAggULUKdOHdYelErdDz/8wAgIvzqfbLORaXJA7Y9XsWJF/Pnnn1i1apWsbivtrGj7Kjc3N5Z+vgzpmp+fHysjSi+fX6T0EKkrUaIE/Pz8NNsE79f5/PPPq3ztRMTWGVIXFRWFwoULw8vLi5E0ntSJZlL8/Pzw+++/Y+/evfjqq6+Etn3kyJFYsmSJzIXGkS3mwZeF3vQrP8Bq0KABc1Gh/rl3796q94OCglCpUiWMGzfOUFz4Nke2nK/LVqsVO3fuZLNcNFCg+rlt2zZGyE1S5wJQJjZt2lTo16XEp59+itjYWKaK8JVLSWw+++wzodLp5+eH8PBwdOnSBR9++KHqHiBWgZQdGal3yu/abDY89dRTuH37NooXLw5JktCrVy9NUqfEoEGDdPeQI3To0IEpkloSON/ZBgYGyox/3759sWbNGgDaqxiLFy+O1157DcePH8eZM2eYszI/QnJzc2NGb8CAAaowRGdKRkVFqTrq2bNny6Y1AH1SxyufnTt3xsmTJ3H69Gls2LCBOajT+5Qfoo6GlC7ltghFihSRTZfSKJBIgpLUFShQAB9++CFKlSqlqb66ubkxUqE37U6gOCUkJMBms2HgwIHM+JLKyatNw4YNQ9euXWXG3mq1wt/fP0sGi4evry/69+8v3MbEWVI3bNgw2Qp0climKWwid9RJOpp6vXr1qmyzWjLuynZx+PBh1ilS+T3zzDOYNWuW7Dm+nlB58aSuSpUqQhJObZvaA9/ewsLChNPBQKYNWbNmDduzz2KxoFGjRmyvNr7sKG945UOLnBpBSEgILBaLzJWnQIECGDx4sGx62t/fH9999x2rd3wdnzVrFrtO7cnoWdBKvzHy8+LVFrrOQ6uNXbp0CTt37pQRKt7mFihQABaLRUi8qY0TqaPFbGRrlIvLlPZJGUeRvfH09ESVKlVUpHTp0qX47LPPWBhr1qxBSkoKGwhSvvKkTk8NrV+/vuYiAS8vL9n+dM6Cr2/KNsa3VX9/f5anbm5ujMCTzRLlj8ViwcWLF1UKrhaIIPJloyyXli1bsnZMcee/7ewemDzEdP8/DKoQRkcJ5IdCDvw2mw2hoaE4efKkqpFr7dZN6tWAAQNUlYoalNbKUCBzUcHdu3dZ46J3Jk+ejBEjRmiO6oyQujNnzqBChQqGVsQC2v4c5KfCT/cpYbFY0L17d5nzrVY5kJJCjtY2m43lEeVhUlKSappCy+dT5PP4+uuvQ5IkhIaG4p133kFsbKwuEaF8J7WVV+g2btyIlJQUFjc9Ujd27FjUrFkTv//+O65du6ZJtnjnYuCRjC8aCAwYMAA3btwQugEUK1YMycnJhuq8kiTw+Pjjj9GmTRvUq1cPKSkpsjp7/fp1VKlSxWUr5AnLly8XlimRuuLFi6vOltQCX2e7dOkiC5fqo97WIzyURpkUF7Ivbm5urPyoE6C6ym9YKwKVQXBwMOrUqYNWrVppug1s2LABf/75J/vt5uaGZcuWYceOHZrnIhOUC98aNWrEwuLr1sKFCzFx4kTZNeqojAwUlKBOmHdD4LcD4vHWW29h9erVOHv2rKwz9/b2xoQJE9CnTx+m/hgtO6W6r5UGvr6ItoohFCpUCC1btsShQ4fYNb6TL1CgAAoVKsR8SEWkLiAgAO+//z6rI9T+ChYsyFb/u7u7q+ydcvAhGoxYLBacO3cOMTExWLVqFZuV6dChg4yw0Wb4vJ83ILedRlxQcgI8qdPrKz08PJidDA0NZYMU6p+c2cNRC2PHjkXz5s1lK21FYsD06dNRpUoV1v75vmDcuHH49ddfHboDiZDvSN2RI0fw/vvvw2q1IigoCMuWLZNV1J07d2LgwIFsKbzW4d5ZBe/r5Az4qbONGzdi/fr1hsOg0YJoyw5qOHq+isppYpLL+RGJVpzDwsJ0l3lTpTK6AIaMhpL8VK1aFVeuXDE0AuH9VhwZCX6Uo1xoYMSHxhEsFgtefPFFbNu2DYsXL9ZVaDw8PDTzyWKxyOJD6RKROhq10oHhyjwoXLgw7t+/zzqBBg0aYOnSpUxZFpE6f39/TJ48WUjqgoKCHO70TrBarfjhhx9UW2MAmW2GfI9EhnX//v2GTxLQQ8eOHWWdqKhMQkNDsWvXLpQqVYqRuuws4qLOzajao4RSqdu3bx+zXWTU9fZr42G1WrF161bUrVsXBQsW1N0zskqVKrJ9F4HMabnnn3/e6TTwaj1v25SKO/Co7inVLWdAedakSRPdFYtU/kqFpnfv3rh37x4jc0bL7r333pNtZ6VF6vh+ydG+nYCcBPJhFihQgO3rB2hPv/Ikm77tChtHCAgIwCuvvMJIndb+rby7ACAnLJ6enujQoYNLju90Bnz9E9mDhQsXMjeQmjVr4tKlS6hYsSKio6OxZs0apsgbaYNz587VPXDBw8NDtSOBiNQVK1YMo0aNYnnF9wXVq1fPsr3Kd9OvwcHB2LRpE3bt2oVKlSqpDkYHMpfE79y50+WEDshsbE2aNMHkyZOdeu+ZZ57BihUr0Lt3b5QoUUK1ok4Pn3/+Ob755hvh2afU+I0afCBTMRk2bBjzv9IilxUrVsShQ4cMjaZpakc0xSOCqGGVL1/e8IpBgtZGlASe1FEnYNR3xhnMmzfP8CHkRqCn1BGoDikNwsmTJ/HPP/+wOuHl5YUBAwawjrRx48aYMGGCcJT3xRdfqPavKlasmMMpeB5Dhw41vFCAR6FChQwdm+cIGzduxMiRI3WfmTZtGs6cOZOtaUAeFI7o9AkjUCp1YWFh+OSTTwA8InXODCTbtm3rkrObnYHI8V4P169fV+1R5gwoz5YsWaJLXsimiKY/+WMKjW651bt3b9jtdna8oBH7aKTstFxziNTRjA0/GOOnX3nQQP3FF19k26hoxSEyMpKtVnXG/mqFR0odv70Rn5aNGzdmefCTVThy5Rg0aJDsGDvyO3zttdeQmprK2qURpe7VV1/FhAkTnIqfEfLtrJCkhXyn1PGrnPjtHnisXr0aBw8eRJ8+fTS3nsgqrFYr/v77b837NWvWRLt27WRLuoHMxkI78jvCxIkTZQcbKw9Y5pEVUhcQEIAvvviC7SmopdQ5g7p16yI1NVUl7ytBowtnyZsIS5YscbjLO6Xtvffey1FS5+Hh4ZBgOgMjpC4sLAxXr15VOR+XLFkSJUuWZKs2lUqel5cXRo0aJQxz2LBhqmvt27fX3f/vcYSHhweqVasmI8TZUeqoPtO0v7NQkjoeDRs2xDfffGPYfuQVjO5oT3DmhBoROnbsiJUrV2oe40jQUuoI3t7eTpe91Wpl2z/pbVwPwLCvlRapa968OTIyMvDJJ59g0aJFsneULhYEmo6uVKkSunfvjq1bt2qejVykSBHme+mKgQCVx+zZs9G3b1/Z4gbl+bq5hax+02KxyHiGM/2ss99xBFf000A+JHWEGzduYOvWrarOqX79+sx5t0ePHmjWrJlspRMhJSVFttLSVSMH2uvstddey/JUkiOVgQc1ZppqcwZEwFw1AnBE6FwNo46zZLDpIOTcVjCyAtFyeBH0pqvJAGW3XJxRlR83uIrUAcC5c+c0O05H0CN1NpvN8OA0r8n3lStX2J6YOY2XX34Z/fr1c7iPGg2MsrJRqx569uyJ4cOHY/DgwZrPxMfHG/Yj49PB/5/vD5SnelAbVw7+6Mza8uXLMxVZr248++yzsNlswlMmlHB3d9ftb6hPqlatGusPR48ejQkTJrh0Ojg3QX2kK3zqnEXDhg0xfPhwptxnF3lG6iIiIoSrS9euXQs3NzcMHDgQCxcuVHVY/Iile/fuOHHihJDUTZ48GePHj3d9xP8fWXFgzAqyotQRyOchK6Ru48aNDg8vFoGm8Zwd1bsCTz/9NH7++ed8r3gA+j51RkGGN7fJ9uME3l4MHz48W2EpfdOcgR6pM4rY2FiXDdCyivLly2dp6j0r4FeEOnoOcLyJrrPw9PTU3ISZ4Mw3efJntB58//33sn3TCHReL78vKU3DimCxWAz7N965c0eX3IgGouPHj8eHH37oMrUpt6GcUnYV1q1bx3yjtWCz2RzWM2eQZyVQvHhxYWLtdjt69uyJMWPGCP1vYmNjmRy+Z88e1aaqhBEjRsi2B+G3HXmckB1Slx2lzshRKiIMHDgQVqsVXbt2zdL72YHFYsFzzz2X69/NCrK6IIeHo4UwJh4NLtauXZvlqVNXwBWkLi8GSo8DtBZn5TfwZMjoYG7IkCGyowgJXbt2xV9//YWSJUvCZrPh+PHjws3VswLRdPeNGzdQq1YtPHz4UPiOxWJxmf9qXqBly5ayradchS5duhg6U9mVyHcLJVauXIl9+/ZhwoQJaNWqFVasWAHg0VEgK1euRIMGDdCkSRMEBwejRYsWwnA8PT3h7+8v+3sc4QpSl5udvs1mw4svvpgnfhWPE4xOv+ph0qRJGDhwoFOHPf/XQEQor48vpJWEj+v0VG7g2LFjbIsiZ0D7FLp6+jU/4/XXX0dGRgYbFNaqVStHVdzSpUsjPDw8S7M3uYUaNWroHo3oCJ06dcryzMmoUaPYhvd5DYuU19Yul0DHscTExDxWBC89PR3u7u7o0aOHcCWwHm7fvs2IL+0EbyJ/gMq1VKlS7Ng1E67HjBkz8N5772Hp0qXCjahzC9HR0di4ceNjoyQ/TrDb7bh27ZrmqSn5CTSI+490u7mKjIwMWCyW/7ygYM7b5HO4ublh5cqVsvPgjCIvlDoTxkBlkhMrdU08Ail18fHxeRqPwMBAk9DlEGw222NB6EzkLExbmgmzt38MYHTJvBJEHExSl38h8pcx4Tr06NEDTZo0MbTqz4QJEyYed5i9/RMMUupovyUT+QvmFEzOo1ChQrr7TpowYcLEkwST1D3B8PX1xaFDh/J01Z8JEyZMmMjE8OHDNc+xNWHCFTAXSpgwYcKECRMmTDwBMD0LTZgwYcKECRMmngD8Z5Q6SZIQFxcHPz+///ySZxMmTJgwYcLEk4f/DKkzYcKECRMmTJh4kmFOv5owYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEE4DHktQdOXIEzZs3R8uWLdG3b1+kpaXldZRMmDBhwoQJEybyFI8lqQsODsamTZuwa9cuVKpUCX/88YfDdyRJQmxsLCRJyvkImjBhwoQJEyZM5DIeS1JXvHhxeHt7AwDc3d3h5ubm8J24uDgEBAQgLi4up6NnwoQJEyZMmDCR63gsSR3hxo0b2Lp1K7p166a6l5KSgtjYWNmfFtavX4+QkBAkJydj5cqVCA0NxeDBgzFx4kSsXr2aPffSSy/h6aefZmrfH3/8geeeew4AMG3aNISGhqJWrVqoWLEiOnTowN7bvHkz2rRpg9q1a2Pt2rUAgBUrVqB8+fIoX748GjVqhO+++w6hoaH44IMP8OKLL2LVqlVITExEw4YNUbZsWdSqVQuhoaEICQnBuHHjWNgjR45E8+bNERcXh27duqFevXqoU6cOfvnlF9jtdjRv3hxHjx5lz69cuRKNGjVC+fLl0bZtW0iShF9++QVTp04V5s1zzz2HPn36AAC+/fZbjBgxAp07d8auXbswbdo0/Pjjj2jTpg3ef/99vPHGG6hduzYaNGiABg0aoFWrVjhx4gRu376NqlWrolKlSiwdoaGhqFmzJiZMmMC+dfPmTTRq1AiNGjXCrVu3cPDgQbRq1QoPHz5EvXr18OOPP6J27drYvXs3xo4dixo1aqBevXo4e/YshgwZghkzZqB+/fqYOXMmypcvLysDAOjcuTPmzJmDxo0bIyUlBX/88Qdq166N+vXrIyQkBJUrV0alSpVQtmxZ1K5dG6GhoVi6dCn++OMPjBs3Dv369cMPP/yAhg0bYvr06ejWrRtefvll2Td27tyJDz74AAAwbtw4TJw4Ec2bN0dISAhCQkJQpUoV1KtXD6GhoXjzzTfxyiuvYNmyZQCAdevWoVatWqhVqxZat26NxYsXq8rjp59+wjfffKO6LkkS2rZti5CQEHTq1Al2u11Ynjzeeecd/Pjjj6rrFO+mTZvixIkTeP3111GuXDlMmTIF/fr1w+LFi9GhQwdMnToVoaGhCAsLQ506dfDss8/KwunTpw/69esHAPjqq69Qrlw5vPrqq+z+rFmzEBYWhmvXrqF///6oWbMmmjZtiiVLlsjqOGH79u2oVasWtm/fDgD49ddfMWnSJFk9qV27NkJCQjB06FBcvnwZDRs2RExMDJo0aYKQkBA888wzqnAvXryIsLAwNG3aFLNmzcIrr7yCt99+G6GhoWjUqBHq16+PefPmoXz58qhatSq6du2KuLg49OrVC6GhoejSpQu+/fZbNGjQADdu3MArr7yCLl264IcffsDs2bNZXqxbt459c8uWLayOtW7dGl9//TU++OAD7N+/H+3atcPo0aMxZcoUdOjQAW+88QZ7LyUlBY0aNcKZM2cAAJGRkazuzp49G127dsW0adNQv359jBw5EgDw77//olmzZpg8eTLKli2L8uXLo0ePHqxdVqlSBVevXgUAhIeHIywsjNnLf/75By1btsT48eNRo0YN1K1bF0uWLEGdOnUwf/58Zu8qVqyILVu2yPJ16NChOHjwIABg6dKlmDZtGl599VX8888/ADLtSc2aNVkbbN++PdLT0wEA7du3R7ly5VChQgV8+eWXCAsLQ9myZdG0aVNW/gsXLsSbb76Jo0ePomXLloiOjkZYWBhu3LiBEydOoE6dOpg7dy7CwsJw8+ZNAMDVq1cRFhaGadOm4X//+5/s2owZM9C0aVNUqFCBfbtmzZrMrleuXJnVkwcPHmDHjh2oUKECGjdujPj4ePTu3Rvh4eEYMGAAvvvuO1SvXh1PPfUUKlSogIoVK+KHH35A48aNmf2rX78+6tatizlz5qBevXq4ceMG3n33XXTo0AFLlixBs2bNMHLkSBw4cABly5ZF/fr1MXv2bNSrV4+VP49Dhw6hbt26aNeuHVJSUgBk2qNOnTph4sSJaNKkCR48eAAAePHFF/Hrr7+qyqtDhw6YMWMGwsLCcP36ddU3duzYgdq1a6Nbt27IyMiA3W5HixYtcPjwYQCZ7bxhw4a4ffs23n77bfz8888ICwvDd999pwqLsGfPHrRv3x5Tpkxhef3yyy/j5ZdfRvny5fHll1+iYcOGOH/+PAYOHIgKFSpg5syZ7N06deqgU6dOrKyrVauGOnXqoEuXLswO7tixA7Vq1UKNGjXw9ddfs3ry7rvvYs+ePQCAOXPm4P3338fBgwfRtm1bjBkzBp9//jmaNWuG0NBQ1rc1adIE9+7dQ9euXbFt2zYAQFpaGtq3b486dergwIEDiIqKQpMmTdCgQQP8/PPPeO211/Dll19i+fLlWLJkCcqVK4dKlSqhbt26zM7v2rULtWrVwubNm5GYmIhWrVqhXr16OH78OG7cuIF69erp8hgG6TFFTEyM1KJFC+n8+fPC+2PHjpUAqP5iYmJUz/7yyy8SACkuLk564403JACSv7+/FBoaKr366qvsOQojMTFRkiRJslqtEmVh69atVd9KT0+XJEmShg0bxq599NFHsrDor1q1ahIAqXz58uza/v37hWngi41+Hzt2THb/5Zdflu7evSsBkLp168aef+mll2TPpaamSi+99JJUv359YT7ScxkZGbL3atSoITVq1Ehq0aKFZhwBSLNmzZKmTZsmu9a+fXupePHiqrRs2bKFXdu+fTsLe8WKFRIAlt+TJ0+Whbd8+XKH+aSM/9mzZ6X33ntPN+4ApEGDBklvvPGGVL16ddn14OBg1TckSZLGjx8vFSpUSFjG/F/58uVVeTB8+HDJ399fCggIkABIffv2VZVH7969pVatWqmup6eny8K/f/++sDxFZat1HYD0zDPPaKahadOmsvqqld/KMAlhYWESAGn9+vWy+y1atJCqVq2qiteECRMkANLEiRMlSZKkIUOGSKGhoayeUDumPypf5XW73S4L97ffflOlrXTp0rrld/jwYVl7pec3bdokS0fHjh1Z+gMDA9k3R48eLfn6+qryt2HDhrr1+Ny5c6xeSpIkzZkzR/VsgwYNZO89++yzwjC/+OIL9v/hw4dLkvTIbq5bt06SJElq166d6j3Kb74N0G8e7u7u0pdffilJkiQNGDBAatSokeTm5iZ9/fXXqjpBf5GRkaq6rPwbNWqU7P2OHTtKwCM7MHbsWOnHH3+UAEhFixaVAEiTJk2SJEmSPv74Y1W+rlmzRgIgBQUFObQHfPlXrFiR/d6+fbsEgIWl9zdw4ECpadOm7HexYsUkANK4ceMkf39/WR4DkJo1a8b+TzZj6dKlqvYxY8YM9tyNGzckSZKY3fL29pYASAcPHpTlHQ+6VqFCBQmAtGHDBtU3Jk2axJ6LjY2VoqOjJSDTpkuSxN7dtm2b5Ofnx9JRr149VViE2rVrq9Is+nv11VdVZTd16lRVveT/Hj58qIo3/Y0dO1YKDAyUJkyYIEs/XzZaf/v27ZMASJUqVZIkSZIiIiLYvRkzZrD7FC93d3epUaNG0oABA1RhkZ2fMmWKBEAaPXq0dPHiRXZ//vz50pgxYyQA0saNGzXzkfBYKnV2ux0DBgzAmDFj8NRTTwmfGTFiBGJiYthfeHi4Zng2mw0AkJ6ezph9SkoK7HY7UlNTVc/TKMjoNf6eloKSmJioGY4RKN+z2+3sW5Q+0XOUTkffVeaDxWJBSkoKi7fee/z3gUzFU1RufN7w/7dYLACAjIwMzTRoQfp/VVW5mMZImilsyiMj39SqM0qEhYUJy6x48eIoWbKk5jdEcaF3jcTPlYiLi0NYWJjsmlZ+i0CqjDLuiYmJwvjTc/y//HNUT5RQ1j9Rvmt9SwsJCQkAwNJP7YB/LzExUbMupKSkICgoiKlFroQyfUbyhZ5R/iuCozYPZLbVtLQ0FhcqK0ftLqu2iL7JhwM8qmMEZV0AHuWXXppF8RT9NtLuxo0bJ1OM+bDofSN2VQn+21rxMGKb+DJTQhRXQJ3PVNaidqEFRzZDFAYfB2qTovta3zfaDziKi7Lv4vM5ISEBaWlpsvagF6bSxjsbv8eS1K1cuRL79u3DhAkT0KpVK6xYsUL1jKenJ/z9/WV/WiCfPLvdzipnSkoK0tPTWYbyBiM7pE5Z+QlUIV1F6lJTU9m3eJ9DESHi08lD4haVaKVP1JCUzyh9Ht3c3ODp6al6ls8brXwSxcVoQ1Fed4bUiYyWCFp5qYS3t7fqufT0dLi5ubGORyvPRXljNH6uRGxsLPNtJYiIt6SxOEmr401ISBDGn57j/zWSTqtVbuZE+a71LS1QZ0Xpp3bAv6eVDoqDh4cHPDw8HMTeeRgteyO+yCI4avPAI/JAcUlPT0dycjIkSdKNn5Ey1ctTPhzRs6I0i2y8IyjrBxESI3nv5uYmiwe9y+eNVh7rkUc9Uqc1IBaBLzMl+Gs8+RANKtPT01k6jJA6R4TTEakTEWG9tND1rNhKZXjKvksUL63BqjIMpY13Nn5Za9V5jP79+6N///4uC0+k1AFAUlISy1C+wuWWUqfVGYogIjoU56wqdUaIrKPOLyUlBX5+frJrNptNSOq0lDpRmHq/lWG6ubkJO3KjBs5qtTql1KWlpTnsIESkzm63w2azOSR1+UWpi42NhY+PjyoeNptN9n2tvHC1UqcEtR9HhDc7Sh2lPzk5WfVeYmKiivTycfD09BS2g+zCiJIGiFUrV4WvtH12u93QwNXIYMsIqdMiP3pKnREVSxk+wZmZFr6N89/llSqtPBb1Kcp7ovtaJFfvG0aUOhqUOFLqHPUTRuImCiOvlDrRzI9WmBQvLbtGduo/rdS5GiKlDpAXgqtInVblpsqflJTErhkZ3Wh9nxQmIOtKHR9XLbnfiFKnNKS5qdRpGbPsKnVaHQA956iD8PHxUZXv46bUxcXFqUiLKL+1yjKnlTqtsleWjSuUOtF7jpQ6Z0idMyqSK0mdaGBpRKlT2r709HRDxMfVSp2yjYmUOqoP8fHxut9VxpOHM6ROqdSJ+gmtPHaW1IkIgyM4o9Rp5TMRE2eUOkdxE03POlLqqGxdrdQp89eIUqdlD6htu0qpM0kdtJU6vhD0RkF0zd3dXXVN+bxe5fbw8MgyQ9cjdVlV6hxVLKOkTmlIc1upEz3jyL+BD1tLHRPB6IhYpOCQykX5ld+VurS0NFU6RPmtjJuyozFK6hwpdUoCQveUddSIUueIlCuVOlFYlA4RMXKW1FF8lGGJ/MCMkC5H0KvvWSF1uaHUUedpsVg046+n1Gl1/Eq7TvHk4Yz7jFKpozJ1BanTsh2ib2iB6poRpU5r+pXECZFbghYcxY0XPETvZEWpy8jIUH3XiG+lng3h67CbmxuLl1G7Zip1LoCWUsdPvxohdUq/PWocfAehV7mV77uK1PGkStlZ0ahA1Ik5qlgpKSnChqZ8JrtKnXKEpoyrXgesRbL4/NGDllLHQ+Sg7ShsngyQEVEqdVrqqBFlyREpcWZqXw/KcjSi1FF56nUIaWlpqjiKlDq9tkVxUI7glWUjyk9H9dqIUkf2Q6SypaamOkXqHHVOPBzF3Znv6YVvRE3nlRJ6L6eUOn67B6246fnUaUHkj+1KpU4UDyN2VYnU1FQWV70FOkaRFaWOvquceXKFUqdH2vhvie6L0qKMszPQsyF8Hfbz82PxSkpKEn5Ladd4f/isxM8kdVArdbzzshFSRw6uWqTMqFLnLKnT83nLLaXOEVyh1DlS5rKi1BkhdR4eHuw5vZVZIjLqjFJH5ZObSp2RkbMRKMvRiFKnNLRacVEaM5FSx/svatULR6SO/C6dWf1IYSqVOq1BkxJaSp1WHLRInTMuGs7AaNvmwcddpNQZCTs7Sh1P6pT5QnHTU+q0ICJ1drtdlt7s+NQ5ioeW0iu6RnHVCssZUqdlZ6jO8rZIafeUBMyoUqc3yNFaCCFabMTHUS8t/DPOwIhSZ7PZVIM+Z5U6T09PU6nLCqgTTU9PR3p6usxQGyF1VIhGSJ0rlTo9Pz8tpU70HKVbqSjoGWJHq9j495QdlbNKXXZIXXaUOh8fH/acEeLI/98ZpY6vf7nlU5cVQyZCVpQ6uudoxaDWaFg0shU974xSp1UntaCl1GkNmpTQInVa0FIcslOOemptVkid6J4o3nmh1FFac1qpowUzejCi1PFwZlutrJI6kZqsZWeozouUOq02Z5TUaS0sArSVOuXACoAsjnpp4Z9xBkaUOlH71hNPRD51ogV1jmCSOsiVErvdLqtYriZ1rlTq9OLkrFInuqdniI3sQ6YMn/C4KHXUoBw9+zgqdTlF6pxR6kTtQy+OIqVOLxwt1UAUrlad1IKWT53WoEmJrJI6Z8tZj7jxZEHp8O1qUpebSp3SNxp4lFZXKnU8+BWOjuCsUqdlB0TXjJA6EYEzYlPoGtV53hY5UuqM1icRQSNoKXUiIsjHUSstjuyPo7jyECl1RkmdnlJHwoIzMEkdsq/UUUPJaaVOqXgZJXVGlDrRPWeIlRZEJERPqeP9y4x+2wjhygqp45U6vdWHplKnjodenc8qqdNS6rTC4feHchSuqE4a2YA3u0qdVgcvep7iqvc9JfQGX/y7SrXTSP3QaxPKcHJTqRO1EXrH6FQmD2eUOiOkzlmlzhlSR9tH6YVldLW3s0odP3vjqM2JkJGRkatKXXY2/NeyTRaLJUeVOiOr4E1Sh+wrdVTZclqp06sgeqQlJ5Q6Z0idskHZbDbNFWVubm6qfeEcfVtvysNVSp0eTKVOHQ+9Op9VUuesUhcXFwcg60qdnopmVKkTra6j5yh8I2qdluKQnXIW2Y/sqBeisEXx1gvbFUqdqI1o5Z+j+ADOKXVGVgZbrdYcU+q8vb1V+0Qqn3FGlRNd01Lq+AFEVpQ6QN2eeLhaqcvOhv9atsnT0zNHlTojPrQmqUP2lTqqbDmt1OUUqcsLpU6kgpBi4ubm5hSh1Bsdu0qp00NuKXWSJKlWRhFySqlzNDLMqlJHAyi9uGgNMowqddTJZ1WpM+K07eXlpRs2oK0wZIXUZaWctWxObpK6/KLUaU2F60G5ebooHKNKHbX1nFLqiEjohZVTSh3/TWU+ZGRkGPKrc5VSR+1Sr9xzQqnz9PTMUaXOSB6apA5PvlKnFyZPurQqKpA1OZ2eEyl1IpBiYrPZnCKUeqPjx1mp44kPYHz/KCPfN1p+joxIVpU6vbqrdd1ZpY46+ZxU6pSdsygtWgpDbil1RvI3p0mdsj1r1ausKHUUVk4pdVp7SvIwqtRRW88ppc4IqcuuUufp6Qmr1SoLS0nGHW0/ogU9pU4ZH5ruFZWP1WqFu7u7brlrKXWOtnuic89FcTOVunyCJ12po2/SIdvK54wodTSVpfU9LYiMiNaZk/lRqUtLS3O4oi27Sh2/pQ6v1CnD0Rt15pRS58iIZFWpywqpy49KnRFS54xSp5XfWmX/uJA6ZXvWCj8rSh2VRU4pdY5W6vNx+C8oddRW+LAcKXVacVZCT6lTgjaQ1yKCfD44Uup4IudoICua3jaq1IkIo6nU5QD0lLr09HSZX4yoQPOjUpeenq7a+FFrabwRpY7fLkCZDj1Hb5ERyY5SJzrHNSeVOsDx5o85pdQpw9EbdSrLw5mOUW+K9XFW6qjc+PohypvsKHXKuixKC3UevEHXInWO8uJJUeq0ws+KUqdUXEQDSb22k5Ki3kuTh7IekM8vX565qdRptW9HpI7ey65SR22FD4sn4zabzSmljs9HPaVOFF5KivY2KHw+OFLqeBvvaBAv6oOMKnUimEpdDkBPqQPkRsjPz09zpJiflDrgkbqmRzR40qVVUQE1qdOLtzJ8Vyp1/v7+mvmvFaYyDCCz4Ro5n9UIsqLUFShQgP1fy6dOGY7eqJO/JsojJYyQKuDxUOoc7XfH1w8vLy9huPlFqdM6SUCr7PMTqRMNxETx1otTdpQ6/r5RpY4G7Ho2TFkPyD7x9iMnlTplnLXatyNSR+/ltFLn7++fK0od1SNXKHV83ByVYXaUOhFMpS4HoFTqPD09Vbujp6Q82iFaa6QoImXk3E5Q+knxcDWpIyKmRzR40qVVUfmwjMRbGb4rlTqRQcuKUmfk8G6jBiYrSh1flq5W6lxJ6h4Hpc5ROHz9EHV4onynZ7WQFaVO+ZyI1Dk68zM/K3V64eWGUsffN6rU0fecIXVkn/h45KRSp0R2SR2fB8pzmHlkVanz9/fPsk+dcuGRHlyp1InKUgumUvcYQKnUKUftVOhaDUZvzyqlGqQ3ElUaFmXlyiqpe5KVOqvVmiWlTi89hJxU6vijbZRKndX6qFlmRakzsgv5k6TUiZ4XHeFE8dVS6pTIKaWOHLxFpE6rLj8OSp1eeK5U6lJTU2VTdtlR6uh7WVHqROpOdpQ6I6dRAK5V6kjlzi9Knd40uCi8/4pSp9wcXA/Gc9AFOHv2LA4cOIDGjRujatWqOHfuHL799lukpKTghRdeQJs2bXIzOgw0ajpw4ADOnDmDLl26wNPTkzWylJQULFiwABaLBZ6enti2bRvmz5/PfJFWrlwJQN34d+7cidatW8uu2e12/P3338J4KJfOL1myRPabD3/r1q2yivX777+rwjt48CAAYPHixQgNDcWdO3dUz2zZsgXXrl0DAMybNw83b97EkCFDAMgrkDIuevHmYUSpGzFiBKxWK65cuSJTrfgwCEqD5unpqTuymj9/Pjw9PbFx40bZdcobPRhV6mJjY/HZZ5+hbdu2hpU6nrhJkoTPP/8cBw4cQEhIiKzDOnnyJJYuXYqiRYviyJEj7PkRI0bAYrHgxRdfxO7du7Ft2zb2jqenJ/bt24eDBw/iypUrSEtLQ6tWrVC6dGksWLAACQkJsud37NiB5557Dg8ePMCmTZtk8XRWqdu1axfOnj0ry+/Ro0fLnklJScGff/4p+y3CvXv3MG/ePERERKB169asTmzZsgWLFy/GxYsXVeHy8aL2y9cPNzc3zJ07F2PGjGHEj9QHR2njoaXUidohdRKpqamYN28eG+g5Q+pWrlyJhw8fYv369QAy82b+/PnstxZmz56NiIgI4T0+rlQmly5dAgAcPXoU69at0w1biYSEBIwfPx42m022eGH8+PG4efMme+7hw4eYM2eOMIx9+/Zh3759Dr/FD5ajo6Nl9/bs2SN0oVm6dClmzZoluz537lwcPnwYzZo10/yW6Ozq+fPnIyYmhl1zhVJnZI87INMG3rp1CwCwf/9+eHp64t9//8WDBw8Ykfjnn3+wd+9e1XvKQfb+/ftRsmRJbNiwQfWdZcuW4bXXXsPevXsxYMAATJ8+HZs3b0a/fv3g6emJHTt2YNeuXQAy8/ebb75h31GWCQB8//33qF69Ou7evYsBAwbg77//Rps2bXDixAlV/hjBlClTkJSUpGmnPTw8MG/ePHzxxRfCwSnFMTU1FV999ZXquhbc3Nxkbcdut2P27NkA5Eqdv7+/YVI3bdo0WRnMmDEDQKabzr1797B48WL2LYeQcgkbNmyQPDw8pEKFCkkFChSQNmzYIBUtWlRq166d1LZtW8nNzU3atm1bjn0/JiZGAiDFxMSo7j148EACwP6GDx8uFStWjP0+duyYBECqUKGC9O6770re3t6y5+nv4cOH0lNPPSV5eHgI7wOQQkNDpeeee051PSQkRIqKipI6dOig+W7Hjh1lv5csWaL5bEhIiFSxYkXN+wCkUqVKSV5eXqrrGRkZkiRJ0s6dOyUAUmBgILvn6emper5du3aSzWaTAEjVqlWTpkyZwu75+PhIo0aNkj1/584d6cqVK+y3h4eHZLVaJQBS5cqVpQoVKkiffPKJ1KJFCwmA1LZtW3bv/fffl4U1ePBg3TQCkOrXry8VKFBAdq1ixYpSjRo1dN/7+uuvhdctFovs99SpUyUAUoMGDaSmTZtKAKTJkyfLnlF+S5Ik6emnn1aF/cYbb0hDhgxhv9u0aaMZP5vNJgUFBcmulS9fXmrYsKHq2XLlykm7d+8WhtO1a1dJkiTpmWeeEead1vfDwsKkpKQk4b0CBQpIrVu3Ft6bPXs2C7dEiRK6aaS/unXrSs2bN9d9hsJ5+eWXpd69e0uVKlWS3W/ZsiXLm1u3brH2//rrr0t169aVZs6cKVWpUoU9T+0tLCxMqlixouTm5qb65q1bt6QPP/xQqlWrlqyd8H98e+D/fv75Z0mSJKlz58666Wrfvr1UokQJzfve3t4ye6Ws58p8EP0p66e/v79Uq1Yt1vb02oDIJmiVvVb+hISEsN9eXl5SqVKldN8he05/1apVkypWrCgrvwoVKkjVq1dn9UcvvFmzZkmhoaFS8eLFVfb75s2bUlhYmOTh4SEtWLDAcLqATNvG50+5cuUkSZKk48ePO3yXbKLyr3PnzlKJEiUkSZJU92bMmCFrT9WqVZO916JFC+nMmTPs2gsvvKD5Hf7v4MGD7P8DBgyQPvzwQ6lMmTLCZ6dNmyb7XaJECal27dqya+XKlRO+O2fOHM36qnyHynvTpk2qZ5s1ayZ169ZNAiCdPXtWatmypVS+fHnJ19dXqlKlisM28dRTT8l+d+rUSerTp480e/ZsVRxWrFjBfnfs2FHq1q2b1LRpU+nFF1+UPv74Y6fqi1bfQn8zZ850yHVybfr1s88+w7Bhw3D//n0sXLgQzz//PF599VVs2bIFW7duxccff4wpU6bkVnRkUI4OlNOvNFX35Zdf4ttvv0XHjh1VYYwYMQKBgYE4f/48UlJSULt2beG37HY7UlNT0alTJ1y5coVdP3nyJAoXLoxNmzbhr7/+YtcvXbqEkiVLAtCffuXh5+eHkydP4tKlSyqlkNCrVy+Eh4ejffv2qns0CiaVZurUqezesWPHMG/ePNnzvMy8cOFCDB8+XBbH9PR0VKhQgV2z2WwoX7485s6dCwCoW7cugoOD2T2RT11AQAAuXLiAsLAwdv2nn35CpUqVZHF5+eWXVUpoXFwcWrVqxeLdqFEjXLp0CadOnUK5cuVU6af81hoBKq/z5z5SnvEO7y1btsTWrVtV4axduxYffvih7JqyLvJqAI8qVaqgYsWKiIqKkl2nkbsSERERqukdi8WCPn36sCkYZVjAozrQvXt32fU5c+bg0KFDsgUfPFq1aoUFCxbIrn311VdsOiEtLQ1vvvkmihYtamhaJjEx0eEoNSUlBYGBgfjxxx+xatUqXLx4URbvjRs3YtKkSQDkU12k1L399ts4d+4cU54pH59//nlcunRJOGVvs9kwffp0HD9+HL6+vppxF0Frn7pZs2Yx1QMA/vzzT12lPCIiAnfv3sXly5dl17/++mtcunQJFy9eZHZAWY4+Pj4YNmyYrAw++OADDBkyRHc6kNpAYGAgkpOTsXTpUtl9I+4NQObszfDhw3H48GF2rW3btggPD0ffvn0BAL/99pvqPWWdOXPmDC5duoSzZ8+yaxUrVsTp06fx3nvvyZ4vV66cLMwCBQrgjTfewIkTJ3Dnzh2kpKTg9ddfB5CpVgUHB+PQoUNISUnB4MGDZd8lGybCW2+9hZSUFCQnJ+OPP/4AoK/UKaFlf/R8ZvWm/JRKnY+PD1JTU4Wr3/mZBEC9gnz69OkyO0vK6LBhw/D+++/L3i1SpIhqZuTBgwfCOPr6+uLixYsICAgAAJmie+XKFTz//PMAgF9//RWXLl3CuXPnNFXWsWPHAshs63a7Hc2bN0dcXBzOnTuHCxcuqJ6nb/n5+eH8+fNMLWvdujU2bNiAX3/9ldULHkqfXWd96ngoFWYtn2U95BqpO336NAYNGgQA6Nu3L+Li4tC7d292v3///jh58mRuRUcGkbwuInV6m4UaXTnHz7drNWz+Xa3/A5mGTXTcFg9HxkMUT6VzKV/RRBWVv6b8Xnp65vEx/HXKb7rm7u7O3tfyqaNnlQsMRHEROa/rxVELWr4ayut8o6Y8UzZ0rW+KBhQ8tDpHGngoG7kzB9M72tMKkDsAK991FLYybbyDNd8GjPpvOZoK5uuJKJ583ih9/vh8V7ZzvY6Yf0/L4GpNq2nZE2XeOSpTrXrN/3Zku5RT147qBbUBSr8yXKOkThR30cIEJfi48ffJRYa/zk/FA5nlJCpvERzZCj0XDZHt1vOpU8Ld3V34XHZJHbUjvcPilelWujDQtwhUH7TavbKf0vquMmwK12q1yvxkle1DBL6tp6enq+qJEvQtZXt3hph5eHg47VPHQ1mftHyW9ZAnCyWsVisKFCiAwMBAds3Pz09TlchpGFXqXEHqeBav1bCdIXWOKo3kYHdsPVLHO2vyz+uROlGaEhMTZdcpv3lyxxtikVInMiRa21Ao45CUlOQwjiIYVep4JYbyTOmcr/VN0YCCh1bnqNXRi/JEC0Sm9Tpv3gGYhxFSp0wb72DNtwGjpM6IUqe3glWL1Cl96pTtXK8j5t/TMrjOKnXKvHNE6qjDFOW3o2+lp6erSI8RUkdtQKvjc5bU8cqQMixH239oEXneZvCr3ZUdvF7eOrIVzpI6Z5Q6rbacFVJnsVgYiaN2pLegSm9wKSpzygctm6QkUY7IJIVD4erVbUf9KKXZaFkq27szxMzNze2/o9SVK1eOOeECmdNEZcqUYb/Dw8NRokSJ3IqODI+LUica7TiqNM6uXqRw+Xezo9QBmaM8PaWON145odTFxcU9sUqdKDyjhoRUjZwidflJqbNYLLBardlS6pRTUkDOK3WkUOjlN3WYWVHqaAsnnvTkhVJnsVg0CaIjpU6LyPPh8fFRdvB6sx1GZjqcsePOKHVabdnf359tii/6plb/RGWaFaWOzz9HSp2jsPSgpdTp1W1Ru+TDECl1IigHKllR6viV0Xml1OXa6tc33nhDZvRq1qwpu79hw4Y8W/2qrBT5VanTmlbUg7OrFylc/t3cVuoA9erX7Ch1iYmJLlXqPD0z9zEkFZSUGD7OrlLqtDajzYpSJyIdjjpv5UpN/j09ZFeps1qtsk4rIyMjW0qdsv4YUepo2xm9+pLTSh0RNiOdQ3aUOr6eUf3OjlKXlJSkKkMRlO2ZSKZeugDnlTo+fUam4vS+rfwWzSwo0+sKpU4UN9p+RVQ+Rkidq5Q6flsmR0odD716kRWljgYESvvgrFKnRbydIWYUj7xU6nKN1IkcDHmQA3NeQFkp8pNSJ9rPjPCkKnUWi0Wl1Iny3qhSZySOImgpdRRf5ZYZPKlwlVKnhawodVqdgF7nTfdyW6lTumOkpqZqjsj5uCo3LxWpNny6AG2lTllPRdBT6jw8PGCxWLLtUyd6RoTs+NQpfxOp03LfcKTUAcZcakSD1pxQ6ngY6eD1vq38lpubG1JTU1XpdYVSp+VTB2Sd1PFKnfJMb0BMckVKHf8ctTsjSp3Wlid82M4odfRbj9QZUeqUhDsvlDot+0XItz51+RFK0pFflDot51Ag81SE3Fbq+EUNfBjOKHXUOTvyqaMOJbtKnZE4iqCl1Cm/y29i6WqfOi1kRanLbVKXHaVOdLpKbit1RlQVPaWO6lx2fepEz4igV5ectV2enp5sM3YR9JQ6ms7U29BXFGctgugKpY6HkQ5e79vKb1FYyvS6QqkTlVdOK3WenuoFWI6m0/XIvTIP9eqFsj4RydFT6kS/+TCMKnVKwm1UqePzKrtKndIVIF8rdfkdytU0+UWp4yGSxHklTwRHlUD0vp5SJ/LvMaLU8d9R+gApDTspdfzpDCLJ32azqUaVHh4eLlPqtEidsn4YUeq0VCZXK3W835gSriR1juqdnlKXnJyMtLQ0XaVOROq0tk/hn1F+k+LpjFJnZNoVeOSnRxApBXmp1PFtIytKHaA9daxU6vj64OnpibS0NEOkTjRofZyUOg8PDxaWHqlT1in+Xy3ibLPZhO2Mts5xhVInCoNWcPLgSZ2eUGBUqdOCkki5u7vD3d3dkFKnFZfsKnWObJ2yLmZHqXM0mDOVOiegJBb5RanjIXJeza5Sp2cwRUqdKH7OKnUER0oddZKpqal5otTxBlsZb2eVOi2/HaNxUUJvmtWVpC4nfOpoyoeeUR6lB6hPKTGi1PH1RBnP7Ch1WlDez29KnZFvaX2frmnFXU+po/8bIXU8/otKnd4iDZF98/DwYIMbI6SO35LI09MTqampmofF82HokTq9duhqpY7yICtKHfUlOa3UKetiamoq8w11ltQ5Gszlq9Wv+R2uVuq0jAZP6lyh1DkjDRsJE9BX6kTxM6LUia5r+dSRwzR9n9/njv92TvvUaREnPaVOa/Wr3jd4GBmJAfrTrK4kdTmx+pVvTzabTXiMnOgcZUd1WdRZa6k2SlKn51OnBUc+flTn8kqpM/Itre/TNa246/nUZZXUPY5KHU84jJA6JWHQW9msZd/0CLeSSPBKO12nRSNaSp2np/70a24qdZQHWVHqKByyHTnlU6esi1QuplKXx+ALXNnQskLqtMBLs46WYuvFkeKV00qdxWJRyc+5odQp/XnyQqnTIk50XWlcU1NT2ekMSqVO7xs8DJ3tB9crdc7uZ2iE1GmtKufbkzL9Hh4eQmOYnp4uVPSUcKTUubm5wWq1qqZfs6LU6a3s5NPhCqXOSJ3VI5lZJXX5Vanj99VzVqmTJCnfKHWi+PHf1isbkZ+bsu2ICAZdEyl1VG/1SN3jotRRODSDkhNKnSRJKqUuO6TOVOpcCL5TUy6rdyWp45U6LWhVvqyQuuwqdSK/NT1Dk12lTjT9yj/LfzuvlTqRmkGj4LxU6rTqjxapA8DIqBayQuqU0FLqlO9pGUMtgqH8higeys1tXTH96kixoD9XKHVGwO/1ZvRbWt8X1W0epNSJtlzJKqlzRqkTnXCg/L6e0uJKpS6nSJ0jpc4IqaN8EpWpSKnTanu5pdQpyyy/K3XUn/NhiPLcKByRuny1T11+B59ZtHcTITY2FhaLRZe5Gy086jz1njfqf5UbSp3eqiL+t54K5oxSxy+UeNyUOv7/WVXqjJI6PaVOC3qkztEGwM6SOpFzsYjUiTpkrXw3Quq0Onjl/mHObGmSFVD9sFgsmvHWsidaddgIyHVBFB/Rt7S+72ihhJ6fbVZJHZWRMj5aNoXgrFInekcLRkgdCQJ6pI4Gq0oVSCt+9ExWSB3f9pxV6nKC1Dmj1CnLjPJA2SfmF6WOZt74MLKj1Iniz8NU6pwAn1m8Uufh4cHIk95GoM4WnqMVNSLklVKnBJ839NuRuuEqpU65+jU3lDplWWldJziarlaGxYNPs7NO1I7giNQZMdZ8metBa2CSHaXO0RQxoN3B8/nqKqVOD3rpED2r/J3Vb7taqdOC0s9WufoVEHfeenZP65xhZZo8PDxyTakz4jdJ7UaP1NFvipPesWjAo1X8WSF1ojhrKXVKFwIjpM6Z6VeRevykK3Vkp/i8NNrfixZb6d0XwSR1/w8tpc7HxwcJCQmyzNVqNM4gKwxeaYiU8RIhJ5U6/mgYR+qG1uok+pd/383NTVOp48lCbil1yg6M9/MQ5Z+jhSXKsHjwadbbwiMnlDo9tU5U5s6C2hU/PSHqkLMzwtXq4Pl8zQ2ljvZzzCqpy45Sp/cNV5E6pVInIimiLYGUm6vy0FqUo0yTj49Pril1jsAro0ZInZGZDyAzjVlV6kTQUur0nuPBk2hnlDpRmrOi1CnDUJYf9Rui+OS2Usd/21m7qbWBstZ9EUxS9//QUur0jj/hoXffFSQwq+E4q9TxkrzW6MZqtcLNzU2WN1lR6miU6IxSpwzTGaWO4m3UoNOeb0rjx48eKSx+Cw5HW8Aow+KhVJS0kBNKnRFS5+3tLXNFcAZKX1VnlTojyC9KnXKKXg/KZ7T2WjSC3FLqjBxkLyJneuqzllKntHsFChTItlLnKlLHn37jjFKn9xyQmb9ZUer0SL1IqVOCFkqIQDbOGaVOlGbaZ08Eo0qdciZAa5CbF0od/21necR/Wqn76KOP0Lx5cwwYMMDQqjhH0FPqgOyROqMN2RFEU1quVur4Dk9vdMMrWHzlVRpgMuKicChuzih1PJxV6vTua0Gk1FF8+dEhb9CzotTRv3yaHR007kwdUq7SUsbNGaXO01N73z09KH1VRWXhjMIlgiuVurwidVklzfRdvW+4gtQ5qnta3+IHQSJoKXWihVrZVeqyo8Iq4Qypy2mlTgtGlTrRiUEESl92lToj9tCRUid6TzSz8bgpdcq8VfYBT6xSd+zYMURERGDPnj2oXr06Vq1a5dLwXa3UZYWMGYUoHP57WpWAnhE1OEdKHT2nVOpsNu2VsqJwKG6uVur0FE2t0bIWREodKXh8J8Ub9KwodSJFSQ/OKnVK46OMmzNKXVbrrhGljso0r5U6/rSIrBBYZ9LhSiVJ1Ab5b7iC1DlqQ1qdoSNSp6XUKeEKnzpHvnLOwJnpV1codeSflVVSl5CQoHnyjB5hp/RlV6lzxh7ytlYPWVHqtH7zC/gcxddVSh2VqTJvlW35iVXq9u/fjw4dOgAAOnXqhH379qmeSUlJQWxsrOzPKHhFwRWkTuTgnZOkjkdWlLpLly5h7969uHr1qu7IX0nq9EahRpU6WiH28OFDtj2I1vuiqVSt/MiOUqfle6Kl1DlD6pQdYE6tfrXb7bh586bqOoVx6NAhxMfHa77vClJnRKlzRuGi5/V+Uzj8li2enp4IDw/H3r17sXfvXsTFxalG2NlVcrKj1NH7gLHFIaLvan3DCKnTU2uMKCdaC8q0/J4IWkqdKL58Xc6KUqe3x6CzoLrlSqWuQIECmkqd1WqFu7s7rl69ajiOfF28efOmZj3RGyzStGluKXU0QDGq1GnV7Vu3bkGSJId+edTWlOROL76pqam4e/euKv70nlEeQfcd2f8nVqmLjo5mDSggIAAPHjxQPTN58mQEBASwv9KlS+uGWbt2bfb/Bg0aoFSpUggMDGTvFStWjN1/6qmnVO8rV7e0bNmS/b9+/foAgMaNG7NrRYsWZf9/5plnhHGqU6cOAKBPnz6ycHgUK1YMxYsXl13r168f+/9zzz0nu0f51q5dOwBAzZo1AQClSpVi4S1ZsgTNmzfHTz/9hEKFCgHINNRVq1Zl4QQHB6NOnTpwd3dHUFAQSpUqJYsHkW7Kt0KFCqF169ayuJQtWxYA0LRpU/ZcwYIFUbhwYZw9exYxMTHsWYoHAFSsWFGWFoKXlxcKFiyoyiPgUX4r49m7d2/Zc56eniy/6fly5crJnilSpAgLp3DhwgCAatWqsc6sWrVqsudLliwp+12mTBn2f3q/UaNGADLrTatWrQAA9erVAyCvN0WKFAEAtG7dWlYneYSFhQmv79y5U/b7ueeeQ5EiRWCxWDB06FBhOwIy8zkoKAju7u6oW7cugoODZfcpD/k2FhISwv5fokQJAEDVqlVZnD09PeHn58fST6hcuTKCg4NlaatUqRJTVpR1qHPnzrLffD0BHpU75SWQWSc3bNiA5s2bo3nz5ggPD5e9R2VLNkFZnlRvK1euLLvepk0b9v/ixYur0qGFoKAg9n+qvxQfvs2L1IpevXrJfhcvXhzdunVTxbtkyZKsrfJo2LChavGCl5cXvL29hT5X3bt3R3BwMCu3ChUqyO536tSJ1XdKO5V/x44dZW2vevXqsnfr1q0L4FGZkY3y9/dn/6dw9+zZw35Tevn7wKM8pHQEBgaycHm/Lr69E8h+K/MLUNt/qluUTiDT/0x51J3S9gCZbZBsLwC0aNECAFC+fHkUL15cVX+o7RUrVgy7du1SxQ2Qtz3+vcDAQLi7u2PPnj0oVKiQKmybzcbqLdlvHmS3OnbsyK41adIEANClSxcAj0jLiy++qErzgAEDWNy1QOUSHBzM3uPDaNu2LQCo7Hzx4sVldpLiw9cVpW0YOHAg+3/r1q1ZO+jUqROATFvr7u4uK1cAqFWrFvt/eno6Dh48yH5Tu3B3d0dAQADc3NwQFBSE+vXrw9fXV/Yu8Ih3UDvn7RnVVx5GBv0WydmhYD7A7Nmz4ePjgxdffBGHDx/GTz/9hO+++072jHI6KTY2FqVLl0ZMTIxw9U18fDxiY2Ph7+8PX19fSJKExMRE2Gw2XL9+HcHBwTJDQKpGWloa7HY762yVYcbExLDC8fLyQnh4ONzc3FjjTEpKgru7u2oUkZKSwkZkGRkZSE5Ohre3N/tucnIyHj58iIoVKzL/M6vVioyMDJlcbbfbkZqaCovFgoyMDLi5ZZ616ePjw0hIfHw8vLy82IkId+7cYfEoXrw4AgICZPGheHt4eCApKQm+vr6yOAKZlS8tLQ0pKSm4e/cuKlSowJyKed+H+Ph4lt/Xrl1jxODy5cuwWq0ICgrCnTt3UK5cOWYw4uLikJCQwBr6gwcPIEkSPD09WRklJCTAYrHAbrcjNjZWlt+8IzrFm/LOZrPB3d2dpSU1NRWSJCEuLg42mw3R0dEsjunp6UhOTsbdu3dRsWJFREZGIjk5GeXKlcPVq1fh7e0NX19fFqfk5GRWBvwg4Pr16yhRogRSU1PZs/Hx8fDw8MCdO3dQunRpJCUlwc3t0WkIlGfXr19nRtJqtbK8jY+PZ+Xq7u6Ou3fvIjU1FcHBwXBzc5PVk9u3byMuLo7ld2JiIjIyMuDn54eIiAgULFgQRYoUkdUTnghQHUtLS0NSUhJ8fHxYOpT1RJIkXL58Gf7+/ihWrBjsdjsuX76MokWLwt3dXXbw+bVr11CiRAm4ubkhKioKSUlJKF++PBITE9mo2tvbG9euXUORIkVU9YRw+/ZtBAQEsM49MTER4eHh7L7FYkHFihVVdYLaG9/uk5OTYbPZcP/+ffj4+Mg6bjr1wmKxyPziLl++jGLFiiE6OpqRBL6sqLwSExPh4eHB7IUy3jSNZLFYcOfOHZQoUUJlO5T5zYPSQm0DeHRgelRUFKv79F5kZCSio6NRvHhxxMfHw8/PT1b+N27cQFBQEMtvsmWSJOHWrVsoV64cu5acnMzeBTJVEfo2ITExEQ8fPmRtVZIkJCQkwNfXV3aiSEZGBm7dugUvLy8ULlyYLd4hZGRk4Nq1ayhXrhwbDERGRsLd3Z0pYG5uboiPj2flIJqOVZY9IS0tDWlpabBYLPDy8kJCQgKio6MRHByM+/fvs1N4lO9S3aE0JyYmwtMz8/SG9PR03L17F+XKlUNCQoKwHZDa5OHhgQcPHiAyMhIBAQGw2+3w8/ODu7s7a5fx8fFISEhAfHw8SpYsyWze3bt3ER0djaJFi6JQoUK4efMm7HY7fHx8YLVa2b8Wi4X1BUWLFsXt27dRtmxZ2O12WX5T3+PpmennSHWV73cov+mal5cXrl+/jiJFiiAyMhLFihVDWloakpOTWfvg22BaWhqzV3yd4EH9U0pKCiwWC4tjSkoKrl27Bnd3d5QvX17lmqSMY3x8vKpvVH6LL//bt28jPT0dpUqVYmVz5coV+Pr6srQkJCTAy8sLiYmJcHd3R0REBBtMe3p64vbt2yhSpAgyMjLYQkW+nyAfyHv37sHd3V01qFbisSR1x44dw/Tp07F06VJMmjQJFSpUQP/+/XXfiY2NRUBAgCapM2HChAkTJkyYeJzxWE6/1qlTB8WLF0fz5s1x5swZ1RSaCH5+foiJiVFJ4iZMmDBhwoQJE08CHkulzoQJEyZMmDBhwoQcj6VSZ8KECRMmTJgwYUIOk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYV8BYZgAAywlJREFUMGHCxBOA/wypkyQJsbGxkCQpr6NiwoQJEyZMmDDhcvxnSF1cXBwCAgIQFxeX11ExYcKECRMmTJhwOf4zpM6ECRMmTJh4krFhwwZcuHAhr6NhIg9hkf4j85GxsbEICAhATEwM/P398zo6JkyYMGHChEthsVjg5uaGtLS0vI6KiTyCqdSZMGHChAkTTwjS09PzOgom8hAmqTNhwoQJEyYeI6SlpeHSpUt5HQ0T+RAmqTNhwoQJEyYeI3zwwQeoXLmyuZuDCRXyJak7cuQImjdvjpYtW6Jv374y/4CdO3eidOnSaNWqFdq2bZuHsTRhIns4cOAAYmNj8zoa/zmMHDkS33zzTV5HwwSHNm3aYM6cOXkdjccG+/fvBwDY7XZ2zZEf3f3793M0TibyB/IlqQsODsamTZuwa9cuVKpUCX/88Yfsfr9+/bBz505s27YtbyKYS3jctl85efIkwsLCkJqamtdRyRLsdjtGjx6N6OjoXPle48aN0b9//1z5lolH+Pzzz/HBBx9o3r948SJSUlJyPB6SJCE+Pj7Hv/M4YMeOHXj99dfzOhqPDTIyMgDIiVxiYqLm87t27UKRIkVw+PDhHI/bk4S0tDTUqFEDBw4cyOuoGEa+JHXFixeHt7c3AMDd3R1ubm6y+6tXr0bz5s3x7bff5kX0cgV79uyBv78/jh8/nqfxSE1Ndei7sXXrVkybNg0TJ07E4cOHcffu3VyKnWtx7NgxTJw4EePHj8/xbxHxNbcfyF+QJAlPPfUU3n333Rz/1hdffAE/Pz+Z2vJfxJM6hRgTE4PChQvj33//dXnYVGf4RRF6pO7vv/8GANy8edNh2A8fPnziVL3Zs2fD19fX6feio6Nx5swZjBw5MgdilTPIl6SOcOPGDWzduhXdunVj1+rXr4/z589j27Zt2LhxI44cOSJ8NyUlBbGxsbI/o3jw4AEbCeU0JEkSKnLHjh0DAJw5c0bz3WXLlsFischUhR07dqBChQou6yjeeustVK5cWfeZ9u3bY9iwYSzPrFbH1So1NTXfdWY0eNAzjq4ClbnNZsvxb+UWLl26hG7duj22Si0AJCQkAECuKBp//fUXACApKSnHv5Wf8aSm/9SpU3jw4AEWLlyY7bDS09Oxbt062W/AuFJHJC0gIMDhtwoVKoQiRYpkNar5El988QUSEhKQnJzs8NmkpCSmzFE+37lzJ0fj50rkW1IXGxuLgQMHYuHChXB3d2fXfX194eHhAQ8PD3Tv3h0nTpwQvj958mQEBASwv9KlSxv6bkpKCsqVKydrQACwePFi1K9fP+sJUuDEiRNYunQpli5dCn9/f5w6dUo2iiJipEcuyVhQRwQAo0aNwtWrV11GTMh3w8gyeSJpIrL2448/4ssvv2S/PT090b59e5fEMTuwWCz4+eefATzK89wgJU8KqTt69Ci2b98OABg3bhzWrVuH69ev53GsxPjiiy9w7tw53WdiYmIAQDU7kBOgtp0bg4j8DMrzJxWuEAjmzJmDbt264eDBg7IwtUidUv0kUpdftzu5f/8+Ro4ciR9//DFHBvvFixcHkCkUOcJbb72Fxo0bIz09nfUFt2/fdnmccgr5ktTZ7XYMGDAAY8aMwVNPPSW7xytue/bsQaVKlYRhjBgxAjExMewvPDzc0LcjIiIQFxenYuZvvfUWjhw54nCq4OrVq4amE2rXro2BAwdi3759AICQkBAZ8TRC6miEyyt1Dx8+BABDIxJnYMTHiBqjyGH3lVdewccffyy7tmPHDtdELoug+BLZpDTmhj9VXpK6LVu24MUXX8x2OL/99hvq1avHFixRmiwWS7bDdjUkScLw4cPRvXt33efIn5IfSOYUTFKXiSeV1JG/pCNSJ/KrVPZXZOuvXbsG4JHtKl68OCIjIwHI6xE/0AcyZ5+A3Bmw6sFiseCzzz5TXZ83bx4+//xzvPLKKznSLwQFBQF4lH96OHXqFIDMvKL8iomJybXZu+wiX5K6lStXYt++fZgwYQJatWqFFStWYOjQoexegwYN0KRJEwQHB6NFixbCMDw9PeHv7y/7M4KIiAgAalJUoEABAPqLF2JiYlChQgVMnTrV0LcAMN9BJZwhdXxcqVNyFakjgmokPJqy0luFdevWLZfEKzuQJAkJCQmoXr06+w3ISd3WrVthsVhcTo4JNDgxogjNnDlTRZQ2bNiQ5QUdzz33HJYsWZJtX6YpU6bI4kOjYKqXly9fzjerTKlsHXVqjpQ6SZJw9OhRl8SJ2nb58uXz7fSO3W7H5cuXDT8vSRL+/PNPpzpAvh7npH+dJEnZbs8ZGRlYvnw5S19GRoamMk1tXC8v1q5dCz8/PxnZWLFiBcqUKSPztw0MDAQAREVFAZArbqQ+86RO6W5EpM7ZAaskSYanx6OiolTPHjx4EBaLRVbGM2fOVL3r5+fH/i/Kr+joaKfqIY/Dhw+z2QQjpI76r5SUFJm9sNlssvppt9tx7969LMUpJ5EvSV3//v1x//597Ny5Ezt37kS/fv3YcvchQ4bg0KFD2Ldvn2w6z1XQInWenp4AgJYtW2oaHhodbd682fD3fHx8ZL/XrFmDHTt2sEagZ+Qojo5I3dWrV/HJJ59ohvXFF18w0uzoW0rwJJc6JhGpK1OmDADg9OnTwngkJyezqV5XICkpSdOYFi1aFKVKlVItUqAGnJqaiu+++w5Azm0D4IxSRwuCKF/tdju6dOmCl19+OUvfpoGEUiF56aWXsH37dpw4cQKnT592GA4/JdGlSxe2qCcxMRFTp05FpUqVdFeZ5iZIDXHUqVGeuLu7Izk5WWbUly9fDqvVinr16umuvI+Pj8fq1asdxomvn1evXnX4vCuQkZEBi8WCpUuX6j734Ycfol69evj0009RqVIlzXxLTk6GxWLBxo0bAQDr1q1D9+7d8euvvxqOE18Ps7vi/969e5qLj6ZNmwYvLy+np/cuX77MfJvXrl2LAQMG4JdffgEALFiwAOXKlZMpa7dv38aIESOYLdYb5K5cuRKAPA8OHTrE0kJQTgPyaSAipUfqqG9KSUlBZGQk0tLSDLXxOXPmwNvbW6X8iVC6dGmVm9NXX30FQD7tKVKmaYYJENeB9u3ba87KOUJYWBgLUzR4io+Px3vvvcfKlMqrfPnyKlWRj/v//vc/BAUFafarZ8+e1fT5z0nkS1KXlyBSpxxxEKk7fvw4rFYrG/nwoAKn0ZQRKEldz5490aZNG4wYMQKAvg+ESKmja3z8hwwZgqlTp2punzB8+HDMnTtXN57JycmQJElFlET5IFJDSPno2LEjtmzZwq5fvHiRxaFJkybZMuqkEkiSBG9vb4wePVr4zP3794XqAK/mkNHUmhpLTU2FxWLBTz/9ZCheyjxxhtRRntM79G9WiYCXlxcAqEaZixcvRr9+/VC7dm3UrFlTdu/kyZMYN24cq2t2u521FSXOnTuHTz75hP1WdqLVqlXDjBkzshT3rCAtLQ3t2rUDIJ7q4sGTOi8vL9StWxdRUVH49ttvMWDAAPbcmTNnkJGRIVQxBg0ahD59+jj8Fp8vrpzuLV26NPr06SO8R52zqL1HRUWxwczXX3+No0ePMvKq1S6pDpH6Qkq8ERJA4AmN3lT0/v37HU5VV69eHVWqVBHeIyIrKrPU1FQh+YqLi0OlSpVQp04dAI/KjEgcKT9EkHr37o0aNWpgypQpuHLliip9SpD6ZLfbsXr1asTGxgrtJ+WncvoVyCTSkiTpkjqyIZcvX0axYsXQs2dP1K5dWxU3JUEh3/KEhATN9k5ITk7G/fv3Zb7hlL6kpCRdm3r//n1G2vi4R0VFISYmhg0YszsFGhMTg9TUVPzvf/9jRHLv3r2YMWMGvvjiCwCPSF1MTAwj3QS+TS9atEj2vBLVq1cX+uEfOnSI9Rvz5s1T+e9rYf369diwYYPD50xSp4AjpY5w8uRJ1btZIXWOQAYoNTUVGzZskFVqEakj8NeoMTmarjt8+DB69OiBO3fusO/w06+dOnVCsWLFZO+IjLeykq9bt44ZOACy/ajIZ5KmEBwZDkJsbCyGDh2K27dvMwP7559/ylQCkVoimv4VTb9SnmmtmqZObsWKFQ7j+tFHH7H6c/PmTVgsFvzzzz8AjPmfUfzIAFOc0tPTUbZsWfTu3dthGDxIqeO3nqHyVpLMqKgoLF++HP369cP48eNZvCMjIzUVDyXZ5FUeSZJw7tw5DBs2TPZMo0aNYLFYnNo6YP78+fj444+xfv16bNy4UXNq/9y5c2xBlVFSR+Vy+vRpFC1aFO+//77sufv37+Ojjz5ieXnmzBn8+++/yMjIYKtatQjI/v37UbFiRbbCHcgsy927d2P9+vW69iMjIwPjxo3TfebmzZtYvXq1TEEj6A0m3nzzTbzzzjtC1USrHdCzlFaySTRwIKxbt05zFShPLEqUKIGzZ89izZo1sgFjWloamjRpgnfeeYdd++yzz9C8eXP2m0gFj9u3bzN1htIiInVBQUGoVauWZtyIaJFbDNnSEiVKAMhc+Z2eno7ffvuN3aMy4vNTCSI99+/fR58+ffD222+zb7355ptsIEF2ltLH9wMzZszA77//rkvqqK3OmjULQGZ9TU9PVz3Hh7Fx40aWllOnTqFEiRL47bffsHr1at1pTPLxAx6R0NjYWF3F8v79+wgKCoKXl5dsAFG0aFFUqlSJLXTgw3aEP/74g6mehNjYWBw/fhxfffUVxowZg82bNzNCTsKDXjz5uFHeOLt6u2HDhmyW5bXXXpPt7qGH77//3tAG3SapU4BIxfnz5/HJJ59g165dOHjwoKGRNBWuMxXPkZMwNbJFixahS5cuMn89o6SOOig94wIAu3fvxtq1a1GyZEmEhoYCkJO6zZs3q4ymEVKnrLQihYk6GaO+RV988QXmzp2L4OBgNrVLnTqpByLCRE6wPJKTk7F+/XqhUqfVmRE5IENAe46JGujatWsBZJIoWr1GIzXlqPzWrVuIiYnBkSNHmIpJBpziQnXGbrfjxo0b+O2334Rx1IJIqaN6ptyOZsiQIRgwYADrYCndeqvBlOXLGz1Kg7+/P+bPn4/vv/8eAFi+fP7554bT8eqrr+LLL79E165d0blzZ1kHD2S25ffee8/QijcC5a0jRSgqKgrz588H8GiD0tDQUMyePZvVI2UYqampWLRoEZo0aSIb5ACZRKxly5bo2rUr+vXrx66fOHFCRp4vXLiA8ePHa5JfpT1ZsWIFTp06hYcPHyIpKQn16tUD8Ki9SZKkGjTwtoPKS0upo3pBdkBUj27duoVp06Zplq0y7OHDh6Nnz54yf0wK/8yZM2y7ibFjx2Lv3r3sGX5RXUZGBqKiohAcHIySJUvKvpOYmIgdO3Zg2bJl7Pno6GicPXtWFTd+QJKSksJWyiunVs+cOaPq3Kl98Xb3008/xXPPPcd+U19Bcbt79y6zCf/++y+WL18uSz99VzmgiomJkdlmpd2idJB9VZbX5s2b0aVLF9nAv3Pnzix/afr59OnT6NOnj+5pTtHR0bhz5w527NjB4nT37l0V0edx//59FC5cGP7+/qq4R0VFsYUOBw8eNLywqFevXmjYsKHsWkxMDEv7d999h44dO+Kjjz4C8KivM0rqCFn19dNC2bJlMWjQINX1xMRETR98HiapU4BI3e+//46pU6eiVatWaNSokaoiiQqXnnFm2bgj9YwMBS1COHnyJH7//XdMmDCB3bty5QosFgt27tzJ3ktOTsa5c+ewbNkydt3Rt3hjfvr0aZmR4+/xpFWkfFCjoClbI3BE6pSElEgAITw8nMVLb788kVPzhQsX0LVrV9bRnj9/nqXhnXfeES58oXRTvIcPH474+HisW7cOaWlpsv0Fq1WrBiBz70Ey2KIVa5IkoVSpUggMDET9+vVZJ0XpiYmJgSRJhhyw9UBE9O7du0hPT8eUKVNYfPiyXblyJSNElP+Ubj3yrSR1fN2h9/z9/fHqq6/i7bffVnVQSvVzw4YN+PPPPx2m6+7du0hMTGRtc9CgQZgxY4auj+uePXvQtWtX9pvaiCMieP/+fdb++M6U9+dKTEyE3W5H+/btUbRoUbRv315orAH5asezZ89i0qRJsFgsqF27NsaNG4datWph8uTJrHPWsjHnz5+X/b537x5CQkLw8ssv499//2X2jertu+++i7JlyyIhIYHVJ36gxpO6//3vf2jWrJksfCJ1VI/p3w0bNjC1rVSpUti5cycuX74sIz779+/Hpk2bVLaVyvr27dtITEzEuHHjWP07cOAAGjduLFPxqE7yeRgdHY2iRYuy36tWrZIpdW3atMELL7wgzEMePKl7//332SwAqdwU97t372qSOl4Rnzx5MlasWIGoqCiZbaS4ZWRkCP0XlaROWf7e3t44duwYmyZWEiPlwJ9URIr/8ePHsWHDBk0fYtqlgeqN3gbzMTExaN68Odq0acOuKeulEnqkDni0erVHjx7o2rUrRowYgTfffFM3TBFiY2M100h5rNd/i3xz69Wrh+vXr+O9995zuPXJnj172P+Vdi8iIgKSJOHGjRtsapdHYmKiyl1LBJPUKaDVWUVGRsqkf2pc/fr1Yz5izviRKMPRwo4dO5CRkcFIXXR0NJ555hmMGTOGEQ/qSHjFZsmSJahWrZrMcDn6lpKgXbp0SabUFSxYEMAj/5Fr164JVbfU1FRkZGTAy8vL8GIWMjqi/D99+jQKFSqETZs2sWvKhlmmTBmMHTsWwCMDabVasWjRIqaUAfo7qlOYDx48YMvqT58+LfMPI9A3RKskP/30U9SoUYMZTJqimTdvnsoY8h2a1pQalcHff/8Nq9WK3bt3A1AbBbvdLvRxvHTpkqxsqZ7u378f69evx4gRI5iPG2/Q+vXrx6YIqa5Rup1R6kSkjh8Ne3h4yJ7nlQwgcxFG9+7dWT5okdmqVatixIgR8Pf3x/nz59ku+soBAI8333wT69evZ+mmdCmVNCUiIyPZO3y58flHfkhbt25FVFQUKzcReEJy584djBo1iv3euHEjTp48iU8//ZS1Ya0NvpVkdP369QAy2yqfz1Rvly1bhvDwcOzdu5flK19XqH7GxcXhq6++wt9//40LFy7gvffeQ0ZGhkzBPXr0KHOjWLRoEXr27ClT0iRJkg0UmzRpgk6dOmkqL6tXr4aPjw/Gjx+v8m3iO36RDVK2pWeffZZ1xI6myx4+fMjygu+8f/jhB/b/gwcPIiMjg7Wlhw8fqogTEejbt2+ztkqb/x46dEgmDJBLiiRJwtkbfvr1xRdfVA1yU1JScPjwYTRu3BgFChRAXFwc4uLiNHcvoOuJiYn45ptvMHz4cADiQS8AplBSPJSzIHybFK1UdbTg7NatWyhWrJgmqeM3Td65cyemTJmC2bNnA8gk2/R/RyBFUzSLQ2nTU+qGDRuGr7/+WqXq/vPPP5gxYwZWrVqlGwa/Wwcp/UCm3ShRogRatWole3716tWy2YNcU+qelGNezpw5o9kBxMTEyFb2PHz4ENHR0Vi5ciWef/55DB48GE8//bTqvbS0NHTs2FFzpOJo+nXPnj2YN28eI24iYkZGkW/ootVtgwYNQlpaGjMcyjN1laSOJ1jt2rVjx6xcunQJd+7cQfny5fHKK6+ovpOWlsbStWDBAt30EUgh4r8ZHR2NX3/9lXV4NFoE9I0EP/06aNAg9OjRg93TI3V6fkpbt26V/VZOv/KgLS+og6WO4bfffpN1QBaLRdahacWNDCbVTTKwys5w7NixKFy4MB4+fIhdu3axdlm5cmX4+fkxlYg6k99++013xbIIetOvS5YsEaaD71Coo+OfUZK0Ro0aCb997tw5zJ07FzabTdgxV6hQgbWTHTt2MJcJPVJHxp3SZeQYJUDe+fHT2DExMYzEJyYmGt7CR08ZpAGdm5sba+M2mw27d+9m712+fJlt1SPCiRMnZPaJFBfqJOLj41k5kNrDgycg8+bNw4wZMzBhwgTWDhMTE1GvXj2VH6uSTIhWXCYlJQnbEW/rlDMj/D0RqdNzgVG2G74unTlzBoUKFWK+S1qrfm/fvo3Dhw/LbK+yToaHh6NIkSJIT09n6SNiHRUVJRvgUT5JkiQbmPn5+SE1NZXVgaioKNbOeMTHx+Py5cuoWrUq/P39cejQIaaGjx49WnP3gsTERJnfmaP9XHlSl5ycjJSUFKxatUqW36I+Sk/Zu3btGm7evIlGjRrBz88PsbGxqrqspZ5dvHgR3377Ld58801DWzyRUle4cGHNtIlsYePGjQFk2pJNmzapfOqpnVNe8n1JRkYGLl68yGZsCLxvObUjfuCXlJSEPn364I033gCQy6TO09NT6I+QHXz00Udo3rw5BgwYIPM7Sk9Px6BBg9C8eXO89957Lv1mjRo1dO/zhufOnTtMuYqKilI5AZOBvHbtGjZv3oyJEycKw4yOjkZISAjrcDt06MAKkXD58mXEx8ejZMmSwoormjoT4eHDhyhTpgzatGmD/v37o1evXrIl20rDqey4qcFfuXJFd4PItLQ0Zpi0OjWlTwY1ej4Nffv2Rd++fVm+f/3116hTpw5bwaoF6mRFaoZep3337l34+voyqZ8HnX5x+vRp+Pn5sY5E1BlRfSUnYWWn4e3tjcaNG+Pll19mncK6deswadIkYbzIIFOe0lmSytWrpGa8+eabaNWqFbZt2yYzjIsWLcKMGTNw6dIl1KxZE4mJiSw/jE7lxsfH499//8W4ceNU93hVmF+BSPG/evUqq0NaA0Glagc8GqWfOnWKrdrkCT4AVKxYEcCjVaTh4eG6ewDSPaojFy5cQGxsrLBTGzhwoOoafx4yP+UaHh4uI3XUhipUqKAZF8DYTveBgYGM1FksFrRs2RJly5ZFREQEKlWqhJkzZ+r6G4lOrKG6yZM6EXjbQB3LuHHjWOemRRqUROfUqVOqTjM+Pp7ZUsKLL74o27Jn165dsvv8VjkREREqH0M9W9izZ0/2f6UtoXAiIiJw8+ZN1pmLcOPGDV1SZ7fbmQ8jAJmyFxUVxVRUHpIkyWy8t7c3JkyYoHtcJJBpG9LS0tierDSoX7BgASZOnKhJ9rdv3y6z0Y4GNURWLBYLypYti8DAQDz77LN466232DPKPqpChQqqfqB69epMkSM1t2XLlvD398fFixcxb9482VmtWoNO3o+S/4YWCSSlrlChQhg8eLDsXkJCAk6dOiWsy/yg/t69eyqRhvyfidTxC/6SkpKwbNky3dNsRP0ZtfXbt2+jdOnSuHLliutJ3Ycffij8s9vtmDJlCvudXRw7dgwRERHYs2cPqlevziRNINPfolSpUtizZw8SExNVxj2rEO1yzcNqteK1115jvx1tJ8GPvOjfCxcuqGTz6Oho+Pj4MMUrICAALVu2lD1Dlb9GjRqyBuPh4QGr1WqY1AGZlW3nzp0yZ2OC0sjcuXNH2PlevXpV91tpaWksnVrGhN9zKDk5mTWCqKgoZGRk4PXXX2fT2pSXcXFxOH78OE6dOoWEhARNx9vskDpPT0/Ng5/v3buH+fPnIz4+nqk/bm5ubJqPQGVEpC45OZmtGv7333/RuXNn7Nu3j0097du3D926dROu1k1OTmaqp7LO8dOvR44cYVOG5EM2evRotvcSgQZCtNknkQmjm2jGx8dj/PjxDp+bPHmyLA2RkZGoUKECm+bRQpEiRWTqyNChQ1n6r127xv6vVIhLlSqF1NRU1snevHlTc5pt2LBhSE9PR0ZGBqsjDRs2xDvvvCMkdcWKFVMptTx49eny5csqpc7d3V1I6jp37sz+b+TEG29vb9VqU+ARyd+xY4ewvSk7LyCzU16xYoVsoYMeqeN9fKgDA+R1XARlZ/XFF1/A29tbZlfCw8NRqFAh2XMVK1aUDXL4aVwAMv/hw4cPs0UYEyZMgLu7u65CyqsogwYNks0O0OyFxWIRKmI84uLidKdfAchIXWRkJCu3e/fuqVZUA5nEjyfQqamphuoG2U9fX1/hRvtag6gpU6bI1CFHpI4f6N+7d4+lmVfilPahUKFCKoHg7NmzTAiKjIyEr68vChYsiCJFiuDw4cMqP2YjMwl8OWr1O7xSN2fOHDzzzDPsXnJyMkJCQoRbyhQoUIARqsjISDx8+FB2Pi61iYsXL2LVqlWoW7cuu/fWW28J3WJ4iPpTCnPXrl2sXFxO6r755hvs2LEDx44dk/2Rr8SxY8fYfjLZwf79+9GhQwcAQKdOnWTETe8ej5SUFMTGxsr+tJCWliYjNyEhIapnevbsKXNSdDSyVq5MlSQJ3bt3x+jRo9kedEAmAfD09GRhe3h4qJQi6uxr1qwpqxyFCxeGj48P65CVFUNpKHmIVsIqO/bbt28LjcGFCxd0SQCv1GmB95EgslK+fHm2hxy/dFs5rU2KVOXKlYVh65G6yMhIBAcHC99zROq+/vprtiKPOiu73a5yHidjRelKSkpi37x79y4bXXbv3h2FChVC06ZN2btFixaVKUO0Hxqgb3Dr16/PSB7l/YEDBzBkyBDZc5QnRI5IZdKbHuERFxenyvdZs2ap6glf9/7991/VVjhaKFy4sIzU8fupnTx5kk17Xr9+XVYvChcujNTUVGbMw8PDZcSHNtc+ePAga9+pqamyOrJt2zYkJSWpdrz39vZWbWnUr18//PrrrwgKCpKtqL516xYjdQ8ePMDbb7+NggULCg9S51XJu3fvokqVKujUqZPquW+//RZ9+/bFgwcPWLvllQDaruX+/fvCqcW5c+eqVmUnJyfLfBcdKXW8gzevUhJ5SktLg6+vL9vri8DbJHJfUW6lceXKFZVSV7RoUdlCBz3MmzeP/d/f3x+lS5cWbrkhaveLFy/GtGnTVNdnzpypGhDx8PLyQnx8PMvv2NhY4aKxatWqsWk33s+MyoyfggPEpI6289BCtWrVHJI6ozBK6pTtXW+/TX9/fyExpfxISEhg/R/ZV6VPqxFSt2nTJhw/fhxpaWmaq7Xj4+MRFRWFQoUKwc3Nje2c4EhJt1qtrF8gUkftHJC3CaV/36JFi1ifxSuaPET1VcQxXE7qJk2ahJiYGIwePRo7duxgfzabDT/99BN27NjBjuPIDqKjo1nFDAgIkBEEvXs8Jk+ejICAAPan3OmaB/lAlSxZErGxsWwZNN+YqNKdPHkSderUcXjciHLpuCRJuHXrFhYvXiw7XolIHRl4Dw8PWWUBHo0sq1evLhtFeHp6IikpiXUqyrzgySHv5GsU9+/fVzWm1q1b4+jRo7rHP6WmpjokdTxxogbcoEED3L59W0awRSBlxBGpUy4kyMjIwMOHD1GqVCnhe0TqaGqua9eusj3g+HIjciFSg+i7165dw/bt27FlyxZZh1K1alUAmeWnXNVZsmRJzJ8/H926dYPFYsHx48dhsVhU5EwLdPQZHSukhKenJ4KCgjBhwgQAj4inUVIXHx/P6gTVqbCwMNVzvIqqVFkIFStWVI3qlUodj6VLl8rqI0+APD09ZUrd5cuXkZGRgWbNmmHx4sWYPXs2JElCgwYNGEFTkjoiKGFhYbKwfXx8VNPCv/zyC/r06YOCBQuqTjAgMkLKfuvWrTW3ROKnFYsVK4YffvhBpnICmStUn376acTHx7NOlScINJC+f/++SqEoUKAAbDYb23yZoCR/CQkJho/QunjxIqtfN2/eZHkYHx+vUs95Ujd8+HAsXrwYgHwAefHiRRWp8/b2NnSEnhI+Pj4oW7as8FQJkR8VkOnHZLVaZUr5gwcPhHuREnx9ffHuu+/ijz/+YIRG1PcFBQWxNFOZFSxYkLWJ//3vf7LnJUmSkcPU1FRGUPjFM8q4EKnz8fHJFqlzpApSv6ckTVRWvHoFQNd2Xb58Gb///juioqJY/+rn56eqC4A+qStatCh8fHwwbdo01KlTBx4eHkJfb8L58+dZHlG8eUVVq6+k2Y2UlBSEh4ezrXKAzD7Mw8MDXl5ebGqWt/l3795FuXLlNPss0bYoIoLtclI3YsQIrFixAm+88QY++ugjw87VzqJgwYJsJBcdHS0b9evdU8Y1JiaG/elV1sjISFStWhXXrl2Dn58fO+e1du3a7IgmqnQhISEICQlhpG3RokWYPn26KsyQkBA8++yzTBFJSkpCfHy8qjEkJibC09OTGf3SpUvLSB2RH19fX5XaYbPZVKvteBAp7dq1K/r376+Zfi2cOHFCRV5fe+01tGrVStYpKJdZG1Hqnn32Wfb/ixcvwtPTE6Ghobh27Rrb1X7MmDGq9wICAlij0To2hjoMpWocGxuLjIwMWWPkYbfb4enpyfL0jTfekG13wYNWheoplteuXWO+g/wAgXeYbdiwoawjLFiwIDw8PDBgwABIkoSRI0eibNmyeP755zW/w4M2UK1cubLQRy8pKQk//PADyzsic86QupiYGISFhWHo0KFIT08X7prOp4lUCSCz3KkuFi1aFGPGjJHFs0iRIsLpDzrhgjeK3bt3BwC0atUKHh4eSElJQUJCAtzc3Ngo9/3338fAgQNlq92IoNGpIEqULl1aRvZESh0hICBANbWkVOXmz58v9PGRJAktWrRgaQoODkbZsmWFq61DQ0NhtVrx448/ApB3ArTfGil1ojQp1X/lStyYmBjN47UIK1asgLe3N6Kjo5ktUrYnsp0EntS5ubmxunL37l0Z0eU78ueff162HYYelKq6r68vypYtK/TxVsaNEBERgXLlyqFjx46G1MHXXntNVj/IXivJOJBZxyltZLeqVq2K+Ph4eHh4oHz58rLnb9y4gYyMDIwaNQrDhg1jriwtW7bEZ599hrVr16oG1H5+frmm1GkNuOi6UlW0Wq0yH0Yef//9N5555hl8++23sj5EVAZ6XMPd3V3V95ELCt9nEsm6dOkSyyPKN96GaS3U4s+nvXjxoiqt7u7uCAwMxK1bt1C2bFnVVkp+fn6MlI0YMULmZiVaSJkrpA7IHMUeOXIEkZGRqF+/Pv79919Du+I7g0aNGrEM2bRpk2x6Su8eD09PT+Y0Sn9a6NatG86ePcuMDDV+b29v1jnxlY4fjXTp0gXvvfeecOHAqlWrmHOkXufv6emJp556Cn/88QdGjhwpqzzUwR06dIjFgRzSHR0xJVIaCVpKDsHPz0/odO3j44O+ffvKrimJNRki0ZQTkElkq1atylbGfvDBB2jSpImqMZOixaNmzZo4c+YMypQpI1ylpwcimnpp50ldYGAg6zTq1KmDV199VWXU+M6Vl/ArV64sI8R8/vMLcmw2m+w3fY/yLiIiAoULF1Y5bGtNyVCe6O1pVLx4cdU9PfcEgre3N44ePYro6GgWP606yJM6fnryhx9+YAaUlJNPP/2UGX5++pVXWok4BAQEYPv27Th16hRKlSqF33//HWvXroWHhwebfuXLQWQEidT9/fffQveCoKAgWaddoEABTVJHdYlXf5X13tfXV7dTorzSUpCBTFLHb0pM4NUAmg4UtQue1PHuJS1btmSDV14h4uskEaxKlSqxvOXDc0Tq3N3dERQUhC5durD3wsPDkZaWxggRX07Lli1jMyuO9idUKoM+Pj4oU6aMzO+PwNdVpRpTuXJl5sqidKcA5NPdc+bMkQ08tPogIJOsEqk7evQoLBYLK58SJUqo2g8NRsLCwthAJjIyEgULFoTFYsHTTz+Nd955R1ZWvFKXXVJnRK0VkR5yR6G6QHlos9k0fZ/5c1F5eyRStUUDPYKbmxu+//57lCxZUvXuvn37kJaWhueeew5//PEH4yrUx1Kb433gtPotfgBx7949Vb+XkJDA7EFQUJCqHPz9/WXp5Mv+wIEDsgGrzWbLPVIHZCZu0aJFGDFiBNq3b+/0AcmOUKdOHRQvXhzNmzfHmTNn0Lt3b+YT8/TTTyM8PBzNmzeHl5eX7uqkrIIncvR/fiqAJx9+fn6w2Wyq/WUI1Nh43z9lQ6ZRRo8ePeDh4SEjyVSZS5UqhTZt2uCff/5hPldae1UR+I5f+U2lTK6EXsXmz8AEHo2yQ0JCWAcWFRWF4sWL4+TJkyqHYMpTvgN47rnnVOkRERciAoMHD1ZNU+vh2LFjTFHR8pkDMjt8InUFCxZkjbBZs2aYO3euahqOV2lomgXI7IR5Ik9p9ff3VzVMvmMWTTkFBASgQIECqFatGjNCWlNJtGKwSpUqmqSOHzEaAZ0uUqRIEVy5cgWrVq3S7Dg2b96MAwcOaBpy/tt8HSTflsDAQEbqaCXZSy+9xPxoAwIC0Lp1a0Y6evbsCT8/P0bqEhMTZaROFA8qw549e7Jjz3jYbDZZXbTZbLpKHaBP6gCx0kDT1hRHvh6IVsMRGeMHJfx2LbTxsmj6ishUoUKFULZsWXZ97NixwrKkxRdApp/TggULUKdOHbbKmFdA9EhdVFQUypcvj4iICJQuXRqBgYFwc3NjgyEiLloqmuiEFn7Fo7JcfHx8NG0bbwOVR+vxHaqorKmTpuPt+MFd4cKFhbM1AJj7D5BJYkqVKsXKWasNA2B1GsgkEHyZW61WWX75+vqyPsQIqTNK+pR9Bqn7ypNbgEeKLNlkqm96wgO/YIW3VRQWX856g053d3e8+eabeP3111XtzNfXF25ubvj5559Rv359lvdE6saNG4ejR4/K6jAvqijD4iESB+hakSJFUKpUKSxevJgtiOJJXUZGhixvbty4wThEwYIFERgYmLukjvDcc8/h8OHD+O2332SGwhWYNm0a9uzZg2XLlsHDw4M5zru5uWHRokXYs2dPjh0KzpM6ykTeyJPRsFqtMgPw119/qVb3iTbTrVatmkwhEO2PVrBgQZlB8/Pzg8ViQf369VmDttlswtE7Qc/BVk8VAB41fH4EA2RWKn9/fxw9epT5Q1FYFosF8fHx+PDDD7F+/XpUqlQJISEhmsaL0lGsWDEMGTJENY0nmjKihlWqVClh50VbjyhRt25dZoxE7xHc3d1lSh01Qq2zMnnwZJzfZJLeP3funHBTW37ER99p0qQJu0adwpkzZ/D7778DEHcIXl5eKFKkCCIjI7Fo0SJNUicilnogH1O+vWmR/vbt26Nhw4aa4bu7uzOXBH7EP2XKFGzYsAElS5ZESkoK/v77b5YH/fv3Z2WmFa6npyebfnWk1GkRNOBRO+fbu9VqFW61Ajwy4nxb4/OGpp6ps/n000/x1Vdf4cqVK/j0008BPPLL5NtkoUKFEBUVJXMbIbtD7cLd3V3WGUmShPDwcHh7eyM0NFQ2tUfveHt7yzqLIkWKsHpCbb1MmTKyuly4cGEMHjwYFouFkTq+bfJkVKTU8desViuCgoLY9ChtfaN3Ju/FixdlZwXzG5orF3dYLBbNuskPmIoUKYJDhw6xQZCWrxOPmJgYthCESJ3VakXTpk01B5g06A8ICMC9e/dQoUIFVo56dsjX15fVubt376oIBG+P+EG2EVJXu3Zt3fvUZsj1iEAqnsjthfowagdGSB0PnjARqeO3AdMjdVSuonQrr9HgkYibp6cn6tSpI6vPWqROaQP4Mlm3bh2WL1/O6h7Z54EDB8qIJE/qlAP4Z555BgsWLMDevXtRqFAhocuYET/TbO9TV6pUKfTo0cPQ8RWPC0gFuH//PiN4vJEnpU5pULp27araO095QL2Pjw8b5ZKzvYjUPXjwAH/++Sf69OmjukdxstlswhVaFL4WqRs3bhzzzeFRo0YNpohShfXy8oIkSUhNTcWSJUsY8apTpw7rNKgz4hvwhQsX2PSpVsMmY1+jRg1YrVbUqlVLRnaV8nbz5s2ZYSlZsqRQhXn33XeF3+Lx9ttvY/To0bJrtMAgPT2ddcAFCxZkcefTQA1W2YHx8W3RooVsmis5ORlVqlQRkjERqQsICGAkiu+kyODw02PU0VI4RYoUga+vLzPOBQsWZP5ngPOkjvz0KlWqxL7lqOPQO+eRFCp+OwEvLy906tSJkTN+82x/f3/dDhDINLjx8fGw2+0sjoD+9CuPzp074969e6xN8u3dYrE4VOr4Tj0gIAAjR47Ejz/+yFTOGTNm4OWXX8aECRPwwQcfoHz58uwbDRo0APCoDhIKFy4sI3r9+vXDoEGD2BYlNNDjcfXqVfj4+ODo0aOyFXkFCxaEm5sbvLy8mOoJZNYZst3kD6RcIMDbdiL4fCerVOrWrVuHBQsWwM3NDdHR0ap20qpVK3amKZE6vY1jK1WqhC+++IL5IPGkQumrmJGRoeleQW2L0hMWFsY6c57UGdmzkWanHj58iOeff16T1NE3yY+2UqVKjNTpuS0plTq9+t+lSxf2f29vb01SQnBE6ipVqoS7d+/irbfekp16QIMPftB06NAhZlssFgurC9QHUfr5mawjR45g3bp1sm/ydYz2IHz22WexYcMGAI6VOkBsk5R2iPpuZR7xNlhrAKfsx6hM2rVrhy5duqB///6s7vF2nsL29/dndkSp1FE4gwcPRvXq1VGwYEHhNidG1jGYx4QJQIbr5MmTjBnzDVBv6lJZiZSkLiwsjPmLkCHQ2/Ptl19+Uflx8aQOyJwC3LhxI7tPapXWIpKxY8eiXLlyqus8iaHOir7l7u6OF154QVYRqSEWKlQIY8eOVZ3ZyRsyEcjYaw0IRMSA/PxKliyJChUqqPZF9Pf3lznmv/TSSwAyiQkpQ0WKFFHtS9ipUyesXbsWP/zwg2x6mIw3n+4rV64gOjqaPRcUFIQrV67IfAD9/f1x4MABtr+Z3tFEfCfEf4eu851ilSpV8Ntvv8kOR6dl8krDT/lasWJF2dSwr6+vzPdEbxr79ddfl6k8NOrUUkMIempYmzZtIEmScJsTT09PSJKE/fv3s2v+/v4sL7Q6XA8PD7bdB7/SXUTqlNc+/PBD/PHHHyhatKhwgKJH6khh4Be/BAQEYOLEibLNc6tWrYoff/xR6DIxb948JCcnq0idEv7+/li4cCErA5Hv0d27d+Ht7a2aQrZarShWrBi8vb3x+eef48CBA+jevTuCgoJYGgoWLIiSJUuqypbPLyKEvGO6Uqnr0qULBg8ezFxjlHnHD7zIX0+0xZISNPjlSQVvW7p164aWLVvK4s/7/9psNpw6dUqmlpONdJbUEYgc8G1I5Jf22WefoWrVqhg+fDjrP/ROYuJJnSRJulO1PKxWq6aa88MPP+CXX35h9uTAgQM4dOiQaurYy8uLtU1+FSmli2+3YWFhzM60bt2apU05w7Ft2zb2TsWKFWWrTQG5/+z06dNZ3pCNVSq5vAsUpdeRTeLjpSR1RtYFKPO1ePHiiI6Oxl9//cWuUVvi+1eqY76+viw/eFK3YsUKbNmyRRa+0paTTdPqS3mYpE6AoKAgNGzYEJMmTRIeDq9cscSDKiHJ7spjr5YvX84aERllvT28bDabauSgJHUlSpSQdSqffvop1q9fL9xqgiCqxHxHRg1Ey9eFR0BAAMaNG6eawqAp+T59+uDo0aO4du0a2/QYeGTstXzc9EhdcHAwrFYry0t+S5jQ0FA21UoqSOnSpbFp0ybs2LFDmHZ/f388/fTTqFOnDv7880989913sFgsaNiwIfr06SPzC/T390dAQADr7AIDA1V1gu4TIdIjdXwei0idEr169ZIZMHpfaajIgFmtVtk95QiRVL833ngDX331leze7Nmz0bRpUzaNQJ2LIwNqsVgMn/vLg8qRJ+a8UqdH6ni/IoKI1NWsWRN//fUXoqOjMXDgQPTv31/VxpTKvBap47cbIhjpXJTQI8FK8OWqd1+JoKAgeHl5wWazoWHDhlizZg3c3NxY3dCqbzx5DAwMxLp16zBr1ix2je/A+LpMpFbZ3ho0aICxY8di7ty5TKlzRGiBzAUUY8eOlX1jzZo1rOw+//xz2Gw2WTr4vfhoURJvb0k5492HiGAY2UaI0sa3f1FZtm/fHmfPnkXlypUZIdEjdfz0KwDdLbmUUNYLUtq7deuGfv36sfwrWbIkwsLCVAtDtFR2InXK+k3xfOaZZ1QDDZE7g7u7u6rP09pXjv/WyJEj2cpfXsEmgmjEV5Dvnx1B2Z8p01a7dm0EBATIypsUZ74/7tWrF6pUqYKGDRvKSB3Vg5YtW6q2HCJyHBwcDEmScOPGDUiSxKaP9eD8RkD/ERD5IAWMr5QlS5bEb7/9Jty2gyq4l5cX3NzcZCockQEeu3bt0iWJIoimhJWdfOfOnZlkLVpFymPnzp1o1aqVrLOnBqLX2ZBvlFZnQHHiV3zxxtMRqRMpEWPGjMHQoUNlI1dJkvDZZ59h7NixLCyaeiZjSIdFay1oIYdtILMxU4MuUKAAfv31V+E71PB4A2G1WpGRkcHyjzpYPVJH+eDj4yPbFoHyVWT8+Y6SX63Ng+/89RbVNG7cGFu3boWHhwfeffddlClTBtOnT2fTKiVKlGBKH6VD5MCuxEcffYQOHTogODjY4cIcAuVFYGAg6tati+3bt8PX15eROT1SR+BJjYjUWSwWtlUNr2DyoPyaPXu2cENgApURfyxaVkidM9AidcWKFcO9e/c0p9aDgoKEW1KQ/VF2ioUKFRLaOH66D5C3aZ5wURsUddj8MXPnzp1DuXLlHB7KXqtWLUZQCEWKFEGrVq2wefNmli98/rds2RJbt25Fu3btZGVE6NmzJzp16iSzNVTH3n77bdn0I4+lS5di06ZN7LeHhwfefPNN2WBEC9QWtOqyv78/fH19ZbbXEambOnUq29pGWS9mzpyJPn36qNxGKJ+UNl5rBSyRXXqP+hVaLBYSEsIGOXa7HSEhIcLteZSLAQFtUlerVi00bNgQBw8ehKenJxu4vf322zh8+DB69uzJ/JedIXV6i+WATNeogIAAHDhwgKVPORgWbb1CIg5P6p566im2CwblT48ePVC/fn00a9ZMeCwlkd6suLWZpM4BqHCUDvi9evUSPk+VtVevXti4cSObVujZs6dQIVI61BsBv1CCQP41kiTJfAwOHTrEDOGpU6eE/m30vNVqZQSCvqFHBnr06IEOHTqotjghOGpk5B+grLhnzpzB3bt3hfnVtm1bma8QYfjw4ahatSojZ/PmzcPrr7/OfG4c7T+lnA4wAppy4Zfb22w2ZGRksDwtWbIkvL29Vef58iCj+u2338pGoEQW9Ub0YWFhrKyUapNokY8InTt3Zoez22w29O7dW7U6kPDdd9/h5MmTspVpeiCfsuvXr+tuS0CgvChdujSWL1+OxYsXIzAwkNUFLeWY75j8/PwQEhKCf//9V9e3Tw9NmjTBzz//jN69e+tOzXz66ado06aNrNwcdRjZBbUXitedO3eQkpKCV199FVu2bFGdq0x46623hB221mKFvXv3am4czUOkGgOPOiZH2+XwZEvkFiLCmDFjGEGlfOB9AwleXl5o27Yt9u7dK9xP0WKxqOoIkRe9DnXAgAGqXQC+//57Q3Gn6ThS/zdt2oSOHTuy+zRY5tuzo4VtH3/8MT7++GNZ+ITmzZvL9qH09PSExWJh9ZTKLDAwENHR0aozSrds2YJixYqxfsTPzw/37t1j+UZ+qNWrV2e2uUyZMpqbN1Mf1LZtWxw5cgTR0dGadYRmSw4ePAh3d3fmV9mzZ0/V8Xf8QDohIUF4egPZRBGhPnv2LBNhSBHjy4WmR0eMGKE5u/bSSy/h77//1jy1qEiRIjJ7Tu5BSlD4WdqeRspnOHz4sNSsWTOpRYsW0rPPPiulpqbK7u/YsUMqVaqU1LJlS6lNmzaGw42JiZEASDExMa6OsgqRkZFSWlqaFBISIgGQWrdu7dLwExMTJQBSs2bNZNf9/f0lAFJERIShcDp16iRNmzZNOnTokARA6tChg/TGG29IAKSPP/5YAiD17dvXqbgBYH+3bt3SffbMmTMSAGnx4sWGwssKfv75ZwmANH36dN2wMzIynA6b8u2pp55i19555x2n47px40YJgLR27VrZ9VOnTkkApLfeekv43rlz56To6Gjpt99+kwBIPXr0kN2/ffu2BEBq2rSpJEmSKh/pd1xcnARA+umnn5yKd05gy5YtEgCpcePGsusZGRnSl19+Kd25c0f43uzZs1l6Ll26JF2/fl2aOnVqluORkZEh3bx5U3bNUV3MTj11BsePH5cASGXKlJFdP3funDR58mSn6/KlS5ckAFL37t2deo/SS/YIgBQeHs7uX79+XQIgFS1a1FB4MTExUkJCglNxkCRJevPNN2W2PT09PVtlERYWJgFg7Scr4Tj7Hj2/ceNGdu3kyZO69knrGxkZGdKKFSs07586dUoaPXo0+3316lUJgNSwYcMs1e/3339fdv3QoUOG4puRkSFlZGRIAKQRI0YIvylJkjRq1ChNG84jMTFR6ty5s3Ts2DEpPT1dGIddu3ZJAKTr16/rhiXCq6++KgGQjh075vS7zmL+/PkSAKlXr15Ov5vvSN2dO3dYwx4xYoS0cuVK2f0dO3ZI//vf/5wONzdJHaF+/foSAGnixIkuDTcjI0P65JNPpEuXLsmuly5dWgIg3b9/36nwqJPo3Lkza0ATJ06UAEj9+vVzKiy+44uLi3P4/Llz53Q7oeySupiYGKl3797CPMluJxweHq7qXDMyMqT09HSnw/r7779V+WC326WxY8c6LM/169dLAKQ+ffrIrlOdb968uSRJ6vRu375dOnPmjCRJkpSSkpIlYutq7N69WwIgtWvXzqn3FixYwNJ37969HIlbfiF1Fy9elABI5cqVc0l4aWlpUoUKFaSdO3c69R5POOj/kZGR7D6RvQIFCrgknlpITEyUtm3bpopbUFBQlsKrV68e6ysqV66cpTL94IMPpBkzZhh+XlR3zp07l6361rRpU0NxJ/LaqFEjqXXr1jLCZ+R7drtdSkxMdPgdrffj4uIku92u+d6XX34pAXAqP3MCJHgcPnw4x7+1du1aCYA0aNAgp9/Nd9Ov/DYc7u7uwpU8q1evxsGDB9GnTx/VFiL5CX379sXt27c1pyezCovFIjySJiAgAOHh4ZpLsrXAT7+OHDkSVatWNbzaSonvv/+eyd5G/AFEfi6uhL+/P1atWpUjYZNEzvvLWSwWw3sz8eD3pSNYrVaZ75EWaPpE6YNI+U/1b8aMGTLpv3Xr1uz/ztaZnIIjP0st8PHPzo762UGzZs0MTVdmF44WSjgLfjNgZ/DRRx/B3d1d6N8JPPJfMnqmbFbh5eWlOlbszz//dPrEGQJNzXl7e+Pff//N0ub6ygVHWUF22+SmTZvYVK4eqMwkSdI9u71ixYrCemK1WrPs5gA4buvKc1rzCp988glu3bol87/OKdDCsKy4cuQ7Uke4ceMGtm7dqjrEuH79+uyctB49eqBZs2ZCf6iUlBSZU7CRY5BcjWHDhsk2zcxpkG+L1uHhWqDnbTYbChQogAEDBmDnzp0AjC315vHmm28yUueK4+NKliypOlvTVdi0aRM7tSArIKMr2kswN6FF6uhsYOr833nnnVyPm7OgPM0OqXNmJakz+Pvvv3WPhNq6davm2ZiuhNKnLq8gWt0s8nnM6YGbCEYW8mjhyy+/xIgRI+Dm5pZrRGLQoEGqs0KpTmsNsNeuXSvbk1EJHx8fQwNrai+Sju8uAPzzzz+aCxpyEuRbbMQnNydRpkwZrFmzJle+RT55Wv6xesgzUhcRESHsDNeuXQs3NzcMHDgQCxcuVHVUvLHv3r07Tpw4ISR1kydPZice/FeQVVJHxoNXmKih53XHcevWrRyLQ4cOHWQbsWYF8fHxhrZ9yUlQWYnKPSuqYV6CVJLskLqcgkhN5eHp6ZljhJKHq5U6V+DYsWNYtWqVigSdPn1ad8um/Ii2bdtma7CXFSxcuFB1jeq0Vv49/fTTLvk21VlHBJY/xzYrqF+/Pg4fPuz0e6QC6u0g8KShfPnyePDgQZbyO89IXfHixYVTFXa7HT179sSYMWOEK+xiY2OZHLtnzx68/vrrwvBHjBgh25g2NjbWqb1+HkcEBASoNh01Aur4+ffyC6nL78gPJ6lQGTlL5vMjqA46e+wg1dfcIFWiVZS5CWqvekcE5jZq164tPKnAyP5zJsQgkpXTpNhms2Hy5MmyPf1yAlu2bBEem+kItGKV9ij9ryCrBDrfTb+uXLkS+/btQ1xcHCZMmIA33ngD/fr1w9ChQzFnzhysXLkSc+fOhZubG5o2baq5JUhujZrzEwICArKkWIg2WP6v5d3jDJqWyC9+cdlB7dq1sXr1atmxZkZA21jk9PRncnJyvlA/k5KSzDb6hCMgIAB9+/bFmDFjcvxbov3kXI3AwEDNPU318F9U6rKDfEfq+vfvj/79+6uuz5kzB0DmLt9Gdvr+LyIgICBLag2NCHr06MGuEUHIilIXHBzsUj+4Cxcu5IuONL+CTtDIz4uGnAF/JqxR8Ofs5iTyC5HK6yl/EzkPq9WqOnrxvwhS6vLap+5xQb4jdSayjooVK8oO1zYKPz8/2O124bRtVkjdxYsXnTo/0RGUx7WYkMPLywu7d+/O62jkKXJ6w18TJkzkDWrXro2PP/44VxcdPs4wSd0ThFdeeQUDBw7M0rtKQkdKgKOdzEXIzvJ2EyayiuXLl5sKlgkTTxhsNhumTp2a19F4bGCRHK1jfkIQGxuLgIAAxMTE5Nk+Vo8bNmzYgDZt2uSbKScTJkyYMGHChDZMUmfChAkTJkyYMPEEIP9sdGTChAkTJkyYMGEiy/jPKHWSJCEuLg5+fn7m3msmTJgwYcKEiScO/xlSZ8KECRMmTJgw8STDnH41YcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScA/xlSJ0kSYmNjIUlSXkfFhAkTJkyYMGHC5fjPkLq4uDgEBAQgLi4ur6NiwoQJEyZMmDDhcvxnSN1/CUlJSUhLS8vraJgwYcLEY4mIiAgkJCTkdTRMmHAaJql7AuHt7Y127drldTRMmDBh4rFEiRIl0KZNm7yOhgkTTsMi/UeczGJjYxEQEICYmBj4+/vndXRyFBaLBQBM/0ETJkyYyAJMG2ricYWp1JkwYcKECRMmTDjAZ599hm+//Tavo6GLfKnUHTlyBO+//z6sViuCgoKwbNkyuLu7AwB27tyJgQMHomLFirDZbNi2bZuhME2lzoQJEybyJzIyMnDlyhVUqlQpr6MCwLShJsR4HOpFvlTqgoODsWnTJuzatQuVKlXCH3/8Ibvfr18/7Ny50zChM2HCxCPcuXMHmzZtyutoyJCYmAi73Z7X0TCRR/j6669RuXJl3Lt3L6+jYsLEY418SeqKFy8Ob29vAIC7uzvc3Nxk91evXo3mzZvryqApKSmIjY2V/f0XkJ9HECbyB9q2bYtOnTq5NMxff/0Vd+/ezfL7Pj4+ePnll10Yo/yNHTt24M0338zraOQbHDt2DAD+M3bahImcQr4kdYQbN25g69at6NatG7tWv359nD9/Htu2bcPGjRtx5MgR4buTJ09GQEAA+ytdunRuRdsliI2NxauvvoqkpCSn3ktOTs6hGD35kCQJy5YtQ0pKSl5HJUdx7do1l4f5wgsvYOnSpdkKY8mSJS6KTf5H7969MXv2bGRkZOR1VPIFaForPT09j2NiwoQa+/fvR8eOHfM6GoaQb0ldbGwsBg4ciIULFzJ/OgDw9fWFh4cHPDw80L17d5w4cUL4/ogRIxATE8P+wsPDcyvqTiE1NRVbt25VXV+4cCHmz5+PNWvWOBVeYmKiq6LmEiQmJqqmz/MrTpw4gRdeeAFTpkzJ0vs3btxgikN+Bk1zukrVtdvtSE1NRVRUVJbezy/q8tGjR3PtW8WKFQMAREZG5to3Hwfkh73h8kt9JKSmpuLMmTPCezExMYiPj8/lGOU+0tPThQLH/v378frrr+f49999911s3rw5x7/DQ5IkjBs3Djdu3HDqvXxJ6ux2OwYMGIAxY8bgqaeekt3j5fk9e/ZoOtZ6enrC399f9pcfMX78eLRv316TdDprYPIbqfvrr7/Qq1cvPHz4MK+j4hCk0N2/fz9L75ctWxZ169Z1+JzdbsfQoUNx/fr1LH1HDw0bNsScOXMcfh9wnSpC+ZZVUpcf6uz69etRr149bNmyJdthJSYmOvRZJFKXXwebeYXcqAupqam69/Pbxu0ff/wxatSoIWyvgYGBKF++fB7EKnfx7LPPMpcs5XVH9u5xRVxcHMaPH4+hQ4c69V6+JHUrV67Evn37MGHCBLRq1QorVqxgCVu5ciUaNGiAJk2aIDg4GC1atMjj2GYPV65cAaA2NFldZZMfOkgeFJ+sEKWNGzciIiLC1VHShNWa2Rxyekrs2rVrmDt3Lvbt2+fysA8dOqQ5cpUkCbNnz2akzlVT9dklw7mpNERHR2PixImqMqZ2KKpvx44dw9q1aw1/44MPPkCnTp10/cNMUvcIqampLB9yWqk7duwYAgMDdQcg+Y3UHT9+HIB23mR1MJUb2Lt3L2tb2YGj2R5XL7I6ePAgLBZLnirpZJ+JCxhFviR1/fv3x/3797Fz507s3LkT/fr1Y2x8yJAhOHToEPbt24cvv/wyj2Mqx19//YW5c+c69Q6NvlxVKZ31waNvu0K12bt3L3x9fWVkgf7/4MED2O12WCwWwyOrzp07u9yPQZIkhx1pTq/CJJ+2rJRVdvD333/LnPNdReoOHjwIIOudS26SuilTpmD06NEqX1zqyHlXDwC4d+8e6tatix49esiuS5IEi8Ui9AMkBVZPEfL19QUAp6dWlHF+EnYAePvtt7Fr1y4AOT8ovXbtGpKSknRtgCMlLyexdu1aWCwWmQ2ihYKubCf379/HpEmThKJBSkqK0DZkxS42b95cNdvmShDhcbUv+W+//QYAOH36NIC8mZKntqC0SY6QL0nd44qnn37aaamUOpPIyEjExMSw6yJ2XqpUKTz//PO64VFFUK4Y1kOzZs0MVZyPPvoIDRs2FN5LTk7GO++8g4SEBNm2BKTiPHjwgJGYefPmqd632+24cOGC6vrly5dlv1etWoVbt245jKsWfvjhB5QpUwZ37twBALz22ms4fPgwdu7cyYy5nlJ38+ZNNGzYUFZWziKvSJ3SKCsNoY+PD77//nunwpw/fz46d+4MIOukLi4ujv0/txYOKMtPi9RpKQRUr2fOnCm7npSUxJQJvY6G3s+OEjBp0iS0a9cuRxa+uBKNGjXStVv8lHdOK3VEjJSq8vLly1lZu0qpi4iIgMViwY4dOzSfSU9Px88//8xIA+3owKu8IlKXnJyMkydPGo6LJEmymYEPPvgAo0aNEg4qKlasyJRkwo0bN+Dm5pYlvzKjZDA1NRWJiYl4+umncenSJeEzWvbBFYOBf//9l/m3kx3IS9WW2oIzfTlgkro8BylkzZo1Q2BgILsumn69desWfv75Z93wskLqDhw4YOi56dOn49ChQ8IpqiFDhrBpAr4h8KSO4iYacX744YeoUqWKqiPkR82SJOHZZ59F79692bVz587hl19+MRR/AMwQ3rlzB3a7HfPmzUNYWBhat27NDJzeqGzRokU4dOgQdu7cafibSriK1D377LNYsWIFtm/fjvXr1ztUW5WERZnXiYmJmDBhglNxWL16Nfu/K6ZfeYInws2bN/HZZ5/Jyqht27ZsZO0IPj4+AKDafoXqrHIwReVss9lk36SyU+b5wIEDcfHiRQDGSJ2jPPvpp5808+Tq1auysPIrDh48qGu3+E4/J5W6HTt24MUXXwSgHoAMGDAAvXr1AuA6pY4GqRs2bNB8ZubMmXj++eexf/9+AI9cQPgyF5G6d955B7Vq1TIcl7/++gtNmzZlpIx8nG02m+rZW7duse8fP34cLVu2ZCTLkTLct29fvPDCC4bjxaNMmTIoWrQo/vrrL0yePFl2j9qlsu+g664YIIeGhqJ9+/YAHtlKat95qdSZpC6XMWnSJPz7779Zfl9rJJBdnzpHyhttC+MIP/74I4tLaGgogMxpPCX4USA/2uanXyluok5q9uzZAB4ZG0o3nz+krvANu1GjRujfv7/DdADAK6+8grNnzwIATp06pRrp0uhYTy2iBqYcfTpTTlqkLjk52SnlZtWqVXjuuefw3Xff4YsvvnA4BaGsa/zz1JG5u7sjPDzcsBr64MED9v/79+9nSWnj64OjNLz55psYO3asjAxt374dvXv3xpgxY4TvREZGMsJORlqZPsobJUGKjo4GkFnePOGgeFJ4SUlJSEtLk7UNZVoOHDjAiBjd0yN1N27cwMsvv4wRI0YI7+ekqkmqSXawbds2NGrUiP2+du0atm7dilatWsme49vSzJkzDaUrK2kfP348+39UVBTmzp3LypeHq9QZsgkWi0VF/m/cuIGMjAzcvn0bwKM8IFsbGxuL1NRUBAQEYM+ePQDkdk+k0t26dUsz7lT/aRaFbI+jAcGIESOwe/du9m1Hqtuvv/6KZcuW6T4jgiRJuHv3rmb/5eHhAUB70OeorkZFRWHv3r2G40N2ntppbpG61NRUHDp0CICp1GULN2/exMqVK50uuJSUFIwaNQoDBgzI0ncjIyM15Wxq3MePH4ckSYb9KfTYfXp6OsaPH4+tW7eiatWqaNeunUN155tvvmHvksrBE4/09HS88cYbbDoTkJM6MhoPHz5khkSUFjJGZGRFxonUFT8/P3aNiF6TJk101YC0tDT8+OOPzHfnpZdeUq1UJYNhhNQp4/fDDz9ovqOEFqnr1auXatrDCJKTkxEbG+uQECnv87+pzDw8PFCmTBmUKlUKFosFq1atwq5duzSdnflyt9vtWZqW5uuDoxE35btoo2MtlbFChQooW7YsgEf1S0nqiNSmpKTg9OnTLG/i4+NRqFAhAPIpW7qflpaGy5cvw9vbG88//zw8PT1VaYmJiYEkSWjcuDEqVKjAvgPoT1nTN0TEA3jUweaEUteyZUvW3rOKDz74gPlbAkD58uXx1ltvYdeuXTJywP//9OnTwi2eeOzduxc2m03orqEHnigcPXoUQ4cOxaeffqp6zlVKHdXVL774Qvbt5ORkVK1aFcuXL2dlTPWGJ3UPHjyQbZzPtxMt95zXXntNNy6kzFE/4aju0H3qG53xvXamP1UOyJT9lxapM6rUPffcc2jevLmhOCUlJbHyou8ZeU9Zb8gfTw/nz59nxB4ARo8ejYYNGyI6Otr0qcsO/v77b/Tr189pR1TqnAsXLiwbKfzzzz+G3n/llVc075Ghmz59OmbNmmV4FSgpJ6KKcO7cOYwbNw5dunRh1/jGsGbNGlVnSY0mMTGRpZHviK5fv44ffvhBSBAAsVKn9JvhG8zQoUMxYsQIIamjUSZP6mi6Yv/+/bpTokZ2qieV0AipS09Px4MHD1jc+QUISsP3zz//YPr06ew3OdIrDdHGjRtV39u8eTPGjh2rus7nWXJyMmJiYmThiXyT9EgdGS8lefvxxx/RqlUrVKxYURVeRkaGql5mxa9O6SukB6rXERERSEpKMmRs+fCJICnrOeVdQkICwsLC2EbK8fHxKFWqFHv3woULsFgszNczLS2N2YHNmzezzofSkpKSgsDAQHz11Vey7xmZfqV4a61+ywlSl5SUhK+++krmkpGUlISDBw/K9vEjJYnHhAkTMHHiROzbtw9r1qwRqjqUz7y9VD7n7u4uGzgmJibKypDUUGdnSHibSFPkIpLiKqVOSUAo7Xfu3EFSUhKOHDnC6rtIqVPGg/Jgw4YNmiRGObD97LPPcO7cOZUSbYTUnT9/nvkDkj1xhtTxbXn37t26bXXixImy30r7pSRZSjhS6shOGZkJiYiIYOVx+fJlWCwW5lpEUNbZ+Ph4FC5cmM1Y7d+/HzVr1sTrr7+u6/NatWpVlClThv0+f/48gMzyVyp106dPl/UjWjBJHYAiRYoAyOyQ7t+/r3LO1wL5GWRkZMhGjQ0aNDD0vp5TMG8wT5w4weRzR/vtEetPTEzEpEmTEB4ejunTp+Pq1aus4vPGgjcOPXv2xLPPPisLj4xMQkICiy/fcYtGtTdu3IDFYsHevXuZ0fj555+xcuVKAI8aBIXH58OePXswZcoUWbhJSUl4+eWXce7cOQCZpK5Tp07o1auXzCdEb2rAiIJEHf6hQ4c0jSZ9LyYmBoULF8bUqVMBQLZfIqW5ZcuWePrpp9GgQQN89NFHADLzi1Sib775RtYxiVZybdiwQbiwhDfGIqVONEDRI3VaAxplHeXLfuPGjaqOR4ukSJIkNOqbNm2S7WHoaMRNxn3Tpk3w9vZmU1NK/Pbbb7IRMIHqgfI7lP4bN24gKSkJERERWL58OY4dO4bg4GAAQI0aNdjWJtu3bwcg3xQ1NTVVRuqmT5+OIUOGAMicKudhZPqVBiIWiwWJiYlYsmSJLA+d2Zpmw4YNOHz4sMPnZsyYgf/973/styRJKFeuHBo1aoSwsDB2PTAwUGXnxowZg9GjR6Np06bo2bOnsD3SqlO+c1bWoU8//RTFihXD77//DgCoVq0aG8hFREQwYtGnTx+cOnXKYZpSUlIQHx8vKxvazFdkT3lb4WjQEB4ejiFDhgjTqhxIErGgenn69GlZ3QEeDVLXr18vrKPXr19Hly5dVNOvIoIvSRLGjh2LPn36sDTFxMTAz8+PbdqfmpqKCxcusH0VedLWs2dP9n96Pz09HdevX5d95/Lly8JZEp5otWzZEsuXL1c9QwgKCsKwYcPYb+UZwFR2S5cuxaVLl/Dnn3/KvunIbhQvXhzAIz9UEcj+3r59m4W3YMEC4bNKMhwVFYX4+HhGyshuzpkzB23bttWNG193+P5FOeu2bt06Q4KRSeogJ3UjR45UERstEPnbvXs36tSp4/R3tabaatasiUmTJrHfZ86cYRWDX0whAhGG+Ph4jBo1Ct27d8dHH32Er776SjiaUV7bs2eP0PdAi9SJwiSD8euvv7LKf/fuXXzxxRfsmRdeeAG+vr64fv26Q7+WzZs346effsJnn30GAChQoAA2bdqEP/74gxlBQL9hG1HqZs2aBQA4e/YsvL298c477+D777+XKXeUHspn6nji4uJYHaBOdvfu3fjrr7/Yu6mpqbh586YsPH7LFjJcfEeflJQkUwQJSjVUqdR98MEHqvwQ+fClpqYiNTVVcwTMl01sbCyKFi2KkSNHAsjsVJXg60ZaWhrLp7CwMJQsWVL27P79+9GpUyfZGc5169ZlKooIlAbaFod/lp+y6d27N7p27Sp7V5Iklh5lXlD6yehHR0cztwpS6oBHKi7VA57UJScny4jDmjVrmOKnzN+UlBRYLBbcvn0bCxcuFJIHntQtXrwYL774ItavX8/u6yl1N2/eRJcuXdjAs0uXLjJSJoLdblcRvxUrVrAOtmDBguy6JEk4ceKErkKiN8giEn3r1i3VgItUQrKvNKBdsmQJSpQogVGjRrFneT85Ef79918ULFgQfn5+srKhGQ0/Pz9Z3kuShGbNmrHffHtXuspcunQJH330ERYsWKAiCw8ePMCgQYNk1+7cuYPU1FT2LD/NryzDmTNnqsqCSJ0IojrAL+YhmxIZGSkbwKWkpKBKlSrsLGi+vdMgGnhUF+12O8qVK4eWLVuyezVr1hSublbWDb3N1pOSkhAUFMSmYZWkjgZzM2bMQO3atdG9e3fZNx2RuhIlSgBQk7pp06YxgkwDh6NHj7Jy0fItTklJgc1mw6JFiwA8ssdUr/g8vn37Ni5cuIDu3bvLfJBFoP4sJiaGhUn18+7duwgKCtJ9HzBJHQA5qTtx4oSq8qWnp6Njx47sCKhZs2Zh4cKFWT5W6Pz58/j666+FqzbT0tJw+vRpmXpB0w1Wq5X5XqSkpAg7AqU6QZVyx44dhkgdABmp5adfqaI6InV8ZdRSEciZ9siRI0JSxyt1ZIwpLXyYvFKn17CVHYdod3IlvvvuO7z99tuy1WuUXopLTEwMnn32Wdy9e5edL6w1pXHnzh38+OOPAB4ZkDt37uDmzZsIDg6W+VklJydj5MiRuH//PlJSUlRpU5K6tLQ0WT7+/PPPqik/kVIXHByMcuXKaSp1vCJA///888+Rnp4Ou92Ot956S/b8uHHj2IrYd955hxGiI0eOqKZqaUpDacB5PywlqO5RJ8OniXzAaEBw7do17N69m91fsmQJWyhjhNQRSKkDHtVL3qfOiFLGDyru37+P5ORkVK5cGZIkYfDgwbBarfjnn3+Qnp7O1Cyqs1arldXXefPmMbLDE8zt27czlSUtLQ19+/bFhg0bsHz5clnnLMKOHTuwZs0afP755ypF8YMPPkDjxo3x2muvoWTJkvjll19kadFbUKMsVx5U39asWQM3Nzd4eXmhfv36smeUdoFWrvLgj+W7c+cOypQpI3MhCA0NZWUtcklJT0+X2RqlPaM2GRoaio4dO+Knn34CkJn3lStXVs0+EGgAyuP27duoWrUqBg4cyH5Tm6A48N9X5l98fLymb6tylwBAbiOI1CnLi7dVb731libpoDKnOnbw4EHExsYiIyOD1X/lrI0yL/V8FZOSkuDl5YXx48fj008/1VTqlOni+yc9UL/JT4VKkoRhw4ahRYsWmDhxIkvj119/7ZAk3rp1CxkZGRg3bhxGjhzJ7AflH4W1dOlSJCcn488//8Sff/6J4cOHa4Y5a9Ys1n83b96cDch4YSTHSd3Dhw/xzTff4K233sLEiRNdujv6Rx99hObNm2PAgAGyypCeno5BgwahefPmeO+991zyrcKFCwPIHMWcOXMGDx48kFV2GqWNGDGCdWSDBw9WKVrkUK0Fi8WCoUOHok6dOvjwww+Fz2g1qkqVKmHkyJFISkqC3W5HgQIF8PXXX6ueu337tqwBkA/B6dOnheRJ1BhCQkJkcQa0lTrRFDL5K82cOVPliwBkngrSo0cPeHp64syZMw5JHRljMlZ8g+OnC4ySuhYtWhjyTSAMGTIEDx48QJkyZZiCSo0vJiaGdYREYLQ6+YEDB7L3+Wmfzp07y8h4VFQUfvvtN1knq6wXopWYSj8x5VYKIlIXFRWFO3fuGPInvXnzJvv/li1bkJqaimeeeUb2zJEjR5iCR4tSeJJGZShJEpvKTE5OZm0QeESwfH192fQ2Qemzx/vIeHt74/bt2+z96OhomaLw0ksvsc5CmReU/9Rp8nWSpm6ATEdmPh5paWmyeqe1qIG/XqRIEVy6dEl1Gs6aNWswceJElClTBpMnT2YLP/iVqGvWrGFT/UQkTp8+jbZt2+K1117DV199hYMHD2L//v2oUKECtmzZgmrVqqni8+DBAzx8+BCDBg1CmzZt0LNnTyGZfvDgAQYMGMDi3L9/f9l51NT+RX6oeuo41bfjx48jJCQEiYmJbNUfn2eOtny5fPkyK7Nly5YhPDycLbRQtgcRqVD66ynfSUxMxKhRo1j7Gzx4MG7duqUqZ749TpgwQaY+E+7cucMGDTQYpQF7SkoKJkyYICPgSgIWHx8v3L/Nzc1N1l9ZrVaZT5YkSYw88m2YvkuYNWuWcAES8Mh+8vZ+0aJFMgVaScSUfQsNtgYPHszIMJBpw9PS0uDl5QUgcwbr3r17uHr1KkaNGsU2rdcDtcHvv/8e7777ruZ9Pn2UlpiYGNauq1atyvx19UDT99euXcPnn3/OfA+pvsbFxcHDw4MtjKL08rtE8KLMvXv38NZbb8nu0wbpqampSEtLw/37911P6kqWLMkiffXqVVSvXh1Tp07FxYsXMWfOHISEhDgcFRrBsWPHEBERgT179qB69eqy0eOff/6JUqVKYc+e/2vvvKOrKr63/9wkN71TEgi9994hdBAEARESG2KhKCCK0uUHqFRFQZEqiICAgJQvKE1AkN57LwIBEkJCei/n/SPvHmZOufemQALMZy2X5JZz55xpz+y9Z88+JCYm5slRS87OznB3d8eZM2fYQBQWFobbt2+jUaNGzJ2oKIpgElfH3pGlxhILFy4UGoza325kot61axdcXV2RlJTEvr9q1SohsWVmZiZu376tG9QOaK14gCiEyPRrNpvRokULzJw5k3UmSldRtmxZtuOxfv36GheD+nf0Yl5ee+01bNy4EY0aNcLKlSvZQMVvgODdr+pVMD9Y8AN1TEwMpk+fjqFDh6JYsWIoXLgwRo8eDQDCCQKurq4so78thIWFYfbs2QgJCdG4X3mLKi/q9KyofPwXL7zVzygiIkJjVYiKisJ///3HBmcakEwmExMo6kS4NBHVr18fixYt0nW/EtbywwHiJEMpaHjBQKEBlPqG2hOf1qJUqVJ46623cPz4cWFjSJEiRTRlSUhIEFxtW7Zs0bhPeJEXGhqKgIAAwxQgRM2aNYVnce/ePbb4oGfGT9qenp7MzULQBKY+aNwoZkfv+arP7IyOjmYxlmPHjmWu5bi4OF2BRP2CJqolS5bg888/Z9/r0aOHxrIzffp0tGnTBk2bNkXTpk2F+9LbMZ+amgp3d3d4eXkJgf5EQkKC7oYZa9DzuHXrFnsO/MRtZ2eH6Oho5kUBsnKgUdviKV++PKZNm8ZE4ZQpUxAaGqoRiXoL0MTEROF19Rh54MABthCbN28eFEXB6dOnNYsLXhgapdbhrUTqeMSwsDCMHz9eEB1qUXfjxg2NKAOy2qB6kfLff/8JooUEuyVLHWC8yY/aH7+4PH36tDAW83OXoii6oq5ly5ZYsmQJgoOD2evUrnhRl5ycjHLlymHy5Mm4du2aofeDfpN+a8iQIZpxEHg81s2aNYtZy/Q2dZUsWRJJSUlWY7BJ1BFUt7ylzsPDg1n5qS1evHiRufH5e9ITa7wFlBaveS7q+F0hY8eORZUqVXDjxg3s2LED169fR2BgIFO8ueHQoUPo2LEjAKBTp06CcLP0Xm4oUqQIsywAWZ17xYoVOHbsGJvAAGhEK++a4XexqC0rvEjhYzb4yR0wnhQCAgLg4uIiiLrjx4+jbdu2zKV348YNxMXFaWJnyHXDD8YE3/EqVKiA1q1bY8uWLThw4IAQJEqTWLVq1diK8+TJk7orO2tuaZrsx48fj3v37uG9994DALaqAaDZKMFjtIo6dOgQRo8ejdmzZyMsLAyRkZGYPn06Tp06JbhDsivqAO2ER4M/3zFJ1KSkpAjPjo9FIiy5C9atW6eZjB89eoRy5cqhTJkyAB6n71AUhdWretMADQQnT55E//792SBx4sQJODs7CxMB3/aNoAnB1dUV27dvh729vRAXev78eQwYMAApKSlYtWqVYazXypUr2eREJ5Twk3dkZCQTxRkZGVi6dCmWLFmCnTt3onz58sJCQm9gtnZUX4sWLYQ2RBMexd0Aoqhzd3cX4uqAx/1BbanLDk5OTkKcVlRUlGAVJPTcNoqisLFYvaPv+PHjKFSoEIoXLy6IFA8PD4wePRp79uzBrVu3NKcJGLnH3Nzc4OXlxf7mhUVCQgI6d+4sjIOAOBbqQSLo9u3bLN0MT7ly5YQFE5BlSerfv7/w2pAhQwBk5VOj+NXbt29j+PDhGquWnqhLSEgQBJna28RP3nXr1oWnpyfOnj1rUdQZQa5/AKhYsaKwMYAXxeQpUQuw3bt3a54JoV40UOA+kCX6U1NT0aBBA40oVItBo/lULeocHBwQFxcnPFNetKakpGjGuPj4eDZGubi4sGdI/YfmKXWs+eXLl62GOCQlJQmhImvXrtW8T3zzzTf47bffNPkSgcfeNnUYghq+LoHH8zY9n7i4OHh6egpjCjFlyhT2GUvQuJ6amsrm2Sfqfj1y5Aj+7//+j1WEk5MTxo0bZ/PpBJaIjo5m7ikvLy9BIFl6jyclJYXl+OFz/Rjh5+eHEydOMMERGhrKvkMWBbKW8PC7HnlLXaFChaAoCv755x+sWbNGMwhQ41Hv/KIKV2Nvbw8XFxckJiZqJpEPPvgA586dYwe5q1eBNODyoo4ECO8edXBwEPJspaens9UzL+oURRFOEgCy4q2yO7m1b9+e7Q50dHQUAun5TqxeNdGqx9akjIsWLRL+dnFxybaoU7uB1O6X4OBgJta7du0qTD567i96VnppbdauXcssjAQFhKekpCAtLU1wgRkREREhDBznz59HhQoVUK9ePTg7Owv1pX5GBL9Io0mmSZMmSE1NRZEiRYSYxoCAAJQtWxZXrlzBm2++aXEXOS2OatSoAUAUdd9++62QhPrdd9/F+++/j7Nnz6JChQrCZ0nQ8JY+I6pWrYo9e/bAz89PuPeIiAjY2dkJ/Zev3/T0dE0MJu/GTUhIQEBAAOt/tpKcnCy4YCMjI21O+BsTE8NEs/r82YMHD6JUqVKCEAPE8JDU1FRNf1VbHwh3d3chXIAXGzdv3tTNtak+K1dNfHw88yzQQoWnfPnywqaQ6dOno1ChQppJctasWQgNDUXDhg2F+3FyctK0v8jISPTu3VuY8Ldu3Yrq1auzv9UuaH6BWrhwYdSsWRPnz5/XFXWXLl1iIQULFy5EmzZt2PvOzs5COISbmxu++eYbNrfwY/OYMWNQvHhxQYA1aNAAkZGRwpFqPOpdmmFhYRoRW6NGDY2QUHuGrIk6avclSpSwKOr4FFgEv4hISkpCtWrV2L8B0VLHM2PGDKupSP7++2/hhI2goCAhJEDd1vv06SPcO1mAeW+RHvQ5dZoSso7TPEGWOrPZzNJdubq6CnGL1hYCtMBISUlhZVUvLvXItqijST4lJUWjGv38/HJ1liHh4+PDGlF0dLQwGFl6j2fq1Knw8vJi/1lzjdLkUqtWLfj6+uLcuXPM7UqcO3cOf/31l/AaP9irfyM1NRVt27ZFcHCwJu8SCRi1qNPLFE7fpUavZxqOiYnB7t27BcFCEy6JOn7VTmXlxYNa1N2+fZutSMilRR1RnVixZs2acHZ21pTLGmTF8vb2FpKd8pOqkSm8YsWKNv2GenUaFhaWbVFntMuS+P7771lbULtwfH19cfnyZWFgoQGP2kHbtm0t/j7vZs9Ogl/eyrx+/XrWhvz8/HQtt2q+/PJLzSkMZF3TsyrxgssS58+fh6+vLxukeAFCqRjU7Nq1C2XKlBFc09Q3+IlZj9KlS2PLli1o1aoVs3gTERER8PX1Zc8GEN3qaWlpGlGndvu6uLgw8c5bZj///HM0bNiQLRZ37tyJ5s2bA8iyoPD97dSpU8J1La3Kw8LCDAXg6dOn4ebmJuyUp+B8S9y+fVvXvam21PGiTi9mFrBeH/Hx8bhx4wZSUlIECz3Bx1gCYP1VPena29vD398f33//vdAeCxUqpLHUhYWFoUSJEsI4xT9vZ2dnTZw0H7bh6+uLSpUq4dq1a7qirlq1akzMurm5Yffu3WjatCkAaI7Oovt46aWX4OzsLPTFl19+Gb6+vsK41a5dOxQtWtRw4UxJ4vl75QWXp6en5pkC0MT+hYaGCnVNwpTGHCpnQEAAtm3bxhblgHVRR8KEdq1S31WLOn6BVqhQId0TjEqWLCnktuPribh79y5++OEHZGRkWLX09e/fH7/99puQb1TN4cOHmWhXJ75Wu1/j4uJYHdPOYkVR4OPjw8YWI4GuJjU1lY2XemOummyLunbt2qFevXqIjY3V3NidO3dsHtQt0aRJE7b62759OxsErb3HM2bMGMTExLD/rG3ioAG5SZMmaN68OSZNmoRt27axFWrXrl3RtGlTHD9+HFWqVAEANG/eXFgNqB8436jVoo6Eli3Zy+mZUqPXs07SCmrdunVsBUCxdTRx8gOHOr0EoBV1ycnJwj107tyZpeBQx6sQeodXFy9e3LCeqOF7e3sLEyc/qRoFn+tNBmocHBwQHR2N4OBgNqhcunTJoqjTWw3xYlvvd4sWLSo8Ox4fHx9UrlwZzs7OCAkJQWhoKNvpRwPvK6+8AgCYNm0ac0cbkZ2QA7Xbjqw7ZcuW1Vid9cpvMplgb28PNzc33Lt3Dy4uLswSTNfiY6FssZgBWQukIkWKsHbI10f//v0NT+jgF0GOjo6sX1lbYS9btoxZhFxcXIRBPjIyEoUKFWKTfenSpYWzMbt37y4IPjWLFy9mcbmAuHt8xowZOHr0KFuweHt7szQnaktKeHi4MNDPnj3bMGXHhQsXLFr1xo0bJ4i6smXL6n6+WLFiQkwn5SvjoZg6ghd16oUvYS3F09GjR7FmzRq4ubkJFi1CbUGi52eUp7NFixaa003Ui7nIyEi4ubmhadOmqFy5sjAm2dvbo2fPnoI4KFKkiHANLy8vVKxYEdevX7fqfqW2MHPmTCxYsABz5swRYgdHjhzJPuvo6MjE5Pr16+Hl5YVChQoJc4ObmxsCAwN1710Ptajz9fXVWG6BrDbHp4UCxMWy2WyGyWTSHKFI8xcfY85b4hITEzVzLo036sUKlZP6GK8h1LvriW7durFdp+3bt9cNw/j666/x6aefonfv3lY9iMWKFWMbgowoVaoUE8ZGc1JkZCTi4+Px6NEj1lZpXsvMzISvry+ioqIQHR2NgQMHsu99/PHHQggMv3BNTU3FuXPnUKNGDasbRoBsiroJEybgtddeQ/fu3TF8+HDN6nXz5s3ZanhG1K1bF/7+/ggMDMTFixfx2muvsQfwyiuvICQkBIGBgXBxcWErITVOTk7w9PQU/rMEiZWhQ4eiadOmSE9Ph9lsZvFqlSpVwpYtWzB06FBMnz4dCxYswNatWwVRp54UjURdaGioYKmrVasWevbsaThAEpZEHfncPT092QBDruFixYrBZDIJg55e47W3t2cTm14c2JYtW1CsWDF0794dFy9e1LXM6cUp0AqYT2ZJ0GTs7u5uaCkx6kAkWl966SUhoJ4nPT0dp0+fRqFChVicT9u2bS2KOn6TQ/HixfH2228LA5beZhYHBwf2PCpWrIikpCTmWuP7SYkSJeDv74+tW7fi0qVL6NatG4As9+2QIUPw9ttv48cffzQsG2DdtUXoHYFEC7GyZctq4vYsCRdPT0/cu3cPnp6ezM1M1zp79ixLUWOrqDt//jyKFCnC3Gm8KGvUqJFh5vrevXuzgc3Hx4fFIun17ytXrmDQoEGoXr26EGdK8YRUzyTqyLLdokUL9t6sWbPg5ORkNQVOdHQ0uwe9EwlIlLi4uKB06dKYOnWqJtTC09NTiEP09fUV+qmdnR3OnDmDgIAATJo0yaL75qWXXhImcV9fX92YMhIQQFYb1rME8FY/Ozs7QdQdPnwYJUqU0IhqvZADviwrV67E7t270axZM93jyNTnOdNnrIn3iRMnAshyf0VHR2sWryaTCYUKFcLly5fZ+DhmzBhERUVhxowZwmfVcYJ2dnaoUKECoqKiWJJZQu3WpPI2btwYAwYMgKOjI9q3bw8A+PXXXwWrGR8e9OqrrwIQw3qArDFE7Xru3LmzJn708uXLCAwMxI0bNwSPga+vr2GOU/UiVm01d3Z21oQvqZ+Nl5eX4M1ITEzU7L5PSEiA2WzG+PHj4eTkhKJFi+KDDz5gC1wafxwcHLBs2TLs378fo0aNQuXKlTVlJsOKu7u7piwEud8pl6h6pz55nYDHBhm9eY/w8/ODm5ubJg5efY8eHh74888/WVultkCWuoSEBM3vVKtWDS1btsS4ceNw4MABoa5TUlJw4sQJwb1siWyLOv4/PnEqkBULY+n8zewwY8YM7Nu3DytWrICjoyNLNurg4IClS5di3759Vie/7FC9enUoioKqVauyFb2Pjw9bcXbt2hXOzs744Ycf0K1bNwwYMAAeHh5M1DVs2FAz2fIrFX4FGBMTwxpiWloazpw5g3Xr1qFmzZro1q0bdu3apVtGmlh4wUOrHrLUeXp6olmzZgDANpSQqI2Li2PCU88Uz1vqLLl+aOAxEsrkEqegWCrv+vXrNakP6BoODg7ZttRRPVWsWNEwkXOxYsUQGxvLBrTo6Gj88ssvNp2x+u+//+LChQtChn3AOA8dibo6derA2dmZpdzRs4B5e3ujSpUqaNWqFRRFQbFixTB79mwEBARk2zXMwwsFPoG1Om9WmTJlNMG+lkSdh4cH0tLS4OHhgcKFC6Nw4cLMJc8nH61Tp47VMrq5uUFRFBQuXFjXUqcexD///HNkZmZCURR06tQJb775JpydnfHpp58K5VNTqVIlzJkzB+fPnxfujf5N1rqIiAiWsgOAkLSYBnC+bW7cuFHzW7Gxsewe0tLS0KhRI3z88cfsfXrP1dUVJpMJo0eP1vQx6q+Et7e3IOoyMzNRq1YtDBkyBLdu3dINtP71119ZaAQ/ibu6uupa6nhRR6EYY8eOFRbn7u7uqFq1KubPn4/OnTtDURTButO4cWPN8/fw8DBMR0InpNy8edNwETB48GAhMwDVmbXF+YQJE9ChQwcm6tQTPl8nJEK6desGDw8PjWjixQ6lxiEr1qFDh4QNHuoFkp5QpfHBlv7NH+UIZC3C1OUbOXIkKlWqJLzm5OQEf39/bNiwQRi39Cx19OzVz4gPI8rMzNSIOicnJ41RoFixYoLl//79+9i/f79GSJUvXx7e3t747rvvEB4ezowmgNjH+vTpg+bNm8PV1VVIWk/wopfK7+vrK3gx1F6jKlWqCGNiixYtWF8nUcfXG8U7V65cGZUqVYKdnR1bFACPN/wZuURpHqRrZmZmGopGahtff/01mjVrxvoTnXF848YNXYu2HjL5sA7UqDMyMlCuXDmkpqYaPlBa0S9duhSurq6C/5+3Ii5atAg9e/ZkDYEqnDcvm0wm/O9//zOMr6JBmheL1MBI1Hl5eSEwMBCZmZkslQS/0qbOmF1Rxx+yTYODkTXl9u3biI2NZRYdErsmk0ljPqbGa2dnJ7hseMvYkiVL2L/5gZYEQXx8vG72eicnJzY5UZm9vLxgNps1lhc9i2+FChXg7e0tCJXu3btj8eLFGDRoEHudOqq7uztWrlzJNh3wm4iyS/v27XXriEcvF5Z6dyAxYsQIdOrUCa+//jqALFeCuv4siToadGhSffjwIduBy+Pq6or9+/ejc+fOwuv8xg5yT9auXZtNVPxER6twon79+kK7qV69OpKSkoR4UGuTPQ/d5/Dhw/Hw4UNmqZs0aRKmTZuGoKAg9ntUd3x70bOUUmA0kCXqjhw5Iiw6eUudEZ9//jn69OnDJhN3d3dd0ePr64uYmBjdzV99+/ZlFghq8z4+PoaWRuoPERERTPhPnjyZLaKp7HZ2dhg4cCBrk/zEP2/ePF1RrY533rZtG86cOcMWVPfu3dN8hq9nPnaV+jf/O3qWaCCrLaxduxYJCQmCEKpcubLwPGnM1FuIxMTEMOHw5ZdfsnOlyTtw6dIloZ1SrBWhJ+qoLdki6jp06CD8XbFiRY0oa9CggSbGztHRUXfHpbe3t/D9f//9l/Vptahr1KgRS4yfmZkJJycnIVzB09NTc38kbEhk/vbbb0hPT2fjDUGbifQ8RUZ9Q28jDd/+qPxFihSx6ClISUkRxjwvLy/2rGi+M5lM7P6HDRsGIOv8a94yS32AwnCMRB1dm/oeWeqIypUrs4Wcun+SrggICEBcXBxMJpMUdbmBF3WAfiZygixPVClGptno6Gj06tWLrfRcXV2hKIrhJEzwQfHUiPhdatQ5ePcrkNU4qaG6u7szUUcN0kjUUUfnRd3evXuFVTMNDkbHALm7u7PBNy4uTvfsUoJfkbz99ts4d+4cypYty+KOeB48eIArV64wV1rZsmUxZMgQfPXVV7oTnNlsZsJPL56EZ9CgQTh06BD++ecf1qH0BuaVK1fi/fffx5w5c3Dq1Cn88MMPQizEG2+8weqA3HmWzPVG/P3335qzEtWT2IcffqiJmXN3d8fp06dZ4C7dP+2+I0u6niXWkuAgK496kNajefPmLEaQ6Nq1K/v34sWLcf/+fUyYMAFFixZFkSJFhDhF9YDPJ8M2gp/s165da5j6AXh8n3PnzkXfvn1x+fJl+Pv7o3fv3hg1ahTs7e3Z5EB1p67Ds2fPaix2NFnrxclaEnXz58/HkiVL0KRJEyxbtgwLFizAnj17ULlyZd3Jz8fHR0hpAmTFtpELnKA2X6JECfb79vb2+Pjjj+Hg4IBChQqxzxQqVEgQVHxoBd8P6DnzOfYKFy7MwgiMoFN5atWqxcbKtLQ0zTgUFhbG4th4UUcubb6eeauL+rcI3lqpFi9//PEH5syZoxtG4unpycI1eJHk4eHBJnH+9YcPHwp1a0nUqWPYiEOHDgm/w1OuXDn23N544w2MHTsW7u7u6NChA6ZOnSr8hp7IOH/+PKtrDw8PBAYGsjatfi7e3t5skUuWOh5fX18hRMXFxYU956ZNm8LJyQnr1q1D9erVhb67Y8cOlhhYb/4xGn9q1aqFDRs2sL4wcOBAwXVKoo/SiABgLt169eqx8Tk2Nlb4noODA2bOnIlt27YJQvvIkSMIDg5G9erVkZyczDxfBHlqyKPg4OCA999/n222JNTWv8zMTGEe8vT0xIYNG/DFF19oQpNIRJJeqFKlitUjQgkp6nSgidDIEsVjq6gDsk4y4IO1bYG3QHh5ecHX11fYeUoNnVad/GBQrFgx+Pj4oGzZsqxB+Pv7w8XFBWXKlMHvv/8uZN92cHBg5adJv3v37prM93SttLQ0XLlyxWIsoLu7u8XUI7wAMplMqFGjBoKDg3VdS0WLFoWrqys2bdqE9957D3Xq1MHs2bNRsmRJQ1FHnUivQ/A73by8vNCkSRMhJpBfPdGEp663oUOHGooOmtxzYqkDtAO7enHh6Oio+YyTkxNq167NXEO7d+8WdsASeu5nfvCeOXOmcATT//73P5w9e1bIrWUJ9XOys7PD1atX8ffff8POzo7FeTo4OODu3bvo2rUr3n77bUydOlUQF40bN9aNqVFDz8HR0RG9evWyOADy97l161YkJiayfGfqz1B/UFuYa9asie7duwtHsVmKqSPxrTfZDxw4UMi9Z29vz9x9vOWBgr31XDi1atXSnL/p5OSECRMmYP369awNDhgwAD/++CNSU1NRrVo1w3gk/hnx/ZcmP17UmUwmTJ06FaGhoXjppZc0ZwK3a9dOSH3Dtw21pa5o0aKsTNTeS5QowRaV/HWM4D0ZfDvgLf5AlqXY0m5H3sLCQxa8woULY/r06UzQDh8+nH1Gr55prDOaV9SpqE6ePMl2I7u5ubFn3rNnTyZo7e3thYWdo6Mj69vDhg1jx+S99tprbCyk61A59EQd1bOiKJr0HY6OjkIIipubG7u3MmXKICAgAKmpqejataswf3Xo0IH1I72NepbmxB49erA2PGLECKE/koC7f/++kO7s1q1b2LFjBxNXMTEx6NWrF0tObDKZ4O7urgkj49Ebu8ltTx6HpKQkLF68GLt37xY+pxZ1iqJoLImurq6YNGmSRjdMmTIF/fr1Y5t5rJ3bzGNboq8XDLPZjJIlS1rNTA9oRZ3RBF63bl0EBASwFYq1wOtz587pujTKly8vZP329vaGyWTCvn37YDabhUHPyckJDx48gIODA2vIxYsXx82bN+Hn5weTyYQuXbpg//79OHnypPBdKqfe/fDuV3VMR3bh3a8En5xZD39/fyEWA8iKwfjll1+wY8cOhIWF4ZVXXoGjoyPrUHqr4+bNm6NLly7466+/hMGfBnF+Mnv55Zfx119/2bT7iKDB0pY4Mz3USVl79+6t2Q2pbiPq8lWuXFlXFFkTdZUqVRLKza9wbUFvgK5YsaJuGhoa0NT51oCsjP62TOQ5cb8SPj4+mkmGBIU1K+uwYcPYkX98TJ2abt266Z4yYg3qhxUqVGCpZNSCVe8wdYI2DtDKnxYtJpMJGzZsMByvjCZYskaoT8Og1CL8KSFAlodCbenhxz5LRyv27NkTGzduxIULF7JVv7xLkgTwlClTrCZEVhMUFIQdO3YIu5mBrE0g+/fvR+HChTFy5EgkJSVhwYIF+PDDD1lIgp6LdciQIUhKSmIbJtSox6i6devi9OnTbI5p3bo1Dh48KJzQAoh93tHRkY1bZcqUQWBgIDIyMtiiCnhcd2R91xN1NG7qeanMZrMgTPlwluLFi6NEiRK4efMmunTpYughqVatGvbv38/Sfhn9lt59qtsTP5Y5OztjxowZeP3119l9qT0mNGcZWUytsXLlSty8eZO54mkDknqxRYYRvr0XL14ce/bs0d1QyEO7o8kKS3HstiBFnQHqbOtGNG/eHPv379es7Hl27drFKpEGMWuWOrUpl6hSpYog6tzd3dlkoTeZUEehiUCd68bd3R1r165F+fLl4eDgwAYQGgDVq27AekxdduDdr4TRjmZL1K5dW3OYstlsZpZMvbMpgccTAD9Rjhs3TnN+4Jo1a3SP6LFEnTp1cOvWLd2M+bZAx/L17NkTe/fuRbVq1XDo0CHh+QwYMADR0dG6ed0soTeZ8m03Jy5jHlst0dawRdABj9uRLaJbbUXRWzzpuV27d++umeCBrDQgfn5+bCK3NjllB7PZjDp16jBxBoiTx5EjRzQWHj06d+6MrVu3ClYJSzGbNBGp7/ftt99GuXLlUKNGDXTs2NHqvepN6nzbsFSGPn364PXXX8/28/zjjz9Ynrzg4GA8evTIokWO58yZMyzhsI+PjybJOpBlPf75559Z23RxcRE27dBralxdXbPdTymlEGFtbHR0dGRzB1mwSLyULl0abdu2ZUKBxkT1gsbb2xtOTk745ptv8Prrr2P16tWChd7BwQGDBw9mB9ArisJi7gICAhAQEAAfHx80bdrUYv9t3rx5tsZUdZwrz5YtW5i4U29s8/b2xvLly9nmE7rvnIo62plNCdRJHDs4OGDSpEn4999/sWPHDtb21c9AHTNsiSFDhqBTp05WUwQJKC8IMTExCgAlJiYmT6+blpamhISEsL/v3bunAGD/lS1bVnh//PjxCgDlzz//zNHvzZs3T7j+2LFjhb+NGDp0qAJAmTRpkua9kJAQBYDSo0cPZcSIEQoAZcuWLRbv2drv2UpaWppiNpuVv/76S3idv6fs/lZ6eroCQClTpoySmpqqzJgxQ0lNTdX9bNOmTRUAyp07d3J1H0+SBw8eKBs2bFAURVEuXbqkAFDq1asnfKZGjRrZrg/18/3vv//Yv/fu3ZurMu/YsSNHdUeMGzfOpu/R9Xfu3KkAUOzt7a1+Jzw8XChb3bp1NZ+pXbu2AkD5559/slXuWbNmKffv38/Wd7JLZGQkK/vFixef2O+EhIQomZmZeX7d2NhYVv7Dhw9n+/sAFHd3d4ufoX798OHDnBbTkIsXLyoAlF9++UXzXtu2bXPcD3OD+hq2zHN79uxRBg8erCQkJAj9QW8s5N9v1qyZoiiP+3iZMmWUXr16KQCUkydPKocPH1b++OMPm+6PftvOzs5qeUuVKqUAUOLi4qx+1hKhoaGsrLmBxhF1W4yKilJmzJgh9B3+GdD8OXDgwFz9vhHSUpdLHBwchB2ZaguHeqs7WY6ycyoAj9o1SSZgICsOygg+INoIs9nMgq8tWVpsPZ7LFhwcHGxKwJwdaGUUFBQEs9msWbnx0CrL1iDU/KBo0aIskLZ06dKoXbu2Jk7u4MGDVo/C08PJyYnFx5QpUwbDhw/HjBkzcryKJXJyugjP119/rbu71ghytRht3uFRbz6w1VJnC5TG5knCW7+s5W3LDbYcSZQTbLXUGXHt2jWr992/f38cOnTI6gapnFC1alVcuHBB1+KyefNmIV9bfmGLu7pVq1YsdvP48eOIiYnBm2++qRua8corryAxMRG7du1i4z/VQfny5VnOxOLFi8PPz4+FCliD2kJQUJDVz9KYlNuxxd/fP0ehEGrIYq7O/+jt7a0755C1zcHBAWfPns116JIRUtTlMdYmgffffx/Xr1/XTcRrC3xsU3BwMN555x2WAsHSSQRkutZzu5GgCQoKYilZbJnMnqYQoo0gthIXF2c1bhF4LOpykxvuaeLi4qJ7NJOHh0e2J/jLly/Dx8fHpkOisws/cT+NdqIXeG2EUVodnpyKuqcB7855kqLuSeHg4ACz2Yy0tDSLMXVGqBPz6vHee+9ZPZklNxjFmLq6utqcJJZo2LChbujM06R+/foAwJJ5q9m0aRMURcHQoUNZrj/qR+XLl8egQYNgNpttTj5OmEwmXL9+3aYFBP1eXhoVcgOVwxaBePHiRWG3tC07+nNKgdv9euLECQQGBqJVq1YICgrSNPY9e/agZMmSaN26tZBmo6Bgbaejm5sbfvjhB5sEhx68BeX3338XGrilAZ4sGHorV4rL69Wrl83xBps2bRJi+/IadXB/dgcLd3d3m6xNK1euxKBBg7K1AeJ5oXLlyppVOT2H3K5keVHHH4r+pMhOIL0t3y3Iog7IXiLbggglYX4SlrRnjaNHjwo7zQsqJpMJs2fPZhamWrVqoXv37hg3bhxq166NTZs25cjCX758eZsyBFDeuIKGOmm4HlWrVn1qRpCCIXk5AgICsH37dri6umLs2LHYuHGjJlg3ODhYc6RLQSEvg6SN2LVrl+aYGsCyECOxZm2VY6uoU+chy2v279+Pa9euaXIE5TUNGjRgAcUvKmfPnjVcoecUEnVNmjTR7JTMS0wmU44EqJ2dHWvrlix1OU1H86Q5evQoli9fbvNGkoKGi4sL7O3tn9nyFzQGDx6MOXPmPNXfdHFx0T1dRU2/fv1ytegiPv74Y+FEkIIAnSdckChwljp/f39mxTKbzboiZN26dQgMDNTNqJ/f8GJInTw2r2jbti0++uijbH2HttFb8+PTCQxG+aueFoULF87RLlhJ9qlZsybLYE8xmjlxi/GQqDPadZxX/P3335qdyrZw//59tovtWXO/All1pnd80rOCq6trrtuY5DE//fRTnsSJPQl+/vlnfPfdd/ldjCeCr69vgVv4FThRR9y5cwc7d+4UMtEDWZaVK1euYNeuXdi2bZtwpipPSkoKOyiZPzD5adG3b1/NodT5Sdu2baEoinC8ih5BQUGIi4vLd1EnyR8GDBiAY8eOsZQQOYXcg7ZsXMgN7dq1Y4u769evC+dPWsLPz4/FtVKQN4+17P+S3OHi4iJFnUTyBMg392tYWJhuDrRNmzbBwcEBffr0wZIlSzTuTD6GpFu3bjhz5gwL8uSZOnWqJlHr0+LOnTtPJPj8afGsxulIco/JZMoTd/TTstTx8DvBbYF2/kVERGje09sBKMk7XFxccrTzVSKRWCbfRJ2/v79wTBORkZGBHj16YPz48bquwtjYWOaf37dvHzsgWM2YMWNYpnf6njUrVV7xtH6HCA4OFg5clkjyG7J0PY0Y05zi5+eHRYsW6QY6T58+HQ0aNMhx4miJZYoVK/bEUqZIJC8yJqWAOeJXrVqFIUOGsC2/H330EYKDgzFw4EAsWLAAixYtwsKFC+Hg4IDmzZvj22+/tem6sbGx8PLyQkxMTJ4EbUqeDnPnzkWVKlXYUTKSZ4dZs2ahR48e7LxjiYSIi4uDvb19jrMASCQSfQqcqHtSSFEnkUgkEonkeUZGAUskEolEIpE8B7wwljpFURAXFwcPD48XMtGsRCKRSCSS55sXRtRJJBKJRCKRPM9I96tEIpFIJBLJc4AUdRKJRCKRSCTPAVLUSSQSiUQikTwHSFEnkUgkEolE8hwgRZ1EIpFIJBLJc4AUdRKJRCKRSCTPAVLUSSQSiUQikTwHSFEnkUgkEolE8hwgRZ1EIpFIJBLJc4AUdRKJRCKRSCTPAVLUSSQSiUQikTwHSFEnkUgkEolE8hwgRZ1EIpFIJBLJc4AUdRKJRCKRSCTPAVLUSSQSiUQikTwHvDCiTlEUxMbGQlGU/C6KRCKRSCQSSZ7zwoi6uLg4eHl5IS4uLr+LIpFIJBKJRJLnvDCiTlIwSU9Ph8lkwoYNG/K7KBLJC09qaioWLlwoPRoSyTNKgRR1J06cQGBgIFq1aoWgoCCkpaWx9/bs2YOSJUuidevWaNeuXT6WUpIXJCUlAQDmzp2bzyWRSCTz5s3DwIEDsWvXrvwuikQiyQEFUtQFBARg+/bt2Lt3LypUqICNGzcK7wcHB2PPnj1y4HkOSE9PBwBkZmbmc0kkkmeTQYMG4eWXX86Ta9EiS4apSCTPJgVS1Pn7+8PV1RUAYDab4eDgILy/bt06BAYG4ocffjC8RkpKCmJjY4X/JAWPlJQUAFLUPQtkZmZixIgRuH//fn4XRcIxb948bN26NU+u5ejoCCDLDSvJe/744w/8/vvv+V0MyXNMgRR1xJ07d7Bz50507dqVvdagQQNcuXIFu3btwrZt23DixAnd706dOhVeXl7sv5IlSz6tYkuyAU0eBS2Gx2QyYezYsfldjALFjRs3MGPGDIwePTq/i2KRYcOGwWQy5XcxnknMZjMACCEvkryjd+/eeOONN/K7GJICyrJly3DlypVcXaPAirrY2Fj06dMHS5YsYQMNALi7u8PR0RGOjo7o1q0bzpw5o/v9MWPGICYmhv0XEhJi82/v2bOHuSEkTxYSdflpqRs7dix27NiheX3GjBn5UJqCC9WVvb19PpfEMrNmzcrvIjyz0Fj7olnqzp07xybTpKQk6TmQ5At9+/ZFs2bNcnWNAinqMjIy8NZbb2H8+PGoVKmS8B7vRt23bx8qVKigew0nJyd4enoK/9lCcnIy2rRpg48//tjqZy9fvozly5fbdF2JPgVB1E2dOhUvvfQS+5ushmq3P713/Pjxp1a2ggQtdMhFJ3k2yczMRHJysuF7AJCQkPA0i5Tv1KpVC1WqVAEAuLq6YsyYMflcorwlMTERn332WYE2VkRFReV3EQoE8fHxufp+gRR1a9aswcGDB/H111+jdevWWL16NQYOHMjea9SoEZo1a4aAgAC0bNkyT3+bRMb169etfrZZs2Z455138vT3Cxrh4eFsM0N22bRpk1VxXBBEnZrExEQAECzExP/+9z80bNgQ//zzD5YtW5bvA1FycjImTZqUa3fZTz/9hPLly1v8DAXPP0+iLiEhQWh7gwYN0q33ZwFbrWtffPEFXFxcdN8r6BslGjZsiPnz51v9XFRUFNasWZPj38nNd58UERERKFu2LG7fvp3t7y5atAgzZ87Epk2b8qQsderUweeff54n1wKAAwcOoHjx4vk+nj4XKC8IMTExCgAlJiZG897vv/+umM1mJSkpSXn48KECQGnevLnVa5rNZsXaIzx06JDy119/5bjcuSE5OVkBoKxYsUL3/czMTOXBgwcWrwFAGTx4cLZ/OyMjQwFg9fkcOXJEAaA0btw427+hZtWqVcrmzZuz/T0qZ1RUlOLo6Khs2bJFAaAUKlRI+NzGjRuVqVOnKgCUMWPGKACU1157LUdlTUtLU+Li4nL0XZ758+crAJQ1a9bk6jq21NXGjRsVAMpnn32Wo9/IzMxU0tPTc/Td7ED3kpmZadNnx44dq/nuswSVOTw83KbPV61aVQGgxMbGat6bNGmSAkAZNWpUXhczT1DXz759+5TExETN5yZMmKAAUE6cOJGt66alpSkAlNKlS+dVkXV/JyesX79eAaBMmzYt29+dOHGiAkD5888/c/TbavK6n6xevVoBoJw9ezbPrvkskJ6erqxevVrJzMxkbc/R0TFX1yyQlrqnjaOjI9LS0pCQkMBWu7ZYp+zsrD++pk2bokuXLrkuoy0kJSXh1q1b7G9yVf/222+6nx80aBD8/PwQFham+77y/92Q27dvz3ZZ/v77b/ZvSxaE3Fjq4uPj8ejRI/b3G2+8gVdeeSXb1yHOnj2L1NRUzJs3DwAQGRmJ06dPs/d79OjB3DIUyxkaGpqj33rjjTfg4eFh8TNkMeTJzMwUnlVGRobhZ63Rv39/dO7c2aqFZ//+/bh161auLXVvvPGGrkv7SWHtvsgqZUvi61WrVqFUqVJ5Ui5i5cqVuH37NjZu3Mh2r27ZsgUBAQE52jgUHR1t0+cKFSoEALpxxuSWza6l7tGjR1i7dm22vpNbUlJSEBgYiE8++UTznre3N4CsesvuNYGcb9yaN28e7t27p/teTq9JUN/JieeE2oaTk1OuygDk3j2oB/XFhw8f5vm1Cyp//PEHHBwcEBwcjL/++ou1vdwiRR0ANzc3ABBEHU2WliBR9yR3iimKgjfeeAOnTp2y+tng4GCULVuW/W2t85Mb48aNG1iwYAHq1q0rpKvIqeC6evUqOnXqxP62NEHkRtRVq1aNTVA8c+fORbdu3bJ9PapHPt6obt26up+9dOmS5rPZ4Y8//rD4/tGjR+Hm5qaJ32vYsCFKlCjB/iZXYXJyMkaPHo2rV69i165dOHv2rNUyLFq0CNu2bRPajN7EExgYiLJly+Y6LdDq1atz9f3sYm2Q5F09hw8fxsiRI9nfs2fPxpEjR9jfo0ePRkhISJ7t0lYUBW+99RZefvllvPrqqyzP3MSJE3H//v0ciXR1/LER1Gfu3LnDXpswYQJMJlOORV3fvn0RFBRk07iZEzIzMzU7mqmsN27c0Hye+rIt4ybPxYsXbf5sVFSUkCs1NTUVgwYNwrvvvqv7eT6e7e7duwCyFoelS5dGTEwMgKzNWefOndP9PvX1nIg6un5eCIcFCxawf1+9ejVbfeLevXv46aef2N+zZs1Cw4YNWV0WRFE3YsSIJ7Kbnk9tc//+ffYMcvtbUtQBLCeeNUudoihCxyRRt337dphMJoSHh0NRFNSvXx+bN2/Ok7Klpqbi999/x+DBg61+Vm1RsxQMnZqaylZtISEhGDRoEE6fPi1YCej72Z3I1BOCLaIuJ5Ol0Y7mwYMH5+j504Cnfm7379/XTA7//fef7meNuHXrlu6A2q9fPzYRhoaG4vDhwwCyRB2QtRmH5+TJk8w6+OjRI0yePBlAlrVp+vTpGDVqFNq3b4/atWvbVC4AgpDn/718+XJ07NiR/U31aOvEsHXr1nyNkVGXMzMzE5GRkexvKtulS5fQtGlTfPvtt+y9oUOHokmTJuxv6ut5tSuULMxqSy/1A5qEnwRkxeL7z+LFiwE8ruPsCnhqNzExMZg4cWKOFztGhIeHa16z9Bskis+fP5+t32nUqBEA7Xh0//59zaa44OBgtG/fnv1NYozKFRERAZPJxLwW/DhIKbbGjh2LO3fu4Pr16wgPD8eIESMwaNAgAFntlZ+HaOFrJOpOnTplaEUjSx2V7ebNm3j99ddzVE/Dhw9n/65cuTLWrFmDhw8f4ueff7b63TfffBMff/wxE93Dhg3D8ePH89xSp56rifDwcPTu3TtbiyY67ehJLVgAYODAgWwBL0VdHqBnqdPrOPPmzYOrqyuSk5MxfPhwtkNs5cqVALJWjDdu3MDJkyd1c3mlpaVl2yJFndQWtxWV/eHDh0hISDBU/n379oWTkxMbuO7cucOELfC48dL3s1tm9WRKE8T27ds1HUMt6iIiIuDl5ZXrXD0AEBYWhs8//9ywM0ZERAiDPrlN1ANd1apVUa9ePd1r2Dooli1bFn369NG8vnjxYua2atCgAZo2bQrg8are2dnZ8JoTJkxgQdMk6G/evGmxHEeOHLEooEuUKMHa/jvvvCO40cm6oHfPd+/e1UxAr7zyCpYsWQIAwqkw1gR8RkYGSpQogd27dwPIsl589tlnFr+jh7odjhgxAoULF2Z/2yI4SeyQqMuLXaGKomDo0KEAtH0rJ6KO77t8HXz11VeoUaOG8NlRo0Zh6dKlAERB6e7uDuCx9c5WF9v9+/dx5coV1sf279+PL7/8EsOHD8dHH31k8z3wpKSkaO5f7dKMjIyEv78/AP1JkCbtBw8eICIiQvN+WFgYSpUqhX///VfX06Juo0FBQXjnnXeE16nvZWRk4NatW2jQoAGAxxY1EqILFy4EoBXKiqIwa3BycjJr71WrVoWiKKhbty5at27NPk/9Tm9uysjIQL169dC7d2/2ud9//x0JCQkoVqwYCzFITk7G0qVLMXPmTKxevRoffPBBthbUemL/6tWrGDhwIAYMGICvvvrKovihxYy6H9F4p1dXOWHx4sVwdXXVGBTmzp2LP/74A//++y+ArDnZyDJK+Pj4AMATT7rOe7dygxR1sF3UUaf777//8N1337HXaQAxmUzYv38/AMDPz09YDaSnp8PR0RFvvvlmtspGjdJsNuP+/fto3rw5oqOjER0dbdgZixYtivr16xsKDoqxo3sNCQkRJga1G9KaqDt69KjwGXVHOnfuHEwmEzp16oRp06axThQTE4Pu3bsLv3HkyBHExsZa3H0WFRVlUwLcfv364fvvv2diRE2jRo1Qs2ZNoZyAVrRYslrwn7106RL27NnD/t62bRt27drFxIVRzNGhQ4cAiIMGXZffpaiubz2hz1v21C7Yq1evokmTJjh48KDFOjWyrF64cAGAKJbmz5+PcePGoWTJkujfv79wjYyMDFy+fBmbN2/Gq6++yt6zZul7+PAh7t27h++//x5AlhibOXMmrl27ZvF7atS/Q5Mr3bstoq5fv34AHos69Qp/7969ujkOLREfH88Wgrx4URSF9cnsiDoHBwcEBgYCgBBjOmHCBFy4cIG5vdeuXYtvvvmGvc+3XRoDKSbXVvFasWJFVKlShT1TWlTMmTPHpl2qenTq1IlZEwm1qPvnn38sXoOvJxJXxYoVwy+//AIAmDx5MkJCQrB9+3bde1UUBefOncPVq1cBPBYbfJuiNpGSkiJYPalf0jhKVn31OBIdHc3ETHx8PGvfhQsXxrVr13D27FkcOHCAfZ4+qzc30e9v27YNHTp0wNWrV/HGG28gMDBQiJlOTEzEu+++y1ygK1euxIULF7BkyRKrsdXA44XdW2+9JTwH6ksTJkzAn3/+yb6nFsz0t3rRkBNL3enTp/HTTz/pxjDSXK228KrH0JEjR6JWrVqsL5w+fRo//vijUG5qi7TguXz5MvOkFESkqIO+qIuJicGWLVvYZ3799VfmrlRPLjQopKenMwtTREQEHjx4wD5DE6VeXNHDhw+ZeVzd6Kjx29vbY+nSpTh48CC2b98OHx8fTJs2DTVq1MCAAQM017xy5Ypu3JbeAHb//n1B1NEzsEXU3bhxA40bNxYSvqoHLxpIAWDcuHGoVasW4uLihAGLfoNW3ZZ+c8aMGZg+fbrh+wSZs41yM9FgS5CL1drKrWjRouzf/MRYrVo1tGnThv3duXNntG/fXnD5zZw5U3O8nZ6IUltZt23bJmzMuXjxom48Ie8eHDZsmPAetc3o6GiLlpilS5cylwMPTdj8PX/00UfMBfzrr7+y10mU/Pzzz5r4Rv63MzIyNJMUWZB8fX0BPHZV6Ym6nTt3svYfHh6OcuXKsff4ch4/fpz9Lg3YvKizllCZ6kHdf1q3bo2XXnoJcXFxNm9UMHLhfvLJJ8KCxwhFUWAymbBw4UIcOHAAsbGxCAgIAKA/Kb7++uvIyMhAUFCQ8Dr/fMhSR9YnS6IuMzOT3SuJJ7LOqOPbLLm5jKwy/MKIUC/M+D6lR2JiIhvXY2NjkZqairCwMEycOBEPHz7EggUL4OjoiKNHjxr2hVq1aqFy5cpITEzUzd9H/TEpKUl47g8ePMC3337L7v3mzZuoWrWqZkHPx2jGxcWxdpGamirMHQSNYzdu3NCE2vAW+v3797O2rQ4b0WsfEREReP/99xEYGKhpm+vXr4ednR0b06ke+MXwuHHjhDpbvXo1tm7ditmzZ8PR0VGw3NH1syPq0tPTMWjQIEF03rt3D3Xr1sXHH3/MUqvMnz+fJYynTWhG7YT6My2o6Xm1atUKn3zyCRwdHZnwVYu6qlWronHjxrrXXbJkiSYsKCUlRTfuMzt8/fXX+N///mfTZ6Wog76oCw0NRZcuXRAXF4eYmBi89957bHWtnlyo8x46dIg9+Bs3bgiBkJYG6aJFi6JKlSoYP348nJyccPHiRbz66qtIS0sT3K80sNBgOHbsWFy4cMEwlmHKlCkARKGoFhB+fn6IiYmxaKmzZJ6nwf2ff/5hk7Na1OkN7Fu2bBE+R/dG/7f0m7buvqSB0dagb36nqyX4fG561tDU1FQh4JofWD777DN8+umnwufV5UtNTWWDHLXHqVOnCp+pXr06/u///s9iOflAeODxhJuUlGRR1A0bNkw3hpMmfEsuZ7IUWmrv/G/36NGDuTcuXryIe/fuaUQdDcB8e9m5cyf27t2Lnj174ueff8aBAwewZcsWQaiTVSU8PBwNGzZkr+uJOqO8bQSVoUqVKqw98xPg0aNH4ePjY1N+M6ONVfxOTUvPjybW77//Hi1atAAAtnkmIiIC169f17jt9awwvNWJ7p/uTU/URUVF4e7du5gxYwZ8fHyE+6f2qnb/U13GxcXBZDJh7969ALKER5EiRYTNKBEREUId85uE9NyvlkhMTESxYsUAZLUbGgvc3Nxw9+5dpKWloUOHDrhw4YJuX+AXlSdPnmTjUbVq1Vi/40Udb2U/e/YsRo4cyU4GiIqKwuXLl3H16lUhB+KdO3cMRR0veOk61O82bNigcdWpRQO1H3WGBj2xSHV0/fp1IV4OeBzWQeKQ2l716tU11yFWrVqFl19+mS28+X7Gizo+pILqgBd1W7Zsgclkwq5duzBv3jx89dVX7D3++VDb/eijjzBixAgAj0Wd2lJH/ZjKQe2Wt3ATJ0+eBPB4Lrp7965FS2JkZCTef/99TajO+++/r3tIgtEcpw4niIiIwPjx4zWLMiOkqMNjUZeYmKhZqURHR2sGOPXARQPhyJEj2a7IxMRE/PbbbyxLubXA4wcPHuCXX35BWloaqlevjo0bNyIkJERX1OVU9WdkZGDixInCa6VKlUJMTAx7BsDjBk+dMTMzE/369dO1CNJ9/fnnn+ysVPW96k0Qw4YNE85AVJvlLYk6vqy2YGt8EP85SyeQ8OcIU91HR0czS+6PP/4oDHrWJiByVRLz5s1jGyZo4rUWKwcAxYsXF/6+e/cus+qMGjWKtZs1a9bkOBULkDW5LF++XPdkjapVqyIkJMSi1So+Ph7h4eFo164d/vzzT8THx+Orr75C9erVUalSJVY2Ly8vAI+tQLGxsTh48CCioqLQoUMHtG7dmgniFi1a6K6QAa2l1t/fHzExMcJkYyl2ERAnR6pPfoJctmwZgKyYnVu3buHzzz8X2vB7773HdkpSW1+wYAG+/vpr9hk/Pz/2b0uijsYYPu6ULHUhISFYs2aNxvV89+5dIZ4QEMW5+vM3b95EkSJF2N89e/aEr68vSpYsyVxbvNCiyV49NpGYJLFNmw2o7dy4cQPLli2Di4sLihQpIlhaGzZsyBaK6oS7vEjVi6lLSkpiMXf9+/dnz8rNzY21h5IlSyIqKkp3fOD7x8OHD1ldhoeHY/bs2QBEUWeUxkQNzQd0D1QH//zzD6uD1NRUYcw4dOgQtm/fbjGRu/r5kJhRW6D5NkvPh8ISgKzduLygJW/Azp07ERUVhatXryIgIIAJZkuQ0F2+fDl27tzJ7g3IGgN+/PFH9lnqi7xoIjcuhTTxfZAXYXpx2tR/wsPDsWbNGrRr1w7Xrl1jv09zEj1/+n1+HKDXaD4LDw9nISh6kEs2IiJCKBPFM548eRK3bt3CBx98oKkX/lkAWW3DZDLh7NmzLLzDyDqopsCKuuHDhyMwMBBvvfWWILTS09Px7rvvGuYnyglmsxlms1mw1BFRUVEaUaJ2Gxi5Ki5evIjOnTsD0OaQWrVqFXr37i0M/FWrVhU+8/DhQ0HU0b8tNSxL7NixQ9iODmQNbMePH8exY8fYa6mpqXj06BFzJWZmZmLx4sX4+eefBStDenq6MPiQCZ63PLm4uOgKCPVrycnJOHPmDBN6loJt1aJOURSL2/xtEXVk1SQs5XNSi6eVK1fCx8eHDcrqeB9rou7cuXNCfNynn37K3AK//vorkpKSDOMCAbCdrupyJScns7Y6e/ZsNuGuXbsWb7/9tvDZ7Jw3mJKSgnfeeUewfvEcO3ZMcK2riYuLw/Lly5k4ALJicYAskUyTAbUBqr9FixahefPm6Nmzp+51Dx48qCknfx0iISEBAwYMwJdffsles2SpW7dunRCrSP2dFxYUp3rjxg2sXLkS33//vdDnf/31VwQHBwN4PLFVqFABY8aMQYsWLVCsWDGroi4mJgbx8fG6aTf8/PxgMpnQv39/XUEdEhKiGV9SUlJYv4mPj0f9+vWF9/lxjs/lR1YQEpfAY6GqFnWhoaGIiYlhdUqWKhJWTk5OmDp1Kptc1X2FYvzUoRJ8fzDaKEFhEnfu3GHtixd1xYoVQ3JystX++fDhQ0HoZGZmQlGUHIk6XljzAmb58uUsLEMt6gBg0qRJmmvRhhdA+9zIm6S2CvOWKxoveNfpiRMnYG9vjy5duuDhw4fsupMmTYKvry8OHDiAZs2aMSu6LXz22Wfo0KED3n33XXbP8fHx6Nq1K/sMCajQ0FB88sknKFq0KDv9gnI48mMkibqGDRviv//+Y58BgA8++ACLFi1i97t9+3bs3r0bvXr1Yh6Pn376CaNGjWIxk/T7/LgfFRWFf//9l22me/DgAfN+kHeBh1/k8n2H2lv9+vVRtmxZ/PLLL8jMzMT69evZZ/h4ZOCxkN2yZQtrW9YWnkSBFHWnTp1CWFgY9u3bh2rVqgmxYZs3b0aJEiWwb98+JCYmagbynOLm5obBgwejd+/ewuuPHj3SiAK1qFO7z3hXZtu2bQFoRcybb76JP/74Q1h9hIeH4/3332d/h4WFsWtv27aNCS89Uace2PgymEwm7NmzR0hMTOglVE1LSxNWQvyARsH3q1evhtlsFp6X2WyGoijYvHkzSpcujUePHsHT01PzvPhzVomkpCQhZkBt7aPnd+fOHU08XXp6umB1ULtnV61axVaj69evh8lk0kyaaoFiSdSpg7hXrFgh/K0OojUKQCYs7aratm2bkD+NIHN+0aJFmVmerDU8NCDZ29sLEy6JFGo3rVq1slhGHms7fl977TWLZ2fOnz/fYqoJsrglJydDURTWB6j968VcAdBsWDBKUQNoj4FydnbG0aNHdd2nvXr1Ev6OiYnB9OnTWfoLIKuP1KxZE6GhoUyQx8bGIi0tjf2+s7MzYmNj2ZGHjo6OsLe3R9euXZGSkiIsVtTtMyMjA97e3ihTpoyugHB2dsbYsWORnJysm/7j7t27SE1NFVLd7Ny5E2azGVeuXEF8fLzNbYDi78iazKNeXIWFhcHb25stbvm8ikBWv7d0LNvly5exevVqzThvlM6ISExMFJJ70zMzm83Muk7WJqNrOTk5wdfXVyPq4uLiEB4eLog6W4/u4uNg9VyhgNb9Cjye5HneffddVi61+9AoewD/m7wlFsiKD6UFy5YtWzB//nxNWzp48CCaN2+uK2qswYvQhIQEpKWlsXGWFiKPHj3Cjz/+yDZLAVlCE9Ba6kwmExo1aoT9+/ezPI9A1pjJ3y/NJfzGsQMHDgibhuj5qS11fJ8IDw9noo48IBRPDIiWa70+aAlnZ2e2CElKSmIC0d7ens0ftqYZypaoO3XqlLBi+u2339C8eXOULFkSLVq0EGLIcsOhQ4dYfqxOnToJHdrSezwpKSmIjY0V/rMErWjU8V+2WOrUf/OrsYYNG8LPzw9//fWX8Bm1VQXIGgDLlCnDLD0PHjxggjIpKYm9fu/ePZhMJouDIb+SOnjwINq0acPyH/HwiWwpFiA1NVWYCHlrYmRkJDIzM3VPqXBwcMC+fftw/Phx3L59Gz4+PhoBBACvvvoqO5GB4N2XgNiAr1+/juLFi2PlypVo0aKFZgC9cuWK0LmqVavG/m0ymbBq1SoMHDgQly5dYsH86olRLeIsxe2RWxDIsvCoY9fU7cGWRMCW4BOcAlk7C8lcn5GRwSYvPVFHsTDx8fFsVcpDbmb1AG+J3GaUX7ZsmbCpQg1tFkhJSUFSUpLV3dd03+rPpaSk4O7du7qLGYLap4uLCxo2bChYD4w4fvy47u7rd999FxkZGcxtdOrUKTg6OjIr171799C1a1dWn9R/nZyckJycjISEBLRt2xb169dnAvzcuXPIzMxkVorIyEhdz4CTkxNLqaHuW0DWLt07d+4I1kCa4CmuzN3dHcePHxdcwnrPnsSynqhToxanNJZQ/46NjbU4jg0fPhyvv/665nVbRB2/sKX+Hh8fz/onjcFqKyBRuXJl+Pv7C+5X4urVq+zZ0Ek+RjFP/DPnLcJGE7+epc4Iqgv1Tm6jEB3+N9UhJurk1T4+PpoyZmZmokWLFvD09LR4ohK5dnkGDx7MYnXj4+ORkpLCxtKoqCirJzTRuLN161Zs374dXl5eQigMwYcSREdH2ySG7t+/j+DgYOGz6nE7PDyctTsSofw4FhkZyRbb1LeyM1by90KGi5EjR7IsAE9E1H3wwQdsgFy0aBEGDBiABg0a4IsvvkDDhg3Rv39/YadjTomOjmYNzsvLS1iFWHqPZ+rUqfDy8mL/6VU+j5ELVS/mQh0sqV6d8mrf09MTPXv21KSz4MUUkCUiHj58CH9/f7Ru3Zod32XUKCpXrsyCpPXgV4SW4pt4AUodLC0tTbA+8vcXFRWFcePGsYmLJzU1VVNevRVdlSpVUKtWLeG1tLQ0QVDTZJCWlsYCyD/55BPdwbx3796YNm0a+5sXdWRVAIDvvvuOJSVWT/Rms1lY4VnKzs8PhsWLFzdsg8TChQtRunRpi58pUaKEEDTOw7u5gKzj3cjKkJ6ezkSd3rO2llGfvsvv6NWDF+dGFgY1hQoVgouLC0qVKsWsU7ZAYiE5OdlwIOOfZ7NmzXRP/khJSUHJkiUtHtNHgzD1WVtcHCQ6f/vtNyEEpHnz5sLnyKLIL+j27dvH/k1ixtnZGYmJidi9ezfKlSuHjh07YtWqVTh8+DBq1aqFcePGCdfVm/Dt7OxYHfEbfvr3749WrVph48aNCA0N1a3nBQsW4O7du/Dw8ED9+vWF/lOrVi1NX6f2ThZpI3e4uizA47GI2pCeqPvwww/Zv22xOOnF3yYmJgoCisawI0eOMG8I9SGjeNWqVauiSJEiuqKuZcuW7N5iY2Nx9+5dtG/fHnXq1NFckx9L+D5qJOrOnj2LJUuWaGIgCV4w0eJbPQbpLWTMZrOw4FSLOvU8ZrQLt3bt2rCzs7NoreNjB4l27drhp59+gpubG+Lj45GcnMzmnOjoaKtxelFRUYiLi8PLL7+MdevWwdfXV/d3+LkrISHBJjG0YcMGrFmzxuLY9uDBA017vH79OnumERERrO9Q3eotsIywdgzhExF1V65cYTv/5s6di1mzZuGHH37Ahx9+iJkzZ2LBggVC/rac4uPjw24gOjpasDpZeo9nzJgxiImJYf9ZW9kZoWepsxZkzlt5nJ2dERAQIFi+Hjx4oLFgpaamQlEU1rATExMxYcIEza5Hwt/f32Lmab10F3rwVicSQKmpqULH4FfbUVFRhjv8Dh8+zMQr7Ryijs/H65CgU4uY69evs3/fu3cPQ4cOhaOjI8aPHw/AOAWCWmTTJgWTySRM0pRIFnhs0ifMZrPgFp41axa2b9+umwuOf2aFCxe26l4FshI+W6JWrVoWO7V64qMBmbfU6U1uRuf+UpmoLvijwvTg25Pe/eptXvH29sa7776LH3/8UXi2RkevUTA1kZyczNqhuh74gPr27dtrkuwCxhYY4vXXX2exlCQAbMnmfv78edjZ2SEoKEhI5aNeOJL4MxL9NE7wVmIPDw8mkmhjkrq/6fW/xMREXat4uXLlhHalJ+rIbU3eCr4uL1y4oHFrk1UoJiYGnp6eukm1gay+r7bm/fHHH4iKimIxX7GxscJ4WaVKFXa9ihUrsrOc582bp3t/wGMxkpqainHjxrH8b7ylTg+yTht5mKpVq4YiRYogPDxcsFiqxQxZ7cqUKcPip3jLNy/qWrVqhdWrV6NatWqGAoKEg9HYzz/T2NhYZpHm0Rsr1XWvFnWffvop6tWrx8obFRUlWABLlSqFyZMns75oJOrmzZsnxKsCWZZDylVJoo631EVHR6NZs2aa8Cc+DnTTpk1CmV1dXQ3HEiI+Pt6mnI+WTopxdnbG1KlTcf/+fezduxcdOnQQ3qcckREREShdujRcXV1x7949zJkzx6LhRY01w9MTEXUuLi5sAr13755mN0bjxo2tDqS20KRJEzaQbN++XVgBW3qPx8nJCZ6ensJ/ljh16pRuHJDR7ihL8BOwyWTSTHj+/v7YsWOH7kRauXJlAGCrc7VZnZL1+vn5WTRXq0VdmTJldD+nJ1qioqJYYLGaX375RWPa/+mnnzBz5kwAWeZoOzs7tmKljt+mTRtmnaTX+JgkQEwVc+zYMbbLzAhKj8DvbuzSpQs7usdsNrPnp26r6jxsatFUqFAhdOzYURBwBP9aoUKFbDpxw5poqlWrlmBVVKNexVJ75i115BoxQn3MUZ8+fbB69WpcuXKFnWRhBFkNeFcSDx+/RHh5eWHu3Lno3r076wMjRozQzYEHZK3kKbaxcePG+Oeff5gYVruWadIcPnw4+vfvj+nTp2t2ZxvF3hGDBg1iE52tQchAltApXry4ps34+fmhQoUKLG6NJl8+iJuHt9QRbm5uaNCgAYYNG8ZEoZ4rjc8TBmT1AV700EkEbm5uQh93c3PDuXPn8M4772iuSZOTWgypLTj8mFS8eHF0796dLbx4fH19NWIjOTkZvr6+LGYoMjJSuN6IESPY+GBvb8/Ee/HixQ0F9549e/Dll19i27ZtmDx5MmbPnq1xvwLaEAMjkUhUrVoVlSpVwvnz54VJX734ohCgqlWrsnrhx3w+xYWHhweCgoLg6enJRN327ds1LmZXV1fDEwb4cnfq1AnOzs4WLUytW7fGwYMHNaJObQmsWbMmTpw4gQsXLqBq1aqIiooShMRbb73FMhwAMDSofPjhh0Lap7///ltYhIWHh2PcuHGCcSMtLQ1+fn6aBQtvNVYLr2rVqlkVQlFRUVYTGpcsWVIj/PjMDJ988olQh+qzfS9fvgyTyYTz58+jcOHCqFSpEr7++mu2WYPftWxp0WhJoFapUgVxcXE2zTXZEnWdO3fGvHnzAGStONTJbdesWaObjyW71K1bF/7+/ggMDMTFixfx2muvMffNK6+8gpCQEAQGBsLFxcXqZGQrderU0X2oW7duxb59++Dg4ICTJ08KO1aMUA/2RitG9UTt7OzMGj9lsuf58ssv2aRNu92MUIs6ElmWoAbTqVMnw3gZfpcsMXjwYAwdOpQFlHt6erKy0QAdEBCAAwcOWMzEnd0TA2gy5EXd1KlT2UDh4ODAJiQajJo0aYLKlSsjLCxMONdUXWc0KFsTdUYuEnW7tCbqGjduzNqJk5OTxuKtjlEhEZWens4sPZmZmdi1a5duDBIAFnNF1KhRA+7u7qhUqZJuW+JjMOk+jY7r0ls0qWMPgSzLYpMmTZgFhqAt/jt37kRsbCyKFi2Ke/fusU0Havd1xYoVAWSJYZPJhGLFimHBggW4cuUKDh06BEdHR825uTw3b95EYGAgKyMvrEhckzte7YqPjo4WJvZVq1Zhz549sLe3x7Vr13Dq1CnY2dlZPV+SLFT8b1N7pcWdGmpH1J8dHR3x6aefomfPnsJkT2MLv9sTyGpbNWrU0NTXvXv32NiinjjUG3l4T0VAQABMJpPGMgNY9xY0bdoUCxcuFDbNuLq6sr5nb2/P2nKNGjUsLmInTpzIjn66dOkSE3X//PMPK4daJFlaRAFZIq1Ro0YICwsThIF6gbFhwwZUrFgRJUqUwK+//spO0CEGDBjAAu7pN11dXdk1W7RoIZwzDGSJWKPy8Qsovo3T81E/Jzc3NzRt2pTtmqa613NdAlnjZpEiRXD//n2kp6ez56feIW409gGPx6uKFSsK5+MCYMfHhYSECGOE3sJQb9wcO3YsEhMTsWrVKphMJos77Q8fPoyIiAhDowaQZfDgLZtffPEFM1IAWc+LT1GlFy/If/ann35CXFwcTp8+ja+++kpIV2KpHH379tWdA2/dusUMTrac9JItUTd9+nTs2rULrVq1QsmSJfHdd98hMDCQNdqJEycKsU25YcaMGdi3bx9WrFgBR0dHlorDwcEBS5cuxb59+zS5XXKL3iB08uRJLF68GO7u7qhbt66wAjFCbZ41yqumFnWVK1dmkxs/QFND6NWrFwvutZarTX0vRjvbOnfuzDKdG60CqPNb2sZuZ2eHli1baspGLsESJUqgVKlSml2m69atY7nzoqOj0alTJ8FNagmaDHm3o7OzM3vdwcGBWSm6dOmCRo0aYdKkSUwg1KxZkw0kalFH19AT5GpLHU+3bt0wcuRIjWVQbxMDkDUpjxo1Cl26dIGdnR0aNGiA1atXa8ST+ndIyGVkZLBBPDMzE46OjuwZv/zyy3j11Vfx999/w8vLSzNAWouj4wdxGsBdXFx0ha6eqOOfHdUDtbFNmzaha9euaNasGd555x0m3jw9PeHh4aHZuKJecHXs2BGHDx/WpGapVKkSmjRpAhcXF4teA3oWVG7+XmfOnAk3Nzd07NgRO3fuZJYY3ivAJ35+/fXXhf5lMplYu7K08OI3ShBkMTASdTT+eHl5sRMlZs6cCRcXF6EOyFqoKIpgdddz+QKiK009uapDV+Lj49lEbWmSUreTrl27ChYQvfGWF3UODg5o0qQJFEVBuXLlrLrGKVHurl27mKhr3bo1Dh8+jO3bt2POnDnC500mk2G8pYuLCypWrKh75vMXX3whWJ4AMLehm5ubJhTAwcGBPV9e1AFZ7c/V1VVjKS5WrBi8vb3ZJpuxY8eiR48e6Nu3r0a00ZFd69atE2LOCapr2kBA98S7NtWnFfj4+LANaWSdV4s69Vz/5ptvskW/vb09pkyZonuqEd93+Dai3mXOl5XSAbVs2RKTJ0+Gi4sLew58aI+R9dVSjj8PDw/BG+fq6go/Pz9mwPLw8BA2NurNCdSvEhMT0axZM/Y3L5ydnJwMPR1AVnusUKGCZoFUunRpNlbb4oLNlqgrXrw4Tp06haZNm2Lbtm1QFAVHjx7Fjh07UKJECRw4cEDYWvysYWllSQON0erktddew969e/Hw4UPN8UxGljr1tfgVAN9x6be9vb3Zd/g8STzUgdX3wh9fRVBKBepkRgl/V65ciTZt2mhcPmrIVM67U8haod4YQvTs2RMTJkxgndvPz49ZYSgdDEGikdBzmTk7O7NnYDabERISgsjISNjb2+PIkSNo164diyOrWLEiGwDVoo4mEL1dsF5eXjh37hy2bdumqcN27dph+vTpmrJZagPTpk1jv3/s2DHmYudJTU3FL7/8wjZ6EIqiaI7TGjBgAEaOHIkNGzZg/fr1aN++vWZ3cUJCgmaSTEpKEsQJP4jzq3W9/JB6oo53+/HCk9i8eTMOHDiApUuXasQ+7/KrVKmSZgHk5eWFxo0bG070Ru3NqNx8ffXr1w/x8fEwmUxo164dfH190apVK2ESs3b4NrX79evXC7tJ+QWLnvuVBm2j8pOIcnNzQ//+/QXrKz8etGvXjv1GlSpVmKeD2oC6ffJ1Xa9ePezduxdjxoxB+/btdeORaZew+mQBfhKjcYv6c8uWLTFkyBD2vl5MltpSx2Ntd+T58+fRokULFqROfa5ChQro2LEjPDw8NDvV1f2JOHv2LJycnDQu2379+qFZs2YagwK/+94SalFHfVZdHyQievTogczMTEyaNAkbNmxguy1562a1atWQkpKCHj16wMvLi4lyqmv1/6lt8V419VF+tog69XwwefJkoT2OGTNGsyEOyFpMUt3yok5PQHfs2BGPHj1ios7SnAdAOGOax8vLi+2k5zcaPXz4UDM209/0f5PJBJPJhFmzZmH37t26Y/kXX3yBn376CYMHD4bJZMKkSZPg5ubGQoy2bt2KS5cuWV1I8787YsQIFmpGfcWWXdHZzlPn7e2NadOm4cKFC0hKSkJKSgpu3bqFFStWaNw7zxqWdt9QZzQSfn369EHLli1RuHBhTeM3sqqpG6hRAlQKYPb29mYTeNGiRXUnNDqvjsSG2WzGvHnzdMUoDSR0Tb2jX9q1a4e6deti9+7dwipD755okODdThQHYWmFAjy2ZBUpUoS5ttTWhM2bNwtuYT1RV6xYMcFS5+/vr7EwkpWmaNGihqKOUN9nxYoV4evrixo1auCll17StAeqw9GjR2P06NGsM/L30qhRI5sC8nni4uLw3nvvCSk3mjdvjoULF6J69er4999/WboAd3d3TJ8+3WJaFr2BydnZWbhffscqtX97e3tMnDhRE2dqTdTxlglbIDfDr7/+iqNHj2pSAFmLh7JkQVKX0dXV1WLyYcrz2KJFC8yZMwfr1q2zel3qs3Xq1MG4cePY5ge+H1L98M+JkszybZZvY7Tws3Tiyssvv4wGDRrg+PHjzJJJ92dkqVPTsmVLTJkyBbVr19bEJHl6erL64d3QoaGhQgJWqnOyavn5+QnjAO/WJoHg6urKykZnehJqd6Gea+6DDz7Q/D6POgaLUkPxsVvA47GMf05btmxhRzLquQotQfWl9gAYiTr+OZGo4OE/7+3tLfR1Gsvo2vyZ5VevXsXcuXNx9OhRNjfoeddKlSrFBAS1WWsbT6zt8Cfs7e3ZXKtn9efx9vaGj48P6/9GR+wRFEuqRlEUODs7w2QyCX3LxcVFc1/0LEl40kL0k08+QZs2bXSfg4+PDwYPHszuZ8SIEYiPj2fPpFOnTihbtqzFrAp8WYGseYK8ftQebMk8UCCTD+cX6lXZJ598wmJXaFDkO/m3337LViK8lc1WK42ljspDO2ddXFzQoEEDbNiwAR9//LGuMOjXrx8yMzPZJNy4cWN8+OGHupMWuWiKFi2KM2fO6J4lyu9IpGt27txZd/OInnVh2rRp+PTTT612eOq0pUuXRsmSJfH+++8LOwuBrMmEX83xdbF27VqcPXsWDg4O7DkaCbUPPvgA33zzDbp27WrofiX4TO6dO3fWnN+oFss0IHh5eWHq1Km4evUqbt26JdTtypUrWfC7reJOL2Hz/v37WSbywMBAq4fS2wKVc/HixYLLmMReenq67uYfvbQWvFipUaMGlixZIgRaW4JEQ40aNeDl5aURddYmA+pz6lMS9PDy8rJ5o8SgQYMspvAgNm7ciD///JOJS5oY+OemPl3h//7v/9jn+fujFBxz585lcW9Gu/UiIyNZ3G/9+vXZwtHIamMNPWuas7Mzs/zzsWD+/v66iz1+EcWLFRJSo0ePZlZ5V1dXmEwmKIrCwkKIjRs3Ckl4T548qTlHmbf4WjvPl0hNTcWFCxdw7NgxHDp0SIhn5fsnH+PGizr1CTJ8+WgRSmla6HlaE3XWTmzgP6+uI2prJKaprkuWLImKFSvCw8ODPacPP/wQo0aN0lyfD2ugtmjpedKxVrZCY4teP169ejU6d+6MVatWsTGN+r+lXapAVnojtXGpVatWms0NhIuLi+a+aLc69R31iTR687m1RSbBx7bTPak3LVH98Uaf7Ig67dbHFxi+UZJa3rlzJzp06KC78h8+fDgz3/NWPr1AVT3UcVbqxlWpUiU8ePAAa9euxW+//cbK16NHD6G8ZrNZWMHwqTxo8OGvPXToUAQFBWnyUfFJG52cnDTnQdJ90LVWrFghWBH0REXJkiWFoFMjaIIrXbo07OzsmJtq7969gkuQF1Q0ICxZskSIx9CzgPA4OTmxg5/JckTfWb58uTBxtGzZEpmZmVi6dKluYlq1pU69U7Bw4cIoXLiw8LqXlxd7trYMhFFRUTZbuHIL1aGjo6NQNhrI9I5vo5xg6sFJvQvcaGDVg6y9NLnRAFivXj00a9bMqqgjOnTooElfo6ZHjx6Gu+hzitqFrifqqM3Ra3ycFt+Xpk2bhlGjRqFQoUJso5HR5GYkBvh6BWzf7asn6miDmiVrIfBYrDZs2BDr169H1apVBWFE8YEuLi4at6RRWZo3b44zZ87A29sb3t7emDlzJmbOnImXXnoJGRkZwphmzbKkhsSAetMCwZed/t22bVtD6xAfB9qpUydN7C/w2Lqlrg9rJzaoLXU8tWvXxq1bt9i1bdkxqYZc5oB+iAJx8+ZNPHz40KonRg19nuqIb7dBQUGaRM5kNFEfdaemfPnyOHbsGNasWYNjx45hxowZeOeddwznAjs7O1aGgIAATJs2jY3zXbp0QdeuXTUpe3x9fWEymVCtWjV2upOt41HXrl1Rp04d/P7774Yb1PSs6S4uLvDw8JCiLi8gsWYUQ0OuL0uNmh/IFy1ahH79+iE4OBgjRozAF198wd5Ti7pz585BURQ4OTlp0n8AWXFyW7ZswYMHDzSDuVrU8R2SzhhUw0/CISEhmuOV6D7oWuqVNJC1E8yWuAE1JBbU6QLUcXQ8zs7OyMzM1HQM+lu960oPtfv17bff1gTfWxIkakud+vB4gh9UfH19DXPu6WHrKtAWatSoYfGILvXkT9AkpnfGrtEKPjeWQ7LUUbumfti4cWOrqW6ArM0OLVu2tLrDEdCmt3kS0MTKl4faXIsWLbBz505NDClhZ2en2YGoXnBZw8hiB1iOB9MLSbFVENL4UaNGDc1k1LVrV9SqVQvLly/Ha6+9hmXLlgGwvgEMgG6cFu1U1luI5BV6ljprliMjKBcdWV7zUtQtXboUU6ZMQaNGjfDzzz/btGPSEnSvevFsZcuWtbqzXw9+1/lLL71k9Rx3s9mMI0eO6IYIAWBH6FH9BwUFsXya1qzS1Kfc3NyEsd/T01M35tLZ2ZnNV4MGDcL8+fNtHqO9vLysJoT/8MMPkZycrNEcfn5+UtTlhEuXLglb9qtXr44TJ04Iq65y5cqxhvD999/jgw8+sNhw+MGFVmtt27Y13HFJWIqJArJiTvr27QsfHx+cPHlSCAKma9FAZItFiO+0esdGqUWdHmRFzC40MFjLqq3G6L5CQkJsWj1ai6mzhtpSZy2NBZD1nKlusxtbl1sOHz5sKDwBrajbs2cP5s6dy2KeeEvIihUrLIqmnIh7giYiqh9vb29s2bKF5VKzRkBAAIYMGYLVq1cDyBLf169fz1OBnB1oEuBFC1/3tLHBGtQ/1ElarWFkqevVq5dFl7iegLLVrUmiTt1HoqKimJuVJtEqVarA3d09x/Wj14+MRN2OHTusjq165KWoo1AVSn2UXVHHzzfqZ+bl5YXp06ez5O45PdaPUkLZ6qrPDtSvnZychJN8LKFn2CD03L+08LFW19RObFlQEOrfys53reHi4qKbM1eKuhxSpUoVTUCuelcOn0vG2dnZatwOX+G08iV30oEDB/DXX39hypQpNg+WhMlkYuKrbt26gvAk8ZjdgF5LUOPPTqJWW/nuu+/Qo0cPmw+KthYIn93dj0bmeWvQhNWsWTMcPHjQprNDgZyLyNzi5uZmcQCiyZ/K16pVK+b+Dg8PF8S+nqWWCA4O1s1dZiuff/45Pv/8c2HwpEPhswM/see15SY76Im6nODl5WXV7akHLdiofqndWso1BuhvRrDW/9u2bYtjx46xxYNa1OkJt1atWiEsLCxPJ0ej+lannLIVfiyla1vLCGDEzJkzMXr0aCY41GO/tXFQbfnXg557Ti11O3bsEJIB5+UCVL1DN7foXYfSSuktTHjUu12zAz2TnM4f2aF48eI2WeilqMsB1rbWA1nxGRRXQ43Fy8sLL7/8Mv79919mdm/WrBnzy+elWKJVcl5aJmyx1OXm2pbSRPCuvKtXr1oNJLYVT09PODg45HjAcnR0hIeHB8qWLWsxCabe94Cnb6mzhpH7FdC33vIcPXoUa9euxbfffosePXpke5HC89lnnxkmOs4O1PcyMzOfysBrBFl5cvNMcoN6J1+XLl1w7Ngxq3k37ezs8MYbbyAiIgJ///03AOv3sGvXLgBZKS0OHz5sczxoXgo6IO9FPH89OkHAlryleri4uAgLU/WYmp1x26hf5lbUtWnTBm3atGHhCXn5PPPS2GBEy5YtkZKSYtVSR+05J/f35ZdfwsXFRfeYwrxm9erVNs0XBU7UnThxAp9++ins7Ozg5+eHFStWCFaNPXv2oE+fPihfvjzs7e3ZAFLQ4E9eoEZVqFAhmEwmjQuJ7i8vrTctW7bEmDFjMHz48Dy7Jg26T1uIREZGCkKaD+LNLZ6enrl+7nppbKxhi8Bo2rSpxVMRngSWRJ01GjZsCE9PT3z77beavHP5BQ3UhQsXzlcBPX/+fLRv3z5bk9mUKVPy5NhFQCvqTCaTzSmoVq5ciU2bNjFRZ6vgmDRpEoYNG2bTIvhJkNeiTn0fRvFdOSG77lceo+dLcWvWFmPWGDBgANzd3Q1jPnMC9YOcuoZtxWgcO378OMu/mBtLXZEiRfLkvHtbsHX8KnCiLiAgANu3b4erqyvGjh2LjRs3auJHgoODMWPGjHwqYfYxmUyYPHmyYSoEa7s1c4KDgwM7rDyvsLQD8kmSV1Y5PYKCgqweZ2SNTp066SbO1IMGa+qgljrqwYMHc+Rqyw25EXVA1kkIT7vMlqD7oKz7+UWRIkXY8Ui2ohdXk1OoXnPbd318fNjpPrb8Zm7iKnOKnZ0dMjMz880qmhPUos7W3ZSWsLOzw/bt23OdP9bBwUH3rODckN3dsnlN/fr1WdgUtRP1KSHPKgUuT52/vz8TD2azWVforFu3DoGBgYa7OAsiY8eONTxrTx3vUlAhS11OtsgXVEqXLs3ygOWUuXPn6p7Vq+bMmTPs/EXC2g7dp21dov6Wn67KvKRevXpYu3atzfnxnlco5ii37enzzz/PteXnSUPjaF6Np3wS7icFeQvatm2Lw4cP55krumPHjk90UZxTevXqhQULFhieU/00oSTLRkfzPWsU2JH7zp072LlzJ8aNGye83qBBA7YdvHv37mjRooXuRoWUlBQhqNCWM9PyC1o9FxRRZ2SGfh5F3dNEHbAbGhqaaythXqN20z3rmEwm3TMlXzQGDBiAR48e2byR51lGnbczt8yfPx/z58/Ps+vpQTGXH3/8sebcaCMmT56c440a+Y2dnR0GDBiQ38UA8Dg/oV6C92eRfBN1YWFhuoPtpk2b4ODggD59+mDJkiWaeCd+W3m3bt1w5swZXVE3derUXO2+e5o8LVFnMpmsBi3v27dPc5QOQWbqp+1+fV7hTyEpKOSVm05SsHB2dsbEiRNzfZ2C5Fo3Yt++fezMzGcFs9mc7Wf7oluf84oGDRo8E+3aVvJN1Pn7+wuZ+4mMjAz06NED48eP1z0nLTY2lgmTffv2seNX1IwZM0bYPRcbG2soVvKbpyXqYmNjrbpfaFeuHs+bFUeihfpWfgW3SwomLVu2RPXq1TXZ9Qsi9erVsznGVSJ53ihwI/eaNWtw8OBBfP3112jdujVLHkpxDWvWrEGjRo3QrFkzBAQEGJ444OTkBE9PT+G/ggqJuicdx+Tu7p6rWA0p6p5/Ro0ahR9++MFmF5Ak+/Tp0yfbSbbzG29vb5w/f97mQ9slEkn+YFKeJ7ujBWJjY+Hl5YWYmJgCJ/AWLFiADz/8EEuWLMnW+ZhPm7S0NAQFBeH777/P0dEwEkl+ExQUhI4dO9q0sUUikUieNaSoKwBcunQJ1apVw7Vr11ChQoX8Lo5EIpFIJJJnkAK7+/VFomrVqs9VoKZEIpFIJJKnT4GLqZNIJBKJRCKRZJ8Xxv2qKAri4uLg4eFR4M7blEgkEolEIsktL4yok0gkEolEInmeke5XiUQikUgkkucAKeokEolEIpFIngOkqJNIJBKJRCJ5DpApTfB4E4VEIpFIJBJJQcXaZk8p6gBERESgaNGi+V0MiUQikUgkEkOsHaAgRR0AR0dHAEBISEiBO21CYpnY2FiULFlS1t0ziKy7ZxdZd88usu6ebTw8PCy+L0UdwEyZnp6espE/o8i6e3aRdffsIuvu2UXW3fOJ3CghkUgkEolE8hwgRZ1EIpFIJBLJc4AUdQCcnJwwYcIEODk55XdRJNlE1t2zi6y7ZxdZd88usu6eb+QxYRKJRCKRSCTPAdJSJ5FIJBKJRPIcIEWdRCKRSCQSyXOAFHUSiUQikUgkzwFS1AEYPnw4AgMD8dZbbyE1NTW/iyPR4cSJEwgMDESrVq0QFBSEtLQ0rF69Gk2bNkXbtm0REhICALh48SJatGiBpk2bYufOnflcagnPqlWrUKRIEQCQdfcMsWfPHrRr1w6tWrXC//73P1l3zwCZmZno27cvAgMD0bJlS9y4cUPW24uC8oJz8uRJ5a233lIURVEmTZqkrFixIp9LJNEjNDRUSUhIUBRFUcaMGaOsWbNGadSokZKSkqLs379f6d+/v6IoitK9e3fl6tWrSkxMjNK0adP8LLKEIyMjQ+nZs6dSt25dJTU1VdbdM0JSUpLStWtXJSUlRVEURdbdM8KJEyeU4OBgRVEUZceOHcqnn34q6+0F4YW31B06dAgdO3YEAHTq1AkHDx7M5xJJ9PD394erqysAwGw24+rVq6hevTocHR3RvHlznDt3DgAQGhqKihUrwtPTE4UKFUJERER+Flvy/1m5ciV69eoFOzs7XLt2TdbdM8LBgwfh4uKCV155Ba+++iqOHTsm6+4ZoESJEgAARVEQHR2NIkWKyHp7QXjhRV10dDQ7KsXLywuPHj3K5xJJLHHnzh3s3LkTLVq0EI64ycjIAJA1iBGyPgsGGRkZWLNmDYKDgwGIfY7eB2TdFUQePHiA//77D5s3b8aAAQMwceJEWXfPAIULF4adnR2qVq2KkSNHonXr1rLeXhBeeFHn4+OD2NhYAFmTja+vbz6XSGJEbGws+vTpgyVLlqBo0aKs3gDA3t4eAGBn97hJy/osGPz2228ICgpidcP3OUDWXUHG29sbLVq0gKOjI9q2bYtTp07JunsG2L59O1xcXHD58mWsW7cOP/zwg6y3F4QXXtQ1adIEO3bsAJDVEZo3b57PJZLokZGRgbfeegvjx49HpUqVUKFCBVy8eBGpqak4cOAAatWqBSDLTXvt2jXExsbi0aNHKFy4cD6XXHLx4kUsW7YMnTp1wrVr17Bw4UJZd88IjRo1wsWLFwEAp06dQseOHWXdPSP4+PgAyBLmERERst5eEOSJEsja/XrkyBGUKlUKS5YsgaOjY34XSaJi1apVGDJkCGrWrAkA+Oijj6AoCn744Qc4Oztj2bJlKFmyJC5evIgBAwYgIyMDX331FTp06JDPJZfwNGjQAMePH8fvv/8u6+4ZYc6cOVi9ejXs7Ozwyy+/4OjRo7LuCjgZGRno06cP7t27h5SUFHz//fe4c+eOrLcXACnqJBKJRCKRSJ4DXnj3q0QikUgkEsnzgBR1EolEIpFIJM8BUtRJJBKJRCKRPAdIUSeRSCQSiUTyHCBFnUQikUgkEslzgBR1EolEIpFIJM8BUtRJJBKJRCKRPAdIUSeRSCQSiUTyHCBFnUQikUgkEslzgBR1EolEIpFIJM8BUtRJJBKJRCKRPAf8P2XIl+R8YtO6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd3gU1dd+N71vCAlJ6F1CR3oJVaU3qVIUFQQEQYpUwUJVmqh0EARRQOlF4EcJLaGEDoGEmgIJKaT3Mt8f+c7lTtvdhIQEnPd5fCS7szN3bjnnvaddnSAIAjRo0KBBgwYNGjS81jAr6gZo0KBBgwYNGjRoeHlopE6DBg0aNGjQoOENgEbqNGjQoEGDBg0a3gBopE6DBg0aNGjQoOENgEbqNGjQoEGDBg0a3gBopE6DBg0aNGjQoOENgEbqNGjQoEGDBg0a3gBopE6DBg0aNGjQoOENwH+G1AmCgISEBGi1ljVo0KBBgwYNbyL+M6QuMTERer0eiYmJRd0UDRo0aNCgQYOGAkexJHWXL1+Gt7c32rRpg/79+yMzM5N95+Pjg3LlyqFt27bo0KFDEbbyzYEgCPjmm28QGRlZ1E3RoEGDBg0aNOQTxZLUlSlTBkeOHMGpU6dQtWpV7NmzR/T9gAED4OPjg+PHjxdNA98whISE4Pvvv8eECRMK5H7R0dEFch8NGjRo0KBBg+kolqTOw8MDdnZ2AABLS0tYWFiIvt+5cye8vb2xfPly1Xukp6cjISFB9J8GZVCcYXZ29kvf6+zZs3Bzc8P58+df+l4aiheePXuGx48fF3UzNGgoVLz11lv4559/iroZGjTkC8WS1BFCQkJw7NgxdOvWjX3WqFEjBAYG4vjx4zh8+DAuX76s+NsFCxZAr9ez/8qVK/eqmv3aQqfTvfQ9njx5AgA4d+7cS99LQ/FCxYoVUalSpaJuhgYNhYqgoCBMmTKlqJuRLwiCgDt37ryy5507d05LPixmKLakLiEhAUOHDsXGjRthaWnJPndwcICVlRWsrKzQo0cPXL9+XfH306dPR3x8PPsvNDT0VTX9tQMfs/iyKFGiBIAX5O51h2bhfYG0tLSiboIGDYUKIig5OTlF3JL8Yc2aNahZsyYePXpU6M+6fPkyWrVqhQ0bNhT6s14lYmNjX7mlNiwsrMDuVSxJXXZ2NgYPHozZs2ejevXqou94JXvmzBlUrVpV8R7W1tZwcnIS/adBGRkZGQV2LyKIT58+LbB7FhVu374NV1fXN4agaigeSE1NhU6nw44dO176XpmZmVi4cCH27duHadOmFUDrXh/cuHED+/fvL9B7ZmVlAXh9Sd29e/cAvJpNdVxcHAC8EgL5KvHpp5+iX79+BWrsUIIgCEhJScHDhw9Rrlw5/PHHHwVy32JJ6nbs2AFfX1/MmTMHbdu2xfbt2zFy5Ej2XZMmTdCiRQuUKVMGrVu3LuLWvv4oSFJH93oTSN3jx4+RmZmJqKgoxe9TUlLw4MGDV9yq4o+4uDjVPiOEhoYWeULNlStXsG7dulf+3GfPngFAgZC6P/74A9OnT0fPnj3xww8/vPT9ihMEQcCjR49w8uRJHDlyRPZ9vXr10KNHjwJ9JinyvJC6pKSkYmPFplj0pKSkQn8WxboTEX5TQLorPT29UJ/z22+/wd7eHvfv3wcA+Pv7q16bnZ2Nffv2mXTfYknqPvjgA8TExMDHxwc+Pj4YMGAA1qxZAwAYPnw4Ll68CF9fXyxatKhI2hcfH1/s3XLR0dGoUKECHj58aPRaImJ5jY3w9fXFrVu3FO+VkpJi8n3Cw8Nx9OjRPD37VSA2NhaA+uJevXo12rdv/yqb9FqgSpUqKFWqlMFrypcvjypVqryiFimjYcOG+Oyzz175c6l0kK2t7UvfKy/r7HXD7NmzUblyZbRv3x6dOnV6Jc/Mjyx0dHTE22+/rfhdTk6O0U3z4cOHcfjwYdMbaQBE6gqzPFVWVpYolv1NI3X0PoVJ1H19fTF8+HAAYBtgQ5bBNWvWoGfPnibFqhdLUlfc4ezsDA8Pj6JuhkGcOHECISEhqFKlCq5cuWLw2vzuSFq2bIk6deqwv8PDwzF+/HgAeVvoHTt2RMeOHfPVhsIEuRfU+ufp06eIj49/hS0SIzs7WxQUfeLECQwcOLDQn2tM4T1//pz9+9mzZ5g1a5ai5UNpY7Rv375Cj2e5f/++KMY2IyMD//77b6E+k0dBkrq8uIjCwsKKdfayIAg4ePAgm1+rV68ulOckJiYiOTlZ8bv8WOoAqCYn9O/fH9bW1gZ/27lzZ3Tu3DlPz1MDtf/q1avss06dOmHLli0Fcn8A+Pvvv9GoUSNmVClqUnf06FG4uroiIyOjQJI2qApEYZK6/v37s3/HxMQAMNyP5NUwRd9opC6fSE1NLbR737x5U6QY8wN+8L/99luD1xaU+3Xs2LHMtZQXZZPfmIy5c+eib9+++fqtKTBG6mJjYwtVoGVmZmLQoEEICQlR/H7x4sWoWbMmIwlDhw7F9u3bIQgCrly5UmhZaXmZL+PGjcPcuXNNSlTKyMhAz5490a9fP5PunZycnK91Uq1aNZQvX579vXDhQnTp0oXFIxU2aI2Qsj948CD+97//5ete0vmXnZ2N8+fP486dOxg8eLAoo71cuXLFOnvZ398f3bp1Y8lvUvf8t99+qygr8hr75OTkhMqVKyt+Z8hSN2fOnDyP086dO1Xvp4Tt27dDp9PlO56L3K4//fQTTp48ifT0dBw5coSFL/F48uQJGjRokOcwiODgYAAvKhwUlAyMjo5G48aN82xl/OKLLxATE4M9e/ZAr9fjww8/fKl2EKkrbPcrwRSdSevYlHmkkbpXANoVRkdHm0QG69ati3feeQdA7iCWKlXKZH+6IAiIiYkRkTpzc3P27/T0dNjZ2cHHxweJiYmYP38+25G8bEkTXsHmhfTSRM0ruZw1axZ27twpqrP3yy+/ICsrC8nJyS9dVsWY+zU2NrZQg2mfPHmCv/76SxRr8fjxYwQFBQHITeQAXpBPM7Pc5ezr64uGDRvip59+Et0vIyMDo0aNYjvD/IJ3+T1//hwRERHIyclh7SBkZWUxJUx9aQjGLBpSNG7cGCVLljT5+rS0NMVseVJqL7uRMoSdO3dCp9Ph7t27TIhTP3br1g3vvfceuzYjIwPbt2836b5ShZqSkoLmzZujZs2a+PPPPwuo9a8G1P/UP1J89913GDFihOxzQ9aL+Ph4tGjRQpZdqEYcSAYpWepmz54tGidArIiV1hW5Q02Z/wCYRS2/8aZ8LN2ff/7JwmNq1Kghu/by5cu4du2ajCjn5ORg0aJFOHfunKJMDg8PB/BC7hQUqSNZt3fv3jz9juThwoULkZiYiAsXLoi+v3z5cp42uIbcr7Gxsahfv77M4v3555+je/fueWo3gWL4DPUj6WZTaslqpK4QcPjwYTaxYmNj4eDggE2bNsHNzU01NiQhIQF6vZ79jsznycnJiIqKwjfffGPSs3/44Qe4urqKEhX44s0RERFITU3FypUrcfr0acycOdNgXaOjR4+aLJB44ZqXWB9acHFxcbLTQ0wBKYHdu3dj3Lhx2Lx5M3r06IFWrVq9lLWqIC110dHR2Lp1q0nXCoKA4OBg1p+8YK1UqRLeeustAGClfkixEKkjq5j0eY8ePcKaNWteujA077qqWLEiPD09MWPGDJQoUULU35aWlkwB8EpKSWFKlawprg+at6tXr2aC3RBGjRqF+vXryz4nN2h+rO/p6ekGXXVBQUEQBIElZHh5ecHHxweAermcxYsXY+DAgbh27ZrR50vnn5pb0VRcv369yMo/0bncUVFRquuW5jj/vSFS9/jxY/j5+eHatWtYsWIFAgMDVa/94IMPWLUF6ZiqtYcncmTB4uHu7s7acfv2beh0Oty+fVv1fg4ODgBeyLTExET4+fmZ7A5OSkpCqVKl0Lp1awQEBODGjRsAIKsSERMTwwL0pbKa6vS1atUKn376qewZtKYJL7uxjYuLw8cff4xx48YByB3jU6dOmeRq5J8dEREBQLwmbty4gUaNGuG3334zuT28+zUkJASffvopvv76a+h0Oly9ehXXr1/HkiVLRL9ZtWoVDhw4YPC+zZs3V9yUkK6+ffs21q9fr/hbmvemyEWN1P0/bty48dLCLCsrC6mpqejcuTOaNWuGnJwcJqhowE+fPi36TUpKCrKysnDnzh0kJCRg7ty5AF5Y12him+rfp9ggWrCAmNSR4rK2tmb/li5SHnmJdzNG6tSEEwm4ZcuWoXfv3jh79qzRZ6WkpMDKygoAmOCiBZ6UlIQTJ04AeDnXMpFZ6vv58+eLrGZxcXHIyckRvdPBgwcxZswY2b26d++OIUOGIDY2Fu+//z4CAgJkbtWwsDCcOnUKy5cvR8WKFZk7UO0d6P1pHKWkTnoSC12XV4vUzJkzRaUj+LGl+b1582YA8qw7+nvChAmYNGkSAGXiIbWq5iXebPTo0aLN0ubNmxUJk1p2GT2L3sUYeGJgY2ODiRMnKl53+fJlvPXWW/j6669Fn5NlRI3U0fhQex48eIDvv/9ekQhIiejLkrr69eujYsWKos+uXLlS6ETv0aNHrAxHVFSUKsGmOc/Pwfj4eJw/f14xE53mX0xMDMaOHYuWLVuqtmHbtm2qJU349vCymM/yVpo/UlIHALVr14aDg4MsjvPo0aNM7hOp++GHH9CiRQvV+MKEhAR069YNX375JTIyMpCYmIiGDRvCy8sL6enpbDMl9cK4urqy9Sjta14fKGVoE3ki5Df2LCgoCP7+/ujTpw82bdok+q5t27YG3ajkjeHXIvUZLy9ps/jNN9+Y7KHgSd3UqVPx22+/Yd68eewzAKqHHhjC+fPnFUkbkborV65gxIgRiuucxs+UrGaN1P0/6tWrhwoVKhi9zpDlp02bNszcDuQOAAkHNcuVvb09hgwZwnZ5RMbICkNEKTU1FR988AF+/vlnnDt3TrHg47p165hg5M3DJCgmT57MFJC1tTWboDSppO9Gf1+6dEn2LKV+4N1vKSkpomvOnTuHFi1aGHQJUTsWLFggU4Q89u/fD3t7e7Z46Z3pPXkTdUpKilGLR2hoKMaMGSMzbfOWuuzsbMycORO9evVi3xPp43eG3bp1w8qVK2X9Q9axq1evYvfu3ahVq5ZsvlWoUAFt27ZliQKUuaxG6miOkCKnhU+uJqmwpvEm0tC4cWNMnz5d8d485s+fLyod8f7776NLly4ixUd9JRWc9Mxbt25h6dKlAJSVn9R1y78PD7X1R8IuKioKH330ETw9PWUuNzWLgo2NjWobpDhy5Ahq1KiBU6dOsfHftWsX4uPjZRZt2mzMnz9fVJKDxuXo0aOizReQuymj8aFx/+WXX/DNN9+Izrr++eef8fDhQ1lfKpE6qodl7L0GDRoEQE5oGjZsKKoXmpmZaZJlFJC7i5KTkxUVYuXKlfHll18CyLXqqhFeInX8PIuLi0Pz5s0VXYzUH0S+TFXs0nnGjy1PaoyROrK8RUVFsbXQsGFDODk54dChQ6JrO3bsyOQjERTa7KjFHd+6dQsHDx7E8uXLceDAASQlJcHR0ZHJd2oTLwukSRPSucGTOl72nDp1Cjk5OTIjgCkbieTkZPTv3180b9566y00btxY5i4lnWdojo0ePRoODg6id6F5y69z+uzJkycYOnSo6B5Xr15VPGqUd79KZUjXrl0BqCfG5AfS/lSa++Qt0khdHiEIApYsWQKdTqcaXybdlURFRSElJQW7d++Gr6+v6LuEhAQ2GErZdSQ4tm/fzhbt3bt3AbywstAEj4+Px7Zt2zB+/Hj8+eefrCbVypUr8e+//yIlJQWfffYZ263ygofIzpIlS1g7rKys2LvQpJIKMkOBoko7aV4pZmdniwSCn58fAGXFKq3ifujQIbYz4rF27Vq0bNlSRjI/+eQT7Ny5k70nryh3796NBg0aGCyZMn36dKxcuVJW/oW31Hl6egJ4sfPmv6d34vtPTdCpEYfMzEz2/jQX6P9K4yAIAlNwtNClpE4qAKSWOn9/fyxcuJB9v2PHDuh0OpFSVxqv27dv499//8X8+fNl946JiRH1kXS9zJ8/X1FomeL6HDhwIJo0aYLU1FQZWaB3p/5NSUmRZQKrkToS4qaEGZDl4+rVq8zyUrFiRbi6usLFxUV0rdSiQeCJALmcgNz536VLF2zcuJG9y549e5ji2bJlC+rXr48nT55g/Pjx6NWrl4xIKJG39PR0kXubn6dz5szBxIkT0adPH/z111+q782P46xZs/DWW28ZtdCMHDkSDg4OWLx4MY4cOYKtW7di5MiRaNSokcHYoKioKFVSR3GXPDkjGakUCkHrUC3ZCMjtD2mSjCAIiI6ORrNmzbBq1SqRdbtSpUqMcBgjddRHycnJiI2Nha2tLfz9/dGxY0f4+vqqulU/+ugjpKSkMFl348YNJCUlyVy8/POfPXuGpKQkODg4wNraGunp6TJSl52dLbOAGSJ1hEuXLqFt27ZYtWoVgoODUaZMGdF79+3bV0ZSeSxduhR///03k8O8TJPKSn7dqK2hgIAAAMDy5csZcQZy9WZGRgbi4+OxZcsW0btRPO3NmzexYcMGvP3222wjwYO31Cm51IEXXpr8YMGCBaLi0NKNxnfffSfjC/QeGqnLByZPnsz+LQgCjh49KiIEvPmUkhjs7e3x/vvvy+7Fkzol0ABZWFjICIWFhQUL8gVeKCtPT0+kp6czoTdmzBh06dJFtjD5xc4nShB49ysfqNmjRw+sXr0ap06dEsVkGXPzxMfHyyY53yZahLRgUlJSkJGRgeXLlzPBZywIdOTIkfD19VU8HWT27NnM/bhy5Ur2OQUKGyqGTIqCSj6Qi5z6/PLly6w/y5Yty9pKY0BkgRfqz549Q0REBCIjI0VKVBoATe/MB4fTIidSR+SY75+EhASZpY7en0hdcnIyMjMz2TOlljopKE4kOTkZe/fuxejRo9m8VHKHzpo1S/ZZTEwMMjMz8cEHHyg+Y+bMmTh48KDsczVLUocOHTB79myMGjUK27dvh7+/P+zs7ETrFMh1s/j5+YneLTMzE5cuXcKlS5fQrVs3VWsHjZsppM7e3p49j0hd6dKlFQmFmkLiNzu8cpQWbI6Li0Pv3r3Z37t378b169fx+++/A8gdJ1MsdW3atBGROl4mzZ49G8uWLVOVU/x7ZWRkQKfTsQ2loVMLBEHAhg0bkJaWhtu3b6NTp04YMmQI6zNekUkt0evWrWNxo1LQnOfHmV/bx44dw6pVq9jfJGOlypkn4Js2bZKdXJSTk4ObN2/iwoUL+Pzzz2WkkDapUVFRsLCwgE6nUyR1JDeJ1NExiq1bt8a1a9cMks19+/YhOTkZJUuWxNGjR+Ho6IiKFSuKPA+RkZHQ6XQoWbIknj9/LiN19P6pqak4ceKEIikw5H4FcseS3O8nTpxAZmamqD5nTEwMdu7cySy9UmzatInFhJOsJX2gBOqTu3fvwtPTU3Ed0ZxJT08XyRoXFxdkZmZi1qxZ+PDDD3Hz5k32Hc2TMWPGsBpxSqA5n5iYaHCO03dSY0hWVpbM+sgndM2YMUP1nkBuGFKXLl2QlZUFnU6H3bt3M/loilVUI3UGkJyczGLKiNHzO2s1oU2Ij483GNNFpUZsbW0VSZ1SjEj58uWRkZEh28kuWLBA9TlZWVkygWNpaSlzv0ZGRmL//v0YPXo02rZtK5r4vMJ59OiRTAFKrZSAWFGToKB229vbQ6/Xi3ZKUoHDK5ozZ86wfyuRuoCAAFFtJgI9b9myZYwgS0Hut/bt26NSpUpo06YNkpOTGanjg2xJCfMWN14IECIjI+Hp6Ql3d3fRHOAVDt8+/n5EEomETJw4EVOmTBHFyMXExLC/qd+I1JGwSUpKwuTJk+Hm5oaMjAwRqZMq8Zs3b+LixYvsPTZs2IDVq1ezWB69Xs82B9WqVZMpQb5dqampBktnSAnZpUuX8NVXXylee+LECcyZM4cVHyfwrkhCixYtRPPSzc0NTZo0QZMmTRSJJIEndYaCvmfOnMl20M+ePWPrU/obQRBYVrAaKIuSHwepqyc2NlY05vQcWkvZ2dmyNaMk9C9evMhcwYCyRUkt4YcPg5CSzsePH+OHH35QvF9KSorihoWsy/xnpiZiAbnWysuXL4tI4dixYwHkytF3330Xn3/+OfuO+kNK6hwcHLB06VKULl1a0c2Xk5MjauPff/8t+p7WQnR0NEqVKgUHBwfWD0ePHmXEhCd1z58/Z2SSwhek9+VBZIUqIRD4d4mKioKLiwvc3NwQExOD2NhY6PV6maXu3Llz6NChA3bv3i17zo0bN3Ds2DH2t5TUnT17lrnMb9++DQsLC3h7e4t+T32mhI8//pgRH9IJhtaGlOgqZQLzpJ6v8efi4oKMjAwmC2kTQejevbuMxErbTfP2wYMHRpOgADkpXrlyJZo1a8a8btL2mgrSCatWrWLz+LW21E2ePBne3t4YPHiwSClmZWVh2LBh8Pb2ZoVuCxKurq7s37ywWb58uYyRSyeMFLt378bJkycVv0tJSWExRjY2Nnj48CGbiEDuRFba+aSlpSE9PR2pqaki0kT3UsKWLVuwbNky0WfZ2dlsMtJ9DCUo3L9/HzExMWjZsiUqV64sy4q6desWE9j8OxLIRXLv3j2myKTuG+niJSVy9uxZ0XFwaladOXPmyD6je964cQN+fn6IiYnBnDlzRIuVSB2PYcOGKWZfSd18ANjZm1JLHYFXtNL4Pt69TqC28cJbenpKdHQ0Ez7SmDoidcnJyfj5558B5Cbo0HjHxsaKlKKdnR2GDRvG/ubfgwKR9Xo9nJ2dUb58eVy6dEm1zheV7Slbtiybz2rX0rvy1ihTwe/AefDCk1/LhkDv+/jxY1hZWWHz5s0QBAELFixg8Y1paWmYP38+1q5dCyBXKdH48II2MjISvXr1QsmSJQ3GBL311lt49913RUROidTxa4rWy6+//gogl+RJ3flqbkuaB/z7GoMgCKKjx6Tvc+jQIUybNo0lBtHYL126FM2bNweQuwni1wJZ2nilnleF16hRIwwYMACAeG7x1jeSMbQ2pCUo0tLS8PXXXyM8PJxZX3kQqbO1tYW1tbWIFNPvgVwZ5erqCkdHRyQkJCA7OxsdO3ZEkyZNAKhb6jw8PFC9enVZ4hwANGjQQPS3lHBHR0fj7NmzqFKlCg4cOIBSpUrBxcUFMTExiIyMRKlSpWBjYyOKqSMouVZ//fVXvPvuu6rXtG7dmoVaBAYGomHDhizEgnd9muKOJNmtVrYGkJM6pfvyupnvL7LUlS5dGoBcRx84cEAmg1NTU7FgwQIsXrwYs2bNYnrHWCWG8PBwnD59WjY3aMyvX7+OtLQ0tGnTxuB91ED3tbCweP3dr1evXkVERATOnDmDmjVriirM79+/H2XLlsWZM2eQkpKiaCF6GfALXLqDlJIO6RFZBJrwixYtwpQpUxSv4S1zFhYWCA4OhpeXl+gapfR73qVryhFgBGlJlLS0tDxlLXXo0AGurq6sv6UEMDIyUhb4T9au2NhYpnxWr16Njz76SPEZ0v4ll5E08453JZGSUIN0hz5r1izMnj1b1LdKbt9//vlHRuJLly7NrCX83FiyZAmWLVsmEqB82RBDtdTi4+ORlJSEwYMHy74z5LqPjo5mmx2ppY7ayuPPP/9kz3j+/Lmor1NTU0WnjsTGxjLBRALWwsICmZmZGDduHPR6veo7kdXXwcEBbm5uAGAwASktLU2WpZtfWFhYiAhCdna2olVXCho3yo6dPn06fHx8MGPGDPTr1w+CIMhIZGRkJCMKPGnv3LkzqylpKEHHzs4Ozs7OBkldXFycbKPEIysrS7Zm1Oqb8e1fs2YNixHV6/Wq95cqEKklnOLQtmzZgqysLLi5uaFLly5Yvnw5e161atUU1+uzZ88QEhKCq1evvlR9QH7uuLi4sHkpJdy0aRo4cCDatWuHtLQ09u5qySURERFwd3dH6dKlcffuXVEIwvPnz/HgwQOsXLkSbm5ucHR0RGJiIiMRz549E7m9yVJHpA4AqlevrnjaD++Sv3Hjhmx9REdHw9/fHw8fPoSfnx/c3NxQsmRJPHr0CJmZmShVqpTMUkcwlMX86NEjjB071qDLEQDeffdd1s884SQ5aiiMhsiJoQLD0udLSa20JiZfSNzFxQWCILCNOq+jSXcp1XacMWMGvvrqK8ybNw/NmjUD8EIeKJ0eZW1tjePHj6NNmzbo06eP6DvaXNy6dQvvvvuuInGXQiqvgVydC+TG41MWcqGQurCwMMycORPt2rWDl5cXatasiXbt2mHmzJkFlvbu5+fH3BOdOnUSETdD3/GguDP+PzXwyjsmJoZV35bGYdFioywrNUudKWfS8oQsPDwc2dnZqFmzptHfJSQkMGX+MofJ55XUGUNkZCRT4oTOnTujRIkScHFxEWULqRVWVSJ1giDg1KlTos95N5CxGknSHTqNdXJyMm7cuIEdO3bIBB8f6M/Dw8OD9b2U8Pv5+Ynab+rh6vHx8di6datqQK4aYmJiZNYIPrmHJ1JmZmYs+B6QkzopmjdvzmJeyKKSnJyMjIwMppSVyLSlpSUjgba2tqwfKQ6RB1mhv/vuO1nM57Rp01TbZgjOzs6IjY2Fi4sLGjVqhMTERJOEII0/KZOnT5+KxqNly5bM8kKIjIxk1/AKhne5GIKdnR30er2IyEmtF7GxsQYLMmdnZ8tcomobTR4//vgjIiIiMGrUKNVaYEeOHJHFTEpJHR8XtWvXLgCAj4+PyGJWtWpVkQInmRMREYHPP/8cb7/9NvttfsB7cSwsLJiMJvkqJWyLFi1Cnz59kJ6ezkidIfcrkbrU1FQ4Ojqy70+ePIlPPvkEQK4MIlJHiQ0TJkzA6dOn2fOVSF21atUUY315C3P16tVlGZrBwcEi65CbmxtcXFzY3DNE6qSGAH5z1rNnT6xYscLoySrNmjVjOpDXIdnZ2bh79y4sLCxw9uxZRYvw3Llz8dtvvxm01EnBuzfv3r2LkJAQCIKAIUOGYOLEiaLNLM09JaLevHlzmRVUen9BEGT9rUTqSpQowcqwSMeQ7rdz506TynMBEB23aQimWEPzROrOnj0LLy8v7N69G/Xq1cOHH36IIUOGoF69etizZw9q1ar10lX8gVwhSTtsvV4v2skZ+o7HggULoNfr2X/lypVTfR7P3JOSklCtWjUAkMX5EIH48ccfAUBxl7Vu3ToMHTpU0aRPaNq0KWbOnAkzMzNRJpJacDClUQNiS520HAIgtjTOnj1btQ1paWmKGYe84DIVgiAgKipKRuqMxRxKQURp7ty5sLKyQkBAAM6ePSuLpyJCEhAQgFGjRhm8p9Q9RTu4mJgYNG7cGAMGDJAJn7p16yreS6/XIyMjA0OGDJFVlk9PT2dHCKmRQiXcvn3b6DsowZiljkhdp06dZLW5nj9/LiMDUpCgIjft48ePkZaWxixHRMT4GNNatWqxkgy2trZMGCodUUR99OOPP8pIHa2/vILkgYeHBypWrIiwsDDk5OSgZ8+esmv5qvVKG76YmBjY2tqiXLlyLCieR0REBJ49e4aSJUuKiJmh0iEVK1ZkRWDt7e3h7OwsWoNSRSR1vwJiGZGSkiJruynyl8i/dF3x9+7UqRNTbrNnz4a1tbXM8kibSp1OJyqxxF9XrVo1EfHiT42gOciffGJITiuBZHKvXr2QlpbGCBG1TdqnfBIB6RElj4ggCCJSB4hl4+HDh5kF5tatW4zUhYSEoHTp0li6dCnq1avHrk9OTkZISIjo/dTmOU+UrK2t4e7ujs8++4x9tmrVKtEmjUgd9aebmxvbDFy7dk20vnhS5+vrK2oPWVeNFWz38vJStNTn5OSw2Gdvb29VK/mYMWPydBQYv0a8vLwYAfr4449lRYCJNKslRUl1FABGzglSz4IaqQPEoTs6nQ6CILD2mlr2ZMOGDSaFoHzyyScGYzAJeSJ1EyZMwPDhwxEQEICffvoJ06dPx4wZM/DTTz/h9u3b+PTTTxVThPOKEiVKiALI+Z2foe94TJ8+HfHx8ew/Q1ZEqcWKBK/arpcmlRKpo92f1HXGuzkuXryIW7duoUuXLszUC7yYTPxuDgBWrFjB/p2Zmcl21yS4+MOBeaLXpUsXmUt31KhRqFq1KlJTUxUtdWrE0hCysrIUSV1+8NZbb2HmzJl47733sHv3braj69SpE1vAe/bsQZUqVeDl5YWVK1eKgnaNgRbhzZs3mbIJDAxE1apV8f333wNQF7ZWVlbIzMxUPBnC2tqaud14d4AxUHyU0v3UUK5cOcTExLD2kzLh5yvNJWdnZ9kaiYmJkYUF9OvXTzX5gQdZ6IhA8rXBeEszb6nz8vKS1Sbj30/qXlJSGDExMTh8+LBimygBhtyvLi4usLe3Z1baSZMm4ezZs6JNDr8eExMTZQooKCgILi4uqvEw1Pdubm4mVb4HcpUebbrI/crDFFLHywZSHnSNjY2NoqWQvwcpHh7ffvstI8NKGDNmDNzc3FTlYatWrViFgFKlSom+69u3r+i+ZMmNiIhgGwfe+sDPQWNu+U8++YSNQ+XKlZGamspI3sOHD5GSkiLKhAdyyTTJAPq/EqnLyclBcHAwypcvz0idg4ODYsb3li1b4OTkhMTERJEcbNq0KbsmJiYGT58+RZUqVdhn0r4iSN3w1G41uLm5oWHDhqL78mSDJ6M8qStZsmSeinwTeNLDPyc7O1u2kVciiGlpafDz8xPF4xkCzXNaZ7SJlepJ4IXsWLduHUqVKiVLkKLfDBo0iMXk80lXNjY2snGh8eSJNfUb75UTBEEUq04wFEJhbm6OTz75xKRxMDVGOE+k7tatWwatCiNHjjTJ/G8MzZo1Y0LiyJEjIkuDoe94WFtbw8nJSfSfGqTkhuJNCLzrJSwsDBUrVpSx+8aNGwN4oeyk1gfpoDVo0AC7d+8WKRd6rnSySpUyKcjQ0FCYm5uLglz54sd6vV62k1+1ahXq1Kmj6n6tWrWqrEbfwYMH0aVLF9m1bdu2BZDbfy9L6qh/6P8dOnTApUuX2ELev3+/6KB3UgSGagoquQhJ6PNW2Bs3bqBp06bMNK+2wCwtLVWzmdu2bYsHDx7AzMyM/d5QRnJISAgsLCxUU/v5uBop3NzcRJa6iIgI1KpVS3QNzRlyfys9n8fatWtNch2SgBoxYgSsra1FVk1+3WRlZTFl7uDgICMM/fr1Q8mSJeHs7MzWiqOjIxYsWIBu3brJ+sXFxUUx7mTkyJE4ffo0vv32WyQmJrJgdHt7e2ZldHNzQ8uWLfHdd9+x3/FKMjExUZatGxAQgBIlShiNyTP17NlZs2bh4MGDrP/I/cpDeuJFXFycjNwrxcCRklUqvguI43X4NUobShcXF5QoUUKV1JUsWdJg7B0lRVSsWFG2qS9XrpwoezMtLQ0ODg548uQJwsPD0a5dO9H1/Bwy1vcbNmxgbnyyepJMe/jwoWKmp6WlJetTkgVKmb/Z2dm4d+8eqlWrxvrMwcEB33//vYiY/fbbb+jSpQvKlCmDR48eicJQKOzA1taW6UU+sUPNK6IU00ZrRGmz5+bmJpKNLi4uouuk9UMJ9vb2In1hKvjMXykBlZ5AoWa5fvDggWg9Eijjl5dZdA+pW5jXk/PmzcPYsWNF7lVLS0t06dIFvr6+rEgxrfvOnTsrcpkyZcrI9Al5kPgsW9KrtWvXRnJyMrOcpqenIyUlRUTApJs3HkR6DRE/Aq0zY8gTqfP09DSYmODn5ycjRPlBgwYN4OHhAW9vbwQEBKBPnz7MhdO9e3eEhobC29sbtra2Jr+oIUjJjaurK0aPHs3+5i0E9H7SGBu6nhYyHfdFkBKFpk2bwsLCQuSqowWm0+nYIDdo0EB1RxMWFiYjrPxzypUrp0jcbGxsEBcXpziW7u7uMlLZsGFDUZkA/logNwsuPDzcKKnjaxtJdx2kmGjnV6VKFaSnpyMoKAh2dnawsLAQCUHeEqoUZ3Ds2DHWn7wQVjve5d69e6wfBUGQuX3J9UjWOCnIjcG3UVqKQHo9bQSkGwTAMKlzdXUVWeqePHkiix0jK8Gnn36qas3mx8DOzk6VHPMgoty4cWOkpaWJiABPeKtWrYqyZcvCzs4OVlZWKF26tMgl4ubmhrlz5yIxMZEpCUtLS0ybNg3m5uYikkXKWYls169fH+bm5nB0dMTTp0+xf/9+uLi4sDWj0+kU+5K3MCQmJsrcfrdv34azs7Oi4uXXh6HdM3/O45QpU1C7dm3Wx3Z2djJCyM9NGxsbRUudkiwgazzfZ7xc4d+fxqtPnz6MkFO/KpE6nU4Hc3Nz7N+/HxUrVkT9+vVx6tQp7Ny5k11DirREiRIYMWIEunXrxr6ztLQU9VG1atXw0Ucf4fr16yxTlMc777zDan5K+166cQFys/6Tk5NZtifJuz179mDIkCEAILO20tjzcbHSDQOFWlStWpWNNxECvvg59dnbb7+NO3fu4OjRo0wO0j1zcnLY+uRlkRJpbdq0KQvvUYKSEaNUqVKwsrJCYmIigoKCYG5uLiJ15MnhrXlA7hw01VL3/vvvi+reAblkXzqHpUYdQ0dQKulu8pLxc5ksX1KLKi/XZsyYgV9++UX03iSrmjdvzuYCfa9GaGnd8ESMYkn5vqe5U7lyZdjZ2bG5mp6ejri4OBEPMpbMx7fLEAqF1E2ePBmjRo3C2LFjsXfvXpw/fx4XLlzA3r17MXbsWIwePVo12zOvWLx4Mc6cOYOtW7fCysqKKVgLCwv8/vvvOHPmjChN/2UgdZW6urqKymOUKFECy5cvx/Lly5klTioE3n//fSQkJDBlOnnyZNGOS+pKIEHB765J2JiZmSExMRGZmZm4cuUKUwRlypQRDX5YWBgcHR1Fwo+fQPb29jh69Kgss9LGxgZ+fn4ICQmRTbikpCSZqd/a2lpR4NNnAwcOREZGhlG347Rp01hJCOlzpaSOFvW1a9eY8OMVGk9WlUhdhw4d2KL97LPPWP/TYepSmJubs2sEQUDLli1F5nZra2tZm3kSRIKcHwt3d3f2vkqYMWMGvLy8MHHiRGzatEkkzJWSCwglS5ZEdHQ0m7dKO/tq1apBEAQ0bNhQkdRVrVoVM2fOBJA73wwJHn7spdfRXGnUqBHrg7t376Jy5cr4+OOP2Rm8gDheysnJCS4uLsjOzmZuR95iQvPcwsKCHc2mJIRpDPh+J/crkOvO47/bsWMHrl+/Di8vL+a2T0xMFLlczM3NERsbq0rqeKJFlhfpJs/R0VE09jSvaY3wMYdKqFmzJmJjY0VxkoByEgmFTPBntu7ZswdBQUH4+eefsW3bNvY5n/VKfUz9Su3hZRvNnUqVKuHBgwe4cuUKWrduLZJb9evXB5ArO1xdXUXnBAPidWtvbw93d3cWW8dv9IDcNUNxmTx5vnz5Mm7evCmz4JqZmTFyQpY6qWGBziUmKLldmzRpIioyT5v0KlWqsD6guca3iyd1QO5conVA850sgqVKlRL1LT+3Zs2ahYkTJ+L8+fPo27cvbt68qZiIJ7VsAi82Fg4ODix0hMa2Xr167GQV6fmq9vb2iqROSRZ89tlnsLKyUnQDS+coD0OeO7oXL0epH/k2EKmTJuoorU3+d0qbVPrewcFBUZ4Q6eYJ//z581G/fn2R0YK+pw0T9fesWbOwbt062NrasusNbdAJSqSOH5vDhw+bHKudJ1L3+eefY/PmzfD390ffvn3RokULNG/eHH379oW/vz82b96cr6DvogZPEGjXL7VWjRs3ThQUTovT29sby5Ytg16vl00yfgGTNYJKi9D9+Wt4UmdlZSUigocOHYKvr6/IghgdHW3Utfz222/LjtziJwsJnHnz5mH06NEYOXKkbILZ2NgoEjbpJPPy8sLBgwdl1bSB3AVIyTWNGzeWHXpvCqnj+4MfM2ncBmWz0QL28PAQlcXhMXDgQBw/fhw7duxgC5pPTOF3bLwy//TTT0WWTp7UtWrVCkCuEOetNVKQm7FWrVr46KOPRC5hQ6TO1dVV5H6VZrK2adNGJICUSJ1erxe5vA1Z6QYMGMDiT6SWI3d3dyxevBj//vsvpk6digMHDjCS4ejoKIor4kMSHBwc2C5f6Zgnag+vMHghTO9H85efG+R+BeTWiX79+qFu3bowNzcXkS5+TZCilrpfifjxmXs9e/ZEWFiYKNgfkM9Jah8lbWRmZhr0atSqVQuZmZlMeQQGBiIjIwONGjWSXUvEkp8zZcuWRbVq1fDFF1+IPqd3c3JyYuuD3r18+fKwsLAQWSR4K5uZmRkbF35+EZHgLdPnz59ntTH5cbO0tBSR2cqVKyM4OJhtoMh1OGvWLJEr7+2334ZOp1ONLbO1tUVGRgaSk5MxfPhwUcFwGjfaNPHybcyYMRg/fjxGjBghiqWdNm0aVq1aherVqzNZrRR6QTKwXr16zMJIbv8OHTrg22+/Zeu6ffv2onXG64vvv/9eFPRfu3ZtUYwqzafmzZvLQgWUiBm9o7W1NXr37o2MjAzUrl0bqampbEwtLS0xadIk0e8cHR0VNxuG4t8MkTpDCQA0L3gdSOuVyB3wInbcz89PRGqVZBYvn5Q2+/S9lZWVIqmjMiI8PvzwQxmh/Pbbb0WhI3TfdevWAcgdrwcPHuD58+eKYQAEGlclUrd+/Xq2zpTapYY8lzQZMGAAzp8/j5SUFDx58gRPnjxBSkoKzp8/LwrYf53AEwQHBwfodDqDExV4IRz5g6gNge5HAoYWNE1MV1dXtjiVnt25c2eUL19etriUSF2NGjVExWSl8TC868nBwQE7d+7E1KlTsXLlSjRu3FjmirK2tlZ0M0kXf5UqVdClSxeZ1cLMzAwJCQks1f7ixYui9gEvLBjUNnt7e5QoUQKRkZGi96OzSg25X0k4U1/p9XrVmIWKFSuiffv2KFu2LNzd3SEIgmgBhYaGsvgJfhc4ceJEkWKjf9vb2+P777/Ho0ePVE3qSse2EUj5S3d3vMWrVKlSiIyMREZGhmxcBgwYAB8fH1FblXaKlStXZvONJ0R//vkncwsT9Ho9e46UrOh0OkyaNAmurq6wsrISEWIlkBvf3NyckU3K2pPGNrm7u4vOpiUhbG9vj19++QXAC1LHZ8GXKFGC7e7Vji4CxOPJrwnqL6mlTqkcgq2tLcqUKSOzbqhlEA4ePBg7duxA9+7dFWMECaTQw8PDMXXqVFSvXl3RgmJubs7Ghl8HUjnh4+ODGzdusI2Lo6Mjux/1a79+/eDn5ydyEaplo/IbBXNzczx58kREbJs2bcrkIk/ELC0tZZbA8uXLs3Gka7///nvFhCU1ckHjFxcXB1tbW3z88cf47LPPsGnTJtjY2CApKYmRK36snZyc8NNPP6FLly6yeORRo0ZBp9Oxd1UidbTuzczMmEWQ3Nrm5ub45ptv0LdvX3Tt2lW2kc1PpQFra2tZgp5SgpM0GYTG2sbGBseOHcOUKVOg0+nQtGlTtqmqW7cu9Hq94mbDUKIGyTOy/JsKahsvn8qVK4fw8HDRZnjJkiXYunUrLl++bFS+8GvEEKnLzMwUzYPPP/8c/v7+snNxle5fqVIlzJo1S2TN4+8L5FqtyThUunRpxWNEeSjpCktLS7b+8lLLM9/Fhy0tLeHp6QlPT0+TfMbFGTypk05etdpxpUuXxuLFi7F48WKTnkGDQ4PPE7eQkBAEBASwSWbIaiJtn5OTk8xidufOHVHKu1R48JM5KSkJ77//vohoSM/tVEtGkPaNKXEBam0isstPXp6UEchaygf8qtXuod85Ozurts1YnTsHBwfWVhq74cOHo2bNmqJ5zwdHm5ubi1xhUiFpqEYTPUtqqeOzpD08PBAZGYmnT5/KCLRSJiZZDglbt27F2rVrGanjx/aDDz5gFgMaE2dnZzYWptR9M4Rff/2VlZCRxuNI+ykiIgITJkxgf1N/63Q69m8av08//ZS119LSEiNHjsTmzZsVE3yk9wMgiu2idpQqVYqNh4uLC37//XecPXtW5BajeUV9SIpNjdTpdDr069dPFiMqBa2ttLQ0xRNPCIIgMGtyXFwcJkyYgB9//FEWnN2mTRvUqVOHxeVERETIMpktLS3RqFEjtlnz9PQUyREe0o1J6dKlDW6cCJaWlqhduzb7m/qNTogwVtLEkKUOyA2qp/5as2YNK3TO/44P3uflglrSC1nqlGSFNNwlKipKZv1q1KgRDhw4IFuHeSF15O52dXVlm9wKFSpAEATFDTe9l5IVr169eqI6mk5OTvjtt99w5MiRfJG6+fPnQ6/XGyyFsmPHDtGc7NChAyPL0pAtDw8PWbuHDBmC9PR0xfJEPPg5qNQeSiipU6cOm/fW1tZYsWIFGjZsaDSuOCEhQTGhTKpfpJnsxoxEaqTu4MGDqln/aiiWJ0q8aqiRumfPnim6EgGxhcIUbN261WCQvZubm8j9qgYlUqeWGk+QCmDewqT0fsOHD2dnXBoCn/lo6tFDBOmOm+7Fm7lp58xb6pQUnDFSp2SpoxpTamdeKoEEONWf4gmoUlIGwdfXF/v27cPRo0cRGBhoMGOSBL20tAy9t5WVFSPxgYGBKFOmjMjCwLs7CeSO9PLywtmzZzFo0CA4OzsrkjogN6QgPDyc3cvT07PASJ1Op2P38vT0ZM9u2LCh0crrdK1Op2NjS/dydnZm7r7U1FS4ublh6NChBoU0r5DfffddZjEgK1/Dhg3Z3Pvwww/h7u6Oli1bijYzJIzffvtt/P7774olL4y9D49SpUrBwsICzZo1Y+9miNTl5OSw9W9mZoalS5eqnqMLvIj9K1u2LJu/0jVAynfmzJkGwwBMRffu3dkZspaWloqhHB07doQgCEYzXtWII78WDfUXkJvkQzKWLz9hbm6OAQMGyJ6hZKlbuXKlrFYlkEu6DFni1dpsDJ9++ilu3LiBGjVqwMzMDBMmTFANKQFezEtjfUH4+OOP4eHhgTZt2ogSS+jdDblfJ06ciLi4ONlGgrcgenl54dy5c9i0aRNiYmJw4MAB2NnZQRAEUWINQYmMVqtWjSVSqMGYpa5+/foQBEFkCOEzh3n89ddfssLYNjY2inNQ+pmppE7N/dquXTt07NgRHh4esmQiY9BIHcSkjncL0kHNBYGSJUuie/fuLDhbqf6VIfcrQcn9CuTGG0jTydXQo0cPALm136SWHiBX2XTq1En2ORXX5dvbtGlT1KhRI8/9JH1HcvnxQkiJ1CkpQr6kCw9S/HZ2dqJF89tvvzFilZcyLCSsqV28AGnSpAnGjx+v6IKoWLEiunfvjnfffddoLTiyktauXVuULarT6RASEoKwsDCR2zs6Ohr3799HSEgIIiIiVElFYmIiAgICRPFStEFQskB4eHgwl2bp0qWZhYePdXlZkLUfyM3GNKW+39tvv42VK1eiffv22LJliyiZhdYUX3rA2PN5BAYGIj4+nimDJk2asHmttnHgLXUffvhhnqzVQO7JBHz8V9euXdlRTxQ/a+yederUwYYNG0w6icPJyQn379/H9OnT2dxXy7B9WQJP0Ol0THFbWloyy39+5pIaSec3NsaIjL29PdtASJXvX3/9JSvDwcsRwujRo3HkyBHTG/6S0Ol0olMHli5dqhhfSSDCmNf5uGLFCpF1nNaSKfJ93LhxLKYMyPUYUT97enqiZs2a+Oijj+Di4iIaIyVPnxKpk9ZcVYKxmDopoqOjReuPx8CBA00+l9oYqeMt0ErhWtLfb9u2LV81BAGgYA5dfM1BpO7cuXMFUiLFEN566y1VM3V+3a9ArnuOd9EpgbLUKleujCVLlhhVfubm5iI35zvvvIPk5GRER0ezdyios3fNzMxw/fp1kRVLidQReAIwd+5cTJw4UWaxnDFjBgICAkSlXZydnfHxxx8DyM0QNJUAAC8sGkqkztraWhYsnx/Mnz8f06dPByB2WwEvBAO/CQkODjapjJDSnCIhqaa8eVJXtWpV5OTkmFT2JC8oV64cnj59arIA48t+UJkCQpkyZYxWw+ehlsm7bt06/PvvvyhZsiQj8sbWrBRTp041qQ1t27YVrTHeakbjb6yGlU6nUyyLowayJn/22WdwcHCQZaAS2VKrAUrYuHGjyeNG/URkgy9lUxDo0KEDPvnkE/z2228mERlyqUrnPpVw4WFubo5169bl2WJSlKB+zu/pLIR169Zh0KBBJrmKra2tMXz4cNStWxdhYWEwMzODt7e30TWpZMRQmlfUBh8fH8XCw4B4TZsiC0ytM2kM0jUqLSU2d+5c3L17FwcPHoSDgwM2bdqEkSNHstJn0jlrSt06NWikDi9cApRhVVSggTS0EKWDbWpcRmRkpGinOXHiRKO/uXHjhuiMQSCX0PCEylisgCmgQrjS47nUSF1AQIDI7W1ubg43NzfcuHFDpGTr1q3L2i893gqA0fgMKUjhKiUYFBTMzMwMFnoFxJXo1Y7DMQWGSmoAL0gdkcbCWBt8Md5XDbVY4IoVKzIrGa0vtXICSgSCVyYTJkzAyZMnDbaDdwHypI5cn9Jzhq9du4bjx4/LYrfyCgsLC8XA8EqVKpmkEKXJToZA/UR9bihGi0eZMmUMWqQIOp0ODRs2xG+//WY0ThZ4MZ58fJ8hDB8+3KTr8gO+IHFBoVy5cjh27Bhat279UvextbU1GJeqhCZNmih6gPL6XMLevXvRs2dPNnfUTnkB8m6pKyjQ/CadI90o2djYoHfv3jh48CBsbGzw0UcfsXhP/veNGzfGnDlzDBYsNgaN1CFXuedVwZsKKoppCnQ6HXx8fAy6JaSKyFShlJ/THmrWrKmaKFKQUAuOJkUvJTlqZnhDhyLzdc/yC7KoKFnqCgs9e/YUnVMK5L7L9u3bMXny5DzFcCmhQoUKqnMjrwo4P2jfvj3OnDmjGFdT2CAFYGhOeHl5Yd++fYrhCIBx99bSpUuNtoNfY3wMGxEPaWJNvXr1ULNmzZcmda8S1Nd5XTNKR2apgU8YMYaSJUvi0aNHeTrSrzDw9OnTQltfeSmDUdzAb747dOiAmjVrmmSIMBZTV1jgqxYcOXJE0btEbVOSN3wM5MtahIsdqbt8+TK+/PJLmJmZwd3dHVu3bhUNlI+PD4YOHYoqVarA3NxcdG5bcURoaKjJpA4wvAsB5EJRmlH1JoF2a8aCp02BkqUuryALAJG6wrDUSfHPP/8oWh769+9fICWE6GgzJRw7dkz1BI6CwjfffIPp06fnOfanIEBzwdj86t69u+p3BdHuypUrQxAEnDhxQuTypPhLJeX8ulUcIAVbEO328/NTdJvRZs+UYq+APLyhKFAQJzAVBk6dOqVY/LgoYG9vb3JbjGW/FhbI8DB69GhVD4gppK4g2lzsSB0xXTs7O8yYMQN79uyRZacMGDDA5FIiRQ1Ts2NNBU2Itm3bokaNGkZdaG8CCoLU0aJ5GVInjakryJggNVhYWBQqeTT0Dm+99ZYsC7egodPpioTQ0bMBddeqKSjIsZG6bEqUKFEocYxFgbJly6J8+fIm1fQ0BrXY4QYNGuDu3btGk5E0GEfr1q1f2nVbFCgqS52jo6NRQkbr2BCpK4gYv2JH6qRHEil1wM6dO3HhwgX07duXVbr/r4DOP5w/f36hJ3W8DH744QccPnwYQUFBqoL8wYMHBhcCWagK0lL3MkpYGlOn4fXHzz//XCSuX1NhiNDNmjXrtbHU29jYIDg4uNCfU9ibEA2vFnnNkC6qmDpTQOE7ShtpS0tL/PXXX4plcvKKYkfqCCEhITh27Birb0Ro1KgRO7OvZ8+eaNWqlewoICD3xAH+1AE6FeB1B516UNwxZcoUo+cAGwsQJhJlLHHAFBRETJ0aqXsVblgNhYMvvviiqJuQb3z//fdF3QQNGgoEffr0kcWtPnz4MM+WK3NzcwQEBKBmzZrFTk+S/lDTF3RG78uiyLRRREQE+vbtK/t83759sLCwwNChQ7Fx40ZZDAZfL6dHjx64fv26IqlbsGABvvvuu4JvuIZXBloExc1SJ3UXaqROgwYNGvIPpULK0jNuTQVVjyhuljrSH4UdtlNk2sjDwwNnz56VfZ6dnY1evXph9uzZirERCQkJTMmfOXMGo0aNUrz/9OnTRdkyCQkJRo+g0VC8UJCkjtxY0vMX84LGjRtjz549smw1OsJHgwYNGjQULWiTXVxJXWEbAYrdiRI7duyAr68v5syZg7Zt22L79u0AgJEjR7LvmzRpghYtWqBMmTKqwZzW1tbssHulQ+81FH9QDEJBjZ0gCC9F6qZNm4bg4GBRbcDTp0/j6NGjBdE8DRo0aNBQQChu7lfSZ4VN6nRCcXvzQkJCQgL0ej3i4+M1gveaYPHixfjqq6+QkZHx2pVw0PBm4+rVq7h3716BlJXRoEFDwUKn08HKykoUV1/UOH/+PJo3b47r16/LCu0XJDRSp6HYQhAEJCUlmXxqhgYNGjRo0KDT6dCuXTucOHGiqJsiQkZGxksdAWYKtAhvDcUWOp1OI3QaNGjQoCFPePDggews8OKAwiZ0gEbqNGjQoEGDBg1vEArjPN3XBcUuUUKDBg0aNGjQoEFD3vGfiakTBAGJiYlwdHR8I47d0aBBgwYNGjRo4PGfIXUaNGjQoEGDBg1vMjT3qwYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AdBInQYNGjRo0KBBwxsAjdRp0KBBgwYNGjS8AfjPkDpBEJCQkABBEIq6KRo0aNCgQYMGDQWO/wypS0xMhF6vR2JiYlE3RYMGDRo0aNCgocDxnyF1GjRo0FBcEBsbi6tXrxZ1MzRo0PCGQSN1GjRo0PCK0blzZ7z99ttF3QwNGjS8YdBInYY3BoIgwMfHR4ub1CBCTk4OJk+ejKdPnxZ1UxiuXbtW1E34T0IQBNy7d6+om6FBQ6FBI3Ua3hgcPXoU7dq1w+7du4u6KRqKER4/fowlS5Zg8uTJRd0UBjOzXNGrbUBeLbZs2YLq1asjMDCwqJuiQUOhQCN1xRBt27bFunXriroZrx2io6MBoFhZZDQUPYg46XS6Im7JC5ibmwMAUlNTi7gl/y0QmdNkhDqCg4Px4MGDom5GscKmTZug0+lei02YRuoKCF27dkXHjh3z/fvbt2/D398fAHDq1Cl89tlnBdW0YgNBEDBjxgw8evSoUO5P1o+cnJxCub+G1xM0H4oTqaO5mpKSUsQt+W/B0tISAJCRkVHELcmVh9nZ2UXdDBkqVqyIqlWrFnUzihV+/fVXAEBWVlYRt8Q4iiWpu3z5Mry9vdGmTRv0798fmZmZ7DsfHx+UK1cObdu2RYcOHYqwlWIcOnQIR48ezffva9eujcaNGxdgi4ofMjIysGDBAnz44YeFcn+N1GlQQnFQ4FIQwUxOTi7ilhQegoOD8dNPPxV1M0SwsrICkPc5ERISgpUrVxZoW9auXQsLCwukpaUV6H01FDyIzL0OY1UsSV2ZMmVw5MgRnDp1ClWrVsWePXtE3w8YMAA+Pj44fvx40TTQAEJCQoq6CcUWRM4La7djiNTl5OS8FrssDQWP9PR0AC9nqVu2bFmBWvporr7JpG7v3r2YMGFCsdpkkaUur8p54MCBGDNmTIG+y86dOwG8Ohe8lpyTf5BFVSN1+YSHhwfs7OwA5C5CCwsL0fc7d+6Et7c3li9frnqP9PR0JCQkiP4rTNAO8PHjx6rXXLhwAU+ePDF4n+Joji8o0O64sN7REKn78MMPmUDX8N9CQZC6zZs3AwDi4+MLpE2vI6nLycnBmDFjTA6fIJlL/V8cQDIgKSkpT7+jDWlBFq8nOfUqLMmHDx9GgwYN8L///c/k3xRHC/erwNq1a6HT6UR6hHRWcZrLaiiWpI4QEhKCY8eOoVu3buyzRo0aITAwEMePH8fhw4dx+fJlxd8uWLAAer2e/VeuXDmTnjl79mxUq1Ytz20lhWFo19WsWTOjtalCQ0Pz/Gw1ZGZmQq/X48SJEwV2T0OIi4vDL7/8ohpMSkLCVIuZIAh5WkS0CJVI3datW02+jwYx6tati1mzZhV1M/INU0idIAjYv3+/6tz18PAAUHDrkxIl8krqEhMTodPpXtma5hEdHY2VK1fi9OnTJl1PpM4US9R7772X7+SwM2fOoGrVqibJFVLOeSVn1tbWAAqO1AMv5NSrIArkQcqLJykyMrKwmlNgyMnJwZkzZxAbG1tg91y/fj0AManVLHUFgISEBAwdOhQbN24UWVgcHBxgZWUFKysr9OjRA9evX1f8/fTp0xEfH8/+M1UYz5kzB/fv30dcXFye2mtq4LN0oZw+fVqkbO7fv5+n5/JISUmBIAiIjo5GcnIyQkNDkZCQYNCiWZCYNm0axo0bh+DgYMXvaZHwMZKGsGzZMtjY2Jhs2StsS+DLYOfOnTA3NxeRBp1OhyVLlrC/L1y4gF9++aUommcQN2/exNy5c4u6GfkGCWJDpG7btm3o0aMH/v33X8XvC5rUUVvymigRFhYGAPjjjz8KpB15wfPnzwGY3ua8kLr//e9/BpPD4uLisH//fkVSNWfOHDx48IBlvxsCzYW8kjobGxsABUvqXoX1JywsDOvWrctXvHFERERhNavAsHHjRrRu3RpTpkwpsHvSeJA+iY2NzTepu3jxIiOJrwrFktRlZ2dj8ODBmD17NqpXry76jnej0g5NCdbW1nBychL9ZwpatmwJIDcD9fr160yIGkN+hfRvv/0m+vvs2bN5+j0hIyMD9vb2WLZsGdzc3FCtWjVUqVIFAGTu68ICvbtaH/CkzhQLBSkuUxcSLUZDpM5UoRYfH69KPvMTV/PDDz8gJyeHuX3IqsCTuGbNmmHcuHF5vrcGwzBFaVJBWrWxLVmyJICCi5nNr/uV2ke/T09Px7fffvtKXGVE6kxtM8nql7VuPH78GCVKlECPHj0wevRo2fe03qOioozei+aCIVLn5+cnC9dRs9QJgpBvi9arIHX//PMPPvvsM7aZNEV2kb4oKkvdV199ZXKoDLVx+/btJhsLeDx69Ei26aD5mp6ejvj4eLi4uLASL/xY+fj4GDX+NG3aFCNGjMhzu14GxZLU7dixA76+vpgzZw7atm2L7du3Y+TIkey7Jk2aoEWLFihTpgxat25doM92d3cHkFvPqH79+qhUqZLidXPmzEH//v3Z37RoUlJS8PTpU6xevdqk50ndPWvWrFG8LisrC7du3VK9D01McjOGh4ez714VqaOFqDbRadEFBgbCwcHB6IIgwZueno7s7GzcunXLoIvGFEugqaTb2dkZVatWhU6nEynyu3fvwtHREc+ePTPpPgQS4OQmIOVQUHWPCivY2lj7PvroIzRp0kT1+8zMTPj4+BRwq/IG3v2qRn5iYmIA5Fpk7t+/L1O0pAwLqr5ZfrNfpaRu8+bN+O6771jQfV7g6+sLnU5nsnegMC11hsDXTKNx4kFryxQSYoqlrkWLFujbty+A3HetXr06goKCAMhJ3dq1a+Hu7m6SlZDaSBYwU9yvkZGRRtcg3z/Pnj3DF198wTaNtImk9pnixbC1tQUAVZfm3bt3MWTIkELziCxevBhZWVkmyUaepF+/fj3Pni5vb2+ZrqZ7pqeny/qA36B069YNv//+e56e9ypQLEndBx98gJiYGPj4+MDHxwcDBgxgZGf48OG4ePEifH19sWjRogJ/Ng0aJTxI4zSOHDmC27dvY/bs2fj7778xceJECILAfpeSkoKuXbti9OjRoklvyg6pdevWbMFLXUVr165FnTp1VCuh00S8cuWK7DuK38kLZs6ciUGDBqFixYrYsGGDSb8hUkfCXwqpQr1x4wb799y5c2XxkaQUbt++DQsLC9SpU8egi4bub0iJKAlzQRCQlZWFDRs2YPr06WwhE5njk1uCg4ORkpJiMCFGCTSPYmNjcf78eRZ4HxMT89KWjLCwMNjZ2cmyxAsCxgLKN2/ejEuXLql+P2/ePLRr107RwpWQkICmTZvi/v37yMnJYW572iEXFKh/N23aBGtra0UlSmQhMTER1apVw9SpU9l3qampjMwVVGIDyYa83k/qSqY1YmyNBwYGijZ6AHDy5EkAMLhZ5EF99DKk7uHDhzI5YIwc8HOQCIfS76WWuhMnTkCn04m8LcYsdSSn/fz8AOTKqHv37jGyIJ2XFF9oqlWrfPny8PT0FLWb2pSQkICAgAB2bXJyMtzd3UUhGhkZGWjYsCGuXr0KADh37hyqVq3Kyml98803+PXXX3H79m0AL/qO1p8pCSK0YVDbdE+fPh1bt26Fn5+fbE4pISsrCwsXLjSZ3JMRIiQkBAsWLDBI7vi13Lhx4zzFwwuCgGfPnslCKnhSJ53rtP4EQUBycrKqrjMVd+7cMZo8mVcUS1JXlKCJxyttXiF16tQJtWvXZn8vW7YMGRkZIksdpY7zE0JNcfPkrXz58qLPBUHA+vXrkZSUxITQ33//rXgfQ7u9/Fjq7ty5g6CgIAQHB2P48OEm/YZIndoOTyrMSTBFRUVh1qxZMsJGSoEXdMALS1xOTg779507d5jiNUSSlIRa8+bNYWlpieHDh2PhwoX4/vvvRd+3aNGCEU6aH6buzAkkwOPi4tC8eXNMnDgRQK7g7tWrl+jaESNG5ImgkVAiBSMIAvz8/FQVV2pqqmrcoxRKWePffvstbt68Kfrs3r17WLhwIfv7xo0byMnJYQpViaT5+/vj4sWLuHv3Ln788UdUrFgRCQkJGDBgAJydnU1qnymQrg3p5uHatWvMwn337l32PoQOHTpg+/btAAqO1NE8ymtWPs1tUrx0H3IPKuHhw4eoUaMGPvnkE8XvTQ0nMOR+vXPnjmzd0fzjP69SpQrzuhB4Za+0aeVjuyi2jQe1R0rqDhw4AEAsv6ktauSG2pKUlIS7d+/Kwm+k85jktynyID09nc3FDRs24OLFi6I29evXD7Vq1cL9+/chCALrvwULFuDrr7+GIAgICwvDlStX8OOPPwJ40V9EOqUEWUrqTJlv1J4ff/wRrq6uAHJl9/jx43H58mXo9XoAuVau0qVLIzIyEmfOnAGQK3t+//13kbfk9u3bmD59usnJPVT5Yvjw4ZgxYwZbk0rIr+v6/Pnz+OOPP5CVlSUbOz6mTipD6QhK0mVEfH/++Wd89dVXqs9T2tTm5OSgZs2aeOeddwDkbkKGDBnCvhcEIV+hPhqpk0BqqQOAChUqmPQbQEzkeOGntkvhdyGVK1cWfff48WOMGDECQ4cOZfdVs9QZIjKmWOp8fX1FpCshISHPGUX0+02bNkEQBCxatEg0maUWHbIUkHuOYgAJau8UExODoKAgVK9enSmzmjVr4ocffjD4O0BZmF+4cEH0t5KA3rZtG4AX4xgTE4PQ0FBkZ2fjwoULimUewsPDmZuWt9RJceTIEdHf69evR+/evfHs2bM8xXDRXPLz80OLFi3Qp08f1KtXT5atOHDgQFSsWFHx91KhL1VigYGB+O6779CzZ0/R57Vr18b06dMhCAJCQ0NRr149/PTTTwaLvVKSU1paGmtjTEwMU8YFdT6nVPCTAiLwBJX+XaZMGfYZWW0AdSvVxIkTZUI9OztbNRSA5pEplg6l30lJnZpyS0lJYYlS1JZ9+/bh3XffZQpDyaWpBDX368KFC1GzZk2sXbtW9LnUUkfPk7rj+fvVqFEDQC7RVuojJUsdrTGptYzuy8dnUT9JZURERASuXLkiktPt2rUTkXsA+Pzzz0XtJVIXGRmJu3fv4uDBgwBy17TUa8In9fEbZWoTeS6qVauGOXPmMP3x/PlzzJs3DxkZGaxPSe5Re8eMGYNz586xPiY5R6TEVFLHVxwICQlhc+P27dv4+eef0aJFC5k+8fLyQuvWrREdHQ0fHx8MGzYMq1atYt/TM6V9qQZ7e3sAuZsRvn/4+9E4KMl6tTj44OBgzJkzB4IgoHnz5qwIvnQzwFvqpKRuxYoVuHTpEnsuycfx48dj8eLFqu8k5RAnTpxArVq1ALwghgMGDMDWrVshCAJOnTqFRo0awdHR0aAnRAkaqft/pKWlITs7W9FSR1BzE/BEgTelmkLq+HtKLXUkRPfs2cMmqnSSlS1bFoMGDTJIZKTPzszMxKNHj/Dnn38CyN1lt2zZEitWrGDXxMfHi4S9mtLIycnB9OnT8eeff7K2nThxAgcOHMCUKVMwbNgwALmKdMyYMaLfHjp0CCtWrGCxic+ePYOnp6csXk3qBoiKisJbb72FBw8eQBAEWRzFunXrVN130v5TMu0rmdRJWFJfPnnyBOXLl8f333+PZs2ayQg5AJQuXZplTRoidW5ubrLPnJ2dUbZsWaMbCkDuqud37zdu3MDs2bNF30tJJOGHH36AXq9nbY2KihL1Y1BQEFO6qamporlLpO3u3bus/65du2awLhgpufT0dEY4nj9/jrfeegtArmuJhyAI6NWrFzp16pSn01ukc1dKFvn3IFfkiRMnZBZi4MWaPnv2rOh3y5Ytkwn1tm3bKo4fT/aUFFCjRo2g0+kUw0to/klLKJ06dYrN0cjISLZmJk2ahJ9//ln0nsOGDcOxY8fY+jYlwQB4Qf54uZaQkIAZM2Yo3kdK6nhlSbh9+7YsLik9PR0NGjRA7dq1ERwcLLLUSUkdZfsD8mxNIl/btm1jJ1uQnOTlZWhoKMqUKYOGDRuKCHxqaqrixoLkU0hICEvmioyMhJeXFyu/1alTJzRs2FD0OxqTUaNGiT4PCgqCTqcTtf/GjRsyy2pKSgrrY7JY8oT3zz//ZPKM+p7WHVnmDZE6X19f1Zhu8gYIgiDrZ1rvu3btYvOa3xjTM4OCgnDhwgWjxJIsdfSc+Ph47N27l8mYjRs3YtWqVdi/fz/S09Ph4OAg+j2VLxMEQbRhb9GiBWbPni0j/9TWGzduiEjtnDlzFPXIrVu3ZKRO2heAnC/wVrcOHTowCyQle/LenLZt2+LKlStISUlRLdumBo3U/T9sbW3Rq1cvpKamonLlyookTM1yVbZsWfZvXhGpkbqTJ09i586dCAsLE9VPc3R0ZP/W6XSi51GWrHRBPHnyBH/99ZdBM/T27dvx7bffonv37ujbty+GDRuGypUrY/Dgwbh58yazktDun57DT9jExER07dqVKVxCWFgYFi5ciMGDB4sIE1lDaCLv3btX9Dt7e3tkZmZi7Nix7LPTp08jIiKCWWoIUpIlVR5KcRTvv/8+vv76a1EbADm5UOo3Q6SOFAUJSaVs5WrVqsmymqkvle5NyTk8SpUqxcjV06dPmbA8e/YsG69Dhw5Bp9OxOUECnXa4RBj4cQVeWGyk7079npqaivj4eJQqVUpUymTHjh2ieyhZeGrWrMkssImJicz1HxoaKrOA8qSOBHZMTAzro7i4OMTHx+PLL79Eeno6fH19sXfvXhw5csSkc5bj4+Px/fffy6yoUutnamoqzM3NYWNjw5T4gwcP2E6ax9WrV6HT6eDt7Y2ffvoJOTk5qta7s2fPIjw8XKZEaP66uLiwMXr06BELRyAhzpdpePLkCT755BPWhzSmNK9WrlzJagkOHDgQ06ZNY7/j+wN4IZfoO1NJHW+pEwQBd+/eFQXySzdMUguNEqlTKkdB7Xr48CGaNGmiGnPk6+uLVatWsbnz8OFDPH78GJcuXUJCQgJzmS9duhQTJkwQPZuXx/7+/mx98xvEsmXLMhcp8EI+Uz9++umn7Dt+jPkCv4IgYOzYsXBwcGCbZnK3Ec6fPy97t507d8os7FFRUYw0JiUlYdu2baJ4MHd3d/YeUlJHY0P/X7ZsGXtuZmYmEhMT0bJlS8Xs4qysLDZPbWxsVK3LoaGhzDLPjzFP6po1a4b3339f9tunT5/i/fffx5YtW9hvaV1duHABvXr1wrx58wC8IORZWVlIT09HiRIlFNtz4cIFNGvWDEFBQUhPT2fhOdLQkaioKJw/fx716tXDP//8w8jVrl27cPjwYdl9ly9fzt4pPj5epFP4e0vXFd9u6ecpKSlM30dHRzMXN5D3EI1iS+omT54Mb29vDB48WOS6ycrKwrBhw+Dt7Y3x48cXyLNoEh04cABpaWnw8vJSvM6Ym8Lc3JxlSQG5wlMQBMyZM0dk+Wvfvj369u2Lzz//XPR7fseRlZWlWBtMbYCNBduvWbMGBw4cwM6dO5krEcgtLEsWOz5eRboDSUxMxKFDhxAUFIRJkyYByK3Bw5uGDx06xP597NgxALkWBJ1OJ7O61K9fX0Y2CKTcCFIiZEr8yokTJzBv3jykpaWJyLVU8SjFnSmNMykuUgZE6vjdGO3g79+/L5qbgiCw/lTa+VPcCg8qoQHkugJnz56NR48ewdvbG/369QPwokimVOkRiSHydvLkSVGtQqngl36enJzMrAr8mPLHDGVlZYmy7njQGZl79uzB0qVLAQBDhw6Fm5sb5s6diwcPHiAzM5NZwnhSFxERwfoxPj4ea9aswfLly3H48GGRdY5280Du/FizZg2++eYbZGVlYdq0aQgLC8PixYvxzTffiCzQAGTxhCkpKbCzs4ONjY3MTSy15BJhBnJllF6vlxH4CRMm4Pjx46yMktR9QtaDXr16MWVZuXJlg4XJ//e//2Hjxo2MrJGljp+rRGKCgoLYfXk3O40pveM///wDQJnUPXnyRJTIlJ6eziwnKSkpmDRpEry8vFgcpb29vUhm8GP61Vdf4cmTJ4qkTilmiCcqkZGRonl27NgxREZGIj4+Hi1btmTW//r16+PBgweoXr06mjRpglmzZim6/JUsdXy7aS1ZWlri6dOnuHPnDvuO9IKUMAFiK+HQoUPZvxMTE7FixQokJydj3759AIB69eqJ2mRqTdSDBw+yd9q6dSs++OADlnBFbSbCQHJNuomld504cSKaN28OIHceSkt+8booLS2NjUlSUhLCwsLw5ZdfYsCAAaLfBAQEMLcyP8bUFtrEKW2E9+7di927d2PFihWy/qBNGM1pmvPh4eFIT09Xjb+l60JDQ0U6RXq8aHR0tGIsLaCc7X79+nVs2rQJQG5/8r95+vQp03mnTp0S/Y5IqpRUxsXFibx0S5cuRU5ODn788UdUqFAhz0ljxZLUXb16FREREThz5gxq1qzJhA8A7N+/H2XLlsWZM2eQkpICX1/fl34eH+sQHBxslNRRkLsULi4uAF4cGZacnIzIyEjMnj0b7733nux6qdChWAICTQpy4QHqpM5YwCgfSC2NiaBJxu9epc/hrYakqJs2bcpS/4FcAT1w4ECMHTtWNnGlrqySJUsqxnUBuaSAF6ZSUmdqNi6QS7T430tJHClJHkrWNCJvhkhdo0aN2DjwwpR3L1KgLQBm8YmKikLv3r1Fz5PGYt2+fZsJHiIa9CwSglJLHY9Fixbhu+++Ex2wPm/ePBFR4q2RSu5S3i0eHx+PESNGiMgnwVDszKxZszB69GjcvXuXzf9r164xq8GFCxfYe8TFxYnWEr8x4utTfvHFFxg1ahS+//57/Pvvv/jhhx/wxRdfqAYZh4aGir5LTU2Fra2tYryWMTdvUlISvvjiC/a3IAhYuXIlFi5cyO4ntWz4+fmhdOnSaNWqFSIiIkRrTUoidTodjh8/LnNrZWdnM2sZ4cGDB8jKykJ4eDhiYmLw999/45dffoGVlRUmT56sqhzOnTsnkx+1atUSkY9KlSoxeZScnIxly5YBeLEWK1euLHoPqfy4dOkS/P39AYhlFR+7SJCSbt7Seu/ePbi7u8sUeZMmTRAcHMz6Scl6mp2drWipS0hIYGNFmabDhg1DbGwsrKysmGWNLOrUjzz54EMa+E2ndIMK5PYV71o1NabRWDmdxMRE1u9KxJPaLJ1j/MaNQBm6QO548e7XqKgotGrVSlRj08rKCrt27WIEXBqfDbzol/T0dNlGlObGjRs3ZG2me5KsJTkQFhaGtLQ00VwYMmQILCwscP/+fXaf8PBwXLhwAdbW1rCyspLF1CYnJ7Nxmjlzpug7paxmb29v0bGBvCEnLi6OhRMMHDhQ9Ls7d+4gMjJSZpm9f/++aA6sXr0aiYmJKFOmDPR6Pf755x9YWVmZnBRS4KQuNDRUNcvKVPj5+TES1KlTJxFxM/RdfiGNn+NJFOHvv/9mO1qeVfMgBUeCKiUlxWD6Py+snJ2dZaSO/w7I3YnlxVLXpEkTVryZt8JJSR0RNhJ0mZmZMvezWnyIFBcuXEClSpVkJmZpux0cHGSFpYHc+DJBEERlFqQki1e048aNE2UjS/Hs2TMRGYmKimICOCIiQmZlUXoekEt4Hj9+zBYfKR5+fMPCwhTHhywoY8aMQXR0NNzc3DBz5kw8ePAA9erVw+3bt2XZriTkCGXLlmWnHdCumhY5b2m5fv06/Pz8ZHM4MjIS3377LXNDAbluhI4dOyInJwfDhw9nBCE5OVmRAEhjF2/fvm2SG1SKmJgYtpGysbERhSCsXbsW9vb2aNCgAeLj45myJVJHa4ziZrKyskRWEtrN79mzB7t27ZI9u1y5ckhPTxcRrdTUVGapk4LP6DX13TIyMnDixAk270aMGCFyXd++fRv169dH+/btIQgCpk+fzr5TItPLly+XhX6kp6fj1q1bMsvvvXv3kJOTg/Pnz7NY1bZt26JKlSqIj4+XKfTLly/j8ePHTNHFxMRgxIgRbPw///xz3Lp1S9RfSklBlSpVMkjqevfuzVyHvGzgNwW04ZAePJ+WloY//vjD4Drv0KGD6G+lWMXnz58zORkYGIhevXqxE4eklioiNRMnTkTdunUB5IZEAC9cbvfu3cOaNWtw8uRJkQ7hN3pt27YV3dfCwgJmZmaiepumnlKiFog/bdo0ODs7IzExkcllNVLH9wEgJnSOjo5sDfA6Lj09HZGRkaJNT6NGjUR9JiXnSu5XHrw1E8gtxVWuXDnFsCfaJP7+++84deoUk73Hjh1DamqqyP3avHlzZGVloVq1amzOhoeHIywsDOXLl0eVKlVw7tw5WRyylOgRlBLV2rZty+ZXXFwcgoKC4OrqCldXV8TFxYk8UBSDDOSGGlSpUkX1FCwpypYtCycnJwQFBSEzMxOdOnUyiVsVOKl7/vz5Sxfki4uLYxNGr9eLlKyh73ikp6cjISFB9J8a+vfvL8rms7W1ZRYCstr1798fy5cvh4ODg2JgO/0OyA2QB3IVkdIkJYteUFAQmjRpgvv37+Phw4eqpI7et1KlSiJLEy+g+YVKcUzW1tZsd8RPYjVX7YwZM9C9e3eT3AFqJTFmzZqlWrCZR2xsrKLbkWL2eCLGj7E0fsLe3h4HDhxglsiWLVuKsvCaNm3KBK6VlRWWLFmCTp064eTJk6qLSyl5IicnB5UqVWJB50TmSPl16NABlpaWivORkkXef/999OjRAwMGDMDcuXNRqVIlWZCvGrZt28Z2xtKYOBpjQRBQv359ALmnU/BQy8K0t7dHTEwMNmzYIIq54tcL9S2Rp3bt2mHQoEEAoGrVtrW1ZddIERAQgKtXr6JixYpwcXFBcnIyatSogRo1aiArKwsffPABPDw8EB8fz+bqmDFjcPPmTXz22Wfo06cPsrOz8b///Q+WlpaiUgm85UqpFEKbNm0AvCAOe/fuxfz582Fra6tI6vJaOJmspFIr4Z49exATE4Nx48bh1q1bqF69OipUqICWLVsyd7Wzs7OinOKVNSE9PV1kzSbUrFlT9pmjoyP0ej2ys7NFiQAA2MaK5tA///wjOtZo1apVqFOnDvvbwsJCsfB2qVKlRG2ndzKEdevWieLGyHIvzUYHcuezofO73333XVbmA8h18UlPG4qKihKRjb1797I+52OYgFx5/+233+K7775jGyRnZ2dYWFggISEBvr6+yM7ORqtWrUSKmwcfI00hAERoecXPb0q8vLxkyQr8Rgx4QS4JlFTCx0HTWPD6wsLCAjExMaK51LVrV/Zve3t75pLlE7/S0tIQGxsrkuvly5cXeX9I5xEyMjJw9+5djB8/Hv7+/oqGEiB300C1BDt16qR4De9+nzdvHsLDw+Hp6Ynbt2/j+PHjon7miSeFFUVERCAiIgLu7u4scUk6N4KCglC+fHl07doVffr0YZ8rWer4zUV8fDwCAwNRvXp1ODs7y0iddLOelJSE+/fvK8brSsMvqlevLpqXPj4+qv3II8+kbt++fQb/oyDpl0GJEiXYpIyLi2MkyNh3PBYsWAC9Xs/+MyQQAHEMAS/gmzZtyj4/efIk5s+fL0qMILRp04ZdS7u85ORkRUsdr/ibNGmCKlWqoESJEqoKnghZ5cqVkZKSwiwbvIDi/00LTK/XMwuBqbvBAwcOKJrjpeBdTkBufF16ejo+/vhjxUxQKR49eqQYC1G5cmWYmZmJBB3fX9Lxtre3R4UKFViGp7W1tYx0X7hwATqdDtWrV2eWtr/++kuxULMa1IgwCci3334bmZmZaNy4MfuOyBzB0dERe/bsEbktiMg7OjrKFC4P3lJDMYJSSx1vLeDnrSFUrVpVZgVKSUkRWeoqV67MhMtnn32GEydOsLFTK/bZtm1bUc0lHmlpaTh8+DDq1q3L1pmLiwvGjx+PkSNHYvHixdDr9YiPj2drPTMzE7GxsahQoQKsra2RlpaGjRs3yu5tqKYVkBvPVLJkSfj7+yMjI4PVTDMzM5OROt4FZSqIaElJwqFDh+Dq6opffvkFjx8/ZmSKd9s5ODgonmGZmJioaKkzpZAskEswabzoGESCvb296mZECWobWicnJzZnHj58yEI0DEFal5IUrjQG8b333kOVKlUMup/0ej0mT57MZFdSUpLMehcdHa0aViC11JUtWxbffPMNrKysmO7IyMhg8/LUqVNwc3ODl5cXSpUqpVgLlF/n0nJNQO64SOdJ06ZNZfKTt+R6eHgwiyehdOnScHR0REJCgqx0CU/qvLy8kJCQoJoYY2try2IU+c1ap06dEBUVxUidTqeTWbqk75GamorBgwfj559/xr///ou4uDhmlfX29mbWTCp9EhMTgwYNGrDfSxPyCFWrVkVERARmzpzJjAI8ueRjbWkeUWkpntRJ+UBycjJ69OiBAwcO4K+//lJ8NoEnZFlZWbh79y4qVarESB1viZb2C5BLUvl3JVy+fBk7duzA5MmTsXPnTnh4eMh+37lzZ4NtA/JB6nr16oXevXujV69eiv+pxZvlBc2aNWMutiNHjogEkaHveEyfPp2Z1uPj442SGqlAJ8YvjRnq2LEjWrduLTt4ffz48UwJuLi4wNbWVpXUAS/YPi+olCx1ZmZmLD6BFvuQIUMQEREhSgDgLWe0637nnXfQoUMHbNiwIU9FU2mHYwi8uVqn06Fhw4bMummKpa5GjRqKpK558+ZwcnISWQN4Vwq/KwPEpAjItcZJFc+tW7fg5uYm2uFeu3YtT4eiq50gQYqMXDS8EB01ahQGDx4sartUGBKRL1OmDLOyKYGvtUVzSkrqSIh9+OGH7F61atVic1lt0yBV6FL3q16vZ+SN7kVCWS0UgWosSUHzPiAgAJUqVWIC2cXFBaNGjcLq1avZRoxObuFRpkwZ2NjYIC0tTeQaoaN+SDaMGzcOixcvxvHjx5GSksIsdLVr10bdunUREBCA/v37s3mWlpYmi6lTivcCXsTMKoFIpVQuSd3ZZCmwt7fHnDlzWCas0tqLioqSBV1TDS2+ze3bt1dsU3p6umic+Fg5nU4HFxcXNgfIZbVo0SLF8hakSKVr18nJiREJUwtbS0EKV2pVJi+KoWQwMzMz6HQ6dO7cmW38pNajqKgohIWFyaw0165dkylPvl+JAERFRYlIXevWraHT6WBmZqY4V/h7SNsC5Pa9dF7Y2trK5BevF27fvi1bV6VLl4aTkxPu3bvHNpkPHjxAcHAw0tLSmA4joqYmy2xsbNCnTx9ERUWx9QLkuj+Dg4OZXFfK1peG9OzcuVO0aU5LS2Mbmfr168usvYIgiPpIiQQDubIvMzMTHh4eTJbwpE4pLpaSr9zd3dk6qFOnDj766CPRdTQHpATd1tYWnp6eWLp0KY4dO6ZYT9bFxYWROj4+jieZ/PVqsr5fv35YtGgRyxDmNxt6vZ5ZUg0hz6TO09MTO3fuRE5OjuJ/ebF+qKFBgwbw8PCAt7c3AgIC0KdPH7aj7t69O0JDQ+Ht7Q1bW1vVl7S2toaTk5PoP0PgSV1iYiL7m3cROjk5MYHQo0cP0e/t7e0ZqXNwcIC9vb2q+xXIjYNwd3cXmXqVSF1sbCwjdbwgHTRokIgwzpgxAzqdDp9//jn+/vtvTJ48mfWZsXeXwlhdHOkuw87OTmRydnJyUrWgArmm7i1btogEaenSpdG7d28MGzYMTk5OslpIBKnwoL9J0Ol0OplQvHHjBtzd3UWu20uXLinWIQNyXQLSgFm1TE/alUnjA8uWLYtGjRqJiKPSOBDR8vDwUDwVwN/fH3Xq1BEpOjoRQnquY0REBFxcXLBp0yb2rKpVqzIBTUqTspeBXPfC/PnzRc+kUiAEvV7PBC4JqSlTpqBTp06KwmnMmDGYPHmyKqkjYluqVCkRqeOh1+sVXR/u7u6wsbFBcHAwLl26BCcnJ9jY2MhiTZYvX45Jkyahffv2sLW1ZePXokULlCxZErGxsaIyO2lpaTKyRopaGk9q6PSGM2fOoGzZssxiu3fvXpm7DBAr+a+//lp0LBkAlogA5Mb1SF2tROr4PlZzeaalpaFWrVqsPpqU1EhJXYMGDTB58mRR6Q2KnSS5x/eBr68v9Ho9wsPDERUVJTuLVEmu8Qk7BGdnZ8W+bdSoEXtnKd555x2Z5YnkJJ+IZW5ujsDAQHaWK4+bN2/CyclJFP/Gb6J4UkcbzosXL4qIj5L3hlfoxk5IadeuHQBlUsfrJhcXFzbmDRs2RFBQECpXrgwnJyd2NFj79u3h4+PD3p/uR6Ruy5Ytim0g156rq6siSTVE6oyd01q3bl1Ur14djo6OKFOmDO7duyfa8AJit7JUdjRo0AClSpVi/MLT05OFGvD9o0TqwsPDERERAQ8PDzYmderUwYYNG0S6nmSmdOO9bds2PH36FBMmTECHDh1kz4iJiUGJEiWYZ4yynNXaAwBdunQR/a1WloXXkR07djTpdKg8k7qGDRsaJG50vNXLYvHixThz5gy2bt0KKysrtmu0sLDA77//jjNnzrD4poKAlNTRYPCkrmHDhoy88IseyF3AROoyMjIYqZNa6kiJly1bFhEREaJAc1IqfK0gJycnRuoo5mD48OHw9/dXtL6tWLECXbp0waJFi9g78QvEmHWqRo0aqtlYJ0+ehI+Pj0wgKwltQ9a6atWqwcHBQSToateujV27dsHGxkZmqeMhLYNCc41PHqAxq1mzJiwsLBAREQE3NzdGHPixI+LLuytXrFiB77//XmRx4C29SrFX0liH+/fvywioEskhIVO6dGnodDpMnDgRFy9exIULF5CUlISGDRuKFN3kyZMB5CosCljns+2qVq0KnU7H2liyZElZrCf//uHh4di/f7+oTVu3bhVlpzk5OTGhQ+2tXLky/v33X0Wh9euvv8LJyUnRMjhmzBimJA2ROn5u8GSLSF14eDgyMjKwaNEipKSkiN5p3Lhxsudu3rwZkyZNYu8idWempqbKstFJsUlJgCH5du7cOfTu3RvTpk3DypUr0a1bN0U3rlRxSwmlEkngkZ6ejpiYGDg4OKBVq1Zwc3MTPad58+aMCJKFi2J2pFnnLi4uWLZsGTp37ownT56w+/Cb1MOHDyM6OlrkruafRUSxUaNGIre4m5ubomWTjxMbPHgwdu/eDZ1OJyPA77//PiPVSqSuUaNGsthcGkdeBpUsWZLpLbI6jx07ls1fJycnVoYJECt2WjdkjfH390dmZqYoBkrJYm1nZ4e//voLkydPNkrqSDbY2tqKvEPe3t4ymcdfS+9Cn9nb28sstjTX6Fq+mgTB1tZWRPaU3OwVKlSAl5eXomtdmhgnxYULF9ChQwd4e3vDw8MDOTk5Mqu0m5sbunbtimrVqjH5RaSmevXqqFOnDquq4OHhwfpczf1KCAkJQXR0NNzd3dGqVSsAucTX3NwcDg4ObP4obbr/+OMPGQFTQokSJWQJROvWrYOlpaWMiA0fPlzk3g4ICFBN1KB5U7t2bVFZKkPIM6n76quv0KJFC9Xvq1atWiBxda8avKIeNmwY+5snLLRjBHIVktTKRkIwJSUFer0esbGxMkvd3r17Ua9ePcWYASLE0iwnstI0bdoUgiCgU6dOSExMZO4nSkxRUzY8mSArG7mrpJDWUOJRvnx5tGnTRqakpAQXMM0Fyy8i3l2l1+tlljoSdGpHnjVp0gTt2rXDwIED2UKoWrUqE07Ozs6MOPBnrVLxUmmauZmZmaprUckNJCVsShYHtUQYACz+bMmSJWjcuDGaNGnCrqd71apVC97e3uw3NN48CSe3BfVXx44dmeKiNlpaWmLhwoWiws88pAU39Xo961MloakG3nq6cOFCZGRkoFWrVowAuLm5iWLqePBxKzzZ4okgkCtMpTtrJeHXrl07tq6USF1aWhrLpCchTMpcaplQSzohfPrpp7CxscHo0aNhZmbGxocX3NKwDinxUXLXtWjRgr37yZMn8dNPP8HBwQFnzpzBs2fPRHPQ19eXkVGyrhFRlCoZ+vvw4cM4cuQII7M0b8iKVLJkSdYuKens1q0bBg0ahJCQEFFFAp1Oh23btrEjmZTw8ccfszVJ8WnUhqVLl7I1r0TqlOYjrU/eTebq6spIHfWLtbU1u0av16vKFgsLC5w4cQJr165FqVKlWGY+b/FUii21s7PDwIEDsWjRIoMJUU2bNhURNfIyKR3xB7xYV7zO6tChA2rVqoX169fLTjEhUqKW1ATkbhZ565yZmZnMTevq6oqAgABFN/+vv/4q8gBs3boV3t7e2L59O/z9/WFjY4OhQ4fi4MGDqnK1VKlSOHDgAIKCgpjepDZ7eHiI5nfZsmWZHuL1ntImMyUlBTk5OWjcuDEaNWoEQRBE+onuqxT/NnjwYJOsY1Ir88KFCxVr9lHbCW+99Ra8vLwUEyeAF4lP5cqVMylJAsgHqfP29lbNUgFyFRdvln5dQAvk559/RpkyZdjk4IUtb1UzNzcX7Xjs7e2ZYrKxsUHp0qWxatUqZlkBcklM+/btce3aNYMDJBVUJPCoLaS4addiqGgpICYcFStWRHx8vCxImSAldba2trhz5w5GjRrFFqN0Z6xUD8yUOcBbJnl3p5Kljiq7SxU4LeiyZcvixIkTGDFiBMzMzHDq1Cls3ryZKWS9Xs+Efc+ePdGxY0d07NgROp1OkZQqwVCyjSlZrErFlvv164eTJ08aDIAlYUFufUL58uVlgprmRoUKFRAdHY3+/fuz53bu3BljxozBl19+ialTp8rGmlcSvIBXstSZApp3FhYWmDp1KutnaqMhS500e5dvI2+B5rPWW7ZsadK8U7PUdevWDTqdjilraj8RWpp76enpii6of/75B19//bWsX8mNyW9cpASC1kLDhg3x5MkTVKlSBVZWViw7sWnTpjhx4gTS0tJEa5csJBS8XrFiRcyZMwdA7nxLSUlhyRektKTznchm//798eWXX7KTKYDcUAk+cNzc3By7d+8W1VskqG3k3nvvPdHpCzySk5NFCQ2lSpVCtWrVmCLl55vSZkppPtJaJKVvZmYGNzc3PHr0CHq9npEeS0tLJtOIlKkl97Rr1w7Ozs5s3O3t7UVWRaXj4HiCIZVbhJSUFJw5c4bNMd5DpLYJ5AkgoUuXLrh16xYGDhwos7JNnToVjx49Es1Laey7Uj9KPRKGQmqqVKkiMkYMGjQIp0+fRv/+/WXhC/zGVOm9gBexySTf3N3d2Vynum00vrGxsbC3t8e7777L+oTGg7+nWhybIUudqShRooSID/A6Uir3SZaeO3dOFisrBel2tfAfJRTL4sNFAVIuNCloAlOqfEpKiiybiv+dnZ0dKlasiNWrV2P+/PlsRxseHg4bGxv06tVL0extCE2aNAGQ64qWZiMCL86pNDYZpSnfTk5OqkJGWhLB3d0dNWrUwKpVq5iglboSlEjd2LFjVUtaEEi5eHh4iJQc73Im0ELgs0sBdUXSunVr6PV6JnidnZ0xYsQITJs2DR988AH+/fdfxSNg1DBlyhQcOXIEtWrVkhUstrCwEClKacFRqhemBEtLS1ktKyl4UscL3zZt2sgshLzFgKxBlNRQokQJ/Prrr2xu86UqALA6eEBusDtZ8vR6PVOUSjthNQsHKQWpZYtInZubG9uRS91upUqVQuvWrQFAFi9H9x0/frxo03X27FmTSpCUKFFClhwiCAL27NmD1NRUJvylxILfyfO11JYsWYI9e/agT58+jFDxWLNmDSIiIlTXHPCC1FlaWqJ06dJwd3dHamoq9u/fj2PHjuHQoUNsHvDkRlpM+9GjR+x4PCB3vOi5TZs2xXfffYfJkyejRYsWrHDwmjVr0KVLF2zfvh2LFi0SbV6qVasmIxe9evVSjLniM+K/++47kYVCTUZJycTgwYMxduxYtlnjny09O1rp90BupvGaNWtgZmaGuLg4PH/+nCnZbt26sbVqaWkpc03//vvvBrNsaZ5WqVJFNJ5KpM6UDZCtrS0sLS1lcYNubm6yjSLNRyVLHY/33ntPVF+RyD6/TqV9qUQgpd4GQ6QuL7CwsMDhw4dlmx++P2lek66zt7dnMcTS8IDnz58jKSkJR48eZX3u4uICDw8PJmu6dOmiuv5obihZ6kyFs7MzSpcuzTxhSuW6CDTWLVq0UNwc8qB1xhf5NwaN1ElASmvDhg1YsmQJnJyc8NVXX6kGPNLg2dvbQ6fTYeTIkdDr9aLBsrOzw+7du/Huu++a3I7k5GS2gzY3NxcJRScnJ+j1elag1pBbDxBbkQwpFkCeSq406fh7eHh45LvYNO0opQpd6ZSCEiVK4O7du/juu+/YZydOnJAlrEhB99br9ahVqxYWLFjAMuXygh9++AFeXl64desWFixYgNOnTzOLNQnLtWvXYty4cbId4R9//GHyUUBKIIUvtdT16tVL5gbjQwQIRLql86Rp06asUO2uXbtE5NLc3JzF6lWoUIG1QcnayGcS8655tT5u3LgxnJyc4OnpyZ6hRBJOnToFQRCwYcMGXLhwgRVxlgY25xV8UPI333wDIDeW1NzcHNbW1tiwYQNu3LjBnkPX80Lfw8ODubUmTpwoshhKYWVlZVR4K/UvzdMOHTqIFCof3mJqWRMgd0xnz54NvV6Pc+fOsXU7fPhwHDx40OT7qMHd3Z3FZdnb24sINz9WSsdEEQYPHozPP/+ckTqeuEydOlUWYqIkl728vJg1kzKpSdb07t2bbTIsLS0ZsaDsdTMzM4PZzTSO0jjLNm3ayFzMSqRLrVQHhTSRq75OnTqiDdq5c+dYEV5jpE6n0zHLqNpRmlKZq0RATSF1QUFBBsdTDR07dsTBgwdV+5rmNa09KysrFkOuROoINB/Mzc3xySefYPz48Zg9e7ZqcgjwQg+p9acpoHaSrFWKSXR1dcXTp08Nhq9JodPpkJmZqXhkqCqEYgZ/f3+hVatWQuvWrYV+/foJGRkZou9PnjwplC1bVmjTpo3Qvn17k+8bHx8vABDi4+MVv//hhx8EAMLOnTvz1N63335bACCkp6eLPp80aZIAQAAglClTJk/3NAW1a9cWAAguLi5Cenq6sHjxYuGjjz5SvDYtLY21hQd9xv/HXwtA6NGjh+I9t27dKly/ft1gG3v16iW6V9u2bWVtOHz4sJCVlSX6zMfHR9YuQmZmJvtM+jsl0DgsW7bM6LVNmjQRKlWqJPpMqd8IO3fuFAAINjY2Ru/9Mujfv78AQBg8eLBw69YtAQAb6ylTpoj6SalP+vbtKwAQzpw5Y/RZGzduZNcdOnRI6Nu3r5CZmSmsWbNGACCsX79e9bcXLlwQnj59KvoMgFC6dGnZtWlpaYIgCEKpUqUEAMLjx4+Nto2wevVqAYCwevVqk3/D4+jRowIAoWrVqoIgCMKNGzeEqKgo2XUZGRnCkiVLhJSUFAGAUKdOHdF8SExMNLoGpGjYsKHQtGlT2ec0l1q1amX0Hn/99ZfQrFkzAYBgaWmZp+cXJJTWxt27dwUAwuXLl0WfP3/+XHQ9AMHDw0P13p07d1Zdd/Hx8cKiRYsEAMKmTZtMauu3334r2NjYCElJScKuXbsEAMLChQuFtLQ04caNGybdQxBejNOUKVNk38XExIjWYnh4uOj76OhoITExUfG+OTk5wsaNG4WYmBijbbh48aIAQBgxYoTB6wICAoTs7GzRZ9S2nJwcITExUfD09BQACH/99Zfs99nZ2ex6U2WcIXmphKSkJMX7nz17VujZs6fg5+cnABDOnz8veHl5CQCE1NRUQRBy+8zT01M4dOgQ+11iYqIAQGjWrJnJbThx4oQAQCS7jh8/LgQFBan+5o8//hAGDBjA3jckJEQQBIHJiMDAQNH1p06dEsLCwkxu08vAeATgK0aZMmVw5MgR2NnZYcaMGdizZw87wJwwYMAA1SNT8gvh/3eAaofMq+Hvv//Gxo0bZXEq/I4sL3FIpoKsLvPnz4eVlZUoSFUKtRIMc+bMwZkzZ0THbvHXent7q+4QjLlWgRdFcn/55Rd07twZ5cuXl2VJKR0zRW43INeVwgfW8kGram4/HrSDMpZ9BihXsj99+rRqYHxhjKsSaEyoHACQG1wOiIO1V65cqdgnapY6JfAFkzt37sxi/agNhlxTFC7A4+TJk4o1p+h+ZJnIS6FfmkP57X+yXJOlSuqGJlhaWmLixIlMNnz44Yf46quvRPchC4+pkB7/RjBkCZVi4MCBGDhwINvFFye89dZbiglb0pIN0dHRBmNZt23bJjpTk4eTk5OozIgpGDNmDDp27Ah7e3u888476NKlCz7++GNYW1urjr8S6D2UrC1kJZo6dSoaNWoki5tW8kAQdDqdrFi5GoxZ6ghKiREeHh4sFMDBwUEUPiQFPxcLyvUqBT1XKp9btmzJYlBjY2Ph7OyMJUuW4LvvvmPvrdPpZOfh0hgonbWuhnbt2snmrFrNR8LgwYMxePBgljFOHhMKdZG6X3mdVtgodqSOXwhK6cBAbmHDCxcuoG/fvqrm5byCBjWvbrnKlSsrxtEMHz4cx48fx/bt2wtF+VOgt1rxZVPw9ddfY82aNTh69ChKliwpK2WilHmVF5AJnSrCA8qZslLodDpYWVkhIyPDpArahkBCK7+mdbWgXuDVkzoqA8MLIHLRfPHFF6JSODzyQurUQLEihgokK8FYvCAJQUMuLymIWBqqF2cITZs2xZ9//inbLKpBp9MhKysLZmZmIlJXkMgLqSNUqVLlpc/Zfhl8+OGH+Z5ThggOkEvclEIJCBRbayxJjEBncwK5pCi/7uZ27drB399fFvwP5M5HCwsLVKpUKU8xUHkFubLVQoIMwd/fX1TMnTJcjZ0CZCqpe/LkSZ50qE6nw+TJk/HBBx+oXkOEj99kqsHc3ByRkZFG51dBQVrAuGrVqggICDDJiFBYKHakjhASEoJjx46Jgn6B3JghOsS6Z8+eaNWqleICS09PN3qoMA9SfHkldWrQ6XRo0qQJtm/fnq/FZwzu7u4ICgpSjdEwFWTZ4VOwhwwZYnL6tCGQpS4/CywwMLBAClkTmZMmXhQEaFwLas6ogciLkqDw9vbGgQMHDGakE3F6GVJXt25dpKSkFPhcnj9/vux8RGN4WVJnZmZmUIkowRSr8MsgP6Tu/v37hdUck5DXM76HDRuGTZs2FcizK1eujMzMTJPKTRQ0lPQNkDt2x48fN5lo5hemWuqUUKZMGcX4VaUzg3mYSuqUSvEYw6JFi/L8G0NQO8ruVeD333/HtWvX8uzxK0gUGamLiIhQ3M3s27cPFhYWGDp0qKJbkw/679GjB65fv664yBYsWCAKqjeG/LpfDYEWn6FMmPxi+/btuHr1qsnlOADlWkr0vqT4AfWK43kFkbr87FoqVqwoK5KaH5BlSVpFvyDwqix1RCjUjufhD+VWAs3tvFjDlFAYm5Pp06eLzrY0BUTQX/Z98oOqVasquplfFvQuhU0eixK//fYbfvvttwK7X1EQOmN4FW422py9TGA/oUePHrh9+7aq3ps6dSp++OGHQnO/vmlwdnY26p0obBTZqvDw8FDMmsnOzkavXr0we/ZsWYYRkGtxI/PzmTNn2NE3UkyfPl1UiychIcFgnbFBgwZh3bp1ecpMMQYidYWxIDw9PfMUhxQaGqp4ogEpEZ7UFRSmTJmCsWPHFoqikh5qrYZWrVohIiLCaPZhfkCkrrAtdWRlzu87rFixAl5eXoWyuSgKUExtYZArY6AMxIJGfix1rxsKe538V2BmZoZy5crlSf6rYe/evQZPSFm4cCFOnTpVKPJTQ+Gg2G11duzYAV9fXyQmJmLOnDkYPXo0BgwYgJEjR2LNmjXYsWMH1q5dCwsLC7Rs2VJ1Z2RtbZ0n90ylSpVUDzrOL4hEqZ3r9iqhduwQES5jx7zkB5999plqkeOXQUZGRp6UX2EJpFflfqUahUpniJqC8uXL48cffyzIJhUpatSoIavP9rrjv0DqNBQcbt68aVLBc1NgTH7xZ0lrKP4odqTugw8+UIx3obNfhw8fzmK/ijtoB1SUQZPGQMrkddpF58XlXJh4Ve5XqnGn7ZbfXGikTkNe8DKFcvOKl43b1vBqoUmQQgRZ6tTOdSsO6N27N2bOnPnaEOXihFdlqSNSl19LnYbiD43UadCgoSCgSZBCRJs2bXD+/PlCTW9/WVhaWmLu3LmFEgT/puNVWQynTJkCR0fHV2YZ1PDqoZE6DRo0FAQ0CVLIaNq06Wvl2tSQdxT2+A4cONBoSR4NrzeIzGmkToMGDS8DTYJo0PAS6NOnD7Zu3VrUzdDwmoPIXEEFv2vQoOG/CZ1gKJ/5DUJCQgL0ej3i4+O1TB4NGjQUO/zyyy8YPHiwVhNMgwYN+YZG6jRo0KBBgwYNGt4AaO5XDRo0aNCgQYOGNwD/GUudIAhITEyEo6OjlrigQYMGDRo0aHjj8J8hdRo0aNCgQYMGDW8yNPerBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDGwCN1GnQoEGDBg0aNLwB0EidBg0aNGjQoEHDG4D/DKkTBAEJCQkQBKGom6JBgwYNGjRo0FDg+M+QusTEROj1eiQmJhZ1U4oNcnJyNJKrQYMGDRo0vCH4z5A6DXKYm5ujb9++Rd0MDflEcnIysrKyiroZGjRo0KChmEAjdf9x7Nq1q6iboCGfcHBwwNChQ4u6GRo0aNCgoZhAI3UaNLzG2LFjR1E3QYMGDa8YT548QUZGRlE3Q0MxhEbqNPxnEBgYiHnz5hV1MwoUVlZWRd0EDRoYnj59Cmtrazx8+LCom/JGo2zZsvjss8+KuhkaiiGKJam7fPkyvL290aZNG/Tv3x+ZmZnsOx8fH5QrVw5t27ZFhw4dirCV/03ExcUVdRPyje7du+Prr78u6mYUCHJycgBopE5D8cLp06eRkZGBffv2iT5//vw5dDodDhw4UEQte/Nw+vTpQn+Gr68vIiMjC/05GgoOxZLUlSlTBkeOHMGpU6dQtWpV7NmzR/T9gAED4OPjg+PHjxdNA4sAERERSEtLK9I2PHv2DCVKlMCWLVvy9LvQ0FDExMQUUqtMR3p6OgC8ERm/KSkpAABra+sCve+BAwdw69atAr1nYSA6Orqom1DgIEL0OsPCwgIAkJ2dLfr87t27AID//e9/r7xNbxooOcrc3LzQn9W/f3+sWrWq0J+joeBQLEmdh4cH7OzsAACWlpZMUBB27twJb29vLF++vCiaVyTw9PREnz59Cux++cmafPr0KYDc3VteUL58edSoUSPPzyto0Dvzlt/XFUTqCtpS1717d9SpU6dA71nQ2LdvH9zc3BAYGFjUTSkwxMTEoE2bNpg5c2ZRN+WlQERDSuqioqIAACVLlnzlbXrTQJt7qV7MD/744w/88ssvqt+npKTkaUPeq1cv9O/f/6XbJcXly5excePGAr/vm4hiSeoIISEhOHbsGLp168Y+a9SoEQIDA3H8+HEcPnwYly9fVvxteno6EhISRP+97jh8+HCB3Ss/Vj8iQ/khEsXBskLtf92tIUBuOROg4C11rwOuXLkCAHj06FERt0SMu3fv5tsKTHPywYMHBdmkVw4zs1yVIiV1ISEhAIDY2FisX7/+lbersJGUlITq1asjICCg0J9FsrsgLHVDhw7FuHHjVL9PT09HbGysyffbu3cv/v7775dulxSNGjXCJ598YtK12dnZeWrzm4ZiS+oSEhIwdOhQbNy4EZaWluxzBwcHWFlZwcrKCj169MD169cVf79gwQLo9Xr2X7ly5Qq9zRkZGahSpQp8fHxMuv7JkyfYvHmzyfcvSHN7fkgduS/58SgoxMfHY/v27UavW79+fb4VH1nqipLUZWVlYeHChawv8ws1S11ycnKBlKlZunTpS9+jsEDzrzjV6Ltz5w68vLywefNm5OTkwM/PD40bNzZ5M0lkkGIlX1cYI3U//fQTRowYUaQhEE+fPoVOpytQS29YWBju3buHoKCgArunGgrSUmcMGRkZr10c9aeffgoXF5eibkaRoViSuuzsbAwePBizZ89G9erVRd/xQvLMmTOoWrWq4j2mT5+O+Ph49l9oaGihthnItUY9fPgQo0aNMun6vn374qOPPjJ6HZEQEpgFgfyQOiIShSFMxowZg4EDBxpUgmFhYRgxYgS6dOmSr2eQpe758+cYPXo0s3YVFM6dO4dt27YZvObgwYOYPn061q5d+1LP4i11MTExLJh50qRJ6NOnz0vHME6aNOmlfl+YoPn3Kt3oP//8s0EZ8uzZMwC55G7evHlo0aIF/P39cfbsWZPuT2tcSoYKEklJSahTp06hEg+193jy5Ino75fd1OQHSUlJOHLkCAsfoaSNDRs24MKFCy91b5JbJCOVsGbNmgKJKUxNTQUg31xv27YNZmZmOHTo0Es/A8jdYGRlZRUrq1dERITRa37//XcALzZKt2/fxpEjR1SvFwQBly5dQmZmJuvb1xnFktTt2LEDvr6+mDNnDtq2bYvt27dj5MiR7LsmTZqgRYsWKFOmDFq3bq14D2trazg5OYn+K2zQEWSm7gApzsSYciIFXhikLi/3pPfLi/vVVOFNSlGN1MXGxjJr69OnT/OlFEjhbNiwAatXr8bOnTtVr3306BFGjBiRJ8tJq1at8MEHHxi8RqfTAVB/T1PBW+pcXV3h7u4O4IVLsqAJqxSLFy/GyZMnC+x+eTmyjkjdq7LUZWVlYfz48RgyZIhJ1/OWelPfiWSAsfm2a9curFu3TvE7nU6HNWvWqP72+vXruHXrFlavXm1Sm/IDWpdSUifdZBgiP4WFIUOGoFOnTrJnDx8+HM2aNcO9e/dUw3mMIT4+HgBEpICfnxkZGRg1ahTee++9fN2fh5r7dd68eRAEAV27dpWRaEJMTIyii1hJB9FnxclS5+npicePH6t+z683kve1a9dGp06dVH+zadMmNGnSBA4ODiyWvzAxb948NGvWrNDuXyxJ3QcffICYmBj4+PjAx8cHAwYMYMJq+PDhuHjxInx9fbFo0aIibqkYSUlJor+nTJmCjh07qroVSfAZE3D0/cu4X1NTU0ULlwRDTk4OdDodrl69avQe9H6muF/T0tIQHR2dZ/cTCUcpiPRRO9q3b2/SfYFckn3lyhUmZE3ZjU2cOBHr1683mM4fHR1tMGkkKysL8+bNEz2PCPHLuoCJtPEEu169ejh69CgAICAggAm/p0+fYs6cOQXq8vrqq69EY3Dy5MmXEv7m5uYYP368Sde+SlJ37949nD9/HoDhDQpPxqRj+/333zMyL0VwcDD69OnDNkzGLHV9+vRRrE9GfbFkyRIIgoBz584hMTFRZF2k8c/LRi4zMxM3b940+Xo1S92rInWCIGDRokUyi86+ffuwd+9eAC8SvgCxx6J69epo1KhRvp4rJXV+fn6wtLTEnTt3AORa8QHAy8srX/fnoeZ+5eV7eHi44m+9vb1Rq1YtAMDu3bvZ50qWfZrvr8JSd/nyZdU2S6G2qQHE42nqxpZCA15VWM7XX3+dJ8twenp6nowLxZLUva4gwUxYtGgRjh49ioEDBypeTwNlTMDR5FQidVlZWdi+fbtMYR85cgTdunXDp59+CgCws7NDz5492fdS9ytvno6KilJcyETqTHER1a1bF25ubjKS9vDhQ2YeV4IaMSCrJiEvGbg1atRAw4YNWX/TuxuykNI7GlpMY8aMQcuWLVWJ67///ouvv/5aZD0hwVEYMXU3btxg/+7cuTMqVarE2jl79mzExMRg7969quNniuB4/PgxGyNK0sjJyUH79u1ZKIGp5DEpKQkJCQnsekMu6czMTKZ4SJkNGjRINXZm7NixuHjxokntMITq1avD29sbQO679+jRAxkZGYiOjmZlOgDxRoFXDoIgYOXKlewdJkyYgMmTJ7Pvv/76a+zatYuVkclvTB3N6eTkZPj7+6NVq1ZwcnJC+fLlZW1UI5hKmDp1KurWrWtyuAbNa6mCfP78uejvlJQU1XWTmpoqW+9SXLlyhZFtHgkJCZgyZYosBIY2O0BuGIfSvwk7duwwmWAQpKTuzJkzAHJdfwAYMX7rrbfydF8lqFnq+E1OZGQkwsLC2NqiNU8kUxAEUaa1UiIbjWF+Sd2JEyeMjiOhT58+Jlez4Atb//7776hYsSL7m9c3a9asMSlxRSnZLDY2FjNnzlTdOO7fvx9jx44VfbZ+/XqRYefs2bOieZdf2NjYYOLEiYiJiTEp5EQjdSYgKysLJUuWNFoXT0rqjMFUS52a+/XixYuwtLTEwIEDmdsgOTkZ2dnZ6NSpEw4ePIjffvuNXf/vv/+yf0uFdFpaGg4dOoSWLVuiVKlSKFu2rKwd9H7GCEliYiLu3bsHQG55e//99zFs2DCZ8pJa6gICAkQ7Mt5S97Ig65uSIDt58iSWLl0qIoCpqakypbRnzx52RJc0hoUEOgkEvr9orNX6cPjw4bK6jEpQstSpgYTzqVOn0KtXL8yYMUORPBjbqcbExKBSpUrMoubm5gbgxZiFhoaiZcuWaNeuneo99u/fjxYtWgDILXWj1+tNqrk3ffp0uLq6ymJjlBROdnY2VqxYgcGDB7PPoqOjTbJGG8KzZ8+wf/9+3Lx5E127doWXlxfs7e0BvBgPQRBkpE6v17Pf//TTT1iyZAn7npJ+THW/KkEQBEaIk5OTVV1vNE5mZmZYsGABI0XZ2dmqY0/E2NRYI5rXUpkmtQSdPHkSer1ekXi/++67KFWqlMHndOjQAc2bN5eRL3ou/f/w4cM4evQo7O3tUaJECQBiUhAcHCz6vbu7OwYMGID333/f4POloL6l59I40v8pLMIUpRwYGAgXFxcm89LT03Ht2jX2vZqljicg/v7+KFeuHH7//Xfs27cPFhYWIhn6/PlzUcKZ0gkgNCdSU1NN2oTycbiCIKBDhw4mleFKT09HSEiIyV4dfszGjh2L4OBgNr/4e8yYMQNz5841ej8lubNgwQLMnz9f5I738fFh/dSjRw+sWLGCfRcREYERI0bg888/Z595e3ujY8eOqs81tvldvXo1evfuDSA3XvLTTz9Fjx49jL6PRupMQFxcHJ4/f44ff/xR9l1gYCBbyDypkyobQRBkC/plSd2GDRvYv83MzCAIAhwcHDBlyhRZ+wHxzk5K6lJSUtC1a1dmAaP6RDdu3EB8fDx++uknJrikvxUEAe3bt8epU6cAQOTykZI6EjxqO2Fqa4sWLURuJiVS5+zsnK+yFmQVuX//vkyY9enTB5MmTWLtS0tLQ8eOHWX1tf7880/275MnT4pM/RTnSRYRfvHSWCspyezsbGzYsAG9e/c2qtzpeaZYXegaUvY//vgjXFxcsGzZMtF1xgQ3EVsis0TqiBzb2NjA19cXp06dwv379xXddp9//jn8/PyQk5PD1oinpyeAFwT15MmTMmsiua8uX75slHySdcDZ2RlAbp+3atUKb7/9tsHfmYqTJ08y13ZKSgpycnLYuEpJXUZGBiN1SmTr/v37AF6sk/wkSty+fZsp1JSUFFXrCL8WZ8yYwch19+7dVQk1zYnbt2+zd87IyFCcn5mZmfjnn39YOwh+fn4yhU2EkqzLz549w7Rp05CTk8PG2hBITly6dEn0Oa0Lal/nzp3RsWNHpKWloXTp0rCzs2MbTiITPMjSklfrlNRSR/1GZIPkDMnOpKQk3LlzB5cvX4adnZ1o03jkyBHExsayRI5p06ahQYMG7N70f0OkjgwQDx8+ZMSZ39RcunRJNE+Vjk/kvzcltILPmKeNsynx5cHBwRAEwWSXPE/qaLzoOdJ5JpWzdnZ2GDBggOgzpXAiug8v19u1a6daw5N0O53yYYrrl3S2GkaPHs02+Hq9Hvfu3VNNDBXd1+gV/zGcPn1aVuSQJs7Ro0eh0+lEgrdGjRoYNmwYADGpk2aYzZ8/X2ZVedmYOn6A09LSmNDlYyWAFzEDpITpeh7SHSuQG/hfr149bNmyBRMmTMBff/0FILcsAV9lPD09HSdPnmSEkN+VS0kdkaOPP/5YVHqDBAhdL/2dEqmLj483yaolBQn19evXo0qVKqLvPDw8ALyohZaamsosb/wC5IN1165dy1x0BEEQFEkdLXal2EFeIPFC/vDhw2jWrJnoPtS+vMSV8fMzPj4eEydOFLkLpKROem9qH80dGxsbAC9Ina2tLbu2WrVqqFu3ruwepGz55/IJOKdOnUL79u1FpDk7O5sp/0ePHslIXXx8PB4/fsz6lOKpiNTVqVOHCf1bt26hVatWL5Xl9tVXX4kUQVJSEhvXjIwMUT+mpaWxdvCxXATqO+rb8PBwVWuOGuHj50pmZibmz58v+j4xMRE5OTmsf3irIiC24EtB7+Lt7c3c+dbW1iIXMmHhwoVsrfD9S+SR+gF4MYcmTpwInU4HDw8P/PDDDyZVKeDnMU9gnz9/zuSYlHSmp6fDxsYGpUuXZkQ6OTlZRoCpb3jCFBYWhjNnzuDkyZPQ6XQYPny4TGbzpI6yKYHcTUyjRo3Y5pP6s2/fvqhZsybmzp2L1NRUEbkk6y+5Sqm95Co2xVJHMVseHh7M6xIcHMx+Q+ME5FrMlbJK+Xmc13hZkqNKsLKyYmFBV69eZRbDM2fOmOQuDQ8PR0ZGhmgMWrZsiSFDhsjkKr+REgQBqampbFNKUAotoM+k/ZKSkiLadNCaJJlE808pjj4xMVFWE9DU8lwODg64f/++rBqIEjRS9/8ICQlBw4YN0aZNG1mRQyn7pwEnwfX333/jzp07ImFz4sQJ0W82bdoEQLz7USJ1I0aMwKFDhxAREcEWklpMHb+IU1NTmSApU6aM6DqaaIZInZJrimKGvvjiCwAQCZ7PP/+cucLovWkB8KSOj3sRBIHFQP3vf//D0KFD2Xe0GH19fRUXtinuVz8/P1a30NfX12RzPt+PUuGVlpbGrBi8u1ZqIZT2Hx8zpGSpI0vAjh07cOPGDaSmpooE0OnTp6HT6fDo0SNcvXoVFy5cgI+PD7tm//79srYbg1J/8EJQSuoSExOxZ88eODs7QxAEmfWCxp0ndVKSbGlpKSJwpGyVSK21tTUrAcK/V1BQEFJSUlCyZEkEBATIykI4OzujUqVKaNq0KZKSklgcE5EI3ho7adIknDt3ThR/aAhq5XsiIiLYXH748CGLr0lOThat8dTUVEZ+lSx1NDdobAIDAzF69GgsWbIE8+bNg06nY0qIJ2+XLl1Cv379IAiCrC+l2YFOTk745JNP2HWG1kXVqlVFlgw1661SsDptloBcpSZdI7ycI/kjDVn56aef2L/ViuLyzwkLC2PyrV69enjnnXcAKJM6a2trkVs1OTlZJKsqVKjA/m1hYYEnT54gMjISTZs2RevWrbF161YAuR6S0qVLizZyPKlbvnw5Dh48yL67fPkyk4303qQfiHzx7aV1RvKXLL0kf3lSN2vWLBaLxm8GaNzS09PZ5vLhw4fMsMCHErm5uSkaFvh5zK/9du3aYceOHWzuzps3j2XfS0HXZGVloVu3brh79y4yMzPx22+/ISoqCm+//TbTtw8fPkStWrXg6upqsBSQIAgICgqSydytW7fK5jZvyeXlEK/jpe9++PBhFvdN48b3batWrdi/Q0JCMGfOHJk+5Y/SpO82btwoO72Dbx9vmAFekHsgdxOfkZHxepO6yZMnw9vbG4MHDxZNrqysLAwbNgze3t4mZ8sZgyAI8PPzY9YPKaSCh8gcv8urWbOmaELxwgl4MbAnT57ErVu3cOzYMSakaVJlZGRg/fr16Nq1Kzw9PVG/fn0AYlLXr18/Jph4E29qairb2UkVPbkSHR0dZe0h8ILSVFCaOC0WJVLHu6xDQkJYGwGI0rqJTP3xxx8sOwvIXUyCIKjGCfGEqUWLFqhfvz6ysrLQrl07rFy5UjVTqk2bNuzfDx48wPHjxxEeHi5zC6elpbH4HlpwSUlJRk/I2LJlCz788EMAwMyZM5krhcaa3mfAgAGoV68e7OzsRKZ9soT6+/uzvmnfvj0qVqyIzMxMNveMkTreYqikzPfs2cP6UKrA//zzT/Tu3Rvx8fGIi4tjSo1AFiBah9bW1ooWMLLwAi82Mkr9Z21tzcgWL2hJePfu3Ru+vr6qsa2BgYGoVasWKz2iVMaI5ujkyZMVy8/wwjsrK0u1f7Ozs1nQe4MGDdjn69evF1mbgoODWfulGwZ+l84Ts0OHDmHy5Mn4+uuvAeRmz2ZnZ4v67JtvvsE///yD8uXLy1yISvj999/ZM/j78OsnKysLDx48wI4dOxAWFobr16/L5gRdTxZsftMmzf6njSyVibh58yazrKtlufNy85dfflHsf7JYOTo64ttvv2WB8nzSgxqp44+wSk5OFvUFn1RiYWGBsmXLwt3dnVlYeU9LfHy8iHjwMXVKZ2NL45FpnpG8efz4MSpXrozz588zvUBrnObxO++8g7S0NCa7dTod5s6diy+//FJ0Tx7JyclsTYaEhLDf8tmXLi4uMnfh4sWL0bZtW/Y3kbqMjAxWkYLiu77++mvVKgG03kNCQnDw4EFmIABezEOpNSwmJkYWGkJwdXUFAFy7dg3+/v6wsbERHUFpaMPCrzfeGyeVWfzJTZMmTUJ8fLwsppowduxYzJ49W7RJTExMRFxcHJuXNI5KsvHOnTtITU1FSkoKRo4ciUqVKrE1Ru/Ko27duqrvRyiWpO7q1auIiIjAmTNnULNmTRanAeRaKMqWLYszZ84gJSUlz+eQKmHr1q2KGaqCIOD8+fOy4MS0tDRkZmaKdnYARBamyMhIUZAkLepOnTqhTp06ePfdd9l3pMCkEzI4OBgtWrRgE0YQBPzzzz/MvZqcnMyscnzGmNTNQwuSF9BSF21+ERkZKbPUSRcACfVatWohMDAQTZs2Rbdu3ZCdnY2dO3ciLi5O0TUF5ArSwYMHK2ap8eCF0pMnT5CRkYF169Ypln8AgCZNmrB/DxkyBO+88w5GjBgBS0tL0XepqamM1JHlwZTirVK38KZNm0TJH7SY1UBj7uTkJFKAWVlZbL44OTkZjf3hybsSkRo7diwTcFKiz2d3bd68mSlpQmJiIoKCgli/7Nq1C0+fPpVZt8hyBrwQ8kpuB0EQ2OfPnz9HamoqcnJycPXqVZQvX94kgcYTHKV4FZqjZ8+exbZt29g1mZmZ2LRpE6ysrJhSVnI58Yqd3JGGMHfuXDZ3pQSJD5/g17603bdv38aMGTNEm0v6bVhYmEhB00ZCCTSPeKt3y5YtZd8DQLly5VC/fn3RhtrW1lZUsqR169Zo3rw5+15K6gRBgCAISE9Px8qVK1G9enV07dpV1gZDiIqKQkxMDOrXr882nhERETAzMxOVB8nIyBB5IqSkLi0tDTY2NqIxM2apk0LJTUfvTH23detWXLlyBcOGDRPJ/7S0NJQsWVI1i3jOnDl49OgRzp8/z9Y0rVd+3gQHBzO5ISW8SgQ4OTmZPXPbtm3IycnBmDFjRNdYWloiNTUVw4cPx9y5c6HT6fDVV1+J5DitBT5M58CBA0azop8/f44DBw6wucvLeUNGmV27dok8OQQXFxdUqlQJ165dw7Vr11CnTh3RuMfHx8ti5Ki+qZLhQqfTYeHChaLPUlNTRbHK58+fVy3mTvHZPA958uQJkpOT2VyLiorC6NGj8ccff8h+P2fOHNjZ2aFUqVIsJv3x48fYtGmTLI57xYoVLP7YEPJM6lJTU3H27FlFF1laWlqejr1Sg5+fHyvS2KlTJ1GHGfouv1Aqi9CsWTNs2bIFzZs3l5GU1NRURYEv3TF36NCBBY+q7UyBF6RO6Ro/Pz/m5uStVWlpabhz5w5j82lpaYzUSa1NJCRSU1Nx+/Zt+Pj4YN++fSwb7GXg7u7OCOKzZ8+Qk5MjIw9EBoh41alTB+XKlcOpU6fQt29fDBo0CNnZ2aom/L/++kuV1H377bd49uyZyGJA8ViGiCAvCPz9/QHkWhL69OkjKmjNu1+nTJmCoUOHomHDhqr3JUiFgJmZGZo2bcrGJjs7WxbkzYN2vvfu3RO5coAX80Wv14sIkxI2btzIBJRaAD1Z0gwlSiits8TERJHllcD3LSB23ZCyVRKwiYmJTGk8f/4cdnZ2mDx5Mm7evIl69eqZJNB4pKamymJFpRaFx48f4++//4aVlRU+/vhjAC+CxpUIMy9o+VIKpsAQcePXvlLs3Jo1a0Skif83f1Ti/Pnz8ddff2Hq1Kmye9D4833g5+fH/r148WLZb/g5YWVlZVCJ822qV68eQkNDkZCQgOzsbCZjLSwsYGVlZbD+I4+IiAjs2rUL169fZ/M0IiICpUqVEsVtRUdHi5I9pP1L65iXecYsdVLwJWwIJJOlsrtNmzayTZCrqyvS09MVS7HQRtHc3JzpG2m8JZDbx2RJkhoBlEhdUlKSbMymT58u+ps2Khs3bsSsWbNk9wBerAXpZkxKiHicP38eDRs2RPfu3Vk5LZ7UqZ2uQWT4jz/+kMkkc3NzeHl5ISgoCDdv3kSdOnVEHqiEhASZXqtWrRoAcRwhoJ7MEBYWhvr167Pi9HFxcaqeGdL5v/76q+j3SUlJIkvd6tWrGQFUQnJyMnuPL7/8Eh9//DGuXLmCsmXLMo+CKZtIII+kLigoCF5eXmjdujXq1KmDtm3bighEfHw8E4wvg7i4OGZy1uv1sh2D2nc80tPTkZCQIPpPDUqk7sKFC6pFN6nMhRShoaGie9nb25vkAx82bBiysrJEgsHe3p65u5TesUWLFjhy5AhKlCgBnU7HLHX29vYyMzwtyJSUFNSuXRvt2rVDVlYW2+3TpM8vKE4gIiICdnZ2+PHHHxmRcHNzQ+nSpUXXm5ubszgRIDdQW6/XG6yyrbZTSkxMxBdffCEqEzFjxgwAubt3a2trzJ49W/Y7JdN2SEgI3NzcRDt2fqyDg4Nluy1vb2/FoFglUscrPTc3N8VsagCic4q/+OILGTklYaR2SgofezlmzBhGEtQUKc07Q6ROyeWZmZmJ69evw9nZWWQhkvZtaGgoUyzUFiVrZ0REBBOeZKlctmwZjhw5gho1ahgMvlbCtm3bjBIvf39/WeA0JVUolXlwdHRkczuvpI6fE9K4V14+Scn3qFGjEB8fjw4dOoiuISHPb7BtbW0xcOBAdgIPDyqLoZZ5rqSg+TmRnZ2tSOqio6MRGBgo2qRUr14doaGh7J15MmxnZ2c0fIEQERHBLBgkxyIiIuDh4SGaZ1FRUSIlLW3n8+fPYW1tLbLA7Nu3TxTDxG8alEid0gaKXH9SUufm5gYPDw/RqTWurq5IS0tTPBqSL8VC8j4hIQE9evTAhQsXWCjOyZMnGamTxiwqkboHDx6IqiT07dsXZcqUwfr163Hu3DlMmDCBxVAayrgnI4Z0TRg63cHR0RGNGzcG8MLCZyzhYtmyZaKTW5YuXYoRI0awv83NzVG5cmXcv38fAQEBqF27tkje8fyAQPpHGs/m4OCg2IZz587BxcUFvXv3hoWFBWJiYvJ07GJgYCASExPZfDK1Vh+Rvn379rHPevbsycZV6hlUQ55I3dSpU1GnTh1ERkYiMDAQTk5OaNmypUkxHXlBiRIlmJCLi4sTESVD3/FYsGAB9Ho9+49XlFJIzZwENcJIPnApaAdJMHbsCL9Tefr0qUiwN27cGIMGDYK7u7tiPBnF6Zibm8PW1paROj6Ik0DCULozoayoxo0bY/LkyYpERw28tYomfHx8PFMCdG9ra2vUq1dP5LZKTk4WZcIBubvk/FoOnz59qmqxdXZ2Frm6CWrv6urqKiLiagSe4OjoiP79+2PDhg0iYqNE6vg++Pjjj2UWOIIxixRlN/LEmAdvcQBeKAxeuPDzJDIyEidPnlSNWwTUSfWlS5dQo0YNUR9JLXUnT55EkyZNsHnzZuaGUbLUkVLR6/WyRKPq1auL+sXMzEwU+0LgXeem4NKlS4r1JQVBwLZt21C1alVRKSFra2tmBVKrpaaWpcoTGSmxMrTpHD58uGK73d3dYW9vL1LmlIFcqVIlWf88efIEVapUyVPZFF5mJCUlKco9Nzc3dO/eXdSOcuXKITQ0lMlQKakzFc+ePWObESKvaqSO78OEhATRfH727Bmz5JELGBB7P/g2KhV6T0hIULRk8ZnFBGobb0UqWbIk0tPTZclEPFJSUhAdHc1I//79+xEaGsr+/vnnn6HT6VC9enW22TMzM0NWVpZiuMG///4r2hRS33/66ado0aIFli5dqqpDCY6OjkyHSOetodIddnZ2ihtPMggR/vjjD0bcSpQoIVpXM2bMwPr169nf3bp1Q6VKlVj4StOmTWVEvWHDhjhy5Agr88PfzxAPIMTHx6NkyZLQ6XRwdXVFdHQ0YmJioNPpjFqY7ezsMHbsWCQlJbHnKm0OTYWtrS2L2TWl7UAeSZ2vry/mz58PV1dXVK1aFfv27UPnzp3h7e39Ug2XolmzZqwS85EjR0RxH4a+4zF9+nTEx8ez/wylyqtNaqniIbdMWlqaahkSXqHZ29sbFGD8TiEpKYkJBhcXFzbpXV1dRYu1adOmonskJSWJSF2TJk1ku0zaHUl3DCQoXFxcsGjRIhkZMARj536SK9XGxgYODg6iTLHExEQZIfH09FQlKVevXmWJBkq4f/8+4uPjFQsmOzo6irKICDTm0jIzrq6uoqrvagSeQETkk08+Ee0opUp6586dovgkQwRW6Ts+/opi4NQsddLFT+PPkwreOhUWFob27duzIHL+u8jISDafxo0bx45Rorlz6tQplC9fXkSMlAjzzZs3RRaKO3fuwMLCQrHuE5XA4FG2bFmRpS4nJ0dxXPkYLzXUrFkT+/btQ69evXDx4kVFQhUTE4Nr167hnXfeQWBgIGrXrg1AXKiU2jNy5EicPXsWO3fuxP3791WP4TJ0qLih8IzKlSvLPnv27Bns7e1lGwDKtAWgWPhUWnoHMBymIIUaub93756IrLi5uSEmJobJHF7GSuenoWSfiIgIUUHyn3/+GQcPHkTp0qVFsvbdd98VkdXo6GiRPIiMjGR9c+DAAZEsXLJkCVxdXVV1CY/SpUsjLCwM9+/fZ88/cOCAoqUOEJM6stRlZGSgW7duivdPSEhAYGCgbHNO6y00NBQDBgwQtdXe3l4Wz6gGJX2ktI54lC9fnul3qYU1PDxcVQ7Z2tqKTjEiVKxYUaQ/Bg8ezDb5jo6OqpulRYsWYe7cuawv3nvvPbRo0UK03u7du4fBgwfjvffeY15DflNv6oaC+rNEiRL45ptv4OvrCzc3N0XZ9sMPP7B/8x4jFxcXmJmZiY4zVTIw8OB1CJDbh1OmTMHjx49Fc8kQ8kTqUlNTZYRhxYoV6NGjB9q0aWNSALkpaNCgATw8PODt7Y2AgAD06dOHuRO6d++O0NBQeHt7w9bWVlWIW1tbw8nJSfSfGqRWI4LUB0+Bm7yilwrVvFjqpLEAJBhu3rzJ4h6kVkTpwcSJiYmwtbVlOzxPT08ZOVOLXaDFQWSKyIxSQKehtiuB+oEEqTQeQErgPDw8VE9HqF+/Prp27SpyP/GgoGtSvDycnJwUzez0LOmu2dXVVaR05s6dq2iJpjgmnnAbOhGBCF3dunXx008/iZQvub0sLCxQqlQpRVJXvnx5UQVzejclSJWmUvv5mnJSyw2fGVyyZEk2dl9++SX69esHAGjUqBGcnJxYsg5P6qSWOikcHBzw/PlzlChRgsVjDh06FBUqVMBnn32Gd955B7a2tiIS16JFC5ny4d+BQG4qQ/D29kb37t3RtWtXnDp1ShRXRggLC8OzZ8/g4eGBqlWrMiXMjzFlIq9cuRItW7bE+++/b9AKYwhKpK5Tp06oUKGC6gZAidSpFaNet24d/vjjD9mB8lS7beLEiejSpYvRdhpyJfHj5ezsjLi4OFy+fBlOTk4igsVnQFapUkXRKtaqVSt4enrif//7H65cuQJ3d3eEhYVh/PjxyMjIwFdffWXQsyB186WkpIjGztXVlbVj3LhxiIqKUjxSTQpPT0+UKVMGVapUYaf19OzZExkZGSJLvRqpS09Px/P/Y++6w6so3u6596aQHmqA0IvUhBp6702KIIiIIqLY209EpAsIKFhAQZpIVRBUUHov0qRL7xBKIAHS+81+f+R7h9nd2b17k5sC7nmePHC3zE5958yZd2YePFBNvxO++eYbJCUloW/fvjK3leLFi7OyrVKliqwfttlsqoHJiBEj2GkEPET9kSOi0717d2zevBnJyckqUn/58mXN9u7t7Y0mTZqojv8jt4XevXuznQ7IBvn5+anC27hxI9auXYt33nkHNpsNzZo1Q/Xq1Zkfm7LOU59Zo0YNSJIkGxAbVbtoupjEoIULF6JEiRLC9sUPVvv3788Gvr6+vihQoICMcE+dOhUffPCB8Jt16tRR7THp5eUFm81meOoVcJLUVa1alTmV85g5cyZ69Ohh6AgLo5g2bRr27NmDZcuWwcPDg52f6ebmhkWLFmHPnj2YMWOGS77FGxWts9oCAgJYJ9KpUyc24uU7Z0BbqeM7SoKvry/zSSC/Pw8PD5QsWZKRDjJctWrVwr59+zB27FhZGHFxcShQoAAuXboEu92OUqVK6apAfDwobCJYc+fOxe7du2UHtWcVROooz+hbBQoUwPfff68idUFBQbIRV58+fVRhrlmzRtMYApBthUIgpVCJ2rVrY+jQoaqNposUKQKr1cq2VtCS22nlHT81pqwLIsycORPvvfee7FnKmxkzZuDu3btCxVKkbtJvJdGn8GifL5EbgV5c+c7ParXi0KFDOHv2LMqXLy8rR/KBDA4OltV7R9P4tF1BZGQkK5vSpUvj0qVLmD17Nj788EMkJiayAduBAwcYgeXbp4jUVa5cGYmJiaoRLw8ifoMHD1b5exLCw8MRGRmpqsd83hQrVgxubm6ayhwPvTzx8PAQTmNt2LCB2QflOZNApi00unikRYsWGDBggGpWwt3dHRaLBdOnT8dff/2F2NhYTJ06FU8//bQwHD1Sx8clMDAQdrsdGzZsQNOmTWU2lny4QkND2ca6yjraoEEDlCxZEtu3b0d6erps8P7HH3+gatWqQjJRp04d1KpVS1i/lYOur7/+GnFxcUL/ORHRByCrL0q78swzz7B98uiektQBmTbFkatJu3btcOvWLfa9gIAAFuZTTz0lW+GZkpKiciGgGTUlskLqOnTogPj4eFy6dElF6iIiIjRJHbUZpfJGg8RVq1YxPzJSa319fVXhValSRXbqSXBwME6fPs18wZVES5ke3k58/PHHukd3EWibGJ6QKRfyTZo0CRs2bJCVpYeHB6t7vr6+skH///73P4SGhjKfbwKVU6VKlVQijjOuCgSnSF2vXr1ke07x+O6779C/f3/Dh3nnVyg7igULFmDhwoWIjo4WGgq6Rp2OUqkjgyHy2/P19WXvxcXFISYmRtVxU4H7+vqicePGsFgssukpmn4lHzv+PEoeRBKrV6/OrpFhoG/SNKmWAymlg0bd5cqVQ+fOnYXPBQYGYuTIkWwlKjXUMWPGIDg4WKXc3blzR9Y5ijpsHx8fzSliHx8fWd5T5xUdHY3ixYtj1qxZsoUv7u7u+OGHH5gjL4HC0FpuP3z4cPz9999wd3eHJEky8qmn1BFIFaZn3d3dWR2htiMiCfPnz1d1PlR3KMzmzZvjjz/+YB2JaDqaj+vVq1exc+dO4T1lnMkhnOpjUlISmwIqWbIkFixYwAyQI6WOn1qiuBYuXFhFkGjBD9+R8ufK8gbvzz//xPLly9GkSRN4eXkJF3107twZK1asYKq/1WrF6tWr2e72fLiffPIJ0tPTmSGn+sjbACNHtAGZdZDSTJ0FD8rTokWLau6VKfLlSk5OdkjqKD/JJijJBE8GLBYL/Pz88PHHH2uuanSk1E2ePBmzZ89m39m3b5+qE3Vzc8PVq1dl09HKOme322W2kHc7oeloEWn57rvvcPz4cdk9GoApv2Gz2VS27vz587qqCJ/fyncDAgKwcuVKtnE4oPapAzKJUGBgINtuSTlTNHbsWNa2qb4FBASwsJRKXVJSkuzcVXpH1A9kZfqV8jIuLg5RUVEYOHCgbD9Bvr3z9YviqJzVISWLByl1tDp6woQJ8PX1Rfv27R0uSFIuClKmkW+zhQsX1tzmivDyyy+zwTqvKittyocffohOnTrJCDZP6nx8fFi63nvvPUybNo35wPOgKVkfHx+VTRH1g47gFKkbMWKE6vByHrNmzcrSgdT5AZUrV8Yrr7yiqhCDBw9mx4DpkToiG3yl9vHxQXBwMJ555hmhkfTz82MVPjY2FhcvXlQZXWrw/Lc3b97MFKRXXnkFcXFxbLl9uXLlhI2UjvUhA1emTBlWGZVGRa+RT548mUnSV69exfr163H58mVs3bpVFcbEiROZ9E2GgcglH4+6devi3XfflXXoWiMUrWlfDw8PWQOglaWRkZGwWCx44403hNOzVqtV1sj5va9EGDJkiNDnCzBG6qijovKk6QQATCFVtqEPP/wQoaGhqtE4lROVX9myZdGjRw+WRzTVULJkSbz++uuydy0WC8qVKyfbuPP777/HmDFj4OnpicuXL8sOsyaQAU9MTGT5UKpUKRQqVIgp9bwa5O/vr5peI6LUoEEDeHl5oWXLlipfUSCTyNSuXVtzVSJf3l27dkX//v2ZURSRusKFC6Nv374yw9moUSOZIzaQuWqWnPKJ5FO5ubu7y47McoTPP/8cAQEBrG5UqFBBFTdqG+7u7prh8m2SVCQjpI5XDQB9X04ePKEKCgpirg/kW7V27VrcuHFDpugVL14cn3zyCV5//XWZTRHtnVeuXDnZdK2y7dSsWVMWB/5ZyiPR4IHaOP99IgVGlPSnnnqKuRgQ6tWrx+onr9aISF3BggVlfou8vaK8t9vtKFiwIObMmYPY2FiWTrJ5/ECTbIG/vz8LS6nUAY/8NefNm8fUL+WAlf+Go2s8iGDGxsbi/v37KF++vEwJ58tBOfNB8ejZsycrYxGpo/KiuIwaNQrR0dGaM2c8OnToIBsg6LlpBAQEsPv8Yg0aOLZv3162PcmMGTPY4hDlgIbqE29PeNLm6+vLFMjevXsL4wM8qtvUN/IzZTlO6p5kXLhwAfPnz5dl4q+//ip7RiTTU2GR4eAbMSl1q1evFm4b4uHhATc3N3h7e2Ps2LFYtGiRatqIDAdvkHx8fFC0aFFkZGTgyy+/lC0rd3NzUxmbUqVK4aWXXkKJEiWYwfrmm29USh1BpBTRyEWkTlSoUAFt27bVbVj0Db5De/jwIU6cOIEjR44gLCxM5jSvVZkXLVrEpuKBR0bcarWyPJo8eTLzczCydQKFV7RoUaF/Dw89X0L6fpMmTWSDHz5dSpJusVhQsWJFSJLECBYZcipH+rdnz56y6XNS9ihvyShQHIsWLYrp06fj4MGDmr5etMoLyHRYHj9+PCwWCypUqIC6deuqnicCkpiYiNatW2Px4sWM3FF94jsckS9gQEAAYmJisHPnTlgsFuzcuVPopN6gQQMcO3ZM86guvo4p66WjTVGV4LeXefrpp1GrVi0Aj0gddVwJCQnYvXu3oTMbixQpwnxjqWy8vb1lvqP16tVjCo6Hh4emfy/fHvi9KYnUzZ8/X0jClaqNUVLHxyMiIgJbtmxB0aJF2fYiTZo0QenSpbF27VpW/nxnzb9v5Jt8uztx4gReeeUVWVsLCAjAggULUKdOHdYelErdDz/8wAgIvzqfbLORaXJA7Y9XsWJF/Pnnn1i1apWsbivtrGj7Kjc3N5Z+vgzpmp+fHysjSi+fX6T0EKkrUaIE/Pz8NNsE79f5/PPPq3ztRMTWGVIXFRWFwoULw8vLi5E0ntSJZlL8/Pzw+++/Y+/evfjqq6+Etn3kyJFYsmSJzIXGkS3mwZeF3vQrP8Bq0KABc1Gh/rl3796q94OCglCpUiWMGzfOUFz4Nke2nK/LVqsVO3fuZLNcNFCg+rlt2zZGyE1S5wJQJjZt2lTo16XEp59+itjYWKaK8JVLSWw+++wzodLp5+eH8PBwdOnSBR9++KHqHiBWgZQdGal3yu/abDY89dRTuH37NooXLw5JktCrVy9NUqfEoEGDdPeQI3To0IEpkloSON/ZBgYGyox/3759sWbNGgDaqxiLFy+O1157DcePH8eZM2eYszI/QnJzc2NGb8CAAaowRGdKRkVFqTrq2bNny6Y1AH1SxyufnTt3xsmTJ3H69Gls2LCBOajT+5Qfoo6GlC7ltghFihSRTZfSKJBIgpLUFShQAB9++CFKlSqlqb66ubkxUqE37U6gOCUkJMBms2HgwIHM+JLKyatNw4YNQ9euXWXG3mq1wt/fP0sGi4evry/69+8v3MbEWVI3bNgw2Qp0climKWwid9RJOpp6vXr1qmyzWjLuynZx+PBh1ilS+T3zzDOYNWuW7Dm+nlB58aSuSpUqQhJObZvaA9/ewsLChNPBQKYNWbNmDduzz2KxoFGjRmyvNr7sKG945UOLnBpBSEgILBaLzJWnQIECGDx4sGx62t/fH9999x2rd3wdnzVrFrtO7cnoWdBKvzHy8+LVFrrOQ6uNXbp0CTt37pQRKt7mFihQABaLRUi8qY0TqaPFbGRrlIvLlPZJGUeRvfH09ESVKlVUpHTp0qX47LPPWBhr1qxBSkoKGwhSvvKkTk8NrV+/vuYiAS8vL9n+dM6Cr2/KNsa3VX9/f5anbm5ujMCTzRLlj8ViwcWLF1UKrhaIIPJloyyXli1bsnZMcee/7ewemDzEdP8/DKoQRkcJ5IdCDvw2mw2hoaE4efKkqpFr7dZN6tWAAQNUlYoalNbKUCBzUcHdu3dZ46J3Jk+ejBEjRmiO6oyQujNnzqBChQqGVsQC2v4c5KfCT/cpYbFY0L17d5nzrVY5kJJCjtY2m43lEeVhUlKSappCy+dT5PP4+uuvQ5IkhIaG4p133kFsbKwuEaF8J7WVV+g2btyIlJQUFjc9Ujd27FjUrFkTv//+O65du6ZJtnjnYuCRjC8aCAwYMAA3btwQugEUK1YMycnJhuq8kiTw+Pjjj9GmTRvUq1cPKSkpsjp7/fp1VKlSxWUr5AnLly8XlimRuuLFi6vOltQCX2e7dOkiC5fqo97WIzyURpkUF7Ivbm5urPyoE6C6ym9YKwKVQXBwMOrUqYNWrVppug1s2LABf/75J/vt5uaGZcuWYceOHZrnIhOUC98aNWrEwuLr1sKFCzFx4kTZNeqojAwUlKBOmHdD4LcD4vHWW29h9erVOHv2rKwz9/b2xoQJE9CnTx+m/hgtO6W6r5UGvr6ItoohFCpUCC1btsShQ4fYNb6TL1CgAAoVKsR8SEWkLiAgAO+//z6rI9T+ChYsyFb/u7u7q+ydcvAhGoxYLBacO3cOMTExWLVqFZuV6dChg4yw0Wb4vJ83ILedRlxQcgI8qdPrKz08PJidDA0NZYMU6p+c2cNRC2PHjkXz5s1lK21FYsD06dNRpUoV1v75vmDcuHH49ddfHboDiZDvSN2RI0fw/vvvw2q1IigoCMuWLZNV1J07d2LgwIFsKbzW4d5ZBe/r5Az4qbONGzdi/fr1hsOg0YJoyw5qOHq+isppYpLL+RGJVpzDwsJ0l3lTpTK6AIaMhpL8VK1aFVeuXDE0AuH9VhwZCX6Uo1xoYMSHxhEsFgtefPFFbNu2DYsXL9ZVaDw8PDTzyWKxyOJD6RKROhq10oHhyjwoXLgw7t+/zzqBBg0aYOnSpUxZFpE6f39/TJ48WUjqgoKCHO70TrBarfjhhx9UW2MAmW2GfI9EhnX//v2GTxLQQ8eOHWWdqKhMQkNDsWvXLpQqVYqRuuws4qLOzajao4RSqdu3bx+zXWTU9fZr42G1WrF161bUrVsXBQsW1N0zskqVKrJ9F4HMabnnn3/e6TTwaj1v25SKO/Co7inVLWdAedakSRPdFYtU/kqFpnfv3rh37x4jc0bL7r333pNtZ6VF6vh+ydG+nYCcBPJhFihQgO3rB2hPv/Ikm77tChtHCAgIwCuvvMJIndb+rby7ACAnLJ6enujQoYNLju90Bnz9E9mDhQsXMjeQmjVr4tKlS6hYsSKio6OxZs0apsgbaYNz587VPXDBw8NDtSOBiNQVK1YMo0aNYnnF9wXVq1fPsr3Kd9OvwcHB2LRpE3bt2oVKlSqpDkYHMpfE79y50+WEDshsbE2aNMHkyZOdeu+ZZ57BihUr0Lt3b5QoUUK1ok4Pn3/+Ob755hvh2afU+I0afCBTMRk2bBjzv9IilxUrVsShQ4cMjaZpakc0xSOCqGGVL1/e8IpBgtZGlASe1FEnYNR3xhnMmzfP8CHkRqCn1BGoDikNwsmTJ/HPP/+wOuHl5YUBAwawjrRx48aYMGGCcJT3xRdfqPavKlasmMMpeB5Dhw41vFCAR6FChQwdm+cIGzduxMiRI3WfmTZtGs6cOZOtaUAeFI7o9AkjUCp1YWFh+OSTTwA8InXODCTbtm3rkrObnYHI8V4P169fV+1R5gwoz5YsWaJLXsimiKY/+WMKjW651bt3b9jtdna8oBH7aKTstFxziNTRjA0/GOOnX3nQQP3FF19k26hoxSEyMpKtVnXG/mqFR0odv70Rn5aNGzdmefCTVThy5Rg0aJDsGDvyO3zttdeQmprK2qURpe7VV1/FhAkTnIqfEfLtrJCkhXyn1PGrnPjtHnisXr0aBw8eRJ8+fTS3nsgqrFYr/v77b837NWvWRLt27WRLuoHMxkI78jvCxIkTZQcbKw9Y5pEVUhcQEIAvvviC7SmopdQ5g7p16yI1NVUl7ytBowtnyZsIS5YscbjLO6Xtvffey1FS5+Hh4ZBgOgMjpC4sLAxXr15VOR+XLFkSJUuWZKs2lUqel5cXRo0aJQxz2LBhqmvt27fX3f/vcYSHhweqVasmI8TZUeqoPtO0v7NQkjoeDRs2xDfffGPYfuQVjO5oT3DmhBoROnbsiJUrV2oe40jQUuoI3t7eTpe91Wpl2z/pbVwPwLCvlRapa968OTIyMvDJJ59g0aJFsneULhYEmo6uVKkSunfvjq1bt2qejVykSBHme+mKgQCVx+zZs9G3b1/Z4gbl+bq5hax+02KxyHiGM/2ss99xBFf000A+JHWEGzduYOvWrarOqX79+sx5t0ePHmjWrJlspRMhJSVFttLSVSMH2uvstddey/JUkiOVgQc1ZppqcwZEwFw1AnBE6FwNo46zZLDpIOTcVjCyAtFyeBH0pqvJAGW3XJxRlR83uIrUAcC5c+c0O05H0CN1NpvN8OA0r8n3lStX2J6YOY2XX34Z/fr1c7iPGg2MsrJRqx569uyJ4cOHY/DgwZrPxMfHG/Yj49PB/5/vD5SnelAbVw7+6Mza8uXLMxVZr248++yzsNlswlMmlHB3d9ftb6hPqlatGusPR48ejQkTJrh0Ojg3QX2kK3zqnEXDhg0xfPhwptxnF3lG6iIiIoSrS9euXQs3NzcMHDgQCxcuVHVY/Iile/fuOHHihJDUTZ48GePHj3d9xP8fWXFgzAqyotQRyOchK6Ru48aNDg8vFoGm8Zwd1bsCTz/9NH7++ed8r3gA+j51RkGGN7fJ9uME3l4MHz48W2EpfdOcgR6pM4rY2FiXDdCyivLly2dp6j0r4FeEOnoOcLyJrrPw9PTU3ISZ4Mw3efJntB58//33sn3TCHReL78vKU3DimCxWAz7N965c0eX3IgGouPHj8eHH37oMrUpt6GcUnYV1q1bx3yjtWCz2RzWM2eQZyVQvHhxYWLtdjt69uyJMWPGCP1vYmNjmRy+Z88e1aaqhBEjRsi2B+G3HXmckB1Slx2lzshRKiIMHDgQVqsVXbt2zdL72YHFYsFzzz2X69/NCrK6IIeHo4UwJh4NLtauXZvlqVNXwBWkLi8GSo8DtBZn5TfwZMjoYG7IkCGyowgJXbt2xV9//YWSJUvCZrPh+PHjws3VswLRdPeNGzdQq1YtPHz4UPiOxWJxmf9qXqBly5ayradchS5duhg6U9mVyHcLJVauXIl9+/ZhwoQJaNWqFVasWAHg0VEgK1euRIMGDdCkSRMEBwejRYsWwnA8PT3h7+8v+3sc4QpSl5udvs1mw4svvpgnfhWPE4xOv+ph0qRJGDhwoFOHPf/XQEQor48vpJWEj+v0VG7g2LFjbIsiZ0D7FLp6+jU/4/XXX0dGRgYbFNaqVStHVdzSpUsjPDw8S7M3uYUaNWroHo3oCJ06dcryzMmoUaPYhvd5DYuU19Yul0DHscTExDxWBC89PR3u7u7o0aOHcCWwHm7fvs2IL+0EbyJ/gMq1VKlS7Ng1E67HjBkz8N5772Hp0qXCjahzC9HR0di4ceNjoyQ/TrDb7bh27ZrmqSn5CTSI+490u7mKjIwMWCyW/7ygYM7b5HO4ublh5cqVsvPgjCIvlDoTxkBlkhMrdU08Ail18fHxeRqPwMBAk9DlEGw222NB6EzkLExbmgmzt38MYHTJvBJEHExSl38h8pcx4Tr06NEDTZo0MbTqz4QJEyYed5i9/RMMUupovyUT+QvmFEzOo1ChQrr7TpowYcLEkwST1D3B8PX1xaFDh/J01Z8JEyZMmMjE8OHDNc+xNWHCFTAXSpgwYcKECRMmTDwBMD0LTZgwYcKECRMmngD8Z5Q6SZIQFxcHPz+///ySZxMmTJgwYcLEk4f/DKkzYcKECRMmTJh4kmFOv5owYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEEwCT1JkwYcKECRMmTDwBMEmdCRMmTJgwYcLEE4DHktQdOXIEzZs3R8uWLdG3b1+kpaXldZRMmDBhwoQJEybyFI8lqQsODsamTZuwa9cuVKpUCX/88YfDdyRJQmxsLCRJyvkImjBhwoQJEyZM5DIeS1JXvHhxeHt7AwDc3d3h5ubm8J24uDgEBAQgLi4up6NnwoQJEyZMmDCR63gsSR3hxo0b2Lp1K7p166a6l5KSgtjYWNmfFtavX4+QkBAkJydj5cqVCA0NxeDBgzFx4kSsXr2aPffSSy/h6aefZmrfH3/8geeeew4AMG3aNISGhqJWrVqoWLEiOnTowN7bvHkz2rRpg9q1a2Pt2rUAgBUrVqB8+fIoX748GjVqhO+++w6hoaH44IMP8OKLL2LVqlVITExEw4YNUbZsWdSqVQuhoaEICQnBuHHjWNgjR45E8+bNERcXh27duqFevXqoU6cOfvnlF9jtdjRv3hxHjx5lz69cuRKNGjVC+fLl0bZtW0iShF9++QVTp04V5s1zzz2HPn36AAC+/fZbjBgxAp07d8auXbswbdo0/Pjjj2jTpg3ef/99vPHGG6hduzYaNGiABg0aoFWrVjhx4gRu376NqlWrolKlSiwdoaGhqFmzJiZMmMC+dfPmTTRq1AiNGjXCrVu3cPDgQbRq1QoPHz5EvXr18OOPP6J27drYvXs3xo4dixo1aqBevXo4e/YshgwZghkzZqB+/fqYOXMmypcvLysDAOjcuTPmzJmDxo0bIyUlBX/88Qdq166N+vXrIyQkBJUrV0alSpVQtmxZ1K5dG6GhoVi6dCn++OMPjBs3Dv369cMPP/yAhg0bYvr06ejWrRtefvll2Td27tyJDz74AAAwbtw4TJw4Ec2bN0dISAhCQkJQpUoV1KtXD6GhoXjzzTfxyiuvYNmyZQCAdevWoVatWqhVqxZat26NxYsXq8rjp59+wjfffKO6LkkS2rZti5CQEHTq1Al2u11Ynjzeeecd/Pjjj6rrFO+mTZvixIkTeP3111GuXDlMmTIF/fr1w+LFi9GhQwdMnToVoaGhCAsLQ506dfDss8/KwunTpw/69esHAPjqq69Qrlw5vPrqq+z+rFmzEBYWhmvXrqF///6oWbMmmjZtiiVLlsjqOGH79u2oVasWtm/fDgD49ddfMWnSJFk9qV27NkJCQjB06FBcvnwZDRs2RExMDJo0aYKQkBA888wzqnAvXryIsLAwNG3aFLNmzcIrr7yCt99+G6GhoWjUqBHq16+PefPmoXz58qhatSq6du2KuLg49OrVC6GhoejSpQu+/fZbNGjQADdu3MArr7yCLl264IcffsDs2bNZXqxbt459c8uWLayOtW7dGl9//TU++OAD7N+/H+3atcPo0aMxZcoUdOjQAW+88QZ7LyUlBY0aNcKZM2cAAJGRkazuzp49G127dsW0adNQv359jBw5EgDw77//olmzZpg8eTLKli2L8uXLo0ePHqxdVqlSBVevXgUAhIeHIywsjNnLf/75By1btsT48eNRo0YN1K1bF0uWLEGdOnUwf/58Zu8qVqyILVu2yPJ16NChOHjwIABg6dKlmDZtGl599VX8888/ADLtSc2aNVkbbN++PdLT0wEA7du3R7ly5VChQgV8+eWXCAsLQ9myZdG0aVNW/gsXLsSbb76Jo0ePomXLloiOjkZYWBhu3LiBEydOoE6dOpg7dy7CwsJw8+ZNAMDVq1cRFhaGadOm4X//+5/s2owZM9C0aVNUqFCBfbtmzZrMrleuXJnVkwcPHmDHjh2oUKECGjdujPj4ePTu3Rvh4eEYMGAAvvvuO1SvXh1PPfUUKlSogIoVK+KHH35A48aNmf2rX78+6tatizlz5qBevXq4ceMG3n33XXTo0AFLlixBs2bNMHLkSBw4cABly5ZF/fr1MXv2bNSrV4+VP49Dhw6hbt26aNeuHVJSUgBk2qNOnTph4sSJaNKkCR48eAAAePHFF/Hrr7+qyqtDhw6YMWMGwsLCcP36ddU3duzYgdq1a6Nbt27IyMiA3W5HixYtcPjwYQCZ7bxhw4a4ffs23n77bfz8888ICwvDd999pwqLsGfPHrRv3x5Tpkxhef3yyy/j5ZdfRvny5fHll1+iYcOGOH/+PAYOHIgKFSpg5syZ7N06deqgU6dOrKyrVauGOnXqoEuXLswO7tixA7Vq1UKNGjXw9ddfs3ry7rvvYs+ePQCAOXPm4P3338fBgwfRtm1bjBkzBp9//jmaNWuG0NBQ1rc1adIE9+7dQ9euXbFt2zYAQFpaGtq3b486dergwIEDiIqKQpMmTdCgQQP8/PPPeO211/Dll19i+fLlWLJkCcqVK4dKlSqhbt26zM7v2rULtWrVwubNm5GYmIhWrVqhXr16OH78OG7cuIF69erp8hgG6TFFTEyM1KJFC+n8+fPC+2PHjpUAqP5iYmJUz/7yyy8SACkuLk564403JACSv7+/FBoaKr366qvsOQojMTFRkiRJslqtEmVh69atVd9KT0+XJEmShg0bxq599NFHsrDor1q1ahIAqXz58uza/v37hWngi41+Hzt2THb/5Zdflu7evSsBkLp168aef+mll2TPpaamSi+99JJUv359YT7ScxkZGbL3atSoITVq1Ehq0aKFZhwBSLNmzZKmTZsmu9a+fXupePHiqrRs2bKFXdu+fTsLe8WKFRIAlt+TJ0+Whbd8+XKH+aSM/9mzZ6X33ntPN+4ApEGDBklvvPGGVL16ddn14OBg1TckSZLGjx8vFSpUSFjG/F/58uVVeTB8+HDJ399fCggIkABIffv2VZVH7969pVatWqmup6eny8K/f/++sDxFZat1HYD0zDPPaKahadOmsvqqld/KMAlhYWESAGn9+vWy+y1atJCqVq2qiteECRMkANLEiRMlSZKkIUOGSKGhoayeUDumPypf5XW73S4L97ffflOlrXTp0rrld/jwYVl7pec3bdokS0fHjh1Z+gMDA9k3R48eLfn6+qryt2HDhrr1+Ny5c6xeSpIkzZkzR/VsgwYNZO89++yzwjC/+OIL9v/hw4dLkvTIbq5bt06SJElq166d6j3Kb74N0G8e7u7u0pdffilJkiQNGDBAatSokeTm5iZ9/fXXqjpBf5GRkaq6rPwbNWqU7P2OHTtKwCM7MHbsWOnHH3+UAEhFixaVAEiTJk2SJEmSPv74Y1W+rlmzRgIgBQUFObQHfPlXrFiR/d6+fbsEgIWl9zdw4ECpadOm7HexYsUkANK4ceMkf39/WR4DkJo1a8b+TzZj6dKlqvYxY8YM9tyNGzckSZKY3fL29pYASAcPHpTlHQ+6VqFCBQmAtGHDBtU3Jk2axJ6LjY2VoqOjJSDTpkuSxN7dtm2b5Ofnx9JRr149VViE2rVrq9Is+nv11VdVZTd16lRVveT/Hj58qIo3/Y0dO1YKDAyUJkyYIEs/XzZaf/v27ZMASJUqVZIkSZIiIiLYvRkzZrD7FC93d3epUaNG0oABA1RhkZ2fMmWKBEAaPXq0dPHiRXZ//vz50pgxYyQA0saNGzXzkfBYKnV2ux0DBgzAmDFj8NRTTwmfGTFiBGJiYthfeHi4Zng2mw0AkJ6ezph9SkoK7HY7UlNTVc/TKMjoNf6eloKSmJioGY4RKN+z2+3sW5Q+0XOUTkffVeaDxWJBSkoKi7fee/z3gUzFU1RufN7w/7dYLACAjIwMzTRoQfp/VVW5mMZImilsyiMj39SqM0qEhYUJy6x48eIoWbKk5jdEcaF3jcTPlYiLi0NYWJjsmlZ+i0CqjDLuiYmJwvjTc/y//HNUT5RQ1j9Rvmt9SwsJCQkAwNJP7YB/LzExUbMupKSkICgoiKlFroQyfUbyhZ5R/iuCozYPZLbVtLQ0FhcqK0ftLqu2iL7JhwM8qmMEZV0AHuWXXppF8RT9NtLuxo0bJ1OM+bDofSN2VQn+21rxMGKb+DJTQhRXQJ3PVNaidqEFRzZDFAYfB2qTovta3zfaDziKi7Lv4vM5ISEBaWlpsvagF6bSxjsbv8eS1K1cuRL79u3DhAkT0KpVK6xYsUL1jKenJ/z9/WV/WiCfPLvdzipnSkoK0tPTWYbyBiM7pE5Z+QlUIV1F6lJTU9m3eJ9DESHi08lD4haVaKVP1JCUzyh9Ht3c3ODp6al6ls8brXwSxcVoQ1Fed4bUiYyWCFp5qYS3t7fqufT0dLi5ubGORyvPRXljNH6uRGxsLPNtJYiIt6SxOEmr401ISBDGn57j/zWSTqtVbuZE+a71LS1QZ0Xpp3bAv6eVDoqDh4cHPDw8HMTeeRgteyO+yCI4avPAI/JAcUlPT0dycjIkSdKNn5Ey1ctTPhzRs6I0i2y8IyjrBxESI3nv5uYmiwe9y+eNVh7rkUc9Uqc1IBaBLzMl+Gs8+RANKtPT01k6jJA6R4TTEakTEWG9tND1rNhKZXjKvksUL63BqjIMpY13Nn5Za9V5jP79+6N///4uC0+k1AFAUlISy1C+wuWWUqfVGYogIjoU56wqdUaIrKPOLyUlBX5+frJrNptNSOq0lDpRmHq/lWG6ubkJO3KjBs5qtTql1KWlpTnsIESkzm63w2azOSR1+UWpi42NhY+PjyoeNptN9n2tvHC1UqcEtR9HhDc7Sh2lPzk5WfVeYmKiivTycfD09BS2g+zCiJIGiFUrV4WvtH12u93QwNXIYMsIqdMiP3pKnREVSxk+wZmZFr6N89/llSqtPBb1Kcp7ovtaJFfvG0aUOhqUOFLqHPUTRuImCiOvlDrRzI9WmBQvLbtGduo/rdS5GiKlDpAXgqtInVblpsqflJTErhkZ3Wh9nxQmIOtKHR9XLbnfiFKnNKS5qdRpGbPsKnVaHQA956iD8PHxUZXv46bUxcXFqUiLKL+1yjKnlTqtsleWjSuUOtF7jpQ6Z0idMyqSK0mdaGBpRKlT2r709HRDxMfVSp2yjYmUOqoP8fHxut9VxpOHM6ROqdSJ+gmtPHaW1IkIgyM4o9Rp5TMRE2eUOkdxE03POlLqqGxdrdQp89eIUqdlD6htu0qpM0kdtJU6vhD0RkF0zd3dXXVN+bxe5fbw8MgyQ9cjdVlV6hxVLKOkTmlIc1upEz3jyL+BD1tLHRPB6IhYpOCQykX5ld+VurS0NFU6RPmtjJuyozFK6hwpdUoCQveUddSIUueIlCuVOlFYlA4RMXKW1FF8lGGJ/MCMkC5H0KvvWSF1uaHUUedpsVg046+n1Gl1/Eq7TvHk4Yz7jFKpozJ1BanTsh2ib2iB6poRpU5r+pXECZFbghYcxY0XPETvZEWpy8jIUH3XiG+lng3h67CbmxuLl1G7Zip1LoCWUsdPvxohdUq/PWocfAehV7mV77uK1PGkStlZ0ahA1Ik5qlgpKSnChqZ8JrtKnXKEpoyrXgesRbL4/NGDllLHQ+Sg7ShsngyQEVEqdVrqqBFlyREpcWZqXw/KcjSi1FF56nUIaWlpqjiKlDq9tkVxUI7glWUjyk9H9dqIUkf2Q6SypaamOkXqHHVOPBzF3Znv6YVvRE3nlRJ6L6eUOn67B6246fnUaUHkj+1KpU4UDyN2VYnU1FQWV70FOkaRFaWOvquceXKFUqdH2vhvie6L0qKMszPQsyF8Hfbz82PxSkpKEn5Ladd4f/isxM8kdVArdbzzshFSRw6uWqTMqFLnLKnT83nLLaXOEVyh1DlS5rKi1BkhdR4eHuw5vZVZIjLqjFJH5ZObSp2RkbMRKMvRiFKnNLRacVEaM5FSx/svatULR6SO/C6dWf1IYSqVOq1BkxJaSp1WHLRInTMuGs7AaNvmwcddpNQZCTs7Sh1P6pT5QnHTU+q0ICJ1drtdlt7s+NQ5ioeW0iu6RnHVCssZUqdlZ6jO8rZIafeUBMyoUqc3yNFaCCFabMTHUS8t/DPOwIhSZ7PZVIM+Z5U6T09PU6nLCqgTTU9PR3p6usxQGyF1VIhGSJ0rlTo9Pz8tpU70HKVbqSjoGWJHq9j495QdlbNKXXZIXXaUOh8fH/acEeLI/98ZpY6vf7nlU5cVQyZCVpQ6uudoxaDWaFg0shU974xSp1UntaCl1GkNmpTQInVa0FIcslOOemptVkid6J4o3nmh1FFac1qpowUzejCi1PFwZlutrJI6kZqsZWeozouUOq02Z5TUaS0sArSVOuXACoAsjnpp4Z9xBkaUOlH71hNPRD51ogV1jmCSOsiVErvdLqtYriZ1rlTq9OLkrFInuqdniI3sQ6YMn/C4KHXUoBw9+zgqdTlF6pxR6kTtQy+OIqVOLxwt1UAUrlad1IKWT53WoEmJrJI6Z8tZj7jxZEHp8O1qUpebSp3SNxp4lFZXKnU8+BWOjuCsUqdlB0TXjJA6EYEzYlPoGtV53hY5UuqM1icRQSNoKXUiIsjHUSstjuyPo7jyECl1RkmdnlJHwoIzMEkdsq/UUUPJaaVOqXgZJXVGlDrRPWeIlRZEJERPqeP9y4x+2wjhygqp45U6vdWHplKnjodenc8qqdNS6rTC4feHchSuqE4a2YA3u0qdVgcvep7iqvc9JfQGX/y7SrXTSP3QaxPKcHJTqRO1EXrH6FQmD2eUOiOkzlmlzhlSR9tH6YVldLW3s0odP3vjqM2JkJGRkatKXXY2/NeyTRaLJUeVOiOr4E1Sh+wrdVTZclqp06sgeqQlJ5Q6Z0idskHZbDbNFWVubm6qfeEcfVtvysNVSp0eTKVOHQ+9Op9VUuesUhcXFwcg60qdnopmVKkTra6j5yh8I2qdluKQnXIW2Y/sqBeisEXx1gvbFUqdqI1o5Z+j+ADOKXVGVgZbrdYcU+q8vb1V+0Qqn3FGlRNd01Lq+AFEVpQ6QN2eeLhaqcvOhv9atsnT0zNHlTojPrQmqUP2lTqqbDmt1OUUqcsLpU6kgpBi4ubm5hSh1Bsdu0qp00NuKXWSJKlWRhFySqlzNDLMqlJHAyi9uGgNMowqddTJZ1WpM+K07eXlpRs2oK0wZIXUZaWctWxObpK6/KLUaU2F60G5ebooHKNKHbX1nFLqiEjohZVTSh3/TWU+ZGRkGPKrc5VSR+1Sr9xzQqnz9PTMUaXOSB6apA5PvlKnFyZPurQqKpA1OZ2eEyl1IpBiYrPZnCKUeqPjx1mp44kPYHz/KCPfN1p+joxIVpU6vbqrdd1ZpY46+ZxU6pSdsygtWgpDbil1RvI3p0mdsj1r1ausKHUUVk4pdVp7SvIwqtRRW88ppc4IqcuuUufp6Qmr1SoLS0nGHW0/ogU9pU4ZH5ruFZWP1WqFu7u7brlrKXWOtnuic89FcTOVunyCJ12po2/SIdvK54wodTSVpfU9LYiMiNaZk/lRqUtLS3O4oi27Sh2/pQ6v1CnD0Rt15pRS58iIZFWpywqpy49KnRFS54xSp5XfWmX/uJA6ZXvWCj8rSh2VRU4pdY5W6vNx+C8oddRW+LAcKXVacVZCT6lTgjaQ1yKCfD44Uup4IudoICua3jaq1IkIo6nU5QD0lLr09HSZX4yoQPOjUpeenq7a+FFrabwRpY7fLkCZDj1Hb5ERyY5SJzrHNSeVOsDx5o85pdQpw9EbdSrLw5mOUW+K9XFW6qjc+PohypvsKHXKuixKC3UevEHXInWO8uJJUeq0ws+KUqdUXEQDSb22k5Ki3kuTh7IekM8vX565qdRptW9HpI7ey65SR22FD4sn4zabzSmljs9HPaVOFF5KivY2KHw+OFLqeBvvaBAv6oOMKnUimEpdDkBPqQPkRsjPz09zpJiflDrgkbqmRzR40qVVUQE1qdOLtzJ8Vyp1/v7+mvmvFaYyDCCz4Ro5n9UIsqLUFShQgP1fy6dOGY7eqJO/JsojJYyQKuDxUOoc7XfH1w8vLy9huPlFqdM6SUCr7PMTqRMNxETx1otTdpQ6/r5RpY4G7Ho2TFkPyD7x9iMnlTplnLXatyNSR+/ltFLn7++fK0od1SNXKHV83ByVYXaUOhFMpS4HoFTqPD09Vbujp6Q82iFaa6QoImXk3E5Q+knxcDWpIyKmRzR40qVVUfmwjMRbGb4rlTqRQcuKUmfk8G6jBiYrSh1flq5W6lxJ6h4Hpc5ROHz9EHV4onynZ7WQFaVO+ZyI1Dk68zM/K3V64eWGUsffN6rU0fecIXVkn/h45KRSp0R2SR2fB8pzmHlkVanz9/fPsk+dcuGRHlyp1InKUgumUvcYQKnUKUftVOhaDUZvzyqlGqQ3ElUaFmXlyiqpe5KVOqvVmiWlTi89hJxU6vijbZRKndX6qFlmRakzsgv5k6TUiZ4XHeFE8dVS6pTIKaWOHLxFpE6rLj8OSp1eeK5U6lJTU2VTdtlR6uh7WVHqROpOdpQ6I6dRAK5V6kjlzi9Knd40uCi8/4pSp9wcXA/Gc9AFOHv2LA4cOIDGjRujatWqOHfuHL799lukpKTghRdeQJs2bXIzOgw0ajpw4ADOnDmDLl26wNPTkzWylJQULFiwABaLBZ6enti2bRvmz5/PfJFWrlwJQN34d+7cidatW8uu2e12/P3338J4KJfOL1myRPabD3/r1q2yivX777+rwjt48CAAYPHixQgNDcWdO3dUz2zZsgXXrl0DAMybNw83b97EkCFDAMgrkDIuevHmYUSpGzFiBKxWK65cuSJTrfgwCEqD5unpqTuymj9/Pjw9PbFx40bZdcobPRhV6mJjY/HZZ5+hbdu2hpU6nrhJkoTPP/8cBw4cQEhIiKzDOnnyJJYuXYqiRYviyJEj7PkRI0bAYrHgxRdfxO7du7Ft2zb2jqenJ/bt24eDBw/iypUrSEtLQ6tWrVC6dGksWLAACQkJsud37NiB5557Dg8ePMCmTZtk8XRWqdu1axfOnj0ry+/Ro0fLnklJScGff/4p+y3CvXv3MG/ePERERKB169asTmzZsgWLFy/GxYsXVeHy8aL2y9cPNzc3zJ07F2PGjGHEj9QHR2njoaXUidohdRKpqamYN28eG+g5Q+pWrlyJhw8fYv369QAy82b+/PnstxZmz56NiIgI4T0+rlQmly5dAgAcPXoU69at0w1biYSEBIwfPx42m022eGH8+PG4efMme+7hw4eYM2eOMIx9+/Zh3759Dr/FD5ajo6Nl9/bs2SN0oVm6dClmzZoluz537lwcPnwYzZo10/yW6Ozq+fPnIyYmhl1zhVJnZI87INMG3rp1CwCwf/9+eHp64t9//8WDBw8Ykfjnn3+wd+9e1XvKQfb+/ftRsmRJbNiwQfWdZcuW4bXXXsPevXsxYMAATJ8+HZs3b0a/fv3g6emJHTt2YNeuXQAy8/ebb75h31GWCQB8//33qF69Ou7evYsBAwbg77//Rps2bXDixAlV/hjBlClTkJSUpGmnPTw8MG/ePHzxxRfCwSnFMTU1FV999ZXquhbc3Nxkbcdut2P27NkA5Eqdv7+/YVI3bdo0WRnMmDEDQKabzr1797B48WL2LYeQcgkbNmyQPDw8pEKFCkkFChSQNmzYIBUtWlRq166d1LZtW8nNzU3atm1bjn0/JiZGAiDFxMSo7j148EACwP6GDx8uFStWjP0+duyYBECqUKGC9O6770re3t6y5+nv4cOH0lNPPSV5eHgI7wOQQkNDpeeee051PSQkRIqKipI6dOig+W7Hjh1lv5csWaL5bEhIiFSxYkXN+wCkUqVKSV5eXqrrGRkZkiRJ0s6dOyUAUmBgILvn6emper5du3aSzWaTAEjVqlWTpkyZwu75+PhIo0aNkj1/584d6cqVK+y3h4eHZLVaJQBS5cqVpQoVKkiffPKJ1KJFCwmA1LZtW3bv/fffl4U1ePBg3TQCkOrXry8VKFBAdq1ixYpSjRo1dN/7+uuvhdctFovs99SpUyUAUoMGDaSmTZtKAKTJkyfLnlF+S5Ik6emnn1aF/cYbb0hDhgxhv9u0aaMZP5vNJgUFBcmulS9fXmrYsKHq2XLlykm7d+8WhtO1a1dJkiTpmWeeEead1vfDwsKkpKQk4b0CBQpIrVu3Ft6bPXs2C7dEiRK6aaS/unXrSs2bN9d9hsJ5+eWXpd69e0uVKlWS3W/ZsiXLm1u3brH2//rrr0t169aVZs6cKVWpUoU9T+0tLCxMqlixouTm5qb65q1bt6QPP/xQqlWrlqyd8H98e+D/fv75Z0mSJKlz58666Wrfvr1UokQJzfve3t4ye6Ws58p8EP0p66e/v79Uq1Yt1vb02oDIJmiVvVb+hISEsN9eXl5SqVKldN8he05/1apVkypWrCgrvwoVKkjVq1dn9UcvvFmzZkmhoaFS8eLFVfb75s2bUlhYmOTh4SEtWLDAcLqATNvG50+5cuUkSZKk48ePO3yXbKLyr3PnzlKJEiUkSZJU92bMmCFrT9WqVZO916JFC+nMmTPs2gsvvKD5Hf7v4MGD7P8DBgyQPvzwQ6lMmTLCZ6dNmyb7XaJECal27dqya+XKlRO+O2fOHM36qnyHynvTpk2qZ5s1ayZ169ZNAiCdPXtWatmypVS+fHnJ19dXqlKlisM28dRTT8l+d+rUSerTp480e/ZsVRxWrFjBfnfs2FHq1q2b1LRpU+nFF1+UPv74Y6fqi1bfQn8zZ850yHVybfr1s88+w7Bhw3D//n0sXLgQzz//PF599VVs2bIFW7duxccff4wpU6bkVnRkUI4OlNOvNFX35Zdf4ttvv0XHjh1VYYwYMQKBgYE4f/48UlJSULt2beG37HY7UlNT0alTJ1y5coVdP3nyJAoXLoxNmzbhr7/+YtcvXbqEkiVLAtCffuXh5+eHkydP4tKlSyqlkNCrVy+Eh4ejffv2qns0CiaVZurUqezesWPHMG/ePNnzvMy8cOFCDB8+XBbH9PR0VKhQgV2z2WwoX7485s6dCwCoW7cugoOD2T2RT11AQAAuXLiAsLAwdv2nn35CpUqVZHF5+eWXVUpoXFwcWrVqxeLdqFEjXLp0CadOnUK5cuVU6af81hoBKq/z5z5SnvEO7y1btsTWrVtV4axduxYffvih7JqyLvJqAI8qVaqgYsWKiIqKkl2nkbsSERERqukdi8WCPn36sCkYZVjAozrQvXt32fU5c+bg0KFDsgUfPFq1aoUFCxbIrn311VdsOiEtLQ1vvvkmihYtamhaJjEx0eEoNSUlBYGBgfjxxx+xatUqXLx4URbvjRs3YtKkSQDkU12k1L399ts4d+4cU54pH59//nlcunRJOGVvs9kwffp0HD9+HL6+vppxF0Frn7pZs2Yx1QMA/vzzT12lPCIiAnfv3sXly5dl17/++mtcunQJFy9eZHZAWY4+Pj4YNmyYrAw++OADDBkyRHc6kNpAYGAgkpOTsXTpUtl9I+4NQObszfDhw3H48GF2rW3btggPD0ffvn0BAL/99pvqPWWdOXPmDC5duoSzZ8+yaxUrVsTp06fx3nvvyZ4vV66cLMwCBQrgjTfewIkTJ3Dnzh2kpKTg9ddfB5CpVgUHB+PQoUNISUnB4MGDZd8lGybCW2+9hZSUFCQnJ+OPP/4AoK/UKaFlf/R8ZvWm/JRKnY+PD1JTU4Wr3/mZBEC9gnz69OkyO0vK6LBhw/D+++/L3i1SpIhqZuTBgwfCOPr6+uLixYsICAgAAJmie+XKFTz//PMAgF9//RWXLl3CuXPnNFXWsWPHAshs63a7Hc2bN0dcXBzOnTuHCxcuqJ6nb/n5+eH8+fNMLWvdujU2bNiAX3/9ldULHkqfXWd96ngoFWYtn2U95BqpO336NAYNGgQA6Nu3L+Li4tC7d292v3///jh58mRuRUcGkbwuInV6m4UaXTnHz7drNWz+Xa3/A5mGTXTcFg9HxkMUT6VzKV/RRBWVv6b8Xnp65vEx/HXKb7rm7u7O3tfyqaNnlQsMRHEROa/rxVELWr4ayut8o6Y8UzZ0rW+KBhQ8tDpHGngoG7kzB9M72tMKkDsAK991FLYybbyDNd8GjPpvOZoK5uuJKJ583ih9/vh8V7ZzvY6Yf0/L4GpNq2nZE2XeOSpTrXrN/3Zku5RT147qBbUBSr8yXKOkThR30cIEJfi48ffJRYa/zk/FA5nlJCpvERzZCj0XDZHt1vOpU8Ld3V34XHZJHbUjvcPilelWujDQtwhUH7TavbKf0vquMmwK12q1yvxkle1DBL6tp6enq+qJEvQtZXt3hph5eHg47VPHQ1mftHyW9ZAnCyWsVisKFCiAwMBAds3Pz09TlchpGFXqXEHqeBav1bCdIXWOKo3kYHdsPVLHO2vyz+uROlGaEhMTZdcpv3lyxxtikVInMiRa21Ao45CUlOQwjiIYVep4JYbyTOmcr/VN0YCCh1bnqNXRi/JEC0Sm9Tpv3gGYhxFSp0wb72DNtwGjpM6IUqe3glWL1Cl96pTtXK8j5t/TMrjOKnXKvHNE6qjDFOW3o2+lp6erSI8RUkdtQKvjc5bU8cqQMixH239oEXneZvCr3ZUdvF7eOrIVzpI6Z5Q6rbacFVJnsVgYiaN2pLegSm9wKSpzygctm6QkUY7IJIVD4erVbUf9KKXZaFkq27szxMzNze2/o9SVK1eOOeECmdNEZcqUYb/Dw8NRokSJ3IqODI+LUica7TiqNM6uXqRw+Xezo9QBmaM8PaWON145odTFxcU9sUqdKDyjhoRUjZwidflJqbNYLLBardlS6pRTUkDOK3WkUOjlN3WYWVHqaAsnnvTkhVJnsVg0CaIjpU6LyPPh8fFRdvB6sx1GZjqcsePOKHVabdnf359tii/6plb/RGWaFaWOzz9HSp2jsPSgpdTp1W1Ru+TDECl1IigHKllR6viV0Xml1OXa6tc33nhDZvRq1qwpu79hw4Y8W/2qrBT5VanTmlbUg7OrFylc/t3cVuoA9erX7Ch1iYmJLlXqPD0z9zEkFZSUGD7OrlLqtDajzYpSJyIdjjpv5UpN/j09ZFeps1qtsk4rIyMjW0qdsv4YUepo2xm9+pLTSh0RNiOdQ3aUOr6eUf3OjlKXlJSkKkMRlO2ZSKZeugDnlTo+fUam4vS+rfwWzSwo0+sKpU4UN9p+RVQ+Rkidq5Q6flsmR0odD716kRWljgYESvvgrFKnRbydIWYUj7xU6nKN1IkcDHmQA3NeQFkp8pNSJ9rPjPCkKnUWi0Wl1Iny3qhSZySOImgpdRRf5ZYZPKlwlVKnhawodVqdgF7nTfdyW6lTumOkpqZqjsj5uCo3LxWpNny6AG2lTllPRdBT6jw8PGCxWLLtUyd6RoTs+NQpfxOp03LfcKTUAcZcakSD1pxQ6ngY6eD1vq38lpubG1JTU1XpdYVSp+VTB2Sd1PFKnfJMb0BMckVKHf8ctTsjSp3Wlid82M4odfRbj9QZUeqUhDsvlDot+0XItz51+RFK0pFflDot51Ag81SE3Fbq+EUNfBjOKHXUOTvyqaMOJbtKnZE4iqCl1Cm/y29i6WqfOi1kRanLbVKXHaVOdLpKbit1RlQVPaWO6lx2fepEz4igV5ectV2enp5sM3YR9JQ6ms7U29BXFGctgugKpY6HkQ5e79vKb1FYyvS6QqkTlVdOK3WenuoFWI6m0/XIvTIP9eqFsj4RydFT6kS/+TCMKnVKwm1UqePzKrtKndIVIF8rdfkdytU0+UWp4yGSxHklTwRHlUD0vp5SJ/LvMaLU8d9R+gApDTspdfzpDCLJ32azqUaVHh4eLlPqtEidsn4YUeq0VCZXK3W835gSriR1juqdnlKXnJyMtLQ0XaVOROq0tk/hn1F+k+LpjFJnZNoVeOSnRxApBXmp1PFtIytKHaA9daxU6vj64OnpibS0NEOkTjRofZyUOg8PDxaWHqlT1in+Xy3ibLPZhO2Mts5xhVInCoNWcPLgSZ2eUGBUqdOCkki5u7vD3d3dkFKnFZfsKnWObJ2yLmZHqXM0mDOVOiegJBb5RanjIXJeza5Sp2cwRUqdKH7OKnUER0oddZKpqal5otTxBlsZb2eVOi2/HaNxUUJvmtWVpC4nfOpoyoeeUR6lB6hPKTGi1PH1RBnP7Ch1WlDez29KnZFvaX2frmnFXU+po/8bIXU8/otKnd4iDZF98/DwYIMbI6SO35LI09MTqampmofF82HokTq9duhqpY7yICtKHfUlOa3UKetiamoq8w11ltQ5Gszlq9Wv+R2uVuq0jAZP6lyh1DkjDRsJE9BX6kTxM6LUia5r+dSRwzR9n9/njv92TvvUaREnPaVOa/Wr3jd4GBmJAfrTrK4kdTmx+pVvTzabTXiMnOgcZUd1WdRZa6k2SlKn51OnBUc+flTn8kqpM/Itre/TNa246/nUZZXUPY5KHU84jJA6JWHQW9msZd/0CLeSSPBKO12nRSNaSp2np/70a24qdZQHWVHqKByyHTnlU6esi1QuplKXx+ALXNnQskLqtMBLs46WYuvFkeKV00qdxWJRyc+5odQp/XnyQqnTIk50XWlcU1NT2ekMSqVO7xs8DJ3tB9crdc7uZ2iE1GmtKufbkzL9Hh4eQmOYnp4uVPSUcKTUubm5wWq1qqZfs6LU6a3s5NPhCqXOSJ3VI5lZJXX5Vanj99VzVqmTJCnfKHWi+PHf1isbkZ+bsu2ICAZdEyl1VG/1SN3jotRRODSDkhNKnSRJKqUuO6TOVOpcCL5TUy6rdyWp45U6LWhVvqyQuuwqdSK/NT1Dk12lTjT9yj/LfzuvlTqRmkGj4LxU6rTqjxapA8DIqBayQuqU0FLqlO9pGUMtgqH8higeys1tXTH96kixoD9XKHVGwO/1ZvRbWt8X1W0epNSJtlzJKqlzRqkTnXCg/L6e0uJKpS6nSJ0jpc4IqaN8EpWpSKnTanu5pdQpyyy/K3XUn/NhiPLcKByRuny1T11+B59ZtHcTITY2FhaLRZe5Gy086jz1njfqf5UbSp3eqiL+t54K5oxSxy+UeNyUOv7/WVXqjJI6PaVOC3qkztEGwM6SOpFzsYjUiTpkrXw3Quq0Onjl/mHObGmSFVD9sFgsmvHWsidaddgIyHVBFB/Rt7S+72ihhJ6fbVZJHZWRMj5aNoXgrFInekcLRkgdCQJ6pI4Gq0oVSCt+9ExWSB3f9pxV6nKC1Dmj1CnLjPJA2SfmF6WOZt74MLKj1Iniz8NU6pwAn1m8Uufh4cHIk95GoM4WnqMVNSLklVKnBJ839NuRuuEqpU65+jU3lDplWWldJziarlaGxYNPs7NO1I7giNQZMdZ8metBa2CSHaXO0RQxoN3B8/nqKqVOD3rpED2r/J3Vb7taqdOC0s9WufoVEHfeenZP65xhZZo8PDxyTakz4jdJ7UaP1NFvipPesWjAo1X8WSF1ojhrKXVKFwIjpM6Z6VeRevykK3Vkp/i8NNrfixZb6d0XwSR1/w8tpc7HxwcJCQmyzNVqNM4gKwxeaYiU8RIhJ5U6/mgYR+qG1uok+pd/383NTVOp48lCbil1yg6M9/MQ5Z+jhSXKsHjwadbbwiMnlDo9tU5U5s6C2hU/PSHqkLMzwtXq4Pl8zQ2ljvZzzCqpy45Sp/cNV5E6pVInIimiLYGUm6vy0FqUo0yTj49Pril1jsAro0ZInZGZDyAzjVlV6kTQUur0nuPBk2hnlDpRmrOi1CnDUJYf9Rui+OS2Usd/21m7qbWBstZ9EUxS9//QUur0jj/hoXffFSQwq+E4q9TxkrzW6MZqtcLNzU2WN1lR6miU6IxSpwzTGaWO4m3UoNOeb0rjx48eKSx+Cw5HW8Aow+KhVJS0kBNKnRFS5+3tLXNFcAZKX1VnlTojyC9KnXKKXg/KZ7T2WjSC3FLqjBxkLyJneuqzllKntHsFChTItlLnKlLHn37jjFKn9xyQmb9ZUer0SL1IqVOCFkqIQDbOGaVOlGbaZ08Eo0qdciZAa5CbF0od/21necR/Wqn76KOP0Lx5cwwYMMDQqjhH0FPqgOyROqMN2RFEU1quVur4Dk9vdMMrWHzlVRpgMuKicChuzih1PJxV6vTua0Gk1FF8+dEhb9CzotTRv3yaHR007kwdUq7SUsbNGaXO01N73z09KH1VRWXhjMIlgiuVurwidVklzfRdvW+4gtQ5qnta3+IHQSJoKXWihVrZVeqyo8Iq4Qypy2mlTgtGlTrRiUEESl92lToj9tCRUid6TzSz8bgpdcq8VfYBT6xSd+zYMURERGDPnj2oXr06Vq1a5dLwXa3UZYWMGYUoHP57WpWAnhE1OEdKHT2nVOpsNu2VsqJwKG6uVur0FE2t0bIWREodKXh8J8Ub9KwodSJFSQ/OKnVK46OMmzNKXVbrrhGljso0r5U6/rSIrBBYZ9LhSiVJ1Ab5b7iC1DlqQ1qdoSNSp6XUKeEKnzpHvnLOwJnpV1codeSflVVSl5CQoHnyjB5hp/RlV6lzxh7ytlYPWVHqtH7zC/gcxddVSh2VqTJvlW35iVXq9u/fjw4dOgAAOnXqhH379qmeSUlJQWxsrOzPKHhFwRWkTuTgnZOkjkdWlLpLly5h7969uHr1qu7IX0nq9EahRpU6WiH28OFDtj2I1vuiqVSt/MiOUqfle6Kl1DlD6pQdYE6tfrXb7bh586bqOoVx6NAhxMfHa77vClJnRKlzRuGi5/V+Uzj8li2enp4IDw/H3r17sXfvXsTFxalG2NlVcrKj1NH7gLHFIaLvan3DCKnTU2uMKCdaC8q0/J4IWkqdKL58Xc6KUqe3x6CzoLrlSqWuQIECmkqd1WqFu7s7rl69ajiOfF28efOmZj3RGyzStGluKXU0QDGq1GnV7Vu3bkGSJId+edTWlOROL76pqam4e/euKv70nlEeQfcd2f8nVqmLjo5mDSggIAAPHjxQPTN58mQEBASwv9KlS+uGWbt2bfb/Bg0aoFSpUggMDGTvFStWjN1/6qmnVO8rV7e0bNmS/b9+/foAgMaNG7NrRYsWZf9/5plnhHGqU6cOAKBPnz6ycHgUK1YMxYsXl13r168f+/9zzz0nu0f51q5dOwBAzZo1AQClSpVi4S1ZsgTNmzfHTz/9hEKFCgHINNRVq1Zl4QQHB6NOnTpwd3dHUFAQSpUqJYsHkW7Kt0KFCqF169ayuJQtWxYA0LRpU/ZcwYIFUbhwYZw9exYxMTHsWYoHAFSsWFGWFoKXlxcKFiyoyiPgUX4r49m7d2/Zc56eniy/6fly5crJnilSpAgLp3DhwgCAatWqsc6sWrVqsudLliwp+12mTBn2f3q/UaNGADLrTatWrQAA9erVAyCvN0WKFAEAtG7dWlYneYSFhQmv79y5U/b7ueeeQ5EiRWCxWDB06FBhOwIy8zkoKAju7u6oW7cugoODZfcpD/k2FhISwv5fokQJAEDVqlVZnD09PeHn58fST6hcuTKCg4NlaatUqRJTVpR1qHPnzrLffD0BHpU75SWQWSc3bNiA5s2bo3nz5ggPD5e9R2VLNkFZnlRvK1euLLvepk0b9v/ixYur0qGFoKAg9n+qvxQfvs2L1IpevXrJfhcvXhzdunVTxbtkyZKsrfJo2LChavGCl5cXvL29hT5X3bt3R3BwMCu3ChUqyO536tSJ1XdKO5V/x44dZW2vevXqsnfr1q0L4FGZkY3y9/dn/6dw9+zZw35Tevn7wKM8pHQEBgaycHm/Lr69E8h+K/MLUNt/qluUTiDT/0x51J3S9gCZbZBsLwC0aNECAFC+fHkUL15cVX+o7RUrVgy7du1SxQ2Qtz3+vcDAQLi7u2PPnj0oVKiQKmybzcbqLdlvHmS3OnbsyK41adIEANClSxcAj0jLiy++qErzgAEDWNy1QOUSHBzM3uPDaNu2LQCo7Hzx4sVldpLiw9cVpW0YOHAg+3/r1q1ZO+jUqROATFvr7u4uK1cAqFWrFvt/eno6Dh48yH5Tu3B3d0dAQADc3NwQFBSE+vXrw9fXV/Yu8Ih3UDvn7RnVVx5GBv0WydmhYD7A7Nmz4ePjgxdffBGHDx/GTz/9hO+++072jHI6KTY2FqVLl0ZMTIxw9U18fDxiY2Ph7+8PX19fSJKExMRE2Gw2XL9+HcHBwTJDQKpGWloa7HY762yVYcbExLDC8fLyQnh4ONzc3FjjTEpKgru7u2oUkZKSwkZkGRkZSE5Ohre3N/tucnIyHj58iIoVKzL/M6vVioyMDJlcbbfbkZqaCovFgoyMDLi5ZZ616ePjw0hIfHw8vLy82IkId+7cYfEoXrw4AgICZPGheHt4eCApKQm+vr6yOAKZlS8tLQ0pKSm4e/cuKlSowJyKed+H+Ph4lt/Xrl1jxODy5cuwWq0ICgrCnTt3UK5cOWYw4uLikJCQwBr6gwcPIEkSPD09WRklJCTAYrHAbrcjNjZWlt+8IzrFm/LOZrPB3d2dpSU1NRWSJCEuLg42mw3R0dEsjunp6UhOTsbdu3dRsWJFREZGIjk5GeXKlcPVq1fh7e0NX19fFqfk5GRWBvwg4Pr16yhRogRSU1PZs/Hx8fDw8MCdO3dQunRpJCUlwc3t0WkIlGfXr19nRtJqtbK8jY+PZ+Xq7u6Ou3fvIjU1FcHBwXBzc5PVk9u3byMuLo7ld2JiIjIyMuDn54eIiAgULFgQRYoUkdUTnghQHUtLS0NSUhJ8fHxYOpT1RJIkXL58Gf7+/ihWrBjsdjsuX76MokWLwt3dXXbw+bVr11CiRAm4ubkhKioKSUlJKF++PBITE9mo2tvbG9euXUORIkVU9YRw+/ZtBAQEsM49MTER4eHh7L7FYkHFihVVdYLaG9/uk5OTYbPZcP/+ffj4+Mg6bjr1wmKxyPziLl++jGLFiiE6OpqRBL6sqLwSExPh4eHB7IUy3jSNZLFYcOfOHZQoUUJlO5T5zYPSQm0DeHRgelRUFKv79F5kZCSio6NRvHhxxMfHw8/PT1b+N27cQFBQEMtvsmWSJOHWrVsoV64cu5acnMzeBTJVEfo2ITExEQ8fPmRtVZIkJCQkwNfXV3aiSEZGBm7dugUvLy8ULlyYLd4hZGRk4Nq1ayhXrhwbDERGRsLd3Z0pYG5uboiPj2flIJqOVZY9IS0tDWlpabBYLPDy8kJCQgKio6MRHByM+/fvs1N4lO9S3aE0JyYmwtMz8/SG9PR03L17F+XKlUNCQoKwHZDa5OHhgQcPHiAyMhIBAQGw2+3w8/ODu7s7a5fx8fFISEhAfHw8SpYsyWze3bt3ER0djaJFi6JQoUK4efMm7HY7fHx8YLVa2b8Wi4X1BUWLFsXt27dRtmxZ2O12WX5T3+PpmennSHWV73cov+mal5cXrl+/jiJFiiAyMhLFihVDWloakpOTWfvg22BaWhqzV3yd4EH9U0pKCiwWC4tjSkoKrl27Bnd3d5QvX17lmqSMY3x8vKpvVH6LL//bt28jPT0dpUqVYmVz5coV+Pr6srQkJCTAy8sLiYmJcHd3R0REBBtMe3p64vbt2yhSpAgyMjLYQkW+nyAfyHv37sHd3V01qFbisSR1x44dw/Tp07F06VJMmjQJFSpUQP/+/XXfiY2NRUBAgCapM2HChAkTJkyYeJzxWE6/1qlTB8WLF0fz5s1x5swZ1RSaCH5+foiJiVFJ4iZMmDBhwoQJE08CHkulzoQJEyZMmDBhwoQcj6VSZ8KECRMmTJgwYUIOk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYMGHCxBMAk9SZMGHChAkTJkw8ATBJnQkTJkyYV8BYZgAAywlJREFUMGHCxBOA/wypkyQJsbGxkCQpr6NiwoQJEyZMmDDhcvxnSF1cXBwCAgIQFxeX11ExYcKECRMmTJhwOf4zpM6ECRMmTJh4krFhwwZcuHAhr6NhIg9hkf4j85GxsbEICAhATEwM/P398zo6JkyYMGHChEthsVjg5uaGtLS0vI6KiTyCqdSZMGHChAkTTwjS09PzOgom8hAmqTNhwoQJEyYeI6SlpeHSpUt5HQ0T+RAmqTNhwoQJEyYeI3zwwQeoXLmyuZuDCRXyJak7cuQImjdvjpYtW6Jv374y/4CdO3eidOnSaNWqFdq2bZuHsTRhIns4cOAAYmNj8zoa/zmMHDkS33zzTV5HwwSHNm3aYM6cOXkdjccG+/fvBwDY7XZ2zZEf3f3793M0TibyB/IlqQsODsamTZuwa9cuVKpUCX/88Yfsfr9+/bBz505s27YtbyKYS3jctl85efIkwsLCkJqamtdRyRLsdjtGjx6N6OjoXPle48aN0b9//1z5lolH+Pzzz/HBBx9o3r948SJSUlJyPB6SJCE+Pj7Hv/M4YMeOHXj99dfzOhqPDTIyMgDIiVxiYqLm87t27UKRIkVw+PDhHI/bk4S0tDTUqFEDBw4cyOuoGEa+JHXFixeHt7c3AMDd3R1ubm6y+6tXr0bz5s3x7bff5kX0cgV79uyBv78/jh8/nqfxSE1Ndei7sXXrVkybNg0TJ07E4cOHcffu3VyKnWtx7NgxTJw4EePHj8/xbxHxNbcfyF+QJAlPPfUU3n333Rz/1hdffAE/Pz+Z2vJfxJM6hRgTE4PChQvj33//dXnYVGf4RRF6pO7vv/8GANy8edNh2A8fPnziVL3Zs2fD19fX6feio6Nx5swZjBw5MgdilTPIl6SOcOPGDWzduhXdunVj1+rXr4/z589j27Zt2LhxI44cOSJ8NyUlBbGxsbI/o3jw4AEbCeU0JEkSKnLHjh0DAJw5c0bz3WXLlsFischUhR07dqBChQou6yjeeustVK5cWfeZ9u3bY9iwYSzPrFbH1So1NTXfdWY0eNAzjq4ClbnNZsvxb+UWLl26hG7duj22Si0AJCQkAECuKBp//fUXACApKSnHv5Wf8aSm/9SpU3jw4AEWLlyY7bDS09Oxbt062W/AuFJHJC0gIMDhtwoVKoQiRYpkNar5El988QUSEhKQnJzs8NmkpCSmzFE+37lzJ0fj50rkW1IXGxuLgQMHYuHChXB3d2fXfX194eHhAQ8PD3Tv3h0nTpwQvj958mQEBASwv9KlSxv6bkpKCsqVKydrQACwePFi1K9fP+sJUuDEiRNYunQpli5dCn9/f5w6dUo2iiJipEcuyVhQRwQAo0aNwtWrV11GTMh3w8gyeSJpIrL2448/4ssvv2S/PT090b59e5fEMTuwWCz4+eefATzK89wgJU8KqTt69Ci2b98OABg3bhzWrVuH69ev53GsxPjiiy9w7tw53WdiYmIAQDU7kBOgtp0bg4j8DMrzJxWuEAjmzJmDbt264eDBg7IwtUidUv0kUpdftzu5f/8+Ro4ciR9//DFHBvvFixcHkCkUOcJbb72Fxo0bIz09nfUFt2/fdnmccgr5ktTZ7XYMGDAAY8aMwVNPPSW7xytue/bsQaVKlYRhjBgxAjExMewvPDzc0LcjIiIQFxenYuZvvfUWjhw54nCq4OrVq4amE2rXro2BAwdi3759AICQkBAZ8TRC6miEyyt1Dx8+BABDIxJnYMTHiBqjyGH3lVdewccffyy7tmPHDtdELoug+BLZpDTmhj9VXpK6LVu24MUXX8x2OL/99hvq1avHFixRmiwWS7bDdjUkScLw4cPRvXt33efIn5IfSOYUTFKXiSeV1JG/pCNSJ/KrVPZXZOuvXbsG4JHtKl68OCIjIwHI6xE/0AcyZ5+A3Bmw6sFiseCzzz5TXZ83bx4+//xzvPLKKznSLwQFBQF4lH96OHXqFIDMvKL8iomJybXZu+wiX5K6lStXYt++fZgwYQJatWqFFStWYOjQoexegwYN0KRJEwQHB6NFixbCMDw9PeHv7y/7M4KIiAgAalJUoEABAPqLF2JiYlChQgVMnTrV0LcAMN9BJZwhdXxcqVNyFakjgmokPJqy0luFdevWLZfEKzuQJAkJCQmoXr06+w3ISd3WrVthsVhcTo4JNDgxogjNnDlTRZQ2bNiQ5QUdzz33HJYsWZJtX6YpU6bI4kOjYKqXly9fzjerTKlsHXVqjpQ6SZJw9OhRl8SJ2nb58uXz7fSO3W7H5cuXDT8vSRL+/PNPpzpAvh7npH+dJEnZbs8ZGRlYvnw5S19GRoamMk1tXC8v1q5dCz8/PxnZWLFiBcqUKSPztw0MDAQAREVFAZArbqQ+86RO6W5EpM7ZAaskSYanx6OiolTPHjx4EBaLRVbGM2fOVL3r5+fH/i/Kr+joaKfqIY/Dhw+z2QQjpI76r5SUFJm9sNlssvppt9tx7969LMUpJ5EvSV3//v1x//597Ny5Ezt37kS/fv3YcvchQ4bg0KFD2Ldvn2w6z1XQInWenp4AgJYtW2oaHhodbd682fD3fHx8ZL/XrFmDHTt2sEagZ+Qojo5I3dWrV/HJJ59ohvXFF18w0uzoW0rwJJc6JhGpK1OmDADg9OnTwngkJyezqV5XICkpSdOYFi1aFKVKlVItUqAGnJqaiu+++w5Azm0D4IxSRwuCKF/tdju6dOmCl19+OUvfpoGEUiF56aWXsH37dpw4cQKnT592GA4/JdGlSxe2qCcxMRFTp05FpUqVdFeZ5iZIDXHUqVGeuLu7Izk5WWbUly9fDqvVinr16umuvI+Pj8fq1asdxomvn1evXnX4vCuQkZEBi8WCpUuX6j734Ycfol69evj0009RqVIlzXxLTk6GxWLBxo0bAQDr1q1D9+7d8euvvxqOE18Ps7vi/969e5qLj6ZNmwYvLy+np/cuX77MfJvXrl2LAQMG4JdffgEALFiwAOXKlZMpa7dv38aIESOYLdYb5K5cuRKAPA8OHTrE0kJQTgPyaSAipUfqqG9KSUlBZGQk0tLSDLXxOXPmwNvbW6X8iVC6dGmVm9NXX30FQD7tKVKmaYYJENeB9u3ba87KOUJYWBgLUzR4io+Px3vvvcfKlMqrfPnyKlWRj/v//vc/BAUFafarZ8+e1fT5z0nkS1KXlyBSpxxxEKk7fvw4rFYrG/nwoAKn0ZQRKEldz5490aZNG4wYMQKAvg+ESKmja3z8hwwZgqlTp2punzB8+HDMnTtXN57JycmQJElFlET5IFJDSPno2LEjtmzZwq5fvHiRxaFJkybZMuqkEkiSBG9vb4wePVr4zP3794XqAK/mkNHUmhpLTU2FxWLBTz/9ZCheyjxxhtRRntM79G9WiYCXlxcAqEaZixcvRr9+/VC7dm3UrFlTdu/kyZMYN24cq2t2u521FSXOnTuHTz75hP1WdqLVqlXDjBkzshT3rCAtLQ3t2rUDIJ7q4sGTOi8vL9StWxdRUVH49ttvMWDAAPbcmTNnkJGRIVQxBg0ahD59+jj8Fp8vrpzuLV26NPr06SO8R52zqL1HRUWxwczXX3+No0ePMvKq1S6pDpH6Qkq8ERJA4AmN3lT0/v37HU5VV69eHVWqVBHeIyIrKrPU1FQh+YqLi0OlSpVQp04dAI/KjEgcKT9EkHr37o0aNWpgypQpuHLliip9SpD6ZLfbsXr1asTGxgrtJ+WncvoVyCTSkiTpkjqyIZcvX0axYsXQs2dP1K5dWxU3JUEh3/KEhATN9k5ITk7G/fv3Zb7hlL6kpCRdm3r//n1G2vi4R0VFISYmhg0YszsFGhMTg9TUVPzvf/9jRHLv3r2YMWMGvvjiCwCPSF1MTAwj3QS+TS9atEj2vBLVq1cX+uEfOnSI9Rvz5s1T+e9rYf369diwYYPD50xSp4AjpY5w8uRJ1btZIXWOQAYoNTUVGzZskFVqEakj8NeoMTmarjt8+DB69OiBO3fusO/w06+dOnVCsWLFZO+IjLeykq9bt44ZOACy/ajIZ5KmEBwZDkJsbCyGDh2K27dvMwP7559/ylQCkVoimv4VTb9SnmmtmqZObsWKFQ7j+tFHH7H6c/PmTVgsFvzzzz8AjPmfUfzIAFOc0tPTUbZsWfTu3dthGDxIqeO3nqHyVpLMqKgoLF++HP369cP48eNZvCMjIzUVDyXZ5FUeSZJw7tw5DBs2TPZMo0aNYLFYnNo6YP78+fj444+xfv16bNy4UXNq/9y5c2xBlVFSR+Vy+vRpFC1aFO+//77sufv37+Ojjz5ieXnmzBn8+++/yMjIYKtatQjI/v37UbFiRbbCHcgsy927d2P9+vW69iMjIwPjxo3TfebmzZtYvXq1TEEj6A0m3nzzTbzzzjtC1USrHdCzlFaySTRwIKxbt05zFShPLEqUKIGzZ89izZo1sgFjWloamjRpgnfeeYdd++yzz9C8eXP2m0gFj9u3bzN1htIiInVBQUGoVauWZtyIaJFbDNnSEiVKAMhc+Z2eno7ffvuN3aMy4vNTCSI99+/fR58+ffD222+zb7355ptsIEF2ltLH9wMzZszA77//rkvqqK3OmjULQGZ9TU9PVz3Hh7Fx40aWllOnTqFEiRL47bffsHr1at1pTPLxAx6R0NjYWF3F8v79+wgKCoKXl5dsAFG0aFFUqlSJLXTgw3aEP/74g6mehNjYWBw/fhxfffUVxowZg82bNzNCTsKDXjz5uFHeOLt6u2HDhmyW5bXXXpPt7qGH77//3tAG3SapU4BIxfnz5/HJJ59g165dOHjwoKGRNBWuMxXPkZMwNbJFixahS5cuMn89o6SOOig94wIAu3fvxtq1a1GyZEmEhoYCkJO6zZs3q4ymEVKnrLQihYk6GaO+RV988QXmzp2L4OBgNrVLnTqpByLCRE6wPJKTk7F+/XqhUqfVmRE5IENAe46JGujatWsBZJIoWr1GIzXlqPzWrVuIiYnBkSNHmIpJBpziQnXGbrfjxo0b+O2334Rx1IJIqaN6ptyOZsiQIRgwYADrYCndeqvBlOXLGz1Kg7+/P+bPn4/vv/8eAFi+fP7554bT8eqrr+LLL79E165d0blzZ1kHD2S25ffee8/QijcC5a0jRSgqKgrz588H8GiD0tDQUMyePZvVI2UYqampWLRoEZo0aSIb5ACZRKxly5bo2rUr+vXrx66fOHFCRp4vXLiA8ePHa5JfpT1ZsWIFTp06hYcPHyIpKQn16tUD8Ki9SZKkGjTwtoPKS0upo3pBdkBUj27duoVp06Zplq0y7OHDh6Nnz54yf0wK/8yZM2y7ibFjx2Lv3r3sGX5RXUZGBqKiohAcHIySJUvKvpOYmIgdO3Zg2bJl7Pno6GicPXtWFTd+QJKSksJWyiunVs+cOaPq3Kl98Xb3008/xXPPPcd+U19Bcbt79y6zCf/++y+WL18uSz99VzmgiomJkdlmpd2idJB9VZbX5s2b0aVLF9nAv3Pnzix/afr59OnT6NOnj+5pTtHR0bhz5w527NjB4nT37l0V0edx//59FC5cGP7+/qq4R0VFsYUOBw8eNLywqFevXmjYsKHsWkxMDEv7d999h44dO+Kjjz4C8KivM0rqCFn19dNC2bJlMWjQINX1xMRETR98HiapU4BI3e+//46pU6eiVatWaNSokaoiiQqXnnFm2bgj9YwMBS1COHnyJH7//XdMmDCB3bty5QosFgt27tzJ3ktOTsa5c+ewbNkydt3Rt3hjfvr0aZmR4+/xpFWkfFCjoClbI3BE6pSElEgAITw8nMVLb788kVPzhQsX0LVrV9bRnj9/nqXhnXfeES58oXRTvIcPH474+HisW7cOaWlpsv0Fq1WrBiBz70Ey2KIVa5IkoVSpUggMDET9+vVZJ0XpiYmJgSRJhhyw9UBE9O7du0hPT8eUKVNYfPiyXblyJSNElP+Ubj3yrSR1fN2h9/z9/fHqq6/i7bffVnVQSvVzw4YN+PPPPx2m6+7du0hMTGRtc9CgQZgxY4auj+uePXvQtWtX9pvaiCMieP/+fdb++M6U9+dKTEyE3W5H+/btUbRoUbRv315orAH5asezZ89i0qRJsFgsqF27NsaNG4datWph8uTJrHPWsjHnz5+X/b537x5CQkLw8ssv499//2X2jertu+++i7JlyyIhIYHVJ36gxpO6//3vf2jWrJksfCJ1VI/p3w0bNjC1rVSpUti5cycuX74sIz779+/Hpk2bVLaVyvr27dtITEzEuHHjWP07cOAAGjduLFPxqE7yeRgdHY2iRYuy36tWrZIpdW3atMELL7wgzEMePKl7//332SwAqdwU97t372qSOl4Rnzx5MlasWIGoqCiZbaS4ZWRkCP0XlaROWf7e3t44duwYmyZWEiPlwJ9URIr/8ePHsWHDBk0fYtqlgeqN3gbzMTExaN68Odq0acOuKeulEnqkDni0erVHjx7o2rUrRowYgTfffFM3TBFiY2M100h5rNd/i3xz69Wrh+vXr+O9995zuPXJnj172P+Vdi8iIgKSJOHGjRtsapdHYmKiyl1LBJPUKaDVWUVGRsqkf2pc/fr1Yz5izviRKMPRwo4dO5CRkcFIXXR0NJ555hmMGTOGEQ/qSHjFZsmSJahWrZrMcDn6lpKgXbp0SabUFSxYEMAj/5Fr164JVbfU1FRkZGTAy8vL8GIWMjqi/D99+jQKFSqETZs2sWvKhlmmTBmMHTsWwCMDabVasWjRIqaUAfo7qlOYDx48YMvqT58+LfMPI9A3RKskP/30U9SoUYMZTJqimTdvnsoY8h2a1pQalcHff/8Nq9WK3bt3A1AbBbvdLvRxvHTpkqxsqZ7u378f69evx4gRI5iPG2/Q+vXrx6YIqa5Rup1R6kSkjh8Ne3h4yJ7nlQwgcxFG9+7dWT5okdmqVatixIgR8Pf3x/nz59ku+soBAI8333wT69evZ+mmdCmVNCUiIyPZO3y58flHfkhbt25FVFQUKzcReEJy584djBo1iv3euHEjTp48iU8//ZS1Ya0NvpVkdP369QAy2yqfz1Rvly1bhvDwcOzdu5flK19XqH7GxcXhq6++wt9//40LFy7gvffeQ0ZGhkzBPXr0KHOjWLRoEXr27ClT0iRJkg0UmzRpgk6dOmkqL6tXr4aPjw/Gjx+v8m3iO36RDVK2pWeffZZ1xI6myx4+fMjygu+8f/jhB/b/gwcPIiMjg7Wlhw8fqogTEejbt2+ztkqb/x46dEgmDJBLiiRJwtkbfvr1xRdfVA1yU1JScPjwYTRu3BgFChRAXFwc4uLiNHcvoOuJiYn45ptvMHz4cADiQS8AplBSPJSzIHybFK1UdbTg7NatWyhWrJgmqeM3Td65cyemTJmC2bNnA8gk2/R/RyBFUzSLQ2nTU+qGDRuGr7/+WqXq/vPPP5gxYwZWrVqlGwa/Wwcp/UCm3ShRogRatWole3716tWy2YNcU+qelGNezpw5o9kBxMTEyFb2PHz4ENHR0Vi5ciWef/55DB48GE8//bTqvbS0NHTs2FFzpOJo+nXPnj2YN28eI24iYkZGkW/ootVtgwYNQlpaGjMcyjN1laSOJ1jt2rVjx6xcunQJd+7cQfny5fHKK6+ovpOWlsbStWDBAt30EUgh4r8ZHR2NX3/9lXV4NFoE9I0EP/06aNAg9OjRg93TI3V6fkpbt26V/VZOv/KgLS+og6WO4bfffpN1QBaLRdahacWNDCbVTTKwys5w7NixKFy4MB4+fIhdu3axdlm5cmX4+fkxlYg6k99++013xbIIetOvS5YsEaaD71Coo+OfUZK0Ro0aCb997tw5zJ07FzabTdgxV6hQgbWTHTt2MJcJPVJHxp3SZeQYJUDe+fHT2DExMYzEJyYmGt7CR08ZpAGdm5sba+M2mw27d+9m712+fJlt1SPCiRMnZPaJFBfqJOLj41k5kNrDgycg8+bNw4wZMzBhwgTWDhMTE1GvXj2VH6uSTIhWXCYlJQnbEW/rlDMj/D0RqdNzgVG2G74unTlzBoUKFWK+S1qrfm/fvo3Dhw/LbK+yToaHh6NIkSJIT09n6SNiHRUVJRvgUT5JkiQbmPn5+SE1NZXVgaioKNbOeMTHx+Py5cuoWrUq/P39cejQIaaGjx49WnP3gsTERJnfmaP9XHlSl5ycjJSUFKxatUqW36I+Sk/Zu3btGm7evIlGjRrBz88PsbGxqrqspZ5dvHgR3377Ld58801DWzyRUle4cGHNtIlsYePGjQFk2pJNmzapfOqpnVNe8n1JRkYGLl68yGZsCLxvObUjfuCXlJSEPn364I033gCQy6TO09NT6I+QHXz00Udo3rw5BgwYIPM7Sk9Px6BBg9C8eXO89957Lv1mjRo1dO/zhufOnTtMuYqKilI5AZOBvHbtGjZv3oyJEycKw4yOjkZISAjrcDt06MAKkXD58mXEx8ejZMmSwoormjoT4eHDhyhTpgzatGmD/v37o1evXrIl20rDqey4qcFfuXJFd4PItLQ0Zpi0OjWlTwY1ej4Nffv2Rd++fVm+f/3116hTpw5bwaoF6mRFaoZep3337l34+voyqZ8HnX5x+vRp+Pn5sY5E1BlRfSUnYWWn4e3tjcaNG+Pll19mncK6deswadIkYbzIIFOe0lmSytWrpGa8+eabaNWqFbZt2yYzjIsWLcKMGTNw6dIl1KxZE4mJiSw/jE7lxsfH499//8W4ceNU93hVmF+BSPG/evUqq0NaA0Glagc8GqWfOnWKrdrkCT4AVKxYEcCjVaTh4eG6ewDSPaojFy5cQGxsrLBTGzhwoOoafx4yP+UaHh4uI3XUhipUqKAZF8DYTveBgYGM1FksFrRs2RJly5ZFREQEKlWqhJkzZ+r6G4lOrKG6yZM6EXjbQB3LuHHjWOemRRqUROfUqVOqTjM+Pp7ZUsKLL74o27Jn165dsvv8VjkREREqH0M9W9izZ0/2f6UtoXAiIiJw8+ZN1pmLcOPGDV1SZ7fbmQ8jAJmyFxUVxVRUHpIkyWy8t7c3JkyYoHtcJJBpG9LS0tierDSoX7BgASZOnKhJ9rdv3y6z0Y4GNURWLBYLypYti8DAQDz77LN466232DPKPqpChQqqfqB69epMkSM1t2XLlvD398fFixcxb9482VmtWoNO3o+S/4YWCSSlrlChQhg8eLDsXkJCAk6dOiWsy/yg/t69eyqRhvyfidTxC/6SkpKwbNky3dNsRP0ZtfXbt2+jdOnSuHLliutJ3Ycffij8s9vtmDJlCvudXRw7dgwRERHYs2cPqlevziRNINPfolSpUtizZw8SExNVxj2rEO1yzcNqteK1115jvx1tJ8GPvOjfCxcuqGTz6Oho+Pj4MMUrICAALVu2lD1Dlb9GjRqyBuPh4QGr1WqY1AGZlW3nzp0yZ2OC0sjcuXNH2PlevXpV91tpaWksnVrGhN9zKDk5mTWCqKgoZGRk4PXXX2fT2pSXcXFxOH78OE6dOoWEhARNx9vskDpPT0/Ng5/v3buH+fPnIz4+nqk/bm5ubJqPQGVEpC45OZmtGv7333/RuXNn7Nu3j0097du3D926dROu1k1OTmaqp7LO8dOvR44cYVOG5EM2evRotvcSgQZCtNknkQmjm2jGx8dj/PjxDp+bPHmyLA2RkZGoUKECm+bRQpEiRWTqyNChQ1n6r127xv6vVIhLlSqF1NRU1snevHlTc5pt2LBhSE9PR0ZGBqsjDRs2xDvvvCMkdcWKFVMptTx49eny5csqpc7d3V1I6jp37sz+b+TEG29vb9VqU+ARyd+xY4ewvSk7LyCzU16xYoVsoYMeqeN9fKgDA+R1XARlZ/XFF1/A29tbZlfCw8NRqFAh2XMVK1aUDXL4aVwAMv/hw4cPs0UYEyZMgLu7u65CyqsogwYNks0O0OyFxWIRKmI84uLidKdfAchIXWRkJCu3e/fuqVZUA5nEjyfQqamphuoG2U9fX1/hRvtag6gpU6bI1CFHpI4f6N+7d4+lmVfilPahUKFCKoHg7NmzTAiKjIyEr68vChYsiCJFiuDw4cMqP2YjMwl8OWr1O7xSN2fOHDzzzDPsXnJyMkJCQoRbyhQoUIARqsjISDx8+FB2Pi61iYsXL2LVqlWoW7cuu/fWW28J3WJ4iPpTCnPXrl2sXFxO6r755hvs2LEDx44dk/2Rr8SxY8fYfjLZwf79+9GhQwcAQKdOnWTETe8ej5SUFMTGxsr+tJCWliYjNyEhIapnevbsKXNSdDSyVq5MlSQJ3bt3x+jRo9kedEAmAfD09GRhe3h4qJQi6uxr1qwpqxyFCxeGj48P65CVFUNpKHmIVsIqO/bbt28LjcGFCxd0SQCv1GmB95EgslK+fHm2hxy/dFs5rU2KVOXKlYVh65G6yMhIBAcHC99zROq+/vprtiKPOiu73a5yHidjRelKSkpi37x79y4bXXbv3h2FChVC06ZN2btFixaVKUO0Hxqgb3Dr16/PSB7l/YEDBzBkyBDZc5QnRI5IZdKbHuERFxenyvdZs2ap6glf9/7991/VVjhaKFy4sIzU8fupnTx5kk17Xr9+XVYvChcujNTUVGbMw8PDZcSHNtc+ePAga9+pqamyOrJt2zYkJSWpdrz39vZWbWnUr18//PrrrwgKCpKtqL516xYjdQ8ePMDbb7+NggULCg9S51XJu3fvokqVKujUqZPquW+//RZ9+/bFgwcPWLvllQDaruX+/fvCqcW5c+eqVmUnJyfLfBcdKXW8gzevUhJ5SktLg6+vL9vri8DbJHJfUW6lceXKFZVSV7RoUdlCBz3MmzeP/d/f3x+lS5cWbrkhaveLFy/GtGnTVNdnzpypGhDx8PLyQnx8PMvv2NhY4aKxatWqsWk33s+MyoyfggPEpI6289BCtWrVHJI6ozBK6pTtXW+/TX9/fyExpfxISEhg/R/ZV6VPqxFSt2nTJhw/fhxpaWmaq7Xj4+MRFRWFQoUKwc3Nje2c4EhJt1qtrF8gUkftHJC3CaV/36JFi1ifxSuaPET1VcQxXE7qJk2ahJiYGIwePRo7duxgfzabDT/99BN27NjBjuPIDqKjo1nFDAgIkBEEvXs8Jk+ejICAAPan3OmaB/lAlSxZErGxsWwZNN+YqNKdPHkSderUcXjciHLpuCRJuHXrFhYvXiw7XolIHRl4Dw8PWWUBHo0sq1evLhtFeHp6IikpiXUqyrzgySHv5GsU9+/fVzWm1q1b4+jRo7rHP6WmpjokdTxxogbcoEED3L59W0awRSBlxBGpUy4kyMjIwMOHD1GqVCnhe0TqaGqua9eusj3g+HIjciFSg+i7165dw/bt27FlyxZZh1K1alUAmeWnXNVZsmRJzJ8/H926dYPFYsHx48dhsVhU5EwLdPQZHSukhKenJ4KCgjBhwgQAj4inUVIXHx/P6gTVqbCwMNVzvIqqVFkIFStWVI3qlUodj6VLl8rqI0+APD09ZUrd5cuXkZGRgWbNmmHx4sWYPXs2JElCgwYNGEFTkjoiKGFhYbKwfXx8VNPCv/zyC/r06YOCBQuqTjAgMkLKfuvWrTW3ROKnFYsVK4YffvhBpnICmStUn376acTHx7NOlScINJC+f/++SqEoUKAAbDYb23yZoCR/CQkJho/QunjxIqtfN2/eZHkYHx+vUs95Ujd8+HAsXrwYgHwAefHiRRWp8/b2NnSEnhI+Pj4oW7as8FQJkR8VkOnHZLVaZUr5gwcPhHuREnx9ffHuu+/ijz/+YIRG1PcFBQWxNFOZFSxYkLWJ//3vf7LnJUmSkcPU1FRGUPjFM8q4EKnz8fHJFqlzpApSv6ckTVRWvHoFQNd2Xb58Gb///juioqJY/+rn56eqC4A+qStatCh8fHwwbdo01KlTBx4eHkJfb8L58+dZHlG8eUVVq6+k2Y2UlBSEh4ezrXKAzD7Mw8MDXl5ebGqWt/l3795FuXLlNPss0bYoIoLtclI3YsQIrFixAm+88QY++ugjw87VzqJgwYJsJBcdHS0b9evdU8Y1JiaG/elV1sjISFStWhXXrl2Dn58fO+e1du3a7IgmqnQhISEICQlhpG3RokWYPn26KsyQkBA8++yzTBFJSkpCfHy8qjEkJibC09OTGf3SpUvLSB2RH19fX5XaYbPZVKvteBAp7dq1K/r376+Zfi2cOHFCRV5fe+01tGrVStYpKJdZG1Hqnn32Wfb/ixcvwtPTE6Ghobh27Rrb1X7MmDGq9wICAlij0To2hjoMpWocGxuLjIwMWWPkYbfb4enpyfL0jTfekG13wYNWheoplteuXWO+g/wAgXeYbdiwoawjLFiwIDw8PDBgwABIkoSRI0eibNmyeP755zW/w4M2UK1cubLQRy8pKQk//PADyzsic86QupiYGISFhWHo0KFIT08X7prOp4lUCSCz3KkuFi1aFGPGjJHFs0iRIsLpDzrhgjeK3bt3BwC0atUKHh4eSElJQUJCAtzc3Ngo9/3338fAgQNlq92IoNGpIEqULl1aRvZESh0hICBANbWkVOXmz58v9PGRJAktWrRgaQoODkbZsmWFq61DQ0NhtVrx448/ApB3ArTfGil1ojQp1X/lStyYmBjN47UIK1asgLe3N6Kjo5ktUrYnsp0EntS5ubmxunL37l0Z0eU78ueff162HYYelKq6r68vypYtK/TxVsaNEBERgXLlyqFjx46G1MHXXntNVj/IXivJOJBZxyltZLeqVq2K+Ph4eHh4oHz58rLnb9y4gYyMDIwaNQrDhg1jriwtW7bEZ599hrVr16oG1H5+frmm1GkNuOi6UlW0Wq0yH0Yef//9N5555hl8++23sj5EVAZ6XMPd3V3V95ELCt9nEsm6dOkSyyPKN96GaS3U4s+nvXjxoiqt7u7uCAwMxK1bt1C2bFnVVkp+fn6MlI0YMULmZiVaSJkrpA7IHMUeOXIEkZGRqF+/Pv79919Du+I7g0aNGrEM2bRpk2x6Su8eD09PT+Y0Sn9a6NatG86ePcuMDDV+b29v1jnxlY4fjXTp0gXvvfeecOHAqlWrmHOkXufv6emJp556Cn/88QdGjhwpqzzUwR06dIjFgRzSHR0xJVIaCVpKDsHPz0/odO3j44O+ffvKrimJNRki0ZQTkElkq1atylbGfvDBB2jSpImqMZOixaNmzZo4c+YMypQpI1ylpwcimnpp50ldYGAg6zTq1KmDV199VWXU+M6Vl/ArV64sI8R8/vMLcmw2m+w3fY/yLiIiAoULF1Y5bGtNyVCe6O1pVLx4cdU9PfcEgre3N44ePYro6GgWP606yJM6fnryhx9+YAaUlJNPP/2UGX5++pVXWok4BAQEYPv27Th16hRKlSqF33//HWvXroWHhwebfuXLQWQEidT9/fffQveCoKAgWaddoEABTVJHdYlXf5X13tfXV7dTorzSUpCBTFLHb0pM4NUAmg4UtQue1PHuJS1btmSDV14h4uskEaxKlSqxvOXDc0Tq3N3dERQUhC5durD3wsPDkZaWxggRX07Lli1jMyuO9idUKoM+Pj4oU6aMzO+PwNdVpRpTuXJl5sqidKcA5NPdc+bMkQ08tPogIJOsEqk7evQoLBYLK58SJUqo2g8NRsLCwthAJjIyEgULFoTFYsHTTz+Nd955R1ZWvFKXXVJnRK0VkR5yR6G6QHlos9k0fZ/5c1F5eyRStUUDPYKbmxu+//57lCxZUvXuvn37kJaWhueeew5//PEH4yrUx1Kb433gtPotfgBx7949Vb+XkJDA7EFQUJCqHPz9/WXp5Mv+wIEDsgGrzWbLPVIHZCZu0aJFGDFiBNq3b+/0AcmOUKdOHRQvXhzNmzfHmTNn0Lt3b+YT8/TTTyM8PBzNmzeHl5eX7uqkrIIncvR/fiqAJx9+fn6w2Wyq/WUI1Nh43z9lQ6ZRRo8ePeDh4SEjyVSZS5UqhTZt2uCff/5hPldae1UR+I5f+U2lTK6EXsXmz8AEHo2yQ0JCWAcWFRWF4sWL4+TJkyqHYMpTvgN47rnnVOkRERciAoMHD1ZNU+vh2LFjTFHR8pkDMjt8InUFCxZkjbBZs2aYO3euahqOV2lomgXI7IR5Ik9p9ff3VzVMvmMWTTkFBASgQIECqFatGjNCWlNJtGKwSpUqmqSOHzEaAZ0uUqRIEVy5cgWrVq3S7Dg2b96MAwcOaBpy/tt8HSTflsDAQEbqaCXZSy+9xPxoAwIC0Lp1a0Y6evbsCT8/P0bqEhMTZaROFA8qw549e7Jjz3jYbDZZXbTZbLpKHaBP6gCx0kDT1hRHvh6IVsMRGeMHJfx2LbTxsmj6ishUoUKFULZsWXZ97NixwrKkxRdApp/TggULUKdOHbbKmFdA9EhdVFQUypcvj4iICJQuXRqBgYFwc3NjgyEiLloqmuiEFn7Fo7JcfHx8NG0bbwOVR+vxHaqorKmTpuPt+MFd4cKFhbM1AJj7D5BJYkqVKsXKWasNA2B1GsgkEHyZW61WWX75+vqyPsQIqTNK+pR9Bqn7ypNbgEeKLNlkqm96wgO/YIW3VRQWX856g053d3e8+eabeP3111XtzNfXF25ubvj5559Rv359lvdE6saNG4ejR4/K6jAvqijD4iESB+hakSJFUKpUKSxevJgtiOJJXUZGhixvbty4wThEwYIFERgYmLukjvDcc8/h8OHD+O2332SGwhWYNm0a9uzZg2XLlsHDw4M5zru5uWHRokXYs2dPjh0KzpM6ykTeyJPRsFqtMgPw119/qVb3iTbTrVatmkwhEO2PVrBgQZlB8/Pzg8ViQf369VmDttlswtE7Qc/BVk8VAB41fH4EA2RWKn9/fxw9epT5Q1FYFosF8fHx+PDDD7F+/XpUqlQJISEhmsaL0lGsWDEMGTJENY0nmjKihlWqVClh50VbjyhRt25dZoxE7xHc3d1lSh01Qq2zMnnwZJzfZJLeP3funHBTW37ER99p0qQJu0adwpkzZ/D7778DEHcIXl5eKFKkCCIjI7Fo0SJNUicilnogH1O+vWmR/vbt26Nhw4aa4bu7uzOXBH7EP2XKFGzYsAElS5ZESkoK/v77b5YH/fv3Z2WmFa6npyebfnWk1GkRNOBRO+fbu9VqFW61Ajwy4nxb4/OGpp6ps/n000/x1Vdf4cqVK/j0008BPPLL5NtkoUKFEBUVJXMbIbtD7cLd3V3WGUmShPDwcHh7eyM0NFQ2tUfveHt7yzqLIkWKsHpCbb1MmTKyuly4cGEMHjwYFouFkTq+bfJkVKTU8desViuCgoLY9ChtfaN3Ju/FixdlZwXzG5orF3dYLBbNuskPmIoUKYJDhw6xQZCWrxOPmJgYthCESJ3VakXTpk01B5g06A8ICMC9e/dQoUIFVo56dsjX15fVubt376oIBG+P+EG2EVJXu3Zt3fvUZsj1iEAqnsjthfowagdGSB0PnjARqeO3AdMjdVSuonQrr9HgkYibp6cn6tSpI6vPWqROaQP4Mlm3bh2WL1/O6h7Z54EDB8qIJE/qlAP4Z555BgsWLMDevXtRqFAhocuYET/TbO9TV6pUKfTo0cPQ8RWPC0gFuH//PiN4vJEnpU5pULp27araO095QL2Pjw8b5ZKzvYjUPXjwAH/++Sf69OmjukdxstlswhVaFL4WqRs3bhzzzeFRo0YNpohShfXy8oIkSUhNTcWSJUsY8apTpw7rNKgz4hvwhQsX2PSpVsMmY1+jRg1YrVbUqlVLRnaV8nbz5s2ZYSlZsqRQhXn33XeF3+Lx9ttvY/To0bJrtMAgPT2ddcAFCxZkcefTQA1W2YHx8W3RooVsmis5ORlVqlQRkjERqQsICGAkiu+kyODw02PU0VI4RYoUga+vLzPOBQsWZP5ngPOkjvz0KlWqxL7lqOPQO+eRFCp+OwEvLy906tSJkTN+82x/f3/dDhDINLjx8fGw2+0sjoD+9CuPzp074969e6xN8u3dYrE4VOr4Tj0gIAAjR47Ejz/+yFTOGTNm4OWXX8aECRPwwQcfoHz58uwbDRo0APCoDhIKFy4sI3r9+vXDoEGD2BYlNNDjcfXqVfj4+ODo0aOyFXkFCxaEm5sbvLy8mOoJZNYZst3kD6RcIMDbdiL4fCerVOrWrVuHBQsWwM3NDdHR0ap20qpVK3amKZE6vY1jK1WqhC+++IL5IPGkQumrmJGRoeleQW2L0hMWFsY6c57UGdmzkWanHj58iOeff16T1NE3yY+2UqVKjNTpuS0plTq9+t+lSxf2f29vb01SQnBE6ipVqoS7d+/irbfekp16QIMPftB06NAhZlssFgurC9QHUfr5mawjR45g3bp1sm/ydYz2IHz22WexYcMGAI6VOkBsk5R2iPpuZR7xNlhrAKfsx6hM2rVrhy5duqB///6s7vF2nsL29/dndkSp1FE4gwcPRvXq1VGwYEHhNidG1jGYx4QJQIbr5MmTjBnzDVBv6lJZiZSkLiwsjPmLkCHQ2/Ptl19+Uflx8aQOyJwC3LhxI7tPapXWIpKxY8eiXLlyqus8iaHOir7l7u6OF154QVYRqSEWKlQIY8eOVZ3ZyRsyEcjYaw0IRMSA/PxKliyJChUqqPZF9Pf3lznmv/TSSwAyiQkpQ0WKFFHtS9ipUyesXbsWP/zwg2x6mIw3n+4rV64gOjqaPRcUFIQrV67IfAD9/f1x4MABtr+Z3tFEfCfEf4eu851ilSpV8Ntvv8kOR6dl8krDT/lasWJF2dSwr6+vzPdEbxr79ddfl6k8NOrUUkMIempYmzZtIEmScJsTT09PSJKE/fv3s2v+/v4sL7Q6XA8PD7bdB7/SXUTqlNc+/PBD/PHHHyhatKhwgKJH6khh4Be/BAQEYOLEibLNc6tWrYoff/xR6DIxb948JCcnq0idEv7+/li4cCErA5Hv0d27d+Ht7a2aQrZarShWrBi8vb3x+eef48CBA+jevTuCgoJYGgoWLIiSJUuqypbPLyKEvGO6Uqnr0qULBg8ezFxjlHnHD7zIX0+0xZISNPjlSQVvW7p164aWLVvK4s/7/9psNpw6dUqmlpONdJbUEYgc8G1I5Jf22WefoWrVqhg+fDjrP/ROYuJJnSRJulO1PKxWq6aa88MPP+CXX35h9uTAgQM4dOiQaurYy8uLtU1+FSmli2+3YWFhzM60bt2apU05w7Ft2zb2TsWKFWWrTQG5/+z06dNZ3pCNVSq5vAsUpdeRTeLjpSR1RtYFKPO1ePHiiI6Oxl9//cWuUVvi+1eqY76+viw/eFK3YsUKbNmyRRa+0paTTdPqS3mYpE6AoKAgNGzYEJMmTRIeDq9cscSDKiHJ7spjr5YvX84aERllvT28bDabauSgJHUlSpSQdSqffvop1q9fL9xqgiCqxHxHRg1Ey9eFR0BAAMaNG6eawqAp+T59+uDo0aO4du0a2/QYeGTstXzc9EhdcHAwrFYry0t+S5jQ0FA21UoqSOnSpbFp0ybs2LFDmHZ/f388/fTTqFOnDv7880989913sFgsaNiwIfr06SPzC/T390dAQADr7AIDA1V1gu4TIdIjdXwei0idEr169ZIZMHpfaajIgFmtVtk95QiRVL833ngDX331leze7Nmz0bRpUzaNQJ2LIwNqsVgMn/vLg8qRJ+a8UqdH6ni/IoKI1NWsWRN//fUXoqOjMXDgQPTv31/VxpTKvBap47cbIhjpXJTQI8FK8OWqd1+JoKAgeHl5wWazoWHDhlizZg3c3NxY3dCqbzx5DAwMxLp16zBr1ix2je/A+LpMpFbZ3ho0aICxY8di7ty5TKlzRGiBzAUUY8eOlX1jzZo1rOw+//xz2Gw2WTr4vfhoURJvb0k5492HiGAY2UaI0sa3f1FZtm/fHmfPnkXlypUZIdEjdfz0KwDdLbmUUNYLUtq7deuGfv36sfwrWbIkwsLCVAtDtFR2InXK+k3xfOaZZ1QDDZE7g7u7u6rP09pXjv/WyJEj2cpfXsEmgmjEV5Dvnx1B2Z8p01a7dm0EBATIypsUZ74/7tWrF6pUqYKGDRvKSB3Vg5YtW6q2HCJyHBwcDEmScOPGDUiSxKaP9eD8RkD/ERD5IAWMr5QlS5bEb7/9Jty2gyq4l5cX3NzcZCockQEeu3bt0iWJIoimhJWdfOfOnZlkLVpFymPnzp1o1aqVrLOnBqLX2ZBvlFZnQHHiV3zxxtMRqRMpEWPGjMHQoUNlI1dJkvDZZ59h7NixLCyaeiZjSIdFay1oIYdtILMxU4MuUKAAfv31V+E71PB4A2G1WpGRkcHyjzpYPVJH+eDj4yPbFoHyVWT8+Y6SX63Ng+/89RbVNG7cGFu3boWHhwfeffddlClTBtOnT2fTKiVKlGBKH6VD5MCuxEcffYQOHTogODjY4cIcAuVFYGAg6tati+3bt8PX15eROT1SR+BJjYjUWSwWtlUNr2DyoPyaPXu2cENgApURfyxaVkidM9AidcWKFcO9e/c0p9aDgoKEW1KQ/VF2ioUKFRLaOH66D5C3aZ5wURsUddj8MXPnzp1DuXLlHB7KXqtWLUZQCEWKFEGrVq2wefNmli98/rds2RJbt25Fu3btZGVE6NmzJzp16iSzNVTH3n77bdn0I4+lS5di06ZN7LeHhwfefPNN2WBEC9QWtOqyv78/fH19ZbbXEambOnUq29pGWS9mzpyJPn36qNxGKJ+UNl5rBSyRXXqP+hVaLBYSEsIGOXa7HSEhIcLteZSLAQFtUlerVi00bNgQBw8ehKenJxu4vf322zh8+DB69uzJ/JedIXV6i+WATNeogIAAHDhwgKVPORgWbb1CIg5P6p566im2CwblT48ePVC/fn00a9ZMeCwlkd6suLWZpM4BqHCUDvi9evUSPk+VtVevXti4cSObVujZs6dQIVI61BsBv1CCQP41kiTJfAwOHTrEDOGpU6eE/m30vNVqZQSCvqFHBnr06IEOHTqotjghOGpk5B+grLhnzpzB3bt3hfnVtm1bma8QYfjw4ahatSojZ/PmzcPrr7/OfG4c7T+lnA4wAppy4Zfb22w2ZGRksDwtWbIkvL29Vef58iCj+u2338pGoEQW9Ub0YWFhrKyUapNokY8InTt3Zoez22w29O7dW7U6kPDdd9/h5MmTspVpeiCfsuvXr+tuS0CgvChdujSWL1+OxYsXIzAwkNUFLeWY75j8/PwQEhKCf//9V9e3Tw9NmjTBzz//jN69e+tOzXz66ado06aNrNwcdRjZBbUXitedO3eQkpKCV199FVu2bFGdq0x46623hB221mKFvXv3am4czUOkGgOPOiZH2+XwZEvkFiLCmDFjGEGlfOB9AwleXl5o27Yt9u7dK9xP0WKxqOoIkRe9DnXAgAGqXQC+//57Q3Gn6ThS/zdt2oSOHTuy+zRY5tuzo4VtH3/8MT7++GNZ+ITmzZvL9qH09PSExWJh9ZTKLDAwENHR0aozSrds2YJixYqxfsTPzw/37t1j+UZ+qNWrV2e2uUyZMpqbN1Mf1LZtWxw5cgTR0dGadYRmSw4ePAh3d3fmV9mzZ0/V8Xf8QDohIUF4egPZRBGhPnv2LBNhSBHjy4WmR0eMGKE5u/bSSy/h77//1jy1qEiRIjJ7Tu5BSlD4WdqeRspnOHz4sNSsWTOpRYsW0rPPPiulpqbK7u/YsUMqVaqU1LJlS6lNmzaGw42JiZEASDExMa6OsgqRkZFSWlqaFBISIgGQWrdu7dLwExMTJQBSs2bNZNf9/f0lAFJERIShcDp16iRNmzZNOnTokARA6tChg/TGG29IAKSPP/5YAiD17dvXqbgBYH+3bt3SffbMmTMSAGnx4sWGwssKfv75ZwmANH36dN2wMzIynA6b8u2pp55i19555x2n47px40YJgLR27VrZ9VOnTkkApLfeekv43rlz56To6Gjpt99+kwBIPXr0kN2/ffu2BEBq2rSpJEmSKh/pd1xcnARA+umnn5yKd05gy5YtEgCpcePGsusZGRnSl19+Kd25c0f43uzZs1l6Ll26JF2/fl2aOnVqluORkZEh3bx5U3bNUV3MTj11BsePH5cASGXKlJFdP3funDR58mSn6/KlS5ckAFL37t2deo/SS/YIgBQeHs7uX79+XQIgFS1a1FB4MTExUkJCglNxkCRJevPNN2W2PT09PVtlERYWJgFg7Scr4Tj7Hj2/ceNGdu3kyZO69knrGxkZGdKKFSs07586dUoaPXo0+3316lUJgNSwYcMs1e/3339fdv3QoUOG4puRkSFlZGRIAKQRI0YIvylJkjRq1ChNG84jMTFR6ty5s3Ts2DEpPT1dGIddu3ZJAKTr16/rhiXCq6++KgGQjh075vS7zmL+/PkSAKlXr15Ov5vvSN2dO3dYwx4xYoS0cuVK2f0dO3ZI//vf/5wONzdJHaF+/foSAGnixIkuDTcjI0P65JNPpEuXLsmuly5dWgIg3b9/36nwqJPo3Lkza0ATJ06UAEj9+vVzKiy+44uLi3P4/Llz53Q7oeySupiYGKl3797CPMluJxweHq7qXDMyMqT09HSnw/r7779V+WC326WxY8c6LM/169dLAKQ+ffrIrlOdb968uSRJ6vRu375dOnPmjCRJkpSSkpIlYutq7N69WwIgtWvXzqn3FixYwNJ37969HIlbfiF1Fy9elABI5cqVc0l4aWlpUoUKFaSdO3c69R5POOj/kZGR7D6RvQIFCrgknlpITEyUtm3bpopbUFBQlsKrV68e6ysqV66cpTL94IMPpBkzZhh+XlR3zp07l6361rRpU0NxJ/LaqFEjqXXr1jLCZ+R7drtdSkxMdPgdrffj4uIku92u+d6XX34pAXAqP3MCJHgcPnw4x7+1du1aCYA0aNAgp9/Nd9Ov/DYc7u7uwpU8q1evxsGDB9GnTx/VFiL5CX379sXt27c1pyezCovFIjySJiAgAOHh4ZpLsrXAT7+OHDkSVatWNbzaSonvv/+eyd5G/AFEfi6uhL+/P1atWpUjYZNEzvvLWSwWw3sz8eD3pSNYrVaZ75EWaPpE6YNI+U/1b8aMGTLpv3Xr1uz/ztaZnIIjP0st8PHPzo762UGzZs0MTVdmF44WSjgLfjNgZ/DRRx/B3d1d6N8JPPJfMnqmbFbh5eWlOlbszz//dPrEGQJNzXl7e+Pff//N0ub6ygVHWUF22+SmTZvYVK4eqMwkSdI9u71ixYrCemK1WrPs5gA4buvKc1rzCp988glu3bol87/OKdDCsKy4cuQ7Uke4ceMGtm7dqjrEuH79+uyctB49eqBZs2ZCf6iUlBSZU7CRY5BcjWHDhsk2zcxpkG+L1uHhWqDnbTYbChQogAEDBmDnzp0AjC315vHmm28yUueK4+NKliypOlvTVdi0aRM7tSArIKMr2kswN6FF6uhsYOr833nnnVyPm7OgPM0OqXNmJakz+Pvvv3WPhNq6davm2ZiuhNKnLq8gWt0s8nnM6YGbCEYW8mjhyy+/xIgRI+Dm5pZrRGLQoEGqs0KpTmsNsNeuXSvbk1EJHx8fQwNrai+Sju8uAPzzzz+aCxpyEuRbbMQnNydRpkwZrFmzJle+RT55Wv6xesgzUhcRESHsDNeuXQs3NzcMHDgQCxcuVHVUvLHv3r07Tpw4ISR1kydPZice/FeQVVJHxoNXmKih53XHcevWrRyLQ4cOHWQbsWYF8fHxhrZ9yUlQWYnKPSuqYV6CVJLskLqcgkhN5eHp6ZljhJKHq5U6V+DYsWNYtWqVigSdPn1ad8um/Ii2bdtma7CXFSxcuFB1jeq0Vv49/fTTLvk21VlHBJY/xzYrqF+/Pg4fPuz0e6QC6u0g8KShfPnyePDgQZbyO89IXfHixYVTFXa7HT179sSYMWOEK+xiY2OZHLtnzx68/vrrwvBHjBgh25g2NjbWqb1+HkcEBASoNh01Aur4+ffyC6nL78gPJ6lQGTlL5vMjqA46e+wg1dfcIFWiVZS5CWqvekcE5jZq164tPKnAyP5zJsQgkpXTpNhms2Hy5MmyPf1yAlu2bBEem+kItGKV9ij9ryCrBDrfTb+uXLkS+/btQ1xcHCZMmIA33ngD/fr1w9ChQzFnzhysXLkSc+fOhZubG5o2baq5JUhujZrzEwICArKkWIg2WP6v5d3jDJqWyC9+cdlB7dq1sXr1atmxZkZA21jk9PRncnJyvlA/k5KSzDb6hCMgIAB9+/bFmDFjcvxbov3kXI3AwEDNPU318F9U6rKDfEfq+vfvj/79+6uuz5kzB0DmLt9Gdvr+LyIgICBLag2NCHr06MGuEUHIilIXHBzsUj+4Cxcu5IuONL+CTtDIz4uGnAF/JqxR8Ofs5iTyC5HK6yl/EzkPq9WqOnrxvwhS6vLap+5xQb4jdSayjooVK8oO1zYKPz8/2O124bRtVkjdxYsXnTo/0RGUx7WYkMPLywu7d+/O62jkKXJ6w18TJkzkDWrXro2PP/44VxcdPs4wSd0ThFdeeQUDBw7M0rtKQkdKgKOdzEXIzvJ2EyayiuXLl5sKlgkTTxhsNhumTp2a19F4bGCRHK1jfkIQGxuLgIAAxMTE5Nk+Vo8bNmzYgDZt2uSbKScTJkyYMGHChDZMUmfChAkTJkyYMPEEIP9sdGTChAkTJkyYMGEiy/jPKHWSJCEuLg5+fn7m3msmTJgwYcKEiScO/xlSZ8KECRMmTJgw8STDnH41YcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScAJqkzYcKECRMmTJh4AmCSOhMmTJgwYcKEiScA/xlSJ0kSYmNjIUlSXkfFhAkTJkyYMGHC5fjPkLq4uDgEBAQgLi4ur6NiwoQJEyZMmDDhcvxnSN1/CUlJSUhLS8vraJgwYcLEY4mIiAgkJCTkdTRMmHAaJql7AuHt7Y127drldTRMmDBh4rFEiRIl0KZNm7yOhgkTTsMi/UeczGJjYxEQEICYmBj4+/vndXRyFBaLBQBM/0ETJkyYyAJMG2ricYWp1JkwYcKECRMmTDjAZ599hm+//Tavo6GLfKnUHTlyBO+//z6sViuCgoKwbNkyuLu7AwB27tyJgQMHomLFirDZbNi2bZuhME2lzoQJEybyJzIyMnDlyhVUqlQpr6MCwLShJsR4HOpFvlTqgoODsWnTJuzatQuVKlXCH3/8Ibvfr18/7Ny50zChM2HCxCPcuXMHmzZtyutoyJCYmAi73Z7X0TCRR/j6669RuXJl3Lt3L6+jYsLEY418SeqKFy8Ob29vAIC7uzvc3Nxk91evXo3mzZvryqApKSmIjY2V/f0XkJ9HECbyB9q2bYtOnTq5NMxff/0Vd+/ezfL7Pj4+ePnll10Yo/yNHTt24M0338zraOQbHDt2DAD+M3bahImcQr4kdYQbN25g69at6NatG7tWv359nD9/Htu2bcPGjRtx5MgR4buTJ09GQEAA+ytdunRuRdsliI2NxauvvoqkpCSn3ktOTs6hGD35kCQJy5YtQ0pKSl5HJUdx7do1l4f5wgsvYOnSpdkKY8mSJS6KTf5H7969MXv2bGRkZOR1VPIFaForPT09j2NiwoQa+/fvR8eOHfM6GoaQb0ldbGwsBg4ciIULFzJ/OgDw9fWFh4cHPDw80L17d5w4cUL4/ogRIxATE8P+wsPDcyvqTiE1NRVbt25VXV+4cCHmz5+PNWvWOBVeYmKiq6LmEiQmJqqmz/MrTpw4gRdeeAFTpkzJ0vs3btxgikN+Bk1zukrVtdvtSE1NRVRUVJbezy/q8tGjR3PtW8WKFQMAREZG5to3Hwfkh73h8kt9JKSmpuLMmTPCezExMYiPj8/lGOU+0tPThQLH/v378frrr+f49999911s3rw5x7/DQ5IkjBs3Djdu3HDqvXxJ6ux2OwYMGIAxY8bgqaeekt3j5fk9e/ZoOtZ6enrC399f9pcfMX78eLRv316TdDprYPIbqfvrr7/Qq1cvPHz4MK+j4hCk0N2/fz9L75ctWxZ169Z1+JzdbsfQoUNx/fr1LH1HDw0bNsScOXMcfh9wnSpC+ZZVUpcf6uz69etRr149bNmyJdthJSYmOvRZJFKXXwebeYXcqAupqam69/Pbxu0ff/wxatSoIWyvgYGBKF++fB7EKnfx7LPPMpcs5XVH9u5xRVxcHMaPH4+hQ4c69V6+JHUrV67Evn37MGHCBLRq1QorVqxgCVu5ciUaNGiAJk2aIDg4GC1atMjj2GYPV65cAaA2NFldZZMfOkgeFJ+sEKWNGzciIiLC1VHShNWa2Rxyekrs2rVrmDt3Lvbt2+fysA8dOqQ5cpUkCbNnz2akzlVT9dklw7mpNERHR2PixImqMqZ2KKpvx44dw9q1aw1/44MPPkCnTp10/cNMUvcIqampLB9yWqk7duwYAgMDdQcg+Y3UHT9+HIB23mR1MJUb2Lt3L2tb2YGj2R5XL7I6ePAgLBZLnirpZJ+JCxhFviR1/fv3x/3797Fz507s3LkT/fr1Y2x8yJAhOHToEPbt24cvv/wyj2Mqx19//YW5c+c69Q6NvlxVKZ31waNvu0K12bt3L3x9fWVkgf7/4MED2O12WCwWwyOrzp07u9yPQZIkhx1pTq/CJJ+2rJRVdvD333/LnPNdReoOHjwIIOudS26SuilTpmD06NEqX1zqyHlXDwC4d+8e6tatix49esiuS5IEi8Ui9AMkBVZPEfL19QUAp6dWlHF+EnYAePvtt7Fr1y4AOT8ovXbtGpKSknRtgCMlLyexdu1aWCwWmQ2ihYKubCf379/HpEmThKJBSkqK0DZkxS42b95cNdvmShDhcbUv+W+//QYAOH36NIC8mZKntqC0SY6QL0nd44qnn37aaamUOpPIyEjExMSw6yJ2XqpUKTz//PO64VFFUK4Y1kOzZs0MVZyPPvoIDRs2FN5LTk7GO++8g4SEBNm2BKTiPHjwgJGYefPmqd632+24cOGC6vrly5dlv1etWoVbt245jKsWfvjhB5QpUwZ37twBALz22ms4fPgwdu7cyYy5nlJ38+ZNNGzYUFZWziKvSJ3SKCsNoY+PD77//nunwpw/fz46d+4MIOukLi4ujv0/txYOKMtPi9RpKQRUr2fOnCm7npSUxJQJvY6G3s+OEjBp0iS0a9cuRxa+uBKNGjXStVv8lHdOK3VEjJSq8vLly1lZu0qpi4iIgMViwY4dOzSfSU9Px88//8xIA+3owKu8IlKXnJyMkydPGo6LJEmymYEPPvgAo0aNEg4qKlasyJRkwo0bN+Dm5pYlvzKjZDA1NRWJiYl4+umncenSJeEzWvbBFYOBf//9l/m3kx3IS9WW2oIzfTlgkro8BylkzZo1Q2BgILsumn69desWfv75Z93wskLqDhw4YOi56dOn49ChQ8IpqiFDhrBpAr4h8KSO4iYacX744YeoUqWKqiPkR82SJOHZZ59F79692bVz587hl19+MRR/AMwQ3rlzB3a7HfPmzUNYWBhat27NDJzeqGzRokU4dOgQdu7cafibSriK1D377LNYsWIFtm/fjvXr1ztUW5WERZnXiYmJmDBhglNxWL16Nfu/K6ZfeYInws2bN/HZZ5/Jyqht27ZsZO0IPj4+AKDafoXqrHIwReVss9lk36SyU+b5wIEDcfHiRQDGSJ2jPPvpp5808+Tq1auysPIrDh48qGu3+E4/J5W6HTt24MUXXwSgHoAMGDAAvXr1AuA6pY4GqRs2bNB8ZubMmXj++eexf/9+AI9cQPgyF5G6d955B7Vq1TIcl7/++gtNmzZlpIx8nG02m+rZW7duse8fP34cLVu2ZCTLkTLct29fvPDCC4bjxaNMmTIoWrQo/vrrL0yePFl2j9qlsu+g664YIIeGhqJ9+/YAHtlKat95qdSZpC6XMWnSJPz7779Zfl9rJJBdnzpHyhttC+MIP/74I4tLaGgogMxpPCX4USA/2uanXyluok5q9uzZAB4ZG0o3nz+krvANu1GjRujfv7/DdADAK6+8grNnzwIATp06pRrp0uhYTy2iBqYcfTpTTlqkLjk52SnlZtWqVXjuuefw3Xff4YsvvnA4BaGsa/zz1JG5u7sjPDzcsBr64MED9v/79+9nSWnj64OjNLz55psYO3asjAxt374dvXv3xpgxY4TvREZGMsJORlqZPsobJUGKjo4GkFnePOGgeFJ4SUlJSEtLk7UNZVoOHDjAiBjd0yN1N27cwMsvv4wRI0YI7+ekqkmqSXawbds2NGrUiP2+du0atm7dilatWsme49vSzJkzDaUrK2kfP348+39UVBTmzp3LypeHq9QZsgkWi0VF/m/cuIGMjAzcvn0bwKM8IFsbGxuL1NRUBAQEYM+ePQDkdk+k0t26dUsz7lT/aRaFbI+jAcGIESOwe/du9m1Hqtuvv/6KZcuW6T4jgiRJuHv3rmb/5eHhAUB70OeorkZFRWHv3r2G40N2ntppbpG61NRUHDp0CICp1GULN2/exMqVK50uuJSUFIwaNQoDBgzI0ncjIyM15Wxq3MePH4ckSYb9KfTYfXp6OsaPH4+tW7eiatWqaNeunUN155tvvmHvksrBE4/09HS88cYbbDoTkJM6MhoPHz5khkSUFjJGZGRFxonUFT8/P3aNiF6TJk101YC0tDT8+OOPzHfnpZdeUq1UJYNhhNQp4/fDDz9ovqOEFqnr1auXatrDCJKTkxEbG+uQECnv87+pzDw8PFCmTBmUKlUKFosFq1atwq5duzSdnflyt9vtWZqW5uuDoxE35btoo2MtlbFChQooW7YsgEf1S0nqiNSmpKTg9OnTLG/i4+NRqFAhAPIpW7qflpaGy5cvw9vbG88//zw8PT1VaYmJiYEkSWjcuDEqVKjAvgPoT1nTN0TEA3jUweaEUteyZUvW3rOKDz74gPlbAkD58uXx1ltvYdeuXTJywP//9OnTwi2eeOzduxc2m03orqEHnigcPXoUQ4cOxaeffqp6zlVKHdXVL774Qvbt5ORkVK1aFcuXL2dlTPWGJ3UPHjyQbZzPtxMt95zXXntNNy6kzFE/4aju0H3qG53xvXamP1UOyJT9lxapM6rUPffcc2jevLmhOCUlJbHyou8ZeU9Zb8gfTw/nz59nxB4ARo8ejYYNGyI6Otr0qcsO/v77b/Tr189pR1TqnAsXLiwbKfzzzz+G3n/llVc075Ghmz59OmbNmmV4FSgpJ6KKcO7cOYwbNw5dunRh1/jGsGbNGlVnSY0mMTGRpZHviK5fv44ffvhBSBAAsVKn9JvhG8zQoUMxYsQIIamjUSZP6mi6Yv/+/bpTokZ2qieV0AipS09Px4MHD1jc+QUISsP3zz//YPr06ew3OdIrDdHGjRtV39u8eTPGjh2rus7nWXJyMmJiYmThiXyT9EgdGS8lefvxxx/RqlUrVKxYURVeRkaGql5mxa9O6SukB6rXERERSEpKMmRs+fCJICnrOeVdQkICwsLC2EbK8fHxKFWqFHv3woULsFgszNczLS2N2YHNmzezzofSkpKSgsDAQHz11Vey7xmZfqV4a61+ywlSl5SUhK+++krmkpGUlISDBw/K9vEjJYnHhAkTMHHiROzbtw9r1qwRqjqUz7y9VD7n7u4uGzgmJibKypDUUGdnSHibSFPkIpLiKqVOSUAo7Xfu3EFSUhKOHDnC6rtIqVPGg/Jgw4YNmiRGObD97LPPcO7cOZUSbYTUnT9/nvkDkj1xhtTxbXn37t26bXXixImy30r7pSRZSjhS6shOGZkJiYiIYOVx+fJlWCwW5lpEUNbZ+Ph4FC5cmM1Y7d+/HzVr1sTrr7+u6/NatWpVlClThv0+f/48gMzyVyp106dPl/UjWjBJHYAiRYoAyOyQ7t+/r3LO1wL5GWRkZMhGjQ0aNDD0vp5TMG8wT5w4weRzR/vtEetPTEzEpEmTEB4ejunTp+Pq1aus4vPGgjcOPXv2xLPPPisLj4xMQkICiy/fcYtGtTdu3IDFYsHevXuZ0fj555+xcuVKAI8aBIXH58OePXswZcoUWbhJSUl4+eWXce7cOQCZpK5Tp07o1auXzCdEb2rAiIJEHf6hQ4c0jSZ9LyYmBoULF8bUqVMBQLZfIqW5ZcuWePrpp9GgQQN89NFHADLzi1Sib775RtYxiVZybdiwQbiwhDfGIqVONEDRI3VaAxplHeXLfuPGjaqOR4ukSJIkNOqbNm2S7WHoaMRNxn3Tpk3w9vZmU1NK/Pbbb7IRMIHqgfI7lP4bN24gKSkJERERWL58OY4dO4bg4GAAQI0aNdjWJtu3bwcg3xQ1NTVVRuqmT5+OIUOGAMicKudhZPqVBiIWiwWJiYlYsmSJLA+d2Zpmw4YNOHz4sMPnZsyYgf/973/styRJKFeuHBo1aoSwsDB2PTAwUGXnxowZg9GjR6Np06bo2bOnsD3SqlO+c1bWoU8//RTFihXD77//DgCoVq0aG8hFREQwYtGnTx+cOnXKYZpSUlIQHx8vKxvazFdkT3lb4WjQEB4ejiFDhgjTqhxIErGgenn69GlZ3QEeDVLXr18vrKPXr19Hly5dVNOvIoIvSRLGjh2LPn36sDTFxMTAz8+PbdqfmpqKCxcusH0VedLWs2dP9n96Pz09HdevX5d95/Lly8JZEp5otWzZEsuXL1c9QwgKCsKwYcPYb+UZwFR2S5cuxaVLl/Dnn3/KvunIbhQvXhzAIz9UEcj+3r59m4W3YMEC4bNKMhwVFYX4+HhGyshuzpkzB23bttWNG193+P5FOeu2bt06Q4KRSeogJ3UjR45UERstEPnbvXs36tSp4/R3tabaatasiUmTJrHfZ86cYRWDX0whAhGG+Ph4jBo1Ct27d8dHH32Er776SjiaUV7bs2eP0PdAi9SJwiSD8euvv7LKf/fuXXzxxRfsmRdeeAG+vr64fv26Q7+WzZs346effsJnn30GAChQoAA2bdqEP/74gxlBQL9hG1HqZs2aBQA4e/YsvL298c477+D777+XKXeUHspn6nji4uJYHaBOdvfu3fjrr7/Yu6mpqbh586YsPH7LFjJcfEeflJQkUwQJSjVUqdR98MEHqvwQ+fClpqYiNTVVcwTMl01sbCyKFi2KkSNHAsjsVJXg60ZaWhrLp7CwMJQsWVL27P79+9GpUyfZGc5169ZlKooIlAbaFod/lp+y6d27N7p27Sp7V5Iklh5lXlD6yehHR0cztwpS6oBHKi7VA57UJScny4jDmjVrmOKnzN+UlBRYLBbcvn0bCxcuFJIHntQtXrwYL774ItavX8/u6yl1N2/eRJcuXdjAs0uXLjJSJoLdblcRvxUrVrAOtmDBguy6JEk4ceKErkKiN8giEn3r1i3VgItUQrKvNKBdsmQJSpQogVGjRrFneT85Ef79918ULFgQfn5+srKhGQ0/Pz9Z3kuShGbNmrHffHtXuspcunQJH330ERYsWKAiCw8ePMCgQYNk1+7cuYPU1FT2LD/NryzDmTNnqsqCSJ0IojrAL+YhmxIZGSkbwKWkpKBKlSrsLGi+vdMgGnhUF+12O8qVK4eWLVuyezVr1hSublbWDb3N1pOSkhAUFMSmYZWkjgZzM2bMQO3atdG9e3fZNx2RuhIlSgBQk7pp06YxgkwDh6NHj7Jy0fItTklJgc1mw6JFiwA8ssdUr/g8vn37Ni5cuIDu3bvLfJBFoP4sJiaGhUn18+7duwgKCtJ9HzBJHQA5qTtx4oSq8qWnp6Njx47sCKhZs2Zh4cKFWT5W6Pz58/j666+FqzbT0tJw+vRpmXpB0w1Wq5X5XqSkpAg7AqU6QZVyx44dhkgdABmp5adfqaI6InV8ZdRSEciZ9siRI0JSxyt1ZIwpLXyYvFKn17CVHYdod3IlvvvuO7z99tuy1WuUXopLTEwMnn32Wdy9e5edL6w1pXHnzh38+OOPAB4ZkDt37uDmzZsIDg6W+VklJydj5MiRuH//PlJSUlRpU5K6tLQ0WT7+/PPPqik/kVIXHByMcuXKaSp1vCJA///888+Rnp4Ou92Ot956S/b8uHHj2IrYd955hxGiI0eOqKZqaUpDacB5PywlqO5RJ8OniXzAaEBw7do17N69m91fsmQJWyhjhNQRSKkDHtVL3qfOiFLGDyru37+P5ORkVK5cGZIkYfDgwbBarfjnn3+Qnp7O1Cyqs1arldXXefPmMbLDE8zt27czlSUtLQ19+/bFhg0bsHz5clnnLMKOHTuwZs0afP755ypF8YMPPkDjxo3x2muvoWTJkvjll19kadFbUKMsVx5U39asWQM3Nzd4eXmhfv36smeUdoFWrvLgj+W7c+cOypQpI3MhCA0NZWUtcklJT0+X2RqlPaM2GRoaio4dO+Knn34CkJn3lStXVs0+EGgAyuP27duoWrUqBg4cyH5Tm6A48N9X5l98fLymb6tylwBAbiOI1CnLi7dVb731libpoDKnOnbw4EHExsYiIyOD1X/lrI0yL/V8FZOSkuDl5YXx48fj008/1VTqlOni+yc9UL/JT4VKkoRhw4ahRYsWmDhxIkvj119/7ZAk3rp1CxkZGRg3bhxGjhzJ7AflH4W1dOlSJCcn488//8Sff/6J4cOHa4Y5a9Ys1n83b96cDch4YSTHSd3Dhw/xzTff4K233sLEiRNdujv6Rx99hObNm2PAgAGyypCeno5BgwahefPmeO+991zyrcKFCwPIHMWcOXMGDx48kFV2GqWNGDGCdWSDBw9WKVrkUK0Fi8WCoUOHok6dOvjwww+Fz2g1qkqVKmHkyJFISkqC3W5HgQIF8PXXX6ueu337tqwBkA/B6dOnheRJ1BhCQkJkcQa0lTrRFDL5K82cOVPliwBkngrSo0cPeHp64syZMw5JHRljMlZ8g+OnC4ySuhYtWhjyTSAMGTIEDx48QJkyZZiCSo0vJiaGdYREYLQ6+YEDB7L3+Wmfzp07y8h4VFQUfvvtN1knq6wXopWYSj8x5VYKIlIXFRWFO3fuGPInvXnzJvv/li1bkJqaimeeeUb2zJEjR5iCR4tSeJJGZShJEpvKTE5OZm0QeESwfH192fQ2Qemzx/vIeHt74/bt2+z96OhomaLw0ksvsc5CmReU/9Rp8nWSpm6ATEdmPh5paWmyeqe1qIG/XqRIEVy6dEl1Gs6aNWswceJElClTBpMnT2YLP/iVqGvWrGFT/UQkTp8+jbZt2+K1117DV199hYMHD2L//v2oUKECtmzZgmrVqqni8+DBAzx8+BCDBg1CmzZt0LNnTyGZfvDgAQYMGMDi3L9/f9l51NT+RX6oeuo41bfjx48jJCQEiYmJbNUfn2eOtny5fPkyK7Nly5YhPDycLbRQtgcRqVD66ynfSUxMxKhRo1j7Gzx4MG7duqUqZ749TpgwQaY+E+7cucMGDTQYpQF7SkoKJkyYICPgSgIWHx8v3L/Nzc1N1l9ZrVaZT5YkSYw88m2YvkuYNWuWcAES8Mh+8vZ+0aJFMgVaScSUfQsNtgYPHszIMJBpw9PS0uDl5QUgcwbr3r17uHr1KkaNGsU2rdcDtcHvv/8e7777ruZ9Pn2UlpiYGNauq1atyvx19UDT99euXcPnn3/OfA+pvsbFxcHDw4MtjKL08rtE8KLMvXv38NZbb8nu0wbpqampSEtLw/37911P6kqWLMkiffXqVVSvXh1Tp07FxYsXMWfOHISEhDgcFRrBsWPHEBERgT179qB69eqy0eOff/6JUqVKYc+e/2vvvKOrKr63/9wkN71TEgi9994hdBAEARESG2KhKCCK0uUHqFRFQZEqiICAgJQvKE1AkN57LwIBEkJCei/n/SPvHmZOufemQALMZy2X5JZz55xpz+y9Z88+JCYm5slRS87OznB3d8eZM2fYQBQWFobbt2+jUaNGzJ2oKIpgElfH3pGlxhILFy4UGoza325kot61axdcXV2RlJTEvr9q1SohsWVmZiZu376tG9QOaK14gCiEyPRrNpvRokULzJw5k3UmSldRtmxZtuOxfv36GheD+nf0Yl5ee+01bNy4EY0aNcLKlSvZQMVvgODdr+pVMD9Y8AN1TEwMpk+fjqFDh6JYsWIoXLgwRo8eDQDCCQKurq4so78thIWFYfbs2QgJCdG4X3mLKi/q9KyofPwXL7zVzygiIkJjVYiKisJ///3HBmcakEwmExMo6kS4NBHVr18fixYt0nW/EtbywwHiJEMpaHjBQKEBlPqG2hOf1qJUqVJ46623cPz4cWFjSJEiRTRlSUhIEFxtW7Zs0bhPeJEXGhqKgIAAwxQgRM2aNYVnce/ePbb4oGfGT9qenp7MzULQBKY+aNwoZkfv+arP7IyOjmYxlmPHjmWu5bi4OF2BRP2CJqolS5bg888/Z9/r0aOHxrIzffp0tGnTBk2bNkXTpk2F+9LbMZ+amgp3d3d4eXkJgf5EQkKC7oYZa9DzuHXrFnsO/MRtZ2eH6Oho5kUBsnKgUdviKV++PKZNm8ZE4ZQpUxAaGqoRiXoL0MTEROF19Rh54MABthCbN28eFEXB6dOnNYsLXhgapdbhrUTqeMSwsDCMHz9eEB1qUXfjxg2NKAOy2qB6kfLff/8JooUEuyVLHWC8yY/aH7+4PH36tDAW83OXoii6oq5ly5ZYsmQJgoOD2evUrnhRl5ycjHLlymHy5Mm4du2aofeDfpN+a8iQIZpxEHg81s2aNYtZy/Q2dZUsWRJJSUlWY7BJ1BFUt7ylzsPDg1n5qS1evHiRufH5e9ITa7wFlBaveS7q+F0hY8eORZUqVXDjxg3s2LED169fR2BgIFO8ueHQoUPo2LEjAKBTp06CcLP0Xm4oUqQIsywAWZ17xYoVOHbsGJvAAGhEK++a4XexqC0rvEjhYzb4yR0wnhQCAgLg4uIiiLrjx4+jbdu2zKV348YNxMXFaWJnyHXDD8YE3/EqVKiA1q1bY8uWLThw4IAQJEqTWLVq1diK8+TJk7orO2tuaZrsx48fj3v37uG9994DALaqAaDZKMFjtIo6dOgQRo8ejdmzZyMsLAyRkZGYPn06Tp06JbhDsivqAO2ER4M/3zFJ1KSkpAjPjo9FIiy5C9atW6eZjB89eoRy5cqhTJkyAB6n71AUhdWretMADQQnT55E//792SBx4sQJODs7CxMB3/aNoAnB1dUV27dvh729vRAXev78eQwYMAApKSlYtWqVYazXypUr2eREJ5Twk3dkZCQTxRkZGVi6dCmWLFmCnTt3onz58sJCQm9gtnZUX4sWLYQ2RBMexd0Aoqhzd3cX4uqAx/1BbanLDk5OTkKcVlRUlGAVJPTcNoqisLFYvaPv+PHjKFSoEIoXLy6IFA8PD4wePRp79uzBrVu3NKcJGLnH3Nzc4OXlxf7mhUVCQgI6d+4sjIOAOBbqQSLo9u3bLN0MT7ly5YQFE5BlSerfv7/w2pAhQwBk5VOj+NXbt29j+PDhGquWnqhLSEgQBJna28RP3nXr1oWnpyfOnj1rUdQZQa5/AKhYsaKwMYAXxeQpUQuw3bt3a54JoV40UOA+kCX6U1NT0aBBA40oVItBo/lULeocHBwQFxcnPFNetKakpGjGuPj4eDZGubi4sGdI/YfmKXWs+eXLl62GOCQlJQmhImvXrtW8T3zzzTf47bffNPkSgcfeNnUYghq+LoHH8zY9n7i4OHh6egpjCjFlyhT2GUvQuJ6amsrm2Sfqfj1y5Aj+7//+j1WEk5MTxo0bZ/PpBJaIjo5m7ikvLy9BIFl6jyclJYXl+OFz/Rjh5+eHEydOMMERGhrKvkMWBbKW8PC7HnlLXaFChaAoCv755x+sWbNGMwhQ41Hv/KIKV2Nvbw8XFxckJiZqJpEPPvgA586dYwe5q1eBNODyoo4ECO8edXBwEPJspaens9UzL+oURRFOEgCy4q2yO7m1b9+e7Q50dHQUAun5TqxeNdGqx9akjIsWLRL+dnFxybaoU7uB1O6X4OBgJta7du0qTD567i96VnppbdauXcssjAQFhKekpCAtLU1wgRkREREhDBznz59HhQoVUK9ePTg7Owv1pX5GBL9Io0mmSZMmSE1NRZEiRYSYxoCAAJQtWxZXrlzBm2++aXEXOS2OatSoAUAUdd9++62QhPrdd9/F+++/j7Nnz6JChQrCZ0nQ8JY+I6pWrYo9e/bAz89PuPeIiAjY2dkJ/Zev3/T0dE0MJu/GTUhIQEBAAOt/tpKcnCy4YCMjI21O+BsTE8NEs/r82YMHD6JUqVKCEAPE8JDU1FRNf1VbHwh3d3chXIAXGzdv3tTNtak+K1dNfHw88yzQQoWnfPnywqaQ6dOno1ChQppJctasWQgNDUXDhg2F+3FyctK0v8jISPTu3VuY8Ldu3Yrq1auzv9UuaH6BWrhwYdSsWRPnz5/XFXWXLl1iIQULFy5EmzZt2PvOzs5COISbmxu++eYbNrfwY/OYMWNQvHhxQYA1aNAAkZGRwpFqPOpdmmFhYRoRW6NGDY2QUHuGrIk6avclSpSwKOr4FFgEv4hISkpCtWrV2L8B0VLHM2PGDKupSP7++2/hhI2goCAhJEDd1vv06SPcO1mAeW+RHvQ5dZoSso7TPEGWOrPZzNJdubq6CnGL1hYCtMBISUlhZVUvLvXItqijST4lJUWjGv38/HJ1liHh4+PDGlF0dLQwGFl6j2fq1Knw8vJi/1lzjdLkUqtWLfj6+uLcuXPM7UqcO3cOf/31l/AaP9irfyM1NRVt27ZFcHCwJu8SCRi1qNPLFE7fpUavZxqOiYnB7t27BcFCEy6JOn7VTmXlxYNa1N2+fZutSMilRR1RnVixZs2acHZ21pTLGmTF8vb2FpKd8pOqkSm8YsWKNv2GenUaFhaWbVFntMuS+P7771lbULtwfH19cfnyZWFgoQGP2kHbtm0t/j7vZs9Ogl/eyrx+/XrWhvz8/HQtt2q+/PJLzSkMZF3TsyrxgssS58+fh6+vLxukeAFCqRjU7Nq1C2XKlBFc09Q3+IlZj9KlS2PLli1o1aoVs3gTERER8PX1Zc8GEN3qaWlpGlGndvu6uLgw8c5bZj///HM0bNiQLRZ37tyJ5s2bA8iyoPD97dSpU8J1La3Kw8LCDAXg6dOn4ebmJuyUp+B8S9y+fVvXvam21PGiTi9mFrBeH/Hx8bhx4wZSUlIECz3Bx1gCYP1VPena29vD398f33//vdAeCxUqpLHUhYWFoUSJEsI4xT9vZ2dnTZw0H7bh6+uLSpUq4dq1a7qirlq1akzMurm5Yffu3WjatCkAaI7Oovt46aWX4OzsLPTFl19+Gb6+vsK41a5dOxQtWtRw4UxJ4vl75QWXp6en5pkC0MT+hYaGCnVNwpTGHCpnQEAAtm3bxhblgHVRR8KEdq1S31WLOn6BVqhQId0TjEqWLCnktuPribh79y5++OEHZGRkWLX09e/fH7/99puQb1TN4cOHmWhXJ75Wu1/j4uJYHdPOYkVR4OPjw8YWI4GuJjU1lY2XemOummyLunbt2qFevXqIjY3V3NidO3dsHtQt0aRJE7b62759OxsErb3HM2bMGMTExLD/rG3ioAG5SZMmaN68OSZNmoRt27axFWrXrl3RtGlTHD9+HFWqVAEANG/eXFgNqB8436jVoo6Eli3Zy+mZUqPXs07SCmrdunVsBUCxdTRx8gOHOr0EoBV1ycnJwj107tyZpeBQx6sQeodXFy9e3LCeqOF7e3sLEyc/qRoFn+tNBmocHBwQHR2N4OBgNqhcunTJoqjTWw3xYlvvd4sWLSo8Ox4fHx9UrlwZzs7OCAkJQWhoKNvpRwPvK6+8AgCYNm0ac0cbkZ2QA7Xbjqw7ZcuW1Vid9cpvMplgb28PNzc33Lt3Dy4uLswSTNfiY6FssZgBWQukIkWKsHbI10f//v0NT+jgF0GOjo6sX1lbYS9btoxZhFxcXIRBPjIyEoUKFWKTfenSpYWzMbt37y4IPjWLFy9mcbmAuHt8xowZOHr0KFuweHt7szQnaktKeHi4MNDPnj3bMGXHhQsXLFr1xo0bJ4i6smXL6n6+WLFiQkwn5SvjoZg6ghd16oUvYS3F09GjR7FmzRq4ubkJFi1CbUGi52eUp7NFixaa003Ui7nIyEi4ubmhadOmqFy5sjAm2dvbo2fPnoI4KFKkiHANLy8vVKxYEdevX7fqfqW2MHPmTCxYsABz5swRYgdHjhzJPuvo6MjE5Pr16+Hl5YVChQoJc4ObmxsCAwN1710Ptajz9fXVWG6BrDbHp4UCxMWy2WyGyWTSHKFI8xcfY85b4hITEzVzLo036sUKlZP6GK8h1LvriW7durFdp+3bt9cNw/j666/x6aefonfv3lY9iMWKFWMbgowoVaoUE8ZGc1JkZCTi4+Px6NEj1lZpXsvMzISvry+ioqIQHR2NgQMHsu99/PHHQggMv3BNTU3FuXPnUKNGDasbRoBsiroJEybgtddeQ/fu3TF8+HDN6nXz5s3ZanhG1K1bF/7+/ggMDMTFixfx2muvsQfwyiuvICQkBIGBgXBxcWErITVOTk7w9PQU/rMEiZWhQ4eiadOmSE9Ph9lsZvFqlSpVwpYtWzB06FBMnz4dCxYswNatWwVRp54UjURdaGioYKmrVasWevbsaThAEpZEHfncPT092QBDruFixYrBZDIJg55e47W3t2cTm14c2JYtW1CsWDF0794dFy9e1LXM6cUp0AqYT2ZJ0GTs7u5uaCkx6kAkWl966SUhoJ4nPT0dp0+fRqFChVicT9u2bS2KOn6TQ/HixfH2228LA5beZhYHBwf2PCpWrIikpCTmWuP7SYkSJeDv74+tW7fi0qVL6NatG4As9+2QIUPw9ttv48cffzQsG2DdtUXoHYFEC7GyZctq4vYsCRdPT0/cu3cPnp6ezM1M1zp79ixLUWOrqDt//jyKFCnC3Gm8KGvUqJFh5vrevXuzgc3Hx4fFIun17ytXrmDQoEGoXr26EGdK8YRUzyTqyLLdokUL9t6sWbPg5ORkNQVOdHQ0uwe9EwlIlLi4uKB06dKYOnWqJtTC09NTiEP09fUV+qmdnR3OnDmDgIAATJo0yaL75qWXXhImcV9fX92YMhIQQFYb1rME8FY/Ozs7QdQdPnwYJUqU0IhqvZADviwrV67E7t270axZM93jyNTnOdNnrIn3iRMnAshyf0VHR2sWryaTCYUKFcLly5fZ+DhmzBhERUVhxowZwmfVcYJ2dnaoUKECoqKiWJJZQu3WpPI2btwYAwYMgKOjI9q3bw8A+PXXXwWrGR8e9OqrrwIQw3qArDFE7Xru3LmzJn708uXLCAwMxI0bNwSPga+vr2GOU/UiVm01d3Z21oQvqZ+Nl5eX4M1ITEzU7L5PSEiA2WzG+PHj4eTkhKJFi+KDDz5gC1wafxwcHLBs2TLs378fo0aNQuXKlTVlJsOKu7u7piwEud8pl6h6pz55nYDHBhm9eY/w8/ODm5ubJg5efY8eHh74888/WVultkCWuoSEBM3vVKtWDS1btsS4ceNw4MABoa5TUlJw4sQJwb1siWyLOv4/PnEqkBULY+n8zewwY8YM7Nu3DytWrICjoyNLNurg4IClS5di3759Vie/7FC9enUoioKqVauyFb2Pjw9bcXbt2hXOzs744Ycf0K1bNwwYMAAeHh5M1DVs2FAz2fIrFX4FGBMTwxpiWloazpw5g3Xr1qFmzZro1q0bdu3apVtGmlh4wUOrHrLUeXp6olmzZgDANpSQqI2Li2PCU88Uz1vqLLl+aOAxEsrkEqegWCrv+vXrNakP6BoODg7ZttRRPVWsWNEwkXOxYsUQGxvLBrTo6Gj88ssvNp2x+u+//+LChQtChn3AOA8dibo6derA2dmZpdzRs4B5e3ujSpUqaNWqFRRFQbFixTB79mwEBARk2zXMwwsFPoG1Om9WmTJlNMG+lkSdh4cH0tLS4OHhgcKFC6Nw4cLMJc8nH61Tp47VMrq5uUFRFBQuXFjXUqcexD///HNkZmZCURR06tQJb775JpydnfHpp58K5VNTqVIlzJkzB+fPnxfujf5N1rqIiAiWsgOAkLSYBnC+bW7cuFHzW7Gxsewe0tLS0KhRI3z88cfsfXrP1dUVJpMJo0eP1vQx6q+Et7e3IOoyMzNRq1YtDBkyBLdu3dINtP71119ZaAQ/ibu6uupa6nhRR6EYY8eOFRbn7u7uqFq1KubPn4/OnTtDURTButO4cWPN8/fw8DBMR0InpNy8edNwETB48GAhMwDVmbXF+YQJE9ChQwcm6tQTPl8nJEK6desGDw8PjWjixQ6lxiEr1qFDh4QNHuoFkp5QpfHBlv7NH+UIZC3C1OUbOXIkKlWqJLzm5OQEf39/bNiwQRi39Cx19OzVz4gPI8rMzNSIOicnJ41RoFixYoLl//79+9i/f79GSJUvXx7e3t747rvvEB4ezowmgNjH+vTpg+bNm8PV1VVIWk/wopfK7+vrK3gx1F6jKlWqCGNiixYtWF8nUcfXG8U7V65cGZUqVYKdnR1bFACPN/wZuURpHqRrZmZmGopGahtff/01mjVrxvoTnXF848YNXYu2HjL5sA7UqDMyMlCuXDmkpqYaPlBa0S9duhSurq6C/5+3Ii5atAg9e/ZkDYEqnDcvm0wm/O9//zOMr6JBmheL1MBI1Hl5eSEwMBCZmZkslQS/0qbOmF1Rxx+yTYODkTXl9u3biI2NZRYdErsmk0ljPqbGa2dnJ7hseMvYkiVL2L/5gZYEQXx8vG72eicnJzY5UZm9vLxgNps1lhc9i2+FChXg7e0tCJXu3btj8eLFGDRoEHudOqq7uztWrlzJNh3wm4iyS/v27XXriEcvF5Z6dyAxYsQIdOrUCa+//jqALFeCuv4siToadGhSffjwIduBy+Pq6or9+/ejc+fOwuv8xg5yT9auXZtNVPxER6twon79+kK7qV69OpKSkoR4UGuTPQ/d5/Dhw/Hw4UNmqZs0aRKmTZuGoKAg9ntUd3x70bOUUmA0kCXqjhw5Iiw6eUudEZ9//jn69OnDJhN3d3dd0ePr64uYmBjdzV99+/ZlFghq8z4+PoaWRuoPERERTPhPnjyZLaKp7HZ2dhg4cCBrk/zEP2/ePF1RrY533rZtG86cOcMWVPfu3dN8hq9nPnaV+jf/O3qWaCCrLaxduxYJCQmCEKpcubLwPGnM1FuIxMTEMOHw5ZdfsnOlyTtw6dIloZ1SrBWhJ+qoLdki6jp06CD8XbFiRY0oa9CggSbGztHRUXfHpbe3t/D9f//9l/Vptahr1KgRS4yfmZkJJycnIVzB09NTc38kbEhk/vbbb0hPT2fjDUGbifQ8RUZ9Q28jDd/+qPxFihSx6ClISUkRxjwvLy/2rGi+M5lM7P6HDRsGIOv8a94yS32AwnCMRB1dm/oeWeqIypUrs4Wcun+SrggICEBcXBxMJpMUdbmBF3WAfiZygixPVClGptno6Gj06tWLrfRcXV2hKIrhJEzwQfHUiPhdatQ5ePcrkNU4qaG6u7szUUcN0kjUUUfnRd3evXuFVTMNDkbHALm7u7PBNy4uTvfsUoJfkbz99ts4d+4cypYty+KOeB48eIArV64wV1rZsmUxZMgQfPXVV7oTnNlsZsJPL56EZ9CgQTh06BD++ecf1qH0BuaVK1fi/fffx5w5c3Dq1Cn88MMPQizEG2+8weqA3HmWzPVG/P3335qzEtWT2IcffqiJmXN3d8fp06dZ4C7dP+2+I0u6niXWkuAgK496kNajefPmLEaQ6Nq1K/v34sWLcf/+fUyYMAFFixZFkSJFhDhF9YDPJ8M2gp/s165da5j6AXh8n3PnzkXfvn1x+fJl+Pv7o3fv3hg1ahTs7e3Z5EB1p67Ds2fPaix2NFnrxclaEnXz58/HkiVL0KRJEyxbtgwLFizAnj17ULlyZd3Jz8fHR0hpAmTFtpELnKA2X6JECfb79vb2+Pjjj+Hg4IBChQqxzxQqVEgQVHxoBd8P6DnzOfYKFy7MwgiMoFN5atWqxcbKtLQ0zTgUFhbG4th4UUcubb6eeauL+rcI3lqpFi9//PEH5syZoxtG4unpycI1eJHk4eHBJnH+9YcPHwp1a0nUqWPYiEOHDgm/w1OuXDn23N544w2MHTsW7u7u6NChA6ZOnSr8hp7IOH/+PKtrDw8PBAYGsjatfi7e3t5skUuWOh5fX18hRMXFxYU956ZNm8LJyQnr1q1D9erVhb67Y8cOlhhYb/4xGn9q1aqFDRs2sL4wcOBAwXVKoo/SiABgLt169eqx8Tk2Nlb4noODA2bOnIlt27YJQvvIkSMIDg5G9erVkZyczDxfBHlqyKPg4OCA999/n222JNTWv8zMTGEe8vT0xIYNG/DFF19oQpNIRJJeqFKlitUjQgkp6nSgidDIEsVjq6gDsk4y4IO1bYG3QHh5ecHX11fYeUoNnVad/GBQrFgx+Pj4oGzZsqxB+Pv7w8XFBWXKlMHvv/8uZN92cHBg5adJv3v37prM93SttLQ0XLlyxWIsoLu7u8XUI7wAMplMqFGjBoKDg3VdS0WLFoWrqys2bdqE9957D3Xq1MHs2bNRsmRJQ1FHnUivQ/A73by8vNCkSRMhJpBfPdGEp663oUOHGooOmtxzYqkDtAO7enHh6Oio+YyTkxNq167NXEO7d+8WdsASeu5nfvCeOXOmcATT//73P5w9e1bIrWUJ9XOys7PD1atX8ffff8POzo7FeTo4OODu3bvo2rUr3n77bUydOlUQF40bN9aNqVFDz8HR0RG9evWyOADy97l161YkJiayfGfqz1B/UFuYa9asie7duwtHsVmKqSPxrTfZDxw4UMi9Z29vz9x9vOWBgr31XDi1atXSnL/p5OSECRMmYP369awNDhgwAD/++CNSU1NRrVo1w3gk/hnx/ZcmP17UmUwmTJ06FaGhoXjppZc0ZwK3a9dOSH3Dtw21pa5o0aKsTNTeS5QowRaV/HWM4D0ZfDvgLf5AlqXY0m5H3sLCQxa8woULY/r06UzQDh8+nH1Gr55prDOaV9SpqE6ePMl2I7u5ubFn3rNnTyZo7e3thYWdo6Mj69vDhg1jx+S99tprbCyk61A59EQd1bOiKJr0HY6OjkIIipubG7u3MmXKICAgAKmpqejataswf3Xo0IH1I72NepbmxB49erA2PGLECKE/koC7f/++kO7s1q1b2LFjBxNXMTEx6NWrF0tObDKZ4O7urgkj49Ebu8ltTx6HpKQkLF68GLt37xY+pxZ1iqJoLImurq6YNGmSRjdMmTIF/fr1Y5t5rJ3bzGNboq8XDLPZjJIlS1rNTA9oRZ3RBF63bl0EBASwFYq1wOtz587pujTKly8vZP329vaGyWTCvn37YDabhUHPyckJDx48gIODA2vIxYsXx82bN+Hn5weTyYQuXbpg//79OHnypPBdKqfe/fDuV3VMR3bh3a8En5xZD39/fyEWA8iKwfjll1+wY8cOhIWF4ZVXXoGjoyPrUHqr4+bNm6NLly7466+/hMGfBnF+Mnv55Zfx119/2bT7iKDB0pY4Mz3USVl79+6t2Q2pbiPq8lWuXFlXFFkTdZUqVRLKza9wbUFvgK5YsaJuGhoa0NT51oCsjP62TOQ5cb8SPj4+mkmGBIU1K+uwYcPYkX98TJ2abt266Z4yYg3qhxUqVGCpZNSCVe8wdYI2DtDKnxYtJpMJGzZsMByvjCZYskaoT8Og1CL8KSFAlodCbenhxz5LRyv27NkTGzduxIULF7JVv7xLkgTwlClTrCZEVhMUFIQdO3YIu5mBrE0g+/fvR+HChTFy5EgkJSVhwYIF+PDDD1lIgp6LdciQIUhKSmIbJtSox6i6devi9OnTbI5p3bo1Dh48KJzQAoh93tHRkY1bZcqUQWBgIDIyMtiiCnhcd2R91xN1NG7qeanMZrMgTPlwluLFi6NEiRK4efMmunTpYughqVatGvbv38/Sfhn9lt59qtsTP5Y5OztjxowZeP3119l9qT0mNGcZWUytsXLlSty8eZO54mkDknqxRYYRvr0XL14ce/bs0d1QyEO7o8kKS3HstiBFnQHqbOtGNG/eHPv379es7Hl27drFKpEGMWuWOrUpl6hSpYog6tzd3dlkoTeZUEehiUCd68bd3R1r165F+fLl4eDgwAYQGgDVq27AekxdduDdr4TRjmZL1K5dW3OYstlsZpZMvbMpgccTAD9Rjhs3TnN+4Jo1a3SP6LFEnTp1cOvWLd2M+bZAx/L17NkTe/fuRbVq1XDo0CHh+QwYMADR0dG6ed0soTeZ8m03Jy5jHlst0dawRdABj9uRLaJbbUXRWzzpuV27d++umeCBrDQgfn5+bCK3NjllB7PZjDp16jBxBoiTx5EjRzQWHj06d+6MrVu3ClYJSzGbNBGp7/ftt99GuXLlUKNGDXTs2NHqvepN6nzbsFSGPn364PXXX8/28/zjjz9Ynrzg4GA8evTIokWO58yZMyzhsI+PjybJOpBlPf75559Z23RxcRE27dBralxdXbPdTymlEGFtbHR0dGRzB1mwSLyULl0abdu2ZUKBxkT1gsbb2xtOTk745ptv8Prrr2P16tWChd7BwQGDBw9mB9ArisJi7gICAhAQEAAfHx80bdrUYv9t3rx5tsZUdZwrz5YtW5i4U29s8/b2xvLly9nmE7rvnIo62plNCdRJHDs4OGDSpEn4999/sWPHDtb21c9AHTNsiSFDhqBTp05WUwQJKC8IMTExCgAlJiYmT6+blpamhISEsL/v3bunAGD/lS1bVnh//PjxCgDlzz//zNHvzZs3T7j+2LFjhb+NGDp0qAJAmTRpkua9kJAQBYDSo0cPZcSIEQoAZcuWLRbv2drv2UpaWppiNpuVv/76S3idv6fs/lZ6eroCQClTpoySmpqqzJgxQ0lNTdX9bNOmTRUAyp07d3J1H0+SBw8eKBs2bFAURVEuXbqkAFDq1asnfKZGjRrZrg/18/3vv//Yv/fu3ZurMu/YsSNHdUeMGzfOpu/R9Xfu3KkAUOzt7a1+Jzw8XChb3bp1NZ+pXbu2AkD5559/slXuWbNmKffv38/Wd7JLZGQkK/vFixef2O+EhIQomZmZeX7d2NhYVv7Dhw9n+/sAFHd3d4ufoX798OHDnBbTkIsXLyoAlF9++UXzXtu2bXPcD3OD+hq2zHN79uxRBg8erCQkJAj9QW8s5N9v1qyZoiiP+3iZMmWUXr16KQCUkydPKocPH1b++OMPm+6PftvOzs5qeUuVKqUAUOLi4qx+1hKhoaGsrLmBxhF1W4yKilJmzJgh9B3+GdD8OXDgwFz9vhHSUpdLHBwchB2ZaguHeqs7WY6ycyoAj9o1SSZgICsOygg+INoIs9nMgq8tWVpsPZ7LFhwcHGxKwJwdaGUUFBQEs9msWbnx0CrL1iDU/KBo0aIskLZ06dKoXbu2Jk7u4MGDVo/C08PJyYnFx5QpUwbDhw/HjBkzcryKJXJyugjP119/rbu71ghytRht3uFRbz6w1VJnC5TG5knCW7+s5W3LDbYcSZQTbLXUGXHt2jWr992/f38cOnTI6gapnFC1alVcuHBB1+KyefNmIV9bfmGLu7pVq1YsdvP48eOIiYnBm2++qRua8corryAxMRG7du1i4z/VQfny5VnOxOLFi8PPz4+FCliD2kJQUJDVz9KYlNuxxd/fP0ehEGrIYq7O/+jt7a0755C1zcHBAWfPns116JIRUtTlMdYmgffffx/Xr1/XTcRrC3xsU3BwMN555x2WAsHSSQRkutZzu5GgCQoKYilZbJnMnqYQoo0gthIXF2c1bhF4LOpykxvuaeLi4qJ7NJOHh0e2J/jLly/Dx8fHpkOisws/cT+NdqIXeG2EUVodnpyKuqcB7855kqLuSeHg4ACz2Yy0tDSLMXVGqBPz6vHee+9ZPZklNxjFmLq6utqcJJZo2LChbujM06R+/foAwJJ5q9m0aRMURcHQoUNZrj/qR+XLl8egQYNgNpttTj5OmEwmXL9+3aYFBP1eXhoVcgOVwxaBePHiRWG3tC07+nNKgdv9euLECQQGBqJVq1YICgrSNPY9e/agZMmSaN26tZBmo6Bgbaejm5sbfvjhB5sEhx68BeX3338XGrilAZ4sGHorV4rL69Wrl83xBps2bRJi+/IadXB/dgcLd3d3m6xNK1euxKBBg7K1AeJ5oXLlyppVOT2H3K5keVHHH4r+pMhOIL0t3y3Iog7IXiLbggglYX4SlrRnjaNHjwo7zQsqJpMJs2fPZhamWrVqoXv37hg3bhxq166NTZs25cjCX758eZsyBFDeuIKGOmm4HlWrVn1qRpCCIXk5AgICsH37dri6umLs2LHYuHGjJlg3ODhYc6RLQSEvg6SN2LVrl+aYGsCyECOxZm2VY6uoU+chy2v279+Pa9euaXIE5TUNGjRgAcUvKmfPnjVcoecUEnVNmjTR7JTMS0wmU44EqJ2dHWvrlix1OU1H86Q5evQoli9fbvNGkoKGi4sL7O3tn9nyFzQGDx6MOXPmPNXfdHFx0T1dRU2/fv1ytegiPv74Y+FEkIIAnSdckChwljp/f39mxTKbzboiZN26dQgMDNTNqJ/f8GJInTw2r2jbti0++uijbH2HttFb8+PTCQxG+aueFoULF87RLlhJ9qlZsybLYE8xmjlxi/GQqDPadZxX/P3335qdyrZw//59tovtWXO/All1pnd80rOCq6trrtuY5DE//fRTnsSJPQl+/vlnfPfdd/ldjCeCr69vgVv4FThRR9y5cwc7d+4UMtEDWZaVK1euYNeuXdi2bZtwpipPSkoKOyiZPzD5adG3b1/NodT5Sdu2baEoinC8ih5BQUGIi4vLd1EnyR8GDBiAY8eOsZQQOYXcg7ZsXMgN7dq1Y4u769evC+dPWsLPz4/FtVKQN4+17P+S3OHi4iJFnUTyBMg392tYWJhuDrRNmzbBwcEBffr0wZIlSzTuTD6GpFu3bjhz5gwL8uSZOnWqJlHr0+LOnTtPJPj8afGsxulIco/JZMoTd/TTstTx8DvBbYF2/kVERGje09sBKMk7XFxccrTzVSKRWCbfRJ2/v79wTBORkZGBHj16YPz48bquwtjYWOaf37dvHzsgWM2YMWNYpnf6njUrVV7xtH6HCA4OFg5clkjyG7J0PY0Y05zi5+eHRYsW6QY6T58+HQ0aNMhx4miJZYoVK/bEUqZIJC8yJqWAOeJXrVqFIUOGsC2/H330EYKDgzFw4EAsWLAAixYtwsKFC+Hg4IDmzZvj22+/tem6sbGx8PLyQkxMTJ4EbUqeDnPnzkWVKlXYUTKSZ4dZs2ahR48e7LxjiYSIi4uDvb19jrMASCQSfQqcqHtSSFEnkUgkEonkeUZGAUskEolEIpE8B7wwljpFURAXFwcPD48XMtGsRCKRSCSS55sXRtRJJBKJRCKRPM9I96tEIpFIJBLJc4AUdRKJRCKRSCTPAVLUSSQSiUQikTwHSFEnkUgkEolE8hwgRZ1EIpFIJBLJc4AUdRKJRCKRSCTPAVLUSSQSiUQikTwHSFEnkUgkEolE8hwgRZ1EIpFIJBLJc4AUdRKJRCKRSCTPAVLUSSQSiUQikTwHSFEnkUgkEolE8hwgRZ1EIpFIJBLJc4AUdRKJRCKRSCTPAVLUSSQSiUQikTwHvDCiTlEUxMbGQlGU/C6KRCKRSCQSSZ7zwoi6uLg4eHl5IS4uLr+LIpFIJBKJRJLnvDCiTlIwSU9Ph8lkwoYNG/K7KBLJC09qaioWLlwoPRoSyTNKgRR1J06cQGBgIFq1aoWgoCCkpaWx9/bs2YOSJUuidevWaNeuXT6WUpIXJCUlAQDmzp2bzyWRSCTz5s3DwIEDsWvXrvwuikQiyQEFUtQFBARg+/bt2Lt3LypUqICNGzcK7wcHB2PPnj1y4HkOSE9PBwBkZmbmc0kkkmeTQYMG4eWXX86Ta9EiS4apSCTPJgVS1Pn7+8PV1RUAYDab4eDgILy/bt06BAYG4ocffjC8RkpKCmJjY4X/JAWPlJQUAFLUPQtkZmZixIgRuH//fn4XRcIxb948bN26NU+u5ejoCCDLDSvJe/744w/8/vvv+V0MyXNMgRR1xJ07d7Bz50507dqVvdagQQNcuXIFu3btwrZt23DixAnd706dOhVeXl7sv5IlSz6tYkuyAU0eBS2Gx2QyYezYsfldjALFjRs3MGPGDIwePTq/i2KRYcOGwWQy5XcxnknMZjMACCEvkryjd+/eeOONN/K7GJICyrJly3DlypVcXaPAirrY2Fj06dMHS5YsYQMNALi7u8PR0RGOjo7o1q0bzpw5o/v9MWPGICYmhv0XEhJi82/v2bOHuSEkTxYSdflpqRs7dix27NiheX3GjBn5UJqCC9WVvb19PpfEMrNmzcrvIjyz0Fj7olnqzp07xybTpKQk6TmQ5At9+/ZFs2bNcnWNAinqMjIy8NZbb2H8+PGoVKmS8B7vRt23bx8qVKigew0nJyd4enoK/9lCcnIy2rRpg48//tjqZy9fvozly5fbdF2JPgVB1E2dOhUvvfQS+5ushmq3P713/Pjxp1a2ggQtdMhFJ3k2yczMRHJysuF7AJCQkPA0i5Tv1KpVC1WqVAEAuLq6YsyYMflcorwlMTERn332WYE2VkRFReV3EQoE8fHxufp+gRR1a9aswcGDB/H111+jdevWWL16NQYOHMjea9SoEZo1a4aAgAC0bNkyT3+bRMb169etfrZZs2Z455138vT3Cxrh4eFsM0N22bRpk1VxXBBEnZrExEQAECzExP/+9z80bNgQ//zzD5YtW5bvA1FycjImTZqUa3fZTz/9hPLly1v8DAXPP0+iLiEhQWh7gwYN0q33ZwFbrWtffPEFXFxcdN8r6BslGjZsiPnz51v9XFRUFNasWZPj38nNd58UERERKFu2LG7fvp3t7y5atAgzZ87Epk2b8qQsderUweeff54n1wKAAwcOoHjx4vk+nj4XKC8IMTExCgAlJiZG897vv/+umM1mJSkpSXn48KECQGnevLnVa5rNZsXaIzx06JDy119/5bjcuSE5OVkBoKxYsUL3/czMTOXBgwcWrwFAGTx4cLZ/OyMjQwFg9fkcOXJEAaA0btw427+hZtWqVcrmzZuz/T0qZ1RUlOLo6Khs2bJFAaAUKlRI+NzGjRuVqVOnKgCUMWPGKACU1157LUdlTUtLU+Li4nL0XZ758+crAJQ1a9bk6jq21NXGjRsVAMpnn32Wo9/IzMxU0tPTc/Td7ED3kpmZadNnx44dq/nuswSVOTw83KbPV61aVQGgxMbGat6bNGmSAkAZNWpUXhczT1DXz759+5TExETN5yZMmKAAUE6cOJGt66alpSkAlNKlS+dVkXV/JyesX79eAaBMmzYt29+dOHGiAkD5888/c/TbavK6n6xevVoBoJw9ezbPrvkskJ6erqxevVrJzMxkbc/R0TFX1yyQlrqnjaOjI9LS0pCQkMBWu7ZYp+zsrD++pk2bokuXLrkuoy0kJSXh1q1b7G9yVf/222+6nx80aBD8/PwQFham+77y/92Q27dvz3ZZ/v77b/ZvSxaE3Fjq4uPj8ejRI/b3G2+8gVdeeSXb1yHOnj2L1NRUzJs3DwAQGRmJ06dPs/d79OjB3DIUyxkaGpqj33rjjTfg4eFh8TNkMeTJzMwUnlVGRobhZ63Rv39/dO7c2aqFZ//+/bh161auLXVvvPGGrkv7SWHtvsgqZUvi61WrVqFUqVJ5Ui5i5cqVuH37NjZu3Mh2r27ZsgUBAQE52jgUHR1t0+cKFSoEALpxxuSWza6l7tGjR1i7dm22vpNbUlJSEBgYiE8++UTznre3N4CsesvuNYGcb9yaN28e7t27p/teTq9JUN/JieeE2oaTk1OuygDk3j2oB/XFhw8f5vm1Cyp//PEHHBwcEBwcjL/++ou1vdwiRR0ANzc3ABBEHU2WliBR9yR3iimKgjfeeAOnTp2y+tng4GCULVuW/W2t85Mb48aNG1iwYAHq1q0rpKvIqeC6evUqOnXqxP62NEHkRtRVq1aNTVA8c+fORbdu3bJ9PapHPt6obt26up+9dOmS5rPZ4Y8//rD4/tGjR+Hm5qaJ32vYsCFKlCjB/iZXYXJyMkaPHo2rV69i165dOHv2rNUyLFq0CNu2bRPajN7EExgYiLJly+Y6LdDq1atz9f3sYm2Q5F09hw8fxsiRI9nfs2fPxpEjR9jfo0ePRkhISJ7t0lYUBW+99RZefvllvPrqqyzP3MSJE3H//v0ciXR1/LER1Gfu3LnDXpswYQJMJlOORV3fvn0RFBRk07iZEzIzMzU7mqmsN27c0Hye+rIt4ybPxYsXbf5sVFSUkCs1NTUVgwYNwrvvvqv7eT6e7e7duwCyFoelS5dGTEwMgKzNWefOndP9PvX1nIg6un5eCIcFCxawf1+9ejVbfeLevXv46aef2N+zZs1Cw4YNWV0WRFE3YsSIJ7Kbnk9tc//+ffYMcvtbUtQBLCeeNUudoihCxyRRt337dphMJoSHh0NRFNSvXx+bN2/Ok7Klpqbi999/x+DBg61+Vm1RsxQMnZqaylZtISEhGDRoEE6fPi1YCej72Z3I1BOCLaIuJ5Ol0Y7mwYMH5+j504Cnfm7379/XTA7//fef7meNuHXrlu6A2q9fPzYRhoaG4vDhwwCyRB2QtRmH5+TJk8w6+OjRI0yePBlAlrVp+vTpGDVqFNq3b4/atWvbVC4AgpDn/718+XJ07NiR/U31aOvEsHXr1nyNkVGXMzMzE5GRkexvKtulS5fQtGlTfPvtt+y9oUOHokmTJuxv6ut5tSuULMxqSy/1A5qEnwRkxeL7z+LFiwE8ruPsCnhqNzExMZg4cWKOFztGhIeHa16z9Bskis+fP5+t32nUqBEA7Xh0//59zaa44OBgtG/fnv1NYozKFRERAZPJxLwW/DhIKbbGjh2LO3fu4Pr16wgPD8eIESMwaNAgAFntlZ+HaOFrJOpOnTplaEUjSx2V7ebNm3j99ddzVE/Dhw9n/65cuTLWrFmDhw8f4ueff7b63TfffBMff/wxE93Dhg3D8ePH89xSp56rifDwcPTu3TtbiyY67ehJLVgAYODAgWwBL0VdHqBnqdPrOPPmzYOrqyuSk5MxfPhwtkNs5cqVALJWjDdu3MDJkyd1c3mlpaVl2yJFndQWtxWV/eHDh0hISDBU/n379oWTkxMbuO7cucOELfC48dL3s1tm9WRKE8T27ds1HUMt6iIiIuDl5ZXrXD0AEBYWhs8//9ywM0ZERAiDPrlN1ANd1apVUa9ePd1r2Dooli1bFn369NG8vnjxYua2atCgAZo2bQrg8are2dnZ8JoTJkxgQdMk6G/evGmxHEeOHLEooEuUKMHa/jvvvCO40cm6oHfPd+/e1UxAr7zyCpYsWQIAwqkw1gR8RkYGSpQogd27dwPIsl589tlnFr+jh7odjhgxAoULF2Z/2yI4SeyQqMuLXaGKomDo0KEAtH0rJ6KO77t8HXz11VeoUaOG8NlRo0Zh6dKlAERB6e7uDuCx9c5WF9v9+/dx5coV1sf279+PL7/8EsOHD8dHH31k8z3wpKSkaO5f7dKMjIyEv78/AP1JkCbtBw8eICIiQvN+WFgYSpUqhX///VfX06Juo0FBQXjnnXeE16nvZWRk4NatW2jQoAGAxxY1EqILFy4EoBXKiqIwa3BycjJr71WrVoWiKKhbty5at27NPk/9Tm9uysjIQL169dC7d2/2ud9//x0JCQkoVqwYCzFITk7G0qVLMXPmTKxevRoffPBBthbUemL/6tWrGDhwIAYMGICvvvrKovihxYy6H9F4p1dXOWHx4sVwdXXVGBTmzp2LP/74A//++y+ArDnZyDJK+Pj4AMATT7rOe7dygxR1sF3UUaf777//8N1337HXaQAxmUzYv38/AMDPz09YDaSnp8PR0RFvvvlmtspGjdJsNuP+/fto3rw5oqOjER0dbdgZixYtivr16xsKDoqxo3sNCQkRJga1G9KaqDt69KjwGXVHOnfuHEwmEzp16oRp06axThQTE4Pu3bsLv3HkyBHExsZa3H0WFRVlUwLcfv364fvvv2diRE2jRo1Qs2ZNoZyAVrRYslrwn7106RL27NnD/t62bRt27drFxIVRzNGhQ4cAiIMGXZffpaiubz2hz1v21C7Yq1evokmTJjh48KDFOjWyrF64cAGAKJbmz5+PcePGoWTJkujfv79wjYyMDFy+fBmbN2/Gq6++yt6zZul7+PAh7t27h++//x5AlhibOXMmrl27ZvF7atS/Q5Mr3bstoq5fv34AHos69Qp/7969ujkOLREfH88Wgrx4URSF9cnsiDoHBwcEBgYCgBBjOmHCBFy4cIG5vdeuXYtvvvmGvc+3XRoDKSbXVvFasWJFVKlShT1TWlTMmTPHpl2qenTq1IlZEwm1qPvnn38sXoOvJxJXxYoVwy+//AIAmDx5MkJCQrB9+3bde1UUBefOncPVq1cBPBYbfJuiNpGSkiJYPalf0jhKVn31OBIdHc3ETHx8PGvfhQsXxrVr13D27FkcOHCAfZ4+qzc30e9v27YNHTp0wNWrV/HGG28gMDBQiJlOTEzEu+++y1ygK1euxIULF7BkyRKrsdXA44XdW2+9JTwH6ksTJkzAn3/+yb6nFsz0t3rRkBNL3enTp/HTTz/pxjDSXK228KrH0JEjR6JWrVqsL5w+fRo//vijUG5qi7TguXz5MvOkFESkqIO+qIuJicGWLVvYZ3799VfmrlRPLjQopKenMwtTREQEHjx4wD5DE6VeXNHDhw+ZeVzd6Kjx29vbY+nSpTh48CC2b98OHx8fTJs2DTVq1MCAAQM017xy5Ypu3JbeAHb//n1B1NEzsEXU3bhxA40bNxYSvqoHLxpIAWDcuHGoVasW4uLihAGLfoNW3ZZ+c8aMGZg+fbrh+wSZs41yM9FgS5CL1drKrWjRouzf/MRYrVo1tGnThv3duXNntG/fXnD5zZw5U3O8nZ6IUltZt23bJmzMuXjxom48Ie8eHDZsmPAetc3o6GiLlpilS5cylwMPTdj8PX/00UfMBfzrr7+y10mU/Pzzz5r4Rv63MzIyNJMUWZB8fX0BPHZV6Ym6nTt3svYfHh6OcuXKsff4ch4/fpz9Lg3YvKizllCZ6kHdf1q3bo2XXnoJcXFxNm9UMHLhfvLJJ8KCxwhFUWAymbBw4UIcOHAAsbGxCAgIAKA/Kb7++uvIyMhAUFCQ8Dr/fMhSR9YnS6IuMzOT3SuJJ7LOqOPbLLm5jKwy/MKIUC/M+D6lR2JiIhvXY2NjkZqairCwMEycOBEPHz7EggUL4OjoiKNHjxr2hVq1aqFy5cpITEzUzd9H/TEpKUl47g8ePMC3337L7v3mzZuoWrWqZkHPx2jGxcWxdpGamirMHQSNYzdu3NCE2vAW+v3797O2rQ4b0WsfEREReP/99xEYGKhpm+vXr4ednR0b06ke+MXwuHHjhDpbvXo1tm7ditmzZ8PR0VGw3NH1syPq0tPTMWjQIEF03rt3D3Xr1sXHH3/MUqvMnz+fJYynTWhG7YT6My2o6Xm1atUKn3zyCRwdHZnwVYu6qlWronHjxrrXXbJkiSYsKCUlRTfuMzt8/fXX+N///mfTZ6Wog76oCw0NRZcuXRAXF4eYmBi89957bHWtnlyo8x46dIg9+Bs3bgiBkJYG6aJFi6JKlSoYP348nJyccPHiRbz66qtIS0sT3K80sNBgOHbsWFy4cMEwlmHKlCkARKGoFhB+fn6IiYmxaKmzZJ6nwf2ff/5hk7Na1OkN7Fu2bBE+R/dG/7f0m7buvqSB0dagb36nqyX4fG561tDU1FQh4JofWD777DN8+umnwufV5UtNTWWDHLXHqVOnCp+pXr06/u///s9iOflAeODxhJuUlGRR1A0bNkw3hpMmfEsuZ7IUWmrv/G/36NGDuTcuXryIe/fuaUQdDcB8e9m5cyf27t2Lnj174ueff8aBAwewZcsWQaiTVSU8PBwNGzZkr+uJOqO8bQSVoUqVKqw98xPg0aNH4ePjY1N+M6ONVfxOTUvPjybW77//Hi1atAAAtnkmIiIC169f17jt9awwvNWJ7p/uTU/URUVF4e7du5gxYwZ8fHyE+6f2qnb/U13GxcXBZDJh7969ALKER5EiRYTNKBEREUId85uE9NyvlkhMTESxYsUAZLUbGgvc3Nxw9+5dpKWloUOHDrhw4YJuX+AXlSdPnmTjUbVq1Vi/40Udb2U/e/YsRo4cyU4GiIqKwuXLl3H16lUhB+KdO3cMRR0veOk61O82bNigcdWpRQO1H3WGBj2xSHV0/fp1IV4OeBzWQeKQ2l716tU11yFWrVqFl19+mS28+X7Gizo+pILqgBd1W7Zsgclkwq5duzBv3jx89dVX7D3++VDb/eijjzBixAgAj0Wd2lJH/ZjKQe2Wt3ATJ0+eBPB4Lrp7965FS2JkZCTef/99TajO+++/r3tIgtEcpw4niIiIwPjx4zWLMiOkqMNjUZeYmKhZqURHR2sGOPXARQPhyJEj2a7IxMRE/PbbbyxLubXA4wcPHuCXX35BWloaqlevjo0bNyIkJERX1OVU9WdkZGDixInCa6VKlUJMTAx7BsDjBk+dMTMzE/369dO1CNJ9/fnnn+ysVPW96k0Qw4YNE85AVJvlLYk6vqy2YGt8EP85SyeQ8OcIU91HR0czS+6PP/4oDHrWJiByVRLz5s1jGyZo4rUWKwcAxYsXF/6+e/cus+qMGjWKtZs1a9bkOBULkDW5LF++XPdkjapVqyIkJMSi1So+Ph7h4eFo164d/vzzT8THx+Orr75C9erVUalSJVY2Ly8vAI+tQLGxsTh48CCioqLQoUMHtG7dmgniFi1a6K6QAa2l1t/fHzExMcJkYyl2ERAnR6pPfoJctmwZgKyYnVu3buHzzz8X2vB7773HdkpSW1+wYAG+/vpr9hk/Pz/2b0uijsYYPu6ULHUhISFYs2aNxvV89+5dIZ4QEMW5+vM3b95EkSJF2N89e/aEr68vSpYsyVxbvNCiyV49NpGYJLFNmw2o7dy4cQPLli2Di4sLihQpIlhaGzZsyBaK6oS7vEjVi6lLSkpiMXf9+/dnz8rNzY21h5IlSyIqKkp3fOD7x8OHD1ldhoeHY/bs2QBEUWeUxkQNzQd0D1QH//zzD6uD1NRUYcw4dOgQtm/fbjGRu/r5kJhRW6D5NkvPh8ISgKzduLygJW/Azp07ERUVhatXryIgIIAJZkuQ0F2+fDl27tzJ7g3IGgN+/PFH9lnqi7xoIjcuhTTxfZAXYXpx2tR/wsPDsWbNGrRr1w7Xrl1jv09zEj1/+n1+HKDXaD4LDw9nISh6kEs2IiJCKBPFM548eRK3bt3CBx98oKkX/lkAWW3DZDLh7NmzLLzDyDqopsCKuuHDhyMwMBBvvfWWILTS09Px7rvvGuYnyglmsxlms1mw1BFRUVEaUaJ2Gxi5Ki5evIjOnTsD0OaQWrVqFXr37i0M/FWrVhU+8/DhQ0HU0b8tNSxL7NixQ9iODmQNbMePH8exY8fYa6mpqXj06BFzJWZmZmLx4sX4+eefBStDenq6MPiQCZ63PLm4uOgKCPVrycnJOHPmDBN6loJt1aJOURSL2/xtEXVk1SQs5XNSi6eVK1fCx8eHDcrqeB9rou7cuXNCfNynn37K3AK//vorkpKSDOMCAbCdrupyJScns7Y6e/ZsNuGuXbsWb7/9tvDZ7Jw3mJKSgnfeeUewfvEcO3ZMcK2riYuLw/Lly5k4ALJicYAskUyTAbUBqr9FixahefPm6Nmzp+51Dx48qCknfx0iISEBAwYMwJdffsles2SpW7dunRCrSP2dFxYUp3rjxg2sXLkS33//vdDnf/31VwQHBwN4PLFVqFABY8aMQYsWLVCsWDGroi4mJgbx8fG6aTf8/PxgMpnQv39/XUEdEhKiGV9SUlJYv4mPj0f9+vWF9/lxjs/lR1YQEpfAY6GqFnWhoaGIiYlhdUqWKhJWTk5OmDp1Kptc1X2FYvzUoRJ8fzDaKEFhEnfu3GHtixd1xYoVQ3JystX++fDhQ0HoZGZmQlGUHIk6XljzAmb58uUsLEMt6gBg0qRJmmvRhhdA+9zIm6S2CvOWKxoveNfpiRMnYG9vjy5duuDhw4fsupMmTYKvry8OHDiAZs2aMSu6LXz22Wfo0KED3n33XXbP8fHx6Nq1K/sMCajQ0FB88sknKFq0KDv9gnI48mMkibqGDRviv//+Y58BgA8++ACLFi1i97t9+3bs3r0bvXr1Yh6Pn376CaNGjWIxk/T7/LgfFRWFf//9l22me/DgAfN+kHeBh1/k8n2H2lv9+vVRtmxZ/PLLL8jMzMT69evZZ/h4ZOCxkN2yZQtrW9YWnkSBFHWnTp1CWFgY9u3bh2rVqgmxYZs3b0aJEiWwb98+JCYmagbynOLm5obBgwejd+/ewuuPHj3SiAK1qFO7z3hXZtu2bQFoRcybb76JP/74Q1h9hIeH4/3332d/h4WFsWtv27aNCS89Uace2PgymEwm7NmzR0hMTOglVE1LSxNWQvyARsH3q1evhtlsFp6X2WyGoijYvHkzSpcujUePHsHT01PzvPhzVomkpCQhZkBt7aPnd+fOHU08XXp6umB1ULtnV61axVaj69evh8lk0kyaaoFiSdSpg7hXrFgh/K0OojUKQCYs7aratm2bkD+NIHN+0aJFmVmerDU8NCDZ29sLEy6JFGo3rVq1slhGHms7fl977TWLZ2fOnz/fYqoJsrglJydDURTWB6j968VcAdBsWDBKUQNoj4FydnbG0aNHdd2nvXr1Ev6OiYnB9OnTWfoLIKuP1KxZE6GhoUyQx8bGIi0tjf2+s7MzYmNj2ZGHjo6OsLe3R9euXZGSkiIsVtTtMyMjA97e3ihTpoyugHB2dsbYsWORnJysm/7j7t27SE1NFVLd7Ny5E2azGVeuXEF8fLzNbYDi78iazKNeXIWFhcHb25stbvm8ikBWv7d0LNvly5exevVqzThvlM6ISExMFJJ70zMzm83Muk7WJqNrOTk5wdfXVyPq4uLiEB4eLog6W4/u4uNg9VyhgNb9Cjye5HneffddVi61+9AoewD/m7wlFsiKD6UFy5YtWzB//nxNWzp48CCaN2+uK2qswYvQhIQEpKWlsXGWFiKPHj3Cjz/+yDZLAVlCE9Ba6kwmExo1aoT9+/ezPI9A1pjJ3y/NJfzGsQMHDgibhuj5qS11fJ8IDw9noo48IBRPDIiWa70+aAlnZ2e2CElKSmIC0d7ens0ftqYZypaoO3XqlLBi+u2339C8eXOULFkSLVq0EGLIcsOhQ4dYfqxOnToJHdrSezwpKSmIjY0V/rMErWjU8V+2WOrUf/OrsYYNG8LPzw9//fWX8Bm1VQXIGgDLlCnDLD0PHjxggjIpKYm9fu/ePZhMJouDIb+SOnjwINq0acPyH/HwiWwpFiA1NVWYCHlrYmRkJDIzM3VPqXBwcMC+fftw/Phx3L59Gz4+PhoBBACvvvoqO5GB4N2XgNiAr1+/juLFi2PlypVo0aKFZgC9cuWK0LmqVavG/m0ymbBq1SoMHDgQly5dYsH86olRLeIsxe2RWxDIsvCoY9fU7cGWRMCW4BOcAlk7C8lcn5GRwSYvPVFHsTDx8fFsVcpDbmb1AG+J3GaUX7ZsmbCpQg1tFkhJSUFSUpLV3dd03+rPpaSk4O7du7qLGYLap4uLCxo2bChYD4w4fvy47u7rd999FxkZGcxtdOrUKTg6OjIr171799C1a1dWn9R/nZyckJycjISEBLRt2xb169dnAvzcuXPIzMxkVorIyEhdz4CTkxNLqaHuW0DWLt07d+4I1kCa4CmuzN3dHcePHxdcwnrPnsSynqhToxanNJZQ/46NjbU4jg0fPhyvv/665nVbRB2/sKX+Hh8fz/onjcFqKyBRuXJl+Pv7C+5X4urVq+zZ0Ek+RjFP/DPnLcJGE7+epc4Iqgv1Tm6jEB3+N9UhJurk1T4+PpoyZmZmokWLFvD09LR4ohK5dnkGDx7MYnXj4+ORkpLCxtKoqCirJzTRuLN161Zs374dXl5eQigMwYcSREdH2ySG7t+/j+DgYOGz6nE7PDyctTsSofw4FhkZyRbb1LeyM1by90KGi5EjR7IsAE9E1H3wwQdsgFy0aBEGDBiABg0a4IsvvkDDhg3Rv39/YadjTomOjmYNzsvLS1iFWHqPZ+rUqfDy8mL/6VU+j5ELVS/mQh0sqV6d8mrf09MTPXv21KSz4MUUkCUiHj58CH9/f7Ru3Zod32XUKCpXrsyCpPXgV4SW4pt4AUodLC0tTbA+8vcXFRWFcePGsYmLJzU1VVNevRVdlSpVUKtWLeG1tLQ0QVDTZJCWlsYCyD/55BPdwbx3796YNm0a+5sXdWRVAIDvvvuOJSVWT/Rms1lY4VnKzs8PhsWLFzdsg8TChQtRunRpi58pUaKEEDTOw7u5gKzj3cjKkJ6ezkSd3rO2llGfvsvv6NWDF+dGFgY1hQoVgouLC0qVKsWsU7ZAYiE5OdlwIOOfZ7NmzXRP/khJSUHJkiUtHtNHgzD1WVtcHCQ6f/vtNyEEpHnz5sLnyKLIL+j27dvH/k1ixtnZGYmJidi9ezfKlSuHjh07YtWqVTh8+DBq1aqFcePGCdfVm/Dt7OxYHfEbfvr3749WrVph48aNCA0N1a3nBQsW4O7du/Dw8ED9+vWF/lOrVi1NX6f2ThZpI3e4uizA47GI2pCeqPvwww/Zv22xOOnF3yYmJgoCisawI0eOMG8I9SGjeNWqVauiSJEiuqKuZcuW7N5iY2Nx9+5dtG/fHnXq1NFckx9L+D5qJOrOnj2LJUuWaGIgCV4w0eJbPQbpLWTMZrOw4FSLOvU8ZrQLt3bt2rCzs7NoreNjB4l27drhp59+gpubG+Lj45GcnMzmnOjoaKtxelFRUYiLi8PLL7+MdevWwdfXV/d3+LkrISHBJjG0YcMGrFmzxuLY9uDBA017vH79OnumERERrO9Q3eotsIywdgzhExF1V65cYTv/5s6di1mzZuGHH37Ahx9+iJkzZ2LBggVC/rac4uPjw24gOjpasDpZeo9nzJgxiImJYf9ZW9kZoWepsxZkzlt5nJ2dERAQIFi+Hjx4oLFgpaamQlEU1rATExMxYcIEza5Hwt/f32Lmab10F3rwVicSQKmpqULH4FfbUVFRhjv8Dh8+zMQr7Ryijs/H65CgU4uY69evs3/fu3cPQ4cOhaOjI8aPHw/AOAWCWmTTJgWTySRM0pRIFnhs0ifMZrPgFp41axa2b9+umwuOf2aFCxe26l4FshI+W6JWrVoWO7V64qMBmbfU6U1uRuf+UpmoLvijwvTg25Pe/eptXvH29sa7776LH3/8UXi2RkevUTA1kZyczNqhuh74gPr27dtrkuwCxhYY4vXXX2exlCQAbMnmfv78edjZ2SEoKEhI5aNeOJL4MxL9NE7wVmIPDw8mkmhjkrq/6fW/xMREXat4uXLlhHalJ+rIbU3eCr4uL1y4oHFrk1UoJiYGnp6eukm1gay+r7bm/fHHH4iKimIxX7GxscJ4WaVKFXa9ihUrsrOc582bp3t/wGMxkpqainHjxrH8b7ylTg+yTht5mKpVq4YiRYogPDxcsFiqxQxZ7cqUKcPip3jLNy/qWrVqhdWrV6NatWqGAoKEg9HYzz/T2NhYZpHm0Rsr1XWvFnWffvop6tWrx8obFRUlWABLlSqFyZMns75oJOrmzZsnxKsCWZZDylVJoo631EVHR6NZs2aa8Cc+DnTTpk1CmV1dXQ3HEiI+Pt6mnI+WTopxdnbG1KlTcf/+fezduxcdOnQQ3qcckREREShdujRcXV1x7949zJkzx6LhRY01w9MTEXUuLi5sAr13755mN0bjxo2tDqS20KRJEzaQbN++XVgBW3qPx8nJCZ6ensJ/ljh16pRuHJDR7ihL8BOwyWTSTHj+/v7YsWOH7kRauXJlAGCrc7VZnZL1+vn5WTRXq0VdmTJldD+nJ1qioqJYYLGaX375RWPa/+mnnzBz5kwAWeZoOzs7tmKljt+mTRtmnaTX+JgkQEwVc+zYMbbLzAhKj8DvbuzSpQs7usdsNrPnp26r6jxsatFUqFAhdOzYURBwBP9aoUKFbDpxw5poqlWrlmBVVKNexVJ75i115BoxQn3MUZ8+fbB69WpcuXKFnWRhBFkNeFcSDx+/RHh5eWHu3Lno3r076wMjRozQzYEHZK3kKbaxcePG+Oeff5gYVruWadIcPnw4+vfvj+nTp2t2ZxvF3hGDBg1iE52tQchAltApXry4ps34+fmhQoUKLG6NJl8+iJuHt9QRbm5uaNCgAYYNG8ZEoZ4rjc8TBmT1AV700EkEbm5uQh93c3PDuXPn8M4772iuSZOTWgypLTj8mFS8eHF0796dLbx4fH19NWIjOTkZvr6+LGYoMjJSuN6IESPY+GBvb8/Ee/HixQ0F9549e/Dll19i27ZtmDx5MmbPnq1xvwLaEAMjkUhUrVoVlSpVwvnz54VJX734ohCgqlWrsnrhx3w+xYWHhweCgoLg6enJRN327ds1LmZXV1fDEwb4cnfq1AnOzs4WLUytW7fGwYMHNaJObQmsWbMmTpw4gQsXLqBq1aqIiooShMRbb73FMhwAMDSofPjhh0Lap7///ltYhIWHh2PcuHGCcSMtLQ1+fn6aBQtvNVYLr2rVqlkVQlFRUVYTGpcsWVIj/PjMDJ988olQh+qzfS9fvgyTyYTz58+jcOHCqFSpEr7++mu2WYPftWxp0WhJoFapUgVxcXE2zTXZEnWdO3fGvHnzAGStONTJbdesWaObjyW71K1bF/7+/ggMDMTFixfx2muvMffNK6+8gpCQEAQGBsLFxcXqZGQrderU0X2oW7duxb59++Dg4ICTJ08KO1aMUA/2RitG9UTt7OzMGj9lsuf58ssv2aRNu92MUIs6ElmWoAbTqVMnw3gZfpcsMXjwYAwdOpQFlHt6erKy0QAdEBCAAwcOWMzEnd0TA2gy5EXd1KlT2UDh4ODAJiQajJo0aYLKlSsjLCxMONdUXWc0KFsTdUYuEnW7tCbqGjduzNqJk5OTxuKtjlEhEZWens4sPZmZmdi1a5duDBIAFnNF1KhRA+7u7qhUqZJuW+JjMOk+jY7r0ls0qWMPgSzLYpMmTZgFhqAt/jt37kRsbCyKFi2Ke/fusU0Havd1xYoVAWSJYZPJhGLFimHBggW4cuUKDh06BEdHR825uTw3b95EYGAgKyMvrEhckzte7YqPjo4WJvZVq1Zhz549sLe3x7Vr13Dq1CnY2dlZPV+SLFT8b1N7pcWdGmpH1J8dHR3x6aefomfPnsJkT2MLv9sTyGpbNWrU0NTXvXv32NiinjjUG3l4T0VAQABMJpPGMgNY9xY0bdoUCxcuFDbNuLq6sr5nb2/P2nKNGjUsLmInTpzIjn66dOkSE3X//PMPK4daJFlaRAFZIq1Ro0YICwsThIF6gbFhwwZUrFgRJUqUwK+//spO0CEGDBjAAu7pN11dXdk1W7RoIZwzDGSJWKPy8Qsovo3T81E/Jzc3NzRt2pTtmqa613NdAlnjZpEiRXD//n2kp6ez56feIW409gGPx6uKFSsK5+MCYMfHhYSECGOE3sJQb9wcO3YsEhMTsWrVKphMJos77Q8fPoyIiAhDowaQZfDgLZtffPEFM1IAWc+LT1GlFy/If/ann35CXFwcTp8+ja+++kpIV2KpHH379tWdA2/dusUMTrac9JItUTd9+nTs2rULrVq1QsmSJfHdd98hMDCQNdqJEycKsU25YcaMGdi3bx9WrFgBR0dHlorDwcEBS5cuxb59+zS5XXKL3iB08uRJLF68GO7u7qhbt66wAjFCbZ41yqumFnWVK1dmkxs/QFND6NWrFwvutZarTX0vRjvbOnfuzDKdG60CqPNb2sZuZ2eHli1baspGLsESJUqgVKlSml2m69atY7nzoqOj0alTJ8FNagmaDHm3o7OzM3vdwcGBWSm6dOmCRo0aYdKkSUwg1KxZkw0kalFH19AT5GpLHU+3bt0wcuRIjWVQbxMDkDUpjxo1Cl26dIGdnR0aNGiA1atXa8ST+ndIyGVkZLBBPDMzE46OjuwZv/zyy3j11Vfx999/w8vLSzNAWouj4wdxGsBdXFx0ha6eqOOfHdUDtbFNmzaha9euaNasGd555x0m3jw9PeHh4aHZuKJecHXs2BGHDx/WpGapVKkSmjRpAhcXF4teA3oWVG7+XmfOnAk3Nzd07NgRO3fuZJYY3ivAJ35+/fXXhf5lMplYu7K08OI3ShBkMTASdTT+eHl5sRMlZs6cCRcXF6EOyFqoKIpgdddz+QKiK009uapDV+Lj49lEbWmSUreTrl27ChYQvfGWF3UODg5o0qQJFEVBuXLlrLrGKVHurl27mKhr3bo1Dh8+jO3bt2POnDnC500mk2G8pYuLCypWrKh75vMXX3whWJ4AMLehm5ubJhTAwcGBPV9e1AFZ7c/V1VVjKS5WrBi8vb3ZJpuxY8eiR48e6Nu3r0a00ZFd69atE2LOCapr2kBA98S7NtWnFfj4+LANaWSdV4s69Vz/5ptvskW/vb09pkyZonuqEd93+Dai3mXOl5XSAbVs2RKTJ0+Gi4sLew58aI+R9dVSjj8PDw/BG+fq6go/Pz9mwPLw8BA2NurNCdSvEhMT0axZM/Y3L5ydnJwMPR1AVnusUKGCZoFUunRpNlbb4oLNlqgrXrw4Tp06haZNm2Lbtm1QFAVHjx7Fjh07UKJECRw4cEDYWvysYWllSQON0erktddew969e/Hw4UPN8UxGljr1tfgVAN9x6be9vb3Zd/g8STzUgdX3wh9fRVBKBepkRgl/V65ciTZt2mhcPmrIVM67U8haod4YQvTs2RMTJkxgndvPz49ZYSgdDEGikdBzmTk7O7NnYDabERISgsjISNjb2+PIkSNo164diyOrWLEiGwDVoo4mEL1dsF5eXjh37hy2bdumqcN27dph+vTpmrJZagPTpk1jv3/s2DHmYudJTU3FL7/8wjZ6EIqiaI7TGjBgAEaOHIkNGzZg/fr1aN++vWZ3cUJCgmaSTEpKEsQJP4jzq3W9/JB6oo53+/HCk9i8eTMOHDiApUuXasQ+7/KrVKmSZgHk5eWFxo0bG070Ru3NqNx8ffXr1w/x8fEwmUxo164dfH190apVK2ESs3b4NrX79evXC7tJ+QWLnvuVBm2j8pOIcnNzQ//+/QXrKz8etGvXjv1GlSpVmKeD2oC6ffJ1Xa9ePezduxdjxoxB+/btdeORaZew+mQBfhKjcYv6c8uWLTFkyBD2vl5MltpSx2Ntd+T58+fRokULFqROfa5ChQro2LEjPDw8NDvV1f2JOHv2LJycnDQu2379+qFZs2YagwK/+94SalFHfVZdHyQievTogczMTEyaNAkbNmxguy1562a1atWQkpKCHj16wMvLi4lyqmv1/6lt8V419VF+tog69XwwefJkoT2OGTNGsyEOyFpMUt3yok5PQHfs2BGPHj1ios7SnAdAOGOax8vLi+2k5zcaPXz4UDM209/0f5PJBJPJhFmzZmH37t26Y/kXX3yBn376CYMHD4bJZMKkSZPg5ubGQoy2bt2KS5cuWV1I8787YsQIFmpGfcWWXdHZzlPn7e2NadOm4cKFC0hKSkJKSgpu3bqFFStWaNw7zxqWdt9QZzQSfn369EHLli1RuHBhTeM3sqqpG6hRAlQKYPb29mYTeNGiRXUnNDqvjsSG2WzGvHnzdMUoDSR0Tb2jX9q1a4e6deti9+7dwipD755okODdThQHYWmFAjy2ZBUpUoS5ttTWhM2bNwtuYT1RV6xYMcFS5+/vr7EwkpWmaNGihqKOUN9nxYoV4evrixo1auCll17StAeqw9GjR2P06NGsM/L30qhRI5sC8nni4uLw3nvvCSk3mjdvjoULF6J69er4999/WboAd3d3TJ8+3WJaFr2BydnZWbhffscqtX97e3tMnDhRE2dqTdTxlglbIDfDr7/+iqNHj2pSAFmLh7JkQVKX0dXV1WLyYcrz2KJFC8yZMwfr1q2zel3qs3Xq1MG4cePY5ge+H1L98M+JkszybZZvY7Tws3Tiyssvv4wGDRrg+PHjzJJJ92dkqVPTsmVLTJkyBbVr19bEJHl6erL64d3QoaGhQgJWqnOyavn5+QnjAO/WJoHg6urKykZnehJqd6Gea+6DDz7Q/D6POgaLUkPxsVvA47GMf05btmxhRzLquQotQfWl9gAYiTr+OZGo4OE/7+3tLfR1Gsvo2vyZ5VevXsXcuXNx9OhRNjfoeddKlSrFBAS1WWsbT6zt8Cfs7e3ZXKtn9efx9vaGj48P6/9GR+wRFEuqRlEUODs7w2QyCX3LxcVFc1/0LEl40kL0k08+QZs2bXSfg4+PDwYPHszuZ8SIEYiPj2fPpFOnTihbtqzFrAp8WYGseYK8ftQebMk8UCCTD+cX6lXZJ598wmJXaFDkO/m3337LViK8lc1WK42ljspDO2ddXFzQoEEDbNiwAR9//LGuMOjXrx8yMzPZJNy4cWN8+OGHupMWuWiKFi2KM2fO6J4lyu9IpGt27txZd/OInnVh2rRp+PTTT612eOq0pUuXRsmSJfH+++8LOwuBrMmEX83xdbF27VqcPXsWDg4O7DkaCbUPPvgA33zzDbp27WrofiX4TO6dO3fWnN+oFss0IHh5eWHq1Km4evUqbt26JdTtypUrWfC7reJOL2Hz/v37WSbywMBAq4fS2wKVc/HixYLLmMReenq67uYfvbQWvFipUaMGlixZIgRaW4JEQ40aNeDl5aURddYmA+pz6lMS9PDy8rJ5o8SgQYMspvAgNm7ciD///JOJS5oY+OemPl3h//7v/9jn+fujFBxz585lcW9Gu/UiIyNZ3G/9+vXZwtHIamMNPWuas7Mzs/zzsWD+/v66iz1+EcWLFRJSo0ePZlZ5V1dXmEwmKIrCwkKIjRs3Ckl4T548qTlHmbf4WjvPl0hNTcWFCxdw7NgxHDp0SIhn5fsnH+PGizr1CTJ8+WgRSmla6HlaE3XWTmzgP6+uI2prJKaprkuWLImKFSvCw8ODPacPP/wQo0aN0lyfD2ugtmjpedKxVrZCY4teP169ejU6d+6MVatWsTGN+r+lXapAVnojtXGpVatWms0NhIuLi+a+aLc69R31iTR687m1RSbBx7bTPak3LVH98Uaf7Ig67dbHFxi+UZJa3rlzJzp06KC78h8+fDgz3/NWPr1AVT3UcVbqxlWpUiU8ePAAa9euxW+//cbK16NHD6G8ZrNZWMHwqTxo8OGvPXToUAQFBWnyUfFJG52cnDTnQdJ90LVWrFghWBH0REXJkiWFoFMjaIIrXbo07OzsmJtq7969gkuQF1Q0ICxZskSIx9CzgPA4OTmxg5/JckTfWb58uTBxtGzZEpmZmVi6dKluYlq1pU69U7Bw4cIoXLiw8LqXlxd7trYMhFFRUTZbuHIL1aGjo6NQNhrI9I5vo5xg6sFJvQvcaGDVg6y9NLnRAFivXj00a9bMqqgjOnTooElfo6ZHjx6Gu+hzitqFrifqqM3Ra3ycFt+Xpk2bhlGjRqFQoUJso5HR5GYkBvh6BWzf7asn6miDmiVrIfBYrDZs2BDr169H1apVBWFE8YEuLi4at6RRWZo3b44zZ87A29sb3t7emDlzJmbOnImXXnoJGRkZwphmzbKkhsSAetMCwZed/t22bVtD6xAfB9qpUydN7C/w2Lqlrg9rJzaoLXU8tWvXxq1bt9i1bdkxqYZc5oB+iAJx8+ZNPHz40KonRg19nuqIb7dBQUGaRM5kNFEfdaemfPnyOHbsGNasWYNjx45hxowZeOeddwznAjs7O1aGgIAATJs2jY3zXbp0QdeuXTUpe3x9fWEymVCtWjV2upOt41HXrl1Rp04d/P7774Yb1PSs6S4uLvDw8JCiLi8gsWYUQ0OuL0uNmh/IFy1ahH79+iE4OBgjRozAF198wd5Ti7pz585BURQ4OTlp0n8AWXFyW7ZswYMHDzSDuVrU8R2SzhhUw0/CISEhmuOV6D7oWuqVNJC1E8yWuAE1JBbU6QLUcXQ8zs7OyMzM1HQM+lu960oPtfv17bff1gTfWxIkakud+vB4gh9UfH19DXPu6WHrKtAWatSoYfGILvXkT9AkpnfGrtEKPjeWQ7LUUbumfti4cWOrqW6ArM0OLVu2tLrDEdCmt3kS0MTKl4faXIsWLbBz505NDClhZ2en2YGoXnBZw8hiB1iOB9MLSbFVENL4UaNGDc1k1LVrV9SqVQvLly/Ha6+9hmXLlgGwvgEMgG6cFu1U1luI5BV6ljprliMjKBcdWV7zUtQtXboUU6ZMQaNGjfDzzz/btGPSEnSvevFsZcuWtbqzXw9+1/lLL71k9Rx3s9mMI0eO6IYIAWBH6FH9BwUFsXya1qzS1Kfc3NyEsd/T01M35tLZ2ZnNV4MGDcL8+fNtHqO9vLysJoT/8MMPkZycrNEcfn5+UtTlhEuXLglb9qtXr44TJ04Iq65y5cqxhvD999/jgw8+sNhw+MGFVmtt27Y13HFJWIqJArJiTvr27QsfHx+cPHlSCAKma9FAZItFiO+0esdGqUWdHmRFzC40MFjLqq3G6L5CQkJsWj1ai6mzhtpSZy2NBZD1nKlusxtbl1sOHz5sKDwBrajbs2cP5s6dy2KeeEvIihUrLIqmnIh7giYiqh9vb29s2bKF5VKzRkBAAIYMGYLVq1cDyBLf169fz1OBnB1oEuBFC1/3tLHBGtQ/1ElarWFkqevVq5dFl7iegLLVrUmiTt1HoqKimJuVJtEqVarA3d09x/Wj14+MRN2OHTusjq165KWoo1AVSn2UXVHHzzfqZ+bl5YXp06ez5O45PdaPUkLZ6qrPDtSvnZychJN8LKFn2CD03L+08LFW19RObFlQEOrfys53reHi4qKbM1eKuhxSpUoVTUCuelcOn0vG2dnZatwOX+G08iV30oEDB/DXX39hypQpNg+WhMlkYuKrbt26gvAk8ZjdgF5LUOPPTqJWW/nuu+/Qo0cPmw+KthYIn93dj0bmeWvQhNWsWTMcPHjQprNDgZyLyNzi5uZmcQCiyZ/K16pVK+b+Dg8PF8S+nqWWCA4O1s1dZiuff/45Pv/8c2HwpEPhswM/see15SY76Im6nODl5WXV7akHLdiofqndWso1BuhvRrDW/9u2bYtjx46xxYNa1OkJt1atWiEsLCxPJ0ej+lannLIVfiyla1vLCGDEzJkzMXr0aCY41GO/tXFQbfnXg557Ti11O3bsEJIB5+UCVL1DN7foXYfSSuktTHjUu12zAz2TnM4f2aF48eI2WeilqMsB1rbWA1nxGRRXQ43Fy8sLL7/8Mv79919mdm/WrBnzy+elWKJVcl5aJmyx1OXm2pbSRPCuvKtXr1oNJLYVT09PODg45HjAcnR0hIeHB8qWLWsxCabe94Cnb6mzhpH7FdC33vIcPXoUa9euxbfffosePXpke5HC89lnnxkmOs4O1PcyMzOfysBrBFl5cvNMcoN6J1+XLl1w7Ngxq3k37ezs8MYbbyAiIgJ///03AOv3sGvXLgBZKS0OHz5sczxoXgo6IO9FPH89OkHAlryleri4uAgLU/WYmp1x26hf5lbUtWnTBm3atGHhCXn5PPPS2GBEy5YtkZKSYtVSR+05J/f35ZdfwsXFRfeYwrxm9erVNs0XBU7UnThxAp9++ins7Ozg5+eHFStWCFaNPXv2oE+fPihfvjzs7e3ZAFLQ4E9eoEZVqFAhmEwmjQuJ7i8vrTctW7bEmDFjMHz48Dy7Jg26T1uIREZGCkKaD+LNLZ6enrl+7nppbKxhi8Bo2rSpxVMRngSWRJ01GjZsCE9PT3z77beavHP5BQ3UhQsXzlcBPX/+fLRv3z5bk9mUKVPy5NhFQCvqTCaTzSmoVq5ciU2bNjFRZ6vgmDRpEoYNG2bTIvhJkNeiTn0fRvFdOSG77lceo+dLcWvWFmPWGDBgANzd3Q1jPnMC9YOcuoZtxWgcO378OMu/mBtLXZEiRfLkvHtbsHX8KnCiLiAgANu3b4erqyvGjh2LjRs3auJHgoODMWPGjHwqYfYxmUyYPHmyYSoEa7s1c4KDgwM7rDyvsLQD8kmSV1Y5PYKCgqweZ2SNTp066SbO1IMGa+qgljrqwYMHc+Rqyw25EXVA1kkIT7vMlqD7oKz7+UWRIkXY8Ui2ohdXk1OoXnPbd318fNjpPrb8Zm7iKnOKnZ0dMjMz880qmhPUos7W3ZSWsLOzw/bt23OdP9bBwUH3rODckN3dsnlN/fr1WdgUtRP1KSHPKgUuT52/vz8TD2azWVforFu3DoGBgYa7OAsiY8eONTxrTx3vUlAhS11OtsgXVEqXLs3ygOWUuXPn6p7Vq+bMmTPs/EXC2g7dp21dov6Wn67KvKRevXpYu3atzfnxnlco5ii37enzzz/PteXnSUPjaF6Np3wS7icFeQvatm2Lw4cP55krumPHjk90UZxTevXqhQULFhieU/00oSTLRkfzPWsU2JH7zp072LlzJ8aNGye83qBBA7YdvHv37mjRooXuRoWUlBQhqNCWM9PyC1o9FxRRZ2SGfh5F3dNEHbAbGhqaaythXqN20z3rmEwm3TMlXzQGDBiAR48e2byR51lGnbczt8yfPx/z58/Ps+vpQTGXH3/8sebcaCMmT56c440a+Y2dnR0GDBiQ38UA8Dg/oV6C92eRfBN1YWFhuoPtpk2b4ODggD59+mDJkiWaeCd+W3m3bt1w5swZXVE3derUXO2+e5o8LVFnMpmsBi3v27dPc5QOQWbqp+1+fV7hTyEpKOSVm05SsHB2dsbEiRNzfZ2C5Fo3Yt++fezMzGcFs9mc7Wf7oluf84oGDRo8E+3aVvJN1Pn7+wuZ+4mMjAz06NED48eP1z0nLTY2lgmTffv2seNX1IwZM0bYPRcbG2soVvKbpyXqYmNjrbpfaFeuHs+bFUeihfpWfgW3SwomLVu2RPXq1TXZ9Qsi9erVsznGVSJ53ihwI/eaNWtw8OBBfP3112jdujVLHkpxDWvWrEGjRo3QrFkzBAQEGJ444OTkBE9PT+G/ggqJuicdx+Tu7p6rWA0p6p5/Ro0ahR9++MFmF5Ak+/Tp0yfbSbbzG29vb5w/f97mQ9slEkn+YFKeJ7ujBWJjY+Hl5YWYmJgCJ/AWLFiADz/8EEuWLMnW+ZhPm7S0NAQFBeH777/P0dEwEkl+ExQUhI4dO9q0sUUikUieNaSoKwBcunQJ1apVw7Vr11ChQoX8Lo5EIpFIJJJnkAK7+/VFomrVqs9VoKZEIpFIJJKnT4GLqZNIJBKJRCKRZJ8Xxv2qKAri4uLg4eFR4M7blEgkEolEIsktL4yok0gkEolEInmeke5XiUQikUgkkucAKeokEolEIpFIngOkqJNIJBKJRCJ5DpApTfB4E4VEIpFIJBJJQcXaZk8p6gBERESgaNGi+V0MiUQikUgkEkOsHaAgRR0AR0dHAEBISEiBO21CYpnY2FiULFlS1t0ziKy7ZxdZd88usu6ebTw8PCy+L0UdwEyZnp6espE/o8i6e3aRdffsIuvu2UXW3fOJ3CghkUgkEolE8hwgRZ1EIpFIJBLJc4AUdQCcnJwwYcIEODk55XdRJNlE1t2zi6y7ZxdZd88usu6eb+QxYRKJRCKRSCTPAdJSJ5FIJBKJRPIcIEWdRCKRSCQSyXOAFHUSiUQikUgkzwFS1AEYPnw4AgMD8dZbbyE1NTW/iyPR4cSJEwgMDESrVq0QFBSEtLQ0rF69Gk2bNkXbtm0REhICALh48SJatGiBpk2bYufOnflcagnPqlWrUKRIEQCQdfcMsWfPHrRr1w6tWrXC//73P1l3zwCZmZno27cvAgMD0bJlS9y4cUPW24uC8oJz8uRJ5a233lIURVEmTZqkrFixIp9LJNEjNDRUSUhIUBRFUcaMGaOsWbNGadSokZKSkqLs379f6d+/v6IoitK9e3fl6tWrSkxMjNK0adP8LLKEIyMjQ+nZs6dSt25dJTU1VdbdM0JSUpLStWtXJSUlRVEURdbdM8KJEyeU4OBgRVEUZceOHcqnn34q6+0F4YW31B06dAgdO3YEAHTq1AkHDx7M5xJJ9PD394erqysAwGw24+rVq6hevTocHR3RvHlznDt3DgAQGhqKihUrwtPTE4UKFUJERER+Flvy/1m5ciV69eoFOzs7XLt2TdbdM8LBgwfh4uKCV155Ba+++iqOHTsm6+4ZoESJEgAARVEQHR2NIkWKyHp7QXjhRV10dDQ7KsXLywuPHj3K5xJJLHHnzh3s3LkTLVq0EI64ycjIAJA1iBGyPgsGGRkZWLNmDYKDgwGIfY7eB2TdFUQePHiA//77D5s3b8aAAQMwceJEWXfPAIULF4adnR2qVq2KkSNHonXr1rLeXhBeeFHn4+OD2NhYAFmTja+vbz6XSGJEbGws+vTpgyVLlqBo0aKs3gDA3t4eAGBn97hJy/osGPz2228ICgpidcP3OUDWXUHG29sbLVq0gKOjI9q2bYtTp07JunsG2L59O1xcXHD58mWsW7cOP/zwg6y3F4QXXtQ1adIEO3bsAJDVEZo3b57PJZLokZGRgbfeegvjx49HpUqVUKFCBVy8eBGpqak4cOAAatWqBSDLTXvt2jXExsbi0aNHKFy4cD6XXHLx4kUsW7YMnTp1wrVr17Bw4UJZd88IjRo1wsWLFwEAp06dQseOHWXdPSP4+PgAyBLmERERst5eEOSJEsja/XrkyBGUKlUKS5YsgaOjY34XSaJi1apVGDJkCGrWrAkA+Oijj6AoCn744Qc4Oztj2bJlKFmyJC5evIgBAwYgIyMDX331FTp06JDPJZfwNGjQAMePH8fvv/8u6+4ZYc6cOVi9ejXs7Ozwyy+/4OjRo7LuCjgZGRno06cP7t27h5SUFHz//fe4c+eOrLcXACnqJBKJRCKRSJ4DXnj3q0QikUgkEsnzgBR1EolEIpFIJM8BUtRJJBKJRCKRPAdIUSeRSCQSiUTyHCBFnUQikUgkEslzgBR1EolEIpFIJM8BUtRJJBKJRCKRPAdIUSeRSCQSiUTyHCBFnUQikUgkEslzgBR1EolEIpFIJM8BUtRJJBKJRCKRPAf8P2XIl+R8YtO6AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1626,7 +1626,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAFICAYAAAA24bcOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1nklEQVR4nO3deXhM9/4H8PcsWSYRIYtEw62ll9pKq3S7tyarvUEiBEktXVCtolVUadVeW1FbbUFiSSQ09mwTSktRdFdUWylpZCWZJLOc3x9+k0uFyXzPd/bP63n6PO2YzznvqHk7c1aJIAgCCCGEPJDU2gEIIcTWUVESQogRVJSEEGIEFSUhhBhBRUkIIUZQURJCiBFUlIQQYgQVJSGEGEFFSQghRlBREkKIEVSUhBBiBBUlIYQYQUVJCCFGUFESQogRVJSEEGIEFSUhhBhBRUkIIUZQURJCiBFUlIQQYgQVJSGEGEFFSQghRlBREkKIEXJrByDOSxAEaDQaVFZWQq1Wo7q6GoanJ0skEri6ukKhUMDd3R0uLi6QSCRWTkycFRUlsTiNRoOioiIUFxdDq9XWaUYul6Nhw4bw8fGBi4uLmRMSci+JYPgrnBAzq6ysRH5+Pm7duiVqOV5eXggICIC7uzunZIQ8HBUlMTtBEHDz5k3k5+dzXW5AQAD8/PzoKzkxOypKYlbV1dX4448/UFlZaZblKxQKNG3aFK6urmZZPiEAFSUxo6qqKvz222913g/JSi6Xo3nz5nBzczPreojzotODiFlUV1fjypUrZi9JANBqtfjtt99QXV1t9nUR50RFSbjT6/W4evUqdDqdxdap1Wpx9epV6PV6i62TOA8qSsJdfn6+VbbuqquruR8wIgSgoiSclZeXo7Cw0GrrLywsRHl5udXWTxwTFSXhRhAE5OXlWTsG8vLyQMcoCU9UlISb8vJymzigUl1dTVuVhCsqSsJNUVGRtSPUsKUsxP5RURIuNBoNysrKTJ7TarXo2bMn5s2bd9+vzZo1Cz179mTa51lWVgaNRmPyHCG1oaIkXFRUVDDNyeVyjBo1CmlpaSgpKal5ff369cjIyMDq1avh6+tr0UyE/BMVJeFCrVYzz0ZGRsLb2xvbt28HAOzbtw9r167FihUr0KxZM6tkIuRudJs1woWYrTcXFxeMGDECa9euRbt27fDhhx9i3rx56NSpk6hMVJSEF9qiJFxUVVWJmo+KioJUKsWbb76J8ePHIzw8XHQmc92Igzgf2qIkXIi9dNDNzQ1dunRBfn4+4uLibCITIQa0RUlsxq+//ooOHTpYOwYh96GiJFyIvXluZWUlfvvtN7Rt25ZTIvGZCDGgoiRcyOXi9uL8/PPP0Ol0aNOmDadE4jMRYkBFSbhQKBSi5n/66Sd4eHjg0Ucf5ZRIfCZCDOgO54SLmzdv4saNG9aOcY/AwED4+flZOwZxALRFSbiwxa03W8xE7BMVJeHCw8PDpvYJyuVyeHh4WDsGcRBUlIQLiUTCfE22Ofj6+tJRb8INFSXhpmHDhtaOUMOWshD7R0VJuJHL5TaxVenr62tTuwGI/aOiJFwFBATAxcXFaut3cXFBQECA1dZPHBMVJeFKKpWiSZMmVlt/kyZNIJXSH2vCF/2JItx5enqiUaNGFl9vo0aN4OnpafH1EsdHRUnM4tatW6JvvWaKyspK3Lp1y2LrI86FipJw8+uvv2LevHno3LkzHnvsMVy+fBn+/v5mX6+/vz8uX76Mxx57DJ07d8b8+fNx6dIls6+XOA+6hJGI8vPPPyMlJQUpKSk4f/58zeseHh74+++/4enpibKyMuTl5UGn03Fdt0wmQ1BQEOrXr4/bt2+jUaNG99zVvGPHjoiOjsbAgQPRunVrrusmzoWKkpjshx9+qCnH77//vtb3xMTEYOfOnTX/rdVqcf36dZSWlnLJ4O3tjcaNG99zGlBMTAySk5NrfX/79u1rSpPnrdyIc6CiJEYJgoDvvvuuphx/+uknozMpKSmIioq673W1Wo3CwkKUlpbC1D96EokE3t7e8PX1rfU67pSUFAwcONDoctq0aVNTmu3bt6creIhRVJSkVoIg4Ny5czXlePHixTrPenp6oqCg4KE3pdDpdCgpKYFarUZFRQWqq6trfZ+rqys8PDzg4eEBb29vyGSyBy6zoqICjRo1Qnl5eZ2ztmrVqqY0O3bsSKVJakVFSWoIgoAzZ87UlOPly5eZlhMbG4ukpCSTZvR6Paqrq3HmzBkAQOfOneHq6mryOZGxsbHYsWOHSTMGLVu2RHR0NKKjo9G5c2cqTVKDitLJCYKAU6dO1ZTj1atXRS9zz549iIyMZJoNCQmBRCJBVlYW87r79+/PNHu3Zs2a1ZRm165dqTSdnUCc2qRJkwQA3P7x8vIS1Go1UxaVSlWznNzcXKZlqNVqoV69elx/pnfeeYcpC3EcdB6lk5s3bx6io6O5LS8yMhLu7u5Msx999FGt/24Kd3d35q3Z2gwcOBDz5s3jtjxin6gonZyLiwuSkpJqPULNYtCgQUxzubm5yMnJqfnv7OxsHD161KIZ/ikqKgqJiYl0JyJC+yjJHRqNBoMGDUJaWhrzMry9vZGfnw83NzeTZ0NCQu4pSsNrLPsqq6qqEBAQIOqczQEDBmDHjh1WvRMSsR20RUkA3NmyFPsVvF+/fkwl+c+tSQPWrUo3Nzf069fP5Lm7RUVFUUmSGlSUBACwc+dOxMfHi1oG61feh+2PZN1XGRMTwzRnEB8fj127dolaBnEc9NWbYPv27Rg2bBj0ej3zMho2bIgbN27A1dXVpLnc3FwolUqj73nxxRdNWm51dTUCAwNRXFxs0tzdZDIZtm3bhsGDBzMvgzgG2qJ0cklJSaJLErizT8/UkgTqtsXIslXp6uoq+nxKnU6HoUOHmnzyPHE8VJRObNu2bYiLixNdkgDbV90H7Zv8J9Z9lWK/fgN3rhiKi4tDYmKi6GUR+0VfvZ3U1q1b8fLLL5t8Y4ra+Pr64vr16yYf/KjtSPfD3mvqEXCNRoPGjRujsLDQpLnaSKVSJCQkYNiwYaKXRewPbVE6oYSEBG4lCbAdIT569GidSxJg26p0cXHBgAEDTJp5EL1ej/j4eGzZsoXL8oh9oaJ0Mps3b8aIESO4lSTA9hWXZb8jywyPr98GgiBg+PDhSEhI4LZMYiesde0ksbwNGzYIEomE+ZrnpUuXCmFhYfe85u/vL2g0GpNy5ObmMmcw9RpwjUYj+Pv737OM8PBwYenSpcwZJBKJsHHjRpNyEPtGRekkPv/8c1E3hlizZo0gCIJQXl4uhIaG1rw+ZswYk7OEhIQw5wgJCTF5faNHj66ZDwsLEyoqKgRBEITVq1eLKsv169ebnIXYJypKJ7B27VpRJblu3bp7lldeXi4EBwcLAIScnByTsojZmmTdqszOzq4p2fLycrP+3hDHREXp4NasWWOWrabbt28LsbGxglarNSmPmK1J1q1KrVYrxMbG3leSBmK3tteuXWtSHmJ/qCgd2KpVq0SV5IYNGx66fL1eb1IeHluTrFuVxrKK3X+7evVqk/IQ+0JF6aBWrlwpqiQ3bdrEPROPrUnWrcq62Lhxo6iy/Oyzz7hnIraBitIBrVixQlRJJiQkcM/Ec2uSdauyLjZv3iyqLFeuXMk9E7E+KkoH8+mnn4oqyS1btpglF8+tSXNuVQqCICQkJIgqy+XLl5slF7EeuoTRgSxbtgwTJkxgmjXnJXparRYnTpy47/WVK1ciOTm5TssYOHAgxo0bd9/rzz//vFnuQL5t2za8/PLLzNfBL1u2DOPHj+eciliNtZua8LFkyRLmLSCpVCokJiZaPPOECRPqnHHChAkWz7dt2zZBKpUy/74uWbLE4pmJedAljA5g8eLFmDhxItOsVCpFYmIihgwZwjmV/Rs6dCi2bdtm8rPFDSZOnIglS5ZwTkWsgYrSzn3yySd45513mGZlMhmSkpLoxrQPERsbi6SkJMhkMqb5SZMmYdGiRZxTEUujorRjCxYswOTJk5lmZTIZtm/fzu2JhY5s0KBBosry3XffxcKFCzmnIpZERWmn5s2bhylTpjDNyuVy7Ny5EwMHDuScynHFxMRgx44dzGX53nvvYf78+ZxTEUuhorRDc+bMwbRp05hmDSXJ6zneziQ6Oho7d+5kPso+depUzJ07l3MqYglUlHZm9uzZmD59OtOsXC7Hrl27uN3M1hlFRUVh165dzGX5/vvvY86cOZxTEXOjorQjs2bNwgcffMA06+LigpSUFNEP3CJA//79kZyczFyW06dPx8cff8w5FTEnKko78eGHH2LmzJlMs4aSjIyM5JzKefXr1w8pKSkmPwLDYMaMGczPLCeWR0Vp4wRBwMyZM5k/VK6urkhNTcVLL73EORmJjIzE7t27mcvS8JefQBfH2TwqShsmCAJmzJiBWbNmMc0bSrJPnz6ckxGDvn37IjU1lemZ5sCd3SlUlraPitJGCYKA6dOnY/bs2Uzzbm5u2LNnD3r37s05GfmnPn36IC0tjbksP/74Y3zwwQdUljaMitIGCYKAadOmMZ9KYijJnj17ck5GHqRXr17Yu3cv3NzcmObnzJmD999/n8rSRlFR2hhBEDBlyhTmk5Pd3d3xxRdfoEePHpyTEWN69OghqiznzZuHqVOnUlnaICpKGyIIAiZPnsx8uZuhJCMiIjgnI3XVvXt3fPHFF3B3d2eaX7BgAd577z0qSxtDRWkjBEHAu+++y3wDBXd3d6SnpyM8PJxzMmKqiIgIpKenM5flJ598gsmTJ1NZ2hAqShsgCAImTZqExYsXM80rFArs27cPYWFhnJMRVmFhYdi3bx8UCgXT/KJFi/DOO+9QWdoIKkorEwQBEyZMwNKlS5nmFQoF9u/fj9DQUM7JiFihoaGiynLJkiWYOHEilaUNoKK0IkEQMH78eHz66adM8x4eHjhw4ACCg4M5JyO8hISE4MCBA/Dw8GCaX7ZsGd5++20qSyujorQSQRDw5ptvYsWKFUzznp6eOHjwIJRKJd9ghDulUimqLJcvX4633nqLytKKqCitQK/X44033sBnn33GNG8oyRdffJFzMmIu3bp1w8GDB+Hp6ck0v3LlSowbN47K0kqoKC3MUJKrV69mmq9Xrx4OHTqE//73v5yTEXN78cUXcejQIdSrV49pftWqVXjjjTeYnwxJ2FFRWpBer8eYMWOwZs0apnkvLy8cPnwY//nPfzgnI5byn//8R1RZrl69GmPHjqWytDAqSgvR6/UYPXo01q1bxzRvKMnnn3+eczJiaS+88AIOHz4MLy8vpvm1a9di9OjRVJYWREVpAXq9Hq+99ho+//xzpvn69evjyJEjeO655zgnI9by/PPPiyrLzz//HK+//jqVpYVQUZqZXq/HK6+8gg0bNjDNG0ry2Wef5ZyMWNtzzz2HI0eOoH79+kzz69evx6uvvkplaQFUlGak0+kwatQobNq0iWne29sbGRkZeOaZZzgnI7bi2WefRUZGBry9vZnmN27ciFGjRkGn03FORu5GRWkmOp0OI0eOxObNm5nmGzRogMzMTHTt2pVvMGJzunbtKqosN2/eTGVpZlSUZqDT6TB8+HBs2bKFab5hw4bIzMzE008/zTkZsVVdunRBZmYmGjRowDSfkJCAESNGUFmaCRUlZ1qtFvHx8di2bRvTvKEkO3fuzDkZsXVPP/00srKy0LBhQ6b5rVu34uWXX6ayNAMqSo4MJZmUlMQ07+Pjg6ysLDz11FOckxF78dRTTyErKws+Pj5M84mJiYiPj4dWq+WczLlRUXKi1WoRFxeH7du3M837+voiOzsbTz75JOdkxN48+eSTosoyKSkJcXFxVJYcUVFyoNVqMXToUOzYsYNp3tfXF1lZWejYsSPnZMRederUCdnZ2fD19WWa37FjB4YNG0ZlyQkVpUgajQZDhgzBrl27mOb9/PyQnZ1NJUnu07FjR2RnZ8PPz49pfufOnRgyZAg0Gg3nZM6HilIEjUaD2NhYJCcnM837+/sjJycHTzzxBOdkxFE88cQTosoyOTmZypIDKkpG1dXVGDRoEHbv3s0036hRI+Tk5KB9+/ackxFH06FDB+Tk5MDf359pPiUlBYMHD6ayFIGKkoGhJNPS0pjmAwICkJOTg3bt2nFORhxV+/btkZOTg0aNGjHNp6amYtCgQaiuruaczDlQUZqouroaAwcOxJ49e5jmDSXZtm1bvsGIw2vXrh1ycnIQEBDANJ+WloaYmBgqSwZUlCaoqqpCdHQ0vvjiC6b5wMBAqFQqtGnThnMy4izatm0LlUqFwMBApvm9e/ciOjoaVVVVnJM5NirKOqqqqkJUVBTS09OZ5hs3bgyVSoXHH3+cczLibB5//HGoVCo0btyYaT49PZ3K0kRUlHVQWVmJAQMGYP/+/UzzjzzyCFQqFVq3bs05GXFWrVu3hkqlwiOPPMI0v2/fPkRFRVFZ1hEVpRGGkjxw4ADTfFBQEFQqFVq1asU5GXF2rVq1ElWW+/fvx4ABA1BZWck5meOhonyIyspK9OvXDwcPHmSab9KkCVQqFf79739zTkbIHf/+97+hUqkQFBTENH/gwAH079+fytIIKsoHUKvViIyMxOHDh5nmmzZtCpVKhccee4xzMkLuZSjLJk2aMM0fOnQIkZGRUKvVnJM5DirKWlRUVOCll17CkSNHmOb/9a9/QaVSoWXLlpyTEVK7xx57DCqVCk2bNmWaP3LkCJXlQ1BR/oOhJDMzM5nmH330UahUKrRo0YJzMkIermXLllCpVPjXv/7FNJ+RkYGXXnoJFRUVnJPZPyrKu5SXl6NPnz7IyspimjeUZPPmzTknI6RuWrRoAZVKhUcffZRpPjMzE3379qWy/Acqyv9nKMmcnBym+WbNmiE3NxfNmjXjG4wQEzVv3hwqlYr5z2J2djb69OmD8vJyvsHsGBUl7pRk7969oVKpmOabN2+O3Nxc5r/FCeGtWbNmor7d5OTkUFnexemL8vbt2+jVqxdyc3OZ5lu0aIHc3Fzm/UKEmIvY/eUqlQq9evXC7du3OSezP05dlLdu3ULPnj1x9OhRpnnDznPWI42EmJvhDAzWsjx69CiVJZy4KA0l+eWXXzLNiz0dgxBLadq0KXJzc5lPVzt27Bh69uyJW7ducU5mP5yyKMvKytCjRw8cP36caV7sCb6EWFqTJk2Qm5vLfJXYl19+iR49eqCsrIxzMvvgdEVZWlqK7t2748SJE0zzhutrWS8ZI8RagoKCkJOTw3zfgRMnTjhtWTpVURpK8uuvv2aaF3vHFkKszVCWrHey+uqrr9C9e3eUlpZyTmbbnKYoS0pKEBERgZMnTzLNi70HICG24pFHHkFOTg7zvVG//vprREREoKSkhG8wG+YURVlcXIzw8HCcOnWKaV7sXaUJsTWNGzdGTk4O8932T5065VRl6fBFaSjJ06dPM823a9cO2dnZzM8pIcRWBQYGinp+0zfffIPw8HAUFxdzTmZ7HLooi4qKEBYWhjNnzjDNt2/fnkqSODSxTwQ9ffq0U5SlwxaloSTPnj3LNN+hQwdkZ2czPx6UEHvRqFEjZGdnMz9j/syZMwgLC0NRURHnZLbDIYuysLAQoaGh+Pbbb5nmn3jiCWRlZTE/cJ4Qe2Moyw4dOjDNnz17FqGhoSgsLOSczDbIrR3gn3Q6HcrLy6FWq6FWq1FZWQm9Xg9BECCRSCCTyeDh4QGFQgGFQgEPDw9IJJKa+Zs3byIsLAznz59nWn/Hjh2RmZkJPz8/Xj8SIXbB398f2dnZCA0NxYULF0yeP3fuHEJDQ+/7/AiCgIqKiprPdEVFBXQ6Xc1nWiqVwt3dveYz7enpCZlMxvNHE81milKtVqOwsBClpaUQBKHW9wiCAL1ej9LS0przuGQyGXx8fODj4wO1Ws38PxkAOnXqhMzMTPj6+jL/HITYMz8/P2RnZyMsLAznzp0zef78+fMIDQ3FsWPHoFAoUFRUhKKiIuh0ulrfb/hM3759u+Z6colEAm9vb/j6+kKhUIj5cbixelFWVlYiLy+P+Rb0Op0OBQUFKCgoQIMGDRAWFsZUlE8++SQyMzPh4+PDlIMQR+Hr64vMzEyEh4cz7b4KDw9HWVkZ/vjjD6b1C4KAkpISlJSUQKFQICgoCO7u7kzL4sVq+ygFQUBBQQEuXbrE7TkdJSUleOWVV7BgwQKT5jp37kwlSchdDGX51FNPmTS3YMECjBo1itv5lWq1GpcuXUJBQcEDv2laglWKUqvV4sqVK8jPz+e+bJ1Oh169eiEpKQlSqfEf7+mnn0ZGRgaVJCH/4OPjg8zMTHTu3Nnoe6VSKZKSktCrV68Hfs0WIz8/H1euXIFWq+W+7LqweFFqNBpcuXLF7E9769ChA5KTkx+6U7hLly7IyMhAw4YNzZqFEHvVsGFDZGZm4umnn37ge2QyGVJSUpiPmNeVWq3GlStXoNFozLqe2li0KLVaLa5evYrq6mqLrK9Vq1bYvn37PUfFDbp27YojR46gQYMGFslCiL1q0KABMjIy0KVLl/t+TSKRYPv27cy3bzNVdXU1rl69avEtS4sVpSAIuHbtGqqqqiy1SgBAmzZt8Omnn97z2jPPPEMlSYgJDGX5zDPP3PP68uXLma8XZ1VVVYVr165ZdJ+lxYqytLTUareTDwkJwYQJEwAAzz33HI4cOQJvb2+rZCHEXnl7e+Pw4cN49tlnAQATJ05EcHCwVbLcvn3bord6s8jpQRqNBn/99ZclVlUrQRDwxhtvICAgAGPGjEH9+vWtloUQe2Yoy9WrVyM6Otrsxxoe5q+//oKnpydcXFzMvi6LbFEWFBRAr9dbYlUPpFarqSQJ4aB+/foYM2aMVUsSAPR6PQoKCiyyLrMXpU6ns5k7izjqdaiEWJqtfJaKi4vNcjrSP5m9KEtKSqx6oujdysvLLX4wiRBHU1VVhfLycmvHAHBnt5ol9lWavSjFbk3euHEDH3/8MXr16oXOnTujW7dueO2113Dx4kWr5CHE2bF+hvR6Pfr27YslS5bc8/rx48fx5JNP4vDhw0zLtcTt3cxalHq9HpWVlczzeXl5iImJQXFxMebOnYsvvvgCS5YsQcuWLeHq6sq0zIqKCuY8hBD2z5BUKsUrr7yCXbt21WwF/vLLL5g0aRLGjx+P7t27My3XcIcxczLrUW8xJQkASUlJUCgUWLRoUc3liEFBQXW6pOpB1Gp1ze2dCCGmEQRB1EGc3r17Y/Xq1UhKSkL//v0xduxY9OnTB8OHDxeVq7KyEh4eHqKW8TBm3aIUe1SsrKwMVVVVuH79OqdEd/5HW+rKIEIcTXV1tahjDnK5HCNHjkRiYiLGjh2Ltm3bYurUqaJzmfsIvFmLUmwhxcbGwtXVFT179sSgQYOwdOlSXL582eq5CHFWPD47ffr0QWVlJQRBwIIFC7jcpNfcn2mzFqXYo91t27bFwYMHsWHDBrzwwgvIyspCdHQ0srKyRC3X2ud0EmKveHx25syZA+DOGTG87mRu7jNrbP6ZOTKZDF26dMFbb72FtLQ0+Pj4YP/+/daORQhhsGLFChw7dgyJiYnQ6XRITU21dqQ6MWtR8j5gYti/KPbekXW5TyUh5H5iPju7d+/Gli1bsGLFCrRu3RrDhg3Dpk2buNw2zdwHZ83aGKyn8ADA1KlTsX79ely4cAF5eXk4efIkxo4dC0EQEB8fb7VchDgz1s/OsWPHMGfOHMybNw8dO3YEAAwZMgS3b9/Gvn37rJarrsx6epCYBwO1adMGGRkZ2LJlCyoqKhAYGIjnnnsOs2fPRmBgIPNyJRIJFSUhjFxdXSGRSEzaJ/jDDz9g0qRJmDhxIsLCwmper1evHoYMGYINGzbgpZdeErW/0twPITNrUYp5IFB8fLzoLcfaKBQKOoeSEEYSiQQKhcKkk87btWuHU6dO1fpr48aNw7hx40TnMvfDx8z61dvwvF5bYs6TUglxBrb2GXJ3dzf7cQezH9WwtefR2FoeQuyNrX2GLPFgQLMXZYMGDWzmq66npyfc3NysHYMQu+bm5gZPT09rxwBwZ1eAJZ5WYPailMlkNvM3kK+vr7UjEOIQbOWz1LBhQ24nrT+MRU4o9Pf3t/q5iwqFAqtXr0ZZWZlVcxDiCLy8vKy+r1IqlcLf398y67LESlxcXPDII49YYlW1kkgk+OyzzzBlyhR0797dog8lIsQRSSQSBAUFWXW32iOPPGKR5+UAFryE0dvbG/Xq1bPU6u6RnZ2NpUuXAgC+/vprKktCOHBzcxN1TrMYXl5eFn2SqsWKUiKRoEmTJhY/mPLjjz9i/Pjx97x28uRJREREoKSkxKJZCHE0Pj4+aNCggUXX6ebmZvGtWYvuOJTL5WjWrJnFroy5ePEihgwZUutVBKdOnaKyJEQEQRBw4cIFrFu3ziIHVIA7VwY1a9YMcrlFnrRdw+JHWFxcXNCiRQuzX3J04cIFDBw48KFPaPvmm28QHh5Oz9EhpI4EQcDZs2cxbdo0tGrVCp06dUJCQgJat25t9rNbFAoFWrRoYbH9knezbC0bViqXo0WLFrh58yby8/O5LlsmkyE9PR3vvfdend5/+vRphIWFISMjwyInrhJibwRBwOnTp5GSkoKUlBRcuXLlnl+PiYmBVCpFUFAQvLy8kJeXx/0RsgEBAfDz87PawSOrFCVwZ5+lv79/zW8sj1u5N2jQAEuXLr3vKW/GnD17FmFhYcjMzKSyJAR3btB76tSpmnL8/fffH/jemJiYmn+vX78+PD09cf36dS67tRQKBYKCgqx+KbTVitLA3d0dLVu2hFqtRmFhIUpLS026M4lMJoOPjw98fHxQWVmJzMxMphzffvstQkNDkZmZaTMn0xJiSXq9Hl999VVNOV67ds3oTPPmzfH000/f85pMJkOTJk0QEBCAoqIiFBUVmbSFabjaxtfX1+y76OrK6kVpoFAo0KRJEzRu3Bjl5eVQq9VQq9U1j6I0PDlRJpPBw8MDCoUCCoUCHh4eNZvjLi4uyMrKQlhYGM6fP29yhnPnztWUpZ+fH+8fkRCbo9PpcPz4cSQnJ2P37t0mP8gvJibmgV+HXVxcEBAQgEaNGqGioqLmM11RUQGdTlfzmTbcPMfwmfb09LTYwaG6spmiNJDJZKhfvz7q16/PNO/n51dTlufOnTN5/vz58wgJCUFWVpbFzvonxJK0Wi2OHj2KlJQUpKamijpOMGjQIKPvkUgk8PT0tJnrw1nYXFHy4OvrW1OW3377rcnz3333XU1ZNmrUyAwJCbEsjUYDlUqFlJQUpKWloaCgQPQyH3vsMXTq1El8ODvgsA+P8fHxQWZmJjp37sw0//333yMkJAR///0352SEWF51dTXmzp2LdevWcSlJ4M7WpK3cGczcHLYogTtlmZGRcd/O5rr64YcfEBwczP0UJkIszdPTE/v27cOLL77IbZl3H+12dA5dlMCd2zBlZGSgS5cuTPM//vgjgoODcePGDc7JCLEsT09P7N+/H//9739FL6t169bo0KEDh1T2weGLErhzfuWRI0fQtWtXpvmffvoJwcHBJh8RJMTW1KtXDwcOHMALL7wgajkPO9rtiJyiKIH/leUzzzzDNP/zzz9TWRKHUFZWJno/ZV2OdjsSpylK4M6t3o4cOYLnnnuOaf6XX36BUqnEX3/9xTkZIZbx119/ITg4GBcvXmReRtu2bdGuXTuOqWyfUxUlcOcSq0OHDuH5559nmr948SKUSiXy8vI4JyPEvPLy8qBUKkWVJOB8W5OAExYl8L+yZN1P8+uvv0KpVNbpEi9CbMG1a9egVCrx66+/il7WwIEDOSSyL05ZlMCdOyQfPHiQ+QjgpUuXoFQq8eeff3JORghff/75J5RKJS5duiR6WR06dECbNm04pLIvTluUwJ2yPHDgAPO5ZZcvX4ZSqcQff/zBORkhfPzxxx9QKpW4fPkyl+U549duwMmLEvjf6RLdunVjmr9y5QqUSuVDb0NFiDX8/vvvUCqV990/Ugxn/NoNUFEC+N+JuEqlkmn+t99+g1KpxNWrV7nmIoTV1atXoVQq8dtvvzHN1/Zsq06dOqFVq1Zio9klKsr/ZyjLkJAQpnnDH0wqS2JtYv/iDg0NxeXLl/Hkk0/e87qzfu0GqCjv4eHhgfT0dISGhjLN//777+jWrRvz3+KEiCV2V1B4eDjS09MRFBSEzMzMe+4O5KxfuwEqyvsYyjI8PJxp/o8//kC3bt247hcipC7EHlyMiIjA3r17a+4qbrgDV8eOHdG5c2e0bNmSZ1y7QkVZC4VCgb179yIiIoJp/s8//0S3bt24HWkkxBixp6t1794de/bsue/RC76+vsjMzMT777/PI6bdoqJ8AENZ9ujRg2n+2rVr6NatG5dz1wh5GLEXQPTo0aPWkjTw8/ND//79xUS0e1SUD+Hu7o60tDT07NmTaT4vLw/dunXjcjUEIbUxlCTrJbW9evVCWlqa1Z9yaOuoKI0wlGXv3r2Z5v/66y8u19cS8k+//PILunXrxnyTlt69eyM1NZVKsg6oKOvAzc0Nu3fvRp8+fZjmDWX5yy+/cE5GnJXY2/717dsXu3fvrvV8SXI/Kso6cnNzQ0pKCvr27cs0f/36dSiVSvz888+ckxFnI/ZG0pGRkUhJSaGSNAEVpQkMZRkZGck0f+PGDSiVSvz000+ckxFnIfbRJP369cOuXbvg6urKOZljo6I0kaurK3bt2oV+/foxzefn50OpVOLHH3/kG4w4PLEPuxswYACVJCMqSgaGshwwYADT/N9//w2lUonvv/+eczLiqL7//nsEBwczPz45KioKO3bsgIuLC+dkzoGKkpGLiwt27NiBqKgopvmCggKEhITgu+++45yMOJrvvvsOwcHBzM+5iY6Oxvbt26kkRaCiFMHFxQXbt29nvgbWUJYXLlzgnIw4ivPnzyM4OBg3b95kmo+JiUFSUhKVpEhUlCK5uLggKSmJ+c4qN2/eREhICM6fP885GbF3586dQ2hoKAoLC5nmBw8ejMTERCpJDqgoOZDL5di2bRsGDx7MNF9YWIjQ0FCcO3eObzBit7799ltRJRkbG4utW7dCLpdzTuacqCg5kcvl2Lp1K2JjY5nmDWX57bffck5G7M3Zs2cRGhqKoqIipvmhQ4diy5YtVJIcUVFyJJfLsWXLFgwdOpRpvqioCKGhoTh79iznZMRenDlzBmFhYSguLmaaj4uLQ0JCApUkZ1SUnMnlciQkJCAuLo5pvri4GKGhoThz5gznZMTWnT59WlRJxsfHY9OmTZDJZJyTESpKM5DJZNi0aRPi4+OZ5ktKShAWFoZvvvmGczJiq7755huEhYWhpKSEaX748OHYuHEjlaSZUFGaiUwmw8aNGzF8+HCm+ZKSEoSHh+PUqVN8gxGbc/LkSYSFhaG0tJRpfsSIEdiwYQOVpBlRUZqRTCbDhg0bMHLkSKb50tJShIeH4+TJk5yTEVvx9ddfIyIiAmVlZUzzo0aNwvr16yGV0kfZnOh318ykUik+//xzvPLKK0zzZWVlCA8Px1dffcU5GbG2r776SlRJvvLKK1i3bh2VpAXQ77AFSKVSrF27Fq+++irT/K1bt9C9e3ecOHGCczJiLcePH0dERARu3brFNP/aa69h7dq1VJIWQr/LFiKVSrFmzRq8/vrrTPOGsjx+/DjnZMTSvvzyS/To0QO3b99mmh89ejRWr15NJWlB9DttQVKpFKtWrcLo0aOZ5m/fvo0ePXrgyy+/5JyMWMqxY8dEleTYsWOxatUqKkkLo99tCzOU5dixY5nmDWV57NgxzsmIuR09ehQ9e/ZEeXk50/y4ceOwcuVKSCQSzsmIMVSUViCRSLBy5UqMGzeOab68vBw9e/ZEbm4u52TEXHJzc0WV5FtvvYXly5dTSVoJFaWVSCQSLF++HG+99RbTfHl5OXr16gWVSsU3GOEuJycHvXr1QkVFBdP8+PHjsWzZMipJK6KitCKJRIJly5Zh/PjxTPMVFRXo1asXsrOzOScjvGRnZ6N3797MJfn2229j6dKlVJJWRkVpZRKJBEuXLsWECROY5tVqNfr06YOsrCzOyYhYmZmZ6N27N9RqNdP8xIkTsWTJEipJG0BFaQMkEgkWL16MSZMmMc0byjIzM5NzMsIqIyMDffv2RWVlJdP8O++8g0WLFlFJ2ggqShshkUjwySef4N1332War6ysRN++fZGRkcE5GTHV4cOHRZXk5MmTsXDhQipJG0JFaUMkEgkWLFiAyZMnM80byvLw4cOck5G6OnToECIjI1FVVcU0P2XKFMyfP59K0sZQUdoYiUSC+fPnY8qUKUzzVVVViIyMxKFDhzgnI8YcOHBAVElOmzYNc+fOpZK0QVSUNkgikWDu3LmYNm0a07yhLA8cOMA5GXmQ/fv3o3///qiurmaanz59OmbPnk0laaOoKG2URCLB7NmzMX36dKb56upq9O/fH/v37+ecjPzTvn37MGDAAOaSnDFjBmbNmkUlacOoKG2YRCLBrFmzMGPGDKZ5Q1mmp6dzTkYM0tPTRZXkzJkz8dFHH1FJ2jgqShsnkUjw0Ucf4cMPP2Sa12g0iIqKwhdffME3GMHevXsRFRUFjUbDNP/hhx8y/38llkVFaScMWx4sNBoNoqOjsWfPHr6hnFhaWhqio6OZS3LWrFmYOXMm51TEXKgo7ciMGTPw8ccfM81qNBoMHDgQaWlpnFM5n9TUVMTExECr1TLNz549Gx988AHnVMScqCjtzPTp0zFnzhymWa1Wi5iYGKSmpnJO5TxSUlJEleTcuXPx/vvvc05FzI2K0g4ZzrdjYSjLlJQUzqkcX3JyMgYPHgydTsc0P3/+fEydOpVzKmIJVJR2aurUqZg/fz7TrE6nw+DBg5GcnMw5lePauXMnYmNjmUty4cKFeO+99zinIpZCRWnH3nvvPSxcuJBpVqfTITY2Fjt37uScyvHs2LEDQ4YMYS7JRYsWMV/DT2wDFaWde/fdd7Fo0SKmWZ1OhyFDhmD79u2cUzmOpKQkDB06FHq9nml+yZIlzHeFIraDitIBTJo0CUuWLGGa1ev1GDZsGJKSkjinsn+JiYmIi4tjLkkx9xkltoWK0kFMmDABy5YtY5rV6/WIi4vDtm3b+IayY1u3bkV8fDxzSX766ad4++23+YYiVkNF6UDGjx+P5cuXM83q9XrEx8dj69atnFPZn4SEBLz88svMJblixQrmZyER20RF6WDefPNNrFixgmlWEAS8/PLLSEhI4JzKfmzevBkjRoyAIAhM82KerklsFxWlAzI8/5mFIAgYMWIENm/ezDeUHdi4cSNGjhzJXJKrVq3CG2+8wTkVsQVUlA7qjTfewKpVq5hmBUHAyJEjsXHjRqPvcxTr16/HqFGjmH+mNWvWYMyYMZxTEVtBRenAxowZgzVr1jDNCoKAUaNGYf369bX+enl5uahzC23JunXr8Oqrr4qaf/311zkmIraGitLBvf7661i3bh3z/KuvvnrffEVFBfr27YsdO3bg2LFjYiNa1dq1a5lLTiKRYP369aJKltgHKkon8Oqrr2L9+vXMN4d9/fXXsXbtWgD/K8mcnBwAsOsre9asWYPRo0czzRpKctSoUZxTEVtERekkDF+jWcty9OjRWLZsGSIjI5GdnV3z+u7du5nvpGNNq1atYt6nKJFIsGHDBowcOZJzKmKrqCidiOEADWtZTpgwAZmZmfe8VlBQgNzcXB7xLGblypXMR6clEgk2bdqEESNGcE5FbBkVpZMZPnw4Nm/ezPUZLfb09Xv58uV48803mWYlEknNyejEuVBROqH4+HgkJCRwK8vU1FTmRyJY0rJlyzB+/HimWalUii1btiAuLo5zKmIPqCidVFxcHLZs2QKpVPwfgcLCwpqDO7ZKzA0qpFIptm7dimHDhnFORewFFaUTGzZsGLZu3cqlLG356/fixYsxceJEplmpVIrExEQMGTKEcypiT6gondyQIUOQmJgouizT0tKYn21tTp988gneeecdplmZTIakpCQMHjyYcypib6goCQYPHoykpCTIZDLmZRQXF993RNzaFi5ciMmTJzPNymQybN++HYMGDeKcitgjKkoCABg0aBC2bNkiahm7du3ilEa8+fPnMz+jRiaTYceOHRg4cCDnVMReUVESAHee+y32yYx79uxBVVUVp0Ts5s6dy/y0Q7lcjp07dyI6OppzKmLPqCgJNBoNBg8ejLS0NFHLKS0txZEjRzilYjN79mzm52bL5XLs2rULUVFRnFMRe0dF6eQ0Gg1iY2ORmprKZXnW/Po9a9YsfPDBB0yzLi4uSElJQf/+/TmnIo6AitLJTZ06Fbt37+a2vL1796KyspLb8urqww8/xMyZM5lmDSUZGRnJORVxFFSUTu6TTz7ByZMn8e6776JZs2ail3fr1i0cOnRIfLA6EgQBM2fOxEcffcQ07+rqitTUVLz00kuckxFHQkXp5CQSCbp27YqFCxfiypUrOH36NKZMmYKWLVsyL7OuX7+lUinkcjnkcjm8vLzQqlUrdOjQAR06dECrVq3g5eVV8+u1necpCAJmzJiBWbNmMeU0lGSfPn2Y5onzkAiOdD9/wo0gCDh//jxSUlKQnJyMixcv1nnW09MTBQUFUCgUD3yPTqdDSUkJ1Go1KioqHniyuqurKzw8PKBQKNCgQYOacz0FQcD06dMxd+5c036w/+fm5oa0tDT07NmTaZ44FypKYpQgCPj++++RnJyM3bt348cffzQ6k5KSUuvRY7VajcLCQpSWlpr8fBqJRAJvb2/4+vpi7969iI2NNWnewM3NDXv27EGPHj2Y5onzoaIkJvvxxx+RkpKClJQUfPfdd7W+JyYm5p7rv7VaLa5fv47S0lIuGby8vDBjxgyTT5J3c3PD3r170b17dy45iHOgoiSi/PLLLzWlee7cuZrXPTw88Pfff8PT0xNlZWXIy8vj/iAyqVSKpKQkzJkzp07vd3d3x969exEREcE1B3F8VJSEm0uXLtWU5pkzZ7Bz5068+OKLuHnzplnXe/ToUaN3LHd3d0d6ejrCwsLMmoU4JipKYhZXrlxBcXEx3NzcLLK+EydOPPBpigqFAunp6QgNDbVIFuJ46PQgYhb16tWzWEkCwPPPP49ly5bd97pCocD+/fupJIkoVJSEu/Lycvz9998WX29oaOg9z8Px8PDAgQMHEBwcbPEsxLFQURKu9Ho9rl27ZrX1jx07Fv369YOnpycOHjwIpVJptSzEcdA+SsLV9evXUVhYaNUMDRo0wM2bN9GpUyer5iCOg7YoCTdardbqJQkAJSUlaN++vbVjEAdCRUm4KS4utnaEGraUhdg/KkrChSAINrE1aVBYWGjyJZKEPIjc2gGIY6ioqIBWq2WaNXbCeEREBBYvXmzSMrVaLSoqKuDp6cmUiZC70cEcwsXNmzdx48YNptnKykrcvn37ntd0Oh0++OAD/Pzzz1i/fj1atWpl8nIDAwPh5+fHlImQu9EWJeFCrVYzz7q7u8Pd3b3mv3U6HaZOnSqqJMVmIuRuVJSEC16lZCjJr776SlRJ8sxECB3MIVyw7p+82z9LsnXr1lbPRAhARUk4Eburm3dJ8shEiAF99SZWZyjJEydOcCtJQniiLUrCRW0P/6oLnU6HadOm4cSJE/j888/x+OOPWz0TIf9EW5SECzc3N1RUVJg0o9frMW3aNOTk5GDx4sXw9/e/7ya/DRs2rHmgmKnuPpJOiBh0HiXh4saNGybfyfzChQsYOnToQ99z/Phx1K9fnymTn58fAgMDmWYJuRsVJeGitLQUf/75p7Vj3KNp06bw9va2dgziAGgnDuHCw8PD2hHuY4uZiH2ioiRcuLi4MH9FNof69evDxcXF2jGIg6CiJNz4+PhYO0INW8pC7B8VJeHG09MTrq6u1o4BV1dXumsQ4YqKknAjkUgQFBRk7RgICgqCRCKxdgziQKgoCVeenp7w9fW12vp9fX1pa5JwR0VJuAsICLDKV3BXV1cEBARYfL3E8VFREu6kUimaNWvGfEUNC7lcjmbNmtFli8Qs6E8VMQtXV1e0aNECcrn5r5KVy+Vo3ry5TRxIIo6JrswhZlVdXY0///zTbDfRVSgUaNq0KZUkMSsqSmJ2giDg5s2byM/P57rcwMBA+Pr60hFuYnZUlMRiKisrkZ+fj1u3bolajpeXFwIDA+Hm5sYpGSEPR0VJLE6j0aCoqAjFxcV1flyDXC5Hw4YN4ePjQ5cmEoujoiRWIwgCtFot1Go11Go1qqurax7fIJFI4OrqCoVCAYVCAblcTl+xidVQURJCiBF0ehAhhBhBRUkIIUZQURJCiBFUlIQQYgQVJSGEGEFFSQghRlBREkKIEVSUhBBiBBUlIYQYQUVJCCFGUFESQogRVJSEEGIEFSUhhBhBRUkIIUZQURJCiBFUlIQQYgQVJSGEGEFFSQghRlBREkKIEVSUhBBiBBUlIYQYQUVJCCFG/B88zx1qftyXVQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAAFICAYAAAA24bcOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1mElEQVR4nO3deXhM9/4H8PdsSSZByCLRcGvppbWUVmm1t4Qs9gaJECS2alW1itJSW9VeW3FtjSVIBJHYt2wTSktRqntVtZUSkVWSmWSW8/vDb3KpkMz3fGf/vJ6nz9OO+Zzzjpq3M2eVCIIggBBCyCNJrR2AEEJsHRUlIYRUg4qSEEKqQUVJCCHVoKIkhJBqUFESQkg1qCgJIaQaVJSEEFINKkpCCKkGFSUhhFSDipIQQqpBRUkIIdWgoiSEkGpQURJCSDWoKAkhpBpUlIQQUg0qSkIIqQYVJSGEVIOKkhBCqkFFSQgh1aCiJISQalBREkJINeTWDkCclyAI0Gq10Gg0UKvVqKiogPHpyRKJBC4uLlAqlXBzc4NCoYBEIrFyYuKsqCiJxWm1WuTn56OgoAA6na5GM3K5HPXq1YOXlxcUCoWZExLyIIlg/CucEDPTaDTIycnB3bt3RS2ndu3a8PPzg5ubG6dkhDweFSUxO0EQcOfOHeTk5HBdrp+fH3x8fOgrOTE7KkpiVhUVFfjzzz+h0WjMsnylUolGjRrBxcXFLMsnBKCiJGZUXl6O33//vcb7IVnJ5XI0adIErq6uZl0PcV50ehAxi4qKCly7ds3sJQkAOp0Ov//+OyoqKsy+LuKcqCgJdwaDAdevX4der7fYOnU6Ha5fvw6DwWCxdRLnQUVJuMvJybHK1l1FRQX3A0aEAFSUhLPS0lLk5eVZbf15eXkoLS212vqJY6KiJNwIgoDs7Gxrx0B2djboGCXhiYqScFNaWmoTB1QqKipoq5JwRUVJuMnPz7d2hEq2lIXYPypKwoVWq0VxcbHJczqdDj179sTChQsf+rW5c+eiZ8+eTPs8i4uLodVqTZ4jpCpUlISLsrIypjm5XI7Ro0cjJSUFhYWFla/HxsYiNTUV69atg7e3t0UzEfJPVJSEC7VazTwbFhYGT09P7Ny5EwBw6NAhbNiwAatXr0bjxo2tkomQ+9Ft1ggXYrbeFAoFRo4ciQ0bNqBVq1aYM2cOFi5ciHbt2onKREVJeKEtSsJFeXm5qPnw8HBIpVK88847mDBhAkJCQkRnMteNOIjzoS1KwoXYSwddXV3RoUMH5OTkIDo62iYyEWJEW5TEZvz6669o06aNtWMQ8hAqSsKF2JvnajQa/P7772jZsiWnROIzEWJERUm4kMvF7cX56aefoNfr8cwzz3BKJD4TIUZUlIQLpVIpav7HH3+Eu7s7nnzySU6JxGcixIjucE64uHPnDm7dumXtGA/w9/eHj4+PtWMQB0BblIQLW9x6s8VMxD5RURIu3N3dbWqfoFwuh7u7u7VjEAdBRUm4kEgkzNdkm4O3tzcd9SbcUFESburVq2ftCJVsKQuxf1SUhBu5XG4TW5Xe3t42tRuA2D8qSsKVn58fFAqF1davUCjg5+dntfUTx0RFSbiSSqVo2LCh1dbfsGFDSKX0x5rwRX+iCHceHh6oX7++xddbv359eHh4WHy9xPFRURKzuHv3Ln777TeLre/q1au4e/euxdZHnAsVJeHm119/xcKFC9G+fXs89dRT0Gg08PX1Nft6fX19odFo8NRTT6F9+/ZYtGgRrl69avb1EudBlzASUX766SckJSUhKSkJly9frnzd3d0dt2/fhoeHB4qLi5GdnQ29Xs913TKZDAEBAahTpw5KSkpQv379B+5q3rZtW0RERGDgwIFo0aIF13UT50JFSUz2/fffV5bjd999V+V7IiMjsWvXrsr/1ul0uHnzJoqKirhk8PT0RIMGDR44DSgyMhJ79uyp8v2tW7euLE2et3IjzoGKklRLEARcuXKlshx//PHHameSkpIQHh7+0OtqtRp5eXkoKiqCqX/0JBIJPD094e3tXeV13ElJSRg4cGC1y3nmmWcqS7N169Z0BQ+pFhUlqZIgCLh06VJlOf7yyy81nvXw8EBubu5jb0qh1+tRWFgItVqNsrIyVFRUVPk+FxcXuLu7w93dHZ6enpDJZI9cZllZGerXr4/S0tIaZ23evHllabZt25ZKk1SJipJUEgQBFy5cqCxH1qPWUVFRSEhIMGnGYDCgoqICp06dAgC8+uqrcHFxMfmcyKioKCQmJpo0Y9SsWTNEREQgIiIC7du3p9IklagonZwgCDh37lxlOV6/fl30Mvft24ewsDCm2W7dukEikSA9PZ153f3792eavV/jxo0rS7Njx45Ums5OIE5t8uTJAgBu/9SuXVtQq9VMWVQqVeVysrKymJahVquFWrVqcf2Z3n//faYsxHHQeZRObuHChYiIiOC2vLCwMLi5uTHNfvzxx1X+uync3NyYt2arMnDgQCxcuJDb8oh9oqJ0cgqFAgkJCVUeoWYxaNAgprmsrCxkZmZW/ndGRgZOnjxp0Qz/FB4ejvj4eLoTEaF9lOQerVaLQYMGISUlhXkZnp6eyMnJgaurq8mz3bp1e6Aoja+x7KssLy+Hn5+fqHM2BwwYgMTERKveCYnYDtqiJADubVmK/Qrer18/ppL859akEetWpaurK/r162fy3P3Cw8OpJEklKkoCANi1axdiYmJELYP1K+/j9key7quMjIxkmjOKiYnB7t27RS2DOA766k2wc+dODBs2DAaDgXkZ9erVw61bt+Di4mLSXFZWFgIDA6t9T+fOnU1abkVFBfz9/VFQUGDS3P1kMhl27NiBwYMHMy+DOAbaonRyCQkJoksSuLdPz9SSBGq2xciyVeni4iL6fEq9Xo+hQ4eafPI8cTxUlE5sx44diI6OFl2SANtX3Uftm/wn1n2VYr9+A/euGIqOjkZ8fLzoZRH7RV+9ndT27dsxfPhwk29MURVvb2/cvHnT5IMfVR3pftx7TT0CrtVq0aBBA+Tl5Zk0VxWpVIq4uDgMGzZM9LKI/aEtSicUFxfHrSQBtiPEJ0+erHFJAmxblQqFAgMGDDBp5lEMBgNiYmKwbds2Lssj9oWK0sls3boVI0eO5FaSANtXXJb9jiwzPL5+GwmCgBEjRiAuLo7bMomdsNa1k8TyNm3aJEgkEuZrnlesWCEEBwc/8Jqvr6+g1WpNypGVlcWcwdRrwLVareDr6/vAMkJCQoQVK1YwZ5BIJMLmzZtNykHsGxWlk/j8889F3Rhi/fr1giAIQmlpqRAUFFT5+ltvvWVylm7dujHn6Natm8nrGzt2bOV8cHCwUFZWJgiCIKxbt05UWcbGxpqchdgnKkonsGHDBlEluXHjxgeWV1paKnTt2lUAIGRmZpqURczWJOtWZUZGRmXJlpaWmvX3hjgmKkoHt379erNsNZWUlAhRUVGCTqczKY+YrUnWrUqdTidERUU9VJJGYre2N2zYYFIeYn+oKB3Y2rVrRZXkpk2bHrt8g8FgUh4eW5OsW5XVZRW7/3bdunUm5SH2hYrSQa1Zs0ZUSW7ZsoV7Jh5bk6xblTWxefNmUWX53//+l3smYhuoKB3Q6tWrRZVkXFwc90w8tyZZtyprYuvWraLKcs2aNdwzEeujonQwn332maiS3LZtm1ly8dyaNOdWpSAIQlxcnKiyXLVqlVlyEeuhSxgdyMqVKzFx4kSmWXNeoqfT6XDmzJmHXl+zZg327NlTo2UMHDgQ48ePf+j1l19+2Sx3IN+xYweGDx/OfB38ypUrMWHCBM6piNVYu6kJH8uXL2feApJKpUJ8fLzFM0+cOLHGGSdOnGjxfDt27BCkUinz7+vy5cstnpmYB13C6ACWLVuGSZMmMc1KpVLEx8djyJAhnFPZv6FDh2LHjh0mP1vcaNKkSVi+fDnnVMQaqCjt3Keffor333+faVYmkyEhIYFuTPsYUVFRSEhIgEwmY5qfPHkyli5dyjkVsTQqSju2ePFiTJ06lWlWJpNh586d3J5Y6MgGDRokqiynTJmCJUuWcE5FLImK0k4tXLgQH374IdOsXC7Hrl27MHDgQM6pHFdkZCQSExOZy/KDDz7AokWLOKcilkJFaYfmz5+P6dOnM80aS5LXc7ydSUREBHbt2sV8lH3atGlYsGAB51TEEqgo7cy8efMwY8YMplm5XI7du3dzu5mtMwoPD8fu3buZy/Kjjz7C/PnzOaci5kZFaUfmzp2LmTNnMs0qFAokJSWJfuAWAfr37489e/Ywl+WMGTPwySefcE5FzImK0k7MmTMHs2fPZpo1lmRYWBjnVM6rX79+SEpKMvkRGEazZs1ifmY5sTwqShsnCAJmz57N/KFycXFBcnIyXnvtNc7JSFhYGPbu3ctclsa//AS6OM7mUVHaMEEQMGvWLMydO5dp3liSffr04ZyMGPXt2xfJyclMzzQH7u1OobK0fVSUNkoQBMyYMQPz5s1jmnd1dcW+ffvQu3dvzsnIP/Xp0wcpKSnMZfnJJ59g5syZVJY2jIrSBgmCgOnTpzOfSmIsyZ49e3JORh6lV69e2L9/P1xdXZnm58+fj48++ojK0kZRUdoYQRDw4YcfMp+c7ObmhgMHDqBHjx6ck5Hq9OjRQ1RZLly4ENOmTaOytEFUlDZEEARMnTqV+XI3Y0mGhoZyTkZqqnv37jhw4ADc3NyY5hcvXowPPviAytLGUFHaCEEQMGXKFOYbKLi5ueHgwYMICQnhnIyYKjQ0FAcPHmQuy08//RRTp06lsrQhVJQ2QBAETJ48GcuWLWOaVyqVOHToEIKDgzknI6yCg4Nx6NAhKJVKpvmlS5fi/fffp7K0EVSUViYIAiZOnIgVK1YwzSuVShw+fBhBQUGckxGxgoKCRJXl8uXLMWnSJCpLG0BFaUWCIGDChAn47LPPmObd3d1x5MgRdO3alXMywku3bt1w5MgRuLu7M82vXLkS7733HpWllVFRWokgCHjnnXewevVqpnkPDw8cPXoUgYGBfIMR7gIDA0WV5apVq/Duu+9SWVoRFaUVGAwGvP322/jvf//LNG8syc6dO3NORsylS5cuOHr0KDw8PJjm16xZg/Hjx1NZWgkVpYUZS3LdunVM87Vq1cKxY8fw6quvck5GzK1z5844duwYatWqxTS/du1avP3228xPhiTsqCgtyGAw4K233sL69euZ5mvXro3jx4/jP//5D+dkxFL+85//iCrLdevWYdy4cVSWFkZFaSEGgwFjx47Fxo0bmeaNJfnyyy9zTkYs7ZVXXsHx48dRu3ZtpvkNGzZg7NixVJYWREVpAQaDAW+88QY+//xzpvk6dergxIkT6NSpE+dkxFpefvllUWX5+eef480336SytBAqSjMzGAx4/fXXsWnTJqZ5Y0m+9NJLnJMRa+vUqRNOnDiBOnXqMM3HxsZizJgxVJYWQEVpRnq9HqNHj8aWLVuY5j09PZGamooXX3yRczJiK1566SWkpqbC09OTaX7z5s0YPXo09Ho952TkflSUZqLX6zFq1Chs3bqVab5u3bpIS0tDx44d+QYjNqdjx46iynLr1q1UlmZGRWkGer0eI0aMwLZt25jm69Wrh7S0NLzwwguckxFb1aFDB6SlpaFu3bpM83FxcRg5ciSVpZlQUXKm0+kQExODHTt2MM0bS7J9+/ackxFb98ILLyA9PR316tVjmt++fTuGDx9OZWkGVJQcGUsyISGBad7Lywvp6el4/vnnOScj9uL5559Heno6vLy8mObj4+MRExMDnU7HOZlzo6LkRKfTITo6Gjt37mSa9/b2RkZGBp577jnOyYi9ee6550SVZUJCAqKjo6ksOaKi5ECn02Ho0KFITExkmvf29kZ6ejratm3LORmxV+3atUNGRga8vb2Z5hMTEzFs2DAqS06oKEXSarUYMmQIdu/ezTTv4+ODjIwMKknykLZt2yIjIwM+Pj5M87t27cKQIUOg1Wo5J3M+VJQiaLVaREVFYc+ePUzzvr6+yMzMxLPPPss5GXEUzz77rKiy3LNnD5UlB1SUjCoqKjBo0CDs3buXab5+/frIzMxE69atOScjjqZNmzbIzMyEr68v03xSUhIGDx5MZSkCFSUDY0mmpKQwzfv5+SEzMxOtWrXinIw4qtatWyMzMxP169dnmk9OTsagQYNQUVHBOZlzoKI0UUVFBQYOHIh9+/YxzRtLsmXLlnyDEYfXqlUrZGZmws/Pj2k+JSUFkZGRVJYMqChNUF5ejoiICBw4cIBp3t/fHyqVCs888wznZMRZtGzZEiqVCv7+/kzz+/fvR0REBMrLyzknc2xUlDVUXl6O8PBwHDx4kGm+QYMGUKlUePrppzknI87m6aefhkqlQoMGDZjmDx48SGVpIirKGtBoNBgwYAAOHz7MNP/EE09ApVKhRYsWnJMRZ9WiRQuoVCo88cQTTPOHDh1CeHg4lWUNUVFWw1iSR44cYZoPCAiASqVC8+bNOScjzq558+aiyvLw4cMYMGAANBoN52SOh4ryMTQaDfr164ejR48yzTds2BAqlQr//ve/OScj5J5///vfUKlUCAgIYJo/cuQI+vfvT2VZDSrKR1Cr1QgLC8Px48eZ5hs1agSVSoWnnnqKczJCHmQsy4YNGzLNHzt2DGFhYVCr1ZyTOQ4qyiqUlZXhtddew4kTJ5jm//Wvf0GlUqFZs2ackxFStaeeegoqlQqNGjVimj9x4gSV5WNQUf6DsSTT0tKY5p988kmoVCo0bdqUczJCHq9Zs2ZQqVT417/+xTSfmpqK1157DWVlZZyT2T8qyvuUlpaiT58+SE9PZ5o3lmSTJk04JyOkZpo2bQqVSoUnn3ySaT4tLQ19+/alsvwHKsr/ZyzJzMxMpvnGjRsjKysLjRs35huMEBM1adIEKpWK+c9iRkYG+vTpg9LSUr7B7BgVJe6VZO/evaFSqZjmmzRpgqysLOa/xQnhrXHjxqK+3WRmZlJZ3sfpi7KkpAS9evVCVlYW03zTpk2RlZXFvF+IEHMRu79cpVKhV69eKCkp4ZzM/jh1Ud69exc9e/bEyZMnmeaNO89ZjzQSYm7GMzBYy/LkyZNUlnDiojSW5BdffME0L/Z0DEIspVGjRsjKymI+Xe3UqVPo2bMn7t69yzmZ/XDKoiwuLkaPHj1w+vRppnmxJ/gSYmkNGzZEVlYW81ViX3zxBXr06IHi4mLOyeyD0xVlUVERunfvjjNnzjDNG6+vZb1kjBBrCQgIQGZmJvN9B86cOeO0ZelURWksya+++oppXuwdWwixNmNZst7J6ssvv0T37t1RVFTEOZltc5qiLCwsRGhoKM6ePcs0L/YegITYiieeeAKZmZnM90b96quvEBoaisLCQr7BbJhTFGVBQQFCQkJw7tw5pnmxd5UmxNY0aNAAmZmZzHfbP3funFOVpcMXpbEkz58/zzTfqlUrZGRkMD+nhBBb5e/vL+r5TV9//TVCQkJQUFDAOZntceiizM/PR3BwMC5cuMA037p1aypJ4tDEPhH0/PnzTlGWDluUxpK8ePEi03ybNm2QkZHB/HhQQuxF/fr1kZGRwfyM+QsXLiA4OBj5+fmck9kOhyzKvLw8BAUF4ZtvvmGaf/bZZ5Gens78wHlC7I2xLNu0acM0f/HiRQQFBSEvL49zMtsgt3aAf9Lr9SgtLYVarYZarYZGo4HBYIAgCJBIJJDJZHB3d4dSqYRSqYS7uzskEknl/J07dxAcHIzLly8zrb9t27ZIS0uDj48Prx+JELvg6+uLjIwMBAUF4dtvvzV5/tKlSwgKCnro8yMIAsrKyio/02VlZdDr9ZWfaalUCjc3t8rPtIeHB2QyGc8fTTSbKUq1Wo28vDwUFRVBEIQq3yMIAgwGA4qKiirP45LJZPDy8oKXlxfUajXz/2QAaNeuHdLS0uDt7c38cxBiz3x8fJCRkYHg4GBcunTJ5PnLly8jKCgIp06dglKpRH5+PvLz86HX66t8v/EzXVJSUnk9uUQigaenJ7y9vaFUKsX8ONxYvSg1Gg2ys7OZb0Gv1+uRm5uL3NxceHp64tVXX2Uqyueeew5paWnw8vJiykGIo/D29kZaWhpCQkKYdl917twZRUVF+PPPP5nWLwgCCgsLUVhYCKVSiYCAALi5uTEtixer7aMUBAG5ubm4evUqt+d0FBUVYdy4cXj99ddNmmvfvj2VJCH3MZbl888/b9LcmDFj8NZbb3G7cketVuPq1avIzc195DdNS7BKUep0Oly7dg05OTncl20wGPDuu+8iJiamRu9/4YUXkJqaSiVJyD94eXkhLS0N7du3r9H7Y2Ji8M4778BgMHDPkpOTg2vXrkGn03Ffdk1YvCi1Wi2uXbtm1qe9SSQSTJ48GUOHDn3s+zp06IDU1FTUq1fPbFkIsWf16tVDWloaXnjhhce+b9iwYZg8efIDB1Z5U6vVuHbtGrRardnW8SgWLUqdTofr16+joqLC7OuSSqWYOnXqI8uyY8eOOHHiBOrWrWv2LITYs7p16yI1NRUdOnSo8teHDRuGKVOmQCo1f51UVFTg+vXrFt+ytFhRCoKAGzduoLy83FKrrCzLYcOGPfD6iy++SCVJiAmMZfniiy8+8Hp0dLTFStKovLwcN27csOg+S4v9dEVFRVa5nbyxLIcPHw4A6NSpE06cOAFPT0+LZyHEnnl6euL48eN46aWXAAAjRoyweEkalZSUWPRWbxY5PUir1eLvv/+2xKqqJJFIMGPGDDz99NMYN24c6tSpY7UshNgzY1muXbsWERER0Gg0Vsvy999/w8PDAwqFwuzrsshfBbm5uWY5EmYKjUZDJUkIB3Xq1MG4ceOsWpLAvTNccnNzLbIusxelXq+3mTuLOOp1qIRYmq18lgoKCh551Q9PZi/KwsJCq54oer/S0lKLHkwixBGVl5ejtLTU2jEA3DtIbIl9lWYvSrFbk7du3cInn3yCXr16oX379ujSpQveeOMN/PLLL1bJQ4izY/0MGQwG9O3bF8uXL3/g9dOnT+O5557D8ePHmZZridu7mbUoDQaDqP0Y2dnZiIyMREFBARYsWIADBw5g+fLlaNasGVxcXJiWWVZWxpyHEML+GZJKpXj99dexe/fuyq3An3/+GZMnT8aECRPQvXt3puUa7zBmTmY96i12Z29CQgKUSiWWLl1aeQpCQEBAjS+pqopara68vRMhxDSCIIi6qq53795Yt24dEhIS0L9/f4wbNw59+vTBiBEjROXSaDRwd3cXtYzHMesWpdjLFIuLi1FeXo6bN29ySnTvf7QlrgwixBFVVFSIOuYgl8sxatQoxMfHY9y4cWjZsiWmTZsmOpc5L4kGzFyUYgspKioKLi4u6NmzJwYNGoQVK1bgt99+s3ouQpwVj89Onz59oNFoIAgCFi9ezOUmveb+TJu1KMUe7W7ZsiWOHj2KTZs24ZVXXkF6ejoiIiKQnp4uarnWPqeTEHvF47Mzf/58APfOiOF1J3Nzn1lj88/Mkclk6NChA959912kpKTAy8sLhw8ftnYsQgiD1atX49SpU4iPj4der0dycrK1I9WIWYuS9wET4/5FsfeOtMa1qYQ4AjGfnb1792Lbtm1YvXo1WrRogWHDhmHLli1cbptm7oOzZm0M1lN4AGDatGmIjY3Ft99+i+zsbJw9exbjxo2DIAg1vimvOXIR4sxYPzunTp3C/PnzsXDhQrRt2xYAMGTIEJSUlODQoUNWy1VTZj09SMyDgZ555hmkpqZi27ZtKCsrg7+/Pzp16oR58+bB39+febkSiYSKkhBGLi4ukEgkJu0T/P777zF58mRMmjQJwcHBla/XqlULQ4YMwaZNm/Daa6+J2l9p7oeQmbUoxTwQKCYmRvSWY1WUSiWdQ0kII4lEAqVSadJJ561atcK5c+eq/LXx48dj/PjxonOZ++FjZv3qbXxery0x50mphDgDW/sMubm5mf24g9mPatja82hsLQ8h9sbWPkOWeDCg2Yuybt26NvNV18PDA66urtaOQYhdc3V1hYeHh7VjALi3K8ASTyswe1HKZDKb+RvI29vb2hEIcQi28lmqV68et5PWH8ciJxT6+vpa/dxFNzc3rF27FsXFxVbNQYgjqF27ttX3VUqlUvj6+lpmXZZYiUKhwBNPPGGJVVVJEATMnz8f06ZNQ/fu3S36UCJCHJFEIkFAQIBVd6s98cQTFnleDmDBSxg9PT1Rq1YtS62uksFgwJIlS7B161YAwFdffUVlSQgHrq6uos5pFqN27doWfZKqxYpSIpGgYcOGFj2YYjAYsHjxYuzYseOB18+ePYvQ0FAUFhZaLAshjsjLywt169a16DpdXV0tvjVr0R2HcrkcjRs3tsiVMcYtyYSEhCp//dy5c1SWhIggCAK+/fZbrF+/3mLf0FxcXNC4cWPI5RZ50nYlix9hUSgUaNq0qVkvORIEAUuXLkV8fPxj3/f1118jJCSEnqNDSA0JgoCLFy9i+vTpaN68Odq1a4ft27ejU6dOZj+7RalUomnTphbbL3k/y9aycaVyOZo2bYo7d+4gJyeH67KlUilWrFiB7du31+j958+fR3BwMFJTUy1y4ioh9kYQBJw/fx5JSUlISkrCtWvXHvj1yMhISKVSBAQEoHbt2sjOzub+CFk/Pz/4+PhY7eCRVYoSuLfP0tfXt/I3lset3D09PbF48WLExsaaNHfx4kUEBwcjLS2NypIQ3Nt1de7cucpy/OOPPx753sjIyMp/r1OnDjw8PHDz5k0uu7WUSiUCAgKsfim01YrSyM3NDc2aNYNarUZeXh6KiopMujOJTCaDl5cXvLy8oNFocOrUKaYc33zzDYKCgpCWlmYzJ9MSYkkGgwFffvllZTneuHGj2pkmTZrghRdeeOA1mUyGhg0bws/PD/n5+cjPzzdpC9N4tY23t7fZ7wpUU1YvSiOlUomGDRuiQYMGKC0thVqthlqtrnwUpfHJiTKZDO7u7lAqlVAqlXB3d6/cHFcoFEhPT0dwcDAuX75scoZLly5VlqWPjw/vH5EQm6PX63H69Gns2bMHe/fuNflBfpGRkY/8OqxQKODn54f69eujrKys8jNdVlYGvV5f+Zk23jzH+Jn28PCwyNU2prCZojSSyWSoU6cO6tSpwzTv4+NTWZaXLl0yef7y5cvo1q0b0tPTLXbWPyGWpNPpcPLkSSQlJSE5OVnUcYJBgwZV+x6JRAIPDw+buT6chc0VJQ/e3t6VZfnNN9+YPH/lypXKsqxfv74ZEhJiWVqtFiqVCklJSUhJSUFubq7oZT711FNo166d+HB2wGEfHuPl5YW0tDS0b9+eaf67775Dt27dcPv2bc7JCLG8iooKLFiwABs3buRSksC9rUlbuTOYuTlsUQL3yjI1NfWhnc019f3336Nr167cT2EixNI8PDxw6NAhdO7cmdsy7z/a7egcuiiBe7dhSk1NRYcOHZjmf/jhB3Tt2hW3bt3inIwQy/Lw8MDhw4fx6quvil5WixYt0KZNGw6p7IPDFyVw7+bBJ06cQMeOHZnmf/zxR3Tt2tXkI4KE2JpatWrhyJEjeOWVV0Qt53FHux2RUxQl8L+yfPHFF5nmf/rpJypL4hCKi4tF76esydFuR+I0RQncu3LnxIkT6NSpE9P8zz//jMDAQPz999+ckxFiGX///Te6du2KX375hXkZLVu2RKtWrTimsn1OVZTAvUusjh07hpdffplp/pdffkFgYCCys7M5JyPEvLKzsxEYGCiqJAHn25oEnLAogf+VJet+ml9//RWBgYE1usSLEFtw48YNBAYG4tdffxW9rIEDB3JIZF+csiiBe3dIPnr0KPMRwKtXryIwMBB//fUX52SE8PXXX38hMDAQV69eFb2sNm3a4JlnnuGQyr44bVEC98ryyJEjzOeW/fbbbwgMDMSff/7JORkhfPz5558IDAzEb7/9xmV5zvi1G3DyogT+d7pEly5dmOavXbuGwMDAx96GihBr+OOPPxAYGPjQ/SPFcMav3QAVJYD/nYgbGBjINP/7778jMDAQ169f55qLEFbXr19HYGAgfv/9d6b5qp5t1a5dOzRv3lxsNLtERfn/jGXZrVs3pnnjH0wqS2JtYv/iDgoKwm+//Ybnnnvugded9Ws3QEX5AHd3dxw8eBBBQUFM83/88Qe6dOnC/Lc4IWKJ3RUUEhKCgwcPIiAgAGlpaQ/cHchZv3YDVJQPMZZlSEgI0/yff/6JLl26cN0vREhNiD24GBoaiv3791feVdx4B662bduiffv2aNasGc+4doWKsgpKpRL79+9HaGgo0/xff/2FLl26cDvSSEh1xJ6u1r17d+zbt++hRy94e3sjLS0NH330EY+YdouK8hGMZdmjRw+m+Rs3bqBLly5czl0j5HHEXgDRo0ePKkvSyMfHB/379xcT0e5RUT6Gm5sbUlJS0LNnT6b57OxsdOnShcvVEIRUxViSrJfU9urVCykpKVZ/yqGto6KshrEse/fuzTT/999/c7m+lpB/+vnnn9GlSxfmm7T07t0bycnJVJI1QEVZA66urti7dy/69OnDNG8sy59//plzMuKsxN72r2/fvti7d2+V50uSh1FR1pCrqyuSkpLQt29fpvmbN28iMDAQP/30E+dkxNmIvZF0WFgYkpKSqCRNQEVpAmNZhoWFMc3funULgYGB+PHHHzknI85C7KNJ+vXrh927d8PFxYVzMsdGRWkiFxcX7N69G/369WOaz8nJQWBgIH744Qe+wYjDE/uwuwEDBlBJMqKiZGAsywEDBjDN3759G4GBgfjuu+84JyOO6rvvvkPXrl2ZH58cHh6OxMREKBQKzsmcAxUlI4VCgcTERISHhzPN5+bmolu3brhy5QrnZMTRXLlyBV27dmV+zk1ERAR27txJJSkCFaUICoUCO3fuZL4G1liW3377LedkxFFcvnwZXbt2xZ07d5jmIyMjkZCQQCUpEhWlSAqFAgkJCcx3Vrlz5w66deuGy5cvc05G7N2lS5cQFBSEvLw8pvnBgwcjPj6eSpIDKkoO5HI5duzYgcGDBzPN5+XlISgoCJcuXeIbjNitb775RlRJRkVFYfv27ZDL5ZyTOScqSk7kcjm2b9+OqKgopnljWX7zzTeckxF7c/HiRQQFBSE/P59pfujQodi2bRuVJEdUlBzJ5XJs27YNQ4cOZZrPz89HUFAQLl68yDkZsRcXLlxAcHAwCgoKmOajo6MRFxdHJckZFSVncrkccXFxiI6OZpovKChAUFAQLly4wDkZsXXnz58XVZIxMTHYsmULZDIZ52SEitIMZDIZtmzZgpiYGKb5wsJCBAcH4+uvv+acjNiqr7/+GsHBwSgsLGSaHzFiBDZv3kwlaSZUlGYik8mwefNmjBgxgmm+sLAQISEhOHfuHN9gxOacPXsWwcHBKCoqYpofOXIkNm3aRCVpRlSUZiSTybBp0yaMGjWKab6oqAghISE4e/Ys52TEVnz11VcIDQ1FcXEx0/zo0aMRGxsLqZQ+yuZEv7tmJpVK8fnnn+P1119nmi8uLkZISAi+/PJLzsmItX355ZeiSvL111/Hxo0bqSQtgH6HLUAqlWLDhg0YM2YM0/zdu3fRvXt3nDlzhnMyYi2nT59GaGgo7t69yzT/xhtvYMOGDVSSFkK/yxYilUqxfv16vPnmm0zzxrI8ffo052TE0r744gv06NEDJSUlTPNjx47FunXrqCQtiH6nLUgqlWLt2rUYO3Ys03xJSQl69OiBL774gnMyYimnTp0SVZLjxo3D2rVrqSQtjH63LcxYluPGjWOaN5blqVOnOCcj5nby5En07NkTpaWlTPPjx4/HmjVrIJFIOCcj1aGitAKJRII1a9Zg/PjxTPOlpaXo2bMnsrKyOCcj5pKVlSWqJN99912sWrWKStJKqCitRCKRYNWqVXj33XeZ5ktLS9GrVy+oVCq+wQh3mZmZ6NWrF8rKypjmJ0yYgJUrV1JJWhEVpRVJJBKsXLkSEyZMYJovKytDr169kJGRwTkZ4SUjIwO9e/dmLsn33nsPK1asoJK0MipKK5NIJFixYgUmTpzINK9Wq9GnTx+kp6dzTkbESktLQ+/evaFWq5nmJ02ahOXLl1NJ2gAqShsgkUiwbNkyTJ48mWneWJZpaWmckxFWqamp6Nu3LzQaDdP8+++/j6VLl1JJ2ggqShshkUjw6aefYsqUKUzzGo0Gffv2RWpqKudkxFTHjx8XVZJTp07FkiVLqCRtCBWlDZFIJFi8eDGmTp3KNG8sy+PHj3NORmrq2LFjCAsLQ3l5OdP8hx9+iEWLFlFJ2hgqShsjkUiwaNEifPjhh0zz5eXlCAsLw7FjxzgnI9U5cuSIqJKcPn06FixYQCVpg6gobZBEIsGCBQswffp0pnljWR45coRzMvIohw8fRv/+/VFRUcE0P2PGDMybN49K0kZRUdooiUSCefPmYcaMGUzzFRUV6N+/Pw4fPsw5GfmnQ4cOYcCAAcwlOWvWLMydO5dK0oZRUdowiUSCuXPnYtasWUzzxrI8ePAg52TE6ODBg6JKcvbs2fj444+pJG0cFaWNk0gk+PjjjzFnzhymea1Wi/DwcBw4cIBvMIL9+/cjPDwcWq2WaX7OnDnM/1+JZVFR2gnjlgcLrVaLiIgI7Nu3j28oJ5aSkoKIiAjmkpw7dy5mz57NORUxFypKOzJr1ix88sknTLNarRYDBw5ESkoK51TOJzk5GZGRkdDpdEzz8+bNw8yZMzmnIuZERWlnZsyYgfnz5zPN6nQ6REZGIjk5mXMq55GUlCSqJBcsWICPPvqIcypiblSUdsh4vh0LY1kmJSVxTuX49uzZg8GDB0Ov1zPNL1q0CNOmTeOcilgCFaWdmjZtGhYtWsQ0q9frMXjwYOzZs4dzKse1a9cuREVFMZfkkiVL8MEHH3BORSyFitKOffDBB1iyZAnTrF6vR1RUFHbt2sU5leNJTEzEkCFDmEty6dKlzNfwE9tARWnnpkyZgqVLlzLN6vV6DBkyBDt37uScynEkJCRg6NChMBgMTPPLly9nvisUsR1UlA5g8uTJWL58OdOswWDAsGHDkJCQwDmV/YuPj0d0dDRzSYq5zyixLVSUDmLixIlYuXIl06zBYEB0dDR27NjBN5Qd2759O2JiYphL8rPPPsN7773HNxSxGipKBzJhwgSsWrWKadZgMCAmJgbbt2/nnMr+xMXFYfjw4cwluXr1auZnIRHbREXpYN555x2sXr2aaVYQBAwfPhxxcXGcU9mPrVu3YuTIkRAEgWlezNM1ie2ionRAxuc/sxAEASNHjsTWrVv5hrIDmzdvxqhRo5hLcu3atXj77bc5pyK2gIrSQb399ttYu3Yt06wgCBg1ahQ2b95c7fscRWxsLEaPHs38M61fvx5vvfUW51TEVlBROrC33noL69evZ5oVBAGjR49GbGxslb9eWloq6txCW7Jx40aMGTNG1Pybb77JMRGxNVSUDu7NN9/Exo0bmefHjBnz0HxZWRn69u2LxMREnDp1SmxEq9qwYQNzyUkkEsTGxooqWWIfqCidwJgxYxAbG8t8c9g333wTGzZsAPC/kszMzAQAu76yZ/369Rg7dizTrLEkR48ezTkVsUVUlE7C+DWatSzHjh2LlStXIiwsDBkZGZWv7927l/lOOta0du1a5n2KEokEmzZtwqhRozinIraKitKJGA/QsJblxIkTkZaW9sBrubm5yMrK4hHPYtasWcN8dFoikWDLli0YOXIk51TEllFROpkRI0Zg69atXJ/RYk9fv1etWoV33nmHaVYikVSejE6cCxWlE4qJiUFcXBy3skxOTmZ+JIIlrVy5EhMmTGCalUql2LZtG6KjozmnIvaAitJJRUdHY9u2bZBKxf8RyMvLqzy4Y6vE3KBCKpVi+/btGDZsGOdUxF5QUTqxYcOGYfv27VzK0pa/fi9btgyTJk1impVKpYiPj8eQIUM4pyL2hIrSyQ0ZMgTx8fGiyzIlJYX52dbm9Omnn+L9999nmpXJZEhISMDgwYM5pyL2hoqSYPDgwUhISIBMJmNeRkFBwUNHxK1tyZIlmDp1KtOsTCbDzp07MWjQIM6piD2ioiQAgEGDBmHbtm2ilrF7925OacRbtGgR8zNqZDIZEhMTMXDgQM6piL2ioiQA7j33W+yTGfft24fy8nJOidgtWLCA+WmHcrkcu3btQkREBOdUxJ5RURJotVoMHjwYKSkpopZTVFSEEydOcErFZt68eczPzZbL5di9ezfCw8M5pyL2jorSyWm1WkRFRSE5OZnL8qz59Xvu3LmYOXMm06xCoUBSUhL69+/PORVxBFSUTm7atGnYu3cvt+Xt378fGo2G2/Jqas6cOZg9ezbTrLEkw8LCOKcijoKK0sl9+umnOHv2LKZMmYLGjRuLXt7du3dx7Ngx8cFqSBAEzJ49Gx9//DHTvIuLC5KTk/Haa69xTkYcCRWlk5NIJOjYsSOWLFmCa9eu4fz58/jwww/RrFkz5mXW9Ou3VCqFXC6v0T9VnecpCAJmzZqFuXPnMuU0lmSfPn2Y5onzkAiOdD9/wo0gCLh8+TKSkpKwZ88e/PLLLzWe9fDwQG5uLpRK5SPfo9frUVhYCLVajbKyskeerO7i4gJ3d3colUrUrVu38lxPQRAwY8YMLFiwwLQf7P+5uroiJSUFPXv2ZJonzoWKklRLEAR899132LNnD/bu3Ysffvih2pmkpKQqjx6r1Wrk5eWhqKjI5OfTSCQSeHp6wtvbG/v370dUVJRJ80aurq7Yt28fevTowTRPnA8VJTHZDz/8gKSkJCQlJeHKlStVvicyMvKB6791Oh1u3ryJoqIiLhk8PDwwdepUk8/9dHV1xf79+9G9e3cuOYhzoKIkovz888+VpXnp0qXK193d3XH79m14eHiguLgY2dnZ3B9EZjAYMHPmTBw4cKBG73dzc8P+/fsRGhrKNQdxfFSUhJurV69WluaFCxeQmJiILl264M6dO2Zbp1arxUcffYSjR48+9n1ubm44ePAggoODzZaFOC4qSmIW165dw5UrV0QdPa8prVaL6dOnP/K0JKVSiYMHDyIoKMjsWYhjoqIkZnH79m3cvn3bYuvTarWYNm0ajh8//sDrSqUShw8fRteuXS2WhTgeOo+ScFdaWmrRkgTuXV2zcOFC9OrVq/I1d3d3HDlyhEqSiCa3dgDiWAwGA27cuGGVdSsUCixatAgAkJWVhSNHjqBz585WyUIcC331JlzdvHkTeXl5Vs1Qq1YtFBYWol27dlbNQRwHffUm3Oh0OquXJACUlJSgdevW1o5BHAgVJeGmoKDA2hEq2VIWYv+oKAkXgiDYxNakUV5ensmXSBLyKHQwh3BRVlYGnU7HNHvy5Em8/fbbj/z10NBQLFu2zKRl6nQ6lJWVwcPDgykTIfejgzmEizt37uDWrVtMsxqNBiUlJQ+8ptfrMXPmTPz000+IjY1F8+bNTV6uv78/fHx8mDIRcj/aoiRcqNVq5lk3Nze4ublV/rder8e0adNElaTYTITcj4qScMGrlIwl+eWXX4oqSZ6ZCKGDOYQL1v2T9/tnSbZo0cLqmQgBqCgJJ2J3dfMuSR6ZCDGir97E6owleebMGW4lSQhPtEVJuKjq4V81odfrMX36dJw5cwaff/45nn76aatnIuSfaIuScOHq6oqysjKTZgwGA6ZPn47MzEwsW7YMvr6+D93kt169epUPFDPV/UfSCRGDzqMkXNy6dcvkO5l/++23GDp06GPfc/r0adSpU4cpk4+PD/z9/ZlmCbkfFSXhoqioCH/99Ze1YzygUaNG8PT0tHYM4gBoJw7hwt3d3doRHmKLmYh9oqIkXCgUCuavyOZQp04dKBQKa8cgDoKKknDj5eVl7QiVbCkLsX9UlIQbDw8PuLi4WDsGXFxc6K5BhCsqSsKNRCJBQECAtWMgICAAEonE2jGIA6GiJFx5eHjA29vbauv39vamrUnCHRUl4c7Pz88qX8FdXFzg5+dn8fUSx0dFSbiTSqVo3Lgx8xU1LORyORo3bkyXLRKzoD9VxCxcXFzQtGlTyOXmv0pWLpejSZMmNnEgiTgmujKHmFVFRQX++usvs91EV6lUolGjRlSSxKyoKInZCYKAO3fuICcnh+ty/f394e3tTUe4idlRURKL0Wg0yMnJwd27d0Utp3bt2vD394erqyunZIQ8HhUlsTitVov8/HwUFBTU+HENcrkc9erVg5eXF12aSCyOipJYjSAI0Ol0UKvVUKvVqKioqHx8g0QigYuLC5RKJZRKJeRyOX3FJlZDRUkIIdWg04MIIaQaVJSEEFINKkpCCKkGFSUhhFSDipIQQqpBRUkIIdWgoiSEkGpQURJCSDWoKAkhpBpUlIQQUg0qSkIIqQYVJSGEVIOKkhBCqkFFSQgh1aCiJISQalBREkJINagoCSGkGlSUhBBSDSpKQgipBhUlIYRUg4qSEEKqQUVJCCHV+D8crDxAX55lrwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1670,7 +1670,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 33, @@ -1699,8 +1699,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Causal effect for S = -1.00 is -0.66\n", - "Causal effect for S = 1.00 is 0.75\n" + "Causal effect for S = -1.00 is -0.75\n", + "Causal effect for S = 1.00 is 0.71\n" ] } ], @@ -1771,7 +1771,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFUCAYAAACX0dxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACoiklEQVR4nOzdd1gTWdsH4F9CR6qoCCoi2BFFRbAhFsSKveuKa1/burquva3d1bV3XdvaOwJ2REEBGwjYpSioSJEqNcn5/uCDV5aZECCZCeTc18X1vjvnZOaJHJJnzpwiIIQQUBRFURRFUVQpCfkOgKIoiqIoiqqYaCJJURRFURRFlQlNJCmKoiiKoqgyoYkkRVEURVEUVSY0kaQoiqIoiqLKhCaSFEVRFEVRVJnQRJKiKIqiKIoqE5pIUhRFURRFUWVCE0mKoiiKoiiqTGgiSVEURVEURZUJTSQpiqIoiqKoMlGpRFIsFmPNmjVyOdfKlSshEAgQHh4ul/NR/JFHu3B1dUXz5s1hZ2cHJycnhISEyCc4ilflbRvZ2dkYMGAAGjZsCDs7O/Ts2RPR0dHyC5DihTw+M2bNmgVLS0v6PaKC5JmLKAOVSiTDwsJw/vz5cp/n2bNnCAwMhIWFhRyiovgmj3Zx9uxZhIaGIiQkBHPnzsX48ePlFB3FJ3m0jcmTJ+PNmzcICQlB3759MXnyZDlFR/FFHu1iyJAh8Pf3R926deUUFVVRyCsXURYqk0i+fPkSffr0wadPn2BnZ4fly5eX6Tw5OTmYPn06du/eDYFAIOcoKa7Jq10YGRkV/v/U1FQIhSrzp1VpyaNtaGtro3fv3oWfFW3btkVkZKS8Q6U4JK/PjE6dOqF27dpyjo5SdvJqP8pEne8AuNK0aVMMHDgQjRs3xowZM8p8nmXLlmHMmDGoV6+eHKOj+CKvdgEAY8eOxd27dwEA169fl0d4FI/k2TYKbN++HW5ubnI5F8UPRbQLSnVUxvajUt0mT548gb29fbHjTk5OqFatGuNPTExMYb2AgAA8fvwY06ZN4zJsSsHK2y4KHDt2DDExMVi9ejXmzZvHReiUgsmrbQDA2rVr8e7du0o1NkpVybNdUKqHrf1UVAJCCOE7CC6IRCIYGxsjISEB2traZTrH+vXrsX37dmhqagIAYmNjYWpqioMHD6JXr17yDJfiiDzaBRMdHR3ExsbCxMREbuekuCXPtrFp0yacPn0at2/fLjIMgqp45P2ZYWlpCU9PTzRr1kwO0VHKTlHfOXxSmR7J2NhY6Ovrl+sXt2DBAnz+/BnR0dGIjo5G7dq1cePGDZpEVmDyaBdpaWn4/Plz4X9funQJJiYmqFq1qjxCpHgij7YBAH///TdOnTqFW7du0SSyEpBXu6BUU2VsPyqTSNauXRvNmzdHo0aNsGjRIr7DoZSEPNpFamoqBgwYAFtbW7Ro0QK7du2Cp6cnnYxVwcmjbcTGxmLu3LlISUlBly5dYGdnB0dHRzlHSnFJXt8l06dPR+3atREbGwsXFxfUr19fjlFSyqoy5iIq82iboiiKoiiKki+V6ZGkKIqiKIqi5IsmkhRFURRFUVSZ0ESSoiiKoiiKKhOaSFIURVEURVFlQhNJiqIoiqIoqkxoIklRFEVRFEWVCU0kKYqiKIqiqDKhiSRFURRFURRVJjSRpCiKoiiKosqEJpIURVEURVFUmdBEkqIoiqIoiioTmkhSFEVRFEVRZUITSYqiKIqiKKpMaCJJURRFURRFlYk63wEoA5FIhE+fPuHLly/4+vUrsrOzAQBaWlqoXr06zMzMULt2bWhqavIcKcUlQgji4uLw5csXxMXFISMjAxKJBBoaGqhatWphu9DT0+M7VIpjycnJ+PTpE+Li4pCcnAyxWAw1NTUYGBjAzMwM5ubmqFatGt9hUhzLzMxEbGwsvnz5gsTEROTl5UEoFEJXVxc1a9aEmZkZzMzMIBTSPhxVkpeXV5hjxMfHF8kxatSoATMzM9SqVavC5hgqnUgmJibiyZMnCAkJQU5ODgQCAQQCASQSCQBAIBAAyE8o1NXVYWtrC3t7e5ibm/MZNqVgmZmZCA4OxpMnT5CSkgIAEAqFRdrFj+2kfv36sLe3R8OGDQvbDFX5iEQivHjxAk+ePEFsbCyA/HZBCAEhpPC/C9qFqakp7O3t0bx58wr7BUGVjBCCyMhIPH36FG/evIFEIiny3QEUbRf6+vpo1aoVWrduDX19fd7iphQvPj4eT548wfPnz5Gbm1vsu+PHzw8NDQ00b94c9vb2qFmzJs+Rl46AFLR0FZKXlwdfX18EBAQU+aWWpODDwM7ODq6urtDR0VFwpBSXCCEIDg7GjRs3kJeXB1n/NAQCAQghqF27Nvr37097oiqhDx8+4MqVK0hOTi78fctKX18f/fr1Q/369RUYIcWHlJQUXL16FZGRkUWSxZIIBAKoqamhW7ducHBwoD2UlUxubi58fHwQFBRUqnZRULd169ZwcXGBtra2giOVD5VLJBMSEnDixAmkpaWV6svgRwKBANra2hgxYgQsLCzkHCHFh+zsbJw9exZRUVFlPkfBl0HPnj3Rpk0beYVG8YgQgtu3b+Phw4elTiALFLyuZcuW6NOnD9TU1BQQKcW1sLAweHh4QCKRyJwoMDE3N8fIkSPpEJlKIi4uDidPnkRGRka5cgxdXV2MHDkStWrVknOE8qdSieSXL19w9OhR5ObmlvkXXEAgEEAoFGLkyJGwtraWU4QUH7KysnDkyBEkJCSUu10U6Nq1K5ycnORyLoofEokEV65cQWhoqNzOWb9+fYwYMYImkxXckydP4OXlJZdzCQQCGBoa4ueff4aBgYFczknxIzY2FseOHYNIJJJLjqGmpobRo0fD0tJSPgEqiMr0p6enp+PYsWNySSKB/J4KsViMU6dOIT4+Xg4RUnyQSCQ4efKkXJNIAPDx8UFISIjczkdxz8fHR65JJABERETA09NTruekuPXmzRu5JZFA/ndJWloajh8/DpFIJLfzUtxKSUkp/B3KM8c4ceIEkpKS5BCh4ig0kfT09ESjRo3QoEEDHDx4UJGXkooQgsuXL8stifzvuc+fP08/ACoof39/xMbGyr1dAICXlxeSk5Plfl5K8aKjo/HgwQO5n5cQgpCQELx69Uru56YULyMjA5cvX5b7eSUSCZKSknD79m25n5tSPIlEgkuXLpVqbL0sCCGQSCS4cOECxGKx3M4rbwpLJEUiEebMmQMfHx88e/YMGzZswLdv3xR1OalCQ0MRGRlZrnEsbCQSCRISEhTypUMpVlJSEnx9fRV2folEAg8PD4Wdn1IMsViMS5cuKXQGvoeHB3JychR2fkoxrl+/rrDfGyEEQUFBhSsCUBXHs2fP8PHjR4V0SEgkEnz58gVBQUFyP7e8KCyRfPToEWxsbFCrVi3o6+ujd+/euHHjhqIux4oQAn9/f4VfJzAwkPZK8mzbtm3w8fGR+Y85MDBQofFIJBJER0fj69evCr0OJZ2npyeOHDki89/nq1evyjUZTxbZ2dl4/vy5ws5PlSwyMhIrV64sXOKrJKmpqXj58qVC24VQKERAQIDCzk/JZs6cOYiIiJCpLiGEk46kgIAApe2VLHUiKZFI0LhxY8yfP7/I8Rs3bkBTUxPnzp0DAHz+/LnIbKPatWvj06dP5Qy39D58+IDExESFXyc7Oxvh4eEKvw7F7tGjR+jWrRucnZ1LTCizs7MREhKi0C8FIP+LQZnvJFVBbGwsfv75ZzRu3FimhDIwMJCT9UADAgIU3v4odtnZ2VixYgUsLS1lSigfP36s8JgkEknhjQzFn6NHj6JRo0YYP358iQnl+/fvZb4ZKY+MjAy8fv1a4dcpi1IvSC4UCrFw4ULMnDkTCxYsgLGxMZ4/f46hQ4di7dq1GDp0KAAwfkDysVjzu3fvSrWOU1kJBAK8e/eOzuDmUV5eHgDAz88P3bp1g5OTE1asWIEuXboUa3sfP37kpAdZIpHg7du35VoKgiqfgl0kIiIi8PPPP2PVqlVYsmQJxowZAw0NjWJ1ubrhTUlJQVxcHF32hSffv38HkN/TuGLFCmzZsgW//fYbfv31VxgZGRWr//btW07+hgkhePfuHRo2bKjwa1HMCia6HD58GMeOHcPYsWOxePFixu93rnIMoVCI9+/fw8bGRqHXKYsyLf8jEonQsGFDuLu7Y8KECWjbti369++PXbt2FdZ5+PAh/vrrL1y6dAkA8Ouvv8LR0RGjRo2SX/QyOHLkCD58+MDJtapUqYJ58+Zxci1KdkwJpa+vL/z8/BT+x1/g3LlzePHiBSfXomRjZWVVLKGMjIzE8ePHOYshPj4eu3fv5ux6VMkMDQ2LJZR5eXlYt24dJ4lkwZaKv//+u8KvRclOTU2NMaHcv38/vnz5wkkM1apVw/Tp0zm5VmmUaYykuro65s+fj+3bt6N3795o1aoVtm/fXqSOg4MDwsPD8enTJ6Snp8Pb2xs9evSQS9ClERcXx9m1vn//XqyHg+JfQQ/lj4+8v379ylkSCQDGxsacXYuSTWRkJMaPH4/GjRvj8OHDyMvLw9evXzl7ciIUCunWiUqooIfyx0fe8l4eTBqJRILc3FxOrkXJrqCH8r+PvLlc/i8pKYnT7y1ZlXmyzejRo5GZmQlCCE6dOlVsgV11dXVs3rwZXbp0QcuWLTFv3jyYmJiUO+DS4noCDP1iUF4/JpRcj0FSV1fpbe2V2o8J5du3bzkdgkP3ZldePyaUZ8+e5fTaypgsUPl+TCinTZvG6QQYQohSTuotcyI5Y8YMAEBiYiLrLg39+vXD27dv8f79e0yePLmslyoXrj+olXVWFZWvd+/e2LRpE3R1dTm9Lv1iUG7NmjXDhg0bYGVlxXcolBKpUaMGli5dit69e3N6XXqDody0tLQwbdo0LFq0iPPflTLuy16miJYuXQovL6/CJW8OHTok77jkRl9fn7Nrqamp0bXhlFTv3r0RFBQELy8vODg4wMDAgNM/yMzMTM6uRcmuWbNmOHfuHJ4/f44hQ4bA0NCQs6RfWXsXqPwEctOmTYiMjMTcuXNhamrK2bUFAgF9gqGktLS0MHPmTERERGD79u2oXbs2qlSpwtn1tbW1lXJ71VK31oMHD2Lz5s3w8fFBixYtMHv2bGzcuBGTJ09WyvGBFhYWSE1N5eTLoWbNmli6dKnCr0Mxu3jxYrElmHr16oUVK1bAwcGhyPFatWrh2bNnnMQlFAoxatQozns1qHxPnjyBt7d3kWPNmjXDsmXLMHjw4CI3FD8uWaZohBA4ODhg2bJlnF2T+p+EhATs2bOnyLEaNWrgjz/+wNSpU4skCAYGBtDR0UFWVhYnsVlaWtJ2waONGzcWrvYA5CeQkydPxvz584t9RtSpUwevX7/mZAxt7dq1lbK3ulSJ5LVr1zB9+nScOnUKbdu2BQDMnDkTmzZtwvHjxzF+/HiFBFketWvX5mThX6FQiHr16mHixIkKvxbF7P3794WJZO/evbF8+fJiCWSBOnXqcBaXubk5JkyYwNn1qKL27t1bmEg2a9YMy5cvx6BBgxh7pKtWrQptbe0iXyKKIhQKMXz4cKW8AVcFL1++LEwk2RLIAgKBABYWFpwsAUQIgaOjI4YNG6bQ61Dsdu7ciezsbGhpaWHKlCmYP38+zM3NGesWJJKKJhAIOP3eKg2Zn+09ffoUQ4cOxcaNGzFo0KDC4wYGBpg5cybWr1+vlOMDbWxsOHlMIJFIYGdnp/DrUNL99xE2m+rVq8Pc3JyTu7vWrVsr/BqUdP99hM02rEEgEKBVq1YKbxdCoRDNmzenSSTP/vsIW9pjylatWnHS62RsbAwLCwuFX4dip62tjVmzZiEyMhLbtm1jTSIBwNbWlrNewhYtWnByndIq0zqSFY2XlxeePXumsMfbAoEA1tbWGD16tELOT8kmISEB1atXl7l+eHg4Lly4oMCI8j+Q5s6dS8c88SgpKQnGxsYyj4lNTU3Ftm3bFJ40TJkyBTVr1lToNSh2BQuSyzrGjRCC7du3K3wXk169ekm9CaYUr7TfJZcvX0ZYWJjCcgyhUIhGjRopbS+18k3/UQAnJyeF3vkLBAJ069ZNYeenZFOaP3wAaNq0KczMzBR6N+ni4kKTSJ6ZmJiUamKVoaEhHB0dFdYuBAIBbG1taRLJsypVqpRqooRAIICrq6vC4hEIBKhatSpatmypsGtQsintd4mzs7NCJ8EIBAJ07dpVYecvL5VIJA0MDODm5qaw83ft2pV+KVRAQqEQgwcPVsgHgEAgQIMGDdCqVSu5n5tSvG7dusHExETuyaRAIICenh6deFVBNWnSBHZ2dgq7yRgyZAgd7lABGRsbK/Rv2tXVFdWqVVPY+ctLJRJJIH+spKOjo9zPW7t2bToGrgIzMTHBgAED5HpOgUAAY2Nj9O/fXyln2FElU1dXx7Bhw6ClpSW336FAIICamhqGDRsGbW1tuZyT4l7Pnj1hamoq97/t3r17w8zMTK7npLjTokULheQCtra2aNOmjdzPK08qk0gCQI8ePdCuXTu5nc/Gxgbp6emoXr06Bg4ciAMHDiA2NlZu56cU69u3b/j333+xcuVKNGnSBEKhsNxfDgKBANWqVcO4ceM4XV+Mkp/s7Gxcu3YNy5YtK9z3uLxrjhZshzh27FjUrl1bTpFSXJJIJAgKCsKqVavw+PFj1KpVSy6fFwDQt29f2NvbyyNMigfv37/Hli1bsGvXLrlOiLGzs8OAAQOUvkNCJSbb/FdYWBi8vb2Rk5NT6gH1QqEQQqEQLi4ucHBwQFJSEszNzZGXl1dYx9bWFn369EG/fv3g4OCglAuIqqp3797Bw8MDV69ehb+/P8RiMUxMTPD582ckJCTg8uXLSExMLPV5BQIBCCFo06YNunXrBi0tLQVETylKQkICvLy84OHhgZs3bxZOxAgODoa1tTW8vLzw5s2bMp/f0tIS/fr1o3uuVzCZmZm4c+dO4WfG169fAQDbtm3DtGnT4Ovri4cPHwJAqb9LBAIBDA0N0b9/f1haWso7dEqBxGIxAgMDcfXqVXh4eODVq1cA8ocmnD17Fs+fP8f169eRm5tbpnahrq4OV1dXtG7dWumTSEBFE0kg/wPCx8cHz58/h0gkKkwE2AgEAggEAjRp0gTdu3eHoaFhYdmQIUNYZ//WqFEDffv2hZubG7p37057qTgmFosREBBQ+EXAtN7XtGnTsGvXrsL6gYGBePjwITIzM0tsF0KhEBKJBHXq1EH37t2Vdp0vqihCCF6/fg0PDw94eHggICCg2O+5WbNmCA0NLfwgf/XqFXx8fJCYmFj4e2dTUG5sbAxnZ2c0b968QnwhUEBcXBw8PT3h4eGBW7duFVtTVE1NDZ8/f0aNGjUK69+6dQuRkZEyfY8QQqClpQVHR0d07NiRjomsIDIyMnDr1i14eHjA09OTscPhypUr6NevH4D8VQHu3LmD0NBQmZdGFAqFaNasGVxcXDjdla+8VDaRLJCTk4OwsDC8e/cOnz9/RkZGRpFyHR0dmJubQ11dHTVr1kTnzp2LncPb2xt9+vQp8Vq2trYICgqCjo6OvMKnWMTExBRu5VlSD2NAQEDhAvsFJBIJ3r59i5cvX+LTp09ITk4u8gVR0B4sLCzQsmVLpR4ITf1PXl4eFi9ejEuXLuH9+/dS627YsAF//PFHkWOEEHz69AnPnz9HTEwMEhISiiSUQqEQJiYmqFOnDmxtbVG3bl2aQFYQ+/fvx6FDh/Do0SOp9fr06QNPT89ix5OTkxESEoLo6GjExcUhNze3SLmRkRHMzc3RpEkTNG7cmK7mUEHcvXsXf/31F3x8fKRugVzwZEtTU7PI8ezsbISGhuL9+/f4/Plz4dOOArq6ujA3N4e1tTWaN28OXV1dhbwPRVL5RPK/srKyEBgYiM+fP2PAgAGFPYgHDhzAb7/9Bi8vLzg7Oxd5jUgkQt26dfH582fW81pYWMDPz48uNMsRQggmT56MgwcPSq3XoEEDvHnzpsQv+9zcXGRmZkIikUBdXR36+vo0Qaigjh49inHjxkmtIxAI8PHjxxLHM0okEqSnp0MsFkMoFEJfX58OZamggoOD0aVLF6Smpkqtd/r0aQwfPlxqHUIIMjIykJeXB6FQCB0dHTrcpYL69u0bunTpgtDQUKn1pk+fjp07d5Z4vqysLGRnZ4MQAm1t7QqZOP6XSk22kYWOjg7++usvrFu3rkjPYXR0NL5//45evXrh9u3bRV6jrq6OsWPHSj2vtra21NXxKfkSCATYu3cvnJycpNYbM2aMTAmhpqYmjIyMULVqVRgYGNAksgJzd3fHggULpNbp2rWrTJNihEIhDA0NUbVqVRgZGdEksgJr2bIlTp48KbWOvr5+4aNLaQQCAfT19QvbBU0iK66qVavi+vXr0NPTk1rvp59+kul8Ojo6MDY2RtWqVStFEgnQRLKYwMBAXLt2DS9evCgy7jE6OhpA/t1E3759C/fuLVBSI3r79i1sbGyKPe6gFOfw4cPw9/eXWmfMmDEcRUMpi0ePHmHfvn1S68j6pUBVHvHx8Vi0aJHUOkOHDqVDk1SMSCTCvHnzig17+1GDBg1Uejcimkj+x8qVK4v8/4LxTwWJJJA/rnLAgAHw8PAoPNa0adMSdyR4+/YtGjVqVGzwNiV/W7duxaRJk6QOfO/QoQOsrKw4jIri271799CtWzckJyez1tHR0cGgQYM4jIriW2xsLDp16oTnz59LrUdvMFRLTk4Ohg4dihMnTkit99NPP6n0UyqaSP4gMDAQ169fL/zvH3slf0wkgfxB+0OGDCmSTMryIRMdHY0GDRoUG3BLyQchBKtWrcJvv/1WYl3aG6larl+/jp49e0rtWQCAgQMHVqgZk1T5REREwMnJqcTlnSwsLNCpUyeOoqL49v37d7i5ueHy5csl1h09erTiA1JiNJH8wY+9kT8e+/79O+NEmv8mkyNHjoRQKISWlhZGjBjBep3Y2FhYW1sjLS1NfsFTIIRg/vz5WLZsGWudgiU7NDU1MWzYMK5Co3h24cIF9OvXj/VpQEG7AGivkyp5+fIlnJycinUUFPhxz+XRo0eXe2F6qmJITU1Fz549cevWLcZybW3twptN+mQLAKEIIYQEBAQQAIw/mzZtYi0DQDQ0NMiVK1cIIYS4ubmRq1evEkIIWb16tdTXVa9enaSmpvL5tisNsVhMpk6dKvXfe/Xq1SQ+Pp40adKEDBw4kO+QKY4cOXKECIVC1nbRr18/kpGRQYYMGUJMTU1JXl4e3yFTHHj69CkxMTFhbRcNGzYkHz9+JFu2bCEAyMuXL/kOmeJAQkICad26NWu70NPTI3fv3iX3798nOjo6ZO/evXyHzDuaSP6/nj17sjacOnXqSE1QCpJJb29vkpGRUeS8f//9t9TXmZqakvT0dJ7edeWQl5dHxowZI/XfeevWrYX1Y2NjiZ+fH48RU1zZtWuX1HYxcuRIkpubSwghJCcnh1y8eJHniCku+Pv7EwMDA9Z2YWtrS+Li4grrnzlzhsdoKa58/vyZNG3alLVdGBkZkcDAwML6N2/eJN++feMxYuVAE0kivTdSlp9Ro0YRLy8vkpOTw3j+3bt3S329ubk5yczM5PhdVw7Z2dlk4MCBrP+2AoGAHDp0iO8wKR6sX79e6t/dpEmTiEgk4jtMimM3b94kurq6rO3CwcGBJCUl8R0mxbGoqChibW3N2i5q1KhBnj9/zneYSokmkkR6b6QsPxs2bCjxGocPHyYCgYD1HBYWFiQ7O5uDd1t5fP/+nbi6urL+m6qrq5PTp0/zHSbFMYlEQhYtWiT1b3bOnDlEIpHwHSrFscuXLxNNTU3WdtG5c2eSlpbGd5gUx16/fk1q167N2i5q165NXr9+zXeYSkvlE8nS9EY2btyY8XjTpk1lutbx48elJpNWVlaFj9ko6VJSUkjHjh1Z/y21tLQKx6pSqkMsFpNZs2ZJ/Ttevnw5TSJV0IkTJ4iamhpru+jVqxd9MqSCQkJCSI0aNVjbhbW1NYmKiuI7TKWm8olkZmYmSUpKIklJSaRq1arFGpGGhgbx9fUl8fHxJCkpiTERFAqFMg/QP3LkiNQvuYYNG9LB/iVITEyUOhi6SpUq5M6dO3yHSXFMJBKRn3/+Werf16ZNm/gOk+LBvn37pN7EDxkyhHVoElV5BQQEECMjI9Z2YWNjQz5//sx3mEpP5RPJHzHN4NPU1CxSp2HDhowNbt++fTJfZ+/evVK/7GxsbIhYLJb326sUPn/+TGxsbFj/7YyMjEhAQADfYVIcy8nJIUOHDmVtFwKBoFR/o1TlUdKqG+PGjaM37yrIx8eHVKlShbVdtG7dmiQkJPAdZoVAE8kfyJJIrlixgrHR2dvbl+pa27dvl/rhZmdnR5PJ/4iOjpY6GLp69eokODiY7zApjmVmZpI+ffqwtgs1NTXy77//8h0mxTGJREKWL18u9XN2xowZ9HNWBXl6ehJtbW3WdtGxY0eSkpLCd5gVBk0kfyBLIpmamsrY8NTV1Uv9gbRx40apH3IODg70Q+7/vXnzRupg6Fq1apFXr17xHSbFsbS0NNKlSxfWdqGpqUkuXbrEd5gUxyQSCZkzZ47Uz9eFCxfSsbIq6OzZs0RdXZ21Xbi6uhZbxo+SjiaSP5AlkSSEEAsLC8YGWJbJHSUtWu7k5KTyH3bPnz+XOhjaysqKREZG8h0mxbFv374RR0dH1nahq6tLbt68yXeYFMdEIhGZNGmS1M/VtWvX8h0mxYN//vlH6uYEAwcOpKunlAFNJH8gayLJNiu0b9++Zbru0qVLpX7odevWrbxvrcIKDAyUOhi6adOm5NOnT3yHSXEsLi6ONG/enLVdGBgY0EXnVVBubi4ZNWqU1M/THTt28B0mxYOShpONGTOGjpUtI5pI/kDWRDIqKoqxIRobG5f52n/88YfURl7WJLUiu3v3LtHT02P9N2nVqhUdDK2CPn78yDrpDQAxMTEhT5484TtMimNZWVmkf//+rO1CKBSSw4cP8x0mxYM1a9ZI/X6dOnUqHUZWDjSR/IGsiSQhhHV7rdjY2DJfv6T1737++ecyn7ui8fLykjoYukOHDnQwtAp6//49qVu3Lmu7MDMzI+Hh4XyHSXEsIyODuLi4sLYLDQ0Ncu7cOb7DpDgmkUjIggULpH6v/v777yo/fKy8aCL5g9Ikkj169GBslH/88Ue5Ypg8ebLURr9s2bJynb8iOHv2LNHQ0GD9N3BxcaGDoVVQeHg4MTMzY20XdevWJe/fv+c7TIpjycnJpH379qztQltbm3h5efEdJsUxsVhMpk+fLvX79M8//6RJpBzQRPIHpUkkz58/z9gwGzVqVO44xo0bJ7Xx79+/v9zXUFaHDx+WOhi6f//+JCsri+8wKY49efKE8e/zx7+7mJgYvsOkOBYfH09atmzJ2i709PTI3bt3+Q6T4lheXh5xd3eX+j26ZcsWvsOsNGgi+YPSJJJisZhxuy2hUCiXsRZDhgxh/QMQCASV8g57x44dUv/wR40aRbeQVEH3798n+vr6rO2iRYsW5OvXr3yHSXHs06dPpEmTJqztwtjYmAQGBvIdJsWxnJwcMnjwYKnfnwcOHOA7zEpFCKpMhEIhGjRoUOy4RCLBhQsXyn3+c+fOwdnZmbGMEIJ+/frh6dOn5b6Osli3bh1mzpzJWj558mQcO3YMGhoaHEZF8e3mzZvo0aMH0tPTGcsdHR1x9+5d1KhRg+PIKD5FRUXByckJr169YiyvUaMGfH194ejoyHFkFJ8yMzPRv39/1u9gdXV1nDx5EhMnTuQ4ssqNJpLlMGDAAMbjhw4dksv5fXx80LhxY8YysViMjh074sOHD3K5Fl8IIVi4cCEWLVrEWmfu3LnYu3cv1NTUOIyM4tulS5fg5uaGrKwsxvIuXbrg1q1bMDY25jgyik+vX7+Gk5MTIiMjGcvr1KkDPz8/NG/enOPIKD6lpaWhV69euH79OmO5lpYWLl68iBEjRnAcmQrgu0tUmZTm0TYh+fs+/7c+kL+GnbxkZ2eTmjVrsnbTGxoakuTkZLldj0tisZjMmDFD6uPsFStW0MHQKuj48eOMQ0cKfvr06UMyMzP5DpPiWHBwMKlevTpru7C2tibR0dF8h0lxLCkpibRp04a1Xejq6pLbt2/zHWalRXsky8HMzIyxNyQtLQ1RUVFyuYaWlhbCw8Ohr6/PWJ6amopmzZohNzdXLtfjikgkwoQJE7Bz507WOps3b8by5cshEAg4jIzi2969ezF27FiIxWLG8mHDhuHixYvQ0dHhODKKTwEBAejSpQsSEhIYy21sbODn54e6detyHBnFp7i4ODg7O+Px48eM5YaGhrh16xa6devGcWSqgyaS5eTk5MR4fNu2bXK7homJCUJCQqClpcVY/unTJ7Ru3RoSiURu11Sk3NxcjBw5EkeOHGEsFwgE2LdvH+bMmcNtYBTv/vrrL/zyyy8ghDCWjx8/HidPnoSmpibHkVF88vHxQffu3ZGSksJYbm9vj3v37sHMzIzbwCheffz4EZ06dUJ4eDhjebVq1XD37l20b9+e48hUDN9dosqktI+2CclfOPu/r8H/P2KRt8DAQKmP+1xcXOR+TXnLzMwkvXr1Yn0Pampq5MSJE3yHSXFMIpGUuFXorFmz6O4TKujq1atES0uLtV04OTmR1NRUvsOkOPb27VtiYWHB2i7Mzc3Jy5cv+Q5TJdBE8gdlSSQlEglRV1dnTIgU8aV35coVIhAIWP943N3d5X5NeUlLSyPOzs6ssWtqapLLly/zHSbFMYlEQmbPni01iVy8eDEdK6uCTp8+zfj5WvDj6upKvn//zneYFMdCQ0OJqakpa7uoV68eiYiI4DtMlUETyR+UJZEkhLCuZaaowb27du2S+qX7559/KuS65ZGUlEQcHBykDoa+efMm32FSHBOJRGTixIlS2/P69ev5DpPiwcGDB6XeNA8cOJBkZ2fzHSbFsUePHpGqVauytovGjRuXa6tiqvRoIvmDsiaSbL0pY8eOVVisCxculPrle+nSJYVdu7Ti4uKIra0ta6wGBgbE39+f7zApjuXm5pIRI0ZIbce7du3iO0yKB1u3bpXaLn766SeSl5fHd5gUx+7duyd1cwI7OzsSHx/Pd5gqhyaSPyhrIhkaGsrava5Io0ePZv2DUldXJ69fv1bo9WXx4cMH0qBBA9Y4TUxMyNOnT/kOk+JYVlYWcXNzY20XQqGQHD16lO8wKY5JJBKyatUqqUnk1KlT6VhZFXTt2jWio6PD2i7atWtXYZfCq+hoIvmDsiaShBCiqalZ7LWKGif5I2ljDg0NDUl6erpCry/Nu3fvpA6GNjMzIy9evOAtPoof6enppFu3bqztQkNDg5w/f57vMCmOSSQS8scff0hNIufNm0fHyqqg8+fPEw0NDdZ20a1bN16/61QdXf5HTqytrYsdE4vF8PPzU+h1fXx8GK8N5K8xydeyQOHh4XBycsLHjx8Zyy0tLeHv74+mTZtyHBnFp5SUFLi6uuLOnTuM5dra2vDw8MDgwYM5jozik0QiwfTp07Fx40bWOqtWrcKGDRvourIq5tixYxg2bBjy8vIYy93c3ODp6Qk9PT2OI6MK0ERSTtgWOz169KhCrysUCvHs2TPWBcvfvn3L+ZfykydP4OzsjLi4OMbyRo0awc/PD1ZWVpzGRfErISEBXbp0QUBAAGO5vr4+bty4gZ49e3IcGcUnkUiEcePGYc+ePax1tmzZgiVLltAkUsXs3r0b7u7urJ0hI0aMwIULF6Ctrc1xZFQRfHeJKpPyPNp+9uwZY5e7ItaTZBIeHi51jclVq1ZxEsf9+/elDoZu0aIF+fr1KyexUMojNjaWNG7cmLVdGBsbk0ePHvEdJsWx7OxsMmjQINZ2IRAIyMGDB/kOk+LBhg0bpA5zmDhxIhGJRHyHSRE6RrKI8iSShBDGMRxqamqcjek5d+6c1D88T09PhV7/+vXrUgdDt23blnz79k2hMVDKJyIigtSrV4+1XZiampLQ0FC+w6Q49v37d9KjRw/WdqGurk5Onz7Nd5gUxyQSCVm8eLHU77LffvuNjpVVIjSR/EF5E8lGjRoxNno/Pz8FRl2UtGWBNDQ0yLt37xRy3QsXLkgdDN21a1c6GFoFvXz5kpibm7O2izp16pC3b9/yHSbFsdTUVOLk5MTaLrS0tIiHhwffYVIcE4vFZNasWVKTyGXLltEkUsnQMZJy1KVLF8bjx44d4yyGtWvXokePHoxleXl5aNOmDb5//y7Xax4/flzqYOi+ffvCy8uLDoZWMcHBwejUqRM+f/7MWF6/fn34+/ujQYMGHEdG8SkpKQndunVjnYhYpUoVeHl5wc3NjePIKD6JxWJMmjQJ27dvZ63z119/YeXKlXSsrLLhO5NVJuXtkQwKCmK8g2rQoIECoy5OLBZLfZTYtGlTud3R7d69W+rd4/Dhw0lubq5crkVVHA8ePCCGhoas7aJZs2bky5cvfIdJcezz58/ExsaGtV0YGhqShw8f8h0mxbGcnBwybNgwqWNl9+7dy3eYFAvaIylHDg4OUFdXL3Y8KiqK0zgKZnJXqVKFsfzly5cYPnx4ua/z119/Ydq0aazl48ePx4kTJ6ChoVHua1EVx+3bt9G9e3ekpqYylrdp0wb37t1DzZo1OY6M4tOHDx/QqVMnvHjxgrG8evXq8PX1Rbt27TiOjOJTVlYWBg0ahLNnzzKWq6mp4dixY5gyZQrHkVGyoomknNWrV6/YMZFIhOfPn3Mah5GRER4+fAg1NTXG8nPnzmHLli1lOjchBEuXLsUff/zBWufXX3/FgQMHWK9PVU4eHh7o06cPMjMzGcs7deqE27dvo2rVqhxHRvHp7du3cHJywvv37xnLa9Wqhfv378POzo7bwCheZWRkoE+fPvDy8mIs19TUxLlz5zBmzBiOI6NKgyaSctaxY0fG42x3W4rUvHlzHD9+nLV87ty5ePLkSanOSQjBb7/9htWrV7PWWbJkCbZs2QKhkDYvVXLq1CkMGjQIubm5jOU9e/bEtWvXYGBgwHFkFJ9CQ0PRqVMnxMTEMJbXq1cPfn5+aNy4MceRUXxKTk5G9+7dcffuXcZyHR0dXL16FQMHDuQ4MqrU+H62rkzKO0aSEEKuXLnCOMajY8eOCoq6ZL///jvr2BMDAwOSmZkp03lEIhGZMGGC1DGRGzZsUPC7oZTRgQMHiEAgYG0XgwcPJtnZ2XyHSXEsKCiIGBsbs7aLJk2akNjYWL7DpDj29etX0qJFC6nfS1yudkKVD00kfyCPRDInJ4fxD8PExERBUcumS5curH+09vb2Jb4+NzeXDB8+XGoSuXv3bg7eCaVs/v77b6ntYuzYsSQvL4/vMCmO+fr6Ej09PdZ20bJlSxIfH893mBTHYmJiWJfKK/iufPLkCd9hUqVAnz3KmaamJgwNDYsd//btGy97Xhe4efMm6+SGJ0+eYOHChayvzc7OxqBBg3DmzBnGcqFQiGPHjuGXX36RS6xUxUAIwZ9//ok5c+aw1pk2bRoOHz7MOAmNqryuXbuGnj17IiMjg7G8ffv28PHxQfXq1TmOjOJTREQEnJyc8ObNG8bymjVr4t69e2jdujXHkVHlQRNJBWBaF48QwrpuGhfU1dUREBDA+oW+fv16xrEqBYOhPT09GV+noaGBc+fO4aeffpJrvJRyI4Tgjz/+wPLly1nrzJ8/Hzt37qRjZVXM+fPn0b9/f2RnZzOWd+vWDTdv3oSRkRG3gVG8evnyJZycnBAdHc1YXrduXfj5+cHGxobbwKhyo5/wCtC+fXvG45cvX+Y2kP+wtLTEkSNHWMv79OmDlJSUwv8uGAzt4+PDWL9gMPSgQYPkHCmlzCQSCX755Rds2rSJtc6aNWuwfv16unCwijl69CiGDx/OujlBv3794Onpybo0GVU5PXv2DJ06dcKXL18Yyxs2bAg/Pz/Ur1+f48goeaCJpAIMGDCA8bi/vz+3gTAYPXo0Ro8ezViWlZVVuIZbfHw8unbtisDAQMa6+vr6uHHjBusuOlTlJBKJMHbsWOzbt4+1zrZt27Bo0SIOo6KUwa5duzBu3DjWITwjR47E+fPnoa2tzXFkFJ8ePHiALl26ICkpibG8efPmuH//PurUqcNxZJS8CAghhO8glEW1atWKNXZNTU3k5OSU6jwSiQTq6ur47z+toaFhkR4/vkgkEtSvX591ofRRo0bh2bNneP36NWN51apVcePGDdjb2ysyTErJ5OTkYMSIEaw960KhEAcOHMD48eO5DYzi3fr166WOs540aRL27NlD15VVMbdu3cKAAQNY15V1dHSEt7c3XVe2gqOJ5A/klUiynQsAcnNzlWKnl/j4eFhYWJT6vdWsWRO3bt1Cs2bNFBQZpYy+f/+OgQMH4tatW4zl6urqOHHiBIYNG8ZxZBSfCCFYvHgx1q1bx1pnzpw52LRpEx3moGKuXLmCYcOGsa4r27lzZ3h4eEBfX5/jyCh5o4+2FYRtcd1r165xHAmzGjVq4MKFC6V6jYWFBfz8/GgSqWJSU1PRs2dP1iRSS0sLly9fpkmkipFIJPj111+lJpHLly+nSaQKOnnyJAYPHsyaRPbu3Rve3t40iawkaCKpIJ06dWI8zjb7mQ99+vTBjBkzZKrbsGFD+Pv708HQKiYxMRHdunVjHd9bpUoVXLt2DX369OE4MopPYrEYEydOxI4dO1jrbNq0CStWrKBJpIrZv38/xowZA7FYzFg+dOhQXLp0CTo6OhxHRikKTSQVZPDgwYzH2Sav8GXHjh2M+4P/yNbWlg6GVkFfvnyBs7Mznj59ylhuZGSE27dvo0uXLhxHRvEpNzcXI0eOxOHDhxnLBQIB9u3bh7lz53IcGcW3zZs3Y8qUKcXmBxT4+eefcerUKWhqanIcGaVINJFUkFatWjGun8e2hhZfbt++ja9fv0qt8/vvv8PU1JSjiChlEB0dDScnJ7x8+ZKxvHr16vD19UXbtm05joziU1ZWFgYOHIhz584xlqupqeH48eOYPHkyx5FRfCKEYMWKFfj9999Z68ycORMHDx6kE64qITrZ5gfynGwD5I9DTEhIKHZcJBIpxR9TSYOhC2hra+Pr168wMDDgKDKKT2/evIGLiwtiY2MZy2vXro3bt2+jUaNGHEdG8Sk9PR39+vWDr68vY7mmpibOnDnDuvwZVTkRQvD777/j77//Zq2zaNEirF69mg5zqKRoj6QCWVtbMx5/9uwZx5EUd+rUKamDoX+UnZ0NFxcXDqKi+Pb8+XN06tSJNYm0srKCn58fTSJVzLdv3+Di4sKaRBZsTkCTSNUiFosxZcoUqUnkunXrsGbNGppEVmI0kVSg5s2bMx6/ffs2x5EUdeDAAYwePZp1MDSTx48fY8uWLQqMiuJbYGAgOnfujPj4eMbypk2bws/PD5aWltwGRvHq69ev6NKlCx49esRYbmBggJs3b8LV1ZXjyCg+5eXlYezYsThw4ABrnZ07d2LBggUcRkXxgSaSCuTk5MR4PCgoiONI/ufvv//G5MmTWQdDjxo1inUg9Lx58/DhwwdFhkfx5O7du3BxcWFdML9Vq1a4d+8ezM3NuQ2M4lVMTAw6deqE0NBQxnITExP4+PigY8eOHEdG8Sk7OxtDhw7FyZMnGcuFQiGOHDmC6dOncxwZxQeaSCoQ2x06244xikQIwcqVK6XOpJwxYwaOHz+OEydOMJaLxWJ07txZQRFSfPHy8kLv3r3x/ft3xvIOHTrAx8cH1apV4zgyik/v37+Hk5MT3r59y1huZmaGe/fuoXXr1hxHRvHp+/fvcHNzw5UrVxjLNTQ0cObMGbi7u3McGcUbQhUyMTEhAIr8aGpqluuc6urqxc6pr68vp4hlI5FIyNy5c4vF8ePPwoULiUQiKXxN3759WevOmDGD0/gpxTl79ixjGy346d69O8nIyOA7TIpjYWFhpGbNmqztom7duuT9+/d8h0lxLDk5mbRv3561XWhraxNvb2++w6Q4RhPJHygikaxevXqxcwoEAiIWi+UUtXQikYhMnjxZahK5du3aYq/Lzc0lRkZGrK8JDAzkJH5Kcf755x8iFApZf8cDBgwg2dnZfIdJcezx48ekatWqrO2iUaNGJCYmhu8wKY7Fx8eTli1bsrYLPT094uvry3eYFA/oo20FY5qYQAhhHXMkTwWDoffv389aZ8eOHVi4cGGx4xoaGlK3c+zZsydEIpFc4qS4t2PHDowfPx4SiYSxfPTo0Th79iy0tLQ4jozik5+fH7p27Ypv374xlrdo0QL3799H7dq1OY6M4tOnT5/g7OyM4OBgxnJjY2PcuXMHzs7OHEdGKQOaSCoY28ztmzdvKvS6OTk5JQ6GPnz4sNQtEtu2bctanpKSwrp7D6Xc1q5di1mzZrGWT5kyBceOHYOGhgaHUVF8u3nzJnr06IH09HTGckdHR9y9exc1atTgODKKT1FRUXBycsKrV68Yy01NTXHv3j04ODhwHBmlLGgiqWB8zNyWdTD0uHHjSjzXjh07ULduXcYyDw8PXLhwoTyhUhwihGDhwoVYvHgxa525c+diz549jLsyUZXXpUuX4ObmhqysLMbyLl264NatWzA2NuY4MopPr169QseOHREVFcVYXqdOHdy/fx+2trYcR0YpFb6frSsTRYyR/PLlC+N4kqZNm8op6qJSUlJIhw4dpA6G9vLyKtU5o6KiiJqaGuv5UlJSFPJeKPkRi8Vk+vTpUsfKrly5ssiEK0o1HD9+nPXvGwDp06cPyczM5DtMimPPnj0j1apVY20X9evXJ9HR0XyHSSkB2u2gYDVr1mTcDpFt55DySExMRNeuXfHgwQPGcj09PVy7dg29e/cu1XktLS2xceNGxrLs7Gz07Nmz1LFS3BGJRBg/fjx27drFWufvv//GsmXL6O4TKmbv3r0YO3Ys6+YEw4YNw8WLF6Gjo8NxZBSfAgIC0KVLFyQmJjKWN2vWDPfv32d9WkWpGL4zWWWiiB5JQgjjXZ1AIJBDxP/z6dMn0rRpU9a7R2Nj43LPtLa3t2c9/7Fjx+T0Tih5ysnJIYMHD2b9vQkEArJ//36+w6R4sHHjRqk91OPHjycikYjvMCmO3b59m1SpUoW1Xdjb25PExES+w6SUCO2R5ADTDEdCCGJiYuRy/ujoaDg5OeHly5eM5TVq1ICvry8cHR3LdZ07d+5AW1ubsWzy5Mms46sofmRmZqJ///6s41jV1NRw4sQJTJo0iePIKD4RQrBs2TL88ccfrHVmzZqFAwcOMD5NoSqvq1evok+fPqybEzg5OeHOnTswMTHhODJKmdFEkgPW1taMx9n2ri2N169fo2PHjoiMjGQsr1OnDvz8/Fhnj5eGgYEBjh49yliWnZ1NZ3ErkbS0NPTq1QvXr19nLNfU1MTFixcxcuRIjiOj+EQIwZw5c7Bq1SrWOosXL8bWrVvphCsVc/r0aQwaNAg5OTmM5T169MD169dhYGDAcWSUsqOfFBxo3Lgx4/GQkJBynff58+fo1KkTPn36xFhubW0NPz8/NGzYsFzX+dGwYcPQqVMnxrJr167hzp07crsWVTbfvn2Di4sL7t+/z1iuq6sLLy8v9OvXj+PIKD6JxWJMnjwZW7duZa2zfv16rF69mo6VVTEHDx7EqFGjWNcGHjRoEK5cuQJdXV2OI6MqAppIcsDOzo7xeHn23A4MDETnzp2RkJDAWG5jYwM/Pz+FDIa+evUqNDU1GcuGDBnCusg1pXhxcXFwdnbG48ePGcsNDQ1x69YtuLi4cBwZxae8vDyMGTMGBw8eZK2za9cuzJ8/n8OoKGWwdetWTJo0CYQQxvKffvoJZ86coZsTUKxoIskBtrGJbGtzlcTHxwcuLi5ISUlhLLe3t8e9e/dgZmZWpvOXxMDAgLVXIyUlBRMmTFDIdSnpPn78iE6dOiE8PJyxvFq1avDx8UH79u05joziU8Gwk9OnTzOWC4VCHD16FNOmTeM4MopPhBCsWrUKv/32G2udX375BUeOHIG6ujqHkVEVDq9TfZSMomZtE0KIQCAodm5zc/NSn+fq1atES0uLdUadk5MTSU1NlUvMJWnWrBnrTODnz59zEgOV7+3bt6ROnTqs7cLc3Jy8ePGC7zApjqWnp5OuXbuytgsNDQ1y/vx5vsOkOCaRSMi8efOkztr/448/6LqylExojyRHmGY7s/Uosjlz5gwGDhzIOhja1dWV08HQ3t7ejAPyCSHo06cPJzFQQFhYGJycnFhXAbC0tISfnx+aNm3KcWQUn5KTk9G9e3f4+Pgwlmtra8PDw4NOklMxEokE06ZNw19//cVaZ/Xq1Vi/fj0dK0vJhCaSHDEyMip2rDTL5Rw6dAgjR45kHQw9cOBAeHh4cDoYuk6dOliwYAFjWWxsLJYsWcJZLKrq0aNHcHZ2xtevXxnLGzduDH9/f1hZWXEcGcWn+Ph4dO3aFYGBgYzl+vr6uHHjBt1MQMWIRCK4u7tj7969rHW2bt2KxYsX0ySSkh3fXaLKRJGPtlu2bMn4+ODLly8lvnbr1q1SH0H89NNPJC8vTy5xlkXt2rUZ4xIKhSQmJoa3uCo7X19foqenx9ou7OzsyNevX/kOk+JYTEwMady4sdTNCR49esR3mBTHsrOzycCBA6VuTnDo0CG+w6QqINojyRG22dPS1pIkhGD16tWYPXs2a52pU6fyPhja29ub8e5VIpGgV69ePERU+V2/fh09e/ZERkYGY3m7du1w9+5d1KhRg+PIKD5FRkbCycmJdUUIU1NT3Lt3D23atOE4MopPmZmZ6NevHy5dusRYrq6ujlOnTmH8+PEcR0ZVBjSR5AjbWpLBwcGMxwkhWLBgAZYuXcp6znnz5mH37t28Lxxsa2sLd3d3xrLw8HDs2bOH44gqtwsXLqBfv37Izs5mLO/atStu3rzJOJyCqrxevnyJjh07Ijo6mrHcwsICfn5+sLW15TYwilepqano0aMHbt68yViupaWFS5cuYfjw4RxHRlUWNJHkCNtakq9evSp2TCKRYPr06di4cSPr+VatWoUNGzYozTiWQ4cOsSYuv/32GzIzM7kNqJI6evQohg0bhry8PMZyNzc3eHl5QU9Pj+PIKD49e/YMzs7O+PLlC2N5gwYN4OfnhwYNGnAcGcWnpKQkdOvWDf7+/ozlVapUgbe3N/r27ctxZFRlQhNJjsi6lqRIJMK4ceOk9uJt2bIFS5YsUZokEshfi+78+fOMZTk5ORg1ahTHEVU+u3fvxrhx41gXfB8+fDguXLjAuh86VTk9ePAAXbp0QWJiImO5ra0t7t+/DwsLC44jo/j05csXODs74+nTp4zlRkZGuH37Nrp27cpxZFSlw/cgTWWiyMk2EomEcYBzvXr1CutkZ2eTQYMGSR0MffDgQbnEoyg9e/ZkjT88PJzv8Cqs9evXS51wNWHCBCISifgOk+LYrVu3iK6uLmu7cHBwIElJSXyHSXEsOjqaWFtbs7aL6tWrk+DgYL7DpCoJ2iPJEYFAwDghJi0tDUD+YOj+/fvj4sWLjK8vGAyt7LvGnD9/nnUrLbpeXekRQrB48WLWZZYAYPbs2Thw4ADU1NQ4jIzi25UrV9CnTx/WYSPOzs64ffs2qlatynFkFJ/evn2Ljh07IiIigrG8Vq1auH//PutwK4oqLZpIcojpkWNmZibS0tLQs2dP3Lhxg/F1WlpauHjxYoUYDF2lShWsWbOGsezNmzc4ceIExxFVXBKJBLNnz8batWtZ6yxduhR///23Ug1zoBTv1KlTGDx4MHJzcxnLe/XqBW9vb+jr63McGcWn0NBQODk5ITY2lrHcysoKfn5+rJM/KaosBISw7NSugqpVq4akpKQixzQ1NVl3kimtmjVrFls4WigUolWrVnjy5Anja6pUqYIrV66gW7ducomBK7Vr18anT5+KHdfX10dKSgrvM82VnVgsxqRJk3D48GHWOhs3bsS8efM4jIpSBgcOHMCUKVPA9tE9ePBgnDx5EpqamhxHRvEpKCgIPXv2ZN0xrWnTprh16xbMzc25DYyq9Oi3OYeYti6USCSsSaShoSFu3bpV4ZJIIL/HhEl6ejpmzZrFcTQVS25uLkaOHMmaRAoEAuzZs4cmkSro77//xuTJk1mTSHd3d5w+fZomkSrG19cXLi4urElkq1atcO/ePZpEUgpBE0kOmZiYyFy3evXq8PX1Rbt27RQYkeI4OTnBycmJsWzPnj2Ij4/nOKKKISsrC4MGDcK5c+cYy9XU1HDs2DFMnTqV48goPhFCsHLlSsydO5e1zvTp0/HPP//wujkBxT1vb2/06tWLdXOCDh06wMfHB9WqVeM4MkpV0ESSQ9WrV5epXmUZDH3hwgXGCSASiQSDBg3iISLllp6ejj59+sDLy4uxXENDA+fOncOYMWM4joziEyEE8+bNw4oVK1jrLFiwADt27KBDRlTMuXPn0L9/f9bNCVxcXHDjxg0YGhpyHBmlSuinDofMzMxKrFOvXr1KMxi6evXqmDZtGmPZgwcPcP/+fY4jUl7Jycno3r077t69y1iuo6ODq1evYuDAgRxHRvFJLBZj6tSp2Lx5M2udtWvXYt26dXTClYo5fPgwRowYAZFIxFjev39/XL16FVWqVOE4MkrVqPwzkPfv3xcu2Mo0qUYikeDMmTMA8rc5bNGihcJiadKkCW7duoVatWop7Bpc27p1K44ePVq4zNGPRo4cyTghR9V8/foVrq6uCA0NZSzX19eHl5cX61ABqnLKy8vDuHHjcPLkSdY627dvx8yZMzmMilIGO3bskDrWfNSoUThy5Ag0NDQ4jIpSWTyuYakUYmJiiKamptTFngt+njx5Uubr+Pr6Em1tbdZzt2zZksTHx8vxnSmPU6dOsb7vDRs28B0erz5+/EgaNmzI+u9TtWpV8vjxY77DpDiWnZ1N+vfvz9ouhEIh+eeff/gOk+LBmjVrpH5PTZ48mW5OQHFK5RNJQgiZPn16iUmkm5tbmc/v7e0tNYk0MjIiycnJ8ntDSqhJkyaM711LS4tkZmbyHR4v3r9/T+rWrcvaLmrWrEnCwsL4DpPiWEZGBunevTtru1BXVydnz57lO0yKYxKJhCxYsEDq99TcuXOJRCLhO1RKxdBEksjWK1nW3shz584RDQ0Nqedu2bKlnN+R8nn58iXr+x8+fDjf4XEuPDycmJmZsf6bWFhYkHfv3vEdJsWxlJQU0qFDB9Z2oa2tTby8vPgOk+KYWCwuscNjxYoVNImkeEEn2yB/8exJkyaxlru5uaF169alPu/Ro0cxfPhw5OXlSa3HNH6wsmnSpAnrRJGzZ8/iy5cvHEfEn6dPn8LZ2Zn1PTds2BD+/v6oX78+x5FRfEpMTETXrl3x4MEDxnI9PT1cu3YNvXv35jgyik8ikQjjx4/Hrl27WOts3rwZy5cvpxOuKF7QnW3+X2xsLKytrRm3HHvy5EmpE8ldu3ZhxowZMtU1NTVFXFxcqc5fEWVmZsLY2Jjx37hr1664c+cOD1Fxy9/fH3369GG9ebC1tcWtW7dgamrKcWQUnz5//ozu3bvj5cuXjOVGRka4fv06HB0dOY6M4lNubi5GjRqFCxcuMJYLBALs3bsXkydP5jgyivof2iP5/9h6Jfv27VvqJHL9+vUyJ5EAWPfLrWx0dXWxaNEixjIfHx+8e/eO44i4devWLbi6urImkQ4ODvD19aVJpIqJjo6Gk5MTaxJZo0YN3Lt3jyaRKiYzMxP9+/dnTSLV1NTw77//0iSS4h3tkfwBU69kaXojCSFYvHgx1q1bx1pHXV292Lpfenp6SE9PL1vQFQwhBMbGxkhNTS1W1qZNGzx69IiHqBTv8uXLGD58OOtNQ+fOneHh4QF9fX2OI6P49Pr1a7i4uLAug1W7dm3cvn0bjRo14jgyik9paWlwc3NjXWtXU1MTZ8+eRf/+/TmOjKKKoz2SP/hvr2RpxkZKJBL8+uuvUpPI5cuXQ1dXt9jxksZQViYCgQAbNmxgLHv8+DHrvuMV2YkTJzBkyBDWJLJXr17w9vamSaSKef78OTp16sSaRFpbW8PPz48mkSrm27dvcHFxYU0idXV14enpSZNISnnwOdNHGcXGxhbO4JZ1prZIJCLjxo2TOqNu06ZNhBBCqlevzrich6oxNTVl/Hdq0qQJ36HJ1d69e4lAIGBtF0OHDiU5OTl8h0lxLCAggBgZGbG2CxsbG/L582e+w6Q49uXLF9KsWTPWdmFgYED8/f35DpOiiqA9kv9Rq1YtTJ48WebeyNzcXIwcORJHjhxhLBcIBNi3bx/mzp0LANDS0ipWRyKRlCvmiohtBuKrV68qzaSbTZs2YerUqSAso0d+/vlnnDp1CpqamhxHRvHJx8cHLi4uSElJYSxv3bo1fH19ZdpSlao8Pn78iE6dOiE8PJyxvFq1arh79y46dOjAcWQUJR0dI1lAIgbS3wIpoUiOj0J6WiosrJoBRs0Aw6aAsPhWU1lZWRgyZAi8vb0ZT6mmpoZjx45h1KhRhcfq16+PiIiIYnVV8ddQr149REdHFztet25dxuO8IATIjAWSg4HsOEAiAtR0AIOGgFELQEOP4SUEK1aswJ9//sl62pkzZ2Lr1q0QCum9XIX17RsQEgJERgI5OYCmJmBhAbRsCdSowfgSLy8vDB48mHE7VgDo2LEjPD09YWhoqMDAKUUSSQjScvKQniuCSEIgEABaamow0lKHroYa4xI97969g4uLCz5+/Mh4TnNzc9y6dQtNmzZVdPiUgkgIQUauCKk5IuRJJAABNNSEMNBSh76mOoQVeOkm1d5rWyIG4m4C7/cBn28AkmwAgDEAYwiAr/+f3AnUgRrOQIMpQK3+gJom0tPT0a9fP/j6+jKemm0wtI6ODnMoEonKJRWHDh1Ct27dih3/8OEDzpw5g+HDh/MQ1f/7FgxEHACiTwF5KT8UCJD/lOn//7+hDVB/MlBvDKBpDEII5s6diy1btrCeetGiRVi9ejVd860iio0F/vkHOHwY+PFmRyDIv+koYG4OuLsDEycCVlYA8tdLHT16dLHJdgVcXV1x8eJFVKlSRYFvgFKEPIkEsWnZiErJREoO+5h3dYEA5vraqGeki6raGhAIBAgLC0P37t3x9etXxtdYWlrizp07sPr/dkRVHBJC8PV7DqJSMhH/PQdszx4FAKrraqKeURWY6WlVuKRSdXsk424DQZOA79H5iSJh/nAvJFADiBjQqgbSege6jd+Hu3d9Gavq6uri8uXL6N69e7EyBwcHPH78uNjx1NRUGBgYlOGNVGw2NjaMy57UqFGD9YNVodLeAY8mA/G+srUL/P8fvFADsFmMP8/nYvmfa1hrr1u3DgsWLJBbuBRHUlKA+fOBAwfyk0ZZhqOoqQFiMTByJHwHDEC3kSNZh7EMHDgQp06dYhz6QikvCSGISP6Ol4kZEMv4VVpwK2qkpQEL9Tw4tmiGb9++MdZt3Lgxbt++jVq1askvaIoTcRnZCP6aiiyRpEj3A5uCOlpqQtiZGqKWvrbig5QT1UskRd+BR9OA6GOAQAiQ0o5PzP91J2jYo8XU5/jyrejdp4GBAby9vVnHsXTu3Bn37t0rdjwiIkIl7ziDg4PRqlUrxrLdu3fjl19+4SYQQoDXm4GQRQCIDAkkEwHytC3Rd/133HwcX6x0586dmD59erlDpTh2/Towdmz+o2yxuPSvV1MDqVIFqy0ssIxh/NtPP/2Ef/75B+rqqv2AqKJJzxXh0edkpOaU5bOi8BYUn54/wq8jBxW7ybCzs8ONGzdQg2WYBKWc8iQSBMelIjY9u1znMdPTQuuaRtBUU/4nlcofoTzlpgC3OwMf/s3/71InkUDBfUV1UTDe7qyKutX/909oYmJS4mBotsdWSUlJZYil4mvZsiXrQssLFizgZiISkQCPpwLB8wCSV8YkEgAINHI+4tpvaRjY3qjwqFAoxJEjR2gSWREdPQr07g0kJpYtiQQAsRiC9HQsDQ/Htrp1ixRNnToVR44coUlkBZOcnQffD4lIK2MSCfxvKrZ5Cwfs8rgFtR/aQLt27XD37l2aRFYwOSIJ7n1MwqdyJpEAEJeRA98PicgWlfFzh0Oqk0iKcwGfHvmTJsqUQP4HEUMPSQjfUhXGVQAzMzPcv3+ftXetAE0kiztx4gTj8bS0NKxdu1bxATybA7zfL59zETGEJBfnZ2SiSwt9aGho4MyZM3B3d5fP+SnuXLgA/Pxzfm91eR/c/P/rZ334gFW1awMA5s2bh927d6vc2OiKLj1XBL+YJIgkpMTHlbKqUb8J/j7tASB/u9ibN2/CyMhITmenuCCWEPjFJiE9RySXdkEAfM8T4/7HpPzJOUpMoZ9gAwcOhLGxMYYMGaLIy8gmbDnw7XH+OEd5ISLoCZPxdK8j/Pz8ZJpRx7boNNsYGVVgbW0NFxcXxrL169crtlfykxfwZpucTyqBEGJ4LzKA5+UzytH+qdKJiQHGjVPIqRd//YqTS5Zgw4YNdMJVBSMhBI8+J0MsxySyQO1mdthz6jy8vLygp1d8NQhKuYUnpCFNTklkAQIgI0+M0K/M2+oqC4UmkrNmzcKxY8cUeQnZJAQALzeg5OGuZUDEqCcMgrXGM5mqM+1sA+QvJaTK/v33X8Yv1e/fv+Ovv/5SzEVzk4EAdyjkz4CIoS36AtcaPvI/N6VYhOTPuM7OLn9PJAMBIRh55QoESt7LQBX3JikDqXJOFn5k1qoDJGrFl5qjlFtCZg4iUjIVdv4PaVn4klH+x+WKotBEskuXLsqx7Vv4qvyJNQojAEKXyfSlwzYWim37PFVhamrKuuXX+vXrZTqHj48P0tJKcef2fn9+Msm6KEN5SYB3e4EsHmafU4VCQkJKty5pYCBw9y7AskxPuYlEQFgY4OWlmPNTMomPj8fDhw9lri+SSPD223cFRvS/WeAUv65evQpxKcZEv0pMh6KfLbxKTFfwFcqu1NmVRCJB48aNMX/+/CLHb9y4AU1NTZw7d05uwclF2jvgyzX5PtIuhgBpr/OXjCkj+ogrf11JpvFiKSkpOHjwoEyvt7S0xOrVq0tOKCUi4PU2KC6J/H9Ekr9OKcWbwMBANGjQAJMnT5Ytody6FVD05Bc1NUDKWqOU4iUmJqJDhw7o0aOHTAnlh9QsmZf4KSsCIColEyLaW82rcePGwdbWFqdPny4xoUzNzkNiVp7CeqkLpOSI8C1LOTucSp1ICoVCLFy4EHv27EFycjIA4Pnz5xg6dCjWrl2LoUOHyj3Icok5l78GpKIJ1IEPpxV/nUqsatWqcHV1ZSxbsmSJTOdITk7G0qVLS04oEwOB7C9lDbUUJEDUcQ6uQ0kjEolw4MCBkhPKnBzg0iXF9UYWEIsBX9/82eAUr27evClTQhmTzs3wIxEh+PpdORMGVfLq1SuMHDmyxIQyNj1b4b2RQP5yUeVdUkhRyrSOpEgkQsOGDeHu7o4JEyagbdu26N+/P+P+yb6+vti5cyfOnz8vl4BL7V5/4JMnFN7zBECk1wRO66RvbRYdHY24uLhix+vVqwdTU1NFhVZh5Obm4tkz5vGmDRs2RNWqVVlf++7du2Kz342NjTFnzhzMmjWr6ILvr/7OX+6Hg3YBCDDGww0RH4qvLUkpXlxcXLHEUV1dHT///DMWLVoES0vL/xU8fgw4OHAW28kxY7Dj/XvOrkf9T2ZmJkJDQ4sdd3V1xfLly9G+ffvCY4QQXHkXBwkHqy4LAAiSvmDDXLpcGF8eP35cLHFs0qQJli1bhqFDh0JN7X+dU34xSUjI5CbxN9bWQJe61Ti5VmmUeUHyffv2YdGiRahVqxYsLS1x6dKlIv+4BXhPJC/WBLK5GaNGoAatsWLkKf+yTyqnWEL5YDTw8YyChzz8T9+t+vB6rLxjXFRVsYRy715g2jSFTLJhuDj+qVMHE6KiFH8tqtR+TCjTcvJwO5q73uO85ESMaNecs+tRsvtvQunxLg4iLu4wAAgFQP8GNZVuKFyZZ6CMHj0amZmZIITg1KlTjElkjx49MHToUHh7e6N27dqMWwMqXG4qZ5cSQAwD5q20KZ7995G3KPMrZ0kkAFRRV85HEqrux0fekyZNwrf37/PHL3JBIIBGaSaHUZwqeOTt6uqKZ8+L91wqkkBTk9PrUbL77yNvrpJIAJAQQKyEexGWeUT5jBkzAOQPWGZKIoH8CTgUpWz4uJvjZIceqlwEAgHnbUNU1t1yKM4oW+8PpTxo28hXph7JpUuXwsvLC4GBgRCJRDh06JC845IfTeljFuWJQIg01V4OUmkZGxtj9erViI6OxuLFi6Gua8rNJKz/F59KEwZlpK6ujkmTJuHdu3fYv38/jK2ty74VYmkRgkR6g6G0XF1d8eDBA9y4cQOtWnD7mJmo+HJwyqxJkyY4ffo0wsLCMHz4cKgLuUsmhQJATQlz11L3SB48eBCbN2+Gj48PWrRogdmzZ2Pjxo2YPHkyNDSUcCFVE0fOJtukohbyxDEKv85/qaurQ1dXF7q6utDR0Sn8/2w9xRVFcHAwcnJyih2vUqUKbG1tix1nm2wzd+5czJw5s+hkm6qtOZtlTyDAs2jun0cIhcIi7aHgRyn/ThWoVJNtWrfmZnwkAIhEeM7DHtsCgQDa2trFPjO0tLRUqoelNJNt9DXVIRSAs8k2WpI8tG3bVvEXoxixTbZZvnw5hgwZUuS71Vhbg7PJNoZaGkr5N1qqyTbXrl3DgAEDcOrUKQwaNAhA/n7IdevWxebNmzF+/HiFBVpmL9b+/2LhCu5lEKgjSq0r7H95ojTbHVpaWqJZs2awtbUt/N9GjRpBs4KMv/Hy8kLfvn0Zy6KiooomAMgft3vy5EkAUhLIAvH+wG0neYfMSKRTD3WmZeHr168o49w2uapevXqRNtGsWTPY2Ngox+YBCrB371788ssvAKQkkAVycgB9fSAvj5PYerRqhbthYcjj6HrS6OnpwcbGprBdFLSNGjVq8B2aQrx8+RI2NjaF/82UQP7I92MivmVx83tyNDdGLX1tTq5FFWdiYlL4Pc6WQBZ4kZCOt98yFL6OpACAtXEVNK/B8H3GM5kTyadPn8LZ2Rlr1qzBr7/+WqRs2bJlOH36NF69eqV8vWBp7wDPRlDI9oj/1c0HMO2C7OxsfP78udjPp0+fcO/ePXz69EnxsbBQV1dHo0aNYGtrizZt2sDR0RGtWrWCjo5yzhKqVasWPn/+XOx4t27dcPv27SLHRo8ejWvXrklPIAtIRMBlCw7WkhQCtssB22UQiUT4+vVrYVv4sW3ExsYiKioK0dHRECl6DUMWlpaWsLW1RatWrdC2bVs4ODhIXW6poti7dy9mzpwpPYH80fDhwMWLil1LUk0NcHIC7t6FRCJBUlJSkc+JH/9/dHQ0IiMjkZmpuC3YpKlRowaaNWsGOzs7ODo6om3btqhTp45S9oyURkEiWVICWSAi+Tuexyt+cpS6QIDe9WtAnWFzBoobJiYmMDU1lZpAFkjNycMdjmb0d7YwQVUd5esIKvPyPxXK3d5A3E0F9koKAINGQJ+XQAkfrr/99hu2bt1a7Hi3bt2gr6+PyMhIREZGIiMjQ0GxFqeuro4WLVqgbdu2hV8U9evXV4ovimPHjsHd3b3YcYFAgPj4eFSr9r81te7evYvWrVtLTyB/9HIDELIICh32IFAHBsQCOrKtESoSifDp06fCdvDfn0SOF7Bu2LBhYZtwdHRE8+bNK9yj8ZCQEBgZGZWcQBYICABKSCrk4soVoF8/maoSQhAfH8/aLj59+sRpb3fNmjWLfF7Y29tDT0+Ps+vLQ3x8PN6/f19iAllAJJHA6328Qne3EQCob1wFtkrY66RKrl69it69e8vcMXb/YyKSFLy7jZGWOrpaVlfgFcpONRLJhADgVgcotFey41nAouRdfWbOnImdO3cWO37w4EFMmDABQP6XRmJiIuuXRkxMjMK/NKpWrQpHR8fCHz57p358zPCjkSNHFj7KLpPcZMCjgQL32xYCDacB9jvkdsa0tDRERUUxtouoqCiFPyLV1tZG69atiyQRtWvXVoqbDrkhBOjWDfDzU0yvpLo60KQJEBwst6WGsrOz8eHDhyJtoeD/R0REKPzGVCgUolmzZkVuOpo0acK45WlF9ioxHa+SFPdvqSYQoHu96tDVULIne5RUCZk58ItR7JC2drWMYaannMMdVCORBICQhfk9UPJOJgVqQJ2hQMdTMlWfMGEC/vnnn2LHT5w4gVGjRsl0ju/fv+PVq1cICwtDeHh44f9++aLYx7QNGzYskkDY2tpy0jv1999/Y+7cucWOa2lpITMzs3xfVp+8gHvM4zDLRaAGVKkL9A4D1HXlf34GeXl5ePfuXZE2ERYWhsjISIXeeJiZmRW2C0dHxwrZO1VMTAxgYwNkZMh/8o2mZn4S2bSpfM/LghCCjx8/Fvu8ePXqlUJvPAwMDNCmTZsibaOij7eUEIK7HxKRliNSSLdE65qGqGvIzecFJV/Pv6YiIkUxw0/qGuigtZmRQs4tD6qTSIpzgVtOQPJT+T3iFqgDurWBXs8ATWOZXjJs2DCcO3eu2PFr166hZ8+e5QonMTERL168KPaFwbrfdDnp6emhU6dO6NatG7p16wZbW1uF9EBIJBLo6+szjhHbtGkTY5JZKk9nA2+2le8cRQgBoSbQ3Q8wsZfjecvm+/fvePnyZbEEk2mrTnlQV1eHg4NDYbto27YttLS0FHIthbpwARg6VP6J5L59wOTJ8j1nGfBx49G0adPCduHs7AwjIyOFXEeR0nNFuPshEWIJkWsyWVtfG23MjCpX774KEUsI7n5MRLocbzIEAKpoqKGLZTVoKHHvvuokkgCQmwL4dAeSnwGE/VHmrTAgPg2oYQB0L77KTD6BGoiuBXa+HoIO3UegZcuWMn0A9OnTB97e3sWOP3r0CG3atJHxjciOEIKYmJgiXxahoaF48eIF6yb0ZVWtWjV07dq18IvCyspKbh+KU6dOxb59+4odNzMzY5yMUypEAjz+BXi/v3znAfJ7IoWaQGdvwLRz+c+nQImJiQgPDy/8CQsLQ3BwMLKy5LsYqo6ODpycnArbhZ2dnfJNymNz9Cgwfnx+Mlmej0qBIP/1mzcDc+bILz4FYLrxePbsWbGltcpLKBTC3t4e3bp1Q9euXdGhQwelnfT3X8nZefCPSYJITslkLT1ttDE3gpAmkRVajlgCv5gkuSSTBUlkJwsTaKsr9+elaiWSACDKBB5PA6KOIn899qIJ5a0wwHX9//775oL/JpMCAAQw6wW0O4YBIybiypUrqFWrFvr16wc3Nzd06dIF2trMYxk6d+6Me/fuFTseEREBKyur8r47mX3//h1Pnz5FUFAQAgMDERQUJPfZ5BYWFoXJQ9euXWFmZlbmc6WlpcHIyIixp+Thw4do165deULN/5J/vfn/J98QgJRlbJwA0G8AdDwDGNuVLx6eiEQihIeHF7aJwMBAvH79Wq7XMDY2RufOnQvbRqNGjZS7F+b6dWDsWODbt7ItVq6mBujpAfv3A8OGyT8+DhBCEBkZWeTzIjg4WK6PxrW0tNC+ffvCdmFvbw91HtbZlFV6rgiPPicjNads42gLWnxDEz00NdFT7r8BSmZ5EgmC41IRm16+bXHN9LTQuqYRNNWUtyeygOolkgXibgNBk4Dv0fmPqIkIt8KAS0+APbeBJUuWYPXq1fjFBRhoD3Rvrpb/SFyrOmC/M39ijUCACxcuYMiQIUVOXaVKFfTo0QP9+vVD7969Ub36/2ZaOTg4MO45npqaKvtsYwWJjY1FUFBQ4ZfFkydP5No7Vd7HWh07dsSDBw+KHW/Xrh0ePnwonyDT3gGPJgPxvoXtQrr///AXagA2S4Cm8wE15VueoTxSUlLw6NGjIkmEPHunzM3Ni9xw1KlTR27nlpvUVGD+/PxkUCAAZNmRRk0tP/EcNQrYuhWorpwzLssqOzsbISEhRW46/rvwe3kYGBjA2dm58ClHs2bNlC7ZIoQgIjkTLxLTZZ7N/f9dETDS0kDrmoYw1K5YqyBQsonLyEbw11RkiSSFv3NpCupoqQnR0tQQ5hVoHVHVTSQBQCIG4m4B7/fh1nUvuK773921l5cX+vTpU/jfN9e3RPeRi4Ba/YokCjk5OahZsyZSUlIYLyEUCtG+fXv069cPAwYMwKBBgxAeHl6snlgsVroZjnl5eQgPDy+SQMird0ooFKJNmzbo168f+vfvj6ZNm5b4JfH48WM4ODgUOy4QCPDt2zf5jrdKDgHeHwCiTwJ5KT9eDf/7SBAAhjZA/SlAvdEyj5Ot6AghiIiIKHLTERISIrfeqYYNG8LNzQ39+vVD+/btlatXKjYWOHwY+Ocf4MekqeDRdYFatQB3d2DCBIDDJw18+/r1a5F28fjxY6Snp8vl3DVq1EDv3r3Rr18/uLq6okqVKnI5rzzkSSSITctGVEomUnLY/w7UBQLU0tdGPSNdGGsr5y4llPxICMHX7zmISslEfGYO685IAgA1dLVQz0gXNfW0KtwQB9VOJH9w4t/jGPPTWCxZsgTt2rVD79694e3tjYCAAKxevRr//vsvRo8ezfjaKVOmYP9+6ePrtLS04OXlhSlTpiAiIqJYeUX5NSQnJ+PRo0e4f/8+7ty5g8ePH0Mih/2Cra2t0b9/f/Tr1w8dOnRgTR5q167N+Ah+woQJOHjwYLnjKIYQnDu2FY9u7IOJbh7UhQQ5YiE+JOtg4/5rMKpWW/7XrICys7MRHBwMf39/3LlzB35+fnJZQNvExAR9+/YtTB6UaTZ4+P372PvLLzDPzoYmIRAJBIjT0sLQtWvRYcAAvsNTCmKxGK9evcLDhw/h4+MDHx8fJCQklPu82tracHFxQf/+/dG3b1/UrFlTDtHKh1hCMPQnd5iY14aGphYkEgky01Ph0NwG0ydNpMmjipIQgvlLlyMxIwtauroQCITIyfoOPTUhtm5cV+GSxyIIRQgh5ObNmwT5XU0EAPHy8iry3zdv3mR9rZ+fX5G6//0RCoXEw8ODEEJI7dq1GcsrqpSUFHLlyhUya9YsYmNjI/XfQdYfExMTMnbsWHL+/HmSnp5e5Hrbtm1jfI2uri4Ri8UKeY9r1qxhvGZCQoJCrlcZ5OTkkHv37pHly5eTjh07EnV19XK3Cy0tLdKnTx+yf/9+8vnzZ77fIuvf/YULF/gOTWmJxWLy/Plz8vfff5O+ffsSfX39crcLgUBA2rZtS9atW0devHhBJBIJ32+TMc7Zs2fzHRbFs06dOhVrF61ateI7rHKjieQPWrduXfjLXbJkCQFAjIyMpCaRhBAikUhIvXr1pH7Y9e3blxBCSPXq1YuVqaurc/H2OBEXF0dOnjxJJkyYQCwtLeWSPPTu3Zvs3buXfP78mYjFYqKtrc1Yd//+/Qp5TzSRLL/09HTi7e1N5s6dS+zs7ORyw+Ho6EjWrl1LwsPDeUkeaCJZfrm5ueThw4dk1apVpHPnzkRTU7Pc7aJ+/fpk7ty55N69eyQvL4+X90UTSYoJTSRVQI8ePYr9kuvUqSPTa5cuXVriB1ynTp0Y78C1tLQU/M74ExERQfbv30+GDx/OmESX9sfBwYE1Ealbt65C3gNNJOUvISGBnD17lkydOpU0aNCg3O3C2tqazJkzh/j6+nKWPNBEUv6+f/9Obt68SebPn0/atGlDhEJhudqFiYkJcXd3JxcvXiQZGRmcvQ+aSFJMaCKpApgSycaNG8v02rdv38r0wSYQCIod09PTU/A7Uw4SiYSEhoaSLVu2EBcXF7k87vzvz/Pnz+UeN00kFe/Dhw/k8OHDZPjw4cTAwKBcbaBatWpk2rRp5MGDBwrtqaSJpOJ9+/aNXLp0ifzyyy+Mw4JK86OtrU2GDBlCLl26RLKzsxUaN00kKSaVNZFUrmnCFViDBg3g6OhYYj3CMKmGi20GlYFAIICtrS1mz56NW7duISEhASdPnsSIESPktvTRtGnT5HIeilsWFhYYN24cTp8+jYSEBNy8eRPTp09H7dqln8yUmJiI3bt3o0OHDrC2tsaSJUvw6tUrBURNKZqxsTEGDBiA3bt34+PHj3jy5AmWLVuGFi1alPpc2dnZOH/+PAYOHAgzMzNMnjwZ9+7dk8tkQYpSZTSRlKOffvoJAPD7779j6NChMr9OU7NyrTsoKyMjI4wcORKnTp0qTB5mzJhRrnUEHzx4gO7du+P48eNyW3aE4pampia6d++OnTt34uPHj3j69CmWL18OOzu7Up8rKioKa9asQdOmTdGqVSts3rxZ7gvvU9wQCARo3bo1Vq5ciZCQEERFRWHbtm3o1q1bqZeISk5OxoEDB9C5c2dYWlpi/vz5CA0NVVDkFFXJ8d0lqkzK82ibkPxxX7NmzSp8nDZhwgSZHrlYW1sr6i1VSBKJhDx79owsX76ctGzZssyPsnR0dMiIESPI1atXSW5ubpnjoY+2lUd0dDTZvn17uYZGCAQC0rVrV3Lo0CGSkpJS5ljoo23l8e3bN3LixAkybNiwcs0Eb9asGVm3bh358OFDueJhOjd9tE1V1kfbNJH8QXkTSSZz5swp8cOrefPmcnoHldOHDx/Ijh07SPfu3cucPJiYmJBffvmF+Pn5lXqZIJpIKqfk5GRy8uRJMmLEiDKPq9TS0iKDBw8mFy5cKPW4OZpIKqecnBxy48YNMm3atHKNq3RyciJ79+4lSUlJpY6BJpIUk8qaSNJH2wq2efNmrFy5UmqdFy9e4MOHDxxFVPFYWFhgxowZuHnzJhITE3HixAn07du3VI+zkpKSsGfPHjg5OcHKygqLFy9mXBieqjj+OzTixo0bGD9+fKnG2+bk5ODChQsYPHgwTE1NMXHiRDx48KDCbBBAFaepqQlXV1fs2rWrcGjEggULYGFhUarz+Pn5YerUqahZsyb69++PCxcuyHVvcYqqLGgiyYFly5Zhy5YtrOVisRhNmjShEwJkYGhoiFGjRuHq1av48uULGjZsWOpzfPjwAWvXrkX9+vXh6uqKixcv0i+ICq4geTh06BC+fv1aOKmiNOOPU1NTcejQIXTs2BHNmzfHrl27kJqaqsCoKUUTCARo1aoV1q1bh6ioKNy7dw+TJ0+GsbHs25nm5eXBw8MDQ4YMgYWFBZYsWUJv/CnqBzSR5Mjs2bPRv39/1vKsrCzY2dnh6dOnHEZVsVWrVg2HDh0q1zlu3bqFwYMHo27duli2bBk+fvwop+govmhra2Pw4MG4ePEi4uLiCidVlGZruvDwcMyYMQPm5uaYOHEinjx5osCIKS4IhUJ06tQJ+/btQ1xcHK5cuYJhw4ZBW1tb5nPExcVhzZo1qFevHvr27QtPT0+IxWIFRk1Ryo8mkhwyNTWVWp6bm4u2bdvi/v37HEVU8XXs2BFGRkaMZaXpdfjy5QtWrVqFevXqwc3NDV5eXvQLohIwNjbGxIkTcffuXXz8+BEbN24s1dIxmZmZOHToENq0aQN7e3scPHgQGRkZCoyY4oKmpib69euHM2fO4OvXrzhy5Ai6d+8OoVC2r0RCCLy8vODm5oZ69eph1apV+Pz5s4KjpijlRBNJDn358qXEOiKRCF26dIGXlxcHEVUOw4YNYzxeq1Yt+Pj4YMKECTA0NJTpXBKJBJ6enujbty+srKywZs0auoxQJVG7dm3MmzcPISEhCA8Px8KFC1G3bl2ZX//06VNMmjQJ5ubmmD59Oh1jW0kYGBjA3d0dN2/eRGxsLLZs2QJ7e3uZXx8TE4Nly5bBwsICgwYNws2bNxUYLUUpIb5n+ygTRcza/lHbtm1LtUTJqVOn5Hbtyuzr16+s/4apqamEEEKysrLIhQsXyKBBg4iGhkapZm+ybdNGZ21XfGKxmPj5+ZGpU6cSIyOjMs/w/fGHztquHF6/fk2WLVtG6tWrJ5d2QWdtU3TWNlVuSUlJMtclhGDkyJHYv3+/AiOqHGrUqIEGDRoUO04IwZ9//gkgf9zcoEGDcOHCBcTExGDdunWwtLSU6fx054vKSygUomPHjtizZw8+f/6MI0eOoG3btnyHRSmBRo0aYeXKlXj//j1u3LiBgQMHQk1NrcznI3QlAKqSookkh9LS0oodEwgE0NXVZX3NlClT8NdffykyrEph5syZjMePHz9e7JipqSkWLFiAiIgIXL9+HQMGDJB5bNSPFi5ciKioqFK/jlJOOjo6cHd3R0BAAEJCQvDLL79AT0+v1OfZsGEDHj58qIAIKT4IhcLC1R0+fvyIP//8s0xbd546dQpnz56FSCRSQJQUxSOee0SViqIfbevp6RU7v46ODomJiSlxQeUlS5bILY7KSCQSsS5W/vz58xJfHxMTQ1asWEFq1apV6sfew4cPJ0+ePOHgXVJcS0tLI/v27SvTDksdOnQgly9fLvUC+JTyy8vLIx4eHqR3795EIBCUql3Uq1eP7Nixg2RkZPD9NiiOVdZH2zSR/IGiE0mmRMfExIQQkr+9oomJidQPoJkzZ8otlsqoS5cujP9uffv2lfkceXl55MqVK6RXr16l/oLo0qUL8fb2Ltwik6o8JBIJCQoKIuPHjyc6OjqlaheNGjUi+/fvJ1lZWXy/DUoBoqKiyOLFi4mpqWmp2oWJiQlZtmwZiY+P5/stUByhiaQKUGQiKZFIWO9OC6SmphJzc3OpHz5jx46VSzyVEduWdVpaWmVK7iIjI8nChQtJlSpVSvUF0axZM3LkyBGSk5OjgHdJ8S05OZls376dWFpalqpdmJqaktWrV5dpyz1K+eXm5pJz586Rbt26lapdaGtrk6lTp5K3b9/y/RYoBaOJpApQZCIZFRXF+CHi4OBQpF5WVhaxsrKS+sEzYMAAucRUGbHNvD127FiZz/nnn3+W6ouh4KdWrVpk48aNJCUlRY7vkFIW9+/fL1O7qFKlCpk1axaJiori+y1QClKWdiEQCMigQYNIQEAA3+FTClJZE0k62YYjQUFBjMfr1atX5L+1tbXx5s0b2NjYsJ7r8uXL6NatG51NzIBtTcnNmzeX+Zxlnan56dMn/PHHH7CwsMC8efMQGxtb5hgo5VOanXJ+9P37d2zfvh3169fHyJEj8ezZMzlHRlVEhBBcvHgR7dq1g5OTEzw8POhnPFUh0ESSIyEhIYzHmzRpUuyYuro6QkND4eDgwHo+Hx8ftG3bln7Q/EfBcj//FRYWJvf9tGWd1ZuWloZNmzahXr16cHd3x+vXr+UaB6Vcxo0bhzp16pRYTywW4/Tp02jdujVcXFxw584dukRMJda7d2+0adNGprr+/v7o378/bGxs8M8//8j9s4ui5IkmkhxhSx5atmzJeFwoFCIgIAAuLi6s53z8+DFsbW3pchI/MDU1hZWVVbHjEokEe/fuleu1/vzzT8TExGD9+vUwMzMrsb5IJMKxY8dgY2ODsWPH0p1RKik3NzdERETg33//lXk7xjt37sDFxQWdO3emW6RWUg0bNkRQUBB8fX3Rp08fmV7z+vVrTJgwAU2aNMGxY8fotq2UUqKJJEc+fPjAeFxar6NQKMStW7cwcOBA1jovX75Ew4YNkZ2dXe4YKwt3d3fG44cOHZL7tYyMjDB//nxERUXhn3/+QdOmTUt8jUQiwfHjx9GoUSNMnDiRtW1QFZeGhgZGjx6N4OBg3Lx5E927d5fpdffv34ezszO6d++OwMBABUdJcU0gEMDZ2Rmenp548eIFfv75Z2hoaJT4uoiICLi7u8PGxgZnzpyhT6IopUITSY7ExcUVOyYQCFCzZs0SX3vx4kWMGzeOtTwqKgpWVlaMC56rojlz5jAeDwsLU1jvrZaWFn7++WeEhYXB09MTzs7OJb5GLBbj0KFDaNCgAaZPn45Pnz4pJDaKPwKBAN27d8fNmzcRHByM0aNHyzTm9vbt22jXrh369OmDp0+fchApxbWmTZvin3/+QXR0NObPnw9DQ8MSX/PmzRuMGDECdnZ2uHTpEh0KQSkFmkhyJCUlpdgxHR0dmV9/+PBhzJo1i7X8y5cvsLKyQmJiYlnCq1T09PRgbW1d7LhEIlFIr+SPhEIh+vTpA19fXzx69AhDhw4tcdecvLw87N69G9bW1vjtt9/w9etXhcZI8cPOzg7//vsvIiMj8dtvv8k0vtbb2xv29vYYOHAgwsLCOIiS4pq5uTnWr1+PmJgYbN68WabxtWFhYRg0aBDs7e3h5eVFE0qKVzSR5AjTo2cjI6NSnWPbtm1YunQpa3lSUhKsra3x8ePH0oZX6YwaNYrxOJd7l7dp0wZnz57F27dvMW3aNGhqakqtn5OTg61bt8LKygrz58+nNwWVlIWFBf7++298/PgRa9euRbVq1Up8zeXLl9G8eXMMHz4cr1694iBKimv6+vqYM2cOIiIicPz4cZmGyTx79gx9+/ZFu3btcOvWLZpQUrygiSQHYmJiGP/AZZmg8V9//vknNm3axFqelpaGJk2a4N27d6U+d2Uyd+5cxuPPnz/nfHyRtbU1du3ahXfv3mHy5MlQV1eXWj8zMxMbN25EvXr1sGTJEiQnJ3MUKcUlY2NjLFy4EJGRkVizZg2MjY1LfM3Zs2fRrFkz/PTTT3j//j0HUVJc09DQwJgxYxAaGooTJ06gQYMGJb4mKCgIrq6ucHZ2xr179ziIkqL+hyaSHJB1DUlZzZ07FwcOHGBdxy4zMxO2trasSw6pAkNDQ1haWhY7LhaLceTIEc7jAfJ7ovbt24c3b95g3LhxJT7yzsjIwJo1a1CvXj2sWrWKjoGtpPT19bFo0SJERUVh+fLlMDAwkFpfIpHg33//RePGjTFhwgRER0dzEyjFKTU1NYwaNQovX77E4cOHZfq+8PPzQ+fOneHi4oKAgAAOoqQomkhygi2ha9y4cZnPOXHiRJw6dYo1mczJyUGbNm3w4MGDMl+johsxYgTjcXkvA1RaVlZWOHz4MF69eoVRo0aVuLB1amoqli1bBisrK+zatYsu91RJGRoaYsWKFYiKisLChQtRpUoVqfXFYjH++ecfNGzYEHPmzKE915WUuro6xo0bh9evX2Pfvn2oXbt2ia+5c+cO2rdvj/79+6v80ylK8WgiyQG2NSTt7OzKdd7hw4fD09OTtWdLJBLB2dkZN27cKNd1Kqp58+YxHg8ODlaK5TMaNmyIEydOICwsDEOGDCmxflJSEmbMmIEWLVrg+vXrHERI8aFq1apYu3YtoqKiMHfuXGhra0utn5eXhy1btqBBgwbYvXs3vdGopDQ1NTF58mS8e/cO27dvl2nFDw8PD9jY2NAbDUqhaCLJAbaFp6WtISmr3r174+7du6zj7sRiMXr16oXz58+X+1oVTdWqVRlnQIpEIpw6dYqHiJjZ2Njg3LlzCA4OhpubW4n1X758iV69eqF379504kUlVr16dWzatAmRkZGYOXNmiZO1kpKSMH36dHqjUclpa2tj5syZiIiIwKZNm0qcrPXjjQZ9okEpAk0kOcC0x7JAIJBpmQdZdOrUCUFBQdDS0mIsJ4Rg2LBhCl/6Rhmx7b29a9cujiMpmZ2dHTw8PBAUFISePXuWWP/atWuwtbXFzJkzkZSUxEGEFB/MzMywfft2vH//HlOmTClxsha90VANurq6mDt3LqKiorBu3boSJ2vRJxqUotBEkgNMjxT09fXleo1WrVrh+fPnrGtTEkIwceJEbN26Va7XVXbz589nPP7kyROleLzNxMHBAdeuXYO/vz+6du0qta5YLMbOnTtRv359bNmyBbm5uRxFSXGtTp062Lt3L96+fYuff/65xIXN6Y2GatDT08OCBQsQHR2NlStXljhZi95oUPJGE0kF+/LlC+P+qLIMmC6tRo0a4fXr11KT1N9++w0rV66U+7WVVfXq1VGrVq1ix/Py8nDu3DkeIpJdhw4dcOfOHVy7dq3ENeVSUlIwZ84cNGvWDFevXqXryVVi9erVwz///IOwsDD06tVLat0fbzS2bt1KbzQqMQMDAyxbtgyRkZGYMWMGvdGgOEMTSQW7efMm4/HyzNiWxsLCAu/fv0fVqlVZ66xYsYJ1G8HKaPDgwYzH+Z69LauePXvi+fPn2LVrF0xMTKTWfffuHfr164fu3bsjNDSUowgpPjRp0gTe3t4y32j89ttv9EZDBZiYmGDHjh2lvtGgTzSosqKJpIL5+fkxHnd0dFTYNWvUqIGIiAips/q2bNmCiRMnKiwGZcL2ePvRo0ccR1J26urqmDZtGt69e4c5c+ZAQ0NDav07d+6gZcuWmDx5Mt1ysZKjNxoUk9LeaBQ80fDw8KA3GlSp0ERSwdg+rF1dXRV6XSMjI0RERKBu3bqsdQ4dOoShQ4cqNA5lYG5ujurVqxc7npmZiRcvXvAQUdkZGxtj8+bNePHiBfr37y+1rkQiwYEDB9CgQQNs27aNcYgFVTmU9UZj+vTpSE1N5ShKig+lvdHo378/evToQXdOomRGE0kFY9p1QiAQoHnz5gq/tq6uLt6+fSv1Mfr58+fRo0cPhcfCt86dOzMe37lzJ7eByEmDBg1w+fJl3Llzp8S2lJ6ejtmzZ6Nt27YIDg7mKEKKD6W90di9ezeaNGmC8+fP016oSqy0Nxq3bt1Cs2bNsGbNGvq4myoRTSQVjGnGtp6eXonb48mLpqYmXrx4gdatW7PWuXnzJtq1a6e0s5jlYerUqYzHK/oyGF27dsWzZ89w4MAB1KhRQ2rdJ0+ewN7eHnPnzkVGRgZHEVJ8KM2NxpcvXzB06FD069cPHz584ChCig+ludHIycnBkiVL0LJlS/j7+3MUIVUR0URSgeLj4xkXfzU3N+c0DqFQiEePHrH2ygFAYGAg7OzsKu1itV27dmW8C//w4QPy8vJ4iEh+1NTUMHHiRLx79w7z58+XunC1RCLB33//DRsbG3h6enIYJcWH0txoeHp6omnTpvj7778r7ecAla80NxovX76Ek5MTpkyZQnfHoRjRRFKBuJ6xLY1QKMTdu3fRr18/1jphYWFo0qQJsrOzOYyMO0wDzgkhOH78OA/RyJ+BgQHWr1+P169flzj29ePHj3Bzc8PQoUPx+fNnjiKk+FCaG43MzEzMnTsXDg4OePLkCYdRUnwozY3G/v370aRJE5w+fZoOg6CKoImkAvExY7skV65cwejRo1nL379/j/r161fKR5+DBg1iPF5ZEskC9erVw9mzZ3Hnzh00aNBAat3z58+jSZMm2L17N52MU8kV3Gi8ePEC3bp1k1o3ODgYjo6OmD17NtLT0zmKkOJDwY3G27dvMX36dAgEAta6X79+xciRI9G7d29ERUVxGCWlzGgiqUBsM7ZdXFw4jqSof//9F9OnT2ct//TpE6ysrPDt2zcOo1I8tvdcWXteunbtitDQUCxdulTq4Pq0tDRMnz4dHTp0oEvCqID69evj1q1bOH78uNR9miUSCbZt24amTZviypUrHEZI8cHQ0BA7d+7Ew4cPYWtrK7Xu9evXYWNjg40bN1b4oUFU+dFEUoEiIiIYj0ub+MKVnTt3YtGiRazlCQkJsLKyqlSPPU1MTBi/ODMyMvDmzRseIlI8bW1t/PnnnwgJCUHHjh2l1g0KCkLr1q2xYMECZGZmchQhxQeBQIAxY8bg9evXGD9+vNS6sbGxGDBgAAYOHIjY2FiOIqT40rZtWzx9+hQbNmxg3XIXALKysjB//nzY29sjKCiIwwgpZUMTSQUhhDBuO6Wvr8/ZjO2SrFmzBuvXr2ctT01NRcOGDVkT4orIycmJ8fiOHTs4joRbTZs2xb1793DgwAEYGRmx1hOJRNiwYQOaNWtW4We0UyUzMTHBoUOH4Ovri0aNGkmte/nyZTRp0gTbt2+nwyAqOQ0NDfzxxx948eIFevbsKbVuaGgo2rVrhxkzZtA1SVWUcmQ0ldCzZ88Yl9OxtLTkPhgp5s+fjz179rCWf//+HTY2NggLC+MwKsVhWwbo2rVrHEfCPaFQiIkTJ+L169cYNWqU1LpRUVHo1asXfv75Z6SlpXEUIcUXZ2dnPH/+HCtXrpQ6GScjIwO//vornJyc6ILVKqBevXrw9vbGqVOnYGpqylqPEIJdu3bBxsYGt2/f5jBCShnQRFJBLly4wHi8bdu2HEdSsqlTp+Lff/9lHWSdk5OD1q1bIyAggOPI5K979+5QV1cvdjwqKkplljwxNTXFiRMncOPGDVhZWUmte+TIETRv3hy+vr7cBEfxRktLC8uWLUNoaKjUpcIAICAgAC1atMDevXvpDN5KTiAQYMSIEXj16hUmT54ste6nT5/QvXt3zJo1iw6PUSE0kVSQ+/fvMx7v27cvx5HIZvTo0bh8+TLrY/e8vDw4OTlV+LtNgUDAuPwSIQSnT5/mISL+uLq6IiwsDAsWLGBMrgt8+PABXbp0wZw5cyrt0lDU/zRq1Ag+Pj44fPgwqlatylovMzMTv/zyC3r37l2pxlJTzIyNjbFv3z74+fmVuHf3jh070LJlSzx69Iij6Cg+0URSQV6/fs14vFevXhxHIrt+/frhzp07rEmFWCxGjx49cPHiRY4jky+2ZYAOHz7McST809XVxbp16/Ds2TO0a9dOat0tW7agdevWePbsGUfRUXwRCAQYN24cXr9+jbFjx0qte/36dTRr1gxnzpzhKDqKTx07dkRwcDDWrFkDLS0t1npv375F+/btsXz5cjqzu5KjiaQCSCQSxqVzDA0NS9zjlG+dO3fGw4cPWcdJSSQSDBkyBEePHuU4MvmZMWMG4/GnT59yHInysLW1hb+/P/bs2QN9fX3Wei9fvoSjoyNWr16tMkMBVFn16tVx9OhR3LlzB9bW1qz1kpOTMWLECIwaNarSLRtGFaepqYlFixYhPDwcXbt2Za0nFovx559/ol27dnj16hWHEVJcoomkAty7d49x3FBJi0MrizZt2uDZs2esSz8QQjBu3LgKO9O5evXqjI/sUlNTGWfaqwqhUIipU6ciNDQUzs7OrPVEIhGWLl2Kjh074u3btxxGSPGla9euCAkJYZ2sVuDUqVOwtbVl3dWLqlwK1iTdvn07tLW1Wes9ffoULVu2xNatWxknoVIVG00kFeDy5cuMx0tax0+Z2NjY4OXLl9DT02OtM2vWLKxZs4bDqOSnTZs2jMcr2y43ZWFpaQkfHx9s3rxZ6qOroKAg2NnZYffu3XTChQrQ09PDnj174O3tDTMzM9Z6nz9/Ro8ePTB9+nR8//6dwwgpPgiFQsycORPBwcGsn6tA/qTN3377DS4uLvj48SOHEVKKRhNJBXj48CHj8QEDBnAbSDlZWlri3bt3MDY2Zq2zZMkSzJs3j8Oo5GPgwIGMxz08PDiORDkJhULMmTOnsCeBTVZWFqZPn46ePXvi06dPHEZI8aVXr14ICwvDsGHDpNbbvXs3WrZsicDAQI4io/jUuHFjPHz4ECtXroSamhprvbt378LW1hbHjh2jN6CVBE0kFeDdu3fFjgkEAtbFsJVZzZo1ERkZKXUNsU2bNmHKlCkcRlV+bOsoPn/+nONIlJuNjQ0CAwOxZMkSqQvp37x5E82aNcOpU6c4jI7ii4mJCc6cOYOTJ09KXeD+3bt36NChA5YsWYLc3FzuAqR4oa6ujmXLliEwMJBxdYwCaWlpcHd3x+DBg5GQkMBhhJQi0ERSznJzcxlX969atarS7GhTWkZGRoiMjESdOnVY6+zfvx8jRozgMKry0dfXZ/wC/PbtG30c9x+amppYtWoVHjx4IHWcb0pKCkaNGoURI0bQHS5UxMiRIxEeHg5XV1fWOhKJBGvWrEHbtm0r7VakVFH29vZ49uwZZs+eLbXepUuX0KxZM5XYEKIyq5iZjRJj21auSZMmHEciX7q6unj//j0aNmzIWufMmTPo06cPh1GVT/PmzRmPq9p6krJq27YtgoODMX36dKn1zpw5Q5cJUiG1atXC9evXsWvXLql7MwcHB8Pe3p72WqsIHR0dbNmyBXfu3JHaCREfH4/evXtj4cKFdCWICoomknLGNtGmU6dO3AaiAJqamnj58iXs7OxY63h7e6Njx44VYmYe2+Lwly5d4jiSiqNKlSrYuXMnbty4AXNzc9Z6ERERaNeuHZ2IoyIEAgGmTZuGkJAQODo6stbLyMjAqFGjMHXqVLq4vYro2rUrwsLCSlyPdP369ejatSsda10B0URSzvz9/RmPlzQwvaJQU1PD06dPpc5Af/DgAVq3bg2xWMxhZKU3btw4xuNPnjzhNpAKyNXVFeHh4VL37M7NzcX06dMxcuRIul+3imjYsCH8/f2xevVqqbsl7du3D+3ataP7dasIQ0NDHD16FBcuXEC1atVY6/n5+cHOzg43btzgMDqqvGgiKWdRUVHFjqmrq6NFixY8RKMYQqEQfn5+6N27N2udkJAQNG3aVKkH2FevXp1xeaP4+Hi6E4MMjI2NceLECZw5c0bqzP4zZ87A3t4eISEh3AVH8UZdXR2LFy9GUFCQ1K30QkJC0KpVK5w7d47D6Cg+DRo0COHh4XBzc2Otk5iYiF69emHJkiX0UXcFQRNJOXr06BFjw69Xrx4P0Siel5eX1Ak2b9++Rf369ZV68grTFx0hBFeuXOEhmopp2LBhCA0NldpL/e7dO7Rt2xb79++nj7pVRKtWrfDkyRNMnjyZtU56ejqGDRuGGTNmICcnh8PoKL6YmpriypUr2LlzJ+sOaoQQrFmzBi4uLvjy5QvHEVKlRRNJOWLbq7lz587cBsKhU6dOSV36JyYmBlZWVkhOTuYwKtn16NGD8fjZs2c5jqRiq127Nnx8fPDHH3+w1snJycGUKVMwZswYZGRkcBgdxRcdHR3s27cP//77L6pUqcJab9euXWjfvj0iIyM5jI7ii0AgwPTp0/Hw4UOpHS337t2DnZ0d7ty5w2F0VGnRRFKO7t69y3i8pEHGFd3evXulJhDx8fGwsrJCXFwch1HJZvz48YzH6SLKpaehoYENGzbg6tWrjFtQFjh58iTs7e0RFhbGYXQUn0aPHo0nT56gWbNmrHWePXuGVq1a4eLFixxGRvGpYHUHtg0igPzvj+7du2PFihVKP+5eVdFEUo6Y7qbV1NTQoUMHHqLh1oYNG7B69WrW8pSUFDRo0IBxDCmfLC0tGfeI/fTpU4WYea6M+vbti+DgYLRr1461zps3b+Dg4IBDhw7RR90qonHjxggKCmK9eQPy97sfPHgwfv31V6UeX03Jj5GRES5cuICtW7dCQ0ODsQ4hBCtXroSrq6tSdkioOppIyklwcDDjBA1LS0sIBAIeIuLe4sWLsX37dtbyjIwMNG3aFC9evOAwqpIxrY0pkUjo45RysLCwwL179zB37lzWOtnZ2Zg4cSLc3d2VehwtJT+6uro4dOgQjhw5InXNye3bt6Njx46Ijo7mLjiKNwKBAL/++iv8/f1Rt25d1no+Pj5o2bIl69M/ih80kZSTf/75h/F4ZVg/sjRmzpyJI0eOsCbP2dnZaNWqFR4/fsxxZOxcXFwYj9OFk8tHQ0MDmzZtwuXLl6Vuo3f8+HG0adMGr1+/5i44ilfu7u54/Pix1I0aHj9+jJYtW8LT05PDyCg+OTg44NmzZ+jXrx9rnbi4OLi4uGDNmjX0qZGSoImknLD1Xrm7u3McCf/c3d1x4cIF1i0hc3Nz0b59e6W5q2T7HQUEBHAcSeXUv39/BAcHo02bNqx1Xr16BUdHR3h7e3MYGcUnGxsbPH78GD/99BNrnZSUFPTr1w/r1q2jQyBURNWqVXH58mVs2rSJdS1SiUSCJUuWYPjw4fRphhKgiaScREREFDumpqYGJycnHqLh38CBA3Hjxg2oqakxlotEIri4uMDDw4PjyIpr3rw5Y5wfP37kIZrKydLSEv7+/vj1119Z66SlpaFv377YtGkTTRpURJUqVXD06FEcPHiQcawykD8+btGiRRg9ejSysrI4jpDig0AgwNy5c3H//n2p2yueP38eHTt2pJ/VPKOJpByEhoYyDgy3sLBg7ZVTBS4uLvD392cdQC2RSDBgwACcOHGC48iKq1mzZrFjmZmZdEcWOdLU1MTWrVtx4cIFGBoaMtYhhGDevHlwd3enW+ipCIFAgAkTJuDRo0do1KgRa71Tp07BycmJbqGnQtq1a4fg4OASN7+wt7fHgwcPOIyM+pHqZjlyxLZ+pKr2Rv6obdu2ePr0qdTehjFjxmDPnj0cR1YU27IkytBjWtkMGjQIz549Q+vWrVnrHD9+HJ07d6aLEasQW1tbPH78WOq2m0+fPoW9vT2CgoI4jIzik4mJCa5evYoNGzawPuFKSEhAly5dWOcqUIpFE0k5YNsXtLKvHykrW1tbhIeHS12QeNq0adiwYQOHURXFtmg83fNVMaysrODv7y91fFxQUBDs7e2VamIWpVj6+vr4999/sXXrVtanOXFxcXB2dsaxY8c4jo7ii1AoxB9//IGbN2+yrlGbl5eHCRMmYPbs2XRrRY7RRLKcCCF49+5dseNqamro0qULDxEpJ2tra7x9+5b1kSYALFiwAIsWLeIwqv8ZMmQI4/EnT55wHInq0NbWxtGjR/HXX3+xzvL//PkzOnXqhJMnT3IcHcWXgqVgrl27xjrbPycnB+7u7pg3bx5dpFqFdO3aFY8ePZK6h/u2bdvQu3dvpd1NrTKiiWQ5Xbt2jfHux9LSUqXHRzIxNzdHREQEqlevzlpn3bp1mD59OodR5atfvz7jDEE6iFuxBAIBfv/9d3h6esLAwICxTnZ2NkaPHo1FixbR5T5UiKurK4KCgqSOm9y0aRPc3NyQmprKYWQUn6ytrREQEAA3NzfWOrdu3YKDgwNevXrFYWSqi2Y65bRv3z7G43379uU4korBxMQEkZGRqFWrFmud3bt3Y8yYMRxGlc/U1LTYsczMTDrpgwO9e/dGYGAg6tevz1pn3bp1GDBgAJ0ApUIaNmyIoKAg9OrVi7XOtWvX4OjoyPhkiKqcDAwMcPnyZSxcuJC1zvv379G2bVu6pBgHaCJZTn5+fozHZ8+ezW0gFYienh7ev38vNWk4ceKE1DtORWCbcEMXyuZGkyZN8OjRI3Tv3p21ztWrV9G+fXvG5baoysnQ0BBXr17FvHnzWOsUbLl569YtDiOj+CQUCrF27VqcPHmSdTInXVKMGzSRLIcvX74wjsMwMDCApaUl9wFVINra2nj16hVsbW1Z63h6eqJz586cPc5km3Dz9u1bTq5PAcbGxvD29pZ6I/bixQs4ODjAx8eHu8AoXqmpqWHjxo04evQoNDU1GeukpKSgZ8+e2LZtG00aVMjIkSPh5+fH+pSLLimmeDSRLAe2faXbtWvHcSQVk7q6OkJCQqT+e927dw8ODg6cJJNsE27ounXcUldXx5YtW3Do0CHWNUi/ffsGV1dX7N+/n+PoKD6NHTsW9+7dY1z3Fchfm3b27NmYMmUKnbmrQgpWd3B0dGStU7CkWEJCAoeRqQaaSJbD5cuXGY9PmDCB20AqMKFQiIcPH8LV1ZW1ztOnT2FjY8O46Ls8sU24oQP5+TF+/HjcvXsXNWrUYCwXi8WYMmUKli9fTnugVEjbtm3x5MkT2Nvbs9Y5cOAABgwYQLfPUyFmZmbw9fUtcUmxDh06IDIyksPIKj+aSJaRRCJhHNwtFAoxePBgHiKq2G7cuMHaIwjkj1Ns2LAhMjMzFRoH04SbvLw8hV6TYtehQwc8fvwYdnZ2rHX+/PNPTJo0ifZAqZBatWrh/v37Uhcv9/LyQteuXWkPlAopWFJs06ZNrKumvHv3Du3atcPTp085jq7yoolkGV26dIlx/bIGDRrQZX/K6Ny5c1J7cz98+ABra2ukpKQoLAa2CTcUfywsLODv74+hQ4ey1jl06BD69+9Pe6BUiI6ODv7991+sW7eOdR3SR48e0R4oFVOwT7e0JcXi4+Ph7OxMN5yQE5rxlNGBAwcYj/fv35/jSCqXgwcPYs6cOazlcXFxsLa2Rnx8vEKuzzbhhuJXlSpVcObMGaxYsYK1jre3N7p06UJ7oFSIQCDAggULcOXKFdads2gPlGrq1asXgoKCYG1tzVj+/ft39O3bl+6QJAc0kSyjgIAAxuOzZs3iOJLKZ/PmzVIThm/fvqF+/fr48OGD3K8t7fE6xS+BQIDly5fj8OHDrHvuPn78mC4PpILc3Nxw9+5d1s0OaA+UamrcuDEePnzIOp5WJBLB3d0d69ato+Osy4EmkmUQHR3NuCiysbGx1IW2KdktX74cW7ZsYS1PT09HkyZN5L5zQf369VmTFEo5jBs3DlevXoWuri5j+fv379G+fXu6vaWKadOmDR4+fEh7oKgiatSogbt376Jnz56sdRYtWoQZM2bQ7TbLiCaSZcCW4HTo0IHjSCq32bNn4+DBg6zjn7KysmBnZ4dnz57J9bomJiZyPR8lf7169YKvr6/UHqjOnTvj+vXrHEdG8al+/fq0B4oqRk9PDx4eHhg3bhxrnd27d2Po0KHIysriLrBKgiaSZcC27M+UKVO4DUQFTJgwAWfPnmVNJnNzc+Ho6Ij79+/L7ZpWVlZyOxelOLL0QLm5ueHo0aMcR0bxqaAHStq2irQHSvVoaGjgn3/+weLFi1nrXLp0Cd27d8e3b984jKzio4lkKaWlpeHjx4/Fjqurq6N37948RFT5DRkyBNeuXWN95CwSidClSxe57akqbakZSrnI0gM1btw4rF27lvZAqRA9PT1cuXIFP//8M2sd2gOlegQCAVavXo3du3ezrq7y4MEDdOzYkfF7nmJGE8lSYnusbWdnR5f9UaAePXrg3r17jAuGA/nrevbt2xdnzpwp97WcnZ3LfQ6KO7L0QC1evJj2QKkYDQ0NHDp0CEuWLGGtQ3ugVNMvv/yCCxcusO7R/erVK7Rr1w6hoaEcR1Yx0cynlE6ePMl4fNKkSRxHonoKFqfW0tJiLCeEYOTIkeXeNq9Hjx7lej3FvdL0QNH9dlWHQCDAqlWrsGfPHtoDRRUxYMAA3L59G8bGxozlnz9/hpOTE+7evctxZBWPyieSWVlZSE5ORnJyMuMOJmKxGPfv30diYiK+ffvGupvN+PHjuQhX5dnZ2SEsLIx1xi4hBFOmTMHmzZvLfA1jY2PWns8fpaSkIDk5mW6hqCRk7YHq06cPMjIyynQNQkjh5wXTyg0AkJGRUViHiz3iqZJNnToVFy9elNoD1bFjR8bPd1mlp6cX/t6ZZGdnF5YrertXSjYdOnTAgwcPYGFhwVielpaGXr16wdPTs8zXKCnHEIlEheWK3rlNYYiKCwgIIABk+mncuDHj8aZNm/L9NlROTEwMMTAwkPr7Wrp0aanOKZFIyIcPH8i1a9eIvr6+zO1i5syZCnqXVFnt2bOHCIVC1t9Z27Ztybdv38p07m7dusnULuzs7IhEIpHzO6PK48GDB6Rq1aqsvzNTU1MSGhpapnOvXLlSpnaho6NDvnz5Iud3RpXHp0+fSIsWLVh/Z+rq6uT06dNlOvfdu3dl/i7x9PSU8zvjhsonkoQQ0rNnT5l/0Uw/GzZs4PstqKSEhARiYmIi9Xcza9Ysmc8XHR1dYnL63x8tLS0SGxurwHdJldXly5eJtra21ETv69evpT7v/fv3ZWobly5dkv+bosrt1atXpG7duqy/N2NjYxIUFFTq8yYnJxMjI6MS28WcOXMU8K6o8kpJSSFdu3Zl/b0JBAJy8ODBMp3b2dm5xHZhb29fYW88aSJJStcryfQzatQo4unpSbKzs/l+KyonNTWVmJmZSf39uLu7y3y+kydPlup3T3sjlVtJPVCNGzcmMTExhfXFYjFJSUkp8bwl9UrS3kjl9vnzZ6k9UHp6esTX17fIa2TpwS6pV5L2Riq3nJwcMnLkSKm/w61btxZ5jSztQpZeyYraG0kITSQLSeuVrFOnTomNQENDg3h7e/P9NlRSVlYWsbKykvr7GThwYGH9mJgY4ufnx3q+sWPHypRE0t7IiiEsLIyYmpqy/h4tLS1JREQEkUgkZOrUqWTt2rUlntPPz09q26C9kcovOTmZtGvXjvV3qK2tTa5du0YIIeTYsWOkT58+Mp1TWq8k7Y1UfmKxmEydOlXq3/eqVauIRCIhISEhxNramuTk5JR4Xmm9khW5N5IQmkgWktYruWnTphKTyCtXrvD9FlRaXl4eadq0qdTfU7du3UhcXBxp3LgxGTRoEOu50tLSSkxMAdobWZG8ffuWWFhYsP4uzczMiLu7OwFAbG1tZTqni4sL47lob2TFkZ6eLrV3WUNDg8yePZsIhUKirq5OEhISSjwnW68k7Y2sOCQSCZk3b57Uz/+JEyeSatWqEQDEw8OjxHNK65WsyL2RhNBEsgimXkkbGxuSkZFBk8gKQCwWkzZt2kj949fR0SEAiKamptRHEoGBgURNTY32RlYiHz58IA0aNCjxBgEACQ8PL/F8/v7+jK+9ePEiB++GkpesrCzi5uYmU7vYs2dPiedLSUlh7JX87bffOHg3lLxIJBKyevVqmdrFyJEjZTonU69kRe+NJIQmkkUw9UqePXuWEEKIubk5TSIrALFYLPOs2r1790o9159//kl7IyuZuLg4YmtrW2LbWLx4sUzn+2+vJO2NrJhyc3PJiBEjSmwXnTp1kul8/+2VpL2RFdfWrVtLbBe6urokIyOjxHMx9UpW9N5IQmgiWcyPvZI2NjZELBYTQghp3749TSIrkAEDBpT4x9+hQwep58jLyyOOjo60N7KSSUpKIg4ODlLbhpWVlUwJ4X/HStKxkRWXSCQiEydOlNouBAIB+fjxY4nn+u9YSTo2smI7dOgQEQgEUtvGqVOnZDrXj72SlaE3khCaSBYTGBhYrDeSEEJGjRpVJJGgE2uUX8GYN2k/ERERUs/x5s2bwsfhWlpatDeykkhLSyMNGzaU2jYCAwNlOldBryTtjaz4JBIJGT58uNR28ddff8l0roJeSdobWTns3LlTartwc3OT6Tw/9kpWht5IQmgiyahXr15FeiMJIWTRokWFHwq3b9/mMTpKViKRiDRq1EjqH//KlStLPM+uXbsIADJhwgTaG1lJ7Nu3r8SbjLlz58p0roJeSdobWfEFBQWVuBmBg4ODTOcq6JWkvZEVX3x8fImTOTU1NWVaOoyQ/F7JytIbSQhNJIvJzMwkPj4+5N9//yUZGRmFv+j9+/cTPT09cu/ePZ4jpGQhFovJhAkTSkwW6tevX+Ifs0QiIRN/HklSYkPItjUzCfkeS4hELPU1lPJ6+vRpYS+ztB8LC4sS24ZYIiHfc0Vk6ao1JCMnj4jEleOLQRWlpKSQ+vXrl9guAJCoqCip55JIJCQzT0S27NpDoj59Jrli+nlRUUkkEjJkyBCZ2sWxY8dKPF9iIiEnTgSQAwd8iAyLAFQIAkIIgQrLyclBWFgY3r59i8+fP+P79+9FynV0dGBmZgYNDQ2YmZnB2dmZp0ip0oiJicHy5cvh6emJhIQEqXUDAgLQtm3bogclecAnL+DjOSApCCQjEgL88KeipgMYtQBqdAKsfgYMGyvgXVCKkpGRgevXr+PSpUvw9PRk3Tc7MDAQjo6Ohf9NCEFydh4+pmUhMSsX6TmiH1sFBAD0NNVhoqOBOgY6qKajCYFAoNg3Q8mNSCSCv78/Ll26hEuXLiEmJoax3l9//YXff/+9yLHvuSJ8SMtCQmYOUrJFEP/nq1VXXQ3G2how19eGuZ421IS0XVQUhBCEh4cXtouQkBDGem5ubvDw8ChyLDkZOHECuHYNePwY+O/XUbVqQOvWQM+ewE8/ASYmCnoTCqSyiWRmZiZ8fHwQEhICsVgMgUAAaf8UAoEAAoEATZo0Qffu3WFoaMhhtFRZicViBAUFwcPDAx4eHnj16lWxOtOmTcOuXbvy/0OSB7zeArzaBOQkAAI1gIjZLyBQB4gIqNYBaLkRqN5eQe+EUpTc3FzcvXsXFy9exMWLF5GYmFhYNnfuXGzatAkA8Ck9Cy8T05GeK4YAgLQPzoJyXQ01NDHRg4WBDk0oKxhCCJ49e4aLFy/i3LlzePfuXWFZmzZt8OjRIwBASnYewhLSkJCZK3O70BAK/q+9e4+Kst73OP5+ZgYYRBjAJNSygnJ7yhCtjEqO5slT6l6ny851MvKWp3Qvb2ktWSvx0i736bTrrDbtpTu35jYzK9TFSpFclMeO20tuPIpi0lbwSiJyE+QyMMxz/hhBURAYnt/DEN/XWv0x46zf96nG5/nM70p0WBC/Cu8pgbILOnnyJKmpqWzatIndu3c3vu/v709hYSEOh4MLF+DNN+Gzz6CuzvPnLUWMhluD1QoTJsC770Lfvor/JQzULYPkkSNH2LZtG06n86bhsTkWiwWLxcITTzzBsGHD5OHQxRw/fpwtW7awZcsWdu3aRX19PeHh4Zw/fx7/iizYOxnKc7j546AZmhV0N9wzA2L/C/yClVy/UMvlcrFz505SUlLYtGkTQUFBHDuRS9aFcs5XOr1u95ZAfx6IdBDkbzPwaoVZdF3n8OHDpKSk8NVXX3H8+HFy805S1TOcf5RUthogW9LDZuWBPg569wgw+pKFSc6dO8fGjRtJSUlhz549rF37KW73RObOhcpKqL9JP0RzbDYICID334fp06+GTF/WrYKkrutkZGSwd+9eQ9q77777ePbZZ7FarYa0J8xVUlJCeno6X3/9NYsmD2TQpd8D+s17IFujWSFkIIzKgMA+hl2rMJ/L5eK73Xup7XM3Lt27oNBAA6wWjcduC6dXoL9Rlyg6ga7r/F/WYQrt4VRrxvwwGHKrg7tCexjSlug8p0+fZf58G5s390HTWu6BbKupU2HlSk+49GXdKkh+8803/PDDD4a2OXDgQMaPH4/FYjG0XWGiMynwt3+/8sKAvw6aDYLuhH/dA/beHW9PdIpyZx3fnynG5daN+FYAYNUg/vZehEuY7LLq3G7+90wx5dfNj+2o2FtDiAoNMrBFYSZd9/Qg/uUvxrWpafDii7BunW/3THab9HP06FHDQyRATk6OYT2cohOUH4c9k668MOixoLug8hTsm9rxn6SiU9S7dfbllxoaIgHqddiXX0pdvdvAVoWZsi6UGx4iG9otrakzuFVhlrVrjQ2R4Hl8rF8Py5cb267RlAXJs2fPMnLkSO69915iYmJISUlRVapV5eXlbNmyRVn7O3bsoKCgQFn7QhG3C/a86Al+Rj8WdBf8nAa5q4xtV5jiaFEFl+vqDQ8LAM56N4cuXFLQslAtv6KGM+XVSr4XAPt/9vx4EV3LyZMwc6a69ufPh5wcde13lLIgabPZ+PDDD/nxxx/59ttvmTdv3g1b65hl165d1NbWKmtf13W+++47Ze2Ltmltm58bnNkIJZlXgqQihxKhvkZd+6JVxcXFuN1t7wGsqnNxolTdvUoHzlbUUCa9T52qsrKyXc8kXdc5Utj8NlFG0IHKunpOX6pSVkO0TXufJb/7HSiMGLjdsGiRuvY7SlmQ7NOnD7GxsQBEREQQHh5OSUmJqnItqq6u5tChQ+1end0euq5z4sQJiouLldUQrXvttdcYO3Zs26cw5Pw3aIpnd9SWwukv1NYQN5WSksLgwYPZuHFjmwJlbmkVqqcjaaA0rIrWnT59mqioKD744IM2BcqCSidVrg4sxGuj46WVSp9XonWxsbHMmTOH/Pz8Vj974YJnix+Xwv4Ilws2b4YWtjXtdO1+irrdbgYOHEhiYmKT97dv346/v3+zQ9iZmZm43W5uv/1276/US0ePHsWl8v/wFRaLhVWrVrF+/XoyMjKU1xPNS09PJy4urvVAeelHKPm7Z8sepSxw/GPFNURrsrOzGT9+fKuBUtd1Tl2qUjZ02VgHOFteLcOYnaywsJA33nijTYHyVJn6HxgAVXX1FFcr7N4SraqpqeGjjz4iOjq61UC5fr2nx1A1TfPMw/RFXq3aXrt2LbNnz+b06dOEhYWRlZVFfHw8ixcvvmG3/+LiYuLj41m1ahWPPmr+Zs2pqakcOXKkXUNb3sjNzWXdunWNrxMSEoiOjlZaUzS1efNmsrOzm7w3ZswYlixZ0uR0EgByV8MP/2HOhVn8SC74T4pL1Q2LiZZlZmaybdu2Ju8NGjSIJUuW8NxzzzXZcaGi1kXGyXZOkeiIk9lk7f2befVEo4sXL7JixYom70VERLBgwQJmzJhBUNDVFdS6rpN24gK1JgR/DQitLWfnxs+V1xLNe++996ipuTolKSAggFdffZXExET69evX5LPPPw+pqe3fL7K9NA2efNJzQo6v8SpIulwuBgwYwOTJk5k2bRpxcXE8/fTTV08HucLpdDJ69GheeeUVJk6caNhFt0dycjKlpaVKa+Tm5nLs2DEyMzNJSkrinXfeUVpPtN8NgXL/dMj9RO38yGv82/J+bNnd+jCJMNf1gfLMpSoyC8xbCJP97VaWzHrVtHqiba4PlFV19XyTV2ha/dqiAiYMH2paPdE2zQXKvn3h/Hlz6oeGQkmJ720F5NUEMZvNRmJiIsnJyYwdO5ahQ4eSnJzc5DO6rjNlyhRGjRrVaSESoKKiQmn7DT2RmZmZADzyyCNK6wnv3DDkXXXWtBAJEOkwr5Zou+uHvKvq6k0ZvgRPz5M9OMSkaqI9rh/yLqm4bGp9iz3Q1HqibZxOZ5Mh73Pn8rlwwbz6ZWVqF/V4y+uVBgkJCVRVVaHrOhs2bLjhdJfdu3fz5ZdfkpqaSmxsLLGxsRw5cqTDF9xeqictN8ypSUpKIi0tjbFjx5KWlkZSUpLSusI76enpLFiwgJoqcx8MNovMhfNl2dnZJCYmcvLUKVPrWixyKpYvKyws5O233+ab7dtNraupXgQoOsTpdLJ8+XKWLfu9KfMjr1Xng5s9eH3wzqxZswAoKipq9ojA4cOHK5+X2BY2m416hZMXGubRNAxnp6WlMW7cOGX1hPfi4+N56623GDlyJNqu30CZtyfktl9VrTwYfFVUVBSLFi0iISGBUxVOjlxUO4pxLZcvdi8IABwOB/PmzWPu3Lno9iD+53SRabX1ehnB8FVWq5VJkyaxcOFCoqOjWbMGnE5zalssEOiDndVePd0WLVpEWloa+/btw+VysXr1aqOvyzCRkZFK24+OjmbixIk8+OCDAHLKjQ+Kj49nx44dfP/99zz++ONomgahMZ5zsU2SUyBH4vmaqKgo1qxZQ05ODlOmTMHPzw9HgJ9p9XWg/KJJk6tEmzkcDpYuXcqpU6dYsmQJoaGhBPubd9ixBtRXysI8X2O1Wpk6dSo//fQTn3zySeNi2kGDzLuGAQOgmX67TtfuxTarVq1izpw57Nixg7i4OJYtW8bKlSs5ceIEfn7m3YTbKiMjg3379invHc3Ly+PTTz9tfJ2amsqoUaOU1hRNTZs2rcn2U/Hx8SxduvRqeLxWfhp8/2tzLiwggstP5srecJ1k9erVzJs3r/F1dHQ0SUlJJCQk3HDPqq13s/WEeZOeRvQNxt+kXnHRVE5ODsOGDWt8fW0PZGho6A2fzzh5kYpac3oKY3v3pLfvPU67jTvuuKNxka7VamXy5Mm8+eabze7EMns2fPyx+iFnmw0mTQJf7Ldr18+s9PR0Zs6cyYYNG4iLiwNg9uzZvP/++6xbt46XX35ZyUV2xD333MOePXuU14mKimL58uWEhIQQERHB6NGjldcUTTWEgiZD2C0tb+s9HKx29afOaDbo92t69uypto5okd1uB64GyJdeegmbrflbn7/VQpjdj7KaOuXxroeflfCeQS1/R4VSDdOSWguQDfr0DOByifFnbDcnMrgHPfx8sOupm9A0rTFALly4kKioqBY/O2YM/OlP6q/J5YKnnlJfxxtt7pE8cOAAI0aMYNmyZcydO7fJny1evJgvvviCY8eONTtfsjPpus6KFSvaf3xeO9ntdl5//fUWH1BCveTkZO6///6bB8hr/X0mnFipfvX2mCwIi1FbQ7Ro69atFBUV3TRAXutceTX7z5cpv67BESFEhwW1/kGhRF5eHuvWrWs1QDYwYwsgDejb087D/cKU1hE3N3/+fGbNmnXTANnA7Ya774ZTp0DloFNkJJw5Az448OvdPpJdTVZWFqmpqUprjBw5khEjRiitIQxW/g9Iuxd0RYuxNBtE/DP8i5zD3pW4dZ3teYVUu9RNh/GzaDwVHYGfRRZhdSX7fy4lv6JGaa/kyP69CA+UOdVdyZ//DL/9rbr2NQ3+8Ad4/XV1NTqiW9zFYmJiiIqKanKChVEsFgu9e/fmscceM7xtoVjIALj/LVC1c6DFDx5epaZtoYxF03iwT6jSGkMjHRIiu6CYiBBsFnVTEe4OC5IQ2QW98goMH+6Zx2g0mw2GDoU5c4xv2yjd4k6maRrPPPMM/v7+hs9H0jSN559/Xoa0u6p7E+GWODUruB9aDj3vMr5doVzvHgEMCFcz7Nw/JJB+wT64h4dold1mVfIjQwN6+lu575Zgw9sW6lmt8Nlnnq15jJzdZ7F4hrI//9w3h7QbdIsgCRAcHMykSZMMC5MNk3EnTJhARESEAVcoOoXFBiO2Qsg/GRsmBy+DqCnGtSdMd98twfQPsRvaZmRQAEMjHYa2KczVp6ed2FuNO5FIAwJtVuJv64VVYW+nUOuOOyAjA+x2Y8Kk1Qr+/p6ztQcM6Hh7KnWLOZLXunjxIuvXr6e8vNzr7Vg0TcNut/PCCy/Qv39/g69QdIraS7DrN3DhOzy3di++G9qVXukHk+EehRNmhGl0XSf7YgXHSyu9/VY0utMRSOytDiyySvsX4Wx5NQcKytD1jn0vwux+PNIvDLvNtxaqCu9kZcG4cZ7zt73dddBqhV69YOtWeOghY69PhW4XJAHq6urYuXNn4+bhbf1PYLFYcLvdDBkyhNGjRxPoi1vMC+/pOuStgQPzwHUZaONdQLN6Fuzc8ig8vBocA5VepjBfUVUtBwrKqKxr/8Isu83C0EgHkUHG9m6KzldZ5+JgwSUKq2rb/UPDosGg3iFEh/aQLaB+YS5fhkWL4I9/9IRCVxs3BrHZPJ+dMQPefRccXWTwolsGyQZFRUUcOHCAgwcP4nQ60TQNTdMaNy9v+Mut6zo2m42YmBgeeOAB+vbt25mXLVSrKfIEyuMroPKk5z3N78o2QTpgAc1y5bUGfcfC3dOh3zjP++IXqd6tk19RTV5ZFSU1nt2Hrw8P1752BNiICg3i9hA7NllY84ul6zoXq2rJK6vi/GXPiu6GWNjwXbj2e2G3WrgrtAd3hvYgUHohf9GOHvVsVv7Xv0JFhWfOo8UCDac2W62eXku3G4KCPBuOT58Ogwd36mW3W7cOkg1cLhf5+fkUFBRQUFCA0+lE13UCAgKIiIggMjKS2267DX9/WU3Xreg6lB6C0oOef6oLQK8DayAE/wrCh0CvhyFQ7TGcwvdU1rooramjzFlHZV09bl3HgkYPPysOux9hdj9Tj9UTvsHpclNSU8slZx0VThcuXUdDI8BqIdTuhyPARpjdT3ogu5nqati/Hw4ehMOH4dIlT3h0OCAmBoYMgWHDPGGyK5IgKYQQQgghvCLjLUIIIYQQwisSJIUQQgghhFckSAohhBBCCK9IkBRCCCGEEF6RICmEEEIIIbwiQVIIIYQQQnhFgqQQQgghhPCKBEkhhBBCCOEVCZJCCCGEEMIrEiSFEEIIIYRXJEgKIYQQQgivSJAUQgghhBBekSAphBBCCCG8IkFSCCGEEEJ4RYKkEEIIIYTwigRJIYQQQgjhFQmSQgghhBDCKxIkhRBCCCGEVyRICiGEEEIIr0iQFEIIIYQQXpEgKYQQQgghvCJBUgghhBBCeOX/AaV01BTTbPkZAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFUCAYAAACX0dxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACohUlEQVR4nOzdd1gUV9sH4N8sXamiIqiIYkcUFbEiFsTee4kYe2wxGmONJXaj0Rh7L7F3BFRUQEEFCyBgl6KgIohUqbt7vj/44JUwsyywO7Ow574urvfNzNkzz8ph95kzpzCEEAKKoiiKoiiKKiGR0AFQFEVRFEVR5RNNJCmKoiiKoqhSoYkkRVEURVEUVSo0kaQoiqIoiqJKhSaSFEVRFEVRVKnQRJKiKIqiKIoqFZpIUhRFURRFUaVCE0mKoiiKoiiqVGgiSVEURVEURZUKTSQpiqIoiqKoUqGJJEVRFEVRFFUqapVISiQSrF27ViF1rVq1CgzDIDw8XCH1UcJRRLtwcXFB8+bNYWdnB0dHR4SEhCgmOEpQZW0bWVlZGDRoEBo2bAg7Ozv06tUL0dHRiguQEoQiPjPmzJkDKysr+j2ihhSZi6gCtUokw8LCcP78+TLXExQUhICAAFhaWiogKkpoimgXZ8+eRWhoKEJCQjB//nxMnDhRQdFRQlJE25g6dSpevXqFkJAQ9OvXD1OnTlVQdJRQFNEuhg0bBn9/f9SpU0dBUVHlhaJyEVWhNonk8+fP0bdvX3z48AF2dnZYsWJFqerJzs7GzJkzsWvXLjAMo+AoKb4pql0YGxsX/P+UlBSIRGrzp1VhKaJt6Orqok+fPgWfFe3atUNkZKSiQ6V4pKjPjM6dO6NWrVoKjo5SdYpqP6pEU+gA+NK0aVMMHjwYjRs3xqxZs0pdz/LlyzFu3DjUrVtXgdFRQlFUuwCA8ePHw8fHBwBw/fp1RYRHCUiRbSPf9u3b0b9/f4XURQlDGe2CUh8Vsf2oVbfJ48ePYW9vX+S4o6MjqlatyvoTExNTUO7Bgwd49OgRZsyYwWfYlJKVtV3kO3bsGGJiYrBmzRosWLCAj9ApJVNU2wCAdevW4c2bNxVqbJS6UmS7oNQPV/sprxhCCBE6CD6IxWKYmJggISEBurq6papjw4YN2L59O7S1tQEAsbGxMDMzw4EDB9C7d29FhkvxRBHtgo2enh5iY2NhamqqsDopfimybWzevBmnT5/GrVu3Cg2DoMofRX9mWFlZwd3dHc2aNVNAdJSqU9Z3jpDUpkcyNjYWBgYGZfrFLVq0CB8/fkR0dDSio6NRq1Yt3LhxgyaR5Zgi2kVqaio+fvxY8N+XLl2CqakpqlSpoogQKYEoom0AwF9//YVTp07h5s2bNImsABTVLij1VBHbj9okkrVq1ULz5s3RqFEjLFmyROhwKBWhiHaRkpKCQYMGwdbWFi1atMDOnTvh7u5OJ2OVc4poG7GxsZg/fz6Sk5PRtWtX2NnZoW3btgqOlOKTor5LZs6ciVq1aiE2NhbOzs6oX7++AqOkVFVFzEXU5tE2RVEURVEUpVhq0yNJURRFURRFKRZNJCmKoiiKoqhSoYkkRVEURVEUVSo0kaQoiqIoiqJKhSaSFEVRFEVRVKnQRJKiKIqiKIoqFZpIUhRFURRFUaVCE0mKoiiKoiiqVGgiSVEURVEURZUKTSQpiqIoiqKoUqGJJEVRFEVRFFUqNJGkKIqiKIqiSoUmkhRFURRFUVSp0ESSoiiKoiiKKhVNoQNQBWKxGB8+fMCnT5/w+fNnZGVlAQB0dHRQrVo1mJubo1atWtDW1hY4UopPhBDExcXh06dPiIuLQ3p6OqRSKbS0tFClSpWCdqGvry90qBTPkpKS8OHDB8TFxSEpKQkSiQQaGhowNDSEubk5LCwsULVqVaHDpHiWkZGB2NhYfPr0CV++fEFubi5EIhEqVaqEGjVqwNzcHObm5hCJaB+OOsnNzS3IMeLj4wvlGNWrV4e5uTlq1qxZbnMMtU4kv3z5gsePHyMkJATZ2dlgGAYMw0AqlQIAGIYBkJdQaGpqwtbWFvb29rCwsBAybErJMjIyEBwcjMePHyM5ORkAIBKJCrWL79tJ/fr1YW9vj4YNGxa0GariEYvFePbsGR4/fozY2FgAee2CEAJCSMF/57cLMzMz2Nvbo3nz5uX2C4IqHiEEkZGRePLkCV69egWpVFrouwMo3C4MDAzQqlUrtG7dGgYGBoLFTSlffHw8Hj9+jKdPnyInJ6fId8f3nx9aWlpo3rw57O3tUaNGDYEjLxmG5Ld0NZKbmwtfX188ePCg0C+1OPkfBnZ2dnBxcYGenp6SI6X4RAhBcHAwbty4gdzcXMj7p8EwDAghqFWrFgYOHEh7oiqgd+/e4cqVK0hKSir4fcvLwMAAAwYMQP369ZUYISWE5ORkXL16FZGRkYWSxeIwDAMNDQ10794dDg4OtIeygsnJyYG3tzcCAwNL1C7yy7Zu3RrOzs7Q1dVVcqSKoXaJZEJCAk6cOIHU1NQSfRl8j2EY6OrqYtSoUbC0tFRwhJQQsrKycPbsWURFRZW6jvwvg169eqFNmzaKCo0SECEEt27dwv3790ucQObLf13Lli3Rt29faGhoKCFSim9hYWFwc3ODVCqVO1FgY2FhgdGjR9MhMhVEXFwcTp48ifT09DLlGJUqVcLo0aNRs2ZNBUeoeGqVSH769AlHjx5FTk5OqX/B+RiGgUgkwujRo2Ftba2gCCkhZGZm4siRI0hISChzu8jXrVs3ODo6KqQuShhSqRRXrlxBaGiowuqsX78+Ro0aRZPJcu7x48fw8PBQSF0Mw8DIyAg//vgjDA0NFVInJYzY2FgcO3YMYrFYITmGhoYGxo4dCysrK8UEqCRq05+elpaGY8eOKSSJBPJ6KiQSCU6dOoX4+HgFREgJQSqV4uTJkwpNIgHA29sbISEhCquP4p+3t7dCk0gAiIiIgLu7u0LrpPj16tUrhSWRQN53SWpqKo4fPw6xWKyweil+JScnF/wOFZljnDhxAomJiQqIUHmUmki6u7ujUaNGaNCgAQ4cOKDMS8lECMHly5cVlkT+t+7z58/TD4Byyt/fH7GxsQpvFwDg4eGBpKQkhddLKV90dDTu3bun8HoJIQgJCcGLFy8UXjelfOnp6bh8+bLC65VKpUhMTMStW7cUXjelfFKpFJcuXSrR2Hp5EEIglUpx4cIFSCQShdWraEpLJMViMebNmwdvb28EBQVh48aN+Pr1q7IuJ1NoaCgiIyPLNI6Fi1QqRUJCglK+dCjlSkxMhK+vr9Lql0qlcHNzU1r9lHJIJBJcunRJqTPw3dzckJ2drbT6KeW4fv260n5vhBAEBgYWrAhAlR9BQUF4//69UjokpFIpPn36hMDAQIXXrShKSyQfPnwIGxsb1KxZEwYGBujTpw9u3LihrMtxIoTA399f6dcJCAigvZIC+/vvv+Ht7S33H3NAQIBS45FKpYiOjsbnz5+Veh1KNnd3dxw5ckTuv88XL16UaTKePLKysvD06VOl1U8VLzIyEqtWrSpY4qs4KSkpeP78uVLbhUgkwoMHD5RWPyWfefPmISIiQq6yhBBeOpIePHigsr2SJU4kpVIpGjdujIULFxY6fuPGDWhra+PcuXMAgI8fPxaabVSrVi18+PChjOGW3Lt37/DlyxelXycrKwvh4eFKvw7F7eHDh+jevTucnJyKTSizsrIQEhKi1C8FIO+LQZXvJNVBbGwsfvzxRzRu3FiuhDIgIICX9UAfPHig9PZHccvKysLKlSthZWUlV0L56NEjpccklUoLbmQo4Rw9ehSNGjXCxIkTi00o3759K/fNSFmkp6fj5cuXSr9OaZR4QXKRSITFixdj9uzZWLRoEUxMTPD06VMMHz4c69atw/DhwwGA9QNSiMWa37x5U6J1nEqLYRi8fv2azuAWUG5uLgDAz88P3bt3h6OjI1auXImuXbsWaXvv37/npQdZKpXi9evXZVoKgiqb/F0kIiIi8OOPP2L16tVYtmwZxo0bBy0trSJl+brhTU5OxqdPn+ii1AL59u0bgLyexpUrV2Lr1q345Zdf8PPPP8PY2LhI+devX/PyN0wIwatXr9C4cWOlX4tilz/R5fDhwzh27BjGjx+PpUuXsn6/85VjiEQivH37FjY2Nkq9TmmUavkfsViMhg0bwtXVFZMmTUK7du0wcOBA7Ny5s6DM/fv38eeff+LSpUsAgJ9//hlt27bFmDFjFBe9HI4cOYJ3797xci2pVIo//viDl2tR8mNLKH19feHn56f0P/58R44cQXR0NC/XouRTr169IgllZGQkjh8/zlsMQUFBdBytijEyMiqSUObm5mL9+vW8JJIikQiJiYn4+++/lX4tSn4aGhqsCeW+ffvw6dMnXmKoWrUqZs6cycu1SqJUYyQ1NTWxcOFCbN++HX369EGrVq2wffv2QmUcHBwQHh6ODx8+IC0tDZ6enujZs6dCgi6JuLg43q6Vnp7O27Uo+eX3UH7/yPvz58+8JZEAVHZsizqLjIzExIkT0bhxYxw+fBi5ubn4/Pkzb09ORCJRQW8ppTryeyi/f+St6OXBZJFKpUhJSeHlWpT88nso//vIm8/l/xITE3n93pJXqSfbjB07FhkZGSCE4NSpU0UW2NXU1MSWLVvQtWtXtGzZEgsWLICpqWmZAy4pOgGGyvd9QsnnDQal2r5PKB89esTrEBxV/FKg8nyfUB46dIjXa9PvLdX1fUL5008/IScnh7drE0JUsm2UOpGcNWsWAODLly+cuzQMGDAAr1+/xtu3bzF16tTSXqpMhBiXSamuPn36YPPmzXQ/bKqQZs2aYePGjbCzs+P1uvTzSbVVr14dv//+e8HYf77QdqHadHR0MGPGDCxduhSamiWealImqrgve6ki+v333+Hh4VGw5M3BgwcVHZfC8DmQne8GRcmvT58+CAwMhIeHBxwcHGBoaMjrH6Qq/vFTeQnkuXPn8PTpUwwbNgzGxsa89RISQopM9qFUQ/Xq1bF582ZERkZi/vz5qFGjBm/Xzt9nmVI9Ojo6mD17NiIiIrB9+3bUqlULlStX5u36urq6Krm9aokznwMHDmDLli3w9vZGixYtMHfuXGzatAlTp05VyQ9FS0tLpKSk8PLlUKdOHSxfvlzp16HYXbx4scgSTL1798bKlSvh4OBQ6HjNmjURFBTES1wikQhz5syh454E8vjxY3h6ehY61qxZMyxfvhxDhw4tlOR/v2SZshFCMGjQINjb2/N2Tep/EhISsHv37kLHqlevjt9++w3Tp08vlCAYGhpCT08PmZmZvMTWpk0bmJmZ8XItqqhNmzYVGr+so6ODqVOnYuHChUU+I2rXro2XL1/yMoa2Vq1aKtlbXaJE8tq1a5g5cyZOnTqFdu3aAQBmz56NzZs34/jx45g4caJSgiyLWrVq8bLwr0gkQqNGjTBjxgylX4ti9/bt24JEsk+fPlixYkWRBDJf7dq1eYvLwsICkyZN4u16VGF79uwpSCSbNWuGFStWYMiQIay9xFWqVIGuri4vk2BEIhEmTJigkjfg6uD58+cFiSRXApmPYRhYWlrysgQQIQTOzs6oU6eOUq9DcduxYweysrKgo6ODadOmYeHChbCwsGAtm59IKhvDMLx+b5WE3M/bnjx5guHDh2PTpk0YMmRIwXFDQ0PMnj0bGzZsUMmZqTY2Nrw8cpZKpbyPr6KK+u8jbC7VqlWDhYUFL3d3rVu3Vvo1KNn++wiba6gBwzBo1aqV0tuFSCRC8+bNaRIpsP8+wpb1mLJVq1a89DqZmJjA0tJS6dehuOnq6mLOnDmIjIzE33//zZlEAoCtrS1vvYQtWrTg5TolVap1JMsbDw8PBAUFKe3xNsMwsLa2xtixY5VSPyWfhIQEVKtWTe7y4eHhuHDhghIjyvtAmj9/Ph0/K6DExESYmJjIPU41JSUFf//9t9KThmnTpvE69o4qLH9BcnnHuBFCsH37dqXvYtK7d2+ZN8GU8pX0u+Ty5csICwtTWo6R/8RzxIgRSqm/rNRiBoCjo6NS7/wZhkH37t2VVj8ln5L84QNA06ZNYW5urtS7SWdnZ5pECszU1LREk52MjIzQtm1bpbULhmFga2tLk0iBVa5cuUQTJRiGgYuLi9LiYRgGVapUQcuWLZV2DUo+Jf0ucXJyUuokGIZh0K1bN6XVX1ZqkUgaGhqif//+Squ/W7du9EuhHBKJRBg6dKhSPgAYhkGDBg3QqlUrhddNKV/37t1hamqq8GSSYRjo6+ujT58+Cq2X4keTJk1gZ2entJuMYcOG0eEO5ZCJiYlS/6ZdXFxUesk6tUgkgbyxkm3btlV4vbVq1aJj4MoxU1NTDBo0SKF1MgwDExMTDBw4UCVn2FHF09TUxIgRI6Cjo6Ow3yHDMNDQ0MCIESOgq6urkDop/vXq1QtmZmYK/9vu06cPzM3NFVonxZ8WLVooJRewtbVFmzZtFF6vIqlNIgkAPXv2RPv27RVWn42NDdLS0lCtWjUMHjwY+/fvR2xsrMLqp5Tr69ev+Pfff7Fq1SpYWlpCJBKV+cuBYRhUrVoVEyZM4HV9MUpxsrKycO3aNSxfvhzZ2dmoVKlSmdcBFYlE0NbWxvjx41GrVi0FRUrxSSqVIjAwEKtXr8b9+/dRs2ZNhXxeAEC/fv3oMlDl2Nu3b7F161bs3LkTNjY2CqvXzs4OgwYNUvkOCbWYbPNfYWFh8PT0RHZ2dokH1ItEIohEIjg7O8PBwQGJiYmwsLBAbm5uQRlbW1v07dsXAwYMgIODg0ouIKqu3rx5Azc3N1y9ehX+/v6QSCQwNTXFx48fkZCQgMuXL+PLly8lrpdhGBBC0KZNG3Tv3h06OjpKiJ5SloSEBHh4eMDNzQ1eXl4FEzGCg4NhbW0NDw8PvHr1qtT1W1lZYcCAATAxMVFUyBQPMjIycPv27YLPjM+fPwMA/v77b8yYMQO+vr64f/8+AJT4u4RhGBgZGWHgwIGwsrJSdOiUEkkkEgQEBODq1atwc3PDixcvAOQNTTh79iyePn2K69evIycnp1TtQlNTEy4uLmjdurXKJ5GAmiaSQN4HhLe3N54+fQqxWFyQCHBhGAYMw6BJkybo0aMHjIyMCs4NGzaMc/Zv9erV0a9fP/Tv3x89evSgvVQ8k0gkePDgQcEXAdt6XzNmzMDOnTsLygcEBOD+/fvIyMgotl2IRCJIpVLUrl0bPXr0UNl1vqjCCCF4+fIl3Nzc4ObmhgcPHhT5PTdr1gyhoaEFH+QvXryAt7c3vnz5UvB755J/3sTEBE5OTmjevHm5+EKggLi4OLi7u8PNzQ03b94ssqaohoYGPn78iOrVqxeUv3nzJiIjI+X6HiGEQEdHB23btkWnTp3omMhyIj09HTdv3oSbmxvc3d1ZOxyuXLmCAQMGAMhbFeD27dsIDQ2Ve2lEkUiEZs2awdnZmddd+cpKbRPJfNnZ2QgLC8ObN2/w8eNHpKenFzqvp6cHCwsLaGpqokaNGujSpUuROjw9PdG3b99ir2Vra4vAwEDo6ekpKnyKQ0xMTMFWnsX1MD548KBggf18UqkUr1+/xvPnz/HhwwckJSUV+oLIbw+WlpZo2bKlSg+Epv4nNzcXS5cuxaVLl/D27VuZZTdu3Ijffvut0DFCCD58+ICnT58iJiYGCQkJhRJKkUgEU1NT1K5dG7a2tqhTpw5NIMuJffv24eDBg3j48KHMcn379oW7u3uR40lJSQgJCUF0dDTi4uKQk5NT6LyxsTEsLCzQpEkTNG7cmK7mUE74+Pjgzz//hLe3N7KzsznL5T/Z0tbWLnQ8KysLoaGhePv2LT5+/FjwtCNfpUqVYGFhAWtrazRv3rxcbo+p9onkf2VmZiIgIAAfP37EoEGDCnoQ9+/fj19++QUeHh5wcnIq9BqxWIw6derg48ePnPVaWlrCz8+PLjTLE0IIpk6digMHDsgs16BBA7x69arYL/ucnBxkZGRAKpVCU1MTBgYGNEEop44ePYoJEybILMMwDN6/f1/seEapVIq0tDRIJBKIRCIYGBjQoSzlVHBwMLp27VrsVqanT5/GyJEjZZYhhCA9PR25ubkQiUTQ09Ojw13Kqa9fv6Jr164IDQ2VWW7mzJnYsWNHsfVlZmYiKysLhBDo6uqWy8Txv9Rqso089PT08Oeff2L9+vWFeg6jo6Px7ds39O7dG7du3Sr0Gk1NTYwfP15mvbq6ujJXx6cUi2EY7NmzB46OjjLLjRs3Tq6EUFtbG8bGxqhSpQoMDQ1pElmOubq6YtGiRTLLdOvWTa5JMSKRCEZGRqhSpQqMjY1pElmOtWzZEidPnpRZxsDAoODRpSwMw8DAwKCgXdAksvyqUqUKrl+/Dn19fZnlfvjhB7nq09PTg4mJCapUqVIhkkiAJpJFBAQE4Nq1a3j27FmhcY/R0dEA8u4m+vXrV7B3b77iGtHr169hY2NT5HEHpTyHDx+Gv7+/zDLjxo3jKRpKVTx8+BB79+6VWUbeLwWq4oiPj8eSJUtklhk+fDgdmqRmxGIxFixYUGTY2/caNGig1rsR0UTyP1atWlXo/+ePf8pPJIG8cZWDBg2Cm5tbwbGmTZsWuyPB69ev0ahRoyKDtynF27ZtG6ZMmSJz4HvHjh1Rr149HqOihHbnzh10794dSUlJnGX09PQwZMgQHqOihBYbG4vOnTvj6dOnMsvRGwz1kp2djeHDh+PEiRMyy/3www9q/ZSKJpLfCQgIwPXr1wv++/teye8TSSBv0P6wYcMKJZPyfMhER0ejQYMGRQbcUopBCMHq1avxyy+/FFuW9kaql+vXr6NXr14yexYAYPDgweVqxiRVNhEREXB0dCx2eSdLS0t07tyZp6gooX379g39+/fH5cuXiy07duxY5Qekwmgi+Z3veyO/P/bt2zfWiTT/TSZHjx4NkUgEHR0djBo1ivM6sbGxsLa2RmpqquKCp0AIwcKFC7F8+XLOMvlLdmhra2PEiBF8hUYJ7MKFCxgwYADn04D8dgHQXid18vz5czg6OhbpKMj3/Z7LY8eOLfPC9FT5kJKSgl69euHmzZus53V1dQtuNumTLQCEIoQQ8uDBAwKA9Wfz5s2c5wAQLS0tcuXKFUIIIf379ydXr14lhBCyZs0ama+rVq0aSUlJEfJtVxgSiYRMnz5d5r/3mjVrSHx8PGnSpAkZPHiw0CFTPDly5AgRiUSc7WLAgAEkPT2dDBs2jJiZmZHc3FyhQ6Z48OTJE2JqasrZLho2bEjev39Ptm7dSgCQ58+fCx0yxYOEhATSunVrznahr69PfHx8yN27d4menh7Zs2eP0CELjiaS/69Xr16cDad27doyE5T8ZNLT05Okp6cXqvevv/6S+TozMzOSlpYm0LuuGHJzc8m4ceNk/jtv27atoHxsbCzx8/MTMGKKLzt37pTZLkaPHk1ycnIIIYRkZ2eTixcvChwxxQd/f39iaGjI2S5sbW1JXFxcQfkzZ84IGC3Fl48fP5KmTZtytgtjY2MSEBBQUN7Ly4t8/fpVwIhVA00kiezeSHl+xowZQzw8PEh2djZr/bt27ZL5egsLC5KRkcHzu64YsrKyyODBgzn/bRmGIQcPHhQ6TEoAGzZskPl3N2XKFCIWi4UOk+KZl5cXqVSpEme7cHBwIImJiUKHSfEsKiqKWFtbc7aL6tWrk6dPnwodpkqiiSSR3Rspz8/GjRuLvcbhw4cJwzCcdVhaWpKsrCwe3m3F8e3bN+Li4sL5b6qpqUlOnz4tdJgUz6RSKVmyZInMv9l58+YRqVQqdKgUzy5fvky0tbU520WXLl1Iamqq0GFSPHv58iWpVasWZ7uoVasWefnypdBhqiy1TyRL0hvZuHFj1uNNmzaV61rHjx+XmUzWq1ev4DEbJVtycjLp1KkT57+ljo5OwVhVSn1IJBIyZ84cmX/HK1asoEmkGjpx4gTR0NDgbBe9e/emT4bUUEhICKlevTpnu7C2tiZRUVFCh6nS1D6RzMjIIImJiSQxMZFUqVKlSCPS0tIivr6+JD4+niQmJrImgiKRSO4B+keOHJH5JdewYUM62L8YX758kTkYunLlyuT27dtCh0nxTCwWkx9//FHm39fmzZuFDpMSwN69e2XexA8bNoxzaBJVcT148IAYGxtztgsbGxvy8eNHocNUeWqfSH6PbQaftrZ2oTINGzZkbXB79+6V+zp79uyR+WVnY2NDJBKJot9ehfDx40diY2PD+W9nbGxMHjx4IHSYFM+ys7PJ8OHDOdsFwzAl+hulKo7iVt2YMGECvXlXQ97e3qRy5cqc7aJ169YkISFB6DDLBZpIfkeeRHLlypWsjc7e3r5E19q+fbvMDzc7OzuaTP5HdHS0zMHQ1apVI8HBwUKHSfEsIyOD9O3bl7NdaGhokH///VfoMCmeSaVSsmLFCpmfs7NmzaKfs2rI3d2d6OrqcraLTp06keTkZKHDLDdoIvkdeRLJlJQU1oanqalZ4g+kTZs2yfyQc3BwoB9y/+/Vq1cyB0PXrFmTvHjxQugwKZ6lpqaSrl27crYLbW1tcunSJaHDpHgmlUrJvHnzZH6+Ll68mI6VVUNnz54lmpqanO3CxcWlyDJ+lGw0kfyOPIkkIYRYWlqyNsDSTO4obtFyR0dHtf+we/r0qczB0PXq1SORkZFCh0nx7OvXr6Rt27ac7aJSpUrEy8tL6DApnonFYjJlyhSZn6vr1q0TOkxKAIcOHZK5OcHgwYPp6imlQBPJ78ibSHLNCu3Xr1+prvv777/L/NDr3r17Wd9auRUQECBzMHTTpk3Jhw8fhA6T4llcXBxp3rw5Z7swNDSki86roZycHDJmzBiZn6f//POP0GFSAihuONm4cePoWNlSoonkd+RNJKOiolgboomJSamv/dtvv8ls5KVNUsszHx8foq+vz/lv0qpVKzoYWg29f/+ec9IbAGJqakoeP34sdJgUzzIzM8nAgQM524VIJCKHDx8WOkxKAGvXrpX5/Tp9+nQ6jKwMaCL5HXkTSUII5/ZasbGxpb5+cevf/fjjj6Wuu7zx8PCQORi6Y8eOdDC0Gnr79i2pU6cOZ7swNzcn4eHhQodJ8Sw9PZ04OztztgstLS1y7tw5ocOkeCaVSsmiRYtkfq/++uuvaj98rKxoIvmdkiSSPXv2ZG2Uv/32W5limDp1qsxGv3z58jLVXx6cPXuWaGlpcf4bODs708HQaig8PJyYm5tztos6deqQt2/fCh0mxbOkpCTSoUMHznahq6tLPDw8hA6T4plEIiEzZ86U+X36xx9/0CRSAWgi+Z2SJJLnz59nbZiNGjUqcxwTJkyQ2fj37dtX5muoqsOHD8scDD1w4ECSmZkpdJgUzx4/fsz69/n9311MTIzQYVI8i4+PJy1btuRsF/r6+sTHx0foMCme5ebmEldXV5nfo1u3bhU6zAqDJpLfKUkiKZFIWLfbEolEChlrMWzYMM4/AIZhKuQd9j///CPzD3/MmDF0C0k1dPfuXWJgYMDZLlq0aEE+f/4sdJgUzz58+ECaNGnC2S5MTExIQECA0GFSPMvOziZDhw6V+f25f/9+ocOsUESgSkUkEqFBgwZFjkulUly4cKHM9Z87dw5OTk6s5wghGDBgAJ48eVLm66iK9evXY/bs2Zznp06dimPHjkFLS4vHqCiheXl5oWfPnkhLS2M937ZtW/j4+KB69eo8R0YJKSoqCo6Ojnjx4gXr+erVq8PX1xdt27blOTJKSBkZGRg4cCDnd7CmpiZOnjyJyZMn8xxZxUYTyTIYNGgQ6/GDBw8qpH5vb280btyY9ZxEIkGnTp3w7t07hVxLKIQQLF68GEuWLOEsM3/+fOzZswcaGho8RkYJ7dKlS+jfvz8yMzNZz3ft2hU3b96EiYkJz5FRQnr58iUcHR0RGRnJer527drw8/ND8+bNeY6MElJqaip69+6N69evs57X0dHBxYsXMWrUKJ4jUwNCd4mqkpI82iYkb9/n/5YH8tawU5SsrCxSo0YNzm56IyMjkpSUpLDr8UkikZBZs2bJfJy9cuVKOhhaDR0/fpx16Ej+T9++fUlGRobQYVI8Cw4OJtWqVeNsF9bW1iQ6OlroMCmeJSYmkjZt2nC2i0qVKpFbt24JHWaFRXsky8Dc3Jy1NyQ1NRVRUVEKuYaOjg7Cw8NhYGDAej4lJQXNmjVDTk6OQq7HF7FYjEmTJmHHjh2cZbZs2YIVK1aAYRgeI6OEtmfPHowfPx4SiYT1/IgRI3Dx4kXo6enxHBklpAcPHqBr165ISEhgPW9jYwM/Pz/UqVOH58goIcXFxcHJyQmPHj1iPW9kZISbN2+ie/fuPEemPmgiWUaOjo6sx//++2+FXcPU1BQhISHQ0dFhPf/hwwe0bt0aUqlUYddUppycHIwePRpHjhxhPc8wDPbu3Yt58+bxGxgluD///BM//fQTCCGs5ydOnIiTJ09CW1ub58goIXl7e6NHjx5ITk5mPW9vb487d+7A3Nyc38AoQb1//x6dO3dGeHg46/mqVavCx8cHHTp04DkyNSN0l6gqKemjbULyFs7+72vw/49YFC0gIEDm4z5nZ2eFX1PRMjIySO/evTnfg4aGBjlx4oTQYVI8k0qlxW4VOmfOHLr7hBq6evUq0dHR4WwXjo6OJCUlRegwKZ69fv2aWFpacrYLCwsL8vz5c6HDVAs0kfxOaRJJqVRKNDU1WRMiZXzpXblyhTAMw/nH4+rqqvBrKkpqaipxcnLijF1bW5tcvnxZ6DApnkmlUjJ37lyZSeTSpUvpWFk1dPr0adbP1/wfFxcX8u3bN6HDpHgWGhpKzMzMONtF3bp1SUREhNBhqg2aSH6nNIkkIYRzLTNlDe7duXOnzC/dP/74QynXLYvExETi4OAgczC0l5eX0GFSPBOLxWTy5Mky2/OGDRuEDpMSwIEDB2TeNA8ePJhkZWUJHSbFs4cPH5IqVapwtovGjRuXaatiquRoIvmd0iaSXL0p48ePV1qsixcvlvnle+nSJaVdu6Ti4uKIra0tZ6yGhobE399f6DApnuXk5JBRo0bJbMc7d+4UOkxKANu2bZPZLn744QeSm5srdJgUz+7cuSNzcwI7OzsSHx8vdJhqhyaS3yltIhkaGsrZva5MY8eO5fyD0tTUJC9fvlTq9eXx7t070qBBA844TU1NyZMnT4QOk+JZZmYm6d+/P2e7EIlE5OjRo0KHSfFMKpWS1atXy0wip0+fTsfKqqFr164RPT09znbRvn37crsUXnlHE8nvlDaRJIQQbW3tIq9V1jjJ78kac2hkZETS0tKUen1Z3rx5I3MwtLm5OXn27Jlg8VHCSEtLI927d+dsF1paWuT8+fNCh0nxTCqVkt9++01mErlgwQI6VlYNnT9/nmhpaXG2i+7duwv6Xafu6PI/CmJtbV3kmEQigZ+fn1Kv6+3tzXptIG+NSaGWBQoPD4ejoyPev3/Pet7Kygr+/v5o2rQpz5FRQkpOToaLiwtu377Nel5XVxdubm4YOnQoz5FRQpJKpZg5cyY2bdrEWWb16tXYuHEjXVdWzRw7dgwjRoxAbm4u6/n+/fvD3d0d+vr6PEdG5aOJpIJwLXZ69OhRpV5XJBIhKCiIc8Hy169f8/6l/PjxYzg5OSEuLo71fKNGjeDn54d69erxGhclrISEBHTt2hUPHjxgPW9gYIAbN26gV69ePEdGCUksFmPChAnYvXs3Z5mtW7di2bJlNIlUM7t27YKrqytnZ8ioUaNw4cIF6Orq8hwZVYjQXaKqpCyPtoOCgli73JWxniSb8PBwmWtMrl69mpc47t69K3MwdIsWLcjnz595iYVSHbGxsaRx48ac7cLExIQ8fPhQ6DApnmVlZZEhQ4ZwtguGYciBAweEDpMSwMaNG2UOc5g8eTIRi8VCh0kROkaykLIkkoQQ1jEcGhoavI3pOXfunMw/PHd3d6Ve//r16zIHQ7dr1458/fpVqTFQqiciIoLUrVuXs12YmZmR0NBQocOkePbt2zfSs2dPznahqalJTp8+LXSYFM+kUilZunSpzO+yX375hY6VVSE0kfxOWRPJRo0asTZ6Pz8/JUZdmKxlgbS0tMibN2+Uct0LFy7IHAzdrVs3OhhaDT1//pxYWFhwtovatWuT169fCx0mxbOUlBTi6OjI2S50dHSIm5ub0GFSPJNIJGTOnDkyk8jly5fTJFLF0DGSCtS1a1fW48eOHeMthnXr1qFnz56s53Jzc9GmTRt8+/ZNodc8fvy4zMHQ/fr1g4eHBx0MrWaCg4PRuXNnfPz4kfV8/fr14e/vjwYNGvAcGSWkxMREdO/enXMiYuXKleHh4YH+/fvzHBklJIlEgilTpmD79u2cZf7880+sWrWKjpVVNUJnsqqkrD2SgYGBrHdQDRo0UGLURUkkEpmPEps2baqwO7pdu3bJvHscOXIkycnJUci1qPLj3r17xMjIiLNdNGvWjHz69EnoMCmeffz4kdjY2HC2CyMjI3L//n2hw6R4lp2dTUaMGCFzrOyePXuEDpPiQHskFcjBwQGamppFjkdFRfEaR/5M7sqVK7Oef/78OUaOHFnm6/z555+YMWMG5/mJEyfixIkT0NLSKvO1qPLj1q1b6NGjB1JSUljPt2nTBnfu3EGNGjV4jowS0rt379C5c2c8e/aM9Xy1atXg6+uL9u3b8xwZJaTMzEwMGTIEZ8+eZT2voaGBY8eOYdq0aTxHRsmLJpIKVrdu3SLHxGIxnj59ymscxsbGuH//PjQ0NFjPnzt3Dlu3bi1V3YQQ/P777/jtt984y/z888/Yv38/5/WpisnNzQ19+/ZFRkYG6/nOnTvj1q1bqFKlCs+RUUJ6/fo1HB0d8fbtW9bzNWvWxN27d2FnZ8dvYJSg0tPT0bdvX3h4eLCe19bWxrlz5zBu3DieI6NKgiaSCtapUyfW41x3W8rUvHlzHD9+nPP8/Pnz8fjx4xLVSQjBL7/8gjVr1nCWWbZsGbZu3QqRiDYvdXLq1CkMGTIEOTk5rOd79eqFa9euwdDQkOfIKCGFhoaic+fOiImJYT1ft25d+Pn5oXHjxjxHRgkpKSkJPXr0gI+PD+t5PT09XL16FYMHD+Y5MqrEhH62rkrKOkaSEEKuXLnCOsajU6dOSoq6eL/++ivn2BNDQ0OSkZEhVz1isZhMmjRJ5pjIjRs3KvndUKpo//79hGEYznYxdOhQkpWVJXSYFM8CAwOJiYkJZ7to0qQJiY2NFTpMimefP38mLVq0kPm9xOdqJ1TZ0ETyO4pIJLOzs1n/MExNTZUUtXy6du3K+Udrb29f7OtzcnLIyJEjZSaRu3bt4uGdUKrmr7/+ktkuxo8fT3Jzc4UOk+KZr68v0dfX52wXLVu2JPHx8UKHSfEsJiaGc6m8/O/Kx48fCx0mVQL02aOCaWtrw8jIqMjxr1+/CrLndT4vLy/OyQ2PHz/G4sWLOV+blZWFIUOG4MyZM6znRSIRjh07hp9++kkhsVLlAyEEf/zxB+bNm8dZZsaMGTh8+DDrJDSq4rp27Rp69eqF9PR01vMdOnSAt7c3qlWrxnNklJAiIiLg6OiIV69esZ6vUaMG7ty5g9atW/McGVUWNJFUArZ18QghnOum8UFTUxMPHjzg/ELfsGED61iV/MHQ7u7urK/T0tLCuXPn8MMPPyg0Xkq1EULw22+/YcWKFZxlFi5ciB07dtCxsmrm/PnzGDhwILKysljPd+/eHV5eXjA2NuY3MEpQz58/h6OjI6Kjo1nP16lTB35+frCxseE3MKrM6Ce8EnTo0IH1+OXLl/kN5D+srKxw5MgRzvN9+/ZFcnJywX/nD4b29vZmLZ8/GHrIkCEKjpRSZVKpFD/99BM2b97MWWbt2rXYsGEDXThYzRw9ehQjR47k3JxgwIABcHd351yajKqYgoKC0LlzZ3z69In1fMOGDeHn54f69evzHBmlCDSRVIJBgwaxHvf39+c3EBZjx47F2LFjWc9lZmYWrOEWHx+Pbt26ISAggLWsgYEBbty4wbmLDlUxicVijB8/Hnv37uUs8/fff2PJkiU8RkWpgp07d2LChAmcQ3hGjx6N8+fPQ1dXl+fIKCHdu3cPXbt2RWJiIuv55s2b4+7du6hduzbPkVGKwhBCiNBBqIqqVasWaeza2trIzs4uUT1SqRSampr47z+tkZFRoR4/oUilUtSvX59zofQxY8YgKCgIL1++ZD1fpUoV3LhxA/b29soMk1Ix2dnZGDVqFGfPukgkwv79+zFx4kR+A6MEt2HDBpnjrKdMmYLdu3fTdWXVzM2bNzFo0CDOdWXbtm0LT09Puq5sOUcTye8oKpHkqgsAcnJyVGKnl/j4eFhaWpb4vdWoUQM3b95Es2bNlBQZpYq+ffuGwYMH4+bNm6znNTU1ceLECYwYMYLnyCghEUKwdOlSrF+/nrPMvHnzsHnzZjrMQc1cuXIFI0aM4FxXtkuXLnBzc4OBgQHPkVGKRh9tKwnX4rrXrl3jORJ21atXx4ULF0r0GktLS/j5+dEkUs2kpKSgV69enEmkjo4OLl++TJNINSOVSvHzzz/LTCJXrFhBk0g1dPLkSQwdOpQziezTpw88PT1pEllB0ERSSTp37sx6nGv2sxD69u2LWbNmyVW2YcOG8Pf3p4Oh1cyXL1/QvXt3zvG9lStXxrVr19C3b1+eI6OEJJFIMHnyZPzzzz+cZTZv3oyVK1fSJFLN7Nu3D+PGjYNEImE9P3z4cFy6dAl6eno8R0YpC00klWTo0KGsx7kmrwjln3/+Yd0f/Hu2trZ0MLQa+vTpE5ycnPDkyRPW88bGxrh16xa6du3Kc2SUkHJycjB69GgcPnyY9TzDMNi7dy/mz5/Pc2SU0LZs2YJp06YVmR+Q78cff8SpU6egra3Nc2SUMtFEUklatWrFun4e1xpaQrl16xY+f/4ss8yvv/4KMzMzniKiVEF0dDQcHR3x/Plz1vPVqlWDr68v2rVrx3NklJAyMzMxePBgnDt3jvW8hoYGjh8/jqlTp/IcGSUkQghWrlyJX3/9lbPM7NmzceDAATrhqgKik22+o8jJNkDeOMSEhIQix8VisUr8MRU3GDqfrq4uPn/+DENDQ54io4T06tUrODs7IzY2lvV8rVq1cOvWLTRq1IjnyCghpaWlYcCAAfD19WU9r62tjTNnznAuf0ZVTIQQ/Prrr/jrr784yyxZsgRr1qyhwxwqKNojqUTW1tasx4OCgniOpKhTp07JHAz9vaysLDg7O/MQFSW0p0+fonPnzpxJZL169eDn50eTSDXz9etXODs7cyaR+ZsT0CRSvUgkEkybNk1mErl+/XqsXbuWJpEVGE0klah58+asx2/dusVzJIXt378fY8eO5RwMzebRo0fYunWrEqOihBYQEIAuXbogPj6e9XzTpk3h5+cHKysrfgOjBPX582d07doVDx8+ZD1vaGgILy8vuLi48BwZJaTc3FyMHz8e+/fv5yyzY8cOLFq0iMeoKCHQRFKJHB0dWY8HBgbyHMn//PXXX5g6dSrnYOgxY8ZwDoResGAB3r17p8zwKIH4+PjA2dmZc8H8Vq1a4c6dO7CwsOA3MEpQMTEx6Ny5M0JDQ1nPm5qawtvbG506deI5MkpIWVlZGD58OE6ePMl6XiQS4ciRI5g5cybPkVFCoImkEnHdoXPtGKNMhBCsWrVK5kzKWbNm4fjx4zhx4gTreYlEgi5duigpQkooHh4e6NOnD759+8Z6vmPHjvD29kbVqlV5jowS0tu3b+Ho6IjXr1+znjc3N8edO3fQunVrniOjhPTt2zf0798fV65cYT2vpaWFM2fOwNXVlefIKMEQqoCpqSkBUOhHW1u7THVqamoWqdPAwEBBEctHKpWS+fPnF4nj+5/FixcTqVRa8Jp+/fpxlp01axav8VPKc/bsWdY2mv/To0cPkp6eLnSYFM/CwsJIjRo1ONtFnTp1yNu3b4UOk+JZUlIS6dChA2e70NXVJZ6enkKHSfGMJpLfUUYiWa1atSJ1MgxDJBKJgqKWTSwWk6lTp8pMItetW1fkdTk5OcTY2JjzNQEBAbzETynPoUOHiEgk4vwdDxo0iGRlZQkdJsWzR48ekSpVqnC2i0aNGpGYmBihw6R4Fh8fT1q2bMnZLvT19Ymvr6/QYVICoI+2lYxtYgIhhHPMkSLlD4bet28fZ5l//vkHixcvLnJcS0tL5naOvXr1glgsVkicFP/++ecfTJw4EVKplPX82LFjcfbsWejo6PAcGSUkPz8/dOvWDV+/fmU936JFC9y9exe1atXiOTJKSB8+fICTkxOCg4NZz5uYmOD27dtwcnLiOTJKFdBEUsm4Zm57eXkp9brZ2dnFDoY+fPiwzC0S27Vrx3k+OTmZc/ceSrWtW7cOc+bM4Tw/bdo0HDt2DFpaWjxGRQnNy8sLPXv2RFpaGuv5tm3bwsfHB9WrV+c5MkpIUVFRcHR0xIsXL1jPm5mZ4c6dO3BwcOA5MkpV0ERSyYSYuS3vYOgJEyYUW9c///yDOnXqsJ5zc3PDhQsXyhIqxSNCCBYvXoylS5dylpk/fz52797NuisTVXFdunQJ/fv3R2ZmJuv5rl274ubNmzAxMeE5MkpIL168QKdOnRAVFcV6vnbt2rh79y5sbW15joxSKUI/W1clyhgj+enTJ9bxJE2bNlVQ1IUlJyeTjh07yhwM7eHhUaI6o6KiiIaGBmd9ycnJSnkvlOJIJBIyc+ZMmWNlV61aVWjCFaUejh8/zvn3DYD07duXZGRkCB0mxbOgoCBStWpVznZRv359Eh0dLXSYlAqg3Q5KVqNGDdbtELl2DimLL1++oFu3brh37x7reX19fVy7dg19+vQpUb1WVlbYtGkT67msrCz06tWrxLFS/BGLxZg4cSJ27tzJWeavv/7C8uXL6e4TambPnj0YP3485+YEI0aMwMWLF6Gnp8dzZJSQHjx4gK5du+LLly+s55s1a4a7d+9yPq2i1IzQmawqUUaPJCGE9a6OYRgFRPw/Hz58IE2bNuW8ezQxMSnzTGt7e3vO+o8dO6agd0IpUnZ2Nhk6dCjn741hGLJv3z6hw6QEsGnTJpk91BMnTiRisVjoMCme3bp1i1SuXJmzXdjb25MvX74IHSalQmiPJA/YZjgSQhATE6OQ+qOjo+Ho6Ijnz5+znq9evTp8fX3Rtm3bMl3n9u3b0NXVZT03depUzvFVlDAyMjIwcOBAznGsGhoaOHHiBKZMmcJzZJSQCCFYvnw5fvvtN84yc+bMwf79+1mfplAV19WrV9G3b1/OzQkcHR1x+/ZtmJqa8hwZpcpoIskDa2tr1uNce9eWxMuXL9GpUydERkaynq9duzb8/Pw4Z4+XhKGhIY4ePcp6Lisri87iViGpqano3bs3rl+/znpeW1sbFy9exOjRo3mOjBISIQTz5s3D6tWrOcssXboU27ZtoxOu1Mzp06cxZMgQZGdns57v2bMnrl+/DkNDQ54jo1Qd/aTgQePGjVmPh4SElKnep0+fonPnzvjw4QPreWtra/j5+aFhw4Zlus73RowYgc6dO7Oeu3btGm7fvq2wa1Gl8/XrVzg7O+Pu3bus5ytVqgQPDw8MGDCA58goIUkkEkydOhXbtm3jLLNhwwasWbOGjpVVMwcOHMCYMWM41wYeMmQIrly5gkqVKvEcGVUe0ESSB3Z2dqzHy7LndkBAALp06YKEhATW8zY2NvDz81PKYOirV69CW1ub9dywYcM4F7mmlC8uLg5OTk549OgR63kjIyPcvHkTzs7OPEdGCSk3Nxfjxo3DgQMHOMvs3LkTCxcu5DEqShVs27YNU6ZMASGE9fwPP/yAM2fO0M0JKE40keQB19hErrW5iuPt7Q1nZ2ckJyeznre3t8edO3dgbm5eqvqLY2hoyNmrkZycjEmTJinlupRs79+/R+fOnREeHs56vmrVqvD29kaHDh14jowSUv6wk9OnT7OeF4lEOHr0KGbMmMFzZJSQCCFYvXo1fvnlF84yP/30E44cOQJNTU0eI6PKHUGn+qgYZc3aJoQQhmGK1G1hYVHieq5evUp0dHQ4Z9Q5OjqSlJQUhcRcnGbNmnHOBH769CkvMVB5Xr9+TWrXrs3ZLiwsLMizZ8+EDpPiWVpaGunWrRtnu9DS0iLnz58XOkyKZ1KplCxYsEDmrP3ffvuNritLyYX2SPKEbbYzV48ilzNnzmDw4MGcg6FdXFx4HQzt6enJOiCfEIK+ffvyEgMFhIWFwdHRkXMVACsrK/j5+aFp06Y8R0YJKSkpCT169IC3tzfreV1dXbi5udFJcmpGKpVixowZ+PPPPznLrFmzBhs2bKBjZSm50ESSJ8bGxkWOlWS5nIMHD2L06NGcg6EHDx4MNzc3XgdD165dG4sWLWI9Fxsbi2XLlvEWi7p6+PAhnJyc8PnzZ9bzjRs3hr+/P+rVq8dzZJSQ4uPj0a1bNwQEBLCeNzAwwI0bN+hmAmpGLBbD1dUVe/bs4Syzbds2LF26lCaRlPyE7hJVJcp8tN2yZUvWxwefPn0q9rXbtm2T+Qjihx9+ILm5uQqJszRq1arFGpdIJCIxMTGCxVXR+fr6En19fc52YWdnRz5//ix0mBTPYmJiSOPGjWVuTvDw4UOhw6R4lpWVRQYPHixzc4KDBw8KHSZVDtEeSZ5wzZ6WtZYkIQRr1qzB3LlzOctMnz5d8MHQnp6erHevUqkUvXv3FiCiiu/69evo1asX0tPTWc+3b98ePj4+qF69Os+RUUKKjIyEo6Mj54oQZmZmuHPnDtq0acNzZJSQMjIyMGDAAFy6dIn1vKamJk6dOoWJEyfyHBlVEdBEkidca0kGBwezHieEYNGiRfj9998561ywYAF27dol+MLBtra2cHV1ZT0XHh6O3bt38xxRxXbhwgUMGDAAWVlZrOe7desGLy8v1uEUVMX1/PlzdOrUCdHR0aznLS0t4efnB1tbW34DowSVkpKCnj17wsvLi/W8jo4OLl26hJEjR/IcGVVR0ESSJ1xrSb548aLIMalUipkzZ2LTpk2c9a1evRobN25UmXEsBw8e5ExcfvnlF2RkZPAbUAV19OhRjBgxArm5uazn+/fvDw8PD+jr6/McGSWkoKAgODk54dOnT6znGzRoAD8/PzRo0IDnyCghJSYmonv37vD392c9X7lyZXh6eqJfv348R0ZVJDSR5Im8a0mKxWJMmDBBZi/e1q1bsWzZMpVJIoG8tejOnz/Pei47OxtjxozhOaKKZ9euXZgwYQLngu8jR47EhQsXOPdDpyqme/fuoWvXrvjy5QvreVtbW9y9exeWlpY8R0YJ6dOnT3BycsKTJ09YzxsbG+PWrVvo1q0bz5FRFY7QgzRViTIn20ilUtYBznXr1i0ok5WVRYYMGSJzMPSBAwcUEo+y9OrVizP+8PBwocMrtzZs2CBzwtWkSZOIWCwWOkyKZzdv3iSVKlXibBcODg4kMTFR6DApnkVHRxNra2vOdlGtWjUSHBwsdJhUBUF7JHnCMAzrhJjU1FQAeYOhBw4ciIsXL7K+Pn8wtKrvGnP+/HnOrbToenUlRwjB0qVLOZdZAoC5c+di//790NDQ4DEySmhXrlxB3759OYeNODk54datW6hSpQrPkVFCev36NTp16oSIiAjW8zVr1sTdu3c5h1tRVEnRRJJHbI8cMzIykJqail69euHGjRusr9PR0cHFixfLxWDoypUrY+3ataznXr16hRMnTvAcUfkllUoxd+5crFu3jrPM77//jr/++kulhjlQynfq1CkMHToUOTk5rOd79+4NT09PGBgY8BwZJaTQ0FA4OjoiNjaW9Xy9evXg5+fHOfmTokqDIYRjp3Y1VLVqVSQmJhY6pq2tzbmTTEnVqFGjyMLRIpEIrVq1wuPHj1lfU7lyZVy5cgXdu3dXSAx8qVWrFj58+FDkuIGBAZKTkwWfaa7qJBIJpkyZgsOHD3OW2bRpExYsWMBjVJQq2L9/P6ZNmwauj+6hQ4fi5MmT0NbW5jkySkiBgYHo1asX545pTZs2xc2bN2FhYcFvYFSFR7/NecS2daFUKuVMIo2MjHDz5s1yl0QCeT0mbNLS0jBnzhyeoylfcnJyMHr0aM4kkmEY7N69myaRauivv/7C1KlTOZNIV1dXnD59miaRasbX1xfOzs6cSWSrVq1w584dmkRSSkETSR6ZmprKXbZatWrw9fVF+/btlRiR8jg6OsLR0ZH13O7duxEfH89zROVDZmYmhgwZgnPnzrGe19DQwLFjxzB9+nSeI6OERAjBqlWrMH/+fM4yM2fOxKFDhwTdnIDin6enJ3r37s25OUHHjh3h7e2NqlWr8hwZpS5oIsmjatWqyVWuogyGvnDhAusEEKlUiiFDhggQkWpLS0tD37594eHhwXpeS0sL586dw7hx43iOjBISIQQLFizAypUrOcssWrQI//zzDx0yombOnTuHgQMHcm5O4OzsjBs3bsDIyIjnyCh1Qj91eGRubl5smbp161aYwdDVqlXDjBkzWM/du3cPd+/e5Tki1ZWUlIQePXrAx8eH9byenh6uXr2KwYMH8xwZJSSJRILp06djy5YtnGXWrVuH9evX0wlXaubw4cMYNWoUxGIx6/mBAwfi6tWrqFy5Ms+RUepG7Z+BvH37tmDBVrZJNVKpFGfOnAGQt81hixYtlBZLkyZNcPPmTdSsWVNp1+Dbtm3bcPTo0YJljr43evRo1gk56ubz589wcXFBaGgo63kDAwN4eHhwDhWgKqbc3FxMmDABJ0+e5Cyzfft2zJ49m8eoKFXwzz//yBxrPmbMGBw5cgRaWlo8RkWpLQHXsFQJMTExRFtbW+Ziz/k/jx8/LvV1fH19ia6uLmfdLVu2JPHx8Qp8Z6rj1KlTnO9748aNQocnqPfv35OGDRty/vtUqVKFPHr0SOgwKZ5lZWWRgQMHcrYLkUhEDh06JHSYlADWrl0r83tq6tSpdHMCildqn0gSQsjMmTOLTSL79+9f6vo9PT1lJpHGxsYkKSlJcW9IBTVp0oT1vevo6JCMjAyhwxPE27dvSZ06dTjbRY0aNUhYWJjQYVI8S09PJz169OBsF5qamuTs2bNCh0nxTCqVkkWLFsn8npo/fz6RSqVCh0qpGZpIEvl6JUvbG3nu3DmipaUls+6WLVsq+B2pnufPn3O+/5EjRwodHu/Cw8OJubk557+JpaUlefPmjdBhUjxLTk4mHTt25GwXurq6xMPDQ+gwKZ5JJJJiOzxWrlxJk0hKEHSyDfIWz54yZQrn+f79+6N169Ylrvfo0aMYOXIkcnNzZZZjGz9Y0TRp0oRzosjZs2fx6dMnniMSzpMnT+Dk5MT5nhs2bAh/f3/Ur1+f58goIX358gXdunXDvXv3WM/r6+vj2rVr6NOnD8+RUUISi8WYOHEidu7cyVlmy5YtWLFiBZ1wRQmC7mzz/2JjY2Ftbc265djjx49LnEju3LkTs2bNkqusmZkZ4uLiSlR/eZSRkQETExPWf+Nu3brh9u3bAkTFL39/f/Tt25fz5sHW1hY3b96EmZkZz5FRQvr48SN69OiB58+fs543NjbG9evX0bZtW54jo4SUk5ODMWPG4MKFC6znGYbBnj17MHXqVJ4jo6j/oT2S/4+rV7Jfv34lTiI3bNggdxIJgHO/3IqmUqVKWLJkCes5b29vvHnzhueI+HXz5k24uLhwJpEODg7w9fWlSaSaiY6OhqOjI2cSWb16ddy5c4cmkWomIyMDAwcO5EwiNTQ08O+//9IkkhIc7ZH8DluvZEl6IwkhWLp0KdavX89ZRlNTs8i6X/r6+khLSytd0OUMIQQmJiZISUkpcq5NmzZ4+PChAFEp3+XLlzFy5EjOm4YuXbrAzc0NBgYGPEdGCenly5dwdnbmXAarVq1auHXrFho1asRzZJSQUlNT0b9/f861drW1tXH27FkMHDiQ58goqijaI/md//ZKlmRspFQqxc8//ywziVyxYgUqVapU5HhxYygrEoZhsHHjRtZzjx494tx3vDw7ceIEhg0bxplE9u7dG56enjSJVDNPnz5F586dOZNIa2tr+Pn50SRSzXz9+hXOzs6cSWSlSpXg7u5Ok0hKdQg500cVxcbGFszglnemtlgsJhMmTJA5o27z5s2EEEKqVavGupyHujEzM2P9d2rSpInQoSnUnj17CMMwnO1i+PDhJDs7W+gwKZ49ePCAGBsbc7YLGxsb8vHjR6HDpHj26dMn0qxZM852YWhoSPz9/YUOk6IKoT2S/1GzZk1MnTpV7t7InJwcjB49GkeOHGE9zzAM9u7di/nz5wMAdHR0ipSRSqVlirk84pqB+OLFiwoz6Wbz5s2YPn06CMfokR9//BGnTp2CtrY2z5FRQvL29oazszOSk5NZz7du3Rq+vr5ybalKVRzv379H586dER4eznq+atWq8PHxQceOHXmOjKJko2Mk80klQNprIDkUSfFRSEtNgWW9ZoBxM8CoKSAqutVUZmYmhg0bBk9PT9YqNTQ0cOzYMYwZM6bgWP369REREVGkrDr+GurWrYvo6Ogix+vUqcN6XBCEABmxQFIwkBUHSMWAhh5g2BAwbgFo6bO8hGDlypX4448/OKudPXs2tm3bBpGI3suVW1+/AiEhQGQkkJ0NaGsDlpZAy5ZA9eqsL/Hw8MDQoUNZt2MFgE6dOsHd3R1GRkZKDJxSJrGUIDU7F2k5YoilBAwD6GhowFhHE5W0NFiX6Hnz5g2cnZ3x/v171jotLCxw8+ZNNG3aVNnhU0oiJQTpOWKkZIuRK5UCBNDSEMFQRxMG2poQleOlm9R7r22pBIjzAt7uBT7eAKRZAAATACZggM//n9wxmkB1J6DBNKDmQEBDG2lpaRgwYAB8fX1Zq+YaDK2np8ceilSqdknFwYMH0b179yLH3717hzNnzmDkyJECRPX/vgYDEfuB6FNAbvJ3JxjkPWX6//9vZAPUnwrUHQdom4AQgvnz52Pr1q2cVS9ZsgRr1qyha76VR7GxwKFDwOHDwPc3OwyTd9ORz8ICcHUFJk8G6tUDkLde6tixY4tMtsvn4uKCixcvonLlykp8A5Qy5EqliE3NQlRyBpKzuce8azIMLAx0Ude4EqroaoFhGISFhaFHjx74/Pkz62usrKxw+/Zt1Pv/dkSVH1JC8PlbNqKSMxD/LRtczx4ZANUqaaOucWWY6+uUu6RSfXsk424BgVOAb9F5iSJh/3AvwGgARALoVAVp/Q+6T9wHHx8f1qKVKlXC5cuX0aNHjyLnHBwc8OjRoyLHU1JSYGhoWJp3Uq7Z2NiwLntSvXp1zg9WpUp9AzycCsT7ytcu8P9/8CItwGYpVpzNwR9r1nKWXr9+PRYtWqSwcCmeJCcDCxcC+/fnJY3yDEfR0AAkEmD0aHgNGoTeo0dzDmMZPHgwTp06xTr0hVJdUkIQkfQNz7+kQyLnV2n+raixjhYsSAY62rfE169fWcs2btwYt27dQs2aNRUXNMWLuPQsBH9OQaZYWqj7gUt+GR0NEezMjFDTQFf5QSqIenWBAYD4G3DfFfDuAWT8/2OEYpMF5CWRAJCdCOb+aCzqlcY6ts3Q0BBeXl6sSSQA1lnbQN6uFuro33//ZT0eHx+P3bt38xcIIcCLzYCHDZDg///H5GgX+ePgpTlA2EpMtDqJWhbs60Du2LGDJpHl0fXrQMOGwMGDee1E3jHNkv//zDh7Fp2nTEFXjseSP/zwA86ePUuTyHImLUcMn3dfEJaQJncSCfwvoUjJzsWLHC0MHjeBtZydnR3u3LlDk8hyJlcqxcOPSbj/IQmZ4rzPCnlaR36ZbIkUgR+T8ODDV+RIysf8CfVKJHOSgVtdgHf/n7yQ0vyS8n7dLrWDcXqeCTQ0NArOmJqaFjsYmuuxVWJiYiliKf9atmzJudDyokWL+JmIRKTAo+lA8AKA5MqZQLJWhDqV3uP2r8moXtWk4KhIJMKRI0cwc+ZMxcRL8efoUaBPH+DLl/8lhiUlkUA3LQ2Xw8PRvk6dQqemT5+OI0eOQFNTvUcZlTdJWbnwffcFqdml/az431Ts3j/Nx7AJhTfDaN++PXx8fFCdY6wtpZqyxVLceZ+ID2lZZa4rLj0bvu++IEtcys8dHqlPIinJAbx75k2aKFUC+R9EgsHNE3FktgkYhoG5uTnu3r2LVq1ayXwZTSSLOnHiBOvx1NRUrFu3TvkBBM0D3u5TTF1EgoZmubj56zeYGBtCS0sLZ86cgaurq2Lqp/hz4QLw4495vZBlHQFECPQBeL57B7vatQEACxYswK5du9RubHR5l5Yjhl9MIsRSIldPU3EYhsHI31ag74jRAPK2i/Xy8oKxsbECaqf4IpES+MUmIi1brJB2QQB8y5Xg7vvEvMk5Kkypn2CDBw+GiYkJhg0bpszLyCdsBfD10f8eUSsCEWOcQxKOLnGAn5+fXDPquBad5hojow6sra3h7OzMem7Dhg3K7ZX84AG8+lvBlUrR3FKC60v1ceXiGdVo/1TJxMQAEyYovFpjAF5xcdi5bBk2btxIJ1yVM1JC8PBjEiQKSiLziUQiuC7fiCWr18LDwwP6+kVXg6BUW3hCKlIVlETmIwDScyUI/cy+ra6qUGoiOWfOHBw7dkyZl5BPwgPg+UbIN1KhhIgEPzQNhLVWkFzFucZIZmZmKjKqcufff/9l/VL99u0b/vzzT+VcNCcJeOAKpfwZEAkcLOLQu4a34uumlIuQvBnXWVll74lkUY0QzLhyBYyK9zJQRb1KTEeKgpOFfBqamnAYMRFSjaJLzVGqLSEjGxHJGUqr/11qJj6ll/1xubIoNZHs2rWramz7Fr4aYJT5VhkgdLlcXzpcY6G4ts9TF2ZmZpxbfm3YsEGuOry9vZGaWoI7t7f78pJJzkUZykoKvNkDZAow+5wqEBISUrJ1SQMCAB8fgGOZnjITi4GwMMDDQzn1U3KJj4/H/fv35S4vlkrx+us3JUb0v1nglLCuXr0KSQnGRL/4kgZlP1t48SVNyVcovRJnV1KpFI0bN8bChQsLHb9x4wa0tbVx7tw5hQWnEKlvgE/XFPtIuwgCpL7MWzKmlOgjrrx1JdnGiyUnJ+PAgQNyvd7Kygpr1qwpPqGUioGXf0N5SeT/I9K8dUopwQQEBKBBgwaYOnWqfAnltm2Asie/aGgAMtYapZTvy5cv6NixI3r27ClXQvkuJbNEs7NLgwCISs6AmPZWC2rChAmwtbXF6dOni00oU7Jy8SUzVym91N9Lzhbja6ZqdjiVOJEUiURYvHgxdu/ejaSkJADA06dPMXz4cKxbtw7Dhw9XeJBlEnMubw1IZWM0gXenlX+dCqxKlSpwcXFhPbds2TK56khKSsLvv/9efEL5JQDI+lTaUEtACkQd5+E6lCxisRj79+8vPqHMzgYuXVJeb2Q+iQTw9c2bDU4JysvLS66EMiaNn+FHYkLw+ZtqJgzq5MWLFxg9enSxCWVsWpbSeyOBvHUmYxUwG1wZSrUguVgsRsOGDeHq6opJkyahXbt2GDhwIOv+yb6+vtixYwfOnz+vkIBL7M5A4IM7lN7zBCABjTHgH2OZZaKjoxEXF1fkeN26dWFmxr7+oDrJyclBUBD7eNOGDRuiSpUqnK998+ZNkdnvJiYmmDdvHubMmVN4wfcXf+Ut98NDuwAYDDs/AB8+0UfcQoiLiyuSOGpqauLHH3/EkiVLYGVl9b8Tjx4BDg68xbZ63Dh4vn3L2/Wo/8nIyEBoaGiR4y4uLlixYgU6dOhQcIwQgitv4iDlYfsOBsCHR3dxYuc25V+MYvXo0aMiiWOTJk2wfPlyDB8+vNCyf34xiUjI4CfxN9HVQtc6VXm5VkmUemebvXv3YsmSJahZsyasrKxw6dKlQv+4+QRPJC/WALL4+QL/kCRCrVn0kYQqKpJQ3hsLvD+j5CEP/2M60xBfk1V75p06KpJQ7tkDzJihlEk2LBdHd0tLeEdGKv9aVIl9n1CmZufiVjR/vccPr57DxgU/83Y9Sn7/TSjd3sRBzMcdBgARAwxsUEPlhsKVegbK2LFjkZGRAUIITp06xZpE9uzZE8OHD4enpydq1arFujWg0uWk8HYpSTlZhV4dFXnknfSZtyQSADLUfFa+qvr+kfeUKVMQ9fZt3vhFPjAMElL4+3yiSib/kbeLiwv878k/KUcR+EpMqJL7/pH3qVOnkJ2r5GEw35ESQKKCTaPUI8pnzZoFIG/AMlsSCeRNwFEnX9OFjoCShxB3c/QmQ/UxDMN728hS9lhMqsxUrfeHUh20beQpVY/k77//Dg8PDwQEBEAsFuPgwYOKjktxtI14u1RCGm1UqsrExARr1qxBdHQ0li5dCkMTM34mYf0/MU0kVZKmpiamTJmCN2/eYN++fbCyti79VoglRQgy+XiETpWKi4sL7t27hxs3bqBTxw7Fv0CBNEX0u0RVNWnSBKdPn0ZYWBhGjRoFHS3+tjcVMYCGCjaNEv8LHDhwAFu2bIG3tzdatGiBuXPnYtOmTZg6dSq0tFRwIVXTtrxNtvlKagKIVfp1/ktTUxOVKlVCpUqVoKenV/D/uXqKy4vg4GBkZ2cXOV65cmXY2toWOc412Wb+/PmYPXt24ck2VVrzNss+IztvsD7fRCJRofaQ/6OSf6dKVKLJNq1b8zM+EgDEYkgF2GObYRjo6uoW+czQ0dFRqx6Wkky2MdDWhIgBb5NtatUwQ7t27ZR/MYoV12SbFStWYNiwYYW+W010tXibbGOko6WSf6Mlmmxz7do1DBo0CKdOncKQIUMA5O2HXKdOHWzZsgUTJ05UWqCl9mzd/y8WruReBkYTl2O7YdKGxyqz3aGVlRWaNWsGW1vbgv9t1KgRtLW1hQ5NLh4eHujXrx/ruaioqMIJAPLG7Z48eRKAjAQyX7w/cMtR0SGz+phthdZLsvD582dBEsr/qlatWqE20axZM9jY2KjG5gFKsGfPHvz0008AZCSQ+bKzAQMDIDeXl9jatW6NoNBQ5PJ0PVn09fVhY2NT0C7y20b16tWFDk0pnj9/Dhsbm4L/Zksgv+f7/gu+ZvLze2prYYKaBrq8XIsqytTUtOB7nCuBzPcsIQ2vv6YrfR1JBoC1SWU0r87yfSYwuRPJJ0+ewMnJCWvXrsXPPxeeTbZ8+XKcPn0aL168UL1esNQ3gHsjKGV7xP/q7g2YdUVWVhY+fvxY5OfDhw+4c+cOPnz4oPxYOGhqaqJRo0awtbVFmzZt0LZtW7Rq1Qp6enqCxSRLzZo18fHjxyLHu3fvjlu3bhU6NnbsWFy7dk12AplPKgYuW/KwlqQIsF0B2C6HWCzG58+fC9rC920jNjYWUVFRiI6OhligcXNWVlawtbVFq1at0K5dOzg4OMhcbqm82LNnD2bPni07gfzeyJHAxYvKXUtSQwNwdAR8fCCVSpGYmFjoc+L7/x8dHY3IyEhkZChvCzZZqlevjmbNmsHOzg5t27ZFu3btULt2bZXsGSmJ/ESyuAQyX0TSNzyNV/7KC5oMgz71q0OTZXMGih+mpqYwMzOTmUDmS8nOxW2eZvR3sTRFFT3V6wgq9fI/5YpPHyDOS4m9kgxg2Ajo+xwo5sP1l19+wbZt24oc7969OwwMDBAZGYnIyEikp/M3c0dTUxMtWrRAu3btCr4o6tevrxJfFMeOHYOrq2uR4wzDID4+HlWr/m9NLR8fH7Ru3Vp2Avm95xuBkCVQ6rAHRhMYFAvoybdGqFgsxocPHwrawX9/vvC8gHXDhg0L2kTbtm3RvHnzcvdoPCQkBMbGxsUnkPkePACKSSoU4soVYMAAuYoSQhAfH8/ZLj58+MBrb3eNGjUKfV7Y29tDX1+ft+srQnx8PN6+fVtsAplPLJXC4228Une3YQDUN6kMWxXsdVInV69eRZ8+feTuGLv7/gsSlby7jbGOJrpZVVPiFUpPPRLJhAfAzY5Qaq9kp7OAZfG7+syePRs7duwocvzAgQOYNGkSgLwvjS9fvnB+acTExCj9S6NKlSpo27ZtwY+QvVPfP2b43ujRowseZZdKThLg1kCJ+22LgIYzAPt/FFZjamoqoqKiWNtFVFSU0h+R6urqonXr1oWSiFq1aqnETYfCEAJ07w74+SmnV1JTE2jSBAgOVthSQ1lZWXj37l2htpD//yMiIpR+YyoSidCsWbNCNx1NmjRh3fK0PHvxJQ0vEpX3b6nBMOhRtxoqaanYkz1KpoSMbPjFKHdIW/uaJjDXV83hDuqRSAJAyOK8HihFJ5OMBlB7ONDplFzFJ02ahEOHDhU5fuLECYwZM0auOr59+4YXL14gLCwM4eHhBf/76ZNyH9M2bNiwUAJha2vLS+/UX3/9hfnz5xc5rqOjg4yMjLJ9WX3wAO6wj8MsE0YDqFwH6BMGaFZSfP0scnNz8ebNm0JtIiwsDJGRkUq98TA3Ny9oF23bti2XvVNFxMQANjZAerriJ99oa+clkU2bKrZeDoQQvH//vsjnxYsXL5R642FoaIg2bdoUahvlfbyllBD4vPuC1GyxUrolWtcwQh0jfj4vKMV6+jkFEcnKGX5Sx1APrc2NlVK3IqhPIinJAW46AklPFPeIm9EEKtUCegcB2iZyvWTEiBE4d+5ckePXrl1Dr169yhTOly9f8OzZsyJfGJz7TZeRvr4+OnfujO7du6N79+6wtbVVSg+EVCqFgYEB6xixzZs3syaZJfJkLvDq77LVUYgIEGkDPfwAU3sF1ls63759w/Pnz4skmGxbdSqCpqYmHBwcCtpFu3btoKOjo5RrKdWFC8Dw4YpPJPfuBaZOVWydpSDEjUfTpk0L2oWTkxOMjY2Vch1lSssRw+fdF0ikRKHJZC0DXbQxN65YvftqRCIl8Hn/BWkKvMlgAFTW0kBXq6rQUuHeffVJJAEgJxnw7gEkBQGE+1HmzTAgPhWobgj0KLrKTB5GA6SSJXa8HIaOPUahZcuWcn0A9O3bF56enkWOP3z4EG3atJHzjciPEIKYmJhCXxahoaF49uwZ5yb0pVW1alV069at4IuiXr16CvtQnD59Ovbu3VvkuLm5OetknBIhUuDRT8DbfWWrB8jriRRpA108AbMuZa9Pib58+YLw8PCCn7CwMAQHByNTwbvw6OnpwdHRsaBd2NnZqd6kPC5HjwITJ+Ylk2X5qGSYvNdv2QLMm6e4+JSA7cYjKCioyNJaZSUSiWBvb4/u3bujW7du6Nixo8pO+vuvpKxc+MckQqygZLKmvi7aWBhDRJPIci1bIoVfTKJCksn8JLKzpSl0NVX781K9EkkAEGcAj2YAUUeRtx574YTyZhjgsuF//+216L/JJAOAAOa9gfbHMGjUZFy5cgU1a9bEgAED0L9/f3Tt2hW6uuxjGbp06YI7d+4UOR4REYF69eqV9d3J7du3b3jy5AkCAwMREBCAwMBAhc8mt7S0LEgeunXrBnNz81LXlZqaCmNjY9aekvv376N9+/ZlCTXvS/7llv+ffEMAUpqxcQxg0ADodAYwsStbPAIRi8UIDw8vaBMBAQF4+fKlQq9hYmKCLl26FLSNRo0aqXYvzPXrwPjxwNevpVusXEMD0NcH9u0DRoxQfHw8IIQgMjKy0OdFcHCwQh+N6+jooEOHDgXtwt7eHpoCrLMpr7QcMR5+TEJKdunG0ea3+Iam+mhqqq/afwOU3HKlUgTHpSA2LatM9Zjr66B1DWNoa6huT2Q+9Usk88XdAgKnAN+i8x5REzFuhgGXHgO7bwHLli3DmjVr8JMzMNge6NFcI++RuE41wH5H3sQahsGFCxcwbNiwQlVXrlwZPXv2xIABA9CnTx9Uq/a/mVYODg6se46npKTIP9tYSWJjYxEYGFjwZfH48WOF9k6V9bFWp06dcO/evSLH27dvj/v3FbQXbuob4OFUIN63oF3I9v8f/iItwGYZ0HQhoKF6yzOURXJyMh4+fFgoiVBk75SFhUWhG47atWsrrG6FSUkBFi7MSwYZBpDKMTlLQyMv8RwzBti2DaimmjMuSysrKwshISGFbjr+u/B7WRgaGsLJyangKUezZs1ULtkihCAiKQPPvqTJPZv7/7siYKyjhdY1jGCkW75WQaDkE5eeheDPKcgUSwt+57Lkl9HREKGlmREsytE6ouqbSAKAVALE3QTe7sXN6x5wWf+/u2sPDw/07du34L+9NrREj9FLgJoDCiUK2dnZqFGjBpKTk1kvIRKJ0KFDBwwYMACDBg3CkCFDEB4eXqScRCJRuRmOubm5CA8PL5RAKKp3SiQSoU2bNhgwYAAGDhyIpk2bFvsl8ejRIzg4OBQ5zjAMvn79qtjxVkkhwNv9QPRJIDf5+6vhfx8JDGBkA9SfBtQdK/c42fKOEIKIiIhCNx0hISEK651q2LAh+vfvjwEDBqBDhw6q1SsVGwscPgwcOgR8nzTlP7rOV7Mm4OoKTJoE8PikQWifP38u1C4ePXqEtLQ0hdRdvXp19OnTBwMGDICLiwsqV66skHoVIVcqRWxqFqKSM5Cczf13oMkwqGmgi7rGlWCiq5q7lFCKIyUEn79lIyo5A/EZ2Zw7IzEAqlfSQV3jSqihr1PuhjiodyL5nRP/Hse4H8Zj2bJlaN++Pfr06QNPT088ePAAa9aswb///ouxY8eyvnbatGnYt0/2+DodHR14eHhg2rRpiIiIKHK+vPwakpKS8PDhQ9y9exe3b9/Go0ePIJWnd6YY1tbWGDhwIAYMGICOHTtyJg+1atVifQQ/adIkHDhwoMxxFEEIju7fhr379gHSHOQlkSJAQw+entdgXK2W4q9ZDmVlZSE4OBj+/v64ffs2/Pz8FLKAtqmpKfr161eQPKjSbPCnd+/m7ZiTnZ3XQ8kwgI4O1q1bhy6DBgkdnkqQSCR48eIF7t+/D29vb3h7eyMhIaHM9erq6sLZ2RkDBw5Ev379UKNGDQVEqxgSKUH7Dh0gIQSE5CUJDAOMGDkCC375hSaPakpKCKZO/wkhISEFCaWIARo1aoTjR4+Uu+SxEEIRQgjx8vIiyMsSCADi4eFR6L+9vLw4X+vn51eo7H9/RCIRcXNzI4QQUqtWLdbz5VVycjK5cuUKmTNnDrGxsZH57yDvj6mpKRk/fjw5f/48SUtLK3S9v//+m/U1lSpVIhKJRCnvce3atazXTEhIUMr1KoLs7Gxy584dsmLFCtKpUyeiqalZ5naho6ND+vbtS/bt20c+fvwo9Fvk/Lu/cOGC0KGpLIlEQp4+fUr++usv0q9fP2JgYFDmdsEwDGnXrh1Zv349efbsGZFKpUK/TdY4586dK3RYlMA6d+5cpF20atVK6LDKjCaS32ndunXBL3fZsmUEADE2NpaZRBJCiFQqJXXr1pX5YdevXz9CCCHVqlUrck5TU5OPt8eLuLg4cvLkSTJp0iRiZWWlkOShT58+ZM+ePeTjx49EIpEQXV1d1rL79u1TynuiiWTZpaWlEU9PTzJ//nxiZ2enkBuOtm3bknXr1pHw8HBBkgeaSJZdTk4OuX//Plm9ejXp0qUL0dbWLnO7qF+/Ppk/fz65c+cOyc3NFeR90USSYkMTSTXQs2fPIr/k2rVry/Xa33//vdgPuM6dO7Pegevo6Cj5nQknIiKC7Nu3j4wcOZI1iS7pj4ODA2ciUqdOHaW8B5pIKl5CQgI5e/YsmT59OmnQoEGZ24W1tTWZN28e8fX15S15oImk4n379o14eXmRhQsXkjZt2hCRSFSmdmFqakpcXV3JxYsXSXp6Om/vgyaSFBuaSKoBtkSycePGcr329evXcn2wMQxT5Ji+vr6S35lqkEqlJDQ0lGzdupU4Ozsr5HHnf3+ePn2q8LhpIql87969I4cPHyYjR44khoaGZWoDVatWJTNmzCD37t1Tak8lTSSV7+vXr+TSpUvkp59+Yh0WVJIfXV1dMmzYMHLp0iWSlZWl1LhpIkmxqaiJpGpNEy7HGjRogLZt2xZbjrBMquFjm0FVwDAMbG1tMXfuXNy8eRMJCQk4efIkRo0apbClj2bMmKGQeih+WVpaYsKECTh9+jQSEhLg5eWFmTNnolatkk9m+vLlC3bt2oWOHTvC2toay5Ytw4sXL5QQNaVsJiYmGDRoEHbt2oX379/j8ePHWL58OVq0aFHiurKysnD+/HkMHjwY5ubmmDp1Ku7cuaOQyYIUpc5oIqlAP/zwAwDg119/xfDhw+V+nbZ2xVp3UF7GxsYYPXo0Tp06VZA8zJo1q0zrCN67dw89evTA8ePHFbbsCMUvbW1t9OjRAzt27MD79+/x5MkTrFixAnZ2diWuKyoqCmvXrkXTpk3RqlUrbNmyReEL71P8YBgGrVu3xqpVqxASEoKoqCj8/fff6N69e4mXiEpKSsL+/fvRpUsXWFlZYeHChQgNDVVS5BRVwQndJapKyvJom5C8cV9z5swpeJw2adIkuR65WFtbK+stlUtSqZQEBQWRFStWkJYtW5b6UZaenh4ZNWoUuXr1KsnJySl1PPTRtuqIjo4m27dvL9PQCIZhSLdu3cjBgwdJcnJyqWOhj7ZVx9evX8mJEyfIiBEjyjQTvFmzZmT9+vXk3bt3ZYqHrW76aJuqqI+2aSL5nbImkmzmzZtX7IdX8+bNFfQOKqZ3796Rf/75h/To0aPUyYOpqSn56aefiJ+fX4mXCaKJpGpKSkoiJ0+eJKNGjSr1uEodHR0ydOhQcuHChRKPm6OJpGrKzs4mN27cIDNmzCjTuEpHR0eyZ88ekpiYWOIYaCJJsamoiSR9tK1kW7ZswapVq2SWefbsGd69e8dTROWPpaUlZs2aBS8vL3z58gUnTpxAv379SvQ4KzExEbt374ajoyPq1auHpUuXsi4MT5Uf/x0acePGDUycOLFE422zs7Nx4cIFDB06FGZmZpg8eTLu3btXbjYIoIrS1taGi4sLdu7cWTA0YtGiRbC0tCxRPX5+fpg+fTpq1KiBgQMH4sKFCwrdW5yiKgqaSPJg+fLl2Lp1K+d5iUSCJk2a0AkBcjAyMsKYMWNw9epVfPr0CQ0bNixxHe/evcO6detQv359uLi44OLFi/QLopzLTx4OHjyIz58/F0yqKMn445SUFBw8eBCdOnVC8+bNsXPnTqSkpCgxakrZGIZBq1atsH79ekRFReHOnTuYOnUqTEzk3840NzcXbm5uGDZsGCwtLbFs2TJ6409R36GJJE/mzp2LgQMHcp7PzMyEnZ0dnjx5wmNU5VvVqlVx8ODBMtVx8+ZNDB06FHXq1MHy5cvx/v17BUVHCUVXVxdDhw7FxYsXERcXVzCpoiRb04WHh2PWrFmwsLDA5MmT8fjxYyVGTPFBJBKhc+fO2Lt3L+Li4nDlyhWMGDECurq6ctcRFxeHtWvXom7duujXrx/c3d0hkUiUGDVFqT6aSPLIzMxM5vmcnBy0a9cOd+/e5Smi8q9Tp04wNjZmPVeSXodPnz5h9erVqFu3Lvr37w8PDw/6BVEBmJiYYPLkyfDx8cH79++xadOmEi0dk5GRgYMHD6JNmzawt7fHgQMHkJ6ersSIKT5oa2tjwIABOHPmDD5//owjR46gR48eEInk+0okhMDDwwP9+/dH3bp1sXr1anz8+FHJUVOUaqKJJI8+ffpUbBmxWIyuXbvCw8ODh4gqhhEjRrAer1mzJry9vTFp0iQYGRnJVZdUKoW7uzv69euHevXqYe3atXQZoQqiVq1aWLBgAUJCQhAeHo7FixejTp06cr/+yZMnmDJlCiwsLDBz5kw6xraCMDQ0hKurK7y8vBAbG4utW7fC3t5e7tfHxMRg+fLlsLS0xJAhQ+Dl5aXEaClKBQk920eVKGPW9vfatWtXoiVKTp06pbBrV2SfP3/m/DdMSUkhhBCSmZlJLly4QIYMGUK0tLRKNHuTa5s2Omu7/JNIJMTPz49Mnz6dGBsbl3qG7/c/dNZ2xfDy5UuyfPlyUrduXYW0Czprm6KztqkyS0xMlLssIQSjR4/Gvn37lBhRxVC9enU0aNCgyHFCCP744w8AeePmhgwZggsXLiAmJgbr16+HlZWVXPXTnS8qLpFIhE6dOmH37t34+PEjjhw5gnbt2gkdFqUCGjVqhFWrVuHt27e4ceMGBg8eDA0NjVLXR+hKAFQFRRNJHqWmphY5xjAMKlWqxPmaadOm4c8//1RmWBXC7NmzWY8fP368yDEzMzMsWrQIERERuH79OgYNGiT32KjvLV68GFFRUSV+HaWa9PT04OrqigcPHiAkJAQ//fQT9PX1S1zPxo0bcf/+fSVESAlBJBIVrO7w/v17/PHHH6XauvPUqVM4e/YsxGKxEqKkKAEJ3COqUpT9aFtfX79I/Xp6eiQmJqbYBZWXLVumsDgqIrFYzLlY+dOnT4t9fUxMDFm5ciWpWbNmiR97jxw5kjx+/JiHd0nxLTU1lezdu7dUOyx17NiRXL58ucQL4FOqLzc3l7i5uZE+ffoQhmFK1C7q1q1L/vnnH5Keni7026B4VlEfbdNE8jvKTiTZEh1TU1NCSN72iqampjI/gGbPnq2wWCqirl27sv679evXT+46cnNzyZUrV0jv3r1L/AXRtWtX4unpWbBFJlVxSKVSEhgYSCZOnEj09PRK1C4aNWpE9u3bRzIzM4V+G5QSREVFkaVLlxIzM7MStQtTU1OyfPlyEh8fL/RboHhCE0k1oMxEUiqVct6d5ktJSSEWFhYyP3zGjx+vkHgqIq4t63R0dEqV3EVGRpLFixeTypUrl+gLolmzZuTIkSMkOztbCe+SElpSUhLZvn07sbKyKlG7MDMzI2vWrCnVlnuU6svJySHnzp0j3bt3L1G70NXVJdOnTyevX78W+i1QSkYTSTWgzEQyKiqK9UPEwcGhULnMzExSr149mR88gwYNUkhMFRHXzNtjx46Vus4//vijRF8M+T81a9YkmzZtIsnJyQp8h5SquHv3bqnaReXKlcmcOXNIVFSU0G+BUpLStAuGYciQIUPIgwcPhA6fUpKKmkjSyTY8CQwMZD1et27dQv+tq6uLV69ewcbGhrOuy5cvo3v37nQ2MQuuNSW3bNlS6jpLO1Pzw4cP+O2332BpaYkFCxYgNja21DFQqqckO+V879u3b9i+fTvq16+P0aNHIygoSMGRUeURIQQXL15E+/bt4ejoCDc3N/oZT5ULNJHkSUhICOvxJk2aFDmmqamJ0NBQODg4cNbn7e2Ndu3a0Q+a/8hf7ue/wsLCFL6ftryzelNTU7F582bUrVsXrq6uePnypULjoFTLhAkTULt27WLLSSQSnD59Gq1bt4azszNu375Nl4ipwPr06YM2bdrIVdbf3x8DBw6EjY0NDh06pPDPLopSJJpI8oQreWjZsiXrcZFIhAcPHsDZ2ZmzzkePHsHW1pYuJ/EdMzMz1KtXr8hxqVSKPXv2KPRaf/zxB2JiYrBhwwaYm5sXW14sFuPYsWOwsbHB+PHj6c4oFVT//v0RERGBf//9V+7tGG/fvg1nZ2d06dKFbpFaQTVs2BCBgYHw9fVF37595XrNy5cvMWnSJDRp0gTHjh2j27ZSKokmkjx59+4d63FZvY4ikQg3b97E4MGDOcs8f/4cDRs2RFZWVpljrChcXV1Zjx88eFDh1zI2NsbChQsRFRWFQ4cOoWnTpsW+RiqV4vjx42jUqBEmT57M2Tao8ktLSwtjx45FcHAwvLy80KNHD7led/fuXTg5OaFHjx4ICAhQcpQU3xiGgZOTE9zd3fHs2TP8+OOP0NLSKvZ1ERERcHV1hY2NDc6cOUOfRFEqhSaSPImLiytyjGEY1KhRo9jXXrx4ERMmTOA8HxUVhXr16rEueK6O5s2bx3o8LCxMab23Ojo6+PHHHxEWFgZ3d3c4OTkV+xqJRIKDBw+iQYMGmDlzJj58+KCU2CjhMAyDHj16wMvLC8HBwRg7dqxcY25v3bqF9u3bo2/fvnjy5AkPkVJ8a9q0KQ4dOoTo6GgsXLgQRkZGxb7m1atXGDVqFOzs7HDp0iU6FIJSCTSR5ElycnKRY3p6enK//vDhw5gzZw7n+U+fPqFevXr48uVLacKrUPT19WFtbV3kuFQqVUqv5PdEIhH69u0LX19fPHz4EMOHDy9215zc3Fzs2rUL1tbW+OWXX/D582elxkgJw87ODv/++y8iIyPxyy+/yDW+1tPTE/b29hg8eDDCwsJ4iJLim4WFBTZs2ICYmBhs2bJFrvG1YWFhGDJkCOzt7eHh4UETSkpQNJHkCdujZ2Nj4xLV8ffff+P333/nPJ+YmAhra2u8f/++pOFVOGPGjGE9zufe5W3atMHZs2fx+vVrzJgxA9ra2jLLZ2dnY9u2bahXrx4WLlxIbwoqKEtLS/z11194//491q1bh6pVqxb7msuXL6N58+YYOXIkXrx4wUOUFN8MDAwwb948RERE4Pjx43INkwkKCkK/fv3Qvn173Lx5kyaUlCBoIsmDmJgY1j9weSZo/Ncff/yBzZs3c55PTU1FkyZN8ObNmxLXXZHMnz+f9fjTp095H19kbW2NnTt34s2bN5g6dSo0NTVlls/IyMCmTZtQt25dLFu2DElJSTxFSvHJxMQEixcvRmRkJNauXQsTE5NiX3P27Fk0a9YMP/zwA96+fctDlBTftLS0MG7cOISGhuLEiRNo0KBBsa8JDAyEi4sLnJyccOfOHR6ipKj/oYkkD+RdQ1Je8+fPx/79+znXscvIyICtrS3nkkPqwMjICFZWVkWOSyQSHDlyhPd4gLyeqL179+LVq1eYMGFCsY+809PTsXbtWtStWxerV6+mY2ArKAMDAyxZsgRRUVFYsWIFDA0NZZaXSqX4999/0bhxY0yaNAnR0dH8BErxSkNDA2PGjMHz589x+PBhub4v/Pz80KVLFzg7O+PBgwc8RElRNJHkBVdC17hx41LXOXnyZJw6dYozmczOzkabNm1w7969Ul+jvBs1ahTrcUUvA1RS9erVw+HDh/HixQuMGTOm2IWtU1JSsHz5ctSrVw87d+6kyz1VUEZGRli5ciWioqKwePFiVK5cWWZ5iUSCQ4cOoWHDhpg3bx7tua6gNDU1MWHCBLx8+RJ79+5FrVq1in3N7du30aFDBwwcOFDtn05RykcTSR5wrSFpZ2dXpnpHjhwJd3d3zp4tsVgMJycn3Lhxo0zXKa8WLFjAejw4OFglls9o2LAhTpw4gbCwMAwbNqzY8omJiZg1axZatGiB69ev8xAhJYQqVapg3bp1iIqKwvz586GrqyuzfG5uLrZu3YoGDRpg165d9EajgtLW1sbUqVPx5s0bbN++Xa4VP9zc3GBjY0NvNCilookkD7gWnpa1hqS8+vTpAx8fH85xdxKJBL1798b58+fLfK3ypkqVKqwzIMViMU6dOiVAROxsbGxw7tw5BAcHo3///sWWf/78OXr37o0+ffrQiRcVWLVq1bB582ZERkZi9uzZxU7WSkxMxMyZM+mNRgWnq6uL2bNnIyIiAps3by52stb3Nxr0iQalDDSR5AHbHssMw8i1zIM8OnfujMDAQOjo6LCeJ4RgxIgRSl/6RhVx7b29c+dOniMpnp2dHdzc3BAYGIhevXoVW/7atWuwtbXF7NmzkZiYyEOElBDMzc2xfft2vH37FtOmTSt2sha90VAPlSpVwvz58xEVFYX169cXO1mLPtGglIUmkjxge6RgYGCg0Gu0atUKT58+5VybkhCCyZMnY9u2bQq9rqpbuHAh6/HHjx+rxONtNg4ODrh27Rr8/f3RrVs3mWUlEgl27NiB+vXrY+vWrcjJyeEpSopvtWvXxp49e/D69Wv8+OOPxS5sTm801IO+vj4WLVqE6OhorFq1qtjJWvRGg1I0mkgq2adPn1j3R5VnwHRJNWrUCC9fvpSZpP7yyy9YtWqVwq+tqqpVq4aaNWsWOZ6bm4tz584JEJH8OnbsiNu3b+PatWvFrimXnJyMefPmoVmzZrh69SpdT64Cq1u3Lg4dOoSwsDD07t1bZtnvbzS2bdtGbzQqMENDQyxfvhyRkZGYNWsWvdGgeEMTSSXz8vJiPV6WGduyWFpa4u3bt6hSpQpnmZUrV3JuI1gRDR06lPW40LO35dWrVy88ffoUO3fuhKmpqcyyb968wYABA9CjRw+EhobyFCElhCZNmsDT01PuG41ffvmF3mioAVNTU/zzzz8lvtGgTzSo0qKJpJL5+fmxHm/btq3Srlm9enVERETInNW3detWTJ48WWkxqBKux9sPHz7kOZLS09TUxIwZM/DmzRvMmzcPWlpaMsvfvn0bLVu2xNSpU+mWixUcvdGg2JT0RiP/iYabmxu90aBKhCaSSsb1Ye3i4qLU6xobGyMiIgJ16tThLHPw4EEMHz5cqXGoAgsLC1SrVq3I8YyMDDx79kyAiErPxMQEW7ZswbNnzzBw4ECZZaVSKfbv348GDRrg77//Zh1iQVUMpb3RmDlzJlJSUniKkhJCSW80Bg4ciJ49e9Kdkyi50URSydh2nWAYBs2bN1f6tStVqoTXr1/LfIx+/vx59OzZU+mxCK1Lly6sx3fs2MFvIArSoEEDXL58Gbdv3y62LaWlpWHu3Llo164dgoODeYqQEkJJbzR27dqFJk2a4Pz587QXqgIr6Y3GzZs30axZM6xdu5Y+7qaKRRNJJWObsa2vr1/s9niKoq2tjWfPnqF169acZby8vNC+fXuVncWsCNOnT2c9Xt6XwejWrRuCgoKwf/9+VK9eXWbZx48fw97eHvPnz0d6ejpPEVJCKMmNxqdPnzB8+HAMGDAA79694ylCSggludHIzs7GsmXL0LJlS/j7+/MUIVUe0URSieLj41kXf7WwsOA1DpFIhIcPH3L2ygFAQEAA7OzsKuxitd26dWO9C3/37h1yc3MFiEhxNDQ0MHnyZLx58wYLFy6UuXC1VCrFX3/9BRsbG7i7u/MYJSWEktxouLu7o2nTpvjrr78q7OcAlackNxrPnz+Ho6Mjpk2bRnfHoVjRRFKJ+J6xLYtIJIKPjw8GDBjAWSYsLAxNmjRBVlYWj5Hxh23AOSEEx48fFyAaxTM0NMSGDRvw8uXLYse+vn//Hv3798fw4cPx8eNHniKkhFCSG42MjAzMnz8fDg4OePz4MY9RUkIoyY3Gvn370KRJE5w+fZoOg6AKoYmkEgkxY7s4V65cwdixYznPv337FvXr16+Qjz6HDBnCeryiJJL56tati7Nnz+L27dto0KCBzLLnz59HkyZNsGvXLjoZp4LLv9F49uwZunfvLrNscHAw2rZti7lz5yItLY2nCCkh5N9ovH79GjNnzgTDMJxlP3/+jNGjR6NPnz6IioriMUpKldFEUom4Zmw7OzvzHElh//77L2bOnMl5/sOHD6hXrx6+fv3KY1TKx/WeK2rPS7du3RAaGorff/9d5uD61NRUzJw5Ex07dqRLwqiB+vXr4+bNmzh+/LjMfZqlUin+/vtvNG3aFFeuXOExQkoIRkZG2LFjB+7fvw9bW1uZZa9fvw4bGxts2rSp3A8NosqOJpJKFBERwXpc1sQXvuzYsQNLlizhPJ+QkIB69epVqMeepqamrF+c6enpePXqlQARKZ+uri7++OMPhISEoFOnTjLLBgYGonXr1li0aBEyMjJ4ipASAsMwGDduHF6+fImJEyfKLBsbG4tBgwZh8ODBiI2N5SlCSijt2rXDkydPsHHjRs4tdwEgMzMTCxcuhL29PQIDA3mMkFI1NJFUEkII67ZTBgYGvM3YLs7atWuxYcMGzvMpKSlo2LAhZ0JcHjk6OrIe/+eff3iOhF9NmzbFnTt3sH//fhgbG3OWE4vF2LhxI5o1a1buZ7RTxTM1NcXBgwfh6+uLRo0aySx7+fJlNGnSBNu3b6fDICo4LS0t/Pbbb3j27Bl69eols2xoaCjat2+PWbNm0TVJ1ZRqZDQVUFBQEOtyOlZWVvwHI8PChQuxe/duzvPfvn2DjY0NwsLCeIxKebiWAbp27RrPkfBPJBJh8uTJePnyJcaMGSOzbFRUFHr37o0ff/wRqampPEVICcXJyQlPnz7FqlWrZE7GSU9Px88//wxHR0e6YLUaqFu3Ljw9PXHq1CmYmZlxliOEYOfOnbCxscGtW7d4jJBSBTSRVJILFy6wHm/Xrh3PkRRv+vTp+PfffzkHWWdnZ6N169Z48OABz5EpXo8ePaCpqVnkeFRUlNoseWJmZoYTJ07gxo0bqFevnsyyR44cQfPmzeHr68tPcJRgdHR0sHz5coSGhspcKgwAHjx4gBYtWmDPnj10Bm8FxzAMRo0ahRcvXmDq1Kkyy3748AE9evTAnDlz6PAYNUITSSW5e/cu6/F+/frxHIl8xo4di8uXL3M+ds/NzYWjo2O5v9tkGIZ1+SVCCE6fPi1ARMJxcXFBWFgYFi1axJpc53v37h26du2KefPmVdiloaj/adSoEby9vXH48GFUqVKFs1xGRgZ++ukn9OnTp0KNpabYmZiYYO/evfDz8yt27+5//vkHLVu2xMOHD3mKjhISTSSV5OXLl6zHe/fuzXMk8hswYABu377NmVRIJBL07NkTFy9e5DkyxeJaBujw4cM8RyK8SpUqYf369QgKCkL79u1llt26dStat26NoKAgnqKjhMIwDCZMmICXL19i/PjxMstev34dzZo1w5kzZ3iKjhJSp06dEBwcjLVr10JHR4ez3OvXr9GhQwesWLGCzuyu4GgiqQRSqZR16RwjI6Ni9zgVWpcuXXD//n3OcVJSqRTDhg3D0aNHeY5McWbNmsV6/MmTJzxHojpsbW3h7++P3bt3w8DAgLPc8+fP0bZtW6xZs0ZthgKos2rVquHo0aO4ffs2rK2tOcslJSVh1KhRGDNmTIVbNowqSltbG0uWLEF4eDi6devGWU4ikeCPP/5A+/bt8eLFCx4jpPhEE0kluHPnDuu4oeIWh1YVbdq0QVBQEOfSD4QQTJgwodzOdK5WrRrrI7uUlBTWmfbqQiQSYfr06QgNDYWTkxNnObFYjN9//x2dOnXC69eveYyQEkq3bt0QEhLCOVkt36lTp2Bra8u5qxdVseSvSbp9+3bo6upylnvy5AlatmyJbdu2sU5Cpco3mkgqweXLl1mPF7eOnyqxsbHB8+fPoa+vz1lmzpw5WLt2LY9RKU6bNm1Yj1e0XW5Kw8rKCt7e3tiyZYvMR1eBgYGws7PDrl276IQLNaCvr4/du3fD09MT5ubmnOU+fvyInj17YubMmfj27RuPEVJCEIlEmD17NoKDgzk/V4G8SZu//PILnJ2d8f79ex4jpJSNJpJKcP/+fdbjgwYN4jeQMrKyssKbN29gYmLCWWbZsmVYsGABj1EpxuDBg1mPu7m58RyJahKJRJg3b15BTwKXzMxMzJw5E7169cKHDx94jJASSu/evREWFoYRI0bILLdr1y60bNkSAQEBPEVGCalx48a4f/8+Vq1aBQ0NDc5yPj4+sLW1xbFjx+gNaAVBE0klePPmTZFjDMNwLoatymrUqIHIyEiZa4ht3rwZ06ZN4zGqsuNaR/Hp06c8R6LabGxsEBAQgGXLlslcSN/LywvNmjXDqVOneIyOEoqpqSnOnDmDkydPylzg/s2bN+jYsSOWLVuGnJwc/gKkBKGpqYnly5cjICCAdXWMfKmpqXB1dcXQoUORkJDAY4SUMtBEUsFycnJYV/evUqWKyuxoU1LGxsaIjIxE7dq1Ocvs27cPo0aN4jGqsjEwMGD9Avz69St9HPcf2traWL16Ne7duydznG9ycjLGjBmDUaNG0R0u1MTo0aMRHh4OFxcXzjJSqRRr165Fu3btKuxWpFRh9vb2CAoKwty5c2WWu3TpEpo1a6YWG0JUZOUzs1FhXNvKNWnShOdIFKtSpUp4+/YtGjZsyFnmzJkz6Nu3L49RlU3z5s1Zj6vbepLyateuHYKDgzFz5kyZ5c6cOUOXCVIjNWvWxPXr17Fz506ZezMHBwfD3t6e9lqrCT09PWzduhW3b9+W2QkRHx+PPn36YPHixXQliHKKJpIKxjXRpnPnzvwGogTa2tp4/vw57OzsOMt4enqiU6dO5WJmHtfi8JcuXeI5kvKjcuXK2LFjB27cuAELCwvOchEREWjfvj2diKMmGIbBjBkzEBISgrZt23KWS09Px5gxYzB9+nS6uL2a6NatG8LCwopdj3TDhg3o1q0bHWtdDtFEUsH8/f1Zjxc3ML280NDQwJMnT2TOQL937x5at24NiUTCY2QlN2HCBNbjjx8/5jeQcsjFxQXh4eEy9+zOycnBzJkzMXr0aLpft5po2LAh/P39sWbNGpm7Je3duxft27en+3WrCSMjIxw9ehQXLlxA1apVOcv5+fnBzs4ON27c4DE6qqxoIqlgUVFRRY5pamqiRYsWAkSjHCKRCH5+fujTpw9nmZCQEDRt2lSlB9hXq1aNdXmj+Ph4uhODHExMTHDixAmcOXNG5sz+M2fOwN7eHiEhIfwFRwlGU1MTS5cuRWBgoMyt9EJCQtCqVSucO3eOx+goIQ0ZMgTh4eHo378/Z5kvX76gd+/eWLZsGX3UXU7QRFKBHj58yNrw69atK0A0yufh4SFzgs3r169Rv359lZ68wvZFRwjBlStXBIimfBoxYgRCQ0Nl9lK/efMG7dq1w759++ijbjXRqlUrPH78GFOnTuUsk5aWhhEjRmDWrFnIzs7mMTpKKGZmZrhy5Qp27NjBuYMaIQRr166Fs7MzPn36xHOEVEnRRFKBuPZq7tKlC7+B8OjUqVMyl/6JiYlBvXr1kJSUxGNU8uvZsyfr8bNnz/IcSflWq1YteHt747fffuMsk52djWnTpmHcuHFIT0/nMTpKKHp6eti7dy/+/fdfVK5cmbPczp070aFDB0RGRvIYHSUUhmEwc+ZM3L9/X2ZHy507d2BnZ4fbt2/zGB1VUjSRVCAfHx/W48UNMi7v9uzZIzOBiI+PR7169RAXF8djVPKZOHEi63G6iHLJaWlpYePGjbh69SrrFpT5Tp48CXt7e4SFhfEYHSWksWPH4vHjx2jWrBlnmaCgILRq1QoXL17kMTJKSPmrO3BtEAHkfX/06NEDK1euVPlx9+qKJpIKxHY3raGhgY4dOwoQDb82btyINWvWcJ5PTk5GgwYNWMeQCsnKyop1j9gPHz6Ui5nnqqhfv34IDg5G+/btOcu8evUKDg4OOHjwIH3UrSYaN26MwMBAzps3IG+/+6FDh+Lnn39W6fHVlOIYGxvjwoUL2LZtG7S0tFjLEEKwatUquLi4qGSHhLqjiaSCBAcHs07QsLKyAsMwAkTEv6VLl2L79u2c59PT09G0aVM8e/aMx6iKx7Y2plQqpY9TysDS0hJ37tzB/PnzOctkZWVh8uTJcHV1VelxtJTiVKpUCQcPHsSRI0dkrjm5fft2dOrUCdHR0fwFRwmGYRj8/PPP8Pf3R506dTjLeXt7o2XLlpxP/yhh0ERSQQ4dOsR6vCKsH1kSs2fPxpEjRziT56ysLLRq1QqPHj3iOTJuzs7OrMfpwsllo6Wlhc2bN+Py5csyt9E7fvw42rRpg5cvX/IXHCUoV1dXPHr0SOZGDY8ePULLli3h7u7OY2SUkBwcHBAUFIQBAwZwlomLi4OzszPWrl1LnxqpCJpIKghX75WrqyvPkQjP1dUVFy5c4NwSMicnBx06dFCZu0qu39GDBw94jqRiGjhwIIKDg9GmTRvOMi9evEDbtm3h6enJY2SUkGxsbPDo0SP88MMPnGWSk5MxYMAArF+/ng6BUBNVqlTB5cuXsXnzZs61SKVSKZYtW4aRI0fSpxkqgCaSChIREVHkmIaGBhwdHQWIRniDBw/GjRs3oKGhwXpeLBbD2dkZbm5uPEdWVPPmzVnjfP/+vQDRVExWVlbw9/fHzz//zFkmNTUV/fr1w+bNm2nSoCYqV66Mo0eP4sCBA6xjlYG88XFLlizB2LFjkZmZyXOElBAYhsH8+fNx9+5dmdsrnj9/Hp06daKf1QKjiaQChIaGsg4Mt7S05OyVUwfOzs7w9/fnHEAtlUoxaNAgnDhxgufIiqpRo0aRYxkZGXRHFgXS1tbGtm3bcOHCBRgZGbGWIYRgwYIFcHV1pVvoqQmGYTBp0iQ8fPgQjRo14ix36tQpODo60i301Ej79u0RHBxc7OYX9vb2uHfvHo+RUd9T3yxHgbjWj1TX3sjvtWvXDk+ePJHZ2zBu3Djs3r2b58gK41qWRBV6TCuaIUOGICgoCK1bt+Ysc/z4cXTp0oUuRqxGbG1t8ejRI5nbbj558gT29vYIDAzkMTJKSKamprh69So2btzI+YQrISEBXbt25ZyrQCkXTSQVgGtf0Iq+fqS8bG1tER4eLnNB4hkzZmDjxo08RlUY16LxdM9X5ahXrx78/f1ljo8LDAyEvb29Sk3MopTLwMAA//77L7Zt28b5NCcuLg5OTk44duwYz9FRQhGJRPjtt9/g5eXFuUZtbm4uJk2ahLlz59KtFXlGE8kyIoTgzZs3RY5raGiga9euAkSkmqytrfH69WvOR5oAsGjRIixZsoTHqP5n2LBhrMcfP37McyTqQ1dXF0ePHsWff/7JOcv/48eP6Ny5M06ePMlzdJRQ8peCuXbtGuds/+zsbLi6umLBggV0kWo10q1bNzx8+FDmHu5///03+vTpo7K7qVVENJEso2vXrrHe/VhZWan1+Eg2FhYWiIiIQLVq1TjLrF+/HjNnzuQxqjz169dnnSFIB3ErF8Mw+PXXX+Hu7g5DQ0PWMllZWRg7diyWLFlCl/tQIy4uLggMDJQ5bnLz5s3o378/UlJSeIyMEpK1tTUePHiA/v37c5a5efMmHBwc8OLFCx4jU1800ymjvXv3sh7v168fz5GUD6ampoiMjETNmjU5y+zatQvjxo3jMao8ZmZmRY5lZGTQSR886NOnDwICAlC/fn3OMuvXr8egQYPoBCg10rBhQwQGBqJ3796cZa5du4a2bduyPhmiKiZDQ0NcvnwZixcv5izz9u1btGvXji4pxgOaSJaRn58f6/G5c+fyG0g5oq+vj7dv38pMGk6cOCHzjlMZuCbc0IWy+dGkSRM8fPgQPXr04Cxz9epVdOjQgXW5LapiMjIywtWrV7FgwQLOMvlbbt68eZPHyCghiUQirFu3DidPnuSczEmXFOMHTSTL4NOnT6zjMAwNDWFlZcV/QOWIrq4uXrx4AVtbW84y7u7u6NKlC2+PM7km3Lx+/ZqX61OAiYkJPD09Zd6IPXv2DA4ODvD29uYvMEpQGhoa2LRpE44ePQptbW3WMsnJyejVqxf+/vtvmjSokdGjR8PPz4/zKRddUkz5aCJZBlz7Srdv357nSMonTU1NhISEyPz3unPnDhwcHHhJJrkm3NB16/ilqamJrVu34uDBg5xrkH79+hUuLi7Yt28fz9FRQho/fjzu3LnDuu4rkLc27dy5czFt2jQ6c1eN5K/u0LZtW84y+UuKJSQk8BiZeqCJZBlcvnyZ9fikSZP4DaQcE4lEuH//PlxcXDjLPHnyBDY2NqyLvisS14QbOpBfGBMnToSPjw+qV6/Oel4ikWDatGlYsWIF7YFSI+3atcPjx49hb2/PWWb//v0YNGgQ3T5PjZibm8PX17fYJcU6duyIyMhIHiOr+GgiWUpSqZR1cLdIJMLQoUMFiKh8u3HjBmePIJA3TrFhw4bIyMhQahxsE25yc3OVek2KW8eOHfHo0SPY2dlxlvnjjz8wZcoU2gOlRmrWrIm7d+/KXLzcw8MD3bp1oz1QaiR/SbHNmzdzrpry5s0btG/fHk+ePOE5uoqLJpKldOnSJdb1yxo0aECX/Smlc+fOyezNfffuHaytrZGcnKy0GLgm3FDCsbS0hL+/P4YPH85Z5uDBgxg4cCDtgVIjenp6+Pfff7F+/XrOdUgfPnxIe6DUTP4+3bKWFIuPj4eTkxPdcEJBaMZTSvv372c9PnDgQJ4jqVgOHDiAefPmcZ6Pi4uDtbU14uPjlXJ9rgk3lLAqV66MM2fOYOXKlZxlPD090bVrV9oDpUYYhsGiRYtw5coVzp2zaA+UeurduzcCAwNhbW3Nev7bt2/o168f3SFJAWgiWUoPHjxgPT5nzhyeI6l4tmzZIjNh+Pr1K+rXr493794p/NqyHq9TwmIYBitWrMDhw4c599x99OgRXR5IDfXv3x8+Pj6cmx3QHij11LhxY9y/f59zPK1YLIarqyvWr19Px1mXAU0kSyE6Opp1UWQTExOZC21T8luxYgW2bt3KeT4tLQ1NmjRR+M4F9evX50xSKNUwYcIEXL16FZUqVWI9//btW3To0IFub6lm2rRpg/v379MeKKqQ6tWrw8fHB7169eIss2TJEsyaNYtut1lKNJEsBa4Ep2PHjjxHUrHNnTsXBw4c4Bz/lJmZCTs7OwQFBSn0uqampgqtj1K83r17w9fXV2YPVJcuXXD9+nWeI6OEVL9+fdoDRRWhr68PNzc3TJgwgbPMrl27MHz4cGRmZvIXWAVBE8lS4Fr2Z9q0afwGogYmTZqEs2fPciaTOTk5aNu2Le7evauwa9arV09hdVHKI08PVP/+/XH06FGeI6OElN8DJWtbRdoDpX60tLRw6NAhLF26lLPMpUuX0KNHD3z9+pXHyMo/mkiWUGpqKt6/f1/kuKamJvr06SNARBXfsGHDcO3aNc5HzmKxGF27dlXYnqqylpqhVIs8PVATJkzAunXraA+UGtHX18eVK1fw448/cpahPVDqh2EYrFmzBrt27eJcXeXevXvo1KkT6/c8xY4mkiXE9Vjbzs6OLvujRD179sSdO3dYFwwH8tb17NevH86cOVPmazk5OZW5Doo/8vRALV26lPZAqRktLS0cPHgQy5Yt4yxDe6DU008//YQLFy5w7tH94sULtG/fHqGhoTxHVj7RzKeETp48yXp8ypQpPEeifvIXp9bR0WE9TwjB6NGjy7xtXs+ePcv0eop/JemBovvtqg+GYbB69Wrs3r2b9kBRhQwaNAi3bt2CiYkJ6/mPHz/C0dERPj4+PEdW/qh9IpmZmYmkpCQkJSWx7mAikUhw9+5dfPnyBV+/fuXczWbixIl8hKv27OzsEBYWxjljlxCCadOmYcuWLaW+homJCWfP5/eSk5ORlJREt1BUEfL2QPXt2xfp6emlugYhpODzgm3lBgBIT08vKMPHHvFU8aZPn46LFy/K7IHq1KkT6+e7vNLS0gp+72yysrIKzit7u1dKPh07dsS9e/dgaWnJej41NRW9e/eGu7t7qa9RXI4hFosLzit75zalIWruwYMHBIBcP40bN2Y93rRpU6HfhtqJiYkhhoaGMn9fv//+e4nqlEql5N27d+TatWvEwMBA7nYxe/ZsJb1LqrR2795NRCIR5++sXbt25OvXr6Wqu3v37nK1Czs7OyKVShX8zqiyuHfvHqlSpQrn78zMzIyEhoaWqu5Vq1bJ1S709PTIp0+fFPzOqLL48OEDadGiBefvTFNTk5w+fbpUdfv4+Mj9XeLu7q7gd8YPtU8kCSGkV69ecv+i2X42btwo9FtQSwkJCcTU1FTm72bOnDly1xcdHV1scvrfHx0dHRIbG6vEd0mV1uXLl4murq7MRO/z588lrvfu3btytY1Lly4p/k1RZfbixQtSp04dzt+biYkJCQwMLHG9SUlJxNjYuNh2MW/ePCW8K6qskpOTSbdu3Th/bwzDkAMHDpSqbicnp2Lbhb29fbm98aSJJClZryTbz5gxY4i7uzvJysoS+q2onZSUFGJubi7z9+Pq6ip3fSdPnizR7572Rqq24nqgGjduTGJiYgrKSyQSkpycXGy9xfVK0t5I1fbx40eZPVD6+vrE19e30Gvk6cEurleS9kaqtuzsbDJ69GiZv8Nt27YVeo087UKeXsny2htJCE0kC8jqlaxdu3axjUBLS4t4enoK/TbUUmZmJqlXr57M38/gwYMLysfExBA/Pz/O+saPHy9XEkl7I8uHsLAwYmZmxvl7tLKyIhEREUQqlZLp06eTdevWFVunn5+fzLZBeyNVX1JSEmnfvj3n71BXV5dcu3aNEELIsWPHSN++feWqU1avJO2NVH0SiYRMnz5d5t/36tWriVQqJSEhIcTa2ppkZ2cXW6+sXsny3BtJCE0kC8jqldy8eXOxSeSVK1eEfgtqLTc3lzRt2lTm76l79+4kLi6ONG7cmAwZMoSzrtTU1GITU4D2RpYnr1+/JpaWlpy/S3Nzc+Lq6koAEFtbW7nqdHZ2Zq2L9kaWH2lpaTJ7l7W0tMjcuXOJSCQimpqaJCEhodg6uXolaW9k+SGVSsmCBQtkfv5PnjyZVK1alQAgbm5uxdYpq1eyPPdGEkITyULYeiVtbGxIeno6TSLLAYlEQtq0aSPzj19PT48AINra2jIfSQQEBBANDQ3aG1mBvHv3jjRo0KDYGwQAJDw8vNj6/P39WV978eJFHt4NpSiZmZmkf//+crWL3bt3F1tfcnIya6/kL7/8wsO7oRRFKpWSNWvWyNUuRo8eLVedbL2S5b03khCaSBbC1it59uxZQgghFhYWNIksByQSidyzavfs2SOzrj/++IP2RlYwcXFxxNbWtti2sXTpUrnq+2+vJO2NLJ9ycnLIqFGjim0XnTt3lqu+//ZK0t7I8mvbtm3FtotKlSqR9PT0Yuti65Us772RhNBEsojveyVtbGyIRCIhhBDSoUMHmkSWI4MGDSr2j79jx44y68jNzSVt27alvZEVTGJiInFwcJDZNurVqydXQvjfsZJ0bGT5JRaLyeTJk2W2C4ZhyPv374ut679jJenYyPLt4MGDhGEYmW3j1KlTctX1fa9kReiNJIQmkkUEBAQU6Y0khJAxY8YUSiToxBrVlz/mTdZPRESEzDpevXpV8DhcR0eH9kZWEKmpqaRhw4Yy20ZAQIBcdeX3StLeyPJPKpWSkSNHymwXf/75p1x15fdK0t7IimHHjh0y20X//v3lquf7XsmK0BtJCE0kWfXu3btQbyQhhCxZsqTgQ+HWrVsCRkfJSywWk0aNGsn841+1alWx9ezcuZMAIJMmTaK9kRXE3r17i73JmD9/vlx15fdK0t7I8i8wMLDYzQgcHBzkqiu/V5L2RpZ/8fHxxU7m1NbWlmvpMELyeiUrSm8kITSRLCIjI4N4eXmRQ4cOkfT09IJf9L59+4i+vj65c+eOwBFS8pBIJGTSpEnFJgv169cv9o9ZKpWSyT+OJl9jgsnKxXMI+RZLiFQi8zWU6nry5ElBL7OsH0tLy2LbhkQqJd9yxOTnefNJenYOEUsqxheDOkpOTib169cvtl0AIFFRUTLrkkqlJCNXTNas30gi3sWQHAn9vCivpFIpGTZsmFzt4tixY8XW9+ULISdO+JD9+92JHIsAlAsMIYRAjWVnZyMsLAyvX7/Gx48f8e3bNwAAIQQMw0BPTw/m5ubQ0tKCubk5nJycBI6YkkdMTAxWrFgBd3d3JCQkyCz74MEDtGvXrvBBaS7wwQN4fw5IDARJjwQDAkIAhgGgoQcYtwCqdwbq/QgYNVbem6EULj09HdevX8elS5fg7u7OuW92QEAA2rZtW/DfhBAkZeXifWomvmTmIC1bnPcN8v+fFwwAfW1NmOppobahHqrqaYNhGH7eFFVmYrEY/v7+uHTpEi5duoSYmBjWcn/++Sd+/fXXQse+5YjxLjUTCRnZSM4SQ5LXUVPw+6+kqQETXS1YGOjCQl8XGiLaLsoLQgjCw8ML2kVISAhruf79+8PNza3QsaQk4MQJ4No14NEj4H9fRwQAg6pVgdatgV69gB9+AExNlflOlENtE8mMjAx4e3sjJCQEEokEDMNA1j8FwzBgGAZNmjRBjx49YGRkxGO0VGlJJBIEBgbCzc0Nbm5uePHiRZEyM2bMwM6dO/P+Q5oLvNwKvNgMZCcAjAZAJNwXYDQBIgaqdgRabgKqdVDSO6GUJScnBz4+Prh48SIuXryIL1++FJybP38+Nm/eDAD4kJaJ51/SkJYjAYO8rwEu+ecraWmgiak+LA31aEJZzhBCEBQUhIsXL+LcuXN48+ZNwbk2bdrg4cOHAIDkrNz/a+9eg6Mq8zyOf093J+lcOwGJ4SJqogyrGAIqRiUDsrIKTJWXkVo1cpNVmOJm1CVVEi6Ow6zr6JYTp2BkQAaBQQ1oSgjRjbKwDIgYFmJA4pCEayT3K7l00umzL5oEIglJmvN0OuT/qfJFN6ee51EP5/z6uZJdUk1JXWOX7wsfk0ZUWCC/6BckgbIXOnnyJKmpqWzbto19+/a1fu/r60txcTE2m42iInjtNdi0CZqaXH/eUcRoeTSYzfDMM/DmmzBokOJ/CQP1ySCZnZ3Nzp07sdvtVw2P7TGZTJhMJh5++GHGjBkjL4de5sSJE2zfvp3t27ezd+9empub6devH+fPn8e3Jgu+mQHVOVz9ddAOzQy6E26fCzH/CT7BStov1HI4HOzevZuUlBS2bdtGYGAgx3PzyCqq5nyt3e1yb/D35e4IG4G+FgNbKzxF13W+//57UlJS+OSTTzhx4gS5efnUB/fnH+W1nQbIjgRYzNw90MaAAD+jmyw85Ny5c2zdupWUlBT279/Phg0f4nROY9EiqK2F5qv0Q7THYgE/P3j7bZgz51LI9GZ9Kkjquk5GRgbffPONIeXdeeedPPHEE5jNZkPKE55VXl5Oeno6n3/+OUtnDGdE1e8B/eo9kJ3RzBAyHCZkgP9Aw9oqPM/hcJD231/REBGJb2CwW0GhhQaYTRoPDulHf39fo5ooeoCu62T+32F+qLQTPOQWQ8ocdaONW0MDDClL9JzTp8+SkHCGzz57EE3ruAeyq2bNgjVrXOHSm/WpIPnFF1/w7bffGlrm8OHDmTp1KiaTydByhQedSYG//+vFDwb8ddAsEHgL/Mt+sA649vJEj6i2N7HnTBkOp27EXQGAWYO4m/rTT8Jkr9XkdPK/Z8qovjg/1igxN4YQGRpoYInCk3Td1YP4l78YV6amwbPPwsaN3t0z2WfSz7FjxwwPkQA5OTmG9XCKHlB9AvZPv/jBoNeC7oDaU3Bg1rX/JBU9otmpc6CgwtAQCdCsw4GCCpqanQaWKjwpq6ja8BDZUm5FQ5PBpQpP2bDB2BAJrtfH5s2wapWx5RpNWZA8e/Ys48eP54477iA6OpqUlBRVVXWqurqa7du3Kyt/165dFBYWKitfKOJ0wP5nXcHP6NeC7oCf0iBvrbHlCo84VlrDhaZmw8MCgL3ZyZGiKgUlC9UKaho4U12v5L4AOPiT68eL6F1OnoR589SV//LLkJOjrvxrpSxIWiwW3n33XX744Qe++uorEhISWrfW8bS9e/fS2NiorHxd1/n666+VlS+6prNtfq5wZiuUZ14MkoocSYTmBnXli06VlZXhdHa9B7CuyUFuhbpnlQ6crWmgUnqfelRtbW233km6rpNd3P42UUbQgdqmZk5X1SmrQ3RNd98lv/0tKIwYOJ2wdKm68q+VsiA5cOBAYmJiAAgPD6dfv36Ul5erqq5D9fX1HDlypNurs7tD13Vyc3MpKytTVofo3EsvvcTkyZO7PoUh579AUzy7o7ECTn+ktg5xVSkpKYwcOZKtW7d2KVDmVdShejqSBkrDqujc6dOniYyM5J133ulSoCystVPnuIaFeF10oqJW6ftKdC4mJoaFCxdSUFDQ6bVFRa4tfhwK+yMcDvj0U+hgW9Me1+23qNPpZPjw4SQmJrb5/ssvv8TX17fdIezMzEycTic33XST+y1107Fjx3Co/D98kclkYu3atWzevJmMjAzl9Yn2paenExsb23mgrPoByr9zbdmjlAlOvK+4DtGZo0ePMnXq1E4Dpa7rnKqqUzZ02VoPcLa6XoYxe1hxcTGvvvpqlwLlqUr1PzAA6pqaKatX2L0lOtXQ0MB7771HVFRUp4Fy82ZXj6Fqmuaah+mN3Fq1vWHDBhYsWMDp06cJCwsjKyuLuLg4li1bdsVu/2VlZcTFxbF27VoeeMDzmzWnpqaSnZ3draEtd+Tl5bFx48bWz/Hx8URFRSmtU7T16aefcvTo0TbfTZo0ieXLl7c5nQSAvHXw7b95pmEmH949/x9UVKobFhMdy8zMZOfOnW2+GzFiBMuXL+fJJ59ss+NCTaODjJPdnCJxDS4c/jt5x492fqEwXElJCatXr27zXXh4OIsXL2bu3LkEBl5aQa3rOmm5RTR6IPhrgF6QR9Ye6ZDoKW+99RYNDZemJPn5+fHiiy+SmJjI4MGD21z71FOQmtr9/SK7S9PgkUdcJ+R4G7eCpMPhYNiwYcyYMYPZs2cTGxvLY489dul0kIvsdjsTJ07khRdeYNq0aYY1ujuSk5OpqKhQWkdeXh7Hjx8nMzOTpKQkfve73ymtT3TfFYHy4BzI+0Dt/MjLRC0ZTP6pzodJhGf9PFCeqaojs9BzC2E2rfh3Pvtos8fqE13z80BZ19TMF/nFHqv/0I6t/P7VhR6rT3RNe4Fy0CA4f94z9YeGQnm5920F5NYEMYvFQmJiIsnJyUyePJnRo0eTnJzc5hpd15k5cyYTJkzosRAJUFNTo7T8lp7IzMxMAO6//36l9Qn3XDHkXXfWYyESAKf6uVWi+34+5F3b6PDI8CW4ep6aZS6cV/r5kHdplWdHE+yyPZRXstvtbYa8z50roKjIc/VXVqpd1OMut1caxMfHU1dXh67rbNmy5YrTXfbt28fHH39MamoqMTExxMTEkJ2dfc0N7i7Vk5Zb5tQkJSWRlpbG5MmTSUtLIykpSWm9wj3p6eksXryYc0Vqf2BcSQKDNzt69CiJiYl8982+zi82kCyq8G7FxcW88cYbfLx5k2crltvCq9ntdlatWsXKlStxOj27+0KTF2724PbBO/PnzwegtLS03SMCx44dq3xeYldYLBaaFU5eaJlH0zKcnZaWxpQpU5TVJ9wXFxfH66+/zvjx49H2/hrOuXtCrhtUrw4XbouMjGTp0qXEx8dzqsZOdonnfmSYvG2MSrSy2WwkJCSwaNEidGsg/3O61GN1y0Fp3stsNjN9+nSWLFlCVFQU69eD3e6Zuk0m8Pf3TF3d4dbtunTpUtLS0jhw4AAOh4N169YZ3S7DREREKC0/KiqKadOmcc899wDIKTdeKC4ujl27drFnzx4eeughNE2D0GjXudieYpIj8bxNZGQk69evJycnh5kzZ+Lj44PNz8dj9euAj1kSg7ex2WysWLGCU6dOsXz5ckJDQwn29dxhxxoQYPHgs0l0idlsZtasWfz444988MEHrYtpR4zwXBuGDYN2+u16XLcX26xdu5aFCxeya9cuYmNjWblyJWvWrCE3NxcfH889hLsqIyODAwcOKO8dzc/P58MPP2z9nJqayoQJE5TWKdqaPXt2m+2n4uLiWLFixaXweLmCNNjzK880zC+cC4/kyTBmD1m3bh0JCQmtn6OiokhKSiI+Pv6KZ1Zjs5MduZ6b9PTLiCD8JEv2iJycHMaMGdP6+fIeyNDQ0CuuzzhZQk2jZ+ZVR/cP4Ea5MXrMzTff3LpI12w2M2PGDF577bV2d2JZsADef1/9kLPFAtOngzf223XrZ1Z6ejrz5s1jy5YtxMbGArBgwQLefvttNm7cyPPPP6+kkdfi9ttvZ//+/crriYyMZNWqVYSEhBAeHs7EiROV1ynaagkFbYawOxo6HDAWzFb1p85oFhj8K4KCgtTWIzpktVqBSwHyueeew2Jp/9HnazYRZvWhsqFJ+aSHAB8z/UOCOr5HhVIt05I6C5AtBgb5caHc+DO22zPIFkSAjxd2PfURmqa1BsglS5YQGRnZ4bWTJsGf/qS+TQ4HPPqo+nrc0eUeyUOHDjFu3DhWrlzJokWL2vzZsmXL+Oijjzh+/Hi78yV7kq7rrF69uvvH53WT1WrllVde6fAFJdRLTk7mrrvuunqAvNx38yB3jfrV25OyICxabR2iQzt27KC0tPSqAfJy56rrOXi+Unm7RoaHEBUW2PmFQon8/Hw2btzYaYBs4YktgDRgUJCV+waHKa1HXN3LL7/M/PnzrxogWzidcNttcOoUqBx0ioiAM2fACwd+3dtHsrfJysoiNTVVaR3jx49n3LhxSusQBqv+B6TdAbqixViaBcJ/Cf8s57D3Jk5d58v8Yuod6qbD+Jg0Ho0Kx0dWVfQqB3+qoKCmQWmv5Pih/ennL3Oqe5M//xl+8xt15Wsa/OEP8Mor6uq4Fn3iKRYdHU1kZGSbEyyMYjKZGDBgAA8++KDhZQvFQobBXa+Dqp0DTT5w31o1ZQtlTJrGPQNDldYxOsImIbIXig4PwWJSNxXhtrBACZG90AsvwNixrnmMRrNYYPRoWOjF+9P3iSeZpmk8/vjj+Pr6Gj4fSdM0nnrqKRnS7q3uSIQbYtWs4L53FQTdany5QrkBAX4M66dm2HloiD+Dg71wDw/RKavFrORHhgYE+Zq584Zgw8sW6pnNsGmTa2seI2f3mUyuoey//c07h7Rb9IkgCRAcHMz06dMNC5Mtk3GfeeYZwsPDDWih6BEmC4zbASH/ZGyYHLkSImcaV57wuDtvCGZoiNXQMiMC/RgdYTO0TOFZA4OsxNwYYlh5GuBvMRM3pD9mhb2dQq2bb4aMDLBajQmTZjP4+rrO1h427NrLU6lPzJG8XElJCZs3b6a6utrt7Vg0TcNqtfL0008zdOhQg1soekRjFez9NRR9jevR7sa9oV3slb4nGW5XOGFGeIyu6xwtqeFERa27d0WrW2z+xNxok03IrxNnq+s5VFiJrl/bfRFm9eH+wWFYZe/I60JWFkyZ4jp/291dB81m6N8fduyAe+81tn0q9LkgCdDU1MTu3btbNw/v6n8Ck8mE0+lk1KhRTJw4EX9v3GJeuE/XIX89HEoAxwWgi08BzexasHPDA3DfOrANV9pM4XmldY0cKqyktqn7C7OsFhOjI2xEBBrbuyl6Xm2Tg8OFVRTXNXb7h4ZJgxEDQogKDZAtoK4zFy7A0qXwxz+6QqGjixuDWCyua+fOhTffBFsvGbzok0GyRWlpKYcOHeLw4cPY7XY0TUPTtNbNy1v+cuu6jsViITo6mrvvvptBgwb1ZLOFag2lrkB5YjXUnnR9p/lc3CZIB0yuIw91B6DBoMlw2xwYPEWOQryONTt1Cmrqya+so7zBtfvwz8PD5Z9tfhYiQwO5KcSKRRbWXLd0XaekrpH8yjrOX3Ct6G6JhS33wuX3hdVs4tbQAG4JDcBfeiGva8eOuTYr/+tfoabGNefRZIKWU5vNZlevpdMJgYGuDcfnzIGRI3u02d3Wp4NkC4fDQUFBAYWFhRQWFmK329F1HT8/P8LDw4mIiGDIkCH4+spquj5F16HiCFQcdv1TXwh6E5j9IfgX0G8U9L8P/NUewym8T22jg4qGJirtTdQ2NePUdUxoBPiYsVl9CLP6ePRYPeEd7A4n5Q2NVNmbqLE7cOg6Ghp+ZhOhVh9sfhbCrD7SA9nH1NfDwYNw+DB8/z1UVbnCo80G0dEwahSMGeMKk72RBEkhhBBCCOEWGW8RQgghhBBukSAphBBCCCHcIkFSCCGEEEK4RYKkEEIIIYRwiwRJIYQQQgjhFgmSQgghhBDCLRIkhRBCCCGEWyRICiGEEEIIt0iQFEIIIYQQbpEgKYQQQggh3CJBUgghhBBCuEWCpBBCCCGEcIsESSGEEEII4RYJkkIIIYQQwi0SJIUQQgghhFskSAohhBBCCLdIkBRCCCGEEG6RICmEEEIIIdwiQVIIIYQQQrhFgqQQQgghhHCLBEkhhBBCCOEWCZJCCCGEEMIt/w8Kvu5zcDLkjAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1861,7 +1861,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 37, @@ -1947,7 +1947,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHiCAYAAAA597/kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+aUlEQVR4nO3dd3gUVRfH8e8mm04NvRfpIiWhFwFBRFBBKaJURRFFitKbhSJFkY4C8oJ0BRQLxYKgtJBA6L0jvQZILzvvH0uQUHczMzuzm/N5nn3Uzcydsxjyy5m5c8eiKIqCEEIIIQzlZXQBQgghhJBAFkIIIUxBAlkIIYQwAQlkIYQQwgQkkIUQQggTkEAWQgghTEACWQghhDABCWQhhBDCBCSQhRBCCBOQQBZCCCFMQAJZCCGEMAEJZCGEEMIEJJCFEEIIE5BAFkIIIUxAAlkIIYQwAQlkIYQQwgQkkIUQQggTkEAWQgghTEACWQghhDABCWQhhBDCBCSQhRBCCBOQQBZCCCFMQAJZCCGEMAEJZCGEEMIEJJCFEEIIE5BAFkIIIUxAAlkIIYQwAQlkIYQQwgQkkIUQQggTsBpdgBB6SkyxcSMhiaj4JG4lJpNiU0hRQEHB22LBy2LB3+pFNj8fsvn7EOTjjcViMbpsIUQGJIEsPEpiio1/b8ZxOTaB6/FJxCXb7nzNAij3bJ8avanve1ssZPO3EuzvS8EsAWT393FB1UIIARZFUe79GSWEW1EUhWvxSRyPiuHszXhsj9/lsVLDO6uflSeyBVEwiz9WL7nCI4TQjwSycFuKonDyRhxHr0dzKzHlgR2wVrwtFopkDaBUcCYCfbx1OooQIiOTQBZu6UZCEtvPRxGVkOyyY1oALws8lSsLxbIFyrVmIYSmJJCFW7EpCoeuRnPwajSgX0f8ODkCfAjNm41MvjINQwihDQlk4Tai4pOIOH+dW4kpRpeC5fbryVyZKZE9SLplIYRqEsjCLVyMSWDL2WsoinFd8cMUzhJASN6seEkoCyFUkEAWpnfmZhwR56NMF8R3yxvkR/X82fH2klAWQqSP3MchTO3srTjCTR7GABdiEth67jo2+f1WCJFOEsjCtC7ExBN+LsroMhx2ISbB3slLKAsh0kECWZhSXHIK4efM3xnf6+yteI5FxRpdhhDCDUkgC9NRFIXI8zdIsblbHNvtvXSTW4muuz9aCOEZJJCF6Zy6EcfF2AS3645TKUDEuSi5niyEcIoEsjCVmKRkdl26YXQZqihAVEISh6/FGF2KEMKNSCALU9lx4QZueqb6Pgeu3JJT10IIh0kgC9O4mZDEpdhEtz1V/SDHr0uXLIRwjASyMI1j12PxpGU1FODkjTiSbFo8EFII4ekkkIUpJKbYOHUz1qO6Y4AUReH0jTijyxBCuAEJZGEKp2/Gecy143sdvR4ji4UIIR5LAlmYwjEPvtYak5TClbhEo8sQQpicBLIwXFxyCjFJxj9SUS8W4HKsBLIQ4tEkkIXhouKTjC5BVwpw3cM/oxBCPQlkYbjr8Um6z64e2v5lWpbJz9LpE9K8rygKA9s0o2WZ/CyePE6341+LS5TryEKIR5JAFoa7Hp+k6+xqRVE4eWAfufIX5NThg2m+tu7H77l26QIAxcs9pVsNSTaFuGS5/UkI8XASyMJQiqJwTecJT+dPHicuJpoGL7fh9OEDd96Pi45m4YTRNHj5VQCeeLKCrnVcj5fryEKIh5NAFoZKtikk6Xy/07F9u/H186dOsxacP3WCpMQEAJZ+NYFiZZ4ke67cZMkeTM58BXSrwQJEJ3ruxDUhhHoSyMJQKS64rnp8/x6KlC5L/mJP4B8QyJljRzh38ji/Lf6WzoM+4fj+PRTXuTsG13xWIYT7shpdgMjYXPGIwuP77IFrsVgoUrosp48cYtPKn2jUuj0Fi5fk+L7dVK77jO51yOMYhRCPIh2y8HgnDuyleLnyABQpXY6V877hyJ4dtHn/Q5ISE/n36GFdJ3TpJSkpibCwMMaMGcOcOXOMLkcIoZJ0yMJQXhZ9b3i68O8pYm7euHNKuljZJ1mzaC7dhn9OUOYsHNu7m+SkJIqX1/+UtdrPmpyczPbt21m/fj3r169n48aNREdHA0ggC+EBJJCFobx1DuTj+3Zj9fGlcMkyANRv0YZqjZqQOVuw/ev795ApazbyFCysax3g/GdNTk4mMjKSdevW3RfA96pZs6YWJQohDCSBLAxl9bLg42XRbab18X17KFyyNFYfH/vxfHzIkj3Hf1/fv4diZcvrcuy7KUAmX+9HbpMawKkd8IYNGx4awHcLDg6mVKlSGlUqhDCKRZHlg4TBNv17lYsZYK3nJsVzE+jzXygnJyezY8cO1q9fz7p169i4cSO3bt1yetymTZuycuVKLUsVQhhAOmRhuOwBvlyKTfS4ZyHfzcfLgg82IiLSdsDpCeB7Zc2alXPnzpE/f34NKhVCGEU6ZGG489HxbDl73egydJXVS+Ht5+pw4sQJ3Y5RuHBhatSoQc2aNalZsyaVK1fG19dXt+MJIbQlgSwMF5ecwupjl4wuQzcWoHSOTPjfvEzz5s3Zu3evS47r5+dHSEjInYCuWbMmBQrotxqZeIxLlyAy0v46fx7i4iA+Hry9wd8fAgKgdGkICYEKFez/LTIUCWRhCmuOXyLWg5+JXLdQMLkC/YiOjqZTp0788MMPhtRRsGDBO+Fco0YNQkJC8PPzM6QWj3f0KCxeDBEREB4OFy/a3/f2Bi8vUBT7C+z/DZCcbH/PywtKloTq1aFOHWjbFjJnNuZzCJeRQBamcPRaDLsv3zS6DF0E+XjTuFguLLdve7LZbIwaNYqPPvrI4MrA19f3Thederq7UKFCRpflvpKS4KefYPp0WLfOHr6KArZ0PunLaoWUFPDzg44d4Z137B208EgSyMIUElNsrDp2EZ2fM2GIirmz8ET2oPve/+mnn2jfvr1Dtza5UoECBdIEdEhICP7+/kaXZW5XrsDEiTBjhv3fvb3tQaolq9XeQVeuDL16QYcO/3XWwiNIIAvT2HHhBidvxHrUbGtvCzQtkQefh/zg3LdvH82bN+fYsWMursxxPj4+hISEpJkwVqhQoTsdf4amKLB0KXTrBjdvah/CD+LlZe+4a9SAuXPt152FR5BAFqZxIyGJtSevGF2GZixAsWyBVMqT9ZHbXbt2jbZt2/LHH3+4pjAN5M+fP01Ah4aGZrwu+tw5ePdd+PlnsFj+ux7sKlar/bjDh0Pfvvb/Fm5NAlmYxpIlS8heuTaxWD2iS7YAjYrlIrPv439QJicnM3DgQMaPH69/YTrw8fGhUqVKaWZ0Fy5c2HO76LlzoUcP+yzp5GRja7FY4KmnYMEC+z+F25JAFoZLTEykT58+TJ06lVr1n6HfjAUecS25XM5MlMnh3MzYBQsW8NZbb5GQkKBTVa6TN2/eNAEdGhpKgLvfyqMoMGAAfP650ZWk5e0Nvr72br1RI6OrEekkgSwMdebMGVq3bk1YWNid9waNm0iVl9oYWJU6FiCrnw/1i+RI1xOeIiIiePnllzl79qz2xRnIarXe6aJTT3cXLVrUfbrolBTo0gW+/dboSh7My8v+WrQIWrc2uhqRDhLIwjBr166lbdu2XLly/3XjhRsjCciZ1y1PXXsBDR08Vf0wFy5coGXLlmzevPmBX7dYLHTs2JGwsDAOHTqU7uMYLU+ePGnui65SpQqBgYFGl3U/mw3eeAPmz3f9tWJnWCz217Jl8PLLRlcjnCSBLFzOZrMxZswYhg0bhu0h92fmzl+Ar9duRbG4320dFXJnocQDbnNyVkJCAt27d2f27Nn3fe3JJ5+8s+LXtWvX2Lp1K1u2bCEsLIytW7dy86Z73tNttVqpWLFimi66WLFixnbRigLdu8NXXxlXgzMsFvsp7F9+gSZNjK5GOEECWbjU9evX6dSpE7/88stjt230civeHT3ZBVVpp0Amf6rlz6ZZgCiKwvTp0+nduzfJd00eeuutt5g1a9YD90lJSeHAgQN3AnrLli0cOHBAk3qMkDt37jQBXaVKFYKC1P/C47AFC+z3/LoTLy/IlAkOHAB56IjbkEAWLrNz505atmzJ8ePHHd6na9+BPPdWTx2r0k7eID9qFMieruvGj7N+/Xpat2595/T+N998Q5cuXRze//r162zduvVOQG/dupUbN25oXqcreHt739dFFy9eXJ8u+swZKFsWYmLMfar6Qby97RO8Vq+2d83C9CSQhUvMmTOH9957j/j4eKf3/WLmHIo//ZypryfnCfKjRv7seHvp94Pv5MmTtGjRgl27drFv3z7KlSuX7rFsNhsHDhy4E9Bbtmxh//79GlbrWrly5UoT0FWrVlXfRSsKNG4M69cbf2uTGjNnwttvG12FcIAEstBVfHw8PXv2fOjpVUf9tPZvbAVL2tfj16g2rRTOEkBI3qy6dMb3iomJ4cMPP+Srr77CS+NlE6OioggPD78T0GFhYW7dRVeoUCHN4iVPPPGEc13011/bF/5wdwEBsG8fFCtmdCXiMSSQhW5OnDhBq1atiIyMVDVOtmzZWLRoETUbNCLi/HVuJRr/VCjL7Ve5XJkpmT3IfW7dcYLNZuPQoUN3Ajq1i3bXHxk5c+ZME9BVq1YlU6ZMD9747FkoUcK+8Ie7s1qhbl346y+jKxGPIYEsdLFq1Srat2/P9evXVY1TuXJlli9fTrHbv93bFIVDV6M5eNX+QAajvnlzBPgQmjcbmVTc2uSObty4cV8XHRUVZXRZ6eLl5XVfF12iRAn7L1dDh8KYMa5Zm9pVduyASpWMrkI8ggSy0FRKSgqffvopI0aMUD1Wly5dmDp16gPXSL6RkMT281FEJbju2p4F8LLAU7myUCxboEd2xc6y2WwcPnw4zYzuvXv3um0XnSNHDgZ9+CF9vvgCVP4yaSpWq/3xjQ+4hU6YhwSy0MyVK1do164dv//+u6px/Pz8mDZt2mNnESuKwskbcRy9Hs2txBQs6Ncxe1ssFMkaQKngTAT6eOt0FM9w8+ZNwsPD7wR0WFgY165dM7osh61p147nFi40ugzt+frC+fMQHGx0JeIhJJCFJsLDw2nVqhX//vuvqnGKFSvG8uXLqVy5ssP7KIrCtfgkjkfFcOZmvCahnBruWf2sFM8WRKEs/ljl2bPpoigKhw8fTjOje+/evQ9dFMZot0qXJtORI/bVuTyJlxeMHWt/MpQwJQlkoYqiKHz99df06tWLpKQkVWM1a9aM+fPnkz179nSPkZhi4/TNOK7EJnA9Pom45P9+qD6og0496Zz6vrfFQjZ/K8H+vhTM4k92f9901yIe7tatW0RERKS5Fn316lWjy6KGjw9bVH4fm1qhQnDqlNyXbFISyCLdYmNj6datG/Pnz1c1jsViYcSIEQwaNEjzW3kSU2zcSEgiKj6JW4nJpNgUUhSFmNhYMgcF4WWx4G/1IpufD9n8fQjy8ZZrwwZQFIWjR4+mmdG9Z88el3fRU4oU4f1///W87vhuJ09CkSJGVyEeQAJZpMuRI0do2bIle/bsUTVOzpw5WbRoEc8++6xGlT3eypUr+eqrr/j1119ddkzhvOjo6Pu66Ac9iERLO0qVotKxY5rPrrYB5YDmwNi73v8NeBFYCLjs+UxLl0KrVq46mnCCBLJw2ooVK+jUqZPqBxhUq1aNZcuWUahQIY0qezxFUahWrRrbtm0jPDycqlWruuzYQh1FUTh27FiaGd27d+8mRcPwjMmRg0CdTp1/C/QATgHZgV1AXeAjwGVXdX184MMP7bd0CdORQBYOS05OZsiQIYwbN071WN27d2f8+PH4+flpUJnjVq5cyQsvvADYr1lLl+zeYmJiiIiISDNh7PLly+kaKzug51zwZKAU0AnoAtTA3jFP0/GYD1S/Pqxb5+qjCgdIIAuHXLhwgbZt2/L333+rGicwMJCZM2fSrl07jSpz3N3dcSrpkj2LoigcP348TUDv2rXLoS769Vy5WJjOMHfUDGAwUAAoCvwIuPwmukyZ4OZNmdhlQhLI4rE2btxImzZtOH/+vKpxSpUqxfLlyylfvrxGlTnn7u44lXTJni8mJobt27enmTB26dKl+7b7pnJluuzcqetTnaKBXEAJIAy4+/EX/wIdgEuAFRiGjteVL1yAPHn0Gl2kkwSyeChFUZg4cSL9+vVTfZ3ulVdeYc6cOWTJkkWj6pzzoO44lXTJGYuiKJw8eTJNQO/atYu1TZrw9OrVui6X2Rn4DsgGnADuXoPuPHARqIQ9lEOAQ6QNbc2cOAFFi+oxslBDEeIBbt68qbRu3VrBfotuul/e3t7KF198odhsNkM/zy+//PLQGps1a2ZobcJ4MTExSvzgwYri46Mo9h5Z89dQUHKCsvP2P6c+ZvunQDmtUy3K/v1G/5GLB5Clh8R99u/fT9WqVVm6dKmqcfLkycPatWvp06ePoff2KorCJ5988tCvr1y5koiICNcVJEwnICAAq7d+V3O/AcYDvwAVgd7AOOBhS5Bsw36rlG73H8iJUVOSQBZpLFmyhGrVqnHo0CFV49SpU4cdO3ZQr149jSpLv5UrV7J9+/ZHbvPpp5+6qBphBtHR0fz111+MGjWKF154gVy5chG2e7cuQbUa6A4swD6zGuy3P90EHrSkzlWgIzBT80ruEhCg5+gineQasgAgMTGRfv36MXnyZNVj9enTh9GjR+Pj46NBZeooikLVqlUfG8gg15I9laIoHDlyJM014wetpT23ShU6RUZqukrXdqAeMArodc/XPgKWAAf4b6Z1AvAs8Db2CV66OX8e8ubV8wgiHSSQBWfPnqV169Zs2bJF1TiZMmVizpw5tDLRKkC//vorL774okPbNm3alJUrV+pckdDbrVu37ntmsyNPm3ozb15mX7jgggofTAFeB0oDn+h5IH9/iI4GHU/Ri/SRQM7g/vrrL9q2bZvuxRRSlStXjh9++IHSpUtrVJl6znTHqaRLdi/K7SdJ3dv9pufHWm7ss5yNshF4Gqhw13vzgae0PlDt2rBxo9ajCg1YjS5AGMNmszFu3DiGDBmiegH/1157jZkzZ5IpUyaNqtOGI9eO7/Xpp5/Kfckmlvqs5bu73+vXr2sy9iUgPls2/KOiNBnPWXWwT+TSlY8PVK+u91FEOkkgZ0BRUVF06tSJn3/+WdU4Pj4+fPnll3Tv3t10T0h63Mzqh0mdcS1dsvFsNhuHDh1Ks3b1vn370tX9OuporlyUv3nTc5/2lJQEVaoYXYV4CAnkDGbnzp20atWKY8eOqRqnQIECLF26lJo1a2pUmbbS0x2nki7ZGDdu3GDr1q13AjgsLIwoF3erm5OTKW+yXy41J79smpZcQ85Avv32W7p160Z8fLyqcRo2bMjixYvJlSuXRpVpKz3Xju8l15L1ZbPZOHjwYJpTz/v379e1+3VEQz8//kxIMLQGXeXKBRcvyjrWJiUdcgYQHx9Pr169mDlT/Z2NgwcPZvjw4XibeIammu44lXTJ2oqKikrT/W7dutXl3a8j1iYkEFe0KAGnTnne4hleXtC9u4SxiUmH7OFOnjxJq1atVAdU1qxZmT9/vsO3EBlFi+44lXTJ6WOz2Thw4MB93a+7WNe2LfW/+87zAtnbG/79F/LlM7oS8RDSIXuwNWvW0K5dO4fuwXyUSpUqsWzZMp544gmNKtOPFt1xKumSHXP9+vU73e+WLVvYunUrN2/eNLqsdLFarfxTqBD1g4Ls9+p6CqsVWrWSMDY56ZA9kM1mY/jw4QwfPlz1NbnOnTszffp0AtxgqT0tu+NU0iWnlZKSwv79+9M8b/jgwYNGl5VuefLkoWbNmndeoaGhBAYGwocfwuTJuj75yeU2bYJatYyuQjyCBLKHuXr1Ku3bt2fNmjWqxvHz82Pq1Kl06dLFdLc0PYwzq3I5KqM/L/natWt3Zjyndr+3bt0yuqx0sVqtVKpUKU0AFylS5MHf38eOQZkykJzs+kK1ZrVCxYoQESHXj01OTll7kIiICFq1asXp06dVjVO0aFGWLVtGaGioRpW5xqZNm2jcuHGa986fP8+ePXsc2j9r1qxUv2fRhKSkJM6dO0f+/Pk1q9OsUlJS2LdvX5ruV+1DRoyUN2/e+7pfh8/0PPEEDB8OQ4Z4xrXkuXMljN2AdMgeQFEUZs6cSc+ePUlMTFQ1VtOmTZk/fz7BwcEaVWesRYsW0a5dO4e2rVOnDhs2bNC5IvO4evVqmu43PDzcbbtfHx8fKleuTI0aNe4EcOHChdWd3UlOtp/i3bHDvTvlsWOhf3+jqxAOkA7ZzcXGxvLuu+8yb948VeNYLBY+/fRThgwZgpeXPJXT06SkpLB37940q14dPnzY6LLSLX/+/NSsWfNOAIeEhGg/z8FqhQULoEIF9wxkqxVCQ6FPH6MrEQ6SQHZjR48epWXLluzevVvVODly5GDRokX3ne4V7uvKlSt3gjcsLIzw8HCi3XTWsI+PDyEhIWkCuFChQq6Z21CqFHz+OfTsqf+xtJb6C4WJ1wwQaUkgu6mffvqJjh07qr69pGrVqixdupQiRYpoVJlwteTk5Dvdb+rr6NGjRpeVbgUKFEhz7bdy5cr4+/sbV1D37vDPP/DDD+6zxrXFArNnQ4kSRlcinCCB7GaSk5MZOnQoY8eOVT3Wu+++y4QJE/Dz89OgMuEqly9fTjPxKiIigpiYGKPLShdfX9873W9qB1yoUCGjy0rLywsWLoQWLeC339wjlL/+Gl5/3egqhJMkkN3IxYsXee2111i3bp2qcQICApgxYwYdOnTQqDKhl+TkZHbv3p0mgNU+GMRIBQsWvK/7dYtfCH197R3yK6/AmjXmnHmdegp/6lTo2tXYWkS6SCC7ic2bN9O6dWvOnTunapwSJUrwww8/8NRTmj/2XGjg0qVLaSZeRUREEBsba3RZ6eLr60toaGia7rdgwYJGl5V+/v7w00/w5pv2a7Nm4uVlf82fD23bGl2NSCcJZJNTFIUpU6bQp08fklXO9GzRogVz584la9asGlUn1EhKSrqv+z1+/LjRZaVb4cKF09x2VKlSJffofp3h4wPffgtPPgnDhtk7ZaNX8/Lygvz57b8k1KtnbC1CFQlkE4uOjuatt97iu+++UzWOl5cXY8aMoW/fvm6z6pYnunjxYpoHLkRERBAXF2d0Weni5+dHlSpV0gRwRlg8BbAH4MCB9mvKnTvD1q3G1OHtbb+e3aMHjBwJmTIZU4fQjASyAWw222Pv9T1w4AAtW7bkwIEDqo6VO3duvvvuO+rXr69qHOGcpKQkdu3alSaAT5w4YXRZ6VakSJE0p54rVaqEr6+v0WUZq0wZ+/rQ06bBgAH2e5Vddb+yxQLFitm7dVmf2mNIILtYcnIyrVq1YuHChQQFBT1wm++//54uXbqovm+0du3afP/99xmnczHQhQsX0tx2tG3bNuLj440uK138/f2pUqVKmvt+88lTgh7M29t+j/KLL5L8ySd4f/cdltTV8rSe+GW1QnIyKfny4d2rF/TqZb+uLTyGBLKLLVmyhJ9++omuXbuyYMGCNKeQk5KS6N+/PxMnTlR9nA8++ICxY8fi4+OjeiyRVmJiYprud8uWLZw6dcrostKtaNGiabrfihUrSvfrpIMJCbSOjOSnLVsovnmzfabzwYN3QjTdLBb7KXKbDZo0gffe4/PISA4fOsRUm41A7T6CMANFuExKSopSrlw5BVAAZdq0aXe+dubMGaV27dp3vpbeV6ZMmZTvv//ewE9pLgsXLnT4z65OnToPHOPs2bPK8uXLlb59+yq1a9dW/P39Vf9/MuoVEBCg1K1bV+nfv7/y448/KufPn3fx/xHPs2DBAiUoKEgBlCNHjtjftNkUZeNGRXnvPUUJCVEUHx9FsffM9n+3WP7779SXl5eiWK3//Xe2bIrSqJGiDB+uKKdP3zneZ599pgBK+fLllQMHDhj0qYUepEN2oRUrVrB///47/927d29CQkKIi4ujbdu2XLp0SdX4ZcuWZfny5ZQtW1ZtqRlWYmIiO3bsSDPzWe3Ts4xUrFixNPf9VqhQQc6aaCQuLo7evXszc+bMO+8pqaepLRaoXdv+AkhKsnfMkZGwfTucPw9xcRAbaz/tHRgIAQFQujSEhNhfBQs+8AlNqcfYu3cvVapUYebMmbwui4B4BAlkF1EUhVGjRqV5LykpiWbNmhEVFYVN5eo/r776Kt988w2ZZKZluu3atYssWbKQkJBgdCnpEhgYSNWqVe9c961RowZ58uQxuiyPdOTIEVq3bs2uXbvSvK887Lqxjw889ZT91amTqmPffYyYmBjatWvH33//zaRJk4xdYlSoJoHsIr/99huRkZH3vX/t2jVV41qtVr788kvef/99uaVJJXd79OATTzyRZuLVU089Jd2vC3z//fe89dZbD/x+eWgga+hBx5g5cybh4eEsXbqUErJ+tduSQHaRe7tjLRQoUIDvv/+eWnLbwwOdOXOGrUbdI6qxwMBAqlWrlqb7zZ07t9FlZSgJCQn06dOHadOmPXQbowIZYOfOnYSEhDB79mxat26tex1CexLILvDPP/+wceNGTcds0KABS5YskR/Kt8XHx7Njx440M5/Pnj1rdFnpVqJEifu6X6tV/roa5fjx47Rp04bt27cbXcoj3bp1izZt2vD+++/zxRdfeN5KaR5O/oa7gNbd8aBBgxg+fHiG/QGtKAr//vtvmolXO3bsIDH1/k83ExQURLVq1e4EcI0aNciVK5fRZYnbfvzxR9544w1u3Ljx2G2N7JDvNnXqVMLCwvj+++8pVqyY7jUJbWTMn+guFBERwe+//67JWFmzZuXbb7+lefPmmoznLuLj49m+fXuaAFb7kA0jlSxZMs19v+XLl8+wv1yZWWJiIgMGDHBqXQCzBDLAtm3bCAkJYe7cuRnuZ4a7kp8COvvss880GadChQosX77c4ydsKIrC6dOn0zzxaMeOHSQlJRldWrpkypTpTvdbs2ZNqlevTs6cOY0uSzzGqVOnePXVV52eg2CmQAaIioqiRYsWfPjhh4wZM0Ym/ZmcRwayosDx4/Zb/iIj4cIF+y1/8fH2W/4CAuy3/ZUpY7/dr3Jl0OMBSHv37mXFihWqx+nUqRPTp08nMNDz1uWJi4tj+/btadZ8Pn/+vNFlpVvp0qXTPHDhySefxNvb2+iyhBN+/fVXOnbsyPXr153e12yBnOrLL79k8+bNfPfddxQuXFiHqoQWPCaQt22DJUsgPBx27IDUZaB9fOwBbbPZX6kr0Vks/70HULgwVK8OTz8N7dpB9uzqa1LbHfv6+jJ16lTeeustj7ilSVEUTp06lWbi1c6dO1U/VtIomTNnpnr16ncCuHr16uTIkcPoskQ6JSUlMWTIED7//HOjS9FFWFgYlStXZt68eTRr1szocsQDuHUgR0fD4sX2h63s2vXgZWPvPdP5sMeXnj4NZ8/CsmXQpw+89hp062YP6fRk4dGjR1U/NjFv3ry0bNnSbcM4Njb2vu73woULRpeVbmXKlEkz87lcuXLS/XqIM2fO0LZtWzZt2qRqHLN2yKmuXbvGCy+8wIABAxg5cqTMXTAZt/y/cfo0jB0Lc+faV55LfZKh2kYrNagTE2HhQvuTzcqVg9694c037ae7HTVmzBjVq2+dPn2ajh078vPPPz/2cY1GUxSFEydOpJl4tWvXLrftfrNkyUL16tXvBHD16tUJDg42uiyhgzVr1tChQweuXLmieiyzB3KqsWPHsmnTJpYsWUKBAgU0qEpowmWrZmsgJUVRpk5VlICAtGuw6/lKXQO+alVF2bfPsTpPnz6t+Pj4aPZAgJEjR+r7B5sO0dHRyvr165UxY8YozZs3V3Lnzm34gxPUvvLkyaPMmjVL2bNnj5KcnGz0H7FwgZ9//lmxWCyafQ/t3LlT95qHDBmiWb2FChVSLl68qHvNwjFuE8iHDilKrVquCeEHvaxW+2vECEVJTHx0rT169NA0KCwWi/L777+75g/6AWw2m3L06FFl/vz5Svfu3ZWQkBDF29vb8ADV+vWwpz0Jz7Zp0yalcePGmnwP7dixQ/d6Bw8erLrOgIAA5YMPPlDOnTune73CcaY/ZW2zwfjxMHTofxOwjJB65vWjj+yTxxYuhIoV79/u4sWLzJo1S7Pj+vv7U6lSJTZt2kSjRo1ccj05JiaGiIiINNd+L1++rPtxhTBCrVq1+O233wgLC+PTTz9lzZo16R5LccEpazUCAgJ477336Nu3L3nz5jW6HHEPUwdyUhK89RbMm2d0Jf9RFPtT1GrWhF9+gYYN0379yy+/JD4+Pl1jBwYGUrlyZUJCQggNDSUkJISyZctitVoJCwtj6tSp9OjRQ4NP8R9FUTh27Fiamc979uwh5UEz39xAtmzZ7qx2VbNmTU6dOkXXrl2NLku4gRo1arBixQqKFi2a7smHrghkNcfo0KEDX3zxhYbVCC2ZNpDj46FlS1i92uhK7peSAgkJ0KSJvVtu2dL+/rVr15g+fbpDY2TKlInKlSsTGhp6J3xLly79wFm7c+bMoVu3btSuXVt1IEdHR9/X/WoxmcUIFouFJ598Ms3M59KlS6eZALdo0SIDKxTuZvbs2aruBDB7IM+dO5dhw4ZRsGBBDSsSWjFlICcm2kNuzRp7R2pGNpu9tldfheXLoXlzmDJlCtGpN0DfJUuWLGm63tDQUEqWLPnYmdNJSUn07duXyZMnAxAeHk5ycrLDtyooisKRI0fSzHzes2eP6tnfRsmePXuapx1Vq1aNrHqs6CIypISEBEaPHq1qDLMHcmJiImPGjGHq1KkaViS0YrpAttng9dftYWz23EhdcKRVK1i2LJZJkyaRPXv2+8K3ePHiTt+2dPXqVdq0acNff/11572YmBj27dtHxQddvMb+pJfw8PA7ARwWFsbVq1dVfUajWCwWypcvn2bN51KlSpn+9i/hvubOncuZM2eMLuOx1Ib+rFmzGDRokNzuZEKmC+TJk+0dp7tIXWikY0d//vhjB1WrFlY98Wr37t20aNGCEydO3Pe1LVu2ULFiRRRF4fDhw2lOPe/du9dtu9/g4OA0S05WrVqVLFmyGF2WyCASExM1WXfe7JO6wP5Zx40bx6RJk4wuRdzDVIF88CAMGGB0Fc5TFIiJ8WLEiCL8/LO6sZYvX07Hjh2JjY194NdnzJjBzz//TFhYWLrW2jUDLy8vnnrqqTQBXLJkSbddkUy4v2+//ZbTp087vH3mzJn59ddfmTp1KsuWLbsTxK4+ZZ01a1Z69+5Nvnz56Natm8NjzJw5k4EDB5IvXz49ShTpZcCtVg+UlKQoISGuW/BDr9fcuen7/CkpKcqwYcN0v9fWiFeOHDmUF154QRk5cqSydu1a5ebNm9p+8zzCwoULHa5T7kPOmBITE5WiRYs69T09ePDgO/vv3btXadu2rWKxWJSwsDDd6+3bt6+SLVs25dNPP1WuX7+uKIqiJCcnK2XKlHHqM/Tu3Vv3WoVzTBPIw4f/tyqWu74sFkUJClKUU6ec++w3btxQXnrpJcODU4uXl5eXUqlSJeXdd99Vvv32W+Xw4cOKzWbT55vGARLI4nG++eYbp77HM2XKpFy5cuW+cfbv3++ShTYiIiKUqKio+9535nsdUPz9/ZXz58/rXq9wnCkC+cABRfH2Nj5QtXhZrYry/POOf/YjR44o5cqVMzxI0/vKmTOn8uKLLyqfffaZ8tdffym3bt3S7xslHSSQxaMkJiYqxYoVc+p7fuDAgUaX/UDJyclK6dKlnfosH374odFli7uY4hry5Mnpe6KSGSUn2++dPnjQ/rzlR/ntt99o27YtUVFRLqlNLW9vbypUqJBm5vMTTzwh136F21qwYMEDJ08+TFBQEH369NGxovTz9vZm6NChdOjQweF9vvrqK/r370+ePHl0rEw4yvB7SG7cgDlz1D+pyUysVvsjIR9GURTGjx9P06ZNTR3GuXLl4qWXXmL06NGsX7+eGzduEBkZybRp02jfvj0lSpSQMBZuKzk5mVGjRjm1T/fu3cmZM6dOFanXtm1bSpYs6fD2cXFxsnKXiRjeIc+da1/1ypMkJ8Ps2TBqFNx7505cXBxdu3ZlwYIFxhT3EN7e3lSqVCnNzOdixYpJ4AqPtXDhQo4dO+bw9oGBgfTt21fHitSzWq0MHTqUTp06ObzP9OnT6devH7lz59axMuEIQwPZZgNPvRUuPt6+Bvf77//33pkzZ2jRogXbt283rrDb8uTJk2bJySpVqhAYGGh0WUK4RHJyMiNHjnRqn/fee49cuXLpVJF2Xn/9dUaMGMHRo0cd2j42Npbx48czduxYnSsTj2NoIP/1Fzhx+cbtTJnyXyBv2rSJli1bcvHiRZfXYbVaqVSpUpoALlq0qHS/IsNavHixw4EF9qckmb07TmW1WhkyZAhvvPGGw/tMmzaNfv36mfp0fEZgaCCvX2+/3upJ149TKQocPgyXL8OKFbPo3r07SUlJLjl23rx500y8Cg0Nle5XiNtSUlKc7o7fffddt5r41L59e0aMGMHx48cd2j4mJobx48erXstbqGNoIIeH25ed9GQjRqxm6tR3UBRFl/GtViuVK1dOE8BFihSR7leIh1iyZAmHDx92eHt/f3/69eunY0XaS+2Su3Tp4vA+U6dOpW/fvuTIkUPHysSjGDbLWlHsgaxTTt2WDDwB9HzA17rd/tol3Y5utUKuXM9z5coVVqxYQa9evR76YIj0+Pnnn7l58ybh4eFMmjSJtm3byqloIR4hJSWFESNGOLVPt27dyJs3r04V6adDhw4UK1bM4e2jo6P58ssvdaxIPI5hgXzypP2WJ31ZgYHAbODupx6NBpYBqwH9ZhbabPZfOoKDg2nevDkTJ05k586dXLlyhR9//FF1QHt7exMQEKBhxUJ4tu+//55Dhw45vL2/vz/9+/fXsSL9+Pj4MHjwYKf2mTJlCteuXdOpIvE4hgXytm2uOlInIAeQemPwQmAE8DNQStcj22wQFnb/+zly5KBFixZpAvqHH36gZ8+ePPXUUw6Pv2XLFg2rFcKzpac77tq1q1s/gKFjx44UKVLE4e1v3brFhAkTdKxIPIphgXz0qP2Urv58gf7AVGAV8BYwH6jlioNz5QrExDx6mxw5cvDyyy8zadIkdu/enSagK1So8ND9JJCFcNyyZcs4cOCAw9v7+fkxwB0fP3cXX19fp7vkyZMnu+2T5NydYYEcG+vK5TLfAryBF7Gfrm7pqgMDEBfn3PZ3B/SuXbu4fPkyy5cvp0ePHmk66PDwcFI8fVacEBqw2WxOd8dvv/02+fPn16ki1+ncuTOFCxd2ePubN28yceJE/QoSD2VYIMfHu/Jo/kAD7F1xb1ceGFD/WXPmzMkrr7zC5MmT2b17952A7ty5MxcuXNCmSCE82A8//MC+ffsc3t7X19ftu+NUvr6+DBo0yKl9Jk2aZOplfT2VobOsXWs3UN3VBwW0/6x3B3SBAgW0HVwID2Oz2Rg+fLhT+7z11lsULFhQp4pc74033nDq89y4cYNJnrqMookZFsiunRwcBxwEQl150DtkIrQQxlmxYgV79uxxeHsfHx8GDhyoY0Wu5+fn53SXPHHiRG7ofyuMuIthgRwY6MoueSeQAoS46oBpSCALYYz0dMddunShUKFCOlVknDfffNOpa+JRUVFMnjxZx4rEvQwL5BIlXLlkZiSQCXD8sWRayZkTgoJcflghBPbFc3bt2uXw9j4+Pk53ku7C39/f6c5/woQJ3Lx5U6eKxL0MC+QqVVx5tO7ALVz9cb28oEYNlx5SCHGboihOd8dvvPGGUzOS3c3bb7/t1H3V169fZ8qUKTpWJO5mWCAXLQpZsxp1dNfw8oKqVY2uQoiM6ZdffmHHjh0Ob2+1Wj22O07l7+/v9OzxL7/8klu3bulUkbibYYFssUC1aq68F9n1kpMlkIUwgqIofPrpp07t06lTJ4oWLapPQSbStWtXp9bmvnbtGlOnTtWxIpHKsEAGeyB7extZgf5CjZnYLUSGtnLlSiIjIx3e3tvb2+kVrdxVQECA0+tzjx8/nujoaJ0qEqkMDeR69TzzWchg7/xLloTc+j27QgjxAOnpjjt27Ejx4sV1qsh83nnnHaee73z16lWmTZv2+A2FKoYGcsOGUKyY55627tHD6AqEyHhWr17NNieeXuPt7c2QIUN0rMh8AgMDnX7G8xdffCFdss4MDWQvL+jVy8gK9OPvD506GV2FEBlLerrj9u3b88QTT+hUkXl169aNXLlyObz9lStX+Oqrr3SsSBgayACdO4Ofn9FVaMtqhTffhCxZjK5EiIzlt99+Izw83OHtvby8Mlx3nCooKMjpLvnzzz8n5nGPrxPpZnggZ80Kb7zhqkcxukZyMrz/vtFVCJGxpKc7bteuHSVLun7BILN47733yJkzp8PbX758ma+//lrHijI2wwMZoGdPIx42oQ+rFZo0gTJljK5EiIzljz/+ICwszOHtvby8GDp0qI4VmV9QUBB9+/Z1ap9x48YRGxurU0UZmykCuUwZ+Ogjz5jc5ecHM2YYXYUQGUt6uuPXXnuNUqVK6VSR++jevTs5cuRwePtLly4xQ37I6cIUgQwwaBBUquT+9yVPnQoevPKeEKa0du1aNm/e7PD2Foslw3fHqTJlykSfPn2c2mfcuHHExcXpVFHGZZpA9vGBhQvtM6/dkbc3NGsmM6uFcLX0dMdt27aljFxXuuP9998nODjY4e0vXLjArFmzdKwoYzJV/JUtC2PGGF2F8ywWCAqy8dFHpwEPuRguhJtYt24dGzdudHh7i8XCsGHDdKzI/WTOnJkPP/zQqX3Gjh1LfHy8ThVlTKYKZIDeveGVV9ynU7ZY7N3xt9/G06RJJXLkyEGjRo0YMGAA3333HUePHkXxlBlrQpiQs91xmzZtKFu2rE7VuK8ePXqQPXt2h7c/d+4c33zzjY4VZTymiz0vL1i8GJ57zvyhbLHYX0uXQosWgfTs2ZPr16+zdu1axo0bR9u2bSlZsiTZs2enQYMG9O3bl0WLFnHo0CFsNpvR5Qvh9v7++2/++ecfh7eX7vjhsmTJwgcffODUPmPGjCEhIUGnijIei2LS9i0+3t4pr1ljzluivLzsr0WLoHVr+3vXrl2jSJEiDi0vlylTJipXrkxoaCihoaGEhIRQunRpvN19VpvJLFq0iHbt2jm0bZ06ddiwYYPOFQktPfPMM6xbt87h7Vu3bs3333+vY0Xu7caNGxQpUoQbN244vM+0adN47733dKwq4zBtD+rvDz/9BA7+LHUpb2/77U2rV/8XxgDBwcG8++67Do0RHR3Nhg0bmDhxIh06dODJJ58ka9as1KlTh549e/Ltt9+yZ88ekj316RtCqLRhwwanwhiQ7vgxsmbNSu/evZ3aZ/To0dIla0UxuZQURRk3TlF8fBTFalUUe79s3MtiUZQnn1SUnTsfXO/58+cVPz8/BfvsLtWvgIAApUaNGsrHH3+s2Gw21/7he4CFCxc6/Gddp04do8sVTmjYsKFTf5datmxpdMlu4dq1a0qWLFmc+rP96quvjC7bI5i2Q07l5QX9+sHevVC1qnF1WK321/DhsGMHVKz44O3y5s3L22+/rdlx4+Li2Lp1K3Xq1MHiCSunCKGBTZs2sXbtWqf2+eijj3SqxrNkz56dXk4+9Wf06NEkJibqVFHGYfpATlWqFGzcaF94IyDAdWtfp2ZgpUqwaxcMHWq/Z/pR+vXrh1XDAkeMGEGjRo00G08Id+fszOqXX36ZChUq6FSN5+nduzeZM2d2ePvTp08zd+5c/QrKINwmkMHeLXfvDgcOQNeuEBhoD0w9ZmOn5mnZsjBzJoSFQblyju1buHBhOnbsqEkdL7zwAoMGDdJkLCE8wZYtW/jjjz+c2ke6Y+cEBwfTs2dPp/b57LPPpEtWya0COVWRIjBtGly8aF83unx5+/tqm1IvL3vA+/raJ5Nt2WI/Vf72284v6Tlw4EC8VP6mUKRIEebNm6d6HCE8ibPdcfPmzalUqZI+xXiwDz74gEyZMjm8/alTp5g3b56OFXk+t/5JnymTPSx37YKICPtTo+rUgaCg/7axWu1hmpppqR211Zq2sy5c2H6b1aRJcOECzJ0LNWqk/4EXJUuWpE2bNun+bADnz59n2bJlsrCIELdt3bqV3377zal9ZGZ1+uTIkYMePXo4tc+oUaNISkrSqSLPZ9r7kNWw2eD4cYiMtL8uXLDf13z1aixZsgTg728hMND+lKmQEKhcGbJl076OPXv2aHLd6o033mDatGkEBARoUFXGIvche5amTZuyevVqh7d/4YUX+OWXX3SsyLNduXKFokWLEhMT4/A+s2fP5s0339SxKg9m8Cxvl3r++eeV1atXu/SYL730kia3P1WsWFE5evSoS2v3BHLbk+fYunWr039vIiIijC7b7Q0YMMCpP/PixYsriYmJRpftltz6lLUztm7dyurVq/nkk09cegp4yJAhmoyza9cuQkND5bd9kWENHz7cqe2bNm1KlSpVdKom4+jTpw+BgYEOb3/8+HEWLVqkY0WeK8MEcupEkPRcg1KjWrVqmt2ydOPGDV566SWGDBlCSkqKJmMK4Q62bdvGypUrndrn448/1qmajCVXrlx0797dqX1GjhwpqwymQ4YI5NTuOJW7dsmpPvvsM5577jkuXbqk6bhCmJWz3XGTJk2oVq2aTtVkPH379nWqSz569CiLFy/WsSLPlCEC+d7bJFzdJderV49atWppOubatWsJCQlhy5Ytmo4rhNlERkY6falGumNt5c6d2+F1+lONHDlSzuQ5yeMD+d7uOJUru2SLxcLQoUM1H/fs2bM8/fTTTJkyRW6NEh7L2e64cePG1KhRQ6dqMq5+/fo5dafH4cOHWbJkiY4VeR6PD+SHLSLg6i65SZMmhISE3Pd+cHCwqoU/kpOT6dmzJ+3atXPosY9CuJOdO3fy008/ObWPdMf6yJMnD926dXNqnxEjRkiX7ASPDuSHdcepXN0lDx48OM17Pj4+rFq1ij///JPcuXOrGn/x4sVUr16dgwcPqhpHCDNxtjtu1KiR5peHxH/69++Pv7+/w9sfOnRInj/tBI8O5MctsefqLvnll1+mbNmyd/574sSJVK9enQYNGhAZGan6B8n+/fupWrUqy5YtU1uqEIbbvXs3P/74o1P7SHesr7x58/LOO+84tY90yY7z2EB+XHecypVdspeX150HRbRr1y7NJIkCBQqwfv16px97dq/o6Ghat25Nnz59ZAk74dZGjBjh1PbPPPMMderU0akakap///74+fk5vP2BAwekSXCUkauS6On55593eGUZV67elZSUpDRv3lyJjo5+6DZLlixRgoKCVK/uVbduXeXcuXMu+2xmJCt1uac9e/Y4/f3+999/G112htGjRw+n/t88+eSTSkpKitFlm55HdsiOdsepXNklW61WfvjhB4LufgLGPV599VUiIiIoU6aMqmNt2LCBypUr8/fff6saRwhXc7Y7rl+/Pk8//bRO1Yh7DRgwAF9fX4e337dvH8uXL9exIs/gkYHs7OPZXH0t2ZFZ1WXLliU8PFz1E6MuXrxIw4YN+eKLL+TWKOEW9u/fz9KlS53aR64du1aBAgV4++23ndpn+PDh2Gw2nSryDB4XyM52x6lcvXqXIzJnzsySJUuYOHEiVhUPe05JSaFfv360atWKGzduaFihENobMWKEU38Xn376aerXr69fQeKBBg4c6FSXvHfvXqcn6WU0HhfIznbHqVzdJTvKYrHQq1cv1q9fT/78+VWN9cMPP1C1alX27t2rUXVCaOvAgQN89913Tu0j3bExChYs6PRjFqVLfjSPCuT0dsepzNglp6pduzaRkZGqO4EjR45QvXp1Fi5cqE1hQmho5MiRTv0drFOnDg0aNNCxIvEogwYNwsfHx+Htd+/ezc8//6xjRe7NowI5vd1xKrN2yany5MnDH3/8wYABA1SNExsbS/v27enevTsJCQkaVSeEOocOHXJ6qcWPP/4Yi8WiU0XicQoXLswbb7zh1D7Dhw83beNjNI8JZLXdcSozd8lgn6U9ZswYfvzxR7JkyaJqrOnTp1OvXj3+/fdfjaoTIv1Gjhzp1OnMWrVq0bBhQx0rEo4YNGiQU3NcduzYIc91fwiPCWS13XEqs3fJqVq0aMG2bduoUKGCqnG2bt1K5cqV+eOPPzSqTAjnHT582OmH2kt3bA5Fixalc+fOTu3z6aefmrrxMYpHBLJW3XEqs3fJqUqWLMmWLVvo0KGDqnGuXr3Kc88953SHIoRWRo0a5dT3XvXq1Xn22Wd1rEg4Y/DgwU51yZGRkaxcuVLHityTRwSyVt1xKnfpkgECAwP59ttv+frrr526BeFeiqIwbNgwXnrpJa5fv65hhUI82tGjR52eZCjdsbkUK1aMjh07OrWPdMn3S//NrSZx9uxZkpOT7/ttOTw83OF7bp966iny5s2b5r0NGzbQpEkTzerUk8Vi4Z133iEkJIRWrVpx+vTpdI+1cuVKQkJCWL58+QMfFymE1kaNGuXUwweqVq3qNn83M5IhQ4bw7bffOvz/ctu2baxevZqmTZvqXJkbMWbFTv3VqlXL4XVWlyxZYnS5mrl8+bLSuHFj1etg+/n5Kd98843RH0c1Wcva3I4ePap4e3s79b3566+/Gl22eIjOnTs79f+yWrVqis1mM7ps03D7DlmklTNnTlatWsXw4cOdfpbs3RISEnjrrbfYvHkzU6dOJSAgQMMqhbD77LPPnOqOq1SpIh2ViQ0ZMoT58+c7/P80PDycP/74g8aNG0NUFOzYAZGRcPAgxMZCfDykpIC/v/2VNy+EhNhfxYuDA8sQuxMJZA/k7e3Np59+SvXq1Wnfvr2qa8L/+9//2LFjB8uWLaN48eIaVikyuhMnTjBv3jyn9vnoo4/k2rGJlShRgnbt2jn0/7V8/vxMq1WL2l9/DW+9Bam3X3p52V+KAjab/Z9eXmCx2P+Z+ljZoCCoXBmqVYPXXoMqVXT8ZK7hWb9eiDSaNm1KZGQkoaGhqsbZsWMHoaGh/PrrrxpVJoS9O05OTnZ4+5CQEF544QUdKxJaGDp06CMfoNM8d24OVq/O7itXeHr5crx//vm/MAZ7CCcn2zvj1ElfNpv9v+9+xntMDGzcCJMnQ9WqULEizJoF0dE6fTL9SSB7uKJFi7Jx40a6du2qapyoqChefPFFhg4d6tQpRiEe5OTJk8ydO9epfaQ7dg8lS5bk9ddfT/OeF9A/OJir+fKx4tIlSm/fjiUx0R64an+epP5St3cvdO0KefJA9+6gYnKrUSSQMwB/f39mzJjBnDlz8Pf3VzXWqFGjaNKkCZcvX9aoOpERjR492qnuuFKlSrz00ks6ViS0dHeX/Gz+/FwoUoQx164RfOGCfQMn/t87LPU+9thYmDkTypSB6dP/e98NSCBnIJ07d2bLli2qrwX/+eefhISEsHXrVo0qExnJ6dOnmTNnjlP7SHfsXkqXLs3ADz9kW/Pm/HbpErnOnsUC/52C1ltyMsTF2TvlunXh8GHXHFclCeQMplKlSmzfvp0XX3xR1Thnzpyhbt26TJ8+XW7uF04ZM2YMSXdfC3yMChUq0Lx5cx0rEprbuZNRq1YR+vPPWJKT9emIHRUeDuXLw7hxpu+WJZAzoGzZsrFixQo+++yzR06+eJykpCS6d+9Ohw4diImJ0bBC4anOnDnD7Nmzndrno48+UvV9Klzsjz+gZk04dMh1HfGjJCfbJ4MNGABvvJF2YpjJyHd5BuXl5cWgQYP4/fffyZUrl6qxFi5cSPXq1TnsJqeFhHHGjBlDYmKiw9uXL1+el19+WceKhKaWLYOmTSExUf1kLT3Mnw8tWtjvbzYhCeQMrmHDhkRGRlKzZk1V4+zbt48qVarwww8/aFSZ8DRnz55l1qxZTu0j3bEb+fFHePVVexCb9dSwosCaNdCypf2XBpOR73RBwYIFWb9+PT169FA1zq1bt2jZsiX9+vVzagatyBjGjh3rVHf85JNP0rJlSx0rEpr5/Xdo08YeeGY4Tf0oNps9lF9/3XS/OEggCwB8fX2ZPHkyixYtIjAwUNVYX3zxBQ0bNuT8+fMaVSfc3blz55g5c6ZT+wwbNky6Y3dw4cJ/nbHZwziVzQbLl9sXFTER+W4Xabz22muEh4dTunRpVeP8888/hISEsGHDBo0qE+5s3LhxJCQkOLx92bJladWqlY4VCU0oCnTpArduuU8Y323AAPu62SYhgSzu8+STTxIREaH6B+KFCxdo0KABX375pdwalYGdP3+eGTNmOLXPsGHD8Pb21qkioZm5c2HVKnNO4HJESgq0a2fsbVl3kUAWD5Q5c2a+//57JkyYgNWa/meQpKSk0KdPH1q3bs3Nmzc1rFC4i88//5x4J2a1lilThjZt2uhYkdDEqVPw/vtGV6FOSor9CVNjxhhdCSCBLB7BYrHQu3dv1q1bR758+VSNtXz5cqpVq8a+ffs0qk64g4sXL/L11187tc/QoUOlO3YH3bqZcqay0xQFPvnEft+0wSSQxWPVqVOHyMhI6tWrp2qcQ4cOUa1aNRYvXqxRZcLsPv/8c+Li4hzevlSpUrRt21bHioQmDhywz1Q2yale1SwWU0zwkkAWDsmbNy9//vkn/fr1UzVObGwsr7/+Oj169HDqFhjhfi5dusT06dOd2mfIkCHSHbuDadNAxaUs00lOhv/9D27cMLQMCWThMKvVyrhx41i+fDmZM2dWNdbUqVOpV68e/979HFThUb744gunuuMSJUrc99g+YUI3b9rDy1O641QJCfDtt4aWIIEsnPbKK6+wbds2ypcvr2qcsLAwQkJCWLt2rUaVCbO4fPky06ZNc2qfIUOGqJpAKFzk229Nu/SkapMmGbpYiASySJdSpUoRFhZG+/btVY1z5coVGjduzGeffYbNZKvmiPQbP348sbGxDm9fvHhx1d9LwkWmTDG6An0oChw/DuvWGVaCBLJIt6CgIObNm8f06dPx8fFJ9zg2m40hQ4bQokULrl+/rmGFwghXrlxh6tSpTu0j3bGbuHQJjhxxz0VAHGG1wvr1hh1eAlmoYrFYePfdd9m4cSOFChVSNdYvv/xClSpV2LlzpzbFCUN8+eWXTj2Os1ixYnTo0EHHioRmtm3TbWgbUAYYcM/7vwG+wFLdjnyXlBT785MNIoEsNFGtWjUiIyN59tlnVY1z/PhxatasyZw5czSqTLjS1atXmeLkKc3BgwerOsMiXGjbNt1mV3sBg4CvgNTzZLuA1sBnt/+pO0WxB7JBZwAkkIVmcubMyerVqxk2bJiqceLj43nzzTfp2rWrUys8CeNNmDCB6Ohoh7cvUqQIHTt21LEioamtW3Wd9NQOyAlMBs4AzYAOQF/djvgAUVH2VcgMIIEsNOXt7c3w4cP59ddfyZ49u6qxZs2aRe3atTlx4oRG1Qk9Xb9+nclOLq4wePBgfH19dapIaCq1e9QxkK3YT1lPBpoCIbf/3eV0PDX/KBLIQhfNmjVj+/btVK5cWdU4kZGRhIaGsmrVKo0qE3qZOHEit27dcnj7woUL07lzZ/0KEtqKjYUrV3Q/TDsgFlCAxcC9y8S8DGQHdHsWmNVqn7hmAAlkoZtixYqxefNm3nrrLVXjXL9+nWbNmvHRRx+R4q5PlfFwUVFRTJo0yal9Bg0aJN2xO3HiNjY1Uh9XcYX7wxigJzBPzwIsFnBiQRstSSALXfn7+zNr1ixmz56Nv7+/qrFGjBhB06ZNueKC39KFcyZNmsQNJ5YdLFiwIG+88YaOFQnNuWA+xzBgJRAGJAOzH7BNA0DdOoEOkEAWnuzNN99k8+bNFCtWTNU4v//+OyEhIYQbeGuCSOvGjRtMnDjRqX0GDRqEn5+fPgUJt/QNMB74BagI9AbGAUkG1uRqEsjCZSpXrsz27dt54YUXVI3z77//UqdOHb766isUT12gwI1MnjyZqKgoh7cvUKAAXbp00a8goQ+VZ7geZTXQHVgA1Lj9Xg/gJjBft6M+QkCAEUeVQBaulT17dn766SdGjRqFl1f6v/2SkpJ477336NSpk1NLNApt3bx5kwkTJji1z8CBA6U7dkeBgboMux37PcbjgFfuej8L9lAeA7h05oiiSCCLjMPLy4vBgwfz22+/kTNnTlVjzZ8/nxo1anDEoFmRGd2UKVOcWu40f/78qif5CYMEBoLKv68PEgpEA70e8LXhwGEePLlLN8nJULKkK494hwSyMEyjRo2IjIykevXqqsbZs2cPVapU4ccff9SoMuGIW7du8eWXXzq1z4ABA1RP7hMGsVigWjVQcWZLC89h76hXAQWBCD0OUqWKHqM+lgSyMFShQoX4559/eP/99x+/8SPcvHmTV155hQEDBpDsac9pNampU6dy7do1h7fPmzcvb7/9to4VCd1Vr254IP8GXMZ+r/IZoKrWB8iWDYoU0XpUh0ggC8P5+voyZcoUFi5cSKDK61Tjxo2jUaNGXLhwQaPqxINER0czfvx4p/YZMGAAAQZdmxMaqVLFfkrXU6WeBbBYDDm8BLIwjddff52tW7dSqlQpVeP8/fffhISEsHHjRo0qE/eaNm0aV69edXj7PHny8M477+hYkXAJg07luoy3tz2QDSKBLEylfPnyRERE0LJlS1XjnD9/nvr167N69WqNKhOpoqOj+eKLL5zap3///tIde4Lcue0TngzqIHWXnAz16xt2eAlkYTpZsmRh6dKlfPHFF3h7p39+ZUpKCgsWLNCwMgHw1VdfObVaWq5cuaQ79iQ9ehhdgT4sFiheHBo0MKwECWRhShaLhT59+vDXX3+RN29eo8sRt8XExPD55587tU+/fv0ICgrSqSLhcp066bpIiKF69TJ00poEsjC1p59+msjISOrWrWt0KQL4+uuvuXz5ssPb58yZk/fee0/HioTLZckCb75pfyqSJ/H3B4OfPiaBLEwvX758rF27lr59XfqYcnGP2NhYxo0b59Q+ffv2le7YE3Xv7lmzra1WeOMN+y8bBpJAFm7Bx8eHzz//nGXLlpE5s+7PehEPMGPGDC5duuTw9jly5KB79+46ViQMU7YsNGniOV2yokDPnkZXIYEs3EvLli2JiIjgySefNLqUDCUuLs7p7rhPnz5kypRJp4qE4WbMAE94nrXFAp98AqVLG12JBLJwP6VLl2br1q28/vrrRpeSYcyaNcupxVaCg4NVr74mTK5wYZg61egq1PH2hsqVYeBAoysBJJCFmwoKCmLBggVMnToVHx8fTcaUJTcfLD4+nrFjxzq1z4cffiiXFjKCzp2hWTN7sLkjb29YuNA0p94lkIXbslgsdO/enX/++YeCBQuqHm/nzp3s3LlTfWEe5ptvvuHcuXMOb589e3Z6eOq9qiItiwW++QYyZ3bPxULGjoUyZYyu4g4JZOH2atSoQWRkJI0aNVI1Tnx8PDVr1uTbb7/VqDL3l5CQwJgxY5za54MPPiCLwbNVhQvlzQvffWfvNt0llL28oGVLU0zkupsEsvAIuXLlYs2aNQwZMkTVOPHx8XTu3Jl33nmH+Ph4japzX7Nnz+bs2bMOb58tWzZ6muyHnHCBxo1h6VJ7IJs9lL287DPEFy0y/MlV9zJXNUKo4O3tzciRI/nll1/Ili2bqrFmzpxJnTp1OHnypCa1uaOEhARGjx7t1D69e/cma9asOlUkTK1Fi/86ZZMF3R0Wiz2Mly835Qxxk/6pCZF+L7zwAtu3b6dSpUqqxtm+fTuhoaGsWbNGm8LczJw5czhz5ozD22fNmpVevXrpWJEwvVatYPVq8PMz50SvDh1gxQrTLv0pgSw8UvHixdm8eTP16tVTNc61a9do2rQpn3zyCTabTaPqzC8xMdHp7rhXr16qz0wID9CoEWzZYr+v1wynr61Wezc8bhzMmQMa3ZWhBwlk4bECAgLo2rWr6nEUReHTTz+lWbNmTj0D2J3NnTuX06dPO7x9lixZ6N27t34FCfdSsSLs2AHDh9sD0cjbiqpVgz17oF8/855Kv83c1QlhImvWrCEkJISIiAijS9FVYmIin332mVP79OzZk+zZs+tUkXBLvr4wdCjs2gWpl49c1TFbrRAQANOnw4YNUKqUa46rkgSyEE44ffo0derUYcaMGSiKYnQ5upg3bx6nTp1yePvMmTPzwQcf6FiRcGvlykFYGMyaZV8DG/TpmFO738BAeOcdOHgQ3n3X9F3x3dynUiFMIjExkW7dutG5c2diY2ONLkdTSUlJjBo1yql9evToQXBwsE4VCY/g7Q1vvQV799qvL7drZ++gLRb1k79Sw/2pp+yhf/GifUnPwoXV1+1iEshCpNO8efOoWbMmR48eNboUzcyfP9+pW70yZcrEhx9+qF9BwrNYLFCjBsydC+fPw6RJ8MoracPTy8sesncvNJL63t0TsoKCoG5d6NULIiJg50576LvxA03MsYCnEG5q9+7dhIaGMm/ePJo3b250Oaqkpzt+//33yZEjh04VCY8WHAw9ethfAFFR9lCNjLSfbo6Nhfh4+3OXAwLstyrlzQshIfZXsWJudTraERLIQqh08+ZNWrRowYABAxg5ciRWkyxU76yFCxdy/Phxh7cPCgqiT58+OlYkMpRs2aB+ffsrg/KsXy+EUMFL5W/bY8eOpXHjxly8eFGjilwnOTmZkSNHOrXPe++9R86cOXWqSIiMRwJZiNsqVqxIyZIlVY2xbt06QkJC2Lx5s0ZVucaiRYs4duyYw9sHBgbSt29fHSsSIuORQBbitqCgICIiInj55ZdVjXPu3Dnq1avH5MmT3eLWqPR0x++++y65c+fWqSIhMiYJZCHukjVrVpYvX87nn3+Ot4rbMZKTk+nVqxevvfYa0dHRGlaovSVLlnDkyBGHtw8ICKBfv346ViRExiSBLMQ9LBYLffv2Ze3ateTJk0fVWN999x3VqlXjwIEDGlWnrZSUFKe7427duqn+cxFC3E8CWYiHqFevHpGRkdSpU0fVOAcOHKBq1ap8//33GlWmne+//55Dhw45vL2/vz/9+/fXsSIhMi4JZCEeIX/+/Pz111+qF7+IiYnh1VdfpXfv3iQlJWlUnTopKSmMGDHCqX3eeecd8ubNq1NFQmRsEshCPIaPjw/jx49n6dKlZFK5CtCkSZNo0KABZ8+e1ai69Fu2bJlTp9L9/PykOxZCRxLIQjioVatWbNu2jXLlyqkaZ9OmTYSEhLBu3TqNKnOezWZzujvu2rUr+fPn16kiIYQEshBOKF26NFu3buW1115TNc6lS5do1KgR48aNM+TWqOXLl7Nv3z6Ht/f19WXAgAE6ViSEkEAWwkmZMmVi4cKFTJkyRdUymTabjQEDBvDKK69w48YNDSt8/HGHDx/u1D5vv/02BQoU0KkiIQRIIAuRLhaLhffff59//vlHdVCtWLGCKlWqsHv3bo2qe7Qff/yRvXv3Ory9r68vAwcO1LEiIQRIIAuhSs2aNYmMjOSZZ55RNc7Ro0epUaMG8+fP16iyB0tPd9ylSxcKFiyoU0VCiFQSyEKolDt3bn7//XcGDRqkapy4uDg6duzIu+++S0JCgkbVpfXTTz851Yn7+PhIdyyEi0ggC6EBb29vPvvsM37++WeyZs2qaqyvv/6aunXrcurUKY2qs1MUxenu+M0336Tw3Q+PF0LoRgJZCA29+OKLbN++nYoVK6oaJyIigpCQEH777TeNKoOff/6ZnTt3Ory9j4+P6q5fCOE4CWQhNPbEE0+wZcsWOnfurGqca9eu8fzzzzN8+HBsNpuqsRRF4dNPP3Vqn86dO1OkSBFVxxVCOE4CWQgdBAQE8L///Y+ZM2fi6+ub7nEUReHjjz/mhRde4OrVq+ke59dff2XHjh0Ob2+1Whk8eHC6jyeEcJ4EshA6sVgsvP3222zatEl1p7l69WpCQ0PZvn270/umpzvu1KkTRYsWdfpYQoj0k0AWQmdVqlQhMjKS559/XtU4p06dolatWsyaNcup1b1WrVrlVJB7e3tLdyyEASSQhXCB4OBgfv31Vz799FMsFku6x0lMTKRr1668+eabxMXFPXb79HTHHTt2pHjx4uktUQiRThLIQriIl5cXH330EatXryY4OFjVWHPnzqVmzZocO3bskdutWbOGiIgIh8eV7lgI46R/IV4zU2x88NYLfPBKfvL5nSfIGo3VkozVkoyChWTFSpLNhyuJOTmfkI+nyhQyumKRgTz33HNERkbSunVrp8LyXrt27SI0NJT58+fz4osv3vf19HTH7dq1o0SJEumuSQiRfp4RyIoC17bBqSVwZStc30Erv1jIB1h8AJt9G27fOmLxArxAsdnf2zcPThSCHNUgdz0o2g781HUwQjxKkSJF2LBhAx988AFfffVVuse5ceMGL730EoMGDWL48OFpHnbx+++/s3XrVofH8vLyYujQoemuRQihjnufsk6KhqMzYXUl+K0aHJoMVzZBSux/2yhJoKRwJ4zBHsRKctr3Yv+Ff3+E7b3gx3ywuSNc3nI7yIXQnp+fH9OnT2fevHkEBASoGmv06NE899xzXLp0CUhfd/z6669TsmRJVXUIIdLPPQM55hREvAc/5IHwbhB1+8k1SrLKgW2AArZEOLUY/qgFK5+0h74tRW3VQjxQhw4dCAsLU32q+K+//iIkJIQtW7awdu1atmzZ4vC+0h0LYTz3CmTFBoemwq9l4Ois253wXaeiNT3W7XC/eRDC34Hfa0CU4w90F8IZFSpUYNu2bbRo0ULVOGfPnuXpp5/mnXfecWq/tm3bUrp0aVXHFkKo4z6BfPMQ/FEHtveAlHgNumFH3T5lfX2n/dT4nhFgS3LRsUVGkjVrVn744QfGjh2Ll1f6/2omJydz/Phxh7e3WCzSHQthAuYPZMUG+8fByqfgavpnpKqvI9n+2vOxPZiv7zSuFuGxLBYL/fv3Z+3ateTOndslx3z11VcpW7asS44lhHg4cweyLQm2dIKdA25PznJVV/woir1b/70WnP/D6GKEh6pfvz6RkZHUqlVL1+NYLBaGDRum6zGEEI4xbyAnx8HfzeHkQqMruZ+SAikJsL4pnF5qdDXCQxUoUID169fTu3dv3Y7RunVrypUrp9v4QgjHmTOQUxJhwytw/jfuXMM1HZs9mDe2td8uJYQOfHx8mDBhAt999x1BQUGajy/dsRDmYb5AVmyw+TU4/zu6zJ7WlGJ/bWwD57R7kLwQ92rTpg0RERGaXutt1aoV5cuX12w8IYQ65gvkgxPh3x8wfxinUuyd8qa2EHfB6GKEBytbtizh4eG8+uqrmoxXqFAhp54aJYTQl7kC+cYB2DnQ6CrSQYHkW7D1LVnZS+gqU6ZMLF68mEmTJqVZJjM9JkyYQMuWLblx44ZG1Qkh1DBPINuSYPPruE9nfA8lBc6thBPfGl2J8HAWi4WePXuyfv168ufPr2qsH3/8kapVq7Jnzx6NqhNCpJd5AnnfaLi+6/a6025s2/sQc9roKkQGULt2bSIjI8mePbuqcY4cOUL16tVZsGCBRpUJIdLDHIF84yDsHY55Z1Q7ISXBvtSmEC5w4sQJrl+/rnqcuLg4OnToQPfu3UlISNCgMiGEs8wRyIcnAxajq9CGkgzn19h/yRBCZ84+0elxpk+fztNPP83p03KWRwhXMz6QE2/A8TkmWYVLIxYrHJ5qdBXCw4WHh7NmzRpdxg0JCeGPP2QlOiFcyfhAPj7XfprXkyjJcPx/kHTT6EqEB9O6O77b1atXee655xg5ciQ2m5tOtBTCzRgbyIoNDk00tATdpMTDcZlxLfQRERHBqlWrdD2GoigMGzaMF198kWvXrul6LCGE0YF8YS3EnMQjJnM9yOEpRlcgPNTw4cNddqxVq1YRGhpKZGSky44pREZkbCBf+tt+vdUjKXDrCMRfMroQ4WG2b9/Or7/+6tQ+NWrUUHXMkydPUqtWLWbPnq1qHCHEwxkbyFfDdbnveNVOsLR7+KvNZM0P+XDXtrvwYCIjGDFihFPbP/fcc2zcuJGPP/4YiyX9dzMkJCTw1ltv0aVLF+Li4tI9jhDiwYwLZEWBq1vR43R1g3Jwflra15kp8Gx5yJkZhrXQ/JAPZrHC1QgXHUxkBDt37uSnn35yap+PP/4Yb29vPvnkE1auXElwcLCqGv73v/9Ru3Ztjh8/rmocIURaxgVyzEndZiEH+ELebP+9cmWBvotgxyn4azA8VViXw95PsUkgC005e+342WefpWbNmnf++/nnn2f79u2EhoaqqmPHjh2EhoY6fepcCPFwxgXytW0uOUyKDdpPhz/2wFpXhjEANrga5soDCg+2e/dufvzRuWdvf/zxx/e9V7RoUTZu3EjXrl1V1RMVFcWLL77I0KFDSUlx8yVvhTAB4wL51lHdJ3Sl2KDDXWFc4a4wfnkCZH8bWk3UtQRIuALJMTofRGQEznbHDRs2pHbt2g/8mr+/PzNmzGDOnDn4+/urqmvUqFE0adKEy5cvqxpHiIzOuEBOjkXP5TJTw/j322FcsUjar/dsDPPe1e3waSXLBBihzp49e1i+fLlT+zyoO75X586dCQsL44knnkhvaQD8+eefhISEEBYmZ4SESC/jAjlFv5BKDePf9sCfg+4PY4AGT0JmdY2BEwVJIAt1nJ1Z3aBBA+rWrevQthUrVmTbtm289NJL6SntjjNnzvD0008zbdo0FHkuuBBOMy6QVdx+8SgpNuj41X9hXKmoLodxjk6fVWQM+/btY9myZU7t40h3fLds2bLx448/Mnr0aLy80v9jISkpiffff58OHToQEyOXaoRwhnGB7KV9e2q7HcYrtsOCdyFfNrgQlfaVYsSyvDp8VpFxjBgxwqmOs169etSrV8/p43h5eTFw4ED++OMPcuXK5fT+d1u4cCHVq1fn8OHDqsYRIiMxbpksayBa34MccRwWbbb/e9PPH7zN9ZmQLUjTwz6eNcDFBxSeYv/+/Xz//fdO7eNsd3yvZ555hh07dtC6dWu2bNmS7nH27dtHlSpVmDNnDi1btlRVkxAZgXEdcuYSmj9ysXoJUBY++uXyMPbLCVZXH1R4ipEjRzrVHdetW5f69eurPm6BAgVYv349PXv2VDXOrVu3aNWqFX379iUpKUl1XUJ4MuMCObiKYYcGeG4MtJ4Mq3ZBwfch4pgeR/GCHOrWEBYZ18GDB1myZIlT+6hdHvNuvr6+TJo0icWLFxMUpO6XyvHjx9OwYUPOnz+vSW1CeCLjAjmoKPhkNezwvw2Ey19D7Bw4MxWqqrvr48EsXpCjmg4Di4zA2e64du3aPPPMM5rX0bZtW8LDwylTpoyqcTZs2EBISAj//POPRpUJ4VmMnWWdoxp63otsOCUZchh7JkC4p8OHD7N48WKn9tGyO75XuXLlCA8Pp3Xr1qrGuXDhAs888wzjx4+XW6OEuIexT3vKUQ0s3oaWoDuDT80L9zRy5EhsNsdvCahZsyaNGjXSsSLInDkz3333HRMmTMBqTf980JSUFPr27Uvr1q25eVOf9eyFcEfGBnKe+ppP7DIPC2QuBf7qbh8RGc+RI0dYuHChU/vo2R3fzWKx0Lt3b9atW0e+fPlUjbV8+XKqVq3Kvn37NKpOCPdmcCA/A0HF8NjT1qV6GF2BcEOjRo1yqjuuXr06jRs31rGi+9WpU4fIyMh03e98t8OHD1OtWjUWLVqkUWVCuC9jA9niBaV7GVqCbrz9oXhHo6sQbubYsWMsWLDAqX1c1R3fK2/evPz555/0799f1TixsbG0a9eOHj16kJiYqFF1QrgfYwMZoHhn8PYzugptWazwRBfwyWJ0JcLNjBo1yqlHGVatWpUmTZroWNGjWa1Wxo4dyw8//ECWLOq+36dOncrTTz/Nv//+q1F1QrgX4wPZNysUf1P3RzG6lJIMJbsbXYVwMydOnGDevHlO7fPRRx8Z0h3f6+WXX2bbtm2UL19e1Thbt24lJCSEP//8U6PKhHAfxgcyQOmeaL2MpmEsVsj3PGRVd8+myHg+++wzp7rj0NBQmjVrpmNFzilZsiRhYWG0b99e1ThXrlyhcePGTl9LF8LdmSOQs5SGpz7B/Sd3Weyn36vNMLoQ4WZOnjzJ3LlzndrHLN3x3YKCgpg3bx7Tp0/Hx8cn3eMoisLQoUNp3rw5169f17BCIczLHIEMUG4gZK/s5qeuFagyDYIKGV2IcDOjR48mOdnxWwArV67Miy++qGNF6WexWHj33XfZuHEjhQqp+7vw66+/Ehoayo4dOzSqTgjzMk8ge1mh1kL7zGt3ZPGG/C9AMZlZLZxz+vRp5syZ49Q+ZuyO71WtWjUiIyN59tlnVY1z4sQJatWq5fSfkRDuxlzpl7UMVBprdBXpYMHmHcSpvMM85Uq4cKHRo0c79SSkihUr0rx5cx0r0k7OnDlZvXo1H330kapx4uPjefPNN3n77beJj4/XqDohzMVcgQz2CV6FWmLG0h7MAhZv4qvMo3KtJgQHB9OwYUP69+/PkiVLOHLkiExMEQ/177//Mnv2bKf2cYfu+G7e3t58+umnrFy5kuzZs6sa65tvvqF27dqcOHFCo+qEMA/zpZ7FC2otgvxNMGN5aVns9dZdTmDx5vTq1YuoqCj++usvPv/8c1577TVKlSpF9uzZqV+/Pn369GHhwoUcPHhQQloAMGbMGKe646eeeooWLVroV5COmjZtyvbt2wkJCVE1TmRkJKGhoaxatUqjyoQwB4ti1keupMTDhpZwbjXmvCXKyx7GtZdA4ZYAXLt2jSJFihAdHf3YvTNlykSlSpUIDQ0lNDSUkJAQypQpg7e3hz9sw8UWLVpEu3btHNq2Tp06bNiwQeeK/nPmzBmeeOIJp1anWrp0Ka1atdKxKv3Fx8fTs2dPZs2apXqsYcOG8fHHH8vfG+ERzNuCevvD0yugWAejK7mfxdt+e1ODNXfCGCA4OJj33nvPoSGio6PZuHEjkyZNomPHjpQvX54sWbJQu3ZtevTowdy5c9m9e7dTM2+Fexk7dqxTYVy+fHleeeUVHStyDX9/f2bOnMn//vc//P39VY01YsQInn/+ea5cuaJRdUIYx7wdcipFgYPjYdcQUGwmeDqUBbKWs88Iz17xvq9evHiRokWLajbxxN/fn4oVK/Lcc8/xySefuNW1QzMwa4d87tw5ihcvTkJCgsP7fPfdd7Rp00bHqlxvx44dtGrViuPHj6sap1ChQixbtoxq1appVJkQrmfeDjmVxQJl+0LTPfbnJxtWh9X+qjACnt/xwDAGyJMnD2+//bZmh42Pjyc8PJy6detKGHuQsWPHOhXG5cqVc/tT1Q9SuXJltm3bxgsvvKBqnH///Zc6derw1VdfYfYeQ4iHMX8gp8pSCp7dYF94wzvAhQuI3A7B7JWh6S4oPwS8Hr0CUb9+/VStUnSvESNG6P7weeE658+fZ+bMmU7tM2zYMLy83OevqzOyZ8/OTz/9xKhRo1R9xqSkJN577z06duxIbGyshhUK4Rru9Tfc4gWl3oMXDkKJd8A78PYXdPgYqYGftRxUmwWNt9j/3QGFChWiY0dtFghp1qwZgwYN0mQsYQ7jxo1z6pJGmTJlaN26tY4VGc/Ly4vBgwfz22+/kTNnTlVjLViwgBo1anDkyBGNqhPCNdwrkFMFFYaqU+GVi/awzF7B/r7qrtkbsICXLxRtD43D7KfKS7wFXs7N4hw4cKDqjqZIkSLMnz/fYzujjOjChQt8/fXXTu0zbNiwDDOLuFGjRkRGRlKjRg1V4+zZs4cqVarw448/alSZEPpz75/0PpnsYfn8DmiyDcr0hlxPgzXTf9tYfG5f/039qPaFPOzhfdfHDyxinzEdOhleuQA150DO6vZr2OlQokQJXn311fR+MsB+anPp0qVyTcyDfP755051x6VLl1b9feRuChUqxN9//02PHj1UjXPz5k1eeeUV+vfvL3crCLdg/lnW6aEoEHMCrkXaX/EXICXO/rJY7degrYGQpQxkD4HslezPZdbY3r17eeqpp1SP06lTJ6ZPn05gYODjNxZpmGmW9cWLFylWrBhxcXEO7zN//nzVjzN0Z4sWLeLtt99WfU24Xr16LFmyhLx582pUmRA6UISuWrRooWBf2UTVq0KFCsqRI0eM/jhuZ+HChQ7/GdepU0fXWvr27evU//OSJUsqSUlJutbkDvbu3auUKlVK9d+hfPnyKRs2bDD64wjxUO59ytoNDBkyRJNxdu/eTWhoKD/99JMm4wnXunTpEtOnT3dqn6FDh2K1uvPjSLXx5JNPEhERQcuWLR+/8SOcP3+e+vXrM2HCBLkMJExJAllnVapUoXHjxpqMdfPmTVq0aMGgQYPkmpibGT9+vFOnXUuUKMHrr7+uY0XuJUuWLCxdupTx48ermuCWkpLChx9+yKuvvsqtW7c0rFAI9SSQXUCrLjnVmDFjaNy4MRcvXtR0XKGPK1euMG3aNKf2GTJkiHTH97BYLHz44YesW7dO9bXgpUuXUrVqVfbv369RdUKoJ4HsAk8//TR16tTRdMx169YREhLC5s2bNR1XaO/LL78kJibG4e2LFSvm8ES0jKhu3bpERkZSt25dVeMcOnSIatWqsXjxYo0qE0IdCWQX0bpLBvt6yPXq1WPy5MlyTcykrl69ypQpU5zaZ8iQIZqu9OaJ8uXLx9q1a+nbt6+qcWJiYnj99dfp2bOnUw/6EEIPEsgu8txzzxEaGnrf+8HBwaoW/khOTqZXr1689tprDj32UbjWhAkTnPr/UrRoUc1WefN0Pj4+fP755yxbtozMmTOrGmvKlCnUr1+fM2fOaFSdEM6TQHYRi8XC4MGD07zn4+PDqlWrWLt2Lblz51Y1/nfffUe1atU4cOCAqnGEdq5du8bkyZOd2mfw4MHSHTupZcuWbNu2jfLly6saZ8uWLYSEhPDXX39pVNldbElwfTccnwvbesKGVrC+KfzZANY2gr9fgo2vwu6P4N8VEHPavp6CyFBk1ogLtWjRgnLlyt2ZSDJx4kSqV68O2B9D16ZNGzZt2pTu8Q8cOEC1atWYPXu2xz2mzx1NnDjRqZm8hQsXplOnTjpW5LlKlSpFWFgYXbt2ZdGiReke5/Llyzz77LOMGjWK/v37p//slaLA5U1wahFcCYOovaAk2b9m8bn9GNl7AtfiBXj994hZn6wQXAVyPw3F34CgQun9WMJNSIfsQl5eXnceFNGuXTvefffdO1/Lnz8/69at44MPPlB1jOjoaF599VU++OADkpKSVI0l0u/69etMmjTJqX0GDx6Mr6+vThV5vqCgIBYsWMC0adNUnWWw2WwMGjSIl19+maioKOd2ToyCQ1Ph17LwZ104Oguu7/gvjOH2vz+g+733ee9JN+DiX7B3OPxUBNa/AGdXgS0lHZ9KuAMJZBdr27YtzZs3Z8aMGfc939jHx4cvv/yS77//nkyZMj1kBMdMnDiRBg0acPbsWVXjiPSZNGkSN2/edHj7QoUK8cYbb+hYUcZgsVh47733+OeffyhYsKCqsX7++WeqVKnCzp07H79x9HEIexN+yAvbe8Ktw/b3FbXrBSigpNj/eX4N/N0MfioM+8ZAiuNrogv3IIHsYlarlR9++IGgoKCHbtO6dWvCw8MpW7asqmNt2rSJkJAQ1q1bp2oc4ZyoqCgmTpzo1D6DBg2S7lhDNWrUIDIyUvVzxI8dO0bNmjWZO3fugzewpcDBSfDrk3BiPtgS+G+1To0ptzvjuHOwazCsfAouy22PnkQC2QCOXJcqW7Ys4eHhqp/0c+nSJRo1asS4cePk1igXmTx5Mjdu3HB4+4IFC/Lmm2/qWFHGlCtXLtasWaP6lsP4+HjeeOMNunbtmvZJXTcOwO+1ILI32OI16IadcfsBOn/UgW29IEnusPAEEsgmlilTJhYvXszkyZNVrdpks9kYMGAAr7zyilNBIZx348YNJkyY4NQ+AwcOxM/PT6eKMjZvb29GjhzJL7/8QrZs2VSNNWvWLOrUqcPZM//CvtGwqgJcj9Sm0PRIPZV9eCqsLAsX/zauFqEJCWSTs1gs9OjRg7///pv8+fOrGmvFihVUqVKF3bt3a1SduNeUKVOcmgiUP39+unTpol9BAoAXXniB7du3U7lyZVXjxMfeIvexfvZTxkqyi7vih7FB7Dn4qxGcXGJ0MUIFCWQ3UatWLXbs2EGDBg1UjXP06FFq1KjB/PnzNapMpLp58yZffvmlU/sMHDgQf39/nSoSdytevDibNm1K9+WB4KyBbBmbB5+z32tcmRZs9o558+tw2Ll104V5SCC7kdy5c/P7778zcOBAVePExcXRsWNH3n33XRISEjSqTkydOpXr1687vH2+fPl4++23daxI3CsgIIDZs2fzzTffOHWZwMcb9kwvSeZbm9BlwpYmbk8m2/Y+HJ1pdDEiHSSQ3YzVamX06NGsWLGCrFmzqhrr66+/pm7dupw6dUqj6jKuW7duMX78eKf2GTBggHTHBunSpQubN2+maNGij93WYoHwCSXIzx7ApnttmgjvBifTv0CKMIYEsptq3rw527Zto0KFCqrGiYiIICQkhN9++02jyjKmadOmce3aNYe3z5s3L127dtWxIvE4ISEhbN++nWbNmj1yuy+6FqVSjqO4TRgDoEBYF7h11OhChBMkkN1YiRIl2LJli+rlFq9du8bzzz/P8OHDsdnc6YeOOURHR/PFF184tU///v0JCAjQqSLhqODgYH7++WdGjBhx30I9ANXLZeeDeucMqEwDSjJsbi8re7kRCWQ3FxgYyJw5c5gxY4aqhSUUReHjjz/mhRdecKrTEzB9+nSuXr3q8PZ58uThnXfe0bEi4QwvLy+GDh3Kb7/9Ro4cOe6872O18PvHubG4VWd8FyUZrm6Fg85dShHGkUD2ABaLha5du7Jp0yaKFCmiaqzVq1ffOZUnHi8mJsbp7rhfv34EBgbqVJFIr2effZbIyEiqVasGwO+TGpMl+bBJbm1SYdcQiNpjdBXCARLIHqRKlSps376dJk2aqBrn1KlT1KpVi1mzZsnqXo/x9ddfc/nyZYe3z5UrF926ddOxIqFG4cKF+eeff1g0YwT1sq/FvDOqnRT2hjzO0Q1IIHuYHDlysHLlSj755JMHXhNzVGJiIl27duXNN98kLi5Owwo9R2xsLOPGjXNqn379+j1yHXNhPD8/P14LvYbFU8JYSYZr2+HKFqMrEY8hgeyBvLy8+Pjjj1m1ahXBwcGqxpo7dy41a9bk2LFjGlXnOWbMmMGlS5cc3j5nzpxpHrkpTCopGo7N+u9hDp7AYoVDU4yuQjyGBLIHa9KkCZGRkVSpUkXVOLt27SI0NJRffvlFo8rcX1xcnNPdcZ8+fVQ/VlO4wMmFkBxjdBXaUpLh36UQd97oSsQjSCB7uCJFirBhwwbVs3pv3LjBSy+9xODBg0lOdvNJLhqYOXMmFy5ccHj74OBgunfvrmNFQhOKAgedeziIW5EVvExNAjkD8Pf35+uvv2bu3LmqV4YaPXo0zz33nFOnaj1NfHw8Y8eOdWqfPn36kDlzZp0qEpq5vAluHcJjJnPdTUmxr3Mtk7tMSwI5A+nUqRNhYWE88cQTqsb566+/CAkJYcuWjDlJZNasWZw/7/ipv+zZs/P+++/rWJHQzOUNYPE2ugr9JFyGaJkPYlYSyBlMxYoV2bZtGy+99JKqcc6ePcvTTz/NlClTMtStUfHx8YwZM8apfT788EOyZMmiU0VCU1fD0aM7XrUTLO0e/mozWfNDPtzVCBceTDhDAjkDypYtGz/++CNjxozByyv93wLJycn07NmTdu3aER0drWGF5jV79mzOnXN8KcVs2bLRo0cPHSsSmroSBor2K3M1KAfnp6V9nZkCz5aHnJlhWAvND/lgFh+4ts1FBxPOkkDOoLy8vBgwYAB//vknuXPnVjXW4sWLqV69OgcPHtSoOnNKSEhwujv+4IMPVD+VS7hI3EWId3yinjMCfCFvtv9eubJA30Ww4xT8NRieKqzLYe+nJMGVrS46mHCWBHIG16BBAyIjI6lVq5aqcfbv30/VqlVZtmyZRpWZz//+9z/OnDnj8PZZs2alZ8+eOlYkNOWizjHFBu2nwx97YK0rwzjV9e3ywAmTkkAWFChQgHXr1tGrVy9V40RHR9O6dWv69OlDUlKSRtWZQ0JCAqNHj3Zqn969e5MtWzZ9ChLaiz6O3j8SU2zQ4a4wrnA7jG/FQdVhUGkQPDUAZv2lZxHx9sldwnQkkAUAvr6+TJw4kcWLF6te2vHLL7/kmWeecWomstnNnTuXf//91+Hts2TJovoXHOFiKXFg0e9HYmoY/347jCve9RyYQD/4eyjsHA1bh8Pon+HqLd1KsX9WYToSyCKNtm3bEh4eTpkyZVSNs3HjRipXrszff/+tUWXGSUxM5LPPPnNqn169epE9e3adKhK6SIkD0r/++yOHvh3Gv+2BPwelDWMAby97KAPEJ9m31/XeBQlkU5JAFvcpV64c4eHhtGnTRtU4Fy9epGHDhnzxxRdufWvUt99+y+nTpx3ePnPmzPTu3Vu/goRO9Avjjl/9F8aVij54u6gYqDgICvaA/i/YZ1/rR5/PKtSRQBYPlDlzZpYsWcKECROwWq3pHiclJYV+/frRqlUrbty4oWGFrpGUlOR0d9yzZ0/VD/UQBvAOALS95cl2O4xXbIcF70K+bHAhKu0r5fYhswXBrtFwYiIs2gwX9fzr4h2g4+AivSSQxUNZLBZ69+7NunXryJcvn6qxfvjhB6pWrcrevXs1qs415s2bx8mTJx3ePlOmTHzwwQf6FST04x2g+T3IEcft4RqbAE0/h3zd73/duufscZ6s9sle/+h5F6EEsilJIIvHqlOnDjt27KB+/fqqxjly5AjVq1dn4cKF2hSms6SkJEaNGuXUPj169CBHjhw6VSR0laU0Wl+5rV4ClIWPfmULsnfDN2Pt+9yMtYdxaXW/Az+cNRP4q1t7QOhDAlk4JE+ePPzxxx8MGDBA1TixsbG0b9+e7t27k5CQoFF1+liwYAEnTpxwePugoCA+/PBDHSsSugoONezQZ67B0yPs15DrDIf3G/93S5TmgquARa4hm1H6Lw6KDMdqtTJmzBhq1KhBp06duHnzZrrHmj59Otu2bWPp0qUULuzqlREeLzk52enu+P333ydnzpw6VSR05xcMgYUg1vHb27QSWsx+y5PuLD6Qs7oLDiTSQzpk4bQWLVqwbds2nnrqKVXjhIeHExISwh9//KFRZdpZtGgRx445/lScwMBA+vTpo2NFwiVy1vTspz0pSfYOWZiSdMgiXUqWLElYWBjdunVj/vz56R7n6tWrPPfccwwfPpzBgweretjFg1QsV4S5YzuSz+88OX2v4OOVhNWSjAWFZMVKsmIlJjkT5xPy2U9ZKjZsCowcOdKp43Tv3p1cuXJpWrswQI6qcNpzl38F7J9RmJJFcecbRIXhFEVhxowZ9OrVi8TERFVjNWvWjPnz56tbUCPhGpxcAJf+hivhEJe69rTX7VWYlNszaZXb71ns/1RuL/XpHQTBlTmfVJixS04xaf6mxx4yMDCQEydOqH5IhzCBa9thjQd3kIGFoPkpuYZsUhLIQhPh4eG0bt3aqQU0HqRo0aIsX76ckJAQx3dSFLiyGY58Dae+AyXZ/gNHzS0sFisoycT6leR/GwIY+PVuYh4yB61Pnz588cUX6T+WMJfVoXB9J1rfk2w8L6g8Fsr2NboQ8RASyEIzV65coV27dvz++++qxvHz82PatGl06dLl0RvaUuDYN3BoItw8eCdEteUF2Eix+PP7kby8M/kk/17976v+/v6cOHGCvHnzanxcYZgT82FLR6Or0J6XL7x83j55TZiSTOoSmsmZMyerVq3io48+UjVOQkICb731Fl26dCEu7iFr7kbthd+qQUQ3uHnI/p7mYQypXZK3Es/zJc9wcoofM/pUvHPGr1u3bhLGnqZwG/D1sHXILVYo2l7C2OSkQxa6WLVqFe3bt+f69euqxqlcuTLLli2jePHi9jdSEmH/aNh7e9KVLiH8eDGBlRj6awH6j5ilehUzYUK7hsL+MaB40HODn98B2SsZXYV4BAlkoZuTJ0/SqlUrtm/frmqcbNmysWjRIp6vnhc2t7Ofntb3WTiPZ7HaJ4lVGGm/JieTZDxL7Fn4pYT92cHuzmKF3HWhoZ4PWRZakFPWQjdFixZl48aNdO3aVdU4UVFRBCdEwO+14NZhDA9jsHfmtkTY2R/COoPNmE5d6CSwAIRMMLoKbXj5QPXZRlchHCCBLHTl7+/PjBkzmDNnDv7+/ukaY/HYl6keN9wegGY8hXhiPvzT3DO6KfGfEu9A3kb2DtOdhU6CTMWMrkI4QE5ZC5fZuXMnLVu25Pjx4w7v80mXp/jomb23n95q5m9VL8j/PDz9o70jEZ4h9iz8WhaSozH3998DWKyQtyHUXy2XVNyEdMjCZSpVqsT27dt58cUXHdq+fcMcfNRwvxuEMYANzq2CTe00f4SfMFBgAag6HfN//93LC7wDofr/JIzdiASycKls2bKxYsUKPvvss0cuk1k4l5U5XeKx3FlVyx0o8O9SODTF6EKEloq2g5LvGl2FEyz2CYd1voPA/EYXI5wgp6yFYdauXctrr73G5cuX7/vaybllKeJ7xLDbmlTx8oWmu28/X1d4BMUGYW/CiXmY+xdEi/1VdxkUetnoYoSTpEMWhmnYsCGRkZHUqFEjzfszB1SjiM8B9wxjsE8829ROZl57EouXfaZyMTOv4OVlf1JVnSUSxm5KAlkYqmDBgvz999/06NEDgMa1SvJW5T0GV6WSkgLXI2H/WKMrEVry8oYac6Bs/9tvmOjarMUbvP2gwRoo3NroakQ6ySlrYRpLlizhxaApBEWHu293fDeLFZrtgyyljK5EaO34t7CtB6TEmuBWPAtkewpqLbD/U7gtCWRhHlF7YZUH/UCxeNsnA1WRSV4eKe48hHeDsz9j75Zd/KPUYrUft+IIKNMHvNz8fmkhp6yFiRye5v6LMNxNSYFjsyHpptGVCD0E5IOnV0Cd7+0Po7B4u+jAt39sB1eBZnug3AAJYw8hgSzMITEKjs/1jFPVd0uJh+PzjK5C6MVisV+zffEwlBsIfjlvv69DOKf+spq9EtT4Fhpvkpn8HkZOWQtzODgRIj/E3LeUpIcFMhWHF4/IAg0ZgS0JzvwMR6bDxb/swawopD7G02kWq/1Mi7e/fYZ3iXcguLKmJQvzkEAW5vDTExBzAs8L5Nsa/gV5GhhdhXClW0fh1BK4GgFXwyH+gv19izf2k5MK/32/3z5ZqSTffs/LPhkwR3XIVQeKvAo+mV39CYSLyYUHYby48xDj+PrWbsdihYt/SyBnNJlLQPmh//13/GW4Fmm/JS7uPKTE2S9pWLztHbB3gP0UdPYQ+2xpa4BxtQtDSCAL413dptvQq3ZCs88f/vXW1eH7nrod3k5JgatbdT6IMD3/XJD/OftLiAeQQBbGu7bt9rUy7Sd0NSgH56elfS/FBm/MgB2nYFgLzQ/5AIr9lKWiyHVkIcRDSSAL413dqtviCgG+9leqFBu0n24P478Gw1OFdTns/RKvQey/EOSqAwoh3I3c9iSMpdzuHl0wmSs1jP/YA2tdGcaprul3al4I4f6kQxbGSr4Fidd1P0yKDTrcFcYVbofxv1ehw1dw6QZYvWHYy/brypqzeMOtIzoMLITwFBLIwljJcbofIjWMf78dxhWL/Pc1qxdMbA+VitpDOWQINK0IQf5aV+Hlks8qhHBfEsjCWLZ4XYdPDePf9sDaQWnDGCBfdvsLIHdWCM4E12L0CGTst7kIIcRDyDVk4bFSbNDxK3sY/znI3gU/yrbjYFOgUA6XlCeEEGlIhyyM5aVHKwq222G8Yjss6wn5ssGFqLTb5MoC3rd/Jb16y779N2/rUo6dtyz0IIR4OAlkYSydViOKOA6LNtv/velDFga5PhOyBUFCErw8AQa9BLV0e3SxTVZeEkI8kgSyMJY1s/3RdRrPtK5eApSFj99OUaDzDHjmSehQV9MS7jlQCmQuqeMBhBDuTq4hC2NZLPYF9A36Vtx0GL4LgxXboNIg+2vPaZ0OFlxVp4GFEJ5AOmRhvBzV4MKfoKTzEXUq1CkNtgUuOJBvMAQWdMGBhBDuSjpkYbzgKrqsY20eFvsvHbKOtRDiESSQhfFyVDG6An1ZvG+flhdCiIeTQBbGC8gHmZ4APLSDVJIhTz2jqxBCmJwEsjCHUj2MrkAnFshUAnLXN7oQIYTJSSALcyjeCbz9jK5CH2V6y/VjIcRjSSALc/DNBsU6g8XDJv57B0CxjkZXIYRwAxLIwjxKve9Zs60tVniiC/hkNroSIYQbkEAW5pHtScj7rGd1yaXeN7oCIYSbkEAW5lJtJnj5Gl2FBixQ4VPIotvi2EIIDyOBLMwlU1GoMtnoKtSxWCE4FMr2N7oSIYQbkUAW5lP8Tcj3vPueurZ4Q60F4OWm9QshDCGBLMzHYoEas8EahFsuFlJ5HGQpbXQVQgg3I4EszCkgH9ReYu823SaULVC4jUzkEkKkiwSyMK/8TaDOd9gD2eyh7AX5m9lPVVvkr5UQwnnyk0OYW6FXoPbi252yWb9dLZD/eai7FLx8jC5GCOGmLIqiKEYXIcRjnf8d/mkOtiRQUoyuJq1inaH6LJnEJYRQRQJZuI/rO2FzO7hxADD429ZitZ+arvgZlPlQ1qoWQqgmgSzcS0oi7B8Le4cDinHdcq46UGMOZC5hzPGFEB5HAlm4p6h9sKUTXN+OfcKXC76NLd7g5Qch46FEV5m8JYTQlASycF+2FDj+Pzg4EW7ut59G1vzhFF6AzX5PdLHOUK4/BBXW+BhCCCGBLDyBosDVrXDkazi12D7xCwtgS/+YqeGevbL9vuIir95eqEQIIfQhgSw8S8I1OLkQLm2wh3Ts6dtf8Lp9ilkBxWb/p8XL/j4WUJLsm1kzQXAI5KgGRdra16QWQggXkEAWni0xyj47+1ok3DwIKbGQEm/vfr0DwNsf/PPaQzg4FIKKyYxpIYQhJJCFEEIIE5BpokIIIYQJSCALIYQQJiCBLIQQQpiABLIQQghhAhLIQgghhAlIIAshhBAmIIEshBBCmIAEshBCCGECEshCCCGECUggCyGEECYggSyEEEKYgASyEEIIYQISyEIIIYQJSCALIYQQJiCBLIQQQpiABLIQQghhAhLIQgghhAlIIAshhBAmIIEshBBCmIAEshBCCGECEshCCCGECUggCyGEECYggSyEEEKYgASyEEIIYQISyEIIIYQJSCALIYQQJiCBLIQQQpiABLIQQghhAhLIQgghhAn8H+ueC5VKV7JxAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAHiCAYAAAA597/kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+bUlEQVR4nO3dd3gUVRfH8e9uCinU0HuRLlISuiCiiAgoKEWUqiiiSFF6s1CkKNJRQF6QLkWw0FQEpYUEQu+9dwghpGfn/WMJEupuZmZndnM+z7OPupm5cxZDfjkzd+5YFEVREEIIIYShrEYXIIQQQggJZCGEEMIUJJCFEEIIE5BAFkIIIUxAAlkIIYQwAQlkIYQQwgQkkIUQQggTkEAWQgghTEACWQghhDABCWQhhBDCBCSQhRBCCBOQQBZCCCFMQAJZCCGEMAEJZCGEEMIEJJCFEEIIE5BAFkIIIUxAAlkIIYQwAQlkIYQQwgQkkIUQQggTkEAWQgghTEACWQghhDABCWQhhBDCBCSQhRBCCBOQQBZCCCFMQAJZCCGEMAEJZCGEEMIEJJCFEEIIE5BAFkIIIUxAAlkIIYQwAW+jCxBCTwnJNm7GJxIZl8ithCSSbQrJCigoeFksWC0W/LytZM3gQ1Y/HwJ9vLBYLEaXLYRIhySQhUdJSLZxJiqWKzHx3IhLJDbJdvdrFkC5b/uU6E1538tiIaufN0F+vhTI7E82Px8XVC2EEGBRFOX+n1FCuBVFUbgel8jxyNuci4rD9uRdniglvLNk8OaprIEUyOyHt1Wu8Agh9COBLNyWoiicvBnL0RvR3EpIfmgHrBUvi4XCWfwpGZSRAB8vnY4ihEjPJJCFW7oZn8j2C5FExie57JgWwGqBZ3JmpmjWALnWLITQlASycCs2ReHQtWgOXosG9OuInyS7vw8hebKS0VemYQghtCGBLNxGZFwi4RducCsh2ehSsNx5PZ0zE8WzBUq3LIRQTQJZuIVLt+PZcu46imJcV/wohTL7E5wnC1YJZSGEChLIwvTORsUSfiHSdEF8rzyBGaiWLxteVgllIUTayH0cwtTO3YolzORhDHDxdjxbz9/AJr/fCiHSSAJZmNbF23GEnY80ugyHXbwdb+/kJZSFEGkggSxMKTYpmbDz5u+M73fuVhzHImOMLkMI4YYkkIXpKIpCxIWbJNvcLY7t9l6O4laC6+6PFkJ4BglkYTqnbsZyKSbe7brjFAoQfj5SricLIZwigSxM5XZiErsu3zS6DFUUIDI+kcPXbxtdihDCjUggC1PZcfEmbnqm+gEHrt6SU9dCCIdJIAvTiIpP5HJMgtueqn6Y4zekSxZCOEYCWZjGsRsxeNKyGgpw8mYsiTYtHggphPB0EsjCFBKSbZyKivGo7hggWVE4fTPW6DKEEG5AAlmYwumoWI+5dny/ozduy2IhQognkkAWpnDMg6+13k5M5mpsgtFlCCFMTgJZGC42KZnbicY/UlEvFuBKjASyEOLxJJCF4SLjEo0uQVcKcMPDP6MQQj0JZGG4G3GJus+uHtTmdZqVzsfiKWNTva8oCv1aNqJZ6XwsmDBat+Nfj02Q68hCiMeSQBaGuxGXqOvsakVROHlgHznzFeDU4YOpvrZu2SKuX74IQLGyz+hWQ6JNITZJbn8SQjyaBLIwlKIoXNd5wtOFk8eJvR1N3ddbcvrwgbvvx0ZHM2/sCOq+/iYATz1dXtc6bsTJdWQhxKNJIAtDJdkUEnW+3+nYvt34ZvCjVqOmXDh1gsSEeAAWfzeWoqWfJlvOXGTOFkSOvPl1q8ECRCd47sQ1IYR6EsjCUMkuuK56fP8eCpcqQ76iT+HnH8DZY0c4f/I4axb8SIf+X3B8/x6K6dwdg2s+qxDCfXkbXYBI31zxiMLj++yBa7FYKFyqDKePHGLTil+o16INBYqV4Pi+3VSq/YLudcjjGIUQjyMdsvB4Jw7spVjZcgAULlWWFbN/4MieHbT8+FMSExI4c/SwrhO69JKYmEhoaCgjR45k5syZRpcjhFBJOmRhKKtF3xueLp45xe2om3dPSRct8zSr58+i85CvCcyUmWN7d5OUmEixcvqfslb7WZOSkti+fTvr169n/fr1bNy4kejoaAAJZCE8gASyMJSXzoF8fN9uvH18KVSiNADPN21J1XoNyJQ1yP71/XvImCUruQsU0rUOcP6zJiUlERERwbp16x4I4PvVqFFDixKFEAaSQBaG8rZa8LFadJtpfXzfHgqVKIW3j4/9eD4+ZM6W/b+v799D0TLldDn2vRQgo6/XY7dJCeCUDnjDhg2PDOB7BQUFUbJkSY0qFUIYxaLI8kHCYJvOXONSOljruUGxXAT4/BfKSUlJ7Nixg/Xr17Nu3To2btzIrVu3nB63YcOGrFixQstShRAGkA5ZGC6bvy+XYxI87lnI9/KxWvDBRnh46g44LQF8vyxZsnD+/Hny5cunQaVCCKNIhywMdyE6ji3nbhhdhq4sUVfp+WYTTpw4odsxChUqRPXq1alRowY1atSgUqVK+Pr66nY8IYS2JJCF4WKTkll17LLRZejGApTKnhG/qCs0adKEvXv3uuS4GTJkIDg4+G5A16hRg/z59VuNTDzB5csQEWF/XbgAsbEQFwdeXuDnB/7+UKoUBAdD+fL2/xbpigSyMIXVxy8T48HPRK5dMIicARmIjo6mffv2/Pzzz4bUUaBAgbvhXL16dYKDg8mQIYMhtXi8o0dhwQIID4ewMLh0yf6+lxdYraAo9hfY/xsgKcn+ntUKJUpAtWpQqxa0agWZMhnzOYTLSCALUzh6/Ta7r0QZXYYuAn28qF80J5Y7tz3ZbDaGDx/OZ599ZnBl4Ovre7eLTjndXbBgQaPLcl+JifDLLzBlCqxbZw9fRQFbGp/05e0NycmQIQO0awcffGDvoIVHkkAWppCQbGPlsUvo/JwJQ1TIlZmnsgU+8P4vv/xCmzZtHLq1yZXy58+fKqCDg4Px8/Mzuixzu3oVxo2DqVPt/+7lZQ9SLXl72zvoSpWge3do2/a/zlp4BAlkYRo7Lt7k5M0Yj5pt7WWBhsVz4/OIH5z79u2jSZMmHDt2zMWVOc7Hx4fg4OBUE8YKFix4t+NP1xQFFi+Gzp0hKkr7EH4Yq9XecVevDrNm2a87C48ggSxM42Z8ImtPXjW6DM1YgKJZA6iYO8tjt7t+/TqtWrXizz//dE1hGsiXL1+qgA4JCUl/XfT58/Dhh/Drr2Cx/Hc92FW8ve3HHTIEevWy/7dwaxLIwjQWLlyILU8R/PMW9ogu2QLUK5qTTL5P/kGZlJREv379GDNmjP6F6cDHx4eKFSummtFdqFAhz+2iZ82Crl3ts6STkoytxWKBZ56BuXPt/xRuSwJZGC4hIYGePXsyadIkSpcpy+fzfsE34MFrru6mbI6MlM7u3MzYuXPn8t577xEfH69TVa6TJ0+eVAEdEhKCv7vfyqMo0LcvfP210ZWk5uUFvr72br1ePaOrEWkkgSwMdfbsWVq0aEFoaOjd915t1oL2w8a5bXdlAbJk8OH5wtnT9ISn8PBwXn/9dc6dO6d9cQby9va+20WnnO4uUqSI+/x/Tk6Gjh3hxx+NruThrFb7a/58aNHC6GpEGkggC8OsXbuWVq1acfXqg9eNPxk6itot2rrlqWsr8KKDp6of5eLFizRr1ozNmzc/9OsWi4V27doRGhrKoUOH0nwco+XOnTvVfdGVK1cmICDA6LIeZLPBO+/AnDmuv1bsDIvF/lqyBF5/3ehqhJMkkIXL2Ww2Ro4cyeDBg7E94v5MHx8fhs9bxlPl3e+ey/K5MlP8Ibc5OSs+Pp4uXbowY8aMB7729NNP313x6/r162zdupUtW7YQGhrK1q1biYpyz3u6vb29qVChQqouumjRosZ20YoCXbrAd98ZV4MzLBb7KezffoMGDYyuRjhBAlm41I0bN2jfvj2//fbbE7fNlz8/wxevJnNQ9iduaxb5M/pRNV9WzQJEURSmTJlCjx49SLpn8tB7773H9OnTH7pPcnIyBw4cuBvQW7Zs4cCBA5rUY4RcuXKlCujKlSsTGOjCOQZz59rv+XUnVitkzAgHDoA8dMRtSCALl9m5cyfNmjXj+PHjDu9Tu+4LdJ30I15ej3+WsBnkCcxA9fzZ0nTd+EnWr19PixYt7p7e/+GHH+jYsaPD+9+4cYOtW7feDeitW7dy8+ZNzet0BS8vrwe66GLFiunTRZ89C2XKwO3b5j5V/TBeXvYJXqtW2btmYXoSyMIlZs6cyUcffURcXJzT+3bt1Ye67/Uw9fXk3IEZqJ4vG15W/X7wnTx5kqZNm7Jr1y727dtH2bJl0zyWzWbjwIEDdwN6y5Yt7N+/X8NqXStnzpypArpKlSrqu2hFgfr1Yf16429tUmPaNHj/faOrEA6QQBa6iouLo1u3bo88veqo2Yt/JlP56vb1+DWqTSuFMvsTnCeLLp3x/W7fvs2nn37Kd999h1XjZRMjIyMJCwu7G9ChoaFu3UWXL18+1eIlTz31lHNd9Pff2xf+cHf+/rBvHxQtanQl4gkkkIVuTpw4QfPmzYmIiFA1TtasWZk/fz416tYj/MINbiUY/1Qoy51X2ZyZKJEt0H1u3XGCzWbj0KFDdwM6pYt21x8ZOXLkSBXQVapUIWPGjA/f+Nw5KF7cvvCHu/P2htq14e+/ja5EPIEEstDFypUradOmDTdu3FA1TqVKlVi6dClF7/x2b1MUDl2L5uA1+wMZjPrmze7vQ0ierGRUcWuTO7p58+YDXXRkZKTRZaWJ1Wp9oIsuXry4/ZerQYNg5EjXrE3tKjt2QMWKRlchHkMCWWgqOTmZL7/8kqFDh6oeq2PHjkyaNOmhayTfjE9k+4VIIuNdd23PAlgt8EzOzBTNGuCRXbGzbDYbhw8fTjWje+/evW7bRWfPnp0+n35Kn2++AZW/TJqKt7f98Y0PuYVOmIcEstDM1atXad26NX/88YeqcTJkyMDkyZOfOItYURRO3ozl6I1obiUkY0G/jtnLYqFwFn9KBmUkwMf8M76NFBUVRVhY2N2ADg0N5fr160aX5bBxrVvTfd48o8vQnq8vXLgAQUFGVyIeQQJZaCIsLIzmzZtz5swZVeMULVqUpUuXUqlSJYf3URSF63GJHI+8zdmoOE1COSXcs2TwpljWQApm9sNbnj2bJoqicPjw4VQzuvfu3fvIRWGMFlqqFNWOHLGvzuVJrFYYNcr+ZChhShLIQhVFUfj+++/p3r07iYmJqsZq1KgRc+bMIVu2bGkeIyHZxumoWK7GxHMjLpHYpP9+qD6sg0456ZzyvpfFQlY/b4L8fCmQ2Y9sfr5prkU82q1btwgPD091LfratWtGl0UGX1+iEhLw2P/rBQvCqVNyX7JJSSCLNIuJiaFz587MmTNH1TgWi4WhQ4fSv39/zW/lSUi2cTM+kci4RG4lJJFsU0iyKVw4e5oChQpjtVjw87aSNYMPWf18CPTxkmvDBlAUhaNHj6aa0b1nzx6Xd9E1Cxdm05kzntcd3+vkSShc2OgqxENIIIs0OXLkCM2aNWPPnj2qxsmRIwfz58/npZde0qiyJ1uxYgXfffcdv//+u8uOKZwXHR39QBf9sAeRaOnTkiUZc+yY5rOrbUBZoAkw6p731wCvAvMAlz2fafFiaN7cVUcTTpBAFk5bvnw57du3V/0Ag6pVq7JkyRIKFiyoUWVPpigKVatWZdu2bYSFhVGlShWXHVuooygKx44dSzWje/fu3SRrGJ6Ls2enuU6nzn8EugKngGzALqA28Bngsqu6Pj7w6af2W7qE6UggC4clJSUxcOBARo8erXqsLl26MGbMGDJkyKBBZY5bsWIFjRs3BuzXrKVLdm+3b98mPDw81YSxK1eupHm8s0B+7cpLJQkoCbQHOgLVsXfMk3U63iM9/zysW+fqowoHSCALh1y8eJFWrVrxzz//qBonICCAadOm0bp1a40qc9y93XEK6ZI9i6IoHD9+PFVA79q1y6EuumDOnJxWEeaOmAoMwB76RYBlgMtvosuYEaKiZGKXCUkgiyfauHEjLVu25MKFC6rGKVmyJEuXLqVcuXIaVeace7vjFNIle77bt2+zffv2VBPGLl++/MB2LSpVYtHOnbo+1SkayAkUB0KBex9/cQZoC1wGvIHB6Hhd+eJFyJ1br9FFGkkgi0dSFIVx48bRu3dv1dfp3njjDWbOnEnmzJk1qs45D+uOU0iXnL4oisLJkydTBfSuXbsY3aABn6xapetymR2An4CswAng3jXoLgCXgIrYQzkYOETq0NbMiRNQpIgeIws1FCEeIioqSmnRooWC/RbdNL+8vLyUb775RrHZbIZ+nt9+++2RNTZq1MjQ2oTxbt++rUQNGKAoPj6KYu+RNX8NAiUHKDvv/HPSE7Z/BpTTOtWi7N9v9B+5eAhZekg8YP/+/VSpUoXFixerGid37tysXbuWnj17Gnpvr6IofPHFF4/8+ooVKwgPD3ddQcJ0/P398fPS72ruD8AY4DegAtADGA08aimdbdhvldLt/gM5MWpKEsgilYULF1K1alUOHTqkapxatWqxY8cO6tSpo1FlabdixQq2b9/+2G2+/PJLF1UjzCA6Opq///6b4cOH07hxY3LmzMnU3bt1CapVQBdgLvaZ1WC//SkKeNiSOteAdsA0zSu5h7+/nqOLNJJryAKAhIQEevfuzYQJE1SP1bNnT0aMGIGPj48GlamjKApVqlR5YiCDXEv2VIqicOTIkVTXjB+2lnbrypWZGxGh6Spd24E6wHCg+31f+wxYCBzgv5nW8cBLwPvYJ3jp5sIFyJNHzyOINJBAFpw7d44WLVqwZcsWVeNkzJiRmTNn0txEqwD9/vvvvPrqqw5t27BhQ1asWKFzRUJvt27deuCZzY48bapYnjwcu3jRBRU+nAK8DZQCvtDzQH5+EB0NOp6iF2kjgZzO/f3337Rq1UrVYgoAZcuW5eeff6ZUqVIaVaaeM91xCumS3Yty50lS93e/af2xdgnIpW2JDtsIPAeUv+e9OcAzWh/o2Wdh40atRxUa8Da6AGEMm83G6NGjGThwoOoF/N966y2mTZtGxowZNapOG45cO77fl19+Kfclm1jKs5bv7X5v3Lih2fhbsmalSWSkZuM5oxb2iVy68vGBatX0PopIIwnkdCgyMpL27dvz66+/qhrHx8eHb7/9li5dupjuCUlPmln9KCkzrqVLNp7NZuPQoUOp1q7et29fmrtfR2zJmZMmUVGe+7SnxESoXNnoKsQjSCCnMzt37qR58+YcO3ZM1Tj58+dn8eLF1KhRQ6PKtJWW7jiFdMnGuHnzJlu3br0bwKGhoUS6uFsNTUry/CUl5ZdN05JryOnIjz/+SOfOnYmLi1M1zosvvsiCBQvImTOnRpVpKy3Xju8n15L1ZbPZOHjwYKpTz/v379e1+3VEgJ8fN+PiPLdTyZkTLl3y/F863JTHft+J/8TFxdG9e3emTVN/Z+OAAQMYMmQIXiaeoammO04hXbK2IiMjU3W/W7dudXn364iYuDh2FylC8KlTnrd4htUKXbpIGJuYdMge7uTJkzRv3lx1QGXJkoU5c+Y4fAuRUbTojlNIl5w2NpuNAwcOPND9uotJrVrR5aefPC+QvbzgzBnIm9foSsQjSIfswVavXk3r1q0dugfzcSpWrMiSJUt46qmnNKpMP1p0xymkS3bMjRs37na/W7ZsYevWrURFRRldVpp4e3tzoWBBCAy036vrKby9oXlzCWOTkw7ZA9lsNoYMGcKQIUNUX5Pr0KEDU6ZMwd8NltrTsjtOIV1yasnJyezfvz/V84YPHjxodFlpljt3bmrUqHH3FRISQkBAAHz6KUyYoOuTn1xu0yaoWdPoKsRjSCB7mGvXrtGmTRtWr16tapwMGTIwadIkOnbsaLpbmh7FmVW5HJXen5d8/fr1uzOeU7rfW7duGV1Wmnh7e1OxYsVUAVy4cOGHf38fOwalS0NSkusL1Zq3N1SoAOHhcv3Y5OSUtQcJDw+nefPmnD59WtU4RYoUYcmSJYSEhGhUmWts2rSJ+vXrp3rvwoUL7Nmzx6H9s2TJQrX7Fk1ITEzk/Pnz5MuXT7M6zSo5OZl9+/al6n7VPmTESHny5Hmg+3X4TM9TT8GQITBwoGdcS541S8LYDUiH7AEURWHatGl069aNhIQEVWM1bNiQOXPmEBQUpFF1xpo/fz6tW7d2aNtatWqxYcMGnSsyj2vXrqXqfsPCwty2+/Xx8aFSpUpUr179bgAXKlRI3dmdpCT7Kd4dO9y7Ux41Cvr0MboK4QDpkN1cTEwMH374IbNnz1Y1jsVi4csvv2TgwIFYrfJUTk+TnJzM3r17U616dfjwYaPLSrN8+fJRo0aNuwEcHBys/TwHb2+YOxfKl3fPQPb2hpAQ6NnT6EqEgySQ3djRo0dp1qwZu3fvVjVO9uzZmT9//gOne4X7unr16t3gDQ0NJSwsjGg3nTXs4+NDcHBwqgAuWLCga+Y2lCwJX38N3brpfyytpfxCYeI1A0RqEshu6pdffqFdu3aqby+pUqUKixcvpnDhwhpVJlwtKSnpbveb8jp69KjRZaVZ/vz5U137rVSpEn5+fsYV1KUL/Psv/Pyz+6xxbbHAjBlQvLjRlQgnSCC7maSkJAYNGsSoUaNUj/Xhhx8yduxYMmTIoEFlwlWuXLmSauJVeHg4t2/fNrqsNPH19b3b/aZ0wAULFjS6rNSsVpg3D5o2hTVr3COUv/8e3n7b6CqEkySQ3cilS5d46623WLdunapx/P39mTp1Km3bttWoMqGXpKQkdu/enSqA1T4YxEgFChR4oPt1i18IfX3tHfIbb8Dq1eaceZ1yCn/SJOjUydhaRJpIILuJzZs306JFC86fP69qnOLFi/Pzzz/zzDOaP/ZcaODy5cupJl6Fh4cTExNjdFlp4uvrS0hISKrut0CBAkaXlXZ+fvDLL/Duu/Zrs2Zitdpfc+ZAq1ZGVyPSSALZ5BRFYeLEifTs2ZMklTM9mzZtyqxZs8iSJYtG1Qk1EhMTH+h+jx8/bnRZaVaoUKFUtx1VrFjRPbpfZ/j4wI8/wtNPw+DB9k7Z6NW8rFbIl8/+S0KdOsbWIlSRQDax6Oho3nvvPX766SdV41itVkaOHEmvXr3cZtUtT3Tp0qVUD1wIDw8nNjbW6LLSJEOGDFSuXDlVAKeHxVMAewD262e/ptyhA2zdakwdXl7269ldu8KwYZAxozF1CM1IIBvAZrM98V7fAwcO0KxZMw4cOKDqWLly5eKnn37i+eefVzWOcE5iYiK7du1KFcAnTpwwuqw0K1y4cKpTzxUrVsTX19fosoxVurR9fejJk6FvX/u9yq66X9ligaJF7d26rE/tMSSQXSwpKYnmzZszb948AgMDH7rNokWL6Nixo+r7Rp999lkWLVqUfjoXA128eDHVbUfbtm0jLi7O6LLSxM/Pj8qVK6e67zevPCXo4by87Pcov/oqMZ9/jrJoEYEpq+VpPfHL2xuSkriSJw85e/SA7t3t17WFx5BAdrGFCxfyyy+/0KlTJ+bOnZvqFHJiYiJ9+vRh3Lhxqo/zySefMGrUKHx8fFSPJVJLSEhI1f1u2bKFU6dOGV1WmhUpUiRV91uhQgXpfp10MD6eFjt2sGzLFopv3myf6Xzw4N0QTTOLxX6K3GaDBg3go4/4ISKCI4cOMclmI0C7jyDMQBEuk5ycrJQtW1YBFECZPHny3a+dPXtWefbZZ+9+La2vjBkzKosWLTLwU5rLvHnzHP6zq1Wr1kPHOHfunLJ06VKlV69eyrPPPqv4+fmp/v9k1Mvf31+pXbu20qdPH2XZsmXKhQsXXPx/xPPMnTtXCQwMVADlyJEj9jdtNkXZuFFRPvpIUYKDFcXHR1HsPbP93y2W//475WW1Koq393//nTWrotSrpyhDhijK6dN3j/fVV18pgFKuXDnlwIEDBn1qoQfpkF1o+fLl7N+//+5/9+jRg+DgYGJjY2nVqhWXL19WNX6ZMmVYunQpZcqUUVtqupWQkMCOHTtSzXxW+/QsIxUtWjTVfb/ly5eXsyYaiY2NpUePHkybNu3ue0rKaWqLBZ591v4CSEy0d8wREbB9O1y4ALGxEBNjP+0dEAD+/lCqFAQH218FCjz0CU0px9i7dy+VK1dm2rRpvC2LgHgECWQXURSF4cOHp3ovMTGRRo0aERkZiU3l6j9vvvkmP/zwAxllpmWa7dq1i8yZMxMfH290KWkSEBBAlSpV7l73rV69Orlz5za6LI905MgRWrRowa5du1K9rzzqurGPDzzzjP3Vvr2qY997jNu3b9O6dWv++ecfxo8fb+wSo0I1CWQXWbNmDREREQ+8f/36dVXjent78+233/Lxxx/LLU0qudujB5966qlUE6+eeeYZ6X5dYNGiRbz33nsP/X55ZCBr6GHHmDZtGmFhYSxevJjisn6125JAdpH7u2Mt5M+fn0WLFlFTbnt4qLNnz7LVqHtENRYQEEDVqlVTdb+5cuUyuqx0JT4+np49ezJ58uRHbmNUIAPs3LmT4OBgZsyYQYsWLXSvQ2hPAtkF/v33XzZu3KjpmHXr1mXhwoXyQ/mOuLg4duzYkWrm87lz54wuK82KFy/+QPfr7S1/XY1y/PhxWrZsyfbt240u5bFu3bpFy5Yt+fjjj/nmm288b6U0Dyd/w11A6+64f//+DBkyJN3+gFYUhTNnzqSaeLVjxw4SUu7/dDOBgYFUrVr1bgBXr16dnDlzGl2WuGPZsmW888473Lx584nbGtkh32vSpEmEhoayaNEiihYtqntNQhvp8ye6C4WHh/PHH39oMlaWLFn48ccfadKkiSbjuYu4uDi2b9+eKoDVPmTDSCVKlEh132+5cuXS7S9XZpaQkEDfvn2dWhfALIEMsG3bNoKDg5k1a1a6+5nhruSngM6++uorTcYpX748S5cu9fgJG4qicPr06VRPPNqxYweJiYlGl5YmGTNmvNv91qhRg2rVqpEjRw6jyxJPcOrUKd58802n5yCYKZABIiMjadq0KZ9++ikjR46USX8m55GBrChw/Lj9lr+ICLh40X7LX1yc/ZY/f3/7bX+lS9tv96tUCfR4ANLevXtZvny56nHat2/PlClTCAjwvHV5YmNj2b59e6o1ny9cuGB0WWlWqlSpVA9cePrpp/Hy8jK6LOGE33//nXbt2nHjxg2n9zVbIKf49ttv2bx5Mz/99BOFChXSoSqhBY8J5G3bYOFCCAuDHTsgZRloHx97QNts9lfKSnQWy3/vARQqBNWqwXPPQevWkC2b+prUdse+vr5MmjSJ9957zyNuaVIUhVOnTqWaeLVz507Vj5U0SqZMmahWrdrdAK5WrRrZs2c3uiyRRomJiQwcOJCvv/7a6FJ0ERoaSqVKlZg9ezaNGjUyuhzxEG4dyNHRsGCB/WEru3Y9fNnY+890PurxpadPw7lzsGQJ9OwJb70FnTvbQzotWXj06FHVj03MkycPzZo1c9swjomJeaD7vXjxotFlpVnp0qVTzXwuW7asdL8e4uzZs7Rq1YpNmzapGsesHXKK69ev07hxY/r27cuwYcNk7oLJuOX/jdOnYdQomDXLvvJcypMM1TZaKUGdkADz5tmfbFa2LPToAe++az/d7aiRI0eqXn3r9OnTtGvXjl9//fWJj2s0mqIonDhxItXEq127drlt95s5c2aqVat2N4CrVatGUFCQ0WUJHaxevZq2bdty9epV1WOZPZBTjBo1ik2bNrFw4ULy58+vQVVCEy5bNVsDycmKMmmSovj7p16DXc9XyhrwVaooyr59jtV5+vRpxcfHR7MHAgwbNkzfP9g0iI6OVtavX6+MHDlSadKkiZIrVy7DH5yg9pU7d25l+vTpyp49e5SkpCSj/4iFC/z666+KxWLR7Hto586dutc8cOBAzeotWLCgcunSJd1rFo5xm0A+dEhRatZ0TQg/7OXtbX8NHaooCQmPr7Vr166aBoXFYlH++OMP1/xBP4TNZlOOHj2qzJkzR+nSpYsSHByseHl5GR6gWr8e9bQn4dk2bdqk1K9fX5PvoR07duhe74ABA1TX6e/vr3zyySfK+fPnda9XOM70p6xtNhgzBgYN+m8ClhFSzrx+9pl98ti8eVChwoPbXbp0ienTp2t2XD8/PypWrMimTZuoV6+eS64n3759m/Dw8FTXfq9cuaL7cYUwQs2aNVmzZg2hoaF8+eWXrF69Os1jKS44Za2Gv78/H330Eb169SJPnjxGlyPuY+pATkyE996D2bONruQ/imJ/ilqNGvDbb/Dii6m//u233xIXF5emsQMCAqhUqRLBwcGEhIQQHBxMmTJl8Pb2JjQ0lEmTJtG1a1cNPsV/FEXh2LFjqWY+79mzh+SHzXxzA1mzZr272lWNGjU4deoUnTp1Mros4QaqV6/O8uXLKVKkSJonH7oikNUco23btnzzzTcaViO0ZNpAjouDZs1g1SqjK3lQcjLEx0ODBvZuuVkz+/vXr19nypQpDo2RMWNGKlWqREhIyN3wLVWq1ENn7c6cOZPOnTvz7LPPqg7k6OjoB7pfLSazGMFisfD000+nmvlcqlSpVBPg5s+fb2CFwt3MmDFD1Z0AZg/kWbNmMXjwYAoUKKBhRUIrpgzkhAR7yK1ebe9Izchms9f25puwdCk0aQITJ04kOuUG6Htkzpw5VdcbEhJCiRIlnjhzOjExkV69ejFhwgQAwsLCSEpKcvhWBUVROHLkSKqZz3v27FE9+9so2bJlS/W0o6pVq5JFjxVdRLoUHx/PiBEjVI1h9kBOSEhg5MiRTJo0ScOKhFZMF8g2G7z9tj2MzZ4bKQuONG8OS5bcYvz48WTLlu2B8C1WrJjTty1du3aNli1b8vfff9997/bt2+zbt48KD7t4jf1JL2FhYXcDODQ0lGvXrqn6jEaxWCyUK1cu1ZrPJUuWNP3tX8J9zZo1i7NnzxpdxhOpDf3p06fTv39/ud3JhEwXyBMm2DtOd5Gy0Ei7dgn8+ed2qlQponri1e7du2natCknTpx44GtbtmyhQoUKKIrC4cOHU5163rt3r9t2v0FBQamWnKxSpQqZM2c2uiyRTiQkJGiy7rzZJ3WB/bOOHj2a8ePHG12KuI+pAvngQejb1+gqnKcocPt2doYOzc6vv6oba+nSpbRr146YmJiHfn3q1Kn8+uuvhIaGpmmtXTOwWq0888wzqQK4RIkSbrsimXB/P/74I6dPn3Z4+0yZMvH7778zadIklixZcjeIXX3KOkuWLPTo0YO8efPSuXNnh8eYNm0a/fr1I2/evHqUKNLKgFutHioxUVGCg1234Ider1mz0vb5k5OTlcGDB+t+r60Rr+zZsyuNGzdWhg0bpqxdu1aJiorS9pvnMebNm+dwnXIfcvqUkJCgFClSxKnv6QEDBtzdf+/evUqrVq0Ui8WihIaG6l5vr169lKxZsypffvmlcuPGDUVRFCUpKUkpXbq0U5+hR48eutcqnGOaQB4y5L9Vsdz1ZbEoSmCgopw65dxnv3nzpvLaa68ZHpxavKxWq1KxYkXlww8/VH788Ufl8OHDis1m0+ebxgESyOJJfvjhB6e+xzNmzKhcvXr1gXH279/vkoU2wsPDlcjIyAfed+Z7HVD8/PyUCxcu6F6vcJwpAvnAAUXx8jI+ULV4eXsryiuvOP7Zjxw5opQtW9bwIE3rK0eOHMqrr76qfPXVV8rff/+t3Lp1S79vlDSQQBaPk5CQoBQtWtSp7/l+/foZXfZDJSUlKaVKlXLqs3z66adGly3uYYpryBMmpO2JSmaUlGS/d/rgQfvzlh9nzZo1tGrVisjISJfUppaXlxfly5dPNfP5qaeekmu/wm3NnTv3oZMnHyUwMJCePXvqWFHaeXl5MWjQINq2bevwPt999x19+vQhd+7cOlYmHGX4PSQ3b8LMmeqf1GQm3t72R0I+iqIojBkzhoYNG5o6jHPmzMlrr73GiBEjWL9+PTdv3iQiIoLJkyfTpk0bihcvLmEs3FZSUhLDhw93ap8uXbqQI0cOnSpSr1WrVpQoUcLh7WNjY2XlLhMxvEOeNcu+6pUnSUqCGTNg+HC4/86d2NhYOnXqxNy5c40p7hG8vLyoWLFiqpnPRYsWlcAVHmvevHkcO3bM4e0DAgLo1auXjhWp5+3tzaBBg2jfvr3D+0yZMoXevXuTK1cuHSsTjjA0kG028NRb4eLi7Gtwf/zxf++dPXuWpk2bsn37duMKuyN37typlpysXLkyAQEBRpclhEskJSUxbNgwp/b56KOPyJkzp04Vaeftt99m6NChHD161KHtY2JiGDNmDKNGjdK5MvEkhgby33+DE5dv3M7Eif8F8qZNm2jWrBmXLl1yeR3e3t5UrFgxVQAXKaJ+ARMh3NWCBQscDiywPyXJ7N1xCm9vbwYOHMg777zj8D6TJ0+md+/epj4dnx4YGsjr19uvt3rS9eMUigKHD8OVK7B8+XS6dOlCYmKiS46dJ0+eVBOvQkJCpPsV4o7k5GSnu+MPP/zQrSY+tWnThqFDh3L8+HGHtr99+zZjxoxRvZa3UMfQQA4Lsy876cmGDp3GpEmdURRFl/G9vb2pVKlSqgAuXLiwdL9CPMLChQs5fPiww9v7+fnRu3dvHSvSXkqX3LFjR4f3mTRpEr169SJ79uw6ViYex7BZ1opiD2SdcuqOJOApoNtDvtb5ztcu63Z0b2/ImbMTV69eZfny5XTv3v2RD4ZIi19//ZWoqCjCwsIYP348rVq1klPRQjxGcnIyQ4cOdWqfzp07kydPHp0q0k/btm0pWrSow9tHR0fz7bff6liReBLDAvnkSfstT/ryBvoBM4B7n3o0AlgCrAL0m1los9l/6QgKCqJJkyaMGzeOnTt3cvXqVZYtW6Y6oL28vPD399ewYiE826JFizh06JDD2/v5+dGnTx8dK9KPj48PAwYMcGqfiRMncv36dZ0qEk9iWCBv2+aqI7UHsgMpNwbPA4YCvwIldT2yzQahoQ++nz17dpo2bZoqoH/++We6devGM8884/D4W7Zs0bBaITxbWrrjTp06ufUDGNq1a0fhwoUd3v7WrVuMHTtWx4rE4xgWyEeP2k/p6s8X6ANMAlYC7wFzgJquODhXr8Lt24/fJnv27Lz++uuMHz+e3bt3pwro8uXLP3I/CWQhHLdkyRIOHDjg8PYZMmSgrzs+fu4evr6+TnfJEyZMcNsnybk7wwI5JsaVy2W+B3gBr2I/Xd3MVQcGIDbWue3vDehdu3Zx5coVli5dSteuXVN10GFhYSR7+qw4ITRgs9mc7o7ff/998uXLp1NFrtOhQwcKFSrk8PZRUVGMGzdOv4LEIxkWyHFxrjyaH1AXe1fcw5UHBtR/1hw5cvDGG28wYcIEdu/efTegO3TowMWLF7UpUggP9vPPP7Nv3z6Ht/f19XX77jiFr68v/fv3d2qf8ePHm3pZX09l6Cxr19oNVHP1QQHtP+u9AZ0/f35tBxfCw9hsNoYMGeLUPu+99x4FChTQqSLXe+edd5z6PDdv3mS8py6jaGKGBbJrJwfHAgeBEFce9C6ZCC2EcZYvX86ePXsc3t7Hx4d+/frpWJHrZciQwekuedy4cdzU/1YYcQ/DAjkgwJVd8k4gGQh21QFTkUAWwhhp6Y47duxIwYIFdarIOO+++65T18QjIyOZMGGCjhWJ+xkWyMWLu3LJzAggI+D4Y8m0kiMHBAa6/LBCCOyL5+zatcvh7X18fJzuJN2Fn5+f053/2LFjiYqK0qkicT/DArlyZVcerQtwC1d/XKsVqld36SGFEHcoiuJ0d/zOO+84NSPZ3bz//vtO3Vd948YNJk6cqGNF4l6GBXKRIpAli1FHdw2rFapUMboKIdKn3377jR07dji8vbe3t8d2xyn8/Pycnj3+7bffcuvWLZ0qEvcyLJAtFqha1ZX3IrteUpIEshBGUBSFL7/80ql92rdvT5EiRfQpyEQ6derk1Nrc169fZ9KkSTpWJFIYFshgD2QvLyMr0F+IMRO7hUjXVqxYQUREhMPbe3l5Ob2ilbvy9/d3en3uMWPGEB0drVNFIoWhgVynjmc+CxnsnX+JEpBLv2dXCCEeIi3dcbt27ShWrJhOFZnPBx984NTzna9du8bkyZOfvKFQxdBAfvFFKFrUc09bd+1qdAVCpD+rVq1imxNPr/Hy8mLgwIE6VmQ+AQEBTj/j+ZtvvpEuWWeGBrLVCt27G1mBfvz8oH17o6sQIn1JS3fcpk0bnnrqKZ0qMq/OnTuTM2dOh7e/evUq3333nY4VCUMDGaBDB8iQwegqtOXtDe++C5kzG12JEOnLmjVrCAsLc3h7q9Wa7rrjFIGBgU53yV9//TW3n/T4OpFmhgdylizwzjuuehSjayQlwccfG12FEOlLWrrj1q1bU6KE6xcMMouPPvqIHDlyOLz9lStX+P7773WsKH0zPJABunUz4mET+vD2hgYNoHRpoysRIn35888/CQ0NdXh7q9XKoEGDdKzI/AIDA+nVq5dT+4wePZqYmBidKkrfTBHIpUvDZ595xuSuDBlg6lSjqxAifUlLd/zWW29RsmRJnSpyH126dCF79uwOb3/58mWmyg85XZgikAH694eKFd3/vuRJk8CDV94TwpTWrl3L5s2bHd7eYrGk++44RcaMGenZs6dT+4wePZrY2FidKkq/TBPIPj4wb5595rU78vKCRo1kZrUQrpaW7rhVq1aUlutKd3388ccEBQU5vP3FixeZPn26jhWlT6aKvzJlYORIo6twnsUCgYHX+OyzE4CHXAwXwk2sW7eOjRs3Ory9xWJh8ODBOlbkfjJlysSnn37q1D6jRo0iLi5Op4rSJ1MFMkCPHvDGG+7TKVss9u74xx99adAghOzZs1OvXj369u3LTz/9xNGjR1E8ZcaaECbkbHfcsmVLypQpo1M17qtr165ky5bN4e3Pnz/PDz/8oGNF6Y/pYs9qhQUL4OWXzR/KFov9tXgxNG2aiW7dunHjxg3Wrl3L6NGjadWqFSVKlCBbtmzUrVuXXr16MX/+fA4dOoTNZjO6fCHc3j///MO///7r8PbSHT9a5syZ+eSTT5zaZ+TIkcTHx+tUUfpjUUzavsXF2Tvl1avNeUuU1Wp/zZ8PLVrY37t+/TqFCxd2aHm5jBkzUqlSJUJCQggJCSE4OJhSpUrh5e6z2kxm/vz5tG7d2qFta9WqxYYNG3SuSGjphRdeYN26dQ5v36JFCxYtWqRjRe7t5s2bFC5cmJs3bzq8z+TJk/noo490rCr9MG0P6ucHv/wCDv4sdSkvL/vtTatW/RfGAEFBQXz44YcOjREdHc2GDRsYN24cbdu25emnnyZLlizUqlWLbt268eOPP7Jnzx6SPPXpG0KotGHDBqfCGJDu+AmyZMlCjx49nNpnxIgR0iVrRTG55GRFGT1aUXx8FMXbW1Hs/bJxL4tFUZ5+WlF27nx4vRcuXFAyZMigYJ/dpfrl7++vVK9eXfn8888Vm83m2j98DzBv3jyH/6xr1apldLnCCS+++KJTf5eaNWtmdMlu4fr160rmzJmd+rP97rvvjC7bI5i2Q05htULv3rB3L1SpYlwd3t7215AhsGMHVKjw8O3y5MnD+++/r9lxY2Nj2bp1K7Vq1cLiCSunCKGBTZs2sXbtWqf2+eyzz3SqxrNky5aN7k4+9WfEiBEkJCToVFH6YfpATlGyJGzcaF94w9/fdWtfp2RgxYqwaxcMGmS/Z/pxevfujbeGBQ4dOpR69eppNp4Q7s7ZmdWvv/465cuX16kaz9OjRw8yZcrk8PanT59m1qxZ+hWUTrhNIIO9W+7SBQ4cgE6dICDAHph6zMZOydMyZWDaNAgNhbJlHdu3UKFCtGvXTpM6GjduTP/+/TUZSwhPsGXLFv7880+n9pHu2DlBQUF069bNqX2++uor6ZJVcqtATlG4MEyeDJcu2deNLlfO/r7aptRqtQe8r699MtmWLfZT5e+/7/ySnv369cOq8jeFwoULM3v2bNXjCOFJnO2OmzRpQsWKFfUpxoN98sknZMyY0eHtT506xezZs3WsyPO59U/6jBntYblrF4SH258aVasWBAb+t423tz1MUzItpaP29k7dWRcqZL/Navx4uHgRZs2C6tXT/sCLEiVK0LJlyzR/NoALFy6wZMkSWVhEiDu2bt3KmjVrnNpHZlanTfbs2enatatT+wwfPpzExESdKvJ8pr0PWQ2bDY4fh4gI++viRft9zdeunSJTpkL4+1sICLA/ZSo4GCpVgqxZta9jz549mly3euedd5g8eTL+/v4aVJW+yH3InqVhw4asWrXK4e0bN27Mb7/9pmNFnu3q1asUKVKE27dvO7zPjBkzePfdd3WsyoMZPMvbpV555RVl1apVLj3ma6+9psntTxUqVFCOHj3q0to9gdz25Dm2bt3q9N+b8PBwo8t2e3379nXqz7xYsWJKQkKC0WW7Jbc+Ze2MrVu3smrVKr744guXngIeOHCgJuPs2rWLkJAQ+W1fpFtDhgxxavuGDRtSuXJlnapJP3r27ElAQIDD2x8/fpz58+frWJHnSjeBnDIRJC3XoNSoWrWqZrcs3bx5k9dee42BAweSnJysyZhCuINt27axYsUKp/b5/PPPdaomfcmZMyddunRxap9hw4bJKoNpkC4COaU7TuGuXXKKr776ipdffpnLly9rOq4QZuVsd9ygQQOqVq2qUzXpT69evZzqko8ePcqCBQt0rMgzpYtAvv82CVd3yXXq1KFmzZqajrl27VqCg4PZsmWLpuMKYTYRERFOX6qR7lhbuXLlcnid/hTDhg2TM3lO8vhAvr87TuHKLtlisTBo0CDNxz137hzPPfccEydOlFujhMdytjuuX78+1atX16ma9Kt3795O3elx+PBhFi5cqGNFnsfjA/lRiwi4uktu0KABwcHBD7wfFBSkauGPpKQkunXrRuvWrR167KMQ7mTnzp388ssvTu0j3bE+cufOTefOnZ3aZ+jQodIlO8GjA/lR3XEKV3fJAwYMSPWej48PK1eu5K+//iJXrlyqxl+wYAHVqlXj4MGDqsYRwkyc7Y7r1aun+eUh8Z8+ffrg5+fn8PaHDh2S5087waMD+UlL7Lm6S3799dcpU6bM3f8eN24c1apVo27dukRERKj+QbJ//36qVKnCkiVL1JYqhOF2797NsmXLnNpHumN95cmThw8++MCpfaRLdpzHBvKTuuMUruySrVbr3QdFtG7dOtUkifz587N+/XqnH3t2v+joaFq0aEHPnj1lCTvh1oYOHerU9i+88AK1atXSqRqRok+fPmTIkMHh7Q8cOCBNgqOMXJVET6+88orDK8u4cvWuxMREpUmTJkp0dPQjt1m4cKESGBioenWv2rVrK+fPn3fZZzMjWanLPe3Zs8fp7/d//vnH6LLTja5duzr1/+bpp59WkpOTjS7b9DyyQ3a0O07hyi7Z29ubn3/+mcB7n4BxnzfffJPw8HBKly6t6lgbNmygUqVK/PPPP6rGEcLVnO2On3/+eZ577jmdqhH369u3L76+vg5vv2/fPpYuXapjRZ7BIwPZ2cezufpasiOzqsuUKUNYWJjqJ0ZdunSJF198kW+++UZujRJuYf/+/SxevNipfeTasWvlz5+f999/36l9hgwZgs1m06kiz+Bxgexsd5zC1at3OSJTpkwsXLiQcePG4a3iYc/Jycn07t2b5s2bc/PmTQ0rFEJ7Q4cOderv4nPPPcfzzz+vX0Hiofr16+dUl7x3716nJ+mlNx4XyM52xylc3SU7ymKx0L17d9avX0++fPlUjfXzzz9TpUoV9u7dq1F1QmjrwIED/PTTT07tI92xMQoUKOD0YxalS348jwrktHbHKczYJad49tlniYiIUN0JHDlyhGrVqjFv3jxtChNCQ8OGDXPq72CtWrWoW7eujhWJx+nfvz8+Pj4Ob797925+/fVXHStybx4VyGntjlOYtUtOkTt3bv7880/69u2rapyYmBjatGlDly5diI+P16g6IdQ5dOiQ00stfv7551gsFp0qEk9SqFAh3nnnHaf2GTJkiGkbH6N5TCCr7Y5TmLlLBvss7ZEjR7Js2TIyZ86saqwpU6ZQp04dzpw5o1F1QqTdsGHDnDqdWbNmTV588UUdKxKO6N+/v1NzXHbs2CHPdX8Ejwlktd1xCrN3ySmaNm3Ktm3bKF++vKpxtm7dSqVKlfjzzz81qkwI5x0+fNjph9pLd2wORYoUoUOHDk7t8+WXX5q68TGKRwSyVt1xCrN3ySlKlCjBli1baNu2rapxrl27xssvv+x0hyKEVoYPH+7U9161atV46aWXdKxIOGPAgAFOdckRERGsWLFCx4rck0cEslbdcQp36ZIBAgIC+PHHH/n++++dugXhfoqiMHjwYF577TVu3LihYYVCPN7Ro0ednmQo3bG5FC1alHbt2jm1j3TJD0r7za0mce7cOZKSkh74bTksLMzhe26feeYZ8uTJk+q9DRs20KBBA83q1JPFYuGDDz4gODiY5s2bc/r06TSPtWLFCoKDg1m6dOlDHxcphNaGDx/u1MMHqlSp4jZ/N9OTgQMH8uOPPzr8/3Lbtm2sWrWKhg0b6lyZGzFmxU791axZ0+F1VhcuXGh0uZq5cuWKUr9+fdXrYGfIkEH54YcfjP44qsla1uZ29OhRxcvLy6nvzd9//93ossUjdOjQwan/l1WrVlVsNpvRZZuG23fIIrUcOXKwcuVKhgwZ4vSzZO8VHx/Pe++9x+bNm5k0aRL+/v4aVimE3VdffeVUd1y5cmXpqExs4MCBzJkzx+H/p2FhYfz555/Ur18fIiNhxw6IiICDByEmBuLiIDkZ/Pzsrzx5IDjY/ipWDBxYhtidSCB7IC8vL7788kuqVatGmzZtVF0T/t///seOHTtYsmQJxYoV07BKkd6dOHGC2bNnO7XPZ599JteOTax48eK0bt3aof+vBfLlo1/Nmjz3/ffw3nuQcvul1Wp/KQrYbPZ/Wq1gsdj/mfJY2cBAqFQJqlaFt96CypV1/GSu4Vm/XohUGjZsSEREBCEhIarG2bFjByEhIfz+++8aVSaEvTtOSkpyePvg4GAaN26sY0VCC4MGDXrsA3QK5s7NlGrVOHrlCl2WLsXv11//C2Owh3BSkr0zTpn0ZbPZ//veZ7zfvg0bN8KECVClClSoANOnQ3S0Tp9MfxLIHq5IkSJs3LiRTp06qRonMjKSV199lUGDBjl1ilGIhzl58iSzZs1yah/pjt1DiRIlePvttx94v1BQEN/nzcuRS5f4cPt2MiQm2gNX7c+TlF/q9u6FTp0gd27o0gVUTG41igRyOuDn58fUqVOZOXMmfn5+qsYaPnw4DRo04MqVKxpVJ9KjESNGONUdV6xYkddee03HioSW7u2Si+TPz7TChTly/TofXLxIBvgvRLWUch97TAxMmwalS8OUKf+97wYkkNORDh06sGXLFtXXgv/66y+Cg4PZunWrRpWJ9OT06dPMnDnTqX2kO3YvpUqVovenn/JDkyYcvniR98+dwxf+OwWtt6QkiI21d8q1a8Phw645rkoSyOlMxYoV2b59O6+++qqqcc6ePUvt2rWZMmWK3NwvnDJy5EgS770W+ATly5enSZMmOlYkNLdzJyNXrqTjr7/ik5ysT0fsqLAwKFcORo82fbcsgZwOZc2aleXLl/PVV189dvLFkyQmJtKlSxfatm3L7du3NaxQeKqzZ88yY8YMp/b57LPPVH2fChf780+oUQMOHXJdR/w4SUn2yWB9+8I776SeGGYy8l2eTlmtVvr3788ff/xBzpw5VY01b948qlWrxmE3OS0kjDNy5EgSEhIc3r5cuXK8/vrrOlYkNLVkCTRsCAkJ6idr6WHOHGja1H5/swlJIKdzL774IhEREdSoUUPVOPv27aNy5cr8/PPPGlUmPM25c+eYPn26U/tId+xGli2DN9+0B7FZTw0rCqxeDc2a2X9pMBn5ThcUKFCA9evX07VrV1Xj3Lp1i2bNmtG7d2+nZtCK9GHUqFFOdcdPP/00zZo107EioZk//oCWLe2BZ4bT1I9js9lD+e23TfeLgwSyAMDX15cJEyYwf/58AgICVI31zTff8OKLL3LhwgWNqhPu7vz580ybNs2pfQYPHizdsTu4ePG/ztjsYZzCZoOlS+2LipiIfLeLVN566y3CwsIoVaqUqnH+/fdfgoOD2bBhg0aVCXc2evRo4uPjHd6+TJkyNG/eXMeKhCYUBTp2hFu33CeM79W3r33dbJOQQBYPePrppwkPD1f9A/HixYvUrVuXb7/9Vm6NSscuXLjA1KlTndpn8ODBeHl56VSR0MysWbBypTkncDkiORlatzb2tqx7SCCLh8qUKROLFi1i7NixeHun/RkkycnJ9OzZkxYtWhAVFaVhhcJdfP3118Q5Mau1dOnStGzZUseKhCZOnYKPPza6CnWSk+1PmBo50uhKAAlk8RgWi4UePXqwbt068ubNq2qspUuXUrVqVfbt26dRdcIdXLp0ie+//96pfQYNGiTdsTvo3NmUM5WdpijwxRf2+6YNJoEsnqhWrVpERERQp04dVeMcOnSIqlWrsmDBAo0qE2b39ddfExsb6/D2JUuWpFWrVjpWJDRx4IB9prJJTvWqZrGYYoKXBLJwSJ48efjrr7/o3bu3qnFiYmJ4++236dq1q1O3wAj3c/nyZaZMmeLUPgMHDpTu2B1MngwqLmWZTlIS/O9/cPOmoWVIIAuHeXt7M3r0aJYuXUqmTJlUjTVp0iTq1KnDmXufgyo8yjfffONUd1y8ePGHPrZPmExUlD28PKU7ThEfDz/+aGgJEsjCaW+88Qbbtm2jXLlyqsYJDQ0lODiYtWvXalSZMIsrV64wefJkp/YZOHCgqgmEwkV+/NG0S0+qNn68oYuFSCCLNClZsiShoaG0adNG1ThXr16lfv36fPXVV9hMtmqOSLsxY8YQExPj8PbFihVT/b0kXGTiRKMr0IeiwPHjsG6dYSVIIIs0CwwMZPbs2UyZMgUfH580j2Oz2Rg4cCBNmzblxo0bGlYojHD16lUmTZrk1D7SHbuJy5fhyBH3XATEEd7esH69YYeXQBaqWCwWPvzwQzZu3EjBggVVjfXbb79RuXJldu7cqU1xwhDffvutU4/jLFq0KG3bttWxIqGZbdt0G9oGlAb63vf+GsAXWKzbke+RnGx/frJBJJCFJqpWrUpERAQvvfSSqnGOHz9OjRo1mDlzpkaVCVe6du0aE508pTlgwABVZ1iEC23bptvsaivQH/gOSDlPtgtoAXx155+6UxR7IBt0BkACWWgmR44crFq1isGDB6saJy4ujnfffZdOnTo5tcKTMN7YsWOJjo52ePvChQvTrl07HSsSmtq6VddJT62BHMAE4CzQCGgL9NLtiA8RGWlfhcwAEshCU15eXgwZMoTff/+dbNmyqRpr+vTpPPvss5w4cUKj6oSebty4wQQnF1cYMGAAvr6+OlUkNJXSPeoYyN7YT1lPABoCwXf+3eV0PDX/OBLIQheNGjVi+/btVKpUSdU4ERERhISEsHLlSo0qE3oZN24ct27dcnj7QoUK0aFDB/0KEtqKiYGrV3U/TGsgBlCABcD9y8S8DmQDdHsWmLe3feKaASSQhW6KFi3K5s2bee+991SNc+PGDRo1asRnn31Gsrs+VcbDRUZGMn78eKf26d+/v3TH7sSJ29jUSHlcxVUeDGOAbsBsPQuwWMCJBW20JIEsdOXn58f06dOZMWMGfn5+qsYaOnQoDRs25KoLfksXzhk/fjw3nVh2sECBArzzzjs6ViQ054L5HIOBFUAokATMeMg2dQF16wQ6QAJZeLJ3332XzZs3U7RoUVXj/PHHHwQHBxNm4K0JIrWbN28ybtw4p/bp378/GTJk0Kcg4ZZ+AMYAvwEVgB7AaCDRwJpcTQJZuEylSpXYvn07jRs3VjXOmTNnqFWrFt999x2Kpy5Q4EYmTJhAZGSkw9vnz5+fjh076leQ0IfKM1yPswroAswFqt95rysQBczR7aiP4e9vxFElkIVrZcuWjV9++YXhw4djtab92y8xMZGPPvqI9u3bO7VEo9BWVFQUY8eOdWqffv36SXfsjgICdBl2O/Z7jEcDb9zzfmbsoTwScOnMEUWRQBbph9VqZcCAAaxZs4YcOXKoGmvOnDlUr16dIwbNikzvJk6c6NRyp/ny5VM9yU8YJCAAVP59fZgQIBro/pCvDQEO8/DJXbpJSoISJVx5xLskkIVh6tWrR0REBNWqVVM1zp49e6hcuTLLli3TqDLhiFu3bvHtt986tU/fvn1VT+4TBrFYoGpVUHFmSwsvY++oVwIFgHA9DlK5sh6jPpEEsjBUwYIF+ffff/n444+fvPFjREVF8cYbb9C3b1+SPO05rSY1adIkrl+/7vD2efLk4f3339exIqG7atUMD+Q1wBXs9yqfBapofYCsWaFwYa1HdYgEsjCcr68vEydOZN68eQSovE41evRo6tWrx8WLFzWqTjxMdHQ0Y8aMcWqfvn374m/QtTmhkcqV7ad0PVXKWQCLxZDDSyAL03j77bfZunUrJUuWVDXOP//8Q3BwMBs3btSoMnG/yZMnc+3aNYe3z507Nx988IGOFQmXMOhUrst4edkD2SASyMJUypUrR3h4OM2aNVM1zoULF3j++edZtWqVRpWJFNHR0XzzzTdO7dOnTx/pjj1Brlz2CU8GdZC6S0qC55837PASyMJ0MmfOzOLFi/nmm2/w8kr7/Mrk5GTmzp2rYWUC4LvvvnNqtbScOXNKd+xJunY1ugJ9WCxQrBjUrWtYCRLIwpQsFgs9e/bk77//Jk+ePEaXI+64ffs2X3/9tVP79O7dm8DAQJ0qEi7Xvr2ui4QYqnt3QyetSSALU3vuueeIiIigdu3aRpcigO+//54rV644vH2OHDn46KOPdKxIuFzmzPDuu/anInkSPz8w+OljEsjC9PLmzcvatWvp1culjykX94mJiWH06NFO7dOrVy/pjj1Rly6eNdva2xveecf+y4aBJJCFW/Dx8eHrr79myZIlZMqk+7NexENMnTqVy5cvO7x99uzZ6dKli44VCcOUKQMNGnhOl6wo0K2b0VVIIAv30qxZM8LDw3n66aeNLiVdiY2Ndbo77tmzJxkzZtSpImG4qVPBE55nbbHAF19AqVJGVyKBLNxPqVKl2Lp1K2+//bbRpaQb06dPd2qxlaCgINWrrwmTK1QIJk0yugp1vLygUiXo18/oSgAJZOGmAgMDmTt3LpMmTcLHx0eTMWXJzYeLi4tj1KhRTu3z6aefyqWF9KBDB2jUyB5s7sjLC+bNM82pdwlk4bYsFgtdunTh33//pUCBAqrH27lzJzt37lRfmIf54YcfOH/+vMPbZ8uWja6eeq+qSM1igR9+gEyZ3HOxkFGjoHRpo6u4SwJZuL3q1asTERFBvXr1VI0TFxdHjRo1+PHHHzWqzP3Fx8czcuRIp/b55JNPyGzwbFXhQnnywE8/2btNdwllqxWaNTPFRK57SSALj5AzZ05Wr17NwIEDVY0TFxdHhw4d+OCDD4iLi9OoOvc1Y8YMzp075/D2WbNmpZvJfsgJF6hfHxYvtgey2UPZarXPEJ8/3/AnV93PXNUIoYKXlxfDhg3jt99+I2vWrKrGmjZtGrVq1eLkyZOa1OaO4uPjGTFihFP79OjRgyxZsuhUkTC1pk3/65RNFnR3WSz2MF661JQzxE36pyZE2jVu3Jjt27dTsWJFVeNs376dkJAQVq9erU1hbmbmzJmcPXvW4e2zZMlC9+7ddaxImF7z5rBqFWTIYM6JXm3bwvLlpl36UwJZeKRixYqxefNm6tSpo2qc69ev07BhQ7744gtsNptG1ZlfQkKC091x9+7dVZ+ZEB6gXj3YssV+X68ZTl97e9u74dGjYeZM0OiuDD1IIAuP5e/vT6dOnVSPoygKX375JY0aNXLqGcDubNasWZw+fdrh7TNnzkyPHj30K0i4lwoVYMcOGDLEHohG3lZUtSrs2QO9e5v3VPod5q5OCBNZvXo1wcHBhIeHG12KrhISEvjqq6+c2qdbt25ky5ZNp4qEW/L1hUGDYNcuSLl85KqO2dsb/P1hyhTYsAFKlnTNcVWSQBbCCadPn6ZWrVpMnToVRVGMLkcXs2fP5tSpUw5vnylTJj755BMdKxJurWxZCA2F6dPta2CDPh1zSvcbEAAffAAHD8KHH5q+K76X+1QqhEkkJCTQuXNnOnToQExMjNHlaCoxMZHhw4c7tU/Xrl0JCgrSqSLhEby84L33YO9e+/Xl1q3tHbTFon7yV0q4P/OMPfQvXbIv6VmokPq6XUwCWYg0mj17NjVq1ODo0aNGl6KZOXPmOHWrV8aMGfn000/1K0h4FosFqleHWbPgwgUYPx7eeCN1eFqt9pC9d6GRlPfunZAVGAi1a0P37hAeDjt32kPfjR9oYo4FPIVwU7t37yYkJITZs2fTpEkTo8tRJS3d8ccff0z27Nl1qkh4tKAg6NrV/gKIjLSHakSE/XRzTAzExdmfu+zvb79VKU8eCA62v4oWdavT0Y6QQBZCpaioKJo2bUrfvn0ZNmwY3iZZqN5Z8+bN4/jx4w5vHxgYSM+ePXWsSKQrWbPC88/bX+mUZ/16IYQKVpW/bY8aNYr69etz6dIljSpynaSkJIYNG+bUPh999BE5cuTQqSIh0h8JZCHuqFChAiVKlFA1xrp16wgODmbz5s0aVeUa8+fP59ixYw5vHxAQQK9evXSsSIj0RwJZiDsCAwMJDw/n9ddfVzXO+fPnqVOnDhMmTHCLW6PS0h1/+OGH5MqVS6eKhEifJJCFuEeWLFlYunQpX3/9NV4qbsdISkqie/fuvPXWW0RHR2tYofYWLlzIkSNHHN7e39+f3r1761iREOmTBLIQ97FYLPTq1Yu1a9eSO3duVWP99NNPVK1alQMHDmhUnbaSk5Od7o47d+6s+s9FCPEgCWQhHqFOnTpERERQq1YtVeMcOHCAKlWqsGjRIo0q086iRYs4dOiQw9v7+fnRp08fHSsSIv2SQBbiMfLly8fff/+tevGL27dv8+abb9KjRw8SExM1qk6d5ORkhg4d6tQ+H3zwAXny5NGpIiHSNwlkIZ7Ax8eHMWPGsHjxYjKqXAVo/Pjx1K1bl3PnzmlUXdotWbLEqVPpGTJkkO5YCB1JIAvhoObNm7Nt2zbKli2rapxNmzYRHBzMunXrNKrMeTabzenuuFOnTuTLl0+nioQQEshCOKFUqVJs3bqVt956S9U4ly9fpl69eowePdqQW6OWLl3Kvn37HN7e19eXvn376liREEICWQgnZcyYkXnz5jFx4kRVy2TabDb69u3LG2+8wc2bNzWs8MnHHTJkiFP7vP/+++TPn1+nioQQIIEsRJpYLBY+/vhj/v33X9VBtXz5cipXrszu3bs1qu7xli1bxt69ex3e3tfXl379+ulYkRACJJCFUKVGjRpERETwwgsvqBrn6NGjVK9enTlz5mhU2cOlpTvu2LEjBQoU0KkiIUQKCWQhVMqVKxd//PEH/fv3VzVObGws7dq148MPPyQ+Pl6j6lL75ZdfnOrEfXx8pDsWwkUkkIXQgJeXF1999RW//vorWbJkUTXW999/T+3atTl16pRG1dkpiuJ0d/zuu+9S6N6HxwshdCOBLISGXn31VbZv306FChVUjRMeHk5wcDBr1qzRqDL49ddf2blzp8Pb+/j4qO76hRCOk0AWQmNPPfUUW7ZsoUOHDqrGuX79Oq+88gpDhgzBZrOpGktRFL788kun9unQoQOFCxdWdVwhhOMkkIXQgb+/P//73/+YNm0avr6+aR5HURQ+//xzGjduzLVr19I8zu+//86OHTsc3t7b25sBAwak+XhCCOdJIAuhE4vFwvvvv8+mTZtUd5qrVq0iJCSE7du3O71vWrrj9u3bU6RIEaePJYRIOwlkIXRWuXJlIiIieOWVV1SNc+rUKWrWrMn06dOdWt1r5cqVTgW5l5eXdMdCGEACWQgXCAoK4vfff+fLL7/EYrGkeZyEhAQ6derEu+++S2xs7BO3T0t33K5dO4oVK5bWEoUQaSSBLISLWK1WPvvsM1atWkVQUJCqsWbNmkWNGjU4duzYY7dbvXo14eHhDo8r3bEQxkn7Qrxmptjo+HZj6lfNB7EXICkalCSwJYHFAhZvsPpAhhzgn4+nSxY0umKRjrz88stERETQokULp8Lyfrt27SIkJIQ5c+bw6quvPvD1tHTHrVu3pnjx4mmuSQiRdhbFiEfNaE1R4Po2OLUQrm6FGzsgOcb+NYsPYLNvw51bRyxWwAqK7b/3AgpC9qqQqw4UaQ0Z1HUwwhzmz59P69atHdq2Vq1abNiwQeeK/hMfH88nn3zCd999p3qs/v37M2TIkFQPu1izZg0NGjRweAyr1crBgwcpUaKE6nqEEM5z71PWidFwdBqsqghrqsKhCXB1039hDKAkgpLM3eAFexArSanfizkDZ5bB9u6wLC9sbgdXttwJciG0lyFDBqZMmcLs2bPx9/dXNdaIESN4+eWXuXz5MpC27vjtt9+WMBbCQO4ZyLdPQfhH8HNuCOsMkXeeXKMkqRzYBihgS4BTC+DPmrDiaXvo25LVVi3EQ7Vt25bQ0FDVp4r//vtvgoOD2bJlC2vXrmXLli0O72u1Whk0aJCq4wsh1HGvQFZscGgS/F4ajk6/0wnfcypa02PdCfeogxD2AfxRHSIdf6C7EM4oX74827Zto2nTpqrGOXfuHM899xwffPCBU/u1atWKUqVKqTq2EEId9wnkqEPwZy3Y3hWS4zTohh1155T1jZ32U+N7hoIt0UXHFulJlixZ+Pnnnxk1ahRWa9r/aiYlJXH8+HGHt7dYLNIdC2EC5g9kxQb7R8OKZ+Ba2mekqq8jyf7a87k9mG/sNK4W4bEsFgt9+vRh7dq15MqVyyXHfPPNNylTpoxLjiWEeDRzB7ItEba0h51970zOclVX/DiKvVv/oyZc+NPoYoSHev7554mIiKBmzZq6HsdisTB48GBdjyGEcIx5AzkpFv5pAifnGV3Jg5RkSI6H9Q3h9GKjqxEeKn/+/Kxfv54ePXrodowWLVpQtmxZ3cYXQjjOnIGcnAAb3oALa7h7Ddd0bPZg3tjKfruUEDrw8fFh7Nix/PTTTwQGBmo+vnTHQpiH+QJZscHmt+DCH+gye1pTiv21sSWc1+5B8kLcr2XLloSHh2t6rbd58+aUK1dOs/GEEOqYL5APjoMzP2P+ME6h2DvlTa0g9qLRxQgPVqZMGcLCwnjzzTc1Ga9gwYJOPTVKCKEvcwXyzQOws5/RVaSBAkm3YOt7srKX0FXGjBlZsGAB48ePT7VMZlqMHTuWZs2acfPmTY2qE0KoYZ5AtiXC5rdxn874PkoynF8BJ340uhLh4SwWC926dWP9+vXky5dP1VjLli2jSpUq7NmzR6PqhBBpZZ5A3jcCbuy6s+60G9v2Mdw+bXQVIh149tlniYiIIFu2bKrGOXLkCNWqVWPu3LkaVSaESAtzBPLNg7B3COadUe2E5Hj7UptCuMCJEye4ceOG6nFiY2Np27YtXbp0IT4+XoPKhBDOMkcgH54AWIyuQhtKElxYbf8lQwidOftEpyeZMmUKzz33HKdPy1keIVzN+EBOuAnHZ5pkFS6NWLzh8CSjqxAeLiwsjNWrV+sybnBwMH/+KSvRCeFKxgfy8Vn207yeREmC4/+DxCijKxEeTOvu+F7Xrl3j5ZdfZtiwYdhsbjrRUgg3Y2wgKzY4NM7QEnSTHAfHZca10Ed4eDgrV67U9RiKojB48GBeffVVrl+/ruuxhBBGB/LFtXD7JB4xmethDk80ugLhoYYMGeKyY61cuZKQkBAiIiJcdkwh0iNjA/nyP/brrR5JgVtHIO6y0YUID7N9+3Z+//13p/apXr26qmOePHmSmjVrMmPGDFXjCCEezdhAvhamy33HK3eCpfWjXy0naH7IR7u+3YUHE+nB0KFDndr+5ZdfZuPGjXz++edYLGm/myE+Pp733nuPjh07Ehsbm+ZxhBAPZ1wgKwpc24oep6vrloULk1O/zk6El8pBjkwwuKnmh3w4izdcC3fRwUR6sHPnTn755Ren9vn888/x8vLiiy++YMWKFQQFBamq4X//+x/PPvssx48fVzWOECI14wL59kndZiH7+0KerP+9cmaGXvNhxyn4ewA8U0iXwz5IsUkgC005e+34pZdeokaNGnf/+5VXXmH79u2EhISoqmPHjh2EhIQ4fepcCPFoxgXy9W0uOUyyDdpMgT/3wFpXhjEANrgW6soDCg+2e/duli1z7tnbn3/++QPvFSlShI0bN9KpUydV9URGRvLqq68yaNAgkpPdfMlbIUzAuEC+dVT3CV3JNmh7TxiXvyeMXx8L2d6H5uN0LQHir0LSbZ0PItIDZ7vjF198kWefffahX/Pz82Pq1KnMnDkTPz8/VXUNHz6cBg0acOXKFVXjCJHeGRfISTHouVxmShj/cSeMKxRO/fVu9WH2h7odPrUkmQAj1NmzZw9Lly51ap+Hdcf369ChA6GhoTz11FNpLQ2Av/76i+DgYEJD5YyQEGllXCAn6xdSKWG8Zg/81f/BMAao+zRkUtcYOFGQBLJQx9mZ1XXr1qV27doObVuhQgW2bdvGa6+9lpbS7jp79izPPfcckydPRpHnggvhNOMCWcXtF4+TbIN23/0XxhWL6HIY5+j0WUX6sG/fPpYsWeLUPo50x/fKmjUry5YtY8SIEVitaf+xkJiYyMcff0zbtm25fVsu1QjhDOMC2ap9e2q7E8bLt8PcDyFvVrgYmfqVbMSyvDp8VpF+DB061KmOs06dOtSpU8fp41itVvr168eff/5Jzpw5nd7/XvPmzaNatWocPnxY1ThCpCfGLZPlHYDW9yCHH4f5m+3/3vDrh29zYxpkDdT0sE/m7e/iAwpPsX//fhYtWuTUPs52x/d74YUX2LFjBy1atGDLli1pHmffvn1UrlyZmTNn0qxZM1U1CZEeGNchZyqu+SMXqxUHZd7jXy4P4ww5wNvVBxWeYtiwYU51x7Vr1+b5559Xfdz8+fOzfv16unXrpmqcW7du0bx5c3r16kViYqLquoTwZMYFclBlww4N8PJIaDEBVu6CAh9D+DE9jmKF7OrWEBbp18GDB1m4cKFT+6hdHvNevr6+jB8/ngULFhAYqO6XyjFjxvDiiy9y4cIFTWoTwhMZF8iBRcAni2GHX9MPrnwPMTPh7CSoou6uj4ezWCF7VR0GFumBs93xs88+ywsvvKB5Ha1atSIsLIzSpUurGmfDhg0EBwfz77//alSZEJ7F2FnW2aui573IhlOSILuxZwKEezp8+DALFixwah8tu+P7lS1blrCwMFq0aKFqnIsXL/LCCy8wZswYuTVKiPsY+7Sn7FXB4mVoCboz+NS8cE/Dhg3DZnP8loAaNWpQr149HSuCTJky8dNPPzF27Fi8vdM+HzQ5OZlevXrRokULoqL0Wc9eCHdkbCDnfl7ziV3mYYFMJcFP3e0jIv05cuQI8+bNc2ofPbvje1ksFnr06MG6devImzevqrGWLl1KlSpV2Ldvn0bVCeHeDA7kFyCwKB572rpkV6MrEG5o+PDhTnXH1apVo379+jpW9KBatWoRERGRpvud73X48GGqVq3K/PnzNapMCPdlbCBbrFCqu6El6MbLD4q1M7oK4WaOHTvG3LlzndrHVd3x/fLkycNff/1Fnz59VI0TExND69at6dq1KwkJCRpVJ4T7MTaQAYp1AK8MRlehLYs3PNURfDIbXYlwM8OHD3fqUYZVqlShQYMGOlb0eN7e3owaNYqff/6ZzJnVfb9PmjSJ5557jjNnzmhUnRDuxfhA9s0Cxd7V/VGMLqUkQYkuRlch3MyJEyeYPXu2U/t89tlnhnTH93v99dfZtm0b5cqVUzXO1q1bCQ4O5q+//tKoMiHch/GBDFCqG1ovo2kYizfkfQWyqLtnU6Q/X331lVPdcUhICI0aNdKxIueUKFGC0NBQ2rRpo2qcq1evUr9+faevpQvh7swRyJlLwTNf4P6Tuyz20+9VpxpdiHAzJ0+eZNasWU7tY5bu+F6BgYHMnj2bKVOm4OPjk+ZxFEVh0KBBNGnShBs3bmhYoRDmZY5ABijbD7JVcvNT1wpUngyBBY0uRLiZESNGkJTk+C2AlSpV4tVXX9WxorSzWCx8+OGHbNy4kYIF1f1d+P333wkJCWHHjh0aVSeEeZknkK3eUHOefea1O7J4Qb7GUFRmVgvnnD59mpkzZzq1jxm74/tVrVqViIgIXnrpJVXjnDhxgpo1azr9ZySEuzFX+mUpDRVHGV1FGli4FhvI8VyDPeVKuHChESNGOPUkpAoVKtCkSRMdK9JOjhw5WLVqFZ999pmqceLi4nj33Xd5//33iYuL06g6IczFXIEM9gleBZthxtIezgIWL3xrz6ZyrQYEBQXx4osv0qdPHxYuXMiRI0dkYop4pDNnzjBjxgyn9nGH7vheXl5efPnll6xYsYJs2bKpGuuHH37g2Wef5cSJExpVJ4R5mC/1LFaoOR/yNcCM5aVmsddbeymZSjShe/fuREZG8vfff/P111/z1ltvUbJkSbJly8bzzz9Pz549mTdvHgcPHpSQFgCMHDnSqe74mWeeoWnTpvoVpKOGDRuyfft2goODVY0TERFBSEgIK1eu1KgyIczBopj1kSvJcbChGZxfhTlvibLaw/jZhVCoGQDXr1+ncOHCREdHP3HvjBkzUrFiRUJCQggJCSE4OJjSpUvj5eXhD9twsfnz59O6dWuHtq1VqxYbNmzQuaL/nD17lqeeesqp1akWL15M8+bNdaxKf3FxcXTr1o3p06erHmvw4MF8/vnn8vdGeATztqBefvDccija1uhKHmTxst/eVHf13TAGCAoK4qOPPnJoiOjoaDZu3Mj48eNp164d5cqVI3PmzDz77LN07dqVWbNmsXv3bqdm3gr3MmrUKKfCuFy5crzxxhs6VuQafn5+TJs2jf/973/4+fmpGmvo0KG88sorXL16VaPqhDCOeTvkFIoCB8fAroGg2EzwdCgLZClrnxGercIDX7106RJFihTRbOKJn58fFSpU4OWXX+aLL75wq2uHZmDWDvn8+fMUK1aM+Ph4h/f56aefaNmypY5Vud6OHTto3rw5x48fVzVOwYIFWbJkCVWrVtWoMiFcz7wdcgqLBcr0goZ77M9PNqwOb/ur/FB4ZcdDwxggd+7cvP/++5odNi4ujrCwMGrXri1h7EFGjRrlVBiXLVvW7U9VP0ylSpXYtm0bjRs3VjXOmTNnqFWrFt999x1m7zGEeBTzB3KKzCXhpQ32hTe8/F24gMidEMxWCRrugnIDwfr4FYh69+6tapWi+w0dOlT3h88L17lw4QLTpk1zap/BgwdjtbrPX1dnZMuWjV9++YXhw4er+oyJiYl89NFHtGvXjpiYGA0rFMI13OtvuMUKJT+Cxgeh+AfgFXDnCzp8jJTAz1IWqk6H+lvs/+6AggUL0q6dNguENGrUiP79+2syljCH0aNHO3VJo3Tp0rRo0ULHioxntVoZMGAAa9asIUeOHKrGmjt3LtWrV+fIkSMaVSeEa7hXIKcILARVJsEbl+xhma28/X3VXbMXYAGrLxRpA/VD7afKi78HVudmcfbr1091R1O4cGHmzJnjsZ1RenTx4kW+//57p/YZPHhwuplFXK9ePSIiIqhevbqqcfbs2UPlypVZtmyZRpUJoT/3/knvk9Eelq/sgAbboHQPyPkceGf8bxuLz53rvykf1b6Qhz287/n4AYXtM6ZDJsAbF6HGTMhRzX4NOw2KFy/Om2++mdZPBthPbS5evFiuiXmQr7/+2qnuuFSpUqq/j9xNwYIF+eeff+jatauqcaKionjjjTfo06eP3K0g3IL5Z1mnhaLA7RNwPcL+irsIybH2l8Xbfg3aOwAyl4ZswZCtov25zBrbu3cvzzzzjOpx2rdvz5QpUwgICHjyxiIVM82yvnTpEkWLFiU2NtbhfebMmaP6cYbubP78+bz//vuqrwnXqVOHhQsXkidPHo0qE0IHitBV06ZNFewrm6h6lS9fXjly5IjRH8ftzJs3z+E/41q1aulaS69evZz6f16iRAklMTFR15rcwd69e5WSJUuq/juUN29eZcOGDUZ/HCEeyb1PWbuBgQMHajLO7t27CQkJ4ZdfftFkPOFaly9fZsqUKU7tM2jQILy93flxpNp4+umnCQ8Pp1mzZk/e+DEuXLjA888/z9ixY+UykDAlCWSdVa5cmfr162syVlRUFE2bNqV///5yTczNjBkzxqnTrsWLF+ftt9/WsSL3kjlzZhYvXsyYMWNUTXBLTk7m008/5c033+TWrVsaViiEehLILqBVl5xi5MiR1K9fn0uXLmk6rtDH1atXmTx5slP7DBw4ULrj+1gsFj799FPWrVun+lrw4sWLqVKlCvv379eoOiHUk0B2geeee45atWppOua6desIDg5m8+bNmo4rtPftt99y+/Zth7cvWrSowxPR0qPatWsTERFB7dq1VY1z6NAhqlatyoIFCzSqTAh1JJBdROsuGezrIdepU4cJEybINTGTunbtGhMnTnRqn4EDB2q60psnyps3L2vXrqVXr16qxrl9+zZvv/023bp1c+pBH0LoQQLZRV5++WVCQkIeeD8oKEjVwh9JSUl0796dt956y6HHPgrXGjt2rFP/X4oUKaLZKm+ezsfHh6+//polS5aQKVMmVWNNnDiR559/nrNnz2pUnRDOk0B2EYvFwoABA1K95+Pjw8qVK1m7di25cuVSNf5PP/1E1apVOXDggKpxhHauX7/OhAkTnNpnwIAB0h07qVmzZmzbto1y5cqpGmfLli0EBwfz999/a1TZPWyJcGM3HJ8F27rBhuawviH8VRfW1oN/XoONb8Luz+DMcrh92r6egkhXZNaICzVt2pSyZcvenUgybtw4qlWrBtgfQ9eyZUs2bdqU5vEPHDhA1apVmTFjhsc9ps8djRs3zqmZvIUKFaJ9+/Y6VuS5SpYsSWhoKJ06dWL+/PlpHufKlSu89NJLDB8+nD59+qT97JWiwJVNcGo+XA2FyL2gJNq/ZvG58xjZ+wLXYgWs/z1i1icLBFWGXM9BsXcgsGBaP5ZwE9Ihu5DVar37oIjWrVvz4Ycf3v1avnz5WLduHZ988omqY0RHR/Pmm2/yySefkJiYqGoskXY3btxg/PjxTu0zYMAAfH19darI8wUGBjJ37lwmT56s6iyDzWajf//+vP7660RGRjq3c0IkHJoEv5eBv2rD0elwY8d/YQx3/v0h3e/9z3tPvAmX/oa9Q+CXwrC+MZxbCbbkNHwq4Q4kkF2sVatWNGnShKlTpz7wfGMfHx++/fZbFi1aRMaMGR8xgmPGjRtH3bp1OXfunKpxRNqMHz+eqKgoh7cvWLAg77zzjo4VpQ8Wi4WPPvqIf//9lwIFCqga69dff6Vy5crs3LnzyRtHH4fQd+HnPLC9G9w6bH9fUbtegAJKsv2fF1bDP43gl0KwbyQkO74munAPEsgu5u3tzc8//0xgYOAjt2nRogVhYWGUKVNG1bE2bdpEcHAw69atUzWOcE5kZCTjxo1zap/+/ftLd6yh6tWrExERofo54seOHaNGjRrMmjXr4RvYkuHgePj9aTgxB2zx/Ldap8aUO51x7HnYNQBWPANX5LZHTyKBbABHrkuVKVOGsLAw1U/6uXz5MvXq1WP06NFya5SLTJgwgZs3bzq8fYECBXj33Xd1rCh9ypkzJ6tXr1Z9y2FcXBzvvPMOnTp1Sv2krpsH4I+aENEDbHEadMPOuPMAnT9rwbbukCh3WHgCCWQTy5gxIwsWLGDChAmqVm2y2Wz07duXN954w6mgEM67efMmY8eOdWqffv36kSFDBp0qSt+8vLwYNmwYv/32G1mzZlU11vTp06lVqxbnzp6BfSNgZXm4EaFNoWmRcir78CRYUQYu/WNcLUITEsgmZ7FY6Nq1K//88w/58uVTNdby5cupXLkyu3fv1qg6cb+JEyc6NREoX758dOzYUb+CBACNGzdm+/btVKpUSdU40dG3yHygt/2UsZLk4q74UWwQcx7+rgcnFxpdjFBBAtlN1KxZkx07dlC3bl1V4xw9epTq1aszZ84cjSoTKaKiovj222+d2qdfv374+fnpVJG4V7Fixdi0aVOaLw8EBgbyc99cZLqySOPKtGCzd8yb34bDzq2bLsxDAtmN5MqViz/++IN+/fqpGic2NpZ27drx4YcfEh8fr1F1YtKkSdy4ccPh7fPmzcv777+vY0Xifv7+/syYMYMffvjB6csEP3xSnLIZNqPLhC1N3JlMtu1jODrN6GJEGkgguxlvb29GjBjB8uXLyZIli6qxvv/+e2rXrs2pU6c0qi79unXrFmPGjHFqn759+0p3bJCOHTuyefNmihQp4tD23ZoVp1WZPYBN17o0E9YZTqZ9gRRhDAlkN9WkSRO2bdtG+fLlVY0THh5OcHAwa9as0aiy9Gny5Mlcv37d4e3z5MlDp06ddKxIPElwcDDbt2+nUaNGj92uRsUifP3aUdwmjAFQILQj3DpqdCHCCRLIbqx48eJs2bJF9XKL169f55VXXmHIkCHYbO70Q8ccoqOj+eabb5zap0+fPvj7++tUkXBUUFAQv/76K0OHDn1goR6AnDmCWPz+eXzdcZFhJQk2t5GVvdyIBLKbCwgIYObMmUydOlXVwhKKovD555/TuHFjpzo9AVOmTOHatWsOb587d24++OADHSsSzrBarQwaNIg1a9aQPXv2VO8v7JmT/Nnc9JdUJQmubYWDzl1KEcaRQPYAFouFTp06sWnTJgoXLqxqrFWrVt09lSee7Pbt2053x7179yYgIECnikRavfTSS0RERFC1alUAhnd7iRcKHTbJrU0q7BoIkXuMrkI4QALZg1SuXJnt27fToEEDVeOcOnWKmjVrMn36dFnd6wm+//57rly54vD2OXPmpHPnzjpWJNQoVKgQ//77L9+PG0rfKn9h3hnVTgp9Rx7n6AYkkD1M9uzZWbFiBV988cVDr4k5KiEhgU6dOvHuu+8SGxurYYWeIyYmhtGjRzu1T+/evR+7jrkwXoYMGfig1nVU/PUxFyUJrm+Hq1uMrkQ8gQSyB7JarXz++eesXLmSoKAgVWPNmjWLGjVqcOzYMY2q8xxTp07l8uXLDm+fI0eOVI/cFCaVGA3Hpv/3MAdPYPGGQxONrkI8gQSyB2vQoAERERFUrlxZ1Ti7du0iJCSE3377TaPK3F9sbKzT3XHPnj1VP1ZTuMDJeZB02+gqtKUkwZnFEHvB6ErEY0gge7jChQuzYcMG1bN6b968yWuvvcaAAQNISnLzSS4amDZtGhcvXnR4+6CgILp06aJjRUITigIHnXs4iFuRFbxMTQI5HfDz8+P7779n1qxZqleGGjFiBC+//LJTp2o9TVxcHKNGjXJqn549e5IpUyadKhKaubIJbh3CYyZz3UtJtq9zLZO7TEsCOR1p3749oaGhPPXUU6rG+fvvvwkODmbLlvQ5SWT69OlcuOD4qb9s2bLx8ccf61iR0MyVDWDxMroK/cRfgWiZD2JWEsjpTIUKFdi2bRuvvfaaqnHOnTvHc889x8SJE9PVrVFxcXGMHDnSqX0+/fRTMmfOrFNFQlPXwtCjO165EyytH/1qOUHzQz7atXAXHkw4QwI5HcqaNSvLli1j5MiRWK1p/xZISkqiW7dutG7dmujoaA0rNK8ZM2Zw/vx5h7fPmjUrXbt21bEioamroaBovzJX3bJwYXLq19mJ8FI5yJEJBjfV/JAPZ/GB69tcdDDhLAnkdMpqtdK3b1/++usvcuXKpWqsBQsWUK1aNQ4ePKhRdeYUHx/vdHf8ySefqH4ql3CR2EsQ5/hEPWf4+0KerP+9cmaGXvNhxyn4ewA8U0iXwz5ISYSrW110MOEsCeR0rm7dukRERFCzZk1V4+zfv58qVaqwZMkSjSozn//973+cPXvW4e2zZMlCt27ddKxIaMpFnWOyDdpMgT/3wFpXhnGKG9vlgRMmJYEsyJ8/P+vWraN79+6qxomOjqZFixb07NmTxMREjaozh/j4eEaMGOHUPj169CBr1qz6FCS0F30cvX8kJtug7T1hXP5OGN+KhSqDoWJ/eKYvTP9bzyLi7JO7hOlIIAsAfH19GTduHAsWLFC9tOO3337LCy+84NRMZLObNWsWZ86ccXj7zJkzq/4FR7hYcixY9PuRmBLGf9wJ4wr3PAcmIAP8Mwh2joCtQ2DEr3Dtlm6l2D+rMB0JZJFKq1atCAsLo3Tp0qrG2bhxI5UqVeKff/7RqDLjJCQk8NVXXzm1T/fu3cmWLZtOFQldJMcC+ixgnRLGa/bAX/1ThzGAl9UeygBxifbtdb13QQLZlCSQxQPKli1LWFgYLVu2VDXOpUuXePHFF/nmm2/c+taoH3/8kdOnTzu8faZMmejRo4d+BQmd6BfG7b77L4wrFnn4dpG3oUJ/KNAV+jS2z77Wj6c8OcOzSCCLh8qUKRMLFy5k7NixeHt7p3mc5ORkevfuTfPmzbl586aGFbpGYmKi091xt27dVD/UQxjAyx/Q9pYn250wXr4d5n4IebPCxcjUr+Q7h8waCLtGwIlxMH8zXNLzr4uXv46Di7SSQBaPZLFY6NGjB+vWrSNv3ryqxvr555+pUqUKe/fu1ag615g9ezYnT550ePuMGTPyySef6FeQ0I+Xv+b3IIcft4drTDw0/Brydnnwdeu+s8e5s9gne/2r512EEsimJIEsnqhWrVrs2LGD559/XtU4R44coVq1asybN0+bwnSWmJjI8OHDndqna9euZM+eXaeKhK4yl0LrK7fVioMy7/GvrIH2bjgqxr5PVIw9jEup+x340bwzgp+6tQeEPiSQhUNy587Nn3/+Sd++fVWNExMTQ5s2bejSpQvx8fEaVaePuXPncuLECYe3DwwM5NNPP9WxIqGroBDDDn32Ojw31H4NudYQ+Lj+f7dEaS6oMljkGrIZpf3ioEh3vL29GTlyJNWrV6d9+/ZERUWleawpU6awbds2Fi9eTKFCrl4Z4cmSkpKc7o4//vhjcuTIoVNFQncZgiCgIMQ4fnubVkKK2m950p3FB3JUc8GBRFpIhyyc1rRpU7Zt28YzzzyjapywsDCCg4P5888/NapMO/Pnz+fYMcefihMQEEDPnj11rEi4RI4anv20JyXR3iELU5IOWaRJiRIlCA0NpXPnzsyZMyfN41y7do2XX36ZIUOGMGDAAFUPu3iYZ0oX5ote7SH2PMRfBVsiKEn2Z8JavcHibb+m5p+XQiVDQLFhU2DYsGFOHadLly7kzJlT09qFAbJXgdOeu/wrYP+MwpQsijvfICoMpygKU6dOpXv37iQkJKgaq1GjRsyZM0fdghrx1+HkXLj8D1wNg9iUtaetd1ZhUu7MpFXuvGex/1O5s9SnVyAEVSLsQkGGzD3Dij83PvGQAQEBnDhxQvVDOoQJXN8Oqz24gwwoCE1OyTVkk5JAFpoICwujRYsWTi2g8TBFihRh6dKlBAcHO76TosDVzXDkezj1k70DtljU3cJi8QYliW1XSjDkV39++3v3Izft2bMn33zzTdqPJcxlVQjc2InW9yQbzwqVRkGZXkYXIh5BAllo5urVq7Ru3Zo//vhD1TgZMmRg8uTJdOzY8fEb2pLh2A9waBxEHbwbotqyAjYiTvsxZFUefvn3ZKqv+vn5ceLECfLkyaPxcYVhTsyBLe2MrkJ7Vl94/YJ98powJZnUJTSTI0cOVq5cyWeffaZqnPj4eN577z06duxIbOwj1tyN3AtrqkJ4Z4g6ZH9P8zCGlC4puFAcyzufZcfIDLz+UoW7X+3cubOEsacp1BJ8PWwdcos3FGkjYWxy0iELXaxcuZI2bdpw48YNVeNUqlSJJUuWUKxYMfsbyQmwfwTsvTPpSpcQfrLdURUZ8Vd+vp04XfUqZsKEdg2C/SNB8aDnBr+yA7JVNLoK8RgSyEI3J0+epHnz5mzfvl3VOFmzZmX+/Pm8Ui0PbG5tPz2t77NwnszibZ8kVn6Y/ZqcTJLxLDHn4Lfi9mcHuzuLN+SqDS/q+ZBloQU5ZS10U6RIETZu3EinTp1UjRMZGUny5XD4oybcOozhYQz2ztyWADv7QGgHsBnTqQudBOSH4LFGV6ENqw9Um2F0FcIBEshCV35+fkydOpWZM2fi5+eXpjEGfvw6jX2H2APQjKcQT8yBf5t4Rjcl/lP8A8hTz95hurOQ8ZCxqNFVCAfIKWvhMjt37qRZs2YcP37c4X3q1SrP6g9242W1YIrO+JGskO8VeG6ZvSMRniHmHPxeBpKiMff330NYvCHPi/D8Krmk4iakQxYuU7FiRbZv386rr77q0PYF8uZgfpt9bhDGADY4vxI2tdb8EX7CQAH5ocoUzP/9dz8reAVAtf9JGLsRCWThUlmzZmX58uV89dVXj10m08fHh8VdYsiZKWVVLXegwJnFcGii0YUILRVpDSU+NLoKJ1jsEw5r/QQB+YwuRjhBTlkLw6xdu5a33nqLK1euPPC1Sd3K0KX6EcNua1LF6gsNd995vq7wCIoNQt+FE7Mx9y+IFvur9hIo+LrRxQgnSYcsDPPiiy8SERFB9erVU73/9qtV+ajqAfcMY7BPPNvUWmZeexKL1T5TuaiZV/Cy2p9UVWuhhLGbkkAWhipQoAD//PMPXbt2BeDpMiWZ1my3e1/2UpLhRgTsH2V0JUJLVi+oPhPK9Lnzhom+SS1e4JUB6q6GQi2MrkakkZyyFqaxcOFCKsVPpJRvmPt2x/eyeEOjfZC5pNGVCK0d/xG2dYXkGBPcimeBrM9Azbn2fwq3JYEszCNyL6z0oB8oFi/7ZKDKMsnLI8VegLDOcO5X7N2yi3+UWrztx60wFEr3tD/fW7g1OWUtzOPwZPdfhOFeSjIcmwGJUUZXIvTgnxeeWw61FtkfRmHxctGB7/zYDqoMjfZA2b4Sxh5CAlmYQ0IkHJ/lGaeq75UcB8dnG12F0IvFYr9m++phKNsPMuS4874O4Zzyy2q2ilD9R6i/SWbyexg5ZS3M4eA4iPgUc99SkhYWyFgMXj0iCzSkB7ZEOPsrHJkCl/62B7OikPIYT6dZvO1nWrz87DO8i38AQZU0LVmYhwSyMIdfnoLbJ/C8QL7jxb8hd12jqxCudOsonFoI18LhWhjEXbS/b/HCfnJS4b/v9zsnK5WkO+9Z7ZMBs1eDnLWg8Jvgk8nVn0C4mFx4EMaLvQC3HV/f2u1YvOHSPxLI6U2m4lBu0H//HXcFrkfYb4mLvQDJsfZLGhYvewfs5W8/BZ0t2D5b2tvfuNqFISSQhfGubdNt6JU7odHXj/56i2qwqJtuh7dTkuHaVp0PIkzPLyfke9n+EuIhJJCF8a5vu3OtTPsJXXXLwoXJqd9LtsE7U2HHKRjcVPNDPoRiP2WpKHIdWQjxSBLIwnjXtuq2uIK/r/2VItkGbabYw/jvAfBMIV0O+6CE6xBzBgJddUAhhLuR256EsZQ73aMLJnOlhPGfe2CtK8M4xXX9Ts0LIdyfdMjCWEm3IOGG7odJtkHbe8K4/J0wPnMN2n4Hl2+CtxcMft1+XVlzFi+4dUSHgYUQnkICWRgrKVb3Q6SE8R93wrhC4f++5m2FcW2gYhF7KAcPhIYVINBP6yqsLvmsQgj3JYEsjGWL03X4lDBeswfW9k8dxgB5s9lfALmyQFBGuH5bj0DGfpuLEEI8glxDFh4r2QbtvrOH8V/97V3w42w7DjYFCmZ3SXlCCJGKdMjCWFY9WlGw3Qnj5dthSTfImxUuRqbeJmdm8LrzK+m1W/btf3hfl3LsvGShByHEo0kgC2PptBpR+HGYv9n+7w0fsTDIjWmQNRDiE+H1sdD/Naip26OLbbLykhDisSSQhbG8M9kfXafxTOtqxUGZ9+TtFAU6TIUXnoa2tTUt4b4DJUOmEjoeQAjh7uQasjCWxWJfQN+gb8VNh+GnUFi+DSr2t7/2nNbpYEFVdBpYCOEJpEMWxsteFS7+BUoaH1GnQq1SYJvrggP5BkFAARccSAjhrqRDFsYLqqzLOtbmYbH/0iHrWAshHkMCWRgve2WjK9CXxevOaXkhhHg0CWRhPP+8kPEpwEM7SCUJctcxugohhMlJIAtzKNnV6Ap0YoGMxSHX80YXIoQwOQlkYQ7F2oNXBqOr0EfpHnL9WAjxRBLIwhx8s0LRDmDxsIn/Xv5QtJ3RVQgh3IAEsjCPkh971mxrizc81RF8MhldiRDCDUggC/PI+jTkecmzuuSSHxtdgRDCTUggC3OpOg2svkZXoQELlP8SMuu2OLYQwsNIIAtzyVgEKk8wugp1LN4QFAJl+hhdiRDCjUggC/Mp9i7kfcV9T11bvKDmXLC6af1CCENIIAvzsVig+gzwDsQtFwupNBoylzK6CiGEm5FAFubknxeeXWjvNt0mlC1QqKVM5BJCpIkEsjCvfA2g1k/YA9nsoWyFfI3sp6ot8tdKCOE8+ckhzK3gG/Dsgjudslm/XS2Q7xWovRisPkYXI4RwUxZFURSjixDiiS78Af82AVsiKMlGV5Na0Q5QbbpM4hJCqCKBLNzHjZ2wuTXcPAAY/G1r8bafmq7wFZT+VNaqFkKoJoEs3EtyAuwfBXuHAIpx3XLOWlB9JmQqbszxhRAeRwJZuKfIfbClPdzYjn3Clwu+jS1eYM0AwWOgeCeZvCWE0JQEsnBftmQ4/j84OA6i9ttPI2v+cAorYLPfE120A5TtA4GFND6GEEJIIAtPoChwbSsc+R5OLbBP/MIC2NI+Zkq4Z6tkv6+48Jt3FioRQgh9SCALzxJ/HU7Og8sb7CEdc/rOF6x3TjEroNjs/7RY7e9jASXRvpl3RggKhuxVoXAr+5rUQgjhAhLIwrMlRNpnZ1+PgKiDkBwDyXH27tfLH7z8wC+PPYSDQiCwqMyYFkIYQgJZCCGEMAGZJiqEEEKYgASyEEIIYQISyEIIIYQJSCALIYQQJiCBLIQQQpiABLIQQghhAhLIQgghhAlIIAshhBAmIIEshBBCmIAEshBCCGECEshCCCGECUggCyGEECYggSyEEEKYgASyEEIIYQISyEIIIYQJSCALIYQQJiCBLIQQQpiABLIQQghhAhLIQgghhAlIIAshhBAmIIEshBBCmIAEshBCCGECEshCCCGECUggCyGEECYggSyEEEKYgASyEEIIYQISyEIIIYQJSCALIYQQJiCBLIQQQpjA/wHeov87viyg6QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2221,7 +2221,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ9UlEQVR4nO3dd3RUZeLG8e+k91BCSGgplBRQegcNSg8I6u6KsogNBUTEgoIgIMiCKMUG6K4LVpSfqKt0RAjVAoIiKUBI6DHUBAhpM/f3R5ZZIxCSkGQyk+dzzpyTuXPv5Lm5IfNw5877mgzDMBARERGxc062DiAiIiJSFlRqRERExCGo1IiIiIhDUKkRERERh6BSIyIiIg5BpUZEREQcgkqNiIiIOAQXWweoSBaLhePHj+Pr64vJZLJ1HBERESkGwzA4f/48derUwcnp2udjqlSpOX78OPXr17d1DBERESmFI0eOUK9evWs+XqVKja+vL1DwQ/Hz87NxGhERESmOzMxM6tevb30dv5YqVWouv+Xk5+enUiMiImJnrnfpiC4UFhEREYegUiMiIiIOwW5KzYwZM2jbti2+vr4EBgYycOBAkpKSbB1LREREKgm7uaYmLi6Oxx9/nLZt25Kfn8+ECRPo2bMn8fHxeHt72zqeiIhUEIvFQm5urq1jSBlydXXF2dn5hp/HZBiGUQZ5KtzJkycJDAwkLi6OW265pVjbZGZm4u/vT0ZGhi4UFhGxQ7m5uaSkpGCxWGwdRcpYtWrVCAoKuurFwMV9/babMzV/lpGRAUCNGjWuuU5OTg45OTnW+5mZmeWeS0REyodhGJw4cQJnZ2fq169f5CBsYj8MwyArK4v09HQAgoODS/1cdllqDMPg6aefpkuXLjRr1uya682YMYOXXnqpApOJiEh5yc/PJysrizp16uDl5WXrOFKGPD09AUhPTycwMLDUb0XZZc0dNWoUv/76K0uWLClyvfHjx5ORkWG9HTlypIISiohIWTObzQC4ubnZOImUh8tFNS8vr9TPYXdnap544gm+/vprNm3aVORQyQDu7u64u7tXUDIREakImrvPMZXFcbWbMzWGYTBq1Ci++OILvvvuO8LCwmwdSURE7FBWbj6h41YQOm4FWbn5to4jZchuztQ8/vjjfPLJJ/znP//B19eXtLQ0APz9/a3vxYmIiEjVZTdnahYsWEBGRgYxMTEEBwdbb5999pmto4mIiFSYxYsXU61aNVvHKJGKymw3pcYwjKveHnjgAVtHExERuaYHHngAk8l0xa13797X3TY0NJR58+YVWnbPPfewb9++ckr7P/ZYnuzm7ScRERF71bt3bxYtWlRoWWk/yOLp6anLLq7Bbs7UiIiI/JFhGGTl5pfqdllpty/pYPzu7u4EBQUVulWvXh2AKVOm0KBBA9zd3alTpw6jR48GICYmhkOHDvHUU09Zz+7AlWdQpkyZQosWLfj3v/9NgwYN8PHxYcSIEZjNZmbNmkVQUBCBgYFMnz69UKY5c+Zw00034e3tTf369Rk5ciQXLlwAYOPGjTz44INkZGRYv/eUKVOAglGdn3vuOerWrYu3tzft27dn/Xcb+PXoOX49eg6zxWDx4sU0aNAALy8v7rzzTk6fPl2in1dp6UyNiIjYpUt5ZqInrbmh52jz8vpSbRc/tRdebjf+Evr5558zd+5cPv30U5o2bUpaWhq//PILAF988QXNmzfn0UcfZdiwYUU+T3JyMqtWrWL16tUkJyfzl7/8hZSUFJo0aUJcXBzbtm3joYce4vbbb6dDhw4AODk58cYbbxAaGkpKSgojR47kueeeY/78+XTq1Il58+YxadIk6+TRPj4+ADz44IOkpqby6aefUqdOHb788kti+/bh/9ZtJSSsIT/88AMPPfQQ//jHP7jrrrtYvXo1kydPvuGfVXGo1IiIiJSz5cuXW0vBZc8//zze3t4EBQXRvXt3XF1dadCgAe3atQMKpgFydnbG19eXoKCgIp/fYrHw73//G19fX6Kjo+nWrRtJSUmsXLkSJycnIiIieOWVV9i4caO11IwZM8a6fVhYGNOmTWPEiBHMnz8fNzc3/P39MZlMhb53cnIyS5Ys4ejRo9SpUweAZ599llWrV/Ofzz5m9LhJvPnGG/Tq1Ytx48YB0KRJE7Zt28bq1atv+Od4PSo1IiJilzxdnYmf2qvE22Xl5lvP0OyYeHupzrh4upZsGP9u3bqxYMGCQstq1KjBxYsXmTdvHuHh4fTu3Zu+ffvSv39/XFxKlik0NBRfX1/r/dq1a+Ps7FxofqzatWtb51cC2LBhA//4xz+Ij48nMzOT/Px8srOzuXjxIt7e3lf9Pj///DOGYdCkSZNCy3NycnDxLJhoMjExgTvvvLPQ4x07dlSpERERuRaTyXTDbwF5ubmUydtI1+Pt7U2jRo2uWF6jRg2SkpJYt24d3377LSNHjuTVV18lLi4OV1fXYj//n9c1mUxXXXZ5dvNDhw7Rt29fhg8fzrRp06hRowZbtmzh4YcfLnKaAovFgrOzMzt37iw0P5PZYnDsQsFzl/R6o7KkUiMiImJDnp6e3HHHHdxxxx08/vjjREZGsmfPHlq1aoWbm5t1zquytGPHDvLz85k9e7b1bM7SpUsLrXO1792yZUvMZjPp6el07drVutxsMcg5ngFAVFQ033//faHt/ny/vKjUiIiIlLOcnBzrSPiXubi4sHz5csxmM+3bt8fLy4sPP/wQT09PQkJCgIK3lTZt2sSgQYNwd3cnICCgTPI0bNiQ/Px83nzzTfr378/WrVtZuHBhoXVCQ0O5cOEC69evp3nz5nh5edGkSRMGDx7M/fffz+zZs2nZsiWnTp3i2/Xr8asTTtfbejLqiSfo2qUzs2bNYuDAgaxdu7ZC3noCfaRbRESk3K1evbrQaPjBwcF06dKFatWq8c9//pPOnTtz8803s379er755htq1qwJwNSpU0lNTaVhw4bUqlWrzPK0aNGCOXPm8Morr9CsWTM+/vhjZsyYUWidTp06MXz4cO655x5q1arFrFmzAFi0aBH3338/zzzzDBEREdxxxx38+MOPBAXXBaBDhw7861//4s0336RFixasXbuWiRMnlln2opgMW775VcEyMzPx9/cnIyMDPz8/W8cREZESyM7OJiUlhbCwMDw8PEr9PFm5+daPgpfVR7OrOrPFYO9/335qWscfZ6eSz7hd1PEt7uu3jqSIiFQpXm4upM6MtXUMKQd6+0lEREQcgkqNiIiIOASVGhERsStV6FLQKqUsjqtKjYiI2IXLg73l5ubaOImUh6ysLODKgQRLQhcKi4iIXXBxccHLy4uTJ0/i6upaaAoAsS2zxcDILyib2dnZJfr0k2EYZGVlkZ6eTrVq1QqNVFxSKjUiImIXTCYTwcHBpKSkcOjQIVvHkT+wGAbp57IBcMnywMlU8o90V6tW7boTd16PSo2IiNgNNzc3GjdurLegSuFSbj793twCwPInuuBZhuPzXMrN59EvS//crq6uN3SG5jKVGhERsStOTk43NPheVWVxyufY+YK5nNw9PPAow1JTns9dEnpDUkRERByCSo2IiIg4BJUaERERcQgqNSIiIuIQVGpERETEIajUiIiIiENQqRERERGHoFIjIiIiDkGlRkRERByCSo2IiIg4BJUaERERcQgqNSIiIuIQVGpERETEIajUiIiIiENQqRERERGHoFIjIiJSCWTl5hM6bgWh41aQlZtv6zh2SaVGREREHIJKjYiIiDgElRoRERFxCCo1IiIi4hBUakRERMQhqNSIiIiIQ1CpEREREYegUiMiIiIOQaVGREREbojZYli/vpRrtlkOlRoREREptS37T/GXBdus9/9vxxGbZXGx2XcWERERu3Ug/QIzViawPjG90PJB7RrYKJFKjYiIiJTA2Yu5zPt2Hx/9cBizxcDFycSgdvX56PvDALi52O5NIJUaERERua7cfAsfbE/ljfX7ycwumHCze1RtxveNJNjfw1pqbEmlRkRERK7JMAzW7E1jxqpEDp3OAiAq2I+JsVF0bhQAUGlmFVepERERkavaczSDaSvi+THlDAC1fN0Z2zOCu1vXw9nJZON0V1KpERERKYas3HyiJ60BIH5qL7zcHPclNC0jm1lrEvni52MAuLs48egt4Tx2a0N83CvvflfeZCIiIlKhsnLzeSfuIO9sSiY7zwLAnS3rMrZXBHWqedo43fWp1IiIiFRxFovBsp+P8traJH7PzAGgbWh1JsZG07x+NduGKwGVGhERkSpse/JpXl4Rz97jmQDUr+HJ+D5R9GkWhMlU+a6bKYpKjYiISBWUcuoiM1YmsDb+dwB83V144vZGDO0UiruLs43TlY5KjYiISBXzyqpEPvnxMHlmA2cnE/e1a8CY7o2p6eNu62g3RKVGRESkCsgzW6xfv7/9EADdImrxQt8oGtf2tVWsMqVSIyIi4sAMw2B9Qjovr4i3LmsU6MOkftHc0qSWDZOVPZUaERERB7X3eAbTVySwLfl0oeVfjOiIn6ebjVKVH5UaERERB5Oemc3stftYuvMIhlEwyeTQjiH8c3MKAC7Otpt0sjyp1IiIiDiIS7lm/rX5IAviksnKNQPQv3kdnusVQU0fN2upcVQqNSIiInbOYjH4+pfjvLI6kRMZ2QC0qF+NF/tF0zqkOlB5Jp0sTyo1IiIiduyn1DO8vDyeX45mAFC3mifP94mk/83Bdjd43o1SqREREbFDh09nMXN1Aiv3pAHg4+7CyG4NeahzGB6u9jl43o1SqREREbEjmdl5vP3dARZtTSXXbMHJBPe0bcDTPZpQy9e+B8+7USo1IiIidiDfbGHJj4eZ++1+zlzMBaBr4wAmxEYRGeRn43SVg0qNiIhIJWYYBhv3nWT6igQOpF8AoGEtbybGRhMTUavKXTdTFJUaERFxCFm5+URPWgNA/NReeLnZ/0tcUtp5Xl4Rz+b9pwCo7uXK0z2aMKhdA1wddKyZG2FXP5FNmzbRv39/6tSpg8lk4quvvrJ1JBERkTJ36kIOL3y5hz6vb2Lz/lO4Opt49JZwNo7txpCOoSo012BXNfbixYs0b96cBx98kLvvvtvWcURERMpFn9c3czGnYPC8Ps2CGNcnkpCa3jZOVfnZVanp06cPffr0Kfb6OTk55OTkWO9nZmaWRywREZEbYhgGq/acsN6/mGPm5nr+TIyNpl1YDRsmsy92VWpKasaMGbz00ku2jiEiInJNPx8+y7Tl8ew6fM66bOZdN/G3NvVxctJFwCXh0G/KjR8/noyMDOvtyJEjto4kIiICwNGzWTyxZBd3zd/GrsPn8PzDgHl3tKijQlMKDn2mxt3dHXf3qj0QkYiIVC7ns/NYsDGZf21JITffgskEf2lVj8e7NSTmtThbx7NrDl1qREREKguzxeCzn44wZ10Spy4UDJ7XMbwmE2KjaFbXv0pMOFneVGpERETK2eb9BYPnJaadByAswJsX+kbRPSpQg+eVIbsqNRcuXODAgQPW+ykpKezevZsaNWrQoEEDGyYTERG50oH080xfkcCGpJMA+Hu68uTtjfl7hxDcXBz6slabsKtSs2PHDrp162a9//TTTwMwdOhQFi9ebKNUIiIihZ25mMu8b/fx8Q+HMVsMXJxM3N8xlNG3N6Kal5ut45U5LzcXUmfG2jqGfZWamJgYDMOwdQwREZGrysk38/62VN787gDnswuukekRXZvxfSIJr+Vj43SOz65KjYiISGVkGAarfktjxqoEjpy5BEB0sB8T+0XRqWGAjdNVHSo1IiIiN+CXI+d4eUU8P6WeBSDQ152xvSK4q1U9nDXWTIVSqRERESmFExmXmLU6iS93HQPAw9WJx25pyKO3hOPtrpdXW9BPXUREpITeXL+fRdtSyc6zAHBXq7qM7RVBsL+njZNVbSo1IiJSYbJy84metAaA+Km98HKzn5chs+V/H1RZEHcQgHahNZjYL4qb61WzUSr5I/v5bRIREbGRbcmnmPpNvPV+/RqeTOgbRa+mQRo8rxJRqREREbmGgycv8I+ViXyb8Huh5d+M6uKQ483YO5UaERGRPzmXlcvr6/fz4fZD5FsMnJ1M3NO2Pp/8cBhAowFXUio1IiIi/5Wbb+HD7w/xxvr9ZFzKA+C2yEBe6BtFnWoe1lIjlZNKjYiIVHmGYbAu/ndmrEok5dRFACKDfJkQG0XXxrUANIu2HVCpERGRKu23Yxm8vCKe7w+eASDAx51nezbhr23qO9TgeZVlfqbypFIjIiJV0u+Z2by6JollPx/FMAqukxnWNYwRMY3w0eB5dklHTUREqpSs3Hz+uSmFhXHJXMozAzCgRR3G9oqgXnUvG6eTG6FSIyIiVYLFYvDlrmO8uiaJtMxsAFo1qMbEftG0alDdxumkLKjUiIiIw/vh4GleXpHAnmMZANSr7sm4PpHE3hSswfMciEqNiIg4rNRTF5m5KpHVe9MA8HF34fFujXiwcygers42TidlTaVGREQcTualPOas3cf721PJMxs4meDedg14qkcTAnzcbR1PyolKjYiIOJzer2/mXFbB4HldGwcwMTaaiCBfG6eS8qZSIyIids8wDOKSTlrvn8vKo3GgDxNio4iJCLRhMqlIKjUiImLXEk5kMn1FAlsOnLIum9Qvivs7huLirDmaqhKVGhERscrKzSd60hoA4qf2wsut8r5MpJ/PZs7afSzdcQSLAa7OJvLMBgCD2jVQoamCKu9vq4iIyFVk55l5b0sK8zcc4GJuweB5sTcH8+Ttjeg5d7ON05VeVZjGoLyp1IiIiF0wDIOvfznOK6sSOZ5RMHhe83r+vNgvmjahNTThpKjUiIhI5bfz0BmmLU9g95FzANTx9+D5PpH0v7kOTg406aTcGJUaERGptI6cyWLm6kRW/HoCAC83Z0bGNOThLuF4umnwPClMpUZERCqdzOw83t5wgEVbUsk1WzCZ4J429Xm6ZxMCfT1sHU8qKZUaERGpNPLNFj796Qhz1+3j9MVcADo3qsmEvtFE1/GzcTqp7FRqRESkUojbd5LpK+LZ9/sFAMJreTOhbxS3RQZq0kkpFpUaERGxqX2/n2f6igTi9hWMCFzNy5WnujfhvvYNcNVYM1ICKjUiImITpy/kMD0ugSU/HrYOnje0YyhP3NYYfy9XW8cTO6RSIyIiNtHn9S1cyCkYW6Z30yDG9YkkNMDbxqnEnqnUiIhIhTAMg9W/pVnvX8jJ56a6/kyMjaJ9eE0bJhNHoVIjIiLlbveRc0xbHs/OQ2ety2bc1Yx72jTQ4HlSZlRqRESk3Bw7d4lZqxP5z+7jAHi6OnMpr2C+pgEt6tpVodHcTJWfSo2IiJS5Czn5LNh4gH9tTiEnv2DwvLtb1WNUt4bEvBZn63jioFRqRESkzJgtBv+34wivrd3HqQs5ALQPq8GL/aJpVtdfk05KuVKpERGxI1m5+URPWgNA/NReeLlVnj/jWw+cYtryeBLTzgMQWtOLF/pG0SO6tgbPkwpRef41iIiIXTqQfoEZKxNYn5gOgJ+HC092b8KQDiG4uWjwPKk4KjUiIlIqZy/mMu/bfXz0w2HMFgMXJxN/7xDCk7c3prq3m63jSRWkUiMiIiWSm2/hg+2pvLF+P5nZBdfIdI+qzfi+kTSs5WPjdFKVqdSIiEixGIbBmr1pzFiVyKHTWQBEBfvxYmwUnRoF2DidiEqNiIgUw56jGUxbEc+PKWcAqOXrztieEdzduh7OdjTWjDg2lRoREbmmtIxsZq1J5IufjwHg4erEo13DeezWhni76yVEKhf9RoqIyFW99d0B/r01hew8CwB3tqzL2F4R1KnmaeNkIlenUiMiIlYWi2H9ev7GZADahlZnYmw0zetXs1Gq4tE0BqJSIyIiAGxPPs3U5Xut9+tX9+SFvlH0bhakwfPELpS41ISHh/PTTz9Rs2bhaeLPnTtHq1atOHjwYJmFExGR8pdy6iIzViawNv73Qsu/eaIL1bw03ozYjxKXmtTUVMxm8xXLc3JyOHbsWJmEEhGR8peRlccb3+3ng+2p5JkNnJ1M/K1NPZb8eARAowGL3Sl2qfn666+tX69ZswZ/f3/rfbPZzPr16wkNDS3TcCIiUvbyzBY++v4Qr6/fz7msPAC6RdTihb5R1K3uaS01Ivam2KVm4MCBAJhMJoYOHVroMVdXV0JDQ5k9e3aZhhMRkbJjGAbrE9L5x8oEDp66CECT2j5MjI3mlia1ADSLtti1Ypcai6XgI31hYWH89NNPBARo9EgREXux93gG01cksC35NAABPm483SOCv7Wph4uz3mYSx1Dia2pSUlLKI4eIiJSD9MxsXlubxP/tPIphFFwn80iXMEbENMTXw9XW8UTKVIlLzejRo2nUqBGjR48utPytt97iwIEDzJs3r6yyiYjYnazcfKInrQEgfmovvNxsM3LGpVwz/9p8kAVxyWTlFny4o3/zOjzXK4L6NbxskkmkvJX4nOOyZcvo3LnzFcs7derE559/XiahRESkdCwWgy93HeW22RuZvW4fWblmWtSvxrIRnXjz3pYqNOLQSvxfiNOnTxf65NNlfn5+nDp1qkxCiYhIyf2UeoaXl8fzy9EMAOpW8+T5PpH0vzlYg+dJlVDiUtOoUSNWr17NqFGjCi1ftWoV4eHhZRZMRESK5/DpLGauTmDlnjQAfNxdGNmtIQ91DsPD1dnG6QrTVAZSnkpcap5++mlGjRrFyZMnue222wBYv349s2fP1vU0IiIVKPNSHq9/u59FW1PJNVtwMsE9bRvwdI8m1PJ1t3U8kQpX4lLz0EMPkZOTw/Tp05k2bRoAoaGhLFiwgPvvv7/MA4qIyNX1eX0zZ/87eF7XxgFMiI0iMsjPxqlEbKdUl+WPGDGCESNGcPLkSTw9PfHx8SnrXCIi8ieGYRC376T1/tmsPBrW8mZibDQxEbV03YxUeaUqNfn5+WzcuJHk5GTuu+8+AI4fP46fn58KjohIOUhMy2T6igQ27//fBzImxkYxtFMorho8TwQoRak5dOgQvXv35vDhw+Tk5NCjRw98fX2ZNWsW2dnZLFy4sDxyiohUSSfP5zBn3T4+++kwFgNcnE3kmw0A7mvfQIVG5A9K/K/hySefpE2bNpw9exZPT0/r8jvvvJP169eXaTgRkaoqO8/M/I0H6PbaRpb8WFBo+jQLYvkTXWwdTaTSKvGZmi1btrB161bc3NwKLQ8JCeHYsWNlFkxEpCoyDINvfj3BK6sSOXbuEgA31/NnYmw07cJqaMJJkSKUuNRYLBbMZvMVy48ePYqvr2+ZhBIRqYp2HjrLyyvi2XX4HADB/h481zuCAc3r4uSki4BFrqfEpaZHjx7MmzePd999FwCTycSFCxeYPHkyffv2LfOAIiKO7siZLF5ZncjyX08A4OXmzIhbG/JI13A83SrX4HkilVmJS83cuXPp1q0b0dHRZGdnc99997F//34CAgJYsmRJeWQUEXFI57PzmL8xmfe2pJCbb8Fkgr+2rsczPSOo7edh63gidqfEpaZOnTrs3r2bTz/9lJ07d2KxWHj44YcZPHhwoQuHRUTk6vLNFpbuOMqcdUmcupALQMfwmkzsF0XTOlfOrScixVOsUtOqVSvWr19P9erVmTp1Ks8++ywPPvggDz74YHnnu8L8+fN59dVXOXHiBE2bNmXevHl07dq1wnOIiP3Kys0netIaAOKn9sLLrVRDdpXKpn0nmb4igaTfzwMQFuDNC32j6B4VWCkGz9PcTGLPivWR7oSEBC5evAjASy+9xIULF8o11LV89tlnjBkzhgkTJrBr1y66du1Knz59OHz4sE3yiIgU1/7fz/PAoh+5/98/kvT7efw9XZncP5o1Y26hR3TtSlFoROxdsf570qJFCx588EG6dOmCYRi89tpr1xw5eNKkSWUa8I/mzJnDww8/zCOPPALAvHnzWLNmDQsWLGDGjBnl9n1FRErr9IUc5n67jyU/HsFsMXBxMjG0UyhP3NaIal5u138CESm2YpWaxYsXM3nyZJYvX47JZGLVqlW4uFy5qclkKrdSk5uby86dOxk3blyh5T179mTbtm1X3SYnJ4ecnBzr/czMzHLJJiJyNe9tSeHduIOczykYW6ZndG3G940iLMDbxslEHFOxSk1ERASffvopAE5OTqxfv57AwMByDfZnp06dwmw2U7t27ULLa9euTVpa2lW3mTFjBi+99FJFxBMRAQoGz7ts9tp9ADSt48fE2Gg6Nqxpq1giVUKxrqlp1aoVZ8+eBWDy5Mk2nbTyz+87G4Zxzfeix48fT0ZGhvV25MiRiogoIlXU7iPnGPLej9b7tXzdefUvN/PNqC4qNCIVoFhnai5fKHz5008jRozAy8urvLMVEhAQgLOz8xVnZdLT0684e3OZu7s77u7uFRFPRKqw4+cuMWt1Il/tPl5o+aonuxDgo/FmRCqK3Vwo7ObmRuvWrVm3bh133nmndfm6desYMGBAuXxPEZGiXMzJZ2FcMu9uOkhOvgWAgS3qWMtNRX5UXETs6EJhgKeffpohQ4bQpk0bOnbsyLvvvsvhw4cZPnx4uX1PEZE/M1sMlu08yqtrkzh5vuDDCO3CavBibDQNA72vOGMjIhXDbi4UBrjnnns4ffo0U6dO5cSJEzRr1oyVK1cSEhJS4VlEpGraduAU01YkkHCi4NOUITW9GN8nil5NC8aa0SzaIrZTqlm6bWnkyJGMHDnSphlEpOpJPnmBGSsT+DYhHQBfDxeevL0xQzqG4O6iSSdFKoNSveH74YcfsnDhQlJSUti+fTshISHMnTuX8PBwXd8iIg7l7MVcXl+/n4++P0S+xcDZycSQDiGMvr0xNbw1eJ5IZVKsj3T/0YIFC3j66afp27cv586dw2w2A1C9enXmzZtX1vlERGwiN9/Ce1tSiHltI4u3pZJvMbg9MpA1Y25hyh1NbVZoLs/NlDozVhcii/xJiUvNm2++yT//+U8mTJiAs/P/Trm2adOGPXv2lGk4EZGKZhgGa/am0XNuHNOWx5NxKY/IIF8+erg97z3QlkaBthunS0SKVuKan5KSQsuWLa9Y7u7ubp30UkTkRthqFu3fjmXw8op4vj94BoAAH3fG9mrCX1rXx9lJE06KVHYl/ksRFhbG7t27r/jE0apVq4iOji6zYCIiFeX3zGxeXZPEsp+PYhjg7uLEsK7hDI9piI+73uIRsRcl/tc6duxYHn/8cbKzszEMgx9//JElS5YwY8YM/vWvf5VHRhGRcjN/wwHe25LKpbyC6wMHtqjD2N6R1K3maeNkIlJSJS41Dz74IPn5+Tz33HNkZWVx3333UbduXV5//XUGDRpUHhlFRMqUxfK/SSff2pAMQOuQ6kyMjaJlg+q2iiUiN6hU51WHDRvGsGHDOHXqFBaLxSYD8YmIlMYPB0/z0jfx1vt1q3nyQt8o+t4UdM3JcUXEPtzQm8UBAQFllUNEpFylnrrIzFWJrN5beFLc5U90prq3Jr4VcQS6Ak5EHFpGVh5vfref97enkmc2cDLB39rU59OfjgDg7qrRgEUchUqNiDikPLOFT344zLxv93E2Kw+AW5vUYkJsFPWqe1pLjYg4DpUaEXEohmHwXWI601cmcPBkwdhZjQN9mBAbRUxEwfV/mnRSxDGp1IiIw4g/nsn0lfFsPXAagJrebjzVowmD2tbHxbnEA6iLiJ0pVql54403iv2Eo0ePLnUYEZHSSD+fzZy1+/hsxxEMA9ycnXioSxgjuzXEz8PV1vFEpIIUq9TMnTu3WE9mMplUakSkwmTnmfnX5oMs2JjMxdyCwfNibw5mXO9I6tfwskmmyxNOikjFK1apSUlJKe8cIiLFZrEYfPPrcV5ZlcjxjGwAmtevxqR+UbQOqWHjdCJiK7qmRkTsyo7UM0xbkcAvR84BUMffg+f7RNL/5jo4adJJkSqtVKXm6NGjfP311xw+fJjc3NxCj82ZM6dMgolI5WWLWbSPnMli5qpEVuw5AYC3mzMjuzXi4S5heGisGRGhFKVm/fr13HHHHYSFhZGUlESzZs1ITU3FMAxatWpVHhlFpAo7n53H6+v3s2hLKrlmCyYT3NOmPk/3bEKgr4et44lIJVLiUjN+/HieeeYZpk6diq+vL8uWLSMwMJDBgwfTu3fv8sgoIlVY73mbrYPndW5Ukwl9o4mu42fjVCJSGZW41CQkJLBkyZKCjV1cuHTpEj4+PkydOpUBAwYwYsSIMg8pIlXL5v0nrV+fzcojvJY3E2Oj6BYRqEknReSaSlxqvL29ycnJAaBOnTokJyfTtGlTAE6dOlW26USkSklKO8/0lQls2ve/UjMhNpIHOoXhqsHzROQ6SlxqOnTowNatW4mOjiY2NpZnnnmGPXv28MUXX9ChQ4fyyCgiDu7UhRzmrtvHkh8PYzHAxdlEvtkAYHD7EBUaESmWEpeaOXPmcOHCBQCmTJnChQsX+Oyzz2jUqFGxB+kTEYGCwfMWbU3l7Q0HuJBTMB9T76ZBjOnRmN7zNts4nYjYmxKXmvDwcOvXXl5ezJ8/v0wDiYjjMwyDFXtOMHNVIkfPXgLgprr+TIyNon14TU04KSKlUuJSc+TIEUwmE/Xq1QPgxx9/5JNPPiE6OppHH320zAOKiGPZdfgs05bH8/PhcwAE+XnwXO8IBraoq8HzROSGlLjU3HfffTz66KMMGTKEtLQ0unfvTrNmzfjoo49IS0tj0qRJ5ZFTROzcsXOXmLU6kf/sPg6Ap6szw29tyLBbwipk8L4/0vxMIo6pxH9JfvvtN9q1awfA0qVLuemmm9i6dStr165l+PDhKjUiUsiFnHwWbDzAvzankJNfMHje3a3qMbZXBLX9NHieiJSdEpeavLw83N3dAfj222+54447AIiMjOTEiRNlm05E7JbZYvB/O47w2tp9nLpQMAxEh/AaTIyNplldfxunExFHVOJS07RpUxYuXEhsbCzr1q1j2rRpABw/fpyaNWuWeUARsT9b9p/i5RXxJKadByC0phcv9I2iR3RtDZ4nIuWmxKXmlVde4c477+TVV19l6NChNG/eHICvv/7a+raUiNiWLSacBDiQfoEZKxNYn5gOgJ+HC092b8KQDiG4uWisGREpXyX+SxcTE8OpU6fIzMykevXq1uWPPvooXl5eZRpOROzD2Yu5zPt2Hx/9cBizxcDFycSQjiGMvq0x1b3dbB1PRKqIUv33zdnZuVChAQgNDS2LPCJiZxZvTWVhXDKZ2QVjy3SPqs0LfSMJr+Vj42QiUtWUuNSEhYUV+Z74wYMHbyiQiFR+hmFYv561JgmAqGA/XoyNolOjAFvFEpEqrsSlZsyYMYXu5+XlsWvXLlavXs3YsWPLKpeIVFJ7jmbw0jd7rfcDfNx4rnckd7eqh7MGzxMRGypxqXnyySevuvztt99mx44dNxxIRCqnExmXeHVNEl/8fKzQ8lVPdqWWr8abERHbK7OPI/Tp04dly5aV1dOJSCWRlZvPnHX76PbaRmuh6d882Pq4t3vFjgYsInItZfbX6PPPP6dGjRpl9XQiYmMWi8Gyn4/y6pok0s8XDJ7XNrQ6E2OjaVzbh29+0WCbIlK5lLjUtGzZstCFwoZhkJaWxsmTJzVjt4iD2J58mpdXxLP3eCYADWp4Mb5PJL2bBWEymTSLtohUSiUuNQMHDix038nJiVq1ahETE0NkZGRZ5RIRG0g5dZEZKxNYG/87AL7uLjxxeyOGdgrF3cXZxulERIpW4lIzefLk8sghIjaUkZXH6+v388H2VPItBs5OJu5r14Ax3RtT08e9wvNoFm0RKY0buqbm0qVL5OXlFVrm5+d3Q4FEpOLkmS189P0hXl+/n3NZBf+Wu0XU4oW+UTSu7WvjdCIiJVPiUnPx4kWef/55li5dyunTp6943Gw2l0kwESk/hmHwbUI6M1YmcPDURQCa1PZhYmw0tzSpZeN0IiKlU+JS89xzz7Fhwwbmz5/P/fffz9tvv82xY8d45513mDlzZnlkFHFItpp0cu/xDKavSGBbcsF/SgJ83Hi6RwR/a1MPF2dNOiki9qvEf0W/+eYbPvjgA2JiYnjooYfo2rUrjRo1IiQkhI8//pjBgweXR04RuUHpmdm8tjaJ/9t5FMMANxcnHukSxoiYhvh6uNo6nojIDStxqTlz5gxhYWFAwfUzZ86cAaBLly6MGDGibNOJyA27lGvmX5tTWBiXTFZuwdvD/ZvX4bleEdSv4WXjdCIiZafEpSY8PJzU1FRCQkKIjo5m6dKltGvXjm+++YZq1aqVQ0QRuRGxb2whLTMbgBb1q/Fiv2hah1S3cSoRkbJX4lLz4IMP8ssvv3Drrbcyfvx4YmNjefPNN8nPz2fOnDnlkVFESmhH6lnr12mZ2dSt5snzfSLpf3NwocEzRUQcSYlLzVNPPWX9ulu3biQmJrJjxw4aNmxI8+bNyzSciJTM4dNZzFiVwKrf0qzLxnRvzPBbG+LhqsHzRMSx3fDHLRo0aECDBg3KIouIlFLGpTze3nCAxVtTyTVbcDKBxSh47NFbwlVoRKRKKPbnN7/77juio6PJzMy84rGMjAyaNm3K5s2byzSciBQt32zhw+2pdHttI+9uOkiu2ULXxgF8MbKTraOJiFS4Yp+pmTdvHsOGDbvqiMH+/v489thjzJkzh65du5ZpQBG5kmEYbEw6yfSVCRxIvwBAw1reTIyNJiaiFpfyNAimiFQ9xS41v/zyC6+88so1H+/ZsyevvfZamYQSkWtLTMtk+ooENu8/BUB1L1ee7tGEQe0a4KrB80SkCit2qfn9999xdb32AF0uLi6cPHmyTEKJyJVOns9hzrp9fPbTYSwGuDk78WDnUEZ2a4S/pwbPExEpdqmpW7cue/bsoVGjRld9/NdffyU4OLjMgolIgew8M+9tSWH+hgNc/O/geX1vCuL53pGE1PS2SSbNoi0ilVGxS03fvn2ZNGkSffr0wcPDo9Bjly5dYvLkyfTr16/MA4rYiq3mZrrMMAy+/uU4s1YncezcJQBurufPi/2iaRtao0KziIjYg2L/lZ44cSJffPEFTZo0YdSoUURERGAymUhISODtt9/GbDYzYcKE8swqUmXsPHSWl1fEs+vwOQCC/T14rncEA5rXxclJg+eJiFxNsUtN7dq12bZtGyNGjGD8+PEYRsEgGCaTiV69ejF//nxq165dbkFFqoIjZ7J4ZXUiy389AYCXmzMjbm3II13D8XTTWDMiIkUp0fn0kJAQVq5cydmzZzlw4ACGYdC4cWOqV9c8MiI34kJ2Pm9+d4D3tqSQm2/BZIK/ta7PMz2bEOjncf0nEBGR0o0oXL16ddq2bVvWWUSqrN6vb+bMxVwAOobXZGK/KJrW8bdxKhER+1KxVz6KiNXWA6esX5+5mEt4gDcv9I3i9qhATTopIlIKKjUiFWz/7+eZvjKBjUn/G9dpfN9IHuocpsHzRERugEqNSAU5fSGHud/uY8mPRzBbDFycTOT/d9bJIR1CVGhERG6Q/oqKlLOcfDPvxCUT8+pGPvr+MGaLQa+mtfn6ic62jiYi4lB0pkaknBiGwco9acxcncCRMwWD5zWt48fE2Gg6NqxJVm6+jROKiDgWlRqRcrD7yDleXh7PjkNnAQj0dWdsrwjublVPg+eJiJQTlRqRMnT83CVmrU7kq93HAfBwdeKxWxry2K3hFT7NgohIVWM3f2WnT5/OihUr2L17N25ubpw7d87WkUSsLubkszAumXc3HSQn3wLA3a3qMbZXBEH+GjxPRKQi2E2pyc3N5a9//SsdO3bkvffes3UcqQRsPeEkgNlisGznUV5dm8TJ8zkAtAurwYux0dxUz3aD52kWbRGpiuym1Lz00ksALF682LZBRP5r24FTTFuRQMKJTABCanoxvk8UvZrW1uB5IiI2YDelpjRycnLIycmx3s/MzLRhGnEUyScvMGNlAt8mpAPg6+HCk7c35v6Oobi5aJQEERFbcehSM2PGDOsZHpEbdfZiLq+v389H3x8i32Lg7GRiSIcQRt/emBrebraOJyJS5dn0v5VTpkzBZDIVeduxY0epn3/8+PFkZGRYb0eOHCnD9FKVfLAtlZjXNrJ4Wyr5FoPuUYGsGXMLU+5oqkIjIlJJ2PRMzahRoxg0aFCR64SGhpb6+d3d3XF3dy/19lK1GYZh/Xrm6iQAIoN8mRgbTZfGAbaKJSIi12DTUhMQEEBAgF4cpPL57VgGU7/Za71f08eN53pF8JfW9XHW4HkiIpWS3VxTc/jwYc6cOcPhw4cxm83s3r0bgEaNGuHj42PbcOIwfs/M5tU1SSz7+Sh/OFHD6ie7UstX482IiFRmdlNqJk2axPvvv2+937JlSwA2bNhATEyMjVKJo8jKzefdTQd5J+4gl/LMAPS7OZjlv54AwNvdbv6piIhUWXbzl3rx4sUao0bKnMVi8OWuY7y6Jom0zGwAWodUZ2JsFBFBvtZSIyIilZ/dlBqRsvb9wdO8vCKe344VjF9Ur7on4/tE0femIEwmk2bRFhGxMyo1Uq4qw1QGf5Z66iIzViWwZu/vAPi6u/D4bY14oFMoHq7ONk4nIiKlZftXGJEKkpGVx5vf7ef97ankmQ2cTHBf+waM6d6EAB999F9ExN6p1IjDyzNb+Pj7Q8xbv59zWXkA3NqkFhNio2hS29fG6UREpKyo1IjDMgyD7xLTmb4ygYMnLwLQpLYPL/SNIiYi0MbpRESkrKnUiEOKP57J9JXxbD1wGoCa3m483bMJ97Spj4uzJp0UEXFEKjXiUNLPZzN7zT6W7jyCYYCbsxMPdQljZLeG+Hm42jpeIV5uLqTOjLV1DBERh6FSIw4hO8/Mv7ekMH9jMlm5/xs87/nekdSv4WXjdCIiUhFUasQh9H1jC2kZBYPnNa9fjUn9omgdUsPGqUREpCKp1Ijd+vnQWevXaRnZ1PH34Pk+kfS/uQ5OmnRSRKTKUakRu3P4dBavrE5kxZ7/TWHw5O2NGRHTUIPniYhUYSo1Yjcys/N4+7sDLNqaSq7ZgpMJLP+dSfuxW8NVaEREqjh9trWKy8rNJ3TcCkLHrai0cx3lmy18+P0hYl7dyDubDpJrttC5UU2Wjehk62giIlKJ6EyNVGobktL5x4oE9qdfACC8ljcTY6PoFhHIpTyzjdOJiEhlolIjlVJS2nmmr0xg076TAFT3cmVM9ybc174Brho8T0RErkKlRiqVUxdymLNuH5/+eBiLAa7OJh7oFMqobo3x96pcg+eJiEjlolIjlUJ2nplFW1N5e8MBLuQUXNvTu2kQ4/tGElLT28bpRETEHqjUiE0ZhsHyX08wc1Uix85dAuCmuv5MjI2ifXhNG6cTERF7olIjNrPr8FmmLY/n58PnAAjy8+C53hEMbFFXg+eJiEiJqdRIhTt6NotZq5P4+pfjAHi6OjP81oYMuyUMLzf9SoqISOnoFUQqzMWcfN767gD/2pJCbr4Fkwn+0qoez/aKoLafh63jiYiInVOpkQrTe95mTl/MBaBDeA0mxkbTrK6/jVNdm5ebC6kzY20dQ0REikmlRsrVtgOnrF+fvphLaE0vXugbRY/o2phMum5GRETKjkqNlIsD6eeZviKBDUknrcvG94nkwc5huLlo8DwRESl7KjWVXFZuPtGT1gAQP7VXpb+Q9szFXOZ9u4+PfziM2WLg4mQi/7+zTg7pGKJCIyIi5UavMFImcvLN/HPTQW59dQMfbD+E2WLQI7o2X4/qbOtoIiJSRVTu//ZLpWcYBmv2pjFjVSKHTmcBEB3sx8TYKDo1Cqi0M3+LiIjjUamRUvv16DleXp7Aj6lnAKjl687YXhHc3aoezho8T0REKphKjZTYiYxLvLo6iS92HQPAw9WJR29pyGO3hOPtrl8pERGxDb0CSbFdzMnnnU0HeXdTMtl5FgDualmXZ3tFUKeap43TiYhIVadSI9dlsRh8/vNRXluTRPr5HADahdZgYr8obq5XzbbhRERE/kulRoq0LfkU01cksPd4JgANangxvk8kvZsFafA8ERGpVFRq5KoOnrzAjFWJrIv/HQBfDxdG39aY+zuF4O7ibON0IiIiV1KpkULOZeXyxvoDfLA9lXyLgbOTib+3b8CT3ZtQw9vN1vFERESuSaVGrD7cfoj5G5PJuJQHwG2RgbzQN5JGgb42TiYiInJ9KjU3yN6mMfgzwzCsX89YlQhAZJAvE2Kj6Nq4lq1iiYiIlJh9vQJLmdp7PIOp38Rb79f0duPZXhH8rU19DZ4nIiJ2R6WmCkrPzOa1tUn8386j/OFEDavHdKWWr4ftgpWQl5sLqTNjbR1DREQqCZWaKuRSrpl/bj7IwrhksnLNAMTeHMyKX08AaDRgERGxa3oVqwIsFoOvdh9j1uok0jKzAWjVoBoT+0UTGeRrLTUiIiL2TKXGwf2YcoaXV8Tz69EMAOpW82Rcn0j63RyMyWTSLNoiIuIwVGoc1KHTF5m5KpFVv6UB4OPuwuPdGvFg51A8XDV4noiIOB6VGgeTcSmPtzccYPHWVHLNFpxMcG+7BjzVowkBPu62jiciIlJuVGocRJ7ZwpIfDzN33T7OZhUMnte1cQATY6OJCNLgeSIi4vhUauycYRhsSEpn+ooEkk9eBKBxoA8TYqOIiQi0cToREZGKo1JjxxLTMpm+IoHN+08BUMPbjad6NOHetvVxcXaycToREZGKpVJjh9LPZzN33T4+++kIFgPcnJ14sHMoj9/WCD8PV1vHExERsQmVGjuSnWdm0dZU5m84wMXLg+fdFMzzvSNpUNPLxulERERsS6XGjsS+sYUTGQWD5zWv58+L/aJpE1rDxqlEREQqB5WaSm734XPWr09kZBPs78HzvSO5o3kdnDTppIiIiJVKTSV15EwWr6xOZPkfpjAYfVsjRsQ0wtNNg+eJiIj8mUpNJXM+O4+3NyTz760p5OZbMJmwzqQ9PKahCo2IiMg16HO/lUS+2cLHPxwi5tWNLIxLJjffQqeGNVk2oqOto4mIiNgFnampBOL2nWT6inj2/X4BgPAAb17oG8XtUYFcyjPbON2N8XJzIXVmrK1jiIhIFaBSY0P7fz/P9JUJbEw6CUA1L1fG3N6YwR1CcNXgeSIiIiWiUmMDpy/kMPfbfSz58Qhmi4Grs4n7O4Yy+rbG+Htp8DwREZHSUKmpQDn5ZhZvTeWt7w5wPicfgF5NazOuTxRhAd42TiciImLfVGoqgGEYrNyTxszVCRw5cwmApnX8mBgbTceGNW2cTkRExDGo1JSz3UfO8fLyeHYcOgtAbT93xvaK5K6WdTV4noiISBlSqSknx85d4tXViXy1+zgAnq7OPHZrOI/eEo6Xm37sIiIiZU2vrmXsYk4+C+OSeXfTQXLyLQDc3aoeY3tFEOTvYeN0IiIijkulpgwt23mUN747wMnzOQC0C6vBi7HR3FTP38bJREREHJ9KTRl68T97AQip6cX4PlH0alobk0nXzYiIiFQElZobZLYY1q/9PFwYfXtj7u8YipuLBs8TERGpSCo1N8j5D59gWj2mK3WqedkwjYiISNWl0wllqJqXm60jiIiIVFkqNSIiIuIQVGpERETEIdhFqUlNTeXhhx8mLCwMT09PGjZsyOTJk8nNzbV1NBEREakk7OJC4cTERCwWC++88w6NGjXit99+Y9iwYVy8eJHXXnvN1vHsmpebC6kzY20dQ0RE5IbZRanp3bs3vXv3tt4PDw8nKSmJBQsWFFlqcnJyyMnJsd7PzMws15wiIiJiO3bx9tPVZGRkUKNGjSLXmTFjBv7+/tZb/fr1KyidiIiIVDS7LDXJycm8+eabDB8+vMj1xo8fT0ZGhvV25MiRCkooIiIiFc2mpWbKlCmYTKYibzt27Ci0zfHjx+nduzd//etfeeSRR4p8fnd3d/z8/ArdRERExDHZ9JqaUaNGMWjQoCLXCQ0NtX59/PhxunXrRseOHXn33XfLOZ2IiIjYE5uWmoCAAAICAoq17rFjx+jWrRutW7dm0aJFODnZ5TtnIiIiUk7s4tNPx48fJyYmhgYNGvDaa69x8uRJ62NBQUE2TCYiIiKVhV2UmrVr13LgwAEOHDhAvXr1Cj1mGMY1thIREZGqxC7ew3nggQcwDOOqNxERERGwk1IjIiIicj0qNSIiIuIQVGpERETEIajUiIiIiENQqRERERGHoFIjIiIiDsEuxqmpyrzcXEidGWvrGCIiIpWeztSIiIiIQ1CpEREREYegUiMiIiIOQaVGREREHIJKjYiIiDgElRoRERFxCCo1IiIi4hBUakRERMQhqNSIiIiIQ1CpEREREYegUiMiIiIOQaVGREREHIJKjYiIiDgElRoRERFxCCo1IiIi4hBUakRERMQhuNg6gL3zcnMhdWasrWOIiIhUeTpTIyIiIg5BpUZEREQcgkqNiIiIOASVGhEREXEIKjUiIiLiEFRqRERExCGo1IiIiIhDUKkRERERh6BSIyIiIg5BpUZEREQcgkqNiIiIOASVGhEREXEIKjUiIiLiEFRqRERExCGo1IiIiIhDcLF1gIpkGAYAmZmZNk4iIiIixXX5dfvy6/i1VKlSc/78eQDq169v4yQiIiJSUufPn8ff3/+aj5uM69UeB2KxWDh+/Di+vr6YTKYye97MzEzq16/PkSNH8PPzK7PnrUwcfR+1f/bP0ffR0fcPHH8ftX+lZxgG58+fp06dOjg5XfvKmSp1psbJyYl69eqV2/P7+fk55C/qHzn6Pmr/7J+j76Oj7x84/j5q/0qnqDM0l+lCYREREXEIKjUiIiLiEFRqyoC7uzuTJ0/G3d3d1lHKjaPvo/bP/jn6Pjr6/oHj76P2r/xVqQuFRURExHHpTI2IiIg4BJUaERERcQgqNSIiIuIQVGpERETEIajUlEJqaioPP/wwYWFheHp60rBhQyZPnkxubm6R2xmGwZQpU6hTpw6enp7ExMSwd+/eCkpdMtOnT6dTp054eXlRrVq1Ym3zwAMPYDKZCt06dOhQvkFvQGn20Z6O4dmzZxkyZAj+/v74+/szZMgQzp07V+Q2lf0Yzp8/n7CwMDw8PGjdujWbN28ucv24uDhat26Nh4cH4eHhLFy4sIKSlk5J9m/jxo1XHCuTyURiYmIFJi6+TZs20b9/f+rUqYPJZOKrr7667jb2dPxKun/2dvxmzJhB27Zt8fX1JTAwkIEDB5KUlHTd7Sr6GKrUlEJiYiIWi4V33nmHvXv3MnfuXBYuXMgLL7xQ5HazZs1izpw5vPXWW/z0008EBQXRo0cP65xUlUlubi5//etfGTFiRIm26927NydOnLDeVq5cWU4Jb1xp9tGejuF9993H7t27Wb16NatXr2b37t0MGTLkuttV1mP42WefMWbMGCZMmMCuXbvo2rUrffr04fDhw1ddPyUlhb59+9K1a1d27drFCy+8wOjRo1m2bFkFJy+eku7fZUlJSYWOV+PGjSsocclcvHiR5s2b89ZbbxVrfXs7fiXdv8vs5fjFxcXx+OOP8/3337Nu3Try8/Pp2bMnFy9evOY2NjmGhpSJWbNmGWFhYdd83GKxGEFBQcbMmTOty7Kzsw1/f39j4cKFFRGxVBYtWmT4+/sXa92hQ4caAwYMKNc85aG4+2hPxzA+Pt4AjO+//966bPv27QZgJCYmXnO7ynwM27VrZwwfPrzQssjISGPcuHFXXf+5554zIiMjCy177LHHjA4dOpRbxhtR0v3bsGGDARhnz56tgHRlCzC+/PLLItext+P3R8XZP3s+foZhGOnp6QZgxMXFXXMdWxxDnakpIxkZGdSoUeOaj6ekpJCWlkbPnj2ty9zd3bn11lvZtm1bRUSsEBs3biQwMJAmTZowbNgw0tPTbR2pzNjTMdy+fTv+/v60b9/euqxDhw74+/tfN2tlPIa5ubns3Lmz0M8eoGfPntfcn+3bt1+xfq9evdixYwd5eXnllrU0SrN/l7Vs2ZLg4GBuv/12NmzYUJ4xK5Q9Hb8bYa/HLyMjA6DI1z1bHEOVmjKQnJzMm2++yfDhw6+5TlpaGgC1a9cutLx27drWx+xdnz59+Pjjj/nuu++YPXs2P/30E7fddhs5OTm2jlYm7OkYpqWlERgYeMXywMDAIrNW1mN46tQpzGZziX72aWlpV10/Pz+fU6dOlVvW0ijN/gUHB/Puu++ybNkyvvjiCyIiIrj99tvZtGlTRUQud/Z0/ErDno+fYRg8/fTTdOnShWbNml1zPVscQ5WaP5gyZcpVL9z6423Hjh2Ftjl+/Di9e/fmr3/9K4888sh1v4fJZCp03zCMK5aVl9LsX0ncc889xMbG0qxZM/r378+qVavYt28fK1asKMO9KFp57yPYzzG8WqbrZa0Mx7AoJf3ZX239qy2vLEqyfxEREQwbNoxWrVrRsWNH5s+fT2xsLK+99lpFRK0Q9nb8SsKej9+oUaP49ddfWbJkyXXXrehj6FIuz2qnRo0axaBBg4pcJzQ01Pr18ePH6datGx07duTdd98tcrugoCCgoLkGBwdbl6enp1/RZMtLSffvRgUHBxMSEsL+/fvL7Dmvpzz30Z6O4a+//srvv/9+xWMnT54sUVZbHMOrCQgIwNnZ+YqzFkX97IOCgq66vouLCzVr1iy3rKVRmv27mg4dOvDRRx+VdTybsKfjV1bs4fg98cQTfP3112zatIl69eoVua4tjqFKzR8EBAQQEBBQrHWPHTtGt27daN26NYsWLcLJqeiTXmFhYQQFBbFu3TpatmwJFLyPHhcXxyuvvHLD2YujJPtXFk6fPs2RI0cKFYDyVp77aE/HsGPHjmRkZPDjjz/Srl07AH744QcyMjLo1KlTsb+fLY7h1bi5udG6dWvWrVvHnXfeaV2+bt06BgwYcNVtOnbsyDfffFNo2dq1a2nTpg2urq7lmrekSrN/V7Nr1y6bH6uyYk/Hr6xU5uNnGAZPPPEEX375JRs3biQsLOy629jkGJbbJcgO7NixY0ajRo2M2267zTh69Khx4sQJ6+2PIiIijC+++MJ6f+bMmYa/v7/xxRdfGHv27DHuvfdeIzg42MjMzKzoXbiuQ4cOGbt27TJeeuklw8fHx9i1a5exa9cu4/z589Z1/rh/58+fN5555hlj27ZtRkpKirFhwwajY8eORt26dSvl/hlGyffRMOzrGPbu3du4+eabje3btxvbt283brrpJqNfv36F1rGnY/jpp58arq6uxnvvvWfEx8cbY8aMMby9vY3U1FTDMAxj3LhxxpAhQ6zrHzx40PDy8jKeeuopIz4+3njvvfcMV1dX4/PPP7fVLhSppPs3d+5c48svvzT27dtn/Pbbb8a4ceMMwFi2bJmtdqFI58+ft/4bA4w5c+YYu3btMg4dOmQYhv0fv5Lun70dvxEjRhj+/v7Gxo0bC73mZWVlWdepDMdQpaYUFi1aZABXvf0RYCxatMh632KxGJMnTzaCgoIMd3d345ZbbjH27NlTwemLZ+jQoVfdvw0bNljX+eP+ZWVlGT179jRq1apluLq6Gg0aNDCGDh1qHD582DY7UAwl3UfDsK9jePr0aWPw4MGGr6+v4evrawwePPiKj4/a2zF8++23jZCQEMPNzc1o1apVoY+TDh061Lj11lsLrb9x40ajZcuWhpubmxEaGmosWLCgghOXTEn275VXXjEaNmxoeHh4GNWrVze6dOlirFixwgapi+fyR5j/fBs6dKhhGPZ//Eq6f/Z2/K71mvfHv4+V4Ria/htWRERExK7p008iIiLiEFRqRERExCGo1IiIiIhDUKkRERERh6BSIyIiIg5BpUZEREQcgkqNiIiIOASVGhEREXEIKjUiUiY2btyIyWTi3Llzto5iMw888AADBw60dQyRKkulRqQMleZFzWQy8dVXX5VLnvISExPDmDFjCi3r1KkTJ06cwN/fv0IyPPDAA4wbN+6K5WazmU6dOnH33XcXWp6RkUH9+vWZOHFiheQTkYqnUiPiIPLy8mz6/d3c3AgKCsJkMpX797JYLKxYseKqM1g7Ozvz/vvvs3r1aj7++GPr8ieeeIIaNWowadKkcs9X0Wx97EUqC5UakXIUExPD6NGjee6556hRowZBQUFMmTLF+nhoaCgAd955JyaTyXof4JtvvqF169Z4eHgQHh7OSy+9RH5+vvVxk8nEwoULGTBgAN7e3kydOpV69eqxcOHCQhl+/vlnTCYTBw8eBArOWDz66KMEBgbi5+fHbbfdxi+//GJdf8qUKbRo0YIPP/yQ0NBQ/P39GTRoEOfPnwcKzpDExcXx+uuvYzKZMJlMpKamXvXtp2XLltG0aVPc3d0JDQ1l9uzZhbKFhobyj3/8g4ceeghfX18aNGjAu+++e92f69atW3FycqJ9+/ZXfbxx48bMmDGDJ554guPHj/Of//yHTz/9lPfffx83N7cr1k9KSsJkMpGYmFho+Zw5cwgNDcUwDMxmMw8//DBhYWF4enoSERHB66+/XmTO0NBQ5s2bV2hZixYtCv0OXO94/Flqaiomk4mlS5cSExODh4cHH330EadPn+bee++lXr16eHl5cdNNN7FkyZJC217v9xEgMTGRLl264OHhQXR0NN9+++0VZxOPHTvGPffcQ/Xq1alZsyYDBgwgNTW1yJ+FSEVQqREpZ++//z7e3t788MMPzJo1i6lTp7Ju3ToAfvrpJwAWLVrEiRMnrPfXrFnD3//+d0aPHk18fDzvvPMOixcvZvr06YWee/LkyQwYMIA9e/bwyCOPMGjQoEJnJwA++eQTOnbsSHh4OIZhEBsbS1paGitXrmTnzp20atWK22+/nTNnzli3SU5O5quvvmL58uUsX76cuLg4Zs6cCcDrr79Ox44dGTZsGCdOnODEiRPUr1//iv3euXMnf/vb3xg0aBB79uxhypQpvPjiiyxevLjQerNnz6ZNmzbs2rWLkSNHMmLEiCvKxZ99/fXX9O/fHyena/8Je+KJJ2jevDn3338/jz76KJMmTaJFixZXXTciIoLWrVtf9Wd33333YTKZsFgs1KtXj6VLlxIfH8+kSZN44YUXWLp0aZFZi1Lc43E1zz//PKNHjyYhIYFevXqRnZ1N69atWb58Ob/99huPPvooQ4YM4Ycffii0XVG/jxaLhYEDB+Ll5cUPP/zAu+++y4QJEwptn5WVRbdu3fDx8WHTpk1s2bIFHx8fevfuTW5ubql/FiJlolznABepYoYOHWoMGDDAev/WW281unTpUmidtm3bGs8//7z1PmB8+eWXhdbp2rWr8Y9//KPQsg8//NAIDg4utN2YMWMKrfPzzz8bJpPJSE1NNQzDMMxms1G3bl3j7bffNgzDMNavX2/4+fkZ2dnZhbZr2LCh8c477xiGYRiTJ082vLy8jMzMTOvjY8eONdq3b19ov5588slCz7FhwwYDMM6ePWsYhmHcd999Ro8ePQqtM3bsWCM6Otp6PyQkxPj73/9uvW+xWIzAwEBjwYIFRlGaNGlifP3110WuYxiGkZCQYADGTTfdZOTl5RW57pw5c4zw8HDr/aSkJAMw9u7de81tRo4cadx9993W+38+/iEhIcbcuXMLbdO8eXNj8uTJhmEU73j8WUpKigEY8+bNK3J/DMMw+vbtazzzzDPW+9f7fVy1apXh4uJinDhxwvr4unXrCv2Ovvfee0ZERIRhsVis6+Tk5Bienp7GmjVrrptJpDzpTI1IObv55psL3Q8ODiY9Pb3IbXbu3MnUqVPx8fGx3i6fGcnKyrKu16ZNm0LbtWzZksjISOvbDnFxcaSnp/O3v/3N+rwXLlygZs2ahZ47JSWF5ORk6/OEhobi6+tbosx/lpCQQOfOnQst69y5M/v378dsNluX/fHnYzKZCAoKKvJ7JSQkcPToUbp3737dDP/+97/x8vIiJSWFo0ePWpcPHz680P4DDBo0iEOHDvH9998D8PHHH9OiRQuio6Ot2y1cuJA2bdpQq1YtfHx8+Oc//8nhw4evm+Nains8rubPx95sNjN9+nRuvvlm6/OtXbv2inxF/T4mJSVRv359goKCrI+3a9fuiswHDhzA19fXmrdGjRpkZ2dfN7NIeXOxdQARR+fq6lro/uW3MopisVh46aWXuOuuu654zMPDw/q1t7f3FY8PHjyYTz75hHHjxvHJJ5/Qq1cvAgICrM8bHBzMxo0br9iuWrVqN5T5zwzDuOKiYcMwrlivpN/r66+/pkePHnh6ehb5/bdv387cuXNZtWoVs2bN4uGHH7ZeHzJ16lSeffbZQusHBwfTrVs3PvnkEzp06MCSJUt47LHHrI8vXbqUp556itmzZ9OxY0d8fX159dVXr3h754+cnJyu2Oc/XtRb3ONxNX8+9rNnz2bu3LnMmzePm266CW9vb8aMGXPFW0JF/byvdsz+zGKxXPWtOoBatWoVua1IeVOpEbExV1fXQmcuAFq1akVSUhKNGjUq8fPdd999TJw4kZ07d/L555+zYMGCQs+blpaGi4tLoYuSS8rNze2KzH8WHR3Nli1bCi3btm0bTZo0wdnZudTf+z//+Q+PPPJIketcunSJoUOH8thjj9G9e3eaNGlCs2bNeOeddxg+fDiBgYEEBgZesd3gwYN5/vnnuffee0lOTmbQoEHWxzZv3kynTp0YOXKkddn1zkzUqlWLEydOWO9nZmaSkpJivV9Wx+NyvgEDBvD3v/8dKCgf+/fvJyoqqtjPERkZyeHDh/n999+pXbs28L/rvv6Y+bPPPrNe2CxSmejtJxEbCw0NZf369aSlpXH27FkAJk2axAcffMCUKVPYu3cvCQkJfPbZZ8UaYyUsLIxOnTrx8MMPk5+fX+hjz927d6djx44MHDiQNWvWkJqayrZt25g4cSI7duwoUeYffviB1NRUTp06ddUzK8888wzr169n2rRp7Nu3j/fff5+33nrrijMkJZGens5PP/1Ev379ilxv3LhxWCwWXnnlFQAaNGjA7NmzGTt2bJGf0rnrrrvIzMxkxIgRdOvWjbp161ofa9SoETt27GDNmjXs27ePF1988YoX/D+77bbb+PDDD9m8eTO//fYbQ4cOLVToyup4XM63bt06tm3bRkJCAo899hhpaWkleo4ePXrQsGFDhg4dyq+//srWrVutFwpfPoMzePBgAgICGDBgAJs3byYlJYW4uDiefPLJQm/xidiCSo2Ijc2ePZt169ZRv359WrZsCUCvXr1Yvnw569ato23btnTo0IE5c+YQEhJSrOccPHgwv/zyC3fddVeht2lMJhMrV67klltu4aGHHqJJkyYMGjSI1NRU6//Mi+PZZ5/F2dmZ6OhoatWqddXrSlq1asXSpUv59NNPadasGZMmTWLq1Kk88MADxf4+f/bNN9/Qvn37q55luSwuLo63336bxYsXF3qLZtiwYdayd7W3wQD8/Pzo378/v/zyC4MHDy702PDhw7nrrru45557aN++PadPny501uZqxo8fzy233EK/fv3o27cvAwcOpGHDhtbHy+p4ALz44ou0atWKXr16ERMTQ1BQUIkHgnR2duarr77iwoULtG3blkceecRapC+/7enl5cWmTZto0KABd911F1FRUTz00ENcunRJZ27E5kzGtf51i4hUMnfccQddunThueees3WUKmPr1q106dKFAwcOFCpkIpWRrqkREbvRpUsX7r33XlvHcGhffvklPj4+NG7cmAMHDvDkk0/SuXNnFRqxCzpTIyIiVh988AHTpk3jyJEjBAQE0L17d2bPnk3NmjVtHU3kulRqRERExCHoQmERERFxCCo1IiIi4hBUakRERMQhqNSIiIiIQ1CpEREREYegUiMiIiIOQaVGREREHIJKjYiIiDiE/wdvuXe8o5pFPgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ50lEQVR4nO3deVxU9eL/8dewr6KICC5sIghZ5pJ7peVOZcu3m+U1s9LUzPbS9KpZplkubWp1u9pq+Wu75W7mrmV63UpEUXAnXEFEtpnz+4Pb3MgNkOEww/v5eMzjwZw5Z+Z9OAhvz5z5fCyGYRiIiIiIODk3swOIiIiIVASVGhEREXEJKjUiIiLiElRqRERExCWo1IiIiIhLUKkRERERl6BSIyIiIi7Bw+wAlclms3HkyBECAwOxWCxmxxEREZFSMAyDM2fOUK9ePdzcLn4+plqVmiNHjtCwYUOzY4iIiEg5HDx4kAYNGlz08WpVagIDA4Hib0qNGjVMTiMiIiKlkZ2dTcOGDe1/xy+mWpWaP95yqlGjhkqNiIiIk7ncpSO6UFhERERcgkqNiIiIuASVGhEREXEJ1eqaGhERcX42m42CggKzY0gF8vT0xN3d/Yqfx2lKzcSJE/n666/ZtWsXvr6+tG/fnldffZX4+Hizo4mISCUpKCggLS0Nm81mdhSpYDVr1iQsLOyKxpFzmlKzatUqHn30Ua677jqKiooYNWoU3bp1Y+fOnfj7+5sdT0REHMwwDI4ePYq7uzsNGza85CBs4jwMwyA3N5fMzEwAwsPDy/1cTlNqFi9eXOL+7NmzCQ0NZfPmzdxwww0mpRIRkcpSVFREbm4u9erVw8/Pz+w4UoF8fX0ByMzMJDQ0tNxvRTlNqfmrrKwsAIKDgy+6Tn5+Pvn5+fb72dnZDs8lIiKOYbVaAfDy8jI5iTjCH0W1sLCw3KXGKc/dGYbBU089RceOHWnatOlF15s4cSJBQUH2m6ZIEBFxfpq7zzVVxHF1ylIzbNgwtm/fzty5cy+53siRI8nKyrLfDh48WEkJRUSkqsotKCJqxAKiRiwgt6DI7DhSgZzu7afHHnuM7777jtWrV19yUisAb29vvL29KymZiIiImMlpztQYhsGwYcP4+uuv+fHHH4mOjjY7koiISKWbM2cONWvWNDtGmVRWZqcpNY8++iiffPIJn332GYGBgWRkZJCRkcG5c+fMjiYiInJRDzzwABaL5bxbjx49LrttVFQU06dPL7HsnnvuYffu3Q5K+z/OWJ6c5u2nmTNnAtCpU6cSy2fPns0DDzxQ+YFERERKqUePHsyePbvEsvJeHuHr62v/CLSU5DRnagzDuOBNhUZEpHoyDIPcgqJy3f5Q3u0NwyhTVm9vb8LCwkrcatWqBcC4ceOIiIjA29ubevXqMXz4cKD4P/H79+/nySeftJ/dgfPPoIwbN45rr72Wf/3rX0RERBAQEMCQIUOwWq1MnjyZsLAwQkNDmTBhQolMU6dO5eqrr8bf35+GDRsydOhQcnJyAFi5ciUDBgwgKyvL/trjxo0Dikd1fu6556hfvz7+/v60adOG5T+uYPuh02w/dBqrzWDOnDlERETg5+fHHXfcwYkTJ8r0/SovpzlTIyIi8mfnCq0kjllyRc/R6uXl5dpu5/ju+Hld+Z/QL7/8kmnTpvH5559z1VVXkZGRwbZt2wD4+uuvadasGYMGDWLgwIGXfJ69e/eyaNEiFi9ezN69e/m///s/0tLSiIuLY9WqVaxfv54HH3yQm2++mbZt2wLg5ubGm2++SVRUFGlpaQwdOpTnnnuOGTNm0L59e6ZPn86YMWNISUkBICAgAIABAwaQnp7O559/Tr169fjmm29I6tWT/7dsHZHRjfj555958MEHeeWVV7jzzjtZvHgxY8eOveLvVWmo1IiIiDjY/Pnz7aXgD88//zz+/v6EhYXRpUsXPD09iYiIoHXr1kDx4LLu7u4EBgYSFhZ2yee32Wz861//IjAwkMTERDp37kxKSgoLFy7Ezc2N+Ph4Xn31VVauXGkvNU888YR9++joaF566SWGDBnCjBkz8PLyIigoCIvFUuK19+7dy9y5czl06BD16tUD4JlnnmHR4sX8+4tPGT5iDG+9+Sbdu3dnxIgRAMTFxbF+/frzZgZwBJUaERFxSr6e7uwc373M2+UWFNnP0GwafXO5zrj4epZtxNvOnTvbrw39Q3BwMGfPnmX69OnExMTQo0cPevXqxa233oqHR9kyRUVFERgYaL9ft25d3N3dS8yPVbduXfv8SgArVqzglVdeYefOnWRnZ1NUVEReXh5nz5696JyK//nPfzAMg7i4uBLL8/Pz8fCtAcCuXcnccccdJR5v166dSo2IiMjFWCyWK34LyM/Lo0LeRrocf39/YmNjz1seHBxMSkoKy5Yt44cffmDo0KG89tprrFq1Ck9Pz1I//1/XtVgsF1z2x+zm+/fvp1evXgwePJiXXnqJ4OBg1q5dy0MPPURhYeFFX8dms+Hu7s7mzZtLTGVgtRkczil+7rJeb1SRVGpERERM5Ovry2233cZtt93Go48+SpMmTdixYwctWrTAy8vLPudVRdq0aRNFRUVMmTLFfjZn3rx5Jda50Gs3b94cq9VKZmYm119/vX251WaQf6R4TsaEhER++umnEtv99b6jqNSIiIg4WH5+PhkZGSWWeXh4MH/+fKxWK23atMHPz4+PP/4YX19fIiMjgeK3lVavXk2fPn3w9vYmJCSkQvI0atSIoqIi3nrrLW699VbWrVvHrFmzSqwTFRVFTk4Oy5cvp1mzZvj5+REXF0ffvn25//77mTJlCs2bN+f48eP8sHw5NerFcP1N3Rj22GNc37EDkydP5vbbb2fp0qWV8tYTONFHukVERJzV4sWLCQ8PL3Hr2LEjNWvW5P3336dDhw5cc801LF++nO+//57atWsDMH78eNLT02nUqBF16tSpsDzXXnstU6dO5dVXX6Vp06Z8+umnTJw4scQ67du3Z/Dgwdxzzz3UqVOHyZMnA8Xjw91///08/fTTxMfHc9ttt7Hx542EhdcHoG3btvzzn//krbfe4tprr2Xp0qWMHj26wrJfisUw882vSpadnU1QUBBZWVnUqFHD7DgiIlIGeXl5pKWlER0djY+PT7mfJ7egyP5R8Ir6aHZ1Z7UZ/Pbft5+uqheEu1vZZ9y+1PEt7d9vHUkREalW/Lw8SJ+UZHYMcQC9/SQiIiIuQaVGREREXIJKjYiIOJVqdClotVIRx1WlRkREnMIfg70VFBSYnEQcITc3Fzh/IMGy0IXCIiLiFDw8PPDz8+PYsWN4enqWmAJAzGW1GRhFxWUzLy+vTJ9+MgyD3NxcMjMzqVmzZomRistKpUZERJyCxWIhPDyctLQ09u/fb3Yc+RObYZB5Og8Aj1wf3Cxl/0h3zZo1Lztx5+Wo1IiIiNPw8vKicePGeguqijlXUMSgb9YCMP+xjviWcewfT0/PKzpD8weVGhERcSpubm5XNPhedeXIQQdtbkUcPlM8T5S3jw8+Jg1oqDckRURExCWo1IiIiIhLUKkRERERl6BSIyIiIi5BpUZERERcgkqNiIiIuASVGhEREXEJKjUiIiLiElRqRERExCWo1IiIiIhLUKkRERERl6BSIyIiIi5BpUZERERcgkqNiIiIuASVGhEREXEJKjUiIiLiElRqREREqoDcgiKiRiwgasQCcguKzI7jlFRqRERExCWo1IiIiIhLUKkRERERl6BSIyIiIi5BpUZERERcgkqNiIiIuASVGhEREXEJKjUiIiLiElRqRERExCWo1IiIiMgVOZNXaP/6dG6BaTlUakRERKRciqw2Pv5pPz2mr7Evm7/9qGl5PEx7ZREREXFKhmGwMuUYExYmk5qZU+Kxvm0iTEqlMzUiIiJSBrsysrn/XxsZMOcXUjNzqOXnyeikBPvjFovFtGw6UyMiIiKXlXkmj2nLdvPFLwexGeDl7sYDHaJ4tHMsnu4WXl6QbHZElRoRERG5uLxCK/9cs4+ZK/dytsAKQNLV4TzfowkRtf0AyC0oMjOinUqNiIhIKeQWFJE4ZgkAO8d3x8/Ltf+E2mwG/952mMmLUzialQdAs4Y1+UdSAq2igk1Od2GufURERESkzDamneTlBTvZfigLgPo1fXmuRzy3XlMPNzfzrpm5HJUaERERASD9+FkmLdrF4t8yAAjw9mBo50Y82CEaH093k9NdnkqNiIhINZeVW8ibP+7how3pFFoN3CzQp3UET3aJo06gt9nxSk2lRkREpJoqtNr45Kf9vLF8D6dzi0cFvjGuDi/0SiA+LNDkdGWnUiMiIlLNGIbB0t8ymLRoF/uOnwUgrm4Ao5ISuTGujsnpyk+lRkREpJoZMPsXNqafAiAkwIunusbzt1YN8HB37jF5VWpERESqgd+z8+xfb0w/hZeHGwOvj2bwjY0I9PE0MVnFUakRERFxYWfzi3h39T7eW73XvizpmnBG9mxCg1p+JiareCo1IiIiLshqM/jqP4d4fUkKmWfySzz22v9d45KDBzr3m2ciIiJynvWpx7n1rbU89+V2Ms/kExHsx7R7mpkdy+Fcr6aJiIhUU3uP5TBxYTI/JGcCEOjjwfCbGnN/+0isNgPYZm5AB1OpERERcXInzxbwxg+7+fTnAxTZDNzdLPRrG8nwmxsT7O8FVJ1JJx1JpUZERMRJ5RdZ+XB9Om/9mMqZvOLS0iUhlBE9E4gNDTA5XeVTqREREXEyhmGw6NcMJi5K5uDJcwAkhtdgdFIC7WNDTE5nHpUaERERJ7L14Glenr+TTfuLB88LDfTmme7x3NWiAe5VeAbtyqBSIyIiLiG3oIjEMUsA2Dm+u8t9ZPnw6XNMXryLf289AoCPpxuP3NCIQTfE4O/tWvtaXvouiIiIVGFn8gqZuXIvH6xNI7/IhsUCd7VowDPd4gkL8jE7XpXiVOPUrF69mltvvZV69ephsVj49ttvzY4kIiLiEEVWG5/9fIDOr69kxsq95BfZaBsTzPfDOvL63c1UaC7Aqc7UnD17lmbNmjFgwADuuusus+OIiIg4xNo9x3l9aQq7f88BIDrEnxd6JdAlIRSLpXpfN3MpTlVqevbsSc+ePc2OISIi4lCDPt4MQE0/Tx6/uTF920Ti5eFUb66YwqlKTVnl5+eTn/+/+S6ys7NNTCMiInJhx87k89qSXfb7Hu4WHmgXxWM3NSbIzzVm0K4MLl1qJk6cyIsvvmh2DBERkQvKK7Tywdo0Zq7cS07+/0b8/X5YBxLCg0xM5pxc+lzWyJEjycrKst8OHjxodiQREREMw+DfWw9z85RVvLYkhZz8IprWq2F/PLK2v4npnJdLn6nx9vbG29vb7BgiIiJ2m9JP8tKCZLYdPA1AeJAPz/doQpeEUJqOW2puOCfn0qVGRESkqjhwIpdJi5NZuCMDAH8vd4Z0asRDHWPw9XKvFhNOOppTlZqcnBxSU1Pt99PS0ti6dSvBwcFERESYmExEROTCss4V8s6KVOasS6fAasPNAvdc15Anu8YRGqixZiqSU5WaTZs20blzZ/v9p556CoD+/fszZ84ck1KJiIicr/C/g+dN/2E3p3ILAbi+cQijkhJoElbjMltLeThVqenUqROGYZgdQ0RE5KIMw+DHXZlMWJjMvmNnAYgNDWBUUgKd4upo8DwHcqpSIyIiUpX9diSLCQuSWb/3BAC1/b14smscfa5riIe7637g2M/Lg/RJSWbHUKkRERG5Ur9n5/H6khS+/M8hDAO8PNx4sEM0Qzs3ooaPBs+rLCo1IiIi5ZRbUMT7q9OYtWov5wqtANzarB7PdY+nYbCfyemqH5UaERGpNLkFRSSOWQLAzvHd8fNyzj9DNpvBl5sP8dqSXfyeXTwdT4uImoy+JZEWEbVMTld9OedPk4iIiIn+9u5P7DxaPJ9gg1q+jOjZhKSrw3URsMlUakREREoh/fhZ+9c7j2YT6O3BsJti6d8+Ch9PdxOTyR9UakRERC7h1NkC3li+h09+2m9fdl/rhjzdLZ7aAZqKpypRqREREbmAgiIbH21I583le8jOKzmFwehbEp32eiBX5rofmhcRESkHwzBY/OtRuk5bxcsLksnOK6JJWCD/7N/K7GhyGaqZIiIi/7X90Glenp/MxvSTANQJ9OaZbnH8X8uG5BdZTU4nl6NSIyIi1d6R0+d4bUkK32w5DICPpxuDro/hkRsb4e+tP5XOQkdKRESqrZz8It5dtZf3Vu8jv8gGwJ0t6vNs93jCg3xNTidlpVIjIiLVjtVm8P82HeT1pbs5nlM8eF7r6GBGJyVwTYOa5oZzkKoyP5MjqdSIiEi1smbPMSYsSGZXxhkAomr7MbJXAt0S62rwPCenUiMiItXCnt/P8MrCZFakHAMgyNeT4Tc3pl/bSLw89GFgV6BSIyIiLu14Tj7Tf9jN3I0HsdoMPNws3N8uiuE3x1LTz8vseFKBVGpERMQl5RVamb0unRkrUjmTXzx4XrfEuozo2YSYOgEmpxNHUKkRERGXs2jHUaYu28Ph0+cAaFq/BqOTEmkbU9vkZOJIKjUiIuJynv5/2wEIq+HDcz3iuf3a+ri56SJgV6dSIyIidrkFRSSOWQLAzvHdnWZ+o4Mnc3llYbL9vq+XO0NubMTA62Pw9dIM2tWFc/y0ioiIXEB2XiHvrEhl9tp0Cqw2+/LFj19PZG1/E5OJGVRqRETE6RRZbczdeIBpP+zh5NkCANrGBPPTvv/N2STVj0qNiIg4DcMwWJlyjAkLk0nNzAGgUR1/RiUl0CY6mKvGLjU5oZhJpUZERJxC8tFsXlmYzJo9xwEI9vfiyS6N6dM6Ak93N3ILikxOeGWqwzQGjqZSIyIiVVrmmTymLt3NvE0HsRng5e7GgA5RDO0cS5Cvp9nxpApRqRERkSrpXIGVf67Zx8xVe8ktsAKQdE04I3o0oWGwn8nppCpSqRERkSrFZjP4duthXluSwtGsPACubViTf9ySQMvIYJPTSVWmUiMiIlXGz/tO8PKCZHYczgKgfk1fnu/ZhFuvCdcM2nJZKjUiImK69ONnmbgomSW//Q5AgLcHj3aOZUCHKHw8NXielI5KjYiImOZ0bgFvLk/l45/SKbQauFng3tYRPNk1jpAAjTUjZaNSIyIipvh4w35mrNxL1rlCADrF1+GFXgnE1Q00OZk4K5UaERGpNIZh2L+euGgXAPF1A3khKYEb4+qYFUtchEqNiIhUil8PZ/Hi97/Z79f29+KZ7vHc3bIBHu5uJiYTV6FSIyIiDnU06xyvLUnhmy2H+dOJGhY/cT11An3MCyYuR6VGREQc4mx+Ee+u3sd7q/eSV1g8g/Yt14Qzf/tRAPy9netPkKYxqPqc6ydKRESqPKvN4KvNh3h9aQqZZ/IBuC6qFqOTEmlcN8BeakQqmkqNiIgTyS0oInHMEgB2ju+On1fV+jW+LvU4Ly9IJvloNgARwX6M7NmEHk3DsFgsTj/ppFRtVetfg4iIOKXUzBwmLkxm+a5MAAJ9PHj85sb0axeJt4cGz5PKoVIjIiLldvJsAW/8sJtPfj6A1Wbg4Wbh720jGX5zY4L9vcyOJ9WMSo2IiJRZfpGVD9en89aPqZzJK35LqUtCXUb2akKjOgEmp5PqSqVGRERKzTAMFu7IYNLiZA6ePAdAYngNRt+SQPtGISank+pOpUZEREply4FTvLwgmc37TwEQGujNs93jubNFA9zdNIO2mE+lRkRELunQqVwmL07hu21HAPD1dGfQDTE8cmNMlfv0lVRv+mkUEZELyskr4u0fU/nn2jQKimxYLHBXiwY80y2esCCNBCxVj0qNiIhcUM831nDibAEA7WJqMyopgab1g0xOJXJxZZ5BLCYmhhMnTpy3/PTp08TExFRIKBERMcfaPcftX584W0BMiD/v39+Kzwa2UaGRKq/MZ2rS09OxWq3nLc/Pz+fw4cMVEkpERCpXSsYZJixMZvXuY/ZlL/RqwoAO0Xg6yQzamptJSl1qvvvuO/vXS5YsISjof43darWyfPlyoqKiKjSciIg41rEz+UxdtpsvfjmAzQAPdwtF1uKptP/eNtJpCo0IlKHU3H777QBYLBb69+9f4jFPT0+ioqKYMmVKhYYTERHHyCu08sHaNGasSOVsQfHZ955Nw3i8S2N6TF9jcjqR8il1qbHZiqeNj46O5pdffiEkRIMsiYg4G5vN4PvtR5i8OIXDp4sHz7umQRCjkxJpHR2sCSfFqZX5mpq0tDRH5BAREQfblH6SlxYks+3gaQDqBfnwXI8m3NasHm4aPE9cQJlLzfDhw4mNjWX48OEllr/99tukpqYyffr0isomIuJ0cguKSByzBICd47tXicHp9p84y6uLd7FwRwYA/l7uDO0cy0Mdo/Hx1Aza4jrKfAXYV199RYcOHc5b3r59e7788ssKCSUiIlcu61whExbspMvUVSzckYGbBe5tHcGKZzvxaOdYFRpxOWX+L8SJEydKfPLpDzVq1OD48eMX2EJERCpTodXGZz8fYPoPuzmVWwjA9Y1DGJWUQJOwGianE3GcMpea2NhYFi9ezLBhw0osX7RokQbfExExkWEY/JCcycRFyew7dhaAxqEBjEpKoFN8qMnpRByvzKXmqaeeYtiwYRw7doybbroJgOXLlzNlyhRdTyMiYpJfD2cxYUEyG/YVj/he29+LJ7vG0ee6hnhorBmpJspcah588EHy8/OZMGECL730EgBRUVHMnDmT+++/v8IDiojIxf2encfrS1L48j+HMAzw8nDjoY7RDO3UiEAfT7PjiVSqcl2WP2TIEIYMGcKxY8fw9fUlICCgonOJiMhlvLMilX+tTedcYfHgebc1q8ez3eNpGOxncrKL01QG4kjlKjVFRUWsXLmSvXv3ct999wFw5MgRatSooYIjIuJANpth//qdFXsBaBlZi9FJCTSPqGVWLJEqocylZv/+/fTo0YMDBw6Qn59P165dCQwMZPLkyeTl5TFr1ixH5BQRqfbW7z3OS/N32u83qOXLyJ4J9Lo6DItFg+eJlLnUPP7447Rq1Ypt27ZRu3Zt+/I77riDhx9+uELDiYgI7D2Ww8SFu/gh+fcSy+c/1pGafl4mpRKpespcatauXcu6devw8ir5DykyMpLDhw9XWDARkeru1NkC3li+h09+2k+RzcDdzcI9rRrw2caDQPFFwSLyP2UuNTabDavVet7yQ4cOERgYWCGhRESqs/wiKx9v2M+by/eQnVc8weTNTUIZ2asJ9Wr62kuNiJRU5lLTtWtXpk+fznvvvQeAxWIhJyeHsWPH0qtXrwoPKCJSXRiGweJfM5i0eBf7T+QCkBBeg9FJCXSIDQHQLNoil1DmUjNt2jQ6d+5MYmIieXl53HfffezZs4eQkBDmzp3riIwiIi5v28HTvLxgJ7+knwKgTqA3z3aL566WDXDXDNoipVLmUlOvXj22bt3K559/zubNm7HZbDz00EP07dsXX19fR2QUEXFZR06f47UlKXyzpfiaRB9PNwbd0IhHbojB39v8Gb5FnEmp/sW0aNGC5cuXU6tWLcaPH88zzzzDgAEDGDBggKPziYhUuNyCIhLHLAFg5/ju+HlVfnnIyS9i1sq9vL9mH/lFNgDubFGfZ7vHEx6k/yCKlEepLp1PTk7m7NniydFefPFFcnJyHBrqUmbMmEF0dDQ+Pj60bNmSNWvWmJZFRKSsrDaDuRsP0Om1lby9IpX8IhttooP5flhHpv7tWhUakStQqv+eXHvttQwYMICOHTtiGAavv/76RUcOHjNmTIUG/LMvvviCJ554ghkzZtChQwfeffddevbsyc6dO4mIiHDY64qIVIQ1e44xYUEyuzLOABBV24+RvRLollhXg+eJVIBSlZo5c+YwduxY5s+fj8ViYdGiRXh4nL+pxWJxaKmZOnUqDz30kH2Qv+nTp7NkyRJmzpzJxIkTHfa6IiJXYs/vZ3hlYTIrUo4BEOTryeM3N+bvbSOr3FgzmptJnFmpSk18fDyff/45AG5ubixfvpzQ0FCHBvurgoICNm/ezIgRI0os79atG+vXr7/gNvn5+eTn59vvZ2dnOzSjiMifncjJ55XVyczdeBCrzcDDzcL97aIYfnOsRgIWcYAyXyg8duxYUyatPH78OFarlbp165ZYXrduXTIyMi64zcSJE3nxxRcrI56IyHl6vLGGs/nFg5V2v6ouI3omEB3ib3IqEddV5guFx48fb+qFwn9939kwjIu+Fz1y5EiysrLst4MHNQqniDiOYRgs3HHUfv9svpWm9Wvw+aC2vNuvlQqNiIM5zYXCISEhuLu7n3dWJjMz87yzN3/w9vbG29vbIXlERP5s8/5TvLxgJ1sOnLYvm3Tn1fytVUPcNHieSKVwmguFvby8aNmyJcuWLeOOO+6wL1+2bBm9e/d2yGuKiFzOwZO5vLp4F/O3F5+h8fVy51xB8VtOt11bT4VGpBI5zYXCAE899RT9+vWjVatWtGvXjvfee48DBw4wePDgSs8iItVbdl4h76xIZfbadAqsNiwW+FvLhgzt3IgbX1tpdjyRaqlcs3Sb5Z577uHEiROMHz+eo0eP0rRpUxYuXEhkZKRpmUSkeimy2pi78QDTftjDybMFAHSIrc2oXokk1quhCSdFTFSuscE//vhjZs2aRVpaGhs2bCAyMpJp06YRExPj8LeChg4dytChQx36GiIif2UYBitSMnll4S5SM4s/LNGojj+jkhLoHB+qwfNEqoAyj/o0c+ZMnnrqKXr16sXp06exWovfO65VqxbTp0+v6HwiIqbbeSSbfh9s5ME5m0jNzCHY34uXel/F4idu4KYmGg1YpKooc6l56623eP/99xk1ahTu7u725a1atWLHjh0VGk5ExEyZ2Xk8/+V2kt5aw9rU43i5u/HIjTGsfLYT/dpF4eletUYDFqnuyvz2U1paGs2bNz9vube3t30sGxERZ3auwMr7a/Yxa9Vecv/7Saaka8IZ0aMJDYP9TE4nIhdT5lITHR3N1q1bz7s4d9GiRSQmJlZYMBGpvnILikgcswSAneO74+dVrsv/ysxmM/h262EmL04hIzsPgOYRNRmdlEDLyOBKyXA5mptJ5OLK/Jvi2Wef5dFHHyUvLw/DMNi4cSNz585l4sSJ/POf/3RERhERh/tp3wkmLEhmx+EsAOrX9GVEzybcck24rpkRcRJlLjUDBgygqKiI5557jtzcXO677z7q16/PG2+8QZ8+fRyRUUTEYdJPnGX6sj0s3fk7AAHeHjzaOZYBHaLw8XS/zNYiUpWU65zuwIEDGThwIMePH8dms5kyEJ+ISEW47a11FNkM3CxwX5sInugSR0iAplcRcUZX9EZ1SEhIReUQEakUBUU2Plqfbr9fZDPoHF+HF3ol0LhuoHnBROSKVc7VdyIiJjMMg6U7f2fiwmTST+Tal//z/pZ0SQwzMZmIVBSVGhFxeTsOZfHSgp1sTDsJQO0AL07kFE9x0D5WZ5xFXIVKjYi4rKNZ53htcQpfbzkMgLeHGwOvj6F/+0ium7Dc5HQiUtFUakTE5ZzNL+LdVXt5b80+8gqLJ+G9o3l9nu0eT72avpp0UsRFlarUvPnmm6V+wuHDh5c7jIjIlbDaDL7cfJDXl+7m2Jl8AFpHBTMqKYFmDWuaG05EHK5UpWbatGmlejKLxaJSIyKmWLvnOC8v2MmujDMARNb2Y2TPJnS/KkyD54lUE6UqNWlpaY7OISJSLqmZZ3hl4S5+3JUJQA0fD4bf3Jh+7SLx9tDgeSLVia6pERGndCInnzeW7+HTnw9gtRl4uFn4e9tIHr+5MbX8vUzLpbmZRMxTrlJz6NAhvvvuOw4cOEBBQUGJx6ZOnVohwURELiS/yMqcdem8/WMqZ/KLL/jtmliXkT2bEFMnwOR0ImKmMpea5cuXc9tttxEdHU1KSgpNmzYlPT0dwzBo0aKFIzKKSBVjxizahmGwcEcGkxYnc/DkOQCuqleD0UmJtGtU2+GvLyJVX5l/E40cOZKnn36a8ePHExgYyFdffUVoaCh9+/alR48ejsgoItXclgOneHlBMpv3nwKgbg1vnu3ehDub18fNTRcBi0ixMpea5ORk5s6dW7yxhwfnzp0jICCA8ePH07t3b4YMGVLhIUWk+nr2/21jwY4MAHw93XnkxhgG3RBTKWeHRMS5lPm3gr+/P/n5xeM/1KtXj71793LVVVcBcPz48YpNJyLVUk7e/wbHW7AjA4sF/q9FA57pHk/dGj4mJhORqqzMpaZt27asW7eOxMREkpKSePrpp9mxYwdff/01bdu2dURGEakmiqw2Pv/lIFOX7bYvaxMdzJhbE7mqXpCJyUTEGZS51EydOpWcnBwAxo0bR05ODl988QWxsbGlHqRPROSvVqZkMmFBMnsyc0os/9cDrfD39jQplYg4kzKXmpiYGPvXfn5+zJgxo0IDiUj1sisjmwkLklmzp/jt65p+ngzt1IhXFu4C0GjAIlJqZS41Bw8exGKx0KBBAwA2btzIZ599RmJiIoMGDarwgCLimo6dyWfqst188csBbAZ4ult4oH0Uwzo3xtPDYi81IiKlVeZSc9999zFo0CD69etHRkYGXbp0oWnTpnzyySdkZGQwZswYR+QUEReRV2jlg7VpzFiRytkCKwC9rg7j+R5NiKztD6BZtEWkXMpcan799Vdat24NwLx587j66qtZt24dS5cuZfDgwSo1InJBNpvBd9uOMHnxLo5k5QHQrEEQo29J5LqoYJPTiYgrKHOpKSwsxNvbG4AffviB2267DYAmTZpw9OjRik0nIi7hl/STvDx/J9sOZQFQL8iH53s24dZr6mnwPBGpMGUuNVdddRWzZs0iKSmJZcuW8dJLLwFw5MgRatfWUOUi8j/7T5xl0qJdLPq1ePA8fy93hnaO5aGO0fh4mjeDtiadFHFNZS41r776KnfccQevvfYa/fv3p1mzZgB899139relRKR6y8ot5K0f9/DhhnQKrQZuFrjnugie6hpHnUBvs+OJiIsqc6np1KkTx48fJzs7m1q1atmXDxo0CD8/vwoNJyLOpdBq45Of9vPG8j2czi0E4Ia4OozqlUB8WKDJ6UTE1ZVr8hR3d/cShQYgKiqqIvKISAWo7Fm0DcPgh+RMJi5MZt/xswDE1Q3ghV4JdIoPdehri4j8ocy/6aKjoy85GNa+ffuuKJCIOJedR7J5fWkKP+07CUBtfy+e6hbHPa0a4uHuZnI6EalOylxqnnjiiRL3CwsL2bJlC4sXL+bZZ5+tqFwi4iTufncDhgFeHm483DGaIZ0aEeijaQ1EpPKVudQ8/vjjF1z+zjvvsGnTpisOJCJVW25BEW//mGq/bxhwW7N6PNcjnga1dF2diJinws4N9+zZk6+++qqink5EqhirzWDepoN0em0lM1butS+fO7ANb97bXIVGRExXYVcPfvnllwQHa1RQEVe0PvU4Ly9IZufRbAAa1PLl0KlzADRrWNPEZCIi/1PmUtO8efMSFwobhkFGRgbHjh3TjN0iLmbvsRwmLtzFD8m/AxDo48FjN8Xyt1YNuXb8MpPTiYiUVOZSc/vtt5e47+bmRp06dejUqRNNmjSpqFwiYqJTZwt4Y/kePvlpP0U2A3c3C39vE8HjXeII9vfShJMiUiWVudSMHTvWETlEpArIL7Ly0fr9vPXjHrLziovLzU1CGdkrgdjQAJPTiYhc2hVdU3Pu3DkKCwtLLKtRo8YVBRKRymcYBot/zWDiol0cOJkLQEJ4DUYnJdAhNsTkdCIipVPmUnP27Fmef/555s2bx4kTJ8573Gq1VkgwEakcWw+eZsKCnfySfgqA0EBvnukWz10tG+Bu0gzamnBSRMqjzKXmueeeY8WKFcyYMYP777+fd955h8OHD/Puu+8yadIkR2QUEQc4fPockxfv4t9bjwDg4+nGoBsa8cgNMfh7O3ZaBRERRyjzb67vv/+ejz76iE6dOvHggw9y/fXXExsbS2RkJJ9++il9+/Z1RE4RqSA5+UXMXJnKP9ekkV9kA+CuFg14pnsc4UG+JqcTESm/MpeakydPEh0dDRRfP3PyZPF8Lx07dmTIkCEVm07EhVX2pJNFVhvzNh1i6rIUjucUANAmOpjRSYlc3SDIoa8tIlIZyvxbNCYmhvT0dCIjI0lMTGTevHm0bt2a77//npo1azogoohcqdW7jzFhQTIpv58BIDrEn5E9m9A1se4lJ6gVEXEmZS41AwYMYNu2bdx4442MHDmSpKQk3nrrLYqKipg6daojMorIFRj00WbWph4HIMjXk8dvbszf20bi5aEZtEXEtZS51Dz55JP2rzt37syuXbvYtGkTjRo1olmzZhUaTkTK50ROvv3rtanH8XS3cH+7KB67KZaafl4mJhMRcZwrfhM/IiKCiIiIisgiIlcor9DKv9al8c6K/82i3SUhlFFJiUSH+JuYTETE8Up9/vnHH38kMTGR7Ozs8x7LysriqquuYs2aNRUaTkRKxzAM/r31MDdPWcXkxSmczf/feFFv3ttchUZEqoVSl5rp06czcODAC44YHBQUxCOPPKJrakRMsHn/Se6YsZ7HP9/K4dPnCA/yYdJdV5sdS0Sk0pW61Gzbto0ePXpc9PFu3bqxefPmCgklIpd34EQuj376H+6auYGtB0/j5+XO013j+PHpTtzWrJ7Z8UREKl2pr6n5/fff8fT0vPgTeXhw7NixCgklIheXda6Qd1akMmddOgVWGxYL3NOqIU91jSO0hg+AZtEWkWqp1KWmfv367Nixg9jY2As+vn37dsLDwyssmIiUVGi18dnPB5j+w25O5RZPJNsxNoRRSQkkhGsiWRGRUpeaXr16MWbMGHr27ImPj0+Jx86dO8fYsWO55ZZbKjygSHVnGAY/7spkwsJk9h07C0BsaACjeiXQKb6OBs8TEfmvUpea0aNH8/XXXxMXF8ewYcOIj4/HYrGQnJzMO++8g9VqZdSoUY7MKlKpKnsagwv57UgWExYks37vCQCC/b14smsc917XEA938wbP0yzaIlIVlfq3dN26dVm/fj1Dhgxh5MiRGIYBgMVioXv37syYMYO6des6LKhIdfJ7dh5Tlqbw/zYfwjDAy92NAR2jeLRzLDV8Ln5tm4hIdVam/3pGRkaycOFCTp06RWpqKoZh0LhxY2rVquWofCLVSm5BEe+vTmPWqr2cKywea+aWa8J5vkcTGgb7mZxORKRqK9f59Fq1anHddddVdBaRastmM/hy8yFeX5JCRnYeAM0jajI6KZGWkfpPg4hIaVT+RQIicp6/vfsTO48Wj9Zdv6YvI3o24ZZrwnURsIhIGajUiJgk/fhZ+9c7j2YT6O3BozfF8kD7KHw83U1MJiLinFRqRCrZ6dwC3li+h4837Lcv63NdQ57pHk9IgLeJyUREnJtKjUglKSiy8dGGdN5cvofsvJIj/o65NdGUj4yLiLgS8wa6EKkmDMNg8a9H6TZtFS8vSCY7r4gmYYH88/6WZkcTEXEp+q+hiANtP3Sal+cnszH9JAAhAd480y2Ou1s1JL/IanI6ERHXolIj4gBHTp/jtSUpfLPlMADeHm4MuiGGR25sRIC3/tmJiDiCfruKVKCc/CLeXbWX91bvI7/IBsCdzevzTPd46tX0NTmdiIhrc5pSM2HCBBYsWMDWrVvx8vLi9OnTZkcSsbPaDP7fpoO8vnQ3x3PyAWgdFczoWxK4pkFNc8OJiFQTTlNqCgoKuPvuu2nXrh0ffPCB2XGkCqgKE04CrNlzjAkLktmVcQaAyNp+jOzZhO5XhWnwPBGRSuQ0pebFF18EYM6cOeYGEfmvPb+f4ZWFyaxIOQZADR8Pht/cmPvbReHlYe4HCzWLtohUR05TasojPz+f/Px8+/3s7GwT04irOJ6Tz/QfdjN340GsNgMPNwv92kUy/KbG1PL3MjueiEi15dKlZuLEifYzPCJXKq/Qyux16cxYkcqZ/OLB87om1mVkzybE1AkwOZ2IiJh6jnzcuHFYLJZL3jZt2lTu5x85ciRZWVn228GDByswvVQni3Yc5eYpq3h18S7O5BdxVb0azB3Ylvfvb6VCIyJSRZh6pmbYsGH06dPnkutERUWV+/m9vb3x9tZcOnLlnv5/2wGoW8ObZ7s34c7m9XFz00XAIiJViamlJiQkhJCQEDMjiFzQwZO5vLIw2X7f19OdwTc2YuAN0ZqjSUSkinKa384HDhzg5MmTHDhwAKvVytatWwGIjY0lIECn/6ViZOcVMmPFXv61Lo2C/w6eB7Do8Y5EhejnTESkKnOaUjNmzBg+/PBD+/3mzZsDsGLFCjp16mRSKnEVRVYbczceYNoPezh5tgCANtHB/JxWPGdTaA0fM+OJiEgpOE2pmTNnjsaokQpnGAYrU44xYWEyqZk5AMTU8WdUrwTaxgRz1dilJicUEZHScppSI1LRko9m88rCZNbsOQ5ALT9Pnuwax72tI/B0dyO3oMjkhCIiUhYqNVLtZJ7JY+rS3czbdBCbAV7ubjzQIYpHO8cS5OtpdjwRESknlRpxqKoyPxPAuQIr/1yzj5mr9pJbYAUg6epwnu/RhIjafqblEhGRiqFSIy7PZjP497bDTF6cwtGsPACaNazJP5ISaBUVbHI6ERGpKCo14tI2pp3k5QU72X4oC4D6NX15rkc8t15TT4PniYi4GJUacUnpx88yadEuFv+WAUCAtwdDOzfiwQ7R+Hi6m5xOREQcQaVGXEpWbiFv/riHjzakU2g1cLNAn9YRPNkljjqBmjJDRMSVqdSISyi02pi9Lo03lu/hdG4hADfG1eGFXgnEhwWanO7C/Lw8SJ+UZHYMERGXoVIjLqH32+tIP5ELQFzdAEYlJXJjXB2TU4mISGVSqRGntfNItv3r9BO5hAR48VTXeP7WqgEe7m4mJhMRETOo1IjTycjK47UlKXy95ZB92aAbYnjsplgCfTR4nohIdaVSI07jbH4R767ex3ur95JXaCvx2BNdGps6sJ+IiJhP5+ilyrPaDOZtOkjn11fy5vI95BXaaBVZi88HtTE7moiIVCH6r61UaetSj/PygmSSjxZfP9Mw2JeRPRPo2TSMc4VWk9OJiEhVolJTzVWluZn+LDUzh4kLk1m+KxOAQB8Pht/UmPvbR+LtocHzRETkfFXjL5jIf508W8AbP+zmk58PYLUZuLtZ6Nc2kuE3NybY38vseCIiUoWp1EiVkF9k5cP16bz1Yypn8ooA6JIQyoieCcSGBpicTkREnIFKjZjKMAwW7shg0uJkDp48B0BieA1GJyXQPjbE5HQiIuJMVGrENFsOnOLlBcls3n8KgNBAb57pHs9dLRrgrhm0RUSkjFRqpNIdOpXL5MUpfLftCAA+nm48ckMjBt0Qg7+3fiRFRKR89BdEKk1OXhFv/ZjKB2vTKCiyYbHAnc0b8Gz3eMKCfMyOJyIiTk6lRipNjzfWcPJsAQBtY4IZnZRI0/pBJqcSERFXoVIjDrVmzzH71yfPFhAd4s8LvRLokhCKxVK1r5vx8/IgfVKS2TFERKSUVGrEIVIyzjBhYTKrd/+v1Izs1YQB7aPx8tDsHCIiUvFUaqRCHTuTz9Rlu/nilwPYDPBwt1BkNQDo1zZShUZERBxGf2GquNyCIqJGLCBqxAJyC4rMjnNReYVW3lmRSqfXVjB3Y3Gh6XFVGN8P62B2NBERqSZ0pkauiM1m8P32I0xenMLh08WD513TIIjRSYm0jg6u0kVMRERci0qNlNum9JO8tCCZbQdPAxAe5MNzPeLp3aw+bho8T0REKplKjZTZgRO5TFqczMIdGQD4e7kzpFMjHuoYg6+XZtAWERFzqNRIqWWdK+TtH/fw4fr9FFhtuFngnusa8mTXOEIDNXieiIiYS6VGLqvQauOznw8w/YfdnMotBOD6xiGMSkqgSVgNk9OJiIgUU6mRizIMg+XJmbyyKJl9x84CEBsawKikBDrF1anyg+eJiEj1olIjF/TbkSwmLEhm/d4TANT29+LJrnH0ua4hHu4aCUBERKoelRop4ffsPF5fksKX/zmEYYCXhxsPdohmaOdG1PDxNDueiIjIRanUiN2MFal8sDadc4VWAG5tVo/nusfTMNjP5GQiIiKXp1JTzdlshv3rt1fsBaBFRE1G35JIi4haZsUSEREpM5WaK5RbUETimCUA7BzfHT8v5/mWbth7gpfm77Tfr1/Tl5G9mpB0dbguAhYREafjPH+BpcLsO5bDxEW7WLbz9xLL5z/WgVr+3ialKjs/Lw/SJyWZHUNERKoIlZpq5NTZAt5YvodPftpPkc3A3c3CPa0a8NnGgwB4e2o0YBERcV4qNdVAQZGNjzak8+byPWTnFU8weVOTUF7o1YR6NX3tpUZERMSZqdS4MMMwWPJbBhMX7WL/iVwAmoQFMjopkY6NQwA0i7aIiLgMlRoXtf3QaV6en8zG9JMA1An05plucfxfy4a4awZtERFxQSo1LubI6XO8tiSFb7YcBsDH041B18fwyI2N8PfW4RYREdelv3IuIie/iFkr9/L+mn3kF9kAuLN5fZ7pHk+9mr4mpxMREXE8lRonZ7UZzNt0kClLd3M8Jx+A1tHBjE5K4JoGNc0NJyIiUolUapzYmj3HmLAgmV0ZZwCIrO3HyJ4JdL+qrgbPExGRakelxgnt+f0MryxMZkXKMQBq+HjweJc4+rWNxMtDM2iLiEj1pFLjRE7k5PPK6mTmbjyI1Wbg4WahX7tIht/UmFr+XmbHExERMZVKjRPp+cZacvKLx5XplliXET2bEFMnwORUIiIiVYNKTRVmGAYLdxy138/JL6Jp/RqM6pVIu0a1TUwmIiJS9ajUVFGb95/i5QU72XLgtH3ZxDubck+rCNw0eJ6IiMh5VGqqmIMnc3l18S7mby8+Q+Pr6c65QisAva+tr0IjIiJyESo1VUR2XiHvrEhl9tp0Cqw2LBa4u2UDhnZqRKfXV5kdr9z8vDxIn5RkdgwREakGVGpMVmS1MXfjAab9sIeTZwsAaN+oNqOSEriqXpAmnBQRESkllRqTGIbBipRMXlm4i9TMHABi6vgzqlcCNzUJ1eB5IiIiZaRSY4Lko9lMWJDM2tTjANTy8+TJrnHc2zoCT3cNniciIlIeKjWVKDM7jylLdzNv80EMA7zc3XigQxSPdo4lyNfT7HgiIiJOTaWmEpwrsPLPNfuYuWovuQXFn2RKujqc53s0IaK2n8npREREXINKjQPZbAbfbj3Ma0tSOJqVB0CzhjX5R1ICraKCTU4nIiLiWlRqHOTnfSd4eUEyOw5nAVC/pi/P9Yjn1mvqaawZERERB1CpqWBpx88yaVEyS377HYAAbw+Gdm7Egx2i8fF0NzmdiIiI61KpqUCTFu1i7sYDFFoN3CzQp3UET3aJo06gt9nRREREXJ5KzRWy2gz71x9t2A/AjXF1GJWUQFzdQLNiiYiIVDsqNVfoz5fHxIYG8I9bErkxro55gURERKoplZor9OeRf78e0o4avl4mphEREam+NHxtBfLQaMAiIiKm0V9hERERcQlOUWrS09N56KGHiI6OxtfXl0aNGjF27FgKCgrMjiYiIiJVhFNcU7Nr1y5sNhvvvvsusbGx/PrrrwwcOJCzZ8/y+uuvmx3Pqfl5eZA+KcnsGCIiIlfMKUpNjx496NGjh/1+TEwMKSkpzJw5U6VGREREACcpNReSlZVFcPCl50/Kz88nPz/ffj87O9vRsURERMQkTnFNzV/t3buXt956i8GDB19yvYkTJxIUFGS/NWzYsJISioiISGUztdSMGzcOi8VyydumTZtKbHPkyBF69OjB3XffzcMPP3zJ5x85ciRZWVn228GDBx25OyIiImIiU99+GjZsGH369LnkOlFRUfavjxw5QufOnWnXrh3vvffeZZ/f29sbb2/NuyQiIlIdmFpqQkJCCAkJKdW6hw8fpnPnzrRs2ZLZs2fj5uaU75yJiIiIgzjFhcJHjhyhU6dORERE8Prrr3Ps2DH7Y2FhYSYmExERkarCKUrN0qVLSU1NJTU1lQYNGpR4zDCMi2wlIiIi1YlTvIfzwAMPYBjGBW8iIiIi4CSlRkRERORyVGpERETEJajUiIiIiEtQqRERERGXoFIjIiIiLkGlRkRERFyCU4xTU535eXmQPinJ7BgiIiJVns7UiIiIiEtQqRERERGXoFIjIiIiLkGlRkRERFyCSo2IiIi4BJUaERERcQkqNSIiIuISVGpERETEJajUiIiIiEtQqRERERGXoFIjIiIiLkGlRkRERFyCSo2IiIi4BJUaERERcQkqNSIiIuISVGpERETEJXiYHcDZ+Xl5kD4pyewYIiIi1Z7O1IiIiIhLUKkRERERl6BSIyIiIi5BpUZERERcgkqNiIiIuASVGhEREXEJKjUiIiLiElRqRERExCWo1IiIiIhLUKkRERERl6BSIyIiIi5BpUZERERcgkqNiIiIuASVGhEREXEJKjUiIiLiEjzMDlCZDMMAIDs72+QkIiIiUlp//N3+4+/4xVSrUnPmzBkAGjZsaHISERERKaszZ84QFBR00cctxuVqjwux2WwcOXKEwMBALBZLhT1vdnY2DRs25ODBg9SoUaPCnrcqcfV91P45P1ffR1ffP3D9fdT+lZ9hGJw5c4Z69erh5nbxK2eq1ZkaNzc3GjRo4LDnr1Gjhkv+oP6Zq++j9s/5ufo+uvr+gevvo/avfC51huYPulBYREREXIJKjYiIiLgElZoK4O3tzdixY/H29jY7isO4+j5q/5yfq++jq+8fuP4+av8cr1pdKCwiIiKuS2dqRERExCWo1IiIiIhLUKkRERERl6BSIyIiIi5BpaYc0tPTeeihh4iOjsbX15dGjRoxduxYCgoKLrmdYRiMGzeOevXq4evrS6dOnfjtt98qKXXZTJgwgfbt2+Pn50fNmjVLtc0DDzyAxWIpcWvbtq1jg16B8uyjMx3DU6dO0a9fP4KCgggKCqJfv36cPn36kttU9WM4Y8YMoqOj8fHxoWXLlqxZs+aS669atYqWLVvi4+NDTEwMs2bNqqSk5VOW/Vu5cuV5x8pisbBr165KTFx6q1ev5tZbb6VevXpYLBa+/fbby27jTMevrPvnbMdv4sSJXHfddQQGBhIaGsrtt99OSkrKZber7GOoUlMOu3btwmaz8e677/Lbb78xbdo0Zs2axQsvvHDJ7SZPnszUqVN5++23+eWXXwgLC6Nr1672OamqkoKCAu6++26GDBlSpu169OjB0aNH7beFCxc6KOGVK88+OtMxvO+++9i6dSuLFy9m8eLFbN26lX79+l12u6p6DL/44gueeOIJRo0axZYtW7j++uvp2bMnBw4cuOD6aWlp9OrVi+uvv54tW7bwwgsvMHz4cL766qtKTl46Zd2/P6SkpJQ4Xo0bN66kxGVz9uxZmjVrxttvv12q9Z3t+JV1//7gLMdv1apVPProo/z0008sW7aMoqIiunXrxtmzZy+6jSnH0JAKMXnyZCM6Ovqij9tsNiMsLMyYNGmSfVleXp4RFBRkzJo1qzIilsvs2bONoKCgUq3bv39/o3fv3g7N4wil3UdnOoY7d+40AOOnn36yL9uwYYMBGLt27brodlX5GLZu3doYPHhwiWVNmjQxRowYccH1n3vuOaNJkyYllj3yyCNG27ZtHZbxSpR1/1asWGEAxqlTpyohXcUCjG+++eaS6zjb8fuz0uyfMx8/wzCMzMxMAzBWrVp10XXMOIY6U1NBsrKyCA4OvujjaWlpZGRk0K1bN/syb29vbrzxRtavX18ZESvFypUrCQ0NJS4ujoEDB5KZmWl2pArjTMdww4YNBAUF0aZNG/uytm3bEhQUdNmsVfEYFhQUsHnz5hLfe4Bu3bpddH82bNhw3vrdu3dn06ZNFBYWOixreZRn//7QvHlzwsPDufnmm1mxYoUjY1YqZzp+V8JZj19WVhbAJf/umXEMVWoqwN69e3nrrbcYPHjwRdfJyMgAoG7duiWW161b1/6Ys+vZsyeffvopP/74I1OmTOGXX37hpptuIj8/3+xoFcKZjmFGRgahoaHnLQ8NDb1k1qp6DI8fP47Vai3T9z4jI+OC6xcVFXH8+HGHZS2P8uxfeHg47733Hl999RVff/018fHx3HzzzaxevboyIjucMx2/8nDm42cYBk899RQdO3akadOmF13PjGOoUvMn48aNu+CFW3++bdq0qcQ2R44coUePHtx99908/PDDl30Ni8VS4r5hGOctc5Ty7F9Z3HPPPSQlJdG0aVNuvfVWFi1axO7du1mwYEEF7sWlOXofwXmO4YUyXS5rVTiGl1LW7/2F1r/Q8qqiLPsXHx/PwIEDadGiBe3atWPGjBkkJSXx+uuvV0bUSuFsx68snPn4DRs2jO3btzN37tzLrlvZx9DDIc/qpIYNG0afPn0uuU5UVJT96yNHjtC5c2fatWvHe++9d8ntwsLCgOLmGh4ebl+emZl5XpN1lLLu35UKDw8nMjKSPXv2VNhzXo4j99GZjuH27dv5/fffz3vs2LFjZcpqxjG8kJCQENzd3c87a3Gp731YWNgF1/fw8KB27doOy1oe5dm/C2nbti2ffPJJRcczhTMdv4riDMfvscce47vvvmP16tU0aNDgkuuacQxVav4kJCSEkJCQUq17+PBhOnfuTMuWLZk9ezZubpc+6RUdHU1YWBjLli2jefPmQPH76KtWreLVV1+94uylUZb9qwgnTpzg4MGDJQqAozlyH53pGLZr146srCw2btxI69atAfj555/Jysqiffv2pX49M47hhXh5edGyZUuWLVvGHXfcYV++bNkyevfufcFt2rVrx/fff19i2dKlS2nVqhWenp4OzVtW5dm/C9myZYvpx6qiONPxqyhV+fgZhsFjjz3GN998w8qVK4mOjr7sNqYcQ4ddguzCDh8+bMTGxho33XSTcejQIePo0aP225/Fx8cbX3/9tf3+pEmTjKCgIOPrr782duzYYdx7771GeHi4kZ2dXdm7cFn79+83tmzZYrz44otGQECAsWXLFmPLli3GmTNn7Ov8ef/OnDljPP3008b69euNtLQ0Y8WKFUa7du2M+vXrV8n9M4yy76NhONcx7NGjh3HNNdcYGzZsMDZs2GBcffXVxi233FJiHWc6hp9//rnh6elpfPDBB8bOnTuNJ554wvD39zfS09MNwzCMESNGGP369bOvv2/fPsPPz8948sknjZ07dxoffPCB4enpaXz55Zdm7cIllXX/pk2bZnzzzTfG7t27jV9//dUYMWKEARhfffWVWbtwSWfOnLH/GwOMqVOnGlu2bDH2799vGIbzH7+y7p+zHb8hQ4YYQUFBxsqVK0v8zcvNzbWvUxWOoUpNOcyePdsALnj7M8CYPXu2/b7NZjPGjh1rhIWFGd7e3sYNN9xg7Nixo5LTl07//v0vuH8rVqywr/Pn/cvNzTW6detm1KlTx/D09DQiIiKM/v37GwcOHDBnB0qhrPtoGM51DE+cOGH07dvXCAwMNAIDA42+ffue9/FRZzuG77zzjhEZGWl4eXkZLVq0KPFx0v79+xs33nhjifVXrlxpNG/e3PDy8jKioqKMmTNnVnLisinL/r366qtGo0aNDB8fH6NWrVpGx44djQULFpiQunT++AjzX2/9+/c3DMP5j19Z98/Zjt/F/ub9+fdjVTiGlv+GFREREXFq+vSTiIiIuASVGhEREXEJKjUiIiLiElRqRERExCWo1IiIiIhLUKkRERERl6BSIyIiIi5BpUZERERcgkqNiFSIlStXYrFYOH36tNlRTPPAAw9w++23mx1DpNpSqRGpQOX5o2axWPj2228dksdROnXqxBNPPFFiWfv27Tl69ChBQUGVkuGBBx5gxIgR5y23Wq20b9+eu+66q8TyrKwsGjZsyOjRoysln4hUPpUaERdRWFho6ut7eXkRFhaGxWJx+GvZbDYWLFhwwRms3d3d+fDDD1m8eDGffvqpffljjz1GcHAwY8aMcXi+ymb2sRepKlRqRByoU6dODB8+nOeee47g4GDCwsIYN26c/fGoqCgA7rjjDiwWi/0+wPfff0/Lli3x8fEhJiaGF198kaKiIvvjFouFWbNm0bt3b/z9/Rk/fjwNGjRg1qxZJTL85z//wWKxsG/fPqD4jMWgQYMIDQ2lRo0a3HTTTWzbts2+/rhx47j22mv5+OOPiYqKIigoiD59+nDmzBmg+AzJqlWreOONN7BYLFgsFtLT0y/49tNXX33FVVddhbe3N1FRUUyZMqVEtqioKF555RUefPBBAgMDiYiI4L333rvs93XdunW4ubnRpk2bCz7euHFjJk6cyGOPPcaRI0f497//zeeff86HH36Il5fXeeunpKRgsVjYtWtXieVTp04lKioKwzCwWq089NBDREdH4+vrS3x8PG+88cYlc0ZFRTF9+vQSy6699toSPwOXOx5/lZ6ejsViYd68eXTq1AkfHx8++eQTTpw4wb333kuDBg3w8/Pj6quvZu7cuSW2vdzPI8CuXbvo2LEjPj4+JCYm8sMPP5x3NvHw4cPcc8891KpVi9q1a9O7d2/S09Mv+b0QqQwqNSIO9uGHH+Lv78/PP//M5MmTGT9+PMuWLQPgl19+AWD27NkcPXrUfn/JkiX8/e9/Z/jw4ezcuZN3332XOXPmMGHChBLPPXbsWHr37s2OHTt4+OGH6dOnT4mzEwCfffYZ7dq1IyYmBsMwSEpKIiMjg4ULF7J582ZatGjBzTffzMmTJ+3b7N27l2+//Zb58+czf/58Vq1axaRJkwB44403aNeuHQMHDuTo0aMcPXqUhg0bnrffmzdv5m9/+xt9+vRhx44djBs3jn/84x/MmTOnxHpTpkyhVatWbNmyhaFDhzJkyJDzysVffffdd9x66624uV38V9hjjz1Gs2bNuP/++xk0aBBjxozh2muvveC68fHxtGzZ8oLfu/vuuw+LxYLNZqNBgwbMmzePnTt3MmbMGF544QXmzZt3yayXUtrjcSHPP/88w4cPJzk5me7du5OXl0fLli2ZP38+v/76K4MGDaJfv378/PPPJba71M+jzWbj9ttvx8/Pj59//pn33nuPUaNGldg+NzeXzp07ExAQwOrVq1m7di0BAQH06NGDgoKCcn8vRCqEQ+cAF6lm+vfvb/Tu3dt+/8YbbzQ6duxYYp3rrrvOeP755+33AeObb74psc71119vvPLKKyWWffzxx0Z4eHiJ7Z544okS6/znP/8xLBaLkZ6ebhiGYVitVqN+/frGO++8YxiGYSxfvtyoUaOGkZeXV2K7Ro0aGe+++65hGIYxduxYw8/Pz8jOzrY//uyzzxpt2rQpsV+PP/54iedYsWKFARinTp0yDMMw7rvvPqNr164l1nn22WeNxMRE+/3IyEjj73//u/2+zWYzQkNDjZkzZxqXEhcXZ3z33XeXXMcwDCM5OdkAjKuvvtooLCy85LpTp041YmJi7PdTUlIMwPjtt98uus3QoUONu+66y37/r8c/MjLSmDZtWoltmjVrZowdO9YwjNIdj79KS0szAGP69OmX3B/DMIxevXoZTz/9tP3+5X4eFy1aZHh4eBhHjx61P75s2bISP6MffPCBER8fb9hsNvs6+fn5hq+vr7FkyZLLZhJxJJ2pEXGwa665psT98PBwMjMzL7nN5s2bGT9+PAEBAfbbH2dGcnNz7eu1atWqxHbNmzenSZMm9rcdVq1aRWZmJn/729/sz5uTk0Pt2rVLPHdaWhp79+61P09UVBSBgYFlyvxXycnJdOjQocSyDh06sGfPHqxWq33Zn78/FouFsLCwS75WcnIyhw4dokuXLpfN8K9//Qs/Pz/S0tI4dOiQffngwYNL7D9Anz592L9/Pz/99BMAn376Kddeey2JiYn27WbNmkWrVq2oU6cOAQEBvP/++xw4cOCyOS6mtMfjQv567K1WKxMmTOCaa66xP9/SpUvPy3epn8eUlBQaNmxIWFiY/fHWrVuflzk1NZXAwEB73uDgYPLy8i6bWcTRPMwOIOLqPD09S9z/462MS7HZbLz44ovceeed5z3m4+Nj/9rf3/+8x/v27ctnn33GiBEj+Oyzz+jevTshISH25w0PD2flypXnbVezZs0ryvxXhmGcd9GwYRjnrVfW1/ruu+/o2rUrvr6+l3z9DRs2MG3aNBYtWsTkyZN56KGH7NeHjB8/nmeeeabE+uHh4XTu3JnPPvuMtm3bMnfuXB555BH74/PmzePJJ59kypQptGvXjsDAQF577bXz3t75Mzc3t/P2+c8X9Zb2eFzIX4/9lClTmDZtGtOnT+fqq6/G39+fJ5544ry3hC71/b7QMfsrm812wbfqAOrUqXPJbUUcTaVGxGSenp4lzlwAtGjRgpSUFGJjY8v8fPfddx+jR49m8+bNfPnll8ycObPE82ZkZODh4VHiouSy8vLyOi/zXyUmJrJ27doSy9avX09cXBzu7u7lfu1///vfPPzww5dc59y5c/Tv359HHnmELl26EBcXR9OmTXn33XcZPHgwoaGhhIaGnrdd3759ef7557n33nvZu3cvffr0sT+2Zs0a2rdvz9ChQ+3LLndmok6dOhw9etR+Pzs7m7S0NPv9ijoef+Tr3bs3f//734Hi8rFnzx4SEhJK/RxNmjThwIED/P7779StWxf433Vff878xRdf2C9sFqlK9PaTiMmioqJYvnw5GRkZnDp1CoAxY8bw0UcfMW7cOH777TeSk5P54osvSjXGSnR0NO3bt+ehhx6iqKioxMeeu3TpQrt27bj99ttZsmQJ6enprF+/ntGjR7Np06YyZf75559JT0/n+PHjFzyz8vTTT7N8+XJeeukldu/ezYcffsjbb7993hmSssjMzOSXX37hlltuueR6I0aMwGaz8eqrrwIQERHBlClTePbZZy/5KZ0777yT7OxshgwZQufOnalfv779sdjYWDZt2sSSJUvYvXs3//jHP877g/9XN910Ex9//DFr1qzh119/pX///iUKXUUdjz/yLVu2jPXr15OcnMwjjzxCRkZGmZ6ja9euNGrUiP79+7N9+3bWrVtnv1D4jzM4ffv2JSQkhN69e7NmzRrS0tJYtWoVjz/+eIm3+ETMoFIjYrIpU6awbNkyGjZsSPPmzQHo3r078+fPZ9myZVx33XW0bduWqVOnEhkZWarn7Nu3L9u2bePOO+8s8TaNxWJh4cKF3HDDDTz44IPExcXRp08f0tPT7f8zL41nnnkGd3d3EhMTqVOnzgWvK2nRogXz5s3j888/p2nTpowZM4bx48fzwAMPlPp1/ur777+nTZs2FzzL8odVq1bxzjvvMGfOnBJv0QwcONBe9i70NhhAjRo1uPXWW9m2bRt9+/Yt8djgwYO58847ueeee2jTpg0nTpwocdbmQkaOHMkNN9zALbfcQq9evbj99ttp1KiR/fGKOh4A//jHP2jRogXdu3enU6dOhIWFlXkgSHd3d7799ltycnK47rrrePjhh+1F+o+3Pf38/Fi9ejURERHceeedJCQk8OCDD3Lu3DmduRHTWYyL/esWEalibrvtNjp27Mhzzz1ndpRqY926dXTs2JHU1NQShUykKtI1NSLiNDp27Mi9995rdgyX9s033xAQEEDjxo1JTU3l8ccfp0OHDio04hR0pkZEROw++ugjXnrpJQ4ePEhISAhdunRhypQp1K5d2+xoIpelUiMiIiIuQRcKi4iIiEtQqRERERGXoFIjIiIiLkGlRkRERFyCSo2IiIi4BJUaERERcQkqNSIiIuISVGpERETEJfx/CC1RZQLf59QAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/tutorials/causal_effect_estimation/tigramite_tutorial_linear_causal_effects_mediation.ipynb b/tutorials/causal_effect_estimation/tigramite_tutorial_linear_causal_effects_mediation.ipynb index acf8afd8..0b1bbf8b 100644 --- a/tutorials/causal_effect_estimation/tigramite_tutorial_linear_causal_effects_mediation.ipynb +++ b/tutorials/causal_effect_estimation/tigramite_tutorial_linear_causal_effects_mediation.ipynb @@ -77,7 +77,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -112,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -131,7 +131,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -155,14 +155,14 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Link coefficient (0, -1) --> 2: -0.05929086357355118\n" + "Link coefficient (0, -1) --> 2: -0.07160542160272598\n" ] } ], @@ -179,24 +179,24 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[[[ 0. 0.80518115 0. 0. 0. ]\n", - " [ 0. 0.25296736 0. 0. 0. ]\n", - " [ 0. -0.05929086 0. 0. 0. ]]\n", + "[[[ 0. 0.7759527 0. 0. 0. ]\n", + " [ 0. 0.26866946 0. 0. 0. ]\n", + " [ 0. -0.07160542 0. 0. 0. ]]\n", "\n", " [[ 0. 0. 0. 0. 0. ]\n", - " [ 0. 0.79241943 0. 0. 0. ]\n", - " [ 0.26905519 0. 0. 0. 0. ]]\n", + " [ 0. 0.78305209 0. 0. 0. ]\n", + " [ 0.28581035 0. 0. 0. 0. ]]\n", "\n", " [[ 0. 0. 0. 0. 0. ]\n", - " [ 0.26905519 0. 0. 0. 0. ]\n", - " [ 0. 0.80840057 0. 0. 0. ]]]\n" + " [ 0.28581035 0. 0. 0. 0. ]\n", + " [ 0. 0.79582179 0. 0. 0. ]]]\n" ] } ], @@ -214,12 +214,12 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABG3klEQVR4nO3dd3Rc5Z0+8Od9752qXi0XyU2u2IAxoRgTIPwIJfSEZCFAgAQ2oSQbyGGTDbuwaQshzpKcBZYUSiobAimkEHYhFNPBNBsLyzbuli2rlym3vL8/7owsWbKscmfunZnnc46OR1Pu/VrW+D7zVqGUUiAiIqKCJb0ugIiIiLzFMEBERFTgGAaIiIgKHMMAERFRgWMYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiAocwwAREVGBYxggIiIqcAwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4BgGiIiIChzDABERUYFjGCAiIipwDANEREQFjmGAiIiowDEMEBERFTjd6wIyzU4a6N28Bb3vb0KyvQN2Mgk7aQBSQoaC0EJBRBtmoGRBI0JTaiCE8LpkIiKirMqrMKCUQueb76L1mRfQ07QR3eua0L9tB5RlO08QAkIKQAhAOc+HbQ+8Xi8uQvGCRpQdtgClSxai7oyPIFRd5dHfhoiIKDuEUkp5XcRk9WzYhJ2/+zN2/PZxxHe2QGjasAv9eAhdh7IsQAhUn3gcZnz8bNSd8RHoxUUuV05EROS9nA0Dtmli+68ewwcP/Aq9729yAoBluX8iTQKWDREIoO70U9D4xatRtmSh++chIiLySE6Ggb1PP491/3oH+j7YmtXzCk2Dsm3U/8P5WHDzDQhPqcnq+YmIiDIhp8JAd1Mz3rv1u9j3/MuAlBPuBpgsoWkQAR3zvnQN5lxzObRI2JM6iIiI3JATYUBZFjasuhfNP/gRhJSZ6Q6YCCEQrqvF0T+9C+VHLvG6GiIiognxfRhIdnbhzS/cjNZnX/S6lBEJTQJS4vA7/g31/3CB1+UQERGNm6/DQGxnC17+5OdS0wN90howisYvXo0F/3wD1yogIqKc4tsw0NO8GS9f9Fkk2zpyIgikzfjU+Tjie7dBaJrXpRAREY2JL5cjTnZ04ZWL/zHnggAA7Pif32PDqnu9LoOIiGjMfBcGlG3jzWtvRmJPa84FgbTmu+7Dnief8boMIiKiMfFdGNiw6l60PvtizgYBAIAQWHPdP6Pvg21eV0JERHRIvgoDe/73WTT/5397XcbkKQU7nsBrn7keZn+/19UQERGNyjdhwEok8fZXbnU2EcoDyrLQu3kLPvjRz70uhYiIaFS+CQM7fvN7JFvbAH9ObpgYW2HTvQ/C7O3zuhIiIqKD8kUYsA0Dzf95X960Cgxm9vZhy4MPe10GERHRQfkiDOz47Z8Qb9mbX60CaUph0z33c+wAERH5li/CwMYf/jgvWwXSjK4e7PifP3hdBhER0Yg8DwOxHbvRv3V7frYKpAnh270ViIiIPA8Dba++4XUJmWfbaHv5dSiPtlwmIiIaje51AR2vvgmh61CmmfFzrU304bG+fdhkxNBum/iXigYcHy7N+HkBwOzuRe+mLSiZNycr5yMiIhorz1sG9r3walaCAADElY3ZgTD+sXRqVs43hBBof3VN9s9LRER0CJ6GAas/hr5NW7J2vqPDJbisZApWRMqyds40oWnofHNt1s9LRER0KJ6GAaOAFuNRlgWzp8frMoiIiIbxtmUgFvPy9NmlFKz+Avr7EhFRzvB8zEAhUfk8fZKIiHKWp2FAi0S8PH12CQG9KOp1FURERMN4Ggb04sK5OApNQi8u9roMIiKiYbwNA9EoorMbsna+mG1hsxHDZsPpu99jJrHZiGGvlcz4uZVlofyIwzJ+HiIiovHyfNGh6hOOwfbtu7Ky1sBGI4Z/ad8y8P1Pe1qAHuAjkXJ8uXxGZk+ugMpjj8rsOYiIiCbA8zBQecxR2PaL32blXEtDxXh86pKsnOtAenERirn6IBER+ZDnswkqj1nmdQmZJyUqjz0KQnr+4yYiIhrG86tTpH46IjOm5vUWxlAKNSed4HUVREREI/I8DAgh0PjFq/N6C2O9pBj1F1/gdRlEREQj8jwMAMCMi85DqLY6P1sHpMDcL1zBNQaIiMi3fBEGtFAwb1sHtEgEs6682OsyiIiIDsoXYQAAGi6+EMHKivxqHZASc665HIHSEq8rISIiOijfhAEtEsbSO/41b1oHhKYh2jAdcz7/Ga9LISIiGpVvwgAATP3YaZh77ZW53zogBEQggA899F8IlHAJYiIi8jdfhQEAWPDVL6LquOUQmuZ1KROnFI784bdRwkWGiIgoB/guDEhdx1E/WoVgdSWg+a68QxMCc6+9EtPO/qjXlRAREY2JL6+2oapKHPvLexEoLc25FoJp556OBV/9otdlEBERjZkvwwAAlC5egJV/+RXCU6fkTCCYfc1lWHb3HZC651s+EBERjZlQyt/D9xNt7Xjj6hvR/soaf840kBIQwNLvfA3Tl0+DiJRCFJVDFJUDkVLuR0BERL7n+zAAALZpounbd2HzfQ9BaBqUZXldkkNKBCvLcfSP/xOVxx4Fa/s6qL1b9j8uJBAtGwgHorgCCIQhcn22BBER5ZWcCANpne+sw7pbbkfH6285n8ht25M6hKYBUmLutVeg8brPQi8uAgCoRD+stc8AGOVHqocgilMtB9FyiGgphB7MRtlEREQjyqkwAABKKbT85f/w3m13IrarJatdB+lWiWnnn4lF//JlZ7fFA1gfvAnVvmt8Bw6EIaJlQLTUCQfRMrYgEBFR1uRcGEizEklsffDX2PLAw+jftiNz3QepFgihSdScfALm/dM/omL5EQd9uurvgrV+9eTPqwUgoqVON0O0FCJaDhEumvxxiYiIDpCzYSBNKYWud9/Drt/9BTse/ROS+9ohdA3KsifcaiA0DUrZgK1QccwyzPjEOZh61mkIVpaP6fVW8ytQ3fsmdO6DkdMXQtbNdfWYREREQB6EgcGUZaHtlTVo/ftq9DQ1o/u9DYjv3jPwuNCkM6hPINWtr6BsNTD2QAaDKGqchbIlC1G6ZBGmnvn/EJleN+467O59sJtfcecvBUCUTYGcu5zdBkRElBF5FQZGYmx+G2bbXpg9vbCTBpRtQ9m2c2GVEkJKaNEIAiXFCMw+DLKsZtLnVErBaloN9HdP/i8QjEBbdCKEHpj8sYiIiEaQ96vjiFgXdLsPepEAig42at8EEp2AmXDnnEJATpkL+4M3J3kgCW3OcgYBIiLKKK6IkyGiog4IRiZ3kHAxEIq6UxAREdFBMAxkiBAScsokdy2MdcNa/zxUX6crNREREY2EYSCDRHU9MNkFhZIxWE0vwt6zGXk+vIOIiDzCMJBBQmqQU2a7cCQFe8d62JtehzKTLhyPiIhoP4aBDBM1MwHNnQGAqmsvrPeeh+rtcOV4REREAMNAxgktAFk7y70DGnFY778Eu2UTuw2IiMgVDANZIGpnAdLNWZwK9s4m2BtfY7cBERFNGsNAFgg9CFE70/Xjqu5WWO89B7u71fVjExFR4WAYyBJZO9tZCtltRgJ286uwtq+DsjOwURMREeU9hoEsEYGQM5jwwPur6yHKaid9fLV3C6z1q6HcWAKZiIgKCsNAFskpc4a2DhSVQ9YvgZx7NOT0hXB2UJqEeC+sptUcXEhEROPCMJBFIhiGqJ7hfKMFoM05CkJKZy+DurnQFhw/+SWMVWpw4YaXoZKxyRdNRER5j2Egy+SUuYCQkLOPhDjgwi+KK6AtWglRNmXS51G97c7gwvZdkz4WERHlN4aBLBOhKLT5x0IeZJyA0IOQc5dDzlgEiEl2G1gm7A/ehPXBm1CmMbljERFR3mIY8IAorhz9cSEgp8yBtmDF5LsNAKj2Xc6GRz1tkz4WERHlH4YBHxNF5dAWnQhRXjf5gyVjsDa8DGtHE5RtT/54RESUNxgGfE7oAcg5R0E2LAWkNunjqT2bYDW9ABXrcaE6IiLKBwwDOUAIAVnTAG3RiUC0fPIHjHXDWr8a9t4tnIJIREQMA7lEhIugLTweYuq8yR9M2bC3r3P2NzDikz8eERHlLIaBHCOEhDZtfmpwYXTSx1PdrbDWPQe7Y7cL1RERUS5iGMhRorgC2uITIapmTP5glgF78xpYm95gKwERUQFiGMhhQtOhzToCcs5RgBaY9PFUZwusdc/C3redYwmIiAoIw0AekBVToS3+MERp9eQPZpmwt74Du/lVqET/5I9HRES+xzCQJ0QwDNl4DGT9Yle2SlY9+5zljPdsZisBEVGeYxjII0IIyNrZ0BatBCKlkz+gbcHesR5W04tcl4CIKI8xDOQhESmBtnAFxJQ57hywvxPW+udh7doAZVvuHJOIiHyDYSBPCalBm7EIcv5xQCA8+QMqBbW7Gdb61VC9HZM/HhER+QbDQJ6TJVXO4MLKae4cMN4L6/0XYW1fB2WZ7hyTiIg8xTBQAIQegDZ7GeTsIwFNd+WYau8WZ4Bhd6srxyMiIu8wDBQQWTkd2uKTIMqnuHPAZAx286uwtrwNZSbdOSYREWUdw0CBEcEw5JzlzkJFesiVY6q2HQNLGnMaIhFR7mEYKEBCCGehosM+7M5yxgBgJmBvXgN70xtcrIiIKMcwDBQwoQed5YznHQMEI64cU3XtcZY03t3MaYhERDmCYYAgS2ucGQe1s905oLJh79rgdB107mHXARGRzzEMEIDUpkf1i52tkcPF7hw02Q970+uwN74GFe9155hEROQ6hgEaQhRXQFu0EmLqPEAIV46pulthvfccrJ1NXJuAiMiHGAZoGCE1aNPmQ1t0IhAtd+egSkG1bHLGE7TvYtcBEZGPMAzQQaX3OJAzFgFSc+egRhz2B2/C2vAyVKzbnWMSEdGkMAzQqIQQkFPmOAMMS6rcO3BvO6z3VjvLGpuGe8clIqJxYxigMRGhKOS8YyFnHu7aksaAcpY1XvcM7H3b2XVAROQRhgEaMyEEZHU9tMNOgiivc+/AZhL21ndgvf8iVF+ne8clIqIxYRigcROBMLS5yyEbPwSEitw7cF8nrKYXYG19B8pIuHdcIiIalVvtvVSAZFktREkV1N4PYO/eCLi04qDatx1Wx27IqfMhahog3Bq8SEREI2LLAE2KkBpkXaPTdVAxzb0DWybsHe85UxHbdnI8ARFRBjEMkCtEMAJtzjLI+ccB4RL3DpyMwd7yFqz1q2F3tzIUEBFlAMMAuUqWVEFbvBKyfjEgXeyFinXDbn4VdvMrHGRIROQyhgFynRASsnY2tCUnu7dFcorqaXMGGW5eAxXvc/XYRESFimGAMkYEQtBmHQFt4QogWubqsVXHbljrnoW1bS1nHhARTRLDAGWcKKqAtvAEyJlLAS3g4pEVVOtWWGv/DmvXBm6CREQ0QZxaSFkhhICoboAor4O9awNU61b3Dm5bULubYbVuhZw6zzmPZM4lIhor/o9JWSX0ILSGJc6OiMUV7h7cTMLevg7We9wZkYhoPBgGyBMiWgpt/vGQs44EAiF3D57od3ZGbHoBdvc+d49NRJSH2E1AnhFCQFRNhyifAnvPZqg9m11bxRAA0N/lTEUsrYGcNh+iqNy9YxMR5RGGAfKc0HRo0+ZD1cyEvbsZqnUbAPea+FV3K6zuVojSGsipjRDFla4dm4goHzAMkG+IQAhawxKo2tmwd70P1bHb1eMPhIKSKmegYUmVq8cnIspVDAPkOyJcBG3OUVB9nbB3NkH1tLl6fNXTBqunDSiudFoKSqohhHD1HEREuYRhgHxLFJVDzjsWqnsf7J1NQKzb3RP0tsNufhUoKoesa4Qoq2UoIKKCxDBAviaEgCirgSithmrfCXvXBiAZc/ckfZ2wN70OREqdloLyOoYCIiooDAOUE5yZBzMgKqZCtW6DvbsZsAx3TxLrhr15DRAucUJBxVSGAiIqCFxngHKKkBrklNnQlp4CUdcIiAz8Csd7nHUK1j0Lu20HlLLdPwcRkY8wDFBOEloA2vQF0JacAlHdACADn+ATfbC3vO2Egn3boGyGAiLKTwwDlNNEMAxt5lJoh30YorwuMydJ9MPe+i6sdc/Abt0K5ebCSEREPsAxA5QXRLgY2tzlUL0dzhoFLk9HBAAkY7C3rQV2NUPWzISoaYBweyllIiIPMAxQXhHFFdDmH+eEgt3NUN2t7p/ETMDevQFo2QhROQ2ydjZEtNT98xARZQnDAOUlUVwBbd4xzsJFuzdCde1x/yTKhmrbAattB0RJFUTtbK5VQEQ5iWGA8pooKofWeDRUfzfslo2uL3GcpnranK6JUNRpKaiaAaHx7UVEuYH/W1FBENFSZ4njWI8TCtp3ZeZEiX7Y29cBu96HqG5wxhaEopk5FxGRSxgGqKCISAm02cugps53QkHbTri5Q+IAy4TasxnWns0Q5XWQU2YDRRXsQiAiX2IYoIIkwkXQZh0BNXUe7JZNUG3bAZWBUABAdbbA6mwBomWQU2anVjbkrF4i8g+hVIb+B/QJc91zUL3tY3qu1ng0ZNWMDFdEfqSSMScU7NsOZHrFwUAIsmaWMzVRD2b2XEREY8CWASIAIhiB1rAEamoj7D2boVq3AZlaXMhIwN71PrC7GaJqBmRNA0S0bNyH6e/vxzvvvIPOzk5MnToVRxxxRAaKJaJCwLZKokFEIAxtxmJnmeO6uYDMYF5WNtS+bbDWr4a5/nlndUPz0Jsv/e///i+WLVuG0tJSHH/88TjzzDNx5JFH4gc/+EHmaiWivMZugkHYTUAHUqYBtW8b7L1bACOe+RMKCVExFbK6ASgeecDhsmXLEAqF8NnPfhZHH300amtrcdVVVyEYDOLxxx/PfI1ElHfYMkA0CqEHIOvmQlt6CuTsZUBReWZPqGyo9p2wNrzkbJDUsgnKSAx5SmdnJxYvXoxoNIpHHnkE06dPRzgczmxdRJTX2DIwCFsGaCxUXwfsPVtSCxhl4+0jIMqnQFTXQ5TW4JprrsFPfvITAEBRURF6e3tx3nnnwbZttgwQ0YSwZYBonERRBbQ5y6AtPQViylxAC2T4jAqqswX2xtdgvfs07v63G/Humtdw2223Zfi8RFQoOJuAaIJEMAJtxkKoqY1Q7Tth7/kASPRl9qRGHHLvZiwEUGp0ZfZcRFQwGAaIJkloOkTNTIjqBqjuVqi9H0B178v4eVW8d+gdlpnxcxJRfmIYIHKJEAKirBYoq3X2QNj7gbPccaYXMUpRvW0wm16ArJzurHIYCGXlvESU+xgGiDJAREqgzTwcatoCZ2pi61bggFkBE6WUwuvvNWPtxq1D7m9p68T/PfV3nHT0UgS2r3O2Va6cBlFex5UOiWhUDANEGSQCIYip8yCmzIXq2OWsV9A/ub7+u//nT/jy9+4D4MwmSHvjvWacef2/4tyTjsOjq27Zv63ytrUQpTUQFdOcWQncWpmIDsD/FYiyQEjpLD1cNQOqvwv2vu1Q7Tsn1M///Jp3ceqpp+Lhhx8eWJToF7/4BRKJBO655x58/87vDn2BUlBde6G69jqLGpVPcboRymohpObGX4+IchzDAFGWiWgZtIYyqBmLoDp2w963HRjjWhgA0DC1Fg/++Rmcd955wx7btWsXGqbWHPzFyobq2O2skSB1JxhUToMoreZOikQFjGGAyCNCavtbC+K9sPftgGrbAZijjy24+YqLEAmFsLO1bdhjh08/DJ+74PSxFWCbUO07nRYKLQBRUecEg+KqEZdBJqL8xRUIB+EKhOQ1pWynSX/fdqdZ3wt6CKJyKmTFNKConMGAqACwZYDIR4SQEOV1QHkdVDIG1bbD6UZIxrJXhJmA2rsF1t4tQDDijC0omwJRUskxBkR5imGAyKdEMOLMRKhrhOrZ57QWdLYA2WzMS8agWrdCtW4FpOaMLSib4gQErmNAlDcYBoh8TggBUVoDlNZAGQln6eN924EDVyDMNNuC6twD1bnH+b6oHDLVaoBICbsTiHIYwwBRDhGBEMSUORC1s4G+Ttj7tkF1tAC2B0sR93XC7usEdm0AAmGI8nR3QhW7E4hyDMMAUQ4SQgDFFdCKK6Aaljh7IrTvcj61Z2n54yGMOFTrNqjWbU53Qkl1KhzUQgTC2a+HiMaFYYAoxwmp7R90aJnObIT2XVDdrd4EA9uC6toD1ZXqToiWQZZNgSivBSKl7E4g30m0d6J/2w5YiQTsRBLKtqEFg5ChIIKV5ShqmAGh5XdrF8MAUR4Rmg5ROQ2onAZlGlCdLVAdu6C62wB4NIu4vwt2fxewO9WdUFrtdCWUVEEEI97URAVJKYXOt9ehc+169DRtRNf6DehevwHJ9s5RXycDARTPnYWyJQtRsmAuShfMQ/XxRyNQUpydwrOA6wwMwnUGKF8pIwHV2QK7fde4VjvMuFA0FQyqnamL7FKgDOhu2ojtv/sztj/yR8R2tQAAhK5DmeMbayM0zVne27YhAwHUffRk1H/8bEz5yInQwrk9u4ZhYBCGASoEKhlzlkFu3zXpTZNcFy7e32pQUsXdFmnCkl3d2PLzR7DtN39Az4ZNEJoGZVmuniN9TK0oihnnnoFZl12EyqMOd/Uc2cIwMAjDABUaleiDat8Nu2MXEOvxupzhIqX7g0FxJYQe8Loi8jnbNLHl54/gvdt/CKOn11mXIwuXuXQwmH7eGVhyy02I1k/L+DndxDAwCMMAFTIV64HdscvZxCje53U5I4uWDQ0H3I6ZBtnz9PN4519vR++mLZ7VIDQNkBLzrr0S82/4HALFRYd+kQ8wDAzCMEDkUPG+1LbHe6B62uHZ4MNRCaAoFQ6KKiCKyrkqYoGKt+7DG1/8Ovb+fTUgJWB7MIvmQFIiWFaKZd//BqadearX1RwSw8AgDANEwynLgOpqTYWDvYBleF3SwQUjTigoKoeIlgPRUrYe5Ln2Ne/g5c9cj2R7p+tjAiZNCEApzP/SNVh88/W+np7IMDAIwwDR6JRSQF8H7E6n1SDrSyKPm3CWSi4qGwgJCHPp5Hyx4w9P4PXr/hlQNpTlg9aAgxFA3f87CR+6bxX0qD+n0zIMDMIwQDQ+KtHvdCV07oXqbcvuJkoTJTVn7EG6BaGo3Fn/gAEhp2y+/1d4++vfcb7Jid87iYplS7Hil/ciWF7mdTXDMAwMwjBANHHKMqC69+3vTjCTXpc0dnpofzAoKndaEjTOXPCr7Y/+yWkRyDFC01Bx1FKc+NiDkAF//X4xDAzCMEDkDqc7oRN21x4nGPhx2uKhBCMQ4WKnmyH1hXAxN2HyWNe6Jjxz5sWwDSM3WgQOJATmXn0pDv/GV72uZAiOrCEi1w3eSAnTF0IZcaietoEvJPq9LvHQkjGoZAzobh06lyJUBBFJhYRwOiQUQQjpVaUFI9nZhZcuv94ZKJiLQQAAlMKmH/0cFcuWov6Cj3ldzQCGASLKOBEIQ1ROByqnA0itgjg4HCRjHlc4Dok+qEQf0Llnf0gQAggVp1oQ9gcFhKIci+ASZdt47Qs3I96y13+zBsZLCKz50i0oXdCIssULvK4GAMMAEXlABCMQVTOAqhlOl0Kyf2g4MBJelzg+SgHxHqh4D1THoPuFTAWD4v0tCMEoEIpwTMI4bf31Y846AvlAKSjLwmtfuBmnPvN7XwRGhgEi8pQQwml6DxUB1Q1OOEj0DQ0HuTQYcTBlA/1dUP1dw5dt0gJOy0Eo6vyZDgmhqDNegd0OA2zDQNOqewfm7ecDZVnoeX8jWp78O6ae/hGvy2EYICJ/EUI4A/XCxUDNTCccxHuGhgNrfLvN+ZJlDAQFYIQ1HoMRZ4vnYYEhCuhBX3yazJbtj/15YLfBvCIl1t95N+o+eorn/54MA0Tka0IIZ8OiSClQO9sJB7FuqN52qL5OqL7O3BiQOF7pAYy97cODgtScsJBuRQiEgEDImSI5cDuYFzMflGWh6fv51SowwLbRtbYJe/++GlM+cqKnpTAMEFFOEUI4iwZF9y/coswkVF8X0NcJ1Z8KCLnatTAWtgXEe6FSK0Ae9BKp6cNCgtBTYSEQhNDDQCDoPC792S2x8/En0b91h9dlZIzQNDR9/16GASKiyRJ6EKKsBiirAZBa5yAZG2g5UH2dQH+X04dfSCwz1aXSNxAYDh4cAk5YSIUH6EFA0529HTQdkKk/0/cN+h5CZqyZe/ff/j6wPXA+UpaF9tffRqK9E6HKcs/qYBggorzjDEpM9bVXOvvKK2UDsZ6hAcH3eytkkWUAljHQ2pA2toZ5sT8YSP2AEKE5QUPTnW6LVHiAlM6fg26LId8LQA+i9YVX8jYIDNb+2hpPBxIyDBBRQRBC7u9eqJkJILWEcn+qe6Gv0+lqMOIeV5qL1ECYGHTPSM8aFytag8TefZOqbLz+2t+OP/S1ocM2Ua+HcFXJFCwOFmX0nELX0fYKwwARkSeEFoAoqQZKqgfuU6bhzF6I9UDFegdu5/UYBJ+K7d6b1fOtjnfhgZ4WXF0yFYuCUfwt1oFvdW7DD6oaUZPBdSGUaaL1xdcydvyxYBggIhpE6AGguBKiuHLI/cpIQMV7nK6GWK8TEGI9gJ0H0xx9KrZ7D4SuQ5nZ+Rk/3teGUyMVOC1aAQD4bEkd3kr04m/97bi0ZEpGz9317npYiSS0UDCj5zkYhgEiojEQ6cF1g1sRlAKM+EAwUPFBIaHQBitmgNkXg7KzM17AUAqbzDguKKoecv+RwWI0GZlfLltZFsyeXmihykM/OQMYBoiIJkgIsX9xoLLagfsHllgeCAl9UIl+INmfe0ste8hKJAE7O2sL9NgmbADlcuhlsUzT0JnMTsuEFfNuvArDABGRy4YssVxeN+QxZVvOtMdEP5DoHwgJKhFzFk9it8MAZWZ/FsGwCZJqhPsyxPZwZU2GASKiLBJS27/c8gGUSo3KT/Q7qw+mw0KiHyrZDyRiGP+Y/NwldD1rKw+WSB0SQMcBYazLtlAms3Op1CORrJxnxHN7dmYiIhpCpObWQw9CFJUPe3xgjEIqICAZhzITgJGAMhJA6jay1M+eaULTIaTMyjoDASEwVw/j7WQfjguXDtz/drIXx4RKMn5+ANAi4aycZyQMA0REOWLIGIWSqoM+T1mmMxXSiEMZScBMhYVUYBi4bSR8PdAxVFvtBKAsOaeoCj/s2onGQBgLAlE8GevAPtvAR1OzCzIpPKUGgdLshI6RMAwQEeWZgdX/QtFR+7uVUk4rwgEhQZnJ/UsZ286f6oDvnWWOM3uhLprdANjZCysrw2XosS38pncfOmwTDXoIXy9vQK2W2el+QtNQs/LYjJ7jUBgGiIgKlBCDlhFG0bgGyimlnFaFQSFhIDAcNEQYzsVd2VCpP6HsgfucLzXwfXTaVMhAALZhHLogl5wZrcSZ0exO71O2japjjsrqOQ/EMEBEROMmhACE5uw9EAg592XgPBVHLUXbK2sycGQfUcrzMODPPSuJiIgA1Kw8DkLTvC4jowJlpShZMNfTGhgGiIjIt2ZddhEgszXT3wNSovGayyCkt5djhgEiIvKtSF0tZn36E3nbOqCFQ5jzuUu9LoNhgIiI/G3+9Z/1uoTMSLUKBMtKD/3cTJfidQFERESjic6YhoZPnZ93rQMyGMDcqy/3ugwADANERJQDFt70BWjRCOBx37qbFt10LUJVmV/QaCzy56dKRER5Kzp9Ko750ar8CANSou70UzDPR90fefBTJSKiQlD14RVY8dITKD/+Q16XMmFC0xCtn4aj/+t2Z60Gn2AYICIi30sYJrr649DLy3DYvd9DZFa91yWNnxAQAR3H/+xuBEqG71rpJYYBIiLyLaUU+hNJ9MaTA/dpRVEs+ekPoXu4sc+4SQmhaTjmvu+hdEGj19UMwzBARES+ZCuFnlgCsaQ57LFIwwws/ckPAN3/MwyEpkELBXHCw/dh6ukf8bqcETEMEBGR71i2ja7+OAzr4LsWlixbisP/e1UWqxo/oWkI1Vbjw4//AjUrj/O6nINiGCAiIl9Jmha6+uKw7UNvkVx+0gk4+hf/DaFp/lqHIDU4sOq45fjIU4+hfMkijwsaHcMAERH5gjM+wEBPLIFDx4D9oscux8nPP46aE1OfvL2efiglghXlWPb9b2Llb36CUGW5t/WMAcMAERF5zhkfkEQsaUzo9aq2Fsf/6j6s+PV9KJ7d4HJ1YyM0DTIQwIIvfg4fffVvmHXJhf5qrRiFUEqNJ4DlHHPdc1C97WN6rtZ4NGTVjAxXREREg5mWhZ5YEvYkL0fhoI6iUBC2aWLrLx/F+lX3ILF3H4SuQZmWS9UeQErAtiE0DdPPPR2Hff3LiM6YlplzZRDDwCAMA0RE2aOUQtww0Z+YWGvAYJGgjkgwMGQhH2XbaHv5DWz/3Z+x43d/gdnbB6FpUNYkg4EQgACggKpjjkL9Redg+sdOQ7CifHLH9RDDwCAMA0RE2aGUQm88iaQLn9iLw0GEAvqoz7GTSex55gXs/OOT6HjzHfRt2T4QCoSuA0pB2TaQviQK4SwSJKXzvNT9wcoKlC6ej7pTP4wZ552ByLS6SdfvBwwDgzAMEBFlnmnZ6IklJt0tIIVASSQEXRv/8DfbMNC7eSt63t+E7qZm9G3bCTuRgJVIQFkWtHAIMhhEsKIcpQsaUbKwEaULGhEsL5tUzX7FMDAIwwARUWbFDRN9g1YTnKiAJlEcCUH6aH3/XDZ6uwoREZELlFLoiyeRcKFbIBzQEQ0FfLXRT65jGCAiooyybKdbwBrDIkKHMpbxATR+/IkSEVHGJAxzyCZDEzWZ8QF0aAwDRETkOqUU+hIGEsbwTYbGK6BpKI4EOT4ggxgGiIjIVU63QBKWffBNhsYqGgogHNA5PiDDGAaIiMg1SdNEbyw5rr0FRiKEQEk4iEAObFGcDxgGiIho0pRS6E8aiCfd6BaQKA6HICVbA7KFYYCIiCbFsm30xpMwrcl3C0SCAUSC7BbINoYBIiKaEKUUkqaFvrgb3QJAcTiEILsFPMEwQERE42anFhFyY28BXZMoDgehSU4b9ArDABERjYthWuiNT37LYYCrCfoFwwAREY2JUgr9CQNxF9YOEACKI0EEdV6G/ID/CkREdEimZaM37s6SwpqUKImwW8BPGAaIiOiglFKIGyb6E4YrxwsFdBSxW8B3GAaIiGhEbk4ZBLjJkJ/xX4WIiIZJGKYrUwYBQJPOJkPsFvAvhgEiIhrg5pRBAAgFNBSFguwW8DmGASIiAuDulEFnESHOFsgV/FciIipwbu4rAHBvgVzEMEBEVMDcnDIIAEWhAELccjjnMAwQERUgpRRiSROxpDtTBrl2QG5jGCAiKjButwZEgjoiQa4dkMsYBoiICoTbYwOkECgOBxHgToM5j2GAiKgAuDlTAABCuoZoOAjJ1oC8wDBARJTH7NTmQgkXNhcCnA2GiriSYN7hvyYRUZ5KmiZ64waUS60BzpTBICQHCeYdhgEiojxj2wp9CfdWEQSAaCiAMKcM5i2GASKiPKGUQtK0XNtTAHD2FSgOh6BrbA3IZwwDRER5wLJt9MWTMFzaYRAAwkEdUU4ZLAgMA0REOUwphbhhoj/hzuJBAKcMFiKGASKiHGVaTmuAabM1gCaHYYCIKMe4vZQwwLEBhY5hgIgoh6QHCLq1eBAARIMBhIOcKVDIGAaIiHKAM0DQgGG5N11QT60bwM2FiGGAiMjHnC4BAzGX9hMAnFUEo9xqmAZhGCAi8qH0mgH9CcPVLoGAJlHE1gA6AMMAEZHPmJaNvkQSpotrBggBFIWCCOoaWwNoGIYBIiKfsJVCLGEg7tKmQmlBXUNRKAgpGQJoZAwDREQeU0ohYVroTyThYo8ApBAoCjutAUSjYRggIvKQaVnoixuuLhwEAOGAjmiIiwfR2DAMEBF5wLYV+pNJJAz3pgoCzuJBReEgAhpbA2jsGAaIiLJIKYVEai8BF3sEAACRYAARLh5EE8AwQESUJYZpoS+RhGW7GwOCuoZoKMDpgjRhDANERBlmWjb6E+6uHgg4XQLREAcI0uQxDBARZYhl24glDCRMd0OAABAJBRDmCoLkEoYBIiKXZWq9AIBrBlBmMAwQEblEKYV4amthtwcHalKgKBREgF0ClAEMA0REk5ReNCjm8j4CADcVouxgGCAimiClFAzL2UzI7RkCABBKLRwkGQIowxgGiIgmwDAt9CcNVzcTStOls7OgrnGqIGUHwwAR0TiYlo3+pAHD5RkCAHcWJO8wDBARjYFl24glDdeXD04LB3RE2CVAHmEYICIaha0UYkkD8aT70wQBIKBJREPsEiBvMQwQEY3AVgrxVAhwf2igMy4gGgpwqiD5AsMAEdEgtp1qCcjAgkEAIIVANBTguADyFYYBIiI4YwLiSTNjIUAIIBoMIhRgCCD/YRggooLmDAw0kchUCAAQ5tbC5HMMA0RUkDI9OwBIzRAIBriPAPkewwARFRQrtU5AMgPrBKQFdQ3RUACa5AwByg0MA0RUEEzLaQnIZAjgNEHKVQwDRJTXMrliYJomJYo4TZByGMMAEeUlw3J2ETQysHdAGqcJUr5gGCCivOHsIuh0B2RiA6E0Z5ogtxWm/MEwQEQ5TymFhGEiljRhq0ysF+iQQiAc1BFmCKA8wzBARDkrvVBQwsjMksFpUghEggEuGER5i2GAiHKKUgpmKgRkcmYAkAoBoQBCHBNAeY5hgIhyglIKSdNCPGnCtDM3HgAANOm0BHBgIBUKhgEi8jVbKSRSewZkcjwAwBBAhStvwoCyLcBIjvTA2I9hJKESsaF3CgERDE+yOiIaL9OyETcyt2fAYJqUiIZ0BDSGACpMQqkMR+0sUUYS5ltPAra7/3HI2lnQZh/p6jGJaGTpqYHxZGbXB0jTNYlIMICAJhkCqKDlTcuACAQh6+bA3rXBxYMKyGnz3TseEY0oPTUwbpiw7Mx/PtE1iWgwAJ0hgAhAHoUBAJB1jbBbNrvWOiBrZkKEoq4ci4iGSs8KSBgmkoaV0amBaQFNIhIKIKBx2WCiwfIqDLjaOsBWAaKMsFOtAIkstQIAzi6CkaAOnSGAaER5FQYA91oH2CpA5B6l1MCAwEyvDZAmAIRSqwVyK2Gi0eVdGHCldYCtAkSusG0bccNCIgvTAtOc1QJ17htANA55FwaAybcOsFWAaOKUUjBMC3HDgmFlpxUAcMYDhDkzgGhC8jIMTKp1gK0CRBNi2fvXBcjmhOVQQEM44MwMIKKJycswAEy8dYCtAkRjN7BEsGEO2TL4g82b8fxzz+KtN9dg25Yt0HUdF196Gc674EJXziuEQDjgjAeQkq0ARJOVN4sOjcTa/t74WgeEgH7EaQwDRKPYPyXQQnKE3QJffGE1Ljj7LADA4sWLsWDBAuzevRtvvfUWmjZvRSQSmfC5NSkRCepcLpjIZXnbMgCMv3WArQJEI1NKwbIVEqazJsBogwFXP/ccqqursXnzZkSjURiGgT/96U+48MILEevvn1AYCOoawgGdiwQRZUhed7Klxw6M7ckcK0B0IMuy0Z9IorM/jq7+OOLJQ88KKC4pRk9PD84//3xUVVXhD3/4w4TOLQCEAzrKi8IoiYQQYGsAUcbkdcsAMPbWAbYKEDks20bSsJAwJ7Yo0KcuvgRvv/kmOjs60N7ePu7X61IiFNARCvDiT5QteR8GxjSzgK0CVOAs20bStJA0LJj25DYIqqqqxn0/fQBdnZ2Y2zB9TK8RQCoA6JwVQOSBvA8DwKFbB9gqQIXIthWSpomEaQ2ZCZBNAc1pBeCAQCJvFUQYGLV1gK0CVEDs1FTApGFmZYvgkTjTAjWEuEwwkW8URBgADt46wFYByne2rZC0LCRNC0aW9gU4mOJICBVFYbYCEPlMwcTyEWcWsFWA8lB6U6D+hIGuvjg6+mLoiyezFgSUUrj929/CP3xi+AJDF55/Hm699Vbk8fImRDmpYMIA4LQOQO5vDGGrAOWL9EqAvfEkOvucaYCxpDHpwYATseb11/G9O/4Ds2Y24LLLLsPMmTPR0ODcbmhowDe/+U28+OKLWa+LiA6uYLoJgAPGDrBVgHKcMwDQQtLyvvkfADTpLBGcjPUCAK688kpUVlbCtm3Yto3rrrsOXV1d+M1vfoO2tjaPqyWiwfJ6OeKRKCMJ860nIatnQJt9pNflEI1ZehXApOn0/1sefOo/kBQCoYCGoL5/SmB3dzcWLlyI3bt3j/iauro6NDU1oaysLJulEtEoCiYMKKWgDANW0oC9uxmifCpkUSm0UBBC07wuj2hESikYloWk6awD4Ie3qxQCQT09G0CMOBgwmUzi/fffH/H18+fPRygUynSZRDQOeRkG4nta0d3UjO73N6K7aSO61jWhZ8MmWLG48wQhMHiP1fCUWpQdNh+li+ajdEEjShfOQ8m8OdAiYY/+BlSo0p/+zfTof4+m/x1ICCCkO+sBcH8AovyTN2Ggb9tO7Pj9X7D9kT+ip3mzc6cUEFJCjaU/VQgITYMynamHIqCj7rSTUf/xs1F36oehhflJhtynlIKtFAzThmFZMCwLfnlHCgDBgIaQzg2CiPJdToeBRHsndv7+L9j22z+iY827gJTOJ36X/kpC06AsC1o0gunnno76C89GzYnH8T9FmhTLtmFYNozUyn+H2vgn29JdAAEGAKKCkZNhwEokseknv0DTqnucpn8BYAIbqoyH0DUo00L5kUtwxLf/BZXLj8jo+Sh/WLYNM3XxN3x48QecAJD+YgAgKjw5FQaUUtj1pyfx7q3fRWz3HtdaAMYj3Vow4/wzcdjXb0S0flrWayB/s22VavJ3AoAfL/4A9wUgov1yJgx0v78Rb37lVrS/9pbTHeDxtCqhaRBSYt71V2HhjV+ADAQ8rYe8M/jib1rWhLb9zQYBIJD69B/QNUgGACJKyYkwsPPxv+H1G74GZZhQlveLqwwhBCqPPgLH/vQuhGtrvK6GMiy91K9p2TBTzf9+/eQPOAsBBXQNQY2zAIjo4HwdBpRSaLrzbjR9/95h0wH9RGgaghVlOOF/foyywxZ6XQ65ZPA0v/SF36+f+gcLaHKgBYC7AhLRWPg2DNimibdu/ga2/upRr0sZG01CC4Vw/M/vQc0Jx3hdDY1TeorfgZ/6c4EQQFDTBgIAP/0T0Xj5MgwopbDmn27Btt/8wbetASOSEkJKnPj7h1B19JFeV0OjGHLhT33yz6VfNU2Kgb5/XbL5n4gmx5dhYPODD+Ptr37T6zImRkqEKsvxkb//DuGaaq+rKXjppn7LtlNfyvf9/AcT0ORAAGDzPxG5yXdhoO31t/D8eZf7b6DgOAhNQ+XRR2Dlow9A6gW1MaRn0s38lmXDPODin6s0KRBINf9zASAiyiRfhYF46z48fcoFSLR3ej51cNKEQOM1l2Ppv9/sdSV5ZeCin77gD7r457qBi78moXPqHxFlka/CwIuX/CP2PvtSTrcKHGjFr+/DlFNWZuz46X++fPvUOOyib9uwLOe2b35hJ0mTAnrq4h/QNEiZX/+GRJQ7fBMG2te8g2fPutjrMtwlJcqXLsLJT/yP6xfr9Na2fXEDJZHQwF7yuUIpBQVnwR7Ltp0/lYKdatrPxT79Q5FCIKDLgU//kv3+ROQTvunQblp178BSv3nDttH59jq0PvcSak9a4dphTctGfyI5sL2tT/LcMEqpES/y6Yu/P6t2jxRiYM6/rkkO+iMi3/JFGOh8dz32PPWc12VkhNAk1n/vblfCgG0r9CeTSBhDA5MXF1WlFJRypugNfA254CvfhpRMkVJAl6lP/rqEFCLvum+IKD/5Igw0fT8PWwVSlGWj/bW3sO/F11C94kMTO4ZSiCVNxJLGQR93w4EX+PQn+yHfD9x25ZQ5SwhA15w5/rrmfHHAHxHlKs/DgNnXh91/+3vuzx4YhdA1bP/dn8cdBpRSSJoW+hPGqH3oIz2U7pNPX+Cd7xVsBShe4MdN1+SwCz8/9RNRvvA8DLSveTevgwAAKNNC6wuvjus1hmWhP27AHMPPJm4YSJjmARd+mihnlL+ELtN9/bzwE1F+8zwMtL2yJitdBI/27cPL8W7stJIIQmBhMIrLimsxXQ9l9LxpfZu3ItHeiVBl+ajPMy0b/UkDhjn2n4ezsA4v/xMhhRj4tJ/+5M8LPxEVGs/DwL6XXoPKQsvAumQfzoxWojEQhqWAX/Xuxb93bMMPq+ciLLIzyrv99Tcx9aOnjPiYZduIJQwkxhECaOwEAE1KaJqAJp0LvyYl5/YTEcHjMGCbJtrfeDsrmxH9W8XMId9fXzYNV7ZuwCYjhsOCRRk/v9B1tL38xrAwYNsKsaSBuGFmvIZC4VzsBbTUdD5NCvbxExGNwtMwYHT1wI4nPDl3f6o1olhqWTmfsm3Edu/Z/31qhkA8abCBf4I0KVIX+/0Xf170iYjGz9MwYMVinpxXKYUHelqwKBDBTD2cnZPaNqxYHEopxA1nmiBH74/N/ov+/os/B/UREbnH224CY+R585n2454WbDUT+HblrKyeV0Qj6OyL5+VSu5MhhYCUApoQkOlmfSmgCQkh8m/fBSIiv/E0DGih7IzkH+zH3bvxWqIH36qchWotkNVzq3gCpdEQ4kmzoMYICAFIMfQiL6VgXz4RkU94GwYiWWqih9M18JOeFryS6ME3KmZiihbM2rkBAJqEFg5BkxJF4SAioUAqFOR+d0H6gi6FGHTB3/8pnxd7IiJ/8zQMBMrLoJcWw+zuzfi5ftTTgufjXfhaeT0iQkOH5Xwyj0qJUBamFgoIFM+ZNfC9FALRUACRoI6EYSKWNH3VfbD/Au+suT/4gp9u1hdCQIDN+EREuc7TMCCEQPVxR6Pl/57L+CqEf4t1AAD+tWPrkPuvL52Gj0TKM3puAFCWhapjjxp2vxAC4WAAoYCOpGkhljRSiwi5y7mYY+ACzgs8ERGleb7oUNWxy50wkGGPTVmc8XOMSkpUHrX0oA8LIRAK6AjqGgzLRixpwLTGHpCKQoGBC7tIX/ghOACPiIgOyQdh4Ki835sAAMoWzYdedOjFjYQQCOoagroGMxUKkmNYlTCo61xNj4iIJiQ76/COouLwxZDBLA/myzKha6heecy4X6drEiWRECqKwogEdYz2AZ9bExER0UR5HgZkMIiGT50HoWVnJUAvKNPCrH+4cMKvl1IiGgqioiiColAQ2ggtAD4ae0hERDnG8zAAAPNvuBr5uuue0DRMPfNUlC6aN/ljCYFwUEdZNIySSAgBbf8/n2IaICKiCfJFGChqmI76i87Ny9YBZVlYeOMXXD1melxBaTSMsmgYoUD+/dyIiCh7fBEGAGDBl67JylbG2SQ0DVNO/TDKly7K2Dl0TaI4HEJAZyAgIqKJ8U0YKJ49EzMvuRCQvinJBQqL//kGr4sgIiIala+uvId/82somTcnb7oLDv/m11B+uMfrGxARER2Cr8KAHo3g+J/9l7NnQS7PmZcS9R8/G7OvvNjrSoiIiA7JV2EAAIpm1uND963K2ckFQtNQMm8OjrzzNq78R0REOcF3YQAA6k49EYf9yz95Xca4CU2DXlqM43/2X9CjEa/LISIiGhNfhgEAmH/D57D0m191vsmBT9hC0xCuq8XJf30YRTPrvS6HiIhozITy+Wo1O37/V7zxxa/BtixgHBv3ZJUUKF+yCMf/8l6Ea6q9roaIiGhcfB8GAKBz7Xq8dNl1SOxthfJTIBACUAozP/1xHPGdW6CF8nuPBSIiyk85EQYAINnRifdu/yE++NlvIKSEsg69k19GCYHwlBosve1mzDj/TG9rISIimoScCQNp3U0b8c6/3Y7W515yFijK8qqFQtMgAwEsuPHzaLz6MmcaJBERUQ7LuTCQtufp5/HOLbejd/MWCF2DMjPYUjBoAOPMiy/E4q/egHBtTebOR0RElEU5GwYAQNk22l5Zg+2/+zN2/O4vMHt6XQ0GQkoo20bZYQvR8MlzMf3cMxCZOsWVYxMREflFToeBwexkEnuffQnbH/sTWv7vOZg9vc4DUkBIDco0D/5iISC0Qc8RAsVzZmLGBR/DjAvOQsncWRmvn4iIyCt5EwYGU0oh0boP3e9vQndTM3re34jOtU1ItnXATiZhJw0ITUIGg5ChIIrnzkLpwnnO14JGlDTO5lgAIiIqGHkZBoiIiGjsfLsCIREREWUHwwAREVGBYxggIiIqcAwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4BgGiIiIChzDABERUYFjGCAiIipwDANEREQFjmGAiIiowDEMEBERFTiGASIiogKne13AYMFlV0HqQQipQUgNWmD/bSHl/sc0DVIPQg48pg17TEgNUgoIKaBpEuKA21IKSE0MPGfUx4SApktoUkCTAsHUbX3ge23/Y9r+5+mDnquNdFsISCGgCSCgyYHbuiahCTjfS4GAFCPcdh4PSDlwWxMCQgBSAEIgdXxAANCkgAScv4vEwG0pAE0Mvu0cQygFKBvCNoEht23nyz74Y0LZgGXtv22bgG1B2TZgJqEsC7Bt5z7TgLIt57ZhAOnb6eemn2ck97/GtmAbJpRlQ9k27KQJ23JeoywbtmHCtvbfVqnblmFCDXqelTQH3bagbAXbUqnvU6+3lfOYpaAsBduyYRl26pgKlmGlXrP/dbZSsJRC0lawFA64feD3zm0bzm1LIfXY/tv/rbZ4+r50C9/ffH/z/e3f9zdbBoiIiAocwwAREVGBYxggIiIqcAwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4BgGiIiIChzDABERUYFjGCAiIipwDANEREQFjmGAiIiowDEMEBERFTiGASIiogLHMEBERFTgGAaIiIgKHMMAERFRgWMYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiAqdylPxeFzdeuutKh6Pe13KMH6uTSnWNxl+ri2f+Pnn7OfalGJ9k+Hn2iZLKKWU14EkE7q7u1FWVoauri6UlpZ6Xc4Qfq4NYH2T4efa8omff85+rg1gfZPh59omi90EREREBY5hgIiIqMAxDBARERW4vA0DoVAIt956K0KhkNelDOPn2gDWNxl+ri2f+Pnn7OfaANY3GX6ubbLydgAhERERjU3etgwQERHR2DAMEBERFTiGASIiogKXd2HgK1/5Ck488UR8+tOfRjKZHPJYLBbD2WefjZNOOgmnnXYa2tvbfVVf2n/8x3/g6KOP9rwm0zRxxRVX4MQTT8SXvvSlrNUz1vrSsv3zGuxgtfnhdy0f8f3tXk18fx9aIb2/8yoMvPnmm2hpacHzzz+PxYsX47e//e2Qx//6179iyZIlePbZZ/HJT34SP//5z31VHwD09PRg7dq1vqjp8ccfx4wZM/D888+jv78fL774YtbqGkt9QPZ/XmOtzevftXzE97e7NfH9PfHavP5dy4S8CgMvvfQSPvrRjwIAzjjjjGG/3PPmzUN/fz8AoLOzEzU1Nb6qDwB+8IMf4LrrrvNFTWOp18v6gOz/vAYbrTavf9fyEd/f7tbE9/foCu39rXtdgJs6Ozsxbdo0AEBZWdmwppu5c+di7dq1WLJkCYQQeOWVV3xVX1dXF959913ccsstvqips7NzYP3tker1uj4vfl5jrc3r37V8xPe3uzXx/T3x2rz+XcuEnGwZaGlpwcqVK4d9KaXQ3d0NwPmHrKysHPK6hx56CCeffDLWrl2Lf//3f8c3vvENX9V311134frrr89ITQdTUVFx0JpGe8wP9Xnx8xpstNqy9buWj/j+dg/f3xNXaO/vnAwDdXV1WL169bCvs846C08++SQA4G9/+xtOOOGEYa9N/4OWl5ejs7PTV/Vt3LgR3/72t3HGGWegubkZt99+e0bqG+y44447aE2jPZYto9Xgxc9rrLUB2fldy0d8f7uH7+/M1Abk4fvbu92TM+Omm25SK1euVJdccolKJBJKKaWuueYapZRSXV1d6qyzzlInnXSSOuGEE9T777/vq/oGW758uWc1pesxDENdfvnlauXKleqGG27IWj1jrW+wbP68BjtYbX74XctHfH9Pvia+v8eukN7fXI6YiIiowOVkNwERERG5h2GAiIiowDEMEBERFTiGASIiogLHMFAAHnzwQZSXl7tyrC1btkAIAV3XsXPnziGP7d69G7quQwiBLVu2DHns0Ucfxcknn4yysjIUFxfj8MMPxze+8Y2BhTzcrJGo0FxxxRUQQuDzn//8sMeuvfZaCCFwxRVXDNzX0tKCG264AXPmzEEoFEJ9fT3OOeccPPXUUwPPmTVrFu66664sVE9+wDBAEzJt2jT87Gc/G3LfQw89hOnTpw977te//nV86lOfwoc+9CH89a9/xdq1a7Fq1Sq8/fbbebGmN5Ef1NfX4+GHH0YsFhu4Lx6P49e//jUaGhoG7tuyZQuWL1+Op59+Gt/97nfx7rvv4oknnsApp5zi2dK/5D2GgRzwxBNPYOXKlSgvL0dVVRXOPvtsbNq0CQDwzDPPQAgxZNGLt956a+DT+TPPPIMrr7wSXV1dEEJACIHbbrsNANDR0YHLL78cFRUViEajOPPMM9Hc3Dymmj7zmc/ggQceGHLfgw8+iM985jND7nv11Vfxne98B6tWrcKdd96JFStWYNasWTjttNPw6KOPDns+EU3MUUcdhYaGBjz22GMD9z322GOor6/HsmXLBu5LtxS8+uqr+MQnPoH58+fjsMMOw4033oiXX37Zi9LJBxgGckBfXx9uvPFGvPbaa3jqqacgpcQFF1wA27YP+doVK1bgrrvuQmlpKXbv3o3du3fjK1/5CgCnafH111/HH//4R7z00ktQSuGss86CYRiHPO65556Ljo4OrF69GgCwevVqtLe345xzzhnyvF/+8pcoLi7GtddeO+Jx2DVA5J4rr7xySEi///77cdVVVw18397ejieeeALXXXcdioqKhr2e78fClVcbFeWrj3/840O+/+lPf4ra2lq89957h3xtMBhEWVkZhBCoq6sbuL+5uRl//OMf8cILL2DFihUAnAt3fX09fv/73+Oiiy4a9biBQACXXnop7r//fqxcuRL3338/Lr30UgQCgSHPa25uxpw5c4bdT0Tuu+yyy/C1r31tYGzPCy+8gIcffhjPPPMMAGeJX6UUFi5c6G2h5DtsGcgBmzZtwiWXXII5c+agtLQUs2fPBgBs27Ztwsdcv349dF3HscceO3BfVVUVFixYgPXr1wMAzjzzTBQXF6O4uBiHHXbYsGN89rOfxSOPPIKWlhY88sgjQz6BpCmlIISYcJ1ENHbV1dX42Mc+hoceeggPPPAAPvaxj6G6unrg8fSCs3xP0oHYMpADzjnnHNTX1+PHP/4xpk2bBtu2sWTJEiSTSRQXFwPY/yYHMKZm/oOtQj344v2Tn/xkYDDSSJ/slyxZgoULF+Liiy/GokWLsGTJErz11ltDnjN//nysXr0ahmGwdYAoC6666qqB3f7uvvvuIY/NmzcPQgisX78e559/vgfVkV+xZcDn2trasH79etxyyy049dRTsWjRInR0dAw8XlNTA8CZ1pd24AU5GAzCsqwh9y1evBimaQ7Zh7utrQ0bNmzAokWLAADTp09HY2MjGhsbMXPmzBHru+qqq/DMM8+M2CoAAJdccgl6e3txzz33jPh4Xuz2ReQjZ5xxBpLJJJLJJE4//fQhj1VWVuL000/H3Xffjb6+vmGv5fuxcDEM+FxFRQWqqqrwox/9CBs3bsTTTz+NG2+8ceDxxsZG1NfX47bbbsOGDRvw5z//GatWrRpyjFmzZqG3txdPPfUU9u3bh/7+fsybNw/nnXcerr76aqxevRpvv/02Lr30UkyfPh3nnXfemOu7+uqr0drais997nMjPn7sscfi5ptvxk033YSbb74ZL730ErZu3YqnnnoKF110ER566KGJ/WCIaESapmH9+vVYv349NE0b9vg999wDy7JwzDHH4NFHH0VzczPWr1+PH/7whzj++OM9qJj8gGHA56SUePjhh/HGG29gyZIl+PKXv4w777xz4PFAIIBf//rXaGpqwhFHHIE77rgD3/rWt4YcY8WKFfj85z+PT33qU6ipqcF3v/tdAMADDzyA5cuX4+yzz8bxxx8PpRT+8pe/jKs5X9d1VFdXQ9cP3uN0xx134Fe/+hVeeeUVnH766QPTmA4//HBOLSTKgNLSUpSWlo742OzZs7FmzRqccsopuOmmm7BkyRKcdtppeOqpp3DvvfdmuVLyC25hTEREVODYMkBERFTgGAaIiIgKHMMAERFRgWMYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiAocwwAREVGB+/8fNkOzYPZ4DAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHfUlEQVR4nO3dd3wc5Z0/8M/zzMw29WpZslzlLooxmGBMgBA6BAhJuBCS0I8L4Uggx6VdIFzuEuDHBfI7Shollzv4hcAlIQEuxJzpzQFjG9yNbWzLVV3aNjPP74/RypIly5J2dmd29/N+vfxitWXmy1rr+exThVJKgYiIiAqW9LoAIiIi8hbDABERUYFjGCAiIipwDANEREQFjmGAiIiowDEMEBERFTiGASIiogLHMEBERFTgGAaIiIgKHMMAERFRgWMYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiAocwwAREVGBYxggIiIqcAwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4HSvC8g0O5FEz+Yt6Fq/CYnWdtiJBOxkEkIKyEAAMhhEZPIklMyageCEGgghvC6ZiIgoq/IqDCil0L5iFfa9+Bo6125E5/trEf1oO5RlO08QApDCueAr5/mw7f7Xa8VFKJnVhNJ5s1DWPBcTzjwVweoqj/5viIiIskMopZTXRaSra/0m7PzdM9j+5NOI7dwFoWlDLvRjIXQdyrIAIVC95Hg0fPo81J35CejFRS5XTkRE5L2cDQO2aeKjx57ClkceQ/f6TU4AsCz3T6RJwLIhDAN1Z5yKGTdcjbL5c9w/DxERkUdyMgzs+d+X8f6td6D3w21ZPa/QNCjbxqRLLsTsb3wVoQk1WT0/ERFRJuRUGOhauwEf3H4X9r38BiDluLsB0iU0DULX0fT312D6NV+CFg55UgcREZEbciIMKMvC+h8/iI0/+RmElJnpDhgPIRCqq8XCn/0Y5Uc3e10NERHRuPg+DCTbO/HOV2/Bvhdf87qU4WkSQkoc8cPvofGSC72uhoiIaMx8HQaiO3fhjb+5GtFtO/zTGjCCGV+9GrNvuYFrFRARUU7xbRjo2rAZb15yNRKtbTkRBFImfe5CHHnnrRCa5nUpREREo+LL5YgTbR1467Lrci4IAMD23/wO63/8oNdlEBERjZrvwoCybbx7wz8ivntvzgWBlI33/hS7n1/mdRlERESj4rswsOHHD2Dfi6/lbBAAAAiBd2/4JnqyvA4CERHRePgqDOz+y4vYcM9PvS4jfUrBjsXx9pU3wOzt9boaIiKiEfkmDFjxBFbecpuzmVAeUJaFns1b8OHPf+11KURERCPyTRjY/sTvkdi7H/Dn5IbxsRU2//QRmN09XldCRER0SL4IA3YyiY33/jRvWgUGMrt7sPVX/8/rMoiIiA7JF2Fgx5N/RGzXnvxqFUhRCpvuf4hjB4iIyLd8EQY2/vvP87JVICXZ2YXtv/mD12UQERENy/MwEN3Rgt6t2/OzVSBFCOx9yad7KxARUcHzPAy0vvWO1yVknm2j9Y3lUB5tuUxERDQS3esCWt96B0LXoUwz4+daHe/Bk117sSkRRatt4jtVk3FCuCzj5wUAs6sb3Zu2oGTm9Kycj4iIaLQ8bxnY//rbWQkCABCzbUw3Qriuoj4r5xtECLS9XQCtIERElHM8DQNWNIqeTVuydr5jwyX4YlkdFmepNWAgoWloX7E66+clIiI6HE/DQLKrcBbjUZYFs6vb6zKIiIiG8DQM2NGYl6fPLqVg9ka9roKIiGgIz8cMFJR8nj5JREQ5y9MwIMMhL0+fXUJAL4p4XQUREdEQnoYBvbhwLo5Ck9CLi7wug4iIaAhvw0AkgsjUyVk7X9S2sDkRxeaE03e/20xicyKKPWYi4+dWloWyI+dn/DxERERj5fmiQ9UnLsJH23dmZa2BDYkovr3vw/6ff9HRAgA4LVKOr1c2ZvbkCqhcdExmz0FERDQOnoeBiuMWYNt//jYr5zoyVIw/TjoiK+c6mF5chGKuPkhERD7k+WyCyuMWeF1C5kmJikXHQEjP324iIqIhPL86hRsbEG6YmNdbGEMp1Jy82OsqiIiIhuV5GBBCoOmGa/J6Dr5eUozGSy7yugwiIqJheR4GAKDhM59CsKY6P1sHpMD0v/0y1xggIiLf8kUY0IIBNP19frYOaOEwpl7+ea/LICIiOiRfhAEAaLzkIgQqK/KrdUBKTL/mizBKS7yuhIiI6JB8Ewa0cAjNP/xu3rQOCE1DpLEB0679stelEBERjcg3YQAAJp5zOqb/3RW53zogBIRh4NiH/y+MkmKvqyEiIhqRr8IAAMy+5QZUHr8QQtO8LmX8lMLR9/wAJVxkiIiIcoDvwoDUdRzz4P9BoKoS0HxX3uEJgel/dwUmnnuG15UQERGNii+vtsGqSiz69QMwSktzroVg4vlnYvYtN3hdBhER0agJpfw7Yq9363a88TdXI9ayG8qyvC7nsKZd/UXM/aebuewwERHlFF+HAQCI72/FO397M1rfesefMw36LvzNP/gm6o+uhQiXQhRXQhRXQETKGAyIiMj3fB8GAMA2Taz94T348Ge/gtA0/7QSSIlAZTkW/vTfULnoGFhbVsLevfnA40JCFJU7waAvICAQhsj12RJERJRXciIMpHSs/ADv3/ojtC1f4Xwjt21P6hCaBkiJGdddjhlfuRJ6cREAQMV7YK74C4AR3lIjeKDloKgcIlIOYQSyUzgREdEwcioMAIBSCrue/Qs+uP3/ILZzV1a7DlKtEvUXnI053/qas9viQcyNy6H2bx/bgQNhp0uhqMwJB0VlbEEgIqKsybkwkGLFE9j66OPY+ujj6N22PXPdB6kWCE2i5uQTMfPGa1FxzFGHfLrqaYe5eln659UDgwNCcTlEiAsYERGR+3I2DKQopdC5ag12/O4Z7Hjqj0jsb4XQNSjLHnergdA0KGUDtkLFcQsw6eLzUXfOJxGoKB/V6821r0F17BnXuQ9FTp4PbeJMV49JREQE5EEYGEhZFlrfegd7l72KzrUb0LVmPWItu/sfF5oEhAQE+rr1FZSt+sceyICBohnTUDZ/Dkqb56Du7E8iXF835jrsjr2w1r7qzv8UAFFeB23W8ew2ICKijMirMDCcxMZ3YO7bDbOrG3YyCWU73/ghACElhJTQImHoxcUwZhwJrbw27XMqpZyugt6O9P8HghHozadA6BxkSEREmaF7XUCmid426FYX9Ahw6P/dBBBrBZIxd84pBLT6mbA2Lk/zQBL6zEUMAkRElFFcESdDRGU9EIykd5BwSfrHICIiOgyGgQwRQkLWNaV3kN4OmKuXwe5uc6coIiKiYTAMZJCsmQyk28Qf74X1wUuwWjYiz4d3EBGRRxgGMkhoOuTENFsHAEAp2NtWw1r/JpSZSP94REREAzAMZJisnQZohivHUu27YK76X9hdra4cj4iICGAYyDihG5B1M9w7YCIKa83LsHZuYLcBERG5gmEgC2TddEC6OItTKdgfvQ9r/RtQybh7xyUiooLEMJAFQg9ATpjm+nFV+26n26Dd3aWPiYiosDAMZImc2ARIzf0DJ2Ow1r0Ga+tKKDsDGzUREVHeYxjIEmEEIWunDr2/ZgpE+YS0j2/v2gxz9TKoHheWQCYiooLCMJBFcmKTs1FSH1FcAW3qUdBmfQxy8nwg3Y2Iol0w31/GwYVERDQmDANZJAJhyJopzg+6Aa3pOGezJCGgTZwJbe5JQCCc3klSgwvXvAoV702/aCIiynsMA1km653WAW3GsRAH7TsgSyqhH3EqRPnYt00+mOraB3PVC7D3b0/7WERElN8YBrJMBIugzT0R8hDjBIQegDbreMjJzel3G1gmrI3LYW5czpULiYjokBgGPCBLqkZ83Ok2aII27+Ou7Fqo9m93piB27kv7WERElH8YBnxMFldAbz4FomJi+gdLRGGteQXWtvehbDv94xERUd5gGPA5oQegzVwEbdrRrqxTYLdsgPn+i1C9nekXR0REeYFhIAcIISBrpzqDC4sq0j9gbwfM1ctg7drMKYhERMQwkEtEqBjavJMgG2anfzBlw966Eta616ESsfSPR0REOYthIMcIKaFNmuve4MKOPc4UxNYdLlRHRES5iGEgR/WvSVAzOf2DmQlYG96Guf5NthIQERUghoEcJjQD+vRjoM1cBOhG2sdTbS0wVy6FvWcrxxIQERUQhoE8ICvroR/xCYiy2vQPZiVhffgurLWvQcV60j8eERH5HsNAnhCBMLTZJ0BOOWLQZkjjpTr3wlz1AqyWjWwlICLKcwwDeUQIAa1uBvTmU4BIafoHtC3Y21bDev8lrktARJTHGAbykIiUQp9/MuTEma4cT/W0wVz9v7C2r4GyLVeOSURE/sEwkKeE1KBNng9t7onpb4sMOFsj71gHc/Uy2F2t6R+PiIh8g2Egz8nSGmcKYtUkdw4Y7YL1wUuwtq6Eskx3jklERJ5iGCgAQg9AbzoW2oyFgKa7ckx712ZnsaKOPa4cj4iIvMMwUEBkdSP0I09zZxdEAIj3wlr7GsxN70CZCXeOSUREWccwUGBEIOzsgth0HGAEXTmm2rfNWaxo/w5OQyQiykEMAwVICAFZ1eC0ElS7sJwxACTjsDa+DWvDm1DxXneOSUREWcEwUMCEHoA+4xhosxe7sukRAKi2XTBXLoW1Yy2nIRIR5QiGAYIsr4V+xCcg62a4c0Dbgr19rdN10NbCrgMiIp9jGCAAgNB0aFOOcLZGDpe4c9B4L6z1b8Ja9wZUtNudYxIRkesYBmgQWVIJvfkUyIbZgBCuHFN17Ia5aimsbe9zbQIiIh9iGKAhhNSgTZoLvflUiKIKdw6qFOyWDTDf+wvs/dvZdUBE5CMMA3RIIlIKbf7HISc3A1Jz56DJGKyNy2GteQWqt8OdYxIRUVoYBmhEQghoE5ugH/EJiNIa146ruvbDXLUM1paVXLCIiMhjDAM0KiJUBG3OYmjTFwCa4dJRFezdm52ug71b2XVAROQRhgEaNSEEZM2UviWN6907sJmAtfldWO+/BLu7zb3jEhHRqDAM0JiJQAj6rEXQZp8AhIpcO67qaYP1/oswN78LlYy7dlwiIhoZwwCNmyyf4CxW1DjPvQGGANTerTDf+wuslo1cxZCIKAsYBigtQmrQ6mdBP/KTEFUN7h3YSsLettpZxXDfRxxPQESUQQwD5AoRDENvOg7a3BOBcKl7B473wtr0V5irl8Fu38NQQESUAQwD5CpZWgP9iFMgpxwBaLp7B+7tgLXuNVhrX+MgQyIilzEMkOuEkNDqZkA/6pMQNS5tkdxHde51BhlueBsqxv0OiIjcwDBAGSOMEPTpx0Cb/3GIonJXj61adzhbJW95DyoZc/XYRESFhmGAMk4WV0KbfzK0aUcDesC9AysFe/eHMFc8D2v7Gigr6d6xiYgKiIudukSHJoSAqJ0KUVkPe/sa2Ls/dO/gtgV7xzrYu7dANsyGrJ0KIZlziYhGi/9iUlYJPQBt6lHOjoglVe4e3IzD3rrSmY7InRGJiEaNYYA8IYrKoM1dAm3GQsAIuXvweI+zM+L7L8Lu2OvusYmI8hC7CcgzQgiI6kaIijrYLRtht2wEXFxxUPW0w1r7KuyyWshJcyGLK1w7NhFRPmEYIM8JzYA2aS7khGmwt6+DvXcL4GITv+rYA6tjjxMKGmZDut09QUSU4xgGyDeEEYI27SjIiTNgfbQGqnWHq8fvDwWl1ZANcyBLq109PhFRrmIYIN8RoWLoM4+D3d0E+6P3oTr3uXp81bkPVucrsEuqIOtnQ5TVQAjh6jmIiHIJwwD5liyugJhzovON/qP3gd5OV4+vuvbDWvcaRFEFZMNsiPIJDAVEVJAYBsjXhBDORbqsFmr/dlgffQAkoq6eQ/W0wVr/BhApg9YwG6JiIkMBERUUhgHKCf0zDyrrYe/+EPbO9YCZcPckvR2wNrwFhEuhNcyCqGxgKCCigsAwQDlFSA3axCbImimwWzbA3rXJ1emIAIBoJ6yNy4HQWmj1syCqJ0EILslBRPmL/8JRThK6Aa1xHvSjPglZOxVABr7Bx7phbX4H5ntLYe/ZAmXb7p+DiMgHGAYop4lAGNq0o6Ef+QmIiomZOUm8B9aHK2C+9zys3R9Cud0SQUTkMXYTUF4Q4RLos46H3dUKe/saqM4MLEOciMLe8h7sHWsha6dBTpgGYQTdPw8RUZYxDFBekSWVkHNPdELBjnVQHbvdP0kyDnvHWtg710NUT4JWNwMiUub+eYiIsoRhgPKSLKmEnHMC7O422DvXQbXtcv8kyobauw3m3m0QpdWQdTMgyus4A4GIcg7DAOU1WVwBOetjUL0dsHasg2rdmZHzOKsa7gOCRZB1MyBrJkNo/HgRUW7gv1ZUEESkDPrMRVC9nbB2rofavz0zJ4r3wN66Evb2DyBrp0JOmA4RjGTmXERELmEYoIIiIqXQm46FmjTHCQX7PnJ1h8R+ltm/LbOorHe6EIor2YVARL7EMEAFSYSKoU8/BqphNuydG2Dv3ZqZUABAte6E1boToqjcCQWVDRCSs3qJyD+EUhn6F9AnkiuXQnXtH9VztVkfg1YzOcMVkR+peK+zouGerYDK8OJCRghywnTI2qkQRiCz5yIiGgW2DBABEMEItKlHQdbPdpr393zo/jLHKckY7O0fwN65DrK60QkFReVjPkxvby9WrlyJ9vZ2TJw4EUcddZT7tRJRQWBbJdEAIhCCNqUZ+tFnQNbPAmQG87Jtwd6zBebqZUiu+l9ndcNRbL70/PPPY8GCBSgtLcUJJ5yAs88+G0cffTTuvffezNVKRHmN3QQDsJuADqbMBOw9W2Hv3uz61snDkpoz4LBmCkRJ1bADDhcsWIBgMIirrroKxx57LGpra3HllVciEAjg6aefznyNRJR32DJANAKhB6DVz4R+9OnQmo6DKK7M7AltC2rfR7DWvAJz5VJYOzdAJWODntLe3o558+YhEongiSeeQENDA0KhUGbrIqK8xpaBAdgyQKNhd7fC3rUJav9OAFn4+AgBUT4RsnYKRFktrr32WvziF78AABQVFaG7uxsXXHABbNtmywARjQtbBojGSBZXQm86DvrRp0NOnAloRmZPqBRU205Y616HueLPuO+7N2LVO2/jtttuy+x5iahgcDYB0TiJYATa5PmQDbNh7/sI9q5NQKw7sydNRCF2bcRsACXxtsyei4gKBsMAUZqEpkObMA2ydipUxx6nC6FjT+ZPHOsa/LNlZv6cRJSXGAaIXCKEgCifAFk+wdkDYdemvuWOM7yIUR+7cx/M91+CqJoEWVUPYXBQIRGNDsMAUQaISCn06QugGufB3rMF9u4PgYNmBYyXUgp/XbMRqzduG3T/7tZ2PL/0BZy8sBnG1pUQpTWQVQ0QlfUQOlc6JKJDYxggyiBhBKE1zIacOBOqdYfThdDTntYx73/iGXz93w7MJkj565qNOOfG7+P8jy/Ck3d+C6pzL6zOvcCW9yDKaiGrJkFU1EFkesAjEeUchgGiLBBSQlQ3QlY3QvW0w967Ffa+j8bVz//Su+/jtNNOw+OPP96/KNGvf/1rxONx3H///fi3u+4Y/AKloNp3w2rf7SxqVD7BCQblEyCk5sb/HhHlOIYBoiwTReXQisohJzdDte6EvWfLqNfCAIApdTV45NmXcMEFFwx5bOfOnZhcV3voF9tW/y6KkDpE5USnK6G0ljspEhUwhgEijwipHWgtiHb3tRZsA5LxEV/3D1/6NELBAHbubR3y2JET5+CqC88YXQG26ax2uO8jQDcgKuqdFoPS6mGXQSai/MUVCAfgCoTkNWXbUO27YO/dCtW+25sijCBkZQNE1SSI4goGA6ICwJYBIh8RUjobFVXWQ8V7Ye/bBnvP1uxskpSSjDsbM+3eDATCkBV1EOV1TosBxxgQ5SWGASKfEsEItIY5kPWzoTr3wt6zFaptJ5DNxrxE1JkWuftDZ/BhWW1fOJjAdQyI8gjDAJHPCSGci3BZLVQy7ix9vGfr0BUIM822oNpaYLW1OHUVVUBU1EGW1wGRUnYnEOUwhgGiHCKMILSJTZB1M6C622Dv3QLVutOTpYhVTxtUTxvs7Wuc7oTyOmcdA3YnEOUchgGiHCSEgCiphCyphJp6FFT7btj7d0C17wJsK/sFJaKw93wI7El1J9Q44aC8DiLA7gQiv2MYIMpxQmoHBh1apjMbYf92qPY9WdsXYRDbgmrbBattl1NfUTlEeR1kRR0QKWN3AvlOoq0d0Y92wIrHYccTULYNGQhABgIIVJYj0tgAoeV3axfDAFEeEZret1HRJCgzAdXW4rQYdOwF4M0sYtXT7qy6uGMtYISc8Q+l1U53QjDiSU1UmJRS6Fz1ATrfX4uudRvRtW4DutZuQLKtfcTXCcNA0fQpKJ03G8UzZ6BkdhMqFi2EUVKcncKzgOsMDMB1BihfqWQcdutOqP3bx7TaYcYFiyBKqyHLaiBKqtmlQBnRtX4jWn7/LHY89TRiLc76HULXocyxjbURmgalFGDbEIaB2tM+jvoLz0XNKUughYKZKD1rGAYGYBigQqDiUditO5xgkOamSa4LlUCW9bUalNRAGNxtkcYn2dGJjx57Ejue/AO6N2wGNAlY7nabCU2DsixokQgmnncGGi/9DMqPPsLVc2QLw8AADANUaFSsB/b+7bD37wCinV6XM1SkFLK0pi8cVHErZjos2zTx0WNPYv1d/xdmd4+zLkcWLnOpYFB33pmY882vITypPuPndBPDwAAMA1TIVG8n7NYdTjCIdXtdzrBEUbkTDEprnHCgcdgTHbB32atY8/070PPhVs9qEJoGSInp134Z0//uSujFRYd/kQ8wDAzAMEDkULFu2G27oNp3Q3Xty+6qh6MlhLPwUWm1s4dCcQVXRSxQ8b37sfIb/4R9L74KSAnYHsyiOZiUMMpKccSPbsWEMz/hdTWHxTAwAMMA0VDKTEJ17IHd7oQDmAmvSzq0QPhAMCiqcFoS2HqQ19rfXYm/XvM1JNvaoSwP1tgYiRCAUphx/dWYedNXfD09kWFgAIYBopEppaC6W6HadsFu3wVEs7wk8pgJIFICUVQB2RcSEObSyfmi5Y//g/e+9m0o2/ZHa8AIak77OBb8+53QwmGvSxkWw8AADANEY6NiPU6LQdsu/3YnHExqTotBqvWguMJpUWBAyClbf/U4Prj1hwBEjvzeSZQf1YxjH7kPRlmp19UMwTAwAMMA0fgpMwnVuad/rIGvuxMOZgQHhQNRVAGhG15XRYew43d/wsqvfdvrMsZMaBrKjj4Cxz/+C0jDX79fDAMDMAwQucPpTmhzlkZu2+XPaYuHEwhDREohwqUQ4RKISCkQLuEmTB7r/GAdXr/wC7CTZm60CBxMCEy94guY+71/8LqSQTiyhohcl9pICSWV0BrnQSViUJ37YHfuhercB8R7vC7x8BJRqETUaeUYKFTkBIRIX0gIlwKhYggpvamzgCQ7OvHXq2+Ebdm5GQQAQClseejXKDuqGfUXnO11Nf0YBogo40QgBFE9CbJ6EgBAxXsHh4NE1OMKxyDWAxXrgWprOXCfEECoBCJSMrglIVjEsQguUbaNFX//TcR37wH8NmtgrITAqn/4JxTPmoHSubO8rgYAwwAReUAEIxA1kyFrJjtrvcd7oTr3wu7c54SDZMzrEsdGKSDaCRXthMKOA/dLDSJc4nQvhEshQkUQwSIgGOGYhDHa/pvfOesI5AOlYFs23rvxm1jyP0/6IjAyDBCRp4QQTtN7qAiydqoTDmLdfcGgr+UglwYjDmRbzv4PPe1D94zUA86ujcEiJxyF+kJCsMgZr8Buh352MomN9/60f95+XrAsdK/fhD1/eRETTj/F62oYBojIX4QQQLgEWrgEmDDNCQfRzv5WA9W5D7CSXpeZPjMBZSaGDwqAEwiCRUDICQj9wSEUAfSgL75NZsvO3z+LWMsur8twn5TY8OMHUPvJkz3/+2QYICJfE0IAkTJokTKgboYTDno7YHftd2YsdLflxoDEseobwIguDA0LUutrRXD+wAhBGEHACDnTJI2g8988mPmgLAsbf5JnrQIpto2uD9Zi34uvoeaUEz0thWGAiHKKEAIoKodWVN5/nzIT/cFA9fQFhFztWhgN2wKiXVDRruFbFVI0Y0A4CB303yBEIAToqeDgz26JXc88j+i27V6XkTmaxMafPMgwQESULqEHIMonAOUTAODAoMS+YOCEhHZA+XvJWtdZScBKQvXtQjlicNANQA9BBPrCgR4ENL3vj+Hs8dD3R2jGgcek7gyUzFAz9+6/LOvfHjgvWTba31mJRFs7AhXlnpXBMEBEeWfgoERU9U1ntG1n7MHA1gPf762QRWYSMJNQMec9GVuDvDhkcBguPAgpASGdHQaFBIQGSAEI7cBjQgJ6AK2vvZ2/QWCAtuUrPB1IyDBARAVBSDmge2EagL4llHvaD7Qg9LTn1poHvqH6WyGA6JAgMd6efru4DvG9+9KsbWz+2LUPT3bsRatlYkoghGsr6tEcKsroOYWuoW35uwwDREReELoBUVYDlNX036fMhNMX39vZ1y/f6dzO5zEIPhXbtSer53uxpx0/a23BVyrrMS9UhGe7WvG9PR/iwfpZqNUDGTuvMi20vrE8Y8cfDYYBIqIBhB6AKKkCSqoG3a+ScaheZ2Eh9IUFFe0ELNOjSvNfdNceCF2HMrPzHv93516cUVyBs/r+7v+2sh7vRLvwp679uKJiYkbP3bl6Dax4Alowc6FjJAwDRESjIIzg0FYEpZwpgANbEPpG+cPO/37uTLN6olkbL5BUNjYmovhcWe2g+xeEi7Em3pvx8yvLgtndDS1YmfFzDYdhgIhonIQQ/fP9UzMZgAGzGfpaD1S0y/k53pt7Sy17yEoksra2QKdlwQZQLgdfFis0A21Wdgaa2lHvfjcYBoiIXDZoNgMGNy8r2+oLBj1QsV4g3uNs3BTvAeK97HYYQJnZb105eIakgoJAdlYHtD2cNcEwQESURUJqfRsXlQx5TCnVty5AT39gQLzX2SUx3gskevNvFb4RCF3P2sqDpZoGCaDtoDDWbpko17JzqdTCoaycZzgMA0REPiGEcDYwKg4AxRVDHu8fo5AKCfEokIxDJWN9/40DyThg50frgtCdNQmyMW7AEBJNgTDejXZjcaSs//53Y934WLg04+cHAC3EMEBERIcxaIzCCJRlDhMSBgeG1GN+HugYrKl2AlCWXFRag7v3fYSZwTDmBCN4rqsVe80kzjloZkkmBGtrYJQObS3KFoYBIqI8k1oBUBxmsRyllNOKMCAwqEQcMOOAZTqhwko64xiG+Xn8ywmNTnjyZMDO3hLSJxeVo8s28V/tu9FqmZgaCOH7tVMxIYNrDACA0DRULT4uo+c4HIYBIqICJYRwNjPSDIhQ8Zheq5Ry9noYFBYOHRz6H7Mt53W2DSgbasDtg/8bbpgIYRhQyextWX1eSTXOK6nO2vkAZ6nsimMXZPWcB2MYICKiMRNC9O0poAFG330ZOE/50c1oe/vdDBzZR5RCxXHehgF/7llJREQEoGrx8YCW35cqvbQExTNneFpDfr/DRESU0xovvRhC5PGlSkpMveoyZyMtL8vw9OxEREQjCE2oRePnL4bQNK9LyQgtFMTUyy/1ugyGASIi8rfp113hdQmZISWmXnkZjLLsrGMwYileF0BERDSScMNENHzmU3nXOiANA1Ov/ILXZQBgGCAiohzQdON10CJhwOO+dTc1fe06BCqHrjTphfx5V4mIKG+F6+tw9L/fmR9hQErUfvIUX3V/5MG7SkREhaBiyQk4+oWnUbJoodeljJvQNIQn1ePIH/+Ls1aDTzAMEBGR78WSJtq6o9DKyjDj3jsQmDLJ65LGTggIXcfCX/4ERsnYVnzMNIYBIiLyLaUUumMJdPbG+3dC0CIRzLrvx5A+u6COSEoITeLof78TJR4vMDQchgEiIvIlWyl09MbRGx+6N0GwsQGz7/83QPf/DAOhaZDBAI771QOYcPopXpczLIYBIiLyHdOy0dYdRcI89BbLkSObMfveO7NY1dgJTUOgpgon/PZRZ2lln2IYICIiX4n3jQ+w7MNvkVy85AQc8dB9EJrmr3UI+gYHViw6BkuefQKl8+d4XNDIGAaIiMgXlFLoiSXQMWB8wGgEFi7ACX/5b1Sd2PfN2+vph1LCqChD8523YdGvf4pARbm39YwCwwAREXnOtp3xAT3DjA8YjWRVDY555D4c++j9KJrS6HJ1oyM0DcIwMOMrV+GUl55B4+cu8ldrxQh0rwsgIqLCljQtdPTGYauxtAcMZiuFaMJEzcknour5p7D98aew4d4Hkdi7H0LXoEYYe5AWKQHbhtA01J17Bmb/440IN0zMzLkySCiVxrufA5Irl0J17R/Vc7VZH4NWMznDFREREeB0C0QTJrpjibSPFQkaKAoagxbyUbaN1rfeQcvvn8HOp5+D1d0DoWlQVprBYMA5Ko5dgIZPn4cJZ38SgfKy9I7rIYaBARgGiIiyw1YKXdE44sn0LswCQEkkiJAxckO3nUhi70uvYtczz6NjxWr0bv2oPxQIXYNSAGwbSF0ShXAWCZLSeV7f/UZlBUrmzETtqUtQd95ZCE+ckFb9fsEwMADDABFR5pmWjY7e2KhmC4xESoHySAi6Nvbhb3YyiZ4t29C9fhO6121E7/YdsOMJ2PE4lGlBhoKQgQACFWUonjkDxbObUDKryRfbDWcCw8AADANERJkVTSTRFU2/WyCgaygNByGlf9b3z2UcQEhERBmnlEJXNIFY0kz7WJGAgaKQ4auNfnIdwwAREWWUW90CAFAaDiIU4KXLbXxHiYgoY2IJE13RsS0iNBwpBMqKgjByZN5+rmEYICIi16V2G4wm0u8WCOgaSiNBSHYLZAzDABERucqybXT0xmFadtrHKgoZiAQ4PiDTGAaIiMg18aSJzjHuLTAcKQRKI0EEcmCL4nzAMEBERGlzNhlKojcxvr0FBjJ0ibJwiNMGs4hhgIiI0mLZNjp740i60S0QNBAJslsg2xgGiIhoXJRSiCVNdEcTaXcLCAGUhUMIGOwW8ALDABERjZltK3TF0t9bAAAMTaI0EoQmx76sMLmDYYCIiMYkYVroTHPL4RSuJugPDANERDQqbq4dIACURoIIHma3QcoO/i0QEdFhubmksK5JlLFbwFcYBoiI6JCUUogmTHTH0t9pEADCAR3FoQC7BXyGYYCIiIbl5pRBAaCEmwz5Fv9WiIhoCLc2GAIATQqURULQNXYL+BXDABER9bOVQlfUnSmDABAydJSE2S3gdwwDREQEwN0pg0IApWHOFsgV/FsiIipwSin0xJPojae/rwDQt+VwOMi9BXIIwwARUQEzLWeQoGmnP0gQAEpCAYQCOrsFcgzDABFRAVJKoTeeRI9LrQG6JlEaDnKQYI5iGCAiKjBJy0JXb8K11oBI0EARdxrMaQwDREQFQimFnlgSvQl3WgOkECiNBBHQudNgrmMYICIqAAnTQlc07spywoAzZbA4HIBka0BeYBggIspjdt/mQjEXNhcCnCmDJeEgQpwymFf4t0lElKfiSRNd0YQr6wYAgKE7gwS5wVD+YRggIsoztq3QFXNvFUEAKA4FEOaUwbzFMEBElCeUUoglnR0GXWoMgC4lSiOcMpjvGAaIiPKAZdvoiiaQMN1rDYgEDBSFOGWwEDAMEBHlMKUUogkTPbGEKzsMAs4ugyVhThksJAwDREQ5yrRsdEbjMC13Fg8CuIBQoWIYICLKMW4vJQw4YwNKIgEYGlsDChHDABFRDon3DRB0a/EgACgKGoiwNaCgMQwQEeUA07LRHXN3gKChSZRwcyECwwARka8ppdATT6LXxS4BAWfdAG41TCkMA0REPqSUQty00O3iCoIAENA1lIQDXEWQBmEYICLyGdOy0RWNI+niLAEhgJJQEEFDY2sADcEwQETkE7ZS6IklEHVpU6GUoKGhJBSElAwBNDyGASIij2ViGWEAkEKgJBxAkDsM0mHwN4SIyENJ00JXLOHqwkEAEA7oKAoFINklQKPAMEBE5AHbVuiOJRBLutsloEmB0nAQBpcSpjFgGCAiyqL+vQTi7nYJAFw8iMaPYYCIKEsSfVMFTdvdLoGgrqGY0wUpDQwDREQZlonVA4G+3QVDQQQMdglQehgGiIgyxLJt9MSSro8LEACKQgGEuYIguYRhgIjIZbbt7CrYm3BvCeGUkKGjKGSwS4BcxTBAROQSpRR6E0n0xpJweWwgdClRHA4gwFkClAEMA0REaUotGtQTS7q6jwDgLCNcHOSmQpRZDANEROOklHJmCMQSsGy32wL6Fg4KBriMMGUcwwAR0TgkTAs9sYSrmwmlGJrTJWBo7BKg7GAYICIag0xNEwScvQSKQgZCBrsEKLsYBoiIRiFT0wRTuJcAeYlhgIhoBLbqmyYYd3+aIAAEdA3FoQB0jVMFyTsMA0REw7BtZ5pgNO7+NEEA0DWJ4hCnCpI/MAwQEQ2QWjAomshMCNCkQFEogKCucVwA+QbDABERnDEBTgjIzJgADg4kP2MYIKKClukQIABEuLUw+RzDABEVJNNyQkCmZgcAXDSIcgfDABEVFNOy0RNPIJ50f52AFG4mRLmGYYCICkI2QkBA11AUMrhyIOUchgEiymtJy0JPLJmRFQNTOE2Qch3DABHlpaRpoSee2RDAaYKULxgGiChvpHYR7I0nM7KBUIoUAkVBg9sKU95gGCCinGcrhVjCRDSRzMhWwilSCESCBsIMAZRnGAaIKGdZto1o3MzYaoEpXDCI8h3DABHlFKWUs0ZAIpnRmQGAMyYgEmQIoPzHMEBEOUEphXjSQm8iCTOD4wGAvoGBwQCCBgcGUmFgGCAiX7NthWjCWS7YVpnsDAB0KREJGZwdQAUnb8KAskzATAx9wB7DNwgzDhXvHXyfEBCBcHrFEdGYpboCYhnaM2AgXZMoChoIMARQgRJKZThqZ4lKxpFc/ifAdvcfDjlhOvSmY109JhENLzU1MJowM7o+QIqhSUQYAojyp2VAGEHI+pmwt69x8aAS2qS57h2PiIal+qYG9mZ4amCKoUkUhQIwNMkQQIQ8CgMAoNXPgr1zg2utA7J2KkSoyJVjEdFgqVkB0YSJeNLM6NTAlICuoShowOCywUSD5FUYcLV1gK0CRBlh2wqxZOYXCBooaGiIBBgCiA4lr8IA4F7rAFsFiNyjlELSshHNwtoAKQJAOGAgHNS5lTDRYeRdGHCldYCtAkSusGzbWSY4acLOUiuAJoUTArhkMNGo5V0YANJvHWCrANH4ZXtGQIqhS0QCnBlANB55GQbSah1gqwDRuJiWjVjSRCwLiwMNFDJ0RIIGdI1dAUTjlZdhABh/6wBbBYhGL7VEcDQxeMvgLR9uxssvvYj33n0H27Zuha7r+JsvXIZPXfhpV84rhUA4oCMcMCAlWwGI0pU3iw4Nx9y6amytA0LCOOZshgGiEaSmBKZaAQ7+B+T1V1/BxZ86FwAwb948zJ49Gy0tLXh3xQp8sHELwuHxr+ipa05XAPcMIHJX3rYMAGNvHWCrANHwlFIwbRvxpHXYboBXX34J1dXV2Lx5MyKRCJLJJP74xz/i05/+NKLR3nGFgaCuIRw0uEgQUYbkdSdbauzA6J7MsQJEBzMtG92xBFq7o2jrjqE3njzseIDi4hJ0dXXhwgsvRFVVFX7/+9+P69zO1EAdVSVhlBWFODCQKIPyumUAGH3rAFsFiByp6YDxpAVzLBt99fns5z+P9957F+1tbWhtbR3z63VNIhzQETR0SF78ibIi78PAqGYWsFWACpyV6gJImjCtsQeAgaqqqvHAzx9CR3s7Zk2dNKrXCOHMCggHOCuAyAt5HwaAw7cOsFWACpFtK8STJmJJc9BMgGwydImwwQGBRF4riDAwYusAWwWogNjKCQDxpJXVBYEGkkIgFNARDnCZYCK/KIgwABy6dYCtApTvbFshbnobAFJKw0FUlYTZCkDkMwUTy4edWcBWAcpDqXUAevpmAezr6kVXNJG1IKCUwp3/+gNc+rmLhzx28UUX4tZbb0UeL29ClJMKJgwATusA5IHGELYKUL5Qfc3/XdE49ndF0dodRU88mfZgwPF456/LcfedP8K0KZPxxS9+EVOmTMHkyc7tyZMn45//+Z/x2muvZb0uIjq0gukmAA4aO8BWAcpxlm0jYVq+aP4HAF1KhAI6rFgPAOCKK65AZWUlbNuGbdu4/vrr0dHRgd/85jfYv3+/x9US0UB5vRzxcFQyjuTyP0HWTIbedKzX5RCNWmoVwETSQty0PPnWfzBNCgQNHSFD758S2NnZiTlz5qClpWXY19TV1WHt2rUoKyvLZqlENIKCCQNKKaikCTuRgL1jLVDRAK24DDIYgNA0r8sjGlZqO+C4aSGRtLK6G+ChSCEQMnQEAxp0OfzywIlEAuvWrRv29bNmzUIwGMx0mUQ0BnkZBmK796Jr7QZ0rd+ErrUb0fnBOnSv3wQrGnOeIICBu6sEJ9SgdN5slM6diZLZTSiZ3YTimdOhhUOe1E+FSykFy3YCQOqPH6QWBQoaOvcHIMpDeRMGej/agZ2/exbbf/s0ujdsdu6UAkJKqNH8gyoEhKZBmc7UQ2HomPDJk9Fw8Xmo/cRJ0EL8JkPuS138k5Zz4U+ati++/QNOAAjqOkIBBgCifJfTYSDR2o6dv3cCQPu7qwApAaWcPy4QmgZlWdAiYUw8/0w0XHQOqk/6GP9RpLSkBv757eIPOI1mAUNDyNC5MRBRAcnJMGDFE9jyy//E+n97wGn6FwDszP5vCF2DMi2UHTUfzT/4FioWHpXR81H+SF38k6bzXz9d/FOCuoZgQEeQAYCoIOVUGFBKoeVPz+OD2+5CrGW3ay0AY5FqLai/4CzM+c7XEZlUn/UayN8s23Yu/JaFpGnBynBQHa+A3tcCYGjcHZCowOVMGOhavwkrv3Eb2pavcLoDxrG1qpuEpgFSoun6KzDz69dBGoan9ZB3LNtG0rKR7Gv69+vFXwgnAAR1BgAiGiwnwsDOP/4ZK/7+21BJE8ryx+jqfkKgYuFRWPiLHyNUW+11NZRhdt9Sv0nLgmk6IcCPzf4pqXUAArrGQYBEdEi+DgNKKaz/P/djw48fdL7W+LRUoWkwKsrwscd+htL5s70uh1ySWuQnddFPWv791j+QoUsEdR1BQ+OugEQ0Kr4NA7ZpYtU//jM+euwpr0sZHU1CCwZx3K/uQ/Xi47yuhsZIKQVbKSTNvm/9lhMAckFqCmDA0BDQ2fxPRGPnyzCglMJ7N/0Ttv/mD75tDRiWlBBSYvFTD6Pi2KO9roZGYPfN7U9d9JOWlVO/arqUCBgagroGnc3/RJQmX4aBLY/+P6z+1g+8LmN8pESgshwnL30SwRqOIfBaalEf07ZhWjYsy4Zp2znR3H+wgO5882fzPxG5zXdhoG35Crx20eX+Gyg4BkLTUL7wKJzw219C6gW1MaRnUhd9q++i33/xz8GLfoouJQxd9ocAfvsnokzxVRiI792HF0+7GInWds+nDqZNCEy/9ouYd+s/eF1JXkn17acu+JZ14Ft/rtOk6L/wG5oGKXnxJ6Ls8FUYePMLf4d9L72e060CB1v0Xw+i9pQTM3b81F9fvn1rTF30Lbvvwt9/8bfhm1/YNKUu/oauIcCLPxF5yDdhoO3dVXj13Eu9LsNdUqKseQ6WPPu46xfr1Na23bEESiNBGDm2DbNSCkoBlrL7m/dt+0BTfy437x+KJgUMre+bvy7Z709EvuGbDu31dz/Qv9Rv3rBtdKz8APteeh01Jy927bBJy0J3NNE/9c0fcW6ogf34w13wfVq2a6QQ/Rf+gM5Bf0TkX74IAx2r1mDvCy97XUZGCE1i/d0PuBIGLNtGTyyJWNIcdL8XjTupZnxbKdj2gSb9gRd8P6/Mlwmpb/6pi78UIu+6b4goP/kiDKz/8YP51yrQR1k22pavwP7X30bVCeNbjEgphd54Er3x5LDfpt265g53gR90e8B9BXadH0IKAV2TMDQJQ9Og65KL/RBRzvI8DJg9vdj952W5P3tgBELXsOO/nxlzGFBKIZ50xgWM9C1bDRMRlHLuTfXNOxfwkS/2hX6BPxQB9F34nYu+oUl+6yeivOJ5GGh/Z2VeBwEAUKaF/a++PabXJE0LXbHEqKbM9caTiCXMAxd98MKeDl1K5+KvOwFAk7zwE1F+8zwMtL71bla6CJ7o3ovXYp3YYcYREAJzjAguL63DJD2Y0fOm9Hy4FYnWdgQqy0d8nmnZ6I4lkDBH/35YtoKV98PxMkMK0X/RTzX788JPRIXG8zCw/43lUFloGVid6MG5kUrMNMKwofCrrj34XusW3F89E6EsjfJuW74CE844ZdjHDjU4kNwhAGia7P/Wr/fd5tx+IiKPw4Btmmj763tZmRv3/cqpg37+WlkDLtuzFhuTUTQHizJ+fqFr2P/mO0PCgG0r9MQTiCYYAtySutBrmui/+LOPn4jo0DwNA2ZHF+xY3JNz9yinGb5EZmexHmUrxFp29f9sK4XoCDME6PAOvuBrUrJ/n4hoHDwNA1Y05sl5lVL4ZecuzDMimGKEsnNS24YVjUEphWjCRE88wUF+o6RJ0XfhP9C8z4s+EZF7vO0mSCY9Oe+DnS3YYsZwR9X0rJ5XhMNo7Y7m5VK76ZBCQJOi/5t96r9SCjbvExFlgadhQAYDWT/nTzt24q1YJ35YNR3VmpHdk8fjKC8KHZgKmN2ze0YIDLnQa8IZvMdv+ERE3vM0DGjhcNbOpZTCTztb8HqsEz+smoY6PctBRJOQoSA0KVESDqIoGEA0kURvIpnz3QVSHPgWf/A3/NT9RETkX56GAaO8FHppMczO7oyf64HOFrwUbcd3KqYgLCTaLKeLIiI1BEXmpxYKCBRPn9r/s5QCRaEAIkED0YSJ3njSV2v5D7zAD7p90H0C+bd9MhFRofE0DAghUHn8QuxZ+nLGVyF8trcVAPDt1g8H3X9jWQM+GanI6LkBQFkWKhctGHK/EAKRoIFwQEc8aaE3noTp8nuRumALgf4++JEu9rzAExEVFs8XHapKhYEMe3pic8bPMSIpUX7MkYd8WAiBUEBH0NCQMJ1QkBzFUsQpxaHAgAF3TktE/21e2ImIaASeh4HKRQvyfm8CACidOwt6UeSwzxNCIGjoCBo6kpaFaNwc1aqEIUPnanpERDQunoeBsiPnQwYCsBMJr0vJGKFrqDpx7NsXG5oGI6KhyHbGFURHGGxoKwUJhgEiIhq77CzKP1IBAQOTPncBhJadlQC9oEwLjX9z0bhfr0mJ4lAA1SURlIQD0IZpARhuG2MiIqLR8DwMAEDTDVdB+WgkvZuEpmHCWZ9A6ZyZ6R9LCIQDBiqLwyiLBBHQDwSoPH37iIgoC3wRBiKNDZj02U/lZeuAsizM+vp1rh4zNa6gvCiEyuIwQobnvT1ERJTDfBEGAGDm31+Tla2Ms0loGmo+cRLKjpibsXPomkTpQa0EREREY+GbMFA0bTIaP/9pQPqmpLQpKMy55atel0FERDQiX115m2//R5TMnJ433QXNt38TZUfO87oMIiKiEfkqDGiRMI595CfQwiEgl+fMS4mGi8/DlMv/xutKiIiIDstXYQAAiqY04pgH70KuzpQTmoaSmdNx5B3f48p/RESUE3wXBgCg9hMnYc63bvS6jDETmga9tNhp3Yhkb0dGIiKidPgyDABA01evwrzb/9H5IQe+YQtNQ6iuFkv+9BiKpjR6XQ4REdGoCeXz1X52/v45rLjx27AtCxjDxj1ZJQXKmudi0X/ch2BNtdfVEBERjYnvwwAAdKxei7e//FXE9uz1VyAQAlAKjZdejOZ/+Ta0YMDrioiIiMYsJ8IAACTaOrD2jp9g2388ASEllGV5W5AQCE6oxvxbb0H9BWd5WwsREVEaciYMpHSt24j3v3cH9r38hrNAUZZXLRSaBmEYmPX1v8W0qy9zpkESERHlsJwLAyl7/vcVvP9PP0LP5q0QugZlZrClYMAAxsbPX4TZt9yAUC3HBhARUX7I2TAAAMq20frWO9jx389g5++ehdnV7W4w6Gt5KJ0/B5M+ez4mnn8mwhMnuHNsIiIin8jpMDCQnUhi70uvY8dTf8KepS/B7Op2HpACQmpQpnnoFwsBoQ14jhAomjYFDRedg/oLz0bxjKkZr5+IiMgreRMGBlJKIb53P7rXbUTnuo3oXrcRHe+vQ2J/G+xEAnYiCaFJyIABGQyiePoUlMyZiZI5TSiZ1YTipmkcC0BERAUjL8MAERERjZ5vVyAkIiKi7GAYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiAocwwAREVGBYxggIiIqcAwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4HSvCxgosOBKSD0AITUIqUEzDtwWUh54TNMg9QBk/2PakMeE1CClgJACmiYhDrotpYDURP9zRnxMCGi6hCYFNCkQ6Lut9/+sHXhMO/A8fcBzteFuCwEpBDQBGJrsv61rEpqA87MUMKQY5rbzuCFl/21NCAgBSAEIgb7jAwKAJgUk4Py/SPTflgLQxMDbzjGEUoCyIWwTGHTbdv7Yh35MKBuwrAO3bROwLSjbBswElGUBtu3cZyahbMu5nUwCqdup56ael0wceI1twU6aUJYNZduwEyZsy3mNsmzYSRO2deC26rttJU2oAc+zEuaA2xaUrWBbqu/nvtfbynnMUlCWgm3ZsJJ23zEVrKTV95oDr7OVgqUUEraCpXDQ7YN/dm7bcG5bCn2PHbj9oNri6efSLfx88/PNz7d/P99sGSAiIipwDANEREQFjmGAiIiowDEMEBERFTiGASIiogLHMEBERFTgGAaIiIgKHMMAERFRgWMYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiAocwwAREVGBYxggIiIqcAwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4BgGiIiIChzDABERUYFjGCAiIip0Kk/FYjF16623qlgs5nUpQ/i5NqVYXzr8XFs+8fP77OfalGJ96fBzbekSSinldSDJhM7OTpSVlaGjowOlpaVelzOIn2sDWF86/FxbPvHz++zn2gDWlw4/15YudhMQEREVOIYBIiKiAscwQEREVODyNgwEg0HceuutCAaDXpcyhJ9rA1hfOvxcWz7x8/vs59oA1pcOP9eWrrwdQEhERESjk7ctA0RERDQ6DANEREQFjmGAiIiowOVdGPjGN76Bk046CV/4wheQSCQGPRaNRnHeeefh5JNPxumnn47W1lZf1Zfywx/+EMcee6znNZmmicsvvxwnnXQSbrzxxqzVM9r6UrL9fg10qNr88LuWj/j5dq8mfr4Pr5A+33kVBt59913s2rULL7/8MubNm4ff/va3gx5/9tln0dzcjBdffBGf+9zn8B//8R++qg8Aurq6sHr1al/U9PTTT2PSpEl4+eWX0dvbi9deey1rdY2mPiD779doa/P6dy0f8fPtbk38fI+/Nq9/1zIhr8LA66+/jjPOOAMAcNZZZw355Z45cyZ6e3sBAO3t7aipqfFVfQBw77334vrrr/dFTaOp18v6gOy/XwONVJvXv2v5iJ9vd2vi53tkhfb51r0uwE3t7e2or68HAJSVlQ1pupkxYwZWr16N5uZmCCHw5ptv+qq+jo4OrFq1Ct/97nd9UVN7e3v/+tvD1et1fV68X6OtzevftXzEz7e7NfHzPf7avP5dy4ScbBnYtWsXlixZMuSPUgqdnZ0AnL/IysrKQa979NFHccopp2D16tX4/ve/j9tvv91X9d1zzz346le/mpGaDqWiouKQNY30mB/q8+L9Gmik2rL1u5aP+Pl2Dz/f41don++cDAN1dXV45ZVXhvw555xz8Oc//xkA8D//8z848cQTh7w29RdaXl6O9vZ2X9W3ceNG/Mu//AvOOussbNiwAT/60Y8yUt9AH/vYxw5Z00iPZctINXjxfo22NiA7v2v5iJ9v9/DznZnagDz8fHu3e3Jm3HzzzWrJkiXq0ksvVfF4XCml1LXXXquUUqqjo0Odc8456uSTT1YnnniiWrduna/qG2jhwoWe1ZSqJ5lMqi996UtqyZIl6oYbbshaPaOtb6Bsvl8DHao2P/yu5SN+vtOviZ/v0SukzzeXIyYiIipwOdlNQERERO5hGCAiIipwDANEREQFjmGAiIiowDEMFIBHHnkE5eXlrhxry5YtEEJA13Xs2LFj0GMtLS3QdR1CCGzZsmXQY08++SROOeUUlJWVobi4GEceeSRuv/32/oU83KyRqNBcfvnlEELguuuuG/LYV77yFQghcPnll/fft2vXLtxwww2YPn06gsEgGhsbcf7552Pp0qX9z5k6dSruueeeLFRPfsAwQONSX1+PX/3qV4Pue/TRR9HQ0DDkud/5zndwySWX4LjjjsOzzz6L1atX4+6778Z7772XF2t6E/lBY2MjHn/8cUSj0f77YrEYHnvsMUyePLn/vi1btmDhwoV44YUXcOedd2LVqlV47rnncOqpp3q29C95j2EgBzz33HNYsmQJysvLUVVVhfPOOw+bNm0CACxbtgxCiEGLXqxYsaL/2/myZctwxRVXoKOjA0IICCFw2223AQDa2trwpS99CRUVFYhEIjj77LOxYcOGUdX05S9/GQ8//PCg+x555BF8+ctfHnTfW2+9hX/913/F3XffjbvuuguLFy/G1KlTcfrpp+PJJ58c8nwiGp9jjjkGkydPxlNPPdV/31NPPYXGxkYsWLCg/75US8Fbb72Fz3zmM5g1axbmz5+Pm266CW+88YYXpZMPMAzkgJ6eHtx00014++23sXTpUkgpcdFFF8G27cO+dvHixbjnnntQWlqKlpYWtLS04Bvf+AYAp2lx+fLl+MMf/oDXX38dSimcc845SCaThz3upz71KbS1teGVV14BALzyyitobW3F+eefP+h5//mf/4ni4mJ85StfGfY47Bogcs8VV1wxKKQ/9NBDuPLKK/t/bm1txXPPPYfrr78eRUVFQ17Pz2PhyquNivLVxRdfPOjnX/7yl6itrcUHH3xw2NcGAgGUlZVBCIG6urr++zds2IA//OEPePXVV7F48WIAzoW7sbERv/vd7/DZz352xOMahoHLLrsMDz30EJYsWYKHHnoIl112GQzDGPS8DRs2YPr06UPuJyL3ffGLX8S3vvWt/rE9r776Kh5//HEsW7YMgLPEr1IKc+bM8bZQ8h22DOSATZs24dJLL8X06dNRWlqKadOmAQC2bds27mOuWbMGuq7j+OOP77+vqqoKs2fPxpo1awAAZ599NoqLi1FcXIz58+cPOcZVV12FJ554Art27cITTzwx6BtIilIKQohx10lEo1ddXY1zzz0Xjz76KB5++GGce+65qK6u7n88teAsP5N0MLYM5IDzzz8fjY2N+PnPf476+nrYto3m5mYkEgkUFxcDOPAhBzCqZv5DrUI98OL9i1/8on8w0nDf7JubmzFnzhx8/vOfx9y5c9Hc3IwVK1YMes6sWbPwyiuvIJlMsnWAKAuuvPLK/t3+7rvvvkGPzZw5E0IIrFmzBhdeeKEH1ZFfsWXA5/bv3481a9bgu9/9Lk477TTMnTsXbW1t/Y/X1NQAcKb1pRx8QQ4EArAsa9B98+bNg2mag/bh3r9/P9avX4+5c+cCABoaGtDU1ISmpiZMmTJl2PquvPJKLFu2bNhWAQC49NJL0d3djfvvv3/Yx/Nity8iHznrrLOQSCSQSCRw5plnDnqssrISZ555Ju677z709PQMeS0/j4WLYcDnKioqUFVVhZ/97GfYuHEjXnjhBdx00039jzc1NaGxsRG33XYb1q9fjz/96U+4++67Bx1j6tSp6O7uxtKlS7Fv3z709vZi5syZuOCCC3DNNdfglVdewXvvvYfLLrsMDQ0NuOCCC0Zd3zXXXIO9e/fi6quvHvbx448/Hrfccgtuvvlm3HLLLXj99dexdetWLF26FJ/97Gfx6KOPju+NIaJhaZqGNWvWYM2aNdA0bcjj999/PyzLwqJFi/Dkk09iw4YNWLNmDX7yk5/ghBNO8KBi8gOGAZ+TUuLxxx/HX//6VzQ3N+PrX/867rrrrv7HDcPAY489hrVr1+Koo47CHXfcgR/84AeDjrF48WJcd911uOSSS1BTU4M777wTAPDwww9j4cKFOO+883DCCSdAKYVnnnlmTM35uq6juroaun7oHqc77rgD//Vf/4U333wTZ555Zv80piOPPJJTC4kyoLS0FKWlpcM+Nm3aNLzzzjs49dRTcfPNN6O5uRmnn346li5digceeCDLlZJfcAtjIiKiAseWASIiogLHMEBERFTgGAaIiIgKHMMAERFRgWMYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiArc/wfYAXvEtwzGHAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -244,14 +244,14 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Causal effect (0, -2) --> 2: 0.06808702968271146\n" + "Causal effect (0, -2) --> 2: 0.0682760530685738\n" ] } ], @@ -268,14 +268,14 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Mediated Causal effect (0, -2) --> 2 through 1: 0.16375768313098354\n" + "Mediated Causal effect (0, -2) --> 2 through 1: 0.18082362756865086\n" ] } ], @@ -292,12 +292,12 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAHSCAYAAAC5PSKWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACloUlEQVR4nOy9d3wkR5n//6nqnjySRjluzsHetddpHXACh7XBAc7YgLExHJjMfY+7gzsTjW2+cGDCD87nA5MzfIHDYAyOBK/BYR13vTlrJe0qS5O76vdHz2illUbq6gk9M/28XyzenenuKj3qrn7qiUxKKUEQBEEQBGED7vQECIIgCIKoXEiRIAiCIAjCNqRIEARBEARhG1IkCIIgCIKwDSkSBEEQBEHYhhQJgiAIgiBsQ4oEQRAEQRC2IUWCIAiCIAjbkCJBEARBEIRtSJEgCIIgCMI2Fa1ISCnx6U9/Go8//njRxnjsscfAGJvxz5NPPlm0cUtNKWR5It/4xjfAGEM4HC7ZmKWiFPJ87rnncMUVV2D+/PkIBAJoaGjAxo0b8f3vf79oYzpFKeT5yCOP4JZbbsHKlSsRCoXQ2dmJq666Cs8880zRxnSKUshzdHQU//qv/4pLLrkEzc3NYIzhk5/8ZNHGq1ScWHsLTUUrEjt27MAnPvEJHDlypOhj3Xnnndi8efOUP2vXri36uKWilLIEgMOHD+PDH/4wOjo6SjJeqSmFPIeGhjBv3jzceeed+N3vfofvfve7WLhwIW688UZ85jOfKdq4TlAKef7Xf/0X9u3bhw9+8IP43e9+hy9/+cvo6+vDWWedhUceeaRo4zpBKeTZ39+Pe++9F4lEAldffXXRxql0Sr32FgPd6QnkQ3ansGHDhqKPtWzZMpx11llFH8cpSilLALj11lvxqle9Cg0NDfj5z39ekjFLSSnkecEFF+CCCy6Y8tmVV16JvXv34t5778Vtt91WtLFLTSnk+bWvfQ0tLS1TPrvsssuwdOlS3HnnnbjooouKNnapKYU8FyxYgMHBQTDGcOzYMXzjG98o2liVTKnX3mJQsYrEhg0b8OyzzwIAli9fDgAIh8MYGRkBY8zJqVUcpZbl97//fTz++OPYunVrVb3ssjh9bzY1NaGvr6/o45SKUsnzRCUiO87q1atx8ODBgo3jNKWSJ63Dc+P0WlEoKlaRuPfee3HrrbdCCIGvfe1rAIBAIFA04b/3ve/F9ddfj2AwiI0bN+JjH/sYzj333KKMVWpKKcu+vj586EMfwmc/+1l0dXUV/PrlQKnvTSEEhBAYHBzEz372Mzz44IP4//6//68oYzlBqeU5meHhYTz77LNVZY1wUp7EVKrmdyErmJaWFvmBD3ygqGM8++yz8oMf/KD85S9/Kf/0pz/J++67T65atUpqmiZ///vfF3XsUlIKWUop5etf/3p59tlnSyGElFLKm266SYZCoaKPW2pKJU8ppXzXu94lAUgA0uv1yq9//eslGbeUlFKek3nzm98sdV2XTz/9dMnHLiallufRo0clAPmJT3yiZGNWCk7d24WkYhWJAwcOSADyO9/5Ts5jHn300YkFdq4/W7ZssTz24OCg7OrqkieffHIBfhLnKZUsf/7zn0uv1ytffvnlic+qUZEo9b25f/9++dRTT8nf/va38tZbb5Wcc/n5z3++wD+Vczj1rN92220SgPzqV79aoJ+kPHBCnqRIzIyV30UlULGuDSsBKitWrMD//M//WLre/PnzLY8diURw5ZVX4p577kEsFkMgELB8bjlSClmOjY3hve99L97//vejo6MDQ0NDAIBkMgnAzEDweDwIhUKKsy8/Sn1vzp8/f+KYTZs2AQA++tGP4qabbkJzc7OlMcoZJ571T33qU/jMZz6DO+64A+973/usTbRCcHLtJKZSDYGWACrXtXHbbbfJYDAo0+m0I+NnzcmxWMyR8QtJKWS5d+/eOXc2V111VdHGLyVO35v33XefBCCffPJJR8YvNKWW5yc/+UkJQH7yk58syXilxon7kywSM+P0WlEoKtYi8cILL2DlypXQNK3kYw8ODuL+++/H+vXr4ff7Sz5+oSmFLNva2vDoo49O+/yzn/0sHn/8cTzwwANoamoq2vilxMl7EwAeffRRcM6xePFiR8YvNKWU5+23345PfvKTuO222/CJT3yi6OM5gdP3J3GcavldVKwiEYlE8Pjjj+PXv/41Wltb0d7ejgULFhR8nDe96U2YP38+TjvtNDQ1NWHnzp34whe+gN7eXnz7298u+HhOUApZ+v3+aTUPAODb3/42NE2b8btKpVT35jvf+U7U1tbijDPOQGtrK44dO4af/exn+MlPfoJ/+Zd/qQq3BlA6eX7hC1/Axz/+cVx22WW44oorplWurZY6MqWSJwA88MADGB8fx+joKABg69atE3VjNm3ahGAwWJRxK4VS/i6KitMmEbvs3r1bnn/++TIUCkkA8gtf+EJRxrnrrrvk+vXrZV1dndQ0TTY3N8trrrlG/v3vfy/KeE5QKlnORDUGW5ZKnvfdd58877zzZFNTk9R1XUYiEXn++efL733ve0UZzylKJc/zzz9/VtdbtVDK533BggU55bl3796ijVspOLn2FhImpZQl1l0IgiAIgqgSKrrXBkEQBEEQzkKKBEEQBEEQtiFFgiAIgiAI25AiQRAEQRCEbUiRIAiCIAjCNqRIEARBEARhG1IkCIIgCIKwDSkSBEEQBEHYhhQJgiAIgiBsQ4oEQRAEQRC2IUWCIAiCIAjbkCJBEARBEIRtSJEgCIIgCMI2pEgQBEEQBGEbUiQI19P3+BPY8bX7YMQTTk+lKjj82z9iz30/hEilnJ5KVbD/J7/C/h//EtIwnJ4KQcwIKRKE64n19OHl27+Ah869Egf/3/2QQjg9pYomdqgbz//7HXj4gqvR/cDDkFI6PaWKZnzvfjz7odvwyGvegL7Hn3B6OgQxDVIkCNdjRGMAgOihbjz9nn/DY5dfj2NPPOXwrCqXdEaeY7v34W9v+wD+fM1NGHj2BYdnVblk5TmydQf++sZ/xF9veCeGt+1weFYEcRzd6QmUCiklYKQgUwnASAOQABjANTCPD9C9YIw5Pc2KoZrkmV2osww9/zL+fO3N6Lji1Vh3123wtzQXfQ5SSiCdNOUpDEzIU9PAPH5A81SOPMejU/7d/+QzeHzTDZj3htfhpE//G3wNkaLPIbc8dfP+rCB5Gifcn32P/hWPPL4Zi278B6z52D/DEw4VfQ5SiknyFDguT09GnnrFyLMckFIAqSRk+gR56hl58sqSZ1UrElJKyGQMYnwISEaBuUysHj94sA4sEAZjZKw5ESklZGIcIjoMJGIwb/5cMMCbkac/XNYPhXHCiy9L928fwtEnnsK6O/4dXddcUfCfQUoJGR8z5ZmMY055+gKmPH2h8pbnCS++LAd//r/o+9MTOOXzn0D7pRcVfFwphSnP8WEgFZ/9YMYAbxA8VAfmDZa1PE9UzAAAQmDvd36C3of/jFPuvh0t551V8HGlEJDxUfP+TM0RP8QYmC8EHqwDvIGylqdTSGFAxkYhoiNAei55cjB/CDwYATy+spcnk1XowDQX6FGI0f7MblkRxsFDEbBwPSkUyMgzNmLKU9gI+GIcPNwAFooU9YFIj48jdqQPyaFhiHgCIpmEkUhCJBIw4gmIZApGIgGZSoN7PeBeL7jXg8P3/xG9Dz0+67XbL78Y6z/3cfibm/Kep5QScnwIYmwAkDbiMbhmyjNYV1R5pkbHEO/pQ3J4BCKeOC7LRAIikYRIJE15GgLc48nI1IMDP/k1jm2e3TU07w2vxcm3fwTe+kje85RSQo4NQowP2pSnDl7TCBaoKZo8pZRIjYwi3tOH1Mho5p5MZu7RBEQ8899k8rg8feY9uuebP8TQCy/Pev1FN70Raz/+z9BD+VsnpBQQowOQ0aG5N18zoXnAa5vA/eG851INSGFk5DmM2TcLOdC9pjx9xbc82aXqFAlppGAM9wGJmXeZSmgeaJE2MK8//2tVKDKdhDHUO/cOzwq6D1qk1TTdqc5DSsSP9GJ46w6M7z+IeO9RxI70It7Th1hPH+I9fUiPjuU/x1nwNkSw7s7/QOdVl9t+4chUwpTnXDsSK3j8pjx1r/o8pET0YDdGXtmB6IHDEzKMHelFvPco4kd6Z94JFxB/azPWf/6TaL/kAtvXkMk4jKEewChAhog3CC3SAqZ51OchBMYPHMLItp2IHjx8/L480odYr/lfIzazpaZQBOd14tS7b0fzuWfavoZMxGAM99jbgJ2ILwStrgVMq2rD96yI+DjEcK+9DdgJsEANeG0zGNcKMLPCUlWKhEzGYAwctqdFzwKvbQYPRQp6zUpAxMchBo/AlhY9CzzSCh6ozfl9ejyKke27MLJtB4a37sDI1h0Y3rYdqaGRgs7DLh1XvAbrP/sx+Joblc4TsVGIoZ4Cz4aB17fNuvtLjY1jZFtGjlu3Y3jbDoxs21l0xcsq86+7Cifd/hF463LfEzMhosMQw32FnQxj0Oo7wHzBnIckh0cwsm0nRjKyHN66AyPbduR06ZSaxbe8CWv+45+gh3L/DCdiWskGTatjIWEcWkOn6zZjUkqI0X7I8cHCXphr0Bq6wDzqm4diUjWKhEhEIQYOF+36vKYJPFxftOuXGyI+llEiigOvawEP1kFKifG9B9D/t2fR//dn0f/UFozt3ldwZbDQeBvqse6u29B11WWWjhfREXNnUiR4pA08UAMpJUZ37jFl+bdnMfDUFozvO1i0cQuFv60Fp/znp9D26ldZOl6MD0KMHCvafHhDB7gvBCkERrbvQv+Tz6D/789i4KnnED3UXbRxC0VowTycevftaDr7dEvHG6P9kGMDRZoNg9bYCeYNFOn65YWUEmLkaMaVUQQYh9bYZcuyWyyqQpGQqQSMYwdR6J3zifC6VvCg2q6pEpHJGIz+Q0Ufh9e3Y9+P78fzH7m96GMVi87XXop1d90GX1NDzmNMy07xXz5aYxd2fP272PrZrxR9rGIx//prcNKn/nVW60RxLDsnwqA1zcOLn/kSdv/3d4s8VvFY8o63YPVHPzirdUKMD0GMHC3uRBiD1rQATFd3G1UaYnQAYqzAlp0TYRxa84KycRtVfCShlNL0kRZZiQAAMdIHWQhfbBkjhcjIs/iIoV40nLauJGMVi8O/eRAPnX8Vev44c7CmFEZRLRGTMQZ7UH/a+pKMVSwO/PiXePiCq3H0r3+f8XtppEskT3NdaTjtlBKMVTx2f+P7eOTiazG45cUZv5fpZPGVCADIrNNVsG+dFZmMF1+JAAApYAz3lY08K16REGMDQDpZmsGkhDHUWza/vGIgRo8VJtDKClIg3F4LbwnqChSTZP8ANr/1vXjl7num3RtiuK8ggVaWEGlElnWA+8rLf6pK/Egv/nrdO7D7Gz+YIs+JTUOpnr90Eg0nLS7NWEVkfN9B/Onqt+LAT3895fPjm7ASkYpDjg+VbrwSI2XpNmEAgMQ4ZGy0dOPNQkUrElIYRfTr5SAZg0wWN5rdKWQ6VTy/Xi6SUTSduaG0YxYDKbHt/34Vf3/HPyE9Pm5+lIpDxksb0MhFHA0bKtvKAwDSMPDCbXfi2X/62EQPFJmMAcnSBjR6fRK1q5aXdMxiIBJJPPOBf8cLH/8sRNrcKMj42Nz1IQo9j7H+qi1BL6MjhckeUkCMHiuLja0tReLOO+8EYwxbtmyZ9t1b3/pW6LqO3/72t3lPbi5K/tLLIKpUqxYOybNxw2pHxi0G3b/9Ix6/4s0Y23fAsfuk8fSTHBm3GBz48S/x52tvRqynzzF5Np1R+YpZlt33fg9PXP9OJPoHnZFnpiZNtSGldEaewij5ZmUmbCkS73vf+xCJRHDnnXdO+fzjH/84vve97+GrX/0qrrjiioJMMBeO/eIAIBGFTFdXrISUwjHFrHF95e/4JpMcHMKu//o2jJECp35ZpHH9MkfGLRbx3j7svvc7jplxG0+prvszerAbe+77gWnhcQAxPlQWu+hCIpOxklsjspTDxtZWyGdtbS3e//7344477sArr7yClStX4lvf+hZuv/12/Ou//ive/e53F3qe00knS+d7ngGZiILpdY6NX3CSCXtVAQtAeHEXfE0NSBwrsZuqQAQ629G08XQ0nX0ams46DaFF881S4kVMn52N+jVLoQX8MGIFKCLmAKGF89C08XQ0nrUBTRtPR2h+Z3FqRlik8dRVAOeZngiVR3jpIjRtPM38c9ZpCHS0QYwNFL5mhFWMFCDSgI3CX+WKLEQBRLuk4pBCgHHnIhVs54586EMfwt1334277roLN954I971rnfhuuuuw2c/+9lCzi8nssS+venjxwFUjyIhC1G50iaMMTSduR6Hf/tIQa7nbWyApzYM7vVC8/nA/V5oXi+4zwfN7wXjGkQqBZFMIR2Nof/Jp5XHCHS2o+vqy9F1zSbUrVk5rdKlSDonT+7xoGHDSTj6lwJ0MGUMvqYG6OGQKUufF9yXkavPB83nARiHTKchEkmkRscw8PRzysOEFs1H19Wb0HX15ahdsXTa904+756aMOpWL8fwS6/kfzHOj8vTm5Gl32eWa/f5oPm8AGMQqRRkMoXEwCCGnp+9PPZM1Cxfgq5rTHmGFy2Y9r3z62fCVgXRcsXJ9ROAWXl4liJqxca2ItHQ0IB3v/vduPvuu/GrX/0KZ555Jr773e+WrLmI0784p8cvNE7/PI2nnWRJkWAeHbXLl6Bm2WIEOtrgb2tBoK0V/vbMf1ubwL3WsxYSxwbwu7XnWTrW29iArtddiq5rNqHhtPWz7gAcl+fpJ1tSJLjPi9oVSxFeugiB9lYE2ltNmWb+629pAvdYX/BHd+7BQ+e91tKx/vZWdL3uMnRdswmRdWtmXTucMsNnaTrjZEuKhBbwZ+S5GIH2limyDLS3wtfcCK5bX3b7n9qCP732LZaODc7rnFBua1ctn0OeDq+fyThQJb04pJSFaSGQzxxSiVmrsRabvKpZ3HDDDfj85z+PcDiMX//61/D5Slhpq1QpiuU6foGRDv88jadND7j0t7eibtVy1K5ejrrVy1G3agXCSxcqvdjmYq5+EnpNGB2bXo2uazah+dwzrb8EHJZn0+lrp30W6GxH3erlqF29YkKu4cULlF5sczGXPD31deh87aWYd/UmNJ61wbo51un78/STsfu+n075LDi/y5TnquUTcg0vnAemFa4Xwlzy9DU3ojOjjDVsWGd9IyccXr+cHr+QSOl4JV7psDxtryAjIyN429veBgA4duwYotEoGhpyV/crNLIEBajmmkFV4fCDEJrXjtYLz0V4yUI0nnEqGs88Ff7W5qKPO1N/BO7zov2SC9F1zSa0XnQeNL8dBdlZedatWoqms09H5OQ1aDzzVDSefsqs1TcLxUzy1AIBdFzxanRdvQkt528sqCJYKho3mHJsOP0U8/48fX1BOpfOxUzy1GvC6LzyEnRdswlNZ59eUEWwZFRVsGUZ/CwOy9PWHZhKpfD6178ee/bswa9+9Su84Q1vwOc//3l8+ctfLvT8csLAHP71lXd/eGUc7nfPOMfZP/rvko+bjh7f8ek1YSx+2w1Y8o43w9+SrxLjrDy5R8d5/+/bJR83PenF522IYMk73oLFb7uhJC/dYqKHQ3jVr79X8nEnWyT8rc1Y8s63YtFbr4OnpsLdAg6vN4WlDH4Wh+VpS5F4xzvegcceewz3338/Lr30UrzlLW/B//zP/+A//uM/0NLSUug5zozTNcadHr/AME2HdDKj1aHAq/R4FL6WJix9102FXaA13bF0MACOBbKlx6MIdLZj2bvfhgU3XKPUgXJWNL10FWxnwKmeBunxKEKLF2D5e2/BvDe8zgzGLARcd9a9wKto/WTM/OOgVYA5LE/lpl233XYb7rjjDnzjG9/A29/+dgDAzp07sWrVKvzLv/wL7rrrrqJM9ESK3U1xLligFlqk1bHxC40YGzTLYzsEC9VDq20q+bjJwSFogYBN90VujNFjkGPO1JEAnOtWm+gfNDNmCuy+MIb7HKtzAhzvVltqEkf74W2IFDTuAgCMwSOOFjLi9e3gVRJsCQDp/kMlr7o6Ga2hC8znXHdVpcTTe++9F3fccQduu+22CSUCAJYtW4Z/+Id/wNe//nUMDQ0Veo4z4nQLVeb1Ozp+oXH653Hq9+mtjxRciQAA5nH4/nBInr7G+qLEQDj+vDv0+/Q1NxZciQCcvz+d/n0WGqfl6dTznsWyIvG73/0O73nPe/CWt7wFt98+ve3zf/zHf2B0dBRf+UqJWhjrXoAX/gGzCvM6l2pTFDw+gDlX0MTJ1KViwLwBOOY7ZcxxxbDQOHp/cM1cb6oIR+WpearLtQGA+0LODe7xO1qMCrDh2ignHKvO5gtBb+go/bhFxhg5BjleenM8C9SA17WWrAZJqTCGeh3pK8BCEfCapqqTZ3qgG0iMl3xcXtMIFqqvPnkeO+hI/QNe2wIWrK0qeUopYRzd70hcFI+0gQdqSj7ulDk4OnqeMAd8lgDAQ9VT0XIyTviAAXPfbmz7i+NFhwoND0UcGZel0zC2PwHpYHBiMXBKnjI+DrHjSUgHg2eLgSPyZAxyfBBi99OQDrY4KDSMMUdiksA1sDKINalsRYJr4OHS1a4AAHgD1efWyMB0D1gwUuJBOcS+54HYCIztm52tWV9gmMcH5i/xToFxiP3PA+NDpjyrqAIr8wZKXwaYccgDL0KODcDY8feqUs6YP1xy3zqTEvLgy5DDfRC7nnK8EF4hYYGakmeflYvlsaIVCQBg4QZAL9HDwBi0SFtZ/OKKBa9tLN3DIAygd8/xqoXJmPnyK4O2uIWC1zWXLpbHSAM9u443s4uPmfKsEksPYwxaXWvpYnmMFNC943haX3QIxo6/Od6nolCwzHpWsliedAryyM6Jf8rRfhg7/141lh7GOLT6ttIN6AuZyksZUPmKRPZhKMHLnde1OpZPXioY45nFpcgYaaTHxxBtWjK1sFgqbr78HIgtKAaMa+ClkGc6iVQsOl2eiWjG0lP62IJiwDQdvK74tWpkKoFkPIFY0+KpX8RGYOzY7HivikLBdK+p7BYZmYwjkUwi3nBCA7HxQVM5qxJLD/P4wWsaiz8Q16DVtZTNpraigy0nI5MxGP2HUaxypby2CTzkgA/MIUR8HGKwuyjXlsJAHB4ka9sBAP6+XfANHZx6kOaBtuwMMIf84oVGxEYghopT90QaBmLMh1StWdck0LMN3pGeqQd5fNCWnVk2O5h8EeNDECNHi3JtaRiIaQGkwuYLNnj4BXjGTwjq9gVNeVZJtpEYHYAYK07gujBSiOk1SIcaASkROrQFeuyEmiD+GmjLz6yKtFApJcToMcjxoeIMwDi0pnlgZZRJVDWKBGBqvcbAYUCKgl7XqWI0TiMSUYiBbhRSOTPAEfXWQUyOMxEGwgeegZY8YdfMdVOZcCKIqQiI+BjE4JGCXjMNHTFfLYRnUjEaI42a/U+Bp0/YNetec7EO1BZ0Dk4hosMQw30FvWaa6Yj6IpCT3KUsnUR4/9/BTzTBe/zQVpwF5mTqXwER44MQI4UtSpfiHsS8EchJLz2WiqFm/1NgJwZb+kLQlp9VFanLUkqIsQHIsYHCXpjr0Bo7y0qJAKpMkQDMLpbGcF9h0sR0L7RIq/PFRhxEplMwhnvzrtomASR9tYjroRl93Dw+ivDBZ8BOvB013VxcqkSRk+kkjKEeIE8/uwSQ8EWQ0IMzuvW06BBCh7ZM937rPvPlVwaR3oVAphKmPPM0jUsACX89ElpgRnnqY0cR7H5pujy9AWgrNmbqhlQ+MhmDMdSbdxqjBBD3NyCpzywXz/ARBHtnaMvuD5vyLLMXpV1EImpaIgtQjpwFasFrm8AcrJ+Ui6pTJLKI2KhZY8LOA8E4eLi+KnPH7SClhMzK08YDIbgHsWAT0nOE5PgG9sN/bM/0L3SvqUxUiVleSgkZHYYYGzgeGKmA0LyIBhphzCFP/9Fd8A0enP6Fxw9t5dnV8/KTEnJ8yJSnDWukofsR89fPKc8ZXUaAuZNesbEqzPIAIKWAGBs0TfN25OkJIOqLQMwhz+DhF+EZn8ECEqwzLWcO9YspNFII0zoRHbLXj0P3ma71MnajVa0iAZgLDJJxiOiQmVY460PBAK8fPFgH5g+TAjEDUkrIZBRifBhIRmd/KBgDvAGk/XWIGtyac0RKhA5ugR6foaeCx28u1mX8MKkipYRMjENEh02Lz5zyDCLlr0PMsNj5VgiEDzw93WUEmD7+FRurytompYSMj2XkGcesLjnGAV8QKV8dolZ1OZFGzb4ZXEYAEKg1lV29Ol5+gKlQyFhGnqkE5pZnCElfLWIW5ZnTZQQA4XozBqUMd992kUJAxkcnyXMWuAbmD5nvowp4RqtakZiMlBIQaTN1y0ibizZjAOdguh/QPaQ8KCClBIy0WadAGJPkqZk7M82DZNrAWFzN5MySGf+pnGE18mZeflXgQz0RU54p8/6cJk8/oOmIp9KIJtQsbDwxhvCBp6e7jAAgUJN5+VWHGXkyx+UZB4Q4Lk9NN+9PriOWTCGWVLOw5XQZAUAoYr78qjCzS0oJpJPm/SlPlKcf4BqiiRTiKTV56mPHEOx+cUZ5stom8CWnVZUykSW3PD1m/ZkKu4dco0gQpUdKiaHxOITiLeYZ6kawb/vMX1aZD1UFISSGojFl62hOlxEABCMZM3JlLVyFwBACw+Nx5VDinC4jAKymEXzp6VX58puLtCEwHFVPiw30vALvyMxByCzSBr74FDAH+wARc0O/HaJoMMYQ9qu/8FORDqQDOTI14mNVVcRGBc4ZwjY6lSbq5yPtyxFfEh0yKwxWUbliq2icI2Tj/ow3LoLhmTm+RI72Q+zZAlngzLFKQNc4gj51106seSlEjo2BHOqB2PcCaL9b3pAiQRQVj67B71Xf7UZbV0Dm2oVEh2G49OXn1TX4PIq7XcYQa1sJmaOCoRwbgNjzLKRw38vPq2vw6ory5BpirStzWjLkcC/Evudd+fLze3TomuJrRdMRa1mRW54DhyEOvuxKeVYKpEgQRSfo9UDjavEn0htA/MSqgpMZq77GP1YJ+bzgivE8whdG4sSqgpOQw30Q+55z3WLNGEPI51UujGsEI0jWdeb8Xg50Qxx4yZXyDPu9ykW30+EmpGpyVyyVR/dDdOdwdxKOQ4oEUXTMxUXdJJ+MdCHtz108SY4cg9j7nOvMyIwxhAPqJvlE4wIY3tzFk+TgEYj97jMj23UZxZsXQ+i5A3/lsQMQh7e5Tp62XUbNyyBmSfmUPbshjuzKZ2pEkSBFgigJtvynWZP8LIFWbvWhejQNAVWXEeOzmuQBQPYfgji01XXyNF1GivLkOmKtuU3yACB790L2uO/lZ8dlJHUv4s3LZj1GdG+H6NuXx8yIYkCKBFEy7PhPhTeERMPCWY9xqw81YMNlZARqkayfN+sxsm8fxKQujW4h5PMou4zSoQakamdvyia6d0D07s1nahUHYwwhv7rLKFXbilRo9qZX4uDLEP2H8pgdUWhIkSBKht0sjkTDPBi+2Us6mz7UHXanVpHYdRnNlnWQRR7Z6cqXn537M9a8FEKb/TxxaKvrXn6cMYR9NuTZugKSz24dEvueL1oTPEIdUiSIkqJxOy4Ojmhr7qyDLLJnF8TA4TxmV3noGld3ccyRdZBFHNpa8KZY5Y7HjotD8yDWunxuee5/ofBNnMocr0e34eLwIda8ZM7jxN4tkNERu1MjCggpEkTJ8Xt06FzRxeGvQaJh/tzH7XuheO17yxRbLo5gBMm6jjmPE3u2QMZG7U6tIrHl4gg3T7Qdz4mUMHY/Y5brdxF2smJSdR1IBefo+isMGLufNqtDEo5CigRRcrL+U1USDQtheOfotSGFubgk1SvsVSp25RlvXgKhz+EaEWlTnnl216wkbMuzZTkEn8Palk6ayoSRfzfISoFzM8VWlVjrCkg2hzUjGYPh0hoo5QQpEoQjmCZ5RRcHnzvrAACQSpgvPxfVmPBoGvxFyDoAACSiZsEqF6XZenUNPjtZBy1L5z4wNuK6glVeXYNHMdBaeuaoJZNlbMCVNTvKCVIkCMcIeHUbWQd1SEa65j4wOuy6tNCgrayDRqRqWuc8To72QxzcandqFUnQVtZB25xZB0AmbdlFmTETWRyK5yUjnUj76+Y8TvYfhKS0UMcgRYJwDNtZB02LYVhorSsHuyF7dtuZWkViN+sg3rJszqwDIJMZc3S/nalVJJzZNMm3LIe00LRLHtkJMdBtZ2oViRlorShPxhBrm6Vc/iTEoa0QI0dtzo7IB1IkCEcpZtYBkClgM9Rja26ViJ2sA6l5EGuZvRBQFnHgZYjRfjtTq0h8drIOPH7Emiy4OGCmMcrosJ2pVSQ+j2avlkzjQmvH7nkWMj5mY2ZEPpAiQTiOvayD+jkLAWURe5+DjLknTcyWi6OmBalQk4UjJYTLMg9CPnWTvNnBNjL3gVLA2PU0ZModwcG2a8nUz5u1vPsERtqUZ9p93YGdhBQJwnFsR8k3LYGYo3ANADNNbJd70sS4TXnGWpZaMiHDSJndV13Syp1zu/JcNmftEwBAKm5mcrgkONhuLZlYy9y1OgAAiXGIve4KDnYaUiSIssBO1oHUvUg0LbJ2sMvSxGz1OvAEZu0QOoX4WKZhmjuCWe1kHQhfGMlI7g6hUxgfgtj/omvkaaeWjBGMWAoMBjIN/Q5tszM1wgakSBBlgx2TfLKuc87y2ROMDUAcdE+amJ1eB4n6eXOWz84ih/sgDrujtbPdrIN44yJLgayA2TNG9u5Rn1wFkk/tEyuBrECmZ8yxA8pjEOqQIkGUDbb8p4xZN3kCkMcOQh7dpzq1isRW1gHXEG9eZl2evbtd00PClkle0xG3UO45izj8CsSwO3pI2KklI3Uf4o0WrZCAWV9i1F1lyZ2AFAmirDCzDtRM8kagznLgJQCIg9tcU0bbjosjHW5E2kIthCziwEuuiZT32ehgm6ptQzowdy2ELGLv85DJmOrUKhI7tWSSkU5rgZeAWZZ877OuqszqBKRIEGVH0EZt/njTkjk7Bh5Hwtj7nCvKFDPGEFLdRSMTKGgl8BIwg1n3bHFFsKDtDqEty60FXgKAkXJN/Ik9K6RC4CUApBJmwzQXyNMpSJEgyg7OmHLhGql7EbcaeAmYkd0HX1acWWXCbZjkzcDLuZukTRAbcU0bd42r1z5RCrwEIMcGIHvdUUxN19Rrn6gEXgKAHOqFPHZQdWqERUiRIMoSn64pR3UrBV4CkP2HIAaPqE6tIvF71E3Iifr5liqIZpG9eyBGjqlOrSIJeNUDg1UCLwFAHN7hGhdc0OdRD2RVCLwEAHHwZde44EoNKRJEWWIrqlsx8BKAafJ0gT+a5RF4qYLY95wr/NGMsaIHXrrJBWfPCqkWeAkpXOOCKzWkSBBli65xdZOnYuAljLS5WLvAf+qxFXjZZKkJ1QSphGuapdmpLaEaeOkmF5zPo0FTtUJGuqwHXgKucsGVElIkiLIm6PMUOfASwNiAa5p7Ke+ioRh4CUAO90K6IH/fbi0EpcBLuMcFZwZeqla8VLdCmi44au5VSEiRIMoa24GXKiZPAKLbHf5oO7UQlAMvAYiDWyFjo0rnVCIa5/DbCrzsUDvHJS44M/BSMf1bMfASyDRLc4ELrlSQIkGUPbYCLyNqgZemP3qLK/zRtgIvGxYoBV5CCtNl5AJ/dNBO4GXTYqXASze54IJeGxVEm5cqBV66yQVXCkiRIMqeUgVeIhF1hT/aVuAl44g3L1c7JzYC0V39JbRtBV5yHfEmlcBLuMYFx7m6PO1YId3igisFpEgQFYHtwEtFk6fsPwQx0K10TiViL/CyEalgg9I5snevK/zRtgIv69qQ9tcqneMWF5zPo9sMvAwqneMWF1yxIUWCqBhsBV4qBgoCgDjwImQiqjZQBWIn8DLetkLNyoNMyecqb+FuuwlVq6o83eGCM+WpHngZb1mhdo6LXHDFhBQJomLgjCHoVQy81DxIqlS8BEx/9L7nq95/qnGOoGLTJKH7kaqfpzZQOuGKFtl2Ai8NXxhpRauZW1xwHhuBl+lgBOlAvdpAsRHXdLEtFqRIEBWFz6MeeJmonwfBFXc3YwOu8J/6bTRNijctVrbyyOFeSBekMNoKvGxboZQOCmRccC5wGdkKvOxco2w1k317XeEyKhakSBAVhR0TsgRDcsF65bHE4VfcYZJXTa9lHMl5JyuPJQ5thTRSyudVEnYCLwXTkOpYrTyWOPBy1Zvk7QReGtyDdOtS5bGMAy9VvdWsWJAiQVQcdgIvE54wRESh4iUAGGmIQ9vUzqlA7ARexv31EGG1wEukEq6oKmgn8DIeboH016gNlBiH7Nmjdk4F4rORrhyPzINUSVcGgOgw5NH9aucQAEiRICoUVd8+ACTaVgGaYlrZwGFXNKKyE3iZ7DoZUMndByD79kFGh5XHqiSYnSJqAFIL1gOKhnzRswsyPq50TqVhx2omJJBauEF5LHF4O2Qqrnye2yFFgqhIOGcIKCoTSQGIBeuUxxIHXqp6E7LGOfyqVh7BIOetVR7LcEHgpa5x+BStPDGpA12r1AaSAuJg9ZvkPXasPNwLtCrW6hBpiIPVb4UsNKRIEBVLwKuDqQa2+eqAJsWsg8Q4ZG/1m5ADdlo5h5rBVF1G0WFXBLIG7KTX1naA1Sg0SQMgR465I5BV1cojgUTTIiCo0CQNgBzsdkUgayEhRYKoWBhjyi6OlCFgtK8APD6l88SRXVVfW4IzG1aetAHRtQbQFPtNuCCQ1U46aCJtQM4/GVCtfeKCQFYzNkoxlidlgM0/GcouIxcEshYSUiSIisZsPay2SMRSAqxLMUpeCtPFUeUmZL9XV05fjBoA61ypNpBLAlkDXnUrT0xq4O2KWQcuCWRVVXQBIKb5wFoWqp2UGHdFOfJCQYoEUdHYCWwzhEQq3AxW26R0nhw5CjnUo3ROpcEYUzbJpw2BdKQTCEaUznNDICu3Ic9k2kC6aSHgCymd54ZAVo1zBFStPCkDom0poJjFIXp2V30ga6EgRYKoeDwah64YiBVLpsG61qqbkA9urfryxD7dhpUnmQKfrx546YZAVr9H3coTSxpgCyiQdSb8XvVS+bGUAJ9nwwrpgkDWQkCKBFHx2CoCJCUS3AvepmpCjle9CdmulSfpCdkzIVd5IKud+zMtBNL+CFhDp9pgLghktRPLkzIE0uFmsNpmpfPcEsiaL6RIEFWBR1MvqhRLpiBbF9k0IY8onVNpeDSunG4XTabA2pdRIOsMeHVNuZtlNJEyY08okHUadqw80WQabJ4NK6QLAlnzhRQJompQ3fVJAPGUsGGSlzAOVLcJ2VZRJSkRNxg4BbJOwyyqpG41S0IDp0DWadix8hhCIKV5KZC1CJAiQVQNdooqxVNpINwIVt+hNtj4EOTAYbVzKgxd4+qls5MpINJmw4R8FHK4T+mcSsNOUaVYMg00zrMVyCrHBpTOqTS8unoDv1gyBbQsAvw2rJCxUaVz3AQpEkRVYSvdLpkCn7dK3YTcvQNSCMXRKgt7Vh4DfN4adRNy9/aqtkoA6kWVhJRIpg1oNgIvxeHqlqc9q4RESsBeYDBZJXJCigRRVdgpnR1PpSE1H3jHCrXBkjHI/oNq51QYtqw8yRTgC6oHssZGqz6wzU5RpVgyDQRqlQNZ5dgA5Gi/0jmVhkfX4LERG8XCjcqBrHKoh1qN54AUCaLqsFNUKZZMgTUvUC6nK47srPr0RdXS2RJAPJkGa1usHMgqundAyuq28qgqukJKJFIGeMdy9UDWw69UtVUCAEKK8jSEaeXhXfaskMR0SJEgqg47RZXiqTSkBLT5J6kNlkpA9u1TO6fCsFNUKZZKAYyrm5AT45D91R17YqeoUiyZArhuuoxUiA5DDveqnVNhaBqHT9FqFkumAN2rHMgqR45CjlZ37IkdSJEgqhKfrqlbJVIpsFCdaZlQQPTsrvr0ML9HVyoCJKVpleC1TcqBrG6w8vhtWiVYpE25Iqs4vKPqrRKqilnWKsGa5itbIY3u6rfyqEKKBFGVMBtFa+LJNISQ4O3LAK7gdzVSkL17FWdYWdiRZyyVgpQSvHMFlJomJWOuKKqk2tArljSVVeV00Pgo5GC32jkVhsbtxJ5k5NmlKM+xQUjqDjoFUiSIqsXnUbdKxFMpMI8PrGWR0nmidy9kOql0TqVhyyqRSoP5gmCKrdvFkd1VX4o84LFhlUgbYME6sPp2tXMp9mQahpBIpQ3wmibl1u2mPMkqkYUUCaJqsbWLTqYhpARvXawWiCXSEFXeLZAxpvzyiyUzVon2ZWrpoOkE5NH9ijOsLDi3YZVIZOTZsVxtsEQUsv+Q2jkVhh2rRDQ52WqmcuJw1TfwU4EUCaKqsWWVSKbAdA946xKl82TfPshUXOmcSsPvtWmV8PrBWmzEnqSrO/bEtlXCHwZr7FI7t7v6Y09sWSUMAyxUD1bXqnQuWSWOQ4oEUdWYVgnVOgimVYK1LAR0hQJCUkAc2aU2wQojL6tE21Ll2BPRV90NvThnynU6JqwS7cugpNWl4pBHqzv2ROMcPsW6EtFE2p6VJz5W9dVtrUKKBFH1+BQb/Jh1EFJgmq5cl18eO1D1Daj8Xl2trkTWKqF7wVoXK40le/dWfQMqO3UlkmkjE3syX+3cnl3VH3tipweHIcCCteoZRt07q766rRVIkSCqnrysEk3zAY/f+olSQhzZqTjDyoIxppy+GEtmdn2tiwBN4VxhVH3siR2rRHTCKrFUMfYkWfV1T+xYJabGnqhkGEWrvrqtFUiRIFyBPatEGoxr4B3LlMaS/Ycg42OKM6ws1K0S0rRKaB7wNsXYk6P7IZPVHXti2yrh8SuXzha9Log9UbRKpLNWCX8IrEkx9sQFdU/mghQJwhXYs0qkTKtEY5d6qecqj5XgeVglzNgThVLPUkD0klXiRI7HniwBuMK5RtoVVgnVzrVTY08UXo2pBOQxd1slSJEgXIPPo4MpWiUSqTQY4+pWicFud2RwKBwvsxkHXLMRe3Ko6quH2qnOmEobYLrXTFdWQBzdX/W+fdXOoGkhkDYEmDcA1qwYe9K3z9UZHKRIEK7BbqyElNIMwgrUWD9RSogqj5C3Y5WIZ3bRrGk+4A1YP1GkIY9Vdx0EbqPTaixlBk6y1oVqsSfphCuqXSpbJTLyVM4wSoy7utolKRKEq/ArWiUmfNGMKbcZl0f3V73vVNUqYebtCzDOTROyAm7Y9akWqEobAmnDMGNPFK08bpBnUFHRTaUNGEJkqtsuVDq32svkzwYpEoSrsGOVmPDt17UAoYj1E9NJyIHq3vXZ6RkRz/Q4YI2dgF8h9iQZhRzuUxqr0jCrM6rfnwDMZnMqbcajw8D4oNJYlYamqVsl4hl58tYlStVt5egxyNio0ljVAikShOtQ7RlhZH2njClnHLhh16fq3kgZWXlyG9VDq3/Xp6roJrO7aK6Bq/aIqfKgS0A9IyaeyqR+6x71TsAukOdMkCJBuA7GGPyq1Rmzvui6VjXffmwEGBtQGqvS4Ew94yCeylglGjqUqofK0X7I2IjSWJWGHd9+dhfNmuYr+fblYA9kMqY0VqWhaxweTe1Vl8haJZoXQKWuhOw/VPXN+2aCFAnClai++CZ8p4zZ2PVV/y5a1b2RSBkQQoJxTT1Cvnef0vGViOouOpHKuN90j2IPDumKXbRy876sPL0BtU6rUrgyFZQUCcKVcM6UOwUe3/V1qe36hnqrvmy2rV10xirBmxco9YyQA4erftenaxy6wi5awjTJAwBXDRI8drDqy2brGofGFe6xTJA1oC5P051Z3am1J0KKBOFaVN0bE75TzQPWOE/pXHF0n9LxlYhy0GV21+fxq+/6qjy1FlCPlZhIVfaHwWqbrZ9opKq++ZS9su6ZVOVwPRCMWD8xFYcc6lWbYIVDigThWvLyndKubxo659C5wi5ami4OAOruoqPVv+vzaJpSWXcxaRfNbARdVntQsE/XFIOsJdKGeY/x1oVKYwmXpYKSIkG4Gtu+U3/ITAe1ipGG7K/ugkrMTipoKrPrC0WAUL31E1MJyMEjahOsMOwWUAMAVtukllobH4McPaY0VqVhK8g6K89Iu1pq7fgg5PiQ0liVDCkShKvJx3dKu77peHW1XXS2QBVgzxdd7fg8agW/zOZThq2gYDcUVFJVdFNGNrWWZzI4rOOG+zMLKRKEq8nLd1rTCPgVyma7oIyuLatEtkBVfZtay/bxIcix6i6oZE+emV10Q6daQaWRo1XftZYzZr/gV9N8pWZebui3k4UUCcL12PWdmru+hUpjVXvXRUB9Fz2lQBVZJaahao6fKFCl6ebLTwE3yFPVXZRIpc1UZY/PVM6s4oJ+O1lIkSBcjz3f6aQyzwrNkuTIUchkde9S7Oz6JqwSTfPUdn1DPVXfFZRzBp/dMs8tC6FUUGmgu+q7gmqcw6Oppipny2YvVDpP9h+qencmQIoEQQCw4zsVE2WJVQsqVXvXRcBGgap0pkCV7lUrqCQF5GCP4uwqD1X3W2JyQaVIq/UTjVTVu98AG6m12aDgQK3p0rRKMlb1/UwAUiQIAoDNXXTKXhldUeU5+4C9AlUJuwWVqrwxGqCeqiwxKbW2VTHo0gX3p3qQNSYFWS9UGssNzzspEgSRwY7v9HgZ3TbrJ0ZHqj6oDcijQFWgBqymyfJ5cvSYK4LaVK0SWUUXoXogWGv5PDnUW/U1T8zUWnUrD5DttxO0fJ4cOFL1NU9IkSCIDKq+0ym7lCbFSpf91b9L8WiaUplnIY8XAGJNKv0i3GGV8Cjuoqd0rVWpxCoF5FD1u4tUU5Un3JmMgau434wU5HB1u4tIkSCISdixSgAw/aYqXSwHul0RhKXeFXTSrk+hn4lwgSJhJyh4Qp717VANuqx2mI2utRPPe0OH0nnVLk9SJAhiErrGwRV2fcd3KVxtcUlGARdUvvMqptYms0GXmq4WJBgddoW7yOfRlFJrkxP9THxmtUuLyJGjkKmE+gQrDPW4KGOisq1K/w05XN3uIlIkCGIS+exSuEqOOdwRhGVLnulJBZUUcItVwqsgTwkzIwZQl6cbsos4Z0pBwVJKpIxMEGujwsZBGFXtLiJFgiBOwKfbCxJEsA7wKQRhDVZ/EBZgZ9eX2UXXNim6iw6Tu2gGEhP9IshdNBPqNU+y7iJyb2QhRYIgTkB9l2Ka5Bljaru+dBJypLobJQHZIFaFoMuJyqFcrb14IgpEh23MsLIwUxetyzOdDbrUdDP2xCrjQ5DxcRszrCw8GrcXdKnsLjpWte4iUiQIYgbsuzdolzITtmt0kLtoRmwHCaqY4+GO+9OeO9OOu0hWbcdaUiQIYgZ0u7sUf9h0cVjELPFcvUFYWWwFXUoJhCKKOfvdLnEXqRf7Mt1FzUol3YVL3EWqiu6EPCNtSiXdq1XRJUWCIGYgv6BLxSCs4T6lcSoRZqNyaCKVzriLFOSZTkKO9ivOrvIw5angfkPW/cbBGlTcReNAdER9ghWGqjtTSIlU1l2kkl00PgSZiNqYYXlDigRB5MB2apiye6M6dyknYkcxk1Kqu4tcUOwLsF+jg9xFM2PX/aacDVOF8iRFgiByYDc1jHn8aiWeh49CppN2plhRaJwrVbqcaNceqAECKiWeeyCFYWeKFYXG1SpdpjPt2hGqB7wBy+fJQXcUT1MOusy2a7fhLqo2SJEgiFmwnRqmtIuWrnBvAHkEsTYq7PqE4YpsGLvuN2V3USrhiuJp9txvBhhXzC6Kj1dd8TRSJAhiFmynhtWrBWG5RZFQDbpMZIIulXP23SJP2+4iRffGcK/S8ZWK3SBWVXlW2/1JigRBzILd1DCmecDqWiyfI4ePQorqzzZgjCkX/Eqm0mBev9nPxCJyuM8V5njOGHwq7jdkgi5V3UVV9uLLhcY5PIpBl2lDAGFFd9FQdSlmpEgQxByomjuT6UxqmIq5U6QhxwYUZ1aZqLYXnyjxrCLPVByIVX+2AQD4bMqT17dZPyk2WpXZBjNhp6Q7Y8xMBbWIHBuETKdUp1a2kCJBEHOgGnRpCAlDSLC6Zih1XHTRrk8l6DKddRcpWHgA98hTVwy6TGXdRSpVLuEeeaq6M5PZbC2VNFBIyJHqaS1OigRBWEA5CCudNt0bNQ2Wz5HDva4wxwPqu75k2gDzBpTM8WLIHS8+O0GCyZQBBGoAj9/yOW5RJOzU6EilDbBwPaApNFSrorgTUiQIwgIejYPZ2aWo7KITUbMAEACZSkD0H4KxdwuMfc+rTrfsUbHwAJNKPKvIMzo00dtAJuMQxw7C2PMsjIMvK41dCdhxv5nmeIU4ntH+iSqsMhGFOHoAxu6nYXTvUBq7ElDfOGSKfdU2Wz5HDh+dqMIq4+MQfftg7HoKoneP0tjlgJq0CMKlsExQW7YIzVxkg7D0ulbg0DbL44gDL0EaqSnVBFnbUuX5ljuMme6iZNpavQdDSBiGAI+0wOjZZXkcse95yFQciI1OfMa7VinPt9zhjMGjcaQMawG7KUNACNO9IY8esDaIFBB7n4NMjAGTmnlxhdiASkHjHDrnSFsMgE6mj28cLPfTMFIQe7ZAxkbMTUQG1jTfzpQdhSwSBGER5dSwtAHmDwG+kOVz5Gj/tJLETKF3RyVhx12EYESttfjI0SlKBEDyzJJIp81MGIXW4nK4d4oSAVSvPL2Kz3sybajH8Qz1TFEigMqUJykSBGERjSsGYWWzNxTMxzPBgtbjAioJ011k/fiJjouKi/U0qlSequ6iZMoA45pSFdZpMA74rSvKlYRqmnIilQbTvWYqqF10L+Dx2T/fIUiRIAiLKAdhSSAZHQOMPMo1ax6l/PRKwnRvWF+shZRIR0eBfLp7+oJgCuWMK4msu8gqaSGQHhvKb9BALZhC4bVKgnPTXWSVlCFgjA7kJQ8WrFOKxSoXqvMOIIgiofLiA4DEYB/kMYs+6BlgwdqKXFisolJMCQDi/UcgB7ptj8cUsj4qEVX3W/zoobyyB6rVWpZFtXJovHd/ft1nK1SepEgQhAK6ppizH26GzGfHVoH+UhV01RLkNS3IJ0GWhSJ5nF3+eDRNoXIJkKppzVOe1X1/qrqLUjVqtTlOpBLjIwBSJAhCGSXfqaYjHbJe2vlEWNh6HYpKhDGmFNQmdR+MQMT+ePn4rysAVXkKXwjCaz/GgYWqW55c0V1kBCMQuv0Yh0p93kmRIAhFlKO5a+wHB1b7iw9QD2pL2t31MV71Fh5AXZ6pWpvy1DyAP2zv3ApC3Sph83n3BcEqMNASIEWCIJRRLvEcaoRUSLGbwBcyo8CrHI0zJXdRuqYZUsmAnyFYB2bn91Bh6KrF02y6N1i4vqrjd7J4dTV3kV1Ft1KtEQApEgRhC6UgQa4hFbZe8S5LJS8sKqhmb0jNg3RIXTZusO4Ax4unWUV6/DD86pYad92fCu4ifw0Mb1B9nAp2E5EiQRA2UM3esBOE5ZYXH6CebUDynB1ledaqm+PdJE/V7A233Z+kSBCEDVRzzNPBegiuthhV8sKiSrYksVVS4SblbJhK3vGpolo8TTkbxiXxJllUi6cpx0lUeLwJKRIEYROlksSMIR3psH687lUqrV0NKAWxcg1plcXaF6rYQDY7KBdP07wwggqKVrDWFfEmWZSLp3mDMBSe30qPNyFFgiBsohrNbTQvttxmuNIXFjuoZhsY7cst94lwk3Uni7I8u9YAFsMK3RIfMRnV4mnGvJMtH1vp9ycpEgRhE9UgrJRkYIs3wMpi7SYzfBbOmVI2TAo62MJ1lo5144tPUy2exr3gC9ZaOrbSX3x2UC6e5gmCd660dGyl35+kSBBEHqgoEhKAEawHnz/3Yl3pC4tdlKLjpYSsbQXvWDHnsW588QFq8jSEhGzoAmtdPOexblR0lXuZGAKyZRFYY9ccF678eBNSJAgiDzyqxWrSBnjzfLCWRbkPYrxia+7ni3IHy3QarG0JWENn7oNcGG+SRTW7KJk2wDtXgtXNknXgsniTyag+72lDgM8/CZhtY1AF8SakSBBEHnCmZo5Ppg1IKcG7VuVuhx2KVPzCYheNq5njk2kDjDHwBSflbN/sxniTLBpnaub4rDwXrQdyNDhzq3UHyGRvKByfTBtgnENbsgHwzVxbohqsj6RIEESeqJrjDSEzi/UpgL9m2jG8tqmQ06s4VM3xhhBgXIO2eMOMLddZjXvlyRhT2kWnDAEhJZimQ1t6GjBD3whWq15crVpQlmdm48B0L7SlpwMzpICzKnjeSZEgiDxRN8cbAGAu1ktOnba4VPqLz0gk8zrfjrsIAJjHZ+78TqgvUekvvnzlqdwrIitPbwB88SnTvmc19pvQlQOllKeEqZwBAPOHwRedEBzMOFkkCIKwZ47Pwvxh8IWT0sQ0Hajw1syHfvIrPHXz+zG2c4+t83WuVvxnijyDdeDz1hz/0hvIaVKuFPb893fw7Hv+FdGDh22dr1I4DZgqT17TCN45KZg1WFvx8RHbP/f/4fl//gTiPX22zrer6AIAj7RNCWZl4YaqcGOSIkEQBUBlcTGEgBDH6wjy+vaJ4EtW0wSmWLGx3EiPR9H7h8fw+EXX4sWPfgaJY/1K5yun1RoCUh6XJ2uaNxF8yWqbKj4+Ij02ju5fPYDHznsttn76C0gODSudryzPjDl+4vzWJRPxPKymsq07AJAeHcXBH/0/PHrOldj++a8hPR5VOt9uXNTE+Z0rJoIvq8GtAZAiQRAFwavZc29k4V0rgVB9VSws2YVZGgb2f+cnePTsK7DzK/8DIxqzfA277iIAx4MvAzUV79YAMCE3kUxhzz3fxqPnXIE9//M9iGTK8jVUFF0JM9sgC2MMfOF6wBuoqvvTiMWw8+578OjZm7D/+z+DSKctX8NOXFQWxji0xacAuq8q5AkATE5WlaoUKQzI4aMQw8cgho9CxkYBkQa4BuYNgNU1gde1gNc1V7zZrhRII23KcfgoxMhRyNj4cXn6gqYc65rN/7qgDTYASCkxOB6D1afJo3HUBv3muemUKc/BHoiRfshkFBAGwHUwf2iqPC1WxnSSrZ/+Avbc8+1pnwfmdWLdFz+NpnPOmPMaUkoMjFlXPHy6hnDAfHZlKgkx3AcxcARydAAyFT8uz0AYPCvL2mYwRQXQCZ7/Px/HwR//ctrn4WWLse5Ln0H9KSfNeQ0hzPvTKn6PjpDffHZlMg4xfBRioBtybBAymQCkADQNLFA7SZ6NFWGmf+ptH0Dvg49O+7x27Sqs//JnULtq+ZzXMITA0Hjc8pgBrwdBnwcAIJMxiKE+U57jQ5DJ5HF5BuumyrNCrJNVrUiI8SEY+7cifWArkE6YHzJu/tKyMGaq4JAA4+AdS6EvWAte31bxJtFCI0b7kd7/MoyDrwBGZjfEGKa8PSf/m2vQOldAX7AGPKLeXbDSGIslkDjB0jAbETEOY/9LMA7tMBUxMLPoZS55ah5o81ZCn78GvLZ8A95e/Mjt2P/dn+b8fsHN12PVf/wT9NDssQsj0fhEoNpcMAC16REY+1+COLwz84zPIU/dC33+amjz14CHI5bGcYJn3vVhHPnNgzN/yTmWvOdtWP7P74Hmm11pHx6PIy2syZMzhpp4P4z9L0P07M7ILLseTpbnpPXU64c+fw20+avBy7gOypPXvQPH/vK3Gb9jHh3L/8+7seS9t4DPUYNjcDw2xUU5GxpnqBnvQ3r/SxC9+2G+b05YO4Gp8vQFoS9YC33+ajB/eddBqUpFQibjSG79C8Sh7TP/smYjczyLtMK77iLwmsqPqM0XGR9H8qU/QfTssS1P3tgFz7oLy3qByZdEKo2xuPWIcO9LD0EfOGRPnq0L4T3pgoIvMCKVQqL3GOI9vYj19CHRcxSp4REYiQREIgGRTEHEE+a/kymIRAIybYB5POA+L7jXg6EtLyK67+Cs4wTnd2Ld3bejcePpOY+JJ9MYV4iw9235LbTRo/bk2bkc3jXngXn91s+1gEimEO/tQ/xIn/nfnj6khkczskxCJJIw4sf/LpJJSEOAezxgXg+414OBvz2LeHfPrOOEly/B+i99BpH1uaumxhIpRBXcIf6n/h94bERNnqbmBm3+anhWnQPmKaxF0ognJuSY6DmKeE8vUiNjU+RnxBPH/55IAEKCezzgPg+Yx4Njf3oSyf6BWcepO3k11n3pM6hduSznMePxJOIp6+6QwOYfg6XiNuQJ6IvXQV9xBpjmUTi3dFSdImEc2YPkC48CqQSg1hh3KowBYNCXnw596akVY2IqNOlD25F66XHASCs+ACfAGMA4PKvOhrbwpKq09qia47UjO+Db8Vd7gzEGcB2etedB61qpJM90NIrRV3ZhZNsOjG7bieiBw+bC3NuHxLGB/H7Piiy85U1Y+e8fhB6cbp1QNcfrB16Ed+/T9ibCGKB74T3pAmgdS5VOTY2OYfSVXRjdtgMj23Ygdqgb8Z6jiPf0zfnCKiRM07Dkvbdg2T/dOqN1Im0IDEetm+M9e56G5+CLdmcD+ALwrrsIWssCpTOTQ8MYfWUnRrbuwOj2XaY8e48ifqQPqcEhm/NRh3s9WP7P78Hid988o3UilTYwEktYvp53+1+g9+y0PR8WqIFn/auhNSp0ES4RVaVIpHY9g/QrTxb8urx1EbynXloR/tRCIaVEettmpPdsKfi1ta6V8Jx8IRivPuVMyRyfiML/5E+UKuXNhL54HfRV50xTJqSUiB44hJGXt2N0206MZF500X0HS6oszEVw4TzTOnHmhmnfqZjj2fggAk//Ku/56CvOhL50w4zyHN+zHyNbt5tKw9YdGNm2EzGbaZnFomblUqz70mcQOXnNlM+llBgaj0NY/N3zoR74n38gj5mY1gnPmvOgL5reCVMKgbHd+zL3p3lvjmzdMaf1pdTUrV+L9V/6DGqWL5nyuWpclHZsP3wvP5LHTMz70bP+Yuhdc/eXKSVVo0ikdj6N9PaZ/V75w8Bb5sN72uUVEUyUL1JKpLb+Fcbe54s2Bu9cDu/6V1edZSKeTGE8oWA+/vv/A4+ppfPNhLbwZHjWnIvxvQfQ98ifMfj3ZzHw9y1I9B3L+9olgTEsesebsfLfPgAteLw6ZTSRQkzBHB944kem+ThP9OWnw7P8DIxu34W+R/+Kgb89g8GnnkNyYDDva5cCpmlY+v63Y9mHbgX3HjeHK5njhYHAX38AJqzH/eQiq0wMv7gNRx/7Kwae2oLBp7YgNTya97VLAfd6sPzD78XiW2+aYp1QiotKJcz7Mx9LeQbP+leXlTJRFYqEcWQ3ks/8vujjaIvWwbvm3KKP4zTp/S8j9eJjRR9HX3EmPMtOK/o4pUQ1mtuzczM83a8UZGzP2vNx4KHnsPXj/7cg13OC0OIFWPfF29FwhllRUdUc7936GPSjewsyF8+pl2D39x/Ezi/9d0Gu5wQ1q5Zh/d2fQd3JqwGom+N9LzwIbbC7IHPxnvlabL37e9j/7R8X5HpOEDn1ZKy/+3aEl5lFpVTjovzP/C/4mFpdlZlh8J1zLXh9WwGulT8Vb1uWiSiSz+djLrKOsfd5GMfKy4xZaMT4MFIv/6UkY6W3/x1i+GhJxioVqlUuRaS9YGOntv4FDaesLNj1nGB8z348cc1N2P75r0EKodx0yiikPF94DA2nTzfJVxKj23biL1e+Gbvv+Q6klNAVm04VTp4MyS0PofHM6SW3K4mhZ1/Any75Bxz4wS8AqNc7KZg8GZDc8kdIw3qwZzGpeEUi+cJjx1MRiw5D8rk/QpZsvNIipUTyuYcBmb8p0xIMSG75A6RFH3il4FGIpTEibQUwdGaQAr7xvfDURwp1RWeQEjvvvgdPv+2DSI+NK5V4FvWFUyRgpBDy9IPPkVZZ7sh0Gts+/Z947gP/DhFPKFVlLJyiK4FkHDWR/PpclAMikcQL//JJvPjRz0Cm0tAVYr2MQt2fUkJGR5HeXviYQDtUtCIhRgcgeveWMHBMAvFxM++/ChGDRyAHj5ROnlJCjg2Zv8MqwqMrPFYeP2SoQCnGUgIjfWjYkDsFsJLo/eNj+OuVb0biwCHL58hALYSvQCmxUoINdSOybnVhrucwh39xP564+q0weq33mBA1jZAFSzmU0EcPo2alWlZMubL/Oz/Bk9f/I+TQkOVzRF0rZMEyACXS+16ETOYfE5Qvtn6iTZs2IRgM4tix6YFcBw4cQEdHB84880xEo2o1zFVJ73sRSt19CjXu3udRBaEl00jvdUKeDOkiBnU6ga6Y3VOwXQoAMIb6JdVRdhcAxnbuwVNX3YjBx5+wfE4h3UVgDPUrCng9hxl+cRueet1bMPK0xWwsxmFECuiHZwz1q9XSQcuZgSefwdNX3Yixly3GOWkeiEJ29xUC6YNbC3c9m9hSJD72sY8hFovhq1/96pTPh4eHJ5SM+++/H8EZcsMLhTRSMA5ucySNTY4NQgz1lnzcYiKTMYgjux2Qp4QYOAIxVhnR8FbgjEGDdXdNIf36kBJ17dVT5j20eAHar7wEYnjYsgus8PIsbJEqJwkvX4K2Ta9G+tiA5c1QQRUzKRHprB551qxejrbLLkJKITuqoPJEZgPoMLYK92/cuBEXX3wxvva1r+Hf/u3fEAwGkUwmcc0116CnpwebN29Gc3Nxm+WI4WNm/XxHYBAD3dDKJGK2EIjBXuRVwCvf8QeOgIfrHRu/0OjxURh+a+3ARV0bJGNgBVLiQu0ReBsjSPYPFeR6pcTf3orWSy5A41mnoeHMU+FvM0urj/Z1I2nRFy3q2zG5oHO+1C1oAvf7IOLWsx3KheCCLrRc/Co0bjTl6WsyS6sP93UjbdH6WFDFDEBkcYt6hdwyIbx0EVouPg8NZ52GhjNOhbfefMaH+npg9W1k1LfDc6CAVtj4GGR83NEy2rY7AH3sYx/DBRdcgG9+85t43/veh1tuuQWbN2/Gww8/jGXLcpcVLRRy2F4v+UIhhpwdv9CIoV7nHm7GIYb7AFSHLxoA+HAvYFGRgG6aO7WRwmSwMM7RcPIy9Dz6lO1r6OEQ/G0t8Le1wNfWAj0UhOb3gft84F4PuM8HzecD93kAziGTKYhkEvHeYzM27JoNb0M92l97CTquvhwNp58yY6EyNtQDBCKWrid9IchALVhsRGkeueAeHfVrl6L/6ZdtX0OvrZmQp7+1GVooCM3nNeXp84J7vaY8/V6AsQl5ju8/pJwu6WttRsfrLkXH1ZsQWb92xlot2uARpK3KM9wA6fEXpD4HAHhCPtQuX4iR7fZjozyR2ow8W+FraYIWDEzIb0KWPq8ZKMtYpmR2CqOv7MShn/5aaaxAZzs6rroMHVdvQu2aFTPKkw92wwhYK/8valsguVaQ+hwT1xzug+ZfVLDrqWJbkTj//PNx3nnn4Ytf/CIOHTqEH/3oR/jZz36Gs88+u5Dzy4kYPuagViszO/jqQQwr9igoJFJUnTxZ7x6geQlgsYCZiLQXTJGAlKhf2YGe6Q0Op+Bvb0Xt6uWoWbUc4aWLEGhvNRfn9lboYXu7m9HtuywpEno4hLZNF6PjqsvRdO6Z4J7ZA/q0nl1Au/XUViPSbvaJKAQMqF+zYE5FItDVgdpVy1GzehnCSxfB35aVZ8uMJcCt0P+3ZywpEp5ILdqveA06rt6ExrM2zFmFl/XsAjpWWZ6HEWmDfnSf5eNnH5yj/qTFcyoSwYXzTHmuWo7w4gXwt5uKg7+1eUrRMhV6HnjYkiLhbWpA+5WXoPPqTag/bd2sVXilFOB9e4AOi/cn1yBqW6ANHbE67dlhDGL4KLTWClQkAOC2227DpZdeis997nO4++67ce211xZqXnMilZufFJh05acxTcbxyN9U5ZmNZ4MlouAjfZb9oUakHZ4DLxRs/PoVncf/wTlqVy1H3bo1qF21zFQeVi6fMMsWkvR47gBr7vOi9TXno+PqTWi56DxofoVYjtgI2NgAZNhahouItANHtlu//mxIifpV8yf+yTQNtWtXou7k1ahdtTzzslsGT21NYcabhDGLPLVgAK2XXojOqzeh+fyzp1SwnAs21g+WGIe0mOEiIu1AoRQJKdGwdhH2/zwzF4+OyMlrUHvSKtSuzshzxVLbyuxspGdJANBrwmi7/GJ0Xr0JjeeeMWf3z+MXTYOP9AHpFKBb+x0YkfbCKRJgkA6vn3kpEpdccgmCwSDOPvtsfOhDHyrQlCzitH9NVlftA6d/HlmF8tSGjlhWJERdCyTTwApUwyPQEsHKj34QdSetRmTDyfDUhAty3bkwotObbDWctQHzb7gWrZddZH8eUkIbOoK0RUXCiBQ2TqJ2cTuW/8t70XD6KYicepJtC4MqMylmzeefjXnXX4OW17zK9jyYlOBDR2C0WkvFLHScRP3qRVjxkQ+g4YxTEFm3FlqgNAGYM92frZdcgK43Xo2WC89VU26zSGHKc7gHonGepVNEfTuwT32o3Bd09n2YlyKxZ88eRKNRbNy4sVDzsY6W19Tzhzs8foFhmsfBUEuAOf37LDSaDj54BFho8XiuQ9Q1QxsqTMMi5vFi6ftvKMi1VJi8ULdedhGWvvcW1G9Yl/+FuQY+dAToWjP3sQDg9UOG6sHGC5MNxH1+LP+nWwtyLRUm5Mk5Ol53KZa85xbUrS1A9VKuQRu0rkjIYB2ELwSeGM9/bGbu/pd94HX5X0uRrDyZR0fXtVdi8XvehppMuWvbZNYubeiIdUWipglS84AVqLih0+tnXqM/++yzAIBTTz21IJNRgYciEIw7tpNm4Ygj4xYLFq4HBnsckicDs7jTrBRYTQN4zz6z6qrFgj6mubMAigRjjmXAiFQKXdddhSXvvSX/BXoSvKYe2lCveX9aLOhjRNrBC6FIMA7u0PMuDYEFN70Ri2+9CaEF1l5SVmDBOlMxU0BE2sB7d+c/uARYKJL/dezAGBa/661Y9I83ItBRmKw7pumALwht6AgsqwWMQ9S1QhuwXmwtJ1I4/j4qiCKxYcP09r/FhkdanDPHM15VqZ+AKU/jgP2o9LxgAK9vdWbsIsEjLRBH9oAP90I0dFk6R0Q6ABSgbbuU5vPhAG2bXo32K15T8OvySBvEQA/4aD9ErbXUcqO+HZ7DBSjWIwV4nTPynHfDNZj/psLHnvGGNsiDr4DFRiAtZhsYkQ7ohVAk4Nz9uegfbyxKx2Fe3wrZs8+M9fJYc48Y9e2FUSQAx+Q5MX4+Jz/zzDNoamrCvHmF05St4tSDDcDUAJ0cvwg4eiNK6ezvswiYP49UCqgStU2QBXKZOSXPYrWFz24cVHbRoq4NskBREsyh56No8qyzIc8CVrjkdcWtM5SL4t2frWCA0vNu1BWqgRc3LcoOkpcisWXLFkfcGgDAAuHMw136EtngOrSW6inzCgCsphEsWPgofkt4/OCNHc6MXSR4QzvgDZhxElZhHKKmMe+xWaAGzKGFuljw5nmApqtFuuteyLzvaQZW2wwetLZrrxS0tkWmZVXh/pT+MIQ33yBTBt48D8zirr1S0NqXAJBKipkM1+e/cWAMvH0JmMU082KRlyLR19eHBx98sFBzUUZftB4lr8bIGLR5q8A8ld0R8EQYY9AXFyAoTn1k6AvXOv4gFBrGNegLTwIfG1RKbbVqtp8NfdG6ou28nILpXmjzV4OPHFWqaJu/PKVDz0VxYb4geMdSaMNq9Vvy7xMhoS+s7NbsM8FDEfDm+WoxToXYOEgJzyLn5VnR3T+19sWA115hEttICX3RSaUds0RoXSssBwYWDMagL6iObpUnoi9YA8Zg5phbRNTk+eLTdGjzChDVX4boC04CM1Lgo/2WzzHylafXD629OrpVnohn0TqwZBQsOmz5nPwUMwYWqAWvMmtuFn3xOrDoEKBQkye/5z1jLSuDeL2KViQY1+A9+cKSjqkvOaWqekJMhuleeNaeV9Ix9RVnOlojvpgwXxD6yrOgjVqvWJnvDtqz5ryqMxtn4eEI9KUbwEsoT+9JF8xZJbJS4ZGW41Yei+QnTwnPugurzlqWhTfNg9a2uLT357rSvv9yUdGKBGD6+rSulSh6rARjYOEI9OVnFncch9G6VoK3LCx+O3HGwCKt0JesL+44DqMvXgeuYIqXvpA9PzRjpml1nvWyx5WIvvx0aMnpRYVyIUMRm35oBt65POP7rl48q88Bj1svJS7CTTYDWBm0RSdDa7KWwVSJMMbgPfkCaAopx/m4ivTlpzsWtHoiFa9IAIBnzblg4boivvwYwHV4T72sancnWRhjppbrCxVPnowBug/eU14DZrEmQKXCGId/6SlK5ygvLowBviC86y6q2t1eFsY1+BYruBbt+KEZAwvVwbumtNY5J2C6F/6u5dZP0D3qAayMgdU2wbPyLLXzKhDmDcDbttDy8dIfhlR2zzPwxk7oS51JdJiJqljFmccH38ZrzKyDgi+kDNB0+M56HXht/hH1lQDzBeE7+xrAFyy8PBkDdC98G68GDzmUJVJi9FAtOKzXPFEydzIGeIPm/V+lLqIT0cMRMIUaMkp+aGb68X0brwbzlqZss9N4Is1KLQfUzPFmsTnfWa8DK3X8lUN4G9Rq4qjF8TCw+jZ4T7+irALUq0KRADIvv3NeD15fyJrwDPCH4Dvn2rIIaCklPFgL/7n/AJZ3lPZUWLAOvnPf4BqlLItusZkPoLZQs5pG+M99g2uUMiCTYWS1oRIU5Rlpg+/c17tGKQMy8lSwtKq8+HjzPPjOvtY1ShkAcMbAFTZgKvcnb19iKmUK60kpqKoGB8zrh3fj1TAOvIzU1r+aaWJ2mntl2pNri06GZ8WZZfdLKxXMH4Lv3Dcgvfd5pF95EoDMQ56AvmwD9KWnVb17aCZ0jSOZthYrkfVDs1ypzYwBYGbgYU29I6VUnEbXNKQMa1aJOV1FjAFMg778NPBADdwoUF3jSAuL8qy1IE9Nh778THCvD+DulKfl533OzRoDPD54Vp5pluMuQ3dwVSkSQEa7XrAWvGUB0rufg3Fwm9nvIKMczHG2GQ7RthiexadUXdlmOzDO4VlyCrS2RaY8D20HRBrmYjubPDPfMw7esRSeJaeAz7UAVTEeTeHhz/ihWXRo0ocZeepeaM1dpnI71A0x1A1AQutQ8HNXAbqCPLN+aDY5SDO7Hnj90Jo6TTNx/0EImA3PWMvCgs+5nNE1DquNImTILKTERPr4h1l5+oLQmzrMfx/da8ozWAPW0JnzetWIqiIxbeOQlWcgDL2hHYCE7NlldrStaSy7gnNVp0hk4YEaeNeeB7nqLBjduyGOHoAY6oWMzhCh7A2A17eCN3RA71oB5itNi+BKgoci8J58AeTqs2Ec3gnj2CHIoV7I2Oj0g/0h8EgrtMYOaJ0rXGXWzIXG1XYRorYZPKNIsFAdeKjOtOSkk0A6Yf7JIAd7AFIkZsWoaYbefwCA2XCPh+rMwFQjBaSm5v2LwSNm5pKLUJJnJoA1W8yK1dSDB+tMQ5mRAk7IqhGDPeAuUyTUNg7eSRsHBlbbAB6sMRULIw0kp7aSl0M9QJkpEkxKO7bqykWmk5DxqOn24BzM6wcrdVGrKkKmEpCJ2CR5BkhxyMHweNyy+diXGIV/6BDk6LFpC/NM6KdeBuZxl9wHx2IQFpcvf3wIvqHDkKP90xSHaTAOfcMmx1szlxIpJQbHY5Y9l4HYALxD3aY803NUbtU90E+9vOoztCYjpcTAmPU05eD4UXiGj0CO9QPpOUxDviD0da8pqwwt9zwpGZjuBQtXV3lrJ2EeX9UWQCo0Sn5oYUD2H7R8bTnY40pzvFXzsTTSkAOHrV1YCsjhPrCG6ur/MhuMMeicW447QSoBOdht7dh0CnJ0AMxFrs2sPK0+70jFTEuDFRJRIDYKlFH/F/eoiAThMCrm45S/DtCtK7xiUKHGf5WgIs9koF4pSM2d8rQeBJ0IqSkFUqV5XZWgdH8qylOUmTxJkSCIEqHmh2ZAnfVgXzncB2mk5z6wilDxQ0uuAQppdnKoBy7z+irdn0LzAOEG68e7UjGzLs+0Jwj4w5aPl2UmT1IkCKJEcMaU6nsZtS3WD5YCcnRAfVIVjHIAq4JihnQSUGhmVQ2oBrBKFXkmxiHj44ozqmxU5Yk667WK5PggZDqpOKPiQYoEQZSIrN/UKqlQg5I5Xio0X6oGlOUZVot0F8PukqdqIaW0YudKt92fqhuHtGIDLzlyTHFGxYMUCYIoIUoVBMGV8sXLaWEpFSq7PkPzgCl07iV5zo7hDSmZ44XL5Kmq6BoBtbiocro/SZEgiBKitFALCabg3jDNnRarClUJavIUYHUK8hw9Bmk16r5KUPLrCwGuIs+RYxR3MguGgNL9WU6KGSkSBFFCNMVywaqdK+Vov9LxlY5KnISUAFR6xwgDcnxIeU6VjIo8hZCASkpnKg7Ex2zMqnJRkachhFqKbGwEMjVHDY8SQYoEQZQQFR80AAhvCNCt1+lwmx9aWTEL1FHcySyomOIBQISsZ24A5bWLLgVKii4AGVbcOJSJPEmRIIgSouw3lVJpl+K2hZqpBgiCgSlYecploS4VjKm1LBNcB4LWO8+6TTFTVnQ9AUCh0nK5yJMUCYIoMZpmfXEx4yQUzJ3RYchU+aSFlQJNOe7EujzlaD+ksFY9sxpgjCnJMy0EuEp9DpfFSTDGlJQJc+NgXZ7lsnEgRYIgSoyKuVN1oQbMIEE3oass1IZQWqghBeTYoI1ZVS5Kfn1D0a+fTgKxGRonVjGq8lTqkhwfg7TQi6fYkCJBECVGNaBN+oKAQkOucjF3lgrVgDYE6wBuvc2Q2+SppJgJmXEVWT+nXHbRpUJt46BmkQDKw/1GigRBlBjlgDYJipOYBeWANsbAailOIhdKiq6UgKaDhSKWz3GbYqbk2hAC8PoBf8jyOaIM5EmKBEGUGNWANkMIcIXCVIiNQs7VKruKUA1oU46TGBtwVR8TlRgJwHS/qRVO63dVnIRqqWwhpXLcidOQIkEQJUY1oE05vxzlsbiUCuWANtW4Eykhx9zTx0S5J4xqQLCRclUfE9WUb+XnPRGFTDjbx4QUCYJwACW/qSHBfCHAF7R8jptefIB6QBuCdYDmsXyO2+SplKJsCLBwA1S0D+GiBnOqim7aUFTMAMcDgkmRIAgHUAtoM8s0K5njx92z4wNsBLQxRvKcBeWKjJpuKhMWkS6ySAA25OnxA4Eay+c4fX+SIkEQDqAa0CalBFcppBQddpUfWtW1IaVUK0xFL76cGMK8z1Tk6SbXBqBo4clsHFSfdychRYIgHEBloQYyu5RgROGENJCIqk2qgrET0MYUKjIiEXVVQzSVomlCSmV5yuiIqxqiqRZNk1KqZcKMO7txIEWCIByAc7WAtrSQpqlTpU+Ei3Z9tgLaQgqKBNwlT2VF1xBKLz5I4aoGXnYyi1RKjyOdABxs4EWKBEE4hIq5UwgBxrma39RFLz71zA0JpnvV+hq4SJ5csYeJIaUZDKxS6MtFnVWVm/VJARashUqiuIwOqU2qgJAiQRAOYcsPrbCLdjoAq9Qot8AGlM3HbkJFMRNCmAGsKvenixQzU9FV7AnDNSAQtnyOk/cnKRIE4RBcaaHOvPiU/NDuWagBGxUEoSrPIdUpVTTcjmJG92dO1BSzypInKRIE4RCakuk48+JT8UMnY5AO+k1LjdKLT6pbeBAbdVeAoGLXSkDdYuamzCKVjYNdeToFKRIE4RAqLz4pYUZyB2qVxpBR93RaVFLMspHxKgFtUrqqc6WKX9/ODhpGCiiDzpWlQlMIlBYTFrOI9QES45CGM5lFpEgQhEOo7FCAbICgB/BZb+jjJnO8qjylhBlsqStUuHSROd5OrRMEapUqXLop7kTVlams6MK5jQMpEgThEJwxpeZddszxrlqoVVNAZSZAUMUP7SZ5KipmQkrKLJoFFVeRzPxhHsXMIofuT1IkCMJB1ALa7AQIumehZoopi5UW0FZqGFS71NqR55DSnCoZ5RTQCpInKRIE4SCqtQ8AxQDB+BgFtOXAVgpozD1FlBhjJM8CoqroTmQWKQUEOyNPUiQIwkGUdtDSRkCblEAyrjqtisVWpkFQIYA1nYA00qrTqlhULGYTmUUq8kzGSNHNgZ3nXTpUFp8UCYJwEDu1D+Dxq5XKTrqn5wa3ERmvErwKwGWZBjYsEiryFAaQTqpOq2JRzSwCFOWZijuSokyKBEE4iK2iP4yZ5Yit4qLmXbZcRZoO6F7L5zm163MCO64NeANqmRskzxk5ruhaD7YE4IiiS4oEQTiIyg5FYpK5U0GRcNVCregqkiTPWVFzFWVcG4wpZRq4SdG1VTRN9wKaQg8TB+RJigRBOIhyit3kXZ9V3GSKt5GyCADwKlh4XCRPFVdRtmgaADAFebrJ9WanaBoANQukA/IkRYIgHIQxZu7gLDKRAko76BlRkSUw2a9P8pwJW+2vAXK95cBW0TQoKmZkkSAI96HWc4NefLOhmrJoTOz4yBQ/E6aia/344643hSJKLpKnnaJpQPk/76RIEITD2ApoUzJ1uivFzl6mQXkv1E6i0iPCsGUxc4+ryG7RtHJXdEmRIAiHUWovbMMH7bYUO1sBbSqKmUMpdk6houhKWzEnUXcpunaedxXFjLI2CMJ92ClKBa+fUuxyoCJPWy8+wGUBl8V98cFIm51AXYK9513VAllaRZcUCYJwGJUAwYmoeEqxy4mtF5/uATSFLqAkzxnJWuKV7k3AVfen0vNuw/XmRDVbUiQIwmFs7VCgau50z0KtEhg/4YMGyt4P7RRMxbWRffFxrta10kVxEnbKZEP3AlyzfF6pFV1SJAjCYdR80LCZW55QnFXlovTis6uYpdzTv6Qkii7Jc0ayeq5yNdtUaZ93UiQIwmFUax9M5JbrPuvnkA96RiQmKRMK8oSbGnfZSP8EoFR23E3ytOPKBNSe91LHnJAiQRAOo6ZGTFqsFcrmummhVs3Vn4iTUIiRcJM81RXd7P2pIk9SdGdichl3pTLZJb4/SZEgCIdRzi2nhbqgTGz6dJWF2j3ytK2YKcjTXYqZzRP18lV0SZEgiDJAZXGZyNwgi8SMkGJWWBhjSlYzO/IkxSw3wtbzTq4NgnAdtl58CjsUNy3UgJo53t5C7R7FDFD162f+QvKckdIoZmSRIAjXYW8HTQt1LlQCBO349Eu9UDuNrdocZOHJiZ2UWrXnnSwSBOE6bBWpoYU6J7b6l5A8c2LvxVe+Pn2nsVXkq4zlSYoEQZQBtorUKC4sbupnYCvFjiw8ObGVAqqUZeAuxcyehYcsEgRBzIK9HYrCwgIAwj0vv1Is1G5SzMj1VljsKbrl63ojRYIgyoCi76ABIO2exbroWRtSAiVujOQktvrBqMgzTRaJXNhSzEosT1IkCKIMsFOkhnENYAqPsIvMx0XPMgBcJc+iv/ikcFdrdhuuonIumEaKBEGUAbaL1JSxudNJbFUP5JraL4LkOSO2LDyAq+RpywKpUuBLlDYmihQJgigD7BapgWa9IyCkoTRGJaMqTyCzuCt0WIRwjzztWXgUZAnQ/ZmDCXlyRYtZCV1vpEgQRBmg2s9gAqVdh12zR+WhKs4JMSpt4kieuZBSKsoScJc8bVgklC0MpZMnKRIEUSaoPPa2rJa2/SfVj4QNTcJF8lRu3DXp/xUGUTu+glEqiY+sMlG+8iRFgiDKhOLvUty0UNtrza4kTze9+FRPkLKsd9BOo1YkO0MZpxuTIkEQZYLqLsX8C734cqEmTzu+DXfJUwUJqL/4XCROZVfRpP+3PgZZJAjChdiwSCgsLqVcWMoBpV2fLYuE0nQqGtVGU6YYy9cUX2kox5yUWJakSBBEmVB0i4TLUG3Nrp4u564Xn7LrjYItc2LP9Va+1jJSJAiiTFDZ89mxSLhtx6ckT1sDuEyeyoouWSRmQ9n1VsZuTFIkCKJMUNtBZ/+iNILKwRWPqkWCggPnQtUiQfKcDWXXWxkHVpMiQRBlgtomgiwSc6Fkip/0/woDqB1f4ZBForCoBwOXb/wOKRIEUSaouTZO/IuVAVy2UCscK5V3fKojVD5q8rRjkXAXys97GVsfFWtuEgRRLJRN8ebfVEZQmU7lY6cuh9L11U+pZJQCBG1kbbguq0jZlVm+mwaySBBEmaAaHKi863PXOq1uileue+AugVZTcGA5oOZ6U8wqKrE8ySJBEGWCskVCtVuiSkOqKkA5CyatKE9G8syFlIBMK7RZd5ksVZESgJI8S2sjIIsEQZQLqsGB6aTa9XWv2vEVjnL1QBV5ajoYd9fyqWyRUJGnx133JqBukVCRJ/P47EzJNu56EgiijFENZlN78XnASrxLcRp1i4SCPF2mlAE2ggNVXnyulKd1TAtPwvoJJZanu1YWgihj1CoHgl58c6AczKb04ivtjq8sUK0USvfnrChXCi1jeZIiQRBlgnJ4VMr6DsWNOz4VJOjFNxfKHStJnrOiHA9ZxhYeUiQIokJRevG50QeteoKCYuZGeSoLNFW+Pv1KRCrIs9T3JykSBFEuFHGH4sYdn7o8rUfFk4VndiQUFV2S59woyZOCLQmCmAPVrA13vvgUOyyWcTBbOaBs4SF5FhQVxYxcGwRBWEJtx0em4zmhHXRBKecXX0VSxvcnKRIEUSYo7p8VfdC0UM+F0ouP5Dk3Kj59UiRmRdkCSTESBOFWVE3xtFAXFKUXH1l4ZkWoFlBy3/2p9LQbBiAM68eTRYIgCEuQIlEwpOqLj+Q5O9IApLB+PMlzVphKvAlAigRBEBYQAkjFLR/uxhef2o4vRS++AsIU7k0AJM85UJIn18FK3FeHFAmCqEB4MqZ2gtdfnIlUCTw5bv1gxtxZR0IBlohaP1j3lPzFVx5YV3VZUkGe3tK73UiRIIgKRGlh0T2utEiowFXk6Qu6rm+JKir3J/OFiziT6kBFMWP+0suTngaCqEBUXny0UM8NV1moXSpPFVeRkoXHH1KeS1WgIFCmIE/mK708SZEgiAqEFurCorSDdqs8FV58SoqZAzvoSkNFniCLBEG4F5UmPioxEq5dqJXkWd4LdXlQHJ++WxUzy9KUsuzlSYoEQVQgKhYJty7UlpFSzVVE8pwdIcBSCsHArlXMrMGMJJhIWz+eLBIEQcyJEGrpYLRQzwozUmW/UFcSPBVTiqcgxWx2lDK0GAN8geJNJgekSBBEhUELtTWsykjJreHQQl1JKMXv6F7KKJoDJXn6Qo5kFJEiQRAVhtpCTamfc6G2UFPq51yoZRS5U8lVoRLcbvREEES5IK0dphRo6dJURcCyOClw1TLWJKoWuOpeRaI49ycpEgThaqwvLJT6aQnLiln57/jKAVkUebpYMbMsTxWLmTPyJEWCICoMytG3RlEUMxdbeKxC96dVLNyhyhlFpEgQhKuRFhcWLT5i+Zpu3kFbQgjw+Jjlw0mes8PSSfC0SkaRe+VpRdHlySiYQvtwcm0QhNuxsLKwVFwtVTFQk8eEKhwLtnieGAOzbLtwtzytuDZ4fFTpmu62SMyNkjwZdyyjiBQJgigTrLzOVKwRYAxw84vPwjFK8tQ9gNfNqZ9zS1RJnr4QmO7JYz6VjRXFTMn6GKxzLKOIFAmCqCA0lR1KoNal7ZmtoyJPFoyAqdQxrzKsKWYK8gzV2Z9MVWBFMasMeeqOjUwQLiaVNiCRKZrEAAYGIcTE9zwxDn2kB0agDkagDtDMnRtX2aG4aKFOpk0/8mR5GuL4Qs3jI9DHjsHw18EI1JI8Z0FKiZRh3otT78/j8tSig9CiQ+b96a8FNPNVoibPSAFnXb5IKZFKGwBjU+U5SY/QxvqhJUaPy5NrZqBlhciTFAmCcICUIRBLpnJ+Lzw++I7tAcvYP4UnACNQBz06ZHkMFozkOcvKIZU2EE/ljh2Rug/+vl0T/za8QRiBOmWLhBtgjCGRSk8oZzMhNS/8fTvNvwMQvhAMf51ahkHQHYoZYwzxVHpCOZsRrsHfuwMAIMEgfGEY/jC4kXuNmIaD8iTXBkE4gN8zhw7PdRiB+uP/TMXgGelRC7R0yQ4aAPze2eUpdR8M//F4ES0ZhXf4CJicZXE/ATfJM+CdPXZBeIMQuh+AabXQEuPwDnerlW53iUUCmFueRqAWkpv3MIOElhiFd/iIwggMLFibxwzzgxQJgnAAzhl8cygT6XBjXmMwTYe0WkWowtE4h1efPR4kHcpDnowBjLtGnrrG4dFmeT0wlt/9qXkABSWu0tE1Do3PomYxjnSowf4AXj+gYr0oMEy65ckgiDLDEAJD47lz7nl8BOE9T+Y3iO4FC9WDhSPmf2saqzZSPm0IDEdzy1Mb60fowDP5DeLxgYUiYOH64/LUqtNDnEwbGI0lcn6vj/QgeOiF/Abx+I/LMlwPVtNQtQHCiVQaY/Fkzu89AwcR6NmW3yDewCR5RsDCjWC8+PYCskgQhEPMtYsWvhoILc+GW+kk5HAvxOHtMPY9b73OcQWiaxz6LLtoIxiBzDc9LpWAHOqFOPQKjAMv5XetMsczxy46HWpUqMCRg1QccvAIxKGtEIe25nu1ssara+CzZP3ka4EEACRjkAPdEAdfhujeaVrSSgApEgThILP69hmDEarP/b0KjENffiaYp7o7gc7qi+YajECkMANpuinPKrVGAGaQ4Kzy1DwQ/gLVKfH4oC07o2qtEYApz9medzkp7iRvfEFoS04rWboyKRIE4SAeTZt9Fx0oTICftmi9K4Lb5tpFF0yeS05zRVXGuXbRBZEnY9CWng7mgmJffo8+a0BqQeTJNejLzijppoEUCYJwmNl2fYVYWHjrYvDm+XlfpxIwd32zyLMAKXK8cwV4fVve16kE5tpFF+T+nL8WvLYp7+tUAnPKswD3pxObBlIkCMJhZttFG/5aSKWkuqmwmkbw+Wttn1+J+HQtp0k33xcfi7SCd67M6xqVxmy76HxdRayxC7x1cV7XqDT8nuJtHHjrYvCmeXldw9a4JR+RIIgpMMZyLy5cs++H9gUzfmd3PeaMMQRypNZK3QfhsemHDtSW1O9cLjDG4Muxixbe4ET9A+XrhhugLT7FdfI0U79njgXJZ+PA6lrAFzizaXDXCkMQZYrPo+UMsLa1S9E80FdsBPP48ptYheLzFngX7fFDX3FW1abOzkUuxQyM2bs/fSFoy8+s6uDK2QgUeuMQrDXjTKhpF0G4F9MqMfNirbxQM24u0i7u/MlZ7oJfyvLkmqlE+IIFmFllwmdJVVaWp+5uJRcAtFkKfinL0+OHvnyjo0ouKRIEUSYUSpHQFp/imuC12SiUIqEtPd0VGS9zkStIUEmejENbfhZYoPozXuaiIPLkekbJdTbjhRQJgigTcu36hDcIoVnbbfCulY4EW5UjuQpUGf5aSIt+eb7gZNdkaMyFzmcOClZ58WmLTwWvKUDhpSrAo82cWqskz2WnlYWSS4oEQZQRM1olLPqhWdN88I4VRZhV5TKjPDmH8M3t9uFtS6C1uSujYDZyBQVL3QvDO7fbh3etAm/qKsbUKpJc7kyrGwe+cB14pDyUXFIkCKKMyNXcZy5FgtU2mfnjLouAn4tcBZXSc7QEZ/XtrkubtYLPo80YxDrn/dk8H7xjeXEmVcHM6H6zsHHg7UuhtS4q0qzUIUWCIMqIXLuUWReWQI0r0zytwHIEXc4mTxaqh7ZkAyllM2BLnrXN0BaSkjsTnDP4ZnBnzirP+g7weWuKOS1laOUhiDLDN0MBIBbKsbB4fJm0xOruoZEPMylmWi6/si8IbUV199DIl5mCBLVwZOaDScmdk5nkqeeQJwvVQ1tafkou/XYJosyYadcXDIaBE5UFrpkR8L5QCWc3N2P7DiA1Oub0NCbgnE0LYvXX1E3vjKh7oC8/C8xuwaoiMbprL9LRmNPTmEDjU1MXGQB/zQzN5Tx+M82zzGpvjGzfBZHM3c671OiaBm2SosUYg68mMv1AXwjairPKsvYGKRIEUYZM3kX7PDo8uja1LkQmjY6HC9QdtID0Pvxn/OGsy7Hn2z+GSKWcng6Aqbu+gFeHruvA5KZbXIe24mywYK0Ds5udQ796AA+deyX2/+RXkEI4PR0AmNLPJODzQPP6gMl1IXQv9JVnl2XtjX3f+xkeetXrcPh/H4SUeTdCLwiT78+Qz2M2hJtcXMobgL7q7LKtvUGKBEGUIdmCNQxA0Gcu2hOKBGPQlp0OXtfs3ARnwYjGkOwfwPMfuR0PX3gNjjz4iOMLdjZ1kU9qjX1cnhzaivJUygDAiEYR6+7Bsx/8Dzx6yT+g70+bnZ4SPBoHZwwaPx7TMyFPTTeViDJUygAgHY1hfN9B/P2d/wd/eu1b0P/UFqenlOkPY96n3myvmKw8J5Sy8rI8TsaVioSUElIKxxe3aoHkWViy8vR5dAR9nuNZB5mFRVu8Aby+3cEZzk46Gp34+9iuvXjypvfjz9fcjKEXtjoyH/O+lPBn5Jn1L7NAjamULT+jrAt4TXZrDL/0Cv563TvwxJtuxcj2XY7MJytPn0dD0OedKk+uQVuxsSxqG+QiPX78/hx4+jn86bVvwd/e/iGM7z/oyHwm358h/wn3Z1YpK/MqtVUfUSSlBGIjkGMDkLFRIDYMpCf5x7gOBGrAArVgwQhQ0+BYvfJKQEoJRIcgxwYh4yNAdAQwJpmvNR0I1B6XZ7ih7AKDygkpJTA+CDk+CBkbAWKjE/LUAEDzwMjIE4yZueNlnos/kz+//8mn8djl12PZ+96Olf/n3dB8xQkOlVIAYwOQ40PH5SnSAAAdDNAnyVPTwRdvKJtc/FxMfvFl6X3kzzj6lyex8sPvxbL3vA1cL85SLoUAxvoho0OQ0REgPgoIAwDgBQPzeE15+msBjx/asjPKvuCUEZ0uz+7f/hG9j/wFa/7jn7D4lhuKFhwqhQE5egyIDpv3Z3zsBHn6Ju5P5guCl7lSloXJKt1GSmFADh2B7D8EJMZhhgTN9qNmvte9YPWdYA2dZeuPcgJppCEHuyEHDgHJGCzL0+MDa+gCq++gzIJJyHQKcvCwKc9UAlbkKaUA8wWPy7NMMwu2fPgT2Pf9n+f8vnblMpz65TtQv65wKWwynYAcOAw5cDizUbAoT384I8/2sgxiA4C/vf1D6P7tH3N+X79+LU798h2oXbG0YGPKZBxy4BDkYHdGsZ1LnqZSzAK1YI1dYHVtZZup8edrb8axJ57K+X3TxtNx6pduR2hB4SrEykTUvD8HD2cUB4vyDEYy8mwp6w1uVSoScmwQ4vBWIBW3fxHGwdqXmwu2y3fUcuQYRPe2qZYcVbgO1rECrK7V1fKUUkIO90J2b5/YKdtC84B3rgKrzT9OQkqJ5MAQ4r19iB3pQ7yn9/h/e44iNTwMkUjCiCcgkkkYiSREImF+lkhCptPgXg+41wvu9SIdjULEE7OOyTQNyz/wDqz8p1vBvfYVTCkl5OARyJ4dEzs7W3h84J2rwcIN9q+RnZMQSPYPItbbh/iRPsR6es3/Zv6dGhmFkZGfKcOMXOMJiGQK0jBMeXpMmabHxiCSswetcp8Xqz78Xix99815WSeklJD9ByF7dwMyj8BObwC8aw1Y0EZn0BPnJAQSx/oR7zl6XJY9vRP/To2MQSSTEBn5GYnEFPlKIY7fnx4PUqOjkKnZnz0tGMDa2/4PFt18fV4KkZQC8uh+yL692U/sXcgXBu9aXbYujqpSJKQQEEd2AIOHC3fRYAR83lpXWiekMCAObwOGewt30XAj+Lw1YBZ7R1QT0khBHNoKjB4r3EVrW8wFxsJuWgqB6MFuDG/bgZGt2zG8dQdGXtmJ6MHDEAln0uFqVy3Hhi/fgcjJq5XPlekExMGXgPGhwk2ovgO8fYWll4cUAuP7DmbkucP877YdiB7qnvNFVSzqTz0ZG758B2qWqZf2lsk4xMEXgdhIwebDGueDtS2xtJsW6TTG9x4w78tt2ftzF2LdPZBpZ+TZdM4ZOPXuzyA0v1P5XJkYhzjwYsYiXhhYyyKw5kVltxmrGkVCCgNi//PA+GCBr8zM3cqiU8G8znZYKyXSSEPs21LQRcWEAb4A+MJTXaWcyXQSYu+zBV1UJvDXgC86ZYpyJoXAyPZdGPj7Fgy9/ApGMkpDeqwI4+cJ03Ws+MA/YsWH3mnZOiGTMVOeqQRs7/JyEaoHX7BuinImDQPDL29H/1NbMLx1e0aeu2DEyqe+Qxbu82LVv74fy269CUyz5q6RiXFTnukUCi7PmibweSdNUc5EKoWhF7dh4JnnMfxyRp47ds1pyXICLRjA2o9/GIveep1l64SMjUDs3ZKf1TEXkXbTGllGykRVKBJSCIj9zxVBicjCAN0LvuS0sitWUwykMMxFpeBKRBZmmj4Xn1Z2xWqKgTRSEHueBhLTg7wKhr8GfNGp6H1sM/Z860cYeGoLUsPF+v0Vh7o1K3Dql+9AZO2qWY+TqYQpz2IoEVlC9eAL1qP7/j9i3w9/joGnny9LJWw2Gk5bj1O/9BnULJ29J4NMxiB2PzU1aLrQ1DaDzzsJB37yKxz8+W8w8MwLZamEzUbzeWfh1C/ejuC8jlmPk/Ex8/7Mx9U2F2WmTJRv9IYC8ujeIioRACCBdBLi4MuuSHEUR3YWUYkAAAkkoxDd29whz8OvFFeJAID4KETPTiT7B9D70OMVp0QAwPDL2/HYZddj239+PWchKyklxKGXi6tEAGYmTd8exI70oO+xJypOiQDM1MZHXv167Pyvb0MaM7/UpBSm+b2YSgQAjByF7D+A8f0HcfQvf6s4JQIAjv75STx8wVXY+92f5ly3pDAgDrxQXCUCAIaOQA4dKe4YClS8IiGjw5BH95ViJDPtceBQCcZyDjnWX9gYk9kYOQpZyPiLMkQM9wIjfaUZbLAbjeuXlWasIiHTabzyn1/DX/7h7YgfnR5LIgcOZzYNxVdA5bH9aNwwu3Wk3BHxBF761Oex+cb3IjmDcimP7jdTOkuA7NmNptNPLslYxSI9HsVz//opPPWuD8+Ylit7d2ey2oqP7N4OWaKx5qKiFQlzd1LaIjeyZydkPtkgZYwUovTy7H4Fsti7IYeQRhry8LaSjuk3jiG0aH5JxywG/U8+g8cufSMGn3954jOZSkD27CzpPGrCSXjq8888cJreR/6Mxy6/fkoRK5mIQvbtKek8Im06eJFqiJSSw//7e/zpdW/B+IHjmy4ZG4HsL2FRKykhul8p3XizUNGKBMYGgGSRTcYnIqW5K6pC5EhffimedhAG5GD5mOgKiRw6UnwT54kYKTSdtra0YxaJWHcP/nTVjTj4i/sBwMzBzycl0QYsnUDT6etKOmaxGN+zH49f8SZ0//4RAIAcOAhM6zNbTCQ0kUDDKdVxf5quuOtw9C9PAgDEsQMotTwxNgBZjABuRWwpEs3NzWCMzfrnbW97W6HnOg1RSu1vEnLgUNk0zykkJdWmTxi32mIlsvn4TtC4unCFdJxGxBN4+r3/hhc/+TmIowccmAFD09qFDoxbHNJj4/jbze/Htv/8GkT/YZTCRTQVhsaTl5R4zOKRHBjCX9/4Tuy69zvAcB+ckKfsd97drly5xDAM/OY3v5nxu/379+OWW26BEKLoioRMJ4Gx/qKOkRMjbY5dgGJA5YJMRIscYDkLqTgQHQYqoBSsZWIjJfOVnkjT6vIuoW2V2pXL0LTxNDRtPB0NaxeCRZ1YMCUaV6vXECg7GEPd2pWmPM86DfWrusDGnbCsSjSt6sB2B0YuJEzTEDlpFRo3no6mjaehfmkLEHXCsirNCs7tyx3N4FBWJDRNw1lnnTXt84MHD+JNb3oTDMPAr3/9a7zqVa8qyARzEitNgNDMMMjYSEGqCpYL0iklYtL4lVBT3ipOytPfWIfw4vkY2+PEDt4+ntoatG96NdovvRCNZ26AryEy8Z3o3QMZnbuscDGoWdAGX2M9Ev3FzAwrPN6GCDqvvBStr34VGs88Fd664904Rfd2yHFn5BlZMR+a3wejDGtGzIavpQldr7sMrRefh4bTT4EnfLwbpzj4kgOSzA5umC5+B7uDFqRY/+HDh3HhhReiu7sbv/zlL3HppZcW4rKzYi7UzjwIgDQb2FQTjsoTzllDioWj8mRo2rBKWZFgug5/axP8ba0ItLUg0N4Kf1sL/G0t0MMhaD4vNJ8P3OcFz/7d6wXjHCKVgkgkMbb/IP528/stj6kF/Gi75EJ0XX05Wi86L2czL/N5d+beZIyjccMadP/hL2rneXQEWlvgb29BoK31+H9bm6GHg+DejAz9PnCvJyNbHxhjE/IcenErnvnAv1seUw8F0X75q9F1zSa0vOoscM/MdVqclKfm9aDhlNU4ulmtfTf3eeFvbUGgvWXiHvW3t5jyDAbAfb6J+1PzecGz9ydjMJJJiGQSx/76FF647U7LY3rqatFxxWvQdc0mNJ99es4CXzI6rPSzFBoZG3W0zXjeikR3dzcuvPBCHDx4EL/4xS9w+eWXF2Jec5MYh2MvPaBkKVOlQsbH4KQ8paMWpsIjY07KU6Jp3TLs+9mDM37L/T7UrliKutUrULt6OepWLUfNssXwNTfm3WhJWgiGZLqO1gvPQdc1m9B+6YXQQxYWwPhYXvPKD4mmU5bnVCS0QAC1q5ahbvVy1K5ajrrVK1CzdBG8jfV5yzPRPzDnMdznRdurX4Wuqzeh7dXnQwtYKJrnqDwZmk5dmVOR0MOhifsye4+GFy+EtyGSt/l+bPe+OY/RAgG0X3qBqYxdcO6cnWqlEPn1dcob5vDvM09FoqenBxdddBH27duHn//857jyyisLNa85kYYztdePT6DKgi1LnV1wItLh8QtNMUrjKtC4zuwEyb0eRNavRePpp6B+3VpzUV4033LpZFVmyq0HADCGprNPR9c1m9B5xWvgrY+oXdjh+7Pp1JUATCWs4ZST0XDGKYicvBp1q5cjtGBe0TpdztSSHTB99M2vOgtdV29Cx+UXw1Or2MzJ0fVLoulUs7eKFgyg4bT1aDz9FEROXoXaVSsQnFe8Rom57k/m0dF60XnouvpytF9yIfRQ0PpFy2Htcvj5sK1I9Pb24qKLLsKePXvw05/+FK973esKOa+5KZPSoEShqLbfp7M/j6++Dhc88GPUrloOzV+6nibGCS8+b2MDlv7jWzD/+msQaGsp2TwKTWh+B87/3Y8QWbsyr26lqhjRqS8+f3srlr7zrZj/htfC19xYsnkUmsjqJbjg9z9B3ZoVOd0vxeDE+zO0YB6Wvuut6Lr2CngjduuFlMHa5fAUbCkSR48excUXX4ydO3fiJz/5Ca6++uoCT2tuGNeddGwAFrotVhS8IOEyeYxfZfLUdMDJOluahvpTTir5sNkdX3B+F5a9521Y8MarrZna50LTHLXycE1Hw6kOyDPz4gsvXYTl73075r3+isIoMlxzcBfLwH0+1K9fWfKRs/dn3ZoVWP7+d6DjykvyarsOACiSNUptDs6u38qjHzt2DBdddBG2b9+OH/7wh7j22muLMa+58YcBJ+NbyrQvvF1YoAayRKWHZxgdLFA792EVBAvUOBh3wsD8zsjT21iP0/7rc+h87aX5L9CT8dcCqaOFu57y+M4874H2Vpx535fRftlFhXWf+MNmyrUjSHN8BwgvXoCzf3gPWi48t2DuE8Y44A2WvjjiBBLMIXlmUXrS+/v78epXvxrbtm3DD37wA/zDP/xDseY1JyxQ46BFokpffA4GB1abYoZADTDY7dDgzsmz6cwNRbkuC9RCjjqnSDCH5Nl64blFuS4L1GUyzxzKhHFo/ezY9OqiXJcF6yAdUyQAOPw+sqxIjI+P4zWveQ2ef/55fOADH8CCBQvw5JNPTjsuHA5j7doSlEB1VHASLFj59fenEHD256k2ebJAnaOut6qTZ7DWWVdmtW0cgrWQ/Q5JlHHA5+wOuuAE6wCnunFqOuApgPswDywrEps3b8aWLWa6zle+8hV85StfmfG466+/Hj/60Y8KM7tZYJoO1LYAI0dRcq1a9wGhhtKOWWSY1w+E6ovcjj0HvpBjpuOi4Q+bf5xIywpGwLyB0o9bTEL1gMeXaR9eShhQ2wSmly4gsCTUNJt+9ZLHnTCwSHvRslycgtW1QB7Z4Ug2DKvvdLSqJaDQa+PVr3612T9gjj+lUCKy8KZ5cMI0xxrnOf6LKwa80ZkeDaxxftXJkzEG1uhMF07zuagunJOndOy5KCaMc7BGJ0qpS4fGLS5M84DVt8OJ9AnW4Lw8K1stDNRlTI4l/OVxDay+o3TjlZKaJjNoqJRoHrBIa2nHLBGsrgXQS9wy2eM3f49VCKtvL312j78GCEZKO2aJYA2dppuhdCMCoQbHAwOLBXNC4axrNa3JDlPRigRjDLxrdUn1CNaxsvrMnBlMea4p6Zi8aw1YtaV+ZmBcK7085601o8irEKZ5wDpXlXJE8K7VVWcty8I8frD2ZSUckIF3lj7ls1QwXwisZVHpBtR08PblpRtvFip+xWG+EFjr0tIMVtsMVledu+csLFgL1rywNIPVd4DVVG5RHSuwcANQX5rukaxpQdUFWZ4Ir2s1Y6NKAGtbUrW75yysvtOMPynBbox1rKi+2J0TYM0LShbvxTtXg5Xa4pmDilckgIxJqa6tmCMAvhB456qq3Z1MhrUsAsJFNo8H6spGmy42vH1Z8c3j4UawlsXFHaNM4J2ril+HoK7VsRiXUsIYA5+3FvD6UVRlor4TLNJevOuXCYxx8PknZ1yaxZMna15YVt2nq0ORYAy8axUQKZIy4Q+BLzoVTKtOl8aJmA/DScXztQfrwBeur1qXxokwroEvWAcUq016uBF8/klVFwmfC6bp4AtPLd7Or661ql0aJ8J0L/iiDUCxrAX1neAdK9wjT6/flKenONYC1ryw7DYNTErpaHp2IZFSQh7bD9m7J/tJ/hetazMfAs3hEtIOIKWA7N0DeWx/4S5a3wnevsw1SsRkpBCQPTshBw4V7JqsaQFY6+KqjYuYDWmkIY5sB4Z6CnRFBtayyFyoXfLSm4w0UhCHt2VS6vOFmf9rXVq1WW5zIVMJiENbgfG5O7jODQMYA+tYAV6Gwf5VpUhkkfExiMNbgXxaU+te05VRpRHwKsjYiPlAJMbtX8TjN3d5ofrCTaxCkeNDEIdezq/1sC9oBqpWWaEkO8jRfvN5TydtnM1glmyuMe/PKo+JsIIc7oPofgUw7DSLycgzGDHXT1+Js8DKDCkl5FAP5JHtNnubZOQZbgTvXAnmcOGpXFSlIgGYv0CM9UP0HwLG+jOfZn4p05j0uT8M1jAPLNLqyl1zLqQUwMgxiIFDk4pWWZBnoBassQustoXkOQkpBORIn2mdmOh5YEGeoQh4Q5cZ+OtCK0QupDAgh3sh+w8B8ewGwoI8w43gDZ1ATZMrd825kEbafAEOHJq0gbAgz5pm8MZOM82T5DmBTKcgh46Y8kzO3Br+OFl5MqCuxbw/g5GylmfVKhKTkcm42ZAqPmLWl0/FASnNVuSax9zVBWrAghHHaupXEjIRhRwfOi7PdOK4PHXvVHnSDm9OZGLcvD9jY5CxYXNnPSFPH1iwFvDXgIXqXb/Ds4KMj0KODwPxUcjosLmzzsrT4z9+f4bqqz6LIF+klMflGBuFjI1Mlac3YMrTXwMWbgDzlK5lfSUipQRiI1PlKdIZeXJTnsFJ8iyTrIy5cIUiQRAEQRBEcSDbKEEQBEEQtiFFgiAIgiAI25AiQRAEQRCEbUiRIAiCIAjCNqRIEARBEARhG1IkCIIgCIKwDSkSBEEQBEHYhhQJgiAIgiBsQ4oEQRAEQRC2IUWCIAiCIAjbkCJBEARBEIRtSJEgCIIgCMI2pEgQBEEQBGEbUiQIgiAIgrANKRIEQRAEQdhGd3oChcB7yi1gXAPjGrjuBdM08OzfOT/+ncc78XdNP/736d/pYJyBMQZN52CcgTMGxrP/Ru7vGAPjmPg75+Z3Xp1D4wwaZ/BN+rvG+fHvmHmcnvnOO+W4qf/2cA6NATxznoebY/HM37XM3zUGeDQOzmAep2U/zxyrMTAGcDBoHFP/Dpg/W+ZczjD174B5Xc4mjuWQgBRgUgBSAMKY9Pc0IHJ/x6QAxAmfSwGZTgHCAIQBmTL/LoUBCAGZTpr/NQwgnYTMnA9hTJxnfpeCFAakEJCGgEilIQ3z70YqNenvxz+XQkAk0xAT5xw/TkxcQ0IYAkYqc44hIQwJI2VMfCeS5vFSmN+JpAFhSEghYCSz15Mw0gKGlDAkYEiJpJj8d+T8LjXpc0Mi853593vkPmcfzgJAzzc93/R8l/fzTRYJgiAIgiBsQ4oEQRAEQRC2IUWCIAiCIAjbkCJBEARBEIRtSJEgCIIgCMI2pEgQBEEQBGEbUiQIgiAIgrANKRIEQRAEQdiGFAmCIAiCIGxDigRBEARBELYhRYIgCIIgCNuQIkEQBEEQhG1IkSAIgiAIwjakSBAEQRAEYRtSJAiCIAiCsA0pEgRBEARB2IYUCYIgCIIgbEOKBEEQBEEQtiFFgiAIgiAI25AiQRAEQRCEbUiRIAiCIAjCNqRIEARBEARhG1IkCIIgCIKwDSkSBEEQBEHYhhQJgiAIgiDsI4kpxONx+YlPfELG43GnpzIj5Ty/cp6blDQ/ovxlXM7zK+e5SUnzcxImpZROKzPlxMjICOrq6jA8PIza2lqnpzONcp5fOc8NoPkR5S/jcp5fOc8NoPk5Cbk2CIIgCIKwDSkSBEEQBEHYhhQJgiAIgiBsQ4rECfh8PnziE5+Az+dzeiozUs7zK+e5ATQ/ovxlXM7zK+e5ATQ/J6FgS4IgCIIgbEMWCYIgCIIgbEOKBEEQBEEQtiFFgiAIgiAI25AiMYkPf/jDOO+88/DmN78ZyWRyynexWAxXXnklzj//fLzmNa/BwMBAWc0vy1133YXTTjvN0fmk02ncfPPNOO+88/DBD36wJHNRmV+WUspqJnLNrxzutWqEnu/CzIeeb2u46fkmRSLDli1b0NPTgz//+c9YvXo1fv7zn0/5/oEHHsDatWvx+OOP47rrrsP3vve9spofAIyOjuKll15yfD6/+c1v0NXVhT//+c+IRqN44oknSjInq/MDSiurmZhtfk7fa9UIPd+Fmw8933PjtuebFIkMmzdvxiWXXAIAuOyyy6Y9HMuWLUM0GgUADA0Nobm5uazmBwBf/vKX8d73vtfx+ViZq5PzA0orq5mYbX5O32vVCD3fhZsPPd9z47bnW3d6AuXC0NAQOjo6AAB1dXXTzE1LlizBSy+9hLVr14Ixhr/97W9lNb/h4WG8+OKLuO222xyfz9DQ0EQt+Znm6vT8Si2rmZhtfk7fa9UIPd+Fmw8933PjtufbdRaJnp4enHvuudP+SCkxMjICwLwJGhoappz3ne98BxdccAFeeuklfOpTn8KnP/3psprfl770Jbzvfe8rypxmor6+Pud8ZvuuHOZXalnNxGzzK9W9Vo3Q810Y6PnOD7c9365TJNra2vCXv/xl2p9NmzbhD3/4AwDgwQcfxDnnnDPt3OzNEIlEMDQ0VFbz27VrF+644w5cdtll2LlzJz772c8WZX5ZzjrrrJzzme27UjHbHEotK9X5AaW516oRer4LAz3fxZsfUIXPt3MdzMuPf/7nf5bnnnuufNOb3iQTiYSUUsp3vvOdUkoph4eH5aZNm+T5558vzznnHLl9+/aymt9kNmzY4Mh8snNJpVLyrW99qzz33HPl+9///pLMRWV+kymVrGYi1/zK4V6rRuj5zm8+9Hyr4abnm0pkEwRBEARhG9e5NgiCIAiCKBykSBAEQRAEYRtSJAiCIAiCsA0pEjb59re/DcYYGGN47LHHpn0vpcTSpUvBGMMFF1ww7fuRkRHccccdOO2001BbWwufz4eFCxfilltuwbPPPjvjODP9mWnsmbj44otx66232vxp8+OCCy6YUQblQFa++/btK+h1b7zxRlx99dUFvSYxnZl+fzfffDMWLlxo63qf/OQnwRjDsWPHCjPBEjAwMIDrr78eLS0tYIxN3Hf79u3DFVdcgYaGBjDG8KEPfUjpukNDQ2hqasKPf/zjgs21WM9bqcneJ4XmVa96lfLvqRygglR5UlNTg29+85vTXpSPP/44du/ejZqammnn7N69G5dccgn6+vpw66234lOf+hTC4TD27duHn/70p9iwYQOGhoZQV1c3cc63vvUtrFy5ctq1Vq9ePeccf/3rX+Ovf/0rvvvd76r/gIQtPvnJT2LlypV45JFHcNFFFzk9HVfxsY99zNEeEKXm9ttvxy9/+Uvcd999WLJkyURq4T/90z/hb3/7G+677z60tbWhvb1d6bqf+tSn0NHRgTe+8Y3FmDYxA7fffjte85rX4N3vfjdWrFjh9HQsQ4pEnrzxjW/ED37wA3zta1+bqPYGAN/85jexcePGiaIkWQzDwDXXXINjx45h8+bNWLt27cR3559/Pm666SY88MAD8Hg8U85bu3at7QY0d955J6655hp0dnbaOp+wTjQaRTAYxJIlS3DZZZfhs5/9LCkSJWbJkiVOT6GkvPTSS1iyZAne/OY3T/v8jDPOsGUZGxgYwH//93/j7rvvLsrOm5hKdt04//zzsWLFCnzhC1/Avffe6/S0LEOujTy54YYbAAA/+tGPJj4bHh7GL37xC9xyyy3Tjv/Vr36FF198ER/96EenKBGTufzyyxEMBgsyvy1btuDvf/87brzxximfZ02Mjz76KN797nejqakJjY2NuPbaa9Hd3T3lWCEEPve5z2HlypXw+XxoaWnBW9/6Vhw6dGjKcVJKfO5zn8OCBQvg9/tx6qmn4oEHHphxXiMjI/jwhz+MRYsWwev1orOzEx/60IcwPj5u6ef6/e9/j4svvhh1dXUIBoNYtWoV7rrrrinH/O///i82btyIYDCImpoavOY1r8HmzZstXf++++7DunXr4Pf70dDQgGuuuQbbtm2bcszNN9+McDiMF198EZdccglqampw8cUXT3x/44034qGHHsLu3bstjUkUhplcG4wxvO9978P3vvc9rFq1CsFgEOvWrcP9998/5/VeeeUVLF68GGeeeSb6+vrmPPaGG25Aa2srfD4f5s+fj7e+9a1IJBITx7z00ku46qqrUF9fD7/fj/Xr1+M73/nOtGvN9Yzs27cPjDE89NBD2LZt2xR3J2MMu3btwgMPPDDxuYo74dvf/jbS6fSM1oinn34ar3vd69DQ0AC/349TTjkFP/3pT6cd9+STT+Kcc86B3+9HR0cHPvrRjyKVSk07LpFI4J//+Z/R1taGYDCIV73qVXjmmWewcOFC3HzzzVOO7enpwbve9S50dXXB6/Vi0aJF+NSnPoV0Om3p5/rhD3+IjRs3IhwOIxwOY/369fjmN7855Rgrz/5MWF0nL7jgAqxduxZ/+tOfcPbZZyMYDE55V9x444344Q9/iNHRUUs/U1ngbBmLyuVb3/qWBCCfeuopeeONN8ozzjhj4rv/+q//kqFQSI6MjMg1a9bI888/f+K7d77znRKA3LZtm9I4Tz75pEylUlP+pNPpOc//9Kc/LTVNk6OjozNed/HixfL973+/fPDBB+U3vvENWV9fLy+88MIpx2bn/L73vU/+/ve/l/fcc49sbm6W8+bNk0ePHp047hOf+IQEIN/+9rfLBx54QN57772ys7NTtrW1TZHB+Pi4XL9+vWxqapJf/OIX5UMPPSS//OUvy7q6OnnRRRdJIcSsP9M3vvENyRiTF1xwgfzhD38oH3roIfn1r39dvuc975k45gc/+IEEIC+55BL5q1/9Sv7kJz+RGzZskF6vV/75z3+eJoe9e/dOfHbnnXdKAPKGG26Qv/3tb+V3v/tduXjxYllXVyd37NgxcdxNN90kPR6PXLhwobzrrrvkww8/LB988MGJ73t7eyUA+ZWvfGX2XxJhm5l+fzfddJNcsGDBlOMAyIULF8ozzjhD/vSnP5W/+93v5AUXXCB1XZe7d++eOC57D2fv68cee0zW19fLq666So6Pj886l+eee06Gw2G5cOFCec8998iHH35Yfv/735fXXXedHBkZkVJK+corr8iamhq5ZMkS+d3vflf+9re/lTfccIMEIP/v//2/E9ey8ozE43G5efNmecopp8jFixfLzZs3y82bN8vh4WG5efNm2dbWJs8555yJz+PxuGW5XnTRRVPWtCyPPPKI9Hq98rzzzpM/+clP5O9//3t58803SwDyW9/61sRxL7/8sgwGg3L16tXyRz/6kfz1r38tL730Ujl//vxpv68bbrhBcs7lRz7yEfmHP/xBfulLX5Lz5s2TdXV18qabbpo47siRI3LevHlywYIF8r//+7/lQw89JG+//Xbp8/nkzTffPOfP9LGPfUwCkNdee6382c9+Jv/whz/IL37xi/JjH/vYxDFWn/3sfTIZq+vk+eefLxsaGuS8efPkV7/6Vfnoo4/Kxx9/fOL7v/3tbxKA/N///d85f6ZygRQJm0xWJB599FEJQL700ktSSilPP/30iRv7REXisssukwAsP9TZcWb6o2nanOdffvnlcuXKlTmvO/nlK6WUn/vc5yQAeeTIESmllNu2bZvxuOzN/u///u9SSikHBwel3++X11xzzZTj/vrXv0oAU2Rw1113Sc65fOqpp6Yc+/Of/1wCkL/73e9y/jyjo6OytrZWnnvuuTkVDsMwZEdHhzzppJOkYRhTzm1paZFnn332NDlkF7bBwUEZCATkpk2bplzzwIED0ufzyTe96U0Tn910000SgLzvvvtyzrezs1O+8Y1vzPk9kR8qikRra+vEC11KKXt6eiTnXN51110Tn01WJL73ve9Jr9crP/CBD0y5j3Jx0UUXyUgkIvv6+nIec/3110ufzycPHDgw5fPLL79cBoNBOTQ0JKVUe0bOP/98uWbNmmljLViwQF5xxRVzznsmgsGgvPXWW6d9vnLlSnnKKafIVCo15fMrr7xStre3T8jpjW98owwEArKnp2fimHQ6LVeuXDnl9/Xyyy9LAPLf/u3fplzvRz/6kQQwRZF417veJcPhsNy/f/+UY//zP/9TApAvv/xyzp9nz549UtM0+eY3vznnMSrP/omKhNV1Ukrz9wVAPvzwwzPOI5lMSsbYNJmUM+TaKADnn38+lixZgvvuuw8vvvginnrqqRndGvnw3e9+F0899dSUP1a6xnV3d6OlpSXn96973eum/Pvkk08GAOzfvx8A8OijjwLANBPjGWecgVWrVuHhhx8GYLbNjcfj0/y0Z599NhYsWDDls/vvvx9r167F+vXrkU6nJ/5ceumlc2aiPPHEExgZGcF73vOenL7b7du3o7u7GzfeeCM4P36Lh8NhvP71r8eTTz450cb3RDZv3oxYLDbt5503bx4uuuiiiZ93Mq9//etzzrelpQWHDx/O+T1ROi688MIpwc+tra1oaWmZuNcnc8cdd+Dmm2/GZz/7WXz5y1+ech/NRDQaxeOPP47rrrtu1rbQjzzyCC6++GLMmzdvyuc333wzotHohOstn2ckX4aGhhCNRqetG7t27cIrr7wy8YxPntemTZtw5MgRbN++HYC5blx88cVobW2dOF/TtGmukscffxwAcN111035/A1veAN0fWoI3/33348LL7wQHR0dU8a+/PLLp1xrJv74xz/CMIxZW4vbefazWF0ns9TX1+eMnfJ4PIhEIhW1blCwZQFgjOFtb3sbvvKVryAej2P58uU477zzZjx2/vz5AIC9e/fOmIWRi1WrVtkKtozFYlMe5hNpbGyc8m+fzzdxHgD09/cDwIwR3x0dHROLcPa4tra2aced+Flvby927do1LaA0y2ypd0ePHgUAdHV15TxmrjkLITA4ODhjHMpc5/7xj3+c8lkwGJwSZHsifr9/QpaEs5x4rwPm/T7T7+f73/8+Ojs7cf3111u69uDgIAzDmPW+BMz7K9e9lf0eyO8ZyZesPPx+/5TPe3t7AQAf/vCH8eEPf3jWefX391taC7I/74lrlK7r035fvb29+M1vfuPYunHis69y7onK6lwZNJW2bpAiUSBuvvlmfPzjH8c999yDO+64I+dxl156Ke6991786le/wkc+8pGiz6upqQkDAwO2z88+zEeOHJn2EHZ3d6OpqWnKcT09PdOu0dPTMyX4rampCYFAAPfdd1/OOeciu9s7MYAp15xPpLu7G5xz1NfX2zr3xLnNFdE+MDBgu6YB4Ry///3v8cY3vhHnnXceHn744WlWtRNpaGiApmmz3peAeX/lureA4/d+Ps9IvmSfgRPXjeyYH/3oR3HttdfOeG42ZbGxsTHnWjDTWL29vVOyytLp9MTLefL4J598cs71NauMzcTkdeNEa9CJc7H67Oc6d7Z1Mstc68bg4GBRf8eFhlwbBaKzsxP/8i//gte+9rW46aabch531VVX4aSTTsJdd92Fl156acZjHnzwwZymd1VWrlyJPXv22D4/a377/ve/P+Xzp556Ctu2bZvIUjjrrLPg9/vxgx/8YMpxTzzxxDRt/Morr8Tu3bvR2NiI0047bdqf2V68Z599Nurq6nDPPfdA5ug3t2LFCnR2duKHP/zhlGPGx8fxi1/8YiKTYyY2btyIQCAw7ec9dOjQhFnaKul0+v9v7/5CmmrjOIB/X2VzutURE7VC7Y+5i3BRFltZm9tCGxgRZKBZeaFFRNLKIMxtLQNrsgoq0qIoYReiUShJOFZImNFFsJUGLcgSAumflZRduN97IUp759acb6/69vuAN/Ocnec88zn8dp7ne0R/f39Yz/pgM0t6ejoePHiAmJgYbNiwAV6vN+T2sbGx0Gg0aG5uDvnNWK/X4969ewHJqMbGRsTFxUGlUgGY2hiZKrFYjCVLlgSkjeRyOZYtWwa32z1hm1avXj0+daTVauFyucbvYgCj0fempia/91Sr1QAQ8HpLS0tAEqOgoGA86jrRsUMVEnl5eYiOjsalS5eCbjOVsR/udTIcb9++xfDw8Ky6bvAdiX9ROP/3Pjo6Grdu3UJeXh7Wrl2Lffv2QavVQiqV4vXr12hpaUFbWxs+ffrkt9+zZ88mjDgtXbo05Jxsbm4url27hhcvXiAzM3PS5ySXy7Fnzx6cP38eUVFRMBgM6Ovrg8lkQmpqKoxGI4DROb/KykqcPHkSZWVlKCwsRH9/P44fPx5wO/PgwYO4efMm1Go1jEYjFAoFfD4f3rx5g46ODhw+fBhKpXLC9shkMtjtdpSVlWHjxo0oLy9HcnIyXr58CbfbjQsXLiAqKgo2mw07duxAQUEB9u7dix8/fqCurg6Dg4MhP6f4+HiYTCZUVVVh165dKCoqwocPH2C1WiGRSGCxWMLuO4/Hg2/fvkGr1Ya9D5s55s+fj87OTuTn50OtVsPpdAaNbAPAmTNnsH79eiiVShw9ehQZGRkYGBhAa2srGhoaMGfOHFgslvG5frPZjISEBDgcDty5cwc2m238IXRTGSPBdHZ2Qq/Xw2w2w2w2h9w2Nzd3wuh2Q0MDDAYD8vPzUVpaioULF+Ljx494/vw5njx5gubmZgBAdXU1WltbodPpYDabERcXh4sXLwbEu5cvX46ioiLY7XZER0dDp9Ohp6cHdrsdgiD4rU05ceIEnE4n1q1bh4qKCsjlcgwPD6Ovrw/t7e2or68POnWxaNEiVFVVoaamBt+/f0dRUREEQUBvby/ev38Pq9U6pbEf7nUyHI8ePQKA2XXdmO7VnrPVz6mNUP6Z2hgzODhINTU1tGrVKpLJZCQSiSgtLY1KSkqoq6sr4DjBfq5cuRLy+J8/fyaZTEY2my2s9o8lUO7fvz/+2sjICJ0+fZoyMzNJJBJRYmIilZSUUH9/v9++Pp+PamtrKTU1lcRiMSkUCmprayONRhPQB0NDQ1RdXU1yuZzEYjEJgkBZWVlkNBr9VnoH097eThqNhqRS6XjM7Of4HBHR7du3SalUkkQiIalUSnq93q9vf+6Hn1f9E41GTBUKxXjbtmzZErAqfPfu3SSVSoO20WQyUWJi4qRid2xyJpPa2L9/f8D+6enpfsmAf8Y/iUbHak5ODiUkJPxyvPf29lJhYSHNmzePxGIxpaWlUWlpqd/fwNOnT2nz5s0kCAKJxWJasWKFX3RyTLhjJNzUxtjYtlgsIc+BiMjlchEAevz4ccDv3G43bd++nZKSkkgkElFKSgrpdDqqr6/3266rq4tUKhXFxMRQSkoKHTlyhC5fvhzweQ0PD9OhQ4coKSmJJBIJqVQq6u7uJkEQyGg0+r3nu3fvqKKighYvXkwikYgSEhIoOzubjh07RkNDQ788r8bGRlqzZg1JJBKSyWS0cuXKgL4PZ+xPFP8M9zoZ7PMas3PnTsrKyvrlucwkfxEFuT/M/jcOHDgAl8uFnp4efkrdf2RkZAQZGRkoLi4OuWaGsZlKoVAgJycn5HTA7/Lw4UPk5OTA4XCguLj4Pz/+dPny5QsWLFiAs2fPory8fLqbEzYuJP4AAwMDyMzMxNWrV7Ft27bpbs4f4caNG6isrITX60V8fPx0N4exSbt79y62bt0Kr9f7yzTKVDidTnR3dyM7OxuxsbFwu904deoUBEGAx+MJSI/8n1mtVjQ1NcHj8QTEX2ey2dNSFrHk5GQ4HI6AdRfs9/H5fHA4HFxEsFlr06ZNqKurw6tXr35rITF37lx0dHTg3Llz+Pr1KxITE2EwGFBbW/tHFRHAaF9cv359VhURAN+RYIwxxtgUcPyTMcYYYxHjQoIxxhhjEeNCgjHGGGMR40KCMcYYYxHjQoIxxhhjEeNCgjHGGGMR40KCMcYYYxHjQoIxxhhjEfsbMLJQ/+Log9kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAHSCAYAAAC5PSKWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACmpklEQVR4nOy9d5wlVZn//zmn6ubbOXdPzglmYMhpCBIGkGACUaK7CorK/tR1XUFURPzqYvzqKqsomNawX2VFMRIEHZAcJ+eZng7TufvmOuf3R93b0z3dt7tO3VD33nrer521ubeqzumnq04954lMSilBEARBEARhA+70BAiCIAiCKF9IkSAIgiAIwjakSBAEQRAEYRtSJAiCIAiCsA0pEgRBEARB2IYUCYIgCIIgbEOKBEEQBEEQtiFFgiAIgiAI25AiQRAEQRCEbUiRIAiCIAjCNmWtSEgp8dnPfhZPPPFEwcZ4/PHHwRib9t/TTz9dsHGLTTFkeTTf/e53wRhDOBwu2pjFohjyfOmll3DJJZdg3rx5CAQCqK+vx6mnnoof/ehHBRvTKYohz0cffRQ33XQTVqxYgVAohI6ODlx++eV4/vnnCzamUxRDniMjI/jXf/1XXHDBBWhqagJjDJ/+9KcLNl654sTam2/KWpHYtm0b7rzzThw6dKjgY33+85/Hpk2bJv1bs2ZNwcctFsWUJQAcPHgQH/3oR9He3l6U8YpNMeQ5ODiIuXPn4vOf/zx+97vf4cEHH8SCBQtw7bXX4nOf+1zBxnWCYsjzP//zP7Fnzx58+MMfxu9+9zt87WtfQ09PD0455RQ8+uijBRvXCYohz76+Ptx3332Ix+O44oorCjZOuVPstbcQ6E5PIBcyO4X169cXfKylS5filFNOKfg4TlFMWQLAzTffjLPOOgv19fX45S9/WZQxi0kx5Hn22Wfj7LPPnvTZpZdeit27d+O+++7D7bffXrCxi00x5PnNb34Tzc3Nkz676KKLsGTJEnz+85/HueeeW7Cxi00x5Dl//nwMDAyAMYbDhw/ju9/9bsHGKmeKvfYWgrJVJNavX48XXngBALBs2TIAQDgcxvDwMBhjTk6t7Ci2LH/0ox/hiSeewBtvvFFRL7sMTt+bjY2N6OnpKfg4xaJY8jxaiciMs2rVKuzfvz9v4zhNseRJ6/DsOL1W5IuyVSTuu+8+3HzzzRBC4Jvf/CYAIBAIFEz4H/jAB3D11VcjGAzi1FNPxR133IEzzjijIGMVm2LKsqenB7fddhu+8IUvYM6cOXm/filQ7HtTCAEhBAYGBvCLX/wCf/jDH/B//+//LchYTlBseU5kaGgIL7zwQkVZI5yUJzGZivlbyDKmublZfuhDHyroGC+88IL88Ic/LH/1q1/Jv/71r/L++++XK1eulJqmyd///vcFHbuYFEOWUkr51re+VZ522mlSCCGllPL666+XoVCo4OMWm2LJU0op3/e+90kAEoD0er3yW9/6VlHGLSbFlOdE3vWud0ld1+Vzzz1X9LELSbHl2dvbKwHIO++8s2hjlgtO3dv5pGwViX379kkA8oEHHsh6zGOPPTa+wM7278UXX7Q89sDAgJwzZ4489thj8/CbOE+xZPnLX/5Ser1e+frrr49/VomKRLHvzb1798pnn31W/va3v5U333yz5JzLL33pS3n+rZzDqWf99ttvlwDkN77xjTz9JqWBE/IkRWJ6rPwtyoGydW1YCVBZvnw5/uu//svS9ebNm2d57NraWlx66aX49re/jWg0ikAgYPncUqQYshwdHcUHPvABfPCDH0R7ezsGBwcBAIlEAoCZgeDxeBAKhRRnX3oU+96cN2/e+DEXX3wxAOATn/gErr/+ejQ1NVkao5Rx4ln/zGc+g8997nO4++67ceutt1qbaJng5NpJTKYSAi0BlK9r4/bbb5fBYFCmUilHxs+Yk6PRqCPj55NiyHL37t2z7mwuv/zygo1fTJy+N++//34JQD799NOOjJ9vii3PT3/60xKA/PSnP12U8YqNE/cnWSSmx+m1Il+UrUXilVdewYoVK6BpWtHHHhgYwMMPP4x169bB7/cXffx8UwxZtra24rHHHpvy+Re+8AU88cQTeOSRR9DY2Fiw8YuJk/cmADz22GPgnGPRokWOjJ9viinPu+66C5/+9Kdx++2348477yz4eE7g9P1JHKFS/hZlq0jU1tbiiSeewEMPPYSWlha0tbVh/vz5eR/nmmuuwbx583DCCSegsbER27dvx7333ovu7m784Ac/yPt4TlAMWfr9/ik1DwDgBz/4ATRNm/a7cqVY9+Z73/teVFdX46STTkJLSwsOHz6MX/ziF/jZz36Gj33sYxXh1gCKJ897770Xn/rUp3DRRRfhkksumVK5tlLqyBRLngDwyCOPYGxsDCMjIwCAN954Y7xuzMUXX4xgMFiQccuFYv4tCorTJhG77Ny5U27YsEGGQiEJQN57770FGeeee+6R69atkzU1NVLTNNnU1CSvvPJK+Y9//KMg4zlBsWQ5HZUYbFksed5///3yzDPPlI2NjVLXdVlbWys3bNggf/jDHxZkPKcoljw3bNgwo+utUijm8z5//vys8ty9e3fBxi0XnFx78wmTUsoi6y4EQRAEQVQIZd1rgyAIgiAIZyFFgiAIgiAI25AiQRAEQRCEbUiRIAiCIAjCNqRIEARBEARhG1IkCIIgCIKwDSkSBEEQBEHYhhQJgiAIgiBsQ4oEQRAEQRC2IUWCIAiCIAjbkCJBEARBEIRtSJEgCIIgCMI2pEgQBEEQBGEbUiQIgiAIgrANKRKE6zn85Cbs+s4PYMTiTk+lIuj6/Z+x98H/hkgmnZ5KRXDgl/+LA794CNIwnJ4KQUwLKRKE64l192LrPV/Bk+ddgc6HfgcphNNTKmuiBw7hjU/dg6cufCu6//AopJROT6msiezZh1c/9in87ZKrcfjJTU5PhyCmQIoE4XqMaBQAED3YiZc//AlsuuLd6Hv6OYdnVb5k5Dm2ay9eeN+/4JmrbsLgS686PKvyxYiY8hzZsg3PXnsznr3uFoxs2e7wrAjiCLrTEygWUkrASEIm44CRAiABMIBrYB4foHvBGHN6mmVDJckzs1BnGHrldfzj6veg5aLzsPqz/w5fc2PB5yClBFIJU57CwLg8NQ3M4wc0T/nIcywy6b8H/vECNl3xbrS/5VKsvONj8NbVFnwO2eWpm/dnOckzOvn+PPzXv+Opp57GvGvehuX/dhv0cKjgc5BSTJCnwBF5etLy1MtGnqWAlAJIJiBTR8lTT8uTl5c8K1qRkFJCJqIQY4NAIgLMZmL1+MGDNWCBMBgjY83RSCkh42MQkSEgHoV582eDAd60PP3hkn4ojn7xZej+/V/Q//RzWPWZf0PbZRvz/jtIKSFjo6Y8EzHMKk9fwJSnL1Ta8jzqxZeh8/89jL4nn8bqz9+BlvPPzvu4UgpTnmNDQDI288GMAd4geKgGzBssaXmmprs/hcC+H/0cvY89hTVf/DQaTz857+NKISBjI+b9mZwlfogxMF8IPFgDeAMlLU+nkMKAjI5ARIaB1Gzy5GD+EHiwFvD4Sl6eTFagA9NcoEcgRvrSu2VFGAcP1YKF60ihQFqe0WFTnsJGwBfj4OF6sFBtQR+I1FgEsa4eJAeHIOJxiEQSIh6HEY9DxBMQiYT5v6kUuEcH93rBvV50PfIn9D765IzXbrngHKy++w74mhpynqeUEnJsEGK0H5A24jG4ZsozWFNQeSZHRhHv7kVyaNiUZzxxlCzjMOIJQBhgHg+4xwPu9eLgL/8X/c/M7Bpqv/ISrLzz4/DW1uQ8Tykl5OgAxNiATXnq4FUNYIGqgslTSonU8AhiPb1IDY+My06M/0v/d2KCPNP3594HforhV9+Y8frz3v0OLP/Ev0APBfMwVwEx0g8ZGZx98zUdmge8uhHcH855LpWAFEZankOYebOQBd1rytNXeMuTXSpOkZBGEsZQDxCffpephOaBVtsK5vXnfq0yRaYSMAa7Z9/hWUH3QattMU13qvOQErGuHoxs2YbovgOIdfci3tWDWHcPYl09iPf0IjUymvscZ8BTV2taJ958ke0XjkzGTXnOtiOxNCG/KU/dqz4PKRE90ImRrdsR3X8Q8e7eI7JM/5zNUpMvfM1NWHPPHWg+b4Pta8hEDMZgF2DkIUPEG4RW2wymedTnIQQi+w9idMt2RA50It7Ta8qyqwexHvN/jWgenqEZCMxpxzFf/AwaTjvJ9jVkPApjqMveBuxofCFoNc1gWkUbvmdExMYghrrtbcCOggWqwKubwLiWh5nll4pSJGQiCqP/oD0tegZ4dRN4qDav1ywHRGwMYuAQbGnRM8BrW8AD1Vm/T0UiGN22EyNbtmNkyzaMbDb/Nzk0nNd52KVl45uw+q5/h69RzTohoiMQg115ng0Dr2udcfeXGh3DyNbtGNm87YhMt+4ouOJllY63XoaVn/oYPDXZ74npEJEhiKGe/E6GMWh17WC+7Dv75NAwRrbuSN+baZlu3T4l1sYp5l9/NZZ9/MPQg9atE6aVbMC0OuYTxqHVd7huMyalhBjpgxwbyO+FuQatfg6YR33zUEgqRpEQ8QhE/8GCXZ9XNYKH6wp2/VJDxEbTSkRh4DXN4MEaSCkR2bMPA8++iIHnXsTAcy9hbPfevCuD+cZTX4fVn/0E2i690NLxIjJs7kwKBK9tBQ9UQUqJsZ27TXk++yIGnn8Jkb37CzZuvvC1NGHNF+5E8zlnWjpejA1ADB8u2Hx4fTu4LwQpBEa37UT/sy9g4NkXMfj8y4ge7CzYuPkiMG+OaZ045QRLxxsjfZCj/QWaDYPW0AHmDRTo+qWFlBJiuDftyigAjENrmGPLslsoKkKRkMk4jMP7ke+d89HwmhbwoNquqRyRiSiMvgMFH4fXtWH/L36HN+64u+BjFYrWSy7Aqs9+Ar6G+qzHmJadwr98tIY52Hnfj7D9P/5vwccqFB1vvxwrb//ojNaJwlh2joZBa5yLLV/4OvZ870cFHqtwzL/hGiz71w/OaJ0QY4MQw72FnQhj0Brng+nqbqNyQ4z0Q4zm2bJzNIxDa5pfMm6jso8klFKaPtICKxEAIIZ7IPPhiy1hpBBpeRYeMdiNuuOPKcpYhaLrt3/EUxe8BT2P/nXa76UwCmqJmIgx0IXa49cWZaxCcfAXD+HJC9+Kvk3PTvu9NFJFkqe5rtSuX1eEsQrH3h/8BH/b+A4MvvzatN/LVKLwSgQApNfpCti3zohMxAqvRACAFDCGekpGnmWvSIjRfiCVKM5gUsIY7C6ZP14hECOH8xNoZQUpEGythqcIdQUKSaJvAM+/50PY8Y37ptwbYqgnL4FWlhApVC9uA/eWlv9UlXhXD5599/uw5wc/mSTP8U1DsZ6/VAK1qxcVZ6wCEtm7H8+8/UYc/J/fTPr8yCasSCRjkGODxRuvyEhZvE0YACA+BhkdKd54M1DWioQURgH9ellIRCEThY1mdwqZShbOr5eNRAT1Jx1X3DELgZTYfu838eL7Pzqe9y+TMchYcQMauYih9vhjizpmIZCGgc2f/j949V/vHO+BIhNRIFHcgEaPV6BqxdKijlkIRCKBVz5yOzZ/9ksQKXOjIGOjs9eHyPc8RvsqtgS9jAznJ3tIATFyuCQ2trYUic9//vNgjOHFF1+c8t11110HXdfx29/+NufJzUbRX3ppRIVq1cIhedYdt8qRcQtB9yN/xqa3XIuxvfsdu0/q1q9xZNxCcPAXD+GZq9+DWHePc/I8ofwVswx77v8RnrvuFiT6B5yRZ7omTaUhpXRGnsIo+mZlOmwpErfeeitqa2vx+c9/ftLnn/rUp/DDH/4Q3/jGN3DJJZfkZYLZcOwPBwDxCGSqsmIlpBSOKWZ1xy5xZNxCkRwYwp7/egDGSJ5TvyxSd0xlyTPe04s93/uhY2bcumPL3yIxkciBTux94KemhccBxNhgSeyi84lMRItujchQChtbWyGf1dXV+OAHP4i7774bW7ZswYoVK/D9738fd911F/71X/8Vt9xyS77nOZVUoni+52mQ8QiYnntVvpIhEbdXFTAPhBbMgbexHonDRXZT5Ql/RxvqT15v/jtpPYIL5pmlxAuYPjsTNasWQwv4C14AqVAE589F/cnrUXeSKdPg3I7C1IywSN26lQDn6Z4I5Udo0QLz3jzlBNSdtB6BthaI0f7814ywipEERAqwUfirVJH5KIBol2QMUggw7lykgu3ckdtuuw1f+cpXcM899+Daa6/F+973PrzjHe/AF77whXzOLyuyyL69qePHAFSOIiHzUbnSJowx1J+wFl2/fywv1/M21EGvqgL3esB9Pmg+s9Qw9/nAfV4wTYNIJCGTSaQiUQz843nlMfwdbWi79EK0X7YRVauWT6l0KRLOyZN7PKg9bg36/p6HDqaMwdtQDz0cAvd5ofl843LlabkyziGSKYhEAqmRUQy+8LLyMMEF89B22UVoe/NFqFq6eMr3Tj7vnqoQqlcuxfDrW3O/GOfwNdRDCwfBvWl5jt+f5j3KGDPLuyeTSA4MYuiV15WHCS9dhLbLNqLtzRchtGDelO+dXz/jtiqIlipOrp8AzMrDMxRRKzS2FYn6+nrccsst+MpXvoJf//rXOPnkk/Hggw8WrbmI0384p8fPN07/PnXrV1tSJJhHR3jJYoSXLIS/vRW+5ib4W5vNfy3N8DU3gXutL1Dxvn48uv4cS8d6G+rQeskFaL9sI2qPXzvjDsB5eR5jSZHgXi/CyxYjtHjhETm2tsDXYv7sa2oA91iX5+iO3XjyTVdYOtbX2jyujFUfs2rGtcMpM3yGuhOOsaRIcL8fVcvT8szIsKV5XLbexgZw3fqyO/D8S3j6rddbOjYwpx1tb74IbZdtRNWKpbPI0+H1MxEDKqQXh5QyPy0EcplDMj5jNdZCk1M1i3e+85340pe+hHA4jIceegg+XxErbRUrRbFUx88z0uHfZ7qAS19rM6pXLEPViqWoWmn+b2jRAqUX22wYkZlNknpVGC0Xnou2yzai4bSTrL8EHJZn/frVUz7zd7ShasXSSTINLpin9GKbjdnk6amtQevF56Ptso2oP+l46+ZYp+/P9cdg7wO/nPRZYG4HqlYsQ9XKpahasQzVK5YiOH8umJa/XgjTdv6cgLexAW2XXoC2N29E7fHHWt/ICYfXL6fHzydSOl6JVzosT9sryPDwMG688UYAwOHDhxGJRFBfn726X76RRShANdsMKgqHH4TgnFY0bjgdoYXzUXficag78Tj4m5sKPu50/RG414vm889G25svQtPZZ0Dz21GQnZVn1fLFqD/lBNQcswp1JxyH2hPWzVh9M1+kppGnFvCj5aLz0HbZRjSecUpeFcFiUbdulXlfrl+HuhOPQ+36dXnpXDob092felUYrRvfZCpjp5yQV0WwaFRUsGUJ/C4Oy9PWHZhMJvHWt74Vu3btwq9//Wu87W1vw5e+9CV87Wtfy/f8ssLAHP7zlXZ/eGUc7nfPOMeJD3yr6OOmxo4s1HpVGPOuvQoLbrgGvubGHK/srDy5R8fJ//29oo9rRI/I01NXiwU3XoN5111dlJduIdHDIZzyix8UfdyJFh5fcxMWvOfdmHvN2+CpKnO3gMPrTX4pgd/FYXnaUiT+6Z/+CY8//jgefvhhXHjhhXj3u9+N//qv/8InP/lJNDc353uO0+N0jXGnx88zTNMhncxodSjwyohE4GtqxIJ/uja/C7SmO5YOBsCxQDZjLAJ/RxsW/vN1mPOOK5Q6UM6Iphevgu00ONXTIDUWRXDhPCx6341ov/JSaL48VS3lurPuBV5B6ydj5j8HrQLMYXkqN+26/fbbcffdd+O73/0u3vOe9wAAtm/fjpUrV+JjH/sY7rnnnoJM9GgK3U1xNligGlpti2Pj5xsxOmCWx3YIFqqDVp2rFUCdxOAQNL/fpvsiO8bIYchRZ+pIAM51q030D0CvCufdfWEM9ThW5wQ40q222MQP98FbV5vXuAsAMAYOOVrIiNe1gVdIsCUApPoOFL3q6kS0+jlgPue6qyolnt533324++67cfvtt48rEQCwdOlSvP3tb8e3vvUtDA4O5nuO0+J0C1Xm9Ts6fr5x+vdx6u/pra3JuxIBAMzj8P3hlDzr6woSA+H48+7Q39PX2JB3JQJw/v50+u+Zb5yWp1PPewbLisTvfvc7vP/978e73/1u3HXXXVO+/+QnP4mRkRF8/etfz+sEs6J7AZ7/B8wqzOtcqk1B8PgA5lxBEydTlwoB8wbgmO+UMccVw3zj6P3BNXO9qSAclafmqSzXBgDuCzk3uMfvaDEqwIZro5RwrDqbLwS9vr344xYYY/gw5FjxzfEsUAVe01K0GiTFwhjsdqSvAAvVglc1Vpw8U/2dQHys6OPyqgawUF3lyfPwfkfqH/DqZrBgdUXJU0oJo3evI3FRvLYVPFBV9HEnzcHR0XOEOeCzBAAeKu8I9Gw44QMGACYlUq89Dhl3tuhQvuGhWmcGTiZhvP5Xx6sX5hun5CmjozA2/63i+us4Ik/GIEf6YGx7GtLBFgf5hjHmSEwSuAZWArEm5a1IcA08XLzaFQAAb6Dy3BppmO4BC9YWeVAOY+cLQGQIqc1PQsaKv+MsFMzjA/MXe6fAIHY9Dzk2gNTmpxyvYJhPmDfgSBlgsftFyJHDMLb8HdLBzJF8w/zh4vvWhQGx9xXIwW4YWzc5Xggvn7BAVdGzz0rF8ljWigQAsHA9oBfpYWAMWm1rSfzhCgWvbijawyCNFOTBbUfMgfEIUm886ViXx0LAa5qKFssjjSTkwa1HmtlFR0x5OtlQKI8wxqDVtBQtlkemEpAHtoyn9Y0rZxVi6WHp9axYsTwyGTflmfnv4YxyVhmWHsY4tLrW4g3oC5nKSwlQ/opE5mEowsud17Q4lk9eLBjj6cWlsMhUEsnRIYw1LZ1cWCwZQ+qNpxxN9csnjGvgxZBnMoHE6AjGmpZMlmd8zFQmKsTSwzQdvKbwtWpEIo54JIJI41ENxCLDpjwd7v2RL5juNZXdAiPiUcRjcUQbFk76XI72w9jyN8hkZVh6mMcPXtVQ+IG4Bq2muWQ2tWUdbDkRmYjC6DuIQpUr5dWN4CEHfGAOIWJjEAOdhbm2kUJU6IjXmAGrge6t8A/sm3yQ7oG2/DRn/I4FQESHIQYLU/dEpFKIwItEtamwBA+9Bt/QUS3MPX7oK08vmR1MroixQYjh3oJc20imEOF+JKtMhSV04CV4R48ayxcy5Vkh2UZipB9itDCB60YqiYgWQjLUCEiJ8L7n4IkOTj4oUA195WnOp1HmASklxMhhyLHBwgzAOLTGuWAllElUMYoEYHaUM/oPAlLk9bpOFaNxGhGPQPR3Ip/KWQoMY3o1DO+EdClhoHrPM9ASR+2aNd1UJqqKHAdTIERsFGLg0OwHKpCUGsa81RCeCcVojBSq92yCdnREvu41X34Vci+LyBDEUE9er5mAjjFvNaR+5IXGUnFU794EfnREvjcAfeUZYH4HU//yiBgbgBjOb1E6U561kBNeejwRRfWeTWBHB1v6w+b96XWusFK+kFJCjPZDjvbn98Jch9bQUVJKBFBhigRg+t2NoZ78pInpXmi1LRWhJdtFppIwhrpzrtomAcS8VYhqoWl93FpsBFV7nwE7+nbUdHOxdioDIs/IVALGYBeQo59dAoh6axDTAtPKU48MILzvuaneb48P+sozwQLOR3rnA5mMm/LMMQhSAoj6ahHjgWndpJ6RHoQOvjxVnt4A9FVnOVpVMJ/IRBTGYHfOaYwSQMRXh7g2vVy8gwcR6npj6heBKvN5r5CCVSIeMS2ReShHzgLV4NWNYA7WT8pGxSkSGUR0xKwxYeeBYBw8XFeRueN2kFJCZuRp44EQ3IMxfwOSs4Tk+Pt2I9C7Y+oXuhf6qjMrxiwvpYSMDEGM9h8JjFTA4F6M+euRmkWegZ5t8PfvnfqFN2DKs0LM8lJKyLFBU542rJGG7seotxbGLPIMHnodvqFp3H3+sCnPCnn5SSkgRgdM07wNeaY8AYx5amaV57QuI5h1ULQVp4Pp5dcldjqkEKZ1IjJorx+H7jNd6yX8vFasIgGYCwwSMYjIoBm5PuNDwQCvHzxYA+YPkwIxDVJKyEQEYmwISERmfigYA7wBJH01GDWYtedHSlTtew760f5TwPTxrzqzYszIQFqe8TGIyJBp8ZlVnkEk/DUYS1p0NgmBqr3PQI9P01PBFzLlWUEVMKWUkLHRtDxjmFFKjAO+IBLeaoxa1Y2zuYwAIFht7qRLzOScC1IKyGhansk4ZpdnCHFvNcZS1l4pLJVIu4ymWpNYVQO05adWVHC7FAIyNjJBnjPANTB/yHwflYFFvKIViYlIKQGRMlO3jJS5aDMGcA6m+wHdQ8qDAlJKwEhBJmPmrnpcnpq5M9M8iCcNDEfVTPg8EUH1nqen+k8BwBdMv/wqw4w8EVOeSfP+nCJPP6DpiCZSGI2pmfCzuowAM8BtVWW9/DIckWcMEOKIPDXdvD+5jrF4EpG4msUyq8sIZiq6tuK0inr5ZZBSAqmEeX/Ko+XpB7iG0VgC0YSaxdIz2ovQgZeml2dNM7RlJ5ekKT9XssvTY9afKbN7yDWKBFF8hJToH4lCKN5i3sEDCHVtnv7LCvOhqiCERN9oRNk66uvbjeB0LiOku66uPM2xtuNOYgiB/pGocihxVpcRAFbdBG35KRX58puNlCHQP6oeS5XVZQSA1bVBW3oimIN9gIjZob8OUTA4Y6gOqr/wE7VzkAxmydSIjpgV8SqkiI0KnDNUB9TlGa9fgJS/etrv5NgAjK3PVFS5YqtonCMcULfGRBsXw/BM76+Ww70wtj8LKfKbOVYO6BpH2K8uz0jzMogsRQXlwCEYu14E7XdLG1IkiILi1TUEfeq73UjrSsgsuxA5NmjW6q+g8rpW8Xl0+D2KZk/GEGldBZmlgqEcOQxj+z9c+fLze3T4dEXrAdcQaVuV1ZIhB7tg7HrBlS+/gFeHR1N8rWgeRFpWZpfn4f1mWW0XyrNcIEWCKDghnwe6Yptb4Q0i2rQk6/dypC/98nPfTjoc8IJztXgew1+F2FFVBSciB7th7HzedYs1YwxVAR+4YnxUKliHeO2crN/LvgMQe152pTyrgz7lotvJqiYkq7JXgBXduyEOZHF3Eo5DigRRcJhNF0e8bh5SgezFk+RQD4wdz0HmuQBZqcMZQ40NF0esceHkQmBHIfsPwtjtPjMy5wxVdlwczUthzBBRL3r2QOx73XXy1DhHlY37M9KyHGKGWB3RuQ3GwW25TI0oEKRIEEXBlv+UMYy1rs7q4gDc60P12HEZMY6xttUzBhfK3n0Q+151nTx9Hh0Br6LLiOtpl1F2RNcOiM6tOc2tHPF5NPg8ai4jqXsRaVkx4zHiwBswunblMjWiAJAiQRQNO/5T4Qsh1rBoxmPc6kO14zIyAjWI18+f8RjRtQvi4JYZj6lEwn4vNEWXUSrUgES6Z0w2xIEtMA5NnzVTqTDGUOVXdxklq1uRCM/cREzsfQWid9+MxxDFhRQJomhk/NGqxBrmI+WbuaqlG32ojDFUBfObdZBBHNzqzpefjfsz2rwMQpv57yD2vea6l59dl1GkZSUEn9k6ZOx6Ie99awj7kCJBFBV7Lg6ejpKfeXcjOrdBHN6fw+zKD49mw8UxS9ZBBrHvNYjBLttzK0e8uqbs4pCax8wymuU4Y/eLZpl5F+Hz6OouDo8P0eZlsx5n7HgOMjJkd2pEHiFFgig6Aa8OXdHFYfirEWtYMPtxu16EGB2wObPyJOTzqJvkg3VIzJB1kMHY8RxkdMTu1MqSkN+rbpKvakayqmXmg6SEse0fZrl+F1Hl903XB21GErUd2WvJZBAGUlufNqtDEo5CigRRdBizV1gp1rBoxqwDAIAUMLY9A5ljt9Jywq48I01LIfRZ6vgbKXOxzrG7ZjnBmV2T/IoZsw4AAKk4Ui6rgcK5GS+hSqRtFSSbxZqRiLq2BkopQYoE4Qi6xhFSNslzjFkwySMZM5UJF9WY8NgwyUPTMWbBJI/4mOuqNdop/CV1L6LNy2c/MDLsupodPo8Gr2LhL+EJzFhLJoMc6YPhwpodpQQpEoRjBG1lHdQiXjdv1uPk2KDr0kLDfvVCValwIxLVbbMeJ4d7Ifa9andqZUnYhosjUdOGRKhx1uPkwCFXZcawtJVHtVBVvG7ujLVkMsjevRDdlBbqFKRIEI5hO+ugaQkMz+wdQGXfAYhO9xSwseviiLYsnzXrADAzY4zu3XamVpZwzmz14oi0roScJesAMDNjRN9BO1MrS2z1NrFQSyaD2PsqxGCPzdkRuUCKBOEotrMOZikElEEc2AzR7540Ma+uwW8n62CWQkAZxN5XIIZ77UytLLHTi0N6/Ig0L7V0rLHrBcixQRszK0/8Hpu1ZBpnriWTwdjxD9cFB5cCpEgQjmMr6yBUP2shoAzGTnelidkxySerW2YtBATAzDzY/g/I2JjN2ZUfVQE7WQdzkAzUzX6gMJDa9gxkImZvcmWG3XL5sfr5SPnCsx9opEx5uig4uBQgRYJwHNsm+aalsxauAXBksXZJmpjdrINoy3JLJmSkkmbmgUtauXPO7LXHblk+a+0TAOnMA/cEB2vcXi2ZaMsKS1ZIxEZd2YPHSUiRIEoCO1kHUvciZiGqGwAQj7gqTcxOISDhCczYIXQS0RHT0uOSYFa/R1fPOvBXIV4319KxcnQAxu6XXCNPO7VkUsE6S4HBgNnQT+x7zc7UCBuQIkGUDHYKAcVr58xaPjuD29LE7BQCitXPtxTICpitx8X+N2zMrPywm3UQbVxkKZAVSPeMcUlZcttWyOallgJZgXTPmJ49ymMQ6pAiQZQM3I7/lDFEWi2aPOGuNDGz14GiPLmWNslbQxza7pqy5LZM8poHUYuBlwAg9r8OMeCOsuR2aslI3YeoxcBLADD2vAwxfFh1aoQipEgQJYVX15QLARmBWsuBl0C6h4RLymj7dE056yAVbkLSSuBlGmP3S66JlPfb6GCbqGlHMlBr+Xhj5/OQcXdUZrVTSyZeN9da4CVgBgfveA4yScGXhYQUCaLkCAe8yiZ5y4GXgLm47HzOFWWKGTNrISib5JstBl4CZjDrjudcESxou0NoywprgZcAYCRdU/mS2QkMVgm8BMxKt7vdVZyu2JAiQZQcnKlHyZuBl4utnxAbg7H3FcWZlSca5wgpylN4A5aapI0TGXJNG3dd48q1Twx/FeJ1szdJyyBHDkMc2q46tbLEY6P2iRl42Wr5eDlwCLJ3r+rUCIuQIkGUJH6PelR3vHau5cBLAJC9+1xTWTDg1ZVrdcTqF1gOvAQAcWgHxJA7KguGfB7lwOBo42LLgZdAupiaS1xwYZ8NK2TzMsuBlwBg7H3VNS64YkOKBFGS2DN5MkRUTJ5I+/dd0NbZlkmea4i2WGhCNQFj5wuuqNeRcRkpoRh46SYXnJ1aHaqBl25ywRUbUiSIksWjqdeWMIK1SNRYyzU3T3CPP9qra8q1JZLhJiTCszehOnKCe/zRPl29o6Vq4KWbXHC2rJB1c2FYDbwEXOWCKyakSBAlTchvJ/BymfXAS5j1JdzS3CvstxN4ucJ64CUAOdDlivx9ZiOWB1AMvIR7XHCMMVTZqHipaoV0kwuuWJAiQZQ0RQm8BCAObnGFP1rjHEG/WqCgcuAlzBRbN/ijixF4CbjHBeexkf6tGngJuMcFVyxIkSBKHvuBlwomz0y+uVH5/SOCXvUmabGGhUqBl27yR9sKvGxaohR46SYXXNiOFbJ5OSRXcDMlYzB2ucMFVwxIkSBKHtuBlxZbjY8TH4Ox51W1ccoQW4GX6dx9JSJDEPsr3x9tK/CS62qBl3CPC45zhrBP3QoZbVSzQspBd7jgigEpEkRZYCvwMlCjbPKUh93hj7YXeNmIZKhB6RzRtQNisPL90T5dg0dXr3iZ8tconeMWF5zfRlOveN08GN6Q0jluccEVGlIkiLLBTuBlrEUtUBCAmXXgAn+0rcBLVSsPAGPX8xXvjzYDBW1UvGxTlKdLXHD2Ai8Zoq0r1c4RBlI7nnWFC66QkCJBlA12Ai+F5kFcMfASRsoV/mg7gZeGx49E/Xy1gZJxV/ij7QRepnxhJBWtZm5xwdkJvEwG65AM1asNFBl2TRfbQkGKBFFW2Am8jNXPh9AUuwyO9LnCf2or8LJ5ibKVRw52QfZ3Kp1TjgRtBF7G2lYppYMCaRecC1IY7QRexjqOVbaaia6drnAZFQpSJIiywk7gpQRDfMF65bHE/tchkzHl88oJO4GXAhyJ+ccpj2XsfRUyVdkmeW4j8NJgGhJzjlEey9jzcsWb5O0EXqa4B6lWtYqsACD2vFzxVrNCQYoEUXbYCbyMeaog6qy3Ggdgujj2vqZ2ThliJ/Ay6q+HCKsFXiIZgzhY+VkcPl1TbjUerWqBDFjvEwMAiI1BdFZ+Yy+/V1duNR6tmwepkq4MQI4NQnTvVjqHMCFFgihLQj71QMFY22pA1cXRdwBiqFdxpPJDuegXgMS84wCV3H0AomsX5Nig0jnlhp10UCmBxIIToGrHF53bIGOjSueUG3bkaUggufgk5bHEgTcgE5VthSwEpEgQZQnnTDmwLS4AuUjdxeEGE7LGubKVJyoYMH+t8ljG7pcq3oTs0dQDBaNSB+auVhtIChh7Xql4eXpt9DWJMC/QtkxtICMFY1/lB7LmG1IkiLLFTmDbmLcGaFLMOoiNQhzaoXZOGWLHyhMJNYMpuozk2KArAllDihkxEkC0Zi5YtUKTNAByqMcVgazKVjMJxJsWg4Vq1c7rO+iKQNZ8QooEUbYwxpQX66QhINpXAR6/0nni4FbI2JjSOeUG50w5HTSeMiDmHaPsMnJDIKvGOYJeNbnEkinI+ccBqrVPXBDIqmtc2coTSaSABccBiiqyG6yQ+YQUCaKs8Xt05fTFsaQAn68YJe8SE3LQa8PKkwLY3FVqA7kkkDXo9yinL0akBt6hmHWQjLmiPbbqxgEAItwP3rpI7SSXBLLmC1IkiLLGTivnlBBIhJvBapqVzpND3ZADlW1CtmvlSdXNBQvVKZ3nhkBWzhhCiumL8ZQBo2kR4FdoOgdAdFd+IKvG1Yt+xZIpiLZl6lZIFwSy5gtSJIiyx2sj3W4sngSff6y6CXnPqxVfntjvUU+3G4snwBfYCLx0gQk54NWVrTyjiZQ9ebogkDXoU7fyjCUltAVkhSwUpEgQZY8dq4SQElHuBW9XjOpOxiAObFE7p8ywY5UwhETcG7JhQq78QFZbVjNDIBmsA2uYo3SeGwJZ7Vh5EikDyaoWsNoWpfPMQNbKb+KXK6RIEBWBx0ZRpUgsCbQuAfyKHQO7dkGODSmdU254bXSzHIslwdpXUCDrNPg8mnJp97FYAnyeeu0TNwSyBrw2YqPiSfB5NqyQe1+r+EDWXCFFgqgYVHcpEkAkaUBTNiFLGHsq24Rs28pjAJqtQNbKLk9sR56GkIhJHZwCWadgWs3UrTwJzUeBrAWAFAmiYtA1G0WVEinIqkZ1E/LoAOTh/UrnlBt2iipFEknIujYbgaw9kIPdSueUG7aKKsWTYE3z7QWyjvQpnVNu+HQbVp54Aqx1sb1A1siw0jlughQJoqKwVVQpnoQ2bw2gqb00jYNbIIVQHK28UC6qJIFYIgVtgQ0T8oE3KtoqAagXVRJSIp40oC1UD7wU+zdXtDztWnkSAjaskIBBVomskCJBVBR2SmdHEylI3Qc+R9GEHI9A9O5VO6fMsFNUKZJIQvpC6oGskeGKD2yzU1RpLJ4EgjXKgaxy5DDkcGWn19qx8ozFEmDVNqyQA4eo1XgWSJEgKg47pbMj8SR4y0Llcrri4FZII6V0TrmhWlRJSiAaT4K3L1U2IRsHtkBKsvJMREiJWDIF3rFSPZB1P1l5jsYQEvGUAW3+GvVAVrJKTAspEkTFYSd9MZJIQkpAW7hObbBkDKKnslsP20m3iySSkIyrm5Bjo5C9lR17Yqeo0lgsCWi6ciCrHBuEHOhSOqfc0DUOv2JsVCSWBHSfciCrHOqBGD6sdI4bIEWCqEj8HvUiQJFEEixUC96yUOk80bm94tPDAl5d3SqRSILXNIE1dCiNZcaeVHaRqqDXoxTLk7FKsPp25UBW40Blx0oAQEhRMUsJgUTKAG9eoG6FdIE8VSFFgqhI7FglovEkhJDgHSsAruB3TSUgunYqzrC8YEw99iQST0JKCW3OKihpIYlo5RdV4gwBO1YJAJpqOmh0GLLvgNo5ZYbGbcSepOXJFVu3y5E+SOoOOglSJIiKRdUqIZG2Snh84K2LlcYSh3ZAJhOKMywvgl4bsRKJFJg/BK7Yul10bqv82BO7VolQLVi9opXnAGUYHc24VaKmCay6SelcskpMhhQJomLJySrRtkQtEEukIA5VdrdAO1aJsXgCUkqzCJBKOmgyDtG9S3GG5QXnDAHVjJhxK88KtcHiY5CH96mdU2bYtUpIKcHnrlQ6z4w9OaR0TiVDigRR0di2Suhe8LalSmOJ7l2QiUovTWzTKuENgLeopS+asScVbuVRVMwMkbZKBKrAmuapnXtwa8XHnti2SoTrwWpblc41KrxOhwqkSBAVDWNMORBr3CrRugjQfdZPFAZE51bFGZYXnDH1uhLpXTRvXwpwhR2jkaz42BPTKqGYcZCxSnQsp9iTo7BllcjIU9EqgdhIxVe3tQopEkTF41ds4zxuldB08A61okqiZw9kvLIbUAUU2zgLKU2rhMcH3qYae7ITMhlXnGF5oZpaO26V8IXAmxconSsOuiD2RDWDwzCtEixYo1ykyg3Vba1AigRR8djx7UfjSQgpzYXaG7B+opQwDpBV4mjGrRKtNmJPOrcpzrC8yMUqwduXK2YYxSveymO3euiR2BMFLdkF1W2tQIoE4QoCNqwS0XgSjGumCVkBeXgfZHREcYblhW2rhO5RLp0tundDJqKKMywv7MRKxJMGmNevHntyaAfFnhzFuFXCH1aOPREuiD2ZDVIkCFdgtw6CkBKscR7gDymdaxwkq8TRjO+iWxYCHoXYEykgOis7I0bj6p1rxzNi2paqNZwzkhBdlZ0Rk5NVQjnDKAbR426rBCkShGuwY5WIJVJgnEPrUEwP6z9Y+RkcPpt1EDTdNMmrnNu7r+Krh9qxSiRSBpjHa7qMFBA9uyvet2/HKpE0BJgvCN6yQOlc0b3T1RkcpEgQriGX6oysoQMIVFs/UUpX9OCwK0/l2BORgnBBHQQ7sRIAzAJqukLQZjLuik6rPo9aZ9BxebYvU4s9iY1BDnUrjVVJkCJBuApVq4SQaV80Y8rpYaJ7d8X7TlWtEuO7aM6ViyqJrsrf9akqZklDIJky0rEninVPXCBP1YyYRMpAyhBgHr+N6raVHcQ6E6RIEK7CllUikbZK1LaCheqsn5hKVHyPA87Ue0ZEE2b6IWucq9ZmPB6BHKzsTpa2rBKJ9C66ZZFSm3E5Ngg52q80VrlhxyoRzchTsbqtHO6FjAwrjVUpkCJBuA7VTpbjvlPGlDMOjK5dFb/rCypaJcZ3fYxDs7GLrnRUFd140oAhBBjX1Ot0uECeqlaJaCIFIaRZ3Va1E3CFl3XPBikShOtgNjMOAIDVtQK+oMKJQ5AjfUpjlRucMfht+vZZwxwl374cPgwZGVIaq9zQuI1ddNy08vCm+Uq+fdl/CDIeURqr3NA1Dq9u0yrRvBAqdSXE4f0Vn1o7HaRIEK5EtVnSkV00U8/bd8GuT3UXHUumd31cU971GRWeugioyzOaSKcq617wRpU6CBKiu7KDggE78kyZ7kxfAKyh3fqJwqj4MuTTQYoE4Uo4Z8p55uO7lKb5Sj0j5MChii+brXEOn+KuLzJx16eSlnt4f8WXzfZoGjya9eU5k6oMwOwRo4Do2VPxZbM9GofOrcszE2QNALxF0V3UvRtSVnZq7dGQIkG4Fju7FNN36gFXrX7XRbu+o4lmgli9frD6DusnSuGKXZ/tVOVAFVhNs/UTjSREhTefYowh4LNZhryqXi3IOhGF7HdXi3FSJAjXkpPvVHXX11v5uz5d49BVdtHSdHEAUE+16678gkpeXYPGFVOVU+ldtKo8XRAU7PeopX6nhBlkDdh43l3gzpwIKRKEq7HtO/WHwWpbrJ9opCB6K7ugkt0gVikleLgOLFxv/cRkDLK/U3GG5YUdeUYzQaw1zWqptbERyKFepbHKDcbsNUcDYFrMVFJrR/shRgeUxipnSJEgXE1OvlPVssTdlb/r83k0pV1fpkAVYGcXXfm7Pr9iqvJ4gSrGbFh5Kl+etoOsOVdPBXXB/ZmBFAnC1eTiO2XVjWpls2OjFV9G124ZcgBgdW1KZbPl2ADESGUXVDJ30eoF1ACAN85VK6g02F3xXWvttGw/kgq6QKmZlxv67WQgRYJwPXZ9p4wxaMq+08pPXfR7daUCVUlDIGkY9nZ9LigApPriGy9QpengzfOVznWHPG0GWXt8ZjVWq7ig304GUiQI15OT77RxrlpBpaEeyERUaaxyw06BqvGCSs0LFAsqdVZ8V1CNq7fEHm8+1bIISgWV+g5UfBBrLkHWyhuH3n0V784ESJEgCAC5+E418+WngKjw/htADgWqdK9pkreKFJADlR10CdiQZyJlFqjyBcHq26yfmEpWvPsNyCHIOlhjujStkohWfD8TgBQJggBgz3c6XgBIuYxu5SsStso8Jyfuoq3jBnnqGodHVytQFbebWusCedoJsh4PClYsUCVdIE9SJAgijbLvNJk8Uka3XqGMbmSo4oPaACinLsbGd33VYNVNls+Tw72uCGpTTgXNdFkN1wPBGsvnycEuSKOy3UV2goLH5anYb0f0H6x4dxEpEgSRRtV3KiWOFABqUgxqq/BKggDg0dXKPBtCHikApCpPF7iLVAtUpTJBrIypyVMYrqjMqJqqnEilg1gZU+tnkkpADvXYmGH5QIoEQUzATplnAGA1jYDus3ye6DvgiiCsgF151rWqBV26QJGws4sed781dEA16LLSsRNknbFK8MY5SudVujxJkSCICXg0rrTrS6ZEepfC04u1ReIRSBdUvvPparu+eNIwgy413awrYRE5NggZHbUzxbLC51FLrR13F3l8Sv035FAPZLLy3UWq7szYxMq2Cv035MChii6RT4oEQUzATgGgcd+pSrYBANlX+e4NZiMVdLz/hqI8hQvkqZpaKzFRnqq76INKx5cjnDOloOCJQZdMRZ7CgByoXHcRKRIEcRSqOfvju5RQLeALWT5P9B10RbthO5UEzcqhTUo1OsRhd7iLlGt0jAcJtqm5i1yQbQAAAY+9jYOSBRKVnQ1DigRBHIXdXYoZhKWwS0klKr5REmCmgqqkLmaCLhlXdReNQY4Nqk+wzPBomlKX1ZQhzJonyu6iAchY5buLPDq3F3Tp8dtwF8XtTLHkIUWCIKbBrnuDNyia412QvQHYkWc66FJRntI18rTZL6JB0b1RwbvoDHaCLo8EsarIU1asu4gUCYKYBtWgy/FdSiBsujgsUulBWBl8uqbUxXI86DJcp5az7xJ3ke2gy5pmNXeRS7KL7LiLpJRm1VCl7KLKVHRJkSCIabATJDjui1bZpQgDcrBLaZxyhDGm7IuOJVOmu0hFnqk45NBhxdmVH5wx+BRieTJBl4xz8HoFd1FsFIgMqU+wzNA4h0+hhsy4O1PzgNW2Wj5Pjg5AxsbsTLGkIUWCILKg/OJL71LUzceVuUs5GnXFzAy6pOyN6bFrjlfKNgDdn9mgmhJHIEWCILJgO+jS61cr8TzUA5lM2JliWaFr3FalSxaoUivx3H8IUhh2plhW6Ir9IpKZoMtwvQ13UeW7N7yKNU/G3Zk1LYBufdNRiYoZKRIEMQO2gy5VdilSusK9AdgrAAQoylOkXJENY8/9llR3FyVjriieZjfo0o67qNJ67ZAiQRAz4NFspobVtQNMobugSxQJn0ct6DKWNNthq7qL3KKY2Sn2Zcf9RvKcnvGgS1V3ZoXJkxQJgpgB27sU3WP2i7CIHOqp+A6BQHoXrVjwK55IgXkDYNWNls8RA12uMMdzRXlKaWbEsGA1EKy2fF6lvfiyoXG1xn1Cpt1vVQ2AN2D5PDnQbWd6JQspEgQxC7Z3fSrmTiMFOdKnOLPyRNm9kS7xzFTkmYy5ItsAsBF0mSmZrSLPyDBkPKI0Trlia+PAGHh9u+Vz5EgfZKpy4qJIkSCIWVBNDTOEhCHSOfsKdny3mI9Vgy6ThtkYjSuk2QGAGKysXV82dBs1T4SU4AoWM8A9VgnVoMt4euOgYoEEZEW1FidFgiAsYMcqwXSPafK0iFvM8YA9qwTzBdSyNwbc8eKz02gunkwBgWpXm+OzoRrEKmEqZyzcAGjWzxMVdH+SIkEQFlDdpYxXElTZRcfHzAJAAGQyDnF4P1I7nkNq1wuq0y15fB5NqTJjPGGmc/LaFsvnyLGB8VbYMhGF6N2L1PZnYex9RWWqZYGdRnOMMSUrjxzuHa/CKuMRiJ49SG17BsaBzUpjlwN23EWMczMV1CJyqHu8CquMjcLo2oXU1k0wDu1QGrsUUJMWQbgUxsyaEpn0ztnIBGF56loh9r1meRxjz8uQqeQk/z5vX6Y831KHpSszZvz1s5ESZg0EXtcKdG6zPI6x80XIRBSIDh8Ze94a5fmWOpwzeHVtvMX1bGTcRayuBejZbW0QKWDseM5s5DWhmRdXaARWLmicQ9c4Uoa1AOh48oi7yOi32E8jlTTlOTZkbiLS8OaFdqbsKGSRIAiLKGcbJFNg/jDgD1s+Rw4fnhIkqNK7o5xQKfYFpHd9oTpA91k+Rw51T1IigMqVp/r9aZiF01R6RQx2TVIiAJJnhkTSULJIAIDs75ykRAAAC1l335UKpEgQhEVUg9rGszcUgwSPphwXFit4lRt5pbM36tQW66NhCnEW5YTXjmLGNaUqrFNgHAhYV5TLCWV3UTIF5vEqxUVNQfcBHr/98x2CFAmCsAhTbZQkgcTYCCBy6O6peQCv9XLG5YRqTQlDSCTHhoFc6m34QmAK5YzLCc7USrqnDIHkSG4VK1mwBkyh8Fo5wTmDR7f+uyVSBlLDfUqZWkfDQjVgOZzvFJV5BxBEgVDdpUT7uyF69tger1wXFquoKGYAEO09CJlD06NKte5kUL4/u/fllHZM8pxM7NBu0z1pk3J1E5EiQRAKqDZKSoSbIXPYsbFQne1zywHlEuRVLcglQbZcF2qrqLqLEtWtJM8ZUFV0E9W5ujFrczrfKUiRIAhFfF4FX7SmIxm2Xtr5aFhVve1zywFV94b0+JEK2leucvJflwGMMfh0hVoGvjAMn/0Yh0qXJ2dMqRhdKlgHoduPcSjX550UCYJQRDmaO4ddCguX58KigpJihhzkyXjZ7vhUUC2eZlueukcpI6lc8SnL02YwsC8EVoaBlgApEgShjMYVSzyHGiG5jZIt/jCYx3qqY7mic7VsmGRVC6RSOSsTFqoFU0h1LFdU3UVJm+4NFq6v6PidDD5drXiaXcWsXK0RACkSBGELJd8p15CoUk+xq3SzcQZl94bmQTKsLptyXqhVYIrZG8ITgBFQD5p00/2p8rwb/moY3pDyOLyM5UmKBEHYQN29oV79j7vkxQfYCWpTlyezoXyUK8W4P92iSADqxdPsWCXK2Y1JigRB2CBTktgqqWA9BFerX+CmF5+umSWJrZIMNylnw7jFIgHY6AharZgN45J4kwx2smGU0D1AoErtnBKCFAmCsInSro8xJOvarR+vewG/unm0nFGSJ9eQUglqc0m8SQbl4mmaF0bIuqLllniTDKruN+ENKmXDlHu8CSkSBGET1ZLERstSs1KlBVhVQ1kvLHZQNR+n2lda7hPhJmtEBlX3RmrusZarMrpRnqruN2P+cZaPLXc3ESkSBGET1RzzhGDgS0+ytFi7caFWzYZJQAdfvN7SseUcyGYX5eJp3AttwVpLx7rJ7ZZBuXiaJwg+d7WlY0mRIAgXo2Q+BmAE6y0t1m5cqAE1eQopIWpawOesmvVYt8pTxWpmCAnZOA+8bcmsx7pR0VXNhkkaAmhdDNY0b5YLl3+8CSkSBJEDKgGXABBPpcCbF4C3Ls5+EOMV38MgG6rujXjSAG9fCtY4N/tBLow3yWBLnnNXg83UsdZl8SYTUakaCgDJlIC2YN2MFodKiDchRYIgcoBzpmSOjycNs7X4vDVgtdMHC7JwXdkvLHbRFItTJZIGGGPQFmZfrN0Yb5JB52rm+HgyZcpzyQlAsHraY9xojcjg0blScap4KgXGObSlJwO+6ZXZSpAnKRIEkSOq5nhDyCOLdWDqYs1q1ItXVRIq8kwJAUMIMK5BW3oS4Jvacp1Vu1eedszxQkowTYe+7BRgGssDr2nO5xTLCsaYkrsokd44MI8X+vJTAG3qvc2qy1+epEgQRI4ouzeSKQAA0zzQl54EHFU+u9wXFiOeyOl8lQBWwLTyAADz+Ex5HlVfgte6W56q92ciI09f0FR2j6LcFbPc70+1uKikIQAALFAFbdHxkw9gHKy6/ON3SJEgiBxRLf4TTxnjP7NAGNqiCWlimgcsXJvH2RWfAz//NZ676UMY3bHb1vm6anT8RHmGaqEtOPbIl95AVpNyubD7vgfw4q0fR2T/QVvnexV7RcRTqfGfeXUT+NwJwazBmrKPj9j2H/8Xr3zsTsS6emydb3fjAAC8vn1SMCuraqgINyYpEgSRB1R2KSnDNMdn4A0d48GXrLoRTLFiY6mRGoug+0+P469vegte++TdiB/uUzqfMbWqoYmUASGP1GVkTfPHgy9ZTXPZx0ekxiLofOgRPHH2Zdj8uXuRHBxWOl9ZnmlzfAbetnQ8+LIS3BqpkVHs/+9f4fGzLsW2e7+J1FhE6Xy7cVHj589dNR7PwypAngApEgSRF1SLU03cRQMwI+XD9RWxsBgRc2GWhoG9D/4Mj595KXZ8479gRKOWr6Hc22CiVYIxM8U2UF0RLz4jYspNJJLY9Z0H8NiZl2D3d38IkUhavobK/TnRHA+k5bn4eMAXrIj7M6M4GNEYtn/1O3j8zEuw78e/hJhgiZkNO3FRGRjj0JacCHh84BUSD8XkRFWpQpHCgBjsgRjohhjshowMAyIFcA3MFwSvaQavawWvayl7s10xkEZygjx7IKMjaXnqYP4QeG0zeG2LKU/d6/R0i4KUEodHIrD6NHl1DbUhv3luKmHKsr8TYugwZDxyRJ6BsCnL2hbwumYwi5UxnWTz5+7Fru88MOXzwNx2HPsfn0XjaSfNeg0pJXqHre8U/R4d1UHz2ZXJuCnPvgMQw/2QiQggDFOeweoj92dtM9g0wW+lxssfvRMHfvarKZ+Hly7C2nvvQu1xx8x6DSHM+9MqAa+OqkBanokYxEAXxOEDEKP9kPEYIAWg6eDBGlOOdS3gNU1lYaZ/7j0fRvcfH5vyefWaFVj75c+heuWyWa+RMgT6R60rxiGfByG/uRbKeGSCPAcgE/Ej8gzVHlk7a8rHOln6T1EOiNEBpHa/gtTuV4Bk3PyQcfOPloExGPu3ApAA49DmroC+cC14Q3vZm0TzjRg+jNSul5Ha+xqQSu+GppPnvs0AJMB1aPNWwrNoLXideje8coIxBp+uI5a0tqtJpAwYA90wdr+M1L43ACMFgAEMmKSNMA5j7+vmz5oH+oI10BceW9I7mWym4uj+Tjxz1T9h/vVXY8UnboMempphkSFjjj/acpONeCqFVF8fjF0vwziwGRACWeW551XzZ48P+oJjTHmWcAqekUWeo9t34W9XXIvFt9yIpf9yCzRfdqU9Y46faGmYiXjSQGBkH4zdL8M4uM2UIWOmuWJCey8x8fn3BqAvWgt9wTHgJVwHJRWZXp7Dr23BU5dcjaW33YzF778JfAZ3ZSYuaqKlYSbiSQP+wd1I7noJ4tAumO+bWeTpD8GzaB20BceAB6z37XCCirRIyEQUiZcfh7Hv9fQfS+FXTB/P69vgXX8ReAVE1OaKjI0h/uKfIDp32Jdn0zx4118AXuYV3GYilkxhOBK3fLz/pUeg9+21J8+2xfAed37eFxiRTCLecxixrh7EuroR6+5FcmgYIp6AiMVhJBLmz/E4RCIBI56ATBngXh3c6wX3ejH44quI7N0/4ziBeR1Y+x93oeHUqVkBGaKJJEai1iPsA8/+Ctpwty15anNXwrv2XDBfwPq5FhCJJGLdPYh19SDe3YtYVzeSwyNpGSZgxOPmz2lZikQCMAwwjwfc6wH3etH/jxcQ6+yacZzwssWmdWLdmqzHjMUTGItZd4cE//5T8Ojw5I3CbGTkufBYeI/ZkHcLrxGLj8sx1t2LWFcPUiMjEInkEVmm708jkYSIxwEhTHn6vOAeDw4/uQmJvoEZx6k5ZhXWfvkuVK1YmvWY0WgCEQX3UvCvD4Ano2r3ZzpMVl+6Hp5Vp4PppWmRrDhFInVwOxIv/MG0QOTyqzEGgMGz6jToy08qGxNTvkntfR2Jl/4CGMnc5ck0eI45C/ri4yrS2iOkxGEFc7x+cDP8mx+3NxhjgKbDu/ZcaPPXKMkzFYlgZOsOjGzehpEtOxDZf2D8RRc/3J/b31mRBTdeg+X/9iHowanWCUMI9I1YNx979rwI346n7U2EMUD3wXv8+dDnLFc6NTkyOkGe2xE50Dn+spvthZVPmKZh0S03YultN09rnVA1x3u3b4J370t2ZwP4g/Ctvwha60KlM5ODwxjeYspyZOsORA90jisNyYFBm/NRh3s9WPovt2DRzTdMa51IpAwMjsUsX8/3xuPwdG62ORsGFqyC98SLoTXOsXmNwlFRikRy6zNIvvZk3q/L25fAd9KlZeFPzRdSSiRf+ytS257N+7W1+WvgPf4CMIWGQuXC4FjMsjmexccQfPJBpdS86dCXrofnmLOnKBNSSkT3HcTQG1vMRXnzNgxv3m5aC0rosQ/On4u1934W9SdPbcDVPxpFyqI5no/2I/j0z3Kej2fV6dBXnDKtPMd278XIG9swvHmbKc8t2xDd35nzmPmkavkSrP3y51Bz7OQeJFJK9I9GLZvj+UAngs8/lMNMGAAJz9pz4Vly/JRvpRAY3bkHI29sNeW5ZTuGN2+b1fpSbGrWrjGtE8sml7VXjYvSenYh8MofcpiJ6arznrAR+rzZ+8sUk4pRJJJbnkby9acKdHUG3roQvlMvL4tgolyRUiL5yuNI7Xi+YGNo81bCe8LFFWeZiMSTGI1ZN8cH//5T8MhgzuPqi4+HZ+05iOzZh55Hn0T/sy9i4NkXEe85nPO1iwJjWHjTu7D84x+EFjjiXhiLJTAWVzEf/wA8YX3XnQ3PytPgWXUaRrbuQO/jf0P/P17AwHMvIdFfPAtDLjBNw+IPvAdLP/w+cO8Rc/hINI5owmJ2gjAQevx+MGE9myEbGWVi6LXN6H3i7xh49kX0P/ciUkMjOV+7GHCvB8s+8gEsfO91k6wTw5G45bgoJOMIPfF9MOT+yvWeeHFJKRMVoUikDm5D4un/LfAoDPqS4+Fde06Bx3Ge1O5XkHjhjwUfx7PqdHhWnlrwcYqJqjnet+Wv8Bx4PS9je9a9CQcefw1vfPqLebmeE4QWzsex934W9SeaRbpUzfG+V/8ET/eOvMzFe9Kl2Pmzv2DH176Tl+s5QdWKpVj75btQc4z50lE1x/tf+A30/gN5mYvvjLdh8zd+gr0P/HderucEtccdg7Vf/hzCS0x3jWpcVOCZX0AbyYdyz+A75xpo9W15uFbulL1tWcbGkHg+F3OR5ZGQ2vE8jN59RRjLOcToIBIvP1qUsZKb/w4x2F2UsYqFatOpVF1H3sZOvvIY6tatyNv1nGBs915seusN2HbvNyGFgMaZUpVLI4/yTLzwRzSszx68WA6MbNmOv132buz6zgOQUsKjqTWdyp88GeLP/g71J63L0/WcYfDFV/HkRW/Hvp/+DwD1KpdGfZ7iGxiQ+MdvIQ3r1rpCUvaKRPzFPwGp3GqnW4ch/o/fQaZK44+Xb6SUSDz3iJlzXyTi//gtpFCICi8DVBYXo64jD4bONFLAN7gFnrrafF3RGaTE9q9+B8+958NIjY6pybM+f4oEjCQC6AKfIa2yHJCpFDZ/7l68fNsnIWJxeByRpwQSUVSFxvJ0PecQ8QRe/dfP4LVP3g0kU9AVqlzmTTGTEnJsqIDufDXKWpEQw4fNlMSieWckEBuFsd9u5G1pI/oOQvQdLJ48pYQc6YdxKD+m6FJBaZfi9UOE85RiLCXkYBfqjy8d32ku9Pz5Cfz98ncjuX/mVNKJyGANhD9PKbFSgvXvR+2xK/NzPYc5+P8ext/fej1Ej/UeE6K6CVLLkyIlJbTBvahavnj2Y8uAvQ/+DM9c815gaMjyOUZtG2TeMgAlUjtfgsxDTFCu2PqNLr74YgSDQRw+PNXXs2/fPrS3t+Pkk09GJEvhj3yR2vliOk2zuCS3P48KCC2ZgiPyZKygQZ1OoLLjA/Jo7gQAxlAzvy5/13OY0e278NxbrsPgk5ssn5NP9wYYQ+2Slvxdz2GGX92M5668FiPPv2TtBMZh1LXnbwKMoW7F3Pxdz2H6n3keL77lOoy9sdXaCboHIp/dfYWB1O5X83c9m9hSJO644w5Eo1F84xvfmPT50NDQuJLx8MMPIzhNbni+kKkkUntedySNTY70QfQfKvq4hUTGI0cq2BV1YAlx+CDESH9xxy0gnDHosO6uyas5XkrUNldOmnJo4Xy0XXIBxNCQZRdYvuVZ01w5mVrhZYvRtvFNSPX1Wd4M5Vue1S2lWVTJDlUrl6HlgnOQ7O21fE5e5Yn0BtBhbK04p556Ks477zx885vfxMc//nEEg0EkEglceeWV6OrqwqZNm9DUVNgSvmKox+xH4AgM4vABaA151NQdRvQfcrS2gDh8sKTLFKuix4aR8tdaOjZj7mQqFQRnINhSDW99LRL9g3m5XjHxt7Wg+U0b0HDKCag/6Xj4W83d22DXASQs1h3JxJ3ky7ZWPbce3O+DiFmPzi8VgvPmoPm8s1B/ynrUn3Q8fI2mG23g0AEkLVof82rhAVC7oF69Qm6JEFqyEM3nnImGU9aj7sTj4a0zS4H3d3XC6tvIqOsAdufPCiujIxDRUUfLaNveutxxxx04++yz8b3vfQ+33norbrrpJmzatAl/+ctfsHRp9rKi+UIMOBvtLwZKq2hKrhgDXc493Iyb8lw4e/OhckEbOAS01Vo7WPdCVDdBG8rPPc24hro1i9H9V/uLlR4OwdfaDH9rM/wtTdBDIXCfD9znhebzmuWGfT5wrxeMM4hECiKRQLynd9qGXTPhra9D6yXno+Pyjag78bhpC5Vp/Z1AhzWXjfSHIYM1YBHrvuuZ4LqO2lWL0f/CG7avoVdXpWXZDF9LoylPrzctTx+4zwPu80Hz+QCGcXlG9h1QTpf0NTeh/c0Xov3yjahZN33VU63/IJJBa/IUVQ0QnoBZ3jkPeII+VC+dj+Fte+xfo6balGdrM3zNTdCCgSOy9HrB/eb9qXm9aXkmIeIJjGzdgQO/UCuyFehoQ9tlF6H98o2oXrV8Wnnyvv3AHGv9RYzaVkiugeUxqF0MdJenIrFhwwaceeaZ+PKXv4wDBw7gpz/9KX7xi1/gtNNOy+f8siIGux3UamXFuTbEgGKPgnwiBYyBypInP7QDaFkGWCxgZtR15E2RgBSoW9aK7r/OfJi/rQVVK5eheuUyhBcvgL+tBf7WFvhbm6GHQ7aGHtm6w5IioYdDaL3oPLRddhEazzgZ3DOzuZt3bgE6Vlueh1HXAZ4nRQIMqFs5d1ZFIjCnHVUrlqJ65TKEliwcf9H5W5unLQFuhf5nnrekSHhqqtF6yflov3wjGk5eD6bNfN/xzq3AHOuprUZdO3jPTsvHzwjjqFu9cFZFIjh/bvr+XIrQwvnj96a/tWlS0TIVun7/qCVFwttYj7ZLLkD75RtRt37tjFV4pRTQunZYlyfXYNS0Qh84aHXaM8MY5GA30O5cEGtOztTbb78dF154Ib74xS/iK1/5Ct7ylrfka16zk4g5ahqTyfIzc85I3OHI34T1IjllQXwUfKgLwqJZ2KjvAPa8kLfha5dMKFTDOapXLkPNsavMhXnFMlStWDpuls0n2TorAgD3edH8pg1ov3wjms85E5rfekMnFhkGH+mDqLKW4WLUd8Bz0L4FYRJSom75kYBYpmmoXr3ClGdacahasRSe6qr8jDeBmeSpBQNoueActF++EU1nnTapguVssJFesNgopMUMF6O+A558KRKQqFs1H3vTndGZR0fNsatRs2alKcuVS1G1bIltZXYmZpKnXhVG60XnmcrY6SfN2P1z8kWT4EPdZhkC3VqGi1HfkT9FAgwy6ez6mZMiccEFFyAYDOK0007DbbfdlqcpWcPxrAmnx88zMk/+efsTqKxaEpACev9BJKwqEjX5NXcGmqqx/OMfQs0xq1B7/LHwVBXH7GlEpiqk9Sevx9yrr0TLhefan4eU0AYOWlYkUnmOk6ha0IJlH/kA6k5ch9rjjrFtYVDFGJsqz8azTsPcq65A85vOsj0PlpZnqs1ag7K8xklIoHbFfCz/1w+i7sTjULt2DbSAP3/Xn4Hp7s+W88/GnLdfjqZzzlBSbseREkwKaIOHYDTOtzaPPMedwOFaPDkpErt27UIkEsGppxa/zLHZQMtsCuMIs5gOyw2me5ySpIlWOZHcAADNA63/IGDV2qjpMGpaoA/kpwEU93ix5NYb8nItFSYu1C0XnovF778Rdcevzf3Cmmb69ecda+14bwAi3ABttC/3sQFofj+W3nZ1Xq6lQiojT87R/uYLseiWG1GzOg/VS7kpT6uKhAzVQvhC4PE8FJRigF4VwpIPvjX3aymSuT+ZR0fHlZdi0c03oGrpotwumm7mqPUftKxIiOpmSM0Dlq/KlA63F89JkXjhBdMUe/zxUzu7FRoWrnM08reSMgwAgFc1QPR1OmQZYGDVeSrKVCLw6gbwzp1m+3WLSpJR15EfRYJxx+QpkknMefvlWHTLjbkv0BPgVfXQBtP3p8WCPkZ9R34UCcbN9cYBpDAw79p3YPH7bkBwfv7qjbBwLTRF07pR3wF+aFtexucOyROMYeE/X4eF//xuBNpa83NJTQd8ITV5crM+h354b+4TkMI5eabJiyKxfv3U9r+Fhte1OmcOZxy8vnJSP4G0PHe/7MzgDNDqSqP5TL7gda1gnduhDRyC0TjP0jlG/RxgVx7atkth/j0doHXjm9B28fl5vy6vb4fo6wQf7oWosVYgyqjrAPa9kvvgDspz7lVXYt7V+Y894/UdkHtfA4sMQQYtZhvUzYEnH4qElOAOPe8L/+ndBek4zBvaIDt3AskY4LHmpjHqOvKjSACO3Z/j4+dy8vPPP4/GxkbMnVv8SmWOCs7BhaVQ8Hon5SnB6yqneiCQUXSl0i7FNHfmp5iU5pA8C9UWntebGwcVeRp17ZB5ipJw6nkvlDy1uhZ1eeZx88Rr81jdUYGCybO+DYwBmoJFMW/y5JrjFt2cFIkXX3zREbcGAPBgVVqrLX6JbGg6tNaFxR+3gLDqRrBQrTODe/3gTZVTNhcAeGMH4AuacRKWT+IQVbkXcmPBGrDaylLMtJYFR+JOrKJ7IUK5mnwZWG0LeCj/GS5OorUvARhXkqf0V0H4csykYAy8ZQGYtzjBlcVC61hmbhwUWq6LcAMkz3HjwBi0jmVgFtPMC0VOikRPTw/+8IditPCeHn3pehQ92JIx6PPXgHlsRPeWMIyxtDyLPjL0xcc5/iDkG8Y1eBYfBz7SByikChsWzfYzoS85vmA7L6dguhf6wmPMWhsKmS2iJtedr4THkeeisDB/CNrcFWbciQI594mQEp7Fzmw+CwkP14G3LFCLcWIcojrHjYOU0Jc4L8+y7v6pdSwFfMVJwxpHSuiLjyvumEVCn7e6+NG/jEFfmIeo/hJEX3isae4ctF5sK2dFQtOhL7BeaKic0BcdB2YkwYcV+hpU5yhPb8DcbVYg+pLjweMRsLFBy+cYOSlmDCxYA15h1twMnqUngI0NAArdOHN63hkDq22GVu98fFlZKxKMa/Aef0FRx9SXnQheYRkGGZjHC+/a84o6pmf16Y6Wdi0kzB+CZ82Z0IZV2jbntuPzrj234qxlGXhVHfTlJ6vJM0eLhPf489Op5pWHVtcKbeGx0IatV1QVOSlmEt71F1actSwDb54PvWOp0v1p5Pi8+46/MKfz80VZKxIAoLcvgTZvdeHbXzMGVlUPz6rTCzuOw2jzV4O3LiqKPHldG/RlJxZ2HIfRl66HLq03l5P+sD0/NGPgLQuhLaicfiXT4Vl1GrSE9VoGIlxvzw/NGLS5K6FXqDUig/fYs6EplBI3qptsBrAy6EuOh9ZsLYOpHGGMwXvc+Uopx7koup6Vp5ZMkHrZKxIA4F137pG6EgWBAZoO38lvrtjdSQbGGHzrLwTzhwsnT8YAjw/eky4Bs1gToFxhjMO//CSlc5StEowBvpD5d6vQ3V4GxjUElii4Fu34oRkDC9XCu6641jknYLoX/gWrrJ9gJ4CVMbDaJnhWn6l2XhnCfEH4FHpeSH8VhFfRPc8YeONc6MtPVpxd4aiIVZx5fPCfdZWZdZDvhZQxQNfhO+Pt4DWFbY1eKjB/CL4NV4P5Q4WRZ/rvxcO1+b12iaKHa6DBes0TJT90Wonwb7garEJdREejV9crtVxX8kMz04/vP+uqisssyIa3rlmpsJ/SLpoxsOpG+M98O5jD1ReLha9BLWZBzSrBwOvb4Tv9ypIKUK8IRQIwX37+c64Bb8hnDXMG5g/Df/Y10BoqqwDVbPBQDXznvBss56j3ybBQLfznvMs1SlkGfZbulhNR8UOz6kb4z32Xa5QywLSaeRTkqeKH5vXt8J9zjWuUMiCdsaVbfympBLDy5gWmkuu1162zHOGcQePWN2Aq8tTmLIPvzLeDWWwOViwqyk7PvAH4zroKqd0vI/nK42aamJ0S2unS2/qS4+FZfXrJ/dGKBQ+E4T/nXUjteB7J1580ZWlXngD05SfDs+KUincPTYdH0xBPWktbzPihWbbUZsYAMOgrTgavbnCikorjeDSORMqaPGfd8TEGcA36ylPBg9WFjw8qQTwaR8qwZuWxJE/NA8/q00wFosLdl9OhaxyGxTRlS/L0+OBZfQa47ilJeVbcis4Yg2fROmiti5Da9hxSe18z27vO2peDjf+P1r4U+rITSyKtxmkY5/AsOxFa+xJTnvteB4wUZm+Ylv6ecWhzV8Cz7ETXWSEm4tEUHv60H1ob65/wYVqeHj+0lnlgHg8wcBBi4CAYJLQ5K/M95ZJGV5Bnxg/NExNaSGfWA28Aess8swnf4b0QMLOXtFbrfu5KwKNpiMJaUHAmgJWJCcdn5OkPQW+eCzAG2b0LEgAP1oA15q9PSDmgtnFonrpxyMgzWAW9aQ4ACXloGwwArLoJzKHKoNmoOEUiAw9Ww7vuXHjWnAnj4FYY3Xsh+jshx6aJUPYFwevboDXOgT5vlRkbQEyCh+vgPf58eI7ZAGP/Zhi9+yD6D0FGhqccy/xhsPo2aE1zoc9b6SqzZjZUXnyAuUvJKBIsXAdeVQumaaZSnIqZ/zLH9ne6TpHwKHbfFTXN4L17AACsqt6UJ2NmU7VkFJjQhFH0d7pOkVC6P9MBrJn6KKy6ETxcYxpyjCQwUWEDIPoPgrtOkVDdONRCGxsAwMBqGsFD1WBMmpu2ozquiv6DjpUYzwaT0qH2mQ4hUwnI6Kjp9uAamNcPVuyiVhWETMYhY2NH5OkLkOKQhf7RqGXzsT8xjED/PsiRXiAemfV4z4mXuSY4MEPfSASGsLZ8BWMD8A3shxw5PHvBIMbhOfkKV7ngpJQ4PBKx7LkMRQ/DO3DAlOdslVt1LzwnXVbxGVoTkVKid3j25zZDONINz0CnKc9UYuaDfSF41l9cUhla7nlS0jDdC1ZhLcCdhHl8FVsAKd8o+aENAanQGVAMdEJryV/b7nJAyQ+dSkL27bd2YSkgB7vAGtyzi2aMwaNpluNOZCIOabVPRyoBOdwH5iLXJmMMusLzLuNRSKvlteNjkJFhsBLq/+IeFZEgHEbFHJ/w1wAKQb6iT61nQiWgIs94sAHg1pc70e9GeVqXTzysphQIlWZrFYKKPBNhNVeFZSWuSJAiQRBFQs0PzYBa68G+cqgb0rBeQbMSUFmoJdcAhXoSov8QpEKtikpA5f40NC9QZb1VgDsVM+uKbtITBAJVlo8vNXmSIkEQRULjTCmzMKVSSEkYkMOH1SdVxqgHsLZaPzgVh1RoZlUJqAawSgVFF7FRyNio4ozKG9X7U2njMNoPOVssRREhRYIgikTGD22VZKhRKWdcDFlvFlQJZPzQVklWKZqPB90lT9VCSknFBl5uuz/VNw4Kii4AOWS9C26hIUWCIIqIijk+BQ5Wa32xli5bqAFFeXIvmIo5XqGLY6Wg5N7whAC/dXO82+5P1Y1Dyl8LKASul5JiRooEQRQRpYVaSDVFYnSgpMydxUBFnikhFBWzw5DCXXESSi8+IZS6T4rBHris2oDa8y4luII7s5QUM1IkCKKIqPpNZZVKdLykOIkZkBJgKp1VRQpytH/24yoIZUVXRZ7JGBAdsTGr8kVXyBRKGUKpt5GMDEEmYrMfWARIkSCIIsIZU+qNYfjCZWvuLAYqCzUAGMFaQKFrYint+oqBSowEABgKriLAhfeniqILQFY3Kl1fDJdGnAQpEgRRRBhj0JTM8RJcYdfnthcfY2oBginJwKqsL9Zue/FxphYgKJgHLFRr+Xi33Z/KipkeABQqLZeKPEmRIIgio7KLNgyh1KBHjg1CzlayuMLQVMzHQig1j5MjfZAWq2dWAowxNXO8UDPHi6FeV8VJqCq6hgS4ijxLJLOIFAmCKDKqAYIqCwsAyBIxdxYLJb++oRZwCWFAjvTZmFX5onR/Gor3ZyoOGZmmcWIFoypPFcUMsRFIC714Cg0pEgRRZJQsEkJC+kKAQiO0UtmlFAvVgDYEawFuvc2Q29wbShYeQ4BVNwEKkT+lYo4vFqoWHtWNgyiBehKkSBBEkdE0Rb+plEqLi+sWatWANsaUGkiRPLMjpITUdLBwnfVzSJ5ZSRnC3DT4w5bPKYX7kxQJgigyqgFthiHV0sKiwyWTFlYMVAPaTHO8SpxEv6v6mChnwqjG8Qz1uqqPiYqFBzCtkEpxEqRIEIT7sBPQpm7udH5xKRbKAW1Cgqn0MZECcsQ99Tk4Z+AKmq7y/WkkXdXHRDlzQzGAFfExyNiY4qzyCykSBOEAygFY/hDgC1k+hwIEs5MyBFhIrU272+Sp4n5LGcJMqVXoC+MmeSpvHFQDWAEIh+VJigRBOIBqQBuglhbmph0foB7QxhhPBwlaQ5A8s2IICabpYFX1ls9x3f2pWsrd6wcLVls+x2l5kiJBEA6gHNAmJZhC1Ts5NuiqfH2lIl+GgJQSXFGebkI5QBBQUszcJk8VC49hmM9tOcmTFAmCcADVgLaUIZQi42EkgbizftNioipPISVYSEGesTFXNURTkaeQEkJKcJUKl2NDrmqIpmoxk1KqVQwdG3B040CKBEE4gJ2ANhaoUvNDu2jXZydzg4Vrlc6RY+4ppKRi4QEycScKipkUkC5q4KXarM8QiopuMm42RXMIUiQIwiGUMw24puQ3FaODNmZVnqgGtBlCguletb4GYwN2plaWcKam6BpCAP4QoFkv9OU2eSo16xMi/awrFPpy8HknRYIgHEKtZXPaD62wS3GTRQJQ9EOTPGdFuaU4Y4rm+EH1SZUpqs36xgNYg1WWz3FSMSNFgiAcQiVzwxDpACxFv6mbsCNPNb/+oOKMyhsVi5mwdX8OKs6ovFGzQGYU3VrL5ziZWUSKBEE4hK2FWsWvn4i6qhNooRdqGRl2VSdQNcXMnoXHVZlFtjYO5WExI0WCIBxCZWEZTwEN1iqN4aZdn+pCLaVUU8ykgIwMq0+sTOGKMTyAmmKGVAJION+5slgU2sKD2ChkKqk4q/xAigRBOITKQg1kAgQ9ag19XOTeUM3ckBKAN6hW4dJVipnCi29c0a1WyyxyUUCwpiAXw0YKKADIyKDapPIEKRIE4RDKzbvsmONd9OJTyTIA0pHxFCCYFZUXH2Avs8hN8lTZOEiYii7z+Exl1+p5DsmTFAmCcJCCBwi6aMfHlFMWKYB1JhhTST60Z44XLpKncvMuaWPj4NDzTooEQTiIpvDiE3YCsGKjLmvZXOAUUBcVUTK7qioounZefC6Tpy1FVyGOxyl5kiJBEA5iLzK+xvoAUgAJ5yreFRu1F19GMVOQZzIOaaRUp1W2FDzgMh5xWeaG+sZByQLpUFl8UiQIwkHsLNTwBgCuWT5PxikyfjrGFTOF4FUAAMlzWmzJUxhmeWeXYGfjoBJcjUTUkRRlUiQIwkGUFuqM6ZgxtQAsFzXvUkqpzeygNR3QfZbPI3lOzxFF1w+VKGI3Kbq2LDwKZdwBAPGo2vF5gBQJgnAQlYVaSjPNDgCYX2Fxibnnxae6UEsb8nTTi8+WRYJxJUXXTV1qbclT9wKax/J5Tii6pEgQhIMoR3JnFhdfyPI59OLLTkYxg5I83fTiU1N0xxUzlWZoJM9pmaToKsmz+M87KRIE4SCqkdzChrnTTYqEei0JG+bjmIvkaaNoGgAwPym602Fb0VWSJ1kkCMJ1qLYTB0A76CyYKYs2zMckz2mxWzRNqT27m1xvioqunY2DE8HApEgQhMOo+fUzkfFqC4u7UuxsBFyShScrtppNKShmbsqCUVd01eXphGJGigRBOIxq8y5AcaF2XYqdWo8IAEqmY6dS7JzCjjxVY3jcpOiqbBzsyrPYkCJBEA5jJ0ZCPcWOzMfTYct0DDiSYucUtuSpYjEzkuY/l6DSw+RIMLCCPBORolezJUWCIBzG1g6FcbXFxUXmY1vyLIMUO6dQUiTkhKJpCp06KE5ieoSN4FVICSSKq+iSIkEQDmNroQYFCGbDtjxLPDLeKWwpZlwzrWZWIUV3WsbvT92rVs22yJlFpEgQhMOovPhs5+q7qN+GLVcRoGg+JnlOh23FLOkeeaokbhyxQDK1uKgiy5MUCYJwGNVc/fHF2qOw43NRoymmophhgmKmIE9XNe5SkedExcxjvew4Uu6JkbCt6CrIUxY55oQUCYJwGDU1wrRKAOkeEVZxUTCbbcWM5DktKvKcpJipxJyQPKdFyCPVLaFbl2exFTNSJAjCYexWt1RZWKSLdnyqitmRgEuFhdpNLz7VIkrjihnJczpU5ZmxSagoZsW2QJIiQRAlgC0/NC3U02JbMVPZQbtJMWNMSTmzI083ud7sVrdUuj/JtUEQ7sNWZDwpElmxFRlPL76s2EupJcVsOlQVM3JtEARhCVsWCaWF2mUvPhvyJNdGdlQCWCnmZHbsbRxKV56kSBBECVBoU7zrFmqlTIP0D+TayIq9GB6v9QHo/syKHYsZuTYIwoUoVM217dqgfgbTQzEns2PLwqOwgybFLDt2gqsp2JIgXIg914aCqRNwlV+/0C8+GClSzLJAMSezU/CYKIqRIAj3UXDXBuCqXXTBd3xSmF1VXULhd9DuuTcBcm0QBFEA7BSpYVxT84m4aLEu+A4acNUu2p6FR0GewnBVa3al4NUyUMxIkSCIEsBukRqlzA168U3LePVArqk1QiDFbFrGPT6kmGWl8OnexXW9kSJBECWAsiKRWSS4gl/fVTs+O+cwJXm6aQdtzxRvvVuleSLJczrG9QGF7p/miWL2Y/IEKRIEUQKomDqBCYsLVHYdNt6uZYpteSrs4lTHKGdUf1Vptqkt7CBljMqvesSyoGphKJ48SZEgiBJBaXHJLCoqi7WbFmrF48flSYrZtKjVYlR/5ZmDkDynY7wRmrIeQYoEQbgOpcXFxg7aVQu1chnio3+wNIjKlMqaolgk3KSY2fpVSzfdmBQJgigRCm/udM9CDai5HmzJ00WKhCpSglwbM2DL9aYkT1ZU1xspEgRRIqi9+DI/KA2gNJ9yR81VdPQPlkZQObisUbbwmAZ51VEUjy9f7LneVJRcxQFyhBQJgigR1Bdq8ydietRcRekUULJIZEVZ0SWLRFaKYZEoJqRIEESJYM8iQS++bKi5imyNYOekskXd9UaKxEwoy7OEn3VSJAiiRLAVI0HpillRjpFQ3kErTqjMUZInQMGWs6AszxKOhyJFgiBKBNWUsKN/sjKCm1BzFR35/9YHIHlmgxSz2eG2XG8WIYsEQbiTQlskXPfiK7RFwmVvPluuN7UR7JxUvhTS9VbkZ12xDzFBEIXC3kJNikQ2lGMkKDhwRgobI1HcdMVSQLkAXQkHW5IiQRAlgurCor6LdtlCreQqsrOFJnlmw4yRUOj14C5RAlB1bUBRnuTaIAhXolzZUrX7pGrTnzJH2SKRSqgNwN21fKpaJGRK4f502b0J2HC9KcmzuPemu54EgihhlE3Hqi8+j1ft+DJHdaGWSQV5ah4wl738lF1vKven7lOfUJmjquhKBXmyIsuTFAmCKBFUF2qZjFu/uOYBY+563FUWagEJpBTk6TKlDFAvmKZyfzKPCxUJVdebyvNeZHm6a2UhiBJGubKlyo6PFuoZMRWz0t3xlQLqFgmFF5/uQsVM2SKhopgVV56kSBBEiVBIiwSjhXpmVF98brRIqAYDqyhmLlR0ldI/IQEV1xu5NgiCsEQJmzrLETXFjOQ5I2SRmBW1NmhQkidZJAjCpSh3BFQKvnLfQq0MuYryC1kk8oei640sEgRBWIMsEnlDNZiNFLPZUfHpu9EioYyS640UCYIgLKBkkSBFYlZU5OlGxUzdFE/3Zz5RCwYm1wZBEFZQsUjQjm92KEYiryilJ5M8Z0QCZJEgCMICqlHctOPLK2oWCVLMZkSq1j0gec6ISAHCsHw4FaQiCMISajs+9y3USk2gVF98tIOeESkMpd4QbrTwqDiKmEp5bKDoihkpEgRRjghBwZZ5hBkJtRefG3fQCm8+loyqXduN8lRASZ5cL3r5dlIkCKJEUAlm44kIVNo0M4/fxozcA4uPKRzMSDGbBa4iT93rur4lANQUs/io9YO9xX/WSZEgiDJEeaGmF9+M8HjE+sG+kOv6lgBqpniesH5/Mn9YfTIuQ+X+ZIGqAs5ketz3NBBEBUALdX5RUcxYgOQ5GyTP/KJikXDieSdFgiDKECVFghbqWVFTzIq/4ys3VFxFJM/ZUZKnA887KRIEUYYomTpdulAXzBRPitmsKLneSJ4zI6WahceB550UCYIoQ1RefCDXxswoL9QkzxkRhlKWgVvlaTW4mhkJMJGyfl1ybRAEMSvCAFdZqGnHNyPqC7U7LTxW4cmoWo0EB4IDywmlTQNjgD9YuMlkgRQJgigRrNZPooU6v5TDQl1OKGcUubBYmgpqGUVhRzKKSJEgiDKDFur8Qqmf+UWjjKK8oiRPh6yP9EQQRIkgLdaXooU6v6gt1GTdmQ21wFX3ylNaLChXDqnepEgQRJlBC7U1rNb9LIeFuhSwLE+ljCL3ytMq5VCTgxQJgigRLO9QKMPAGhbffOWwUJcEli1mCuWc3azoWpGnlIoWSGfkSYoEQZQKVheW2LD1a7r4xWdJMRMGtPiI5Wu6OWPDijxZKgGejFm+pqsVXQvwRARMpX04WSQIwt1Y0SN4MgpuWG8pzALV9ifkArT4KJjV4BS421VkBS02pHS8m+VpRTFTkifXAJ8zGUWkSBBEGaFkjWAcLOheRcKKfqBFFRZq3evYQl0KWJOnwv3pD4PpHvsTKnfyLE8WrHEso4gUCYIoEaSFlVrlxceC1e5sz6yAimLGQrVgVot9uBSVHTQP1RZuImWAFTuY0vMerrM/mRzRHRuZIFxMImVASgnG0oVyGWCII0sLj4/CM3QIRqAWRqAGMl0LQu3F59zCUmwSSQMSR8tTjH+vRYegj/YekafmGf/cKm6Rp5QSiZTpl8/IkzEGMeH+1Mb6oUcGYARqkQrUAJr5KlHaQTv44ismWeU5YeOgj/ZCi40glb4/wTXleCjmoGJGigRBOEAyZWAsnj3WQXj88PfuAJPmy9DwBmEEaqFFBiyPwcK1uU6zbIinUogmspe5Fh4/At1bx//b8IZMeaos1C558THGEEumEE9mD/KTuheB7i3mzwCEL4xUoFYtldYlihljDNFEalyZmA7JNQS6Nps/g0H4q2D4q8CNhPVxHJQnuTYIwgEC3ll8w1xHKnhkYdASEXiHOtUCLV2yUANA0DezPKXuQ8p/JF5ES4zBO3RwXFGzgptM8bPJU3hDEB4/ALPLqhYfhW/wgFrpdpLnOEagFpKb+3oG0xLhHTyoMAIDC9XkMMPcIEWCIByAc4aAd2aDYCrclNsgmm4p7qIS0DiHzzNzPEgq3Gh/AMYAzl0jT4+mwaPP8HpgDMlc7k/NY72UawXg0Th0PpM8OZLhBvsD+AJAyvomI98w6ZYngyBKjJQh0D+avYunFh1C1c6nchtE94JV1YOF68HD9WDVjRXbeyNpGBgYzV7DQB89jPCeZ3IbxOMHC9eBV9WDhRvAqhvAtMrMPEgkDQxGssvTM3QIof0v5DaIN2Dem+l7lFU1gGmV6XGPJVIYjsazfu/t34tg52u5DeILHnnWq9LyLELANVkkCMIhdI3Dp2d/yA1/NYSW40s/lYAc6ILY/wZSu16o6F2gR9Pg0bIvaalgHWSu6XHJGOTAIRj7Xoex56XcrlXiePSZd9GpUIPlstlZSUQh+w/C2PsqjH2vWW+BW4b4PBr4DL9fzhZIAIhHIPsOwNj7CowDm4smT1IkCMJBZvSdMoZUKAdz50S4Bn3F6WAeX36uV6LMKE+uTYo7yQnNY8qzQq0RgBkkOJM8pe6F4c9TnRKPH/ryUys6XXk2eQpvcDzuJGd8IejLTilaXQlSJAjCQTz6zLtoI1ibl3G0xevBXZB14NU1aDz7LswI1OZlHH3Zya6oyjjbLjov8mTMVCJcUOzL79VnNBKk8iFPrkFfcVpRNw2kSBCEw8y0S8nHwsLblkBrXpDzdcqB2XZ9+bBI8LmrwOvbc75OOTCbPPOh6GoL1oHX5MGsXwZwxmbM2DLycH9qi08o+qaBFAmCcJiZdtFGoAZSKaluMqy6EdqCdbbPL0f8Hj3rLjrXFx+ra4M2d3VO1yg3/F496x2Yq2LGm+aDty3J6RrlxkzZWrluHHjbUmjN83O6hq1xiz4iQRCTmHHXxzX7fmh/yDRxzpR2VoEwxhDwTb9YS90HwxOwd91gTdrvXLkBgdPBGUMgy/0pvKHx+geqsKoGaEtOcJ08Nc7h90wvs1w2Dqy2FdrCtblMzTbuWmEIokTJ+y5a98Kz8kywfAVvlRkBryfrcmzLfOzxQ191pmubTGXdRTOGlJ370x+GvvKMig6unIl8bxxYsMaMM6GmXQThXhhj8GdZrJUXasbNjAIXd/7kM8lT1XzMdVOJcEEwYDZmKvhlBBQVM90Lz6ozKz6DaCZ0jcObJfVbeePgDTiu5JIiQRAlQrZdn+pCrS050TXBazORLahNbaFm0Jef4oqMl9kIZpGnkqLLOPSVp7si42U2sj3vSoou103LjsNKLikSBFEiZNv1CW8QwmK9Am3eakeCrUoRXePTptYa/mrLham0Retck6ExG3qWMs8qKaDa0pPAq0nJBcwg6+ncmdZdb2babCkouaRIEEQJMe0umjFLizVvXgA+Z1X+J1XGTOuLtuiH5u3LoLUtLcCsypNsQaxS98Lwzr4j1uatgdY0rxBTK0uyydPqxkFbdBx4fVshpqYMKRIEUUJ4ND5tKuhsaXasphna4vWui4Cfjey7vtoZz2P1HdAWHFugWZUvfs/0BZVmc7/x5oXgc1YWaFblS8Bjb+PA25dDK6G0WVIkCKKEYIxN64ueaWFhgep0mqc7I+BngrHpu6zO5Idm4XqzcqVDEfClDGNs2tTFmeIkWE0LKblZ4DybPLMrZqxhTskpufSkEESJ4ZumABAL1U5/8HhaYmV29MwH07mLtGx+ZV/IDF6r0A6U+WBaeVZNL08WrIa+4lTX1TJRYTpFV88mz3A99KUnlZxSRn9dgigxpktdDFdVAUcrC5mIbX+oiLObnbE9+5EcGXV6GuNwzqYEsQZr6qZ2RtS98Kw6A8xbWrU3RnfshhHJ3m6+2BydusgABKunaS7nDUBfWXpK7si2nRCJpNPTGMeja9AnBAVzxuCvrp96YKb2RgkquaRIEEQJMnHXF/Dq8Oja5LoQ6TQ6XjXNguMwPY8+icdOuwR7HvgZRLI0FuyJ7qKgzwNd18H8E1IQuQ591VlgwRoHZjcznQ/9Ho+d+Wbs//lDkEI4PR0Ak3fRIb8Xms8HTCx+pvvgWX1WySm5ALD3h7/A42dfjs7f/AFS5twIPS9MlGfY7wUPhICJrkpvAJ7VG0pOyc1AigRBlCCZ1EXGgJDP3NGxQFqRYAz6itPAa1scnGF2jEgUib5+vPaJz+GJc9+Crj885viCnUld5IwhlM7kGFfMuAZ91RklqZQBQCoSRexQN16+7XY8eeFV6P3rJqenNB7EqvEjMSjj8tQ80FeXplIGmPdnZM9+vPC+j+Lvl12L/mdfcnpK40GsumamgDPGj9Ta8PhMJaIElbIMrlQkpJSQUji+uFUKJM/8kpFnwKsj5POCp7M4Mgu1tvTkkq5tYEQi4z+P7dyD5278EDa99UYMvfKGI/Mx70sJv1dH2O894l8OVqdbWJ8GXtPsyNysMFGew69vwTNXvxfPvPsWjGzb6ch8MvIMeHVU+X3j8mTB6iNKWQnUNsiGMXZEngPPv4y/X34tnvvn/w9je/c7Mp8j8vSgasL9yQLVplK26qySr1Jbes6WPCOlBKLDkKP9kNERIDoEpBJHDuA6EKgCC1SDBWuBqnqK1p4BKSUQGYQcHYCMDQORYcCYYL7WdCBQfUSe4fqSCwwqJaSUwNgA5NgAZHQYiI6My1MHAM0DIy1PcA5t0fqSz8VPTePP73/6eTx1yTVY/IGbsPRfbobmK4zfXEoBjPZDjg0ekadIAQC8YIB+RJ5M96SVstLIxc/GdPERvY8+hSefegbLPvJ+LLrlBnC9MEu5FAIY7YOMDEJGhoHYCCAMAIAPDMzjNeXprwbz+KGvOL3kC05Nd392/fZP6H30Kaz49w9jwY3vLFhwqBQG5MhhIDJk3p+x0XF5+sHAPL4jz7s/BH3VmSWtlGVgskK3kVIYkIOHIPsOAPExmCFBM/2q6e91L1hdB1h9h6trwR+NNFKQA52Q/QeARBSW5enxgdXPAatrL7mgKyeRqSTkwEFTnsk4rMhTSgHmCx6RZwkGXQHAKx/7NPb9+H+yfl+1YgnWfvVzqD02f+24ZSoO2X8Qsv9geqNgUZ7+cFqebSWbPvvcP/9/6Prtn7J+X7NuDdZ99XOoWrY4b2PKRAyy/wDkQGdasZ1NnqZSzALVYA1zwGpaSzZTY9PbbkLf35/N+n39qSdg7Zc/i9D8uXkbU8Yj5v05cDCtOFiUZ7A2Lc/mkt7gVqQiIUcHIA6+ASRj9i/COFjbMnPBdvmOWg4fhujcPNmSowrXwdqXg9W0uFqeUkrIoW7Izq3jO2VbaB7wjpVgedj9SSmR7B9ErLsHsa4exA6l/7erG7HuXiQHhyHicRjxBEQiYf4cy/ycgEylwL0ecK8X3OtFKhKBiMVnHJNpGpZ88D1YetvN4Fl6OFiduxw4BNm1bXxnZwuPD7xjFVg49zgJKQQS/QOIdfUekeOhHsS6exHr6kZqaGSyLOOmHEU8DpFIQhqGKU+PKdPU6OisWQbc5zWtEzdfn5N1QkoJ2bcfsnsnIHMI7PQGwOeszkuchBQC8cP9iHdl7su0TNPyTY6MQMSTafkl0vKMp2WagBTiyP3p8SA5MgKZnPnZ04IBrPzkv2D+9VflpBBJKSB790L27M58Yu9CvjD4nFUl26OkohQJKQTEoW3AwMH8XTRYCz53jSutE1IYEAc3A0Pd+btouAF87mowi70jKglpJCEOvAGMHM7fRaubzQXGwm5aCoHogU4Mv7ENw5u3YWTzNgxv3o7ogU6IeA5KYg5UrVyKdV/5HGqOVS/tLVNxiP2vAWOD+ZtQXTt423JLLw8pBMb27MfIlu0YfiMtzy2mPGd7URWK2uOPxbqv3IXw0kXK58pEDGL/q0B0OG/zYQ3zwFoXW9pNi1QKkd37MLw5fX++sR0jW7cj2tkNmXJGng2nn4S1X/4sgnM7lM+V8TGIfa+mLeL5gTUvBGtaWHKbsYpRJKQwIPa+DIwN5PnKzNytLDwezBvI87VLF2mkIPa8mNdFxYQBvgD4guNdpZzJVAJi9wt5XVTG8VeBLzxuknImhcDI1h0YePYlDL2+BSNvbMPI1h1IjRZg/Bxhuo4lH/wnLP3wey1bJ2QiasozGYftXV42QnXg89dOUs6kYWD49a3of+6lcaVhZMsOGNHSqe+Qgfu8WP6xW7HofdeBadbcNTI+ZsozlUTe5VnVCD73mEnKmUgmMfTaFgw8/zJGXt9qKg7bds5qyXICLRjAyjs+gvnXvt2ydUJGhyF2v5ib1TEbtW2mNbKElImKUCSkEBB7XyqAEpGBAboXfPEJYJ7SzOPNJ1IY5qKSdyUiAzNNn4tOANMr3zIhjSTErueAeGT2g+3irwJfeDx6n9iEPT/4bww8+yKSQyOFG68AVK9ajrVf/Rxq1qyY8TiZjJvyLIQSkSFUBz5/HQ799k/Y/5P/h4HnXy5JJWwm6tavxdqv3IXwkoUzHicTUYidz04Oms431U3gc4/BgZ8/hAP/8zAGn3+lJJWwmWg842Qc++XPIjhn5owpGRs1789cXG2zUWLKROlGbygge3cXUIkAAAmkEhD7X3dFiqM4tL2ASgQASCARgejc7A55HtxSWCUCAGIjEF3bkegbQM+f/1p2SgQADL+xFU9d/E5su/c/sxayklJCHHi9sEoEYGbS9OxC7FA3ep/4e9kpEYCZ2vjXC96Ond9+ANKY/qUmpTDN74VUIgBguBeybx8ie/ej76lnyk6JAIDDTz2DJ865Ent/+POs65YUBsS+VwqrRADA4CHIwUOFHUOBslckZGQIsndPMUYy0x77DxRhLOeQo335jTGZieFeyHzGX5QgYqgbGO4pzmADnahfWzodAe0gUylsu/dbePod/4R479RYEtl/ML1pKLwCKg/vRf3x5d2xUsTi2PzZ/8A/rr8VyaGpmwPZu9dM6SwCsmsn6k84pihjFQpjLIJXP34XXrj5Y0hFpm4OZPfOdFZb4ZGdWyGLNNZslLUiYe5OilvkRnZth8wlG6SEkUIUX56dWyALvRtyCGmkIA9uLuqYPuMwggvyl7bmFP3PvIAnL7oag6+8Pv6ZTMYhu7YXdR7hcBye2tKs0KhC76NP4alLrplUxErGI5A9u4o6j5pWHbxANUSKyaHf/AF/v+w6RPYf2XTJ6DBkXxGLWkkJ0bmleOPNQFkrEhjtBxIFNhkfjZTmrqgCkcM9uaV42kEYkAOlY6LLJ3LwUOFNnEdjJNFwwprijlkgYoe68fcrrseB//cwAJg5+LmkJNqApeJoOKm0WjbbZWzXXvzt0neh6/ePAgBk/35gSp/ZQiKhiThq1+WvfoiTDL+xFU9edDUOP/UMAEAc3odiyxOj/ZCFCOBWxJYi0dTUBMbYjP9uvPHGfM91CqKY2t8EZP+Bkmmek0+Kqk0fNW6lxUpk8vGdoH5V+VskMohYHC/d+gm8/pkvQfTuc2AGDPWrFzgwbmFIjY7huZs+jG33fgui7yCK4SKaDEP9sfkrnOU0yYFBPPPO92HXfz0ADPXACXnKPufd7cqVSwzDwG9+85tpv9u7dy9uuukmCCEKrkjIVAIY7SvoGFkxUubYJV4KVgUZjxQ4wHIGkjEgMgSEap0ZvxBEh4vmKz2a+pXqOe+lSNWKJag/5QQ0nHoC6lYvBIs4oZhJ1K8s3b4mlmEM1atXoOHU9ag/5QTUregAG3PCsirRsKIdOxwYOZ8wTUP1MSvRkL4/axc3AREnLKvSrODctszRDA5lRULTNJxyyilTPt+/fz+uueYaGIaBhx56CGeddVZeJpiVqJNR6QwyOpyXqoKlgnRKiZgwPqsgRcJJefobahBaNBdju5yxiNhFr65C28bz0HLB2ag/eT289bXj34nuXZCR2csKF4Lw/FZ4G+qQ6CtkZlj+8dTVov3NF6D5vLNQf9Jx8NQcafwkOrdCjjkjz5rl88D9vpKsGTETvuZGtL35QjSfdybqT1gHPXykG6fY/5oDkswMbpgufp9z3UHzUqz/4MGDOOecc9DZ2Ylf/epXuPDCC/Nx2RkxF2pnHgRAmg1sKglH5QnnrCGFwlF5MjQcv0pZkWC6Dl9zI/xtzfC3tsDf2pz+1wQ9FAL3+6D5zDLY3Jf+2ecFOIdIJCESCUT27MdzN33Y8pjc70frBWej/fKL0HTumVmbeZnPuzP3JmMcDetX4dAf/6Z2nkeHvyUtw7aMLFvga2k05enzpmXoA/emf/b7AMbG5Tn86ma89OFPWh5TCwXRuvE8dFyxEY1nngLumb5Oi5Py1Lw66tatRN/TLymdx31e+FuajtybaZn6mpugBQPQfD5wvzctSx945v5kzCyXnUig7+/P4vU7vmB5TE9NFVovPh8dV2xEw2knZi3wJSNDSr9LvpHREbByViQ6OztxzjnnYP/+/fif//kfbNy4MR/zmp34GBx76QFFS5kqFjI2CiflKR21MOUfGXVSnhL1xy7Gvl9O/y33+1C1fAmqVy5D1aplqF65DOElC+Frasi90ZKF2CGm62g6+3R0XLERLReeAz0UnP26sdHc5pUTEvXrlmVVJLRAAFUrl6J65VJUrVyG6lWmPL31dTnL04oVhPu8aD7vLLRfsREt550FLWChaJ6j8mRoOH5FVkVCD4fG5Vi9chmqVi5DeNF8eOprczbfj+3aO+sxWiCAlgvORvsVG9F09umzdqqVQuTW1ylnmMN/zxwVia6uLpx77rnYs2cPfvnLX+LSSy/N17xmRRrO1F4/MoEKC7YsdnbB0UiHx883hSiNq0D9uqUAAO71oGbtGtSfuA41a1ejeuUyhBbOs1w6WZXUWJa4EMbQcNqJaL9iI9ouPh/eOsWUSofvz/rjzGqb3O9D7XHHoP7E41Bz7CpUr1yG4Pw5Bet0OV0LccD00TeeeQrar9iI1ovOhadasZmTo+uXREO6PocWDKBu/VrUnXgcao5ZiepVyxCYU7hGiamx6bP8mEdH8zlnoP3yjWi58GzoQQvKbYZSWLscfj5sKxLd3d0499xzsWvXLvz85z/HZZddls95zU6JlAYl8kWl/T2d/X18tdU443c/RdWKpdD8xetpYhxVpMfbUI+F//QuzL3qCvhbm4s2j3wTmteG0x/+MWrWrMypW6kqR7/4/G3NWPjP12HO2y6Fr7GhaPPINzUrF+OMR/4b1auWZXW/FIKjFbPg/DlY9N7r0H7lxfDarhdSAmuXw1OwpUj09vbivPPOw/bt2/Gzn/0MV1xxRZ6nNTuM6046NgAL3RbLCp6XcJkcxq8weWo64GSdLU1D7bri15NIpRfq4LwOLLrlRsx9x+XWTO2zoWmOWnm4pqPu+OJXZcy8+EKLF2DJB25Cx1suzY8iwzUHd7EM3OdD7dqZe6oUgoxiVr1qORbf+h60XXp+Tm3XAQAFskapzcHZ9Vt59MOHD+Pcc8/F1q1b8ZOf/ARvectbCjGv2fGHASfjW0q0L7xdWKAKskilh6cZHSxQPfthZQQLVDkYd8LA/M7I01dfh+O++X/Q9uYLcl+gJ+KvBpK9+bue8vjOPO/+9has/95X0XrhOfl1n/jDZsq1I0hzfAcILZqPk378n2g6+/S8uU8Y44A3WPziiONIMIfkmUHpSe/r68Ob3vQmbN68GT/+8Y/x9re/vVDzmhUWqHLQIlGhLz4HgwMrTTFDoAoY6HRocOfkWX/y8QW5LgtUQ444p0gwh+TZfPbpBbkuC9SkM88cyoRxaP1s23heQa7LgjWQjikSABx+H1lWJMbGxnD++efj5Zdfxoc+9CHMnz8fTz/99JTjwuEw1qwpgknVUcFJsGD519+fRMDZ36fS5MkCNY663ipOnsFqZ12ZlbZxCFZD9jkkUcYBn7M76LwTrAGc6sap6YAnD+7DHLCsSGzatAkvvvgiAODrX/86vv71r0973NVXX42f/vSn+ZndDDBNB6qbgeFeFF2r1n1AqL64YxYY5vUDoboCt2PPgi/kmOm4YPjD5j8n0rKCtWDeQPHHLSShOsDjS7cPLyYMqG4E04sXEFgUqppMv3rR404YWG1bwbJcnILVNEMe2uZINgyr63C0qiWg0GvjTW96k9k/YJZ/xVAiMvDGuXDCNMca5jr+hysEvMGZHg2sYV7FyZMxBtYwz5GxzeeisnBOntKx56KQMM7BGuY4MLJ0aNzCwjQPWF0bnEifYPXOy7O81cJATdrkWMQ/HtfA6iqg9v50VDWaQUPFRPOA1bYUd8wiwWqaAb3ILZM9fvPvWIGwurbiZ/f4q4BgbXHHLBKsvsN0MxRvRCBU73hgYKFgTiicNS2mNdlhylqRYIyBz1lVVD2Cta+oPDNnGlOexW3xy+esBqu01M80jGvFl+fcNWYUeQXCNA9Yx8pijgg+Z1XFWcsyMI8frG1pEQdk4B3FT/ksFswXAmteWLwBNR28bVnxxpuBsl9xmC8E1rKkOINVN4HVVObuOQMLVoM1LSjOYHXtYFXlW1THCixcD9QVpxsna5xfcUGWR8NrWszYqCLAWhdX7O45A6vrMONPirAbY+3LKy925yhY0/yixXvxjlVgxbZ4ZqHsFQkgbVKqaS3kCIAvBN6xsmJ3JxNhzQuBcIHN44GaktGmCw1vW1p483i4Aax5UWHHKBF4x8rC1yGoaXEsxqWYMMbA564BvH4UVJmo6wCrbSvc9UsExjj4vGPTLs3CyZM1LSip7tOVoUgwBj5nJVBbIGXCHwJfeDyYVpkujaMxH4ZjCudrD9aAL1hXsS6No2FcA5+/FihUm/RwA/i8YyouEj4bTNPBFxxfuJ1fTUtFuzSOhule8IXrgUJZC+o6wNuXu0eeXr8pT09hrAWsaUHJbRqYlNLR9Ox8IqWEPLwXsntX5pPcL1rTaj4EmsMlpB1ASgHZvQvy8Owd8yxT1wHettQ1SsREpBCQXdsh+w/k7ZqscT5Yy6KKjYuYCWmkIA5tBQa78nRFBta80FyoXfLSm4g0khAHN6dT6nOFmf/XsqRis9xmQybjEAfeAMb683A1BjAG1r4cvASD/StKkcggY6MQB98AcmlNrXtNV0aFRsCrIKPD5gMRH7N/EY/f3OWF6vI3sTJFjg1CHHg9t9bDvqAZqFphhZLsIEf6zOc9lbBxNoNZsrnKvD8rPCbCCnKoB6JzC2DYaRaTlmew1lw/fUXOAisxpJSQg12Qh7ba7G2Slme4AbxjBZjDhaeyUZGKBGD+ATHaB9F3ABjtS3+a/qNMYcLn/jBY/Vyw2hZX7pqzIaUAhg9D9B+YULTKgjwD1WANc8Cqm0meE5BCQA73mNaJ8Z4HFuQZqgWvn2MG/rrQCpENKQzIoW7IvgNALLOBsCDPcAN4fQdQ1ejKXXM2pJEyX4D9ByZsICzIs6oJvKHDTPMkeY4jU0nIwUOmPBPTt4Y/QkaeDKhpNu/PYG1Jy7NiFYmJyETMbEgVGzbryydjgJRmK3LNY+7qAlVgwVrHauqXEzIegRwbPCLPVPyIPHXvZHnSDm9WZHzMvD+jo5DRIXNnPS5PH1iwGvBXgYXqXL/Ds4KMjUCODQGxEcjIkLmzzsjT4z9yf4bqKj6LIFeklEfkGB2BjA5Plqc3YMrTXwUWrgfzFK9lfTkipQSiw5PlKVJpeXJTnsEJ8iyRrIzZcIUiQRAEQRBEYSDbKEEQBEEQtiFFgiAIgiAI25AiQRAEQRCEbUiRIAiCIAjCNqRIEARBEARhG1IkCIIgCIKwDSkSBEEQBEHYhhQJgiAIgiBsQ4oEQRAEQRC2IUWCIAiCIAjbkCJBEARBEIRtSJEgCIIgCMI2pEgQBEEQBGEbUiQIgiAIgrANKRIEQRAEQdhGd3oC+cB73E1gXAPjGrjuBdM08MzPnB/5zuMd/1nTj/w89TsdjDMwxqDpHIwzcMbAeOa/kf07xsA4xn/m3PzOq3NonEHjDL4JP2ucH/mOmcfp6e+8k46b/N8ezqExgKfP83BzLJ7+WUv/rDHAo3FwBvM4LfN5+liNgTGAg0HjmPwzYP5u6XM5w+SfAfO6nI0fyyEBKcCkAKQAhDHh5xQgsn/HpADEUZ9LAZlKAsIAhAGZNH+WwgCEgEwlzP81DCCVgEyfD2GMn2d+l4QUBqQQkIaASKYgDfNnI5mc8PORz6UQEIkUxPg5R44T49eQEIaAkUyfY0gIQ8JIGuPfiYR5vBTmdyJhQBgSUggYicz1JIyUgCElDAkYUiIhJv6MrN8lJ3xuSKS/M3/+ttzj7MOZB+j5puebnu/Sfr7JIkEQBEEQhG1IkSAIgiAIwjakSBAEQRAEYRtSJAiCIAiCsA0pEgRBEARB2IYUCYIgCIIgbEOKBEEQBEEQtiFFgiAIgiAI25AiQRAEQRCEbUiRIAiCIAjCNqRIEARBEARhG1IkCIIgCIKwDSkSBEEQBEHYhhQJgiAIgiBsQ4oEQRAEQRC2IUWCIAiCIAjbkCJBEARBEIRtSJEgCIIgCMI2pEgQBEEQBGEbUiQIgiAIgrANKRIEQRAEQdiGFAmCIAiCIGxDigRBEARBELYhRYIgCIIgCNuQIkEQBEEQhH0kMYlYLCbvvPNOGYvFnJ7KtJTy/Ep5blLS/IjSl3Epz6+U5yYlzc9JmJRSOq3MlBLDw8OoqanB0NAQqqurnZ7OFEp5fqU8N4DmR5S+jEt5fqU8N4Dm5yTk2iAIgiAIwjakSBAEQRAEYRtSJAiCIAiCsA0pEkfh8/lw5513wufzOT2VaSnl+ZXy3ACaH1H6Mi7l+ZXy3ACan5NQsCVBEARBELYhiwRBEARBELYhRYIgCIIgCNuQIkEQBEEQhG1IkZjARz/6UZx55pl417vehUQiMem7aDSKSy+9FBs2bMD555+P/v7+kppfhnvuuQcnnHCCo/NJpVK44YYbcOaZZ+LDH/5wUeaiMr8MxZTVdGSbXynca5UIPd/5mQ8939Zw0/NNikSaF198EV1dXXjyySexatUq/PKXv5z0/SOPPII1a9bgiSeewDve8Q788Ic/LKn5AcDIyAhee+01x+fzm9/8BnPmzMGTTz6JSCSCv//970WZk9X5AcWV1XTMND+n77VKhJ7v/M2Hnu/ZcdvzTYpEmk2bNuGCCy4AAFx00UVTHo6lS5ciEokAAAYHB9HU1FRS8wOAr33ta/jABz7g+HyszNXJ+QHFldV0zDQ/p++1SoSe7/zNh57v2XHb8607PYFSYXBwEO3t7QCAmpqaKeamxYsX47XXXsOaNWvAGMMzzzxTUvMbGhrCq6++ittvv93x+QwODo7Xkp9urk7Pr9iymo6Z5uf0vVaJ0POdv/nQ8z07bnu+XWeR6OrqwhlnnDHln5QSw8PDAMyboL6+ftJ5DzzwAM4++2y89tpr+MxnPoPPfvazJTW/r371q7j11lsLMqfpqKuryzqfmb4rhfkVW1bTMdP8inWvVSL0fOcHer5zw23Pt+sUidbWVjz11FNT/l188cX44x//CAD4wx/+gNNPP33KuZmboba2FoODgyU1vx07duDuu+/GRRddhO3bt+MLX/hCQeaX4ZRTTsk6n5m+KxYzzaHYslKdH1Cce60Soec7P9DzXbj5ARX4fDvXwbz0+MhHPiLPOOMMec0118h4PC6llPK9732vlFLKoaEhefHFF8sNGzbI008/XW7durWk5jeR9evXOzKfzFySyaS87rrr5BlnnCE/+MEPFmUuKvObSLFkNR3Z5lcK91olQs93bvOh51sNNz3fVCKbIAiCIAjbuM61QRAEQRBE/iBFgiAIgiAI25AiQRAEQRCEbUiRsMkPfvADMMbAGMPjjz8+5XspJZYsWQLGGM4+++wp3w8PD+Puu+/GCSecgOrqavh8PixYsAA33XQTXnjhhWnHme7fdGNPx3nnnYebb77Z5m+bG2efffa0MigFMvLds2dPXq977bXX4oorrsjrNYmpTPf3u+GGG7BgwQJb1/v0pz8NxhgOHz6cnwkWgf7+flx99dVobm4GY2z8vtuzZw8uueQS1NfXgzGG2267Tem6g4ODaGxsxH//93/nba6Fet6KTeY+yTdnnXWW8t+pFKCCVDlSVVWF733ve1NelE888QR27tyJqqqqKefs3LkTF1xwAXp6enDzzTfjM5/5DMLhMPbs2YOf//znWL9+PQYHB1FTUzN+zve//32sWLFiyrVWrVo16xwfeugh/O1vf8ODDz6o/gsStvj0pz+NFStW4NFHH8W5557r9HRcxR133OFoD4hic9ddd+FXv/oV7r//fixevHg8tfBf/uVf8Mwzz+D+++9Ha2sr2tralK77mc98Bu3t7bjqqqsKMW1iGu666y6cf/75uOWWW7B8+XKnp2MZUiRy5KqrrsKPf/xjfPOb3xyv9gYA3/ve93DqqaeOFyXJYBgGrrzyShw+fBibNm3CmjVrxr/bsGEDrr/+ejzyyCPweDyTzluzZo3tBjSf//znceWVV6Kjo8PW+YR1IpEIgsEgFi9ejIsuughf+MIXSJEoMosXL3Z6CkXltddew+LFi/Gud71ryucnnXSSLctYf38/vvOd7+ArX/lKQXbexGQy68aGDRuwfPly3HvvvbjvvvucnpZlyLWRI+985zsBAD/96U/HPxsaGsL//M//4Kabbppy/K9//Wu8+uqr+MQnPjFJiZjIxo0bEQwG8zK/F198Ef/4xz9w7bXXTvo8Y2J87LHHcMstt6CxsRENDQ14y1vegs7OzknHCiHwxS9+EStWrIDP50NzczOuu+46HDhwYNJxUkp88YtfxPz58+H3+3H88cfjkUcemXZew8PD+OhHP4qFCxfC6/Wio6MDt912G8bGxiz9Xr///e9x3nnnoaamBsFgECtXrsQ999wz6Zj//d//xamnnopgMIiqqiqcf/752LRpk6Xr33///Vi7di38fj/q6+tx5ZVXYvPmzZOOueGGGxAOh/Hqq6/iggsuQFVVFc4777zx76+99lr8+c9/xs6dOy2NSeSH6VwbjDHceuut+OEPf4iVK1ciGAxi7dq1ePjhh2e93pYtW7Bo0SKcfPLJ6OnpmfXYd77znWhpaYHP58O8efNw3XXXIR6Pjx/z2muv4fLLL0ddXR38fj/WrVuHBx54YMq1ZntG9uzZA8YY/vznP2Pz5s2T3J2MMezYsQOPPPLI+Ocq7oQf/OAHSKVS01ojnnvuOVx22WWor6+H3+/Hcccdh5///OdTjnv66adx+umnw+/3o729HZ/4xCeQTCanHBePx/GRj3wEra2tCAaDOOuss/D8889jwYIFuOGGGyYd29XVhfe9732YM2cOvF4vFi5ciM985jNIpVKWfq+f/OQnOPXUUxEOhxEOh7Fu3Tp873vfm3SMlWd/Oqyuk2effTbWrFmDv/71rzjttNMQDAYnvSuuvfZa/OQnP8HIyIil36kkcLaMRfny/e9/XwKQzz77rLz22mvlSSedNP7df/7nf8pQKCSHh4fl6tWr5YYNG8a/e+973ysByM2bNyuN8/TTT8tkMjnpXyqVmvX8z372s1LTNDkyMjLtdRctWiQ/+MEPyj/84Q/yu9/9rqyrq5PnnHPOpGMzc7711lvl73//e/ntb39bNjU1yblz58re3t7x4+68804JQL7nPe+RjzzyiLzvvvtkR0eHbG1tnSSDsbExuW7dOtnY2Ci//OUvyz//+c/ya1/7mqypqZHnnnuuFELM+Dt997vflYwxefbZZ8uf/OQn8s9//rP81re+Jd///vePH/PjH/9YApAXXHCB/PWvfy1/9rOfyfXr10uv1yuffPLJKXLYvXv3+Gef//znJQD5zne+U/72t7+VDz74oFy0aJGsqamR27ZtGz/u+uuvlx6PRy5YsEDec8898i9/+Yv8wx/+MP59d3e3BCC//vWvz/xHImwz3d/v+uuvl/Pnz590HAC5YMECedJJJ8mf//zn8ne/+508++yzpa7rcufOnePHZe7hzH39+OOPy7q6Onn55ZfLsbGxGefy0ksvyXA4LBcsWCC//e1vy7/85S/yRz/6kXzHO94hh4eHpZRSbtmyRVZVVcnFixfLBx98UP72t7+V73znOyUA+X/+z/8Zv5aVZyQWi8lNmzbJ4447Ti5atEhu2rRJbtq0SQ4NDclNmzbJ1tZWefrpp49/HovFLMv13HPPnbSmZXj00Uel1+uVZ555pvzZz34mf//738sbbrhBApDf//73x497/fXXZTAYlKtWrZI//elP5UMPPSQvvPBCOW/evCl/r3e+852Scy7/7d/+Tf7xj3+UX/3qV+XcuXNlTU2NvP7668ePO3TokJw7d66cP3++/M53viP//Oc/y7vuukv6fD55ww03zPo73XHHHRKAfMtb3iJ/8YtfyD/+8Y/yy1/+srzjjjvGj7H67Gfuk4lYXSc3bNgg6+vr5dy5c+U3vvEN+dhjj8knnnhi/PtnnnlGApD/+7//O+vvVCqQImGTiYrEY489JgHI1157TUop5Yknnjh+Yx+tSFx00UUSgOWHOjPOdP80TZv1/I0bN8oVK1Zkve7El6+UUn7xi1+UAOShQ4eklFJu3rx52uMyN/u///u/SymlHBgYkH6/X1555ZWTjvvb3/4mAUySwT333CM55/LZZ5+ddOwvf/lLCUD+7ne/y/r7jIyMyOrqannGGWdkVTgMw5Dt7e3ymGOOkYZhTDq3ublZnnbaaVPkkFnYBgYGZCAQkBdffPGka+7bt0/6fD55zTXXjH92/fXXSwDy/vvvzzrfjo4OedVVV2X9nsgNFUWipaVl/IUupZRdXV2Scy7vueee8c8mKhI//OEPpdfrlR/60Icm3UfZOPfcc2Vtba3s6enJeszVV18tfT6f3Ldv36TPN27cKIPBoBwcHJRSqj0jGzZskKtXr54y1vz58+Ull1wy67ynIxgMyptvvnnK5ytWrJDHHXecTCaTkz6/9NJLZVtb27icrrrqKhkIBGRXV9f4MalUSq5YsWLS3+v111+XAOTHP/7xSdf76U9/KgFMUiTe9773yXA4LPfu3Tvp2P/4j/+QAOTrr7+e9ffZtWuX1DRNvutd78p6jMqzf7QiYXWdlNL8ewGQf/nLX6adRyKRkIyxKTIpZci1kQc2bNiAxYsX4/7778err76KZ599dlq3Ri48+OCDePbZZyf9s9I1rrOzE83NzVm/v+yyyyb997HHHgsA2Lt3LwDgscceA4ApJsaTTjoJK1euxF/+8hcAZtvcWCw2xU972mmnYf78+ZM+e/jhh7FmzRqsW7cOqVRq/N+FF144aybK3//+dwwPD+P9739/Vt/t1q1b0dnZiWuvvRacH7nFw+Ew3vrWt+Lpp58eb+N7NJs2bUI0Gp3y+86dOxfnnnvu+O87kbe+9a1Z59vc3IyDBw9m/Z4oHuecc86k4OeWlhY0NzeP3+sTufvuu3HDDTfgC1/4Ar72ta9Nuo+mIxKJ4IknnsA73vGOGdtCP/roozjvvPMwd+7cSZ/fcMMNiEQi4663XJ6RXBkcHEQkEpmybuzYsQNbtmwZf8Ynzuviiy/GoUOHsHXrVgDmunHeeeehpaVl/HxN06a4Sp544gkAwDve8Y5Jn7/tbW+Drk8O4Xv44YdxzjnnoL29fdLYGzdunHSt6fjTn/4EwzBmbC1u59nPYHWdzFBXV5c1dsrj8aC2tras1g0KtswDjDHceOON+PrXv45YLIZly5bhzDPPnPbYefPmAQB27949bRZGNlauXGkr2DIajU56mI+moaFh0n/7fL7x8wCgr68PAKaN+G5vbx9fhDPHtba2Tjnu6M+6u7uxY8eOKQGlGWZKvevt7QUAzJkzJ+sxs81ZCIGBgYFp41BmO/dPf/rTpM+CweCkINuj8fv947IknOXoex0w7/fp/j4/+tGP0NHRgauvvtrStQcGBmAYxoz3JWDeX9nurcz3QG7PSK5k5OH3+yd93t3dDQD46Ec/io9+9KMzzquvr8/SWpD5fY9eo3Rdn/L36u7uxm9+8xvH1o2jn32Vc49WVmfLoCm3dYMUiTxxww034FOf+hS+/e1v4+6778563IUXXoj77rsPv/71r/Fv//ZvBZ9XY2Mj+vv7bZ+feZgPHTo05SHs7OxEY2PjpOO6urqmXKOrq2tS8FtjYyMCgQDuv//+rHPORma3d3QAU7Y5H01nZyc456irq7N17tFzmy2ivb+/33ZNA8I5fv/73+Oqq67CmWeeib/85S9TrGpHU1///7d37yFNvX8cwN9fx+Z0qyMqaonaxVwQLkrDqeU1NEGRIgPN0j+0iEhaKZTpzAwsxQoq0qIoaYGoFEpSioWEGgXBzAtkF8sIpItWVgbq5/eHbD/nLk2tb/nt84L9M5+z85zL8+zxOed95gyRSGT1vAQmzi9L5xbw/3N/Nm1ktvRtYGq/oV/nwYMHsWnTJrPL6iOLLi4uFvsCc+saGBgwSpWNjo4avpwnr1+pVFrsX/WDMXMm9xtTZ4Om1sXWtm9pWWv9pN6P+o3BwcFfeox/Nr608ZN4enoiJycHCQkJSEtLs1guMTER/v7+KC4uRmdnp9kyt2/ftjj1Pl3Lly/H8+fPZ7y8fvrt6tWrRu8/fPgQPT09hpSCSqWCVCqFVqs1KtfW1mYyGo+Pj8ezZ8/g4uKCwMBAk5e1L96QkBAIgoDy8nKQhd+bUygU8PT0xLVr14zKfPnyBbW1tYYkhznBwcFwcHAw2d7Xr18bpqVtNTo6iv7+fpue9cH+LD4+Prh37x7s7e2xbt069Pb2Wi3v4OCA8PBwVFdXW/3PODo6Gnfu3DFJRlVWVsLR0REqlQrA7NrIbEkkEixZssQkbaRQKLBs2TLodDqzdQoMDDRcOoqMjERzc7NhFgOYiL5XVVUZfWZYWBgAmLxfU1NjksSIj483RF3NrdvaQCImJgYikQjnzp2zWGY2bd/WftIWb968wcjIyJzqN3hG4iey5XfvRSIRrl+/jpiYGAQHB2PXrl2IjIyETCbDy5cvUVNTg/r6egwODhot19nZaTbitHTpUqvXZCMiInDp0iU8efIEfn5+094mhUKBHTt24PTp07Czs0NcXBz6+vqQn58PLy8vqNVqABPX/LKzs3H06FFkZGQgKSkJ/f39OHz4sMl05t69e1FbW4uwsDCo1WoolUqMj4/j1atXaGxsxP79+xEUFGS2PnK5HGVlZcjIyMD69euRmZkJd3d3PH36FDqdDmfOnIGdnR1KSkqwdetWxMfHY+fOnfj+/TtKS0sxNDRk9Tg5OTkhPz8fubm52L59O5KTk/H+/XsUFhZCKpWioKDA5n3X0dGBr1+/IjIy0uZl2J9jwYIFaGlpQWxsLMLCwtDU1GQxsg0AJ06cwNq1axEUFIQDBw7A19cXAwMDqKurQ0VFBebNm4eCggLDtX6NRgNnZ2dotVrcvHkTJSUlhofQzaaNWNLS0oLo6GhoNBpoNBqrZSMiIsxGtysqKhAXF4fY2Fikp6fD09MTHz58QE9PDx49eoTq6moAQF5eHurq6hAVFQWNRgNHR0ecPXvWJN69YsUKJCcno6ysDCKRCFFRUejq6kJZWRkEQTC6N+XIkSNoampCSEgIsrKyoFAoMDIygr6+PjQ0NKC8vNzipYtFixYhNzcXRUVF+PbtG5KTkyEIArq7u/Hu3TsUFhbOqu3b2k/a4v79+wAwt/qN332351w1ObVhzdTUht7Q0BAVFRXR6tWrSS6Xk1gsJm9vb0pNTaXW1laT9Vh6Xbhwwer6P378SHK5nEpKSmyqvz6BcvfuXcN7Y2NjdPz4cfLz8yOxWEyurq6UmppK/f39RsuOj49TcXExeXl5kUQiIaVSSfX19RQeHm6yD4aHhykvL48UCgVJJBISBIH8/f1JrVYb3eltSUNDA4WHh5NMJjPEzCbH54iIbty4QUFBQSSVSkkmk1F0dLTRvp28Hybf9U80ETFVKpWGuiUmJprcFZ6WlkYymcxiHfPz88nV1XVasTs2PdNJbezevdtkeR8fH6NkwNT4J9FEWw0NDSVnZ+cftvfu7m5KSkoiFxcXkkgk5O3tTenp6UbnwOPHjykhIYEEQSCJREIrV640ik7q2dpGbE1t6Nt2QUGB1W0gImpubiYA9ODBA5O/6XQ62rJlC7m5uZFYLCYPDw+Kioqi8vJyo3Ktra2kUqnI3t6ePDw8KCcnh86fP29yvEZGRmjfvn3k5uZGUqmUVCoVtbe3kyAIpFarjT7z7du3lJWVRYsXLyaxWEzOzs4UEBBAhw4douHh4R9uV2VlJa1Zs4akUinJ5XJatWqVyb63pe2bi3/a2k9aOl5627ZtI39//x9uy5/kHyIL88PsP2PPnj1obm5GV1cXP6XuXzI2NgZfX1+kpKRYvWeGsT+VUqlEaGio1csBv0pbWxtCQ0Oh1WqRkpLyr6//d/n06RMWLlyIkydPIjMz83dXx2Y8kPgLDAwMwM/PDxcvXsTmzZt/d3X+CleuXEF2djZ6e3vh5OT0u6vD2LTdunULGzduRG9v7w/TKLPR1NSE9vZ2BAQEwMHBATqdDseOHYMgCOjo6DBJj/yXFRYWoqqqCh0dHSbx1z/Z3KkpmzF3d3dotVqT+y7YrzM+Pg6tVsuDCDZnbdiwAaWlpXjx4sUvHUjMnz8fjY2NOHXqFD5//gxXV1fExcWhuLj4rxpEABP74vLly3NqEAHwjARjjDHGZoHjn4wxxhibMR5IMMYYY2zGeCDBGGOMsRnjgQRjjDHGZowHEowxxhibMR5IMMYYY2zGeCDBGGOMsRnjgQRjjDHGZux/5zH/4dTB/aQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -309,12 +309,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "Contemporaneous I(1; 2)=0.269 != I(2; 1)=0.000 due to conditions, finite sample effects or masking, here edge color = larger (absolute) value.\n" + "Contemporaneous I(1; 2)=0.286 != I(2; 1)=0.000 due to conditions, finite sample effects or masking, here edge color = larger (absolute) value.\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNZElEQVR4nO3deZwcdZ0//tenqs/puY/MZHLfJBBCIEIgQcBwKYuIP9SvIIK6sAobdEVYWXWRiAKiqCt4K6AiLgKirnIoAga5AiQkIfdFrskx99XTR9X790d1d6bnPrq6qrtfz4djevr6vKeZnnr1pz6HEhEBERERFSzN6QKIiIjIWQwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4BgGiIiIChzDABERUYFjGCAiIipwDANEREQFjmGAiIiowDEMEBERFTiGASIiogLHMEBERFTgGAaIiIgKHMMAERFRgWMYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiAocwwAREVGB8zhdgN3ENCCdrTA7m4FoD8Q0ANMAoKA0HdB1qKIyaCWVgL8ISimnSyYiIsqqvAoDIgJpPQzj6D6YHU2Q9kZIdzsgcuxOvQ/2kvo/i8cLVVwJrawaWmkN9LoZUP6ibJVPRETkCCXS+0iZm8yOZhgHtiG+fyvQ02kd8Pse6EdDaYCYABS06snQJ8+zgoHHl8GqiYiI3CFnw4CYJox9mxDfvQHS2ZwIAHb8KAqAAEqDVjcD3tmnQCursaEdIiIiZ+RkGDCOvIPY26shXW3ZbTgROPQp8+GddxpUIJTd9omIiGyQU2HAbG9CbNOLMBv3I/WJ3QlKAUqDZ84SeGaeBKXn1dALIiIqMDkRBkRMxLetQXz76zaeDhijQAj+Je+FVl7rdCVERERj4vowINEeRNc+A/PoPqdLGZhSABS8J54Nz5T5TldDREQ0aq4OA2a4A9FX/tB/eqBLeWafAs+807hWARER5RTXhgGzoxmRV/4ARMM5EQSS9MnHwbvoHCjFxR2JiCg3uPKIJdEeRF79U84FAQAw9m9BfNsap8sgIiIaMdeFARFBdO0zQKQr54JAUnz76zAO73a6DCIiohFxXRiIb3vNGiyYo0EgKfrmX2F2tTpdBhER0bBcFQaMw3us6YP5wIwjuubPkHjM6UqIiIiG5JowIIaB6Ft/d7qMzBGBdLYivvstpyshIiIakmvCgLF/szVgMM/Ed66FxKNOl0FERDQoV4QBMQ3E8uX0QF/xKOJ7NjpdBRER0aBcEQaM/VuBni6ny7BNfOebHDtARESu5YowEN/xhtMl2CsWgbF/i9NVEBERDcjxMGCGO6zlhvOagnF0r9NFEBERDcj5MNB00OkSskBgNh2ES1d+JiKiAud8GGhpAGxexz9uGDj+mq/ixh//rt9tK+97GMdf81Ucae2wtQbEo5DOFnvbICIiGgPnw0DjAUBMW9vw6DpuvOw8PPjXl9HU3pm6/u7fPY0n/rkOT3z1M5hQXmJrDQBgNjfY3gYREdFoORoGxIhBsrRk78fecxoqS0L48Z9XAwB++/wa3Pnbp/C7r/wb5kyqtb8ApWC2HrG/HSIiolHyONp6LHuL8fi8HvzH/3cu7vztkzh5zlRc9/3f4Bef/ziWzp+ZnQJEgHgkO20RERGNgsM9A/GstveJ88+Apmm47Gs/wqqPvx8fWLY4q+1n++clIiIaCWd7BrIs4PPirIVzsL+xFf9+yTnZL4CzCYiIyIUc7RlQevazyMY9B/GuudOy3i4AKI/XkXaJiIiG4uxsAo8vq82FI1Fs3X8Yi2dPzWq7AAClsv7zEhERjYSzPQMeL1RRWdbaW797PwzTxEmzpmStzRQRaOUTst8uERHRMBxfZ0CrnmT7okNJa3fuQ3HQj9n1NVlpry+tcqIj7RIREQ1FicNr5Mb3b0Vs3d+cLCE7PF4ELrgGSimnKyEiIkrjfM9AQXxaVtAq6xkEiIjIlRwPAypYAgTtXwrYWQK9xoFxCkRERCPgfBhQCt7Zpzhdhr08PuhT5jtdBRER0YAcDwMAoE8+DvAXOV2GbTyzFkNxWiEREbmUK8KA0vX87R3QvfBMX+h0FURERINyRRgAAH3qAsAXcLqMDFPwzFwE5fU7XQgREdGgXBMGlO6Bb+HZTpeROUpBFZXAMzO7myERERGNlmvCAADoE2fBMytPDp5Kh+9dF0F5OVaAiIjczVVhAAA885ZCq6q31vLPYb6TVkArqXS6DCIiomG5LgwoTYPv5AsBXxBAbgYCz6zF0OtnO10GERHRiLguDACA8gfhP+1iwOvPuR4CrX42PPOWOl0GERHRiDm+N8FQzK42RF75A9DTCbi3zBR9xiJ4FyzjssNERJRTXB0GAEAiYUTfeApm80GnSxmEdeD3LjgD6GmHCpZAhcqhQuVAsBRK050tj4iIaBiuDwMAIKaJ+JaXEd+1zjpt4JqSFeALwLfkQuiV9TD2vQ05sqfXzZoVCBLhQIXKAX8Rew6IiMhVciIMJJmtRxB9ezWk5ZCzhSgFQMEzazE8s09OLTUs0TCMDc8BGOIl1b3HgkEyJHCpYiIiclBOhQEAEBGYh3YhuulFINyZ3cYTvRJa/Rx4558ObYDdFo3d6yDNB0b3vP4QVFEpVLAUKCqx/vUG2INARERZkXNhIEkMA/F3NsDYswHS3W7j6QMFQACloNVMhXfOEmgVdYPXFe6Asekf429W90IVlQJBKxyoolIgUMwxCERElHE5GwaSRATSdhTGwW2I798GRMPjDwa9Hq8qJsIzeR70ibOgRrh3grFjDaTtyNjbH7wwINCrFyFYYl325tueDkRElE05HwZ6EzFhNjXAPLoXZkcTzPZGoKfr2B0S5/p7PSJxej/xEmg6VKgcWlkNtNJqaBNnDngqYNg6OpphbHt5HD/JyKm6WdAnHZeVtoiIKD/lVRjoTaJhGHs2AGJC4lEgHgVMM/GJP/EjJ8OBxwt4fFC6B6qoDPrk8R1cRQTG1peArtbx/hhDK66APncplHLl2lFERJQjPE4XYBsjDmkZ4doEUesfSTxuvJRS0Opmwdz5xrifa1C6F/qMxQwCREQ0bjyS2ESV1QKBYtueX5txEpQvaNvzExFR4WAYsIlSClrtTHueu3YmtLIJtjw3EREVHoYBG6nKSUCmR/prHmh1szL7nEREVNAYBmykNA1a7YzMPqkZh7HlnxC7BycSEVHBYBiwmaqeCugZHqcZ6Yax5SWYh3YiTyeDEBFRFjEM2EzpHqgJ0214ZoF5YAvMHWsgsYgNz09ERIWCYSALtAkzAM2eWZzSfhTGptXWAktERERjwDCQBcrjg5owzb4G4hGY21+FcWALREz72iEiorzEMJAlWu1MwOZNhuTQThhbX4ZEum1th4iI8gvDQJYojw+qZrr9DXW1WqcNmvZzcCEREY0Iw0AWabUzbO8dAACYcZh73oK5600OLiQiomExDGSR8vqhamwcO9CHtB6CsekfMFsPZ61NIiLKPQwDWabVzgSyublQPApz5+sw9qyHZGATJiIiyj8MA1k2bO9AppcvTpCmfTA2/QPS0WzL8xMRUe5iGHCAVjdI70CwFPoJZ0ObPB9QKvMNR8Mwtr0MY/9miGlk/vmJiCgnMQw4QHkDUDVT06/UPNBnngyl6dBqZ0KftwzwF9nSvhzeBWPzPyHd7bY8PxER5RaGAYdotbPSege0aQuhAqHU9ypUBn3+cqjKensK6OmAseVFmId2cAoiEVGBYxhwiPIFrE2MYG1mpA1w0Fe6F9r0k6BNX2TPlEQRmAe2JhYq6sr88xMRUU5gGHCQVjcLCJVDm7Jg0PsopaBVTYY+fzkQLLWnkK4Wa6Gio3vZS0BEVIAYBhykfAHoc5dCjeBTvwoUQz/uDPtWMTQNmHs3JHZB7LGnDSIiciWGAYeNJAj0vq8+9Xhos5YAHp8t9Uj7URhv/wNmS4Mtz09ERO7DMJCDtPJa6AveDVVea08DRgzmrjdhcDljIqKCwDCQo5TXD23mKYnBhR5b2pCWBhhvPw+zkWMJiIjyGcNADksNLjz+3VAlVfY0YsRhvrMBxrZXID2d9rRBRESOYhjIA8oXhDbnNGiTF9i370FnszXjoGE7xDTtaYOIiBzBMJAnlFLQamdYUxCLyuxpREyYB7fB2PwipLPFnjaIiCjrGAbyjAqWWFMQJ84GYMP+BoC1euHWl2Ds3QgxYva0QUREWcMwkIeU0qDXz4N+3OmAPzT8A8ZIjr5jTUNsPWRbG0REZD+GgTymQhXQF5w59JbJ4xXrgbnzDRg734BEuVgREVEuYhjIc9ZCRSdAm3Mq4A3Y1o60HoKx6QWYR9/hNEQiohzDMFAgtNIaa6Eiu3ZBBKxpiHs3wtj2MiTcYV87RESUUQwDBUR5vNBnLIY2YzGge+1rqLMFxubVMA5ug5iGfe0QEVFGMAwUIK2y3uolKK2xrxERSMN2GJtXQzqa7GuHiIjGjWGgQClfANrsd0GbfpJtmx4BAHq6YGx7xdrnINJtXztERDRm9ixqTzlBKQVVNQmqrAbm/s2Qpv22tSUtDTBaD0PVzYJWN2tUuzUSEZG92DNAUB4f9OmLoM05DfAX2deQmNapg43Pw2w+yFkHREQuwTBAKVpptTWWoG4WbFu9ELDWJti91tr8qLvNvnaIiGhEGAYojdJ06JOOs3ePg6TOZhibX4TxzgZIPGpvW0RENCiGARqQKiqFftwyaFMWADaf35fGvTA2PgfzyG6IcEdEIqJsYxigQSmloE2YAf34s6DKJtjbmBGHuW+TtU1ye6O9bRERURqGARqW8gWhzVpiLVbk8dvbWE8nzO2vwtjxOiTSZW9bREQEgFMLaYSUUlCV9VClNTAPbIY07rO1PWk7DKP9KFTtDGh1s6F0/qoSEdmFPQM0KsrjhT7tROhzl9q6PTIAayrioZ0w3n4eZtN+TkUkIrIJwwCNiSqpsrZHnjgbUDZOQwSAWATmnrdgbH0JJpc2JiLKOIYBGjOl6dDr50GffyZQXGl/g12tMLe9AmP7a1yfgIgog3gilsZNBUugz10KaWmAuX8zEOuxtT1pP2qNJ6iYCK1+LlSg2Nb2iIjyHcMAZURqgGF5LcxDOyGHdgI2rxkgLQ0wWg5BVU+BNnEOlC9ga3tERPmKYYAyyjp1MBdSNRnmgS2QlgabWxRr0aKm/VATplubINm5CyMRUR7imAGyhfIXQZ95sjXrIFhqf4NiQg7vslYybNgOMeL2t0lElCcYBshWqqQK+vzl0KaeAOhe+xs04jAPbrN2RjyyB2JyeWMiouEwDJDtlFLQaqZBP+FsqJrpsHVHxKR4BOa+t7lGARHRCDAMUNYojw/61OOt9QlKqrLTaDRsrVGwaTXM1sMMBUREA2AYoKxTwRJoc06DNvMUwBfMTqM9HTB3vg5j68sQLlxERJSGswnIEUopqIo6qLIayOFdMA/tBEzD/oa7WmBsewWqpBpq4myo4koou1dQJCJyOYYBcpTSdKiJc6CqplgbIDUfzEq70tEI6WgEQhXQJs6GKq1hKCCigsXTBOQKyheAPmMx9HmnA6GK7DXc1QJzxxoYm1+E2dLAMQVEVJDYM0Cuoooroc87HdJ2BOaBrUBPR3YaDrfD3PUm4A9ZPQWV9VCKWZmICgPDALmOUgqqvBaqbAKk+QDMg9uAaDg7jUe6YO55Czi4zVrNsGoylKZnp20iIocwDJBrKaWsg3FFPaRxL8yGHUA8kp3Go2GYezcCDduh1c6Eqp4KpfPtQkT5iX/dyPWUpkFNmA5VNRlyZDfMQ7sAM0vLDcci1k6MDTugTZhh1eHJwkqKRERZxDBAOUPpHmvmQc00a2fEI3ts3xkxxYjBbNgGHN4FVTMNWu0MKK8/O20TEdmMYYByjvL4oE+eD5kww9qUqHEfgCzNAjDjkMM7YRzZDVU9FVrdTKhsLZxERGQThgHKWcoXgD5tIaR2BsyD27KwXXIvYkKO7oHR+A5URT20CdOhQuXZa5+IKIMYBijnqUAx9JknQ7rbYB7YCmk/mr3GRSDNB2A0HwBC5da4goo6TkskopzCMEB5QxWVQZ9zKsyOJpgHtgBdrdktoKsV5u61wP4AtJppUNVTOK6AiHICwwDlHa2kCmreGZC2wzAPbgfC7dktINYD8+BWoGE7VGXiFEJRWXZrICIaBYYBykvWwkV1UGW1kPaj1hoFXS3ZLUJMSNN+GE37geJKKxSU1/IUAhG5DsMA5TWlFFTZBKjSGkhnM6Rhh7VBUbZ1NsPsbAZ8wWOnEDy+7NdBRDQAhgEqCEopqJIqoKQK0tUCs2EnpO1w9guJhq3xDAe3QVVNtnoLgiXZr4OIqBeGASo4KlQBffYSSLjdCgUt2dk2OY2YkMa9MBr3QpVUQU2YYfVgcBtlInIAwwAVLBUshT5zMaRnLsxDOyBNB5C1xYt6kY4mSEcT4CuCVjMVqmoSlDcw/ONEsHfvXjQ2NqKqqgrTp0+3v1giykscyUQFTwVC0Kcvgr7wHKia6YBTA/yi3TAPbIGx/u8wdrwOs/UwZIDlljds2ICLL74YNTU1mD59OpYsWYIZM2bg7rvvdqBoIsoHSkSy/1EoCyTcgfj6Z0f9OFVaA8/8ZTZURLlCYhGYh3dDjr6TvQ2RBuPxQ1VNglY9BSpQDAB473vfi507d+JjH/sYlixZgvr6etx22204fPgwXnrpJWfrJaKcxJ4Boj6U1w998nHQF74H2sS5gO7gLoXxCOTwLhhvv4D4lpdgNu5DY+NRnHrqqVi+fDnefvttnHDCCaisrESe5noiygKOGSAahPJ4oernQNXOgDTuhXl4FxCLOFdQVwvMrha8a2Y9fvjQQ3jooYcAACtXrnSuJiLKC+wZIBqG0j3QamdCP+E90GacBDi8IdE9n/9XPPvjO3Dbpz/maB1ElD/YM0A0QkrToConQaucZK1VcGQPpLkB2Z6B4PHoePcpC7H/SPriSdLTBbP1MFRZDVc5JKJRYRggGgMVqoA+owIyaT7MxncgR/cC8aizRRlRmDtfH3DQIRHRUBgGiMZB+QLQ6+dB6mZDWhpgHtkNdGd5Y6S+koMOD+8CgqXQKiZCVdZD+YucrYuIXIthgCgDlKZDVU2GqpxkDfQ7sgfScgh2nULYf7gR2/emr5zY2RXGG5t3YPG8mdC0xGmCcDvMcDtwcCtQVGYFg4qJDAZElIZhgCiDlFJAcSX04kpINAzzaOIUghHLWBt/euFVfPDGr/W7/u1de7H0ys/hwjNOwZ/+57b+D+xug9ndBhzYAoTKjwUDXzBjtRFRbuKiQ31w0SHKNDENSPMBmEf2AOGOcT/f9Xfch5e27sMjjzwCAJg/fz4aGhrQ2tqKJ554Av/1X/+F8Ct/gMejj+wJiyuOBYMRLINMRPmHPQNENlOaDlU9FapqirWN8pHdkNax75hYW1mO/ftfxi233NLvtr1796KmogyaNooNjzpbYHa2APs2QRVXWuMLyuugvP4x10hEuYVhgChL0rZRjnTDbNwHadoPxHpG9Tyf+fC/oKmtA3sO9t9tcXp5ELev+vyxMQOjJJ3NkM5mYO9GqJJqqMqJVjDw+Mb0fESUG3iaoA+eJqBsEhFI+1FI4z5I22HAlW9HBVVaDVVRZ22zzFMJRHmHPQNEDlJKQZVNAMomQGIRSPNBmI37gJ7xjy3InERgaT9qfVtUBlU2AVrZBOuyGsUpCSJyJYYBIpdQXj9U7QyoCdOtkf+N+yDNB53fObGv7jZIdxuMhu3WAkdlNVaPQWk1lJObOhHRmDEMELmMUgoIlUMPlUOmLIC0NFinETqbnS6tv3gE0rTfGvuglDUAsWyC9cXVD4lyBsMAkYslFzNC1WRIpAtm4/4xDTrMChFIRxOkownYvxnwh44Fg+JKqDEOaiQi+zEMEOUI5Q9BnzQPUj83BwYdAoh0WdMoj+wGNI91GqFsgnVagYMQiVyFYYAox6QNOoxHIU0HYDbty8iCRrYx45DWQ5DWQ9b3RWVWKCipggpVQGkjXCCJyAZiGkA8BkBgTbATKChAKUDTAd2b9wNlGQaIcpjy+I4NOuzpgNncAGk5CES6nS5taIlBiNKwA1AaECqHKqmCVlJlXWY4IBuICBCLQOIRSCwKiUeAWAQQc/gHe3zWIF+Pz7rsC+bV7ynDAFEeUEoBwVLok0oh9XOtDYqSwSAadrq8oYkJJBY7Mhq2A0qDSoQDxXBAGSCxCMxwByTcMfbZOfGo1RPX+zp/CFpRKZS/CErl9pgYLjrUBxcdonwiItY0xZaDkOYGdw48HI7SoIoroIqT4aCM4YCGJaYB6W6DGe4A4lF7G1MKKlACragMypeb42HYM0CUx9KmKU6ab22v3NIAaWmwukdzgZjHZik04Fg4SPYcFJVzpgKliIgVAjqaRtb9n5lGIeF2GOF2qEAxtJJqKE9urbnBMEBUINK2V568AOhsPhYM7P7klEm9wwGQFg4QqoAqKsu5P8SUGWZPF8z2oxndMny0pKcTRk8nVKgCWg5NqWUYICpASimgpAp6SRVkyvHWwTUZDBz8QzomfcMBYK1xECqHCpVBFZUDRaU8tZDHxIjDaDvsqoGz0tUCo7sNWnkttBxYgIthgKjAKWVtRITSasjURDBoPmhts5xrwSAp0gWJdEGaDySuUEBRCVRReSIklAOB4ryfLlYIJNoDo+UgYBpOl9KfmFbvW6gCWkmVq3/fGAaIKEUpDaq0BiitsQYfdrXAbDsCaTvi7nUMhiVAdzukux3SuNe6StOt9Q5C5daphVA54Au6+g82pTPDHTCTa1e4mHS1wIhHoVfUuXbWAcMAEQ2o9xgDTDoOEg1DEsFA2huzNzjLLqaRmtKYmlLl8UEVlVnTGRMhAR4fA4ILmV2t1viAXBHpgtF0AHplvStPWTEMENGIKF8QqmYaUDPNmrbV0ZQKB65fy2Ck4lFrq+b2o8cCgu4FgiVQwRKoQDFUsMT63uNzstKCZobbcysIJMV6YDQfhF412XUBk2GAiEZNafqxJZFFgJ5OSNsRmG1HgM4WAHm0fIkR69+DAFg9BsESa+xBIiwgUMKZDDaTWARm6xGnyxi7WA/MjkbopTVOV5KGYYCIxsVa/dA6GGp1s6xV2tqPJnoNnJ3mZat41JrB0NGUHhK8fqhACRAshgqUQAWLrddHZ0gYLzENGM0HkethU7paYXoD0IIlTpeSwjBARBmlPD6oyklA5aQ8G4Q4QrEIJBYBOhr7hIRAovcgBOUrAvxBKH8R4CuC0vmneDgiAqP10NiXE3YZs/Ww9V7x+p0uBQDDABHZqN8gxFjE6m5PrgvQ0+l0idkT64HEetLHIyR5fNZMhmQ48AcBf5EVGnwBVw44yzYJt7tqHYHxs8KNXj3VFeMHGAaIKGuU1w9VMRGomAgAhR0OeotHrdMO3W0ABugE9wYS4SAREnpdhjfgioOJnUQEZkez02VkXjwKiXRBuWBRIoYBInLMgOGgownS2QTpaC7ccNBXrMfqWUh8mxYWlAK8QcCb6HL2+K1xC15/atvd5HXQ9JwMDuPabdDlzI5mKH/I8f8uDANE5BrK64eqrAcq6wEAEuuBdPTqOYh0OVyhC4kA0W4g2p0WEgYcYqc0KxR4/VDJgOD1pS5b//oSwcHj+AEKSPQKdOZhr0BSPAKJdEMFQo6WwTBARK6lvAGGg0wS01oTIhoeWXDQvYDuAXSPNchR8yS+1wHNC6Xr1vep6/vezzPuUCE9nfk7IyXB7GyGxjBARDQyA4aDrlZIVxvQ1QrpbgWM/OxOzjoxgXjE+sLAgWHEE/y0PqFBadZufirxpWnW6Y607zWo4kpIrq90ORKxHohpODpQlGGAiHKW8gagyuuA8joAVpcyIt1WQOhuhXS1At3tub90cq4zjcRGQpHUVSMKEqYJ8QftqspVJBp2dCChO3dMICIaA6UUVCAErWoS9CnHw3PcMuiLL4A+fzm0qSdAVU0BXLTQCw1HsrIboWmaOOHMC3DL7XenXf/M86tRNO14PPqnJ22vQaI9trcxFPYMEFFeU0qzdicsKgMSK8CKEU/sYtiaOM3Qmj/7K+QRydK2xJqm4eaV/4bPfflruPnfr0VFeRneensz/t+1N+D2L34el138XttrkKizaygoEcntdR0HIeEOxNc/O+rHqdIaeOYvs6EiInIziUWsef5drZBwhzVwracLub70bU6rmJi1npx4PI4Fy8/HlR+6FJ/46Iew/OIP4eLzV+D7d3w1K+0DgF43y7EtjhkG+mAYIKIkMQ0g0gUJd1pz3Xs6IOFOzmLIlvI6oKg0a8395Fe/xVfuvAf1dbWYPnkSHv3FfdD17A3q0yfMcGxpaoaBPhgGiGg4YhpAT1eiB6EDCHda/+bVcrkukOUw0NnVhYkLl2LW9Gn45/89glBRUdbaBgC9Zrpju15yzAAR0SgpTQeKSqH6HKiskGD1Iki4M9GT0MHxCGOW3UWPbvjSKgBAU3MLdEem+Tn32ZxhgIgoQ6yQkBis2IsYcet0QyRsrRQY6bYW/ol0W70JnPo4MC17YeDWb34XT/7tebz4p0dw4Ueuxi8e/h2u+8THstY+AGuNBYcwDBAR2UzpngFDApBYGyEetdZHiHYDkXDi3+5EeAijYAcxZung+POHHsF3fvQLPPO7X2LR8fNxwzVX49s/+Bmu+dhH4PVmsdveweWfGQaIiByklDq2XwAq+t0uYgLRHkg0nB4YItZ+BIhFBnjW/KB0r+0x6Km/v4AbvnQbfv2De7D0lJMAANd/8krc86Of49eP/gGf+OhlNleQoOlcgZCIiAamlJbathglVf1uT/UsxCOQWNTa4TAehcQiVlBIXo5HgFgUOdXLYPNgujfWb8T/u/azuOPLN+PS912Qur60pBjXf+JK3H3fT/DxD1+alRkFypfdwYr92udsgnScTUBE+UpErE1/YpFeASERIpKXk6HBiGVl9b+hqKkLrXoKgFZaAy1U7lj77BkgIioQSinA4wM8PqgRLOYjYgKGAZhxawMoIw7pdTl5vfT5Pv1+hhUsxjBIUikF8Qas3o48p3zO7sHAMEBERANSSgM8GoBj3fVjHeKWFixErHBgmta/YkJSl4/dporLoaI9kHwPA0qzQpqDGAaIiMh2AwWLtNsHeZzm8cPobLatLjfQQuVWr42TNTjaOhER0RCU7hlwSmbeUArKwbECSQwDRETkalpx/ymX+UKFyh2dUpjEMEBERK6mdC9UMHt7FGSPghZyR9BhGCAiItfTSiohSsulVRKGpZVUuqJXAGAYICKiHGBCR2eoDlFvyOlSMsMfgnJJrwDAMEBERC4XjcfR1t0DEwo9/jLEdb/TJY2P7oVeXuv4DILeGAaIiMiVRATdkRg6wtFepwcUugOVMJQ7utdHT0GvmOia0wNJDANEROQ6IoLOnijC0Vj/25SG7mA1ZMxLIDlHq6iD8rqvZ4NhgIiIXMUwTbR19yAaH3xvBFPzoLuoOncGFCoFrXIStECx05UMiGGAiIhcIxo30NbVA8Mc/jAf13yIFFVnoapx0nToVVOg+Z3dmXAoDANEROQ4EUE4EkNHODKqT/sRzY94Sa1tdY2bLwi9ZporTw30xjBARESOMkXQ0RNF9wDjA0aiSzyQyimAz0WfvJUGrWwC9MpJrhssOBBuVERERI6JGyY6whGYMr6z/50xQVlFPRDrhtl21No22SGquAJaqBJKy53P2wwDRESUdSKCSCyOrkhmDtqmCDrCEZQWFUGvmQbpboPZ2QyYgw9CzDQVKIZWWg2lD7wzo5sxDBARUVYlpw0ONVtgLOKmiUgsjoDPa20AVFQGRMMwezog4U5AzIy2BwDwBqAVlUIFinPidMBgGAaIiChr4oaJzp7IiGYLjFbQ54Xfe+ywppQC/EXQ/UWQ0gmQSBekpxMS7Rn7aQRNAzx+aP4QVLA4J3sBBsIwQEREWRGJxdHZE8348yoAxUEffJ7BD2lKKahAMZCY5y8iQDwKSXzBiAEigAgEklgqWAGaDuXxWbMBPL6c/vQ/FIYBIiKylYigKxJFJJb58/eaUigN+qHroxusp5QCvH7XT/nLFoYBIiKyjWFaswXsOC3g1TUUB/3QXLThT65iGCAiIltEYnF09URtWTI46PMg6PO6aue/XMYwQEREGZXcbbAnFrfl+YsDvrSBgjR+fDWJiChjDNNEZziKuJn5aXyaUigJ+uEZ5fgAGh7DABERZUQ0bqCzJ4JxLiY4IJ9HRyjg4/gAmzAMEBHRuIgIwtEYwlF7TgsU+b0IeD0cH2AjhgEiIhozwzTR2RNF3LDntEBx0Aevnp9z+92EYYCIiEZNRBCNG7bNFvDqGooDfmgaewOygWGAiIhGxRRBlw17CyQFfV4EfTwtkE0MA0RENGKxuIHOnui4txweiFJAScAPr4enBbKNYYCIiIZl99oBHl1DScAHTeO0QScwDBAR0ZDs3GkQAAI+D4q4mqCjGAaIiGhAIoKeWBzdkTFu9zsMa7dBP3w8LeA4hgEiIurHME109UQRs2HKIADomoaSoA86Twu4AsMAERGlsXODIQAIeD0o8vO0gJswDBAREQBrymB3TxQRm6YMAtxkyK34X4SIiGydMggAumZtMsTTAu7EMEBEVMDs3lcAAPxeD0I8LeBqDANERAXKmjIYhWHDdsOAtYhQcYCzBXIBwwARUYHJRm+AV9dRHPBxb4EcwTBARFRAYoa1uZBdCwgBQMjvg9+r87RADmEYICIqAHYvJwxw7YBcxjBARJTn7J4pAABBnwdBLimcsxgGiIjylCmC7kgUkZh96wZoSqE46INX5yDBXMYwQESUh6KxODojMYiNvQF+j46igA8aewNyHsMAEVEeMU1BVySKqI2rCCoAIa4kmFf4X5KIKA+ICKJxw9Y9BQDAq2sIBThIMN8wDBAR5Ti7dxhMKvJ7EfB6OEgwDzEMEBHlKBGxdhiMxGxtR9cUigN+eHT2BuQrhgEiohxkmNZSwnGbewO43XBhYBggIsoh2VhKGEhMGQz44OW+AgWBYYCIKAckBwh2R2K2Lh4EcAGhQsQwQETkcnHDRHfE/gGCHBtQuBgGiIhcKhv7CSQV+bwI+DhToFAxDBARuUxqzQCbVxAEAI+uoZjrBhQ8hgEiIheJGya6IvbPEgCAkN8LP9cNIDAMEBG5gimCcJZOCXAVQeqLYYCIyEEigkjcQHckCpvPCEApIOT3wefR2RtAaRgGiIgcEjcMdPXEEDftPyXg8+gI+X3QNIYA6o9hgIgoy0xT0B2NIZKFUwJKKRT7vfBxh0EaAn87iIiyJLmXQHckZuvOgkl+r44ivw8aTwnQMBgGiIhsJiKIGdbqgYZpfwzgUsI0WgwDREQ2SoaAbEwVBICgz4sgFw+iUWIYICKygWGa6I7EEI0bWWnP59FR5PdyuiCNCcMAEVEGZXNwIGCdEggFrOmCRGPFMEBElAHZ2lq4N+4nQJnCMEBENA6pGQLRmO2LBiXxlABlGsMAEdEYJDcT6o7EYGYpBeiaQsjPWQKUeQwDRESjFEuEgGysHAgACkDQ70WAmwqRTRgGiIhGKG6Y6I5EEcvSNEEA8HsSCwdxGWGyEcMAEdEwDNNEOBJDJEvTBIHEKYGAD16dpwTIfgwDRESDMEwT4Wg8a9MEAeuUQJHfCz9PCVAWMQwQEfVhhYAYIrHs9QQAgN/rQZHPy1MClHUMA0RECU6cDgAAr66hyO+DR+dUQXIGwwARFTynQoCuaQj5vZwqSI5jGCCighU3rNMB2do/IElTCkV+L3weneMCyBUYBoio4DgVApSydhXkegHkNgwDRFQwnAoBABD0eRDweaExBJALMQwQUd6LGwa6o3HEHAgBfq+emCHAwYHkXgwDRJS3YoaBcCSW1RUDk7weKwRwhgDlAoYBIsorIoJY4nRA3IEQ4NE0FHGGAOUYhgEiygvJrYTD0XjWdhHsTdMUQj4rBHBwIOUahgEiymmmaaInFkdPNI7sRwBrhkCRzwe/lyGAcpcScSBCZ4iIwNi9FjAGWDfciEPajoz+ST0+qNLqAW/SKuuhVU0e/XMSUcY5OTMASEwT9HoR8HGaIOW+nO4ZUEpBeQMwj27L3JPGo5DmgwM1BjX1hMy1Q0SjZo0HMBCOxh0ZDwBwrQDKTzkdBgBAq5sN89AuwLR3VzGtZhqUv8jWNohoYE6PBwCsDx9Bn4chgPJSzocB5fVBq5sJ82AGewf6NaKg1c+17/mJaEBGYjxAxKHxAIC1dHDQ5+GWwpTXcj4MAPb3DrBXgCi7nB4PADAEUGHJizBga+8AewWIskJEEI0b6Ik5Nx4ASIYAL2cHUEHJizAA2Nc7wF4BInulTgXE4nBybpOmFIJ+L/xcJ4AKUN6EAVt6B9grQGQLt/QCAICuWT0B3E6YClnehAEg870D7BUgyizDSPQCxJ3tBQAYAoh6y6swkNHeAfYKEGWEm3oBAIYAooHkVRgAMtc7wF4BovGJGyYiybEAThcDwKtrCCZ2EWQIIEqXd2EgI70D7BUgGhMRQSRuIBKNI2463wsAAH6vB0GfB7rGrYSJBpN3YQAYf+8AewWIRieeGAsQdUkvgFIKQa8Hfp8HGnsBiIaVl2FgXL0D7BUgGhHTFETicURiBgyX9AJwPADR2ORlGADG3jvAXgGiwZkiiMYMROIjGwwoIti/bx/WrX0TO7Zvh2maOOc9K3DykiUZrcvr0RH0ejgegGiMcnoL4+EY+zaNrndAKXgWnccwQNRLcjZAJG4gNorlgdvb2vCBi9+H9evWAQCqqqqglEJbWxvWb9mGmpoJ464t4PUgwPEAROOW1+8grW42oI2884O9AkSWZADoCEfQ3BlGZ090VEEAAFb/4wWsX7cOjz76KBoaGtDY2IgXXngBsVgMu3ftGnNtmlIo8nlRURxEKOBjECDKgLw9TQCMcuwAxwpQgRMRazpg3EA0A4sCmYlxBFu2bMHvfvc7nH/++Vi6dOmYn0/XNAR9Ho4HILJBXocBYORjB9grQIVIRGCYgkgsjmjcgJnBs4ZnLF+O+QsW4I4770S4uxsLFy4c0/P4PDoCHA9AZKu8DwMj6h1grwAVGMM0EYlZPQCGac+woaqqaqx+ZQ0AYMHsGaN6rK4p+L0e+D0eaBoDAJHd8j4MAMP3DrBXgPJdsgcgGjcQjbtnKmBf7AUgckZBhIEhewfYK0B5SkQQM0zEEgEgk6cAMinVC+DlAkFETimIMAAM3jvAXgHKJ6ZI6uAfixuuWA1wMH6vDr/XA4/GXgAipxVMGBiwd4C9ApQHDNNMdf+7YVfA3tatXYun/vJndHZ2pl3/8K8eRHvTUVx22WUMAkQuUDBhAOjfO8BeAcpFIoK4eaz7364BgOPV2dmJD/zLe1EcCqGmpgbl5eXw+XyYNm0a/vHCC3jo179GIBDAJZdc4nSpRAWvoMJAWu8AewUohyTP/0fj1hRAl57+T9N05Ag6Ozrw5//7P7z73e9OXb9nzx4A1oqEW7ZsYRggcoGCCgPAsd4BrXoyewXItZKj/2OGde4/5rLu/8FoSsHnscYCLJg3G1VVVTj33HMHPBUQjUZx8sknO1AlEfWV13sT9CYigAggJswDW6GqJ0MFigHFwUvkDoZpIhY3rQBg5ManfwBQAHxeD/wevd+UwHfeeQdPPvkkDKP/UsYLFy7EmWeeyfcfkQvkZRiQWASIdEJ6uoBIFyTcAUS6ALE+XYlI+h8gjw8IFEMFSgB/CCoQsv7VdId+AioEZvKTv2EgFjddO/VvMMkeAC/XBCDKeXkTBiQahrQdhrQ0ANHuXrcoYMQTrHrfVwGl1dDK6oCSKgYDGrfe8/5jhnsH/g3F69Hh9+jcH4Aoz+R0GJB4DNJ2CNJ6CAi329eQ0oCyWmjldUCogn8EaUSSG/8kP/nHXbrq33A8uga/xwOfV+eiQER5KifDgJgmpGkf5MhuQEa3rerYJXoNgiXQJs6DKirLUruUK5IH/1QAyJFBfwPRNQ1+r9UDwC2CifJfToUBEQHaj8A8tB2IRZwtpqwWWu0sKF/Q2TrIESICM/XJ3woAbl3vf6Q0TcHv8cDvZQAgKjQ5EwakpxPmgS1AuM3pUhKU9b/qaVATZkAp/vHMZ5J24DcQN82cGe0/FF2zpgL6PB7omuIpMKIClRNhQNoOw9y/KTUbwHWCZdCmLoTy+p2uhDIgOcc/biYO/IaZk4P9BuPRtUQAYA8AEVlcHQZEBHJkN+TobqdLGZ7uhTZ9MVSwxOlKaJTM1Ll+I3XO37VvijFQsGYB+Dw6vB4OAiSi/lwbBkRM67RAa4PTpYyc0qFNWwRVXOF0JTSA3uf5DdNE3BQYRu7N7x+J5EqAXo/OdQCIaFiuDAMiAvPA5twKAikK2sxTONvAYaZYB/q4mTjwG5LzA/yGo2u9u/95/p+IRs6VYcBs2g9p2Op0GWOne6HNOQ3K48wYAhGBiDU6PN8lz+9bB/xjn/hd+GttC2/i/L+X5/+JaBxcFwakuw3mrjcw8lUD3UgBRaXQZpyc9VkGMcNAd08MPo+OoN+b1bbtlOziN8z0T/z5NLBvJDSl4NW11BgAfvonokxw1a6FEo/AfOct5HYQAAAButsgh3ZCTZyTlRYN00R3JIZo3FqEyYvc+5SY/JRvipn4tC8wEwf8fDyvPxLJwX/JAKApdv8TUea5KgyY+zcBRtzpMjJGmvZCiiuhSqrsa0ME4Wgc4Wgs7Xq3fmA2RWAmuvVNU2AkDvxmAR/w+0oe+L06z/0TUXa4JgxIdxvQ2ex0GRlnHt4Jrbgy43/QRQTRuIHuSGzAg6hTZ3+S3fnJg7vR58DP431/Hl2zAoDefwtgIqJscE0YMI/sxuh2GMwRPR1AVzNQnLnegbhhoisSRXyIte8zHQb6HuT7XpbE93n2X88Wuqbg1Tntj4jcwxVhQMIdQGeT02XYxjy8G3oGwoBpCrqjMURiw59KGUkWELEO3sKDvK00peD1WJ/8vbpeELM8iCi3uCIM5G2vQFK4DdLVAhUa22JEIoKeWBzhSGzEr5AhgnA0lppmmDywp10eUzU0HI+mwaMf++KUPyJyO8fDgBhxoOOo02XYTEFaD406DAw3LmC4x3ZHYsPfkcZFUyrtwO/R2O1PRLnH8TCAcLvTFWSBQLpaRvWIWCIExPN81bxckzzoezUNHnb5E1GecDwMSHcrsnGK4C//eBXvv/5Lg95+2fnvxm+//d/2FRANQ+IxKM/QCwHFDRPdkShiQwwOpOxILvBjBQBO8yOi/OX4CoTG7jeBUX5qHotwTwRtnV3pbRsmPvWVu7Fuyw789Wd3Y+HcmbbWoE09Eaq0ZsDb+i4aRNmllIJHU6kDv0fXuLsfERUMR3sGREyguy0rbQUDfgQDx/YKMAwDH7/lzqwFAUBBulv7hQHTtAb69YxghgBlhq5p8OjK+lezBvixu5+ICpmzpwmMOCDZ7w5PBoG/vfwG/vqzb2UhCACAALHIse8So/3DUYYAu2hKQdc1eLTEgT/xaZ9d/URE6ZwNAw4MjjMMA1clgsAzP7sbJ87LRhCwiGkcmyYYjXE1vgxRAPTEFD6PpkHXFUf1ExGNgrNhIMu9Askg8NdEEFg0b1ZW2zeVhvauHq7BP0aaUtA0BV1T0JWWCACKn/aJiMbJ2TCQxcVYkkHgmZdedyQIAIAGQWmRHz3ROMcIDEJT1sFe07TEQf/YZR7wiYjs4WwYUHpWmjEMA1f/11145qXX8fRPv4mTjpudlXb7UkqDpmkIBXwI+r2IROMIxwrvdIH1aT5xsO914OcnfCIiZzgbBnQPoHkA075PyaZp4ur/ugt/eO4l/O+3/xsTa6pwqDF9d8SaijLout3BRAH+otR3mlII+r0I+DyIxAyEo6NfZdCNlEp05ye/eh34NR7wiYhcyfl1Bt55C+hotO35X12/GcuuWDnkfRr/+QTKS4ttqyFJm74YqrhywNuSSw/3ROOuXHVw4IO8dWBPXuaBnogoNzkeBsyj70AO73CyhKzR5p8FpQ/dGSMiiBsmwtGY7asQKliL7VgHcfAgT0RUoBxfjliFygtj97xA8bBBALAOzl6Ptdd93DDRE40hMsZVCTWlEPB5Ugfz5AFfKZUKAkRERI6HAQRKrD7oPDhfPjg1pu2LPbqG4qAfQdNEJGbNQBjNy6QphaBv6L0QiIiIHN9oXWkaUD7R6TJsJlAV9WN+tK5pKPL7UBEKIuT3QR/h0rlSGH0uREQ0To6HAQDQaqY7XYKNFFBSAxUY/wBFlej2LysKoDToh9cz9AyIvO5sISKijHFFGFC+YKJ3IB/PYQu0CTMy+ozJcQWlQT/KQwEEvJ4BX7l8mKpIRET2c0UYAJK9A/l28FJAcRVUsMS2FvTEIkYVxUGE/N5+u+85PFmEiIhygGvCgPIXAeM4r+5OAq02OxshWacQvCgvCqAk6IdXt/7TMgsQEdFwnJ9N0Is2cS7M7jYg0o186CVQE+dCBUuz26ZS8Hl0+Dw6DNMEZw8SEdFwXNMzAABK06FNW5TVDYxsU1YHVTnZ0RJ0buNLREQj4LqjrvIFoU05wekyxkEB/hC0ScfxQExERDnBdWEAAFRJNVRt9rcYHj8F6FbvhtKysyMjERHReDm+N8FQzMa9kEPbnS5jhBTg9VubEfXanZCIiMjtXB0GAMBsOwzZ/7b7h8UHSqBNXwTl8TtdCRER0ai4PgwAgIQ7YL7zFhCPOF3KwCrqoU2cZy2tTERElGNyIgwAgMRjMA/vBFoOOF3KMR4f1MS50Mpqna6EiIhozHImDCRJTyfMhm1AV4tzRSgNasIMqKopHChIREQ5L+fCQJJ0NFmhINoNa0+DLP0Y5ROh1c6C8nJsABER5YecDQNAYt397lZI62FI2yHANGBLMAgUQ5VPhCqbAOUNZPa5iYiIHJbTYaA3MU2gqxlm6yGgozERDJJGEhD63MdXBFVeC1VWx6mCRESU1/ImDPQmIkA8CkS6ID2dx/6NRwExj01TVJq19LGvCCpQDARCUP5iwF/EsQBERFQw8jIMEBER0chxYjwREVGBYxggIiIqcAwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4BgGiIiIChzDABERUYFjGCAiIipwDANEREQFjmGAiIiowDEMEBERFTiGASIiogLHMEBERFTgPE4X0Jtv8SeheXxQmg6l6dC9xy4rTTt2m65D8/igpW7T+92mNB2apqA0BV3XoPpc1jQFTVep+wx5m1LQPRp0TUHXFHyJy57U9/qx2/Rj9/P0uq8+0GWloCkFXQFeXUtd9ugadAXre03Bq6kBLlu3ezUtdVlXCkoBmgKUQuL5AQVA1xQ0wPpZNKQuawrQVe/L1nMoEUBMKDMOpF02rS9z8NuUmIBhHLtsxgHTgJgmEI9CDAMwTeu6eAxiGtblWAxIXk7eN3m/WPTYY0wDZiwOMUyIacKMxmEa1mPEMGHG4jCNY5clcdmIxSG97mdE470uGxBTYBqS+D7xeFOs2wyBGALTMGHEzMRzCoyYkXjMsceZIjBEEDUFhqDP5b7fW5dNWJcNQeK2Y5d/JHscfV9mCt/ffH/z/e3e9zd7BoiIiAocwwAREVGBYxggIiIqcAwDREREBY5hgIiIqMAxDBARERU4hgEiIqICxzBARERU4BgGiIiIChzDABERUYFjGCAiIipwDANEREQFjmGAiIiowDEMEBERFTiGASIiogLHMEBERFTgGAaIiIgKHMMAERFRgWMYICIiKnAMA0RERAWOYYCIiKjAMQwQEREVOIYBIiKiAscwQEREVOAYBoiIiAqd5Kmenh659dZbpaenx+lS+nFzbSKsbzzcXFs+cfPr7ObaRFjfeLi5tvFSIiJOBxI7tLe3o6ysDG1tbSgtLXW6nDRurg1gfePh5tryiZtfZzfXBrC+8XBzbePF0wREREQFjmGAiIiowDEMEBERFbi8DQN+vx+33nor/H6/06X04+baANY3Hm6uLZ+4+XV2c20A6xsPN9c2Xnk7gJCIiIhGJm97BoiIiGhkGAaIiIgKHMMAERFRgcu7MPCFL3wBZ555Jq644gpEo9G028LhMP7lX/4FZ511Fs477zw0Nze7qr6kO+64A0uWLHG8png8jquvvhpnnnkmPvvZz2atnpHWl5Tt16u3wWpzw+9aPuL7O3M18f09vEJ6f+dVGFi7di0OHTqE1atXY8GCBXj00UfTbn/yySdxwgkn4IUXXsCHP/xh/OpXv3JVfQDQ0dGBjRs3uqKmP/3pT5g8eTJWr16N7u5uvPTSS1mrayT1Adl/vUZam9O/a/mI7+/M1sT399hrc/p3zQ55FQZefvllnH/++QCACy+8sN8v95w5c9Dd3Q0AaG1tRU1NjavqA4Dvfe97uP76611R00jqdbI+IPuvV29D1eb071o+4vs7szXx/T20Qnt/e5wuIJNaW1tRX18PACgrK+vXdTNr1ixs3LgRJ5xwApRSePXVV11VX1tbGzZs2IAvf/nLrqiptbU1tf72QPU6XZ8Tr9dIa3P6dy0f8f2d2Zr4/h57bU7/rtkhJ3sGDh06hOXLl/f7EhG0t7cDsP5DVlZWpj3uwQcfxNlnn42NGzfitttuw6pVq1xV33e/+138+7//uy01DaaiomLQmoa6zQ31OfF69TZUbdn6XctHfH9nDt/fY1do7++cDAN1dXV48cUX+329733vwzPPPAMAePrpp7Fs2bJ+j03+By0vL0dra6ur6tuxYwe+/vWv48ILL8T27dtx55132lJfb0uXLh20pqFuy5ahanDi9RppbUB2ftfyEd/fmcP3tz21AXn4/nZu92R73HjjjbJ8+XK5/PLLJRKJiIjItddeKyIibW1t8r73vU/OOussWbZsmWzdutVV9fV2yimnOFZTsp5YLCYf//jHZfny5bJy5cqs1TPS+nrL5uvV22C1ueF3LR/x/T3+mvj+HrlCen9zOWIiIqICl5OnCYiIiChzGAaIiIgKHMMAERFRgWMYyGFbt25FXV0dOjo6bG1nz549UEph3bp1trYzlOeffx5KqXGP2j1y5Ahqampw4MCBzBRGjjv77LPxuc99LvX99OnT8d3vfnfEj8/U71ambdmyBUuXLkUgEMBJJ5006HUjceWVV+Ib3/jGuOp54IEHUF5ePq7nyIarr74aH/jAB8b9PPfeey/e//73j7+gHMEwMApXX301lFL49Kc/3e+26667DkopXH311WnXHzp0CCtXrsTMmTPh9/sxZcoUXHzxxXj22WdT95k+fTqUUv2+hptK86UvfQnXX389SkpKMvLzFYIJEybgyiuvxK233up0KWSTNWvW4Nprr3W6jHG79dZbEQqFsHXr1tTfi4GuG8769evx5z//GStXrrSz3LxzzTXXYM2aNXjxxRedLiUrGAZGacqUKfjtb3+LcDicuq6npwcPP/wwpk6dmnbfPXv24JRTTsHf//53fPOb38SGDRvw1FNP4Zxzzum3xOaqVavQ0NCQ9jXUm3f//v344x//iE984hOZ/QHzWHKjkU984hN46KGH0NLS4nBFZIeamhoUFRU5Xca47dy5E8uXL8e0adNQVVU16HXDuffee/GhD32IHxpGSEQQj8fh9/tx+eWX4/vf/77TJWUFw8AonXzyyZg6dSoef/zx1HWPP/44pkyZgsWLF6fdN9lb8Nprr+Gyyy7D3Llzcfzxx+Pzn/88XnnllbT7lpSUoK6uLu0rFAoNWscjjzyCRYsWYfLkyanrkt14Tz/9NObPn4/i4mJceOGFaGhoSN3HNE2sWrUKkydPht/vx0knnYSnnnoq7blfe+01LF68GIFAAEuWLMHatWv7tb9p0ya8733vQ3FxMWpra3HllVeisbFxyNfun//8J8466ywUFRWhoqICF1xwQeqAHIlEcMMNN2DChAkIBAJYvnw51qxZM+TzPfbYYzj++OPh9/sxffp0fPvb3067ffr06bj99ttx9dVXo6ysDNdccw0AYOHChairq8Pvf//7IZ+fclPf0wRKKfzsZz/DpZdeiqKiIsyZMwd//OMfB318OBzGRRddhKVLlw66RK9pmrjrrrswe/Zs+P1+TJ06FV//+tdTt2/YsAHvec97EAwGUVVVhWuvvRadnZ1pz3H//fdj/vz5CAQCOO644/CDH/wgreY33ngDq1atglIKX/3qVwe8bjimaeJ3v/tdv+7uaDSKm2++GZMmTUIoFMJpp52G559/Pu0+DzzwAKZOnYqioiJceumlaGpq6vf8t99+OyZMmICSkhL867/+K774xS/2O30x1M85WM3jfW17G+5vS/I00dNPP40lS5bA7/dj9erVAID3v//9eOKJJ9I+/OUth9c5yClXXXWVXHLJJXLPPffIihUrUtevWLFCvvOd78gll1wiV111lYiINDU1iVJKvvGNbwz7vNOmTZPvfOc7o6rlkksukU9/+tNp191///3i9Xrl3HPPlTVr1sgbb7wh8+fPl8svvzx1n3vuuUdKS0vl4Ycfli1btsjNN98sXq9Xtm3bJiIinZ2dUlNTIx/5yEdk48aN8qc//UlmzpwpAGTt2rUiInLw4EGprq6WW265RTZv3ixvvvmmnHfeeXLOOecMWu/atWvF7/fLZz7zGVm3bp1s3LhRvv/978vRo0dFROSGG26Q+vp6+ctf/iJvv/22XHXVVVJRUSFNTU0iIvLcc88JAGlpaRERkddff100TZNVq1bJ1q1b5f7775dgMCj3339/2utaWloqd999t2zfvl22b9+euu3DH/6wXH311aN6zcmdzjrrLPnsZz+b+r7v+wmATJ48WX7zm9/I9u3b5YYbbpDi4uIBf7daW1tl+fLlcu6550pnZ+egbd58881SUVEhDzzwgOzYsUNWr14tP/3pT0VEpKurS+rr6+WDH/ygbNiwQZ599lmZMWNG6m+DiMhPfvITmThxojz22GOya9cueeyxx6SyslIeeOABERFpaGiQ448/Xm688UZpaGiQjo6OAa8bztq1awWAHDp0KO36yy+/XM444wz5xz/+ITt27JC7775b/H5/6u/AK6+8IkopueOOO2Tr1q3yve99T8rLy6WsrCz1HL/+9a8lEAjIL37xC9m6davcdtttUlpaKosWLRrxz2nHa5v8O5000r8tJ554ojzzzDOyY8cOaWxsFBHr76FSSp5//vlhX+tcxzAwCslfsqNHj4rf75fdu3fLnj17JBAIyNGjR9PCwKuvvioA5PHHHx/2eadNmyY+n09CoVDa13PPPTfoYxYtWiSrVq1Ku+7+++8XALJjx47Udffdd5/U1tamvq+vr5evf/3raY9717veJdddd52IiPz4xz+WyspK6erqSt3+wx/+MC0MfOUrX5Hzzz8/7Tn27dsnAAZdieujH/2oLFu2bMDbOjs7xev1ykMPPZS6LhqNSn19vXzzm98Ukf5h4PLLL5fzzjsv7XluuukmWbBgQer7adOmyQc+8IEB2/yP//gPOfvsswe8jXLLSMLAl7/85dT3yT/wTz75pIgc+93asmWLLFq0SD74wQ+mVg8cSHt7u/j9/tQBqq+f/OQnUlFRkRYm/vznP4umaamD8pQpU+Q3v/lN2uO+9rWvyemnn576ftGiRXLrrbem3Weg64by+9//XnRdF9M0U9ft2LFDlFJy4MCBtPuuWLFCbrnlFhGx3q8XXnhh2u0f+chH0sLAaaedJtdff33afZYtW5YWBkbyc/aWide2dxgYzd+WJ554YsA2k8Ek3+XVroXZUl1djYsuuggPPvggRAQXXXQRqqur0+4jiYUdlVIjes6bbrqp3+DDSZMmDXr/cDiMQCDQ7/qioiLMmjUr9f3EiRNx5MgRAEB7ezsOHjzYb43tZcuW4a233gIAbN68GYsWLUo753r66aen3f+NN97Ac889h+Li4n7t79y5E3Pnzu13/bp16/ChD31owJ9l586diMViaXV5vV6ceuqp2Lx584CP2bx5My655JJ+P8d3v/tdGIYBXdcBAEuWLBnw8cFgMLUFKeW/E088MXU5FAqhpKQk9b5IOvfcc/Gud70LjzzySOr3ZyCbN29GJBLBihUrBr190aJFaaf5li1bBtM0sXXrVmiahn379uFTn/pU6tQVAMTjcZSVlY31RxxQOByG3+9P+zv05ptvQkT6vU8jkUhqHMLmzZtx6aWXpt1++umnp51S3Lp1K6677rq0+5x66qn4+9//DgA4evToqH/O8b62tbW1afcfzd+WQv9bwTAwRp/85CdTO2rdd999/W6fM2cOlFLYvHnziKa5VFdXY/bs2SNuv7q6esABcF6vN+17pVQqmPS+rjcRSV3X974DMU0TF198Me66665+t02cOHHAxwSDwUGfb7Dg1LuugR4z0P37GmzcRXNzc17sQU4jM9D7wjTNtOsuuugiPPbYY9i0aRMWLlw46HMN9bsMDP1727vdn/70pzjttNPSbh8qhIxFdXU1uru7EY1G4fP5AFjvX13X8cYbb/RrLxnwR/J3ABj4PZs0lp9zvK/tQPcfrM6+1xX63woOIByjCy+8ENFoFNFoFBdccEG/2ysrK3HBBRfgvvvuQ1dXV7/bxzunefHixdi0adOoHlNaWor6+vp+U2VeeuklzJ8/HwCwYMECvPXWW2kDZvoOdjz55JPx9ttvY/r06Zg9e3ba12BvqBNPPHHQqVCzZ8+Gz+dLqysWi+H1119P1dXXggULBvw55s6dO6I/qBs3buw34JMK25133omrrroKK1asGPK9NWfOHASDwUF/nxcsWIB169alve//+c9/QtM0zJ07F7W1tZg0aRJ27drV7/0zY8aMjP5MycF8vX+exYsXwzAMHDlypF/7dXV1qZ+h7/u+7/fz5s3Da6+9lnbd66+/nro8lp9zvK9tX2P529Lbzp070dPTUxB/KxgGxkjXdWzevBmbN28e9ODzgx/8AIZh4NRTT8Vjjz2G7du3Y/Pmzfif//mffl3vHR0dOHToUNpXci/tgVxwwQV4+eWXYRjGqOq+6aabcNddd+F///d/sXXrVnzxi1/EunXr8NnPfhYAcPnll0PTNHzqU5/Cpk2b8Je//AXf+ta30p7j+uuvR3NzMz760Y/itddew65du/DMM8/gk5/85KD13HLLLVizZg2uu+46rF+/Hlu2bMEPf/hDNDY2IhQK4TOf+QxuuukmPPXUU9i0aROuueYadHd341Of+tSAz3fjjTfi2Wefxde+9jVs27YNDz74IO6991584QtfGPY16O7uxhtvvIHzzz9/VK8d5b9vfetbuOKKK/Ce97wHW7ZsGfA+gUAA//mf/4mbb74Zv/zlL7Fz50688sor+PnPfw4AuOKKKxAIBHDVVVdh48aNeO6557By5UpceeWVqW7sr371q7jjjjvwve99D9u2bcOGDRtw//3345577hlVvStWrMC999476O01NTU4+eST0w6Gc+fOxRVXXIGPf/zjePzxx7F7926sWbMGd911F/7yl78AAG644QY89dRT+OY3v4lt27bh3nvv7TfraOXKlfj5z3+OBx98ENu3b8ftt9+O9evXp33iHu3PmYnXtrex/G3pbfXq1Zg5c2baqde8lf1hCrmr7yjVvnoPIEw6ePCgXH/99alBgpMmTZL3v//9aYMDp02bJgD6ff3bv/3boG3F43GZNGmSPPXUU6nr7r///rQBPiLWAKLe/5kNw5DbbrtNJk2aJF6vVxYtWpQaSJX08ssvy6JFi8Tn88lJJ50kjz32WNoAQhGRbdu2yaWXXirl5eUSDAbluOOOk8997nNpA5X6ev755+WMM84Qv98v5eXlcsEFF6QGBIbDYVm5cqVUV1eL3++XZcuWyWuvvZZ6bN8BhCIijz76qCxYsEC8Xq9MnTpV7r777rT2Bpul8Zvf/EbmzZs3aJ2UW0YygPD3v/992mPKyspSM08G+t1auXKlTJw4cdABsYZhyO233y7Tpk1L/f71njm0fv16OeeccyQQCEhlZaVcc801/Ub/P/TQQ3LSSSeJz+eTiooKefe735024HgkAwinTZs27IDCH/3oR7J06dK066LRqPz3f/+3TJ8+Xbxer9TV1cmll14q69evT93n5z//uUyePFmCwaBcfPHF8q1vfavf35dVq1ZJdXW1FBcXyyc/+Um54YYb+rU13M/Z13hf275/p8fytyXp/PPPlzvuuGPQWvMJtzDOYT/4wQ/whz/8AU8//bTTpeSUU089FZ/73Odw+eWXO10Kke16enowb948/Pa3v+3XI5lp5513Hurq6vCrX/3K1nayYePGjVixYgW2bduW8YGdbsQBhDns2muvRUtLCzo6Ori62AgdOXIEl112GT760Y86XQpRVgQCAfzyl78cdlGw0eru7saPfvQjXHDBBdB1HQ8//DD+9re/4a9//WtG23HKwYMH8ctf/rIgggAAsGeAiIhGLRwO4+KLL8abb76JSCSCefPm4ctf/jI++MEPOl0ajQHDABERUYHjbAIiIqICxzBARERU4BgGiIiIChzDABERUYFjGCAiIipwDANEREQFjmGAiIiowDEMEBERFbj/HwQ0KNq5yZTXAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOFklEQVR4nO3dd5xkVZ028OecW7FznO6enIcJMIQBR2dIDklZQHxRX2ER1IVdYQfdVVlZdRHERcT4imFVFnFFXQR0dVVAyUgaYCLTk5ncE3s6V7r3/t4/bldN13Turlu3wvP92FJdVV3n1zVddZ869wQlIgIiIiIqWtrrAoiIiMhbDANERERFjmGAiIioyDEMEBERFTmGASIioiLHMEBERFTkGAaIiIiKHMMAERFRkWMYICIiKnIMA0REREWOYYCIiKjIMQwQEREVOYYBIiKiIscwQEREVOQYBoiIiIocwwAREVGRYxggIiIqcgwDRERERY5hgIiIqMgxDBARERU5hgEiIqIixzBARERU5BgGiIiIihzDABERUZHzeV2A28S2IJ2tsDuOQuIRwLIAsQAoQBuA4YMurYSqqIMKlUIp5XXJREREWVVQYUBEYB87APvg27Dbj8BuPwTpbgdEjt9JKQAKgAAC9P6fwxeArqiFrpwAXTUBxsTZUKHS7P4SREREWaZE+h4p85PdcQTmnk2wdr0FiXQ6B/wTD/SjoTQgNgAFPWEqfFMXwJg4B8ofyGDVREREuSFvw4DYNsyd62BuXw3pONobANz4VXp7EbSG0TQb/pOWQldNcKEdIiIib+RlGLAO7EB87TOQrmPZbbg3cBjTFiGwcDlUuCy77RMREbkgr8KA3X4Y8XXPwj60y8WegBFQClAG/POXwjfnDCjD700dREREGZAXYUDERmLjSzA3veJtCBiACpchsPQKGDVNXpdCREQ0JjkfBiQeRey1/4V9cKfXpQysd3ZC4PQL4Zt+stfVEBERjVpOhwG7pwOxF34N6W7Lqd6AwfjmvQP+hcu5VgEREeWVnA0DdsdRRJ9/GIj35EUQSDKmLULgjIugFBd3JCKi/JCTRyyJRxB78ZG8CwIAYO3agMTGl7wug4iIaMRyLgyICGKv/QES7cq7IJBkbnoF5v7tXpdBREQ0IjkXBhLNLzmDBfM0CCTFV/0v7Gyvg0BERDQGORUGrJbtMJtf9rqMzLBMxF76DcSMe10JERHRkHImDIhlIvbGE16XkTkikM5jMLe+4XUlREREQ8qZMGDueguI9XhdRoYJEltWQRLsHSAiotyVE2FAbAuJQjk9cCIzDnPHaq+rICIiGlROhAFr90Yg2uV1Ga5JbF7FsQNERJSzciIMJDa96nUJ7kpEndMgREREOcjzMGD3dDjLDRc0BStX91YgIqKi530YOLLX6xKyQGAf2YscXfmZiIiKXA6EgX2Ay+v4m5aFRTffjc/c/9t+t93yH49i0c1341C7y2MWEjFIZ6u7bRAREY2B52HAOrwHENvVNnyGgU+/79148OnXcLSzO3X9vY89jd++sg6/+fzfYUJlmas1AIB9dJ/rbRAREY2Wp2FAzASkKzuflq857wzUlJfiR487mwj96vk3cc8jf8HD//JRzJlY734BSsNqbXG/HSIiolHyedp6FqfbBfw+/NMV5+HuX/8Zp82ajJt/+Gvcf8uHsfSk6dkpQGwgEctOW0RERKPgec9ANl2/4iwYWuMDX30Ad1z9Xrxv6SlZbV8sM6vtERERjYS3PQNZFgr4cc6iWdh3pB3/+DdnZ78AziYgIqIc5GnPgPL5s97mhl0tWDJnStbbBbz5fYmIiIbj7WyCLB8cI7EEtuw7jNNmTc5quwCc6ZP+YPbbJSIiGobHPQMBqNKqrLW3buc+WLaNU2dMylqbKWJDVzdkv10iIqJheL7OgDFhquuLDiWt2bEPZaEgZjfVZaW9Exl1HvRIEBERDUOJx2vkmrveQvz1P3lZQnb4AghfvhJKKa8rISIiSuN5z4Cu86DLPusUdN0kBgEiIspJnocBVVIJVVLhdRkuExgNM7wugoiIaEDehwGl4J/3Dq/LcJc/CN/0RV5XQURENCDPwwAAGNMWAsFSr8twiYJ/7plQvoDXhRAREQ0oJ8KAMnzwn1SgvQM+P3yzTvO6CiIiokHlRBgAAN+Mk4FA2OsyMkzBN+cMKC42REREOSxnwoAy/AicfqHXZWSOUlCllfDPWeJ1JUREREPKmTAAAL5Jc+Gbe6bXZWSGNhB815XsFSAiopyXU2EAAPwLz4aumwzk+Zz8wJL3QFfUel0GERHRsHIuDCitEVx6ORAsydtA4Jt7JnyT53ldBhER0YjkXBgAABUsQWj5Vc4uf3kWCIzJ8+BfeLbXZRAREY2Y53sTDMXuakPshYchkU4gd8tM8c0+A/5TzuOyw0RElFdyOgwAgMR6EHvld7CP7PW6lEEoQAH+k88Foh1Q4Qqosmrnq6QSShteF0hERDSknA8DACC2jcSG52Fufd05bZAzJSsgGEZw6eUw6ibD2rUO9oEdfW7WTiBIhoOyaiBYyp4DIiLKKXkRBpLsYwcQX/s07KP7ASgAHpWuFKAUfHPPgn/uWVB+Z6lhifXAXPvnocOKLwBVWp0WELhUMREReSmvwgAAiAis/VuRWPuMM5Ygm3p7JYwpJ8G/6BzoAXZbNLe/ATmyZ3SPGyqFKqmCKqno3cWxEgiE2INARERZkXdhIEksE+b2NTB3rIZ0t7t4+qC3B0Ip6Ibp8J/0Thi1Ewevq6cD5vqnx9+sz5/a3jkVEMLlHINAREQZl7dhIElEIG0HYe5phrm7GYj1AEoDYo/9QZXqPQMh0LWT4Ju6AMakuVDBke2dYG5+GdJ2cOztD14YEC7rFxJUIORCW0REVCzyPgz0JWLDPrIX1oGdsDsOQ9oPQyJdx++gFJxP+mk/hNTYA21AlddAV02ArpwAY9KcAU8FDMfuOAKr+cUx/x6joSfOhTFlQVbaIiKiwlRQYaAvifXAfHsNYNsQMwYk4oBtAZDeAKBSAwFh+J1BgIYfurQKxtSF42tbBNbGFyBdrZn4VQalymthzF8GpXJy7SgiIsoTPq8LcI1lQo6OfG2CZCKyLRPjPSuvlIJumgNr66vjfKQh+AIwZi1hECAionHjkcQlqroRCJW79vjGrDNGPIaBiIhoKAwDLlFKwZg425XH1k1zoKsaXHlsIiIqPgwDLlK1UwB/hkf6Gz7opjmZfUwiIipqDAMuUlpDN83K7INaJsy3noPddSyzj0tEREWLYcBlesJ0wPBn9kFj3bA2Pg+rZSsKdDIIERFlEcOAy5Thh26cmfkHFoG9+y1Ym1+GJGKZf3wiIioaDANZoBtnAdqdWZzSfgjm+qdhtx925fGJiKjwMQxkgfIF3OkdSErEYG36K6w9GyH2OJZhJiKiosQwkCVO74C7mwzZ+7fAan4BEut2tR0iIiosDANZovxB6AYXewd6SdcxmOufgX14NwcXEhHRiDAMZJFumu167wAAwDJh7XgT1tbXOLiQiIiGxTCQRU7vwIystSfHWmCuexr2sZastUlERPmHYSDLstY7kGTGYG15FeaO1RArkb12iYgobzAMZJnyh5yFiAYTcGfzITm8yxlL0HHElccnIqL8xTDgAd00Bxho6+GSSvgWXwA9dRGgVOYbjvXAan4R1u4NENvK/OMTEVFeYhjwgAqEoBump1+pffDNORNKGzCaZsO38FwgWOpK+3bLNpgbnoN0t7vy+ERElF8YBjxyYu+AMfM0qFBZ6ntVWgXfovOgaie7U0CkA+Zbz8Lav4VTEImIihzDgEdUIJwaO6AnTIeundT/Pj4/jFlnwJh5ujuDDkVg79kIa+MLkCgXKiIiKlYMAx7SE+dAlVZDTzt50PsopaDrp8K36DygpNKVOqSr1dnf4NBO9hIQERUhhgEPqUAYxvxlUCP41K/C5fAtPMe9VQxtC9bba2BteQUSj7rTBhER5SSGAY8pY+S7GSptwJh+Coy5SwFf0JV6pO0gzPVPwT66z5XHJyKi3MMwkId0dSN8p7wbqrrJnQbMBKxtq2BuXQVJsJeAiKjQMQzkKeUPwphzljO4cBS9C6Mhrftgrn2KYwmIiAocw0AeSw0uPPndUBV17jRiJZyxBM0vQiJd7rRBRESeYhgoACpYAuOkZb0rF7rzTyqdR2GufxrWvs0Q23alDSIi8gbDQIFQSjkrFy46D6q0yp1GxIa9txnmhmdhd7a60wYREWUdw0CBUSUVMBacAz1pHgAX9jcAgEgHrI3Pw9q5FmJyJ0QionzHMFCAlNYwJs+HsfBsoM8Sx5lmH3wb5rqnYLe2uNYGERG5j2GggOmyGvgWnQfdMMO9RhJRWFtfhbnlNUg84l47RETkGoaBAqcMH4zpi2HMexfgD7nWjhzbD3PdU7AOvs1piEREeYZhoEjoqgnOQkVu7YIIAJYJe+fa3mmIne61Q0REGcUwUESULwDf7CUwZp8J+PyutZOahri3GWJbrrVDRESZwTBQhHTtJGehosoG9xoRgb1vM8z1z8DuOOJeO0RENG4MA0VKBcIw5i2FMesMwBdwr6FoF6zmF2FufQ0S63GvHSIiGjN3FrWnvKCUgqqbAlXZAGv3BsiR3a61Ja37YR47AD1xDnTTnFHt1khERO5izwBB+QPwzTodxknLgGCpew2J7Zw6WOdskcxZB0REuYFhgFJ0ZT18p7wbumkOXFu9EADiEVjbVjmzDrrb3GuHiIhGhGGA0ihtwJi60N09DnpJ51GYG56F9fYaSCLmaltERDQ4hgEakCqthLHwXOhpJwPacLUt+9BOmGv/AuvAdu6ISETkAYYBGpRSCkbjLPhOWQFV5eI0RACwErB3rYe54RnY7YfcbYuIiNIwDNCwVLAExtylzmJF/qC7jUU6YW16CeaWVyDRbnfbIiIiAJxaSCOklIKqnQRVWQ9r91uQw7tcbU+OHYDZdgi6aTb0xLmcikhE5CL2DNCoKF8AvpmnwZi/3NXtkQE4UxH3b4G59i+wD+/mVEQiIpcwDNCY6Io6+E4+H3rSPEC5OA0RcLZJ3vEmrLeeh91x2N22iIiKEMMAjZnSBozJ8+FbdD5Uea3r7Un3MVjNf4W56SWuT0BElEE8EUvjpkoqYMxfDmndD2v3BiAecbU9aT8Es/0QVM0kGJPnQ4VdPl1BRFTgGAYoI1IDDKsaYLdshb1/KyDurhkgrftgtu6HnjANetI8qEDY1faIiAoVwwBllDJ8MCbPh66f5mx+1Lrf5RYF9qGdsA/vhm6c6cw8cHMXRiKiAsQxA+QKFSyBb85ZzqyDkgr3GxQbdss2mGuehLVvM8Qy3W+TiKhAMAyQq3RFHXyLzoeevhjIxid2y4S9txnm2j/DOrCDyxsTEY0AwwC5TikFo2EGfIsvgG6YCVd3RExKxGDvWgdz3V9gH9nDNQqIiIbAMEBZo3wBGNNPge/k86Eq6rPTaKwH1vY3YK5/BvaxFoYCIqIBMAxQ1qmSChgnvQvGnLOAYEl2Go10wNryKqyNL8DuOJKdNomI8gRnE5AnlFJQNRN7pyJug71/C2BbrrcrXa2wml+EXVEPPWkuVHkdlNsrKBIR5TiGAfKU0gaMSfOg66c6GyAd3ZuVdqXjMKyOw1BlNU4oqGxgKCCiosXTBJQTVCAM3+wlMBacDVVWk7V2pasV1uZXYG54FvbRfRxTQERFiT0DlFN0eS3UgrMhbQdg7WkGIh3ZabinHda2VUCoDMbEuVC1k6E0szIRFQeGAco5Simo6iaoqkbI0b2w9jYDsZ7sNB7tgrXjTWDfJuimOdD1U6G0kZ22iYg8wjBAOUspBVU3BapmkrPk8P7NQCKWncZjPbB3roW9bzN00yzoCTOgDL5ciKgw8d2Ncp7SGkbjTOj6qbAPbIfdshXI1nLDiSjs3W/B3r8FumEWdONM7n1ARAWHYYDyhjJ8zsyDCTNgt2yBfWCH6zsjppgJ2Ps2wW7ZBt0wA7ppFpQ/lJ22iYhcxjBAeUf5AzCmLoJunAV732bYh3YByNIsANt0tmg+sB16wnToptlQ2Vo4iYjIJQwDlLdUIAxjxqnQjbNh7W2GtO7LXuNiwz64A/aht6FqJkE3zoIuq85e+0REGcQwQHlPhcvgm3MmpHsOrD0bIe2Hste4iDPj4ehe2GU1zpiC6omclkhEeYVhgAqGKq2C76R3we44DHvPRkjXsay2L12tsLa1Av6QM65gwnQofzCrNRARjQXDABUcXVEPteAcyLEWWPs2Az3t2S0gEYW9txn2vs1QdZNhNMyEKq3Kbg1ERKPAMEAFKbURUnUTpP0g7H1bIF2t2S1CbMjh3TAP74Yqr4VunAVV3QileAqBiHILwwAVNKUUVFUjVGUDpPOIEwo6Dme9Duk8CqvzKBAIQzfMhJ4wjesVEFHOYBigoqCUgqqoh66oh93V6oSCtgPZLyQegb3nLdj7NkHXTYFumAlVUpH9OoiI+mAYoKKjy2qg5y2F9LTD2r8FcjSLUxKTbMtZYvnQTiekNM50ejC4jTIReYBhgIqWKqmEb/aZkMnznVBwZA/gwRbG0nEYVsdhIFgCPWEGdN0UqMDwqxuKCHbv3o0jR46gtrYW06dPd79YIipIHMlERU+FyuCbeTp8iy+EbpgJeDXAL9YDe89bMFc/AXPLK7CPtUAGWG55/fr1uOyyy1BfX4/p06djyZIlmDFjBu69914PiiaiQqBEPPgolAXS04HE6sdH/XOqsgH+Ree6UBHlC0lEYbdsh33wbcDO0oZIg/EHoeumOlsph8sBAO95z3uwfft2/O3f/i2WLFmCiRMn4o477sDBgwfx0ksveVsvEeUl9gwQnUD5QzCmLoTvtIugJ50E+PzeFZOIwW7ZCnPdUzDfeh72oV04cuQwzjrrLCxfvhxvvfUWFi1ahJqaGhRorieiLOCYAaJBKF8AxuSToJtmwz70NuyW7UAi6lk90tUKq6sVZ85owA8eeggPPfQQAGDlypWe1UREhYE9A0TDUIYPRtMc+E69CMasM6BKvd2Q6Buf/Bj+8v0v40s3Xu1pHURUONgzQDRCSmuouinQdVOctQoO7HB2Ssxy97zPZ+Cc0xdh76GjaddLpAv2sRaoygZulEREo8IwQDQGuqwGenYNJL7QWS/g4NuAGfe2KCsOa8urvYMOp0DXT0sNOiQiGgrDANE4qEAYxuT50BPnQo7ug3Vge/Y3RjpRIga7ZRvslm1ASSV0zSTo2klQoVJv6yKinMUwQJQBShtQ9VOh6qZAulphH9gOaW0B4M4phL2HjmDrnv1p13X2RPDmpu04de4M6ORpgp522D3tsPduhCqtgkoGg2CJK3URUX5iGCDKIKWUs0NheS0k1gP74NuwD+8EzETG2vj986/h/9x6d7/rN+7Yg6XXfwaXvPN0/O5bX+x3u3S3QbrbYO95C6qs2gkGNZOgguGM1UZE+YmLDp2Aiw5RpoltQY7sgXVgBxDpGPfj/eM9P8RLW/fh4YcfBgDMnz8fLS0taGtrw29/+1v867/+K3pefAQ+nzGix1PltVA1E51gMIJlkImo8LBngMhlShtQE6ZD1U9ztlE+sANyrGXMjzehpgp7976K2267rd9tu3fvRn11BbQe+YZH0nkU0nkU9q71UOV1ULWToGsmQvmDY66RiPILwwBRlvTdRlmi3bAP74J9ePeoFzL6xFXvQWt7J3a27O1327TKIL58+6eOjxkYJek84gSWnWudWmsnQVVPhPIHxvR4RJQfeJrgBDxNQNkkIpD2Q7AP7YK0tXiya+KwkiGmZqKzzTJPJRAVHPYMEHlIKQVV1QBd1QBJxGAf2eP0FmRgbEHG9AYWq/0QADizEqoanGBQWgWlRn5KgohyE8MAUY5Q/iCMptnQjbOckf+Hd8E+uhewPN458QTJWQnYtxnwB1NhRlVMgPJyUyciGjOGAaIco5SCKqsGyqqhpy6CHGtxTiN0HvG6tP4SMcjh3bAO73ZOJ5TX9YaDRqhwmdfVEdEIMQwQ5TBl+FL7IYxn0GFWiEA6DkM6DsPevQEIlTqhoKrRmb7I/RKIchbDAFGeUKFSGFMWQE+e7ww6PLzLmaKYi4MOASDaDfvAduDAdkD7oCrroasbnY2UOAiRKKcwDBDlmX6DDo/uhX1oV24NOjyRbUKOtcDqXV8hNQixvA6qvAZKj2yBJCI3iG31rhIqcCbYCRQUoBSgDcDwF/xAWYYBojym/EEYjbOgG2YCkQ7YR/fBProPiHV7XdqQUoMQsRlQ2lkeuaIOqqLeucxwQC4QEWecixmDJOIQMwYkYoDYw/+wLwDlD0L5As7lQLig/k4ZBogKgFIKKKmEUVIJPXm+s0HR0X2wW/cBsR6vyxua2KlVELEvGQ5qesNBHcMBjZskYrAjnZBIJ2CPcXaOGYeY8fStx4Kl0CUVUMESKJXfY2IYBogKjFIKKK2CUVoFPWWB8yk8GQziEa/LG57YqZUQsQ9OOCivcU4pMBzQCIltQXraYUc6ATPuTiOxbtixbmcmTagcuqQyb8fDMAwQFbD0aYoLIV2tkNZ9sI/uz80ZCQMRG9JxBNJxQjioqHfCQWk1ZypQiog4IaDz6Mi6/zPTKCTSASvSARUqgy6vy7s1NxgGiIpEcntllNdCTz3Z6Zo/ug92637AjHld3sj1DQcAoI3jpxXKqp3BiT7upVCM7Gg37I7DgJW5LcNHS6JdsKJdUKXV0GU1eRNUGQaIipCzaVIdUFEHPf0U5+DamgwGLnWpusW2UusbpITKnFBQVu30HJRW8tRCARPLhNV+MKfGx0j3MVg97dBVDdCh3F+Ai2GAqMgppaAq64HKeuhpTjCwW/c6axiY3n3CGpdoFyTaBTnau7OjUkC4AjoZDsqqgXB5wU8XKwYSj8I6th+wLa9L6U9s2MdaIKXV0OW1Of33xjBARClKa6iqCdBVE5xzr12tkLaDsNsOAD05vI7BcEScGRY97QB2OtdpI733oKwKCJTk9Bs2pbMjnc7fZo6T7mOwzDiM6sacnXXAMEBEA+o7xsCYsgAS64HddhDSdsA5X5+Ln8RGw7aOT2lM8gWOjzvo/S98QQaEHGR3tznjA/JFrBvW0X0waibm5CkrhgEiGhEVLIHRMANomOFM2+o4DDnW22uQD1MWR8KMQ9oOQtoOHr/OF4AKl0OFK4AS578qXA7lD3pXZ5GzIx35FQSSElFYrfth1E7OuYDJMEBEo6a0AVXVCFQ1QsspQG93rbQdhHS2AsjR/RLGwoz370EAnB6DknKocDkQroAq6Q0JnMngKknEYLcd8rqMsUtEYXcegVFR73UlaRgGiGhcnNUPK2CUVAAT5zqrtLUdcsJB+8H8HYQ4HDMG6Ygdn+KY5A85oaC3FwG9vQr5Nu88F4ltwWrdj3wPm9LdBtsfgg6Xe11KCsMAEWWU8gWg6iZD100urEGII5WIQhLR9KmOABAIOyEhVAYES6CCpVChEiBYCmXwrXg4IgKr7cDYlxPOMXbbQee1kiOnm/gXSESu6TcIMRFzlhruOAK74wgQ6fS6xOyJRyDxCKR9gC5uXwAq2BsMgiXpYaHANsQZK4l05NQ6AuPnhBujbmpOjB9gGCCirFH+IFTNJKBmEgw453+TqwnanUUWDvrq3QQH3W0Dd4AHwn1CghMUkpcRCOfEwcRNIgK7s9XrMjLPjENi3U5vkccYBojIM8ofhKqdBNQmw0EU0nH0eM9BtEjDwYl6exXQebR/WFDKCQT+EOAPOt3O/qAzdqH3cuo67cvL4DCu3QZznN3Z6vQCefzvwjBARDlD+UPp4SAeTT+tEO3yusTcIwLEeiC9XehDDq3ThhMOfL0hIeAECPiCfYJD73VGbgQHEYHdVYC9AklmDBLrgQqVeloGwwAR5SwVCEHVTgZqJzMcZIJtjTw4KA34/IDhdwY4Gj5AO/9Vht/53kh+7wP6XKf0Cd+PI1RItMvTjYeywe5qhWYYICIamQHDQdcxSPex3v+2FfyBI2vEBhIxIBHrFxpGPbFPG6lwoAyfEzS0dv7b97LWznK9vd+r8to8n0Q4QokoxLY8HSjKMEBEeUsFQlA1TUBNEwCnSxmx7j4Boc0JCNna154GZlvOV2L4INH3dm3bkLD3g+uyQeIRTwcS5uaOCUREY6CUggqVQddNgTHtFPgWngPfkr+Bb9F50NMXQ9VPA8IVXpdJIySQrOyBYds2Fp19MW67696065989gWUTFuIR37/J9drkHjU9TaGwp4BIipoSmugtApGaVXqOrFMSHdbn96DYwU2h71AZGkzLK01bl359/jUF76MW//xRlRXVWLtW834vzfegrs+98+46rL3uF6DxL39+1MiUpCnZKSnA4nVj4/651RlA/yLznWhIiLKZZKIOQGh6xgk0gHp6ewdoFiQb5H5oXaSs3NkFpimiQXLL8K1H7gSH/3wB7D8sg/gsotW4Lt3fykr7QOA0TjLsy2O2TNARITeNQ+qGoCqhtR1YltAtAsS6YT0dDj/jXRyFkO2ZDGH+Xw+fObmG/HFr34Tj/3xSZy2aCG+fdcXs1cAANg2YHgTBtgzcAL2DBDRcMS2gEiX04PQJygg1u11aYWlZhJUWVXWmuvq7kbTyUsxa/o0/PV/H0ZpSUnW2gYAo366ZxtasWeAiGiUlDaA0kqo0sq068UynZ6EVC9CMiRwPEI+uOXzdwIAjrYeg+HJND/vPpszDBARZYgyfEBpVb/z3KmQkFzwJ9bd53JP1gbK5Ruls9dlfvvXvo0//eVZvPj7h3HJh67Hf/7y17jpo3+btfYBOGsteIRhgIjIZYOFBKB3bQQzBon29K4O2J0KCRLrBuIRZ8nhYpSlg+P9Dz2Mb/3wP/Hkr3+GxQvn45Ybrsc3vv8T3PC3H4Lfn8Vuew+Xf2YYICLykFKqd1OhEFBe0+92ERuIR51g0NubINHjl5Hwdn66qwz3D8SPP/0cbvn8Hfj597+JpWecCgC4+WPX4ps/vB8/f+R/8NEPX+V6DQAAbXAFQiIiGphS+vh2xQNwehbizpK2yeWDE9He/8bS/otEDPk0VVL5/K5W+8a6Dfi/N34Sd3/hVlz53otT11eUl+Hmj16Le7/3I3zkg1fCMNw/SKtAdgcr9mufswnScTYBERWq48EhGRCi/QJDMkjASng+lkFPPxViF8deE7qiHjpLayoMhD0DRERFwjkl0btV8QjuL2IDlpn6kuRlO5H+vWUCViLte7ESvfdN/szog4XSCmKECvtUSC8VCHvaPsMAERENSCkN+ALOFzCiADGY48HCcjaO6v0Su/eyffy65GVVVgOViDq9FYUs+Tx7iGGAiIhcdzxYnHD9MD+n/UFYXa2u1ZULdGmV02vjZQ2etk5ERDQEZfigSiqHv2O+Uipr+y8MhWGAiIhymi6r9roE16jSKk+nFCYxDBARUU5Thh8qXOF1GS5Q0KW5EXQYBoiIKOfp8hqI0nm0SsLwdHlNTvQKAAwDRESUBywY6ChpRMzn7eI8GRMshcqRXgGAswmIiCjHxRImOnpiEAA9gUoYtgm/Hfe6rLEz/DCqGjyfQdAXewaIiCgniQi6o3G09wYBh0JXsAaWyo3u9dFTMKqbcub0QBLDABER5RxbBB09MXTH+i9HLEqjK1gLGdcySN7Q1Y1Q/qDXZfTDMEBERDnFtGwc64ogZg6+hLGlfegK1ebPgEKloGsmQYfKvK5kQAwDRESUM2IJE8e6IrDs4Q/zCR1ANFybharGSRswaqdAD7LzZC5gGCAiIs+JCLpjJ44PGF5EBZEom+BaXeMWCMOon5aTpwb6YhggIiJP2SJo74mhOzq27Yo7bR/s6ilAIIc+eSsNXTkBRs2knBssOBBOLSQiIs8kLAvt3THYMr6z/x1xG9XVTVCJCOz2w4A1tmCRCaqsGrq0Bkrnz+dthgEiIso6EUE0bqIzmpn1ApK9C9WlJTDqp0F62mF3tQL24IMQM02FyqAr6qAMf9bazBSGASIiyipbBJ2RGGKJzB6oTctGJG6iJOh3NgAqqQTiEdjRTkikCxA7o+0BAPwh6JIKqFBZXpwOGAzDABERZY1p2WjviY5otsBolQb9CAeOH9aUUkCwBEawBFIxARLrhkS7IPHo2E8jaA34gtDBUqhwWV72AgyEYYCIiLIiEk+gM5L5ZYQVgIqSIIL+wQ9pSimoUBnQO89fRAAzDun9gpUARAARCKR3qWAFaAPKF3BmA/gCef3pfygMA0RE5CoRQWckjmjCzPhjG1qhsiQEnzG6wXpKKcAfzPkpf9nCMEBERK4xLRsdPTGYdubP1wd8BipKgtA5tOFPvmIYICIiV0QTJjpHuYjQSJUE/SgN+nNq5798xjBAREQZJSLoisYRiWf+tIACUF4SRGiI8QE0enw2iYgoYyzbRntPDKaV+dMCYx0fQMNjGCAiooyIJUx0RGIY52KCAwr6DJRzfIBrGAaIiGhcnE2GEuiJubMEcFkogHDAx/EBLmIYICKiMbNsZ7ZAwoXTAlopVJYE4fcV5tz+XMIwQEREoyYiiCZMdEXirswWCPgMVISD0Jq9AdnAMEBERKNi24LOaOb3FkgqDfqd/QV4WiBrGAaIiGjE4qaFjp7xbzk8EKWAypIQAjwtkHUMA0RENCw31w4AAL+hUVEShKE5bdALDANERDQkN3caBLiaYC5gGCAiogGJCCJxE13RzO80CDinBSrCQ+82SNnBfwEiIurHsm10RGJImJmfMggAPkOjkqcFcgbDABERpYkmTHS6tJIgAIQDPpSFAjwtkEMYBoiICABgi6ArEkc04c4gQQWgPBxEKMBDT67hvwgREbk6ZRDgJkO5jmGAiKiIub2vAMDTAvmAYYCIqEiZljNI0I3thgHOFsgn/BciIioy2egN4N4C+YVhgIioiCRMCx2RmGsLCAFAeTiAkJ9bDucThgEioiLg9nLCgLN2QEU4yEGCeYhhgIiowMV7ewNsF3sDuKRwfmMYICIqUG6vGwAAWilUlgTh506DeY1hgIioAMUSJjojcdfWDQCAkN+HsnAAmr0BeY9hgIiogNi2oDMaQyxhudaGUr0rCXLKYMHgvyQRUQEQEUQTzg6DLnYGwO9zBglyg6HCwjBARJTnLNtGZySOuOlebwAAlIUCCAc4ZbAQMQwQEeUpEUEkbqI7GoeLnQHcV6AIMAwQEeUh07LRGYkh4dJSwkncV6A4MAwQEeWRbCwlDDi9AeXhIAKcMlgUGAaIiPKAiCBmWuhyebogwAWEihHDABFRjjMtG53RGBKmu6cEfFqjvCQAv8HegGLDMEBElKNsEfREE+iJu3tKAABKQ36UBNgbUKwYBoiIcoyIIJaw0BV1/5SA39Ao5+ZCRY9hgIgoh2RrloACUMp1A6gXwwARUQ6wRdDt8hbDSQGfgfJwgKsIUgrDABGRh7K1jDDQu6dAKIig32BvAKVhGCAi8kjCtNAZjcN0+ZQAAAT9BspDQWjNEED9MQwQEWWZbQu6YnFEs3BKQCuF8nAAQe4wSEPgXwcRUZaICKJxE10x908JAEDI70NZOADNUwI0DIYBIiKXiQjipjNV0LLdTwFaK1RwKWEaBYYBIiIXJXpDgNtTBZNKg36UcClhGiWGASIiF5iWje5oHDHTykp7QZ+BMk4XpDFiGCAiyiDLttETS2RlvQDA2V2wLMQBgjQ+/OshIsoAW8QJAbEEsjA2EApACfcToAxhGCAiGgcRQSRuojtLMwQAZ82AshBPCVDmMAwQEY2BiCBmWujO0gwBwDklUM5ZAuQChgEiolFKThPMxsqBADcVIvcxDBARjZBp2eiKxhHP0gwBoHfhoFCAywiTqxgGiIiGYdk2uqMJRBPZmSEAAD6tUR4OwM9TApQFDANERIPI9jRBwNlZsCwYQIinBCiLGAaIiE7gRU8AAIQCPpQFeUqAso9hgIiol2k5PQHZDgEBn4HSkB9+g6cEyBsMA0RU9LwKAT5DoywU4FRB8hzDABEVLdOy0R2LI5bI3uwAANAquYSwwXEBlBMYBoio6HgVApQCSoNcL4ByD8MAERWNhGWhJ5rI2k6CfZX0bi2sGQIoBzEMEFHBS5gWumOJrC4WlBTy+1Aa8nMfAcppDANEVLC8DAEBn7OZkM9gCKDcxzBARAVFRBA3LfTEEkhkae+AvvyGRilnCFCeYRggooKQ3Eo4Ek9kbRfBvgytUtMEOTiQ8g3DABHlNcu2UyFAsp8BoJVCaciPkJ8zBCh/KREvXj6ZIWLD2vY6xBpgoRArAWk7OPoH9QehKuoHvEnXToZRP3X0j0lEGZewLERiZtYXCkpSCigJODMEGAIo3+V1z4BSGgiEIXubM/egiRjk6N4BGtPQMxZnrh0iGjWvxwMATk9ASdDPtQKooOR1GAAAY+Jc2Pu3Ara7nw50wwyoYKmrbRDRwLweDwAwBFBhy/swoPxB6IlzYGeyd6BfIxrG5JPce3wiGpDX4wEAhgAqDnkfBgD3ewfYK0CUXQnLORWQ7eWC+9JKoTToR4ghgIpAQYQBV3sH2CtAlBUigphpIeLheACAswOoOBVEGADc6x1grwCRu0zLRjRhIho3YXs4ucnQzukAhgAqRgUTBlzpHWCvAJErRASxhIVI3NteAMAJAaVBbidMxa1gwgCQ+d4B9goQZZZp2YjEE4gmTM8GBCYxBBAdV1BhIKO9A+wVIMqIXOoFAACf1igJ+RHkssFEKQUVBoDM9Q6wV4BofFK9AHETubDMacBnoCToh9/QDAFEJyi4MJCR3gH2ChCNiYggmjARiZswc6AXAADCAR/CAT+3EiYaQsGFAWD8vQPsFSAanYRlIRo3c6YXQCuVCgFasxeAaDgFGQbG1TvAXgGiEbFsG7GEhWgid3oBfFqjJOjnoECiUSrIMACMvXdAT5jOXgGiQdgiiPWuCTCSwYAigr179mDt6jexbdtW2LaN8969AqefsSSjdXE8ANH45PUWxsMxd60fXe+A0vCf8R6GAaI+krMBogkTcXPkywN3tLfj/1x+KdatXQMAqK2thVIK7e3tWL1xM+rrJ4y7No4HIMqMgn4FGRPnAnrknR8cK0DkkN4egPaeKI509KAjEhtVEACAF59/DuvWrsEjjzyClpYWHDlyBM899xwSiQR27tgx5tqSywXXVZSgPBxkECDKgII9TQCMcuwAxwpQkRMRJCzbOQ2QgUWBbNs5jbBp0yb8+te/xkUXXYSlS5eO+fF8hkZJgOMBiNxQ0GEAGPnYAfYKUDESEZi2jVjcOQ2Qyb0B3rl8OU5asAB3f/WriPT04OSTTx7T4wT9BsIBjgcgclPBh4ER9Q6wV4CKjNmnB8Cy3Rk2VFtbh+deeg0AsGjuzFH9rKEVwgFn0yBODSRyX8GHAWD43gH2ClChS/YAxBMWYqaVM1MBTxTy+xAK+NgLQJRlRREGhuwdYK8AFSgRQcK0ETNNxBKWp9sDDyXVCxDwQTMAEHmiKMIAMHjvANcVoEJii/R++jcRT1g5sRrgYEJ+H8IBH3zsBSDyXNGEgQF7B5SGMXm+d0URZUByJcBYYmQLAWXT2jWr8cQf/4Curq606//7oZ+h69gRXHXVVQwCRDmgaMIA0L93QE+YDhVirwDlFxFxBgCaTgBwawDgeHV3deH9l70XZaWlmFBfj6qqKgQCAUybNg3PP/ccHvr5zxEKhXDFFVd4XSpR0SuqMJDWO8BeAcojIoK4aSGWsBA3c/f8f19HDh9CV2cn/vC//4tzzjkndf3OnTsBOCsSbtq0iWGAKAcUVRgAjvcO6Pqp7BWgnCUisGwnACS/8oFWKjUjoOKkOaitrcUFF1ww4KmAeDyO008/3YMqiehEBb03QV8iAogAYsPasxF6wjSoUBmgOHiJcoNl22kH/3x5ZSrlDAYM+vtPCdy1axf+9Kc/wbL6h5mTTz4ZZ599Nl9/RDmgIMOAJGJArAsS7QZi3ZBIJxDrBsQZXCUi6W9AvgAQKoMKlQPBUqfHIFgKpQ2PfgMqBvYJn/zzoes/SQEI+A2E/D4EfFwemCjfFUwYkHgE0n4QcqwFiPf0uUUBI55g1fe+Cqiog65sBMprGQxo3GwRJHoP/AnThmnn1sj/kQj4jN5eAAYAokKS12FAzASk/QCk7QAQ6XCvIaWBygboqkagtJpvgjQiyY1/nIO/lXPT/kbKb2iEAj4EfVwamKhQ5WUYENuGHN0DOfQ2INkaWNXbaxAuh26aB1VSmaV2KV8kD/4Jy/nkny+D/gbiM3SqB8DQ3CKYqNDlVRgQEaDjEOwDW4FEzNtiKhugG2ZBBcLe1kGeSI72N5MHf8vO2fX+R8rQKjUQ0GcwABAVk7wJAxLtgr1vExBp97qUXsr5X900qAkzoBTfPAuZ3bvQT7K7P2Hlz2j/oRhaIdjbA+DTnFlDVKzyIgxI+0HYezemZgPknHAl9NSTofxBryuhDEh+6k929ycsK2dX+RsLv6ER7J0FwB4AIgJyPAyICOTQ25DDb3tdyvAMP/T006DC5V5XQqOUHOWf7OpPmLm9wc9oJacBBn0+BPwGdwYkon5yNgyI2M5pgbYWr0sZOWVAT1sMVVbtdSU0gNR5fts56JuWDcu2C+pTf5JWCsHeAOD3sfufiIaWk2FARGDva86vIJCioGeewdkGHrNPOOgnLxcyn6ER9BkI8Pw/EY1SToYB++heSMtmr8sYO8MPPecdUD5vxhCICERQFHPC+47q73vQz6fV/MYj4DNSAYBTAIlorHIuDEhPO+wdb2DkqwbmIgWUVEDPOD3rswwSpoXOaBxBv4HSYCCrbbspedC3bPuEbv58/jsZPa0UAr0H/4CP5/+JKDNyatdCMWOwd61FfgcBABCgpx1yYDtU05ystGjZNrqjCUQTJgDnE2O+6XvAH+i/xUgpIGAY8Pucg7+hFbv/iSjjcioM2Hs3ApbpdRkZI0d3Q8pqoMpr3WtDBD2xBLpjiX7X5yJb+hzkrfSDfbF07Q8n4DPg92ln6h/P/RNRFuRMGJCedqCr1esyMs4+uB26rCbjb+gigphpoSsSH/Ag6tWBNfnp3haB3edAb9rOyH0e7/vzGzr1yf/ELYCJiLIhZ8KAfehtjG6HwTwR7QS6W4GyzPUOJCwnBAy18U2mD7onHuRTB3ux074vsH89V/i0Tn3y9/O8PxHlgJwIAxLpBLqOel2Ga+yDb8PIQBiwbUFXLI5ofPhTKSPpGUjOOrCFB3k3aa0QMJxP/gGfURSzPIgov+REGCjYXoGkSDuk+xhU6dgWIxIRROImuqPxET9Dtu2MJbBFnHUb+hz4+35Pmec3NHy9Xf9+Q3PKHxHlPM/DgFgm0HnY6zJcpiBtB0YdBpLjArqj8VGPprdF0BWNj+pnaPS0UvD7NPyGkQoBPOdPRPnG8zCASIfXFWSBQLqPjeon4qaFrmi84FfNyzf+Pp/4ffzUT0QFwvMwID1tyMYpgj8+/youv/nzg95+1UXn4Fff+Df3CohHIGYCyucf8m4Jy0J3NIG4ablXC42IodXxT/w+zWl+RFSwPF+B0Hr7TWCUn5rHIhKNob2rO71ty8bHv3gv1mzahj//5F6cPHemqzXoqadAVdQPeJtl2+iKxhFLMAR4QSsFX/Jcv+F0+3OgHxEVC097BkRsoKc9K22FQ0GEQ8f3CrAsCx+57atZCwKAgvS09QsDti3ojsURGcEMAcoMn+F8yk8e/H1a88BPREXN29MElglI9s+JJ4PAX15+A3/+ydezEAQAQIBELPWd3btyYCSWKNQ5FJ7TWvU76HM5XyKi/rwNA7Y3QeC63iDw5E/uxSnzshEEHGJbx6cJxuKc2pchCjh+wE8e9A3NxXyIiEbI2zCQ5V6BZBD4c28QWDxvVnbbh0ZbV6RoN90ZL60UDK1g9H7CTx78teKnfSKi8fA2DGRxWlYyCDz50uueBAEAMJSgqjSEnlgC0bjJ0wMDSHbt9z3oG+zeJyJylbdhQGVnm13LsnD9v96DJ196HU/8+Gs49aTZWWn3REppaK1RHg6iNBRAJJZAJG4W3W59Ax3oecAnIvKOt2HA8AHaB9jujaS3bRvX/+s9+J9nXsJ/f+Pf0FRfiwNH0ndHrK+uhGG4HUwUECxJfaeVQmkogJKgH9GEiZ5YoiBOHyiV7M53uu+1Tu/aZ5c+EVHu8X6dgV1rgc4jrj3+q+uaseyalUPe58hff4uqijLXakjS00+DKqsZ8DYRQdy00B1L5OSqgwMd5FMH+z7f80BPRJR/PA8D9uFdkIPbvCwha/T8c6GMoTtjRAQJy0ZPzP1VCJMHeKV6D+w8yBMRFSXPlyNWpVXFMZAuVDZsEAAApVRqq1uzNxREE2M7jWJohXDA33swTz/wKwUe4ImICEAOhAGEyp2PqAU9iE6Naftin6FRURJEqe1HJG4iEk+M6mnSSqEkOPReCERERJ5vuaa0BqqavC7DZQJVPXHMP21ojbJQAHXlJSgPB2CMcOncYpulQEREY+N5GAAAXT/d6xJcpIDyeqjQ+AcoKuV0+9eUhVFVGkLAN/QMCGYBIiIaiZwIAyoQ7u0dKMRz2AI9YUZGHzE5rqCqNITa8jDCAd+Az5zHY0OJiChP5EQYAJK9A4V28FJAWS1UuNy1FozeRYxqK0pQFko/hSBgICAiouHlTBhQwRJgHOfVc5NAN2RnI6TkYMGasjAqS4KpUwjMAkRENBzvZxP0oZvmwu5pB2I9KIReAtU0Fypckd02lULQ70PQ73MWLyrEMy9ERJRROdMzAABKG9DTFmd1AyPXVDZC1Uz2tAQft/ElIqIRyLmjrgqEoacs8rqMcVBAsBR60klc1IeIiPJCzoUBAFDldVAN2d9iePwUYDi9G0pnZ0dGIiKi8fJ8b4Kh2Ed2Qw5s9bqMEVKAP+hsRtRnd0IiIqJcl9NhAADs9oOQvW/l/rD4UDn09MVQvqDXlRAREY1KzocBAJBIJ+xdawEz5nUpA6ueCN00z1lamYiIKM/kRRgAADETsA9uB47t87qU43wBqKa50JUNXldCREQ0ZnkTBpIk2gW7ZQvQfcy7IpSGmjADqnYKBwoSEVHey7swkCSdR51QEO+Bs7JOln6NqibohllQfo4NICKiwpC3YQDoXXe/pw3SdhDSfgCwLbgSDEJlUFVNUJUToPyhzD42ERGRx/I6DPQltg10t8JuOwB0HukNBkkjCQgn3CdQAlXVAFXZyKmCRERU0AomDPQlIoAZB2LdkGjX8f+acUDs49MUlXaWPg6UQIXKgFApVLAMCJZwLAARERWNggwDRERENHKcGE9ERFTkGAaIiIiKHMMAERFRkWMYICIiKnIMA0REREWOYYCIiKjIMQwQEREVOYYBIiKiIscwQEREVOQYBoiIiIocwwAREVGRYxggIiIqcgwDRERERY5hgIiIqMgxDBARERU5n9cF9BU47WPQvgCUNqC0AcN//LLS+vhthgHtC0CnbjP63aa0Aa0VlFYwDA11wmWtFbShUvcZ8jalYPg0DK1gaIVA72Vf6nvj+G3G8fv5+tzXGOiyUtBKwVCA39Cpyz5Dw1BwvtcKfq0GuOzc7tc6ddlQCkoBWgFKoffxAQXA0AoacH4XjdRlrQBD9b3sPIYSAcSGsk0g7bLtfNmD36bEBizr+GXbBGwLYtuAGYdYFmDbznVmAmJbzuVEAkheTt43eb9E/PjP2BbshAmxbIhtw46bsC3nZ8SyYSdM2Nbxy9J72UqYkD73s+Jmn8sWxBbYlvR+3/vztji3WQKxBLZlw0rYvY8psBJW788c/zlbBJYI4rbAEpxw+cTvncs2nMuWoPe245d/KDs9fV1mCl/ffH3z9Z27r2/2DBARERU5hgEiIqIixzBARERU5BgGiIiIihzDABERUZFjGCAiIipyDANERERFjmGAiIioyDEMEBERFTmGASIioiLHMEBERFTkGAaIiIiKHMMAERFRkWMYICIiKnIMA0REREWOYYCIiKjIMQwQEREVOYYBIiKiIscwQEREVOQYBoiIiIocwwAREVGRYxggIiIqcgwDRERERY5hgIiIqMgxDBARERU7KVDRaFRuv/12iUajXpfSTy7XJsL6xiOXayskufw853JtIqxvPHK5tvFSIiJeBxI3dHR0oLKyEu3t7aioqPC6nDS5XBvA+sYjl2srJLn8POdybQDrG49crm28eJqAiIioyDEMEBERFTmGASIioiJXsGEgGAzi9ttvRzAY9LqUfnK5NoD1jUcu11ZIcvl5zuXaANY3Hrlc23gV7ABCIiIiGpmC7RkgIiKikWEYICIiKnIMA0REREWu4MLAZz7zGZx99tm45pprEI/H026LRCL4m7/5G5x77rm48MIL0dramlP1Jd19991YsmSJ5zWZponrr78eZ599Nj75yU9mrZ6R1peU7eerr8Fqy4W/tULE13fmauLre3jF9PouqDCwevVqHDhwAC+88AIWLFiARx55JO32P/3pT1i0aBGee+45fPCDH8R//dd/5VR9ANDZ2YkNGzbkRE2///3vMXnyZLzwwgvo6enBSy+9lLW6RlIfkP3na6S1ef23Voj4+s5sTXx9j702r//W3FBQYeDll1/GRRddBAC45JJL+v1xz5kzBz09PQCAtrY21NfX51R9APCd73wHN998c07UNJJ6vawPyP7z1ddQtXn9t1aI+PrObE18fQ+t2F7fPq8LyKS2tjZMnDgRAFBZWdmv62bWrFnYsGEDFi1aBKUUXn311Zyqr729HevXr8cXvvCFnKipra0ttf72QPV6XZ8Xz9dIa/P6b60Q8fWd2Zr4+h57bV7/rbkhL3sGDhw4gOXLl/f7EhF0dHQAcP4ha2pq0n7uwQcfxHnnnYcNGzbgjjvuwJ133plT9X3729/GP/7jP7pS02Cqq6sHrWmo23KhPi+er76Gqi1bf2uFiK/vzOHre+yK7fWdl2GgsbERL774Yr+v9773vXjyyScBAE888QSWLVvW72eT/6BVVVVoa2vLqfq2bduGr3zlK7jkkkuwdetWfPWrX3Wlvr6WLl06aE1D3ZYtQ9XgxfM10tqA7PytFSK+vjOHr293agMK8PXt3e7J7vj0pz8ty5cvl6uvvlpisZiIiNx4440iItLe3i7vfe975dxzz5Vly5bJ5s2bc6q+vs444wzPakrWk0gk5CMf+YgsX75cVq5cmbV6RlpfX9l8vvoarLZc+FsrRHx9j78mvr5Hrphe31yOmIiIqMjl5WkCIiIiyhyGASIioiLHMEBERFTkGAby2ObNm9HY2IjOzk5X29m5cyeUUlizZo2r7Qzl2WefhVJq3KN2Dx06hPr6euzbty8zhZHnzjvvPHzqU59KfT99+nR8+9vfHvHPZ+pvK9M2bdqEpUuXIhQK4dRTTx30upG49tpr8e///u/jquenP/0pqqqqxvUY2XD99dfjfe9737gf57777sPll18+/oLyBMPAKFx//fVQSuEf/uEf+t120003QSmF66+/Pu36AwcOYOXKlZg5cyaCwSCmTJmCyy67DE899VTqPtOnT4dSqt/XcFNpPv/5z+Pmm29GeXl5Rn6/YjBhwgRce+21uP32270uhVyyatUq3HjjjV6XMW633347SktLsXnz5tT7xUDXDWfdunX4wx/+gJUrV7pZbsG54YYbsGrVKrz44otel5IVDAOjNGXKFPzqV79CJBJJXReNRvHLX/4SU6dOTbvvzp07ccYZZ+Dpp5/G1772Naxfvx6PP/44zj///H5LbN55551oaWlJ+xrqxbt371787ne/w0c/+tHM/oIFLLnRyEc/+lE89NBDOHbsmMcVkRvq6+tRUlLidRnjtn37dixfvhzTpk1DbW3toNcN57777sMHPvABfmgYIRGBaZoIBoO4+uqr8d3vftfrkrKCYWCUTj/9dEydOhWPPfZY6rrHHnsMU6ZMwWmnnZZ232RvwWuvvYarrroKc+fOxcKFC/HP//zPeOWVV9LuW15ejsbGxrSv0tLSQet4+OGHsXjxYkyePDl1XbIb74knnsD8+fNRVlaGSy65BC0tLan72LaNO++8E5MnT0YwGMSpp56Kxx9/PO2xX3vtNZx22mkIhUJYsmQJVq9e3a/9jRs34r3vfS/KysrQ0NCAa6+9FkeOHBnyufvrX/+Kc889FyUlJaiursbFF1+cOiDHYjHccsstmDBhAkKhEJYvX45Vq1YN+XiPPvooFi5ciGAwiOnTp+Mb3/hG2u3Tp0/HXXfdheuvvx6VlZW44YYbAAAnn3wyGhsb8Zvf/GbIx6f8dOJpAqUUfvKTn+DKK69ESUkJ5syZg9/97neD/nwkEsGll16KpUuXDrpEr23buOeeezB79mwEg0FMnToVX/nKV1K3r1+/Hu9+97sRDodRW1uLG2+8EV1dXWmP8cADD2D+/PkIhUI46aST8P3vfz+t5jfeeAN33nknlFL40pe+NOB1w7FtG7/+9a/7dXfH43HceuutmDRpEkpLS/GOd7wDzz77bNp9fvrTn2Lq1KkoKSnBlVdeiaNHj/Z7/LvuugsTJkxAeXk5/u7v/g6f+9zn+p2+GOr3HKzm8T63fQ333pI8TfTEE09gyZIlCAaDeOGFFwAAl19+OX7729+mffgrWB6vc5BXrrvuOrniiivkm9/8pqxYsSJ1/YoVK+Rb3/qWXHHFFXLdddeJiMjRo0dFKSX//u//PuzjTps2Tb71rW+NqpYrrrhC/uEf/iHtugceeED8fr9ccMEFsmrVKnnjjTdk/vz5cvXVV6fu881vflMqKirkl7/8pWzatEluvfVW8fv9smXLFhER6erqkvr6evnQhz4kGzZskN///vcyc+ZMASCrV68WEZH9+/dLXV2d3HbbbdLc3CxvvvmmXHjhhXL++ecPWu/q1aslGAzKJz7xCVmzZo1s2LBBvvvd78rhw4dFROSWW26RiRMnyh//+Ed566235LrrrpPq6mo5evSoiIg888wzAkCOHTsmIiKvv/66aK3lzjvvlM2bN8sDDzwg4XBYHnjggbTntaKiQu69917ZunWrbN26NXXbBz/4Qbn++utH9ZxTbjr33HPlk5/8ZOr7E19PAGTy5Mnyi1/8QrZu3Sq33HKLlJWVDfi31dbWJsuXL5cLLrhAurq6Bm3z1ltvlerqavnpT38q27ZtkxdeeEF+/OMfi4hId3e3TJw4Ud7//vfL+vXr5amnnpIZM2ak3htERH70ox9JU1OTPProo7Jjxw559NFHpaamRn7605+KiEhLS4ssXLhQPv3pT0tLS4t0dnYOeN1wVq9eLQDkwIEDaddfffXV8q53vUuef/552bZtm9x7770SDAZT7wOvvPKKKKXk7rvvls2bN8t3vvMdqaqqksrKytRj/PznP5dQKCT/+Z//KZs3b5Y77rhDKioqZPHixSP+Pd14bpPv00kjfW855ZRT5Mknn5Rt27bJkSNHRMR5P1RKybPPPjvsc53vGAZGIflHdvjwYQkGg/L222/Lzp07JRQKyeHDh9PCwKuvvioA5LHHHhv2cadNmyaBQEBKS0vTvp555plBf2bx4sVy5513pl33wAMPCADZtm1b6rrvfe970tDQkPp+4sSJ8pWvfCXt584880y56aabRETkP/7jP6Smpka6u7tTt//gBz9ICwNf/OIX5aKLLkp7jD179giAQVfi+vCHPyzLli0b8Lauri7x+/3y0EMPpa6Lx+MyceJE+drXviYi/cPA1VdfLRdeeGHa43z2s5+VBQsWpL6fNm2avO997xuwzX/6p3+S8847b8DbKL+MJAx84QtfSH2ffIP/05/+JCLH/7Y2bdokixcvlve///2p1QMH0tHRIcFgMHWAOtGPfvQjqa6uTgsTf/jDH0RrnTooT5kyRX7xi1+k/dyXv/xleec735n6fvHixXL77ben3Weg64bym9/8RgzDENu2U9dt27ZNlFKyb9++tPuuWLFCbrvtNhFxXq+XXHJJ2u0f+tCH0sLAO97xDrn55pvT7rNs2bK0MDCS37OvTDy3fcPAaN5bfvvb3w7YZjKYFLqC2rUwW+rq6nDppZfiwQcfhIjg0ksvRV1dXdp9pHdhR6XUiB7zs5/9bL/Bh5MmTRr0/pFIBKFQqN/1JSUlmDVrVur7pqYmHDp0CADQ0dGB/fv391tje9myZVi7di0AoLm5GYsXL0475/rOd74z7f5vvPEGnnnmGZSVlfVrf/v27Zg7d26/69esWYMPfOADA/4u27dvRyKRSKvL7/fjrLPOQnNz84A/09zcjCuuuKLf7/Htb38blmXBMAwAwJIlSwb8+XA4nNqClArfKaeckrpcWlqK8vLy1Osi6YILLsCZZ56Jhx9+OPX3M5Dm5mbEYjGsWLFi0NsXL16cdppv2bJlsG0bmzdvhtYae/bswcc//vHUqSsAME0TlZWVY/0VBxSJRBAMBtPeh958802ISL/XaSwWS41DaG5uxpVXXpl2+zvf+c60U4qbN2/GTTfdlHafs846C08//TQA4PDhw6P+Pcf73DY0NKTdfzTvLcX+XsEwMEYf+9jHUjtqfe973+t3+5w5c6CUQnNz84imudTV1WH27Nkjbr+urm7AAXB+vz/te6VUKpj0va4vEUldd+J9B2LbNi677DLcc889/W5ramoa8GfC4fCgjzdYcOpb10A/M9D9TzTYuIvW1taC2IOcRmag14Vt22nXXXrppXj00UexceNGnHzyyYM+1lB/y8DQf7d92/3xj3+Md7zjHWm3DxVCxqKurg49PT2Ix+MIBAIAnNevYRh44403+rWXDPgjeR8ABn7NJo3l9xzvczvQ/Qer88Triv29ggMIx+iSSy5BPB5HPB7HxRdf3O/2mpoaXHzxxfje976H7u7ufrePd07zaaedho0bN47qZyoqKjBx4sR+U2VeeuklzJ8/HwCwYMECrF27Nm3AzImDHU8//XS89dZbmD59OmbPnp32NdgL6pRTThl0KtTs2bMRCATS6kokEnj99ddTdZ1owYIFA/4ec+fOHdEb6oYNG/oN+KTi9tWvfhXXXXcdVqxYMeRra86cOQiHw4P+PS9YsABr1qxJe93/9a9/hdYac+fORUNDAyZNmoQdO3b0e/3MmDEjo79TcjBf39/ntNNOg2VZOHToUL/2GxsbU7/Dia/7E7+fN28eXnvttbTrXn/99dTlsfye431uTzSW95a+tm/fjmg0WhTvFQwDY2QYBpqbm9Hc3Dzowef73/8+LMvCWWedhUcffRRbt25Fc3Mz/t//+3/9ut47Oztx4MCBtK/kXtoDufjii/Hyyy/DsqxR1f3Zz34W99xzD/77v/8bmzdvxuc+9zmsWbMGn/zkJwEAV199NbTW+PjHP46NGzfij3/8I77+9a+nPcbNN9+M1tZWfPjDH8Zrr72GHTt24Mknn8THPvaxQeu57bbbsGrVKtx0001Yt24dNm3ahB/84Ac4cuQISktL8YlPfAKf/exn8fjjj2Pjxo244YYb0NPTg49//OMDPt6nP/1pPPXUU/jyl7+MLVu24MEHH8R9992Hz3zmM8M+Bz09PXjjjTdw0UUXjeq5o8L39a9/Hddccw3e/e53Y9OmTQPeJxQK4V/+5V9w66234mc/+xm2b9+OV155Bffffz8A4JprrkEoFMJ1112HDRs24JlnnsHKlStx7bXXprqxv/SlL+Huu+/Gd77zHWzZsgXr16/HAw88gG9+85ujqnfFihW47777Br29vr4ep59+etrBcO7cubjmmmvwkY98BI899hjefvttrFq1Cvfccw/++Mc/AgBuueUWPP744/ja176GLVu24L777us362jlypW4//778eCDD2Lr1q246667sG7durRP3KP9PTPx3PY1lveWvl544QXMnDkz7dRrwcr+MIX8deIo1RP1HUCYtH//frn55ptTgwQnTZokl19+edrgwGnTpgmAfl9///d/P2hbpmnKpEmT5PHHH09d98ADD6QN8BFxBhD1/We2LEvuuOMOmTRpkvj9flm8eHFqIFXSyy+/LIsXL5ZAICCnnnqqPProo2kDCEVEtmzZIldeeaVUVVVJOByWk046ST71qU+lDVQ60bPPPivvete7JBgMSlVVlVx88cWpAYGRSERWrlwpdXV1EgwGZdmyZfLaa6+lfvbEAYQiIo888ogsWLBA/H6/TJ06Ve6999609gabpfGLX/xC5s2bN2idlF9GMoDwN7/5TdrPVFZWpmaeDPS3tXLlSmlqahp0QKxlWXLXXXfJtGnTUn9/fWcOrVu3Ts4//3wJhUJSU1MjN9xwQ7/R/w899JCceuqpEggEpLq6Ws4555y0AccjGUA4bdq0YQcU/vCHP5SlS5emXRePx+Xf/u3fZPr06eL3+6WxsVGuvPJKWbduXeo+999/v0yePFnC4bBcdtll8vWvf73f+8udd94pdXV1UlZWJh/72Mfklltu6dfWcL/nicb73J74Pj2W95akiy66SO6+++5Bay0k3MI4j33/+9/H//zP/+CJJ57wupS8ctZZZ+FTn/oUrr76aq9LIXJdNBrFvHnz8Ktf/apfj2SmXXjhhWhsbMR//dd/udpONmzYsAErVqzAli1bMj6wMxdxAGEeu/HGG3Hs2DF0dnZydbEROnToEK666ip8+MMf9roUoqwIhUL42c9+NuyiYKPV09ODH/7wh7j44othGAZ++ctf4i9/+Qv+/Oc/Z7Qdr+zfvx8/+9nPiiIIAAB7BoiIaNQikQguu+wyvPnmm4jFYpg3bx6+8IUv4P3vf7/XpdEYMAwQEREVOc4mICIiKnIMA0REREWOYYCIiKjIMQwQEREVOYYBIiKiIscwQEREVOQYBoiIiIocwwAREVGR+/+jSWi9glUfwQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -354,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -362,8 +362,8 @@ "output_type": "stream", "text": [ "Average Causal Effect X=0.37, Y=0.28, Z=0.00 \n", - "Average Causal Susceptibility X=0.00, Y=0.26, Z=0.39 \n", - "Average Mediated Causal Effect X=0.00, Y=0.18, Z=0.00 \n" + "Average Causal Susceptibility X=0.00, Y=0.25, Z=0.40 \n", + "Average Mediated Causal Effect X=0.00, Y=0.19, Z=0.00 \n" ] } ], @@ -391,16 +391,16 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 34, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -411,15 +411,15 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.06808702968271146\n", - "[0.05282617 0.08444858]\n" + "0.0682760530685738\n", + "[0.04730555 0.08479888]\n" ] } ], @@ -432,16 +432,16 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[0. 0.17555924 0. ]\n", - "[[0.00000000e+00 1.61331930e-01 0.00000000e+00]\n", - " [0.00000000e+00 1.91959437e-01 3.88578059e-16]]\n" + "[0. 0.18570133 0. ]\n", + "[[0.00000000e+00 1.65204696e-01 0.00000000e+00]\n", + " [0.00000000e+00 1.98748949e-01 3.33066907e-16]]\n" ] } ], diff --git a/tutorials/causal_feature_learning_and_prediction/tigramite_tutorial_prediction.ipynb b/tutorials/causal_feature_learning_and_prediction/tigramite_tutorial_prediction.ipynb index b3276ed1..8429c7fe 100644 --- a/tutorials/causal_feature_learning_and_prediction/tigramite_tutorial_prediction.ipynb +++ b/tutorials/causal_feature_learning_and_prediction/tigramite_tutorial_prediction.ipynb @@ -154,7 +154,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAEpCAYAAAC+zXpZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABg9ElEQVR4nO3dd3gUVdsH4N+W9L4k1CSE0BEhSAktAgqRIhKKoPQXEJAuXcWGIh0RRIoovZfQpUoJLXSQHiCkQeqmty0z3x8x+RIyu9ndzJbJPvd1vdcbd85Ongxn95lz5hQRy7IsCCGEEGLxxOYOgBBCCCG6oaRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAsOmmr1WrMmzevXOfw8/NDgwYNEBAQgICAAOzatYun6CwfH9ev0A8//ACRSIT79+/zcj6h4OMaBgcHo0mTJggICEBQUBDu3LnDT3ACUd5rmJeXh5CQENSrVw8BAQHo2rUrXr58yV+AFo6POjhp0iT4+flZ5WdYV3x+XxoVa8Fu377NBgQElOscNWvWZP/991+eIhIWPq4fy7LszZs32a5du7K+vr5Wdy35uIapqalFP4eGhrLNmjUrZ1TCUt5rmJubyx49epRlGIZlWZZduXIl26VLF77Cs3h81MHz58+zMTExVv19WBa+vi+NzWJb2g8fPkSPHj0QFxeHgIAAfPfdd+YOSVD4un75+fkYP348fv/9d4hEIp6jtGx8XUN3d/ein9PT0yEWW+zHjnd8XEN7e3t07969qP61bt0aL1684DtUi8RXHXz33Xfh7e3Nc3QVh5DyjdTcAWjSqFEj9O7dGw0aNMCECRPKda5BgwaBYRgEBgZi/vz58PLy4ilKy8XX9fv2228xePBg1KpVi8fohIHPOjh06FCcPXsWAHD8+HE+whMEPq9hoRUrVqBnz568nMvSGeP6kdKEdJ0t+pb/xo0baNGiRanXg4KC4Onpyfm/mJiYEmUvXLiAu3fv4tatW6hUqRKGDRtmqvDNrrzX78qVK7h+/TrGjRtnyrAtCh91EAA2b96MmJgY/PTTT5gxY4YpQrcYfF1DAPj5558REREhjGePPOHz+hHNNF1nSyNiWZY1dxBcVCoVPDw8kJSUBHt7e17O+fr1a9SrVw+ZmZm8nM+S8XH9FixYgBUrVsDW1hYAEBsbiypVqmD9+vXo1q0bn+FaJGPUQQBwcHBAbGwsKlWqxNs5LRWf13DJkiXYuXMnTp8+XeKRQ0XGdx308/PDkSNH0LhxYx6iqziM9Vk3BottacfGxsLFxaVcFzA7OxtpaWlF/71jxw40a9aMh+gsHx/Xb/bs2Xj16hVevnyJly9fwtvbGydOnLCKhA3wcw0zMjLw6tWrov8ODQ1FpUqVIJPJ+AjR4vFxDQFg2bJl2LFjB06dOmU1CRvg7/oR7YR0nS02aXt7e6NJkyaoX78+vvrqK4POkZCQgE6dOqFJkyZ4++23cf78eWzevJnnSC0TH9fP2vFxDdPT0xESEoK3334bTZs2xapVq3DkyBGrGdTHxzWMjY3FtGnTkJaWhk6dOiEgIACBgYE8R2qZ+Pocjx8/Ht7e3oiNjUXnzp1Rp04dHqMUPiF9X1ps9zghhBBCSrLYljYhhBBCSqKkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBsNitOXXFsiwYhgEAiMViq1kekk8Mw4BhGIjFYqva65kvVAfLj2VZqNXqoutH11A/hXWQZVlIJBK6fgYQSh0UZNJWq9VIT09HSkoK8vPzSxyzs7ODTCaDu7s7JBKJmSK0fLm5uUhNTUVaWlpRwgEAkUgEV1dXyGQyODo6WmzFNTeGYZCeng65XI7c3NwSx2xtbYvqoFQqyI+YSeTl5RXVQbVaXfS6SCSCi4sLPDw84OzsTHVQA4ZhkJmZCblcjuzs7BLHbGxs4OHhAQ8PD9jY2JgpQsunUCiQmpqK1NRUqFSqEsecnZ0hk8ng4uJiUXVQUGuPq1QqxMfHIz09HWWFXZh8qlatSpW2mPT0dCQlJSEvL6/Msra2tvD09ISHh4dFVVpzUqvVSEhIQGpqapl1EABcXV1RpUoV2NnZmSA6YcjKykJCQkKpmx0uUqkUnp6eqFSpEtXB/zAMg8TERMjl8hI33Jo4OzujSpUqcHBwMEF0wpCTk4OEhIRSNztcJBIJKlWqBC8vL4uog4JJ2rm5uYiKiip1N1QWiUQCPz8/q6+wLMsiMTERSUlJer/X3d0d1atXt/qu8/z8fERFRUGhUOj1PrFYDF9fXzg7OxspMmFgWRYpKSmIj4/X+70uLi7w8fGx+jqoVCoRFRWl0013cSKRCD4+PnB1dTVSZMKRmpqKuLg4vd/n6OgIX19fs/eeCSJp5+Xl4cWLFzrdVXIRiUTw9/e36sT96tUryOVyg9/v4uICX19fi7jTNAeFQoHnz5+X6MbVl5+fn1Un7sTERCQmJhr8fkdHR/j5+Vlt4lapVHj+/DmUSqXB5/Dx8YGbmxuPUQmLXC4vsb+9vuzs7ODv72/WR68WX/sZhkF0dLTBCRsouMMv7zmErPDZa3lkZmYiJSWFp4iEhWVZxMTElCthA0BMTIzePUUVRXZ2drkSNlDQpVnecwgVy7KIjY0tV8IGCvYm17enqKLIy8srV8IGCnrbXr9+zVNEhjEoaf/++++oVasW7O3t0bx5c4SFhfEdV5GkpCReKplSqbTKDzzDMAZ1BXGJj48v95eGEHENNjOEWq02qGtY6AoTDh+Sk5P17hquCDIyMpCVlVXu87AsW+7EJUR81sG0tDRe/i0MpXfS3rVrF6ZMmYKvv/4at2/fRlBQELp164bo6Gjeg2MYhtfWnVwuL3drSWhSU1N57WGwttY2y7JITk7m7XxpaWlWd+OTkZHB69/M57+HUPD5N2dlZVndjU9OTg6vf7M566DeSXvZsmUYOXIkRo0ahYYNG2L58uXw8fHB6tWreQ8uKyuL14TDMIxZ75DMIS0tzaLPZ+lyc3N5T7IZGRm8ns/S8V1ndJk9UpEoFApeenqKS09P5/V8lo7vvzcrK8tsDUC9krZCocDNmzcRHBxc4vXg4GBcvnyZ18AA8F5RjXVOS8WyLO931CqVyqpailQHy4/vv5dl2VLrM1RkOTk5gjinJTPG32uuz7FeSTs5ORlqtRpVqlQp8XqVKlWM8qzOGB9Ma/qwK5VKo7RIrGkgizHqizV1TTIMY5TBd9b0OTbG582arh9QsXKJQQPR3pz2w7KsYKYCWVO3GiGEkIpFr6Tt6ekJiURSqlWdmJhYqvXNB2NMYrem1dGMNZfQ3IsLmJIx/lZrun7GWsPZmq4h1cHyq0jXUK+kbWtri+bNm+PUqVMlXj916hTatm3La2AAjLIYijUtsCKRSGBra8vrOcViMe/ntGTGqC+Ojo68n9NSiUQio1xDe3t73s9pqagOll9FyiV6d49PnToV69evx19//YVHjx7hiy++QHR0NMaOHct7cMZYPcraVqTie9lCa9vAwRibpri4uPB6PkvHdx10dHS0qs2A7O3teW/VUR0sH1tbW7P12updEwYMGICUlBTMnTsXr1+/RuPGjXHs2DHUrFmT9+BsbGzg6urK2xQZFxcXq2olAoBMJuN1TqGnpydv5xICiUQCmUzG2/x0BwcHq+rtAQAPDw8kJCTwNp7E2uqgSCSCTCbjbXEoGxsbq2y8SCQS3qZpeXp6mq3xYvFrj+fn5+PZs2fl/sCLRCLUqVPHKndbio+P5yVxu7q6wsfHx6pa2kDBNLeIiAhePvD+/v5W1zUJFMw84WOGiZOTE/z8/KyuDqrVajx79oyX6ZY1a9a0upY2YPhGIW+ys7ND7dq1zbYGvsWvPW5nZ4fq1auX+zzVqlWzyoQNAJUrVy733y6VSlG9enWr+7IECv52b2/vcp+ncuXKVpmwAaBSpUpwcnIq1znEYjG8vb2tsg5KJBL4+PiU+zyF+0NbI3d393JvllK4W5o5N62x+KQNFHSvVatWzeD3V61aFTKZjMeIhEUsFhetFW8IGxsb+Pv7W92I0+JcXFzKlbg9PT3h5eXFY0TCIhKJ4Ovra3Dilkql8Pf3t6rZH29ydHREzZo1Db5pcXd3L9f3qNCJRCLUqFHD4OfbYrEYfn5+Zh8EafHd48VlZmYiNjZW525KiURSrn+kioZhGLx69UqvZSWdnZ3h7e1t1Qm7uOzsbL126xKLxahWrRo8PDyMHJkwsCyL169f67XrnKOjI3x8fKw6YReXl5eH6OhonRddEYlEqFKlCipVqmSVvRRvYlkWiYmJSEpK0vk9dnZ28PX1tYjeWkElbaDggmdmZkIul2tcR9zJyamoG8ha997VRqFQIC0tDXK5nDP5iMViyGQyeHh4WEQltTQsyyIrKwtyuRyZmZmcZRwcHCCTyeDm5kZ1kINKpUJqairkcjnnc1qxWAx3d3d4eHhY3cA9XbAsi5ycHMjlco3ratvb2xfVQWsaba8rlUqF9PR0pKSkcN4AiUQiuLm5QSaTwcHBwWJueASXtItTKBTIy8sDwzBgWRYSiQT29vZWN0LcUIUffJVKBYZhIBaLIZFI4OjoSIlGR0qlEnl5eVCr1UV10M7Ojm52dMSybNGmLFQHDaNSqZCbm1uiDtra2pq9G1coCvdoUCqVUKvVEIlERXXQEm92BJ20CSGEEGtCt7KEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAUNImhBBCBIKSNiGEECIQlLQJIYQQgaCkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAUNImhBBCBIKSNiGEECIQlLQJIYQQgaCkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAUNImhBBCBIKSNiGEECIQlLQJIYQQgaCkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQEjNHYChGIZBRkYG8vLyoFarAQASiQT29vZwdXWFWEz3I2XJz89HRkYGVCoV1Go1xGIxpFIpXF1dYW9vb+7wLB7LssjMzEROTk5RHRSLxUV1UCKRmDlCy6dUKpGeng6lUllUByUSCVxcXODg4ACRSGTuEC0ay7LIyspCdnY2GIYBwzCQSCSwtbWFu7s71UEdqFQqpKenQ6FQlKiDzs7OcHR0tLg6KGJZljV3EPrIy8tDamoqUlNTwTAMZxmxWAx3d3fIZDJKPm8ovNmRy+XIycnRWM7e3h4ymQxubm70wX9Dfn5+UR0sTNZvEolEcHd3h4eHByWfNxTe7MjlcmRlZWksZ2dnB5lMRsmHg1KpRGpqKuRyOVQqlcZybm5ukMlkFpl8zKnwZic1NRUZGRkay9nY2EAmk8HDwwNSqWW0cQWTtFmWRWJiIpKSkvR6n6enJ6pUqUIVFgXJJioqCgqFQuf3SCQS+Pn5wcHBwYiRCQPLskhJSUF8fLxe73N3d0f16tWp9wcFySYqKgp5eXk6v0csFsPX1xfOzs5GjEw4UlNTERcXp9d7XFxc4OPjQ3UQgFqtRnR0NLKzs3V+j0gkgo+PD1xdXY0YmY6xCCFpsyyLmJgYrXdE2lCFBXJzcxEZGamxd0IbkUgEX19fuLi4GCEyYWBZFq9fv4ZcLjfo/Y6OjvDz87PqOpifn4/IyEitLUNtvL294e7uzm9QApOYmIjExESD3mtnZ4datWpZTIvRHJRKJSIjI/VquBRXrVo1VKpUieeo9COIb5D4+HiDEzYAZGZm6t06qkgKK6ohCRsoSFjR0dF6tY4qmuTkZIMTNgDk5OQgNjYWArhHNgq1Wo2XL18anLABIDY2VusjnYouNTXV4IQNFNw0RUdHW20dZBgGL1++NDhhA8Dr16/LlYv4YPFJOysrCykpKeU+j1wuR2ZmJg8RCU9cXJzBCbtQYW+HNX7g8/LykJCQUO7zZGRkID09nYeIhOf169dQKpXlPk9MTEy567IQKRQKvHr1qtznycnJ4eX7VIgSExORn59f7vPExcWV6+azvPRO2hcuXEDPnj1RvXp1iEQiHDhwwAhh/T8+viyNcS6hyMnJ0TrYRx+Fo82tTXlaN29KSEiwuhuf/Px8pKWl8XKuwgFY1iY5OZm3epOYmGh1Nz4qlYq3mxW1Wm3WGx+9k3Z2djaaNm2K3377zRjxlJCXl4fc3FyLPZ8Q8F25rO0uXalU8nqjolQqebuJEgq+k6y11UGGYXi9hgzDWF2PT1paGq83y3K53Gw333qPSOjWrRu6detmjFhK0Wd0nz7ntKaR0Hxfw5ycHDAMYzUDqozxDDU7O9uqBvXxfZOiUCigUqmsZkBVbm4u7wkiOzsbHh4evJ7TkvFdB9VqNfLz880ypdiiv3mN0SrOyshAzJ0HUJvxmYSpqFQqozx7iXn4FBkJ+k29Eypj1MHsrGy8vH4XqnIMiBEKlmWNMoDxVcQLpMa+5v28lsgYddDaBvQZ4xqaq9fWom9VjfHcJSMpBb+3/hg2Dvao2fxt+AUGwK9VU9QKDIDMt0aFms9trOdWp5asw41N+yHzrQG/wADU+u8a1mz+NmwdK1YvhjGuYV52Nla26gWprS18mjX6rw4WXEev2jUrVB00Vhdi+LYDODPvd7hVr1L0+fVrFYCaLd6Gg2vF6sXQtIBPeVjbM21j/L3muoYWnbSN8eWVIy94lqPMzcOzi9fx7OL1omOuVTzh16ogARUmIyF/ARjry//1wwgAgDw6DvLoONzacxQAIJZIUL1xvaIv0Fqtm6Fao7qCTkLGiF2RVdDKUSkUiAy/g8jwO0XHnGTuRfXPr1UA/Nu8AycPN95jMBVj/dsnPokEAKS/SsDdAydx98DJot9XtWGdohtJv8AAeDdpCLGAV1QzxqMoIX8mDSESiXi/gTTXNbTopG1vb8/7gInkxy80HstISMa9w6dx7/BpAIBYKoV/m3fQKDgIDYODULP524L68EulUojFYt7vCBMfPON8nVGrEXv3EWLvPkLYuh0AANeqXmjYJajgGnZpD9cqXrzGYmzGeGaV9lLzalbZ8jQ8OH4eD46fBwCIxGL4tWyChsHvolFwEGoFBkBiY8N7TMYiEolga2tbrrmxXF5eucX5OsuyeP0wAq8fRuDyhj0AAKdKHmjYuR0aBr+Lhl3aQ+ZTnddYjM0YddCaxvUABdeQ70cC5loi26KTtqOjI+/nfPbPFZ3LMioVnoVdw7Owazj0zVI4erihQef2aBRckIRkvjV4j49PIpEIjo6OvA7CYPIUUObo/iwnIz4J4Vv2I3zLfgCAd9OGRQmoTvsWsLHwteGNUQejL3MnHC4swxS1xo/9uAL2Ls6o/16bomtYuY4f7/HxzdHRkd+kzTDIjNN9+mZ2Sipu7DqCG7uOAACqNqzz3434u6jXIRB2Tvz/G/PJGAnWGPXakjk6OvKatEUikdmStt7LmGZlZeHZs4KWVrNmzbBs2TJ06tQJMpkMvr6+vAbHsiyePn3Ky6IMACARi7Hi7Q/B8tTyrNqgNhoGB6FR8Luo2yEQ9s5OvJyXTxkZGYiOjubtfAlX72HPZ1/xci4bB3vU6xBYdA0ttSv9+fPnvA06EYvFWNv6Y+Rn8jOq39Pft6gnqMF7beHgZv61kd+Uk5ODFy8093DpK/NZDDb1/pyXc0ltbVG7XfOCOvjBu/Bu2sgiZ0ZER0fzOvWwQYMGVjP6HihYKyAiIoK383l4eKBGDfM02vRO2ufOnUOnTp1KvT5s2DBs3LiRr7iKGLI4viZVvLyQePsRIsPv4OW1u4gMv4PsFH7mP0psbFC7XfOiO3ifZm9ZxIefZVk8e/aMl5WAJBIJZDYOeB52regaxt17DIangTJu1asU9WI06NweLl7mXeO3UGZmJqKiong5l2elSkh98Py/+ncbL8PvICMhmZdziyUS+AUGFF3Dmi2bQmIhX8wvXrzgpaUjEolQ2dkNL8Ku/1cH7yDm9kOoebqxd/GqhAZd2v/3OCcI7tWr8HLe8uLzxkcmk6F6dWE9IuADnzc+devWhZ2dHS/n0pfFbxjCsiyioqLK3cVrIxKjbsMGJRIpy7JIjozBy/DbiLx2Fy/D7yD61n2o8svflefsKUPDLu3R8L8Pv0eNquU+p6Fyc3Px/Pnzcp/H3c4R3nX9S7ymyMlF9O0HePnfF2hk+B2kvIwt9+8CAN93GqPRB++iYXAQardtDqmtLS/nNURsbGy5V/WSisSoW79eiUTKsixSY14V1b+X1+4g6sa/UOjxCEITR3dX1H+/XVFL3NPPp9znNJRCoUBERES5BwO5SO1Qs0HdEq8p8/MRe/fRf9ev4GY8MSKyXL+nUPXG9Qtugj54F3WCWsHWwXyPc+Lj45GcXL4bPIlIBP9atWBnZd3jQMEU2IiIiHKPxq9atSo8PT15ikp/Fp+0gYKLHRkZaXBrkclTYPOHY9Bl6kh8MHOs9t+lUCDu3yd4eu4qHp64gIgL4bwk8epv1UNA7w/QanAIqtavXe7z6SstLQ2xsYYn02dHzuHKis2Yfe0gPLyraS2bkZiMF1du4dGpi3h0MoyXL1A7J0fUf68tWn7aE017BZt8ahnDMIiMjDS4m5xVqbGr/xQE9Hwf/ZbO0VpWrVLh9YOniLhwDQ9PXMCTs1d4SeKV69ZC015dEDikN7ybNCz3+fRV3h6LV1fv4u/pCzDzSiiqNayjtWy2PA2R4bfx+PQlPDwZhlf3nxj8ewtJ7WxRr0MgWnzSE836djP5zBKGYRAdHW14A4ZhcWDU16hRvzaGb15mkY+ijC0nJweRkZEG3zy6ubnB29vbrNdOEEkbMGwPVADITUzB1t7jkJ+RDZFIhNH7VqNZ7646v1+Rm4dnYdfw8GQYHp0MQ9y/j/UNvZSaLZui9ZDeaD7gQ7hWNt0dW2ZmpkG7/FxftR3ha7YDAHwCGmFa2B69nt8nR8bg0akwPDwZhsenLyI3vXwbt9g5O6FZ365oPaQP6nVsbbIR/QzDIDY2Vu8uNmVGNrb2GY/s/7rBB639GUGjB+r+/vz8gpugkwXXMPrmv3r9fi413m6AwCG90XJgL5P2AmVnZyM6Olrv1s6DnUdxdt5qAAXP8WeHH4Czp0zn96fGxePRqYLP8KNTF5GVbPiObQBgY2/33w1QHzQKDjLZiH6WZfHq1Su9lzVl8hTYOWAK5C8Kxrd89NN0dP96gjFCtHh5eXkG7Tjn5eWFypUrm/1mRzBJGyiosGlpaZDL5WW2eOxs7fBw33Gc+HY5GNX/f0HYOjpgetge+L7T2KAY0l4l4PHpi0VJPDPJ8HWQxRIJ3uraAa0GhxS0Hk3Q9Zafnw+5XI7U1FStU8FEIhHEeUrsH/cdYq7dLXGsaa8uGLN/rUHP7NUqFaJu3CtKQJFXb5frmbh7japoObAXWg/pjRpvNzD4PLpiWRYZGRlISUkp8xmtra0tIk9fxqGpP0NdrLdGLJVi0vFNaPB+O4NiyExKweMzl/DoZBgenLiA9FeGb4QjEolQ/722aDU4BO/07QZ7F2eDz6UrpVIJuVwOuVxeZvK2YYHDU+fj2elLJV6vE9QKk09tgY0BzxUZhkHsnYd4ePICHp0Mw7OLN8r1TNzFqxJafNITrQaHwK9lU5N8qWdmZiIlJaXMVreNjQ3ir/+LfZ9/W7Q+QKHPdq9C8497GDNMi6VSqYrqYFnJ29XVFTKZDM7Oxv9s6EJQSbu4vLw8pKamIjc3F2q1GizLQiqVwt7eHjKZDNHhd/DLewM5R4q7Va9S0M1bzhYGwzCIvfuwKAE9v3jD4KUp7V2c8U6/bmg1uHdB69HIg9gYhinaKlKpVBatJy6VSuHq6go3Nzes7TMG9w6d5nx/8Mwx6LPwy3LHkZuegcf/XC64hicuIDkyxuBz1WjSAIFD+qDlpx+ZpPWYn5+P1NRU5OTkFNVBiUQCe3t7eHh4QP48Cgta9uJ8vOLo7oqZV0PL/aikcF5yYQJ6ej4cylzDlg21cbBHQEgwWg3uXdB6NPIgNpZlkZmZibS0NCiVSqjVaojFYkgkkqI6uHPcN7j4xw7O97ce1hfDNiwpd5LMy8r+71HEeTw6GYb4x4aP/6hSzx+BQ3qj1aAQeNYy/hiCwl3PsrKyStRBW1tbyGQy5CbJMS+gO2fvlo29HaZd2A2/lk2NHqelYlkWWVlZSEtLg0KhgFqthkgkglQqhbOzMzw8PCxulL1gk7Yu/lmxAbsn/8B5zPedxph2YTevczTzs3MQcSG8qBVeuHKYvjy8q6HlwI8QOKQPajSuz1t8+spNz8Citn01/h1D/lyEdiP68/o7k55H4eHJC3h4MgxPzlxGXqb+z+9EIhHqv98OrYf0RkDvD0zSetTk+s5D+PPTSZzHvOr4YdbVUDhX4m/jBmVeHp5fulmUxGPuPDToPC6VPdHikw/Rekgf+DZ/22xdgsq8PPzy/iC8uHyT83jI/JnoOnscr79THh2HR6cu4uHJC3h8+hKy5WkGnadO+5ZoNTgEzft/aNZV7R6evIDfuv+Ps0fLtaoXZl87KLgFZ6xZhU7aLMtix/hvcGH1Vs7jzfp0xWd7fjdaqzY19jUengzDv0fO4P7Rswa1wr2bNkTgkD5oNbAX3KpVNkKU2iVHxmBBq16czwDFUikmn9qC+h3bGOV3q5VKRF67i4cnLuDWnqMGtYBsHOwR0PsDBA4OQcMuxm89cjnyw3Ic+X4557G6HQIx+eQWo42Mz0hIwqPTl/DvkTO4e/CUQa3wqg1qo9Xg3mg1qJdZRqBnJCZjYWCIxlkJY/atQbM+uo9T0QejViP61n08PHEBt/f9bdBNkNTWFo17dELgkN5o3L2TQV365XV+9RbsGPcN5zHvpg0x/eJei1xngpRWoZM2UPDF/1uPEXh0KozzeNcvxyHk55lGjyM7NR239hxF+JbQEuud60okFqPB++0QWNh6NOEH7NmlG1j+3kDOmw4nmTtmXg1Flbq1jBoDy7KIvnUf4Vv24/qOw8hM1H/qi0tlT7T8tCcCh/SB7zuNTdZ6ZFkWfw2ajOs7DnEebzuiP4asX2j0ePIys3An9ATCtx7A4zOXDFpkqE5QKwQO6Y3mH3eHo7vpWo+vHjzFojZ9OHtebBzsMT1sD2o2f9voccTdf4JrW0NxbdtBg3YZc/RwQ/P+PRA4pA9qt21u0h6MXZO/x9kVGzmPNfmoM8buXyuoZZqtVYVP2gCQk5aORW36aGypDdu4BG2G9TNZPMmRMbi27QDCt4Qi4an+CybYOjogcHAIOk/7DFXq+Zf9Bh6Ebw3FhiFfcB6rUs8fM6+GmqwLUK1S4dGpMIRvCcWdAycNaj1Wf6se3v9iJFoNDjFJy0eZl4dlnT5F5NXbnMf7LPoSwTPGGD2OQmmvEnB9xyGEb9mP2LuP9H6/1NYWzfv3QJcZo002fezB8XP4rccIo45T0RXDMIg4fxXhW0Jxa+/fBj3G8apdE50mDUe7kQNMspSqWqXC7x+NwoO/z3Ee7zJ9NPou5me1Q2I8VpG0gYJnpQsCQzhXQJPY2GDKmW2oG9TKpDGxLIuoG/cQviUUN3Ye1nskukgkQtOQYATPGA3/Ns2NFOX/O/TNUhz7aSXnsfrvtcWk45tMvplFXmYWbu8/jvAtoXjyz2W9p7O5VvXCe5OGI2jsYKPfdGQkJGFBqxDIo0uv8CcSiTBm/xoEhHxg1Bi4xP37GOH/tR7T4uL1fn+j4CAEzxyL+u+1NXrL8exvm7Br4necx3yavYXpYXtMvpa4IjcP9w6dQvjWA3hw/DwYPacSOXq4oeP4oeg4YajRN9TJzcjE4rZ98erBU87jg/9YgPajPjFqDKR8rCZpA0BE2DUsf38Q5/QOp0oemB1+AF61a5ohsoJu/IcnwxC+NRR3D5yEMk+/hWRqt2uBLjNGo0nPzkZ7Rs8wDNZ/MrFoK843BY3+FAPX/Gy2QUupcfG4vv0gwreE6j2f3s7ZCe1GDUDnL0YadSOYuH8fY1HbvsjPKr3egK2jA6Zf3APfZoZNRywvRq3G0/PhCN+yH7f2/s0ZozY+zd5C8IzReOfjHkYdO7Bjwrc4v2oz57GmIcEYs2+N2ZYQzkxKwY2dhxG+NRQv35gqWRapnS3aDOtr9B605JcxWNgqhLORIJZKMfnkZtTv1NZov5+Uj1UlbQC4smkvNg2fznmsaoPamHllv0mf1XHJzcgsaj0+PXtFr9Zjlfr+6DJ9NAIHhxhlBy1FTi6WdvwEUde5v5D6LZ2DzlNH8f579RV77xHCt4Ti2vaDes1jFkskaPFJTwTPGA3vpo2MEtu/R//B7x+N4uzmda9RFbOvHTT7mteKnFzcPXQK4VtC8fDEBb3m0stq1sD7X4xEu5EDjDL2Qq1SYVWP/+HhSe5xKnxNRyyv+CfPcW3bQVzbGqrXVEZT9KA9v3wTv7z3Kfd0RA83zLoaarJHb0Q/Vpe0AeDAV4twfP7vnMcadG6Picc2WMyexamxr3Htv9ajPksxulbxRKdJ/8O7n/Pf7Zv+OhELWvXiHIgjEonw+cE/0KRnZ15/p6EYtRpPzl5B+NZQ3N53XK/WY8MuQegyYzQadm7Pe+/BmV//wp4pczmP+TZ/G9Mv7Db5Uq2aZCQmF7Qet4Qi6sY9nd/n6OGGDuOGoNPEYbx3+5pjOqKhWJbF80s3EL41FDd3HUFOmu4r6hmzB+3a9oP4a9BkzmPGmI5I+GGVSZthGPzx8Tjc3n+c83jQmIEYuHqe2ZerK45lWcTefYhzq7YgfPN+naeP2Tk5ot2oAXj/i5GoVNObt3hi7jzAkvYfIz+79Kpgdk6OmHFpr9FaqobKz87B7X1/4/Sy9XoNvvIJaIQuM8ag+cfdebuZY1kWO8bNwYU12ziPN+vbDZ/tXmURO8UVF//4GS6s2YZL63dx/ttzkdrZovXQvug8bRSv6+4nvYjGwsAQs0xHNJQyPx/3Dp/BmWXr8eKK7vuqV6nvj87TPkPrIb157UE7/N0yHJ27gvNYvY6tMenEZrNu1ENKs8qkDRR8gS/tMEDjOs4fL/8W708eYeKodJMen4izKzfhwu9bdL5rF0skaD7gQwTPGA2fgLd4iePuoVNYEzKas/vew6c6ZocfMMvc8rKwLItHpy/i5KK1eHz6os7vk/nWwPtfjEC7UZ/w0u2rViqxsvv/NMbQ9avxCJk3o9y/xxiy5Wk4v3orzq7YqPP0O5FIhCa9uiB4xhjUbstPt++zi9ex/P1BZp2OaKhnl27g1OK1uHfotM6PwPjuQWNZFn9+OhE3dh3hPG6q6YhEd1abtIGCaS8LWvXiHDErEosx7tB6vN3jPTNEppu8rGxc+nMXziz7k3NEsiYNOrdH8IzRaNglqNwfxlNL/8C+6fM4j9Vs2RTTzu8y63aGZYm+fR+nlvyBm7uO6Pzc1tHdFe9+PhidJg2HW9Xy3ZSUNR1x+KalaD20b7l+hzEp8/JwdUsoTi/5Q6/pi/5tmyN4xmg0+ahLuXsTrm7Zj41Dp3IeM/V0REPEP3mO00vX4+rmfTrvKMhnD5oiNw/LOg7QOHCuz+KvEDx9dLl+B+GPVSdtAIi+dR9Lgj7m3PrQztkJMy/vM8lGFOWhVipxc88xnFq8Vq8Vm7ybNkT3byahWZ+uBidvlmWxdfSXuLR+J+fxdz7ugVE7V1pcN++bUqJicWb5X7j0x07du31tbdF6WF/0+HZSmduVamOJ0xH1xTAM7h0+jVOL1+H5pRs6v69KPX90/WocAof0KVcdOThnCf6e9xvnMXNNR9RXeXrQPvx+Srl6FNLjE7GgVQhSY16VOiYSiTAmdC0CegUbfH7CH6tP2gBw58AJrO0zlrOLSuZbA7OvHTD6/Ek+sCyLx2cu4dTitRpH1nKp074l+i2bY/DGASqFAiu7DsOTs1c4j3f/ZhI+msvdErI02anpuLB6K86u2ICMBN26fW0c7NFl+mgEzxxjcLd5xIVwLO882CKnI+rr+eWbOLl4Le4dPKVzt69Ps7fQb+nXBk81YhgG6wdMwK29xziPm3s6oj6KetB++RPyKN160CQ2Nug4YSi6fzPJ4F6F2HuPsLhdP4ucjkj+HyXt/5xYtAahsxZwHqvVuhm++GeHRXfzvin27kOcWvIHru84pHO3b+Dg3uj18wyDNg/IlqdhYeveSIyI5Dz+v63LETgoRO/zmosyLw/hWw/g1JJ1SHiiW7eva1Uv9Jo3A22G9TVoOcjLG/dg8/+4n2FXbVgHMy/vM/t0RH3EP3mOM8vW48om3bt9m/bqgj6LvjRoupEiJxdLOwzQOMK937I56PyF+acj6kqtUuHWnqM4uXgdYm4/0Ok9TjJ39PhuMjp8PtignoV7R85g9UejOG+2LGU6orWjpP0flmWxZeRMXN6wh/N4i096YuT2FYK4Uy9OHh2HM8v/wsU/duo03ak8rcaEpy+wsHVv5KSmlzomtbXFlH+2o067Fnqd09wYhsG/R87g1OJ1Oq8Z7xPQCH2XzkGD9/RvNYZ+uRAnFqzmPNawSxAmHNtglk1PyiMjIQnnftuMc6s2c9aNN4mlUnScMBQ9vpkEJ5m7Xr9LSNMRdWVID1qVev7os/hLNOnZWe/vrNO/rMfeqT9xHqvZoknBOBULmY5ojShpF6NSKPBrl8GIuHCN8/iH30/Bh99NMW1QPMlJS8eFNdvwz68bkBGfVGZ5Q1uNT85exq/BQzmXcnTxqoRZ4QdMss+wMby4egunFq/DndATOnX7NvmoM/ou/kqvViPDMFjX73PcCT3Befzdzwfj01U/Cu7mESjo9r38126cXrZep25fRw+3olajPtOOhDgdUVdFPWg7D+u0XGr9Tm3Qb9kcvWaMsCyL7WO/Qtg67n3M3+nXHaN2/Wbx41QqKkrab8hKScXCwBAkPY/iPD5y+69o+WkvE0fFH2V+PsK3hOLI98t1Wmfau2lD9Fv2jV6txovrd2LrZ7M5j1VrVBczL++Dg5urzuezNAlPX+Dvn1chfPP+MpO3WCpFh3GD0ePbyTovVJGfnYOl7/ZH9K37nMcHrPgenSYO1zNqy1HY7Xvo21+Q9OxlmeUr162FPou/RNOPuuh8s3Ln4Ems7T1G83TEawfKPfLfnOQxr3Bi4RqErdlW5uMvkUiENv/7GL1+mq7zFEy1UokVXYfhyT+XOY93+3oCev3EvbIkMS5K2hziHz/DojZ9OEdwSu1sMfXcTvi3fscMkfFHkZOLU0v/wIkFqzlHzr+pSc/O6LP4S50Xx9g342ecWrKO89hbXTtg3OE/BdfN+6boW/exd9pPeHruapllHT3c0OPbSegwbohOrcbUuHgsaNWLcwlWkViM8Uf+RONunQyK21KoFAqcW7UZx+au0Gm0dL2OrdFv2RydB0OdXLIO+2f8zHnMr1VTTD1n2dMRdRH/+Bn2z1yAe4dPl1nWzskRwbPGosu0z3Tq3s5OTcei1r01TuUbvnkZWg/po3fMpHwoaWvw+MwlrPhgKOddrEtlT8y+doDXFcbMJe1VAg7NWYIrG/fq1mr8fDB6fFd2q5FRq7GmzxjcO8T9ZdJp4nAMWPG9gVFbDpZlcffQKeyb/rNOrUavOn7ou/hLNO0VXGarUdt0RHsXZ8y4vA81Gtc3NHSLkZWSiqNzf8X537eW2eUrEonQelhf9Jo3o8wBUSzLYutns3Hpz12cx5v374GROyx/OqIuHp+5hD1Tf0TcvbI3ynGvURUh82ei1aCQMv/2hIhILGrdG9nytFLHpLa2mHJmG+q0b2lo2MQAlLS1CFu3HdvGcO8vW71xfcy4tBcOri4mjso4om/fx75p8zRO2yrO0d0V3b+dhI7jh2ptNeZlZWNJ+34alwz95Le56Dh+qMExWxKVQoHzq7fi6A+/6jTYql7H1ui3dA5839Hearwdehxr+4zlPCarWQOzrx2Ea2VPg2K2NPFPnmP/zPkab/SKs3V0wAezxqLztM+0bsWpUiiw4oOhGntDenw7CT1/EMZ0xLIwajWubNyLg3OW6DRupWaLJui3bE6ZawA8PX8Vv3YZwjkd0dlThlnhB+Dl72tw3EQ/lLTLsGfqjzjzy5+cxxp374Rxh9YbNL3HErEsi3uHT2Pf9J81Tt0qzquOH/osmo2AkA80thrlMa+woFUvzi8RsUSC8Uf/wlsfdCh37JYiW56Go3N/xblVW3hrNZ5YuBqhsxdyHvNv8w6++Ge7UXZ0M5fH/1zG3qk/6rQ+vHuNqgj5eQZaDe6tsdVY0aYjliUvMwsnF63FqSXrdNrit1nfbuizcLbWdQAub9iNzSNmch6r2rAOZl3ZL+hxKkJCSbsMjFqN1b0+w79H/+E8/t6UEej/y7cmjsq4VAoFLqzZhiPfL9ep1Vi/UxsMXr9Q4932y+t3sfTd/pxfIPauLph5ZT+qN6pb7rgtScLTF9g/cz7uHjxVZllbRwf0nDsV708ZwXkDyLIsNo+YgSsb93K+v+XAXhixdbkgR5RrwqjVuLJpHw5+vVjnVuPQDYs1Pi4oazriF2d38LYeuqWQx7zCwa8WI3xraJllJTY2+GDWWHT/ZqLG3rP9s+bj5KK1nMcaBQdh/FHhTUcUIkraOsjLzMLidv0Q9y/386KBq3/Cu2MHmzgq48uWp+HYTytxduWmMluNdk6O6Lv0awSNHsiZPG7uOYo/+o/nfK9nLR/MCj8AF69KvMRtSZ6cvYy9U3/SaXnZ2u1aYNjGJahcx6/UsbKmI/acOxU9vplU3nAtTl5W9v+3GnPztJaV2tqi59wv0GX6aM6bn8f/XC4Yp6JpOuK1A/D0E+Z0RG1eXr+LvVN/0mmdAe+mDTF88zJ4N2lY6hjDMFjbdyzuHjjJ+d4O44fi09+4t5sl/KGkraOUqFgsDAzhXNpSLJFg4vFNaNi5vRkiM76EiMiCVqOGD2txjYKDMOTPRZxrcR+b9xsOzVnC+b7a7VpgypltsLGzK3e8loZRq3F18z4c/HoJ0l8nai1r6+iAvku+wrtjB5e6+clKlmNh694apyOO2rkSLQb05C1uS6JPq9G/zTsYtmkp51rc2qYjVn+rHmZc3ldhxqkUx7Isbu37G6Ez5yM5MkZrWYmNDXr+MAVdZowp1XLOz87BkqCPNa7QNmDlD+g0YRhvcZPSKGnrITL8NpZ2GMC5JKODmwtmXQ1F1QZ1zBCZaTw5d6Wg1VjGkooObi4YsPIHBA7uXSLxsCyLjUOnavziDRzSB8M3La1Q3bzF5WVl49TitTi5uOxWY8MuQRjy58JSS8rGP36Gha17Izc9s9R7bOztMPXcTtQKbMZr3JZE11ajjYM9+iycjQ7jh5Z61r13+jycXvoH5/ve6tYR4w6tr7DdvMr8fJxduQnHflyJvIzSdai4WoEBGLZpaalpnqmxrwumI3LcgIrEYkw4+hfe6tqRz7BJMZS09XRj12Gs/2Qi5zGv2jUx62oonD1lJo7KdBiGQfiW/Tjw1WLOOcTFNQ0JxqA180pstqLMz8fy9wdp3Amq17wZ6PYVdzd6RZEa+xoHv16Mq5v3ay1n7+qC/r9+izbD+pW4kXl0+iJWdh3GOR3RtYonZl87CJlvDd7jthQsy+L2/uPYP3M+kl9Eay1bv1MbDN2wuMT0TEatxpreYzTObe40aTgG/Po9nyFbnMykFBz54dcyF2exsbdDyIJZ6DRxeImbn6gb97Dk3f6cN58VaTqiJaKkbYCjc3/F4e9+4TxWJ6gVJp/aUiG7eYvLy8zCvunzNC51WMjZU4aBa+bhnb7dil7LTErBwsAQjd10n+35Hc37dec1XksUEXYNm4ZPLzPxNOnZGYPW/VxiBa8La7Zi++dzOMvXaNIAMy7uhb2LM6/xWhplXh4OffsLTi9Zp3WNAXsXZ3z8yzdoO6J/0c1PmdMRV/2IjuOGGCVuSxJ9+z42Dp2GV/efaC1Xt0Mghm1YUmIJ4lv7/sa6fp9zlq/k541Z4QcqzHRES0JJ2wAsy+KvQZNxfcchzuOth/XFsA1LKmw3b3EPjp/D5pGzymx1txzYC5+s/KFoA4hXD55iUdu+nF10Ng72mHZ+l8FbhQpJXlY29s+cjwurt2ot5yRzx6erf0KL/h8Wvbb7i7n4Z/lfnOXf/vB9fH5gXYWZjqjNs0s3sGnYNI3P+gs17t4Jg/9YUDS9rqzpiBOObUCj4HeNErMlUebn48j3y3Fy0VqwDKOxnJ2zE/otm4P2oz4p+m47Pn8VDny1mLO8f9vm+OLMtgo1HdESUNI2kDIvD7+8NxAvrtziPN57wSx8MIv7LrSiyU5Nx+5J35c5SMitWmUMXr8Qb3cvWH7zwYnz+K37/zi/KFyrehV08xqwTagQPTx5AVtGzuLcnaq4FgM+xCerfoRzJY8ypyN2njoK/ZZyt8YrmvzsHOyftQDnV23WWs7Rww2frpqLFp98BJFIhMhrd7CswwCrmo6oyYsrN7Fx2PQy12h4q2sHDF6/EB41qoJlWWwaPk3jo55Wg0Lwvy2/WEUDxlQoaZdDRkISFgSGaNyxaMy+NWjWp6uJozKf2/uPY/vYr5GZlKK1XLtRn6Df0q/h4OqCc6s2Y+cE7nnuPgGNMC1sj95bhApVTlo6dk+Zi6ub9mkt51rVC4PXzUeTnp3LnI44aO3PCBo90BjhWqRHpy9i84iZSI15pbXcO/2649Pff4SLVyXc2H0E6wdM4CxXkacjclHk5CL0y4U4u2Kj1nKO7q4Y8NtctBrYq2A6YufBGgcHfvTjNHSfwz0OiOiPknY5xd1/gsVt+yIvM6vUMRsHe0wP24Oazd82Q2TmkZGYjB2fz8Ht/ce1lpPVrIFhGxajfqe22DnxO5z7bRNnuSYfdcbY/Wutopu30J2DJ7Ft9FfITCw9vbC4tv/7GB//8g1y0jKwoFUIZ3mxVIpJxzehwfvtjBWuxclNz8CeL37E5Q17tJZzqeyJQet+RkCvYBz7aSUOfbOUs1yd9i0x+fTWCj9OpbgnZy9j0/9mlLmFarM+XfHp6p8gFouxIDBE4/iMUbt+K/FohxiOkjYP/j12Fr/3HMnZzetWvQpmXzsIjxpVzRCZebAsi2vbD2LXhG/L3L2p06Th+OjHafij/3g8PHGBs0yXGWPQd9GXxgjVYmUly7H98zm4tfeY1nIePtUx9K9FsHN2xLKOn3BOR3R0d8XMq6E679BWUdw7cgZbP5td5opqrYf2wcfLv8Wuid/j2rYDGssM21hxpyNyyc3IxN5p83Bp/U6t5Vy8KmHgmnmo2rAOFrXRMh3x/C7UahVgpGitByVtnvyzYgN2T/6B85jvO40x7cJurRsbVESpcfHYOmoWHhw/r7Vc5bq1MHj9Auz4fA5eP4zgLDNk/UK0GznAGGFaLJZlcWPXYewY902Zy8l2mjgcNVs1wcYh3JtfeNXxK5iOqOOe3hVFVkoqdk74Fjd2HtZazr1GVQzbsBiHv1+OF5dvcpYJ+XkGun5Zsacjcvn32FlsHTWrzIWBAof0wTv9umFtn7FWOx3RFChp84RlWewY/43GUcABvT/A6L2rK8Q2gPpgWRYX1+/E3qk/IT8rW2M5Gwd79J4/E8d++g1ZyfJSx8VSKSaf2oL6HdsYM1yLlP46EVs/m61xwFmhOu1bolbrZhr3Ma/bIRCTT27RaT/viubG7iPYMe4bZKekaiwjlkrx0U/TELZmG1JexnKWGb13dYnpi9YiW56GnRO/w/XtB7WW827aEM36dcPhb5ZxHreW6YjGREmbR2qlEr/1GIFHp8I4j38w+3P0nj/LxFFZhuTIGGz633REnA/XWq7lwF64vfdvqBQc3bwebpgVfoBzecqKjmVZXN6wB3umzOUcP1HIvUZVVG9cT+OjhrYj+mPI+oVW1c1bKD0+EdtGf6VxUZVCzfp2w6OTF5CXWfom08bBHtMv7EbNFk2MFaZFu7n3GHZ8PofzxrqQUyUP1O3QCnf2n+A83qRnZ4wNta5xKnyipM2znLR0LGrTB/GPn3MeH7phMdoO/9jEUVkGhmFwduVGHJi9UOuWgTWaNEDcPe7R0FXq+WPmlf1F872tTUpULDaPmIkn/1zWWEZqZwsPn2pIesY9b7nPoi8RPGOMsUK0aCzL4urmfdg16Qety3hWbVAbCU8jucepVKtcME6FY319a5CRkIRtY7/WuheBSCxGlfr+iH/0jPN452mfod+Sr40VYoVGSdsIkp5HYUFgCGdXnMTGBlNOb0XddwPNEJlliH/yHJuGTUNk+B2NZRw93DQ+x63fqQ0mndgMiY2NkSK0bAzD4PzvW7B/5nyta5jbuzhztspFIhHG7F+DgJAPjBmmRZPHvMLmETPx+PRFjWXs3VyQxzGoCrC+6YhvYlkW4VtDsWvid5wDzwo5uLsiV8Ng1EHr5iPos0+NFWKFRUnbSCLCrmH5+4OgVipLHXOSuWNW+AHOLRithVqpxN7p87TOBxVLpRq3BG036hMMXjffKrt5C8X9+xirQ0ZrXQZVLJFwDgqydXTA9It74NussTFDtGgMw+DYjytw5PvlGsuIxGKNq4Q17dUFY/avtbpxKsUlvYjGmpDRGtcJADR/jsVSKSad2IwG77U1ZogVjvXWNiOrG9QKg/+Yz3ksW56GVR+OQHYZI4IrMomNDQb8+j2G/rVI48AobXt4X1q/E2d++dNY4QlCjbcb4Mvrh9BAy5awmjaDUOTk4veeo5BWxvKzFZlYLMaH303B2NC1sNPQYta2rOfdg6dw4MuFxgpPELz8fTHj8j400zI4T9PnmFGpsK7vWCQ8fWGs8CokStpG1GZYP3T9chznsYQnL/BH//GcLXFr0vZ//TH1/E64VatcduE37Js+r8xBRRWdk8wdE//eiM5TR+n93rS4ePz+0SgocnKNEJlwBIR8gFlXQ+FlQM/XyUVrcemv3fwHJSD2zk4Yved3fPTTdL17vnLSMvBbjxHI0jKqn5RE3eNGxjAM/vh4nMYVwoLGDMTA1fOsupsXANJeJWBt37GIvHpbr/fZOTlixqW98G7ayEiRCcfVLfux9bPZnAusaNOsbzd8tnuVVXfzAgVr6P/5yQQ8PMk9+0MTa56O+KZ7h0/jr0FTtM5w4FKvY2tMOrHZKqcj6su6P6UmIBaLMXzzMvhqWMo0bO12/LNig4mjsjzu1atg6rmdaDuiv17vy8/Owaqeo8pc+MEatB7SBzMu7tV7VPPtfX9rXMLTmjh5uGHCsY3ooufI+oJu3s+RUMZGG9agSc/OBeN19JyW+fTcVWz/fI7WLVZJAWppm0jaqwQsaNULaXHxpY6JxGKMO7Qeb/d4zwyRWRaWZXFu1WbsmTJX4/NYLjVbNsW087tg60DbAKbHJ2Jdv3F4fumGXu8bvmkpWg/ta6SohOXa9oPYMnKm1qmJb6pSzx8zr4bCycPNiJEJQ05aOv4cOBkP/j6n1/v6LP4KwdNHGyeoCoKStglF37qPJUEfcz5DtHN2wszL+1Dj7QZmiMzyPDl3BX98PF7rIg5veufjHhi1c6XVd/MCgEqhwK6J3yFs3Q6d3yOxscGUM9tQN6iVESMTjuhb97E6ZHSZO4YVV/+9tph0fJPVTkcsjlGrcXDOEpxYsFrn94hEIowJXYuAXsFGjEzY6NvNhHzfaYwR25ZzPr/Oz8rGqg9HIiNB++YG1qJ+xzb48sYh+ATo/qz61p6jWqfvWBOprS0GrZ2Pgat/glgq1ek9aqUSa3qPQdJz7kVZrI3vO43x5Y1DqKPHTcyTfy5j54RvqZsXBdMNe8+fhVE7V8JGxx4wlmXx18DJiL5938jRCRclbRMLCPkAIQu4lzKVR8dhdchoKLQsmGFNKtX0xoxL+9BigO5b+h37cQXCNezUZI3eHTsYX/yzHS6VPXUqn52SilU9RyInzXqnIxbnWtkTU05vRYdxQ3R+T9i6HTiz3LqnIxbXYkBPzLy8D7Kaum0UQtMRtaPucTNgWRZbRs7UuN9vi096YuT2FVY/orwQy7I4uWgNDny5SKcWjNTWFlP+2Y467VqYIDphkMe8wpqQ0Yi+pVsLpmGXIEw4tgESHVvp1iDsjx3YOf5bnaZpikQifH7wDzTp2dkEkQlDZlIK/ug/Hk/PXdWpfM0WTQrGqTg6GDkyYaGWthmIRCIMXDMPdd/l7na7sfMwjs791cRRWS6RSIQPZn2O8Uf/goObS5nlVQoF1vYeg+TIGBNEJwwyn+qYfnEvWg0K0an8o1Nh2DXpe+rmLSbos0/xxdkdcK1Sdq8Fy7L489NJiL370ASRCYOLVyVMPrkFnSYO16l81I172DhsGhgtC9xYI2ppm1FWSioWBoZofIY4cvuvaPlpLxNHZdkSnr7A6l6fadyQpbhqjepi5uV9cHBzNUFkwsCyLE4vW4/9M+drXe2r0IAV3+v8JWstUmNfY02fsYi6frfMsh4+1TH72gG4VdV/8aCK7PKG3dg+dg7nbn5v6vb1BPT6aboJohIGStpmFv/4GRa16YMcjkX1pXa2mHpuJ/xbv2OGyCxXbkYm1vYZi8dnLpVZ9q2uHTDu8J/UzfuG+3+fxdq+n2vdcAQomI44/sifaNytk4kiEwZlXh42DJmKW3uPlVnWr1VTTD1H0xHf9PzyTazq8T/O7743Dd+8DK2H9DFBVJaPusfNrGqDOhi9dzXn3rKqfAVW9xqNlKhYM0RmuRxcXTD+yJ94+8P3yyz74Ph57J36kwmiEpbG3Tph0onNsHdx1lqOZRisHzARcfefmCgyYbCxt8fIHSvQeljZ89pfXruLTcOpm/dNtds2x9RzO+HiVanMsltHzcazi9dNEJXlo6RtARq83w6f/v4j57HMxGSs+nAkcrXs/WuNbOztMXb/GjTv36PMsmdXbsS5VZtNEJWw1A1qhSlntsGxjMVA8jKzsOrDEchITDZRZMIgkUox9K/FOo0sv7n7KI7+sNz4QQmMd9NGmHZhF9xrVNVaTqVQFExH1LKjnbWgpG0hgkYPxPtfjOQ89ur+E/z56SS9VgizBhIbG4zcvgJthvcrs+zuyT/gwYnzJohKWPxaNi1o7ZQxJUweFYc1IaOhzKPpiMWJxWJ88ttcnZY+PTqXpiNyqdqgDqaH7YFnLR+t5bKS5Vj14QjkppfdnV6RUdK2IH0Xf6VxKdP7x85i7/R5Jo7I8oklEgz5cxE6ThimtRyjVuOP/hPw6mGEiSITDu8mDTE9bHeZa5a/uHILm0fOohHlbxCJROizcDZ6zp1aZtktI2bi+eWbJohKWDxr+WDahd2oUt9fa7n4R88KdkfUsm1vRUdJ24KIJRKM3LFC41Km/yz/CxfWbDVxVJZPLBZjwIrv8cHsz7WWy8vIxKoPRyAzKcU0gQlIlXr+mBa2G161a2otd337QRz7aaWJohIOkUiEHt9MQr+lc7SWUykUWB3yGZJf0nTEN3l4V8O0C7vh3bSh1nIPT4Zh95S5JorK8lDStjD2Ls4Yd3i9xrmgOyd8h0enL5o4KssnEonQe/4s9Jo3Q2u5lMgYrOk9Gsp83TeCsBaefgWtnaoN62gtd/jbZbix67CJohKWzlNHYdDan7UujJSVJMeqHiNonAoH18qe+OLsTtQKDNBa7vyqzTj72ybTBGVhKGlboEo1vfH5wT8gtSu9tyyjVmNdv88R//iZGSKzfN2+Go+Pf/lGa5nnl25iyyjq5uXiXr0Kpp3fBZ9mb2ktt3HoNESG67f3ubUIGj0Qwzcv45wRUuj1wwir7+bVxMnDDZNPbUXdDoFay+2e/D0eHD9nmqAsCCVtC1UrsBmGb+Le4zg3PROrPhyp1w5Y1uT9KSMx+I8FWstc23qAunk1cPGqhC/+2Q7/NprXB1ApFFjZbTjk0XEmjEw4Agf3xmd7VmndrOXhiQvYPekHE0YlHPYuzph4bCPe6tpBYxmWYbGmz1irm45ISduCtRjQU+PglqTnUVjTZyx182rQftQnGLn9V4i0bNN5+NtluLb9gOmCEhBHdzdMOrkF9Tu10VgmJzUdSzsMQF5mlgkjE45mvbti/OH1nD1mhc6v3oJTS/8wYVTCYevogLEH1qFZn64ayyhz8/BLp0+sajoiJW0L133ORLQcyL2U6bOwa9g25ivq5tWg5ae9MGb/Gq17G28YMhXPL98wYVTCYe/shPFHN2ic0QAAKS9j8cv7A2k6ogZvde2ISSc2a930Yt/0ebhz8KQJoxIOGzs7jNr1GwK1rIaWlZyKxe36Ws10REraFk4kEmHonws1dlVe3bQPJxetMXFUwhHQKxjjj/4FiS134mYZBr+8P4hG82pg62CPMfvXoFm/7hrLRF2/h/WfTjRhVMJSr0NrfHF2B+xcnDSWWdf3c9pDWgOJVIphG5cgaMxAjWWSnkXh1w+GWkUDhpK2ANjY22PsgXWo5OfNeTx09kLc3n/cxFEJR6MuQZhyehukdnacx1V5+ZjfoidyqZuXk9TWFqN2rEDLgR9pLHNrzzEc+GqRCaMSllqtAjDj4l7Yu3LvUseo1VjS/mOkvaY9pLmIxWIMXD0P700eobHMswvXsHmE9tkjFQElbYFwreyJcYf/1LhW9F+DpyDq5r8mjko46ga1wvSw3RqfL2anpOHnd3rQaF4NJFIp/rdlOQKH9NZY5vj833Hxr10mjEpYvJs0xOxrB2Dvyv0ZVuTkYl5Ad+Tn5po4MmEQiUT4+JdvEKxl9bkrG/dW+AGmlLQFpEbj+hi1ayXn4Cplbh5+/2gUUuPizRCZMPi1bIrpYXs0TsVJehaFX9771MRRCYdYLMbwTcu0DgzaNmo2Humw+5q1qlq/Nr66eQQ29ty9PpmJKZjf/EPaXEQDkUiEPou+RIfxQzWWOfTNUlzbftCEUZkWJW2BadytE/ov/5bzWPqrBKz+aBTys3NMHJVw+LVsivFH/gQ0LH7xLOw6NgyZUuI1a3hOpiuRSITP9vwO/7bNOY+zLIvfug3Dq4dPS71OClSu44fpFzXfPMY/eo4VwSU3IaHrV9InK39AQEiwxuMbhkxBRNi1Eq9VlGtISVuAOk4YpnFnoehb97FhyBdFd+pXt+ynrT3f8FbXjhj650KNx8O3HsChb5YAAF7e/BcLW4eYKDJhEIvFmHZuJyrXq8V5XK1UYUGrXkhPSAbLstj0v+k4s/wvE0dp2Wo2b4Jxh9drvHl8fOZS0fPZxOdR+CmgmynDs3gikQij961BrdbNOI+zDIvlnQch4ekLAMD+WQsQOlv72g1CIWIryu2HlVGrVFjV4394eDKM83jwzDGQ2Njg73m/YfimpWg9tOx9f63N0bm/4vB3v2g83nbkAFzduBeMWo1laffg6OZqwugsX35OLr6u1R5ZidxruTt7VUKV+v54fvE6/Nu8g5mX95s4QssX9scObBv9pcbjrQb3xs3dR6BWKPHd49OoVl/7ErPWRq1S4bsG7yH5OfeWnXbOTqjbMRD3j/yDyvVqYe6TsyaOkH+UtAUsJy0di9r2Rfwj7Uuaths5AEPWa25ZWrPNo2bi8p+7yyz3yaof0VGHfZOtTUZiMub4B0GRrX3wlK2TI1ZkPTRRVMJy6JulOg2e6jJjNPou+soEEQlLfnY2vqrZHtkpqVrLiSUS/Jb/VOvyskJA3eMC5ujuhvFH/oJTJQ+t5SIuXNN63JoNXb8I9d9vW2a5W3uPmSAa4XGt7InZ4Qe1LtcJAIrsHJoLr8FHP05Dq0EhZZZ78Pc5o8ciRHZOTvjm3nHYONhrLceo1Xh+SfgLKVHSFjgvf198fmAdpLaal0pMjIhE+utEE0YlLJNPbkXVBrW1lomm6XQaVX+rHiYc26Dx+Wyhqxv3mSgi4RmxdTlqt2+htUz8kxc0qlwD9+pVMPPyvjJb0Vc27jVRRMZDSbsCqNO+JYLGal4tCECpkZTk/4nFYkw9vwsiseakk5eRhdTY1yaMSlgadQkqs7V47/Bp0wQjUJNObNG4ch8AMEoVoq7fM2FEwuIT8BaCZ43VWubJ2SsmisZ4KGkLHMuyOLlkHc6t1L63bMT5cBNFJDxJL6LxfYP3wDLah3fc2HXERBEJz8GvF+Pa1lCtZV49eFphpt3wLTMpBd/W7Qi1Qqm1XPg27dfYmp35dQOOz/9da5mUqDjBr1FOSVvgUqJicf/oP2V+GT4Lu26iiITn7IoNyMvILrPc3UOnTBCN8KQnJCF824Eyy6nyFbQPvAYX1+1AVlLZW+0+Pk0L13DJzczCxXXbgLJuCllW8N+FlLQFztPPB1PP7sScO8fQbuQAjSstxf37GNnyNNMGJxD9l3+H5ZkP0G3OBDjJ3DWWi71No5+5uFXxws8vL+HLm4dRr1Mbrduh3txDA/q4dPt6AlZkP0TvhbPhWtVLY7nEiEjaUY2Dg4szvntwGt8/Oo3G3TtBLNX8bPv6zsMmjIx/gp7yxbIs1Go11P9VYolEAolEAlEZA2IqsqxkOS6u34nzq7aUegY77tB6NOnZucRrDMNApVKBYRiIxeKia2itWJbFg7/P4cDXixF7p3SSnh97FR41qpYoX7wOisViSKVSq66DuRmZODp3BS7+sQN5GSU3YfFrFYDZ4QdKvMYwTNE1pDpYICLsGkJnLcCLq7dLtR6/vHEINZs3Kfrv4nWQZdmi6yfWcvNU0SlycnFy8VqcXbkR2SlpJY55+vvip+cXSrwmpDooyKStUCiQmpqK1NRUqN7Y4EEqlcLDwwMeHh6w1TKiuqJTK5W4c+Akzq7YiGcXC7qDukwfjb6LC/bfzsrKglwuR2ZmZqn3Ojk5QSaTwcXFxao/+ClRsQj9chFu7/0bamXBs8ZPf/8RHT4fApVKhdTUVMjlciiVJZ9DisViyGQyeHh4wE7DzmLWgGEY3Nx9BIe/+wWJTyMBADYO9liR/QgAkJ2djdTUVKSnp5d6r4ODA2QyGdzc3Ky6DqbHJ+Lwt8sQviUUyrx8AEDwjNHos+grqFQqpKenIyUlBQqFosT7xGIx3N3d4eHhAQcHzXt5V3Qsy+L+32dx4KvFiLtbUO9EYjFW5j6GxMYGubm5kMvlSE9PL/WI0d7evqgOWlICF1TSzs/Px+vXr5GVpdsWik5OTqhevbpVf3ECBUubnl25EUnPo/G/0NVISkoqdbPDRSwWw9PTE15eXlbdclTk5uGfXzfg9LI/0OCDdxE8byoyMjJ0eq+joyOqVatm1V+cABB3/wn2z5yPiAvhmH7rCHJZVambHS6FN0CVK1e26uStUihwcf1OHP95Fao0qouP/1qAtLQ0nd5rb2+PqlWrwtmZe3cxa5H4PAoHZi/Av0f+wYSz2yGu5Ir8/Pwy3ycSieDu7o5q1apZRB0UTNLOzs5GVFSU3vMUxWIxfH19rb7CsiyLqBeRyMrVfzMRZ2dn+Pj4WNTdpjnk5OTg5cuXetdBkUgEb29vuLm5GSkyYWBZFrHR0Ujn6N0pi6OjI3x9fSEtYxGXii4/Px+RL15AZcBz7erVq0MmkxkhKuFgWRYJr14jObXsQX9vsrOzg5+fH2xsNE/LMwXz3zboIDs726AvS6Cgi+7ly5c6t84rIpZlERsba1DCBoCsrCxERUVZ9XSdvLw8g+sgy7KIiYnh7Aa2Jq9fvzYoYQMFN0yRkZFWvbiIQqHACwMTNgC8evUKcrn+yaoiSU5ONihhAwU3TC9evNCpl9KYLD5pq9VqxMTElDthxMbGmv1i80GZn48XV2/p9R5Nzw31kZOTg8TEirGqWsydB8hN1617Gyi48YuJiSl3woiLiyv17FGonp6/qtdnMiMjo9wJo/DxWEXw6mEEMpO4N1rhUnjjrS7nyPFXr14hT+DzlAtFXAjXqw7m5OQgISGhXL9TqVQiLi7OrA0YvZL2/Pnz0bJlS7i4uKBy5coICQnBkydPjBUbACAxMZGXZKtSqSpE0lHlK7CoTR+s7DZMp+StVqt5+6JLSkrS6RmQpbu9/wS+9muPoz+u0Cl5p6Sk8PJ3MwyD+Pj4cp/HEqzsOgxL3+2Px2culfkFxjAM4uLiePm9qampyMkR/n7xT/65jDm1ghA6e4FOyTstLY23v5uvfwtz2zB0Kn5u/iHuHjpVZh0svOnhQ2ZmJucAXlPRK2mfP38e48ePx9WrV3Hq1CmoVCoEBwcjO7vshSkMoVaree3OSU1NLfedqqV4cPy8Tsk7NTWV17vCitK9lpOWgcPfLiszebMsi5QU3VtEZcnIyKgwre1nF69jeedBZSbvjIwMXj93fP57mFN+dg5OLFxTZvJmWRbJycm8/d7c3Fzk5mrflU0oYm4/wOpen5WZvLOzs3n93PH576Gvcg1ES0pKQuXKlXH+/Hm8++67fMYFAEhPT0dMDL87AyliEnFphfYlPy2ZWqXG49MXS73+VtcO6PHdZPi3fqfE68+ePeO1O0wikeDCNyugyBZuayfhaSSSX5Tcf9fR3RXvTx2F9yYNh0OxfbOzs7MRGRnJbwBpWTg7bzW/5zSxhyculPqCrNO+JT78fgrqv9e2xGyDqKgo3lsmd1ZsQ2rMK17PaUopUXGlttS1c3JExwlD0XnaZ3DxqlT0en5+PiIiInj9/VKFGqe+XsbrOU3t6bmrRdPgCvk0ewsffj8FTXp2LlEH4+LikJqqfetOfTVo0MAsAyPLlbSfPXuGunXr4t9//0Xjxo35jAsAEB8fz/sdTcbzWGwO0b6ovJAVT94Mw+DhQ/5X8drRezxSnkXxfl5L8GbyTk5O5r1LW5GchnWdBvN6TktSPHkDwOPHj3nv4To1fRGenLhQdkEBejN5p6am8t6lzebmY1Wrvrye05K8mbwjIiJ4f7RXs2ZNuLi48HpOXRictFmWRa9evZCamoqwsDC+4wIAREdH6zwfVlc5r5PxV/BwXs9pid7q2gHdvp+MPCf+F5g5Mu57vAwT/r602hQm77eHfIQMnmceqLJysabNx7ye0xLVad8SPb6fAnUV/qe6XV78J25trtibZxQm7xZjPkF6Nr91kFWpsapZL17PaYkKk7e0dnXeB49Vq1YNlSpVKrsgzwwePT5hwgTcu3cPO3bs4DMewhN59Cukx5VvpKQm1rDQSl5mNlJexkKVb4TnzxX/8gEA0uLiITdaF3bFv4iKnFykvIyFIqdijPY2h4z4JMijKsbAu0IGdchPnDgRhw4dwoULF+Dt7c13TEWMMYldnSf80c/aVGtUFz2+nYR3+nUHRCKjdI9n67AbkVCJJRK0HtYX3b6eAC9/XyQmJiKH51kHjDFuBCyIZy0fdJszEa2H9IZYKsWjR494n1+dW4E3vxGJRGjevwe6fzMJ1d+qB7lcjtxXPN/8qCrGgFxN3KpVRtcvx6H9Z5/Axt4eT5480WkFPn2Ya5EVvZI2y7KYOHEiQkNDce7cOdSqVctYcQGAUZZ+FCnVqNqgNu/nNRVGzSAxovTAqOLJWlxs5TI7Ozten+WIxWI4ODsL+hpmJsmRnVJyUMqbybqQo6Mj779frGIFff0AIP7x81KvFU/WkmJfaA4ODrzPMJFCJOhrmC1PR2ZiyfE6bybrQkapg4zw62Disygwb0wHfjNZF3JyctJ52VddmWtpYr2eaY8bNw7bt2/HwYMHUb9+/aLX3dzcjPIHqFQqPH78mNdz1q9f3+zL0JVHbkYmvnB7u+i/NSXrQgkJCUhKSuLt97u7uxu1d8UUDn27DMd+XAFAc7IuxDAMHj9+zGtLsU6dOrAv9oUiRBMd6heN3NWUrAulpKTwuiiKs7Mz/Pz8eDufOZz9bRN2TfwOgOZkXYhlWTx9+pTXlqKfn5/gl3b+yq9dUde3W7XK+GD252j/2aewdSj92eJ7JpK9vT3q1KnD2/n0oVdLe/XqgmkqHTt2LPH6hg0bMHz4cL5iKiKVSuHu7s7bHZKbm5ugE3ZxZSXrQjKZjNekbY6BF8ZQVrIuKvffhhV8zWJwcnISfMIuVFayLuTu7o6EhATebnw8PT15OY+5lZWsi5erVKkSb7MY7Ozs4OTkxMu5zK2sZF3I1dUVUqmUt1UxzVkHLX7DEKVSiYiIiHJ/4MViMerUqSP47ToVuXm4d+hUmcm6uMTERF5Wg/Pw8ECNGjXKfR5ze3LuCmS+NbQm6+LUajUiIiJ4+cBXhFY2AFzdsh8tP+mpNVkXJ5fL8YqH57IuLi7w9fUV/GDIF1dvwd7FWWuyLo5hGDx//pyXR121atWqEEn72vaDCOj9gdZkXVxGRgaio6PLLlgGBwcH+Pv7m60OWnzSBvi52D4+Pla7yxLLsoiMjCzXMoi2traoU6eORWxNZw58LLJirikilqBw05TyTOGUSqWoU6eO1e70lZeXh+fPn5dr6pKXlxeqVKnCY1TCUt5NUyyh8SeIb2BXV9dyPUetUaOG1SZsoKB7rWbNmgbfXdvb26NWrVpWm7CBgm7tmjVrGnx3XbVqVatN2MD/b0/q6upadmEOtra28Pf3t9qEDZT/c+jl5YXKlSvzHJWwVKtWDR4eHga9VyqVwt/f3+y9tYJoaRfKyclBbGyszmvI2traokaNGhWiK4gPLMsiISEBKSkpOt+tu7u7o3r16ladsIvLy8tDbGyszkvDSqVS1KhRwywrJ1miwnW0k5KSdH7k5erqiho1alj9fu6FFAoFYmNjde45k0gkqFatGtzd3Y0bmICkpKToNc7C2dkZNWrUsIgxUYJK2kDBhz43NxdyuRzp6emlko9IJIKrqytkMhkcHR0F/+zLGNRqNdLT0zXuXmVrawuZTAZ3d3erbtlok5ubi9TUVI0bshTWQScnJ6qDHBiGQXp6esEcZI7NK6RSKWQyGTw8PCzii9IS5eXlFdVBruTj7OwMmUwGFxcXqoMcGIZBZmYm5HI555REiURSVAfN3bouTnBJuzi1Wo38/HwwDAOWZSGRSGBnZ0d35HrIz8+HSqUCwzAQi8VF15A+5LphGAb5+flQq9VFddDW1pZudvSgUCigVCrBMAxEIhGkUinVQT1w1UEbGxu62dGDUqmEUqmEWq2GSCSCRCKBvb29RdZBQSdtQgghxJrQg0pCCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQt20QI4YVd888gEksgEksgtrGFWCyBWGoLkVhc8JrUFiJJwXGJ1Pb/Xyv2nsKfJVJxwcpUUjFEYhHEIhHEUjHEYhFEYkAiKXi98P///2dALBZBLCkoK5WKIRGLIBGLYCsVQ/rf/0vE4qLXJKKC43bSYq8Ve0/RzxIxxCIRbCQiSESiop/FIhEkIsCm8Ph/5cUiwEYshkSM/14v+FkiFkEMEUQiFBwr/FmEonOJRAXv5/q5sJxIBIgYNUQsA7AMUPgzo/rvvxmIGBXAsgBb+PN//88wAMsWvQaWAatSAowarFJRcJxRg1UpwTLq/15XFr2GwtcK36NWA/+VZZQqsGoGLMOAUajAqEu+pla8cZxhwCiUYBkGrPq/40U/q8EybMH/q1kwahZqZeHPDBgFA0bNQK0sKM/+d5xRswU///c+JcNAzQJqloWCYYv9zPUaCwYlXy/4/4Kf17Avzfo5o5Y2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAiFiWZc0dBCGEAEB+fj7mz5+PL7/8EnZ2duYOB4BlxgRYZlwUk/FR0iaEWIyMjAy4ubkhPT0drq6u5g4HgGXGBFhmXBST8VH3OCGEECIQlLQJIYQQgaCkTQghhAgEJW1CiMWws7PDd999Z1EDhiwxJsAy46KYjI8GohFCCCECQS1tQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAUNImhFiE6dOnIygoCIMGDYJCoShxLDc3Fx9++CE6dOiALl26QC6Xmz2mQvPnz0eLFi3MFotKpcLw4cMRFBSEyZMnGz0OXWIqZKpro0tM5qpDfKOkTQgxu9u3byM+Ph5hYWFo1KgR9u7dW+L433//jcaNG+P8+fPo378/tmzZYvaYACAzMxP37983ayyHDx+Gt7c3wsLCkJOTg8uXLxs9nrJiAkx3bXSNyRx1yBgoaRNCzO7KlSsIDg4GAHTt2rVU4qlbty5ycnIAAGlpafDy8jJ7TADw66+/Yvz48WaNRZc4TR0TYLpro2tM5qhDxiA1dwCEEJKWlobq1asDANzc3Ep1XdauXRv3799H48aNIRKJEB4ebvaY0tPT8e+//2LOnDlmjSUtLa1oIwyuOM0Rkymvja4xmaMOGQO1tAkhJhMfH4/27duX+h/LssjIyABQ8MUrk8lKvG/Tpk3o2LEj7t+/jx9++AFz5841e0zLly/HhAkTeItDGw8PD42xaDtmrphMeW10jcmYdciUKGkTQkymatWquHjxYqn/de/eHSdPngQAnDhxAu3atSv13sIvYHd3d6SlpZk9pmfPnmHevHno2rUrIiIisGDBAt5ielPr1q01xqLtmDFp+72mvDa6xgQYrw6ZFEsIIRZg2rRpbPv27dmBAwey+fn5LMuy7OjRo1mWZdn09HS2e/fubIcOHdh27dqxT548MXtMxTVv3tzksRTGoVQq2aFDh7Lt27dnJ06caPQ4dImpOFNcG11iMlcd4hutPU4IIYQIBHWPE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBGI/wN0M2bKoUH6zwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAEpCAYAAAC+zXpZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABg80lEQVR4nO3dd3gUVdsH4N+W9L4k1CSESBchSAktAgqRIhKKovRXEJAuHQULinREEKlKlQ6hCwSkhBakdwgQUknd9LZl5vsjJF9CZje7yWyZ7HNf13u9cefs5Mlwdp85Z04RsSzLghBCCCFmT2zqAAghhBCiG0rahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgTCrJO2Wq3G/PnzK3QOHx8fNGzYEH5+fvDz88Pu3bt5is788XH9Cv34448QiUS4f/8+L+cTCj6uYWBgIJo2bQo/Pz8EBATg9u3b/AQnEBW9hnl5eQgKCkL9+vXh5+eHbt264eXLl/wFaOb4qIMTJ06Ej4+PRX6GdcXn96VBsWbs1q1brJ+fX4XOUbt2bfbevXs8RSQsfFw/lmXZGzdusN26dWO9vb0t7lrycQ1TU1OLfg4ODmabN29ewaiEpaLXMDc3lz127BjLMAzLsiy7atUqtmvXrnyFZ/b4qIPnz59no6OjLfr7sCx8fV8amtm2tB8+fIiePXsiNjYWfn5++P77700dkqDwdf3y8/Mxbtw4/PHHHxCJRDxHad74uoaurq5FP6enp0MsNtuPHe/4uIa2trbo0aNHUf1r06YNXrx4wXeoZomvOvjee+/B09OT5+gqDyHlG6mpA9CkcePG6NOnDxo2bIjx48dX6FyDBg0CwzDw9/fHggUL4OHhwVOU5ouv6/fdd99h8ODBqFOnDo/RCQOfdXDo0KE4e/YsAODEiRN8hCcIfF7DQitXrkSvXr14OZe5M8T1I6UJ6Tqb9S3/9evX0bJly1KvBwQEwN3dnfN/0dHRJcpeuHABd+7cwc2bN1GlShUMGzbMWOGbXEWv35UrV/Dff/9h7NixxgzbrPBRBwFg69atiI6Oxs8//4zp06cbI3Szwdc1BIBffvkF4eHhwnj2yBM+rx/RTNN1NjcilmVZUwfBRaVSwc3NDUlJSbC1teXlnK9evUL9+vWRmZnJy/nMGR/Xb+HChVi5ciWsra0BADExMahWrRo2btyI7t278xmuWTJEHQQAOzs7xMTEoEqVKryd01zxeQ2XLl2KXbt24fTp0yUeOVRmfNdBHx8fHD16FE2aNOEhusrDUJ91QzDblnZMTAycnJwqdAGzs7ORlpZW9N87d+5E8+bNeYjO/PFx/WbNmoW4uDi8fPkSL1++hKenJ06ePGkRCRvg5xpmZGQgLi6u6L+Dg4NRpUoVyGQyPkI0e3xcQwBYvnw5du7ciZCQEItJ2AB/149oJ6TrbLZJ29PTE02bNkWDBg3wzTfflOscCQkJ6Ny5M5o2bYp33nkH58+fx9atW3mO1Dzxcf0sHR/XMD09HUFBQXjnnXfQrFkzrF69GkePHrWYQX18XMOYmBhMnToVaWlp6Ny5M/z8/ODv789zpOaJr8/xuHHj4OnpiZiYGHTp0gV169blMUrhE9L3pdl2jxNCCCGkJLNtaRNCCCGkJErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIs92aU1csy4JhGACAWCy2mOUh+cQwDBiGgVgstqi9nvlCdbDiWJaFWq0uun50DfVTWAdZloVEIqHrVw5CqYOCTNpqtRrp6elISUlBfn5+iWM2NjaQyWRwdXWFRCIxUYTmLzc3F6mpqUhLSytKOAAgEong7OwMmUwGe3t7s624psYwDNLT0yGXy5Gbm1vimLW1dVEdlEoF+REziry8vKI6qFari14XiURwcnKCm5sbHB0dqQ5qwDAMMjMzIZfLkZ2dXeKYlZUV3Nzc4ObmBisrKxNFaP4UCgVSU1ORmpoKlUpV4pijoyNkMhmcnJzMqg4Kau1xlUqF+Ph4pKeno6ywC5NP9erVqdIWk56ejqSkJOTl5ZVZ1traGu7u7nBzczOrSmtKarUaCQkJSE1NLbMOAoCzszOqVasGGxsbI0QnDFlZWUhISCh1s8NFKpXC3d0dVapUoTr4GsMwSExMhFwuL3HDrYmjoyOqVasGOzs7I0QnDDk5OUhISCh1s8NFIpGgSpUq8PDwMIs6KJiknZubi8jIyFJ3Q2WRSCTw8fGx+ArLsiwSExORlJSk93tdXV1Rs2ZNi+86z8/PR2RkJBQKhV7vE4vF8Pb2hqOjo4EiEwaWZZGSkoL4+Hi93+vk5AQvLy+Lr4NKpRKRkZE63XQXJxKJ4OXlBWdnZwNFJhypqamIjY3V+3329vbw9vY2ee+ZIJJ2Xl4eXrx4odNdJReRSARfX1+LTtxxcXGQy+Xlfr+TkxO8vb3N4k7TFBQKBZ4/f16iG1dfPj4+Fp24ExMTkZiYWO7329vbw8fHx2ITt0qlwvPnz6FUKst9Di8vL7i4uPAYlbDI5fIS+9vry8bGBr6+viZ99Gr2tZ9hGERFRZU7YQMFd/gVPYeQFT57rYjMzEykpKTwFJGwsCyL6OjoCiVsAIiOjta7p6iyyM7OrlDCBgq6NCt6DqFiWRYxMTEVSthAwd7k+vYUVRZ5eXkVSthAQW/bq1eveIqofMqVtP/44w/UqVMHtra2aNGiBUJDQ/mOq0hSUhIvlUypVFrkB55hmHJ1BXGJj4+v8JeGEHENNisPtVpdrq5hoStMOHxITk7Wu2u4MsjIyEBWVlaFz8OybIUTlxDxWQfT0tJ4+bcoL72T9u7duzF58mR8++23uHXrFgICAtC9e3dERUXxHhzDMLy27uRyeYVbS0KTmprKaw+DpbW2WZZFcnIyb+dLS0uzuBufjIwMXv9mPv89hILPvzkrK8vibnxycnJ4/ZtNWQf1TtrLly/HiBEjMHLkSDRq1AgrVqyAl5cX1qxZw3twWVlZvCYchmFMeodkCmlpaWZ9PnOXm5vLe5LNyMjg9Xzmju86o8vskcpEoVDw0tNTXHp6Oq/nM3d8/71ZWVkmawDqlbQVCgVu3LiBwMDAEq8HBgbi8uXLvAYGgPeKaqhzmiuWZXm/o1apVBbVUqQ6WHF8/70sy5Zan6Eyy8nJEcQ5zZkh/l5TfY71StrJyclQq9WoVq1aiderVatmkGd1hvhgWtKHXalUGqRFYkkDWQxRXyypa5JhGIMMvrOkz7EhPm+WdP2AypVLyjUQ7c1pPyzLCmYqkCV1qxFCCKlc9Era7u7ukEgkpVrViYmJpVrffDDEJHZLWh3NUHMJTb24gDEZ4m+1pOtnqDWcLekaUh2suMp0DfVK2tbW1mjRogVCQkJKvB4SEoJ27drxGhgAgyyGYkkLrEgkElhbW/N6TrFYzPs5zZkh6ou9vT3v5zRXIpHIINfQ1taW93OaK6qDFVeZcone3eNTpkzBxo0b8ddff+HRo0f4+uuvERUVhTFjxvAenCFWj7K0Fan4XrbQ0jZwMMSmKU5OTryez9zxXQft7e0tajMgW1tb3lt1VAcrxtra2mS9tnrXhAEDBiAlJQXz5s3Dq1ev0KRJExw/fhy1a9fmPTgrKys4OzvzNkXGycnJolqJACCTyXidU+ju7s7buYRAIpFAJpPxNj/dzs7Oonp7AMDNzQ0JCQm8jSextDooEokgk8l4WxzKysrKIhsvEomEt2la7u7uJmu8mP3a4/n5+Xj27FmFP/AikQh169a1yN2W4uPjeUnczs7O8PLysqiWNlAwzS08PJyXD7yvr6/FdU0CBTNP+Jhh4uDgAB8fH4urg2q1Gs+ePeNlumXt2rUtrqUNlH+jkDfZ2NjgrbfeMtka+Ga/9riNjQ1q1qxZ4fPUqFHDIhM2AFStWrXCf7tUKkXNmjUt7ssSKPjbPT09K3yeqlWrWmTCBoAqVarAwcGhQucQi8Xw9PS0yDookUjg5eVV4fMU7g9tiVxdXSu8WUrhbmmm3LTG7JM2UNC9VqNGjXK/v3r16pDJZDxGJCxisbhorfjysLKygq+vr8WNOC3OycmpQonb3d0dHh4ePEYkLCKRCN7e3uVO3FKpFL6+vhY1++NN9vb2qF27drlvWlxdXSv0PSp0IpEItWrVKvfzbbFYDB8fH5MPgjT77vHiMjMzERMTo3M3pUQiqdA/UmXDMAzi4uL0WlbS0dERnp6eFp2wi8vOztZrty6xWIwaNWrAzc3NwJEJA8uyePXqlV67ztnb28PLy8uiE3ZxeXl5iIqK0nnRFZFIhGrVqqFKlSoW2UvxJpZlkZiYiKSkJJ3fY2NjA29vb7PorRVU0gYKLnhmZibkcrnGdcQdHByKuoEsde9dbRQKBdLS0iCXyzmTj1gshkwmg5ubm1lUUnPDsiyysrIgl8uRmZnJWcbOzg4ymQwuLi5UBzmoVCqkpqZCLpdzPqcVi8VwdXWFm5ubxQ3c0wXLssjJyYFcLte4rratrW1RHbSk0fa6UqlUSE9PR0pKCucNkEgkgouLC2QyGezs7MzmhkdwSbs4hUKBvLw8MAwDlmUhkUhga2trcSPEy6vwg69SqcAwDMRiMSQSCezt7SnR6EipVCIvLw9qtbqoDtrY2NDNjo5Yli3alIXqYPmoVCrk5uaWqIPW1tYm78YVisI9GpRKJdRqNUQiUVEdNMebHUEnbUIIIcSS0K0sIYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAUNImhBBCBIKSNiGEECIQlLQJIYQQgaCkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAUNImhBBCBIKSNiGEECIQlLQJIYQQgaCkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhCUtAkhhBCBoKRNCCGECAQlbUIIIUQgKGkTQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAUNImhBBCBIKSNiGEECIQlLQJIYQQgaCkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhBSUwdQXgzDICMjA3l5eVCr1QAAiUQCW1tbODs7Qyym+5Gy5OfnIyMjAyqVCmq1GmKxGFKpFM7OzrC1tTV1eGaPZVlkZmYiJyenqA6KxeKiOiiRSEwcoflTKpVIT0+HUqksqoMSiQROTk6ws7ODSCQydYhmjWVZZGVlITs7GwzDgGEYSCQSWFtbw9XVleqgDlQqFdLT06FQKErUQUdHR9jb25tdHRSxLMuaOgh95OXlITU1FampqWAYhrOMWCyGq6srZDIZJZ83FN7syOVy5OTkaCxna2sLmUwGFxcX+uC/IT8/v6gOFibrN4lEIri6usLNzY2SzxsKb3bkcjmysrI0lrOxsYFMJqPkw0GpVCI1NRVyuRwqlUpjORcXF8hkMrNMPqZUeLOTmpqKjIwMjeWsrKwgk8ng5uYGqdQ82riCSdosyyIxMRFJSUl6vc/d3R3VqlWjCouCZBMZGQmFQqHzeyQSCXx8fGBnZ2fAyISBZVmkpKQgPj5er/e5urqiZs2a1PuDgmQTGRmJvLw8nd8jFovh7e0NR0dHA0YmHKmpqYiNjdXrPU5OTvDy8qI6CECtViMqKgrZ2dk6v0ckEsHLywvOzs4GjEzHWISQtFmWRXR0tNY7Im2owgK5ubmIiIjQ2DuhjUgkgre3N5ycnAwQmTCwLItXr15BLpeX6/329vbw8fGx6DqYn5+PiIgIrS1DbTw9PeHq6spvUAKTmJiIxMTEcr3XxsYGderUMZsWoykolUpERETo1XAprkaNGqhSpQrPUelHEN8g8fHx5U7YAJCZmal366gyKayo5UnYQEHCioqK0qt1VNkkJyeXO2EDQE5ODmJiYiCAe2SDUKvVePnyZbkTNgDExMRofaRT2aWmppY7YQMFN01RUVEWWwcZhsHLly/LnbAB4NWrVxXKRXww+6SdlZWFlJSUCp9HLpcjMzOTh4iEJzY2ttwJu1Bhb4clfuDz8vKQkJBQ4fNkZGQgPT2dh4iE59WrV1AqlRU+T3R0dIXrshApFArExcVV+Dw5OTm8fJ8KUWJiIvLz8yt8ntjY2ArdfFaU3kn7woUL6NWrF2rWrAmRSISDBw8aIKz/x8eXpSHOJRQ5OTlaB/voo3C0uaWpSOvmTQkJCRZ345Ofn4+0tDRezlU4AMvSJCcn81ZvEhMTLe7GR6VS8XazolarTXrjo3fSzs7ORrNmzfD7778bIp4S8vLykJuba7bnEwK+K5el3aUrlUpeb1SUSiVvN1FCwXeStbQ6yDAMr9eQYRiL6/FJS0vj9WZZLpeb7OZb7xEJ3bt3R/fu3Q0RSyn6jO7T55yWNBKa72uYk5MDhmEsZkCVIZ6hZmdnW9SgPr5vUhQKBVQqlcUMqMrNzeU9QWRnZ8PNzY3Xc5ozvuugWq1Gfn6+SaYUm/U3ryFaxakJSYi+/QBqEz6TMBaVSmWQZy8vb95DRoJ+U++EyhB1MCM1DS//uwNVBQbECAXLsgYZwBh59yFSY17xfl5zZIg6aGkD+gxxDU3Va2vWt6qGeO7y4uJ1BI+ZCys7W9Ru8Q58/P3g07oZ6vj7QeZdq1LN5zbUc6vd475D5LU7kHnXgo+/H+q8voa1W7wDa/vK1YthiGv46u5j7PxsMqTW1vBq3vh1HSy4jh5v1a5UddBQXYjH5v6Kh8fPwqVmtaLPr09rP9Ru+Q7snCtXL4amBXwqwtKeaRvi7zXVNTTrpG2IL6/EB+EAAGVuHp5d/A/PLv5XdMy5mjt8WhckoMJkJOQvAENcP0atxqv7TwEA8qhYyKNicXPvMQCAWCJBzSb1i75A67RpjhqN6wk6CRmkDj58DgBQKRSICLuNiLDbRcccZK5F9c+ntR98274LBzcX3mMwFkP928fdewwASI9LwJ2Dp3Dn4Kmi31e9Ud2iG0kffz94Nm0EsYBXVDPEoyghfybLQyQS8X4DaapraNZJ29bWlvcBE0mPnms8lpGQjLtHTuPukdMAALFUCt+276JxYAAaBQagdot3BPXhl0qlEIvFvN4RpkfGQZHD3S3EqNWIufMIMXceIXT9TgCAc3UPNOoaUHANu3aAczUP3mIxBkM8s0p5GqHxWLY8DQ9OnMeDE+cBACKxGD6tmqJR4HtoHBiAOv5+kFhZ8R6ToYhEIlhbW1dobuybctMykBbN3TXOsixePQzHq4fhuLxpLwDAoYobGnVpj0aB76FR1w6QedXkLRZjMEQdtKRxPUDBNeT7kYCplsg266Rtb2/P+znjX7e0dcGoVHgWeg3PQq/h8NxlsHdzQcMuHdA4sCAJybxr8R4fn0QiEezt7XkdhJH6LEqv8hnxSQjbdgBh2w4AADybNSpKQHU7tISVma8Nb4g6mKBHHWQZpqg1fvynlbB1ckSD99sWXcOqdX14j49v9vb2vCZt+ZOXepXPTknF9d1HcX33UQBA9UZ1X9+Iv4f6Hf1h48D/vzGfDJFgDVGvzZm9vT2vSVskEgknaWdlZeHZs2dF/x0REYHbt29DJpPB29ub1+Ds7e1hZWXFy6IMAKBIz0LGq/LPuc1JTcfNvceKuoOrN3wLjQID0DjwPdTr6A9bRwde4uSTTCbjNWlnvIip0PsLW+IhS9bBys4W9Tv6F11Dc+xKt7GxgZ2dHW+DThiVGomPX5T7/XmZWbhzKAR3DoUAANx9vYt6ghq+3w52LqZfG/lNMpmMt3naAJAVWbFFRuIfPUP8o2f497dNkFpb4632LQrq4IfvwbNZY7ObGVG48x6fUw8tbTlYNzc3JCcn83Y+V1dXk9UTvdceP3fuHDp37lzq9WHDhmHz5s18xVWkPIvja+Ihq4Lku08QEXYbL6/dQUTYbWSn8DP/UWJlhbfatyi6g/dq/rZZfPhZlsWzZ894WQlIIpHATWKDF5euF13D2LuPwfA0UMalZrWiXoyGXTrAycO0a/wWyszMRGRkJC/nquImQ9qjF6/r3y28DLuNjAR+vkzEEgl8/P2KrmHtVs0gMZNpUS9evOClpSMSieBh54SIyzde18HbiL71EGqebuydPKqgYdcOrx/nBMC1ZjVezltROTk5ePGi/Dd7xclkMtSsKaxHBHyIiori7canXr16sLGx4eVc+jL7DUNYlkVkZGSFW4v5ialo3ql9iUTKsiySI6LxMuwWIq7dwcuw24i6eR+q/Ip35Tm6y9Coawc0ev3hd6tVvcLnLK/c3Fw8f675Wb4uGJUazmIr+DRtXOJ1RU4uom49wMvXX6ARYbeR8rJirfFC3u82QeMP30OjwAC81a4FpNbWvJy3PGJiYircWsxLkKN5x3YlEinLskiNjiuqfy+v3Ubk9Xsaxw3ow97VGQ0+aF/UEnf38arwOctLoVAgPDy8QoOBWJaFnYJB3RbNSryuzM9HzJ1Hr69fwc14YrjmcQP6qNmkQcFN0IfvoW5Aa1jbme5xTnx8fIVbi7mJcrzj3xK2Zv5IwBBUKhXCw8MrPBq/evXqcHd35ykq/Zl90gYKLnZERES5W4vPT4Qi5Nvl6PXTVHw4Y4z236VQIPbeEzw9dxUPT15A+IUwXpJ4zbfrw6/Ph2g9OAjVG7xV4fPpKy0tDTEx5Uum+ZnZOPvNr0h68gKzrh2Cm2cNreUzEpPx4spNPAq5iEenQnn5ArVxsEeD99uh1ee90Kx3oNGnljEMg4iIiHJ3k0dfuokT0xch4MvP0X/ZHK1l1SoVXj14ivAL1/Dw5AU8OXuFlyRetV4dNOvdFf5D+sCzaaMKn09fFemxUOXlI/SnNXhxPgwzrgSjRqO6Wstny9MQEXYLj09fwsNToYi7/6Rcv7c4qY016nf0R8vPeqF5v+5Gn1nCMAyioqLK3YCJv/UI/0z5BU26dcLwrcvN7lGUMeTk5CAiIqLcN48uLi7w9PQ06bUTRNIGyrcHKsswuLVxLy6v2gagoGtt1P41aN6nm87nUOTm4VnoNTw8FYpHp0IR+3qqSUXUbtUMbYb0QYsBH8G5qvHu2DIzM/Xe5Sc9Oh4nJ89H4usRz15+jTE1dK9ez++TI6LxKCQUD0+F4vHpi8hNr9jGLTaODmjerxvaDOmL+p3aGG1EP8MwiImJ0auLjWVZPNpzAmd/WQP29Sj+Qet+QcCogTqfQ5mfX3ATdKrgGkbduKd37G+q9U5D+A/pg1YDexu1Fyg7OxtRUVF6tXayk1MRMnUhYm4+AFDwHH9W2EE4ust0PkdqbDwehRR8hh+FXERWcvl3bAMAK1ub1zdAfdE4MMBoI/pZlkVcXJzey5o+O34BIXN/hVpR8Bjh45+noce34w0RotnLy8sr145zHh4eqFq1qslvdgSTtIGCCpuWlga5XF5mi0cCEf6duwL3DoaUeN3a3g7TQvfC+90m5YohLS4Bj09fLErimUnlXwdZLJHg7W4d0XpwUEHr0Qhdb/n5+ZDL5UhNTdU6FUwkEiHjaST2jfoW2cklvyCa9e6K0QfWleuZvVqlQuT1u0UJKOLqrQo9E3etVR2tBvZGmyF9UOudhuU+j65YlkVGRgZSUlLKfEYrFUtweclGXNu8v8TrYqkUE09sQcMP2pcrhsykFDw+cwmPToXiwckLSI8r/0Y4IpEIDd5vh9aDg/Buv+6wdXIs97l0pVQqIZfLIZfLy0zeeXFJ2DdiNtJiSm6tWzegNSaFbINVOZ4rMgyDmNsP8fDUBTw6FYpnF69X6Jm4k0cVtPysF1oPDoJPq2ZG+VLPzMxESkpKma1uqUSCWxv24vyvf5U69uWe1WjxSU9DhWjWVCpVUR0sK3k7OztDJpPB0dHwnw1dCCppF5eXl4fU1FTk5uZCrVaDZVlIpVLY2tpCJpMhKuw2fn1/YFHrpjiXmtUKunkr2MJgGAYxdx4WJaDnF6+Xe2lKWydHvNu/O1oP7lPQejTwIDaGYYq2ilQqlUXriReOVHVxccG6vqNx9/BpzvcHzhiNvotmVziO3PQMPP73csE1PHkByRHR5T5XraYN4T+kL1p9/rFRWo/5+flITU1FTk5OUR2USCSwtbWFm5sb5M8isbB1b87HK/auzphxNbjCj0oK5yUXJqCn58OgzC3fsqFWdrbwCwpE68F9ClqPBh7ExrIsMjMzkZaWBqVSCbVaDbFYDIlEUlQHd42di4sbdnK+v82wfhi2aWmFk2ReVvbrRxHn8ehUKOIfl3/8R7X6vvAf0getBwXBvY7hxxAU7nqWlZVVog5aW1tDJpMhN0mO+X49OHu3rGxtMPXCHvi0asZxZsvAsiyysrKQlpYGhUIBtVoNkUgEqVQKR0dHuLm5md0a94JN2rr4d+Um7Jn0I+cx73ebYOqFPbzO0czPzkH4hbCiVvirh7rPxy3OzbMGWg38GP5D+qJWkwa8xaev3PQMLG7XT+PfMeTPxWj/xae8/s6k55F4eOoCHp4KxZMzl5GXqf/zO5FIhAYftEebIX3g1+dDo7QeNflv12H8+flEzmMedX0w82owHKvwt3GDMi8Pzy/dKEri0bcflus8TlXd0fKzj9BmSF94t3jHZF2Cyrw8/PrBILy4fIPzeNCCGeg2ayyvv1MeFYtHIRfx8NQFPD59CdnytHKdp26HVmg9OAgtPv3IpKvaPTx1Ab/3+B9nj5ZzdQ/MunZIcAvOWLJKnbRZlsXOcXNxYc12zuPN+3bDl3v/MFirNjXmFR6eCsW9o2dw/9jZcrXCPZs1gv+Qvmg9sDdcalQ1QJTaJUdEY2Hr3pzPAMVSKSaFbEODTm0N8rvVSiUirt3Bw5MXcHPvsXK1gKzsbOHX50P4Dw5Co66Gbz1yOfrjChz9YQXnsXod/THp1DaDjYzPSEjCo9OXcO/oGdw5FFKuVnj1hm+h9eA+aD2ot0lGoGckJmORf5DGWQmj969F8766j1PRB6NWI+rmfTw8eQG39v9TrpsgqbU1mvTsDP8hfdCkR+dydelX1Pk127Bz7FzOY57NGmHaxX1muc4EKa1SJ22g4Iv/955f4FFIKOfxbrPHIuiXGQaPI/v1wixh24JLrHeuK5FYjIYftId/YevRiB+wZ5euY8X7AzlvOhxkrphxNRjV6tUxaAwsyyLq5n2EbTuA/3YeQWai/lNfnKq6o9XnveA/pC+8321itNYjy7L4a9Ak/LfzMOfxdl98iiEbFxk8nrzMLNwOPomw7Qfx+MwlzkdHZakb0Br+Q/qgxSc9YO9qvNZj3IOnWNy2L2fPi5WdLaaF7kXtFu8YPI7Y+09wbXswrv19qFy7jNm7uaDFpz3hP6Qv3mrXwqg9GLsn/YCzKzdzHmv6cReMObBOUMs0W6pKn7QBICctHYvb9tXYUhu2eSnaDutvtHiSI6Jx7e+DCNsWjISn+i+YYG1vB//BQegy9UtUq+9rgAhLC9sejE1DvuY8Vq2+L2ZcDTZaF6BapcKjkFCEbQvG7YOnytV6rPl2fXzw9Qi0HhxklJaPMi8Pyzt/joirtziP9108G4HTRxs8jkJpcQn4b+dhhG07gJg7j/R+v9TaGi0+7Ymu00cZbfrYgxPn8HvPLww6TkVXDMMg/PxVhG0Lxs19/5TrMY7HW7XReeJwtB8xwChLqapVKvzx8Ug8+Occ5/Gu00ah35JvDB4HqRiLSNpAwbPShf5BnCugSaysMPnM36gX0NqoMbEsi8jrdxG2LRjXdx3ReyS6SCRCs6BABE4fBd+2LQwU5f87PHcZjv+8ivNYg/fbYeKJLUbfzCIvMwu3DpxA2LZgPPn3st7zL52re+D9icMRMGawwW86MhKSsLB1EORRpVf4E4lEGH1gLfyCPjRoDFxi7z1G2OvWY1psfNlveEPjwAAEzhiDBu+3M3jL8ezvW7B7wvecx7yav41poXuNvpa4IjcPdw+HIGz7QTw4cR6MnlOJ7N1c0GncUHQaP9TgG+rkZmRiSbt+iHvwlPP44A0L0WHkZwaNgVSMxSRtAAgPvYYVHwzinN7hUMUNs8IOwuOt2iaIrKAb/+GpUIRtD8adg6egzNNvIZm32rdE1+mj0LRXF4M9o2cYBhs/m1C09vqbAkZ9joFrfzHZoKXU2Hj8t+MQwrYF6z2f3sbRAe1HDkCXr0cYdCOY2HuPsbhdP+RnlV5vwNreDtMu7oV38/JNR6woRq3G0/NhCNt2ADf3/cMZozZezd9G4PRRePeTngYdO7Bz/Hc4v3or57FmQYEYvX+tyZYQzkxKwfVdRxC2PRgvr93R671SG2u0HdbP4D1oyS+jsah1EGcjQSyVYtKprWjQuZ3Bfj+pGItK2gBwZcs+bBk+jfNY9YZvYcaVA0Z9VsclNyOzqPX49OwVvVqP1Rr4ouu0UfAfHGSQHbQUOblY1ukzRP7H/YXUf9kcdJkykvffq6+Yu48Qti0Y13Yc0mses1giQcvPeiFw+ih4Nmtc9hvK4d6xf/HHxyM5u3lda1XHrGuHTL7mtSInF3cOhyBsWzAenryg11x6We1a+ODrEWg/YoBBxl6oVSqs7vk/PDzFPU6Fr+mIFRX/5Dmu/X0I17YH6zWV0Rg9aM8v38Cv73/OPR3RzQUzrwYb7dEb0Y/FJW0AOPjNYpxY8AfnsYZdOmDC8U1ms2dxaswrXHvdetRnKUbnau7oPPF/eO8r/rt9018lYmHr3pwDcUQiEb46tAFNe3Xh9XeWF6NW48nZKwjbHoxb+0/o1Xps1DUAXaePQqMuHXjvPTjz21/YO3ke5zHvFu9g2oU9Rl+qVZOMxOSC1uO2YERev6vz++zdXNBx7BB0njCM925fU0xHLC+WZfH80nWEbQ/Gjd1HkZOm+4p6huxBu7bjEP4aNInzmCGmIxJ+WGTSZhgGGz4Zi1sHTnAeDxg9EAPXzDf5cnXFsSyLmDsPcW71NoRtPaDz9DEbB3u0HzkAH3w9AlVqe/IWT/TtB1ja4RPkZ5deFczGwR7TL+0zWEu1vPKzc3Br/z84vXyjXoOvvPwao+v00WjxSQ/ebuZYlsXOsXNwYe3fnMeb9+uOL/esNoud4oqLf/wMF9b+jUsbd3P+23OR2lijzdB+6DJ1JK/r7ie9iMIi/yCTTEcsL2V+Pu4eOYMzyzfixZWbOr+vWgNfdJn6JdoM6cNrD9qR75fj2LyVnMfqd2qDiSe3mnSjHlKaRSZtoOALfFnHARrXcf5kxXf4YNIXRo5KN+nxiTi7agsu/LFN57t2sUSCFgM+QuD0UfDye5uXOO4cDsHaoFGc3fduXjUxK+ygSeaWl4VlWTw6fRGnFq/D49MXdX6fzLsWPvj6C7Qf+Rkv3b5qpRKrevxPYwzdvhmHoPnTK/x7DCFbnobza7bj7MrNOk+/E4lEaNq7KwKnj8Zb7fjp9n128T+s+GCQSacjltezS9cRsmQd7h4+rfMjML570FiWxZ+fT8D13Uc5jxtrOiLRncUmbaBg2svC1r05R8yKxGKMPbwR7/R83wSR6SYvKxuX/tyNM8v/5ByRrEnDLh0QOH0UGnUNqPCHMWTZBuyfNp/zWO1WzTD1/G6TbmdYlqhb9xGydANu7D6q83Nbe1dnvPfVYHSeOBwu1St2U1LWdMThW5ahzdB+FfodhqTMy8PVbcE4vXSDXtMXfdu1QOD0UWj6cdcK9yZc3XYAm4dO4Txm7OmI5RH/5DlOL9uIq1v367yjIJ89aIrcPCzvNEDjwLm+S75B4LRRFfodhD8WnbQBIOrmfSwN+IRz60MbRwfMuLzfKBtRVIRaqcSNvccRsmSdXis2eTZrhB5zJ6J5327lTt4sy2L7qNm4tHEX5/F3P+mJkbtWmV0375tSImNwZsVfuLRhl+7dvtbWaDOsH3p+N7HM7Uq1McfpiPpiGAZ3j5xGyJL1eH7pus7vq1bfF92+GQv/IX0rVEcOzVmKf+b/znnMVNMR9VWRHrSPfphcoR6F9PhELGwdhNTouFLHRCIRRgevg1/vwHKfn/DH4pM2ANw+eBLr+o7h7KKSedfCrGsHDT5/kg8sy+LxmUsIWbJO48haLnU7tEL/5XPKvXGASqHAqm7D8OTsFc7jPeZOxMfzuFtC5iY7NR0X1mzH2ZWbkJGgW7evlZ0tuk4bhcAZo8vdbR5+IQwrugw2y+mI+np++QZOLVmHu4dCdO729Wr+Nvov+7bcU40YhsHGAeNxc99xzuOmno6oj6IetF//hDxStx40iZUVOo0fih5zJ5a7VyHm7iMsad/fLKcjkv9HSfu1k4vXInjmQs5jddo0x9f/7jTrbt43xdx5iJClG/DfzsM6d/v6D+6D3r9ML9fmAdnyNCxq0weJ4RGcx/+3fQX8BwXpfV5TUeblIWz7QYQsXY+EJ7p1+zpX90Dv+dPRdli/ci0HeXnzXmz9H/cz7OqN6mLG5f0mn46oj/gnz3Fm+UZc2aJ7t2+z3l3Rd/Hsck03UuTkYlnHARpHuPdfPgddvjb9dERdqVUq3Nx7DKeWrEf0rQc6vcdB5oqe309Cx68Gl6tn4e7RM1jz8UjOmy1zmY5o6Shpv8ayLLaNmIHLm/ZyHm/5WS+M2LFSEHfqxcmjYnFmxV+4uGGXTtOdKtJqTHj6Aova9EFOanqpY1Jra0z+dwfqtm+p1zlNjWEY3Dt6BiFL1uu8ZryXX2P0WzYHDd/Xv9UYPHsRTi5cw3msUdcAjD++ySSbnlRERkISzv2+FedWb+WsG28SS6XoNH4oes6dCAeZq16/S0jTEXVVnh60avV90XfJbDTt1UXv76zTv27Evik/cx6r3bJpwTgVM5mOaIkoaRejUijwW9fBCL9wjfP4Rz9MxkffTzZuUDzJSUvHhbV/49/fNiEjPqnM8uVtNT45exm/BQ7lXMrRyaMKZoYdNMo+w4bw4upNhCxZj9vBJ3Xq9m36cRf0W/KNXq1GhmGwvv9XuB18kvP4e18NxuerfxLczSNQ0O17+a89OL18o07dvvZuLkWtRn2mHQlxOqKuinrQdh3RabnUBp3bov/yOXrNGGFZFjvGfIPQ9dz7mL/bvwdG7v7d7MepVFaUtN+QlZKKRf5BSHoeyXl8xI7f0Orz3kaOij/K/HyEbQvG0R9W6LTOtGezRui/fK5ercaLG3dh+5ezOI/VaFwPMy7vh52Ls87nMzcJT1/gn19WI2zrgTKTt1gqRcexg9Hzu0k6L1SRn52DZe99iqib9zmPD1j5AzpPGK5n1OajsNv38He/IunZyzLLV61XB32XzEazj7vqfLNy+9AprOszWvN0xGsHKzzy35Tk0XE4uWgtQtf+XebjL5FIhLb/+wS9f56m8xRMtVKJld2G4cm/lzmPd/92PHr/zL2yJDEsStoc4h8/w+K2fTlHcEptrDHl3C74tnnXBJHxR5GTi5BlG3By4RrOkfNvatqrC/ouma3z4hj7p/+CkKXrOY+93a0jxh75U3DdvG+Kunkf+6b+jKfnrpZZ1t7NBT2/m4iOY4fo1GpMjY3Hwta9OZdgFYnFGHf0TzTp3rlccZsLlUKBc6u34vi8lTqNlq7fqQ36L5+j82CoU0vX48D0XziP+bRuhinnzHs6oi7iHz/DgRkLcffI6TLL2jjYI3DmGHSd+qVO3dvZqelY3KaPxql8w7cuR5shffWOmVQMJW0NHp+5hJUfDuW8i3Wq6o5Z1w7yusKYqaTFJeDwnKW4snmfbq3Grwaj5/dltxoZtRpr+47G3cPcXyadJwzHgJU/lDNq88GyLO4cDsH+ab/o1Gr0qOuDfktmo1nvwDJbjdqmI9o6OWL65f2o1aRBeUM3G1kpqTg27zec/2N7mV2+IpEIbYb1Q+/508scEMWyLLZ/OQuX/tzNebzFpz0xYqf5T0fUxeMzl7B3yk+IvVv2RjmutaojaMEMtB4UVObfnhAegcVt+iBbnlbqmNTaGpPP/I26HVqVN2xSDpS0tQhdvwN/j+beX7ZmkwaYfmkf7JydjByVYUTduo/9U+drnLZVnL2rM3p8NxGdxg3V2mrMy8rG0g79NS4Z+tnv89Bp3NByx2xOVAoFzq/ZjmM//qbTYKv6ndqg/7I58H5Xe6vxVvAJrOs7hvOYrHYtzLp2CM5V3csVs7mJf/IcB2Ys0HijV5y1vR0+nDkGXaZ+qXUrTpVCgZUfDtXYG9Lzu4no9aMwpiOWhVGrcWXzPhyas1SncSu1WzZF/+VzylwD4On5q/it6xDO6YiO7jLMDDsID1/vcsdN9ENJuwx7p/yEM7/+yXmsSY/OGHt4Y7mm95gjlmVx98hp7J/2i8apW8V51PVB38Wz4Bf0ocZWozw6Dgtb9+b8EhFLJBh37C+8/WHHCsduLrLlaTg27zecW72Nt1bjyUVrEDxrEecx37bv4ut/dxhkRzdTefzvZeyb8pNO68O71qqOoF+mo/XgPhpbjZVtOmJZ8jKzcGrxOoQsXa/TFr/N+3VH30WztK4DcHnTHmz9YgbnseqN6mLmlQOCHqciJJS0y8Co1VjT+0vcO/Yv5/H3J3+BT3/9zshRGZZKocCFtX/j6A8rdGo1NujcFoM3LtJ4t/3yvztY9t6nnF8gts5OmHHlAGo2rlfhuM1JwtMXODBjAe4cCimzrLW9HXrNm4IPJn/BeQPIsiy2fjEdVzbv43x/q4G98cX2FYIcUa4Jo1bjypb9OPTtEp1bjUM3LdH4uKCs6Yhfn93J23ro5kIeHYdD3yxB2PbgMstKrKzw4cwx6DF3gsbeswMzF+DU4nWcxxoHBmDcMeFNRxQiSto6yMvMwpL2/RF7j/t50cA1P+O9MYONHJXhZcvTcPznVTi7akuZrUYbB3v0W/YtAkYN5EweN/Yew4ZPx3G+172OF2aGHYSTRxVe4jYnT85exr4pP+u0vOxb7Vti2OalqFrXp9SxsqYj9po3BT3nTqxouGYnLyv7/1uNuXlay0qtrdFr3tfoOm0U583P438vF4xT0TQd8dpBuPsIczqiNi//u4N9U37WaZ0Bz2aNMHzrcng2bVTqGMMwWNdvDO4cPMX53o7jhuLz37m3myX8oaSto5TIGCzyD+Jc2lIskWDCiS1o1KWDCSIzvITwiIJWo4YPa3GNAwMw5M/FnGtxH5//Ow7PWcr5vrfat8TkM3/DysamwvGaG0atxtWt+3Ho26VIf5Wotay1vR36Lf0G740ZXOrmJytZjkVt+micjjhy1yq0HNCLt7jNiT6tRt+272LYlmWca3Frm45Y8+36mH55f6UZp1Icy7K4uf8fBM9YgOSIaK1lJVZW6PXjZHSdPrpUyzk/OwdLAz7RuELbgFU/ovP4YbzFTUqjpK2HiLBbWNZxAOeSjHYuTph5NRjVG9Y1QWTG8eTclYJWYxlLKtq5OGHAqh/hP7hPicTDsiw2D52i8YvXf0hfDN+yrFJ18xaXl5WNkCXrcGpJ2a3GRl0DMOTPRaWWlI1//AyL2vRBbnpmqfdY2dpgyrldqOPfnNe4zYmurUYrO1v0XTQLHccNLfWse9+0+Ti9bAPn+97u3gljD2+stN28yvx8nF21Bcd/WoW8jNJ1qLg6/n4YtmVZqWmeqTGvCqYjctyAisRijD/2F97u1onPsEkxlLT1dH33EWz8bALnMY+3amPm1WA4usuMHJXxMAyDsG0HcPCbJZxziItrFhSIQWvnl9hsRZmfjxUfDNK4E1Tv+dPR/RvubvTKIjXmFQ59uwRXtx7QWs7W2Qmf/vYd2g7rX+JG5tHpi1jVbRjndETnau6Yde0QZN61eI/bXLAsi1sHTuDAjAVIfhGltWyDzm0xdNOSEtMzGbUaa/uM1ji3ufPE4Rjw2w98hmx2MpNScPTH38pcnMXK1gZBC2ei84ThJW5+Iq/fxdL3PuW8+axM0xHNESXtcjg27zcc+f5XzmN1A1pjUsi2StnNW1xeZhb2T5uvcanDQo7uMgxcOx/v9ute9FpmUgoW+Qdp7Kb7cu8faNG/B6/xmqPw0GvYMnxamYmnaa8uGLT+lxIreF1Yux07vprDWb5W04aYfnEfbJ0ceY3X3Cjz8nD4u19xeul6rWsM2Do54pNf56LdF58W3fyUOR1x9U/oNHaIQeI2J1G37mPz0KmIu/9Ea7l6Hf0xbNPSEksQ39z/D9b3/4qzfBUfT8wMO1hppiOaE0ra5cCyLP4aNAn/7TzMebzNsH4Ytmlppe3mLe7BiXPYOmJmma3uVgN747NVPxZtABH34CkWt+vH2UVnZWeLqed3l3urUCHJy8rGgRkLcGHNdq3lHGSu+HzNz2j56UdFr+35eh7+XfEXZ/l3PvoAXx1cX2mmI2rz7NJ1bBk2VeOz/kJNenTG4A0Li6bXlTUdcfzxTWgc+J5BYjYnyvx8HP1hBU4tXgeWYTSWs3F0QP/lc9Bh5GdF320nFqzGwW+WcJb3bdcCX5/5u1JNRzQHlLTLSZmXh1/fH4gXV25yHu+zcCY+nMl9F1rZZKemY8/EH8ocJORSoyoGb1yEd3oULL/54OR5/N7jf5xfFM7VPQq6ecuxTagQPTx1AdtGzOTcnaq4lgM+wmerf4JjFbcypyN2mTIS/Zdxt8Yrm/zsHByYuRDnV2/VWs7ezQWfr56Hlp99DJFIhIhrt7G84wCLmo6oyYsrN7B52LQy12h4u1tHDN64CG61qoNlWWwZPlXjo57Wg4Lwv22/WkQDxlgoaVdARkISFvoHadyxaPT+tWjet5uRozKdWwdOYMeYb5GZlKK1XPuRn6H/sm9h5+yEc6u3Ytd47nnuXn6NMTV0r95bhApVTlo69kyeh6tb9mst51zdA4PXL0DTXl3KnI44aN0vCBg10BDhmqVHpy9i6xczkBodp7Xcu/174PM/foKTRxVc33MUGweM5yxXmacjclHk5CJ49iKcXblZazl7V2cM+H0eWg/sXTAdsctgjYMDP/5pKnrM4R4HRPRHSbuCYu8/wZJ2/ZCXmVXqmJWdLaaF7kXtFu+YIDLTyEhMxs6v5uDWgRNay8lq18KwTUvQoHM77JrwPc79voWzXNOPu2DMgXUW0c1b6PahU/h71DfITCw9vbC4dv/7BJ/8Ohc5aRlY2DqIs7xYKsXEE1vQ8IP2hgrX7OSmZ2Dv1z/h8qa9Wss5VXXHoPW/wK93II7/vAqH5y7jLFe3QytMOr290o9TKe7J2cvY8r/pZW6h2rxvN3y+5meIxWIs9A/SOD5j5O7fSzzaIeVHSZsH946fxR+9RnB287rUrIZZ1w7BrVZ1E0RmGizL4tqOQ9g9/rsyd2/qPHE4Pv5pKjZ8Og4PT17gLNN1+mj0WzzbEKGaraxkOXZ8NQc39x3XWs7NqyaG/rUYNo72WN7pM87piPauzphxNVjnHdoqi7tHz2D7l7PKXFGtzdC++GTFd9g94Qdc+/ugxjLDNlfe6YhccjMysW/qfFzauEtrOSePKhi4dj6qN6qLxW21TEc8vxt1WvsZKFrLQUmbJ/+u3IQ9k37kPOb9bhNMvbBH68YGlVFqbDy2j5yJByfOay1XtV4dDN64EDu/moNXD8M5ywzZuAjtRwwwRJhmi2VZXN99BDvHzi1zOdnOE4ajduum2DyEe/MLj7o+BdMRddzTu7LISknFrvHf4fquI1rLudaqjmGbluDIDyvw4vINzjJBv0xHt9mVezoil3vHz2L7yJllLgzkP6Qv3u3fHev6jrHY6YjGQEmbJyzLYue4uRpHAfv1+RCj9q2pFNsA6oNlWVzcuAv7pvyM/KxsjeWs7GzRZ8EMHP/5d2Qly0sdF0ulmBSyDQ06tTVkuGYp/VUitn85S+OAs0J1O7RCnTbNNe5jXq+jPyad2qbTft6VzfU9R7Fz7Fxkp6RqLCOWSvHxz1MRuvZvpLyM4Swzat+aEtMXLUW2PA27JnyP/3Yc0lrOs1kjNO/fHUfmLuc8binTEQ2JkjaP1Eolfu/5BR6FhHIe/3DWV+izYKaRozIPyRHR2PK/aQg/H6a1XKuBvXFr3z9QKTi6ed1cMDPsIOfylJUdy7K4vGkv9k6exzl+opBrreqo2aS+xkcN7b74FEM2LrKobt5C6fGJ+HvUNxoXVSnUvF93PDp1AXmZpW8yrexsMe3CHtRu2dRQYZq1G/uOY+dXczhvrAs5VHFDvY6tcfvASc7jTXt1wZhgyxqnwidK2jzLSUvH4rZ9Ef/4OefxoZuWoN3wT4wclXlgGAZnV23GwVmLtG4ZWKtpQ8Te5R4NXa2+L2ZcOVA039vSpETGYOsXM/Dk38say0htrOHmVQNJz7jnLfddPBuB00cbKkSzxrIsrm7dj90Tf9S6jGf1hm8h4WkE9ziVGlULxqlwrK9vCTISkvD3mG+17kUgEotRrYEv4h894zzeZeqX6L/0W0OFWKlR0jaApOeRWOgfxNkVJ7GywuTT21HvPX8TRGYe4p88x5ZhUxERdltjGXs3F43PcRt0bouJJ7dCYmVloAjNG8MwOP/HNhyYsUDrGua2To6crXKRSITRB9bCL+hDQ4Zp1uTRcdj6xQw8Pn1RYxlbFyfkcQyqAixvOuKbWJZF2PZg7J7wPefAs0J2rs7I1TAYddD6BQj48nNDhVhpUdI2kPDQa1jxwSColcpSxxxkrpgZdpBzC0ZLoVYqsW/afK3zQcVSqcYtQduP/AyD1y+wyG7eQrH3HmNN0City6CKJRLOQUHW9naYdnEvvJs3MWSIZo1hGBz/aSWO/rBCYxmRWKxxlbBmvbti9IF1FjdOpbikF1FYGzRK4zoBgObPsVgqxcSTW9Hw/XaGDLHSsdzaZmD1Alpj8IYFnMey5WlY/dEXyC5jRHBlJrGywoDffsDQvxZrHBilbQ/vSxt34cyvfxoqPEGo9U5DzP7vMBpq2RJW02YQipxc/NFrJNLKWH62MhOLxfjo+8kYE7wONhpazNqW9bxzKAQHZy8yVHiC4OHrjemX96O5lsF5mj7HjEqF9f3GIOHpC0OFVylR0jagtsP6o9vssZzHEp68wIZPx3G2xC1Ju/99iinnd8GlRtWyC79h/7T5ZQ4qquwcZK6Y8M9mdJkyUu/3psXG44+PR0KRk2uAyITDL+hDzLwaDI9y9HydWrwOl/7aw39QAmLr6IBRe//Axz9P07vnKyctA7/3/AJZWkb1k5Koe9zAGIbBhk/GalwhLGD0QAxcM9+iu3kBIC0uAev6jUHE1Vt6vc/GwR7TL+2DZ7PGBopMOK5uO4DtX87iXGBFm+b9uuPLPastupsXKFhD/8/PxuPhKe7ZH5pY8nTEN909chp/DZqsdYYDl/qd2mDiya0WOR1RX5b9KTUCsViM4VuXw1vDUqah63bg35WbjByV+XGtWQ1Tzu1Cuy8+1et9+dk5WN1rZJkLP1iCNkP6YvrFfXqPar61/x+NS3haEgc3F4w/vhld9RxZX9DN+xUSythowxI07dWlYLyOntMyn567ih1fzdG6xSopQC1tI0mLS8DC1r2RFhtf6phILMbYwxvxTs/3TRCZeWFZFudWb8XeyfM0Po/lUrtVM0w9vxvWdrQNYHp8Itb3H4vnl67r9b7hW5ahzdB+BopKWK7tOIRtI2ZonZr4pmr1fTHjajAc3FwMGJkw5KSl48+Bk/Dgn3N6va/vkm8QOG2UYYKqJChpG1HUzftYGvAJ5zNEG0cHzLi8H7XeaWiCyMzPk3NXsOGTcVoXcXjTu5/0xMhdqyy+mxcAVAoFdk/4HqHrd+r8HomVFSaf+Rv1AlobMDLhiLp5H2uCRpW5Y1hxDd5vh4kntljsdMTiGLUah+YsxcmFa3R+j0gkwujgdfDrHWjAyISNvt2MyPvdJvji7xWcz6/zs7Kx+qMRyEjQvrmBpWjQqS1mXz8MLz/dn1Xf3HtM6/QdSyK1tsagdQswcM3PEEulOr1HrVRibZ/RSHrOvSiLpfF+twlmXz+MunrcxDz59zJ2jf+OunlRMN2wz4KZGLlrFax07AFjWRZ/DZyEqFv3DRydcFHSNjK/oA8RtJB7KVN5VCzWBI2CQsuCGZakSm1PTL+0Hy0H6L6l3/GfViJMw05Nlui9MYPx9b874FTVXafy2SmpWN1rBHLSLHc6YnHOVd0x+fR2dBw7ROf3hK7fiTMrLHs6YnEtB/TCjMv7Iaut20YhNB1RO+oeNwGWZbFtxAyN+/22/KwXRuxYafEjyguxLItTi9fi4OzFOrVgpNbWmPzvDtRt39II0QmDPDoOa4NGIeqmbi2YRl0DMP74Jkh0bKVbgtANO7Fr3Hc6TdMUiUT46tAGNO3VxQiRCUNmUgo2fDoOT89d1al87ZZNC8ap2NsZODJhoZa2CYhEIgxcOx/13uPudru+6wiOzfvNyFGZL5FIhA9nfoVxx/6CnYtTmeVVCgXW9RmN5IhoI0QnDDKvmph2cR9aDwrSqfyjkFDsnvgDdfMWE/Dl5/j67E44Vyu714JlWfz5+UTE3HlohMiEwcmjCiad2obOE4brVD7y+l1sHjYVjJYFbiwRtbRNKCslFYv8gzQ+Qxyx4ze0+ry3kaMybwlPX2BN7y81bshSXI3G9TDj8n7YuTgbITJhYFkWp5dvxIEZC7Su9lVowMofdP6StRSpMa+wtu8YRP53p8yybl41MevaQbhU13/xoMrs8qY92DFmDudufm/q/u149P55mhGiEgZK2iYW//gZFrftixyORfWlNtaYcm4XfNu8a4LIzFduRibW9R2Dx2culVn27W4dMfbIn9TN+4b7/5zFun5fad1wBCiYjjju6J9o0r2zkSITBmVeHjYNmYKb+46XWdandTNMOUfTEd/0/PINrO75P87vvjcN37ocbYb0NUJU5o+6x02sesO6GLVvDefesqp8Bdb0HoWUyBgTRGa+7JydMO7on3jnow/KLPvgxHnsm/KzEaISlibdO2Piya2wdXLUWo5lGGwcMAGx958YKTJhsLK1xYidK9FmWNnz2l9eu4Mtw6mb901vtWuBKed2wcmjSpllt4+chWcX/zNCVOaPkrYZaPhBe3z+x0+cxzITk7H6oxHI1bL3ryWysrXFmANr0eLTnmWWPbtqM86t3mqEqISlXkBrTD7zN+zLWAwkLzMLqz/6AhmJyUaKTBgkUimG/rVEp5HlN/Ycw7EfVxg+KIHxbNYYUy/shmut6lrLqRSKgumIWna0sxSUtM1EwKiB+ODrEZzH4u4/wZ+fT9RrhTBLILGywogdK9F2eP8yy+6Z9CMenDxvhKiExadVs4LWThlTwuSRsVgbNArKPJqOWJxYLMZnv8/TaenTY/NoOiKX6g3rYlroXrjX8dJaLitZjtUffYHc9LK70yszStpmpN+SbzQuZXr/+FnsmzbfyBGZP7FEgiF/Lkan8cO0lmPUamz4dDziHoYbKTLh8GzaCNNC95S5ZvmLKzexdcRMGlH+BpFIhL6LZqHXvClllt32xQw8v3zDCFEJi3sdL0y9sAfVGvhqLRf/6FnB7ohatu2t7ChpmxGxRIIRO1dqXMr03xV/4cLa7UaOyvyJxWIMWPkDPpz1ldZyeRmZWP3RF8hMSjFOYAJSrb4vpobugcdbtbWW+2/HIRz/eZWRohIOkUiEnnMnov+yOVrLqRQKrAn6EskvaTrim9w8a2DqhT3wbNZIa7mHp0KxZ/I8I0VlfihpmxlbJ0eMPbJR41zQXeO/x6PTF40clfkTiUTos2Ames+frrVcSkQ01vYZBWW+7htBWAp3n4LWTvVGdbWWO/LdclzffcRIUQlLlykjMWjdL1oXRspKkmN1zy9onAoH56ru+PrsLtTx99Na7vzqrTj7+xbjBGVmKGmboSq1PfHVoQ2Q2pTeW5ZRq7G+/1eIf/zMBJGZv+7fjMMnv87VWub5pRvYNpK6ebm41qyGqed3w6v521rLbR46FRFh+u19bikCRg3E8K3LOWeEFHr1MNziu3k1cXBzwaSQ7ajX0V9ruT2TfsCDE+eME5QZoaRtpur4N8fwLdx7HOemZ2L1RyP02gHLknwweQQGb1iotcy17Qepm1cDJ48q+PrfHfBtq3l9AJVCgVXdh0MeFWvEyITDf3AffLl3tdbNWh6evIA9E380YlTCYevkiAnHN+Ptbh01lmEZFmv7jrG46YiUtM1YywG9NA5uSXoeibV9x1A3rwYdRn6GETt+g0jLNp1HvluOazsOGi8oAbF3dcHEU9vQoHNbjWVyUtOxrOMA5GVmGTEy4WjepxvGHdnI2WNW6PyabQhZtsGIUQmHtb0dxhxcj+Z9u2kso8zNw6+dP7Oo6YiUtM1cjzkT0Gog91Kmz0Kv4e/R31A3rwatPu+N0QfWat3beNOQKXh++boRoxIOW0cHjDu2SeOMBgBIeRmDXz8YSNMRNXi7WydMPLlV66YX+6fNx+1Dp4wYlXBY2dhg5O7f4a9lNbSs5FQsad/PYqYjUtI2cyKRCEP/XKSxq/Lqlv04tXitkaMSDr/egRh37C9IrLkTN8sw+PWDQTSaVwNrO1uMPrAWzfv30Fgm8r+72Pj5BCNGJSz1O7bB12d3wsbJQWOZ9f2+oj2kNZBIpRi2eSkCRg/UWCbpWSR++3CoRTRgKGkLgJWtLcYcXI8qPp6cx4NnLcKtAyeMHJVwNO4agMmn/4bUxobzuCovHwta9kIudfNyklpbY+TOlWg18GONZW7uPY6D3yw2YlTCUqe1H6Zf3AdbZ+5d6hi1Gks7fIK0V7SHNBexWIyBa+bj/UlfaCzz7MI1bP1C++yRyoCStkA4V3XH2CN/alwr+q/BkxF5456RoxKOegGtMS10j8bni9kpafjl3Z40mlcDiVSK/21bAf8hfTSWObHgD1z8a7cRoxIWz6aNMOvaQdg6c3+GFTm5mO/XA/m5uUaOTBhEIhE++XUuArWsPndl875KP8CUkraA1GrSACN3r+IcXKXMzcMfH49Eamy8CSITBp9WzTAtdK/GqThJzyLx6/ufGzkq4RCLxRi+ZbnWgUF/j5yFRzrsvmapqjd4C9/cOAorW+5en8zEFCxo8RFtLqKBSCRC38Wz0XHcUI1lDs9dhms7DhkxKuOipC0wTbp3xqcrvuM8lh6XgDUfj0R+do6RoxIOn1bNMO7on4CGxS+ehf6HTUMml3jNEp6T6UokEuHLvX/At10LzuMsy+L37sMQ9/BpqddJgap1fTDtouabx/hHz7EysOQmJHT9Svps1Y/wCwrUeHzTkMkID71W4rXKcg0paQtQp/HDNO4sFHXzPjYN+broTv3qtgO0tecb3u7WCUP/XKTxeNj2gzg8dykA4OWNe1jUJshIkQmDWCzG1HO7ULV+Hc7jaqUKC1v3RnpCMliWxZb/TcOZFX8ZOUrzVrtFU4w9slHjzePjM5eKns8mPo/Ez37djRme2ROJRBi1fy3qtGnOeZxlWKzoMggJT18AAA7MXIjgWdrXbhAKEVtZbj8sjFqlwuqe/8PDU6GcxwNnjIbEygr/zP8dw7csQ5uhZe/7a2mOzfsNR77/VePxdiMG4OrmfWDUaixPuwt7F2cjRmf+8nNy8W2dDshK5F7L3dGjCqo18MXzi//Bt+27mHH5gJEjNH+hG3bi71GzNR5vPbgPbuw5CrVCie8fn0aNBtqXmLU0apUK3zd8H8nPubfstHF0QL1O/rh/9F9UrV8H856cNXKE/KOkLWA5aelY3K4f4h9pX9K0/YgBGLJRc8vSkm0dOQOX/9xTZrnPVv+ETjrsm2xpMhKTMcc3AIps7YOnrB3ssTLroZGiEpbDc5fpNHiq6/RR6Lf4GyNEJCz52dn4pnYHZKekai0nlkjwe/5TrcvLCgF1jwuYvasLxh39Cw5V3LSWC79wTetxSzZ042I0+KBdmeVu7jtuhGiEx7mqO2aFHdK6XCcAKLJzaC68Bh//NBWtBwWVWe7BP+cMHosQ2Tg4YO7dE7Cys9VajlGr8fyS8BdSoqQtcB6+3vjq4HpIrTUvlZgYHoH0V4lGjEpYJp3ajuoN39JaJoqm02lU8+36GH98k8bns4Wubt5vpIiE54vtK/BWh5Zay8Q/eUGjyjVwrVkNMy7vL7MVfWXzPiNFZDiUtCuBuh1aIWCM5tWCAJQaSUn+n1gsxpTzuyESa046eRlZSI15ZcSohKVx14AyW4t3j5w2TjACNfHkNo0r9wEAo1Qh8r+7RoxIWLz83kbgzDFayzw5e8VI0RgOJW2BY1kWp5aux7lV2veWDT8fZqSIhCfpRRR+aPg+WEb78I7ru48aKSLhOfTtElzbHqy1TNyDp5Vm2g3fMpNS8F29TlArlFrLhf2t/RpbsjO/bcKJBX9oLZMSGSv4NcopaQtcSmQM7h/7t8wvw2eh/xkpIuE5u3IT8jKyyyx353CIEaIRnvSEJIT9fbDMcqp8Be0Dr8HF9TuRlVT2VruPT9PCNVxyM7Nwcf3fQFk3hSwr+O9CStoC5+7jhSlnd2HO7eNoP2KAxpWWYu89RrY8zbjBCcSnK77HiswH6D5nPBxkrhrLxdyi0c9cXKp54JeXlzD7xhHU79xW63aoN/bSgD4u3b8dj5XZD9Fn0Sw4V/fQWC4xPIJ2VONg5+SI7x+cxg+PTqNJj84QSzU/2/5v1xEjRsY/QU/5YlkWarUa6teVWCKRQCKRQFTGgJjKLCtZjosbd+H86m2lnsGOPbwRTXt1KfEawzBQqVRgGAZisbjoGloqlmXx4J9zOPjtEsTcLp2kF8RchVut6iXKF6+DYrEYUqnUoutgbkYmjs1biYsbdiIvo+QmLD6t/TAr7GCJ1xiGKbqGVAcLhIdeQ/DMhXhx9Vap1uPs64dRu0XTov8uXgdZli26fmItN0+VnSInF6eWrMPZVZuRnZJW4pi7rzd+fn6hxGtCqoOCTNoKhQKpqalITU2F6o0NHqRSKdzc3ODm5gZrLSOqKzu1UonbB0/h7MrNeHaxoDuo67RR6LekYP/trKwsyOVyZGZmlnqvg4MDZDIZnJycLPqDnxIZg+DZi3Fr3z9QKwueNX7+x0/o+NUQqFQqpKamQi6XQ6ks+RxSLBZDJpPBzc0NNhp2FrMEDMPgxp6jOPL9r0h8GgEAsLKzxcrsRwCA7OxspKamIj09vdR77ezsIJPJ4OLiYtF1MD0+EUe+W46wbcFQ5uUDAAKnj0Lfxd9ApVIhPT0dKSkpUCgUJd4nFovh6uoKNzc32Nlp3su7smNZFvf/OYuD3yxB7J2CeicSi7Eq9zEkVlbIzc2FXC5Henp6qUeMtra2RXXQnBK4oJJ2fn4+Xr16haws3bZQdHBwQM2aNS36ixMoWNr07KrNSHoeif8Fr0VSUlKpmx0uYrEY7u7u8PDwsOiWoyI3D//+tgmnl2+Ab9t38dGq75CRkaHTe+3t7VGjRg2L/uIEgNj7T3BgxgKEXwjDpIt7obKzKnWzw6XwBqhq1aoWnbxVCgUubtyFE7+shszHEwN3/Ya0tDSd3mtra4vq1avD0ZF7dzFLkfg8EgdnLcS9o//iy0PrYVenJvLz88t8n0gkgqurK2rUqGEWdVAwSTs7OxuRkZF6z1MUi8Xw9va2+ArLsiye3X+EfJH+8zwdHR3h5eVlVnebppCTk4Mnd+7ByslBr/eJRCJ4enrCxcXFQJEJA8uyePn0GTJzs8tcjOVN9vb28Pb2hlTP91U2+fn5eHTzDqRO9nq/t2bNmpDJZAaISjhYlkVcZDSSkpMg1TD+RxMbGxv4+PjAykrztDxjMP1tgw6ys7Px8uXLci0swDAMXr58qXPrvDJiWRYxMTHlStgAkJWVhcjISIuerpOXl4eXL1/qnbCBgusfHR3N2Q1sSV69eoVsZb7eCRsouGGKiIiw6MVFFAoFXrx4Ua6EDQBxcXGQy8seoV6ZJScnIzUrQ++EDRTcML148UKnXkpDMvukrVarER0dXeGEERMTY/KLzQdlfj5eXL2p13s0PTfUR05ODhITK8eqatG3HyA3XbfubaDgxi86OrrCCSM2NrbUs0ehenr+ql6fyYyMjAonjMLHY5VB3MNwZCZxb7TCpfDGW13BkeNxcXHIE/g85ULhF8L0qoM5OTlISEio0O9UKpWIjY01aQNGr6S9YMECtGrVCk5OTqhatSqCgoLw5MkTQ8UGAEhMTOQl2apUqkqRdFT5Cixu2xerug/TKXmr1WrevuiSkpJ0egZk7m4dOIlvfTrg2E8rdUreKSkpvPzdDMMgPj6+wucxB6u6DcOy9z7F4zOXyvwCYxgGsbGxvPze1NRU5OQIf7/4J/9expw6AQietVCn5J2Wlsbb383Xv4WpbRo6Bb+0+Ah3DoeUWQcLb3r4kJmZyTmA11j0Strnz5/HuHHjcPXqVYSEhEClUiEwMBDZ2WUvTFEearWa1+6c1NTUCt+pmosHJ87rlLxTU1N5vSusLN1rOWkZOPLd8jKTN8uySEnRvUVUloyMjErT2n528T+s6DKozOSdkZHB6+eOz38PU8rPzsHJRWvLTN4syyI5OZm335ubm4vcXO27sglF9K0HWNP7yzKTd3Z2Nq+fOz7/PfRVoYFoSUlJqFq1Ks6fP4/33nuPz7gAAOnp6YiO5ndnoJSw+7i77x9ez2lMapUaj09fLPX62906ouf3k+Db5t0Srz979ozX7jCJRIILc38rcytGc5bwNALJL0ruv2vv6owPpozE+xOHw67YvtnZ2dmIiIjg9fdnPHiBGwLfPOPhyQulviDrdmiFj36YjAbvtysx2yAyMpL3lsnNX7ciPa5iXZ2mlBIZW2pLXRsHe3QaPxRdpn4JJ48qRa/n5+cjPDyc19+fGxmPq79v4/Wcxvb03NWiaXCFvJq/jY9+mIymvbqUqIOxsbFITdW+dae+GjZsaJKBkRVK2s+ePUO9evVw7949NGnShM+4AADx8fG839E82H4EZxet4/Wc5qR48mYYBg8f8r+K158dPkduuum6hwzpzeSdnJzMe5f2i2MXcHzWYl7PaU6KJ28AePz4Me89XLv7jkdS+Etez2ku3kzeqampvHdpx16+heDRc3k9pzl5M3mHh4fz/mivdu3acHJy4vWcuij3QDSWZTFlyhR06NDBIAkbgEG6EStL97gmxbvNww20d2xlHkP+Zrd5RjL/jwNUauEPiNSmeLf5o9MXDTIAtDLPZHiz2zzNANvqVoZBudq82W1uiLE4pnrMVe6kPX78eNy9exc7d+7kMx7CE3lUHFKjTDvKUcjyMrOR8jIGeZW0R8EY0mLjIY+MBWvB07QqQpGTi5SXMcihPQPKLSM+CfLIWDDKynOTUq4O+QkTJuDw4cO4cOECPD09+Y6piCEmsUvMYEUbQ6rRuB56fjcR7/bvAYhEBuker8xro4klErQZ1g/dvx0PD19vJCYm8j7roLIvUuNexwvd50xAmyF9IJZK8ejRI97nV1fmFfpEIhFafNoTPeZORM2360MulyMuLo7X3yGVVO5FalxqVEW32WPR4cvPYGVriydPnui0Ap8+TLXIil7/cizLYsKECQgODsa5c+dQp04dQ8UFAAZZ+tGlmjuqN3yL9/MaC6NmkBheemBU8WQtLpYUbGxseO0aEovFqFq/DvIzDTNjwBgyk+TITik5KOXNZF3I3r58C1lo4+xRRdB1EADiHz8v9VrxZC0p9oVmZ2fH+wwTD9/agr75yZanIzOx5HidN5N1IUPUQSeZq+DrYOKzSDBvdPO/mawLOTg46Lzsq65MtTSxXgPRxo4dix07duDQoUNo0KBB0esuLi4G+QNUKhUeP37M6zkbNGhg8mXoKiI3IxNfu7xT9N+aknWhhIQEJCUl8fb7XV1dDdq7YgyHv1uO4z+tBKA5WRdiGAaPHz/mtaVYt25d2Bb7QhGiCXYNikbuakrWhVJSUnhdFMXR0RE+Pj68nc8Uzv6+BbsnfA9Ac7IuxLIsnj59ymtL0cfHR/BLO3/j0x7yyIIBei41quLDWV+hw5efw9qu9GeL75lItra2qFu3Lm/n04deLe01a9YAADp16lTi9U2bNmH48OF8xVREKpXC1dWVtzskFxcXQSfs4spK1oVkMhmvSbtKlSplFxKAspJ1UbnXG1bwNYvBwcFB8Am7UFnJupCrqysSEhJ4u/Fxd3fn5TymVlayLl6uSpUqvM1isLGxgYOD/svxmqOyknUhZ2dnSKVS3gbgmbIOmv2GIUqlEuHh4RX+wIvFYtStW1fw23UqcvNw93BImcm6OL6ey7q5uaFWrVoVPo+pPTl3BTLvWlqTdXFqtRrh4eG8fOArQysbAK5uO4BWn/XSmqyL4+u5rJOTE7y9vQX/TPvF1ZuwdXLUmqyLYxgGz58/5+VRV506dSpF0r624xD8+nyoNVkXl5GRgaioqLILlsHOzg6+vr4mq4Nmn7QBfi62l5eXxe6yxLIsIiIiKrQMorW1NerWrWsWW9OZAh+LrNSoUaPS9FToq3DTFF23NOUilUpRt25di93pKy8vD8+fP6/QjBAPDw9Uq1aNx6iEpaKbpphD408Q38DOzs4Veo5aq1Yti03YQEH3Wu3atct9d21ra4s6depYbMIGCrq1a9euXe676+rVq1tswgb+f3tSZ2fnsgtzsLa2hq+vr8UmbKDin0MPDw9UrVqV56iEpUaNGnBzcyvXe6VSKXx9fU3eWyuIlnahnJwcxMTE6Dyp3draGrVq1aoUXUF8YFkWCQkJSElJ0flu3dXVFTVr1rTohF1cXl4eYmJidF4aViqVolatWiZZOckcFa6jnZSUpPMjL2dnZ9SqVUvQo8X5pFAoEBMTo3PPmUQiQY0aNeDq6mrYwAQkJSVFr3EWjo6OqFWrllmMiRJU0gYKPvS5ubmQy+VIT08vlXxEIhGcnZ0hk8lgb28v+GdfhqBWq5Genq5x9ypra2vIZDK4urpadMtGm9zcXKSmpmrckKWwDjo4OFAd5MAwDNLT0yGXyzk3r5BKpZDJZHBzczOLL0pzlJeXV1QHuZKPo6MjZDIZnJycqA5yYBgGmZmZkMvlnFMSJRJJUR00deu6OMEl7eLUajXy8/PBMAxYloVEIoGNjQ3dkeshPz8fKpUKDMNALBYXXUP6kOuGYRjk5+dDrVYX1UFra2u62dGDQqGAUqkEwzAQiUSQSqVUB/XAVQetrKzoZkcPSqUSSqUSarUaIpEIEokEtra2ZlkHBZ20CSGEEEtCDyoJIYQQgaCkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiEBQ0iaEEEIEgpI2IYQQIhC0bBMhhBc2Lb6ESCyBSCyB2MoaYrEEYqk1RGJxwWtSa4gkBcclUuv/f63Yewp/lkjFBStTScUQiUUQi0QQS8UQi0UQiQGJpOD1wv///58BsVgEsaSgrFQqhkQsgkQsgrVUDOnr/5eIxUWvSUQFx22kxV4r9p6inyViiEUiWElEkIhERT+LRSJIRIBV4fHX5cUiwEoshkSM168X/CwRiyCGCCIRCo4V/ixC0blEooL3c/1cWE4kAkSMGiKWAVgGKPyZUb3+bwYiRgWwLMAW/vz6/xkGYNmi18AyYFVKgFGDVSoKjjNqsColWEb9+nVl0WsofK3wPWo18Loso1SBVTNgGQaMQgVGXfI1teKN4wwDRqEEyzBg1a+PF/2sBsuwBf+vZsGoWaiVhT8zYBQMGDUDtbKgPPv6OKNmC35+/T4lw0DNAmqWhYJhi/3M9RoLBiVfL/j/gp/Xsi9N+jmjljYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQQohAUNImhBBCBIKSNiGEECIQlLQJIYQQgaCkTQghhAgEJW1CCCFEIChpE0IIIQJBSZsQQggRCErahBBCiECIWJZlTR0EIYQAQH5+PhYsWIDZs2fDxsbG1OEAMM+YAPOMi2IyPErahBCzkZGRARcXF6Snp8PZ2dnU4QAwz5gA84yLYjI86h4nhBBCBIKSNiGEECIQlLQJIYQQgaCkTQgxGzY2Nvj+++/NasCQOcYEmGdcFJPh0UA0QgghRCCopU0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEQhK2oQQszBt2jQEBARg0KBBUCgUJY7l5ubio48+QseOHdG1a1fI5XKTx1RowYIFaNmypcliUalUGD58OAICAjBp0iSDx6FLTIWMdW10iclUdYhvlLQJISZ369YtxMfHIzQ0FI0bN8a+fftKHP/nn3/QpEkTnD9/Hp9++im2bdtm8pgAIDMzE/fv3zdpLEeOHIGnpydCQ0ORk5ODy5cvGzyesmICjHdtdI3JFHXIEChpE0JM7sqVKwgMDAQAdOvWrVTiqVevHnJycgAAaWlp8PDwMHlMAPDbb79h3LhxJo1FlziNHRNgvGuja0ymqEOGIDV1AIQQkpaWhpo1awIAXFxcSnVdvvXWW7h//z6aNGkCkUiEsLAwk8eUnp6Oe/fuYc6cOSaNJS0trWgjDK44TRGTMa+NrjGZog4ZArW0CSFGEx8fjw4dOpT6H8uyyMjIAFDwxSuTyUq8b8uWLejUqRPu37+PH3/8EfPmzTN5TCtWrMD48eN5i0MbNzc3jbFoO2aqmIx5bXSNyZB1yJgoaRNCjKZ69eq4ePFiqf/16NEDp06dAgCcPHkS7du3L/Xewi9gV1dXpKWlmTymZ8+eYf78+ejWrRvCw8OxcOFC3mJ6U5s2bTTGou2YIWn7vca8NrrGBBiuDhkVSwghZmDq1Klshw4d2IEDB7L5+fksy7LsqFGjWJZl2fT0dLZHjx5sx44d2fbt27NPnjwxeUzFtWjRwuixFMahVCrZoUOHsh06dGAnTJhg8Dh0iak4Y1wbXWIyVR3iG609TgghhAgEdY8TQgghAkFJmxBCCBEIStqEEEKIQFDSJoQQQgSCkjYhhBAiEJS0CSGEEIGgpE0IIYQIBCVtQgghRCAoaRNCCCECQUmbEEIIEYj/AxUDhNWsNs7RAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -245,7 +245,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABZwAAAHcCAYAAABSwG/XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddVRbS9fGnwR3p1Spu966u7t7qbu7u7u7QN3d3b23dutKkUJx9+T7gzf5KJkTLJlwJvNbq+tyzw7pMz2QTPbsvR+JXC6Xg8PhcDgcDofD4XA4HA6Hw+FwOJwsItW1AA6Hw+FwOBwOh8PhcDgcDofD4bABTzhzOBwOh8PhcDgcDofD4XA4HA5HI/CEM4fD4XA4HA6Hw+FwOBwOh8PhcDQCTzhzOBwOh8PhcDgcDofD4XA4HA5HI/CEM4fD4XA4HA6Hw+FwOBwOh8PhcDQCTzhzOBwOh8PhcDgcDofD4XA4HA5HI/CEM4fD4XA4HA6Hw+FwOBwOh8PhcDQCTzhzOBwOh8PhcDgcDofD4XA4HA5HI/CEM4fD4XA4HA6Hw+FwOBwOh8PhcDQCTziLmNjYWJw+fRrDhw9HpUqVYGdnByMjIzg6OqJu3bpYtWoVwsPD0/1858+fR6tWrZAzZ06YmprC1dUVAwYMwNu3b7W4iowjl8vx4cMHeHh4YMSIEahcuTJMTEwgkUggkUgy9FxeXl4YP348SpUqBUtLS1hZWaFMmTKYMWMGAgMDtbSCzKPJtX/9+hXjxo1DuXLlYG1tDSMjIzg5OaFevXpYvXo1IiMjtbSKjKOJdefPn1/5+PT8mTt3rnYXlU40ec8VXLt2Db1790bBggVhZmYGOzs7lCpVCn379sWRI0c0vILMoYl1//z5M933O7v8vmvjfisIDAyEo6Oj8rn69u2rGdEaQhNr9/LywqZNm9CvXz9UqlQJefPmhampKSwsLFC0aFH07dsX9+7d0/JKMo4m1q7pPQENNLFubf7OaAtNaxbL/i0jiG1/pknEtD/TFGLdo2kaMezPNIEY92faJrvv0bKKWPdnmkCM+zNNIMb9GUcLyDmCXLlyRQ5ADkDu4+OjazkqWFlZKfUJ/cmTJ4/8yZMnaT7X0KFDBZ/DxMRE7uHhQWFF6ePHjx9q15xeTp06JbewsBB8HicnJ/njx4+1uJKMo6m1u7u7y01NTdU+V758+eTv3r3T4mrSjybW7erqmubvS8o/x48f1/Kq0oem7rlcLpdHRkbKO3bsqPb5XF1dtbOQDKKJdaf1HCn/BAQEaHlF6UOT9zs1DRo0+Ou53NzcNCNaQ2hi7Rs2bEjX/R44cKA8MTFRyytKP5pYuyb3BLSg8XueHfdvmvw9z+j+LbvvbeXytPdnOXLkyNT+TAxr19b+LLuvXVt7tOy+bgWa3p9l93Vrc3+W3dcuRM+ePbO0R8vu69bm/iy7r11b+7Psvm5tfqbRJtn931Vs8ApnNbx48QIAkCNHDuTKlUvHalSJiIiAsbExunTpgoMHD+LLly8IDg7Gf//9h6lTp8LQ0BDe3t5o1qwZfHx8BJ9n+fLl2Lp1KwCgXbt2GDFiBADA1tYWpUuXRlxcHAYMGIAHDx5QWVdGyJ07N9q3b4/atWtn6PuePn2Krl27IioqCjly5MDu3bvh7e2N6dOnAwAMDAwQEBCA1q1bq/230yWZXfuzZ8/Qv39/xMbGwsnJCRs3bsTYsWMBAPb29soT9V+/fqFNmzaIi4vTsPKskdl1v3//HhERESp/5syZAwBwcnJC+fLlAQB2dnZo1aqVpqVnmcyuHQDi4uLQokULnDhxAlKpFJUrVwaQvG5/f3/cu3cPkyZNQu7cuTUtO8tkZd0KLl68qHK/U/4cODo6akquxtDEuhVcu3YNN2/e1IAqOmR27WZmZmjRogVWrFiB69ev48OHDwgMDMS4ceMAAIaGhgCAnTt3YsaMGRrXrQkyu3bSnmDWrFkAAHNz83TvCXSFJn7eFc+RP39+5bXsuH9LSVbWnXr/9uLFC/z58wdXrlwR3L9l972t0P7M398fx48fR+HCheHv75+p/Vl2Xztpf/bhwwf8+fMHT548ydL+LLuvXWiPlvJPZvZo2X3dgOr+bPDgwbh//z78/f0zvT8Tw7oVKPZnQn8yuj8T09oVXLt2DQcOHECBAgUy/RzZfd1C+7OPHz/i4MGDyt/vzOzPsvvaNZWzSU12X3dKNPmZRtuI6d9VFOg6452dUZw0N2/eXNdSiAwfPlz++/dvwfiBAweUpzPDhg0jPubPnz9yS0tLOQB5kyZN5DKZ7K91BwYGynPkyCEHIK9ataq2lpIhwsPD5adPn/5r7XPmzMnQaVmtWrXkAOTm5uby9+/fK68r1t6gQQPluvv376/xNWQWTaxdcYIulUqVJ6mpf9ZTVkydPn1a8wvJIJpYtxCKtdeuXVv5fEOHDs2qZI2hqbVPnz5dDkBuYGAgP3nyZLZ/fdPEulOerN+6dUsul2f/13Vt/KxHR0fLCxYsqFJZkN0qnGn8njdp0kReoUIF5et/VFRUVmVrBE2snbQnSPnznp49AW00sW7Sc5QoUSJbV9BoYt2k/VtKhPZv2f01UGh/psDPzy/T+7PsvnbS/iw1md2fZfe1p8WHDx8ytUcTw7pT7880QXZfN2l/pimy+9pTk3KPdvHixUzv0cS27tTExsZmen+W3deuiZwNiey+bm3u67VJdv93FRu8wlkNitONf/75R8dKyGzatAkuLi6C8R49eqBMmTIAgEuXLhEf4+HhoZwFt2TJEkgkkr/W7eDggMmTJwMAnjx5gn///VeTS8gUVlZWaNu2rdq1q8PHxwf3798HAPTt2xclSpRQxhRrr169OsaPHw8A2LdvH0JDQ7MmWkNkde0A8OrVKwBAkSJFUKVKFQCqP+u9e/dWPv7jx4+Z/rs0hSbWLYRi7UlJScprbm5uGv97Mosm1u7r64sVK1YAAIYPH4727dtn+9c3bd1zfVz3nDlz8P37d5ibm2vsObUBjd/zypUro1evXgCA6OhofPjwQeN/V2bQxNpJe4KUP+/p2RPQRhPrJj2Hr6+vJuRpDU2sm7R/S4nQ/i07vwaq258pyJEjR6b3Z9l57QB5f5aazO7Psvva08LDw0P5dUb2aNl93aT9mSbI7uvWJmJbu2KP1qlTJzRv3jzTzyO2dafGxMQk0/uz7L52TeRsSGT3dWtzX69Nsvu/q+jQdcY7uxEVFSWXSqVpztkJDg7WtdR00a1bNzkAubGxMTFep04dOQB5wYIF07XuyZMnU15B+sjIadn58+eVjz169Kjo73lGTwr/+ecfOQB5sWLF0rXuDRs2aHkFmSMrJ6T6ds8XLFggByCXSCRyiUSiN+tOWUGjT+tOyaNHj9JcN6tr17ffcwV83fqxbsX+rVChQoKP8fLyStfvf3b5t0m9PxPiyZMnysft27dP7XOK6edCsT8rXry44GMeP36s1Lx79261zyemtatDJpPJ8+bNKwcgL1q0aJqPF9O6U+7Pfv78maXnEtO6NV3hLKa1p+TVq1dyQ0NDuZWVlXJWrEJreiqcxbpuIdavX6/U/N9//6l9LGtrTytno0Ds686uFc5i/3fNzvAK51T8999/kMlkah+TO3du2NnZUVKUNfz9/QEANjY2xLii4qVo0aJprhtAtqkGywopq2Hs7OzSdc8tLCxEc8/TomLFigCAL1++pOuet27dWtuSqMPa73laXLx4EUDy77lcLlf7WJbWnRJ9XLdMJsOAAQPSfByLawfS93ueK1cu5taennVLpVK9XDdLP+uK/Vu1atUEH5MnT550z33NDv82qfdnQtjb2yu/fv78udrnFNPPhWJ/9vnzZ7x+/Zr4mCNHjgBIrgZs0KCB2ucT09rVcevWLXh5eQH4u8JbCDGtW7E/K1++PFxdXZXXExMT09y3pEZM6yYRHx+f6e8V49plMhkGDRqExMRELFiwIFOzYsW4biFkMhmOHz8OINlHqnDhwmofz9LagbRzNgpYW3d2gf+7ag+ecE5FxYoVERERgU2bNgFIHnAfFhb2l3nBly9fdKwyffj7+ytbE2vUqKES9/HxUbZjprXu6tWrA8ge4xWyirW1tfLrkJAQwbXfunVL+TjF+llg6tSpMDMzg0wmQ+7cudGnTx8AgKmpKZ4+fYoRI0ZAIpFAIpFg5cqVf22AWSH1PTcwMAAASCQSvHv3TlS/52mRmJiIly9fAgDq1KkDf3//v1r2DAwMUKhQIYwYMQKfP39mZt2pKVGiBExMTJT/X6pUKYwZMwYfP35k6n6nZP369Xj//j3KlSuHDRs2AEh+fVPQo0cPZtcO/P/v+caNGwEAxsbGqFevnjK+YsUKfP36VUfqtIfQe9q3b99gZGQEAGjRooUuJWqF1OtWIMb9W1qk3L8VLFhQ7WMVJlSFChXK9nvb1PszIYKDg5Vfp7UvFdO+PuX+rFWrVti3bx98fX0RExODDx8+YNy4cVi7di0kEgmWL1+e5v5MTGtXx969ewEk79HSk3AWy7pT7s8qV66M6OhozJkzB0WKFIGJiQmMjIxQpEgRjB8/Pl1jgsSy7tSMHDkSVlZWMDExgampKcqWLYvJkyfD29s73c8hxrWvX78ez549Q4UKFTBy5MhMPYcY150SuVwOf39/XLt2DU2bNsXdu3cBAPPnz/9rz05C7GtPSVo5m5SwtO7sBP931R6GuhaQ3TAwMIClpaWykrdMmTJ/bYDFxLRp05CQkAAAGDZsmEo8MDBQ+bWLi4vadefMmRMAEBQUpE3JVChVqpTy6zt37qBz587EtT979kz5OHUffMRGwYIFcePGDXTr1g2/fv1SbuRjY2OVMwObNm2K8ePHo0mTJrqUqjVS/54rqkjq1q2LkiVL6lKaxgkICEBsbCyA5Er9+vXr4/3798p4UlISvn37hk2bNuHgwYM4ffo06tSpoyu5WiN1d8a7d+/w7t077Ny5Ezt37kS3bt10pEw7eHl5YdasWZBKpdixY4fy97xMmTJ4+vQpAMDIyAiWlpa6lKlVunbtihMnTij/Pz4+Hrdv34azszPmz5+PIUOG6FCd9hDax4wdO1a5J8jsh9vsTOp1K2DxZzzl/s3Z2VntYxXxkJCQbL+3Je3PSNy5c0f5dcp/CxJi2ten3p8pCgJSkpH9mZjWLkR0dDROnjwJIHmPlp4iCLGsO+X+zNzcHJUrV/5rfwYAX79+xZo1a+Du7p7m/kws607Nu3fvlF/HxcXh7du3ePv2LTZv3pzu/ZnY1p5yj7Zt2zZl4UtGEdu6FXTq1Omv/ZmCjOzPxLp2EmnlbFLC0rqzE/zfVXvwCmcBFMYdFSpU0K2QTHL48GHs2bMHANCmTRs0bdpU5TFRUVHKr01NTQEIr1tRFaeoqBEzBQsWRPny5QEA7u7u+Pz5M4C/1x4QEIA1a9YovyciIoK2TK1SvXp1nD59WmlQkBovLy98+/aNsir6KO65ooWG9OFO7ISFhSm/3rx5M96/f69sRx44cCB8fX2xcuVKmJiYICQkBO3bt4ePj4+u5GoUqVSKJk2aYM+ePXjz5o2y9bxz586YMWMGTExMEBUVhV69euHq1as6VqtZhg8fjsjISAwdOhSVK1cW/XuapjA2NsawYcOYHBWUmpT3PD17AlZQrJtlSPs3IVLu37L764DQ/iwlmd2fZfe1K9DG/kwsaydx8uRJ5T3O6B4tu6+btD9r27YtXr58idjY2Ezvz7L7ugHV/VlISAhiYmLw9u3bLO3PxLB2QHWPllXEsm51ZHZ/Jva1Z3Z/JvZ1Z1f4v6vm4RXOBORyuXJ2WkZ/2KKjo/Hr168s/f358uWDubl5pr//2bNnyrmdefPmxa5du4iPSzkbTCKRqF13WnPEssO6M8KyZcvQrFkzREVFoW7duliyZImyrQ0AatWqhd+/f8PU1BSxsbGQSoXPZsS2dplMhkmTJmH16tWwt7eHiYkJ4uLisGrVKjRq1Aj79u3DmjVrMHz4cDx8+BAeHh7E9Ytt3alJ+fMOJFeXdOrUKV3fK6a1p5xHFR8fjxYtWihb1ipVqoScOXNiwoQJyJs3L7p27Yrg4GAsX74c69atU3kuMa1b8XdduXIFQPL9VlTRNGzYEEOGDEGLFi3QsGFDxMbGYuTIkfjw4QOxykRs6z569CjOnz8PFxcXLF68WPTvaZll//792LNnD3LlyoXIyEj069cPT548wbx587Bp0yacOXNGbeuimNee8p7b2dmla0+ggJV1ZxQxrTv1/i29jxXD60Dq/dnSpUvRuHFjGBoa4sGDB5g6dWq692cKxPIamHp/tmHDBrRo0QJ2dnbw8vJK9/4sJWJZuxD79u0DkLE9GiCOdZP2Z6dOnVL+Tmdkf6ZADOtWPE6xP0tJ6dKlsXDhwnTvz1IilrWn3qNlFbGsOyX79++Hu7s75HI5goKCcP/+fSxZsiTd+zMFYlx7StKbs0mN2NedXcnKvytHDbTcCcXE58+flU6Ujx8/ztD33rp1K0OO4KQ/165dy7T2jx8/yp2cnOQA5A4ODvJ3794JPvbVq1fKv3PDhg1q192hQwc5ALm9vX22XHdmHE+3bNkiNzQ0FNQzaNAgpQt8tWrVBJ9HbGtXPN7U1PQvR/iU93znzp3K61u3bmVi3alJ+fMOQN6jR490f6+Y1u7p6fnX33v8+HHB3/MyZcrIAcjz5csn+nWnRuj1bfLkycrrDx8+FP26Q0JC5C4uLnIA8oMHDxLXrvg6PQ7oYlo7idRrj46OlletWlUOQO7o6CgPCQkR/F4xrz3luu3s7ORA2nsCBaysO6PPIaZ1p96/qUOxf7O1tSW+BqYH2v82mtqfKRDLvj7l/uzt27fEx6RnfybGtZPw9fWVGxgYyIGM7dHkcnGsO/X+7OnTp4KPTWt/JqZ1p5f07M9SIoa1k/ZoqVE8X3r2aHK5ONadHjKyP1Mg5rVnJGeTGjGvO6v7em2SlX9XjjB8pAYBRSm9gYEBypYtq1sxGeDXr19o3LgxAgICYGVlhUuXLqmdR+vo6Kj8+s+fP2rX/efPHwCAg4OD5oXriKFDh+LVq1cYMGDAXzMQ69Wrh+PHj2P79u1KV+y8efPqSqZGiYuLU7ai9ujRA9HR0QBU73n//v2VRkQ7duygL5QCqduu3dzcdCNEyzg4OCirZczMzJCYmAiA/Hteu3ZtAMmvJSyMz0mJ0OtbmzZtlF+n7HIQK/PmzYOfnx8aN26M7t27AxDve5omSL12MzMzLF26FEDy7NcjR47oUJ32SPn6FhISkq49AQso1p1W1a/YSb1/U4cirhitIYbXgZT7swIFCsDExAS2trZo0KBBpvZnYngNTL0/K126NPFxGd2fiWHtQuzfvx9JSUkAMr5HE8O6U+/PKlasKPjY9O7PxLDu9JLR/ZkY1k7ao2UVMaw7PWRmfybWtWc0Z5Masa47u8P/XbUDH6lBQPGmVqxYMeUGPb3Uq1cvzfET2sDf3x+NGjWCl5cXzMzMcO7cuTRnQuXOnRuWlpaIjIzE9+/flYko0rp//PgBAChevDjxuXS17qxSqlQp7Ny5E9OnT8eSJUtQsmRJ3Lp1C0CyQaJi3er+LcW09vfv3yM8PBxA8jgFoZ91iUSCSpUq4fv37yoGJgrEtG4SKTevuXLlQqNGjdL9vWJau4WFBfLmzYtfv37BxsZG2SpE+j23s7NTfh0eHq5itiWmdadG6Gc95WFTaGgo8XvFtG7Fa9a1a9dUkm5JSUl/tcB5eHjAw8MDAHDq1Cm0a9dO5fnEtHYSpPtetWpVZfzNmzeC3yvmtSvczgGke0+gQMzrVtxvBweHNM3kUiOmdafev6lD8ZpgYWEBQDx7W8X+jER692cKxLCvT70/EyI9+7OUiGHtQijGaWR0jwaIY92p92fqxqOktT9TIIZ1p5f07M9SIoa1q9ujpSY9ezRAHOtOL+ndnykQ49ozk7NJjRjXLQay8u/KEYZXOBNQ/LApjEuyOyEhIWjcuDG+fPkCIyMjHD9+HHXr1k3X9/7zzz8AgCdPngiu28fHR2lSoXg8a5DWfubMGeXXzZo1oy1JKyjcsAFALper/VlXzJZjtVIspct9z5490zUHUqwoNjKhoaH4999/AZDveVBQkPJrW1tbGtKoIfSz7ufnp/yatTVzyPddcbgKsPn6FhISgt27dwNINmbKyJ5A7Cjut4uLi46VaJ+U+zchUu7fFB8wxbK3VUdG92di2Nen3p+pIyP7MzGsncTLly/x9u1bAJnbo4ll3Sn3ZylnOqcmvfszsaw7PWR0f8bS2jMCS+vO6P5MbGvPSs4mJWJbt1jg/67agd0MSxb477//AEAUpfSRkZFo3rw53r59C6lUiv3796NFixbp/n6FE+zXr1+ViajU6z569Kjy65TtTSyR+p4nJiZi7dq1AJIdw4XcwsVGzpw5lV+/ePFC8GddLpfjxYsXAABXV1d6AimS8uQ8o87nYkNRFREbGyv4ew78fxK+aNGizJlBCP2snzp1Svk1Cwdqa9aswcuXL//6o6gSGj169F+V/a1bt1Y+pn79+rqSrFVI911hmgkAhQoVoq5Jmyj2BIqW627dumVoTyB2FPc7R44cOlaifVLu34TazVPu3yIiIgCIY2+rjszsz8Swr0+9PxMio/szMaydhKK6GcjcHk0s6065P1N3eJTe/ZlY1p0eMro/E8PaSXu01H8UpHePJoZ1p5eM7s/EtPas5mxSIqZ1iwn+76odeMKZQEBAAADAyspKx0rUExcXh7Zt2yo3KNu3b0eXLl0y9Bxubm7KtizSuhWOyEBymwsLCRkSqdc+YcIE5RvCqlWrdClNo+TPn1/5Bn7o0CH4+/sDUP1Z37Vrl7Lti5Xq7pQkJSUpEzJ58+YVnJXICh07dkTu3LkBQNlmnvqee3h44MOHDwCgsblyusbb21v5Nen17fbt29i8eTMAoEiRIqhSpQpdgVqgQIECKF++/F9/wsLCACS3iKU8tbe3t1c+xsbGRkeKNcvHjx//+v/U9z0kJARTpkwBkDyjjaVD1NR7AgCoWbOmDhXRR3G/TUxMdKxE+6Tcv02fPl2lKjb1/k3xOpDd97ZpkZn9mRj29an3Z0LjMjK6PxPD2lOTlJSEQ4cOAUhONGZmjyaWdafcn82aNUs5szolGdmfiWXdKfdnJDKzPxPD2kl7tNR/FKR3jyaGdQOq+7PUZGZ/Jpa1ayJnkxKxrFts8H9X7cBnOBNwcXGBp6cndu3ahRo1aqBgwYKQSqWQSqXZpuovKSkJXbt2xc2bNwEA8+fPR9euXdUaSVhYWKi0pzg5OWHWrFmYMmWK8sPKhg0bUKJECYSFhWHmzJnw8/ODoaFhtkq8ppx1B/y9cXn8+PFfjy1UqBCcnJz+uvbt2zd06dIFffv2RdWqVeHk5ARvb2+sWrUKHh4eePr0KQBgxowZqF69uhZXknGyuvY5c+agT58+iImJUbYobt68GWXKlIGhoSGOHDmCjRs3AgBsbGwwYcIEbS0lQ2R13Sm5cuWK8mu5XI5Xr15ly99zBVldu5mZGVavXo2uXbsqf8/XrVuHUqVKwdraGidOnFAmJgoWLIhx48ZpaykZIqvrrlChAurUqYN27drB3t4ev3//xrZt22BtbY3Hjx9j+/btSEhIgKGhITZt2pRtxqpo8mcdUH1PU5CydTG7kNW1ly5dGq1atUL79u1RsWJF5Wv7xo0b8fPnTxw6dEj5nBMnTsxWFc5ZWXvqPYGNjQ3CwsKwfft2lC9fHvnz51d5fSPtCXSBJn7eFc9hZ2cHPz+/v5LuN2/ehFQqhampqdrnoE1W151y/3b58mV06tQJs2bNQp48efDy5UtMmDDhr/1bz549s/3eFlDdn7m6uiIxMRH//vsv1q5dq/wZnzt3brr3Z2LY1wN/78/q1q2LefPmoXnz5rCzs4OXlxf27duH1atXA0j//kwsa0/JlStXlOMUMtuBJpZ1p9yf3bhxA82bN8ecOXNQokQJBAcH4+DBg1i4cCGA9O3PxLLulPuzf/75RzkG6du3bzh8+DA2btyY4f2ZWNauacSy7tT7MxcXF0ilUvj6+uLmzZtYuXKl0gw2vfszMaxdUzmblIhh3Qo0/ZlGm4jp31VUyDkqLFy4UA5A5U/dunV1LU3Jjx8/iBrV/fnx44fg8w0dOlTw+yQSidzDw4Pe4tJB3bp1073uPXv2qHz/ly9f0vW92emeK8jq2uVyuXz+/PlyqVSq9nudnJzkd+7cobs4NWhi3Qq6du2qd/dcLpfLV69erfa+Fy5cWP7p0yd6C0uDrK7bxsYmze8zNDSUnzx5kv7i1KDJn3W5XPg9LUeOHNpfTAbJ6trT+7158+aVy2Qy+gtUQ1bWruk9AU008fOu6d8ZGmhKs7r9m7GxsXL/Joa9rVye9v7M2NhYvmzZsgw9p1jWLpdrfn8mprUrUOzRDA0N5f7+/pl6DrGte/Xq1XJDQ0PBe57e/ZlY1p2e/ZmdnV2G9mdiWXtaKHS7ubml6/FiWXd63usMDAzk06ZNS/f+TAxr18b+TAzrViCm/ZmY/l3FBK9wJjB9+nRYW1tjz549+PjxI2JiYgCwPUB8y5YtaNGiBaZOnYrPnz//VfnWo0cP5mbc5sqVCytXrsSNGzfw7t07BAQEQCaTQSKRIDExUbl+Vu/5rFmz0KZNG2zduhVnzpyBv7//X2Yl1atXx9mzZ+Ho6KhDldohPDwcZ8+eBQCUKlUKxsbGevN7Pm7cONSpUwcjRozAy5cvER8fr4zVrl0bly9fZuoEd8+ePbh37x6ePHkCb29v+Pn5ISEh4a/W8/79+6N9+/Y6VKl9hN7T7O3tdaxM89y9exe3bt3C3bt38fPnT/z58wfR0dGQSCSQyWTK17kOHTpki+peDierbNmyBS1btsSWLVvw4sULhISEwMXFBQ0bNsS4ceOUM47Fsrcl7c8MDQ2RN29eNGvWDEOGDEHRokUz9JxiWTvw//uzbdu24d69e/j58ydiYmJgbW2NEiVKoEWLFhgyZEi692diWjvw9x6tWbNmSg+CjCK2dY8bNw5169bFhg0bcOvWLfj5+cHU1BQlSpRAp06dMGzYsHTtz8Sy7tT7s6CgICQkJMDOzg6lSpVC06ZNMWDAADg4OKT7OcWydk0jlnWT9mexsbGwsbFB0aJFUadOHfTr1y9Dr+9iWbum0dd1axv+76odJHJ5GlbIHA6Hw+FwOBwOh8PhcDgcDofD4aSD7DGwksPhcDgcDofD4XA4HA6Hw+FwOKKHJ5w5HA6Hw+FwOBwOh8PhcDgcDoejEXjCmcPhcDgcDofD4XA4HA6Hw+FwOBqBJ5w5HA6Hw+FwOBwOh8PhcDgcDoejEXjCmcPhcDgcDofD4XA4HA6Hw+FwOBqBJ5w5HA6Hw+FwOBwOh8PhcDgcDoejEXjCmcPhcDgcDofD4XA4HA6Hw+FwOBqBJ5w5HA6Hw+FwOBwOh8PhcDgcDoejEXjCmcPhcDgcDofD4XA4HA6Hw+FwOBqBJ5w5HA6Hw+FwOBwOh8PhcDgcDoejEXjCmcPhcDgcDofD4XA4HA6Hw+FwOBqBJ5w5HA6Hw+FwOBwOh8PhcDgcDoejEXjCmcPhcDgcDofD4XA4HA6Hw+FwOBqBJ5w5HA6Hw+FwOBwOh8PhcDgcDoejEXjCmcPhcDgcDofD4XA4HA6Hw+FwOBohywnn+Ph47Nu3Dy1atICrqytMTU2RM2dO1KhRAytXrkRgYKAmdHI4HA6Hw+FwOBwOh8PhcDgcDiebI5HL5fLMfvPHjx/Ro0cPvHz5UvAxzs7O2LNnD1q0aJHZv4bD4XA4HA6Hw+FwOBwOh8PhcDgiINMJZ29vb1StWhW+vr7JTySRoE6dOihcuDD+/PmD69evIyYmBgBgZGSES5cuoWHDhppTzuFwOBwOh8PhcDgcDofD4XA4nGxFphPOdevWxd27dwEArq6uOHv2LMqWLauMBwYGolu3brhx4wYAwN7eHt++fYOtrW3WVXM4HA6Hw+FwOBwOh8PhcDgcDifbkakZzhcvXlQmm42NjXHu3Lm/ks0A4OjoiDNnzqBgwYIAgODgYCxfvjyLcjkcDofD4XA4HA6Hw+FwOBwOh5NdyVTCedOmTcqv3dzcUKZMGeLjLCwsMH/+fOX/b9u2DYmJiZn5KzkcDofD4XA4HA6Hw+FwOBwOh5PNyfBIjcjISDg6OiIuLg4A8PDhQ1SvXl3w8XFxcXByckJERAQA4MaNG2jQoEEWJLOLXC5HbGwsQkNDERUVhaSkJACAgYEBzM3NYWtrCzMzM0gkEh0r1TxJSUkIDw9HaGgoEhMTIZPJIJVKYWhoCFtbW1hbW8PAwEDXMjWOXC5HTEwMQkNDER0d/dc9t7CwgK2tLUxNTZm952FhYQgLC0NCQgLkcjmkUimMjIxgY2MDGxsbSKWZOhPL1sjlckRHRyM0NBQxMTFISkqCRCKBVCqFpaWl8p6zSGJiIsLCwhAeHv7XPTc2NoaNjQ2sra2ZvedRUVEIDQ1FbGys8p4bGBgo77mJiYmuZWqFhIQE5T1PTExU3nMTExPY2NjAysqK6XseEhKCuLi4v+65lZUVbG1tYWxsrGuZWiEhIQGhoaGIiIhQuee2trawsrJi8j1NLpcjMjJSec9lMpne3PP4+HjlPU9KSlLec1NTU9ja2sLS0pLJey6TyRAZGYnQ0NC/7rmhoSGsra1hY2MDIyMjXcvUCnFxcQgNDUVkZKTynhsYGCjvuYWFBbP3PCIiAqGhoYiPj1e557a2tjA0NNS1TK2Q+jOq4p6bmZnB1tYW5ubmzN5zxWfUhIQE5T03MjJS/p6zfM9DQkL0Ni+h+IyaMi+h+IzKal5CKBelT3mJlLkoRV6C1VwUDTKccL569SqaNm0KILmCOTQ0NM0X2SZNmuDatWsAgBkzZmDhwoWZlMsmcrkcwcHBCA4OVibyhTA2Noa9vT0cHByY+GWPi4vDnz9/EB4eDnU/ihKJBNbW1nB2dmYiMSOXyxEUFITg4GDEx8erfayJiQns7e1hb2/PxD2PjY1V3nN1SCQS2NjYwNnZmYkP6XK5HIGBgQgODkZCQoLax5qYmMDR0RG2trZM3PPo6GgEBAQoDx6FkEgksLW1hbOzMxMf0mUymfKep9XdY2ZmBgcHB2Z8DqKiohAQEIDIyEi1j5NKpcp7zsIHNplMhj9//iAkJES5URfCzMwMTk5OsLa2pqROu0RGRiIgIABRUVFqHyeVSmFnZwdnZ2cmNu9JSUn48+cPQkND07zn5ubmcHJygpWVFSV12iU8PByBgYGIjo5W+zgDAwPY2dnBycmJiXuemJiovOcymUztYy0sLODk5ARLS0tK6rRLWFgYAgMDlcbwQhgaGirvOQuHigkJCfjz5w/CwsLSvOeWlpZwdnaGubk5JXXaQy6XIzQ0FEFBQYiNjVX7WCMjI9jZ2cHR0ZGJex4fH6+852mlS6ysrODs7AwzMzNK6rSHXC5HSEgIgoKC0sxLGBkZwcHBQS/zEop7zkKRkCIXFRQUlGZewtjYGA4ODnqZl2ApF0WTDCec161bh7FjxwIAqlWrhkePHqX5PVOnTsWyZcsAAB06dMCJEycyrpRRkpKS4O3tnWYiJjUWFhbIly+fqDfu4eHh8PLySvNNPCUSiQR58+YV9Qf0pKQk/Pr1K80P5amxsrJCnjx5RH3PQ0ND4ePjk6F7LpVKkTdvXlF/QE9MTISnp2eaH9BSY2Njg9y5c4t64x4cHAxfX98MfY+BgQHy5csHCwsLLanSPgkJCfD09EzzA1pq7OzskCtXLtFu4hSHaX5+fhn6PkNDQ+TLl0/UH9Dj4uLw69evND+gpcbBwQEuLi6ivucBAQH48+dPhr7PyMgIrq6uov6wFhsbC09PzzQPEVPj5OQEZ2dnUd9zf39/BAYGZuj7jI2N4erqKuoPazExMfD09MzwiMAcOXLA0dFR1Pfc19cXISEhGfo+ExMTuLq6irpwIDo6Gp6enmkeKKUmZ86ccHBw0JIq7SOTyeDr64vQ0NAMfZ+ZmRny5csn6sKByMhI/Pr1K83DhdTkzp0bdnZ2WlKlfWQyGby9vdNMvqXG3Nwc+fLlE3XhQGbzEnny5IGNjY0WlWmXpKQkeHl5pVkgkhpLS0vkzZtX1HmJsLAweHt7611egjYZzmJ8+vRJ+bWrq2u6vidfvnzKrz9+/JjRv5JZkpKS8PPnzwwnm4Hk6rEfP35kePOTXQgNDcWvX78y9AsOJG94f/36leHNT3YhKSkJP378yHCyGQAiIiLw8+dP0d7z4ODgDL+oA8mbH09PzwxvfrILiYmJ+P79e4aTzUDyG6Gnp2eGN7zZhcDAwAwnm4H/f23M6OYnu5CQkIDv379nONkMACEhIRne8GYnAgICMpxsBpJ/T378+JFmpWR2JS4uDj9+/MhwshkAgoKCMvXamB2Qy+Xw8/PLcLIZ+P/fk8y8NmYHYmNj8ePHjwwnm4Hk35Pfv3+L9p77+PhkONkMJFcMfv/+PVO/J9mBmJgY/PjxI1N+NP7+/vD39xftPffy8spwshlIfm38/v17mlVz2ZWsfN76/fs3AgICtKBK+8hkskx/3lL8nmTmtTE7oPi8lZm9t4+PD4KCgrSgSvvIZDL8/PkzU5+3oqOjM/3amB0ICwvLdF4is6+N2QFFXiIzn7ciIyNFnZfI7OctRV4iLCxMS8rYI8MJ55Qvojly5EjX97i4uCi/Dg4OzuhfySz+/v5Z+qAVGxubqWSOromPj4e3t3eWnsPb21uUm1dfX99MJaEUxMTEwN/fX4OK6KCJn1UvLy9RbmSy+rMaFRWVqWSOromOjs5U4lGB4nBJjBsZLy+vLH3QUrSpi42IiIgs/azK5XJRHrAoflaz8voUFhYmyv1ReHh4lj5cK5IaYkvCKX5Ws/L6FBwcLMoPLCEhIVk69Fd0eYntnis+ZGbl9SkwMDBTRSa6JigoKEuH/omJiaI8SE1KSoKnp2eWdPv7+2eqyETXpGckljo08VlPFyQmJuLXr19Zeo7fv3+L8iDV398/S4f+cXFxos1LeHl5Zek5fHx8RHmQ+vv37yznJX7//q1BRXSIi4uDj49Plp4jq5/19IkMJ5xTvvmkd05RyseJtWJN0yQmJmrkNCwsLEx0iVdNJVLElpCJj4/XyIfLkJAQ0SVeNVHhoWjVFxOxsbEaec0LDg4WXeJVE/dcJpOJLgkXHR2tkSrdwMBA0SVeNXHPk5KSRFcpEhkZqZEPGgEBAaJKyMjlco0chimMJcWEwvg0q4jxnmvi9zwuLk50iVeFqXVWEVvFq8KLIKvExMSIroMlJCREI+/DYisakMlkGtlvR0VFiS7xGhwcrJHXZLH9nicmJmpkvx0eHi66xKumPluKLS+hMHjOKgozTTGhqd9Psd1zXZHhhHPKU5D0zuNKOatNbG882iIoKEhjHzLE9MOuqUQ7IL7Eq6buk9gSr5pKtAPJvzdiSrxq6p6LLfEaGxursWSC2BKvmtrEJCUliWp0kKYS7UDyPRdTEk5T9zwxMVFUideoqCiNfbAUU+JVU0lXIDnxKqZCDE0l2gFxJWQUpr+aICYmRlQVr2FhYRrba4vpnmsq0Q6IL/EaHByssX2XmD6javKeiy3xqqlEOyCue66pRDuQnJcQU+JVk/dJTHkJTSXaAXEWhOmCDCecU5q7pLeyNuULLgvurZpAk8mjkJAQ0XxQS4/Tb3qRy+Wi+XCucPzVFGJKPmoyaSaTyUQzy1kmk2l07WKq+tTkupOSkkSTkElMTNRo1Z6+/p4nJCSIJiETHx+v0ao9Mf2ea1JrXFxclto6aaJprfp6z2NiYkSTkImOjtZoN6GY7rkm34ciIyNFk5CJiorSaFGLmA6QNfnzGRYWJpqETEREhEYLHMR0zzX5ex4aGiqavER4eLhGtYolLwFo9vdcTJ9XNHmPxJSL0iUZTjhbWloqv07vaW3Kx6X8fn1FLpdr9M1XLpeLpgJQ0xXJYqlwlslkGn1DS0pKEs2bub7ec01vsMWybkB/77m+rhuAxpMIYlm7pnWKJRkD8HuuKfg9z/7o82u7vq5dX9cNaF6rWBLO+vr6Bmj2Hmk6z6FN9PX3XCaTaTR3pOk8hzbR599zXZHhhLODg4Py6/Sal6U0jrK3t8/oX8lJB2L5JZfL5ZBIJBp5LolEIqp16yuaXrtY/i31dd2A/q5dX9cN6O/a9XXdgP6uXV/XDejv2vV13YD+rl1f1w3o79r1ed36vPbs/HzaQhs69XXtYlm3LslwwrlYsWLKrz09PdP1PSndXosXL57Rv5I5JBKJxpKuCgwMDDT6fNrCwMBAoyM1xLRuTaKNnyFtoem16+s9F8u6Af1du6GhoUafTyzrBvT3nmtap6Z/hrSJvv6883uuOfT1notl3YD+/rzze559n09b6Ou6JRIJpNIMp4TUIpa16+s91/T91sbPkLbQ13uuSzL8k1GiRAnl12/fvk1XGfm///5L/H59xsrKSmPPZWFhIZrko6ZHqohlRItEIoGFhYXGnk+TPz/aRtNaxXLPpVKpRmfWi2XdgOa1avJ3R5sYGhqm20w3Pejr77lEIoG5ubnGnk+bmJiYaDSBIqZ7rsnfc02/XmoTU1NTjX7AENNruyZ/Pg0NDf8yFc/OmJuba3SfLabfc01qNTIygpGRkcaeT5toet+hr7/nmn691Caavkf6+ntubm4umuSjPuclNKlVLOsG9DcvoUsy/GpQo0YN5QYxKioKz58/V/v4uLg4PH78WPn/DRo0yOhfySROTk7Z8rm0jZmZmcY2cRYWFqL5gAro7z03Nzf/y2w0K1hbW4vmA6pEItHbe25lZaWxxKutra1oPqBq+p47Ojpq7Lm0jY2NjcYSr/b29qKpgtPkPZdIJKIaO2ZnZ6exD5UODg6i+YAqlUr/Gi+X1eeys7PTyHPRwN7eXmOJV0dHR9HccwMDA43dcwMDA9jY2GjkuWigqXUDyfsYsRTIGBoaauz12MjICNbW1hp5Lhpocu8hpntubGyssd9NExMT0RRLAPr7GdXU1FRjCUNzc3PRFEsA+nvPzc3NNZY/srS01FiOg2UyZRrYsGFD5f+7u7urffzJkycREREBIPnDSZ06dTL6VzKJphKvpqamonpDAzT3oiSmFzcgOUGuiRclsSXaJRIJnJ2dNfJcYrvnmkq8WllZiSbRDmg2CSe2e25ra6uRZKmYEu2AZu+5JhMcNNBU4lVMiXYgOVmqicSERCIR3T13cHDQSBLFwcFBNNV/gOYSr2JLtAOae11ycnISTaIdSE6WauJeGRgYwNbWNuuCKKLJey6WpCuQnHjVRIJcbIl2QHPJdmdnZ1Hdc00lXk1MTERX8amvn1c0lU8wMzMTVaIdgN7mJXRFpnY8w4cPV369Z88evHv3jvi46OhozJ49W/n/Q4YMEdWHKW2TM2fOrG065cCvG49F9YYGJL/AZfUEOeKnD+KCwzSkiA4SiQS5cuXK2v2Sy/Hr5hPNiaKElZVVlltYQj/+QEJElIYU0UEj91wmh/edZ5oTRQlbW9ssH4YFvfmMxOhYDSmig+KeZ4mkJPg+eKkZQRSxs7PL8ub1z/N3kMVr1kFa20ilUuTOnTtLzyGPT4Tfs7caUkQPBweHLB+G/X74CnKRONorMDAwQM6cObP0HEkxcQh4/UlDiujh6OiY5YNUn7svAJEZ7RgZGcHFxSVLz5EYEY2Qjz80pIgezs7OWT4A9RLh3tXExCTLCYX4kHBE/PTVkCJ6uLi4ZPkwzOvG47QflM0wMzPL8kFDjH8Qonz+aEgRPVxcXLJ8GCbGvIS5uXmWD8Mif/khNiBEM4IoktXPqBr5zKMDLC0ts3wYponPufpCpl5VWrZsidq1awMA4uPj0apVK7x9+/cHpaCgILRr1w5fv34FkFy5M2XKlCzKZQtTU1MUKFAgc2/oMjnODZ+Lo0Nn4u62A5oXp0UkEgny5MmT6Rd3/3/fY2/bYdjcagBiwiM0K07LmJubI3/+/Jl6Q5cnyXCy71QcGjgVzw6d0YI67SGRSJA3b95MJ5297r3A/i6jsaXNQMTHiCsBaWlpiXz58mXqDV2ekIgjXcdif7/JeHPuuhbUaQ+JRAJXV9dMVzp8u3wPh3qOx/aOQ5EYH69hddrF2to60/dcFheP/W2Hw73XOHy8+VAL6rSHVCpF/vz5M13p8P7YZRztNwW7e4yBTGQJSBsbG+TJkydT35sYHQuPlgOxu+so/HgiroMGAwMDFChQINPdO6/2nMTxwTOwt/9k0Tl929vbZ/qDVnxYJNyb9cfOTsPh/eaDhpVpF0NDQxQoUCDTBw1P1+/DiWGzcHjkbNHdc0dHx0wnnWMCQrC7aT9sbTsI/l/ElXQ2MjJCgQIFMp10vrd4G06OnIvT05ZpWJn2cXZ2znTSOdLHH7ub9sPmVv0R7CWupLOxsTEKFiyYuUIxuRzXp6/B8RFzcGnxJs2L0zIuLi6ZTjqHfvsF9xYDsblVf4T/CdSwMu2SpbyEXI6Loxfi2LBZuLXBXePatIlEIkHu3Lkz3ckR8PYzPNoMxqZW/REVIq5iODMzMxQoUCBTeQmpVIoCBQqIqutagSIvkdkCSDs7uywXmugTEnkmd3ve3t6oUqUKfv/+DSD5h65u3booWLAgAgICcP36dURHRwNI3pxevnz5r1EcnP8nISEB3t7eiIpKX/VmUlQsDnUdg1BPHwCA1MAAI87vQqlm9bSoUvPI5XIEBwfD398fMpkszcdLJBK8PXAOt5dsVV4r2bQORpzbBQMRtZ4DyQc1Xl5eiImJSdfjE0IjcKDzKET6JW9eDI2NMeb6fhSpXUWbMjWOXC5HYGAg/vz5k64PmhKJBC+2HcbDDfuU1yp0bI5BRzeJqiUVSJ5n7+XlhdjY9CXMYwNCsL/jCMSGhAMAjM3NMOHuUbhWLKNNmRpHLpfjz58/CAwMTN89hwQPV+3GC/cTymvV3DrCbc9K0VVNxMbGwsvLC3Fxcel6fJS3Pw50GY34/1Xym9lYYdLDk8hVsog2ZWocuVwOf39/BAam78OWBMDt+Zvw9tgl5bX6o/ui67q52hGoRaKjo+Ht7Y34dB6ShH31wuEe45Dwv4M0KycHTHlyGo4F8mpTpsaRyWTw8/NDcHBwuh4vkQNXp6zAp0t3lNdazByFNgsmaEui1oiKioK3tzcSEtJXmR/43xcc6zsFSXHJPyN2eXJiypPTsM2VQ5syNY5MJoOvry9CQ0PT9XiJTI7zoxfgx52nymsdlk9Dk0lDtKRQe0RERMDHxyddxukA4PfsLU4OngXZ/x7vVDg/pjw6CUtH8cxsB4CkpCT4+voiLCydSZXEJJwePBPeKbo3em5bjNqDe2hJofYIDw+Hj48PktJxGCoB4Hn7Kc6NXQh5UvLnm9xlimPi/WMwsxaPkRwAJCYmwsfHRzkeMy3k8Qk41mcy/rz7orw24OA6VO7eVlsStUZoaCh8fX3T/Rn164U7uDR1hbJ7o0DV8hh36zCMzcQ14zUhIQE+Pj6IjIxM1+NlMXE43G0cgr//AgBIpFIMO70dZVs30qZMjSOXyxESEgI/P7903/P3Ry/hxvyNymvF6lfHqMseMNSggTgN4uPj4e3trczdpYW5uTny5MmjUaN0XSCXyxEUFAR/f/90fUaVSqVwcXGBnZ2d6D6T6pJMJ5wB4OPHj+jevTtevXol+BgnJyfs2bMHLVu2zOxfozfExcUhNDQUISEhKptYQ0ND2Nra4v2pazg6fJbK95paWWLi/WPIU7YELbkaQyaTISIiAiEhIcQ3N0tLSxgmyrCz7RD4vf+iEq89uDt6bF0syl/82NhYhIaGIjQ0lHjP7ezs8K/HSZyZoloVYmFvi8mPTiJH0YK05GoMmUyG8PBwhISEEA9arKysgOg4bG85AEE/vFTijScORscV02lI1TixsbEICQlBaGioygcXxazEBxv24srCjSrfa+3ihKlPTsM+n/hOVZOSkpT3nLShsba2RlJIBLY274ew36qtiK3nj0fLWaNpSNUocrlc+XseEhKisok1NjaGnZ0dbizajNvr9qh8v0P+PJjy+BSsc4hvTlhSUhLCwsIQEhKicrgmkUhgbW2NOL8gbG3RD5GBqq2IXdbNQYPR/WjJ1RhyuRwxMTHK1/bU99zExAQ2Nja4OHU5Hu85rvL9LsULYdLDk7CwE4+xmILExETlPU99uCaRSGBjY4OInz7Y1nIgYgkdSn12L0eNfl1oydUYcrkc0dHRynueemttamoKaysrnBo9Hy+PXlD5/rwVSmHC3aMwtRRfe2ZiYqLy9S314ZpUKoWNjQ2CP3zD9jaDlQcrKRl0bDMqdmpBS67GkMvliIqKQkhICMLDw1XuuZmZGSzNzXF00Ay8u3BT5fsL1ayEsdf3w0iEhkMJCQkICwtDcHCwyuGaVCqFra0tfj//D7s7jUBSqoMYsRbJAMn3PDIyEqGhocR7bm5uDnNjExzoPQFfbquOkxBrkQyQnJBSvL6lvueK+dw/7zzF3p7jIE/1nifWIhkg+Z5HREQo73lqLCwsYGpgCI8uI/HzyWuVuFiLZID/v+chISEqB6oGBgaws7PDpwu3cGjgNJXvFWuRDJC+vISRDNjVfih833xUiYu1SAZIOxdlZ2cHW1tbUfkKpYe07rmVlRVsbW1hZWUlyt9lXZOlgcrFixfHkydPcPjwYRw6dAjv3r2Dv78/bG1tUbBgQbRv3x79+/fXqNsty5iYmCBHjhxwdnZGYmIiZDIZ5HI5DAwMYGhoCIlEAk8rcnt6bEQkNrXsL8oqGcUHEhsbGyQlJSEpKQkymQxSqRQGBgYwMDBATFi44C/4ve2H4FjIFU0nD6WsPOuYmprCxcUFOXLkQGJiojIBmfKemwmMJIgKDsXGlv1FWSWj+EBia2urcs8NDQ0hlUoRERAk+GZ9beV2OBXKhzpDe1FWnnVMTU2RM2dOuLi4KO+5RCJRrl0ikcDMgjySINwvABtb9sek+8dgZiMuIxbF5tTOzg5JSUlITEyEXC7/656HGPhBIvB7fm72ajgWzIeqPdvRFZ5FJBIJzMzMYGZmpnLPFa9vEokEpubklrSgn97Y1HogJtw+DGOBx2RXDAwMYG9vD3t7e8F7HhAvQ3I9mCrHxs6HQ/48KNemMV3hWUQikSjdyl1cXJSvcYp7bmhoCLlcDhOBNkS/j9+wveNQUVbJGBoawsHBAQ4ODsqf9dT33DdMuIJm/+DpsM+XG8Ub1qSoOutIJBJYWFjAwsICOXPmVO7hUt9zY4EPaV4v32FX99EYdno7pCIyEQSS77mjoyMcHR0F73mCr3C3g3vvcbDL44KC1f6hqDrrSCQSWFpawtLSEjKZjHjPZUlJMDImJxe/PXgOj36T0P/AOtF9gDUyMoKjoyMcHByUr2+pP69E2vwifq8sKQk7uowUZZGMRCJRepKkvueGhoYwMDBAUkICDATGULy/cheHR84WZZGMsbGxcryI0GfUQIGZqInx8djabrAoi2QUh+PW1tZ/3fOUn1HjY2IhlZJft1+euIRTU5aKskgmPffcW2BUYnx0DDa16i/KIpn05CViIyJhIPC6/djjBJwKuYqySCZ1LoqUl2CR9NxzTubJUoUzRzdcmL8O5+asIcbEXCWTFsG/fLC0ajuE+wUQ44OObkLFzmxW0h+fuAjXV+0gxgrWqIhxNw6IskomLfw/f8fy6h0QFRyqEpNIpRhxfhdKN69PX5iWkcvl2D94Gh7sPEyMl2hcGyMv7BZllUxaeL9+jxW1OiMuUrXy3dDYGGOu7UOROlV1oEy7yGQy7O4xGs+PnCfGy7dvisHHNosuGZUevj96gdX1uyMxTnUMhZirZNIiKTERW9sNxltC9SMAVOvTAW7uq5jc4H+4fh8bmvdVjhhIiVhHyaSHhLg4rG/aB1/ukA3U6o10Q9f1c5m856/OXMW29kOIbatWTg6Y/PgUnArm04Ey7RIfHYNV9brB85lq9SMANJs+Au0WTaKsig5P9p/Cnt7jiDGxjpJJDzFh4VhRsxN8330mxtsvmyrKIpn0cHvzPhweodqJC4h3lEx6iAgIwrJq7RH4nXzQ0mPLQlEWyaSHy0s34/S05cRYrtLFRFkkkx5CfPywrGo7hPr4EeP99q8VXZEMh6MNxHWkzgEAtJg1GtXcOhJjXi/fYVe3UUhK51w5MWGfLzdGnN8tWOW3p/c4fH/0grIqOnRYPg0VOjQjxr4/fAGPvhPTNW9KbOQoWhBDT28nVvnJZTLs6DIS3q/f60CZdpFIJOixeQFKNqlNjH+4dg8Hh88SneFSeshTriQGHd1ITKwmxsdjS7vB8Pv0TQfKtItUKoWb+0oUqlmJGH916gpOTl5CWRUdClaviH77yIeoiiqZIE9vyqq0j4GhIQYc3oC8FUoR44/3nsTFBespq6JDiUa10Gv7YmIsJiwCG1v0RZif6mgdsWNkYoKhp7YjRzFyld/tjR64uW43ZVV0KN+2CTqtnkmMRQQEYWOLvsTDZbFjbG6GEed2wt6VXOV3efEmPNh9lLIqOlTt1R6t55ETziHev7GpVX/EEg6XxY6ZjTVGXtwDaxfyKKxTU5bixTHV0TosUG94bzSaMIgYC/j6E5vbDkJCOr1MxISVkwNGXtwDc4FRWIdGzMZ/l25RVkWHplOGoebAbsSY73+fsL2z6mgdFrDL7YKRF3bDRKDIb1//yfhyl3y4zOHoEzzhLEIkEgl6bV+CYvWrE+NvL9zE0bHzmUxGuVYsgwGH1hOrfxLj4rG5zSAEfPPUgTLtIpVK0W/fGuSvUo4Yf37kPM7OXElZFR2K1K6CPntWEGNxkVHY2LI/Qrx/U1alfQyMjDDo6CbkKl2MGH+w8zCuLNtCWRUdSjevj24b5xFj0SFh2NiiHyICgiir0j5GpqYYdno7nArnJ8avr96J25v3EWNip2Lnlmi/bCoxFu4XgE0t+yMmTHV+otgxtbTAiPO7YZcnJzF+bs4aPNl/irIqOtTo1wXNZ4wkxoI9fbC5zSDER6fPWFdMWNjZYORFd1g5ORDjx8cvxKvTVyirokODMf1Rb6QbMeb/6Tu2dhiChHSarIoJ6xxOGHnRHWY25PbzA0Om48P1+5RV0YEXyfAimZSwXCTjUqwQhvEiGRV4kQx7RTIcTkbgCWeRYmhsjMEntsKleCFi/M6mvbi5XtWAigXKtWmMzmtnE2ORgcHY2LIfokPT6aAtIozNzTD87E445M9DjF9espnZKpkqPdqizYIJxFiojx82teqPuKj0OeuKCTMba4y8sFuwSub0tOXMVsnUGdoLjScOJsYCv//ClraDmExMWDraY+TFPbCwtyXGj4yaw2yVTJNJQ1B7cHdizPfd5+QqGQYTE7a5cmDEhd0wFfBo2Nt/Mr7ce0pZFR3aLJiAyt3bEGOez15jd6+xTCYmnArmw7CzO2BkqjrTWS6XY1ePMfB88VYHyrSLRCJBl7WzUaZVQ2L8y50nODB4GpOJiVwli2DIia2QEub7yhITsa3jMPgSjLHFTnqKZI6PX0hZFR3SUyQTSDDGFjvpKZI5N3s1ZVV0KFKnKnrvJo+XUBTJhPr6U1alfdJTJHN1xTbKquiQniKZyCBVY2wOR1/gCWcRo6yScSabMh4fv5DZiokGo/uhwZh+xJj/p+/Y1X00ZP8bdM8SiioZc1vyLKyDQ2fg20M2KyaazxiJ6n07EWPerz/Ao+9EJj+k2ufLjZEX9sBEwEjQo+9EeL16R1kVHdovm4oKHZsTY98f/YtDw2Yyec9zFCmAYWd2CFbJ7Oo+msmKCYlEgm6bFqBUs7rE+Idr95gdK5KnbAkMOraJWCWTlJCA7R2HIfiXjw6UaReJRII+e1agcK3KxPirU1dwYf46yqroULDaP+i3fy0xGZUQE4ut7QYj3J/sWSFmpAYGGHBoPfL9U5oYf7z3JG6s2UVZFR2KN6yJXjvIr2Gx4RHY0nYQokLYK5hQFsmUKEyM39rgjvsCnhViJ60imS3tBjE5ViStIplLizbi+ZFzlFXRoWrPdmqLZLZ1GMLkWBFFkYxNTmdi/PTUZXh7kc2CiTpDe6HxpCHEWOD3X9jRhc2CCQ4nPfCEs8hxLJAXw8/thJGZqmFccvvOCCZHTABAp1UzUa5tY2Ls3eU7OD2dfMIsdnKWKIwhJ7cSDeOSEhKwrcMQJkdMSCQS9Ny2GMUa1CDG/z1+EZcWb6Ksig75/imNAYc3QEJwRI6PjsGWdoOZHDGhqJIpUK0CMf5wzzHc3uhBWRUdCteqDDcP8picmLDkxASLIyYMDA0x8MhG5C5bnBi/sWYXHnkcp6yKDqWa1kX3zQuIsYiAIGxpN5jJERNGJiYYeno7nIsUIMYvzFuHlycvU1ZFh386Nkf75dOIsRDv39jWcRgS41XNNMWOcpRM3lzE+IlJi/H+6l3KquhQo29ntJg1mhgL+PoTu7qNZDIxkVwks0ewSObQ8FnMFkw0GN0P9Uf3JcZ83nxktmAirSIZj36TmC2YUFck8+PJKxxktGBCMUqGVCQjl8uZLZgAgPZLp+CfTi2IsU83H+LExEWUFXE42QOecGaAAlXKo/8BcpVMdEgYtrQdhNiISB0o0y5SAwP0P7AOrpXKEuNXl2/D04NnKKuiQ7H6NdB751JiLNw/EFs7DGXy9NzQ2BhDTmxBzpJFiPGzM1fizbnrlFXRoWyrhuiybg4xFuzpg+2dhzNpymFsZophZ3bAsUBeYvzYuAX4ePMhZVV0qNytDdoumkSM+X/6jt09xzLZyWFmbYWRF/bAJlcOYvzAkOn48fQVXVGUqD24B5pOGUqMeb18h70DJjP5IdXSwS55lIyDHTHu3mc8fN5+pKyKDo0nDEKdoT2JsW8PnuPIKPLrvtixyemMkQKjZOQyGXZ2HYk/X3/SF0aB1vPGoUrPdsTY+6v3cHoamwUTjvmFi2RYLpgAgM6rZ6Fsm0bE2MsTl3Bp0UbKiuigrkgmISYWW9qyWTCRVpHMI/fjuLXBna4oSqgrklF0crBYMCGVStF372rBIpmb6/bg4R42R19yOOrgCWdGqNC+GdotmUyM+b77DHe3CUzOQTSxMMfwszsFExP7Bkxmcg4iAFTr0xHNpo8gxjyfvcb+wdOZTEyY29pgxPndgomJ3T3H4veHr5RV0aH+SDfUHdGHGPty5wmOMToH0drZESMu7CEmJmRJSdjRZQSTcxABoNm04ajauwMx9vbCTZxldA6iXZ6cGH52J3HGbWJcPLa2H4Kw3390oEz7tF08GeXaNSHGnh8+x+wcROfC+TH01DbijNu4qGhsaTuIyTmIEokEXTfMQ/GGNYnxe9sP4e7W/ZRV0SF3meIYeGQDuWAiNJzZggmJRILeu5ahYPV/iPFrK7fjyYHTdEVRokCV8ujrsYoYC/cPxNb2QxAfw17BhNTAAAMOrkeeciWI8bOzVuH12WuUVdGhWP0a6LGVXN0Z/IvdgglFkYxQ987x8QuZLZgo26ohOq6cToyxXDChKJIR6t45OHQmfjx5SVkVh6NbeMKZIZpMHopK3VoTY69OXcHFBespK6KDTU5nDD25lTjvNCE2jtk5iECy4VKZlg2IsSf7TuLGWjbnIDoWyIvBAvNOYyMimZ2DCABd1sxCkbpVibHbGz2YnYOYs0Rh9Nu/hhiLCgrBlnaDmDSOVFTJCHVyXF68Cc+Pnqesig6uFcug9y5ypV+Yrz+2dhjCpHGkVCpFv72rkatUUWKc5TmIRWpXQbcNc4mxwB9e2NmVzXEDilEyQp0ch0fNxZe7TyirokPp5vUFCyZ+v/+CPb3HMVkwYWRigiEntgoWTOwfOIXZgomKnVsKF0w8f8OscaSJhTmGnt4uWDCxp9c4Jo0jAaBm/y6oN9KNGPty5wmOjiOPkxI75rY2GHZmh3DBROfhzBZMNBw7QH3BxCzywZPYsXZ2xNBT28gFE/HJBRMsGkdyOELwhDNDSCQS9Nm1HHkrlCLGz89di5en2JyDWKBqBfTcvpgYC/H+je2dhjM5B1EqlaL/gbXIUawgMX5i4mK8v3aPsio6FKtfA53XzCLG/nz5gd092DSONDAywuBjm2GfLzcxzvIcxHJtGgsasbA8B9HYzBRDT22DdQ7y7Mu9DM9BrNKjraARy4/HL3Fo+Cwm77mplSWGndkBczsblZhcLsfuHqPh//m7DpRpnzpDe6H2kB7E2McbD3BiEvm9XuxYOthh2JkdxNmXssREbO80nEnjSEB9wcTrM9eYNY60yemMoae2wdBETwsmWjUkxp7sP8WscaRjfv0tmOi8eiaK1qtGjN3ZtJfpggmh0ZdRwaHJnRwMGkcqCyYqlyPGLy/ZzKxxpNqCid9/mDWO5HBI8IQzYxibm2HY6e2wcnIgxt37TIDPf58oq6JDdbdOaDC2PzH29f4zHB0zj7IiOpjZWGPYmR0ws7FSiSnmILJqHFlvpBtq9O9CjLFsHGnl5IBhZ7br5RzE5jNGCppysGwcaZcnJ4ac3Eacg8iycSQAtF8yGaWa1SXGHu4+itub9lJWRAenQq4YeGQjcQ4iy8aRANB1/VwUrlWZGLu5djezxpG5yxRH373kMTksG0emVTDBsnFkgSrl0Wv7EmKMZeNIqVSK/vvXwKV4IWL8xCTGCybWzibGAr7+xK7uo9gumHDVv4KJsq0bobVQwcRbPSiYcHEixlk2jqzSoy2aTBYomGDYOJLDSQ1PODOIfb7cGHx8M3kOYmRU8ul5cCh9YRTouGK64BzEu1sPMDsH0aVYIfQ/uF7vjCMlEgm6b14gaNDAsnFk3vKl4LZnBTHG8hxEiUSCPntWIHeZ4sQ4y8aRhWpURPfN5LZTlo0jpQYG6H9wPZwK5yfGj42dj0+32JyDWLJxbXRcQZ6D6PfxG7NzEA2NjTH4+GbY5clJjB8YMp3ZOYgVOjRDy9mjiTGWjSPTLphg1ziyWp+OggUTLBtHpqdgglXjyHoj+ggWTLy/chenGDWOtHS0x/AzO2BsbqYSY75gYvoIwYIJlo0j7XK7YMgJ/TOOBIB2i4ULJlg2juRwUsITzoxSpE5VdF1P3qAGfv+FHfo8B/HeU8qq6FCmhfAcRN93n7Gnz3hm5yAOPblNL40jK3VtjWbThhNjns/f4MAQNo0jTS0tMOzMDljY2xLjLBtH1hrYTS+NIy3s1M9B3N6ZXePIhuPSmIPIqHGkdQ4nDD29Xdg4ssNQZo0jW84Zi3JtGxNjzw+fw9XlWykrooPaggmGjSMB9QUTLBtH5ihaEAMO8YKJ1FxbsY1Z48g85UrCzX0lMaYXBRNlBQomGDaOLFSjInpsIe9PWTaOVBRM6KNxJIejgCecGabO0F6oNag7Mfbx+n2cmrKUsiI6pDkHseMw/ZyDePoqN45kkDYLJqB0i/rEGOvGkYOObVY7BzE6lM05iGkZRz7YdYSyIjrkKlmEG0cS4MaRjBpH7luDnCWLEOOnpy1n1zhSXcEEN46krIoOaRpH6mnBBDeOZLRg4vQO/TSOHNBVbcEEq8aRaRVMsGwcyeEAPOHMNBKJBN02zkOhmpWI8eurd+Lx3hOUVdEhd5nicPMgu99GBAQln57r4RxEbhzJ4BxEAwMMOLhOL40jizeogU6rZxJjf778wK7u+mkceXDYTGbnIHLjSG4cmZIfj1/iEKNzEJXGkbbWKjGFcaTfp286UKZ96gzthdqDBQombjzAycnkmcdihxtHChdMcONI9tBb48gCeTHoqH4aR6ormNBr48h2bBpHcjgATzgzj2IOom1uF2J8/+Bp+PH0FV1RlPinY3O0mEWeg/jr3/+wb+AUJj+kGpubYeipbbB0tCfG3XuPZ9s4ckw/Yuzr/Wc4MnouXUGUUMxBNLXWP+PI+qP6onrfTsQYN45kdA7ijJGo0LE5McaNI9mcg9h+yWSUbFqHGHu45xhub/SgrIgOzoXz66VxpEQiQdcNwgUTN9bs4saRjKHvxpE9twkXTLBuHClYMDFpMd5fvUtZFR3UFUwEfP2JXd1Gsl0woa/GkfPHE2MsF0xwODzhrAfYuDhjmLo5iO2HMDsHsdXcsSjbphEx9uzQWVxbuZ2yIjo4uOZJcw4is8aRK2egWIMaxNi9bQeZnYPoUqwQBhxcp5dzEHtsWYgCVcsT43ptHNlhKBJi2ZyD6Oa+UtA48tysVUwbR3bbNJ8YC/b0wY4uI5idgzjg0AZh48hxC9g1jmxSBx2WTyPG/D99Z9o4csiJLeqNIxktmODGkfpnHFndrZN640jGCyYEjSO7jWLWOLL+qL6o0a8zMfb+6j1mjSOtnByS8xJ6WjChj8aRHP2GJ5z1BNdKZdFrB3lmc5ivP7Z1HKqXcxBPTVmKd5dv0xVFiaJ1q+mtceSgo5v00ziyZQO0XTyJGGPaONLUFENOboNNTmdiXG+NI5+9xv7B+mccKZfLmTaOrD2ou+AcxM+3H3PjSAZpNH4gqvZqT4wxbxx5apteFkykaRy5YhtlRXTgxpECxpGsF0zoq3HkloV6aRyZt3wpbhxJgGXjSI7+whPOekTVXu3RaMIgYuz7o39xeMRsJhMTZtZWaucg7uw2Cv6fv+tAmfZJyzhSb+cgMmwc2XTKMFTq2ooYY3kOom2uHMlzEIWMI9sPQfifQB0o0z7cOJIbR6aEG0cyahy5fYl+GkdWKoteO5cRY3ptHDl1Gf67xI0jWYIbR6oxjuw9js2CCRMTDDmxVbBggmXjyEpdWgkXTDx/gwNDGC6YSMM4ktWCCY5+whPOekb7pVNQskltYuzBriO4s3kfZUV0cC6cHwMOb1A/BzE8QgfKtEtaxpE31uzixpGMIZFI0HvXcuQtX5IYvzBvHdPGkT22kqs7Q7x89do48sP1+5RV0YEbR3LjyJSwPAdRn40jq/Zsh8YTBxNjPx6/ZLZgIi3jyF3dRzNdMMGNI/9Gr40jz1zT34IJ1o0jWzYgxpgvmNBT40iO/sETznqGgaEhBhzeCKdCrsT40THzmD09L9W0Ltovm0qM+X38hj29xzH5gSU9xpGsnp6nZRy5f/A0Ju+5iYU5hp7ertY40vf9F8qq6FCjXxfUH92XGPt67ymOjVtAVxAl0jKO3NGF3XEDaRlHnplJbtsUO+kxjmR13EBaxpFXlm6mrIgOdnlyYvCJrWqNI1n1Z0izYGILm+MG0mMcGRsZpQNl2iU9xpFP9p+irIoO6TGOZNWfIS3jyFdnrlJWRYcCVSugx7ZFxFiI929s7zScWX+G/gfWqi2Y+HjjAWVVdEirYGJ3j9FMVvVz9A+ecNZDFHMQTSwtVGKypCTs7D6aWaf7xhMGoUrPdsTYm7PXcWMNmyepaRlH7ugygkmne0C9ceTTA6eZbT1PyzhyZ5cRTFZ4A0AnNcaRdzbvY7b1PC3jyJ3dRjJZ4Z2WceSVpVuYbT1Pyzhyd88xTFZ4p2UceWbmKmZn9ReuWUmtcaRHPzYrvKUGBskFEwLGkcfHLcCvf/+jK4oS6owj/T5+w6FhM5m852kZRx4cOgN+H9lsPU/LOPL4BHJyUuykZRy5t+9EBP5k8/C8Rt/OaDCmHzH29f4zZmf1p1UwsbvnGIT5sXl4rs448t3lO7i6fCtlRRyO5uEJZz0lV6mignMQw3z94e42gclTNYlEgl47liJfxTLE+MkpS5l1PVdnHBn4/Rez1b5pzUE8MmoOfP77RFkVHYrWrYYu68hzEH3ffcaRMfMoK6KDgZGRWuPI/YOmIeCbJ2VVdFBnHPnz6Wucnk5OToqdtIwj3ftMQIiPH2VVdFBnHPnp1iNmXc/VGkfKZNjVfTQiA4PpC6NA7UHdUXd4b2LszdnruLluN2VFdFBXMJEYH48dXUcyOR4NUG8c+WT/KTxyP0ZZER3UGUfGRUVjR5eRTJqLAeqNI+9s3ocXxy9SVkQHdcaR0aHh2NVtFJPVvgDQUU3BxJWlW/Duyh3Kiuigzjgy3D8Qe3qNY/bwXJ1x5NmZq/D1wXPKqjgczcITznpM+bZN0HreOGLs3aXbuL5qB2VFdFDMQbRyVp2DKEtMxM6uI5k1mlJnHPni6AXc236QsiI6qDOOTIiNw44uI5g0mgKAusN6oebAbsTYg52H8fTgGcqK6KCYg2hsbqYSiw2PwI6uI5k0mgLUG0deX7UDb87foKyIDurmIEYGBmN3j9FMGk0B6o0jz89bh0+3H1FWRAd1xpGhPn7w6DuRycNzAOiydjaK1KlCjJ2cvBQ/n72mrIgO6owjA77+ZNZoKi3jyEMjZjM7KkudcaTP2484No5c8S920iqY2DdgCgK+/6Ksig7qjCN/PHmF0zPYHJVlYGiotmDCvfd4hPr6U1ZFhzIt6gsWTHy88QCXl26hrIgORiYmGCpQMCFLSko+PA8K0YEyDkcz8ISzntN85iiUbFqHGDs9bTm+P2LTdMg+by7B1vOgn97YN2AKkx9YgOQ5iEIz8Y6OmQfv1+8pK6KDc+H86CPQeu734SsOj5xNWREdJBIJum2YK2gieGDIdGZNh3KXKY4eW8gmgr9evMWpKeSKf7Gj6OTIUZQ8E8/DbQKCvXwpq6JDgaoV0HHVDGLsy92nuDB/PWVFdJAaGKDfvjVEE0G5TIbdPcYg/E+gDpRpn+INaqD1/PHE2NsLN3F99U7KiuhgYGSEgYc3Eg/PkxISmD48L9+2CZpMHkKMPT98Dvd3HqasiA7GZqYYdHQTzGxUW88TYmKZHpVVtWc71Bnakxi7t+0gnh85R1kRHUytLDH4+BbBw/Od3UYxOSoLSDaOrNyjLTF2bcU2vL1wk7IiOlg62GHQ0U3EWf0RAUHMjsoCkgsmyrRqSIydm72aWZ8pm5zOGHh4A3FWf4iXL/b2m8RsXoLDPjzhrOdIpVL03bta8FRtZ7fRzBrQFG9YE81njiLGXp68jDub91FWRAcDQ0MMOLSe2IacPM95JJMGNABQvl1Twfloj9yP4/HeE5QV0cHI1BQDj2wktiHHRUZhZ9eRTBrQAEC1Ph0FDeVurtuDV6evUFZEB1MrSww6uhGGJqrVvlHBodjVnd1q33oj+qBCh2bE2KWFG5g1oLGwt8XAw+uJ1b5hv//Avc94Zqt9m04dhhKNyYZyp6ctx/fH/1JWRAebnM7ot38N8fA88IcX9g9ic1QWALRdOBEFq/9DjB0dPRc+bz9SVkQHxwJ50Wc3+fDc991nHBk9l64ginReMwu5y5Lntu8fNA1/vv6kK4gSOUsURvfNZMNjz2evcWoqufpb7EgkEvTcugjORQoQ4+5uExDi/ZuyKjq4ViqLjiunE2Ofbz/GhQVsHp4r/BlIc9vlMhnTPlNF6lQV7Dx/c+46bqxl02eKwz484cyBtbMj+h9cRzxVC/7lg7392T1Vazl7tGBL6vHxC/HrJZsGNPZ5c8HNYxUx5v/5O7MGNADQftlUwRneh4bPYtaAJkfRgui5bTEx5vXqPY5PJMdYoNvG+XApUZgY29tvEoI8vSkrokOeciXRZS25cv/bg+c4N4fcli52JBIJeu9aBof8eVRicrkcu3uOQbh/gA6UaZ+C1SsKtqS+v3IX11Zso6yIDsmt56th7eKkEpMlJmJnt1GICmGz2rdk49poKjDD+9/jF3F3637KiuiQXOG9AeZ2NioxxagsVg/PK3Rohnoj3YixB7uO4MmB03QFUcLINLnC28TCXCUWGxGZfHjO6Kis6m6dUK1PB2LsxppdeH32GmVFdFB7eB4Ugl09xjB7eF5/VF+Ua9eEGLs4fz0+3nxIWREdLB3sMODwBvLhOcM+UwDQbNpwFG9Ykxg7NWUZsz5THLbhCWcOAKBYvepoNWcMMfb6zDXc2uBOVxAlDAwN0f/gelg62qvEEuP/V+0bEakDZdqnbKuGgvOcn+w/hUcexykrooORiQkGHdlIdEOOi4rGjq7sGtBU6dFWcJ7znU178e+JS5QV0cHEwhyDjm4img5Fh4ZjJ8MGNLWH9ETFLi2JsStLNuP91buUFdHB3NYGA49sJJoOhfsHYnevccx+YGk8cTBKNa9HjJ2ZsRLfHrI5Kss6h5PgqKxgTx/sGzCZ2YPU1vPGoXCtysTYsXEL4PXqHWVFdLDPlxtu7uRZrn4fvzE7KgsAOq6cjnz/lCbGDg6dweyoLJdihdBD4PD817//4eTkJZQV0aPbpgVwKV6IGPPoOxHBv3woK6JD3vKl0HnNLGLs672nuDBvHWVFdJBIJOizewXsXQmjshSH54yOyipcsxLaLJxAjLHsMyU1MEC//WtgnYM8KmtXt1HMjsrisAtPOHOUNJ8xEsXqVyfGTkxcDM/nbygrooNdbhf03Uuu9mXZgAYA2i2ehPxVyhFjhxk2oHEq5IpeO8gfSnzesGtAAwBd181BrlJFibF9AyYza0CTu3QxdN0wjxj78fglzsxk04BGIpGg1/YlcCyYTyUml8uxp9c4hP3+owNl2qdAlfLosGwqMfbx+n1cXrKZsiI6SKVS9PVYBZtcOVRiyaOyRjFrQFOsfg20mD2aGHt16gpub/SgrIgOylFZDnYqMeWoLEYPz8u1aYwGY/sTY489TjB9eD7wyEaYWlmqxOIio7CjywhmR2VV7dkONfp3IcZurXfHy1OXKSuig6mlBQYe2Ug+PA8Jw87uo5k9PK8ztBf+6dSCGLu0aCM+XL9PWREdLOxsMPDwBvLhuV8A3Huze3jeZPJQlGwiMCpr+gpmfaZsXJzRb/9awVFZ+wZOZTYvwWETnnDmKJEaGKD/gXWCBjQ7uo5ETFi4DpRpn9LN6wsa0Dw7dBYPdh2hrIgOhsbGGHh4I9GAJj46hmkDmkpdWumlAY2xuRkGHt1ENKCJCWPbgKbmgK6o3L0NMXZ1+Ta8vXiLsiI6mNlYY9CRjXppQNNw3AD1BjT3nlJWRAcrJwcMPLReLw1oWs4ajaL1qhFjJyYuhueLt5QV0cEuT070FRiV9efLDxwYOoPZe95h2VS4VipLjB0aPgu/P7A5Ksu5cH703E6u9vV+/QHHJyyirIgeXdfPRc6SRYixff0nI/CnF11BlMhTtgS6rJtDjH1/+AJnZ6+mrIgOEokEvXcuhWOBvCqx5GrfsQjzY/PwvGC1f9BOaFTW1Xu4umwLZUV0kEql6LtvDdlnKjGRaZ+pEo1qofmMkcTYyxOXcGcLm6OyOGzCE86cv1BrQPP9F/YP1k8DmiOj5sDnv0+UFdEhTQOaMeSqUBZIy4Am4JsnZUV0yFWyCLptIldxez57jdPTllNWRAeJRIKe2xbDqXB+Yty9z3i9NKD5dOsRLi3aSFkRHdIyoNnVfTQiA4N1oEz7pGVAc3PdbsqK6KA8PHdyUIklxsdjZ9eRiAmP0IEy7VOmZQM0njiYGHt28Awe7jlGWREdDI2Nk6t9CaOy4qNjsKPLCGZHZVXu1ga1B3cnxu5s3ocXxy9SVkQH5agsM1OVWHRoOHYxPCqr1qDuqNStNTF2ZekWvLtyh7IiOpjZWGOg0OH5n0Ds7jmW2cPzRhMGoXSL+sTY2Vmr8fX+M8qK6KDXPlNzxgj7TDE8KovDHjzhzFFBnQHNi6MXcG/bAcqK6GBgZIQBh9arNaCJi4rWgTLto9aAZudhPD14hrIiOqRlQLOjywimDWiq9iYb0FxfvRNvzl2nrIgOSgMaYz01oGnbmBg7P28dPt1+RFkRHSwd7DDg0HqiAU2oj5/eGtCcnLwUP5+9pqyIDra5cqDvPnKlX8A3Txxg+fB80UQUqFqeGDs8cjZ8332mK4gSTgXzoffOpcSY73+fcGwsw4fna+cgV+lixNi+AVOYHZWVq1RRdNtIPjz/8eQVTk8nF1OIHeXheSFXYty993iE+vpTVkWH/JXLocNy8qisTzcf4tLiTZQV0SGtUVm7uo9md1RWvepoKTAqSx98poijshj3meKwBU84c4ioM6A5OnY+vF+/p6yIDg6uedBnD3mD6vfhK9sGNCumIW+FUsTYgSHT2Tag2UpuO2XZgEYikaD75gXIUawgMe7uNoFZA5p8FUqj0+qZxJheGNDkIxjQyGTY3YNhA5paldFmwXhi7L+Lt3B99U7KiuiQlgHNzq4jmTWgKdW0LppOHUaMPT9yHvd3HKKsiA6GxsYYcHgDzG2tVWIJMbFMH55X7NwSdYb1IsbubT+EZ4fPUlZEB2Oz5MNz0qis2PAI7Ow6ktlRWTX6dUaVnu2IsWsrt+PthZt0BVHCzNoKg45uIh6eRwQEYVeP0cxW+zYY0x9l2zQixs7PXYvPdx5TVkQHS0d74VFZ3r/h4TaB2YPUFjNH6a3PVD+Bw/M/X34w7TPFYQeecOYQSZcBTWSUDpRpn/Jtmwga0DxyP47He09QVkQHRbWvkAHNzq4j2TWg6dVerQHNq9NXKCuig6mlRfIHFhPVDyysG9DUHd4bFTo2J8aYNqCxt8XAI2QDmrDff+DeZzyz1b5NpgwTNqCZthzfH/9LWREd0jKg2T+I3WrfNgsmoFDNSsTY0THz4P3mA2VFdHDMnxe9d5NHI/1+/wVHRs+lK4ginVfPRJ5yJYix/YOmwf/LD8qK6JCzRGH02LKQGPN8/ganpi6jrIgOEokEPbYsRI6iwofnrI7KyvdPaXRcNYMY+3LnCS4sWE9ZER0kEgnc9qyEXd5cKjG5TIZdPcYgIiBIB8q0T5E6VdF6Pvnw/O2Fm7ixZhdlRXRQNypL332mHu4+SlkRh5MxeMKZI4g6Axr/z99xaNhMZj+kpmVA4/dR/wxovF6911sDmr39JnEDGsZQGNA45M+jEpPL5djTS08NaK7cxdXlWykrooPCgMbaxUkllmxAMwpRIWxW+6ozoPn3+EVmDWiUh+f2tioxxagsVg/PK7Rvhvqj+hJjD3cfxZP9p+gKooS6UVnKw3NGR2VV69MR1dw6EmM31uzC67PXKCuig6mVJQYe2UA8PI8KCsGu7qOZHZVVb0QflG/flBi7OH89Pt58SFkRHSzsbTHw8AbiqKwwX3+mD8+bTR2G4o1qEWMnpyzFjycvKSuig8JnioQ++EwVqFaBGDvMsM8Uhw14wpmjljItG6DRhEHE2JP9p/DIXf8MaOKiorGjy0imDWhqDeIGNClh3YCm9uAeqNilJTHGsgGNua2NoAFNuH8g9vQax2xLaqMJg1CqeT1i7OzMVfj64DldQZSwdnbEACEDGk/2DWgK19Y/Axr7vLng5r6SGPP/9B2HR8yirIgeHVZMQ75/ShNjB4fOgN+nb5QV0SFH0YLosU3g8PzlO5yYSI6xQLeN8+FSvBAx5tF3IrOjsvKWL4XOa8i/y1/vP8P5uWvpCqKERCJB713LBQ/Pd/ccg3D/AB0o0z6FalRE20UTibF3l+/g2srtlBXRQWpggP4Co7JkiYnY0XUks4fnJZvUQTM99ZkaeHgD2WeK8VFZHPHDE86cNGm3eJKgAc2hEbPh+/4LXUGUUGdA4/P2I46NIxuVsECXddyAJjU/nrzC6RnkpIXYkUgk6LVjqV4a0BSoUh7tl00hxj7eeIDLSzZTVkQHqVSKfntX66cBTf0awgY0p6/i9kYPyorooHZUFuMGNGVbN0Kj8QOJscd7T+KRx3HKiuhgZGKSfHhOGpUVFY0dXUYwe3hetWc71BzQlRi7vdEDL09epqyIDopRWUamJiox1kdl1RnaC/90Jh+eX168Ce+v3aOsiA4WdjbJ1b6EUVnhfgHY05vdat/Gk4agVLO6xNiZ6Svw7eELyoroYJ3DCf0PrCOOygr29MH+gVOYPTxvPX+88KgsPfaZOjKK3K3K4egannDmpInCgMbMRrXaNyEmFjs6D0d8dIwOlGkftQY02w7i+ZFzlBXRIU0Dmm6j9NOAZsU2vL14i64gSphZWwlW+0YEBGF3zzHMVvs2HDsAZVo1JMbOzVmDL3efUFZEB7UGNF6+2NuP3WrfFjNHoWi9asTYiYmL4fniLWVFdLDL7YK+e4UNaA4OI5tpskC7JZPhWrkcMXZo+Cz8/qB/o7J83nzE8Qnkub8soHZUVn92R2XlLlMcXdbPJcaYH5W1YwkcC+RViSWPyhrH7KisAlUroP1S8uH5h2v3cHXZFsqK6CCVStFXzeH5zm6jEBUcSl8YBYo3rInmM0cRYy9PXsadzfsoK6KDulFZeuEzNaYfMfZwzzFmR2VxxA1POHPShWP+vIKnar/ff8HpGeQYC6gzoDk4dAazlZ85SxRG980LiDHPZ69xadFGyorokJYBzb7+k5it/HStWAYdV04nxj7ffowba3dTVkQHiUQCN3dhA5o9fcYzW/lZpE5VtJ43jhh7c+46Huw6QlkRHdQZ0CTGx2NP73HMmqSWaVEfjSeRDWieHjjN7EGqobExBh3ZSDw8j4+OgXuf8cxWflbu1ga1B5NHZd3dsh//XWLzINXY3ExwVFZMWAQ8+k5ktvKz1sBuqNStNTF2ddlWfL3/jLIiOpjZWGPQ0U3kw/M/gUybpDYcNwBlWjYgxs7OXoNfL/+jrIgOVk4OgqOyQrx8mTZJbTl7NIrUIY/KOjFxEbNjk+zz5oKbGp+pk5OXUFZEj/bLpiJfxTLE2KERs5kdm8QRLzzhzEk36gxobq7djU+3H9EVRAl1BjTRoeHYx3DbUnW3ToIGNJcWbYLn8zeUFdFBnQFNuH8g0zM/64/qi3LtmhBjZ2asYHaEjqWDHQYcWk80oAn29GHaMLPZtOGCBjTHxi1gtgrQNlcOQQMavw9fcXYWm1WAANBukbABzaHhs5itAnQskBe9dy0nxjyfv8HlpWxWAQJA57VzkLtMcWJs38CpzM78zFWqKLpvIo/K+nLnCW5tcKcriBISiQQ9ty2GU+H8KjG5XA53twnMVgG6ViqLDiumEWNvz99gdoSOVCqFm8cq2OXJqRKTJSbCvc8EZg0zi9athlZzxxJjTw+cZnaEjoGhIfofXA9LR3uVWEJsHDzcJjBrmFm2VUNBn6m7W/YzO0LHyMQEgwR8pmLDI7B3wBRmD1I54oQnnDkZQp0Bzd5+k5itAlRnQPPu0m1mqwABYQMaWVIS3N0mMFsFqM6A5vmR83h+9DxlRXSQSCTos3sF7F1zq8QS4+KZ3rwWrlkJbRZOIMbu7ziEd5dv0xVECamBAfrtW000oImLjMLefpOY3byqM6C5vmoHs1WA6gxoooJDcWDIdGYPUv/p2Bx1R/Qhxi7MX8+seWLyqKyNxMPzMF9/HGW4CrB6386o2qs9MXZ66jJmqwDNrK0w6OhGGBqrHp4Hfv+FU1PIPiUs0GB0P5Rr25gYOzpmPoK9fCkrooO6w3Pf/z7hwrx1OlBFh+bTR6BYgxrE2MGhMxD+J5CyIjrY5XZBv33kA/IfT14xa54IJPtM5a9CHpW1r/9kxISFU1ZEB6dCroI+Ux+v38fdrWyaJ3LECU84czKEkYkJ+h9YSzQjCfrpjROT2HX+rtqzHSp3b0OMsVwFaGppgX771xLNSH6//4Kzs8kVgixQZ2gvwfZElqsALexs0NdjFdGMxPP5G1xhuAqwyeShgu2JewdMYbYK0MbFWbDy8/Ptx7izaS9lRfRoPW8c8SBVLpfDo+9EZp2/HVzzCI5NenP2Oh7vPUFZET06rphOPkhlvArQpXhhdFw1gxh7sv8Us1WAEokE3TbNh30+1YPUhNg4ePSdyOxBar4KpQUPUu9s3ocP1+9TVkQHiUSC3juXwcpZ9SA1NjwCe/tPZvZQrXCtyoIHqVeWbcX3x/9SVkQHqYEB+u5dDXNba5VYREAQDg2byew9L9WsnmAX8rnZa+Dz9iNdQZQwNDZG/wPriJ5DId6/cXQsubuFBSp2binYhXxy0mIEfPOkrIjDIcMTzpwM41K8MNoumkSM3dt2EO+u3KGsiB7dNs6HtYuTyvW4yCjs6z+Z2SpA14pl0HzGCGLs+srt+PrgOWVFdJBIJOi1Yym5CjAohOkqwKJ1q6G+gDHF+XnrmK0ClEql6LNnpV5WAZZp2QA1+nchxk5OWQr/z98pK6KDgZER+u5dTawCDPjmiZMMVwFW6toa/3RqQYwdGT2P2SpAYzNTuHmsIs789Hn7kekqwNqDe6Bkk9rE2MGhMxAREERZER3MrK0EvUh+PH7JdBVgo/EDUbBGRWJsL8NVgJaO9oKGmclVgPspK6JHi1mjiP4zcpkMHm4TmTV7t8vtImiY+fLkZTw9eIaqHpq0WzKZOEInKSEB7n3GM2v27lw4P9ovm0qMPXI/jtdnr1FWRI8ua2fDNreLyvX46JhkjwJGzd454oInnDmZosGYfihcm1wFuI/hKkALe1v02kFOPny69YjpKsAWM0Yib4VSKtdZrwK0yeksOP/xzdnreLLvJGVF9Gi3eDJyFFM1T5QlJiaPU2G0CtCpYD5B88Qn+0/h5Sk2qwABoPOaWeQqwJhYuLtNYHbzmqtUUbReMJ4Yu7NpL9NVgN03LxCsAtw3gF2PggJVyqutAvzx5CVlRXSQSCTotXMZ0TwxIiAIB4fOYPaeF29QA/VGuhFj5+esZbYKUGpgADf3lUTzxBAvXxwbR+50YIHybZugWp8OxNiJiexWARoaG6OvxyqieaL/5+9Mm71X7dVe0IvkyMjZzJq9m1iYJ3cnEg5SvV69Z9bsHQDqDu8tOE7lwOBpzJq9m9vaoM9ucnfi1/vPmDV754gLnnDmZAqpgQHc9qwgVgGG+vjh6Jh5OlBFh7KtGvIqwFQEfP2JU1OX6UAVHSp1a6OmCnAu01WAQptXnzcfcWH+eh2ookPtIT1RorFAFeAQxqsABTavrFcBNp4wCAWr/0OMsVwFaOXkgJ7byKaYH67dw71t7M4CbDl7NHKXVTXSk8tkcO8zgdkqQPu8udB1/Vxi7OXJy3h26CxVPTRpv3QKsQowMT4e7m4TmK0CzFGkADosJxvpPdxzDG/O36CsiB5d1s3RyyrAPOVKChrpsWz2LpFI0HPrIqKRHutm74VqVETjiWQjPZbN3qVSKfrsXg5TK0uVGOtm7yWb1EGdoT2JMZbN3jnigSecOZnGqZCroAv0k30n8er0FcqK6NF59UzY5c2lcj0hJpbpzWvu0sXQev44Yuz2Rg98vPGAsiI6KKsAnRxUYjFhjFcBVq2AplOGEmNXlm5hugqw965lRBdo5qsAG9YUNFU7N3sNfP77RFkRHaQGBnDzWCVcBTh+oQ5U0aF8u6ao2ls/qwD77V2tn1WAvTugbJtGxNjhEbOYrgJ0c19J9CjwevmO/SrA+tWJsf2DpjJdBdh7F7ko4uv9Z7i5bg9lRfRoMnmIoKkay2bv1jmc0H0L+T2bdbP31vPGIWfJIirXZUlJ2NNnPLNm7w6uedSbvR85R1kRPTqsmA7HAnlVrrNu9s4RBzzhzMkSdYb2EqwCPMByFaCNtWAV4PdH/+Laqh2UFdGj8cTBKFCtAjG2t/9kxIRHUFZEBysnB8FZgMxXAc4Zg9xlBKoA3SYgPobNzWtyFeAcYoz1KsAOy6bCqZCryvXE+Hi49xmPpIQEHajSPjmKFEAHgVmAD3cf1csqwLioaHj0m8SsR0GeciXRcs4YYuzm2t34fOcxZUV0kEgk6LltMSwc7FRirFcBFq5ZCY0mDibGWK8C7C1UBegXgMMjZ+tAFR1KNa2L2kN6EGOnpy/H7w9fKSuig4GhIfp6rBI2e59I7m5hgYqdWuil2buRqSn67l0NqYGBSszvw1ecnbVaB6roUKN/F5RuUZ8YY9ns3dTSAn32rNBLs3dO9ocnnDlZQm0V4J9AHGTYEbhEo1rCVYCzVjNdBdhXoAow+JcPjutzFeD3X5QV0cHIxAR9966C1NBQJeb/6TvOMFwFWK1PR+EqQMZnAbp5rBKsArzIchXgiD56WQVoYaemCvDeU9xcx+4swKZThsK1sv5VAdq4OKOHmirAh7uPUlZEjzbzhasA3d0mMFsF6Jg/r3AV4OFzeH70PGVF9OiopgrQvc94ZqsAXYoXRtvFAmbv2w9xs3cGca1YBs1njiTGrq/aoZ9m78GhzJu9Nxjbnxhj2eydk/3hCWdOllFbBXjiEp4f5lWArJGjaEHBKsAHu47g7YWblBXRQ20VYN+JzG5e85YvhVa8CvAvokPCsH/QVGY3r2qrABduhOeLt5QV0YFXAQpUAU5juwqw315yFWDgDy+cmETubmGBip1bolK31sTY0bHz9bIK8Pf7Lzg7e40OVNEhrSrAcP8AyoroYGplqbdVgA3G9EeROvpp9t57J/kgVa/N3t0mMGv2bpsrh1qz98d7T1BWRI+2iyYJm733YdfsnZO94Qlnjkao1qcjyrYmVwEeGjEbYb/ZbGFJqwrw0uJNOlBFB3VVgPsGTkFUcChdQZSwsLNB751LiTHmqwCnDoNrpbIq1+VyeXIVYGSUDlRpHxsXZ3TfvIAY++/iLb2tAvRgvAqw0+qZxNjzw+fw4tgFyoro0XHFdDjkz6NyPTEu2VSN6SrARQJVgNsO8ipABnGtWAbNZ4wgxq6v3K6fVYBBIdg/eBqzB6lF61ZD/TH9iLEL89czWwUolUrRZ89KvTR7L9OyATd7T0XAN0+cnEL+LMMClbq1QYWOzYmxI6Pn6afZ+1u2zd452ReecOZoBIlEgp7bF8PC3lYlphdVgBPIjsAX9aAK0MTSQiUW7heAw6PIVe8sUKpZPdQe3J0YOzN9Bfw+slsF6OaxCoYmqpvXwB9eOMlwFWClLq1QqWsrYuzYuAUI8vSmrIgORqbJm1dSFaDvu884N4fdKsCaA7qiVPN6xNjBYTOZrgJ0c19JjHk+e42ry7dRVkSPBmP6oXBt4SrA6FA2qwAtHezQa/sSYuzTrUe4s3kfZUX0aK6uCrDvRKarALttFK4CfLLvJGVF9Gi3eDKxCjApISF5nAqjVYBOBfOh48rpxBjzZu9rZsE+X26V6/ps9n5n016mzd57bFlINHuPDdcDs/epw4gxls3eOdkXnnDmaAwbF2dBR+C3F27i4Z5jlBXRo82C8XApUVjluiwxkfkqQKFZgM8OnsGL4xcpK6JHx5UziFWACbFxTFcB5ipZRLAK8O7WA2xXAW5aAOscjirXYyMisZflKsBKZQWrAK+t2I5vD19QVkQHiUSC3juX6W0VoOAswLlr4f36PWVFdJAaGMBtzwq9rAIs27oRavTrTIydnLwE/l9+UFZEB0NjY/T1WEWuAvz6E6emktvxWaByd3VVgHP1swrwDdtVgLWH9NRPs3drK272TmBv/8mICQunrIgOem32Pns0cpcVMHvvMwHx0TE6UMXRV3jCmaNRKnVphYpdWhJjx8bOZ7oKsJ/ALEB9rgI8NGwmwv8E0hVECcUsQBI/n7JdBdhwbH8UqlmJGGO+CnAHuQXx082H7FcBli+pcl0ul8Od8VmAXTeQk4x6UQVYlFwFuKfPeCTGx+tAlfZxKuSKDiumEWOP957EqzNXKSuiR+c1s2CXN5fK9YSYWHi4TWC3CrBMcbSaN5YYu73RQy+rAGPCIrB/IONVgFOGEmMsVwGmZfZ+aPgsZu958YY1udl7KoJ/+eAY62bvvdoTY8ybvXsImL1//o7TDJu9c7IfPOHM0Tjd9bgKsNl0gSrAlTuYrgLstWMpzG2tVWKRgcFMOwIXq1cdDQRmAZ6fuxbebz5QVkQHqYEB3NxXwtjcTCUW6uOHo2PJbbosULZ1I1Tv24kYOzVlKdtVgHtXw8DISCUW8PUnTk8jVw6xQJUebVGhQzNi7MjouQjx/k1ZER2MzUzh5rFSsArw4oINOlBFhzpDewlXAQ6ejsjAYMqK6GBmY622CvD66p2UFdEjzSrA8AjKiuhg5eSAHlsXEWPvr97Dve0HKSuiR8s5Y5C7jEAVoNsExMew2Z2ozuz93+MX8fzIOcqK6KHO7N3DbQLTZu/tl04hxh7uPsq22fv6ubDJlUPluj6bvd9at4dZs3dO9oMnnDkax9LRHj2FZgHefIi7W/ZTVkSPFjMFqgD/t3lltQrQLrcLugrMAnx9+iqeHjhNVxBF1FUBujNcBehcOD86rCDPAnzscYLpKsAua2cTqwDjo2PYngVYprjgLMBbG9zx8eZDyoroIJFI0F1NFeC+AZOZPVQrWO0fwSrAy0s248fTV3QFUSKtKsCDw2Yye89LNKqFusN7E2NnZ66C77vPlBXRwcDQUG0V4HGGqwArdGgmXAU4YRHbVYB7BaoAP33HGYarAKv16YiybQTM3ofP0kuz91///se02Xu9kW4oWq8aMbZv4BREBoVQVkQHCzsb9NlFHo2kF2bvlcupXFeavUdE6kAVR9/gCWeOVijXprFgFeCJSYsR+MOLsiI6pFUFeGYm2YiJBdRWAY6agzA/NjevxuZmglWA3q8/ML15rTO0J4o3qkWMHRwyHVEhbI7WUFsF+PAFbq7bQ1kRPdRXAU5i9lDN2tlRbRXgg11HKCuih1AVoCwpCR59JzJ7qJZWFeC/DHsUtFdXBcjwoZq6KsAHu44w7VGgrgqQ5UM1dVWAN9fuxtcHzykrooNEIkHPbYth4WCnEosOCcOBoeSCAhYoXLMSGk0cTIxdXLiRXY8CqRR99qwQNHs/xnB3ojqz99PTljPbnag4SBUye2fZo4CTfeAJZ47W6LJ2Nuzy5FS5nhATiyOj5jC7ec1dpjhaC8wCvLXeHb9e/kdXECUUVYCWjvYqsejQcByfQE7WsEDBav+gyeQhxNiVJVvg//k7ZUV0kEql6CNQBRjuH4gz09kds1CiUS3UGdaLGDs3ezWzZksGhoZwc18JI1MTlViwpw8uzF+nA1V0qNChGar0bEeMnZy8hFmzJXVVgH4fvuLaSnbNlqr16YiyrclVgEfHzGN2zIKppQXc3FcSqwA9n7/BHYY71dRVAR4aPovZMQvqqgA/337M9Lz6plOHwbVSWZXrcrkcB4fOYHbMgo2LM7pvXkCMvTl7nelOtTbzxyFnySIq12WJiTg4bCazYxYc8+dFp9UzibEn+08x26kGCJu9J8bF4/CI2czmJXKWKCxs9r5lP7OdapzsA084c7SGmY01egtsXt9euIlXp69QVkSPxpOGoEDV8irX5TIZDg6dwWx1kLWzI3puIzsCPzt4hlnjHQBoNXcscpUupnI9MT4ehxjeyNjny40ua2cRY/e2HWTWeAcAOiyfBseC+VSux0VFM10p4lKsENoJVAFeX72LWeMdAOi6YR6xCjA6JAwnJ5NHSbFA3vKl0HL2aGLs4oL1zLbcSyQS9Ny+GBb2tiqxsN9/cG72avqiKFG4VmU0HD+QGDszYyWzLfdSqRR9dpOrAAO//8LlJZt1oIoOpZrVQ61B5CrAExMXIyo4lK4gShgYGsJNoArQ979PuMFw11KlLq1QqWsrYuzIqLmIjYyirIgORqamyaZqBLP374/+ZbprqdbAbijVrC4xdmj4TCTExVFWRAd1Zu8frt3Di6PnKSuiR8Ox/VG4VmWV68pDtcREHaji6As84czRKiWb1EHNgd2IsaOj5zE7O0hRBUgarfHz6Wvc33FIB6roUKFDM1Ts0pIYOzhsJhJi2awOMjIxSa4II4zW+Hj9Pp4fPqsDVXSo3rczcfPK+kbG1NJCcLTGy5OX8eb8DcqK6FF/VF8UqllJ5bosMRGHGK4OsrCzQU+B0RqP3I8zbcLSbOowokdBQmwcDo9k91DNxsUZXdbPJcZubfDAr3/Z7FoCgDYLJsC5SAGV67HhETg2nlwZyQKOBfKi/bKpxNiVpVvg9/ErZUX06LRqBmxzu6hcjwgIwulp7LZf5ypZBK3mjiXGzs9Zg+BfPnQFUaTbpgXE7sQQL19cmL9eB4ro4FqprGB34qkpSxH+J5CyIjpIJBL02rmMeKjm/+k7rq3YrgNVdChWr7qgR8HRsfMRExZOWREdpAYG6LNnBfFQzevlO9zZvE8Hqjj6Ak84c7ROh2VTyRsZ7984P3ctfUGUcCleWNBs6dTUZQj3D6CsiB6d18wmjln48+UHri7fpgNFdHCtWAb1RvYhxo6NW4DoUDZnGkskEnTbOJ84ZsHr1Xvc3uihA1V0KFq3Gqq5dSTGDo+cjfjoGMqK6CCVStFjy0LimIWv95/hkftxHaiiQ9nWjVC+fVNi7OCwmczONDYwMkKPrYuIYxbeXbqNlycv60AVHar0aIviDWuqXJfLZDjAcNeSsZkpum0id2s8P3wO76/epayIHnWG9ED+KqpmS0kJCTg0fBazByymVpboun4uMXZv+yF8f/SCqh6aNJ4wCLlKFVW5Hh8dgyOj59IXRAlLBzt0WDGNGLuxeid83n6krIgeLWaOgmOBvCrXo0PCcHISuWOTBexyu6DNwgnE2MWFG/Dn60+6gijSbvEkWLs4qVwP9wvAmZmrdKCIDs6F86P5jJHE2NmZqxDq609ZEUdf4AlnjtaxsLdFp1UziLGb6/Ywa84AAM2mjyC23MeEReDERHY3Mra5cqDtoonE2KXFm5jeyLRZMAE2OZ1Vrof7B+LMDHZNI50KuaL5zFHE2NlZqxHi/ZuyInp0XDEd5nY2KteDPX1wYQG71UG5yxRHo/EDiLGTk5cgMjCYsiJ6dFk3ByYW5irX/T58xfXVO3WgiA4FqlZA7SE9iLGjY9jtWpJIJOi+eQEMjVWrgzyfvcbdbQd1oIoOJRvXRuXubYixQyNmM9u1JDUwSD5gIXQtfbr1CE8PnKYvihLl2zdFmZYNiLEDDHctGRgZofuWhcTY6zPX8PrsNcqK6FHdrROK1Kmicl2WlJR8qMZo15KxuRm6biQfqj3eexKfbj+irIge9Ub0Qd4KpVSuJ8bFM921ZGZjjc5ryKMA72zaC8/nbygrokeTyUOQo2hBleuxEZE4No7dUYAc3cITzhwqVO3dAUXqVlW5zvxGxswU3QWqg1g3Z6g7rBfyVSyjcj3ZnIHd6iAzayt0XjubGLu7ZT9+PntNWRE9Gk8cBJfihVSux0VG4dg4dtuvrZwc0GE5uTro2sod8H33mbIierScPQb2+XKrXI8KCsHJKUt1oIgO9nlzofX88cTYhfnrEfjDi7IierRdPBlWzo4q10N9/HBuzhodKKJDjqIF0XQquWvpzPTlCPNjc6YxAHRaPRNmNqpdSwFff+Ly0i06UESHfBVKo/7ovsTY8QmLEBXCbtdS1w3zYGRmqhLzefMRt9a70xdFiSK1q6BG/y7E2JFRcxEXFU1ZER2Sjb8XEbuWvj98gUd7julAFR3KtKiPCh2bE2OHWO5aMjQU7Fp6f+Uu/j1+UQeq6FCpa2uUaFxb5bpcLme6a8nIxETwUO3F0Qt4d/k2XUEcvYAnnDlUkEgk6LFlEXGm8Y/HL/Fg52EdqKJDqWb18E9n8kzjQ8PYNWeQGhigp9BG5irb5gwVO7dEyaZ1VK7L5XIcGDKd2eogIxMTQcfzf49fxNuLtygrokeN/l1QsPo/KtcVjuesHrCYWJij64a5xNjD3Ufx9f4zuoIoUn90X+QuW1zlekJMLI6MmsPsPbews1HbtfTrJbszjZtNGw6nQq4q12PCInB8Anm2NwvYuDgLutxfWbIF/p+/U1ZEjzbzxxONQiP+BOLMdPIMfxZwLJAXLWeRu5bOzV6NYC9fyoro0WHZVKJRaPAvH1yYv46+IErkKlkEjScOIsZOTl6CiIAgyoro0WXtbOJMY7+P33Bt5Q4dKKJDgSrlUXtoT2Ls6Jh5iAmPoKyIDhKJBN02zSfONP714i3ubNmvA1V0KN6gBqr0bEeMHRoxG/ExbHYtcXQHTzhzqJGzRGE0njSYGDs1dRmz5gwA0HnNLJhaWapc9//MtjmDa6WyqDuCPNOYZXMGiUSC7psW6KU5Q7H6NVC1dwdi7AjrM423LiI6nn+99xSPPNidaVyuTWOUa9uYGDs4dAaSEhIoK6KDgaGhoIHg2ws38er0FcqK6FGlZzsUq19d5bpcJsNBlquDTE0FD9WeHTyDD9fvU1ZEjzpDe8K1UlmV64nx8czPNO6ybg4xdm/bQXx//C9lRfRoNGEQXEoUVrkeFxWNY2PZbb+2dLRHhxXTibHrq3fB579PlBXRo+Ws0XDIn0flelRwKE5OXqIDRXSwy5MTbRaQu5YuLliPgO+/KCuiR7vFk4hdS2G//+DsLHZnGucoUgDNpg0nxs5MX8H0TONOq2YQu5YCv//C5SWbdaCIwzI84cyhSosZI7k5QypYN2dou3CCXpozOBVy1Vtzho4rp8Pc1lrleuAPL1xctFEHiuiQp2wJNBxHnml8YuJiRAaFUFZEj67r58LY3Ezluu+7z7i+Zhd9QZQoWL0iag/uTowdHc34TOMtC4kzjX8+fY37Ow7pQBUdSjapg0pdWxFjh4bP0suZxh9vPMCzQ2d1oIoO/3RsjlLN66lcl8vlyYdqjHYtGRobCx6qvTx5GW/O36CsiB7V+3ZC4VqVVa7LEhNxaNhMdkcBmpuhm8BM40fux/Hl7hPKiuhRb6Qb8pYvqXI9ITaO6ZnG5rY2gjONb2/ci1//stu11HTKUDgXKaByPTYiEsfHszsK0DqHE9ovnUKMXVm6BX4fv1JWxGEZnnDmUEWfzRnqDu+NfP+UVrmuD+YMXQRmGt/ZvI+bMzCItbMj2i+bSoxdW7Edvz+wu5FpOWcM7PLmUrkeFRSCU1OX6UARHezz5UareeOIsQvz1iHI05uyInq0WzIFVk4OKtdDvH/j/Ny19AVRwqVYITSZQp5pfHracoT7B1BWRI9Oq2fB1Fq1OujPlx+4unybDhTRwbViGdQbSe5aOj5+AaJD2Z1p3G3jfBiZmqjEvF9/wO2NHjpQRYcidaqiet9OxNiRUXOY7lrqvmUhcabx1/vP8Mid3a6lMi0boEKHZsTYQT2dafzu0m28PHlZB6roULl7GxRvWFPlulwmY3umsZqupedHzuP91buUFdGj1uAeKFC1vMr1pIQEpruWOPThCWcOdbg5g/6ZM1Ts0opszsD6RkaPzRlqDuyGAtUqqFxPSkjAwWEzmN3ImFpaoOt6cvv1g52H8fXBc8qK6NFwTD/kKl1M5Xp8dAyOjJ5LXxAlLOxt0XEluf365ro98H79nrIiejSbNhyOBfOpXI8ODceJiex2LdnmyoG2iyYSY5cWb4L/lx+UFdGjzYIJsMnprHI93D8QZ2as1IEiOjgVzIfmM8kzjc/OWo0Q79+UFdGjw/JpMLezUbke9NMbFxdu0IEiOuQuXQyNxpO7lk5OXoLIwGDKiujRee1smFiYq1z//f4Lrq/eqQNFdChQtQJqD+lBjB0ZPZftrqXNC4hdS57PXuPutoM6UEWHEo1qoXL3NsTYoeGzmJ1prDhUI3Utfbr1CE8PntGBKg6L8IQzRyfoqzlD/srlUGdYL2KMmzOwSfEGNVC1V3tijGVzBqlUip4CM42/3HmCJ/tO6kAVHcq1bYKyrRsRY0zPNDYyQg+B9us3Z6/j1ZmrlBXRo2rvDihSt6rKdVlSUvKhGqvt12am6L6J3K3xZP8pfLz5kLIietQd1gv5KpZRuZ4YF4/DIxjuWrK2QmeBrqW7W/bjx9NXdAVRpPHEQXApXkjlelxkFI4yPNPYyskBHZZPI8aurtgO33efKSuiR8vZY2CfL7fK9aigEJycslQHiuhgnzcXWs8nzzS+MH89An94UVZEj7aLJ5NnGvv64+zs1TpQRIccRQui6VThrqUwvz+UFdGj0+qZxJnGAd88cWUpuzON81Uojfqj+xJjx8cvRFQIm11LHLrwhDNHJ+izOUPbRRNhnUM/zRmaTx9BjJ2ZsRJhv9ndyAjONGbcnCFPuZJoMKYfMXZi4mJEBYfSFUQJiUSCrhsEZhr/9wk31u3RgSo6FK5ZCTUHdiPGjoyai9jIKMqK6CCRSNBjyyIYGBmpxH48fokHOw/rQBUdSjWrh4pdWhJjh4bPREJcHGVFdJAaGKCnQNfSh2v38OLoeR2ookPFzi1RsmkdleuszzRW17X08sQlvL14i7IietTo3wUFa1RUuS5LTMSh4TOZPWAxsTBHt43ziLGHu4/i6/1nlBXRo/7ovshTroTK9YSYWBwZNYfZe25hZ4NOq2YQY7fWu+PXS3ZnGjebNhxOhVxVrseGR+D4BHJBAQvYuDij7eLJxNiVpVvh//k7ZUX0aDN/PGxzu6hcj/gTiDPTl+tAEYc1eMKZozO4OYMqrJszNJkylDzTODwCxxg3Z2i3RGgjw7Y5Q6u5Y2GXJ6fK9YiAIJyexu5MYwfXPGg5Zwwxdn7OGgT/8qGsiB7tl06BpaO9yvUQL19cmL9eB4rokLNEYTSZPIQYOzV1GcL/BFJWRI/Oa2bD1MpS5br/p++4tmK7DhTRwbVSWdQdQZ5pfHTsfMSEhVNWRAeJRILumxYQu5a8Xr7Dnc37dKCKDsXqVUe1Ph2IsSMjZzM901iwa+nuUzzee0IHquhQtnUjlGvXhBhjumtJzSjAtxdu4tXpKzpQRYcqPduhWP3qKtflMhkOsjwKUM1M42cHz+DD9fuUFdGjzpAecK1cTuV6Ynw80zONTa0s0WUdeRTgvW0H8ePJS8qKOKzBE84cnaHP5gyVuumpOYOJibA5w+Fz3JyBQdRuZLYfwreHLygrokejcQOQq1RRleuszzS2dLBDhxXk9usbq3fC5+1Hyoro0XzGSDgWyKtyPTokDCcnsT3TuM3CCcTYxYUb8OfrT7qCKNJ24QRYuzipXA/3C8CZmex2LTkVckXzGSOJsbMzVyHEx4+yInp0WDGdONM48IcXLi7aqANFdMhdpjgajiPPND4xcTEig0IoK6JH13VzyF1L7z7j+ppdOlBEh4LV/kGtQeSupaOj57E903jLQuJM459PX+P+jkM6UEWHkk3qoFLXVsTYoeGzkBDL6ChARdcSYabxxxsP8OzQWR2ookOFDs1Qqnk9leusdy1x6MATzhydos6c4egYxjcyemrOULxhTVTu0ZYYOzRiNrsbmbTMGQ6cpi+KEuXbN0WZlg2IsYPD2N3IGBgZCbZfvz5zDa/PXqOsiB7V3TqhSJ0qKtf1YaZx143kWa6P957Ep9uPKCuiR93hvZHvn9Iq1xPj4pnuWjKzsRbsWrqzaS88n7+hrIgeTSYPIXctRUTi2DiGu5acHdF+6RRi7NqK7fj9gd2upZZzxsAuby6V65GBwTg1ld2uJft8udFq3jhi7MK8dQjy9KasiB7tlkyBlZODyvUQ7984P3ctfUGUcClWSH3Xkn8AZUX06LR6FkytVWca//nyA1eWbdWBIjrk+6c06o0kdy0dG7cA0aFszjSWSCTotnE+jExNVGJer97j9kYPHajisAJPOHN0jpA5Q6iPH87NWaMDRXTIUbQgmk4bRoydmc64OcOqGWRzhq8/cXnpFh0oooNac4YJi5g1Z0ieaTwPRmamKjGfNx9xa707fVGUKFK7Cmr070KMHRk1F3FR0ZQV0SG5OmgRpIaGKrHvD1/g0Z5jOlBFhzIt6uOfTi2IsUPDZiIxPp6yIjqo61p6f+Uu/j1+UQeq6FCpa2uUaFxb5bpcLme/a0ngUO3fYxfw7vJtuoIoUnNgNxSoVkHlelJCAg4Om8HsAYuppQW6bphLjD3YeZjprqWGY/ohd5niKtdZ71qysLdFR4GZxjfX7YH36/eUFdGj2fQRcCyYT+V6TFgETkxku2up7aKJxNjlJZvh/+UHZUX0aLNgAmxyOqtcj/gTiDMzVupAER2cCuZDi1mjibGzs1Yz3bXE0S484czRORZ2Nui0eiYxdnPdHvj894myIno0mzoMToXzq1yPCYvAKYbdr21cnIVnGi/ZwrRppDpzhnMMu187FsiLlrPJG5lzs1czbRrZYdlUWDjYqVwP/uWDS4s36UARHXKVLIImkwYTYycnL2H2gAUAOq+dDRNLC5Xrfh+/4cba3TpQRIf8lcuhzvDexNjRsfOZPmDptmk+cabxrxdvmW6/Lt6gBqr2ak+MHR45h9kDFrUzje88Ybr9unzbJijbphExdmj4TGYPWAyMjNBjK9k47c3Z63h74SZlRfSo2qs9itarpnJdlpSEQyPY7WAxNjNF903krqUn+0/hy90nlBXRo+6wXshXsYzK9cS4eBwdQzbSZAEzayvBUYB3t+xn2mup8cRBcClRWOV6XGQUTkxk1zSSo114wpmTLajSoy2KNaihcl0ukzE991KdOcPjvSeZflOrPVjYnIFlMzlTK0t0XjubGLu79QD8Pn2jrIgejcYPRM6SRVSux0VF4yzDyXZLR3t0WC480zjYy5eyInq0mDkKDvnzqFyPCg7FJYZnndrldkGbBeOJsUuLNiEiIIiyInq0XTgB1jlUu5bCfP1xfdUOHSiiQ44iBdBs2nBi7NzsNYgJj6CsiB4dV06Hua21yvWAb55MGwjmKVcSDcb0I8ZOT1vO7IgwAOi6fi5xprH36w9MGwgWqlERNQeSZxqfmLSY2RFhEokEPbYshIGRkUrs24PnTPvulGpWD/90bkmMHZ+wiNkRYcqZxgJeS++v3dOBKjr806kFSjato3JdLpfjxMRFzB6wGBobq/Va4gaCnMzAE86cbIG6mcbvLt9h2kyuZOPaqNStNTF2fMJCZt/U1JkzvDh6Ad8fsduW+U/H5kRzBlliItOV7YbGxugh0H79cPdRps3kqvfthMK1KqtcT4iNY7pFz9jcDN0EZhrf3uDBdDdDvZFuyFu+pMr12PAIXJi/XgeK6GBuayM40/jq8m1MdzM0nTIUzkUKqFyPCAhieu6ldQ4nwa6lC/PXM93N0GruWNjlyalyPfiXD26u26MDRXRwcM2DlnPGEGNnZq5itpsBANovnQJLR3uV634fvuLBzsM6UEQHl+KFhWcaT1nKbDcDAHReMwumVpYq1z2fv8Hzw+d0oIgOrpXKou4I8kzjExMXMdvNIJFI0H3TAmLX0qdbj5juZihWrzqq9elAjB2fwG6ynaM9eMKZk21wKVYI9QUqRU5MWszsmxoAdFw5gzjf9vPtx0y/qeX7p7Sg+/XxiYuZfVOTSCTosm4Ocb7t6zPX8PnOYx2ookOROlWJByxymQwnJy/RgSI6SKVSdN0wl1gp8mQf290MZVo2QOkW9VWuJ8bH48z05TpQRAcDQ0N03UBuO2W9m6FStzYoXFvVNDIuKpppbwYjU1PBZDvr3Qy1BnUnHrBEh4Qx3c1gamWJDsunEmOXFm9mupuh4dj+xAOWMF9/XF+9UweK6GDpYIc2CycQY+fmrGW6m6H59BHEsXAB3zxxZ8t+HSiig11uFzSfOZIYY72boc2C8bCwt1W57vPmI9PdDE6FXNF4osBYOIa7GQCg/bKpxLFw3x48x6tTV3SgiCNmeMKZk61oPn04cdYp629qdrld9PZNrfW8ccQ3te8PXzDdopejSAHUHd6LGDsxcTGzLXoA0G7JZL3sZshbvhSquXUkxljuZgCADiumE7sZnh85j++P/9WBIjoUrlUZFTo0U7kuS0zEqansjg6SSCTouHI6MfZg1xGmvRlKt6iP4g1rqlxPiI3D2ZnsdjNIDQzQcSXZWIz1boZK3dogfxXVEWGsdzMYGhuj/bIpxNjVZVuZNr+uOaArcURYxJ9AXF2+TQeK6GBsbiZoJneR8W6GBqP7wt41t8r14F8+uMmw+bW5rY3edjM0nTIUVs6qI8L8Pn5jupvBxsUZTacMJcZOMt7NwNE8POHMyVaY29qgldCb2oyVTL+pNZk0mDj30u/jN6YNh6xzOKHp1GHEGOstei1njYaZjZXKdc/nb5g2HHLMn1e4m2Ei290MbRZM0Mtuhlwliwh3MzDeotdu6RRyN8Ppq0x3MxSoUh6Vu7dRuc66N4Mi2U7qZmDdm6F4w5qC3QwsezMk33Nysp31boby7ZoSx0XFRUXj3Gx2uxkMDA3RYQX5UO36qh1MdzNU7dWe2M3AujeDkakp2guMDmLdm6HO0J5Ek3vWvRlMrSzRev44Yoz1boZG4wfCJlcOlesBX38y3c3A0Tw84czJdtQe0oPcovf7jx68qZFNps6z/qY2boBwix7DhkOWjvZoPoPcondm+grEx7Dbotd8+nByi97bj3jkwXA3Q56caDxhEDF2ctJiJCUkUFZEj1Zzx/JuhlSw3s3QdvEkve1mqCo4A5Hxbobl0/TSm6FI7Soo376pynXWvRn0upuheT3ezZAK1rsZKnZtTTQ814duhg7LyKODWPdmqDmgK1xKFFa5HvEnkGlvBn3uZuBoFp5w5mQ71LboMf6mVqN/F3KLHuOGQ+re1Fg3HKo/yk2wRe/WenYNh9S16J2dyXg3w+Qhwt0Metqip8/dDCwbDqntZmDcm6Htwon62c1QqihqDexKjLHszQAkm8npozdDgaoV9NKbQV03w5N9p/S2m4FlbwapVIpOq/S0m6G9mm4Ghr0ZDAwN0VGgm4F1b4ZqvTsgT7kSKtejgkNxefEmHSjiiBGecOZkS8q3aypoOHR29modKKKDuhY91t/UqvbuIGw4tHCDDhTRwcjUFO2Xkg9YWDccqjO0p2A3w7WV23WgiA563c0wfiDvZkjF6WnL2e9mEPBm4N0MbNJKjTfDvycu6UARHXIULai33QyC3gyXbuP9tXs6UEQHoW4GuVyOExPZHhcl1M3AujcD72ZQhfluBj32Zui0aiYxdmu9OwJ/eFFWxBEjPOHMyZaoe1N7uPsofN5+pKyIHqWb10PxRrVUrifExuHMDIbf1KRSdBR6U2O8Ra9S19aChkPn563TgSI68G4G3s2QEn3oZnDIn0fluj50Mwh5M+hDN4OQ4RDvZmAT3s2gyomJi/Sym+HTrUfsdzPoqTcD72b4G332ZtDnbgaWvRk4moMnnDnZFrWGQ6y36K2YJvCmxrjhUIMaKNOygcr1pIQEpt/UJBKJ4AnyPdZb9AS6GeKjY3g3A6Oo7WZg3HConZDhEOPdDPrtzUA2HNLXbobA7794NwOjqOtmeLxXj7sZEhMpK6KH3nozFC2IusP0tJthsUA3g556M/BuBna7GTiagSecOdmatosnwdBEP9/Uqrl1JMZYNxxqr6eGQ4VrVUaFDs1UrsuSkvS2RY93M7CJum4G1g2H1HUzsG44pK/dDDUHdOXdDKng3Qxsoq6b4czMVXrbzfCAdzMwScvZetrNUIB7M6RGn7sZTjDuzcDJOjzhzMnWOObPiwaCLXpsv6m1UWc4dP6GDhTRIVfJInrbotdOX1v01HQznGC9RY93M/wF6y166roZmDcc4t4MKjDfzdCrvd56M/Buhr8J8/XX226Gc7PX6GU3A/dmYLybwd5W5breezPoYTfDtwfPme5m4GQdnnDmZHuaTRNo0XvL+Jtabhc0njiYGDvBuOFQayHDoUf/sm04VKSAoOHQ8QmLmG7Ra7t4ErFF7/2Vu3h35Y4OFNGBdzPwbgYF+mw4pBfdDAKGQ0x3MxgYoOPKGcSYPnsz8G4GNuHdDKroQzeDvWtulev60M3Qknsz/AXvZmC3m4GTNXjCmZPt0WvDoUmDYZ1D9U3N/9N3pg2HrHM4oenUYcQY629qQoZDv168xbNDZ3WgiA7qDIdOTlqiv90MLLfoqetmYLxFj3cz/I1eeDMIGg4x3s0gYDikz94M+tzNcG7OGh0oogPvZtBPb4b2etrNUGdoTzgVzq9yXZ+9Gc7pqTdDwDdP3NmyXweKOGKAJ5w5oqDO0J6ChkPXVm7XgSI6JL+pjSfGmDccGjdA0HDo9qa9OlBEB0tHezSfOYoY04sWPaFuBvfjOlBEB3XdDCf1tZvh4QvezcAoQt0M3JuB3QOWDium826GFOhzN8ODXUfg898nyorowbsZVGHem6FbG8FuhvPz1ulAER0MjY3RYflUYkxvuxn+BOptN8NFxrsZOJmHJ5w5osDAyEhv39Rq9O8i3KK3dIsOFNFB7Zvagg2ICg6lK4gi9Uf2IRoOhXj54ua63TpQRAe13QyzViE2MoqyInoIdTP4ffzGuxkYhXczqMK8N8OCCdybIRXcm4FN1HYzsO7NwLsZ/kIfvBmEku339KGboVZllevcm0H/uhmigkOZ7mbgZB6ecOaIhnJtmxBb9OKjY5h/UxOqFLmxZheCf/lQVkSPqr076G2LnpDh0GXGW/QEDYf0okWPdzOkJPD7L/YNhwS6Gc5MX6G/3QwsezOoMRzi3gxsoq6b4cTExex3M5jwboaU8G4GNilSuwrKt2+qcl2WlMR+N8MqcrJdn70Zzs7k3QwcjgKecOaIhuR5eMJvar7vPlNWRI9SzeqheKNaKtcTYuNwdtYqHSiig1QqRUeBGYi3Nngg8IcXZUX0qNS1NQpULa9yPTYiknnDIbXdDH5sdzPkKlVU5XpEQBCuLt+mA0V0MDY3Q7vFk4ixC/PXIzqU3RY9oW6G4F8+uLXBnb4gSqTlzRAfHUNZET2aTB4i6M3wYNcRHSiiQ1rdDCwn21vOHkPsZvB8/gYvjpzTgSI6OObPiwZC3QyT2E62q+tm+O/iLR0oooO6boYTk5YwnWxvv2yqYDfDl3tPdaCIDmq7GVhPtgt0MzzeexJer97pQBUdijesiTItG6hcT4yPx5kZK3SgiJOd4QlnjqjIX7kcKvdoq3JdLpPhwnx252RJJBJ0XDGN3KK3/zT8P3/XgSo6FG9Qg/imlpSQgEuLN+lAER3Utejd334IId6/KSuih7puhmsr2J3ZntyiN40Yu7luDyKDQigrokcVNYZDt9a70xdECXXdDFeXb2N6jIy6boZ72w/qQBEd1HUzXFq0CQlxcZQV0UNdN8Pjfad0oIgOlg52gt0M5+etY3qMTLNpAt0Mbz7i1akrOlBEB3XdDOfmrGE68dpq7lhiN8O3B8/x4fp9HSiig7puhvMMm2UCarwZLt3G98f/6kARHdR1M7A8vxsA2i+fRu5mOHKe6SJATsbhCWeO6Gi7aCKxRe/fYxeZfoETelOTy2S4uJDd8RKA8JvaI/fjCPzJbpWzkOFQYnw8LjM8v1ud4dCdLfsR7h9AWRE9hLoZ4iKjcH31Th0oooO6boYba3YhJiycsiJ6VOrammg4FBUUgjsMG6QaGhuj/bIpxNiVZVuZHiki5M0Q4v0bD3cf1YEiOqjzZri0cAPTVc5C3Qz+n77j+ZHzOlBEB3XdDBfmrWO6yrnJ5CGwclbtZvj14i3eXripA0V0sHFxRtMpQ4mx83PXMp1sF/Jm+HTrEb7cfaIDRXRQ581wgfHEq1A3w+vTV5muchbqZpDL5bi4gN1OXE7G4QlnjuhwzJ8XdYapniDrwwtc63njYGBkpHL96YHT8P/yQweK6JCrZBFUJyTbZYmJuLx4sw4U0aPtoonEyvYHOw4jxMdPB4roUKBKeVTo2FzlekJMLK4yXOUskUjQXqDi9fYGD6arnIs3qIESjWurXI8ODcdNhqucJRIJ2i0hJ16vrdzBdJVz+XZNicn2cL8ApqucDQwNBROvl5dsYbrKuWrvDsRke+APLzzZz26Vs5GpKVrPG0eMXVywnukq59pDesDeNbfKdZ+3H/H69FUdKKKDqZUlWswcSYxdmLeO6cRrw3EDYOXkoHL9+8MX+HjjgQ4U0cHS0R6NJw0hxliveG02bThMrVWT7e8u38GPJy91oIgOdnlyov4oN2KM5RGIANBqzlgYmZqoXH9x9AJ833/RgSJOdoQnnDmipOnkoXr5AmefLzdq9O+scl0uk+HSwg06UESP5jNGQmpgoHL94Z5jTFc5uxQvjErdWqtcT4yPxxWGq5wBoOXs0cTrdzbvY7rK2bVSWeIYmdiISNxYs0sHiujRUqAS7sbqnUxXORerX53o9B4ZGMy0caJEIkHLOWOJsStLtzBd5VyubRPkKVdC5XqIly8e7TmmA0V0kEqlaDGLPF7i4sKNTFc5V+7RFk6F86tc9/v4DS+OslvlbGhsjObTRxBj5+etZbrKudagbrDJ6axy3fP5G6ZnOZtYmKPxpMHEGOtVzvVHucHczkbl+qebD5me5WxhZ4MGo/sSY6wn2xtPHAxjczOV669OXYH36/c6UEQHm5zOqDW4u8p1fSgC5KQfnnDmiBKbnM6oPaSHynV9eIFrNm24QJXzGfz5+pO+IEo4FXJF1d7tVa7LEhNxZQnbVc4tZo0mVjnf33EIob7+OlBEhzxlSxBHiiTExOLayh06UEQPocTrrfXuiAoOpSuGIoVrViKOFIkODcetDR46UEQHiUSCVnPHEmPXV+5AXFQ0XUEUKd28Hlwrk6uc7+84pANFdEhOtpN/zy8v2YLE+HjKiuhRsXNLuJQorHI98PsvPDlwmr4gShgYGgpXvC7YwHSVc/W+nWCfj1Dl/OYjXp9ht8rZyNRU0CzzPONVznWH94alo73K9W8PnuPTzYc6UEQHM2srNBo/kBhjfbxEw3EDYGplqXL93aXb+PH0FX1BlLByckDdEX2IMdarnJtOGUYcdfriyHn8/vBVB4o42Q2ecOaIliaTh+rlC5yDax7U6NdJ5bosKQmXFrE9y1m4yvk4gjy9daCIDjlLFEbFrq1UrifGxePKMj2ucv4TSFkNPfJXLofSLeqrXNeHKmeheZ/XV+9ETHgEZTX0KNagBgrVrKRyPSIgCHe27NeBIjpIJBLBe35l6RYkxLJd5Zy7bHGV68G/fPDI/bgOFNFBamCAlgJVzpcWbkRSYiJlRfSo0rMdnAq5qlz3+/AVL45d0IEiOhgaG6PZ9OHE2MX565lOvNYa1B3WLk4q1z2fvca7y7fpC6KE2ipnxpPt9Ue5wdzWWuX6xxsP8PX+Mx0oooOFvS3qC1Q5X2Q88dp44iBilfPLk5fh/eaDDhTRwTZXDtQeLFAEyHj3NSd9SOQsv9pzmOfImLm4RZjtWbl7Gww4yO4bW5CnN2YVrgdZqg9lUgMDzPt0k/hhhhXc+07AY48TKtdrD+mBnlsX60ARHXzff8GC0k1UNuiGJsZY+P0ebHPl0JEy7bO1wxCim33jSUPQcfk0HSiiw4+nr7CsajuV66bWVlj04x4s7G3/ui6XyyGXyZCUmAhZYhKSEhKS/6v4///9V5aYiKQUccX/p/xv8vcnqnxPyu+VJ8kgkUoAiQRSqRQSqRQSqeR//5X+79r//3/ytb//XxFP/f2npy4nmq3UGtwDNft3/uv7pX893/+uGRjAyNQERqYmMDQ1gbGZKfGwKrvx4fp9rGus6lFg5eSAhT/uwcTCXAeqtI9cLsfSKm3h+fyNSqzr+rmoP6ovdU20eHnyMrZ1VDXYss+XG/O/3IKhserBOgvIkpIwv3QT+H38phJzc1+J6m6qB+us8ND9GPb2m6RyPWfJIpj15rIoXqsyQ2J8PGYVrocQL1+V2NBT21C+XVMdqKLDjXW7cWzsfJXr+auUw5THp4ldbCwQGxmFmQVqIzIwWCU29sZBFG9QQweq6HBhwXqcm71a5XrxRrUw9hq7h8iRQSGYWaA2YiMiVWJTn55BfkJHEyucmLQY11aq+sxU6NgcQ46zWyAU4uOHWYXqIDHu784siUSCOe+v/R97Zx0WxfeF8XeX7hakQWxREVuxu7u7/dotYQt2d3d3d4uN2KISkoJ09+7vD4SfeGdgY3YHhv08j49yZpg9eJk477z3XJhVIWc0KSg7KARnBaWahIgoeNi7lMkL3NFxrpTTjRuP7Ith+9ewkJF8iPoRhMVVWkP4T88/JRUVLPN/SDllkyvsHTCZcjX7VtNGot/GRSxkJB9C332Gp1NnIq6qqQHPn08pF6Zhi9zsbGSmpiErLQNZaen//5OaXujrzEJf/9k3NY34OuLLD2Qmk4vGqWpqQFlVhRCKFdDDV1YuEKFV1NWgoqFeIEj/P6ZWaJ98sbrQPrTfq065j4q6GvjKyiIJCkKhEGua9kHgMx9iW++17mg7a6ws/mtKBB+u3sP2rqOJuJ65KZYHPIKKOrkKPBcQCATwrN0J4R/9iG2Dd6+Ay1iyPyJXeHX8EvYPJt3tJg62WPz1LpSUlVnISvbk5uRgUeVWiAkMIbaNObkFdfuT6zZwhcc7j+L4RA8iblW7GtzeXuOs8JqVngEPexckRZLrT0y5cRDVO7SQf1Jy4taqHbgwfxURr9isPmY+PMXZMU9PTIK7bVOkJZDrT8x+ehYOFDOauMJF9zW46bWNiDt2aY1JV7g7Sy8pKhrudi7Iplh/wuP9DVjWJNdt4AonpyzCw61k67v6g3tg1NGN8k9IQYlBITgrKPXQXeDqDeqO0ce42ysr5mcoFlZsWTZdzsNn4sXh80S82YTBGLTDk4WM5EPE5+9Y5tiecDmrqKtheeATyoVpuMKOnuMoV7NvN3c8eq0Sz+Wcm5OD9MRkpCckIS0+EemJyTRCMCkUZ6VlEMLw3wKzQvRVQAWPzy8QoVU1NaChpwN1XW1o6Gr/+bdOQSzx1288pmihoWVkiCV+d6FlZMDJAl0oFGJFvW4I8flIbOu/ZQlaTqZeBZ4LvD13A7v7kH1eDW0ssPQ7t13OS6q3RdS3QGLbiEPr0HBYbxaykg/e+0/jyOi5RLx8tYpY8PEW+Hxudj3MzszEQocWiA/7RWybcHE3andvx0JW8uHexn04M2MZEbdrUBtzn1/g5HUdyHM5u9s2RWpsPLFtxv3jqNySwy7npZtwZdEGIl61rQum3ebugsApsfFwt22KzBTSMOH6+jJs6tZkISv5cHbWctxdv5eI1+nTCePOcHfNofiwX1hQoTmx/gSPz88zAVauwFJmCthGITgrKPXEh0digX0z6gvc59ucdjkfGTsf3ntPEvHGo/ph2L7VLGQkH4p0OQc8gqGVOUuZyZ49/SfB5zTZ57HV9FHot2EhCxnJhxDfT/CqQ/axVlFXx+iTee1z0uIT80TkfCH5z7/zhOX//5tqmp8CBaUFvrIyNHS18wTrf8RqKgE7fz8NXZ2/vkcbKmpqbP8oBB+u3MX2buRiS/oWZljm/5DTLufltToi4tM3YtuQPSvRdMwAFrKSDy+PXcSBIdOJeLmKdlj05Q53Xc7Z2Xku56BQYtuYU1tRtx95v+MKj3YcwYn/FhBxK6fqcPO5ylnhNSs9Ax52TZEURa4/MeXmIVRv35yFrOTDzZXbcdGVrEsqNm+AWQ9PsZCRfEhLSIS7bVOkJ5LrT8zxPocKjZ1ZyEo+XHRbjZsUi7rX7NoG/10mBVmukBj5Gx72zShdzgs+3ISFI7luA1c4MXkhHm07TMQbDOmJkUfIFy8KygYKwVkBJ6C7wHF9GkdMUCgWVqJxOX9/ABN7a5Yykz0Hhs3EyyMULueJQzBo+3IWMpIP4Z++YXnNDqXa5SwUCpGdkYn0hCSk0ojEpGCciEi/AGSlpbOdvgIFnEBZTZUQobWMDKBjYghtEyNoGxf+d/7fshSqhUIhVtTtipC3n4htA7YuRQuaVeC5gM/Z69jTl1xUzcjWEku/P4CSigoLWckeQW4ullRri6jvFC7nw+vRcGgvFrKSD977TuHImHlE3Lx6JXh8uFkmXc4TL+1BrW5tWchKPtzdsBdnZ5LPqHYNnTD32XnOiu0ZySlwt3Ohdjk/OIHKLRqxkJV8uLpkI64u3kjEq7VzwdRbHHY5x8TB3c6F2uX85gpsnB1ZyEo+nJm5jHKB7zp9O2PcabLVCFcoyuW8+OtdmFayZykzBWyiEJwVcIKyfIE7MmYevPeR7oAmo/tj6F6yZxpXiPoeiMVV2xAuZ2VVVSwLeAQDy/IsZSZ7dvebhLcUq9m3njEafdeTriFZk5uTg5SYOCT/jkXy71gkRcUg+XdM3tdReX+nxMQVchv/e64qUKCgdKCuow1tE8M8MdrYENo0ArWOiRG0TQyhrqMtlojy/vId7OhO9qo2sCyPpf4PS6QzmwmKcjkP3bsKTUb3ZyEr+fDy6AUcGDqDiJtWsseiL3c4u4hebnY2FlZqidifYcS2sae3wbkvuXYBV3i4/QhOTiKfV6zr1IDrmyucFV6z0tLzejlTuJyn3jqMau2asZCVfLi5YhsuupFrzFRq0RAzH5CzNblCUS7nuc/Pw75hHRaykg8XXFfh1kpysbya3drgv0scdznbuSA7I5PYtuDjLVjUqMxCVvLhxKQFeLSdfJHSYGgvjDxMLqKpgPsoBGcFnKGsXuCiA0OwqHIr0uWsrIyl3x/A2M6Kpcxkz4GhM/Dy6AUi3nzSMAzcSq4GzhXCP33DMkdyNXcVDXUsD3wMPTPpXM5CoRCZqWl/BONoJP0RkvPF4+TfMX9E5bx4amw84bhWIB48Ph+qmhpQ09KAqmbeHxVNDahqqEFJVRWZKakIeuFLfJ+SijLqDeoOVU0NKCkrg6+sBCUVZfCVlaGkrFTob76yEpSUlQu253/N/2c/JWUlKKmoUMYLvk9FBTw+DxACQoEAAoEAQoEAQoHwz98CCIXCQjGqfQT/fo9AAME/X19yX4tfX34QP7tz386o3qkF5ffnZmcjJzMLORmZyErPQHZGJnIyMpGd/+dPjIxnFoorXoxIj7KqKrTyxeh8gdr4j2D9V0znj1CtaaiPVQ16INT3M3GsgduXofnEoSz8FPLB58w17Ok3iYgb21lhybf7nHU55+bkYGn1dpQu55FHN6LB4B7yT0pOPN17EkfHzifi5jUqw+P9DU67nBdUaI6E8Ehi239X9qFml9YsZCUf7q7fi7OzSJezfWNnzHl6lrNie0ZySl4v57gEYtvMhydRqXlD+SclJ64s3oBrS8h1hap3aI4pN8h1iLhCSkxcXi/n1DRim9vbq7B2qsFCVvLh9IyluL9xPxF37tcZY09x1+UcFxqBBRWaIzc7u1Ccx+djsd89mFa0YykzBWyhEJwVcIYiL3AcdzkfHj0Xz/afJuJNxgzA0D0rWchIPkR+C8CSam3Lpsu57394e/Y6EW8zcwz6rCNXgBfk5tK6kJP+EpLzv6bqPVZW4fH5UNPShKqmeiEx+G9xWFVTHapamoW+Viv4Wv3P/v//umC/P8dVVlUttsjc1G4ovt55QsS7LJ6OLoumy+inZ59vD55hQ6tBRFzLyACeP59CXVtLZp8tEAgKC9J/idFZ6RnkNlohO6Pg78yUNKQnJSMjKQXpif//+997V1mFx+NBVVsTmcnkNFxNAz0MP7QWxrZW0Lcwg6aBHqfEGYFAgOU1OyDi83di29B9q9FkVD8WspIPL46cx8FhM4m4aWV7LPrMXZdzTlYWFlZqibjgcGLb2DPb4dynEwtZyYcHWw/h1JRFRNza2RGury9z6tz+m6y0dLjbuSD5N4XL+fYRVGvrwkJW8uGG1zZcciddzpVbNsKM+ydYyEg+pMbnuZwzkkiX87wXF2DXwImFrOTDhfkrcWvVTiJeq3tbTLy4h4WM5EPir9/wsCddzjweDws+3oJ59UosZSZ7jk90x+Odx4h4w2G9MOIQd02ACqhRCM4KOMXx/zzweMdRIs71C1x0YAgWVWoJQW5uoThfWRlLfzyAsS13Xc77Bk/D6+OXiHiLycMxYMsSFjKSD+Ef/bCsZgcizldWRqMRvZGZkvaXIzmvpUVZu9yr62hDQ18Xmvq60DTQ/evfeoX/racDNW2twmLwX+KwKGKwPPD3foO1TfsQcU19XSwPegJNfT0WspI9QqEQ61v0x4/Hr4htPVfNR/u5E1jIilmEQiFyMjORnpiM9KSUAhH6+4PnuL58C7G/sroaKjVviMyU1Lx9k5KR8ed7/30Bx2VU1NWgb2EGfQvTP3+T/9YrXw7Kqqpspyoyb05dwd4BU4i4sb01lvjd47TLeXHVNoj2/0lsG3VsE+oP6i7/pOTEkz0ncGycKxG3cKwC93fXuetyzsiAR4XmSIyIIrZNurofjp1bsZCVfLi9djfOz/Ei4hWa1MXsJ2dKxDOHLEhPSoa7bVOkxScS22Y9OoWKzRqwkJV8uLxwPa4v20zEq3dsgSnXD8o/ITmRHB0Ld9umlGuwcN7lPH0J7m86QMTr9u+CMSe3spCRfIgLCccChxaEkYKvpITFfvdQzsGWncQUsIJCcFbAKegucGVhGsfhUXPw7MAZIt507EAM2b2ChYzkQ6Sff57L+Z9LmbKqKpYFPoaBhRlLmUmHUChESkwc4sN+IT70F+LDIpFQ8O+8r2MCQzgtLqmoq1GKxLnZOZTubhUNdcx6fBrGdlbQ0NOBkrIyC1nLlo1th8Dv7lMi3nXJDHReOI2FjOSD3/1n2NiadDlrGxtiedATmbqc2UQoFGJVwx74+eo9sa3vxoVoPW0UsX9matpf7uk8Efr/TuokZPwlaKcnpSAjMQnpSSlIi09ESkw80uISOPdySqecMfTNyxUpTpcUt7QgNxfLanagbCMzbP9qNB7JYZfz4XM4OHwWES8TLueKLREXQrqcx53dgTq9O7KQlXx4sOUgTk1dTMRt6tbE/FeXSsQ5KQsyU9PgYeeC5OhYYtu0O0dRtU1TFrKSD9c9t+Kyx1oiXrlVY8y4d5yFjORDalwC3O1cqF3OLy/Crn5t+SclJ87PW4Hbq3cR8Vo92mHihd0sZCQfEiKi4GHvgpzMf9aY4vGw4NNtmFeryFJmsufYBDc82UWezw2H98aIg+tYyEgBWygEZwWcg3YaB8cvcNEBwXm9nClczsv8H8LIxpKlzGTPvkFT8frEZSLecsoI9N+8WO75FIdAIMgTk/+IxwlhkYgPjUB8WOT/vw77RTyglEaU1VShU84YOiaG0DTUp3AY5/1NJSyrqKvTHndbl1H4eO0+Ee/oPhndl8+W5Y/EKv5PX2OtS18irqmvC8+fT6Ghp8tCVrJHKBRiXfP+8H9Cupx7rXZFuznjWchKPny8/gDbOo8k4nrly2FZwGOoatCfJ5IgyM1FalwCkqPjkBoTh+ToOKRExyIlJh7J0bFIiY5DSkw8UqJj/2yL40SvaxUNdeibm5YIt/Trk5exb+BUIm5SwQaL/e5x8mUaULTLefTxTag3kMMu593HcWy8GxG3qFkF7r4cdznbN0Pir9/EtknXDsCxU0sWspIPt9fswvm5pCHEoWk9zHp8mrNie5Eu58enUdGlPgtZyYfLC9ZRzlqq0aklJl8jnbBcoSiXs7vvNVjVrs5CVvLh1LTFeLD5IBGvO6Arxpwgfxe4QmxwGBZWbKlwOStQCM4KuEdZnsZxaORsPD94loi7jBuIwbu463L+9dUfS6tTuJzVVLE88An0zU3llotAIEDy75gC0Tj+LzE536GcEB5VqgUaLUN96JQzyvtjagKdckbQLWcEHVPjP3Fj6P75t7qOtkyKpp+v32NlfVJ8UNfRhufPp9Ay1Gf8M0sKG9sMht89byLedelMdF5AilRcwe+eNza2GUzEdUyMsDzoCdS0NFnISvYIhUKsbNADwa9Jl3O/TYvQaiopRssToVCIzJTUPPE5Jk+ATv4jUKf8JVD/X6yOQ3oi6fAqLeiUMy4Qog0szWBkawkjOysY21nB2N4aWob6Ul/zBLm5WOrYHpFf/Yltww6sQeMR5EsnrvD80FkcGkG+NDSrUgELP90uky7n8ed2wqkX2UKLK9zffACnp5Et0Gzq1cL8lxc5K7xmpqbB3bYpUmLiiG3T7x5DldZNWMhKPlxfvgWXF5AmoCqtm2D6XdI0xBVS4xLyejknpxDbuO5yPjd3Be6sIV3OtXu2x4TzZJwrlGmX83hXPNlN9mZvNKIPhh8gZzko4CYKwVkBJ6G7wHG9vcRv/59YXKU14XJWUlGB58+nchVe5c3egVPw5uQVIt5m1lj0WevOyGcIBAIkR8X8EZKpW10khEeVusW/lFVV/xKQSdFYp5zRn38bQ9vYoMT0Q93aeSQ+XX9AxLneXuLHk1dY14ycVq9lqI8Voc+hqqnBQlayRygUYq1LXwR4vyG2UbWX4BIfr93Hti7kz2dgWR7LAx+Xur6+OVlZeYI0hUCd/I+DOupbAAQ5ucUftISgrqMNIztLGNtb54nQf4RoIzsrGNtainx+vj5xCfsGkdcx00r2WPT1Lmcdr7k5OVhcpTWiA4KJbVxvL/F451Ecn0gu+sv5RfTSM+Bh74KkyGhiG9fbS9xavRMX5pGLe3O9vUR6YlKeyzkhidjGdeH1ksda3PAk+/dyvb1E0u8YeNi5ULqcF325i/JVHVjISj6cnLIID7ceIuJcX2Mq5mcoFlZsCUFOTqE4X0kJywMfw9DagqXMFMgTheCsgJPEBodhgUML4gKnoq6GFaHPoW1syFJmsufgiFl4cegcEed6q4GILz+wrEY7wuWsrquDlWHPoa6jLdJx0pOSERMYguiAEMQE/v9PdEAI4kIiSpWYrG1sCLOqDv+IxqSYrKGnWyoL2aBX77CqQQ8irmtqDM9gb6ioqck/KTmxofUgfLv/jIgP2rEczSYMYSEj+fD17lNsakv+fMZ2Vlj64yFn3Y9CoRAr63dH8JsPxDautxrwPX8Tu3qTC0NqGxuiWnsXJIRH/fkTSVnIljR0zUxgbGcFIzsrmOQL0X8EagPL8gW/w4LcXCyt0Q6RfgHEMbi+oNqzg2dweOQcIl6hSV3MeUrO4uIK2ZmZWFixJeJDI4htXG81cG/TfpyZvpSIc73VQEZKKjzsXChdzh7vrsOyVjUWspIP15ZtxpWFpNjG9VYDKbHx8LBzIVzOPB4PS388hEkFG5Yykz3n5njhzlpSVOf6TNz48EgssG9GzG5VUlGBV7A39MqXYykz2XN0nCue7iFNgG3njEfv1eRiuQq4h0JwVsBZjoyZB+99p4h4t2Wz0MmDXAGeK0T9CMLiyq0I4VXLyCDP/chwv8+SxO5+k/D2zDUi/ve0c0FuLhLCIxEdEIyYwFBE/yUoxwSGIDU2Xt5pi4WKuhoMrMxhYGkGfcvyMLAqD6FQiFsrthP7llb3ozhs7jAMX249JuJcn3b+7eFzbGg5kIibVrbHoi/cdT8KhUKsbtwLQS98iW3jz++EU0/uTjt/f/kOdnQfS8S5Pu1cIBBgec0OiPj8ndj297RzoVCI9MSkAvE570/U//+OyPt3clRMiV0Uka+sDENr8wJXdHpCEnwo7mlcn3aem5ODhRVbIPZnGLFt/qtLsK1Xi4Ws5MPDbYdxcvJCIs71aedZ6Rlwt22K5N8xxLbFX+/CrAp33Y83V2zDRbc1RJzr087TE5Pgat2EWESPr6SE5UFPYGhlzlJmsueC6yrcWrmDiLecOgL9Ny2Wf0JyIikqGm42TYj2EmXBEHb8Pw883nGUiHfymIJuy8jFcrlCTFAoFjg0Jxa519DTwYqwF5xd9FvB/1EIzgo4S8Tn71haox0R1zUzgefPp5x2P+7oMRbvL90h4oN3ecFl3CAWMpIPQS99saphTyKurqsN+4ZOiAkKQ+zPsBLrUlbRUIehlTn0Lc1gYFUeBpblYWBpVkhgpusPur7lAHx/+IKIjz6xGfUGdJNH+qzw5fZjbG4/jIhb1KwCj3c3OCvCCYVCrKjbFSFvPxHbuL7Qks/Z69jT9z8i7uBSH7Mfn2YhI/kgEAiwuEpr/P4RRGyb/fQsHJrUZSEr+eC9/zSOjJ5LxB07t8Kkq/vFOlZudjYSI6P/EaT/EadLgVu6/uDusK1fu8AtbWxnxak+5nc37MXZmcuJeL2B3TD6+GYWMpIPmalpcLVqRCyoxuPxsNT/EUzsrVnKTPZcXbIRVxdvJOLNJgzGoB2e8k9ITqTGJcDVqhFxzVFWVYVn8FPomXHX/Xh21nLcXb+XiLebOx69VnHX/RgfHgl326bETFw1bS2sDHvO2QWggSIMYctno5P7ZBYykg9R3wOxuEpr4oW3trEhvEKelUlDWP8tS9By8nAWMlIgTxSCswJOQ+d+HHFoHRoO681CRvLh+6MXWN9iABE3q+qARZ/vlHoRTiAQIDEi6o9LOeT/TuWAYAT7fCIe4EoCqpoaeSLyH/HY4I87Wf8vUVlTX/LWFh+u3MX2bmOIuG39Wpj3grvuR6FQiGWO7andj/eOo0qrxixkJR9eHr2AA0NnEPEqbZpi+h3SRcEVcnNysMChOeKCycW1XN9cgY2zIwtZyYeH24/g5KQFRNypd0eMP0u6pbhCdkYG3Gxo3I9+92BWuQKjn1esW/pPLCmKzIdNdMoZw9gubxFD00p2MKtSAaZVKsC0kn2pE6PTk5LhatmImHbOV1aGZ9ATGFiWZykz2UPnfmw1bST6bVzEQkbyIel3DNysG5PuRw31PPejkQFLmcmeE5MW4NH2I0S888Kp6LpkJgsZyYeYn6FYUIF0P2rq68Ir9Dmn3Y8Hhs7Ay6MXiHjvte5oO4uczcQV6AxheuXLwfPn0xKzTows2N5tDD5cuUvEB+9eAZex5KxFrhD43AerG5O6i4mDLZZ8u8/ZWZkK8lAIzgo4zedbj7ClA/nmzKp2Nbi9vcZpEc7LuQtCfT8T26bcOIjqHVrIPykxyUhJRWzQ/1texASGFgjMsUFhRB8sNlHT1vrHkVxYSDawNJN5n+Si3I9zvM+hQmNnmX0223jvO4UjY+YRcccurTHpyj4WMpIPOVlZcLdtisRfv4ltCz7chIVjFRaykg931+/F2Vmk+7H+4B4YdXSj/BOSE7TuRz4fy/wfwdjOiqXMZM+VxRtwbckmIt5s4hAM2k7+LsiD7IwMxP4MQ0xQaN4MmqDQvPtVUChig0IpF8RiCwMr8zwBurI9zKpUKBCj9c1NS+yz0JmZy3BvA3kNbz9vAnqunM9CRvKhLLsfD4+ei2f7yZkqPbzmoIPrJBYykg9R3wOxqDLZl13HxAheId5QUeew+7Hvf3h79joRH7B1KVpMImewcYWQt5/g5dyFiBtaW2BZwCMoKSuzkJV82Nx+KL7cfkLERxxej4ZDe7GQkXz49uAZNrQiZxqXr1YRCz/dLrH3YiZY1bAHgl6+I+ITL+1BrW5t5Z+QArmhEJwVcBqhUIilNdrh15cfxLYZD06gcotGLGQlH14cOY+Dw0hXRLV2Lph6i3RRsEFOVhZ++wcjyi8Av776I8ovoEBULknOMQPL8jC2z+upaWhjUeBOzheYS0rxR9f7sU6fThh3huzxzBWyMzLgZt0EydGxxLYl3+7DtJI9C1nJhxte23DJnez92HhUPwzbt5qFjORDemIS5ls2QmZKaqE4X1kZnj+fwsDCjKXMZM+F+Stxa9VOIt56xmj0XU+6n7lCUlQ03KybEC8bVTTUsTLsBbQM9dlJrAhS4xPzROj8P4EhBV+XlBenatpaBSL032J0uYq2rItctO5HAz2sCH1e6lzb4rBv8DS8Pn6JiPdZ54E2M8nZTFwh/KMfltUke/HrmZvCM+gJp92P27qOxser94j40L2r0GR0fxYykg8Bz3ywpknZdD+ua94PPx6/IuJjT2+Dc9/OLGQkHz7ffIgtHUcQcSun6nDzucpZ4VUoFMLTqRPC3n8ltk25eQjV2zdnISv58ObUFewdQK6hValFQ8x8cJKFjBTIC4XgrIDzPNlzAsfGkX3AanZtg/8uk33DuEKR7sePt2BRo7LcckmNT0SUnz8i/QLw62sAovwCEOkXgJjAEAhyc+WWBx2qmhowtreGsb0VTCrY/Pm3NUzsrWBka8l60S0qGSmpcLNqRLjqeHw+lgU8grEth92Pi9bj2lKyr2fz/4Zi4LZlLGQkH1Ji4+Fq1QjZ6RmF4spqqvAKeQbdcsYsZSZ7Tk9fgvubDhDx9vMnoucK0vHOFeLDfsHdzoVwP6rraGNF2HNo6OqwlJnsOTxqDp4dOEPES6P7USAQIPHX7/8L0n85o2MCQ5EQHsnq4oY8Hg9GtpZ5LTn+dkVXtoeuqYncBIFdfSbC99wNIj5g2zK0+G+oXHJgg+A3H7CiHrn+gqGNBZb5c9v9uLHtEPjdfUrERx7ZgAZDyHU6uILf/WfY2Jp0P5pXr4QFH29xWoRb1bAHfr56T2zjuvvx3cVb2NlzPBG3b1QHc5+dZyEj+SAUCrGkeltEfvUnts18eBKVmjdkISv58PzQWRwaMZuIV2vfDFNvHmYhI/mQm5MDD/tmiA+NILa5vb0Ka6caLGSlQB4oBGcFnCcrPQNu1o2REhNXKM7j8bD4232YVrRjKTPZc91zKy57kCtcNxndH0P3rmL0swQCAeJCwgvE5MiveQJzpF8gZd9NtqjTtxMsalT+v6hcwRo65Yw58yB/ft4K3F5NrmTfZuYY9FnnwUJG8oHO/aiqqYEVoc9LpPuRKY5NcMOTXceJeJfF09Fl0XT5JyQnogNDsNChOSHKlQn346CpeH3iMhHvs94DbWYo3I9cIDszE3EhEQVtOm6v2Y2YwBC20wKQt7r8345o0yoVYFbFASYVrBkfA3/vN1jbtA8RL1fRDov97nHa/bjWpS/8n74m4mPPbIdzn04sZCQfPl5/gG2dRxJx6zo14PrmCmee1/5FKBRiee2OCP/gR2ybeuswqrVrxkJW8uH1ycvYN3AqEee6+1GQm4uFlVpSXtvnvbgAuwZOLGQlH57sPo5j492IeK3ubTHx4h4WMpIP2ZmZcLdpQjmTd+HnOzCvVpGFrOTD7TW7cH7uCiLeYGgvjDy8noWMFMgDheCsoExwecE6XF++hYg3nzQMA7cuZSEj+ZASE5fnfszILBSXxv2YlZ6B398D/4jJ/xeXo74HES5LeaKirlZIRA71/Uw5Ta2D63/o4TWXhQzlQ1xoBDzsXAjnuLquDlaGPYe6jjZLmcmeQyNn4/nBs0S858p5aD9vIgsZyYdIP38srtqGiOuUM4ZX8NNS49CXhJ29xuPdhVtEfOD2ZWg+kbvux5+v32Nl/e5E3MjWEsv8H4GvpMRCVvJhY5vB8LvnTcRHHt2IBoN7yD8hOeF3zxsb2wwm4obWFmg5dUReL+k/LumYwBBi4TV5wFdSgrG9NSlGV7aHtrGhRMcUCoVY2aAHgl+T7sf/ruxDzS6tpU27xOJ7/iZ29Z5AxO0bO2Ou9zkWMpIPAoEAS6q1QdS3QGLbrEenULFZAxaykg/PDp7B4ZFziHj1Ds0x5cYhFjKSD7nZ2Xnux7BfxDZ332uwql2dhazkw/3NB3B62hIiXrd/F4w5uZWFjORDVnoGXK0aITU2vlCcx+NhyfcHKOdgy05icuDass24spAUWJuOHYghu0lBliukJSTC1bIRMlPTCsWVVFTgFewNvfLlWMpMgSxRCM4KygSJkb/hbtOU2v0Y9gJaBnosZSZ76NyPXZfMQOeF0yi/RygUIiUm7i+Xct6fKL8AxP4MY22ar66ZyR9B2Sav/UWBwGwDXbPCU3zp3I9ahvpYEfocqpoa8k5fbuwdOAVvTl4h4n03LkTraaNYyEg+hL3/guW1SdeXvoUZPIOeQElFhYWs5MPWziPx6foDIj5s/2o0HtmPhYzkg//T11jr0peIm1ayx6Kvd8uk+3Hc2R2o07sjCxnJB1r3o7MjXF9fLpPux2l3jqJqm6YFXwtycxEbHI6ob/+/d0d+C0SUXwBr6yNoGRnArEoFmFevCIuaVWFRswosHCtDU7/456/XJy5h3yDyeaVyq8aYcY98vuEKgtxcLKzYAjFBocQ2rrsfH+86huMT3Il4rR7tMPHCbhYykg9FuR8XfbmL8lUdWMhKPtC5HxsO64URh7jrfsxITsF8y0bISEouFOcrKWF54GMYWluwlJnsueSxFjc8SVG95ZQR6L95sdzzkRfJ0bFws25MGMJU1NXgFfIMOiZGLGUme05NXYwHWw4S8Y7uk9F9OdlqREHpRyE4KygzHBwxCy8OkY6Qnqvmo/1c0kHCFejcj7qmxlga8AhJv6IpheXUuAS558pXVoZJhTwBOV9UznctG9tZiT1Fns79OGjHcjSbMISptEscQa/eYVWDHkTc2M4KS3885LT7cUPrQfh2/xkRH3VsE+oPIh2hXOHr3afY1Jb8nbZwrAKP9zc4LcKtrN8dwW8+ENsmXd0Px86tWMhKPtC5Hys0qYs5T0mnP1co0v34+DQqutRnISv58OzAaRweRc7Qqd6xBaZcPyjSMdISEhH1rfAspahvgfj94yfRF1weGNpYwDJfgK5ZBZY1q8DEwbZQj+Ky7H68t2k/zkwnZ+Jx3v2Ylp7nfvznWZTH42Hpj4cwqWDDTmJygM796DJuIAbvUrgfucjZ2Z64u45sI9F29jj0XkO2neAKib9+w82mCXKzswvF1bQ0sSLsuUgvJEsrR8e54umeE0S869KZ6LyAbC/DFaIDgrGwYgvSEGZkkGcI0+DurMyyikJwVlBmoHM/GliWx/LAx5x2P27uMAxfbj0m4nxlJQhy5L9on4aeDsyqOvx/EaIqFVC+qgOM7awYHYcfT15hXTPS3Wla2R6LvnDb/bi6SW8EPvMh4uPP7YRTL7IHKlf4cPUetncdTcRt6tbE/FeXOC28Lq/VEeEfi3c/co1Xxy9h/2DS/VildRNMv3uMhYzkQ1Hux/mvLsG2Xi0WspIPj3cexfGJZE/62j3bY8J5soc9V8jOyICbTVPKdRGkdT/mZmcjJii0kBgd9S0QkV/95f4CWkVdDeWrV4Jlvghdqyq+PXiO68vI1mgNh/fGiIPr5JqfPCnL7seL7mtw02sbEW85dQT6b1os/4TkRHJ0LFytGhFtcVTU1bAi9LnE7WlKAyenLMLDrWTrkE4eU9Bt2SwWMpIPscFh8LBvBqFAUCiuoaeDFWEvoK6txVJmsufAsJl4eYRcILHXale0m0MuqMgVIr78wNLq5IKYuqbG8Az2hoqaGgtZyYcdPcbi/aU7RHzwLi+4jCMXTlVQulEIzgrKFBtaDcS3B8+J+OgTm1FvALkaeGkkKSoaYR/8EP7BD+Efvub9/fk7BNnsOJfyReW/hWV5LdInFAqxol43hPh8JLZNunYAjp1ayjwHtvA5ex17+v5HxB2a1sPsJ2dYyEg+CAQCLKnaBlHfSffj7Cdn4NC0HgtZyQfv/adxZDTpfqzRqSUmXzvAQkbyITc7G+52LkgIjyS2eby/AcuaVVnISj7c27gPZ2YsI+L1BnbD6OObWchIPpRl9+PVJRtxdfFGIu4yfhAG7/SSyWemxMQVtOQoEKL9AhATGEKsFyBTeAD+qVqUVFTgFeINPTMOux9nLcfd9XuJeNs549F7tSsLGcmHhIgouNs2Jd2P2lpYEfqM0+7HI2Pnw3svuVhet+Wz0cl9MgsZyYff/j+xqFLLMul+3N1vEt6euUbE+29ejJZTRsg9H3kR4vsJXnW6EHEDK/M8Q9hfs124Bp0hbPjBtWg0nFwslyt8f/QC61sMIOJmVR2w8NNtThvCyiIKwVlBmeLDlbvY3m0MEbepVwvzX14sVe7H7IwM/Prq/0dY9isQmamcT7JEWU21YHGgv4Vl00r2YrfAkAUvj13EgSHTiTjX3Y+5OTlY4NAcccHhxDbX15dhU7cmC1nJh4fbj+DkpAVE3KlXB4w/t5OFjORDUe7HxV/vwqwKd3s/3ly5HRddVxPxRiP6YPiBtSxkJB/Sk5LhatkIGckpheJ8JSUsD3oCQytzljKTPRfdVuPmiu1EnOvux6TfMXCzbky6HzXU89yPRgZyyyU7MxPRASGI+hZAiNHpicnFH4AhdMoZo1o7F1jUqlrgitY1NSlVz3RFEfMzFAsqNC+b7sehM/Dy6AUi3muNG9rNHsdCRvIh4vN3LK3RjojrmpnA8+dTTrsft3cfgw+X7xJxrrsfA5/7YHXj3kTcpIINlny7z+l2eOta9MePRy+J+JiTW1C3f1cWMpIPn289wpYOw4m4Za2qcPe9zpl72L8IhUJ4OXdBqO9nYtvk6wdQoyN3DWFlEYXgrKBMIRAIsLhKa/z+EURsm/30LBya1GUhq6IRCoWID/tV4FjOF5ajvgXK1VmkY2KUt9r8X6KyWZUKMLKxKNEPQTlZWXC3c0FiRBSxjevux7sb9uLszOVEvN6g7hh9bBMLGcmHzNQ0uFo1Qlp8YqE4j8/HMv9HMLazYikz2XNl8QZcW0KObbMJgzFohycLGcmH1LgEuFo1QlZaeqG4sqoqPIOfctr9eGbmMtzbsI+It5s7Hr1Wcdf9GB8eCXfbpkTfYTVtLawMew4NPV2WMpM9R8bMg/e+U0S8u+ccdHSbxEJGhREKhUiKiibac0R8+o740Ai55KBjYlTQFzqvN3RVlK/mABX10umQ3N33P7w9e52I99+yBC0nk4IFVwh5+wlezqT70dDaAssCHnHb/dh+KL7cfkLERxxah4bDSGGSK3x7+BwbWg4k4mZVHbDo8x3OinAAsKpRTwS98CXiEy7uRu3u5AsIrvD+8h3s6D6WiNs1qI15Ly7KPyE5IRQKsbRGO/z68oPYNuP+cVRu2ZiFrOTDiyPncXDYTCJeta0Lpt0+wkJGCmSFQnBWUOZ4uO0wTk5eSMSdenfE+LM7WMjo/2SmpiHi8/f/u5bff0H4Bz+kJSTJ5fN5fD6M7a0Jt7JZlQpydU0xzc0V23DRbQ0RbzyyL4btJ+Ncgdb9qKwMz59PYWBhxlJmsueC6yrcWkmez62mj0K/DeT5zxWSoqLhZt0EOVnsux/lzfH/PPB4x1Ei3nnhVHRdQj7UcgU696Omvi68Qp9z2v24f8h0vDp2kYj3XuuOtrPI4pUrhH/6hmWO7Ym4Xvly8Pz5FMqqqixkJRppCYkI//jt/y/R339F+MdvxMsiWcBXUoJpZfuCxQkt/ixWaGBZvsSLWAHPfLCmCYX70cE2z/3I4SnI65r3w4/Hr4j4mFNbUbcfKUZzhc83H2JLxxFE3Kp2Nbi9vVbif2clRSgUwqtOZ4S++0Jsm3LjIKp3aCH/pOTEm9NXsbc/2TKlYvMGmPWQfMnIFQQCARZVboVo/5/EtrnPzsG+kbP8k5ITT/acwLFxpDmgZtc2+O8y2UqJK+RkZcHdtikSf/0mti34eAsWNSqzkJUCWaAQnBWUOUqC+1EgECD2Z1hBj+V813K0/0+ib5k8qNrOBX3WeaCcg02pdf8URVHuR68Qb+iamrCUmew5PWMp7m/cT8Tbz5+InivmsZCRfKBzP6rraGNF2HNo6OqwlJnsOTx6Lp7tP03Ee3jNQQdX9t2PsiLqeyAWVW5FxHVMjOAV4s3Ja1s+dO7HAVuXosWkYSxkJB+CfT5iRV1yum1ZcD9uajcUX++Q7seRRzagwZCeLGQkOQKBADGBIX+eh74WvHSPDgiWy+dr6uvCqk4N2NR1hE29WrCp6wgjG8sSJegJhUKsbtQTQS/fEdsmXtqDWt3Ixae4wrtLt7GzB9k+w66hE+Y9J9ttcIUi3Y8PTqByi0YsZCUf6NyP1dq5YOot7rofc3NysKBCc8SFkO3w3N5ehbVTDRaykg8Pth7CqSmLiHidvp0x7jS5eChXyErPgJt1Y6TExBWK83g8LP52H6YV7VjKTPbc8NqGS+6k8avJ6P4YuncVCxkpkAXcfR2uQAENalqacBlHTtUSCgR4sOUg45+XnpgE/6ev8XD7ERyb4IbVjXthhp4jFlRohp09x+PKog3wPXcDv38EMS428/h8mFWpAOd+ndHdcw5GHF4PJRUVYr+Ap2+gb27KWUFGy1AfDYeTzqCcrCw8onBEcolWU0eCR+F8erLrODJT01jISD4YWJjBuV9nIp6RnEI5FZ1LtJ4+ijL+YOthwvnMJUwr2cOxS2sinhwdi1fHLrGQkfxoPWM0Zfz+pgMQ/ON85hI2zo6o2Kw+EY8LCce7C7dYyEh+tJ5BfZ7f27CPlRfX0sDn81HOwRZOvTqg6+IZmHB+F5b5P8LGpE+Y++wcBu30RPP/hsKhaT2oy+BlYVpCEr7df4bbq3dhT9//4GHngjnlnLGl0whcXrgeH67cpXRhyRMej0d7nlO11OESNbu0plwINOiFLwJfvGUhI/nA4/HQiuZ+zvUxr9u/C/TKk62wvtx+gojP31nISD4oKSujxRTqFjn3NpDmES7RaEQfaOqTrbB8z91AbHAYCxnJB1UNdTSbOISIC4VC3N/E3QW/gbzFjlUoFgJ9efQCkuS8JpUC2aEQnBWUSVpMHg4+hfPp2f7TEk/rFAgEiPoRhDenr+KSx1ps7zYGbrZNMEO/Jta69MXJSQvwZNdxBD5/i8yUVGl/BAItIwNUbtUYraaPwrD9q+H65go2pXzB4q/3MPbUNnR0m4SGQ3uhwZAexPdmpaXj+cGzjOdUkmg1bSRl/Mmu48j9xwXLJYztrFC7B9n3LS0+EW9OXmEhI/nRhqY4f7T9aKkTZMTBwrEKqrRpSsQTI6Lw/tIdFjKSH3SCzMNth+WciXyxb1QHtvVrEfHfP4IoXbBcoqyOebX2zWFWpQIRD3n7CUEvyR6gpRF1HW3YN3JGs/GDMXDbMsx+cgYbEj6g91o3mX92SkwcPt94iOvLNmN7tzGYZ14f8y0bYkePsbjuuRWfbz1CSmy8zPP4G6feHWFAsRDo94cvOC3C8ZWUaJ/hHm3jrtsVABoM6QltY0Mi/vHKPU6LcMqqqmhOMzvn0XZuj3nTMf0pF11/c/IK4YLlEuraWmgyltoQ9mTXcRYykh/N/xtC2QrrxcGzyJCBZlBS0DYyQMNhvYh4TmYW5UxNBaUTheCsoExiYFkezn07EfH0xGT4nr9Z7PcLhULEBIXC58w1nJ+3AhtaD8Isw1pYVKkl9vafjBueW/Hhyl3EBZNToqRFSUUFFjWroMGQnui12hVTbh7CqohXWBv9FjPuHUe/DQvReGQ/2Dg7QpXirSFdce697xSnRTizyhXg2Jmcbp8UGY1P1x+wkJH8KGrMuYxN3ZpwaFqPiEf7/8SPx+Rq2FyirI555ZaNYFGzChEP9f2MEN9PLGQkH4pyP3rv4/ZDe82ubWBsb03Efzx6id8U/SC5Ap/Pp3U/cnnMeTweWkweDl1TY3Ibn48+6zzQatpIVG7ZCFqG+ox+dkJ4JN5fuoPLHmuxpcNwzDZ2gkeFZtjTfxJur92Nbw+fE2smMImSsjJa0rgfuV6cNxrZFxp6pLv97dnrSEtIpPgObqCqoY5mEwYTcaFQyHmjSLPxg6CirkbEXx27iKz0DBYykg+a+npoPKofEc/NzsbLo9xtIQMALacMp1yI/vnBs5w2B+mZlUPdgWR7sMzUNPicvsZCRvKDblbms/1nOK1LlCUUgrOCMksLmlW9/xVkhEIh4kLC4Xv+Ji66rcamdkPzigx7F+zpNwm3V+/Ct/vPkJ6YzHiOeuamqN6hOdrNHY+RRzdiwYeb2JTyGQve38TIIxvQbs54VG/fHHrly4nca9DCsQrlFORfX35wxhVFR4vJ1G4JrotwFZrUhWWtqkQ88PlbRFD0BuQS9GPO7eK8eofmlCLc19tPKHsDcoV8MYoKro95nd4doWtG9qN/f/E2p11RfCUlNP9vKOU2rotwDYf2omwx8ebkFU67olTU1NB03CAiLhQIkJudjX4bF2HG/RNYG+OLFWEvMPn6AfRcOQ/1BnWHeY3KlDPcJCUmMAQ+p6/h/BwvbGg5EDP0HLG4WhscGDYTD7YcROBzH0bFsSZjBkBZjcIJd/g8p1smqWtrodGIPkQ8OyMTr09cZiEj+dFs4hDK1mjP9p+BIDeXhYzkg7axIeoN7EbERTUHlWaKenblsghnaGWOWt3JfvSJv37j881HLGQkP1qKqEtwDbMqDpSzMn//CIL/E3KxWAWlD4XgrKDMYt+oDsyqOhDx7w9f4NHOo7i8cD22dBqBuaZ14WbTBLt6T8DNFdvx9c4TpMYlMJqLiroabOrWRONR/dB340LMuH8ca6PfYlX4S0y5cQi9VrmiweAesHCswsjq803GDKCMe+/l9k2talsXyumon649YL0/oyzh8Xi0Y/6M4w8ytXq0o3S5vT1zjdOuKD6fjyaj+xNxoVCIZwfOsJCR/Kg3oCvldNRXRy9w2hWlpKKCRhS96nOzs/HiyHkWMpIfDYb2pFyfgOuuKFVNDdQfRAoymSmpnHdFNR7Vl/JF+9+CDI/Hg4GFGWp0bIn28yZi9LFNWPjxFjalfIbHu+sYcWgd2swcg8otGzHWG1ooFCLyqz9eHjmPU1MXY3Xj3piuUx3La3fEkbHz8XjXMYS8/SSxOKxloAen3h2JeEpMHN5fvitt+iUaqnsawP1nV31zU9To1JKIx4WEw++eNwsZyQ/6euWknDORL6aV7OHgQpqDIj59w89X7+SfkBxpMobuPOf2mFs7O1Kbg5754NdXfxYykh9Nacb8Kcev7WUFheCsoMzC4/EoFxUDgBMTPXB92WZ8vvEQydGxjH6uka0lanZrg04eUzD29DYs9ruHTSlf4Pr6MobtW43W00ahcsvGlD3bmKJO747UrqhTVzntiuIrKaHxSNIhI8jNxfND3J6aWH9wjzLpilJRU0ODoT2JeFlwRTUc3pvaFXXgDKcXklPX0aa8tpcFVxTVNFwAeMZxV5RuOWPU7NaGiCf++o3PNx7KPyE5QivCcfxlorGtFSq3bkLERXFFqaipwbJWNTQc1ht91nlgxv0TWB//Hov97mHkkQ1oNW0k7Bs7Uy5mJAmC3FyEvf8K770ncXyCO7ycu2C6bg2sbNAdJyYvxLODZxDx+bvIblW6Mef6C2QLxyqUvepD3n5C6LvPLGQkP5qMpr62c/08t29Uh7JX/feHLxAdEMxCRvKDfsy5PXOnWrtmMLAsT8Q/Xr2PxEiOm4PK6P2c1hx09jrSE5Pkn5ACRlEIzgrKDMnRsfh88yGuL9+CHT3HwdWqEa4t2SSzz1PT1oJ9Y2c0mzAYA7cvw+ynZ7Eh4QM8g57iv0t70W3ZLDj37QyzyhUo+1XJkrLsimo0ktoVxfVeUVoGenDq1YGIp8TE4cOVeyxkJD/oH+C4/dCe5+xrQcTjgrnvimpcRgUZWlfU5+/cd0WVUUHG2tmRsm95WXBFMTnmfD4fZpUroMGQnui3cRHmep/DxqRP8Hh/A0P3rkKzCYNh7exI6aSXhJzMLPx89R6Pth3G4ZFzsLRGO8zQc8TaZv1wdtZyvD5xCb/9f1I+l1Rq0RDGdlZE/Mutx4gLjWAkv5JKWb2fO3ZuRdm3/P3FO3JfvFKe8Hg82vu5N8dbJtXp0wnqOtpE/PWJy5w3B1G1zxHk5uLFYW7P1qIzB70sA+ag+kN6EPHs9AzOm4PKAgrBWQEnSY1PxNe7T3Fz5Xbs6jMRbrZNMKecM7Z0HIHLC9bh/cXbiA/7xdjnaRrooWpbF7SfPxHjzu7AsoDH2JD4EXO9z2HQDk80nzgUDk3qQkNPl7HPlJay+hZVGldUaaesTk2kdUX5fOS+K6qMTk2s0NgZppXtifi3B88VriiOUpZdUU3pru0cv5/XpnFF+ZxhxhWlpKwMy5pV0WR0fwza4Qm3N1ewMfkT5r+6hAHblqHxyL4wr1GZciaJJGSmpsH/ySvcXb8X+wZNw8KKLTDXtC529BiL22t2IeCZD7IzM8Hn8ylFOKFQiOccb5lUd0BXqGpqEPGy0DKpwTCyZVJOVhbnF5JrOKwXZd91rrdMUtPSRD0ac9DbM9w2B5XV2VpahvqU5qDk6Ngyaw5StNUo/SgEZwWlnvTEJHx78Ay31+zCnv6TsMChOWYZ1sKmtkNw0XU1fM/dQFwwc4tkqevqoHLLRmg7ZzzGnNqKZQGPsS72HabdPoKeK+ahTu+OMLG3Bp+hAkRWKHpFkXC9OFe4oki4LsKVZVcU7QuWsuCKomiZVCZcUSP7EnGFK4rDrih1dbm7olTU1GBbrxZa/DcUw/avwcKPt7Ax6RNmPzmDvhsWoN6g7ihX0Y6xz0uOjsX7S3dwfu4KrGnSGzP0HLGmaR8khEcCVLO1ON4ySUNXh7JlUlpCEt5duMVCRvKD9mXi3lOcFuF0yxmjFlXLpIgofLn1mIWM5EdZfXY1trNCFQpzUNT3QPg/fc1CRvKjrBrCLGtWhU09anNQ2PsvLGSkgClKtiKmQME/ZKam4ceTV7i7YS/2DZ6GRZVbYYZ+TWxoNQjn566Az+lrjLrXVLU0UbFZfbSZOQajjm3Ckm/3sT7+PWbcP4Heq11Rt18XmNhbU7ZoKOkoekXpE3GmXFElFT6fT+kaEAqFeH6Q2z2saV1Rxy4iO0PhiuIiZdoVNbArES8TrigKwRkoG66o2j3bE/Hk6Fh8vHqfhYzkR0kQZNS0NOHQtB5aTx+N0cc2Yen3B1gf/x7T7x5Dz5Xz4NS7IwytLRj5rJzMLAR4v8HjHUcBit/p2J9hnG+ZVFafXc0qV4BD03pEPOLTN/x8/Z6FjOQHXVuNpxyfrWVTtyYsHMmWSQHebxDpx21zUFltk1WpZSNacxCTs7NLImV1hh7XUQjOCkosQqEQMT9D8frEJZycsghezl0wQ88R65r1w9mZy/H6+CVEfQ+UaQ6dPCZj1qPT6LPOA/UHdYdpJfsS71wWhzLriirDvaIajehDvZDc/tOcd0XV6duJiKfFJ3LfFTWKWoQrC66oml1bE3GFK4q7KFxRJFwvzi1rVoVN3ZpEPPjNB1ZdUZr6eqjSugnaz5uI8Wd3wCvYG6uj3mDStQPoumQGHLu0ppx9wgTbu44m2nBwiQpN6lK3TLr/DNGBISxkJD8a0wgyXF+foHr7ZtC3MCPiH6/eR1JUNAsZyYe8HtY0Itx+brfPqd2zPTQN9Ij42zJgDqKarSUUCDhvDqo3oCvlYr0vj17gtDmI63BHOVNQ6snOzETgcx/cWbcHu/pMxHyLBvCwc8G+QdPwcOshhLz9JPIK3sWhrKYKuwa10XzSMAw7sAaTrx+k3O/5gbOcFmQUrigSrgsyBpblUb1DcyIe+zMM3+4/YyEj+UHX55Tr/cHMqjiUWVcUfU84hSuKq5RVV1TlVo1hZGtJxD/ffMR9VxRtm6ySdT/XLWcMx04t0XnhNEy6sg+rfr3GitDnGH9+Jzq4TULVti6UAou45GRmUbbhuDB/JT5cuVvq2ynxeDz6Hq8cb5nk3LczzUJyV5CZmsZCRvKBdiG5nBzOt0xqMKQnlFVJc9CLQ+eQm53NQkbyQUVdHQ2G9CTiWWnpeH3yCgsZyQ86c5D3vlPcNgfp6cK5jJqDuIxCcFbAGom/fsP3/E2cne2J1Y17YYauI1Y37o1zsz3he+4GEn8xs8iPkooKbOrWhMv4QRiyZyXcfa9hU/JnzHtxEQO3LkXjEX1Ro2OLMuuKKquLDdH1imLbFSUPyqoTTuGKIuG6K6paGXZF0YpwClcUJ6FtmaRwRbGQkWjweDwYWJaHU88O6OE5B9NuH8G62HdY5v8Io09sRsspI2Bdpwb4SkpSfU5+G45bq3Zie7cxmG3shMVVW+PImHl4duA0or4HljpzRVEtk5gyp5RE6FomZSSn4O3Z6yxkJD/oXjJ47+P2bC1tIwPU7tmOiCf/jsGHq1xfSK5stlgwtDJHtfbNiHjszzB8f/CchYzkB+36Kxwfcy6jEJwVyIXcnByEvP2EB1sPYd/gaXC3a4p55vWxq/cE3F23B4HP3zLSwoGvrAyr2tXQZMwADNrpCdc/K4q7vr6MwTu90HTMAFjVrg4lFRXie8uqK4quV1SZcEWV0QcZxy6toGNiRMTfXbiF1LgE+SckJ4pyRT0/wG0Rrqy6opSUlcusK6r+4B4KV9RflBlXFNVCclxvmVSUK+ribRYykhwejweTCjaoN6Ab+m9eDDefq1if8AHT7x5D1yUzUK2dC+W1XFwi/QLgve8UDo+ai0WVW2Guad28NhxrdyPweclvw6FnVg6OXVoR8YTwSHzmeMskun7G3hyfrWVib43KrRoT8ahvgQjwfsNCRvKDbsyfcbxesaxVDdbOjkQ8+PV7hH/0YyEj+VFWzUEOTevBtBJpDvK7542YoFAWMlIgLVIJzrm5ufjw4QP27duHiRMnom7dulBVVQWPxwOPx0OLFi0YSlNBaSMlNh4frt7DRfc1WN9yAGboOcLLuQtOTVmE18cvIfZnmNSfwePzYeFYBY1H9sWArUsx78UFbEz6BHff6xi6ZyWajR8MG2dHqKipiXS8suyKUvSKKkxJd0VJi7KqKhoOp1hILjMLr45dlH9CcoTOFfXswBmFK4qjKFxRhVG4oriLoZU5qlG0TIoJCsX3hy9YyEh+cNkVpa6thSqtm6DzwmmYeusI1se/h8e76xiwbRnqDepOuRaHuCRHx+a14ZjjhdWN89pwrHXpW6LbcNAJMlyfuWNbrxbMa1Qm4v5PXyPyWwALGcmPsirCVWndBIY25MKjn248RHx4JAsZyY+mtC2TuD3mNbu2pjQH+Z6/WQbMQTQLQHPcHMRVJBacL168CF1dXdSqVQtjxozBzp074ePjg2wOu2YUUCMQCBDx+Tue7DmBQyNnY1GVVpht7ITtXUfjptc2fH/4Allp6VJ/jl75cnDq3RF91nlg9tOz2Jj0CQs+3MSw/WvQYtIw2DVwgiqFeCgqKurqqD+4BxFXuKIUriguQifIPN17ktMinMIVRVImXFEtGxFxhSuKuyhcUSTeHO9bTuuKuvuUc64ovpISLGtVQ4v/hmL0sU0YtGM545+Rk5kF/6evqdtwHDyD2GDpjSPSUr1Dc+iVL0fE31++y/2WSXRtsjjew7p2z/bQ1Ncl4j6nryE9KZmFjOQDn89Hk7LaMmlgN2pz0JELJX4mhjQoq6qiwbBeRLxMmIOG96ZsJfWc4+YgriKx4JyQkIC0NO5Ow1VAT3pSMr7ceYJrSzdhc4dhmGVYC0trtMOxca54fvAsor4FSv0ZfCUlWDs7ouWUERh9fBM8fz7FyvCXGH92B9rMHAOHJnWhpqXJwE9TmDLtiqLoFVUmXFFldPFAsyoOsG/sTMTDP/ghxOcjCxnJD4UrqjBlwRVFK7ZzfMzLsiuqrLbJKtIVFZ/IQkbyoSy7our07Qw1bS0irqKpgY4ek5lvwzFyDtxtm8KjQjMcGTMPr45fYmzdFXEosmXSkQtyz0eeNBjSk7I9INdbJqlqqKMejTnozamr8k9IjpRlc1CdPqQ5KDUuAe85bw6if3blujmoRueWRDw+7Be+3Oa2OYiLSN3D2dTUFF26dMGSJUtw/fp1TJs2jYm8FJQQhEIhfvv/xIvD53BsghuW1eqAmfo1sbndUFxZtAFfbj1GeqL0b5S1jAzg2KU1enjNwcyHJ7Eh8SPc3lxB/82LUW9gdxjZWFLeZJnGqnZ1WldU2IevMv98NqGfjsrt4tzBpT7KVbQj4lx0Rf1LWZ2aWKQr6ncMCxnJh7LsinLq1UHhivoLoUCAF4fOsZCR/CjTrqihZA9rhSuKu64odW0t1B1AtkzKTkuHaUW7gjYc7r7XMGDrUtQb2A2G1uSLKHGJCQyB975T2D94GuaZ18fiqq1xYtIC+Jy9jpSYOKmPLwp0LZOecVyQ0TY2pGyZlBQVg4/XH7CQkfyga7HAddOAobUFqrZzIeIxgSH48Yjr5qCyaQgrX9UB9o3qEPGw918R8vYTCxnJj6YcbpNV1pBYcO7QoQOCg4MRGRmJK1euYOHChejYsSP09fUZTE+BvMlKz8CPxy9xa9UObO8+BnNN62JhxRY4OHwWnuw6jvAPflI/wPF4PJjXqAyXcQMx7MAaLPl2H2uj32LSlX3o4DoJlZo3lIl7WVQUrqjC+J67wXlXFK0Ix3FXlHM/alfUq+OXGWmDU1JRUlam7FteFhaSazCkJ+VCcs8PlmFXVBltmeS97xSnXVGa+npl1hVF3z6nbLZMKguuKDoR7umflkl8JSVY1a6OFpOGYfTxzfAK9saK0OcYc3ILWk4ZAes6NcDjS+dDivQLwKPtR7Cn73+YbVIHy2p1wOkZS/Hhyl2ZrYVSzsEWlVo0pMwl4JmPTD6zpEDfPofb9YpV7eqwrlODiAe9fIfwT99YyEh+0JmDnnJ8zCs2awATB1si/vXOE8T85Lg5iE545XibrOodW1Cbgy7d4bQ5iItI/GRhZmYGa2trJnNR8AehUIisrCxkZGQgIyMDWVlZMisQ0pOS8fnmQ1x0W401Tftghp4j1jXvjwvzV+HD5btIjo6V+jPUdbRRta0LOi+ahqm3DmN9/Hss/HgLg3etQOMRfWFayb6gGM7NzUVmZibS09ORmZmJXBYcKfUGdoOKOrnQ4KujF2XmipLnmNPBliuqJIw5G66of8c8Oztb7mNO54rKSEqW6UJyOTk5rI85lesTkK0rSiAQICsrC+np6ayNubaxIWr1aEvEk3/H4OO1+zL73H/HnA2hk42XiSVhzNlyReXk5CAjIwPp6enIysoqYWMuO4fMv2Oek5Mjs8+iw7xaRVZcUdnZ2SVgzOXfJuvvMc/MzGRlzG3r14Z59UpE3P/JK0R9p251Z2BZHnX7d0X/zYvh5nMVGxI/YvrdY+i6ZAaqthWtDYeWiSEM7K1gVMkOOublCi3KG/7BD/c37sf2bmMw07A2VtTvjgvzV+LzrUfITGWuLSMbbbIEAkGhexobY16lTVNKp/qn6w+QEBElk88UCoXEec7GSyw22mT9W6+wMea1urWBtrEhEZelOejvMWerRi3KHPRchuagklCjsmEOKgm6hJKyMuUC94KcHLyUYcukkjDmXIMnZPi3Z/HixViyZAkAoHnz5nj48CGTh+c0mZmZSEhIQHx8PHETU1JSgoGBAfT19aGuLvnCeCkxcfB/+ho/Hr/Cj8evEOr7GUKGC4JyFe1g37gO7BvVQYXGzihfrSKlmJePQCBAUlIS4uPjkZqaSmzX0tKCgYEBdHV1wZfSfSEqB4bOwMuj5MVs7JntcKZwTElKRkZGwZj/e0FTVlYuGHM1NVIAlwURX35gaXVSjLJ2doTbG+ZcgLm5uQVjTtULXltbGwYGBtDR0ZHbmG/vPgYfLt8l4lNvH0G1tqRYIwlCobDQmP9bjKuoqEBfX1+uYx744i1WNyIXpajcshFm3D/B2Ofk5uYiMTER8fHxSE8nH5B0dHRgYGAAbW1tuY35+pYDKHuUz3txAXYNnBj5DKFQiPT0dCQkJCAhIYFyzPPPc1UK57Es+HL7MTa3H0bEa3Vvi4kX9zD2OTk5OUhMTERCQgIx5jwer9CYy6NlEgB41umMUN/PRHzRl7soX9WBkc8QCoVIS0tDQkICEhMTiTFXVVUtGHMVih6cssDnzDXs6TeJiDcc1gsjDq1n7HPyxzw+Ph4ZGRmFtvF4POjq6sLAwABaWlpyGXOhUIiFlVoi2v8nkYtXyDMYWJZn7HNSU1MLxvzfR2s1NbWCMVf+S5CTJd77TuHImHlEvMXk4RiwZQljn5OdnV0w5pn/vJTn8XjQ09ODgYEBNDU15TLmuTk5cLNuTPQUVlJRwerI19Ay1Gfkc4RCIVJSUpCQkICkpCRizNXV1WFgYAA9PT25jfndDXtxdia5gGAHt0no4TlH7OMJcnMR/tEPAd4+CPB+gwBvH8SFhEPb1BiVurRAtZ5tof9Pj/is1DR8u/oQ367cR+R7+gU6lVRUYNegNiq1bITKrRrBvqETVCSsb7LSMzCvfD2ixZ+alibW/PaBqqaGRMf9F6FQiOTk5IIx/xcNDY2CMVcqou5hkiuLN+Dakk1EvOeq+Wg/dwJjn5OVlVXw7Jr9z2woPp8PfX19GBgYQF1dXS7neVpCIuaVr4/sjMLXHG1jQ6yKeEnZ31oSBAIBUlJSEB8fj+Rksv2WpqZmQY0qrzE/M3MZ7m3YR8QH7ViOZhOGMPY5xekS+fWKhgYz51dxJP76DVerRoQRyNDGAp5BTxn7vRMIBEhOTkZ8fDxSUlKI7WzoEkfGzKN8mTLq2CbUH9Sdsc/Jr1ETEhKIMVdWVi4Yc2m0KHGI+hGERZXIXs7mNSpj4cdbjH1OcVoUG7oEl1AIziWA7OxshIaGirwIo4aGBiwtLUUSpBIiovDj8Uv8ePwK/o9fIeLzd2nTLYSKhjps69WEfWNnVGjsDLuGTpRtGagQCoWIjY1FVFSUSG/NeDweTE1NYWRkJPOHme+PXmB9C3IKS52+nTHu9Dapj5+VlYXQ0FBK4Y0KTU1NWFlZyUWcWN24FwKfvyXiy/wfwaSCjVTHFgqFiI6ORnR0tEhjzufzYWZmBkND8m0+03y4chfbu40h4k3GDMDQPSulPn5GRgZCQ0OJgpwObW1tWFpayrxQFQqFWObYnrg28Ph8rAx/AT0zcjqTuMf//fs3YmJiRB5zc3NzubRnennsIg4MmU7E28wcgz7rPKQ+fnp6OkJDQ5GVlSXS/jo6OrCwsJD5mAsEAnjYuyAuOLxQXFlVFWuifaChqyP18aOiohAbK9oMGSUlJVhYWEBXl+yxzDQPtx/ByUkLiHiXxdPRZdF0qY+flpaG0NBQoiCnQ09PD+bm5jIvVLMzM+Fq2Yjoq6quq4M1v99ARcoXXAKBAL9+/UJ8fLxI+ysrK8PCwgI6OtL9ronCzZXbcdF1NRHvu2EBWk8fLfXxU1JSEBYWJrLbTV9fH+bm5jIvWjJSUjGvfH1kphQunnTNTLAy7EWRRgBRyM3Nxa9fv5CQkCDS/ioqKrC0tISWFunUYpqLbqtxc8V2Ij5032ra2S3ikJycjLCwMJGdT4aGhjAzM5P5mKfExGGeeQOiPZKJgy2Wfn8g9bNzbm4ugn74Iz07CxAKAfDA45PHFOTkgK+sjITgCNyeuxq/v/gXe2wVdTXYN3ZG5VaNUbllI9jWqymWaHhi0gI82n6EiDNlFElMTERERITIY25sbAxTU1OZ1yuxwWHwsHMhnq+YMork5OQgLCyMUnijQk1NDVZWVnIRpOjMQUwZReLj4/Hr1y+RZmrweDyYmJjAxMRE5mMe8fk7ltYg+3czZRTJzs5GWFgYpfBGhbq6OqysrORilKEzBzFhFBEKhYiLi0NUVJTIYy4vXYLOHMSUUURcXUJDQwNWVlZyMcqsa9EfPx69JOILP9+BebWKUh1bKBQiJiYGv3//FrlGNTU1haGhodyMMlxAIdGzTFpaGvz9/UUWm4E8ESMgIIC4EQiFQkQHhuDZwTM4PGoOFjg0x3yLBtg3cCoe7zjKiNhsaG2Buv27oN+mRXB9fRkbEz9i1qPT6LliHmp2bSOW2BwWFobIyEiRp2gIhUJERkYiLCxM5tM6KjZrACNbSyL+8eo9qacBpqamwt/fX+SLOpD3e/Ljxw+xfk8khWr6CpDnkJMGgUCAkJAQkS/q+d8TERGB8PBwmY959Y4tKKepvTt/U+retsnJyQgICBBZbAbyRIwfP34QLkGm4fF4lGMuFAjge166t8cCgQA/f/4U+QVD/veIe22QFKdeHSinqfmcuS71VPDExEQEBgaKLDYDkv2eSAKfz0fDoeSDa05WFuWDvDjk5uYiKChIZLE5/3vyrw2ypt7AbpQihs9p6a5vQF5xGhgYKLLYDOT9ngQEBIj1eyIJKmpqqDewGxHPSErG19tPpDp2Tk4OAgMDRRab878nODgYMTGy78PXgOJ3HWBmzGNjY/Hz50+xplYnJCQgICBA5tOx1bW14NS7AxFPioyG/9PXUh07OzsbAQEBIovN+d8TFBSEuDjZLyZH+xxz+qrUx46OjkZwcLBY02zj4uIQFBQk86m52saGlD2so/1/IvQdObNDHLKysuDv74+MnGzweDzw+HxKsRlAQVsNXUtT9D66FhU7NCv2+NkZmfh2/xkue6zFmia9MdOgFrZ0HI7ba3Yh2Odjse3N6MdcuvNcKBQiKioKoaGhYo1fTEyMXMbcyMYSlVo2IuIhPh8RHRAs1bEzMjLg7+8vstgM5LliAwICKB3gTCPLMc+vPUR9Fsw3VwQHB8u8lZB59UqwqVuTiH9/9BKJkdI9R6Wnp8Pf319ksRmQ7PdEUhoN70MZZ2LMw8PDRX7BkP89kZGRCA0NlXm9YtfACaaV7In45xuPpF74Ol+LEkeXyP89kYcu0YjmPH8rpS4hFAoRGhoqsvER+L+5Qh66BJdQCM4skp6ejp8/f0r0MJIv5CTGxePxzqPYN2gqXK0aYUGFZjg8cg6eHTgj9YNG/nS31jNGY+zpbVgR+hxewd4Yc3IrWk0dCZu64rkP8skXmxMTJes1lZiYKHPRmcfjoU7fzkQ8Oz1Dqj6naWlp+Pnzp0QPI/ljLs4NQRKcenWgXDhGmpu5UChESEgI5XQ0UYiPj0dERITEny8KSsrKlMV5alwC/O4/k/i4KSkpCA4Oluj3NV+8k7UAWacvtftHmuI8//dVnIfWv4mJiUFUlGx6EOajqqGOml1bE/H40Aj8fOkr8XGTkpIkfgDNF2VkLUA69yOvb4B057m016jfv3/LXHTWMtBD1bZNifivLz+keimbkJCA8PDw4nekICsrC0FBQWIJ1ZIgizHPv0ZJ+mIsMjJSrJcTkmBgYQaHpvWIeODzt4gLkWzMgDwR8devXxJ9b2ZmJgIDA2UuOjv360IZl2bM818wSHqNioiIEOvlhCSYVa4Ai5pViLjfXW+kxEr+2dLcl9LT0+UiQMriPM/Ozhb7ZRqQt1AhX4mPdqtmo0LbJmJ9b2ZqGj7ffITzc1dgRd2umG3shB09xuL+5gMI/+hHPEfb1qsFQxuyn7G0RpHfv38jOjpaou+V5plfHGjHXApBJjMzE0FBQRJdo6R95heVSi0aysQo8uvXL4lfjEnzzC8OVGMurVEkIyND4muUUChEcHCwxM/8olK9YwuoaWkScWmMIvliszgvUP9Gmmd+UeHxeJRjLq1RJC0tDUFBQRLrEkFBQTLXJWr1aM+4USRfbJb0xVj+M79CdBYNheDMIuK8RaNCKBTid0w0Tk9fitcnLiMhPFKqfNR1tFG9Ywv0WDEXs5+cwcakj5j34iL6rl8A576dGet1mJqaKrHYnE9iYqLMb2p1GX5oz39jLs3FKf/NmizRMTFC5VaNiXio72dE/QiS6JhJSUlSv/mm6/fMJEwX5/ljLg25ubmIjJTu3C4OY1sr2NavRcT9H78i+mCKSmJiotTjFRMTI3OHN12h9kbCMc935UtDTk6OzMV28xqVYValAhH/cusx0hIkuz7HxcVJ/eD5+/dvFsV2yV6wMDHm2dnZEosaomLf2Bl65qZE/P2lO8iW8DyLjY2V+oVYZGSkHIRX6jF/e/aGRMfLycmR+l6clZUlc7G9apsm0NQnW9W8PXtD4gVxo6OjpX458uvXLzkIr+T9XJCbi3cXJBNksrOzpb4XZ2RkyNzh7dilNeXC1z6nr0n8/BkVFSXxOcrj8wEeD22WTYeWkYFExwCAtIQkvL90B6enLcGymh0wz6wedvebhMc7jxYsikg15tIYRTIzM6W+Luev4SBLZGEUiYqKkvoclbbmKQ5ZGEXS09OlPkeZqHOLQxZGESZ0CVmPuaqGOmp2a0PEpTGK5K+5IQ1M1LnFwfTLRKFQiF+/fkk1XkzUucUhC6NIcnKy1LMwEhIS5OLw5gIKwZkl0tLSGPklzczKQt3h1NNFi0PLyAC1e7ZH3w0L4OZzFevj32PK9YPoMP8/ODStJ/HiHcXBVFEt6+Lc2tkRxnZWRPzTtfvISBFf7E5NTWVEPGPqd6coaIvzM9fFPlZ+32YmkPWYV2xWHzrljIn4uwu3kCOBCJacnMyIeJacnCxzlzNVoSYUCvH2nPiCDJNjLusp99U7NKdsq/FWQrdEYmIiI+JZYmKiTIVXpt0S+X3QmEDWIlyt7m1p3RKSPHhTLQAqCVQL8zAJn8+HM0WRmpGcgs+3Hot9PIFAwMiY56/nIEucenek7LcnaXEeFxfHSFEdGxsrU+FVWVUVtXu2J+LJv2Pw4zHZE7E4cnNzGRFMBQKBzF3OVL/rKjyJgAABAABJREFUgOTFOVO/ozExMTJ1vKpra6FGZ7KtRkxgCELefhL7eNnZ2VKLMTweDypaGnD1u4N5Ly6gh9ccVGnTFCoaktcZydGxeHvmGo5P9MCiyq0w37Ihfn2hFh8kHXOm7mnitBWTBKaNIpmZmYy0xMjOzpZ5aw2mjSJM1iuyHHOmjSLp6emMGLkyMzNZE14lNYowNeaynqHHtFEkLS2NEXcyU787RcG0UaS06BJcQSE4swSTIkr1fh1F2k/fwgz1BnbDoB3LsfDzHayNfosJ53eh9fTRsK5TQ+oFZESByYtSamqqTKdx0Aky2RmZ+Hj1ntjHY/KiJGsRzqlne8rfB0ku7EwJ7YDshVc6t0RafCL87nmLdaz8fm5MIeubWp0+1NcRSR7amRLagbw3yLJsNaCiro5a3duSnxseSbl4ZlEwKbQDshdemSzUqFa0lpS4uDiZCq+a+nqo1p7sKRrpF4CIT9/EOhaTYy4P4ZXJMWdKaAdkL7zqm5vCwYVsqxH08h1ifoaKdSymhPb8Y8lceGXQFRUbG8uYiBIdHS1T4dW0kj2salcj4t/uP0NytHjnWW5uLmPnZm5urswdr0wW50xek2JjY2FbvzY6uE7C9DtHsT7+PWY9OoUui6ejYrP6ErXpyycxIgqfrj2g3Pbx6j2xjSLZ2dmMnZvyEV6ZM4owOebirNsiCUwaRbKyshgbJ/kIr8wZRZisK2VdrzBpFMnIyGBsnNLT02VqCGPaKMLkOMl6zJk0ijCpH6WkpMh8Ji4XUAjOLMFkXyuNcoaUU6lMHGzReFQ/DD+4FssDn2BF6HOMPr4ZzSYMgXm1iqysrsn0zZeNmzkgfqEmFAoZffsn675o2saGqNKadEuEvf9aMHVRVErfmDNTnAsEAkZvQrL+uY1sLGHXkFzhOeDpayREiNfegelcS8ub85ycHEZdybI+z82rV0J5ihWev9x+IrZbgskxFwqFrM3iEPc8z8zMZFQcl/WY2zV0omyP9eHyXWSli3e9YnLMmb5eUkF3Pxe3rUZGRgajQqmsr+1VWjeBpoEeEfc9dxO5Yv7uMplrbm6uHGbukOe5JG010tLSGBXNZD3mjp1bUbqHJSnOmbwmZWdnF7pHqqipoWKzBuiyaDpmPTqNDQkfMO3OUXRw/Q92DZ0YM8LkZGZhc7uheH7orMiLqjF9D5L1mDNpFGFyzDMzM2X6MpFJo0hpq1eYNoowRVpamkxfJjJpFCltY86kLsFkrikpKTJ9scSkUaS0jTkXUAjOLCAUCpk9KXk8aBrrw7xGZTT/byjGnNyCleEvsezHQwzbtxqNhveBsZ0VKwLzv+Tm5jKah6z7Plo5VYdJBRsi/vnGQ2Qki36BYfphi/HfIQpob2piuiWY/tll3fexokt96JqSbon3F2+L5ZYobT83QLMIiVAIXzHdEkznKuvzvFo7F6jr6hDxt2dviPXQzHSebI15bnY23l+6I9ZxStvve61ubaCsqkrEfc6IJ8iUtp+bz+dT9n7MTEnFl1uPxDoW07/vsj7PnXp3oHz+EHel89J2fVNSUYFTL1KQSY6OxY/Hr8Q6Vmm7xlEt/gyw/xwj6zFX09KEYxdyQdzYn2EI8fko1rHkeY1T1dRA1TZN0cNrLuY9v4B1ce8w6ep+tJk1FlZO1aWqHwKfv8WhEbMxr3x9eNbpjItuq/Hj8UvaxeVK25gzaRQpbfc1ptzdpe3nZsooIhQKGReI2Rtzbt/PmTKKyOKFABsLZQLs38/lUauVdhSCM0dY+u0BFn68hYHblqFu/67Qp1gYqCTA4/EYvSDxKZzdTMJUW42SIPaLS60e7cBXVibi4rolmP7ZZf1/yVdSglMfUpBJS0jC17uiuyVK288NAHUofm5A/DfnTOcq6/NcRV0dtSgWIUmMiELgMx+Rj1Mqx5xOkGF5zGX9s2vo6aJaB9ItEfUtEOEf/UQ+Tmn7uQHm3N2l7TzXMyuHis0bEPGfr96L1VajNI45UwtMlbafvZyDLaycqhNxcdtqlLbfdYC+h7W4fU7ZHHMNXR04dm6FPmvd4f72GtbG+GL8+Z1oMXk4zKtXkjiHUN/PuLliO9Y1749ZxnWwq/cEPNlzAnGh/1/8qlSOOUNGkdJ2ntMZRcRtq1Hafm4AcKZ4hhPXKMLj8Urdz16tnQvUdbSJuI+YbTVK43lOdT8X1ygii/GR9ZjTGkVOXxVLWyptv+tcQCE4swCPx4MSg/2SeTweNPXIVchLIsoUAmZJOh4VTCxOwOfzGb0gKSkpyfwCp21kgKptmhDx8A9+iPTzF/k4pXHM6zLQYoHJcxyQz89taGUO+0Z1iLj/09eID48U+TilccyZEOFK489tXq0iZeH+5fYTpMaL7pZQkaL3JhXyGXPppyYynSfT/49U2DVwgqG1BREXt61G6Rxz6Z1wpXHMq7RqDC1DfSIublsNroy5UCCA7/mbIh+jNF7ba3RqCVVNDSIubnFekn7ftQz14dSzAwZsWYKFn25j1a9XGH1iM5qOHQhDG/KaJgoZScnwPX8Tx8a5ws26MZZUb4uzsz3x66N407SLQx5jzpRRpLT9vjNlFCmN1zem2mowrUswXQP9C11bDXGNIqXtdx2gfskAiDfmfD6fUXGcaZ2DCqaMIqXxPC/tKARnljA0NGTsWOo8JQhkPIWDKfT09Bi7IPF4PGRGy3axHQCwrFUN5SraEfHPNx4iPUm0nlc8Ho/RMVcV5PUhlDVMTF/R19dnKJs/Yx6TwNjx6KjQpC70ypcj4u8v3ka2iD0n+Xw+oz+7UnauTHui5UMryJwVfcwNDAyYSgdKfD6y4sRffVlcqtK21bgu8rmmrKwMHR3yGJLCz8yR+RQ1gKbPaU4O3l8Uvc8po7/rSkrITpR9T7SaXVtDWY3KLSF6Ww1VVVVoaZGL10hMaobMx5zH41G31UhNw+cbD0U+DpPnuYqSMrKTZdurHQCcenWgXPNCnEJNTU0N6upkf1xJESTJtl85kNdWozZFW42UmDh8f/hC5OMw+hyjpIxcMfuGSwITxbmmpiZUKZxVkpKbIPvrW15bjVZEPC44HD9fvxf5OEyOuZqSMnIymOvbrWdWDvUGdMOQ3SvgGfQUi7/eRd8NCyhfnIvKry8/cHfdHmxtPRip0XGMXY+zY2X/HMOUUYTxMc9kbm0LOpgwiujo6DAqwmXFyH7MDa0tGDGKMDrmPCXaVjVMwoRRhEldAgCy5KBLmFevxIhRhMkxZ/JYRcGEUURPj1zTQlJ4PB6jx+MqCsGZJYyMjBi7wJ0YNhurGvZEuJhN09lAWVmZsSI1OSgcXrU64daqHTIVX2lXhc3MwocrorfVMDIyYiynAz0mYq1LX7H7solLrR7taVeFFRVVVVXGxKjYTz/gWasjHmw5KFPxla+kRNleIj0xGV/vPBX5OMbG5BQ/SeAB2NlmODa1HYLY4DBGjkkHE2011NTUGBNew5/5YnnNjvDed0qmQpyKmhpq96BwS/z6jQDvNyIfx8TEhJF8eAA2N+6DbV1Gib1oo7gw0VZDU1MTmpqajOQTcOMxljm2x6vjl2Q65hq6OqjesQUR//0jCGHvv4h8HMbGXAisrdsde/pNEmu6vyQwsVCmlpYWY8LrxxNXsMyxA96J8ZJDEnRNTVCpRUMiHvzmA6IDQ0Q6Bo/HY27McwVYVbMjDg6fKfZCneLCRHGuo6PDmPD6cvsxLK3RHp/F7B0uLiYVbGDt7EjEvz98gaSoaJGOweSYIysbKxw74NgEN7HWApEEpopzphxc95dvx/KaHfD9kegvOUSFx+PBrIoDWk8fjTne5yjXXxEHQU4ufPadBRi4BwlS0rGiZkecmblM7MVZxYUJo4iBgQFjwuu1WSvg6dQJQS99GTkeHUwZRZh6bs+KTcSKWh1xyWOtWG09JIEJowiTusTZMa5YWb+7WM9RksCEUURJSYkxsTQtLAqetTrhuudWsRfkFRcmjCJM6hJMHqsomDCKqKioMKZFGRkZydzNzwUUgjNLMCW8xvkFIcznE0LefsIK564yF1+ZgKmb+aWpS5GTlYUL81fJXHxlojhXVVVl5C1YlM9nxPj/RODzt1heu5NMxVctAz1UbduUiEd8+oaILz9EPg4jYy4ELk1eiuz0DJyauhib2gwWq++muDBRnKurqzMivP68/xLJkb/x7f4zLHPsIFPx1cCyPCo0qUvEA5/5FOpvWByMFOdCIS5NX46M5BQcGTNP5uIrXXEuTvscpoRXv4t3kZGUgk/XH2BpjXYyFV/LV3WAhWMVIv71rjdSYkV3a5QrRxZ7YpMrwA3XtUiLT8T+wdOwu+9/MhVf6V1Roo85U8Lru8MXkJuZhbdnr2Np9XYyFV9t69WinIL+4co9ZKWli3QMpkQ4QVYO7nntQPLvGOzsOR4Hhs0Uy6UjLkwsNqSrq8uI8PpiyxEIhUK8OHxe5uJr5ZaNoGVEPnf6nr8pshuNqTHPTcuA99YjSAiPxJYOw2UuvjLRVoMp4fWh104AwJNdx7G8VkeZiK/51OjYAmpa5P1InOKcKREuKyEZvscvIyYoFBtaDsTpGUtlJr7yeDzUHdCVcpuVU3XK/xMqvpy/hayUNKnrqtsLNkAoFOLehn0yF1+ZMIowNeZpv2Lgd+MRor4FYnXj3rjovkZk8VdcmDKKGBoaMiK8Xpu1AoLcXNzw3IoV9brJVHxlwijClPCaGBCKn899Efb+K1bU6y5T8ZUpowhTusTlacuRm52Nyx5rsbpxb7FmFYgLE0YRFRUVRgxhBgYGcmkNBjBnFGFqzOUltJd2FIIzi5iZmUklTPBycnF25LyCr+UlvkqLqqoqrKyspDqG754ziA/6v9NT1uKrhWMVmFa2J+Jfbj5GemKSyMcxNzeXSpgQZmThwsSFBV/LQ3xlojhXV1eHhYVk/fXyeb5uP1Jj4gq+/vbgOZY5dsDTvSdlIsTZN3aGHsXim+8v3UF2huhFkoWFBdTU1CTOIzc5Dddmryj4Wh7iKxNuCU1NTZQvX17iHHg8Hh4s3ILs1P+LX7IWX6u2bQoNPfIFga8YbgkAsLKykurhKzMmAXcXby74Wh7iK71b4rbIx9DW1pZKdObxeLg5ayVys/4vfvmeuyFT8dWxS2uoqJPnpziCDI/Hg7W1tVRiVFpYFJ6s21/wdXJ0rEzF17yZO+QLlqy0dHy8/kDk4+jq6kr14M7n8XBlwkIIc/9/33555DyWOcpOfGWirUb+mEvjbEn8HozX+84UfF0gvo53lYn4qqSsjDq9ybYaqbHx+PbgucjH0dfXl8owwefxcG6ka6GYrMVXpnpe2tjYSOX8/O3zBZ/O/f9aJmvxVVVTA45dWxPx+NAIsURPIyMjqQwTfPBwesjsgq+FQiHub9wvU/GV7jnGwKo81sb6YvrdY2g7exzMa1SmPUZOeiauTFoCQXaOxKJz6MPX8L/7rOBrWYuvTBpFpDFM8IXAqSGzCr4WCgS46bVNps5XptbisLGRzh3/49I9hPt8Kvg6/IOfTMVXpowipqamUrUI4+UKcGbYnIKv/xZff32VjfjKhFFERUUF1tbWUuXx8fBFxHwPKvg6+PV7eDp1xt31e2ViBGTKKFK+fHloaJC9/kVFQ0MDZmZmEn+/JDBhFFFTU4OlpaVUeVhbW8tNaC/tKARnFsl/eNXVFX/BP00NDZwf4YqsFLL3X774en/zAbn0fJUEPT09WFtbi/0WmcfjIelTALw3HyK2yVJ85fF4lAVLTlYW3l++K/JxlJSUYGdnB21tcmXd4tDU0MDpgTORk04+oMpSfK3Vva3Ubgkg7w2opaWl2GPO5/MR/eIDfA6dJ7ZlpqTi6Nj52Np5JOPiK5/Pp1yMIyMpGV9uPxH5OMrKyrCzs5Po5ZKmujqO954CQTb5gCpL8dWpd0fKcRJ3zI2MjGBubi725yspKSHkljc+U4idshRflVVVUbtneyKeFBWDH09eiXwcFRUV2NvbS/RySVNFFUd7TiokwOWTL776XhDdlScqVD19AfEXGypXrpxED5/Kysr4fvoW/O89I7YViK9DZzAuvqrraFO6JaIDghHq+1nk46iqqsLe3l6il0safGUc7T2Zcur2yyPnsbRGO3y++VDs4xaHM+2Yiye8mpqaSvSiQUVFBe/3nkXo6w/ENlmKrzomRqjcshERD3n7Cb/9f4p8HHV1ddjb20vkdFYTAMf6T6Pc9mT3CSyTUdsBJlos8Hg8mJubS/SiQVVVFS/W7MdvCuErJigU61sMkIn4amxnBZt6tYj4j0cvkRj5W+TjaGhowM7OTqKXS8rp2Tjzl0kkH1mLr0yIcDweD5aWlhI5INXU1PBgwSYkBIcT2wrEV7fVjIuvFo5VYFqJ2iiSk5GJKq2boPcaNyz8eAsrQp9jyJ6VcOrdkZiiH/nuKy6MckVGQhIEOaIJR4KcXAhycxF89zkuTVlCbP9bfA19J/p9RlTo7ufiGEX4fD6srKwkckCqq6vj5nQvpP4mn9EKxNflWxgXX5kyimhra8PW1lbsF4o8Hg/Z4TG45bGB2CZr8ZUJo4g0uoSGhgYujvFARhJ5v84TXzvJRHxlyiiiq6sr0QtFHo+H1G8heLRmL7EtOyMTZ2ctx/qWAxEdECzWcUWBCaOIkpISbG1tJdIlJD1PpMWxi/RtNYC8l+dWVlYS6RKSnidlFakE506dOqF27dqF/uzcubNg+5s3b4jttWvXRkSE6G/buI6SkhKsrKxgbm4uUqGqqqqK8uXLQ4enAkERUyCz0zNwetoSbGw9SKZtB6RBV1cXDg4OIjXsz2/K7uDggLhvQUXuLyvxlYmHdiBvzG1sbFC+fHmRClU1NTWYm5tDI6volwd/i6/iLBRRHJr6eqjWzoWI//ryAxGfv4t1LH19fVSoUAG6uroijbm+vv6fMf9Z5L6fbzzE0upt8fLYRYbHXPriHPi/6GxmZibS29B8R7hySgaUVOgL2wLxtc9EJP2OESunojCwMEOFpvWIeNALX7F7SBsaGhaMeXHw+XwYGBigQoUKiPsWVOS+BeKrGFOiRYGp8zxfdC5XrpxIY66hoZE38yMuGSrq9NeF5OhY7Oo1gXHx1axyBVjWqkrE/e49Q8pfMwtEwdjYGPb29iI9wPL5fBgaGsLe3h5x/kU/kL88ekEm4isTLZOAvPtzhQoVYGJiIpIgpampCWtra2RHxkFFg/7lRGJEFLZ0HMG4+GpTtyaMbEmHx8er95CZKvpCdjweD+XKlYOtra1I7iglJSUYGRnBzsYGCUFFX0/yxddvD0V34IoCEzN3gLz7c4UKFWBsbCxS0aWlpQVbW1ukh0RBTYveVRT7MyxPfJ2+ROQWJ6JQsXkD6JiQU0DFaasB/OmXa2YGGxsbkcZcWVkZJiYmsDa3QHJE0QLv/Y374Vm7EwJfvBU5H1GgbKshFML3nHj3EA0NDTg4OMDIyEgkcUJbWxt2dnZICQyDqib9mMtKfK3eoQXUtMkxenvmulimlPwXDdbW1iK9QFdWVka5cuVQ3tgE6bEJtPsJBQLcXLEdK+sxK77Srr9CYRQxsCyPpmMGYPzZHVgX8xazn5xBB7dJsK5TAwAQ9fE7TvSegk9nbyDzz+Km/y7WLhQIIBQIIMjJxc9Hr3B2yBxcmeFZZI6yEl9rdW/HiFGEz+fD0tISlpaWIrkgVVRUYGpqChMdvYL/Jypys7NxecE6xsVXpowiQN556+DgAAMDA5EEKV1dXdjb2yPh+0/K//t88sXXO+v2MCq+MmUUyX/RYGFhIZJpQlVVFWZmZtBXVoOgiMUhczKz8sTXFgMYFV+ZMooAeWsUVKhQAfr6+iLrEvn1CtWsqXz8n7zC8lod8WjHEUZrVKaMIn/rEqJoUWpqaihfvjxsbGxY6V+srqONGp1aEnFxjSIACsZQVC0qX5dgcoH4sgBPKMVvvq2tLYKDxb9oBAUFwdbWVtKP5TQZGRlISEhAamoqcv/ciJSUlKCpqQl9fX2oq6sXnBDZGRm4smgD7qzZXeQFTE1bC303LECT0f0ZXYmVSXJzc5GUlITExERkZ2dDIBCAz+dDRUUFenp60NXVLXRR8/d+g0MjZiO6GDdS9Y4tMGTPShhYSD/dQygUYkm1Noj0CygUV1JRwZrfb6CpL/50Q6FQWDDmaWlphcZcS0urYMzzyUxNw4X5q/BwK+nw/htNfV3037oU9Qd1Z2TMXxw+h4PDZxHxzgunouuSmRIdMzc3F4mJiUhKSioYcyUlpUJj/ncx53fPG4dHzUVcCOmS+RunXh0wcMdy6JaTvj+TQCCAm3VjJPwj4KvraGPN7zdQkcDBKhQKkZ6ejoSEBKSnpxcac21tbejr6xe64acnJePszOXw3neqyOPqmBhh0E5POPUip0xLwoOth3BqyiIi3nutO9rOGivRMXNycgrO85ycnEJjrq+vT6wQ/uHqPRwdOx9JkUUv7FR/cA/037IEWgbS90jPycrCXLN6SPtHzNUpZ4xVES/Bl+DhSigUIi0tDQkJCcjIyCh2zFNi43Fy8kK8OXmlyOPqmZti2L5VqN6hhdg5UXHDaxsuua8h4oN3r4DL2IESHTMnJ6fgPP97zPMXE9XW1i405j5nruH4RA+kFjMl0GXcQPRe6w51HfFdGf+SkZKKOSZ1kJ1RWOQxtrPCsoDHEl1DhUIhUlNTC8Y8X9hRVlYuGPO/XzgmRUXj6DhXfChmxoyRrSWGHViDyi1Ih64knJ+3ArdX7yLiY05tRV2aF27FkZ2dXTDmubm5BWOupqZWMOb5/6dCoRAvj5zHqamLkZ6YXORxW00biR5ec4sU7UQlOToW88rXJwp+q9rV4O4ruiPsb4RCIVJSUpCQkIDMzEwIBALweDwoKSlBR0cH+vr6hV4+xYVG4Mjoefh6p2ghxLSSPYYfWgv7hnUkyutfjk90x+Odx4j4lBsHJb6WZGVlITExEcnJycjNzYVQKASfz4eamhoMDAygpaVVaMyf7DqGc7O9inyxwePz0X7eBHReNA0qUrSlyic2OAzutmSrgYrN6mPWo9MSHVMoFCI5ORkJCQnIyspCbm4u+Hw+lJWVC8b875dP0QHBODRyDvyLEUIsHKtg+KG1sHaqIVFe/7Jv8DS8Pn6JiM/xPocKjZ0lOmZWVhYSEhKQkpKCnD9iKZ/Ph7q6OgwMDKCpqVkw5oLcXNzfdAAX3VYjpwhRiq+sjC6LpqH9/IlQYqBfdvhHPyyrST4TOXZpjUlX9ol0jKSoaHy5/QSfbzzEl9tPkJ6UDFuXeqjUpQX0LM2gqqWJnMxMpMUmIPDec/y4+QQZCaK32svHpl4tjDi0DuWrOoj9vVRs6zIKH6/dJ+ILP92GefVKEh0zMzOzYMz/fo7JH3MNDY2CMc/NycGtVTtxbcmmIl9mKauporvnHLSePkqi56t/8fd+g7VN+xDx+oN7YNTRjRIdUyAQFJzn2dnZhc5zPT096OnpFapRQ999xsHhsxD+wa/I4zo0rYfhB9dKvcBlPmub9aO8tngFe8PQWrK2hnS6hIaGBgwMDArrEpmZuLZ0M26t3AFhES+zVDU10HutG5pNGMJIjfrpxgNs7TSSiDebOASDti+X6JgCgaCgXsnKyipWlwh66YuDw2YV29K0alsXDN23CoZW4s/+pGJ57Y4Ie/+1UIyvpITVka+hbSxZT+78GvVfXSJfi5KmBQdTvD55GfsGTiXi7edNQM+V8yU6JpUWVZQuoUB0FIIzBxBVfK3RqSVGHFon8QWopCGO+Dpk7yrU6U2+9RaXK4vW49rSzUR8xKF1aDist9THFxVRxdc6fTph6N6V0NCTbtpHWkIi5prWI1ZaNqvqgEWf78jtRYY44uvwQ2tRoyP5BlRcTs9Yivsb9xPxCRd3o3b3dlIfX1Q+XruPI2PmFSu+NhzWCwO3Lxd5URw6En/9xnyLBsTLLLsGtTHvxUWpji0OKbHxODVlEV6fuFzkfnrmphh1bCMjQtzhUXPw7MAZIj7j/nFUbtlY6uOLiqjia7MJg9F3wwKJXoD8TdSPICyqRJ4zVdu6YNrtI1IdWxySoqJxbLwb3l+6U+R+RraWGH1iMyNC3K4+E+F77gYRd31zBTbOjlIfXxTEEV/bzByDnivnFemkEoVgn49YUZdcXKtOn04Yd2a7VMcWh/iwXzgyem6xLjTTSvYYc2oLrGpXl/ozN7UbSin2Lvn+AKYV7aQ+vigIhUI82X0c52Z5Fiu+dnSfjC6Lpkktyvjdf4aNrQcR8caj+mHYvtVSHVscxBFfx5zayogQt7JBd/x89b5QjMfjYWX4S+iVZ2DRUxEQR3zttmwm2s2dIHWR++7iLezsOZ6It5o+Cv02LKT4Dtnw66s/Dg6fheDX74vcz6ZeLYw5uQUm9tL1VaUziiirqmJ11GuxjSKC3FwE+3zEl5uP8PnmIwS9fFeksCYuymqq6L3GDS0mD5f6uZrWKLJoGrouniHVscVBZPHVpT5GH98EA0vJ1/4AZGMUkQRxxNf+W5agyah+Un/mgy0HcWrqYiLeZ50H2swcI/XxRSXopS8ODp+FqG9Fi6/V2rlgxJENUhuEcrKyMNe0LtL+edEjjVFEErLS0nHRfQ0ebDpQpBFQXVcHg3d5ot6AblJ/5nXPrbjssZaID9mzEk3HDJD6+CUVWqOIvTWW+T8qsQbLsopUTzA/f/6EUCgU+49CbGYWhyZ14fHuOlpOGVHkfp+uP4BnnS4yXR1ZnqhpaWLAliWYfu94kW9u0xKSsLvPRJyZuUysKaNU0C5OcEq86SvSUqV1Eyz4eBNNRvcvcr+3Z6/Dy7mr1At0aOrroVr7ZkQ88qs/Ij59k+rY4qChq4Ohe1dh0tX9RRaHydGx2NppJC4vWCf1lDXaxQnkPOaOnVth4afbqDew6AeUF4fPY2X97lKvjqxXvhwcXCjaarx8J9c2PdpGBhh9fDPGnt4GLSP6haoSI6KwsfVg3Fy5Xere9XTT7eV9njv37YxFn2+jVndyFe6/ebzzGNY06YOYIOnGxbSiHaxqVyPi3+4/k9lihVTomppgwoXdGHF4PWVvvnxif4ZhXbP+eLDloNTTFEvCmPN4PDQc1hsLP92mbGP0N3fX78W6FgOkbp9kXacGjClEnY/X7iMjhX5KNNMYWJbHlJuHMWinZ5Evy6K+B2J1o17w3i+ZI/VvmGqfIw08Hg/Nxg+Gx4ebqNisPu1+QoEA15dtxub2w6Run1SxWX3oUBT47y7cIl4qyxKTCjaY+fAk+qz3oOzHmE/4Rz+srNcNb04VPeNDFKie4YRCoVh9TqWFr6SENjPHwN33OmVf6XwEOTm46LoaO7qPlbp9UvUOzRlpqyEt5as6YO6zc+juOafYtgMrnLvgwxXR10ihosi2GsW80KSCr6QEu/q10XnhNMx9dh5rfvtgzMktaDSiD3TNTKTKFchrO3Bq6mJs6TAc6UlFv3Qsjprd2kCZom2fvJ9drWpXh+vry+joPrnYtgNedbrg692nUn0en8+nbDWQkZyCzzdlsxAtFSpqaujhOQdzn52jXHQ+n6y0dBwZPReHR82Runc9XVsNJq6d4mDXwAnuvtfResboIoW/L7efwNOpM/y930j1eXRtNZJ/x+D7o5dSHVscVDU10G/DQsx4cALGdla0+2UkJWPfwKk4OWWR1PdcurU45F2vyBt1bS3U6NyKiMcEhiDE5yMLGSkoCoUvnCOoaWmi/+bFxYqv8aERWOvSDw+2HmJ8oTG2qNKqsUji670N+7C+5UCpCnTz6pVQvlpFIu5311usnpdMIKr4Gh0QjFUNe+LZAekKdLriXJxFE5miQHwd1L3I/a4v34LNHYZLJZbZNnCCAcXUp0/XH8hktemiKBBfz2wvcqbCry8/sKJed7wRs4/Xv9C9YPl45Z5Ux5WEAvG1B72rXCgQ4KLrauzsMU6qAr1K6ybQpGjP8eHKPblfN0UVX0PefoJXnc74cFW6saFchCQ3F5+uP5DquOLC4/HQcGivYsXX3OxsnJq6GPsGTZVKIHXs3Iqyj/KHy+KLEtIiqvga+MwHXk6d4XfPW+LPohNkstMz4Cdl4S9JLqKIr9kZmXkF+ui5UhXotXu2p3Q+sTHmJvbWmPHg5J+ZCvTtI/zuecOrThcEPPOR+LOUlJXh1JtsM5AWnwj/p9IV/uLC5/PRZsYYeLy7Dtv69OJrZmoa9g6YglNTF0tVoFP1dwXYeY4RVXz9ePUeVjh3QcjbTxJ/loq6OuWLy4TwSIRKcVxJUFJWRke3SXB9fQkWNavQ7peWkITt3cbggusqqZ616J5jimtfJAraRgao278rhh9Yi1URr+Duew09VsxFxeYNwJeiJciX248xy8gJ+wdPg989b4nMMrRGEb8ARP0oeo0MplFWVUX35bMx9/l5mFWpQLtfcnQsNrcbiuvLt0j1IoTOKMLEmIuLqOLrswNnsLpRT7EWrv0XfXNTSqPIz1fvxVoclQlUNdTRd/0CzHx4skjxNTEiCutbDMDdDXuler6mq1HZuJ9Xat4QHu9vwGU8OZPobx5uPYR1zfoVO1u5KEwr2VMaRb4/fCH1S6uSTknSJRQUjUJw5hgF4msR0yhys7NxasoiqQv0kkSB+HrtQJHia4D3G3jV6QK/+88k/iyqN+c5WVn49oDZRY1ERRTxNTsjE4dHzcWRMfMkLtDp3BKfbzyU6HjSomWoj9HHNmHc2R1Fiq9+d5/C06kzAp9LVqDTLUKSnpiMwOfMLmokKs59OmHhp1tFiq+ZKanY238yTk2TvEB36t2B8gH5E0tjrmtqggnndxUrvn64cjevQPeVrJBWUlGhdEskRkQh/MNXiu+QLYXEV4oCMp+0hCRs7zoaF91WS1yg1+lL/QDH1nmeL74O3uVVpPj65uQVrKzXDRFffkj0OWpamnCkcEtEfQuU2jkuCaKKr8nRsdjUbiiue26VuEB3LmFjLqr4+mz/aaxp3EviBYi0jQxQpTXZIif49Qe5Ovrz4fP5aD19NNx9rxUpviaER2Jd8/64t3GfxAU6nSuKrTE3q+KAOd7Fi68PthzEuub9ERcq2eLjRjaWsGtQm4j7P37FyvPw3+Ir1aKt+cQEhWJ14154sueExGNOt8AUW/dzy1rV4Pr6Mjp5TClyyvutlTuwud1QJEUV3U6MDvPqlWBG0Y7l613JhFw6eDwerGpXR4f5/2HWw1NYF+uLcWd3oMHQXtAy1Bf7eIKcHLw6fgkb2wzGnHLO2Dd4Gt6cuiKWiEQ35myd53b1a8Pt7TW0mTmGVnwVCoW4vGAdtncdjdS4BIk+x7aBE2Vrjs83H7FithJVfA17/xVezl3x7uItiT+L9hlOju7uv6nYrAE8PtxEswmDafcR5OTg7Mzl2NNvksQiKZ1R5PMNdn5udR1tDN7phSk3D0G/iHWkgl6+g2edLvhy+7HEn0U15oKcHPjdldyMUBpw7NyK8hmRreubAnoUgjMH0dDVwdA9K4sVX9+cvIKV9bszukIw2zh2alms+Jr8Owab2g7BDa9tEhXoVKIEwO4FTlTx1XvfKaxp0hvRgSFif4aGrg7lm/PA52+lnu4pDXV6d8TCYpyvCeGRWNusP+5t2i/Rw2ZJHHNRxdcHmw9ifYsBiA/7JfZn6JmVgzVF/9rvD55LPfVPUkQVX2OCQrG6US883XuS0TFnqzgH/oivNw4VK77eXLFd4gK9nIMtTCuR0z+/3H4id0d/PjweDy7jBhUrvkb6BWBV/e54fYJcHEsUanSm7vnO5piLIr4KBQJc9liLHd3GSFSgWzlVp3xW+HSDneIc+Et8Lcb5GvruC7ycu+DdpdsSfQ7VlEyhUFhsL2lZIor4KsjJwZkZy7Cn/2SJCnSHpvWgrkveN9i8p4kqvga98IVXnS74Usxii3RQjXlOVha+s2QaAPLE1/mvLqGTxxTatgM5mVk4Ns4Vh0bORlZautifUbVN0xJlGgDynK/dls3CnGfninS+fnvwHJ5OnfGjmH7fdFDdzzOSkqWaKVAcGro6qNO7I0YeXo/VUW8w48EJtJo+qkjBkY60hCS8Pn4JewdMwWzjOtjcfigebj9S7HNdjY4tKIVdNsdcVUMdfdZ5YOajU0X+X+S1geyM4DcfxP4MPp+PGp1aEPHEX7+lbjEoDaKIrxlJydjZczzOzV0h0TNXSaxX1LW1MGiHJ6beOlyk+Pr27HWsrNcd4R+L7vdNhZKKCuVsuKjvgRLVvExRvX1zLPx0Cw2H9aLdJzU2Hls6DMfVJRsl1CVK3rOrPFDT0kSlluS6PcFvPkjdekwBsygEZw7j2Kkl3N9dR5XWTWj3ifzqj5X1uklcoJdE8sXXYftXF1mgX3JfI1GBbu3sCB0TIyL++cZD1tuU1OndEe7vrqNCk7q0+4T6foZXnc54L8E0o+odWxAxoUBAufCSPNEtZ4wJ53eh/5YlRRfo05di74DJyEhOEev4FZrWpRT42H6Lmi++uvteh3Ud+tXsA5+/hadTZ4kKdKoxz87IxI9HL8Q+FpMYWJbH5OsH0XPlvCIL9KNj5+f1xhOzQK/SpgnllNiSMOYu4wbB9c3lIleazy/Q/Z++FvszqndsTsTS4hOJxbbkjYm9NWbcP4FOC8iVqfPJTE3DvkHTcGLSAmRnZtLuR0X1DuTPDbA/5vni67wXF2DiYEu738dr9+Hl3EXsAp3H41H+7PGhEfgloWOcKcwqV8Ccp2eLXPAoPTEZO3uMw/l54hfoVNc3gP0xzxdfZz85TdnSKZ+3Z67lFehirqWgpKKCqm3IZ8OIz98ldg8zhWWtapj34kKR05FTYuKwpf0wXFu6SewCvQbNmLNdnOeLrzPuH4euKf0iWi8OncOqRj3FbougpqUJB4oXdkEv30nsJGUKu/q14frmChoM6Um7T+Kv39jQciDurNsj9rM22+e5krIyKrdohH4bFmJZwGMs+HgL3ZbPLrKHNx252dn4cvsJTk5aAFerRvCq2xXXlm1G2PsvxP+LtrEhbOrVJI7x/eEL1kwD+VR0qQ9332tw6kW298knLjgca5r0weOdR0vdmNORL76OP7cT6jratPvdWbMLG1sPQuIv8VphGNtZUfaM/sqiaSCfau2aweP9DdpnLSBPIF7ZoAdeHDkv9vFL6phr6uthxKH1GHF4PWXrNiDvRffVxRuxtdMIpMTEiXV8i5pVoWduSsRLgi4ha+ju519uSe4YV8A8CsGZ4+iWM8bUW4fRyWMK7T75BToTzetLEo1H9sPc5+dhUsGGdp+CAl2MBvN8Pp/SWRkTFIqo70WvyCsPDCzMMPPBCbSeMZp2n/TEZOzoPhYX5q8U6wGkpN7MgTzRpOXk4cUW6D6nr2FFvW6I+Pxd5GOrqKmhMsXU69B3X8R+GJQFxnZWmON9Fi7jBtLuU1CgL9ssVoFeg0J8BNgvzoG8c7H9vImYfu9YkQX684NnxS7QNXR1UKGJMxEP8PZBemISxXfIF7MqDpj38iLqD+5Bu0/ir995vfHWi9cbrySf53wlJXRbOhOTrx8ocpryo+1HxO6Np2dWDlZO1Yn4t/vPkJ3BbnEO5Alxbm8uFzmbI/ZnWF6BvusYI2NeEs5zJRUV9FnngXFndxRZoN9evQsb2wwWq1elaUU7ymeEL7cey3UxNTrsGjjB/e3VIvuYR30PxKoGPfDy6AWxjl2Sz3MVdXUM3umFEYfWFVmgX1m0QewC3apODcpFE0tKcV6peUO4+16Hgwv9bI7wD35Y4dwVvudvinVsquJcKBBINZ2bKdS0NDHi8HoM2rGc0okN5K0ncG62J3b3mSjWfdihaV3KRRPZuL7xeDxY1KiMTu6T4frqElaEvcCgHctRsXkDoIgev3SE+HzElYXrsbx2J3jYu+DUtMXwu/+soF0InWng+0P2HP35aOjpYtzZHei91p22rUpOVhaOT/TAwWEzxVorp0rrJpQGlE8stVj4F6deHeD65jIsHOn7mP94/AqeTp3wXUyDB9WYpyUkIejlOzGzZB5tIwNMunYAXZfMoG2rkp2egYPDZuLYBDexnr1Kqmkgn4ZDe2H+q0uUswjz+XLrMTzrdEHQS1+Rj0tnGkgIj0SEmC+jSxsl+TlGwf9RCM5lAL6SErotm4VJ1w5Q9jfKh4nm9SUNq9rV4SpKgd64N57sPi5ysVHSL3BKKirou34Bxp7ZXmSBfmvVTrEK9PJVHSgXpfx881GJKM4BEQv0b4FYWb+7WAU63VvUzzcfipmhbFBRV8fgXSsw/ODaogv0heuxrfNIpMTGi3Rc2/q1KYU9tvqiUVG5RSO4vb1WfIFet5tYBTrVmAtyc/G1hPRFU9PSxMgjGzBw+7IiC/Szs5Zjd9//RJ56X6l5A8rfoZIgPuZTo2NLuL29Cpu6pHsrn5+v3sOzThd8viX67yrVtT0rLR0/nojvFJcFGnq6mHB+F3qtcSu6QJ/gjoPDZ4lcoFdt25TyeCXlngbkzeAptkB/9BKeTp3FKtCpxjwlJk6iqdyyQNvYEJOvH0TnRdNoC/SstHQcGDpDrAKdrjgvSed5w2G9Mf/lRZSraEe7T0GB/uqdSMekMw3E/gxD1LcASVNlFL3y5TDj/nG0nTOedp+M5BTs6j0BZ2ctF7kXcUl/duXxeGg2YQhmPz0DQxv6BdB9z9+EV91uCBNxTQVlVVXKfu3hH/ykWkicCQwszNBswhDMengKa3/7FNkqrDhif4bhweaD2Nh6EOaUc8b+IdOhrEo966+kPMPxeDy0nTUWMx6cKLIN5MujF7CqQQ9EiniOqutow6EpOdsz8JkP0hLYawP4N6aV7DHvxYUi2y0kRcVgQ6tBuLVqh8g1Km29UkLOcz6fj84Lp2HyjYPQMjKg3e/JruNY07SvyOto6JqaUM729CshpgEAsKhRGfNfX0KdPtT91YG82WVrXfrhwdZDUusSJel+LgvKOdhSzvz7cusxBLm58k9IASUKwbkM4dip+AI9v3m9OAV6SUdTXy+vQF/tWmSBfmy8Gw4OnyXS1Ptq7VxKXF80Kpz7dMqbel+jMu0++QX6j8cviz0ej8ejnG6fFBnNal+0fxGnQD8+0V2kqff0N/OSda40Gt4H815cKLJA/3zzEbxELND5SkqoSiHe//4RJPFiXbJA39wUM+4dQ9vZ42j3yUhKzivQZ3uKVKCX9OIcyDsnm08cmlegU7wMysf33A2sqNtNpN54KurqqEzRFy3E56PECzfJAiMbS8x+egbNJg6h3Sc1Nh5bO47AlUXrRXr4LOmFGpA35u1mj8ubem9mQrvfyyPnsaphT5EKdE19Pdg3qkPE/Z+8FrsFkSwRqUCPjMbG1oNxa/VOkYq10nCe85WU0HXxDNEL9J/FF+gGluUpxXu/u94larabhWMVuL65DKfe5OK9+cSHRmBt0754uO2wSGNekmfu5KOkrIzeq10x4cIuyn7b+dxdvxcbWg1CQkRUscc0q1KBUsj9fLNkOPrzsa1XC24+V2nPTQCI9v+JVQ174vmhsyIdk+5YX1haTI0KbWNDTL15GKOObYKqpoZUx0pLSMKrYxdxyX0t5faS9LsO5LXYcHt7FZVaNKTdJ+Lzd6yo2w0+Z66JdEyqMS9JpgEAUNXUwPCD6zB49wooq1EbB4QCAS7MX4UdPcaKJJZXbFaf8venJN3TgLz+xu6+1ygXcs0nxOcjvJy74OO1+6Idk8rRn56BH48l6/8uCzR0dTD29Db03bCAsnUfkNc659SURdg3aKpIC9pWbdOkxJsGZAXVc3tqXAJ+vma3DaCC/6MQnMsYxrZWeQV6EQsWFBToizdw5u0Qj8dDuznjRSrQVzboUWxrDG1jQ8qFjL4/einRYi6yJL9AbzC06AJ9Q6tBuL1mV7HFGn1xXnIe2gHRC/THO49hrQgFupGNJeVK53532O+L9i+WNavC9fWlonvjhYTnFejbjxQ75iW15+W/KKmooPcaN4w/v7PoAn3dHpEKdAvHKpQLnLC10nlR2NarBbe3RRfov38EYWWDHiIV6LTFeQnri6aipoZB25dj5NGNtAW6UCjEtaWbRZp6b9fQCZr6ukS8JD60V2zWAO6+14ou0D99w8p63eFz9nqxx6Ma89zsbPjdfyZNmowjSoEuyM3FhXkrsbPnuGIL9MotGlIepySOefX2zeH+9mrxBXod0Qp0qhfImSmpCPB+I02ajKOhq4NxZ7ajz3qPIgv0k5MXYv/gacUW6FXbNaPs/V/SnmMAoHaP9nDzuVLkQor+T1/D06kzvj0o+lzl8XiU9/Pk3zEI9f0sbaqMom1kgElX96PbsllFTr0/NGI2joydX6yDsbQ8xwBA/UHd86beU/TiZYpo/5/4eu+pzI4vCXpm5TDtzlF0cP2Pdp/MlFTs6TcJp6cvKfbFWGl4mQj8WZtj7EDM8T4HI1tL2v0+XL4LL+euCPH9VOTxaE0Dbz+J1XJKHhhamWPW49NoOWUE7T5p8YnY1mUULrqvKVaXKC1OXx6Ph9bTR2Pmw5OU/ZfzeXPyClbW745fX/2LPJ6mvh7sG5NtAP2fvpFoYeHSBNVzDFDyzvOyjEJwLoOoqKlh0A5PjDyyoegCfckmiZrXl2TyC/SKzRvQ7hPx6VveG/RiCnSqm1pOZha+sbjSOR1qWpoYcWgdBu/yKnLq/fm5K7Cz1/gie+NVadWYsi9aSb2wi1KgB7/5kFegX39Q5LGoCpa0hCQEvRC915a8yO+N12edB62zPzc7GycnLcD+IdOLnHpPN8WzpI65U88/vfFq0k+9LyjQi+hjWFRfNElW0ZY14hToR8e5Flmgl6biHAAaDO5RbIH+5fYTeDp1RuCLt7T7KCkro0pb0tEf6RcgkmtU3uQX6O3nT6TdJyM5BXv6/ofTM5YW6ewvTQ/tohbo7y/dwYq63RD6jl5MU9XUoBTtf756XyKffwytLTDr8Wm0mDycdp/8Av2Sx9oiC/TSMnMHyBvzNjPGFFugvz5xudgCXdvIgNI08OPRS7H6xMqLcg62mPv8AhqP7Eu7T/LvGGxsMwQ3V2wr0q1cWkQ4IG/qfSePKZh6+wjlYt35eO89idWNeyM6MIR2H0NrC5SvVpGIf73zVOSWJPLEvHoluL6+jLr9u8jsMza1GQLPOp1xc+X2EjNjTUlZGT285uK/y3spX/7mc3/TAaxvMQDxYb9o9zGvXgkGluWJeEk0DQCAjbMj3N5eg2OX1rT7xASGYHWjXvDed6rIY5UW0wCQ1/Km/+bFGH1iM+UC7fnc9NqGTe2GIul3DO0+dg1qlxrTAAA4NKkLd99rqNKaXMQ3n8iv/lhZrxten7xc5LGoZu4IcnLgd6/kOPplQaUWjaCirkbES+JzTFlFITiXYRoM6Yl5Ly8WX6CL2by+pKNnVg7T7x5D+3kTaPfJL9DPzFxG+yBaGvof/g2Px4PLuEGY86yYAv3ibXg5d6VtkUHbF+352xLTF+1fRC7QO4/E5QXraAv0aqVwzNvMFKFAP34JK+t3R6QfdYGua2oCa2dHIv7twfMS0xftX0wr2mHei4vFF+itB+Pmyu20BXppKs6BwgW6trEh7X5P95zAmiZ9aHvjmVSwoeyL9vX2kxI78yW/QHfu15l2n/iwX1jXrD8ebDlIW3CW9IVn/kVJWRk9V8zDxEt7oKFH7+y/v3E/1rUYQNuz1LJWNcrFNz/fKJnFOSBagR4dEJxXoO8/TbsP1ZgLhUJ8uf2EkTyZRllVFQO2LCm2QL/huRWb2w+jLdAdmtSlXOehpP6uA/8v0Cu3Invy5pNfoL85dYV2H6qXajlZJdM0AACqGuoYtn8Nhu5bTVlcA3lT7y+6rcGO7mORGk/9PFa5ZSOaxdQeMpkuo1Rt0xRub69SOvjyCfX9jBXOXfDhyl3afajO84ykZAQ+p38JySbqOtoYfWIL+m9eTDlmf2NoY1Hk9Z+OUN/PuOi6GgscmsPLuQturdpRpHAvL2p2bQNXn6uUPXnzCXz+Fl51uuDrXWqnNo/Ho3xuT4yIQriI/b/ljZaBHiZe2oMeXnMoZ2EAeeamI2Pm4fCoOchKp34GL23PrgBQb0A3zH99mXI2aT7f7j+Dp1Nn+NPMwlFSVqZsAxj1LVDkXtDyRrecMabeOoxOHlNo98lMTcO+gVNxcsoiWmc/XY1aEmfuMImqhjqlkTDkzQckR8eykJGCf1EIzmUcixqV4fr6Mur0LaJAz29eX0SBXtpQUlZGz5Xziy3Q723YR1ug29StSdmqoaSsdE6HjbMj3HyuwrFzK9p9ogOCsaphTzw7QF2g0/ZFu1Oypuf9jagF+vXlW7C5w3DKm1Rp6Yv2Lw5N68H97dUiC/RfX35gRb3ueHP6KuV2quI8Oz0D3x8V3/ubLQoK9L2riuyNd9F1NXb2GEdZoFdt04RyCndJLs6BvALd3fcaZV/efELefoJXnc60BTptXzQRF+diA3UdbYw5uRX9Ni0qujfe1MXYN3AKZX9iesG5ZD+01+rWFm5vr8HKqTrtPoHPfODl1JnS8cLn8ykLlriQ8GKnc7KJKAV6dkYmjoyei8Oj51IW6KWxOAdEK9D97nnDq04XBDzzIbYpqaigShvSWRXx6RviQiMYzZVJdMsZY9rtI+joPpl2n8zUNOwdMAWnpi6mLNBL65g3GdUPc5+fh7G9Ne0+H6/ewwrnLgh5S069V9fRhoNLPSIe9MIXqXEJTKbKKAaW5THr4Um0mj6Kdp+0hCRs7zYGF1xXUbY6Ky3T7f+Gx+Oh5ZQRmPX4FKVbN5+44HDomplg6L7VaDl1RJGLLtIR8vYTLsxfhQUVmsGrblfWxWcTe2vM8T6LpmMH0u6THB2Lze2G4vryLZTGgdI2WwvIuxd3cJ2E6XePQqcc+RI4n2cHzmB1o5747f+T2GZibw3TSqSh7MvtktcG8G/KV3XA/FeXUG9Qd9p9EiOisL7FANzdsJey3i6N5zlfSQndls3CpGsHoGmgR7vfw62HsK5ZP8SFhBPbrGpXp2wbWtJ1CSagGnOhUFgiHf1lEYXgrADqOtoYe2or+m5cWHyBLmLz+tJCrW5t4eZzFVa1q9HuQ1eg85WUKFsNxASG4PePIMZzZRItQ31MvLy32AL98Ki5ODJmHlGgl9ZCDRCxQL/7FJ5OnYkCXUVNjVK0DfX9XOL6ov2LrqkJpt0+gg5uk2j3yUxJxd7+k3FqGlmgl+YxbzK6f7EF+ocrdykLdA09XVRoTIq2Ad4+Jb4vmoFlecx8eBKtpo2k3aeoAp2uxUJJn6bG4/HQaupIzC6mQH9z6ipW1u+OiM/fC8X1zU0p+6V+u/9MpAVG2cTE3hpzn50rtkDf1G4orntuJQr00rBoIhUiF+j7T2NN417E9HHTSvYwtrMi9v9yq2QtpkZFQYE+sBvtPgnhkVjXvD/ubdxHFJ601/YStJgaFXwlJXRfPhuTru4vskB/sOVgXoH+j4Bu7exI2aahNBTnVrWrw83nCmp1b0u7T0xQKFY37oUnu4+LNOZCgQBf75RMR38+Sioq6LdhIcae3gY1bS3a/W6t3IFNbYcQz2UOLvUoDQcl/foGAPYN68Dt7VVUpWj5lE/Ut0CcmrIIdg2c4Bn0FB7vrqPrkhmUM9SKI8TnY2HxefVOVhyiKurqGLJ7BYYfXAsVDXXKfYRCIS4vWIftXUcTL02q0JgGSsOYV27ZGO6+1+DQlHxBlE/Y+6/wcu6KdxdvEduonuHS4hPx81XJXkxNXVsLo45uxIBty2id/YKcHJyduRy7+/5HPIuXtllqf+PYqSXc3l6FTd2atPsEvXwHzzpd8PlW4Xs0XRvA+LBfxHMu1yiNL5bKEgrBWQGAP83rp43C7MenKBfJyufNyStYWa9biXY7iYtJBRvMeXYeTcYMoN3n7wL97wf30nyByy/Qp90pukD33ncqr0D/y+VQ2vqi/YtYBfqm/YV+ptJanAN5BXoPzzn478q+InvjPdh8EOua9y/UG8+uQW3Kor6kuz7zsXaqATefK6jZrQ3tPvkF+tO9JwvFKR39OTnwK0ErndOhrKqKfhsXiVSgb/6nNx5dX7TS8NAOAPaNnIst0CP9ArCyfne8PnGpUJxqzDNT0+D/5DXTaTJOoQK9iKn3lz3W5hXofzn7q7Z1oVlM7aGs0mUUUQr00Hdf4OXcBe8u3S6I8Xg8yjFPjo5FiM9HWaTKKOraWhh1bBMGbF1aZIF+ZsYy7Ok3qZCzv7S+ZMjHsXMruL29WqSoFvTyHTydOuPLX4Iqn8+nNg0EhRa7cHRJQFNfDxMu7EbPVfNp12nIyczCsfFuODRiViHjQGl+dgUA576d4frmMsyrV6Ld5/vDF/Cq0wX+T/9/zaYzDYS9/1rsIsIlAR0TI0y5cRCdF02jXachKy0d+wdPw8nJC2FW1QGdF06D25srmHhxt8SfG+LzERfmrYSHvQtW1OuG22t2yX1Ng0bD+2DeiwsoV9GOdp9P1x/As05nBL/5UBDT0NVBhSZkK5YAb58i16spKeibm2LG/eNoM2ss7T4ZScnY2XM8zs3xKmQcKM1GER6Phxb/DcXsp2dgaE3v1vc9dwMr6nZD+KdvBTE9s3KUM72+3X9WYtsA/o2xrRVmPz2DZhMG0+6TGhuPrR1H4MriDYVeipfmMZeGchXtKE1FX249LrFtAMsSCsFZQSHsGznnNa9v05R2n0i/AKxp3Iu2f1JpRFVDHUP3rMSwA2uKLdCPjJ5bcEOv1r4Z5UNfabqwV2nVGG5vr6JCE7Ivcz6h775gdaNeBe5PuuI88ddv2t7PJQ2RC/TpS3F62pKCG3ppL84BoGaX1nB7e63I3nhBL3yxulEvRHz5AeCPo5+qL9r3wBLR708UNPX1MPHiHvRcNb/I3nhHx87HRfc1BS8aSntxDohWoH978Bxr/lp4SVVDnXIxteA3H4pctKUkUVCgL5xaZIG+b9A03Fy5vdgxL03neaPhfTDv5UXKXtz5fLr+AOtc+ha8XNIy1IddQydiP/8nr0vN7CZRCvT0xGTs6jkeD7cdLoiV9kKNx+OhxaRhmP3kNAyszGn3e3v2Ota3HFhwDhtYlod5jcrEfn53vWl7RZY0jG2tMEfEAv35obMFMS6Mefu5EzD93jHKqdT5vDh8HpvbDS14uVS+WkXK35EvNx+VeEd/PmaVK2Dey4toMLQX7T6Jv35jY+vBhRYBp10ctRSYBoC8Z7Gui2dg8vUD0DLUp93v0fYj2N51dMF127FL6yL3F5XgNx9wfu4KeNi5YEX97nIVny1rVoXr60tw6tWBdp+44HCsa94fn278fxFwqvu5IDcXX0uBaQDIc/b3WeuO8ed2Ql2Xvg3knbW7sbvvfwWiaqXmDShd4aXp2dWufm24vb1K61oGgN8/grCmSR98f/SiIEZ1bc9KS8ePUmAaAPJejg3a4YmRRzZQtnIE8pz915ZswqHhswrWmyrtpgFJodMlUmPjC72AUsAOCsFZAYGOiRGm3jyETgum0u6TlpCETW0GF7k4R2mk8Yi+mPfiQpEF+rMDZ7Cz53hkpaVDx8QI1hTTXr4/fIGstHQZZsosBhZmmPngBNrMHEO7T/LvGKxvMQB+958BKOKhvRTd1EQt0B9sOYj9g6chJysLxnZWlAttfi3hfdH+xdjOCnO8z8Jl/CDafeLDfmGdS18EPs9rLVLai3Pg/wX6jPvHKRdIy+em1zYcHTsfuTk5sKhZlXLRxdIw9fpvCgr0IT1p94kOCMaaxr0Q+u4zgNK10jkdfCUldF0ys9gC/aLrapyZuQwCgQD2jepQFnalqVAD8gp0tzeXiyzQIz5/x5omfQoWDaVdTO3Ptb80IEqBLhQKcXLyQlxeuB5CoRCVWzaCsirZ6720jbldAye4+14rskAP8fmItU37FkyRpzrPM5JTKPs+l1RU1NUxaIcnRhxeTzv1XpCbi0MjZuP2ml0AgGrtXEq9aQAAKjVvCPe311CxWX3affyfvsa6Zv2QEBEFHo+HGhTPcElRMQh7VzpMAwCgpqWJEYfWYdBOT8pzF8i7du3tNwmPdx4FwI3nGACo3qEF3H2vwbZ+Ldp9vtx+gg2tBiE5OhZ8JSXKxdQAoPvy2ajSpinti3g6gl+/Lyw+r92N2OAwsY4hLhp6uhh3dgf6rPOgdfZnpaVje7exeHn0AgDujLlTrw5wfXMZFjWr0O7z/uJtbG4/DGkJiVBRV0fllo2IfUJ8PiIpKlqWqTKKtpEBJl07gK5LZ9IaBzKSkrG5/TD4XrgJgBumAQBoMKQn5r28SFl35vPy6AVs7zYGmalp0DLQo1y7xf/pG8o1S7gEF8xBXEUhOCughK+khG5Liy7QszMysbPneNqF5UorlrWqwe3NZdTu2Z52n49X72FTu6FIjUugfGjPyczCt4cvKL6z5KKkooI+6zzyCnSKVeuBvAJ0a8cR8DlzDVVa0y2mVjpcIn8jSoH+5uQVbO08ChnJKZQPr2kJSQh6+U52ScoAFXV1DN7pVWSBnhqXgA2tB+Pjtfului/av1Rq3hDuvteLLNC9953C7j4TkZ2RSfmzJ4RHIuKvaXylATUtTYw4vB6DdiynLdCTomKwrll/fHvwjDOFGpBXoLu9vQqbevQF+v2N+3Fg6AwIhUJUbUvO9In86i/zgpppRCnQ40LCsaZpXwS99OXUmItSoF9fthnHJ7hBRV2NcqXzny/fISU2XpZpMk5Bgb5kBm2B/vtHEFY37oWw918on2OA0jnmDf/H3lUGxJF02zODBwIxQhJixN3d3d2NeELc3d3d3d3dPcTdjRAlgYRAggXn/WBnH0vf6rHunu755vzareouyWW6qm7de45nC4y5e5QUzNLg0KjZODBiJlKkSUU67N5evaOooAEAcMmYHkMu7kKdUV7MZ749f4N5FVrA/817RQprUVCpVKji1REjbxxgCuUlJCRgV98JOD5lMdJmy4wM+XJynnl1XllBAwCQJqs7hl/bh6r9OzOf+XTvCRZUao1fn74yHTL2Likx5PwOzPO/h45rZyFfzYqGOZ9HzsL47JUwp2xTnF+4XrS1UqVSodawnhh2ZQ8ZDAAkZihu9hyKC4s2wL1wPpIuUik0gEnhltsDo28dRvmurZjPvLt2FwurtsWf7z/MImgASKRAajhxEAae3QandGnIZ2KjorGuVT9cX7cLHuWKk9SBSlzT3Avlxdh7x1CidUPmMy/OXMXiGu0RFhhE2jwuJoYUizYn5K1enhSIV6LNzQ0Wh7MFvChUvzrvAT0+Lg7buo/6TyqyOcDBxRleB9eg5YLxzAP6+xv3sbBKG2QtSdMSKPUDV7xFPYx9cBzuhekDemx0NDa0HYA7O44gVyUuDYfvzQeI+P2HeFPe0OWA/vqCNxbX6EDeHgPKtXk5zxYYc+cIkxsv5m8kVjfthZdnr5E0HK8VwouWHJoDeu2R7AP6k6PnsayOJ3JVph3TSjucA/8c0Pt04j2gR4aGYXm9rvj65BVcc2bj1CuVFy1ttswYcZ3/gH5v11GsatyDjAwClPk7/88BPWN68pnwX8FYXKMDQgICSV7/5wqL6NdAlwP69XW7sa51P+SrVZFTl5CQgFfnlHU4B/45oE8ajIFntsIxbWrymRD/n1hQpS3i4+JJjnelcPQnh3uhvBhz7yhKtGrAfObCwvXY2mU4GfUZGxWNN5dviTlEUWBlbY0Wc8eiz5F1cHChI/uDPvlhfsVWcHBxJunElPh9A4BspYpg/MOTKNywBvOZk1OXYne/CSR3998/ofC99VDMIYoCGzs7tF8xDT12LSUFEYFE6rN5FVoidVY6k09j85SuaVG5dwcMubATc7/fRYc1M5G3RgW9nc8f7z7BwREzMT57Jcwt1wznF65H0Gc/vdrQBbkqlcb4hydIXm4NDgyfgUOj55A2/+3nD79nrwUfl9iwTeGAzpvmo9P6OaSDDQD8nr7GvAotkJEhkK7EvSsAFKhdGeMeniCpv4BE+sudXuNwZvYq5CXoQf1fv5ecf1wI2Kd0Qq+9K9B6ySQy2AtI/N3Nr9QKWYoVIOuV+m3XFbYpHJCHCBr4dO8pQn/+MsGILNBAlaDE04MFkiMmMhKbOg7Bo0NnmM/UGNI9MYJKz42J3PHi7FWsa9kXUeERZH3qLBkRGRqOv7//Kz7hmjMbpvso87AGJApkrWvVl5fXLm/NCnhzkZtm3Wv/KpTkOejJHY8On8HG9oMQG0XzV7rmyobfX/0RExn1n/KsJQph3IMTUgxRFET8/oPVTXvh3bW7zGfy1qhAptYPOrsNBepwN/RKwe3th7Ct+yjEMyKcMuTPhYA3vkhIxm+Zp1o5DLu8h3xHCQj9+QsrGnbHp3u0arlKpUKuqmXxjsjYGHXrEHKUoy9flIBra3Zgd7+JTCdq5qIFSE76Ik1qod/RDWIPTzQE+/ljeb0uzOh8tbU1PMoVw3tvrk7D5JcXmAdYuSMhIQHnF6zDoVGzmc9kK1WE5Psr69kC3bYtEnN4oiLwwxcsreOJnz4fyXprO1tkLpofH+9yvwOzv9wiRYKVgISEBByfvBinpi9jPuNRvgQ+EI7Gqv07o/2KaWIOT1T4v/bB0jqdEfzlG1lv55gCrrmy4euTV/8pV6nVWBD4CI6ESLASEB8fjwPDZ+DSkk3MZ3JWKo333lwu13pj+6HZrFFiDk9UfHn8AsvrdUFIAK2x4OCSEindXPEjmSimjYM9FgU9ho09nekW8iMQjw+dwYP9p/D2ym3OPkhXeJQthpJtGqFEq/q8QnD6Ii42Frv6jMeNjXuZz+SpVg5viX1M8zmjUXd0X8HGIjV8bz3AiobdERFMB/qkdE0La3s7znfAMU0qzP/xgBlUJXfERkdjS+dhuL+XfeZinVfar5qOqn09xRyeqHh96SZWN+2FKIauRir3DIiJjET4r9//KU+dJRNmfbrBDKoyB1xcshH7h07nlHfbsQRlOzaTfkAWALBEOFugI2zs7dFr30pevldNKrJSRGZ0RcG6VTHk0i5mhFDwl++IieBGd/58/wkB7z6IPTzRYOeYAv2ObeDle6WczYDyb1GLN6+HQWe3Mbk/f/p8Ip1Unx8+xx//H2IPTzSkSOWCgWe2oWizOsxnWDyuSo2W0KCcZwv0O7aeKc7h/8oHVjbcqAIf7/v4GxIq9vBEQ0rXtBh6aRcpCAkkOmwoZzOg/N95lT6d0HPfSia1yNcnL8m6NxdvIiYqinhDGUjtngHDr+1Drkqlyfr42FjS2Qwo2+YqlQp1Rnqhy5YFzEP2p/tPyahPJYmpUdBw9mctWZisj42Kxqd7tLCOUsTUKKhUKjSZNgxtl09lHrI/3HoItTX370FpHP3JkSFfLoy6eRAZC+Qm66PCI+D3jHvplBAfj1fnr4s9PNGgVqvRetFENJvNdhy/975nlsJaWYoVxMgbB8msJCAxijvQ9xOnPOZvJN5evcNs1zl9OlTp0wlDL+7C3G930GH1DOStXl7vyOcPdx7jwPAZGJetIuaWb44LizcgiHEhog+srK3Raf0c1B8/gPnM2yu3AeIboPS9a47yJTHC+wDzUjD05y+EEOeS8KDf+Hj3scijEw/WtrbovmsZqg/synyGdV5RauaOBvlqVMDwq3vJTDQgMXI/MpTrjA7+8g3f/xGCN1eYEyWcOcHicLZAZ6itrNBh9Uw0nDyY+cy9XUexqklPxajZ6wqPMsUS088ZN/IsJ7vSP3BWNjbosnUhr5ggBaUf1IBEjt8R1/Yyld9Z0c9K40VLDlsHe/TevwqVerXX6z2l/60DiRRCQy7uZPLWUzaPj41VPC+avZMj+h3fiNLtm+j1nhL52pOjZKsGGHhmC5O3nvq2R4VHMB2ySoFjahcMOrcdRZrU0us9pR/OAaB8l1boe3Q9k7deo/aeFKE/f+HLw+diD01UOKdPh2GXdyNfTS5tCADmmm0O3/bqA7qgx57l5GUCAMTHcumBAn0/44eCgwYAIHXmjBhxfT9yVChJ1rMiVZVuc5VKhXpj+qHzpnnMyyVq7l8ev8Sf78oNGgASsytH3jiALMULkvXU3zqgu82d3VwTnc+XdmPutztov2o68lQrp7/z+fYjHBg2A+OyVsC8Ci1wYfEGBH/9rlcbSaFSqdB0xgi0XTaFHcFJfOPe33iAv39CiIeVg0wFcmPkzYPIwMg+iouhM/eUvodTq9Vos3Qyms4cqdd7by4pO2gASMyoHXnjANLlyErWx0Vz9zGAeezh+OCWJwfSeWThlL88e03RQQNKh8XhbIFeUKlUaDxlKNqvms5c0F+evfavKrI5IUPenBh58yAyFcqr8ztU+pbSoFar0WrhBLSYN1bnd/58/4GAZCl7SkTmogUw6uYhuObKrvM7SuR9TA4ra2t0XDsLDSYO0vmdgDe+ij+oAUCOciUSo0Wy0FyHFMzhd25ta4tuO5agxuBuOr/z+cEzRUd3a5C3egUMu7oHzm50tAgFc7C5rYM9vA6uQcUebXV+5733PbPIYircsAaGXtyJFHrQBpjDt90+pRP6n9yEUm0b6fzO26t3zOKgVqpNIww8vYXkqmbBHH7njmlSYcj5HSjcqKbO75jDvAGgQrc26HN4LWzs7XR+5+1V5c/d2c0Vw67s4eU2Tg5Dvm/Obq6o2tcTwy7vwRy/22i38h/ns54p+763Hv7rfF5coz1ubt5n8N6i+sCu6L5rKfNyKTniY2Phc+OBQX3JCWmyZMKI6/uZ3MYUzOF3rlKpUH9cf3RaP0fnS4+o8Ah8uv9M5JGJj/S5smPkjQPIXDS/zu+wMhbNBSqVioxyDgsMwvcXb6UfkAUALA5nCwxE1b6evKnISVWRzQnaUpGT4733fcVH+mqgLRU5OXyuc/nxlAhtqcjJYS7z1iUVOTl8CE5EJSJjfv5U5OQwF5ur1Wq0XjyJNxU5KRLi4xUpskQha/FCvKnIyfHuOpvnXEnQpCLXG9dfp+djIqPw+YHyD2qA9lTk5DCX37mNnZ3WVOSkCP8VDP/X78UdlETIV7Mihl3Zg5SuaXV63lxsbpvCAX0Or+UVzkyKXx+/GhVtKicUaVwLgy/sRIpUzjo9by42d3BOiQGnNqNE64Y6Pf/t2RujBL9dMqRHtX7/OJ+/3UG7FdOQu2pZvZzPCQkJeHP5FrZ1H4VRbqWwvm1/PD1xkcw64UPpdk3Q/+QmpohicviYyXrulDY1hlzYiUINquv0/Me7jxUf6atBpZ7t4HVwNVNEMTnMxeYuGdJj+NW9yFOtnE7Pv79x3ywukPlACQEDwDsz+bYrERaHswUGo2SrBhhwmp2KrFFF9mMIEykV+qQih/78ZRaRvhqU79IKfY6sY6YiJ4W5OB8B7anISRHo+xm/vwVIMCppoC0VOSnMyebaUpGT4uuTV2YR6Qv8fyqy58Z5OkWLKJ1aIim0pSInxcc7j80i0hdItHmzmSPRZulknZ73MSOba0tFTgpzOqhpUpGbzBih0/OUwJpSka1kYYy4cYBMu00Oc1rTrKyt0XnTfNQd3Uen581p7rkqlsLw6/vhkslN67PmNG8bOzv03L0MVftpF0hLSEjA+5vCXCC7ZEiPav07Y/iVvZjj94/zuUoZvZzPMZFReLDvJFY17oHRmcpi94BJ+HDnkc5BPAVqV8awK3vglC6N1mfNaR9j55gCfY+sQ7nOLbQ+GxsVbRaRvhoUa1YXg89th4MLrb+TFOZkcwcXZww8vQXFW9TT+mzE7xCzj/RlBQWa0z5GabA4nC0wCvlq8Kci//kWgIWVW5vVBg74/1TkCt3baH327WXzSl8p0qgmhlzQnor8+oKyeW2TQ59U5LfX2OIrSkSpNo0w4NRmranIr84pV2iIwr+pyA1r8D6XEB+P9zeVn5KZFBW765aK/OKcsjnLk0PXVOSYyCh8uk+LrCkVNQZ1Q4/dy7ReLr00s9+5rqnI4UG/4f/KR6JRiQ+VSoUG4weg47rZWi+XzO3b7pbbAyNvHNSaimxOkb5Aos2bzxmDVosmaH321XlvCUYkHdwL5cWomwfhljcH73N+T18bFekrN6itrNBuxTQ0njZM67OvLwhvc5eM/zifr+7DHL87aLt8KnJV1s/5HBYYhKsrt2FuueaYlKc6Tkxdgh8+H7W+l61UEYy8cQBps2fmfc739iPERHLF35UKKxsbdN68ALVH9Nb67JtL5nVWy12lLIZf2weXjOl5n3t75bbZXCADgI29PXrtW4nKXh20PvvaDOjB+OCUNjWZoepz/Z7ZZJ0rDRaHswVGQ5OKzCKuj/gdgqW1O+HJsfMSj0xcWFlbw3PDXK2pyKdmLkd0xF+JRiUNclbQnor8288f9/Ycl3BU4kPXVOQTExeZTZqaBvlrVdKaiuz/+j1eKljdnoKuqchHxsxDXCwtzKJUFG1SG4PP7+BNRf509wk+KFjpnMK/qcitGvA+d2jUHLM6sAC6pSK/uXQDfmYWIaNrKvLBkbPM7sBSuVd7ranIj4+ew0/fzxKOSny4ZExMRc5dtSzvcwdHmZ/Naw3tiW47lkBtbc185u7OIwj285dwVOIjbbbMGOl9ANnLFOV97si4BRKNSBqoVCo0nDgIHdfO4r1c8l6/W1T9HZeM6VF9QBeMuLYPs7/eRttlU/R2Pv/0+YgTU5ZgUu5qmFehBa6s2o6wwCDm8255cmDkjYNwL5KP+Ux8bCxOzVihz1RkD7VajZbzx6HF/HG8z11cssmsLlgAIHOR/Bh58yDc8rAvl6LCI3BpySYJRyU+1FZW6LB6JhpOHsz73NnZqxAZFi7RqEyDXJVKccqCv35H0Gc/E4zGAovD2QJB4JozG0bdPIgsxQqQ9TGRUVjT3As3Nu2TeGTiQpdU5N9f/bGkVkeEB/2WbmAS4N9U5Hw5mc9s7jQE9/edkHBU4kOXVOQfPh+xsmF3RIaGSTgy8aFLKvKqxj3w9MRFCUclPqxsbNB503zUGeXFfObrk5dY26KP2V0u5apUWmsq8uLq7fH60k0JRyU+bOzs0HPPct5U5Pc37mNTx8FmQ62hgbZU5IT4BCyo2BK+t82Dv1sDXVKRX5y+gh29x5rd5ZK2VOT42DjMK98cXx6/kHhk4sLBxRmDzmzlTUW+v/s4DgyfYXaXS2U7NkP/4xtgm8KBrI+Nisa8cs3h/9p8ovoBwCldGgy9tBsF6lZhPnNt9XYcn7zI7C4aKvfugN77VzEvl6LCIjCvQgsEfvwi+lhSZXJD9YFdMeLaPsz6cgst5o/TS/wMSBQb3NN/IkZlLINVTXviwf6TZKRyqkxuiZdLVcow2zo9cwXOLVin9zzkjjojeqPrtkXMy6WIoD9YUKWNWVEBAkC67Fkwwns/spUqwnzmwIiZuLZmh4SjEh8qlQqNpwxF+1XTmRc5If4/saRmB96LGqUjV2X6t24uHP1KgyrB3FZTC0yKvyGhWNOsN6/acbNZI1F3TD+9VYzljnu7j2JTpyFIiKd/UhkL5Mags9t0FihSCsJ+BWNJzQ74+uQVWa9SqdBm2RRUH9BF2oFJgOvrd2Nn77HM+qwlCmHA6S1wTk9TzigVf77/wMKqbfHj3QeyXm1lhU4b5qBC19YSj0x8XFi0AQeGz2DW56xYCv2Ob4SjFsoZpeHXp69YULk1gr/Q6eXWtrbotnMJSmqJClYaEhIScGr6MhyfvJj5TP7aleF1cDVTz0CpCHjri/mVWiHsJ30osXGwR+8Dq1FYR4EipSA+Ph6HR8/BeR7nQ9FmddBj1zLY6qBnoCR8ffoKC6u2xd/fIWS9vXNK9D26DnmrlZd4ZOIiPi4Ou/pOgPf63cxnSndoii6b5zPFspWKD3ceYXHNDogOpy9LHdOmxoBTm+FRppi0AxMZsdHR2NptJO7tOsp8prJXB7RfOV1nsWyl4M2VW1herwtio+jLUpeM6THwzFZkLqKfA1gI+D17jTs7DuPuzqP4bUCEvb1zSpRs3QBlOjVD7iploU4S0R39NxIb2g7A0+MXmO/XGt4LLeaN/c975oDnpy9jVdNeiI+hL0vTZHPH4HPbeaOClYjI0DCsatITb6+w6S0bTRmChpMGm51f4sGBU9jQdgASGJelbnlzYNDZbUibjZ9yRokI/PgFEzy44oGVvTqg45pZJhjR/zYsDmcLBEdMZCQ2ew7DwwOnmM/UGNwNrRZNNLsFff+wGbi4eAOzPnWWTBh0dhsy6iBQpCREhoVjeNpiiItmK0k3mDAQjacNM7sFfVuPkbi5aT+z3jVXdgw6uw2uDMoZpSLsVzBGpi/J3MgAQPM5o1FnVB+zs/naln3w6NAZZn2mgnkw8Ow2pHbPIOGoxMevT34Yn50tnKlSqdBu5TRU7atdoEhpWFK7Iy8vfbZSRTDg1GZeyhkl4uuz15hRhB39qbayQudN81Cuc0sJRyUN5pRtho88dDG5KpdBv2PrkSKVeV0uvb12B4uqtmXWW9vaovuupSjRsr6EoxIfCQkJmFaoDr6/fMd8pkDdKuh9YDXstegZKA0PD53GupZ9mfW2KRzgdXA1CtarJt2gJEB8fDwm5KiMoE/sNOviLeqh+84lsLE3r8ulGxv3YnvP0cx6B5eU6HdsA3JX4aecEQvxcXF4d+0O7mw/jIcHThuUMZg6SyaU6dgUZTs1R6aCeQAAcbGxGONeFqE/2NQhZT1boPPGuTqJZSsJ5+avxaFRs5n1TunSYMCpzchemp9yRmmIjY7GyPQl8fcPW9y7St9OaLd8qtldLh0eOw9n56xi1rtkcsOgs9vgXiivhKMSHwkJCRiXtQJHgyFjgdyY/MK8KF6VAPPy9lkgC9jY26PnnuWo0rcT85lLSzdja9cRZpeiWKUPP1l/8JdvWFCpldmlpdo7OWqNcjs1Yzl2959odimK2pxrP30+Yn7FluaXlpo2NXJXLcf7zOExc3Fk7Fzzs3n/zrz13168xfwKLSVJS5USabO5I0uJQsz6hIQE7O43EWdmr5RwVNKAj1oDAD7df4oFlVrjz/cfEo1IGmQunA+uubIx6+Pj4rCly3BcXrFVwlFJg6r92HsYAPC5fhcLq7ZF2K9giUYkDXJXLoOUPFk5sdHRWN+6H25uYV+0KhEqlQpV+nTkfebl2WtYUrMD/oawHRdKRLGmdXh526Mj/mJl4554wBNIokSo1WpU7MG+XAGAR4fOYEWDbmZHl1W6Q1NeDu+/f0KxtI4nnp++LOGo/h9qKyvkrV4BnTfNx7yA++i5dwWKNK7FO+bkCP7yDWfnrMa0QnUws3gDXFi0AWE/g1BWywXpne2HsKa5l9nRZWkTug8LDMLi6u3xzsyEz61tbVFSi+D7tdU7sKnjYMTHxUk0KmlQ2as9b/2fbwFYWLm12Ylgq1Qq5CR4nL+/fGd2ezYlwOJwtkAUqK2s0H7ldDSaMoT5zJ3th7B34GSzckalz+3Be1ADEpXul9XtggAGHYFSoU14B0hc0I+MmyfBaKRD5mIFeA9qQCJf1tLanmYnVpC3mnabn527hvd2XYnwKFtM66En6LMfltb2REjAT4lGJQ3yVuO/ZACAI+Pm48qq7RKMRjrkqlRa6zMBb32xtI4nwoPNS4Anjw70CXsHTsbtbQclGI10YHEAJoXf09dY0aCrWfH1q1Qq5NHybU9ISMD2HqN5Mz2UiFyVtf/OP959gtVNe5FcsUqF2sqKPJwnRXxsLDZ1GIyX565JNCppwMfrq8Gby7ewvk1/xMWws/iUBlsHe2Qvzea3BRJ5vNe27Asfb9Pynto62KNUm0bod2wD5n67g3YrpsGjXHG92vjy+CUODJ+BMZnL4fUFb63PPzt5CVs6DzMrB6RT2tT/RnqzEBUegZWNeuDzw+cSjUoa6BKpf3/vCez0GmdWfom02TJrpfKM+B2CZfW64Psr8wqMYu3h3t+4L/FILLA4nC0QDSqVCo0mD0GH1TOYKfVXV23n5cZUGlQqlU4HltAfgVhauxMn1UPJ0MUhAwBn56zGuflrRR6NdLCytoZH+RJanwv++j3RAfkjUIJRSYOcOtr8yLj5uLZ2p8ijkQ52jimQtURBrc/99PmIZXU7m5UCuC7fNwDYO2AS7vJwYyoNKV3T8gqkavDt+RusbNgNUeEREoxKGlBq3xS2dR+FJ8fMJ1UxnUcWuGRMr/W5j3efYE1zL8RERUkwKmmgy3qeEB+Pje0H4fVFNtWM0uBeOB/snWnhxKR4e+U21rcdYFbikbpcsMTFxGBNcy/43nogwYikQfYyxXSiTnh28hK2dhtpVpmZuuzhYv5GYmWj7vj65KUEI9KOlK5pUa1/Z4y+dRhT315Gw8mD4ZqTnYWTHAnx8fj6WLe53N97AnsGTDIrB6S2iyUgkfd4eb0u8H/zXoIRSQNd9zE3Nu7F4TFzRB6NdNDVLxH+KxjL6nji16evEoxKGuRmzNvH2+JwlhoWh7MFoqNKn07otX8VU2jl1PRluMDDe6w06LqoBX3yw9I6nmajEqtLpK8Gh0bNhveGPSKPSDqwFrXkCHjri+X1uuDvH1qQSWnQJdJXg919J+D+3uMij0g66HI4B4CvT15hZaMeZpOOm7Oibt+3hIQEbOkyHM9OXhJ5RNJB1wsW31sPsbaF+Tggdf1bj4+Lw/o2/fHmCls0WEnQ9aAGAK8v3sCmDoPNxgGp67xjo6OxumkvfLjzSOQRSQO1lRVyVtB+gQwAT49dwPYeo8zGAanr3jU64i9WNOwOv2evRR6RNLB1sEe2UoV1evbuziPYN3iq2Tggdd27/v0TimV1O8suM9MttwcaTxmKae+uYNStQ6jazxOOaVML2se1NTtxdMICQds0JXRdz0N//krMzPzyTeQRSYO02TIjdZZMOj17bt5anJ27WuQRSQdd967mFhiVsWAepEjlzCl/b+KMjf9FWBzOFkiCEi3rY8CpzbC2o53OB4bNMBs+QF0XcwDwf+WD5fXNIx1X10hfDXZ6jTMbPkBdF3MA+PLoBVY16Ynov8pPx9U10hdIdEBu6jQUL85cEXdQEkHXwzmQmL61tlVfs+AD1DXSF0hMwV7Xqi/eXb8r8qikga6HcwB4ee46NnuaRzqurpG+QGIK9uomvcyGD1DXzB0gket1Z++xZuGM0jXSF0hMwV7RoBu+vXgr8qikgT7r+e1th3Bg2HSzsLmukb4AEBH8B0vreOKn72eRRyUNdL1gAYArK7bixBTzyMzMUaGkzs+GBPyTmennL+KIDINKpUKOciXQfuV0zP12B/2ObUDJNg2ZZ059cWbWSpxbsE6QtkwNffauwV++YWntTgj9yRZYVBL0mfvhMXNxfd0uEUcjHfTZu/549wHL63Y2i8AotVpNBsl8uv/MLM7gSoLF4WyBZMhXsyJ67l3BVIDd3mM0Hh85K/GohEfmovlhRyiY26d0Ip//dP+p2fAB6rOoJcTHJ/IBnr8u4oikASvS196Ztvm7a3fNhg9QnwuW+NhYrGnRBz5mwJ/FivRl/c5fnL6CLV2Gm4UDUh+HTExkVCIf4CPl8wGy5k197wHg4f6T2NV3guKdUfpE+gL/pOPW72oWQqmseds6OpDlNzfvx8GRsxRvc1akr0pNHxvCg35jaR1PsxBKZe1jbBzsyfJLSzfj1IzlYg5JErAifa1s6CymRG2KTmYhlMq6WGI5LE9OW4aLSzeJOSRJwOL0tbG3I58P+uSHZXU8ZS26ZW1riyKNa6HX3pWYH3AfnhvnIW/18kxqR11xaOQs3Ni0T6BRmg6sSF9WhmrAG18sr9/VLIRSWes5yy+xq8943N93QswhSQJWpK9dSnrv+uXxS6xs3NMsMjMpCpm4mBh8vPtY+sH8D8PicLZAUhRrWgeeG+eSdQnx8djQdiBeX7op8aiEhZW1NXIQkb6x0dHIyBBreHP5Fja0H6T4dFyWQ6ZI09pkeVxMDNY294Lv7YdiDkt0sCJ9VSoVXHPR3HLPTlzEtu7KT8dlRQwUZdg85m8kVjbsJhs+QEPBivS1S+nIFOi4v+c49piBUCrLIVO4cU2yPDIkFMvrdkHAW18xhyU60nlkgUsmN065SyY3pHRNS77jvX63WQilshwyhRpUJ8vDAoPMQiiVFembPrcHeYADgAsL15uFUCq1nifExyN/ncrk83++BWBpbU/88Ve2AzJb6aJkpG/movlhm4K+aDg+aREur9gq9tBEB+WQiYuJRR6GWGyg7+dEodSg3yKPTFywLpBzVCjJpAPcP2SaWQilUg6ZmMgo5r/J95fvFCOU6uDijIrd22Dopd2Y+ekGms8ZrVU0jw/be47GmbmrFb+Ho/btUeERyF6mKPn85wfPzCIzk7WPKVCvKnkhkZCQgM2dhuLF2atiD01UsCJ9oyMi4V4kP/mOz3XzCIxiBUX5XLfQakgJi8PZAslRvksrtF4yiazT8AF+vPdE4lEJC2oxj42KRvPZo5AuR1bynSdHzmFHrzGKdkAyOX3jE9B42jDyHU06rt/zNyKPTlxQi9rfP6Fov3I66aQCgDs7DmP/kGmK3ryyDiW2jilQe0Rvsk7DB/jD56OIIxMflM3/fAtAl60L4ZQuDfnOtdU7cGziQrGHJipYF0up3DOgUq/2ZJ2GD1DJQqkqlYr8tv989wE9969kUhCcnbMaZ+etEXt4ooIVGZSpcF6Ubt+ErDMHPkBWpK//Sx94HVrDjHo9Mm4+rq3ZIfbwRAXrYil35dIo0rgWWffT5yOW1+uiaKFUWwd7ZCtdhFPu/8oHXgfXMGkn9g6cjDs7j4g8OnHBcsgUbVobeauXJ+u+PX+DFQoXSnVMk4p0RP54+wE99ixnRvZv6z4Kj4+eE3t4ooLlkCnftRU8yhYj6z7efYLVzXorKjMzTZZMqDu6LyY+O4vxj06i1vBeTLsykZCAI2PmYkKOyri4ZKNiNXhY63mNwd3gXiQfWffu6h1saKdsoVRWpG/4r2C0WzmNfCcuJgZrW/TB+5vKFkqlLpYS4uLQcPIgpM/tQb7z7OQlbOk6QtF+iWylCpOZKj4WHmdJYXE4W2AS1BzcHQ0nDSLrosLCsbx+V3x7+U7iUQkH1mL+/ZUPBp/fAecMrmT9rS0HcGD4DMU6IFmRvj7e91BvXH/UGNyNfC8i+A+WKZwPkBXpG+j7GYPP74BjmlRk/eXlW3Bi6hLxBiYyWJG+773vo8W8sajQvQ35npz5AHUFy+Yh/j8x8MxWJr3G6ZkrcGGRcoVSWZG+773vo8PqGSjRuiH5XtBnPyyt3UmxhzSAPpwnJCQgOiwC/U9sZKYiHx49B9fX7xZ7eKLBvXA+8u/5vfd9dN26EAXrVyPfMwehVOqCJTY6Gmpra/Q5xHZA7u43Eff2HBN7eKKBFen7/uZD9Ny7Armr0I4qcxBKpb7tf/+EwiWjK7rvWsp0VG3tMhxPT1wUe3iigXWB/OH2I/Q9uh7ZStMRkB9uP8Ka5soWSqX27b/9/JGleAFmZmZ8XBw2tB2AN5eVm5nJ2sd8uvcEA05tYUYEv7l0U5GZmSqVClmKFUSrBeNRkrFX0YZfH79i/9DpGONeDuva9MeLs1cVRZfGulj68uglBp3dBtecdGam0oVS+Th9y3dphSYzRpDvRUf8TczMfPpK7CGKBtbF0vcX7zD4/Hakcs9A1t/bdRR7B01RrF/Cxs4O2csU45T73nyoqN+s0mFxOFtgMjSaMhTVBnQh68J/BWNZHU/8+vRV4lEJA4+yxclI3/fe9+GaIysGn9vOTMe9tGQTTs9cIfYQRQO1kYkI/oOA1+/RatFElOvcgnzvz/cfiuYDZB3UfLzvI1OB3BhweguTI+3k1KW4tGyzmMMTFZRDJuizH4K/fEPHtbNQvEU98r1fH7/Kng+QD6xIXx/ve8hWsjD6HlvPFkodPgM3NyuTD5AV6fvt+Rv8DQlD9x2LUYCRdu//+r2ihVJZh3Mf73vIXbkMeh9YTWd5IJEPUKlCqWorK+QgIn0/3XuK+Lg4eB1YzfwGfnn0IpEPUKHpuCybv/e+h4L1qqHb9kXsdFzPYXh++rLYQxQFLE5f35sPYG1rg37HNiBriULku0oXSmU5ZHy876NkqwbouHYWWR8fF4f1rfvh3bU7Yg5PNLAifd9dvwc7J0cMPLUZGfLnIt99dV7ZQqms9fy9931U6NoarRZNIOtjo6KxSsFCqWmyupM0YD7e9+GYJhUGnduOtNkzk+8+OXJO0UKpuRiXZrpGPsdGR+Ph/pNYXq8LJuSoguOTFymCx54V6evjfQ8uGdJj8PkdTKHg29sOYf9Q5WZmUpG+8bGx+HD3MeqP64+aQ3uQ70X8DsGyup3x8/0nsYcoCliRvu+97yFttsyJgVFpU5PvXl25DccnK1coldrDRYaGKfoCQWmwOJwtMBlUKhXaLJ2M0h2akvW//fwT03EDfko8MuNhm8IB2UpyD2I+3vcQHx8P98L5MODUZiYf4LGJC3Fl1XaxhykKWNHdPtfvQq1Ww3PjPBRpQqfjBvp+xrK6nREerLx0XFakr4YnyqNMMfQ9up7JB7hv8FTc3n5I1DGKBVbqtY/3fVhZW6P7rqXIV7Mi+cz3l++wsmE3RIaFizlEUcCK9NXYPG+18vxCqT3H4NHhM6KOUSywoiXe37gPa1tbeB1aS3LZA8oWSmVx+mpsXrhhDXTdupB2QCpcKJWyeWx0ND7eewrbFA7of2IjMhc1Pz7A7GWKkZG+7/6xeam2jdF+9Qzy3fjYWKxt2VexQqnUev73Tyi+PX8DBxdnDDyzFW55c5DvKlkolXmBfP0uAKBSz3ZoMW8s+UxMZBRWNu6pWKFUyuZ/vgXg18evcEqXBoPPbUearO7ku0oWSmXuY/6xea2hPdFgwkDymaiwcCyr1wXfXylPKJUlCvv95TuE/QpGqkxuGHJhJzMz8+bm/Tg4YqZZ2byyVwe0XjIJmQrl1bmtoM9+ODltGSbmqIKldTxxf+9x2Ub880X6Rkf8RTqPLPyZmcu24NT0ZSKPUhzwcfqqVCq0XDAe5bu2Ip/RCKX+/hYg5hBFASvS9/3Nh4iLjUXG/Lkw8PQWpgj2qenLcHHJRpFHKQ7YfgkLrYZUsDicLTAp1Go1um5ZgMINa5D1P959UCwfIBUtERH8B/7/bEhzlC+JPofXsvkAB0zC3V1HRR2jGOCL9AUSRRV77V3BFKHxe/YaKxXKB8iK9NUIZ+WrWRE99ixj8wF2G4knx86LOkYxwBfpCyRudPocWccUJPlw57Ei03H5In01lybFmtZB5020aFxCfDw2thuE1xdviDpOMcAX9Qkk0uv0P7kZ7oVpPsA3l29hQ7uBikvHZXH6frr39F8HepkOTdF2+VTy/biYGKxp1hu+t5THB6jN5ilSuSSm4+bKTj737MRFbO02UnHpuHyRvhpnahWvjmg2ayT5vpKFUvkifYHEi9bB57abnVAqX6SvZi51Rnqh7pi+5PtKFkrVtp6nzpwRg89vR8r06cjnvNfvxpGxNAWFnJEmqztSZ8nEKdf8rQNA42nDULWfJ/m+kjMzmdHd/1yUuebMhkFnt7GFUhdtwJnZyhNKZUX6fnn0AjUHd8fEp2cw+vZhpM+dXec2ExIS8Or8dWxoNxBjMpXF3sFTZBlJyRfpCwCZCubBgFObmZmZxycvVqRQKl+kL5Dol+i0fg6KNqtDvh/44UtiYJQChVJJsciwcPg9fQ0AyF66KPrxZGbuHzodt7YeEHWMYiBH+RJkEEjSb7sF4sLicLbA5LCysUGv/auYfIBfHr/EqsY9FccHyLpR87318N//LlCnCrrvXMJMx93SZTienVJWOi4r0jfpvG3s7dH36HpkLck9xGueXdvCS3HpuKxoCd/bj/797+LN66HT+jnkc/FxcVjfpj/eXLklyvjEAivS90MSm9s7OWLAqS3IWCA32cbrC97Y1GGw4hyQrGiJj3f+3+blOrfUKpSq2eQrBaxI36S/c8fUiQ5IplDq0fPY3nO04hyQrEjfL49e/Pv/1fp3ZgqlRkf8xYqG3RUnlMqK9PW99f9/685urhh8fjtTKPXuziPYN3iq4hyQrEhf/9fv//3/umP6mZ1QKusCOenvPE1Wdww+v93shFJZkb5JhU+bzRqFyr35hVKDvnwTbYxigLmPSWJztzw5MOjsVrZQ6tw1ihRKZUX6ajjoVSoV2i6fanZCqbrYPHOR/Oh/cjNTKPXo+Pm4ulpZmZmsSN/PD54jNjoaKpUKHmWLY/KL8yjUoLre7YcH/cblZVswo2h9zC7dBNfW7JCNngFr75p03+5Rtjj6HFnHzMxUolAqk9P39uN/9yVW1tbouXsZ8taoQLahEUpVWmamLn6JvNUr8Gdm9hitOKHUFKlcSDHMpH/rFogLi8PZAlnA1sEe/Y5tQJbiXME5IDGyYl3rfopKx81ZoSRZ/uXxf6OcSrZuiA4sPsDYWKxr2Qfv/knpUwpyEHMP9P38n42Wg3NKDDy9hXROA8DLc9ex2XOootJxqXkDwNdkNq/YvQ1aLWTzAa5u0gufHjwTfHxiQaVSkX/v3168+8+lgVPa1Lx8gI8OncGuPuMV5YzS9XfOK5QaHoEVChNKVVtZIUe5Ypzyr09e/cd+Lhm18AFuPag4oVSKyxjg2rzBhIGoMaQ7+awShVJtHexJUdjk806XnT8d98qKrYoTSmV925POXaVSocW8sajYoy35rBKFUh3TpCI5e5OvaRny5TI7oVRd1nOVSoX2q2agZBu2UOqyOp6KEkpNk9WdFJBKbvMsxQqanVAqaz3/+uT/I1TVajW6bl3IdEBqMjPl4ljUBRkL5iF/u8ltnrMCf2bmnv6TFCeUSv3O42Ji8D3JfszKxga9D6xG7qplDe7n0/2n2NV3AkZlLIPNnYfh7dXbJt33ZCtVmLRj8vU8f61K6LGbnZmpRKFUKkstMiQUgR/+n3/bxt4efY+s4xVKXduij6IyM1k0d8ltXqxpHbMTSqV+58FfvytWQ0hpsDicLZAN/uUDzEPzAT4/dTmRD1Ah0XApXdPqtGkHgMq92qP53DFkOzGRUVjZqIei+ABZFwdf/0nb0SCla1oM4uEDfLDvJHb3Uw4fYLocWclNe/LFHABqDeuJ+uMHkO1EhoZheb0u8H+tHD5AyuZxMTH/UshokNo9Awaf3wFnNzod98bGvTg0arZibJ6xYG5SJI76nfMKpQb9xrI6nooQnNGAsvnfP6H49fG/KcWuObJi0LntSJHahWxHaUKpWYoVIMuT21ylUqHVwgko16Ul+bwShVIpmwd/+cbZtP8rlMrgAzw5dSkuLt0kyhjFQFbWmkbYvOPaWSjesj75vBKFUimb+79+zxGBzFayMPod32A2QqmsfUzy9VxtZYVu27ULpf4NCRV8jGKBmrvf09ecAACtQqle4/Bg/0lRxigGdLW5lY0Neu9fxaScUZpQqlqtRmZiXaP2rgXrVkW3HYt5hVKVlJmZpTi9niefuyYwiiWUqiti/kbizvZDWFStHSblqY4zs1eahBPYxs4OGQtQl4lc+o/iLbRkZipMKJV5Rk1mc/uUTtqFUjspJzAqRSoXpPPIwimnzivlu7RC68UTyXaUKJSqq80tEAcWh7MFsoJz+nQYdG4bkw/w3u5j2KsgPkDKMfH1ySvSaV53VB/UGeVFtqM0PkCWQyZpyrkGabJkSuQDdE1LvnN93W4cGUdz4MoNarWaFM2i5g0ATaYPR5U+Hcm6sMCgxHTcf/if5Q7qsAIAn4m5p8+VHYPObYeDC52Oe37BOpydu1rQ8YkF1qb9yyPuJkYjlFqmYzOyLaUJpbJs/uUx1+buhfJqF0pduU3Q8YmFFKlcyCj9z4TN1Wo1PDfMRdGmtcm2An0/Y2kdT8XwAbJsTm3aPcoUQ1+edNz9Q6bh9raDgo5PLKTOkom8MKG+7WorK3TfuQT5alUi2/r+8h1WNOiKyNAwwccpBqj1PD4uDt8ISpg8Vcuh9/5VZiGUmiFvDtJ5Ttnc3IRSKZtHhUfg5/tPnPLCDWug2zaGUGpCAjZ1HIKX566JMk6h4V4kHzkPyua2KRzQ7/gGfqFUBWVmUjYP8f+JP/7cC9FSbRqhw5qZZDvxsbFY16rvv5zfckeWYoxLBsLmDs4peYVSAcAuJX3JSuGnz0ccGTcf47JWwMrGPfD4yFlJ/16o9fzHuw8kVUTF7m3QYv44sp1/hVIfKiMwirl3JWz+r1BqNoZQ6oFT2KmgzExq7n7PXpN0hjWH9ECDiYzMTIUJpbL8EtQZ1QLhYXE4WyA7pM2WmZcP8Oqq7Tg+aZHEozIM1I1aVFg4uWkHgOZzxqBiz3ZknYYPMCl/oFzB2oCzbhLd8uRITMdl8QHOWY1z89cKNj4xQdmctWlXqVRot2IaSrVrTLalJD5AXSMANdDGB3hk7DxcW7tTsPGJCcrmrE27Wq1Gl83zUbhRTbKtnz4fsaxuZ0UIpTKjwQjHKwDkKFcCfY6sY6fjKkgolZr7N8am3craGj33LEfe6uXJtr49f4OVjborQihV1whADbQKpXYfpQihVJVKRc79y+OX5EHTxs4OfQ6vhUfZYmR7H+8+UYxQqr42L9K4Fjpvnk/WKUko1crGhhQ9Za1p2oRS3165jfVtByhCp4D9bacP56XbN0W7ldPIuriYGKxp7qUIoVR7J0ekz+3BKWfZXKtQ6slL2NJ1hCIyM1mRvqy5V+7dAc1mjyLrYv5GYmWj7ooQSnXJmJ7MuGPN+1+hVEJgEgCiQsNRtGltlOvSknnBnhzxcXF4duIi1jT3wtgs5XFw1Gz4v3mv/UUjQf3OExIS/hWRS446I3qj3th+ZF1kSCiW11NGYFT6XNlJMUTWmpYolLqDKZR6Y8MeHB5DR4DLDZTNY6Oi/6NHkRSNpw5F1f6dybrwX8FYWruTIoRSMxXKS16EWyKcpYHF4WyBLKGND/DUjOWK4IbTJxoM+Ccdd81MlGjN5gNcXr+r7B0T9imdyA04azEHgKwlCqH/8Q1MPsBDo2YrghuOafMntEq12soKXbcuRMH61cj6gLe+WNW4h+wdE84ZXMnNGJ/Nc1UshT6H1jAdkLv7TsCzk5cEG6NYoG7OExIS8O0ZvWm3srFBr30rmUKpX5+8wtoWfWTvmEifKzt5oOLbwBWoXRnddy1lOiC3dBmOt1dvCzZGsUDZPCYyCgFvP5DPa4RSs5UqQtb73nqIje0Hyd4x4V4oL2k7PpsXb14Pnhv4hVI/3nsi2BjFAmXz8F/B+M3gZLZ3ckT/k5uRqWAesv71xRvY1n2U7COj9L1ABoByni3QZulksi42Ohqrm/VWBGc9tZ4HfvjCvBDUCKW65sxG1j89dgF7B00RcoiigJ29wrZ51b6eaDJjBFmnEUpVAmd95mLcv/fkehRJoRFKpSj0AODerqM4qoAsPUNsXnd0X9QeSWdm/v0TimX1upiELkJf0HQir5jfZm1CqU+OnodbnhyY+/0uOq6dhexlaB5gCiEBgTg/fy2m5KuJ+ZVa4ebmfaKd+ZjZqDw2bzpzJCp7dSDrQn/+wlIFUEapraxIETm+Nc0ttwcGnd3KzMw8N2+tIrL0dKWE00ClUqHtsiko3aEpWf/bzz+Rs17mlFG2DvakZpTF4SwNLA5nC2SLbCULo++x9Uw+wL0DJsv+kKoPtYQGiXyAi5C/Ns0H+O35G+zoNUb2h1QyAvD5W+amHQByVymLXnzpuD1G49uLt4KNUQwYYnNrW1t4HVhNqmUDidFw+wZPFWR8YkGlUiELcVD7yogA1KBgvWrotn0Rmw+w0xDZH1LZdCLsjYw2odQ3l2/h6Hg6SlAuYG3a+f7WAaBkqwboyCOUur7NANkLq+mTkqmBfUonXqHUp8cv4MzsVYKMTyzYpnAgx6/N5hW68QulrmvVT/bCaobYXJtQ6r1dR3FlxVZBxicWWHoU2mxeY1A3NJw8mKyLCgvH2hZesj+kMg/njAtkQLtQ6rXVO3Br6wFBxicW0mbPTGacabN5/XH9UXNoD7IuIvgP1rXsI3teY8rmyUXkkiNd9iwYdG47Uyj17Nw1eHRI3lQymQrmoUXkeGyuUqnQYu4YtlCq/0+sa92Pd98vB1A2Ty4ilxwZ8ubEoLPbmIFRxyYswIfbj1C5dweMuXMUE5+dRY0h3eGYNrXO43p/4z62dR+F0RnLYEfvsfhw55GgZz/WZaI2m7dfOR2l2jYi64M++WFTx8Gy5zWm1vPgr9959yGJQqmbmJmZ+4ZMw/ub8s7kMGQfo1ar0XXLAhRuWIOs93/9XhmX58TcKT0KC4SHxeFsgayRt1p59Ny7gnRAxkZHY23LvrI+pKb1yEJv2rXcqNnY2cHr0Bp4lCtO1t/bfQyXl28RYoiigbVpTy4ilxxFGtVEl60LybroiL9Y26KPrA+p+ojIJYVtCgf0P7GRuQG8vnYXbm7ZL8gYxYKuInLJUaptY7RfNZ2si/gdIvtDqr4RAxpoE0o9N2+t7A+ppIiclk07AFTq2Q4t5o0l60J/BGJ9m/6yPqQaKkDilC4Nr1Dq8YkLZc93auimnU8oNeizHzZ2kPchVV9qCQ1SZXLjFUrdP2wGfG7cN3p8YkJXEbnkaDR5CKoP7ErWBbzxxbZuI2V9SDXU5uk8svAKpe7qM57kupcL1Go18wKZDyqVCi0XjEf5rq3I+i+PX8peCNpQm2sTSt3adYQkNAmGwtrWVmcRuaTQJpTqe/MBDo6kL5jlAkPX86wlCjGFUhMSErCxw+B/6QbcC+VFm8WTMMfvNnrtW4kCdauQgRYUIkPD4L1+N+aWa47phevi4pKNCA82nnZNHxG5pFBbWaHrtkUoWK8qWf/y7DWcmLrU6PGJCUN/57kqlWYKpcbHxmJd636y1mFJnTkjeemhbd6azMxclenMzEcHT+P8wvWCjFEsUDZn6VFYICwsDmcLZI9iTeug8yY6HS34yzdZH1L1FZFLCnsnRwzgScc9MHymrA+pLD44XQj6y3ZshrbL6YjegLe+2Np1hGwPLPqIyCXHv3yAjHTc3X0n4PMj+YpyGHJzrkGVPp3QdOZI+v3HL7Grr3xFOVgicrrM2zl9Ogw+v50plCr3Q6ohEYAa1Bnphbqj+5B1cj+kps6ckYxm08XmfEKpyQ+pcoQxm/Ym04ejSt9OZN2r89dxYsoSY4cnGvQRkUsOPqHUxKj+/iTPv1zAEpH74fOR9z2VSoXWSyahbKfmZP2jQ2dkfUjVR0SO826hvBh4egtJOxQTGYW1LfsK4jQSC9R6HhIQqPXvVK1Wo9P6OUyh1FtbDsBbxpR4xuxjPMoUQ9+j60mh1MjQMKxr2ZfUdpAL9NGjSAptQqmXl23Bvd3y1WcwxuYaoVSKair8VzDWter3H7FQGzs7lGzdEIPObMPMj95oPHUoU5COwrcXb7F/6HSMcS+L7T1H49ODZzq/S4EpIqdFvNDa1ha9D6xmCqWemr4MT09cNGpsYsKQbFQNCjeojm7b6MCoP98CsKHdQNlS4iVmo3Lnri0bFfgnMOr4Bua/3ZExc/Hmyi1BxikGjLG5BcbB4nC2QBEo17kl6oyiecJenb+O45MXSzwi3UE5XlkicsnhmCYV+h5djxSpnDl18bGxWN+6n2wPqSzlZ135kqoP6MLkCXt8+KysRQQN3bQDiXyAfY+uZx5S18n4kGpoxIAG9cb2Q+n2Tci621sP4vq6XQaPTWyQEYAMEbnkSJPVHV6H1jAPqWtb9JHtIZVlc12Vn5vOGsUUUJTzIVVfEbnkcMuTAz330dk71CFVTjCE91EDDR9gnmrlyPpTM5bj6fELxgxPNOgrIpccmYvkR7cdS8g6uR9SDY0ABP5xQG6Yg2ylaR7Tw6PnyPaQqq+IXHJ4lC3O5C8P9P2MLZ5DZcvbrq9wYFJYWVuj244lzICJvQOnyJYSzyVDejhncOWU62rzfDUqoM0ymr/824u3sqbEo5yPfCJySWFjZ4de+1YiXY6sZP32nmPgJ9NIQn1F5JKjSONaaD5nNFn36f5TJiVemqzuaDhpMGb4Xsfg8ztQqm0jch9IIeZvJG5s3IvZpRpjTtmmuLX1gEGZgEwRuTfaxf/sHFOgz+G1cMnkRtZv8RwqW0o8loicrjYv3b4pGkwYSNa9vXIbR8bJlxKPsnl40G8Ef/mm9V0HF2f0ObKOjJKOj4vDhrYDZUuJZwhPvQXCwOJwtkAxaDpzJPJWL0/WnZ65QraHVEPT7TVwzZkNXbfTDvU/339gQ9sBWm+iTQGW8rM+N4ltlk5mHlKPjJ2H15duGjw+McESkdNl0w4kcul5bpxL1gV++ILNnYbI8pDKEpHT1eYqlQqd1s9hHlL3DZqKD3cfGzNE0UDZnE/5OTmyly6KtsunkHXfX77Djp6jZXlINVb5Wa1Wo9v2RYo8pFKb1/BfwQj++l2n9/NWK49ms0eRdXyHVFPD2CgRK2tr9NyznHlI3ew5VGvkrKmgr4hcchRpVJN5SH139Q6OjJWnuJgxEYDAPzRhB1aRh9SE+HiZH1JpETldhXxLt2+K6oO6knXPTl7CmVkrjRmeaDB272rv5AivQ2tIjlu5U+JRc//y+JXO+67KvTugXJeWZN39PcdlS4mX1YhLBiBRNNPr4GpS/Ds64i/WteyLv39CjBqjGDBUjyIpao/ojeIt6pF119ftxs3N+9j9q9XIX6sSeu5ZgTnf7qDN0snkeFj4ePcJtnYdgbGZy+HgyFn4+f6Tzu8au547u7mi9/5VJMVExO8QrG3hheiIvzqPRyqwROT0sXmjKUNQoA6tt3R+/lo8PHja4PGJCWMdr2mzZUaPXUvJ7B85U+I5pU2N1FkyccotEc7iw+JwtkAxsLK2Ro/dy5hK0HI9pBob9Qn8c0idOIise3ftLg4r6JDKp/ycHNoOqRvbDdTZuSMlhLB56XZNUGNwN7Lu+anLOD1juUFjExNqKyuSQkYfFWA7xxS8h1S5iosZEwGoQaVe7VGhW2uy7v7eE7i0bLNBYxMTQig/p0jlgj6H1jAPqWtb9JHlIVUImxtzSDUVnNKlISlg9Jk33yH1759QrG3ZR5aHVKbNdaCQ0YD3kLpgHR4cOGXQ2MREOgP1KJIiTVZ39Ni9jH1Ilam4GEkhExvLKyKXHC3nj2OKAh+ftAgvzl41eHxiIWOB3LSInB42d8uTA122LiDrgr98w4b2g2RJiUfZPDJEux6FBiqVCh1Wz2Q68+RKiccUkdPD5lmKFUSHNTPJuoC3vtgqU952yua//fwR+vOXTu+rVCp03jyfqcmxu99EnSjxnNKmRo1B3TDh8WmMvXcMVfp0JL+9FMKDfuP8gnWYmKsqltfvgqfHL2j9fQmxj8lZoSRaL6JFgb8+eYVdMuVtp+Ye8MZX571HIpXMUqYmx7ZuI2VJiSeEzQvUqYLG04eTdb43H+DgCHlS4lFZ57roUVhgHCwOZwsUhcRD6kpyEyzXQypr067Phx0AGk0ejAJ1q5B1Fxaul+UhlaX8rOumHUg8pPbcs5zkRwv9+UuWCtisTbu+Nuc7pJ6YsgQvzlzRd2iiwxDl5+RQ4iFViFQtlUqFdiunMzeDB0fMgo/3PYPGJyaEUH7OXLQAOq6lN6g/3n3AFhnythtDLaHBv4fUvPQhdVffCfj8UH687STvo56b9pwVSqL14olknd/T19jZR3687ULYXG1lhe67ljF5O7d1Gwn/1/ziulIjkffRuMtEAChQuzL7kHrroSwPqcZG+gKJfKe99q0ks74SEhKwqcNgBH78YvAYxYC1rS0yFczNKddFjyIpijevx6TEe33BW5aUeKz1XB+b2zrYo/fBNYqixHNwcTZIRC45yndphSp9OpJ1cqXEY9pcj8tEB+eU8Dq0hqTn+JcSL+i3Tm2pVCpkK1UEHVbPxLzvd9F12yLkrkILtlF4ceYqVjXpiQk5quDM7JUI+RFIPpfKPYNBInLJUW1AF5Tu0JSskyslHkkhEx+vV1adU7o06H1glaIo8dzyeJABHrpS4WlQb2w/FGlci6y7vHwL7u6SHyUetZ5HR/yVZcCiOcHicLZAcchRXlmHVJbys76b9n9vUnkOqd9fyeuQagwHYFLkr1UJTRiH1A+3H2H/sBl6j01MGCMilxRWNjbovX8V85C6UYaHVCEcMkDiIZUlKPf6gjeOTVqk99jEhDEicklh62CP3gdWI0VqF06dXMXFqE27IcrP5Tq3ZArKPTlyDufmrTFofGLBLW8OctOur80TD6lryUNqbFQ01rbso/MhVSpQ33ZdROSSo1r/zsxD6p3th3BtzQ5DhicajBGRSwqntKnhdWA1eUiNCgvHGhkeUpkict/1+x5pO6Te2XnEkOGJBjadiH5rWqpMbui5l8HbHvRblrzt1Nx/+nxEZGiYXu1oo8R7cuy8QeMTC0KJS7nmyMrmbZcpJR5Tj0LPcbZeMgnZyyiHEk8om2ulxDOAt902hQPKebbA8Kv7MOn5OVTt35nMAqQQ9NkPR8bNx9jM5bGxwyD4eN/7zxmZJSL35dELvc7SKpUKndbNRqZCecl6OVLiCWXz7KWLou0KmgJNjpR4VtbWyGSEHoUGarUaXbctZArd7+glP0o8Y+nBLDAMFoezBYpE1X6eTNVzOR5SjRGRS4p/D6l29CF1bcs+eh8ExISQBP11x/RFkSb0IfXqym24s+Ow3m2KCWNE5JLCJWN69Nq3kjykRgT/wbqWfWV1SBWCTkSDJjNGIG+NCmTdmVkrZXVIZYnI6aL8nByuObKi+84lpGNLjodUY3kfk6L14onwKFuMrDsybr6sDqlCbdoBIFOB3MxD6q+PX7FJZrztQkR9AjocUgdPw4c7j/Qen1gwVkQuKbKVKoJ2K6eRdf6vfLC9xyhZHVLZ33b9fufaDqk7e4+F3zPd9A6kAEtEzpA1LU/VcmgxbyxZ9/nBM+wdJC/edsrmCQkJ+KqjHoUGVtbW6LFnOZMSb0vnYbKKMHM1UkQuKQo3rIGGk5RDiUft23UVkUsKGzs79N6/Ck7p0nDq5EiJZ6yIXFKUatsYNYZ0J+uMpcTLVDAP2q+Yhjl+t9Fh9QxSyJZCXEwM7u0+hgWVW2NG0fq4tmbHv+dF6nceEfxHJxG5pLBzTAGvg6tJChANJZ6uFCVSQIhMBg0q9WyHCt3bkHVypMTLSlBL/Pr4VW9R+hSp/uFtd7Dn1MmREk8IOhEL9IfF4WyBIqFSqdBx7SzmQrtv8DT43n4o8ajYMEb5OTmylSqCdivYh9RtPeRzk8pUfjbAEaVWq9F1K89Nau+x+PpU99Q3sWGsiFxS5K5Sln1IffgcewbQiuimAHPTboDNtfO2D0PAuw96tysWSBE5HZWfk6NQ/epowHdIHUM7J00BIS+WbOzs0EvLITXIgH9PsUD9zvURkUsKvkPqi9NXcGr6Mr3bFAtCZa8ASXjbiUNqXEwM1rXqx0wHNgWMFZFLCr5D6oN9J3FxyUa92xQL7Ggw/X/nKVK5wOvQGuYhdY3cDqnE3L8+fmnQJVDNoT1QolUDss57/W7c2LhX7zbFglAXSwDgnD4deh9YxabEayEfSjy1Wg13ghrN0Ci4hpO0UOLtP2lQu2JAyG/7v7ztLEq8Vn0N+m6KASFE5JKi5byxyFWpNFl3YsoSPD992aB2NbBP6YQqfTphwpPTGHF9P0q3b0L+tij4PXuNXX0nYIx7OeweMAmO6biUGoD+FAtAIiVeVx5KvI0yosQTUkROpVKh3YppvJR4767f1btdscCmkNH/266VEq/LcNkETKTNlpmkObJEOIsLi8PZAsXCNoUDvA6tgYOL/A+pzAhAA2/UKvVsh4o92pJ1D/efxMXF8jikspSfDb1J5DukxvyNxNoWfQxy9IgBoW9Raw7tgRKtG5J1NzbuhfeGPQa1KzSEEJFLCr5DamRIKNa17Iuo8AiD2hYaQkZ3A4mH1IL1q5F1FxZtwP19JwxqV2iwNu2G2jxNlky8vO3rW/eTzSGVEiAB9ON9TAq+Q+rJqUuNPqQKhbTZM5Nrr6F/6265PdB120KyLvjrd2xsP0jv7BCxIISIXFK0WzENWUsUIusOjZyNd9fuGNSu0BBCRC4pMhfJj07rZpN1P30+yuqQSorIhYbh1wf9Ka1UKhU6b5pHrpMAsLv/RHx68EzvdsWAECJySZGjXAm0XjKJrPN79ho7vcbJJmDCWBG5pFASJZ6QlwxAIiVe0xkMSrw7j3FARpR4xorIJYWVjU0ibzuRHZGQkIBNHYcg0IDvR3KoVCrkqlQaPXYtw+wvN9F05kimiF1yRIaG4erKbTjCCGAw1ObFmtVF3TF9ybrXF2/g2ER6rTcFqD3cVwNF5Gwd7OF1cA0/JZ6eFFRiQegzajnPFqjaz5Ose3L0vGwo8VQqFels//JI/2xUC3SHxeFsgaKRPld2dN1Gc7n+9vPHxnYDZXFIZW7ajbhRa7diKrKWLEzWHRoln0MqtajpKyKXFLyH1PefsKWzPA6pQvNEqVQqdN44Fxnyc/nAAWDPgEn4dP+pQW0LDaaInIHRS9oOqbtkwtsuFB+cBmq1Gt13LCH5wAFge/dRsj6kfn3yyuBIlnw1K6LpzBFknZwOqULbXKpDqrEQY9NerGkd1Bvbj6x7c+mmbA6pQkb6AhpxsdUkB3x8XBzWtx0gi0MqW0TO8H1M2U7NFXFIZa3nhkQAAonRiV6H1sLOyZFTFxsVjXWt+iLsV7BBbQsJBxdnpMuRlVNujM2r9u3EpsTbcRhXV8uDEk8oPQoNnNKmhtfBNTQlXngE1rbwkgUlXir3DGSGkTE2rzO6L4o2rU3WXV21Hbe3HzK4bSHBFJEzkOJHKyVeq756iStrg7ObK+qP648ZvtfQ79gGFKxX1aj2jLF5k+nDka9mRbLuzOxVeHz0nMFtCwnqdx7zNxIBbw3LnkznkYVJiRfi/xPrZUKJ515YGD2KpGi1aAKTEu/o+AV4ffGGwW0LCep3Hvrzlyz2WeYKi8PZAsWjaJPaqDeuP1n35vItHJtAp/ZICaGUn5PCxt4evQ+sYh9S2/TH728BBrcvFIRMt9egbKfmqNq/M1n39PgFnJ2z2uC2hQJTRM6IedundEKfQ2uYh9S1MjmkCqH8nBxV+3ZCWc8WZN2dHYdxddV2g9sWCkwROSNs7pgmlSIOqZTNjVV+rju6L4o2q0PWyeWQmom1aTfC5toOqWtb9hH0kGooqINa6I9AhPj/NLhNvkPq2Tmr8fjIWYPbFgpC8j5qkC47/yF1Xet+sjikCiUilxStF0+ER7niZJ1cDqlCR30CQMb8udB5E83f++vjV2zuNEQWqefU3L89f2Pw3+O/lHhE9hsA7B8iD0o8MWyerWRhtF85nazzf/0e27qbnredeZlogB6FBv9S4uXKTtbv9BonC0o8oS8ZACB35TJoMZ+PEo8OpjAGaisrFGlcCwNPb8W0d1dQe0Rv8jyiDS/PXcfL89cNCuLRUOKlzpyRrN/SebgsKPHY67nhjtdC9auj4eTBZJ3P9bs4NHqOwW0LBTvHFEifh6tHYczfuo2dHXofWI2Urmk5dQnx8dggE0o8MX7nFvDD4nC2wCzQZNow5KtViaw7O3cNHh0+I/GIuBBKRC4peA+pAYFY36a/yQ+pQtOJaNB60QTmIfXYxIV4ef66Ue0bCyFF5JIiQ75c6Lx5PlkX9MkPmzoONvkhlWVzYw5qKpUKHdfMZB9Sh06H760HBrcvBIQUkUuKrCUKof0qOqJXLodUJrWEkTbvumUBKdIG/HNINYBvTkjYOzmSm3ZjbZ67chm0XDCOrPvy6AX29J8oA5sLIyKXFGorK/5DapcRCHirn3iV0BBSRC4pCtarhkZThpB172/cx8FRdGaPlGCm4RqgR6GBta0teu9fJetDKktEztjfecnWDVFrWE+y7sWZqzgpA952yuaGiMglhW0KB3gdlDclXqZCeQQTkUuKij3aomLPdmTdwwOnZEGJJ5SIXFI4uDijj8wp8cS4TASAmkN6oGQbmhLv5qZ9olLipc+VHS3nj8Psr7fRZcsCZC9TVOd3Y/5GYlkdT0zJVxMXFm/QW1AupWta2VPiCU2Fp0GDiYOYlHgXF2+UBSUeNffvL32MoqxLnTkjejAo8cICg2RBiWcRDpQeFoezBWYBtZUVeuxaSvKIAsBWGRxSmcrPBojIJYXWQ+pImshfKjA37UYS9Gs7pG5sPwhBn/2M6sNYCCkilxQlWzVAreG9yLqXZ6/hxNSlRrVvLISmE9FA6yG1dX+TH1Kpm3NDlJ+To2L3NqjUqz1Z9/DAKVxYtMGo9o1FlmLCCQ0lhYOLM7wOroZtCgdOXczfSKxt2dfkh1QyAtBAEbmkqDG4O0q1bUTW3dy83+S87UJTS2ig7ZC6Vg6HVIaInLGXAPUnDEShBtXJuktLNuHenmNGtW8shKaQ0UDbIdXU4mIsETlDKTWSovmc0chdpQxZd3LqUjw7ZVredrHWc7lT4tnY25MUZkKIS7VbPkXWlHis37mxf+/uhfOh03o6ulMOlHhCisglhUqlgufGeWxKvP7iU+LZOtijfJdWGHPnKMbeP46KPdqSzn8KP959wIFhMzDGvSy29RilF8e8R9niaLNUvrztbBE54/YxulDifTNQ90EoUL/z+NhYfH9h3Ljy1aiAZrNGknUf7jzG/qF0lodUyJg/F6xtuVmjFuFA8WBxOFtgNtAcUqmPSGRoGNa26GPSQyprA2eswxnQckhdutmkh1Qbe1pELkCAeafOnBE999KH1PBfwVjbyrQ3qWLavPmc0chdtSxZd2r6Mjw9cdHoPgyFU9rUZISiEPNOnys7um1fTNbJ4ZDKOpwHvDF+7m2XTWYeUg+PnoO3V28b3YehYInICWFzuR9SKZvHx8Yi0Nc4rmWVSoVOG9i87XsHTMbHe0+M6sMYsETkhLC5R9niaLtsMln37fkb7Og91qSHVMrmkaFhRtNYqdVqdNu+mKTgAoAdPcfg24u3RvVhDFh6FELYnO+Q+vHuE5MfUqn1/M+3APwNCTWqXSsbG/TcuwIuGdOT9Zs7DsZP389G9WEMxNzHyJ0Sj5r7j3cfjd5jyJ0Sj7mPEcDmZTs2Q7UBXcg6OVDiUTb3f/3e6PXG3smRTYkXHY21LfsarG2jL7KVLAzPDXMxx+8OWi+eyMwiS46Yv5G4uWkfZpdqjNllmuLmlv060XtV6dMJ5TrTlHh3dx4xKSWeSqUiLxOF+L7pQoln7PphDFi/cyHmXmdUHyYl3rXVO3B720Gj+zAUVjY2yEjoUQgxbwtoWBzOFpgVPMoUQxvWIfXFW+zoNcZkh1Q3hiL5TyM4TjVQq9XotmMJKe4CANt7jDbpIZWa+w+fT4LYIm/1Cmg+ZzRZ9+neE+wbPNXoPgwFS4X+h88no9u2srZGr70r4JLJjazf4jkUP98b34+hoGz+U4B5A0CRxrVQf/wAsu7N5Vs4Op6mHJECLJsLMXcbe3t48YmLtRmAYD9/o/sxBCqVCm55c3DKhbJ5mQ5NUX1gV7Lu6fELODN7lSD9GAK2zT8a3bbmkGqf0olTFxsdjXWt+kl2SE0OKxsbuObkrjlCzBsAKnt1RLkuLcm6e7uO4sqKrYL0YwjEtLljmlTofXA1yQefeEjtY7JDqoOLM+kYFcrmdUb1QbHmdcm6a6t34NbWA4L0YwiYNhdgnXXJ8A9vu7U1py7idwjWmZC3PZV7BpJORCiba6XEO2Q6SjxqHxMfG4ugz8ZTvKTLngXddy1lUuKta90PsdHRRvdjCNLnykYGcgixdwWAVgvHI0f5EmTdsQkL8PLcNUH6MQSUzf/+CUW4APooGfLlQpct9CVK0GfpKfEcU7ug5pAemPL6IrwOrdXr3U/3nmBbt5EY414WB0bM5P0OqlQqdFg9k3lhuW/INLy/aTpKPOrbHvzlmyDf3KwlCqHDapoSL+CNr0kp8cTcx+hCiWcM/ZqxoOb+8/0nkwavmDMsDmcLzA6Ve3dgH1J3H8PNTfskHlEi0mXPTFJL/Hj3UZD2HVO7wItxSI2O+It1JuRNSp8rG6csMiQUoT9/CdJ+7RG9UbxFPbLu+tpdeLD/pCD96AtXYt5AYnqaEHB2c0Xv/auYh9QNJoz2pWwe/PU7oiP+CtJ+46lDkb92ZbLu3Ly1eHH2qiD96Atq3oBwNk+bLTN67F5GHlJDfwRii+dQk21eKUEgITdwLReMYx5Sj09cCJ8b9wXpR1+whJCE+rbz8rZ/9sO2HqY7sFBzF2reKpUKHVbNYB5S9w+bYbIDi9g2z1q8ENqzDqlvfbGnv/BCU7pCbJt32TyfeUjd1We8yYSm2Ov5R0Haz1WpNJu3/fFLk9GjqVQqcu5CzVttZYWeu5exKfG6jUTw1++C9KUvxF7PC9atikZTh5J1vjcf4MSUJYL0oy+sbW2RNps7p1yoeVvb2qLX/lVImT4dpy4hIQGbOg4R7HygL8S2eYmW9VF7RG+y7uW56zg3Xz/HrxBQq9Uo3ryuQcKCEcF/cGHhekzKXQ2rm/XC26u3yf0IHyVefGwsNrQdYLKLVNZ6HihQZkmFbmxKvEcHT+Pamh2C9KMvUmfOSGaFC/Vtd3BxhtehNTQlXmQU1rcZYLKLVMrmMX8j8ceEmSXmDIvD2QKzg+YmlZUGeGD4DJOkqlnZ2JBcTkJ92IFEHtUOa2aSdf6vfHB65krB+tIHrMOjkIfUzpvnwy0PN8ISAPYMmIwwAaIT9EWKVC5wSpeGU/5TQJvnrFASrRdNIOs+3X+Ki0s2CdaXPmDZXKioaw1ve5qs3EMRAOzsPQ6RoWGC9KUPUmXOSF76CPk7L1CnChpPG0bWvbl8y2TcvulzZ+eUxURG4bdAzgJth9QdPUcjJlL6zatrTnEPqMA/h9SRXmTd02MX8MBEAjSUzcMCgwTj1dYcUimOxfjYWGzvMdokl2rUvAFhbV6ha2tU9upA1t3Zcdhk3L7U3H99/CpYNKa2Q+qOXmNMEoUk9j4GAGoM6oZS7RqTdVdXbsO763cF60sfUHP/8e6jYBddTunSsCnxQkKxq894k1yqSWHz+uMHoHDDGmTduXlr8fnRc8H60gfU71zIead2z4Cee5eTgThhgUHYN2SaYH3pA/a3/aNgfTSbPQp5qpUj605MWQJ/ASjYDAE1d9sUuvE8JyQk4MnR81hUrR1mlWyE29sOctYE15zZ0G3HEvL94K/fcXjMXH2HLAikWM/bLpuMbKWKkHWHRs0xieaQ2soK6YgsNSHn7V4oLzw30JR4P959wMmpSwTrSx9IYXML/h8Wh7MFZglbB3v0ZhxS//4Jxe5+E0y0ec3OKRMqLVGD8l1aoUqfjmTdmdmr8PXpK0H70wWsD7uQc3dwTgmvQ2vI1M/QH4E4MMw0/I/kpl1gm1cb0AWlOzQl645PXCh4f7qAuZgLOBa+Q2rQZz8cGSc9tYZarSYdkEKlompQb1x/FG5Uk6w7OGKWSag1mIdzAefOd0j1f/0ep2asEKwvXWHrYE9G5wlt82azRjIPqXsHTjEJtQb72y7c3PkOqZ8fPjeJYGZK17Swd+ZGagk5bwBos3QyspUuStbt6jPeJBFhlM0T4uPx6+NXwfrgO6S+u3oH3ut2CdaXrkibPTOZTSTkPkalUqHT+jnIVDAPWb+j5xiTXKpRNo8KC0eogCK9HmWKoe3yKWTds5OXcN8EWiSsqHYhba5Wq9F1+2KSEi8+Lg7bu49CXEyMYP3pCldiPf/zLUBQLZy81cqjGYMS796uoybRIpFiH2NlbY2ee5aTlHixUdHY0VM+l2rxsfGY8OQ0qg3oQlJ7Ufjy6AW2dBmOcdkq4tSM5f+JVi/SqCYaTBxEvndt9Q6TaJFIYfN/edvTpubURYWFY6fJLtWyc8qE3ruWbt8U1Qd1JevOL1ivlwilUGCfUU1HRWnOsDicLTBbuObIii5bF5J1T46ex8MDpyQeEZ3C8ef7D0SGhQvaT+slk5jqs6aICBM7/ViDTAXzMCO8b287hBdnrgjany6gFrVA3y+C2kClUqHTutlkhHdMZBS29xwt+eZVKptnL10UrRgR3ldXboOP9z1B+9MF1CH157sPgm4mE8XFFpGOzsiQUOzuK/2lmtipqBrkrVYeTabTEd5n564xCc0CNXeh5605pKZ0TcupC/35yySiauzfubBzL9ywBuqO6UvWnZi8GAFvfQXtTxtUKpXoEYAAYGNnB68Dq0jndvCXbzgydp6g/ekCqb7tpds3RZW+nci6Q6PmIOiL8Ty6+sDK2lr0LDUgkbedxeEd8NYXJ6ctE7Q/XSCVzSv1ao8yHZuRdXsHTZWcZsHBOSWZUSP0vB1Tu6D3AZoe7cvjlzi/cL2g/ekC1noutDZI7eG9UKRxLbLOFJdqLpncYOPAjeoVek1zdnNFr70rSHo0H+97uLZmp6D96QJq7xobHQ17Zye0Wz4Vc77dQYc1M+FeJJ9O7YX4/8SxiQsxLmsFbO/1/4K3jSYPRt7q5cl3tvccIznNgmuOLKQdfgps87TZMqPb9kVk3YvTV3B311FB+9MF6Ylve/ivYIQHC5OlpkHL+ePIy/P4uDhs7yH9pRo1b0D4b7sFibA4nC0waxRtUpsZ+WkKmgUpIn2BxEOq56Z5ZBTgp/tPcXHxRkH70waXjOnJyGMxUlfKdGzGjPzc6TVecpoF6qAWFxMjiOhMUtg5poDnRjod7d3VO/Bev1vQ/rQhXY4stOiMCIt5lb6dkLtKGU55QkICtpuAZoGKloj4HSKI6ExSpEjlwrxgeXr8Au7vPS5of9ogRfqxBrVHeiFriUKcclNdqlHf9uDP3wT/23N2c2VGAZqCZkGK9GMNGk0eTAq9JF6qSR8RRl4y+HwUfBxpsrozuX2vrtqOd9fuCNqfNrhJmIraYu4YkjYpMjTMNJdqElwyAECGvDnRePpwsu7cvLX4/FBamgWp0o9VKhXaLJ1MOnnDAoNMIgItlc2zFi+EemP7kXWmoFmQaj1XqVTosGYmye37288fh0bNFrQ/bWBmqYlg81yVSjMjPw+PnoNfn4TLGtEF2mxu7+SIKl4dMeHxaYzwPoDSHZrCysZGa7sxkVG4sWEPphWqg6V1PPHy3DV0XDebdOz/9PmIE1MWGzUPfWFjz8hSE8HmhepXR/murci6fYOnIkTArBFdINW33drWFp03zSP/Xr4+eYWz86TlLndMm5rMgrdQaogDi8PZArNHmyWTSB7d0B+BkkeESXk4z1q8EOqMojk/j09aJKnwjtiiM8n76rB6Bpn6FfTZD4cljgiTkicqV6XSqNq/M1l3aORsSYV3bOzskCYrtYETft5qtRqd1s+hI8Le+OLk9OWC98kHKW1euEF1lO3UnKyTmmbBMU0qUnRGjHlbWVuj86Z5ZETY54fPcUHiiDAq/TghIQE/fb8I3lfJNo1QpAkjIsxrnKQRYWmyZBJVdCYpbOzt0WnDXDoi7PpdXF8rbUQYdTgXS3SmUs92sokIkyraFQDsUzqh41r6Uu3ZyUu4t1tamgXq2x76I1CU31zNId1Jzk9TRIRJuXd1Spsa7VbQjuV7u4/h6fELgvfJBzJL7YOwWWoa1B/fHxny5+KUx0ZFY3sPaTPVpNzHpMrkhlYL6Uy162t34c2VW4L3yQfWJYMYF1xNZowgMyeiwsIl5y7X9XeuUqmQq2Ip9Ni5FLM+30CDiYPIczaFV+evY0WDbljVuAeTu/z8gvX4dP+pPkM3GlJdLAFAq4UT4OzGvVQL/xWMfYOmiNInC1IGirgXyot64+hLtVPTluH7Kx/B+2RBpVKR+3YhNZYs+H9YHM4WmD1SuqZF22WTybo72w/h+WnpIsKYQmoicew2nDSISbMgtfAONfefPp9E2UylzpwRLeaPJeukFt5h21wcnqjms0fRNAuhYSbYvNI2FwNueXIw1d7PSUyzIDU3WOvFE0maBVMI79A89eLMO3PRAqg7ug9Zd1ximgWpsleAxI1y+1UzaJoFiYV3mKIzIq1puSqWQrUBXcg6qYV3pOCp10ClUjEjwqQW3rFzTEFyj4q1jylYrxrKdW5B1u0dNEVSmgUp13Mra2t4bpzLpllYsE7wPllwdnOFnZMjp1ysNa1EqwYo2qwOWber7wT8/RMiSr8UaF7bWAR9Ev5bY2Nnh84b6Uu19zfu49rqHYL3yULa7JnJLEmx1vMK3dsgb40KZN2OXmMRHfFXlH4pUN/2yJBQUS7w7Z0c0XEdHcX94sxV3NlxWPA+WWBdJvJ9210ypEeTacMw6/NNeG6Yy+SfTw7/1+/x8MAp8m8sIT4e22RwqRb89bsol7mOaVKh3Uo64O3+3hN4fPSc4H2yIOXeFQDqje1H/o3ERkdje49RiI+LE6VfCuR55f0nk/CnmzssDmcL/idQql0TWdAspM3mTi6uYt2i2tjby4ZmgYpwjgwNE1R0Jikq9WqP3FXLknVSCu9IxWurgbaIMCmFdyib//bzF+3gUGtYT5pmIS4O27qPkoxmQcoIQCBRPJFFs3B35xE8O3lJlH4pUHMXcwPXYMIAkmYhNipaUpoFqfngUrtnYNIsXFu9Q1KaBWruYvLgNZ01kqRZkFp4R8qoTyDx37kJg2ZBauEdmrP8o2j9tVo0kaRZCP8VLCnNgtTreeYi+dk0C1OXwv+1NBFhKpWKnLvQHKdJ+2u/cjqbZmE0LSgpBljCgWLZPEf5kmyahTFzJaNZsLa1RZps3O+sWPPWCGayaBaOT1kiSr8UpIz6BIACtSujQrfWZN3+IdMQEvBTlH6TwzG1Cylqp8u8bR3sUbFHW0x8dhaDzm1HoQbVdeqT5WD0e/paUpoFprNdYM5yDUq0rI/iLeqRdbv7TUTEb2E5lFlIlTkjrO2kyVID/qH8ZFyq+d56iKurtovSLwVqTYuJjMJvE4iumzssDmcL/ifwL80CQ3hHKpoFKxsbpPXIwikX86AmF5oFqTdwvDQLEgrvOLg4k9GnYtq8UP3qKOvJigiTTnhHyghAgJ9m4cujF5JFhKVyz0D+3YnJDcZLsyCh8A5l89ioaASLJPCVeKk2z+Q0C645s5JjENPmcqFZoGwuhuiMBvZOjui0nhERJqHwjtQXSwBQY3A3WQjvUOv5r09+iI2OFqU/udAsSL2PARJpFjIWyM0pl/pSjUo/FotmAJAPzYLUF0uAfGgWpKQZABLF3pvOHEHWXVgoHc2C1JcMANBy4QQ4Z3DllIcH/cZeCWkWaJvrPm+VSoUCtStjwMnNmPLqAqr06UheIuiCU9OW4dvLdwa9qy+kpJDRoN2KaSSP8J9vATg0SppLNTZnuXjz9ihbHDWGdCfrjoydh8CPwlPRUTDFev6/CovD2YL/GaTOnBEtZUCzQC7mIjngNGg+exRTeEeqzavUzkcAcMvtwS+880ga4R1XCWkGNJADzYLUdCJAIs1CvTF9yTqphHfUajUd6SvivBMv1WjhHSlpFkxh85wVSqLaQNPSLLBEZ8S2OSsiTEqaBalTMgGgQJ0qJhfecUqXhvy9iTlvK2trdGbQLHx98grn5ktzqUbZPCE+HoEfxDsolmjVAMWa1yXrdvYZLwnNQpps7uS/vZj7GL6IMClpFiibR4VHiBp9WaF7G+SrWZGsk4pmgZm9IqLNEy/VaIeTlDQL1Hr+5/sPRIVHiNZnjUHd4FG2GKc8IT4e27qPEu1SKylMsY9xTO2C9gyahQf7TuLxkbOi9Z0U1NwDfb8YRHWQIV8udFg9E7O/3EKzWSNJKiY+xEZHY2XDbggP/q133/rCFDZ3yZgerRZPJOu81+/G60s3Res7KaSkwtOgyfThSJeDS8cWFR6BXV7jTOqXEHMP978Ki8PZgv8pVOzZDnmqlSPrpKJZoDavIf4/RaX1kAPNgtQp5xrwCu90lyYijFzMfT+LSvHglDY12rIiwnYdxdMTF0XrWwOp0481qM9Ds7BDoogwWiTzg6ibqFSZ3NBywXiyTiqaBVNEBgFA05kjyfRfKWkWpBJG/U+fObOh6Qw6IkwqmgVTRPoCWoR3JKBZUKlU5CFV7Hm7F86H+gzhnZMS0SyYwuZ8NAuJEWF01LuQsLK2RjqJs9QAIEe5Eqg+uBtZJxXNAns9/yhanxructsUDpw6qWgW7FM6kd8ZsW2ev1YlVOjehqyTimaBtZ6L6ZBRW1nBc+M8WNnYcOr8nr3GOQloFlJlciP/5sTexxRvUQ/FW9Yn66SiWaB+53ExMQj6bHiWmlPa1Kg3tj9mffRG951LyTMZC78+fsXojGWwb+g0US8003lkZmSpfRStTwAo36UV8teuTNbt6DVGkks1aj0PD/qN8KDfovVp55iCean28tx13N52ULS+NTDV3vV/ERaHswX/U5ADzYIpIn0BbcI74tMsOGdgiM6I/GHXKryzcL2o/QPSis4kRcnWDVG0aW2yTgqahXQ5skKl5i4zYts8MSKMQbPgfQ/X1ohPs0DZ/O8fcURnkqJij7YmpVkwVYqavZMjOrGEdySiWSBFZ758E/0is8bgbshexnQ0C6ZIRQW0CO/sOY4nx86L2j/Aigz6KPqlVr1xDJqF6Ghs6zFa9P5NZXOXjOnRahEdEXZ93W68uSx+RBhpcwkOqE1NTLNgqm+7HGgWTHGxBAAtF4w3Kc0Cy+YBIs89U8E8aDBhAFl3avpy0WkWVCqVSS6QAaDdiqlIkdqFU/7n+w8cHCn+pZqY33YrGxuU6dAUY+4exQjvAyjesj55RkiO2KhoXFqyCRNzVcXaln3g431P8O+djb09UmflZqmJvaYlXqrNgp1jCk5doO9nHJu0SNT+AdOt5/lqVEDFnu3Iuv1Dp+OP/w9R+3dKm5r8rYk97/9FWBzOFvzPIX2u7CalWTAFH5wGLOEdKWgWpBadSQpe4R0JaBZMFemrUqnQftUMpvDOYZGFd6xtbZFWQtGZpOCjWTg8WnyaBVP9zk1Ns2CM6IyxMDXNAnU4T0hIwM/3n0Xtly8iTAqahdRZMkkqOpMUfMI7u/pOEJ1mgYqQkUJ0xsbODp030ZdqvjcfiC68Y6qMJQCo0K21SWkWqG976M9fov+t8UWESUGzYCqnBABUH9jVpDQL1Nx/ffgi+mWeY2oXtF9lOpoFZsq5BDavO6YvMhXKyymPjY7Gjp6jDaJ40AcsMVyxL3ZcMqRHawbNwo0Ne/D64g1R+5fiYkmlUiFXxVLwOrAa032uoubQHrBP6aT1vYT4eDw6dAYLKrfGnDJNcWfnEUF/+6a6WEqXPQuazhpJ1l1cvBEf7j4WtX9Tchm3nD8WLhnTc8ojgv9g78ApovcvNU/9/yosDmcL/idhSpoFU/BEacArvCMBzQIpOuPzSZJ09/rj+yND/lycciloFpiLuQQ25xPeubZmp+jCOzRnufjzBkxLs2BKbjBT0yyYgqdeA16aBZEjwkyVvQIA7oXyoh4PzcL3V+LRLLBEZ6TiweMT3hE7IsyUv3Ne4Z0xc0UV3rFN4YBU7hk45VLsY3hpFt5/wvHJi0Xt35TruSlpFlKmT0c6haSwuTaahbNz14jaP/U7j4+Lwy+Rs9QAoHjzeijRqgFZJzbNQrrsmaG2suKUS/G3bm1rm8hdTkTA+t56iMsrtoraP2XzyNAwSUS3y3VuiQJ12DQLYnJoM2nRRFrT0nlkQetFEzH76y20XjKJjOin8On+U2zuNATjPSrj9KyVCPsVbPRYKJv/9vOXhNaiWv/OyFG+BKc8IT4e23uMFvVSzZR71xSpXNB+9Qyy7uGBU3h06Iyo/VPr+c/3nyQT4/1fgcXhbMH/JLTSLCwQLyKMKTojUQpHiVYNULRZHbJul8jCO1Skb1RYuCRcdDZ2dujMEN7x8b4nqvCOKSODgEThnbw1KpB1YkeEURGAf74FiLph1kArzcLOI6L1bcoIQICfZmFb95HiXqoRcw98/1n0iCRAC83C3hN4fPScaH2bmg+u3th+yFQwD6c8Njoa23uMEvXf31Tpx4CGZoG+VBNbeMeUGUvAP8I7BKewFMI7LJ56KcBLs7BoAz7eeyJe3ybKWNKAj2Zhj4gRYWyaAWnmbUqaBfa3XZq5t10+hU2zMGKWaP1a2diQNC5Sfd88yhRDzaE9yLqj4+aLyulryqhPlUqFDmsZNAsfvuDYxIWi9Z0ilQuc0qXhlItNG+TgnBI1B3fHnK+3ka92JZ3f+/MtAEfHz8fYLOWxs884ozQMWPv2n++luVTrtGEurG252WLfnr/BmdmrROs7lXsGkmpUqt95saZ1ULJNQ7Jud78JCA8W71KNWtNio6Lx++t30fr8X4TF4WzB/yx4aRZEFN4xleiMBnzCO7/9/HFIRJoFUx/Oc5QvieqDupJ1YgrvmEp0RgM+mgWxhXdMrQKslWZBpMsOl0xuTFoLKcAbEfb0Nc6KKLxD2Tw2OhpBXwwXndEHfDQLYkaEuebIQl5oSZF+DGi4y9kRYWLSLFCHc7FFZ5KifNfWJhHeMaVTAjCt8A4196DP3xATFSVan0lRfWBXeJQrzikXOyLM1Dbno1l4uP8kHh0WLyKM5iyXJksNSKRZcC+cj1MeFxMj6qWaqfeuvDQLG/eKSrNAp5xLx3HaZNowMoMmOuIvdvQeK9rfnqkDRdJlz4Jms0eRdZeWbILv7Yei9W1KmgG1lRV671sJl0xuer0X8zcS19fuwpT8tbC8QVe8PHdN778NU//OMxXIjQYTB5J1p2euhN/zN6L0y8pSk5Jaou2yKXBMk4pTHhIQiIPD6QhoIWDq9fx/BRaHswX/06g/niG8ExWN7SLSLLCEhqRCqkxubOGdtbtEo1lg04l8FKU/Ck1njjSJ8A6ZtiMRtQRgOuEdU6Yfa9Bq0UTJhXfUajXNASjhvN0L5UX98f3JulPTlolGs8C+ZJBu7u1WsmkWDo0S51KNKToj4bw9yhZHTRbNwth5otEsmDIlEzCd8A5TdEbCNS1fzYqo2KMtWSem8A5l84T4ePwSMeowKTSXalREmN+z1zg7Z7Uo/abJmom8yJNyH1O8eT2UaM2KCJsoWkQYtZ5HhUcgxF/8LDWAn2bhw+1HotEssCKcpVzTynVuiQJ1q5B1YtIsUDYP8f+JyLBwUfpLDtsUDui0ns5Ue33BG7e27BelX1PSH2pQtZ8nclQoySlPSEjA9h6jRbvco77tgR++IC42VpT+kiNFKhd0YNAs6IIXp69gWd3OmFGsPu7uOqrzuE29jwGAuqP7wL2I9Jdqrib2Szi7uaLN0slk3c3N+/Hy/HVR+pWDzf8XYHE4W/A/jX8jwoiotPc37otGs0ClcIQEBOJvSKgo/VEwhfAOOxX1o+B9sWAq4R1q7lJu4ACgxiCaZkFM4R1Tpx8D/0SEMWgWxBTeYdEMSBUNBvxDs8AQ3hFr82rq9GMgMSKsFSMiTEyaBZbQkJRoPG0Y0uXIyikXk2bB1BQygOmEd6i/d7HTj5Oj5YJxkgvvyMHmmQrkRn0WzcKMFfj24q3gfZo6S02DdgyahRD/nzg0UhyaBTms59lLF0WtYT3JOrFoFuydHMlLaynnrVKp0NEENAssm0vpjMpbvQIq925P1h0YNgN/vgt/qeacwZX8t5bS5morK3gyaBa+v3wnGs0CtabFxcQg6LM0WWoAULRJbZRq24iso3jFKfg9fY1NHQdjUu5quLJym9ZzbVqPLORllpTfdisbG3TeNJ8cx8e7T3Bp2WZR+qXW84jgP4JwY+uKMh2boWD9amTdzt5jRbnkksM+5n8BFoezBf/zyFGuBKoP7kbWiUWzIIebc17hHZFoFpzdXGHn5Mgpl/rDbgrhHcrm8bGx+PVRHBoPCtqEd86JQLOQTgYbOAAo3qIeiresT9aJRbNAis6EhEoiOqOBNuEdMWgWTJ2WqEH5Lq0kp1mg5h785Rui/0YK3hcLpqBZMHX6sQamEN5hiWRKKTqTIhUPzYJIwjty+Z3XHd1HcpoFOSjbO7u5os2SSWSdWDQLckk/bjx1qOQ0C9TcpZ532myZ0WzOaLJOLJoFufzOW8wbS9IsRPwOwZ4B9O/AGLA5yz8K3hcfMubPhQaTBpF1Z2atgt+z14L3KZf1vM0ymmYhPi4O+WtXYkb8J8evj1+xZ8AkjM9eCadmrmBmgNjY2SENlaUm8byzlSyM2iN6kXVHxy/AT9/PgvcpB5urVCp0XDOT9BP8+vgVxyYsELxPxzSpyL8xqW1u7rA4nC2wAEDTGSOYNAtiRAe55uRGnwGJHMpSQhvNwtenrwTtT6VSkXOXet4Av/DOgeEzBe9PLjbnpVmYvlzwNCJrW1tyA2cKm7dbMZWmWfj+A0fGzRe8P+pADEg/d48yxXhpFn5/CxC0vxSpXMgNnNTz1kazcHL6MsH7TMewuRgRWHzIV6MCKvZsR9btHzpdcG7lVJkzklFYv/2E/dvSBm3COxcWrhe8T+p3HhsVjQiJ+Ks1KNasLptmof9EwaOD5PJ946VZuPMY19bsFLzPdMR6HhYYJBl/tQZlPVuwaRZ6jxX8gkUu+xhtNAtiCAKz9q5SZiwBiTQLOSuW4pQnJCRgZ+9xgl+wyOV37uDijI5r6L35o0Nn8OTYecH7pOYu9ZoGAHVHeTFpFnaKkLXEtrm0c3dOn45Js/DqvDfqjumLSS/Oo1Kv9qToXXKE/vyFYxMWYFzWCjgwYiaCib9hudi80ZShZKR5zN9I7O5HiyQbA7nYPE1WdzSfO4asu7xsCz49eCZ4n9S+3RQ2N2dYHM4WWAD+iLCnxy/Ax/ueoP2lYoghCO340QXVB3aFR9linPKE+HgcGTtP8P6oCAVTzJtPeOfuziP48viFoP2xBDD+mGDufDQLYqRlUnP/801aBxyghWZh3W4ECHyjzba59HPno1k4OW2p4P3JxeZ8NAuXlmwiDxzGgPVtN8XvvOX8sUyahTMC89uq1WryAs8U8+YT3jkzZ43gKaKpMnH/jQHTrGt8NAuXlmwStC/bFA60+LAJ5s1Hs3By2jLBne3M37nEF0u8NAu+n3F97S5B+0uZPh2Zzm4Km/PRLBydsEBw5z+1psVERiHid4ig/WiDWq2G54Y5TO5yoWnhWPuY3yZYz4s0roVS7RqTdUfGzhPc2U7NPfRHIOJiYgTtRxv4aBZ8bz0UnBZOTucVPpqFw6PnIGP+XOi0bjZmf7mFJjNGkHue5IgKC8eFhesxwaMytvUYBf/X/69nQu9dAyS/WLJ1sIfnBkam2tlrgtPCycnmVfp0RK5KpTnlCQkJODxmruD9UXs4U8zbnGFxOFtgwT/go1k4NHqOoIsN88Mu8WEF4KdZeH7qMt5duyNof9RBLeT7T8kXc+Af4Z1WDcg6oSNe2QdUacR2koIvIuz+nuP4/Oi5oP1RczfF3zrAplmIj4vDcYGd7XJxSgD8l2o3NuxFwFtfQfsjN3AmsjmLZiEmMgonpwrrbHdhOB9NMfcUqVzQniG8c2X5FgR//S5of9TcTWXzOoyIsMiQUMHF5OS0nvPRLJybvw5hgUGC9kcezk1kcxbNQuiPQFxcvFHQvlg2DzHB3PloFk5NX47I0DDB+mJeLJnI5iyahaBPfoJHtstpPc+QLxcaTh5M1h2ftBgxkcJRONk7OcI+pROn3BR/6wDQZulkOKZNzSn//vIdbm8/JGhfrMvEkIBAQfvRBdpoFoTUg3F2S0dqG5nib52PZuHj3Sd4fDjR2e6ULg0ajB+AmR+90XnTPLjlzaG17biYGNzctA9TC9TG2pZ98OHuY9Lm0RF/Bf2O6oo8VcuhSp+OZN3hMXMFPTez/tZN4pdQq9FpwxxY23Ev1V5f8MarC96C9ketISEBgaIJNP4vwuJwtsCCJGg5fxyZcu978wGenbgoWD+OaVNDbW3NKTdFBCAAZCqYB7WG09FBQi9q1O1zbHQ0IkRSVdeGtsumkDzWL05fwdurtwXrh3XrbqqDmkeZYqjs1YGsEzqynZp7WGCQKHyq2qBSqdBh9Qzy93d/7wlB07XkZvN8NSqgTMdmnPL4uDjBI9udibn/NkGUCJB4qdZx7SzyAHVz0z74v3kvWF8sm5siAhAAijWtgyKNa3HKYyKjcEJoZzsxd1P9rVvb2qLDajr9+vLyLQj6Ipz4kdx+52U9WyB3lTKc8siQUMFFpqi5h5jgEhVIjLhut2IqWXd+/jpBufPZNjfN3Kv280TWEoU45aE/fwnvbKd+5ybauzq4OKM1I2vp9IwVgjqJmDY30be9zsjepFMt6LPwznY5fdud06dDc8YFi9DOdmofA5hu7o2mDEXqzBk55f6vfHB7m3DOditra6RMn5ZTbqp5p8nqjkZThpB1R8bN+4+z3drWFhW6tcHklxfgdWgNKZSeHAkJCXh06Azmlm2Ghwy9A1PNvfmc0eQFy6d7TwTVZrB3TgkbB3tOuan2rhny5kTd0X3IOin8Egnx8Qj9IZ3ejrnD4nC2wIIkcEyTCnXH9CXrhEzXUqvVcJFRlAiQKLxDpeL63nooKDcaawNnqkXNJWN61GDw2x4WMLLdNoUD7J3lkX6sQcNJg0hn+8uz1/DmsnDpWi4ZuX/rQGKatyngmjObJM72lOnTklHkpkzVajJ9OJnN8GDfSdGd7TF/IxEZEipYH/rAvXA+lOnUnFMeHxeHYxOEc7aznBKmigYDgKazRrKd7UlSSY0FNffQgEBBI6/0Qc4KJVG0aW1OeWxUNE4IKIrLdkSZxuYqlYrJgXhlxTYEffYTrC9q7qZc0wrUrYo81cpxyiNDw3B61krB+pHbxZJarUaz2aPIunMSONtNuXct0aoBspYszCkPCwzCeQE521n7GFPN3crGBk1m0Bosp2euxF8B11pnYu6m/J2X79oKGfLl5JQHf/mGq6t2CNaP3H7ntg72TMfricmLBRUnpi+WTGfzav09kToLVw8m4I0vbm05wClXq9Uo3rweRt8+gqGXd6Ngvao69fOTIQppqrk7uDgzdXeOjp8v2P5KpVIxLpBN922vNbwXnNKl4ZR/fvAMDw+cEqwfuQUNmCMsDmcLLEiG6gO7kukV3168FVSIRE7px0Bi+nW9sf3IuqPj5gvmbJdT2o4GdUd5kSJnH+48xpOj5wTrh5q7KRdzlwzpUXNoD7JOyBtkOaWca9Bw4kCS9/LV+et4ffGGIH2orazg7JaOU27KeafzyMJM0RPS2S6n9GMNGk8bSjrbHx44hY/3ngjSh31KJ/LvypTzdi+UF2U7t+CUJ8TH46iQznbC5gkJCSaNEmk6cyR56XNrywF8fyWMs11O6cca5ChXAkWb1eGUx0YL7GwnbB4VFm6S9GPgH2c7I/rx2qod+PXpqyD9yHFNy1+7MvLWqMApjwoLF9bZTu1j/H8iPj5esD70gVqtZtr8wsINCPkhDP2BHG1eomV9ZCtVhFMeFhgkqEAqTYVnunlbWVuj6Uxam+H0rJX4+0cYXm3WPsaUcy/XpSXtbP/6HVdXbResH5ouyTRBIgBgY2+PxlOHkHUnpixhOttVKhXyViuPgae3YvyjkyjVrjG5J9CGX5+Ey4rSF1X7dkKarO6ccpaz3VDQ9Iems7mDc0rUnzCArDs6foFgXOpy/LabGywOZwssSAbbFA5oxOBGOzZpkWBCJHK7PQaAagO6IJV7Bk65kNxocktLBBJvkOsynO1Hxgl3gyy3aDAgMS2TcrYn5UYzFnKLEgESuU6Zzvax84RztpM2N+0mpv74/qI729mZDCZ0tmfPgip9xXW2q1QqBp2IaW3eeOpQUmTq0cHT+HD3sSB9yPHbnqlgHpRjOdvHC8PTb2VjAydXIv3YxN92prN960F8e/lOkD7kFvUJAB5li6NY87qc8tjoaByfvFiQPlKkcib5JU1pc5VKxYxyFtTZTvzO4+PiECZgFLW+yF+rEvLVrMgpjwoLx+mZKwTpg+KuBkxvc15ne4AwziJSfPZ3iKARtfqiWPO6JF1C+K9gnF8gjLOdvXeVp7P9jIDOdlYmgylo0TQo69kCGfLn4pT/9vPHlRVbtb6fpVhB9Ny9HNPeXkaVvp3IbzgLewdOxpk5qwT799UHNvb2aGSAs11fsKjwTIkqfToiTTaus/3Huw+4uXm/IH2w9jGmnrs5weJwtsACAhW6t4FbHoIbTUAhEjmS1POnay0RhBtNrjeJ1Qd0ZnKj3RHK2S6z22Mg0dleb5y46Vpsm5t27rVH9hadG438nZv4b93ZzVV0znY5RjgDQP3xA0jxmdcXbwgmRCK3TAYgUVisSr9OZN0RwWwuv+wV4B9nO3GwfHz4LD7ceSRIH3ISydQgU4HcKN+lJadcSGe7XH/nLGf7nW2H4Pf8jdHtq1QqWYnhauBRphiKt6zPKRfS2S7XPRwzsn31TgR+/GJ0+zZ2duR+wdTzzlezIimEHBUegdMzhYlsl6PNeZ3ti4RxtjumTU1mRZna5sWa14VH2WKc8vCg3zg3f50gfVA2j4uJQfivYEHaNwRW1tZoNovhbJ+9ChG/ddMCcs2ZDR1WzcCsTzdQb1x/OLhw6Q6TIyosHEfGzsPYLBVwaPRsyf8Gynm2QKaCeTjlujrbdQG1jwn/FSxYoJ0hsLGzQ5Npw8i6E1OXIjrir9F9yDGTwdxgcThbYAEBK2trNJnJ4EabsUIQbjS5ktSX79qKKURydbXx3GgUxQBg+g1c4g3yULLuuFDOdsLmkSGhiAqPMLptY1CtvyftbH/9Hre3HjS6fTny2gL/pGuJzI1GRomYMP1YAxY32qf7T/Hw4Gmj25djtCuQKDjEUno/PGauIHaRYyYDANQf1x/2KZ045W8u38Kr89eNbl+uPHhpsrqjWv/OZJ1QFyxUZJCp5w0AjaYMIZ3tT46cg++tB0a3L1ebZ8yfCxW6teaUJyQkCOZsl6vNm84cAbWVFadcKGe7HKM+ASBbqSIo0bohpzwuJgbHJwnkbJeRYGJSMCPb1+zET9/PRrcv19953uoVUKBuFU55dMRfnJy+3Oj25chrC/yTzcBwtl9cvFEQu8gxewUAijatA49yxTnlEcF/cG7eWr3acnZzRbOZIzHr8020mDeW+XeeFJGhYTg3by3GZ6+EHb3HIuDdB736NBRqKys0FcDZzgfmWc1EejsalOnYDJkK5eWU//kWgMvLtxjdvpNrWnLNlMO+3VxgcThbYAEDYnOjyXUDx8uNNtP4dC1rW1vS0SWHTXu5zi1EFSKRq835nO1CpGs5pklFpvPLYTGv2reTXkIk+oLatMfHxiIsMMjoto0Bn7P92PgFRjvb5XpYAYBaw3oiJUGBIJQQCeWIigj+I8illTFI6ZpWVGe73ARhk6Le2H6kaOvbK7fx8tw1o9tnOaJMmX4MiO9sZ9lcDut5w8mDSWf702MX8P6mOM52Ocw7Q96cKM9yto8z3tku1wtkAGg6YzjpOLi74zC+Pn1ldPtyE0zUIFvJwijZhuVsX2R0+8z1XAbfdpaz/fraXQI52+UlmKhB3mrlmc72UzOMd7bLkQoP4I9sv7hkk0G/RwfnlKgz0gszPlxHp/VzyKj25IiNjob3+t2YkrcG1rXpL6joNgtFGtdCjgolOeURwX9wdu4ao9uX6xlVbWXFjGw/O2c1woONc7ar1WqklJnejrnB4nC2wAIGtHKjGSlEwkpRM/ViDgDFW9RDttIMbrSFG4xuX26CiRpYWVszb5BPz1xhtLOdmjcgj7mX60xzowV//Y4rK7cZ1XYiry130y6HedvY26PxNPGc7azfuRwO51VYQiRvfY3mRrOxt0eK1C6ccjkcUO1TOjGFSI5NWGi0EAmbZsC0USIAUJPhbP/y6AUe7j9pVNtO6dJAbW3NKZfD37pTujSoM7I3WXdEAGc7ZfPY6GhEGHkQEgL1xvUnne3vrt3FizNXjGpbrgdUAEiTJROqD+xK1gnhbKdsHhYYhNjoaKPaFQKNJg+Gjb0dp/zp8QvwuXHfqLZZ3zc57F3d8uRAxR5tOOWJke0LjG6f2sP9/hZg8oslAGgyg45sv7frKL4+eWlU23Kk1NAga/FCKNWuMac8PjYWxyYaL4pLU+GZft4Aj7N93W788PloVNtytnmequVQsH41TnnM30icnLbU4HZt7OxQqWc75KxUSud3EhIS8HD/Scwu1RhLanfCqwveon0P+PwSl5ZuNvobzLS5DC5SCzeqiZwVuXaJ+B2Cc3NXG90+SZElg3mbCywOZwss4EG+mhWRr1YlTnlUeAROzzBOiETOEYC8N8gCcKPJUTBRg2LN2NxoxgqRyJVmANBEttM0MmdmrTQ6XUvONi/n2QIZC+TmlAvBjSbXKBEgcXPN62w3khtNrtFgAFDZqwPSZs/MKf/x7gNubNpnVNtydsLZOzmiwcSBZN1RI53tarUaLoSwlqlT7TWoMaQ7Sen05fFLPNh3wqi25Rzd7ZQ2NdvZPnaeUc52eydHkqZFDvMGgLpj+pLOdp/rd/H89BWj2mbt4UydfgwAqTNnRDWGs91YzvaU6dOS/Nhy+L4BQINJtLP92YmL8PG+Z1Tb1Lc95m8kIgWg2TMWbrk9ULFnW055QkICjhgZ2S7nvSsANJk+nLzsvLfrKL48fmFU29TcQwMCBRMTNwZ8znZjI9vZNpfH75wV8eq9fo/RNBesSzVteH3BG0trd8Ls0k3w4MApUTSZclcug0INqnPKjXW2A/Leu2pztgf7+RvVvpzPK+YAi8PZAgu0oDkPN1rgB8OFSOSclggA+WpUQIE6tBDJKaOd7fJTP9aAjxvtwqIN+ONvuH3kvJgDbGd7RPAfo4VIaJub/mAOiMuNxra5POZetlNzUojkz7cAXBbB2S6XeSc622khkpNGCpHI/XfOcrb/9PmIGxv3GtW2XHltAY2zfRBZd2zCQqMiU+V8gQywne1fn7zC/T3HjWpbjhynGjilTY26o/uQdUfGGhfZzqQTkcnc643pS4ph+Xjfw/NTlw1uV21lhZTpuVkScpl3avcMqDG4G1lnbGS73L/tDScNho2DPaf8+anLeHftjsHt2qd0gm0KB065XOadPld2VOrVjqwTw9mekJBgcr0dDZjO9t3H8PnRc4PblavejgZZihVE6Q5NOeXxcXE4bmRkO+t3Xqx5XahUKq3vf37wDOtb98OU/LVwff1uwUX3ms0eRY7jxoa9Rjnb5f59y1WpNAo3qskpj4mMwimjne3cPVyIDPR2zAUWh7MFFmgBvxCJ4TfIKRVAUt9sNu14NZYbjUrbiYmMMpqyQijwc6MZ7myX+2LO52y/ZCA3mgaUzcN+/jKavkAoFG1SGznKl+CUGyJEkhRyTksE+J3tZ2evMoobjUxFldH3rUyHprQQyfcfuLRss8HtstMS5TF3a1tbNJk+nKw7MXWpUSKmlMq5XP7WAaBSr3ZIlyMrp/zn+09GOdvlrnLO62yfaKSzXeY2rzG4G5yJyHu/p69xb/cxg9tlU+fIY+6OaVLxONvnGRV9R6cfy+P7BgB1RvdFilTOnPL3N+7j2YmLBrfLpsKTh81TZXITxdmuUqkY1BLyuEAGgIYTB5FO8Renr+Dt1dsGtyv3PRyfs90YznZrW1uSfksu8waAJtOGkc72+3tP4PNDw53tLPrD5nPHYMqbS6jcuz2pS5McP959wM7eYzHBozLOzV+LvwJlQmQukp/pbD82wXDqoBSpXUjdAzl925vNGkk72zfug/+b9wa3S/3O4+PiEPZTHhdLSofF4WyBBTqAKUSy84jBQiRqKyvZk9RnLVEIpdo24pQb62yXq8p5UvAKkbz/ZFCb9imdYOfkyCmXS4oakOhsL1ivKqc8UfV7mcHtsqJEQgKM40IXCtqESAy9CHJ2S0dujuS0gSvSuBabG22e4UIkVMRAVHgEIkPDDG5TSKitrJi/83Nz1xjsbJd7tCsAlO7QFO5F8nHKQ/x/4rIxznYq2tX/pyippYaAz9l+ctoyg53tcqbO0YDlbA/0/Qzv9XsMbpeau5zWcjvHFGg4iXa2HzfC2a6EfUyNwd3Jcfo9M87ZLufsFQBwTO2CumP6knVHxs03+Hsk96ABAKg7ug+pn+B76yGeHr9gcLtypkUDEsdXY0h3ss4YZ7ucBRM1aDiJ4Ww/cxVvrtwyuF1Se0VG83bNmQ2VvTqQdUfGzjW4XT4KGbfcHui4djZmfvRG3dF9SMomznvff+DQqNkYl7UCjk9eZLTIHZAY2U6JGz7Yd9JgAUOVSiV7agn3wvlQplNzTnl8XByOTRTeLyGnuSsZFoezBRboALc8OZjcaMbcICuBpL7JjBFMbjRDhUjkHg0GJHKjlW7fhFMeHxuLY0Y420mby2jeANvZ7r1+j8FCJFTkIyCvueeuUpbJjXbKQGe7lbW1rNOPAfGESOQsjKpB4YY1kKtSaU55xO8QnJ2zyqA2HVycybRmOc1brVYzM1jOzl2D8KDfBrVL2TwhPh6hMooSKdWuMTIXzc8pD/H/iUtLDXO2UxG0gLx+59a2tmg6g3a2n5q+DJFh4Qa1S9k8MiTUaA54IVGpZzu45szGKQ/88AXX1+02qE05C8JqYJvCAQ0nDybrjk1caHCqN0tITU7px9UHdiXH+e35G9zdecSgNplR7TL6tqdI5YJ6Y/uRdUeNcLbLPXsFAOqO8oJjmlSc8g+3H+HJsfMGtSn3TAYAcMmQHjWH9iDrjOFsV8J5peHEgbBzTMEpf3nuOl5fumlQm7rY3CVjejSfMwazP99A8zmjmRQkSfH3TyhOTluG8dkr4djEhQj7FWzQ+AAgnUcWVOnTkaw7Mnaewe1S30w57V0BoPG0oaSz/eH+k/h0/6lBbco9e0XpsDicLbBAR7C40Z6dvIR31+8a1KbcbxKBf9K1GM72wwYuakqIAASAxox0LWOESMiIAZnNO0uxgmxnu4HcaEq5PWalaxkjRKKE33muSqVRuGENTnnM30icnLrEoDaVYHM+GpnLy7Yg+Ot3g9qUM6+tBoXqV0OuymU45X//hOLMbMOc7UqweaKznb5UOzt3jUGHQGtbWzilS8Mpl1PUJwCUbNsYWYoV4JSHBATi0pJNBrWpBJtb2digCdPZvtwgZ7tjmlRkWrWc5g0AFbu3QfrcHpzyXx+/4vraXQa1Se3h4mNjEW6EA0Vo2KZwQCOWs33SIoOc7UrZu1Yb0AWp3DNwyr+9eIvb2w8Z1CbFWR4e9Ftwflpj4ODijLoCO9vlztWuQZ2RvWln+53HeHzkrEFtyllvRwNnN1e2s32sYc52fWzu4OKMuqP7YuZHb3RYM5O82EyOyJBQnJqxHOOzV8KRcfMQFhik9xgBoP74/qSz/dX563h98YZBbdJ7V3ntY9Jlz4IqfWln++ExhkW2y11XS+mwOJwtsEBHiMGNxiSpl0n6sQYsZ7uh3GisxVxut6jpc2VH5d7tyTpDhUjknpaoAUuI5P6e4wYJkchd5VyDzEULCC5EQgqpyfDWvCkPN1rAW1+925O7yrkGuSqWQpHGtTjlMZFRODnNsMh2udMMAPyR7ZeXG+ZsV4rNC9arhtxVy3LKI0NCcXbOaoPaVMK3nc/Zfm7+OoMOvkqgEwGAkm0aIUvxgpzy0B+BuLh4o97tqVQqMrJdbvPmc7afnrHCIIojpaznFbq3gVueHJzyoE9+uLZmp97t2djbk9zQcpu3rYM9Gk0ZQtadmLwEMZGRerephIslAKjWvzNSZ87IKf/+8p1BznandGnIvbDcbO7g4ox64/qTdUfHL0BcbKzebVJ719ioaEQIQAkhJGqP6AXHtKk55R/vPsHjw/o72w3Zx9jY26OKV0dMfXMJPfeuINea5IgKC8eZ2aswPnslHBo9W+9MMGc3V9Qa3pOsM9wvwZ176M9fRuk8iIH64weQFJWvL97AqwveerenlH2MUmFxOFtggR6oM6oPudn0vfnAIG40Jkm9gbedYsElY3rUFJAbTSkbVwBoMHGgoEIkVKpWxO8QRP/V/wAgJlxzZmM72w2IbJe78EpSNJ42jEzXur/3hEHcaKy0RDlFiQCJQiRlOjbjlMfHxeHoBP2d7UpIRdWg6cwRpLP95ibDhEhYKedyQ84KJVGkCdfZHhsVjRNTlujdHktsR25z1+ZsD/ryTe825S6ep0GBulWZznZDItuVYnM+Z/v5+esMon2h5i7HiKgSrRoga4lCnPLQn79wYdEGvdtTynpuZW3N62w3RMRLKd/28l1bwS0v4Wz/7Ierq3fo3Z4SqPAAfmf78UmL9Xa2q9VquBAXS3LLXgGAav09SWe7/ysf3N6mv7NdKXs4Bxdn1Gc424+Mm6e3s93eyRH2KZ045brMW21lhVJtGmHcgxMYdG478taooPWdqPAInJu3FuOzV8KBETMREqD731at4b3I7KpP95/i4cHTOrejAYv+UC56Oxo4p0/H62zXl94pZfq0UKm5blG5/a0rFRaHswUW6AHH1C6CpmspyfFaZ5QXKURiCDeajZ0dmfolt4gBgJ8bzRBnu1LS8wC2s/3l2Wt4c1k/bjTHtKnJKBG5RX0CgGuOrEwhkqPjDHC2EzaPi4mRVfqxBixnuyHcaEr6vrkXzoeyngwhEgOc7VT2SvivYFmlH2vQbNYo2tm+eT/8X/vo1ZZSIh8BIEe5EijarA6nPDYqGienLtW7PVaEs9wulvic7VdWbkPQZz+92lOSzQvUqYK81ctzyiNDwwxztisgkwH4x9nOsPn5Bev1drYr6dteolUDZC1ZmFMeFhhkmLNd5oKJGlhZW6PpzJFk3emZK/V2titBJFODcl1aIkO+nJzy4C/fDHK2U/t2OUY+2tjbo9HUoWTdicn6O9uVFPVZtV8npM6SiVMe8MYXt7ce1Ls9YzOWVCoVCtSujKEXd2H07cOkPkxyREf8xYWF6zHeozL2D5uu0/fUwTkl6o+nne3HDIhsV9IZtTbD2f75wTM80tPZrgS9HSXD4nC2wAI9UX1AF1qI5MVbvYVIlERSr1WIRM/bRDpKRH6bdoCHG80AZ7tSIgYALUIkY+fp5UhRq9WK4LXVoMGEAUwhEn2d7UqJAAS0CJHoSSNjm8IBDi5cBW85OqIAoNHUoSQn68MDp/R2tjOjwfzl943LVDAPynZuwSlPiI/XO7I9pWtaqK2sOOVy/FsHgKYzR5JRLQY52wmbx0RG4e+fEIPHJxb4nO0n9HS2K2lNU6lUzCjnqyu36+9sJ+Ye9vMX4mJiDBqfmMhfqxIZbRcVFo7Ts1bq1ZaS9q58FywXFm7Q39lOin3Lc00r3qIespUuyikP/xWMCwvX69WWUqLaAeGd7UoQTNSgXOcWtLP963dcXaWfs521d5Xjvt3G3h6Npw4h644b4mwX0OYeZYtjwMnNGHP3KEnflhwxfyNxcfFGTMhRGXsHT0Gwnz/v81X6dESarO6c8oC3vri15YBeY1WCMKoG9imdUH/CALLOEBoZMhtVhvNWIiwOZwss0BO2KRyY6Vrn5q/TywnHUrWVY+QjkChEwuJGe37qsl5tUXOX67z5uNHOz1+nV1tKs3mdkb1JbrQPdx7Dx/ueXm1RczdGpVlMOLu5ouYwOl3rnN42p4WG5Dr3+hNobrRX56/rLZZJzV2uf+t8QiTnF+hn85TM3/lvfYclCRoznO2PD53Bz/efdG5HbWUFJ1duxEmYTOedqUBulO/SklOeEB+vN68v+9v+25ChiY5ms0aRzvY72w/rdbC2T+lEajzIdd4eZYujeIt6nPLY6GhcXr5Vr7YomyckJCDit/wuGfgcr97rdiPit+68rErbx+SvVQn5alXilEeFhevN5UzNPSo8QpbZK7zZDCu2ITrir85tKc3mxZrXhUfZYpzy8F/BejvhlHResbK2RtNZtLP94uKNel2GKW3vWq5zS2QskJtT/tvPH/f2HNerLdrmvw0dGgAge+mi6HdsA8Y9OEFe+CZHTGQULi/bgok5q2D3gElMXQ0be3s0nkZHtp9fsE6vgDCl7WOq9OmItNkzc8p/vPuAp8f0ozql9u1ynbfSYHE4W2CBAajQrTUpRPLt+Ru8vXJL53YcCD5oAPj7R39eOSnAx412edkWvdqi5i7XeQNsbrT3N+7rxeurNJvzcaOZu81ZQiQvTl/RS0RPaTbn40bT1yHjkIob4SzXeQNsIZKHB07rJaJHcf0DkGW0KwCkzZYZVft7csoTEhJweYV+NqfmHinTeQNAoylDYG3Hdbbf3n4Y4UG/dW6HbXN5/r1nzJ8L5bu24pTHxcTg2lr9nHDU3OU6b+AfznbC2X5jwx5EhUfo3I7SbJ69dFGUaNWAUx4d8Rc3N+3XuR0ra2syA0iu8waA5ozI9murd+gliKW09TxfjQooUKcypzw86Dfu7jqqcztUthIg33mrVComjczl5Vv1csJRNo+NipblJQMAFGtGO9uDv37H4yPndG5HaX/raisrprP98rItegWEiXleyVqiEPoeXofxj06Sl5/JERsVjasrt2FizqrY1Xc8mYlTtlNzZCqYh1Me8MYXr85f13lsSrO5jZ0dGk8bRtZdWrZZr7aUto9REiwOZwssMABW1tbMNI5LejjhHJy5ogQAEBmiv2q4VCjXpSXSZOOm7rw6fx3fXr7TuR1q7nKet429PeqO6UvWXV6+Red27BVo8yp9O5E8WY8Pn9UrBVlpNndwTolajCjnKyu26dGO8mxea2gP0vF6d+cRvURN7Z0Jh7OM553SNS2qEY7X+Lg4vSLhqHkD8p573dF9yCjnm5v2IzJU93FT3zg5zztNVndU6N6GUx7zNxI3Nu7VuR3Wt90QYTKp0GDCQNLxen3NTr2cKdTcI2U87wz5cqFUu8ac8ojfIbiz47DO7ShxPW84aRBZfmXFVr10SGiby3fe2UoVQeFGNTnlf77/0IvvU4nrecPJQ8hyfZxwaisr8pJBzvPOW608clcpwyn/6fMRL85c1bkd1nou17mrVCo0nDyYrNMnUMQ+JXcPCMh33gBQtEltZC6an1P+5dELvL9xX+d2KJvHRgt7yZClWEF4HVyDiU/PoETrhqSWRvL+r63ZiYm5qmGn11gEfvzyb53aygoNJg4k39PL5sy9q3zX8zIdmsI1ZzZO+burd/D1yUud21HamqYkWBzOFlhgIEq2aUimnjw9dgGBH74Qb3DBjhiQbzSYlbU1qvXvTNZd0SMSzp6Ye2RomN7Ci1KiXJeW5GJ8f/dxhPzQTcFXaVEiQGJkOyWiFx8Xp5cACzV3Oc8bACr3bk9GP97cvF/nDRj1tw7Ie+4OLs6o0K01pzw2Khre63fr0Y7ybF61nyfJQ3x97S6deQBZv/NIGc/d2c0VpdpznXCRIaF6Kdw7uCgvSqT6wK5k+ZUV23TmAVTitz2dRxYUacLllAwJCMTD/ad0bkeJv/Mag7uR5fo44ZS4h3MvnI/kcg788AXPTl7SuR1zsrlegSIK/J3nKF8C2UoV4ZT7PXuNt1dv69wOtZeR87wBoMbg7mT5ZT2iH5Vo8wJ1q5KZuD7e9/D54XOd2lBiJoNKpVLc79y9cD703rcSE5+dRal2jbU6nuNiYnB93W5Myl0d23uOxk/fzwASOdtTuWfgPP/81GUEvPug01hYF2pytrnaygrVBnYh6/TJyqRsHhsdrTf/twVcWBzOFlhgIGzs7FCZENdKiI/H1VXbdWrD2s4OVjY2nHK536hV7NGW5Gy8vfWgzjyArEUtKizcqLGJCXsnR1TswY2Ei42OxvW1u3Rqgx0dI9/FHEiMcqaccN7rduvMA0jdHkeFhcv6ksEpXRqU6diMUx4VFo6bm3VLQVZiRBQAVBvAuFhauV1nHkClRbUDiRGvxZrX5ZSHBQbpzAPIjnaV99xZjtfLy7fonIKsxCiRjPlzkWnnQZ/9dOYBVFoUnAY1BnUlyy8t3ayz41VpmQwA4FGmGJl2/v3lO7y+eEOnNpSYyQAA1XlsriuUFtUOAPlqVkSG/Lk45R9uP8KHu491aoMd1S7fuatUKqbN9Yl+pNdz+c4bAIo0qUUKqr08e01nYVgl7uHUajXTCacP1YAS1/PS7ZvQWZmHziDoyzed2jCFzTMVzIOeu5dj0ovzKNOxGZl9lBTxsbG4sXEvJuepjq3dRuDXJz9U7cfN0AOAKzo6XpWYyQAAFbq2MjorU6nruRJgcThbYIERqOLVkXQY68oDqFKpFJd+DACOaVKhnGdzTnl0xF/c2LhPpzaYH3YZ36ICQLX+ncnbZ115AFmXDHKfd2r3DCjRqj6nXB8eQKZDRo90fVOgOmPTfkVHHkD237p8o+AAwC1PDhSsX41T/tvPH48On9WpDSVeMgBsh8xlHZ1wSjygAkC2koWRs2IpTnnAG1+8OndNpzaoucv9+wYA1QexoqJ0O5wzLxlkPvc81cojU6G8nPJP95/iw+2HOrVhbjbX1QnH/J3LfO5FGtUkhZbeXLoJv+dvdGpDiZcMKpWKecGiq82V6pQo2aYhUqbnZmU+OXr+P6n5fCDPKzL/W7eytib1CQDdox/Z33Z57+HKd2kJ+5TcseuTlalEm9vY26NS7/ac8vi4OJ0Dwky5nmfMnwvddyzB5JfnUdazhXbHc1wcbm05gCn5auLrk5ewtuWeMfXKylTgJYODizOpSRETGaVzVqZS9+1KgMXhbIEFRsAlY3qUbNOQUx7xOwR3tuuWgkylcMj9sAIA1ZgpyLrxADLTlWT+YXfNmc0oHkCVSkWnosp83gD/4VwnJxyLZkDmc89SrCDNA/j+E16cvqL1fRt7ZWYyAOzoR50dMiyby/ySIVel0shSrACn/Mvjl/Dxvqf1fSWm2mvAjH7U1SFDzF0JlwwF61czigdQqd83vuhHXW1O7mNkPm8AKNGqPpwzuHLKn524iJ/vP2l9n0mXJPO5q62sUG0A6yJ1i05tKJFSAwDKerYgx/5g30n8+f5D6/tKpEsCErMyq/ThUqMlxMfj6krdnHAkXZLM/9YBoFLPdkZlZSr1vGKf0gkVuhPUaNHR8F6noxOO/LbL+28dAKryZWX+1U6RwF7PpZt7hrw50W3bIkx9cwnlu7Yi55MU8XFxeLDvJGKjuRmIUWHhuLXlgE79KvXbzsrKvLpqh05ZmUqkzlEKLA5nCywwEnwHNUMj4eS+iQEA90J5SR7AXx+/4umJi1rfV6LYjgZGO2QUeHsMGM8DqFSaAYDP2a49+lGpmQwAkL9OFZIH8P2N+/j04JnW95VKM2BsCrJS6ZIAoHjzuiQP4IvTVxDw1lfr+0qkSwL4U5B1iYRTKl0SAJTt2AyOaVJxyh8eOI1gP3+t7ys1k8Ha1hZV+3bilCckJODKSu3CsEqOiKrQvQ1sUzhwym9vP4zwoN9a31ciXRIA2DmmQMWe7TjlcTExuLZWuzCskvcxVfp0MiorU6l7V8c0qVC2EzcrMyo8QidqNKXuYwCg2oAuZFbm1VW6UaMpMZMBAFJnzojiLetxysODfuOeDlmZcspkSJ8rO7psXoCpby6hYo+2UFtbG9TOZZ2zMpVHnQMkOugL1qvKKQ/++h2Pj5zT+r4S6ZKUAovD2QILjIRHmWLwKFecU+7/ykcnHkBSPE8hHzc+0R1tUHIEYL6aFZGxQG5Oua48gEq9PeaNhNOB+1HJt8dFm9ameQDPXcf3V9p5AJWayaBWq3kcr0bYXAEHFiYP4OGzCPrsx/uukjMZrGxsUI2RgnxlhQ5OOCIKDlDG77xCt9YG8wDa2NvD2pYrMKqEedumcEClXlwnXHxsLK7pIAyr1EwGAKjs1YG0242N+7SOX8n7GMfULijXpSWnPOZvJLw37NH6vlIzGYDESDgqTf36mp2IiYrifVepmQyAlqzMHYe1vq/UvSvADhS5slx7VqaS967pc2VHoYY1OOV/vv/AwwPahWGVbHOWYKQu+gRyzGRwzZkNnhvmYtrby6jcuz15ecSHnz4fdcrKVGomAyCSX0Ihc5czLA5nCywQAMaknTtQt8cKWcwLN6yBdB5ZOOW68AAqOTLI2OhHpd4eA4k8gM5uXB7Ap8cuIPADPw+gkiMA+XkAt2h9X6mZDABQrnMLMtrj/p4TCAn4yfuuUnltgUQHYmUvbgpyfFwcrurghCN/5wqYNwBU6tUe1nZcJ5wuPIBKjgB0cE6JCt24Kci68gAqNZMBAKr28yRTdq+v3aVVpV3JEYDObq4o1a4RpzwyJBS3t/FToyk5kwEAk1bj6srtiIuN5X2XuZ4r4JIhXfYsKNKkFqc8JCAQD/fzO+FY81bCJQPAo0+gQ1amUjMZAHZWZuCHL3h28hLvu0rOyASMy8pUaiYDkJiVmbVkYU65LlmZct7HpPPIgo5rZ2Pau8uo0rcTeWHKwrbuI7VShCmRt1sDVlamj/c9fH74nPdd5j5GIXOXMywOZwssEADFW9aHS8b0nHJdeACVmqIG8PMAanO8KlU0UIOynZojRSruLbAuPIBKvmSwsbND5T4dOeUJ8fFaxTiUbnNjeADpDZwyDqh8PIDXtfAAKvmSAQCq8PEARvzlfVfJlwxO6dKgTMdmnPKosHCtKchKvmQAjOMBVPIlQ5qs7ijWvC6nPCwwCPf2HOd9V+k2Z1ImLd/Cm4LMpEtSyLwzFciN/LUrc8qDPvvh6bELvO8q+ZIBYAeKaIt+VPolg0eZYvAoW4xT/v3lO61ZmUq+ZAD4ne18UPolQ/5alZAhfy5OuS5ZmUq+ZDBGJJRtc/l829Nmy4wOq2Zgms8VVO3fWSfHc+iPX5hRrAFWN+/NdMAq+ZKBjxpNmwC0nC8ZlA6Lw9kCCwSAta0tqjB4AC+v4Od+ZKUr6cL/LAdU6N4ado4pOOV3dhxG2K9g5ntKT10xhgdQqQJLGlTx6mgQD6CSU1EBNg9gdMRf3NzE74SjUtSUMm8AqM7gAby2egdio6OZ7yk5FRUAUrtnQIlW9Tnl4UG/cVcLDyCVcq6UAyrAdshc0cIDKAexHWPglicHCtavxinXhQdQqTQqGhga/aj09TxbycLIUaEkpzzgjS9enb/O+67S13N29CP/4Vzp3/Y81cojU6G8nPJP95/iw+2HzPeYdEkKmTfALwDNBxZdklL+3os0qklmZb6+eAPfXrxlvseiS1LKvPkcr1e06BMomS4JAEq2bYSU6blZmU+OnkfgR3ZWppL2MWmyZEL7FdMw3fcaqg/qCht7O63vPDlyDrNKNsLqZr3g9+z1f+qUTJcEAOW7tKSzMncfR8iPQOZ7Sl/T5AyLw9kCCwQCiwfw5qb9vAszdaMWHxeHGB1UdOWAFKnYPIA3Nu5lvsdMUVPQh71qf0+SB/Daan4eQFZElFIuGXh5ALezU5CVHgUH8Dhklm/h3YwpOQoOSOSOK9yoJqc8kQfwNPM9pUfBAfyccLxOOGLuSpp35qIFkLtqWU75z/efeHkAlRAZpA0sm2vjqldyJgMA5KpUGlmKFeCUf3n0Aj7e95jv/S/bnMxkUNC8CzWoDtec2Tjl767ewZfHL5jvKT0aTKVSsW2uNUNPuRGAAFCilWFZmUrfw/FnZRrybVfGvAGgrGcL0qF2f+8J3qxMpWcm2tjZoUofLjVaQnw8rq5kZ2WyMhnkPO/U7hnQdukUzPC9jppDe8BaF8fz0fOYUbQ+NnUagh8+HwEoP5OBLyvTmycrU+kZmXKGxeFsgQUCwTl9OpRq35hTro0HkB0ZpJwPnCE8gHZOjmTEpJLmnS57FhRtWptTHvojEA/2nWS+R9lcSZcMAD8nHMsJp/QIZ4DNA/jr41c8PXGR+R4rCk4plwwAX/Qj+6Cm9MhHAPAoVwLZShXhlGvjAVR65CMA1GBGwrFtbq/wKDgAyF+7MtzycnkA39+4j08PnjHfU7rNDdUnUFI0GAvFm9dFKvcMnPIXp68g4K0v8z0yk0FB8+ZLQb7ME/1oDjYv06EpHNOk4pQ/PHAawX7+zPeUnsnAl5V5ZSVbGNYc1vMK3VvDNoUDp/z29sMID/rNfE/p33ZDszLNYd9epU8nqK2tOeV8WZmsTAYlzNslY3q0XjQRMz9ch3vhfFqfT0hIwN2dRzAlX03s9BoL1rFECXPXoFr/zqSP4eqq7UxqNKVnMsgZFoezBRYIiOoDu5LlfDyASr89BoCM+XOhQB39eADVajXsUio7SgTgcbzy8ACyI4OUY3OPMsXgUa44p9z/lQ+TB9AcLhkAw3gAlZ7JAAD5alakeQDvPMaHO4/Id8whk8FQJ5zSMxkAoEiTWkiT1Z1T/vLcdXx/5UO+w4x2VdC3Xa1W867nLCg9qh0ASrdvAqd0aTjljw+fRdBnP/Idc8hksLKxQdV+tDDslRU8TjgzsHmFrq1g5+TIKb+78wjCAoPId8whqt02hQMq9eI64eJjY3F9DdsJp/RMBgCo3Ls96Vy5sXEfIsPCyXfY4nnKsbmQWZlKWtOARH0CKivz+hp2VqbSMxkALVmZOw4z31N6JoNLhvTovnOJzs/Hx8Xh+rrdODN7FVmvpG97+lzZUahhDU75n+8/8PAgX1amsjMZ5AqLw9kCCwREtpKFkbNiKU55wBtfvDp3jXzHHG6PATYn3KWlm5jvKJ0HDwDyVC0H9yLcG+TPD54xeQDNhSdKXzEO1iWD0ubN4gF8c+km/J6/Id8xB5vzCrAwIuHM5ZKhZJuGcHbTjwfQHDIZrKytUbU/7YRjOV6Za5qC/tYBoFznFnrzANK83cq6ZLCxt0dlL24KcnxcHK6u3kG+Yw7fNwCo1KsdrO0IarTN+5nfLHPYxzi4OKN811ac8tioaHivp1OQzSGTAQCq9vMkhWGvr92FmEj6W63UyMekcHZzRal2jTjlkSGhuL31IPmOufzOWZeJV1ZsY2Zl0r9zZV0ypMueBUWa1OKUhwQE4uH+U+Q75mJzvvOKPlmZSpu3e+F8yFu9vF7vxDN+A0q6ZAD4A8JYMIdvuxxhcThbYIHA0JcTzhyiRACgYP1qcM2VnVP+7tpdJg+gkpVwNUh0wunH/WgO0WAAULyl/jyA5mBzfh7ALWQ5M5NBYY7Xsp4tkCIV19HwYN9JkgfQXC4ZbOzsULlPR045Hw+g0vkuNajUsx1sHOw55be3HkTE7z+cclvHFGZxyWCf0gkVe7ThlMdGR+P62l3kO9T3TWmXDABQpS+dguy9bjeiI/5yytmRj8r6tqd0TYsyHZtxyqPCwnFzMy0My4qCU9IlAwBUZ9BqXFlJpyCby941TVZ3FGtel1Me+vMX7u05Tr5DRbUrbd4Aj3ggIyvTXPauhmRlKj3aVQOW45WVlWkuvLYeZYvDo2wxTvn3l++YWZl0VLuy5g0A1Rl+CSranQ8hAWzBPTkif61KdFbm7Uf4cPcx+Y4lwlkcWBzOFlggMIo1q4PUmTNyylk8gOZyUEtMQdaPB9BcPuyl+XgAv37nlJvLQc3a1pZMQU5ISMDlFeZtcxYP4J0dhxH2K5hTbi425+UBXMOIfjSTg1oVr46kiAyLB9BcLhkc06RCOc/mnPLoiL+4uYnrhDOXSwaAzQN4bfUOxEZHc8rN5ZIhtXsGlGhVn1MeHvQbd3cd5ZQzMxkUNm+Ax/G6fCvDCUdfMlCOeTnDLU8OFKxfjVP+288fjw6f5ZSby94V4KfJopxw5nLJwJuVef46p9xc9jEAT1YmQ5/AXC4Z8lQrT/L6frr/lMzKNAfaRw2YFyzMgDDzsHmRRjWRNntmTnlCfDxKtWtM7mspbO8+EpdXbGXSr8gNfFmZV/TxSyhszy5HWBzOFlggMBJ5ALliHADNA2gOooEalNeTB9BcUldsHexRqXd7Tnl8XByuETyA5kKjAgCVGDyANzftJxWNzcXm+vIAmpPNq/b3JCMjrq3ZRW5EzcXm+vIAmpPNqzFTkLciPi6OU24uNnfNmQ2FG9XklP/5/gOPCB5Ac1rP9UlBZl4yKHDeWYoVRO4qZTjlP99/wovTVzjl5vQ714cmy1zokgAgV6XSyFKsAKf8y6MXeH/jPqfcHOiSNNBHn8Cc/tYL1q8G15zZOOXvrt7B1ycvOeUUXZISLxn4NCmoTFxzsnmJVvXhnMGVU87KyjSXfQxfVqaDsxOmvr2E8l1baY14/vsnFHsHTsbkPDVwc/M+Jv2MnFDWswVpx/t7T+CPPzcr01xsLjdYHM4WWCACKvVqDxt7O045xQNoTrfHDs4pUaFba045iwfQHIRXNNCHB5AdBae8uTunT4dS7RtzyiNDQnF72yFOublEOANsHsCrK7dzNmLmEvkIsHkAQ38E4sG+k5xys7K5Hk44c4oGcy+UF3lrVOCUB374gmcnL3HKqbkrcd4ADw8gcTg3p/Xco1wJZCtVhFPu9+w13l69zSk3L5uzIuG40Y9smytvPc9fpwrc8uTglL+/cR+fHjz7T5k5ZTLo64Qzp/W8ePO6SOWegVP+/NRlBLz78J8yJl2SAuetVqtRTY+sTBZdktIyGQCgDF9Wpp//f8rM6W/d2tYWVftyA8ISEhJwZSU3IMxcMhkAoEL3NmRW5u3th+HgnBJdNi/ApOfnUKJVA61tBX32w7buozCtUB3c33eCzPyRC/iyMilqNHOJapcbLA5nCywQAU7p0ujMA2hOt8cAmBs4igfQgRCdUZoogQZpsmRCsRb1OOVhgUG4t/vYf8qoeQPKnTuLw/ryMi4PIH17rMzFnI8H8MnR8/8pY//OlTl3Jlc9wQNoThEDHmWKwaNccU45xQNobt92PpsnBysaTInIV7MiMhbIzSmneADNyea8TjjC5ub0Oy/atDbSZHXnlL88dx3fX/n8p4wd1a68uavVap5LNfO2een2TeCULg2n/PGhMwj68u0/ZeaUyWBlY4NqDGHY5GnnarXarFLOK3RrrXNWpjl9221TOKBSL64TLj42FteSCcOyMhmUOG8AqOzVgczKvLFxHycrk5XJoMRLBsfU7KxM7w17ACSeaXrvX4Xh1/bp1GbAG19saDsAs0s2wrNTl2XriK82oDOdlbl6Bycr01wyGeQGi8PZAgtEAosH8NqqHf/5cLEFGZS5mLvl9kChBtU55b/9/PH0+MX/lFEb15i/kaRAjRLASke9uuq/Gzhz4j4EgKwlCiFXpdKc8oC3vnhz6eZ/yqhoMCUezDVgRcJdXfVfITk2n68y556najmSB/Dzg2f4eO/Jf8rM6YAK8P3Ok9ucERmk0LkXblgD6TyycMrfXLoJ/zfv/1NmLrzdAL/jNbnNzW09L9mmIZzd0nHKnx67wNEnMBdRLQCwsrZGVYYTLrlDxtxsXq5zC3K9ur/nBMKDfv+nzJx+5zb29qjs1YFTHh8XB+91/83QMxfxPA0q9WoPazuuE+7WlgMc5xo1d6XOm5WVGRMZxQkOMrf1nJWV6b1u93/OYOZElwQAzm6uKNWuEac8MiSUo09gbmc1Fq3GtdU7/hMclLNiKfKSgYUvj19iZcNumF+pFZn9ZGqwsjJDAgLxOJk+gbkIP8sNFoezBRaIhMxFCyB31bKc8oC3vvh0/+m//29lY0Mu+jGRyiDlp8A6nCfnObV1sCefi4niijEpATkrlkKW4gU55Z/uP4X/6/+PimLO+3/U5rGRUYq9PWbxAL69fOs/DhmWzWMVanM+J9zdHUf+8/82DJsrFcVb1odLxvSc8ucnL//HIUPNG1Du3Pl4AHWxuZK/b2U7NUeKVNzMlEcHz/zHIcOyuVLnbvN/7d13fBv1+Qfwz2kPa3pbtrzieMQZdgbZCWSzIZRNB6NA2S20UGgLLf3R0hbootCWVUYpK8yQRULIIpC9p/dekqdkWeP3h6yLZEnWOts55Xm/XryMTzr5vnl0d997vksqxbw7bvDb7nI6/UbuxFvM5956bcAy7Xr7E5+ETLzFXKZKwOybA0yNZrNh97u+UybFW8zn33ljwPr4zjdW+dRR4q0OF2xUprW7B/s/9h2tFajsfC034O79GMjQumu83c/1RgOmXLHMb3t3azuOrN/qs00i958ikq/lBoJ3FAmnHgPw9/ueUVKA4iX+ozLbq+pQsX03+7tAIIAowLSgoVRs341nFl6LPy+9ya/jyVgL1lEk3mN+tqCEMyEjKNBcUYB/RUYo8V8h1mHjZ9IVAIqXzENSntFv+9CETKByA4DDxs8ezgzDYH6QmH/z5pmW83grNwBMuWJZwJ5wQxMygcrucrkCLjzGBwKBIHBCxuXyScgEi7mdxzGfcf1lkAXo+TI0IRNo+CKfyy2SSALOCWe32bDnvdU+7wuEz2Wf9YPvBCzX0ISMKMD33c7je5pUqQg4HLW/p9cnIROo3AC/yz7vh9cHHI46tB4TqOx8vqcp9VpMu8a/J9zQhEywmPO57MHqrkMfzgPd1/h8fdMZ0jD5siV+29ur6nDaKyETj3W4WGLO53Knjs9D0eK5ftvrDxxD3YGj7O/xeD8P+rzi94waX3W47KkTkT19st/2U1u/RVtlLft7PN7P59/p/7wChHc/H79wJtKKx4X8G0fXb8HvZlyGF668HQ2HT0R3oBwbv3AW0ory/bYfXrMZ3a3t7O/xGPOzASWcCRlBky5dEnho4n+H9JAJMJSNzzdzgUCA82683G/70B4ygYbwed7HV1O/c2HQhIxnyJJQJAr4AM/ncgtFIky77lK/7f09vdj/0Tr292Ax5/MDy4zrLwuckHn9TAUuHsstUchRftUKv+3dre04sm4L+3ugsvP5+gYA5910RcDt4cScz2VX6jSYeMkiv+3tVXU4vW0X+3ugsvP5uw64VzsPJN7Pc21GKooWzfHb7peQCXie8/eeBgwX8zML4sZjPSZ1fB5yZoROyASqu/K5swQw3LU9vmNunDoxaEKmq6WN/T0e7+czg8XcK9kej/fz8QtnQpeZ7rd934frfOYzjsf7ebCYf/Pmh+z/i6SBe/nyueylF54PhU7jt333O5/5zGccqOyajFT88uBafP+1PwWcXm2ofavW4jcTl+GVmx5A6+nq2A48RgzDYMaN/jF3OhzY9fYn7O/xWIc7G1DCmZARJJHLgidkvHrIBGw95um0Eh6BLuyAb2+JoC2JPC67Qhs8IeM9ZClgD0AelxtwDzsPZGcYMefrNCrAMAmZg2cSMvFYbmCYh3Ov3hKByu6028/qla1DSS3IRe55U/y2eydk4vH6BoQX83i8pxnLSwP27jmy9is2IROo3AD/yx6oARnwvbbHY8yDJWT2f7iOncM06OgVnpc9WLLdOyETsIczz8tdeuH5UOq1ftu9EzLxeG1nGCZgzJ0OB3b/71P298B1V34PN59y5XJIFHK/7d++9RE7+i4eYy4QCDD9ev+OIgMWK/Z+sIb9PVDZ+V53nXbtJSGnz4nHmIul0oAjd/pMnTi0ehP7e7BnVIFQiJnfXYnHj32B657/TcDp5by5XC7sfGMVflW0CG/e8XOY6ptiL0SUZtxwWcDtoequAP+/72ONEs6EjLCgD2revSXibFgiEF5CJujDOc/LHk4PmUBl53sLajgJmeCtx/y+mYdKyAjFwYbg8rvcBQuiT8jwvexBG9UGEzLxWu7SFQujSsjw/brOMEzARjXvHjLBh2Pyu+zhJGTibaQWMExCxtrPLjYUj0PtAWDaNReHkZCJv5iLJBJMvfoiv+3eCZl4Pc8DfdcB4OvXvRMy8TWlBgDIEpSYfPlSv+3m+iac+NK9CFq83s+DjuII0bub7+VWJSdiwvIFftubj1egZvdBAPE5FR4QXoewUOe5SCLBgjtvwm9ObcaVTxj6EaYAAFjySURBVD8SsE7ozWm3Y8uLb+EX+fPx3k+e9JnGYrQk5WRh3LwZfturvtnPLnwdj1NknQ0o4UzICAsnIRNwiFoctKaFSsgEekAF+F/2cBIygcrO9xbU4RIynh4yQR/OeV72KVcsC7jYhCchwzBM4Idznpc7rIRMnJ7n0665GAKRyG+7JyETr+UOKyET6AF1YIDXvdqB4AkZz8N5vMZ82ITM5p0A4rO3KxB65E68xjychMw5V3dlYx54qD3fyx4sIVP97ZmETDzWXYHhOg24k+3BznO+l91QWojMycV+249/sQ3mhmYA8TkiEwBmRBlzvvfoz589NeCUGAc/3YheUyeAYNd2/3JLFHIsfeh2PFm5BRf96r6A67r4foYNG575Nx7Lm4+Pf/kMLJ1dUZYiOsHOc886S/F6Px9rlHAmZIQJBIKAwzi8EzLxtmigR6iETDwuvAIMk5Axd7EJmXjsJQKE7iETj/PgAYBMlRBwxe9QPWT4Xm4g9Ny28doDMFRCJlivdr6XGxhmuL0nIRPs2j7A77In5WShYH7whEw8LzgTarRWPM7zCQCGiUVBEzKm+qa47hEVbLTW14Mxj9d6TKiETLzWXYHgMfckZOJxdB7gXuxclRJ84etg9Zh4KHugBhaXy4Vv3gqehIuHeszkS5cETJB++99P4LDb43YkQ7D5jO02G/YMrrMU6Sg1uVqFSx5/AE9WfIUlD/4QYlngRjmP/p5erP7NX/Bo7jysffoFn8XlR1L5dy4KeC5/4+koEsd1uLFECWdCRkGw3hKehEw8DkUFhk/IVO86EJcLr3iEink8LrAEhO4hE69D1IDoesjEw8NK0B4yG7e7EzJx2sgABI/5169/AIFAEDDpHA/lzptVPmxCJp4XXhmu92M8lzt0QibQd93GTr/AZ8ESMt/+9+O4rsdMumRxwISMZ+HrwHVX/pc7VEImnmNeflXgha+/GWbkTjzc04QiEaZfd4nfdmt3D/Z/vD6u6zHTr7sUDMP4bf9msO4ar40MEoUcZSuX+23vbmnD0fVb4nLRQI/g8xl/CCD6RoaEJD1W/uHn+PWpzZh/540BO5156zN1YtXPfofH8ufjy7//Z8SvoUqdBhMvvsBve1tlLU5v3x3XdbixRAlnQkZBqIRMvA5FBYZPwsXjggwewXrIHPpsE3o7zHE7RA0YvodM8GlU+D1EDYguIcP34ZgewyZk4vg8nxSkh4wnIROv53mohEy8Lp4HBE/I7HxjVdCHq3go93AJmQOfbAj+oMbzXu3A8AmZeP6uB03ItLbj6Iat52jd9cO4vqeFTMjEdcyHaUyM45jrDGkoDLDwdd3+o6g/eCxup1EBhp8yKV4X+waAtMJ8ZE+f7Lf91JZv0FZVG/MUgDpDGq5//kk8cXwjzrvpyoD3T29dTa14++5f4leFF2Dnmx+O6PRrwaZSGe5+Hg8xH0uUcCZklAQagnwmIROfPQaA4RMyEAS+BMVD2YdNyLy3Om6HogLD95ARiAMnZOKh7KF6yMTr1DkAMOP6ywJWKHe+/kHcLrYDABK5DOVXrfDbPlxCJh7KDUSZkImD81yp02DiJYv8trdX1aFy5z4wAe5r8VBuYJiH89dXxe3UOcDwCZmWE5UB94mHcgPDT5kUz3XX1PF5yJkROCHT1dwWcJ94KXvQTgNvrIrre5px6kSkFeX7bT+8ZjOsPb0B94mXsg/XOSien1fGL5wJrSHNb/u+VWthH7AH3Cdeyj5zmM5BXMU8Oc+IH/znGfzi4FqUXenfeDlUe1UdXrnxfjw17RIcWb8l4r8XjtILz4dCp/Hbvut/nwZNjMdLzMcK44qHsW6E8IC5oRmPZM70G16qTNTC1mfFgMXqs12dmoT5d94Ip92BwkWzUbhw1mgeLqf+c/ND2P7Ku37bE3My0V5V57d9xg2XIznfCIFIhBWP3g1BkMT02a7p+Gk8XuSfmFClJKLP3OV3A9MbDZh983fgtDtQetH5yJtZPlqHyrkXV96BvR+s8duuzzago7reb/vsm6+G1pAGqVKOpT+9I2Rr+NmqetcBPDXdfx5rTXoKulvb4bQ7fLanFORi+vWXwml3oGzlchjLSkfrUDn33JIbcWzDVr/tuqx0mGob/bYv+NFNUCbqoEzUYtF9N4/GIY6IYxu347lF1/tt12Wmw9zQDNeQnhqGiUWYcuUyOO0OzLjhcqQXjxutQ+Xc7867DFXf7PfbrjWkwVzf5Ld90QO3QJqghDYjBfPvuHE0DnFE7PtwLV644na/7cGub9nTJqH0ovPhtDsw++arkZxnHI3D5JzL5cLjxYvQfLzCZzsjEECVkoiupla/fZY9fCeEYjGScjMx+wdXj9ahcm7Ha+/hte8/6Lc9KTcLbZW1ftvz50xD0eI5cNodmH/njdAFSGrwgdPhwM+z5/idz0KJGHK1Cj1tHX77XPz4/XA6nEgvzsf06wIP3eaDTX99Ff+793G/7Ul5WWir8I954QWzMW7uNDgdTix64BYkJOpG4Si5N9Dfj5+lz0Df4AJiHhKFDCKp1G+7UCzGikfvgtPuQFbZhLASS2er1b/9Gz5+7I9+25PyjGirqPHbPmHFQuRMnwSH3YHlj/wIsgTlaBwm5yxd3fhp2nS/Z1GZKgEuuNDf7ZtwlyYoseTB2+C0O5A7swwTL/LvFc8X7//0Kaz/w4t+24Nd26dcsQyGiYVwOV1Y8djdEAeZeuNs19XShoczzoPT4ftcotBpYO+3+c2rnJCkx8K7vwun3YHxC2eiKEAjbCjVuw7go8f+iCNrvwrr/cVL5uGK3/+M82ejN+/4Oba8+Jbf9sTcLLQHiPm0ay9B6vhcMAIBLnzsHgiEQk6PJ95RwpmQURQsITMcgUiEX5/chKQc/+kZ+CJYQiaUhXd/D9f+9YkROKLR89SMy1D9rX9CZjhiuQy/rdoKdYDpGfhi76o1ePHKOyLeb/nP78Llv31oBI5odARLyIQi16jwf9XbINeoR+jIRl6whEwoV/z+YSz7aeTflbNFsIRMKOq0ZDxZsQUSuWyEjmzkBUvIhHL9P57kdcI5WEImlKTcLDxxYhOEIeY1PJutfvKv+PgXf4p4v5vf/DNmXM/f5KO1uwcPpU7zS8iEYphYhEf3reZtwzkQPCETyl2fvszrRFSwhEwo+XOm4cEt7/K24RwInpAJ5SdfvYOCAOt48EVbVS0ey50X8X4TVizEPatf5f6ARtG/r7sHu97+JOL9Ht37GbKmTBiBIxoddQeO4snJ/iPVQpl2zcW49e2/jcARjZ6/XfQDdjH7cDECAZ44vhEp43Ki/rsnNn+Njx79I05v2xXW+2fccDkuffInnOVCTm39Fn+c952I95v3w+tww4tPcXIM5xL+1ngJ4ZGedhP2rVobsPdPKDNvuoK3yWan04mKHXsC9nQNRSgWY+lDPxyBoxodXS1t2Pv+57B2dke877wfXsfbZLPT4cDJLd/g0GeRVWAA93yRi+7nb09Xc0Mz9ry3Oqo5/c6/9we8TTY77HYc37QDR9dH1pgGuHtSLLiTv4nHjtoG7H7ns6gWRlvy4A95m2y222w4umEbTmzeGfG+moxUzPr+VSNwVKOjtaLGPU91FEnjZY/8iLfJ5oH+fhxesxmVX++NeN/kcTmYevVFI3BUo6P5RAV2v/MZxFJJxAnnFY/exdtks63PgoOrN6F2z6GI982aUoLSC88fgaMaHQ2HT2D3O59CLJOiv7cvon0vfOxu3iabrT29OPjpF2g8cirifQvmz+BtstnlcqH+wFHs+t+nEEklEdfjLnzsnhE6spFn6ezC/o83BOzBHcrEixfxNtnscrlQs/ugeyoFgcBvNFooKx69e4SObOT1dpix78N1EXeUANxrGsSSbAaA8Qtm4sEt7+Lwmi/x0aN/RO3ew8O+/5s3P8Sed1djwV03YcWjd0c9esTpdKJq517sfveziPcVCIVY+rM7o/q75zp+1noJ4RGn04nXb/kp9n+0PuJ9GYEAyx7m78Xt5Fc78ddl34tq1dmZ31sJvdEwAkc18hx2O16+/j4c+2JbxPuKJBIseZC/ifbDazbjH5fdFnGPIACYf+eNUCUnjsBRjbyB/n68uPKOqJIx0gQlLrjvByNwVKNj7/uf46Xr7o0q6bro/psDzvHOB9aeXvz94ptRf+BYxPsqE3WYd3vkoz7OFl//5wO8cdvDUe279KEfQizjZ6K919SJvy7/HlpOBp63dzi6zHTM/G7g+XD5YPPzr+O9Hz8Z1b4rfs7fRHtXcyueW3wjTLUNEe+bWpiH8qsuHIGjGh1rn34Bnz3x56j2XfHYPbxNurZX1+HZC65Hd0vguZqHY5w6ESXLFozAUY2OT375DL549qWo9l3B46Rr84kKPHP+dRGPWgGAwvNnIX/21BE4qpHncrnw7o+fxPaX34lq/wsf42/StW7/ETxz/nXoDzI/93AmX74UholFI3BUI8/lcuHN23+OPe+tjmr/5T+/i5PjYBgGpSvOR8myBdj9zqf46NE/DtvoYbfZ8MWzL2H7y+9g2cN34oL7bo6400bFjj14btH1UXUMmnHDZbydDm2s8bPJnRAeEQgEuPV/f4tqWOG0ay5G6vi8ETiq0VG4cBZuX/Vi0MWEgmEEAizncaJdKBLhzo/+hfELZ0a876wfXAVdZvoIHNXomHjRBbjlv3+JeH4rkVSCJT+5bYSOauSJpVLcu+Y15J43JeJ9F/zoRt7O9QgA0665BDf++/cRJxdkqgQsvOf7I3NQo0CWoMT9G96M6qFj0QO38HauRwCYe+u1uPrPv4p4P1VyIubedt0IHNHoUOo0eGDTf5FSkBvxvkt/ejtv53oEgMUP3IpLf/OTiPfTGw1BFxvkA3VqMn785dtRNYCv+PldvJ7r8eJf3Y8lD/nPVR5KWvE4TLli2Qgc0ehIzM7EA5v+C3Vq5CPN+Ny7GQBW/vFRzL/jhoj3y5kxGcWL547AEY2OtMJ83L/hzYCLiYXC50Q7wzC48Z9PRXWNLl4yD7nnlY3AUY2OrCkTcM+a1yCNoi52IY97NzMMg5vffA6TL1sS8b5lK1cgo6SA0+MRCASYfu2lePzoBlzzl8eRkKQf9v2Wzm58+MjT+GXBQmx7+Z2IOjiNmzMNP/r43xDLIquLMQyD5Y/8KKJ9yBk0hzMZMU6nEz2t7TDVNsJU14jejk4MWKywWaywW/ths7gXyhuw9rt/ev2/zdIPl9MJiUIOiVIOqVIBqVIOiVIBqVLBbpN4bZerE6DLyoAuMw1Csf/qqqPJ1meBqa4RptpGdDa2oL+3D9buHmx76R00Hzsd9ueULJsPbUaqTzl9y+/+qUpJhD47Ewqtekwruk6nE93NbWzZ+0ydGLD2o2bvIXz96vth3xR0WekYv2BmwDh7/zvINSrostKhNaSNee+p/t4+mGobYKprQmdjC2x9Flg6u7HlxbciGqY28eILoEpJChhn7/KrU5OQmG0Y82kYnA4Huprb2LJbzF2wWayo3LkP3775Ydi9XpPyjMifPTVwzBMU7Da5RgV9Vjo0GaljHnNrdw9MdU0w1Tagq6kVtj4L+kyd2PyPNwIukhcIIxBg0iWLoEzUDRtzaYIS6rRkJGYbxrxHsNPhQGdji/s8H4z5gLUfJ7d8gz3vhD9MLbUwDzkzpgQ8t73Lr9CqoTdmQJOeMubJG0tXN3tP62pqxYDFip62Dnz59/+gqym83nACkRCTL1sChVYT5BrnLr9sMOb6bMOYJ6cddjs6G5rd3/e6Rli7ejBgseLohq048PGGsD8no3Q8jOWlw97LpUo5FDoN9EYD1GnJYzodgcvlgqWz60zMm9swYLGiq7kdm//2GnraTWF9jlAiweTLFkOuVp2p0yQo/es3CUpo0lOQmG2ARCEf4dINzzEwAHNDM0y1jTDXN8HS1QO7tR8HP9sY9oI/AJBVVgLDxKKQMVfqtdAbDVClJo15zPtMnWw9pru1HQMWK8x1Tfjy+ddhMXeF9TkShQyTLlkMqSoh4LXNs02mUkKTkQq90TDmU+zYbTaY65thqnPH3NrdC1ufBftWrcXJCKbPyZkxGWnF4wLG2XubMlEHvTEDqpSkMa27ulwu9HaY2XpMT2s7bJZ+dFTXY/Pf/xP2lBoyVQImXnxB4HPbO/YqJbSGNOiz0sd8tMdAf7875rUNMNc3o7+nFzaLFbve/iSiEVv5s6ciuSBn8NqmCHpfS0jUQZ9tQEKSfsxj3tPWwZ7nPW0mDFj70XqqEl+98FbYU+codBpMWLEw4LntvU2mToDWkAZdVvqYNzwOWK3svdxc3wxbbx/6e/uw8/VVIac28DZ+4Uwk5mQGPLe9y69KToQ+2wClXjvmz6g9bR1n8hLtZgxYrGg6dhpb//nfsEfjqlISUbxkXlh5CW1mOnSZaRF3vOKarc8CU32TOy/R0Iz+3j709/Rh+8vvoPHIybA/p3jJPOgy08LLSxgNUOg0Ecfc0tWN9X/4J9b/6V9hnYcZE8bj8t/9DBMvusDnb9n6LLB290Cdmuy3z9ENW/H8JbdgwNof1jFNvfoi3Pa/v4dfCOIj6oRzVVUV1q9fj82bN+PgwYOoqalBT08PVCoVMjMzMWvWLFx//fVYsIC/w4pIcEOTyezPOvfFzDx4E4tmKoVYMQzjrrxnG5CYbYDemAF9tgH67Ez291gSNt7JZO+f5romdNQ2wFzXhN4OM3cFioBMleBVXu/yZ0KfbYAmLTnqhM3QZHLAstc3w2m3c1yq0BiBAFpDGhKzDdAZM9zlHiy/zuj+KVUqov5872TymZ9n/g3MdY3oC/MhlGtyjQp6o4GNud6n/JkxPbwPTSYH+jfobGiOavqMWAmEQmgz06AfjK9f+Y2xJWy8k8lDf7q/742wdkU+PzcXFFq1V3m9zvXB8qtTk6Ou1DvsdnQ1tQY4z8+UvbOxZWxiLhJBl5nmVd5M9nqXmG2ALisjpoSNpbOLfQgben531Lqvc9buHg5LFD6lXsvG13Nue1/rVMmJMcXcO5kcqOxdTa0Rz2/IBaFYDF1Wus/323Mv1xkzoDdmRP3wPjSZ7Pmen4m3e1uk87dyJSFJH+B+fub/lYm66GPulUz2v5e7y97V1BrVNDmxEkkl0GVlDKm/GdhrvS4rPeqH96HJ5KFl9/y/rc/CcanC40nMnKm/ZHh992NL2HgnkwOXvQFdzZFPIcEFsUwKvXFoeb2udTF0JBmaTPauv5g9zy11jRHPzc0VdWoS+4yi9yt/bB1JvJPJgeoxprqmqKYN4YJYLvMqr++9XJ9tiKkjydBksm/dzVP2xqiG1ceKYRi2Idn7fuZd/lg6ktgsVpjrmwLWX9gGlbYODksUPqlS4XdN835WjaUjCZuXqAtU9sHfxzov4V1f9Xp2ibUjCZuXCFB/8fxbjFVeQpqgHPbZfLiOJOaGZnz2xHPY9lJ4vZgL5s/AlU8/wva6X/3bv6Hy67340cf/DngNDZp0ZgAMqfr84sAa3k6hcjaIOOG8d+9e3HHHHfjmm2/Cev/ChQvx2muvwWikOU/4ymaxouHQcdTuO4LavYdRt+8I6g8cG7OHMC4odBok5mTCMLEQxqkTYSwvReaUEp9eZC6XCx019ajddwR1+46wP9ur6sbwyGMjFIuhy0xDyvhcGMtLkVVeiuypE5GYk+lzMe7v7UP9wWM+5a47cGzMKuRcUCbqkJiTicxJRYPlLkXm5BKfpKTL5UJ7VR1q9x1G7d4zcY9m7sazhUgigS4rHamFeYMxn4DsqROhy8rwibm1pxd1+4/6xLz+4LExqZBzJSFJj8TcLGROLoaxfAKMUycic1KRT48ip9OJtoqaM+f53sOo3XcEnQ3NY3jksRFJJdAbDe6YTy2FsbwUxqkToc1I9Ym5pbMLdQeOsdf12n1H0Hj45JhUyLmiSklCUm4mMqeUsOXOKB3vk5R0OhxoOVXl812v3XckqkVdzxaehE1acT5bbmN5KTTpKT7v6zV1om7/mTLX7j2MxiOnxqShkCvqtGQk5WYhc0oJsqdOhHFqKdJLCnySkk6HA80nKtnzu27wv+7W9jE88thIFHLojRlILylg72lZ5aV+C872tJv8vutNR0+NSaMRFxiGgTo9BUm5WcgqmwDjVHc9Jq14nE+ywjEwgKbjFT7f9bp9R8bswZsLUqUC+mwD0ksK3Nf2wfN86JRM3a3tPmWu3XcEzccrxqTRiAuehE1yvnEw5u5ypxXl+yQr7DYbmo6ecpfd6zwfqw4BXJCpEqDPNiBjQgFb7qzyUiiHTP3Q2dTie57vPYKWk5Vj0mjEBU9HkuR8o9fzSilSxuf5dKIY6O9H45GTPnX2uv1Hx6xDABdkahUScwzIKC1E9tSJyCqfAGPZBJ9EtMvlgrmheUjMD6P1dPUYHnlsPB1JUsblIKu8lK23J+dn+8bcakXDoRPsNa523xHU7z/K77yEVo3EnExkTCxi6+1ZU0p8EtEulwumukaf63rdviNoq6wdwyOPjacjSer43MGYu+9rSblZ7PNK07FTWPXI09j/4bqwPrP8qgtxwf03428rvg9rdw9u+vfvMeeWawK+99gX2/D3i2/2STrrsjJ8nvvLVq7A7e/9I4ZSkogTzm+//Tauu853/r3x48ejtLQUSUlJMJvN2L59O+rqziTlMjIysGXLFuTl8Xcu2nNFT1sHW1HzXNCajp3mbSU1Upr0FMg0KjjtdnQ1t6G/O/KFBPhImqCAOjUZQrEIlq5udDWOTc+mUccw0KanQKZOgH1gAN3Nbejv4W+FJRIydQJUKYkQikTo6+xG9xj1ZhttjEAATUYKZKoE2Ptt6GxqwUAffxtSIiHXqJGQoodAIIDF3DVmvdlGm0AohCYjBdIEJezWfnQOToVxLlDoNEhIdg9d7jN1oruFvwnWSAhFImgyUiFRyDBg7UdnYwuvG88ioUzUuhOQDIPeDjN6WsemN9toE0rE0KanQKyQw9ZnQWdjCxy2gbE+rFGRkKSHUq+FCy70tpvQ224e60MaFSKpBJr0FIjlMth6LehsbIZjgL+NZ5FQpSRCodPA5XT35o1msTs+Estk0KQnQySToL+nzz3iys7PxrNIqVKToNCp4XI40d3aEfb0PnwnVsihSUuGSCKGtacXnY0tcDnOjbyEOi0Zcq0aTrsD3S1tsHaNzSi70abQqt0J6KkT2YaHrqZWrHr496jYvjuiz5ImKPHY/s+DLvh3cPUmvHD5D+EYcNcXZn73Shz4eAPbUPnY/s+ROak4tgKd46JOOI8bNw633norbrzxRhgMvgtpOJ1OvPLKK7j33nvR1+dO3sycORPbt2/n9UIK8cblcqHh8Akc27AVxzftQM3uQzDXN431YRFCCCGEEEIIIYSQc5xMrUJWWQnk6gRU7TqIrsaWsPcdN3c6fvzl20Gn79jz/uf419V3weV04qo/PYb+3j588stnqHczRyJOOG/evBmVlZW46aabIAwxF+yqVatw5ZVXsr+vWbMGy5bxd9XieNBR24BjX2zDsQ3bcOyLbWfFEGKRRAKRTAqJXAqxXAaxzP2TEQhg67PA1mtBf08v+nv74qqHEsMwEMtlsNtsYAQC6I0GWLt74Oi3QWfMcJe7t48tfzz1PhVJJGCEAgxYrFCnJUOmTkDrqWqkFY+Dy+FAf6+FXcQirmIuEEAsk8Le3w+BSAS90YA+UydccEGbnjoY7z62/HEVc6kEjIDBgKUfWkMqJAo5Wk/XIL2kAI6BAZ/vO5+ndBjKE/MBa797btLMdPS2myAQi6BOSRq8trnjbeuzxF/MGQYD1n7oMtMhkknRVlGDjNLxsPfb2Jj39/SxPQvigUAohEgmwYClH2K5FDpDOrpa2iCRy6BM1Pmc43weAhqIWCaFy+WCvd8GfbYBAqEQHdX1SJ8wHnZrv881Lu5iLpVgwGKFJEEBbXoqOhubIdeoIdeoztzLB8/zeOId88TcLAAumOuakD5hvNd13R1zPk/dMpRAJIJIKoatzwq5OgHqtGSY6hqRkKSHLEHJxtza0xt3IyrEchmcDgcctgEk5xvhGHCgq7kVaUX5sPVZ4zvmEjFsfRYodBqoUhLRUV0PTUYqxDKpz3kelzG3O+B02JGUa4TdZkNPmwmp43O97mfun3ydricQoVgMoVgEW5/FPXokSY+2ylokZhsgEIl8rnHhLkDGBwzDQCSTukcMuFxIzM1yL8LW1YPkfOOZmPe46zHxNBLaHXMhbH1WJCS7R4+0nq5Bcr7RnZuI45izeQmGgT47E/2D9y99tsE3L3GWxFwgFIZ9vbni9w9j2U/vCPr6zjdW4dXv/hh3r34FebPK8VjefDyw6b/Uu5kDUS8aGK7zzjuPne/5nnvuwV/+8peR/HO853K5YLFY0NfXB8fgCSQUCiGXy6FQKCLuId5n7sTxTTvYBHPz8YqROGyWNEEJXVY69Fnp7pVZs9KhG/ypSUuGWCGHxCupLJZJ2dYmu92O7u5uDAwMwOl0QiAQQCwWQ6VSQTQ4L5/T4fB9cBus4PT39qGntQMdNfXoqK5He3U9Wo5XoKOuCY5RTl6JZFJMvepCZJVPcJc9Mw1yrQZiuRRimdRdfrkMQrEYDMOgp92E3R+vw4RLFqG/rw+Wrh5o01KgUCggl8vBMAxcLhcGrP1sgsI7WWHtGlzcrMZd7tZT1WitqEHfGMxTaJhYhClXLnMv/pKZBnVaMiQKORtviVwGkVTCxnzzP9/CuKVzIFbI0VHbAH1WBsRiMdRqNdug5bDbYeuzsJUa70ptd2sHOqrr0VFdh/bqejQfr4C5vmnUh1RKFHJMu/ZiGCYWQZeVAa0hFXKNGmL5mXiLZVI25ubGZhzeuB3jl86FpbsHDtsAVEl6KJVKyGSy4WPe0wtLVw/MdU1oHyx76+lqtJ6uGZPhdcappZh86RL3uZ6VAVVKojvmg2WWyGUQyaTs/Gvrnv03plx7MSAUoKO2AYlGA3ue+8Tc69xm/7+nF90t7e6Y1zSgvbIWTScq0NnQMuoPtVKVEjOuvwzpJQXQZaVDa0iDXJ3g02gmkcsgEInAMAzaqmpxatd+5C84D70mMxiBEEqtGkqlEnK5ex5xl8uFAYt1MN6+1zlLZzdMtY3umNc0oOVkJdoqasZkeF3erHKUXnQBdJlp7pgn6yFRyAcbDt3fd5FUAoFAAJfLhTV/eAHTf3AVnC4XG3OJRAKVSsV+LxwDA37XNk/5u5pa0VHTgI7qerRV1qLlZNWYLFYp16ox4/rLkFY8DrrMNGgNaZCplO6YD8bbc54DQNPx06g9dgo5s8vR1doOqUIOWYISCQkJkA3OI+4T8yHXOIu5Cx21DTDVNLjvaScr0V5ZNyYLFxYsOA8lS+cP3tPTkJCc6HNtGxrzz59+ATNu+Q6cTmf4Mfcqf2dT6+C1vR5tVXVoPl4xJgsXKhN1OO/Gy5FSkOs+zzNSIVUp2esaez8frKPU7j+MtsYWZE4thbmpBUqdFlK5DAkJCZAOziPudDrZmA+ty/SZOmGqbRi8ttej5UQl2qvrRn+qJ4ZB8eI5KLxgNluHUybqzsRcLoNELoVIKgXDMHA6nVj3p39i+s3fgcPhYGMulUqRkJDAxtxuswU8x/t7etHZ2IqO6jp01DSgraIGzSeq0N3SNuoxV6Um4bwbLkfyuGzoMtOhyUiFNEHhU3axTMrG/PTXe9BnsSCtdDxM9U1QpyZBPPhdlwzOI+50Ogc7UPhf43pNnYPneB3aq+rQcqoKHVX1o94wwQgYTFi+EAXzZ0CXlQFdZhqUibozdbfBjiGemDvsdnzxt1dRfuPlcDgcMNU3ITErAzKZ+/vueV6x22wB62/Wnj50NjQPXtvr0FpRg9aTVehqaQdGueFVa0jDjBsuQ1JuFnRZGdCkp0CaoPC5vnnH/Oim7YBUhKSCXHTUNbqnchmMuXjw+h8w5oMNzL0dZvae1l5dh5YTleioaRj1JLVAKMSkSxYhb/ZU9z0t032en3lWGby2S9yNxzaLBZtf+h/Krr0YdrsdnY0t0Gem+8Tc5XLBbrP5XdtsvX2wdvfC3NDMXttbT9eg5VSVexG7UY55Yk4mpl93KRJzMqHNTIcmPRlSpWLI913GPq8c+PQLyNKToM1KR0ddI/SZ6RCJRL4xdzjczysBru297Sa2/tZe5Y65qbZh1BOWQrEIky9fhtzzprAxV+g0Z+It8425tacX29/4AJOuWoEBmw3drR3QG9Igk8mgVCrPxLy/36/hod8T8/om9tm8rcId894206iWGwBSCnIw9ZqL2YVI1WnJkCgVQfMS3777KZJKxkGZrGefUUUiEdRqdVh5id62Dne8q+vPxHwMFqsUSSUov2oFjOUT2ecVhU4zWGb/vESvyYxvP1iD0ssWo99ihcXcCW16qk8uamjMrT19Z55Xu3thqmv0usa5z/fOhuYx7VQjkkjwyK6Ph138b+sr7yB73jRI1QlB8xIkciOecP7xj3+MZ599FgBwySWX4OOPPx7JP8dbNpsNZrMZJpMJA0F6/YhEIuh0Ouh0OrYSO5TL5ULVt/ux/6P1OLZhK6p3HeS8sq43GpA5pRiGiUVIzMlkkw66zLSIV9Z1uVzo7u6GyWRCd3fwBR5UKhV0Oh1UKlXQpHtPuwkHPl6Pw2s24/jGHWO2Ci8AyDUq/OiTl1Awb0bQ99hsNphMJphMJtiDJMvEYjF0Oh20Wm3QmDudTlTs2IMDH6/HsQ3bULv38Jhe0Gd+90rc9NLTQVcadjqdbMx7eoInTtRqNXQ6nc+Dy1Bdza3Y/9F6HFn7FY5v3D6mC8MkJOlxz+evInvapKDv6e/vh8lkgtlsDhpziUTCxlwcZFV2p8OBU1u/xYFPvsCxDVtRt/8oJ2WI1oIf3YRr/vqEz6Ie3pxOJ7q6umAymdDbG3hedIZh2Jh7KrGBmBuase/DdTi67isc3/T1mC4Mo8lIxb1r/wNDaWHQ91itVjbmjiAJUqlUysZcFOS8cQwM4MTmnTj46Rc4tmEbGg6f4KQM0Vr609txxe8eDhonp9OJzs5OmEwmdmqtoRiGgUajgVarHTbmHTX1gzHfghObd6K/Z+zm1k/KzcK9615HyricoO+xWCzs/dwZ5P4rk8mg0+mg0WiCxtxus+HYF9tw8LNNOLZh64g3GIdy6ZMPYsXP7woaJ4fDwcbcYgmcLBMIBNBoNNDpdFAoFEH/VmtFDfZ/uA5H1n2Fk199M6a9BdOK8nHvutehz8oI+p6+vj6YzWaYzeagMZfL5WzMgz24DFitOLp+Kw5+thHHNmwb8wWgrv7zr3DBvT8I+rrD4WC/61Zr4BgJBAJotVrodDq2cS2Q5hMV2LdqLY6u34pTW78d09FNWVNKcM+a16BOTQ74usvl8ol5sDqXQqGATqcb9mHV1mfB4TWbcWj1JhzdsBUd1fWclSNSjECAG//1O8y5+eqg77Hb7WzM+/sDJ8uEQiEbc5nXIr3eXC4XGo+cxP6P1uPo+i2o2L5nTEc35c0qx12fveK3GJ+Hy+VCb28vTCYTurq6gsZcqVRCq9VCo9EErRNZu3tw6PMvcWj1JhzbsG1MpzMUisX4wRvPYtrVFwd9z8DAABtzW5AYCYVCth4zXMzrDxzFvg/X4diGbaj4eu+Y9oAvWjQHd6x60WdhNm8ulws9PT3sM2qwmCckJLDPqMFibunswsHPNuHw51/i6IatYzrCWCyX4YfvPo+JF10Q9D0DAwNs3TVYzD15Ca1WyzaoDuVyuVCz+6D7PN+wFVXf7B/TnrGTLlmMW//3N0jkwb+j3d3dMJvN6OoK/kypUqmg1WqhVquD1ol6O8w48MkGd17ii+1jukixTJWAOz/6JwrPnx30PeHkosLJSwTjGBiAqa4J7dV1bEcKd8NT9agt7po5uRgPf/ORz6LSLpeLfUYNlZfQarXD5qJIYCOecP7JT36CZ555BgBw4YUX4rPPPhvJP8dLZrMZ9fX1ESUJMzIyoNPp3D1LHA6c3rYLe97/HPs+WAtTXSMnxyUQCpFeUoDMKSXImlKCrLISZE4ugVKv5eTzBwYGUFtbGzQZEYhCoUBWVhabiOtsbMHeVWux74M1OPHl12fVMC6xXIa7PnkJRYvm+Gx3uVwwmUxoaGgIsqc/hmFgMBig1WoBuHuAnty80x3zVWvPiqlRvJWtXIFb3vqzzwUdcN/Mampqgj6YBqJUKpGVlcUmZTpqG7D3gzXY98EanNry7Vk1BYFMrcI9n7+K/NlTfba7XC60t7ejqSn8hwqGYZCVlQW12t2IY7fZcHzjduz9YC32f7huTCsugcz83kp896Wn/ebH6u/vR01NTdAH00BUKhUyMzPZB/S2ylrs/WAN9r7/OSp27OH0uGOlTNThvvWvw1hW6rPd5XKhtbUVLS3hzzEmEAiQlZUFlUoFwL36+tH1W7H3/c9x4OMN6B2DUQvDWXDXd3HNXx73e8CyWq2orq4OWmENRKPRwGAwsJ/VfLISe9//HHs/WIvqb/dzedgx06Sn4IGNbyGtaJzPdpfLhebmZrS1hb8Yo1AohNFohFKpBDCYfFq7Gfs+WIsDn2yApXPsGlQCWf7Ij3DZbx/yq2xbLBZUV1cHbUgLRKfTIT09nY15w5GT2Dd4ntfuO8LpcccqMScTD2z8L5Jys3y2O51ONDU1oaMj/AZukUgEo9HIJtytPb04/PmX2Pv+5zj42aYxbVAJ5PL/ewjLH7nLb3tfXx+qq6uDNqQFkpiYiLS0NLaHVP3BY+7z/P01Y96INlRaUT7u/+ItaDNSfbY7nU40NDTAbDaH/VlisRjZ2dlsIs7S1Y2Dn27E3vc/x6HPvzzrpl+49m+/xsK7vuu3vaenBzU1NUEbVQJJTk5GSkoKG/OaPYcGr+1rxrwRbaisKSW4b/0bSEjS+2x3OByor68fNgE1lEQiQXZ2NpuI6zV14sDH67H3gzU4svars2q6OEYgwHdffhqzvneV32tdXV2oq6uLKOapqalISkpiRz9UfbMPez9Yi73vf462ihouDz1mebPKcc/nr/p1mHI4HKitrR02ATWUVCpFdnY2m4jrbm3HgY83YM/7n+PYhm1n1TRSApEIt779V5SvXOH3WmdnJ+rq6iJ6vkpPT4der2fzEhU79rB5iY6asWtEC6Ro0Rzc+dG/IFX6Nnrb7XbU1NRElJeQy+UwGo1n8hJNLdj/4Trs/WAtjm/acVZNKSSWSXHHqhcxYflCv9dMJhPq68OPE8MwbC6KCy6XC22VtajZfRA1ew6hZvch1Ow+OCLPPSsevRuXPfkgAHcuqqamJmgniUCG5iVIaCOecF66dCnWr18PALj99tvxwgsvjOSf453W1lY0NzdHtW9SUhJ2vfg2Nj//Brpbwn/ADUQgFCJ72kRkT5+MrLIJyJpSgvSScRAHaaWOlc1mQ0VFRUQPpx4ikQgKO/C/Ox5DxfbdMScc1WnJGDdvBoxlJcicUoLU8XnoamlD7Z7Dgxe9g2g4fDKqm8bQi3s0CQlvKSkp2Pqnl7DtpXfQ2x7bcCSBSIScGZORM30SMqe4GxMkSjkaDh5ny12z+1DUPcUnXboYt73zd4gHK9v9/f2oqKiI6OHUQywWQ9xlxTt3/xJV38SefNJlpiN/zlT3d71sApLHZaOzsRW1ew6hevdB1O45jMYjJ6NqwJAmKHH3Zy+jYP55AAYX52xogMkUXbzS09Ox7pfP4du3Poq59VcoFiNvVhmyp3liXgyRRIK6A0cHy34ItXsORX2Dn37dpfj+f55he7dbLBZUVlZG9KDiIZVK4WrqwLv3/Rq1ew9HdTze9NkG5M+Zxl7fkvKNMNc2nqnY7DmEpmOno+p5odCqce+615EzfTIAd8zr6urQ2RndqvEGgwEfPfAk9n2wNubpE0RSCfJnT4Vx6kRklU2AYVIRGIEA9QeOsuWu3XMo6u/W3Nuuw/Uv/JZNGvb19aGysjKq67JMJoO1ogGrHvw/1B88FtXxeEvOz0b+nKlso6k+JxMdVXWo2XOYrdS2nIjuWFUpSbj/izfZ3u0ulws1NTXDjtQZTqbBgHfveAwHP90Y81B6sVyG/DnTkD21FJlTSmCYWOT+Tu4/ypa7ds/hqL9bi39yG1b+4eds0rmnpwfV1dVR/TsqFAp0HjiJjx55Gk3HTkd1PN5SC/OQN6ucPc91Weloq6gdvK67r3Gtp6qi+mxdVgYe2PgW27vd6XSiuro66KiNUAzp6Xj7lodxZO1XMQ+rlioVyJ87zX2eTylBRmkhHAMDqNt3hL2n1e49HPWc4Rc/fj8u+uV9bMy7urpQUxNd4ighIQHN2/fh0189F3UsvGVMGI/cmWXu87xsAjQZKWg9WTX4XXef622VtVF9dvK4HDyw8S22d7vD4UBVVVVED6ceDMMgLSkJ/735YRzbsC3m3rwytQoF86Yjq7zUHfMJBbBZrKjde5gtd+2+I1Ens6965jEsfuBW9nez2Yy6urqoPkutVqN67Tas+b+/o70qus/wZphUhDxPzKeUQJWahObjFew9rWb3oaiTXBmlhbj/izehTkkC4I55RUVFRI3mHgKBAMkqDf5768M4tjH25JNCp8G4udORVT5hMObjYenu8Xleqdt/NKpkNsMwuOGfT2Hurdey2zo6OiLqHONNq9Xi+PvrsP4P/4y5BzfDMMgqm4CcGe5n1MwpJUhI1KPx6Emfenu0Ha6yp0/GvWv/w/Zut9vtqKioCNqzdzgCgQA6qQJv3/YITmzeGXNv3oQkvfvaPniepxXlo8/cxdbdqncfQsPB41FdTwRCIX7wxrOYfu2l7La2traIOsd4S0xMxL5XPsCmv74ac0coRiCAcepEd8ynuJ/PFVo1Gg6fQK1Xvb0zgoXjvBXMn4G7Pn2Z7d1us9lQWVkZUUcJD5FIhASnAG/f8RhOb429I5Q6NQnj5s1gv+tphXnobm13X9sHy11/8HhU1xORRIIfvvc8Jl2ymN3W3NyM1tbo4pWSkoKUlJSo9g3F5XKho6beJwFds/tQzB2uGIEAD217D4ayCaisrIwqFyUWi5GXlxd0JDLxNaIJ59raWuTm5rIJpnfffRdXXeXfenquirQ1KZDWXYfxvx/8LKp904rHoXjxXBQtnoPxC86LeDqMaDmdTpw8eTKqi7qHUCDAP867CrYo5jWUqRIwfuFMFC2eg6JFc5BeUhByaITNYkXl13twfNPXOLFpByp37gu7pdr74h7LjdyjbuM3+PC+X0e1r2FiEQoXzUbx4rkomD8j6DAyD0+L44lNO3B80w4c37g9opv7hBULcfv7L0AoEePEiRNRJZs9hIwAf51yCZz2yD9DrlFh/Pmz2O976vi80DHvs+D09t1suau/PRB2AlqikONHH/8bRYvmoKWlJaJeroGcXLUBa3/5XFT7Zk0pQdFgucfNne7Xoj+Uy+VCy8lKHN+0YzDuX0fUoFV+1YW45a0/wwng5MmTUSWbPYRg8OdJF0c1t59Sr0XhBbNRtHgOihfPRVKeMWTMrd09OL1t12DMd6Bmz6GwHxZkahXuXfMq8mZNRWNjI9rbY6sQHXxlFTY/81LE+zEMA+PUiWy582ZPDTp00MPlcqHp2Gn2u37iy68jatDy9G63Oxw4efJkTJVtgd2Jv5RdGvqNAaiSE9nrW+Gi2UjKyQq5j6WzCye3fMte4+r2HQn7+BOS9Lh/wxvInFyC+vr6qBuVPHY+8yq+feW9iPdjBALkzJjMXt9yZ5axDX3BOJ1ONB4+4Y75ph04+eXXETU6nH/P93H1n3+F/v5+nD59OrYHLEs//jZjZVS7qtOS2XIXLZoDXWZ6yH16TZ04+dVOd8w37oiocUOTkYoHvngTaUXjUFNTE1GPx0A2PfosDn/8RcT7CUQi5M0sc5d78VzkzpjMzh0ejNPhQN2Bozix6Wt3zL/6JqIpiZb//C5c9uSDsFgsqKiIrWeqw9yDf8y7NvQbA9Aa0lC8ZK77vnbBbGjSQz/s9rR14MTmnew1runoqbD/XlJuFu7f+BaScrJQWVkZdQMD4L4+f3rHr1C5dVfE+wrFYuTPmeou96LZyJ42KejUZR4Oux11+46w5T615duIGh0uf+qnWP7wj9DT04OqqqqIj9lbf2M7/rX0e1Htq882sOd54QWz2WTwcLqaW3Hiy68H6zJfo/lE+N/ZtOJxeOCLt6BOS0ZFRUVUDQweAoEA71xzP5oORd6DXySVYNzc6ez9PKtsgt8osqEcAwOo3n2Qrb+d2vptRI0O1/79N1j4o5tialTy6D5dh9cuD75I13CS87PZ61vh+bOQkBi6J6W5oZmN+fGN2yPqTZ1VNgH3rXsdykQdTp06FVUDg4dAIMBry25BZxQJcLFchoL5M1C0eC6KF8+BYVJx0Gk6POw2G6q+2c/W209v3x12owMjEOB7r/wBM7+7MqZGJY+O/Sfw1o0/jmrf1MI8ttzjF86EQht4ehufv1dT7xXzHRE1NOXNnop7Vr8CqSqBk7zEP+dcG9VaOlKl4kxeYvFcZEwYH/J5ZcBqReXOfWy5K7/eG3ZeQiAS4bb//Q1lVy5He3s7GhtjGxmfkZEBvV4f+o0ccLlcaK+q83pG3RFRg1ZCsh4ZpYVILsjB9Ae+F1Wy2UMsFqOgoCDk+UlGOOF81VVX4f333wcAGI1GnDhxIugcP+cal8uF48ePx/RFBwDGBTw//Uo4wrixaNJT2At54aI50BnSYvrb0eLi4gYAJ1ZtwLowknACkQh5s8pRPHghz5k+KeSDWSj9vX04vW0XvnjuZRz+/MuwjuG2d/4GaaExpgQcAMDpxPNTrwgr8arLTGcfzAovmAVNWmytkC6XC80nKnB843a8ffevwkrGFS2ei2tefRrtptjn1N738vvY+uwrId8nkkjOPJgtngNjeWnIB7NQrN09OLX1W6x7+kWc+PLrkO8Xy6S4/aN/gTEkxtza7Rqw4+9Trwgr8ZqYk4niJfNQtGg2Ci+YDVVyYmx/e3CexSPrvsJ7P34yrH0mXboYlz//BDpiTMABwI4/vozdr30Q8n1imRTj5s1gH8wyp5TEXAnoM3fi1JZv8fn//R2VX+8N+X5pghJ3rX4FNt3wSf1wOPqs+Md54TXQphTksgm3wvNnxTztkdPpRMOh4zjwyRf4+LE/hrXP9Osvw7LfPxTRMPNgNjzyJxz7dFPI90kUcp8Hs4yJRTHHvLfDjBObv8bqX/8lrGkdFDoN7ln/OnqlsVc4baYu/HP+9WG9N60on72+jV9wXlgPZsNxOhyo238Ue97/HGv+7+9h7TPvh9dh3qN3xpx0BYCPf/gL1OwI7xzzPJgVL54bVoNxKN2t7TixeSc++cWfwuplrU5Nwt0b3kAXYh8qa2lsxUtLg8+R7C2jtJAtdzgNxqE47HbU7DmEXW9/gi+eDa9xa/FPbsO0u2+IaJh5MO9cfR9ajob+946mwTiUzqYWnPjya3z4yNNh9bjVZWXgrg2vw2yLfSG/rtO1+M/ld4b13kgbjENxDAygetcB7HjtfWx58a2w9rnkiQdQdMPFMSVdPV5bdgu6G0KP6lToNChaNCeiBuNQTPVNOLFpBz746VNhdZxIKcjFnWtfRXtv7NMatR04gbdvCJ2Ei6bBOJSB/n5UfbMf2/79Nr7+T+i6FAB859lfwHjR/JiSrh7/nnsdrGFMDZWQpGfrMUWL5vhNXxSNjpp6HN+0A+8+8Bv0mUKPODNMLMKtn/4L7V3RjU7zVr9tL1bd8YuQ72MEAuRMn8Se53mzykM2GIcyYLWiYscebP7Hm9jzbuipTBmGwY3/+h2S5k6JKenq8eKMq8Jq5FCnJrHlLlo0Z9h1EsLh3UnqnfueCKtxLXv6ZHz/g+fRbo79eaVi9VdY/bOnQ75PIBQid7DBuHjxXOTMmOw3BWWkPJ2kNv75FRz8NHQjtkAoxA/efBYJkwpi6gwGuKeGKywsHJPEq8vlQsupKjYvEU6v7/ELZ+K6N57hJC8xmsl2PhuxyUdee+01NtkMAE899RQlm710dnbGnGwGABcDnHf7ddj+l9f8XpMqFWwPv6LFc5FePG7MJzn3zGvKhXEXLcCGX/81YOI1o7SQTbQWzJ8BWYKSk7/pIVUqULJ0Pra//E7A10VSCVIKcpFamOf+b3wuEnIy0M/FQgkCASZdezH2vfGR30sytQpFi2azCZiUglxOY84wDNIK82G39gdNNmsyUpE63qvsRfkwcZCEAoDSay7E1udeDZh4zZpSgqIl81A8+GAmUQRfnCgaMlUCSlecj01/9T/XAHfCM2V8LlIL85E2WHZpqh79HLTpMWIRClcswPHVX/q9ptCq2XIXLZ6L5DxjzH/P528zDDImjB92mg1dZjpSC/MGy89tzMtvuSpowjl72iT2PM+fXc75FEAKrQaTLlmMtb8PPBWURCH3/a4X5kOgSwAQ+3kuVMhgnF2Omu3+c1YnJOnP9PBbNBuJ2Zkx/z1vAoEAmZOK0VETfCit3mhgY55WmIeU4nxOks0AMOuemwImnBmGQc55U1A8+H3PnVkWcyV9KKVei7IrluOTXz4b8HVpgnJIzPPgkIkBV+zrB0h0aqRMKEDL4ZN+r6lTk9wNSRH05I2EQCiEsbw0aMKVYRjosw0+3/WU4nxOks0AMP+hW/HGlf7zBHsezDzf93B68kZKlZyI8pUr8P5PfhvwdZlaxd7HPeXvF7i4OM0hT0+GxpiBzgDnmiYjFSVL50XUkzcSQpEIuTOmoHbPoYCvMwIBEnMy2TKnFeYhpWQcJ8lmAFj4yB1457sP+W0XiETInzOVPc+NUyfG3GA8lCYtBVO/cxHevuuXAV9XaNVsuVPGu3/2ObiZf1WdlwVlSiJ6W/xHweiNBhQvdZebiwbjodzTak3Fya++Cfi6QChEYm4WW4dJLcxD8oRxnCSbAeCCR+/ER3c97rddJJFg3PwZbD0ma0pJyJ68kdIZ0lB+1Qq8cdvDAV9X6rU+1/XU8XnosnJT7qSJBZBpVAETr0l5RvY856LBeCixVIqCeTNweM3mgK8LRCIk5xuROt435lwkmwFgwc9+iLU//5P/ccmkg42H3DUYD6U3GjD5siX4z80/Dfh6QpLeN+aFeejs5eb6ljFrMkRyKewW/3/H1PF5KF46j7MG46HEMhkKz5+NvR+sDfi6UCxG8rhsr/taPpJLC2DjaI7pWffchK+e/pffdolCjsLzZ0XUkzcSDMMgOc8IkVQSNNmsSknyiXdaYR7MHNVjcpfMhuBRUcCkZ3pJweC1nZsG46EkCjmKF88N2qgkkkiQUpDjdV/LhWZcNmwcrH3lWTCaq/mcI8EwDFILcuG0O4ImmzXpKT7f9dTCPJg6zZz8/dbWVnZNNRLciCScd+3ahTvuODOE5pprrsH114fXa+dcwVXSFQAmXX8xm3BWaNWYdOlilK1cgZKl80ZsDuZodXV1cZJoBwCBRIyCZfNw/LMvAQC5M8tQduVylF25HMn52Zz8jeE4HQ4cXb8VCUl6GMsnuOfR88wJnGf0qywfP34c4OhmPu22q9mEszJRhymXL0XZyuUoWjSH8wRMIEfWbYFAJEJ6yTgYy0vdc4sNzg8rV6t83hvLHHBDiZRyGGeXoWbbHjAMg/w501C2cjmmXLGM86RbIAP9/Tjx5ddQpSTBONVdZk/ZE3MyfSrLLpcLx44dAzhayHLWvTexCWd1ahKmXLEMU65cjsKFMzlPwARydN0WCMViZJSOZ8tsLJ+AjIlFfg06XEwd4yHVqZE2uQhN+4+BEQgwfsF5mHKlO+ajMUrD0tmFyq/3QpORCmOZ+zw3lrvnVdMbDT4xdzqdOHr0KMDRuKG5P7kZbw0mnDUZqe7r28rlGDd3OucJmECOrtsCkUQCw6Qi9zVusPyG0kK/Bp1Y5oAbSpmRAn2+ER2nayAQiVB0wSx3zC9fCnVqMid/YzjmhmY0HDoOXVYGsspK2Gtc5pQS6DLTfSqWDofDfZ5zZN5Dt+L977unydJnGwZjvgJ5s8pHpffIkXVfQSyTInNyMRtvY3kp0ksK/HracTF1jId2nBGq9GR0N7ZCKBajeMlclK1cgcmXLvZbwGskNJ+oQEdNPfTZBp97WuaUEmgzUn1iPjAw4L6fc2TeT27Gp/e5R48k52ejbKW7HpM9ffIoxXwLJAq5O+Zs2UuQXlLg19Ourq6Os4al5ClFkOnUsJq6IJJKMGH5ApRduRwTL1nMzqU6kmoG1ytIyjP63NMyp5RAnZrsE/P+/n6cPOnfEBQVBph1903YMDhCL7UwD2UrV6B85QpklU0YlQfXI+u2QJqgdC8IXn6mHpNWlO9Xh+Ri6hiPzLnlEMtlGLBYIVHIMWHFQpSvXI7Siy7wqzuOhFNbd2HA2o+Uglyfe1rWlBK/5L7FYsHp07HPKw8AYBhMveUqbHvGPUIvo7QQZSuXo3zlCmSUFo5KzI+u2wKZWsXe0zzPK2mFeX51yMrKSgzEMHWMt/zl8yD45XNw2h2QJigx8eILULZyBSYsX8B5Z6BAjm/cAbhcSCvK97mnZU4u9pumg4upYzyYwc5Be15xd77LKpuAspUrUHblcqQXjwuxNzeOrtsChVbNPp964p5SkONXhzx9+jTAUcPShO8sZxPOco0Kky5ZjLKVy1GybEHMPfbDcXT9FjACAdKK8t1lHjzXMyeX+N1buJg6xoMRi1B0yfk4ssq9dln29MkoX7kcU65cjtSCXE7+xnBcLheOrvsKykQdex/3xDw5P9svL3HixAkgxrUEPDyJ17FyZN1XEAiFSC8p8LmnZU4q8psylospbT0GBgbQ3d0NtXp0pqXlK86n1KisrMTs2bPZZMPEiROxZcsWaDQjX3nkC5fLhcOHY18Ey9uBv/8XU65YhsLzZ41K8ilaXMxn663j0Ck4Ws3u5BPHPb5Csdts6G5ph9aQFrKy6HQ6ceRI6OHZYXMBB198B+Url2PcvBmjknzyZqpvQkKiNqwGDS6TEgDQ8u0hiPrtmHz50pinCImUzWJFn6kTmvSUkDG32+2cJqLgdOHIK6tQduVy5M+eynnvn1BMdY1QpSSG1aDBxXy2Pp+3eReUUhkmX7aE8x5fofT39sHa3RPWd43TpAQA2B04/uZnKFu5HDkzpoz6cLWOmnpo0lPCuqdwmZQAgMrVXyEpNQWTLlnMeY+vUCxd3bD328L6rnGalADg6rfh9PsbULZyBYzlpaPea6K9ug5aQ1pY95SqqirOersCwIn31iJz/DhMvOj8UVtTwqPX1Am4XGF913p7e1FZWcnZ33b0WFDz+RaUXbkchknFox7ztqpa6LMywrqnnD59mrPergBw5PVPkDd1IkovPH9Ukk/eetpNEAgFYfUu5DIpAQADHV1o2LwLZStXIKOkgLPPDVdbZS302Yaw7iknTpyIavG0YA7++30ULTgPE5Yt4HwkWijdre0QSSVhJbe5mM/Wm7WpDW27jqDsyuVIHZ/H2eeGK5KYHz16NOZh9t4OvPA/lC5fiOLFc0a9I1RXcyskSkVY1xeupnz06KlqQNexKndHKI5HH4bicrnQXl2HxOzMsO4phw8fjnn6P2/7n38bUy5djMILZo9KRyhvnY0tkGtUYV1fWltb0dwcepqfsP/2sUpY61tRdsUy6I0Gzj43HI6BAXQ2tkCXlREy5iORi5owYXQaTAMxNzRDodOE1aDR1NSEtrbw1yYKJTU1FcnJI98Zhs84TTg3NjZi3rx57MNXXl4etm7divT00U0Enu04Tz4CKCoqgmiUk47R4Dr5mJiYyIvvF+fJRwAlJbHPUTsauE4+juSKuFyy2Wzu1mOOMAyDCRMmcPZ5I4nr5GNaWhqSkkIvEjTWuE4+CoVCFBcXc/Z5I4nr5KPBYBjT3hLh4jr5KBaLUVhYyNnnjSSuk49ZWVm86JzAdfJRKpWioGD0k47R4Dr5mJOTg4QEbocWjwSuk48KhQJ5eaOfdIwG18nHvLw8KBSxr3Mw0rhOPqpUKmRnj/zoSy5wnXwsKCjgxbSaXCcftVotMjNHfvRlrEYi+VhYWAjxWdwBzoPr5KNer0dGRmxzUY8Gh8PhHpHJoeLiYghHuTNUNBoaGtDREfv8zR7JyclITU3l7PPiEWfZqvb2dixZsoR92E5PT8eGDRt4kQwcbSPR+sOHxCMAzi9EfLiwASMTH77MF8R12fnyXT9Xyw3QeX62ft5IOlfLfq6WGzh3z/NztdwA98fKl+8718dJMT/7ncvn+bl6XztXy80wDOfPlHwp+7l6no9EfPgS83P1PB9LnPwLdXV1Yfny5WzrWGJiItavX4/c3JGfr4aPGIbhtKVXLBbz5svOdQs3H1rMAffFiMuWXqlUypuEs4zj4XN8iblQKOS04sGXcgPn7nnO9bWYL+UGzt3zXCKRcHot5vrfcSRxHSPJKA+7jRbXx0kxP/udq/c0gNvvJ8MwvOj1CFDMuSIQCHgxAhc4d+sxALdlF4lElJc4yzEMw+n9l+u68Eg6l8/zsRLz1aC3txcXXnghdu3aBQBQq9VYu3Ytb4Z+jxUu53rhw1BzD7VazVllUywW82qSdi7jxKe5gjQaDWeJV6lUyovht4D7Zs5lzPl0nut0Os4qm3K5nBfDbwH3g5Vez90CZ3w6z/V6PWeVTaVSyZsknFAo5HTqDz6d54mJ3M2nrlareZN8FIvFnE79weW/40jj8vup0+l4k4jiuu5xrsZcr9fzpgcgl3UPhmF4MUWUB9d1V74kohQKBWfJI4FAQDHnAZVKxVleQiQSUV6CB9RqNWd1D4lEApVq5Be85buYMgJWqxWXXnoptm3bBsB9oV69ejWmTp3KycHFM41Gw8mXneuH3ZHGZRKOTzc0wP1wxUVFWyQS8WKeSw+BQMBZzJOTk3kVc66ScHy7oQmFQs4Sr3yqxADcVeD4lGgH3Nclru5F52rMlUol5PLRXUQrFhKJhLN7Ed9iztXxqtVqXvWOkclknCVe+dS4AoCztSO0Wi1vevkC7mc7ru5FfIs5V+e5Xq/nTeMKACQkJHByXWIYhtNG+JHGMAxn53lSUhJvevkC3HUI47rjxUhjGIaz85xvMddqtZSXiBHfclFjJeqzYmBgACtXrsTGjRsBuFv/P/roI8yZM4ezg4tnDMNwMsF4SkoKry5ugDvxGutNTSwW8yrRDrgvcFxUZFJTU3l3ceOisi2VSnl1QwPciVcuKjJ8jHliYmLM1yaZTMarRDvgrnhxUZHhY8y5qGwrlUoolaFXkz+bSCQSTu5HfFx0hItGQJVKxatEO+C+NsXak4nLB93RxMX3VKvV8irRDrgTr7Em2/kacy7qrnq9nleJdsCdeI312sRlcmO0cPWMmpSUxKtEO8BNIyCXnS5Gy7mcl+CiEZDLThejRSAQnLMx52KElUQigVar5eaA4lxU3w6Hw4Hrr78eq1evBuA+yd555x0sXryY04OLdzqdLqYTPTk5mXc3NMB9gcvNzY36RBeJRMjNzeXdxQ1wV7hjedhITU3l3Q0NcFe+cnNzo25JlUgkyMnJ4V0CDoj9PE1PT+ddoh1wNwrl5eVFfZ5KpVLexjw1NTWmSkhmZiZvpo7xFut5KpfLYTQaeRnzjIyMmBKQRqORVz3aPWQyGbKzs6OOmVKpRFZWFsdHNTpiPU+NRiPvEu2A+zzNzs6Oev+EhARkZGRweESjJ5bzlGEY5OTk8C7RDrhjFst5qtFoeLmIvCdm0U7x5Hne4VuiHXAnXmM5T3U6HWe9hUcTwzDIzc2Neoonz/MO3xLtgDvxmpaWFvX+SUlJvJouyEMgECAvLy/q81QkEiEvL4830wV50+v1MZ2nKSkpvMxFCYVC5OXlRX2eisVi3uaixgLjcrlckezgcrlw880349VXXwXgPknffPNNXHvttSNxfOcEs9mM+vp6RBKKjIwMXp7g3ux2O2pqatDX1xf2PgqFAkajkZc3cm8dHR1oaGgI+/0Mw8BgMPC+JW1gYAA1NTWwWCxh7+N50OHjjdzD5XKho6MDjY2NYe8jEAiQmZnJq/nAArHZbKiurkZ/f3/Y+6jVahgMBt7HvK2tDc3NzWHvIxAIYDQaeZls9ma1WlFTUwObzRb2PlqtFhkZGbyuvLlcLrS0tKC1tTXsfYRCIYxGI+96dQ9lsVhQU1ODgYGBsPfR6/VIS0vjfcybmprQ3t4e9j4ikQjZ2dm8TDZ76+vrQ01NDex2e9j7JCUl8XL0hjen04mGhgaYzeaw9xGLxcjOzubN3PTB9PT0oLa2Fg6HI+x9UlJSeDcd2lBOpxP19fXo7OwMex+pVAqj0cjLBgZv3d3dqK2thdPpDHuftLQ0JCYm8jrmDocDdXV16O7uDnsfmUwGo9HIm/UIguns7ERdXV3EeQmdTsfrmNvtdtTW1qK3tzfsfTwdJfjYqOTNZDKhoaEh7JgzDMPGnM+iyUt4OkrwPRc1miJOOD///PO466672N8LCgqwdOnSsPZNTEzEE088EdkRniMGBgZgNpthMpmCPqR7ppHQarW8v5l5uFwudHd3w2w2o6urK+j71Go1tFotVCoVr29m3mw2GxvzYA/pnqHafJvzbziemJtMpqAVOYZh2JgnJCTETcz7+/vZmAd7SJdKpdDpdNBoNHETc6fTyca8p6cn4HsYhoFGo4FWq4VSqYybmFutVjbmwR7SZTIZG/N4qcA4nU50dXXBZDIFrbwzDAOtVgutVguFQhFXMTeZTDCbzUFjLpfL2bLzuWHFm8PhYGMerCFZIBD4xDxeWCwWNubBEjNyuZw9z+Mp5p2dnTCZTEEf2DyLZ2m1Wt4n2b319fXBZDKhs7MzaMyVSiW0Wi00Gg2vG1a82e12NuZWqzXgezzry2i1Wt4n2T1cLpdPzIM9PiuVSuh0OqjV6riKuaceE6zzgGdKAT5OlxOMy+VCb28vTCYTurq6gsY8ISEBOp0OKpUqbmIebl5Cq9VCp9PFVV6ip6eHjXkw52peIp5zUaHyEiqVCjqdLq7yEqMl4oTz448/HnXSODs7G1VVVVHte65wuVywWCzo6+tjK7ACgYBdQCqev+Ceh1W73Q6n0wmBQMCu+BovD2eBeCqxFovFJ+YKhQJyuTyuY26329Hd3e0Tc7FYDJVKFfcx7+3thdVqhcPhAMMwEAqFUCgUkMlkcR3zgYEBdHd3w+FwsDH3LIoYLxX1QILFXKlUxs0DeTBDYy4UCtnzPN5j3tPTg/7+fp+Yc7Ug09nMZrOhp6cHdrsdLpcLQqEQEokECQkJcR1zp9OJnp4e2Gw2n5irVKq4eTgLpr+/Hz09PXA4HD4xj6cH8kA8DaoDAwNszEUiERISEuI+5larFb29vT4xl0qlcf9A7om5zWZj6zGe8zxeOgoEEyjmMpksrjoKBOJwONjz3PsZVaVSxU1HgUBcLhcbc8pLnDsxD5SLorxE/OYlRholnAkhhBBCCCGEEEIIIYRwIuKEMyGEEEIIIYQQQgghhBASSPyOaySEEEIIIYQQQgghhBAyqijhTAghhBBCCCGEEEIIIYQTlHAmhBBCCCGEEEIIIYQQwglKOBNCCCGEEEIIIYQQQgjhBCWcCSGEEEIIIYQQQgghhHCCEs6EEEIIIYQQQgghhBBCOEEJZ0IIIYQQQgghhBBCCCGcoIQzIYQQQgghhBBCCCGEEE5QwpkQQgghhBBCCCGEEEIIJyjhTAghhBBCCCGEEEIIIYQTlHAmhBBCCCGEEEIIIYQQwglKOBNCCCGEEEIIIYQQQgjhBCWcCSGEEEIIIYQQQgghhHCCEs6EEEIIIYQQQgghhBBCOCEa6wMghBBCCCGEnBskZTcDABiBcPifQiG7jyDoewUBtwf6nKHvEQR6bwTHFOw9AgEz+Dtz5r0ME/A1z08BE2AfwdB9An9WOJ839LO8P8fzuX7HNszfEYb46f3/oqDvFQTdh/3JBP/84J8b+pjCeq+n/J5jYHz/nYa+Hug9fvsy/n8n1Hu83up/TIKhnxHgmIa8x/OSAL6/e/+tYO9hX4f3PkM/1/MZ/scf6j2et/ruE+w9/sfPuFzu/3E5B393+vyOIa8Hfs+Qn84hnzXM5/l9VoDPY4Z8bkTH5HQM/ur1+YPb2Nccnt+H7uPw2sfpu83puw/7GYE+f8jncnVMLvZvD/k5ZLv3/zsdjrD2db83is/3+9zAf8/3mAJ/rsvh8j8Wp2vwd1fA9zq99jlzTK4h7/HdJ5q/4/Oa0znkvb77+B7T4OcOfocd7E/4/B5oW/Df4bVPqPcG/3wnIt8n2O8A8IKrCiQ61MOZEEIIIYQQQgghhBBCCCco4UwIIYQQQgghhBBCCCGEE5RwJoQQQgghhBBCCCGEEMIJSjgTQgghhBBCCCGEEEII4QQlnAkhhBBCCCGEEEIIIYRwghLOhBBCCCGEEEIIIYQQQjhBCWdCCCGEEEIIIYQQQgghnKCEMyGEEEIIIYQQQgghhBBOUMKZEEIIIYQQQgghhBBCCCco4UwIIYQQQgghhBBCCCGEE5RwJoQQQgghhBBCCCGEEMIJSjgTQgghhBBCCCGEEEII4QQlnAkhhBBCCCGEEEIIIYRwghLOhBBCCCGEEEIIIYQQQjhBCWdCCCGEEEIIIYQQQgghnKCEMyGEEEIIIYQQQgghhBBOUMKZEEIIIYQQQgghhBBCCCco4UwIIYQQQgghhBBCCCGEE5RwJoQQQgghhBBCCCGEEMIJSjgTQgghhBBCCCGEEEII4QQlnAkhhBBCCCGEEEIIIYRwghLOhBBCCCGEEEIIIYQQQjhBCWdCCCGEEEIIIYQQQgghnKCEMyGEEEIIIYQQQgghhBBOUMKZEEIIIYQQQgghhBBCCCco4UwIIYQQQgghhBBCCCGEE4zL5XKN9UEQQgghhBBCCF/19/fjqaeewiOPPAKpVDrWh0MiRPHjN4off1Hs+I3iR4ZDCWdCCCGEEEIIiUFXVxc0Gg06OzuhVqvH+nBIhCh+/Ebx4y+KHb9R/MhwaEoNQgghhBBCCCGEEEIIIZyghDMhhBBCCCGEEEIIIYQQTlDCmRBCCCGEEEIIIYQQQggnKOFMCCGEEEIIITGQSqX41a9+RYsm8RTFj98ofvxFseM3ih8ZDi0aSAghhBBCCCGEEEIIIYQT1MOZEEIIIYQQQgghhBBCCCco4UwIIYQQQgghhBBCCCGEE5RwJoQQQgghhBBCCCGEEMIJSjgTQgghhBBCCCGEEEII4QQlnAkhhBBCCCEkSg8++CDmzZuHG264ATabzec1i8WCiy++GAsWLMCSJUvQ0dExRkdJghkufh5PPfUUpk2bNspHRgIJFi+73Y7vf//7mDdvHu67774xPEIynFDnG51rZ7dg8aN7HQmEEs6EEEIIIYQQEoW9e/eiqakJW7ZsQUlJCd577z2f1z///HOUlpZi8+bNuPrqq/H666+P0ZGSQELFDwC6u7tx6NChMTg6MtRw8frkk0+QmZmJLVu2oK+vD9u3bx/DIyWBhDrf6Fw7uw0XP7rXkUAo4UwIIYQQQgghUdixYweWLl0KAFi+fLlfkqugoAB9fX0AALPZjOTk5FE/RhJcqPgBwJ///Gfcddddo31oJIDh4hVOLMnYChUjOtfObsPFj+51JBDRWB8AIYQQQgghhPCR2WxGRkYGAECj0fgNI87Pz8ehQ4dQWloKhmGwc+fOsThMEkSo+HV2duLgwYN47LHHxuLwyBDDxctsNkOtVgd8jZwdhosfnWtnv+HiR/c6Egj1cCaEEEIIIYSQYTQ1NWHu3Ll+/7lcLnR1dQFwP4zr9Xqf/V577TUsXLgQhw4dwhNPPIFf//rXY3H457xo4/fcc8/h7rvvHotDJgHodLqg8RruNXJ2GC5GdK6d/YaLH93rSCCUcCaEEEIIIYSQYaSlpWHr1q1+/1144YVYt24dAGDt2rWYM2eO376eh3KtVguz2Tyah00GRRu/U6dO4be//S2WL1+OkydP4ne/+91YHD4ZNHPmzKDxGu41cnYYLkZ0rp39Qp1jdK8jQzEul8s11gdBCCGEEEIIIXz04IMPYufOnTAajXjllVcgkUhw++2348UXX0RXVxeuu+469Pb2wm634+WXX8b48ePH+pCJl+Hi523atGnYtWvXGB0l8Rgar3vuuQcvvvgi7HY7brnlFlRUVKCsrAx/+ctfxvpQSQDB4ueNzrWzV7D40b2OBEIJZ0IIIYQQQgghhBBCCCGcoCk1CCGEEEIIIYQQQgghhHCCEs6EEEIIIYQQQgghhBBCOEEJZ0IIIYQQQgghhBBCCCGcoIQzIYQQQgghhBBCCCGEEE5QwpkQQgghhBBCCCGEEEIIJyjhTAghhBBCCCGEEEIIIYQTlHAmhBBCCCGEEEIIIYQQwglKOBNCCCGEEEIIIYQQQgjhBCWcCSGEEEIIIYQQQgghhHCCEs6EEEIIIYQQQgghhBBCOPH/kSpr2yWS40kAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABZwAAAHcCAYAAABSwG/XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZXQbSdOFr2RmdhxwHGbccLJhZmZmZmZmZo7jMDMzM2fD6Bhix8wsfT/8Sa9j9cgktTytfs7JWe+UpNzOWFJPTVVdiVwul4PD4XA4HA6Hw+FwOBwOh8PhcDicLCLVtQAOh8PhcDgcDofD4XA4HA6Hw+GwAU84czgcDofD4XA4HA6Hw+FwOBwORyPwhDOHw+FwOBwOh8PhcDgcDofD4XA0Ak84czgcDofD4XA4HA6Hw+FwOBwORyPwhDOHw+FwOBwOh8PhcDgcDofD4XA0Ak84czgcDofD4XA4HA6Hw+FwOBwORyPwhDOHw+FwOBwOh8PhcDgcDofD4XA0Ak84czgcDofD4XA4HA6Hw+FwOBwORyPwhDOHw+FwOBwOh8PhcDgcDofD4XA0Ak84i5jY2FicOnUKw4YNQ8WKFWFnZwcjIyM4Ojqidu3aWLlyJcLDw9P9eufOnUOLFi2QM2dOmJqaws3NDf3798fbt2+1uIqMI5fL8eHDB3h4eGD48OGoVKkSTExMIJFIIJFIMvRaXl5eGDduHEqWLAlLS0tYWVmhdOnSmD59OgIDA7W0gsyjybV//foVY8eORdmyZWFtbQ0jIyM4OTmhTp06WLVqFSIjI7W0ioyjiXXny5dP+fj0/JkzZ452F5VONHnOFVy9ehU9e/ZEgQIFYGZmBjs7O5QsWRJ9+vTB4cOHNbyCzKGJdf/8+TPd5zu7vN+1cb4VBAYGwtHRUflaffr00YxoDaGJtXt5eWHjxo3o27cvKlasCFdXV5iamsLCwgJFihRBnz59cPfuXS2vJONoYu2a3hPQQBPr1uZ7RltoWrNY9m8ZQWz7M00ipv2ZphDrHk3TiGF/pgnEuD/TNtl9j5ZVxLo/0wRi3J9pAjHuzzhaQM4R5PLly3IAcgByHx8fXctRwcrKSqlP6E+ePHnkjx8/TvO1hgwZIvgaJiYmcg8PDworSh8/fvxQu+b0cvLkSbmFhYXg6zg5OckfPXqkxZVkHE2tfffu3XJTU1O1r5U3b175u3fvtLia9KOJdbu5uaX5fkn559ixY1peVfrQ1DmXy+XyyMhIefv27dW+npubm3YWkkE0se60XiPln4CAAC2vKH1o8nynpl69en+9Vu/evTUjWkNoYu3r169P1/keMGCAPDExUcsrSj+aWLsm9wS0oPE+z477N02+zzO6f8vue1u5PO39WY4cOTK1PxPD2rW1P8vua9fWHi27r1uBpvdn2X3d2tyfZfe1C9G9e/cs7dGy+7q1uT/L7mvX1v4su69bm9c02iS7/7uKDV7hrIbnz58DAHLkyIFcuXLpWI0qERERMDY2RqdOnXDgwAF8+fIFwcHB+O+//zBlyhQYGhrC29sbTZo0gY+Pj+DrLFu2DFu2bAEAtGnTBsOHDwcA2NraolSpUoiLi0P//v1x//59KuvKCLlz50bbtm1Rs2bNDD3vyZMn6Ny5M6KiopAjRw7s2rUL3t7emDZtGgDAwMAAAQEBaNmypdp/O12S2bU/ffoU/fr1Q2xsLJycnLBhwwaMGTMGAGBvb6+8o/7r1y+0atUKcXFxGlaeNTK77vfv3yMiIkLlz+zZswEATk5OKFeuHADAzs4OLVq00LT0LJPZtQNAXFwcmjVrhuPHj0MqlaJSpUoAktft7++Pu3fvYuLEicidO7emZWeZrKxbwYULF1TOd8rfA0dHR03J1RiaWLeCq1ev4saNGxpQRYfMrt3MzAzNmjXD8uXLce3aNXz48AGBgYEYO3YsAMDQ0BAAsGPHDkyfPl3jujVBZtdO2hPMnDkTAGBubp7uPYGu0MTvu+I18uXLpzyWHfdvKcnKulPv354/f44/f/7g8uXLgvu37L63Fdqf+fv749ixYyhUqBD8/f0ztT/L7msn7c8+fPiAP3/+4PHjx1nan2X3tQvt0VL+ycweLbuvG1Ddnw0aNAj37t2Dv79/pvdnYli3AsX+TOhPRvdnYlq7gqtXr2L//v3Inz9/pl8ju69baH/28eNHHDhwQPn+zsz+LLuvXVM5m9Rk93WnRJPXNNpGTP+uokDXGe/sjOJOc9OmTXUthciwYcPkv3//Fozv379feXdm6NChxMf8+fNHbmlpKQcgb9SokVwmk/217sDAQHmOHDnkAORVqlTR1lIyRHh4uPzUqVN/rX327NkZulv277//ygHIzc3N5e/fv1ceV6y9Xr16ynX369dP42vILJpYu+IOulQqVd5JTf27nrJi6tSpU5pfSAbRxLqFUKy9Zs2aytcbMmRIViVrDE2tfdq0aXIAcgMDA/mJEyey/eebJtad8s76zZs35XJ59v9c18bvenR0tLxAgQIqlQXZrcKZxvu8UaNG8vLlyys//6OiorIqWyNoYu2kPUHK3/f07Aloo4l1k16jePHi2bqCRhPrJu3fUiK0f8vun4FC+zMFfn5+md6fZfe1k/Znqcns/iy7rz0tPnz4kKk9mhjWnXp/pgmy+7pJ+zNNkd3XnpqUe7QLFy5keo8mtnWnJjY2NtP7s+y+dk3kbEhk93Vrc1+vTbL7v6vY4BXOalDc3fjnn390rITMxo0b4eLiIhjv1q0bSpcuDQC4ePEi8TEeHh7KWXCLFy+GRCL5a90ODg6YNGkSAODx48d48eKFJpeQKaysrNC6dWu1a1eHj48P7t27BwDo06cPihcvrowp1l6tWjWMGzcOALB3716EhoZmTbSGyOraAeDVq1cAgMKFC6Ny5coAVH/Xe/bsqXz8x48fM/13aQpNrFsIxdqTkpKUx3r37q3xvyezaGLtvr6+WL58OQBg2LBhaNu2bbb/fNPWOdfHdc+ePRvfv3+Hubm5xl5TG9B4n1eqVAk9evQAAERHR+PDhw8a/7sygybWTtoTpPx9T8+egDaaWDfpNXx9fTUhT2toYt2k/VtKhPZv2fkzUN3+TEGOHDkyvT/LzmsHyPuz1GR2f5bd154WHh4eyp8zskfL7usm7c80QXZftzYR29oVe7QOHTqgadOmmX4dsa07NSYmJpnen2X3tWsiZ0Miu69bm/t6bZLd/11Fh64z3tmNqKgouVQqTXPOTnBwsK6lposuXbrIAciNjY2J8Vq1askByAsUKJCudU+aNInyCtJHRu6WnTt3TvnYI0eOiP6cZ/RO4T///CMHIC9atGi61r1+/XotryBzZOUOqb6d8/nz58sByCUSiVwikejNulNW0OjTulPy8OHDNNfN6tr17X2ugK9bP9at2L8VLFhQ8DFeXl7pev9nl3+b1PszIR4/fqx83N69e9W+pph+LxT7s2LFigk+5tGjR0rNu3btUvt6Ylq7OmQymdzV1VUOQF6kSJE0Hy+mdafcn/38+TNLryWmdWu6wllMa0/Jq1ev5IaGhnIrKyvlrFiF1vRUOIt13UKsW7dOqfm///5T+1jW1p5WzkaB2NedXSucxf7vmp3hFc6p+O+//yCTydQ+Jnfu3LCzs6OkKGv4+/sDAGxsbIhxRcVLkSJF0lw3gGxTDZYVUlbD2NnZpeucW1hYiOacp0WFChUAAF++fEnXOW/ZsqW2JVGHtfd5Wly4cAFA8vtcLperfSxL606JPq5bJpOhf//+aT6OxbUD6Xuf58qVi7m1p2fdUqlUL9fN0u+6Yv9WtWpVwcfkyZMn3XNfs8O/Ter9mRD29vbKn589e6b2NcX0e6HYn33+/BmvX78mPubw4cMAkqsB69Wrp/b1xLR2ddy8eRNeXl4A/q7wFkJM61bsz8qVKwc3Nzfl8cTExDT3LakR07pJxMfHZ/q5Yly7TCbDwIEDkZiYiPnz52dqVqwY1y2ETCbDsWPHACT7SBUqVEjt41laO5B2zkYBa+vOLvB/V+3BE86pqFChAiIiIrBx40YAyQPuw8LC/jIv+PLli45Vpg9/f39la2L16tVV4j4+Psp2zLTWXa1aNQDZY7xCVrG2tlb+HBISIrj2mzdvKh+nWD8LTJkyBWZmZpDJZMidOzd69eoFADA1NcWTJ08wfPhwSCQSSCQSrFix4q8NMCukPucGBgYAAIlEgnfv3onqfZ4WiYmJePnyJQCgVq1a8Pf3/6tlz8DAAAULFsTw4cPx+fNnZtadmuLFi8PExET5/yVLlsTo0aPx8eNHps53StatW4f379+jbNmyWL9+PYDkzzcF3bp1Y3btwP/e5xs2bAAAGBsbo06dOsr48uXL8fXrVx2p0x5C32nfvn2DkZERAKBZs2a6lKgVUq9bgRj3b2mRcv9WoEABtY9VmFAVLFgw2+9tU+/PhAgODlb+nNa+VEz7+pT7sxYtWmDv3r3w9fVFTEwMPnz4gLFjx2LNmjWQSCRYtmxZmvszMa1dHXv27AGQvEdLT8JZLOtOuT+rVKkSoqOjMXv2bBQuXBgmJiYwMjJC4cKFMW7cuHSNCRLLulMzYsQIWFlZwcTEBKampihTpgwmTZoEb2/vdL+GGNe+bt06PH36FOXLl8eIESMy9RpiXHdK5HI5/P39cfXqVTRu3Bh37twBAMybN++vPTsJsa89JWnlbFLC0rqzE/zfVXsY6lpAdsPAwACWlpbKSt7SpUv/tQEWE1OnTkVCQgIAYOjQoSrxwMBA5c8uLi5q150zZ04AQFBQkDYlU6FkyZLKn2/fvo2OHTsS1/706VPl49Rd+IiNAgUK4Pr16+jSpQt+/fql3MjHxsYqZwY2btwY48aNQ6NGjXQpVWukfp8rqkhq166NEiVK6FKaxgkICEBsbCyA5Er9unXr4v3798p4UlISvn37ho0bN+LAgQM4deoUatWqpSu5WiN1d8a7d+/w7t077NixAzt27ECXLl10pEw7eHl5YebMmZBKpdi+fbvyfV66dGk8efIEAGBkZARLS0tdytQqnTt3xvHjx5X/Hx8fj1u3bsHZ2Rnz5s3D4MGDdahOewjtY8aMGaPcE2T24jY7k3rdClj8HU+5f3N2dlb7WEU8JCQk2+9tSfszErdv31b+nPLfgoSY9vWp92eKgoCUZGR/Jqa1CxEdHY0TJ04ASN6jpacIQizrTrk/Mzc3R6VKlf7anwHA169fsXr1auzevTvN/ZlY1p2ad+/eKX+Oi4vD27dv8fbtW2zatCnd+zOxrT3lHm3r1q3KwpeMIrZ1K+jQocNf+zMFGdmfiXXtJNLK2aSEpXVnJ/i/q/bgFc4CKIw7ypcvr1shmeTQoUNwd3cHALRq1QqNGzdWeUxUVJTyZ1NTUwDC61ZUxSkqasRMgQIFUK5cOQDA7t278fnzZwB/rz0gIACrV69WPiciIoK2TK1SrVo1nDp1SmlQkBovLy98+/aNsir6KM65ooWGdHEndsLCwpQ/b9q0Ce/fv1e2Iw8YMAC+vr5YsWIFTExMEBISgrZt28LHx0dXcjWKVCpFo0aN4O7ujjdv3ihbzzt27Ijp06fDxMQEUVFR6NGjB65cuaJjtZpl2LBhiIyMxJAhQ1CpUiXRf6dpCmNjYwwdOpTJUUGpSXnO07MnYAXFulmGtH8TIuX+Lbt/Dgjtz1KS2f1Zdl+7Am3sz8SydhInTpxQnuOM7tGy+7pJ+7PWrVvj5cuXiI2NzfT+LLuvG1Ddn4WEhCAmJgZv377N0v5MDGsHVPdoWUUs61ZHZvdnYl97ZvdnYl93doX/u2oeXuFMQC6XK2enZfSXLTo6Gr9+/crS3583b16Ym5tn+vlPnz5Vzu10dXXFzp07iY9LORtMIpGoXXdac8Syw7ozwtKlS9GkSRNERUWhdu3aWLx4sbKtDQD+/fdf/P79G6ampoiNjYVUKnxvRmxrl8lkmDhxIlatWgV7e3uYmJggLi4OK1euRIMGDbB3716sXr0aw4YNw4MHD+Dh4UFcv9jWnZqUv+9AcnVJhw4d0vVcMa095Tyq+Ph4NGvWTNmyVrFiReTMmRPjx4+Hq6srOnfujODgYCxbtgxr165VeS0xrVvxd12+fBlA8vlWVNHUr18fgwcPRrNmzVC/fn3ExsZixIgR+PDhA7HKRGzrPnLkCM6dOwcXFxcsWrRI9N9pmWXfvn1wd3dHrly5EBkZib59++Lx48eYO3cuNm7ciNOnT6ttXRTz2lOeczs7u3TtCRSwsu6MIqZ1p96/pfexYvgcSL0/W7JkCRo2bAhDQ0Pcv38fU6ZMSff+TIFYPgNT78/Wr1+PZs2awc7ODl5eXunen6VELGsXYu/evQAytkcDxLFu0v7s5MmTyvd0RvZnCsSwbsXjFPuzlJQqVQoLFixI9/4sJWJZe+o9WlYRy7pTsm/fPuzevRtyuRxBQUG4d+8eFi9enO79mQIxrj0l6c3ZpEbs686uZOXflaMGWu6EYuLz589KJ8pHjx5l6Lk3b97MkCM46c/Vq1czrf3jx49yJycnOQC5g4OD/N27d4KPffXqlfLvXL9+vdp1t2vXTg5Abm9vny3XnRnH082bN8sNDQ0F9QwcOFDpAl+1alXB1xHb2hWPNzU1/csRPuU537Fjh/L4li1bmFh3alL+vgOQd+vWLd3PFdPaPT09//p7jx07Jvg+L126tByAPG/evKJfd2qEPt8mTZqkPP7gwQPRrzskJETu4uIiByA/cOAAce2Kn9PjgC6mtZNIvfbo6Gh5lSpV5ADkjo6O8pCQEMHninntKddtZ2cnB9LeEyhgZd0ZfQ0xrTv1/k0div2bra0t8TMwPdD+t9HU/kyBWPb1Kfdnb9++JT4mPfszMa6dhK+vr9zAwEAOZGyPJpeLY92p92dPnjwRfGxa+zMxrTu9pGd/lhIxrJ20R0uN4vXSs0eTy8Wx7vSQkf2ZAjGvPSM5m9SIed1Z3ddrk6z8u3KE4SM1CChK6Q0MDFCmTBndiskAv379QsOGDREQEAArKytcvHhR7TxaR0dH5c9//vxRu+4/f/4AABwcHDQvXEcMGTIEr169Qv/+/f+agVinTh0cO3YM27ZtU7piu7q66kqmRomLi1O2onbr1g3R0dEAVM95v379lEZE27dvpy+UAqnbrnv37q0bIVrGwcFBWS1jZmaGxMREAOT3ec2aNQEkf5awMD4nJUKfb61atVL+nLLLQazMnTsXfn5+aNiwIbp27QpAvN9pmiD12s3MzLBkyRIAybNfDx8+rEN12iPl51tISEi69gQsoFh3WlW/Yif1/k0dirhitIYYPgdS7s/y588PExMT2Nraol69epnan4nhMzD1/qxUqVLEx2V0fyaGtQuxb98+JCUlAcj4Hk0M6069P6tQoYLgY9O7PxPDutNLRvdnYlg7aY+WVcSw7vSQmf2ZWNee0ZxNasS67uwO/3fVDnykBgHFl1rRokWVG/T0UqdOnTTHT2gDf39/NGjQAF5eXjAzM8PZs2fTnAmVO3duWFpaIjIyEt+/f1cmokjr/vHjBwCgWLFixNfS1bqzSsmSJbFjxw5MmzYNixcvRokSJXDz5k0AyQaJinWr+7cU09rfv3+P8PBwAMnjFIR+1yUSCSpWrIjv37+rGJgoENO6SaTcvObKlQsNGjRI93PFtHYLCwu4urri169fsLGxUbYKkd7ndnZ2yp/Dw8NVzLbEtO7UCP2up7zZFBoaSnyumNat+My6evWqStItKSnprxY4Dw8PeHh4AABOnjyJNm3aqLyemNZOgnTeq1Spooy/efNG8LliXrvC7RxAuvcECsS8bsX5dnBwSNNMLjViWnfq/Zs6FJ8JFhYWAMSzt1Xsz0ikd3+mQAz7+tT7MyHSsz9LiRjWLoRinEZG92iAONaden+mbjxKWvszBWJYd3pJz/4sJWJYu7o9WmrSs0cDxLHu9JLe/ZkCMa49Mzmb1Ihx3WIgK/+uHGF4hTMBxS+bwrgkuxMSEoKGDRviy5cvMDIywrFjx1C7du10Pfeff/4BADx+/Fhw3T4+PkqTCsXjWYO09tOnTyt/btKkCW1JWkHhhg0Acrlc7e+6YrYcq5ViKV3uu3fvnq45kGJFsZEJDQ3FixcvAJDPeVBQkPJnW1tbGtKoIfS77ufnp/yZtTVzyOddcXMVYPPzLSQkBLt27QKQbMyUkT2B2FGcbxcXFx0r0T4p929CpNy/KS4wxbK3VUdG92di2Nen3p+pIyP7MzGsncTLly/x9u1bAJnbo4ll3Sn3ZylnOqcmvfszsaw7PWR0f8bS2jMCS+vO6P5MbGvPSs4mJWJbt1jg/67agd0MSxb477//AEAUpfSRkZFo2rQp3r59C6lUin379qFZs2bpfr7CCfbr16/KRFTqdR85ckT5c8r2JpZIfc4TExOxZs0aAMmO4UJu4WIjZ86cyp+fP38u+Lsul8vx/PlzAICbmxs9gRRJeec8o87nYkNRFREbGyv4Pgf+l4QvUqQIc2YQQr/rJ0+eVP7Mwg211atX4+XLl3/9UVQJjRo16q/K/pYtWyofU7duXV1J1iqk864wzQSAggULUtekTRR7AkXLdZcuXTK0JxA7ivOdI0cOHSvRPin3b0Lt5in3bxEREQDEsbdVR2b2Z2LY16fenwmR0f2ZGNZOQlHdDGRujyaWdafcn6m7eZTe/ZlY1p0eMro/E8PaSXu01H8UpHePJoZ1p5eM7s/EtPas5mxSIqZ1iwn+76odeMKZQEBAAADAyspKx0rUExcXh9atWys3KNu2bUOnTp0y9Bq9e/dWtmWR1q1wRAaS21xYSMiQSL328ePHK78QVq5cqUtpGiVfvnzKL/CDBw/C398fgOrv+s6dO5VtX6xUd6ckKSlJmZBxdXUVnJXICu3bt0fu3LkBQNlmnvqce3h44MOHDwCgsblyusbb21v5M+nz7datW9i0aRMAoHDhwqhcuTJdgVogf/78KFeu3F9/wsLCACS3iKW8a29vb698jI2NjY4Ua5aPHz/+9f+pz3tISAgmT54MIHlGG0s3UVPvCQCgRo0aOlREH8X5NjEx0bES7ZNy/zZt2jSVqtjU+zfF50B239umRWb2Z2LY16fenwmNy8jo/kwMa09NUlISDh48CCA50ZiZPZpY1p1yfzZz5kzlzOqUZGR/JpZ1p9yfkcjM/kwMayft0VL/UZDePZoY1g2o7s9Sk5n9mVjWromcTUrEsm6xwf9dtQOf4UzAxcUFnp6e2LlzJ6pXr44CBQpAKpVCKpVmm6q/pKQkdO7cGTdu3AAAzJs3D507d1ZrJGFhYaHSnuLk5ISZM2di8uTJyouV9evXo3jx4ggLC8OMGTPg5+cHQ0PDbJV4TTnrDvh74/Lo0aO/HluwYEE4OTn9dezbt2/o1KkT+vTpgypVqsDJyQne3t5YuXIlPDw88OTJEwDA9OnTUa1aNS2uJONkde2zZ89Gr169EBMTo2xR3LRpE0qXLg1DQ0McPnwYGzZsAADY2Nhg/Pjx2lpKhsjqulNy+fJl5c9yuRyvXr3Klu9zBVldu5mZGVatWoXOnTsr3+dr165FyZIlYW1tjePHjysTEwUKFMDYsWO1tZQMkdV1ly9fHrVq1UKbNm1gb2+P379/Y+vWrbC2tsajR4+wbds2JCQkwNDQEBs3bsw2Y1U0+bsOqH6nKUjZuphdyOraS5UqhRYtWqBt27aoUKGC8rN9w4YN+PnzJw4ePKh8zQkTJmSrCuesrD31nsDGxgZhYWHYtm0bypUrh3z58ql8vpH2BLpAE7/vitews7ODn5/fX0n3GzduQCqVwtTUVO1r0Car6065f7t06RI6dOiAmTNnIk+ePHj58iXGjx//1/6te/fu2X5vC6juz9zc3JCYmIgXL15gzZo1yt/xOXPmpHt/JoZ9PfD3/qx27dqYO3cumjZtCjs7O3h5eWHv3r1YtWoVgPTvz8Sy9pRcvnxZOU4hsx1oYll3yv3Z9evX0bRpU8yePRvFixdHcHAwDhw4gAULFgBI3/5MLOtOuT/7559/lGOQvn37hkOHDmHDhg0Z3p+JZe2aRizrTr0/c3FxgVQqha+vL27cuIEVK1YozWDTuz8Tw9o1lbNJiRjWrUDT1zTaREz/rqJCzlFhwYIFcgAqf2rXrq1raUp+/PhB1Kjuz48fPwRfb8iQIYLPk0gkcg8PD3qLSwe1a9dO97rd3d1Vnv/ly5d0PTc7nXMFWV27XC6Xz5s3Ty6VStU+18nJSX779m26i1ODJtatoHPnznp3zuVyuXzVqlVqz3uhQoXknz59orewNMjqum1sbNJ8nqGhofzEiRP0F6cGTf6uy+XC32k5cuTQ/mIySFbXnt7nurq6ymUyGf0FqiEra9f0noAmmvh91/R7hgaa0qxu/2ZsbKzcv4lhbyuXp70/MzY2li9dujRDrymWtcvlmt+fiWntChR7NENDQ7m/v3+mXkNs6161apXc0NBQ8Jynd38mlnWnZ39mZ2eXof2ZWNaeFgrdvXv3TtfjxbLu9HzXGRgYyKdOnZru/ZkY1q6N/ZkY1q1ATPszMf27igle4Uxg2rRpsLa2hru7Oz5+/IiYmBgAbA8Q37x5M5o1a4YpU6bg8+fPf1W+devWjbkZt7ly5cKKFStw/fp1vHv3DgEBAZDJZJBIJEhMTFSun9VzPnPmTLRq1QpbtmzB6dOn4e/v/5dZSbVq1XDmzBk4OjrqUKV2CA8Px5kzZwAAJUuWhLGxsd68z8eOHYtatWph+PDhePnyJeLj45WxmjVr4tKlS0zdwXV3d8fdu3fx+PFjeHt7w8/PDwkJCX+1nvfr1w9t27bVoUrtI/SdZm9vr2NlmufOnTu4efMm7ty5g58/f+LPnz+Ijo6GRCKBTCZTfs61a9cuW1T3cjhZZfPmzWjevDk2b96M58+fIyQkBC4uLqhfvz7Gjh2rnHEslr0taX9maGgIV1dXNGnSBIMHD0aRIkUy9JpiWTvwv/3Z1q1bcffuXfz8+RMxMTGwtrZG8eLF0axZMwwePDjd+zMxrR34e4/WpEkTpQdBRhHbuseOHYvatWtj/fr1uHnzJvz8/GBqaorixYujQ4cOGDp0aLr2Z2JZd+r9WVBQEBISEmBnZ4eSJUuicePG6N+/PxwcHNL9mmJZu6YRy7pJ+7PY2FjY2NigSJEiqFWrFvr27Zuhz3exrF3T6Ou6tQ3/d9UOErk8DStkDofD4XA4HA6Hw+FwOBwOh8PhcNJB9hhYyeFwOBwOh8PhcDgcDofD4XA4HNHDE84cDofD4XA4HA6Hw+FwOBwOh8PRCDzhzOFwOBwOh8PhcDgcDofD4XA4HI3AE84cDofD4XA4HA6Hw+FwOBwOh8PRCDzhzOFwOBwOh8PhcDgcDofD4XA4HI3AE84cDofD4XA4HA6Hw+FwOBwOh8PRCDzhzOFwOBwOh8PhcDgcDofD4XA4HI3AE84cDofD4XA4HA6Hw+FwOBwOh8PRCDzhzOFwOBwOh8PhcDgcDofD4XA4HI3AE84cDofD4XA4HA6Hw+FwOBwOh8PRCDzhzOFwOBwOh8PhcDgcDofD4XA4HI3AE84cDofD4XA4HA6Hw+FwOBwOh8PRCDzhzOFwOBwOh8PhcDgcDofD4XA4HI3AE84cDofD4XA4HA6Hw+FwOBwOh8PRCDzhzOFwOBwOh8PhcDgcDofD4XA4HI2Q5YRzfHw89u7di2bNmsHNzQ2mpqbImTMnqlevjhUrViAwMFATOjkcDofD4XA4HA6Hw+FwOBwOh5PNkcjlcnlmn/zx40d069YNL1++FHyMs7Mz3N3d0axZs8z+NRwOh8PhcDgcDofD4XA4HA6HwxEBmU44e3t7o0qVKvD19U1+IYkEtWrVQqFChfDnzx9cu3YNMTExAAAjIyNcvHgR9evX15xyDofD4XA4HA6Hw+FwOBwOh8PhZCsynXCuXbs27ty5AwBwc3PDmTNnUKZMGWU8MDAQXbp0wfXr1wEA9vb2+PbtG2xtbbOumsPhcDgcDofD4XA4HA6Hw+FwONmOTM1wvnDhgjLZbGxsjLNnz/6VbAYAR0dHnD59GgUKFAAABAcHY9myZVmUy+FwOBwOh8PhcDgcDofD4XA4nOxKphLOGzduVP7cu3dvlC5dmvg4CwsLzJs3T/n/W7duRWJiYmb+Sg6Hw+FwOBwOh8PhcDgcDofD4WRzMjxSIzIyEo6OjoiLiwMAPHjwANWqVRN8fFxcHJycnBAREQEAuH79OurVq5cFyewil8sRGxuL0NBQREVFISkpCQBgYGAAc3Nz2NrawszMDBKJRMdKNU9SUhLCw8MRGhqKxMREyGQySKVSGBoawtbWFtbW1jAwMNC1TI0jl8sRExOD0NBQREdH/3XOLSwsYGtrC1NTU2bPeVhYGMLCwpCQkAC5XA6pVAojIyPY2NjAxsYGUmmm7olla+RyOaKjoxEaGoqYmBgkJSVBIpFAKpXC0tJSec5ZJDExEWFhYQgPD//rnBsbG8PGxgbW1tbMnvOoqCiEhoYiNjZWec4NDAyU59zExETXMrVCQkKC8pwnJiYqz7mJiQlsbGxgZWXF9DkPCQlBXFzcX+fcysoKtra2MDY21rVMrZCQkIDQ0FBERESonHNbW1tYWVkx+Z0ml8sRGRmpPOcymUxvznl8fLzynCclJSnPuampKWxtbWFpacnkOZfJZIiMjERoaOhf59zQ0BDW1tawsbGBkZGRrmVqhbi4OISGhiIyMlJ5zg0MDJTn3MLCgtlzHhERgdDQUMTHx6ucc1tbWxgaGupaplZIfY2qOOdmZmawtbWFubk5s+dccY2akJCgPOdGRkbK9znL5zwkJERv8xKKa9SUeQnFNSqreQmhXJQ+5SVS5qIUeQlWc1E0yHDC+cqVK2jcuDGA5Arm0NDQND9kGzVqhKtXrwIApk+fjgULFmRSLpvI5XIEBwcjODhYmcgXwtjYGPb29nBwcGDizR4XF4c/f/4gPDwc6n4VJRIJrK2t4ezszERiRi6XIygoCMHBwYiPj1f7WBMTE9jb28Pe3p6Jcx4bG6s85+qQSCSwsbGBs7MzExfpcrkcgYGBCA4ORkJCgtrHmpiYwNHREba2tkyc8+joaAQEBChvPAohkUhga2sLZ2dnJi7SZTKZ8pyn1d1jZmYGBwcHZnwOoqKiEBAQgMjISLWPk0qlynPOwgWbTCbDnz9/EBISotyoC2FmZgYnJydYW1tTUqddIiMjERAQgKioKLWPk0qlsLOzg7OzMxOb96SkJPz58wehoaFpnnNzc3M4OTnBysqKkjrtEh4ejsDAQERHR6t9nIGBAezs7ODk5MTEOU9MTFSec5lMpvaxFhYWcHJygqWlJSV12iUsLAyBgYFKY3ghDA0NleechZuKCQkJ+PPnD8LCwtI855aWlnB2doa5uTklddpDLpcjNDQUQUFBiI2NVftYIyMj2NnZwdHRkYlzHh8frzznaaVLrKys4OzsDDMzM0rqtIdcLkdISAiCgoLSzEsYGRnBwcFBL/MSinPOQpGQIhcVFBSUZl7C2NgYDg4OepmXYCkXRZMMJ5zXrl2LMWPGAACqVq2Khw8fpvmcKVOmYOnSpQCAdu3a4fjx4xlXyihJSUnw9vZOMxGTGgsLC+TNm1fUG/fw8HB4eXml+SWeEolEAldXV1FfoCclJeHXr19pXpSnxsrKCnny5BH1OQ8NDYWPj0+GzrlUKoWrq6uoL9ATExPh6emZ5gVaamxsbJA7d25Rb9yDg4Ph6+uboecYGBggb968sLCw0JIq7ZOQkABPT880L9BSY2dnh1y5col2E6e4mebn55eh5xkaGiJv3ryivkCPi4vDr1+/0rxAS42DgwNcXFxEfc4DAgLw58+fDD3PyMgIbm5uor5Yi42NhaenZ5o3EVPj5OQEZ2dnUZ9zf39/BAYGZuh5xsbGcHNzE/XFWkxMDDw9PTM8IjBHjhxwdHQU9Tn39fVFSEhIhp5nYmICNzc3URcOREdHw9PTM80bSqnJmTMnHBwctKRK+8hkMvj6+iI0NDRDzzMzM0PevHlFXTgQGRmJX79+pXlzITW5c+eGnZ2dllRpH5lMBm9v7zSTb6kxNzdH3rx5RV04kNm8RJ48eWBjY6NFZdolKSkJXl5eaRaIpMbS0hKurq6izkuEhYXB29tb7/IStMlwFuPTp0/Kn93c3NL1nLx58yp//vjxY0b/SmZJSkrCz58/M5xsBpKrx378+JHhzU92ITQ0FL9+/crQGxxI3vD++vUrw5uf7EJSUhJ+/PiR4WQzAERERODnz5+iPefBwcEZ/lAHkjc/np6eGd78ZBcSExPx/fv3DCebgeQvQk9PzwxveLMLgYGBGU42A//7bMzo5ie7kJCQgO/fv2c42QwAISEhGd7wZicCAgIynGwGkt8nP378SLNSMrsSFxeHHz9+ZDjZDABBQUGZ+mzMDsjlcvj5+WU42Qz8732Smc/G7EBsbCx+/PiR4WQzkPw++f37t2jPuY+PT4aTzUByxeD3798z9T7JDsTExODHjx+Z8qPx9/eHv7+/aM+5l5dXhpPNQPJn4/fv39OsmsuuZOV66/fv3wgICNCCKu0jk8kyfb2leJ9k5rMxO6C43srM3tvHxwdBQUFaUKV9ZDIZfv78manrrejo6Ex/NmYHwsLCMp2XyOxnY3ZAkZfIzPVWZGSkqPMSmb3eUuQlwsLCtKSMPTKccE75IZojR450PcfFxUX5c3BwcEb/Smbx9/fP0oVWbGxsppI5uiY+Ph7e3t5Zeg1vb29Rbl59fX0zlYRSEBMTA39/fw0qooMmfle9vLxEuZHJ6u9qVFRUppI5uiY6OjpTiUcFiptLYtzIeHl5ZelCS9GmLjYiIiKy9Lsql8tFeYNF8bualc+nsLAwUe6PwsPDs3RxrUhqiC0Jp/hdzcrnU3BwsCgvWEJCQrJ001/R5SW2c664yMzK51NgYGCmikx0TVBQUJZu+icmJoryRmpSUhI8PT2zpNvf3z9TRSa6Jj0jsdShiWs9XZCYmIhfv35l6TV+//4tyhup/v7+WbrpHxcXJ9q8hJeXV5Zew8fHR5Q3Un///p3lvMTv3781qIgOcXFx8PHxydJrZPVaT5/IcMI55ZdPeucUpXycWCvWNE1iYqJG7oaFhYWJLvGqqUSK2BIy8fHxGrm4DAkJEV3iVRMVHopWfTERGxurkc+84OBg0SVeNXHOZTKZ6JJw0dHRGqnSDQwMFF3iVRPnPCkpSXSVIpGRkRq50AgICBBVQkYul2vkZpjCWFJMKIxPs4oYz7km3udxcXGiS7wqTK2zitgqXhVeBFklJiZGdB0sISEhGvkeFlvRgEwm08h+OyoqSnSJ1+DgYI18JovtfZ6YmKiR/XZ4eLjoEq+aurYUW15CYfCcVRRmmmJCU+9PsZ1zXZHhhHPKuyDpnceVclab2L54tEVQUJDGLjLE9MuuqUQ7IL7Eq6bOk9gSr5pKtAPJ7xsxJV41dc7FlniNjY3VWDJBbIlXTW1ikpKSRDU6SFOJdiD5nIspCaepc56YmCiqxGtUVJTGLizFlHjVVNIVSE68iqkQQ1OJdkBcCRmF6a8miImJEVXFa1hYmMb22mI655pKtAPiS7wGBwdrbN8lpmtUTZ5zsSVeNZVoB8R1zjWVaAeS8xJiSrxq8jyJKS+hqUQ7IM6CMF2Q4YRzSnOX9FbWpvzAZcG9VRNoMnkUEhIimgu19Dj9phe5XC6ai3OF46+mEFPyUZNJM5lMJppZzjKZTKNrF1PVpybXnZSUJJqETGJiokar9vT1fZ6QkCCahEx8fLxGq/bE9D7XpNa4uLgstXXSRNNa9fWcx8TEiCYhEx0drdFuQjGdc01+D0VGRoomIRMVFaXRohYx3UDW5O9nWFiYaBIyERERGi1wENM51+T7PDQ0VDR5ifDwcI1qFUteAtDs+1xM1yuaPEdiykXpkgwnnC0tLZU/p/dubcrHpXy+viKXyzX65SuXy0VTAajpimSxVDjLZDKNfqElJSWJ5stcX8+5pjfYYlk3oL/nXF/XDUDjSQSxrF3TOsWSjAH4OdcU/Jxnf/T5s11f166v6wY0r1UsCWd9/XwDNHuONJ3n0Cb6+j6XyWQazR1pOs+hTfT5fa4rMpxwdnBwUP6cXvOylMZR9vb2Gf0rOelALG9yuVwOiUSikdeSSCSiWre+oum1i+XfUl/XDejv2vV13YD+rl1f1w3o79r1dd2A/q5dX9cN6O/a9XXdgP6uXZ/Xrc9rz86vpy20oVNf1y6WdeuSDCecixYtqvzZ09MzXc9J6fZarFixjP6VzCGRSDSWdFVgYGCg0dfTFgYGBhodqSGmdWsSbfwOaQtNr11fz7lY1g3o79oNDQ01+npiWTegv+dc0zo1/TukTfT1952fc82hr+dcLOsG9Pf3nZ/z7Pt62kJf1y2RSCCVZjglpBaxrF1fz7mmz7c2foe0hb6ec12S4d+M4sWLK39++/ZtusrIX7x4QXy+PmNlZaWx17KwsBBN8lHTI1XEMqJFIpHAwsJCY6+nyd8fbaNprWI551KpVKMz68WybkDzWjX53tEmhoaG6TbTTQ/6+j6XSCQwNzfX2OtpExMTE40mUMR0zjX5Ptf056U2MTU11egFhpg+2zX5+2loaPiXqXh2xtzcXKP7bDG9zzWp1cjICEZGRhp7PW2i6X2Hvr7PNf15qU00fY709X1ubm4umuSjPuclNKlVLOsG9DcvoUsy/GlQvXp15QYxKioKz549U/v4uLg4PHr0SPn/9erVy+hfySROTk7Z8rW0jZmZmcY2cRYWFqK5QAX095ybm5v/ZTaaFaytrUVzgSqRSPT2nFtZWWks8WprayuaC1RNn3NHR0eNvZa2sbGx0Vji1d7eXjRVcJo85xKJRFRjx+zs7DR2Ueng4CCaC1SpVPrXeLmsvpadnZ1GXosG9vb2Gku8Ojo6iuacGxgYaOycGxgYwMbGRiOvRQNNrRtI3seIpUDG0NBQY5/HRkZGsLa21shr0UCTew8xnXNjY2ONvTdNTExEUywB6O81qqmpqcYShubm5qIplgD095ybm5trLH9kaWmpsRwHy2TKNLB+/frK/9+9e7fax584cQIREREAki9OatWqldG/kkk0lXg1NTUV1RcaoLkPJTF9uAHJCXJNfCiJLdEukUjg7OyskdcS2znXVOLVyspKNIl2QLNJOLGdc1tbW40kS8WUaAc0e841meCggaYSr2JKtAPJyVJNJCYkEonozrmDg4NGkigODg6iqf4DNJd4FVuiHdDc55KTk5NoEu1AcrJUE+fKwMAAtra2WRdEEU2ec7EkXYHkxKsmEuRiS7QDmku2Ozs7i+qcayrxamJiIrqKT329XtFUPsHMzExUiXYAepuX0BWZ2vEMGzZM+bO7uzvevXtHfFx0dDRmzZql/P/BgweL6mJK2+TMmTNLm86gL574cPCCqL7QgOQPuKzcQZYlJeHltiOICw7ToCrtI5FIkCtXriydr4B3X/H5xFUNqqKDlZVVllpYkhIS8GLzQSRERGlQlfbRxDn3e/ke38/d1qAqOtja2mbpZlhiXDxebDqIxOhYDarSPopznhW8H72C57WHGlJEDzs7uyxtXuOjY/Bi4wHI4jXrIK1tpFIpcufOnaXX+HnzMXzvv9SQIno4ODhk6WZYbFgkXm46CLlIHO0VGBgYIGfOnFl6jW8X7+DP8/caUkQPR0fHLN1IjQ4KxasthwGRGe0YGRnBxcUlS6/x8cRVBL37piFF9HB2ds7SDdBI/0C82X5Mg4roYGJikqWEglwux7uD5xH+3VuDqujg4uKSpZthYV5+eOt+UoOK6GBmZpalGw1yuRxvdp9ElM8fDaqig4uLS5byEiHfvfB+/znR5SXMzc2zdDNMLpPh5fajiA0I0ZwoSmT1GlUT1zy6wNLSMss3w7J6natPZCr727x5c9SsWRN3795FfHw8WrRogTNnzqB06dLKxwQFBaFr1674+vUrgOTKncmTJ2tGNSOYmpoif/78+PnzJ5IyeLHl8+QNLo5dhNjwSNg4O6DW4O5aUql5JBIJ8uTJA4lEgtDQ0Aw9NyEmFjdnrMXnK3fx89YTTLh3FGbW4pmRZW5ujnz58sHT0xMymSxDz/W8+wyXJyxFfHQM7HPlQKWurbWkUvNIJBK4urrCy8tL2fGQXuIjo3Ft8nJ8v/MUv5+/w9ibh2BsJp72FUtLS+TNmxe/fv3KsGHm96sPcHnKcsgSk+CQNxfKtGygJZWaRyKRwM3NDb9+/UJkZGSGnhsTGo4r45bA6+kbBH38jpGXPGCowdnI2sba2hp58+aFl5dXhs/5pzM3cH3WWkAigUPe3ChWr7qWVGoeqVSq/HyLjo7O0HOjAkNwefRC+L75iEifPxhyciukIqr8tLGxgVwuh7d3xhML/x06j9uLtsDQxBj2rjmRv0p5LSjUDgYGBsp9TGxsxm4ORfz+g4sjF+DPp++IC41Av31rRHWhqmi39/X1zdDz5HI5XrufwL3V7jC1ssSEe0eRp4x4/E0MDQ2V5zwuLi5Dzw319MGFkQsQ/MML8vgEdNu8UFTnXFH96Ofnl6HnyWUyPNt0EI+3HsRDew9MenQSOQrn14ZErWBkZIT8+fPjx48fSEjI2A3BoC8/cWHkfIT5+MPIyBDtlk7VkkrtoKiECwgIyNDzZElJeLTSHS/2nsIL9+OY/PgU7F3Fk5gxNjZGgQIF8OPHj3T5NaXkz39fcGHUfEQGBMPcyhLNpo/QkkrtoLixFBQUlKHnJSUk4u7Czfjv+GW8P3EFkx6dhLWzeEajZSUv8fvle1wYtQAxoeGwdrBD3ZF9tCNSC0gkEuTOnRsSiQQhIRlLGifGxePWrHX4eOEWvl29j4n3j8PCTjwjk8zMzJTnPKN5CcWeX0xd1woUeQlvb2+EhWW8gNHOzk6UiXZdIZFn9Gr4//H29kblypXx+/dvAMm/dLVr10aBAgUQEBCAa9euKS84DQ0NcenSpb9GcXD+R0JCAry9vREVlb7qzR9XH+DS5OVI+v9Nn9TAAMPP7UTJJnW0qFLzyOVyBAcHw9/fP10fcnFhEbg0ZhG8nr1VHivRuBaGn90JAxG1ngNAfHw8vLy8EBMTk67Hfzl9HVdmrYX8//+dDI2NMfraPhSuWVmbMjWOXC5HYGAg/vz5k65EXHRgCC6OnI/f/31WHivfvikGHtkoqpZUIHmevZeXV7qSMnK5HB8OX8SNhZuUx4zNzTD+zhG4VSit5pnZD7lcjj9//iAwMDBd5zzydwDOD5+LgC8/lceq9m6P3u4rRJWYAIDY2Fh4eXmlKykjl8vxxv0E7q52Vx4zs7HCxAcnkKtEYW3K1DhyuRz+/v4IDAxM1+PDf/3G2aGzEfLrf4m7uqP6oPPaOVpSqD2io6Ph7e2N+Pj4NB8rl8nwbOMBPN52SHnMyskBkx+fgmN+V23K1DgymQx+fn4IDg5O1+ODv3ji3LA5CPf7XxKn2YyRaDV/vLYkao2oqCh4e3unKxEnS0zCo5W78GLfaeUxuzw5MfnxKdjmyqFNmRpHJpPB19c33YUDge++4uyIuYgK/N8FfbtlU9Fo4mAtKdQeERER8PHxSVciLikhAfcWbMbbE1eUx5wK5cPkhydg6Sieme0AkJSUBF9f33RfoPu9eI9zo+YjNux/hQbdty5CzUHdtCVRa4SHh8PHxyddibjE2DjcmrkWHy/dUR7LXbqY6IpkACAxMRE+Pj7pLhbxefAK58cuRHz0/65v+h9YK6oiGQWhoaHw9fVN1zVqQlQMrk1egW+3HyuP5a9STnRFMkByXsLHxyfdxSK/bj7B+QmLkfT/3WkSqRRDT20TVZEMkLx3DQkJgZ+fX/ryEuGRuDJuCTwfv1IeK1q3muiKZIDkvIS3t3e6i0XMzc2RJ08ejRql6wK5XI6goCD4+/un6xpVKpXCxcUFdnZ2orsm1SWZTjgDwMePH9G1a1e8evVK8DFOTk5wd3dH8+bNM/vX6A1xcXEIDQ1FSEiIyibW0NAQtra2eOF+HGemLVd5rhirZBTIZDJEREQgJCSE+OVmaWkJRMRgV/uh+JMiCaWg5qCu6LZlkSjf+LGxsQgNDUVoaCjxnNvZ2eHBuj24vGijynMt7G0x6eEJ5ChSgJZcjSGTyRAeHo6QkBDijRYrKyskBIZiZ9shCPH6rRJvOGEQ2i+fRkOqxomNjUVISAhCQ0NVLlwUsxJvLNiEW+t3qzzX2sUJUx6fgn3erLXv64KkpCTlOSdtaKytrRHj/Qc72w1BuL9qorLlvHFoPnMUDakaRS6XK9/nISEhKptYY2Nj2Nra4uKU5XjoflTl+Q758mDyo5OwziG+OWFJSUkICwtDSEiIys01iUQCa2trhH/1wq4OwxAVHKry/E5rZ6PeqL6U1GoOuVyOmJgY5Wd76nNuYmICaysrnBo5Dy+PXVB5vkuxgpj44ISoqmQUJCYmKs956ptrEokENjY2CHrzGe5dRiE2QvX7vteuZajetxMtuRpDLpcjOjpaec5Tb61NTU1hZW6Bo4Om4b/zN1We71q+JMbfOQJTS/G1ZyYmJio/31LfXJNKpbCxscHvx2/g0WMsEmJUb7gOPLoJFTo0oyVXY8jlckRFRSEkJATh4eEq59zMzAzmRiY42GciPt9UHZFUsEZFjLm2D0YiNBxKSEhAWFgYgoODVW6uSaVS2Nra4uf1h9jff4qyOEYZF2mRDJB8ziMjIxEaGko85+bm5jCVGGBv1zH48Vh1RJJYi2SA5ISU4vMt9TlXzOf+dPo6Dg+fpSyOUSDWIhkg+ZxHREQoz3lqLCwsYJQox+5OI+D9SnVEkliLZID/nfOQkBCVG6oGBgaws7PD6/1ncHLCIpXnirVIBkhfXkISHY9d7YfC/6PqiCSxFskAaeei7OzsYGtrKypfofSQ1jm3srKCra0trKysRPle1jVZGqhcrFgxPH78GIcOHcLBgwfx7t07+Pv7w9bWFgUKFEDbtm3Rr18/jbrdsoyJiQly5MgBZ2dnJCYmQiaTQS6Xw8DAAIaGhsnGOgLtWLERkdjYvJ8oq2QUFyQ2NjZISkpCUlISZDIZpFIpDAwMYGBggJiwcBgKfLjd3XYQjgXd0HjSEMrKs46pqSlcXFyQI0cOJCYmKhOQKc+5XW7yzMCo4FBsaN5PlFUyigsSW1tblXNuaGgIqVSKCHNLwU351RXb4FQwL2oN6UFZedYxNTVFzpw54eLiojznEolEuXaJRALbXGQzg3C/AGxo3g8T7x2FmY24jFgUm1M7OzskJSUhMTERcrn8r3MeYmAMqcCc/7OzVsGxQF5U6d6GrvAsIpFIYGZmBjMzM5Vzrvh8k0gksHEhJ5SDfnpjY8sBGH/rEIzNxdW2ZmBgAHt7e9jb2wue84B4GSQCm7ejY+bBIV8elG3VkLLyrCGRSJRu5S4uLsrPOMU5NzQ0hFwuh7UzeU6k38dv2NZ+iCirZAwNDeHg4AAHBwfl73rqcy4NiwYELsT2DZoG+7y5Uax+DcrKs4ZEIoGFhQUsLCyQM2dO5R4u9Tm3sCebr3m9fIedXUdh6KltoholAySfc0dHRzg6Ogqe8wRX4W6H3T3Hwi6PCwpU/Yei6qwjkUhgaWkJS0tLyGQy4jmXJSXB3Jb8Xf3t/jN49J2IfvvXiu4C1sjICI6OjnBwcFB+vqW+XokUuDEuS0rC9k4jRFkkI5FIlJ4kqc+5oaEhDAwMkJSQABMr8o2j95fv4NCIWaIskjE2NoazszOcnJwEr1EDBc55Ynw8trQZJMoiGcXNcWtr67/Oecpr1PiYWMEq5pfHL+Lk5CWiLJJJzzn3FshLxEfHYGOLfqIskklPXiI2IhLGpuS8xCOP43Aq6CbKIpnUuShSXoJF0nPOOZknSxXOHN1wft5anJ29mhgTc5VMWgT/8sGSKm3+asFNycAjG1GhI5uV9McmLMS1lduJsQLVK2Ds9f2irJJJC//P37GsWjti9aNEKsXwcztRqmld+sK0jFwux75BU3F/xyFivHjDmhhxfpcoq2TSwvv1eyz/tyPiIlUr3w2NjTH66l4UrlVFB8q0i0wmw65uo/Ds8DlivFzbxhh0dJPoklHp4fvD51hVtysS41THUIi5SiYtkhITsaXNILw9f4MYr9qrHXrvXsnkBv/DtXtY37QPZISRBGIdJZMeEuLisK5xL3xJ0XadkjojeqPzujlMnvNXp69ga9vBxLZVKycHTHp0Ek4F8upAmXaJj47Byjpd4Pn0NTHeZNpwtFk4kbIqOjzedxLuPccSY2IdJZMeYsLCsbxGB/i++0yMt106RZRFMunh1qa9ODR8JjEm1lEy6SEiIAhLq7ZF4PdfxHi3zQtEWSSTHi4t2YRTU5cRY7lKFRVlkUx6CPHxw9IqbRDqQ57p33ffGtEVyXA42kBct9Q5AIBmM0ehau/2xJjXy3fY2WUkkjJo8CAG7PPmxvBzuwSr/Nx7jsX3h88pq6JDu2VTUb5dE2Ls+4Pn8OgzIcPD/sVAjiIFMOTUNmKVn1wmw/ZOI+D9WrWFTexIJBJ02zQfJRrVJMY/XL2LA8NmZtiQTgzkKVsCA49sICZWE+PjsbnNIPh9Um1hEztSqRS9d69AwRoVifFXJy/jxKTFlFXRoUC1Cui7l3wTVVElE+SZcTO+7I6BoSH6H1oP1/IlifFHe07gwvx1lFXRoXiDf9Fjm2obLgDEhEVgQ7M+CPP7Q1mV9jEyMcGQk9uQoyi5yu/WBg/cWLuLsio6lGvdCB1WzSDGIgKCsKFZH+LNZbFjbG6G4Wd3wN6NXOV3adFG3N91hLIqOlTp0RYt55ITziHev7GxRT/EEm4uix0zG2uMuOAOa4HOpZOTl+D50fOUVdGhzrCeaDB+IDEW8PUnNrUeiIQMGsyKASsnB4y44A5zgVFYB4fPwn8XVccpsUDjyUNRY0AXYsz3v0/Y1nG4ymgdFrDL7YIR53fBRKDIb2+/Sfhyh3xzmcPRJ3jCWYRIJBL02LYYRetWI8bfnr+BI2PmMZmMcqtQGv0PriNW/yTGxWNTq4EI+OapA2XaRSqVou/e1chXuSwx/uzwOZyZsYKyKjoUrlkZvdxV55YDQFxkFDY074cQb9U5z2LHwMgIA49sRK5SRYnx+zsO4fLSzZRV0aFU07rosmEuMRYdEoYNzfoiIiBj7uFiwMjUFENPbYNToXzE+LVVO3Br0166oihRoWNztF06hRgL9wvAxub9EBOmOj9R7JhaWmD4uV2wy5OTGD87ezUe7ztJWRUdqvfthKbTRxBjwZ4+2NRq4F/GU6xgYWeDERd2w8qJPFLl2LgFeHXqMmVVdKg3uh/qjOhNjPl/+o4t7QYjIR0mq2LDOocTRlzYDTMbsmHc/sHT8OHaPcqq6MCLZHiRTEpYLpJxKVoQQ3mRjAq8SIa9IhkOJyPwhLNIMTQ2xqDjW+BSrCAxfnvjHtxY505ZFR3KtmqIjmtmEWORgcHY0LwvokPT56AtJozNzTDszA445MtDjF9avInZKpnK3Vqj1fzxxFiojx82tuiHuKj0OeuKCTMba4w4v0uwSubU1GXMVsnUGtIDDScMIsYCv//C5tYDmUxMWDraY8QFd1jY2xLjh0fOZrZKptHEwag5qCsx5vvuc3KVDIOJCdtcOTD8/C6YWlkS43v6TcKXu08oq6JDq/njUalrK2LM8+lr7OoxhsnEhFOBvBh6ZjuMCDMg5XI5dnYbDc/nb3WgTLtIJBJ0WjMLpVvUJ8a/3H6M/YOmMpmYyFWiMAYf30L0KZAlJmJr+6Hwff9FB8q0S3qKZI6NW0BZFR3SUyQT+MNLB8q0S3qKZM7OWkVZFR0K16qCnrvI4yUURTKhvv6UVWmf9BTJXFm+lbIqOqSnSCYyKISyKg4n+8ATziJGWSXjTDZlPDZuAbMVE/VG9UW90X2JMf9P37Gz6yjI/n/QPUsoqmSETGgODJmObw/YrJhoOn0EqvXpQIx5v/4Ajz4TmLxItc+bGyPOu8PEwpwY9+gzAV6v3lFWRYe2S6egfPumxNj3hy9wcOgMJs95jsL5MfT0dsEqmZ1dRzFZMSGRSNBl43yUbFKbGP9w9S6zY0XylCmOgUc3EqtkkhISsK39UAT/8tGBMu0ikUjQy305Cv1biRh/dfIyzs9bS1kVHQpU/Qd9960hJqMSYmKxpc0ghPuTPSvEjNTAAP0PrkPef0oR44/2nMD11Tspq6JDsfo10GM7+TMsNjwCm1sPRFQIewUTyiKZ4oWI8Zvrd+OegGeF2EmrSGZzm4FMjhVJq0jm4sINeHb4LGVVdKjSvY3aIpmt7QYzOVZEUSRjk5NsfH5qylK8vcBmwUStIT3QcOJgYizw+y9s78RmwQSHkx54wlnkOOZ3xbCzO2BEcMdNbt8ZzuSICQDosHIGyrZuSIy9u3Qbp6aR7zCLnZzFC2HwiS1Ew7ikhARsbTeYyRETEokE3bcuQtF61YnxF8cu4OKijZRV0SHvP6XQ/9B6SAhO9vHRMdjcZhCTIyYUVTL5q5Ynxh+4H8WtDR6UVdGh0L+V0NuDPCYnJiw5McHiiAkDQ0MMOLwBucsUI8avr96Jhx7HKKuiQ8nGtdF103xiLCIgCJvbDGJyxISRiQmGnNoG58L5ifHzc9fi5YlLlFXR4Z/2TdF22VRiLMT7N7a2H4rEeFUzTbGjHCXjmosYPz5xEd5fuUNZFR2q9+mIZjNHEWMBX39iZ5cRTCYmkotk3AWLZA4Om8lswUS9UX1Rd1QfYsznzUdmCybSKpLx6DuR2YIJdUUyPx6/wgFGCyYUo2RIRTJyuZzZggkAaLtkMv7p0IwY+3TjAY5PWEhZEYeTPeAJZwbIX7kc+u0nV8lEh4Rhc+uBiI2I1IEy7SI1MEC//WvhVrEMMX5l2VY8OXCasio6FK1bHT13LCHGwv0DsaXdECbvnhsaG2Pw8c3IWaIwMX5mxgq8OXuNsio6lGlRH53WzibGgj19sK3jMCZNOYzNTDH09HY45nclxo+OnY+PNx5QVkWHSl1aofXCicSY/6fv2NV9DJOdHGbWVhhx3h02uXIQ4/sHT8OPJ6/oiqJEzUHd0HjyEGLM6+U77Ok/icmLVEsHu+RRMg52xPjuXuPg8/YjZVV0aDh+IGoN6U6Mfbv/DIdHkj/3xY5NTmeMEBglI5fJsKPzCPz5+pO+MAq0nDsWlbu3IcbeX7mLU1PZLJhwzCdcJMNywQQAdFw1E2VaNSDGXh6/iIsLN1BWRAd1RTIJMbHY3JrNgom0imQe7j6Gm+t30xVFCXVFMopODhYLJqRSKfrsWSVYJHNjrTseuLM5+pLDUQdPODNC+bZN0GbxJGLM991n7O49nsk5iCYW5hh2ZodgYmJv/0lMzkEEgKq92qPJtOHEmOfT19g3aBqTiQlzWxsMP7dLMDGxq/sY/P7wlbIqOtQd0Ru1h/cixr7cfoyjjM5BtHZ2xPDz7sTEhCwpCds7DWdyDiIANJk6DFV6tiPG3p6/gTOMzkG0y5MTw87sIM64TYyLx5a2gxH2+48OlGmf1osmoWybRsTYs0NnmZ2D6FwoH4ac3EqccRsXFY3NrQcyOQdRIpGg8/q5KFa/BjF+d9tB3Nmyj7IqOuQuXQwDDq8nF0yEhjNbMCGRSNBz51IUqPYPMX51xTY83n+KrihK5K9cDn08VhJj4f6B2NJ2MOJj2CuYkBoYoP+BdchTtjgxfmbmSrw+c5WyKjoUrVsd3baQqzuDf7FbMKEokhHq3jk2bgGzBRNlWtRH+xXTiDGWCyYURTJC3TsHhszAj8cvKavicHQLTzgzRKNJQ1CxS0ti7NXJy7gwfx1lRXSwyemMISe2EOedJsTGMTsHEUg2XCrdvB4x9njvCVxfw+YcRMf8rhgkMO80NiKS2TmIANBp9UwUrl2FGLu1wYPZOYg5ixdC332ribGooBBsbjOQSeNIRZWMUCfHpUUb8ezIOcqq6OBWoTR67iRX+oX5+mNLu8FMGkdKpVL03bMKuUoWIcZZnoNYuGZldFk/hxgL/OGFHZ3ZHDegGCUj1MlxaOQcfLnzmLIqOpRqWlewYOL3+y9w7zmWyYIJIxMTDD6+RbBgYt+AycwWTFTo2Fy4YOLZG2aNI00szDHk1DbBggn3HmOZNI4EgBr9OqHOiN7E2Jfbj3FkLHmclNgxt7XB0NPbhQsmOg5jtmCi/pj+6gsmZpJvPIkda2dHDDm5lVwwEZ9cMMGicSSHIwRPODOERCJBr53L4Fq+JDF+bs4avDzJ5hzE/FXKo/u2RcRYiPdvbOswjMk5iFKpFP32r0GOogWI8eMTFuH91buUVdGhaN3q6Lh6JjH258sP7OrGpnGkgZERBh3dBPu8uYlxlucglm3VUNCIheU5iMZmphhyciusc5BnX+5heA5i5W6tBY1Yfjx6iYPDZjJ5zk2tLDH09HaY29moxORyOXZ1GwX/z991oEz71BrSAzUHdyPGPl6/j+MTyd/1YsfSwQ5DT28nzr6UJSZiW4dhTBpHAuoLJl6fvsqscaRNTmcMObkVhiZ6WjDRoj4x9njfSWaNIx3z6W/BRMdVM1CkTlVi7PbGPUwXTAiNvowKDk3u5GDQOFJZMFGpLDF+afEmZo0j1RZM/P7DrHEkh0OCJ5wZw9jcDENPbYOVkwMxvrvXePj894myKjpU690B9cb0I8a+3nuKI6PnUlZEBzMbaww9vR1mNlYqMcUcRFaNI+uM6I3q/ToRYywbR1o5OWDo6W16OQex6fQRgqYcLBtH2uXJicEnthLnILJsHAkAbRdPQskmtYmxB7uO4NbGPZQV0cGpoBsGHN5AnIPIsnEkAHReNweF/q1EjN1Ys4tZ48jcpYuhzx7ymByWjSPTKphg2Tgyf+Vy6LFtMTHGsnGkVCpFv32r4VKsIDF+fCLjBRNrZhFjAV9/YmfXkWwXTLjpX8FEmZYN0FKoYOKtHhRMuDgR4ywbR1bu1hqNJgkUTDBsHMnhpIYnnBnEPm9uDDq2iTwHMTIq+e55cCh9YRRov3ya4BzEO1v2MzsH0aVoQfQ7sE7vjCMlEgm6bpovaNDAsnGka7mS6O2+nBhjeQ6iRCJBL/flyF26GDHOsnFkweoV0HUTue2UZeNIqYEB+h1YB6dC+Yjxo2Pm4dNNNucglmhYE+2Xk+cg+n38xuwcRENjYww6tgl2eXIS4/sHT2N2DmL5dk3QfNYoYoxl48i0CybYNY6s2qu9YMEEy8aR6SmYYNU4ss7wXoIFE+8v38FJRo0jLR3tMez0dhibm6nEmC+YmDZcsGCCZeNIu9wuGHxc/4wjAaDNIuGCCZaNIzmclPCEM6MUrlUFndeRN6iB339huz7PQbz7hLIqOpRuJjwH0ffdZ7j3GsfsHMQhJ7bqpXFkxc4t0WTqMGLM89kb7B/MpnGkqaUFhp7eDgt7W2KcZePIfwd00UvjSAs79XMQt3Vk1ziy/tg05iAyahxpncMJQ05tEzaObDeEWePI5rPHoGzrhsTYs0NncWXZFsqK6KC2YIJh40hAfcEEy8aROYoUQP+DvGAiNVeXb2XWODJP2RLovXsFMaYXBRNlBAomGDaOLFi9ArptJu9PWTaOVBRM6KNxJIejgCecGabWkB74d2BXYuzjtXs4OXkJZUV0SHMOYvuh+jkH8dQVbhzJIK3mj0epZnWJMdaNIwce3aR2DmJ0KJtzENMyjry/8zBlRXTIVaIwN44kwI0jGTWO3LsaOUsUJsZPTV3GrnGkuoIJbhxJWRUd0jSO1NOCCW4cyWjBxKnt+mkc2b+z2oIJVo0j0yqYYNk4ksMBeMKZaSQSCbpsmIuCNSoS49dW7cCjPccpq6JD7tLF0NuD7H4bERCUfPdcD+cgcuNIBucgGhig/4G1emkcWaxedXRYNYMY+/PlB3Z21U/jyANDZzA7B5EbR3LjyJT8ePQSBxmdg6g0jrS1VokpjCP9Pn3TgTLtU2tID9QcJFAwcf0+TkwizzwWO9w4UrhgghtHsofeGkfmd8XAI/ppHKmuYEKvjSPbsGkcyeEAPOHMPIo5iLa5XYjxfYOm4seTV3RFUeKf9k3RbCZ5DuKvF/9h74DJTF6kGpubYcjJrbB0tCfGd/ccx7Zx5Oi+xNjXe09xeNQcuoIooZiDaGqtf8aRdUf2QbU+HYgxbhzJ6BzE6SNQvn1TYowbR7I5B7Ht4kko0bgWMfbA/ShubfCgrIgOzoXy6aVxpEQiQef1wgUT11fv5MaRjKHvxpHdtwoXTLBuHClYMDFxEd5fuUNZFR3UFUwEfP2JnV1GsF0woa/GkfPGEWMsF0xwODzhrAfYuDhjqLo5iG0HMzsHscWcMSjTqgEx9vTgGVxdsY2yIjo4uOVJcw4is8aRK6ajaL3qxNjdrQeYnYPoUrQg+h9Yq5dzELttXoD8VcoR43ptHNluCBJi2ZyD2Hv3CkHjyLMzVzJtHNll4zxiLNjTB9s7DWd2DmL/g+uFjSPHzmfXOLJRLbRbNpUY8//0nWnjyMHHN6s3jmS0YIIbR+qfcWS13h3UG0cyXjAhaBzZZSSzxpF1R/ZB9b4dibH3V+4yaxxp5eSQnJfQ04IJfTSO5Og3POGsJ7hVLIMe28kzm8N8/bG1/RC9nIN4cvISvLt0i64oShSpXVVvjSMHHtmon8aRzeuh9aKJxBjTxpGmphh8YitscjoT43prHPn0NfYN0j/jSLlczrRxZM2BXQXnIH6+9YgbRzJIg3EDUKVHW2KMeePIk1v1smAiTePI5VspK6IDN44UMI5kvWBCX40jNy/QS+NI13IluXEkAZaNIzn6C0846xFVerRFg/EDibHvD1/g0PBZTCYmzKyt1M5B3NFlJPw/f9eBMu2TlnGk3s5BZNg4svHkoajYuQUxxvIcRNtcOZLnIAoZR7YdjPA/gTpQpn24cSQ3jkwJN45k1Dhy22L9NI6sWAY9diwlxvTaOHLKUvx3kRtHsgQ3jlRjHNlzLJsFEyYmGHx8i2DBBMvGkRU7tRAumHj2BvsHM1wwkYZxJKsFExz9hCec9Yy2SyajRKOaxNj9nYdxe9Neyoro4FwoH/ofWq9+DmJ4hA6UaZe0jCOvr97JjSMZQyKRoOfOZXAtV4IYPz93LdPGkd22kKs7Q7x89do48sO1e5RV0YEbR3LjyJSwPAdRn40jq3Rvg4YTBhFjPx69ZLZgIi3jyJ1dRzFdMMGNI/9Gr40jT1/V34IJ1o0jm9cjxpgvmNBT40iO/sETznqGgaEh+h/aAKeCbsT4kdFzmb17XrJxbbRdOoUY8/v4De49xzJ5wZIe40hW756nZRy5b9BUJs+5iYU5hpzaptY40vf9F8qq6FC9byfUHdWHGPt69wmOjp1PVxAl0jKO3N6J3XEDaRlHnp5BbtsUO+kxjmR13EBaxpGXl2yirIgOdnlyYtDxLWqNI1n1Z0izYGIzm+MG0mMcGRsZpQNl2iU9xpGP952krIoO6TGOZNWfIS3jyFenr1BWRYf8Vcqj29aFxFiI929s6zCMWX+GfvvXqC2Y+Hj9PmVVdEirYGJXt1FMVvVz9A+ecNZDFHMQTSwtVGKypCTs6DqKWaf7huMHonL3NsTYmzPXcH01m3dS0zKO3N5pOJNO94B648gn+08x23qelnHkjk7DmazwBoAOaowjb2/ay2zreVrGkTu6jGCywjst48jLSzYz23qelnHkru6jmazwTss48vSMlczO6i9Uo6Ja40iPvmxWeEsNDJILJgSMI4+NnY9fL/6jK4oS6owj/T5+w8GhM5g852kZRx4YMh1+H9lsPU/LOPLYeHJyUuykZRy5p88EBP5k8+Z59T4dUW90X2Ls672nzM7qT6tgYlf30QjzY/PmuTrjyHeXbuPKsi2UFXE4mocnnPWUXCWLCM5BDPP1x+7e45m8qyaRSNBj+xLkrVCaGD8xeQmzrufqjCMDv/9itto3rTmIh0fOhs9/nyirokOR2lXRaS15DqLvu884PHouZUV0MDAyUmscuW/gVAR886Ssig7qjCN/PnmNU9PIyUmxk5Zx5O5e4xHi40dZFR3UGUd+uvmQWddztcaRMhl2dh2FyMBg+sIoUHNgV9Qe1pMYe3PmGm6s3UVZER3UFUwkxsdje+cRTI5HA9QbRz7edxIPdx+lrIgO6owj46Kisb3TCCbNxQD1xpG3N+3F82MXKCuigzrjyOjQcOzsMpLJal8AaK+mYOLyks14d/k2ZUV0UGccGe4fCPceY5m9ea7OOPLMjJX4ev8ZZVUcjmbhCWc9plzrRmg5dywx9u7iLVxbuZ2yIjoo5iBaOavOQZQlJmJH5xHMGk2pM458fuQ87m47QFkRHdQZRybExmF7p+FMGk0BQO2hPVBjQBdi7P6OQ3hy4DRlRXRQzEE0NjdTicWGR2B75xFMGk0B6o0jr63cjjfnrlNWRAd1cxAjA4Oxq9soJo2mAPXGkefmrsWnWw8pK6KDOuPIUB8/ePSZwOTNcwDotGYWCteqTIydmLQEP5++pqyIDuqMIwO+/mTWaCot48iDw2cxOypLnXGkz9uPODqWXPEvdtIqmNjbfzICvv+irIoO6owjfzx+hVPT2RyVZWBoqLZgYnfPcQj19aesig6lm9UVLJj4eP0+Li3ZTFkRHYxMTDBEoGBClpSUfPM8KEQHyjgczcATznpO0xkjUaJxLWLs1NRl+P6QTdMhe9dcgq3nQT+9sbf/ZCYvWIDkOYhCM/GOjJ4L79fvKSuig3OhfOgl0Hru9+ErDo2YRVkRHSQSCbqsnyNoIrh/8DRmTYdyly6GbpvJJoK/nr/Fycnkin+xo+jkyFGEPBPPo/d4BHv5UlZFh/xVyqP9yunE2Jc7T3B+3jrKiuggNTBA372riSaCcpkMu7qNRvifQB0o0z7F6lVHy3njiLG352/g2qodlBXRwcDICAMObSDePE9KSGD65nm51o3QaNJgYuzZobO4t+MQZUV0MDYzxcAjG2Fmo9p6nhATy/SorCrd26DWkO7E2N2tB/Ds8FnKiuhgamWJQcc2C94839FlJJOjsoBk48hK3VoTY1eXb8Xb8zcoK6KDpYMdBh7ZSJzVHxEQxOyoLCC5YKJ0i/rE2NlZq5j1mbLJ6YwBh9YTZ/WHePliT9+JzOYlOOzDE856jlQqRZ89qwTvqu3oMopZA5pi9Wug6YyRxNjLE5dwe9NeyoroYGBoiP4H1xHbkJPnOY9g0oAGAMq1aSw4H+3h7mN4tOc4ZUV0MDI1xYDDG4htyHGRUdjReQSTBjQAULVXe0FDuRtr3fHq1GXKiuhgamWJgUc2wNBEtdo3KjgUO7uyW+1bZ3gvlG/XhBi7uGA9swY0Fva2GHBoHbHaN+z3H+zuNY7Zat/GU4aieEOyodypqcvw/dELyoroYJPTGX33rSbePA/84YV9A9kclQUArRdMQIFq/xBjR0bNgc/bj5QV0cExvyt67SLfPPd99xmHR82hK4giHVfPRO4y5Lnt+wZOxZ+vP+kKokTO4oXQdRPZ8Njz6WucnEKu/hY7EokE3bcshHPh/MT47t7jEeL9m7IqOrhVLIP2K6YRY59vPcL5+WzePFf4M5DmtstlMqZ9pgrXqiLYef7m7DVcX8OmzxSHfXjCmQNrZ0f0O7CWeFct+JcP9vRj965a81mjBFtSj41bgF8v2TSgsXfNhd4eK4kx/8/fmTWgAYC2S6cIzvA+OGwmswY0OYoUQPeti4gxr1fvcWwCOcYCXTbMg0vxQsTYnr4TEeTpTVkRHfKULYFOa8iV+9/uP8PZ2eS2dLEjkUjQc+dSOOTLoxKTy+XY1X00wv0DdKBM+xSoVkGwJfX95Tu4unwrZUV0SG49XwVrFyeVmCwxETu6jERUCJvVviUa1kRjgRneL45dwJ0t+ygrokNyhfd6mNvZqMQUo7JYvXlevl0T1BnRmxi7v/MwHu8/RVcQJYxMkyu8TSzMVWKxEZHJN88ZHZVVrXcHVO3Vjhi7vnonXp+5SlkRHdTePA8Kwc5uo5m9eV53ZB+UbdOIGLswbx0+3nhAWREdLB3s0P/QevLNc4Z9pgCgydRhKFa/BjF2cvJSZn2mOGzDE84cAEDROtXQYvZoYuz16au4uX43XUGUMDA0RL8D62DpaK8SS4z//2rfiEgdKNM+ZVrUF5zn/HjfSTz0OEZZER2MTEww8PAGohtyXFQ0tndm14CmcrfWgvOcb2/cgxfHL1JWRAcTC3MMPLKRaDoUHRqOHQwb0NQc3B0VOjUnxi4v3oT3V+5QVkQHc1sbDDi8gWg6FO4fiF09xjJ7wdJwwiCUbFqHGDs9fQW+PWBzVJZ1DifBUVnBnj7Y238SszdSW84di0L/ViLGjo6dD69X7ygrooN93tzovZs8y9Xv4zdmR2UBQPsV05D3n1LE2IEh05kdleVStCC6Cdw8//XiP5yYtJiyInp02TgfLsUKEmMefSYg+JcPZUV0cC1XEh1XzyTGvt59gvNz11JWRAeJRIJeu5bD3o0wKktx85zRUVmFalREqwXjiTGWfaakBgbou281rHOQR2Xt7DKS2VFZHHbhCWeOkqbTR6Bo3WrE2PEJi+D57A1lRXSwy+2CPnvI1b4sG9AAQJtFE5Gvclli7BDDBjROBd3QYzv5osTnDbsGNADQee1s5CpZhBjb238SswY0uUsVRef1c4mxH49e4vQMNg1oJBIJemxbDMcCeVVicrkc7j3GIuz3Hx0o0z75K5dDu6VTiLGP1+7h0uJNlBXRQSqVoo/HStjkyqESSx6VNZJZA5qidauj2axRxNirk5dxa4MHZUV0UI7KcrBTiSlHZTF687xsq4aoN6YfMfbI4zjTN88HHN4AUytLlVhcZBS2dxrO7KisKt3boHq/TsTYzXW78fLkJcqK6GBqaYEBhzeQb56HhGFH11HM3jyvNaQH/unQjBi7uHADPly7R1kRHSzsbDDg0HryzXO/AOzuye7N80aThqBEI4FRWdOWM+szZePijL771giOyto7YAqzeQkOm/CEM0eJ1MAA/favFTSg2d55BGLCwnWgTPuUalpX0IDm6cEzuL/zMGVFdDA0NsaAQxuIBjTx0TFMG9BU7NRCLw1ojM3NMODIRqIBTUwY2wY0Nfp3RqWurYixK8u24u2Fm5QV0cHMxhoDD2/QSwOa+mP7qzegufuEsiI6WDk5YMDBdXppQNN85igUqVOVGDs+YRE8n7+lrIgOdnlyoo/AqKw/X35g/5DpzJ7zdkunwK1iGWLs4LCZ+P2BzVFZzoXyofs2crWv9+sPODZ+IWVF9Oi8bg5ylihMjO3tNwmBP73oCqJEnjLF0WntbGLs+4PnODNrFWVFdJBIJOi5Ywkc87uqxJKrfccgzI/Nm+cFqv6DNkKjsq7cxZWlmykrooNUKkWfvavJPlOJiUz7TBVv8C+aTh9BjL08fhG3N7M5KovDJjzhzPkLtQY0339h3yD9NKA5PHI2fP77RFkRHdI0oBlNrgplgbQMaAK+eVJWRIdcJQqjy0ZyFbfn09c4NXUZZUV0kEgk6L51EZwK5SPGd/cap5cGNJ9uPsTFhRsoK6JDWgY0O7uOQmRgsA6UaZ+0DGhurN1FWREdlDfPnRxUYonx8djReQRiwiN0oEz7lG5eDw0nDCLGnh44jQfuRykrooOhsXFytS9hVFZ8dAy2dxrO7KisSl1aoeagrsTY7U178fzYBcqK6KAclWVmqhKLDg3HToZHZf07sCsqdmlJjF1eshnvLt+mrIgOZjbWGCB08/xPIHZ1H8PszfMG4weiVLO6xNiZmavw9d5TyorooNc+U7NHC/tMMTwqi8MePOHMUUGdAc3zI+dxd+t+yoroYGBkhP4H16k1oImLitaBMu2j1oBmxyE8OXCasiI6pGVAs73TcKYNaKr0JBvQXFu1A2/OXqOsiA5KAxpjPTWgad2QGDs3dy0+3XpIWREdLB3s0P/gOqIBTaiPn94a0JyYtAQ/n76mrIgOtrlyoM9ecqVfwDdP7Gf55vnCCchfpRwxdmjELPi++0xXECWcCuRFzx1LiDHf/z7h6BiGb56vmY1cpYoSY3v7T2Z2VFaukkXQZQP55vmPx69wahq5mELsKG+eF3Qjxnf3HIdQX3/KquiQr1JZtFtGHpX16cYDXFy0kbIiOqQ1Kmtn11HsjsqqUw3NBUZl6YPPFHFUFuM+Uxy24AlnDhF1BjRHxsyD9+v3lBXRwcEtD3q5kzeofh++sm1As3wqXMuXJMb2D57GtgHNFnLbKcsGNBKJBF03zUeOogWI8d29xzNrQJO3fCl0WDWDGNMLA5q8BAMamQy7ujFsQPNvJbSaP44Y++/CTVxbtYOyIjqkZUCzo/MIZg1oSjaujcZThhJjzw6fw73tBykrooOhsTH6H1oPc1trlVhCTCzTN88rdGyOWkN7EGN3tx3E00NnKCuig7FZ8s1z0qis2PAI7Og8gtlRWdX7dkTl7m2IsasrtuHt+Rt0BVHCzNoKA49sJN48jwgIws5uo5it9q03uh/KtGpAjJ2bswafbz+irIgOlo72wqOyvH/Do/d4Zm+kNpsxUm99pvoK3Dz/8+UH0z5THHbgCWcOkXQZ0ERG6UCZ9inXupGgAc3D3cfwaM9xyorooKj2FTKg2dF5BLsGND3aqjWgeXXqMmVFdDC1tEi+YDFRvWBh3YCm9rCeKN++KTHGtAGNvS0GHCYb0IT9/oPdvcYxW+3baPJQYQOaqcvw/dELyorokJYBzb6B7Fb7tpo/HgVrVCTGjoyeC+83HygrooNjPlf03EUejfT7/RccHjWHriCKdFw1A3nKFifG9g2cCv8vPygrokPO4oXQbfMCYszz2RucnLKUsiI6SCQSdNu8ADmKCN88Z3VUVt5/SqH9yunE2Jfbj3F+/jrKiuggkUjQ230F7FxzqcTkMhl2dhuNiIAgHSjTPoVrVUHLeeSb52/P38D11TspK6KDulFZ+u4z9WDXEcqKOJyMwRPOHEHUGdD4f/6Og0NnMHuRmpYBjd9H/TOg8Xr1Xm8NaPb0ncgNaBhDYUDjkC+PSkwul8O9h54a0Fy+gyvLtlBWRAeFAY21i5NKLNmAZiSiQtis9lVnQPPi2AVmDWiUN8/tbVViilFZrN48L9+2CeqO7EOMPdh1BI/3naQriBLqRmUpb54zOiqraq/2qNq7PTF2ffVOvD5zlbIiOphaWWLA4fXEm+dRQSHY2XUUs6Oy6gzvhXJtGxNjF+atw8cbDygrooOFvS0GHFpPHJUV5uvP9M3zJlOGoliDf4mxE5OX4Mfjl5QV0UHhM0VCH3ym8lctT4wdYthnisMGPOHMUUvp5vXQYPxAYuzxvpN4uFv/DGjioqKxvdMIpg1o/h3IDWhSwroBTc1B3VChU3NijGUDGnNbG0EDmnD/QLj3GMtsS2qD8QNRsmkdYuzMjJX4ev8ZXUGUsHZ2RH8hAxpP9g1oCtXUPwMae9dc6L17BTHm/+k7Dg2fSVkRPdotn4q8/5Qixg4MmQ6/T98oK6JDjiIF0G2rwM3zl+9wfAI5xgJdNsyDS7GCxJhHnwnMjspyLVcSHVeT38tf7z3FuTlr6AqihEQiQc+dywRvnu/qPhrh/gE6UKZ9ClavgNYLJxBj7y7dxtUV2ygrooPUwAD9BEZlyRITsb3zCGZvnpdoVAtN9NRnasCh9WSfKcZHZXHED084c9KkzaKJggY0B4fPgu/7L3QFUUKdAY3P2484OpZsVMICndZyA5rU/Hj8Cqemk5MWYkcikaDH9iV6aUCTv3I5tF06mRj7eP0+Li3eRFkRHaRSKfruWaWfBjR1qwsb0Jy6glsbPCgrooPaUVmMG9CUadkADcYNIMYe7TmBhx7HKCuig5GJSfLNc9KorKhobO80nNmb51W6t0GN/p2JsVsbPPDyxCXKiuigGJVlZGqiEmN9VFatIT3wT0fyzfNLizbi/dW7lBXRwcLOJrnalzAqK9wvAO492a32bThxMEo2qU2MnZ62HN8ePKesiA7WOZzQb/9a4qisYE8f7Bswmdmb5y3njRMelaXHPlOHR5K7VTkcXcMTzpw0URjQmNmoVvsmxMRie8dhiI+O0YEy7aPWgGbrATw7fJayIjqkaUDTZaR+GtAs34q3F27SFUQJM2srwWrfiIAg7Oo+mtlq3/pj+qN0i/rE2NnZq/HlzmPKiuig1oDGyxd7+rJb7dtsxkgUqVOVGDs+YRE8n7+lrIgOdrld0GePsAHNgaFkM00WaLN4EtwqlSXGDg6bid8f9G9Uls+bjzg2njz3lwXUjsrqx+6orNyli6HTujnEGPOjsrYvhmN+V5VY8qisscyOyspfpTzaLiHfPP9w9S6uLN1MWREdpFIp+qi5eb6jy0hEBYfSF0aBYvVroOmMkcTYyxOXcHvTXsqK6KBuVJZe+EyN7kuMPXA/yuyoLI644QlnTrpwzOcqeFft9/svODWdHGMBdQY0B4ZMZ7byM2fxQui6aT4x5vn0NS4u3EBZER3SMqDZ228is5WfbhVKo/2KacTY51uPcH3NLsqK6CCRSNB7t7ABjXuvccxWfhauVQUt544lxt6cvYb7Ow9TVkQHdQY0ifHxcO85llmT1NLN6qLhRLIBzZP9p5i9kWpobIyBhzcQb57HR8dgd69xzFZ+VurSCjUHkUdl3dm8D/9dZPNGqrG5meCorJiwCHj0mcBs5ee/A7qgYpeWxNiVpVvw9d5TyoroYGZjjYFHNpJvnv8JZNoktf7Y/ijdvB4xdmbWavx6+R9lRXSwcnIQHJUV4uXLtElq81mjULgWeVTW8QkLmR2bZO+aC73V+EydmLSYsiJ6tF06BXkrlCbGDg6fxezYJI544QlnTrpRZ0BzY80ufLr1kK4gSqgzoIkODcdehtuWqvXuIGhAc3HhRng+e0NZER3UGdCE+wcyPfOz7sg+KNumETF2evpyZkfoWDrYof/BdUQDmmBPH6YNM5tMHSZoQHN07HxmqwBtc+UQNKDx+/AVZ2ayWQUIAG0WChvQHBw2k9kqQMf8rui5cxkx5vnsDS4tYbMKEAA6rpmN3KWLEWN7B0xhduZnrpJF0HUjeVTWl9uPcXP9brqCKCGRSNB96yI4FcqnEpPL5djdezyzVYBuFcug3fKpxNjbc9eZHaEjlUrR22Ml7PLkVInJEhOxu9d4Zg0zi9SuihZzxhBjT/afYnaEjoGhIfodWAdLR3uVWEJsHDx6j2fWMLNMi/qCPlN3Nu9jdoSOkYkJBgr4TMWGR2BP/8nM3kjliBOecOZkCHUGNHv6TmS2ClCdAc27i7eYrQIEhA1oZElJ2N17PLNVgOoMaJ4dPodnR85RVkQHiUSCXruWw94tt0osMS6e6c1roRoV0WrBeGLs3vaDeHfpFl1BlJAaGKDv3lVEA5q4yCjs6TuR2c2rOgOaayu3M1sFqM6AJio4FPsHT2P2Ruo/7Zui9vBexNj5eeuYNU9MHpW1gXjzPMzXH0cYrgKs1qcjqvRoS4ydmrKU2SpAM2srDDyyAYbGqjfPA7//wsnJZJ8SFqg3qi/Ktm5IjB0ZPQ/BXr6UFdFB3c1z3/8+4fzctTpQRYem04ajaL3qxNiBIdMR/ieQsiI62OV2Qd+95BvkPx6/YtY8EUj2mcpXmTwqa2+/SYgJC6esiA5OBd0EfaY+XruHO1vYNE/kiBOecOZkCCMTE/Tbv4ZoRhL00xvHJ7Lr/F2lextU6tqKGGO5CtDU0gJ9960hmpH8fv8FZ2aRKwRZoNaQHoLtiSxXAVrY2aCPx0qiGYnnsze4zHAVYKNJQwTbE/f0n8xsFaCNi7Ng5efnW49we+Meyoro0XLuWOKNVLlcDo8+E5h1/nZwyyM4NunNmWt4tOc4ZUX0aL98GvlGKuNVgC7FCqH9yunE2ON9J5mtApRIJOiycR7s86reSE2IjYNHnwnM3kjNW76U4I3U25v24sO1e5QV0UEikaDnjqWwcla9kRobHoE9/SYxe1Ot0L+VBG+kXl66Bd8fvaCsiA5SAwP02bMK5rbWKrGIgCAcHDqD2XNeskkdwS7ks7NWw+ftR7qCKGFobIx++9cSPYdCvH/jyBhydwsLVOjYXLAL+cTERQj45klZEYdDhiecORnGpVghtF44kRi7u/UA3l2+TVkRPbpsmAdrFyeV43GRUdjbbxKzVYBuFUqj6fThxNi1Fdvw9f4zyoroIJFI0GP7EnIVYFAI01WARWpXRV0BY4pzc9cyWwUolUrRy32FXlYBlm5eD9X7dSLGTkxeAv/P3ykrooOBkRH67FlFrAIM+OaJEwxXAVbs3BL/dGhGjB0eNZfZKkBjM1P09lhJnPnp8/Yj01WANQd1Q4lGNYmxA0OmIyIgiLIiOphZWwl6kfx49JLpKsAG4wagQPUKxNgehqsALR3tBQ0zk6sA91FWRI9mM0cS/WfkMhk8ek9g1uzdLreLoGHmyxOX8OTAaap6aNJm8STiCJ2khATs7jWOWbN350L50HbpFGLs4e5jeH3mKmVF9Oi0ZhZsc7uoHI+Pjkn2KGDU7J0jLnjCmZMp6o3ui0I1yVWAexmuArSwt0WP7eTkw6ebD5muAmw2fQRcy5dUOc56FaBNTmfB+Y9vzlzD470nKCuiR5tFk5CjqKp5oiwxMXmcCqNVgE4F8gqaJz7edxIvT7JZBQgAHVfPJFcBxsRid+/xzG5ec5UsgpbzxxFjtzfuYboKsOum+YJVgHv7s+tRkL9yObVVgD8ev6SsiA4SiQQ9diwlmidGBAThwJDpzJ7zYvWqo86I3sTYudlrmK0ClBoYoPfuFUTzxBAvXxwdS+50YIFyrRuhaq92xNjxCexWARoaG6OPx0qieaL/5+9Mm71X6dFW0Ivk8IhZzJq9m1iYJ3cnEm6ker16z6zZOwDUHtZTcJzK/kFTmTV7N7e1Qa9d5O7Er/eeMmv2zhEXPOHMyRRSAwP0dl9OrAIM9fHDkdFzdaCKDmVa1OdVgKkI+PoTJ6cs1YEqOlTs0kpNFeAcpqsAhTavPm8+4vy8dTpQRYeag7ujeEOBKsDBjFcBCmxeWa8CbDh+IApU+4cYY7kK0MrJAd23kk0xP1y9i7tb2Z0F2HzWKOQuo2qkJ5fJsLvXeGarAO1dc6HzujnE2MsTl/D04BmqemjSdslkYhVgYnw8dvcez2wVYI7C+dFuGdlI74H7Ubw5d52yInp0WjtbL6sA85QtIWikx7LZu0QiQfctC4lGeqybvResXgENJ5CN9Fg2e5dKpei1axlMrSxVYqybvZdoVAu1hnQnxlg2e+eIB55w5mQap4Jugi7Qj/eewKtTlykrokfHVTNg55pL5XhCTCzTm9fcpYqi5byxxNitDR74eP0+ZUV0UFYBOjmoxGLCGK8CrFIejScPIcYuL9nMdBVgz51LiS7QzFcB1q8haKp2dtZq+Pz3ibIiOkgNDNDbY6VwFeC4BTpQRYdybRqjSk/9rALsu2eVflYB9myHMq0aEGOHhs9kugqw9+4VRI8Cr5fv2K8CrFuNGNs3cArTVYA9d5KLIr7ee4oba90pK6JHo0mDBU3VWDZ7t87hhK6byd/ZrJu9t5w7FjlLFFY5LktKgnuvccyavTu45VFv9n74LGVF9Gi3fBoc87uqHGfd7J0jDnjCmZMlag3pIVgFuJ/lKkAba8EqwO8PX+Dqyu2UFdGj4YRByF+1PDG2p98kxIRHUFZEBysnB8FZgMxXAc4ejdylBaoAe49HfAybm9fkKsDZxBjrVYDtlk6BU0E3leOJ8fHY3WsckhISdKBK++QonB/tBGYBPth1RC+rAOOiouHRdyKzHgV5ypZA89mjibEba3bh8+1HlBXRQSKRoPvWRbBwsFOJsV4FWKhGRTSYMIgYY70KsKdQFaBfAA6NmKUDVXQo2bg2ag7uRoydmrYMvz98payIDgaGhujjsVLY7H0CubuFBSp0aKaXZu9Gpqbos2cVpAYGKjG/D19xZuYqHaiiQ/V+nVCqWV1ijGWzd1NLC/RyX66XZu+c7A9POHOyhNoqwD+BOMCwI3DxBv8KVwHOXMV0FWAfgSrA4F8+OKbPVYDff1FWRAcjExP02bMSUkNDlZj/p+84zXAVYNVe7YWrABmfBdjbY6VgFeAFlqsAh/fSyypACzs1VYB3n+DGWnZnATaePARulfSvCtDGxRnd1FQBPth1hLIierSaJ1wFuLv3eGarAB3zuQpXAR46i2dHzlFWRI/2aqoAd/cax2wVoEuxQmi9SMDsfdtBbvbOIG4VSqPpjBHE2LWV2/XT7D04lHmz93pj+hFjLJu9c7I/POHMyTJqqwCPX8SzQ7wKkDVyFCkgWAV4f+dhvD1/g7IieqitAuwzgdnNq2u5kmjBqwD/IjokDPsGTmF286q2CnDBBng+f0tZER14FaBAFeBUtqsA++4hVwEG/vDC8Ynk7hYWqNCxOSp2aUmMHRkzTy+rAH+//4Izs1brQBUd0qoCDPcPoKyIDqZWlnpbBVhvdD8UrqWfZu89d5BvpOq12Xvv8cyavdvmyqHW7P3RnuOUFdGj9cKJwmbvvdg1e+dkb3jCmaMRqvZqjzItyVWAB4fPQthvNltY0qoCvLhoow5U0UFdFeDeAZMRFRxKVxAlLOxs0HPHEmKM+SrAKUPhVrGMynG5XJ5cBRgZpQNV2sfGxRldN80nxv67cFNvqwA9GK8C7LBqBjH27NBZPD96nrIierRfPg0O+fKoHE+MSzZVY7oKcKFAFeDWA7wKkEHcKpRG0+nDibFrK7bpZxVgUAj2DZrK7I3UIrWrou7ovsTY+XnrmK0ClEql6OW+Qi/N3ks3r8fN3lMR8M0TJyaTr2VYoGKXVijfvikxdnjUXP00e3/Lttk7J/vCE84cjSCRSNB92yJY2NuqxPSiCnA82RH4gh5UAZpYWqjEwv0CcGgkueqdBUo2qYOag7oSY6enLYffR3arAHt7rIShiermNfCHF04wXAVYsVMLVOzcghg7OnY+gjy9KSuig5Fp8uaVVAXo++4zzs5mtwqwRv/OKNm0DjF2YOgMpqsAe+9eQYx5Pn2NK8u2UlZEj3qj+6JQTeEqwOhQNqsALR3s0GPbYmLs082HuL1pL2VF9GiqrgqwzwSmqwC7bBCuAny89wRlRfRos2gSsQowKSEheZwKo1WATgXyov2KacQY82bvq2fCPm9uleP6bPZ+e+Meps3eu21eQDR7jw3XA7P3KUOJMZbN3jnZF55w5mgMGxdnQUfgt+dv4IH7UcqK6NFq/ji4FC+kclyWmMh8FaDQLMCnB07j+bELlBXRo/2K6cQqwITYOKarAHOVKCxYBXhny362qwA3zod1DkeV47ERkdjDchVgxTKCVYBXl2/DtwfPKSuig0QiQc8dS/W2ClBwFuCcNfB+/Z6yIjpIDQzQ2325XlYBlmnZANX7diTGTkxaDP8vPygrooOhsTH6eKwkVwF+/YmTU8jt+CxQqau6KsA5+lkF+IbtKsCag7vrp9m7tRU3eyewp98kxISFU1ZEB702e581CrnLCJi99xqP+OgYHaji6Cs84czRKBU7tUCFTs2JsaNj5jFdBdhXYBagPlcBHhw6A+F/AukKooRiFiCJn0/YrgKsP6YfCtaoSIwxXwW4ndyC+OnGA/arAMuVUDkul8uxm/FZgJ3Xk5OMelEFWIRcBejeaxwS4+N1oEr7OBV0Q7vlU4mxR3tO4NXpK5QV0aPj6pmwc82lcjwhJhYevcezWwVYuhhazB1DjN3a4KGXVYAxYRHYN4DxKsDJQ4gxlqsA0zJ7PzhsJrPnvFj9GtzsPRXBv3xwlHWz9x5tiTHmzd49BMzeP3/HKYbN3jnZD55w5micrnpcBdhkmkAV4IrtTFcB9ti+BOa21iqxyMBgph2Bi9aphnoCswDPzVkD7zcfKCuig9TAAL13r4CxuZlKLNTHD0fGkNt0WaBMywao1qcDMXZy8hK2qwD3rIKBkZFKLODrT5yaSq4cYoHK3VqjfLsmxNjhUXMQ4v2bsiI6GJuZorfHCsEqwAvz1+tAFR1qDekhXAU4aBoiA4MpK6KDmY212irAa6t2UFZEjzSrAMMjKCuig5WTA7ptWUiMvb9yF3e3HaCsiB7NZ49G7tICVYC9xyM+hs3uRHVm7y+OXcCzw2cpK6KHOrN3j97jmTZ7b7tkMjH2YNcRts3e182BTa4cKsf12ez95lp3Zs3eOdkPnnDmaBxLR3t0F5oFeOMB7mzeR1kRPZrNEKgC/P/NK6tVgHa5XdBZYBbg61NX8GT/KbqCKKKuCnA3w1WAzoXyod1y8izARx7Hma4C7LRmFrEKMD46hu1ZgKWLCc4CvLl+Nz7eeEBZER0kEgm6qqkC3Nt/ErM31QpU/UewCvDS4k348eQVXUGUSKsK8MDQGcye8+IN/kXtYT2JsTMzVsL33WfKiuhgYGiotgrwGMNVgOXbNRGuAhy/kO0qwD0CVYCfvuM0w1WAVXu1R5lWAmbvw2bqpdn7rxf/MW32XmdEbxSpU5UY2ztgMiKDQigrooOFnQ167SSPRtILs/dKZVWOK83eIyJ1oIqjb/CEM0crlG3VULAK8PjERQj84UVZER3SqgI8PYNsxMQCaqsAR85GmB+bm1djczPBKkDv1x+Y3rzWGtIdxRr8S4wdGDwNUSFsjtZQWwX44DlurHWnrIge6qsAJzJ7U83a2VFtFeD9nYcpK6KHUBWgLCkJHn0mMHtTLa0qwBcMexS0VVcFyPBNNXVVgPd3Hmbao0BdFSDLN9XUVQHeWLMLX+8/o6yIDhKJBN23LoKFg51KLDokDPuHkAsKWKBQjYpoMGEQMXZhwQZ2PQqkUvRyXy5o9n6U4e5EdWbvp6YuY7Y7UXEjVcjsnWWPAk72gSecOVqj05pZsMuTU+V4QkwsDo+czezmNXfpYmgpMAvw5rrd+PXyP7qCKKGoArR0tFeJRYeG49h4crKGBQpU/QeNJg0mxi4v3gz/z98pK6KDVCpFL4EqwHD/QJyexu6YheIN/kWtoT2IsbOzVjFrtmRgaIjeu1fAyNREJRbs6YPz89bqQBUdyrdrgsrd2xBjJyYtZtZsSV0VoN+Hr7i6gl2zpaq92qNMS3IV4JHRc5kds2BqaYHeu1cQqwA9n73BbYY71dRVAR4cNpPZMQvqqgA/33rE9Lz6xlOGwq1iGZXjcrkcB4ZMZ3bMgo2LM7pumk+MvTlzjelOtVbzxiJnicIqx2WJiTgwdAazYxYc87miw6oZxNjjfSeZ7VQDhM3eE+PicWj4LGbzEjmLFxI2e9+8j9lONU72gSecOVrDzMYaPQU2r2/P38CrU5cpK6JHw4mDkb9KOZXjcpkMB4ZMZ7Y6yNrZEd23kh2Bnx44zazxDgC0mDMGuUoVVTmeGB+PgwxvZOzz5kanNTOJsbtbDzBrvAMA7ZZNhWOBvCrH46Kima4UcSlaEG0EqgCvrdrJrPEOAHReP5dYBRgdEoYTk8ijpFjAtVxJNJ81ihi7MH8dsy33EokE3bctgoW9rUos7PcfnJ21ir4oShT6txLqjxtAjJ2evoLZlnupVIpeu8hVgIHff+HS4k06UEWHkk3q4N+B5CrA4xMWISo4lK4gShgYGqK3QBWg73+fcJ3hrqWKnVqgYucWxNjhkXMQGxlFWREdjExNk03VCGbv3x++YLpr6d8BXVCySW1i7OCwGUiIi6OsiA7qzN4/XL2L50fOUVZEj/pj+qHQv5VUjitvqiUm6kAVR1/gCWeOVinRqBZqDOhCjB0ZNZfZ2UGKKkDSaI2fT17j3vaDOlBFh/LtmqBCp+bE2IGhM5AQy2Z1kJGJSXJFGGG0xsdr9/Ds0BkdqKJDtT4diZtX1jcyppYWgqM1Xp64hDfnrlNWRI+6I/ugYI2KKsdliYk4yHB1kIWdDboLjNZ4uPsY0yYsTaYMJXoUJMTG4dAIdm+q2bg4o9O6OcTYzfUe+PWCza4lAGg1fzycC+dXOR4bHoGj48iVkSzgmN8VbZdOIcYuL9kMv49fKSuiR4eV02Gb20XleERAEE5NZbf9OleJwmgxZwwxdm72agT/8qEriCJdNs4ndieGePni/Lx1OlBEB7eKZQS7E09OXoLwP4GUFdFBIpGgx46lxJtq/p++4+rybTpQRYeidaoJehQcGTMPMWHhlBXRQWpggF7uy4k31bxevsPtTXt1oIqjL/CEM0frtFs6hbyR8f6Nc3PW0BdECZdihQTNlk5OWYpw/wDKiujRcfUs4piFP19+4MqyrTpQRAe3CqVRZ0QvYuzo2PmIDmVzprFEIkGXDfOIYxa8Xr3HrQ0eOlBFhyK1q6Jq7/bE2KERsxAfHUNZER2kUim6bV5AHLPw9d5TPNx9TAeq6FCmZQOUa9uYGDswdAazM40NjIzQbctC4piFdxdv4eWJSzpQRYfK3VqjWP0aKsflMhn2M9y1ZGxmii4byd0azw6dxfsrdygroketwd2Qr7Kq2VJSQgIODpvJ7A0WUytLdF43hxi7u+0gvj98TlUPTRqOH4hcJYuoHI+PjsHhUXPoC6KEpYMd2i2fSoxdX7UDPm8/UlZEj2YzRsIxv6vK8eiQMJyYSO7YZAG73C5otWA8MXZhwXr8+fqTriCKtFk0EdYuTirHw/0CcHrGSh0oooNzoXxoOn0EMXZmxkqE+vpTVsTRF3jCmaN1LOxt0WHldGLsxlp3Zs0ZAKDJtOHElvuYsAgcn8DuRsY2Vw60XjiBGLu4aCPTG5lW88fDJqezyvFw/0Ccns6uaaRTQTc0nTGSGDszcxVCvH9TVkSP9sunwdzORuV4sKcPzs9ntzood+liaDCuPzF2YtJiRAYGU1ZEj05rZ8PEwlzluN+Hr7i2aocOFNEhf5XyqDm4GzF2ZDS7XUsSiQRdN82HobFqdZDn09e4s/WADlTRoUTDmqjUtRUxdnD4LGa7lqQGBsk3WAhdS59uPsST/afoi6JEubaNUbp5PWJsP8NdSwZGRui6eQEx9vr0Vbw+c5WyInpU690BhWtVVjkuS0pKvqnGaNeSsbkZOm8g31R7tOcEPt16SFkRPeoM7wXX8iVVjifGxTPdtWRmY42Oq8mjAG9v3APPZ28oK6JHo0mDkaNIAZXjsRGRODqW3VGAHN3CE84cKlTp2Q6Fa1dROc78RsbMFF0FqoNYN2eoPbQH8lYorXI82ZyB3eogM2srdFwzixi7s3kffj59TVkRPRpOGAiXYgVVjsdFRuHoWHbbr62cHNBuGbk66OqK7fB995myIno0nzUa9nlzqxyPCgrBiclLdKCIDvauudBy3jhi7Py8dQj84UVZET1aL5oEK2dHleOhPn44O3u1DhTRIUeRAmg8hdy1dHraMoT5sTnTGAA6rJoBMxvVrqWArz9xaclmHSiiQ97ypVB3VB9i7Nj4hYgKYbdrqfP6uTAyM1WJ+bz5iJvrdtMXRYnCNSujer9OxNjhkXMQFxVNWREdko2/FxK7lr4/eI6H7kd1oIoOpZvVRfn2TYmxgyx3LRkaCnYtvb98By+OXdCBKjpU7NwSxRvWVDkul8uZ7loyMjERvKn2/Mh5vLt0i64gjl7AE84cKkgkEnTbvJA40/jHo5e4v+OQDlTRoWSTOvinI3mm8cGh7JozSA0M0F1oI3OFbXOGCh2bo0TjWirH5XI59g+exmx1kJGJiaDj+YtjF/D2wk3KiuhRvV8nFKj2j8pxheM5qzdYTCzM0Xn9HGLswa4j+HrvKV1BFKk7qg9ylymmcjwhJhaHR85m9pxb2Nmo7Vr69ZLdmcZNpg6DU0E3leMxYRE4Np4825sFbFycBV3uLy/eDP/P3ykrokereeOIRqERfwJxehp5hj8LOOZ3RfOZ5K6ls7NWIdjLl7IierRbOoVoFBr8ywfn562lL4gSuUoURsMJA4mxE5MWIyIgiLIienRaM4s409jv4zdcXbFdB4rokL9yOdQc0p0YOzJ6LmLCIygrooNEIkGXjfOIM41/PX+L25v36UAVHYrVq47K3dsQYweHz0J8DJtdSxzdwRPOHGrkLF4IDScOIsZOTlnKrDkDAHRcPROmVpYqx/0/s23O4FaxDGoPJ880ZtmcQSKRoOvG+XppzlC0bnVU6dmOGDvM+kzjLQuJjudf7z7BQw92ZxqXbdUQZVs3JMYODJmOpIQEyoroYGBoKGgg+Pb8Dbw6dZmyInpU7t4GRetWUzkul8lwgOXqIFNTwZtqTw+cxodr9ygroketId3hVrGMyvHE+HjmZxp3WjubGLu79QC+P3pBWRE9GowfCJfihVSOx0VF4+gYdtuvLR3t0W75NGLs2qqd8PnvE2VF9Gg+cxQc8uVROR4VHIoTkxbrQBEd7PLkRKv55K6lC/PXIeD7L8qK6NFm0URi11LY7z84M5PdmcY5CudHk6nDiLHT05YzPdO4w8rpxK6lwO+/cGnxJh0o4rAMTzhzqNJs+ghuzpAK1s0ZWi8Yr5fmDE4F3fTWnKH9imkwt7VWOR74wwsXFm7QgSI65ClTHPXHkmcaH5+wCJFBIZQV0aPzujkwNjdTOe777jOurd5JXxAlClSrgJqDuhJjR0YxPtN48wLiTOOfT17j3vaDOlBFhxKNaqFi5xbE2MFhM/VypvHH6/fx9OAZHaiiwz/tm6Jk0zoqx+VyefJNNUa7lgyNjQVvqr08cQlvzl2nrIge1fp0QKF/K6kclyUm4uDQGeyOAjQ3QxeBmcYPdx/DlzuPKSuiR50RveFaroTK8YTYOKZnGpvb2gjONL61YQ9+vWC3a6nx5CFwLpxf5XhsRCSOjWN3FKB1Die0XTKZGLu8ZDP8Pn6lrIjDMjzhzKGKPpsz1B7WE3n/KaVyXB/MGToJzDS+vWkvN2dgEGtnR7RdOoUYu7p8G35/YHcj03z2aNi55lI5HhUUgpNTlupAER3s8+ZGi7ljibHzc9ciyNObsiJ6tFk8GVZODirHQ7x/49ycNfQFUcKlaEE0mkyeaXxq6jKE+wdQVkSPDqtmwtRatTroz5cfuLJsqw4U0cGtQmnUGUHuWjo2bj6iQ9mdadxlwzwYmZqoxLxff8CtDR46UEWHwrWqoFqfDsTY4ZGzme5a6rp5AXGm8dd7T/FwN7tdS6Wb10P5dk2IsQN6OtP43cVbeHnikg5U0aFS11YoVr+GynG5TMb2TGM1XUvPDp/D+yt3KCuix7+DuiF/lXIqx5MSEpjuWuLQhyecOdTh5gz6Z85QoVMLsjkD6xsZPTZnqDGgC/JXLa9yPCkhAQeGTmd2I2NqaYHO68jt1/d3HMLX+88oK6JH/dF9katUUZXj8dExODxqDn1BlLCwt0X7FeT26xtr3eH9+j1lRfRoMnUYHAvkVTkeHRqO4xPY7VqyzZUDrRdOIMYuLtoI/y8/KCuiR6v542GT01nleLh/IE5PX6EDRXRwKpAXTWeQZxqfmbkKId6/KSuiR7tlU2FuZ6NyPOinNy4sWK8DRXTIXaooGowjdy2dmLQYkYHBlBXRo+OaWTCxMFc5/vv9F1xbtUMHiuiQv0p51BzcjRg7PGoO211Lm+YTu5Y8n77Gna0HdKCKDsUb/ItKXVsRYweHzWR2prHiphqpa+nTzYd4cuC0DlRxWIQnnDk6QV/NGfJVKotaQ3sQY9ycgU2K1auOKj3aEmMsmzNIpVJ0F5hp/OX2Yzzee0IHquhQtnUjlGnZgBhjeqaxkRG6CbRfvzlzDa9OX6GsiB5VerZD4dpVVI7LkpKSb6qx2n5tZoquG8ndGo/3ncTHGw8oK6JH7aE9kLdCaZXjiXHxODSc4a4layt0FOhaurN5H348eUVXEEUaThgIl2IFVY7HRUbhCMMzja2cHNBu2VRi7MrybfB995myIno0nzUa9nlzqxyPCgrBiclLdKCIDvauudByHnmm8fl56xD4w4uyInq0XjSJPNPY1x9nZq3SgSI65ChSAI2nCHcthfn9oayIHh1WzSDONA745onLS9idaZy3fCnUHdWHGDs2bgGiQtjsWuLQhSecOTpBn80ZWi+cAOsc+mnO0HTacGLs9PQVCPvN7kZGcKYx4+YMecqWQL3RfYmx4xMWISo4lK4gSkgkEnReLzDT+L9PuL7WXQeq6FCoRkXUGNCFGDs8cg5iI6MoK6KDRCJBt80LYWBkpBL78egl7u84pANVdCjZpA4qdGpOjB0cNgMJcXGUFdFBamCA7gJdSx+u3sXzI+d0oIoOFTo2R4nGtVSOsz7TWF3X0svjF/H2wk3KiuhRvV8nFKheQeW4LDERB4fNYPYGi4mFObpsmEuMPdh1BF/vPaWsiB51R/VBnrLFVY4nxMTi8MjZzJ5zCzsbdFg5nRi7uW43fr1kd6Zxk6nD4FTQTeV4bHgEjo0nFxSwgI2LM1ovmkSMXV6yBf6fv1NWRI9W88bBNreLyvGIP4E4PW2ZDhRxWIMnnDk6g5szqMK6OUOjyUPIM43DI3CUcXOGNouFNjJsmzO0mDMGdnlyqhyPCAjCqanszjR2cMuD5rNHE2PnZq9G8C8fyoro0XbJZFg62qscD/Hyxfl563SgiA45ixdCo0mDibGTU5Yi/E8gZUX06Lh6FkytLFWO+3/6jqvLt+lAER3cKpZB7eHkmcZHxsxDTFg4ZUV0kEgk6LpxPrFryevlO9zetFcHquhQtE41VO3Vjhg7PGIW0zONBbuW7jzBoz3HdaCKDmVaNkDZNo2IMaa7ltSMAnx7/gZenbqsA1V0qNy9DYrWraZyXC6T4QDLowDVzDR+euA0Ply7R1kRPWoN7ga3SmVVjifGxzM909jUyhKd1pJHAd7degA/Hr+krIjDGjzhzNEZ+mzOULGLnpozmJgImzMcOsvNGRhE7UZm20F8e/CcsiJ6NBjbH7lKFlE5zvpMY0sHO7RbTm6/vr5qB3zefqSsiB5Np4+AY35XlePRIWE4MZHtmcatFownxi4sWI8/X3/SFUSR1gvGw9rFSeV4uF8ATs9gt2vJqaAbmk4fQYydmbESIT5+lBXRo93yacSZxoE/vHBh4QYdKKJD7tLFUH8seabx8QmLEBkUQlkRPTqvnU3uWnr3GddW79SBIjoUqPoP/h1I7lo6Mmou2zONNy8gzjT++eQ17m0/qANVdCjRqBYqdm5BjB0cNhMJsYyOAlR0LRFmGn+8fh9PD57RgSo6lG/XBCWb1lE5znrXEocOPOHM0SnqzBmOjGZ8I6On5gzF6tdApW6tibGDw2exu5FJy5xh/yn6oihRrm1jlG5ejxg7MJTdjYyBkZFg+/Xr01fx+sxVyoroUa13BxSuVVnluD7MNO68gTzL9dGeE/h06yFlRfSoPawn8v5TSuV4Ylw8011LZjbWgl1LtzfugeezN5QV0aPRpMHkrqWISBwdy3DXkrMj2i6ZTIxdXb4Nvz+w27XUfPZo2LnmUjkeGRiMk1PY7Vqyz5sbLeaOJcbOz12LIE9vyoro0WbxZFg5OagcD/H+jXNz1tAXRAmXogXVdy35B1BWRI8Oq2bC1Fp1pvGfLz9weekWHSiiQ95/SqHOCHLX0tGx8xEdyuZMY4lEgi4b5sHI1EQl5vXqPW5t8NCBKg4r8IQzR+cImTOE+vjh7OzVOlBEhxxFCqDx1KHE2OlpjJszrJxONmf4+hOXlmzWgSI6qDVnGL+QWXOG5JnGc2FkZqoS83nzETfX7aYvihKFa1ZG9X6diLHDI+cgLiqasiI6JFcHLYTU0FAl9v3Bczx0P6oDVXQo3awu/unQjBg7OHQGEuPjKSuig7qupfeX7+DFsQs6UEWHip1bonjDmirH5XI5+11LAjfVXhw9j3eXbtEVRJEaA7ogf9XyKseTEhJwYOh0Zm+wmFpaoPP6OcTY/R2HmO5aqj+6L3KXLqZynPWuJQt7W7QXmGl8Y607vF+/p6yIHk2mDYdjgbwqx2PCInB8AttdS60XTiDGLi3eBP8vPygroker+eNhk9NZ5XjEn0Ccnr5CB4ro4FQgL5rNHEWMnZm5iumuJY524Qlnjs6xsLNBh1UziLEba93h898nyoro0WTKUDgVyqdyPCYsAicZdr+2cXEWnmm8eDPTppHqzBnOMux+7ZjfFc1nkTcyZ2etYto0st3SKbBwsFM5HvzLBxcXbdSBIjrkKlEYjSYOIsZOTFrM7A0WAOi4ZhZMLC1Ujvt9/Ibra3bpQBEd8lUqi1rDehJjR8bMY/oGS5eN84gzjX89f8t0+3WxetVRpUdbYuzQiNnM3mBRO9P49mOm26/LtW6EMq0aEGMHh81g9gaLgZERum0hG6e9OXMNb8/foKyIHlV6tEWROlVVjsuSknBwOLsdLMZmpui6kdy19HjfSXy585iyInrUHtoDeSuUVjmeGBePI6PJRposYGZtJTgK8M7mfUx7LTWcMBAuxQupHI+LjMLxCeyaRnK0C084c7IFlbu1RtF61VWOy2UypudeqjNneLTnBNNfajUHCZszsGwmZ2pliY5rZhFjd7bsh9+nb5QV0aPBuAHIWaKwyvG4qGicYTjZbuloj3bLhGcaB3v5UlZEj2YzRsIhXx6V41HBobjI8KxTu9wuaDV/HDF2ceFGRAQEUVZEj9YLxsM6h2rXUpivP66t3K4DRXTIUTg/mkwdRoydnbUaMeERlBXRo/2KaTC3tVY5HvDNk2kDwTxlS6De6L7E2Kmpy5gdEQYAndfNIc409n79gWkDwYLVK6DGAPJM4+MTFzE7IkwikaDb5gUwMDJSiX27/4xp352STergn47NibFj4xcyOyJMOdNYwGvp/dW7OlBFh386NEOJxrVUjsvlchyfsJDZGyyGxsZqvZa4gSAnM/CEMydboG6m8btLt5k2kyvRsCYqdmlJjB0bv4DZLzV15gzPj5zH94fstmX+074p0ZxBlpjIdGW7obExugm0Xz/YdYRpM7lqfTqg0L+VVI4nxMYx3aJnbG6GLgIzjW+t92C6m6HOiN5wLVdC5XhseATOz1unA0V0MLe1EZxpfGXZVqa7GRpPHgLnwvlVjkcEBDE999I6h5Ng19L5eeuY7mZoMWcM7PLkVDke/MsHN9a660ARHRzc8qD57NHE2OkZK5ntZgCAtksmw9LRXuW434evuL/jkA4U0cGlWCHhmcaTlzDbzQAAHVfPhKmVpcpxz2dv8OzQWR0oooNbxTKoPZw80/j4hIXMdjNIJBJ03Tif2LX06eZDprsZitaphqq92hFjx8azm2znaA+ecOZkG1yKFkRdgUqR4xMXMfulBgDtV0wnzrf9fOsR019qef8pJeh+fWzCIma/1CQSCTqtnU2cb/v69FV8vv1IB6roULhWFeINFrlMhhOTFutAER2kUik6r59DrBR5vJftbobSzeuhVLO6KscT4+NxetoyHSiig4GhITqvJ7edst7NULFLKxSqqWoaGRcVzbQ3g5GpqWCynfVuhn8HdiXeYIkOCWO6m8HUyhLtlk0hxi4u2sR0N0P9Mf2IN1jCfP1xbdUOHSiig6WDHVotGE+MnZ29huluhqbThhPHwgV888Ttzft0oIgOdrld0HTGCGKM9W6GVvPHwcLeVuW4z5uPTHczOBV0Q8MJAmPhGO5mAIC2S6cQx8J9u/8Mr05e1oEijpjhCWdOtqLptGHEWaesf6nZ5XbR2y+1lnPHEr/Uvj94znSLXo7C+VF7WA9i7PiERcy26AFAm8WT9LKbwbVcSVTt3Z4YY7mbAQDaLZ9G7GZ4dvgcvj96oQNFdCj0byWUb9dE5bgsMREnp7A7OkgikaD9imnE2P2dh5n2ZijVrC6K1a+hcjwhNg5nZrDbzSA1MED7FWRjMda7GSp2aYV8lVVHhLHezWBobIy2SycTY1eWbmHa/LpG/87EEWERfwJxZdlWHSiig7G5maCZ3AXGuxnqjeoDe7fcKseDf/ngBsPm1+a2NnrbzdB48hBYOauOCPP7+I3pbgYbF2c0njyEGDvBeDcDR/PwhDMnW2Fua4MWQl9q01cw/aXWaOIg4txLv4/fmDYcss7hhMZThhJjrLfoNZ85CmY2VirHPZ+9YdpwyDGfq3A3wwS2uxlazR+vl90MuUoUFu5mYLxFr82SyeRuhlNXmO5myF+5HCp1baVynHVvBkWyndTNwLo3Q7H6NQS7GVj2Zkg+5+RkO+vdDOXaNCaOi4qLisbZWex2MxgYGqLdcvJNtWsrtzPdzVClR1tiNwPr3gxGpqZoKzA6iHVvhlpDuhNN7ln3ZjC1skTLeWOJMda7GRqMGwCbXDlUjgd8/cl0NwNH8/CEMyfbUXNwN3KL3u8/evClRjaZOsf6l9rY/sItegwbDlk62qPpdHKL3ulpyxEfw26LXtNpw8gtem8/4qEHw90MeXKi4fiBxNiJiYuQlJBAWRE9WswZw7sZUsF6N0PrRRP1tpuhiuAMRMa7GZZN1UtvhsI1K6Nc28Yqx1n3ZtDrboamdXg3QypY72ao0Lkl0fBcH7oZ2i0ljw5i3ZuhRv/OcCleSOV4xJ9Apr0Z9LmbgaNZeMKZk+1Q26LH+Jda9X6dyC16jBsOqftSY91wqO7I3oItejfXsWs4pK5F78wMxrsZJg0W7mbQ0xY9fe5mYNlwSG03A+PeDK0XTNDPboaSRfDvgM7EGMveDECymZw+ejPkr1JeL70Z1HUzPN57Um+7GVj2ZpBKpeiwUk+7Gdqq6WZg2JvBwNAQ7QW6GVj3Zqjasx3ylC2ucjwqOBSXFm3UgSKOGOEJZ062pFybxoKGQ2dmrdKBIjqoa9Fj/UutSs92woZDC9brQBEdjExN0XYJ+QYL64ZDtYZ0F+xmuLpimw4U0UGvuxnGDeDdDKk4NXUZ+90MAt4MvJuBTVqo8WZ4cfyiDhTRIUeRAnrbzSDozXDxFt5fvasDRXQQ6maQy+U4PoHtcVFC3QysezPwbgZVmO9m0GNvhg4rZxBjN9ftRuAPL8qKOGKEJ5w52RJ1X2oPdh2Bz9uPlBXRo1TTOijW4F+V4wmxcTg9neEvNakU7YW+1Bhv0avYuaWg4dC5uWt1oIgOvJuBdzOkRB+6GRzy5VE5rg/dDELeDPrQzSBkOMS7GdiEdzOocnzCQr3sZvh08yH73Qx66s3Auxn+Rp+9GfS5m4FlbwaO5uAJZ062Ra3hEOstesunCnypMW44VK86Sjevp3I8KSGB6S81iUQieAf5LustegLdDPHRMbybgVHUdjMwbjjURshwiPFuBv32ZiAbDulrN0Pg91+8m4FR1HUzPNqjx90MiYmUFdFDb70ZihRA7aF62s2wSKCbQU+9GXg3A7vdDBzNwBPOnGxN60UTYWiin19qVXu3J8ZYNxxqq6eGQ4X+rYTy7ZqoHJclJeltix7vZmATdd0MrBsOqetmYN1wSF+7GWr078y7GVLBuxnYRF03w+kZK/W2m+E+72Zgkuaz9LSbIT/3ZkiNPnczHGfcm4GTdXjCmZOtcczninqCLXpsf6m1Umc4dO66DhTRIVeJwnrbotdGX1v01HQzHGe9RY93M/wF6y166roZmDcc4t4MKjDfzdCjrd56M/Buhr8J8/XX226Gs7NW62U3A/dmYLybwd5W5bjeezPoYTfDt/vPmO5m4GQdnnDmZHuaTBVo0XvL+Jdabhc0nDCIGDvOuOFQSyHDoYcv2DYcKpxf0HDo2PiFTLfotV40kdii9/7yHby7fFsHiujAuxl4N4MCfTYc0otuBgHDIaa7GQwM0H7FdGJMn70ZeDcDm/BuBlX0oZvB3i23ynF96GZozr0Z/oJ3M7DbzcDJGjzhzMn26LXh0MRBsM6h+qXm/+k704ZD1jmc0HjKUGKM9S81IcOhX8/f4unBMzpQRAd1hkMnJi7W324Gllv01HUzMN6ix7sZ/kYvvBkEDYcY72YQMBzSZ28Gfe5mODt7tQ4U0YF3M+inN0NbPe1mqDWkO5wK5VM5rs/eDGf11Jsh4Jsnbm/epwNFHDHAE84cUVBrSHdBw6GrK7bpQBEdkr/UxhFjzBsOje0vaDh0a+MeHSiig6WjPZrOGEmM6UWLnlA3w+5jOlBEB3XdDCf0tZvhwXPezcAoQt0M3JuB3Rss7ZZP490MKdDnbob7Ow/D579PlBXRg3czqMK8N0OXVoLdDOfmrtWBIjoYGhuj3bIpxJjedjP8CdTbboYLjHczcDIPTzhzRIGBkZHefqlV79dJuEVvyWYdKKKD2i+1+esRFRxKVxBF6o7oRTQcCvHyxY21u3SgiA5quxlmrkRsZBRlRfQQ6mbw+/iNdzMwCu9mUIV5b4b547k3Qyq4NwObqO1mYN2bgXcz/IU+eDMIJdvv6kM3w7+VVI5zbwb962aICg5lupuBk3l4wpkjGsq2bkRs0YuPjmH+S02oUuT66p0I/uVDWRE9qvRsp7ctekKGQ5cYb9ETNBzSixY93s2QksDvv9g3HBLoZjg9bbn+djOw7M2gxnCIezOwibpuhuMTFrHfzWDCuxlSwrsZ2KRwzcoo17axynFZUhL73Qwrycl2ffZmODODdzNwOAp4wpkjGpLn4Ql/qfm++0xZET1KNqmDYg3+VTmeEBuHMzNX6kARHaRSKdoLzEC8ud4DgT+8KCuiR8XOLZG/SjmV47ERkcwbDqntZvBju5shV8kiKscjAoJwZdlWHSiig7G5GdosmkiMnZ+3DtGh7LboCXUzBP/ywc31u+kLokRa3gzx0TGUFdGj0aTBgt4M93ce1oEiOqTVzcBysr35rNHEbgbPZ2/w/PBZHSiig2M+V9QT6maYyHayXV03w38XbupAER3UdTMcn7iY6WR726VTBLsZvtx9ogNFdFDbzcB6sl2gm+HRnhPwevVOB6roUKx+DZRuXk/leGJ8PE5PX64DRZzsDE84c0RFvkplUalba5XjcpkM5+exOydLIpGg/fKp5Ba9fafg//m7DlTRoVi96sQvtaSEBFxctFEHiuigrkXv3raDCPH+TVkRPdR1M1xdzu7M9uQWvanE2I217ogMCqGsiB6V1RgO3Vy3m74gSqjrZriybCvTY2TUdTPc3XZAB4rooK6b4eLCjUiIi6OsiB7quhke7T2pA0V0sHSwE+xmODd3LdNjZJpMFehmePMRr05e1oEiOqjrZjg7ezXTidcWc8YQuxm+3X+GD9fu6UARHdR1M5xj2CwTUOPNcPEWvj96oQNFdFDXzcDy/G4AaLtsKrmb4fA5posAORmHJ5w5oqP1wgnEFr0XRy8w/QEn9KUml8lwYQG74yUA4S+1h7uPIfAnu1XOQoZDifHxuMTw/G51hkO3N+9DuH8AZUX0EOpmiIuMwrVVO3SgiA7quhmur96JmLBwyoroUbFzS6LhUFRQCG4zbJBqaGyMtksnE2OXl25heqSIkDdDiPdvPNh1RAeK6KDOm+HigvVMVzkLdTP4f/qOZ4fP6UARHdR1M5yfu5bpKudGkwbDylm1m+HX87d4e/6GDhTRwcbFGY0nDyHGzs1Zw3SyXcib4dPNh/hy57EOFNFBnTfDecYTr0LdDK9PXWG6ylmom0Eul+PCfHY7cTkZhyecOaLDMZ8rag1VvYOsDx9wLeeOhYGRkcrxJ/tPwf/LDx0ookOuEoVRjZBslyUm4tKiTTpQRI/WCycQK9vvbz+EEB8/HSiiQ/7K5VC+fVOV4wkxsbjCcJWzRCJBW4GK11vrPZiuci5WrzqKN6ypcjw6NBw3GK5ylkgkaLOYnHi9umI701XO5do0Jibbw/0CmK5yNjA0FEy8Xlq8mekq5yo92xGT7YE/vPB4H7tVzkampmg5dywxdmH+OqarnGsO7gZ7t9wqx33efsTrU1d0oIgOplaWaDZjBDF2fu5aphOv9cf2h5WTg8rx7w+e4+P1+zpQRAdLR3s0nDiYGGO94rXJ1GEwtVZNtr+7dBs/Hr/UgSI62OXJibojexNjLI9ABIAWs8fAyNRE5fjzI+fh+/6LDhRxsiM84cwRJY0nDdHLDzj7vLlRvV9HleNymQwXF6zXgSJ6NJ0+AlIDA5XjD9yPMl3l7FKsECp2aalyPDE+HpcZrnIGgOazRhGP3960l+kqZ7eKZYhjZGIjInF99U4dKKJHc4FKuOurdjBd5Vy0bjWi03tkYDDTxokSiQTNZ48hxi4v2cx0lXPZ1o2Qp2xxleMhXr546H5UB4roIJVK0WwmebzEhQUbmK5yrtStNZwK5VM57vfxG54fYbfK2dDYGE2nDSfGzs1dw3SV878Du8Amp7PKcc9nb5ie5WxiYY6GEwcRY6xXOdcd2RvmdjYqxz/deMD0LGcLOxvUG9WHGGM92d5wwiAYm5upHH918jK8X7/XgSI62OR0xr+Duqoc14ciQE764QlnjiixyemMmoO7qRzXhw+4JlOHCVQ5n8afrz/pC6KEU0E3VOnZVuW4LDERlxezXeXcbOYoYpXzve0HEerrrwNFdMhTpjhxpEhCTCyurtiuA0X0EEq83ly3G1HBoXTFUKRQjYrEkSLRoeG4ud5DB4roIJFI0GLOGGLs2ortiIuKpiuIIqWa1oFbJXKV873tB3WgiA7JyXby+/zS4s1IjI+nrIgeFTo2h0vxQirHA7//wuP9p+gLooSBoaFwxev89UxXOVfr0wH2eQlVzm8+4vVpdqucjUxNBc0yzzFe5Vx7WE9YOtqrHP92/xk+3XigA0V0MLO2QoNxA4gx1sdL1B/bH6ZWlirH3128hR9PXtEXRAkrJwfUHt6LGGO9yrnx5KHEUafPD5/D7w9fdaCIk93gCWeOaGk0aYhefsA5uOVB9b4dVI7LkpJwcSHbs5yFq5yPIcjTWweK6JCzeCFU6NxC5XhiXDwuL9XjKuc/gZTV0CNfpbIo1ayuynF9qHIWmvd5bdUOxIRHUFZDj6L1qqNgjYoqxyMCgnB78z4dKKKDRCIRPOeXl2xGQizbVc65yxRTOR78ywcPdx/TgSI6SA0M0Fygyvnigg1ISkykrIgelbu3gVNBN5Xjfh++4vnR8zpQRAdDY2M0mTaMGLswbx3Tidd/B3aFtYuTynHPp6/x7tIt+oIoobbKmfFke92RvWFua61y/OP1+/h676kOFNHBwt4WdQWqnC8wnnhtOGEgscr55YlL8H7zQQeK6GCbKwdqDhIoAmS8+5qTPiRylj/tOcxzePQc3CTM9qzUtRX6H2D3iy3I0xszC9WBLNVFmdTAAHM/3SBezLDC7j7j8cjjuMrxmoO7ofuWRTpQRAff918wv1QjlQ26oYkxFny/C9tcOXSkTPtsaTeY6GbfcOJgtF82VQeK6PDjySssrdJG5biptRUW/rgLC3vbv47L5XLIZTIkJSZClpiEpISE5P8q/v///ytLTERSirji/1P+N/n5iSrPSflceZIMEqkEkEgglUohkUohkUr+/7/S/z/2v/9PPvb3/yviqZ9/asoyotnKv4O6oUa/jn89X/rX6/3/MQMDGJmawMjUBIamJjA2MyXerMpufLh2D2sbqnoUWDk5YMGPuzCxMNeBKu0jl8uxpHJreD57oxLrvG4O6o7sQ10TLV6euISt7VUNtuzz5v4/9s46LIq2C+P3Lt0tSJctKmIrdnd3t6/dCtiC3d3d3d1iC7aohKQg3b37/YHwic8MbMzuwLC/6/J69cwwe3ifnTj33M95sPTHAyirki/WuYAgNxdLq7dFpF8AsW3YwbVoOIx8sc4Vnh08g8MjZhPx8lUrYMGHm6XiWiUJOVlZWODYHPGhEcS28Rd2oVb3dixkJR/ubdqPM9OWEnHbejUx98VFyllsXCAjJRUedq5IiYkjtk27dxyVWzZiISv5cG3ZZlxZuJ6IV27dBNPucPclckpsPDzsXJGRnEJsm/fqEmwpZjRxhXOzvXBnLbnOjHOvDhh3lrsGofjwSCxwaIqczMIzs3g8HhZ9uQOzyuSMJgVlB4XgrKBUkxARBQ971zJ5gTs6dj7ldONGI/pg6P41LGQkH6J+BGFx5VYQ/tPzT0lFBcv8H1JO2eQKe/tPolzNvuXUEei7cRELGcmH0Hef4enciYiramrA8+dTyoVp2CI3OxuZqWnISstAVlr6//+kphf6d2ahf//ZNzWN+HfElx/ITCYXjVPV1ICyqgohFCugh6+sXCBCq6irQUVDvUCQ/n9MrdA++WJ1oX1of1adch8VdTXwlZVFEhSEQiHWNOmNwGdviW291rqjzcwxsvhfUyL4cPUetncZRcT1zE2xPOARVNTJVeC5gEAggGetjgj/6EdsG7R7BVzHkP0RucKr45ewfxDpbjdxtMXir3ehpKzMQlayJzcnB4sqtURMYAixbfTJLajTj1y3gSs83nkUxyd4EHGrWlXh5nONs8JrVnoGPOxdkRRJrj8x+cZBVGvfXP5JyYlbq3bgwrxVRLxC03qY8fAUZ8c8PTEJ7rZNkJZArj8x6+lZOFLMaOIKF93X4KbXNiLu1LkVJl7h7iy9pKhouNu5Ipti/QmP9zdgWYNct4ErnJy8CA+3kq3v6g3qjpFHN8o/IQUlBoXgrKDUQ3eBqzuwG0Yd426vrJifoVhYoUXZdDkPm4EXh88T8abjB2HgDk8WMpIPEZ+/Y5lTO8LlrKKuhuWBTygXpuEKO3qMpVzNvu2ccei5SjyXc25ODtITk5GekIS0+ESkJybTCMGkUJyVlkEIw38LzArRVwEVPD6/QIRW1dSAhp4O1HW1oaGr/efvOgWxxF+/8ZiihYaWkSGW+N2FlpEBJwt0oVCIFXW7IuTtR2Jbvy1L0GIS9SrwXMDn3A3s7k32eTW0scDS79x2OS+p1gZR3wKJbcMPrUODob1YyEo+eO8/jSOj5hDx8lUrYMHHW+Dzudn1MDszEwsdmyM+7BexbfzF3ajVrS0LWcmHexv34cz0ZUTcrn4tzHl+gZPXdSDP5exu2wSpsfHEtun3j6NSCw67nJduwpVFG4h4lTaumHqbuwsCp8TGw922CTJTSMPE/NeXYVOnBgtZyYezM5fj7vq9RLx2744Ye4a7aw7Fh/3CAodmxPoTPD4/zwRYyYGlzBSwjUJwVlDqiQ+PxAL7ptQXuM+3Oe1yPjJmHrz3niTijUb2xdB9q1nISD4U6XIOeARDK3OWMpM9e/pNxNvTZJ/HltNGou+GhSxkJB9CfD/BqzbZx1pFXR2jTua1z0mLT8wTkfOF5D9/zxOW//93qml+ChSUFvjKytDQ1c4TrP8Rq6kE7Pz9NHR1/voZbaioqbH9qxB8uHIX27uSiy3pW5hhmf9DTrucl9fsgIhP34htg/esRJPR/VnISj68PHYRBwZPI+LlKthh0Zc73HU5Z2fnuZyDQolto09tRZ2+5P2OKzzacQQn/ltAxK2cq8Ht7VXOCq9Z6RnwsGuCpChy/YnJNw+hWrtmLGQlH26u3I6L88m6pEKz+pj58BQLGcmHtIREuNs2QXoiuf7EbO9zcGjkwkJW8uGi22rcpFjUvUaX1vjvMinIcoXEyN/wsG9K6XJe8OEmLJzIdRu4wolJC/Fo22EiXn9wD4w4Qr54UVA2UAjOCjgB3QWO69M4YoJCsbAijcv5+wOY2FuzlJnsOTB0Bl4eoXA5TxiMgduXs5CRfAj/9A3La7Qv1S5noVCI7IxMpCckIZVGJCYF40RE+gUgKy2d7fQVKOAEymqqhAitZWQAHRNDaJsYQdu48N/z/ytLoVooFGJFnS4I8flEbOu/dSma06wCzwXenr2OPX3IRdWMbC2x9PsDKKmosJCV7BHk5mJJ1TaI+k7hcj68Hg2G9GQhK/ngve8UjoyeS8TNq1WEx4ebZdLlPOHSHtTs2oaFrOTD3Q17cXYG+Yxq18AZc56d56zYnpGcAnc7V2qX84MTqNS8IQtZyYerSzbi6uKNRLxqW1dMucVhl3NMHNztXKldzm+uwMbFiYWs5MOZGcsoF/iu3acTxp4mW41whaJczou/3oVpRXuWMlPAJgrBWQEnKMsXuCOj58J7H+kOaDyqH4bsJXumcYWo74FYXKU14XJWVlXFsoBHMLAsz1Jmsmd334nwoVjNvtX0UeiznnQNyZrcnBykxMQh+Xcskn/HIikqBsm/Y/L+HZX335SYuEJu43/PVQUKFJQO1HW0oW1imCdGGxtCm0ag1jExgraJIdR1tMUSUd5fvoMd3che1QaW5bHU/2GJdGYzQVEu5yF7V6HxqH4sZCUfXh69gANDphNx04r2WPTlDmcX0cvNzsbCii0Q+zOM2Dbm9Da49CHXLuAKD7cfwcmJ5POKde3qmP/mCmeF16y09LxezhQu5ym3DqNq26YsZCUfbq7Yhotu5BozFZs3wIwH5GxNrlCUy3nO8/Owb1Cbhazkw4X5q3BrJblYXo2urfHfJY67nO1ckZ2RSWxb8PEWLKpXYiEr+XBi4gI82k6+SKk/pCdGHCYX0VTAfRSCswLOUFYvcNGBIVhUqSXpclZWxtLvD2BsZ8VSZrLnwJDpeHn0AhFvNnEoBmwlVwPnCuGfvmGZE7mau4qGOpYHPoaemXQuZ6FQiMzUtD+CcTSS/gjJ+eJx8u+YP6JyXjw1Np5wXCsQDx6fD1VNDahpaUBVM++PiqYGVDXUoKSqisyUVAS98CV+TklFGXUHdoOqpgaUlJXBV1aCkooy+MrKUFJWKvRfvrISlJSVC7bn/5v/z35KykpQUlGhjBf8nIoKeHweIASEAgEEAgGEAgGEAuGf/wogFAoLxaj2Efz7MwIBBP/8+5L7Wvz68oP43V36dEK1js0pfz43Oxs5mVnIychEVnoGsjMykZORiez8P39iZDyzUFzxYkR6lFVVoZUvRucL1MZ/BOu/Yjp/hGpNQ32sqt8dob6fiWMN2L4MzSYMYeG3kA9vz1zDnr4TibixnRWWfLvPWZdzbk4OllZrS+lyHnF0I+oP6i7/pOTE070ncXTMPCJuXr0SPN7f4LTLeYFDMySERxLb/ruyDzU6t2IhK/lwd/1enJ1JupztG7lg9tOznBXbM5JT8no5xyUQ22Y8PImKzRrIPyk5cWXxBlxbQq4rVK19M0y+Qa5DxBVSYuLyejmnphHb3Hyuwtq5OgtZyYfT05fi/sb9RNylbyeMOcVdl3NcaAQWODRDbnZ2oTiPz8div3swrWDHUmYK2EIhOCvgDEVe4Djucj48ag6e7T9NxBuP7o8he1aykJF8iPwWgCVV25RNl3Of/+Bz9joRbz1jNHqvI1eAF+Tm0rqQk/4SkvP/TdV7rKzC4/OhpqUJVU31QmLw3+KwqqY6VLU0C/1breDf6n/2//+/C/b7c1xlVdVii8xNbYfg650nRLzz4mnovGiajH579vn24Bk2tBxIxLWMDOD58ynUtbVk9tkCgaCwIP2XGJ2VnkFuoxWyMwr+m5mShvSkZGQkpSA98f///ffeVVbh8XhQ1dZEZjI5DVfTQA/DDq2Fsa0V9C3MoGmgxylxRiAQYHmN9oj4/J3YNmTfajQe2ZeFrOTDiyPncXDoDCJuWskeiz5z1+Wck5WFhRVbIC44nNg25sx2uPTuyEJW8uHB1kM4NXkREbd2ccL815c5dW7/TVZaOtztXJH8m8LlfPsIqrZxZSEr+XDDaxsuuZMu50otGmL6/RMsZCQfUuPzXM4ZSaTLee6LC7Cr78xCVvLhwryVuLVqJxGv2a0NJlzcw0JG8iHx12942JMuZx6PhwUfb8G8WkWWMpM9xye44/HOY0S8wdCeGH6IuyZABdQoBGcFnOL4fx54vOMoEef6BS46MASLKraAIDe3UJyvrIylPx7A2Ja7Lud9g6bi9fFLRLz5pGHov2UJCxnJh/CPflhWoz0R5ysro+HwXshMSfvLkZzX0qKsXe7VdbShoa8LTX1daBro/vV3vcJ/19OBmrZWYTH4L3FYFDFYHvh7v8HaJr2JuKa+LpYHPYGmvh4LWckeoVCI9c374cfjV8S2Hqvmod2c8SxkxSxCoRA5mZlIT0xGelJKgQj9/cFzXF++hdhfWV0NFZs1QGZKat6+ScnI+POz/76A4zIq6mrQtzCDvoXpn/+Sf9crXw7Kqqpspyoyb05dwd7+k4m4sb01lvjd47TLeXGV1oj2/0lsG3lsE+oN7Cb/pOTEkz0ncGzsfCJu4VQZ7u+uc9flnJEBD4dmSIyIIrZNvLofTp1aspCVfLi9djfOz/Yi4g6N62DWkzMl4plDFqQnJcPdtgnS4hOJbTMfnUKFpvVZyEo+XF64HteXbSbi1To0x+TrB+WfkJxIjo6Fu20TyjVYOO9ynrYE9zcdIOJ1+nXG6JNbWchIPsSFhGOBY3PCSMFXUsJiv3so52jLTmIKWEEhOCvgFHQXuLIwjePwyNl4duAMEW8yZgAG717BQkbyIdLPP8/l/M+lTFlVFcsCH8PAwoylzKRDKBQiJSYO8WG/EB/6C/FhkUgo+Hvev2MCQzgtLqmoq1GKxLnZOZTubhUNdcx8fBrGdlbQ0NOBkrIyC1nLlo1tBsPv7lMi3mXJdHRaOJWFjOSD3/1n2NiKdDlrGxtiedATmbqc2UQoFGJVg+74+eo9sa3PxoVoNXUksX9matpf7uk8Efr/TuokZPwlaKcnpSAjMQnpSSlIi09ESkw80uISOPdySqecMfTNyxUpTpcUt7QgNxfLarSnbCMzdP9qNBrBYZfz4XM4OGwmES8TLucKLRAXQrqcx57dgdq9OrCQlXx4sOUgTk1ZTMRt6tTAvFeXSsQ5KQsyU9PgYeeK5OhYYtvUO0dRpXUTFrKSD9c9t+Kyx1oiXqllI0y/d5yFjORDalwC3O1cqV3OLy/Crl4t+SclJ87PXYHbq3cR8Zrd22LChd0sZCQfEiKi4GHvipzMf9aY4vGw4NNtmFetwFJmsufYeDc82UWezw2G9cLwg+tYyEgBWygEZwWcg3YaB8cvcNEBwXm9nClczsv8H8LIxpKlzGTPvoFT8PrEZSLeYvJw9Nu8WO75FIdAIMgTk/+IxwlhkYgPjUB8WOT//x32i3hAKY0oq6lCp5wxdEwMoWmoT+EwzvsvlbCsoq5Oe9xtnUfi47X7RLyD+yR0Wz5Llr8Sq/g/fY21rn2IuKa+Ljx/PoWGni4LWckeoVCIdc36wf8J6XLuuXo+2s4ex0JW8uHj9QfY1mkEEdcrXw7LAh5DVYP+PJEEQW4uUuMSkBwdh9SYOCRHxyElOhYpMfFIjo5FSnQcUmLikRId+2dbHCd6XatoqEPf3LREuKVfn7yMfQOmEHETBxss9rvHyZdpQNEu51HHN6HuAA67nHcfx7FxbkTcokZluPty3OVs3xSJv34T2yZeOwCnji1YyEo+3F6zC+fnkIYQxyZ1MfPxac6K7UW6nB+fRgXXeixkJR8uL1hHOWupescWmHSNdMJyhaJczu6+12BVqxoLWcmHU1MX48Hmg0S8Tv8uGH2C/C5whdjgMCys0ELhclagEJwVcI+yPI3j0IhZeH7wLBF3HTsAg3Zx1+X866s/llajcDmrqWJ54BPom5vKLReBQIDk3zEFonH8X2JyvkM5ITyqVAs0Wob60ClnlPfH1AQ65YygW84IOqbGf+LG0P3zd3UdbZkUTT9fv8fKeqT4oK6jDc+fT6FlqM/4Z5YUNrYeBL973kS8y9IZ6LSAFKm4gt89b2xsPYiI65gYYXnQE6hpabKQlewRCoVYWb87gl+TLue+mxah5RRSjJYnQqEQmSmpeeJzTJ4AnfxHoE75S6D+v1gdh/RE0uFVWtApZ1wgRBtYmsHI1hJGdlYwtrOCsb01tAz1pb7mCXJzsdSpHSK/+hPbhh5Yg0bDyZdOXOH5obM4NJx8aWhW2QELP90uky7nced2wrkn2UKLK9zffACnp5It0Gzq1sS8lxc5K7xmpqbB3bYJUmLiiG3T7h5D5VaNWchKPlxfvgWXF5AmoMqtGmPaXdI0xBVS4xLyejknpxDbuO5yPjdnBe6sIV3OtXq0w/jzZJwrlGmX87j5eLKb7M3ecHhvDDtAznJQwE0UgrMCTkJ3geN6e4nf/j+xuHIrwuWspKICz59P5Sq8ypu9AybjzckrRLz1zDHovdadkc8QCARIjor5IyRTt7pICI8qdYt/Kauq/iUgk6KxTjmjP383hraxQYnph7q10wh8uv6AiHO9vcSPJ6+wrik5rV7LUB8rQp9DVVODhaxkj1AoxFrXPgjwfkNso2ovwSU+XruPbZ3J38/AsjyWBz4udX19c7Ky8gRpCoE6+R8HddS3AAhycos/aAlBXUcbRnaWMLa3zhOh/wjRRnZWMLa1FPn8fH3iEvYNJK9jphXtsejrXc46XnNzcrC4citEBwQT27jeXuLxzqM4PoFc9Jfzi+ilZ8DD3hVJkdHENq63l7i1eicuzCUX9+Z6e4n0xKQ8l3NCErGN68LrJY+1uOFJ9u/lenuJpN8x8LBzpXQ5L/pyF+WrOLKQlXw4OXkRHm49RMS5vsZUzM9QLKzQAoKcnEJxvpISlgc+hqG1BUuZKZAnCsFZASeJDQ7DAsfmxAVORV0NK0KfQ9vYkKXMZM/B4TPx4tA5Is71VgMRX35gWfW2hMtZXVcHK8OeQ11HW6TjpCclIyYwBNEBIYgJ/P+f6IAQxIVElCoxWdvYEGZVHP8RjUkxWUNPt1QWskGv3mFV/e5EXNfUGJ7B3lBRU5N/UnJiQ6uB+Hb/GREfuGM5mo4fzEJG8uHr3afY1Ib8/YztrLD0x0POuh+FQiFW1uuG4DcfiG1cbzXge/4mdvUiF4bUNjZE1XauSAiP+vMnkrKQLWnompnA2M4KRnZWMMkXov8I1AaW5Qu+w4LcXCyt3haRfgHEMbi+oNqzg2dweMRsIu7QuA5mPyVncXGF7MxMLKzQAvGhEcQ2rrcauLdpP85MW0rEud5qICMlFR52rpQuZ49312FZsyoLWcmHa8s248pCUmzjequBlNh4eNi5Ei5nHo+HpT8ewsTBhqXMZM+52V64s5YU1bk+Ezc+PBIL7JsSs1uVVFTgFewNvfLlWMpM9hwdOx9P95AmwDazx6HXanKxXAXcQyE4K+AsR0bPhfe+U0S867KZ6OhBrgDPFaJ+BGFxpZaE8KplZJDnfmS432dJYnffifA5c42I/z3tXJCbi4TwSEQHBCMmMBTRfwnKMYEhSI2Nl3faYqGirgYDK3MYWJpB37I8DKzKQygU4taK7cS+pdX9KA6b2w/Fl1uPiTjXp51/e/gcG1oMIOKmleyx6At33Y9CoRCrG/VE0AtfYtu48zvh3IO7087fX76DHd3GEHGuTzsXCARYXqM9Ij5/J7b9Pe1cKBQiPTGpQHzO+xP1//9G5P09OSqmxC6KyFdWhqG1eYErOj0hCW8p7mlcn3aem5ODhRWaI/ZnGLFt3qtLsK1bk4Ws5MPDbYdxctJCIs71aedZ6Rlwt22C5N8xxLbFX+/CrDJ33Y83V2zDRbc1RJzr087TE5Mw37oxsYgeX0kJy4OewNDKnKXMZM+F+atwa+UOIt5iynD027RY/gnJiaSoaLjZNCbaS5QFQ9jx/zzweMdRIt7RYzK6LiMXy+UKMUGhWODYjFjkXkNPByvCXnB20W8F/0chOCvgLBGfv2Np9bZEXNfMBJ4/n3La/bij+xi8v3SHiA/a5QXXsQNZyEg+BL30xaoGPYi4uq427Bs4IyYoDLE/w0qsS1lFQx2GVubQtzSDgVV5GFiWh4GlWSGBma4/6PoW/fH94QsiPurEZtTt31Ue6bPCl9uPsbndUCJuUaMyPN7d4KwIJxQKsaJOF4T4fCK2cX2hpbdnr2NPn/+IuKNrPcx6fJqFjOSDQCDA4sqt8PtHELFt1tOzcGxch4Ws5IP3/tM4MmoOEXfq1BITr+4X61i52dlIjIz+R5D+R5wuBW7peoO6wbZerQK3tLGdFaf6mN/dsBdnZywn4nUHdMWo45tZyEg+ZKamYb5VQ2JBNR6Ph6X+j2Bib81SZrLn6pKNuLp4IxFvOn4QBu7wlH9CciI1LgHzrRoS1xxlVVV4Bj+Fnhl33Y9nZy7H3fV7iXjbOePQcxV33Y/x4ZFwt21CzMRV09bCyrDnnF0AGijCELZ8Fjq6T2IhI/kQ9T0Qiyu3Il54axsbwivkWZk0hPXbsgQtJg1jISMF8kQhOCvgNHTux+GH1qHB0F4sZCQfvj96gfXN+xNxsyqOWPT5TqkX4QQCARIjov64lEP+71QOCEbw20/EA1xJQFVTI09E/iMeG/xxJ+v/JSpr6kve2uLDlbvY3nU0EbetVxNzX3DX/SgUCrHMqR21+/HecVRu2YiFrOTDy6MXcGDIdCJeuXUTTLtDuii4Qm5ODhY4NkNcMLm41vw3V2Dj4sRCVvLh4fYjODlxARF37tUB486SbimukJ2RATcbGvej3z2YVXJg9POKdUv/iSVFkfmwiU45Yxjb5S1iaFrRDmaVHWBa2QGmFe1LnRidnpSM+ZYNiWnnfGVleAY9gYFleZYykz107seWU0eg78ZFLGQkH5J+x8DNuhHpftRQz3M/GhmwlJnsOTFxAR5tP0LEOy2cgi5LZrCQkXyI+RmKBQ6k+1FTXxdeoc857X48MGQ6Xh69QMR7rXVHm5nkbCauQGcI0ytfDp4/n5aYdWJkwfauo/Hhyl0iPmj3CriOIWctcoXA52+xuhGpu5g42mLJt/ucnZWpIA+F4KyA03y+9Qhb2pNvzqxqVYWbzzVOi3BeLp0R6vuZ2Db5xkFUa99c/kmJSUZKKmKD/t/yIiYwtEBgjg0KI/pgsYmattY/juTCQrKBpZnM+yQX5X6c7X0ODo1cZPbZbOO97xSOjJ5LxJ06t8LEK/tYyEg+5GRlwd22CRJ//Sa2LfhwExZOlVnISj7cXb8XZ2eS7sd6g7pj5NGN8k9ITtC6H/l8LPN/BGM7K5Yykz1XFm/AtSWbiHjTCYMxcDv5XZAH2RkZiP0Zhpig0LwZNEGheferoFDEBoVSLojFFgZW5nkCdCV7mFV2KBCj9c1NS+yz0JkZy3BvA3kNbzd3PHqsnMdCRvKhLLsfD4+ag2f7yZkq3b1mo/38iSxkJB+ivgdiUSWyL7uOiRG8Qryhos5h92Of/+Bz9joR7791KZpPJGewcYUQn0/wculMxA2tLbAs4BGUlJVZyEo+bG43BF9uPyHiww+vR4MhPVnISD58e/AMG1qSM43LV62AhZ9ul9h7MROsatAdQS/fEfEJl/agZtc28k9IgdxQCM4KOI1QKMTS6m3x68sPYtv0BydQqXlDFrKSDy+OnMfBoaQrompbV0y5Rboo2CAnKwu//YMR5ReAX1/9EeUXUCAqlyTnmIFleRjb5/XUNLSxKHAn5wvMJaX4o+v9WLt3R4w9Q/Z45grZGRlws26M5OhYYtuSb/dhWtGehazkww2vbbjkTvZ+bDSyL4buW81CRvIhPTEJ8ywbIjMltVCcr6wMz59PYWBhxlJmsufCvJW4tWonEW81fRT6rCfdz1whKSoabtaNiZeNKhrqWBn2AlqG+uwkVgSp8Yl5InT+n8CQgn+XlBenatpaBSL032J0uQq2rItctO5HAz2sCH1e6lzb4rBv0FS8Pn6JiPde54HWM8jZTFwh/KMfltUge/HrmZvCM+gJp92P27qMwser94j4kL2r0HhUPxYykg8Bz95iTeOy6X5c16wvfjx+RcTHnN4Glz6dWMhIPny++RBbOgwn4lbO1eD29ipnhVehUAhP544Ie/+V2Db55iFUa9eMhazkw5tTV7C3P7mGVsXmDTDjwUkWMlIgLxSCswLO82TPCRwbS/YBq9GlNf67TPYN4wpFuh8/3oJF9UpyyyU1PhFRfv6I9AvAr68BiPILQKRfAGICQyDIzZVbHnSoamrA2N4axvZWMHGw+fN3a5jYW8HI1pL1oltUMlJS4WbVkHDV8fh8LAt4BGNbDrsfF63HtaVkX89m/w3BgG3LWMhIPqTExmO+VUNkp2cUiiurqcIr5Bl0yxmzlJnsOT1tCe5vOkDE282bgB4rSMc7V4gP+wV3O1fC/aiuo40VYc+hoavDUmay5/DI2Xh24AwRL43uR4FAgMRfv/8vSP/ljI4JDEVCeCSrixvyeDwY2VrmteT42xVdyR66piZyEwR29Z4A33M3iHj/bcvQ/L8hcsmBDYLffMCKuuT6C4Y2Fljmz23348Y2g+F39ykRH3FkA+oPJtfp4Ap+959hYyvS/WherSIWfLzFaRFuVYPu+PnqPbGN6+7HdxdvYWePcUTcvmFtzHl2noWM5INQKMSSam0Q+dWf2Dbj4UlUbNaAhazkw/NDZ3Fo+CwiXrVdU0y5eZiFjORDbk4OPOybIj40gtjm5nMV1s7VWchKgTxQCM4KOE9WegbcrBshJSauUJzH42Hxt/swrWDHUmay57rnVlz2IFe4bjyqH4bsXcXoZwkEAsSFhBeIyZFf8wTmSL9Ayr6bbFG7T0dYVK/0f1HZwRo65Yw58yB/fu4K3F5NrmTfesZo9F7nwUJG8oHO/aiqqYEVoc9LpPuRKY6Nd8OTXceJeOfF09B50TT5JyQnogNDsNCxGSHKlQn348ApeH3iMhHvvd4Dracr3I9cIDszE3EhEQVtOm6v2Y2YwBC20wKQt7r8345o08oOMKvsCBMHa8bHwN/7DdY26U3Ey1Www2K/e5x2P6517QP/p6+J+Jgz2+HSuyMLGcmHj9cfYFunEUTcunZ1zH9zhTPPa/8iFAqxvFYHhH/wI7ZNuXUYVds2ZSEr+fD65GXsGzCFiHPd/SjIzcXCii0or+1zX1yAXX1nFrKSD092H8excW5EvGa3NphwcQ8LGcmH7MxMuNs0ppzJu/DzHZhXrcBCVvLh9ppdOD9nBRGvP6QnRhxez0JGCuSBQnBWUCa4vGAdri/fQsSbTRyKAVuXspCRfEiJictzP2ZkFopL437MSs/A7++Bf8Tk/4vLUd+DCJelPFFRVyskIof6fqacptZ+/n/o7jWHhQzlQ1xoBDzsXAnnuLquDlaGPYe6jjZLmcmeQyNm4fnBs0S8x8q5aDd3AgsZyYdIP38srtKaiOuUM4ZX8NNS49CXhJ09x+HdhVtEfMD2ZWg2gbvux5+v32NlvW5E3MjWEsv8H4GvpMRCVvJhY+tB8LvnTcRHHN2I+oO6yz8hOeF3zxsbWw8i4obWFmgxZXheL+k/LumYwBBi4TV5wFdSgrG9NSlGV7KHtrGhRMcUCoVYWb87gl+T7sf/ruxDjc6tpE27xOJ7/iZ29RpPxO0buWCO9zkWMpIPAoEAS6q2RtS3QGLbzEenUKFpfRaykg/PDp7B4RGziXi19s0w+cYhFjKSD7nZ2Xnux7BfxDZ332uwqlWNhazkw/3NB3B66hIiXqdfZ4w+uZWFjORDVnoG5ls1RGpsfKE4j8fDku8PUM7Rlp3E5MC1ZZtxZSEpsDYZMwCDd5OCLFdIS0jEfMuGyExNKxRXUlGBV7A39MqXYykzBbJEITgrKBMkRv6Gu00Tavdj2AtoGeixlJnsoXM/dlkyHZ0WTqX8GaFQiJSYuL9cynl/ovwCEPszjLVpvrpmJn8EZZu89hcFArMNdM0KT/Glcz9qGepjRehzqGpqyDt9ubF3wGS8OXmFiPfZuBCtpo5kISP5EPb+C5bXIl1f+hZm8Ax6AiUVFRaykg9bO43Ap+sPiPjQ/avRaERfFjKSD/5PX2Otax8iblrRHou+3i2T7sexZ3egdq8OLGQkH2jdjy5OmP/6cpl0P069cxRVWjcp+LcgNxexweGI+vb/e3fkt0BE+QWwtj6ClpEBzCo7wLxaBVjUqAKLGpVh4VQJmvrFP3+9PnEJ+waSzyuVWjbC9Hvk8w1XEOTmYmGF5ogJCiW2cd39+HjXMRwf707Ea3ZviwkXdrOQkXwoyv246MtdlK/iyEJW8oHO/dhgaE8MP8Rd92NGcgrmWTZERlJyoThfSQnLAx/D0NqCpcxkzyWPtbjhSYrqLSYPR7/Ni+Wej7xIjo6Fm3UjwhCmoq4Gr5Bn0DExYikz2XNqymI82HKQiHdwn4Ruy8lWIwpKPwrBWUGZ4eDwmXhxiHSE9Fg1D+3mkA4SrkDnftQ1NcbSgEdI+hVNKSynxiXIPVe+sjJMHPIE5HxROd+1bGxnJfYUeTr348Ady9F0/GCm0i5xBL16h1X1uxNxYzsrLP3xkNPuxw2tBuLb/WdEfOSxTag3kHSEcoWvd59iUxvyO23hVBke729wWoRbWa8bgt98ILZNvLofTp1aspCVfKBzPzo0roPZT0mnP1co0v34+DQquNZjISv58OzAaRweSc7QqdahOSZfPyjSMdISEhH1rfAspahvgfj94yfRF1weGNpYwDJfgK5RGZY1KsPE0bZQj+Ky7H68t2k/zkwjZ+Jx3v2Ylp7nfvznWZTH42Hpj4cwcbBhJzE5QOd+dB07AIN2KdyPXOTsLE/cXUe2kWgzayx6rSHbTnCFxF+/4WbTGLnZ2YXialqaWBH2XKQXkqWVo2Pn4+meE0S8y9IZ6LSAbC/DFaIDgrGwQnPSEGZkkGcI0+DurMyyikJwVlBmoHM/GliWx/LAx5x2P25uPxRfbj0m4nxlJQhy5L9on4aeDsyqOP5/EaLKDihfxRHGdlaMjsOPJ6+wrinp7jStZI9FX7jtflzduBcCn70l4uPO7YRzT7IHKlf4cPUetncZRcRt6tTAvFeXOC28Lq/ZAeEfi3c/co1Xxy9h/yDS/Vi5VWNMu3uMhYzkQ1Hux3mvLsG2bk0WspIPj3cexfEJZE/6Wj3aYfx5soc9V8jOyICbTRPKdRGkdT/mZmcjJii0kBgd9S0QkV/95f4CWkVdDeWrVYRlvghdswq+PXiO68vI1mgNhvXC8IPr5JqfPCnL7seL7mtw02sbEW8xZTj6bVos/4TkRHJ0LOZbNSTa4qioq2FF6HOJ29OUBk5OXoSHW8nWIR09JqPrspksZCQfYoPD4GHfFEKBoFBcQ08HK8JeQF1bi6XMZM+BoTPw8gi5QGLP1fPRdja5oCJXiPjyA0urkQti6poawzPYGypqaixkJR92dB+D95fuEPFBu7zgOpZcOFVB6UYhOCsoU2xoOQDfHjwn4qNObEbd/uRq4KWRpKhohH3wQ/gHP4R/+Jr338/fIchmx7mULyr/LSzLa5E+oVCIFXW7IuTtR2LbxGsH4NSxhcxzYIu3Z69jT5//iLhjk7qY9eQMCxnJB4FAgCVVWiPqO+l+nPXkDByb1GUhK/ngvf80jowi3Y/VO7bApGsHWMhIPuRmZ8PdzhUJ4ZHENo/3N2BZowoLWcmHexv34cz0ZUS87oCuGHV8MwsZyYey7H68umQjri7eSMRdxw3EoJ1eMvnMlJi4gpYcBUK0XwBiAkOI9QJkCg/AP1WLkooKvEK8oWfGYffjzOW4u34vEW8zexx6rZ7PQkbyISEiCu62TUj3o7YWVoQ+47T78ciYefDeSy6W13X5LHR0n8RCRvLht/9PLKrYoky6H3f3nQifM9eIeL/Ni9Fi8nC55yMvQnw/wat2ZyJuYGWeZwj7a7YL16AzhA07uBYNh5GL5XKF749eYH3z/kTcrIojFn66zWlDWFlEITgrKFN8uHIX27uOJuI2dWti3suLpcr9mJ2RgV9f/f8Iy34FIjOV80mWKKupFiwO9LewbFrRXuwWGLLg5bGLODB4GhHnuvsxNycHCxybIS44nNg2//Vl2NSpwUJW8uHh9iM4OXEBEXfu2R7jzu1kISP5UJT7cfHXuzCrzN3ejzdXbsfF+auJeMPhvTHswFoWMpIP6UnJmG/ZEBnJKYXifCUlLA96AkMrc5Yykz0X3Vbj5ortRJzr7sek3zFws25Euh811PPcj0YGcsslOzMT0QEhiPoWQIjR6YnJxR+AIXTKGaNqW1dY1KxS4IrWNTUpVc90RRHzMxQLHJqVTffjkOl4efQCEe+5xg1tZ41lISP5EPH5O5ZWb0vEdc1M4PnzKafdj9u7jcaHy3eJONfdj4HP32J1o15E3MTBBku+3ed0O7x1zfvhx6OXRHz0yS2o068LCxnJh8+3HmFL+2FE3LJmFbj7XufMPexfhEIhvFw6I9T3M7Ft0vUDqN6Bu4awsohCcFZQphAIBFhcuRV+/wgits16ehaOjeuwkFXRCIVCxIf9KnAs5wvLUd8C5eos0jExyltt/i9R2ayyA4xsLEr0Q1BOVhbc7VyRGBFFbOO6+/Huhr04O2M5Ea87sBtGHdvEQkbyITM1DfOtGiItPrFQnMfnY5n/IxjbWbGUmey5sngDri0hx7bp+EEYuMOThYzkQ2pcAuZbNURWWnqhuLKqKjyDn3La/XhmxjLc27CPiLedMw49V3HX/RgfHgl32yZE32E1bS2sDHsODT1dljKTPUdGz4X3vlNEvJvnbHRwm8hCRoURCoVIioom2nNEfPqO+NAIueSgY2JU0Bc6rzd0FZSv6ggV9dLpkNzd5z/4nL1OxPttWYIWk0jBgiuE+HyClwvpfjS0tsCygEfcdj+2G4Ivt58Q8eGH1qHBUFKY5ArfHj7HhhYDiLhZFUcs+nyHsyIcAKxq2ANBL3yJ+PiLu1GrG/kCgiu8v3wHO7qNIeJ29Wth7ouL8k9ITgiFQiyt3ha/vvwgtk2/fxyVWjRiISv58OLIeRwcOoOIV2njiqm3j7CQkQJZoRCcFZQ5Hm47jJOTFhJx514dMO7sDhYy+j+ZqWmI+Pz9/67l918Q/sEPaQlJcvl8Hp8PY3trwq1sVtlBrq4pprm5Yhsuuq0h4o1G9MHQ/WScK9C6H5WV4fnzKQwszFjKTPZcmL8Kt1aS53PLaSPRdwN5/nOFpKhouFk3Rk4W++5HeXP8Pw883nGUiHdaOAVdlpAPtVyBzv2oqa8Lr9DnnHY/7h88Da+OXSTivda6o81MsnjlCuGfvmGZUzsirle+HDx/PoWyqioLWYlGWkIiwj9++/9L9PdfEf7xG/GySBbwlZRgWsm+YHFCiz+LFRpYli/xIlbAs7dY05jC/ehom+d+5PAU5HXN+uLH41dEfPSprajTlxSjucLnmw+xpcNwIm5VqyrcfK6V+O+spAiFQnjV7oTQd1+IbZNvHES19s3ln5SceHP6Kvb2I1umVGhWHzMfki8ZuYJAIMCiSi0R7f+T2Dbn2TnYN3SRf1Jy4smeEzg2ljQH1OjSGv9dJlspcYWcrCy42zZB4q/fxLYFH2/BonolFrJSIAsUgrOCMkdJcD8KBALE/gwr6LGc71qO9v9J9C2TB1XauqL3Og+Uc7Qpte6foijK/egV4g1dUxOWMpM9p6cvxf2N+4l4u3kT0GPFXBYykg907kd1HW2sCHsODV0dljKTPYdHzcGz/aeJeHev2Wg/n333o6yI+h6IRZVaEnEdEyN4hXhz8tqWD537sf/WpWg+cSgLGcmH4LcfsaIOOd22LLgfN7Udgq93SPfjiCMbUH9wDxYykhyBQICYwJA/z0NfC166RwcEy+XzNfV1YVW7OmzqOMGmbk3Y1HGCkY1liRL0hEIhVjfsgaCX74htEy7tQc2u5OJTXOHdpdvY2Z1sn2HXwBlzn5PtNrhCke7HBydQqXlDFrKSD3Tux6ptXTHlFnfdj7k5OVjg0AxxIWQ7PDefq7B2rs5CVvLhwdZDODV5ERGv3acTxp4mFw/lClnpGXCzboSUmLhCcR6Ph8Xf7sO0gh1LmcmeG17bcMmdNH41HtUPQ/auYiEjBbKAu6/DFSigQU1LE65jyalaQoEAD7YcZPzz0hOT4P/0NR5uP4Jj492wulFPTNdzwgKHptjZYxyuLNoA33M38PtHEONiM4/Ph1llB7j07YRunrMx/PB6KKmoEPsFPH0DfXNTzgoyWob6aDCMdAblZGXhEYUjkku0nDICPArn05Ndx5GZmsZCRvLBwMIMLn07EfGM5BTKqehcotW0kZTxB1sPE85nLmFa0R5OnVsR8eToWLw6domFjORHq+mjKOP3Nx2A4B/nM5ewcXFChab1iHhcSDjeXbjFQkbyo9V06vP83oZ9rLy4lgY+n49yjrZw7tkeXRZPx/jzu7DM/xE2Jn3CnGfnMHCnJ5r9NwSOTepCXQYvC9MSkvDt/jPcXr0Le/r8Bw87V8wu54ItHYfj8sL1+HDlLqULS57weDza85yqpQ6XqNG5FeVCoEEvfBH4woeFjOQDj8dDS5r7OdfHvE6/ztArT7bC+nL7CSI+f2chI/mgpKyM5pOpW+Tc20CaR7hEw+G9oalPtsLyPXcDscFhLGQkH1Q11NF0wmAiLhQKcX8Tdxf8BvIWO1ahWAj05dELSJLzmlQKZIdCcFZQJmk+aRj4FM6nZ/tPSzytUyAQIOpHEN6cvopLHmuxvetouNk2xnT9Gljr2gcnJy7Ak13HEfjcB5kpqdL+CgRaRgao1LIRWk4biaH7V2P+myvYlPIFi7/ew5hT29DBbSIaDOmJ+oO7Ez+blZaO5wfPMp5TSaLl1BGU8Se7jiP3HxcslzC2s0Kt7mTft7T4RLw5eYWFjORHa5ri/NH2o6VOkBEHC6fKqNy6CRFPjIjC+0t3WMhIftAJMg+3HZZzJvLFvmFt2NarScR//wiidMFyibI65lXbNYNZZQciHuLzCUEvyR6gpRF1HW3YN3RB03GDMGDbMsx6cgYbEj6g11o3mX92SkwcPt94iOvLNmN719GYa14P8ywbYEf3MbjuuRWfbz1CSmy8zPP4G+deHWBAsRDo94cvOC3C8ZWUaJ/hHm3jrtsVAOoP7gFtY0Mi/vHKPU6LcMqqqmhGMzvn0XZuj3mT0f0oF11/c/IK4YLlEuraWmg8htoQ9mTXcRYykh/N/htM2QrrxcGzyJCBZlBS0DYyQIOhPYl4TmYW5UxNBaUTheCsoExiYFkeLn06EvH0xGT4nr9Z7M8LhULEBIXi7ZlrOD93BTa0GoiZhjWxqGIL7O03CTc8t+LDlbuICyanREmLkooKLGpURv3BPdBz9XxMvnkIqyJeYW20D6bfO46+Gxai0Yi+sHFxgirFW0O64tx73ylOi3BmlRzg1Imcbp8UGY1P1x+wkJH8KGrMuYxNnRpwbFKXiEf7/8SPx+Rq2FyirI55pRYNYVGjMhEP9f2MEN9PLGQkH4pyP3rv4/ZDe40urWFsb03Efzx6id8U/SC5Ap/Pp3U/cnnMeTwemk8aBl1TY3Ibn4/e6zzQcuoIVGrREFqG+ox+dkJ4JN5fuoPLHmuxpf0wzDJ2hodDU+zpNxG31+7Gt4fPiTUTmERJWRktaNyPXC/OG47oAw090t3uc/Y60hISKX6CG6hqqKPp+EFEXCgUct4o0nTcQKioqxHxV8cuIis9g4WM5IOmvh4ajexLxHOzs/HyKHdbyABAi8nDKBeif37wLKfNQXpm5VBnANkeLDM1DW9PX2MhI/lBNyvz2f4znNYlyhIKwVlBmaU5zare/woyQqEQcSHh8D1/ExfdVmNT2yF5RYa9K/b0nYjbq3fh2/1nSE9MZjxHPXNTVGvfDG3njMOIoxux4MNNbEr5jAXvb2LEkQ1oO3scqrVrBr3y5UTuNWjhVJlyCvKvLz8444qio/kkarcE10U4h8Z1YFmzChEPfO6DCIregFyCfsy5XZxXa9+MUoT7evsJZW9ArpAvRlHB9TGv3asDdM3IfvTvL97mtCuKr6SEZv8NodzGdRGuwZCelC0m3py8wmlXlIqaGpqMHUjEhQIBcrOz0XfjIky/fwJrY3yxIuwFJl0/gB4r56LuwG4wr16JcoabpMQEhuDt6Ws4P9sLG1oMwHQ9Jyyu2hoHhs7Agy0HEfj8LaPiWOPR/aGsRuGEO3ye0y2T1LW10HB4byKenZGJ1ycus5CR/Gg6YTBla7Rn+89AkJvLQkbyQdvYEHUHdCXiopqDSjNFPbtyWYQztDJHzW5kP/rEX7/x+eYjFjKSHy1E1CW4hlllR8pZmb9/BMH/CblYrILSh0JwVlBmsW9YG2ZVHIn494cv8GjnUVxeuB5bOg7HHNM6cLNpjF29xuPmiu34eucJUuMSGM1FRV0NNnVqoNHIvuizcSGm3z+OtdE+WBX+EpNvHELPVfNRf1B3WDhVZmT1+caj+1PGvfdy+6ZWpY0r5XTUT9cesN6fUZbweDzaMX/G8QeZmt3bUrrcfM5c47Qris/no/GofkRcKBTi2YEzLGQkP+r270I5HfXV0QucdkUpqaigIUWv+tzsbLw4cp6FjORH/SE9KNcn4LorSlVTA/UGkoJMZkoq511RjUb2oXzR/rcgw+PxYGBhhuodWqDd3AkYdWwTFn68hU0pn+Hx7jqGH1qH1jNGo1KLhoz1hhYKhYj86o+XR87j1JTFWN2oF6bpVMPyWh1wZMw8PN51DCE+nyQWh7UM9ODcqwMRT4mJw/vLd6VNv0RDdU8DuP/sqm9uiuodWxDxuJBw+N3zZiEj+UFfr5yUcybyxbSiPRxdSXNQxKdv+PnqnfwTkiONR9Od59wec2sXJ2pz0LO3+PXVn4WM5EcTmjF/yvFre1lBITgrKLPweDzKRcUA4MQED1xfthmfbzxEcnQso59rZGuJGl1bo6PHZIw5vQ2L/e5hU8oXzH99GUP3rUarqSNRqUUjyp5tTFG7VwdqV9Spq5x2RfGVlNBoBOmQEeTm4vkhbk9NrDeoe5l0RamoqaH+kB5EvCy4ohoM60XtijpwhtMLyanraFNe28uCK4pqGi4APOO4K0q3nDFqdG1NxBN//cbnGw/ln5AcoRXhOP4y0djWCpVaNSbioriiVNTUYFmzKhoM7YXe6zww/f4JrI9/j8V+9zDiyAa0nDoC9o1cKBczkgRBbi7C3n+F996TOD7eHV4unTFNtzpW1u+GE5MW4tnBM4j4/F1ktyrdmHP9BbKFU2XKXvUhPp8Q+u4zCxnJj8ajqK/tXD/P7RvWpuxV//3hC0QHBLOQkfygH3Nuz9yp2rYpDCzLE/GPV+8jMZLj5qAyej+nNQedvY70xCT5J6SAURSCs4IyQ3J0LD7ffIjry7dgR4+xmG/VENeWbJLZ56lpa8G+kQuajh+EAduXYdbTs9iQ8AGeQU/x36W96LpsJlz6dIJZJQfKflWypCy7ohqOoHZFcb1XlJaBHpx7tifiKTFx+HDlHgsZyQ/6BzhuP7TnOfuaE/G4YO67ohqVUUGG1hX1+Tv3XVFlVJCxdnGi7FteFlxRTI45n8+HWSUH1B/cA303LsIc73PYmPQJHu9vYMjeVWg6fhCsXZwonfSSkJOZhZ+v3uPRtsM4PGI2llZvi+l6TljbtC/OzlyO1ycu4bf/T8rnkorNG8DYzoqIf7n1GHGhEYzkV1Ipq/dzp04tKfuWv794R+6LV8oTHo9Hez/35njLpNq9O0JdR5uIvz5xmfPmIKr2OYLcXLw4zO3ZWnTmoJdlwBxUb3B3Ip6dnsF5c1BZQCE4K+AkqfGJ+Hr3KW6u3I5dvSfAzbYxZpdzwZYOw3F5wTq8v3gb8WG/GPs8TQM9VGnjinbzJmDs2R1YFvAYGxI/Yo73OQzc4YlmE4bAsXEdaOjpMvaZ0lJW36JK44oq7ZTVqYm0rqi3H7nviiqjUxMdGrnAtJI9Ef/24LnCFcVRyrIrqgndtZ3j9/NaNK6ot2eYcUUpKSvDskYVNB7VDwN3eMLtzRVsTP6Eea8uof+2ZWg0og/Mq1einEkiCZmpafB/8gp31+/FvoFTsbBCc8wxrYMd3cfg9ppdCHj2FtmZmeDz+ZQinFAoxHOOt0yq078LVDU1iHhZaJlUfyjZMiknK4vzC8k1GNqTsu8611smqWlpoi6NOcjnDLfNQWV1tpaWoT6lOSg5OrbMmoMUbTVKPwrBWUGpJz0xCd8ePMPtNbuwp99ELHBshpmGNbGpzWBcnL8avuduIC6YuUWy1HV1UKlFQ7SZPQ6jT23FsoDHWBf7DlNvH0GPFXNRu1cHmNhbg89QASIrFL2iSLhenCtcUSRcF+HKsiuK9gVLWXBFUbRMKhOuqBF9iLjCFcVhV5S6utxdUSpqarCtWxPN/xuCofvXYOHHW9iY9AmznpxBnw0LUHdgN5SrYMfY5yVHx+L9pTs4P2cF1jTuhel6TljTpDcSwiMBqtlaHG+ZpKGrQ9kyKS0hCe8u3GIhI/lB+zJx7ylOi3C65YxRk6plUkQUvtx6zEJG8qOsPrsa21mhMoU5KOp7IPyfvmYhI/lRVg1hljWqwKYutTko7P0XFjJSwBQlWxFToOAfMlPT8OPJK9zdsBf7Bk3FokotMV2/Bja0HIjzc1bg7elrjLrXVLU0UaFpPbSeMRojj23Ckm/3sT7+PabfP4Feq+ejTt/OMLG3pmzRUNJR9IrSJ+JMuaJKKnw+n9I1IBQK8fwgt3tY07qijl1EdobCFcVFyrQrakAXIl4mXFEUgjNQNlxRtXq0I+LJ0bH4ePU+CxnJj5IgyKhpacKxSV20mjYKo45twtLvD7A+/j2m3T2GHivnwrlXBxhaWzDyWTmZWQjwfoPHO44CFN/p2J9hnG+ZVFafXc0qOcCxSV0iHvHpG36+fs9CRvKDrq3GU47P1rKpUwMWTmTLpADvN4j047Y5qKy2yarYoiGtOYjJ2dklkbI6Q4/rKARnBSUWoVCImJ+heH3iEk5OXgQvl86YrueEdU374uyM5Xh9/BKivgfKNIeOHpMw89Fp9F7ngXoDu8G0on2Jdy6LQ5l1RZXhXlENh/emXkhu/2nOu6Jq9+lIxNPiE7nvihpJLcKVBVdUjS6tiLjCFcVdFK4oEq4X55Y1qsCmTg0iHvzmA6uuKE19PVRu1Rjt5k7AuLM74BXsjdVRbzDx2gF0WTIdTp1bUc4+YYLtXUYRbTi4hEPjOtQtk+4/Q3RgCAsZyY9GNIIM19cnqNauKfQtzIj4x6v3kRQVzUJG8iGvhzWNCLef2+1zavVoB00DPSLuUwbMQVSztYQCAefNQXX7d6FcrPfl0QucNgdxHe4oZwpKPdmZmQh8/hZ31u3Brt4TMM+iPjzsXLFv4FQ83HoIIT6fRF7BuziU1VRhV78Wmk0ciqEH1mDS9YOU+z0/cJbTgozCFUXCdUHGwLI8qrVvRsRjf4bh2/1nLGQkP+j6nHK9P5hZZccy64qi7wmncEVxlbLqiqrUshGMbC2J+Oebj7jviqJtk1Wy7ue65Yzh1LEFOi2ciolX9mHVr9dYEfoc487vRHu3iajSxpVSYBGXnMwsyjYcF+atxIcrd0t9OyUej0ff45XjLZNc+nSiWUjuCjJT01jISD7QLiSXk8P5lkn1B/eAsippDnpx6Bxys7NZyEg+qKiro/7gHkQ8Ky0dr09eYSEj+UFnDvLed4rb5iA9XbiUUXMQl1EIzgpYI/HXb/iev4mzszyxulFPTNd1wupGvXBulid8z91A4i9mFvlRUlGBTZ0acB03EIP3rIS77zVsSv6MuS8uYsDWpWg0vA+qd2heZl1RZXWxIbpeUWy7ouRBWXXCKVxRJFx3RVUtw64oWhFO4YriJLQtkxSuKBYyEg0ejwcDy/Jw7tEe3T1nY+rtI1gX+w7L/B9h1InNaDF5OKxrVwdfSUmqz8lvw3Fr1U5s7zoas4ydsbhKKxwZPRfPDpxG1PfAUmeuKKplElPmlJIIXcukjOQU+Jy9zkJG8oPuJYP3Pm7P1tI2MkCtHm2JePLvGHy4yvWF5MpmiwVDK3NUbdeUiMf+DMP3B89ZyEh+0K6/wvEx5zIKwVmBXMjNyUGIzyc82HoI+wZNhbtdE8w1r4ddvcbj7ro9CHzuw0gLB76yMqxqVUXj0f0xcKcn5v9ZUXz+68sYtNMLTUb3h1WtalBSUSF+tqy6ouh6RZUJV1QZfZBx6twSOiZGRPzdhVtIjUuQf0JyoihX1PMD3BbhyqorSklZucy6ouoN6q5wRf1FmXFFUS0kx/WWSUW5oi7eZiEjyeHxeDBxsEHd/l3Rb/NiuL29ivUJHzDt7jF0WTIdVdu6Ul7LxSXSLwDe+07h8Mg5WFSpJeaY1slrw7F2NwKfl/w2HHpm5eDUuSURTwiPxGeOt0yi62fszfHZWib21qjUshERj/oWiADvNyxkJD/oxvwZx+sVy5pVYe3iRMSDX79H+Ec/FjKSH2XVHOTYpC5MK5LmIL973ogJCmUhIwXSIpXgnJubiw8fPmDfvn2YMGEC6tSpA1VVVfB4PPB4PDRv3pyhNBWUNlJi4/Hh6j1cdF+D9S36Y7qeE7xcOuPU5EV4ffwSYn+GSf0ZPD4fFk6V0WhEH/TfuhRzX1zAxqRPcPe9jiF7VqLpuEGwcXGCipqaSMcry64oRa+owpR0V5S0KKuqosEwioXkMrPw6thF+SckR+hcUc8OnFG4ojiKwhVVGIUrirsYWpmjKkXLpJigUHx/+IKFjOQHl11R6tpaqNyqMTotnIopt45gffx7eLy7jv7blqHuwG6Ua3GIS3J0bF4bjtleWN0orw3HWtc+JboNB50gw/WZO7Z1a8K8eiUi7v/0NSK/BbCQkfwoqyJc5VaNYWhDLjz66cZDxIdHspCR/GhC2zKJ22Neo0srSnOQ7/mbZcAcRLMANMfNQVxFYsH54sWL0NXVRc2aNTF69Gjs3LkTb9++RTaHXTMKqBEIBIj4/B1P9pzAoRGzsKhyS8wydsb2LqNw02sbvj98gay0dKk/R698OTj36oDe6zww6+lZbEz6hAUfbmLo/jVoPnEo7Oo7Q5VCPBQVFXV11BvUnYgrXFEKVxQXoRNknu49yWkRTuGKIikTrqgWDYm4whXFXRSuKBJvjvctp3VF3X3KOVcUX0kJljWrovl/QzDq2CYM3LGc8c/IycyC/9PX1G04Dp5BbLD0xhFpqda+GfTKlyPi7y/f5X7LJLo2WRzvYV2rRzto6usS8benryE9KZmFjOQDn89H47LaMmlAV2pz0JELJX4mhjQoq6qi/tCeRLxMmIOG9aJsJfWc4+YgriKx4JyQkIC0NO5Ow1VAT3pSMr7ceYJrSzdhc/uhmGlYE0urt8WxsfPx/OBZRH0LlPoz+EpKsHZxQovJwzHq+CZ4/nyKleEvMe7sDrSeMRqOjetATUuTgd+mMGXaFUXRK6pMuKLK6OKBZpUdYd/IhYiHf/BDyNuPLGQkPxSuqMKUBVcUrdjO8TEvy66ostomq0hXVHwiCxnJh7LsiqrdpxPUtLWIuIqmBjp4TGK+DceI2XC3bQIPh6Y4MnouXh2/xNi6K+JQZMukIxfkno88qT+4B2V7QK63TFLVUEddGnPQm1NX5Z+QHCnL5qDavUlzUGpcAt5z3hxE/+zKdXNQ9U4tiHh82C98uc1tcxAXkbqHs6mpKTp37owlS5bg+vXrmDp1KhN5KSghCIVC/Pb/iReHz+HYeDcsq9keM/RrYHPbIbiyaAO+3HqM9ETp3yhrGRnAqXMrdPeajRkPT2JD4ke4vbmCfpsXo+6AbjCysaS8yTKNVa1qtK6osA9fZf75bEI/HZXbxbmjaz2Uq2BHxLnoivqXsjo1sUhX1O8YFjKSD2XZFeXcs73CFfUXQoEALw6dYyEj+VGmXVFDyB7WClcUd11R6tpaqNOfbJmUnZYO0wp2BW043H2vof/Wpag7oCsMrckXUeISExgC732nsH/QVMw1r4fFVVrhxMQFeHv2OlJi4qQ+vijQtUx6xnFBRtvYkLJlUlJUDD5ef8BCRvKDrsUC100DhtYWqNLWlYjHBIbgxyOum4PKpiGsfBVH2DesTcTD3n9FiM8nFjKSH0043CarrCGx4Ny+fXsEBwcjMjISV65cwcKFC9GhQwfo6+szmJ4CeZOVnoEfj1/i1qod2N5tNOaY1sHCCs1xcNhMPNl1HOEf/KR+gOPxeDCvXgmuYwdg6IE1WPLtPtZG+2DilX1oP38iKjZrIBP3sqgoXFGF8T13g/OuKFoRjuOuKJe+1K6oV8cvM9IGp6SipKxM2be8LCwkV39wD8qF5J4fLMOuqDLaMsl73ylOu6I09fXKrCuKvn1O2WyZVBZcUXQi3NM/LZP4SkqwqlUNzScOxajjm+EV7I0Voc8x+uQWtJg8HNa1q4PHl86HFOkXgEfbj2BPn/8wy6Q2ltVsj9PTl+LDlbsyWwulnKMtKjZvQJlLwLO3MvnMkgJ9+xxu1ytWtarBunZ1Ih708h3CP31jISP5QWcOesrxMa/QtD5MHG2J+Nc7TxDzk+PmIDrhleNtsqp1aE5tDrp0h9PmIC4i8ZOFmZkZrK2tmcxFwR+EQiGysrKQkZGBjIwMZGVlyaxASE9KxuebD3HRbTXWNOmN6XpOWNesHy7MW4UPl+8iOTpW6s9Q19FGlTau6LRoKqbcOoz18e+x8OMtDNq1Ao2G94FpRfuCYjg3NxeZmZlIT09HZmYmcllwpNQd0BUq6uRCg6+OXpSZK0qeY04HW66okjDmbLii/h3z7OxsuY85nSsqIylZpgvJ5eTksD7mVK5PQLauKIFAgKysLKSnp7M25trGhqjZvQ0RT/4dg4/X7svsc/8dczaETjZeJpaEMWfLFZWTk4OMjAykp6cjKyurhI257Bwy/455Tk6OzD6LDvOqFVhxRWVnZ5eAMZd/m6y/xzwzM5OVMbetVwvm1SoScf8nrxD1nbrVnYFledTp1wX9Ni+G29ur2JD4EdPuHkOXJdNRpY30bTjCP/jh/sb92N51NGYY1sKKet1wYd5KfL71CJmpzLVlZKNNlkAgKHRPY2PMK7duQulU/3T9ARIiomTymUKhkDjP2XiJxUabrH/rFTbGvGbX1tA2NiTisjQH/T3mbNWoRZmDnsvQHFQSalQ2zEElQZdQUlamXOBekJODlzJsmVQSxpxr8IQMf3sWL16MJUuWAACaNWuGhw8fMnl4TpOZmYmEhATEx8cTNzElJSUYGBhAX18f6uqSL4yXEhMH/6ev8ePxK/x4/Aqhvp8hZLggKFfBDvaNasO+YW04NHJB+aoVKMW8fAQCAZKSkhAfH4/U1FRiu5aWFgwMDKCrqwu+lO4LUTkwZDpeHiUvZmPObIcLhWNKUjIyMgrG/N8LmrKycsGYq6mRArgsiPjyA0urkWKUtYsT3N4w5wLMzc0tGHOqXvDa2towMDCAjo6O3MZ8e7fR+HD5LhGfcvsIqrYhxRpJEAqFhcb832JcRUUF+vr6ch3zwBc+WN2QXJSiUouGmH7/BGOfk5ubi8TERMTHxyM9nXxA0tHRgYGBAbS1teU25utb9KfsUT73xQXY1Xdm5DOEQiHS09ORkJCAhIQEyjHPP89VKZzHsuDL7cfY3G4oEa/ZrQ0mXNzD2Ofk5OQgMTERCQkJxJjzeLxCYy6PlkkA4Fm7E0J9PxPxRV/uonwVR0Y+QygUIi0tDQkJCUhMTCTGXFVVtWDMVSh6cMqCt2euYU/fiUS8wdCeGH5oPWOfkz/m8fHxyMjIKLSNx+NBV1cXBgYG0NLSksuYC4VCLKzYAtH+P4lcvEKewcCyPGOfk5qaWjDm/z5aq6mpFYy5srIyI59ZHN77TuHI6LlEvPmkYei/ZQljn5OdnV0w5pn/vJTn8XjQ09ODgYEBNDU15TLmuTk5cLNuRPQUVlJRwerI19Ay1Gfkc4RCIVJSUpCQkICkpCRizNXV1WFgYAA9PT25jfndDXtxdga5gGB7t4no7jlb7OMJcnMR/tEPAd5vEeD9BgHebxEXEs5EqlBSUYFd/Vqo2KIhKrVsCPsGzlCRsL7JSs/A3PJ1iRZ/alqaWPP7LVQ1NZhIGUKhEMnJyQVj/i8aGhoFY65URN3DJFcWb8C1JZuIeI9V89BuznjGPicrK6vg2TX7n9lQfD4f+vr6MDAwgLq6ulzO87SERMwtXw/ZGYWvOdrGhlgV8ZKyv7UkCAQCpKSkID4+HsnJZPstTU3NghpVXmN+ZsYy3Nuwj4gP3LEcTccPZuxzitMl8usVDQ1mzq/iSPz1G/OtGhJGIEMbC3gGPWXseycQCJCcnIz4+HikpKQQ29nQJY6Mnkv5MmXksU2oN7AbY5+TX6MmJCQQY66srFww5tJoUeIQ9SMIiyqSvZzNq1fCwo+3GPuc4rQoNnQJLqEQnEsA2dnZCA0NFXkRRg0NDVhaWookSCVEROHH45f48fgV/B+/QsTn79KmWwgVDXXY1q0B+0YucGjkArsGzpRtGagQCoWIjY1FVFSUSG/NeDweTE1NYWRkJPOHme+PXmB9c3IKS+0+nTD29Dapj5+VlYXQ0FBK4Y0KTU1NWFlZyUWcWN2oJwKf+xDxZf6PYOJgI9WxhUIhoqOjER0dLdKY8/l8mJmZwdCQfJvPNB+u3MX2rqOJeOPR/TFkz0qpj5+RkYHQ0FCiIKdDW1sblpaWMi9UhUIhljm1I64NPD4fK8NfQM+MnM4k7vF///6NmJgYkcfc3NxcLu2ZXh67iAODpxHx1jNGo/c6D6mPn56ejtDQUGRlZYm0v46ODiwsLGQ+5gKBAB72rogLLiwcKKuqYk30W2jo6kh9/KioKMTGijZDRklJCRYWFtDVJXssM83D7UdwcuICIt558TR0XjRN6uOnpaUhNDSUKMjp0NPTg7m5ucwL1ezMTMy3bEj0VVXX1cGa32+gIuULLoFAgF+/fiE+Pl6k/ZWVlWFhYQEdHem+a6Jwc+V2XJy/moj32bAAraaNkvr4KSkpCAsLE9ntpq+vD3Nzc5kXLRkpqZhbvh4yUwoXT7pmJlgZ9qJII4Ao5Obm4tevX0hISBBpfxUVFVhaWkJLi3RqMc1Ft9W4uWI7ER+ybzXt7BZxSE5ORlhYmMjOJ0NDQ5iZmcl8zFNi4jDXvD7RHsnE0RZLvz+Q+tk5NzcXX175wO/+M4S/+oCwVx+QEhkt1THzUVFXg30jF1Rq2QiVWjSEbd0aYomGJyYuwKPtR4g4U0aRxMREREREiDzmxsbGMDU1lXm9EhscBg87V+L5iimjSE5ODsLCwiiFNyrU1NRgZWUlF0GKzhzElFEkPj4ev379EmmmBo/Hg4mJCUxMTGQ+5hGfv2NpdbJ/N1NGkezsbISFhVEKb1Soq6vDyspKLkYZOnMQE0YRoVCIuLg4REVFiTzm8tIl6MxBTBlFxNUlNDQ0YGVlJRejzLrm/fDj0UsivvDzHZhXrSDVsYVCIWJiYvD792+Ra1RTU1MYGhrKzSjDBRQSPcukpaXB399fZLEZyBMxAgICiBuBUChEdGAInh08g8MjZ2OBYzPMs6iPfQOm4PGOo4yIzYbWFqjTrzP6blqE+a8vY2PiR8x8dBo9VsxFjS6txRKbw8LCEBkZKfIUDaFQiMjISISFhcl8WkeFpvVhZGtJxD9evSf1NMDU1FT4+/uLfFEH8r4nP378EOt7IilU01eAPIecNAgEAoSEhIh8Uc//mYiICISHh8t8zKt1aE45Te3d+ZtS97ZNTk5GQECAyGIzkCdi/Pjxg3AJMg2Px6Mcc6FAAN/z0r09FggE+Pnzp8gvGPJ/Rtxrg6Q492xPOU3t7ZnrUk8FT0xMRGBgoMhiMyDZ90QS+Hw+GgwhH1xzsrIoH+TFITc3F0FBQSKLzfk/k39tkDV1B3SlFDHenpbu+gbkFaeBgYEii81A3vckICBArO+JJKioqaHugK5EPCMpGV9vP5Hq2Dk5OQgMDBRZbM7/meDgYMTEyL4PX32K7zrAzJjHxsbi58+fYk2tTkhIQEBAgMynY6tra8G5V3sinhQZDf+nr6U6dnZ2NgICAkQWm/N/JigoCHFxsl9MjvY55vRVqY8dHR2N4OBgsabZxsXFISgoSOZTc7WNDSl7WEf7/0ToO3JmhzhkZWXB398fPB0NVOnWCq09p2PY7f0YfG03WiyahAodmkJDCvd4dkYmvt1/hssea7GmcS/MMKiJLR2G4faaXQh++7HY9mb0Yy7deS4UChEVFYXQ0FCxxi8mJkYuY25kY4mKLRoS8ZC3HxEdECzVsTMyMuDv7y+y2AzkuWIDAgIoHeBMI8sxz689RH0WzDdXBAcHy7yVkHm1irCpU4OIf3/0EomR0j1Hpaenw9/fX2SxGZDseyIpDYf1powzMebh4eEiv2DI/5nIyEiEhobKvF6xq+8M04r2RPzzjUdSL3ydr0WJo0vkf0/koUs0pDnPfaTUJYRCIUJDQ0U2PgL/N1fIQ5fgEgrBmUXS09Px8+dPiR5G8oWchJhYPN55FPsGTsF8q4ZY4NAUh0fMxrMDZ6R+0Mif7tZq+iiMOb0NK0KfwyvYG6NPbkXLKSNgU0c890E++WJzYqJkvaYSExNlLjrzeDzU7tOJiGenZ0jV5zQtLQ0/f/6U6GEkf8zFuSFIgnPP9pQLx0hzMxcKhQgJCaGcjiYK8fHxiIiIkPjzRUFJWZmyOE+NS4Df/WcSHzclJQXBwcESfV/zxTtZC5C1+1C7f6QpzvO/r+I8tP5NTEwMoqJk04MwH1UNddTo0oqIx4dG4OdLX4mPm5SUJPEDaL4oI2sB0qUveX0DpDvPpb1G/f79W+ais5aBHqq0aULEf335IdVL2YSEBISHSzbVPCsrC0FBQWIJ1ZIgizHPv0ZJ+mIsMjJSrJcTkmBgYQbHJnWJeOBzH6naA8TFxeHXr18S/WxmZiYCAwNlLjq79O1MGZdmzPNfMEh6jYqIiBDr5YQkmFVygEWNykTc7643UmIl/2xp7kvp6elyESBlcZ5nZ2dTvkzj8XjQtzZHtd7t0W71HIx8eAQDL25H0/njYN+6EdR0Je8BnZmahs83H+H8nBVYUacLZhk7Y0f3Mbi/+QDCP/oRz9G2dWvC0IbsZyytUeT379+IjpbMxS3NM7840I65FIJMZmYmgoKCJLpGSfvMLyoVmzeQiVHk169fEr8Yk+aZXxyoxlxao0hGRobE1yihUIjg4GCJn/lFpVqH5lDT0iTi0hhF8sVmcV6g/o00z/yiwuPxKMdcWqNIWloagoKCJNYlgoKCZK5L1OzejnGjSL7YLOmLsfxnfoXoLBoKwZlFxHmLRoVQKERkVBROT1uK1ycuIyE8Uqp81HW0Ua1Dc3RfMQeznpzBxqSPmPviIvqsXwCXPp0Y63WYmpoqsdicT2JiosxvanUYfmjPf2MuzcUp/82aLNExMUKllo2IeKjvZ0T9CJLomElJSVK/+abr98wkTBfn+WMuDbm5uYiMlO7cLg5jWyvY1qtJxP0fvyL6YIpKYmKi1OMVExMjc4c3XaH2RsIxz3flS0NOTo7MxXbz6pVgVtmBiH+59RhpCZJdn+Pi4qR+8Pz9+zeLYrtkL1iYGPPs7GyJRQ1RsW/kAj1zUyL+/tIdZEt4nsXGxkr9QiwyMlIOwiv1mPucvSHR8XJycqS+F2dlZclcbK/SujE09clWNT5nb0i8IG50dLTUL0d+/folB+GVvJ8LcnPx7oJkgkx2drbU9+KMjAyZO7ydOreiXPj67elrEj9/RkVFiXSO8ng8GDpYo8bALui4wQ2jnxxHv9Ob0HjWKNg2qyfVIoRpCUl4f+kOTk9dgmU12mOuWV3s7jsRj3ceLVgUkWrMpTGKZGZmSn1dzl/DQZbIwigSFRUl9Tkqbc1THLIwiqSnp0t9jjJR5xaHLIwiTOgSsh5zVQ111OjamohLYxTJX3NDGpioc4uD6ZeJQqEQv379kmq8mKhzi0MWRpHk5GSpZ2EkJCTIxeHNBRSCM0ukpaUx8iXNEQpgQyEUiYKWkQFq9WiHPhsWwO3tVayPf4/J1w+i/bz/4NikrsSLdxQHU0W1rItzaxcnGNtZEfFP1+4jI0V8sTs1NZUR8Yyp705R0BbnZ66Lfaz8vs1MIOsxr9C0HnTKTcx9KQABAABJREFUGRPxdxduIUcCESw5OZkR8Sw5OVnmLmeqQk0oFMLnnPiCDJNjLusp99XaN6Nsq+EjoVsiMTGREfEsMTFRpsIr026J/D5oTCBrEa5mtza0bglJHrypFgCVBKqFeZiEz+fDhaJIzUhOwedbj8U+nkAgYGTM89dzkCXOvTpQ9tuTtDiPi4tjpKiOjY2VqfCqrKqKWj3aEfHk3zH48ZjsiVgcubm5jAimAoFA5i5nqu86IHlxztR3NCYmRqaOV3VtLVTvRLbViAkMQYjPJ7GPl52dLbEYw+PzYVLFAc7DeqDz1oVw97+PuS8uoLvXbFRu3QQqGpLXGcnRsfA5cw3HJ3hgUaWWmGfZAL++UIsPko45U/c0cdqKSQLTRpHMzExGWmJkZ2fLvLUG00YRJusVWY4500aR9PR0RoxcmZmZrAmvkhpFmBpzWc/QY9ookpaWxog7manvTlEwbRQpLboEV1AIzizBpIhi5lxVpP30LcxQd0BXDNyxHAs/38HaaB+MP78LraaNgnXt6lIvICMKTF6UUlNTZTqNg06Qyc7IxMer98Q+HpMXJVmLcM492lF+HyS5sDMltAOyF17p3BJp8Ynwu+ct1rHy+7kxhaxvarV7d6CMS/LQzpTQDuS9QZZlqwEVdXXU7NaG/NzwSMrFM4uCSaEdkL3wymShRrWitaTExcXJVHjV1NdD1XZNiXikXwAiPn0T61hMjrk8hFcmx5wpoR2QvfCqb24KR1eyrUbQy3eI+Rkq1rGYEtrzjyVz4ZVBV1RsbCxjIkp0dLRMhVfTivawqkU+H3+7/wzJ0eKdZ7m5uYydm7m5uTJ3vDJZnDN5TYqLj4dtvVpoP38ipt05ivXx7zHz0Sl0XjwNFZrWk6hNXz6JEVH4dO0B5baPV++JbRTJzs5m7NyUj/DKnFGEyTEXZ90WSWDSKJKVlcXYOMlHeGXOKMJkXSnreoVJo0hGRgZj45Seni5TQxjTRhEmx0nWY86kUYRJ/SglJUXmM3G5gEJwZgkm+1qZ1KxEHXe0RaORfTHs4FosD3yCFaHPMer4ZjQdPxjmVSuwsrom0zdfNm7mgPiFmlAoZPTtn6z7omkbG6JyK9ItEfb+a8HURVEpfWPOTHEuEAgYvQnJ+vc2srGEXQNyheeAp6+RECFeewemcy0tb85zcnIYdSXL+jw3r1YR5SlWeP5y+4nYbgkmx1woFLI2i0Pc8zwzM5NRcVzWY27XwJmyPdaHy3eRlS7e9YrJMWf6ekkF3f1c3LYaGRkZjAqlsr62V27VGJoGekTc99xN5Ir53WUy19zcXDnM3CHPc0naaqSlpTEqmsl6zJ06taR0D0tSnDN5TcrOzi50j1RRU0OFpvXRedE0zHx0GhsSPmDqnaNoP/8/2DVwZswIk5OZhc1th+D5obMiL6rG9D1I1mPOpFGEyTHPzMyU6ctEJo0ipa1eYdoowhRpaWkyfZnIpFGktI05k7oEk7mmpKTI9MUSk0aR0jbmXEAhOLOAUChk9KQ0q1EJymqqMK9eCc3+G4LRJ7dgZfhLLPvxEEP3rUbDYb1hbGfFisD8L7m5uYzmIeu+j1bO1WDiYEPEP994iIxk0S8wTD9sMf0dooL2piamW4Lp313WfR8ruNaDrinplnh/8bZYbonS9nsDNIuQCIXwFdMtwXSusj7Pq7Z1hbquDhH3OXtDrIdmpvNka8xzs7Px/tIdsY5T2r7vNbu2hrKqKhF/e0Y8Qaa0/d58Pp+y92NmSiq+3Hok1rGY/r7L+jx37tWe8vlD3JXOS9v1TUlFBc49SUEmOToWPx6/EutYpe0aR7X4M8D+c4ysx1xNSxNOnckFcWN/hiHk7UexjiXPa5yqpgaqtG6C7l5zMPf5BayLe4eJV/ej9cwxsHKuJlX9EPjcB4eGz8Lc8vXgWbsTLrqtxo/HL2kXlyttY86kUaS03deYcneXtt+bKaOIUChkXCBmb8y5fT9nyigiixcCbCyUCbB/P5dHrVbaUQjOHEBZXQ0rf73Cwo+3MGDbMtTp1wX6FAsDlQR4PB6jFyQ+xSIZTMJUW42SIPaLS83ubcFXVibi4rolmP7dZf3/kq+kBOfepCCTlpCEr3dFd0uUtt8bAGpT/N6A+G/Omc5V1ue5iro6alIsQpIYEYXAZ29FPk6pHHM6QYblMZf1766hp4uq7Um3RNS3QIR/9BP5OKXt9waYc3eXtvNcz6wcKjSrT8R/vnovVluN0jjmTC0wVdp+93KOtrByrkbExW2rUdq+6wB9D2tx+5yyOeYaujpw6tQSvde6w93nGtbG+GLc+Z1oPmkYzKtVlDiHUN/PuLliO9Y164eZxrWxq9d4PNlzAnGh/1/8qlSOOUNGkdJ2ntMZRcRtq1Hafm8AcKF4hhPXKMLj8Urd7161rSvlIqRvxWyrURrPc6r7ubhGEVmMj6zHnNYocvqqWNpSafuucwGF4MwCPB4PSgz2S+bxeNDSJ6dLlkSUKQTMknQ8KphYnIDP5zN6QVJSUpL5BU7byABVWjcm4uEf/BDp5y/ycUrjmNdhoMUCk+c4IJ/f29DKHPYNaxNx/6evER8eKfJxSuOYMyHClcbf27xqBcrC/cvtJ0iNF90toSJF700q5DPm0k9NZDpPpv8/UmFX3xmG1hZEXNy2GqVzzKV3wpXGMa/cshG0DPWJuLhtNbgy5kKBAL7nb4p8jNJ4ba/esQVUNTWIuLjFeUn6vmsZ6sO5R3v037IECz/dxqpfrzDqxGY0GTMAhjbkNU0UMpKS4Xv+Jo6NnQ8360ZYUq0Nzs7yROCT18jNYm79CHmMOVNGkdL2fWfKKFIar29MtdVgWpdgugb6F7q2GuIaRUrbdx2gfskAiDfmfD6fUXGcaZ2DCqaMIqXxPC/tKARnljA0NGTsWML4FAhkPIWDKfT09Bi7IAlzBciIlO0CSwBgWbMqylWwI+KfbzxEepJoPa94PB6jY54bmwQBS9PtAfHcEvr6+gxlAwhycpHxO46x49Hh0LgO9MqXI+LvL95Gtog9J/l8PqO/e050gkx7ouVDK8icFX3MDQwMmEoHuRlZyIwVf/VlcalC21bjusjnmrKyMnR0yGNISvbvBJlPUQNo+pzm5OD9RdH7nDL5Xc9NTUd2oux7otXo0grKalRuCdHbaqiqqkJLi1y8RlKyIplblI0OHo9H3VYjNQ2fbzwU+ThMnuc5yWnITpZtr3YAcO7ZHjyKIkucQk1NTQ3q6mR/XEnJlMNzjJKKCmpRtNVIiYnD94cvRD4Ok88xOYkpyBWzb7gkMFGca2pqQpXCWSUpmb9kP+Z5bTVaEvG44HD8fP1e5OMw+uyakIKcDOb6duuZlUPd/l0xePcKeAY9xeKvd9FnwwLKF+ei8uvLD9xdtwd7uo3Fnib9cWXiEnw4cRWJob+kyjXjl2wX+waYM4owOeaChFTkZDK3tgUdTBhFdHR0GBPhhEKhXGpUQ2sLRowijI55fAptqxomYcIowqQuIcjNRbocznPzahUZMYowOeZMHqsomDCK6OkxZ9Lk8XiMHo+rKARnljAyMmLkApeVkoZjA6dhVYMeCBezaTobKCsrM1ak+p25iRW1O+PWqh0yFV9pV4XNzMKHK6K31TAyMmIkn4yEJBzsOQFrXfuI3ZdNXGp2b0e7KqyoqKqqMiZGfTp0EV7OnfBgy0GZiq98JSXK9hLpicn4euepyMcxNian+ElC6u847O44EpvaDEZscBgjx6SDibYaampqjAmvPjtPwrNmB3jvOyVTIU5FTQ21ulO4JX79RoD3G5GPY2Jiwkg+yWFR2N5qELZ1Hin2oo3iwkRbDU1NTWhqajKSz4sNh7DMqR1eHb8k0zHX0NVBtQ7NifjvH0EIe/9F5OMwNeYJgaHY1LQ/9vSdKNZ0f0lgYqFMLS0tRoRXoVCIx547sMypPd6J8ZJDEnRNTVCxeQMiHvzmA6IDQ0Q6Bo/HY2zMYz77Y32Dnjg4bIbYC3WKCxPFuY6ODiPCq1AoxF33DVhavR0+i9k7XFxMHGxg7eJExL8/fIGkqGiRjsHkmEe++Yw19brh2Hg3sdYCkQSminMmHFyC3Fxcm+6J5TXa4/sj0V9yiAqPx4NZZUe0mjYKs73PUa6/Ii456ZkIfvwaj7124kjHMTjSaQweee3Ez8evkS3Gy5KwJ2+xuk5XnJmxTOzFWcWFCaOIgYEBI8JrblY2zo/zgKdzRwS99JX6eEXBlFGEqef2n7e8scqlCy55rBWrrYckMGEUYUqXyE7LwMkhM7GyXjexnqMkgQmjiJKSEmNiqf/Fe1jp0gXXPbeKvSCvuDBhFGFKl2D6WEXBhFFERUWFMS3KyMhI5m5+LqAQnFmCKeH1zfbjiA/9hRCfT1jh0kXm4isTMHEzj/8Zjsfr9iEnKwsX5q2SufjKRHGuqqrKyFuwlxsOIiU6DoHPfbC8VkeZiq9aBnqo0qYJEY/49A0RX36IfBwmxjzmWyCebjmM7PQMnJqyGJtaDxKr76a4MFGcq6urSy28CoVCeK/cjYykFHy7/wzLnNrLVHw1sCwPh8Z1iHjgs7eF+hsWBxPFeaTvV7zcdxoZySk4MnquzMVXuuJcnPY5TAivQoEAj5ZtQ3ZGJj5df4Cl1dvKVHwtX8URFk6VifjXu95IiY0X+TjlypHFnriEevvA99RVpMUnYv+gqdjd5z+Ziq/0rijRx5wJ4VWQk4sHCzdDkJMDn7PXsbRaW5mKr7Z1a1JOQf9w5R6y0tJFOgZTIlzQvef4cu0Bkn/HYGePcTgwdIZYLh1xYWKxIV1dXamF15zMLNxbuAlCoRAvDp+XufhaqUVDaBmRz52+52+K7EZjasy/X7oP/0cvkRAeiS3th8lcfGWirQYTwmtWWjruLdoEAHiy6ziW1+wgE/E1n+odmkNNi7wfiVOcMyXCfTl5HSFvPiImKBQbWgzA6elLZSa+8ng81OnfhXKblXM1yv8nopAY8gsfT1zF1YlLsLfJAFwauwC+hy4gLiCE9v9nRmIy7i3eDKFQiHsb9slcfGXCKMLUmH84dBGRX34g6lsgVjfqhYvua0QWf8WFKaOIoaGh1MJryu9Y3Fu+DYLcXNzw3IoVdbvKVHxlwijClPDqs+skYn+GIez9V6yo202m4itTRhEmvuuJoZF4uHoPcrOzcdljLVY36iXWrAJxYcIooqKiwoghzMDAQC6twQDmjCJMvViSl9Be2lEIzixiZmYmlTAR/eE7fI5cLPi3vMRXaVFVVYWVlZXEPy8UCPDMaxey/5qWJ2vx1cKpMkwr2RPxLzcfIz0xSeTjmJubSyVM/Hr5AR/P3y74tzzEVyaKc3V1dVhYSNZfD8gTY54sK/wy5duD51jm1B5P956UiRBn38gFehSLb76/dAfZGaIXSRYWFlBTU5M4j9CHr/D9r4dleYivTLglNDU1Ub58eYlzyM3KxqNl2wrFZC2+VmnTBBp65AsCXzHcEgBgZWUl1cNXwLVH+PnMp+Df8hBf6d0Styn2pkZbW1sq0Tk7LR2Plm8vFPM9d0Om4qtT51ZQUSfPT3EEGR6PB2tra6nEqG9nbyH8/deCfydHx8pUfM2buUO+YMlKS8fH6w9EPo6urq5UD+6ZSSl47LWzUOzlkfNY5iQ78ZWJthr5Yy6Ns+Xz0cuI/h5U8O8C8XXcfJmIr0rKyqjdi2yrkRobj28Pnot8HH19fakME+kx8XiyZk+hmKzFV6Z6XtrY2Ejl/Hy/+wziQ/7/4lbW4quqpgacurQi4vGhEWKJnkZGRlIZJlIjfsN706GCfwuFQtzfuF+m4ivdc4yBVXmsjfXFtLvH0GbWWJhXryTR8XOzshH63Bfea/fhePf/cLjdSDxYshUB954hKyWtYL+3W44h+ff/79uyFl+ZNIpIY5hIDAzD8+3HCv4tFAhw02ubTJ2vTK3FYWMjuTteKBTi1bqDyEj8f8vF8A9+MhVfmTKKmJqaStUiLPZLAN4cOFfw77/F119fZSO+MmEUUVFRgbW1tcQ5CIVCPFu5u9DL+uDX7+Hp3Al31++ViRGQKaNI+fLloaFB9voXFQ0NDZiZmUn885LAhFFETU0NlpaWUuVhbW0tN6G9tKMQnFkk/+FVV1dX7J9VVVLGg8WbKbfli6/3Nx+QS89XSdDT04O1tbXYb5F5PB7C77xA0HMfYpssxVcej0dZsORkZeH95bsiH0dJSQl2dnbQ1iZX1i0OVfBxj2bMZSm+1uzWRmq3BJD3BtTS0lLsMefz+fh56UEhMSafzJRUHB0zD1s7jWBcfOXz+ZSLcWQkJePL7SciH0dZWRl2dnYSvVxSzhHg/tJtlNtkKb469+pAOU7ijrmRkRHMzc3F/nwlJSV8O34N0T9+EttkKb4qq6qiVo92RDwpKgY/nrwS+TgqKiqwt7eX6OUSPz0LD1fsotyWL776XhDdlScqVD19AfEXGypXrpxED5/Kysr4tO88EsLInoMF4uuQ6YyLr+o62pRuieiAYIT6fhb5OKqqqrC3t5fs5VJCKh6v20e56eWR81havS0+33wo/nGLwYV2zMUTXk1NTSV60aCiogLfrceREk325Zel+KpjYoRKLRoS8RCfT/jt/1Pk46irq8Pe3l4ip3Pu73h4bz1Kue3J7hNYJqO2A0y0WODxeDA3N5foRYOKigpert2PjCRyTGOCQrG+eX+ZiK/GdlawqVuTiP949BKJkb9FPo6Ghgbs7OwkermUGRyJV/vPEHFZi69MiHA8Hg+WlpYSOSDVVFXxxGsXZQuKAvHVbTXj4quFU2WYVqQ2iuRkZKJyq8botcYNCz/eworQ5xi8ZyWce3WgnKIvCsm/ovH57E3cmOaFva4DcH7EPDzz2gXfU+Q99G/xNfSd6PcZUaG7n4tjFOHz+bCyspLIAammoopHS7dRri9UIL4u38K4+MqUUURbWxu2trZiv1Dk8XiIf/MVXyhe2spafGXCKCKNLqGmrIIHf5z8/5InvnaUifjKlFFEV1dXoheKPB4PkQ/fIOAxWSNkZ2Ti7MzlWN9iAKIDgsU6rigwYRRRUlKCra2tRLqEpOeJtDh1lr6tBpD38tzKykoiXULS86SsIpXg3LFjR9SqVavQn507/+9UefPmDbG9Vq1aiIgQ/W0b11FSUoKVlRXMzc1FKlRVVVVRvnx5GKhpUoqA+WSnZ+D01CXY2GqgTNsOSIOuri4cHR1Fatif35Td0dEROSlpRe4vK/GViYd2IG/MbWxsUL58eZEKVTU1NZibm0NHSRUqRQhYf4uv4iwUURya+nqo2taViP/68gMRn7+LdSx9fX04ODhAV1dXpDHX19eHo6Mjsv9yi1Dx+cZDLK3WBi+PXWR4zKUvzoH/i85mZmYivQ3Nd4RrCpUoV5nPp0B87T0BSb+ZW6jCwMIMDk3qEvGgF75i95A2NDQsGPPi4PP5MDAwgIODQ7ELiBWIr2JMiRYFps7zfNG5XLlyIo25hoYGrKysoJ4jhKoW/ZgnR8diV8/xjIuvZpUcYFmzChH3u/cMKTHiLdRpbGwMe3t7kR5g+Xw+DA0NYW9vX8gVRsXLoxdkIr4y0TIJyLs/Ozg4wMTERCRBSlNTM88ZnZUL1SKmeCdGRGFLh+GMi682dWrAyJZ0eHy8eg+ZqUWPxd/weDyUK1cOtra2IrmjlJSUYGRkBDsbG2QX074jX3z99lB0B64oMDFzB8i7Pzs4OMDY2FikoktLSwu2trbgpWVBrYjzPPZnWJ74Om2JyC1ORKFCs/rQMSGngIrTVgP40y/XzAw2NjYijbmysjJMTExgY2GJ3KyiRab7G/fDs1ZHBL4gjQXSQNlWQyiE7znx7iEaGhpwdHSEkZGRSOKEtrY27OzsIExJL/J+LivxtVr75lDTJsfI58x1sUwp+S8arK2tRXqBrqysjHLlyqG8cTlAQP9cJhQIcHPFdqysy6z4Srv+CoVRxMCyPJqM7o9xZ3dgXYwPZj05g/ZuE2Fdu7pEny3IyUXEm0/wOXGlyP1kJb7W7NaWEaMIn8+HpaUlLC0tRXJBqqio5L2A1DegnEWST252Ni4vWMe4+MqUUQTIO28dHR1hYGAgkiClq6sLe3t75KakFVmf54uvd9btYVR8Zcookv+iwcLCQiTThKqqKszMzGCooQUlZfrfOyczK098bd6fUfGVKaMIkLdGgYODA/T19UXWJRwcHJCTnFbk993/ySssr9kBj3YcYbRGZcoo8rcuIYoWpaamhvLly8PGxoaV/sXqOtqo3rEFERfXKAKgYAxF1aLydQkmF4gvC/CEUnzzbW1tERws/kUjKCgItra2kn4sp8nIyEBCQgJSU1OR++dGpKSkBE1NTejr60NdXb3ghMjOyMCVRRtwZ83uIi9gatpa6LNhARqP6sfYSqxMk5ubi6SkJCQmJiI7OxsCgQB8Ph8qKirQ09ODrq5uoYuav/cbHBo+C9HFuJGqdWiOwXtWwsBC+ukeQqEQS6q2RqRfQKG4kooK1vx+A0198acbCoXCgjFPS0srNOZaWloFY55PZmoaLsxbhYdbD9EdEgCgqa+LfluXot7AboyM+YvD53Bw2Ewi3mnhFHRZMkOiY+bm5iIxMRFJSUkFY66kpFRozP8u5vzueePwyDmICwkv8rjOPdtjwI7l0C0nfX8mgUAAN+tGSPhHwFfX0caa32+KfAFAh1AoRHp6OhISEpCenl5ozLW1taGvr1/ohp+elIyzM5bDe9+pIo+rY2KEgTs94dyTnDItCQ+2HsKpyYuIeK+17mgzc4xEx8zJySk4z3NycgqNub6+PrFC+Ier93B0zDwkRRa9sFO9Qd3Rb8sSaBlI3yM9JysLc8zqIu0fMVennDFWRbwEX4KHK6FQiLS0NCQkJCAjI6PYMU+JjcfJSQvx5mTRxaqeuSmG7luFau2bi50TFTe8tuGS+xoiPmj3CriOGSDRMXNycgrO87/HPH8xUW1t7UJj/vbMNRyf4IHUYqYEuo4dgF5r3aGuI74r418yUlIx26R2oTZNQJ4rclnAY4muoUKhEKmpqQVjni/sKCsrF4z53y8ck6KicXTsfHwoZsaMka0lhh5Yg0rNSYeuJJyfuwK3V5OO+tGntqIOzQu34sjOzi4Y89zc3IIxV1NTKxjz/P+nQqEQL4+cx6kpi5H+1xRkKlpOHYHuXnOKFO1EJTk6FnPL1yMKfqtaVeHuK7oj7G+EQiFSUlKQkJCAzMxMCAQC8Hg8KCkpQUdHB/r6+oVePsWFRuDIqLn4eqdoIcS0oj2GHVoL+wa1JcrrX45PcMfjnceI+OQbByW+lmRlZSExMRHJycnIzc2FUCgEn8+HmpoaDAwMoKWlVWjMn+w6hnOzvIp8scHj89Fu7nh0WjQVKlK0pconNjgM7rZkq4EKTeth5qPTEh1TKBQiOTkZCQkJyMrKQm5uLvh8PpSVlQvG/O+XT9EBwTg0Yjb8ixFCLJwqY9ihtbB2lkzw/Jd9g6bi9fFLRHy29zk4NHKR6JhZWVlISEhASkoKcv6IpXw+H+rq6jAwMICmpmbBmAtyc3F/0wFcdFuNnEz6BdT4ysrovGgq2s2bACUGFioM/+iHZTXIZyKnzq0w8Qr1rJJ/SYqKxpfbT/D5xkN8uf2k2HuTpNjUrYnhh9ahfBVHRo63rfNIfLx2n4gv/HQb5tUqSnTMzMzMgjH/+zkmf8w1NDQKxjw3Jwe3Vu3EtSWbinyZpaymim6es9Fq2kiJnq/+xd/7DdY26U3E6w3qjpFHN0p0TIFAUHCeZ2dnFzrP9fT0oKenV6hGDX33GQeHzUT4B78ij+vYpC6GHVzLyAKXALC2aV/Ka4tXsDcMrSVra0inS2hoaMDAwKCwLpGZiWtLN+PWyh0QFvEyS1VTA73WuqHp+MGM1KifbjzA1o4jiHjTCYMxcPtyiY4pEAgK6pWsrKxidYmgl744OHRmsS1Nq7RxxZB9q2BoJf7sTyqW1+qAsH9mAPOVlLA68jW0jSXryZ1fo/6rS+RrUdK04GCK1ycvY9+AKUS83dzx6LFynkTHpNKiitIlFIiOQnDmAKKKr9U7tsDwQ+skvgCVNMQRXwfvXYXavci33uJyZdF6XFtKtrUYfmgdGgztJfXxRUVU8bV2744YsnclNPSkm/aRlpCIOaZ1iZWWzao4YtHnO3J7kSGO+Drs0FpU70C+ARWX09OX4v7G/UR8/MXdqNWtrdTHF5WP1+7jyOi5xYqvDYb2xIDtyyVeFCefxF+/Mc+iPvEyy65+Lcx9cVGqY4tDSmw8Tk1ehNcnLhe5n565KUYe28iIEHd45Gw8O0BOfZ5+/zgqtWgk9fFFRVTxten4QeizYYFEL0D+JupHEBZVJM+ZKm1cMfX2EamOLQ5JUdE4Ns4N7y/dKXI/I1tLjDqxmREhblfvCfA9d4OIz39zBTYuTlIfXxTEEV9bzxiNHivnFumkEoXgtx+xog65uFbt3h0x9sx2ip+QDfFhv3Bk1JxiXWimFe0x+tQWWNWqJvVnbmo7hFLsXfL9AUwr2El9fFEQCoV4svs4zs30LFZ87eA+CZ0XTZValPG7/wwbWw0k4o1G9sXQfaulOrY4iCO+jj61lREhbmX9bvj56n2hGI/Hw8rwl9ArL/2ip6IgjvjaddkMtJ0zXuoi993FW9jZYxwRbzltJPpuWCjVscXh11d/HBw2E8Gv3xe5n03dmhh9cgtM7CXvqwrQG0WUVVWxOuq12EYRQW4ugt9+xJebj/D55iMEvXxXpLAmLspqqui1xg3NJw2T+rma1iiyaCq6LJ4u1bHFQWTx1bUeRh3fBANLydf+AGRjFJEEccTXfluWoPHIvlJ/5oMtB3FqymIi3nudB1rPGC318UUl6KUvDg6biahvRYuvVdu6YviRDVIbhHKysjDHtA7SEgqvqSSNUUQSstLScdF9DR5sOlCkEVBdVweDdnmibv+uUn/mdc+tuOyxlogP3rMSTUb3l/r4JRVao4i9NZb5PyqxBsuyilRPMD9//oRQKBT7j0JsZhbHxnXg8e46WkweXuR+n64/gGftzjJdHVmeqGlpov+WJZh273iRb27TEpKwu/cEnJmxTKwpo1TQLk5A0aNNllRu1RgLPt5E41H9itzP5+x1eLl0kXqBDk19PVRt15SIR371R8Snb1IdWxw0dHUwZO8qTLy6v8jiMDk6Fls7jsDlBeuknrJGuziBnMfcqVNLLPx0G3UHFP2A8uLweays103q1ZH1ypeDoytFW42X7+TapkfbyACjjm/GmNPboGVEv1BVYkQUNrYahJsrt0vdu55uur28z3OXPp2w6PNt1OxGrsL9N493HsOaxr0REyTduJhWsINVrapE/Nv9ZzJbrJAKXVMTjL+wG8MPr6fszZdP7M8wrGvaDw+2HJR6mmJJGHMej4cGQ3th4afblG2M/ubu+r1Y17y/1O2TrGtXhzGFqPPx2n1kpBTd1oZJDCzLY/LNwxi407PIl2VR3wOxumFPeO+XzJH6N0y1z5EGHo+HpuMGwePDTVRoWo92P6FAgOvLNmNzu6FSt0+q0LQedCgK/HcXbhEvlWWJiYMNZjw8id7rPSj7MeYT/tEPK+t2xZtTRc/4EAWqZzihUChWn1Np4SspofWM0XD3vU7ZVzofQU4OLs5fjR3dxkjdPqla+2aMtNWQlvJVHDHn2Tl085xdbNuBFS6d8eGK6GukUFFkW41iXmhSwVdSgl29Wui0cCrmPDuPNb/fYvTJLWg4vDd0zUykyhXIaztwaspibGk/DOlJRb90LI4aXVtDmaJtn7yfXa1qVcP815fRwX1SsW0HvGp3xte7T2n3EQU+n0/ZaiAjOQWfb8pmIVoqVNTU0N1zNuY8O0e56Hw+WWnpODJqDg6PnC1173q6thpMXDvFwa6+M9x9r6PV9FFFCn9fbj+Bp3Mn+Hu/kerz6NpqJP+OwfdHL6U6tjioamqg74aFmP7gBIztrGj3y0hKxr4BU3By8iKp77l0a3HIu16RN+raWqjeqSURjwkMQcjbjyxkpKAoFL5wjqCmpYl+mxcXK77Gh0ZgrWtfPNh6iPGFxtiicstGIomv9zbsw/oWA6Qq0M2rVUT5qhWIuN9db7F6XjKBqOJrdEAwVjXogWcHpCvQ6YpzcRZNZIoC8XVgtyL3u758Cza3HyaVWGZb3xkGFFOfPl1/IJPVpouiQHw9s73ImQq/vvzAirrd8EbMPl7/QveC5eOVe1IdVxIKxNfu9K5yoUCAi/NXY2f3sVIV6JVbNYYmRXuOD1fuyf26Kar4GuLzCV61O+HDVenGhnIRktxcfKJYBEeW8Hg8NBjSs1jxNTc7G6emLMa+gVOkEkidOrWEigbpfPpwWXxRQlpEFV8Dn72Fl3Mn+N3zlviz6ASZ7PQM+ElZ+EuSiyjia3ZGZl6BPmqOVAV6rR7tKJ1PbIy5ib01pj84+WemAn37CL973vCq3RkBz95K/FlKyspw7kW2GUiLT4T/U+kKf3Hh8/loPX00PN5dh209evE1MzUNe/tPxqkpi6Uq0Kn6uwLsPMeIKr5+vHoPK1w6I8Tnk8SfpaKuTvniMiE8EqFSHFcSlJSV0cFtIua/vgSLGpVp90tLSML2rqNxYf4qqZ616J5jimtfJAraRgao068Lhh1Yi1URr+Duew3dV8xBhWb1wZeiJciX248x08gZ+wdNhd89b4nMMrRGEb8ARP0Ikjg3SVBWVUW35bMw5/l5mFV2oN0vOToWm9sOwfXlW6R6EUJnFGFizMVFVPH12YEzWN2wh1gL1/6LvrkppVHk56v3Yi2OygSqGuros34BZjw8WaT4mhgRhfXN++Puhr1SPV/T1ahs3M8rNmsAj/c34DqOnEn0Nw+3HsK6pn2Lna1cFKYV7SmNIt8fvpD6pVVJpyTpEgqKRiE4c4wC8bWIaRS52dk4NXmR1AV6SaJAfL12oEjxNcD7Dbxqd4bf/WcSfxbVm/OcrCx8e8DsokaiIor4mp2RicMj5+DI6LkSF+h0bonPNx5KdDxp0TLUx6hjmzD27I4ixVe/u0/h6dwJgc8lK9DpFiFJT0xG4HNmFzUSFZfeHbHw060ixdfMlFTs7TcJp6ZKXqA792pP+YD8iaUx1zU1wfjzu4oVXz9cuZtXoPtKVkgrqahQuiUSI6IQ/uErxU/IlkLiK0UBmU9aQhK2dxmFi26rJS7Qa/ehfoBj6zzPF18H7fIqUnx9c/IKVtbtiogvPyT6HDUtTThRuCWivgVK7RyXBFHF1+ToWGxqOwTXPbdKXKC7lLAxF1V8fbb/NNY06inxAkTaRgao3IpskRP8+oNcHf358Pl8tJo2Cu6+14oUXxPCI7GuWT/c27hP4gKdzhXF1pibVXbEbO/ixdcHWw5iXbN+iAuVbPFxIxtL2NWvRcT9H79i5Xn4b/GVatHWfGKCQrG6UU882XNC4jGnW2CKrfu5Zc2qmP/6Mjp6TC5yyvutlTuwue0QJEUV3U6MDvNqFWFG0Y7l613JhFw6eDwerGpVQ/t5/2Hmw1NYF+uLsWd3oP6QntAy1Bf7eIKcHLw6fgkbWw/C7HIu2DdoKt6cuiKWiEQ35myd53b1asHN5xpazxhNK74KhUJcXrAO27uMQmpcgkSfY1vfmbI1x+ebj1gxW4kqvoa9/wovly54d/GWxJ9F+wwnR3f331RoWh8eH26i6fhBtPsIcnJwdsZy7Ok7UWKRlM4o8vkGO7+3uo42Bu30wuSbh6BfxDpSQS/fwbN2Z3y5/Vjiz6Iac0FODvzuSm5GKA04dWpJ+YzI1vVNAT0KwZmDaOjqYMielcWKr29OXsHKet0YXSGYbZw6tihWfE3+HYNNbQbjhtc2iQp0KlECYPcCJ6r46r3vFNY07oXowBCxP0NDV4fyzXngcx+pp3tKQ+1eHbCwGOdrQngk1jbth3ub9kv0sFkSx1xU8fXB5oNY37w/4sN+if0ZemblYE3Rv/b7g+dST/2TFFHF15igUKxu2BNP955kdMzZKs6BP+LrjUPFiq83V2yXuEAv52gL04rk9M8vt5/I3dGfD4/Hg+vYgcWKr5F+AVhVrxtenyAXxxKF6p2oe76zOeaiiK9CgQCXPdZiR9fREhXoVs7VKJ8VPt1gpzgH/hJfi3G+hr77Ai+Xznh36bZEn0M1JVMoFBbbS1qWiCK+CnJycGb6MuzpN0miAt2xSV2o65L3DTbvaaKKr0EvfOFVuzO+FLPYIh1UY56TlYXvLJkGgDzxdd6rS+joMZm27UBOZhaOjZ2PQyNmISstXezPqNK6SYkyDQB5zteuy2Zi9rNzRTpfvz14Dk/nTvhRTL9vOqju5xlJyVLNFCgODV0d1O7VASMOr8fqqDeY/uAEWk4bWaTgSEdaQhJeH7+Evf0nY5ZxbWxuNwQPtx8p9rmueofmlMIum2OuqqGO3us8MOPRqSL/X+S1geyE4DcfxP4MPp+P6h2bE/HEX7+lbjEoDaKIrxlJydjZYxzOzVkh0TNXSaxX1LW1MHCHJ6bcOlyk+Opz9jpW1u2G8I9F9/umQklFhXI2XNT3QIlqXqao1q4ZFn66hQZDe9Lukxobjy3th+Hqko0S6hIl79lVHqhpaaJiC3LdnuA3H6RuPaaAWRSCM4dx6tgC7u+uo3KrxrT7RH71x8q6XSUu0Esi+eLr0P2riyzQL7mvkahAt3Zxgo6JERH/fOMh621KavfqAPd31+HQuA7tPqG+n+FVuxPeSzDNqFqH5kRMKBBQLrwkT3TLGWP8+V3ot2VJ0QX6tKXY238SMpJTxDq+Q5M6lAIf229R88VXd9/rsK5Nv5p94HMfeDp3kqhApxrz7IxM/Hj0QuxjMYmBZXlMun4QPVbOLbJAPzpmXl5vPDEL9MqtG1NOiS0JY+46diDmv7lc5Erz+QW6/9PXYn9GtQ7NiFhafCKx2Ja8MbG3xvT7J9BxAbkydT6ZqWnYN3AqTkxcgOzMTNr9qKjWnvy9AfbHPF98nfviAkwcbWn3+3jtPrxcOotdoPN4PMrfPT40Ar8kdIwzhVklB8x+erbIBY/SE5Oxs/tYnJ8rfoFOdX0D2B/zfPF11pPTlC2d8vE5cy2vQBdzLQUlFRVUaU0+G0Z8/i6xe5gpLGtWxdwXF4qcjpwSE4ct7Ybi2tJNYhfo1WnGnO3iPF98nX7/OHRN6RfRenHoHFY17CF2WwQ1LU04UrywC3r5TmInKVPY1auF+W+uoP7gHrT7JP76jQ0tBuDOuj1iP2uzfZ4rKSujUvOG6LthIZYFPMaCj7fQdfmsInt405GbnY0vt5/g5MQFmG/VEF51uuDass0Ie/+F+P+ibWwIm7o1iGN8f/iCNdNAPhVc68Hd9xqce5LtffKJCw7Hmsa98Xjn0VI35nTki6/jzu2Euo427X531uzCxlYDkfhLvFYYxnZWlD2jv7JoGsinatum8Hh/g/ZZC8gTiFfW744XR86LffySOuaa+noYfmg9hh9eT9m6Dch70X118UZs7TgcKTFxYh3fokYV6JmbEvGSoEvIGrr7+ZdbkjvGFTCPQnDmOLrljDHl1mF09JhMu09+gc5E8/qSRKMRfTHn+XmYONjQ7lNQoIvRYJ7P51M6K2OCQhH1vegVeeWBgYUZZjw4gVbTR9Huk56YjB3dxuDCvJViPYCU1Js5kCeatJg0rNgC/e3pa1hRtysiPn8X+dgqamqoRDH1OvTdF7EfBmWBsZ0VZnufhevYAbT7FBToyzaLVaBXpxAfAfaLcyDvXGw3dwKm3TtWZIH+/OBZsQt0DV0dODR2IeIB3m+RnphE8RPyxayyI+a+vIh6g7rT7pP463deb7z14vXGK8nnOV9JCV2XzsCk6weKnKb8aPsRsXvj6ZmVg5VzNSL+7f4zZGewW5wDeUKc25vLRc7miP0Zlleg7zrGyJiXhPNcSUUFvdd5YOzZHUUW6LdX78LG1oPE6lVpWsGO8hnhy63Hcl1MjQ67+s5w97laZB/zqO+BWFW/O14evSDWsUvyea6iro5BO70w/NC6Igv0K4s2iF2gW9WuTrloYkkpzis2awB33+twdKWfzRH+wQ8rXLrA9/xNsY5NVZwLBQKppnMzhZqWJoYfXo+BO5ZTOrGBvPUEzs3yxO7eE8S6Dzs2qUO5aCIb1zcejweL6pXQ0X0S5r+6hBVhLzBwx3JUaFYfKKLHLx0hbz/iysL1WF6rIzzsXXFq6mL43X9W0C6EzjTw/SF7jv58NPR0MfbsDvRa607bViUnKwvHJ3jg4NAZYq2VU7lVY0oDyieWWiz8i3PP9pj/5jIsnOj7mP94/Aqezh3xXUyDB9WYpyUkIejlOzGzZB5tIwNMvHYAXZZMp22rkp2egYNDZ+DYeDexnr1KqmkgnwZDemLeq0uUswjz+XLrMTxrd0bQS1+Rj0tnGkgIj0SEmC+jSxsl+TlGwf9RCM5lAL6SEroum4mJ1w5Q9jfKh4nm9SUNq1rVMF+UAr1RLzzZfVzkYqOkX+CUVFTQZ/0CjDmzvcgC/daqnWIV6OWrOFIuSvn55qMSUZwDIhbo3wKxsl43sQp0ureon28+FDND2aCiro5Bu1Zg2MG1RRfoC9djW6cRSImNF+m4tvVqUQp7bPVFo6JS84Zw87lWfIFep6tYBTrVmAtyc/G1hPRFU9PSxIgjGzBg+7IiC/SzM5djd5//RJ56X7FZfcrvUEkQH/Op3qEF3HyuwqYO6d7K5+er9/Cs3Rmfb4n+XaW6tmelpePHE/Gd4rJAQ08X48/vQs81bkUX6OPdcXDYTJEL9CptmlAer6Tc04C8GTzFFuiPXsLTuZNYBTrVmKfExEk0lVsWaBsbYtL1g+i0aCptgZ6Vlo4DQ6aLVaDTFecl6TxvMLQX5r28iHIV7Gj3KSjQX70T6Zh0poHYn2GI+hYgaaqMole+HKbfP442s8fR7pORnIJdvcbj7MzlIvciLunPrjweD03HD8asp2dgaEO/ALrv+ZvwqtMVYSKuqaCsqkrZrz38g59UC4kzgYGFGZqOH4yZD09h7e+3RbYKK47Yn2F4sPkgNrYaiNnlXLB/8DQoq1LP+ispz3A8Hg9tZo7B9AcnimwD+fLoBayq3x2RIp6j6jracGxCzvYMfPYWaQnstQH8G9OK9pj74kKR7RaSomKwoeVA3Fq1Q+QalbZeKSHnOZ/PR6eFUzHpxkFoGRnQ7vdk13GsadJH5HU0dE1NKGd7+pUQ0wAAWFSvhHmvL6F2b+r+6kDe7LK1rn3xYOshqXWJknQ/lwXlHG0pZ/59ufUYgtxc+SekgBKF4FyGcOpYfIGe37xenAK9pKOpr5dXoK+eX2SBfmycGw4OmynS1PuqbV1LXF80Klx6d8ybel+9Eu0++QX6j8cviz0ej8ejnG6fFBnNal+0fxGnQD8+wV2kqff0N/OSda40HNYbc19cKLJA/3zzEbxELND5SkqoQiHe//4RJPFiXbJA39wU0+8dQ5tZY2n3yUhKzivQZ3mKVKCX9OIcyDsnm00YklegU7wMysf33A2sqNNVpN54KurqqETRFy3k7UeJF26SBUY2lpj19AyaThhMu09qbDy2dhiOK4vWi/TwWdILNSBvzNvOGps39d7MhHa/l0fOY1WDHiIV6Jr6erBvWJuI+z95LXYLIlkiUoEeGY2NrQbh1uqdIhVrpeE85yspocvi6aIX6D+LL9ANLMtTivd+d71L1Gw3C6fKmP/mMpx7kYv35hMfGoG1Tfrg4bbDIo15SZ65k4+SsjJ6rZ6P8Rd2Ufbbzufu+r3Y0HIgEiKiij2mWWUHSiH3882S4ejPx7ZuTbi9vUp7bgJAtP9PrGrQA88PnRXpmHTH+sLSYmpUaBsbYsrNwxh5bBNUNTWkOlZaQhJeHbuIS+5rKbeXpO86kNdiw83nKio2b0C7T8Tn71hRpyvenrkm0jGpxrwkmQYAQFVTA8MOrsOg3SugrEZtHBAKBLgwbxV2dB8jklheoWk9yu9PSbqnAXn9jd19r1Eu5JpPyNuP8HLpjI/X7ot2TCpHf3oGfjyWrP+7LNDQ1cGY09vQZ8MCytZ9QF7rnFOTF2HfwCkiLWhbpXXjEm8akBVUz+2pcQn4+ZrdNoAK/o9CcC5jGNta5RXoRSxYUFCgL97AmbdDPB4PbWePE6lAX1m/e7GtMbSNDSkXMvr+6KVEi7nIkvwCvf6Qogv0DS0H4vaaXcUWa/TFecl5aAdEL9Af7zyGtSIU6EY2lpQrnfvdYb8v2r9Y1qiC+a8vFd0bLyQ8r0DffqTYMS+pPS//RUlFBb3WuGHc+Z1FF+jr9ohUoFs4VaZc4IStlc6LwrZuTbj5FF2g//4RhJX1u4tUoNMW5yWsL5qKmhoGbl+OEUc30hboQqEQ15ZuFmnqvV0DZ2jq6xLxkvjQXqFpfbj7Xiu6QP/0DSvrdsPbs9eLPR7VmOdmZ8Pv/jNp0mQcUQp0QW4uLsxdiZ09xhZboFdq3oDyOCVxzKu1awZ3n6vFF+i1RSvQqV4gZ6akIsD7jTRpMo6Grg7GntmO3us9iizQT05aiP2DphZboFdp25Sy939Je44BgFrd28Ht7ZUiF1L0f/oans6d8O1B0ecqj8ejvJ8n/45BqO9naVNlFG0jA0y8uh9dl80scur9oeGzcGTMvGIdjKXlOQYA6g3sljf1nqIXL1NE+//E13tPZXZ8SdAzK4epd46i/fz/aPfJTEnFnr4TcXrakmJfjJWGl4nAn7U5xgzAbO9zMLK1pN3vw+W78HLpghDfT0Uej9Y04PNJrJZT8sDQyhwzH59Gi8nDafdJi0/Ets4jcdF9TbG6RGlx+vJ4PLSaNgozHp6k7L+cz5uTV7CyXjf8+upf5PE09fVg34hsA+j/9I1ECwuXJqieY4CSd56XZRSCcxlERU0NA3d4YsSRDUUX6Es2SdS8viSTX6BXaFafdp+IT9/y3qAXU6BT3dRyMrPwjcWVzulQ09LE8EPrMGiXV5FT78/PWYGdPccV2RuvcstGlH3RSuqFXZQCPfjNh7wC/fqDIo9FVbCkJSQh6IXovbbkRX5vvN7rPGid/bnZ2Tg5cQH2D55W5NR7uimeJXXMnXv86Y1Xg37qfUGBXkQfw6L6okmyirasEadAPzp2fpEFemkqzgGg/qDuxRboX24/gadzJwS+8KHdR0lZGZXbkI7+SL8AkVyj8ia/QG83bwLtPhnJKdjT5z+cnr60SGd/aXpoF7VAf3/pDlbU6YrQd/RimqqmBqVo//PV+xL5/GNobYGZj0+j+aRhtPvkF+iXPNYWWaCXlpk7QN6Yt54+utgC/fWJy8UW6NpGBpSmgR+PXorVJ1ZelHO0xZznF9BoRB/afZJ/x2Bj68G4uWJbkW7l0iLCAXlT7zt6TMaU20coF+vOx3vvSaxu1AvRgSG0+xhaW6B81QpE/OudpyK3JJEn5tUqYv7ry6jTr7PMPmNT68HwrN0JN1duLzEz1pSUldHdaw7+u7yX8uVvPvc3HcD65v0RH/aLdh/zahVhYFmeiJdE0wAA2Lg4wc3nGpw6t6LdJyYwBKsb9oT3vlNFHqu0mAaAvJY3/TYvxqgTmykXaM/nptc2bGo7BEm/Y2j3satfq9SYBgDAsXEduPteQ+VW5CK++UR+9cfKul3x+uTlIo9FNXNHkJMDv3slx9EvCyo2bwgVdTUiXhKfY8oqCsG5DFN/cA/MfXmx+AJdzOb1JR09s3KYdvcY2s0dT7tPfoF+ZsYy2gfR0tD/8G94PB5cxw7E7GfFFOgXb8PLpQttiwzavmjPfUpMX7R/EblA7zQClxesoy3Qq5bCMW89Q4QC/fglrKzXDZF+1AW6rqkJrF2ciPi3B89LTF+0fzGtYIe5Ly4WX6C3GoSbK7fTFuilqTgHChfo2saGtPs93XMCaxr3pu2NZ+JgQ9kX7evtJyV25kt+ge7StxPtPvFhv7CuaT882HKQtuAs6QvP/IuSsjJ6rJiLCZf2QEOP3tl/f+N+rGven7ZnqWXNqpSLb36+UTKLc0C0Aj06IDivQN9/mnYfqjEXCoX4cvsJI3kyjbKqKvpvWVJsgX7Dcys2txtKW6A7Nq5Duc5DSf2uA/8v0Cu1JHvy5pNfoL85dYV2H6qXajlZJdM0AACqGuoYun8NhuxbTVlcA3lT7y+6rcGObmOQGk/9PFapRUOaxdQeMpkuo1Rp3QRuPlcpHXz5hPp+xgqXzvhw5S7tPlTneUZSMgKf07+EZBN1HW2MOrEF/TYvphyzvzG0sSjy+k9HqO9nXJy/Ggscm8HLpTNurdpRpHAvL2p0aY35b69S9uTNJ/C5D7xqd8bXu9RObR6PR/ncnhgRhXAR+3/LGy0DPUy4tAfdvWZTzsIA8sxNR0bPxeGRs5GVTv0MXtqeXQGgbv+umPf6MuVs0ny+3X8GT+dO8KeZhaOkrEzZBjDqW6DIvaDljW45Y0y5dRgdPSbT7pOZmoZ9A6bg5ORFtM5+uhq1JM7cYRJVDXVKI2HImw9Ijo5lISMF/6IQnMs4FtUrYf7ry6jdp4gCPb95fREFemlDSVkZPVbOK7ZAv7dhH22BblOnBmWrhpKy0jkdNi5OcHt7FU6dWtLuEx0QjFUNeuDZAeoCnbYv2p2SNT3vb0Qt0K8v34LN7YdR3qRKS1+0f3FsUhfuPleLLNB/ffmBFXW74c3pq5TbqYrz7PQMfH9UfO9vtigo0PeuKrI33sX5q7Gz+1jKAr1K68aUU7hLcnEO5BXo7r7XKPvy5hPi8wletTvRFui0fdFEXJyLDdR1tDH65Fb03bSo6N54UxZj34DJlP2J6QXnkv3QXrNrG7j5XIOVczXafQKfvYWXcydKxwufz6csWOJCwoudzskmohTo2RmZODJqDg6PmkNZoJfG4hwQrUD3u+cNr9qdEfDsLbFNSUUFlVuTzqqIT98QFxrBaK5MolvOGFNvH0EH90m0+2SmpmFv/8k4NWUxZYFeWse88ci+mPP8PIztrWn3+Xj1Hla4dEaIDzn1Xl1HG46udYl40AtfpMYlMJkqoxhYlsfMhyfRctpI2n3SEpKwvetoXJi/irLVWWmZbv83PB4PLSYPx8zHpyjduvnEBYdD18wEQ/atRospw4tcdJGOEJ9PuDBvFRY4NIVXnS6si88m9taY7X0WTcYMoN0nOToWm9sOwfXlWyiNA6VtthaQdy9uP38ipt09Cp1y5EvgfJ4dOIPVDXvgt/9PYpuJvTVMK5KGsi+3S14bwL8pX8UR815dQt2B3Wj3SYyIwvrm/XF3w17Kers0nud8JSV0XTYTE68dgKaBHu1+D7cewrqmfREXEk5ss6pVjbJtaEnXJZiAasyFQmGJdPSXRRSCswKo62hjzKmt6LNxYfEFuojN60sLNbu2gdvbq7CqVZV2H7oCna+kRNlqICYwBL9/BDGeK5NoGepjwuW9xRboh0fOwZHRc4kCvbQWaoCIBfrdp/B07kQU6CpqapSibajv5xLXF+1fdE1NMPX2EbR3m0i7T2ZKKvb2m4RTU8kCvTSPeeNR/Yot0D9cuUtZoGvo6cKhESnaBni/LfF90Qwsy2PGw5NoOXUE7T5FFeh0LRZK+jQ1Ho+HllNGYFYxBfqbU1exsl43RHz+Xiiub25K2S/12/1nIi0wyiYm9taY8+xcsQX6prZDcN1zK1Ggl4ZFE6kQuUDffxprGvUkpo+bVrSHsZ0Vsf+XWyVrMTUqCgr0AV1p90kIj8S6Zv1wb+M+ovCkvbaXoMXUqOArKaHb8lmYeHV/kQX6gy0H8wr0fwR0axcnyjYNpaE4t6pVDW5vr6Bmtza0+8QEhWJ1o554svu4SGMuFAjw9U7JdPTno6Sigr4bFmLM6W1Q09ai3e/Wyh3Y1GYw8Vzm6FqX0nBQ0q9vAGDfoDbcfK6iCkXLp3yivgXi1ORFsKvvDM+gp/B4dx1dlkynnKFWHCFvPxYWn1fvZMUhqqKujsG7V2DYwbVQ0VCn3EcoFOLygnXY3mUU8dKkMo1poDSMeaUWjeDuew2OTcgXRPmEvf8KL5cueHfxFrGN6hkuLT4RP1+V7MXU1LW1MPLoRvTftozW2S/IycHZGcuxu89/xLN4aZul9jdOHVvAzecqbOrUoN0n6OU7eNbujM+3Ct+j6doAxof9Ip5zuUZpfLFUllAIzgoA/GleP3UkZj0+RblIVj5vTl7ByrpdS7TbSVxMHGww+9l5NB7dn3afvwv0vx/cS/MFLr9An3qn6ALde9+pvAL9L5dDaeuL9i9iFeib9hf6nUprcQ7kFejdPWfjvyv7iuyN92DzQaxr1q9Qbzy7+rUoi/qS7vrMx9q5OtzeXkGNrq1p98kv0J/uPVkoTunoz8mBXwla6ZwOZVVV9N24SKQCffM/vfHo+qKVhod2ALBv6FJsgR7pF4CV9brh9YlLheJUY56Zmgb/J6+ZTpNxChXoRUy9v+yxNq9A/8vZX6WNK81iag9llS6jiFKgh777Ai+Xznh36XZBjMfjUY55cnQsQt5+lEWqjKKurYWRxzah/9alRRboZ6Yvw56+Ews5+0vrS4Z8nDq1hJvP1SJFtaCX7+Dp3Alf/hJU+Xw+tWkgKLTYhaNLApr6ehh/YTd6rJpHu05DTmYWjo1zw6HhMwsZB0rzsysAuPTphPlvLsO8WkXafb4/fAGv2p3h//T/12w600DY+6/FLiJcEtAxMcLkGwfRadFU2nUastLSsX/QVJyctBBmVRzRaeFUuL25ggkXd0v8uSFvP+LC3JXwsHfFirpdcXvNLrmvadBwWG/MfXEB5SrY0e7z6foDeNbuhOA3HwpiGro6cGhMtmIJ8H5b5Ho1JQV9c1NMv38crWeOod0nIykZO3uMw7nZXoWMA6XZKMLj8dD8vyGY9fQMDK3p3fq+525gRZ2uCP/0rSCmZ1aOcqbXt/vPSmwbwL8xtrXCrKdn0HT8INp9UmPjsbXDcFxZvKHQS/HSPObSUK6CHaWp6MutxyW2DWBZQiE4KyiEfUOXvOb1rZvQ7hPpF4A1jXrS9k8qjahqqGPInpUYemBNsQX6kVFzCm7oVds1pXzoK00X9sotG8HN5yocGpN9mfMJffcFqxv2LHB/0hXnib9+0/Z+LmmIXKBPW4rTU5cU3NBLe3EOADU6t4Kbz7Uie+MFvfDF6oY9EfHlB4A/jn6qvmjfA0tEvz9R0NTXw4SLe9Bj1bwie+MdHTMPF93XFLxoKO3FOSBagf7twXOs+WvhJVUNdcrF1ILffChy0ZaSREGBvnBKkQX6voFTcXPl9mLHvDSd5w2H9cbclxcpe3Hn8+n6A6xz7VPwcknLUB92DZyJ/fyfvC41s5tEKdDTE5Oxq8c4PNx2uCBW2gs1Ho+H5hOHYtaT0zCwMqfdz+fsdaxvMaDgHDawLA/z6pWI/fzuetP2iixpGNtaYbaIBfrzQ2cLYlwY83ZzxmPavWOUU6nzeXH4PDa3HVLwcql81QqU35EvNx+VeEd/PmaVHDD35UXUH9KTdp/EX7+xsdWgQouA0y6OWgpMA0Des1iXxdMx6foBaBnq0+73aPsRbO8yquC67dS5VZH7i0rwmw84P2cFPOxcsaJeN7mKz5Y1qmD+60tw7tmedp+44HCsa9YPn278fxFwqvu5IDcXX0uBaQDIc/b3XuuOced2Ql2Xvg3knbW7sbvPfwWiasVm9Sld4aXp2dWuXi24+VyldS0DwO8fQVjTuDe+P3pREKO6tmelpeNHKTANAHkvxwbu8MSIIxsoWzkCec7+a0s24dCwmQXrTZV204Ck0OkSqbHxhV5AKWAHheCsgEDHxAhTbh5CxwVTaPdJS0jCptaDilycozTSaHgfzH1xocgC/dmBM9jZYxyy0tKhY2IEa4ppL98fvkBWWroMM2UWAwszzHhwAq1njKbdJ/l3DNY37w+/+88AFPHQXopuaqIW6A+2HMT+QVORk5UFYzsryoU2v5bwvmj/YmxnhdneZ+E6biDtPvFhv7DOtQ8Cn+e1FintxTnw/wJ9+v3jlAuk5XPTaxuOjpmH3JwcWNSoQrnoYmmYev03BQX64B60+0QHBGNNo54IffcZQOla6ZwOvpISuiyZUWyBfnH+apyZsQwCgQD2DWtTFnalqVAD8gp0tzeXiyzQIz5/x5rGvQsWDaVdTO3Ptb80IEqBLhQKcXLSQlxeuB5CoRCVWjSEsirZ6720jbldfWe4+14rskAPefsRa5v0KZgiT3WeZySnUPZ9LqmoqKtj4A5PDD+8nnbqvSA3F4eGz8LtNbsAAFXbupZ60wAAVGzWAO4+11ChaT3affyfvsa6pn2REBEFHo+H6hTPcElRMQh7VzpMAwCgpqWJ4YfWYeBOT8pzF8i7du3tOxGPdx4FwI3nGACo1r453H2vwbZeTdp9vtx+gg0tByI5OhZ8JSXKxdQAoNvyWajcugnti3g6gl+/Lyw+r92N2OAwsY4hLhp6uhh7dgd6r/OgdfZnpaVje9cxeHn0AgDujLlzz/aY/+YyLGpUpt3n/cXb2NxuKNISEqGiro5KLRoS+4S8/YikqGhZpsoo2kYGmHjtALosnUFrHMhISsbmdkPhe+EmAG6YBgCg/uAemPvyImXdmc/LoxewvetoZKamQctAj3LtFv+nbyjXLOESXDAHcRWF4KyAEr6SErouLbpAz87IxM4e42gXliutWNasCrc3l1GrRzvafT5evYdNbYcgNS6B8qE9JzML3x6+oPjJkouSigp6r/PIK9ApVq3H/9i76oAqtq+77qUFwUJUVMTu7u7uLmxF7O7u7u7u7u7uTsREURGUkub7g3ffx2P2mVszc2fu766/3jtn5oSbO+ecffZeC4kH0GX1uuD+3uPIW4MlpqaMKJGk0OWAfm/XUSxr0A2RoWHk5jXidwje334k3iBFgI29PTqsmsF7QA8P+o2FNTrg6fELiuZFS47cVcpi7MMTvAf06+t3Y01LH8RERpFz/+0fgK9J0viUADvHFOiyZQHar5zGPKCHfA/E/Mpt8PriDbM5qAGJB/QxD47BoxT7gH5h0QZs9BqMhIQE5KvFzfQJeOkr+oFaaOhyQA/65I+5FVvh/e2HZmVzXQ7oJ6YuwY7eY2Bjb0cqnX+4/Qhhv4LFHKbg+PeAPnkw84D+4+17zCnfHF8evyD3MYAybV7WqzlG3TlMCmZpcGDETOwbNh0p0qQiHXZvLt9WVNAAALhkTI9B53eg9ghv5jNfn73GnPLNEfD6nSKFtSioVCpU9u6A4df3MYXyEhISsMNnHI5OWoi0HpmRIW8OzjMvzyoraAAA0mR1x9Are1ClbyfmMx/vPsa8iq3w6+MXpkPG3iUlBp3dhjkBd9Fh9QzkrVHBMOfz8BkYm60iZpVpgrPz14q2VqpUKtQc0gNDLu0igwGAxAzFjV6DcW7BOrgXykvSRSqFBjAp3HJ5YuTNgyjXpSXzmbdX7mB+lTb48+2HWQQNAIkUSA3GD0D/01vglC4N+UxsVDTWtOyDq2t2wLNsMZI6UIlrmnvBPBh99wiKt2rAfOb5qctYWL0dwgKDSJvHxcSQYtHmhDzVypEC8Uq0ubnB4nC2gBcF61XjPaDHx8VhS7cR/0lFNgc4uDjDe/8qtJg3lnlAf3f9HuZXbo2sJWhaAqV+4Io1r4vR94/CvRB9QI+Njsa6Nv1we9sh5KzIpeHwu3EfEb//EG/KG7oc0F+du4aF1duTt8eAcm1e1qs5Rt0+xOTGi/kbiZVNeuLF6SskDccrhfCiJYfmgF5rOPuA/vjwWSyp7YWclWjHtNIO58A/B/TeHXkP6JGhYVhatwu+PH4J1xwenHql8qKl9ciMYVf5D+h3dxzGikbdycggQJm/8/8c0DOmJ58J/xWMhdXbI+R7IMnr/0xhEf0a6HJAv7pmJ9a06oO8NStw6hISEvDyjLIO58A/B/QJA9H/1GY4pk1NPhMS8BPzKrdBfFw8yfGuFI7+5HAvmAej7h5G8Zb1mc+cm78WmzsPJaM+Y6Oi8friTTGHKAqsrK3RfPZo9D60Bg4udGR/0Ed/zK3QEg4uziSdmBK/bwDgUbIwxj44jkINqjOfOT55MXb2GUdyd//9Ewq/mw/EHKIosLGzQ7tlU9B9x2JSEBFIpD6bU74FUmelM/k0Nk/pmhaVerXHoHPbMfvbHbRfNR15qpfX2/n84c5j7B82HWOzVcTssk1xdv5aBH3y16sNXZCzYimMfXCM5OXWYN/QaTgwchZp89/+AfB/+krwcYkN2xQO6LRhLjqunUU62ADA/8krzCnfHBkZAulK3LsCQP5alTDmwTGS+gtIpL/c7j0Gp2auQB6CHjTg1TvJ+ceFgH1KJ/TcvQytFk0gg72AxN/d3IotkaVofrJeqd92XWGbwgG5iaCBj3efIPTnLxOMyAINVAlKPD1YIDliIiOxocMgPDxwivlM9UHdEiOo9NyYyB3PT1/GmhY+iAqPIOtTZ8mIyNBw/P39X/EJ1xwemOqrzMMakCiQtaalDy+vXZ4a5fH6PDfNuufeFSjBc9CTOx4ePIX17QYgNormr3TN6YHfXwIQExn1n/KsxQtizP1jUgxRFET8/oOVTXri7ZU7zGfyVC9PptYPOL0F+WtzN/RKwa2tB7Cl2wjEMyKcMuTLie+v/ZCQjN8yd9WyGHJxF/mOEhD68xeWNeiGj3dp1XKVSoWcVcrgLZGxMeLmAWQvS1++KAFXVm3Dzj7jmU7UzEXyk5z0hRvXRJ/D68QenmgI9g/A0rqdmdH5amtreJYtinfXuDoNE1+cYx5g5Y6EhAScnbcGB0bMZD7jUbIwyfdXxqs5um5ZIObwREXg+89YXNsLP30/kPXWdrbIXCQfPtzhfgdmfr5JigQrAQkJCTg6cSFOTF3CfMazXHG8JxyNVfp2QrtlU8QcnqgIeOWLxbU7IfjzV7LezjEFXHN64Mvjl/8pV6nVmBf4EI6ESLASEB8fj31Dp+HCog3MZ3JULIV317hcrnVH90HTGSPEHJ6o+PzoOZbW7YyQ77TGgoNLSqR0c8WPZKKYNg72WBD0CDb2dKZbyI9APDpwCvf3nsCbS7c4+yBd4VmmKEq0bojiLevxCsHpi7jYWOzoPRbX1+9mPpO7alm8IfYxzWaNRJ2RPoKNRWr43byPZQ26ISKYDvRJ6ZoW1vZ2nO+AY5pUmPvjPjOoSu6IjY7Gpk5DcG83+8zFOq+0WzEVVXy8xByeqHh14QZWNumJKIauRir3DIiJjET4r9//KU+dJRNmfLzODKoyB5xftB57B0/llHfdtghlOjSVfkAWALBEOFugI2zs7dFzz3JevldNKrJSRGZ0RYE6VTDowg5mhFDw52+IieBGd/589xHf374Xe3iiwc4xBfocWcfL90o5mwHl36IWa1YXA05vYXJ//vT9SDqpPj14hj8BP8QenmhIkcoF/U9tQZGmtZnPsHhclRotoUFZr+boc2QtU5wj4KUvrGy4UQW+1+7hb0io2MMTDSld02LwhR2kICSQ6LChnM2A8n/nlXt3RI89y5nUIl8evyDrXp+/gZioKOINZSC1ewYMvbIHOSuWIuvjY2NJZzOgbJurVCrUHu6NzpvmMQ/ZH+89IaM+lSSmRkHD2Z+1RCGyPjYqGh/v0sI6ShFTo6BSqdB4yhC0WTqZech+f/MB1NbcvwelcfQnR4a8OTHixn5kzJ+LrI8Kj4D/U+6lU0J8PF6evSr28ESDWq1GqwXj0XQm23H87tpdsxTWylK0AIZf309mJQGJUdyBfh855TF/I/Hm8m1mu87p06Fy744YfH4HZn+9jfYrpyFPtXJ6Rz6/v/0I+4ZOwxiPCphdrhnOLVyHIMaFiD6wsrZGx7WzUG9sP+Yzby7dAohvgNL3rtnLlcCwa/uYl4KhP38hhDiXhAf9xoc7j0QenXiwtrVFtx1LUK1/F+YzrPOKUjN3NMhbvTyGXt5NZqIBiZH7kaFcZ3Tw56/49o8QvLnCnCjhzAkWh7MFOkNtZYX2K6ejwcSBzGfu7jiMFY17KEbNXld4li6amH7OuJFnOdmV/oGzsrFB583zecUEKSj9oAYkcvwOu7KbqfzOin5WGi9actg62KPX3hWo2LOdXu8p/W8dSKQQGnR+O5O3nrJ5fGys4nnR7J0c0efoepRq11iv95TI154cJVrWR/9Tm5i89dS3PSo8gumQVQocU7tgwJmtKNy4pl7vKf1wDgDlOreEz+G1TN56jdp7UoT+/IXPD56JPTRR4Zw+HYZc3Im8Nbi0IQCYa7Y5fNur9euM7ruWkpcJABAfy6UHCvT7hB8KDhoAgNSZM2LY1b3IXr4EWc+KVFW6zVUqFeqO6oNOG+YwL5eouX9+9AJ/vik3aABIzK4cfn0fshQrQNZTf+uA7jZ3dnNNdD5f2InZX2+j3YqpyF21rP7O51sPsW/INIzJWh5zyjfHuYXrEPzlm15tJIVKpUKTacPQZskkdgQn8Y17d/0+/v4JIR5WDjLlz4XhN/YjAyP7KC6GztxT+h5OrVaj9eKJaDJ9uF7vvb6g7KABIDGjdvj1fUiXPStZHxfN3ccA5rGH44Nb7uxI55mFU/7i9BVFBw0oHRaHswV6QaVSodGkwWi3YipzQX9x+sq/qsjmhAx5cmD4jf3IVDCPzu9Q6VtKg1qtRsv549B8zmid3/nz7Qe+J0vZUyIyF8mPETcOwDVnNp3fUSLvY3JYWVujw+oZqD9+gM7vfH/tp/iDGgBkL1s8MVokC811SMEcfufWtrboum0Rqg/sqvM7n+4/VXR0twZ5qpXHkMu74OxGR4tQMAeb2zrYw3v/KlTo3kbnd95du2sWWUyFGlTH4PPbkUIP2gBz+Lbbp3RC3+MbULJNQ53feXP5tlkc1Eq2boj+JzeRXNUsmMPv3DFNKgw6uw2FGtbQ+R1zmDcAlO/aGr0ProaNvZ3O77y5rPy5O7u5YsilXbzcxslhyPfN2c0VVXy8MOTiLszyv4W2y/9xPuuZsu9388G/zueF1dvhxsY9Bu8tqvXvgm47FjMvl5IjPjYWvtfvG9SXnJAmSyYMu7qXyW1MwRx+5yqVCvXG9EXHtbN0vvSICo/Ax3tPRR6Z+EifMxuGX9+HzEXy6fwOK2PRXKBSqcgo57DAIHx7/kb6AVkAwOJwtsBAVPHx4k1FTqqKbE7QloqcHO+u3VN8pK8G2lKRk8P3KpcfT4nQloqcHOYyb11SkZPDl+BEVCIy5uNPRU4Oc7G5Wq1Gq4UTeFORkyIhPl6RIksUshYryJuKnBxvr7J5zpUETSpy3TF9dXo+JjIKn+4r/6AGaE9FTg5z+Z3b2NlpTUVOivBfwQh49U7cQUmEvDUqYMilXUjpmlan583F5rYpHND74Gpe4cyk+PXhi1HRpnJC4UY1MfDcdqRI5azT8+ZicwfnlOh3YiOKt2qg0/Nfn742SvDbJUN6VO3zj/P56220XTYFuaqU0cv5nJCQgNcXb2JLtxEY4VYSa9v0xZNj58msEz6UatsYfY9vYIooJoevmaznTmlTY9C57ShYv5pOz3+480jxkb4aVOzRFt77VzJFFJPDXGzukiE9hl7ejdxVy+r0/Lvr98ziApkPlBAwALw1k2+7EmFxOFtgMEq0rI9+J9mpyBpVZH+GMJFSoU8qcujPX2YR6atBuc4t0fvQGmYqclKYi/MR0J6KnBSBfp/w++t3CUYlDbSlIieFOdlcWypyUnx5/NIsIn2B/09F9lo/R6doEaVTSySFtlTkpPhw+5FZRPoCiTZvOn04Wi+eqNPzvmZkc22pyElhTgc1TSpy42nDdHqeElhTKjxKFMKw6/vItNvkMKc1zcraGp02zEWdkb11et6c5p6zQkkMvboXLpnctD5rTvO2sbNDj51LUKWPdoG0hIQEvLshzAWyS4b0qNq3E4Ze2o1Z/v84nyuX1sv5HBMZhft7jmNFo+4YmakMdvabgPe3H+ocxJO/ViUMubQLTunSaH3WnPYxdo4p4HNoDcp2aq712dioaLOI9NWgaNM6GHhmKxxcaP2dpDAnmzu4OKP/yU0o1ryu1mcjfoeYfaQvKyjQnPYxSoPF4WyBUchbnT8V+c/X75hfqZVZbeCA/09FLt+ttdZn31w0r/SVwg1rYNA57anIr84pm9c2OfRJRX5zhS2+okSUbN0Q/U5s1JqK/PKMcoWGKPybitygOu9zCfHxeHdD+SmZSVGhm26pyM/PKJuzPDl0TUWOiYzCx3u0yJpSUX1AV3TfuUTr5dILM/ud65qKHB70GwEvfSUalfhQqVSoP7YfOqyZqfVyydy+7W65PDH8+n6tqcjmFOkLJNq82axRaLlgnNZnX569JsGIpIN7wTwYcWM/3PJk533O/8kroyJ95Qa1lRXaLpuCRlOGaH321Tnhbe6S8R/n8+U9mOV/G22WTkbOSvo5n8MCg3B5+RbMLtsME3JXw7HJi/DD94PW9zxKFsbw6/uQNltm3uf8bj1ETCRX/F2psLKxQaeN81BrWC+tz76+YF5ntVyVy2DolT1wyZie97k3l26ZzQUyANjY26PnnuWo5N1e67OvzIAejA9OaVOTGaq+V++aTda50mBxOFtgNDSpyCzi+ojfIVhcqyMeHzkr8cjEhZW1NbzWzdaainxi+lJER/yVaFTSIEd57anIv/0DcHfXUQlHJT50TUU+Nn6B2aSpaZCvZkWtqcgBr97hhYLV7Snomop8aNQcxMXSwixKRZHGtTDw7DbeVOSPdx7jvYKVzin8m4rcsj7vcwdGzDKrAwugWyry6wvX4W9mETK6piLvHz7D7A4slXq205qK/OjwGfz0+yThqMSHS8bEVORcVcrwPrd/hPnZvObgHui6bRHU1tbMZ+5sP4Rg/wAJRyU+0npkxvBr+5CtdBHe5w6NmSfRiKSBSqVCg/ED0GH1DN7LpWtrd4qqv+OSMT2q9euMYVf2YOaXW2izZJLezuefvh9wbNIiTMhVFXPKN8elFVsRFhjEfN4td3YMv74f7oXzMp+Jj43FiWnL9JmK7KFWq9Fi7hg0nzuG97nzizaY1QULAGQunA/Db+yHW2725VJUeAQuLNog4ajEh9rKCu1XTkeDiQN5nzs9cwUiw8IlGpVpkLNiSU5Z8JdvCPrkb4LRWGBxOFsgCFxzeGDEjf3IUjQ/WR8TGYVVzbxxfcMeiUcmLnRJRf79JQCLanZAeNBv6QYmAf5NRc6bg/nMxo6DcG/PMQlHJT50SUX+4fsByxt0Q2RomIQjEx+6pCKvaNQdT46dl3BU4sPKxgadNsxF7RHezGe+PH6B1c17m93lUs6KpbSmIi+s1g6vLtyQcFTiw8bODj12LeVNRX53/R42dBhoNtQaGmhLRU6IT8C8Ci3gd8s8+Ls10CUV+fnJS9jWa7TZXS5pS0WOj43DnHLN8PnRc4lHJi4cXJwx4NRm3lTkezuPYt/QaWZ3uVSmQ1P0PboOtikcyPrYqGjMKdsMAa/MJ6ofAJzSpcHgCzuRv05l5jNXVm7F0YkLzO6ioVKv9ui1dwXzcikqLAJzyjdH4IfPoo8lVSY3VOvfBcOu7MGMzzfRfO4YvcTPgESxwV19x2NExtJY0aQH7u89TkYqp8rklni5VLk0s62T05fhzLw1es9D7qg9rBe6bFnAvFyKCPqDeZVbmxUVIACky5YFw67thUfJwsxn9g2bjiurtkk4KvGhUqnQaNJgtFsxlXmRExLwE4tqtOe9qFE6claif+vmwtGvNKgSzG01tcCk+BsSilVNe/GqHTedMRx1RvXRW8VY7ri78zA2dByEhHj6J5Uxfy4MOL1FZ4EipSDsVzAW1WiPL49fkvUqlQqtl0xCtX6dpR2YBLi6die29xrNrM9avCD6ndwE5/Q05YxS8efbD8yv0gY/3r4n69VWVui4bhbKd2kl8cjEx7kF67Bv6DRmfY4KJdHn6Ho4aqGcURp+ffyCeZVaIfgznV5ubWuLrtsXoYSWqGClISEhASemLsHRiQuZz+SrVQne+1cy9QyUiu9v/DC3YkuE/aQPJTYO9ui1byUK6ShQpBTEx8fj4MhZOMvjfCjStDa671gCWx30DJSEL09eYn6VNvj7O4Sst3dOCZ/Da5CnajmJRyYu4uPisMNnHK6t3cl8plT7Jui8cS5TLFupeH/7IRbWaI/ocPqy1DFtavQ7sRGepYtKOzCRERsdjc1dh+PujsPMZyp5t0e75VN1FstWCl5fuomldTsjNoq+LHXJmB79T21G5sL6OYCFgP/TV7i97SDubD+M3wZE2Ns7p0SJVvVRumNT5KpcBuokEd3RfyOxrk0/PDl6jvl+zaE90XzO6P+8Zw54dvIiVjTpifgY+rI0jYc7Bp7ZyhsVrEREhoZhReMeeHOJTW/ZcNIgNJgw0Oz8Evf3ncC6Nv2QwLgsdcuTHQNOb0FaD37KGSUi8MNnjPPkigdW8m6PDqtmmGBE/9uwOJwtEBwxkZHY6DUED/adYD5TfWBXtFww3uwW9L1DpuH8wnXM+tRZMmHA6S3IqINAkZIQGRaOoWmLIi6arSRdf1x/NJoyxOwW9C3dh+PGhr3Metec2TDg9Ba4MihnlIqwX8EYnr4EcyMDAM1mjUTtEb3NzuarW/TGwwOnmPWZCuRG/9NbkNo9g4SjEh+/PvpjbDa2cKZKpULb5VNQxUe7QJHSsKhWB15eeo+ShdHvxEZeyhkl4svTV5hWmB39qbayQqcNc1C2UwsJRyUNZpVpig88dDE5K5VGnyNrkSKVeV0uvblyGwuqtGHWW9vaotuOxSjeop6EoxIfCQkJmFKwNr69eMt8Jn+dyui1byXstegZKA0PDpzEmhY+zHrbFA7w3r8SBepWlW5QEiA+Ph7jsldC0Ed2mnWx5nXRbfsi2Nib1+XS9fW7sbXHSGa9g0tK9DmyDrkq81POiIX4uDi8vXIbt7cexIN9Jw3KGEydJRNKd2iCMh2bIVOB3ACAuNhYjHIvg9AfbOqQMl7N0Wn9bJ3EspWEM3NX48CImcx6p3Rp0O/ERmQrxU85ozTERkdjePoS+PuHLe5d2acj2i6dbHaXSwdHz8HpWSuY9S6Z3DDg9Ba4F8wj4ajER0JCAsZkLc/RYMiYPxcmPjcvilclwLy8fRbIAjb29uixaykq+3RkPnNh8UZs7jLM7FIUK/fmJ+sP/vwV8yq2NLu0VHsnR61RbiemLcXOvuPNLkVRm3Ptp+8HzK3QwvzSUtOmRq4qZXmfOThqNg6Nnm1+Nu/bibf+6/M3mFu+hSRpqVIirYc7shQvyKxPSEjAzj7jcWrmcglHJQ34qDUA4OO9J5hXsRX+fPsh0YikQeZCeeGa04NZHx8Xh02dh+Liss0SjkoaVOnD3sMAgO/VO5hfpQ3CfgVLNCJpkKtSaaTkycqJjY7G2lZ9cGMT+6JViVCpVKjcuwPvMy9OX8GiGu3xN4TtuFAiijapzcvbHh3xF8sb9cB9nkASJUKtVqNCd/blCgA8PHAKy+p3NTu6rFLtm/ByeP/9E4rFtb3w7ORFCUf1/1BbWSFPtfLotGEu5ny/hx67l6Fwo5q8Y06O4M9fcXrWSkwpWBvTi9XHuQXrEPYzCGW0XJDe3noAq5p5mx1dljah+7DAICys1g5vzUz43NrWFiW0CL5fWbkNGzoMRHxcnESjkgaVvNvx1v/5+h3zK7UyOxFslUqFHASP87cXb81uz6YEWBzOFogCtZUV2i2fioaTBjGfub31AHb3n2hWzqj0uTx5D2pAotL9kjqd8Z1BR6BUaBPeARIX9ENj5kgwGumQuWh+3oMakMiXtbiWl9mJFeSpqt3mp2ev4r1dVyI8yxTVeugJ+uSPxbW8EPL9p0SjkgZ5qvJfMgDAoTFzcWnFVglGIx1yViyl9Znvb/ywuLYXwoPNS4Antw70Cbv7T8StLfslGI10YHEAJoX/k1dYVr+LWfH1q1Qq5NbybU9ISMDW7iN5Mz2UiJyVtP/OP9x5jJVNepJcsUqF2sqKPJwnRXxsLDa0H4gXZ65INCppwMfrq8HrizextnVfxMWws/iUBlsHe2Qrxea3BRJ5vFe38IHvNdPynto62KNk64boc2QdZn+9jbbLpsCzbDG92vj86AX2DZ2GUZnL4tW5a1qff3r8AjZ1GmJWDkintKn/jfRmISo8AssbdsenB88kGpU00CVS/97uY9juPcas/BJpPTJrpfKM+B2CJXU749tL8wqMYu3h3l2/J/FILLA4nC0QDSqVCg0nDkL7ldOYKfWXV2zl5cZUGlQqlU4HltAfgVhcqyMn1UPJ0MUhAwCnZ63EmbmrRR6NdLCytoZnueJanwv+8i3RAfkjUIJRSYMcOtr80Ji5uLJ6u8ijkQ52jimQtXgBrc/99P2AJXU6mZUCuC7fNwDY3W8C7vBwYyoNKV3T8gqkavD12Wssb9AVUeEREoxKGlBq3xS2dBuBx0fMJ1UxnWcWuGRMr/W5D3ceY1Uzb8RERUkwKmmgy3qeEB+P9e0G4NV5NtWM0uBeKC/snWnhxKR4c+kW1rbpZ1bikbpcsMTFxGBVM2/43bwvwYikQbbSRXWiTnh6/AI2dx1uVpmZuuzhYv5GYnnDbvjy+IUEI9KOlK5pUbVvJ4y8eRCT31xEg4kD4ZqDnYWTHAnx8fjySLe53Nt9DLv6TTArB6S2iyUgkfd4ad3OCHj9ToIRSQNd9zHX1+/GwVGzRB6NdNDVLxH+KxhLanvh18cvEoxKGuRizNv3msXhLDUsDmcLREfl3h3Rc+8KptDKialLcI6H91hp0HVRC/roj8W1vcxGJVaXSF8NDoyYiWvrdok8IunAWtSS4/sbPyyt2xl//9CCTEqDLpG+Guz0GYd7u4+KPCLpoMvhHAC+PH6J5Q27m006bo4Kun3fEhISsKnzUDw9fkHkEUkHXS9Y/G4+wOrm5uOA1PVvPT4uDmtb98XrS2zRYCVB14MaALw6fx0b2g80GwekrvOOjY7GyiY98f72Q5FHJA3UVlbIUV77BTIAPDlyDlu7jzAbB6Sue9foiL9Y1qAb/J++EnlE0sDWwR4eJQvp9Oyd7YewZ+Bks3FA6rp3/fsnFEvqdJJdZqZbLk80mjQYU95ewoibB1Cljxcc06YWtI8rq7bj8Lh5grZpSui6nof+/JWYmfn5q8gjkgZpPTIjdZZMOj17Zs5qnJ69UuQRSQdd967mFhiVsUBupEjlzCl/Z+KMjf9FWBzOFkiC4i3qod+JjbC2o53O+4ZMMxs+QF0XcwAIeOmLpfXMIx1X10hfDbZ7jzEbPkBdF3MA+PzwOVY07oHov8pPx9U10hdIdEBu6DgYz09dEndQEkHXwzmQmL61uqWPWfAB6hrpCySmYK9p6YO3V++IPCppoOvhHABenLmKjV7mkY6ra6QvkJiCvbJxT7PhA9Q1cwdI5Hrd3mu0WTijdI30BRJTsJfV74qvz9+IPCppoM96fmvLAewbMtUsbK5rpC8ARAT/weLaXvjp90nkUUkDXS9YAODSss04Nsk8MjOzly+h87Mh3//JzPQPEHFEhkGlUiF72eJot3wqZn+9jT5H1qFE6wbMM6e+ODVjOc7MWyNIW6aGPnvX4M9fsbhWR4T+ZAssKgn6zP3gqNm4umaHiKORDvrsXX+8fY+ldTqZRWCUWq0mg2Q+3ntqFmdwJcHicLZAMuStUQE9di9jKsBu7T4Sjw6dlnhUwiNzkXywIxTM7VM6kc9/vPfEbPgA9VnUEuLjE/kAz14VcUTSgBXpa+9M2/ztlTtmwweozwVLfGwsVjXvDV8z4M9iRfqyfufPT17Cps5DzcIBqY9DJiYyKpEP8KHy+QBZ86a+9wDwYO9x7PAZp3hnlD6RvsA/6bj1upiFUCpr3raODmT5jY17sX/4DMXbnBXpq1LTx4bwoN9YXNvLLIRSWfsYGwd7svzC4o04MW2pmEOSBKxIXysbOospUZuio1kIpbIullgOy+NTluD84g1iDkkSsDh9beztyOeDPvpjSW0vWYtuWdvaonCjmui5eznmfr8Hr/VzkKdaOSa1o644MHwGrm/YI9AoTQdWpC8rQ/X7az8srdfFLIRSWes5yy+xo/dY3NtzTMwhSQJWpK9dSnrv+vnRCyxv1MMsMjMpCpm4mBh8uPNI+sH8D8PicLZAUhRtUhte62eTdQnx8VjXpj9eXbgh8aiEhZW1NbITkb6x0dHIyBBreH3xJta1G6D4dFyWQ6Zwk1pkeVxMDFY384bfrQdiDkt0sCJ9VSoVXHPS3HJPj53Hlm7KT8dlRQwUYdg85m8kljfoKhs+QEPBivS1S+nIFOi4t+sodpmBUCrLIVOoUQ2yPDIkFEvrdMb3N35iDkt0pPPMApdMbpxyl0xuSOmalnzn2tqdZiGUynLIFKxfjSwPCwwyC6FUVqRv+lye5AEOAM7NX2sWQqnUep4QH498tSuRz//5+h2La3nhT4CyHZAepYqQkb6Zi+SDbQr6ouHohAW4uGyz2EMTHZRDJi4mFrkZYrGBfp8ShVKDfos8MnHBukDOXr4Ekw5w76ApZiGUSjlkYiKjmP8m3168VYxQqoOLMyp0a43BF3Zi+sfraDZrpFbRPD5s7TESp2avVPwejtq3R4VHIFvpIuTzn+4/NYvMTNY+Jn/dKuSFREJCAjZ2HIznpy+LPTRRwYr0jY6IhHvhfOQ7vlfNIzCKFRTle9VCqyElLA5nCyRHuc4t0WrRBLJOwwf44e5jiUclLKjFPDYqGs1mjkC67FnJdx4fOoNtPUcp2gHJ5PSNT0CjKUPIdzTpuP7PXos8OnFBLWp//4Si3fKppJMKAG5vO4i9g6YoevPKOpTYOqZArWG9yDoNH+AP3w8ijkx8UDb/8/U7Om+eD6d0ach3rqzchiPj54s9NFHBulhK5Z4BFXu2I+s0fIBKFkpVqVTkt/3n2/fosXc5k4Lg9KyVOD1nldjDExWsyKBMhfKgVLvGZJ058AGyIn0DXvjC+8AqZtTroTFzcWXVNrGHJypYF0u5KpVC4UY1ybqfvh+wtG5nRQul2jrYw6NUYU55wEtfeO9fxaSd2N1/Im5vPyTy6MQFyyFTpEkt5KlWjqz7+uw1lilcKNUxTSrSEfnjzXt037WUGdm/pdsIPDp8RuzhiQqWQ6Zcl5bwLFOUrPtw5zFWNu2lqMzMNFkyoc5IH4x/ehpjHx5HzaE9mXZlIiEBh0bNxrjslXB+0XrFavCw1vPqA7vCvXBesu7t5dtY11bZQqmsSN/wX8Fou3wK+U5cTAxWN++NdzeULZRKXSwlxMWhwcQBSJ/Lk3zn6fEL2NRlmKL9Eh4lC5GZKr4WHmdJYXE4W2AS1BjYDQ0mDCDrosLCsbReF3x98VbiUQkH1mL+7aUvBp7dBucMrmT9zU37sG/oNMU6IFmRvr7X7qLumL6oPrAr+V5E8B8sUTgfICvSN9DvEwae3QbHNKnI+otLN+HY5EXiDUxksCJ93127h+ZzRqN8t9bke3LmA9QVLJuHBPxE/1ObmfQaJ6cvw7kFyhVKZUX6vrt2D+1XTkPxVg3I94I++WNxrY6KPaQB9OE8ISEB0WER6HtsPTMV+eDIWbi6dqfYwxMN7oXykn/P767dQ5fN81GgXlXyPXMQSqUuWGKjo6G2tkbvA2wH5M4+43F31xGxhycaWJG+7248QI/dy5CrMu2oMgehVOrb/vdPKFwyuqLbjsVMR9XmzkPx5Nh5sYcnGlgXyO9vPYTP4bXwKEVHQL6/9RCrmilbKJXat//2D0CWYvmZmZnxcXFY16YfXl9UbmYmax/z8e5j9DuxiRkR/PrCDUVmZqpUKmQpWgAt541FCcZeRRt+ffiCvYOnYpR7Waxp3RfPT19WFF0a62Lp88MXGHB6C1xz0JmZShdK5eP0Lde5JRpPG0a+Fx3xNzEz88lLsYcoGlgXS9+ev8XAs1uRyj0DWX93x2HsHjBJsX4JGzs7ZCtdlFPud+OBon6zSofF4WyBydBw0mBU7deZrAv/FYwltb3w6+MXiUclDDzLFCMjfd9duwfX7Fkx8MxWZjruhUUbcHL6MrGHKBqojUxE8B98f/UOLReMR9lOzcn3/nz7oWg+QNZBzffaPWTKnwv9Tm5icqQdn7wYF5ZsFHN4ooJyyAR98kfw56/osHoGijWvS77368MX2fMB8oEV6et77S48ShSCz5G1bKHUodNwY6My+QBZkb5fn73G35AwdNu2EPkZafcBr94pWiiVdTj3vXYXuSqVRq99K+ksDyTyASpVKFVtZYXsRKTvx7tPEB8XB+99K5nfwM8PnyfyASo0HZdl83fX7qJA3arounUBOx3Xawienbwo9hBFAYvT1+/GfVjb2qDPkXXIWrwg+a7ShVJZDhnfa/dQomV9dFg9g6yPj4vD2lZ98PbKbTGHJxpYkb5vr96FnZMj+p/YiAz5cpLvvjyrbKFU1nr+7to9lO/SCi0XjCPrY6OisULBQqlpsrqTNGC+1+7BMU0qDDizFWmzZSbffXzojKKFUnMyLs10jXyOjY7Gg73HsbRuZ4zLXhlHJy5QBI89K9LX99pduGRIj4FntzGFgm9tOYC9g5WbmUlF+sbHxuL9nUeoN6YvagzuTr4X8TsES+p0ws93H8UeoihgRfq+u3YXaT0yJwZGpU1Nvnt5+RYcnahcoVRqDxcZGqboCwSlweJwtsBkUKlUaL14Ikq1b0LW//YPSEzH/f5T4pEZD9sUDvAowT2I+V67i/j4eLgXyot+JzYy+QCPjJ+PSyu2ij1MUcCK7va9egdqtRpe6+egcGM6HTfQ7xOW1OmE8GDlpeOyIn01PFGepYvC5/BaJh/gnoGTcWvrAVHHKBZYqde+1+7Bytoa3XYsRt4aFchnvr14i+UNuiIyLFzMIYoCVqSvxuZ5qpbjF0rtMQoPD54SdYxigRUt8e76PVjb2sL7wGqSyx5QtlAqi9NXY/NCDaqjy+b5tANS4UKplM1jo6Px4e4T2KZwQN9j65G5iPnxAWYrXZSM9H37j81LtmmEdiunke/Gx8ZidQsfxQqlUuv53z+h+PrsNRxcnNH/1Ga45clOvqtkoVTmBfLVOwCAij3aovmc0eQzMZFRWN6oh2KFUimb//n6Hb8+fIFTujQYeGYr0mR1J99VslAqcx/zj81rDu6B+uP6k89EhYVjSd3O+PZSeUKpLFHYby/eIuxXMFJlcsOgc9uZmZk3Nu7F/mHTzcrmlbzbo9WiCchUMI/ObQV98sfxKUswPntlLK7thXu7j8o24p8v0jc64i/SeWbhz8xcsgknpi4ReZTigI/TV6VSocW8sSjXpSX5jEYo9ffX72IOURSwIn3f3XiAuNhYZMyXE/1PbmKKYJ+YugTnF60XeZTigO2XsNBqSAWLw9kCk0KtVqPLpnko1KA6Wf/j7XvF8gFS0RIRwX8Q8M+GNHu5Euh9cDWbD7DfBNzZcVjUMYoBvkhfIFFUsefuZUwRGv+nr7BcoXyArEhfjXBW3hoV0H3XEjYfYNfheHzkrKhjFAN8kb5A4kan96E1TEGS97cfKTIdly/SV3NpUrRJbXTaQIvGJcTHY33bAXh1/rqo4xQDfFGfQCK9Tt/jG+FeiOYDfH3xJta17a+4dFwWp+/Hu0/+daCXbt8EbZZOJt+Pi4nBqqa94HdTeXyA2myeIpVLYjpuzmzkc0+PncfmrsMVl47LF+mrcaZW9u6ApjOGk+8rWSiVL9IXSLxoHXhmq9kJpfJF+mrmUnu4N+qM8iHfV7JQqrb1PHXmjBh4ditSpk9HPndt7U4cGk1TUMgZabK6I3WWTJxyzd86ADSaMgRV+niR7ys5M5MZ3f3PRZlrDg8MOL2FLZS6YB1OzVSeUCor0vfzw+eoMbAbxj85hZG3DiJ9rmw6t5mQkICXZ69iXdv+GJWpDHYPnCTLSEq+SF8AyFQgN/qd2MjMzDw6caEihVL5In2BRL9Ex7WzUKRpbfL9wPefEwOjFCiUSopFhoXD/8krAEC2UkXQhyczc+/gqbi5eZ+oYxQD2csVJ4NAkn7bLRAXFoezBSaHlY0Neu5dweQD/PzoBVY06qE4PkDWjZrfzQf//nf+2pXRbfsiZjrups5D8fSEstJxWZG+SedtY28Pn8NrkbUE9xCveXZ1c2/FpeOyoiX8bj3897+LNauLjmtnkc/Fx8Vhbeu+eH3ppijjEwusSN/3SWxu7+SIfic2IWP+XGQbr85dw4b2AxXngGRFS3y4/f82L9uphVahVM0mXylgRfom/Z07pk50QDKFUg+fxdYeIxXngGRF+n5++Pzf/6/atxNTKDU64i+WNeimOKFUVqSv383//1t3dnPFwLNbmUKpd7Yfwp6BkxXngGRF+ga8evfv/9cZ1cfshFJZF8hJf+dpsrpj4NmtZieUyor0TSp82nTGCFTqxS+UGvT5q2hjFAPMfUwSm7vlzo4BpzezhVJnr1KkUCor0lfDQa9SqdBm6WSzE0rVxeaZC+dD3+MbmUKph8fOxeWVysrMZEX6frr/DLHR0VCpVPAsUwwTn59FwfrV9G4/POg3Li7ZhGlF6mFmqca4smqbbPQMWHvXpPt2zzLF0PvQGmZmphKFUpmcvrce/bsvsbK2Ro+dS5CnenmyDY1QqtIyM3XxS+SpVp4/M7P7SMUJpaZI5UKKYSb9W7dAXFgczhbIArYO9uhzZB2yFOMKzgGJkRVrWvVRVDpujvIlyPLPj/4b5VSiVQO0Z/EBxsZiTYveePtPSp9SkJ2Ye6Dfp/9stBycU6L/yU2kcxoAXpy5io1egxWVjkvNGwC+JLN5hW6t0XI+mw9wZeOe+Hj/qeDjEwsqlYr8e//6/O1/Lg2c0qbm5QN8eOAUdvQeqyhnlK6/c16h1PAILFOYUKraygrZyxbllH95/PI/9nPJqIUPcPN+xQmlUlzGANfm9cf1R/VB3chnlSiUautgT4rCJp93umz86biXlm1WnFAq69uedO4qlQrN54xGhe5tyGeVKJTqmCYVydmbfE3LkDen2Qml6rKeq1QqtFsxDSVas4VSl9T2UpRQapqs7qSAVHKbZylawOyEUlnr+ZfH/x+hqlar0WXzfKYDUpOZKRfHoi7IWCA3+dtNbvMc5fkzM3f1naA4oVTqdx4XE4NvSfZjVjY26LVvJXJVKWNwPx/vPcEOn3EYkbE0NnYagjeXb5l03+NRshBpx+Treb6aFdF9JzszU4lCqVSWWmRIKALf/z//to29PXwOreEVSl3dvLeiMjNZNHfJbV60SW2zE0qlfufBX74pVkNIabA4nC2QDf7lA8xN8wE+O3ExkQ9QIdFwKV3T6rRpB4BKPduh2exRZDsxkVFY3rC7ovgAWRcHX/5J29EgpWtaDODhA7y/5zh29lEOH2C67FnJTXvyxRwAag7pgXpj+5HtRIaGYWndzgh4pRw+QMrmcTEx/1LIaJDaPQMGnt0GZzc6Hff6+t04MGKmYmyesUAuUiSO+p3zCqUG/caS2l6KEJzRgLL53z+h+PXhvynFrtmzYsCZrUiR2oVsR2lCqVmK5ifLk9tcpVKh5fxxKNu5Bfm8EoVSKZsHf/7K2bT/K5TK4AM8Pnkxzi/eIMoYxUBW1ppG2LzD6hko1qIe+bwShVIpmwe8escRgfQoUQh9jq4zG6FU1j4m+XqutrJC163ahVL/hoQKPkaxQM3d/8krTgCAVqFU7zG4v/e4KGMUA7ra3MrGBr32rmBSzihNKFWtViMzsa5Re9cCdaqg67aFvEKpSsrMzFKMXs+Tz10TGMUSStUVMX8jcXvrASyo2hYTclfDqZnLTcIJbGNnh4z5qctELv1HseZaMjMVJpTKPKMms7l9SiftQqkdlRMYlSKVC9J5ZuGUU+eVcp1botXC8WQ7ShRK1dXmFogDi8PZAlnBOX06DDizhckHeHfnEexWEB8g5Zj48vgl6TSvM6I3ao/wJttRGh8gyyGTNOVcgzRZMiXyAbqmJd+5umYnDo2hOXDlBrVaTYpmUfMGgMZTh6Jy7w5kXVhgUGI67j/8z3IHdVgBgE/E3NPnzIYBZ7bCwYVOxz07bw1Oz14p6PjEAmvT/vkhdxOjEUot3aEp2ZbShFJZNv/8iGtz94J5tAulLt8i6PjEQopULmSU/ifC5mq1Gl7rZqNIk1pkW4F+n7C4tpdi+ABZNqc27Z6li8KHJx1376ApuLVlv6DjEwups2QiL0yob7vaygrdti9C3poVyba+vXiLZfW7IDI0TPBxigFqPY+Pi8NXghImd5Wy6LV3hVkIpWbIk510nlM2NzehVMrmUeER+PnuI6e8UIPq6LqFIZSakIANHQbhxZkrooxTaLgXzkvOg7K5bQoH9Dm6jl8oVUGZmZTNQwJ+4k8A90K0ZOuGaL9qOtlOfGws1rT0+ZfzW+7IUpRxyUDY3ME5Ja9QKgDYpaQvWSn89P2AQ2PmYkzW8ljeqDseHTot6d8LtZ7/ePuepIqo0K01ms8dQ7bzr1DqA2UERjH3roTN/xVK9WAIpe47ge0Kysyk5u7/9BVJZ1hjUHfUH8/IzFSYUCrLL0GdUS0QHhaHswWyQ1qPzLx8gJdXbMXRCQskHpVhoG7UosLCyU07ADSbNQoVerQl6zR8gEn5A+UK1gacdZPoljt7Yjouiw9w1kqcmbtasPGJCcrmrE27SqVC22VTULJtI7ItJfEB6hoBqIE2PsBDo+fgyurtgo1PTFA2Z23a1Wo1Om+ci0INa5Bt/fT9gCV1OilCKJUZDUY4XgEge9ni6H1oDTsdV0FCqdTcvzI27VbW1uixaynyVCtHtvX12Wssb9hNEUKpukYAaqBVKLXbCEUIpapUKnLunx+9IA+aNnZ26H1wNTzLFCXb+3DnsWKEUvW1eeFGNdFp41yyTklCqVY2NqToKWtN0yaU+ubSLaxt008ROgXsbzt9OC/VrgnaLp9C1sXFxGBVM29FCKXaOzkifS5PTjnL5lqFUo9fwKYuwxSRmcmK9GXNvVKv9mg6cwRZF/M3EssbdlOEUKpLxvRkxh1r3v8KpRICkwAQFRqOIk1qoWznFswL9uSIj4vD02PnsaqZN0ZnKYf9I2Yi4PU77S8aCep3npCQ8K+IXHLUHtYLdUf3IesiQ0KxtK4yAqPS58xGiiGy1rREodRtTKHU6+t24eAoOgJcbqBsHhsV/R89iqRoNHkwqvTtRNaF/wrG4lodFSGUmqlgHvIi3BLhLA0sDmcLZAltfIAnpi1VBDecPtFgwD/puKumo3grNh/g0npdZO+YsE/pRG7AWYs5AGQtXhB9j65j8gEeGDFTEdxwTJs/plWq1VZW6LJ5PgrUq0rWf3/jhxWNusveMeGcwZXcjPHZPGeFkuh9YBXTAbnTZxyeHr8g2BjFAnVznpCQgK9P6U27lY0Neu5ZzhRK/fL4JVY37y17x0T6nNnIAxXfBi5/rUrotmMx0wG5qfNQvLl8S7AxigXK5jGRUfj+5j35vEYo1aNkYbLe7+YDrG83QPaOCfeCeUjb8dm8WLO68FrHL5T64e5jwcYoFiibh/8Kxm8GJ7O9kyP6Ht+ITAVyk/Wvzl/Hlm4jZB8Zpe8FMgCU9WqO1osnknWx0dFY2bSXIjjrqfU88P1n5oWgRijVNYcHWf/kyDnsHjBJyCGKAnb2CtvmVXy80HjaMLJOI5SqBM76zEW5f+/J9SiSQiOUSlHoAcDdHYdxWAFZeobYvM5IH9QaTmdm/v0TiiV1O5uELkJf0HQiL5nfZm1CqY8Pn4Vb7uyY/e0OOqyegWylaR5gCiHfA3F27mpMylsDcyu2xI2Ne0Q78zGzUXls3mT6cFTybk/Whf78hcUKoIxSW1mRInJ8a5pbLk8MOL2ZmZl5Zs5qRWTp6UoJp4FKpUKbJZNQqn0Tsv63f0AiZ73MKaNsHexJzSiLw1kaWBzOFsgWHiUKwefIWiYf4O5+E2V/SNWHWkKDRD7ABchXi+YD/PrsNbb1HCX7QyoZAfjsDXPTDgC5KpdBT7503O4j8fX5G8HGKAYMsbm1rS28960k1bKBxGi4PQMnCzI+saBSqZCFOKh9YUQAalCgblV03bqAzQfYcZDsD6lsOhH2RkabUOrrizdxeCwdJSgXsDbtfH/rAFCiZX104BFKXdu6n+yF1fRJydTAPqUTr1Dqk6PncGrmCkHGJxZsUziQ49dm8/Jd+YVS17TsI3thNUNsrk0o9e6Ow7i0bLMg4xMLLD0KbTavPqArGkwcSNZFhYVjdXNv2R9SmYdzxgUyoF0o9crKbbi5eZ8g4xMLabNlJjPOtNm83pi+qDG4O1kXEfwHa1r0lj2vMWXz5CJyyZEuWxYMOLOVKZR6evYqPDwgbyqZTAVy0yJyPDZXqVRoPnsUWyg14CfWtOrDu++XAyibJxeRS44MeXJgwOktzMCoI+Pm4f2th6jUqz1G3T6M8U9Po/qgbnBMm1rncb27fg9buo3AyIylsa3XaLy//VDQsx/rMlGbzdstn4qSbRqS9UEf/bGhw0DZ8xpT63nwl2+8+5BEodQNzMzMPYOm4N0NeWdyGLKPUavV6LJpHgo1qE7WB7x6p4zLc2LulB6FBcLD4nC2QNbIU7UceuxeRjogY6OjsbqFj6wPqWk9s9Cbdi03ajZ2dvA+sAqeZYuR9Xd3HsHFpZuEGKJoYG3ak4vIJUfhhjXQefN8si464i9WN+8t60OqPiJySWGbwgF9j61nbgCvrt6BG5v2CjJGsaCriFxylGzTCO1WTCXrIn6HyP6Qqm/EgAbahFLPzFkt+0MqKSKnZdMOABV7tEXzOaPJutAfgVjbuq+sD6mGCpA4pUvDK5R6dPx82fOdGrpp5xNKDfrkj/Xt5X1I1ZdaQoNUmdx4hVL3DpkG3+v3jB6fmNBVRC45Gk4chGr9u5B131/7YUvX4bI+pBpq83SeWXiFUnf0Hkty3csFarWaeYHMB5VKhRbzxqJcl5Zk/edHL2QvBG2ozbUJpW7uMkwSmgRDYW1rq7OIXFJoE0r1u3Ef+4fTF8xygaHredbiBZlCqQkJCVjffuC/dAPuBfOg9cIJmOV/Cz33LEf+OpXJQAsKkaFhuLZ2J2aXbYapherg/KL1CA82nnZNHxG5pFBbWaHLlgUoULcKWf/i9BUcm7zY6PGJCUN/5zkrlmIKpcbHxmJNqz6y1mFJnTkjeemhbd6azMyclejMzIf7T+Ls/LWCjFEsUDZn6VFYICwsDmcLZI+iTWqj0wY6HS3481dZH1L1FZFLCnsnR/TjScfdN3S6rA+pLD44XQj6y3RoijZL6Yje72/8sLnLMNkeWPQRkUuOf/kAGem4O33G4dND+YpyGHJzrkHl3h3RZPpw+v1HL7DDR76iHCwROV3m7Zw+HQae3coUSpX7IdWQCEANag/3Rp2Rvck6uR9SU2fOSEaz6WJzPqHU5IdUOcKYTXvjqUNR2acjWffy7FUcm7TI2OGJBn1E5JKDTyg1Maq/L8nzLxewROR++H7gfU+lUqHVogko07EZWf/wwClZH1L1EZHjvFswD/qf3ETSDsVERmF1Cx9BnEZigVrPQ74Hav07VavV6Lh2FlMo9eamfbgmY0o8Y/YxnqWLwufwWlIoNTI0DGta+JDaDnKBPnoUSaFNKPXikk24u1O++gzG2FwjlEpRTYX/Csaaln3+IxZqY2eHEq0aYMCpLZj+4RoaTR7MFKSj8PX5G+wdPBWj3Mtga4+R+Hj/qc7vUmCKyGkRL7S2tUWvfSuZQqknpi7Bk2PnjRqbmDAkG1WDQvWroesWOjDqz9fvWNe2v2wp8RKzUblz15aNCvwTGHV0HfPf7tCo2Xh96aYg4xQDxtjcAuNgcThboAiU7dQCtUfQPGEvz17F0YkLJR6R7qAcrywRueRwTJMKPofXIkUqZ05dfGws1rbqI9tDKkv5WVe+pGr9OjN5wh4dPC1rEUFDN+1AIh+gz+G1zEPqGhkfUg2NGNCg7ug+KNWuMVl3a/N+XF2zw+CxiQ0yApAhIpccabK6w/vAKuYhdXXz3rI9pLJsrqvyc5MZI5gCinI+pOorIpccbrmzo8ceOnuHOqTKCYbwPmqg4QPMXbUsWX9i2lI8OXrOmOGJBn1F5JIjc+F86LptEVkn90OqoRGAwD8OyHWz4FGK5jE9OHKWbA+p+orIJYdnmWJM/vJAv0/Y5DVYtrzt+goHJoWVtTW6blvEDJjY3X+SbCnxXDKkh3MGV065rjbPW708Wi+h+cu/Pn8ja0o8yvnIJyKXFDZ2dui5ZznSZc9K1m/tMQr+Mo0k1FdELjkKN6qJZrNGknUf7z1hUuKlyeqOBhMGYprfVQw8uw0l2zQk94EUYv5G4vr63ZhZshFmlWmCm5v3GZQJyBSRe61d/M/OMQV6H1wNl0xuZP0mr8GypcRjicjpavNS7Zqg/rj+ZN2bS7dwaIx8KfEom4cH/Ubw569a33VwcUbvQ2vIKOn4uDisa9NftpR4hvDUWyAMLA5nCxSDJtOHI0+1cmTdyenLZHtINTTdXgPXHB7ospV2qP/59gPr2vTTehNtCrCUn/W5SWy9eCLzkHpo9By8unDD4PGJCZaInC6bdiCRS89r/WyyLvD9Z2zsOEiWh1SWiJyuNlepVOi4dhbzkLpnwGS8v/PImCGKBsrmfMrPyZGtVBG0WTqJrPv24i229Rgpy0OqscrParUaXbcuUOQhldq8hv8KRvCXbzq9n6dqOTSdOYKs4zukmhrGRolYWVujx66lzEPqRq/BWiNnTQV9ReSSo3DDGsxD6tvLt3FotDzFxYyJAAT+oQnbt4I8pCbEx8v8kEqLyOkq5FuqXRNUG9CFrHt6/AJOzVhuzPBEg7F7V3snR3gfWEVy3MqdEo+a++dHL3Xed1Xq1R5lO7cg6+7tOipbSrysRlwyAImimd77V5Li39ERf7GmhQ/+/gkxaoxiwFA9iqSoNawXijWvS9ZdXbMTNzbuYfevViNfzYrosWsZZn29jdaLJ5LjYeHDncfY3GUYRmcui/3DZ+Dnu486v2vseu7s5opee1eQFBMRv0Owurk3oiP+6jweqcASkdPH5g0nDUL+2rTe0tm5q/Fg/0mDxycmjHW8pvXIjO47FpPZP3KmxHNKmxqps2TilFsinMWHxeFsgWJgZW2N7juXMJWg5XpINTbqE/jnkDp+AFn39sodHFTQIZVP+Tk5tB1S17ftr7NzR0oIYfNSbRuj+sCuZN2zExdxctpSg8YmJtRWViSFjD4qwHaOKXgPqXIVFzMmAlCDij3boXzXVmTdvd3HcGHJRoPGJiaEUH5OkcoFvQ+sYh5SVzfvLctDqhA2N+aQaio4pUtDUsDoM2++Q+rfP6FY3aK3LA+pTJvrQCGjAe8hdd4a3N93wqCxiYl0BupRJEWarO7ovnMJ+5AqU3ExkkImNpZXRC45WswdwxQFPjphAZ6fvmzw+MRCxvy5aBE5PWzuljs7Om+eR9YFf/6Kde0GyJISj7J5ZIh2PQoNVCoV2q+cznTmyZUSjykip4fNsxQtgParppN139/4YbNMedspm//2D0Doz186va9SqdBp41ymJsfOPuN1osRzSpsa1Qd0xbhHJzH67hFU7t2B/PZSCA/6jbPz1mB8zipYWq8znhw9p/X3JcQ+Jkf5Emi1gBYF/vL4JXbIlLedmvv313467z0SqWQWMzU5tnQdLktKPCFsnr92ZTSaOpSs87txH/uHyZMSj8o610WPwgLjYHE4W6AoJB5Sl5ObYLkeUlmbdn0+7ADQcOJA5K9Tmaw7N3+tLA+pLOVnXTftQOIhtceupSQ/WujPX7JUwGZt2vW1Od8h9dikRXh+6pK+QxMdhig/J4cSD6lCpGqpVCq0XT6VuRncP2wGfK/dNWh8YkII5efMRfKjw2p6g/rj7XtskiFvuzHUEhr8e0jNQx9Sd/iMw6cH8uNtJ3kf9dy05yhfAq0Wjifr/J+8wvbe8uNtF8LmaisrdNuxhMnbuaXrcAS84hfXlRqJvI/GXSYCQP5aldiH1JsPZHlINTbSF0jkO+25ZzmZ9ZWQkIAN7Qci8MNng8coBqxtbZGpQC5OuS56FElRrFldJiXeq3PXZEmJx1rP9bG5rYM9eu1fpShKPAcXZ4NE5JKjXOeWqNy7A1knV0o8ps31uEx0cE4J7wOrSHqOfynxgn7r1JZKpYJHycJov3I65ny7gy5bFiBXZVqwjcLzU5exonEPjMteGadmLkfIj0DyuVTuGQwSkUuOqv06o1T7JmSdXCnxSAqZ+Hi9suqc0qVBr30rFEWJ55bbkwzw0JUKT4O6o/ugcKOaZN3FpZtwZ4f8KPGo9Tw64q8sAxbNCRaHswWKQ/ZyyjqkspSf9d20/3uTynNI/fZSXodUYzgAkyJfzYpozDikvr/1EHuHTNN7bGLCGBG5pLCysUGvvSuYh9T1MjykCuGQARIPqSxBuVfnruHIhAV6j01MGCMilxS2DvbotW8lUqR24dTJVVyM2rQbovxctlMLpqDc40NncGbOKoPGJxbc8mQnN+362jzxkLqaPKTGRkVjdYveOh9SpQL1bddFRC45qvbtxDyk3t56AFdWbTNkeKLBGBG5pHBKmxre+1aSh9SosHCskuEhlSki902/75G2Q+rt7YcMGZ5oYNOJ6Lempcrkhh67GbztQb9lydtOzf2n7wdEhobp1Y42SrzHR84aND6xIJS4lGv2rGzedplS4jH1KPQcZ6tFE5CttHIo8YSyuVZKPAN4221TOKCsV3MMvbwHE56dQZW+ncgsQApBn/xxaMxcjM5cDuvbD4Dvtbv/OSOzROQ+P3yu11lapVKh45qZyFQwD1kvR0o8oWyerVQRtFlGU6DJkRLPytoamYzQo9BArVajy5b5TKH7bT3lR4lnLD2YBYbB4nC2QJGo0seLqXoux0OqMSJySfHvIdWOPqSubtFb74OAmBCSoL/OKB8UbkwfUi8v34Lb2w7q3aaYMEZELilcMqZHzz3LyUNqRPAfrGnhI6tDqhB0Iho0njYMeaqXJ+tOzVguq0MqS0ROF+Xn5HDNnhXdti8iHVtyPKQay/uYFK0WjodnmaJk3aExc2V1SBVq0w4AmfLnYh5Sf334gg0y420XIuoT0OGQOnAK3t9+qPf4xIKxInJJ4VGyMNoun0LWBbz0xdbuI2R1SGV/2/X7nWs7pG7vNRr+T3XTO5ACLBE5Q9a03FXKovmc0WTdp/tPsXuAvHjbKZsnJCTgi456FBpYWVuj+66lTEq8TZ2GyCrCzNVIEbmkKNSgOhpMUA4lHrVv11VELils7OzQa+8KOKVLw6mTIyWesSJySVGyTSNUH9SNrDOWEi9Tgdxot2wKZvnfQvuV00ghWwpxMTG4u/MI5lVqhWlF6uHKqm3/nhep33lE8B+dROSSws4xBbz3ryQpQDSUeLpSlEgBITIZNKjYoy3Kd2tN1smREi8rQS3x68MXvUXpU6T6h7fdwZ5TJ0dKPCHoRCzQHxaHswWKhEqlQofVM5gL7Z6BU+B364HEo2LDGOXn5PAoWRhtl7EPqVu6y+cmlan8bIAjSq1Wo8tmnpvUXqPx5YnuqW9iw1gRuaTIVbkM+5D64Bl29aMV0U0B5qbdAJtr520fgu9v3+vdrlggReR0VH5OjoL1qqE+3yF1FO2cNAWEvFiysbNDTy2H1CAD/j3FAvU710dELin4DqnPT17CialL9G5TLAiVvQIk4W0nDqlxMTFY07IPMx3YFDBWRC4p+A6p9/ccx/lF6/VuUyywo8H0/52nSOUC7wOrmIfUVXI7pBJz//LohUGXQDUGd0fxlvXJumtrd+L6+t16tykWhLpYAgDn9OnQa98KNiVec/lQ4qnVargT1GiGRsE1mKCFEm/vcYPaFQNCftv/5W1nUeK19DHouykGhBCRS4oWc0YjZ8VSZN2xSYvw7ORFg9rVwD6lEyr37ohxj09i2NW9KNWuMfnbouD/9BV2+IzDKPey2NlvAhzTcSk1AP0pFoBESrwuPJR462VEiSekiJxKpULbZVN4KfHeXr2jd7tigU0ho/+3XSslXuehsgmYSOuRmaQ5skQ4iwuLw9kCxcI2hQO8D6yCg4v8D6nMCEADb9Qq9miLCt3bkHUP9h7H+YXyOKSylJ8NvUnkO6TG/I3E6ua9DXL0iAGhb1FrDO6O4q0akHXX1+/GtXW7DGpXaAghIpcUfIfUyJBQrGnhg6jwCIPaFhpCRncDiYfUAvWqknXnFqzDvT3HDGpXaLA27YbaPE2WTLy87Wtb9ZHNIZUSIAH0431MCr5D6vHJi40+pAqFtNkyk2uvoX/rbrk80WXLfLIu+Ms3rG83QO/sELEghIhcUrRdNgVZixck6w4Mn4m3V24b1K7QEEJELikyF86HjmtmknU/fT/I6pBKisiFhuHXe/0prVQqFTptmEOukwCws+94fLz/VO92xYAQInJJkb1scbRaNIGs83/6Ctu9x8gmYMJYEbmkUBIlnpCXDEAiJV6TaQxKvNuPsE9GlHjGisglhZWNTSJvO5EdkZCQgA0dBiHQgO9HcqhUKuSsWArddyzBzM830GT6cKaIXXJEhobh8vItOMQIYDDU5kWb1kGdUT5k3avz13FkPL3WmwLUHu6LgSJytg728N6/ip8ST08KKrEg9Bm1rFdzVOnjRdY9PnxWNpR4KpWKdLZ/fqh/NqoFusPicLZA0UifMxu6bKG5XH/7B2B92/6yOKQyN+1G3Ki1XTYZWUsUIusOjJDPIZVa1PQVkUsK3kPqu4/Y1Ekeh1SheaJUKhU6rZ+NDPm4fOAAsKvfBHy898SgtoUGU0TOwOglbYfUHTLhbReKD04DtVqNbtsWkXzgALC12whZH1K/PH5pcCRL3hoV0GT6MLJOTodUoW0u1SHVWIixaS/apDbqju5D1r2+cEM2h1QhI30BjbjYSpIDPj4uDmvb9JPFIZUtImf4PqZMx2aKOKSy1nNDIgCBxOhE7wOrYefkyKmLjYrGmpY+CPsVbFDbQsLBxRnpsmfllBtj8yo+HdmUeNsO4vJKeVDiCaVHoYFT2tTw3r+KpsQLj8Dq5t6yoMRL5Z6BzDAyxua1R/qgSJNaZN3lFVtxa+sBg9sWEkwROQMpfrRS4rX00UtcWRuc3VxRb0xfTPO7gj5H1qFA3SpGtWeMzRtPHYq8NSqQdadmrsCjw2cMbltIUL/zmL+R+P7GsOzJdJ5ZmJR4IQE/sVYmlHjuhYTRo0iKlgvGMSnxDo+dh1fnrxvctpCgfuehP3/JYp9lrrA4nC1QPIo0roW6Y/qSda8v3sSRcXRqj5QQSvk5KWzs7dFr3wr2IbV1X/z++t3g9oWCkOn2GpTp2AxV+nYi654cPYfTs1Ya3LZQYIrIGTFv+5RO6H1gFfOQulomh1QhlJ+To4pPR5Txak7W3d52EJdXbDW4baHAFJEzwuaOaVIp4pBK2dxY5ec6I31QpGltsk4uh9RMrE27ETbXdkhd3aK3oIdUQ0Ed1EJ/BCIk4KfBbfIdUk/PWolHh04b3LZQEJL3UYN02fgPqWta9ZHFIVUoEbmkaLVwPDzLFiPr5HJIFTrqEwAy5suJThto/t5fH75gY8dBskg9p+b+9dlrg/8e/6XEI7LfAGDvIHlQ4olhc48ShdBu+VSyLuDVO2zpZnreduZlogF6FBr8S4mXMxtZv917jCwo8YS+ZACAXJVKo/lcPko8OpjCGKitrFC4UU30P7kZU95eQq1hvcjziDa8OHMVL85eNSiIR0OJlzpzRrJ+U6ehsqDEY6/nhjteC9arhgYTB5J1vlfv4MDIWQa3LRTsHFMgfW6uHoUxf+s2dnbotW8lUrqm5dQlxMdjnUwo8cT4nVvAD4vD2QKzQOMpQ5C3ZkWy7vTsVXh48JTEI+JCKBG5pOA9pH4PxNrWfU1+SBWaTkSDVgvGMQ+pR8bPx4uzV41q31gIKSKXFBny5kSnjXPJuqCP/tjQYaDJD6ksmxtzUFOpVOiwajr7kDp4Kvxu3je4fSEgpIhcUmQtXhDtVtARvXI5pDKpJYy0eZdN80iRNuCfQ6oBfHNCwt7Jkdy0G2vzXJVKo8W8MWTd54fPsavveBnYXBgRuaRQW1nxH1I7D8P3N/qJVwkNIUXkkqJA3apoOGkQWffu+j3sH0Fn9kgJZhquAXoUGljb2qLX3hWyPqSyROSM/Z2XaNUANYf0IOuen7qM4zLgbadsboiIXFLYpnCA9355U+JlKphbMBG5pKjQvQ0q9GhL1j3Yd0IWlHhCicglhYOLM3rLnBJPjMtEAKgxqDtKtKYp8W5s2CMqJV76nNnQYu4YzPxyC503zUO20kV0fjfmbySW1PbCpLw1cG7hOr0F5VK6ppU9JZ7QVHga1B8/gEmJd37hellQ4lFz//bC1yjKutSZM6I7gxIvLDBIFpR4FuFA6WFxOFtgFlBbWaH7jsUkjygAbJbBIZWp/GyAiFxSaD2kDqeJ/KUCc9NuJEG/tkPq+nYDEPTJ36g+jIWQInJJUaJlfdQc2pOse3H6Co5NXmxU+8ZCaDoRDbQeUlv1Nfkhlbo5N0T5OTkqdGuNij3bkXUP9p3AuQXrjGrfWGQpKpzQUFI4uDjDe/9K2KZw4NTF/I3E6hY+Jj+kkhGABorIJUX1gd1Qsk1Dsu7Gxr0m520XmlpCA22H1NVyOKQyROSMvQSoN64/CtavRtZdWLQBd3cdMap9YyE0hYwG2g6pphYXY4nIGUqpkRTNZo1Ersqlybrjkxfj6QnT8raLtZ7LnRLPxt6epDATQlyq7dJJsqbEY/3Ojf17dy+UFx3X0tGdcqDEE1JELilUKhW81s9hU+L1FZ8Sz9bBHuU6t8So24cx+t5RVOjehnT+U/jx9j32DZmGUe5lsKX7CL045j3LFEPrxfLlbWeLyBm3j9GFEu+rgboPQoH6ncfHxuLbc+PGlbd6eTSdMZyse3/7EfYOprM8pELGfDlhbcvNGrUIB4oHi8PZArOB5pBKfUQiQ8Owunlvkx5SWRs4Yx3OgJZD6uKNJj2k2tjTInLfBZh36swZ0WM3fUgN/xWM1S1Ne5Mqps2bzRqJXFXKkHUnpi7Bk2Pnje7DUDilTU1GKAox7/Q5s6Hr1oVknRwOqazD+ffXxs+9zZKJzEPqwZGz8ObyLaP7MBQsETkhbC73Qypl8/jYWAT6Gce1rFKp0HEdm7d9d7+J+HD3sVF9GAOWiJwQNvcsUwxtlkwk674+e41tvUab9JBK2TwyNMxoGiu1Wo2uWxeSFFwAsK3HKHx9/saoPowBS49CCJvzHVI/3Hls8kMqtZ7/+fodf0NCjWrXysYGPXYvg0vG9GT9xg4D8dPvk1F9GAMx9zFyp8Sj5v7j7Qej9xhyp8Rj7mMEsHmZDk1RtV9nsk4OlHiUzQNevTN6vbF3cmRT4kVHY3ULH4O1bfSFR4lC8Fo3G7P8b6PVwvHMLLLkiPkbiRsb9mBmyUaYWboJbmzaqxO9V+XeHVG2E02Jd2f7IZNS4qlUKvIyUYjvmy6UeMauH8aA9TsXYu61R/RmUuJdWbkNt7bsN7oPQ2FlY4OMhB6FEPO2gIbF4WyBWcGzdFG0Zh1Sn7/Btp6jTHZIdWMokv80guNUA7Vaja7bFpHiLgCwtftIkx5Sqbn/8P0oiC3yVCuPZrNGknUf7z7GnoGTje7DULBU6H/4fjS6bStra/TcvQwumdzI+k1eg/HznfH9GArK5j8FmDcAFG5UE/XG9iPrXl+8icNjacoRKcCyuRBzt7G3hzefuFjrfgj2DzC6H0OgUqnglic7p1wom5du3wTV+nch654cPYdTM1cI0o8hYNv8g9Ftaw6p9imdOHWx0dFY07KPZIfU5LCysYFrDu6aI8S8AaCSdweU7dyCrLu74zAuLdssSD+GQEybO6ZJhV77V5J88ImH1N4mO6Q6uDiTjlGhbF57RG8UbVaHrLuychtubt4nSD+GgGlzAdZZlwz/8LZbW3PqIn6HYI0JedtTuWcg6USEsrlWSrwDpqPEo/Yx8bGxCPpkPMVLumxZ0G3HYiYl3ppWfRAbHW10P4YgfU4PMpBDiL0rALScPxbZyxUn646Mm4cXZ64I0o8hoGz+908owgXQR8mQNyc6b6IvUYI+SU+J55jaBTUGdcekV+fhfWC1Xu9+vPsYW7oOxyj3Mtg3bDrvd1ClUqH9yunMC8s9g6bg3Q3TUeJR3/bgz18F+eZmLV4Q7VfSlHjfX/uZlBJPzH2MLpR4xtCvGQtq7j/ffTRp8Io5w+JwtsDsUKlXe/YhdecR3NiwR+IRJSJdtswktcSPtx8Ead8xtQu8GYfU6Ii/WGNC3qT0OT04ZZEhoQj9+UuQ9msN64VizeuSdVdX78D9vccF6UdfuBLzBhLT04SAs5sreu1dwTykrjNhtC9l8+Av3xAd8VeQ9htNHox8tSqRdWfmrMbz05cF6UdfUPMGhLN5Wo/M6L5zCXlIDf0RiE1eg022eaUEgYTcwLWYN4Z5SD06fj58r98TpB99wRJCEurbzsvb/skfW7qb7sBCzV2oeatUKrRfMY15SN07ZJrJDixi2zxrsYJoxzqkvvHDrr7CC03pCrFt3nnjXOYhdUfvsSYTmmKv5x8EaT9nxVJs3vZHL0xGj6ZSqci5CzVvtZUVeuxcwqbE6zocwV++CdKXvhB7PS9QpwoaTh5M1vnduI9jkxYJ0o++sLa1RVoPd065UPO2trVFz70rkDJ9Ok5dQkICNnQYJNj5QF+IbfPiLeqh1rBeZN2LM1dxZq5+jl8hoFarUaxZHYOEBSOC/+Dc/LWYkKsqVjbtiTeXb5H7ET5KvPjYWKxr089kF6ms9TxQoMyS8l3ZlHgP95/ElVXbBOlHX6TOnJHMChfq2+7g4gzvA6toSrzIKKxt3c9kF6mUzWP+RuKPCTNLzBkWh7MFZgfNTSorDXDf0GkmSVWzsrEhuZyE+rADiTyq7VdNJ+sCXvri5PTlgvWlD1iHRyEPqZ02zoVbbm6EJQDs6jcRYQJEJ+iLFKlc4JQuDaf8p4A2z1G+BFotGEfWfbz3BOcXbRCsL33AsrlQUdca3vY0WbmHIgDY3msMIkPDBOlLH6TKnJG89BHyd56/dmU0mjKErHt98abJuH3T58rGKYuJjMJvgZwF2g6p23qMREyk9JtX1xziHlCBfw6pw73JuidHzuG+iQRoKJuHBQYJxqutOaRSHIvxsbHY2n2kSS7VqHkDwtq8fJdWqOTdnqy7ve2gybh9qbn/+vBFsGhMbYfUbT1HmSQKSex9DABUH9AVJds2IusuL9+Ct1fvCNaXPqDm/uPtB8EuupzSpWFT4oWEYkfvsSa5VJPC5vXG9kOhBtXJujNzVuPTw2eC9aUPqN+5kPNO7Z4BPXYvJQNxwgKDsGfQFMH60gfsb/sHwfpoOnMEclctS9Ydm7QIAQJQsBkCau62KXTjeU5ISMDjw2exoGpbzCjRELe27OesCa45PNB12yLy/eAv33Bw1Gx9hywIpFjP2yyZCI+Shcm6AyNmmURzSG1lhXRElpqQ83YvmAde62hKvB9v3+P45EWC9aUPpLC5Bf8Pi8PZArOErYM9ejEOqX//hGJnn3Em2rxm45QJlZaoQbnOLVG5dwey7tTMFfjy5KWg/ekC1oddyLk7OKeE94FVZOpn6I9A7BtiGv5HctMusM2r9uuMUu2bkHVHx88XvD9dwFzMBRwL3yE16JM/Do2RnlpDrVaTDkihUlE1qDumLwo1rEHW7R82wyTUGszDuYBz5zukBrx6hxPTlgnWl66wdbAno/OEtnnTGcOZh9Td/SeZhFqD/W0Xbu58h9RPD56ZRDAzpWta2DtzI7WEnDcAtF48ER6lipB1O3qPNUlEGGXzhPh4/PrwRbA++A6pby/fxrU1OwTrS1ekzZaZzCYSch+jUqnQce0sZCqQm6zf1mOUSS7VKJtHhYUjVECRXs/SRdFm6SSy7unxC7hnAi0SVlS7kDZXq9XosnUhSYkXHxeHrd1GIC4mRrD+dIUrsZ7/+fpdUC2cPFXLoSmDEu/ujsMm0SKRYh9jZW2NHruWkpR4sVHR2NZDPpdq8bHxGPf4JKr260xSe1H4/PA5NnUeijEeFXBi2tL/RKsXblgD9ccPIN+7snKbSbRIpLD5v7ztaVNz6qLCwrHdZJdq2ThlQu9dS7VrgmoDupB1Z+et1UuEUiiwz6imo6I0Z1gczhaYLVyzZ0XnzfPJuseHz+LBvhMSj4hO4fjz7Qciw8IF7afVoglM9VlTRISJnX6sQaYCuZkR3re2HMDzU5cE7U8XUItaoN9nQW2gUqnQcc1MMsI7JjIKW3uMlHzzKpXNs5UqgpaMCO/Ly7fA99pdQfvTBdQh9efb94JuJhPFxRaQjs7IkFDs9JH+Uk3sVFQN8lQth8ZT6Qjv07NXmYRmgZq70PPWHFJTuqbl1IX+/GUSUTX271zYuRdqUB11RvmQdccmLsT3N36C9qcNKpVK9AhAALCxs4P3vhWkczv481ccGj1H0P50gVTf9lLtmqCyT0ey7sCIWQj6bDyPrj6wsrYWPUsNSORtZ3F4f3/jh+NTlgjany6QyuYVe7ZD6Q5NybrdAyZLTrPg4JySzKgRet6OqV3Qax9Nj/b50Qucnb9W0P50AWs9F1obpNbQnijcqCZZZ4pLNZdMbrBx4Eb1Cr2mObu5oufuZSQ9mu+1u7iyarug/ekCau8aGx0Ne2cntF06GbO+3kb7VdPhXjivTu2FBPzEkfHzMSZreWzt+f+Ctw0nDkSeauXId7b2GCU5zYJr9iykHX4KbPO0HpnRdesCsu75yUu4s+OwoP3pgvTEtz38VzDCg4XJUtOgxdwx5OV5fFwctnaX/lKNmjcg/LfdgkRYHM4WmDWKNK7FjPw0Bc2CFJG+QOIh1WvDHDIK8OO9Jzi/cL2g/WmDS8b0ZOSxGKkrpTs0ZUZ+bvceKznNAnVQi4uJEUR0JinsHFPAaz2djvb28m1cW7tT0P60IV32LLTojAiLeWWfjshVuTSnPCEhAVtNQLNARUtE/A4RRHQmKVKkcmFesDw5eg73dh8VtD9tkCL9WINaw72RtXhBTrmpLtWob3vwp6+C/+05u7kyowBNQbMgRfqxBg0nDiSFXhIv1aSPCCMvGXw/CD6ONFndmdy+l1dsxdsrtwXtTxvcJExFbT57FEmbFBkaZppLNQkuGQAgQ54caDR1KFl3Zs5qfHogLc2CVOnHKpUKrRdPJJ28YYFBJhGBlsrmWYsVRN3Rfcg6U9AsSLWeq1QqtF81neT2/e0fgAMjZgranzYws9REsHnOiqWYkZ8HR87Cr4/CZY3oAm02t3dyRGXvDhj36CSGXduHUu2bwMrGRmu7MZFRuL5uF6YUrI3Ftb3w4swVdFgzk3Ts//T9gGOTFho1D31hY8/IUhPB5gXrVUO5Li3Juj0DJyNEwKwRXSDVt93a1hadNswh/16+PH6J03Ok5S53TJuazIK3UGqIA4vD2QKzR+tFE0ge3dAfgZJHhEl5OM9arCBqj6A5P49OWCCp8I7YojPJ+2q/chqZ+hX0yR8HJY4Ik5InKmfFUqjStxNZd2D4TEmFd2zs7JAmK7WBE37earUaHdfOoiPCXvvh+NSlgvfJByltXqh+NZTp2Iysk5pmwTFNKlJ0Rox5W1lbo9OGOWRE2KcHz3BO4ogwKv04ISEBP/0+C95XidYNUbgxIyLMe4ykEWFpsmQSVXQmKWzs7dFx3Ww6IuzqHVxdLW1EGHU4F0t0pmKPtrKJCJMq2hUA7FM6ocNq+lLt6fELuLtTWpoF6tse+iNQlN9cjUHdSM5PU0SESbl3dUqbGm2X0Y7luzuP4MnRc4L3yQcyS+29sFlqGtQb2xcZ8uXklMdGRWNrd2kz1aTcx6TK5IaW8+lMtaurd+D1pZuC98kH1iWDGBdcjacNIzMnosLCJecu1/V3rlKpkLNCSXTfvhgzPl1H/fEDyHM2hZdnr2JZ/a5Y0ag7k7v87Ly1+HjviT5DNxpSXSwBQMv54+Dsxr1UC/8VjD0DJonSJwtSBoq4F8yDumPoS7UTU5bg20tfwftkQaVSkft2ITWWLPh/WBzOFpg9UrqmRZslE8m621sP4NlJ6SLCmEJqInHsNpgwgEmzILXwDjX3n74fRdlMpc6cEc3njibrpBbeYdtcHJ6oZjNH0DQLoWEm2LzSNhcDbrmzM9Xez0hMsyA1N1irheNJmgVTCO/QPPXizDtzkfyoM7I3WXdUYpoFqbJXgMSNcrsV02iaBYmFd5iiMyKtaTkrlETVfp3JOqmFd6TgqddApVIxI8KkFt6xc0xBco+KtY8pULcqynZqTtbtHjBJUpoFKddzK2treK2fzaZZmLdG8D5ZcHZzhZ2TI6dcrDWteMv6KNK0Nlm3w2cc/v4JEaVfCjSvbSyCPgr/rbGxs0On9fSl2rvr93Bl5TbB+2QhbbbMZJakWOt5+W6tkad6ebJuW8/RiI74K0q/FKhve2RIqCgX+PZOjuiwho7ifn7qMm5vOyh4nyywLhP5vu0uGdKj8ZQhmPHpBrzWzWbyzydHwKt3eLDvBPk3lhAfjy0yuFQL/vJNlMtcxzSp0HY5HfB2b/cxPDp8RvA+WZBy7woAdUf3If9GYqOjsbX7CMTHxYnSLwXyvPLuo0n4080dFoezBf8TKNm2sSxoFtJ6uJOLq1i3qDb29rKhWaAinCNDwwQVnUmKij3bIVeVMmSdlMI7UvHaaqAtIkxK4R3K5r/9A0Q7ONQc0oOmWYiLw5ZuIySjWZAyAhBIFE9k0Szc2X4IT49fEKVfCtTcxdzA1R/Xj6RZiI2KlpRmQWo+uNTuGZg0C1dWbpOUZoGau5g8eE1mDCdpFqQW3pEy6hNI/HduzKBZkFp4h+Ys/yBafy0XjCdpFsJ/BUtKsyD1ep65cD42zcLkxQh4JU1EmEqlIucuNMdp0v7aLZ/KplkYSQtKigGWcKBYNs9ergSbZmHUbMloFqxtbZHGg/udFWveGsFMFs3C0UmLROmXgpRRnwCQv1YllO/aiqzbO2gKQr7/FKXf5HBM7UKK2ukyb1sHe1To3gbjn57GgDNbUbB+NZ36ZDkY/Z+8kpRmgelsF5izXIPiLeqhWPO6ZN3OPuMR8VtYDmUWUmXOCGs7abLUgH8oPxmXan43H+Dyiq2i9EuBWtNiIqPw2wSi6+YOi8PZgv8J/EuzwBDekYpmwcrGBmk9s3DKxTyoyYVmQeoNHC/NgoTCOw4uzmT0qZg2L1ivGsp4sSLCpBPekTICEOCnWfj88LlkEWGp3DOQf3dicoPx0ixIKLxD2Tw2KhrBIgl8JV6qzTE5zYJrjqzkGMS0uVxoFiibiyE6o4G9kyM6rmVEhEkovCP1xRIAVB/YVRbCO9R6/uujP2Kjo0XpTy40C1LvY4BEmoWM+XNxyqW+VKPSj8WiGQDkQ7Mg9cUSIB+aBSlpBoBEsfcm04eRdefmS0ezIPUlAwC0mD8OzhlcOeXhQb+xW0KaBdrmus9bpVIhf61K6Hd8Iya9PIfKvTuQlwi64MSUJfj64q1B7+oLKSlkNGi7bArJI/zn63ccGCHNpRqbs1y8eXuWKYbqg7qRdYdGz0HgB+Gp6CiYYj3/X4XF4WzB/wxSZ86IFjKgWSAXc5EccBo0mzmCKbwj1eZVaucjALjl8uQX3nkojfCOq4Q0AxrIgWZBajoRIJFmoe4oH7JOKuEdtVpNR/qKOO/ESzVaeEdKmgVT2DxH+RKo2t+0NAss0Rmxbc6KCJOSZkHqlEwAyF+7ssmFd5zSpSF/b2LO28raGp0YNAtfHr/EmbnSXKpRNk+Ij0fge/EOisVb1kfRZnXIuu29x0pCs5DGw538txdzH8MXESYlzQJl86jwCFGjL8t3a428NSqQdVLRLDCzV0S0eeKlGu1wkpJmgVrP/3z7gajwCNH6rD6gKzzLFOWUJ8THY0u3EaJdaiWFKfYxjqld0I5Bs3B/z3E8OnRatL6Tgpp7oN9ng6gOMuTNifYrp2Pm55toOmM4ScXEh9joaCxv0BXhwb/17ltfmMLmLhnTo+XC8WTdtbU78erCDdH6TgopqfA0aDx1KNJl59KxRYVHYIf3GJP6JcTcw/2vwuJwtuB/ChV6tEXuqmXJOqloFqjNa0jAT1FpPeRAsyB1yrkGvMI73aSJCCMXc79PolI8OKVNjTasiLAdh/Hk2HnR+tZA6vRjDerx0CxskygijBbJfC/qJipVJje0mDeWrJOKZsEUkUEA0GT6cDL9V0qaBamEUf/TZw4PNJlGR4RJRbNgikhfQIvwjgQ0CyqVijykij1v90J5UY8hvHNcIpoFU9icj2YhMSKMjnoXElbW1kgncZYaAGQvWxzVBnYl66SiWWCv5x9E61PDXW6bwoFTJxXNgn1KJ/I7I7bN89WsiPLdWpN1UtEssNZzMR0yaisreK2fAysbG06d/9NXOCMBzUKqTG7k35zY+5hizeuiWIt6ZJ1UNAvU7zwuJgZBnwzPUnNKmxp1R/fFjA/X0G37YvJMxsKvD18wMmNp7Bk8RdQLzXSemRlZah9E6xMAynVuiXy1KpF123qOkuRSjVrPw4N+Izzot2h92jmmYF6qvThzFbe27Betbw1MtXf9X4TF4WzB/xTkQLNgikhfQJvwjvg0C84ZGKIzIn/YtQrvzF8rav+AtKIzSVGiVQMUaVKLrJOCZiFd9qxQqbnLjNg2T4wIY9AsXLuLK6vEp1mgbP73jziiM0lRoXsbk9IsmCpFzd7JER1ZwjsS0SyQojOfv4p+kVl9YFdkK206mgVTpKICWoR3dh3F4yNnRe0fYEUGfRD9UqvuGAbNQnQ0tnQfKXr/prK5S8b0aLmAjgi7umYnXl8UPyKMtLkEB9QmJqZZMNW3XQ40C6a4WAKAFvPGmpRmgWXz7yLPPVOB3Kg/rh9Zd2LqUtFpFlQqlUkukAGg7bLJSJHahVP+59sP7B8u/qWamN92KxsblG7fBKPuHMawa/tQrEU98oyQHLFR0biwaAPG56yC1S16w/faXcG/dzb29kidlZulJvaalnipNgN2jik4dYF+n3BkwgJR+wdMt57nrV4eFXq0Jev2Dp6KPwE/RO3fKW1q8rcm9rz/F2FxOFvwP4f0ObOZlGbBFHxwGrCEd6SgWZBadCYpeIV3JKBZMFWkr0qlQrsV05jCOwdFFt6xtrVFWglFZ5KCj2bh4EjxaRZM9Ts3Nc2CMaIzxsLUNAvU4TwhIQE/330StV++iDApaBZSZ8kkqehMUvAJ7+zwGSc6zQIVISOF6IyNnR06baAv1fxu3BddeMdUGUsAUL5rK5PSLFDf9tCfv0T/W+OLCJOCZsFUTgkAqNa/i0lpFqi5/3r/WfTLPMfULmi3wnQ0C8yUcwlsXmeUDzIVzMMpj42OxrYeIw2ieNAHLDFcsS92XDKkRysGzcL1dbvw6vx1UfuX4mJJpVIhZ4WS8N63ElN9L6PG4O6wT+mk9b2E+Hg8PHAK8yq1wqzSTXB7+yFBf/umulhKly0LmswYTtadX7ge7+88ErV/U3IZt5g7Gi4Z03PKI4L/YHf/SaL3LzVP/f8qLA5nC/4nYUqaBVPwRGnAK7wjAc0CKTrj+1GSdPd6Y/siQ76cnHIpaBaYi7kENucT3rmyarvowjs0Z7n48wZMS7NgSm4wU9MsmIKnXgNemgWRI8JMlb0CAO4F86AuD83Ct5fi0SywRGek4sHjE94ROyLMlL9zXuGdUbNFFd6xTeGAVO4ZOOVS7GN4aRbefcTRiQtF7d+U67kpaRZSpk9HOoWksLk2moXTs1eJ2j/1O4+Pi8MvkbPUAKBYs7oo3rI+WSc2zUK6bJmhtrLilEvxt25ta5vIXU5EwPrdfICLyzaL2j9l88jQMElEt8t2aoH8tdk0C2JyaDNp0URa09J5ZkGrBeMx88tNtFo0gYzop/Dx3hNs7DgIYz0r4eSM5Qj7FWz0WCib//YPkITWomrfTsherjinPCE+Hlu7jxT1Us2Ue9cUqVzQbuU0su7BvhN4eOCUqP1T6/nPdx8lE+P9X4HF4WzB/yS00izMEy8ijCk6I1EKR/GW9VGkaW2ybofIwjtUpG9UWLgkXHQ2dnboxBDe8b12V1ThHVNGBgGJwjt5qpcn68SOCKMiAP98/S7qhlkDrTQL2w+J1rcpIwABfpqFLd2Gi3upRsw98N0n0SOSAC00C7uP4dHhM6L1bWo+uLqj+yBTgdyc8tjoaGztPkLUf39TpR8DGpoF+lJNbOEdU2YsAf8I7xCcwlII77B46qUAL83CgnX4cPexeH2bKGNJAz6ahV0iRoSxaQakmbcpaRbY33Zp5t5m6SQ2zcKwGaL1a2VjQ9K4SPV98yxdFDUGdyfrDo+ZKyqnrymjPlUqFdqvZtAsvP+MI+Pni9Z3ilQucEqXhlMuNm2Qg3NK1BjYDbO+3ELeWhV1fu/P1+84PHYuRmcph+29xxilYcDat/98J82lWsd1s2Fty80W+/rsNU7NXCFa36ncM5BUo1L9zos2qY0SrRuQdTv7jEN4sHiXatSaFhsVjd9fvonW5/8iLA5nC/5nwUuzIKLwjqlEZzTgE9757R+AAyLSLJj6cJ69XAlUG9CFrBNTeMdUojMa8NEsiC28Y2oVYK00CyJddrhkcmPSWkgB3oiwJ69wWkThHcrmsdHRCPpsuOiMPuCjWRAzIsw1exbyQkuK9GNAw13OjggTk2aBOpyLLTqTFOW6tDKJ8I4pnRKAaYV3qLkHffqKmKgo0fpMimr9u8CzbDFOudgRYaa2OR/NwoO9x/HwoHgRYTRnuTRZakAizYJ7obyc8riYGFEv1Uy9d+WlWVi/W1SaBTrlXDqO08ZThpAZNNERf7Gt12jR/vZMHSiSLlsWNJ05gqy7sGgD/G49EK1vU9IMqK2s0GvPcrhkctPrvZi/kbi6egcm5auJpfW74MWZK3r/bZj6d54pfy7UH9+frDs5fTn8n70WpV9WlpqU1BJtlkyCY5pUnPKQ74HYP5SOgBYCpl7P/1dgcThb8D+NemMZwjtR0dgqIs0CS2hIKqTK5MYW3lm9QzSaBTadyAdR+qPQZPpwkwjvkGk7ElFLAKYT3jFl+rEGLReMl1x4R61W0xyAEs7bvWAe1Bvbl6w7MWWJaDQL7EsG6ebedjmbZuHACHEu1ZiiMxLO27NMMdRg0SyMniMazYIpUzIB0wnvMEVnJFzT8taogArd25B1YgrvUDZPiI/HLxGjDpNCc6lGRYT5P32F07NWitJvmqyZyIs8KfcxxZrVRfFWrIiw8aJFhFHreVR4BEICxM9SA/hpFt7feigazQIrwlnKNa1spxbIX6cyWScmzQJl85CAn4gMCxelv+SwTeGAjmvpTLVX567h5qa9ovRrSvpDDar08UL28iU45QkJCdjafaRol3vUtz3w/WfExcaK0l9ypEjlgvYMmgVd8PzkJSyp0wnTitbDnR2HdR63qfcxAFBnZG+4F5b+Us3VxH4JZzdXtF48kay7sXEvXpy9Kkq/crD5/wIsDmcL/qfxb0QYEZX27vo90WgWqBSOkO+B+BsSKkp/FEwhvMNORf0geF8smEp4h5q7lBs4AKg+gKZZEFN4x9Tpx8A/EWEMmgUxhXdYNANSRYMB/9AsMIR3xNq8mjr9GEiMCGvJiAgTk2aBJTQkJRpNGYJ02bNyysWkWTA1hQxgOuEd6u9d7PTj5Ggxb4zkwjtysHmm/LlQj0WzMG0Zvj5/I3ifps5S06Atg2YhJOAnDgwXh2ZBDut5tlJFUHNID7JOLJoFeydH8tJaynmrVCp0MAHNAsvmUjqj8lQrj0q92pF1+4ZMw59vwl+qOWdwJf+tpbS52soKXgyahW8v3opGs0CtaXExMQj6JE2WGgAUaVwLJds0JOsoXnEK/k9eYUOHgZiQqyouLd+i9Vyb1jMLeZkl5bfdysYGnTbMJcfx4c5jXFiyUZR+qfU8IviPINzYuqJ0h6YoUK8qWbe912hRLrnksI/5X4DF4WzB/zyyly2OagO7knVi0SzI4eacV3hHJJoFZzdX2Dk5csql/rCbQniHsnl8bCx+fRCHxoOCNuGdMyLQLKSTwQYOAIo1r4tiLeqRdWLRLJCiMyGhkojOaKBNeEcMmgVTpyVqUK5zS8lpFqi5B3/+iui/kYL3xYIpaBZMnX6sgSmEd1gimVKKzqRIxUOzIJLwjlx+53VG9pacZkEOyvbObq5ovWgCWScWzYJc0o8bTR4sOc0CNXep553WIzOazhpJ1olFsyCX33nzOaNJmoWI3yHY1Y/+HRgDNmf5B8H74kPGfDlRf8IAsu7UjBXwf/pK8D7lsp63XkLTLMTHxSFfrYrMiP/k+PXhC3b1m4Cx2SrixPRlzAwQGzs7pKGy1CSet0eJQqg1rCdZd3jsPPz0+yR4n3KwuUqlQodV00k/wa8PX3Bk3DzB+3RMk4r8G5Pa5uYOi8PZAgsANJk2jEmzIEZ0kGsObvQZkMihLCW00Sx8efJS0P5UKhU5d6nnDfAL7+wbOl3w/uRic16ahalLBU8jsra1JTdwprB522WTaZqFbz9waMxcwfujDsSA9HP3LF2Ul2bh99fvgvaXIpULuYGTet7aaBaOT10ieJ/pGDYXIwKLD3mrl0eFHm3Jur2DpwrOrZwqc0YyCuu3v7B/W9qgTXjn3Py1gvdJ/c5jo6IRIRF/tQZFm9Zh0yz0HS94dJBcvm+8NAu3H+HKqu2C95mOWM/DAoMk46/WoIxXczbNQq/Rgl+wyGUfo41mQQxBYNbeVcqMJSCRZiFHhZKc8oSEBGzvNUbwCxa5/M4dXJzRYRW9N3944BQeHzkreJ/U3KVe0wCgzghvJs3CdhGyltg2l3buzunTMWkWXp69hjqjfDDh+VlU7NmOFL1LjtCfv3Bk3DyMyVoe+4ZNRzDxNywXmzecNJiMNI/5G4mdfWiRZGMgF5unyeqOZrNHkXUXl2zCx/tPBe+T2rebwubmDIvD2QILwB8R9uToOfheuytof6kYYghCO350QbX+XeBZpiinPCE+HodGzxG8PypCwRTz5hPeubP9ED4/ei5ofywBjD8mmDsfzYIYaZnU3P98ldYBB2ihWVizE98FvtFm21z6ufPRLByfsljw/uRicz6ahQuLNpAHDmPA+rab4nfeYu5oJs3CKYH5bdVqNXmBZ4p58wnvnJq1SvAU0VSZuP/GgGnWNT6ahQuLNgjal20KB1p82ATz5qNZOD5lieDOdubvXOKLJV6aBb9PuLp6h6D9pUyfjkxnN4XN+WgWDo+bJ7jzn1rTYiKjEPE7RNB+tEGtVsNr3Swmd7nQtHCsfcxvE6znhRvVRMm2jci6Q6PnCO5sp+Ye+iMQcTExgvajDXw0C343HwhOCyen8wofzcLBkbOQMV9OdFwzEzM/30TjacPIPU9yRIWF49z8tRjnWQlbuo9AwKv/1zOh967fJb9YsnWwh9c6Rqba6SuC08LJyeaVe3dAzoqlOOUJCQk4OGq24P1RezhTzNucYXE4W2DBP+CjWTgwcpagiw3zwy7xYQXgp1l4duIi3l65LWh/1EEt5NtPyRdz4B/hnZb1yTqhI17ZB1RpxHaSgi8i7N6uo/j08Jmg/VFzN8XfOsCmWYiPi8NRgZ3tcnFKAPyXatfX7cb3N36C9kdu4ExkcxbNQkxkFI5PFtbZ7sJwPppi7ilSuaAdQ3jn0tJNCP7yTdD+qLmbyua1GRFhkSGhgovJyWk956NZODN3DcICgwTtjzycm8jmLJqF0B+BOL9wvaB9sWweYoK589EsnJi6FJGhYYL1xbxYMpHNWTQLQR/9BY9sl9N6niFvTjSYOJCsOzphIWIihaNwsndyhH1KJ065Kf7WAaD14olwTJuaU/7txVvc2npA0L5Yl4kh3wMF7UcXaKNZEFIPxtktHaltZIq/dT6ahQ93HuPRwURnu1O6NKg/th+mf7iGThvmwC1Pdq1tx8XE4MaGPZicvxZWt+iN93cekTaPjvgr6HdUV+SuUhaVe3cg6w6Omi3ouZn1t24Sv4RajY7rZsHajnup9urcNbw8d03Q/qg1JOR7oGgCjf+LsDicLbAgCVrMHUOm3PvduI+nx84L1o9j2tRQW1tzyk0RAQgAmQrkRs2hdHSQ0IsadfscGx2NCJFU1bWhzZJJJI/185OX8ObyLcH6Yd26m+qg5lm6KCp5tyfrhI5sp+YeFhgkCp+qNqhUKrRfOY38/d3bfUzQdC252Txv9fIo3aEppzw+Lk7wyHZnYu6/TRAlAiReqnVYPYM8QN3YsAcBr98J1hfL5qaIAASAok1qo3CjmpzymMgoHBPa2U7M3VR/69a2tmi/kk6/vrh0E4I+Cyd+JLffeRmv5shVuTSnPDIkVHCRKWruISa4RAUSI67bLptM1p2du0ZQ7ny2zU0z9yp9vJC1eEFOeejPX8I726nfuYn2rg4uzmjFyFo6OW2ZoE4ips1N9G2vPbwX6VQL+iS8s11O33bn9OnQjHHBIrSzndrHAKabe8NJg5E6c0ZOecBLX9zaIpyz3craGinTp+WUm2reabK6o+GkQWTdoTFz/uNst7a1RfmurTHxxTl4H1hFCqUnR0JCAh4eOIXZZZriAUPvwFRzbzZrJHnB8vHuY0G1GeydU8LGwZ5Tbqq9a4Y8OVBnZG+yTgq/REJ8PEJ/SKe3Y+6wOJwtsCAJHNOkQp1RPmSdkOlaarUaLjKKEgEShXeoVFy/mw8E5UZjbeBMtai5ZEyP6gx+24MCRrbbpnCAvbM80o81aDBhAOlsf3H6Cl5fFC5dyyUj928dSEzzNgVcc3hI4mxPmT4tGUVuylStxlOHktkM9/ccF93ZHvM3EpEhoYL1oQ/cC+VF6Y7NOOXxcXE4Mk44ZzvLKWGqaDAAaDJjONvZniSV1FhQcw/9Hiho5JU+yFG+BIo0qcUpj42KxjEBRXHZjijT2FylUjE5EC8t24KgT/6C9UXN3ZRrWv46VZC7allOeWRoGE7OWC5YP3K7WFKr1Wg6cwRZd0YCZ7sp967FW9ZH1hKFOOVhgUE4KyBnO2sfY6q5W9nYoPE0WoPl5PTl+CvgWutMzN2Uv/NyXVoiQ94cnPLgz19xecU2wfqR2+/c1sGe6Xg9NnGhoOLE9MWS6Wxeta8XUmfh6sF8f+2Hm5v2ccrVajWKNauLkbcOYfDFnShQt4pO/fxkiEKaau4OLs5M3Z3DY+cKtr9SqVSMC2TTfdtrDu0Jp3RpOOWf7j/Fg30nBOtHbkED5giLw9kCC5KhWv8uZHrF1+dvBBUikVP6MZCYfl13dB+y7vCYuYI52+WUtqNBnRHepMjZ+9uP8PjwGcH6oeZuysXcJUN61BjcnawT8gZZTinnGjQY35/kvXx59ipenb8uSB9qKys4u6XjlJty3uk8szBT9IR0tssp/ViDRlMGk872B/tO4MPdx4L0YZ/Sify7MuW83QvmQZlOzTnlCfHxOCyks52weUJCgkmjRJpMH05e+tzctA/fXgrjbJdT+rEG2csWR5GmtTnlsdECO9sJm0eFhZsk/Rj4x9nOiH68smIbfn38Ikg/clzT8tWqhDzVy3PKo8LChXW2U/uYgJ+Ij48XrA99oFarmTY/N38dQn4IQ38gR5sXb1EPHiULc8rDAoMEFUilqfBMN28ra2s0mU5rM5ycsRx//wjDq83ax5hy7mU7t6Cd7V++4fKKrYL1Q9MlmSZIBABs7O3RaPIgsu7YpEVMZ7tKpUKequXQ/+RmjH14HCXbNiL3BNrw66NwWVH6oopPR6TJ6s4pZznbDQVNf2g6mzs4p0S9cf3IusNj5wnGpS7Hb7u5weJwtsCCZLBN4YCGDG60IxMWCCZEIrfbYwCo2q8zUrln4JQLyY0mt7REIPEGuQ7D2X5ojHA3yHKLBgMS0zIpZ3tSbjRjIbcoESCR65TpbB89RzhnO2lz025i6o3tK7qznZ3JYEJne7YsqOwjrrNdpVIx6ERMa/NGkweTIlMP95/E+zuPBOlDjt/2TAVyoyzL2T5WGJ5+KxsbOLkS6ccm/rYzne2b9+Pri7eC9CG3qE8A8CxTDEWb1eGUx0ZH4+jEhYL0kSKVM8kvaUqbq1QqZpSzoM524nceHxeHMAGjqPVFvpoVkbdGBU55VFg4Tk5fJkgfFHc1YHqb8zrbvwvjLCLFZ3+HCBpRqy+KNqtD0iWE/wrG2XnCONvZe1d5OttPCehsZ2UymIIWTYMyXs2RIV9OTvlv/wBcWrZZ6/tZihZAj51LMeXNRVT26Uh+w1nY3X8iTs1aIdi/rz6wsbdHQwOc7fqCRYVnSlTu3QFpPLjO9h9v3+PGxr2C9MHax5h67uYEi8PZAgsIlO/WGm65CW40AYVI5EhSz5+utUgQbjS53iRW69eJyY12Wyhnu8xuj4FEZ3vdMeKma7Ftbtq51xreS3RuNPJ3buK/dWc3V9E52+UY4QwA9cb2I8VnXp2/LpgQidwyGYBEYbHKfTqSdYcEs7n8sleAf5ztxMHy0cHTeH/7oSB9yEkkU4NM+XOhXOcWnHIhne1y/Z2znO23txyA/7PXRrevUqlkJYargWfpoijWoh6nXEhnu1z3cMzI9pXbEfjhs9Ht29jZkfsFU887b40KpBByVHgETk4XJrJdjjbndbYvEMbZ7pg2NZkVZWqbF21WB55linLKw4N+48zcNYL0Qdk8LiYG4b+CBWnfEFhZW6PpDIazfeYKRPzWTQvINYcH2q+Yhhkfr6PumL5wcOHSHSZHVFg4Do2eg9FZyuPAyJmS/w2U9WqOTAVyc8p1dbbrAmofE/4rWLBAO0NgY2eHxlOGkHXHJi9GdMRfo/uQYyaDucHicLbAAgJW1tZoPJ3BjTZtmSDcaHIlqS/XpSVTiOTySuO50SiKAcD0G7jEG+TBZN1RoZzthM0jQ0IRFR5hdNvGoGpfL9rZ/uodbm3eb3T7cuS1Bf5J1xKZG42MEjFh+rEGLG60j/ee4MH+k0a3L8doVyBRcIil9H5w1GxB7CLHTAYAqDemL+xTOnHKX1+8iZdnrxrdvlx58NJkdUfVvp3IOqEuWKjIIFPPGwAaThpEOtsfHzoDv5v3jW5frjbPmC8nyndtxSlPSEgQzNkuV5s3mT4MaisrTrlQznY5Rn0CgEfJwijeqgGnPC4mBkcnCORsl5FgYlIwI9tXbcdPv09Gty/X33meauWRv05lTnl0xF8cn7rU6PblyGsL/JPNwHC2n1+4XhC7yDF7BQCKNKkNz7LFOOURwX9wZs5qvdpydnNF0+nDMePTDTSfM5r5d54UkaFhODNnNcZmq4htvUbj+9v3evVpKNRWVmgigLOdD8yzmon0djQo3aEpMhXMwyn/8/U7Li7dZHT7Tq5pyTVTDvt2c4HF4WyBBQyIzY0m1w0cLzfadOPTtaxtbUlHlxw27WU7NRdViESuNudztguRruWYJhWZzi+HxbyKT0e9hEj0BbVpj4+NRVhgkNFtGwM+Z/uRsfOMdrbL9bACADWH9EBKggJBKCESyhEVEfxHkEsrY5DSNa2ozna5CcImRd3RfUjR1jeXbuHFmStGt89yRJky/RgQ39nOsrkc1vMGEweSzvYnR87h3Q1xnO1ymHeGPDlQjuVsH2O8s12uF8gA0GTaUNJxcGfbQXx58tLo9uUmmKiBR4lCKNGa5WxfYHT7zPVcBt92lrP96uodAjnb5SWYqEGequWYzvYT04x3tsuRCg/gj2w/v2iDQb9HB+eUqD3cG9PeX0XHtbPIqPbkiI2OxrW1OzEpT3Wsad1XUNFtFgo3qons5UtwyiOC/+D07FVGty/XM6rayooZ2X561kqEBxvnbFer1UgpM70dc4PF4WyBBQxo5UYzUoiElaJm6sUcAIo1rwuPUgxutPnrjG5fboKJGlhZWzNvkE9OX2a0s52aNyCPuZftRHOjBX/5hkvLtxjVdiKvLXfTLod529jbo9EU8ZztrN+5HA7nlVlCJG/8jOZGs7G3R4rULpxyORxQ7VM6MYVIjoybb7QQCZtmwLRRIgBQg+Fs//zwOR7sPW5U207p0kBtbc0pl8PfulO6NKg9vBdZd0gAZztl89joaEQYeRASAnXH9CWd7W+v3MHzU5eMaluuB1QASJMlE6r170LWCeFsp2weFhiE2Ohoo9oVAg0nDoSNvR2n/MnRc/C9fs+otlnfNznsXd1yZ0eF7q055YmR7fOMbp/aw/3++t3kF0sA0HgaHdl+d8dhfHn8wqi25UipoUHWYgVRsm0jTnl8bCyOjDdeFJemwjP9vAEeZ/uanfjh+8GotuVs89xVyqJAvaqc8pi/kTg+ZbHB7drY2aFij7bIUbGkzu8kJCTgwd7jmFmyERbV6oiX566J9j3g80tcWLzR6G8w0+YyuEgt1LAGclTg2iXidwjOzF5pdPskRZYM5m0usDicLbCAB3lrVEDemhU55VHhETg5zTghEjlHAPLeIAvAjSZHwUQNijZlc6MZK0QiV5oBQBPZTtPInJqx3Oh0LTnbvKxXc2TMn4tTLgQ3mlyjRIDEzTWvs91IbjS5RoMBQCXv9kibLTOn/Mfb97i+YY9RbcvZCWfv5Ij64/uTdYeNdLar1Wq4EMJapk6116D6oG4kpdPnRy9wf88xo9qWc3S3U9rUbGf76DlGOdvtnRxJmhY5zBsA6ozyIZ3tvlfv4NnJS0a1zdrDmTr9GABSZ86Iqgxnu7Gc7SnTpyX5seXwfQOA+hNoZ/vTY+fhe+2uUW1T3/aYv5GIFIBmz1i45fJEhR5tOOUJCQk4ZGRku5z3rgDQeOpQ8rLz7o7D+PzouVFtU3MP/R4omJi4MeBzthsb2c62uTx+56yI12trdxlNc8G6VNOGV+euYXGtjphZqjHu7zshiiZTrkqlUbB+NU65sc52QN57V23O9mD/AKPal/N5xRxgcThbYIEWNOPhRgt8b7gQiZzTEgEgb/XyyF+bFiI5YbSzXX7qxxrwcaOdW7AOfwIMt4+cF3OA7WyPCP5jtBAJbXPTH8wBcbnR2DaXx9zLdGxGCpH8+fodF0Vwtstl3onOdlqI5LiRQiRy/52znO0/fT/g+vrdRrUtV15bQONsH0DWHRk336jIVDlfIANsZ/uXxy9xb9dRo9qWI8epBk5pU6POyN5k3aHRxkW2M+lEZDL3uqN8SDEs32t38ezERYPbVVtZIWV6bpaEXOad2j0Dqg/sStYZG9ku9297gwkDYeNgzyl/duIi3l65bXC79imdYJvCgVMul3mnz5kNFXu2JevEcLYnJCSYXG9HA6azfecRfHr4zOB25aq3o0GWogVQqn0TTnl8XByOGhnZzvqdF21WByqVSuv7n+4/xdpWfTApX01cXbtTcNG9pjNHkOO4vm63Uc52uX/fclYshUINa3DKYyKjcMJoZzt3DxciA70dc4HF4WyBBVrAL0Ri+A1ySgWQ1DedSTtejeVGo9J2YiKjjKasEAr83GiGO9vlvpjzOdsvGMiNpgFl87Cfv4ymLxAKRRrXQvZyxTnlhgiRJIWc0xIBfmf76ZkrjOJGI1NRZfR9K92+CS1E8u0HLizZaHC77LREeczd2tYWjacOJeuOTV5slIgppXIul791AKjYsy3SZc/KKf/57qNRzna5q5zzOtvHG+lsl7nNqw/sCmci8t7/ySvc3XnE4HbZ1DnymLtjmlQ8zvY5RkXf0enH8vi+AUDtkT5IkcqZU/7u+j08PXbe4HbZVHjysHmqTG6iONtVKhWDWkIeF8gA0GD8ANIp/vzkJby5fMvgduW+h+NzthvD2W5ta0vSb8ll3gDQeMoQ0tl+b/cxfHpguLOdRX/YbPYoTHp9AZV6tSN1aZLjx9v32N5rNMZ5VsKZuavxV6BMiMyF8zGd7UfGGU4dlCK1C6l7IKdve9MZw2ln+/o9CHj9zuB2qd95fFwcwn7K42JJ6bA4nC2wQAcwhUi2HzJYiERtZSV7kvqsxQuiZJuGnHJjne1yVTlPCl4hkncfDWrTPqUT7JwcOeVySVEDEp3tBepW4ZQnqn4vMbhdVpRIyHfjuNCFgjYhEkMvgpzd0pGbIzlt4Ao3qsnmRptjuBAJFTEQFR6ByNAwg9sUEmorK+bv/MzsVQY72+Ue7QoApdo3gXvhvJzykICfuGiMs52Kdg34KUpqqSHgc7Yfn7LEYGe7nKlzNGA52wP9PuHa2l0Gt0vNXU5ruZ1jCjSYQDvbjxrhbFfCPqb6wG7kOP2fGudsl3P2CgA4pnZBnVE+ZN2hMXMN/h7JPWgAAOqM7E3qJ/jdfIAnR88Z3K6cadGAxPFVH9SNrDPG2S5nwUQNGkxgONtPXcbrSzcNbpfUXpHRvF1zeKCSd3uy7tDo2Qa3y0ch45bLEx1Wz8T0D9dQZ2RvkrKJ8963HzgwYibGZC2PoxMXGC1yByRGtlPihvf3HDdYwFClUsmeWsK9UF6U7tiMUx4fF4cj44X3S8hp7kqGxeFsgQU6wC13diY3mjE3yEogqW88bRiTG81QIRK5R4MBidxopdo15pTHx8biiBHOdtLmMpo3wHa2X1u7y2AhEiryEZDX3HNVLsPkRjthoLPdytpa1unHgHhCJHIWRtWgUIPqyFmxFKc84ncITs9aYVCbDi7OZFqznOatVquZGSynZ69CeNBvg9qlbJ4QH49QGUWJlGzbCJmL5OOUhwT8xIXFhjnbqQhaQF6/c2tbWzSZRjvbT0xdgsiwcIPapWweGRJqNAe8kKjYoy1cc3hwygPff8bVNTsNalPOgrAa2KZwQIOJA8m6I+PnG5zqzRJSk1P6cbX+Xchxfn32Gne2HzKoTWZUu4y+7SlSuaDu6D5k3WEjnO1yz14BgDojvOGYJhWn/P2th3h85KxBbco9kwEAXDKkR43B3ck6YzjblXBeaTC+P+wcU3DKX5y5ilcXbhjUpi42d8mYHs1mjcLMT9fRbNZIJgVJUvz9E4rjU5ZgbLaKODJ+PsJ+BRs0PgBI55kFlXt3IOsOjZ5jcLvUN1NOe1cAaDRlMOlsf7D3OD7ee2JQm3LPXlE6LA5nCyzQESxutKfHL+Dt1TsGtSn3m0Tgn3QthrP9oIGLmhIiAAGgESNdyxghEjJiQGbzzlK0ANvZbiA3mlJuj1npWsYIkSjhd56zYikUalCdUx7zNxLHJy8yqE0l2JyPRubikk0I/vLNoDblzGurQcF6VZGzUmlO+d8/oTg10zBnuxJsnuhspy/VTs9eZdAh0NrWFk7p0nDK5RT1CQAl2jRClqL5OeUh3wNxYdEGg9pUgs2tbGzQmOlsX2qQs90xTSoyrVpO8waACt1aI30uT075rw9fcHX1DoPapPZw8bGxCDfCgSI0bFM4oCHL2T5hgUHOdqXsXav264xU7hk45V+fv8GtrQcMapPiLA8P+i04P60xcHBxRh2Bne1y52rXoPbwXrSz/fYjPDp02qA25ay3o4Gzmyvb2T7aMGe7PjZ3cHFGnZE+mP7hGtqvmk5ebCZHZEgoTkxbirHZKuLQmDkICwzSe4wAUG9sX9LZ/vLsVbw6f92gNum9q7z2MemyZUFlH9rZfnCUYZHtctfVUjosDmcLLNARYnCjMUnqZZJ+rAHL2W4oNxprMZfbLWr6nNlQqVc7ss5QIRK5pyVqwBIiubfrqEFCJHJXOdcgc5H8gguRkEJqMrw1b8LDjfb9jZ/e7cld5VyDnBVKonCjmpzymMgoHJ9iWGS73GkGAP7I9otLDXO2K8XmBepWRa4qZTjlkSGhOD1rpUFtKuHbzudsPzN3jUEHXyXQiQBAidYNkaVYAU556I9AnF+4Xu/2VCoVGdkut3nzOdtPTltmEMWRUtbz8t1awy13dk550Ed/XFm1Xe/2bOztSW5ouc3b1sEeDScNIuuOTVyEmMhIvdtUwsUSAFTt2wmpM2fklH978dYgZ7tTujTkXlhuNndwcUbdMX3JusNj5yEuNlbvNqm9a2xUNCIEoIQQErWG9YRj2tSc8g93HuPRQf2d7YbsY2zs7VHZuwMmv76AHruXkWtNckSFhePUzBUYm60iDoycqXcmmLObK2oO7UHWGe6X4M499Ocvo3QexEC9sf1IispX56/j5blrerenlH2MUmFxOFtggR6oPaI3udn0u3HfIG40Jkm9gbedYsElY3rUEJAbTSkbVwCoP76/oEIkVKpWxO8QRP/V/wAgJlxzeLCd7QZEtstdeCUpGk0ZQqZr3dt9zCBuNFZaopyiRIBEIZLSHZpyyuPj4nB4nP7OdiWkomrQZPow0tl+Y4NhQiSslHO5IUf5EijcmOtsj42KxrFJi/RujyW2I7e5a3O2B33+qnebchfP0yB/nSpMZ7shke1KsTmfs/3s3DUG0b5Qc5djRFTxlvWRtXhBTnnoz184t2Cd3u0pZT23srbmdbYbIuKllG97uS4t4ZaHcLZ/8sflldv0bk8JVHgAv7P96ISFejvb1Wo1XIiLJbllrwBA1b5epLM94KUvbm3R39mulD2cg4sz6jGc7YfGzNHb2W7v5Aj7lE6ccl3mrbayQsnWDTHm/jEMOLMVeaqX1/pOVHgEzsxZjbHZKmLfsOkI+a7731bNoT3J7KqP957gwf6TOrejAYv+UC56Oxo4p0/H62zXl94pZfq0UKm5blG5/a0rFRaHswUW6AHH1C6CpmspyfFae4Q3KURiCDeajZ0dmfolt4gBgJ8bzRBnu1LS8wC2s/3F6St4fVE/bjTHtKnJKBG5RX0CgGv2rEwhksNjDHC2EzaPi4mRVfqxBixnuyHcaEr6vrkXyosyXgwhEgOc7VT2SvivYFmlH2vQdMYI2tm+cS8CXvnq1ZZSIh8BIHvZ4ijStDanPDYqGscnL9a7PVaEs9wulvic7ZeWb0HQJ3+92lOSzfPXrow81cpxyiNDwwxztisgkwH4x9nOsPnZeWv1drYr6dtevGV9ZC1RiFMeFhhkmLNd5oKJGlhZW6PJ9OFk3cnpy/V2titBJFODsp1bIEPeHJzy4M9fDXK2U/t2OUY+2tjbo+HkwWTdsYn6O9uVFPVZpU9HpM6SiVP+/bUfbm3er3d7xmYsqVQq5K9VCYPP78DIWwdJfZjkiI74i3Pz12KsZyXsHTJVp++pg3NK1BtLO9uPGBDZrqQzai2Gs/3T/ad4qKezXQl6O0qGxeFsgQV6olq/zrQQyfM3eguRKImkXqsQiZ63iXSUiPw27QAPN5oBznalRAwAWoRIRs/Ry5GiVqsVwWurQf1x/ZhCJPo625USAQhoESLRk0bGNoUDHFy4Ct5ydEQBQMPJg0lO1gf7TujtbGdGgwXI7xuXqUBulOnUnFOeEB+vd2R7Ste0UFtZccrl+LcOAE2mDyejWgxythM2j4mMwt8/IQaPTyzwOduP6elsV9KaplKpmFHOl5dv1d/ZTsw97OcvxMXEGDQ+MZGvZkUy2i4qLBwnZyzXqy0l7V35LljOzV+nv7OdFPuW55pWrHldeJQqwikP/xWMc/PX6tWWUqLaAeGd7UoQTNSgbKfmtLP9yzdcXqGfs521d5Xjvt3G3h6NJg8i644a4mwX0OaeZYqh3/GNGHXnMEnflhwxfyNxfuF6jMteCbsHTkKwfwDv85V7d0CarO6c8u9v/HBz0z69xqoEYVQN7FM6od64fmSdITQyZDaqDOetRFgczhZYoCdsUzgw07XOzF2jlxOOpWorx8hHIFGIhMWN9uzERb3aouYu13nzcaOdnbtGr7aUZvPaw3uR3Gjvbz+C77W7erVFzd0YlWYx4ezmihpD6HStM3rbnBYakuvc642judFenr2qt1gmNXe5/q3zCZGcnaefzVMyf+e/9R2WJGjEcLY/OnAKP9991LkdtZUVnFy5ESdhMp13pvy5UK5zC055Qny83ry+7G/7b0OGJjqazhhBOttvbz2o18HaPqUTqfEg13l7limGYs3rcspjo6NxcelmvdqibJ6QkICI3/K7ZOBzvF5bsxMRv3XnZVXaPiZfzYrIW7MipzwqLFxvLmdq7lHhEbLMXuHNZli2BdERf3VuS2k2L9qsDjzLFOWUh/8K1tsJp6TzipW1NZrMoJ3t5xeu1+syTGl717KdWiBj/lyc8t/+Abi766hebdE2/23o0AAA2UoVQZ8j6zDm/jHywjc5YiKjcHHJJozPURk7+01g6mrY2Nuj0RQ6sv3svDV6BYQpbR9TuXcHpM2WmVP+4+17PDmiH9UptW+X67yVBovD2QILDED5rq1IIZKvz17jzaWbOrfjQPBBA8DfP/rzykkBPm60i0s26dUWNXe5zhtgc6O9u35PL15fpdmcjxvN3G3OEiJ5fvKSXiJ6SrM5Hzeavg4Zh1TcCGe5zhtgC5E82HdSLxE9iusfgCyjXQEgrUdmVOnrxSlPSEjAxWX62Zyae6RM5w0ADScNgrUd19l+a+tBhAf91rkdts3l+feeMV9OlOvSklMeFxODK6v1c8JRc5frvIF/ONsJZ/v1dbsQFR6hcztKs3m2UkVQvGV9Tnl0xF/c2LBX53asrK3JDCC5zhsAmjEi26+s3KaXIJbS1vO81csjf+1KnPLwoN+4s+Owzu1Q2UqAfOetUqmYNDIXl27WywlH2Tw2KlqWlwwAULQp7WwP/vINjw6d0bkdpf2tq62smM72i0s26RUQJuZ5JWvxgvA5uAZjHx4nLz+TIzYqGpeXb8H4HFWww2csmYlTpmMzZCqQm1P+/bUfXp69qvPYlGZzGzs7NJoyhKy7sGSjXm0pbR+jJFgczhZYYACsrK2ZaRwX9HDCOThzRQkAIDJEf9VwqVC2cwuk8eCm7rw8exVfX7zVuR1q7nKet429PeqM8iHrLi7dpHM79gq0eWWfjiRP1qODp/VKQVaazR2cU6ImI8r50rIterSjPJvXHNyddLze2X5IL1FTe2fC4Szjead0TYuqhOM1Pi5Or0g4at6AvOdeZ2RvMsr5xoa9iAzVfdzUN07O806T1R3lu7XmlMf8jcT19bt1bof1bTdEmEwq1B/Xn3S8Xl21XS9nCjX3SBnPO0PenCjZthGnPOJ3CG5vO6hzO0pczxtMGECWX1q2WS8dEtrm8p23R8nCKNSwBqf8z7cfevF9KnE9bzBxEFmujxNObWVFXjLIed55qpZDrsqlOeU/fT/g+anLOrfDWs/lOneVSoUGEweSdfoEitin5O4BAfnOGwCKNK6FzEXycco/P3yOd9fv6dwOZfPYaGEvGbIULQDv/asw/skpFG/VgNTSSN7/lVXbMT5nVWz3Ho3AD5//rVNbWaH++P7ke3rZnLl3le96Xrp9E7jm8OCUv718G18ev9C5HaWtaUqCxeFsgQUGokTrBmTqyZMj5xD4/jPxBhfsiAH5RoNZWVujat9OZN0lPSLh7Im5R4aG6S28KCXKdm5BLsb3dh5FyA/dFHyVFiUCJEa2UyJ68XFxegmwUHOX87wBoFKvdmT0442Ne3XegFF/64C85+7g4ozyXVtxymOjonFt7U492lGezav08SJ5iK+u3qEzDyDrdx4p47k7u7miZDuuEy4yJFQvhXsHF+VFiVTr34Usv7Rsi848gEr8tqfzzILCjbmckiHfA/Fg7wmd21Hi77z6wK5kuT5OOCXu4dwL5SW5nAPff8bT4xd0bsecbK5XoIgCf+fZyxWHR8nCnHL/p6/w5vItnduh9jJynjcAVB/YjSy/qEf0oxJtnr9OFTIT1/faXXx68EynNpSYyaBSqRT3O3cvlBe99izH+KenUbJtI62O57iYGFxdsxMTclXD1h4j8dPvE4BEzvZU7hk4zz87cRHf377XaSysCzU521xtZYWq/TuTdfpkZVI2j42O1pv/2wIuLA5nCywwEDZ2dqhEiGslxMfj8oqtOrVhbWcHKxsbTrncb9QqdG9Dcjbe2rxfZx5A1qIWFRZu1NjEhL2TIyp050bCxUZH4+rqHTq1wY6Oke9iDiRGOVNOuGtrdurMA0jdHkeFhcv6ksEpXRqU7tCUUx4VFo4bG3VLQVZiRBQAVO3HuFhavlVnHkClRbUDiRGvRZvV4ZSHBQbpzAPIjnaV99xZjteLSzfpnIKsxCiRjPlykmnnQZ/8deYBVFoUnAbVB3Qhyy8s3qiz41VpmQwA4Fm6KJl2/u3FW7w6f12nNpSYyQAA1XhsriuUFtUOAHlrVECGfDk55e9vPcT7O490aoMd1S7fuatUKqbN9Yl+pNdz+c4bAAo3rkkKqr04fUVnYVgl7uHUajXTCacP1YAS1/NS7RrTWZkHTiHo81ed2jCFzTMVyI0eO5diwvOzKN2hKZl9lBTxsbG4vn43Juauhs1dh+HXR39U6cPN0AOASzo6XpWYyQAA5bu0NDorU6nruRJgcThbYIERqOzdgXQY68oDqFKpFJd+DACOaVKhrFczTnl0xF9cX79HpzaYH3YZ36ICQNW+ncjbZ115AFmXDHKfd2r3DCjesh6nXB8eQKZDRo90fVOgGmPTfklHHkD237p8o+AAwC13dhSoV5VT/ts/AA8PntapDSVeMgBsh8xFHZ1wSjygAoBHiULIUaEkp/z7az+8PHNFpzaoucv9+wYA1QawoqJ0O5wzLxlkPvfcVcshU8E8nPKP957g/a0HOrVhbjbX1QnH/J3LfO6FG9YghZZeX7gB/2evdWpDiZcMKpWKecGiq82V6pQo0boBUqbnZmU+Pnz2P6n5fCDPKzL/W7eytib1CQDdox/Z33Z57+HKdW4B+5TcseuTlalEm9vY26Nir3ac8vi4OJ0Dwky5nmfMlxPdti3CxBdnUcaruXbHc1wcbm7ah0l5a+DL4xewtuWeMfXKylTgJYODizOpSRETGaVzVqZS9+1KgMXhbIEFRsAlY3qUaN2AUx7xOwS3t+qWgkylcMj9sAIAVZkpyLrxADLTlWT+YXfN4WEUD6BKpaJTUWU+b4D/cK6TE45FMyDzuWcpWoDmAXz3Ec9PXtL6vo29MjMZAHb0o84OGZbNZX7JkLNiKWQpmp9T/vnRC/heu6v1fSWm2mvAjH7U1SFDzF0JlwwF6lU1igdQqd83vuhHXW1O7mNkPm8AKN6yHpwzuHLKnx47j5/vPmp9n0mXJPO5q62sULUf6yJ1k05tKJFSAwDKeDUnx35/z3H8+fZD6/tKpEsCErMyK/fmUqMlxMfj8nLdnHAkXZLM/9YBoGKPtkZlZSr1vGKf0gnluxHUaNHRuLZGRycc+W2X9986AFThy8r8q50igb2eSzf3DHlyoOuWBZj8+gLKdWlJzicp4uPicH/PccRGczMQo8LCcXPTPp36Veq3nZWVeXnFNp2yMpVInaMUWBzOFlhgJPgOaoZGwsl9EwMA7gXzkDyAvz58wZNj57W+r0SxHQ2Mdsgo8PYYMJ4HUKk0AwCfs1179KNSMxkAIF/tyiQP4Lvr9/Dx/lOt7yuVZsDYFGSl0iUBQLFmdUgewOcnL+H7Gz+t7yuRLgngT0HWJRJOqXRJAFCmQ1M4pknFKX+w7ySC/QO0vq/UTAZrW1tU8enIKU9ISMCl5dqFYZUcEVW+W2vYpnDglN/aehDhQb+1vq9EuiQAsHNMgQo92nLK42JicGW1dmFYJe9jKvfuaFRWplL3ro5pUqFMR25WZlR4hE7UaErdxwBA1X6dyazMyyt0o0ZTYiYDAKTOnBHFWtTllIcH/cZdHbIy5ZTJkD5nNnTeOA+TX19Ahe5toLa2NqidizpnZSqPOgdIdNAXqFuFUx785RseHTqj9X0l0iUpBRaHswUWGAnP0kXhWbYYpzzgpa9OPICkeJ5CPm58ojvaoOQIwLw1KiBj/lyccl15AJV6e8wbCacD96OSb4+LNKlF8wCeuYpvL7XzACo1k0GtVvM4Xo2wuQIOLEwewIOnEfTJn/ddJWcyWNnYoCojBfnSMh2ccEQUHKCM33n5rq0M5gG0sbeHtS1XYFQJ87ZN4YCKPblOuPjYWFzRQRhWqZkMAFDJuz1pt+vr92gdv5L3MY6pXVC2cwtOeczfSFxbt0vr+0rNZAASI+GoNPWrq7YjJiqK912lZjIAWrIytx3U+r5S964AO1Dk0lLtWZlK3rumz5kNBRtU55T/+fYDD/ZpF4ZVss1ZgpG66BPIMZPBNYcHvNbNxpQ3F1GpVzvy8ogPP30/6JSVqdRMBkAkv4RC5i5nWBzOFlggAIxJO3egbo8VspgXalAd6TyzcMp14QFUcmSQsdGPSr09BhJ5AJ3duDyAT46cQ+B7fh5AJUcA8vMAbtL6vlIzGQCgbKfmZLTHvV3HEPL9J++7SuW1BRIdiJW8uSnI8XFxuKyDE478nStg3gBQsWc7WNtxnXC68AAqOQLQwTklynflpiDrygOo1EwGAKjSx4tM2b26eodWlXYlRwA6u7miZNuGnPLIkFDc2sJPjabkTAYATFqNy8u3Ii42lvdd5nqugEuGdNmyoHDjmpzykO+BeLCX3wnHmrcSLhkAHn0CHbIylZrJALCzMgPff8bT4xd431VyRiZgXFamUjMZgMSszKwlCnHKdcnKlPM+Jp1nFnRYPRNT3l5EZZ+O5IUpC1u6DddKEaZE3m4NWFmZvtfu4tODZ7zvMvcxCpm7nGFxOFtggQAo1qIeXDKm55TrwgOo1BQ1gJ8HUJvjVamigRqU6dgMKVJxb4F14QFU8iWDjZ0dKvXuwClPiI/XKsahdJsbwwNIb+CUcUDl4wG8qoUHUMmXDABQmY8HMOIv77tKvmRwSpcGpTs05ZRHhYVrTUFW8iUDYBwPoJIvGdJkdUfRZnU45WGBQbi76yjvu0q3OZMyaekm3hRkJl2SQuadKX8u5KtViVMe9MkfT46c431XyZcMADtQRFv0o9IvGTxLF4VnmaKc8m8v3mrNylTyJQPA72zng9IvGfLVrIgM+XJyynXJylTyJYMxIqFsm8vn257WIzPar5iGKb6XUKVvJ50cz6E/fmFa0fpY2awX0wGr5EsGPmo0bQLQcr5kUDosDmcLLBAA1ra2qMzgAby4jJ/7kZWupAv/sxxQvlsr2Dmm4JTf3nYQYb+Cme8pPXXFGB5ApQosaVDZu4NBPIBKTkUF2DyA0RF/cWMDvxOOSlFTyrwBoBqDB/DKym2IjY5mvqfkVFQASO2eAcVb1uOUhwf9xh0tPIBUyrlSDqgA2yFzSQsPoBzEdoyBW+7sKFCvKqdcFx5ApdKoaGBo9KPS13OPEoWQvXwJTvn31354efYq77tKX8/Z0Y/8h3Olf9tzVy2HTAXzcMo/3nuC97ceMN9j0iUpZN4AvwA0H1h0SUr5ey/csAaZlfnq/HV8ff6G+R6LLkkp8+ZzvF7Sok+gZLokACjRpiFSpudmZT4+fBaBH9hZmUrax6TJkgntlk3BVL8rqDagC2zs7bS+8/jQGcwo0RArm/aE/9NX/6lTMl0SAJTr3ILOytx5FCE/ApnvKX1NkzMsDmcLLBAILB7AGxv28i7M1I1afFwcYnRQ0ZUDUqRi8wBeX7+b+R4zRU1BH/Yqfb1IHsArK/l5AFkRUUq5ZODlAdzKTkFWehQcwOOQWbqJdzOm5Cg4IJE7rlDDGpzyRB7Ak8z3lB4FB/BzwvE64Yi5K2nemYvkR64qZTjlP9995OUBVEJkkDawbK6Nq17JmQwAkLNiKWQpmp9T/vnhc/heu8t873/Z5mQmg4LmXbB+Nbjm8OCUv718G58fPWe+p/RoMJVKxba51gw95UYAAkDxloZlZSp9D8eflWnIt10Z8waAMl7NSYfavd3HeLMylZ6ZaGNnh8q9udRoCfHxuLycnZXJymSQ87xTu2dAm8WTMM3vKmoM7g5rXRzPh89iWpF62NBxEH74fgCg/EwGvqzMazxZmUrPyJQzLA5nCywQCM7p06Fku0accm08gOzIIOV84AzhAbRzciQjJpU073TZsqBIk1qc8tAfgbi/5zjzPcrmSrpkAPg54VhOOKVHOANsHsBfH77gybHzzPdYUXBKuWQA+KIf2Qc1pUc+AoBn2eLwKFmYU66NB1DpkY8AUJ0ZCce2ub3Co+AAIF+tSnDLw+UBfHf9Hj7ef8p8T+k2N1SfQEnRYCwUa1YHqdwzcMqfn7yE72/8mO+RmQwKmjdfCvJFnuhHc7B56fZN4JgmFaf8wb6TCPYPYL6n9EwGvqzMS8vZwrDmsJ6X79YKtikcOOW3th5EeNBv5ntK/7YbmpVpDvv2yr07Qm1tzSnny8pkZTIoYd4uGdOj1YLxmP7+KtwL5dX6fEJCAu5sP4RJeWtgu/dosI4lSpi7BlX7diJ9DJdXbGVSoyk9k0HOsDicLbBAQFTr34Us5+MBVPrtMQBkzJcT+WvrxwOoVqthl1LZUSIAj+OVhweQHRmkHJt7li4Kz7LFOOUBL32ZPIDmcMkAGMYDqPRMBgDIW6MCzQN4+xHe335IvmMOmQyGOuGUnskAAIUb10SarO6c8hdnruLbS1/yHWa0q4K+7Wq1mnc9Z0HpUe0AUKpdYzilS8Mpf3TwNII++ZPvmEMmg5WNDar0oYVhLy3jccKZgc3Ld2kJOydHTvmd7YcQFhhEvmMOUe22KRxQsSfXCRcfG4urq9hOOKVnMgBApV7tSOfK9fV7EBkWTr7DFs9Tjs2FzMpU0poGJOoTUFmZV1exszKVnskAaMnK3HaQ+Z7SMxlcMqRHt+2LdH4+Pi4OV9fsxKmZK8h6JX3b0+fMhoINqnPK/3z7gQf7+bIylZ3JIFdYHM4WWCAgPEoUQo4KJTnl31/74eWZK+Q75nB7DLA54S4s3sB8R+k8eACQu0pZuBfm3iB/uv+UyQNoLjxR+opxsC4ZlDZvFg/g6ws34P/sNfmOOdicV4CFEQlnLpcMJVo3gLObfjyA5pDJYGVtjSp9aSccy/HKXNMU9LcOAGU7NdebB5Dm7VbWJYONvT0qeXNTkOPj4nB55TbyHXP4vgFAxZ5tYW1HUKNt3Mv8ZpnDPsbBxRnlurTklMdGRePaWjoF2RwyGQCgSh8vUhj26uodiImkv9VKjXxMCmc3V5Rs25BTHhkSilub95PvmMvvnHWZeGnZFmZWJv07V9YlQ7psWVC4cU1Oecj3QDzYe4J8x1xsznde0ScrU2nzdi+UF3mqldPrnXjGb0BJlwwAf0AYC+bwbZcjLA5nCywQGPpywplDlAgAFKhXFa45s3HK3165w+QBVLISrgaJTjj9uB/NIRoMAIq10J8H0Bxszs8DuIksZ2YyKMzxWsarOVKk4joa7u85TvIAmsslg42dHSr17sAp5+MBVDrfpQYVe7SFjYM9p/zW5v2I+P2HU27rmMIsLhnsUzqhQvfWnPLY6GhcXb2DfIf6vintkgEAKvvQKcjX1uxEdMRfTjk78lFZ3/aUrmlRukNTTnlUWDhubKSFYVlRcEq6ZACAagxajUvL6RRkc9m7psnqjqLN6nDKQ3/+wt1dR8l3qKh2pc0b4BEPZGRlmsve1ZCsTKVHu2rAcryysjLNhdfWs0wxeJYpyin/9uItMyuTjmpX1rwBoBrDL0FFu/Mh5DtbcE+OyFezIp2Veesh3t95RL5jiXAWBxaHswUWCIyiTWsjdeaMnHIWD6C5HNQSU5D14wE0lw97KT4ewC/fOOXmclCztrUlU5ATEhJwcZl525zFA3h720GE/QrmlJuLzXl5AFcxoh/N5KBW2bsDKSLD4gE0l0sGxzSpUNarGac8OuIvbmzgOuHM5ZIBYPMAXlm5DbHR0Zxyc7lkSO2eAcVb1uOUhwf9xp0dhznlzEwGhc0b4HG8Lt3McMLRlwyUY17OcMudHQXqVeWU//YPwMODpznl5rJ3BfhpsignnLlcMvBmZZ69yik3l30MwJOVydAnMJdLhtxVy5G8vh/vPSGzMs2B9lED5gULMyDMPGxeuGENpM2WmVOeEB+Pkm0bkftaClu7DcfFZZuZ9CtyA19W5iV9/BIK27PLERaHswUWCIxEHkCuGAdA8wCag2igBuX05AE0l9QVWwd7VOzVjlMeHxeHKwQPoLnQqABARQYP4I0Ne0lFY3Oxub48gOZk8yp9vcjIiCurdpAbUXOxub48gOZk86rMFOTNiI+L45Sbi81dc3igUMManPI/337gIcEDaE7ruT4pyMxLBgXOO0vRAshVuTSn/Oe7j3h+8hKn3Jx+5/rQZJkLXRIA5KxYClmK5ueUf374HO+u3+OUmwNdkgb66BOY0996gXpV4ZrDg1P+9vJtfHn8glNO0SUp8ZKBT5OCysQ1J5sXb1kPzhlcOeWsrExz2cfwZWU6ODth8psLKNelpdaI579/QrG7/0RMzF0dNzbuYdLPyAllvJqTdry3+xj+BHCzMs3F5nKDxeFsgQUioGLPdrCxt+OUUzyA5nR77OCcEuW7tuKUs3gAzUF4RQN9eADZUXDKm7tz+nQo2a4RpzwyJBS3thzglJtLhDPA5gG8vHwrZyNmLpGPAJsHMPRHIO7vOc4pNyub6+GEM6doMPeCeZCnenlOeeD7z3h6/AKnnJq7EucN8PAAEodzc1rPPcsWh0fJwpxy/6ev8ObyLU65edmcFQnHjX5k21x563m+2pXhljs7p/zd9Xv4eP/pf8rMKZNBXyecOa3nxZrVQSr3DJzyZycu4vvb9/8pY9IlKXDearUaVfXIymTRJSktkwEASvNlZfoH/KfMnP7WrW1tUcWHGxCWkJCAS8u5AWHmkskAAOW7tSazMm9tPQgH55TovHEeJjw7g+It62ttK+iTP7Z0G4EpBWvj3p5jZOaPXMCXlUlRo5lLVLvcYHE4W2CBCHBKl0ZnHkBzuj0GwNzAUTyADoTojNJECTRIkyUTijavyykPCwzC3Z1H/lNGzRtQ7txZHNYXl3B5AOnbY2Uu5nw8gI8Pn/1PGft3rsy5M7nqCR5Ac4oY8CxdFJ5li3HKKR5Ac/u289k8OVjRYEpE3hoVkDF/Lk45xQNoTjbndcIRNjen33mRJrWQJqs7p/zFmav49tL3P2XsqHblzV2tVvNcqpm3zUu1awyndGk45Y8OnELQ56//KTOnTAYrGxtUZQjDJk87V6vVZpVyXr5rK52zMs3p226bwgEVe3KdcPGxsbiSTBiWlcmgxHkDQCXv9mRW5vX1ezhZmaxMBiVeMjimZmdlXlu3C0DimabX3hUYemWPTm1+f+2HdW36YWaJhnh64qJsHfFV+3WiszJXbuNkZZpLJoPcYHE4W2CBSGDxAF5Zse0/Hy62IIMyF3O3XJ4oWL8ap/y3fwCeHD3/nzJq4xrzN5IUqFECWOmol1f8dwNnTtyHAJC1eEHkrFiKU/79jR9eX7jxnzIqGkyJB3MNWJFwl1f8V0iOzeerzLnnrlKW5AH8dP8pPtx9/J8yczqgAny/8+Q2Z0QGKXTuhRpURzrPLJzy1xduIOD1u/+UmQtvN8DveE1uc3Nbz0u0bgBnt3Sc8idHznH0CcxFVAsArKytUYXhhEvukDE3m5ft1Jxcr+7tOobwoN//KTOn37mNvT0q/V979x3fVnX+D/yjvaf3klccO44znL0TskjYEMoIoy2UPQot7a+MttDCl07a0gUd7FVW2JkQQnbI3nES773kbVmWdH9/yLqRrCtrXdu5yvN+vXgZX+tK9+TRvfec55x7zl2r/ba7nE5s+5fvE3qxsniex7w7boRU4Z+E2/nK+37JNa6yC7XcgZ7K7Lf1+Q0OirX7eaCnMrf9622fNlgsTZcEAPqkBEy74TK/7baOTr/1CWKtrRZoWo1v/vmGz+Cg3LnTODsZAqk6eBx/v/T7+P28azmffhptgZ7K7GhoxsFB6xPEysLP5xtKOBMyTNInFSJv4Uy/7Q0lpajYe5j9XSKTcd70+23CmJSfS6DG+eB5TuUqJefr+vv8F2MSgty505BRPN5ve8Xew6g/eW5UVMByX6Axd9j6BNt7HGgewJLNO30SMoFi7hBozIdKwu154yOf32UBYi5UxatWwpCS6Lf96OebfRIyXOUGhFv2oeYBDCXmQr6+zbz5aqiN/k+mHPhgnU9CJlDMhVp2mUKB+Xff5Ledcbn8ntyJtZjP+8ENnGXa+86nPgmZWIu5UqfFnNs4pkaz27HvPd8pk2It5gvuuZmzPr77jTU+dZRYq8MFeirT1tmFQ5/4Pq3FVXahlhtwj37kMrjuGmv3c7MlDZOvvthve2dTC45v3OazTa7ynyJSqOUGAg8UCaUeAwj3+55amIdxy/yfymwpr0bpjn3s72KxGFKOaUGDKd2xD88tugF/WX6L38CT0RZooEisx/x8QQlnQoYR11xRgH9FRiL3XyHWaRdm0hUAxi2bj/gci9/2wQkZrnIDgNMuzBHOIpEICwLEfM+b53rOY63cADD56os5R8INTshwlZ1hGM6Fx4RALBZzJ2QYxichEyjmDgHHfMbqK6HkGPkyOCHD9fiikMstlcs554Rz2O3Y//4XPq/jIuSyz/7+dzjLNTghI+X4vjsEfE9TaNScj6P2dXX7JGS4yg0Iu+zz71zN+Tjq4HoMV9mFfE/TmI2Ydr3/SLjBCZlAMRdy2QPVXQc3zrnua0K+vpnSkjHpymV+21vKq3HWKyETi3W4aGIu5HInjc1BwdJ5fttrDp9E9eET7O+xeD8P2F7xa6PGVh0uc+oEZE6f5Lf9zLZv0VxWxf4ei/fzBff4t1eA0O7nYxfNQvK4MUE/48TGrfjNjCvxwjV3ofZYSWQHyrOxi2YjuSDXb/uxdVvQ2dTC/h6LMT8fUMKZkGE08Ypl3I8mvj1ohAzHo2xCvpmLxWLMvPkqv+2DR8hwPcLneZ1QTf3OJQETMp5HliRSKWcDXsjllkilmHbjFX7b+7q6cejjDezvgWIu5AbLjNVXcidkXj9XgYvFcsvVKky5dqXf9s6mFhzfsJX9navsQr6+AcDMW67m3B5KzIVcdo3JgAmXL/Hb3lJejbPb97K/c5VdyN91wL3aOZdYP8+NqUkoWDLXb7tfQobzPBfuPQ0YKubnFsSNxXpM0tgcZM0InpDhqrsKebAEMNS1PbZjbpk6IWBCpqOxmf09Fu/nswLF3CvZHov387GLZsGUnuK3/eBHG3zmM47F+3mgmO958yP2/6UK7lG+Qi570SUXQW0y+G3f9+7nPvMZc5XdkJqEXxxZj++9+kfO6dUGO7hmPX494WK8fMvDaDpbEd2BR0kkEmHGzf4xdzmd2PvOp+zvsViHOx9QwpmQYSRXKQMnZLxGyHD2Hgt0WgkPrgs74DtaImBPooDLrjYGTsh4P7LEOQJQwOUG3I+dc9kdQsyFOo0KMERC5si5hEwslhsYonHuNVqCq+wuh+O8Xtk6mKS8bGTPnOy33TshE4vXNyC0mMfiPc0ypYhzdM/x9d+wCRmucgPCLztXBzLge22PxZgHSsgc+mgDO4dpwKdXBF72QMl274QM5whngZe76JKLoDEb/bZ7J2Ri8douEok4Y+5yOrHvf5+xv3PXXYX9uPnka1ZArlb5bf/2rY/Zp+9iMeZisRjTV/sPFOnvteHAh+vY37nKLvS667QbLg86fU4sxlymUHA+udNjbcfRLzazvwdqo4olEsy6dRWePPklbvzHrzmnl/PGMAx2v7EGvyxYgjfvfgzWmvroCxGhGTddybk9WMBaUY4AAFoqSURBVN0VEP73fbRRwpmQYRawoeY9WiLGHksEQkvIBGycC7zsoYyQ4Sq70HtQQ0nIBO49FvbNPFhCRiIL9AiusMudtzDyhIzQyx6wU20gIROr5S5auSiihIzQr+sikYizU817hEzgxzGFXfZQEjKx9qQWMERCxtbHLjYUi4/aA8C06y8LISETezGXyuWYet2lftu9EzKxep5zfdcBYNfr3gmZ2JpSAwCUWg0mXbXcb3tbTT1KvnYvghar9/OAT3EEGd0t9HLrEuIwfsVCv+0Np0pRue8IgNicCg8IbUBYsPNcKpdj4T234NdntuCa3z3KWSf05nI4sPXFt/Dz3AV4/8dP+0xjMVLiszIwZv4Mv+3lew6xC1/H4hRZ5wNKOBMyzEJJyHA+ohYDvWnBEjJcDVRA+GUPJSHDVXah96AOlZDxjJAJ2DgXeNknX30x52ITnoSMSCTibpwLvNwhJWRi9Dyfdv1lEEulfts9CZlYLXdICRmuBmp/v6BHtQOBEzKexnmsxnzIhMyW3QBic7QrEPzJnViNeSgJmQuu7srGnPtRe6GXPVBCpuLbcwmZWKy7AkMNGnAn2wOd50Ive1pRPtInjfPbfurL7WirbQAQm09kAsCMCGMu9BH9uXOmck6JceSzr9BtbQcQ6NruX265WoXlP7kLT5dtxaW//CHnui6+72HHpuf+gydyFuCTXzyH3vaOCEsRmUDnuWedpVi9n482SjgTMszEYjHnYxzeCZlYWzTQI1hCJhYXXgGGSMi0dbAJmVgcJQIEHyETi/PgAYBSp+Vc8TvYCBmhlxsIPrdtrI4ADJaQCTSqXejlBoZ43N6TkAl0be8XdtnjszKQtyBwQiaWF5wJ9rRWLM7zCQBpEwoCJmSsNfUxPSIq0NNauwZiHqv1mGAJmVituwKBY+5JyMTi03mAe7FzXWLgha8D1WNioexcHSwMw2DPW4GTcLFQj5l0xTLOBOm3b38Kp8MRs08yBJrP2GG3Y//AOkvhPqWm0utw+ZMP4+nSb7DskTshU3J3ynn0dXXji18/j8ez52P9717wWVx+OE35zqWc5/Iez0CRGK7DjSZKOBMyAgKNlvAkZGLxUVRg6IRMxd7DMbnwikewmMfiAktA8BEysfqIGhDZCJlYaKwEHCHz1Q53QiZGOxmAwDHf9fqHEIvFnEnnWCh3zuwpQyZkYnnhlaFGP8ZyuYMnZLi+63Z2+gUhC5SQ+fbtT2K6HjPx8qWcCRnPwtfcdVfhlztYQiaWYz7lWu6Fr/cM8eROLNzTJFIppt94ud92W2cXDn2yMabrMdNvvAIikchv+56BumusdjLI1SoUr1rht72zsRknNm6NyUUDPQLPZ/wRgMg7GbTxZqz6/WP41ZktWHDPzZyDzrz1WNux5v/9Bk/kLsDXf39t2K+hGpMBEy5b7Le9uawKZ3fsi+k63GiihDMhIyBYQiZWH0UFhk7CxeKCDB6BRsgc/XwzulvbYvYRNWDoETKBp1ER9iNqQGQJGaE/jukxZEImhs/ziQFGyHgSMrF6ngdLyMTq4nlA4ITM7jfWBGxcxUK5h0rIHP50U+CGmsBHtQNDJ2Ri+bseMCHT1IITm7ZdoHXXj2L6nhY0IRPTMR+iMzGGY25KS0Y+x8LX1YdOoObIyZidRgUYesqkWF3sGwCS83OROX2S3/YzW/egubwq6ikATWnJWP2Pp/HUqa8w85ZrOO+f3jrqm/DO/b/AL/MXY/ebHw3r9GuBplIZ6n4eCzEfTZRwJmSEcD2CfC4hE5sjBoChEzIQc1+CYqHsQyZk3v8iZh9FBYYeISOWcSdkYqHswUbIxOrUOQAwY/WVnBXK3a9/GLOL7QCAXKXElGtX+m0fKiETC+UGIkzIxMB5rjEZMOHyJX7bW8qrUbb7IEQc97VYKDcwROP89TUxO3UOMHRCprGkjHOfWCg3MPSUSbFcd00am4OsGdwJmY6GZs59YqXsAQcNvLEmpu9plqkTkFyQ67f92LotsHV1c+4TK2UfanBQLLdXxi6aBWNast/2g2vWw9Hv4NwnVso+a4jBQXzFPCHHgu+/9hx+fmQ9iq/x77wcrKW8Gi/f/BCenXY5jm/cGvbnhaLokougNhn8tu/932cBE+OxEvPRImJi4Vk3QgSgrbYBj6bP8nu8VBNnhL3Hhv5em892fVI8FtxzM1wOJ/KXzEH+otkjebi8eu22n2DHy+/5bY/LSkdLebXf9hk3XYWEXAvEUilWPn4/xAES0+e7+lNn8WSBf2JClxiHnrYOvxuY2ZKGObd9By6HE0WXXoScWVNG6lB59+Kqu3Hgw3V+282ZaWitqPHbPue262BMS4ZCo8Lyn94dtDf8fFWx9zCene4/j7UhJRGdTS1wOZw+2xPzsjF99RVwOZwoXrUCluKikTpU3v152c04uWmb33ZTRgqsVXV+2xfeews0cSZo4oxY8sPbRuIQh8XJr3bgz0tW+203paegrbYBzKCRGmkTCjD5movhcjgx46arkDJuzEgdKu9+M/NKlO855LfdmJaMtpp6v+1LHr4dCq0GxtRELLj75pE4xGFx8KP1eOHqu/y2B7q+ZU6biKJLL4LL4cSc265DQo5lJA6TdwzD4MlxS9BwqtRnu0gshi4xDh31TX77XPyzeyCRyRCfnY45379upA6VdztffR+vfu8Rv+3x2RloLqvy2547dxoKls6Fy+HEgntuhokjqSEELqcTj2XO9TufJXIZVHoduppb/fa57MmH4HK6kDIuF9Nv5H50Wwg2//UV/O/BJ/22x+dkoLnUP+b5i+dgzLxpcDldWPLw7dDGmUbgKPnX39eH/5cyAz0DC4h5yNVKSBUKv+0SmQwrH78PLocTGcXjQ0osna++eOZv+OSJP/htj8+xoLm00m/7+JWLkDV9IpwOJ1Y8ei+UWs1IHCbvejs68dPk6X5tUaVOCwYM+jp9E+4KrQbLHrkDLocT2bOKMeFS/1HxQvHBT5/Fxt+/6Lc90LV98tUXI21CPhgXg5VP3A9ZgKk3zncdjc34WepMuJy+7RK1yQBHn91vXmVtvBmL7r8VLocTYxfNQgFHJ2wwFXsP4+Mn/oDj678J6fXjls3H1b/9f7y3jd68+zFsffEtv+1x2Rlo4Yj5tBsuR9LYbIjEYlzyxAMQSyS8Hk+so4QzISMoUEJmKGKpFL86vRnxWf7TMwhFoIRMMIvu/y5u+OtTw3BEI+fZGVei4lv/hMxQZColninfBj3H9AxCcWDNOrx4zd1h77fisftw1TM/GYYjGhmBEjLBqAw6/F/FdqgM+mE6suEXKCETzNW//Rku/mn435XzRaCETDD65AQ8XboVcpVymI5s+AVKyASz+p9PCzrhHCghE0x8dgaeKtkMSZB5Dc9nXzz9V3zy8z+Gvd9tb/4FM1YLN/lo6+zCT5Km+SVkgkmbUIDHD34h2I5zIHBCJpj7PntJ0ImoQAmZYHLnTsMjW98TbMc5EDghE8yPv3kXeRzreAhFc3kVnsieH/Z+41cuwgNfvML/AY2g/9z4APa+82nY+z1+4HNkTB4/DEc0MqoPn8DTk/yfVAtm2vWX4Qfv/G0Yjmjk/O3S77OL2YdKJBbjqVNfIXFMVsSfW7JlFz5+/A84u31vSK+fcdNVuOLpH/OWCzmz7Vv8Yf53wt5v/p034qYXn+XlGC4kwq3xEiIgXS1WHFyznnP0TzCzbrlasMlml8uF0p37OUe6BiORybD8J3cOw1GNjI7GZhz4YC1s7Z1h7zv/zhsFm2x2OZ04vXUPjn4eXgUGcM8XueQh4Y50battwP73v4hoTr+LHvy+YJPNTocDpzbvxImN4XWmAe6RFAvvEW7isbWqFvve/TyihdGWPXKnYJPNDrsdJzZtR8mW3WHva0hNwuzvXTsMRzUymkor3fNUR5A0vvjRewWbbO7v68OxdVtQtutA2PsmjMnC1OsuHYajGhkNJaXY9+7nkCnkYSecVz5+n2CTzfaeXhz5YjOq9h8Ne9+MyYUouuSiYTiqkVF7rAT73v0MMqUCfd09Ye17yRP3CzbZbOvqxpHPvkTd8TNh75u3YIZgk80Mw6Dm8Ans/d9nkCrkYdfjLnnigWE6suHX296BQ59s4hzBHcyEy5YINtnMMAwq9x1xT6UgFvs9jRbMysfvH6YjG37drW04+NGGsAdKAO41DaJJNgPA2IWz8MjW93Bs3df4+PE/oOrAsSFfv+fNj7D/vS+w8L5bsPLx+yN+esTlcqF89wHse+/zsPcVSyRY/v/uiehzL3TCrPUSIiAulwuv3/5THPp4Y9j7isRiXPwz4V7cTn+zG3+9+LsRrTo767urYLakDcNRDT+nw4GXVv8QJ7/cHva+Urkcyx4RbqL92Lot+OeVd4Q9IggAFtxzM3QJccNwVMOvv68PL666O6JkjEKrweIffn8YjmpkHPhgLf5744MRJV2XPHQb5xzvQmDr6sbfL7sNNYdPhr2vJs6E+XeF/9TH+WLXax/ijTt+FtG+y39yJ2RKYSbau63t+OuK76LxNPe8vUMxpadg1q3c8+EKwZZ/vI73f/R0RPuufEy4ifaOhib8eenNsFbVhr1vUn4Oplx7yTAc1chY/7sX8PlTf4lo35VPPCDYpGtLRTX+tHg1Ohu552oeimXqBBRevHAYjmpkfPqL5/Dln/4b0b4rBZx0bSgpxXMX3Rj2UysAkH/RbOTOmToMRzX8GIbBez96Gjteejei/S95QrhJ1+pDx/HcRTeiL8D83EOZdNVypE0oGIajGn4Mw+DNux7D/ve/iGj/FY/dx8txiEQiFK28CIUXL8S+dz/Dx4//YchOD4fdji//9F/seOldXPyze7D4h7eFPWijdOd+/HnJ6ogGBs246UrBToc22oTZ5U6IgIjFYvzgf3+L6LHCaddfhqSxOcNwVCMjf9Fs3LXmxYCLCQUiEouxQsCJdolUins+/jfGLpoV9r6zv38tTOkpw3BUI2PCpYtx+9vPhz2/lVQhx7If3zFMRzX8ZAoFHlz3KrJnTg5734X33izYuR4BYNr1l+Pm//w27OSCUqfFoge+NzwHNQKUWg0e2vRmRI2OJQ/fLti5HgFg3g9uwHV/+WXY++kS4jDvjhuH4YhGhsZkwMOb30ZiXnbY+y7/6V2CnesRAJY+/ANc8esfh72f2ZIWcLFBIdAnJeBHX78TUQf4ysfuE/Rcj5f98iEs+4n/XOXBJI8bg8lXXzwMRzQy4jLT8fDmt6FPCv9JMyGPbgaAVX94HAvuvins/bJmTMK4pfOG4YhGRnJ+Lh7a9CbnYmLBCDnRLhKJcPO/no3oGj1u2XxkzywehqMaGRmTx+OBda9CEUFd7BIBj24WiUS47c0/Y9KVy8Let3jVSqQW5vF6PGKxGNNvuAJPntiE659/Etp485Cv723vxEeP/g6/yFuE7S+9G9YApzFzp+HeT/4DmTK8uphIJMKKR+8Nax9yDs3hTIaNy+VCV1MLrFV1sFbXobu1Hf29Nth7bXDY+mDvdS+U12/rc//0+n97bx8YlwtytQpyjQoKjRoKjQpyjRoKjZrdJvfartJrYcpIhSk9GRKZ/+qqI8ne0wtrdR2sVXVor2tEX3cPbJ1d2P7fd9Fw8mzI71N48QIYU5N8yulbfvdPXWIczJnpUBv1o1rRdblc6GxoZsveY21Hv60PlQeOYtcrH4R8UzBlpGDswlmccfb+d1AZdDBlpMCYljzqo6f6untgraqFtboe7XWNsPf0ore9E1tffCusx9QmXLYYusR4zjh7l1+fFI+4zLRRn4bB5XSio6GZLXtvWwfsvTaU7T6Ib9/8KORRr/E5FuTOmcodc62a3aYy6GDOSIEhNWnUY27r7IK1uh7Wqlp01DfB3tOLHms7tvzzDc5F8riIxGJMvHwJNHGmIWOu0GqgT05AXGbaqI8IdjmdaK9rdJ/nAzHvt/Xh9NY92P9u6I+pJeXnIGvGZM5z27v8aqMeZksqDCmJo5686e3oZO9pHfVN6O+1oau5FV///TV01Ic2Gk4slWDSlcugNhoCXOPc5VcOxNycmTbqyWmnw4H22gb39726DraOLvT32nBi0zYc/mRTyO+TWjQWlilFQ97LFRoV1CYDzJY06JMTRnU6AoZh0NvecS7mDc3o77Who6EFW/72KrparCG9j0Qux6Qrl0Kl152r02g1/vUbrQaGlETEZaZBrlYNc+mG5uzvR1ttA6xVdWirqUdvRxcctj4c+fyrkBf8AYCM4kKkTSgIGnON2QizJQ26pPhRj3mPtZ2tx3Q2taC/14a26np8/Y/X0dvWEdL7yNVKTLx8KRQ6Lee1zbNNqdPAkJoEsyVt1KfYcdjtaKtpgLXaHXNbZzfsPb04uGY9TocxfU7WjElIHjeGM87e2zRxJpgtqdAlxo9q3ZVhGHS3trH1mK6mFth7+9BaUYMtf38t5Ck1lDotJly2mPvc9o69TgNjWjLMGSmj/rRHf1+fO+ZVtWiraUBfVzfsvTbsfefTsJ7Yyp0zFQl5WQPXNnXA+5o2zgRzZhq08eZRj3lXcyt7nnc1W9Fv60PTmTJ888JbIU+dozYZMH7lIs5z23ubUq+FMS0ZpoyUUe947LfZ2Ht5W00D7N096Ovuwe7X1wSd2sDb2EWzEJeVznlue5dflxAHc2YaNGbjqLdRu5pbz+UlWtrQ32tD/cmz2Pavt0N+GleXGIdxy+aHlJcwpqfAlJ4c9sArvtl7emGtqXfnJWob0Nfdg76uHux46V3UHT8d8vuMWzYfpvTk0PISljSoTYawY97b0YmNv/8XNv7x3yGdh6njx+Kq3/w/TLh0sc9n2Xt6Yevsgj4pwW+fE5u24R+X345+W19IxzT1uktxx//+HnohiI+IE87l5eXYuHEjtmzZgiNHjqCyshJdXV3Q6XRIT0/H7NmzsXr1aixcKNzHikhgg5PJ7M9q98WsbeAmFslUCtESiUTuyntmGuIy02C2pMKcmQZzZjr7ezQJG+9ksvfPtup6tFbVoq26Ht2tbfwVKAxKndarvN7lT4c5Mw2G5ISIEzaDk8mcZa9pgMvh4LlUwYnEYhjTkhGXmQaTJdVd7oHymyzunwqNOuL3904mn/t57t+grboOPSE2QvmmMuhgtqSxMTf7lD89qsb74GQy179Be21DRNNnREsskcCYngzzQHz9ym+JLmHjnUwe/NP9fa+DrSP8+bn5oDbqvcrrda4PlF+flBBxpd7pcKCjvonjPD9X9va6xtGJuVQKU3qyV3nT2etdXGYaTBmpUSVsets72EbY4PO7tcp9nbN1dvFYotBpzEY2vp5z2/tap0uIiyrm3slkrrJ31DeFPb8hHyQyGUwZKT7fb8+93GRJhdmSGnHjfXAy2fM9Pxdv97Zw52/lizbezHE/P/f/mjhT5DH3Sib738vdZe+ob4pompxoSRVymDJSB9Xf0thrvSkjJeLG++Bk8uCye/7f3tPLc6lC40nMnKu/pHp996NL2Hgnk7nLXouOhvCnkOCDTKmA2TK4vF7XuigGkgxOJnvXX9o87ZbqurDn5uaLPimebaOY/cof3UAS72QyVz3GWl0f0bQhfJCplF7l9b2XmzPTohpIMjiZ7Ft385S9LqLH6qMlEonYjmTv+5l3+aMZSGLvtaGtpp6z/sJ2qDS38lii0Ck0ar9rmndbNZqBJGxeopqr7AO/j3Zewru+6tV2iXYgCZuX4Ki/eP4tRisvodBqhmybDzWQpK22AZ8/9Wds/29oo5jzFszANb97lB11/8Uzf0PZrgO495P/cF5DAyadRQAGVX1+fnidYKdQOR+EnXA+cOAA7r77buzZsyek1y9atAivvvoqLBaa80So7L021B49haqDx1F14BiqDx5HzeGTo9YI44PaZEBcVjrSJuTDMnUCLFOKkD650GcUGcMwaK2sQdXB46g+eJz92VJePYpHHh2JTAZTejISx2bDMqUIGVOKkDl1AuKy0n0uxn3dPag5ctKn3NWHT45ahZwPmjgT4rLSkT6xYKDcRUifVOiTlGQYBi3l1ag6eAxVB87FPZK5G88XUrkcpowUJOXnDMR8PDKnToApI9Un5raublQfOuET85ojJ0elQs4XbbwZcdkZSJ80DpYp42GZOgHpEwt8RhS5XC40l1aeO88PHEPVweNor20YxSOPjlQhh9mS5o751CJYphTBMnUCjKlJPjHvbe9A9eGT7HW96uBx1B07PSoVcr7oEuMRn52O9MmFbLlTi8b6JCVdTicaz5T7fNerDh6PaFHX84UnYZM8Lpctt2VKEQwpiT6v67a2o/rQuTJXHTiGuuNnRqWjkC/65ATEZ2cgfXIhMqdOgGVqEVIK83ySki6nEw0lZez5XT3wX2dTyygeeXTkahXMllSkFOax97SMKUV+C852tVj9vuv1J86MSqcRH0QiEfQpiYjPzkBG8XhYprrrMcnjxvgkK5z9/ag/VerzXa8+eHzUGt58UGjUMGemIaUwz31tHzjPB0/J1NnU4lPmqoPH0XCqdFQ6jfjgSdgk5FoGYu4ud3JBrk+ywmG3o/7EGXfZvc7z0RoQwAelTgtzZhpSx+ex5c6YUgTNoKkf2usbfc/zA8fReLpsVDqN+OAZSJKQa/FqrxQhcWyOzyCK/r4+1B0/7VNnrz50YtQGBPBBqdchLisNqUX5yJw6ARlTxsNSPN4nEc0wDNpqGwbF/BiazlaM4pFHxzOQJHFMFjKmFLH19oTcTN+Y22yoPVrCXuOqDh5HzaETws5LGPWIy0pH6oQCtt6eMbnQJxHNMAys1XU+1/Xqg8fRXFY1ikceHc9AkqSx2QMxd9/X4rMz2PZK/ckzWPPo73Doow0hveeUay/B4oduw99Wfg+2zi7c8p/fYu7t13O+9uSX2/H3y27zSTqbMlJ92v3Fq1birvf/GUUpSdgJ53feeQc33ug7/97YsWNRVFSE+Ph4tLW1YceOHaiuPpeUS01NxdatW5GTI9y5aC8UXc2tbEXNc0GrP3lWsJXUcBlSEqE06OByONDR0Iy+zvAXEhAihVYNfVICJDIpejs60VE3OiObRpxIBGNKIpR6LRz9/ehsaEZfl3ArLOFQ6rXQJcZBIpWip70TnaM0mm2kicRiGFITodRp4eizo72+Ef09wu1ICYfKoIc20QyxWIzeto5RG8020sQSCQypiVBoNXDY+tA+MBXGhUBtMkCb4H50ucfajs5G4SZYwyGRSmFITYJcrUS/rQ/tdY2C7jwLhybO6E5AikTobm1DV9PojGYbaRK5DMaURMjUKth7etFe1winvX+0D2tEaOPN0JiNYMCgu8WK7pa20T6kESFVyGFISYRMpYS9uxftdQ1w9gu38ywcusQ4qE0GMC73aN5IFrsTIplSCUNKAqRKOfq6etxPXDmE2XkWLl1SPNQmPRinC51NrSFP7yN0MrUKhuQESOUy2Lq60V7XCMZ5YeQl9MkJUBn1cDmc6Gxshq1jdJ6yG2lqo96dgJ46ge146Khvwpqf/RalO/aF9V4KrQZPHFobcMG/I19sxgtX3Qlnv7u+MOvWa3D4k01sR+UTh9YifeK46Ap0gYs44TxmzBj84Ac/wM0334y0NN+FNFwuF15++WU8+OCD6OlxJ29mzZqFHTt2CHohhVjDMAxqj5Xg5KZtOLV5Jyr3HUVbTf1oHxYhhBBCCCGEEEIIucAp9TpkFBdCpdeifO8RdNQ1hrzvmHnT8aOv3wk4fcf+D9bi39fdB8blwrV/fAJ93T349BfP0ehmnoSdcN6yZQvKyspwyy23QBJkLtg1a9bgmmuuYX9ft24dLr5YuKsWx4LWqlqc/HI7Tm7ajpNfbj8vHiGWyuWQKhWQqxSQqZSQKd0/RWIx7D29sHf3oq+rG33dPTE1QkkkEkGmUsJht0MkFsNsSYOtswvOPjtMllR3ubt72PLH0uhTqVwOkUSM/l4b9MkJUOq1aDpTgeRxY8A4nejr7mUXsYipmIvFkCkVcPT1QSyVwmxJQ4+1HQwYGFOSBuLdw5Y/pmKukEMkFqG/tw/GtCTI1So0na1ESmEenP39Pt93IU/pMJgn5v22PvfcpOkp6G6xQiyTQp8YP3Btc8fb3tMbezEXidBv64MpPQVSpQLNpZVILRoLR5+djXlfVw87siAWiCUSSJVy9Pf2QaZSwJSWgo7GZshVSmjiTD7nuJAfAeUiUyrAMAwcfXaYM9MglkjQWlGDlPFj4bD1+VzjYi7mCjn6e22Qa9UwpiShva4BKoMeKoPu3L184DyPJd4xj8vOAMCgrboeKePHel3X3TEX8tQtg4mlUkgVMth7bFDptdAnJ8BaXQdtvBlKrYaNua2rO+aeqJCplHA5nXDa+5GQa4Gz34mOhiYkF+TC3mOL7ZjLZbD39EJtMkCXGIfWihoYUpMgUyp8zvOYjLnDCZfTgfhsCxx2O7qarUgam+11P3P/FOp0PVwkMhkkMinsPb3up0fizWguq0JcZhrEUqnPNS7UBciEQCQSQapUuJ8YYBjEZWe4F2Hr6EJCruVczLvc9ZhYehLaHXMJ7D02aBPcT480na1EQq7FnZuI4ZizeQmRCObMdPQN3L/MmWm+eYnzJOZiiSTk683Vv/0ZLv7p3QH/vvuNNXjl1h/h/i9eRs7sKXgiZwEe3vw2jW7mQcSLBoZq5syZ7HzPDzzwAJ5//vnh/DjBYxgGvb296OnpgXPgBJJIJFCpVFCr1WGPEO9pa8epzTvZBHPDqdLhOGyWQquBKSMF5owU98qsGSkwDfw0JCdAplZB7pVUlikVbG+Tw+FAZ2cn+vv74XK5IBaLIZPJoNPpIB2Yl8/ldPo23AYqOH3dPehqakVrZQ1aK2rQUlGDxlOlaK2uh3OEk1dSpQJTr70EGVPGu8uengyV0QCZSgGZUuEuv0oJiUwGkUiErhYrvvnP25hx+3Xotrajo7YRKePzoFaroVKpIBKJwDAM+m19bILCO1lh6xhY3KzSXe6mMxVoKq1EzyjMU5g2oQCTr7nYvfhLejL0yQmQq1VsvOUqJaQKORvzL59/GWOWzYUqzoiKPYeQOWMSZDIZ9Ho926HldDhg7+llKzXeldrOpla0VtSgtaIaLRU1aDhViraa+hF/pFKuVmHaDZchbUIBTBmpMKYlQWXQQ6Y6F2+ZUsHGvK2uEbvf/hhTbrkKHQ3NsHf3ICE3ExqNBkqlcuiYd3Wjt6MLbdX1aBkoe9PZCjSdrRyVx+ssU4sw6Ypl7nM9IxW6xDh3zAfKLFcpIVUq2PnXPn/mb5h669UQK2So2HMIWTMns+e5T8y9zm32/7u60dnY4o55ZS1ayqpQX1KK9trGEW/UKnQazFh9JVIK82DKSIExLRkqvdan00yuUkIslUIkEqG5vAoHP/sSk66/FK0VNRDLpDClJUOj0UClcs8jzjAM+nttA/H2vc71tnfCWlXnjnllLRpPl6G5tHJUHq/LmT0FRZcuhik92R3zBDPkatVAx6H7+y5VyCEWi8EwDD755XOYfd/NgEiEym8PI3PGJMjlcuh0OvZ74ezv97u2ecrfUd+E1spatFbUoLmsCo2ny0dlsUqVUY8Zq69E8rgxMKUnw5iWDKVO4475QLw95zkA1J86ixNbdqHo6uVoLCmDOs4IXbwZWq0WyoF5xH1iPuga19vWgdaqWlgra933tNNlaCmrHpWFC/MWzkTh8gUD9/RkaBPifK5tg2P+0eO/x/wf3QaXyxV6zL3K317fNHBtr0FzeTUaTpWOysKFmjgTZt58FRLzst3neWoSFDoNe11j7+cDdZTKA8dQeeQE8lcuRO3RU4jLyoBKr4VWq4ViYB5xl8vFxnxwXabH2g5rVe3Atb0GjSVlaKmoHvmpnkQijFs6F/mL57B1OE2c6VzMVUrIVQpIFQqIRCK4XC58/PM/YsGPboPT6WRjrlAooNVq2Zg77HbOc7yvqxvtdU1orahGa2Utmksr0VBSjs7G5hGPuS4pHjNvugoJYzJhSk+BITUJCq3ap+wypYKN+dkd+9BUXYvci2ah+sAxJBXmQaFSQqfTQT4wj7jL5RoYQOF/jeu2tg+c49VoKa9G45lytJbXjHjHhEgswvgVi5C3YAZMGakwpSdDE2c6V3cbGBjiibnT4cCnv/oL5j34XTgcDlTvP4rM6ZOgVCqh1WrZ9orDbuesv9m6etBe2zBwba9GU2klmk6Xo6OxBRjhjldjWjJm3HQl4rMzYMpIhSElEQqt2uf65h3z4xu3otdmg2XWZFTsPYz0yYWQKxTQ6XSQDVz/OWM+0MHc3drG3tNaKqrRWFKG1sraEU9SiyUSTLx8CXLmTHXf09Ld5/m5tsrAtV3u7jy299qw7rf/xJz7b0G/3Y7aQydhmTbBJ+YMw8Bht/td2+zdPbB1dqOttoG9tjedrUTjmXL3InYjHPO4rHRMv/EKxGWlw5ieAkNKAhQa9aDvu5Jtrxz8aAPEWhWSJ+aj4tvDsEybwNZd2Zg7ne72Cse1vbvFytbfWsrdMbdW1Y54wlIik2LSVRcje+ZkNuZqk+FcvJW+Mbd1dWPjc//B7HtvQl9PLxpPlSKjeDyUSiU0Gs25mPf1+XU89HliXlPPts2bS90x7262jmi5ASAxLwtTr7+MXYhUn5wAuUYdMC+x682PYMxJhznXwrZRpVIp9Hp9SHmJ7uZWd7wras7FfBQWq5Qq5Jhy7UpYpkxg2ytqk2GgzP55iW5rO75+4Q3MvON69HR0oq2yFqlF+T65qMExt3X1nGuvdnbDWl3ndY1zn+/ttQ2jOqhGKpfj0b2fDLn435YX3kDGnGJokxMC5iVI+IY94fyjH/0If/rTnwAAl19+OT755JPh/DjBstvtaGtrg9VqRX+AUT9SqRQmkwkmk4mtxA7GMAzKvz2EQx9vxMlN21Cx9wjvlXWzJQ3pk8chbUIB4rLS2aSDKT057JV1GYZBZ2cnrFYrOjsDL/Cg0+lgMpmg0+kCJt27Wqw4/MlGHFu3Bae+2jlqq/ACgMqgw72f/hd582cEfI3dbofVaoXVaoUjQLJMJpPBZDLBaDQGjLnL5ULpzv04/MlGnNy0HVUHjo3qBX3Wrdfglv/+LuBKwy6Xi415V1fgxIler4fJZPJpuAzW0dCEQx9vxPH13+DUVztGdWEYbbwZD6x9BZnTJgZ8TV9fH6xWK9ra2gLGXC6XszGXBViV3eV04sy2b3H40y9xctM2VB86wUsZIrXw3ltw/V+f8lnUw5vL5UJHRwesViu6u7nnRReJRGzMPZVYLm21DTj40Qac2PANTm3eNaoLwxhSk/Dg+teQVpQf8DU2m42NuTNAglShULAxlwY4b5z9/SjZshtHPvsSJzdtR+2xEl7KEKnlP70LV//mZwHj5HK50N7eDqvVyk6tNZhIJILBYIDRaBwy5q2VNQMx34qSLbvR1zV6c+vHZ2fgwQ2vI3FMVsDX9Pb2svdzV4D7r1KphMlkgsFgCBhzh92Ok19ux5HPN+Pkpm3D3mEczBVPP4KVj90XME5Op5ONeW8vd7JMLBbDYDDAZDJBrVYH/Kym0koc+mgDjm/4Bqe/2TOqowWTC3Lx4IbXYc5IDfianp4etLW1oa2tLWDMVSoVG/NADZd+mw0nNm7Dkc+/wslN20d9Aajr/vJLLH7w+wH/7nQ62e+6zcYdI7FYDKPRCJPJxHaucWkoKcXBNetxYuM2nNn27ag+3ZQxuRAPrHsV+qQEzr8zDOMT80B1LrVaDZPJNGRj1d7Ti2PrtuDoF5txYtM2tFbU8FaOcInEYtz8799g7m3XBXyNw+FgY97Xx50sk0gkbMyVXov0emMYBnXHT+PQxxtxYuNWlO7YP6pPN+XMnoL7Pn/ZbzE+D4Zh0N3dDavVio6OjoAx12g0MBqNMBgMAetEts4uHF37NY5+sRknN20f1ekMJTIZvv/GnzDtussCvqa/v5+NuT1AjCQSCVuPGSrmNYdP4OBHG3By03aU7jowqiPgC5bMxd1rXvRZmM0bwzDo6upi26iBYq7Vatk2aqCY97Z34Mjnm3Fs7dc4sWnbqD5hLFMpced7/8CESxcHfE1/fz9bdw0Uc09ewmg0sh2qgzEMg8p9R9zn+aZtKN9zaFRHxk68fCl+8L+/Qa4K/B3t7OxEW1sbOjoCtyl1Oh2MRiP0en3AOlF3axsOf7rJnZf4cseoLlKs1Glxz8f/Qv5FcwK+JpRcVCh5iUCc/f2wVtejpaKaHUjh7niqGLHFXdMnjcPP9nzss6g0wzBsGzVYXsJoNA6ZiyLchj3h/OMf/xjPPfccAOCSSy7B559/PpwfJ0htbW2oqakJK0mYmpoKk8nkHlnidOLs9r3Y/8FaHPxwPazVdbwcl1giQUphHtInFyJjciEyiguRPqkQGrORl/fv7+9HVVVVwGQEF7VajYyMDDYR117XiANr1uPgh+tQ8vWu8+oxLplKifs+/S8Klsz12c4wDKxWK2prawPs6U8kEiEtLQ1GoxGAewTo6S273TFfs/68mBrFW/Gqlbj9rb/4XNAB982ssrIyYMOUi0ajQUZGBpuUaa2qxYEP1+Hgh+twZuu359UUBEq9Dg+sfQW5c6b6bGcYBi0tLaivD71RIRKJkJGRAb3e3YnjsNtx6qsdOPDhehz6aMOoVly4zPruKtz639/5zY/V19eHysrKgA1TLjqdDunp6WwDvbmsCgc+XIcDH6xF6c79vB53tDRxJvxw4+uwFBf5bGcYBk1NTWhsDH2OMbFYjIyMDOh0OgDu1ddPbNyGAx+sxeFPNqF7FJ5aGMrC+27F9c8/6dfAstlsqKioCFhh5WIwGJCWlsa+V8PpMhz4YC0OfLgeFd8e4vOwo2ZIScTDX72F5IIxPtsZhkFDQwOam0NfjFEikcBisUCj0QAYSD6t34KDH67H4U83obd99DpUuKx49F5c+cxP/Crbvb29qKioCNiRxsVkMiElJYWNee3x0zg4cJ5XHTzO63FHKy4rHQ9/9TbiszN8trtcLtTX16O1NfQObqlUCovFwibcbV3dOLb2axz4YC2OfL55VDtUuFz1fz/Bikfv89ve09ODioqKgB1pXOLi4pCcnMyOkKo5ctJ9nn+wbtQ70QZLLsjFQ1++BWNqks92l8uF2tpatLW1hfxeMpkMmZmZbCKut6MTRz77Cgc+WIuja78+76ZfuOFvv8Ki+271297V1YXKysqAnSpcEhISkJiYyMa8cv/RgWv7ulHvRBssY3IhfrjxDWjjzT7bnU4nampqhkxADSaXy5GZmckm4rqt7Tj8yUYc+HAdjq//5ryaLk4kFuPWl36H2d+91u9vHR0dqK6uDivmSUlJiI+PZ59+KN9zEAc+XI8DH6xFc2kln4cetZzZU/DA2lf8Bkw5nU5UVVUNmYAaTKFQIDMzk03EdTa14PAnm7D/g7U4uWn7eTWNlFgqxQ/e+SumrFrp97f29nZUV1eH1b5KSUmB2Wxm8xKlO/ezeYnWytHrRONSsGQu7vn431BofDu9HQ4HKisrw8pLqFQqWCyWc3mJ+kYc+mgDDny4Hqc27zyvphSSKRW4e82LGL9ikd/frFYrampCj5NIJGJzUXxgGAbNZVWo3HcElfuPonLfUVTuOzIs7Z6Vj9+PK59+BIA7F1VZWRlwkASXwXkJEtywJ5yXL1+OjRs3AgDuuusuvPDCC8P5cYLT1NSEhoaGiPaNj4/Hty+8g2/++QY6G0Nv4HIRSyTInDYBmdMnIaN4PDImFyKlcAxkAXqpo2W321FaWhpW49RDKpVC2evAew88idId+6JOOOqTEzBm/gxYiguRPrkQSWNz0NHYjKr9xwYuekdQe+x0RDeNwRf3SBIS3hITE7Htj//F9v++i+6W6B5HEkulyJoxCVnTJyJ9srszQa5RofbIKbbclfuORjxSfOIVS3HHu3+HbKCy3dfXh9LS0rAapx4ymQyS1i68/9CvUL4n+uSTKT0FuXOnur/rxeORMCYT7XVNqNp/FBX7jqBq/zHUHT8dUQeGQqvB/Z+/hLwFMwEMLM5ZWwurNbJ4paSkYMMv/oxv3/o46t5fiUyGnNnFyJzmifk4SOVyVB8+MVD2o6jafzTiG/z0G6/A9157jh3d3tvbi7KysrAaKh4KhQLO6iZ88ONnUHXgWETH482cmYbcudPY61t8rgVtVXXnKjb7j6L+5NmIRl6ojXo8uOF1ZE2fBMAd8+rqarS3R7ZqfGpqKj750TM4+OH6qKdPkCrkyJ0zFZapE5BRPB5pEwsgEotRc/gEW+6q/Ucj/m7Nu+NGrH7hGTZp2NPTg7Kysoiuy0qlEr0lVfjoZ79FzZGTER2Pt4TcTOTOncp2mpqz0tFaXo3K/cfYSm1jSWTHqkuMx0NfvsmObmcYBpWVlUM+qTOUtNRUvH/Pz3Hks6+ifpReplIid+40ZE4tQvrkQqRNKHB/Jw+dYMtdtf9YxN+tpT++A6t+/xibdO7q6kJFRUVE/45qtRptB07hkyf+gPqTZyM6Hm9J+TnImT2FPc9NGSloLq0auK67r3FNZ8ojem9TRioe/uotdnS7y+VCRUVFwKc2gklNTML/7nwMx9d/E/Vj1QqNGrnzprnP88mFSC3Kh7O/H9UHj7P3tKoDxyKeM/yyJx/Cpb/4IRvzjo4OVFZGljjSarWo37ofn//q+Yhj4S11/Fhkzyp2n+fF42FITUTT6fKB77r7XG8uq4rovRPGZOHhr95iR7c7nU6Ul5eH1Tj1EIlESDKa8c6dj+Hkpu1Rj+ZV6nXImz8dGVOK3DEfnwd7rw1VB46x5a46eDziZPa1zz2BpQ//gP29ra0N1dXVEb2XXq9HxbptWPfsP9BSHtl7eEubWIAcT8wnF0KXFI+GU6XsPa1y39GIk1ypRfl46Ms3oU+MB+COeWlpaVid5h5isRhxKi3+d/fjOPlV9MkntcmAMfOmI2PK+IGYj0VvZ5dPe6X60ImIktkikQg3/etZzPvBDey21tbWsAbHeDMajTj1/gZs/MO/oh7BLRKJkFE8Hlkz3G3U9MmF0MaZUXfitE+9PdIBV5nTJ+HB9a+xo9sdDgdKS0sDjuwdilgshkEix7v3/BwlW3ZHPZpXG292X9sHzvPkglz0tHWwdbeKfUdRe+RURNcTsUSC77/xJ0y/4Qp2W3Nzc1iDY7zFxcXhwEsf4Ou/vRr1QCiRWAzL1AnumE92t8/VRj1qj5Wgyqve3h7GwnHe8hbMwH2fvcSObrfb7SgrKwtroISHVCqFqs+F9x54Eme3RT8QSp8UjzHzZ7Df9eT8HHQ2tbiv7QPlrjlyKqLriVQux53v/wMTL1/KbmtoaEBTU2TxSkxMRGJiYkT7BsMwDFora3wS0JX7jkY94EokFuMn299HWvF4lJWVRZSLkslkyMnJCfgkMvE1rAnnqqoqZGdnswmm9957D9de6997eqEKtzeJy+F/v49vnn8lon2Tx43BuKXzULB0LsYunBn2dBiRcrlcOH36dEQXdQ9HVw/+NX91RBdbpU6LsYtmoWDpXBQsmYuUwrygj0bYe20o27UfpzbvQsnmnSjbfTDknmrvi3s0N3KPvX9+Dbv++25E+6ZNKED+kjkYt3Qe8hbMCPgYmYenx7Fk806c2rwTp77aEdbNffzKRbjrgxcgkctQUlISUbLZw9ZkxX8W3xLRviqDDmMvms1+35PG5gSPeU8vzu7Yx5a74tvDISeg5WoV7v3kPyhYMheNjY1hjXLlsv3X/8CBd7+IaN+MyYUoGCj3mHnT/Xr0B2MYBo2ny3Bq886BuO8Kq0NryrWX4Pa3/gIXgNOnT0eUbPboqqrHK5f8IPgLOWjMRuQvnoOCpXMxbuk8xOdYgsbc1tmFs9v3DsR8Jyr3Hw25saDU6/DguleQM3sq6urq0NISXYXoq5/+AcfXfh32fiKRCJapE9hy58yZGvDRQQ+GYVB/8iz7XS/5eldYHVqe0e0OpxOnT5+OqrJtPVmGN7/zQET76hLi2Otb/pI5iM/KCLpPb3sHTm/9lr3GVR88HvLxa+PNeGjTG0ifVIiampqIO5U81t7zFM5u+zbs/URiMbJmTGKvb9mzitmOvkBcLhfqjpW4Y755J05/vSusToeLHvgervvLL9HX14ezZ89GFfPGfcfx7vd+GtG++uQEttwFS+bClJ4SdJ9uaztOf7PbHfOvdobVuWFITcLDX76J5IIxqKysDGvEI5c1N/0ENYfDnxJJLJUiZ1axu9xL5yF7xiR27vBAXE4nqg+fQMnmXe6Yf7MnrCmJVjx2H658+hH09vaitDS6kam1W/fhw3t/GdG+xrRkjFs2z31fWzwHhpTgjd2u5laUbNnNXuPqT5wJ+fPiszPw0FdvIT4rA2VlZRF3MHi8fcU9aIkgAS6RyZA7d6q73EvmIHPaxIBTl3k4HQ5UHzzOlvvM1m/D6nS46tmfYsXP7kVXVxfKy8vDPmZv5eu24bOf/Caifc2Zaex5nr94DpsMHkpHQxNKvt41UJfZhYaS0L+zyePG4OEv34I+OQGlpaURdTCwGAavLvs+OhvCH2giVcgxZt509n6eUTze7ymywZz9/ajYd4Stv53Z9m1YnQ43/P3XWHTvLVF1KnmUvL8BG56KbO2mhNxM9vqWf9FsaOOCj6Rsq21gY37qqx1hjabOKB6PH254HZo4E86cORNRB4MH0+/AfxfeBFtn+NcKmUqJvAUzULB0HsYtnYu0ieMCTtPh4bDbUb7nEFtvP7tjX8idDiKxGN99+feYdeuqqDqVPI6+8hG+/uN/Ito3KT+HLffYRbOgNnJPb+OttbLGK+Y7w+poypkzFQ988TIUOm30eYkeG/4zf3VEiX+FRn0uL7F0HlLHjw3aXum32VC2+yBb7rJdB0LOS4ilUtzxv7+h+JoVaGlpQV1ddE/Gp6amwmw2B38hDxiGQUt5tVcbdWdYHVraBDNSi/JhtqRi5k9vhzOKNqpMJkNeXl7Q85MMc8L52muvxQcffAAAsFgsKCkpCTjHz4WGYRicOnUqol4Vby0l5Xh71f0hvdaQksheyPOXzIUpLTmqz44UHxc3AFj/0P/h9Jc7gr5OLJUiZ/YUjBu4kGdNnxi0YRZMX3cPzm7fiy///BKOhZAUEkuluP3t56EqzIoqAQcA9QdO4P1bfxLSa03pKWzDLH/xbBiSo+uFZBgGDSWlOPXVDrxz/y9DSsYVLJ2Ha//9f2jrin5upk9vfxwVIYxwlsrl5xpmS+fCMqUoaMMsGFtnF85s+xYbfvciSr7eFfT1MqUCd37wAsSZiVH3dldv34+P7v5FSK+Ny0rHuGXzUbBkDvIXz4EuIS6qz/bMs3h8wzd4/0dPh7TPxCuW4ornf4G2zuhj/v71D6H+ePDkgEypwJj5M9iGWfrkwqgrAT1t7Tiz9Vus/b+/o2zXgaCvV2g1uPvjf8GZGLySHEzZhu34/MfPhvTaxLxsNuGWf9HsqKc9crlcqD16Coc//RKfPPGHkPaZvvpKXPzsj9EWZQKOYRi8eemdaKsKfo+Qq1U+DbPUCQVRx7y7tQ0lW3bhi189H9K0DmqTAfd+/hJsuujrNiVrNmHDL/4c0muTC3LZ69vYhTNDapgNxeV0ovrQCez/YC3W/d/fQ9pn/p03Yv5jd6MjwlHdHs5+B15b9j10t7QFfa1Cq2EbZuOWzgupwziYzqYWlGzZjU9//seQRlnrk+Jxz+cvoVsRfSPj2JufYvNvXgzptalF+Wy5Q+kwDsbpcKBy/1HsfedTfPmn/4a0z9If34Gp962OOuna32PDy4tvhT2E5GckHcbBtNc3ouTrXfjo0d+FNOLWlJGKuz/7DzrF0c89euDF/2H7314P6bXhdhgH4+zvR8Xew9j56gfY+uJbIe1z+VMPI3/1pWFNhcbF1t6JlxbdEtJAEbXJgIIlc8PqMA7GWlOPks078eFPnw1p4ERiXjbu+ORfaHdEv6jb7j++jG9f+SDo6yLpMA6mv68P5XsOYft/3sGu1z4MaZ9rn/s5Mi9bEFXSFQC66pvxyrLvhfRabbyZrccULJnrN31RJFora3Bq80689/Cv0WMN/sRZ2oQC3PbhP2C1Rb9I69an/o5D768N+jqRWIys6RPZ8zxn9pSgHcbB9NtsKN25H1v++Sb2vxd8KlPP6PaE+cVRJV0BwFpajTevvDuk1+qT4tlyFyyZO+Q6CaHwHiT17g+fCqlzLXP6JNz6zl9g7Yl+MeYvf/p7nFi7JejrxBIJsgc6jMctnYesGZP8pqAMl2eQ1Fd/eRlHPvsypGP43mvPQVc8NqrBYIB7arj8/PxRSbwyDIPGM+VsXiKU+8vYRbNw/cu/g5WHvMRIJtuFbNgmH3n11VfZZDMAPPvss5Rs9tLe3h51shkAzHmZSMjLQtPpcr+/KTRqdoRfwdJ5SBk3ZtQnOffMa8qH7KWzAyacU4vy2URr3oIZUGo1vHymh0KjRuHyBdjxEvdIY6lCjsS8bCTl57j/G5sNqVEXdbIZAJIm5UOfkoCOOv9/R6Veh4Ilc9gETGJeNq8xF4lESM7PhcPWFzDZbEhNQtLYc2VPzMtGU109ZLroGkoAkLN8bsCEc8bkQhQsm49xAw0zuTrw4kSRUOq0KFp5ETb/9VXOv8uUCiSOzUZSfi6SB8rOKGW8zDGdMmMCVAYd53yuaqOeLXfB0nlIyLFE/XneRCIRUsePHXKaDVN6ijvWA3FPGJOFxrp6yLXRx3zMigUBE86Z0yay53nunCm8TwGkNhow8fKlWP9b7qmg5GqVz3c9KT8XdjHAxzrGafOmQKZSco5M0sabz43wWzIHcZnpPHziOWKxGOkTx6G1MvCjtGZLGhvz5PwcxI/JRGN9Q9TnnUgkwtiVC7DnX//j/FvWzMkYN/B9z55VHHUlfTCN2Yjiq1fg01/8ifPvCq1mUMxz0NPfBzGir9+kL5gGsUTC+SSFPine3ZEUxkjecIglElimFAVMuIpEIpgz03y+63HZ6WhtaoZUGV3ZJTIpxq5YgANv+i8q7WmYeb7voYzkDZcuIQ5TVq3EBz9+hvPvSr2OvY97yt/R0w2JQhf1Z2csmgEESDgbUpNQuHx+WCN5wyGRSpE9YzKq9h/l/LtILEZcVjpb5uT8HJiy09HR1hZ1DGRqJfKWzsGxjzf5/U0slSJ37lT2PLdMnRB1h/FghuRETP3OpXjnPu6OXLVRf64OM9b909rRDqmRh5hfNBMIkHA2W9Iwbrm73Hx0GA/mnlZrKk5/s4fz72KJBHHZGWwdJik/B4bMNPR0dUMsje7OpjTokLtwBme9XSqXY8yCGWw9JmNyYdCRvOEypSVjyrUr8cYdP+P8u8Zs9LmuJ43NQUtzC6TG6Dp2AMCyeGbAhHN8joU9z/noMB5MplAgb/4MHFvHnQgTS6VIyLUgaey5susykmHr7YUoygSSNjkelpmTULnbv94uUyoGOg/56zAezGxJw6Qrl+G127ifoNHGmwfFPBuN9Q2Q8XCeZy6ZFTDhnDQ2B+OWz+etw3gwmVKJ/Ivm4MCH6zn/LpHJkDAm0+u+lgttehLsdnvUbUZTTjqSx+eh/thpv7/J1SrkXzQ7rJG84RCJREjIsUCqkAdMNusS47ljro8+T5C1ZHbAhHNKYd7AtZ2fDuPB5GoVxi2dF7BTSSqXIzEvy+u+lg1FginqZDNwbsFovuZzDodIJEJSXjZcDmfAZLMhJdHnu56Ql4WGujrIddHHvKmpiV1TjQQ2LAnnvXv34u67z/VuXX/99Vi9evVwfJRg8ZV0FYlEyF0+j004q416TLxiKYpXrUTh8vnDNgdzpDo6OnhJtANA5sIZkMhlcNrdvbHZs4pRfM0KFF+zAgm5mbx8xlBcTidObNwGbbwZlinj3fPoeeYEzrH4VZZPnToVdc8x4G4Ejrl4Pva/4r6paOJMmHzVchSvWoGCJXN5T8BwOb5hK8RSKVIKx8Aypcg9t9jA/LAqvW9FLZo54AbLWjwLomf+CYZh3N/9udNQvGoFJl99Me9JNy79fX0o+XoXdInxsEx1l9lT9risdJ/KMsMwOHnyJC83c4lMhjHL5+HIe+7Kqz4pHpOvvhiTr1mB/EWzeE/AcDmxYSskMhlSi8ayZbZMGY/UCQV+HTp8TB3jkbVkFrY99xIA93d/7MKZmHyNO+Yj8ZRGb3sHynYdgCE1CZZi93lumeKeV81sSfOJucvlwokTJ3jpZJCrVchZNBOnBiqvhtQk9/Vt1QqMmTed9wQMlxMbtkIqlyNtYoH7GjdQ/rSifL/EcjRzwA2WtXg2m3AWS6UoWDzbHfOrlkOflMDLZwylrbYBtUdPwZSRioziQvYalz65EKb0FJ+KpdPpxMmTJ3mJuTrOiMw5U1C21T2thjkzbSDmK5Eze8qIjB45vuEbyJQKpE8ax8bbMqUIKYV5fiPt+Jg6xiNz8Sw24SyRyTBu2TwUr1qJSVcs9VvAazg0lJSitbIG5sw0n3ta+uRCGFOTfGLe39+PU6dO8fK5+rQkpBWPR83APPUJuZkoXuWux2ROnzRCMd8KuVrljjlb9kKkFOb5jbSrrq4Oa7G8oWQunsUmnKUKOcavWIjia1ZgwuVL2blUh1PlwHoF8TkWn3ta+uRC6JMSfGLe19eH06f9EyiRiMvLRHxeFpoH6u1J+TkoXrUSU1atREbx+BFpuB7fsBUKrca9IPiUc/WY5IJcvzokH1PHeGQunsUmnOVqFcavXIQpq1ag6NLFfnXH4XBm21702/qQmJftc0/LmFzol9zv7e3F2bPRzysPAMmTCqBPSUTHwMjq1KJ8FK9agSmrViK1KH9EYn5iw1Yo9Tr2nuZpryTn5/jVIfmYOsYje8kcNuGs0Gow4bLFKF61EuNXLOR9MBCXU1/tBBgGyQW5Pve09Enj/Kbp4GPqGI+0mROhMurROzBVVUbxeBSvWonia1YgZdyYIHvz48SGrVAb9Wz71BP3xLwsvzrk2bNno5s6xkvOsrlswlll0GHi5UtRvGoFCi9eGPWI/VCc2LgVIrEYyQW57jIPnOvpkwr97i18TB3jkTF/qs9AkczpkzBl1QpMvmYFkvKyefmMoTAMgxMbvoEmzsTexz0xT8jN9MtLlJSURDRPORdP4nW0HN/wDcQSCVIK83zuaekTC/ymjOVjSluP/v5+dHZ2Qq8fmWlphYr3KTXKysowZ84cNtkwYcIEbN26FQbD8FcehYJhGBw7Fv0iWB7WsmpUfLoFU65difyLZo9I8ilSfMxn6+3Iy2uQnJXhTj7xPOIrGIfdjs7GFhjTkoNWFl0uF44fD/54dqgaj59Bw5Z9mHLtSoyZP2NEkk/erDX10MYZQ+rQ4DMpAQAHX/wfLOPzMemq5VFPERIue68NPdZ2GFISg8bc4XDg5MnoFz7zqD94Aq37TqD4mhXInTOV99E/wVir66BLjAupQ4OP+Wy97fvrG8idPhmTrlzG+4ivYPq6e2Dr7Arpu8ZnUgIAancfRufJchSvWoGsGZNH/HG11soaGFISQ7qn8JmUYBgG3/7xFYy7aDYmXr6U9xFfwfR2dMLRZw/pu8ZnUgIAKrd8C3tNE4pXrYRlStGIj5poqaiGMS05pHtKeXk5urqifwwVcHfg7vn9y5h4yUWYcOlFI7amhEe3tR1gmJC+a93d3SgrK+Pts8s37QRj7UTxNSuQNnHciMe8ubwK5ozUkO4pfCYlnPZ+fPuHlzH5quUouuSiEUk+eetqsUIsEYc0upDPpAQAlH7xDSR9DhSvWonUwjze3jdUzWVVMGemhXRP4TMp0dfZjQN/ewtTr12J8Rcv5P1JtGA6m1ogVchDSm7zMZ+tt9NrNkElk6P4mhVIGpvD2/uGKpyYnzhxgpfBEgDQ02zFsZfXYOp3LsW4pXNHfCBUR0MT5Bp1SNcXvqZ89DjxzhcwGI3ugVA8P30YDMMwaKmoRlxmekj3lGPHjvHScQ4A7VX1OPvBBky99hLkL54zIgOhfD6/rhEqgy6k60tTUxMaGhp4++xjr32M+LQUFF99McyWNN7eNxTO/n601zXClJEaNOZ856IAYPz4kekw5dJW2wC1yRBSh0Z9fT2am8OfUz+QpKQkJCQM/2AYIeM14VxXV4f58+ezja+cnBxs27YNKSkjmwg83/GdfASAgoICSEc46RgJvpOPcXFxgvh+8Z18BIDCwujnqB0JfCcfh3NFXD7Z7XaUlJTw9n4ikQjjx4/n7f2GE5/JRwBITk5GfHzwRYJGG9/JR4lEgnHjxvH2fsOJz+QjAKSlpY3qaIlQ8Z18lMlkyM/P5+39hhOfyUcAyMjIEMTgBL6TjwqFAnl5I590jASfyUcAyMrKglbL76PFw4Hv5KNarUZOzsgnHSPBZ/IRcLcN1erop9sabnwnH3U6HTIzh//pSz7wmXwEgLy8PEFMq8l38tFoNCI9ffifvozWcCQf8/PzITuPB8B58J18NJvNSE2Nbi7qkeB0OnHiRPgLFg9l3LhxkIzwYKhI1NbWorW1lbf3S0hIQFJSEm/vF4t4y1a1tLRg2bJlbGM7JSUFmzZtEkQycKQNR++PEBKPAHi/EAnhwgYMT3yEMl8Q32UXynf9Qi03QOf5+fp+w+lCLfuFWm7gwj3PL9RyA/wfq1C+73wfJ8X8/Hchn+cX6n3tQi23SCTivU0plLJfqOf5cMRHKDG/UM/z0cTLv1BHRwdWrFjB9o7FxcVh48aNyM4e/vlqhEgkEvHa0yuTyQTzZee7h1sIPeaA+2LEZ0+vQqEQTMJZyfPjc0KJuUQi4bXiIZRyAxfuec73tVgo5QYu3PNcLpfzei3m+99xOPEdI/kIP3YbKb6Pk2J+/rtQ72kAv99PkUgkiFGPAMWcL2KxWBBP4AIXbj0G4LfsUqmU8hLnOZFIxOv9l++68HC6kM/z0RL11aC7uxuXXHIJ9u7dCwDQ6/VYv369YB79Hi18zvUihEfNPfR6PW+VTZlMJqhJ2vmMk5DmCjIYDLwlXhUKhSAevwXcN3M+Yy6k89xkMvFW2VSpVIJ4/BZwN6zMZv4WOBPSeW42m3mrbGo0GsEk4SQSCa9TfwjpPI+L428+db1eL5jko0wm43XqDz7/HYcbn99Pk8kkmEQU33WPCzXmZrNZMCMA+ax7iEQiQUwR5cF33VUoiSi1Ws1b8kgsFlPMBUCn0/GWl5BKpZSXEAC9Xs9b3UMul0OnG/4Fb4UuqoyAzWbDFVdcge3btwNwX6i/+OILTJ06lZeDi2UGg4GXLzvfjd3hxmcSTkg3NMDduOKjoi2VSgUxz6WHWCzmLeYJCQmCijlfSTih3dAkEglviVchVWIA/ipwQkq0A+7rEl/3ogs15hqNBirVyC6iFQ25XM7bvUhoMefrePV6vaBGxyiVSt4Sr0LqXAHA29oRRqNRMKN8AXfbjq97kdBiztd5bjabBdO5AgBarZaX65JIJOK1E364iUQi3s7z+Ph4wYzyBfgbEMb3wIvhJhKJeDvPhRZzo9FIeYkoCS0XNVoiPiv6+/uxatUqfPXVVwDcvf8ff/wx5s6dy9vBxTKRSMTLBOOJiYmCurgB7sRrtDc1mUwmqEQ74L7A8VGRSUpKEtzFjY/KtkKhENQNDXAnXvmoyAgx5nFxcVFfm5RKpaAS7YC74sVHRUaIMeejsq3RaKDRBF9N/nwil8t5uR8JcdERPjoBdTqdoBLtgPvaFO1IJj4buiOJj++p0WgUVKIdcCdeo022CzXmfNRdzWazoBLtgDvxGu21ic/kxkjhq40aHx8vqEQ7wE8nIJ+DLkbKhZyX4KMTkM9BFyNFLBZfsDHn4wkruVwOo9HIzwHFuIi+HU6nE6tXr8YXX3wBwH2Svfvuu1i6dCmvBxfrTCZTVCd6QkKC4G5ogPsCl52dHfGJLpVKkZ2dLbiLG+CucEfT2EhKShLcDQ1wV76ys7Mj7kmVy+XIysoSXAIOiP48TUlJEVyiHXB3CuXk5ER8nioUCsHGPCkpKapKSHp6umCmjvEW7XmqUqlgsVgEGfPU1NSoEpAWi0VQI9o9lEolMjMzI46ZRqNBRkYGz0c1MqI9Ty0Wi+AS7YD7PM3MzIx4f61Wi9TUVB6PaOREc56KRCJkZWUJLtEOuGMWzXlqMBgEuYi8J2aRTvHkae8ILdEOuBOv0ZynJpOJt9HCI0kkEiE7OzviKZ487R2hJdoBd+I1OTk54v3j4+MFNV2Qh1gsRk5OTsTnqVQqRU5OjmCmC/JmNpujOk8TExMFmYuSSCTIycmJ+DyVyWSCzUWNBhHDMEw4OzAMg9tuuw2vvPIKAPdJ+uabb+KGG24YjuO7ILS1taGmpgbhhCI1NVWQJ7g3h8OByspK9PT0hLyPWq2GxWIR5I3cW2trK2pra0N+vUgkQlpamuB70vr7+1FZWYne3t6Q9/E0dIR4I/dgGAatra2oq6sLeR+xWIz09HRBzQfGxW63o6KiAn19fSHvo9frkZaWJviYNzc3o6GhIeR9xGIxLBaLIJPN3mw2GyorK2G320Pex2g0IjU1VdCVN4Zh0NjYiKamppD3kUgksFgsghvVPVhvby8qKyvR398f8j5msxnJycmCj3l9fT1aWlpC3kcqlSIzM1OQyWZvPT09qKyshMPhCHmf+Ph4QT694c3lcqG2thZtbW0h7yOTyZCZmSmYuekD6erqQlVVFZxOZ8j7JCYmCm46tMFcLhdqamrQ3t4e8j4KhQIWi0WQHQzeOjs7UVVVBZfLFfI+ycnJiIuLE3TMnU4nqqur0dnZGfI+SqUSFotFMOsRBNLe3o7q6uqw8xImk0nQMXc4HKiqqkJ3d3fI+3gGSgixU8mb1WpFbW1tyDEXiURszIUskryEZ6CE0HNRIynshPM//vEP3HfffezveXl5WL58eUj7xsXF4amnngrvCC8Q/f39aGtrg9VqDdhI90wjYTQaBX8z82AYBp2dnWhra0NHR0fA1+n1ehiNRuh0OkHfzLzZ7XY25oEa6Z5HtYU2599QPDG3Wq0BK3IikYiNuVarjZmY9/X1sTEP1EhXKBQwmUwwGAwxE3OXy8XGvKuri/M1IpEIBoMBRqMRGo0mZmJus9nYmAdqpCuVSjbmsVKBcblc6OjogNVqDVh5F4lEMBqNMBqNUKvVMRVzq9WKtra2gDFXqVRs2YXcseLN6XSyMQ/UkSwWi31iHit6e3vZmAdKzKhUKvY8j6WYt7e3w2q1BmyweRbPMhqNgk+ye+vp6YHVakV7e3vAmGs0GhiNRhgMBkF3rHhzOBxszG02G+drPOvLGI1GwSfZPRiG8Yl5oOazRqOByWSCXq+PqZh76jGBBg94phQQ4nQ5gTAMg+7ublitVnR0dASMuVarhclkgk6ni5mYh5qXMBqNMJlMMZWX6OrqYmMeyIWal4jlXFSwvIROp4PJZIqpvMRICTvh/OSTT0acNM7MzER5eXlE+14oGIZBb28venp62AqsWCxmF5CK5S+4p7HqcDjgcrkgFovZFV9jpXHGxVOJ7e3t9Ym5Wq2GSqWK6Zg7HA50dnb6xFwmk0Gn08V8zLu7u2Gz2eB0OiESiSCRSKBWq6FUKmM65v39/ejs7ITT6WRj7lkUMVYq6lwCxVyj0cRMgzyQwTGXSCTseR7rMe/q6kJfX59PzPlakOl8Zrfb0dXVBYfDAYZhIJFIIJfLodVqYzrmLpcLXV1dsNvtPjHX6XQx0zgLpK+vD11dXXA6nT4xj6UGORdPh2p/fz8bc6lUCq1WG/Mxt9ls6O7u9om5QqGI+Qa5J+Z2u52tx3jO81gZKBAIV8yVSmVMDRTg4nQ62fPcu42q0+liZqAAF4Zh2JhTXuLCiTlXLoryErGblxhulHAmhBBCCCGEEEIIIYQQwouwE86EEEIIIYQQQgghhBBCCJfYfa6REEIIIYQQQgghhBBCyIiihDMhhBBCCCGEEEIIIYQQXlDCmRBCCCGEEEIIIYQQQggvKOFMCCGEEEIIIYQQQgghhBeUcCaEEEIIIYQQQgghhBDCC0o4E0IIIYQQQgghhBBCCOEFJZwJIYQQQgghhBBCCCGE8IISzoQQQgghhBBCCCGEEEJ4QQlnQgghhBBCCCGEEEIIIbyghDMhhBBCCCGEEEIIIYQQXlDCmRBCCCGEEEIIIYQQQggvKOFMCCGEEEIIIYQQQgghhBeUcCaEEEIIIYQQQgghhBDCC0o4E0IIIYQQQgghhBBCCOGFdLQPgBBCCCGEEHJhkBffBgAQiSVD/5RI2H3EAV8r5tzO9T6DXyPmem0YxxToNWKxaOB30bnXikScf/P8FIs49hEP3of7vUJ5v8Hv5f0+nvf1O7YhPkcS5Kf3/0sDvlYccB/2pyjw+wd+3+DHFNJrPeX3HIPI999p8N+5XuO3r8j/c4K9xuul/sckHvweHMc06DWeP4nh+7v3ZwV6Dft3eO8z+H097+F//MFe43mp7z6BXuN//CKGcf8P4xr43eXzOwb9nfs1g366Br3XEO/n914c7yca9L5hHZPLOfCr1/sPbGP/5vT8Pngfp9c+Lt9tLt992Pfgev9B78vXMTHsZw/6OWi79/+7nM6Q9nW/NoL393tf7s/zPSbu92WcjP+xuJiB3xnO17q89jl3TMyg1/juE8nn+PzN5Rr0Wt99fI9p4H0HvsNO9id8fufaFvh3eO0T7LWB39+F8PcJ9DsAvMCUg0SGRjgTQgghhBBCCCGEEEII4QUlnAkhhBBCCCGEEEIIIYTwghLOhBBCCCGEEEIIIYQQQnhBCWdCCCGEEEIIIYQQQgghvKCEMyGEEEIIIYQQQgghhBBeUMKZEEIIIYQQQgghhBBCCC8o4UwIIYQQQgghhBBCCCGEF5RwJoQQQgghhBBCCCGEEMILSjgTQgghhBBCCCGEEEII4QUlnAkhhBBCCCGEEEIIIYTwghLOhBBCCCGEEEIIIYQQQnhBCWdCCCGEEEIIIYQQQgghvKCEMyGEEEIIIYQQQgghhBBeUMKZEEIIIYQQQgghhBBCCC8o4UwIIYQQQgghhBBCCCGEF5RwJoQQQgghhBBCCCGEEMILSjgTQgghhBBCCCGEEEII4QUlnAkhhBBCCCGEEEIIIYTwghLOhBBCCCGEEEIIIYQQQnhBCWdCCCGEEEIIIYQQQgghvKCEMyGEEEIIIYQQQgghhBBeUMKZEEIIIYQQQgghhBBCCC8o4UwIIYQQQgghhBBCCCGEF5RwJoQQQgghhBBCCCGEEMILSjgTQgghhBBCCCGEEEII4QUlnAkhhBBCCCGEEEIIIYTwQsQwDDPaB0EIIYQQQgghQtXX14dnn30Wjz76KBQKxWgfDgkTxU/YKH7CRbETNoofGQolnAkhhBBCCCEkCh0dHTAYDGhvb4derx/twyFhovgJG8VPuCh2wkbxI0OhKTUIIYQQQgghhBBCCCGE8IISzoQQQgghhBBCCCGEEEJ4QQlnQgghhBBCCCGEEEIIIbyghDMhhBBCCCGEREGhUOCXv/wlLZokUBQ/YaP4CRfFTtgofmQotGggIYQQQgghhBBCCCGEEF7QCGdCCCGEEEIIIYQQQgghvKCEMyGEEEIIIYQQQgghhBBeUMKZEEIIIYQQQgghhBBCCC8o4UwIIYQQQgghhBBCCCGEF5RwJoQQQgghhJAIPfLII5g/fz5uuukm2O12n7/19vbisssuw8KFC7Fs2TK0traO0lGSQIaKn8ezzz6LadOmjfCRES6B4uVwOPC9730P8+fPxw9/+MNRPEIylGDnG51r57dA8aN7HeFCCWdCCCGEEEIIicCBAwdQX1+PrVu3orCwEO+//77P39euXYuioiJs2bIF1113HV5//fVROlLCJVj8AKCzsxNHjx4dhaMjgw0Vr08//RTp6enYunUrenp6sGPHjlE8UsIl2PlG59r5baj40b2OcKGEMyGEEEIIIYREYOfOnVi+fDkAYMWKFX5Jrry8PPT09AAA2trakJCQMOLHSAILFj8A+Mtf/oL77rtvpA+NcBgqXqHEkoyuYDGic+38NlT86F5HuEhH+wAIIYQQQgghRIja2tqQmpoKADAYDH6PEefm5uLo0aMoKiqCSCTC7t27R+MwSQDB4tfe3o4jR47giSeeGI3DI4MMFa+2tjbo9XrOv5Hzw1Dxo3Pt/DdU/OheR7jQCGdCCCGEEEIIGUJ9fT3mzZvn9x/DMOjo6ADgboybzWaf/V599VUsWrQIR48exVNPPYVf/epXo3H4F7xI4/fnP/8Z999//2gcMuFgMpkCxmuov5Hzw1AxonPt/DdU/OheR7hQwpkQQgghhBBChpCcnIxt27b5/XfJJZdgw4YNAID169dj7ty5fvt6GuVGoxFtbW0jedhkQKTxO3PmDJ555hmsWLECp0+fxm9+85vROHwyYNasWQHjNdTfyPlhqBjRuXb+C3aO0b2ODCZiGIYZ7YMghBBCCCGEECF65JFHsHv3blgsFrz88suQy+W466678OKLL6KjowM33ngjuru74XA48NJLL2Hs2LGjfcjEy1Dx8zZt2jTs3bt3lI6SeAyO1wMPPIAXX3wRDocDt99+O0pLS1FcXIznn39+tA+VcAgUP290rp2/AsWP7nWECyWcCSGEEEIIIYQQQgghhPCCptQghBBCCCGEEEIIIYQQwgtKOBNCCCGEEEIIIYQQQgjhBSWcCSGEEEIIIYQQQgghhPCCEs6EEEIIIYQQQgghhBBCeEEJZ0IIIYQQQgghhBBCCCG8oIQzIYQQQgghhBBCCCGEEF5QwpkQQgghhBBCCCGEEEIILyjhTAghhBBCCCGEEEIIIYQXlHAmhBBCCCGEEEIIIYQQwgtKOBNCCCGEEEIIIYQQQgjhxf8HGiejPINvyiQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -298,7 +298,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -336,7 +336,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOpklEQVR4nO3deViU5f4/8PcDAoMCo6AIKAKiHsU1NNwylzQ1M03TzDzmen5i5xjHJTNNpEUzbTHLJcslsY520pOWcazU1MwVNQlXhCAZAkTZFJCZ+/cHX+b0OIPMwAzPLO/XdXFd8plnZj5qMW/v+37uWxJCCBARERHZORelGyAiIiKyBIYaIiIicggMNUREROQQGGqIiIjIITDUEBERkUNgqCEiIiKHwFBDREREDoGhhoiIiBwCQw0RERE5BIYaIge2efNmSJIElUqF3377zeDxfv36oUOHDrJaaGgoJEnSfzVo0ACRkZH44IMPcO8G5AcPHtRft3nzZqM9DBgwAJIkITQ0VFYvLi7G8uXL0blzZ/j4+MDb2xvh4eEYO3YsfvzxR6PvYeyrqve1lqKiIsTExCAoKAgqlQpdunTBv/71L5Oe+/3332PQoEEICgqCh4cH/P39MWDAAOzdu9fg2oULF+KBBx6Ar68vVCoVWrZsib/97W9G/x6JqEI9pRsgIusrLS3FokWLsHXrVpOu7927N1auXAkAyMzMxDvvvIN//OMfKCgowMsvv2xwvbe3Nz755BNMmjRJVk9NTcXBgwfh4+Mjq2u1Wjz66KM4f/485s2bh6ioKADAlStXsGfPHhw+fBh9+/aVPWfp0qXo37+/wXuHh4eb9HuylFGjRuHkyZN488030aZNG3z22Wd45plnoNPpMH78+Ps+98aNG2jfvj2mTZuGgIAA5OXlYd26dRg2bBi2bt2KCRMm6K+9desWnnnmGbRr1w7e3t5ITk7G66+/jt27d+PXX3+Fn5+ftX+rRPZHEJHD2rRpkwAghgwZIlxcXMTZs2dlj/ft21e0b99eVgsJCRHDhg2T1fLz84VarRYtWrSQ1Q8cOCAAiGnTpgkA4vLly7LHFy1aJJo3by6GDh0qQkJC9PX9+/cLAGLjxo1G+9ZqtQbv8cUXX5j8+7aWb775RgAQn332maw+aNAgERQUJMrLy81+zbKyMtGsWTPRp0+faq/du3evACA++eQTs9+HyBlw+onICbz44ovw8/PD/Pnza/R8Hx8ftGnTBn/88YfRxwcNGoTg4GBs3LhRX9PpdNiyZQuee+45uLjIf9TcuHEDABAYGGj09e693lbs2rULXl5eGDNmjKw+efJkZGZm4vjx42a/ppubGxo2bIh69aofOG/SpAkAmHQtkTOyzZ8cRGRR3t7eWLRoEf773/9i//79Zj+/vLwcGRkZaNOmjdHHXVxcMGnSJHz66afQarUAgH379uH333/H5MmTDa7v1q0b3Nzc8MILL2Dbtm3QaDTV9qDT6VBeXm7wVR0hhNHn1eS1kpKS0K5dO4NQ0alTJ/3jpqj8vWRmZiI2NhaXL1/GnDlzjF5bXl6OO3fu4MyZM4iJiUGbNm0watQok96HyNkw1BA5iRkzZqBly5aYP3++wYLfe/05CKSnp2PmzJm4ceMGli1bVuVzJk+eDI1Gg4SEBADAxo0b0bdvX6NrXkJDQ7Fu3TpkZmZiwoQJCAoKQlBQEJ577jkcPnzY6Os//fTTcHNzM/j6/fff7/t72bJli9HnGfuqzo0bN+Dr62tQr6xVjkBV57HHHoObmxuaNWuG9957D9u3b8ewYcMMrsvKyoKbmxvq16+PyMhIlJeX48CBA/Dy8jLpfYicDccwiZyEu7s7Xn/9dYwfPx47duzA008/XeW1e/fuNfiQr1zQWpWwsDD069cPGzduRI8ePfDVV1/h448/rvL6KVOmYPTo0di7dy+OHTuGY8eOIT4+Hlu3bsXy5csxb9482fXLly/HgAEDDF6nadOmVb4HAAwfPhwnT5687zXmkCSpRo/92erVq3Hr1i1oNBrEx8fj6aefxpYtW/DMM8/IrmvcuDFOnjyJ0tJSXLhwAW+99Rb69++PgwcPVjl1R+TUFF7TQ0RWVLlQ+OTJk0IIIXQ6nYiMjBTh4eGirKysyoXCDz30kDh58qQ4duyY2Lp1qwgNDRX16tUThw8fll177yLe+Ph44ebmJl5++WWhVqvF7du3hRBCDBs2TLZQuCpJSUkiICBAuLm5iZs3bxp9D3PpdDpx9+5dk76q06NHD/Hggw8a7RuAWL9+fY16HDJkiGjUqJFsgbQxGRkZol69emLWrFk1eh8iR8fpJyInIkkSli9fjpSUFHz00UdVXqdWq9GtWzd0794dEyZMwL59++Dm5oaZM2dCp9NV+bxRo0ahfv36ePPNNzFu3Dh4enqa1V/79u0xbtw43L17F5cvXzbruVWx5PRTx44dceHCBYP1N+fPnwcAgz1/TBUVFYWbN28iJyfnvtc1b94cQUFBFvuzIXI0nH4icjIDBw7EoEGD8OqrryI4ONik57Ru3Rovvvgi4uLisH37doNpkkqenp5YvHgxDh06hOjo6Cpf78aNG/D29oa7u7vBYxcvXgQABAUFmdRbdSw5/fTkk09iw4YN+PLLL2XTd1u2bEFQUBC6d+9u9msKIfDjjz+iYcOG1e49c/XqVfz+++944oknzH4fImfAUEPkhJYvX46uXbsiOzsb7du3N+k5c+fOxbp16xAXF4exY8fC1dXV6HWzZ8/G7Nmz7/taBw4cwAsvvIBnn30WvXr1gp+fH7Kzs/H5558jISEBEydORPPmzWXPuXLlCo4dO2bwWs2bNze49s/8/PwstlHd0KFDMWjQIERHR6OgoACtWrXS9xwfHy/7M5k6dSq2bNmClJQUhISEAABGjBiBzp07o0uXLvDz80NmZiY2b96MH3/8ER9++KH+rqpffvkF//znP/HUU0+hZcuWcHFxwfnz5/Huu+/Cz88Pc+fOtcjvh8jRMNQQOaEHHngAzzzzDD777DOTn+Pl5YXFixfj+eefx7Zt2zBx4sQav3+PHj0wZcoUHDhwAFu3bkVubi48PT0RERGB1atXGx3lMbaTMVBxnMDrr79e417MtXPnTixcuBCLFy9GXl4e2rZti88//xzjxo2TXafVaqHVamV3mvXu3Rv//ve/8cEHH6CgoAANGzZEt27d8PXXX8sWYTdt2hRBQUF4++23odFoUF5ejubNm+Pxxx/Hyy+/bPIIG5GzkYSo5t5OIiIiIjvAhcJERETkEBhqiIiIyCEw1BAREZFDYKghIiIih8BQQ0RERA6BoYaIiIgcglPtU6PT6ZCZmQlvb2+TD54jIiIiZQkhUFhYiKCgILi4VD0e41ShJjMzk5tWERER2amMjIz77iDuVKHG29sbQMUfio+Pj8LdEBERkSkKCgoQHBys/xyvilOFmsopJx8fH4YaIiIiO1Pd0hEuFCYiIiKHwFBDREREDoGhhoiIiBwCQw0RERE5BIYaIiIicggMNUREROQQGGqIiIjIITDUEBERkUNgqCEiIiKH4FQ7ChMREdkKrU7gRGoesgtL4O+tQlSYL1xdeNhybTDUEBER1bGEJA3i9iRDk1+irwWqVYgdHoEhHQIV7My+cfqJiIioDiUkaRAdnygLNACQlV+C6PhEJCRpFOrM/jHUEBER1RGtTiBuTzKEkccqa3F7kqHVGbuCqsNQQ0REVEdOpOYZjND8mQCgyS/BidS8umvKgTDUEBER1ZHswqoDTU2uIzmGGiIiojri762y6HUkx1BDRERUR6LCfBGoVqGqG7clVNwFFRXmW5dtOQyGGiIiojri6iIhdngEABgEm8rvY4dHcL+aGmKoISIiqkNDOgRi7YRIBKjlU0wBahXWTojkPjW1wM33iIiI6tiQDoEYFBHAHYUtjKGGiIhIAa4uEnqG+yndhkPh9BMRERE5BIYaIiIicggMNUREROQQGGqIiIioVpKTkyFJEsLCwpCTk6NYHww1REREVGPz589H+/btAQBpaWkoLS1VrBfe/UREROREtDphkVvJi4qK4O3tLavFx8ejefPmlmrVbAw1RERETiIhSYO4Pcmyk8ID1SrEDo8wa9O/r7/+GsOHD5fVcnNz4een7C3qnH4iIiJyAglJGkTHJ8oCDQBk5ZcgOj4RCUmaal9DCIGHH35YFmgmT54MIYTigQbgSA0REZHD0+oE4vYkQxh5TKDi3Km4PckYFBFQ5VRUWloawsLCZLXjx48jKirK4v3WFEdqiIiIHNyJ1DyDEZo/EwA0+SU4kZpn9PHly5fLAo1arUZZWZlNBRqAIzVEREQOL7uw6kBzv+tKS0uhUskP3vzggw/w/PPPW6w3S2KoISIicnD+3qrqL7rnukOHDqFv376yx69fv46goCCL9mZJnH4iIiJycFFhvghUq1DVjdsSKu6CigrzBQCMHj1aFmgef/xxCCFsOtAADDVEREQOz9VFQuzwCAAwCDaV38cOj0BuTjYkScLOnTv1j//www/Ys2dP3TRaSww1RERETmBIh0CsnRCJALV8KipArcLaCZFIP7oHAQEBssdu376NAQMG1GWbtcI1NURERE5iSIdADIoIkO0oHBnsgxbBzZGdna2/7tVXX8Urr7yiYKc1w1BDRETkRFxdJPQMr9goLzExEapWXWWPX716FeHh4Uq0VmucfiIiInJCM2bMQNeu/ws0UVFR0Ol0dhtoAI7UEBEROZXU1FS0bNlSVtu1axdGjhypTEMWxFBDRETkJEaPHi27swkA8vPz4ePjo1BHlsVQQ0RE5OB0Oh1cXV0N6kIYOw3KfnFNDRERkQP76quvDAJNfHy8RQONVifwc8oNfHX2On5OuQGtTpmwxJEaIiIiByVJhnsIl5WVwc3NzWLvkZCkQdyeZNmBmYFqFWKHR2BIh0CLvY8pOFJDRETkYHJycgwCTf/+/SGEsHigiY5PNDgBPCu/BNHxiUhI0ljsvUzBUENERORAYmJi4O/vL6slJydj//79Fn0frU4gbk8yjE00Vdbi9iTX6VQUp5+IiIgcgBACLi6GYxXWWgx8IjXPYIRG9r4ANPklOJGap9/sz9o4UkNERGTnfvrpJ4NA8/bbb1v17qbswqoDTU2uswSO1BAREdmx5s2b4/r167JaUVERGjRoYNX39fdWVX+RGddZAkdqiIiI7FBRUREkSZIFmpCQEAghrB5oACAqzBeBahUM76+qIKHiLqioMF+r91KJoYaIiMjOrFixAt7e3rLa0aNHkZaWVmc9uLpIiB0eAQAGwaby+9jhEXB1qSr2WB6nn4iIiOyIsb1nlNoZeEiHQKydEGmwT02AQvvUMNQQERHZgV9//RUdOnSQ1ebMmYOVK1cq1FGFIR0CMSgiACdS85BdWAJ/74opp7ocoanEUENERGTj+vTpgyNHjshqubm58POrm1ulq+PqItXZbdv3w1BDRERko+7evQt3d3eDuqMdRGkpXChMRERkgz799FODQPP1118z0NwHR2qIiIhsjLHFwFqt1uiOwfQ//NMhIiKyEVeuXDEINE8//XSVRyCQHEdqiIiIbEDXrl2RmJgoq6WlpSEkJEShjuwPQw0REZGCdDodXF1dDepcO2M+jmUREREpZNu2bQaBZunSpQw0NcSRGiIiIgX0798fBw8elNVKSkrg4eGhTEMOgKGGiIioDhUUFECtVstqbm5uKCsrU6gjx8HpJyIiojry0UcfGQSalJQUBhoL4UgNERFRHbj3Vm0XFxdotVqFunFMHKkhIiKyogsXLhgEmm3btjHQWAFHaoiIiKzk2WefxWeffSarFRcXo379+lU+R6sTNnHitT2yq1Bz6NAhrFixAqdPn4ZGo8GuXbswcuRIpdsiIiKSKS0thUqlktWefPJJ7Ny5877PS0jSIG5PMjT5JfpaoFqF2OERGNIh0Cq9OhK7mn4qLi5G586d8cEHHyjdChERkVFffvmlQaA5d+6cSYEmOj5RFmgAICu/BNHxiUhI0li8V0djVyM1Q4cOxdChQ5Vug4iIyCi1Wo2CggJZTafTGT2g8s+0OoG4PckwtuWeACABiNuTjEERAZyKug+7GqkxV2lpKQoKCmRfRERElpaRkQFJkmSfM6tWrYIQotpAAwAnUvMMRmj+TADQ5JfgRGqeJdp1WA4dapYtWwa1Wq3/Cg4OVrolIiJyMHPnzkWLFi1ktZs3b2LWrFkmv0Z2YdWBpibXOSuHDjULFixAfn6+/isjI0PploiIyEFotVpIkoS3335bX3vwwQchhEDDhg3Nei1/b1X1F5lxnbNy6FDj4eEBHx8f2RcREVFt7d+/H/XqyZelHj58GCdOnKjR60WF+SJQrUJVE1USKu6CigrzrdHrOwuHDjVERESW1qFDBzzyyCOymlarxUMPPVTj13R1kRA7PAIADIJN5fexwyO4SLgadhVqioqKcPbsWZw9exYAkJqairNnzyI9PV3ZxoiIyOHl5uZCkiT8+uuv+trChQshhICLS+0/Tod0CMTaCZEIUMunmALUKqydEMl9akwgCSGM3UFmkw4ePIj+/fsb1J977jls3ry52udXnoyan5/PqSgiIjLZihUr8OKLL8pq169fR1BQkMXfizsKGzL189uu9qnp168f7CiDERGRnTM2ChMQEACNxnob4bm6SOgZ7me113dkdjX9REREVFdOnz5tEGh2795dbaDR6gR+TrmBr85ex88pN6DV8R/jdcWuRmqIiIjqwtChQ5GQkCCrlZaWwt3d/b7P49lNyuJIDRER0f8pKiqCJEmyQDN16lQIIUwKNDy7SVkMNURERAA2bdoEb29vWe3y5cv4+OOPq31udWc3ARVnN3Eqyro4/URERE7P2PlM5tyYYs7ZTVwEbD0cqSEiIqd1+fJlg0CzefNms++05dlNtoEjNURE5JSmTJmCTZs2yWpFRUVo0KCB2a/Fs5tsA0MNERE5lbKyMnh4eMhqQ4cOxd69e2v8mpVnN2XllxhdVyOhYmdgnt1kXZx+IiIip7F7926DQJOYmFirQAPw7CZbwZEaIiJyCv7+/sjJyZHVdDqd0UXCNVF5dtO9+9QEcJ+aOsNQQ0REDu369eto3ry5rLZy5UrMmTPH4u81pEMgBkUE8OwmhTDUEBGRw3r55ZexbNkyWS03Nxd+fta7rZpnNymHoYaIiByOTqeDq6urrNapUyecO3dOoY6oLnChMBER2QVTD4o8dOiQQaA5cOAAA40T4EgNERHZPFMPiuzatSsSExNlzy0vLzcIOeSYOFJDREQ2zZSDIm/evAlJkmSBZt68eRBCMNA4EY7UEBGRzaruoEgJwIyXXsNv36yVPZaRkWFwxxM5PoYaIiKyWfc7KFIIgd/eGi6rNWzYEDdv3qz1+2p1grdl2yGGGiIisllVHQBZln0Nmk2zZLWdO3fiySefrPV7mrp+h2wPQw0REdksYwdAZn/5Gu5cPS6rHfz1OvpGBNX6/SrX79w73VW5fmfthEgGGxvGhcJERGSzKg+KlADo7pbgt+WPywJNg/b90WPp93iobe2DRnXrdwAgbk9ylbeSk/IYaoiIyGZVHhRZ9OsBZLzzlOyxoGlr0eTxORY7KPJ+63eAimCjyS/BidS8Wr8XWQenn4iIyKYN7Wg4rRQy/2uLr3Opav1OTa+jusdQQ0RENiklJQWtWrWS1ea//g56DhtrlTuSjK3fqc11VPcYaoiIyObMmDED69evl9UKCgrg7e1ttfesXL+TlV9idF2NBCBAXRGmyDZxTQ0REdmMu3fvQpIkWaAZMGAAhBBWDTTA/9bvABUB5s8qv7fU+h2yDoYaIiKyCXv37oW7u7usduLECfzwww911sOQDoFYOyESAWr5FFOAWsXbue0Ap5+IiEhxLVq0QEZGhqym0+kgSXU/KjKkQyAGRQRwR2E7xJEaIiJSTFZWFiRJkgWapUuXQgihSKCp5OoioWe4H0Z0aYae4X4MNHaCoYaIiBSxZMkSBAbKp3Oys7OxYMEChToie8fpJyIiqlM6nQ6urq6yWps2bXDp0iWFOiJHwZEaIiKqM0ePHjUINPv27WOgIYvgSA0REdWJXr164eeff5bV7t69i3r1+FFElsGRGiIisqr8/HxIkiQLNLNmzYIQgoGGLIqhhoiIrGbNmjVo2LChrJaWloZVq1Yp0xA5NEZkIiKyOCEEXFzk/2728PBASQkPgyTr4UgNERFZVFJSkkGg2b59OwMNWR1HaoiIyGLGjh2LL774Qla7c+cOVCrbP9laqxPcRdjOMdQQEVGt3blzB/Xr15fVxowZgx07dijUkXkSkjSI25MMTf7/RpMC1SrEDo/geU92pMah5vbt20hPT0dZWZms3qlTp1o3RURE9mP79u0YN26crJaUlIT27dsr1JF5EpI0iI5PhLinnpVfguj4RB5kaUfMDjU5OTmYPHkyvv32W6OPa7XaWjdFRET2wcPDw+Aft0odRFkTWp1A3J5kg0ADAAKABCBuTzIGRQRwKsoOmL1QOCYmBjdv3sSxY8fg6emJhIQEbNmyBa1bt8bu3but0SMREdmYtLQ0SJIkCzQffvih4gdRmutEap5syuleAoAmvwQnUvPqrimqMbNHavbv34+vvvoKDz74IFxcXBASEoJBgwbBx8cHy5Ytw7Bhw6zRJxER2YgXXngB77//vqx269YtqNVqhTqquexC0+7IMvU6UpbZoaa4uBj+/v4AAF9fX+Tk5KBNmzbo2LEjEhMTLd4gERHZhvLycri5uclqvXv3xpEjRxTqqPb8vU27K8vU60hZZk8//eUvf9EfPNalSxesX78e169fx7p16wyOkCciIsewb98+g0Bz9OhRuw40ABAV5otAtQpVTZhJqLgLKirMty7bohoye6QmJiYGGo0GABAbG4vBgwdj27ZtcHd3x+bNmy3dHxERKaxNmza4cuWKrKbVag022LNHri4SYodHIDo+ERIgWzBcGXRih0dwkbCdkIQQxhZ9m+z27du4ePEiWrRogcaNG1uqL6soKCiAWq1Gfn4+fHx8lG6HiMim5eTk6JcbVFqyZAliY2MV6sh6uE+NbTP189vsUPPqq69i7ty5Bpss3blzBytWrMDixYtr1nEdYKghIjLN0qVLsXDhQllNo9EgICBAoY6sjzsK2y6rhRpXV1doNBqD9H7jxg34+/vb9D41DDVERPdn7CDKFi1a4LffflOoIyLTP7/NnhCtag+Cc+fOwdeXC6mIiOzViRMnDALN3r17GWjIbpi8ULhRo0aQJAmSJKFNmzayYKPValFUVIQZM2ZYpUkiIrKuAQMG4MCBA7JaWVmZwR1PRLbM5FDz3nvvQQiBKVOmIC4uTrbJkru7O0JDQ9GzZ0+rNElERNZRWFhoMJwfHR2NNWvWKNQRUc2ZHGqee+45AEBYWBh69erF9E5EZOc2bNiAv/3tb7JaSkoKWrZsqVBHRLVj9j41ffv21f/6zp07uHv3ruxxLsAlInvg7He6GFsbWcsdPogUZ3aouX37Nl588UXs2LEDN27cMHjclu9+IiICnHtPkosXL6Jdu3ayWnx8PJ599lmFOiKyHLPvfpo3bx7279+PNWvWwMPDAx9//DHi4uIQFBSETz/91Bo9EhFZTEKSBtHxiQYnM2fllyA6PhEJSRqFOrO+v/71rwaBpri4mIGGHIbZoWbPnj1Ys2YNnnrqKdSrVw99+vTBokWLsHTpUmzbts0aPRIRWYRWJxC3JxnGJlkqa3F7kqHVOdY0TGlpKSRJQnx8vL42YsQICCEMNlIlsmdmh5q8vDyEhYUBqFg/k5eXBwB46KGHcOjQIct2R0RkQSdS8wxGaP5MANDkl+BEal7dNWVlO3fuhEolP2H67Nmz+M9//qNMQ0RWZPaampYtWyItLQ0hISGIiIjAjh07EBUVhT179qBhw4ZWaJGIyDKyC6sONDW5ztY1bNgQ+fn5sppOpzO6SJjIEZg9UjN58mScO3cOALBgwQL92pp//vOfmDdvnsUbJCKyFH9vVfUXmXGdrcrIyIAkSbJAU7nXGAMNOTKzR2r++c9/6n/dv39/XLx4EadOnUJ4eDg6d+5s0eaIiCwpKswXgWoVsvJLjK6rkQAEqCtu77ZX8+bNw8qVK2W1vLw8NGrUSKGOiOqO2aHmXi1atECLFi0s0QsRkVW5ukiIHR6B6PhESIAs2FSOX8QOj7DL/Wq0Wi3q1ZP/SO/WrRtOnjypUEdEdc+kUPP++++b/IKzZs2qcTNERNY2pEMg1k6INNinJsCO96k5cOAABgwYIKsdOnQIffr0UagjImVIwoQtJCvvdqqUk5OD27dv6xcG37p1C/Xr14e/vz+uXbtmlUYrrVmzBitWrIBGo0H79u3x3nvvmfw/rqlHlxOR43OUHYU7duyIpKQkWU2r1Rqctk1kz0z9/Dbpv/rU1FT91xtvvIEuXbrgwoULyMvLQ15eHi5cuIDIyEi89tprFvsNGLN9+3bExMRg4cKFOHPmDPr06YOhQ4ciPT3dqu9LRI7H1UVCz3A/jOjSDD3D/ewu0Ny4cQOSJMkCzcsvvwwhBAMNOS2TRmr+LDw8HP/+97/xwAMPyOqnT5/GU089hdTUVIs2+Gfdu3dHZGQk1q5dq6+1a9cOI0eOxLJly6p9PkdqiMgRrFy50uBu0+vXryMoKEihjoisy9TPb7MXCms0GoNDLIGK4c4//vjD3JczWVlZGU6fPo2XXnpJVn/00Udx9OhRo88pLS1FaWmp/vuCggKr9UdEZG3GRmH8/f2t+rOXyJ6YPUb5yCOPYPr06Th16pT+RNdTp07h//2//4eBAwdavMFKubm50Gq1aNq0qazetGlTZGVlGX3OsmXLoFar9V/BwcFW64+IyJoSExMNAs1XX33FQEP0J2aHmo0bN6JZs2aIioqCSqWCh4cHunfvjsDAQHz88cfW6FHm3o2j7reZ1IIFC5Cfn6//ysjIsHp/RESW9thjj6Fr166yWmlpKZ544gmFOiKyTWZPPzVp0gR79+7FlStXcOHCBQgh0K5dO7Rp08Ya/ek1btwYrq6uBqMy2dnZBqM3lTw8PODh4WHVvoiIrKW4uBheXl6y2uTJk7Fx40aFOiKybTXefK9169Zo3bq1JXu5L3d3d3Tt2hXfffcdnnzySX39u+++w4gRI+qsDyIy5Ci3R9uSzZs3Y/LkybLa5cuX6/TnLpG9qfWOwnVp9uzZ+Otf/4pu3bqhZ8+e+Oijj5Ceno4ZM2Yo3RqR00pI0hhsZBdoxxvZ2QJjU+pm3qhK5JTsajODp59+Gu+99x5effVVdOnSBYcOHcLevXsREhKidGtETikhSYPo+ERZoAGArPwSRMcnIiFJo1Bn9unKlSsGgWbjxo0MNEQmMnufGnvGfWqILEerE3ho+X6DQFOp8nDII/MHcCrKBNOmTcMnn3wiqxUWFhqsqSFyRhbdUfjP0tPTjf6rQQjBnX2JnMiJ1LwqAw1QcVikJr8EJ1Lz6q4pO1RWVgZJkmSBZsiQIRBCMNAQmcnsUBMWFoacnByDel5ensEZUUTkuLILqw40NbnOGe3evdvgDs1Tp07h22+/VagjIvtm9kLhqvaFKSoqgkqlskhTRGT7/L1N+//d1OucTUBAgMHGeTqdrsp9t4ioeiaHmtmzZwOoWJX/yiuvoH79+vrHtFotjh8/ji5duli8QSKyTVFhvghUq5CVXwJjC/Mq19REhfnWdWs2LTMzE82aNZPV3nrrLYOznIjIfCaHmjNnzgCoGKk5f/483N3d9Y+5u7ujc+fOmDt3ruU7JCKb5OoiIXZ4BKLjEyEBsmBTOdYQOzyCi4T/ZOHChVi6dKmslpubCz8/P4U6InIsZt/9NHnyZKxatcou7x7i3U9Elsd9aqqn0+ng6uoqq7Vv3x5JSUkKdURkX0z9/K71Ld0FBQXYv38/2rZti7Zt29bmpayOoYbIOrijcNUOHz6Mhx9+WFb74YcfMGDAAIU6IrI/pn5+m71QeOzYsXj44Yfx97//HXfu3EG3bt2QlpYGIQT+9a9/YfTo0bVqnIjsj6uLhJ7hnEK514MPPohTp07JauXl5QajNkRkGWbf0n3o0CH06dMHALBr1y4IIXDr1i28//77eP311y3eIBGRvbl58yYkSZIFmrlz50IIwUBDZEVmh5r8/Hz4+lbczZCQkIDRo0ejfv36GDZsGK5cuWLxBomI7Mk//vEP/c/ISunp6VixYoVCHRE5D7Onn4KDg/Hzzz/D19cXCQkJ+Ne//gWg4l8m3KeGiJyVEAIuLvJ/J3p7e6OgoEChjoicj9kjNTExMXj22WfRvHlzBAYGol+/fgAqpqU6duxo6f6IiGze4cOHDQLNqlWrGGiI6pjZIzUzZ85EVFQUMjIyMGjQIP3/yC1btuSaGiJyOv7+/gZHxxQXF8s2KCWiulHjW7rLysqQmpqK8PBw1KtndjZSBG/pJiJLKSwsNPg5Eh4ejqtXryrUEZHjstop3bdv38bUqVNRv359tG/fXn8y96xZs/Dmm2/WvGMiIjvx5ptvGvxgPX78OAMNkcLMDjULFizAuXPncPDgQdnC4IEDB2L79u0WbY6IyNZIkoQFCxbIakIIREVFKdQREVUyO9T85z//wQcffICHHnpIdppsREQEUlJSLNocEZGtOH/+vMEJ2vPnz0ctN2UnIgsyezFMTk4O/P39DerFxcUG/8MTETmCnj174tixY7LajRs3DPajISJlmT1S8+CDD+Kbb77Rf18ZZDZs2ICePXtarjMiIoWVlZVBkiSDQCOEYKAhskFmj9QsW7YMQ4YMQXJyMsrLy7Fq1Sr8+uuv+Pnnn/Hjjz9ao0ciojq3adMmTJkyRVbbu3cvhg4dqlBHRFQds0NNr1698NNPP2HlypUIDw/Hvn37EBkZiZ9//pmb7xGRQzA2la7Vag022CMi21LjfWrsEfepIaL7SU9PR0hIiKz27LPPIj4+XqGOiAiw4j41rq6uyM7ONqjfuHGDp88Skd16+umnDQJNeno6Aw2RHTF7+qmqgZ3S0lK4u7vXuiEiorqk0+mM/oPMiQaxiRyGyaHm/fffB1Ax1/zxxx/Dy8tL/5hWq8WhQ4fQtm1by3dIRGQl33zzDR5//HFZbcuWLZg4caJCHRFRbZgcat59910AFf96WbdunexfNu7u7ggNDcW6dess3yERkRUYWwxcVlYGNzc3BbohIkswOdSkpqYCAPr374+dO3eiUaNGVmuKiMhabty4gcaNG8tqDz30EA4fPqxQR0RkKWYvFD5w4AADDRHZpXnz5hkEmqSkJAYaIgdh9kJhIiJ7I4QwuscMFwMTORbuJEVEDu3nn382CDRvvfUWAw2RA+JIDRE5rLCwMKSlpclqhYWFsrs3ichxMNQQkcMpLi42CC7NmjXD77//rlBHRFQXTAo1v/zyi8kv2KlTpxo3Q0RUW++88w7mzJkjqx05cgS9e/dWqCMiqismhZouXbpAkiQIIYzu7fBnWq3WIo0REZnL2M8nnU5X7c8tInIMJi0UTk1NxbVr15Camoovv/wSYWFhWLNmDc6cOYMzZ85gzZo1CA8Px5dffmntfomIDFy4cMEguMTExJj0DzEichwmjdT8+ZC3MWPG4P3338djjz2mr3Xq1AnBwcF45ZVXMHLkSIs3SURUlQEDBuDAgQOyWnZ2Npo0aaJQR0SkFLMXCp8/fx5hYWEG9bCwMCQnJ1ukKSKi6ty9e9foIbq8VZvIeZm9T027du3w+uuvo6SkRF8rLS3F66+/jnbt2lm0OSIiY7Zt22YQaL766isGGiInZ/ZIzbp16zB8+HAEBwejc+fOAIBz585BkiR8/fXXFm+QiGyTVidwIjUP2YUl8PdWISrMF64u1l+/YmyNjFarNbpjMBE5F0nU4J82t2/fRnx8PC5evAghBCIiIjB+/Hg0aNDAGj1aTEFBAdRqNfLz8+Hj46N0O0R2KyFJg7g9ydDk/2/ENlCtQuzwCAzpEGiV97x+/TqaN28uq40aNYo3KBA5AVM/v2sUauwVQw1R7SUkaRAdn4h7f3BUjp+snRBpEGxqO6ozadIkbNmyRVa7du2a0fV9ROR4TP38rtGOwlu3bsX69etx7do1/PzzzwgJCcG7776Lli1bYsSIETVumohsm1YnELcn2SDQAIBARbCJ25OMQREB+tBSm1EdHkRJROYwexJ67dq1mD17NoYOHYqbN2/qN9tr1KgR3nvvPUv3R0Q25ERqniyc3EsA0OSX4ERqHoD/jerc+5ys/BJExyciIUlT5Wvt27fPINBs2LCBgYaIqmR2qFm9ejU2bNiAhQsXol69/w30dOvWDefPn7doc0RkW7ILqw40915X3agOUDGqo9UZXuHh4YHBgwfLaiUlJZg2bZqZHRORMzE71KSmpuKBBx4wqHt4eKC4uNgiTRGRbfL3Vpl8nbmjOgBw8+ZNSJKEsrIyfS0yMhJCCHh4eNS4byJyDmaHmrCwMJw9e9ag/u233yIiIsISPRGRjYoK80WgWoWqlvhKqFgvExXma9aoDgAsWrQIvr6+ssfOnj2L06dP16JjInImZi8UnjdvHp5//nmUlJRACIETJ07g888/x7Jly/Dxxx9bo0cishGuLhJih0cgOj4REiCbWqoMOrHDI+DqIpk1qmNs7xl7XDuj1N49RFTB7FAzefJklJeX48UXX8Tt27cxfvx4NGvWDKtWrcK4ceOs0SMR2ZAhHQKxdkIkluz+FVkFpfp6Ux8PLHmivf6OpqgwXzSs74Zbt+9W+VoeN1PRq9Xjstprr72GRYsWWad5K1Ji7x4ikqvRLd3Tp0/H9OnTkZubC51OB39/f0v3RUQ2794RCPNGJDI/nom7N9JlNXvdQ6qqvXsq7/IytncPEVme2WtqBgwYgFu3bgEAGjdurA80BQUFGDBggEWbIyLbU/kBnlUgXzPzR4H8Nu0TqXlGR2l0d0vx2/LHZYGmYcOGEELYZaCpzV1eRGRZZoeagwcPyu5MqFRSUoLDhw9bpCkisk3mfIAbWyhcmPg1Mt4ZLau9tmEHbt68aflm60hN7vIiIuswefrpl19+0f86OTkZWVlZ+u+1Wi0SEhLQrFkzy3ZHRDbFnA/wexcK/7b8cYPrW7y4B4/072npNuuUuXd5EZH1mBxqunTpAkmSIEmS0WkmT09PrF692qLNEZFtMecD/PFOQQhUq/DbhXPQbJ0je9yry1A0Hvw8Av7v9m97Zs5dXkRkXSaHmtTUVAgh0LJlS5w4cQJNmjTRP+bu7g5/f3+4urpapUkisg3mfIC7ukg49vJAg8eaP78V9bwaAfjf7d/2rHLvnqz8EqPTchLgEOGNyB6YHGpCQkIAADqdzmrNEJFtM/UD/IHm3kb3ngmZ/zXwf9c4yq3O5uzdQ0TWZfZC4WXLlmHjxo0G9Y0bN2L58uUWaYqIbFPlBzhQ9Q3drX7/Fp4q+ZEGS+LicPRqLlaN64LPp/fAkfkDHCLQVKrcuydALR/JClCr6ux2bq1O4OeUG/jq7HX8nHKDd1uRU5KEmdt2hoaG4rPPPkOvXr1k9ePHj2PcuHFITU21aIOWVFBQALVabbd7YRDZiqo2mjM23VRWVgY3N7e6bE8xSu0ozI3/yNGZ+vltdqhRqVS4cOECwsLCZPVr164hIiICJSW2u8KfoYbIcv78Aa4tyMHovoYH3drjUQf2pqqN/yqjFDf+I0dg6ue32dNPwcHB+OmnnwzqP/30E4KCgsx9OSKyU64uEnqG+yFh/esGgeb48eMMNHWAG/8RyZl9TMK0adMQExODu3fv6m/t/uGHH/Diiy9izpw51TybiByFEAIuLob/LmKYqTvm7BvUM9yv7hojUojZoebFF19EXl4eZs6cqd9ZWKVSYf78+ViwYIHFGyQi25OWlmYwBf3hhx9i5syZCnXknLjxH5Gc2aFGkiQsX74cr7zyCi5cuABPT0+0bt0aHh4e1T+ZiOze8uXL8dJLL8lqt2/fhqenp0IdOS9u/EckV6NTugHAy8sLDz74oCV7ISIbVlpaCpVK/uHI0RllceM/IjmTQs2oUaOwefNm+Pj4YNSoUfe9dufOnRZp7F5vvPEGvvnmG5w9exbu7u76k8KJyPoOHTqEvn37ymrXr1/nzQEK48Z/RHIm3f2kVqv1u4Oq1er7fllLWVkZxowZg+joaKu9BxEZGj16tCzQPP744xBCMNDYCFvY+I/IVpi9T43SNm/ejJiYmBqN1HCfGiLTZWVlITBQ/oH4ww8/GD3QlpSn1MZ/RHXB1M/vGq+pISLHtX79esyYMUNWu3PnjsGaGrIdlfsGETkzk0LNAw88YPRwOmMSExNr1ZAllZaWorS0VP99QUGBgt0Q2b7y8nI0a9YM2dnZ+tprr72GRYsWKdgVEZFpTFpTM3LkSIwYMQIjRozA4MGDkZKSAg8PD/Tr1w/9+vWDSqVCSkoKBg8ebNabL1myBJIk3ffr1KlTNfqNARWHb/55vU9wcHCNX4vI0SUmJsLNzU0WaK5evcpAQ0R2w+w1NdOmTUNgYCBee+01WT02NhYZGRlGT/CuSm5uLnJzc+97TWhoqGzI25w1NcZGaoKDg7mmhugeM2bMwPr16/Xf9+jRA0ePHjV5hJaIyJqstqbmiy++MDp6MmHCBHTr1s2sUNO4cWM0btzY3BZM5uHhwU0Bie7j5s2b8PWV72Gya9cujBw5UpmGiIhqwexQ4+npiSNHjqB169ay+pEjR6y6iDA9PR15eXlIT0+HVqvF2bNnAQCtWrWCl5eX1d6XyFHt2LEDTz/9tKzGUUwismdmh5qYmBhER0fj9OnT6NGjBwDg2LFj2LhxIxYvXmzxBistXrwYW7Zs0X//wAMVpwIfOHAA/fr1s9r7EjkaIQQ6deqEpKQkfS0mJgbvvvuugl0REdVejfap2bFjB1atWoULFy4AANq1a4cXXngBY8eOtXiDlsR9asjZXbp0CW3btpXVfvnlF3Ts2FGhjoiIqmfq57fdbb5XGww15MwWLlyIpUuX6r8PCwvDlStX4OrqqmBXRETVs+rme7du3cK///1vXLt2DXPnzoWvry8SExPRtGlTNGvWrMZNE5HlFRcXG6w727JlCyZOnKhQR0RE1mF2qPnll18wcOBAqNVqpKWlYdq0afD19cWuXbvw22+/4dNPP7VGn0RUAwkJCRg6dKislpOTY9W7DomIlGLS5nt/Nnv2bEyaNAlXrlyR3e00dOhQHDp0yKLNEVHNCCEwYMAAWaCZMGEChBAMNETksMweqTl58qRsk65KzZo1Q1ZWlkWaIqKaS09PR0hIiKx29OhR9OzZU6GOiIjqhtkjNSqVyugZSpcuXUKTJk0s0hQR1cw777wjCzQNGjRAWVkZAw0ROQWzQ82IESPw6quv4u7duwAASZKQnp6Ol156CaNHj7Z4g0RUvbKyMri7u2POnDn62rvvvouioiK4ubkp2BkRUd0xO9SsXLkSOTk58Pf3x507d9C3b1+0atUK3t7eeOONN6zRIxHdx08//QQPDw/9PzQAICMjAzExMco1RUSkALPX1Pj4+ODIkSPYv38/EhMTodPpEBkZiYEDB1qjPyK6j3HjxmH79u367wcPHoyEhAQFOyIiUo5Zoaa8vBwqlQpnz57FgAEDMGDAAGv1RUT3kZ2djaZNm8pq+/btw6BBgxTqiIhIeWZNP9WrVw8hISHQarXW6oeIqrFx40aDQFNcXMxAQ0ROz+w1NYsWLcKCBQuQl5dnjX6IqAparRbBwcGYOnWqvrZ48WIIIVC/fn0FOyMisg1mr6l5//33cfXqVQQFBSEkJAQNGjSQPZ6YmGix5oiowrlz59ClSxdZ7fLly2jdurUyDRER2SCzQ82IESMgSZI1eiEiI/7xj3/ggw8+0H//wAMP4PTp0/z/kIjoHjylm8hG5efno2HDhrLaF198gaeeekqZhoiIFGLq57fJa2pu376N559/Hs2aNYO/vz/Gjx+P3NxcizRLRHI7d+40CDS3bt1ioCEiug+TQ01sbCw2b96MYcOGYdy4cfjuu+8QHR1tzd6InI4QApGRkbLduWfOnAkhBNRqtYKdERHZPpPX1OzcuROffPIJxo0bB6DixN/evXtDq9XC1dXVag0SOYsrV66gTZs2stqZM2cMFggTEZFxJo/UZGRkoE+fPvrvo6KiUK9ePWRmZlqlMSJnEhcXJws0zZo1Q3l5OQMNEZEZTB6p0Wq1cHd3lz+5Xj2Ul5dbvCmiuqTVCZxIzUN2YQn8vVWICvOFq0vd3Fl0584dgz1mNmzYgGnTptXJ+xMRORKTQ40QApMmTYKHh4e+VlJSghkzZsj2qtm5c6dlOySyooQkDeL2JEOTX6KvBapViB0egSEdAq363t9//73BLsB//PEH/P39rfq+RESOyuRQ89xzzxnUJkyYYNFmiOpSQpIG0fGJuHdPg6z8EkTHJ2LthEirBZuhQ4fKDp4cO3as7GBKIiIyn8mhZtOmTdbsg6hOaXUCcXuSDQINAAgAEoC4PckYFBFg0amo69evo3nz5rLa4cOH8dBDD1nsPYiInJXZZz8ROYITqXmyKad7CQCa/BKcSLXcGWfvv/++LNC4ubmhtLSUgYaIyEIYasgpZRdWHWhqct393L17F97e3njhhRf0tRUrVqCsrMxg8T0REdWc2Wc/ETkCf2+VRa+ryrFjx9CzZ09ZLS0tDSEhIbV6XSIiMsSRGnJKUWG+CFSrUNVqGQkVd0FFhfnW+D0mTpwoCzT9+/eHTqdjoCEishKGGnJKri4SYodHAIBBsKn8PnZ4RI0WCefm5kKSJGzdulVf27t3L/bv38+TtYmIrIihhpzWkA6BWDshEgFq+RRTgFpV49u5t27diiZNmshqRUVFGDp0aK16JSKi6nFNDTm1IR0CMSgioNY7Cut0OrRq1Qqpqan62ksvvYRly5ZZumUiIqoCQw05PVcXCT3D/Wr8/KSkJHTs2FFWu3DhAtq2bVvb1oiIyAycfiKqhTlz5sgCTUREBLRaLQMNEZECOFJDVAOFhYXw8fGR1T7//HOMGzdOoY6IiIihhshMu3fvxogRI2S1vLw8NGrUSKGOlKfkSedERJUYaohMJIRAz549cfz4cX1t+vTp+OijjxTsSnlKnnRORPRnDDVEJrh27RrCw8NltZMnT6Jbt24KdWQblDzpnIjoXlwoTFSNpUuXygJNkyZNcPfuXacPNNWddA5UnHSu1Rm7gojI8hhqiKpQUlICSZKwcOFCfW3t2rXIzs5GvXoc5FTipHMiovvhT2YiIw4cOIABAwbIahqNBgEBAQp1ZHvq8qRzIiJTcKSG6B4jRoyQBZqRI0dCCMFAc4+6OumciMhUHKkh+j8ajQZBQUGy2oEDB9CvXz9lGrJxlSedZ+WXGF1XI6HiHK3anHRORGQOjtQQoWKtzL2B5s6dOww092HNk86JiGqCoYacWnl5Ofz8/DBz5kx9benSpRBCQKXitEl1rHHSORFRTXH6qZa4k6r9OnXqFB588EFZ7dq1awgLC1OoI/tkqZPOiYhqi6GmFriTqv2aNm0aPvnkE/33vXv3xuHDhyFJ/CCuidqedE5EZAmcfqqhyp1U792no3In1YQkjUKd0f3k5eVBkiRZoNm9ezeOHDnCQENEZOcYamqAO6nap88//xx+fvLRhIKCAgwfPlyhjoiIyJIYamqAO6naF51Oh7Zt22L8+PH62pw5cyCEgLe3t4KdERGRJXFNTQ1wJ1X7ceHCBURERMhqSUlJaN++vUIdERGRtXCkpga4k6p9eOmll2SBpnXr1tBqtQw0REQOiiM1NcCdVG1bUVGRwbTS1q1bMWHCBIU6IiKiusCRmhrgTqq265tvvjEINLm5uQw0REROgKGmhriTqm0RQuDhhx/G448/rq9NmjQJQgiDO56IiMgxcfqpFriTqm347bffEBoaKqsdO3YM3bt3V6YhIiJSBENNLXEnVWW99dZbmD9/vv57tVqNnJwcuLm5KdgVEREpgaGG7FJpaSnq168PnU6nr61evRp///vfFeyKiIiUxFBDdufw4cN4+OGHZbXff/8dzZo1U6gjIiKyBVwoTHZlzJgxskDz2GOPQQjBQENERBypsSVaneCi4yr88ccfCAgIkNW+//57PPLIIwp1REREtoahxkYkJGkQtydZdqZUoFqF2OERTn97+IYNG/C3v/1NVrt9+zY8PT0V6oiIiGwRp59sQEKSBtHxiQaHZGbllyA6PhEJSRqFOlOWVqtFQECALNDExcVBCMFAQ0REBjhSozCtTiBuT7LR4xYEKnYojtuTjEERAU41FXXmzBlERkbKalevXkV4eLhCHRERka3jSI3CTqTmGYzQ/JkAoMkvwYnUvLprSmEzZ86UBZoHH3wQOp2OgYaIiO6LIzUKyy6sOtDU5Dp7duvWLTRq1EhW+/LLLzFq1CiFOiIiIntiFyM1aWlpmDp1KsLCwuDp6Ynw8HDExsairKxM6dZqzd9bVf1FZlxnr7744guDQJOfn89AQ0REJrOLkZqLFy9Cp9Nh/fr1aNWqFZKSkjB9+nQUFxdj5cqVSrdXK1FhvghUq5CVX2J0XY2EikMyo8J867q1OiGEQOfOnXH+/Hl9bdasWVi1apWCXRERkT2ShBDGPktt3ooVK7B27Vpcu3bN5OcUFBRArVYjPz8fPj4+VuzOPJV3PwGQBZvKZcGOeur3pUuX0LZtW1nt3Llz6NSpk0IdERGRLTL189supp+Myc/Ph6/v/UcvSktLUVBQIPuyRUM6BGLthEgEqOVTTAFqlcMGmkWLFskCTUhICMrLyxloiIioxuxi+uleKSkpWL16Nd5+++37Xrds2TLExcXVUVe1M6RDIAZFBDj8jsK3b99GgwYNZLWNGzdi8uTJCnVERESOQtHppyVLllQbOk6ePIlu3brpv8/MzETfvn3Rt29ffPzxx/d9bmlpKUpLS/XfFxQUIDg42Oamn5zFf//7XwwZMkRWy87ORpMmTRTqiIiI7IGp00+Khprc3Fzk5ube95rQ0FCoVBXTMpmZmejfvz+6d++OzZs3w8XFvNkzW11T4+iEEHj00Ufx/fff62vjx4/Htm3bFOyKiIjshamf34pOPzVu3BiNGzc26drr16+jf//+6Nq1KzZt2mR2oCFlZGRkoEWLFrLaTz/9hF69einUEREROSq7SAaZmZno168fgoODsXLlSuTk5CArKwtZWVlKt0b38e6778oCjUqlQmlpKQMNERFZhV0sFN63bx+uXr2Kq1evonnz5rLH7PSOdIdWVlYGHx8f2Xqmd955B//85z8V7IqIiByd3e5TUxNcU2N9R48eRe/evWW19PR0BAcHK9QRERHZO4ffp4Zsz/jx42WBZuDAgdDpdAw0RERUJ+xi+olsW05ODvz9/WW1hIQEDB48WKGOiIjIGXGkhmpl06ZNBoGmuLiYgYaIiOocQw3ViFarRYsWLTBlyhR9bdGiRRBCoH79+gp2RkREzorTT2S2X375BZ07d5bVLl26hDZt2ijUEREREUdqyEwvvPCCLNB07twZOp2OgYaIiBTHkRoySeXtdH+2Y8cOjBkzRqGOiIiI5BhqqFq7du3CqFGjZLWbN2+iYcOGyjRERERkBKefqEpCCHTr1k0WaKKjoyGEYKAhIiKbw5EaMurq1ato3bq1rJaYmIgHHnhAoY6IiIjujyM1ZODVV1+VBZrAwECUl5cz0BARkU3jSA3p3blzx2CPmY8++gjTp09XqCMiIiLTMdQQAOCHH37AwIEDZbWsrCw0bdpUoY6IiIjMw+knwrBhw2SB5qmnnoIQgoGGiIjsCkdqnNj169fRvHlzWe3HH3/Eww8/rFBHRERENceRGie1evVqWaBxcXFBSUkJAw0REdkthhonc/fuXfj4+GDWrFn62vLly6HVauHh4aFgZ0RERLXD6Scncvz4cfTo0UNWS01NRWhoqDINERERWRBHapzEpEmTZIGmb9++0Ol0DDREROQwOFLj4G7cuIHGjRvLat988w0ee+wxhToiIiKyDo7UOLCtW7caBJrCwkIGGiIickgMNQ5Ip9OhVatWmDhxor42f/58CCHg5eWlYGdERETWw+knB/Prr7+iQ4cOslpycjLatWunUEdERER1gyM1DmTu3LmyQNOuXTtotVoGGiIicgocqXEAhYWF8PHxkdU+++wzPPPMMwp1REREVPcYauzcnj178MQTT8hqN27cgK+vr0IdERERKYPTT3ZKCIHevXvLAs3UqVMhhGCgISIip8SRGjuUmpqKli1bymonT55Et27dFOqIiIhIeRypsTPLli2TBRo/Pz/cvXuXgYaIiJweR2rsRElJCTw9PWW1Dz/8EDNnzlSoIyIiItvCUGMHDh48iP79+8tqmZmZCAwMVKgjIiIi28PpJxs3cuRIWaB54oknIIRgoCEiIroHR2pslEajQVBQkKy2f/9+gxEbIiIiqsCRGhu0bt06g0Bz584dBhoiIqL7YKixIeXl5WjcuDGio6P1tTfeeANCCKhUKgU7IyIisn2cfrIRp0+fNrgtOyUlxWA/GiIiIjKOIzU2YPr06bJA06NHD+h0OgYaIiIiM3CkRkE3b940ONLgq6++MjjLiYiIiKrHkRqF/Otf/zIINAUFBQw0RERENcRQU8d0Oh3at2+PZ555Rl+bPXs2hBDw9vZWsDMiIiL7xumnOnTx4kW0a9dOVjt//jw6dOigUEdERESOgyM1dWTBggWyQBMeHg6tVstAQ0REZCEcqbGy4uJieHl5yWpbtmzBxIkTFeqIiIjIMTHUWNG3336Lxx57TFbLyclB48aNFeqIiIjIcXH6yQqEEOjfv78s0EycOBFCCAYaIiIiK+FIjYX99ttvCA0NldWOHTuG7t27K9MQERGRk+BIjQWtXLlSFmi8vb1RVlbGQENERFQHOFJjAaWlpWjQoAG0Wq2+tmrVKsyaNUvBroiIiJwLQ40F3HuC9u+//45mzZop1A0REZFz4vSTBVQeRjlkyBAIIRhoiIiIFMCRGgs4efKk0i0QERE5PY7UEBERkUNgqCEiIiKHwFBDREREDoGhhoiIiBwCQw0RERE5BIYaIiIicggMNUREROQQGGqIiIjIITDUEBERkUNgqCEiIiKHwFBDREREDoGhhoiIiBwCQw0RERE5BIYaIiIicgj1lG6gLgkhAAAFBQUKd0JERESmqvzcrvwcr4pThZrCwkIAQHBwsMKdEBERkbkKCwuhVqurfFwS1cUeB6LT6ZCZmQlvb29IkqR0O06voKAAwcHByMjIgI+Pj9Lt0J/w78Z28e/GtvHvxzqEECgsLERQUBBcXKpeOeNUIzUuLi5o3ry50m3QPXx8fPg/v43i343t4t+NbePfj+Xdb4SmEhcKExERkUNgqCEiIiKHwFBDivHw8EBsbCw8PDyUboXuwb8b28W/G9vGvx9lOdVCYSIiInJcHKkhIiIih8BQQ0RERA6BoYaIiIgcAkMNEREROQSGGlJcWloapk6dirCwMHh6eiI8PByxsbEoKytTujUC8MYbb6BXr16oX78+GjZsqHQ7Tm/NmjUICwuDSqVC165dcfjwYaVbIgCHDh3C8OHDERQUBEmS8J///EfplpwSQw0p7uLFi9DpdFi/fj1+/fVXvPvuu1i3bh1efvllpVsjAGVlZRgzZgyio6OVbsXpbd++HTExMVi4cCHOnDmDPn36YOjQoUhPT1e6NadXXFyMzp0744MPPlC6FafGW7rJJq1YsQJr167FtWvXlG6F/s/mzZsRExODW7duKd2K0+revTsiIyOxdu1afa1du3YYOXIkli1bpmBn9GeSJGHXrl0YOXKk0q04HY7UkE3Kz8+Hr6+v0m0Q2YyysjKcPn0ajz76qKz+6KOP4ujRowp1RWRbGGrI5qSkpGD16tWYMWOG0q0Q2Yzc3FxotVo0bdpUVm/atCmysrIU6orItjDUkNUsWbIEkiTd9+vUqVOy52RmZmLIkCEYM2YMpk2bplDnjq8mfzdkGyRJkn0vhDCoETmreko3QI7r73//O8aNG3ffa0JDQ/W/zszMRP/+/dGzZ0989NFHVu7OuZn7d0PKa9y4MVxdXQ1GZbKzsw1Gb4icFUMNWU3jxo3RuHFjk669fv06+vfvj65du2LTpk1wceEgojWZ83dDtsHd3R1du3bFd999hyeffFJf/+677zBixAgFOyOyHQw1pLjMzEz069cPLVq0wMqVK5GTk6N/LCAgQMHOCADS09ORl5eH9PR0aLVanD17FgDQqlUreHl5Kduck5k9ezb++te/olu3bvoRzfT0dK4/swFFRUW4evWq/vvU1FScPXsWvr6+aNGihYKdORfe0k2K27x5MyZPnmz0Mf7nqbxJkyZhy5YtBvUDBw6gX79+dd+Qk1uzZg3eeustaDQadOjQAe+++y4efvhhpdtyegcPHkT//v0N6s899xw2b95c9w05KYYaIiIicghcuEBEREQOgaGGiIiIHAJDDRERETkEhhoiIiJyCAw1RERE5BAYaoiIiMghMNQQERGRQ2CoISKqRr9+/RATE6N0G0RUDYYaIgKAak/tnjRpUp31Yo0QMWnSJIwcOdKir1mVgwcPQpIk3Lp1q07ej4gq8OwnIgIAaDQa/a+3b9+OxYsX49KlS/qap6en7Pq7d+/Czc2tzvojIqoOR2qICEDF4aGVX2q1GpIk6b8vKSlBw4YNsWPHDvTr1w8qlQrx8fFYsmQJunTpInud9957D6GhobLapk2b0K5dO6hUKrRt2xZr1qypso9Jkybhxx9/xKpVq/SjRGlpaQCA5ORkPPbYY/Dy8kLTpk3x17/+Fbm5ufrn/vvf/0bHjh3h6ekJPz8/DBw4EMXFxViyZAm2bNmCr776Sv+aBw8eNPr+xcXFmDhxIry8vBAYGIi3337b4Jr4+Hh069YN3t7eCAgIwPjx45GdnQ0ASEtL058B1KhRI9koV0JCAh566CE0bNgQfn5+ePzxx5GSknKfvxUiMgdDDRGZbP78+Zg1axYuXLiAwYMHm/ScDRs2YOHChXjjjTdw4cIFLF26FK+88orRQzIBYNWqVejZsyemT58OjUYDjUaD4OBgaDQa9O3bF126dMGpU6eQkJCAP/74A2PHjgVQMdL0zDPPYMqUKbhw4QIOHjyIUaNGQQiBuXPnYuzYsRgyZIj+NXv16mX0/efNm4cDBw5g165d2LdvHw4ePIjTp0/LrikrK8Nrr72Gc+fO4T//+Q9SU1P1wSU4OBhffvklAODSpUvQaDRYtWoVgIrANHv2bJw8eRI//PADXFxc8OSTT0Kn05n0Z0lE98fpJyIyWUxMDEaNGmXWc1577TW8/fbb+ueFhYUhOTkZ69evx3PPPWdwvVqthru7O+rXr4+AgAB9fe3atYiMjMTSpUv1tY0bNyI4OBiXL19GUVERysvLMWrUKISEhAAAOnbsqL/W09MTpaWlste8V1FRET755BN8+umnGDRoEABgy5YtaN68uey6KVOm6H/dsmVLvP/++4iKikJRURG8vLzg6+sLAPD390fDhg31144ePVr2Op988gn8/f2RnJyMDh06VNkXEZmGIzVEZLJu3bqZdX1OTg4yMjIwdepUeHl56b9ef/11s6ddTp8+jQMHDshep23btgCAlJQUdO7cGY888gg6duyIMWPGYMOGDbh586ZZ75GSkoKysjL07NlTX/P19cVf/vIX2XVnzpzBiBEjEBISAm9vb/Tr1w8AkJ6eXu3rjx8/Hi1btoSPjw/CwsJMeh4RmYYjNURksgYNGsi+d3FxgRBCVrt7967+15XTKhs2bED37t1l17m6upr13jqdDsOHD8fy5csNHgsMDISrqyu+++47HD16FPv27cPq1auxcOFCHD9+XB8eqnPv78WY4uJiPProo3j00UcRHx+PJk2aID09HYMHD0ZZWdl9nzt8+HAEBwdjw4YNCAoKgk6nQ4cOHap9HhGZhqGGiGqsSZMmyMrKghACkiQBAM6ePat/vGnTpmjWrBmuXbuGZ5991uTXdXd3h1arldUiIyPx5ZdfIjQ0FPXqGf/RJUkSevfujd69e2Px4sUICQnBrl27MHv2bKOvea9WrVrBzc0Nx44dQ4sWLQAAN2/exOXLl9G3b18AwMWLF5Gbm4s333wTwcHBAIBTp04Z9A9A9n43btzAhQsXsH79evTp0wcAcOTIEVP/SIjIBJx+IqIa69evH3JycvDWW28hJSUFH374Ib799lvZNUuWLMGyZcuwatUqXL58GefPn8emTZvwzjvvVPm6oaGhOH78ONLS0pCbmwudTofnn38eeXl5eOaZZ3DixAlcu3YN+/btw5QpU6DVanH8+HEsXboUp06dQnp6Onbu3ImcnBy0a9dO/5q//PILLl26hNzcXNmIUiUvLy9MnToV8+bNww8//ICkpCRMmjQJLi7/+1HZokULuLu7Y/Xq1bh27Rp2796N1157TfY6ISEhkCQJX3/9NXJyclBUVIRGjRrBz88PH330Ea5evYr9+/dj9uzZtfnjJ6J7CSKie2zatEmo1Wr996mpqQKAOHPmjMG1a9euFcHBwaJBgwZi4sSJ4o033hAhISGya7Zt2ya6dOki3N3dRaNGjcTDDz8sdu7cWeX7X7p0SfTo0UN4enoKACI1NVUIIcTly5fFk08+KRo2bCg8PT1F27ZtRUxMjNDpdCI5OVkMHjxYNGnSRHh4eIg2bdqI1atX618zOztbDBo0SHh5eQkA4sCBA0bfu7CwUEyYMEHUr19fNG3aVLz11luib9++4oUXXtBf89lnn4nQ0FDh4eEhevbsKXbv3m3w5/Pqq6+KgIAAIUmSeO6554QQQnz33XeiXbt2wsPDQ3Tq1EkcPHhQABC7du2q8s+CiEwnCWHCJDIRERGRjeP0ExERETkEhhoiIiJyCAw1RERE5BAYaoiIiMghMNQQERGRQ2CoISIiIofAUENEREQOgaGGiIiIHAJDDRERETkEhhoiIiJyCAw1RERE5BAYaoiIiMgh/H/MhCdaY3IWWQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOpklEQVR4nO3deViU5f4/8PcDAoMCo6AIKAKiHsU1NNwylzQ1M03TzDzmen5i5xjHJTNNpEUzbTHLJcslsY520pOWcazU1MwVNQlXhCAZAkTZFJCZ+/cHX+b0OIPMwAzPLO/XdXFd8plnZj5qMW/v+37uWxJCCBARERHZORelGyAiIiKyBIYaIiIicggMNUREROQQGGqIiIjIITDUEBERkUNgqCEiIiKHwFBDREREDoGhhoiIiBwCQw0RERE5BIYaIge2efNmSJIElUqF3377zeDxfv36oUOHDrJaaGgoJEnSfzVo0ACRkZH44IMPcO8G5AcPHtRft3nzZqM9DBgwAJIkITQ0VFYvLi7G8uXL0blzZ/j4+MDb2xvh4eEYO3YsfvzxR6PvYeyrqve1lqKiIsTExCAoKAgqlQpdunTBv/71L5Oe+/3332PQoEEICgqCh4cH/P39MWDAAOzdu9fg2oULF+KBBx6Ar68vVCoVWrZsib/97W9G/x6JqEI9pRsgIusrLS3FokWLsHXrVpOu7927N1auXAkAyMzMxDvvvIN//OMfKCgowMsvv2xwvbe3Nz755BNMmjRJVk9NTcXBgwfh4+Mjq2u1Wjz66KM4f/485s2bh6ioKADAlStXsGfPHhw+fBh9+/aVPWfp0qXo37+/wXuHh4eb9HuylFGjRuHkyZN488030aZNG3z22Wd45plnoNPpMH78+Ps+98aNG2jfvj2mTZuGgIAA5OXlYd26dRg2bBi2bt2KCRMm6K+9desWnnnmGbRr1w7e3t5ITk7G66+/jt27d+PXX3+Fn5+ftX+rRPZHEJHD2rRpkwAghgwZIlxcXMTZs2dlj/ft21e0b99eVgsJCRHDhg2T1fLz84VarRYtWrSQ1Q8cOCAAiGnTpgkA4vLly7LHFy1aJJo3by6GDh0qQkJC9PX9+/cLAGLjxo1G+9ZqtQbv8cUXX5j8+7aWb775RgAQn332maw+aNAgERQUJMrLy81+zbKyMtGsWTPRp0+faq/du3evACA++eQTs9+HyBlw+onICbz44ovw8/PD/Pnza/R8Hx8ftGnTBn/88YfRxwcNGoTg4GBs3LhRX9PpdNiyZQuee+45uLjIf9TcuHEDABAYGGj09e693lbs2rULXl5eGDNmjKw+efJkZGZm4vjx42a/ppubGxo2bIh69aofOG/SpAkAmHQtkTOyzZ8cRGRR3t7eWLRoEf773/9i//79Zj+/vLwcGRkZaNOmjdHHXVxcMGnSJHz66afQarUAgH379uH333/H5MmTDa7v1q0b3Nzc8MILL2Dbtm3QaDTV9qDT6VBeXm7wVR0hhNHn1eS1kpKS0K5dO4NQ0alTJ/3jpqj8vWRmZiI2NhaXL1/GnDlzjF5bXl6OO3fu4MyZM4iJiUGbNm0watQok96HyNkw1BA5iRkzZqBly5aYP3++wYLfe/05CKSnp2PmzJm4ceMGli1bVuVzJk+eDI1Gg4SEBADAxo0b0bdvX6NrXkJDQ7Fu3TpkZmZiwoQJCAoKQlBQEJ577jkcPnzY6Os//fTTcHNzM/j6/fff7/t72bJli9HnGfuqzo0bN+Dr62tQr6xVjkBV57HHHoObmxuaNWuG9957D9u3b8ewYcMMrsvKyoKbmxvq16+PyMhIlJeX48CBA/Dy8jLpfYicDccwiZyEu7s7Xn/9dYwfPx47duzA008/XeW1e/fuNfiQr1zQWpWwsDD069cPGzduRI8ePfDVV1/h448/rvL6KVOmYPTo0di7dy+OHTuGY8eOIT4+Hlu3bsXy5csxb9482fXLly/HgAEDDF6nadOmVb4HAAwfPhwnT5687zXmkCSpRo/92erVq3Hr1i1oNBrEx8fj6aefxpYtW/DMM8/IrmvcuDFOnjyJ0tJSXLhwAW+99Rb69++PgwcPVjl1R+TUFF7TQ0RWVLlQ+OTJk0IIIXQ6nYiMjBTh4eGirKysyoXCDz30kDh58qQ4duyY2Lp1qwgNDRX16tUThw8fll177yLe+Ph44ebmJl5++WWhVqvF7du3hRBCDBs2TLZQuCpJSUkiICBAuLm5iZs3bxp9D3PpdDpx9+5dk76q06NHD/Hggw8a7RuAWL9+fY16HDJkiGjUqJFsgbQxGRkZol69emLWrFk1eh8iR8fpJyInIkkSli9fjpSUFHz00UdVXqdWq9GtWzd0794dEyZMwL59++Dm5oaZM2dCp9NV+bxRo0ahfv36ePPNNzFu3Dh4enqa1V/79u0xbtw43L17F5cvXzbruVWx5PRTx44dceHCBYP1N+fPnwcAgz1/TBUVFYWbN28iJyfnvtc1b94cQUFBFvuzIXI0nH4icjIDBw7EoEGD8OqrryI4ONik57Ru3Rovvvgi4uLisH37doNpkkqenp5YvHgxDh06hOjo6Cpf78aNG/D29oa7u7vBYxcvXgQABAUFmdRbdSw5/fTkk09iw4YN+PLLL2XTd1u2bEFQUBC6d+9u9msKIfDjjz+iYcOG1e49c/XqVfz+++944oknzH4fImfAUEPkhJYvX46uXbsiOzsb7du3N+k5c+fOxbp16xAXF4exY8fC1dXV6HWzZ8/G7Nmz7/taBw4cwAsvvIBnn30WvXr1gp+fH7Kzs/H5558jISEBEydORPPmzWXPuXLlCo4dO2bwWs2bNze49s/8/PwstlHd0KFDMWjQIERHR6OgoACtWrXS9xwfHy/7M5k6dSq2bNmClJQUhISEAABGjBiBzp07o0uXLvDz80NmZiY2b96MH3/8ER9++KH+rqpffvkF//znP/HUU0+hZcuWcHFxwfnz5/Huu+/Cz88Pc+fOtcjvh8jRMNQQOaEHHngAzzzzDD777DOTn+Pl5YXFixfj+eefx7Zt2zBx4sQav3+PHj0wZcoUHDhwAFu3bkVubi48PT0RERGB1atXGx3lMbaTMVBxnMDrr79e417MtXPnTixcuBCLFy9GXl4e2rZti88//xzjxo2TXafVaqHVamV3mvXu3Rv//ve/8cEHH6CgoAANGzZEt27d8PXXX8sWYTdt2hRBQUF4++23odFoUF5ejubNm+Pxxx/Hyy+/bPIIG5GzkYSo5t5OIiIiIjvAhcJERETkEBhqiIiIyCEw1BAREZFDYKghIiIih8BQQ0RERA6BoYaIiIgcglPtU6PT6ZCZmQlvb2+TD54jIiIiZQkhUFhYiKCgILi4VD0e41ShJjMzk5tWERER2amMjIz77iDuVKHG29sbQMUfio+Pj8LdEBERkSkKCgoQHBys/xyvilOFmsopJx8fH4YaIiIiO1Pd0hEuFCYiIiKHwFBDREREDoGhhoiIiBwCQw0RERE5BIYaIiIicggMNUREROQQGGqIiIjIITDUEBERkUNgqCEiIiKH4FQ7ChMREdkKrU7gRGoesgtL4O+tQlSYL1xdeNhybTDUEBER1bGEJA3i9iRDk1+irwWqVYgdHoEhHQIV7My+cfqJiIioDiUkaRAdnygLNACQlV+C6PhEJCRpFOrM/jHUEBER1RGtTiBuTzKEkccqa3F7kqHVGbuCqsNQQ0REVEdOpOYZjND8mQCgyS/BidS8umvKgTDUEBER1ZHswqoDTU2uIzmGGiIiojri762y6HUkx1BDRERUR6LCfBGoVqGqG7clVNwFFRXmW5dtOQyGGiIiojri6iIhdngEABgEm8rvY4dHcL+aGmKoISIiqkNDOgRi7YRIBKjlU0wBahXWTojkPjW1wM33iIiI6tiQDoEYFBHAHYUtjKGGiIhIAa4uEnqG+yndhkPh9BMRERE5BIYaIiIicggMNUREROQQGGqIiIioVpKTkyFJEsLCwpCTk6NYHww1REREVGPz589H+/btAQBpaWkoLS1VrBfe/UREROREtDphkVvJi4qK4O3tLavFx8ejefPmlmrVbAw1RERETiIhSYO4Pcmyk8ID1SrEDo8wa9O/r7/+GsOHD5fVcnNz4een7C3qnH4iIiJyAglJGkTHJ8oCDQBk5ZcgOj4RCUmaal9DCIGHH35YFmgmT54MIYTigQbgSA0REZHD0+oE4vYkQxh5TKDi3Km4PckYFBFQ5VRUWloawsLCZLXjx48jKirK4v3WFEdqiIiIHNyJ1DyDEZo/EwA0+SU4kZpn9PHly5fLAo1arUZZWZlNBRqAIzVEREQOL7uw6kBzv+tKS0uhUskP3vzggw/w/PPPW6w3S2KoISIicnD+3qrqL7rnukOHDqFv376yx69fv46goCCL9mZJnH4iIiJycFFhvghUq1DVjdsSKu6CigrzBQCMHj1aFmgef/xxCCFsOtAADDVEREQOz9VFQuzwCAAwCDaV38cOj0BuTjYkScLOnTv1j//www/Ys2dP3TRaSww1RERETmBIh0CsnRCJALV8KipArcLaCZFIP7oHAQEBssdu376NAQMG1GWbtcI1NURERE5iSIdADIoIkO0oHBnsgxbBzZGdna2/7tVXX8Urr7yiYKc1w1BDRETkRFxdJPQMr9goLzExEapWXWWPX716FeHh4Uq0VmucfiIiInJCM2bMQNeu/ws0UVFR0Ol0dhtoAI7UEBEROZXU1FS0bNlSVtu1axdGjhypTEMWxFBDRETkJEaPHi27swkA8vPz4ePjo1BHlsVQQ0RE5OB0Oh1cXV0N6kIYOw3KfnFNDRERkQP76quvDAJNfHy8RQONVifwc8oNfHX2On5OuQGtTpmwxJEaIiIiByVJhnsIl5WVwc3NzWLvkZCkQdyeZNmBmYFqFWKHR2BIh0CLvY8pOFJDRETkYHJycgwCTf/+/SGEsHigiY5PNDgBPCu/BNHxiUhI0ljsvUzBUENERORAYmJi4O/vL6slJydj//79Fn0frU4gbk8yjE00Vdbi9iTX6VQUp5+IiIgcgBACLi6GYxXWWgx8IjXPYIRG9r4ANPklOJGap9/sz9o4UkNERGTnfvrpJ4NA8/bbb1v17qbswqoDTU2uswSO1BAREdmx5s2b4/r167JaUVERGjRoYNX39fdWVX+RGddZAkdqiIiI7FBRUREkSZIFmpCQEAghrB5oACAqzBeBahUM76+qIKHiLqioMF+r91KJoYaIiMjOrFixAt7e3rLa0aNHkZaWVmc9uLpIiB0eAQAGwaby+9jhEXB1qSr2WB6nn4iIiOyIsb1nlNoZeEiHQKydEGmwT02AQvvUMNQQERHZgV9//RUdOnSQ1ebMmYOVK1cq1FGFIR0CMSgiACdS85BdWAJ/74opp7ocoanEUENERGTj+vTpgyNHjshqubm58POrm1ulq+PqItXZbdv3w1BDRERko+7evQt3d3eDuqMdRGkpXChMRERkgz799FODQPP1118z0NwHR2qIiIhsjLHFwFqt1uiOwfQ//NMhIiKyEVeuXDEINE8//XSVRyCQHEdqiIiIbEDXrl2RmJgoq6WlpSEkJEShjuwPQw0REZGCdDodXF1dDepcO2M+jmUREREpZNu2bQaBZunSpQw0NcSRGiIiIgX0798fBw8elNVKSkrg4eGhTEMOgKGGiIioDhUUFECtVstqbm5uKCsrU6gjx8HpJyIiojry0UcfGQSalJQUBhoL4UgNERFRHbj3Vm0XFxdotVqFunFMHKkhIiKyogsXLhgEmm3btjHQWAFHaoiIiKzk2WefxWeffSarFRcXo379+lU+R6sTNnHitT2yq1Bz6NAhrFixAqdPn4ZGo8GuXbswcuRIpdsiIiKSKS0thUqlktWefPJJ7Ny5877PS0jSIG5PMjT5JfpaoFqF2OERGNIh0Cq9OhK7mn4qLi5G586d8cEHHyjdChERkVFffvmlQaA5d+6cSYEmOj5RFmgAICu/BNHxiUhI0li8V0djVyM1Q4cOxdChQ5Vug4iIyCi1Wo2CggJZTafTGT2g8s+0OoG4PckwtuWeACABiNuTjEERAZyKug+7GqkxV2lpKQoKCmRfRERElpaRkQFJkmSfM6tWrYIQotpAAwAnUvMMRmj+TADQ5JfgRGqeJdp1WA4dapYtWwa1Wq3/Cg4OVrolIiJyMHPnzkWLFi1ktZs3b2LWrFkmv0Z2YdWBpibXOSuHDjULFixAfn6+/isjI0PploiIyEFotVpIkoS3335bX3vwwQchhEDDhg3Nei1/b1X1F5lxnbNy6FDj4eEBHx8f2RcREVFt7d+/H/XqyZelHj58GCdOnKjR60WF+SJQrUJVE1USKu6CigrzrdHrOwuHDjVERESW1qFDBzzyyCOymlarxUMPPVTj13R1kRA7PAIADIJN5fexwyO4SLgadhVqioqKcPbsWZw9exYAkJqairNnzyI9PV3ZxoiIyOHl5uZCkiT8+uuv+trChQshhICLS+0/Tod0CMTaCZEIUMunmALUKqydEMl9akwgCSGM3UFmkw4ePIj+/fsb1J977jls3ry52udXnoyan5/PqSgiIjLZihUr8OKLL8pq169fR1BQkMXfizsKGzL189uu9qnp168f7CiDERGRnTM2ChMQEACNxnob4bm6SOgZ7me113dkdjX9REREVFdOnz5tEGh2795dbaDR6gR+TrmBr85ex88pN6DV8R/jdcWuRmqIiIjqwtChQ5GQkCCrlZaWwt3d/b7P49lNyuJIDRER0f8pKiqCJEmyQDN16lQIIUwKNDy7SVkMNURERAA2bdoEb29vWe3y5cv4+OOPq31udWc3ARVnN3Eqyro4/URERE7P2PlM5tyYYs7ZTVwEbD0cqSEiIqd1+fJlg0CzefNms++05dlNtoEjNURE5JSmTJmCTZs2yWpFRUVo0KCB2a/Fs5tsA0MNERE5lbKyMnh4eMhqQ4cOxd69e2v8mpVnN2XllxhdVyOhYmdgnt1kXZx+IiIip7F7926DQJOYmFirQAPw7CZbwZEaIiJyCv7+/sjJyZHVdDqd0UXCNVF5dtO9+9QEcJ+aOsNQQ0REDu369eto3ry5rLZy5UrMmTPH4u81pEMgBkUE8OwmhTDUEBGRw3r55ZexbNkyWS03Nxd+fta7rZpnNymHoYaIiByOTqeDq6urrNapUyecO3dOoY6oLnChMBER2QVTD4o8dOiQQaA5cOAAA40T4EgNERHZPFMPiuzatSsSExNlzy0vLzcIOeSYOFJDREQ2zZSDIm/evAlJkmSBZt68eRBCMNA4EY7UEBGRzaruoEgJwIyXXsNv36yVPZaRkWFwxxM5PoYaIiKyWfc7KFIIgd/eGi6rNWzYEDdv3qz1+2p1grdl2yGGGiIisllVHQBZln0Nmk2zZLWdO3fiySefrPV7mrp+h2wPQw0REdksYwdAZn/5Gu5cPS6rHfz1OvpGBNX6/SrX79w73VW5fmfthEgGGxvGhcJERGSzKg+KlADo7pbgt+WPywJNg/b90WPp93iobe2DRnXrdwAgbk9ylbeSk/IYaoiIyGZVHhRZ9OsBZLzzlOyxoGlr0eTxORY7KPJ+63eAimCjyS/BidS8Wr8XWQenn4iIyKYN7Wg4rRQy/2uLr3Opav1OTa+jusdQQ0RENiklJQWtWrWS1ea//g56DhtrlTuSjK3fqc11VPcYaoiIyObMmDED69evl9UKCgrg7e1ttfesXL+TlV9idF2NBCBAXRGmyDZxTQ0REdmMu3fvQpIkWaAZMGAAhBBWDTTA/9bvABUB5s8qv7fU+h2yDoYaIiKyCXv37oW7u7usduLECfzwww911sOQDoFYOyESAWr5FFOAWsXbue0Ap5+IiEhxLVq0QEZGhqym0+kgSXU/KjKkQyAGRQRwR2E7xJEaIiJSTFZWFiRJkgWapUuXQgihSKCp5OoioWe4H0Z0aYae4X4MNHaCoYaIiBSxZMkSBAbKp3Oys7OxYMEChToie8fpJyIiqlM6nQ6urq6yWps2bXDp0iWFOiJHwZEaIiKqM0ePHjUINPv27WOgIYvgSA0REdWJXr164eeff5bV7t69i3r1+FFElsGRGiIisqr8/HxIkiQLNLNmzYIQgoGGLIqhhoiIrGbNmjVo2LChrJaWloZVq1Yp0xA5NEZkIiKyOCEEXFzk/2728PBASQkPgyTr4UgNERFZVFJSkkGg2b59OwMNWR1HaoiIyGLGjh2LL774Qla7c+cOVCrbP9laqxPcRdjOMdQQEVGt3blzB/Xr15fVxowZgx07dijUkXkSkjSI25MMTf7/RpMC1SrEDo/geU92pMah5vbt20hPT0dZWZms3qlTp1o3RURE9mP79u0YN26crJaUlIT27dsr1JF5EpI0iI5PhLinnpVfguj4RB5kaUfMDjU5OTmYPHkyvv32W6OPa7XaWjdFRET2wcPDw+Aft0odRFkTWp1A3J5kg0ADAAKABCBuTzIGRQRwKsoOmL1QOCYmBjdv3sSxY8fg6emJhIQEbNmyBa1bt8bu3but0SMREdmYtLQ0SJIkCzQffvih4gdRmutEap5syuleAoAmvwQnUvPqrimqMbNHavbv34+vvvoKDz74IFxcXBASEoJBgwbBx8cHy5Ytw7Bhw6zRJxER2YgXXngB77//vqx269YtqNVqhTqquexC0+7IMvU6UpbZoaa4uBj+/v4AAF9fX+Tk5KBNmzbo2LEjEhMTLd4gERHZhvLycri5uclqvXv3xpEjRxTqqPb8vU27K8vU60hZZk8//eUvf9EfPNalSxesX78e169fx7p16wyOkCciIsewb98+g0Bz9OhRuw40ABAV5otAtQpVTZhJqLgLKirMty7bohoye6QmJiYGGo0GABAbG4vBgwdj27ZtcHd3x+bNmy3dHxERKaxNmza4cuWKrKbVag022LNHri4SYodHIDo+ERIgWzBcGXRih0dwkbCdkIQQxhZ9m+z27du4ePEiWrRogcaNG1uqL6soKCiAWq1Gfn4+fHx8lG6HiMim5eTk6JcbVFqyZAliY2MV6sh6uE+NbTP189vsUPPqq69i7ty5Bpss3blzBytWrMDixYtr1nEdYKghIjLN0qVLsXDhQllNo9EgICBAoY6sjzsK2y6rhRpXV1doNBqD9H7jxg34+/vb9D41DDVERPdn7CDKFi1a4LffflOoIyLTP7/NnhCtag+Cc+fOwdeXC6mIiOzViRMnDALN3r17GWjIbpi8ULhRo0aQJAmSJKFNmzayYKPValFUVIQZM2ZYpUkiIrKuAQMG4MCBA7JaWVmZwR1PRLbM5FDz3nvvQQiBKVOmIC4uTrbJkru7O0JDQ9GzZ0+rNElERNZRWFhoMJwfHR2NNWvWKNQRUc2ZHGqee+45AEBYWBh69erF9E5EZOc2bNiAv/3tb7JaSkoKWrZsqVBHRLVj9j41ffv21f/6zp07uHv3ruxxLsAlInvg7He6GFsbWcsdPogUZ3aouX37Nl588UXs2LEDN27cMHjclu9+IiICnHtPkosXL6Jdu3ayWnx8PJ599lmFOiKyHLPvfpo3bx7279+PNWvWwMPDAx9//DHi4uIQFBSETz/91Bo9EhFZTEKSBtHxiQYnM2fllyA6PhEJSRqFOrO+v/71rwaBpri4mIGGHIbZoWbPnj1Ys2YNnnrqKdSrVw99+vTBokWLsHTpUmzbts0aPRIRWYRWJxC3JxnGJlkqa3F7kqHVOdY0TGlpKSRJQnx8vL42YsQICCEMNlIlsmdmh5q8vDyEhYUBqFg/k5eXBwB46KGHcOjQIct2R0RkQSdS8wxGaP5MANDkl+BEal7dNWVlO3fuhEolP2H67Nmz+M9//qNMQ0RWZPaampYtWyItLQ0hISGIiIjAjh07EBUVhT179qBhw4ZWaJGIyDKyC6sONDW5ztY1bNgQ+fn5sppOpzO6SJjIEZg9UjN58mScO3cOALBgwQL92pp//vOfmDdvnsUbJCKyFH9vVfUXmXGdrcrIyIAkSbJAU7nXGAMNOTKzR2r++c9/6n/dv39/XLx4EadOnUJ4eDg6d+5s0eaIiCwpKswXgWoVsvJLjK6rkQAEqCtu77ZX8+bNw8qVK2W1vLw8NGrUSKGOiOqO2aHmXi1atECLFi0s0QsRkVW5ukiIHR6B6PhESIAs2FSOX8QOj7DL/Wq0Wi3q1ZP/SO/WrRtOnjypUEdEdc+kUPP++++b/IKzZs2qcTNERNY2pEMg1k6INNinJsCO96k5cOAABgwYIKsdOnQIffr0UagjImVIwoQtJCvvdqqUk5OD27dv6xcG37p1C/Xr14e/vz+uXbtmlUYrrVmzBitWrIBGo0H79u3x3nvvmfw/rqlHlxOR43OUHYU7duyIpKQkWU2r1Rqctk1kz0z9/Dbpv/rU1FT91xtvvIEuXbrgwoULyMvLQ15eHi5cuIDIyEi89tprFvsNGLN9+3bExMRg4cKFOHPmDPr06YOhQ4ciPT3dqu9LRI7H1UVCz3A/jOjSDD3D/ewu0Ny4cQOSJMkCzcsvvwwhBAMNOS2TRmr+LDw8HP/+97/xwAMPyOqnT5/GU089hdTUVIs2+Gfdu3dHZGQk1q5dq6+1a9cOI0eOxLJly6p9PkdqiMgRrFy50uBu0+vXryMoKEihjoisy9TPb7MXCms0GoNDLIGK4c4//vjD3JczWVlZGU6fPo2XXnpJVn/00Udx9OhRo88pLS1FaWmp/vuCggKr9UdEZG3GRmH8/f2t+rOXyJ6YPUb5yCOPYPr06Th16pT+RNdTp07h//2//4eBAwdavMFKubm50Gq1aNq0qazetGlTZGVlGX3OsmXLoFar9V/BwcFW64+IyJoSExMNAs1XX33FQEP0J2aHmo0bN6JZs2aIioqCSqWCh4cHunfvjsDAQHz88cfW6FHm3o2j7reZ1IIFC5Cfn6//ysjIsHp/RESW9thjj6Fr166yWmlpKZ544gmFOiKyTWZPPzVp0gR79+7FlStXcOHCBQgh0K5dO7Rp08Ya/ek1btwYrq6uBqMy2dnZBqM3lTw8PODh4WHVvoiIrKW4uBheXl6y2uTJk7Fx40aFOiKybTXefK9169Zo3bq1JXu5L3d3d3Tt2hXfffcdnnzySX39u+++w4gRI+qsDyIy5Ci3R9uSzZs3Y/LkybLa5cuX6/TnLpG9qfWOwnVp9uzZ+Otf/4pu3bqhZ8+e+Oijj5Ceno4ZM2Yo3RqR00pI0hhsZBdoxxvZ2QJjU+pm3qhK5JTsajODp59+Gu+99x5effVVdOnSBYcOHcLevXsREhKidGtETikhSYPo+ERZoAGArPwSRMcnIiFJo1Bn9unKlSsGgWbjxo0MNEQmMnufGnvGfWqILEerE3ho+X6DQFOp8nDII/MHcCrKBNOmTcMnn3wiqxUWFhqsqSFyRhbdUfjP0tPTjf6rQQjBnX2JnMiJ1LwqAw1QcVikJr8EJ1Lz6q4pO1RWVgZJkmSBZsiQIRBCMNAQmcnsUBMWFoacnByDel5ensEZUUTkuLILqw40NbnOGe3evdvgDs1Tp07h22+/VagjIvtm9kLhqvaFKSoqgkqlskhTRGT7/L1N+//d1OucTUBAgMHGeTqdrsp9t4ioeiaHmtmzZwOoWJX/yiuvoH79+vrHtFotjh8/ji5duli8QSKyTVFhvghUq5CVXwJjC/Mq19REhfnWdWs2LTMzE82aNZPV3nrrLYOznIjIfCaHmjNnzgCoGKk5f/483N3d9Y+5u7ujc+fOmDt3ruU7JCKb5OoiIXZ4BKLjEyEBsmBTOdYQOzyCi4T/ZOHChVi6dKmslpubCz8/P4U6InIsZt/9NHnyZKxatcou7x7i3U9Elsd9aqqn0+ng6uoqq7Vv3x5JSUkKdURkX0z9/K71Ld0FBQXYv38/2rZti7Zt29bmpayOoYbIOrijcNUOHz6Mhx9+WFb74YcfMGDAAIU6IrI/pn5+m71QeOzYsXj44Yfx97//HXfu3EG3bt2QlpYGIQT+9a9/YfTo0bVqnIjsj6uLhJ7hnEK514MPPohTp07JauXl5QajNkRkGWbf0n3o0CH06dMHALBr1y4IIXDr1i28//77eP311y3eIBGRvbl58yYkSZIFmrlz50IIwUBDZEVmh5r8/Hz4+lbczZCQkIDRo0ejfv36GDZsGK5cuWLxBomI7Mk//vEP/c/ISunp6VixYoVCHRE5D7Onn4KDg/Hzzz/D19cXCQkJ+Ne//gWg4l8m3KeGiJyVEAIuLvJ/J3p7e6OgoEChjoicj9kjNTExMXj22WfRvHlzBAYGol+/fgAqpqU6duxo6f6IiGze4cOHDQLNqlWrGGiI6pjZIzUzZ85EVFQUMjIyMGjQIP3/yC1btuSaGiJyOv7+/gZHxxQXF8s2KCWiulHjW7rLysqQmpqK8PBw1KtndjZSBG/pJiJLKSwsNPg5Eh4ejqtXryrUEZHjstop3bdv38bUqVNRv359tG/fXn8y96xZs/Dmm2/WvGMiIjvx5ptvGvxgPX78OAMNkcLMDjULFizAuXPncPDgQdnC4IEDB2L79u0WbY6IyNZIkoQFCxbIakIIREVFKdQREVUyO9T85z//wQcffICHHnpIdppsREQEUlJSLNocEZGtOH/+vMEJ2vPnz0ctN2UnIgsyezFMTk4O/P39DerFxcUG/8MTETmCnj174tixY7LajRs3DPajISJlmT1S8+CDD+Kbb77Rf18ZZDZs2ICePXtarjMiIoWVlZVBkiSDQCOEYKAhskFmj9QsW7YMQ4YMQXJyMsrLy7Fq1Sr8+uuv+Pnnn/Hjjz9ao0ciojq3adMmTJkyRVbbu3cvhg4dqlBHRFQds0NNr1698NNPP2HlypUIDw/Hvn37EBkZiZ9//pmb7xGRQzA2la7Vag022CMi21LjfWrsEfepIaL7SU9PR0hIiKz27LPPIj4+XqGOiAiw4j41rq6uyM7ONqjfuHGDp88Skd16+umnDQJNeno6Aw2RHTF7+qmqgZ3S0lK4u7vXuiEiorqk0+mM/oPMiQaxiRyGyaHm/fffB1Ax1/zxxx/Dy8tL/5hWq8WhQ4fQtm1by3dIRGQl33zzDR5//HFZbcuWLZg4caJCHRFRbZgcat59910AFf96WbdunexfNu7u7ggNDcW6dess3yERkRUYWwxcVlYGNzc3BbohIkswOdSkpqYCAPr374+dO3eiUaNGVmuKiMhabty4gcaNG8tqDz30EA4fPqxQR0RkKWYvFD5w4AADDRHZpXnz5hkEmqSkJAYaIgdh9kJhIiJ7I4QwuscMFwMTORbuJEVEDu3nn382CDRvvfUWAw2RA+JIDRE5rLCwMKSlpclqhYWFsrs3ichxMNQQkcMpLi42CC7NmjXD77//rlBHRFQXTAo1v/zyi8kv2KlTpxo3Q0RUW++88w7mzJkjqx05cgS9e/dWqCMiqismhZouXbpAkiQIIYzu7fBnWq3WIo0REZnL2M8nnU5X7c8tInIMJi0UTk1NxbVr15Camoovv/wSYWFhWLNmDc6cOYMzZ85gzZo1CA8Px5dffmntfomIDFy4cMEguMTExJj0DzEichwmjdT8+ZC3MWPG4P3338djjz2mr3Xq1AnBwcF45ZVXMHLkSIs3SURUlQEDBuDAgQOyWnZ2Npo0aaJQR0SkFLMXCp8/fx5hYWEG9bCwMCQnJ1ukKSKi6ty9e9foIbq8VZvIeZm9T027du3w+uuvo6SkRF8rLS3F66+/jnbt2lm0OSIiY7Zt22YQaL766isGGiInZ/ZIzbp16zB8+HAEBwejc+fOAIBz585BkiR8/fXXFm+QiGyTVidwIjUP2YUl8PdWISrMF64u1l+/YmyNjFarNbpjMBE5F0nU4J82t2/fRnx8PC5evAghBCIiIjB+/Hg0aNDAGj1aTEFBAdRqNfLz8+Hj46N0O0R2KyFJg7g9ydDk/2/ENlCtQuzwCAzpEGiV97x+/TqaN28uq40aNYo3KBA5AVM/v2sUauwVQw1R7SUkaRAdn4h7f3BUjp+snRBpEGxqO6ozadIkbNmyRVa7du2a0fV9ROR4TP38rtGOwlu3bsX69etx7do1/PzzzwgJCcG7776Lli1bYsSIETVumohsm1YnELcn2SDQAIBARbCJ25OMQREB+tBSm1EdHkRJROYwexJ67dq1mD17NoYOHYqbN2/qN9tr1KgR3nvvPUv3R0Q25ERqniyc3EsA0OSX4ERqHoD/jerc+5ys/BJExyciIUlT5Wvt27fPINBs2LCBgYaIqmR2qFm9ejU2bNiAhQsXol69/w30dOvWDefPn7doc0RkW7ILqw40915X3agOUDGqo9UZXuHh4YHBgwfLaiUlJZg2bZqZHRORMzE71KSmpuKBBx4wqHt4eKC4uNgiTRGRbfL3Vpl8nbmjOgBw8+ZNSJKEsrIyfS0yMhJCCHh4eNS4byJyDmaHmrCwMJw9e9ag/u233yIiIsISPRGRjYoK80WgWoWqlvhKqFgvExXma9aoDgAsWrQIvr6+ssfOnj2L06dP16JjInImZi8UnjdvHp5//nmUlJRACIETJ07g888/x7Jly/Dxxx9bo0cishGuLhJih0cgOj4REiCbWqoMOrHDI+DqIpk1qmNs7xl7XDuj1N49RFTB7FAzefJklJeX48UXX8Tt27cxfvx4NGvWDKtWrcK4ceOs0SMR2ZAhHQKxdkIkluz+FVkFpfp6Ux8PLHmivf6OpqgwXzSs74Zbt+9W+VoeN1PRq9Xjstprr72GRYsWWad5K1Ji7x4ikqvRLd3Tp0/H9OnTkZubC51OB39/f0v3RUQ2794RCPNGJDI/nom7N9JlNXvdQ6qqvXsq7/IytncPEVme2WtqBgwYgFu3bgEAGjdurA80BQUFGDBggEWbIyLbU/kBnlUgXzPzR4H8Nu0TqXlGR2l0d0vx2/LHZYGmYcOGEELYZaCpzV1eRGRZZoeagwcPyu5MqFRSUoLDhw9bpCkisk3mfIAbWyhcmPg1Mt4ZLau9tmEHbt68aflm60hN7vIiIuswefrpl19+0f86OTkZWVlZ+u+1Wi0SEhLQrFkzy3ZHRDbFnA/wexcK/7b8cYPrW7y4B4/072npNuuUuXd5EZH1mBxqunTpAkmSIEmS0WkmT09PrF692qLNEZFtMecD/PFOQQhUq/DbhXPQbJ0je9yry1A0Hvw8Av7v9m97Zs5dXkRkXSaHmtTUVAgh0LJlS5w4cQJNmjTRP+bu7g5/f3+4urpapUkisg3mfIC7ukg49vJAg8eaP78V9bwaAfjf7d/2rHLvnqz8EqPTchLgEOGNyB6YHGpCQkIAADqdzmrNEJFtM/UD/IHm3kb3ngmZ/zXwf9c4yq3O5uzdQ0TWZfZC4WXLlmHjxo0G9Y0bN2L58uUWaYqIbFPlBzhQ9Q3drX7/Fp4q+ZEGS+LicPRqLlaN64LPp/fAkfkDHCLQVKrcuydALR/JClCr6ux2bq1O4OeUG/jq7HX8nHKDd1uRU5KEmdt2hoaG4rPPPkOvXr1k9ePHj2PcuHFITU21aIOWVFBQALVabbd7YRDZiqo2mjM23VRWVgY3N7e6bE8xSu0ozI3/yNGZ+vltdqhRqVS4cOECwsLCZPVr164hIiICJSW2u8KfoYbIcv78Aa4tyMHovoYH3drjUQf2pqqN/yqjFDf+I0dg6ue32dNPwcHB+OmnnwzqP/30E4KCgsx9OSKyU64uEnqG+yFh/esGgeb48eMMNHWAG/8RyZl9TMK0adMQExODu3fv6m/t/uGHH/Diiy9izpw51TybiByFEAIuLob/LmKYqTvm7BvUM9yv7hojUojZoebFF19EXl4eZs6cqd9ZWKVSYf78+ViwYIHFGyQi25OWlmYwBf3hhx9i5syZCnXknLjxH5Gc2aFGkiQsX74cr7zyCi5cuABPT0+0bt0aHh4e1T+ZiOze8uXL8dJLL8lqt2/fhqenp0IdOS9u/EckV6NTugHAy8sLDz74oCV7ISIbVlpaCpVK/uHI0RllceM/IjmTQs2oUaOwefNm+Pj4YNSoUfe9dufOnRZp7F5vvPEGvvnmG5w9exbu7u76k8KJyPoOHTqEvn37ymrXr1/nzQEK48Z/RHIm3f2kVqv1u4Oq1er7fllLWVkZxowZg+joaKu9BxEZGj16tCzQPP744xBCMNDYCFvY+I/IVpi9T43SNm/ejJiYmBqN1HCfGiLTZWVlITBQ/oH4ww8/GD3QlpSn1MZ/RHXB1M/vGq+pISLHtX79esyYMUNWu3PnjsGaGrIdlfsGETkzk0LNAw88YPRwOmMSExNr1ZAllZaWorS0VP99QUGBgt0Q2b7y8nI0a9YM2dnZ+tprr72GRYsWKdgVEZFpTFpTM3LkSIwYMQIjRozA4MGDkZKSAg8PD/Tr1w/9+vWDSqVCSkoKBg8ebNabL1myBJIk3ffr1KlTNfqNARWHb/55vU9wcHCNX4vI0SUmJsLNzU0WaK5evcpAQ0R2w+w1NdOmTUNgYCBee+01WT02NhYZGRlGT/CuSm5uLnJzc+97TWhoqGzI25w1NcZGaoKDg7mmhugeM2bMwPr16/Xf9+jRA0ePHjV5hJaIyJqstqbmiy++MDp6MmHCBHTr1s2sUNO4cWM0btzY3BZM5uHhwU0Bie7j5s2b8PWV72Gya9cujBw5UpmGiIhqwexQ4+npiSNHjqB169ay+pEjR6y6iDA9PR15eXlIT0+HVqvF2bNnAQCtWrWCl5eX1d6XyFHt2LEDTz/9tKzGUUwismdmh5qYmBhER0fj9OnT6NGjBwDg2LFj2LhxIxYvXmzxBistXrwYW7Zs0X//wAMVpwIfOHAA/fr1s9r7EjkaIQQ6deqEpKQkfS0mJgbvvvuugl0REdVejfap2bFjB1atWoULFy4AANq1a4cXXngBY8eOtXiDlsR9asjZXbp0CW3btpXVfvnlF3Ts2FGhjoiIqmfq57fdbb5XGww15MwWLlyIpUuX6r8PCwvDlStX4OrqqmBXRETVs+rme7du3cK///1vXLt2DXPnzoWvry8SExPRtGlTNGvWrMZNE5HlFRcXG6w727JlCyZOnKhQR0RE1mF2qPnll18wcOBAqNVqpKWlYdq0afD19cWuXbvw22+/4dNPP7VGn0RUAwkJCRg6dKislpOTY9W7DomIlGLS5nt/Nnv2bEyaNAlXrlyR3e00dOhQHDp0yKLNEVHNCCEwYMAAWaCZMGEChBAMNETksMweqTl58qRsk65KzZo1Q1ZWlkWaIqKaS09PR0hIiKx29OhR9OzZU6GOiIjqhtkjNSqVyugZSpcuXUKTJk0s0hQR1cw777wjCzQNGjRAWVkZAw0ROQWzQ82IESPw6quv4u7duwAASZKQnp6Ol156CaNHj7Z4g0RUvbKyMri7u2POnDn62rvvvouioiK4ubkp2BkRUd0xO9SsXLkSOTk58Pf3x507d9C3b1+0atUK3t7eeOONN6zRIxHdx08//QQPDw/9PzQAICMjAzExMco1RUSkALPX1Pj4+ODIkSPYv38/EhMTodPpEBkZiYEDB1qjPyK6j3HjxmH79u367wcPHoyEhAQFOyIiUo5Zoaa8vBwqlQpnz57FgAEDMGDAAGv1RUT3kZ2djaZNm8pq+/btw6BBgxTqiIhIeWZNP9WrVw8hISHQarXW6oeIqrFx40aDQFNcXMxAQ0ROz+w1NYsWLcKCBQuQl5dnjX6IqAparRbBwcGYOnWqvrZ48WIIIVC/fn0FOyMisg1mr6l5//33cfXqVQQFBSEkJAQNGjSQPZ6YmGix5oiowrlz59ClSxdZ7fLly2jdurUyDRER2SCzQ82IESMgSZI1eiEiI/7xj3/ggw8+0H//wAMP4PTp0/z/kIjoHjylm8hG5efno2HDhrLaF198gaeeekqZhoiIFGLq57fJa2pu376N559/Hs2aNYO/vz/Gjx+P3NxcizRLRHI7d+40CDS3bt1ioCEiug+TQ01sbCw2b96MYcOGYdy4cfjuu+8QHR1tzd6InI4QApGRkbLduWfOnAkhBNRqtYKdERHZPpPX1OzcuROffPIJxo0bB6DixN/evXtDq9XC1dXVag0SOYsrV66gTZs2stqZM2cMFggTEZFxJo/UZGRkoE+fPvrvo6KiUK9ePWRmZlqlMSJnEhcXJws0zZo1Q3l5OQMNEZEZTB6p0Wq1cHd3lz+5Xj2Ul5dbvCmiuqTVCZxIzUN2YQn8vVWICvOFq0vd3Fl0584dgz1mNmzYgGnTptXJ+xMRORKTQ40QApMmTYKHh4e+VlJSghkzZsj2qtm5c6dlOySyooQkDeL2JEOTX6KvBapViB0egSEdAq363t9//73BLsB//PEH/P39rfq+RESOyuRQ89xzzxnUJkyYYNFmiOpSQpIG0fGJuHdPg6z8EkTHJ2LthEirBZuhQ4fKDp4cO3as7GBKIiIyn8mhZtOmTdbsg6hOaXUCcXuSDQINAAgAEoC4PckYFBFg0amo69evo3nz5rLa4cOH8dBDD1nsPYiInJXZZz8ROYITqXmyKad7CQCa/BKcSLXcGWfvv/++LNC4ubmhtLSUgYaIyEIYasgpZRdWHWhqct393L17F97e3njhhRf0tRUrVqCsrMxg8T0REdWc2Wc/ETkCf2+VRa+ryrFjx9CzZ09ZLS0tDSEhIbV6XSIiMsSRGnJKUWG+CFSrUNVqGQkVd0FFhfnW+D0mTpwoCzT9+/eHTqdjoCEishKGGnJKri4SYodHAIBBsKn8PnZ4RI0WCefm5kKSJGzdulVf27t3L/bv38+TtYmIrIihhpzWkA6BWDshEgFq+RRTgFpV49u5t27diiZNmshqRUVFGDp0aK16JSKi6nFNDTm1IR0CMSgioNY7Cut0OrRq1Qqpqan62ksvvYRly5ZZumUiIqoCQw05PVcXCT3D/Wr8/KSkJHTs2FFWu3DhAtq2bVvb1oiIyAycfiKqhTlz5sgCTUREBLRaLQMNEZECOFJDVAOFhYXw8fGR1T7//HOMGzdOoY6IiIihhshMu3fvxogRI2S1vLw8NGrUSKGOlKfkSedERJUYaohMJIRAz549cfz4cX1t+vTp+OijjxTsSnlKnnRORPRnDDVEJrh27RrCw8NltZMnT6Jbt24KdWQblDzpnIjoXlwoTFSNpUuXygJNkyZNcPfuXacPNNWddA5UnHSu1Rm7gojI8hhqiKpQUlICSZKwcOFCfW3t2rXIzs5GvXoc5FTipHMiovvhT2YiIw4cOIABAwbIahqNBgEBAQp1ZHvq8qRzIiJTcKSG6B4jRoyQBZqRI0dCCMFAc4+6OumciMhUHKkh+j8ajQZBQUGy2oEDB9CvXz9lGrJxlSedZ+WXGF1XI6HiHK3anHRORGQOjtQQoWKtzL2B5s6dOww092HNk86JiGqCoYacWnl5Ofz8/DBz5kx9benSpRBCQKXitEl1rHHSORFRTXH6qZa4k6r9OnXqFB588EFZ7dq1awgLC1OoI/tkqZPOiYhqi6GmFriTqv2aNm0aPvnkE/33vXv3xuHDhyFJ/CCuidqedE5EZAmcfqqhyp1U792no3In1YQkjUKd0f3k5eVBkiRZoNm9ezeOHDnCQENEZOcYamqAO6nap88//xx+fvLRhIKCAgwfPlyhjoiIyJIYamqAO6naF51Oh7Zt22L8+PH62pw5cyCEgLe3t4KdERGRJXFNTQ1wJ1X7ceHCBURERMhqSUlJaN++vUIdERGRtXCkpga4k6p9eOmll2SBpnXr1tBqtQw0REQOiiM1NcCdVG1bUVGRwbTS1q1bMWHCBIU6IiKiusCRmhrgTqq265tvvjEINLm5uQw0REROgKGmhriTqm0RQuDhhx/G448/rq9NmjQJQgiDO56IiMgxcfqpFriTqm347bffEBoaKqsdO3YM3bt3V6YhIiJSBENNLXEnVWW99dZbmD9/vv57tVqNnJwcuLm5KdgVEREpgaGG7FJpaSnq168PnU6nr61evRp///vfFeyKiIiUxFBDdufw4cN4+OGHZbXff/8dzZo1U6gjIiKyBVwoTHZlzJgxskDz2GOPQQjBQENERBypsSVaneCi4yr88ccfCAgIkNW+//57PPLIIwp1REREtoahxkYkJGkQtydZdqZUoFqF2OERTn97+IYNG/C3v/1NVrt9+zY8PT0V6oiIiGwRp59sQEKSBtHxiQaHZGbllyA6PhEJSRqFOlOWVqtFQECALNDExcVBCMFAQ0REBjhSozCtTiBuT7LR4xYEKnYojtuTjEERAU41FXXmzBlERkbKalevXkV4eLhCHRERka3jSI3CTqTmGYzQ/JkAoMkvwYnUvLprSmEzZ86UBZoHH3wQOp2OgYaIiO6LIzUKyy6sOtDU5Dp7duvWLTRq1EhW+/LLLzFq1CiFOiIiIntiFyM1aWlpmDp1KsLCwuDp6Ynw8HDExsairKxM6dZqzd9bVf1FZlxnr7744guDQJOfn89AQ0REJrOLkZqLFy9Cp9Nh/fr1aNWqFZKSkjB9+nQUFxdj5cqVSrdXK1FhvghUq5CVX2J0XY2EikMyo8J867q1OiGEQOfOnXH+/Hl9bdasWVi1apWCXRERkT2ShBDGPktt3ooVK7B27Vpcu3bN5OcUFBRArVYjPz8fPj4+VuzOPJV3PwGQBZvKZcGOeur3pUuX0LZtW1nt3Llz6NSpk0IdERGRLTL189supp+Myc/Ph6/v/UcvSktLUVBQIPuyRUM6BGLthEgEqOVTTAFqlcMGmkWLFskCTUhICMrLyxloiIioxuxi+uleKSkpWL16Nd5+++37Xrds2TLExcXVUVe1M6RDIAZFBDj8jsK3b99GgwYNZLWNGzdi8uTJCnVERESOQtHppyVLllQbOk6ePIlu3brpv8/MzETfvn3Rt29ffPzxx/d9bmlpKUpLS/XfFxQUIDg42Oamn5zFf//7XwwZMkRWy87ORpMmTRTqiIiI7IGp00+Khprc3Fzk5ube95rQ0FCoVBXTMpmZmejfvz+6d++OzZs3w8XFvNkzW11T4+iEEHj00Ufx/fff62vjx4/Htm3bFOyKiIjshamf34pOPzVu3BiNGzc26drr16+jf//+6Nq1KzZt2mR2oCFlZGRkoEWLFrLaTz/9hF69einUEREROSq7SAaZmZno168fgoODsXLlSuTk5CArKwtZWVlKt0b38e6778oCjUqlQmlpKQMNERFZhV0sFN63bx+uXr2Kq1evonnz5rLH7PSOdIdWVlYGHx8f2Xqmd955B//85z8V7IqIiByd3e5TUxNcU2N9R48eRe/evWW19PR0BAcHK9QRERHZO4ffp4Zsz/jx42WBZuDAgdDpdAw0RERUJ+xi+olsW05ODvz9/WW1hIQEDB48WKGOiIjIGXGkhmpl06ZNBoGmuLiYgYaIiOocQw3ViFarRYsWLTBlyhR9bdGiRRBCoH79+gp2RkREzorTT2S2X375BZ07d5bVLl26hDZt2ijUEREREUdqyEwvvPCCLNB07twZOp2OgYaIiBTHkRoySeXtdH+2Y8cOjBkzRqGOiIiI5BhqqFq7du3CqFGjZLWbN2+iYcOGyjRERERkBKefqEpCCHTr1k0WaKKjoyGEYKAhIiKbw5EaMurq1ato3bq1rJaYmIgHHnhAoY6IiIjujyM1ZODVV1+VBZrAwECUl5cz0BARkU3jSA3p3blzx2CPmY8++gjTp09XqCMiIiLTMdQQAOCHH37AwIEDZbWsrCw0bdpUoY6IiIjMw+knwrBhw2SB5qmnnoIQgoGGiIjsCkdqnNj169fRvHlzWe3HH3/Eww8/rFBHRERENceRGie1evVqWaBxcXFBSUkJAw0REdkthhonc/fuXfj4+GDWrFn62vLly6HVauHh4aFgZ0RERLXD6Scncvz4cfTo0UNWS01NRWhoqDINERERWRBHapzEpEmTZIGmb9++0Ol0DDREROQwOFLj4G7cuIHGjRvLat988w0ee+wxhToiIiKyDo7UOLCtW7caBJrCwkIGGiIickgMNQ5Ip9OhVatWmDhxor42f/58CCHg5eWlYGdERETWw+knB/Prr7+iQ4cOslpycjLatWunUEdERER1gyM1DmTu3LmyQNOuXTtotVoGGiIicgocqXEAhYWF8PHxkdU+++wzPPPMMwp1REREVPcYauzcnj178MQTT8hqN27cgK+vr0IdERERKYPTT3ZKCIHevXvLAs3UqVMhhGCgISIip8SRGjuUmpqKli1bymonT55Et27dFOqIiIhIeRypsTPLli2TBRo/Pz/cvXuXgYaIiJweR2rsRElJCTw9PWW1Dz/8EDNnzlSoIyIiItvCUGMHDh48iP79+8tqmZmZCAwMVKgjIiIi28PpJxs3cuRIWaB54oknIIRgoCEiIroHR2pslEajQVBQkKy2f/9+gxEbIiIiqsCRGhu0bt06g0Bz584dBhoiIqL7YKixIeXl5WjcuDGio6P1tTfeeANCCKhUKgU7IyIisn2cfrIRp0+fNrgtOyUlxWA/GiIiIjKOIzU2YPr06bJA06NHD+h0OgYaIiIiM3CkRkE3b940ONLgq6++MjjLiYiIiKrHkRqF/Otf/zIINAUFBQw0RERENcRQU8d0Oh3at2+PZ555Rl+bPXs2hBDw9vZWsDMiIiL7xumnOnTx4kW0a9dOVjt//jw6dOigUEdERESOgyM1dWTBggWyQBMeHg6tVstAQ0REZCEcqbGy4uJieHl5yWpbtmzBxIkTFeqIiIjIMTHUWNG3336Lxx57TFbLyclB48aNFeqIiIjIcXH6yQqEEOjfv78s0EycOBFCCAYaIiIiK+FIjYX99ttvCA0NldWOHTuG7t27K9MQERGRk+BIjQWtXLlSFmi8vb1RVlbGQENERFQHOFJjAaWlpWjQoAG0Wq2+tmrVKsyaNUvBroiIiJwLQ40F3HuC9u+//45mzZop1A0REZFz4vSTBVQeRjlkyBAIIRhoiIiIFMCRGgs4efKk0i0QERE5PY7UEBERkUNgqCEiIiKHwFBDREREDoGhhoiIiBwCQw0RERE5BIYaIiIicggMNUREROQQGGqIiIjIITDUEBERkUNgqCEiIiKHwFBDREREDoGhhoiIiBwCQw0RERE5BIYaIiIicgj1lG6gLgkhAAAFBQUKd0JERESmqvzcrvwcr4pThZrCwkIAQHBwsMKdEBERkbkKCwuhVqurfFwS1cUeB6LT6ZCZmQlvb29IkqR0O06voKAAwcHByMjIgI+Pj9Lt0J/w78Z28e/GtvHvxzqEECgsLERQUBBcXKpeOeNUIzUuLi5o3ry50m3QPXx8fPg/v43i343t4t+NbePfj+Xdb4SmEhcKExERkUNgqCEiIiKHwFBDivHw8EBsbCw8PDyUboXuwb8b28W/G9vGvx9lOdVCYSIiInJcHKkhIiIih8BQQ0RERA6BoYaIiIgcAkMNEREROQSGGlJcWloapk6dirCwMHh6eiI8PByxsbEoKytTujUC8MYbb6BXr16oX78+GjZsqHQ7Tm/NmjUICwuDSqVC165dcfjwYaVbIgCHDh3C8OHDERQUBEmS8J///EfplpwSQw0p7uLFi9DpdFi/fj1+/fVXvPvuu1i3bh1efvllpVsjAGVlZRgzZgyio6OVbsXpbd++HTExMVi4cCHOnDmDPn36YOjQoUhPT1e6NadXXFyMzp0744MPPlC6FafGW7rJJq1YsQJr167FtWvXlG6F/s/mzZsRExODW7duKd2K0+revTsiIyOxdu1afa1du3YYOXIkli1bpmBn9GeSJGHXrl0YOXKk0q04HY7UkE3Kz8+Hr6+v0m0Q2YyysjKcPn0ajz76qKz+6KOP4ujRowp1RWRbGGrI5qSkpGD16tWYMWOG0q0Q2Yzc3FxotVo0bdpUVm/atCmysrIU6orItjDUkNUsWbIEkiTd9+vUqVOy52RmZmLIkCEYM2YMpk2bplDnjq8mfzdkGyRJkn0vhDCoETmreko3QI7r73//O8aNG3ffa0JDQ/W/zszMRP/+/dGzZ0989NFHVu7OuZn7d0PKa9y4MVxdXQ1GZbKzsw1Gb4icFUMNWU3jxo3RuHFjk669fv06+vfvj65du2LTpk1wceEgojWZ83dDtsHd3R1du3bFd999hyeffFJf/+677zBixAgFOyOyHQw1pLjMzEz069cPLVq0wMqVK5GTk6N/LCAgQMHOCADS09ORl5eH9PR0aLVanD17FgDQqlUreHl5Kduck5k9ezb++te/olu3bvoRzfT0dK4/swFFRUW4evWq/vvU1FScPXsWvr6+aNGihYKdORfe0k2K27x5MyZPnmz0Mf7nqbxJkyZhy5YtBvUDBw6gX79+dd+Qk1uzZg3eeustaDQadOjQAe+++y4efvhhpdtyegcPHkT//v0N6s899xw2b95c9w05KYYaIiIicghcuEBEREQOgaGGiIiIHAJDDRERETkEhhoiIiJyCAw1RERE5BAYaoiIiMghMNQQERGRQ2CoISKqRr9+/RATE6N0G0RUDYYaIgKAak/tnjRpUp31Yo0QMWnSJIwcOdKir1mVgwcPQpIk3Lp1q07ej4gq8OwnIgIAaDQa/a+3b9+OxYsX49KlS/qap6en7Pq7d+/Czc2tzvojIqoOR2qICEDF4aGVX2q1GpIk6b8vKSlBw4YNsWPHDvTr1w8qlQrx8fFYsmQJunTpInud9957D6GhobLapk2b0K5dO6hUKrRt2xZr1qypso9Jkybhxx9/xKpVq/SjRGlpaQCA5ORkPPbYY/Dy8kLTpk3x17/+Fbm5ufrn/vvf/0bHjh3h6ekJPz8/DBw4EMXFxViyZAm2bNmCr776Sv+aBw8eNPr+xcXFmDhxIry8vBAYGIi3337b4Jr4+Hh069YN3t7eCAgIwPjx45GdnQ0ASEtL058B1KhRI9koV0JCAh566CE0bNgQfn5+ePzxx5GSknKfvxUiMgdDDRGZbP78+Zg1axYuXLiAwYMHm/ScDRs2YOHChXjjjTdw4cIFLF26FK+88orRQzIBYNWqVejZsyemT58OjUYDjUaD4OBgaDQa9O3bF126dMGpU6eQkJCAP/74A2PHjgVQMdL0zDPPYMqUKbhw4QIOHjyIUaNGQQiBuXPnYuzYsRgyZIj+NXv16mX0/efNm4cDBw5g165d2LdvHw4ePIjTp0/LrikrK8Nrr72Gc+fO4T//+Q9SU1P1wSU4OBhffvklAODSpUvQaDRYtWoVgIrANHv2bJw8eRI//PADXFxc8OSTT0Kn05n0Z0lE98fpJyIyWUxMDEaNGmXWc1577TW8/fbb+ueFhYUhOTkZ69evx3PPPWdwvVqthru7O+rXr4+AgAB9fe3atYiMjMTSpUv1tY0bNyI4OBiXL19GUVERysvLMWrUKISEhAAAOnbsqL/W09MTpaWlste8V1FRET755BN8+umnGDRoEABgy5YtaN68uey6KVOm6H/dsmVLvP/++4iKikJRURG8vLzg6+sLAPD390fDhg31144ePVr2Op988gn8/f2RnJyMDh06VNkXEZmGIzVEZLJu3bqZdX1OTg4yMjIwdepUeHl56b9ef/11s6ddTp8+jQMHDshep23btgCAlJQUdO7cGY888gg6duyIMWPGYMOGDbh586ZZ75GSkoKysjL07NlTX/P19cVf/vIX2XVnzpzBiBEjEBISAm9vb/Tr1w8AkJ6eXu3rjx8/Hi1btoSPjw/CwsJMeh4RmYYjNURksgYNGsi+d3FxgRBCVrt7967+15XTKhs2bED37t1l17m6upr13jqdDsOHD8fy5csNHgsMDISrqyu+++47HD16FPv27cPq1auxcOFCHD9+XB8eqnPv78WY4uJiPProo3j00UcRHx+PJk2aID09HYMHD0ZZWdl9nzt8+HAEBwdjw4YNCAoKgk6nQ4cOHap9HhGZhqGGiGqsSZMmyMrKghACkiQBAM6ePat/vGnTpmjWrBmuXbuGZ5991uTXdXd3h1arldUiIyPx5ZdfIjQ0FPXqGf/RJUkSevfujd69e2Px4sUICQnBrl27MHv2bKOvea9WrVrBzc0Nx44dQ4sWLQAAN2/exOXLl9G3b18AwMWLF5Gbm4s333wTwcHBAIBTp04Z9A9A9n43btzAhQsXsH79evTp0wcAcOTIEVP/SIjIBJx+IqIa69evH3JycvDWW28hJSUFH374Ib799lvZNUuWLMGyZcuwatUqXL58GefPn8emTZvwzjvvVPm6oaGhOH78ONLS0pCbmwudTofnn38eeXl5eOaZZ3DixAlcu3YN+/btw5QpU6DVanH8+HEsXboUp06dQnp6Onbu3ImcnBy0a9dO/5q//PILLl26hNzcXNmIUiUvLy9MnToV8+bNww8//ICkpCRMmjQJLi7/+1HZokULuLu7Y/Xq1bh27Rp2796N1157TfY6ISEhkCQJX3/9NXJyclBUVIRGjRrBz88PH330Ea5evYr9+/dj9uzZtfnjJ6J7CSKie2zatEmo1Wr996mpqQKAOHPmjMG1a9euFcHBwaJBgwZi4sSJ4o033hAhISGya7Zt2ya6dOki3N3dRaNGjcTDDz8sdu7cWeX7X7p0SfTo0UN4enoKACI1NVUIIcTly5fFk08+KRo2bCg8PT1F27ZtRUxMjNDpdCI5OVkMHjxYNGnSRHh4eIg2bdqI1atX618zOztbDBo0SHh5eQkA4sCBA0bfu7CwUEyYMEHUr19fNG3aVLz11luib9++4oUXXtBf89lnn4nQ0FDh4eEhevbsKXbv3m3w5/Pqq6+KgIAAIUmSeO6554QQQnz33XeiXbt2wsPDQ3Tq1EkcPHhQABC7du2q8s+CiEwnCWHCJDIRERGRjeP0ExERETkEhhoiIiJyCAw1RERE5BAYaoiIiMghMNQQERGRQ2CoISIiIofAUENEREQOgaGGiIiIHAJDDRERETkEhhoiIiJyCAw1RERE5BAYaoiIiMgh/H/MhCdaY3IWWQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -347,7 +347,7 @@ ], "source": [ "predicted = pred.predict(target)\n", - "true_data = pred.get_test_array()[0]\n", + "true_data = pred.get_test_array(j=target)[0]\n", "\n", "plt.scatter(true_data, predicted)\n", "plt.title(r\"NRMSE = %.2f\" % (np.abs(true_data - predicted).mean()/true_data.std()))\n", @@ -381,7 +381,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABuYklEQVR4nO3deZiN9fsH8PeZMfu+GDPDbHYTYUiELCGSSFlTyVKRSgpJtoi0qezZoyxlrZhvCqGsIWTLmDGYmZgZZjFmO+f5/TG/c8wzZ3ueM2ef9+u65rqcz3mW+xzlueez3B+FIAgCiIiIiByci60DICIiIjIHJjVERETkFJjUEBERkVNgUkNEREROgUkNEREROQUmNUREROQUmNQQERGRU2BSQ0RERE6BSQ0RERE5BSY1RE5s9erVUCgU8PT0xNWrV7Xe79ixIxo3bixqi42NhUKh0Pz4+PggISEBCxYsQMUC5Pv27dMct3r1ap0xdO7cGQqFArGxsaL2u3fvYu7cuWjatCn8/f3h5+eHOnXqoH///vj999913kPXj777Wkp+fj7Gjh2LyMhIeHp6olmzZtiwYYOkc3/99Vd07doVkZGR8PDwQFhYGDp37oydO3dqHVtUVIRPPvkEjRs3ho+PD2rUqIEePXrgzz//NPdHInIa1WwdABFZXlFREd5//32sXbtW0vFt27bFp59+CgBIS0vD559/jtdffx25ubl47733tI738/PDihUrMHToUFF7cnIy9u3bB39/f1G7UqlEt27dcObMGYwfPx6tWrUCAPz777/48ccfceDAAXTo0EF0zuzZs9GpUyete9epU0fSZzKXvn374tixY/joo49Qv359fPfddxg0aBBUKhUGDx5s8NysrCw88MADGDFiBMLDw5GdnY0lS5agZ8+eWLt2LYYMGaI5duTIkfj2228xadIkdO7cGdnZ2fjoo4/QoUMH/PHHH5rvjIjKEYjIaa1atUoAIHTv3l1wcXERTp06JXq/Q4cOwgMPPCBqi4mJEXr27Clqy8nJEQICAoTo6GhR+969ewUAwogRIwQAwqVLl0Tvv//++0KtWrWEHj16CDExMZr2PXv2CACElStX6oxbqVRq3eP777+X/Lkt5eeffxYACN99952ovWvXrkJkZKRQWloq+5rFxcVCzZo1hfbt22vaCgsLBVdXV2HIkCGiY9PS0gQAwhtvvGHaByBychx+IqoCJkyYgJCQEEycONGk8/39/VG/fn38999/Ot/v2rUroqKisHLlSk2bSqXCmjVr8OKLL8LFRfxPTVZWFgAgIiJC5/UqHm8vtm7dCl9fX/Tr10/U/tJLLyEtLQ1HjhyRfU03NzcEBgaiWrX7HecuLi5wcXFBQECA6Fh/f3+4uLjA09PTtA9A5OTs818OIjIrPz8/vP/++/jf//6HPXv2yD6/tLQU165dQ/369XW+7+LigqFDh+Kbb76BUqkEAPzyyy+4fv06XnrpJa3jW7ZsCTc3N7z55pv49ttvkZ6ebjQGlUqF0tJSrR9jBEHQeZ4p1zp79iwaNWokSkAA4MEHH9S8L4X6s6SlpWHatGm4dOkS3n77bc37bm5uGD16NNasWYNt27YhNzcXKSkpGDlyJAICAjBy5EhJ9yGqapjUEFURr776KmrXro2JEydqTfitqHwikJqaitGjRyMrKwtz5szRe85LL72E9PR0JCYmAgBWrlyJDh066JzzEhsbiyVLliAtLQ1DhgxBZGQkIiMj8eKLL+LAgQM6rz9gwAC4ublp/Vy/ft3gZ1mzZo3O83T9GJOVlYXg4GCtdnWbugfKmCeeeAJubm6oWbMmvvjiC2zcuBE9e/YUHTNv3jyMGzcOzzzzDAICAhAXF4c//vgDe/bsQd26dSXdh6iq4URhoirC3d0ds2bNwuDBg7Fp0yYMGDBA77E7d+7UesirJ7TqExcXh44dO2LlypVo3bo1tm/fjuXLl+s9ftiwYXjmmWewc+dOHD58GIcPH8a6deuwdu1azJ07F+PHjxcdP3fuXHTu3FnrOjVq1NB7DwDo1asXjh07ZvAYORQKhUnvlTd//nzcuXMH6enpWLduHQYMGIA1a9Zg0KBBmmM+/PBDfPrpp5g+fTrat2+P3NxcLFiwAF27dsUvv/yC5s2bV/qzEDkdG8/pISILUk8UPnbsmCAIgqBSqYSEhAShTp06QnFxsd6Jwu3atROOHTsmHD58WFi7dq0QGxsrVKtWTThw4IDo2IqTeNetWye4ubkJ7733nhAQECAUFBQIgiAIPXv2FE0U1ufs2bNCeHi44ObmJty+fVvnPeRSqVRCSUmJpB9jWrduLTz00EM64wYgLF261KQYu3fvLgQFBWkmSJ87d05QKBTCJ598IjquuLhYqFu3rtCxY0eT7kPk7Dj8RFSFKBQKzJ07F0lJSfj666/1HhcQEICWLVvi4YcfxpAhQ/DLL79o5nmoVCq95/Xt2xfe3t746KOPMHDgQHh5ecmK74EHHsDAgQNRUlKCS5cuyTpXH3MOPzVp0gTnz5/Xmn9z5swZANCq+SNVq1atcPv2bdy6dQsA8Pfff0MQBDz00EOi49zc3NC0aVPJc3eIqhoOPxFVMV26dEHXrl3xwQcfICoqStI59erVw4QJEzBjxgxs3LhRNExSnpeXF6ZOnYr9+/dj1KhReq+XlZUFPz8/uLu7a7134cIFAEBkZKSk2Iwx5/DT008/jWXLlmHz5s2i4bs1a9YgMjISDz/8sOxrCoKA33//HYGBgQgJCQFw/7MfPnxYVK+nqKgIJ06cQK1atSr5SYicE5Maoipo7ty5aNGiBW7evIkHHnhA0jnvvPMOlixZghkzZqB///5wdXXVedy4ceMwbtw4g9fau3cv3nzzTTz33HN45JFHEBISgps3b2L9+vVITEzECy+8oPXg/vfff3H48GGta9WqVcvgQz4kJESTLFRWjx490LVrV4waNQq5ubmoW7euJuZ169aJvpPhw4djzZo1SEpKQkxMDACgd+/eaNq0KZo1a4aQkBCkpaVh9erV+P3337Fw4ULNqqp27drhoYcewvTp01FQUIBHH30UOTk5mD9/PpKTkyUXUSSqapjUEFVBzZs3x6BBg/Ddd99JPsfX1xdTp07Fa6+9hm+//RYvvPCCyfdv3bo1hg0bhr1792Lt2rXIzMyEl5cX4uPjMX/+fJ29PLoqGQPA5MmTMWvWLJNjkWvLli2YPHkypk6diuzsbDRs2BDr16/HwIEDRccplUoolUrRSrO2bdvihx9+wIIFC5Cbm4vAwEC0bNkSP/30k2gStouLC3bv3o1PPvkE33//PT799FP4+voiPj4eO3fuRI8ePaz2eYkciUIQjKztJCIiInIAnChMREREToFJDRERETkFJjVERETkFJjUEBERkVNgUkNEREROgUkNEREROYUqVadGpVIhLS0Nfn5+kjeeIyIiItsSBAF5eXmIjIyEi4v+/pgqldSkpaVJLgtPRERE9uXatWsGK4hXqaTGz88PQNmX4u/vb+NoiIiISIrc3FxERUVpnuP6VKmkRj3k5O/vz6SGiIjIwRibOsKJwkREROQUmNQQERGRU2BSQ0RERE6BSQ0RERE5BSY1RERE5BSY1BAREZFTYFJDREREToFJDRERETkFJjVERETkFJjUEBERkVNgUkNEREROgUkNEREROQUmNURERFRpgiDg3r17No2BSQ0RERFVys6dO+Hi4gJvb29cv37dZnEwqSEiIiKT9e7dGz179tS89vT0tFks1Wx2ZyIiInJY2dnZCAkJEbUdPXoUoaGhNoqIPTVEREQk07Zt27QSmsLCQjz00EM2iqgMkxoiIiKSrGvXrnj66ac1rydOnAhBEODh4WHDqMpw+ImIiIiMunXrFsLCwkRtJ06cQPPmzW0UkTb21BAREZFBmzZtEiU01apVQ3FxsV0lNACTGiIiItJDEAS0bdsWAwYM0LRNmzYNJSUlcHNzs2FkunH4iYiIiLSkp6cjMjJS1Hb27Fk88MADNorIOPbUEBERkcjatWtFCY2/vz9KSkrsOqEBmNQQERHR/xMEAQkJCXjhhRc0bXPmzEFOTg6qVbP/wR37j5CIiIgs7vr164iKihK1XbhwAQ0aNLBRRPKxp4aIiKiKW7ZsmSihCQ8PR2lpqUMlNACTGiIioipLEAQ0aNAAL7/8sqZt3rx5SE9Ph6urqw0jMw2Hn4iIiKqglJQUxMXFidouX76MOnXq2CiiymNPDRERURWzYMECUUJTu3ZtKJVKh05oAPbUEBERVRkqlQoxMTG4fv26pm3RokUYNWqUDaMyHyY1RERETkKpEnA0ORs38woR5ueJVnHBcHVRACgbWqpXr57o+JSUFMTExNgiVItgUkNEROQEEs+mY8aP55CeU6hpiwjwxLRe8fjnf9/hnXfe0bQ/8MADOHPmDBQKhS1CtRgmNURERA4u8Ww6Rq07AaFCe/rtu+jZqiFU93I1bStWrMCwYcOsG6CVMKkhIiJyYEqVgBk/ntNKaEoyryFthXiuzI0bN7T2c3ImXP1ERETkwI4mZ4uGnAAg58+NooTGPaI+/vj3llMnNAB7aoiIiBzazbz7CY2gLMW1L/pDKC3WtIU8+TZ8H+iEW/lFtgjPqpjUEBERObAwP08AQPHNZKSvel30Xq0xa+HqEyQ6zpkxqSEiInJgreKCUXp0PdL3fqtp84hugvBBcwAACgDhAWXLu50dkxoiIiIHoKsGjbK0BB4eHqLjQnu/C5+G7QCUJTQAMK1XvKZejTNjUkNERGTndNWg8ctPxdmFo0XHtZi8GZml95Oc8P+vU9O9cYTVYrUlJjVERER2TFcNmtt7V+Lq0S2a1927d8euXbsMVhSuCpjUEBER2amKNWiE0mKkftZXdEz95z/AT6vfBwC4uijQpk6IlaO0H6xTQ0REZKfK16ApunFBK6Gp9eYGFEUm4Ghyti3CszvsqSEiIrJT6ho02bsXI+/Ez5p27/qPoPrT72kdV9UxqSEiIrJT/tVUuDr3SVFbWL8Z8KrdQtxWBWrQSMGkhoiIyA4dOHAAnR99VNQWNXYTXDy8Na+rUg0aKZjUEBER2Znhw4dj5cqVmtc+D3RC9SffFq2AsqcaNPay6opJDRERkZ3Iz8+Hn5+fqO23335DcVgjrTo19lKDRlcNnQgbxaYQBKHibuVOKzc3FwEBAcjJyYG/v7+twyEiItL47bff0KVLF1FbXl4efH19AdhPb0h5umroAPd7kRYPSTBLYiP1+c0l3URERDY2ePBgUUIzYsQICIKgSWiA+zVoejeriTZ1Qmye0FSsoVOeum3Gj+egVFmv74TDT0RERDaSk5ODwMBAUduBAwfQrl072wQkQ/kaOroIANJzCnE0OdtqBQHZU0NERGQDu3bt0kpoCgoKHCKhAaTXxrFmDR0mNURERFbWp08fPPHEE5rXr7/+OgRBgJeXlw2jkkdqbRxr1tDh8BMREZGVZGdnIyREPBRz5MgRtGrVykYRma5VXDAiAjyRkVOoc16NLWrosKeGiIjICrZv366V0BQWFjpkQgOUTVye1isewP3VTmq2qqHDpIaIiMjCunXrhj59+mheT5gwAYIgwMPDw3ZBmUH3xhFYPCQB4QHiIabwAE+zLeeWg8NPREREFnLr1i2EhYWJ2k6cOIHmzZvbKCLz6944Al3jw+2ihg6TGiIiIgvYtGkTBgwYoHnt4uKCe/fuwd3d3YZRWYa6ho6tcfiJiIjIjARBQPv27UUJzZQpU6BUKp0yobEnDpXU7N+/H7169UJkZCQUCgW2bdtm65CIiIg0MjIy4OLigoMHD2razpw5gw8++MCGUVUdDpXU3L17F02bNsWCBQtsHQoREZHIunXrEBFxf2Ksr68vSkpK0LhxYxtGVbU41JyaHj16oEePHrYOg4iISEMQBLRs2RInTpzQtM2ePRuTJk2yYVRVk0MlNXIVFRWhqKhI8zo3N9eG0RARkbO5fv06oqKiRG3nz59Hw4YNtY61x122nY1TJzVz5szBjBkzbB0GERH9P2d6sK9YsQIjRozQvA4LC0NaWhpcXV21jk08m44ZP54TbQAZEeCJab3irV7LxZkpBEGw3p7gZqRQKLB161ZRMaOKdPXUREVFIScnB/7+/laIkoiI1JzlwS4IAuLj43HhwgVN22effYZx48bpPD7xbDpGrTuhtZWAOpWzRZE6R5Obm4uAgACjz2+n7qnx8PBw+GqNRETOQN+DPSOnEKPWnXCYB/vVq1cRGxsrart8+TLq1Kmj83ilSsCMH8/p3BtJQFliM+PHc+gaH+6wPVb2xKFWPxERkeMx9mAHyh7sSpXhgQOlSsChpCxsP3UDh5KyjB5vbgsXLhQlNLGxsVAqlXoTGgA4mpwt6pmqSACQnlOIo8nZZoy06nKonpr8/HxcvnxZ8zo5ORmnTp1CcHAwoqOjbRgZERHpI+fBrq8qrS2HrlQqFeLi4pCamqppW7hwIUaPHm303Jt5+j+3ruOcac6RLThUUnP8+HF06tRJ81o9fvniiy9i9erVNoqKiIgMkftgr8iWQ1eXL19GvXr1RG0pKSmIiYmRdH5K5l1Jx4X5eTrNnCNbcqjhp44dO0IQBK0fJjRERPYrzM/T+EF6jjPX0JUpPv/8c1FCEx8fD5VKJTmhUaoErD+aavS4iABP3L5bhFHrTmj1aKkTt8Sz6fKCr6IcKqkhIiLH0yImCMZGUFwUZcdVZIs5KUqlEtWrV8fbb7+taVu+fDn++ecfKBTSh4KOJmcjI7fI6HEDWkZh5s/nbZK4ORsmNUREZFF/Xb0NY89jlVB2XEWVHbqS68KFC6hWrRoyMzM1bdevX8fw4cNlX0tqTKUqFScTmwmTGiIisiipD/c/Lmdq9UZUZuhKrtmzZ6NRo0aa1y1btoRKpULNmjVNup70mKT1/pgrcXNmTGqIiMiipD7cF+y9jHZz94jmj7SKC0ZEgKfex74CZXNSWsUFmxxfaWkpfHx8MHnyZE3b2rVrcezYMVnDTRVJjV3fiq+KzJG4OTsmNUREZFHqh7sUFSfGurooMK1XPADt/gz162m94k1e9nzmzBm4ubmhoKBA05aeno4hQ4YYPE9KzRypsbeuHWLxxK2qYFJDREQW5eqiwFNNpS1J1jUxtnvjCCwekoDwColReIBnpZZzT506FQ8++KDm9aOPPgqVSoXw8HCD5yWeTUe7uXswaNlhvLnhFAYtO6zVw6QmJXZLJ25VicPu/WQKqXtHEBGR6SoWkGsRE4QOn+w1OBlWl/UjW4uGZsxVmK64uFhrC51NmzahX79+Rs81dR8nKbGzTo1+3PuJiIhMZmoCoevBHOzjhuy7JbJjqDgx1tVFIXn+iT4nTpxAixYtRG23bt1CaGio0XMrs4+TlNi7N45A1/hw2d87qxDfx6SGiIhETO0x0NeLYUpCA5h/YuyECRPwySefaF5369YN//vf/ySfb47tHoyRm7ixd0eMc2qIiEhDnZjIrWxrqBdDLnNPjC0sLIRCoRAlNNu2bZOV0ADWr5ljjKl/V86MSQ0REQGo3JYExnoxpDL3xNgjR47Ay8tL1JaVlYXevXvLvpY1a+YYY8vtI+wZkxoiIgJQuS0JzNU7UdkVTeW9/vrraN26teZ1nz59IAgCgoNN6wGyRs0cqWyxfYQj4JwaIiICULnhFVN7J8L9PTCoVTRiQ33MNsm1oKAAPj4+orZdu3ahe/fulbqueun1qHUnoABEvSTWXnptb0Nh9oJJDRGRHbLFipbKDK+0igtGoJcb7twzPil4TKe6qFfD1yKf6+DBg2jfvr2o7c6dOwgICDDL9dV1ZypOzg238uRcexoKsydMaoiI7IytVrS0iAkyuPxagbKHt67hFVcXBV5qG4t5v/5r9D5t64ZWemm2LiNHjsTy5cs1rwcPHoxvv/3W7Pcpv/Q6I+ceMvOLcaegGGdv5MDPww2t64RYPAFVD4Vl5BTqnFdj6O/KmTGpISKn50h1PPQti1avaDHXfBNd953x4zmDCQ1geHhlTOd6WPVnCu4UyE+KypP795Wfnw8/Pz9R26+//orHHnvM4H0qw9VFgZx7xZjx0znR512wNwmB3m74qG8Tiyag9jQUZk9YUZiInJoj1fFQqgS0m7tH7wRQdVJwcGJnsz6s9CVS5Un9zkytuFv+fDl/X3v27NFKXvLy8uDr62swzspKPJuOV9edMHjMEgsloBXjcJT/vitD6vObSQ0ROa3KPmCt7VBSFgYtO2z0uIrbB1SGsUQKAEJ83HFo0mNwryZtway5i/fp+/saMmSIaHhp+PDhouEnS1GqBLT9aA8ycg1Pwg3398Af7z5m8d4SR+qJNBW3SSCiKq0yJe1txRYrWqTUl8m6W4y/rt6WnEiZUu5fzt9Xfl4uAgMDRcfs378f7du3t8oD/mhyttGEBgAycosqVV1YKnNsH+EsmNQQkVOyRkl7c7PFihZLJVJyH7SHr2RJ+vv6avX3GDd8gOi9u3fvwtvb22pDMXK+i6q2pNrWWHyPiJySI9bxsEVxN2slUkqVgENJWdh+6gYOJWWJKt0mnk3Ha98anp8CADe3fihKaMaMGQNBEDQJjbW2DJDzXVS1JdW2xp4aInJKjljHwxYrWqyxNNhQDwoAo5OUlYX5uP7lQFHb4cOH8fDDD5e9b+WhxlZxwQj395Q0p6aqLam2NfbUEJFTsqeS9nKoi7uFB4iTLXNuH1CeOpECoPVdmSORMtaD8u6WMwYTmoJ/j2glNPfu3dMkNID1twxwdVFg+lPxRo+b/tQDdjNfq6pgTw0ROSVHruNhykRbQ4xNnrVUlVwpmy7qq2kDAP9tmobC5L80r58Z+ip+WLVY6zhbDDV2bxyBJUMS8O6WM1qfwRp1akg3JjVE5LTspaS9Kcy1omXn6XS8v/0ssu8Wa9p0TZ4VVcnNLUR2fhGCfdwR4OUOpUowKaEydeduZUEOrs9/TtQ2f2MixvR/XOfxthpqVH9nh69k4VBSFgABbWqHWqWiMOnGpIaInJq5ez0cyZyd57B0f7JWe7qe6sTqKrkfJ14wywoiU3pGcg5/jzu/rxG1PTjlR4x6tpvec2y5ZYCriwJt64aibd1Qs1+b5OOcGiJyeupej97NaqJNFfkteufpNJ0JjZqAssmzFVchmXMFkZyeEUEQcHXuk6KEJqDNAMRM/Ak5xQqD82EsPS+IHAeTGiIiJ6NUCXh/+1mjx5WfPCtl/kvFJMiYVnHBCPR20/u+AoCPuytKbqcj9eNeovciXvoKgY8+r3ltrNfH0ATrhYMTEODlrnM5OTkXDj8REdmAOSrf6rvG0eRsvRtTVvTruQy0qRNikWKFu89lGJwILACIuLQF5zYuE7VHv7MVCldxMiSl10fXUOPtu0WY+bPz741EZZjUEBFZmTkq3xq6RlGpSnIsK/5IwUNxwZLPkTpPRt3zo48gCEj9uBeulmvzjGuBGv1naB0rZ+l9+QnWiWfT8dp3J62+4znZDoefiIisyBzzVoxdIyWzQFZMM348h1AfD0nHSp0nY6jnpyTrmtZwU/hzcxGuI6EBgHslSuw+lyHpvmqWGE4j+8ekhojISszxoJVyjQ3HUhHuLy1JAcqGlaCAWYsV6uvRyd69BGnLR4na9l/IwKp3n0eAnvk3OQUlsicqW7sgH9kHJjVERFZijget1GsMeChKb4KiS2Z+kVlXEFXs0VGvbso78ZOmzbv+I4iZ+BOy75Wic8MaeuM1pWfFEff+ospjUkNEZCXmeNBKvcaaP6/i5UfjEOzjLun4MD9Ps27R0CouGME+ZT0vxTeTtYebnv8M1Z9+DwCQknkXref8httGJhXL6VlxxL2/qPI4UZiIyErM8aCVeo0790rw9f5kfDWoOabtOKt3NVTFwnTmKlbo6qLArN6N0X/Ii7h75lfRe9Hjt0Ph4goACPJ2w7xf/5V8XalJnS0L8pHtsKeGiMhKzLHJprFrVDR753nM6t0YCkgfVjJHsUKVSoWeTWuKEhqfxo8hZuJPmoSm4p5cUmTmFUkagmJBvqqJSQ0RkZWY40Fb/hrGqIdsgnw8rLrz9/Hjx+Hq6ipqazB6MUJ7vqV5HRHgibFd6husY6PLzJ/Po93cPZImDVt7x3OyPYUgCFVmPVtubi4CAgKQk5MDf39/W4dDRFWUuerUvLv5DO7cM54UfDmwGXo3q2mWgn/GDBgwAJs2bRK1KZVKCFBo3fun02l4c8Mp2fdQRyw1MbHG5ybLkvr85pwaIiIzkvIANce8le6NI+Dn6Ybnlh8xeqx6Ho65dv7WpbS0FG5u4iXZo0ePxsKFCzWvK97b1Em6AsoSmxk/nkPX+HCj35slPzfZFyY1RERmIqcHxtQHbfmkKdTXA+H+Hvgvt8imk2H//PNPtG3bVtT2zz//ID7e8DCZscm8hpiybQM5PyY1RERmoK7ya8mS/LqSpkBvN03PRfl7W2MyrFIloP1j3XBon3h1k0qlgkJh/J7q+UGj1p0wadIwwDozJMaJwkRElWSNkvz6tkbI+f+JthWr8RqaDKtUCTiUlCXatVpXmyE/nryKaq4uooQmon0/7DqTJimhUVNP5tVXTdgYS9WZkft9kH1gTw0RUSVZYofr8owlTQoAXm6uWDg8AZl3iwzO0dHX2wNAtBLJ0MTlj1Z8j0kj+ovaIl/+Gu5BkSb3SsldBWXJoTVzTOQm22BPDRFRJVm6JL/UpMnFRWGwtoy+3p47BSVaSYW+DTY7dOyoldBET/gRbkGRJvVKGdvNWxdLDq2ZY8NRsh321BARVZKcSsGmLC82R9JkqLdHF/Vx724+Az9PNzSL9IGvj7fomIBHBiGw/XNa56l7pVrFBRv9rMYSNl3CLdRrIqVHTOqKK7INJjVERJUktST/7btFaDd3j+xhDXNsr2BK8gCUbbfQd9JC3Pxhuqi95qsrUS0gTO95v57LwLhNp4x+VqkJ25hOdVCvhp9F68xYehiRLI/DT0RElSSlUvBTTSPw2ncnTRrWMMf2CqYOfaWvflMroYmZ+JPBhAYAVvyRIumzSk3Y2tatXqltG6Tgzt6Oz+SkpqCgABcuXMDp06dFP0REVZGhkvwLBydgx9/pJq+OMsf2CnJXCalKCnF17pMo/i9J0xbUYShaz/4V4f4eBhMsfWHo+qzmSNjMhTt7Oz7Zw0+3bt3CSy+9hF27dul8X6lUVjooIiJrMlcZfX2Vgs0xrKFOmqbvOIeM3PvXkjq/RE6hu4JLh3Br64eitpqjV6OaXyjScwrxVpd6+OLXf3XWxhEAGNp8p+JnLV+rRh9rbTzJnb0dn+yemrFjx+L27ds4fPgwvLy8kJiYiDVr1qBevXrYsWOHJWIkIrKYxLPpaDd3DwYtO4w3N5zCoGWHJW+YqIuuHa6lDldk5NyTUBtF3KZv+76KdVYA6O3tKe/Gsle0EpqYiT+hml+o5nXuvRK9vVLD2sYauPp95b+T7o0j8PKjcVo9PC4K4OVH46y2jJo7ezs+2RtaRkREYPv27WjVqhX8/f1x/Phx1K9fHzt27MDHH3+MgwcPWirWSuOGlkRUnr4qwHI3TDTmUFIWBi07bPS4YB93ZN8t1rwuP7FWTqyG6qwA0FmnRllUgLOznxZdO6jLK/Bv0UtHnG44NrkrAOjslZLyWdePbK3plbLW34NUrFNjfyy2oeXdu3cRFlY2QSw4OBi3bt1C/fr10aRJE5w4ob/7kIjInlhz+a7UoZ/yCQ1wf2LtwsEJmPmztFh3n8swul3DwYmdRcnIlcP/w5Ah4qXZtcasg6tPoJ44SzTDRxWHy+QO4djjMmpzbDhKtiF7+KlBgwa4ePEiAKBZs2ZYunQpbty4gSVLliAighksETkGOfNcKsvQsIYh6gf9lO1nJcV6+EqWwQRBAPDe1jPY8XcaAODJByPRt11jUULjWq0aYib+pDehUdM3pCZ3CMeafw9y6BpGJPtn0pya9PSyseZp06YhMTER0dHR+OqrrzB79myzB0hEZAnWXr6rb3VUsI/hPY8EAFkVenD0OZSUZbQWTfbdEry18RT6z/8V1VxdkJGRoXnv66+/xoELGQbOvs/QCiBDK8EqDiVxGTWZk+zhp+eeu5/RN2/eHCkpKbhw4QKio6MRGhpq4EwiIvthyvLdyq6S0jWskZFbiLc2npIbvk7XbxdIOi7/9G5k7fpS1JZ4/F90aV4HQNn8EX3JkbEVQOrvqKhUhU+fbQoogMx8/ftRcRk1mZPspOaDDz7AO++8A2/vsnLZ3t7eSEhIwL179/DBBx9g6tSpZg+SiMjc5M79MNfkUfWwhpp6ZZIxQd5uuFNQYnBOzrZTaUavk/r5sxBK7n8GFy9/RL3xHV75/iIifrmKab3iRUusKy7ZBvSvADL0Helbqs5l1GROsoefZsyYgfz8fK32goICzJgxwyxBERFZmpy5H/o2OUzPKcSr605g52nTNzk0VnxOTSUImomzplAW5ODq3CdFCU3Ik28j6o3vNK/Vk4kBSB4+UjN1I0guoyZzkp3UCIIAhUL7P66///4bwcGWz6QXLVqEuLg4eHp6okWLFjhw4IDF70lEzknK3A+lSsC7W84Y7CEZs/4Edp423kuii9RJxLn3SgEAAd6G5+DoknfiZ1yfL17dFDV2I3wf6CRqK1/xt2t8OA5O7Iz1I1vjy4HNsH5kaxyc2FlnQmNsBZP6mvoqJsuZg0NkiOThp6CgICgUCigUCtSvX1+U2CiVSuTn5+PVV1+1SJBqGzduxNixY7Fo0SK0bdsWS5cuRY8ePXDu3DlER0db9N5E5JyMLd9dsOdf3CkoMXgNlQCM/u4klrgoTHoA66sWXJ66l8bLzRWvPVEXH+48L+naV+c+KXrtGlADtV5doff4ihV/pWzcaK6KyVxGTZUlOan54osvIAgChg0bhhkzZiAgIEDznru7O2JjY9GmTRuLBKn2+eefY/jw4RgxYoQmpv/9739YvHgx5syZY9F7E5HzqjjPRU2pErDqjxTJ16lMPZXujSPg5+GG51Yc0XuMOjnIuWc4yQKA0vxs3Fj4gqgttPe78GnYTlI8clYbmWsFk76/ByKpJCc1L774IgAgLi4OjzzyCNzc5HeBVkZxcTH++usvvPvuu6L2bt264c8//9R5TlFREYqKijSvc3NzLRojETmXo8nZuCMhgVBLzynEvN0X0bZudUm9DBVXU0lPJAwXgs89ugW3964UtUW99T1c3L0kXh9IyZS2kgrgCiayH7JXP3Xo0EHz53v37qGkRPw/vKW2H8jMzIRSqUSNGjVE7TVq1BDVWShvzpw5nLxMRCYzpTbKgr1JWLA3yejKKF0rhYJ93CXdo03tUGw+cUPniqGKw01u1WMROWyBrM8AABuOpWJM57qSep24gonsheyJwgUFBRgzZgzCwsLg6+uLoKAg0Y+lVZykrG/iMgBMmjQJOTk5mp9r165ZPD4ich6V6VkwtOpH30qh20aK7ClQtkS6dZ0QzeRitdLcW1oJTfVnppqU0ADyqviWn+ysD1cwkTXITmrGjx+PPXv2YNGiRfDw8MDy5csxY8YMREZG4ptvvrFEjACA0NBQuLq6avXK3Lx5U6v3Rs3DwwP+/v6iHyKiiiruaK1epSN1ubUu6m0J3t18Bn9cztRcU8pKIV0qLm9WTy4O9nHDnT/W48bil0THR43bDO+6rUyI/L5dZ9MN7BYuZi87bVPVJnuX7ujoaHzzzTfo2LEj/P39ceLECdStWxdr167F+vXrsXPnTkvFiocffhgtWrTAokWLNG3x8fHo3bu3pInC3KWbiCoyVlRP3asCGJvJYpj6mgFe7pJ2sfbzdEVeoVJnTOVV7Kn2qNkI4UM+qUSk2qQUGbS3nbbJuUh9fsvuqcnOzkZcXByAsvkz2dll3ZPt2rXD/v37TQxXmnHjxmH58uVYuXIlzp8/j7feegupqakWX0pORM5JSsE4fTVU5FJf89dz0vZWyitUws+zGoY+EqOzRsyVK1e0Epqw/jONJjTqMwK93ST3QBkroFfZOjVE5iJ7onDt2rWRkpKCmJgYxMfHY9OmTWjVqhV+/PFHBAYGWiDE+wYMGICsrCx88MEHSE9PR+PGjbFz507ExMRY9L5E5HyMPYgVuL9Eu2INlVAfD0BRtsXBgr2XJd1Pfc2Nx6XP7csrLMXqP6/Co5qLaKnzpEmT8NFHH4mOjX57KxTVjK9KDf//XhcAGLXuBBQw3gNV8fuoODfGHHVqiMxBdlLz0ksv4e+//0aHDh0wadIk9OzZE/Pnz0dpaSk+//xzS8QoMnr0aIwePdri9yEi+1XZjSUB+Q9iXTVUWtcOweYT1/Wu+tF1zfwipdHjKlq6PxlNawWhR5NwuLiIO9g9Y5ujxoCZkq4zplMdvNW1gea7WjwkQWvozVDs+hIT7rRN9kJ2UvPWW29p/typUydcuHABx48fR506ddC0aVOzBkdEVJG5NpY0x4NYvepHao9HZYxfsQs9vxoualu0/kfMPSU9mWtbt7oo+SvfA7XrbDq+OXTV6DV0fR+sU0P2Qvacmoqio6PRt29fJjREZHGmbpqoi7kexOaac2NI9q9Lca5CQlNcXIyX+/eUvDor4v/rxFRc6QUAbeqEoIfEhFDX92FslZh6KTrr1JClSeqp+eqrryRf8I033jA5GCIifeTMgTFHwThA+oNY3eNxOCkLr313QlYVYkMEQUDqx71EbX379sXmzZs1Q3BPNA7HCiNbOShQthR897kMvb1cXePDTS6gZ6jHijttkzVJWtKtXu2kduvWLRQUFGgmBt+5cwfe3t4ICwvDlStXLBKoOXBJN5HjOpSUJWkp9JhOddG2bqikeTb6liGrvfJoHCY9YbionNxrSlV8KwXpK8eI2pb98D+MeKabziE4F0XZxpoVRVSYGGxoybX6GEB3YmJsWba5hgaJKpL6/JZdp+a7777DokWLsGLFCjRo0AAAcPHiRYwcORKvvPIKnnvuOSNXsB0mNUSOa/upG3hzwynJx0cEeGJKz3gE+bgbnFA8Z+c5LN2frPMaCphWX8XQNaXI2vUV8k//ImqLnbAdC59rCRcXhd7kRADwUttY1Ar0QrCPe9lQkQK4mVeEmT/9g+y7unuQ1L0wByd2NtibI+V7MDaJ2xyTvKnqsVhSU6dOHfzwww9o3ry5qP2vv/7Cs88+i+Rk0/9HtjQmNUSOS2pPjSEVH85KlYB2c/foXf1T/mHv6qKQ9EA2dk19vN1dcbeoBKkfPyVq93mgE0KffFvzOtDbDXcKTEtOjFk/sjXa1AmRlXjIOZY9OWQqqc9v2auf0tPTtTaxBAClUon//vtP7uWIiCSRMgfGGPWEYnXvi9Rl3YevZCGvsETSA9nYNSsK9HbDwkEJcLuTgodbPSR6L2Lol3CvUUfUpi+hKR/vgj3/4otf/5X9PalXNulavq6LnCRF37Bcxb8TosqQvfrpsccew8iRI3H8+HGoO3mOHz+OV155BV26dDF7gEREgHjTRFMHKypWt5W6rHvkN8fxqsRVV3JqsSgAfNS3CRZMfV0roYmesEMroZFq1R8pJiV+cpZcy1mJxorDZC2yk5qVK1eiZs2aaNWqFTw9PeHh4YGHH34YERERWL58uSViJCICYJ7l0+WLyEl9iBcU6y6Yp+uBLPWaIT7uWDDwQfRoEokNGzZo2n2bdUfMxJ+gUJhecUPu6iu5S67lJilyCh0SVYbs4afq1atj586d+Pfff3H+/HkIgoBGjRqhfv36loiPiEikfMG4Py7fwoK9SSZd52ZeIZ58MLLSQ1oVK+1KGSYL9nHDvI7e6NA8WtS+budBTP79jomRlCUnAQbm3Og7BwCm9IyXPDdGbjVmVhwma5Gd1KjVq1cP9erVM2csRESSqOd8tIoLxndHryH7brHsa4T5eYrqq1RW+fkoxmq2uP32CTpM/VV0vkqlgkoAFpzaY7BWTIC3G3L+P2nRde2XHonDvF8vSY47PMATTzWNwMyfpU/glZuk2GPFYa7Cck6VrihMRGQpFavfVpxz4eqiQJ9mkbKuWXGopXvjCLz8aJzhkyQo/0DWN0wW5lsNKXOfxNHf7yc048aNgyAIUCgUBucNqV9/1LeJzmuHB3hi8ZAEjOlc12h13xAfd8zr3xTrR7bGlJ6N8PX+ZFlVmuUmKfZWcTjxbDrazd2DQcsO480NpzBo2WG0m7tHVkVqsk+yl3Q7Mi7pJnIcUlfWyFnqrauInKlLsMtfs/yy7/LK9wZcO3sMrz//tOj9S5cu6ezxlvLZDfU0qCfxAoaL6Mld0l7+c7Wba7hHqeJ5UmOyNH2rsKwdB8ljsTo1joxJDZFjkPPgkZOUVDYpqkjqg7BTp07Yt2+fqE2lUkGh0D/cUdnhESmJkdTPrq5fU/H6cpMUW9epMTWJI9uzWJ2a1NRUREVFaf3PKAgCrl27hujoaD1nEhEZJ3ePp4rzYio+YAUAw9rGomt8uM7EoDKTU8ONPJALCwvh5eUlapsyZQo++OADo9eWWitGn/ITqvUlRpWZwKseYquYpBj6TqTEZElyJziT45Gd1MTFxSE9PR1hYWGi9uzsbMTFxUGp1L30kYhIClMePKY8YNXkTE5VAAj2ccf7PRshPMDLcPXcxET06NFD1JacnIzY2FjJ96ssY4lRZSfwmpKkVDZZqwyuwnJ+spMa9YS2ivLz8+Hpab2Z60TkPMoPtfz7X56kcyo+eMo/YDNyC5GdX4RgH3cEeLlDqRL0PmjlVCoWAGTdLUZ4gJfBB3OrVq1w7Ngx8bl2ONJv7LMb2plbzZZJilz2uAqLzEtyUjNu3DgAgEKhwJQpU+Dt7a15T6lU4siRI2jWrJnZAyQi+2GJZbC65llIoevB4+qiQM69YnyceEHyvA1TlnXr+02+oKAAPj4+orbZs2dj0qRJkq9tTVKWn0/rFe8080vMkcSRfZOc1Jw8eRJA2W8bZ86cgbu7u+Y9d3d3NG3aFO+88475IyQiu2CJSZ76JgQbYujBY+r+Qurhq/e2ntG7k3V5mXlF2H7qhiix2759O/r06SM67vr166hZs6bR61mzZkrFe3WNDzd56M7RVLUkriqSvfrppZdewpdffumQq4e4+onINJZYBmvKUmpdS5LVD+hQHw+8/f3fyMg1fWVLcakKref8ZrCYn4sCKF8uJyLAE9e/fgXXU8SVjaX806pUCViw5zJW/ZEs2trAUiuCDCWmtpzAa222XoVF8lltSXdubi727NmDhg0bomHDhpW5lMUxqSGSz1LLYE1ZSl3+wWPqsJWu5cnl6VuqrIuqqADXvugvaps3bx7Gjh1rNI7Es+l4d8sZnVsaWKJmCuuziLGisGOx2JLu/v3749FHH8WYMWNw7949tGzZEikpKRAEARs2bMAzzzxTqcCJyL5Yahms1BUmYzrVRb0avqIHjynDVmoZOfdwKClL78NM30qqij00d8/vR+aOj0XXvpGWjsiIcKMxJJ5Nx6sG5vDoWrpeGXKXyVcFjjTBmaSTndTs378fkydPBgBs3boVgiDgzp07WLNmDWbNmsWkhsjJyFkGK+e3X6krTNrWDRU9fAw9oKWYuuMf5BWWal7rGnaouFQ5M68IM38+r3n/+sIXoczPun9RhQtiJuzA1QI3GNu0QR2/MeasmcL6LFRVyE5qcnJyEBxcNkEvMTERzzzzDLy9vdGzZ0+MHz/e7AESkW1JTT5SMgu0hqkMzVMwdSWKsQe0MeUTGqDsYa5rEnH53+S3n7oBAFAV5uPalwNF5wc/PgZ+zboDkJYAyo1fyjWNJZOsz0JVheykJioqCocOHUJwcDASExOxYcMGAMDt27dZp4bICUlJPgK83fDFr5dkrToydSWKJR68AgwPv4T5eSL/zK/I2vmFqL3WG9/B1ctfdJwxcuM3dk0pk15Zn4WqCtm7dI8dOxbPPfccatWqhYiICHTs2BFA2bBUkyZNzB0fEdmYsZ2j1cmIvvkaQFnCUHGHbeD+DtkV63kqFMDLj8bp7OEx5cFrYIslDfXwiy6PN48TJTQunr6ImfiTJqGRs8t0SmaBlJABCddUzy0ytsO2OjE15raBVV9EjkB2UjN69GgcOnQIK1euxB9//AEXl7JL1K5dG7NmzTJ7gERke+rJs+EVHozhAZ54q0s9nSt41MrP16go8Ww6vt6fjIr5jkoAvt6frHkol6d+QEuZzjqsbSym9GwEqWs8K/aiZGZmQqFQIC/vfpXj0J7jEPXmBs1rOfVNEs+m44tfL0mKRWHkmsYm/wL3k0lXFwWm9Gxk9J4zf9adfBI5CtlJDQC0bNkSPXv2xI0bN1BaWjY+3bNnT7Rt29aswRGR/ejeOAIHJ3bG+pGt8eXAZlg/sjUOTuyM2FAf4ydDO2GQMuFXVw+PuufI2KNXAWDX2QwE+7gbOfK+lMy7mj8vWbIE1atXF73/w58XULftE6K28ABPScuh5UxwDvJ2M3pNOZN/ASDIx8PofQ31VhE5AtlzagoKCvD6669jzZo1AIBLly6hdu3aeOONNxAZGYl3333X7EESkX3QtQzW1PkalVmR071xBN7qUg/zfv3X6PmGCulVtP5oKsZ0rodqruLf96Kjo3H16lUAQJ+H65tU30TqBOFnE2pi7rNNjV5T7uRfThamqkB2T82kSZPw999/Y9++faKJwV26dMHGjRvNGhwR2T9jw0H65ptU9iErtYco2NdD0nwSALiRlqGV0GzatEmT0AD3E7vezWqiTZ0QTfKhVAk4lJSF7adu4FBSllYPk9TP275+dUlJktxkkpOFqSqQ3VOzbds2bNy4Ea1btxbt1h0fH4+kpCQDZxKRMzJ1FVNlH7JSzw/3L1sJZKjYHQDkHtuG23uWi9ry8vLg6+tr9B62WIEkd0k8N3OkqkB2T82tW7cQFham1X737l1RkkNEVYe+icTBPu5YOFj33BBTe3hMOb9suKq+3vivzn1SlNDE1G0AQRAkJzRyViCZ+nkrMrYqDRAnk3KPJ3JEspOahx56CD///LPmtTqRWbZsGdq0aWO+yIjIoXRvHIEpPRsh2MdN05Z1txgzfz6ncxVTZR+ycs8f07kuwv3Fk2VLczNxde6TorawZ6YgYthC0fCRvqEluSuQzJ1UGFqVpmuisdzjiRyN7A0t//zzT3Tv3h3PPfccVq9ejVdeeQX//PMPDh06hN9//x0tWrSwVKyVxg0tiSxHzoaJ5SvgpmTexfqjqcjILdKco68Ssa7KubvPZUjecbn8nks5f27EnQNrRe9HjdsMF7eyxEe98aWhoaUAL3dJm3KW30TTEjtEy92ckZs5kqOx6C7dZ86cwaeffoq//voLKpUKCQkJmDhxot0X32NSQ2QZcnby1pWEhPt7YlCraMSGeut9yBpKBsrv02TsIT3zx38w9anGojb3yAaIeP4zUduYTnUQH+GP1747qTdRe6ltLFb+kaL3e1H7cmAz9G5WU/OaSQWRPBZNahwVkxoiMXM9XA8lZUnqsXirS32d2yno6s0pT04vkCHJycmoXbu2qC2s/wfwikvQeXzFnbkr3jvYxx1ZEpaMl++pISL5pD6/Za9+cnV1RXp6utZk4aysLISFhUGpVMqPloisTs4wiLk2TFz1R7Le+ScK6N5/ydi8FX3nVTR58mTMnj1b1Bb99lYoqrnpOUN/QqO+d9bdYgT7uCH7rv6KyoDzbz/AnieyF7KTGn0dO0VFRXB3l165k4hsR1/Ph64NKM25XPnOPWnbKZTv1TiclGVykT6g7N8s9XYuas0eboc7Hd/VnF8ZvZtGYtWfVw0eM/Pnc3i8seGky1FZYo4QkakkJzVfffUVgLLVTsuXLxctdVQqldi/fz8aNmxo/giJyKzk9HzsPpchKfmRtJO3l5vBpEatfK9P4tl0vLv5jKTPpau36OLFi1r/Lu3btw8dOnTQ+TA2Ra0gb6PHGEq6HJmc5JjIGiQnNfPmzQNQ9lvPkiVL4OrqqnnP3d0dsbGxWLJkifkjJCKzkro9weGkLMnJDwAMfChK57YF5SfVGtrWQE3d66PvgWnsPLW33noLX3zxhaituLgYbm5lw03dG0ega3w45u2+hAV7L0u8y33qyc9S95Zytu0HzDUsSGROkpOa5ORkAECnTp2wZcsWBAUFWSwooqpI17wEAGafqyD14XroSqak5GfBnsvYcCxV77Hh5VYobTh2TVJFWzmbP1ashKtruKl3797Ytm2b1rmuLgq0rRsqO6kpX1cmwEtaUuNs2w9UZu8uIkuRPadm7969loiDqErTNRQS6F3Wo3Cn4P6QjTnmKkh/uEpLnub9eknve291qY8xnetqEjGp2ykcMjKPpiL1eWfPntUqLXHo0CG0bt1a77nGhs4A7VVQ4eX+HpQqoUpuP8ANMskeya4oTETmpa/M/p2CElFCA2iX3jeF1HL9lf3tWgFgw7FUUZvUirZSH4SBXm6a815++WWthKa0tFRnQlO+QvDR5GxM6am/0q8CwIJBCVg/sjW+HNgM60e2xsGJnTWxVtXtB7hBJtkj2T01RGQ+coZZAPPMVZC6AWXr2iFGezCMxapr+EE9l8XQsJrUB+HC5xLQpnaw1r5zHZ54GnO+WgYotH9v07da5+VH47Dj73RxUUCJPWPqZE2rqKDMnjVHWhrNDTLJHjGpIbIhY/MSdDHHXAWpD2FDyY/UREdXr4uri8Jg7FIfmO53rsLVtbrovfAXv0BKeF0MWnYYEQGemNKzEYJ8PDRbMuiarJyRU4iv9ydj4eDmmmPlJhVSkjVDHG1ptKm7sxNZEisKE9nQ9lM38OaGUyadW7H0vimk9Azoe9jqW+1UkanVdNXDcoDuB2bsmRXYt3Or6JzoCTug0NE7I0X5rRz0PYgt1ZNirGLy2C71DW4hYUuOloyRYzJrReHTp09LvvGDDz4o+Viiqq4y8w3MMVfBWI8JoL8HAoDk1Uym0NebVMPPDUfefxwp5Y4Ne6gnvDqPMuk+asZ6wCz18Jay03f5ydj2ljBUtoeKyJwk9dS4uLhAoVBAEAStseuK7HmbBPbUkL1RbwQpZ96KlB4FazHWm6KexFuZHo7y5/737xm80r+H6P21Ow/g/d9zzPBpyujqAdt5Og2jvzupdazcvad0kbpvljnvSeRopD6/JfXTJicn48qVK0hOTsbmzZsRFxeHRYsW4eTJkzh58iQWLVqEOnXqYPPmzWb7AERVgaGVM7rY21wFKauZEs+mo93cPRi07DDe3HAKg5YdRru5eySv4FL3Jq2cNloroVGpVEgqNW/NrIo9YDtPp2PMeu2EBrifyM348RyUhjaKMkDukmdz3JPIWUkafoqJidH8uV+/fvjqq6/wxBNPaNoefPBBREVFYcqUKejTp4/ZgyRyZvqGWYK83SBAXKdG7moaazA0/LDzdDpGf3dC6xw5ZfRLSkq09pUbO3Ys5s2bh52n07D6zxSzfA5dw2WJZ3XHX15lJ26bMozIwnZEusle/XTmzBnExcVptcfFxeHcuXNmCYqoqjE0b8XYsI09LAPWNTdn5+k0oz0c7245Az8PN7SuE6Iz5t9//x0dO3YUtV28eBH169f//4RD9/Xl0tUDpp7rIpWpReakFP8z9z2JnJXspKZRo0aYNWsWVqxYAU/Pst8wioqKMGvWLDRq1MjsARJVFfom7Rr6TdxeV55ITTjuFJTguRVHdMb8WJcu2PPbb6LjVSoVFAqF7ITDGF09YHKX25s6cdvQ0mhL3ZPIWclOapYsWYJevXohKioKTZs2BQD8/fffUCgU+Omnn8weIBHpZq87JJuScJSPuVO9YM0vTGr+bQYgvtdI/O+fDHRvHGFSfR81qcuk5fSCRFSyyJy+IUh9WNiOSDfZSU2rVq2QnJyMdevW4cKFCxAEAQMGDMDgwYPh4+NjiRiJqAJ73iHZ1IKCCgBvfbYGF1ZPEr0X+cpyuAWGixKfolKV5Gsb2rfJEDm9IOaYuF1xCFJdKJCF7YikM6misLe3N15++WVzx0JEEtnzDsmmzvNI+2YcitPFm2PGTLzf+1s+Wfv02aaSr7tgUAKCfNxlzzmSutHlgkHNzdYjVnEIskG4X6W3XiCqSkxKatauXYulS5fiypUrOHToEGJiYjBv3jzUrl0bvXv3NneMRFSBPe+QLHeeh6qkENc+f1bUFvjoCwho01/rWHWyBgUkJhwJeOJB0x7+Uua6VOb6UrCwHZE8suuJL168GOPGjUOPHj1w+/ZtTbG9oKAgfPHFF+aOj4h0sOcdko3tAl5ewb9HtBKamqNW60xoysvMLzJa32fBoOaVTjj01eGJCPDEkiGWTWjU1L03vZvVRBs9q8SIqIzsvZ/i4+Mxe/Zs9OnTB35+fvj7779Ru3ZtnD17Fh07dkRmZqZFAv3www/x888/49SpU3B3d8edO3dkX4MVhclZGKtEbOuqw/oqDZeXtnwUSrKuidrKDzcZot5Pylqrv+xh2TxRVWbWvZ/KS05ORvPmzbXaPTw8cPfuXbmXk6y4uBj9+vVDmzZtsGLFCovdh8gR2PsOyfpW8wR6uyH7Ti6uzesnOj6o8wj4P9RH0rXLrzSy1vCMlD2yiMj2ZCc1cXFxOHXqlKjKMADs2rUL8fHxZgusohkzZgAAVq9ebbF7EDkSfYmDuSeSmtpLoSvhSD66G88NHiQ6rtZra+HqK32rg4rJWsWEQ6kScCgpi70qRFWQ7KRm/PjxeO2111BYWAhBEHD06FGsX78ec+bMwfLlyy0RIxHpYemeisoO77i6KNAqLhhHk7PxVLsHkZmRJnpf6nCT2ltd6hu8r70WIyQi65Cd1Lz00ksoLS3FhAkTUFBQgMGDB6NmzZr48ssvMXDgQEvEaLKioiIUFRVpXufm5towGiLjTOkVsdTQiDmK+yWeTceUTUdxfGYfUXtwt9Hwa/6E7pP0CPf3wJjOdS0aLxE5NpOWdI8cORIjR45EZmYmVCoVwsLCTLr59OnTNcNK+hw7dgwtW7Y06fpz5swxen0ie2FPvQzmKO6XeDYdz7/7CTJ/nidqr/X6t3D1DpAci/rq0596QO+97LkYIRFZj+wl3Z07d9asPAoNDdUkNLm5uejcubOsa40ZMwbnz583+NO4cWO5IWpMmjQJOTk5mp9r164ZP4nIBtS9DBUL6ql7GRLPpls1HjnF/XRRqgQ8+VA9UUKj8PBBzMSfZCU0QNnkYmO9LJWNl4icg+yemn379qG4uFirvbCwEAcOHJB1rdDQUISGhsoNQTIPDw94eHhY7PpE5mCPvQyVKe6XlZWl9f91yBNvwbfJYybF4lHNBV3jw2XHUZnjiMgxSU5qTp8+rfnzuXPnkJGRoXmtVCqRmJiImjVrmje6clJTU5GdnY3U1FQolUqcOnUKAFC3bl34+vpa7L5ElmaPWx6YWtxv6dKlePXVV0VtUW9ugIun6f+PZuQWGf3sUuP99798HErK4oooIiclOalp1qwZFAoFFAqFzmEmLy8vzJ8/36zBlTd16lSsWbNG81pdK2fv3r3o2LGjxe5LZGn22MtgbN8jXbtEu7i4oHwtT1e/UNQavdrgfZ5uFomtp9IMHgMY/+xS9mkCgAV7L2PB3stcEUXkpCTPqUlOTkZSUpJmGXdycrLm58aNG8jNzcWwYcMsFujq1ashCILWDxMacnSW2vJAXa9l+6kbOJSUBaVKevFwdXE/fWcIuF8v5r///oNCoRAlNOvXb8BDkzbo3cJAgbJJ0M+2jJIUj7HPro5XfW1jbDVXiYgsS3JPjbrYnkqlslgwRFWRKb0ixlhrJdUXX3yBt956S9SWm5sLPz8/BJbbKqEiAcBTTSPQunaI2T67vmKE+u7PFVFEzkf26qc5c+Zg5cqVWu0rV67E3LlzzRIUUVViqJfBlC0P9K2kSpfRO6GevKyPAkCPJpGihKZRo0YoVapw9mYxtp+6gQAvd4xoH6v3Gl/vT8bucxlm/ezdG0fg4MTOWD+yNcZ0qmPwWK6IInI+spOapUuXomHDhlrtDzzwAJYsWWKWoIiqGn27QYcHeMoqGmdoJRVQ9iCftOWM0aEoQ5OXS3MzkTL3SVHbtm3b8Pmm39Bu7h4MWnYYb244hUHLDmPFwRSD91H3lJjjs6upixHWq+En6XiuiCJyHrKXdGdkZCAiQvsfmerVqyM9nePTRKbqGh8OPw83HLqSCaDswdy6doisoRFjK6kA4HZBCRbs+Rdvdqmv9xh9D/qcQ5twZ/83ora7d+9i/5UcndV8DeVO5XtKLLHdg5y5StyFm8g5yE5qoqKi8McffyAuLk7U/scffyAyMtJsgRFVJbrmwGw+cV32HBipvQ6r/kjBmM719D64dSUEVyv0zrhH1MO+A4fg4emFGT8eMrjqyBB1zOoeFnWC8dPptEolGFLnKt2+W4R2c/fYRSVnIqoc2UnNiBEjMHbsWJSUlGiWdv/222+YMGEC3n77bbMHSOTsEs+m41UdE2pN2bNIau/EnXslBmu/lE8ISnL+w40lw0Xv1+g3A3HN22o2qzTWOyQ1ZnNOcFbPVRq17gQUgCixUadITzWNwGvfneR+UUROQvacmgkTJmD48OEYPXo0ateujdq1a+P111/HG2+8gUmTJlkiRiKnpVQJeHfLGZ3vqR+0M348J3k5dqu4YAR6uUk61lCvjjohuL1/rVZCE/P2VnjVbqGZwGvqnBT1sm71yiZLbBVhaK7SwsEJ2PF3ut5KzoC8756IbE92T41CocDcuXMxZcoUnD9/Hl5eXqhXrx63IyAywYI9l3GnoETv+3KrCbu6KPBS2zjM+/WS0WMN9eoIgoAeTcTDyZ4xD6LGwNlaPSdy6+cA2iubLLlVhL75OvZYyZmIKsekXboBwNfXFw899JA5YyGqUpQqAav+SJZ0rJzekDGd62LVn8l6kyVjtV8uXbqEBg0aiNpqDJoNz+gHAUBUZA+QVs3XRSGeNBxeITGydIKhnq9Tnj1WciaiypGU1PTt2xerV6+Gv78/+vbta/DYLVu2mCUwImd3NDkbd+7p76UpT05viKuLAh/1baJzno6x2i/jxo3DvHnzRG3R72yDwvX+PxX/5RaJ5ptImbuyYFACgnzc9a4uskWCYalKzkRkO5KSmoCAACgUCs2fiajyfj2XYfwgAIFebrKqCQNlQy5LdFTXVfeQdI0Px6GkLE2S8VBsENyquYquEdSwDfx7T9a6tq7hIH3VfCv2yOhjiwTDEpWcici2FELFvmQnlpubi4CAAOTk5MDf39/W4VAVpm/Fky5vdalnsKaMIbrqr+w+lyFKPopvXUX6ytdE5y3dtAuz/1Iavf76ka1Fwzqm1ntRqgS0m7vHaIJxcGJns9aPSSy3lYOuHiaufiKyD1Kf3ybPqSEi0xjbgqC8IG83jOlcz+R7VZxLon6Iqx/gWf9bgPxTiaJzSkpK8PPZ/4C/Thm9fsXhIF1zV6TGaWwIS852CVJVtoeJiOyLpKSmefPmmuEnY06ckPbbJ1FVUr4HIzOvSHJdlzl9m5jtQV5+hZEgqJD68VOi930adUCT56dA4eJqk+EgWyUYlqhmTES2ISmp6dOnj+bPhYWFWLRoEeLj49GmTRsAwOHDh/HPP/9g9OjRFgmSyJHpKignxbC2sWZ9kKtXGBX/l4T01W+K3gt/8Qt4hNfVrDCy1XwTWyUYpvYwEZF9kZTUTJs2TfPnESNG4I033sDMmTO1jrl27Zp5o6Mqy1n24qk43CNH1/hws8ZyM68QmT99hrv/7BW1R0/YAYXCRXScrYaDACYYRGQ62ROFAwICcPz4cdSrJx7n//fff9GyZUvk5OSYNUBz4kRhx2DOUvm2pJ78KreHxhKTYpVKJapVE/8O4/tgN4T0eEPr2PKTf53l74KIHJvFJgp7eXnh4MGDWknNwYMH4enJeg5UOfp6NuxxLx5jvUmm7IlkiV6Qw4cPa4aK1SKGLYB79Vite1ccUuJ8EyJyJLKTmrFjx2LUqFH466+/0Lp1awBl/2iuXLkSU6dONXuAVHVYslS+uUnpwTClUJw5J8UqVQI6d38S+3fvFLXHTPgRCoVC8pASh4OIyFHITmreffdd1K5dG19++SW+++47AECjRo2wevVq9O/f3+wBUtXhKHvxSO1NkroyaErPRgj18zBrL8hPJ1PRKyFG1Bb+SF+sWroAALiEmYickkl1avr3788EhszOEfbikdObJHUF0dC2cWbtefpk9VZMeEm8nUnkiCVwD6mlSboOTuxs9SElS0/+dpbJ5URkOpOSmjt37uCHH37AlStX8M477yA4OBgnTpxAjRo1ULNmTXPHSFWEI+zFI7c3ydoriLp27YZff90taosuN9xUPumyZm+XpSccc0IzEQGAi/FDxE6fPo369etj7ty5+OSTT3Dnzh0AwNatWzFp0iRzx0dViLpnQ98jXoGyB5Ut9+KR25ukLigXHiBOxMIDPM066bmoqAgKhUKU0Pi37oeYiT+JCmeWT7qsRT1cVzEZVA/XJZ5Nt+vrE5HjkN1TM27cOAwdOhQff/wx/Pz8NO09evTA4MGDzRocVS22rI0ilSm9SZZeQbR7925069ZN1Bb5ynK4Beqvc2OtITxLT/52pMnlRGR5sntqjh07hldeeUWrvWbNmsjIkLbrMJE+1urZMJWpvUnqFUS9m9VEmzohZnvAtmnTRiuhiZn4k8GEBrDeEJ6c4Tp7vD4RORbZPTWenp7Izc3Var948SKqV69ulqCoarPn2ij20pt07949eHt7i9pmzpyJSe9NlrTbtbWG8Cw9+dsRJpcTkfXI7qnp3bs3PvjgA5SUlAAAFAoFUlNT8e677+KZZ54xe4BUNVmqZ8McbN2b9OOPP2olNKmpqXj//fc1SRcArd4kWwzhWXrytyNMLici65G9TUJubi6eeOIJ/PPPP8jLy0NkZCQyMjLQpk0b7Ny5Ez4+PpaKtdK4TQKZky2WEDdp0gRnz54Vten6X9heVgOpt4ow1nNk6pYQlr4+EdkHqc9v2UmN2p49e3DixAmoVCokJCSgS5cuJgdrLUxqyFHl5+eLJuYDwGeffYZx48bpPcde6raoVycBuofrKtu7ZenrE5HtWSSpKS0thaenJ06dOoXGjRubJVBrYlJDjuj777/XKnaZnp6O8HDz7uJtSaxTQ0SVYZENLatVq4aYmBgolcpKB0hExsXGxuLq1auiNhM7V23K0pO/7XlyORFZj+zhp1WrVuH777/HunXrEBxsuyJopmBPDTmKnJwcBAYGitoWLVqEUaNG2SYgIiIbskhPDQB89dVXuHz5MiIjIxETE6M1MfjEiRPyoyUijbVr1+KFF14Qtd26dQuhoaE2ioiIyDHITmp69+4tKrtOJIe9TF61V3379sXWrVs1r319fZGXl2fDiIiIHIfJq58cEYefbIuTOfXLy8vT+m9y1apVGDp0qG0CIiKyI1Kf35KL7xUUFOC1115DzZo1ERYWhsGDByMzM9MswZLz46aD+v36669a/5NmZ2czoSEikklyUjNt2jSsXr0aPXv2xMCBA7F7925OWiRJjG06CJRtOqhUVZlOQ42BAweia9eumtcvv/wyBEFAUFCQDaMiInJMkufUbNmyBStWrMDAgQMBAEOGDEHbtm2hVCrh6upqsQDJ8cnZdLBNnRDrBWZDulY3HTx4EG3btrVNQERETkByT821a9fQvn17zetWrVqhWrVqSEtLs0hg5Dyq0qaDSpWAQ0lZ2H7qBg4lZensfdq5c6dWQlNQUMCEhoiokiT31CiVSri7u4tPrlYNpaWlZg+KnEtV2XRQykTo3r17Y8eOHZr333zzTXzxxRfWDpWIyClJTmoEQcDQoUPh4eGhaSssLMSrr74qqlWzZcsW80ZIDq9VXDAiAjyNbjrYKs6xijmWp54IXfHzqSdCf9wrDv3bPSB67+jRo3jooYesFyQRkZOTnNS8+OKLWm1DhgwxazDknFxdFJjWKx6j1p2AAro3HZzWK95h69UYmwhdcOkQ+rd7UtReWFgo+gWBiIgqT3JSs2rVKkvGQU6ue+MILB6SoDU8E+4EdWoMTYT+b8P7KLx6SvP63XffxZw5c6wUGRFR1SK7ojCRqZx100FdE5yVBTm4Pv85UdvnG/6HtwZ0s1ZYRERVDpMasipXF4XJy7btdYuFihOc754/gMwdc+83uLgietxmtG7ZwsqRERFVLUxqyCHY8xYL6onQ6XfuIePbCSi6cV7zXkDbwQhqN9jhJ0ITETkCJjVk94ytLFo8JMGmiY2riwKvtw7Bc52bi9ojhi2ER/UYAI49EZqIyFFILr5HZAuOsMXCN998I0poFO7eiB6/He7VYxAe4GnzpIuIqKpgTw3ZJfX8mT8u37LbLRYEQUBCQgJOnTqlaftw9mx06v+y3c37ISKqCpjUkN3RNX/GGGtvsXD9+nVERUWJ2i5cuIAGDRpYNQ4iIrqPw09kV9TzZ+QkNIB1t1hYtmyZKKEJqR6GzcevIrtaaJXcaZyIyF6wp4bshqH5M/pYc4sFQRDQsGFDXLp0SdMW03MU0Lgnxn1/BoD9rMgiIqqK2FNDdsNQZV5drLnFQkpKClxcXEQJTc2XlwGNe4qOU6/ISjybbtF4iIhIG5Mashty58VYa2XRggULEBcXp3ldu3ZtPDzrF1QL0r6vvazIIiKqijj8RHZD6ryYMZ3qom3dUIuvLFKpVIiJicH169c1bYsWLUKzbv0xaNlhvefZckUWEVFVxqSG7Ia6Mm9GTqHOeTXq+TNvda1v8eGmy5cvo169eqK2q1evIjo6GttP3ZB0DWuvyCIiquo4/ER2w9VFgWm94gHcny+jZs35M59++qkooWncuDFUKhWio6MBSO9RsuaKLCIiYlJDdqZ74wgsHpKA8ABxQmCN+TNKpRIhISEYP368pm3FihU4c+YMFIr7iZS6R0lfaqVA2SooU1ZkKVUCDiVlYfupGziUlMV5OUREMjjE8FNKSgpmzpyJPXv2ICMjA5GRkRgyZAgmT54Md3d3W4dHZta9cQS6xodbdUfu8+fPIz4+XtR248YNREZGah2r7lEate4EFIBoqKwyPUr2vGknEZEjcIiemgsXLkClUmHp0qX4559/MG/ePCxZsgTvvfeerUMjC3F1UaBNnRD0blYTbeqEWDShmTVrliihadWqFVQqlc6ERs3cPUr6ig5yiTgRkXQKQRAcsn/7k08+weLFi3HlyhXJ5+Tm5iIgIAA5OTnw9/e3YHTkCEpKSuDv74/CwvuJxLfffovBgwdLvoZ6j6qMnHvIvluMYF8PhPvL61lSqgS0m7tHb40e9QTpgxM7cx8pIqqSpD6/HWL4SZecnBwEBxues1BUVISioiLN69zcXEuHRQ7i9OnTaNq0qagtIyMDNWrUkHUdVxcFcu4V4+P/XTR52MhY0UEuESciksYhhp8qSkpKwvz58/Hqq68aPG7OnDkICAjQ/FTcgJCqpilTpogSmo4dO0IQBNkJDWCeYSOpS7+5RJyIyDCbJjXTp0+HQqEw+HP8+HHROWlpaejevTv69euHESNGGLz+pEmTkJOTo/m5du2aJT8O2bni4mIoFArMmjVL0/b9999j7969Jl3P0F5VcioLc4k4EZF52HT4acyYMRg4cKDBY2JjYzV/TktLQ6dOndCmTRt8/fXXRq/v4eEBDw+PyoZpkHpOhbVW6ZBp/vrrL7Rs2VLUduvWLYSGhpp8TXMNG0ktOmiNTTuJiByZTZOa0NBQyQ+VGzduoFOnTmjRogVWrVoFFxfbj5xxCa5jeOedd/DZZ59pXvfo0QM7d+6s9HXNNWxkqSXiRERVje0zAwnS0tLQsWNHREVF4dNPP8WtW7eQkZGBjIwMm8XEJbj2r7CwEAqFQpTQbN++3SwJDWDeYSNbFh0kInIWDrH66ZdffsHly5dx+fJl1KpVS/SeLVakG5tLoUDZXIqu8eH87dpGDh8+jDZt2ojasrOzERQUZLZ7mHvYyBZFB4mInIlD9NQMHToUgiDo/LEFOXMpyPrGjBkjSmj69u0LQRDMmtAAltmryppFB4mInI1D9NTYGy7BtU8FBQXw8fERtSUmJuLxxx+32D3Vw0YV51aFc24VEZHVMakxAZfg2p8DBw7g0UcfFbVZq3I0h42IiOyDQww/2RtL7tJM8g0fPlyU0AwZMgSCIFh1KwwOGxER2R57akzgaEtwnbWWTn5+Pvz8/ERte/bsQadOnWwUERER2RKTGhM5ylwKZ62l89tvv6FLly6itry8PPj6+tooIiIisjWH3aXbFJbYpduee0HUtXQq/gWro3PU+ieDBw/G+vXrNa9HjhwpqcI0ERE5JqffpdteqOdS2BtnrKWTk5ODwMBAUduBAwfQrl07s97HnhNVIiLSj0mNkzLXvkT2YteuXXjiiSdEbQUFBfDy8jLrfZx1uI6IqCrg6icn5Uy1dPr06SNKaF5//XUIgmCRhIZbXxAROS721DgpZ6ilk52djZAQcS/SkSNH0KpVK7PfyxmH64iIqhr21DgpR6+ls337dq2EprCw0CIJDcCtL4iInAGTGidliX2JrKVbt27o06eP5vWECRMgCAI8PDwsdk9nGq4jIqqqOPzkxByllo7arVu3EBYWJmo7ceIEmjdvbvF7O8NwHRFRVcekxsk5yr5EmzZtwoABAzSvXV1dUVBQAHd3d6vcXz1cl5FTqHNejQJlyaC9DtcRERGHn6oEe96XSBAEtG/fXpTQTJs2DaWlpVZLaADHHq4jIqIy7Kkhm8nIyEBEhHgI7MyZM2jcuLFN4nG04ToiIhJjUkM2sXbtWrzwwgua176+vrh9+zaqVbPtf5KOMlxHRETamNSQVQmCgJYtW+LEiROattmzZ2PSpEk2jErMXre+ICIiw5jUkNVcv34dUVFRorYLFy6gQYMGNoqIiIicCScKk1UsX75clNCEhYWhtLSUCQ0REZkNkxqyKEEQ0KhRI4wcOVLT9vnnn+O///6Dq6urDSMjIiJnw+EnspirV68iNjZW1Hb58mXUqVPHNgHZkFIlcPIxEZGFMakhi1i4cCHGjBmjeR0XF4fLly/DxaXqdQ4mnk3XWiYewWXiRERmV/WeMGRRKpUKMTExooRm0aJFuHLlSpVNaEatO6G1WWZGTiFGrTuBxLPpNoqMiMj5sKeGzOby5cuoV6+eqC0lJQUxMTE2isi2lCoBM348p3PbBQFllYpn/HgOXePDORRFRGQGVe9XZ7KIzz77TJTQxMfHa3ptqqqjydlaPTTlCQDScwpxNDnbekERETkx9tRQpSiVSoSHhyMzM1PTtmLFCgwbNsyGUdmHm3n6ExpTjiMiIsOY1JDJzp8/j/j4eFHb9evXUbNmTRtFZF/C/DzNehwRERnG4ScyyezZs0UJTcuWLaFSqZjQlNMqLhgRAZ5au36rKVC2CqpVXLA1wyIiclpMakiW0tJS+Pj4YPLkyZq2tWvX4tixY1AoONm1PFcXBab1Kkv8Kn4z6tfTesVzkjARkZkwqSHJzpw5Azc3NxQUFGja0tPTMWTIEBtGZd+6N47A4iEJCA8QDzGFB3hi8ZAE1qkhIjIjzqkhSaZMmYJZs2ZpXj/66KPYt28fe2ck6N44Al3jw1lRmIjIwpjUkEHFxcXw8PAQtW3atAn9+vWzUUSOydVFgTZ1QmwdBhGRU2NSQ3qdOHECLVq0ELXdunULoaGhNoqIiIhIP86pIZ3Gjx8vSmgef/xxCILAhIaIiOwWe2pIpLCwEF5eXqK2bdu2oXfv3jaKiIiISBomNaRx5MgRtG7dWtSWnZ2NoKAgG0VEREQkHYefCADw+uuvixKaPn36QBAEJjREROQw2FNTxRUUFMDHx0fUtmvXLnTv3t1GEREREZmGSU0VdvDgQbRv317UdufOHQQEBNgoIiIiItNx+KmKGjFihCihGTx4MARBYEJDREQOiz01VUx+fj78/PxEbb/99hs6d+5so4iIiIjMgz01VciePXu0Epq8vDwmNERE5BSY1FQRQ4YMwWOPPaZ5PXz4cAiCAF9fXxtGRUREZD4cfnJyOTk5CAwMFLXt379fa4IwERGRo2NPjRNLTEzUSmgKCgqY0BARkVNiUuOknn76afTo0UPzesyYMRAEQWsLBCIiImfB4Scnc/v2bQQHB4vaDh8+jIcffthGEREREVkHe2qcyI4dO7QSmnv37jGhISKiKoFJjZPo3r27aCft8ePHQxAEeHp62jAqIiIi6+Hwk4PLzMxE9erVRW1//fUXEhISbBQRERGRbbCnxoF9//33WglNUVERExoiIqqSmNQ4IEEQ0KFDB/Tv31/TNmXKFAiCAHd3dxtGRkREZDscfnIwGRkZiIiIELWdPn0aTZo0sVFERERE9oE9NQ5k3bp1ooTG19cXJSUlTGiIiIjApMYhCIKAli1b4vnnn9e0ffjhh8jLy0O1auxsIyIiAjj8ZPdu3LiBWrVqidrOnz+Phg0b2igiIiIi++QwPTVPPfUUoqOj4enpiYiICDz//PNIS0uzdVgWtXLlSlFCU716dZSWljKhISIi0sFhkppOnTph06ZNuHjxIjZv3oykpCQ8++yztg7LIgRBQHx8PIYPH65p++yzz3Dz5k24urraMDIiIiL7pRAEQbB1EKbYsWMH+vTpg6KiIri5uUk6Jzc3FwEBAcjJyYG/v7+FIzTN1atXERsbK2r7999/UbduXdsEREREZGNSn98O01NTXnZ2Nr799ls88sgjBhOaoqIi5Obmin7s2aJFi0QJTXR0NJRKJRMaIiIiCRwqqZk4cSJ8fHwQEhKC1NRUbN++3eDxc+bMQUBAgOYnKirKSpHKo1KpEBcXh9dee03TtmDBAly9ehUuLg71V0RERGQzNn1iTp8+HQqFwuDP8ePHNcePHz8eJ0+exC+//AJXV1e88MILMDR6NmnSJOTk5Gh+rl27Zo2PJUtSUhJcXV2RkpKiaUtOThYlOERERGScTefUZGZmIjMz0+AxsbGxOneavn79OqKiovDnn3+iTZs2ku5nb3Nq5s2bh3HjxmleN2rUCP/88w8UCoUNoyIiIrIvUp/fNq1TExoaitDQUJPOVediRUVF5gzJKpRKJSIjI3Hz5k1N27JlyzBixAgbRkVEROTYHKL43tGjR3H06FG0a9cOQUFBuHLlCqZOnYo6depI7qWxFxcuXECjRo1EbdeuXdMqsEdERETyOMQsVC8vL2zZsgWPPfYYGjRogGHDhqFx48b4/fff4eHhYevwJJszZ44ooWnRogVUKhUTGiIiIjNwiJ6aJk2aYM+ePbYOw2SlpaUIDAzE3bt3NW1r167FkCFDbBgVERGRc3GIpMaRnT17VmsX7fT0dISHh9soIiIiIufkEMNPjmratGmihKZdu3ZQqVRMaIiIiCyAPTUWUFJSAk9PT6hUKk3bxo0b0b9/fxtGRURE5NyY1JjZyZMnkZCQIGq7efMmqlevbqOIiIiIqgYOP5nRxIkTRQlN165dIQgCExoiIiIrYE+NGRQVFWlVPd62bRt69+5to4iIiIiqHiY1ZjBmzBjR66ysLAQHB9soGiIioqqJw09m0KpVKwBA7969IQgCExoiIiIbsOmGltZmbxtaEhERkXFSn9/sqSEiIiKnwKSGiIiInAKTGiIiInIKTGqIiIjIKTCpISIiIqfApIaIiIicApMaIiIicgpMaoiIiMgpMKkhIiIip8CkhoiIiJwCkxoiIiJyCkxqiIiIyCkwqSEiIiKnwKSGiIiInEI1WwdgTYIgACjbwpyIiIgcg/q5rX6O61Olkpq8vDwAQFRUlI0jISIiIrny8vIQEBCg932FYCztcSIqlQppaWnw8/ODQqGwdTg65ebmIioqCteuXYO/v7+tw3Fq/K6ti9+3dfH7th5+15YnCALy8vIQGRkJFxf9M2eqVE+Ni4sLatWqZeswJPH39+f/HFbC79q6+H1bF79v6+F3bVmGemjUOFGYiIiInAKTGiIiInIKTGrsjIeHB6ZNmwYPDw9bh+L0+F1bF79v6+L3bT38ru1HlZooTERERM6LPTVERETkFJjUEBERkVNgUkNEREROgUkNEREROQUmNXbsqaeeQnR0NDw9PREREYHnn38eaWlptg7LKaWkpGD48OGIi4uDl5cX6tSpg2nTpqG4uNjWoTmlDz/8EI888gi8vb0RGBho63CczqJFixAXFwdPT0+0aNECBw4csHVITmn//v3o1asXIiMjoVAosG3bNluHVOUxqbFjnTp1wqZNm3Dx4kVs3rwZSUlJePbZZ20dllO6cOECVCoVli5din/++Qfz5s3DkiVL8N5779k6NKdUXFyMfv36YdSoUbYOxels3LgRY8eOxeTJk3Hy5Em0b98ePXr0QGpqqq1Dczp3795F06ZNsWDBAluHQv+PS7odyI4dO9CnTx8UFRXBzc3N1uE4vU8++QSLFy/GlStXbB2K01q9ejXGjh2LO3fu2DoUp/Hwww8jISEBixcv1rQ1atQIffr0wZw5c2wYmXNTKBTYunUr+vTpY+tQqjT21DiI7OxsfPvtt3jkkUeY0FhJTk4OgoODbR0GkWTFxcX466+/0K1bN1F7t27d8Oeff9ooKiLrYVJj5yZOnAgfHx+EhIQgNTUV27dvt3VIVUJSUhLmz5+PV1991dahEEmWmZkJpVKJGjVqiNpr1KiBjIwMG0VFZD1Maqxs+vTpUCgUBn+OHz+uOX78+PE4efIkfvnlF7i6uuKFF14ARwylk/t9A0BaWhq6d++Ofv36YcSIETaK3PGY8l2TZSgUCtFrQRC02oicUTVbB1DVjBkzBgMHDjR4TGxsrObPoaGhCA0NRf369dGoUSNERUXh8OHDaNOmjYUjdQ5yv++0tDR06tQJbdq0wddff23h6JyL3O+azC80NBSurq5avTI3b97U6r0hckZMaqxMnaSYQt1DU1RUZM6QnJqc7/vGjRvo1KkTWrRogVWrVsHFhR2ZclTmv20yD3d3d7Ro0QK7d+/G008/rWnfvXs3evfubcPIiKyDSY2dOnr0KI4ePYp27dohKCgIV65cwdSpU1GnTh320lhAWloaOnbsiOjoaHz66ae4deuW5r3w8HAbRuacUlNTkZ2djdTUVCiVSpw6dQoAULduXfj6+to2OAc3btw4PP/882jZsqWmxzE1NZXzwywgPz8fly9f1rxOTk7GqVOnEBwcjOjoaBtGVoUJZJdOnz4tdOrUSQgODhY8PDyE2NhY4dVXXxWuX79u69Cc0qpVqwQAOn/I/F588UWd3/XevXttHZpTWLhwoRATEyO4u7sLCQkJwu+//27rkJzS3r17df53/OKLL9o6tCqLdWqIiIjIKXDSABERETkFJjVERETkFJjUEBERkVNgUkNEREROgUkNEREROQUmNUREROQUmNQQERGRU2BSQ0RkRMeOHTF27Fhbh0FERjCpISIAMLrD9tChQ60WiyWSiKFDh6JPnz5mvaY++/btg0KhwJ07d6xyPyIqw72fiAgAkJ6ervnzxo0bMXXqVFy8eFHT5uXlJTq+pKQEbm5uVouPiMgY9tQQEYCyjTvVPwEBAVAoFJrXhYWFCAwMxKZNm9CxY0d4enpi3bp1mD59Opo1aya6zhdffIHY2FhR26pVq9CoUSN4enqiYcOGWLRokd44hg4dit9//x1ffvmlppcoJSUFAHDu3Dk88cQT8PX1RY0aNfD8888jMzNTc+4PP/yAJk2awMvLCyEhIejSpQvu3r2L6dOnY82aNdi+fbvmmvv27dN5/7t37+KFF16Ar68vIiIi8Nlnn2kds27dOrRs2RJ+fn4IDw/H4MGDcfPmTQBASkoKOnXqBAAICgoS9XIlJiaiXbt2CAwMREhICJ588kkkJSUZ+FshIjmY1BCRZBMnTsQbb7yB8+fP4/HHH5d0zrJlyzB58mR8+OGHOH/+PGbPno0pU6ZgzZo1Oo//8ssv0aZNG4wcORLp6elIT09HVFQU0tPT0aFDBzRr1gzHjx9HYmIi/vvvP/Tv3x9AWU/ToEGDMGzYMJw/fx779u1D3759IQgC3nnnHfTv3x/du3fXXPORRx7Ref/x48dj79692Lp1K3755Rfs27cPf/31l+iY4uJizJw5E3///Te2bduG5ORkTeISFRWFzZs3AwAuXryI9PR0fPnllwDKEqZx48bh2LFj+O233+Di4oKnn34aKpVK0ndJRIZx+ImIJBs7diz69u0r65yZM2fis88+05wXFxeHc+fOYenSpXjxxRe1jg8ICIC7uzu8vb0RHh6uaV+8eDESEhIwe/ZsTdvKlSsRFRWFS5cuIT8/H6Wlpejbty9iYmIAAE2aNNEc6+XlhaKiItE1K8rPz8eKFSvwzTffoGvXrgCANWvWoFatWqLjhg0bpvlz7dq18dVXX6FVq1bIz8+Hr68vgoODAQBhYWEIDAzUHPvMM8+IrrNixQqEhYXh3LlzaNy4sd64iEga9tQQkWQtW7aUdfytW7dw7do1DB8+HL6+vpqfWbNmyR52+euvv7B3717RdRo2bAgASEpKQtOmTfHYY4+hSZMm6NevH5YtW4bbt2/LukdSUhKKi4vRpk0bTVtwcDAaNGggOu7kyZPo3bs3YmJi4Ofnh44dOwIAUlNTjV5/8ODBqF27Nvz9/REXFyfpPCKShj01RCSZj4+P6LWLiwsEQRC1lZSUaP6sHlZZtmwZHn74YdFxrq6usu6tUqnQq1cvzJ07V+u9iIgIuLq6Yvfu3fjzzz/xyy+/YP78+Zg8eTKOHDmiSR6MqfhZdLl79y66deuGbt26Yd26dahevTpSU1Px+OOPo7i42OC5vXr1QlRUFJYtW4bIyEioVCo0btzY6HlEJA2TGiIyWfXq1ZGRkQFBEKBQKAAAp06d0rxfo0YN1KxZE1euXMFzzz0n+bru7u5QKpWitoSEBGzevBmxsbGoVk33P10KhQJt27ZF27ZtMXXqVMTExGDr1q0YN26czmtWVLduXbi5ueHw4cOIjo4GANy+fRuXLl1Chw4dAAAXLlxAZmYmPvroI0RFRQEAjh8/rhU/ANH9srKycP78eSxduhTt27cHABw8eFDqV0JEEnD4iYhM1rFjR9y6dQsff/wxkpKSsHDhQuzatUt0zPTp0zFnzhx8+eWXuHTpEs6cOYNVq1bh888/13vd2NhYHDlyBCkpKcjMzIRKpcJrr72G7OxsDBo0CEePHsWVK1fwyy+/YNiwYVAqlThy5Ahmz56N48ePIzU1FVu2bMGtW7fQqFEjzTVPnz6NixcvIjMzU9SjpObr64vhw4dj/Pjx+O2333D27FkMHToULi73/6mMjo6Gu7s75s+fjytXrmDHjh2YOXOm6DoxMTFQKBT46aefcOvWLeTn5yMoKAghISH4+uuvcfnyZezZswfjxo2rzNdPRBUJREQVrFq1SggICNC8Tk5OFgAIJ0+e1Dp28eLFQlRUlODj4yO88MILwocffijExMSIjvn222+FZs2aCe7u7kJQUJDw6KOPClu2bNF7/4sXLwqtW7cWvLy8BABCcnKyIAiCcOnSJeHpp58WAgMDBS8vL6Fhw4bC2LFjBZVKJZw7d054/PHHherVqwseHh5C/fr1hfnz52uuefPmTaFr166Cr6+vAEDYu3evznvn5eUJQ4YMEby9vYUaNWoIH3/8sdChQwfhzTff1Bzz3XffCbGxsYKHh4fQpk0bYceOHVrfzwcffCCEh4cLCoVCePHFFwVBEITdu3cLjRo1Ejw8PIQHH3xQ2LdvnwBA2Lp1q97vgoikUwiChEFkIiIiIjvH4SciIiJyCkxqiIiIyCkwqSEiIiKnwKSGiIiInAKTGiIiInIKTGqIiIjIKTCpISIiIqfApIaIiIicApMaIiIicgpMaoiIiMgpMKkhIiIip8CkhoiIiJzC/wFRevzLu1ns8gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABuYklEQVR4nO3deZiN9fsH8PeZMfu+GDPDbHYTYUiELCGSSFlTyVKRSgpJtoi0qezZoyxlrZhvCqGsIWTLmDGYmZgZZjFmO+f5/TG/c8wzZ3ueM2ef9+u65rqcz3mW+xzlueez3B+FIAgCiIiIiByci60DICIiIjIHJjVERETkFJjUEBERkVNgUkNEREROgUkNEREROQUmNUREROQUmNQQERGRU2BSQ0RERE6BSQ0RERE5BSY1RE5s9erVUCgU8PT0xNWrV7Xe79ixIxo3bixqi42NhUKh0Pz4+PggISEBCxYsQMUC5Pv27dMct3r1ap0xdO7cGQqFArGxsaL2u3fvYu7cuWjatCn8/f3h5+eHOnXqoH///vj999913kPXj777Wkp+fj7Gjh2LyMhIeHp6olmzZtiwYYOkc3/99Vd07doVkZGR8PDwQFhYGDp37oydO3dqHVtUVIRPPvkEjRs3ho+PD2rUqIEePXrgzz//NPdHInIa1WwdABFZXlFREd5//32sXbtW0vFt27bFp59+CgBIS0vD559/jtdffx25ubl47733tI738/PDihUrMHToUFF7cnIy9u3bB39/f1G7UqlEt27dcObMGYwfPx6tWrUCAPz777/48ccfceDAAXTo0EF0zuzZs9GpUyete9epU0fSZzKXvn374tixY/joo49Qv359fPfddxg0aBBUKhUGDx5s8NysrCw88MADGDFiBMLDw5GdnY0lS5agZ8+eWLt2LYYMGaI5duTIkfj2228xadIkdO7cGdnZ2fjoo4/QoUMH/PHHH5rvjIjKEYjIaa1atUoAIHTv3l1wcXERTp06JXq/Q4cOwgMPPCBqi4mJEXr27Clqy8nJEQICAoTo6GhR+969ewUAwogRIwQAwqVLl0Tvv//++0KtWrWEHj16CDExMZr2PXv2CACElStX6oxbqVRq3eP777+X/Lkt5eeffxYACN99952ovWvXrkJkZKRQWloq+5rFxcVCzZo1hfbt22vaCgsLBVdXV2HIkCGiY9PS0gQAwhtvvGHaByBychx+IqoCJkyYgJCQEEycONGk8/39/VG/fn38999/Ot/v2rUroqKisHLlSk2bSqXCmjVr8OKLL8LFRfxPTVZWFgAgIiJC5/UqHm8vtm7dCl9fX/Tr10/U/tJLLyEtLQ1HjhyRfU03NzcEBgaiWrX7HecuLi5wcXFBQECA6Fh/f3+4uLjA09PTtA9A5OTs818OIjIrPz8/vP/++/jf//6HPXv2yD6/tLQU165dQ/369XW+7+LigqFDh+Kbb76BUqkEAPzyyy+4fv06XnrpJa3jW7ZsCTc3N7z55pv49ttvkZ6ebjQGlUqF0tJSrR9jBEHQeZ4p1zp79iwaNWokSkAA4MEHH9S8L4X6s6SlpWHatGm4dOkS3n77bc37bm5uGD16NNasWYNt27YhNzcXKSkpGDlyJAICAjBy5EhJ9yGqapjUEFURr776KmrXro2JEydqTfitqHwikJqaitGjRyMrKwtz5szRe85LL72E9PR0JCYmAgBWrlyJDh066JzzEhsbiyVLliAtLQ1DhgxBZGQkIiMj8eKLL+LAgQM6rz9gwAC4ublp/Vy/ft3gZ1mzZo3O83T9GJOVlYXg4GCtdnWbugfKmCeeeAJubm6oWbMmvvjiC2zcuBE9e/YUHTNv3jyMGzcOzzzzDAICAhAXF4c//vgDe/bsQd26dSXdh6iq4URhoirC3d0ds2bNwuDBg7Fp0yYMGDBA77E7d+7UesirJ7TqExcXh44dO2LlypVo3bo1tm/fjuXLl+s9ftiwYXjmmWewc+dOHD58GIcPH8a6deuwdu1azJ07F+PHjxcdP3fuXHTu3FnrOjVq1NB7DwDo1asXjh07ZvAYORQKhUnvlTd//nzcuXMH6enpWLduHQYMGIA1a9Zg0KBBmmM+/PBDfPrpp5g+fTrat2+P3NxcLFiwAF27dsUvv/yC5s2bV/qzEDkdG8/pISILUk8UPnbsmCAIgqBSqYSEhAShTp06QnFxsd6Jwu3atROOHTsmHD58WFi7dq0QGxsrVKtWTThw4IDo2IqTeNetWye4ubkJ7733nhAQECAUFBQIgiAIPXv2FE0U1ufs2bNCeHi44ObmJty+fVvnPeRSqVRCSUmJpB9jWrduLTz00EM64wYgLF261KQYu3fvLgQFBWkmSJ87d05QKBTCJ598IjquuLhYqFu3rtCxY0eT7kPk7Dj8RFSFKBQKzJ07F0lJSfj666/1HhcQEICWLVvi4YcfxpAhQ/DLL79o5nmoVCq95/Xt2xfe3t746KOPMHDgQHh5ecmK74EHHsDAgQNRUlKCS5cuyTpXH3MOPzVp0gTnz5/Xmn9z5swZANCq+SNVq1atcPv2bdy6dQsA8Pfff0MQBDz00EOi49zc3NC0aVPJc3eIqhoOPxFVMV26dEHXrl3xwQcfICoqStI59erVw4QJEzBjxgxs3LhRNExSnpeXF6ZOnYr9+/dj1KhReq+XlZUFPz8/uLu7a7134cIFAEBkZKSk2Iwx5/DT008/jWXLlmHz5s2i4bs1a9YgMjISDz/8sOxrCoKA33//HYGBgQgJCQFw/7MfPnxYVK+nqKgIJ06cQK1atSr5SYicE5Maoipo7ty5aNGiBW7evIkHHnhA0jnvvPMOlixZghkzZqB///5wdXXVedy4ceMwbtw4g9fau3cv3nzzTTz33HN45JFHEBISgps3b2L9+vVITEzECy+8oPXg/vfff3H48GGta9WqVcvgQz4kJESTLFRWjx490LVrV4waNQq5ubmoW7euJuZ169aJvpPhw4djzZo1SEpKQkxMDACgd+/eaNq0KZo1a4aQkBCkpaVh9erV+P3337Fw4ULNqqp27drhoYcewvTp01FQUIBHH30UOTk5mD9/PpKTkyUXUSSqapjUEFVBzZs3x6BBg/Ddd99JPsfX1xdTp07Fa6+9hm+//RYvvPCCyfdv3bo1hg0bhr1792Lt2rXIzMyEl5cX4uPjMX/+fJ29PLoqGQPA5MmTMWvWLJNjkWvLli2YPHkypk6diuzsbDRs2BDr16/HwIEDRccplUoolUrRSrO2bdvihx9+wIIFC5Cbm4vAwEC0bNkSP/30k2gStouLC3bv3o1PPvkE33//PT799FP4+voiPj4eO3fuRI8ePaz2eYkciUIQjKztJCIiInIAnChMREREToFJDRERETkFJjVERETkFJjUEBERkVNgUkNEREROgUkNEREROYUqVadGpVIhLS0Nfn5+kjeeIyIiItsSBAF5eXmIjIyEi4v+/pgqldSkpaVJLgtPRERE9uXatWsGK4hXqaTGz88PQNmX4u/vb+NoiIiISIrc3FxERUVpnuP6VKmkRj3k5O/vz6SGiIjIwRibOsKJwkREROQUmNQQERGRU2BSQ0RERE6BSQ0RERE5BSY1RERE5BSY1BAREZFTYFJDREREToFJDRERETkFJjVERETkFJjUEBERkVNgUkNEREROgUkNEREROQUmNURERFRpgiDg3r17No2BSQ0RERFVys6dO+Hi4gJvb29cv37dZnEwqSEiIiKT9e7dGz179tS89vT0tFks1Wx2ZyIiInJY2dnZCAkJEbUdPXoUoaGhNoqIPTVEREQk07Zt27QSmsLCQjz00EM2iqgMkxoiIiKSrGvXrnj66ac1rydOnAhBEODh4WHDqMpw+ImIiIiMunXrFsLCwkRtJ06cQPPmzW0UkTb21BAREZFBmzZtEiU01apVQ3FxsV0lNACTGiIiItJDEAS0bdsWAwYM0LRNmzYNJSUlcHNzs2FkunH4iYiIiLSkp6cjMjJS1Hb27Fk88MADNorIOPbUEBERkcjatWtFCY2/vz9KSkrsOqEBmNQQERHR/xMEAQkJCXjhhRc0bXPmzEFOTg6qVbP/wR37j5CIiIgs7vr164iKihK1XbhwAQ0aNLBRRPKxp4aIiKiKW7ZsmSihCQ8PR2lpqUMlNACTGiIioipLEAQ0aNAAL7/8sqZt3rx5SE9Ph6urqw0jMw2Hn4iIiKqglJQUxMXFidouX76MOnXq2CiiymNPDRERURWzYMECUUJTu3ZtKJVKh05oAPbUEBERVRkqlQoxMTG4fv26pm3RokUYNWqUDaMyHyY1RERETkKpEnA0ORs38woR5ueJVnHBcHVRACgbWqpXr57o+JSUFMTExNgiVItgUkNEROQEEs+mY8aP55CeU6hpiwjwxLRe8fjnf9/hnXfe0bQ/8MADOHPmDBQKhS1CtRgmNURERA4u8Ww6Rq07AaFCe/rtu+jZqiFU93I1bStWrMCwYcOsG6CVMKkhIiJyYEqVgBk/ntNKaEoyryFthXiuzI0bN7T2c3ImXP1ERETkwI4mZ4uGnAAg58+NooTGPaI+/vj3llMnNAB7aoiIiBzazbz7CY2gLMW1L/pDKC3WtIU8+TZ8H+iEW/lFtgjPqpjUEBERObAwP08AQPHNZKSvel30Xq0xa+HqEyQ6zpkxqSEiInJgreKCUXp0PdL3fqtp84hugvBBcwAACgDhAWXLu50dkxoiIiIHoKsGjbK0BB4eHqLjQnu/C5+G7QCUJTQAMK1XvKZejTNjUkNERGTndNWg8ctPxdmFo0XHtZi8GZml95Oc8P+vU9O9cYTVYrUlJjVERER2TFcNmtt7V+Lq0S2a1927d8euXbsMVhSuCpjUEBER2amKNWiE0mKkftZXdEz95z/AT6vfBwC4uijQpk6IlaO0H6xTQ0REZKfK16ApunFBK6Gp9eYGFEUm4Ghyti3CszvsqSEiIrJT6ho02bsXI+/Ez5p27/qPoPrT72kdV9UxqSEiIrJT/tVUuDr3SVFbWL8Z8KrdQtxWBWrQSMGkhoiIyA4dOHAAnR99VNQWNXYTXDy8Na+rUg0aKZjUEBER2Znhw4dj5cqVmtc+D3RC9SffFq2AsqcaNPay6opJDRERkZ3Iz8+Hn5+fqO23335DcVgjrTo19lKDRlcNnQgbxaYQBKHibuVOKzc3FwEBAcjJyYG/v7+twyEiItL47bff0KVLF1FbXl4efH19AdhPb0h5umroAPd7kRYPSTBLYiP1+c0l3URERDY2ePBgUUIzYsQICIKgSWiA+zVoejeriTZ1Qmye0FSsoVOeum3Gj+egVFmv74TDT0RERDaSk5ODwMBAUduBAwfQrl072wQkQ/kaOroIANJzCnE0OdtqBQHZU0NERGQDu3bt0kpoCgoKHCKhAaTXxrFmDR0mNURERFbWp08fPPHEE5rXr7/+OgRBgJeXlw2jkkdqbRxr1tDh8BMREZGVZGdnIyREPBRz5MgRtGrVykYRma5VXDAiAjyRkVOoc16NLWrosKeGiIjICrZv366V0BQWFjpkQgOUTVye1isewP3VTmq2qqHDpIaIiMjCunXrhj59+mheT5gwAYIgwMPDw3ZBmUH3xhFYPCQB4QHiIabwAE+zLeeWg8NPREREFnLr1i2EhYWJ2k6cOIHmzZvbKCLz6944Al3jw+2ihg6TGiIiIgvYtGkTBgwYoHnt4uKCe/fuwd3d3YZRWYa6ho6tcfiJiIjIjARBQPv27UUJzZQpU6BUKp0yobEnDpXU7N+/H7169UJkZCQUCgW2bdtm65CIiIg0MjIy4OLigoMHD2razpw5gw8++MCGUVUdDpXU3L17F02bNsWCBQtsHQoREZHIunXrEBFxf2Ksr68vSkpK0LhxYxtGVbU41JyaHj16oEePHrYOg4iISEMQBLRs2RInTpzQtM2ePRuTJk2yYVRVk0MlNXIVFRWhqKhI8zo3N9eG0RARkbO5fv06oqKiRG3nz59Hw4YNtY61x122nY1TJzVz5szBjBkzbB0GERH9P2d6sK9YsQIjRozQvA4LC0NaWhpcXV21jk08m44ZP54TbQAZEeCJab3irV7LxZkpBEGw3p7gZqRQKLB161ZRMaOKdPXUREVFIScnB/7+/laIkoiI1JzlwS4IAuLj43HhwgVN22effYZx48bpPD7xbDpGrTuhtZWAOpWzRZE6R5Obm4uAgACjz2+n7qnx8PBw+GqNRETOQN+DPSOnEKPWnXCYB/vVq1cRGxsrart8+TLq1Kmj83ilSsCMH8/p3BtJQFliM+PHc+gaH+6wPVb2xKFWPxERkeMx9mAHyh7sSpXhgQOlSsChpCxsP3UDh5KyjB5vbgsXLhQlNLGxsVAqlXoTGgA4mpwt6pmqSACQnlOIo8nZZoy06nKonpr8/HxcvnxZ8zo5ORmnTp1CcHAwoqOjbRgZERHpI+fBrq8qrS2HrlQqFeLi4pCamqppW7hwIUaPHm303Jt5+j+3ruOcac6RLThUUnP8+HF06tRJ81o9fvniiy9i9erVNoqKiIgMkftgr8iWQ1eXL19GvXr1RG0pKSmIiYmRdH5K5l1Jx4X5eTrNnCNbcqjhp44dO0IQBK0fJjRERPYrzM/T+EF6jjPX0JUpPv/8c1FCEx8fD5VKJTmhUaoErD+aavS4iABP3L5bhFHrTmj1aKkTt8Sz6fKCr6IcKqkhIiLH0yImCMZGUFwUZcdVZIs5KUqlEtWrV8fbb7+taVu+fDn++ecfKBTSh4KOJmcjI7fI6HEDWkZh5s/nbZK4ORsmNUREZFF/Xb0NY89jlVB2XEWVHbqS68KFC6hWrRoyMzM1bdevX8fw4cNlX0tqTKUqFScTmwmTGiIisiipD/c/Lmdq9UZUZuhKrtmzZ6NRo0aa1y1btoRKpULNmjVNup70mKT1/pgrcXNmTGqIiMiipD7cF+y9jHZz94jmj7SKC0ZEgKfex74CZXNSWsUFmxxfaWkpfHx8MHnyZE3b2rVrcezYMVnDTRVJjV3fiq+KzJG4OTsmNUREZFHqh7sUFSfGurooMK1XPADt/gz162m94k1e9nzmzBm4ubmhoKBA05aeno4hQ4YYPE9KzRypsbeuHWLxxK2qYFJDREQW5eqiwFNNpS1J1jUxtnvjCCwekoDwColReIBnpZZzT506FQ8++KDm9aOPPgqVSoXw8HCD5yWeTUe7uXswaNlhvLnhFAYtO6zVw6QmJXZLJ25VicPu/WQKqXtHEBGR6SoWkGsRE4QOn+w1OBlWl/UjW4uGZsxVmK64uFhrC51NmzahX79+Rs81dR8nKbGzTo1+3PuJiIhMZmoCoevBHOzjhuy7JbJjqDgx1tVFIXn+iT4nTpxAixYtRG23bt1CaGio0XMrs4+TlNi7N45A1/hw2d87qxDfx6SGiIhETO0x0NeLYUpCA5h/YuyECRPwySefaF5369YN//vf/ySfb47tHoyRm7ixd0eMc2qIiEhDnZjIrWxrqBdDLnNPjC0sLIRCoRAlNNu2bZOV0ADWr5ljjKl/V86MSQ0REQGo3JYExnoxpDL3xNgjR47Ay8tL1JaVlYXevXvLvpY1a+YYY8vtI+wZkxoiIgJQuS0JzNU7UdkVTeW9/vrraN26teZ1nz59IAgCgoNN6wGyRs0cqWyxfYQj4JwaIiICULnhFVN7J8L9PTCoVTRiQ33MNsm1oKAAPj4+orZdu3ahe/fulbqueun1qHUnoABEvSTWXnptb0Nh9oJJDRGRHbLFipbKDK+0igtGoJcb7twzPil4TKe6qFfD1yKf6+DBg2jfvr2o7c6dOwgICDDL9dV1ZypOzg238uRcexoKsydMaoiI7IytVrS0iAkyuPxagbKHt67hFVcXBV5qG4t5v/5r9D5t64ZWemm2LiNHjsTy5cs1rwcPHoxvv/3W7Pcpv/Q6I+ceMvOLcaegGGdv5MDPww2t64RYPAFVD4Vl5BTqnFdj6O/KmTGpISKn50h1PPQti1avaDHXfBNd953x4zmDCQ1geHhlTOd6WPVnCu4UyE+KypP795Wfnw8/Pz9R26+//orHHnvM4H0qw9VFgZx7xZjx0znR512wNwmB3m74qG8Tiyag9jQUZk9YUZiInJoj1fFQqgS0m7tH7wRQdVJwcGJnsz6s9CVS5Un9zkytuFv+fDl/X3v27NFKXvLy8uDr62swzspKPJuOV9edMHjMEgsloBXjcJT/vitD6vObSQ0ROa3KPmCt7VBSFgYtO2z0uIrbB1SGsUQKAEJ83HFo0mNwryZtway5i/fp+/saMmSIaHhp+PDhouEnS1GqBLT9aA8ycg1Pwg3398Af7z5m8d4SR+qJNBW3SSCiKq0yJe1txRYrWqTUl8m6W4y/rt6WnEiZUu5fzt9Xfl4uAgMDRcfs378f7du3t8oD/mhyttGEBgAycosqVV1YKnNsH+EsmNQQkVOyRkl7c7PFihZLJVJyH7SHr2RJ+vv6avX3GDd8gOi9u3fvwtvb22pDMXK+i6q2pNrWWHyPiJySI9bxsEVxN2slUkqVgENJWdh+6gYOJWWJKt0mnk3Ha98anp8CADe3fihKaMaMGQNBEDQJjbW2DJDzXVS1JdW2xp4aInJKjljHwxYrWqyxNNhQDwoAo5OUlYX5uP7lQFHb4cOH8fDDD5e9b+WhxlZxwQj395Q0p6aqLam2NfbUEJFTsqeS9nKoi7uFB4iTLXNuH1CeOpECoPVdmSORMtaD8u6WMwYTmoJ/j2glNPfu3dMkNID1twxwdVFg+lPxRo+b/tQDdjNfq6pgTw0ROSVHruNhykRbQ4xNnrVUlVwpmy7qq2kDAP9tmobC5L80r58Z+ip+WLVY6zhbDDV2bxyBJUMS8O6WM1qfwRp1akg3JjVE5LTspaS9Kcy1omXn6XS8v/0ssu8Wa9p0TZ4VVcnNLUR2fhGCfdwR4OUOpUowKaEydeduZUEOrs9/TtQ2f2MixvR/XOfxthpqVH9nh69k4VBSFgABbWqHWqWiMOnGpIaInJq5ez0cyZyd57B0f7JWe7qe6sTqKrkfJ14wywoiU3pGcg5/jzu/rxG1PTjlR4x6tpvec2y5ZYCriwJt64aibd1Qs1+b5OOcGiJyeupej97NaqJNFfkteufpNJ0JjZqAssmzFVchmXMFkZyeEUEQcHXuk6KEJqDNAMRM/Ak5xQqD82EsPS+IHAeTGiIiJ6NUCXh/+1mjx5WfPCtl/kvFJMiYVnHBCPR20/u+AoCPuytKbqcj9eNeovciXvoKgY8+r3ltrNfH0ATrhYMTEODlrnM5OTkXDj8REdmAOSrf6rvG0eRsvRtTVvTruQy0qRNikWKFu89lGJwILACIuLQF5zYuE7VHv7MVCldxMiSl10fXUOPtu0WY+bPz741EZZjUEBFZmTkq3xq6RlGpSnIsK/5IwUNxwZLPkTpPRt3zo48gCEj9uBeulmvzjGuBGv1naB0rZ+l9+QnWiWfT8dp3J62+4znZDoefiIisyBzzVoxdIyWzQFZMM348h1AfD0nHSp0nY6jnpyTrmtZwU/hzcxGuI6EBgHslSuw+lyHpvmqWGE4j+8ekhojISszxoJVyjQ3HUhHuLy1JAcqGlaCAWYsV6uvRyd69BGnLR4na9l/IwKp3n0eAnvk3OQUlsicqW7sgH9kHJjVERFZijget1GsMeChKb4KiS2Z+kVlXEFXs0VGvbso78ZOmzbv+I4iZ+BOy75Wic8MaeuM1pWfFEff+ospjUkNEZCXmeNBKvcaaP6/i5UfjEOzjLun4MD9Ps27R0CouGME+ZT0vxTeTtYebnv8M1Z9+DwCQknkXref8httGJhXL6VlxxL2/qPI4UZiIyErM8aCVeo0790rw9f5kfDWoOabtOKt3NVTFwnTmKlbo6qLArN6N0X/Ii7h75lfRe9Hjt0Ph4goACPJ2w7xf/5V8XalJnS0L8pHtsKeGiMhKzLHJprFrVDR753nM6t0YCkgfVjJHsUKVSoWeTWuKEhqfxo8hZuJPmoSm4p5cUmTmFUkagmJBvqqJSQ0RkZWY40Fb/hrGqIdsgnw8rLrz9/Hjx+Hq6ipqazB6MUJ7vqV5HRHgibFd6husY6PLzJ/Po93cPZImDVt7x3OyPYUgCFVmPVtubi4CAgKQk5MDf39/W4dDRFWUuerUvLv5DO7cM54UfDmwGXo3q2mWgn/GDBgwAJs2bRK1KZVKCFBo3fun02l4c8Mp2fdQRyw1MbHG5ybLkvr85pwaIiIzkvIANce8le6NI+Dn6Ybnlh8xeqx6Ho65dv7WpbS0FG5u4iXZo0ePxsKFCzWvK97b1Em6AsoSmxk/nkPX+HCj35slPzfZFyY1RERmIqcHxtQHbfmkKdTXA+H+Hvgvt8imk2H//PNPtG3bVtT2zz//ID7e8DCZscm8hpiybQM5PyY1RERmoK7ya8mS/LqSpkBvN03PRfl7W2MyrFIloP1j3XBon3h1k0qlgkJh/J7q+UGj1p0wadIwwDozJMaJwkRElWSNkvz6tkbI+f+JthWr8RqaDKtUCTiUlCXatVpXmyE/nryKaq4uooQmon0/7DqTJimhUVNP5tVXTdgYS9WZkft9kH1gTw0RUSVZYofr8owlTQoAXm6uWDg8AZl3iwzO0dHX2wNAtBLJ0MTlj1Z8j0kj+ovaIl/+Gu5BkSb3SsldBWXJoTVzTOQm22BPDRFRJVm6JL/UpMnFRWGwtoy+3p47BSVaSYW+DTY7dOyoldBET/gRbkGRJvVKGdvNWxdLDq2ZY8NRsh321BARVZKcSsGmLC82R9JkqLdHF/Vx724+Az9PNzSL9IGvj7fomIBHBiGw/XNa56l7pVrFBRv9rMYSNl3CLdRrIqVHTOqKK7INJjVERJUktST/7btFaDd3j+xhDXNsr2BK8gCUbbfQd9JC3Pxhuqi95qsrUS0gTO95v57LwLhNp4x+VqkJ25hOdVCvhp9F68xYehiRLI/DT0RElSSlUvBTTSPw2ncnTRrWMMf2CqYOfaWvflMroYmZ+JPBhAYAVvyRIumzSk3Y2tatXqltG6Tgzt6Oz+SkpqCgABcuXMDp06dFP0REVZGhkvwLBydgx9/pJq+OMsf2CnJXCalKCnF17pMo/i9J0xbUYShaz/4V4f4eBhMsfWHo+qzmSNjMhTt7Oz7Zw0+3bt3CSy+9hF27dul8X6lUVjooIiJrMlcZfX2Vgs0xrKFOmqbvOIeM3PvXkjq/RE6hu4JLh3Br64eitpqjV6OaXyjScwrxVpd6+OLXf3XWxhEAGNp8p+JnLV+rRh9rbTzJnb0dn+yemrFjx+L27ds4fPgwvLy8kJiYiDVr1qBevXrYsWOHJWIkIrKYxLPpaDd3DwYtO4w3N5zCoGWHJW+YqIuuHa6lDldk5NyTUBtF3KZv+76KdVYA6O3tKe/Gsle0EpqYiT+hml+o5nXuvRK9vVLD2sYauPp95b+T7o0j8PKjcVo9PC4K4OVH46y2jJo7ezs+2RtaRkREYPv27WjVqhX8/f1x/Phx1K9fHzt27MDHH3+MgwcPWirWSuOGlkRUnr4qwHI3TDTmUFIWBi07bPS4YB93ZN8t1rwuP7FWTqyG6qwA0FmnRllUgLOznxZdO6jLK/Bv0UtHnG44NrkrAOjslZLyWdePbK3plbLW34NUrFNjfyy2oeXdu3cRFlY2QSw4OBi3bt1C/fr10aRJE5w4ob/7kIjInlhz+a7UoZ/yCQ1wf2LtwsEJmPmztFh3n8swul3DwYmdRcnIlcP/w5Ah4qXZtcasg6tPoJ44SzTDRxWHy+QO4djjMmpzbDhKtiF7+KlBgwa4ePEiAKBZs2ZYunQpbty4gSVLliAighksETkGOfNcKsvQsIYh6gf9lO1nJcV6+EqWwQRBAPDe1jPY8XcaAODJByPRt11jUULjWq0aYib+pDehUdM3pCZ3CMeafw9y6BpGJPtn0pya9PSyseZp06YhMTER0dHR+OqrrzB79myzB0hEZAnWXr6rb3VUsI/hPY8EAFkVenD0OZSUZbQWTfbdEry18RT6z/8V1VxdkJGRoXnv66+/xoELGQbOvs/QCiBDK8EqDiVxGTWZk+zhp+eeu5/RN2/eHCkpKbhw4QKio6MRGhpq4EwiIvthyvLdyq6S0jWskZFbiLc2npIbvk7XbxdIOi7/9G5k7fpS1JZ4/F90aV4HQNn8EX3JkbEVQOrvqKhUhU+fbQoogMx8/ftRcRk1mZPspOaDDz7AO++8A2/vsnLZ3t7eSEhIwL179/DBBx9g6tSpZg+SiMjc5M79MNfkUfWwhpp6ZZIxQd5uuFNQYnBOzrZTaUavk/r5sxBK7n8GFy9/RL3xHV75/iIifrmKab3iRUusKy7ZBvSvADL0Helbqs5l1GROsoefZsyYgfz8fK32goICzJgxwyxBERFZmpy5H/o2OUzPKcSr605g52nTNzk0VnxOTSUImomzplAW5ODq3CdFCU3Ik28j6o3vNK/Vk4kBSB4+UjN1I0guoyZzkp3UCIIAhUL7P66///4bwcGWz6QXLVqEuLg4eHp6okWLFjhw4IDF70lEzknK3A+lSsC7W84Y7CEZs/4Edp423kuii9RJxLn3SgEAAd6G5+DoknfiZ1yfL17dFDV2I3wf6CRqK1/xt2t8OA5O7Iz1I1vjy4HNsH5kaxyc2FlnQmNsBZP6mvoqJsuZg0NkiOThp6CgICgUCigUCtSvX1+U2CiVSuTn5+PVV1+1SJBqGzduxNixY7Fo0SK0bdsWS5cuRY8ePXDu3DlER0db9N5E5JyMLd9dsOdf3CkoMXgNlQCM/u4klrgoTHoA66sWXJ66l8bLzRWvPVEXH+48L+naV+c+KXrtGlADtV5doff4ihV/pWzcaK6KyVxGTZUlOan54osvIAgChg0bhhkzZiAgIEDznru7O2JjY9GmTRuLBKn2+eefY/jw4RgxYoQmpv/9739YvHgx5syZY9F7E5HzqjjPRU2pErDqjxTJ16lMPZXujSPg5+GG51Yc0XuMOjnIuWc4yQKA0vxs3Fj4gqgttPe78GnYTlI8clYbmWsFk76/ByKpJCc1L774IgAgLi4OjzzyCNzc5HeBVkZxcTH++usvvPvuu6L2bt264c8//9R5TlFREYqKijSvc3NzLRojETmXo8nZuCMhgVBLzynEvN0X0bZudUm9DBVXU0lPJAwXgs89ugW3964UtUW99T1c3L0kXh9IyZS2kgrgCiayH7JXP3Xo0EHz53v37qGkRPw/vKW2H8jMzIRSqUSNGjVE7TVq1BDVWShvzpw5nLxMRCYzpTbKgr1JWLA3yejKKF0rhYJ93CXdo03tUGw+cUPniqGKw01u1WMROWyBrM8AABuOpWJM57qSep24gonsheyJwgUFBRgzZgzCwsLg6+uLoKAg0Y+lVZykrG/iMgBMmjQJOTk5mp9r165ZPD4ich6V6VkwtOpH30qh20aK7ClQtkS6dZ0QzeRitdLcW1oJTfVnppqU0ADyqviWn+ysD1cwkTXITmrGjx+PPXv2YNGiRfDw8MDy5csxY8YMREZG4ptvvrFEjACA0NBQuLq6avXK3Lx5U6v3Rs3DwwP+/v6iHyKiiiruaK1epSN1ubUu6m0J3t18Bn9cztRcU8pKIV0qLm9WTy4O9nHDnT/W48bil0THR43bDO+6rUyI/L5dZ9MN7BYuZi87bVPVJnuX7ujoaHzzzTfo2LEj/P39ceLECdStWxdr167F+vXrsXPnTkvFiocffhgtWrTAokWLNG3x8fHo3bu3pInC3KWbiCoyVlRP3asCGJvJYpj6mgFe7pJ2sfbzdEVeoVJnTOVV7Kn2qNkI4UM+qUSk2qQUGbS3nbbJuUh9fsvuqcnOzkZcXByAsvkz2dll3ZPt2rXD/v37TQxXmnHjxmH58uVYuXIlzp8/j7feegupqakWX0pORM5JSsE4fTVU5FJf89dz0vZWyitUws+zGoY+EqOzRsyVK1e0Epqw/jONJjTqMwK93ST3QBkroFfZOjVE5iJ7onDt2rWRkpKCmJgYxMfHY9OmTWjVqhV+/PFHBAYGWiDE+wYMGICsrCx88MEHSE9PR+PGjbFz507ExMRY9L5E5HyMPYgVuL9Eu2INlVAfD0BRtsXBgr2XJd1Pfc2Nx6XP7csrLMXqP6/Co5qLaKnzpEmT8NFHH4mOjX57KxTVjK9KDf//XhcAGLXuBBQw3gNV8fuoODfGHHVqiMxBdlLz0ksv4e+//0aHDh0wadIk9OzZE/Pnz0dpaSk+//xzS8QoMnr0aIwePdri9yEi+1XZjSUB+Q9iXTVUWtcOweYT1/Wu+tF1zfwipdHjKlq6PxlNawWhR5NwuLiIO9g9Y5ujxoCZkq4zplMdvNW1gea7WjwkQWvozVDs+hIT7rRN9kJ2UvPWW29p/typUydcuHABx48fR506ddC0aVOzBkdEVJG5NpY0x4NYvepHao9HZYxfsQs9vxoualu0/kfMPSU9mWtbt7oo+SvfA7XrbDq+OXTV6DV0fR+sU0P2Qvacmoqio6PRt29fJjREZHGmbpqoi7kexOaac2NI9q9Lca5CQlNcXIyX+/eUvDor4v/rxFRc6QUAbeqEoIfEhFDX92FslZh6KTrr1JClSeqp+eqrryRf8I033jA5GCIifeTMgTFHwThA+oNY3eNxOCkLr313QlYVYkMEQUDqx71EbX379sXmzZs1Q3BPNA7HCiNbOShQthR897kMvb1cXePDTS6gZ6jHijttkzVJWtKtXu2kduvWLRQUFGgmBt+5cwfe3t4ICwvDlStXLBKoOXBJN5HjOpSUJWkp9JhOddG2bqikeTb6liGrvfJoHCY9YbionNxrSlV8KwXpK8eI2pb98D+MeKabziE4F0XZxpoVRVSYGGxoybX6GEB3YmJsWba5hgaJKpL6/JZdp+a7777DokWLsGLFCjRo0AAAcPHiRYwcORKvvPIKnnvuOSNXsB0mNUSOa/upG3hzwynJx0cEeGJKz3gE+bgbnFA8Z+c5LN2frPMaCphWX8XQNaXI2vUV8k//ImqLnbAdC59rCRcXhd7kRADwUttY1Ar0QrCPe9lQkQK4mVeEmT/9g+y7unuQ1L0wByd2NtibI+V7MDaJ2xyTvKnqsVhSU6dOHfzwww9o3ry5qP2vv/7Cs88+i+Rk0/9HtjQmNUSOS2pPjSEVH85KlYB2c/foXf1T/mHv6qKQ9EA2dk19vN1dcbeoBKkfPyVq93mgE0KffFvzOtDbDXcKTEtOjFk/sjXa1AmRlXjIOZY9OWQqqc9v2auf0tPTtTaxBAClUon//vtP7uWIiCSRMgfGGPWEYnXvi9Rl3YevZCGvsETSA9nYNSsK9HbDwkEJcLuTgodbPSR6L2Lol3CvUUfUpi+hKR/vgj3/4otf/5X9PalXNulavq6LnCRF37Bcxb8TosqQvfrpsccew8iRI3H8+HGoO3mOHz+OV155BV26dDF7gEREgHjTRFMHKypWt5W6rHvkN8fxqsRVV3JqsSgAfNS3CRZMfV0roYmesEMroZFq1R8pJiV+cpZcy1mJxorDZC2yk5qVK1eiZs2aaNWqFTw9PeHh4YGHH34YERERWL58uSViJCICYJ7l0+WLyEl9iBcU6y6Yp+uBLPWaIT7uWDDwQfRoEokNGzZo2n2bdUfMxJ+gUJhecUPu6iu5S67lJilyCh0SVYbs4afq1atj586d+Pfff3H+/HkIgoBGjRqhfv36loiPiEikfMG4Py7fwoK9SSZd52ZeIZ58MLLSQ1oVK+1KGSYL9nHDvI7e6NA8WtS+budBTP79jomRlCUnAQbm3Og7BwCm9IyXPDdGbjVmVhwma5Gd1KjVq1cP9erVM2csRESSqOd8tIoLxndHryH7brHsa4T5eYrqq1RW+fkoxmq2uP32CTpM/VV0vkqlgkoAFpzaY7BWTIC3G3L+P2nRde2XHonDvF8vSY47PMATTzWNwMyfpU/glZuk2GPFYa7Cck6VrihMRGQpFavfVpxz4eqiQJ9mkbKuWXGopXvjCLz8aJzhkyQo/0DWN0wW5lsNKXOfxNHf7yc048aNgyAIUCgUBucNqV9/1LeJzmuHB3hi8ZAEjOlc12h13xAfd8zr3xTrR7bGlJ6N8PX+ZFlVmuUmKfZWcTjxbDrazd2DQcsO480NpzBo2WG0m7tHVkVqsk+yl3Q7Mi7pJnIcUlfWyFnqrauInKlLsMtfs/yy7/LK9wZcO3sMrz//tOj9S5cu6ezxlvLZDfU0qCfxAoaL6Mld0l7+c7Wba7hHqeJ5UmOyNH2rsKwdB8ljsTo1joxJDZFjkPPgkZOUVDYpqkjqg7BTp07Yt2+fqE2lUkGh0D/cUdnhESmJkdTPrq5fU/H6cpMUW9epMTWJI9uzWJ2a1NRUREVFaf3PKAgCrl27hujoaD1nEhEZJ3ePp4rzYio+YAUAw9rGomt8uM7EoDKTU8ONPJALCwvh5eUlapsyZQo++OADo9eWWitGn/ITqvUlRpWZwKseYquYpBj6TqTEZElyJziT45Gd1MTFxSE9PR1hYWGi9uzsbMTFxUGp1L30kYhIClMePKY8YNXkTE5VAAj2ccf7PRshPMDLcPXcxET06NFD1JacnIzY2FjJ96ssY4lRZSfwmpKkVDZZqwyuwnJ+spMa9YS2ivLz8+Hpab2Z60TkPMoPtfz7X56kcyo+eMo/YDNyC5GdX4RgH3cEeLlDqRL0PmjlVCoWAGTdLUZ4gJfBB3OrVq1w7Ngx8bl2ONJv7LMb2plbzZZJilz2uAqLzEtyUjNu3DgAgEKhwJQpU+Dt7a15T6lU4siRI2jWrJnZAyQi+2GJZbC65llIoevB4+qiQM69YnyceEHyvA1TlnXr+02+oKAAPj4+orbZs2dj0qRJkq9tTVKWn0/rFe8080vMkcSRfZOc1Jw8eRJA2W8bZ86cgbu7u+Y9d3d3NG3aFO+88475IyQiu2CJSZ76JgQbYujBY+r+Qurhq/e2ntG7k3V5mXlF2H7qhiix2759O/r06SM67vr166hZs6bR61mzZkrFe3WNDzd56M7RVLUkriqSvfrppZdewpdffumQq4e4+onINJZYBmvKUmpdS5LVD+hQHw+8/f3fyMg1fWVLcakKref8ZrCYn4sCKF8uJyLAE9e/fgXXU8SVjaX806pUCViw5zJW/ZEs2trAUiuCDCWmtpzAa222XoVF8lltSXdubi727NmDhg0bomHDhpW5lMUxqSGSz1LLYE1ZSl3+wWPqsJWu5cnl6VuqrIuqqADXvugvaps3bx7Gjh1rNI7Es+l4d8sZnVsaWKJmCuuziLGisGOx2JLu/v3749FHH8WYMWNw7949tGzZEikpKRAEARs2bMAzzzxTqcCJyL5Yahms1BUmYzrVRb0avqIHjynDVmoZOfdwKClL78NM30qqij00d8/vR+aOj0XXvpGWjsiIcKMxJJ5Nx6sG5vDoWrpeGXKXyVcFjjTBmaSTndTs378fkydPBgBs3boVgiDgzp07WLNmDWbNmsWkhsjJyFkGK+e3X6krTNrWDRU9fAw9oKWYuuMf5BWWal7rGnaouFQ5M68IM38+r3n/+sIXoczPun9RhQtiJuzA1QI3GNu0QR2/MeasmcL6LFRVyE5qcnJyEBxcNkEvMTERzzzzDLy9vdGzZ0+MHz/e7AESkW1JTT5SMgu0hqkMzVMwdSWKsQe0MeUTGqDsYa5rEnH53+S3n7oBAFAV5uPalwNF5wc/PgZ+zboDkJYAyo1fyjWNJZOsz0JVheykJioqCocOHUJwcDASExOxYcMGAMDt27dZp4bICUlJPgK83fDFr5dkrToydSWKJR68AgwPv4T5eSL/zK/I2vmFqL3WG9/B1ctfdJwxcuM3dk0pk15Zn4WqCtm7dI8dOxbPPfccatWqhYiICHTs2BFA2bBUkyZNzB0fEdmYsZ2j1cmIvvkaQFnCUHGHbeD+DtkV63kqFMDLj8bp7OEx5cFrYIslDfXwiy6PN48TJTQunr6ImfiTJqGRs8t0SmaBlJABCddUzy0ytsO2OjE15raBVV9EjkB2UjN69GgcOnQIK1euxB9//AEXl7JL1K5dG7NmzTJ7gERke+rJs+EVHozhAZ54q0s9nSt41MrP16go8Ww6vt6fjIr5jkoAvt6frHkol6d+QEuZzjqsbSym9GwEqWs8K/aiZGZmQqFQIC/vfpXj0J7jEPXmBs1rOfVNEs+m44tfL0mKRWHkmsYm/wL3k0lXFwWm9Gxk9J4zf9adfBI5CtlJDQC0bNkSPXv2xI0bN1BaWjY+3bNnT7Rt29aswRGR/ejeOAIHJ3bG+pGt8eXAZlg/sjUOTuyM2FAf4ydDO2GQMuFXVw+PuufI2KNXAWDX2QwE+7gbOfK+lMy7mj8vWbIE1atXF73/w58XULftE6K28ABPScuh5UxwDvJ2M3pNOZN/ASDIx8PofQ31VhE5AtlzagoKCvD6669jzZo1AIBLly6hdu3aeOONNxAZGYl3333X7EESkX3QtQzW1PkalVmR071xBN7qUg/zfv3X6PmGCulVtP5oKsZ0rodqruLf96Kjo3H16lUAQJ+H65tU30TqBOFnE2pi7rNNjV5T7uRfThamqkB2T82kSZPw999/Y9++faKJwV26dMHGjRvNGhwR2T9jw0H65ptU9iErtYco2NdD0nwSALiRlqGV0GzatEmT0AD3E7vezWqiTZ0QTfKhVAk4lJSF7adu4FBSllYPk9TP275+dUlJktxkkpOFqSqQ3VOzbds2bNy4Ea1btxbt1h0fH4+kpCQDZxKRMzJ1FVNlH7JSzw/3L1sJZKjYHQDkHtuG23uWi9ry8vLg6+tr9B62WIEkd0k8N3OkqkB2T82tW7cQFham1X737l1RkkNEVYe+icTBPu5YOFj33BBTe3hMOb9suKq+3vivzn1SlNDE1G0AQRAkJzRyViCZ+nkrMrYqDRAnk3KPJ3JEspOahx56CD///LPmtTqRWbZsGdq0aWO+yIjIoXRvHIEpPRsh2MdN05Z1txgzfz6ncxVTZR+ycs8f07kuwv3Fk2VLczNxde6TorawZ6YgYthC0fCRvqEluSuQzJ1UGFqVpmuisdzjiRyN7A0t//zzT3Tv3h3PPfccVq9ejVdeeQX//PMPDh06hN9//x0tWrSwVKyVxg0tiSxHzoaJ5SvgpmTexfqjqcjILdKco68Ssa7KubvPZUjecbn8nks5f27EnQNrRe9HjdsMF7eyxEe98aWhoaUAL3dJm3KW30TTEjtEy92ckZs5kqOx6C7dZ86cwaeffoq//voLKpUKCQkJmDhxot0X32NSQ2QZcnby1pWEhPt7YlCraMSGeut9yBpKBsrv02TsIT3zx38w9anGojb3yAaIeP4zUduYTnUQH+GP1747qTdRe6ltLFb+kaL3e1H7cmAz9G5WU/OaSQWRPBZNahwVkxoiMXM9XA8lZUnqsXirS32d2yno6s0pT04vkCHJycmoXbu2qC2s/wfwikvQeXzFnbkr3jvYxx1ZEpaMl++pISL5pD6/Za9+cnV1RXp6utZk4aysLISFhUGpVMqPloisTs4wiLk2TFz1R7Le+ScK6N5/ydi8FX3nVTR58mTMnj1b1Bb99lYoqrnpOUN/QqO+d9bdYgT7uCH7rv6KyoDzbz/AnieyF7KTGn0dO0VFRXB3l165k4hsR1/Ph64NKM25XPnOPWnbKZTv1TiclGVykT6g7N8s9XYuas0eboc7Hd/VnF8ZvZtGYtWfVw0eM/Pnc3i8seGky1FZYo4QkakkJzVfffUVgLLVTsuXLxctdVQqldi/fz8aNmxo/giJyKzk9HzsPpchKfmRtJO3l5vBpEatfK9P4tl0vLv5jKTPpau36OLFi1r/Lu3btw8dOnTQ+TA2Ra0gb6PHGEq6HJmc5JjIGiQnNfPmzQNQ9lvPkiVL4OrqqnnP3d0dsbGxWLJkifkjJCKzkro9weGkLMnJDwAMfChK57YF5SfVGtrWQE3d66PvgWnsPLW33noLX3zxhaituLgYbm5lw03dG0ega3w45u2+hAV7L0u8y33qyc9S95Zytu0HzDUsSGROkpOa5ORkAECnTp2wZcsWBAUFWSwooqpI17wEAGafqyD14XroSqak5GfBnsvYcCxV77Hh5VYobTh2TVJFWzmbP1ashKtruKl3797Ytm2b1rmuLgq0rRsqO6kpX1cmwEtaUuNs2w9UZu8uIkuRPadm7969loiDqErTNRQS6F3Wo3Cn4P6QjTnmKkh/uEpLnub9eknve291qY8xnetqEjGp2ykcMjKPpiL1eWfPntUqLXHo0CG0bt1a77nGhs4A7VVQ4eX+HpQqoUpuP8ANMskeya4oTETmpa/M/p2CElFCA2iX3jeF1HL9lf3tWgFgw7FUUZvUirZSH4SBXm6a815++WWthKa0tFRnQlO+QvDR5GxM6am/0q8CwIJBCVg/sjW+HNgM60e2xsGJnTWxVtXtB7hBJtkj2T01RGQ+coZZAPPMVZC6AWXr2iFGezCMxapr+EE9l8XQsJrUB+HC5xLQpnaw1r5zHZ54GnO+WgYotH9v07da5+VH47Dj73RxUUCJPWPqZE2rqKDMnjVHWhrNDTLJHjGpIbIhY/MSdDHHXAWpD2FDyY/UREdXr4uri8Jg7FIfmO53rsLVtbrovfAXv0BKeF0MWnYYEQGemNKzEYJ8PDRbMuiarJyRU4iv9ydj4eDmmmPlJhVSkjVDHG1ptKm7sxNZEisKE9nQ9lM38OaGUyadW7H0vimk9Azoe9jqW+1UkanVdNXDcoDuB2bsmRXYt3Or6JzoCTug0NE7I0X5rRz0PYgt1ZNirGLy2C71DW4hYUuOloyRYzJrReHTp09LvvGDDz4o+Viiqq4y8w3MMVfBWI8JoL8HAoDk1Uym0NebVMPPDUfefxwp5Y4Ne6gnvDqPMuk+asZ6wCz18Jay03f5ydj2ljBUtoeKyJwk9dS4uLhAoVBAEAStseuK7HmbBPbUkL1RbwQpZ96KlB4FazHWm6KexFuZHo7y5/737xm80r+H6P21Ow/g/d9zzPBpyujqAdt5Og2jvzupdazcvad0kbpvljnvSeRopD6/JfXTJicn48qVK0hOTsbmzZsRFxeHRYsW4eTJkzh58iQWLVqEOnXqYPPmzWb7AERVgaGVM7rY21wFKauZEs+mo93cPRi07DDe3HAKg5YdRru5eySv4FL3Jq2cNloroVGpVEgqNW/NrIo9YDtPp2PMeu2EBrifyM348RyUhjaKMkDukmdz3JPIWUkafoqJidH8uV+/fvjqq6/wxBNPaNoefPBBREVFYcqUKejTp4/ZgyRyZvqGWYK83SBAXKdG7moaazA0/LDzdDpGf3dC6xw5ZfRLSkq09pUbO3Ys5s2bh52n07D6zxSzfA5dw2WJZ3XHX15lJ26bMozIwnZEusle/XTmzBnExcVptcfFxeHcuXNmCYqoqjE0b8XYsI09LAPWNTdn5+k0oz0c7245Az8PN7SuE6Iz5t9//x0dO3YUtV28eBH169f//4RD9/Xl0tUDpp7rIpWpReakFP8z9z2JnJXspKZRo0aYNWsWVqxYAU/Pst8wioqKMGvWLDRq1MjsARJVFfom7Rr6TdxeV55ITTjuFJTguRVHdMb8WJcu2PPbb6LjVSoVFAqF7ITDGF09YHKX25s6cdvQ0mhL3ZPIWclOapYsWYJevXohKioKTZs2BQD8/fffUCgU+Omnn8weIBHpZq87JJuScJSPuVO9YM0vTGr+bQYgvtdI/O+fDHRvHGFSfR81qcuk5fSCRFSyyJy+IUh9WNiOSDfZSU2rVq2QnJyMdevW4cKFCxAEAQMGDMDgwYPh4+NjiRiJqAJ73iHZ1IKCCgBvfbYGF1ZPEr0X+cpyuAWGixKfolKV5Gsb2rfJEDm9IOaYuF1xCFJdKJCF7YikM6misLe3N15++WVzx0JEEtnzDsmmzvNI+2YcitPFm2PGTLzf+1s+Wfv02aaSr7tgUAKCfNxlzzmSutHlgkHNzdYjVnEIskG4X6W3XiCqSkxKatauXYulS5fiypUrOHToEGJiYjBv3jzUrl0bvXv3NneMRFSBPe+QLHeeh6qkENc+f1bUFvjoCwho01/rWHWyBgUkJhwJeOJB0x7+Uua6VOb6UrCwHZE8suuJL168GOPGjUOPHj1w+/ZtTbG9oKAgfPHFF+aOj4h0sOcdko3tAl5ewb9HtBKamqNW60xoysvMLzJa32fBoOaVTjj01eGJCPDEkiGWTWjU1L03vZvVRBs9q8SIqIzsvZ/i4+Mxe/Zs9OnTB35+fvj7779Ru3ZtnD17Fh07dkRmZqZFAv3www/x888/49SpU3B3d8edO3dkX4MVhclZGKtEbOuqw/oqDZeXtnwUSrKuidrKDzcZot5Pylqrv+xh2TxRVWbWvZ/KS05ORvPmzbXaPTw8cPfuXbmXk6y4uBj9+vVDmzZtsGLFCovdh8gR2PsOyfpW8wR6uyH7Ti6uzesnOj6o8wj4P9RH0rXLrzSy1vCMlD2yiMj2ZCc1cXFxOHXqlKjKMADs2rUL8fHxZgusohkzZgAAVq9ebbF7EDkSfYmDuSeSmtpLoSvhSD66G88NHiQ6rtZra+HqK32rg4rJWsWEQ6kScCgpi70qRFWQ7KRm/PjxeO2111BYWAhBEHD06FGsX78ec+bMwfLlyy0RIxHpYemeisoO77i6KNAqLhhHk7PxVLsHkZmRJnpf6nCT2ltd6hu8r70WIyQi65Cd1Lz00ksoLS3FhAkTUFBQgMGDB6NmzZr48ssvMXDgQEvEaLKioiIUFRVpXufm5towGiLjTOkVsdTQiDmK+yWeTceUTUdxfGYfUXtwt9Hwa/6E7pP0CPf3wJjOdS0aLxE5NpOWdI8cORIjR45EZmYmVCoVwsLCTLr59OnTNcNK+hw7dgwtW7Y06fpz5swxen0ie2FPvQzmKO6XeDYdz7/7CTJ/nidqr/X6t3D1DpAci/rq0596QO+97LkYIRFZj+wl3Z07d9asPAoNDdUkNLm5uejcubOsa40ZMwbnz583+NO4cWO5IWpMmjQJOTk5mp9r164ZP4nIBtS9DBUL6ql7GRLPpls1HjnF/XRRqgQ8+VA9UUKj8PBBzMSfZCU0QNnkYmO9LJWNl4icg+yemn379qG4uFirvbCwEAcOHJB1rdDQUISGhsoNQTIPDw94eHhY7PpE5mCPvQyVKe6XlZWl9f91yBNvwbfJYybF4lHNBV3jw2XHUZnjiMgxSU5qTp8+rfnzuXPnkJGRoXmtVCqRmJiImjVrmje6clJTU5GdnY3U1FQolUqcOnUKAFC3bl34+vpa7L5ElmaPWx6YWtxv6dKlePXVV0VtUW9ugIun6f+PZuQWGf3sUuP99798HErK4oooIiclOalp1qwZFAoFFAqFzmEmLy8vzJ8/36zBlTd16lSsWbNG81pdK2fv3r3o2LGjxe5LZGn22MtgbN8jXbtEu7i4oHwtT1e/UNQavdrgfZ5uFomtp9IMHgMY/+xS9mkCgAV7L2PB3stcEUXkpCTPqUlOTkZSUpJmGXdycrLm58aNG8jNzcWwYcMsFujq1ashCILWDxMacnSW2vJAXa9l+6kbOJSUBaVKevFwdXE/fWcIuF8v5r///oNCoRAlNOvXb8BDkzbo3cJAgbJJ0M+2jJIUj7HPro5XfW1jbDVXiYgsS3JPjbrYnkqlslgwRFWRKb0ixlhrJdUXX3yBt956S9SWm5sLPz8/BJbbKqEiAcBTTSPQunaI2T67vmKE+u7PFVFEzkf26qc5c+Zg5cqVWu0rV67E3LlzzRIUUVViqJfBlC0P9K2kSpfRO6GevKyPAkCPJpGihKZRo0YoVapw9mYxtp+6gQAvd4xoH6v3Gl/vT8bucxlm/ezdG0fg4MTOWD+yNcZ0qmPwWK6IInI+spOapUuXomHDhlrtDzzwAJYsWWKWoIiqGn27QYcHeMoqGmdoJRVQ9iCftOWM0aEoQ5OXS3MzkTL3SVHbtm3b8Pmm39Bu7h4MWnYYb244hUHLDmPFwRSD91H3lJjjs6upixHWq+En6XiuiCJyHrKXdGdkZCAiQvsfmerVqyM9nePTRKbqGh8OPw83HLqSCaDswdy6doisoRFjK6kA4HZBCRbs+Rdvdqmv9xh9D/qcQ5twZ/83ora7d+9i/5UcndV8DeVO5XtKLLHdg5y5StyFm8g5yE5qoqKi8McffyAuLk7U/scffyAyMtJsgRFVJbrmwGw+cV32HBipvQ6r/kjBmM719D64dSUEVyv0zrhH1MO+A4fg4emFGT8eMrjqyBB1zOoeFnWC8dPptEolGFLnKt2+W4R2c/fYRSVnIqoc2UnNiBEjMHbsWJSUlGiWdv/222+YMGEC3n77bbMHSOTsEs+m41UdE2pN2bNIau/EnXslBmu/lE8ISnL+w40lw0Xv1+g3A3HN22o2qzTWOyQ1ZnNOcFbPVRq17gQUgCixUadITzWNwGvfneR+UUROQvacmgkTJmD48OEYPXo0ateujdq1a+P111/HG2+8gUmTJlkiRiKnpVQJeHfLGZ3vqR+0M348J3k5dqu4YAR6uUk61lCvjjohuL1/rVZCE/P2VnjVbqGZwGvqnBT1sm71yiZLbBVhaK7SwsEJ2PF3ut5KzoC8756IbE92T41CocDcuXMxZcoUnD9/Hl5eXqhXrx63IyAywYI9l3GnoETv+3KrCbu6KPBS2zjM+/WS0WMN9eoIgoAeTcTDyZ4xD6LGwNlaPSdy6+cA2iubLLlVhL75OvZYyZmIKsekXboBwNfXFw899JA5YyGqUpQqAav+SJZ0rJzekDGd62LVn8l6kyVjtV8uXbqEBg0aiNpqDJoNz+gHAUBUZA+QVs3XRSGeNBxeITGydIKhnq9Tnj1WciaiypGU1PTt2xerV6+Gv78/+vbta/DYLVu2mCUwImd3NDkbd+7p76UpT05viKuLAh/1baJzno6x2i/jxo3DvHnzRG3R72yDwvX+PxX/5RaJ5ptImbuyYFACgnzc9a4uskWCYalKzkRkO5KSmoCAACgUCs2fiajyfj2XYfwgAIFebrKqCQNlQy5LdFTXVfeQdI0Px6GkLE2S8VBsENyquYquEdSwDfx7T9a6tq7hIH3VfCv2yOhjiwTDEpWcici2FELFvmQnlpubi4CAAOTk5MDf39/W4VAVpm/Fky5vdalnsKaMIbrqr+w+lyFKPopvXUX6ytdE5y3dtAuz/1Iavf76ka1Fwzqm1ntRqgS0m7vHaIJxcGJns9aPSSy3lYOuHiaufiKyD1Kf3ybPqSEi0xjbgqC8IG83jOlcz+R7VZxLon6Iqx/gWf9bgPxTiaJzSkpK8PPZ/4C/Thm9fsXhIF1zV6TGaWwIS852CVJVtoeJiOyLpKSmefPmmuEnY06ckPbbJ1FVUr4HIzOvSHJdlzl9m5jtQV5+hZEgqJD68VOi930adUCT56dA4eJqk+EgWyUYlqhmTES2ISmp6dOnj+bPhYWFWLRoEeLj49GmTRsAwOHDh/HPP/9g9OjRFgmSyJHpKignxbC2sWZ9kKtXGBX/l4T01W+K3gt/8Qt4hNfVrDCy1XwTWyUYpvYwEZF9kZTUTJs2TfPnESNG4I033sDMmTO1jrl27Zp5o6Mqy1n24qk43CNH1/hws8ZyM68QmT99hrv/7BW1R0/YAYXCRXScrYaDACYYRGQ62ROFAwICcPz4cdSrJx7n//fff9GyZUvk5OSYNUBz4kRhx2DOUvm2pJ78KreHxhKTYpVKJapVE/8O4/tgN4T0eEPr2PKTf53l74KIHJvFJgp7eXnh4MGDWknNwYMH4enJeg5UOfp6NuxxLx5jvUmm7IlkiV6Qw4cPa4aK1SKGLYB79Vite1ccUuJ8EyJyJLKTmrFjx2LUqFH466+/0Lp1awBl/2iuXLkSU6dONXuAVHVYslS+uUnpwTClUJw5J8UqVQI6d38S+3fvFLXHTPgRCoVC8pASh4OIyFHITmreffdd1K5dG19++SW+++47AECjRo2wevVq9O/f3+wBUtXhKHvxSO1NkroyaErPRgj18zBrL8hPJ1PRKyFG1Bb+SF+sWroAALiEmYickkl1avr3788EhszOEfbikdObJHUF0dC2cWbtefpk9VZMeEm8nUnkiCVwD6mlSboOTuxs9SElS0/+dpbJ5URkOpOSmjt37uCHH37AlStX8M477yA4OBgnTpxAjRo1ULNmTXPHSFWEI+zFI7c3ydoriLp27YZff90taosuN9xUPumyZm+XpSccc0IzEQGAi/FDxE6fPo369etj7ty5+OSTT3Dnzh0AwNatWzFp0iRzx0dViLpnQ98jXoGyB5Ut9+KR25ukLigXHiBOxMIDPM066bmoqAgKhUKU0Pi37oeYiT+JCmeWT7qsRT1cVzEZVA/XJZ5Nt+vrE5HjkN1TM27cOAwdOhQff/wx/Pz8NO09evTA4MGDzRocVS22rI0ilSm9SZZeQbR7925069ZN1Bb5ynK4Beqvc2OtITxLT/52pMnlRGR5sntqjh07hldeeUWrvWbNmsjIkLbrMJE+1urZMJWpvUnqFUS9m9VEmzohZnvAtmnTRiuhiZn4k8GEBrDeEJ6c4Tp7vD4RORbZPTWenp7Izc3Var948SKqV69ulqCoarPn2ij20pt07949eHt7i9pmzpyJSe9NlrTbtbWG8Cw9+dsRJpcTkfXI7qnp3bs3PvjgA5SUlAAAFAoFUlNT8e677+KZZ54xe4BUNVmqZ8McbN2b9OOPP2olNKmpqXj//fc1SRcArd4kWwzhWXrytyNMLici65G9TUJubi6eeOIJ/PPPP8jLy0NkZCQyMjLQpk0b7Ny5Ez4+PpaKtdK4TQKZky2WEDdp0gRnz54Vten6X9heVgOpt4ow1nNk6pYQlr4+EdkHqc9v2UmN2p49e3DixAmoVCokJCSgS5cuJgdrLUxqyFHl5+eLJuYDwGeffYZx48bpPcde6raoVycBuofrKtu7ZenrE5HtWSSpKS0thaenJ06dOoXGjRubJVBrYlJDjuj777/XKnaZnp6O8HDz7uJtSaxTQ0SVYZENLatVq4aYmBgolcpKB0hExsXGxuLq1auiNhM7V23K0pO/7XlyORFZj+zhp1WrVuH777/HunXrEBxsuyJopmBPDTmKnJwcBAYGitoWLVqEUaNG2SYgIiIbskhPDQB89dVXuHz5MiIjIxETE6M1MfjEiRPyoyUijbVr1+KFF14Qtd26dQuhoaE2ioiIyDHITmp69+4tKrtOJIe9TF61V3379sXWrVs1r319fZGXl2fDiIiIHIfJq58cEYefbIuTOfXLy8vT+m9y1apVGDp0qG0CIiKyI1Kf35KL7xUUFOC1115DzZo1ERYWhsGDByMzM9MswZLz46aD+v36669a/5NmZ2czoSEikklyUjNt2jSsXr0aPXv2xMCBA7F7925OWiRJjG06CJRtOqhUVZlOQ42BAweia9eumtcvv/wyBEFAUFCQDaMiInJMkufUbNmyBStWrMDAgQMBAEOGDEHbtm2hVCrh6upqsQDJ8cnZdLBNnRDrBWZDulY3HTx4EG3btrVNQERETkByT821a9fQvn17zetWrVqhWrVqSEtLs0hg5Dyq0qaDSpWAQ0lZ2H7qBg4lZensfdq5c6dWQlNQUMCEhoiokiT31CiVSri7u4tPrlYNpaWlZg+KnEtV2XRQykTo3r17Y8eOHZr333zzTXzxxRfWDpWIyClJTmoEQcDQoUPh4eGhaSssLMSrr74qqlWzZcsW80ZIDq9VXDAiAjyNbjrYKs6xijmWp54IXfHzqSdCf9wrDv3bPSB67+jRo3jooYesFyQRkZOTnNS8+OKLWm1DhgwxazDknFxdFJjWKx6j1p2AAro3HZzWK95h69UYmwhdcOkQ+rd7UtReWFgo+gWBiIgqT3JSs2rVKkvGQU6ue+MILB6SoDU8E+4EdWoMTYT+b8P7KLx6SvP63XffxZw5c6wUGRFR1SK7ojCRqZx100FdE5yVBTm4Pv85UdvnG/6HtwZ0s1ZYRERVDpMasipXF4XJy7btdYuFihOc754/gMwdc+83uLgietxmtG7ZwsqRERFVLUxqyCHY8xYL6onQ6XfuIePbCSi6cV7zXkDbwQhqN9jhJ0ITETkCJjVk94ytLFo8JMGmiY2riwKvtw7Bc52bi9ojhi2ER/UYAI49EZqIyFFILr5HZAuOsMXCN998I0poFO7eiB6/He7VYxAe4GnzpIuIqKpgTw3ZJfX8mT8u37LbLRYEQUBCQgJOnTqlaftw9mx06v+y3c37ISKqCpjUkN3RNX/GGGtvsXD9+nVERUWJ2i5cuIAGDRpYNQ4iIrqPw09kV9TzZ+QkNIB1t1hYtmyZKKEJqR6GzcevIrtaaJXcaZyIyF6wp4bshqH5M/pYc4sFQRDQsGFDXLp0SdMW03MU0Lgnxn1/BoD9rMgiIqqK2FNDdsNQZV5drLnFQkpKClxcXEQJTc2XlwGNe4qOU6/ISjybbtF4iIhIG5Mashty58VYa2XRggULEBcXp3ldu3ZtPDzrF1QL0r6vvazIIiKqijj8RHZD6ryYMZ3qom3dUIuvLFKpVIiJicH169c1bYsWLUKzbv0xaNlhvefZckUWEVFVxqSG7Ia6Mm9GTqHOeTXq+TNvda1v8eGmy5cvo169eqK2q1evIjo6GttP3ZB0DWuvyCIiquo4/ER2w9VFgWm94gHcny+jZs35M59++qkooWncuDFUKhWio6MBSO9RsuaKLCIiYlJDdqZ74wgsHpKA8ABxQmCN+TNKpRIhISEYP368pm3FihU4c+YMFIr7iZS6R0lfaqVA2SooU1ZkKVUCDiVlYfupGziUlMV5OUREMjjE8FNKSgpmzpyJPXv2ICMjA5GRkRgyZAgmT54Md3d3W4dHZta9cQS6xodbdUfu8+fPIz4+XtR248YNREZGah2r7lEate4EFIBoqKwyPUr2vGknEZEjcIiemgsXLkClUmHp0qX4559/MG/ePCxZsgTvvfeerUMjC3F1UaBNnRD0blYTbeqEWDShmTVrliihadWqFVQqlc6ERs3cPUr6ig5yiTgRkXQKQRAcsn/7k08+weLFi3HlyhXJ5+Tm5iIgIAA5OTnw9/e3YHTkCEpKSuDv74/CwvuJxLfffovBgwdLvoZ6j6qMnHvIvluMYF8PhPvL61lSqgS0m7tHb40e9QTpgxM7cx8pIqqSpD6/HWL4SZecnBwEBxues1BUVISioiLN69zcXEuHRQ7i9OnTaNq0qagtIyMDNWrUkHUdVxcFcu4V4+P/XTR52MhY0UEuESciksYhhp8qSkpKwvz58/Hqq68aPG7OnDkICAjQ/FTcgJCqpilTpogSmo4dO0IQBNkJDWCeYSOpS7+5RJyIyDCbJjXTp0+HQqEw+HP8+HHROWlpaejevTv69euHESNGGLz+pEmTkJOTo/m5du2aJT8O2bni4mIoFArMmjVL0/b9999j7969Jl3P0F5VcioLc4k4EZF52HT4acyYMRg4cKDBY2JjYzV/TktLQ6dOndCmTRt8/fXXRq/v4eEBDw+PyoZpkHpOhbVW6ZBp/vrrL7Rs2VLUduvWLYSGhpp8TXMNG0ktOmiNTTuJiByZTZOa0NBQyQ+VGzduoFOnTmjRogVWrVoFFxfbj5xxCa5jeOedd/DZZ59pXvfo0QM7d+6s9HXNNWxkqSXiRERVje0zAwnS0tLQsWNHREVF4dNPP8WtW7eQkZGBjIwMm8XEJbj2r7CwEAqFQpTQbN++3SwJDWDeYSNbFh0kInIWDrH66ZdffsHly5dx+fJl1KpVS/SeLVakG5tLoUDZXIqu8eH87dpGDh8+jDZt2ojasrOzERQUZLZ7mHvYyBZFB4mInIlD9NQMHToUgiDo/LEFOXMpyPrGjBkjSmj69u0LQRDMmtAAltmryppFB4mInI1D9NTYGy7BtU8FBQXw8fERtSUmJuLxxx+32D3Vw0YV51aFc24VEZHVMakxAZfg2p8DBw7g0UcfFbVZq3I0h42IiOyDQww/2RtL7tJM8g0fPlyU0AwZMgSCIFh1KwwOGxER2R57akzgaEtwnbWWTn5+Pvz8/ERte/bsQadOnWwUERER2RKTGhM5ylwKZ62l89tvv6FLly6itry8PPj6+tooIiIisjWH3aXbFJbYpduee0HUtXQq/gWro3PU+ieDBw/G+vXrNa9HjhwpqcI0ERE5JqffpdteqOdS2BtnrKWTk5ODwMBAUduBAwfQrl07s97HnhNVIiLSj0mNkzLXvkT2YteuXXjiiSdEbQUFBfDy8jLrfZx1uI6IqCrg6icn5Uy1dPr06SNKaF5//XUIgmCRhIZbXxAROS721DgpZ6ilk52djZAQcS/SkSNH0KpVK7PfyxmH64iIqhr21DgpR6+ls337dq2EprCw0CIJDcCtL4iInAGTGidliX2JrKVbt27o06eP5vWECRMgCAI8PDwsdk9nGq4jIqqqOPzkxByllo7arVu3EBYWJmo7ceIEmjdvbvF7O8NwHRFRVcekxsk5yr5EmzZtwoABAzSvXV1dUVBQAHd3d6vcXz1cl5FTqHNejQJlyaC9DtcRERGHn6oEe96XSBAEtG/fXpTQTJs2DaWlpVZLaADHHq4jIqIy7Kkhm8nIyEBEhHgI7MyZM2jcuLFN4nG04ToiIhJjUkM2sXbtWrzwwgua176+vrh9+zaqVbPtf5KOMlxHRETamNSQVQmCgJYtW+LEiROattmzZ2PSpEk2jErMXre+ICIiw5jUkNVcv34dUVFRorYLFy6gQYMGNoqIiIicCScKk1UsX75clNCEhYWhtLSUCQ0REZkNkxqyKEEQ0KhRI4wcOVLT9vnnn+O///6Dq6urDSMjIiJnw+EnspirV68iNjZW1Hb58mXUqVPHNgHZkFIlcPIxEZGFMakhi1i4cCHGjBmjeR0XF4fLly/DxaXqdQ4mnk3XWiYewWXiRERmV/WeMGRRKpUKMTExooRm0aJFuHLlSpVNaEatO6G1WWZGTiFGrTuBxLPpNoqMiMj5sKeGzOby5cuoV6+eqC0lJQUxMTE2isi2lCoBM348p3PbBQFllYpn/HgOXePDORRFRGQGVe9XZ7KIzz77TJTQxMfHa3ptqqqjydlaPTTlCQDScwpxNDnbekERETkx9tRQpSiVSoSHhyMzM1PTtmLFCgwbNsyGUdmHm3n6ExpTjiMiIsOY1JDJzp8/j/j4eFHb9evXUbNmTRtFZF/C/DzNehwRERnG4ScyyezZs0UJTcuWLaFSqZjQlNMqLhgRAZ5au36rKVC2CqpVXLA1wyIiclpMakiW0tJS+Pj4YPLkyZq2tWvX4tixY1AoONm1PFcXBab1Kkv8Kn4z6tfTesVzkjARkZkwqSHJzpw5Azc3NxQUFGja0tPTMWTIEBtGZd+6N47A4iEJCA8QDzGFB3hi8ZAE1qkhIjIjzqkhSaZMmYJZs2ZpXj/66KPYt28fe2ck6N44Al3jw1lRmIjIwpjUkEHFxcXw8PAQtW3atAn9+vWzUUSOydVFgTZ1QmwdBhGRU2NSQ3qdOHECLVq0ELXdunULoaGhNoqIiIhIP86pIZ3Gjx8vSmgef/xxCILAhIaIiOwWe2pIpLCwEF5eXqK2bdu2oXfv3jaKiIiISBomNaRx5MgRtG7dWtSWnZ2NoKAgG0VEREQkHYefCADw+uuvixKaPn36QBAEJjREROQw2FNTxRUUFMDHx0fUtmvXLnTv3t1GEREREZmGSU0VdvDgQbRv317UdufOHQQEBNgoIiIiItNx+KmKGjFihCihGTx4MARBYEJDREQOiz01VUx+fj78/PxEbb/99hs6d+5so4iIiIjMgz01VciePXu0Epq8vDwmNERE5BSY1FQRQ4YMwWOPPaZ5PXz4cAiCAF9fXxtGRUREZD4cfnJyOTk5CAwMFLXt379fa4IwERGRo2NPjRNLTEzUSmgKCgqY0BARkVNiUuOknn76afTo0UPzesyYMRAEQWsLBCIiImfB4Scnc/v2bQQHB4vaDh8+jIcffthGEREREVkHe2qcyI4dO7QSmnv37jGhISKiKoFJjZPo3r27aCft8ePHQxAEeHp62jAqIiIi6+Hwk4PLzMxE9erVRW1//fUXEhISbBQRERGRbbCnxoF9//33WglNUVERExoiIqqSmNQ4IEEQ0KFDB/Tv31/TNmXKFAiCAHd3dxtGRkREZDscfnIwGRkZiIiIELWdPn0aTZo0sVFERERE9oE9NQ5k3bp1ooTG19cXJSUlTGiIiIjApMYhCIKAli1b4vnnn9e0ffjhh8jLy0O1auxsIyIiAjj8ZPdu3LiBWrVqidrOnz+Phg0b2igiIiIi++QwPTVPPfUUoqOj4enpiYiICDz//PNIS0uzdVgWtXLlSlFCU716dZSWljKhISIi0sFhkppOnTph06ZNuHjxIjZv3oykpCQ8++yztg7LIgRBQHx8PIYPH65p++yzz3Dz5k24urraMDIiIiL7pRAEQbB1EKbYsWMH+vTpg6KiIri5uUk6Jzc3FwEBAcjJyYG/v7+FIzTN1atXERsbK2r7999/UbduXdsEREREZGNSn98O01NTXnZ2Nr799ls88sgjBhOaoqIi5Obmin7s2aJFi0QJTXR0NJRKJRMaIiIiCRwqqZk4cSJ8fHwQEhKC1NRUbN++3eDxc+bMQUBAgOYnKirKSpHKo1KpEBcXh9dee03TtmDBAly9ehUuLg71V0RERGQzNn1iTp8+HQqFwuDP8ePHNcePHz8eJ0+exC+//AJXV1e88MILMDR6NmnSJOTk5Gh+rl27Zo2PJUtSUhJcXV2RkpKiaUtOThYlOERERGScTefUZGZmIjMz0+AxsbGxOneavn79OqKiovDnn3+iTZs2ku5nb3Nq5s2bh3HjxmleN2rUCP/88w8UCoUNoyIiIrIvUp/fNq1TExoaitDQUJPOVediRUVF5gzJKpRKJSIjI3Hz5k1N27JlyzBixAgbRkVEROTYHKL43tGjR3H06FG0a9cOQUFBuHLlCqZOnYo6depI7qWxFxcuXECjRo1EbdeuXdMqsEdERETyOMQsVC8vL2zZsgWPPfYYGjRogGHDhqFx48b4/fff4eHhYevwJJszZ44ooWnRogVUKhUTGiIiIjNwiJ6aJk2aYM+ePbYOw2SlpaUIDAzE3bt3NW1r167FkCFDbBgVERGRc3GIpMaRnT17VmsX7fT0dISHh9soIiIiIufkEMNPjmratGmihKZdu3ZQqVRMaIiIiCyAPTUWUFJSAk9PT6hUKk3bxo0b0b9/fxtGRURE5NyY1JjZyZMnkZCQIGq7efMmqlevbqOIiIiIqgYOP5nRxIkTRQlN165dIQgCExoiIiIrYE+NGRQVFWlVPd62bRt69+5to4iIiIiqHiY1ZjBmzBjR66ysLAQHB9soGiIioqqJw09m0KpVKwBA7969IQgCExoiIiIbsOmGltZmbxtaEhERkXFSn9/sqSEiIiKnwKSGiIiInAKTGiIiInIKTGqIiIjIKTCpISIiIqfApIaIiIicApMaIiIicgpMaoiIiMgpMKkhIiIip8CkhoiIiJwCkxoiIiJyCkxqiIiIyCkwqSEiIiKnwKSGiIiInEI1WwdgTYIgACjbwpyIiIgcg/q5rX6O61Olkpq8vDwAQFRUlI0jISIiIrny8vIQEBCg932FYCztcSIqlQppaWnw8/ODQqGwdTg65ebmIioqCteuXYO/v7+tw3Fq/K6ti9+3dfH7th5+15YnCALy8vIQGRkJFxf9M2eqVE+Ni4sLatWqZeswJPH39+f/HFbC79q6+H1bF79v6+F3bVmGemjUOFGYiIiInAKTGiIiInIKTGrsjIeHB6ZNmwYPDw9bh+L0+F1bF79v6+L3bT38ru1HlZooTERERM6LPTVERETkFJjUEBERkVNgUkNEREROgUkNEREROQUmNXbsqaeeQnR0NDw9PREREYHnn38eaWlptg7LKaWkpGD48OGIi4uDl5cX6tSpg2nTpqG4uNjWoTmlDz/8EI888gi8vb0RGBho63CczqJFixAXFwdPT0+0aNECBw4csHVITmn//v3o1asXIiMjoVAosG3bNluHVOUxqbFjnTp1wqZNm3Dx4kVs3rwZSUlJePbZZ20dllO6cOECVCoVli5din/++Qfz5s3DkiVL8N5779k6NKdUXFyMfv36YdSoUbYOxels3LgRY8eOxeTJk3Hy5Em0b98ePXr0QGpqqq1Dczp3795F06ZNsWDBAluHQv+PS7odyI4dO9CnTx8UFRXBzc3N1uE4vU8++QSLFy/GlStXbB2K01q9ejXGjh2LO3fu2DoUp/Hwww8jISEBixcv1rQ1atQIffr0wZw5c2wYmXNTKBTYunUr+vTpY+tQqjT21DiI7OxsfPvtt3jkkUeY0FhJTk4OgoODbR0GkWTFxcX466+/0K1bN1F7t27d8Oeff9ooKiLrYVJj5yZOnAgfHx+EhIQgNTUV27dvt3VIVUJSUhLmz5+PV1991dahEEmWmZkJpVKJGjVqiNpr1KiBjIwMG0VFZD1Maqxs+vTpUCgUBn+OHz+uOX78+PE4efIkfvnlF7i6uuKFF14ARwylk/t9A0BaWhq6d++Ofv36YcSIETaK3PGY8l2TZSgUCtFrQRC02oicUTVbB1DVjBkzBgMHDjR4TGxsrObPoaGhCA0NRf369dGoUSNERUXh8OHDaNOmjYUjdQ5yv++0tDR06tQJbdq0wddff23h6JyL3O+azC80NBSurq5avTI3b97U6r0hckZMaqxMnaSYQt1DU1RUZM6QnJqc7/vGjRvo1KkTWrRogVWrVsHFhR2ZclTmv20yD3d3d7Ro0QK7d+/G008/rWnfvXs3evfubcPIiKyDSY2dOnr0KI4ePYp27dohKCgIV65cwdSpU1GnTh320lhAWloaOnbsiOjoaHz66ae4deuW5r3w8HAbRuacUlNTkZ2djdTUVCiVSpw6dQoAULduXfj6+to2OAc3btw4PP/882jZsqWmxzE1NZXzwywgPz8fly9f1rxOTk7GqVOnEBwcjOjoaBtGVoUJZJdOnz4tdOrUSQgODhY8PDyE2NhY4dVXXxWuX79u69Cc0qpVqwQAOn/I/F588UWd3/XevXttHZpTWLhwoRATEyO4u7sLCQkJwu+//27rkJzS3r17df53/OKLL9o6tCqLdWqIiIjIKXDSABERETkFJjVERETkFJjUEBERkVNgUkNEREROgUkNEREROQUmNUREROQUmNQQERGRU2BSQ0RkRMeOHTF27Fhbh0FERjCpISIAMLrD9tChQ60WiyWSiKFDh6JPnz5mvaY++/btg0KhwJ07d6xyPyIqw72fiAgAkJ6ervnzxo0bMXXqVFy8eFHT5uXlJTq+pKQEbm5uVouPiMgY9tQQEYCyjTvVPwEBAVAoFJrXhYWFCAwMxKZNm9CxY0d4enpi3bp1mD59Opo1aya6zhdffIHY2FhR26pVq9CoUSN4enqiYcOGWLRokd44hg4dit9//x1ffvmlppcoJSUFAHDu3Dk88cQT8PX1RY0aNfD8888jMzNTc+4PP/yAJk2awMvLCyEhIejSpQvu3r2L6dOnY82aNdi+fbvmmvv27dN5/7t37+KFF16Ar68vIiIi8Nlnn2kds27dOrRs2RJ+fn4IDw/H4MGDcfPmTQBASkoKOnXqBAAICgoS9XIlJiaiXbt2CAwMREhICJ588kkkJSUZ+FshIjmY1BCRZBMnTsQbb7yB8+fP4/HHH5d0zrJlyzB58mR8+OGHOH/+PGbPno0pU6ZgzZo1Oo//8ssv0aZNG4wcORLp6elIT09HVFQU0tPT0aFDBzRr1gzHjx9HYmIi/vvvP/Tv3x9AWU/ToEGDMGzYMJw/fx779u1D3759IQgC3nnnHfTv3x/du3fXXPORRx7Ref/x48dj79692Lp1K3755Rfs27cPf/31l+iY4uJizJw5E3///Te2bduG5ORkTeISFRWFzZs3AwAuXryI9PR0fPnllwDKEqZx48bh2LFj+O233+Di4oKnn34aKpVK0ndJRIZx+ImIJBs7diz69u0r65yZM2fis88+05wXFxeHc+fOYenSpXjxxRe1jg8ICIC7uzu8vb0RHh6uaV+8eDESEhIwe/ZsTdvKlSsRFRWFS5cuIT8/H6Wlpejbty9iYmIAAE2aNNEc6+XlhaKiItE1K8rPz8eKFSvwzTffoGvXrgCANWvWoFatWqLjhg0bpvlz7dq18dVXX6FVq1bIz8+Hr68vgoODAQBhYWEIDAzUHPvMM8+IrrNixQqEhYXh3LlzaNy4sd64iEga9tQQkWQtW7aUdfytW7dw7do1DB8+HL6+vpqfWbNmyR52+euvv7B3717RdRo2bAgASEpKQtOmTfHYY4+hSZMm6NevH5YtW4bbt2/LukdSUhKKi4vRpk0bTVtwcDAaNGggOu7kyZPo3bs3YmJi4Ofnh44dOwIAUlNTjV5/8ODBqF27Nvz9/REXFyfpPCKShj01RCSZj4+P6LWLiwsEQRC1lZSUaP6sHlZZtmwZHn74YdFxrq6usu6tUqnQq1cvzJ07V+u9iIgIuLq6Yvfu3fjzzz/xyy+/YP78+Zg8eTKOHDmiSR6MqfhZdLl79y66deuGbt26Yd26dahevTpSU1Px+OOPo7i42OC5vXr1QlRUFJYtW4bIyEioVCo0btzY6HlEJA2TGiIyWfXq1ZGRkQFBEKBQKAAAp06d0rxfo0YN1KxZE1euXMFzzz0n+bru7u5QKpWitoSEBGzevBmxsbGoVk33P10KhQJt27ZF27ZtMXXqVMTExGDr1q0YN26czmtWVLduXbi5ueHw4cOIjo4GANy+fRuXLl1Chw4dAAAXLlxAZmYmPvroI0RFRQEAjh8/rhU/ANH9srKycP78eSxduhTt27cHABw8eFDqV0JEEnD4iYhM1rFjR9y6dQsff/wxkpKSsHDhQuzatUt0zPTp0zFnzhx8+eWXuHTpEs6cOYNVq1bh888/13vd2NhYHDlyBCkpKcjMzIRKpcJrr72G7OxsDBo0CEePHsWVK1fwyy+/YNiwYVAqlThy5Ahmz56N48ePIzU1FVu2bMGtW7fQqFEjzTVPnz6NixcvIjMzU9SjpObr64vhw4dj/Pjx+O2333D27FkMHToULi73/6mMjo6Gu7s75s+fjytXrmDHjh2YOXOm6DoxMTFQKBT46aefcOvWLeTn5yMoKAghISH4+uuvcfnyZezZswfjxo2rzNdPRBUJREQVrFq1SggICNC8Tk5OFgAIJ0+e1Dp28eLFQlRUlODj4yO88MILwocffijExMSIjvn222+FZs2aCe7u7kJQUJDw6KOPClu2bNF7/4sXLwqtW7cWvLy8BABCcnKyIAiCcOnSJeHpp58WAgMDBS8vL6Fhw4bC2LFjBZVKJZw7d054/PHHherVqwseHh5C/fr1hfnz52uuefPmTaFr166Cr6+vAEDYu3evznvn5eUJQ4YMEby9vYUaNWoIH3/8sdChQwfhzTff1Bzz3XffCbGxsYKHh4fQpk0bYceOHVrfzwcffCCEh4cLCoVCePHFFwVBEITdu3cLjRo1Ejw8PIQHH3xQ2LdvnwBA2Lp1q97vgoikUwiChEFkIiIiIjvH4SciIiJyCkxqiIiIyCkwqSEiIiKnwKSGiIiInAKTGiIiInIKTGqIiIjIKTCpISIiIqfApIaIiIicApMaIiIicgpMaoiIiMgpMKkhIiIip8CkhoiIiJzC/wFRevzLu1ns8gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -393,7 +393,7 @@ "source": [ "new_data = pp.DataFrame(toys.var_process(links_coeffs, T=200)[0])\n", "predicted = pred.predict(target, new_data=new_data)\n", - "true_data = pred.get_test_array()[0]\n", + "true_data = pred.get_test_array(j=target)[0]\n", "\n", "plt.scatter(true_data, predicted)\n", "plt.title(r\"NRMSE = %.2f\" % (np.abs(true_data - predicted).mean()/true_data.std()))\n", @@ -427,7 +427,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwP0lEQVR4nO3deVxU5f4H8M+A7MggoAKKgFuKqKTmnltomplmZVqWW1aalXozr1kuZS5lqVmpWWplVt7rnsXNUjNNU1NzwUwRxQKSRUBAEWbO7w9+M3KY7ZyZMyuf9+vl6zrPnOWZkdv58n2e5/uoBEEQQEREROTmvJzdASIiIiIlMKghIiIij8CghoiIiDwCgxoiIiLyCAxqiIiIyCMwqCEiIiKPwKCGiIiIPAKDGiIiIvIIDGqIiIjIIzCoIfJg69atg0qlgr+/Py5fvmzwfq9evZCYmChqi4uLg0ql0v8JCgpCu3bt8P7776N6AfK9e/fqj1u3bp3RPvTp0wcqlQpxcXGi9pKSEixatAht27ZFSEgIateujSZNmmDYsGH46aefjN7D2B9T97WX4uJiTJ48GdHR0fD390dSUhK++uorq6716quvQqVSGfwbAMDMmTNx5513IiwsDP7+/mjcuDGefvppo/+ORFSplrM7QET2V1ZWhldffRWff/65pOO7deuGxYsXAwAyMzPx7rvv4vnnn0dRURFeeeUVg+Nr166NTz75BKNHjxa1p6enY+/evQgJCRG1azQa9OvXD6dOncK0adPQsWNHAMD58+exY8cO/Pzzz+jZs6fonPnz56N3794G927SpImkz6SUoUOH4siRI1i4cCGaN2+ODRs2YMSIEdBqtXjsscckX+fEiRNYvHgx6tevb/T9goICjBgxAi1btkTt2rWRmpqKefPmYfv27Thz5gzCw8OV+khEnkMgIo+1du1aAYDQv39/wcvLSzhx4oTo/Z49ewqtWrUStcXGxgoDBw4UtRUWFgpqtVpo1KiRqH3Pnj0CAOGpp54SAAh//vmn6P1XX31VaNiwoTBgwAAhNjZW3757924BgLBmzRqj/dZoNAb3+M9//iP5c9vLzp07BQDChg0bRO19+/YVoqOjhYqKCknXKS8vF5KSkoQXXnjB6L+BKd9++60AQPjkk09k952oJuDwE1EN8PLLLyM8PBzTp0+36vyQkBA0b94c//zzj9H3+/bti5iYGKxZs0bfptVq8emnn2LUqFHw8hL/pyYvLw8AEBUVZfR61Y93FVu2bEFwcDAeeeQRUfuYMWOQmZmJX3/9VdJ1Fi5ciPz8fLz55puy7l+3bl0AQK1aTLITGeOa/+UgIkXVrl0br776Kv73v/9h9+7dss+vqKjAlStX0Lx5c6Pve3l5YfTo0fjss8+g0WgAAN9//z3++usvjBkzxuD4Dh06wMfHBy+++CK++OILZGVlWeyDVqtFRUWFwR9LBEEwep411zp9+jRatmxpEFS0adNG/74lumGkFStWIDg42OLxFRUVuHHjBo4fP47JkyejefPmGDp0qMXziGoiBjVENcSzzz6Lxo0bY/r06QYTfqurGghkZGRg4sSJyMvLw4IFC0yeM2bMGGRlZSElJQUAsGbNGvTs2dPonJe4uDisXLkSmZmZGDlyJKKjoxEdHY1Ro0bh559/Nnr9Rx99FD4+PgZ//vrrL7Of5dNPPzV6nrE/luTl5SEsLMygXdemy0CZotVqMXbsWAwdOhT33XefxftlZ2fDx8cHgYGBaNeuHSoqKrBnzx5JwRBRTcQcJlEN4evri3nz5uGxxx7Dxo0b8eijj5o89ttvvzV4yK9cuRIDBw40eU58fDx69eqFNWvWoHPnzti2bRs+/vhjk8ePHTsWDz30EL799lscOnQIhw4dwvr16/H5559j0aJFmDZtmuj4RYsWoU+fPgbXMTXRVmfQoEE4cuSI2WPkUKlUVr0HAO+++y7Onz+P7du3S7pXREQEjhw5grKyMpw9exZvvfUWevfujb1795ocuiOqyRjUENUgw4cPx+LFizFz5kyzQxjdu3fHkiVLoNFocP78ebz22muYNGkSWrVqhe7du5s8b9y4cRgzZgzeffddBAQE4OGHHzbbH7VajREjRmDEiBEAgDNnziA5ORkzZ87E+PHjERoaqj+2cePG6NChg7wPjMosilqtln2eMeHh4UazMfn5+fp7mZKRkYFZs2Zh4cKF8PX1RUFBAYDK4SWtVouCggL4+fkhICBAf06tWrX0n7lbt27o378/4uPjsXDhQixbtkyRz0TkSTj8RFSDqFQqLFq0CGlpafjoo49MHqdWq9GhQwd06tQJI0eOxPfffw8fHx9MnDgRWq3W5HlDhw5FYGAgFi5ciOHDh4se0FK0atUKw4cPR3l5Of78809Z55qi5PBT69atcfbsWYP5N6dOnQIAo/VmdC5evIgbN27gxRdfRJ06dfR/Dhw4gLNnz6JOnTqYMWOG2fs3bNgQ0dHRin03RJ6GmRqiGiY5ORl9+/bF66+/jpiYGEnnNGvWDC+//DLmzp2Lr7/+Wp9ZqS4gIACzZs3Cvn37MGHCBJPXy8vLQ+3ateHr62vw3h9//AEAiI6OltQ3S5QcfnrwwQexevVqbNq0STR89+mnnyI6OhqdOnUyeW5SUhL27Nlj0D558mQUFhZi7dq1aNiwodn7X7hwAX/99RceeOAB6z8EkQdjUENUAy1atAjt27fH1atX0apVK0nnvPTSS1i5ciXmzp2LYcOGwdvb2+hxU6dOxdSpU81ea8+ePXjxxRfx+OOPo2vXrggPD8fVq1fx5ZdfIiUlBU8++aTBA/78+fM4dOiQwbUaNmxoNhgIDw9XrFDdgAED0LdvX0yYMAFFRUVo2rSpvs/r168XfSfjxo3Dp59+irS0NMTGxiI0NBS9evUyuGZoaCgqKipE7508eRJTpkzBww8/jMaNG8PLywunTp3CkiVLEB4ejpdeekmRz0PkaRjUENVAd955J0aMGIENGzZIPic4OBizZs3Cc889hy+++AJPPvmk1ffv3Lkzxo4diz179uDzzz9Hbm4uAgICkJCQgOXLlxvN8hirZAxUbicwb948q/si1+bNmzFz5kzMmjUL+fn5aNGiBb788ksMHz5cdJxGo4FGo7G40syY+vXrIzo6Gu+88w6ysrJQUVGBhg0b4v7778crr7wiOcNGVNOoBGv+H0dERETkYjhRmIiIiDwCgxoiIiLyCAxqiIiIyCMwqCEiIiKP4DZBzYIFC3DXXXehdu3aqFevHoYMGYJz5845u1tERETkItwmqPnpp5/w3HPP4dChQ9i1axcqKirQr18/lJSUOLtrRERE5ALcdkl3Tk4O6tWrh59++gk9evSQdI5Wq0VmZiZq165tceM5IiIicg2CIOD69euIjo6Gl5fpfIzbFt8rLCwEYH4DueoyMzNZtIqIiMhNXblyxWwFcbcMagRBwNSpU9G9e3ezG8iVlZWhrKxMdB5Q+aWEhITYvZ9ERERku6KiIsTExKB27dpmj3PLoGbSpEk4efIk9u/fb/a4BQsWYO7cuQbtISEhDGqIiIjcjKWpI243p+b555/H1q1bsW/fPsTHx5s9tnqmRhfpFRYWMqghIiJyE0VFRVCr1Raf326TqREEAc8//zy2bNmCvXv3WgxoAMDPzw9+fn4O6B0RERE5m9sENc899xw2bNiAbdu2oXbt2sjOzgYAqNVqBAQEOLl3RERE5GxuM/xkahxt7dq1GD16tKRrSE1fERERkevwyOEnIiIiIlPcpqIwERERkTkMaoiIiMgjMKghIiIij8CghoiIiDyC20wUJiIiIvM0WgGH0/Nx9fpN1Kvtj47xYfD2qjkbODOoISIi8gApp7Mwd0cqsgpv6tui1P6YPSgB/ROjnNgzx+HwExERkZtLOZ2FCeuPiQIaAMguvIkJ648h5XSWk3rmWAxqiIiI3JhGK2DujlQYq+ama5u7IxUarefXe2NQQ0RE5MYOp+cbZGiqEgBkFd7E4fR8x3XKSRjUEBERubGr100HNNYc584Y1BAREbmxerX9FT3OnTGoISIicmMd48MQpfaHqYXbKlSuguoYH2bXfuzcuROff/45NBqNXe9jDpd0ExERuTFvLxVmD0rAhPXHoAJEE4Z1gc7sQQl2q1dTXl6OkJAQ3LxZObyVlJSE1q1b2+VeljBTQ0RE5Ob6J0Zhxch2iFSLh5gi1f5YMbKd3erUHDt2DL6+vvqABgBatWpll3tJwUwNERGRB+ifGIW+CZEOqyg8ZcoULF26VP/6nnvuwQ8//GCXe0nFoIaIiMhDeHup0KVJuF3vUVpaiqCgIFHbtm3b8MADD9j1vlIwqCEiIiJJ9u7di969e4varl27htDQUOd0qBrOqSEiIiKLHnvsMVFA8/jjj0MQBJcJaABmaoiIiMiMa9euISxMvBx879696Nmzp5N6ZBozNURERGTU1q1bDQKa0tJSlwxoAAY1REREVI0gCOjVqxcefPBBfdu//vUvCIKAgIAAJ/bMPA4/ERERkV5mZiYaNGggajt+/DiSkpKc0yEZmKkhIiIiAMCaNWtEAU1QUBBu3brlFgENwKCGiIioxtNqtWjevDnGjRunb1u4cCGKi4vh4+PjxJ7Jw+EnIiKiGuzChQto1qyZqO38+fNo2rSp5GtotILDKhmbw6CGiIiohlq0aBH+/e9/6183b94cZ8+ehZeX9IGclNNZmLsjFVmFt/d/ilL7Y/agBLvtOWUKh5+IiIhqmPLycgQFBYkCmo8//hjnzp2THdBMWH9MFNAAQHbhTUxYfwwpp7MU67MUDGqIiIhqkBMnTsDX1xelpaX6tr///ls0n0YKjVbA3B2pEIy8p2ubuyMVGq2xI+yDQQ0REVEN8a9//Qt33nmn/nWvXr2g1WoRHR0t+1qH0/MNMjRVCQCyCm/icHq+NV21CufUEBERebgbN24gMDBQ1LZ582ZRcT25rl43HdBYc5wSGNQQERF5sH379hlsa5Cfn486derYdN16tf0VPU4JHH4iIiLyUCNHjhQFNMOHD4cgCDYHNADQMT4MUWp/mFq4rULlKqiO8WEmjlAeMzVEREQepqCgwCBw2bNnD3r16qXYPby9VJg9KAET1h+DChBNGNYFOrMHJTi0Xg0zNURERB5k+/btBgFNSUmJogGNTv/EKKwY2Q6RavEQU6TaHytGtnN4nRpmaoiIiDzEPffcg927d+tfT548GUuWLLHrPfsnRqFvQiQrChMREZHtsrKyDJZl//bbb2jXrp1D7u/tpUKXJuEOuZc5HH4iIiJyY+vWrRMFNP7+/rh165bDAhpXwqCGiIjIDQmCgJYtW2LMmDH6tvnz5+PGjRtutbO2kjj8RERE5GbS0tIMdtH+888/DXbbrmmYqSEiInIjixcvFgU0jRs3hkajqfEBDcBMDRGRx9NoBZdYmUK2qaioQHh4OIqKivRtH330EcaPH+/EXrkWBjVERB4s5XQW5u5IFW08GKX2x+xBCQ6vIULW+/3335GUlCRq++uvv9CgQQPndMhFcfiJiMhDpZzOwoT1xwx2Us4uvIkJ648h5XSWk3pGcrz88suigKZHjx7QarUMaIxgpoaIyANptALm7kgVla7XEVBZxn7ujlT0TYjkUJSLMraz9qZNmzB06FAn9cj1MVNDROSBDqfnG2RoqhIAZBXexOH0fMd1iiT7+eefDQKavLw8BjQWMKghIvJAV6+bDmisOY4cZ9SoUejRo4f+9bBhwyAIAsLCHLfbtbvi8BMRkQeqV9vf8kEyjiP7KywsRGhoqKjtxx9/RJ8+fZzTITfETA0RkQfqGB+GKLU/TM2WUaFyFVTHeP727wq++eYbg4CmuLiYAY1MDGqIiDyQt5cKswclAIBBYKN7PXtQgsMmCWu0Ag6m5WHbib9xMC0PGq2xKczuQ8nP069fPwwaNEj/+uEnx2Pr8b9wMvum239PjqYSBKHGfGNFRUVQq9UoLCxESEiIs7tDRGR3rlCnxhX6oCSlPs8///yDyMhIUVvicx/ienAjo9etyUUUpT6/GdQQEXk4Zz4MdbVyqj9odHdfMbKdWwU2Sn2ezz77DKNGjdK/ruXjiwYvbgS8xVNdddd9ukc8tv+e5TGBoVwMaoxgUENE5DgarYDui3abXFquAhCp9sf+6X3cIuOgxOcRBAGtW7fGmTNn9G2vv/EGvvXuYnYJvqn7Ae4XGFpD6vObc2qIiMguPK1Wjq2f5+LFi/Dy8hIFNH/88QeSR0yQHdDo7gdUFlHk3JtKDGqIiMguPK1Wji2f591330WTJk30r+Pi4qDRaHDHHXfY9PndLTC0N9apISIiu/C0WjnWfJ6KigrUrVsXBQUF+raVK1fimWeekX1dc9wlMLQ3BjVERGQXulo52YU3je5BpZuD4i61cuR+nlOnTqFNmzaiY65cuYKGDRvKuq4U7hIY2huHn4iIyC5crVaOreR8nhkzZogCmq5du0Kr1RoENJauawmLKIq5VVCzb98+DBo0CNHR0VCpVNi6dauzu0RERGb0T4zCipHtEKkWZxIi1f5uuWrH0ufp1bQOVCoVFi5cqH9v48aNOHDgAFQq0yGLqetGqf3xTI94qOAZgaG9udXwU0lJCdq2bYsxY8bgoYcecnZ3iIhIgv6JUeibEOkxheNMfZ5DB39BQEB30bG5ubkIDw+36breXirc2aiOQcG/yBpUp0Yqt61To1KpsGXLFgwZMkTyOaxTQ0RE9jBmzBisW7dO/3ro0KHYtGmTovdgRWHLz2+3ytTIVVZWhrKyMv3roqIiJ/aGiIiqc/cHte5hW9UPP/yAe+65R/F7eXup0KWJtKxPTeXRQc2CBQswd+5cZ3eDiIiMcPc9oXbu3In7779f1FZcXIygoCCDY909eHMXHj38ZCxTExMTw+EnIiInc/c9oQYMGICUlBT96+eeew7vv/++0WPdPXhzBRx+AuDn5wc/Pz9nd4OIiKrQaAXM3ZFqtCaLgMrAZu6OVPRNiHS5bMbVq1dRv359Udvhw4dx1113GT3eVPCWXXgTE9Yfc/ngzd241ZJuIiJyf+66J9T69etFAY2XlxdKb9xERVhjbDvxNw6m5Yn2YLIUvAHct0lpbpWpKS4uxoULF/Sv09PTceLECYSFhaFRo0ZO7BkREUnlbntCCYKApKQknDx5Ut82d+5cdBw6Hn2W7Dc5rCQneOMEYGW4VVBz9OhR9O7dW/966tSpAIBRo0aJltIREdUE7jr51J32hLp06RLi4+NFbWfPnsWlCrXFYaWyCq2ke9gavLnrz4E9uFVQ06tXL7jpvGYiIkW58+RTd9kTaunSpZgyZYr+dcOGDXH58mUIUGHMot0W5wQtfritpPvYEry588+BPXBODRGRm9FNPq0+tKHLEqScznJSz6Rx9T2hNBoN6tatKwpoPvzwQ1y5cgVeXl6Sh5WgqgwwTH0KW/dtcvefA3tgUENE5EbcYfKpRivgYFqeycmzB9PyUFahxeTk5qgf4lp7Qp0+fRq1atVCbm6uvi0jIwMTJkzQv5Y6XJRbXGa34M0dfg6cwa2Gn4iIajpXn3xqbjgEgOH+RSF+mJLcDHERQU6fDzJz5kzMnz9f/7pTp044ePCgwUaUcuYEdWkSjhUj2ym+b5Or/xw4C4MaIiI34sorh8zVZHl2/TGj5/xTVIalP5zHipHtnPbwvXnzJgICAkRtX3/9NYYNG2b0eLlzguyxoacr/xw4E4efiIjciKuuHJIyHGKMs4dKDh48aBDQ5OTkmAxoAOvmBOn2bRqc1ABdmoTbnI1y1Z8DZ2NQQ0TkRnRZAntNPrWWpeEQc5xVbG/8+PHo2rWr/vWQIUMgCAIiIiIsnts/MQorRrZDpNo5c4Jc9efA2Tj8RETkRnRZggnrj0EFcRbEmSuHlBjmcNRQibGdtf/3v/+hX79+sq5jj2ElqVz158DZmKkhInIzzs4SGKPEMIcS1zC38goAvvvuO4OA5vr167IDGh2lh5XkcMWfA2djpoaIyA3ZO0sgt0qtpcmz5ihVbM9SIbr7778fO3fu1L/37LPPYsWKFTbd09mcmS1yRSqhBpXolbp1ORFRTWZtlVrd6ifAcDhEMPJ33WsANmcWTK28UgHQlBbiyvLHRe2HDh1Cp06drL4fOZbU5zeHn4iISM+WKrXmhkNWjmyHlXYaKjG38qo4da9BQFNWVsaAxkNx+ImIiABYXpat29Oob0KkyeENY8Mh7WPr4LfL13D1+s3K/ZBUldV2lRoqMbbyShAEZH86Gbf+SdO3jX1+Gj557y2b7kWujUENEREBUK5KrW7yLFCZ+en59h6jQ1lKFdurvmqqovAq/l45VtQWNe5DPDD2AUXuR66Lw09ERARA+Sq1jtpwseqqqaKj20UBjXdwGBpN2wbfiEY1rhBdTcRMDRERAVC2Sq2UCsOvbDmFPi3qw7eWtN+vTa3I6hgfhsjaPjgy/1FoSwv0x9dJfgYh7QcptrqKXB+DGiIiAiB/TyNzpFQYzi8pR+cFP2L+g4kWJwqbW5EVo8rHr6/eKzq+wYQ1qBVSr0YXoquJOPxEREQArNvTyBSpQ1T5JbcsDkWZG8Ya/sxUJCYm6tuCGjRHo5d3oFZIPQCuVYjOUmFAsh0zNUREpKdbll09KxIpoU5NVXLnr5haVWVqGEuoKMfldx4UtW3YsAHDHh3ukoXorK39Q/IwqCEiciNyK/1ao29CJGr7+eDgxVwAlSuZOjeWtwVAx/gwhAX5IL+k3OKx5lZVGRvGKss8h+zP/yVq2/nrH7iv4x0AoNiqKqWYKgyomzDtKpkkT8Cghog8niMCAUdwxG/7xu6x6dhfsu/h7aXCg0kN8MmBS5LPMTZkVb0tL+V9FP+eon8d0LQj6j00C+W+wZLvI4VSPzNK1P4h6RjUEJFHc3Ta314BlCN+21f6HskJkbKCGmNDVro2bVkpriwdJn7vkbkIaNze5LnWUvJnRqnaPyQNgxoi8liOTvvbK4CSsjza1t/27ZFR0K2msrQKytyqqo7xYfD/5xTOrZshao+ZvBFefoGKL9e25mfGXCCrdO0fMo+rn4jII0kNBJRagWLPQnNSlkfrftu31z2qZhSk0q2mkhICmVpV1f2e/qKAJrhtf8RO/0Yf0Jg7Vy5rfmZSTmeh+6LdGLH6EF786gRGrD6E7ot26/+9laz9Q5YxqCEij2SPh7Qp9g6gsouk/RYv9Thj7JVR0K2milIbf2hHmVhynZOTA5VKhUN7v9e3RY5cjPD+k/SvQwN9FM22yf2ZkRLI6rJVpkIuFSq/AxYGVAaHn4jIIzky7W/veRP5xWWKHmeMPTMKVTe5zC68gfySWwgL9kNkyO2hmqpDOL//9C1mT35adI1G/9oCVS0fUZtfLS/0TYiU3R9T5PzMyBmumz0oARPWH4MKEB3PwoDKY1BDRB7JkWl/ewdQYUG+ih5njJLVhI2puslldbq5SJkFN5Dx1iDRe+oujyK0xxNGz8suKlN0gq2cnxk5gaxStX/IMgY1ROSR7P2QrsreAVSkOkDR44zRzX9xdEZBN4RTlnMJWWsmid6LGvsBfOvGmj1fyQm2cn5mvjmZKemauv5VzVa5e2kBV8Y5NUTkkZQs+W+JvedN6K5vTvXrW1OSv29CJCYnN4M6QDzMY6+tBnRDODk7lxgENI2mbbMY0ADKTrCV8zNjTSCry1YNTmqALk3kFTMkaZipISKP5ai0v72zHFWvbyqDUPX61iwtN3ZOaIAPxnSLx6Q+Te3yAP7l/FUceiVZ1BaU0AsRg16yeK69dt6W+jPjyEwgSacSBKHG7KhVVFQEtVqNwsJChISEOLs7ROQgjqoobO9Cf1Kub6rOiu7TGsu4WHOOrfbt24eePXuK2qLGLIdvvXiL59qzXzpSfmZ03xtgPJDl9gfKkfr8ZlBDRKQgewdQ5q6v0Qrovmi32QmskSF+OPDveySfo8s47J/eR7HP0bt3b+zdu1fU1ujlHVCppF3flTaC5EaVjiH1+c3hJyIiBZlb5WPv60sp0pddVIb3d1/Ai8nNJJ2jZBn/GzduIDAwUNQW0W0Ygro/afHc1wa2RERtP5ebYMsJwK6FQQ0RkYeQuhJoyQ9/4o7IYPRPjHJYPZ8tW7Zg6NChorYLaRfx0PrzKCg1v5N3aEAtjO4W77KBgr0DWZKOq5+IiDyEnJVAugrHjqjnExsbaxDQCIKAq0KIxYAGAMoV2sqCPB+DGiIiDyFl6beObkjJnsvR8/PzoVKpkJGRoW977733oJvKKTX7U1KmUWQ7C/J8DGqIiDxE1TorUly9flN/jqllyYB1y9FXrVqF8HDxkExOTg6ef/55/Ws52R/uYk1ScE4NEZEH6Z8YhSnJzbDkh/MWj60aVIQG+hgMBakDfbBwaGvZq3iqr2KqW7curl69anBcx/gwhAX5Ir/klsVrRgT5yeoD1UzM1BAReYCqFYQ7xIWhfm3TQUDVISVdrRVjc1sKJcx3qerKlSsGAc1XX31lNKABKjNLT3a2XDVY32kiC5ipISJyc0arAQdWbnVgrsIxAJM7TeP/z5u55TT6tKgP31rmfweeM2cO5s6dK2orLi5GUFCQqK16nZ3YcPESb1NybdiBnGoOBjVERG7MVDVgXZZFXW1YqWq5/4NpeRbr2uSV3ELnBT9g/oPGh6EEQYCXlzjg6dy5Mw4ePGi0r9WDL6k7iyu5xxN5LgY1RERuSrchpLFMi4DKrEyAjzc+GNcOuSVlBoXhpE6+zS8px4T1xwzK/p85cwaJiYmiY3/88Uf06dPH4Bqmgq9rFubTcA8lkoNBDRGRm5JaDdjLS4XBSQ0M3peb/Zi7IxV9EyLh7aXCuHHjsGbNGtH7t27dgo+Pj8F5loIvU5TeTZ08H4MaIiInUGKPqF2p2ZKOq56R0d07u/AGwoJ8ca3kltngArgdIB28kIO776gvem/48OH48ssvjd7j6vWbyL1eZnGYCwDCgnyQX2J8qIxICgY1REQOZnxuiQ/mDU7EfW2iJV9jzYFLko6tmpExdm+pbv6VirvvuF/Udvz4cSQlJRn0zZp7vHZ/K0SG+HMPJbKa1UFNaWkpMjIycOuWeDy0TZs2NneKiMhTmZpbkl9SjokbjuOZvwow4z7zBfR0wzlSVK0GbOreUvzz1UzcvPy7qE2r1Ros4bblHpEh/txDiWwiO6jJycnBmDFj8N133xl9X6PR2NwpIiJPZG5uic6qfelo27AO7mtjeshFym7cOrr5KBqtgNnbzlicw1L9fW15Ga68+5Co7aWXXsLbb79tcL6Uz2fqvpwMTEqQXXxv8uTJuHbtGg4dOoSAgACkpKTg008/RbNmzbB9+3Z79JGIyCNIDUZe23YaGjObOEpdtTSuWxz6JkTiYFoeHllxAP9cN1/rRXdHXe6l9PyvBgHNxYsXjQY0gLxgS4eTgUlJsjM1u3fvxrZt23DXXXfBy8sLsbGx6Nu3L0JCQrBgwQIMHDjQHv0kInJ7UoORvJJbOJyeb3IoRuqqpZAAH3RftFtWoDGuWxy+PZ2No2+NREWBeCKybiNKU6zZn4mTgUlJsoOakpIS1KtXDwAQFhaGnJwcNG/eHK1bt8axY8cU7yARkaeQs4T6wIUckxNldTtrZxfeNLkRZWigj6T9nwyu3cAfsx5IFrW98+67mDplisVzpX6+1wa2RERtP04GJsXJDmruuOMOnDt3DnFxcUhKSsKqVasQFxeHlStXIiqKkTYRuR8llldLUbmBo3jZsinv70nDhsNXMCQpGn0TIkV90u2sPWH9MaPzYARYzqoY4/Xnj+jfXry66erVq6hbt66k86UEW5Fqf4zuFm/2+3XUvwd5HpUg8yf/iy++QHl5OUaPHo3jx4/j3nvvRV5eHnx9fbFu3To8+uij9uqrzYqKiqBWq1FYWIiQkBBnd4eIrKTkQ8/Y8uMoOw6JfHsyExM3HJd9nrE+2bI8u7rLi8TBTFhYGPLy8mRfR7f6CTC+51T1qsTGzp+zPRXZRbc/U2SIP+Y8wCGqmkzq81t2UFNdaWkp/vjjDzRq1AgRERG2XMruGNQQuT8lgxBTy4+lPoCtteDbVKzaly77PJWRPlkbJOlUFOXi7xWjRW0bNmzAiBEjrL6mtf9GKaez8Ox609MYVtrp34Ncn92Cmtdffx0vvfQSAgPFO6veuHEDb7/9NmbNmmVdjx2AQQ2Re1MyCNFoBbOTaHVDJfun97HL0Me3J7Pw6rbTyLew95G5Pln6DJYUHPgShfu/ELVdv34dwcHBVl2vKrnZNI1WQPt5u0Sbb1ZXJ9AHR1/ty6GoGkjq81v2ku65c+eiuLjYoL20tNRg23kiIqVI2T9o7o5Us0uhq5K6b9Lh9HzZfZXivjZRODIzGZN6N5V8TvU+WbOEGqicb3N50f2igKZDhw4QBEGRgAaonPfTpUk4Bic1QJcm4RYDkUMX88wGNABwrbQchy7KHxKjmkN2UCMIgkEFSQD4/fffERbGwklEZB9Sg5Alu/7EwbQ8i8GN1OXH1ixTlsrbS4VuTeUP2+v6ZE3fynOvIOOtQaK2Xbt24ciRI7KvZYlGK+BgWh62nfjb4r/JwTRpwYrU45TsG7kPyauf6tSpA5VKBZVKhebNm4sCG41Gg+LiYjz77LN26SQRkdQH+Pt7LuD9PRcszuGQuvzY2HFKTlRuH1sHXipAzjNV1ye5u2znpSxH8e//E7WZ21nbls8of16N1C/A9uDD0ZPDyXEkBzVLly6FIAgYO3Ys5s6dC7VarX/P19cXcXFx6NKli106WdWHH36It99+G1lZWWjVqhWWLl2Ku+++2+73JSLnkvsAzy68iQnrjxmdZ6PRCtBqBYQG+KDghvEhD1Ol+5V+IP52+ZqsgMZLVRkIAdKXUC96MBE9W0aK3nvkkUewceNGo/ew9TOamvtk7t+kS+MIvL8nzeK1uzS2bUGKNX0j9yE5qBk1ahQAID4+Hl27djUa2dvb119/jcmTJ+PDDz9Et27dsGrVKgwYMACpqalo1KiRw/tDRI5j6QFenYDKh/rcHanomxCpzzJIWQZtqnS/Eg/E6hmQqkuXpdAKlYGQbp6KqXo1ul4Piyk1CGh+++03tGvXzuj1bf2MluY+Gfs3AYDOTcIRGuhjdl5NaKAPOtuw4aW1fSP3IXtOTc+ePfUBzY0bN1BUVCT6Y0/vvvsuxo0bh6eeegotW7bE0qVLERMTgxUrVtj1vkTkfLoHOHD7gW1J9Ym1uge2pcm1kWp/g4e3RitgznbbJiqnnM5C90W7MWL1Ibz41QmMWH0Ib3xzRuKnua3qUFz/xCisGNkOkWpxJitS7Y+wnxdj6hMPiNo1Go3JgEaJydjWTsD29lJh4dDWJs8DgIVDW9sUbDh7cjjZn+ygprS0FJMmTUK9evUQHByMOnXqiP7Yy61bt/Dbb7+hX79+ovZ+/frhl19+sdt9ich1mHqAW3L1+k1JO0iHBvjgi6c6Yf/0PgbZiPd3nzebVbH0QDQVUEmpLlxd9aG4/olR2D+9D74Y1wmTejfBM91icOiVZBz7Za/+mNodBqPz/B/wfeo/Jq+rxENfaubJ2Byp/olRWDmyHSJD/ETtkSF+itSocYXJ4WRfsrdJmDZtGvbs2YMPP/wQTz75JD744AP8/fffWLVqFRYuXGiPPgIAcnNzodFoUL9+fVF7/fr1kZ2dbfScsrIylJXd3pXW3pkkoprOEeXt+ydGoW9CJA6n5+Pzg+n49rTph7ROvdr+kpY/F9woh5dKZdDnlNNZkvdRMvZAlBJQSRVlZJ4PAOxKzcbcHalI+20fcja9Lnov+unV8KkTZXEIydaHfsrpLMmZJ1NzpKr++yr9c2TL5HByD7KDmh07duCzzz5Dr169MHbsWNx9991o2rQpYmNj8cUXX+Dxxx+3Rz/1qi8nN7XEHAAWLFjA2jlEDuLIFSXeXioU3rhlMaCpOtn3m5OZkq5d/YGtC0ikMvZAtLaejDHV5/kAt7NAf61+BhX5f4vei53+jf7vluaN2PLQNzUXpzpTE7Cr0tW4UZrUidXm+kauTfbwU35+PuLj4wEAISEhyM+vTEN2794d+/btU7Z3VURERMDb29sgK3P16lWD7I3OjBkzUFhYqP9z5coVu/WPqCYzNbSiywyknM5S9H5yAg1dEGDtA1tOQGIqi6LUcMYzPeKNruR6beNhXFp0vyigqdN7rCig0TE3hKR76JvKiahg/DPeqtDilS2nJAU0gPHAzBHMzctydt9IGbKDmsaNG+PSpUsAgISEBP2SwB07diA0NFTJvon4+vqiffv22LVrl6h9165d6Nq1q9Fz/Pz8EBISIvpDRMpSutKvFFIDjcnJzdE3IRIH0/KQXXgDYUG+sh/YcgISUw9EpYYzPtqXbhAgznprOY6+MUTU1nDS5wjpONTstYx9Lmse+imns9B5wY+S5gaFBfk6fcm0uYnVzu4b2U728NOYMWPw+++/o2fPnpgxYwYGDhyI5cuXo6KiAu+++649+qg3depUPPHEE+jQoQO6dOmCjz76CBkZGSz6R+REciaXKjWkIDXQKLxxS9LeSOZ+S5cakExJbm7ygSh1OXr1ZdnGVB068vb2hlarvX2+bwAaTfmPpP6am9OyYmQ7g6HESBO7hEsZctJ5dWBLlwga7Dlvh5xLdlAzZcoU/d979+6NP/74A0ePHkWTJk3Qtm1bRTtX3aOPPoq8vDy8/vrryMrKQmJiIr799lvExsba9b5EZJozVpRIDTTWHLgk6ThjD2wdKQFJZIgfJvUxvYeTlHoyT/eIx39++9vsBpe6AHHnoTMY3E28/Dn8/n8huFVvk+dWvZ+leSNSHvrWTH6OVAfIOFo5piaw22PeDjmX7KCmukaNGjm08N3EiRMxceJEh92PiMxzxooSKYGGpa0HwoJ88Nr9rRAZYv63dCkByZwHWgGo3JfIVBAgJQPSIjIEUzb+bvazF/7yNQYv+lzUdtfs7ci56aXonBZLD305c42cOQGXWyLULJKCmvfee0/yBV944QWrO0NE7sfeK0pM/ZZtLtAQYHkvpfySckSG+Ev6bd1SQALAYJjL2IPTUgbEXCZDEASDjSjvvPNOHDt2TD8MZGn4ylxGSi65mTdnTMDllgg1j0oQBIvZQ91qJ52cnByUlpbqJwYXFBQgMDAQ9erVw8WLF+3SUSUUFRVBrVajsLCQk4aJFKR7eADGMxnWPjws/ZZt6v37EiPxiYShp2XDkzA4qYHk/hgLsHalZht9cFrz2TVaAd0X7TYIEMvz/kLmx+K5gykpKbj33ntvvzbxXQy/qxHiIgIVnzdyMC0PI1YfsnhcWJAP5j/Y2uHBg+67NJVN0gXb+6f34VwaNyD1+S0pU5Oenq7/+4YNG/Dhhx/ik08+wR133AEAOHfuHMaPH49nnnnGxm4TkTuSM7lUKqm/ZRvLfBxOz5cU1OiGxKQWDaw+JKP0XkLGMlB5//sAxSe+Ex1XVlYGX19fUZujJ79KGQIMD/LFwRn3wLeW7IW2NnPGBHZyPtlzal577TX897//1Qc0AHDHHXdgyZIlePjhh+1efI+IXJOSD1W5wUL1h5KcITFb5lzY48GpCxDnbDuNX18VbwvT9Z4BOPDDtybPVXryq7lgz9wQoM6TXWKdlgXhlgg1k+zwOSsrC+XlhvUINBoN/vnHcrlyIvJcuofq4KQG+l2krWHrHkSWNr8UAAy/Kwb/O51tU9FAez0465RkGAQ0h349bDagUZqxzTe7L9ot+k4s7cW15IfzBuc4CrdEqJlkBzX33HMPxo8fj6NHj0I3Hefo0aN45plnkJycrHgHiajmUSJYkPLAnfSl8RorUosG2uPBOXDgQHTu3FnUptFo0KnjXZKvYSs5FaJ1m2lOSW5u9Fr2qiptibXVkcm9yQ5q1qxZgwYNGqBjx47w9/eHn58fOnXqhKioKHz88cf26CMR1TBKBQuWHrjmVkhJ2ZFayQdnWVkZVCoVvv32djbmhRdegCAI8PJy3JwUaytEf3Ukw+j17FVV2hJuiVAzyZ5TU7duXXz77bc4f/48zp49C0EQ0LJlSzRvbvw/GkREcim9TNzUA1cKc9kgKTVspDw4v/32WwwcOFDUdv78eTRtarqgnxKMzZmxZp6QnHN093DEZGZ7TGAn12Z18b1mzZqhWbNmSvaFiAiAcsECYPsO2VKyQbY8OBMSEnD27FlRm4RKGyZJXcllbjm8FFWDPanDhbtSszF14wmHFsLjlgg1i80VhYmI7EFKsCDlAW7L6pbQQB9J2SBrHpyFhYUGmwC/9dZbmDZtmtX9lbqSy9xyeSlL4QFxsGfLthWOKITHLRFqDgY1ROSyzAULUh/gtqxuKSgtx1spZzHjvgSLx8p5cK5Zsxbjxo0VtWVlZSEyUlqWxBipdX2kzJnxUgGCYHyZtrGhP1u2rbCmng+RKY6viEREJJGpTIyl1TnfnszEwbQ8bDvxN7RaAZEhpifzWrJqXzq+PZkp6pPu2gfT8iRPftWdV8vHVxTQqGr5ofP8H3Ai17YhJ6mTe6UMx2mF28FGVaaG/qRMyrV1UjaRFLIzNRkZGYiJiYFKJf7RFQQBV65ccejmlkTkuUxlYl4bmIA3dpp/gE/68rjoIRoa6KN/SFsTOry67TTuTYzCrtRsqwr1pZzOwswvfsaxhY+K2sMHTkFw4j02D8HImagrdThubLc4fHc6W/I8IXPDhVK3rWAhPLKV7KAmPj4eWVlZqFevnqg9Pz8f8fHx0Gg0inWOiGomc0MpEzccs3h+9axAYWllwVB1oA8KSm8XDw0N8EHBDcNiotXll5Tj/d0XsOSHPw3eMxeQaLQC3t99AXPmvYmCnz4VvRczeSO8/AIB2D4EI6euj9ThuL4JkZg5MEHWPCGltq0gspbsoEYQBIMsDQAUFxfD358/kERKkrqSxd1V/ZwRQX6Ys918JkYuXdDgX8sLXzzVCbnFZahX2x9aQcDjH/8q6Rqr9qWZvXb1gCTldBZmbzuNw9UqA/tExCJ63AdGr2PtXkRy6vrIWS4vZZ6QsZ9RW7atILKF5KBm6tSpAACVSoXXXnsNgYGB+vc0Gg1+/fVXJCUlKd5BoprKlj2J3Imxz2kPAoDsojJ4qVT6nbk1WgFhQb7IL7ll8fzSW6az0NUDkpTTWXjqvR34e7V4k996D89BQJMOZu9jzRCM3EBFqeXyUn9GlbwnkTmSJwofP34cx48fhyAIOHXqlP718ePH8ccff6Bt27ZYt26dHbtKVHPIKVPvzkx9TnuqGjR4e6kwb3CiotfWaAWMHj/BIKBp9K8tFgMawLohGLnVc01tIRGp9pc8r0fuz6gS9ySyRHKmZs+ePQCAMWPGYNmyZQgJCbFbp4hqMrk7VLsrc59TKmsm/lYPGu5NjESQrzdKzGRipIoI8kUtb/HvigFNO6LeQ7Msnit3CKb6sE/fhEhZRQB1818OpeXh4MVcAJVDTZ0bWx76svZnlIXwyN5kz6lZu3at6HVRURF2796NFi1aoEWLFop1jKimsqZMvTuyttKv7uH/2sCWeGPnWdE1TNVCqXpe9aDhcHq+IgGNb14auje/X9QW+cQ78Iu+Q/I1lBj22T+9j+Sgofpqrvf3XJA0xGnLzygL4ZE9yQ5qhg0bhh49emDSpEm4ceMGOnTogEuXLkEQBHz11Vd46KGH7NFPohpDiR2q3YE1/a86lNI/MQr3JkaJHuB518sw6avjZs9TsuKw/hqb3sCNC+IJx41e3g6VStoIf2SIH0Z0bISyCi0OpuWZDUSkFtmzxJbr1JSfUXI/sovv7du3D3fffTcAYMuWLRAEAQUFBXjvvfcwb948xTtIVNMotUO1q7Om/5Fqf0xObq5/+ANAlybhGJzUAIU3buHN786aPM/UQ9qW71GoKMflRfeLApqJEyei8/wf4GUhoAkL8sXYbnH/v4O4Ckt+OI8XvzqBEasPofui3UbnTVm7g7bS16kpP6PkfmRnagoLCxEWVpm+TUlJwUMPPYTAwEAMHDjQpj1LiKhSTVn+KuVz1g/xwzvDkpBbXIZLuSX48nCGqFaMbqgEgNGsg85rA00Pp0jpR2igD66Vlovm8Ny4+Buu/me26Nhz586hefPm+iyIqTk/U5KbYVKfZtiVmi0rW6LU0KSt16kpP6PkfmRnamJiYnDw4EGUlJQgJSUF/fpV1mC4du0a69QQKUDuShZXY2wbAWNtUj7nnAdaoVvTCPjV8sLSH84ju6hMdFx24U08u/4Y/rXxd5MBjQrAGztNZx2k9GPB0NZYWWXlTuaaSQYBjVarRfPmzQGYXukTpfbHypHt8GJy5XFysyVKDfvYeh13/xklzyU7UzN58mQ8/vjjCA4ORqNGjdCrVy8AlcNSrVu3Vrp/RDWSlB2qHUlqEUBjE1hDA30AQFTJt+pkVCk7cVt6+Jub6CsleyH1++7UMBBhdUJF586fPx8zZswwek1zK32syZYoNeyjxHVc7WeUCLAiqJk4cSI6duyIK1euoG/fvvDyqkz2NG7cmHNqiBTkKstfpRZYMzXxtGowo5NVbXjFloe/VJayE5b68emnn2H06FGiczIzMxEVZfrhbW6lzw+p2bL7rcSwj0YrQCsIZreIkDp85Co/o0Q6soMaAOjQoQPatGmD9PR0NGnSBLVq1cLAgQOV7htRjefs5a9SV8hYU3NGgLiWianPqdQKmku5JRaPMdWPgMAg3LxRervBqxY6z0vB73mAmZjGpJTTWZL2QgLE2RJbK/NKqd4sd/jI2T+jRFXJnlNTWlqKcePGITAwEK1atUJGRgYA4IUXXsDChQsV7yAROYecFTLWZlN0wyvmKLWC5svDGRZXBVWXnZ0NlUolCmjCB7yI2GlbDSrnGps3ZIxGK+Dfm09ZvLcKlRmx6tkSayvzSq3ezAq/5M5kZ2pmzJiB33//HXv37kX//v317cnJyZg9ezb+/e9/K9pBInIOOXM+bMmmZBfeMPu+pSEXyfcpKpNVsPDtt9/Gyy+/LGqLmfw1vPyCAIgr52q1lZORpezT9f7uC0aH5KoTYDpbInfYR0omLTTQBx+MaIfOTcI5fERuS3ZQs3XrVnz99dfo3LmzaLfuhIQEpKUZ38WWiNyPnBUytmRTLG0maW7IRS7dZ7I08bnqf9sAwCc8BtFPrTC4ni6wm7jhmMF7xpZla7QC1h5Il9TXsd3izGZL5Az7SMmkFZSWw8tLxYCG3JrsoCYnJwf16tUzaC8pKTH4DwERuS85K2RsyaaEBftZPMbUSpsotT8eaBuFVfukBQr1avubnfjc1L8EzZo1E51T9+HZCGxyl8RPc5uxPZAOp+ebnJxbXd+ESNn3NCW7SFqAKvU4IlclO6i56667sHPnTjz//PMAbv9Gs3r1anTp0kXZ3hGR08hZaWNLNiUyRFrwZG7IpW3DUEz68rjFfZ+ulZThuQ3HjU58Hjb6WVz/bbuovdG/tkBVy0fGpxGrvixbavYrNMBH0cJ1+cVllg+ScRyRq5Id1CxYsAD9+/dHamoqKioqsGzZMpw5cwYHDx7ETz/9ZI8+EpETyF1pYyqbYo6xibCW+mRsyOW+NtF4Hyqjw0C6vr42MAFv7DScVyIIWlx+6wFRW0DjDqj3yBzJ/bJEF8xIzX6N6Ran6DBQWJCvoscRuSrZq5+6du2KAwcOoLS0FE2aNMH333+P+vXr4+DBg2jfvr09+khETiJ3pU3/xCjsn94HX47vjGXDkzAluTlUMF51VgVlq87e1yYKK0e2Q5SJvtYJ8jUItsqyLyCjWkATOXKxogENAOReL4NGK+izX+Y+cZ1AH0zq08zMEYYsrbyKVAdIuo7U44hclUoQBFvm3bmVoqIiqNVqFBYWIiQkxNndIXIbUisKGyO1eJ89+hoR7AcIQG5JGc7/cx3v77m9mOHqljdx48+DonMbTdsGlZe34n0CDPepAgyH6VSA7OXUUr5fjVZA90W7zWbQotT+2D+9DycKk0uS+vyWHdR4e3sjKyvLYLJwXl4e6tWrB43GdLlyZ2NQQ+QctgRF1jJVaE7QlCNj8YOituCkAQi/9zm79kf3aVeMbAcAigR6poojVr2X7nqmjtUdz9o05MrsFtR4eXkhOzvbIKjJzMxEkyZNcOOG+ZoTzsSghqhmMPUAv5F+HFc3viZqi35qBXzCY/S7ggMq/FNkxSquIB/kl5hf2aSbsLx/eh8AsCnQs5R9qXov3XUdnTUjUorU57fkicLvvfcegMrVTh9//DGCg4P172k0Guzbtw8tWrSwoctERLYzVWgua92LuPWPuJZWo5d3QKVSiXYFByBrFZcuePhpWm98fvAS3th51uSx1VdD2bK9gDUbYnKvJvJ0koOaJUuWAAAEQcDKlSvh7X173NnX1xdxcXFYuXKl8j0kIpKh+sNeW1aKK0uHiY4JvfsJqLs+qn9dfWfpFSPbYc72VEl1W3SVf31reSGituWaO4Ay+1nJKY5YFfdqIk8mOahJT68sbtW7d29s3rwZderUsVuniIisVfUhXnxmD/K+eUf0foOJ61CrdgQGJEaif2Kk0WxF/8Qo1PbzweOf/GrxflOSm+mDITkFC23lyHsRuQvZdWr27Nljj34QEVmt6kTk3OuVBeQylj4KoUy8M3fs9G/0f//udDYGJ0WbzFrklkgrRBcXEaT/u5yChbZS+l7OmMxNpDTZQQ0R1Sy2Puzs/bCsPvlVU3INf73/hOiYsP4voHbbfqK26lsYVGdNJkRuwUJbKHkvTiAmT8E6NURkkq0PO6nnWxv4VF/lVHR4C67t+UR0TMyLX8HLP9jw5P/35fjORrM1utVFljIhxmq7ODJIUOLfSOqycCJnsduSbnfGoIZIOlsfdlLPt/ahXH1J8+VF94ver1UnGg2e/sjMJ6w0qXdTNKsfbDSY0n0GwHgmxNx34MjhHGvvZc2ycCXuSyQXgxojGNQQSaPEw07K+a8NTMBzG6wLnA6m5WHE6kMov5aFzI/Gi96r+9BrCGzaycwnNM5YMOXsoRl7Bg6679ASY9ksZ38vVLMoWqfm5MmTkm/cpk0byccSkWuypgaKNee/uu200aEdAZbnvFy9fhP5uz/G9SNbRe2N/rUZqlrWbcyYXXgTE9YfEwVTzqztYq/AQRcofXc6S9Lx1ZeFm8rCGfv+iBxJUlCTlJQElUoFQRCgUpn/P7Irb5NARNJYWwNF7vn5JbdMvmcucNJqtRhyZ0NRm3/cnaj/6BtGryW1kJ6UYMpR7BU4mNo+wpyqk6FNFTcEXOv7o5pJUlCjq1EDAMePH8dLL72EadOmoUuXLgCAgwcP4p133sFbb71ln14SkUPZWgNFydoo1QOkY8eOoX379qK2+o+/Df+GLUVtt4e4WuKNnWclP8SrB1POGGaxV+Bgbv8nY4wtC7c1i0dkT5KCmtjYWP3fH3nkEbz33nu477779G1t2rRBTEwMXnvtNQwZMkTxThKRY3WMD0NooA8KSk3vZVQn0MdkDRRdDRVzc2rqSNgrCRAHSMOGDcN//vMf0fux/7+ztqklzf0To3BvYpR++Kj6bt2mXL1+02nDLPYIHMwFSsaYWhZuaxaPyJ685J5w6tQpxMfHG7THx8cjNTVVkU4RkWNotAIOpuVh24m/cTAtDxqt9HUD5o709lLhgbbmH/bzBiciSu0PU3kGFSozIh3jw1BeXg6VSiUKaMaPH1+5bcuTdyFSLc4MqQN9MDm5OfomROr706VJOAYnNUC3pnUlfDrgalEZ/r3plMlsCVCZLZHznUllj8DBUqBUXaTa32jQxkrG5MpkF99r2bIl5s2bh08++QT+/pU/tGVlZZg3bx5atmxp4WwichXmhlXUAb5mszQAUFBabjJTkHI6Cx/tSzdyVqWne8TjvjbR8PJSWSwet3fPbiQnJ4vOP3PmDBISEgDcnsj7/u7zWHvgEgpulKOgtBxLfvgTXx3JMBgmslSJFwC8VMCb35remBKw7zCLPQIHqQHQk11iMSAxyuRkaEdWTSaSS3amZuXKlfjhhx8QExOD5ORkJCcno2HDhti1axc3tCRyE7phleq/ueuGVXalZku6jrEHpaVhDhWA7b9nQaMV0D8xCitGtjPItOiyBLPGDjYIaLRarT6g0dmVmo2lP5xHwQ1xIKb7PClVVvnoKvHq+mKMnOSLPYZZdIGDlCyWVFIDoAGJUejSJNzkXB1z35/SVZOJ5JId1HTs2BHp6el488030aZNG7Ru3Rrz589Heno6OnbsaI8+EpGCLE1CBYBtJzIlXSsi2HBXajnzQYDKTMv+6X3w5fjOWDY8CV+O74yU5zpiQOtoHDlyRH/enDlzjK7AlPJ5qg8TmQqmrHkO22OYxR6Bg5KBkqVglMu5yVms2vspMDAQTz/9tNJ9ISIHkBJ05JXcQliQD66VlJudO/OvjScw54FWooeYNfNBdHNeAOCrr75C1xEjRMdeuXIFDRuKl3DryJ1Uq6vRUlahxeKH2wIqILe4DLnXy/DGTvNDTlXZe5hFFzhUHyKMtHLlldL7Ujmzfg+RKVYFNZ9//jlWrVqFixcv4uDBg4iNjcWSJUvQuHFjDB48WOk+EpGCpAYdDyY1wJoDl8zWePmnqMxgFZAt80EiIiKQl5cnarNU9FxOEGVuHlFEbcOskymOGmZROnCwR6DEZdvkSmQPP61YsQJTp07FgAEDcO3aNX2xvTp16mDp0qVK94+IFCY16EhOiMSKke1QP8T08caGd6wZ5sjJyYFKpRIFNKtWrbIY0ADSP8+l3FKz84gu5ZZIug7g2GGWqiu3zM11kcrYcN/+6X04ZEQeQXZQs3z5cqxevRozZ85ErVq3Ez0dOnTAqVOnFO0cESlPTtDRPzEK7zzS1uz1qs+RkTsfZOnSpahXr57ouPz8fMlD3FI+T2SIH748nGF23s2XhzMQGWL6OgAQGuiDL8Z1cvsgQOlAichVyA5q0tPTceeddxq0+/n5oaRE+m86ROQccoOO3JIySdetOgwkdSKpSqXClClT9O/Hx8ejQqPFH/laybVzpHyeER0bIbvI/Lyb7KIyjOjYyOR1VAAWDm2Nbs0iGAQQuSjZc2ri4+Nx4sQJUZVhAPjuu+8Mllkq6c0338TOnTtx4sQJ+Pr6oqCgwG73IvJ0cuZWWDtHxtx8kPT0dDRu3Fh0/JYtW+DftJPB7t5StiSw9HnKKrSSPkNcRKCic06IyLFkBzXTpk3Dc889h5s3b0IQBBw+fBhffvklFixYgI8//tgefQQA3Lp1C4888gi6dOmCTz75xG73IaoppE5CtaXYmrGJpC+//DLefvttUVtpaSl+SiuwaUsCc5/nYFqeyfOqqlfbH12ahHNVD5GbUglSZuJVs3r1asybNw9XrlwBADRo0ABz5szBuHHjFO9gdevWrcPkyZOtytQUFRVBrVajsLAQISEhyneOyEPpivUBxpcCf/DYnagT5Gc2CBAEAV5e4hHvPn364Mcff4RGKxhkaKrSBU77p/exKrjQXd9SYGbt9aveh8EQkfKkPr+tWtI9fvx4jB8/Hrm5udBqtQaT/FxFWVkZyspuzwcoKipyYm+I3Je54Z0H2kYZ7IJdfcjoxIkTBnPxfv75Z3Tv3h2A/Xd+VrpGizHO2M2biMRkTxTu06ePPksSERGhD2iKiorQp08fRTtnqwULFkCtVuv/xMTEOLtLRG7L2FLg1wYm4KN96SaXSaeczsKIESMMApqKigp06dpNv5nmgQu5kvpgy5YE9qyCa2nbiarbNBCR/cjO1Ozduxe3bt0yaL958yZ+/vlnWdeaM2cO5s6da/aYI0eOoEOHDrKuqzNjxgxMnTpV/7qoqIiBDZFMpoZUdEM6JpdJayowoHW0qH3s2LH45JNPjGY1pLB1SwJ7VMG1tE2DCpV1fPomRHIoisjOJAc1J0+e1P89NTUV2dm3N7zTaDRISUlBgwYNZN180qRJGD58uNlj4uLiZF2zKj8/P/j5Sa8SSkRilnbyNhWU3Lj8O65+NVPUdvr0abRq1Uqf1ZAzmU/JLQmUroJr76EzIpJOclCTlJQElUoFlUpldJgpICAAy5cvl3XziIgIREREyDqHiBzDVPChG1IZ2y3O6HnZn7+Essw/RG1arRZaAThwPhf/3nRKdkADuO7Oz9bsdUVE9iE5qElPT4cgCGjcuDEOHz6MunXr6t/z9fVFvXr14O3tbZdOAkBGRgby8/ORkZEBjUaDEydOAACaNm2K4OBgu92XyF3ZshJHypDKlhN/i9q1t27iypKHRW3qriPw3WfL8b8z2VYNNwGuXyPGlr2uiEhZkoMaXbE9rVZaESulzZo1C59++qn+tW7i4Z49e9CrVy+n9IlIKUovBbZ1JY6UIZX8knKEBfniWsktFJ/9GbnbF4mOaThhLRrGxOBaSRme23BcVnZmUu8maFa/tlssi7aljg8RKUv2ROEFCxagfv36GDt2rKh9zZo1yMnJwfTp0xXrXFXr1q3DunXr7HJtImdSeimwpWEjKSt9pA6VDEmKxtwR3aEtKRC1x03/BgDw2sAEvLHTeMbHnG5N67rN/BNHLBcnImlkL+letWoVWrRoYdDeqlUrrFy5UpFOEdUUSi8FtjRsBIh31DZFylCJprQQsx9IFAU0Yf0mInb6N/pl0nWCTE8mNka3+aRWECTv/eQK7LlcnIikk52pyc7ORlSU4f9B69ati6ws1mIgksoeS4GVWoljaUjl+m87kP/DKlFbytHzuOkdIBoy2lZt3o05uizHzQotHv/4V327uxSws8dycSKSR3ZQExMTgwMHDiA+Pl7UfuDAAURHR5s4i4iqs8dSYKVW4pgbUrm86H7RsTExMcjIyDB6HTmTY9WBPigoLUdBabmoXc6wmbMpvVyciOSRPfz01FNPYfLkyVi7di0uX76My5cvY82aNZgyZQrGjx9vjz4SeSR7LAVWciVO9SGVisJ/DAKaTZs2mQxogNsZH3O5itAAH3w+tiP8axlfPSn8/58528+4xVAUETmP7EzNyy+/jPz8fEycOFFfWdjf3x/Tp0/HjBkzFO8gkaeyx1JgpVfi6IZUxkycgs9XLRO9V1paioCAAFGbsVVclibRLnyoNY5lXEN2kfngLbuoDO/vvoAXk5tJ6jsR1TxW7dINAMXFxTh79iwCAgLQrFkzt6jcy126yZXYa+doSztqyxnGMbazds+ePbF3716j9zW1iguA2fee/f/+SrHSDYahiEhZUp/fVgc17ohBDbkaJQOQ6te1dZn4yZMn0bZtW1HbTz/9hB49ehi9n7Fl5FU/h7FJtADQfdFuWSukoqwI9IjIvSka1AwdOhTr1q1DSEgIhg4davbYzZs3y++tgzCoIVekdJ0aHVsK+j3xxBNYv369qK28vBy1ahmOWOsyTqYCE3MZp4NpeRix+pC0D1TFl+M7c0IuUQ0i9fktaU6NWq2GSqXS/52IlGOvpcDWrMSpqKiAj4+PqO3JJ58UVfOuzpZVXNbuh8R9lIjIGElBzdq1a43+nYiU4QpLgX/66SeDLUdOnjyJ1q1bmz3PllVc1u6HxH2UiMgY2aufiMjz9OjRAz///LOoTavV6jO05tiyisvSaq3q7LWPktJ7bxGRc0gKau68805J/3EDgGPHpK9iICLnKi0tRVBQkKjtlVdewZtvvin5GrYsIzdX5M/YdQDl91Gy15wmInI8SUHNkCFD9H+/efMmPvzwQyQkJKBLly4AgEOHDuHMmTOYOHGiXTpJ5KmqZggigvwAFZBbXOaQbMGmTZvw8MMPi9ouXbqE2NhYWdexdUNHXZG/6oGFlwqoWmsv0g6BhhKbfxKR65C9pPupp55CVFQU3njjDVH77NmzceXKFaxZs0bRDiqJq5/I3uQMYxjLEFRlz2xBw4YN8fff4n2ZbK3uYGvGo/p31z62Dn67fM1uQ0K2rNoiIseyW50atVqNo0ePolkzcVXP8+fPo0OHDigsLLSuxw7AoIbsSc5D3VSGoCpba9UYk5eXh4iICFHb+++/j+eee06R67vT3BSpy8m5fJzI+aQ+v2Xv/RQQEID9+/cbtO/fvx/+/lyRQDWTLkip/lu/bhgj5fTtHezN7c5dle79uTtSFdnz6IMPPjAIaHJzcxULaIDbq7gGJzVAlybhLhvQAPbZe4uInEv26qfJkydjwoQJ+O2339C5c2cAlXNq1qxZg1mzZineQSJXZy5IEVCZcZm7IxV9EyLh7aWyWNel+vlyd+o2pvpE/6ioKGz6+RT2X7mJegV5Ds+ouEJGxx57bxGRc8kOav7973+jcePGWLZsGTZs2AAAaNmyJdatW4dhw4Yp3kEiVye3+Jw1v/lbmy1Iv3QZjePjRG2vvPMRdpc1Fg29OHK1j6usNlJ6808icj7Zw08AMGzYMBw4cAD5+fnIz8/HgQMHGNBQjSV3GMOa3/ytOWfE05MNAprEmdvwxdVoScNk9iBnmM7edKu2gNvzl3TstXyciOzLqqCmoKAAH3/8MV555RXk5+cDqKxPU301BVFNIHcYQ5chkPqojJKZLRAEASqVCl+tXqZv82uQgNjp3+B6hbfxc/7/f5Wav2OMpWE6wc73N0a3nDxSLf43jFT7czk3kRuSPfx08uRJJCcnQ61W49KlS3jqqacQFhaGLVu24PLly/jss8/s0U8ilyV3GENOwTkAeKBtlORswenTpw22Nag/Yj78G7WxeK5S83dMkTKXyJ73N8Vee28RkePJztRMnToVo0ePxvnz50WrnQYMGIB9+/Yp2jkid2DNMIYuQ1A/xHKWZ/vvWZKyF6NHjzYIaBpN2yYpoKnKXqt9soukXVfqcUpyp1VbRGSa7KDmyJEjeOaZZwzaGzRogOzsbEU6ReRurBnG6J8YhXceaWvx2rrshSkVFRVQqVSinbSDEnohdvo3UHkZH24yx16rffKLyxQ9joioOtnDT/7+/igqKjJoP3fuHOrWratIp4jckTXDGLkl0h7gprIn+/btQ8+ePUVtn+7Yi1n7iyX3W8feq33CgnwVPY6IqDrZQc3gwYPx+uuvY+PGjQAq619kZGTg3//+Nx566CHFO0jkTnTDGFLZUiuld+/e2Lt3r6hNq9VCKwArTu2WvPM14JjVPpHqAEWPIyKqTvbw0+LFi5GTk4N69erhxo0b6NmzJ5o2bYratWvL2tmXiCyvhFLBcPXTjRs3oFKpRAHN9OnT9auepMzxCQ30EbU7YrWP7rOaI3elFxFRVbL3ftLZvXs3jh07Bq1Wi3bt2iE5OVnpvimOez+RK9LVbgGM73BdNdjYsmULhg4dKjo/PT0dcXFxRq9rqsids1b7mNvzSgVl97kiIs9hlw0tKyoq4O/vjxMnTiAxMVGRjjoSgxpyVVKq7MbFxeHy5cui8yz939cVtiOozlUqChOR+5D6/JY1p6ZWrVqIjY2FRqOxuYNErsoZgYC5Scb5+fkIDxfP01m2bBleeOEFs9d0xYAGYF0YIrIf2cNPa9euxX/+8x+sX78eYWHuNfbNTA1Z4mpZhFWrVuHZZ58VteXk5Bjstl2dq30OIiJb2GX4CQDuvPNOXLhwAeXl5YiNjUVQUJDo/WPHjlnXYwdgUEPmmJrvYWxuiyNU31m7bt26uHr1qsXzXO1zEBHZyi7DT0Dlku7q/7ElcneW9iVSoXJfor4JkXYfJrly5QoaNWokavvqq6/w6KOPGj2+6jBTRJAf5mx3jc9BRORosoOaOXPm2KEbRM5laV8iS/siKTV/ZfXq1Xj66adFbcXFxQYZUR1jw0zm2Ht/JyIiZ5Ic1JSWlmLatGnYunUrysvLkZycjPfee8/i2D6RO5C635Gx45SYvyIIAjp37ozDhw/r2zp16oRDhw6ZPMfc8mhL7LW/ExGRM0kuvjd79mysW7cOAwcOxPDhw7Fr1y5MmDDBnn0jchhrK/vqAovqmZLswpuYsP4YUk5nAajM5BxMy8O2E3/jYFqeaIPKK1euwMvLSxTQ/PDDD2YDGnPDZdZ8DiIiTyA5U7N582Z88sknGD58OABg5MiR6NatGzQaDby95W+aR+RKdNVuTW0tYGxfJKnzcLRaAW/sPGs0k5P+81ZMnDhR3x4eHo5//vnH4v+nLA2XmWLv/Z2IiJxJcqbmypUruPvuu/WvO3bsiFq1aiEzM9MuHaOazVxmwx6kbC1QfV+kQxfzJM3DmbjhuMFxWQWluL9rG1FAs2TJEuTm5kr6JcGa4SNH7O9ERORMkjM1Go0Gvr7i3XNr1aqFiooKxTtFNZuzaqz0T4zCipHtDO4daeTeKaez8O9Np6y6T3neFWR+LB66vXjxIuLj4yVPOLZm+MjY5/AkrlpskIgcR3KdGi8vLwwYMAB+fn76th07dqBPnz6ilRmbN29WvpcKYZ0a1+cKNVYsPRxtmaBbcOBLFO7/Qv/ap24c9v5yBF2bRsgK5jRaAd0Xmd6JWwWgfogf3hmWhNziMo9/yLPYIJFnU7z43pgxYyTdeO3atdJ66AQMalyb7kFtakhHNx9k//Q+Tns4W+qjKYKmHBnvPAQIWn1b+MCpCE7sg2XDk+BXy0t2MCdnI0xP5gqBMBHZl+LF91w5WCHPYGutGEewZoJuWdZ5ZH82RdTWcNJ6eAeFAgAigvzw0n9/l10wT85wmadypaKJROR8sovvEdnC3NCOLbViHEXqvUMDfTB/SGuMfWYC/jm0Td/uH98O9Ye9DuB25gkqWB3M1fTNId0hECYix2FQQw5jad6DtbViHEnqvRcPvgN920aL2uo+PBuBTe4CIF6JlFtcJumapgIqby9VjX1gu0MgTESOI3lJN5EtpBSp09WKMZVjUKEyCHJmjRUpfQzMOYO+SXGi9g6ztukDGqAyQ6Ob6+EOwZyr4ndHRFUxU0N2J2few+xBCZiw/hhUMD751dk1VnT1bEz18eqW+Sj98xd92+jRo7F27Vqzw27WFP6jSvzuiKgqZmrI7uTMe9BNfo1Ui3+zrprZcDZjfdTcKMKlRfeLApr9+/frJ9jrhogGJzVAlybhosDMmsJ/VInfHRFVxUwN2Z3ceQ/uMPm1ah+3bv4v3nr5WdH7N27cgL+/9CEPrmSyHr87ItJhUEN2Z828B3eY/OqlAl568gH88svt7Mz06dOxcOFCq67nDsGcq+J3R0QAgxpyAE+c9/DXX38hJiZG1Pb777+jTZs2Nl3XHYI5V8Xvjog4p4bsztPmPaxatUoU0ISGhqK8vNzmgIaIiGzDoIYcwh0mAFui1WoRHx+PZ5+9PX/mnXfewbVr11CrFpOeRETOxv8Sk8O487yHc+fOoUWLFqK2tLQ0NG7c2Ek9IiKi6pipIYcyt7TZVb355puigKZVq1bQarUMaIiIXAwzNUQmlJeXIzAwEBUVFfq2devWYdSoUU7sFRERmcKghsiI3377DR06dBC1ZWVlITIy0kk9IiIiSzj8RG5DoxVwMC0P2078jYNpedBojS0Qt92LL74oCmiSk5MhCAIDGiIiF8dMDbkFSzt8K6GkpATBwcGitu3bt2PQoEGKXJ+IiOzLLTI1ly5dwrhx4xAfH4+AgAA0adIEs2fPxq1bt5zdNXIAKTt822r37t0GAU1BQQEDGiIiN+IWQc0ff/wBrVaLVatW4cyZM1iyZAlWrlyJV155xdldIzuztMM3ULnDty1DUY8++ijuuece/esnnngCgiBArVZbfU0iInI8txh+6t+/P/r3769/3bhxY5w7dw4rVqzA4sWLndgzsjc5O3zLLZGfn5+P8HDxOfv27cPdd99tTVeJiMjJ3CKoMaawsBBhYeb3CiorK0NZWZn+dVFRkb27RQqTu8O3VJs3b8ZDDz0kaistLUVAQICs6xARketwi+Gn6tLS0rB8+XJRuXpjFixYALVarf9TfQNCJThqRU5NZc0O3+YIgoC7775bFNBMmzYNgiAwoCEicnMqQRCc9hSeM2cO5s6da/aYI0eOiJbXZmZmomfPnujZsyc+/vhjs+cay9TExMSgsLAQISEhtnUejlmRU9NptAK6L9ptcYfv/dP7WKxOnJmZiQYNGojaTpw4gbZt2yrXYSIiUlxRURHUarXF57dTg5rc3Fzk5uaaPSYuLg7+/pW/hWdmZqJ3797o1KkT1q1bBy8veYkmqV+KFLoVOdW/PN1j1V02aXQHuu8agOj7lvNdr169Gk8//bT+de3atZGfn8+NKImI3IBbBDVy/P333+jduzfat2+P9evXw9vbW/Y1lApqdNkDUxNY5WQPSBprs2JarRbNmjXDxYsX9W1vvfUWpk2bZtf+EhGRcqQ+v93i19TMzEz06tULjRo1wuLFi5GTk6N/zxlVXu25IoeMs2aH7/Pnz6N58+aitgsXLqBJkyb27i4RETmBWwQ133//PS5cuIALFy6gYcOGoveckWiy14ocMk+3w7cUCxYsENUxatGiBVJTU6FSMXNGROSp3GL10+jRoyEIgtE/zqD0ihxSTnl5OQICAkQBzZo1a3D27FmnBjRcJUdEZH9ukalxNR3jwxCl9re4IqdjvPk6OqSs48ePo127dqK2zMxMREU5d8I2V8kRETmGW2RqXI23lwqzByUAuL0CR0f3evagBE4SdqApU6aIApo+ffpAEASXCGjsvW8VERFVYlBjpf6JUVgxsh0i1eIhpki1P5dzO1BpaSlUKhWWLl2qb9u6dSt+/PFH53Xq/zli3yoiIrqNw082sGZFDiln79696N27t6jt2rVrCA0NdU6HquEqOSIix2Kmxka6FTmDkxqgS5NwBjQO8thjj4kCmsceewyCILhMQANwlRwRkaMxU0Nu5dq1awYbme7duxc9e/Z0Uo9M4yo5IiLHYqaG3MbWrVsNAprS0lKXDGiA26vkTOXuVKhcBcVVckREymBQQy5PEAT07t0bDz74oL5t6tSpLr+zNlfJERE5FoefyKUZ21n72LFjuPPOO53UIzGNVjA7UVy3Sq56nZpI1qkhIlIcgxpyWWvWrMG4ceP0rwMDA1FQUAAfHx8n9uo2qUX1uEqOiMgxOPxELker1aJ58+aigGbhwoUoKSlxqYBGTlE9rpIjIrI/ZmrIpVy4cAHNmjUTtZ0/fx5NmzZ1Uo8MWSqqp0JlUb2+CZEMXoiIHIiZGnIZb731liigadasGTQajUsFNIC8onpEROQ4zNSQ05WXlyM0NBSlpaX6to8//lg0/ORKWFSPiMg1Maghpzpx4oTBSqa///4b0dHRTuqRZSyqR0Tkmjj8RE7z0ksviQKaHj16QKvVIjo6GhqtgINpedh24m8cTMtzqU0fWVSPiMg1MVNDDnfjxg0EBgaK2jZv3qwvrid1qbSz6IrqTVh/DCpANGGYRfWIiJyHmRpyqH379hkENPn5+aKARs5SaWfRFdWLVIuHmCLV/lgxsp3VwZcrZ6iIiFwdMzXkME888QTWr1+vfz18+HB8+eWX+tfutlRa6aJ6rp6hIiJydQxqyO4KCgpQp04dUdvu3bvRu3dvUZucpdJdmoTbo6uy6Yrq2UqXoaoe0OkyVLZkf4iIagoOP5Fdbd++3SCgKSkpMQhogJq7VNpShgqozFBxKIqIyDwGNWQ399xzDwYPHqx/PXnyZAiCYDCnRqemLpVmMT8iImVw+IkUl52djago8VDJ0aNH0b59e7Pn6ZZKZxfeNJq1UKFyIq6nLZWuqRkqIiKlMVNDilq3bp0ooPHz88OtW7csBjTA7aXSAAxqwHjyUumamqEiIlIagxpShCAIaNmyJcaMGaNvmz9/Pm7evClrZ217LZV2ZSzmR0SkDA4/kc3S0tIMNp08d+4cmjdvbtX1lF4q7epYzI+ISBnM1JBNFi9eLApoGjduDI1GY3VAo6NbKj04qQG6NAn3+Ad6TcxQEREpjZkaskpFRQXCw8NRVFSkb/voo48wfvx4J/bKvdW0DBURkdIY1JBsJ0+eRNu2bUVtf/31Fxo0aOCkHnkOpYr5ERHVRBx+IllefvllUUDTvXt3aLVaBjREROR0zNSQJMZ21v7vf/+Lhx56yEk9IiIiEmNQQxb9/PPP6NGjh6gtLy8PYWFcYkxERK6Dw09k1qhRo0QBzSOPPAJBEBjQEBGRy2GmhowqLCxEaGioqO3HH39Enz59nNMhIiIiC5ipIQPffPONQUBTXFzMgIaIiFwagxoSuffeezFo0CD96+effx6CICAoKMiJvSIiIrKMw08EAPjnn38QGRkpajty5Ag6dOjgpB4RERHJw0wN4bPPPhMFND4+PigrK2NAQ0REboVBTQ0mCAISExMxatQofdu8efNw69Yt+Pr6OrFnRERE8nH4qYa6ePEimjRpImr7448/cMcddzipR0RERLZhpqYGevfdd0UBTWxsLDQaDQMaIiJya8zU1CAVFRWoW7cuCgoK9G0rV67EM88847xOERERKYRBTQ1x6tQptGnTRtR25coVNGzY0Ek9IiIiUhaHn2qAGTNmiAKazp07Q6vVMqAhIiKPwkyNB7t58yYCAgJEbRs3bsQjjzzipB4RERHZD4MaD3XgwAF0795d1Jabm4vw8HAn9YiIiMi+OPzkgcaMGSMKaIYOHQpBEBjQEBGRR2OmxoMUFRVBrVaL2nbt2oXk5GQn9YiIiMhxmKnxEDt37jQIaIqLixnQEBFRjcGgxgMMGDAA999/v/71xIkTubM2ERHVOBx+cmNXr15F/fr1RW2//vorOnbs6KQeEREROQ8zNW5q/fr1ooBGpVKhrKyMAQ0REdVYDGrcjCAIaNu2LZ544gl929y5c6HVarmzNhER1WgcfnIjly5dQnx8vKgtNTUVLVu2dFKPiIiIXAczNW5i6dKlooCmYcOGqKioYEBDRET0/5ipcXEajQaRkZHIzc3Vt3344YeYMGGC9GtoBRxOz8fV6zdRr7Y/OsaHwdtLZY/uEhEROY3bBDUPPPAATpw4gatXr6JOnTpITk7GokWLEB0d7eyu2c3p06fRunVrUVtGRgZiYmIkXyPldBbm7khFVuFNfVuU2h+zByWgf2KUYn0lIiJyNrcZfurduzc2btyIc+fOYdOmTUhLS8PDDz/s7G7ZzcyZM0UBTceOHaHVamUHNBPWHxMFNACQXXgTE9YfQ8rpLMX6S0RE5GwqQRAEZ3fCGtu3b8eQIUNQVlYGHx8fSefothEoLCxESEiInXtoHWM7a3/11Vd49NFHZV1HoxXQfdFug4BGRwUgUu2P/dP7cCiKiIhcmtTnt9sMP1WVn5+PL774Al27djUb0JSVlaGsrEz/uqioyBHds9rBgwfRtWtXUVtOTg4iIiJkX+twer7JgAYABABZhTdxOD0fXZpwo0siInJ/bjP8BADTp09HUFAQwsPDkZGRgW3btpk9fsGCBVCr1fo/coZuHG38+PGigGbw4MEQBMGqgAYArl43HdBYcxwREZGrc2pQM2fOHKhUKrN/jh49qj9+2rRpOH78OL7//nt4e3vjySefhLnRsxkzZqCwsFD/58qVK474WLIUFRVBpVLh448/1rf973//w9atW226br3a/ooeR0RE5OqcOqcmNzdXtFTZmLi4OPj7Gz54//rrL8TExOCXX35Bly5dJN3P1ebUfPfdd7jvvvtEbdevX0dwcLDN19bNqckuvAlj/8CcU0NERO7CLebUREREWD28oovFqs6ZcSeDBg3CN998o3/97LPPYsWKFYpd39tLhdmDEjBh/TGoAFFgowthZg9KYEBDREQewy0mCh8+fBiHDx9G9+7dUadOHVy8eBGzZs1CkyZNJGdpXEVOTg7q1asnajt06BA6deqk+L36J0Zhxch2BnVqIlmnhoiIPJBbBDUBAQHYvHkzZs+ejZKSEkRFRaF///746quv4Ofn5+zuSbZhwwY8/vjjorabN2/a9TP0T4xC34RIVhQmIiKP57Z1aqzhrDk1giCgffv2OH78uL5t9uzZmDNnjsP6QERE5K7cYk5NTXD58mXExcWJ2s6cOYOEhATndIiIiMhDuVWdGnfz3nvviQKaqKgoVFRUMKAhIiKyA2Zq7ECj0SA6OhpXr17Vty1fvhyTJk1yYq+IiIg8G4MahaWmpqJVq1aitsuXL6NRo0ZO6hEREVHNwOEnBc2aNUsU0LRv3x5arZYBDRERkQMwU6OAsrIyg6rHGzZswIgRI5zUIyIiopqHQY0Cnn/+edHrq1evom7duk7qDRERUc3E4ScF3HXXXQAqtz4QBIEBDRERkROw+B4RERG5NKnPb2ZqiIiIyCMwqCEiIiKPwKCGiIiIPAKDGiIiIvIIDGqIiIjIIzCoISIiIo/AoIaIiIg8AoMaIiIi8ggMaoiIiMgjMKghIiIij8CghoiIiDwCgxoiIiLyCAxqiIiIyCMwqCEiIiKPUMvZHXAkQRAAVG5hTkRERO5B99zWPcdNqVFBzfXr1wEAMTExTu4JERERyXX9+nWo1WqT76sES2GPB9FqtcjMzETt2rWhUqmc3R2jioqKEBMTgytXriAkJMTZ3fFo/K4di9+3Y/H7dhx+1/YnCAKuX7+O6OhoeHmZnjlTozI1Xl5eaNiwobO7IUlISAj/z+Eg/K4di9+3Y/H7dhx+1/ZlLkOjw4nCRERE5BEY1BAREZFHYFDjYvz8/DB79mz4+fk5uysej9+1Y/H7dix+347D79p11KiJwkREROS5mKkhIiIij8CghoiIiDwCgxoiIiLyCAxqiIiIyCMwqHFhDzzwABo1agR/f39ERUXhiSeeQGZmprO75ZEuXbqEcePGIT4+HgEBAWjSpAlmz56NW7duObtrHunNN99E165dERgYiNDQUGd3x+N8+OGHiI+Ph7+/P9q3b4+ff/7Z2V3ySPv27cOgQYMQHR0NlUqFrVu3OrtLNR6DGhfWu3dvbNy4EefOncOmTZuQlpaGhx9+2Nnd8kh//PEHtFotVq1ahTNnzmDJkiVYuXIlXnnlFWd3zSPdunULjzzyCCZMmODsrnicr7/+GpMnT8bMmTNx/Phx3H333RgwYAAyMjKc3TWPU1JSgrZt2+L99993dlfo/3FJtxvZvn07hgwZgrKyMvj4+Di7Ox7v7bffxooVK3Dx4kVnd8VjrVu3DpMnT0ZBQYGzu+IxOnXqhHbt2mHFihX6tpYtW2LIkCFYsGCBE3vm2VQqFbZs2YIhQ4Y4uys1GjM1biI/Px9ffPEFunbtyoDGQQoLCxEWFubsbhBJduvWLfz222/o16+fqL1fv3745ZdfnNQrIsdhUOPipk+fjqCgIISHhyMjIwPbtm1zdpdqhLS0NCxfvhzPPvuss7tCJFlubi40Gg3q168vaq9fvz6ys7Od1Csix2FQ42Bz5syBSqUy++fo0aP646dNm4bjx4/j+++/h7e3N5588klwxFA6ud83AGRmZqJ///545JFH8NRTTzmp5+7Hmu+a7EOlUoleC4Jg0EbkiWo5uwM1zaRJkzB8+HCzx8TFxen/HhERgYiICDRv3hwtW7ZETEwMDh06hC5duti5p55B7vedmZmJ3r17o0uXLvjoo4/s3DvPIve7JuVFRETA29vbICtz9epVg+wNkSdiUONguiDFGroMTVlZmZJd8mhyvu+///4bvXv3Rvv27bF27Vp4eTGRKYctP9ukDF9fX7Rv3x67du3Cgw8+qG/ftWsXBg8e7MSeETkGgxoXdfjwYRw+fBjdu3dHnTp1cPHiRcyaNQtNmjRhlsYOMjMz0atXLzRq1AiLFy9GTk6O/r3IyEgn9swzZWRkID8/HxkZGdBoNDhx4gQAoGnTpggODnZu59zc1KlT8cQTT6BDhw76jGNGRgbnh9lBcXExLly4oH+dnp6OEydOICwsDI0aNXJiz2owgVzSyZMnhd69ewthYWGCn5+fEBcXJzz77LPCX3/95eyueaS1a9cKAIz+IeWNGjXK6He9Z88eZ3fNI3zwwQdCbGys4OvrK7Rr10746aefnN0lj7Rnzx6jP8ejRo1ydtdqLNapISIiIo/ASQNERETkERjUEBERkUdgUENEREQegUENEREReQQGNUREROQRGNQQERGRR2BQQ0RERB6BQQ0RkQW9evXC5MmTnd0NIrKAQQ0RAYDFHbZHjx7tsL7YI4gYPXo0hgwZoug1Tdm7dy9UKhUKCgoccj8iqsS9n4gIAJCVlaX/+9dff41Zs2bh3Llz+raAgADR8eXl5fDx8XFY/4iILGGmhogAVG7cqfujVquhUqn0r2/evInQ0FBs3LgRvXr1gr+/P9avX485c+YgKSlJdJ2lS5ciLi5O1LZ27Vq0bNkS/v7+aNGiBT788EOT/Rg9ejR++uknLFu2TJ8lunTpEgAgNTUV9913H4KDg1G/fn088cQTyM3N1Z/73//+F61bt0ZAQADCw8ORnJyMkpISzJkzB59++im2bdumv+bevXuN3r+kpARPPvkkgoODERUVhXfeecfgmPXr16NDhw6oXbs2IiMj8dhjj+Hq1asAgEuXLqF3794AgDp16oiyXCkpKejevTtCQ0MRHh6O+++/H2lpaWb+VYhIDgY1RCTZ9OnT8cILL+Ds2bO49957JZ2zevVqzJw5E2+++SbOnj2L+fPn47XXXsOnn35q9Phly5ahS5cuGD9+PLKyspCVlYWYmBhkZWWhZ8+eSEpKwtGjR5GSkoJ//vkHw4YNA1CZaRoxYgTGjh2Ls2fPYu/evRg6dCgEQcBLL72EYcOGoX///vprdu3a1ej9p02bhj179mDLli34/vvvsXfvXvz222+iY27duoU33ngDv//+O7Zu3Yr09HR94BITE4NNmzYBAM6dO4esrCwsW7YMQGXANHXqVBw5cgQ//vgjvLy88OCDD0Kr1Ur6LonIPA4/EZFkkydPxtChQ2Wd88Ybb+Cdd97RnxcfH4/U1FSsWrUKo0aNMjherVbD19cXgYGBiIyM1LevWLEC7dq1w/z58/Vta9asQUxMDP78808UFxejoqICQ4cORWxsLACgdevW+mMDAgJQVlYmumZ1xcXF+OSTT/DZZ5+hb9++AIBPP/0UDRs2FB03duxY/d8bN26M9957Dx07dkRxcTGCg4MRFhYGAKhXrx5CQ0P1xz700EOi63zyySeoV68eUlNTkZiYaLJfRCQNMzVEJFmHDh1kHZ+Tk4MrV65g3LhxCA4O1v+ZN2+e7GGX3377DXv27BFdp0WLFgCAtLQ0tG3bFvfccw9at26NRx55BKtXr8a1a9dk3SMtLQ23bt1Cly5d9G1hYWG44447RMcdP34cgwcPRmxsLGrXro1evXoBADIyMixe/7HHHkPjxo0REhKC+Ph4SecRkTTM1BCRZEFBQaLXXl5eEARB1FZeXq7/u25YZfXq1ejUqZPoOG9vb1n31mq1GDRoEBYtWmTwXlRUFLy9vbFr1y788ssv+P7777F8+XLMnDkTv/76qz54sKT6ZzGmpKQE/fr1Q79+/bB+/XrUrVsXGRkZuPfee3Hr1i2z5w4aNAgxMTFYvXo1oqOjodVqkZiYaPE8IpKGQQ0RWa1u3brIzs6GIAhQqVQAgBMnTujfr1+/Pho0aICLFy/i8ccfl3xdX19faDQaUVu7du2wadMmxMXFoVYt4//pUqlU6NatG7p164ZZs2YhNjYWW7ZswdSpU41es7qmTZvCx8cHhw4dQqNGjQAA165dw59//omePXsCAP744w/k5uZi4cKFiImJAQAcPXrUoP8ARPfLy8vD2bNnsWrVKtx9990AgP3790v9SohIAg4/EZHVevXqhZycHLz11ltIS0vDBx98gO+++050zJw5c7BgwQIsW7YMf/75J06dOoW1a9fi3XffNXnduLg4/Prrr7h06RJyc3Oh1Wrx3HPPIT8/HyNGjMDhw4dx8eJFfP/99xg7diw0Gg1+/fVXzJ8/H0ePHkVGRgY2b96MnJwctGzZUn/NkydP4ty5c8jNzRVllHSCg4Mxbtw4TJs2DT/++CNOnz6N0aNHw8vr9n8qGzVqBF9fXyxfvhwXL17E9u3b8cYbb4iuExsbC5VKhW+++QY5OTkoLi5GnTp1EB4ejo8++ggXLlzA7t27MXXqVFu+fiKqTiAiqmbt2rWCWq3Wv05PTxcACMePHzc4dsWKFUJMTIwQFBQkPPnkk8Kbb74pxMbGio754osvhKSkJMHX11eoU6eO0KNHD2Hz5s0m73/u3Dmhc+fOQkBAgABASE9PFwRBEP7880/hwQcfFEJDQ4WAgAChRYsWwuTJkwWtViukpqYK9957r1C3bl3Bz89PaN68ubB8+XL9Na9evSr07dtXCA4OFgAIe/bsMXrv69evCyNHjhQCAwOF+vXrC2+99ZbQs2dP4cUXX9Qfs2HDBiEuLk7w8/MTunTpImzfvt3g+3n99deFyMhIQaVSCaNGjRIEQRB27doltGzZUvDz8xPatGkj7N27VwAgbNmyxeR3QUTSqQRBwiAyERERkYvj8BMRERF5BAY1RERE5BEY1BAREZFHYFBDREREHoFBDREREXkEBjVERETkERjUEBERkUdgUENEREQegUENEREReQQGNUREROQRGNQQERGRR2BQQ0RERB7h/wAI0JTTmacjLgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABwP0lEQVR4nO3deVxU5f4H8M+A7MggoAKKgFuKqKTmnltomplmZVqWW1aalXozr1kuZS5lqVmpWWplVt7rnsXNUjNNU1NzwUwRxQKSRUBAEWbO7w9+M3KY7ZyZMyuf9+vl6zrPnOWZkdv58n2e5/uoBEEQQEREROTmvJzdASIiIiIlMKghIiIij8CghoiIiDwCgxoiIiLyCAxqiIiIyCMwqCEiIiKPwKCGiIiIPAKDGiIiIvIIDGqIiIjIIzCoIfJg69atg0qlgr+/Py5fvmzwfq9evZCYmChqi4uLg0ql0v8JCgpCu3bt8P7776N6AfK9e/fqj1u3bp3RPvTp0wcqlQpxcXGi9pKSEixatAht27ZFSEgIateujSZNmmDYsGH46aefjN7D2B9T97WX4uJiTJ48GdHR0fD390dSUhK++uorq6716quvQqVSGfwbAMDMmTNx5513IiwsDP7+/mjcuDGefvppo/+ORFSplrM7QET2V1ZWhldffRWff/65pOO7deuGxYsXAwAyMzPx7rvv4vnnn0dRURFeeeUVg+Nr166NTz75BKNHjxa1p6enY+/evQgJCRG1azQa9OvXD6dOncK0adPQsWNHAMD58+exY8cO/Pzzz+jZs6fonPnz56N3794G927SpImkz6SUoUOH4siRI1i4cCGaN2+ODRs2YMSIEdBqtXjsscckX+fEiRNYvHgx6tevb/T9goICjBgxAi1btkTt2rWRmpqKefPmYfv27Thz5gzCw8OV+khEnkMgIo+1du1aAYDQv39/wcvLSzhx4oTo/Z49ewqtWrUStcXGxgoDBw4UtRUWFgpqtVpo1KiRqH3Pnj0CAOGpp54SAAh//vmn6P1XX31VaNiwoTBgwAAhNjZW3757924BgLBmzRqj/dZoNAb3+M9//iP5c9vLzp07BQDChg0bRO19+/YVoqOjhYqKCknXKS8vF5KSkoQXXnjB6L+BKd9++60AQPjkk09k952oJuDwE1EN8PLLLyM8PBzTp0+36vyQkBA0b94c//zzj9H3+/bti5iYGKxZs0bfptVq8emnn2LUqFHw8hL/pyYvLw8AEBUVZfR61Y93FVu2bEFwcDAeeeQRUfuYMWOQmZmJX3/9VdJ1Fi5ciPz8fLz55puy7l+3bl0AQK1aTLITGeOa/+UgIkXVrl0br776Kv73v/9h9+7dss+vqKjAlStX0Lx5c6Pve3l5YfTo0fjss8+g0WgAAN9//z3++usvjBkzxuD4Dh06wMfHBy+++CK++OILZGVlWeyDVqtFRUWFwR9LBEEwep411zp9+jRatmxpEFS0adNG/74lumGkFStWIDg42OLxFRUVuHHjBo4fP47JkyejefPmGDp0qMXziGoiBjVENcSzzz6Lxo0bY/r06QYTfqurGghkZGRg4sSJyMvLw4IFC0yeM2bMGGRlZSElJQUAsGbNGvTs2dPonJe4uDisXLkSmZmZGDlyJKKjoxEdHY1Ro0bh559/Nnr9Rx99FD4+PgZ//vrrL7Of5dNPPzV6nrE/luTl5SEsLMygXdemy0CZotVqMXbsWAwdOhT33XefxftlZ2fDx8cHgYGBaNeuHSoqKrBnzx5JwRBRTcQcJlEN4evri3nz5uGxxx7Dxo0b8eijj5o89ttvvzV4yK9cuRIDBw40eU58fDx69eqFNWvWoHPnzti2bRs+/vhjk8ePHTsWDz30EL799lscOnQIhw4dwvr16/H5559j0aJFmDZtmuj4RYsWoU+fPgbXMTXRVmfQoEE4cuSI2WPkUKlUVr0HAO+++y7Onz+P7du3S7pXREQEjhw5grKyMpw9exZvvfUWevfujb1795ocuiOqyRjUENUgw4cPx+LFizFz5kyzQxjdu3fHkiVLoNFocP78ebz22muYNGkSWrVqhe7du5s8b9y4cRgzZgzeffddBAQE4OGHHzbbH7VajREjRmDEiBEAgDNnziA5ORkzZ87E+PHjERoaqj+2cePG6NChg7wPjMosilqtln2eMeHh4UazMfn5+fp7mZKRkYFZs2Zh4cKF8PX1RUFBAYDK4SWtVouCggL4+fkhICBAf06tWrX0n7lbt27o378/4uPjsXDhQixbtkyRz0TkSTj8RFSDqFQqLFq0CGlpafjoo49MHqdWq9GhQwd06tQJI0eOxPfffw8fHx9MnDgRWq3W5HlDhw5FYGAgFi5ciOHDh4se0FK0atUKw4cPR3l5Of78809Z55qi5PBT69atcfbsWYP5N6dOnQIAo/VmdC5evIgbN27gxRdfRJ06dfR/Dhw4gLNnz6JOnTqYMWOG2fs3bNgQ0dHRin03RJ6GmRqiGiY5ORl9+/bF66+/jpiYGEnnNGvWDC+//DLmzp2Lr7/+Wp9ZqS4gIACzZs3Cvn37MGHCBJPXy8vLQ+3ateHr62vw3h9//AEAiI6OltQ3S5QcfnrwwQexevVqbNq0STR89+mnnyI6OhqdOnUyeW5SUhL27Nlj0D558mQUFhZi7dq1aNiwodn7X7hwAX/99RceeOAB6z8EkQdjUENUAy1atAjt27fH1atX0apVK0nnvPTSS1i5ciXmzp2LYcOGwdvb2+hxU6dOxdSpU81ea8+ePXjxxRfx+OOPo2vXrggPD8fVq1fx5ZdfIiUlBU8++aTBA/78+fM4dOiQwbUaNmxoNhgIDw9XrFDdgAED0LdvX0yYMAFFRUVo2rSpvs/r168XfSfjxo3Dp59+irS0NMTGxiI0NBS9evUyuGZoaCgqKipE7508eRJTpkzBww8/jMaNG8PLywunTp3CkiVLEB4ejpdeekmRz0PkaRjUENVAd955J0aMGIENGzZIPic4OBizZs3Cc889hy+++AJPPvmk1ffv3Lkzxo4diz179uDzzz9Hbm4uAgICkJCQgOXLlxvN8hirZAxUbicwb948q/si1+bNmzFz5kzMmjUL+fn5aNGiBb788ksMHz5cdJxGo4FGo7G40syY+vXrIzo6Gu+88w6ysrJQUVGBhg0b4v7778crr7wiOcNGVNOoBGv+H0dERETkYjhRmIiIiDwCgxoiIiLyCAxqiIiIyCMwqCEiIiKP4DZBzYIFC3DXXXehdu3aqFevHoYMGYJz5845u1tERETkItwmqPnpp5/w3HPP4dChQ9i1axcqKirQr18/lJSUOLtrRERE5ALcdkl3Tk4O6tWrh59++gk9evSQdI5Wq0VmZiZq165tceM5IiIicg2CIOD69euIjo6Gl5fpfIzbFt8rLCwEYH4DueoyMzNZtIqIiMhNXblyxWwFcbcMagRBwNSpU9G9e3ezG8iVlZWhrKxMdB5Q+aWEhITYvZ9ERERku6KiIsTExKB27dpmj3PLoGbSpEk4efIk9u/fb/a4BQsWYO7cuQbtISEhDGqIiIjcjKWpI243p+b555/H1q1bsW/fPsTHx5s9tnqmRhfpFRYWMqghIiJyE0VFRVCr1Raf326TqREEAc8//zy2bNmCvXv3WgxoAMDPzw9+fn4O6B0RERE5m9sENc899xw2bNiAbdu2oXbt2sjOzgYAqNVqBAQEOLl3RERE5GxuM/xkahxt7dq1GD16tKRrSE1fERERkevwyOEnIiIiIlPcpqIwERERkTkMaoiIiMgjMKghIiIij8CghoiIiDyC20wUJiIiIvM0WgGH0/Nx9fpN1Kvtj47xYfD2qjkbODOoISIi8gApp7Mwd0cqsgpv6tui1P6YPSgB/ROjnNgzx+HwExERkZtLOZ2FCeuPiQIaAMguvIkJ648h5XSWk3rmWAxqiIiI3JhGK2DujlQYq+ama5u7IxUarefXe2NQQ0RE5MYOp+cbZGiqEgBkFd7E4fR8x3XKSRjUEBERubGr100HNNYc584Y1BAREbmxerX9FT3OnTGoISIicmMd48MQpfaHqYXbKlSuguoYH2bXfuzcuROff/45NBqNXe9jDpd0ExERuTFvLxVmD0rAhPXHoAJEE4Z1gc7sQQl2q1dTXl6OkJAQ3LxZObyVlJSE1q1b2+VeljBTQ0RE5Ob6J0Zhxch2iFSLh5gi1f5YMbKd3erUHDt2DL6+vvqABgBatWpll3tJwUwNERGRB+ifGIW+CZEOqyg8ZcoULF26VP/6nnvuwQ8//GCXe0nFoIaIiMhDeHup0KVJuF3vUVpaiqCgIFHbtm3b8MADD9j1vlIwqCEiIiJJ9u7di969e4varl27htDQUOd0qBrOqSEiIiKLHnvsMVFA8/jjj0MQBJcJaABmaoiIiMiMa9euISxMvBx879696Nmzp5N6ZBozNURERGTU1q1bDQKa0tJSlwxoAAY1REREVI0gCOjVqxcefPBBfdu//vUvCIKAgIAAJ/bMPA4/ERERkV5mZiYaNGggajt+/DiSkpKc0yEZmKkhIiIiAMCaNWtEAU1QUBBu3brlFgENwKCGiIioxtNqtWjevDnGjRunb1u4cCGKi4vh4+PjxJ7Jw+EnIiKiGuzChQto1qyZqO38+fNo2rSp5GtotILDKhmbw6CGiIiohlq0aBH+/e9/6183b94cZ8+ehZeX9IGclNNZmLsjFVmFt/d/ilL7Y/agBLvtOWUKh5+IiIhqmPLycgQFBYkCmo8//hjnzp2THdBMWH9MFNAAQHbhTUxYfwwpp7MU67MUDGqIiIhqkBMnTsDX1xelpaX6tr///ls0n0YKjVbA3B2pEIy8p2ubuyMVGq2xI+yDQQ0REVEN8a9//Qt33nmn/nWvXr2g1WoRHR0t+1qH0/MNMjRVCQCyCm/icHq+NV21CufUEBERebgbN24gMDBQ1LZ582ZRcT25rl43HdBYc5wSGNQQERF5sH379hlsa5Cfn486derYdN16tf0VPU4JHH4iIiLyUCNHjhQFNMOHD4cgCDYHNADQMT4MUWp/mFq4rULlKqiO8WEmjlAeMzVEREQepqCgwCBw2bNnD3r16qXYPby9VJg9KAET1h+DChBNGNYFOrMHJTi0Xg0zNURERB5k+/btBgFNSUmJogGNTv/EKKwY2Q6RavEQU6TaHytGtnN4nRpmaoiIiDzEPffcg927d+tfT548GUuWLLHrPfsnRqFvQiQrChMREZHtsrKyDJZl//bbb2jXrp1D7u/tpUKXJuEOuZc5HH4iIiJyY+vWrRMFNP7+/rh165bDAhpXwqCGiIjIDQmCgJYtW2LMmDH6tvnz5+PGjRtutbO2kjj8RERE5GbS0tIMdtH+888/DXbbrmmYqSEiInIjixcvFgU0jRs3hkajqfEBDcBMDRGRx9NoBZdYmUK2qaioQHh4OIqKivRtH330EcaPH+/EXrkWBjVERB4s5XQW5u5IFW08GKX2x+xBCQ6vIULW+/3335GUlCRq++uvv9CgQQPndMhFcfiJiMhDpZzOwoT1xwx2Us4uvIkJ648h5XSWk3pGcrz88suigKZHjx7QarUMaIxgpoaIyANptALm7kgVla7XEVBZxn7ujlT0TYjkUJSLMraz9qZNmzB06FAn9cj1MVNDROSBDqfnG2RoqhIAZBXexOH0fMd1iiT7+eefDQKavLw8BjQWMKghIvJAV6+bDmisOY4cZ9SoUejRo4f+9bBhwyAIAsLCHLfbtbvi8BMRkQeqV9vf8kEyjiP7KywsRGhoqKjtxx9/RJ8+fZzTITfETA0RkQfqGB+GKLU/TM2WUaFyFVTHeP727wq++eYbg4CmuLiYAY1MDGqIiDyQt5cKswclAIBBYKN7PXtQgsMmCWu0Ag6m5WHbib9xMC0PGq2xKczuQ8nP069fPwwaNEj/+uEnx2Pr8b9wMvum239PjqYSBKHGfGNFRUVQq9UoLCxESEiIs7tDRGR3rlCnxhX6oCSlPs8///yDyMhIUVvicx/ienAjo9etyUUUpT6/GdQQEXk4Zz4MdbVyqj9odHdfMbKdWwU2Sn2ezz77DKNGjdK/ruXjiwYvbgS8xVNdddd9ukc8tv+e5TGBoVwMaoxgUENE5DgarYDui3abXFquAhCp9sf+6X3cIuOgxOcRBAGtW7fGmTNn9G2vv/EGvvXuYnYJvqn7Ae4XGFpD6vObc2qIiMguPK1Wjq2f5+LFi/Dy8hIFNH/88QeSR0yQHdDo7gdUFlHk3JtKDGqIiMguPK1Wji2f591330WTJk30r+Pi4qDRaHDHHXfY9PndLTC0N9apISIiu/C0WjnWfJ6KigrUrVsXBQUF+raVK1fimWeekX1dc9wlMLQ3BjVERGQXulo52YU3je5BpZuD4i61cuR+nlOnTqFNmzaiY65cuYKGDRvKuq4U7hIY2huHn4iIyC5crVaOreR8nhkzZogCmq5du0Kr1RoENJauawmLKIq5VVCzb98+DBo0CNHR0VCpVNi6dauzu0RERGb0T4zCipHtEKkWZxIi1f5uuWrH0ufp1bQOVCoVFi5cqH9v48aNOHDgAFQq0yGLqetGqf3xTI94qOAZgaG9udXwU0lJCdq2bYsxY8bgoYcecnZ3iIhIgv6JUeibEOkxheNMfZ5DB39BQEB30bG5ubkIDw+36breXirc2aiOQcG/yBpUp0Yqt61To1KpsGXLFgwZMkTyOaxTQ0RE9jBmzBisW7dO/3ro0KHYtGmTovdgRWHLz2+3ytTIVVZWhrKyMv3roqIiJ/aGiIiqc/cHte5hW9UPP/yAe+65R/F7eXup0KWJtKxPTeXRQc2CBQswd+5cZ3eDiIiMcPc9oXbu3In7779f1FZcXIygoCCDY909eHMXHj38ZCxTExMTw+EnIiInc/c9oQYMGICUlBT96+eeew7vv/++0WPdPXhzBRx+AuDn5wc/Pz9nd4OIiKrQaAXM3ZFqtCaLgMrAZu6OVPRNiHS5bMbVq1dRv359Udvhw4dx1113GT3eVPCWXXgTE9Yfc/ngzd241ZJuIiJyf+66J9T69etFAY2XlxdKb9xERVhjbDvxNw6m5Yn2YLIUvAHct0lpbpWpKS4uxoULF/Sv09PTceLECYSFhaFRo0ZO7BkREUnlbntCCYKApKQknDx5Ut82d+5cdBw6Hn2W7Dc5rCQneOMEYGW4VVBz9OhR9O7dW/966tSpAIBRo0aJltIREdUE7jr51J32hLp06RLi4+NFbWfPnsWlCrXFYaWyCq2ke9gavLnrz4E9uFVQ06tXL7jpvGYiIkW58+RTd9kTaunSpZgyZYr+dcOGDXH58mUIUGHMot0W5wQtfritpPvYEry588+BPXBODRGRm9FNPq0+tKHLEqScznJSz6Rx9T2hNBoN6tatKwpoPvzwQ1y5cgVeXl6Sh5WgqgwwTH0KW/dtcvefA3tgUENE5EbcYfKpRivgYFqeycmzB9PyUFahxeTk5qgf4lp7Qp0+fRq1atVCbm6uvi0jIwMTJkzQv5Y6XJRbXGa34M0dfg6cwa2Gn4iIajpXn3xqbjgEgOH+RSF+mJLcDHERQU6fDzJz5kzMnz9f/7pTp044ePCgwUaUcuYEdWkSjhUj2ym+b5Or/xw4C4MaIiI34sorh8zVZHl2/TGj5/xTVIalP5zHipHtnPbwvXnzJgICAkRtX3/9NYYNG2b0eLlzguyxoacr/xw4E4efiIjciKuuHJIyHGKMs4dKDh48aBDQ5OTkmAxoAOvmBOn2bRqc1ABdmoTbnI1y1Z8DZ2NQQ0TkRnRZAntNPrWWpeEQc5xVbG/8+PHo2rWr/vWQIUMgCAIiIiIsnts/MQorRrZDpNo5c4Jc9efA2Tj8RETkRnRZggnrj0EFcRbEmSuHlBjmcNRQibGdtf/3v/+hX79+sq5jj2ElqVz158DZmKkhInIzzs4SGKPEMIcS1zC38goAvvvuO4OA5vr167IDGh2lh5XkcMWfA2djpoaIyA3ZO0sgt0qtpcmz5ihVbM9SIbr7778fO3fu1L/37LPPYsWKFTbd09mcmS1yRSqhBpXolbp1ORFRTWZtlVrd6ifAcDhEMPJ33WsANmcWTK28UgHQlBbiyvLHRe2HDh1Cp06drL4fOZbU5zeHn4iISM+WKrXmhkNWjmyHlXYaKjG38qo4da9BQFNWVsaAxkNx+ImIiABYXpat29Oob0KkyeENY8Mh7WPr4LfL13D1+s3K/ZBUldV2lRoqMbbyShAEZH86Gbf+SdO3jX1+Gj557y2b7kWujUENEREBUK5KrW7yLFCZ+en59h6jQ1lKFdurvmqqovAq/l45VtQWNe5DPDD2AUXuR66Lw09ERARA+Sq1jtpwseqqqaKj20UBjXdwGBpN2wbfiEY1rhBdTcRMDRERAVC2Sq2UCsOvbDmFPi3qw7eWtN+vTa3I6hgfhsjaPjgy/1FoSwv0x9dJfgYh7QcptrqKXB+DGiIiAiB/TyNzpFQYzi8pR+cFP2L+g4kWJwqbW5EVo8rHr6/eKzq+wYQ1qBVSr0YXoquJOPxEREQArNvTyBSpQ1T5JbcsDkWZG8Ya/sxUJCYm6tuCGjRHo5d3oFZIPQCuVYjOUmFAsh0zNUREpKdbll09KxIpoU5NVXLnr5haVWVqGEuoKMfldx4UtW3YsAHDHh3ukoXorK39Q/IwqCEiciNyK/1ao29CJGr7+eDgxVwAlSuZOjeWtwVAx/gwhAX5IL+k3OKx5lZVGRvGKss8h+zP/yVq2/nrH7iv4x0AoNiqKqWYKgyomzDtKpkkT8Cghog8niMCAUdwxG/7xu6x6dhfsu/h7aXCg0kN8MmBS5LPMTZkVb0tL+V9FP+eon8d0LQj6j00C+W+wZLvI4VSPzNK1P4h6RjUEJFHc3Ta314BlCN+21f6HskJkbKCGmNDVro2bVkpriwdJn7vkbkIaNze5LnWUvJnRqnaPyQNgxoi8liOTvvbK4CSsjza1t/27ZFR0K2msrQKytyqqo7xYfD/5xTOrZshao+ZvBFefoGKL9e25mfGXCCrdO0fMo+rn4jII0kNBJRagWLPQnNSlkfrftu31z2qZhSk0q2mkhICmVpV1f2e/qKAJrhtf8RO/0Yf0Jg7Vy5rfmZSTmeh+6LdGLH6EF786gRGrD6E7ot26/+9laz9Q5YxqCEij2SPh7Qp9g6gsouk/RYv9Thj7JVR0K2milIbf2hHmVhynZOTA5VKhUN7v9e3RY5cjPD+k/SvQwN9FM22yf2ZkRLI6rJVpkIuFSq/AxYGVAaHn4jIIzky7W/veRP5xWWKHmeMPTMKVTe5zC68gfySWwgL9kNkyO2hmqpDOL//9C1mT35adI1G/9oCVS0fUZtfLS/0TYiU3R9T5PzMyBmumz0oARPWH4MKEB3PwoDKY1BDRB7JkWl/ewdQYUG+ih5njJLVhI2puslldbq5SJkFN5Dx1iDRe+oujyK0xxNGz8suKlN0gq2cnxk5gaxStX/IMgY1ROSR7P2QrsreAVSkOkDR44zRzX9xdEZBN4RTlnMJWWsmid6LGvsBfOvGmj1fyQm2cn5mvjmZKemauv5VzVa5e2kBV8Y5NUTkkZQs+W+JvedN6K5vTvXrW1OSv29CJCYnN4M6QDzMY6+tBnRDODk7lxgENI2mbbMY0ADKTrCV8zNjTSCry1YNTmqALk3kFTMkaZipISKP5ai0v72zHFWvbyqDUPX61iwtN3ZOaIAPxnSLx6Q+Te3yAP7l/FUceiVZ1BaU0AsRg16yeK69dt6W+jPjyEwgSacSBKHG7KhVVFQEtVqNwsJChISEOLs7ROQgjqoobO9Cf1Kub6rOiu7TGsu4WHOOrfbt24eePXuK2qLGLIdvvXiL59qzXzpSfmZ03xtgPJDl9gfKkfr8ZlBDRKQgewdQ5q6v0Qrovmi32QmskSF+OPDveySfo8s47J/eR7HP0bt3b+zdu1fU1ujlHVCppF3flTaC5EaVjiH1+c3hJyIiBZlb5WPv60sp0pddVIb3d1/Ai8nNJJ2jZBn/GzduIDAwUNQW0W0Ygro/afHc1wa2RERtP5ebYMsJwK6FQQ0RkYeQuhJoyQ9/4o7IYPRPjHJYPZ8tW7Zg6NChorYLaRfx0PrzKCg1v5N3aEAtjO4W77KBgr0DWZKOq5+IiDyEnJVAugrHjqjnExsbaxDQCIKAq0KIxYAGAMoV2sqCPB+DGiIiDyFl6beObkjJnsvR8/PzoVKpkJGRoW977733oJvKKTX7U1KmUWQ7C/J8DGqIiDxE1TorUly9flN/jqllyYB1y9FXrVqF8HDxkExOTg6ef/55/Ws52R/uYk1ScE4NEZEH6Z8YhSnJzbDkh/MWj60aVIQG+hgMBakDfbBwaGvZq3iqr2KqW7curl69anBcx/gwhAX5Ir/klsVrRgT5yeoD1UzM1BAReYCqFYQ7xIWhfm3TQUDVISVdrRVjc1sKJcx3qerKlSsGAc1XX31lNKABKjNLT3a2XDVY32kiC5ipISJyc0arAQdWbnVgrsIxAJM7TeP/z5u55TT6tKgP31rmfweeM2cO5s6dK2orLi5GUFCQqK16nZ3YcPESb1NybdiBnGoOBjVERG7MVDVgXZZFXW1YqWq5/4NpeRbr2uSV3ELnBT9g/oPGh6EEQYCXlzjg6dy5Mw4ePGi0r9WDL6k7iyu5xxN5LgY1RERuSrchpLFMi4DKrEyAjzc+GNcOuSVlBoXhpE6+zS8px4T1xwzK/p85cwaJiYmiY3/88Uf06dPH4Bqmgq9rFubTcA8lkoNBDRGRm5JaDdjLS4XBSQ0M3peb/Zi7IxV9EyLh7aXCuHHjsGbNGtH7t27dgo+Pj8F5loIvU5TeTZ08H4MaIiInUGKPqF2p2ZKOq56R0d07u/AGwoJ8ca3kltngArgdIB28kIO776gvem/48OH48ssvjd7j6vWbyL1eZnGYCwDCgnyQX2J8qIxICgY1REQOZnxuiQ/mDU7EfW2iJV9jzYFLko6tmpExdm+pbv6VirvvuF/Udvz4cSQlJRn0zZp7vHZ/K0SG+HMPJbKa1UFNaWkpMjIycOuWeDy0TZs2NneKiMhTmZpbkl9SjokbjuOZvwow4z7zBfR0wzlSVK0GbOreUvzz1UzcvPy7qE2r1Ros4bblHpEh/txDiWwiO6jJycnBmDFj8N133xl9X6PR2NwpIiJPZG5uic6qfelo27AO7mtjeshFym7cOrr5KBqtgNnbzlicw1L9fW15Ga68+5Co7aWXXsLbb79tcL6Uz2fqvpwMTEqQXXxv8uTJuHbtGg4dOoSAgACkpKTg008/RbNmzbB9+3Z79JGIyCNIDUZe23YaGjObOEpdtTSuWxz6JkTiYFoeHllxAP9cN1/rRXdHXe6l9PyvBgHNxYsXjQY0gLxgS4eTgUlJsjM1u3fvxrZt23DXXXfBy8sLsbGx6Nu3L0JCQrBgwQIMHDjQHv0kInJ7UoORvJJbOJyeb3IoRuqqpZAAH3RftFtWoDGuWxy+PZ2No2+NREWBeCKybiNKU6zZn4mTgUlJsoOakpIS1KtXDwAQFhaGnJwcNG/eHK1bt8axY8cU7yARkaeQs4T6wIUckxNldTtrZxfeNLkRZWigj6T9nwyu3cAfsx5IFrW98+67mDplisVzpX6+1wa2RERtP04GJsXJDmruuOMOnDt3DnFxcUhKSsKqVasQFxeHlStXIiqKkTYRuR8llldLUbmBo3jZsinv70nDhsNXMCQpGn0TIkV90u2sPWH9MaPzYARYzqoY4/Xnj+jfXry66erVq6hbt66k86UEW5Fqf4zuFm/2+3XUvwd5HpUg8yf/iy++QHl5OUaPHo3jx4/j3nvvRV5eHnx9fbFu3To8+uij9uqrzYqKiqBWq1FYWIiQkBBnd4eIrKTkQ8/Y8uMoOw6JfHsyExM3HJd9nrE+2bI8u7rLi8TBTFhYGPLy8mRfR7f6CTC+51T1qsTGzp+zPRXZRbc/U2SIP+Y8wCGqmkzq81t2UFNdaWkp/vjjDzRq1AgRERG2XMruGNQQuT8lgxBTy4+lPoCtteDbVKzaly77PJWRPlkbJOlUFOXi7xWjRW0bNmzAiBEjrL6mtf9GKaez8Ox609MYVtrp34Ncn92Cmtdffx0vvfQSAgPFO6veuHEDb7/9NmbNmmVdjx2AQQ2Re1MyCNFoBbOTaHVDJfun97HL0Me3J7Pw6rbTyLew95G5Pln6DJYUHPgShfu/ELVdv34dwcHBVl2vKrnZNI1WQPt5u0Sbb1ZXJ9AHR1/ty6GoGkjq81v2ku65c+eiuLjYoL20tNRg23kiIqVI2T9o7o5Us0uhq5K6b9Lh9HzZfZXivjZRODIzGZN6N5V8TvU+WbOEGqicb3N50f2igKZDhw4QBEGRgAaonPfTpUk4Bic1QJcm4RYDkUMX88wGNABwrbQchy7KHxKjmkN2UCMIgkEFSQD4/fffERbGwklEZB9Sg5Alu/7EwbQ8i8GN1OXH1ixTlsrbS4VuTeUP2+v6ZE3fynOvIOOtQaK2Xbt24ciRI7KvZYlGK+BgWh62nfjb4r/JwTRpwYrU45TsG7kPyauf6tSpA5VKBZVKhebNm4sCG41Gg+LiYjz77LN26SQRkdQH+Pt7LuD9PRcszuGQuvzY2HFKTlRuH1sHXipAzjNV1ye5u2znpSxH8e//E7WZ21nbls8of16N1C/A9uDD0ZPDyXEkBzVLly6FIAgYO3Ys5s6dC7VarX/P19cXcXFx6NKli106WdWHH36It99+G1lZWWjVqhWWLl2Ku+++2+73JSLnkvsAzy68iQnrjxmdZ6PRCtBqBYQG+KDghvEhD1Ol+5V+IP52+ZqsgMZLVRkIAdKXUC96MBE9W0aK3nvkkUewceNGo/ew9TOamvtk7t+kS+MIvL8nzeK1uzS2bUGKNX0j9yE5qBk1ahQAID4+Hl27djUa2dvb119/jcmTJ+PDDz9Et27dsGrVKgwYMACpqalo1KiRw/tDRI5j6QFenYDKh/rcHanomxCpzzJIWQZtqnS/Eg/E6hmQqkuXpdAKlYGQbp6KqXo1ul4Piyk1CGh+++03tGvXzuj1bf2MluY+Gfs3AYDOTcIRGuhjdl5NaKAPOtuw4aW1fSP3IXtOTc+ePfUBzY0bN1BUVCT6Y0/vvvsuxo0bh6eeegotW7bE0qVLERMTgxUrVtj1vkTkfLoHOHD7gW1J9Ym1uge2pcm1kWp/g4e3RitgznbbJiqnnM5C90W7MWL1Ibz41QmMWH0Ib3xzRuKnua3qUFz/xCisGNkOkWpxJitS7Y+wnxdj6hMPiNo1Go3JgEaJydjWTsD29lJh4dDWJs8DgIVDW9sUbDh7cjjZn+ygprS0FJMmTUK9evUQHByMOnXqiP7Yy61bt/Dbb7+hX79+ovZ+/frhl19+sdt9ich1mHqAW3L1+k1JO0iHBvjgi6c6Yf/0PgbZiPd3nzebVbH0QDQVUEmpLlxd9aG4/olR2D+9D74Y1wmTejfBM91icOiVZBz7Za/+mNodBqPz/B/wfeo/Jq+rxENfaubJ2Byp/olRWDmyHSJD/ETtkSF+itSocYXJ4WRfsrdJmDZtGvbs2YMPP/wQTz75JD744AP8/fffWLVqFRYuXGiPPgIAcnNzodFoUL9+fVF7/fr1kZ2dbfScsrIylJXd3pXW3pkkoprOEeXt+ydGoW9CJA6n5+Pzg+n49rTph7ROvdr+kpY/F9woh5dKZdDnlNNZkvdRMvZAlBJQSRVlZJ4PAOxKzcbcHalI+20fcja9Lnov+unV8KkTZXEIydaHfsrpLMmZJ1NzpKr++yr9c2TL5HByD7KDmh07duCzzz5Dr169MHbsWNx9991o2rQpYmNj8cUXX+Dxxx+3Rz/1qi8nN7XEHAAWLFjA2jlEDuLIFSXeXioU3rhlMaCpOtn3m5OZkq5d/YGtC0ikMvZAtLaejDHV5/kAt7NAf61+BhX5f4vei53+jf7vluaN2PLQNzUXpzpTE7Cr0tW4UZrUidXm+kauTfbwU35+PuLj4wEAISEhyM+vTEN2794d+/btU7Z3VURERMDb29sgK3P16lWD7I3OjBkzUFhYqP9z5coVu/WPqCYzNbSiywyknM5S9H5yAg1dEGDtA1tOQGIqi6LUcMYzPeKNruR6beNhXFp0vyigqdN7rCig0TE3hKR76JvKiahg/DPeqtDilS2nJAU0gPHAzBHMzctydt9IGbKDmsaNG+PSpUsAgISEBP2SwB07diA0NFTJvon4+vqiffv22LVrl6h9165d6Nq1q9Fz/Pz8EBISIvpDRMpSutKvFFIDjcnJzdE3IRIH0/KQXXgDYUG+sh/YcgISUw9EpYYzPtqXbhAgznprOY6+MUTU1nDS5wjpONTstYx9Lmse+imns9B5wY+S5gaFBfk6fcm0uYnVzu4b2U728NOYMWPw+++/o2fPnpgxYwYGDhyI5cuXo6KiAu+++649+qg3depUPPHEE+jQoQO6dOmCjz76CBkZGSz6R+REciaXKjWkIDXQKLxxS9LeSOZ+S5cakExJbm7ygSh1OXr1ZdnGVB068vb2hlarvX2+bwAaTfmPpP6am9OyYmQ7g6HESBO7hEsZctJ5dWBLlwga7Dlvh5xLdlAzZcoU/d979+6NP/74A0ePHkWTJk3Qtm1bRTtX3aOPPoq8vDy8/vrryMrKQmJiIr799lvExsba9b5EZJozVpRIDTTWHLgk6ThjD2wdKQFJZIgfJvUxvYeTlHoyT/eIx39++9vsBpe6AHHnoTMY3E28/Dn8/n8huFVvk+dWvZ+leSNSHvrWTH6OVAfIOFo5piaw22PeDjmX7KCmukaNGjm08N3EiRMxceJEh92PiMxzxooSKYGGpa0HwoJ88Nr9rRAZYv63dCkByZwHWgGo3JfIVBAgJQPSIjIEUzb+bvazF/7yNQYv+lzUdtfs7ci56aXonBZLD305c42cOQGXWyLULJKCmvfee0/yBV944QWrO0NE7sfeK0pM/ZZtLtAQYHkvpfySckSG+Ev6bd1SQALAYJjL2IPTUgbEXCZDEASDjSjvvPNOHDt2TD8MZGn4ylxGSi65mTdnTMDllgg1j0oQBIvZQ91qJ52cnByUlpbqJwYXFBQgMDAQ9erVw8WLF+3SUSUUFRVBrVajsLCQk4aJFKR7eADGMxnWPjws/ZZt6v37EiPxiYShp2XDkzA4qYHk/hgLsHalZht9cFrz2TVaAd0X7TYIEMvz/kLmx+K5gykpKbj33ntvvzbxXQy/qxHiIgIVnzdyMC0PI1YfsnhcWJAP5j/Y2uHBg+67NJVN0gXb+6f34VwaNyD1+S0pU5Oenq7/+4YNG/Dhhx/ik08+wR133AEAOHfuHMaPH49nnnnGxm4TkTuSM7lUKqm/ZRvLfBxOz5cU1OiGxKQWDaw+JKP0XkLGMlB5//sAxSe+Ex1XVlYGX19fUZujJ79KGQIMD/LFwRn3wLeW7IW2NnPGBHZyPtlzal577TX897//1Qc0AHDHHXdgyZIlePjhh+1efI+IXJOSD1W5wUL1h5KcITFb5lzY48GpCxDnbDuNX18VbwvT9Z4BOPDDtybPVXryq7lgz9wQoM6TXWKdlgXhlgg1k+zwOSsrC+XlhvUINBoN/vnHcrlyIvJcuofq4KQG+l2krWHrHkSWNr8UAAy/Kwb/O51tU9FAez0465RkGAQ0h349bDagUZqxzTe7L9ot+k4s7cW15IfzBuc4CrdEqJlkBzX33HMPxo8fj6NHj0I3Hefo0aN45plnkJycrHgHiajmUSJYkPLAnfSl8RorUosG2uPBOXDgQHTu3FnUptFo0KnjXZKvYSs5FaJ1m2lOSW5u9Fr2qiptibXVkcm9yQ5q1qxZgwYNGqBjx47w9/eHn58fOnXqhKioKHz88cf26CMR1TBKBQuWHrjmVkhJ2ZFayQdnWVkZVCoVvv32djbmhRdegCAI8PJy3JwUaytEf3Ukw+j17FVV2hJuiVAzyZ5TU7duXXz77bc4f/48zp49C0EQ0LJlSzRvbvw/GkREcim9TNzUA1cKc9kgKTVspDw4v/32WwwcOFDUdv78eTRtarqgnxKMzZmxZp6QnHN093DEZGZ7TGAn12Z18b1mzZqhWbNmSvaFiAiAcsECYPsO2VKyQbY8OBMSEnD27FlRm4RKGyZJXcllbjm8FFWDPanDhbtSszF14wmHFsLjlgg1i80VhYmI7EFKsCDlAW7L6pbQQB9J2SBrHpyFhYUGmwC/9dZbmDZtmtX9lbqSy9xyeSlL4QFxsGfLthWOKITHLRFqDgY1ROSyzAULUh/gtqxuKSgtx1spZzHjvgSLx8p5cK5Zsxbjxo0VtWVlZSEyUlqWxBipdX2kzJnxUgGCYHyZtrGhP1u2rbCmng+RKY6viEREJJGpTIyl1TnfnszEwbQ8bDvxN7RaAZEhpifzWrJqXzq+PZkp6pPu2gfT8iRPftWdV8vHVxTQqGr5ofP8H3Ai17YhJ6mTe6UMx2mF28FGVaaG/qRMyrV1UjaRFLIzNRkZGYiJiYFKJf7RFQQBV65ccejmlkTkuUxlYl4bmIA3dpp/gE/68rjoIRoa6KN/SFsTOry67TTuTYzCrtRsqwr1pZzOwswvfsaxhY+K2sMHTkFw4j02D8HImagrdThubLc4fHc6W/I8IXPDhVK3rWAhPLKV7KAmPj4eWVlZqFevnqg9Pz8f8fHx0Gg0inWOiGomc0MpEzccs3h+9axAYWllwVB1oA8KSm8XDw0N8EHBDcNiotXll5Tj/d0XsOSHPw3eMxeQaLQC3t99AXPmvYmCnz4VvRczeSO8/AIB2D4EI6euj9ThuL4JkZg5MEHWPCGltq0gspbsoEYQBIMsDQAUFxfD358/kERKkrqSxd1V/ZwRQX6Ys918JkYuXdDgX8sLXzzVCbnFZahX2x9aQcDjH/8q6Rqr9qWZvXb1gCTldBZmbzuNw9UqA/tExCJ63AdGr2PtXkRy6vrIWS4vZZ6QsZ9RW7atILKF5KBm6tSpAACVSoXXXnsNgYGB+vc0Gg1+/fVXJCUlKd5BoprKlj2J3Imxz2kPAoDsojJ4qVT6nbk1WgFhQb7IL7ll8fzSW6az0NUDkpTTWXjqvR34e7V4k996D89BQJMOZu9jzRCM3EBFqeXyUn9GlbwnkTmSJwofP34cx48fhyAIOHXqlP718ePH8ccff6Bt27ZYt26dHbtKVHPIKVPvzkx9TnuqGjR4e6kwb3CiotfWaAWMHj/BIKBp9K8tFgMawLohGLnVc01tIRGp9pc8r0fuz6gS9ySyRHKmZs+ePQCAMWPGYNmyZQgJCbFbp4hqMrk7VLsrc59TKmsm/lYPGu5NjESQrzdKzGRipIoI8kUtb/HvigFNO6LeQ7Msnit3CKb6sE/fhEhZRQB1818OpeXh4MVcAJVDTZ0bWx76svZnlIXwyN5kz6lZu3at6HVRURF2796NFi1aoEWLFop1jKimsqZMvTuyttKv7uH/2sCWeGPnWdE1TNVCqXpe9aDhcHq+IgGNb14auje/X9QW+cQ78Iu+Q/I1lBj22T+9j+Sgofpqrvf3XJA0xGnLzygL4ZE9yQ5qhg0bhh49emDSpEm4ceMGOnTogEuXLkEQBHz11Vd46KGH7NFPohpDiR2q3YE1/a86lNI/MQr3JkaJHuB518sw6avjZs9TsuKw/hqb3sCNC+IJx41e3g6VStoIf2SIH0Z0bISyCi0OpuWZDUSkFtmzxJbr1JSfUXI/sovv7du3D3fffTcAYMuWLRAEAQUFBXjvvfcwb948xTtIVNMotUO1q7Om/5Fqf0xObq5/+ANAlybhGJzUAIU3buHN786aPM/UQ9qW71GoKMflRfeLApqJEyei8/wf4GUhoAkL8sXYbnH/v4O4Ckt+OI8XvzqBEasPofui3UbnTVm7g7bS16kpP6PkfmRnagoLCxEWVpm+TUlJwUMPPYTAwEAMHDjQpj1LiKhSTVn+KuVz1g/xwzvDkpBbXIZLuSX48nCGqFaMbqgEgNGsg85rA00Pp0jpR2igD66Vlovm8Ny4+Buu/me26Nhz586hefPm+iyIqTk/U5KbYVKfZtiVmi0rW6LU0KSt16kpP6PkfmRnamJiYnDw4EGUlJQgJSUF/fpV1mC4du0a69QQKUDuShZXY2wbAWNtUj7nnAdaoVvTCPjV8sLSH84ju6hMdFx24U08u/4Y/rXxd5MBjQrAGztNZx2k9GPB0NZYWWXlTuaaSQYBjVarRfPmzQGYXukTpfbHypHt8GJy5XFysyVKDfvYeh13/xklzyU7UzN58mQ8/vjjCA4ORqNGjdCrVy8AlcNSrVu3Vrp/RDWSlB2qHUlqEUBjE1hDA30AQFTJt+pkVCk7cVt6+Jub6CsleyH1++7UMBBhdUJF586fPx8zZswwek1zK32syZYoNeyjxHVc7WeUCLAiqJk4cSI6duyIK1euoG/fvvDyqkz2NG7cmHNqiBTkKstfpRZYMzXxtGowo5NVbXjFloe/VJayE5b68emnn2H06FGiczIzMxEVZfrhbW6lzw+p2bL7rcSwj0YrQCsIZreIkDp85Co/o0Q6soMaAOjQoQPatGmD9PR0NGnSBLVq1cLAgQOV7htRjefs5a9SV8hYU3NGgLiWianPqdQKmku5JRaPMdWPgMAg3LxRervBqxY6z0vB73mAmZjGpJTTWZL2QgLE2RJbK/NKqd4sd/jI2T+jRFXJnlNTWlqKcePGITAwEK1atUJGRgYA4IUXXsDChQsV7yAROYecFTLWZlN0wyvmKLWC5svDGRZXBVWXnZ0NlUolCmjCB7yI2GlbDSrnGps3ZIxGK+Dfm09ZvLcKlRmx6tkSayvzSq3ezAq/5M5kZ2pmzJiB33//HXv37kX//v317cnJyZg9ezb+/e9/K9pBInIOOXM+bMmmZBfeMPu+pSEXyfcpKpNVsPDtt9/Gyy+/LGqLmfw1vPyCAIgr52q1lZORpezT9f7uC0aH5KoTYDpbInfYR0omLTTQBx+MaIfOTcI5fERuS3ZQs3XrVnz99dfo3LmzaLfuhIQEpKUZ38WWiNyPnBUytmRTLG0maW7IRS7dZ7I08bnqf9sAwCc8BtFPrTC4ni6wm7jhmMF7xpZla7QC1h5Il9TXsd3izGZL5Az7SMmkFZSWw8tLxYCG3JrsoCYnJwf16tUzaC8pKTH4DwERuS85K2RsyaaEBftZPMbUSpsotT8eaBuFVfukBQr1avubnfjc1L8EzZo1E51T9+HZCGxyl8RPc5uxPZAOp+ebnJxbXd+ESNn3NCW7SFqAKvU4IlclO6i56667sHPnTjz//PMAbv9Gs3r1anTp0kXZ3hGR08hZaWNLNiUyRFrwZG7IpW3DUEz68rjFfZ+ulZThuQ3HjU58Hjb6WVz/bbuovdG/tkBVy0fGpxGrvixbavYrNMBH0cJ1+cVllg+ScRyRq5Id1CxYsAD9+/dHamoqKioqsGzZMpw5cwYHDx7ETz/9ZI8+EpETyF1pYyqbYo6xibCW+mRsyOW+NtF4Hyqjw0C6vr42MAFv7DScVyIIWlx+6wFRW0DjDqj3yBzJ/bJEF8xIzX6N6Ran6DBQWJCvoscRuSrZq5+6du2KAwcOoLS0FE2aNMH333+P+vXr4+DBg2jfvr09+khETiJ3pU3/xCjsn94HX47vjGXDkzAluTlUMF51VgVlq87e1yYKK0e2Q5SJvtYJ8jUItsqyLyCjWkATOXKxogENAOReL4NGK+izX+Y+cZ1AH0zq08zMEYYsrbyKVAdIuo7U44hclUoQBFvm3bmVoqIiqNVqFBYWIiQkxNndIXIbUisKGyO1eJ89+hoR7AcIQG5JGc7/cx3v77m9mOHqljdx48+DonMbTdsGlZe34n0CDPepAgyH6VSA7OXUUr5fjVZA90W7zWbQotT+2D+9DycKk0uS+vyWHdR4e3sjKyvLYLJwXl4e6tWrB43GdLlyZ2NQQ+QctgRF1jJVaE7QlCNj8YOituCkAQi/9zm79kf3aVeMbAcAigR6poojVr2X7nqmjtUdz9o05MrsFtR4eXkhOzvbIKjJzMxEkyZNcOOG+ZoTzsSghqhmMPUAv5F+HFc3viZqi35qBXzCY/S7ggMq/FNkxSquIB/kl5hf2aSbsLx/eh8AsCnQs5R9qXov3XUdnTUjUorU57fkicLvvfcegMrVTh9//DGCg4P172k0Guzbtw8tWrSwoctERLYzVWgua92LuPWPuJZWo5d3QKVSiXYFByBrFZcuePhpWm98fvAS3th51uSx1VdD2bK9gDUbYnKvJvJ0koOaJUuWAAAEQcDKlSvh7X173NnX1xdxcXFYuXKl8j0kIpKh+sNeW1aKK0uHiY4JvfsJqLs+qn9dfWfpFSPbYc72VEl1W3SVf31reSGituWaO4Ay+1nJKY5YFfdqIk8mOahJT68sbtW7d29s3rwZderUsVuniIisVfUhXnxmD/K+eUf0foOJ61CrdgQGJEaif2Kk0WxF/8Qo1PbzweOf/GrxflOSm+mDITkFC23lyHsRuQvZdWr27Nljj34QEVmt6kTk3OuVBeQylj4KoUy8M3fs9G/0f//udDYGJ0WbzFrklkgrRBcXEaT/u5yChbZS+l7OmMxNpDTZQQ0R1Sy2Puzs/bCsPvlVU3INf73/hOiYsP4voHbbfqK26lsYVGdNJkRuwUJbKHkvTiAmT8E6NURkkq0PO6nnWxv4VF/lVHR4C67t+UR0TMyLX8HLP9jw5P/35fjORrM1utVFljIhxmq7ODJIUOLfSOqycCJnsduSbnfGoIZIOlsfdlLPt/ahXH1J8+VF94ver1UnGg2e/sjMJ6w0qXdTNKsfbDSY0n0GwHgmxNx34MjhHGvvZc2ycCXuSyQXgxojGNQQSaPEw07K+a8NTMBzG6wLnA6m5WHE6kMov5aFzI/Gi96r+9BrCGzaycwnNM5YMOXsoRl7Bg6679ASY9ksZ38vVLMoWqfm5MmTkm/cpk0byccSkWuypgaKNee/uu200aEdAZbnvFy9fhP5uz/G9SNbRe2N/rUZqlrWbcyYXXgTE9YfEwVTzqztYq/AQRcofXc6S9Lx1ZeFm8rCGfv+iBxJUlCTlJQElUoFQRCgUpn/P7Irb5NARNJYWwNF7vn5JbdMvmcucNJqtRhyZ0NRm3/cnaj/6BtGryW1kJ6UYMpR7BU4mNo+wpyqk6FNFTcEXOv7o5pJUlCjq1EDAMePH8dLL72EadOmoUuXLgCAgwcP4p133sFbb71ln14SkUPZWgNFydoo1QOkY8eOoX379qK2+o+/Df+GLUVtt4e4WuKNnWclP8SrB1POGGaxV+Bgbv8nY4wtC7c1i0dkT5KCmtjYWP3fH3nkEbz33nu477779G1t2rRBTEwMXnvtNQwZMkTxThKRY3WMD0NooA8KSk3vZVQn0MdkDRRdDRVzc2rqSNgrCRAHSMOGDcN//vMf0fux/7+ztqklzf0To3BvYpR++Kj6bt2mXL1+02nDLPYIHMwFSsaYWhZuaxaPyJ685J5w6tQpxMfHG7THx8cjNTVVkU4RkWNotAIOpuVh24m/cTAtDxqt9HUD5o709lLhgbbmH/bzBiciSu0PU3kGFSozIh3jw1BeXg6VSiUKaMaPH1+5bcuTdyFSLc4MqQN9MDm5OfomROr706VJOAYnNUC3pnUlfDrgalEZ/r3plMlsCVCZLZHznUllj8DBUqBUXaTa32jQxkrG5MpkF99r2bIl5s2bh08++QT+/pU/tGVlZZg3bx5atmxp4WwichXmhlXUAb5mszQAUFBabjJTkHI6Cx/tSzdyVqWne8TjvjbR8PJSWSwet3fPbiQnJ4vOP3PmDBISEgDcnsj7/u7zWHvgEgpulKOgtBxLfvgTXx3JMBgmslSJFwC8VMCb35remBKw7zCLPQIHqQHQk11iMSAxyuRkaEdWTSaSS3amZuXKlfjhhx8QExOD5ORkJCcno2HDhti1axc3tCRyE7phleq/ueuGVXalZku6jrEHpaVhDhWA7b9nQaMV0D8xCitGtjPItOiyBLPGDjYIaLRarT6g0dmVmo2lP5xHwQ1xIKb7PClVVvnoKvHq+mKMnOSLPYZZdIGDlCyWVFIDoAGJUejSJNzkXB1z35/SVZOJ5JId1HTs2BHp6el488030aZNG7Ru3Rrz589Heno6OnbsaI8+EpGCLE1CBYBtJzIlXSsi2HBXajnzQYDKTMv+6X3w5fjOWDY8CV+O74yU5zpiQOtoHDlyRH/enDlzjK7AlPJ5qg8TmQqmrHkO22OYxR6Bg5KBkqVglMu5yVms2vspMDAQTz/9tNJ9ISIHkBJ05JXcQliQD66VlJudO/OvjScw54FWooeYNfNBdHNeAOCrr75C1xEjRMdeuXIFDRuKl3DryJ1Uq6vRUlahxeKH2wIqILe4DLnXy/DGTvNDTlXZe5hFFzhUHyKMtHLlldL7Ujmzfg+RKVYFNZ9//jlWrVqFixcv4uDBg4iNjcWSJUvQuHFjDB48WOk+EpGCpAYdDyY1wJoDl8zWePmnqMxgFZAt80EiIiKQl5cnarNU9FxOEGVuHlFEbcOskymOGmZROnCwR6DEZdvkSmQPP61YsQJTp07FgAEDcO3aNX2xvTp16mDp0qVK94+IFCY16EhOiMSKke1QP8T08caGd6wZ5sjJyYFKpRIFNKtWrbIY0ADSP8+l3FKz84gu5ZZIug7g2GGWqiu3zM11kcrYcN/+6X04ZEQeQXZQs3z5cqxevRozZ85ErVq3Ez0dOnTAqVOnFO0cESlPTtDRPzEK7zzS1uz1qs+RkTsfZOnSpahXr57ouPz8fMlD3FI+T2SIH748nGF23s2XhzMQGWL6OgAQGuiDL8Z1cvsgQOlAichVyA5q0tPTceeddxq0+/n5oaRE+m86ROQccoOO3JIySdetOgwkdSKpSqXClClT9O/Hx8ejQqPFH/laybVzpHyeER0bIbvI/Lyb7KIyjOjYyOR1VAAWDm2Nbs0iGAQQuSjZc2ri4+Nx4sQJUZVhAPjuu+8Mllkq6c0338TOnTtx4sQJ+Pr6oqCgwG73IvJ0cuZWWDtHxtx8kPT0dDRu3Fh0/JYtW+DftJPB7t5StiSw9HnKKrSSPkNcRKCic06IyLFkBzXTpk3Dc889h5s3b0IQBBw+fBhffvklFixYgI8//tgefQQA3Lp1C4888gi6dOmCTz75xG73IaoppE5CtaXYmrGJpC+//DLefvttUVtpaSl+SiuwaUsCc5/nYFqeyfOqqlfbH12ahHNVD5GbUglSZuJVs3r1asybNw9XrlwBADRo0ABz5szBuHHjFO9gdevWrcPkyZOtytQUFRVBrVajsLAQISEhyneOyEPpivUBxpcCf/DYnagT5Gc2CBAEAV5e4hHvPn364Mcff4RGKxhkaKrSBU77p/exKrjQXd9SYGbt9aveh8EQkfKkPr+tWtI9fvx4jB8/Hrm5udBqtQaT/FxFWVkZyspuzwcoKipyYm+I3Je54Z0H2kYZ7IJdfcjoxIkTBnPxfv75Z3Tv3h2A/Xd+VrpGizHO2M2biMRkTxTu06ePPksSERGhD2iKiorQp08fRTtnqwULFkCtVuv/xMTEOLtLRG7L2FLg1wYm4KN96SaXSaeczsKIESMMApqKigp06dpNv5nmgQu5kvpgy5YE9qyCa2nbiarbNBCR/cjO1Ozduxe3bt0yaL958yZ+/vlnWdeaM2cO5s6da/aYI0eOoEOHDrKuqzNjxgxMnTpV/7qoqIiBDZFMpoZUdEM6JpdJayowoHW0qH3s2LH45JNPjGY1pLB1SwJ7VMG1tE2DCpV1fPomRHIoisjOJAc1J0+e1P89NTUV2dm3N7zTaDRISUlBgwYNZN180qRJGD58uNlj4uLiZF2zKj8/P/j5Sa8SSkRilnbyNhWU3Lj8O65+NVPUdvr0abRq1Uqf1ZAzmU/JLQmUroJr76EzIpJOclCTlJQElUoFlUpldJgpICAAy5cvl3XziIgIREREyDqHiBzDVPChG1IZ2y3O6HnZn7+Essw/RG1arRZaAThwPhf/3nRKdkADuO7Oz9bsdUVE9iE5qElPT4cgCGjcuDEOHz6MunXr6t/z9fVFvXr14O3tbZdOAkBGRgby8/ORkZEBjUaDEydOAACaNm2K4OBgu92XyF3ZshJHypDKlhN/i9q1t27iypKHRW3qriPw3WfL8b8z2VYNNwGuXyPGlr2uiEhZkoMaXbE9rVZaESulzZo1C59++qn+tW7i4Z49e9CrVy+n9IlIKUovBbZ1JY6UIZX8knKEBfniWsktFJ/9GbnbF4mOaThhLRrGxOBaSRme23BcVnZmUu8maFa/tlssi7aljg8RKUv2ROEFCxagfv36GDt2rKh9zZo1yMnJwfTp0xXrXFXr1q3DunXr7HJtImdSeimwpWEjKSt9pA6VDEmKxtwR3aEtKRC1x03/BgDw2sAEvLHTeMbHnG5N67rN/BNHLBcnImlkL+letWoVWrRoYdDeqlUrrFy5UpFOEdUUSi8FtjRsBIh31DZFylCJprQQsx9IFAU0Yf0mInb6N/pl0nWCTE8mNka3+aRWECTv/eQK7LlcnIikk52pyc7ORlSU4f9B69ati6ws1mIgksoeS4GVWoljaUjl+m87kP/DKlFbytHzuOkdIBoy2lZt3o05uizHzQotHv/4V327uxSws8dycSKSR3ZQExMTgwMHDiA+Pl7UfuDAAURHR5s4i4iqs8dSYKVW4pgbUrm86H7RsTExMcjIyDB6HTmTY9WBPigoLUdBabmoXc6wmbMpvVyciOSRPfz01FNPYfLkyVi7di0uX76My5cvY82aNZgyZQrGjx9vjz4SeSR7LAVWciVO9SGVisJ/DAKaTZs2mQxogNsZH3O5itAAH3w+tiP8axlfPSn8/58528+4xVAUETmP7EzNyy+/jPz8fEycOFFfWdjf3x/Tp0/HjBkzFO8gkaeyx1JgpVfi6IZUxkycgs9XLRO9V1paioCAAFGbsVVclibRLnyoNY5lXEN2kfngLbuoDO/vvoAXk5tJ6jsR1TxW7dINAMXFxTh79iwCAgLQrFkzt6jcy126yZXYa+doSztqyxnGMbazds+ePbF3716j9zW1iguA2fee/f/+SrHSDYahiEhZUp/fVgc17ohBDbkaJQOQ6te1dZn4yZMn0bZtW1HbTz/9hB49ehi9n7Fl5FU/h7FJtADQfdFuWSukoqwI9IjIvSka1AwdOhTr1q1DSEgIhg4davbYzZs3y++tgzCoIVekdJ0aHVsK+j3xxBNYv369qK28vBy1ahmOWOsyTqYCE3MZp4NpeRix+pC0D1TFl+M7c0IuUQ0i9fktaU6NWq2GSqXS/52IlGOvpcDWrMSpqKiAj4+PqO3JJ58UVfOuzpZVXNbuh8R9lIjIGElBzdq1a43+nYiU4QpLgX/66SeDLUdOnjyJ1q1bmz3PllVc1u6HxH2UiMgY2aufiMjz9OjRAz///LOoTavV6jO05tiyisvSaq3q7LWPktJ7bxGRc0gKau68805J/3EDgGPHpK9iICLnKi0tRVBQkKjtlVdewZtvvin5GrYsIzdX5M/YdQDl91Gy15wmInI8SUHNkCFD9H+/efMmPvzwQyQkJKBLly4AgEOHDuHMmTOYOHGiXTpJ5KmqZggigvwAFZBbXOaQbMGmTZvw8MMPi9ouXbqE2NhYWdexdUNHXZG/6oGFlwqoWmsv0g6BhhKbfxKR65C9pPupp55CVFQU3njjDVH77NmzceXKFaxZs0bRDiqJq5/I3uQMYxjLEFRlz2xBw4YN8fff4n2ZbK3uYGvGo/p31z62Dn67fM1uQ0K2rNoiIseyW50atVqNo0ePolkzcVXP8+fPo0OHDigsLLSuxw7AoIbsSc5D3VSGoCpba9UYk5eXh4iICFHb+++/j+eee06R67vT3BSpy8m5fJzI+aQ+v2Xv/RQQEID9+/cbtO/fvx/+/lyRQDWTLkip/lu/bhgj5fTtHezN7c5dle79uTtSFdnz6IMPPjAIaHJzcxULaIDbq7gGJzVAlybhLhvQAPbZe4uInEv26qfJkydjwoQJ+O2339C5c2cAlXNq1qxZg1mzZineQSJXZy5IEVCZcZm7IxV9EyLh7aWyWNel+vlyd+o2pvpE/6ioKGz6+RT2X7mJegV5Ds+ouEJGxx57bxGRc8kOav7973+jcePGWLZsGTZs2AAAaNmyJdatW4dhw4Yp3kEiVye3+Jw1v/lbmy1Iv3QZjePjRG2vvPMRdpc1Fg29OHK1j6usNlJ6808icj7Zw08AMGzYMBw4cAD5+fnIz8/HgQMHGNBQjSV3GMOa3/ytOWfE05MNAprEmdvwxdVoScNk9iBnmM7edKu2gNvzl3TstXyciOzLqqCmoKAAH3/8MV555RXk5+cDqKxPU301BVFNIHcYQ5chkPqojJKZLRAEASqVCl+tXqZv82uQgNjp3+B6hbfxc/7/f5Wav2OMpWE6wc73N0a3nDxSLf43jFT7czk3kRuSPfx08uRJJCcnQ61W49KlS3jqqacQFhaGLVu24PLly/jss8/s0U8ilyV3GENOwTkAeKBtlORswenTpw22Nag/Yj78G7WxeK5S83dMkTKXyJ73N8Vee28RkePJztRMnToVo0ePxvnz50WrnQYMGIB9+/Yp2jkid2DNMIYuQ1A/xHKWZ/vvWZKyF6NHjzYIaBpN2yYpoKnKXqt9soukXVfqcUpyp1VbRGSa7KDmyJEjeOaZZwzaGzRogOzsbEU6ReRurBnG6J8YhXceaWvx2rrshSkVFRVQqVSinbSDEnohdvo3UHkZH24yx16rffKLyxQ9joioOtnDT/7+/igqKjJoP3fuHOrWratIp4jckTXDGLkl0h7gprIn+/btQ8+ePUVtn+7Yi1n7iyX3W8feq33CgnwVPY6IqDrZQc3gwYPx+uuvY+PGjQAq619kZGTg3//+Nx566CHFO0jkTnTDGFLZUiuld+/e2Lt3r6hNq9VCKwArTu2WvPM14JjVPpHqAEWPIyKqTvbw0+LFi5GTk4N69erhxo0b6NmzJ5o2bYratWvL2tmXiCyvhFLBcPXTjRs3oFKpRAHN9OnT9auepMzxCQ30EbU7YrWP7rOaI3elFxFRVbL3ftLZvXs3jh07Bq1Wi3bt2iE5OVnpvimOez+RK9LVbgGM73BdNdjYsmULhg4dKjo/PT0dcXFxRq9rqsids1b7mNvzSgVl97kiIs9hlw0tKyoq4O/vjxMnTiAxMVGRjjoSgxpyVVKq7MbFxeHy5cui8yz939cVtiOozlUqChOR+5D6/JY1p6ZWrVqIjY2FRqOxuYNErsoZgYC5Scb5+fkIDxfP01m2bBleeOEFs9d0xYAGYF0YIrIf2cNPa9euxX/+8x+sX78eYWHuNfbNTA1Z4mpZhFWrVuHZZ58VteXk5Bjstl2dq30OIiJb2GX4CQDuvPNOXLhwAeXl5YiNjUVQUJDo/WPHjlnXYwdgUEPmmJrvYWxuiyNU31m7bt26uHr1qsXzXO1zEBHZyi7DT0Dlku7q/7ElcneW9iVSoXJfor4JkXYfJrly5QoaNWokavvqq6/w6KOPGj2+6jBTRJAf5mx3jc9BRORosoOaOXPm2KEbRM5laV8iS/siKTV/ZfXq1Xj66adFbcXFxQYZUR1jw0zm2Ht/JyIiZ5Ic1JSWlmLatGnYunUrysvLkZycjPfee8/i2D6RO5C635Gx45SYvyIIAjp37ozDhw/r2zp16oRDhw6ZPMfc8mhL7LW/ExGRM0kuvjd79mysW7cOAwcOxPDhw7Fr1y5MmDDBnn0jchhrK/vqAovqmZLswpuYsP4YUk5nAajM5BxMy8O2E3/jYFqeaIPKK1euwMvLSxTQ/PDDD2YDGnPDZdZ8DiIiTyA5U7N582Z88sknGD58OABg5MiR6NatGzQaDby95W+aR+RKdNVuTW0tYGxfJKnzcLRaAW/sPGs0k5P+81ZMnDhR3x4eHo5//vnH4v+nLA2XmWLv/Z2IiJxJcqbmypUruPvuu/WvO3bsiFq1aiEzM9MuHaOazVxmwx6kbC1QfV+kQxfzJM3DmbjhuMFxWQWluL9rG1FAs2TJEuTm5kr6JcGa4SNH7O9ERORMkjM1Go0Gvr7i3XNr1aqFiooKxTtFNZuzaqz0T4zCipHtDO4daeTeKaez8O9Np6y6T3neFWR+LB66vXjxIuLj4yVPOLZm+MjY5/AkrlpskIgcR3KdGi8vLwwYMAB+fn76th07dqBPnz6ilRmbN29WvpcKYZ0a1+cKNVYsPRxtmaBbcOBLFO7/Qv/ap24c9v5yBF2bRsgK5jRaAd0Xmd6JWwWgfogf3hmWhNziMo9/yLPYIJFnU7z43pgxYyTdeO3atdJ66AQMalyb7kFtakhHNx9k//Q+Tns4W+qjKYKmHBnvPAQIWn1b+MCpCE7sg2XDk+BXy0t2MCdnI0xP5gqBMBHZl+LF91w5WCHPYGutGEewZoJuWdZ5ZH82RdTWcNJ6eAeFAgAigvzw0n9/l10wT85wmadypaKJROR8sovvEdnC3NCOLbViHEXqvUMDfTB/SGuMfWYC/jm0Td/uH98O9Ye9DuB25gkqWB3M1fTNId0hECYix2FQQw5jad6DtbViHEnqvRcPvgN920aL2uo+PBuBTe4CIF6JlFtcJumapgIqby9VjX1gu0MgTESOI3lJN5EtpBSp09WKMZVjUKEyCHJmjRUpfQzMOYO+SXGi9g6ztukDGqAyQ6Ob6+EOwZyr4ndHRFUxU0N2J2few+xBCZiw/hhUMD751dk1VnT1bEz18eqW+Sj98xd92+jRo7F27Vqzw27WFP6jSvzuiKgqZmrI7uTMe9BNfo1Ui3+zrprZcDZjfdTcKMKlRfeLApr9+/frJ9jrhogGJzVAlybhosDMmsJ/VInfHRFVxUwN2Z3ceQ/uMPm1ah+3bv4v3nr5WdH7N27cgL+/9CEPrmSyHr87ItJhUEN2Z828B3eY/OqlAl568gH88svt7Mz06dOxcOFCq67nDsGcq+J3R0QAgxpyAE+c9/DXX38hJiZG1Pb777+jTZs2Nl3XHYI5V8Xvjog4p4bsztPmPaxatUoU0ISGhqK8vNzmgIaIiGzDoIYcwh0mAFui1WoRHx+PZ5+9PX/mnXfewbVr11CrFpOeRETOxv8Sk8O487yHc+fOoUWLFqK2tLQ0NG7c2Ek9IiKi6pipIYcyt7TZVb355puigKZVq1bQarUMaIiIXAwzNUQmlJeXIzAwEBUVFfq2devWYdSoUU7sFRERmcKghsiI3377DR06dBC1ZWVlITIy0kk9IiIiSzj8RG5DoxVwMC0P2078jYNpedBojS0Qt92LL74oCmiSk5MhCAIDGiIiF8dMDbkFSzt8K6GkpATBwcGitu3bt2PQoEGKXJ+IiOzLLTI1ly5dwrhx4xAfH4+AgAA0adIEs2fPxq1bt5zdNXIAKTt822r37t0GAU1BQQEDGiIiN+IWQc0ff/wBrVaLVatW4cyZM1iyZAlWrlyJV155xdldIzuztMM3ULnDty1DUY8++ijuuece/esnnngCgiBArVZbfU0iInI8txh+6t+/P/r3769/3bhxY5w7dw4rVqzA4sWLndgzsjc5O3zLLZGfn5+P8HDxOfv27cPdd99tTVeJiMjJ3CKoMaawsBBhYeb3CiorK0NZWZn+dVFRkb27RQqTu8O3VJs3b8ZDDz0kaistLUVAQICs6xARketwi+Gn6tLS0rB8+XJRuXpjFixYALVarf9TfQNCJThqRU5NZc0O3+YIgoC7775bFNBMmzYNgiAwoCEicnMqQRCc9hSeM2cO5s6da/aYI0eOiJbXZmZmomfPnujZsyc+/vhjs+cay9TExMSgsLAQISEhtnUejlmRU9NptAK6L9ptcYfv/dP7WKxOnJmZiQYNGojaTpw4gbZt2yrXYSIiUlxRURHUarXF57dTg5rc3Fzk5uaaPSYuLg7+/pW/hWdmZqJ3797o1KkT1q1bBy8veYkmqV+KFLoVOdW/PN1j1V02aXQHuu8agOj7lvNdr169Gk8//bT+de3atZGfn8+NKImI3IBbBDVy/P333+jduzfat2+P9evXw9vbW/Y1lApqdNkDUxNY5WQPSBprs2JarRbNmjXDxYsX9W1vvfUWpk2bZtf+EhGRcqQ+v93i19TMzEz06tULjRo1wuLFi5GTk6N/zxlVXu25IoeMs2aH7/Pnz6N58+aitgsXLqBJkyb27i4RETmBWwQ133//PS5cuIALFy6gYcOGoveckWiy14ocMk+3w7cUCxYsENUxatGiBVJTU6FSMXNGROSp3GL10+jRoyEIgtE/zqD0ihxSTnl5OQICAkQBzZo1a3D27FmnBjRcJUdEZH9ukalxNR3jwxCl9re4IqdjvPk6OqSs48ePo127dqK2zMxMREU5d8I2V8kRETmGW2RqXI23lwqzByUAuL0CR0f3evagBE4SdqApU6aIApo+ffpAEASXCGjsvW8VERFVYlBjpf6JUVgxsh0i1eIhpki1P5dzO1BpaSlUKhWWLl2qb9u6dSt+/PFH53Xq/zli3yoiIrqNw082sGZFDiln79696N27t6jt2rVrCA0NdU6HquEqOSIix2Kmxka6FTmDkxqgS5NwBjQO8thjj4kCmsceewyCILhMQANwlRwRkaMxU0Nu5dq1awYbme7duxc9e/Z0Uo9M4yo5IiLHYqaG3MbWrVsNAprS0lKXDGiA26vkTOXuVKhcBcVVckREymBQQy5PEAT07t0bDz74oL5t6tSpLr+zNlfJERE5FoefyKUZ21n72LFjuPPOO53UIzGNVjA7UVy3Sq56nZpI1qkhIlIcgxpyWWvWrMG4ceP0rwMDA1FQUAAfHx8n9uo2qUX1uEqOiMgxOPxELker1aJ58+aigGbhwoUoKSlxqYBGTlE9rpIjIrI/ZmrIpVy4cAHNmjUTtZ0/fx5NmzZ1Uo8MWSqqp0JlUb2+CZEMXoiIHIiZGnIZb731liigadasGTQajUsFNIC8onpEROQ4zNSQ05WXlyM0NBSlpaX6to8//lg0/ORKWFSPiMg1Maghpzpx4oTBSqa///4b0dHRTuqRZSyqR0Tkmjj8RE7z0ksviQKaHj16QKvVIjo6GhqtgINpedh24m8cTMtzqU0fWVSPiMg1MVNDDnfjxg0EBgaK2jZv3qwvrid1qbSz6IrqTVh/DCpANGGYRfWIiJyHmRpyqH379hkENPn5+aKARs5SaWfRFdWLVIuHmCLV/lgxsp3VwZcrZ6iIiFwdMzXkME888QTWr1+vfz18+HB8+eWX+tfutlRa6aJ6rp6hIiJydQxqyO4KCgpQp04dUdvu3bvRu3dvUZucpdJdmoTbo6uy6Yrq2UqXoaoe0OkyVLZkf4iIagoOP5Fdbd++3SCgKSkpMQhogJq7VNpShgqozFBxKIqIyDwGNWQ399xzDwYPHqx/PXnyZAiCYDCnRqemLpVmMT8iImVw+IkUl52djago8VDJ0aNH0b59e7Pn6ZZKZxfeNJq1UKFyIq6nLZWuqRkqIiKlMVNDilq3bp0ooPHz88OtW7csBjTA7aXSAAxqwHjyUumamqEiIlIagxpShCAIaNmyJcaMGaNvmz9/Pm7evClrZ217LZV2ZSzmR0SkDA4/kc3S0tIMNp08d+4cmjdvbtX1lF4q7epYzI+ISBnM1JBNFi9eLApoGjduDI1GY3VAo6NbKj04qQG6NAn3+Ad6TcxQEREpjZkaskpFRQXCw8NRVFSkb/voo48wfvx4J/bKvdW0DBURkdIY1JBsJ0+eRNu2bUVtf/31Fxo0aOCkHnkOpYr5ERHVRBx+IllefvllUUDTvXt3aLVaBjREROR0zNSQJMZ21v7vf/+Lhx56yEk9IiIiEmNQQxb9/PPP6NGjh6gtLy8PYWFcYkxERK6Dw09k1qhRo0QBzSOPPAJBEBjQEBGRy2GmhowqLCxEaGioqO3HH39Enz59nNMhIiIiC5ipIQPffPONQUBTXFzMgIaIiFwagxoSuffeezFo0CD96+effx6CICAoKMiJvSIiIrKMw08EAPjnn38QGRkpajty5Ag6dOjgpB4RERHJw0wN4bPPPhMFND4+PigrK2NAQ0REboVBTQ0mCAISExMxatQofdu8efNw69Yt+Pr6OrFnRERE8nH4qYa6ePEimjRpImr7448/cMcddzipR0RERLZhpqYGevfdd0UBTWxsLDQaDQMaIiJya8zU1CAVFRWoW7cuCgoK9G0rV67EM88847xOERERKYRBTQ1x6tQptGnTRtR25coVNGzY0Ek9IiIiUhaHn2qAGTNmiAKazp07Q6vVMqAhIiKPwkyNB7t58yYCAgJEbRs3bsQjjzzipB4RERHZD4MaD3XgwAF0795d1Jabm4vw8HAn9YiIiMi+OPzkgcaMGSMKaIYOHQpBEBjQEBGRR2OmxoMUFRVBrVaL2nbt2oXk5GQn9YiIiMhxmKnxEDt37jQIaIqLixnQEBFRjcGgxgMMGDAA999/v/71xIkTubM2ERHVOBx+cmNXr15F/fr1RW2//vorOnbs6KQeEREROQ8zNW5q/fr1ooBGpVKhrKyMAQ0REdVYDGrcjCAIaNu2LZ544gl929y5c6HVarmzNhER1WgcfnIjly5dQnx8vKgtNTUVLVu2dFKPiIiIXAczNW5i6dKlooCmYcOGqKioYEBDRET0/5ipcXEajQaRkZHIzc3Vt3344YeYMGGC9GtoBRxOz8fV6zdRr7Y/OsaHwdtLZY/uEhEROY3bBDUPPPAATpw4gatXr6JOnTpITk7GokWLEB0d7eyu2c3p06fRunVrUVtGRgZiYmIkXyPldBbm7khFVuFNfVuU2h+zByWgf2KUYn0lIiJyNrcZfurduzc2btyIc+fOYdOmTUhLS8PDDz/s7G7ZzcyZM0UBTceOHaHVamUHNBPWHxMFNACQXXgTE9YfQ8rpLMX6S0RE5GwqQRAEZ3fCGtu3b8eQIUNQVlYGHx8fSefothEoLCxESEiInXtoHWM7a3/11Vd49NFHZV1HoxXQfdFug4BGRwUgUu2P/dP7cCiKiIhcmtTnt9sMP1WVn5+PL774Al27djUb0JSVlaGsrEz/uqioyBHds9rBgwfRtWtXUVtOTg4iIiJkX+twer7JgAYABABZhTdxOD0fXZpwo0siInJ/bjP8BADTp09HUFAQwsPDkZGRgW3btpk9fsGCBVCr1fo/coZuHG38+PGigGbw4MEQBMGqgAYArl43HdBYcxwREZGrc2pQM2fOHKhUKrN/jh49qj9+2rRpOH78OL7//nt4e3vjySefhLnRsxkzZqCwsFD/58qVK474WLIUFRVBpVLh448/1rf973//w9atW226br3a/ooeR0RE5OqcOqcmNzdXtFTZmLi4OPj7Gz54//rrL8TExOCXX35Bly5dJN3P1ebUfPfdd7jvvvtEbdevX0dwcLDN19bNqckuvAlj/8CcU0NERO7CLebUREREWD28oovFqs6ZcSeDBg3CN998o3/97LPPYsWKFYpd39tLhdmDEjBh/TGoAFFgowthZg9KYEBDREQewy0mCh8+fBiHDx9G9+7dUadOHVy8eBGzZs1CkyZNJGdpXEVOTg7q1asnajt06BA6deqk+L36J0Zhxch2BnVqIlmnhoiIPJBbBDUBAQHYvHkzZs+ejZKSEkRFRaF///746quv4Ofn5+zuSbZhwwY8/vjjorabN2/a9TP0T4xC34RIVhQmIiKP57Z1aqzhrDk1giCgffv2OH78uL5t9uzZmDNnjsP6QERE5K7cYk5NTXD58mXExcWJ2s6cOYOEhATndIiIiMhDuVWdGnfz3nvviQKaqKgoVFRUMKAhIiKyA2Zq7ECj0SA6OhpXr17Vty1fvhyTJk1yYq+IiIg8G4MahaWmpqJVq1aitsuXL6NRo0ZO6hEREVHNwOEnBc2aNUsU0LRv3x5arZYBDRERkQMwU6OAsrIyg6rHGzZswIgRI5zUIyIiopqHQY0Cnn/+edHrq1evom7duk7qDRERUc3E4ScF3HXXXQAqtz4QBIEBDRERkROw+B4RERG5NKnPb2ZqiIiIyCMwqCEiIiKPwKCGiIiIPAKDGiIiIvIIDGqIiIjIIzCoISIiIo/AoIaIiIg8AoMaIiIi8ggMaoiIiMgjMKghIiIij8CghoiIiDwCgxoiIiLyCAxqiIiIyCMwqCEiIiKPUMvZHXAkQRAAVG5hTkRERO5B99zWPcdNqVFBzfXr1wEAMTExTu4JERERyXX9+nWo1WqT76sES2GPB9FqtcjMzETt2rWhUqmc3R2jioqKEBMTgytXriAkJMTZ3fFo/K4di9+3Y/H7dhx+1/YnCAKuX7+O6OhoeHmZnjlTozI1Xl5eaNiwobO7IUlISAj/z+Eg/K4di9+3Y/H7dhx+1/ZlLkOjw4nCRERE5BEY1BAREZFHYFDjYvz8/DB79mz4+fk5uysej9+1Y/H7dix+347D79p11KiJwkREROS5mKkhIiIij8CghoiIiDwCgxoiIiLyCAxqiIiIyCMwqHFhDzzwABo1agR/f39ERUXhiSeeQGZmprO75ZEuXbqEcePGIT4+HgEBAWjSpAlmz56NW7duObtrHunNN99E165dERgYiNDQUGd3x+N8+OGHiI+Ph7+/P9q3b4+ff/7Z2V3ySPv27cOgQYMQHR0NlUqFrVu3OrtLNR6DGhfWu3dvbNy4EefOncOmTZuQlpaGhx9+2Nnd8kh//PEHtFotVq1ahTNnzmDJkiVYuXIlXnnlFWd3zSPdunULjzzyCCZMmODsrnicr7/+GpMnT8bMmTNx/Phx3H333RgwYAAyMjKc3TWPU1JSgrZt2+L99993dlfo/3FJtxvZvn07hgwZgrKyMvj4+Di7Ox7v7bffxooVK3Dx4kVnd8VjrVu3DpMnT0ZBQYGzu+IxOnXqhHbt2mHFihX6tpYtW2LIkCFYsGCBE3vm2VQqFbZs2YIhQ4Y4uys1GjM1biI/Px9ffPEFunbtyoDGQQoLCxEWFubsbhBJduvWLfz222/o16+fqL1fv3745ZdfnNQrIsdhUOPipk+fjqCgIISHhyMjIwPbtm1zdpdqhLS0NCxfvhzPPvuss7tCJFlubi40Gg3q168vaq9fvz6ys7Od1Csix2FQ42Bz5syBSqUy++fo0aP646dNm4bjx4/j+++/h7e3N5588klwxFA6ud83AGRmZqJ///545JFH8NRTTzmp5+7Hmu+a7EOlUoleC4Jg0EbkiWo5uwM1zaRJkzB8+HCzx8TFxen/HhERgYiICDRv3hwtW7ZETEwMDh06hC5duti5p55B7vedmZmJ3r17o0uXLvjoo4/s3DvPIve7JuVFRETA29vbICtz9epVg+wNkSdiUONguiDFGroMTVlZmZJd8mhyvu+///4bvXv3Rvv27bF27Vp4eTGRKYctP9ukDF9fX7Rv3x67du3Cgw8+qG/ftWsXBg8e7MSeETkGgxoXdfjwYRw+fBjdu3dHnTp1cPHiRcyaNQtNmjRhlsYOMjMz0atXLzRq1AiLFy9GTk6O/r3IyEgn9swzZWRkID8/HxkZGdBoNDhx4gQAoGnTpggODnZu59zc1KlT8cQTT6BDhw76jGNGRgbnh9lBcXExLly4oH+dnp6OEydOICwsDI0aNXJiz2owgVzSyZMnhd69ewthYWGCn5+fEBcXJzz77LPCX3/95eyueaS1a9cKAIz+IeWNGjXK6He9Z88eZ3fNI3zwwQdCbGys4OvrK7Rr10746aefnN0lj7Rnzx6jP8ejRo1ydtdqLNapISIiIo/ASQNERETkERjUEBERkUdgUENEREQegUENEREReQQGNUREROQRGNQQERGRR2BQQ0RERB6BQQ0RkQW9evXC5MmTnd0NIrKAQQ0RAYDFHbZHjx7tsL7YI4gYPXo0hgwZoug1Tdm7dy9UKhUKCgoccj8iqsS9n4gIAJCVlaX/+9dff41Zs2bh3Llz+raAgADR8eXl5fDx8XFY/4iILGGmhogAVG7cqfujVquhUqn0r2/evInQ0FBs3LgRvXr1gr+/P9avX485c+YgKSlJdJ2lS5ciLi5O1LZ27Vq0bNkS/v7+aNGiBT788EOT/Rg9ejR++uknLFu2TJ8lunTpEgAgNTUV9913H4KDg1G/fn088cQTyM3N1Z/73//+F61bt0ZAQADCw8ORnJyMkpISzJkzB59++im2bdumv+bevXuN3r+kpARPPvkkgoODERUVhXfeecfgmPXr16NDhw6oXbs2IiMj8dhjj+Hq1asAgEuXLqF3794AgDp16oiyXCkpKejevTtCQ0MRHh6O+++/H2lpaWb+VYhIDgY1RCTZ9OnT8cILL+Ds2bO49957JZ2zevVqzJw5E2+++SbOnj2L+fPn47XXXsOnn35q9Phly5ahS5cuGD9+PLKyspCVlYWYmBhkZWWhZ8+eSEpKwtGjR5GSkoJ//vkHw4YNA1CZaRoxYgTGjh2Ls2fPYu/evRg6dCgEQcBLL72EYcOGoX///vprdu3a1ej9p02bhj179mDLli34/vvvsXfvXvz222+iY27duoU33ngDv//+O7Zu3Yr09HR94BITE4NNmzYBAM6dO4esrCwsW7YMQGXANHXqVBw5cgQ//vgjvLy88OCDD0Kr1Ur6LonIPA4/EZFkkydPxtChQ2Wd88Ybb+Cdd97RnxcfH4/U1FSsWrUKo0aNMjherVbD19cXgYGBiIyM1LevWLEC7dq1w/z58/Vta9asQUxMDP78808UFxejoqICQ4cORWxsLACgdevW+mMDAgJQVlYmumZ1xcXF+OSTT/DZZ5+hb9++AIBPP/0UDRs2FB03duxY/d8bN26M9957Dx07dkRxcTGCg4MRFhYGAKhXrx5CQ0P1xz700EOi63zyySeoV68eUlNTkZiYaLJfRCQNMzVEJFmHDh1kHZ+Tk4MrV65g3LhxCA4O1v+ZN2+e7GGX3377DXv27BFdp0WLFgCAtLQ0tG3bFvfccw9at26NRx55BKtXr8a1a9dk3SMtLQ23bt1Cly5d9G1hYWG44447RMcdP34cgwcPRmxsLGrXro1evXoBADIyMixe/7HHHkPjxo0REhKC+Ph4SecRkTTM1BCRZEFBQaLXXl5eEARB1FZeXq7/u25YZfXq1ejUqZPoOG9vb1n31mq1GDRoEBYtWmTwXlRUFLy9vbFr1y788ssv+P7777F8+XLMnDkTv/76qz54sKT6ZzGmpKQE/fr1Q79+/bB+/XrUrVsXGRkZuPfee3Hr1i2z5w4aNAgxMTFYvXo1oqOjodVqkZiYaPE8IpKGQQ0RWa1u3brIzs6GIAhQqVQAgBMnTujfr1+/Pho0aICLFy/i8ccfl3xdX19faDQaUVu7du2wadMmxMXFoVYt4//pUqlU6NatG7p164ZZs2YhNjYWW7ZswdSpU41es7qmTZvCx8cHhw4dQqNGjQAA165dw59//omePXsCAP744w/k5uZi4cKFiImJAQAcPXrUoP8ARPfLy8vD2bNnsWrVKtx9990AgP3790v9SohIAg4/EZHVevXqhZycHLz11ltIS0vDBx98gO+++050zJw5c7BgwQIsW7YMf/75J06dOoW1a9fi3XffNXnduLg4/Prrr7h06RJyc3Oh1Wrx3HPPIT8/HyNGjMDhw4dx8eJFfP/99xg7diw0Gg1+/fVXzJ8/H0ePHkVGRgY2b96MnJwctGzZUn/NkydP4ty5c8jNzRVllHSCg4Mxbtw4TJs2DT/++CNOnz6N0aNHw8vr9n8qGzVqBF9fXyxfvhwXL17E9u3b8cYbb4iuExsbC5VKhW+++QY5OTkoLi5GnTp1EB4ejo8++ggXLlzA7t27MXXqVFu+fiKqTiAiqmbt2rWCWq3Wv05PTxcACMePHzc4dsWKFUJMTIwQFBQkPPnkk8Kbb74pxMbGio754osvhKSkJMHX11eoU6eO0KNHD2Hz5s0m73/u3Dmhc+fOQkBAgABASE9PFwRBEP7880/hwQcfFEJDQ4WAgAChRYsWwuTJkwWtViukpqYK9957r1C3bl3Bz89PaN68ubB8+XL9Na9evSr07dtXCA4OFgAIe/bsMXrv69evCyNHjhQCAwOF+vXrC2+99ZbQs2dP4cUXX9Qfs2HDBiEuLk7w8/MTunTpImzfvt3g+3n99deFyMhIQaVSCaNGjRIEQRB27doltGzZUvDz8xPatGkj7N27VwAgbNmyxeR3QUTSqQRBwiAyERERkYvj8BMRERF5BAY1RERE5BEY1BAREZFHYFBDREREHoFBDREREXkEBjVERETkERjUEBERkUdgUENEREQegUENEREReQQGNUREROQRGNQQERGRR2BQQ0RERB7h/wAI0JTTmacjLgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -445,7 +445,7 @@ "# new_data = pp.DataFrame(toys.var_process(links_coeffs, T=100)[0])\n", "predicted = pred.predict(target, new_data=new_data)\n", "# predicted = pred.predict(target)\n", - "true_data = pred.get_test_array()[0]\n", + "true_data = pred.get_test_array(j=target)[0]\n", "\n", "plt.scatter(true_data, predicted)\n", "plt.plot(true_data, true_data, 'k-')\n", @@ -479,7 +479,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWJUlEQVR4nO3deVxU9f4/8NcB2VQYBURAEZD0KqKpoOZSLrlmZmmaqZnr/bqUkrlkWoiaZNqilmu5JFnWVa9axtWba5krboi7ECQYmwIubDOf3x/8mNtxBpnBGc4sr+fjwePhvOfMnLdzb8zLz/mcz0cSQggQERERWTkHpRsgIiIiMgWGGiIiIrIJDDVERERkExhqiIiIyCYw1BAREZFNYKghIiIim8BQQ0RERDaBoYaIiIhsAkMNERER2QSGGiIbtmHDBkiSBFdXV/zxxx86z3fp0gVhYWGyWlBQECRJ0v7UqFEDrVu3xueff46HFyA/cOCA9rgNGzbo7aFbt26QJAlBQUGy+r1797Bo0SI8+eST8PDwgLu7O0JCQjB48GAcPHhQ7zn0/ZR3XnO5e/cuIiMj4e/vD1dXV7Rs2RLfffedQa/973//ix49esDf3x8uLi7w8fFBt27dsHv3bp1jZ8+ejVatWsHT0xOurq5o2LAh/vnPf+r935GISlVTugEiMr/CwkLMmTMHmzZtMuj4jh07YsmSJQCAtLQ0fPLJJ3jzzTeRl5eHd999V+d4d3d3fPXVVxg5cqSsnpSUhAMHDsDDw0NWV6vV6NmzJ86fP4/p06ejbdu2AICrV69i165dOHz4MDp37ix7zcKFC9G1a1edc4eEhBj0dzKVAQMG4MSJE/jwww/RuHFjbN68Ga+++io0Gg2GDh36yNdmZ2ejWbNmGDt2LHx9fZGTk4NVq1ahb9++2LRpE4YPH6499s6dO3j11VfRtGlTuLu7IzExEQsWLMDOnTtx4cIFeHl5mfuvSmR9BBHZrPXr1wsAonfv3sLBwUGcOXNG9nznzp1Fs2bNZLXAwEDRt29fWS03N1eoVCrRoEEDWX3//v0CgBg7dqwAIK5cuSJ7fs6cOaJ+/fqiT58+IjAwUFvft2+fACDWrVunt2+1Wq1zjh9++MHgv7e5/PTTTwKA2Lx5s6zeo0cP4e/vL0pKSox+z6KiIlGvXj3x9NNPV3js7t27BQDx1VdfGX0eInvAy09EdmDGjBnw8vLCzJkzK/V6Dw8PNG7cGH/99Zfe53v06IGAgACsW7dOW9NoNNi4cSNef/11ODjIf9VkZ2cDAPz8/PS+38PHW4rt27ejZs2aGDRokKw+atQopKWl4dixY0a/p5OTE2rVqoVq1SoeOK9Tpw4AGHQskT2yzN8cRGRS7u7umDNnDv7zn/9g3759Rr++pKQEqampaNy4sd7nHRwcMHLkSHz99ddQq9UAgD179uDPP//EqFGjdI6PiIiAk5MTpkyZgm+++Qbp6ekV9qDRaFBSUqLzUxEhhN7XVea9EhIS0LRpU51Q0aJFC+3zhij7u6SlpSEqKgpXrlzB22+/rffYkpISPHjwAKdPn0ZkZCQaN26MAQMGGHQeInvDUENkJ8aPH4+GDRti5syZOhN+H/b3IJCSkoKJEyciOzsbMTEx5b5m1KhRSE9PR1xcHABg3bp16Ny5s945L0FBQVi1ahXS0tIwfPhw+Pv7w9/fH6+//joOHz6s9/1feeUVODk56fz8+eefj/y7bNy4Ue/r9P1UJDs7G56enjr1slrZCFRFnnvuOTg5OaFevXr47LPPsGXLFvTt21fnuFu3bsHJyQnVq1dH69atUVJSgv3796NmzZoGnYfI3nAMk8hOODs7Y8GCBRg6dCi+//57vPLKK+Ueu3v3bp0v+bIJreUJDg5Gly5dsG7dOjz11FPYsWMHvvzyy3KPHz16NAYOHIjdu3fj6NGjOHr0KGJjY7Fp0yYsWrQI06dPlx2/aNEidOvWTed96tatW+45AKBfv344ceLEI48xhiRJlXru75YvX447d+4gPT0dsbGxeOWVV7Bx40a8+uqrsuO8vb1x4sQJFBYW4uLFi/joo4/QtWtXHDhwoNxLd0R2TeE5PURkRmUThU+cOCGEEEKj0YjWrVuLkJAQUVRUVO5E4U6dOokTJ06Io0ePik2bNomgoCBRrVo1cfjwYdmxD0/ijY2NFU5OTuLdd98VKpVK3L9/XwghRN++fWUThcuTkJAgfH19hZOTk7h9+7becxhLo9GI4uJig34q8tRTT4k2bdro7RuAWL16daV67N27t6hdu7ZsgrQ+qampolq1amLy5MmVOg+RrePlJyI7IkkSFi1ahOvXr2PNmjXlHqdSqRAREYF27dph+PDh2LNnD5ycnDBx4kRoNJpyXzdgwABUr14dH374IYYMGQI3Nzej+mvWrBmGDBmC4uJiXLlyxajXlseUl5+aN2+Oixcv6sy/OX/+PADorPljqLZt2+L27dvIzMx85HH169eHv7+/yT4bIlvDy09EdqZ79+7o0aMH5s2bh4CAAINe06hRI8yYMQPR0dHYsmWLzmWSMm5ubnj//fdx6NAhTJgwodz3y87Ohru7O5ydnXWeu3TpEgDA39/foN4qYsrLTy+99BLWrl2LrVu3yi7fbdy4Ef7+/mjXrp3R7ymEwMGDB1GrVq0K1565du0a/vzzT7zwwgtGn4fIHjDUENmhRYsWITw8HBkZGWjWrJlBr5k2bRpWrVqF6OhoDB48GI6OjnqPmzp1KqZOnfrI99q/fz+mTJmCYcOGoUOHDvDy8kJGRga+/fZbxMXFYcSIEahfv77sNVevXsXRo0d13qt+/fo6x/6dl5eXyRaq69OnD3r06IEJEyYgLy8PTzzxhLbn2NhY2WcyZswYbNy4EdevX0dgYCAAoH///njyySfRsmVLeHl5IS0tDRs2bMDBgwfxxRdfaO+qOnfuHN566y28/PLLaNiwIRwcHHD+/Hl8+umn8PLywrRp00zy9yGyNQw1RHaoVatWePXVV7F582aDX1OzZk28//77mDRpEr755huMGDGi0ud/6qmnMHr0aOzfvx+bNm1CVlYW3NzcEBoaiuXLl+sd5dG3kjFQup3AggULKt2LsbZt24bZs2fj/fffR05ODpo0aYJvv/0WQ4YMkR2nVquhVqtld5p17NgR//rXv/D5558jLy8PtWrVQkREBH788UfZJOy6devC398fH3/8MdLT01FSUoL69evj+eefx7vvvmvwCBuRvZGEqODeTiIiIiIrwInCREREZBMYaoiIiMgmMNQQERGRTWCoISIiIpvAUENEREQ2gaGGiIiIbIJdrVOj0WiQlpYGd3d3gzeeIyIiImUJIZCfnw9/f384OJQ/HmNXoSYtLY2LVhEREVmp1NTUR64gblehxt3dHUDph+Lh4aFwN0RERGSIvLw8BAQEaL/Hy2NXoabskpOHhwdDDRERkZWpaOoIJwoTERGRTWCoISIiIpvAUENEREQ2gaGGiIiIbAJDDREREdkEhhoiIiKyCQw1REREZBMYaoiIiMgmMNQQERGRTbCrFYWJiIgshVojcDwpBxn5BfBxd0XbYE84OnCz5cfBUENERFTF4hLSEb0rEem5Bdqan8oVUf1C0TvMT8HOrBsvPxEREVWhuIR0TIiNlwUaALiVW4AJsfGIS0hXqDPrx1BDRERURdQagehdiRB6niurRe9KhFqj7wiqCEMNERFRFTmelKMzQvN3AkB6bgGOJ+VUXVM2hKGGiIioimTklx9oKnMcyVlVqLl58yaGDx8OLy8vVK9eHS1btsSpU6eUbouIiMggPu6uJj2O5Kzm7qfbt2+jY8eO6Nq1K37++Wf4+Pjg+vXrqFWrltKtERERGaRtsCf8VK64lVugd16NBMBXVXp7NxnPakLNokWLEBAQgPXr12trQUFByjVERERkJEcHCVH9QjEhNh4SIAs2ZSvURPUL5Xo1lWQ1l5927tyJiIgIDBo0CD4+PmjVqhXWrl37yNcUFhYiLy9P9kNERKSk3mF+WDm8NXxV8ktMvipXrBzemuvUPAZJCGEV9425upb+jz916lQMGjQIx48fR2RkJFavXo0RI0bofc3cuXMRHR2tU8/NzYWHh4dZ+yUiInoUrihsuLy8PKhUqgq/v60m1Dg7OyMiIgJHjhzR1iZPnowTJ07g999/1/uawsJCFBYWah/n5eUhICCAoYaIiMiKGBpqrObyk5+fH0JDQ2W1pk2bIiUlpdzXuLi4wMPDQ/ZDREREtslqQk3Hjh1x+fJlWe3KlSsIDAxUqCMiIiKyJFYTat566y0cPXoUCxcuxLVr17B582asWbMGkyZNUro1IiIisgBWE2ratGmD7du349tvv0VYWBjmz5+Pzz77DMOGDVO6NSIiIruWmJgISZIQHByMzMxMxfqwmonCpmDoRCMiIiIyzMyZM/HRRx9pH6empqJ+/fomPYeh399Ws/geERERPT5T3Up+9+5duLu7y2qxsbEmDzTGYKghIiKyE3EJ6YjelSjbKdxP5YqofqFGLfr3448/ol+/frJaVlYWvLy8TNZrZVjNnBoiIiKqvLiEdEyIjZcFGgC4lVuACbHxiEtIr/A9hBB45plnZIFm1KhREEIoHmgAjtQQERHZPLVGIHpXot5NNAVK952K3pWIHqG+5V6KSk5ORnBwsKx27NgxtG3b1uT9VhZHaoiIiGzc8aQcnRGavxMA0nMLcDwpR+/zixYtkgUalUqFoqIiiwo0AEdqiIiIbF5GfvmB5lHHFRYWavdeLPP5559b7BpxDDVEREQ2zsfdteKDHjru0KFD6Ny5s+z5mzdvwt/f36S9mRIvPxEREdm4tsGe8FO5orwbtyWU3gXVNtgTADBw4EBZoHn++echhLDoQAMw1BAREdk8RwcJUf1KN4V+ONiUPY7qF4qszAxIkoRt27Zpn//ll1+wa9euqmn0MTHUEBER2YHeYX5YObw1fFXyS1G+KlesHN4aKUd2wdfXV/bc/fv30a1bt6ps87FwTg0REZGd6B3mhx6hvrIVhVsHeKBBQH1kZGRoj5s3bx7ee+89BTutHIYaIiIiO+LoIKF9SOlCefHx8XB9Ilz2/LVr1xASEqJEa4+Nl5+IiIjs0Pjx4xEe/r9A07ZtW2g0GqsNNABHaoiIiOxKUlISGjZsKKtt374dL774ojINmRBDDRERkZ0YOHCg7M4mAMjNzYWHh4dCHZkWQw0REZGN02g0cHR01KkLoW83KOvFOTVEREQ2bMeOHTqBJjY21qSBRq0R+P16NnacuYnfr2dDrVEmLHGkhoiIyEZJku4awkVFRXBycjLZOeIS0hG9K1G2YaafyhVR/ULRO8zPZOcxBEdqiIiIbExmZqZOoOnatSuEECYPNBNi43V2AL+VW4AJsfGIS0g32bkMwVBDRERkQyIjI+Hj4yOrJSYmYt++fSY9j1ojEL0rEfouNJXVonclVumlKF5+IiIisgFCCDg46I5VmGsy8PGkHJ0RGtl5AaTnFuB4Uo52sT9z40gNERGRlfvtt990As3HH39s1rubMvLLDzSVOc4UOFJDRERkxerXr4+bN2/Kanfv3kWNGjXMel4fd9eKDzLiOFPgSA0REZEVunv3LiRJkgWawMBACCHMHmgAoG2wJ/xUrtC9v6qUhNK7oNoGe5q9lzIMNURERFZm8eLFcHd3l9WOHDmC5OTkKuvB0UFCVL9QANAJNmWPo/qFwtGhvNhjerz8REREZEX0rT2j1MrAvcP8sHJ4a511anwVWqeGoYaIiMgKXLhwAWFhYbLa22+/jSVLlijUUaneYX7oEeqL40k5yMgvgI976SWnqhyhKcNQQ0REZOGefvpp/Prrr7JaVlYWvLyq5lbpijg6SFV22/ajMNQQERFZqOLiYjg7O+vUbW0jSlPhRGEiIiIL9PXXX+sEmh9//JGB5hE4UkNERGRh9E0GVqvVelcMpv/hp0NERGQhrl69qhNoXnnllXK3QCA5jtQQERFZgPDwcMTHx8tqycnJCAwMVKgj68NQQ0REpCCNRgNHR0edOufOGI9jWURERAr55ptvdALNwoULGWgqiSM1RERECujatSsOHDggqxUUFMDFxUWZhmwAQw0REVEVysvLg0qlktWcnJxQVFSkUEe2g5efiIiIqsiaNWt0As3169cZaEyEIzVERERV4OFbtR0cHKBWqxXqxjZZ7UhNTEwMJElCZGSk0q0QERGV6+LFizqB5ptvvmGgMQOrHKk5ceIE1qxZgxYtWijdChERUbmGDRuGzZs3y2r37t1D9erVy32NWiMsYsdra2R1oebu3bsYNmwY1q5diwULFijdDhERkY7CwkK4urrKai+99BK2bdv2yNfFJaQjelci0nMLtDU/lSui+oWid5ifWXq1JVZ3+WnSpEno27cvunfvXuGxhYWFyMvLk/0QERGZ09atW3UCzdmzZw0KNBNi42WBBgBu5RZgQmw84hLSTd6rrbGqkZrvvvsO8fHxOHHihEHHx8TEIDo62sxdERERlVKpVDr/gNZoNHo3qPw7tUYgelci9C25JwBIAKJ3JaJHqC8vRT2C1YzUpKamYsqUKYiNjdVJwOWZNWsWcnNztT+pqalm7pKIiOxRamoqJEmSBZqlS5dCCFFhoAGA40k5OiM0fycApOcW4HhSjinatVlWM1Jz6tQpZGRkIDw8XFtTq9U4dOgQPv/8cxQWFuosNe3i4sKVGYmIyKymTZuGjz/+WFa7ffs2atWqZfB7ZOSXH2gqc5y9sppQ8+yzz+L8+fOy2qhRo9CkSRPMnDlT72ZgRERE5qJWq1GtmvxrtE2bNjh+/LjR7+XjbtgVCEOPs1dWE2rc3d0RFhYmq9WoUQNeXl46dSIiInPat28fnn32WVnt8OHD6NSpU6Xer22wJ/xUrriVW6B3Xo0EwFdVens3lc9q5tQQERFZgrCwMJ1Ao1arKx1oAMDRQUJUv1AApQHm78oeR/UL5SThClh1qDlw4AA+++wzpdsgIiI7kJWVBUmScOHCBW1t9uzZEELAweHxv057h/lh5fDW8FXJLzH5qlyxcnhrrlNjAKu5/ERERKSUxYsXY8aMGbLazZs34e/vb9Lz9A7zQ49QX64oXEkMNUREROXQNwrj6+uL9HTzLYTn6CChfYiX2d7flln15SciIiJzOXXqlE6g2blzZ4WBRq0R+P16NnacuYnfr2dDrdE39ZfMgSM1RERED+nTpw/i4uJktcLCQjg7Oz/yddy7SVkcqSEiIvr/7t69C0mSZIFmzJgxEEIYFGi4d5OyGGqIiIgArF+/Hu7u7rLalStX8OWXX1b42or2bgJK927ipSjz4uUnIiKye/r2ZxLC8ABizN5NnARsPhypISIiu3XlyhWdQLNhwwajAg3AvZssBUdqiIjILo0ePRrr16+X1e7evYsaNWoY/V7cu8kyMNQQEZFdKSoqgouLi6zWp08f7N69u9Lvyb2bLAMvPxERkd3YuXOnTqCJj49/rEADcO8mS8GRGiIisgs+Pj7IzMyU1TQajd5JwpVRtnfTw+vU+HKdmirDUENERDbt5s2bqF+/vqy2ZMkSvP322yY/F/duUhZDDRER2ax3330XMTExslpWVha8vMx3WzX3blIOQw0REdkcjUYDR0dHWa1FixY4e/asQh1RVeBEYSIisgqGbhR56NAhnUCzf/9+Bho7wJEaIiKyeIZuFBkeHo74+HjZa0tKSnRCDtkmjtQQEZFFM2SjyNu3b0OSJFmgmT59OoQQDDR2hCM1RERksSraKFICMP6d+fjjp5Wy51JTU3XueCLbx1BDREQW61EbRQoh8MdH/WS1WrVq4fbt2499XrVG8LZsK8RQQ0REFqu8DSCLMm4gff1kWW3btm146aWXHvuchs7fIcvDUENERBZL3waQGVvn48G1Y7LagQs30TnU/7HPVzZ/5+HLXWXzd1YOb81gY8E4UZiIiCxW2UaREgBNcQH+WPS8LNDUaNYVTy38Lzo1efygUdH8HQCI3pVY7q3kpDyGGiIislhlG0XevbAfqZ+8LHvOf+xK1Hn+bZNtFPmo+TtAabBJzy3A8aScxz4XmQcvPxERkUXr01z3slLgzB9NPs+lvPk7lT2Oqh5DDRERWaTr16/jiSeekNVmLvgE7fsONssdSfrm7zzOcVT1GGqIiMjijB8/HqtXr5bV8vLy4O7ubrZzls3fuZVboHdejQTAV1UapsgycU4NERFZjOLiYkiSJAs03bp1gxDCrIEG+N/8HaA0wPxd2WNTzd8h82CoISIii7B79244OzvLasePH8cvv/xSZT30DvPDyuGt4auSX2LyVbnydm4rwMtPRESkuAYNGiA1NVVW02g0kKSqHxXpHeaHHqG+XFHYCnGkhoiIFHPr1i1IkiQLNAsXLoQQQpFAU8bRQUL7EC/0b1kP7UO8GGisBEMNEREpYu7cufDzk1/OycjIwKxZsxTqiKwdLz8REVGV0mg0cHR0lNUaN26My5cvK9QR2QqO1BARUZU5cuSITqDZs2cPAw2ZBEdqiIioSnTo0AG///67rFZcXIxq1fhVRKbBkRoiIjKr3NxcSJIkCzSTJ0+GEIKBhkyKoYaIiMxmxYoVqFWrlqyWnJyMpUuXKtMQ2TRGZCIiMjkhBBwc5P9udnFxQUEBN4Mk8+FIDRERmVRCQoJOoNmyZQsDDZmd1YSamJgYtGnTBu7u7vDx8cGLL77I2fJERBZm8ODBaN68uaz24MEDDB48WKGODKfWCPx+PRs7ztzE79ezodbo29aSLJnVXH46ePAgJk2ahDZt2qCkpASzZ89Gz549kZiYiBo1aijdHhGRXXvw4AGqV68uqw0aNAjff/+9Qh0ZJy4hHdG7EpGe+7/RJD+VK6L6hXK/JysiCSEqFUXv37+PlJQUFBUVyeotWrQwSWMVyczMhI+PDw4ePIhnnnnGoNfk5eVBpVIhNzcXHh4eZu6QiMg+bNmyBUOGDJHVEhIS0KxZM4U6Mk5cQjomxMbj4S/Dso0RuJGl8gz9/jZ6pCYzMxOjRo3Czz//rPd5tVpt7FtWSm5uLgDA09OzSs5HRES6XFxcdP5xq9RGlJWh1ghE70rUCTQAIFAabKJ3JaJHqC/3f7ICRs+piYyMxO3bt3H06FG4ubkhLi4OGzduRKNGjbBz505z9KhDCIGpU6eiU6dOCAsLK/e4wsJC5OXlyX6IiOjxJScnQ5IkWaD54osvFN+I0ljHk3Jkl5weJgCk5xbgeFJO1TVFlWb0SM2+ffuwY8cOtGnTBg4ODggMDESPHj3g4eGBmJgY9O3b1xx9yrzxxhs4d+4cfv3110ceFxMTg+joaLP3Q0RkT6ZMmYJly5bJanfu3IFKpVKoo8rLyDfsjixDjyNlGT1Sc+/ePfj4+AAovfSTmZkJAGjevDni4+NN250eb775Jnbu3In9+/ejfv36jzx21qxZyM3N1f78fWt7IiIyTklJCSRJkgWajh07QghhlYEGAHzcXU16HCnL6FDzj3/8Q3srdcuWLbF69WrcvHkTq1at0tlC3pSEEHjjjTewbds27Nu3D8HBwRW+xsXFBR4eHrIfIiIy3p49e+Dk5CSrHTlypMIRc0vXNtgTfipXlHfBTELpXVBtgzl/0xoYffkpMjIS6enpAICoqCj06tUL33zzDZydnbFhwwZT96c1adIkbN68GTt27IC7uztu3boFAFCpVHBzczPbeYmI7F3jxo1x9epVWU2tVusssGeNHB0kRPULxYTYeEiAbMJwWdCJ6hfKScJWotK3dJe5f/8+Ll26hAYNGsDb29tUfekob+LZ+vXrMXLkSIPeg7d0ExEZrmzpjL+bO3cuoqKiFOrIfLhOjWUz9Pvb6FAzb948TJs2TWeRpQcPHmDx4sV4//33K9dxFWCoISIyzMKFCzF79mxZLT09Hb6+vgp1ZH5qjcDxpBxk5BfAx730khNHaCyD2UKNo6Mj0tPTddJ7dnY2fHx8qmydmspgqCEiejR9G1E2aNAAf/zxh0IdERn+/W30BdHy1iA4e/YsF8IjIrJix48f1wk0u3fvZqAhq2HwROHatWtDkiRIkoTGjRvLgo1arcbdu3cxfvx4szRJRETm1a1bN+zfv19WKyoq0rnjiciSGRxqPvvsMwghMHr0aERHR8vWJHB2dkZQUBDat29vliaJiMg88vPzdYbzJ0yYgBUrVijUEVHlGRxqXn/9dQBAcHAwOnTowPRORGTl1q5di3/+85+y2vXr19GwYUOFOiJ6PEavU9O5c2ftnx88eIDi4mLZ85yAS0TWwN7vdNE3N/IxV/ggUpzRoeb+/fuYMWMGvv/+e2RnZ+s8b8l3PxERAfa9JsmlS5fQtGlTWS02NhbDhg1TqCMi0zH67qfp06dj3759WLFiBVxcXPDll18iOjoa/v7++Prrr83RIxGRycQlpGNCbLzOzsy3cgswITYecQnpCnVmfq+99ppOoLl37x4DDdkMo0PNrl27sGLFCrz88suoVq0ann76acyZMwcLFy7EN998Y44eiYhMQq0RiN6VCH0XWcpq0bsSodbY1mWYwsJCSJKE2NhYba1///4QQugspEpkzYwONTk5OdrNJD08PJCTkwMA6NSpEw4dOmTa7oiITOh4Uo7OCM3fCQDpuQU4npRTdU2Z2bZt2+DqKt9h+syZM/j3v/+tTENEZmT0nJqGDRsiOTkZgYGBCA0Nxffff4+2bdti165dqFWrlhlaJCIyjYz88gNNZY6zdLVq1UJubq6sptFoyt1Lj8jaGT1SM2rUKJw9exYAMGvWLO3cmrfeegvTp083eYNERKbi4+5a8UFGHGepUlNTIUmSLNCUrTXGQEO2zOiRmrfeekv7565du+LSpUs4efIkQkJC8OSTT5q0OSIiU2ob7Ak/lStu5RbonVcjAfBVld7eba2mT5+OJUuWyGo5OTmoXbu2Qh0RVR2jQ83DGjRogAYNGpiiFyIis3J0kBDVLxQTYuMhAbJgUzZ+EdUv1CrXq1Gr1ahWTf4rPSIiAidOnFCoI6KqZ1CoWbZsmcFvOHny5Eo3Q0Rkbr3D/LByeGuddWp8rXidmv3796Nbt26y2qFDh/D0008r1BGRMiRhwBKSZXc7lcnMzMT9+/e1E4Pv3LmD6tWrw8fHBzdu3DBLo6Zg6NblRGT7bGVF4ebNmyMhIUFWU6vVOrttE1kzQ7+/Dfp/fVJSkvbngw8+QMuWLXHx4kXk5OQgJycHFy9eROvWrTF//nyT/QWIiMzJ0UFC+xAv9G9ZD+1DvKwu0GRnZ0OSJFmgeffddyGEYKAhu2XQSM3fhYSE4F//+hdatWolq586dQovv/wykpKSTNqgKXGkhohswZIlS3TuNr158yb8/f0V6ojIvAz9/jZ6onB6errOJpZA6XDnX3/9ZezbERGRgfSNwvj4+PB3L9H/Z/QY5bPPPotx48bh5MmT2h1dT548if/7v/9D9+7dTd4gEREB8fHxOoFmx44dDDREf2N0qFm3bh3q1auHtm3bwtXVFS4uLmjXrh38/Pzw5ZdfmqNHIiK79txzzyE8PFxWKywsxAsvvKBQR0SWyejLT3Xq1MHu3btx9epVXLx4EUIING3aFI0bNzZHf0REduvevXuoWbOmrDZq1CisW7dOoY6ILFulF99r1KgRGjVqZMpeiMhK2crt0ZZkw4YNGDVqlKx25coV/t4leoTHXlGYiOxbXEK6zkJ2fla8kJ0l0Lc/k5E3qhLZJS5mQESVFpeQjgmx8bJAAwC3cgswITYecQnpCnVmna5evaoTaNatW8dAQ2QghhoiqhS1RiB6V6LejSHLatG7EqHW8AvZEGPHjtWZm5ifn69zCYqIymd0qElJSdH7rwYhBFJSUkzSFBFZvuNJOTojNH8nAKTnFuB4Uk7VNWWFioqKIEkSvvrqK22td+/eEELoTBImokczOtQEBwcjMzNTp56Tk6OzRxQR2a6M/PIDTWWOs0c7d+6Ei4uLrHby5En8/PPPCnVEZN2MnigshNA7ie3u3btwdXU1SVNEZPl83A37793Q4+yNr6+vzsJ5Go1G7+9XIjKMwaFm6tSpAEpn5b/33nuoXr269jm1Wo1jx46hZcuWJm+QiCxT22BP+KlccSu3QO+8GgmAr6r09m76n7S0NNSrV09W++ijj3T2ciIi4xkcak6fPg2gdKTm/PnzcHZ21j7n7OyMJ598EtOmTTN9h0RkkRwdJET1C8WE2HhIgCzYlI01RPUL5Xo1fzN79mwsXLhQVsvKyoKXl5dCHRHZFqN36R41ahSWLl1qlbtcc5duItPjOjUV02g0cHR0lNWaNWuGhIQEhToisi6Gfn8bHWr0nWjfvn1o0qQJmjRp8jhvZXYMNUTmwRWFy3f48GE888wzstovv/yCbt26KdQRkfUx9Pvb6InCgwcPxjPPPIM33ngDDx48QEREBJKTkyGEwHfffYeBAwc+VuNEZH0cHSS0D+EllIe1adMGJ0+elNVKSkp0Rm2IyDSMvqX70KFDePrppwEA27dvhxACd+7cwbJly7BgwQKTN0hEZG1u374NSZJkgWbatGkQQjDQEJmR0aEmNzcXnp6ldzPExcVh4MCBqF69Ovr27YurV6+avEEiImvy5ptvan9HlklJScHixYsV6ojIfhh9+SkgIAC///47PD09ERcXh++++w5A6b9MuE4NEdkrIQQcHOT/TnR3d0deXp5CHRHZH6NHaiIjIzFs2DDUr18ffn5+6NKlC4DSy1LNmzc3dX9ERBbv8OHDOoFm6dKlDDREVczokZqJEyeibdu2SE1NRY8ePbT/ITds2JBzaojI7vj4+OhsHXPv3j3ZAqVEVDUqtUt3REQE+vbti5s3b6KkpAQA0LdvX3Ts2NGkzemzYsUKBAcHw9XVFeHh4Th8+LDZz0lE9LD8/HxIkiQLNCEhIRBCMNAQKcToUHP//n2MGTMG1atXR7NmzbQ7c0+ePBkffvihyRv8uy1btiAyMhKzZ8/G6dOn8fTTT6NPnz7cHZyIqtSHH36os1bGsWPHcO3aNYU6IiKgEqFm1qxZOHv2LA4cOCCbGNy9e3ds2bLFpM097JNPPsGYMWMwduxYNG3aFJ999hkCAgKwcuVKs56XiKiMJEmYNWuWrCaEQNu2bRXqiIjKGB1q/v3vf+Pzzz9Hp06dZLvJhoaG4vr16yZt7u+Kiopw6tQp9OzZU1bv2bMnjhw5YrbzEhEBwPnz53V20J45cyYec1F2IjIhoycKZ2ZmwsfHR6d+7949nf/gTSkrKwtqtRp169aV1evWrYtbt27pfU1hYSEKCwu1j3knAhFVRvv27XH06FFZLTs7W2c9GiJSltEjNW3atMFPP/2kfVwWZNauXYv27dubrrNyPBychBDlhqmYmBioVCrtT0BAgNn7IyLbUVRUBEmSdAKNEIKBhsgCGR1qYmJiMHv2bEyYMAElJSVYunQpevTogQ0bNuCDDz4wR48AAG9vbzg6OuqMymRkZOiM3pSZNWsWcnNztT+pqalm64+IbMv69evh4uIiq+3evZuXm4gsmNGhpkOHDvjtt99w//59hISEYM+ePahbty5+//13hIeHm6NHAICzszPCw8Oxd+9eWX3v3r3o0KGD3te4uLjAw8ND9kNEVBFJkjB69GhZTa1Wo0+fPgp1RESGMHpODQA0b94cGzduNHUvFZo6dSpee+01REREoH379lizZg1SUlIwfvz4Ku+FiGxPSkoKAgMDZbVhw4YhNjZWoY6IyBhGhxpHR0ekp6frTBbOzs6Gj48P1Gq1yZp72CuvvILs7GzMmzcP6enpCAsLw+7du3V+CRERGeuVV17B999/L6ulpKRwLh6RFTE61JR3PbmwsBDOzs6P3VBFJk6ciIkTJ5r9PERkHzQaDRwdHXXqnDtDZH0MDjXLli0DUHqt+csvv0TNmjW1z6nVahw6dAhNmjQxfYdERGby008/4fnnn5fVNm7ciBEjRijUERE9DoNDzaeffgqg9F8vq1atkv3LxtnZGUFBQVi1apXpOyQiMgN9S0EUFRXByclJgW6IyBQMDjVJSUkAgK5du2Lbtm2oXbu22ZoiIjKX7OxseHt7y2qdOnXi5rhENsDoW7r379/PQENEVmn69Ok6gSYhIYGBhshGVOqWbiIiayKEgIOD7r/hOBmYyLYYPVJDRGRNfv/9d51A89FHHzHQENkgjtQQkc0KDg5GcnKyrJafny+7e5OIbAdDDRHZnHv37ukEl3r16uHPP/9UqCMiqgoGhZpz584Z/IYtWrSodDNERI/rk08+wdtvvy2r/frrr+jYsaNCHRFRVTEo1LRs2RKSJEEIoXdth78z5zYJRESPou/3k0ajqfD3FhHZBoMmCiclJeHGjRtISkrC1q1bERwcjBUrVuD06dM4ffo0VqxYgZCQEGzdutXc/RIR6bh48aJOcImMjDToH2JEZDsMGqn5+4aRgwYNwrJly/Dcc89pay1atEBAQADee+89vPjiiyZvkoioPN26dcP+/ftltYyMDNSpU0ehjohIKUZPFD5//jyCg4N16sHBwUhMTDRJU0REFSkuLta7iS5v1SayX0avU9O0aVMsWLAABQUF2lphYSEWLFiApk2bmrQ5IiJ9vvnmG51As2PHDgYaIjtn9EjNqlWr0K9fPwQEBODJJ58EAJw9exaSJOHHH380eYNEZJnUGoHjSTnIyC+Aj7sr2gZ7wtHB/PNX9M2RUavVelcMJiL7IolK/NPm/v37iI2NxaVLlyCEQGhoKIYOHYoaNWqYo0eTycvLg0qlQm5uLjw8PJRuh8hqxSWkI3pXItJz/zdi66dyRVS/UPQO8zPLOW/evIn69evLagMGDOANCkR2wNDv70qFGmvFUEP0+OIS0jEhNh4P/+IoGz9ZOby1TrB53FGdkSNHYuPGjbLajRs39M7vIyLbY+j3d6VWFN60aRNWr16NGzdu4Pfff0dgYCA+/fRTNGzYEP37969000Rk2dQagehdiTqBBgAESoNN9K5E9Aj11YaWxxnV4UaURGQMoy9Cr1y5ElOnTkWfPn1w+/Zt7WJ7tWvXxmeffWbq/ojIghxPypGFk4cJAOm5BTielAPgf6M6D7/mVm4BJsTGIy4hvdz32rNnj06gWbt2LQMNEZXL6FCzfPlyrF27FrNnz0a1av8b6ImIiMD58+dN2hwRWZaM/PIDzcPHVTSqA5SO6qg1uke4uLigV69eslpBQQHGjh1rZMdEZE+MDjVJSUlo1aqVTt3FxQX37t0zSVNEZJl83F0NPs7YUR0AuH37NiRJQlFRkbbWunVrCCHg4uJS6b6JyD4YHWqCg4Nx5swZnfrPP/+M0NBQU/RERBaqbbAn/FSuKG+Kr4TS+TJtgz2NGtUBgDlz5sDT01P23JkzZ3Dq1KnH6JiI7InRE4WnT5+OSZMmoaCgAEIIHD9+HN9++y1iYmLw5ZdfmqNHIrIQjg4SovqFYkJsPCRAdmmpLOhE9QuFo4Nk1KiOvrVnrHHujFJr9xBRKaNDzahRo1BSUoIZM2bg/v37GDp0KOrVq4elS5diyJAh5uiRiCxI7zA/rBzeGnN3XsCtvEJtva6HC+a+0Ex7R1PbYE/Uqu6EO/eLy30vl9tJ6PDE87La/PnzMWfOHPM0b0ZKrN1DRHKVuqV73LhxGDduHLKysqDRaODj42PqvojI4j08AmHciETalxNRnJ0iq1nrGlLlrd1TdpeXvrV7iMj0jJ5T061bN9y5cwcA4O3trQ00eXl56Natm0mbIyLLU/YFfitPPmfmrzz5bdrHk3L0jtJoigvxx6LnZYGmVq1aEEJYZaB5nLu8iMi0jA41Bw4ckN2ZUKagoACHDx82SVNEZJmM+QLXN1E4P/5HpH4yUFabv/Z73L592/TNVpHK3OVFROZh8OWnc+fOaf+cmJiIW7duaR+r1WrExcWhXr16pu2OiCyKMV/gD08U/mPR8zrHN5ixC892bW/qNquUsXd5EZH5GBxqWrZsCUmSIEmS3stMbm5uWL58uUmbIyLLYswX+PMt/OGncsUfF88ifdPbsudrtuwD716T4Pv/b/+2Zsbc5UVE5mVwqElKSoIQAg0bNsTx48dRp04d7XPOzs7w8fGBo6OjWZokIstgzBe4o4OEo+9213mu/qRNqFazNoD/3f5tzcrW7rmVW6D3spwE2ER4I7IGBoeawMBAAIBGozFbM0Rk2Qz9Am9V313v2jOBM38E/v8xtnKrszFr9xCReRk9UTgmJgbr1q3Tqa9btw6LFi0ySVNEZJnKvsCB8m/ofuLPn+HmKt/SYG50NI5cy8LSIS3x7bin8OvMbjYRaMqUrd3jq5KPZPmqXKvsdm61RuD369nYceYmfr+ezbutyC5JwshlO4OCgrB582Z06NBBVj927BiGDBmCpKQkkzZoSnl5eVCpVFa7FgaRpShvoTl9l5uKiorg5ORUle0pRqkVhbnwH9k6Q7+/jQ41rq6uuHjxIoKDg2X1GzduIDQ0FAUFljvDn6GGyHT+/gWuzsvEwM66G91a41YH1qa8hf/KohQX/iNbYOj3t9GXnwICAvDbb7/p1H/77Tf4+/sb+3ZEZKUcHSS0D/FC3OoFOoHm2LFjDDRVgAv/EckZvU3C2LFjERkZieLiYu2t3b/88gtmzJiBt99+u4JXE5GtEELAwUH330UMM1XHmHWD2od4VV1jRAoxOtTMmDEDOTk5mDhxonZlYVdXV8ycOROzZs0yeYNEZHmSk5N1LkF/8cUXmDhxokId2Scu/EckZ3SokSQJixYtwnvvvYeLFy/Czc0NjRo1gouLS8UvJiKrt2jRIrzzzjuy2v379+Hm5qZQR/aLC/8RyVVql24AqFmzJtq0aWPKXojIghUWFsLVVf7lyNEZZXHhPyI5g0LNgAEDsGHDBnh4eGDAgAGPPHbbtm0maYyILMehQ4fQuXNnWe3mzZu8OUBhXPiPSM6gu59UKpV2dVCVSvXIH3NITk7GmDFjEBwcDDc3N4SEhCAqKkrvbuFEZFoDBw6UBZrnn38eQggGGgthCQv/EVkKg0Zq1q9fr/fPVeXSpUvQaDRYvXo1nnjiCSQkJGDcuHG4d+8elixZUuX9ENmDW7duwc9P/oX4yy+/6N3QlpTVO8wPPUJ9FVn4j8iSGL34nqVYvHgxVq5ciRs3bhj8Gi6+R2SY1atXY/z48bLagwcPdObUEBFVBUO/vw0aqWnVqpXezen0iY+PN6zDx5SbmwtPz0dPfissLERhYaH2cV5enrnbIrJqJSUlqFevHjIyMrS1+fPnY86cOQp2RURkGINCzYsvvqj9c0FBAVasWIHQ0FC0b98eAHD06FFcuHChyu6CuH79OpYvX46PP/74kcfFxMQgOjq6Snoisnbx8fEIDw+X1a5du4aQkBCFOiIiMo7Rl5/Gjh0LPz8/zJ8/X1aPiopCamqq3h28yzN37twKQ8eJEycQERGhfZyWlobOnTujc+fO+PLLLx/5Wn0jNQEBAbz8RPSQ8ePHY/Xq1drHTz31FI4cOWLwCC0RkTmZbUNLlUqFkydPolGjRrL61atXERERgdzcXIPfKysrC1lZWY88JigoSHsdPy0tDV27dkW7du2wYcMGvUu0Pwrn1BDJ3b59W+cy7vbt22Wjs0RESjPpnJq/c3Nzw6+//qoTan799VejJxF6e3vD29vboGNv3ryJrl27Ijw8HOvXrzc60BCR3Pfff49XXnlFVmPgJyJrZnSoiYyMxIQJE3Dq1Ck89dRTAErn1Kxbtw7vv/++yRsESkdounTpggYNGmDJkiXIzMzUPufr62uWcxLZKiEEWrRogYSEBG0tMjISn376qYJdERE9PqNDzTvvvIOGDRti6dKl2Lx5MwCgadOm2LBhAwYPHmzyBgFgz549uHbtGq5du4b69evLnrPSO9KJFHH58mU0adJEVjt37hyaN2+uUEdERKZjtevUVAbn1JA9mz17NhYuXKh9HBwcjKtXr8LR0VHBroiIKma2OTUAcOfOHfzrX//CjRs3MG3aNHh6eiI+Ph5169ZFvXr1Kt00EZnevXv3ULNmTVlt48aNGDFihEIdERGZh9Gh5ty5c+jevTtUKhWSk5MxduxYeHp6Yvv27fjjjz/w9ddfm6NPIqqEuLg49OnTR1bLzMw0eII+EZE1MfoWoqlTp2LkyJG4evWq7G6nPn364NChQyZtjogqRwiBbt26yQLN8OHDIYRgoCEim2X0SM2JEydki3SVqVevHm7dumWSpoio8lJSUhAYGCirHTlyRLsCOBGRrTJ6pMbV1VXvHkqXL19GnTp1TNIUEVXOJ598Igs0NWrUQFFREQMNEdkFo0NN//79MW/ePBQXFwMAJElCSkoK3nnnHQwcONDkDRJRxYqKiuDs7Iy3335bW/v0009x9+5dODk5KdgZEVHVMTrUlC1+5+PjgwcPHqBz58544okn4O7ujg8++MAcPRLRI/z2229wcXHR/kMDAFJTUxEZGalcU0RECjB6To2Hhwd+/fVX7Nu3D/Hx8dBoNGjdujW6d+9ujv6I6BGGDBmCLVu2aB/36tULcXFxCnZERKQco0JNSUkJXF1dcebMGXTr1g3dunUzV19E9AgZGRmoW7eurLZnzx706NFDoY6IiJRn1OWnatWqITAwEGq12lz9EFEF1q1bpxNo7t27x0BDRHbP6Dk1c+bMwaxZs5CTk2OOfoioHGq1GgEBARgzZoy29v7770MIgerVqyvYGRGRZTB6Ts2yZctw7do1+Pv7IzAwEDVq1JA9Hx8fb7LmiKjU2bNn0bJlS1ntypUraNSokTINERFZIKNDTf/+/SFJkjl6ISI93nzzTXz++efax61atcKpU6f43yER0UO4SzeRhcrNzUWtWrVktR9++AEvv/yyMg0RESnE0O9vg+fU3L9/H5MmTUK9evXg4+ODoUOHIisryyTNEpHctm3bdALNnTt3GGiIiB7B4FATFRWFDRs2oG/fvhgyZAj27t2LCRMmmLM3IrsjhEDr1q1lq3NPnDgRQgioVCoFOyMisnwGz6nZtm0bvvrqKwwZMgRA6Y6/HTt2hFqthqOjo9kaJLIXV69eRePGjWW106dP60wQJiIi/QweqUlNTcXTTz+tfdy2bVtUq1YNaWlpZmmMyJ5ER0fLAk29evVQUlLCQENEZASDR2rUajWcnZ3lL65WDSUlJSZviqgqqTUCx5NykJFfAB93V7QN9oSjQ9XcWfTgwQOdNWbWrl2LsWPHVsn5iYhsicGhRgiBkSNHwsXFRVsrKCjA+PHjZWvVbNu2zbQdEplRXEI6onclIj23QFvzU7kiql8oeof5mfXc//3vf3VWAf7rr7/g4+Nj1vMSEdkqg0PN66+/rlMbPny4SZshqkpxCemYEBuPh9c0uJVbgAmx8Vg5vLXZgk2fPn1kG08OHjxYtjElEREZz+BQs379enP2QVSl1BqB6F2JOoEGAAQACUD0rkT0CPU16aWomzdvon79+rLa4cOH0alTJ5Odg4jIXhm99xORLTielCO75PQwASA9twDHk0y3x9myZctkgcbJyQmFhYUMNEREJsJQQ3YpI7/8QFOZ4x6luLgY7u7umDJlira2ePFiFBUV6Uy+JyKiyjN67yciW+Dj7mrS48pz9OhRtG/fXlZLTk5GYGDgY70vERHp4kgN2aW2wZ7wU7mivNkyEkrvgmob7Fnpc4wYMUIWaLp27QqNRsNAQ0RkJgw1ZJccHSRE9QsFAJ1gU/Y4ql9opSYJZ2VlQZIkbNq0SVvbvXs39u3bx521iYjMiKGG7FbvMD+sHN4avir5JSZflWulb+fetGkT6tSpI6vdvXsXffr0eaxeiYioYpxTQ3atd5gfeoT6PvaKwhqNBk888QSSkpK0tXfeeQcxMTGmbpmIiMrBUEN2z9FBQvsQr0q/PiEhAc2bN5fVLl68iCZNmjxua0REZARefiJ6DG+//bYs0ISGhkKtVjPQEBEpgCM1RJWQn58PDw8PWe3bb7/FkCFDFOqIiIgYaoiMtHPnTvTv319Wy8nJQe3atRXqSHlK7nRORFSGoYbIQEIItG/fHseOHdPWxo0bhzVr1ijYlfKU3OmciOjvGGqIDHDjxg2EhITIaidOnEBERIRCHVkGJXc6JyJ6GCcKE1Vg4cKFskBTp04dFBcX232gqWinc6B0p3O1Rt8RRESmx1BDVI6CggJIkoTZs2draytXrkRGRgaqVeMgpxI7nRMRPQp/MxPpsX//fnTr1k1WS09Ph6+vr0IdWZ6q3OmciMgQHKkhekj//v1lgebFF1+EEIKB5iFVtdM5EZGhrC7UFBYWomXLlpAkCWfOnFG6HbIh6enpkCQJO3fu1Nb279+P7du3K9iV5aqKnc6JiIxhdaFmxowZ8Pf3V7oNsjErV67U+f/VgwcP0KVLF2UasgLm3OmciKgyrCrU/Pzzz9izZw+WLFmidCtkI0pKSuDl5YWJEydqawsXLoQQAq6uvGxSEXPsdE5EVFlWM1H4r7/+wrhx4/Dvf/8b1atXN+g1hYWFKCws1D7Oy8szeV9cSdV6nTx5Em3atJHVbty4geDgYIU6sk6m2umciOhxWUWoEUJg5MiRGD9+PCIiIpCcnGzQ62JiYhAdHW22vriSqvUaO3YsvvrqK+3jjh074vDhw5AkfhFXxuPudE5EZAqKXn6aO3cuJEl65M/JkyexfPly5OXlYdasWUa9/6xZs5Cbm6v9SU1NNVnvZSupPrxOR9lKqnEJ6SY7F5lOTk4OJEmSBZqdO3fi119/ZaAhIrJykhBCseU+s7KykJWV9chjgoKCMGTIEOzatUv2paNWq+Ho6Ihhw4Zh48aNBp0vLy8PKpUKubm5OjssG0OtEei0aF+5C49JKJ1T8OvMbhyCtyDffvsthg4dKqvl5eXB3d1doY6IiMgQhn5/K3r5ydvbG97e3hUet2zZMixYsED7OC0tDb169cKWLVvQrl07c7aolzErqXJIXnkajQahoaG4fPmytvb2229zwjkRkY2xijk1DRo0kD2uWbMmACAkJAT169ev8n64kqr1uHjxIkJDQ2W1hIQENGvWTKGOiIjIXKzqlm5LwZVUrcM777wjCzSNGjWCWq1moCEislFWMVLzsKCgICg4FUi7kuqt3AK9OxSXzanhSqrKuHv3rs48mU2bNmH48OEKdURERFWBIzWVwJVULddPP/2kE2iysrIYaIiI7ABDTSVxJVXLIoTAM888g+eff15bGzlyJIQQ8PLiZG0iIntglZefLAVXUrUMf/zxB4KCgmS1o0ePKnJnHBERKYeh5jFxJVVlffTRR5g5c6b2sUqlQmZmJpycnBTsioiIlMBQQ1apsLAQ1atXh0aj0daWL1+ON954Q8GuiIhISQw1ZHUOHz6MZ555Rlb7888/Ua9ePYU6IiIiS8CJwmRVBg0aJAs0zz33HIQQDDRERMSRGkui1ghOOi7HX3/9BV9fX1ntv//9L5599lmFOiIiIkvDUGMh4hLSEb0rUbanlJ/KFVH9Qu3+9vC1a9fin//8p6x2//59uLm5KdQRERFZIl5+sgBxCemYEBuvs0nmrdwCTIiNR1xCukKdKUutVsPX11cWaKKjoyGEYKAhIiIdHKlRmFojEL0rUe92CwKlKxRH70pEj1Bfu7oUdfr0abRu3VpWu3btGkJCQhTqiIiILB1HahR2PClHZ4Tm7wSA9NwCHE/KqbqmFDZx4kRZoGnTpg00Gg0DDRERPRJHahSWkV9+oKnMcdbszp07qF27tqy2detWDBgwQKGOiIjImnCkRmE+7q4VH2TEcdbqhx9+0Ak0ubm5DDRERGQwhhqFtQ32hJ/KVWe37zISSu+CahvsWZVtVRkhBFq0aIHBgwdra5MnT4YQAh4eHgp2RkRE1oahRmGODhKi+oUCgE6wKXsc1S/UJicJX758GQ4ODjh//ry2dvbsWSxdulTBroiIyFox1FiA3mF+WDm8NXxV8ktMvipXrBze2ibXqZkzZw6aNGmifRwYGIiSkhK0aNFCwa6IiMiacaKwhegd5oceob42v6Lw/fv3UaNGDVlt3bp1GDVqlEIdERGRrWCosSCODhLah3gp3YbZ/Oc//0Hv3r1ltYyMDNSpU0ehjoiIyJbw8hOZnRACPXr0kAWaoUOHQgjBQENERCbDkRoyq9TUVDRo0EBW++2339ChQweFOiIiIlvFkRoym08//VQWaFxdXVFYWMhAQ0REZsGRGjK5oqIieHh4oLCwUFv75JNP8NZbbynYFRER2TqGGjKpI0eOoGPHjrJaSkoKAgICFOqIiIjsBS8/kckMHTpUFmi6d+8OjUbDQENERFWCIzX02DIzM+Hj4yOrxcXFoVevXgp1RERE9ogjNfRY1q9frxNo7t27x0BDRERVjqGGKkWtVqNBgwYYPXq0tjZnzhwIIVC9enUFOyMiInvFy09ktHPnzuHJJ5+U1S5fvozGjRsr1BERERFHashIU6ZMkQWaJ598EhqNhoGGiIgUx5EaMkheXh5UKpWs9v3332PQoEEKdURERCTHUEMV2r59OwYMGCCr3b59G7Vq1VKmISIiIj14+YnKJYRARESELNBMmDABQggGGiIisjgcqSG9rl27hkaNGslq8fHxaNWqlUIdERERPRpHakjHvHnzZIHGz88PJSUlDDRERGTROFJDWg8ePNBZY2bNmjUYN26cQh0REREZjqGGAAC//PILunfvLqvdunULdevWVagjIiIi4/DyE6Fv376yQPPyyy9DCMFAQ0REVoUjNXbs5s2bqF+/vqx28OBBPPPMMwp1REREVHlWNVLz008/oV27dnBzc4O3t7fO2ilkuOXLl8sCjYODAwoKChhoiIjIalnNSM3WrVsxbtw4LFy4EN26dYMQAufPn1e6LatTXFwMLy8v5Ofna2uLFi3CjBkzFOyKiIjo8VlFqCkpKcGUKVOwePFijBkzRlv/xz/+oWBX1ufYsWN46qmnZLWkpCQEBQUp0xAREZEJWcXlp/j4eNy8eRMODg5o1aoV/Pz80KdPH1y4cEHp1qzGyJEjZYGmc+fO0Gg0DDRERGQzrGKk5saNGwCAuXPn4pNPPkFQUBA+/vhjdO7cGVeuXIGnp6fe1xUWFqKwsFD7OC8vr0r6tSTZ2dnw9vaW1X766Sc899xzCnVERERkHoqO1MydOxeSJD3y5+TJk9BoNACA2bNnY+DAgQgPD8f69eshSRJ++OGHct8/JiYGKpVK+xMQEFBVfzWLsGnTJp1Ak5+fz0BDREQ2SdGRmjfeeANDhgx55DFBQUHaSa2hoaHauouLCxo2bIiUlJRyXztr1ixMnTpV+zgvL88ugo1Go0Hjxo1x/fp1bW3mzJn48MMPFeyKiIjIvBQNNd7e3jojCfqEh4fDxcUFly9fRqdOnQCU3sWTnJyMwMDAcl/n4uICFxcXk/VrDS5cuICwsDBZLTExEU2bNlWoIyIioqphFROFPTw8MH78eERFRWHPnj24fPkyJkyYAAAYNGiQwt1ZjmnTpskCTdOmTaFWqxloiIjILljFRGEAWLx4MapVq4bXXnsNDx48QLt27bBv3z7Url1b6dYUl5+fDw8PD1lt8+bNePXVVxXqiIiIqOpJQgihdBNVJS8vDyqVCrm5uTohwFrt2rULL7zwgqyWnZ1d7h1hRERE1sbQ72+ruPxEuoQQ6NixoyzQjBkzBkIIBhoiIrJLVnP5if4nKSkJDRs2lNVOnDiBiIgIhToiIiJSHkdqrExMTIws0Hh5eaG4uJiBhoiI7B5HaqxEQUEB3NzcZLUvvvgCEydOVKgjIiIiy8JQYwUOHDiArl27ymppaWnw8/NTqCMiIiLLw8tPFu7FF1+UBZoXXngBQggGGiIioodwpMZCpaenw9/fX1bbt2+fzogNERERleJIjQVatWqVTqB58OABAw0REdEjMNRYkJKSEnh7e2u3gACADz74AEIIuLq6KtgZERGR5ePlJwtx6tQpnduyr1+/rrMeDREREenHkRoLMG7cOFmgeeqpp6DRaBhoiIiIjMCRGgXdvn1bZ0uDHTt26OzlRERERBXjSI1CvvvuO51Ak5eXx0BDRERUSQw1VUyj0aBZs2Z49dVXtbWpU6dCCAF3d3cFOyMiIrJuvPxUhS5duoSmTZvKaufPn0dYWJhCHREREdkOjtRUkVmzZskCTUhICNRqNQMNERGRiXCkxszu3buHmjVrymobN27EiBEjFOqIiIjINjHUmNHPP/+M5557TlbLzMyEt7e3Qh0RERHZLl5+MgMhBLp27SoLNCNGjIAQgoGGiIjITDhSY2J//PEHgoKCZLWjR4+iXbt2yjRERERkJzhSY0JLliyRBRp3d3cUFRUx0BAREVUBjtSYQGFhIWrUqAG1Wq2tLV26FJMnT1awKyIiIvvCUGMCU6ZMkQWaP//8E/Xq1VOwIyIiIvvDy08m0Lp1awBA7969IYRgoCEiIlKAJIQQSjdRVfLy8qBSqZCbmwsPDw+l2yEiIiIDGPr9zZEaIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENoGhhoiIiGwCQw0RERHZBIYaIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENqGa0g1UJSEEgNItzImIiMg6lH1vl32Pl8euQk1+fj4AICAgQOFOiIiIyFj5+flQqVTlPi+JimKPDdFoNEhLS4O7uzskSVK6nSqVl5eHgIAApKamwsPDQ+l2LAY/F/34uejiZ6IfPxf9+LnoV9nPRQiB/Px8+Pv7w8Gh/JkzdjVS4+DggPr16yvdhqI8PDz4H5ge/Fz04+eii5+Jfvxc9OPnol9lPpdHjdCU4URhIiIisgkMNURERGQTGGrshIuLC6KiouDi4qJ0KxaFn4t+/Fx08TPRj5+Lfvxc9DP352JXE4WJiIjIdnGkhoiIiGwCQw0RERHZBIYaIiIisgkMNURERGQTGGrs1E8//YR27drBzc0N3t7eGDBggNItWYzCwkK0bNkSkiThzJkzSrejqOTkZIwZMwbBwcFwc3NDSEgIoqKiUFRUpHRrVW7FihUIDg6Gq6srwsPDcfjwYaVbUlRMTAzatGkDd3d3+Pj44MUXX8Tly5eVbsuixMTEQJIkREZGKt2K4m7evInhw4fDy8sL1atXR8uWLXHq1CmTn4ehxg5t3boVr732GkaNGoWzZ8/it99+w9ChQ5Vuy2LMmDED/v7+SrdhES5dugSNRoPVq1fjwoUL+PTTT7Fq1Sq8++67SrdWpbZs2YLIyEjMnj0bp0+fxtNPP40+ffogJSVF6dYUc/DgQUyaNAlHjx7F3r17UVJSgp49e+LevXtKt2YRTpw4gTVr1qBFixZKt6K427dvo2PHjnBycsLPP/+MxMREfPzxx6hVq5bpTybIrhQXF4t69eqJL7/8UulWLNLu3btFkyZNxIULFwQAcfr0aaVbsjgfffSRCA4OVrqNKtW2bVsxfvx4Wa1JkybinXfeUagjy5ORkSEAiIMHDyrdiuLy8/NFo0aNxN69e0Xnzp3FlClTlG5JUTNnzhSdOnWqknNxpMbOxMfH4+bNm3BwcECrVq3g5+eHPn364MKFC0q3pri//voL48aNw6ZNm1C9enWl27FYubm58PT0VLqNKlNUVIRTp06hZ8+esnrPnj1x5MgRhbqyPLm5uQBgV//fKM+kSZPQt29fdO/eXelWLMLOnTsRERGBQYMGwcfHB61atcLatWvNci6GGjtz48YNAMDcuXMxZ84c/Pjjj6hduzY6d+6MnJwchbtTjhACI0eOxPjx4xEREaF0Oxbr+vXrWL58OcaPH690K1UmKysLarUadevWldXr1q2LW7duKdSVZRFCYOrUqejUqRPCwsKUbkdR3333HeLj4xETE6N0Kxbjxo0bWLlyJRo1aoT//Oc/GD9+PCZPnoyvv/7a5OdiqLERc+fOhSRJj/w5efIkNBoNAGD27NkYOHAgwsPDsX79ekiShB9++EHhv4XpGfq5LF++HHl5eZg1a5bSLVcJQz+Xv0tLS0Pv3r0xaNAgjB07VqHOlSNJkuyxEEKnZq/eeOMNnDt3Dt9++63SrSgqNTUVU6ZMQWxsLFxdXZVux2JoNBq0bt0aCxcuRKtWrfB///d/GDduHFauXGnyc1Uz+TuSIt544w0MGTLkkccEBQUhPz8fABAaGqqtu7i4oGHDhjY56dHQz2XBggU4evSozn4kERERGDZsGDZu3GjONqucoZ9LmbS0NHTt2hXt27fHmjVrzNydZfH29oajo6POqExGRobO6I09evPNN7Fz504cOnQI9evXV7odRZ06dQoZGRkIDw/X1tRqNQ4dOoTPP/8chYWFcHR0VLBDZfj5+cm+cwCgadOm2Lp1q8nPxVBjI7y9veHt7V3hceHh4XBxccHly5fRqVMnAEBxcTGSk5MRGBho7jarnKGfy7Jly7BgwQLt47S0NPTq1QtbtmxBu3btzNmiIgz9XIDSWzG7du2qHdVzcLCvAV5nZ2eEh4dj7969eOmll7T1vXv3on///gp2piwhBN58801s374dBw4cQHBwsNItKe7ZZ5/F+fPnZbVRo0ahSZMmmDlzpl0GGgDo2LGjzu3+V65cMct3DkONnfHw8MD48eMRFRWFgIAABAYGYvHixQCAQYMGKdydcho0aCB7XLNmTQBASEiIXf/rMy0tDV26dEGDBg2wZMkSZGZmap/z9fVVsLOqNXXqVLz22muIiIjQjlalpKTY1dyih02aNAmbN2/Gjh074O7urh3JUqlUcHNzU7g7Zbi7u+vMKapRowa8vLzseq7RW2+9hQ4dOmDhwoUYPHgwjh8/jjVr1phl1Jehxg4tXrwY1apVw2uvvYYHDx6gXbt22LdvH2rXrq10a2Rh9uzZg2vXruHatWs64U4IoVBXVe+VV15BdnY25s2bh/T0dISFhWH37t02ObppqLL5EF26dJHV169fj5EjR1Z9Q2Sx2rRpg+3bt2PWrFmYN28egoOD8dlnn2HYsGEmP5ck7Ok3ExEREdks+7o4TkRERDaLoYaIiIhsAkMNERER2QSGGiIiIrIJDDVERERkExhqiIiIyCYw1BAREZFNYKghIqpAly5dEBkZqXQbRFQBhhoiAoAKd+2uylVizREiRo4ciRdffNGk71meAwcOQJIk3Llzp0rOR0SluE0CEQEA0tPTtX/esmUL3n//fdkmdA/v51NcXAwnJ6cq64+IqCIcqSEiAKUbVJb9qFQqSJKkfVxQUIBatWrh+++/R5cuXeDq6orY2FjMnTsXLVu2lL3PZ599hqCgIFlt/fr1aNq0KVxdXdGkSROsWLGi3D5GjhyJgwcPYunSpdpRouTkZABAYmIinnvuOdSsWRN169bFa6+9hqysLO1r//Wvf6F58+Zwc3ODl5cXunfvjnv37mHu3LnYuHEjduzYoX3PAwcO6D3/vXv3MGLECNSsWRN+fn74+OOPdY6JjY1FREQE3N3d4evri6FDhyIjIwMAkJycjK5duwIAateuLRvliouLQ6dOnVCrVi14eXnh+eefx/Xr1x/xvwoRGYOhhogMNnPmTEyePBkXL15Er169DHrN2rVrMXv2bHzwwQe4ePEiFi5ciPfeew8bN27Ue/zSpUvRvn17jBs3Dunp6UhPT0dAQADS09PRuXNntGzZEidPnkRcXBz++usvDB48GEDpSNOrr76K0aNH4+LFizhw4AAGDBgAIQSmTZuGwYMHo3fv3tr37NChg97zT58+Hfv378f27duxZ88eHDhwAKdOnZIdU1RUhPnz5+Ps2bP497//jaSkJG1wCQgIwNatWwEAly9fRnp6OpYuXQqgNDBNnToVJ06cwC+//AIHBwe89NJL0Gg0Bn2WRPRovPxERAaLjIzEgAEDjHrN/Pnz8fHHH2tfFxwcjMTERKxevRqvv/66zvEqlQrOzs6oXr06fH19tfWVK1eidevWWLhwoba2bt06BAQE4MqVK7h79y5KSkowYMAA7e7ZzZs31x7r5uaGwsJC2Xs+7O7du/jqq6/w9ddfo0ePHgCAjRs36uxQPnr0aO2fGzZsiGXLlqFt27a4e/cuatasCU9PTwCAj48PatWqpT124MCBsvf56quv4OPjg8TERISFhZXbFxEZhiM1RGSwiIgIo47PzMxEamoqxowZg5o1a2p/FixYYPRll1OnTmH//v2y92nSpAkA4Pr163jyySfx7LPPonnz5hg0aBDWrl2L27dvG3WO69evo6ioCO3bt9fWPD098Y9//EN23OnTp9G/f38EBgbC3d0dXbp0AQCkpKRU+P5Dhw5Fw4YN4eHhgeDgYINeR0SG4UgNERmsRo0asscODg4QQshqxcXF2j+XXVZZu3Yt2rVrJzvO0dHRqHNrNBr069cPixYt0nnOz88Pjo6O2Lt3L44cOYI9e/Zg+fLlmD17No4dO6YNDxV5+O+iz71799CzZ0/07NkTsbGxqFOnDlJSUtCrVy8UFRU98rX9+vVDQEAA1q5dC39/f2g0GoSFhVX4OiIyDEMNEVVanTp1cOvWLQghIEkSAODMmTPa5+vWrYt69erhxo0bGDZsmMHv6+zsDLVaLau1bt0aW7duRVBQEKpV0/+rS5IkdOzYER07dsT777+PwMBAbN++HVOnTtX7ng974okn4OTkhKNHj6JBgwYAgNu3b+PKlSvo3LkzAODSpUvIysrChx9+iICAAADAyZMndfoHIDtfdnY2Ll68iNWrV+Ppp58GAPz666+GfiREZABefiKiSuvSpQsyMzPx0Ucf4fr16/jiiy/w888/y46ZO3cuYmJisHTpUly5cgXnz5/H+vXr8cknn5T7vkFBQTh27BiSk5ORlZUFjUaDSZMmIScnB6+++iqOHz+OGzduYM+ePRg9ejTUajWOHTuGhQsX4uTJk0hJScG2bduQmZmJpk2bat/z3LlzuHz5MrKysmQjSmVq1qyJMWPGYPr06fjll1+QkJCAkSNHwsHhf78qGzRoAGdnZyxfvhw3btzAzp07MX/+fNn7BAYGQpIk/Pjjj8jMzMTdu3dRu3ZteHl5Yc2aNbh27Rr27duHqVOnPs7HT0QPE0RED1m/fr1QqVTax0lJSQKAOH36tM6xK1euFAEBAaJGjRpixIgR4oMPPhCBgYGyY7755hvRsmVL4ezsLGrXri2eeeYZsW3btnLPf/nyZfHUU08JNzc3AUAkJSUJIYS4cuWKeOmll0StWrWEm5ubaNKkiYiMjBQajUYkJiaKXr16iTp16ggXFxfRuHFjsXz5cu17ZmRkiB49eoiaNWsKAGL//v16z52fny+GDx8uqlevLurWrSs++ugj0blzZzFlyhTtMZs3bxZBQUHCxcVFtG/fXuzcuVPn85k3b57w9fUVkiSJ119/XQghxN69e0XTpk2Fi4uLaNGihThw4IAAILZv317uZ0FEhpOEMOAiMhEREZGF4+UnIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENoGhhoiIiGwCQw0RERHZBIYaIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU34f+ToE+GhjaKGAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWJUlEQVR4nO3deVxU9f4/8NcB2VQYBURAEZD0KqKpoOZSLrlmZmmaqZnr/bqUkrlkWoiaZNqilmu5JFnWVa9axtWba5krboi7ECQYmwIubDOf3x/8mNtxBpnBGc4sr+fjwePhvOfMnLdzb8zLz/mcz0cSQggQERERWTkHpRsgIiIiMgWGGiIiIrIJDDVERERkExhqiIiIyCYw1BAREZFNYKghIiIim8BQQ0RERDaBoYaIiIhsAkMNERER2QSGGiIbtmHDBkiSBFdXV/zxxx86z3fp0gVhYWGyWlBQECRJ0v7UqFEDrVu3xueff46HFyA/cOCA9rgNGzbo7aFbt26QJAlBQUGy+r1797Bo0SI8+eST8PDwgLu7O0JCQjB48GAcPHhQ7zn0/ZR3XnO5e/cuIiMj4e/vD1dXV7Rs2RLfffedQa/973//ix49esDf3x8uLi7w8fFBt27dsHv3bp1jZ8+ejVatWsHT0xOurq5o2LAh/vnPf+r935GISlVTugEiMr/CwkLMmTMHmzZtMuj4jh07YsmSJQCAtLQ0fPLJJ3jzzTeRl5eHd999V+d4d3d3fPXVVxg5cqSsnpSUhAMHDsDDw0NWV6vV6NmzJ86fP4/p06ejbdu2AICrV69i165dOHz4MDp37ix7zcKFC9G1a1edc4eEhBj0dzKVAQMG4MSJE/jwww/RuHFjbN68Ga+++io0Gg2GDh36yNdmZ2ejWbNmGDt2LHx9fZGTk4NVq1ahb9++2LRpE4YPH6499s6dO3j11VfRtGlTuLu7IzExEQsWLMDOnTtx4cIFeHl5mfuvSmR9BBHZrPXr1wsAonfv3sLBwUGcOXNG9nznzp1Fs2bNZLXAwEDRt29fWS03N1eoVCrRoEEDWX3//v0CgBg7dqwAIK5cuSJ7fs6cOaJ+/fqiT58+IjAwUFvft2+fACDWrVunt2+1Wq1zjh9++MHgv7e5/PTTTwKA2Lx5s6zeo0cP4e/vL0pKSox+z6KiIlGvXj3x9NNPV3js7t27BQDx1VdfGX0eInvAy09EdmDGjBnw8vLCzJkzK/V6Dw8PNG7cGH/99Zfe53v06IGAgACsW7dOW9NoNNi4cSNef/11ODjIf9VkZ2cDAPz8/PS+38PHW4rt27ejZs2aGDRokKw+atQopKWl4dixY0a/p5OTE2rVqoVq1SoeOK9Tpw4AGHQskT2yzN8cRGRS7u7umDNnDv7zn/9g3759Rr++pKQEqampaNy4sd7nHRwcMHLkSHz99ddQq9UAgD179uDPP//EqFGjdI6PiIiAk5MTpkyZgm+++Qbp6ekV9qDRaFBSUqLzUxEhhN7XVea9EhIS0LRpU51Q0aJFC+3zhij7u6SlpSEqKgpXrlzB22+/rffYkpISPHjwAKdPn0ZkZCQaN26MAQMGGHQeInvDUENkJ8aPH4+GDRti5syZOhN+H/b3IJCSkoKJEyciOzsbMTEx5b5m1KhRSE9PR1xcHABg3bp16Ny5s945L0FBQVi1ahXS0tIwfPhw+Pv7w9/fH6+//joOHz6s9/1feeUVODk56fz8+eefj/y7bNy4Ue/r9P1UJDs7G56enjr1slrZCFRFnnvuOTg5OaFevXr47LPPsGXLFvTt21fnuFu3bsHJyQnVq1dH69atUVJSgv3796NmzZoGnYfI3nAMk8hOODs7Y8GCBRg6dCi+//57vPLKK+Ueu3v3bp0v+bIJreUJDg5Gly5dsG7dOjz11FPYsWMHvvzyy3KPHz16NAYOHIjdu3fj6NGjOHr0KGJjY7Fp0yYsWrQI06dPlx2/aNEidOvWTed96tatW+45AKBfv344ceLEI48xhiRJlXru75YvX447d+4gPT0dsbGxeOWVV7Bx40a8+uqrsuO8vb1x4sQJFBYW4uLFi/joo4/QtWtXHDhwoNxLd0R2TeE5PURkRmUThU+cOCGEEEKj0YjWrVuLkJAQUVRUVO5E4U6dOokTJ06Io0ePik2bNomgoCBRrVo1cfjwYdmxD0/ijY2NFU5OTuLdd98VKpVK3L9/XwghRN++fWUThcuTkJAgfH19hZOTk7h9+7becxhLo9GI4uJig34q8tRTT4k2bdro7RuAWL16daV67N27t6hdu7ZsgrQ+qampolq1amLy5MmVOg+RrePlJyI7IkkSFi1ahOvXr2PNmjXlHqdSqRAREYF27dph+PDh2LNnD5ycnDBx4kRoNJpyXzdgwABUr14dH374IYYMGQI3Nzej+mvWrBmGDBmC4uJiXLlyxajXlseUl5+aN2+Oixcv6sy/OX/+PADorPljqLZt2+L27dvIzMx85HH169eHv7+/yT4bIlvDy09EdqZ79+7o0aMH5s2bh4CAAINe06hRI8yYMQPR0dHYsmWLzmWSMm5ubnj//fdx6NAhTJgwodz3y87Ohru7O5ydnXWeu3TpEgDA39/foN4qYsrLTy+99BLWrl2LrVu3yi7fbdy4Ef7+/mjXrp3R7ymEwMGDB1GrVq0K1565du0a/vzzT7zwwgtGn4fIHjDUENmhRYsWITw8HBkZGWjWrJlBr5k2bRpWrVqF6OhoDB48GI6OjnqPmzp1KqZOnfrI99q/fz+mTJmCYcOGoUOHDvDy8kJGRga+/fZbxMXFYcSIEahfv77sNVevXsXRo0d13qt+/fo6x/6dl5eXyRaq69OnD3r06IEJEyYgLy8PTzzxhLbn2NhY2WcyZswYbNy4EdevX0dgYCAAoH///njyySfRsmVLeHl5IS0tDRs2bMDBgwfxxRdfaO+qOnfuHN566y28/PLLaNiwIRwcHHD+/Hl8+umn8PLywrRp00zy9yGyNQw1RHaoVatWePXVV7F582aDX1OzZk28//77mDRpEr755huMGDGi0ud/6qmnMHr0aOzfvx+bNm1CVlYW3NzcEBoaiuXLl+sd5dG3kjFQup3AggULKt2LsbZt24bZs2fj/fffR05ODpo0aYJvv/0WQ4YMkR2nVquhVqtld5p17NgR//rXv/D5558jLy8PtWrVQkREBH788UfZJOy6devC398fH3/8MdLT01FSUoL69evj+eefx7vvvmvwCBuRvZGEqODeTiIiIiIrwInCREREZBMYaoiIiMgmMNQQERGRTWCoISIiIpvAUENEREQ2gaGGiIiIbIJdrVOj0WiQlpYGd3d3gzeeIyIiImUJIZCfnw9/f384OJQ/HmNXoSYtLY2LVhEREVmp1NTUR64gblehxt3dHUDph+Lh4aFwN0RERGSIvLw8BAQEaL/Hy2NXoabskpOHhwdDDRERkZWpaOoIJwoTERGRTWCoISIiIpvAUENEREQ2gaGGiIiIbAJDDREREdkEhhoiIiKyCQw1REREZBMYaoiIiMgmMNQQERGRTbCrFYWJiIgshVojcDwpBxn5BfBxd0XbYE84OnCz5cfBUENERFTF4hLSEb0rEem5Bdqan8oVUf1C0TvMT8HOrBsvPxEREVWhuIR0TIiNlwUaALiVW4AJsfGIS0hXqDPrx1BDRERURdQagehdiRB6niurRe9KhFqj7wiqCEMNERFRFTmelKMzQvN3AkB6bgGOJ+VUXVM2hKGGiIioimTklx9oKnMcyVlVqLl58yaGDx8OLy8vVK9eHS1btsSpU6eUbouIiMggPu6uJj2O5Kzm7qfbt2+jY8eO6Nq1K37++Wf4+Pjg+vXrqFWrltKtERERGaRtsCf8VK64lVugd16NBMBXVXp7NxnPakLNokWLEBAQgPXr12trQUFByjVERERkJEcHCVH9QjEhNh4SIAs2ZSvURPUL5Xo1lWQ1l5927tyJiIgIDBo0CD4+PmjVqhXWrl37yNcUFhYiLy9P9kNERKSk3mF+WDm8NXxV8ktMvipXrBzemuvUPAZJCGEV9425upb+jz916lQMGjQIx48fR2RkJFavXo0RI0bofc3cuXMRHR2tU8/NzYWHh4dZ+yUiInoUrihsuLy8PKhUqgq/v60m1Dg7OyMiIgJHjhzR1iZPnowTJ07g999/1/uawsJCFBYWah/n5eUhICCAoYaIiMiKGBpqrObyk5+fH0JDQ2W1pk2bIiUlpdzXuLi4wMPDQ/ZDREREtslqQk3Hjh1x+fJlWe3KlSsIDAxUqCMiIiKyJFYTat566y0cPXoUCxcuxLVr17B582asWbMGkyZNUro1IiIisgBWE2ratGmD7du349tvv0VYWBjmz5+Pzz77DMOGDVO6NSIiIruWmJgISZIQHByMzMxMxfqwmonCpmDoRCMiIiIyzMyZM/HRRx9pH6empqJ+/fomPYeh399Ws/geERERPT5T3Up+9+5duLu7y2qxsbEmDzTGYKghIiKyE3EJ6YjelSjbKdxP5YqofqFGLfr3448/ol+/frJaVlYWvLy8TNZrZVjNnBoiIiKqvLiEdEyIjZcFGgC4lVuACbHxiEtIr/A9hBB45plnZIFm1KhREEIoHmgAjtQQERHZPLVGIHpXot5NNAVK952K3pWIHqG+5V6KSk5ORnBwsKx27NgxtG3b1uT9VhZHaoiIiGzc8aQcnRGavxMA0nMLcDwpR+/zixYtkgUalUqFoqIiiwo0AEdqiIiIbF5GfvmB5lHHFRYWavdeLPP5559b7BpxDDVEREQ2zsfdteKDHjru0KFD6Ny5s+z5mzdvwt/f36S9mRIvPxEREdm4tsGe8FO5orwbtyWU3gXVNtgTADBw4EBZoHn++echhLDoQAMw1BAREdk8RwcJUf1KN4V+ONiUPY7qF4qszAxIkoRt27Zpn//ll1+wa9euqmn0MTHUEBER2YHeYX5YObw1fFXyS1G+KlesHN4aKUd2wdfXV/bc/fv30a1bt6ps87FwTg0REZGd6B3mhx6hvrIVhVsHeKBBQH1kZGRoj5s3bx7ee+89BTutHIYaIiIiO+LoIKF9SOlCefHx8XB9Ilz2/LVr1xASEqJEa4+Nl5+IiIjs0Pjx4xEe/r9A07ZtW2g0GqsNNABHaoiIiOxKUlISGjZsKKtt374dL774ojINmRBDDRERkZ0YOHCg7M4mAMjNzYWHh4dCHZkWQw0REZGN02g0cHR01KkLoW83KOvFOTVEREQ2bMeOHTqBJjY21qSBRq0R+P16NnacuYnfr2dDrVEmLHGkhoiIyEZJku4awkVFRXBycjLZOeIS0hG9K1G2YaafyhVR/ULRO8zPZOcxBEdqiIiIbExmZqZOoOnatSuEECYPNBNi43V2AL+VW4AJsfGIS0g32bkMwVBDRERkQyIjI+Hj4yOrJSYmYt++fSY9j1ojEL0rEfouNJXVonclVumlKF5+IiIisgFCCDg46I5VmGsy8PGkHJ0RGtl5AaTnFuB4Uo52sT9z40gNERGRlfvtt990As3HH39s1rubMvLLDzSVOc4UOFJDRERkxerXr4+bN2/Kanfv3kWNGjXMel4fd9eKDzLiOFPgSA0REZEVunv3LiRJkgWawMBACCHMHmgAoG2wJ/xUrtC9v6qUhNK7oNoGe5q9lzIMNURERFZm8eLFcHd3l9WOHDmC5OTkKuvB0UFCVL9QANAJNmWPo/qFwtGhvNhjerz8REREZEX0rT2j1MrAvcP8sHJ4a511anwVWqeGoYaIiMgKXLhwAWFhYbLa22+/jSVLlijUUaneYX7oEeqL40k5yMgvgI976SWnqhyhKcNQQ0REZOGefvpp/Prrr7JaVlYWvLyq5lbpijg6SFV22/ajMNQQERFZqOLiYjg7O+vUbW0jSlPhRGEiIiIL9PXXX+sEmh9//JGB5hE4UkNERGRh9E0GVqvVelcMpv/hp0NERGQhrl69qhNoXnnllXK3QCA5jtQQERFZgPDwcMTHx8tqycnJCAwMVKgj68NQQ0REpCCNRgNHR0edOufOGI9jWURERAr55ptvdALNwoULGWgqiSM1RERECujatSsOHDggqxUUFMDFxUWZhmwAQw0REVEVysvLg0qlktWcnJxQVFSkUEe2g5efiIiIqsiaNWt0As3169cZaEyEIzVERERV4OFbtR0cHKBWqxXqxjZZ7UhNTEwMJElCZGSk0q0QERGV6+LFizqB5ptvvmGgMQOrHKk5ceIE1qxZgxYtWijdChERUbmGDRuGzZs3y2r37t1D9erVy32NWiMsYsdra2R1oebu3bsYNmwY1q5diwULFijdDhERkY7CwkK4urrKai+99BK2bdv2yNfFJaQjelci0nMLtDU/lSui+oWid5ifWXq1JVZ3+WnSpEno27cvunfvXuGxhYWFyMvLk/0QERGZ09atW3UCzdmzZw0KNBNi42WBBgBu5RZgQmw84hLSTd6rrbGqkZrvvvsO8fHxOHHihEHHx8TEIDo62sxdERERlVKpVDr/gNZoNHo3qPw7tUYgelci9C25JwBIAKJ3JaJHqC8vRT2C1YzUpKamYsqUKYiNjdVJwOWZNWsWcnNztT+pqalm7pKIiOxRamoqJEmSBZqlS5dCCFFhoAGA40k5OiM0fycApOcW4HhSjinatVlWM1Jz6tQpZGRkIDw8XFtTq9U4dOgQPv/8cxQWFuosNe3i4sKVGYmIyKymTZuGjz/+WFa7ffs2atWqZfB7ZOSXH2gqc5y9sppQ8+yzz+L8+fOy2qhRo9CkSRPMnDlT72ZgRERE5qJWq1GtmvxrtE2bNjh+/LjR7+XjbtgVCEOPs1dWE2rc3d0RFhYmq9WoUQNeXl46dSIiInPat28fnn32WVnt8OHD6NSpU6Xer22wJ/xUrriVW6B3Xo0EwFdVens3lc9q5tQQERFZgrCwMJ1Ao1arKx1oAMDRQUJUv1AApQHm78oeR/UL5SThClh1qDlw4AA+++wzpdsgIiI7kJWVBUmScOHCBW1t9uzZEELAweHxv057h/lh5fDW8FXJLzH5qlyxcnhrrlNjAKu5/ERERKSUxYsXY8aMGbLazZs34e/vb9Lz9A7zQ49QX64oXEkMNUREROXQNwrj6+uL9HTzLYTn6CChfYiX2d7flln15SciIiJzOXXqlE6g2blzZ4WBRq0R+P16NnacuYnfr2dDrdE39ZfMgSM1RERED+nTpw/i4uJktcLCQjg7Oz/yddy7SVkcqSEiIvr/7t69C0mSZIFmzJgxEEIYFGi4d5OyGGqIiIgArF+/Hu7u7rLalStX8OWXX1b42or2bgJK927ipSjz4uUnIiKye/r2ZxLC8ABizN5NnARsPhypISIiu3XlyhWdQLNhwwajAg3AvZssBUdqiIjILo0ePRrr16+X1e7evYsaNWoY/V7cu8kyMNQQEZFdKSoqgouLi6zWp08f7N69u9Lvyb2bLAMvPxERkd3YuXOnTqCJj49/rEADcO8mS8GRGiIisgs+Pj7IzMyU1TQajd5JwpVRtnfTw+vU+HKdmirDUENERDbt5s2bqF+/vqy2ZMkSvP322yY/F/duUhZDDRER2ax3330XMTExslpWVha8vMx3WzX3blIOQw0REdkcjUYDR0dHWa1FixY4e/asQh1RVeBEYSIisgqGbhR56NAhnUCzf/9+Bho7wJEaIiKyeIZuFBkeHo74+HjZa0tKSnRCDtkmjtQQEZFFM2SjyNu3b0OSJFmgmT59OoQQDDR2hCM1RERksSraKFICMP6d+fjjp5Wy51JTU3XueCLbx1BDREQW61EbRQoh8MdH/WS1WrVq4fbt2499XrVG8LZsK8RQQ0REFqu8DSCLMm4gff1kWW3btm146aWXHvuchs7fIcvDUENERBZL3waQGVvn48G1Y7LagQs30TnU/7HPVzZ/5+HLXWXzd1YOb81gY8E4UZiIiCxW2UaREgBNcQH+WPS8LNDUaNYVTy38Lzo1efygUdH8HQCI3pVY7q3kpDyGGiIislhlG0XevbAfqZ+8LHvOf+xK1Hn+bZNtFPmo+TtAabBJzy3A8aScxz4XmQcvPxERkUXr01z3slLgzB9NPs+lvPk7lT2Oqh5DDRERWaTr16/jiSeekNVmLvgE7fsONssdSfrm7zzOcVT1GGqIiMjijB8/HqtXr5bV8vLy4O7ubrZzls3fuZVboHdejQTAV1UapsgycU4NERFZjOLiYkiSJAs03bp1gxDCrIEG+N/8HaA0wPxd2WNTzd8h82CoISIii7B79244OzvLasePH8cvv/xSZT30DvPDyuGt4auSX2LyVbnydm4rwMtPRESkuAYNGiA1NVVW02g0kKSqHxXpHeaHHqG+XFHYCnGkhoiIFHPr1i1IkiQLNAsXLoQQQpFAU8bRQUL7EC/0b1kP7UO8GGisBEMNEREpYu7cufDzk1/OycjIwKxZsxTqiKwdLz8REVGV0mg0cHR0lNUaN26My5cvK9QR2QqO1BARUZU5cuSITqDZs2cPAw2ZBEdqiIioSnTo0AG///67rFZcXIxq1fhVRKbBkRoiIjKr3NxcSJIkCzSTJ0+GEIKBhkyKoYaIiMxmxYoVqFWrlqyWnJyMpUuXKtMQ2TRGZCIiMjkhBBwc5P9udnFxQUEBN4Mk8+FIDRERmVRCQoJOoNmyZQsDDZmd1YSamJgYtGnTBu7u7vDx8cGLL77I2fJERBZm8ODBaN68uaz24MEDDB48WKGODKfWCPx+PRs7ztzE79ezodbo29aSLJnVXH46ePAgJk2ahDZt2qCkpASzZ89Gz549kZiYiBo1aijdHhGRXXvw4AGqV68uqw0aNAjff/+9Qh0ZJy4hHdG7EpGe+7/RJD+VK6L6hXK/JysiCSEqFUXv37+PlJQUFBUVyeotWrQwSWMVyczMhI+PDw4ePIhnnnnGoNfk5eVBpVIhNzcXHh4eZu6QiMg+bNmyBUOGDJHVEhIS0KxZM4U6Mk5cQjomxMbj4S/Dso0RuJGl8gz9/jZ6pCYzMxOjRo3Czz//rPd5tVpt7FtWSm5uLgDA09OzSs5HRES6XFxcdP5xq9RGlJWh1ghE70rUCTQAIFAabKJ3JaJHqC/3f7ICRs+piYyMxO3bt3H06FG4ubkhLi4OGzduRKNGjbBz505z9KhDCIGpU6eiU6dOCAsLK/e4wsJC5OXlyX6IiOjxJScnQ5IkWaD54osvFN+I0ljHk3Jkl5weJgCk5xbgeFJO1TVFlWb0SM2+ffuwY8cOtGnTBg4ODggMDESPHj3g4eGBmJgY9O3b1xx9yrzxxhs4d+4cfv3110ceFxMTg+joaLP3Q0RkT6ZMmYJly5bJanfu3IFKpVKoo8rLyDfsjixDjyNlGT1Sc+/ePfj4+AAovfSTmZkJAGjevDni4+NN250eb775Jnbu3In9+/ejfv36jzx21qxZyM3N1f78fWt7IiIyTklJCSRJkgWajh07QghhlYEGAHzcXU16HCnL6FDzj3/8Q3srdcuWLbF69WrcvHkTq1at0tlC3pSEEHjjjTewbds27Nu3D8HBwRW+xsXFBR4eHrIfIiIy3p49e+Dk5CSrHTlypMIRc0vXNtgTfipXlHfBTELpXVBtgzl/0xoYffkpMjIS6enpAICoqCj06tUL33zzDZydnbFhwwZT96c1adIkbN68GTt27IC7uztu3boFAFCpVHBzczPbeYmI7F3jxo1x9epVWU2tVusssGeNHB0kRPULxYTYeEiAbMJwWdCJ6hfKScJWotK3dJe5f/8+Ll26hAYNGsDb29tUfekob+LZ+vXrMXLkSIPeg7d0ExEZrmzpjL+bO3cuoqKiFOrIfLhOjWUz9Pvb6FAzb948TJs2TWeRpQcPHmDx4sV4//33K9dxFWCoISIyzMKFCzF79mxZLT09Hb6+vgp1ZH5qjcDxpBxk5BfAx730khNHaCyD2UKNo6Mj0tPTddJ7dnY2fHx8qmydmspgqCEiejR9G1E2aNAAf/zxh0IdERn+/W30BdHy1iA4e/YsF8IjIrJix48f1wk0u3fvZqAhq2HwROHatWtDkiRIkoTGjRvLgo1arcbdu3cxfvx4szRJRETm1a1bN+zfv19WKyoq0rnjiciSGRxqPvvsMwghMHr0aERHR8vWJHB2dkZQUBDat29vliaJiMg88vPzdYbzJ0yYgBUrVijUEVHlGRxqXn/9dQBAcHAwOnTowPRORGTl1q5di3/+85+y2vXr19GwYUOFOiJ6PEavU9O5c2ftnx88eIDi4mLZ85yAS0TWwN7vdNE3N/IxV/ggUpzRoeb+/fuYMWMGvv/+e2RnZ+s8b8l3PxERAfa9JsmlS5fQtGlTWS02NhbDhg1TqCMi0zH67qfp06dj3759WLFiBVxcXPDll18iOjoa/v7++Prrr83RIxGRycQlpGNCbLzOzsy3cgswITYecQnpCnVmfq+99ppOoLl37x4DDdkMo0PNrl27sGLFCrz88suoVq0ann76acyZMwcLFy7EN998Y44eiYhMQq0RiN6VCH0XWcpq0bsSodbY1mWYwsJCSJKE2NhYba1///4QQugspEpkzYwONTk5OdrNJD08PJCTkwMA6NSpEw4dOmTa7oiITOh4Uo7OCM3fCQDpuQU4npRTdU2Z2bZt2+DqKt9h+syZM/j3v/+tTENEZmT0nJqGDRsiOTkZgYGBCA0Nxffff4+2bdti165dqFWrlhlaJCIyjYz88gNNZY6zdLVq1UJubq6sptFoyt1Lj8jaGT1SM2rUKJw9exYAMGvWLO3cmrfeegvTp083eYNERKbi4+5a8UFGHGepUlNTIUmSLNCUrTXGQEO2zOiRmrfeekv7565du+LSpUs4efIkQkJC8OSTT5q0OSIiU2ob7Ak/lStu5RbonVcjAfBVld7eba2mT5+OJUuWyGo5OTmoXbu2Qh0RVR2jQ83DGjRogAYNGpiiFyIis3J0kBDVLxQTYuMhAbJgUzZ+EdUv1CrXq1Gr1ahWTf4rPSIiAidOnFCoI6KqZ1CoWbZsmcFvOHny5Eo3Q0Rkbr3D/LByeGuddWp8rXidmv3796Nbt26y2qFDh/D0008r1BGRMiRhwBKSZXc7lcnMzMT9+/e1E4Pv3LmD6tWrw8fHBzdu3DBLo6Zg6NblRGT7bGVF4ebNmyMhIUFWU6vVOrttE1kzQ7+/Dfp/fVJSkvbngw8+QMuWLXHx4kXk5OQgJycHFy9eROvWrTF//nyT/QWIiMzJ0UFC+xAv9G9ZD+1DvKwu0GRnZ0OSJFmgeffddyGEYKAhu2XQSM3fhYSE4F//+hdatWolq586dQovv/wykpKSTNqgKXGkhohswZIlS3TuNr158yb8/f0V6ojIvAz9/jZ6onB6errOJpZA6XDnX3/9ZezbERGRgfSNwvj4+PB3L9H/Z/QY5bPPPotx48bh5MmT2h1dT548if/7v/9D9+7dTd4gEREB8fHxOoFmx44dDDREf2N0qFm3bh3q1auHtm3bwtXVFS4uLmjXrh38/Pzw5ZdfmqNHIiK79txzzyE8PFxWKywsxAsvvKBQR0SWyejLT3Xq1MHu3btx9epVXLx4EUIING3aFI0bNzZHf0REduvevXuoWbOmrDZq1CisW7dOoY6ILFulF99r1KgRGjVqZMpeiMhK2crt0ZZkw4YNGDVqlKx25coV/t4leoTHXlGYiOxbXEK6zkJ2fla8kJ0l0Lc/k5E3qhLZJS5mQESVFpeQjgmx8bJAAwC3cgswITYecQnpCnVmna5evaoTaNatW8dAQ2QghhoiqhS1RiB6V6LejSHLatG7EqHW8AvZEGPHjtWZm5ifn69zCYqIymd0qElJSdH7rwYhBFJSUkzSFBFZvuNJOTojNH8nAKTnFuB4Uk7VNWWFioqKIEkSvvrqK22td+/eEELoTBImokczOtQEBwcjMzNTp56Tk6OzRxQR2a6M/PIDTWWOs0c7d+6Ei4uLrHby5En8/PPPCnVEZN2MnigshNA7ie3u3btwdXU1SVNEZPl83A37793Q4+yNr6+vzsJ5Go1G7+9XIjKMwaFm6tSpAEpn5b/33nuoXr269jm1Wo1jx46hZcuWJm+QiCxT22BP+KlccSu3QO+8GgmAr6r09m76n7S0NNSrV09W++ijj3T2ciIi4xkcak6fPg2gdKTm/PnzcHZ21j7n7OyMJ598EtOmTTN9h0RkkRwdJET1C8WE2HhIgCzYlI01RPUL5Xo1fzN79mwsXLhQVsvKyoKXl5dCHRHZFqN36R41ahSWLl1qlbtcc5duItPjOjUV02g0cHR0lNWaNWuGhIQEhToisi6Gfn8bHWr0nWjfvn1o0qQJmjRp8jhvZXYMNUTmwRWFy3f48GE888wzstovv/yCbt26KdQRkfUx9Pvb6InCgwcPxjPPPIM33ngDDx48QEREBJKTkyGEwHfffYeBAwc+VuNEZH0cHSS0D+EllIe1adMGJ0+elNVKSkp0Rm2IyDSMvqX70KFDePrppwEA27dvhxACd+7cwbJly7BgwQKTN0hEZG1u374NSZJkgWbatGkQQjDQEJmR0aEmNzcXnp6ldzPExcVh4MCBqF69Ovr27YurV6+avEEiImvy5ptvan9HlklJScHixYsV6ojIfhh9+SkgIAC///47PD09ERcXh++++w5A6b9MuE4NEdkrIQQcHOT/TnR3d0deXp5CHRHZH6NHaiIjIzFs2DDUr18ffn5+6NKlC4DSy1LNmzc3dX9ERBbv8OHDOoFm6dKlDDREVczokZqJEyeibdu2SE1NRY8ePbT/ITds2JBzaojI7vj4+OhsHXPv3j3ZAqVEVDUqtUt3REQE+vbti5s3b6KkpAQA0LdvX3Ts2NGkzemzYsUKBAcHw9XVFeHh4Th8+LDZz0lE9LD8/HxIkiQLNCEhIRBCMNAQKcToUHP//n2MGTMG1atXR7NmzbQ7c0+ePBkffvihyRv8uy1btiAyMhKzZ8/G6dOn8fTTT6NPnz7cHZyIqtSHH36os1bGsWPHcO3aNYU6IiKgEqFm1qxZOHv2LA4cOCCbGNy9e3ds2bLFpM097JNPPsGYMWMwduxYNG3aFJ999hkCAgKwcuVKs56XiKiMJEmYNWuWrCaEQNu2bRXqiIjKGB1q/v3vf+Pzzz9Hp06dZLvJhoaG4vr16yZt7u+Kiopw6tQp9OzZU1bv2bMnjhw5YrbzEhEBwPnz53V20J45cyYec1F2IjIhoycKZ2ZmwsfHR6d+7949nf/gTSkrKwtqtRp169aV1evWrYtbt27pfU1hYSEKCwu1j3knAhFVRvv27XH06FFZLTs7W2c9GiJSltEjNW3atMFPP/2kfVwWZNauXYv27dubrrNyPBychBDlhqmYmBioVCrtT0BAgNn7IyLbUVRUBEmSdAKNEIKBhsgCGR1qYmJiMHv2bEyYMAElJSVYunQpevTogQ0bNuCDDz4wR48AAG9vbzg6OuqMymRkZOiM3pSZNWsWcnNztT+pqalm64+IbMv69evh4uIiq+3evZuXm4gsmNGhpkOHDvjtt99w//59hISEYM+ePahbty5+//13hIeHm6NHAICzszPCw8Oxd+9eWX3v3r3o0KGD3te4uLjAw8ND9kNEVBFJkjB69GhZTa1Wo0+fPgp1RESGMHpODQA0b94cGzduNHUvFZo6dSpee+01REREoH379lizZg1SUlIwfvz4Ku+FiGxPSkoKAgMDZbVhw4YhNjZWoY6IyBhGhxpHR0ekp6frTBbOzs6Gj48P1Gq1yZp72CuvvILs7GzMmzcP6enpCAsLw+7du3V+CRERGeuVV17B999/L6ulpKRwLh6RFTE61JR3PbmwsBDOzs6P3VBFJk6ciIkTJ5r9PERkHzQaDRwdHXXqnDtDZH0MDjXLli0DUHqt+csvv0TNmjW1z6nVahw6dAhNmjQxfYdERGby008/4fnnn5fVNm7ciBEjRijUERE9DoNDzaeffgqg9F8vq1atkv3LxtnZGUFBQVi1apXpOyQiMgN9S0EUFRXByclJgW6IyBQMDjVJSUkAgK5du2Lbtm2oXbu22ZoiIjKX7OxseHt7y2qdOnXi5rhENsDoW7r379/PQENEVmn69Ok6gSYhIYGBhshGVOqWbiIiayKEgIOD7r/hOBmYyLYYPVJDRGRNfv/9d51A89FHHzHQENkgjtQQkc0KDg5GcnKyrJafny+7e5OIbAdDDRHZnHv37ukEl3r16uHPP/9UqCMiqgoGhZpz584Z/IYtWrSodDNERI/rk08+wdtvvy2r/frrr+jYsaNCHRFRVTEo1LRs2RKSJEEIoXdth78z5zYJRESPou/3k0ajqfD3FhHZBoMmCiclJeHGjRtISkrC1q1bERwcjBUrVuD06dM4ffo0VqxYgZCQEGzdutXc/RIR6bh48aJOcImMjDToH2JEZDsMGqn5+4aRgwYNwrJly/Dcc89pay1atEBAQADee+89vPjiiyZvkoioPN26dcP+/ftltYyMDNSpU0ehjohIKUZPFD5//jyCg4N16sHBwUhMTDRJU0REFSkuLta7iS5v1SayX0avU9O0aVMsWLAABQUF2lphYSEWLFiApk2bmrQ5IiJ9vvnmG51As2PHDgYaIjtn9EjNqlWr0K9fPwQEBODJJ58EAJw9exaSJOHHH380eYNEZJnUGoHjSTnIyC+Aj7sr2gZ7wtHB/PNX9M2RUavVelcMJiL7IolK/NPm/v37iI2NxaVLlyCEQGhoKIYOHYoaNWqYo0eTycvLg0qlQm5uLjw8PJRuh8hqxSWkI3pXItJz/zdi66dyRVS/UPQO8zPLOW/evIn69evLagMGDOANCkR2wNDv70qFGmvFUEP0+OIS0jEhNh4P/+IoGz9ZOby1TrB53FGdkSNHYuPGjbLajRs39M7vIyLbY+j3d6VWFN60aRNWr16NGzdu4Pfff0dgYCA+/fRTNGzYEP37969000Rk2dQagehdiTqBBgAESoNN9K5E9Aj11YaWxxnV4UaURGQMoy9Cr1y5ElOnTkWfPn1w+/Zt7WJ7tWvXxmeffWbq/ojIghxPypGFk4cJAOm5BTielAPgf6M6D7/mVm4BJsTGIy4hvdz32rNnj06gWbt2LQMNEZXL6FCzfPlyrF27FrNnz0a1av8b6ImIiMD58+dN2hwRWZaM/PIDzcPHVTSqA5SO6qg1uke4uLigV69eslpBQQHGjh1rZMdEZE+MDjVJSUlo1aqVTt3FxQX37t0zSVNEZJl83F0NPs7YUR0AuH37NiRJQlFRkbbWunVrCCHg4uJS6b6JyD4YHWqCg4Nx5swZnfrPP/+M0NBQU/RERBaqbbAn/FSuKG+Kr4TS+TJtgz2NGtUBgDlz5sDT01P23JkzZ3Dq1KnH6JiI7InRE4WnT5+OSZMmoaCgAEIIHD9+HN9++y1iYmLw5ZdfmqNHIrIQjg4SovqFYkJsPCRAdmmpLOhE9QuFo4Nk1KiOvrVnrHHujFJr9xBRKaNDzahRo1BSUoIZM2bg/v37GDp0KOrVq4elS5diyJAh5uiRiCxI7zA/rBzeGnN3XsCtvEJtva6HC+a+0Ex7R1PbYE/Uqu6EO/eLy30vl9tJ6PDE87La/PnzMWfOHPM0b0ZKrN1DRHKVuqV73LhxGDduHLKysqDRaODj42PqvojI4j08AmHciETalxNRnJ0iq1nrGlLlrd1TdpeXvrV7iMj0jJ5T061bN9y5cwcA4O3trQ00eXl56Natm0mbIyLLU/YFfitPPmfmrzz5bdrHk3L0jtJoigvxx6LnZYGmVq1aEEJYZaB5nLu8iMi0jA41Bw4ckN2ZUKagoACHDx82SVNEZJmM+QLXN1E4P/5HpH4yUFabv/Z73L592/TNVpHK3OVFROZh8OWnc+fOaf+cmJiIW7duaR+r1WrExcWhXr16pu2OiCyKMV/gD08U/mPR8zrHN5ixC892bW/qNquUsXd5EZH5GBxqWrZsCUmSIEmS3stMbm5uWL58uUmbIyLLYswX+PMt/OGncsUfF88ifdPbsudrtuwD716T4Pv/b/+2Zsbc5UVE5mVwqElKSoIQAg0bNsTx48dRp04d7XPOzs7w8fGBo6OjWZokIstgzBe4o4OEo+9213mu/qRNqFazNoD/3f5tzcrW7rmVW6D3spwE2ER4I7IGBoeawMBAAIBGozFbM0Rk2Qz9Am9V313v2jOBM38E/v8xtnKrszFr9xCReRk9UTgmJgbr1q3Tqa9btw6LFi0ySVNEZJnKvsCB8m/ofuLPn+HmKt/SYG50NI5cy8LSIS3x7bin8OvMbjYRaMqUrd3jq5KPZPmqXKvsdm61RuD369nYceYmfr+ezbutyC5JwshlO4OCgrB582Z06NBBVj927BiGDBmCpKQkkzZoSnl5eVCpVFa7FgaRpShvoTl9l5uKiorg5ORUle0pRqkVhbnwH9k6Q7+/jQ41rq6uuHjxIoKDg2X1GzduIDQ0FAUFljvDn6GGyHT+/gWuzsvEwM66G91a41YH1qa8hf/KohQX/iNbYOj3t9GXnwICAvDbb7/p1H/77Tf4+/sb+3ZEZKUcHSS0D/FC3OoFOoHm2LFjDDRVgAv/EckZvU3C2LFjERkZieLiYu2t3b/88gtmzJiBt99+u4JXE5GtEELAwUH330UMM1XHmHWD2od4VV1jRAoxOtTMmDEDOTk5mDhxonZlYVdXV8ycOROzZs0yeYNEZHmSk5N1LkF/8cUXmDhxokId2Scu/EckZ3SokSQJixYtwnvvvYeLFy/Czc0NjRo1gouLS8UvJiKrt2jRIrzzzjuy2v379+Hm5qZQR/aLC/8RyVVql24AqFmzJtq0aWPKXojIghUWFsLVVf7lyNEZZXHhPyI5g0LNgAEDsGHDBnh4eGDAgAGPPHbbtm0maYyILMehQ4fQuXNnWe3mzZu8OUBhXPiPSM6gu59UKpV2dVCVSvXIH3NITk7GmDFjEBwcDDc3N4SEhCAqKkrvbuFEZFoDBw6UBZrnn38eQggGGgthCQv/EVkKg0Zq1q9fr/fPVeXSpUvQaDRYvXo1nnjiCSQkJGDcuHG4d+8elixZUuX9ENmDW7duwc9P/oX4yy+/6N3QlpTVO8wPPUJ9FVn4j8iSGL34nqVYvHgxVq5ciRs3bhj8Gi6+R2SY1atXY/z48bLagwcPdObUEBFVBUO/vw0aqWnVqpXezen0iY+PN6zDx5SbmwtPz0dPfissLERhYaH2cV5enrnbIrJqJSUlqFevHjIyMrS1+fPnY86cOQp2RURkGINCzYsvvqj9c0FBAVasWIHQ0FC0b98eAHD06FFcuHChyu6CuH79OpYvX46PP/74kcfFxMQgOjq6Snoisnbx8fEIDw+X1a5du4aQkBCFOiIiMo7Rl5/Gjh0LPz8/zJ8/X1aPiopCamqq3h28yzN37twKQ8eJEycQERGhfZyWlobOnTujc+fO+PLLLx/5Wn0jNQEBAbz8RPSQ8ePHY/Xq1drHTz31FI4cOWLwCC0RkTmZbUNLlUqFkydPolGjRrL61atXERERgdzcXIPfKysrC1lZWY88JigoSHsdPy0tDV27dkW7du2wYcMGvUu0Pwrn1BDJ3b59W+cy7vbt22Wjs0RESjPpnJq/c3Nzw6+//qoTan799VejJxF6e3vD29vboGNv3ryJrl27Ijw8HOvXrzc60BCR3Pfff49XXnlFVmPgJyJrZnSoiYyMxIQJE3Dq1Ck89dRTAErn1Kxbtw7vv/++yRsESkdounTpggYNGmDJkiXIzMzUPufr62uWcxLZKiEEWrRogYSEBG0tMjISn376qYJdERE9PqNDzTvvvIOGDRti6dKl2Lx5MwCgadOm2LBhAwYPHmzyBgFgz549uHbtGq5du4b69evLnrPSO9KJFHH58mU0adJEVjt37hyaN2+uUEdERKZjtevUVAbn1JA9mz17NhYuXKh9HBwcjKtXr8LR0VHBroiIKma2OTUAcOfOHfzrX//CjRs3MG3aNHh6eiI+Ph5169ZFvXr1Kt00EZnevXv3ULNmTVlt48aNGDFihEIdERGZh9Gh5ty5c+jevTtUKhWSk5MxduxYeHp6Yvv27fjjjz/w9ddfm6NPIqqEuLg49OnTR1bLzMw0eII+EZE1MfoWoqlTp2LkyJG4evWq7G6nPn364NChQyZtjogqRwiBbt26yQLN8OHDIYRgoCEim2X0SM2JEydki3SVqVevHm7dumWSpoio8lJSUhAYGCirHTlyRLsCOBGRrTJ6pMbV1VXvHkqXL19GnTp1TNIUEVXOJ598Igs0NWrUQFFREQMNEdkFo0NN//79MW/ePBQXFwMAJElCSkoK3nnnHQwcONDkDRJRxYqKiuDs7Iy3335bW/v0009x9+5dODk5KdgZEVHVMTrUlC1+5+PjgwcPHqBz58544okn4O7ujg8++MAcPRLRI/z2229wcXHR/kMDAFJTUxEZGalcU0RECjB6To2Hhwd+/fVX7Nu3D/Hx8dBoNGjdujW6d+9ujv6I6BGGDBmCLVu2aB/36tULcXFxCnZERKQco0JNSUkJXF1dcebMGXTr1g3dunUzV19E9AgZGRmoW7eurLZnzx706NFDoY6IiJRn1OWnatWqITAwEGq12lz9EFEF1q1bpxNo7t27x0BDRHbP6Dk1c+bMwaxZs5CTk2OOfoioHGq1GgEBARgzZoy29v7770MIgerVqyvYGRGRZTB6Ts2yZctw7do1+Pv7IzAwEDVq1JA9Hx8fb7LmiKjU2bNn0bJlS1ntypUraNSokTINERFZIKNDTf/+/SFJkjl6ISI93nzzTXz++efax61atcKpU6f43yER0UO4SzeRhcrNzUWtWrVktR9++AEvv/yyMg0RESnE0O9vg+fU3L9/H5MmTUK9evXg4+ODoUOHIisryyTNEpHctm3bdALNnTt3GGiIiB7B4FATFRWFDRs2oG/fvhgyZAj27t2LCRMmmLM3IrsjhEDr1q1lq3NPnDgRQgioVCoFOyMisnwGz6nZtm0bvvrqKwwZMgRA6Y6/HTt2hFqthqOjo9kaJLIXV69eRePGjWW106dP60wQJiIi/QweqUlNTcXTTz+tfdy2bVtUq1YNaWlpZmmMyJ5ER0fLAk29evVQUlLCQENEZASDR2rUajWcnZ3lL65WDSUlJSZviqgqqTUCx5NykJFfAB93V7QN9oSjQ9XcWfTgwQOdNWbWrl2LsWPHVsn5iYhsicGhRgiBkSNHwsXFRVsrKCjA+PHjZWvVbNu2zbQdEplRXEI6onclIj23QFvzU7kiql8oeof5mfXc//3vf3VWAf7rr7/g4+Nj1vMSEdkqg0PN66+/rlMbPny4SZshqkpxCemYEBuPh9c0uJVbgAmx8Vg5vLXZgk2fPn1kG08OHjxYtjElEREZz+BQs379enP2QVSl1BqB6F2JOoEGAAQACUD0rkT0CPU16aWomzdvon79+rLa4cOH0alTJ5Odg4jIXhm99xORLTielCO75PQwASA9twDHk0y3x9myZctkgcbJyQmFhYUMNEREJsJQQ3YpI7/8QFOZ4x6luLgY7u7umDJlira2ePFiFBUV6Uy+JyKiyjN67yciW+Dj7mrS48pz9OhRtG/fXlZLTk5GYGDgY70vERHp4kgN2aW2wZ7wU7mivNkyEkrvgmob7Fnpc4wYMUIWaLp27QqNRsNAQ0RkJgw1ZJccHSRE9QsFAJ1gU/Y4ql9opSYJZ2VlQZIkbNq0SVvbvXs39u3bx521iYjMiKGG7FbvMD+sHN4avir5JSZflWulb+fetGkT6tSpI6vdvXsXffr0eaxeiYioYpxTQ3atd5gfeoT6PvaKwhqNBk888QSSkpK0tXfeeQcxMTGmbpmIiMrBUEN2z9FBQvsQr0q/PiEhAc2bN5fVLl68iCZNmjxua0REZARefiJ6DG+//bYs0ISGhkKtVjPQEBEpgCM1RJWQn58PDw8PWe3bb7/FkCFDFOqIiIgYaoiMtHPnTvTv319Wy8nJQe3atRXqSHlK7nRORFSGoYbIQEIItG/fHseOHdPWxo0bhzVr1ijYlfKU3OmciOjvGGqIDHDjxg2EhITIaidOnEBERIRCHVkGJXc6JyJ6GCcKE1Vg4cKFskBTp04dFBcX232gqWinc6B0p3O1Rt8RRESmx1BDVI6CggJIkoTZs2draytXrkRGRgaqVeMgpxI7nRMRPQp/MxPpsX//fnTr1k1WS09Ph6+vr0IdWZ6q3OmciMgQHKkhekj//v1lgebFF1+EEIKB5iFVtdM5EZGhrC7UFBYWomXLlpAkCWfOnFG6HbIh6enpkCQJO3fu1Nb279+P7du3K9iV5aqKnc6JiIxhdaFmxowZ8Pf3V7oNsjErV67U+f/VgwcP0KVLF2UasgLm3OmciKgyrCrU/Pzzz9izZw+WLFmidCtkI0pKSuDl5YWJEydqawsXLoQQAq6uvGxSEXPsdE5EVFlWM1H4r7/+wrhx4/Dvf/8b1atXN+g1hYWFKCws1D7Oy8szeV9cSdV6nTx5Em3atJHVbty4geDgYIU6sk6m2umciOhxWUWoEUJg5MiRGD9+PCIiIpCcnGzQ62JiYhAdHW22vriSqvUaO3YsvvrqK+3jjh074vDhw5AkfhFXxuPudE5EZAqKXn6aO3cuJEl65M/JkyexfPly5OXlYdasWUa9/6xZs5Cbm6v9SU1NNVnvZSupPrxOR9lKqnEJ6SY7F5lOTk4OJEmSBZqdO3fi119/ZaAhIrJykhBCseU+s7KykJWV9chjgoKCMGTIEOzatUv2paNWq+Ho6Ihhw4Zh48aNBp0vLy8PKpUKubm5OjssG0OtEei0aF+5C49JKJ1T8OvMbhyCtyDffvsthg4dKqvl5eXB3d1doY6IiMgQhn5/K3r5ydvbG97e3hUet2zZMixYsED7OC0tDb169cKWLVvQrl07c7aolzErqXJIXnkajQahoaG4fPmytvb2229zwjkRkY2xijk1DRo0kD2uWbMmACAkJAT169ev8n64kqr1uHjxIkJDQ2W1hIQENGvWTKGOiIjIXKzqlm5LwZVUrcM777wjCzSNGjWCWq1moCEislFWMVLzsKCgICg4FUi7kuqt3AK9OxSXzanhSqrKuHv3rs48mU2bNmH48OEKdURERFWBIzWVwJVULddPP/2kE2iysrIYaIiI7ABDTSVxJVXLIoTAM888g+eff15bGzlyJIQQ8PLiZG0iIntglZefLAVXUrUMf/zxB4KCgmS1o0ePKnJnHBERKYeh5jFxJVVlffTRR5g5c6b2sUqlQmZmJpycnBTsioiIlMBQQ1apsLAQ1atXh0aj0daWL1+ON954Q8GuiIhISQw1ZHUOHz6MZ555Rlb7888/Ua9ePYU6IiIiS8CJwmRVBg0aJAs0zz33HIQQDDRERMSRGkui1ghOOi7HX3/9BV9fX1ntv//9L5599lmFOiIiIkvDUGMh4hLSEb0rUbanlJ/KFVH9Qu3+9vC1a9fin//8p6x2//59uLm5KdQRERFZIl5+sgBxCemYEBuvs0nmrdwCTIiNR1xCukKdKUutVsPX11cWaKKjoyGEYKAhIiIdHKlRmFojEL0rUe92CwKlKxRH70pEj1Bfu7oUdfr0abRu3VpWu3btGkJCQhTqiIiILB1HahR2PClHZ4Tm7wSA9NwCHE/KqbqmFDZx4kRZoGnTpg00Gg0DDRERPRJHahSWkV9+oKnMcdbszp07qF27tqy2detWDBgwQKGOiIjImnCkRmE+7q4VH2TEcdbqhx9+0Ak0ubm5DDRERGQwhhqFtQ32hJ/KVWe37zISSu+CahvsWZVtVRkhBFq0aIHBgwdra5MnT4YQAh4eHgp2RkRE1oahRmGODhKi+oUCgE6wKXsc1S/UJicJX758GQ4ODjh//ry2dvbsWSxdulTBroiIyFox1FiA3mF+WDm8NXxV8ktMvipXrBze2ibXqZkzZw6aNGmifRwYGIiSkhK0aNFCwa6IiMiacaKwhegd5oceob42v6Lw/fv3UaNGDVlt3bp1GDVqlEIdERGRrWCosSCODhLah3gp3YbZ/Oc//0Hv3r1ltYyMDNSpU0ehjoiIyJbw8hOZnRACPXr0kAWaoUOHQgjBQENERCbDkRoyq9TUVDRo0EBW++2339ChQweFOiIiIlvFkRoym08//VQWaFxdXVFYWMhAQ0REZsGRGjK5oqIieHh4oLCwUFv75JNP8NZbbynYFRER2TqGGjKpI0eOoGPHjrJaSkoKAgICFOqIiIjsBS8/kckMHTpUFmi6d+8OjUbDQENERFWCIzX02DIzM+Hj4yOrxcXFoVevXgp1RERE9ogjNfRY1q9frxNo7t27x0BDRERVjqGGKkWtVqNBgwYYPXq0tjZnzhwIIVC9enUFOyMiInvFy09ktHPnzuHJJ5+U1S5fvozGjRsr1BERERFHashIU6ZMkQWaJ598EhqNhoGGiIgUx5EaMkheXh5UKpWs9v3332PQoEEKdURERCTHUEMV2r59OwYMGCCr3b59G7Vq1VKmISIiIj14+YnKJYRARESELNBMmDABQggGGiIisjgcqSG9rl27hkaNGslq8fHxaNWqlUIdERERPRpHakjHvHnzZIHGz88PJSUlDDRERGTROFJDWg8ePNBZY2bNmjUYN26cQh0REREZjqGGAAC//PILunfvLqvdunULdevWVagjIiIi4/DyE6Fv376yQPPyyy9DCMFAQ0REVoUjNXbs5s2bqF+/vqx28OBBPPPMMwp1REREVHlWNVLz008/oV27dnBzc4O3t7fO2ilkuOXLl8sCjYODAwoKChhoiIjIalnNSM3WrVsxbtw4LFy4EN26dYMQAufPn1e6LatTXFwMLy8v5Ofna2uLFi3CjBkzFOyKiIjo8VlFqCkpKcGUKVOwePFijBkzRlv/xz/+oWBX1ufYsWN46qmnZLWkpCQEBQUp0xAREZEJWcXlp/j4eNy8eRMODg5o1aoV/Pz80KdPH1y4cEHp1qzGyJEjZYGmc+fO0Gg0DDRERGQzrGKk5saNGwCAuXPn4pNPPkFQUBA+/vhjdO7cGVeuXIGnp6fe1xUWFqKwsFD7OC8vr0r6tSTZ2dnw9vaW1X766Sc899xzCnVERERkHoqO1MydOxeSJD3y5+TJk9BoNACA2bNnY+DAgQgPD8f69eshSRJ++OGHct8/JiYGKpVK+xMQEFBVfzWLsGnTJp1Ak5+fz0BDREQ2SdGRmjfeeANDhgx55DFBQUHaSa2hoaHauouLCxo2bIiUlJRyXztr1ixMnTpV+zgvL88ugo1Go0Hjxo1x/fp1bW3mzJn48MMPFeyKiIjIvBQNNd7e3jojCfqEh4fDxcUFly9fRqdOnQCU3sWTnJyMwMDAcl/n4uICFxcXk/VrDS5cuICwsDBZLTExEU2bNlWoIyIioqphFROFPTw8MH78eERFRWHPnj24fPkyJkyYAAAYNGiQwt1ZjmnTpskCTdOmTaFWqxloiIjILljFRGEAWLx4MapVq4bXXnsNDx48QLt27bBv3z7Url1b6dYUl5+fDw8PD1lt8+bNePXVVxXqiIiIqOpJQgihdBNVJS8vDyqVCrm5uTohwFrt2rULL7zwgqyWnZ1d7h1hRERE1sbQ72+ruPxEuoQQ6NixoyzQjBkzBkIIBhoiIrJLVnP5if4nKSkJDRs2lNVOnDiBiIgIhToiIiJSHkdqrExMTIws0Hh5eaG4uJiBhoiI7B5HaqxEQUEB3NzcZLUvvvgCEydOVKgjIiIiy8JQYwUOHDiArl27ymppaWnw8/NTqCMiIiLLw8tPFu7FF1+UBZoXXngBQggGGiIioodwpMZCpaenw9/fX1bbt2+fzogNERERleJIjQVatWqVTqB58OABAw0REdEjMNRYkJKSEnh7e2u3gACADz74AEIIuLq6KtgZERGR5ePlJwtx6tQpnduyr1+/rrMeDREREenHkRoLMG7cOFmgeeqpp6DRaBhoiIiIjMCRGgXdvn1bZ0uDHTt26OzlRERERBXjSI1CvvvuO51Ak5eXx0BDRERUSQw1VUyj0aBZs2Z49dVXtbWpU6dCCAF3d3cFOyMiIrJuvPxUhS5duoSmTZvKaufPn0dYWJhCHREREdkOjtRUkVmzZskCTUhICNRqNQMNERGRiXCkxszu3buHmjVrymobN27EiBEjFOqIiIjINjHUmNHPP/+M5557TlbLzMyEt7e3Qh0RERHZLl5+MgMhBLp27SoLNCNGjIAQgoGGiIjITDhSY2J//PEHgoKCZLWjR4+iXbt2yjRERERkJzhSY0JLliyRBRp3d3cUFRUx0BAREVUBjtSYQGFhIWrUqAG1Wq2tLV26FJMnT1awKyIiIvvCUGMCU6ZMkQWaP//8E/Xq1VOwIyIiIvvDy08m0Lp1awBA7969IYRgoCEiIlKAJIQQSjdRVfLy8qBSqZCbmwsPDw+l2yEiIiIDGPr9zZEaIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENoGhhoiIiGwCQw0RERHZBIYaIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENqGa0g1UJSEEgNItzImIiMg6lH1vl32Pl8euQk1+fj4AICAgQOFOiIiIyFj5+flQqVTlPi+JimKPDdFoNEhLS4O7uzskSVK6nSqVl5eHgIAApKamwsPDQ+l2LAY/F/34uejiZ6IfPxf9+LnoV9nPRQiB/Px8+Pv7w8Gh/JkzdjVS4+DggPr16yvdhqI8PDz4H5ge/Fz04+eii5+Jfvxc9OPnol9lPpdHjdCU4URhIiIisgkMNURERGQTGGrshIuLC6KiouDi4qJ0KxaFn4t+/Fx08TPRj5+Lfvxc9DP352JXE4WJiIjIdnGkhoiIiGwCQw0RERHZBIYaIiIisgkMNURERGQTGGrs1E8//YR27drBzc0N3t7eGDBggNItWYzCwkK0bNkSkiThzJkzSrejqOTkZIwZMwbBwcFwc3NDSEgIoqKiUFRUpHRrVW7FihUIDg6Gq6srwsPDcfjwYaVbUlRMTAzatGkDd3d3+Pj44MUXX8Tly5eVbsuixMTEQJIkREZGKt2K4m7evInhw4fDy8sL1atXR8uWLXHq1CmTn4ehxg5t3boVr732GkaNGoWzZ8/it99+w9ChQ5Vuy2LMmDED/v7+SrdhES5dugSNRoPVq1fjwoUL+PTTT7Fq1Sq8++67SrdWpbZs2YLIyEjMnj0bp0+fxtNPP40+ffogJSVF6dYUc/DgQUyaNAlHjx7F3r17UVJSgp49e+LevXtKt2YRTpw4gTVr1qBFixZKt6K427dvo2PHjnBycsLPP/+MxMREfPzxx6hVq5bpTybIrhQXF4t69eqJL7/8UulWLNLu3btFkyZNxIULFwQAcfr0aaVbsjgfffSRCA4OVrqNKtW2bVsxfvx4Wa1JkybinXfeUagjy5ORkSEAiIMHDyrdiuLy8/NFo0aNxN69e0Xnzp3FlClTlG5JUTNnzhSdOnWqknNxpMbOxMfH4+bNm3BwcECrVq3g5+eHPn364MKFC0q3pri//voL48aNw6ZNm1C9enWl27FYubm58PT0VLqNKlNUVIRTp06hZ8+esnrPnj1x5MgRhbqyPLm5uQBgV//fKM+kSZPQt29fdO/eXelWLMLOnTsRERGBQYMGwcfHB61atcLatWvNci6GGjtz48YNAMDcuXMxZ84c/Pjjj6hduzY6d+6MnJwchbtTjhACI0eOxPjx4xEREaF0Oxbr+vXrWL58OcaPH690K1UmKysLarUadevWldXr1q2LW7duKdSVZRFCYOrUqejUqRPCwsKUbkdR3333HeLj4xETE6N0Kxbjxo0bWLlyJRo1aoT//Oc/GD9+PCZPnoyvv/7a5OdiqLERc+fOhSRJj/w5efIkNBoNAGD27NkYOHAgwsPDsX79ekiShB9++EHhv4XpGfq5LF++HHl5eZg1a5bSLVcJQz+Xv0tLS0Pv3r0xaNAgjB07VqHOlSNJkuyxEEKnZq/eeOMNnDt3Dt9++63SrSgqNTUVU6ZMQWxsLFxdXZVux2JoNBq0bt0aCxcuRKtWrfB///d/GDduHFauXGnyc1Uz+TuSIt544w0MGTLkkccEBQUhPz8fABAaGqqtu7i4oGHDhjY56dHQz2XBggU4evSozn4kERERGDZsGDZu3GjONqucoZ9LmbS0NHTt2hXt27fHmjVrzNydZfH29oajo6POqExGRobO6I09evPNN7Fz504cOnQI9evXV7odRZ06dQoZGRkIDw/X1tRqNQ4dOoTPP/8chYWFcHR0VLBDZfj5+cm+cwCgadOm2Lp1q8nPxVBjI7y9veHt7V3hceHh4XBxccHly5fRqVMnAEBxcTGSk5MRGBho7jarnKGfy7Jly7BgwQLt47S0NPTq1QtbtmxBu3btzNmiIgz9XIDSWzG7du2qHdVzcLCvAV5nZ2eEh4dj7969eOmll7T1vXv3on///gp2piwhBN58801s374dBw4cQHBwsNItKe7ZZ5/F+fPnZbVRo0ahSZMmmDlzpl0GGgDo2LGjzu3+V65cMct3DkONnfHw8MD48eMRFRWFgIAABAYGYvHixQCAQYMGKdydcho0aCB7XLNmTQBASEiIXf/rMy0tDV26dEGDBg2wZMkSZGZmap/z9fVVsLOqNXXqVLz22muIiIjQjlalpKTY1dyih02aNAmbN2/Gjh074O7urh3JUqlUcHNzU7g7Zbi7u+vMKapRowa8vLzseq7RW2+9hQ4dOmDhwoUYPHgwjh8/jjVr1phl1Jehxg4tXrwY1apVw2uvvYYHDx6gXbt22LdvH2rXrq10a2Rh9uzZg2vXruHatWs64U4IoVBXVe+VV15BdnY25s2bh/T0dISFhWH37t02ObppqLL5EF26dJHV169fj5EjR1Z9Q2Sx2rRpg+3bt2PWrFmYN28egoOD8dlnn2HYsGEmP5ck7Ok3ExEREdks+7o4TkRERDaLoYaIiIhsAkMNERER2QSGGiIiIrIJDDVERERkExhqiIiIyCYw1BAREZFNYKghIqpAly5dEBkZqXQbRFQBhhoiAoAKd+2uylVizREiRo4ciRdffNGk71meAwcOQJIk3Llzp0rOR0SluE0CEQEA0tPTtX/esmUL3n//fdkmdA/v51NcXAwnJ6cq64+IqCIcqSEiAKUbVJb9qFQqSJKkfVxQUIBatWrh+++/R5cuXeDq6orY2FjMnTsXLVu2lL3PZ599hqCgIFlt/fr1aNq0KVxdXdGkSROsWLGi3D5GjhyJgwcPYunSpdpRouTkZABAYmIinnvuOdSsWRN169bFa6+9hqysLO1r//Wvf6F58+Zwc3ODl5cXunfvjnv37mHu3LnYuHEjduzYoX3PAwcO6D3/vXv3MGLECNSsWRN+fn74+OOPdY6JjY1FREQE3N3d4evri6FDhyIjIwMAkJycjK5duwIAateuLRvliouLQ6dOnVCrVi14eXnh+eefx/Xr1x/xvwoRGYOhhogMNnPmTEyePBkXL15Er169DHrN2rVrMXv2bHzwwQe4ePEiFi5ciPfeew8bN27Ue/zSpUvRvn17jBs3Dunp6UhPT0dAQADS09PRuXNntGzZEidPnkRcXBz++usvDB48GEDpSNOrr76K0aNH4+LFizhw4AAGDBgAIQSmTZuGwYMHo3fv3tr37NChg97zT58+Hfv378f27duxZ88eHDhwAKdOnZIdU1RUhPnz5+Ps2bP497//jaSkJG1wCQgIwNatWwEAly9fRnp6OpYuXQqgNDBNnToVJ06cwC+//AIHBwe89NJL0Gg0Bn2WRPRovPxERAaLjIzEgAEDjHrN/Pnz8fHHH2tfFxwcjMTERKxevRqvv/66zvEqlQrOzs6oXr06fH19tfWVK1eidevWWLhwoba2bt06BAQE4MqVK7h79y5KSkowYMAA7e7ZzZs31x7r5uaGwsJC2Xs+7O7du/jqq6/w9ddfo0ePHgCAjRs36uxQPnr0aO2fGzZsiGXLlqFt27a4e/cuatasCU9PTwCAj48PatWqpT124MCBsvf56quv4OPjg8TERISFhZXbFxEZhiM1RGSwiIgIo47PzMxEamoqxowZg5o1a2p/FixYYPRll1OnTmH//v2y92nSpAkA4Pr163jyySfx7LPPonnz5hg0aBDWrl2L27dvG3WO69evo6ioCO3bt9fWPD098Y9//EN23OnTp9G/f38EBgbC3d0dXbp0AQCkpKRU+P5Dhw5Fw4YN4eHhgeDgYINeR0SG4UgNERmsRo0asscODg4QQshqxcXF2j+XXVZZu3Yt2rVrJzvO0dHRqHNrNBr069cPixYt0nnOz88Pjo6O2Lt3L44cOYI9e/Zg+fLlmD17No4dO6YNDxV5+O+iz71799CzZ0/07NkTsbGxqFOnDlJSUtCrVy8UFRU98rX9+vVDQEAA1q5dC39/f2g0GoSFhVX4OiIyDEMNEVVanTp1cOvWLQghIEkSAODMmTPa5+vWrYt69erhxo0bGDZsmMHv6+zsDLVaLau1bt0aW7duRVBQEKpV0/+rS5IkdOzYER07dsT777+PwMBAbN++HVOnTtX7ng974okn4OTkhKNHj6JBgwYAgNu3b+PKlSvo3LkzAODSpUvIysrChx9+iICAAADAyZMndfoHIDtfdnY2Ll68iNWrV+Ppp58GAPz666+GfiREZABefiKiSuvSpQsyMzPx0Ucf4fr16/jiiy/w888/y46ZO3cuYmJisHTpUly5cgXnz5/H+vXr8cknn5T7vkFBQTh27BiSk5ORlZUFjUaDSZMmIScnB6+++iqOHz+OGzduYM+ePRg9ejTUajWOHTuGhQsX4uTJk0hJScG2bduQmZmJpk2bat/z3LlzuHz5MrKysmQjSmVq1qyJMWPGYPr06fjll1+QkJCAkSNHwsHhf78qGzRoAGdnZyxfvhw3btzAzp07MX/+fNn7BAYGQpIk/Pjjj8jMzMTdu3dRu3ZteHl5Yc2aNbh27Rr27duHqVOnPs7HT0QPE0RED1m/fr1QqVTax0lJSQKAOH36tM6xK1euFAEBAaJGjRpixIgR4oMPPhCBgYGyY7755hvRsmVL4ezsLGrXri2eeeYZsW3btnLPf/nyZfHUU08JNzc3AUAkJSUJIYS4cuWKeOmll0StWrWEm5ubaNKkiYiMjBQajUYkJiaKXr16iTp16ggXFxfRuHFjsXz5cu17ZmRkiB49eoiaNWsKAGL//v16z52fny+GDx8uqlevLurWrSs++ugj0blzZzFlyhTtMZs3bxZBQUHCxcVFtG/fXuzcuVPn85k3b57w9fUVkiSJ119/XQghxN69e0XTpk2Fi4uLaNGihThw4IAAILZv317uZ0FEhpOEMOAiMhEREZGF4+UnIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENoGhhoiIiGwCQw0RERHZBIYaIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU34f+ToE+GhjaKGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -502,7 +502,7 @@ " tau_max=tau_max)\n", "predicted = pred.predict(target)\n", "# predicted = pred.predict(target)\n", - "true_data = pred.get_test_array()[0]\n", + "true_data = pred.get_test_array(j=target)[0]\n", "\n", "plt.scatter(true_data, predicted)\n", "plt.plot(true_data, true_data, 'k-')\n", @@ -575,12 +575,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/jakobrunge/anaconda3/envs/py39/lib/python3.9/site-packages/tigramite-5.2.0.1-py3.9.egg/tigramite/models.py:1693: UserWarning: test_indices - maxlag(predictors) [or tau_max] overlaps with train_indices: Choose test_indices such that there is a gap of max_lag to train_indices!\n" + "/home/jakobrunge/anaconda3/envs/py39/lib/python3.9/site-packages/tigramite-5.2.1.23-py3.9.egg/tigramite/models.py:1728: UserWarning: test_indices - maxlag(predictors) [or tau_max] overlaps with train_indices: Choose test_indices such that there is a gap of max_lag to train_indices!\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkiklEQVR4nO3deXgT1f4/8HcodIM2bHaD0hZk35cvUARZZEcuAl9lFwS5gvJT5IKIKIuCLFdREAFFVgGXexEUwQr3UkCk7K2ArNZCEVqBAi1rS5P5/dFvImkmyUw6k5kk79fz5HnoyUxyOg2dT8/5nM8xCIIggIiIiMhPldK6A0RERERaYjBEREREfo3BEBEREfk1BkNERETk1xgMERERkV9jMERERER+jcEQERER+TUGQ0REROTXGAwRERGRX2MwREQ2Vq9eDYPBgODgYFy4cMHu+Q4dOqBBgwY2bfHx8TAYDNZH2bJl0axZMyxevBjFi9zv2rXLetzq1atF+9CpUycYDAbEx8fbtN+5cwfz5s1D48aNER4ejrCwMNSoUQPPPPMMdu/eLfoeYg9H76uW27dvY/z48YiJiUFwcDCaNGmCL7/80q3XevPNN2EwGOx+BsXdu3cPtWrVgsFgwHvvvefWexH5i9Jad4CI9Ck/Px9vvvkmPv/8c0nHP/bYY9ab7uXLl7FgwQL8v//3/5CXl4c33njD7viwsDCsWLECI0aMsGnPyMjArl27EB4ebtNuMpnQtWtXHD9+HJMmTULLli0BAOfOncOWLVvw008/oX379jbnvPvuu+jYsaPde9eoUUPS96SUfv364dChQ5g7dy5q1aqFDRs2YNCgQTCbzRg8eLDk10lLS8N7772HyMhIl8e+9dZbuHPnTkm6TeQ/BCKih6xatUoAIHTv3l0oVaqUkJaWZvN8+/bthfr169u0xcXFCb169bJpy83NFYxGo1CtWjWb9uTkZAGA8PzzzwsAhLNnz9o8/+abbwpVq1YVevToIcTFxVnbd+7cKQAQVq5cKdpvk8lk9x7/+te/JH/fatm6dasAQNiwYYNNe5cuXYSYmBihsLBQ0us8ePBAaNKkifDyyy+L/gweduDAASEwMFD417/+JQAQ/vnPf5boeyDydZwmIyJRr732GipVqoTJkye7dX54eDhq1aqFP//8U/T5Ll26IDY2FitXrrS2mc1mrFmzBsOHD0epUra/nnJycgAA0dHRoq9X/Hi92LRpE8qVK4enn37apv25557D5cuXceDAAUmvM3fuXFy/fh2zZ892elxBQQFGjhyJl156CS1atHC730T+RJ+/PYhIc2FhYXjzzTfx448/YufOnbLPLywsxMWLF1GrVi3R50uVKoURI0Zg7dq1MJlMAIDt27fjjz/+wHPPPWd3fIsWLVCmTBm88sorWL9+PbKyslz2wWw2o7Cw0O7hiiAIoue581onTpxA3bp1Ubq0bVZCo0aNrM+7cvLkScyaNQtLly5FuXLlnB779ttv486dO3jnnXdcvi4RFWEwREQOjRkzBtWrV8fkyZPtEqGLeziAyMzMxIsvvoicnBzMmTPH4TnPPfccsrKykJSUBABYuXIl2rdvL5rTEx8fj2XLluHy5csYOnQoYmJiEBMTg+HDh+Onn34Sff0BAwagTJkydo8//vjD6feyZs0a0fPEHq7k5OSgYsWKdu2WNsuIlyNmsxkjR45Ev3790LNnT6fHpqWlYf78+Vi2bBnKli3rsm9EVIQJ1ETkUGBgIGbNmoXBgwfj66+/xoABAxweu23bNrvgYNmyZejVq5fDcxISEtChQwesXLkSrVu3xrfffovPPvvM4fEjR45E//79sW3bNuzfvx/79+/HunXr8Pnnn2PevHmYNGmSzfHz5s1Dp06d7F7HVQJy7969cejQIafHyGEwGNx6DgAWLFiAc+fO4bvvvnN6XGFhIUaOHIkBAwagW7dubvWTyF8xGCIipwYOHIj33nsPU6dORb9+/Rwe17ZtW3zwwQcwmUw4d+4c3nrrLYwbNw7169dH27ZtHZ43atQoPPfcc1iwYAFCQkLwv//7v077YzQaMWjQIAwaNAgA8Ouvv6Jz586YOnUqRo8ejfLly1uPrV69ult5MxUrVoTRaJR9nphKlSqJjv5cv37d+l6OZGZmYtq0aZg7dy4CAwNx8+ZNAEWBj9lsxs2bNxEUFISQkBB8+OGH+P333/H1119bj8vLywMA3L9/Hzdv3kRYWBgCAgIU+b6IfAmnyYjIKYPBgHnz5iE9PR2ffvqpw+OMRiNatGiBVq1aYejQodi+fTvKlCmDF198EWaz2eF5/fr1Q2hoKObOnYuBAwciJCREVv/q16+PgQMH4sGDBzh79qyscx1RcpqsYcOGOHXqlF1+0fHjxwHAab2g33//Hffu3cMrr7yCChUqWB8///wzTp06hQoVKmDKlCkAinKPcnNzUbNmTetxjRs3BlC0zL5ChQrW9yQiWxwZIiKXOnfujC5duuDtt99GbGyspHNq1qyJ1157DTNnzsRXX31lHckpLiQkBNOmTcOePXswduxYh6+Xk5ODsLAwBAYG2j13+vRpAEBMTIykvrmi5DRZ3759sXz5cmzcuNFmmnHNmjWIiYlBq1atHJ7bpEkTJCcn27WPHz8eubm5WLVqFapWrQoAeP311+1qNmVnZ2PQoEEYM2YMBgwYgEcffVSR74nI1zAYIiJJ5s2bh+bNm+PKlSuoX7++pHMmTpyIZcuWYebMmXjmmWccTtFMmDABEyZMcPpaycnJeOWVVzBkyBC0adMGlSpVwpUrV/DFF18gKSkJzz77rDUwsDh37hz2799v91pVq1a1O/ZhlSpVQqVKlSR8h6716NEDXbp0wdixY5GXl4dHH33U2ud169bZXJNRo0ZhzZo1SE9PR1xcHMqXL48OHTrYvWb58uVRWFho81ydOnVQp04dm+POnz8PoKjIpNjrEFERBkNEJEnTpk0xaNAgbNiwQfI55cqVw7Rp0/DSSy9h/fr1ePbZZ91+/9atW2PkyJFITk7G559/jmvXriEkJAT16tXDRx99JDqqJFb5GgCmTp2KWbNmud0Xub755htMnToV06ZNw/Xr11GnTh188cUXGDhwoM1xJpMJJpPJ5co9IlKWQeD/OiIiIvJjTKAmIiIiv8ZgiIiIiPwagyEiIiLyawyGiIiIyK8xGCIiIiK/xmCIiIiI/BrrDLlgNptx+fJlhIWFudxQkYiIiPRBEATcunULMTExKFXK+dgPgyEXLl++LHn7ASIiItKXixcvOq04DzAYciksLAxA0cUMDw/XuDdEREQkRV5eHmJjY633cWcYDLlgmRoLDw9nMERERORlpKS4MIGaiIiI/BqDISIiIvJrDIaIiIjIrzEYIiIiIr/GYIiIiIj8GoMhIiIi8msMhoiIiMivMRgiIiIiv8ZgiIiIiPwagyEiIiLyawyGiIiIyK8xGCIiIiK/xmCIiIiINHPv3j2tu8BgiIiIiDwvMzMTBoMBoaGh2LRpk6Z9YTBEREREHrVo0SLExcVZvw4LC9OwN0BpTd+diIiI/EZhYSEeeeQR3Lx509r2wQcfoHPnztp1CgyGiIiIyANSU1PRrFkzm7bz58/bjBBphdNkREREpKqXX37ZJhBq06YNzGazLgIhgCNDREREpJLbt2/b5QNt3LgR/fr106hH4hgMERERkeJ++OEH9OzZ06btxo0bKF++vDYdcoLTZERERKSobt262QRCI0eOhCAIugyEAI4MERERkUKysrIQExNj05aSkoLWrVtr1CNpODJEREREJfbpp5/aBEKlS5dGfn6+7gMhgMEQERERlYDJZELVqlXxwgsvWNveffddPHjwAIGBgRr2TDpOkxEREZFbfv31VzRo0MCm7bfffkONGjU06pF7ODJEREREsr3++us2gVDjxo1hNpu9LhACODJEREREMty9exdly5a1aduwYQMGDRqkUY9KjsEQERERSbJz50488cQTNm3Xrl1DpUqVNOqRMjhNRkRERC717dvXJhAaOHAgBEHw+kAI4MgQEREROXHlyhVERkbatO3Zswft2rXTqEfK48gQERERiVqzZo1dIHTv3j2fCoQABkNERERUjNlsRu3atTFixAhr27Rp0yAIAoKDg7XrmEq8Khjas2cPevfujZiYGBgMBmzevNnp8bt27YLBYLB7nD592jMdJiIi8jJnz55FQEAAzp49a207deoUZs6cqWGv1OVVwdCdO3fQuHFjLF68WNZ5Z86cQVZWlvVRs2ZNlXpIRETkvWbOnInatWtbv3700UdhMplQp04dDXulPq9KoO7Rowd69Ogh+7yIiAjd7pRLRESktfz8fLvpr1WrVtlMk/kyrxoZclfTpk0RHR2NJ554AsnJyU6Pzc/PR15ens2DiIjIV+3du9cuEMrOzvabQAjw8WAoOjoan376KTZu3IhvvvkGtWvXxhNPPIE9e/Y4PGfOnDkwGo3WR2xsrAd7TERE5DlDhw61WRn2t7/9DYIg2K0g83UGQRAErTvhDoPBgE2bNuGpp56SdV7v3r1hMBjw3XffiT6fn5+P/Px869d5eXmIjY1Fbm4uwsPDS9JlIiIiXbh+/bpdscQdO3agc+fOGvVIeXl5eTAajZLu3z49MiSmdevWOHfunMPng4KCEB4ebvMgIiLyFV999ZVdIHTnzh2fCoTk8rtgKDU1FdHR0Vp3g4iIyKMEQUCzZs0wcOBAa9vEiRMhCAJCQ0M17Jn2vGo12e3bt/Hbb79Zv87IyEBaWhoqVqyIatWqYcqUKbh06RLWrl0LAPjwww8RHx+P+vXro6CgAOvWrcPGjRuxceNGrb4FIiIij/v9999Ro0YNm7Zjx46hYcOGGvVIX7wqGDp8+DA6duxo/XrChAkAgOHDh2P16tXIyspCZmam9fmCggJMnDgRly5dQkhICOrXr4+tW7eiZ8+eHu87ERGRFubPn4/Jkydbv46OjsbFixcREBCgYa/0xWsTqD1FTgIWERGRXjx48ABhYWE2i4KWLFmCsWPHatgrz5Fz//aqkSEiIiJy7eDBg2jVqpVN2x9//IEqVapo1CN987sEaiIiIl/297//3SYQeuKJJ2A2mxkIOcGRISIiIh+Qm5trt/XU999/j169emnTIS/CkSEiIiIvt3nzZrtAKC8vj4GQRAyGiIiIvJQgCGjXrh369u1rbXvppZcgCALCwsI07Jl34TQZERGRF7p48SKqVatm03b48GE0b95cox55L44MEREReZlXX33VJhAKDw9HQUEBAyE3cWSIiIjIS+Tn5yM4ONimbcGCBXj11Vc16pFv4MgQERGRF1i9erVdIHT+/HkGQgrgyBAREZHOGQwGuzaz2SzaTvJxZIiIiEgBJrOAlPQcfJt2CSnpOTCZS77bVXp6ul3AM3ToUAiCwEBIQRwZIiIiKqGkE1mYueUksnLvW9uijcGY3rseujeIdus169SpgzNnzti0ZWRkID4+viRdJREMhoiIiEog6UQWxq47iuLjQNm59zF23VEsHdpMdkAkNurDfdXVw2kyIiIiN5nMAmZuOWkXCAGwts3cclLylNm2bdvsAqEBAwYwEFIZR4aIiIjcdDDjus3UWHECgKzc+ziYcR2JNSo5fS2x0aCcnBxUrFixpN0kFxgMERERuenKLceBkNTjCgoKEBQUZNduGQ0ymQUczLiOK7fuIyIsGC0TKiKgFJOnlcRpMiIiIjdFhAW7PsjJcTNnzrQLhJYsWWINhJJOZKHtvJ0YtHw/XvkyDYOW70fbeTuRdCKrZB0nGxwZIiIiclPLhIqINgYjO/e+aN6QAUCUsWg0x+45kWmxwsJCBAQEAFAnMZvEcWSIiIjITQGlDJjeux6AosDnYZavp/euZzOtdenSJYerxSyBkNKJ2eQcgyEiIqIS6N4gGkuHNkOU0XYqLMoYbDd6065dO1StWtXmuH379tmtFpOTmE0lx2kyIiKiEureIBpd6kU5TXSWUztIicRsko4jQ0RERAoIKGVAYo1K6NOkChJrVLIGQnv27LELhLp06eK0dlBJE7NJHo4MERF5ES6z9i5io0FZWVmIiopyel5JErNJPgZDREReQo39r0gdhYWFKFOmjF271ErSlsTsseuOwgDYBESOErO9jZ4Ce06TERF5Acsy6+JJtZZl1qw7ox8ffvihXSA0Z84c2VtqyEnM9jZ6q59kELjhiVN5eXkwGo3Izc1FeHi41t0hIj9kMgtoO2+nw9VFlimTvZM7efVIgS8Qmxa7dz8fwUGBbr+mnkZQlOCofpLlO1Iq0JNz/+bIEBGRznGZtf45qh0UN/l7dFzwU4lGPBwlZnsjvdZPYjBERKRzXGatbwaDwa52UMSAWYib/D0A75nKNJkFpKTn4Nu0S0hJz1ElINFrYM8EaiIineMya/1yNBr0MAFFU0Azt5xEl3pRuhzZ8VRyvl4De44MERHpnGWZtaNbqAFFNy4us/ac9evXSwqELPQ8lenJ5Hy9BvYMhoiIdM6d/a9IPQaDAUOHDrVpe2/dVoeB0MP0NpXp6RwevQb2DIaIiLyALy+z9hZms9nhlhptWreS9Bp6m8r0dA6PXgN75gwREXkJKftfkTqeffZZfP7553btluo03loxWoscHktgXzxHKUrDAqIMhoiIvIhlmTV5jthoUPHaNd5aMVqrHB69BfacJiMiIhKRnZ3tcFpMrIifN05lapnDo6f6SRwZIiIiKkYsCHrjjTcwe/Zsp+fpbcTDFW8d0VIat+NwgdtxEBH5F7FAyFHytK/wxU2A5dy/OTJEREQEYNWqVRg5cqRduz+MGXjbiJbSvCpnaM+ePejduzdiYmJgMBiwefNml+fs3r0bzZs3R3BwMKpXr45ly5ap31EiIvIqBoPBLhDavHmzXwRCFnrK4fE0rwqG7ty5g8aNG2Px4sWSjs/IyEDPnj3Rrl07pKam4o033sDLL7+MjRs3qtxTIiLyBoIgOEyS7tOnjwY9Ii141TRZjx490KNHD8nHL1u2DNWqVcOHH34IAKhbty4OHz6M9957D/3791epl0REpBSTWVBt6ubxxx/HTz/9ZNfubDRIzf6QdrwqGJIrJSUFXbt2tWnr1q0bVqxYgQcPHqBMmTJ25+Tn5yM/P9/6dV5enur9JCIie2om9YqNBl24cAHVqlXTpD+kLa+aJpMrOzsbkZGRNm2RkZEoLCzEtWvXRM+ZM2cOjEaj9REbG+uJrhIRacJkFpCSnoNv0y4hJT1HsT2oSkqtzUOvXLnicFrMVSDkqc1MyfN8emQIsI/+LcOfjpZITpkyBRMmTLB+nZeXx4CIiHySXkc6XG0eakDR5qFd6kXJmqIS+71fs2ZNnD171u79H54Kax5XQZX+kH74dDAUFRWF7Oxsm7YrV66gdOnSqFRJvJx9UFAQgoKCPNE9IiLNWEY6it/gLSMdWlZMlrN5qNStScQCIZPJhFKlbCdIxALEimXL4PqdB4r2h/TFp6fJEhMTsWPHDpu27du3o0WLFqL5QkRE/sDVyAtQNNKh1ZSZkpuHfvnllw6nxcQCIbGpMGeBkNz+kD55VTB0+/ZtpKWlIS0tDUDR0vm0tDRkZmYCKJrievbZZ63HjxkzBhcuXMCECRNw6tQprFy5EitWrMDEiRO16D4RkS7IGXnRglKbhxoMBgwaNMim7f333xddLeYsQJRK6c1MyXO8aprs8OHD6Nixo/VrS27P8OHDsXr1amRlZVkDIwBISEjAtm3b8Oqrr+Ljjz9GTEwMFi1axGX1ROTXlBx5UYNl89Ds3PuiwYkBRZufOts81NFokCOuAkRnpPRHDi7f9zyvCoY6dOjg9MO8evVqu7b27dvj6NGjKvaKiMi7KDXyopaSbB7aqVMnJCcn27W7qiTtbuCn9Gamek1q93VeNU1GREQlZxl5cXTrNqDoBqzUSIc7ujeIxtKhzRBltA3IoozBDpO7DQaDXSB09OhRSVtqSA38KpYNlNwfubh8XzteNTJEREQlV5KRF0+Sunlobm4uypcvb3e+nH3FpE7N7Z7UEUcu3FB8CkutcgIkDUeGiIj8kDsjL1pwtXmowWAocSBkeZ/pvesVvWax5zwRIOo9qd3XcWSIiMhPSR150SuxJOn79++7XSvOEiAWz9mJ+r+cHQBoO2+nKvk8ek9q93UMhoiIdECrFUSWkRdv8p///AddunSxa5c7GiTGUYC442S2qkUq9Z7U7usYDBERaYwriKQTGw0aNWoUPvvsM8Xeo3iA6Il8HiXKCZD7mDNERKQhriCSzlHtICUDITGeyOfROmfJ3zEYIiLSiN63xdCL5557TnYRRSV5Kp/HW5LafRGnyYiINKLGhqS+RiwI+u9//4tOnTp5rA+ezOfx9qR2b8VgiIhII1xB5Ni9e/cQGhpq1+6p0aCHeTqfxxuT2r0dp8mIiDTi7yuITGYBKek5+DbtElLSc6zTgQaDQTeBEMB8Hn/AkSEiIo348woiRyvo9r/R2e7YGzduiBZW9CRXNYiYz+PdGAwREWnE09ti6GU3dMsKuoe/3/xLp7B/3iS7Y7UaDRLDfB7fxWCIiEhDnhpx0EstI7EVdBfmPWl3XMOGDXHs2DGP9Usq5vP4JgZDREQaU3vEQWwkBlCuerIcxVfQiQVCcZO/xyejW3ukP0QAgyEiIl1Qa8RBb7uhW1bG5R38BjeSV9o9Hzf5e5vjiDyBwRARkQ/TWy2jiLBg0dGgyn97DWXrPm5znBR6yYMi78ZgiIhII564keuplpHJZEKbRyvbtVtGgwB5K+j0kgdF3o/BEBGRBuTeyN0NnPRSy6hGjRr4/fff7dqLB0KAtBV0nsqD4siTf2AwRERu443CPXJv5CUZAdFDLSOxLTW+2H0cC3/+060VdJ7Kg+LIk/8wCHoq4qBDeXl5MBqNyM3NRXh4uNbdIdIN3ijcYzILaDtvp8M8HktwsndyJwSUMjgMnCy3eCkjIJbXAMRrGam1muzChQuIj4+3a7fcdtwNplPSczBo+X6Xx30xurXbeVBKXHfSlpz7N7fjICLZLDeK4jd0y8hG0oksjXqmf3ISmpXa1V6L3dANBoNdINS+fXubIoqWFXR9mlRBYo1Kkkdx1M6DUuq6k/fgNBkRyaK3pdreRs6NXMmVYJ6sniw2LWY2m0Xb3aF2HpTeVuCR+jgyRESyyLlRkD05N3KlR0DcHYmRasmSJaIBjyAIigVCwF95UI5e0YCiKVt386CkXs8fTmTZbDBL3ovBEBHJoqel2t5Izo1cLyvBpDAYDHjppZds2lavXq3K3mJq7yIv9XquTbmAQcv3o+28nZwa9nJuB0N3797F6dOncezYMZsHEfk2b7pB65GcG7naIyBKcDTqIwgChg8frtr7qpkH5eq6F8dcOe8nezXZ1atX8dxzz+GHH34Qfd5kMinSMb3gajIiW5bVUK6WaltWQ5E4qavxtFoJJkWdOnVw5swZu3ZPLlJWq7yDo+vuCD/3+iPn/i07GBoyZAjOnz+PDz/8EB07dsSmTZvw559/YtasWXj//ffRq1evEnVebxgMEdnT8w3am0i9keuxjIHYaNDZs2dRs2ZNDXqjDrHr7kpJlvOTslQNhqKjo/Htt9+iZcuWCA8Px+HDh1GrVi189913mD9/Pvbu3VuizusNgyEicXq8QfsyvRS4vHz5MqpUqWLX7qsl6yzX/YcTWVibcsHl8QsHNkGfJvbXhzxPzv1b9tL6O3fuICIiAgBQsWJFXL16FbVq1ULDhg1x9OhR93pMRF7Hk0u1Sb1d7eVwtCLMVwMhwPa6SwmGmCvnnWQHQ7Vr18aZM2cQHx+PJk2a4JNPPkF8fDyWLVuG6Gj+NUjkT/RwgybPEAuECgsLERAQoEFvPE8P25qQemSvJhs/fjyysooy5qdPn46kpCRUq1YNixYtwrvvvqt4B4mISDtr1651uFrMWwIhk1lASnoOvk275HZdILWX85O2Srw3mWWJfbVq1VC5cmWl+qUbzBkiIn8lFgSNGTMGS5cu1aA37lE6t425ct5D1QTqt99+GxMnTkRoaKhN+7179/DPf/4T06ZNk99jHWMwRET+yNFokDdRa7NVvSSzk3OqBkMBAQHIysqyJlFb5OTkICIignWGiIi8WNOmTZGWlmbXrmYgpEZwYamH5WhZPOsC+T5VV5M5qjb6yy+/oGJFJo4REXkrsd/tP//8M9q0aaPae6o17cTNVkkOycFQhQoVYDAYYDAYUKtWLZv/NCaTCbdv38aYMWNU6SQREannxo0bon/Mqj0t5mgay7K9RUmKd3IPPZJDcjD04YcfQhAEjBw5EjNnzoTRaLQ+FxgYiPj4eCQmJqrSSSIikk7OtJO7tYNKOrVlMguYueWk6DJ1AUXTWDO3nESXelFuTWNxDz2SQ3IwZNlwLyEhAW3atEGZMmVU65QzS5YswT//+U9kZWWhfv36+PDDD9GuXTvRY3ft2oWOHTvatZ86dQp16tRRu6tERB4nZ9pJLBC6c+eO3QKZkryHI2pPY7EuEMkhu85Q+/btrYHQvXv3kJeXZ/NQ01dffYXx48dj6tSpSE1NRbt27dCjRw9kZmY6Pe/MmTPIysqyPnxp7xwiIgvLtFPxIKP4ruqbN292uFpMSiAk5T1ccXcaS2rNINYFIjlkJ1DfvXsXr732Gr7++mvk5OTYPa/marIFCxZg1KhReP755wEUTd39+OOPWLp0KebMmePwvIiICJQvX161fhGRfFyerCyp0049GsbYPd+yZUscOHBAsfeQMrXlzjSW3BGp7g2isXRoM7tzolgXiIqRHQxNmjQJycnJWLJkCZ599ll8/PHHuHTpEj755BPMnTtXjT4CAAoKCnDkyBG8/vrrNu1du3bFvn37nJ7btGlT3L9/H/Xq1cObb74pOnVmkZ+fj/z8fOvXao92EfkaKUEOC9cpT8q00/43Otu3/19ukJSfm5JTW3KnsdxNtuYeeiSF7GBoy5YtWLt2LTp06ICRI0eiXbt2ePTRRxEXF4f169djyJAhavQT165dg8lkQmRkpE17ZGQksrOzRc+Jjo7Gp59+iubNmyM/Px+ff/45nnjiCezatQuPP/646Dlz5szBzJkzFe8/kT+QEuSouYLInzmbdsre8DryL56wa7cEQlKDUyVXaFmmscauOwoDYPN5KD6NVdIRKe6hR67Izhm6fv06EhISAADh4eG4fv06AKBt27bYs2ePsr0TUXye21HdI6BoU9nRo0ejWbNmSExMxJIlS9CrVy+89957Dl9/ypQpyM3NtT4uXryoaP+JfJWUXBJXNzWg6Kbmzt5R/s7RtNOFeU/aBUJffvmlTSAkNQdI6RValmmsKKPt8VHGYJugWM6IlD9QYq81siV7ZKh69eo4f/484uLiUK9ePXz99ddo2bIltmzZompeTuXKlREQEGA3CnTlyhW70SJnWrdujXXr1jl8PigoCEFBQW73k8gfSf3LPSy4jK4L4XlzHlPxaSehsACZ7/ezO67QZLZ+T3JHXNRYoSVlGos1g/7CKWZ1yA6GnnvuOfzyyy9o3749pkyZgl69euGjjz5CYWEhFixYoEYfARTVMmrevDl27NiBvn37Wtt37NiBPn36SH6d1NRUREfzA0OkJKl/uf/rsLSRVi1uat5+k3l42unCvCdFj/nh+GWbIENuDpCcqS25fXcW/Oq9ZpCngmhOMatHdjD06quvWv/dsWNHnD59GocPH0aNGjXQuHFjRTtX3IQJEzBs2DC0aNECiYmJ+PTTT5GZmWmtfD1lyhRcunQJa9euBVC02iw+Ph7169dHQUEB1q1bh40bN2Ljxo2q9pPI30gNXjanXZZ0nKdvat50k3F24+3eIBrnRQKh5m9uxKwBiXbfgzsjLlqs0NJzzSBPBdFqF6n0d7KDoeKqVauGatWqKdEXlwYMGICcnBy8/fbbyMrKQoMGDbBt2zbExcUBALKysmxqDhUUFGDixIm4dOkSQkJCUL9+fWzduhU9e/b0SH+J/IVSwYsWNzVvusk4u/GGXj+H9u3b252z77drDkcq3B1x8fQKLbVGpErKk0E091pTl6Rd6xctWiT5BV9++eUSdUhvuGs9kWuWHcId/eUuheU25ulRmJT0HAxavt/lcV+Mbq3pTcbRjdcAiI4GlSpVymXdN1c/N73t7K6nqUzLtXMUoCh97b5Nu4RXvkxzedzCgU3Qp0mVEr+fL1B81/oPPvjA5uurV6/i7t271oTpmzdvIjQ0FBERET4XDBGRa87+cpdKq0J4UqeKfnYywqI2Z6NXYoGQ1A1W9Tri4ognRqSk5v94eqRG73lT3k5SMJSRkWH994YNG7BkyRKsWLECtWvXBlC03cXo0aPxwgsvqNNLItI9R7kkUozr+Che7VJLk5uu1JvH4uTfsPHoH5oEbGI33pztS3A7dZvdsXJ3mve2Ks1q1gySM/Lk6RVues6b8gWyc4beeust/Pvf/7YGQkBRPZ8PPvgA//u//6ta0UUi0r/if7lfu5WPd7aecnneY49W1mz0wdVN5mFaJVQXv6GKrRYr3+E5rP7gHbdeX6kRF61KEyjxvnLzfzw9UuNto3jeRnYwlJWVhQcPHti1m0wm/Pnnn4p0ioi818N/uZvMAj7bm6Hrv2blTPFplVBtuaEKghmZ8/9m93zc5O9tjnNHSUdctMrnUeJ93Umi12KkxttG8byJpATqh/Xu3RuZmZlYsWIFmjdvDoPBgMOHD2P06NGIjY3Fd999p1ZfNcEEaqKSsfzFDYj/NauXZetiN1VnPJlQbTILKB0gvmFA3OTvNU90dpbcDaj3M1bqfd1Notfqs+3NxUE9Sc79W/Z2HCtXrkSVKlXQsmVLBAcHIygoCK1atUJ0dDQ+++wztztNRL5J6pYLWuveIBp7J3fCuI41JB2vdGFIZ1ssiAVCVV5cbQ2EAO2mSLTaYkXJ93U3/0erz7ZlFK9PkyrWYphUMrKnyR555BFs27YN586dw6lTpyAIAurWrYtatWqp0T8ir8S/3Gx5qi5NSa97QCkDHnv0ESxOTnd5rJKrdhxN9YxuEopRPdvYHW+ZFgMAY0gZPPdYPLrUi1KsP3JoVf9GyfctSf6Pp2sukTrcLrpYs2ZN1KxZU8m+EPkEPdVC0RO1dw5X6rp7OhfE0VTP/jc6o/jETfny5XEt5zoW7/wNq37OwM17D3Dz3gN88J9z+PLQRV2XJlB6JE3J9y3pz1ztzzapT/Y0GRE5JmcHcFKOktfdklAN/JX7YaH0lJSjqR6x1WJmsxk3btzAjpPZ+PA/Z3Hznu1CFq0+Y1rVv1HyfT35Myd9YjBEpBCtcif8nRrX3VO5IMWnevKObBENhPb9dg0Gg0GXnzHLqIqjMMGAohE6pVcMKv2+3pLbRuoo8d5kRFSEewdpQ63r7olckIencERrB7UfDmPrp63H6fEzplX9GzXel/k//kt2MJSZmYnY2FgYDLYfDkEQcPHiRY9t2kqkN1rlTvg7Na+7GrkgDyd5X7uVD0EQkDm/t91xDydJW6Z69PoZ06r+jRrvy/wf/yQ7GEpISEBWVhYiIiJs2q9fv46EhASXGwMS+Spv3jtIbBUWAN3/hWwyC7h2K1/SsXq47sWTvK9uehd3z+6zO84SCBVP3NXzZ0yrURWO5pASZAdDgiDYjQoBwO3btxEcrP0vGyKteOveQWKrsMqHlgEA3Lz7V5Ku3lbESS2SqJfrXnzVmNi0WMzfP0WZCjEAxKd69P4Z02pUhaM5VFKSg6EJEyYAAAwGA9566y2EhoZanzOZTDhw4ACaNGmieAeJvIU37h3kaFn3w0GQhVb7colx1O/i9HLdH058Nt2/jT8WDrQ7JuH17/Fw3rPYVI83fsaIvIHkYCg1NRVA0cjQ8ePHERgYaH0uMDAQjRs3xsSJE5XvIZEX8aa9g5ytTBKj1b5cxcnpt16uuyXxWWw0qEylaoh5fgnMAvBWr7qoHBbkdKrHmz5jRN5CcjCUnJwMAHjuueewcOFC7tNF5IC35DC4WpkkRg8r4qT2+61edTHisQRdXPcrt8QDoWqTvoWhVID168phQejTpIrL1/OWzxiRt5CdM7Rq1Sqbr/Py8rBz507UqVMHderUUaxjRN7MG3IYSrLiSMsVcVLfu3JYkFvBgdJbqXz//fd4qrfz1WIWchKfveEzRuQtZAdDzzzzDB5//HGMGzcO9+7dQ4sWLXD+/HkIgoAvv/wS/fv3V6OfRKSwkqw40nJllporqlxt6SE3UBJbbFKh02iE/08f2+OgjyRvKbjvHvki2cHQnj17MHXqVADApk2bIAgCbt68iTVr1mDWrFkMhoi8hKuVSWL0cNNWa0WVo6RsS+L43x9PwHe/ZEne+0wsEIr/v9Egb0185r575Ktkb8eRm5uLihWLfskkJSWhf//+CA0NRa9evXDu3DnFO0hE6nC2H5MYvdy01dhHytU2FwKAT/ZkSNr77JVXXhENhARBcGu7B5NZQEp6Dr5Nu4SU9BzNtnPhvnvky2SPDMXGxiIlJQUVK1ZEUlISvvzySwDAjRs3WGeIyMs4WpkkVmdIT6uVlF5R5U4yOWC/wq50gP3fl4cPH0bz5s2t/ZaT+KyXkRhXwaIeVhkSlYTsYGj8+PEYMmQIypUrh2rVqqFDhw4AiqbPGjZsqHT/iEhljm7QgL4rUCu5oqokCeECgEvXbooGQoJgHz5ITXx2NW3nyXpPetwTjUhJsoOhF198ES1btsTFixfRpUsXlCpV9AugevXqmDVrluIdJPIlek0+dXSD1vuNTakVVSVJCBdbMl+uXDncunXL7dfU20iMXvdEI1KKW7vWt2jRAo0aNUJGRgZq1KiB0qVLo1evXkr3jcin6GXKg+y5k0wOiAdC3x7JwN+axZeoP3obidHznmhESpCdQH337l2MGjUKoaGhqF+/PjIzMwEAL7/8MubOnat4B4l8AZNP9U1uMvn9P06JBkLxk7/HnB/TS5zkrLeRGEuw6OjaGFAU2HtDaQAiMbKDoSlTpuCXX37Brl27bBKmO3fujK+++krRzhH5AldTHkDRlIdWq4S8jVqrqyxJ2cVXe0Ubg/HC4wnWQODCvCfx5/pJNseEt+qPuMnf24zYlITeRmLUWMFHpCeyp8k2b96Mr776Cq1bt7ZZPlqvXj2kp6cr2jkiX6C3KQ9vpvZUo7Ok7KbVKqBHwxi7c8QqSZd0xEaPu9NzTzTyZbKDoatXryIiIsKu/c6dO6K1NYj8nd6mPPTMWYK5p1ZXiSVl/+Mf/8CCBQvsjhULhICSj9jodXd67olGvkp2MPQ///M/2Lp1K/7f//t/AP6qsrp8+XIkJiYq2zsiH6C3KQ+9cjbq06VelMupxhnf/arK6iqxP/IiB8xCcHwT+2Oh3IiNXkdiuCca+SLZwdCcOXPQvXt3nDx5EoWFhVi4cCF+/fVXpKSkYPfu3Wr0kcir6XHKQ29cjfqM71zLZVHE7Lx8LN75G17pXFORPhUUFCAoKMiu/YfjlzF23VEArkdsSlpKgSMxRJ5hEMSqgrlw/PhxvPfeezhy5AjMZjOaNWuGyZMn+2TRxby8PBiNRuTm5iI8PFzr7pCXstzsAfEbqCcL6OmNySyg7bydDoMdAwBjaBmbatjOLFPgWjqa8rf8upSSuyR2TFR4MAa1rIb4yqEMbIhUJuf+7VYw5E8YDJFSWGdIXEp6DgYt36/Y60Ubg7F3cie3gwyxQCgnJ8e6J6OFs1Gfbccu48UNqZL66u8/fyK1yLl/y54mCwgIQFZWll0SdU5ODiIiImAymeS+JJFf4JSHOKmJ4+VDyuDmPdejQ+6uzDt06BBatmxp1+7o70VHuTPbjmVh3BeuAyFAm601iMie7GDI0S+G/Px8BAYGlrhDRL7MF5NPS5oXIzVx/LnH4vHBf85JOlbuyjyx0aD4+HhkZGTIep2kE1l4ccNRycdzk1MifZAcDC1atAhA0S+Nzz77DOXKlbM+ZzKZsGfPHtSpU0f5HhKRbikx9Sc1wXxcp6LEaCkBkZyVeWKBkDvZA5bimnJZ6kx9sOMsHnu0MkcLiTQgOWcoISEBAHDhwgVUrVoVAQEB1ucCAwMRHx+Pt99+G61atVKnpxphzhCROEcrwNxJCpeaYG4yC3hs7k5k5zlOto5ykTNkGcmaPG4Ufkr61u55d9Molcp9Yh4RkTLk3L8lb8eRkZGBjIwMtG/fHr/88ov164yMDJw5cwY//vijRwKhJUuWICEhAcHBwWjevDl++uknp8fv3r0bzZs3R3BwMKpXr45ly5ap3kciX6f0FiOOtsIwhpTB+M410aVeFICiacYZf6sHA9zbFiLpRBbaztuJNo9WtguEZs2a5XYgBChXNJP71RF5nuy9yZKTk1GhQgU1+uLSV199hfHjx2Pq1KlITU1Fu3bt0KNHD+tmscVlZGSgZ8+eaNeuHVJTU/HGG2/g5ZdfxsaNGz3ccyJp1Np3S2lythiRqnuDaOyd3Amvdq6F8iFlAAA37z3AB/85h7bzdlqDA0eBU5Qx2OloVNKJLIz5/DD2v9HZ7rn4yd+jeZ+RkvsqRqmimXrcr85bPpdE7vKqpfWtWrVCs2bNsHTpUmtb3bp18dRTT2HOnDl2x0+ePBnfffcdTp06ZW0bM2YMfvnlF6SkpEh6T06Tkac4yr95q1c9VCgbqKsVaN+mXcIrX6a5PG7hwCbo06SK5NeVM/UmJ3HbZBZQOkD8b7+4yd9Lml5zxVIvyVHukzu+GN1a84R7loQgb6Xq0nqtFBQU4MiRI3j99ddt2rt27Yp9+/aJnpOSkoKuXbvatHXr1g0rVqzAgwcPUKZMGdX6SySHoyAgK/e+3eokPdyI1NhixNXUW/FVV3JW5okFQjHPL0WZSrHW1y/pZrnO9hOzKB9SGjfvFUp+Ta33q/PUfnBEWpM9TaaVa9euwWQyITIy0qY9MjIS2dnZoudkZ2eLHl9YWIhr166JnpOfn4+8vDybB5GanAUBYpTOKXFnCsSyAszRGIoBRUGbnC1G1Jh6O3HihOhqsbjJ31sDoYeVNPhwNIUXbQzGsqHNcOStrvhidGuM61hD0utpuV+d0nlhRHrmNSNDFsV/sQmC4LB0vqPjxdot5syZg5kzZ5awl0TSuQoCilOyNo27UyBq7KouNRCRepyj/+OOdpoHlAk+ihfXrFw2CDAA127n42DGdbRMqIiWCRWx8eglXe9XJyc41Xoqj6ikJAVDx44dk/yCjRo1crszzlSuXBkBAQF2o0BXrlyxG/2xiIqKEj2+dOnSqFRJ/D/vlClTMGHCBOvXeXl5iI21/wuSSCnujEYocSMq6RSI0ruqKzn1JhYItZq1HX/eKvBI8GGZwks6kYWJ//5FNNhUOphUmtLBKZGeSQqGmjRpAoPB4HIUBoBq23EEBgaiefPm2LFjB/r27Wtt37FjB/r06SN6TmJiIrZs2WLTtn37drRo0cJhvlBQUJDoTtVEainJaIS7NyK5+TmOKLnFiNTii84ClmnTpuGdd96x/54EwRr8eSr4kBJsKhlMKk2NvDAivZIUDD1ckj41NRUTJ07EpEmTkJiYCKAoUfn999/H/Pnz1enl/5kwYQKGDRuGFi1aIDExEZ9++ikyMzMxZswYAEWjOpcuXcLatWsBFK0cW7x4MSZMmIDRo0cjJSUFK1aswBdffKFqP4nkcBUEOOPujUjJKRClthgp6dSb2B9qAwcOtP5/V3okyxmpwebeyZ10u1+dEsEpkbeQFAzFxcVZ//30009j0aJF6Nmzp7WtUaNGiI2NxVtvvYWnnnpK8U5aDBgwADk5OXj77beRlZWFBg0aYNu2bdb+ZWVl2dQcSkhIwLZt2/Dqq6/i448/RkxMDBYtWoT+/fur1kciuaSsQiqupDciqSNKP/92zaM3Z3cDFqlbanhqs1y5waYec27UyAsj0ivZdYZCQkJw9OhR1K1b16b91KlTaNasGe7du6doB7XGOkPkKWLJzGLc2e6iODlbR2ixlF9qDSFH0/aFJrOmN2m16jBpgXWGyFvJuX/LDoaaNWuGunXrYsWKFQgOLhqiz8/Px8iRI3Hq1CkcPSp9x2ZvwGCIPKl4EHDjTj7e2XpK8RuRnAKBSgRfahALhCKHzENw1fqa36ylBpt6KKoohZwCl0R6oWowdPDgQfTu3RtmsxmNGzcGAPzyyy8wGAz4/vvv0bJlS/d7rkMMhkhrat2IHG2OKkaJCs1KuXDhAuLj4+3aH14yr3UA5yrY1NP1JPJVqgZDAHD37l2sW7cOp0+fhiAIqFevHgYPHoyyZcu63Wm9YjBEvkzq1JyF1iMZcmoHaR1wOAo2tQ7UiPyF6sGQP2EwRL7OZBbwwY4zWJyc7vJYLXNcxAKhav/YBENp59vqaBnAMd+GSDty7t9ubcfx+eefo23btoiJicGFCxcAAB988AG+/fZbd16OiDQUUMqAxx59RNKxWtSUmTNnjmggtDn1D5eBEKBtUcDuDaKxd3InfDG6NRYObIIvRrfG3smdGAgR6YzsYGjp0qWYMGECevTogRs3bliLLFaoUAEffvih0v0jIg9QY68xJRgMBrzxxhs2bXFxcRAEwWuKAlrqMPVpUgWJNSoxR4hIh2QHQx999BGWL1+OqVOnonTpv8oUtWjRAsePH1e0c0TkGZaaMgDsAiKtaso4qh10/vx5APoN4IjI+8gOhjIyMtC0aVO79qCgINy5c0eRThGR5znacT3KGOzRZF+DwSCpiKIeAzgi8k6yd61PSEhAWlqaTVVqAPjhhx9Qr149xTpGRMqSskTfUxWaHfXrqaZV7Z5fv349Bg8eLHquJ7fYICLfJTsYmjRpEl566SXcv38fgiDg4MGD+OKLLzBnzhx89tlnavSRiEpIzqompfYak9OvP7Kv4o9Fg+yel7LYVYsAjoh8i1tL65cvX45Zs2bh4sWLAIAqVapgxowZGDVqlOId1BqX1pO3c7R7utb1biz9Oj/vSdHnfzh+mSM7ROQ2j9UZunbtGsxmMyIiItx9Cd1jMETezFIJ2VFRRa0KE1r6tf+NznbPVX3lS5QOLscKzURUIqrWGerUqRNu3rwJAKhcubI1EMrLy0OnTp3k95aIVCNn93RPmv3RZ6KBUNzk7xEQXE6zfhGRf5KdM7Rr1y4UFBTYtd+/fx8//fSTIp0iImVILTjoycKEcrbU0LJgohzcyJTIu0kOho4dO2b998mTJ5GdnW392mQyISkpCVWqaFOmn4jE6a0woVggJBYEWajVLyWDF265QeT9JAdDTZo0sdb/EJsOCwkJwUcffaRo54ioZCyFCV3tnq52YcLatWvj7Nmzdu3xk7/3eL+UDF4cJadn597H2HVHuRkrkZeQnDOUkZGB9PR063L6jIwM6+PSpUvIy8vDyJEj1ewrEcmkh8KEBoPBLhB6//338cPxyx7vlyV4KZ5HZQlekk5kSX4tk1nAzC0nRYM5S9vMLSdhMnMvbCK9kzwyZCmyaDabVesMka/QUw6JVoUJ8/PzERxsP8318AJWT/ZLSvDy+sbjCAsug9bVXe8hJic53VN1m4jIPbITqOfMmYPIyEi7UaCVK1fi6tWrmDx5smKdI/JGeswh8XRhQkdJ0sUreXiyX66CFwC4ee8Bhnx2QNLPS4/J6UTkHtlL6z/55BPUqVPHrr1+/fpYtmyZIp0i8lZKTsMozVO7p4sFQhcvXnRYTdpT/ZITlEj5eektOZ2I3Cc7GMrOzkZ0tP1fS4888giysrT7RU+kNX/PIdm3b5/DDVarVq0Kk1lASnoOvk27hJT0HI9fBzlBiZSflyU53VHoZkDRiKDayelEVHKyp8liY2Px888/IyEhwab9559/RkxMjGIdI/I2/pxD4mpaTA9Th65W1hXn6udlSU4fu+4oDIDNa3oqOZ2IlCF7ZOj555/H+PHjsWrVKly4cAEXLlzAypUr8eqrr2L06NFq9JHIK/hrDomj0aCHAyE9TB06W1nnjLOflyU5PcpoO+oUZQzmsnoiLyJ7ZOi1117D9evX8eKLL1orUQcHB2Py5MmYMmWK4h0k8hb+lkPSp08ffPfdd3btD+cGuZo6NKBoKqpLvSiPjKA4WlnnjKufl6eT04lIeW5v1Hr79m2cOnUKISEhqFmzJoKCgpTumy5wo1aSyrL5qKsCh2psPurppfxio0Hjxo2zK7yakp6DQcv3u3y9L0a39ujUocksYH96Dl7acBQ37z0QPUarTWyJSBly7t+yR4YsypUrh//5n/9x93Qin6NVDokn83HMZjMCAgLs2h39TaXXqcOAUgY8VrMy5vZviLHrjgJgzg+RP5MUDPXr1w+rV69GeHg4+vXr5/TYb775RpGOEXkjTxc49OR2EFJrBz1M71OHWhWkJCJ9kRQMGY1G6y9Co9GoaoeIvJ2nckg8mY8jFggdO3YMDRs2dHqeXvZGc4Y5P0Tkds6Qv2DOEOmVJ/Jxfv31VzRo0MCuXc6vDcvoFSA+FcVVV0SkBjn3b9lL64lIH9TOxzEYDCUOhIC/pqIiw7n8nIj0SdI0WdOmTR3mCxR39OjREnWIiKRRMx9H7P+7yWRCqVIl+fvJNojioDQR6YWk32xPPfUU+vTpgz59+qBbt25IT09HUFAQOnTogA4dOiA4OBjp6eno1q2b2v0lov+jxnYQH3/8scMiiu4GQpZpsuy8fJv2P/PyNd+vjYgIcCNn6Pnnn0d0dDTeeecdm/bp06fj4sWLWLlypaId1BpzhkjPlMzHEQuCBg0ahA0bNrjdP0vtJUcFDlnLh4jUomrO0L/+9S88++yzdu1Dhw7Fxo0b5b4cEZWAUttBOBoNKkkgBMjbr42ISCuyiy6GhIRg7969qFmzpk373r17ERzsG9sMkP/wdOVmNZRkaXhiYiL277dfkaZUPo9eiy4SET1MdjA0fvx4jB07FkeOHEHr1q0BAPv378fKlSsxbdo0xTtIpBY97KSulIBSBtnL58VGg44cOYJmzZop1S3dF10kIgLcrDP09ddfY+HChTh16hQAoG7dunjllVfwzDPPKN5BrTFnyDc5qtzsD7Vvrl+/jkqV7AMnNVZ3ablfGxH5Nzn3bxZddIHBkO/x56Red7bUKCkWXSQiLahedPHmzZv47LPP8MYbb+D69aLEx6NHj+LSpUvuvJwkN27cwLBhw2A0GmE0GjFs2DDcvHnT6TkjRoyAwWCweVim9sh/+WtSr1ggVFBQYBcImcwCUtJz8G3aJaSk58BkLlmgpFSSNxGRWmTnDB07dgydO3eG0WjE+fPn8fzzz6NixYrYtGkTLly4gLVr16rRTwwePBh//PEHkpKSAAB///vfMWzYMGzZssXped27d8eqVausXwcGBqrSP/Ie/pbU+8MPP6Bnz5527WKjQWrlUXH/LyLSM9nB0IQJEzBixAjMnz8fYWFh1vYePXpg8ODBinbO4tSpU0hKSsL+/fvRqlUrAMDy5cuRmJiIM2fOoHbt2g7PDQoKQlRUlCr9Iu/kT0m9YqNBL774Ij7++GO7dkd5VNm59zF23dESj+K4k+RNROQJsqfJDh06hBdeeMGuvUqVKsjOzlakU8WlpKTAaDRaAyEAaN26NYxGI/bt2+f03F27diEiIgK1atXC6NGjceXKFVX6SN5DjcrNeuSodpBYIGQyC5i55aRokrOlbeaWkyWeMiMi0iPZwVBwcDDy8vLs2s+cOYNHHnlEkU4Vl52djYiICLv2iIgIpwFYjx49sH79euzcuRPvv/8+Dh06hE6dOiE/P9/hOfn5+cjLy7N5kG8JKGXA9N71AMAuILJ8Pb13Pa+dwhk4cKDDQMgRT+ZRKZ2TRERUUrKnyfr06YO3334bX3/9NYCivz4zMzPx+uuvo3///rJea8aMGZg5c6bTYw4dOmR9n+IEQXC6geyAAQOs/27QoAFatGiBuLg4bN26Ff369RM9Z86cOS77RN7PktRbPD8mykvrDFmI/X/46aef0LZtWwCOi0x6Ko/Kl2o7EZHvkB0Mvffee+jZsyciIiJw7949tG/fHtnZ2UhMTMTs2bNlvda4ceMwcOBAp8fEx8fj2LFj+PPPP+2eu3r1KiIjIyW/X3R0NOLi4nDu3DmHx0yZMgUTJkywfp2Xl4fY2FjJ70Hew5eSeu/du4fQ0FC79odHg5wFIp7Io1I7J4mIyF2yg6Hw8HDs3bsXO3fuxNGjR2E2m9GsWTN07txZ9ptXrlwZlStXdnlcYmIicnNzcfDgQbRs2RIAcODAAeTm5qJNmzaS3y8nJwcXL15EdLTjX7hBQUEICgqS/Jrk3fSS1FuSbUGk1A5yFYh8PLgpoo3BLosjuptH5SonyYCinKQu9aK8MhglIu8mq+hiYWEhgoODkZaWhgYNGqjZLzs9evTA5cuX8cknnwAoWlofFxdns7S+Tp06mDNnDvr27Yvbt29jxowZ6N+/P6Kjo3H+/Hm88cYbyMzMxKlTp2xWwjnDoouktpJMHYkFQrdu3UK5cuWsX0stMvlWr3p4aYM6xRFT0nMwaLn9HmjFfTG6tS6CUyLyfqoVXSxdujTi4uJgMplK1EF3rF+/Hg0bNkTXrl3RtWtXNGrUCJ9//rnNMWfOnEFubi4AICAgAMePH0efPn1Qq1YtDB8+HLVq1UJKSorkQIhIbZYRm+KBimXEJulEluh5qampDvPoHg6EAOnJ0RXKBqpWHNHfajsRkXeRPU325ptvYsqUKVi3bh0qVvTc0uOKFSti3bp1To95eJArJCQEP/74o9rdIhX5wo7yzrg7dSQWBD3//PNYvny56PvICUT6NKmiSh6VP9V2IiLvIzsYWrRoEX777TfExMQgLi4OZcuWtXn+6NGjinWO/Jc/rDqSs5zdMnUkd8k8ID8QUSOPylLbSa2cJCKiknBrab2z5exEJeUvq47kjNi8++67mDp1qt1zUlL+9BCIWGo7jV13FAaI5yR5c20nIvJusoOhGTNmqNANoiL+tOpI6ojNU02r2rX9+OOP6Nq1q6Tz9RKI+GptJyLyfpKDobt372LSpEnYvHkzHjx4gM6dO2PRokWSlsYTSc3/cWfqyFu5GrGB2YQL/+xj19xq9n9wqlQ13Eu7JDmnRy+BiC/VdiIi3yE5GJo+fTpWr16NIUOGIDg4GF988QXGjh2Lf/3rX2r2j3yAnPwfLVcdeTph29mITfbn/0D+5TN258RN/h7ZeffxwX/OWtuk5lLpJRDRS20nIiILyXWGatSogdmzZ1srRh88eBCPPfYY7t+/j4CAAFU7qSXWGSoZR/k/jmrXaFWPRsuE7eLvfWHek3bHxL7yJUoFl7NrB5SpA1RSvr7yj4i8j5z7t+RgKDAwEBkZGahSpYq1LSQkBGfPnvXp7SoYDLlParG/vZM7WW+cJrOA5rN24ObdBw5ft3xoGRx5s4tiN1u5AZsaTGYB2w6cxN/a2BczjZv8vcvzxa6lp/jDyj8i8j6qFF00mUwIDAy0aStdujQKCwvd6yX5PLV2QlfyVu8qYRsoSthWe2f10gGl7AKhsg07SwqEAGV3lZfD3aKRRER6IjlnSBAEjBgxwmbfrvv372PMmDE2tYa++eYbZXtIXsud/J+DGdedjgoBwI27DxRLoNZDwrZYqYp9v12TNF1YXElyqeROdfnTyj8i8m2Sg6Hhw4fbtQ0dOlTRzpBvcafqsKcTqLVM2E5KSkKPHj3s2gVBgMksOF9p5oC7FZzdmerSQyBJRKQEycHQqlWr1OwH+SB3iv15etsGrbaJEBsN2rVrF9q3bw/A+Uoz0deD+4UT3S1yyf3GiMhXyNqolUgOyw0dsM/zcVTszxJAOZpUMaBoxEKpasmefj9BEBxuqWEJhCwstYGKb5wq1kfAvcKJJcmZ4n5jROQrGAz5EZNZQEp6Dr5Nu4SU9BzVk4IBxzd0RzuhuxNAlYQn3+/VV19FqVK2/+UCAwOdbqnRvUE09k7uhC9Gt8bCgU3waueaiAoPsjmmJLvKlyTJ3dOBJBGRWmRvx0HeScvlz3KL/Xm6WrIn3k9sNOjq1auSKrgXL1I4rlNNxWr6lGSqSy/bfBARlZTkOkP+yhfqDOmhjo47PF3IT433u3HjBipWtB8Z0ct/OyWKXLLOEBHpkZz7N0eGfJw3L3/29LYNSr9fhQoVcPPmTZu2MWPGYOnSpYq9R0kpsaO9Xrb5ICJyF4MhH+fvy5+12iZCbFrMbDaLtmtJqaku7jdGRN6MwZAPejgAOPfnLUnn+OLyZy2mb44dO4bGjRvbtetlWkyMXna0JyLSCoMhHyMWAEjha8uf3a2dUxJioz4//vgjunbtquj7qIFTXUTkzxgM+RBHAYAzJSnWp1da5Ek5qh3kTTjVRUT+inWGfISzAMARX13+rNYGsWJWrlxpFwjFxcV5XSBEROTPODLkI1wFAGJ8NSfEU9tEiI0GZWdnIzIyskSvS0REnsVgyEdIvbGP6/goakaW8+mcELW3ibh//z5CQkLs2jkaRETknThN5iOk3tgfe7Qy+jSpgsQalXwyEALU3SZiwIABdoHQP/7xDwZCRERejCNDPkKJ4nm+Qq1tIsSmxQoLCxEQEOB2X4mISHscGfIRnt7gVO/kbhDrzG+//eZwtRgDISIi78e9yVzwtr3JfHWfKHcrSZe0ArVYELRlyxY8+eSTsvpPRESeJef+zWDIBW8LhgDttqBQi1YBni/UDiIi8ldy7t+cJvNBluJ5vpAobSkkWbxsgKWSdNKJLMXf85NPPmEgRETkR5hATbqll0rSp0+fRu3atRV5fSIi0h+ODJFuebKSdEFBgcPRIAZCRES+jcEQ6ZanKkl37doVQUFBNm2tWrXitBgRkZ/gNBnpltqVpAHxabF79+4hONj91yQiIu/CkSHSLTUrSV+6dMnhtBgDISIi/8JgiHRLrUKSERERqFq1qk3b559/zmkxIiI/xWky0jVLJenidYai3KwzxCXzRERUHIMh0r3uDaLRpV5UiQpJ/uc//0GXLl3s2hkIERERgyHyCpZCku4QGw06efIk6tatW9JuERGRD/CanKHZs2ejTZs2CA0NRfny5SWdIwgCZsyYgZiYGISEhKBDhw749ddf1e0o6YbZbHY4LcZAiIiILLwmGCooKMDTTz+NsWPHSj5n/vz5WLBgARYvXoxDhw4hKioKXbp0wa1bt1TsKenBtGnT7HaU79WrF6fFiIjIjtdt1Lp69WqMHz8eN2/edHqcIAiIiYnB+PHjMXnyZABAfn4+IiMjMW/ePLzwwguS3k+tjVp9bTNVPREbDbp9+zbKli2rQW+IiEgLcu7fPpszlJGRgezsbHTt2tXaFhQUhPbt22Pfvn0Og6H8/Hzk5+dbv87Ly1O8b1rtwu7rcnJyULlyZbt2L4v3iYjIw7xmmkyu7OxsAEBkZKRNe2RkpPU5MXPmzIHRaLQ+YmNjFe2XFruw+4NGjRrZBUIff/wxAyEiInJJ02BoxowZMBgMTh+HDx8u0XsUnzIRBEF0GsViypQpyM3NtT4uXrxYovd/mKtd2IGiXdhNZt7A5TAYDDh+/LhNm9lsxosvvqhRj4iIyJtoOk02btw4DBw40Okx8fHxbr12VFQUgKIRoujov6aerly5Yjda9LCgoCC7TTuVImcXdneXkfuT/fv3IzEx0a6do0FERCSHpsFQ5cqVRXM8lJCQkICoqCjs2LEDTZs2BVC0Im337t2YN2+eKu/piqd2YfcHYqN7hw4dQosWLTToDREReTOvyRnKzMxEWloaMjMzYTKZkJaWhrS0NNy+fdt6TJ06dbBp0yYARTfL8ePH491338WmTZtw4sQJjBgxAqGhoRg8eLAm34MndmH3dY6mOQVBYCBERERu8ZrVZNOmTcOaNWusX1tGe5KTk9GhQwcAwJkzZ5Cbm2s95rXXXsO9e/fw4osv4saNG2jVqhW2b9+OsLAwj/bdwrILe3bufdG8IQOK9txyZxd2f7By5UqMGjXKpq1FixY4dOiQRj0iIiJf4HV1hjxN6TpDltVkAGwCIstYx9Khzbi8XoTYaND169dRoUIFDXpDRER6J+f+7TXTZL7Csgt7lNF2KizKGMxASMTdu3cdTosxECIiIiV4zTSZL1FiF3Z/MHHiRLz//vs2bWvXrsWwYcM06hEREfkiBkMaKcku7P5AbDTI0carREREJcFpMtKVjIwMu4AnODjYZbFMIiIidzEYIt1o1KgRqlevbtOWmpqKe/fuadQjIiLyB5wmI11wlCRNRESkNo4MkaZ+/PFHu0Do6aefZiBEREQew5Eh0ozYaFBOTg4qVmTRSSIi8hwGQ+RxBQUFopvhcjSIiIi0wGky8qhZs2bZBUKLFy9mIERERJrhyBB5jNi0WGFhIQICAjToDRERURGODJHqLl++7HC1GAMhIiLSGoMhcslkFpCSnoNv0y4hJT0HJrP0Ka1OnTqhSpUqNm179+7ltBgREekGp8nIqaQTWZi55SSycu9b26KNwZjeu57LTWVZO4iIiLwBR4bIoaQTWRi77qhNIAQA2bn3MXbdUSSdyBI9b+/evXaBUMeOHRkIERGRLnFkiESZzAJmbjkJsfBFAGAAMHPLSXSpF4WAUn8FPmKjQZcvX0Z0tPNRJCIiIq1wZIhEHcy4bjci9DABQFbufRzMuA4AMJlMDqfFGAgREZGeMRgiUVduOQ6Eih+3ePFilC5tO8g4a9YsTosREZFX4DQZiYoIC5Z03FNNq9q15efnIzAwUOkuacJkFnAw4zqu3LqPiLBgtEyoaDMtSERE3o/BEIlqmVAR0cZgZOfeF80bMt/Lw8VFg+3afWk0qCQr6YiIyHtwmoxEBZQyYHrvegCKkqUfdnXzHLtAKCkpyecCIXdW0hERkfdhMEQOdW8QjaVDmyHK+NeU2YV5T+LumZ9tjhMEAd26dfN091TjaiUdULSSTk7xSSIi0i8GQ+RU9wbR2Du5E2a0CcWFeU/aPNewYUOfGg2ykLuSjoiIvBtzhsilsqEhyM/Pt2n7/fffkZCQoFGP1CVnJR0REXk/BkPkkCAIKFXKfvDQF0eDHiZ1JZ3U44iISN84TUai1q5daxcI/eMf//D5QAj4ayWdowX0BhStKmuZUNGT3SIiIpVwZIjsiFWSvnPnDkJDQzXojedZVtKNXXcUBsAmkdpyZab3rsd6Q0REPoIjQ2R169Yth1tq+EsgZCG2kg4AoozBWDq0GesMERH5EI4MEQDg73//O5YvX27T9u9//xv9+/fXqEfa694gGl3qRYlWoGZlaiIi38FgiERHg8xms2i7vwkoZUBijUo2baxMTUTkWzhN5sdOnz5tF/BERUVBEAQGQg6wMjURke9hMOSnYmNjUbduXZu2X3/9FVlZvJk7wsrURES+idNkfsZfawcpQU5l6uJTa0REpF8cGfIjBw8etAuERo4cyUBIIlamJiLyTRwZ8hMNGjTAr7/+atOWm5uL8PBwjXrkfViZmojINzEY8nEFBQUICgqya+dokHyWytTZufdF84YMKKpDxMrURETehdNkPmz9+vV2gdDOnTsZCLnJUpkagN1WHaxMTUTkvTgy5KNYO0gdlsrUxesMRbHOEBGR1/KakaHZs2ejTZs2CA0NRfny5SWdM2LECBgMBptH69at1e2oxq5evWoX8DzzzDOsHaSg7g2isXdyJ3wxujUWDmyCL0a3xt7JnRgIERF5Ka8ZGSooKMDTTz+NxMRErFixQvJ53bt3x6pVq6xfBwYGqtE9XZg0aRLee+89m7b09HRUr15dox75LrHK1ERE5J28JhiaOXMmAGD16tWyzgsKCkJUVJQKPdIXRxusEhERkXNeM03mrl27diEiIgK1atXC6NGjceXKFafH5+fnIy8vz+ahZ8eOHbMLhObPn89AiIiISCKvGRlyR48ePfD0008jLi4OGRkZeOutt9CpUyccOXJEdLk5AMyZM8c6CqV37dq1w969e23aWDuIiIhIHk1HhmbMmGGX4Fz8cfjwYbdff8CAAejVqxcaNGiA3r1744cffsDZs2exdetWh+dMmTIFubm51sfFixfdfn+1FBYWwmAw2ARCgYGBEASBgRAREZFMmo4MjRs3DgMHDnR6THx8vGLvFx0djbi4OJw7d87hMUFBQQ5HjfRg06ZN6Nevn03b1q1b0bNnT416RERE5N00DYYqV66MypUre+z9cnJycPHiRURHe+cSaLEkaZPJJLrxKhEREUnjNXfRzMxMpKWlITMzEyaTCWlpaUhLS8Pt27etx9SpUwebNm0CANy+fRsTJ05ESkoKzp8/j127dqF3796oXLky+vbtq9W34ZabN2/aBULdunVzuAM9ERERSec1CdTTpk3DmjVrrF83bdoUAJCcnIwOHToAAM6cOYPc3FwAQEBAAI4fP461a9fi5s2biI6ORseOHfHVV18hLCzM4/131zvvvINp06bZtJ08eRJ169bVqEdERES+xSBwDbZTeXl5MBqNmqzSYu0gIiIi98i5f3OORYeuXbtmFwhNnz6dgRAREZEKvGaazF9s2LABQ4YMsWnLyclBxYoVNeoRERGRb2MwpBOCIKBRo0Y4ceKEta1Ro0b45ZdfNOwVERGR72MwpAO//fYbatasadP266+/ol69ehr1iIiIyH8wZ0hj7777rk0gFB8fD5PJxECIiIjIQzgypJHCwkIEBQXBbDZb25YvX47nn39ew14RERH5HwZDGhk0aJBNIHT58mWvrYxNRETkzThNppHRo0cDAJ588kkIgsBAiIiISCMcGdJI165dWTeIiIhIBxgM6ZDJLOBgxnVcuXUfEWHBaJlQEQGl7KtRExERUckxGNKZpBNZmLnlJLJy71vboo3BmN67Hro34FQaERGR0pgzpCNJJ7Iwdt1Rm0AIALJz72PsuqNIOpGlUc+IiIh8F4MhnTCZBczcchJiWUSWtplbTsJkZp4RERGRkhgM6cTBjOt2I0IPEwBk5d7HwYzrnusUERGRH2AwpBNXbjkOhNw5joiIiKRhMKQTEWHBih5HRERE0jAY0omWCRURbQyGowX0BhStKmuZUNGT3SIiIvJ5DIZ0IqCUAdN7F23OWjwgsnw9vXc91hsiIiJSGIMhHeneIBpLhzZDlNF2KizKGIylQ5uxzhAREZEKWHRRZ7o3iEaXelGsQE1EROQhDIZ0KKCUAYk1KmndDSIiIr/AaTIiIiLyawyGiIiIyK8xGCIiIiK/xmCIiIiI/BqDISIiIvJrDIaIiIjIrzEYIiIiIr/GYIiIiIj8GoMhIiIi8musQO2CIAgAgLy8PI17QkRERFJZ7tuW+7gzDIZcuHXrFgAgNjZW454QERGRXLdu3YLRaHR6jEGQEjL5MbPZjMuXLyMsLAwGgz43S83Ly0NsbCwuXryI8PBwrbujKV6Lv/Ba/IXX4i+8Fn/htfiLL14LQRBw69YtxMTEoFQp51lBHBlyoVSpUqhatarW3ZAkPDzcZz7EJcVr8Rdei7/wWvyF1+IvvBZ/8bVr4WpEyIIJ1EREROTXGAwRERGRX2Mw5AOCgoIwffp0BAUFad0VzfFa/IXX4i+8Fn/htfgLr8Vf/P1aMIGaiIiI/BpHhoiIiMivMRgiIiIiv8ZgiIiIiPwagyEiIiLyawyGvNTs2bPRpk0bhIaGonz58pLOGTFiBAwGg82jdevW6nbUA9y5FoIgYMaMGYiJiUFISAg6dOiAX3/9Vd2OesCNGzcwbNgwGI1GGI1GDBs2DDdv3nR6jq98LpYsWYKEhAQEBwejefPm+Omnn5wev3v3bjRv3hzBwcGoXr06li1b5qGeqk/Otdi1a5fdz99gMOD06dMe7LHy9uzZg969eyMmJgYGgwGbN292eY6vfibkXgtf/Uw4w2DISxUUFODpp5/G2LFjZZ3XvXt3ZGVlWR/btm1TqYee4861mD9/PhYsWIDFixfj0KFDiIqKQpcuXax70XmrwYMHIy0tDUlJSUhKSkJaWhqGDRvm8jxv/1x89dVXGD9+PKZOnYrU1FS0a9cOPXr0QGZmpujxGRkZ6NmzJ9q1a4fU1FS88cYbePnll7Fx40YP91x5cq+FxZkzZ2w+AzVr1vRQj9Vx584dNG7cGIsXL5Z0vC9/JuReCwtf+0w4JZBXW7VqlWA0GiUdO3z4cKFPnz6q9kdLUq+F2WwWoqKihLlz51rb7t+/LxiNRmHZsmUq9lBdJ0+eFAAI+/fvt7alpKQIAITTp087PM8XPhctW7YUxowZY9NWp04d4fXXXxc9/rXXXhPq1Klj0/bCCy8IrVu3Vq2PniL3WiQnJwsAhBs3bnigd9oAIGzatMnpMb78mXiYlGvhD5+J4jgy5Gd27dqFiIgI1KpVC6NHj8aVK1e07pLHZWRkIDs7G127drW2BQUFoX379ti3b5+GPSuZlJQUGI1GtGrVytrWunVrGI1Gl9+XN38uCgoKcOTIEZufJwB07drV4fedkpJid3y3bt1w+PBhPHjwQLW+qs2da2HRtGlTREdH44knnkBycrKa3dQlX/1MlIQ/fSYYDPmRHj16YP369di5cyfef/99HDp0CJ06dUJ+fr7WXfOo7OxsAEBkZKRNe2RkpPU5b5SdnY2IiAi79oiICKffl7d/Lq5duwaTySTr55mdnS16fGFhIa5du6ZaX9XmzrWIjo7Gp59+io0bN+Kbb75B7dq18cQTT2DPnj2e6LJu+Opnwh3++JngrvU6MmPGDMycOdPpMYcOHUKLFi3cev0BAwZY/92gQQO0aNECcXFx2Lp1K/r16+fWa6pF7WsBAAaDweZrQRDs2vRA6rUA7L8nwPX35U2fC2fk/jzFjhdr90ZyrkXt2rVRu3Zt69eJiYm4ePEi3nvvPTz++OOq9lNvfPkzIYc/fiYYDOnIuHHjMHDgQKfHxMfHK/Z+0dHRiIuLw7lz5xR7TaWoeS2ioqIAFP0lGB0dbW2/cuWK3V+GeiD1Whw7dgx//vmn3XNXr16V9X3p+XMhpnLlyggICLAb+XD284yKihI9vnTp0qhUqZJqfVWbO9dCTOvWrbFu3Tqlu6drvvqZUIqvfyYYDOlI5cqVUblyZY+9X05ODi5evGgTEOiFmtciISEBUVFR2LFjB5o2bQqgKNdi9+7dmDdvnirvWRJSr0ViYiJyc3Nx8OBBtGzZEgBw4MAB5Obmok2bNpLfT8+fCzGBgYFo3rw5duzYgb59+1rbd+zYgT59+oiek5iYiC1btti0bd++HS1atECZMmVU7a+a3LkWYlJTU73m568UX/1MKMXnPxNaZm+T+y5cuCCkpqYKM2fOFMqVKyekpqYKqampwq1bt6zH1K5dW/jmm28EQRCEW7duCf/4xz+Effv2CRkZGUJycrKQmJgoVKlSRcjLy9Pq21CE3GshCIIwd+5cwWg0Ct98841w/PhxYdCgQUJ0dLTXX4vu3bsLjRo1ElJSUoSUlBShYcOGwpNPPmlzjC9+Lr788kuhTJkywooVK4STJ08K48ePF8qWLSucP39eEARBeP3114Vhw4ZZj//999+F0NBQ4dVXXxVOnjwprFixQihTpozw73//W6tvQTFyr8UHH3wgbNq0STh79qxw4sQJ4fXXXxcACBs3btTqW1DErVu3rL8LAAgLFiwQUlNThQsXLgiC4F+fCbnXwlc/E84wGPJSw4cPFwDYPZKTk63HABBWrVolCIIg3L17V+jatavwyCOPCGXKlBGqVasmDB8+XMjMzNTmG1CQ3GshCEXL66dPny5ERUUJQUFBwuOPPy4cP37c851XWE5OjjBkyBAhLCxMCAsLE4YMGWK3PNZXPxcff/yxEBcXJwQGBgrNmjUTdu/ebX1u+PDhQvv27W2O37Vrl9C0aVMhMDBQiI+PF5YuXerhHqtHzrWYN2+eUKNGDSE4OFioUKGC0LZtW2Hr1q0a9FpZluXhxR/Dhw8XBMG/PhNyr4WvfiacMQjC/2WIEREREfkhLq0nIiIiv8ZgiIiIiPwagyEiIiLyawyGiIiIyK8xGCIiIiK/xmCIiIiI/BqDISIiIvJrDIaIiFTSoUMHjB8/XutuEJELDIaIqEQMBoPTx4gRIzzWFzWCjxEjRuCpp55S9DUd2bVrFwwGA27evOmR9yOiItyolYhKJCsry/rvr776CtOmTcOZM2esbSEhITbHP3jwgBtfEpGucGSIiEokKirK+jAajTAYDNav79+/j/Lly+Prr79Ghw4dEBwcjHXr1mHGjBlo0qSJzet8+OGHiI+Pt2lbtWoV6tati+DgYNSpUwdLlixx2I8RI0Zg9+7dWLhwoXVU6vz58wCAkydPomfPnihXrhwiIyMxbNgwXLt2zXruv//9bzRs2BAhISGoVKkSOnfujDt37mDGjBlYs2YNvv32W+tr7tq1S/T979y5g2effRblypVDdHQ03n//fbtj1q1bhxYtWiAsLAxRUVEYPHgwrly5AgA4f/48OnbsCACoUKGCzahaUlIS2rZti/Lly6NSpUp48sknkZ6e7uSnQkRyMBgiItVNnjwZL7/8Mk6dOoVu3bpJOmf58uWYOnUqZs+ejVOnTuHdd9/FW2+9hTVr1ogev3DhQiQmJmL06NHIyspCVlYWYmNjkZWVhfbt26NJkyY4fPgwkpKS8Oeff+KZZ54BUDSyNWjQIIwcORKnTp3Crl270K9fPwiCgIkTJ+KZZ55B9+7dra/Zpk0b0fefNGkSkpOTsWnTJmzfvh27du3CkSNHbI4pKCjAO++8g19++QWbN29GRkaGNeCJjY3Fxo0bAQBnzpxBVlYWFi5cCKAo0JowYQIOHTqE//73vyhVqhT69u0Ls9ks6VoSkXOcJiMi1Y0fPx79+vWTdc4777yD999/33peQkICTp48iU8++QTDhw+3O95oNCIwMBChoaGIioqyti9duhTNmjXDu+++a21buXIlYmNjcfbsWdy+fRuFhYXo168f4uLiAAANGza0HhsSEoL8/Hyb1yzu9u3bWLFiBdauXYsuXboAANasWYOqVavaHDdy5Ejrv6tXr45FixahZcuWuH37NsqVK4eKFSsCACIiIlC+fHnrsf3797d5nRUrViAiIgInT55EgwYNHPaLiKThyBARqa5Fixayjr969SouXryIUaNGoVy5ctbHrFmzZE8PHTlyBMnJyTavU6dOHQBAeno6GjdujCeeeAINGzbE008/jeXLl+PGjRuy3iM9PR0FBQVITEy0tlWsWBG1a9e2OS41NRV9+vRBXFwcwsLC0KFDBwBAZmamy9cfPHgwqlevjvDwcCQkJEg6j4ik4cgQEamubNmyNl+XKlUKgiDYtD148MD6b8v0z/Lly9GqVSub4wICAmS9t9lsRu/evTFv3jy756KjoxEQEIAdO3Zg37592L59Oz766CNMnToVBw4csAYdrhT/XsTcuXMHXbt2RdeuXbFu3To88sgjyMzMRLdu3VBQUOD03N69eyM2NhbLly9HTEwMzGYzGjRo4PI8IpKGwRARedwjjzyC7OxsCIIAg8EAAEhLS7M+HxkZiSpVquD333/HkCFDJL9uYGAgTCaTTVuzZs2wceNGxMfHo3Rp8V95BoMBjz32GB577DFMmzYNcXFx2LRpEyZMmCD6msU9+uijKFOmDPbv349q1aoBAG7cuIGzZ8+iffv2AIDTp0/j2rVrmDt3LmJjYwEAhw8ftus/AJv3y8nJwalTp/DJJ5+gXbt2AIC9e/dKvSREJAGnyYjI4zp06ICrV69i/vz5SE9Px8cff4wffvjB5pgZM2Zgzpw5WLhwIc6ePYvjx49j1apVWLBggcPXjY+Px4EDB3D+/Hlcu3YNZrMZL730Eq5fv45Bgwbh4MGD+P3337F9+3aMHDkSJpMJBw4cwLvvvovDhw8jMzMT33zzDa5evYq6detaX/PYsWM4c+YMrl27ZjOCZVGuXDmMGjUKkyZNwn//+1+cOHECI0aMQKlSf/2KrVatGgIDA/HRRx/h999/x3fffYd33nnH5nXi4uJgMBjw/fff4+rVq7h9+zYqVKiASpUq4dNPP8Vvv/2GnTt3YsKECSW5/ERUnEBEpJBVq1YJRqPR+nVGRoYAQEhNTbU7dunSpUJsbKxQtmxZ4dlnnxVmz54txMXF2Ryzfv16oUmTJkJgYKBQoUIF4fHHHxe++eYbh+9/5swZoXXr1kJISIgAQMjIyBAEQRDOnj0r9O3bVyhfvrwQEhIi1KlTRxg/frxgNpuFkydPCt26dRMeeeQRISgoSKhVq5bw0UcfWV/zypUrQpcuXYRy5coJAITk5GTR975165YwdOhQITQ0VIiMjBTmz58vtG/fXnjllVesx2zYsEGIj48XgoKChMTEROG7776zuz5vv/22EBUVJRgMBmH48OGCIAjCjh07hLp16wpBQUFCo0aNhF27dgkAhE2bNjm8FkQknUEQJEx2ExEREfkoTpMRERGRX2MwRERERH6NwRARERH5NQZDRERE5NcYDBEREZFfYzBEREREfo3BEBEREfk1BkNERETk1xgMERERkV9jMERERER+jcEQERER+TUGQ0REROTX/j82R+uvX39bTQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkiklEQVR4nO3deXgT1f4/8HcodIM2bHaD0hZk35cvUARZZEcuAl9lFwS5gvJT5IKIKIuCLFdREAFFVgGXexEUwQr3UkCk7K2ArNZCEVqBAi1rS5P5/dFvImkmyUw6k5kk79fz5HnoyUxyOg2dT8/5nM8xCIIggIiIiMhPldK6A0RERERaYjBEREREfo3BEBEREfk1BkNERETk1xgMERERkV9jMERERER+jcEQERER+TUGQ0REROTXGAwRERGRX2MwREQ2Vq9eDYPBgODgYFy4cMHu+Q4dOqBBgwY2bfHx8TAYDNZH2bJl0axZMyxevBjFi9zv2rXLetzq1atF+9CpUycYDAbEx8fbtN+5cwfz5s1D48aNER4ejrCwMNSoUQPPPPMMdu/eLfoeYg9H76uW27dvY/z48YiJiUFwcDCaNGmCL7/80q3XevPNN2EwGOx+BsXdu3cPtWrVgsFgwHvvvefWexH5i9Jad4CI9Ck/Px9vvvkmPv/8c0nHP/bYY9ab7uXLl7FgwQL8v//3/5CXl4c33njD7viwsDCsWLECI0aMsGnPyMjArl27EB4ebtNuMpnQtWtXHD9+HJMmTULLli0BAOfOncOWLVvw008/oX379jbnvPvuu+jYsaPde9eoUUPS96SUfv364dChQ5g7dy5q1aqFDRs2YNCgQTCbzRg8eLDk10lLS8N7772HyMhIl8e+9dZbuHPnTkm6TeQ/BCKih6xatUoAIHTv3l0oVaqUkJaWZvN8+/bthfr169u0xcXFCb169bJpy83NFYxGo1CtWjWb9uTkZAGA8PzzzwsAhLNnz9o8/+abbwpVq1YVevToIcTFxVnbd+7cKQAQVq5cKdpvk8lk9x7/+te/JH/fatm6dasAQNiwYYNNe5cuXYSYmBihsLBQ0us8ePBAaNKkifDyyy+L/gweduDAASEwMFD417/+JQAQ/vnPf5boeyDydZwmIyJRr732GipVqoTJkye7dX54eDhq1aqFP//8U/T5Ll26IDY2FitXrrS2mc1mrFmzBsOHD0epUra/nnJycgAA0dHRoq9X/Hi92LRpE8qVK4enn37apv25557D5cuXceDAAUmvM3fuXFy/fh2zZ892elxBQQFGjhyJl156CS1atHC730T+RJ+/PYhIc2FhYXjzzTfx448/YufOnbLPLywsxMWLF1GrVi3R50uVKoURI0Zg7dq1MJlMAIDt27fjjz/+wHPPPWd3fIsWLVCmTBm88sorWL9+PbKyslz2wWw2o7Cw0O7hiiAIoue581onTpxA3bp1Ubq0bVZCo0aNrM+7cvLkScyaNQtLly5FuXLlnB779ttv486dO3jnnXdcvi4RFWEwREQOjRkzBtWrV8fkyZPtEqGLeziAyMzMxIsvvoicnBzMmTPH4TnPPfccsrKykJSUBABYuXIl2rdvL5rTEx8fj2XLluHy5csYOnQoYmJiEBMTg+HDh+Onn34Sff0BAwagTJkydo8//vjD6feyZs0a0fPEHq7k5OSgYsWKdu2WNsuIlyNmsxkjR45Ev3790LNnT6fHpqWlYf78+Vi2bBnKli3rsm9EVIQJ1ETkUGBgIGbNmoXBgwfj66+/xoABAxweu23bNrvgYNmyZejVq5fDcxISEtChQwesXLkSrVu3xrfffovPPvvM4fEjR45E//79sW3bNuzfvx/79+/HunXr8Pnnn2PevHmYNGmSzfHz5s1Dp06d7F7HVQJy7969cejQIafHyGEwGNx6DgAWLFiAc+fO4bvvvnN6XGFhIUaOHIkBAwagW7dubvWTyF8xGCIipwYOHIj33nsPU6dORb9+/Rwe17ZtW3zwwQcwmUw4d+4c3nrrLYwbNw7169dH27ZtHZ43atQoPPfcc1iwYAFCQkLwv//7v077YzQaMWjQIAwaNAgA8Ouvv6Jz586YOnUqRo8ejfLly1uPrV69ult5MxUrVoTRaJR9nphKlSqJjv5cv37d+l6OZGZmYtq0aZg7dy4CAwNx8+ZNAEWBj9lsxs2bNxEUFISQkBB8+OGH+P333/H1119bj8vLywMA3L9/Hzdv3kRYWBgCAgIU+b6IfAmnyYjIKYPBgHnz5iE9PR2ffvqpw+OMRiNatGiBVq1aYejQodi+fTvKlCmDF198EWaz2eF5/fr1Q2hoKObOnYuBAwciJCREVv/q16+PgQMH4sGDBzh79qyscx1RcpqsYcOGOHXqlF1+0fHjxwHAab2g33//Hffu3cMrr7yCChUqWB8///wzTp06hQoVKmDKlCkAinKPcnNzUbNmTetxjRs3BlC0zL5ChQrW9yQiWxwZIiKXOnfujC5duuDtt99GbGyspHNq1qyJ1157DTNnzsRXX31lHckpLiQkBNOmTcOePXswduxYh6+Xk5ODsLAwBAYG2j13+vRpAEBMTIykvrmi5DRZ3759sXz5cmzcuNFmmnHNmjWIiYlBq1atHJ7bpEkTJCcn27WPHz8eubm5WLVqFapWrQoAeP311+1qNmVnZ2PQoEEYM2YMBgwYgEcffVSR74nI1zAYIiJJ5s2bh+bNm+PKlSuoX7++pHMmTpyIZcuWYebMmXjmmWccTtFMmDABEyZMcPpaycnJeOWVVzBkyBC0adMGlSpVwpUrV/DFF18gKSkJzz77rDUwsDh37hz2799v91pVq1a1O/ZhlSpVQqVKlSR8h6716NEDXbp0wdixY5GXl4dHH33U2ud169bZXJNRo0ZhzZo1SE9PR1xcHMqXL48OHTrYvWb58uVRWFho81ydOnVQp04dm+POnz8PoKjIpNjrEFERBkNEJEnTpk0xaNAgbNiwQfI55cqVw7Rp0/DSSy9h/fr1ePbZZ91+/9atW2PkyJFITk7G559/jmvXriEkJAT16tXDRx99JDqqJFb5GgCmTp2KWbNmud0Xub755htMnToV06ZNw/Xr11GnTh188cUXGDhwoM1xJpMJJpPJ5co9IlKWQeD/OiIiIvJjTKAmIiIiv8ZgiIiIiPwagyEiIiLyawyGiIiIyK8xGCIiIiK/xmCIiIiI/BrrDLlgNptx+fJlhIWFudxQkYiIiPRBEATcunULMTExKFXK+dgPgyEXLl++LHn7ASIiItKXixcvOq04DzAYciksLAxA0cUMDw/XuDdEREQkRV5eHmJjY633cWcYDLlgmRoLDw9nMERERORlpKS4MIGaiIiI/BqDISIiIvJrDIaIiIjIrzEYIiIiIr/GYIiIiIj8GoMhIiIi8msMhoiIiMivMRgiIiIiv8ZgiIiIiPwagyEiIiLyawyGiIiIyK8xGCIiIiK/xmCIiIiINHPv3j2tu8BgiIiIiDwvMzMTBoMBoaGh2LRpk6Z9YTBEREREHrVo0SLExcVZvw4LC9OwN0BpTd+diIiI/EZhYSEeeeQR3Lx509r2wQcfoHPnztp1CgyGiIiIyANSU1PRrFkzm7bz58/bjBBphdNkREREpKqXX37ZJhBq06YNzGazLgIhgCNDREREpJLbt2/b5QNt3LgR/fr106hH4hgMERERkeJ++OEH9OzZ06btxo0bKF++vDYdcoLTZERERKSobt262QRCI0eOhCAIugyEAI4MERERkUKysrIQExNj05aSkoLWrVtr1CNpODJEREREJfbpp5/aBEKlS5dGfn6+7gMhgMEQERERlYDJZELVqlXxwgsvWNveffddPHjwAIGBgRr2TDpOkxEREZFbfv31VzRo0MCm7bfffkONGjU06pF7ODJEREREsr3++us2gVDjxo1hNpu9LhACODJEREREMty9exdly5a1aduwYQMGDRqkUY9KjsEQERERSbJz50488cQTNm3Xrl1DpUqVNOqRMjhNRkRERC717dvXJhAaOHAgBEHw+kAI4MgQEREROXHlyhVERkbatO3Zswft2rXTqEfK48gQERERiVqzZo1dIHTv3j2fCoQABkNERERUjNlsRu3atTFixAhr27Rp0yAIAoKDg7XrmEq8Khjas2cPevfujZiYGBgMBmzevNnp8bt27YLBYLB7nD592jMdJiIi8jJnz55FQEAAzp49a207deoUZs6cqWGv1OVVwdCdO3fQuHFjLF68WNZ5Z86cQVZWlvVRs2ZNlXpIRETkvWbOnInatWtbv3700UdhMplQp04dDXulPq9KoO7Rowd69Ogh+7yIiAjd7pRLRESktfz8fLvpr1WrVtlMk/kyrxoZclfTpk0RHR2NJ554AsnJyU6Pzc/PR15ens2DiIjIV+3du9cuEMrOzvabQAjw8WAoOjoan376KTZu3IhvvvkGtWvXxhNPPIE9e/Y4PGfOnDkwGo3WR2xsrAd7TERE5DlDhw61WRn2t7/9DYIg2K0g83UGQRAErTvhDoPBgE2bNuGpp56SdV7v3r1hMBjw3XffiT6fn5+P/Px869d5eXmIjY1Fbm4uwsPDS9JlIiIiXbh+/bpdscQdO3agc+fOGvVIeXl5eTAajZLu3z49MiSmdevWOHfunMPng4KCEB4ebvMgIiLyFV999ZVdIHTnzh2fCoTk8rtgKDU1FdHR0Vp3g4iIyKMEQUCzZs0wcOBAa9vEiRMhCAJCQ0M17Jn2vGo12e3bt/Hbb79Zv87IyEBaWhoqVqyIatWqYcqUKbh06RLWrl0LAPjwww8RHx+P+vXro6CgAOvWrcPGjRuxceNGrb4FIiIij/v9999Ro0YNm7Zjx46hYcOGGvVIX7wqGDp8+DA6duxo/XrChAkAgOHDh2P16tXIyspCZmam9fmCggJMnDgRly5dQkhICOrXr4+tW7eiZ8+eHu87ERGRFubPn4/Jkydbv46OjsbFixcREBCgYa/0xWsTqD1FTgIWERGRXjx48ABhYWE2i4KWLFmCsWPHatgrz5Fz//aqkSEiIiJy7eDBg2jVqpVN2x9//IEqVapo1CN987sEaiIiIl/297//3SYQeuKJJ2A2mxkIOcGRISIiIh+Qm5trt/XU999/j169emnTIS/CkSEiIiIvt3nzZrtAKC8vj4GQRAyGiIiIvJQgCGjXrh369u1rbXvppZcgCALCwsI07Jl34TQZERGRF7p48SKqVatm03b48GE0b95cox55L44MEREReZlXX33VJhAKDw9HQUEBAyE3cWSIiIjIS+Tn5yM4ONimbcGCBXj11Vc16pFv4MgQERGRF1i9erVdIHT+/HkGQgrgyBAREZHOGQwGuzaz2SzaTvJxZIiIiEgBJrOAlPQcfJt2CSnpOTCZS77bVXp6ul3AM3ToUAiCwEBIQRwZIiIiKqGkE1mYueUksnLvW9uijcGY3rseujeIdus169SpgzNnzti0ZWRkID4+viRdJREMhoiIiEog6UQWxq47iuLjQNm59zF23VEsHdpMdkAkNurDfdXVw2kyIiIiN5nMAmZuOWkXCAGwts3cclLylNm2bdvsAqEBAwYwEFIZR4aIiIjcdDDjus3UWHECgKzc+ziYcR2JNSo5fS2x0aCcnBxUrFixpN0kFxgMERERuenKLceBkNTjCgoKEBQUZNduGQ0ymQUczLiOK7fuIyIsGC0TKiKgFJOnlcRpMiIiIjdFhAW7PsjJcTNnzrQLhJYsWWINhJJOZKHtvJ0YtHw/XvkyDYOW70fbeTuRdCKrZB0nGxwZIiIiclPLhIqINgYjO/e+aN6QAUCUsWg0x+45kWmxwsJCBAQEAFAnMZvEcWSIiIjITQGlDJjeux6AosDnYZavp/euZzOtdenSJYerxSyBkNKJ2eQcgyEiIqIS6N4gGkuHNkOU0XYqLMoYbDd6065dO1StWtXmuH379tmtFpOTmE0lx2kyIiKiEureIBpd6kU5TXSWUztIicRsko4jQ0RERAoIKGVAYo1K6NOkChJrVLIGQnv27LELhLp06eK0dlBJE7NJHo4MERF5ES6z9i5io0FZWVmIiopyel5JErNJPgZDREReQo39r0gdhYWFKFOmjF271ErSlsTsseuOwgDYBESOErO9jZ4Ce06TERF5Acsy6+JJtZZl1qw7ox8ffvihXSA0Z84c2VtqyEnM9jZ6q59kELjhiVN5eXkwGo3Izc1FeHi41t0hIj9kMgtoO2+nw9VFlimTvZM7efVIgS8Qmxa7dz8fwUGBbr+mnkZQlOCofpLlO1Iq0JNz/+bIEBGRznGZtf45qh0UN/l7dFzwU4lGPBwlZnsjvdZPYjBERKRzXGatbwaDwa52UMSAWYib/D0A75nKNJkFpKTn4Nu0S0hJz1ElINFrYM8EaiIineMya/1yNBr0MAFFU0Azt5xEl3pRuhzZ8VRyvl4De44MERHpnGWZtaNbqAFFNy4us/ac9evXSwqELPQ8lenJ5Hy9BvYMhoiIdM6d/a9IPQaDAUOHDrVpe2/dVoeB0MP0NpXp6RwevQb2DIaIiLyALy+z9hZms9nhlhptWreS9Bp6m8r0dA6PXgN75gwREXkJKftfkTqeffZZfP7553btluo03loxWoscHktgXzxHKUrDAqIMhoiIvIhlmTV5jthoUPHaNd5aMVqrHB69BfacJiMiIhKRnZ3tcFpMrIifN05lapnDo6f6SRwZIiIiKkYsCHrjjTcwe/Zsp+fpbcTDFW8d0VIat+NwgdtxEBH5F7FAyFHytK/wxU2A5dy/OTJEREQEYNWqVRg5cqRduz+MGXjbiJbSvCpnaM+ePejduzdiYmJgMBiwefNml+fs3r0bzZs3R3BwMKpXr45ly5ap31EiIvIqBoPBLhDavHmzXwRCFnrK4fE0rwqG7ty5g8aNG2Px4sWSjs/IyEDPnj3Rrl07pKam4o033sDLL7+MjRs3qtxTIiLyBoIgOEyS7tOnjwY9Ii141TRZjx490KNHD8nHL1u2DNWqVcOHH34IAKhbty4OHz6M9957D/3791epl0REpBSTWVBt6ubxxx/HTz/9ZNfubDRIzf6QdrwqGJIrJSUFXbt2tWnr1q0bVqxYgQcPHqBMmTJ25+Tn5yM/P9/6dV5enur9JCIie2om9YqNBl24cAHVqlXTpD+kLa+aJpMrOzsbkZGRNm2RkZEoLCzEtWvXRM+ZM2cOjEaj9REbG+uJrhIRacJkFpCSnoNv0y4hJT1HsT2oSkqtzUOvXLnicFrMVSDkqc1MyfN8emQIsI/+LcOfjpZITpkyBRMmTLB+nZeXx4CIiHySXkc6XG0eakDR5qFd6kXJmqIS+71fs2ZNnD171u79H54Kax5XQZX+kH74dDAUFRWF7Oxsm7YrV66gdOnSqFRJvJx9UFAQgoKCPNE9IiLNWEY6it/gLSMdWlZMlrN5qNStScQCIZPJhFKlbCdIxALEimXL4PqdB4r2h/TFp6fJEhMTsWPHDpu27du3o0WLFqL5QkRE/sDVyAtQNNKh1ZSZkpuHfvnllw6nxcQCIbGpMGeBkNz+kD55VTB0+/ZtpKWlIS0tDUDR0vm0tDRkZmYCKJrievbZZ63HjxkzBhcuXMCECRNw6tQprFy5EitWrMDEiRO16D4RkS7IGXnRglKbhxoMBgwaNMim7f333xddLeYsQJRK6c1MyXO8aprs8OHD6Nixo/VrS27P8OHDsXr1amRlZVkDIwBISEjAtm3b8Oqrr+Ljjz9GTEwMFi1axGX1ROTXlBx5UYNl89Ds3PuiwYkBRZufOts81NFokCOuAkRnpPRHDi7f9zyvCoY6dOjg9MO8evVqu7b27dvj6NGjKvaKiMi7KDXyopaSbB7aqVMnJCcn27W7qiTtbuCn9Gamek1q93VeNU1GREQlZxl5cXTrNqDoBqzUSIc7ujeIxtKhzRBltA3IoozBDpO7DQaDXSB09OhRSVtqSA38KpYNlNwfubh8XzteNTJEREQlV5KRF0+Sunlobm4uypcvb3e+nH3FpE7N7Z7UEUcu3FB8CkutcgIkDUeGiIj8kDsjL1pwtXmowWAocSBkeZ/pvesVvWax5zwRIOo9qd3XcWSIiMhPSR150SuxJOn79++7XSvOEiAWz9mJ+r+cHQBoO2+nKvk8ek9q93UMhoiIdECrFUSWkRdv8p///AddunSxa5c7GiTGUYC442S2qkUq9Z7U7usYDBERaYwriKQTGw0aNWoUPvvsM8Xeo3iA6Il8HiXKCZD7mDNERKQhriCSzlHtICUDITGeyOfROmfJ3zEYIiLSiN63xdCL5557TnYRRSV5Kp/HW5LafRGnyYiINKLGhqS+RiwI+u9//4tOnTp5rA+ezOfx9qR2b8VgiIhII1xB5Ni9e/cQGhpq1+6p0aCHeTqfxxuT2r0dp8mIiDTi7yuITGYBKek5+DbtElLSc6zTgQaDQTeBEMB8Hn/AkSEiIo348woiRyvo9r/R2e7YGzduiBZW9CRXNYiYz+PdGAwREWnE09ti6GU3dMsKuoe/3/xLp7B/3iS7Y7UaDRLDfB7fxWCIiEhDnhpx0EstI7EVdBfmPWl3XMOGDXHs2DGP9Usq5vP4JgZDREQaU3vEQWwkBlCuerIcxVfQiQVCcZO/xyejW3ukP0QAgyEiIl1Qa8RBb7uhW1bG5R38BjeSV9o9Hzf5e5vjiDyBwRARkQ/TWy2jiLBg0dGgyn97DWXrPm5znBR6yYMi78ZgiIhII564keuplpHJZEKbRyvbtVtGgwB5K+j0kgdF3o/BEBGRBuTeyN0NnPRSy6hGjRr4/fff7dqLB0KAtBV0nsqD4siTf2AwRERu443CPXJv5CUZAdFDLSOxLTW+2H0cC3/+060VdJ7Kg+LIk/8wCHoq4qBDeXl5MBqNyM3NRXh4uNbdIdIN3ijcYzILaDtvp8M8HktwsndyJwSUMjgMnCy3eCkjIJbXAMRrGam1muzChQuIj4+3a7fcdtwNplPSczBo+X6Xx30xurXbeVBKXHfSlpz7N7fjICLZLDeK4jd0y8hG0oksjXqmf3ISmpXa1V6L3dANBoNdINS+fXubIoqWFXR9mlRBYo1Kkkdx1M6DUuq6k/fgNBkRyaK3pdreRs6NXMmVYJ6sniw2LWY2m0Xb3aF2HpTeVuCR+jgyRESyyLlRkD05N3KlR0DcHYmRasmSJaIBjyAIigVCwF95UI5e0YCiKVt386CkXs8fTmTZbDBL3ovBEBHJoqel2t5Izo1cLyvBpDAYDHjppZds2lavXq3K3mJq7yIv9XquTbmAQcv3o+28nZwa9nJuB0N3797F6dOncezYMZsHEfk2b7pB65GcG7naIyBKcDTqIwgChg8frtr7qpkH5eq6F8dcOe8nezXZ1atX8dxzz+GHH34Qfd5kMinSMb3gajIiW5bVUK6WaltWQ5E4qavxtFoJJkWdOnVw5swZu3ZPLlJWq7yDo+vuCD/3+iPn/i07GBoyZAjOnz+PDz/8EB07dsSmTZvw559/YtasWXj//ffRq1evEnVebxgMEdnT8w3am0i9keuxjIHYaNDZs2dRs2ZNDXqjDrHr7kpJlvOTslQNhqKjo/Htt9+iZcuWCA8Px+HDh1GrVi189913mD9/Pvbu3VuizusNgyEicXq8QfsyvRS4vHz5MqpUqWLX7qsl6yzX/YcTWVibcsHl8QsHNkGfJvbXhzxPzv1b9tL6O3fuICIiAgBQsWJFXL16FbVq1ULDhg1x9OhR93pMRF7Hk0u1Sb1d7eVwtCLMVwMhwPa6SwmGmCvnnWQHQ7Vr18aZM2cQHx+PJk2a4JNPPkF8fDyWLVuG6Gj+NUjkT/RwgybPEAuECgsLERAQoEFvPE8P25qQemSvJhs/fjyysooy5qdPn46kpCRUq1YNixYtwrvvvqt4B4mISDtr1651uFrMWwIhk1lASnoOvk275HZdILWX85O2Srw3mWWJfbVq1VC5cmWl+qUbzBkiIn8lFgSNGTMGS5cu1aA37lE6t425ct5D1QTqt99+GxMnTkRoaKhN+7179/DPf/4T06ZNk99jHWMwRET+yNFokDdRa7NVvSSzk3OqBkMBAQHIysqyJlFb5OTkICIignWGiIi8WNOmTZGWlmbXrmYgpEZwYamH5WhZPOsC+T5VV5M5qjb6yy+/oGJFJo4REXkrsd/tP//8M9q0aaPae6o17cTNVkkOycFQhQoVYDAYYDAYUKtWLZv/NCaTCbdv38aYMWNU6SQREannxo0bon/Mqj0t5mgay7K9RUmKd3IPPZJDcjD04YcfQhAEjBw5EjNnzoTRaLQ+FxgYiPj4eCQmJqrSSSIikk7OtJO7tYNKOrVlMguYueWk6DJ1AUXTWDO3nESXelFuTWNxDz2SQ3IwZNlwLyEhAW3atEGZMmVU65QzS5YswT//+U9kZWWhfv36+PDDD9GuXTvRY3ft2oWOHTvatZ86dQp16tRRu6tERB4nZ9pJLBC6c+eO3QKZkryHI2pPY7EuEMkhu85Q+/btrYHQvXv3kJeXZ/NQ01dffYXx48dj6tSpSE1NRbt27dCjRw9kZmY6Pe/MmTPIysqyPnxp7xwiIgvLtFPxIKP4ruqbN292uFpMSiAk5T1ccXcaS2rNINYFIjlkJ1DfvXsXr732Gr7++mvk5OTYPa/marIFCxZg1KhReP755wEUTd39+OOPWLp0KebMmePwvIiICJQvX161fhGRfFyerCyp0049GsbYPd+yZUscOHBAsfeQMrXlzjSW3BGp7g2isXRoM7tzolgXiIqRHQxNmjQJycnJWLJkCZ599ll8/PHHuHTpEj755BPMnTtXjT4CAAoKCnDkyBG8/vrrNu1du3bFvn37nJ7btGlT3L9/H/Xq1cObb74pOnVmkZ+fj/z8fOvXao92EfkaKUEOC9cpT8q00/43Otu3/19ukJSfm5JTW3KnsdxNtuYeeiSF7GBoy5YtWLt2LTp06ICRI0eiXbt2ePTRRxEXF4f169djyJAhavQT165dg8lkQmRkpE17ZGQksrOzRc+Jjo7Gp59+iubNmyM/Px+ff/45nnjiCezatQuPP/646Dlz5szBzJkzFe8/kT+QEuSouYLInzmbdsre8DryL56wa7cEQlKDUyVXaFmmscauOwoDYPN5KD6NVdIRKe6hR67Izhm6fv06EhISAADh4eG4fv06AKBt27bYs2ePsr0TUXye21HdI6BoU9nRo0ejWbNmSExMxJIlS9CrVy+89957Dl9/ypQpyM3NtT4uXryoaP+JfJWUXBJXNzWg6Kbmzt5R/s7RtNOFeU/aBUJffvmlTSAkNQdI6RValmmsKKPt8VHGYJugWM6IlD9QYq81siV7ZKh69eo4f/484uLiUK9ePXz99ddo2bIltmzZompeTuXKlREQEGA3CnTlyhW70SJnWrdujXXr1jl8PigoCEFBQW73k8gfSf3LPSy4jK4L4XlzHlPxaSehsACZ7/ezO67QZLZ+T3JHXNRYoSVlGos1g/7CKWZ1yA6GnnvuOfzyyy9o3749pkyZgl69euGjjz5CYWEhFixYoEYfARTVMmrevDl27NiBvn37Wtt37NiBPn36SH6d1NRUREfzA0OkJKl/uf/rsLSRVi1uat5+k3l42unCvCdFj/nh+GWbIENuDpCcqS25fXcW/Oq9ZpCngmhOMatHdjD06quvWv/dsWNHnD59GocPH0aNGjXQuHFjRTtX3IQJEzBs2DC0aNECiYmJ+PTTT5GZmWmtfD1lyhRcunQJa9euBVC02iw+Ph7169dHQUEB1q1bh40bN2Ljxo2q9pPI30gNXjanXZZ0nKdvat50k3F24+3eIBrnRQKh5m9uxKwBiXbfgzsjLlqs0NJzzSBPBdFqF6n0d7KDoeKqVauGatWqKdEXlwYMGICcnBy8/fbbyMrKQoMGDbBt2zbExcUBALKysmxqDhUUFGDixIm4dOkSQkJCUL9+fWzduhU9e/b0SH+J/IVSwYsWNzVvusk4u/GGXj+H9u3b252z77drDkcq3B1x8fQKLbVGpErKk0E091pTl6Rd6xctWiT5BV9++eUSdUhvuGs9kWuWHcId/eUuheU25ulRmJT0HAxavt/lcV+Mbq3pTcbRjdcAiI4GlSpVymXdN1c/N73t7K6nqUzLtXMUoCh97b5Nu4RXvkxzedzCgU3Qp0mVEr+fL1B81/oPPvjA5uurV6/i7t271oTpmzdvIjQ0FBERET4XDBGRa87+cpdKq0J4UqeKfnYywqI2Z6NXYoGQ1A1W9Tri4ognRqSk5v94eqRG73lT3k5SMJSRkWH994YNG7BkyRKsWLECtWvXBlC03cXo0aPxwgsvqNNLItI9R7kkUozr+Che7VJLk5uu1JvH4uTfsPHoH5oEbGI33pztS3A7dZvdsXJ3mve2Ks1q1gySM/Lk6RVues6b8gWyc4beeust/Pvf/7YGQkBRPZ8PPvgA//u//6ta0UUi0r/if7lfu5WPd7aecnneY49W1mz0wdVN5mFaJVQXv6GKrRYr3+E5rP7gHbdeX6kRF61KEyjxvnLzfzw9UuNto3jeRnYwlJWVhQcPHti1m0wm/Pnnn4p0ioi818N/uZvMAj7bm6Hrv2blTPFplVBtuaEKghmZ8/9m93zc5O9tjnNHSUdctMrnUeJ93Umi12KkxttG8byJpATqh/Xu3RuZmZlYsWIFmjdvDoPBgMOHD2P06NGIjY3Fd999p1ZfNcEEaqKSsfzFDYj/NauXZetiN1VnPJlQbTILKB0gvmFA3OTvNU90dpbcDaj3M1bqfd1Notfqs+3NxUE9Sc79W/Z2HCtXrkSVKlXQsmVLBAcHIygoCK1atUJ0dDQ+++wztztNRL5J6pYLWuveIBp7J3fCuI41JB2vdGFIZ1ssiAVCVV5cbQ2EAO2mSLTaYkXJ93U3/0erz7ZlFK9PkyrWYphUMrKnyR555BFs27YN586dw6lTpyAIAurWrYtatWqp0T8ir8S/3Gx5qi5NSa97QCkDHnv0ESxOTnd5rJKrdhxN9YxuEopRPdvYHW+ZFgMAY0gZPPdYPLrUi1KsP3JoVf9GyfctSf6Pp2sukTrcLrpYs2ZN1KxZU8m+EPkEPdVC0RO1dw5X6rp7OhfE0VTP/jc6o/jETfny5XEt5zoW7/wNq37OwM17D3Dz3gN88J9z+PLQRV2XJlB6JE3J9y3pz1ztzzapT/Y0GRE5JmcHcFKOktfdklAN/JX7YaH0lJSjqR6x1WJmsxk3btzAjpPZ+PA/Z3Hznu1CFq0+Y1rVv1HyfT35Myd9YjBEpBCtcif8nRrX3VO5IMWnevKObBENhPb9dg0Gg0GXnzHLqIqjMMGAohE6pVcMKv2+3pLbRuoo8d5kRFSEewdpQ63r7olckIencERrB7UfDmPrp63H6fEzplX9GzXel/k//kt2MJSZmYnY2FgYDLYfDkEQcPHiRY9t2kqkN1rlTvg7Na+7GrkgDyd5X7uVD0EQkDm/t91xDydJW6Z69PoZ06r+jRrvy/wf/yQ7GEpISEBWVhYiIiJs2q9fv46EhASXGwMS+Spv3jtIbBUWAN3/hWwyC7h2K1/SsXq47sWTvK9uehd3z+6zO84SCBVP3NXzZ0yrURWO5pASZAdDgiDYjQoBwO3btxEcrP0vGyKteOveQWKrsMqHlgEA3Lz7V5Ku3lbESS2SqJfrXnzVmNi0WMzfP0WZCjEAxKd69P4Z02pUhaM5VFKSg6EJEyYAAAwGA9566y2EhoZanzOZTDhw4ACaNGmieAeJvIU37h3kaFn3w0GQhVb7colx1O/i9HLdH058Nt2/jT8WDrQ7JuH17/Fw3rPYVI83fsaIvIHkYCg1NRVA0cjQ8ePHERgYaH0uMDAQjRs3xsSJE5XvIZEX8aa9g5ytTBKj1b5cxcnpt16uuyXxWWw0qEylaoh5fgnMAvBWr7qoHBbkdKrHmz5jRN5CcjCUnJwMAHjuueewcOFC7tNF5IC35DC4WpkkRg8r4qT2+61edTHisQRdXPcrt8QDoWqTvoWhVID168phQejTpIrL1/OWzxiRt5CdM7Rq1Sqbr/Py8rBz507UqVMHderUUaxjRN7MG3IYSrLiSMsVcVLfu3JYkFvBgdJbqXz//fd4qrfz1WIWchKfveEzRuQtZAdDzzzzDB5//HGMGzcO9+7dQ4sWLXD+/HkIgoAvv/wS/fv3V6OfRKSwkqw40nJllporqlxt6SE3UBJbbFKh02iE/08f2+OgjyRvKbjvHvki2cHQnj17MHXqVADApk2bIAgCbt68iTVr1mDWrFkMhoi8hKuVSWL0cNNWa0WVo6RsS+L43x9PwHe/ZEne+0wsEIr/v9Egb0185r575Ktkb8eRm5uLihWLfskkJSWhf//+CA0NRa9evXDu3DnFO0hE6nC2H5MYvdy01dhHytU2FwKAT/ZkSNr77JVXXhENhARBcGu7B5NZQEp6Dr5Nu4SU9BzNtnPhvnvky2SPDMXGxiIlJQUVK1ZEUlISvvzySwDAjRs3WGeIyMs4WpkkVmdIT6uVlF5R5U4yOWC/wq50gP3fl4cPH0bz5s2t/ZaT+KyXkRhXwaIeVhkSlYTsYGj8+PEYMmQIypUrh2rVqqFDhw4AiqbPGjZsqHT/iEhljm7QgL4rUCu5oqokCeECgEvXbooGQoJgHz5ITXx2NW3nyXpPetwTjUhJsoOhF198ES1btsTFixfRpUsXlCpV9AugevXqmDVrluIdJPIlek0+dXSD1vuNTakVVSVJCBdbMl+uXDncunXL7dfU20iMXvdEI1KKW7vWt2jRAo0aNUJGRgZq1KiB0qVLo1evXkr3jcin6GXKg+y5k0wOiAdC3x7JwN+axZeoP3obidHznmhESpCdQH337l2MGjUKoaGhqF+/PjIzMwEAL7/8MubOnat4B4l8AZNP9U1uMvn9P06JBkLxk7/HnB/TS5zkrLeRGEuw6OjaGFAU2HtDaQAiMbKDoSlTpuCXX37Brl27bBKmO3fujK+++krRzhH5AldTHkDRlIdWq4S8jVqrqyxJ2cVXe0Ubg/HC4wnWQODCvCfx5/pJNseEt+qPuMnf24zYlITeRmLUWMFHpCeyp8k2b96Mr776Cq1bt7ZZPlqvXj2kp6cr2jkiX6C3KQ9vpvZUo7Ok7KbVKqBHwxi7c8QqSZd0xEaPu9NzTzTyZbKDoatXryIiIsKu/c6dO6K1NYj8nd6mPPTMWYK5p1ZXiSVl/+Mf/8CCBQvsjhULhICSj9jodXd67olGvkp2MPQ///M/2Lp1K/7f//t/AP6qsrp8+XIkJiYq2zsiH6C3KQ+9cjbq06VelMupxhnf/arK6iqxP/IiB8xCcHwT+2Oh3IiNXkdiuCca+SLZwdCcOXPQvXt3nDx5EoWFhVi4cCF+/fVXpKSkYPfu3Wr0kcir6XHKQ29cjfqM71zLZVHE7Lx8LN75G17pXFORPhUUFCAoKMiu/YfjlzF23VEArkdsSlpKgSMxRJ5hEMSqgrlw/PhxvPfeezhy5AjMZjOaNWuGyZMn+2TRxby8PBiNRuTm5iI8PFzr7pCXstzsAfEbqCcL6OmNySyg7bydDoMdAwBjaBmbatjOLFPgWjqa8rf8upSSuyR2TFR4MAa1rIb4yqEMbIhUJuf+7VYw5E8YDJFSWGdIXEp6DgYt36/Y60Ubg7F3cie3gwyxQCgnJ8e6J6OFs1Gfbccu48UNqZL66u8/fyK1yLl/y54mCwgIQFZWll0SdU5ODiIiImAymeS+JJFf4JSHOKmJ4+VDyuDmPdejQ+6uzDt06BBatmxp1+7o70VHuTPbjmVh3BeuAyFAm601iMie7GDI0S+G/Px8BAYGlrhDRL7MF5NPS5oXIzVx/LnH4vHBf85JOlbuyjyx0aD4+HhkZGTIep2kE1l4ccNRycdzk1MifZAcDC1atAhA0S+Nzz77DOXKlbM+ZzKZsGfPHtSpU0f5HhKRbikx9Sc1wXxcp6LEaCkBkZyVeWKBkDvZA5bimnJZ6kx9sOMsHnu0MkcLiTQgOWcoISEBAHDhwgVUrVoVAQEB1ucCAwMRHx+Pt99+G61atVKnpxphzhCROEcrwNxJCpeaYG4yC3hs7k5k5zlOto5ykTNkGcmaPG4Ufkr61u55d9Molcp9Yh4RkTLk3L8lb8eRkZGBjIwMtG/fHr/88ov164yMDJw5cwY//vijRwKhJUuWICEhAcHBwWjevDl++uknp8fv3r0bzZs3R3BwMKpXr45ly5ap3kciX6f0FiOOtsIwhpTB+M410aVeFICiacYZf6sHA9zbFiLpRBbaztuJNo9WtguEZs2a5XYgBChXNJP71RF5nuy9yZKTk1GhQgU1+uLSV199hfHjx2Pq1KlITU1Fu3bt0KNHD+tmscVlZGSgZ8+eaNeuHVJTU/HGG2/g5ZdfxsaNGz3ccyJp1Np3S2lythiRqnuDaOyd3Amvdq6F8iFlAAA37z3AB/85h7bzdlqDA0eBU5Qx2OloVNKJLIz5/DD2v9HZ7rn4yd+jeZ+RkvsqRqmimXrcr85bPpdE7vKqpfWtWrVCs2bNsHTpUmtb3bp18dRTT2HOnDl2x0+ePBnfffcdTp06ZW0bM2YMfvnlF6SkpEh6T06Tkac4yr95q1c9VCgbqKsVaN+mXcIrX6a5PG7hwCbo06SK5NeVM/UmJ3HbZBZQOkD8b7+4yd9Lml5zxVIvyVHukzu+GN1a84R7loQgb6Xq0nqtFBQU4MiRI3j99ddt2rt27Yp9+/aJnpOSkoKuXbvatHXr1g0rVqzAgwcPUKZMGdX6SySHoyAgK/e+3eokPdyI1NhixNXUW/FVV3JW5okFQjHPL0WZSrHW1y/pZrnO9hOzKB9SGjfvFUp+Ta33q/PUfnBEWpM9TaaVa9euwWQyITIy0qY9MjIS2dnZoudkZ2eLHl9YWIhr166JnpOfn4+8vDybB5GanAUBYpTOKXFnCsSyAszRGIoBRUGbnC1G1Jh6O3HihOhqsbjJ31sDoYeVNPhwNIUXbQzGsqHNcOStrvhidGuM61hD0utpuV+d0nlhRHrmNSNDFsV/sQmC4LB0vqPjxdot5syZg5kzZ5awl0TSuQoCilOyNo27UyBq7KouNRCRepyj/+OOdpoHlAk+ihfXrFw2CDAA127n42DGdbRMqIiWCRWx8eglXe9XJyc41Xoqj6ikJAVDx44dk/yCjRo1crszzlSuXBkBAQF2o0BXrlyxG/2xiIqKEj2+dOnSqFRJ/D/vlClTMGHCBOvXeXl5iI21/wuSSCnujEYocSMq6RSI0ruqKzn1JhYItZq1HX/eKvBI8GGZwks6kYWJ//5FNNhUOphUmtLBKZGeSQqGmjRpAoPB4HIUBoBq23EEBgaiefPm2LFjB/r27Wtt37FjB/r06SN6TmJiIrZs2WLTtn37drRo0cJhvlBQUJDoTtVEainJaIS7NyK5+TmOKLnFiNTii84ClmnTpuGdd96x/54EwRr8eSr4kBJsKhlMKk2NvDAivZIUDD1ckj41NRUTJ07EpEmTkJiYCKAoUfn999/H/Pnz1enl/5kwYQKGDRuGFi1aIDExEZ9++ikyMzMxZswYAEWjOpcuXcLatWsBFK0cW7x4MSZMmIDRo0cjJSUFK1aswBdffKFqP4nkcBUEOOPujUjJKRClthgp6dSb2B9qAwcOtP5/V3okyxmpwebeyZ10u1+dEsEpkbeQFAzFxcVZ//30009j0aJF6Nmzp7WtUaNGiI2NxVtvvYWnnnpK8U5aDBgwADk5OXj77beRlZWFBg0aYNu2bdb+ZWVl2dQcSkhIwLZt2/Dqq6/i448/RkxMDBYtWoT+/fur1kciuaSsQiqupDciqSNKP/92zaM3Z3cDFqlbanhqs1y5waYec27UyAsj0ivZdYZCQkJw9OhR1K1b16b91KlTaNasGe7du6doB7XGOkPkKWLJzGLc2e6iODlbR2ixlF9qDSFH0/aFJrOmN2m16jBpgXWGyFvJuX/LDoaaNWuGunXrYsWKFQgOLhqiz8/Px8iRI3Hq1CkcPSp9x2ZvwGCIPKl4EHDjTj7e2XpK8RuRnAKBSgRfahALhCKHzENw1fqa36ylBpt6KKoohZwCl0R6oWowdPDgQfTu3RtmsxmNGzcGAPzyyy8wGAz4/vvv0bJlS/d7rkMMhkhrat2IHG2OKkaJCs1KuXDhAuLj4+3aH14yr3UA5yrY1NP1JPJVqgZDAHD37l2sW7cOp0+fhiAIqFevHgYPHoyyZcu63Wm9YjBEvkzq1JyF1iMZcmoHaR1wOAo2tQ7UiPyF6sGQP2EwRL7OZBbwwY4zWJyc7vJYLXNcxAKhav/YBENp59vqaBnAMd+GSDty7t9ubcfx+eefo23btoiJicGFCxcAAB988AG+/fZbd16OiDQUUMqAxx59RNKxWtSUmTNnjmggtDn1D5eBEKBtUcDuDaKxd3InfDG6NRYObIIvRrfG3smdGAgR6YzsYGjp0qWYMGECevTogRs3bliLLFaoUAEffvih0v0jIg9QY68xJRgMBrzxxhs2bXFxcRAEwWuKAlrqMPVpUgWJNSoxR4hIh2QHQx999BGWL1+OqVOnonTpv8oUtWjRAsePH1e0c0TkGZaaMgDsAiKtaso4qh10/vx5APoN4IjI+8gOhjIyMtC0aVO79qCgINy5c0eRThGR5znacT3KGOzRZF+DwSCpiKIeAzgi8k6yd61PSEhAWlqaTVVqAPjhhx9Qr149xTpGRMqSskTfUxWaHfXrqaZV7Z5fv349Bg8eLHquJ7fYICLfJTsYmjRpEl566SXcv38fgiDg4MGD+OKLLzBnzhx89tlnavSRiEpIzqompfYak9OvP7Kv4o9Fg+yel7LYVYsAjoh8i1tL65cvX45Zs2bh4sWLAIAqVapgxowZGDVqlOId1BqX1pO3c7R7utb1biz9Oj/vSdHnfzh+mSM7ROQ2j9UZunbtGsxmMyIiItx9Cd1jMETezFIJ2VFRRa0KE1r6tf+NznbPVX3lS5QOLscKzURUIqrWGerUqRNu3rwJAKhcubI1EMrLy0OnTp3k95aIVCNn93RPmv3RZ6KBUNzk7xEQXE6zfhGRf5KdM7Rr1y4UFBTYtd+/fx8//fSTIp0iImVILTjoycKEcrbU0LJgohzcyJTIu0kOho4dO2b998mTJ5GdnW392mQyISkpCVWqaFOmn4jE6a0woVggJBYEWajVLyWDF265QeT9JAdDTZo0sdb/EJsOCwkJwUcffaRo54ioZCyFCV3tnq52YcLatWvj7Nmzdu3xk7/3eL+UDF4cJadn597H2HVHuRkrkZeQnDOUkZGB9PR063L6jIwM6+PSpUvIy8vDyJEj1ewrEcmkh8KEBoPBLhB6//338cPxyx7vlyV4KZ5HZQlekk5kSX4tk1nAzC0nRYM5S9vMLSdhMnMvbCK9kzwyZCmyaDabVesMka/QUw6JVoUJ8/PzERxsP8318AJWT/ZLSvDy+sbjCAsug9bVXe8hJic53VN1m4jIPbITqOfMmYPIyEi7UaCVK1fi6tWrmDx5smKdI/JGeswh8XRhQkdJ0sUreXiyX66CFwC4ee8Bhnx2QNLPS4/J6UTkHtlL6z/55BPUqVPHrr1+/fpYtmyZIp0i8lZKTsMozVO7p4sFQhcvXnRYTdpT/ZITlEj5eektOZ2I3Cc7GMrOzkZ0tP1fS4888giysrT7RU+kNX/PIdm3b5/DDVarVq0Kk1lASnoOvk27hJT0HI9fBzlBiZSflyU53VHoZkDRiKDayelEVHKyp8liY2Px888/IyEhwab9559/RkxMjGIdI/I2/pxD4mpaTA9Th65W1hXn6udlSU4fu+4oDIDNa3oqOZ2IlCF7ZOj555/H+PHjsWrVKly4cAEXLlzAypUr8eqrr2L06NFq9JHIK/hrDomj0aCHAyE9TB06W1nnjLOflyU5PcpoO+oUZQzmsnoiLyJ7ZOi1117D9evX8eKLL1orUQcHB2Py5MmYMmWK4h0k8hb+lkPSp08ffPfdd3btD+cGuZo6NKBoKqpLvSiPjKA4WlnnjKufl6eT04lIeW5v1Hr79m2cOnUKISEhqFmzJoKCgpTumy5wo1aSyrL5qKsCh2psPurppfxio0Hjxo2zK7yakp6DQcv3u3y9L0a39ujUocksYH96Dl7acBQ37z0QPUarTWyJSBly7t+yR4YsypUrh//5n/9x93Qin6NVDokn83HMZjMCAgLs2h39TaXXqcOAUgY8VrMy5vZviLHrjgJgzg+RP5MUDPXr1w+rV69GeHg4+vXr5/TYb775RpGOEXkjTxc49OR2EFJrBz1M71OHWhWkJCJ9kRQMGY1G6y9Co9GoaoeIvJ2nckg8mY8jFggdO3YMDRs2dHqeXvZGc4Y5P0Tkds6Qv2DOEOmVJ/Jxfv31VzRo0MCuXc6vDcvoFSA+FcVVV0SkBjn3b9lL64lIH9TOxzEYDCUOhIC/pqIiw7n8nIj0SdI0WdOmTR3mCxR39OjREnWIiKRRMx9H7P+7yWRCqVIl+fvJNojioDQR6YWk32xPPfUU+vTpgz59+qBbt25IT09HUFAQOnTogA4dOiA4OBjp6eno1q2b2v0lov+jxnYQH3/8scMiiu4GQpZpsuy8fJv2P/PyNd+vjYgIcCNn6Pnnn0d0dDTeeecdm/bp06fj4sWLWLlypaId1BpzhkjPlMzHEQuCBg0ahA0bNrjdP0vtJUcFDlnLh4jUomrO0L/+9S88++yzdu1Dhw7Fxo0b5b4cEZWAUttBOBoNKkkgBMjbr42ISCuyiy6GhIRg7969qFmzpk373r17ERzsG9sMkP/wdOVmNZRkaXhiYiL277dfkaZUPo9eiy4SET1MdjA0fvx4jB07FkeOHEHr1q0BAPv378fKlSsxbdo0xTtIpBY97KSulIBSBtnL58VGg44cOYJmzZop1S3dF10kIgLcrDP09ddfY+HChTh16hQAoG7dunjllVfwzDPPKN5BrTFnyDc5qtzsD7Vvrl+/jkqV7AMnNVZ3ablfGxH5Nzn3bxZddIHBkO/x56Red7bUKCkWXSQiLahedPHmzZv47LPP8MYbb+D69aLEx6NHj+LSpUvuvJwkN27cwLBhw2A0GmE0GjFs2DDcvHnT6TkjRoyAwWCweVim9sh/+WtSr1ggVFBQYBcImcwCUtJz8G3aJaSk58BkLlmgpFSSNxGRWmTnDB07dgydO3eG0WjE+fPn8fzzz6NixYrYtGkTLly4gLVr16rRTwwePBh//PEHkpKSAAB///vfMWzYMGzZssXped27d8eqVausXwcGBqrSP/Ie/pbU+8MPP6Bnz5527WKjQWrlUXH/LyLSM9nB0IQJEzBixAjMnz8fYWFh1vYePXpg8ODBinbO4tSpU0hKSsL+/fvRqlUrAMDy5cuRmJiIM2fOoHbt2g7PDQoKQlRUlCr9Iu/kT0m9YqNBL774Ij7++GO7dkd5VNm59zF23dESj+K4k+RNROQJsqfJDh06hBdeeMGuvUqVKsjOzlakU8WlpKTAaDRaAyEAaN26NYxGI/bt2+f03F27diEiIgK1atXC6NGjceXKFVX6SN5DjcrNeuSodpBYIGQyC5i55aRokrOlbeaWkyWeMiMi0iPZwVBwcDDy8vLs2s+cOYNHHnlEkU4Vl52djYiICLv2iIgIpwFYjx49sH79euzcuRPvv/8+Dh06hE6dOiE/P9/hOfn5+cjLy7N5kG8JKGXA9N71AMAuILJ8Pb13Pa+dwhk4cKDDQMgRT+ZRKZ2TRERUUrKnyfr06YO3334bX3/9NYCivz4zMzPx+uuvo3///rJea8aMGZg5c6bTYw4dOmR9n+IEQXC6geyAAQOs/27QoAFatGiBuLg4bN26Ff369RM9Z86cOS77RN7PktRbPD8mykvrDFmI/X/46aef0LZtWwCOi0x6Ko/Kl2o7EZHvkB0Mvffee+jZsyciIiJw7949tG/fHtnZ2UhMTMTs2bNlvda4ceMwcOBAp8fEx8fj2LFj+PPPP+2eu3r1KiIjIyW/X3R0NOLi4nDu3DmHx0yZMgUTJkywfp2Xl4fY2FjJ70Hew5eSeu/du4fQ0FC79odHg5wFIp7Io1I7J4mIyF2yg6Hw8HDs3bsXO3fuxNGjR2E2m9GsWTN07txZ9ptXrlwZlStXdnlcYmIicnNzcfDgQbRs2RIAcODAAeTm5qJNmzaS3y8nJwcXL15EdLTjX7hBQUEICgqS/Jrk3fSS1FuSbUGk1A5yFYh8PLgpoo3BLosjuptH5SonyYCinKQu9aK8MhglIu8mq+hiYWEhgoODkZaWhgYNGqjZLzs9evTA5cuX8cknnwAoWlofFxdns7S+Tp06mDNnDvr27Yvbt29jxowZ6N+/P6Kjo3H+/Hm88cYbyMzMxKlTp2xWwjnDoouktpJMHYkFQrdu3UK5cuWsX0stMvlWr3p4aYM6xRFT0nMwaLn9HmjFfTG6tS6CUyLyfqoVXSxdujTi4uJgMplK1EF3rF+/Hg0bNkTXrl3RtWtXNGrUCJ9//rnNMWfOnEFubi4AICAgAMePH0efPn1Qq1YtDB8+HLVq1UJKSorkQIhIbZYRm+KBimXEJulEluh5qampDvPoHg6EAOnJ0RXKBqpWHNHfajsRkXeRPU325ptvYsqUKVi3bh0qVvTc0uOKFSti3bp1To95eJArJCQEP/74o9rdIhX5wo7yzrg7dSQWBD3//PNYvny56PvICUT6NKmiSh6VP9V2IiLvIzsYWrRoEX777TfExMQgLi4OZcuWtXn+6NGjinWO/Jc/rDqSs5zdMnUkd8k8ID8QUSOPylLbSa2cJCKiknBrab2z5exEJeUvq47kjNi8++67mDp1qt1zUlL+9BCIWGo7jV13FAaI5yR5c20nIvJusoOhGTNmqNANoiL+tOpI6ojNU02r2rX9+OOP6Nq1q6Tz9RKI+GptJyLyfpKDobt372LSpEnYvHkzHjx4gM6dO2PRokWSlsYTSc3/cWfqyFu5GrGB2YQL/+xj19xq9n9wqlQ13Eu7JDmnRy+BiC/VdiIi3yE5GJo+fTpWr16NIUOGIDg4GF988QXGjh2Lf/3rX2r2j3yAnPwfLVcdeTph29mITfbn/0D+5TN258RN/h7ZeffxwX/OWtuk5lLpJRDRS20nIiILyXWGatSogdmzZ1srRh88eBCPPfYY7t+/j4CAAFU7qSXWGSoZR/k/jmrXaFWPRsuE7eLvfWHek3bHxL7yJUoFl7NrB5SpA1RSvr7yj4i8j5z7t+RgKDAwEBkZGahSpYq1LSQkBGfPnvXp7SoYDLlParG/vZM7WW+cJrOA5rN24ObdBw5ft3xoGRx5s4tiN1u5AZsaTGYB2w6cxN/a2BczjZv8vcvzxa6lp/jDyj8i8j6qFF00mUwIDAy0aStdujQKCwvd6yX5PLV2QlfyVu8qYRsoSthWe2f10gGl7AKhsg07SwqEAGV3lZfD3aKRRER6IjlnSBAEjBgxwmbfrvv372PMmDE2tYa++eYbZXtIXsud/J+DGdedjgoBwI27DxRLoNZDwrZYqYp9v12TNF1YXElyqeROdfnTyj8i8m2Sg6Hhw4fbtQ0dOlTRzpBvcafqsKcTqLVM2E5KSkKPHj3s2gVBgMksOF9p5oC7FZzdmerSQyBJRKQEycHQqlWr1OwH+SB3iv15etsGrbaJEBsN2rVrF9q3bw/A+Uoz0deD+4UT3S1yyf3GiMhXyNqolUgOyw0dsM/zcVTszxJAOZpUMaBoxEKpasmefj9BEBxuqWEJhCwstYGKb5wq1kfAvcKJJcmZ4n5jROQrGAz5EZNZQEp6Dr5Nu4SU9BzVk4IBxzd0RzuhuxNAlYQn3+/VV19FqVK2/+UCAwOdbqnRvUE09k7uhC9Gt8bCgU3waueaiAoPsjmmJLvKlyTJ3dOBJBGRWmRvx0HeScvlz3KL/Xm6WrIn3k9sNOjq1auSKrgXL1I4rlNNxWr6lGSqSy/bfBARlZTkOkP+yhfqDOmhjo47PF3IT433u3HjBipWtB8Z0ct/OyWKXLLOEBHpkZz7N0eGfJw3L3/29LYNSr9fhQoVcPPmTZu2MWPGYOnSpYq9R0kpsaO9Xrb5ICJyF4MhH+fvy5+12iZCbFrMbDaLtmtJqaku7jdGRN6MwZAPejgAOPfnLUnn+OLyZy2mb44dO4bGjRvbtetlWkyMXna0JyLSCoMhHyMWAEjha8uf3a2dUxJioz4//vgjunbtquj7qIFTXUTkzxgM+RBHAYAzJSnWp1da5Ek5qh3kTTjVRUT+inWGfISzAMARX13+rNYGsWJWrlxpFwjFxcV5XSBEROTPODLkI1wFAGJ8NSfEU9tEiI0GZWdnIzIyskSvS0REnsVgyEdIvbGP6/goakaW8+mcELW3ibh//z5CQkLs2jkaRETknThN5iOk3tgfe7Qy+jSpgsQalXwyEALU3SZiwIABdoHQP/7xDwZCRERejCNDPkKJ4nm+Qq1tIsSmxQoLCxEQEOB2X4mISHscGfIRnt7gVO/kbhDrzG+//eZwtRgDISIi78e9yVzwtr3JfHWfKHcrSZe0ArVYELRlyxY8+eSTsvpPRESeJef+zWDIBW8LhgDttqBQi1YBni/UDiIi8ldy7t+cJvNBluJ5vpAobSkkWbxsgKWSdNKJLMXf85NPPmEgRETkR5hATbqll0rSp0+fRu3atRV5fSIi0h+ODJFuebKSdEFBgcPRIAZCRES+jcEQ6ZanKkl37doVQUFBNm2tWrXitBgRkZ/gNBnpltqVpAHxabF79+4hONj91yQiIu/CkSHSLTUrSV+6dMnhtBgDISIi/8JgiHRLrUKSERERqFq1qk3b559/zmkxIiI/xWky0jVLJenidYai3KwzxCXzRERUHIMh0r3uDaLRpV5UiQpJ/uc//0GXLl3s2hkIERERgyHyCpZCku4QGw06efIk6tatW9JuERGRD/CanKHZs2ejTZs2CA0NRfny5SWdIwgCZsyYgZiYGISEhKBDhw749ddf1e0o6YbZbHY4LcZAiIiILLwmGCooKMDTTz+NsWPHSj5n/vz5WLBgARYvXoxDhw4hKioKXbp0wa1bt1TsKenBtGnT7HaU79WrF6fFiIjIjtdt1Lp69WqMHz8eN2/edHqcIAiIiYnB+PHjMXnyZABAfn4+IiMjMW/ePLzwwguS3k+tjVp9bTNVPREbDbp9+zbKli2rQW+IiEgLcu7fPpszlJGRgezsbHTt2tXaFhQUhPbt22Pfvn0Og6H8/Hzk5+dbv87Ly1O8b1rtwu7rcnJyULlyZbt2L4v3iYjIw7xmmkyu7OxsAEBkZKRNe2RkpPU5MXPmzIHRaLQ+YmNjFe2XFruw+4NGjRrZBUIff/wxAyEiInJJ02BoxowZMBgMTh+HDx8u0XsUnzIRBEF0GsViypQpyM3NtT4uXrxYovd/mKtd2IGiXdhNZt7A5TAYDDh+/LhNm9lsxosvvqhRj4iIyJtoOk02btw4DBw40Okx8fHxbr12VFQUgKIRoujov6aerly5Yjda9LCgoCC7TTuVImcXdneXkfuT/fv3IzEx0a6do0FERCSHpsFQ5cqVRXM8lJCQkICoqCjs2LEDTZs2BVC0Im337t2YN2+eKu/piqd2YfcHYqN7hw4dQosWLTToDREReTOvyRnKzMxEWloaMjMzYTKZkJaWhrS0NNy+fdt6TJ06dbBp0yYARTfL8ePH491338WmTZtw4sQJjBgxAqGhoRg8eLAm34MndmH3dY6mOQVBYCBERERu8ZrVZNOmTcOaNWusX1tGe5KTk9GhQwcAwJkzZ5Cbm2s95rXXXsO9e/fw4osv4saNG2jVqhW2b9+OsLAwj/bdwrILe3bufdG8IQOK9txyZxd2f7By5UqMGjXKpq1FixY4dOiQRj0iIiJf4HV1hjxN6TpDltVkAGwCIstYx9Khzbi8XoTYaND169dRoUIFDXpDRER6J+f+7TXTZL7Csgt7lNF2KizKGMxASMTdu3cdTosxECIiIiV4zTSZL1FiF3Z/MHHiRLz//vs2bWvXrsWwYcM06hEREfkiBkMaKcku7P5AbDTI0carREREJcFpMtKVjIwMu4AnODjYZbFMIiIidzEYIt1o1KgRqlevbtOWmpqKe/fuadQjIiLyB5wmI11wlCRNRESkNo4MkaZ+/PFHu0Do6aefZiBEREQew5Eh0ozYaFBOTg4qVmTRSSIi8hwGQ+RxBQUFopvhcjSIiIi0wGky8qhZs2bZBUKLFy9mIERERJrhyBB5jNi0WGFhIQICAjToDRERURGODJHqLl++7HC1GAMhIiLSGoMhcslkFpCSnoNv0y4hJT0HJrP0Ka1OnTqhSpUqNm179+7ltBgREekGp8nIqaQTWZi55SSycu9b26KNwZjeu57LTWVZO4iIiLwBR4bIoaQTWRi77qhNIAQA2bn3MXbdUSSdyBI9b+/evXaBUMeOHRkIERGRLnFkiESZzAJmbjkJsfBFAGAAMHPLSXSpF4WAUn8FPmKjQZcvX0Z0tPNRJCIiIq1wZIhEHcy4bjci9DABQFbufRzMuA4AMJlMDqfFGAgREZGeMRgiUVduOQ6Eih+3ePFilC5tO8g4a9YsTosREZFX4DQZiYoIC5Z03FNNq9q15efnIzAwUOkuacJkFnAw4zqu3LqPiLBgtEyoaDMtSERE3o/BEIlqmVAR0cZgZOfeF80bMt/Lw8VFg+3afWk0qCQr6YiIyHtwmoxEBZQyYHrvegCKkqUfdnXzHLtAKCkpyecCIXdW0hERkfdhMEQOdW8QjaVDmyHK+NeU2YV5T+LumZ9tjhMEAd26dfN091TjaiUdULSSTk7xSSIi0i8GQ+RU9wbR2Du5E2a0CcWFeU/aPNewYUOfGg2ykLuSjoiIvBtzhsilsqEhyM/Pt2n7/fffkZCQoFGP1CVnJR0REXk/BkPkkCAIKFXKfvDQF0eDHiZ1JZ3U44iISN84TUai1q5daxcI/eMf//D5QAj4ayWdowX0BhStKmuZUNGT3SIiIpVwZIjsiFWSvnPnDkJDQzXojedZVtKNXXcUBsAmkdpyZab3rsd6Q0REPoIjQ2R169Yth1tq+EsgZCG2kg4AoozBWDq0GesMERH5EI4MEQDg73//O5YvX27T9u9//xv9+/fXqEfa694gGl3qRYlWoGZlaiIi38FgiERHg8xms2i7vwkoZUBijUo2baxMTUTkWzhN5sdOnz5tF/BERUVBEAQGQg6wMjURke9hMOSnYmNjUbduXZu2X3/9FVlZvJk7wsrURES+idNkfsZfawcpQU5l6uJTa0REpF8cGfIjBw8etAuERo4cyUBIIlamJiLyTRwZ8hMNGjTAr7/+atOWm5uL8PBwjXrkfViZmojINzEY8nEFBQUICgqya+dokHyWytTZufdF84YMKKpDxMrURETehdNkPmz9+vV2gdDOnTsZCLnJUpkagN1WHaxMTUTkvTgy5KNYO0gdlsrUxesMRbHOEBGR1/KakaHZs2ejTZs2CA0NRfny5SWdM2LECBgMBptH69at1e2oxq5evWoX8DzzzDOsHaSg7g2isXdyJ3wxujUWDmyCL0a3xt7JnRgIERF5Ka8ZGSooKMDTTz+NxMRErFixQvJ53bt3x6pVq6xfBwYGqtE9XZg0aRLee+89m7b09HRUr15dox75LrHK1ERE5J28JhiaOXMmAGD16tWyzgsKCkJUVJQKPdIXRxusEhERkXNeM03mrl27diEiIgK1atXC6NGjceXKFafH5+fnIy8vz+ahZ8eOHbMLhObPn89AiIiISCKvGRlyR48ePfD0008jLi4OGRkZeOutt9CpUyccOXJEdLk5AMyZM8c6CqV37dq1w969e23aWDuIiIhIHk1HhmbMmGGX4Fz8cfjwYbdff8CAAejVqxcaNGiA3r1744cffsDZs2exdetWh+dMmTIFubm51sfFixfdfn+1FBYWwmAw2ARCgYGBEASBgRAREZFMmo4MjRs3DgMHDnR6THx8vGLvFx0djbi4OJw7d87hMUFBQQ5HjfRg06ZN6Nevn03b1q1b0bNnT416RERE5N00DYYqV66MypUre+z9cnJycPHiRURHe+cSaLEkaZPJJLrxKhEREUnjNXfRzMxMpKWlITMzEyaTCWlpaUhLS8Pt27etx9SpUwebNm0CANy+fRsTJ05ESkoKzp8/j127dqF3796oXLky+vbtq9W34ZabN2/aBULdunVzuAM9ERERSec1CdTTpk3DmjVrrF83bdoUAJCcnIwOHToAAM6cOYPc3FwAQEBAAI4fP461a9fi5s2biI6ORseOHfHVV18hLCzM4/131zvvvINp06bZtJ08eRJ169bVqEdERES+xSBwDbZTeXl5MBqNmqzSYu0gIiIi98i5f3OORYeuXbtmFwhNnz6dgRAREZEKvGaazF9s2LABQ4YMsWnLyclBxYoVNeoRERGRb2MwpBOCIKBRo0Y4ceKEta1Ro0b45ZdfNOwVERGR72MwpAO//fYbatasadP266+/ol69ehr1iIiIyH8wZ0hj7777rk0gFB8fD5PJxECIiIjIQzgypJHCwkIEBQXBbDZb25YvX47nn39ew14RERH5HwZDGhk0aJBNIHT58mWvrYxNRETkzThNppHRo0cDAJ588kkIgsBAiIiISCMcGdJI165dWTeIiIhIBxgM6ZDJLOBgxnVcuXUfEWHBaJlQEQGl7KtRExERUckxGNKZpBNZmLnlJLJy71vboo3BmN67Hro34FQaERGR0pgzpCNJJ7Iwdt1Rm0AIALJz72PsuqNIOpGlUc+IiIh8F4MhnTCZBczcchJiWUSWtplbTsJkZp4RERGRkhgM6cTBjOt2I0IPEwBk5d7HwYzrnusUERGRH2AwpBNXbjkOhNw5joiIiKRhMKQTEWHBih5HRERE0jAY0omWCRURbQyGowX0BhStKmuZUNGT3SIiIvJ5DIZ0IqCUAdN7F23OWjwgsnw9vXc91hsiIiJSGIMhHeneIBpLhzZDlNF2KizKGIylQ5uxzhAREZEKWHRRZ7o3iEaXelGsQE1EROQhDIZ0KKCUAYk1KmndDSIiIr/AaTIiIiLyawyGiIiIyK8xGCIiIiK/xmCIiIiI/BqDISIiIvJrDIaIiIjIrzEYIiIiIr/GYIiIiIj8GoMhIiIi8musQO2CIAgAgLy8PI17QkRERFJZ7tuW+7gzDIZcuHXrFgAgNjZW454QERGRXLdu3YLRaHR6jEGQEjL5MbPZjMuXLyMsLAwGgz43S83Ly0NsbCwuXryI8PBwrbujKV6Lv/Ba/IXX4i+8Fn/htfiLL14LQRBw69YtxMTEoFQp51lBHBlyoVSpUqhatarW3ZAkPDzcZz7EJcVr8Rdei7/wWvyF1+IvvBZ/8bVr4WpEyIIJ1EREROTXGAwRERGRX2Mw5AOCgoIwffp0BAUFad0VzfFa/IXX4i+8Fn/htfgLr8Vf/P1aMIGaiIiI/BpHhoiIiMivMRgiIiIiv8ZgiIiIiPwagyEiIiLyawyGvNTs2bPRpk0bhIaGonz58pLOGTFiBAwGg82jdevW6nbUA9y5FoIgYMaMGYiJiUFISAg6dOiAX3/9Vd2OesCNGzcwbNgwGI1GGI1GDBs2DDdv3nR6jq98LpYsWYKEhAQEBwejefPm+Omnn5wev3v3bjRv3hzBwcGoXr06li1b5qGeqk/Otdi1a5fdz99gMOD06dMe7LHy9uzZg969eyMmJgYGgwGbN292eY6vfibkXgtf/Uw4w2DISxUUFODpp5/G2LFjZZ3XvXt3ZGVlWR/btm1TqYee4861mD9/PhYsWIDFixfj0KFDiIqKQpcuXax70XmrwYMHIy0tDUlJSUhKSkJaWhqGDRvm8jxv/1x89dVXGD9+PKZOnYrU1FS0a9cOPXr0QGZmpujxGRkZ6NmzJ9q1a4fU1FS88cYbePnll7Fx40YP91x5cq+FxZkzZ2w+AzVr1vRQj9Vx584dNG7cGIsXL5Z0vC9/JuReCwtf+0w4JZBXW7VqlWA0GiUdO3z4cKFPnz6q9kdLUq+F2WwWoqKihLlz51rb7t+/LxiNRmHZsmUq9lBdJ0+eFAAI+/fvt7alpKQIAITTp087PM8XPhctW7YUxowZY9NWp04d4fXXXxc9/rXXXhPq1Klj0/bCCy8IrVu3Vq2PniL3WiQnJwsAhBs3bnigd9oAIGzatMnpMb78mXiYlGvhD5+J4jgy5Gd27dqFiIgI1KpVC6NHj8aVK1e07pLHZWRkIDs7G127drW2BQUFoX379ti3b5+GPSuZlJQUGI1GtGrVytrWunVrGI1Gl9+XN38uCgoKcOTIEZufJwB07drV4fedkpJid3y3bt1w+PBhPHjwQLW+qs2da2HRtGlTREdH44knnkBycrKa3dQlX/1MlIQ/fSYYDPmRHj16YP369di5cyfef/99HDp0CJ06dUJ+fr7WXfOo7OxsAEBkZKRNe2RkpPU5b5SdnY2IiAi79oiICKffl7d/Lq5duwaTySTr55mdnS16fGFhIa5du6ZaX9XmzrWIjo7Gp59+io0bN+Kbb75B7dq18cQTT2DPnj2e6LJu+Opnwh3++JngrvU6MmPGDMycOdPpMYcOHUKLFi3cev0BAwZY/92gQQO0aNECcXFx2Lp1K/r16+fWa6pF7WsBAAaDweZrQRDs2vRA6rUA7L8nwPX35U2fC2fk/jzFjhdr90ZyrkXt2rVRu3Zt69eJiYm4ePEi3nvvPTz++OOq9lNvfPkzIYc/fiYYDOnIuHHjMHDgQKfHxMfHK/Z+0dHRiIuLw7lz5xR7TaWoeS2ioqIAFP0lGB0dbW2/cuWK3V+GeiD1Whw7dgx//vmn3XNXr16V9X3p+XMhpnLlyggICLAb+XD284yKihI9vnTp0qhUqZJqfVWbO9dCTOvWrbFu3Tqlu6drvvqZUIqvfyYYDOlI5cqVUblyZY+9X05ODi5evGgTEOiFmtciISEBUVFR2LFjB5o2bQqgKNdi9+7dmDdvnirvWRJSr0ViYiJyc3Nx8OBBtGzZEgBw4MAB5Obmok2bNpLfT8+fCzGBgYFo3rw5duzYgb59+1rbd+zYgT59+oiek5iYiC1btti0bd++HS1atECZMmVU7a+a3LkWYlJTU73m568UX/1MKMXnPxNaZm+T+y5cuCCkpqYKM2fOFMqVKyekpqYKqampwq1bt6zH1K5dW/jmm28EQRCEW7duCf/4xz+Effv2CRkZGUJycrKQmJgoVKlSRcjLy9Pq21CE3GshCIIwd+5cwWg0Ct98841w/PhxYdCgQUJ0dLTXX4vu3bsLjRo1ElJSUoSUlBShYcOGwpNPPmlzjC9+Lr788kuhTJkywooVK4STJ08K48ePF8qWLSucP39eEARBeP3114Vhw4ZZj//999+F0NBQ4dVXXxVOnjwprFixQihTpozw73//W6tvQTFyr8UHH3wgbNq0STh79qxw4sQJ4fXXXxcACBs3btTqW1DErVu3rL8LAAgLFiwQUlNThQsXLgiC4F+fCbnXwlc/E84wGPJSw4cPFwDYPZKTk63HABBWrVolCIIg3L17V+jatavwyCOPCGXKlBGqVasmDB8+XMjMzNTmG1CQ3GshCEXL66dPny5ERUUJQUFBwuOPPy4cP37c851XWE5OjjBkyBAhLCxMCAsLE4YMGWK3PNZXPxcff/yxEBcXJwQGBgrNmjUTdu/ebX1u+PDhQvv27W2O37Vrl9C0aVMhMDBQiI+PF5YuXerhHqtHzrWYN2+eUKNGDSE4OFioUKGC0LZtW2Hr1q0a9FpZluXhxR/Dhw8XBMG/PhNyr4WvfiacMQjC/2WIEREREfkhLq0nIiIiv8ZgiIiIiPwagyEiIiLyawyGiIiIyK8xGCIiIiK/xmCIiIiI/BqDISIiIvJrDIaIiFTSoUMHjB8/XutuEJELDIaIqEQMBoPTx4gRIzzWFzWCjxEjRuCpp55S9DUd2bVrFwwGA27evOmR9yOiItyolYhKJCsry/rvr776CtOmTcOZM2esbSEhITbHP3jwgBtfEpGucGSIiEokKirK+jAajTAYDNav79+/j/Lly+Prr79Ghw4dEBwcjHXr1mHGjBlo0qSJzet8+OGHiI+Pt2lbtWoV6tati+DgYNSpUwdLlixx2I8RI0Zg9+7dWLhwoXVU6vz58wCAkydPomfPnihXrhwiIyMxbNgwXLt2zXruv//9bzRs2BAhISGoVKkSOnfujDt37mDGjBlYs2YNvv32W+tr7tq1S/T979y5g2effRblypVDdHQ03n//fbtj1q1bhxYtWiAsLAxRUVEYPHgwrly5AgA4f/48OnbsCACoUKGCzahaUlIS2rZti/Lly6NSpUp48sknkZ6e7uSnQkRyMBgiItVNnjwZL7/8Mk6dOoVu3bpJOmf58uWYOnUqZs+ejVOnTuHdd9/FW2+9hTVr1ogev3DhQiQmJmL06NHIyspCVlYWYmNjkZWVhfbt26NJkyY4fPgwkpKS8Oeff+KZZ54BUDSyNWjQIIwcORKnTp3Crl270K9fPwiCgIkTJ+KZZ55B9+7dra/Zpk0b0fefNGkSkpOTsWnTJmzfvh27du3CkSNHbI4pKCjAO++8g19++QWbN29GRkaGNeCJjY3Fxo0bAQBnzpxBVlYWFi5cCKAo0JowYQIOHTqE//73vyhVqhT69u0Ls9ks6VoSkXOcJiMi1Y0fPx79+vWTdc4777yD999/33peQkICTp48iU8++QTDhw+3O95oNCIwMBChoaGIioqyti9duhTNmjXDu+++a21buXIlYmNjcfbsWdy+fRuFhYXo168f4uLiAAANGza0HhsSEoL8/Hyb1yzu9u3bWLFiBdauXYsuXboAANasWYOqVavaHDdy5Ejrv6tXr45FixahZcuWuH37NsqVK4eKFSsCACIiIlC+fHnrsf3797d5nRUrViAiIgInT55EgwYNHPaLiKThyBARqa5Fixayjr969SouXryIUaNGoVy5ctbHrFmzZE8PHTlyBMnJyTavU6dOHQBAeno6GjdujCeeeAINGzbE008/jeXLl+PGjRuy3iM9PR0FBQVITEy0tlWsWBG1a9e2OS41NRV9+vRBXFwcwsLC0KFDBwBAZmamy9cfPHgwqlevjvDwcCQkJEg6j4ik4cgQEamubNmyNl+XKlUKgiDYtD148MD6b8v0z/Lly9GqVSub4wICAmS9t9lsRu/evTFv3jy756KjoxEQEIAdO3Zg37592L59Oz766CNMnToVBw4csAYdrhT/XsTcuXMHXbt2RdeuXbFu3To88sgjyMzMRLdu3VBQUOD03N69eyM2NhbLly9HTEwMzGYzGjRo4PI8IpKGwRARedwjjzyC7OxsCIIAg8EAAEhLS7M+HxkZiSpVquD333/HkCFDJL9uYGAgTCaTTVuzZs2wceNGxMfHo3Rp8V95BoMBjz32GB577DFMmzYNcXFx2LRpEyZMmCD6msU9+uijKFOmDPbv349q1aoBAG7cuIGzZ8+iffv2AIDTp0/j2rVrmDt3LmJjYwEAhw8ftus/AJv3y8nJwalTp/DJJ5+gXbt2AIC9e/dKvSREJAGnyYjI4zp06ICrV69i/vz5SE9Px8cff4wffvjB5pgZM2Zgzpw5WLhwIc6ePYvjx49j1apVWLBggcPXjY+Px4EDB3D+/Hlcu3YNZrMZL730Eq5fv45Bgwbh4MGD+P3337F9+3aMHDkSJpMJBw4cwLvvvovDhw8jMzMT33zzDa5evYq6detaX/PYsWM4c+YMrl27ZjOCZVGuXDmMGjUKkyZNwn//+1+cOHECI0aMQKlSf/2KrVatGgIDA/HRRx/h999/x3fffYd33nnH5nXi4uJgMBjw/fff4+rVq7h9+zYqVKiASpUq4dNPP8Vvv/2GnTt3YsKECSW5/ERUnEBEpJBVq1YJRqPR+nVGRoYAQEhNTbU7dunSpUJsbKxQtmxZ4dlnnxVmz54txMXF2Ryzfv16oUmTJkJgYKBQoUIF4fHHHxe++eYbh+9/5swZoXXr1kJISIgAQMjIyBAEQRDOnj0r9O3bVyhfvrwQEhIi1KlTRxg/frxgNpuFkydPCt26dRMeeeQRISgoSKhVq5bw0UcfWV/zypUrQpcuXYRy5coJAITk5GTR975165YwdOhQITQ0VIiMjBTmz58vtG/fXnjllVesx2zYsEGIj48XgoKChMTEROG7776zuz5vv/22EBUVJRgMBmH48OGCIAjCjh07hLp16wpBQUFCo0aNhF27dgkAhE2bNjm8FkQknUEQJEx2ExEREfkoTpMRERGRX2MwRERERH6NwRARERH5NQZDRERE5NcYDBEREZFfYzBEREREfo3BEBEREfk1BkNERETk1xgMERERkV9jMERERER+jcEQERER+TUGQ0REROTX/j82R+uvX39bTQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -618,7 +618,7 @@ " tau_max=tau_max)\n", "predicted = pred.predict(target)\n", "# predicted = pred.predict(target)\n", - "true_data = pred.get_test_array()[0]\n", + "true_data = pred.get_test_array(j=target)[0]\n", "\n", "plt.scatter(true_data, predicted)\n", "plt.plot(true_data, true_data, 'k-')\n", diff --git a/tutorials/dataset_challenges/tigramite_tutorial_missing_masking.ipynb b/tutorials/dataset_challenges/tigramite_tutorial_missing_masking.ipynb index 062d66ee..86eddf94 100644 --- a/tutorials/dataset_challenges/tigramite_tutorial_missing_masking.ipynb +++ b/tutorials/dataset_challenges/tigramite_tutorial_missing_masking.ipynb @@ -145,7 +145,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.688 | pval = 0.00000 \n", + " val = 0.688 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.688\n", " No conditions of dimension 0 left.\n", "\n", @@ -156,7 +156,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.449 | pval = 0.00000 \n", + " val = 0.449 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.449\n", " No conditions of dimension 0 left.\n", "\n", @@ -167,7 +167,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.355 | pval = 0.00039 \n", + " val = 0.355 | pval = 0.00039 | dependent = True \n", " Subset 0: () gives pval = 0.00039 / val = 0.355\n", " No conditions of dimension 0 left.\n", "\n", @@ -178,7 +178,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.248 | pval = 0.01470 \n", + " val = 0.248 | pval = 0.01470 | dependent = True \n", " Subset 0: () gives pval = 0.01470 / val = 0.248\n", " No conditions of dimension 0 left.\n", "\n", @@ -189,7 +189,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.152 | pval = 0.16123 \n", + " val = 0.152 | pval = 0.16123 | dependent = True \n", " Subset 0: () gives pval = 0.16123 / val = 0.152\n", " No conditions of dimension 0 left.\n", "\n", @@ -200,7 +200,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.129 | pval = 0.23578 \n", + " val = 0.129 | pval = 0.23578 | dependent = False \n", " Subset 0: () gives pval = 0.23578 / val = 0.129\n", " Non-significance detected.\n", "\n", @@ -225,7 +225,7 @@ " Z = [(0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.585 | pval = 0.00000 \n", + " val = 0.585 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^0$ -2) gives pval = 0.00000 / val = 0.585\n", " No conditions of dimension 1 left.\n", "\n", @@ -236,7 +236,7 @@ " Z = [(0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.052 | pval = 0.61676 \n", + " val = -0.052 | pval = 0.61676 | dependent = False \n", " Subset 0: ($X^0$ -1) gives pval = 0.61676 / val = -0.052\n", " Non-significance detected.\n", "\n", @@ -247,7 +247,7 @@ " Z = [(0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.018 | pval = 0.86238 \n", + " val = 0.018 | pval = 0.86238 | dependent = False \n", " Subset 0: ($X^0$ -1) gives pval = 0.86238 / val = 0.018\n", " Non-significance detected.\n", "\n", @@ -258,7 +258,7 @@ " Z = [(0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.006 | pval = 0.95598 \n", + " val = 0.006 | pval = 0.95598 | dependent = False \n", " Subset 0: ($X^0$ -1) gives pval = 0.95598 / val = 0.006\n", " Non-significance detected.\n", "\n", @@ -269,7 +269,7 @@ " Z = [(0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.001 | pval = 0.99188 \n", + " val = -0.001 | pval = 0.99188 | dependent = False \n", " Subset 0: ($X^0$ -1) gives pval = 0.99188 / val = -0.001\n", " Non-significance detected.\n", "\n", @@ -298,7 +298,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.725 | pval = 0.00000 \n", + " val = 0.725 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.725\n", " No conditions of dimension 0 left.\n", "\n", @@ -309,7 +309,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.790 | pval = 0.00000 \n", + " val = 0.790 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.790\n", " No conditions of dimension 0 left.\n", "\n", @@ -320,7 +320,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.903 | pval = 0.00000 \n", + " val = 0.903 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.903\n", " No conditions of dimension 0 left.\n", "\n", @@ -331,7 +331,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.776 | pval = 0.00000 \n", + " val = 0.776 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.776\n", " No conditions of dimension 0 left.\n", "\n", @@ -342,7 +342,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.534 | pval = 0.00000 \n", + " val = 0.534 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.534\n", " No conditions of dimension 0 left.\n", "\n", @@ -353,7 +353,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.431 | pval = 0.00003 \n", + " val = 0.431 | pval = 0.00003 | dependent = True \n", " Subset 0: () gives pval = 0.00003 / val = 0.431\n", " No conditions of dimension 0 left.\n", "\n", @@ -379,7 +379,7 @@ " Z = [(0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.780 | pval = 0.00000 \n", + " val = 0.780 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^0$ -2) gives pval = 0.00000 / val = 0.780\n", " No conditions of dimension 1 left.\n", "\n", @@ -390,7 +390,7 @@ " Z = [(1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.451 | pval = 0.00000 \n", + " val = 0.451 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^1$ -1) gives pval = 0.00000 / val = 0.451\n", " No conditions of dimension 1 left.\n", "\n", @@ -401,7 +401,7 @@ " Z = [(1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.191 | pval = 0.06359 \n", + " val = -0.191 | pval = 0.06359 | dependent = True \n", " Subset 0: ($X^1$ -1) gives pval = 0.06359 / val = -0.191\n", " No conditions of dimension 1 left.\n", "\n", @@ -412,7 +412,7 @@ " Z = [(1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.736 | pval = 0.00000 \n", + " val = 0.736 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^1$ -1) gives pval = 0.00000 / val = 0.736\n", " No conditions of dimension 1 left.\n", "\n", @@ -423,7 +423,7 @@ " Z = [(1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.181 | pval = 0.09800 \n", + " val = -0.181 | pval = 0.09800 | dependent = True \n", " Subset 0: ($X^1$ -1) gives pval = 0.09800 / val = -0.181\n", " No conditions of dimension 1 left.\n", "\n", @@ -434,7 +434,7 @@ " Z = [(1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.113 | pval = 0.30104 \n", + " val = -0.113 | pval = 0.30104 | dependent = False \n", " Subset 0: ($X^1$ -1) gives pval = 0.30104 / val = -0.113\n", " Non-significance detected.\n", "\n", @@ -459,7 +459,7 @@ " Z = [(0, -1), (0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.856 | pval = 0.00000 \n", + " val = 0.856 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^0$ -1) ($X^0$ -2) gives pval = 0.00000 / val = 0.856\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", @@ -470,7 +470,7 @@ " Z = [(1, -1), (0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.654 | pval = 0.00000 \n", + " val = 0.654 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^1$ -1) ($X^0$ -2) gives pval = 0.00000 / val = 0.654\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", @@ -481,7 +481,7 @@ " Z = [(1, -1), (0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.078 | pval = 0.45596 \n", + " val = 0.078 | pval = 0.45596 | dependent = False \n", " Subset 0: ($X^1$ -1) ($X^0$ -1) gives pval = 0.45596 / val = 0.078\n", " Non-significance detected.\n", "\n", @@ -492,7 +492,7 @@ " Z = [(1, -1), (0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.013 | pval = 0.90014 \n", + " val = -0.013 | pval = 0.90014 | dependent = False \n", " Subset 0: ($X^1$ -1) ($X^0$ -1) gives pval = 0.90014 / val = -0.013\n", " Non-significance detected.\n", "\n", @@ -503,7 +503,7 @@ " Z = [(1, -1), (0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.051 | pval = 0.64715 \n", + " val = -0.051 | pval = 0.64715 | dependent = False \n", " Subset 0: ($X^1$ -1) ($X^0$ -1) gives pval = 0.64715 / val = -0.051\n", " Non-significance detected.\n", "\n", @@ -533,7 +533,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.277 | pval = 0.00994 \n", + " val = 0.277 | pval = 0.00994 | dependent = True \n", " Subset 0: () gives pval = 0.00994 / val = 0.277\n", " No conditions of dimension 0 left.\n", "\n", @@ -544,7 +544,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.401 | pval = 0.00013 \n", + " val = 0.401 | pval = 0.00013 | dependent = True \n", " Subset 0: () gives pval = 0.00013 / val = 0.401\n", " No conditions of dimension 0 left.\n", "\n", @@ -555,7 +555,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.782 | pval = 0.00000 \n", + " val = 0.782 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.782\n", " No conditions of dimension 0 left.\n", "\n", @@ -566,7 +566,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.864 | pval = 0.00000 \n", + " val = 0.864 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.864\n", " No conditions of dimension 0 left.\n", "\n", @@ -577,7 +577,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.979 | pval = 0.00000 \n", + " val = 0.979 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.979\n", " No conditions of dimension 0 left.\n", "\n", @@ -588,7 +588,7 @@ " Z = []\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.936 | pval = 0.00000 \n", + " val = 0.936 | pval = 0.00000 | dependent = True \n", " Subset 0: () gives pval = 0.00000 / val = 0.936\n", " No conditions of dimension 0 left.\n", "\n", @@ -614,7 +614,7 @@ " Z = [(2, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.872 | pval = 0.00000 \n", + " val = 0.872 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^2$ -2) gives pval = 0.00000 / val = 0.872\n", " No conditions of dimension 1 left.\n", "\n", @@ -625,7 +625,7 @@ " Z = [(2, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.538 | pval = 0.00000 \n", + " val = -0.538 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^2$ -1) gives pval = 0.00000 / val = -0.538\n", " No conditions of dimension 1 left.\n", "\n", @@ -636,7 +636,7 @@ " Z = [(2, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.746 | pval = 0.00000 \n", + " val = 0.746 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^2$ -1) gives pval = 0.00000 / val = 0.746\n", " No conditions of dimension 1 left.\n", "\n", @@ -647,7 +647,7 @@ " Z = [(2, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.915 | pval = 0.00000 \n", + " val = 0.915 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^2$ -1) gives pval = 0.00000 / val = 0.915\n", " No conditions of dimension 1 left.\n", "\n", @@ -658,7 +658,7 @@ " Z = [(2, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.707 | pval = 0.00000 \n", + " val = 0.707 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^2$ -1) gives pval = 0.00000 / val = 0.707\n", " No conditions of dimension 1 left.\n", "\n", @@ -669,7 +669,7 @@ " Z = [(2, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.461 | pval = 0.00003 \n", + " val = 0.461 | pval = 0.00003 | dependent = True \n", " Subset 0: ($X^2$ -1) gives pval = 0.00003 / val = 0.461\n", " No conditions of dimension 1 left.\n", "\n", @@ -695,7 +695,7 @@ " Z = [(1, -1), (1, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.986 | pval = 0.00000 \n", + " val = 0.986 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^1$ -1) ($X^1$ -2) gives pval = 0.00000 / val = 0.986\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", @@ -706,7 +706,7 @@ " Z = [(2, -1), (1, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.795 | pval = 0.00000 \n", + " val = 0.795 | pval = 0.00000 | dependent = True \n", " Subset 0: ($X^2$ -1) ($X^1$ -2) gives pval = 0.00000 / val = 0.795\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", @@ -717,7 +717,7 @@ " Z = [(2, -1), (1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.015 | pval = 0.90125 \n", + " val = 0.015 | pval = 0.90125 | dependent = False \n", " Subset 0: ($X^2$ -1) ($X^1$ -1) gives pval = 0.90125 / val = 0.015\n", " Non-significance detected.\n", "\n", @@ -728,7 +728,7 @@ " Z = [(2, -1), (1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.342 | pval = 0.00463 \n", + " val = 0.342 | pval = 0.00463 | dependent = True \n", " Subset 0: ($X^2$ -1) ($X^1$ -1) gives pval = 0.00463 / val = 0.342\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", @@ -739,7 +739,7 @@ " Z = [(2, -1), (1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.013 | pval = 0.91292 \n", + " val = -0.013 | pval = 0.91292 | dependent = False \n", " Subset 0: ($X^2$ -1) ($X^1$ -1) gives pval = 0.91292 / val = -0.013\n", " Non-significance detected.\n", "\n", @@ -750,7 +750,7 @@ " Z = [(2, -1), (1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.150 | pval = 0.20014 \n", + " val = -0.150 | pval = 0.20014 | dependent = False \n", " Subset 0: ($X^2$ -1) ($X^1$ -1) gives pval = 0.20014 / val = -0.150\n", " Non-significance detected.\n", "\n", @@ -801,7 +801,7 @@ " Z = [(0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.585 | pval = 0.00000 [cached]\n", + " val = 0.585 | pval = 0.00000 | dependent = True [cached]\n", "\n", " link ($X^0$ -2) -?> $X^0$ (2/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", @@ -812,7 +812,7 @@ " Z = [(0, -1), (0, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.048 | pval = 0.64516 \n", + " val = -0.048 | pval = 0.64516 | dependent = False \n", "\n", " link ($X^1$ 0) o?o $X^0$ (3/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", @@ -823,7 +823,7 @@ " Z = [(0, -1), (1, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.072 | pval = 0.48950 \n", + " val = -0.072 | pval = 0.48950 | dependent = False \n", "\n", " link ($X^1$ -1) -?> $X^0$ (4/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", @@ -834,7 +834,7 @@ " Z = [(0, -1), (1, -2), (0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.091 | pval = 0.38447 \n", + " val = 0.091 | pval = 0.38447 | dependent = False \n", "\n", " link ($X^1$ -2) -?> $X^0$ (5/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", @@ -845,7 +845,7 @@ " Z = [(0, -1), (1, -3), (0, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.048 | pval = 0.64957 \n", + " val = 0.048 | pval = 0.64957 | dependent = False \n", "\n", " link ($X^2$ 0) o?o $X^0$ (6/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", @@ -856,7 +856,7 @@ " Z = [(0, -1), (2, -1), (1, -1), (2, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.068 | pval = 0.59118 \n", + " val = -0.068 | pval = 0.59118 | dependent = False \n", "\n", " link ($X^2$ -1) -?> $X^0$ (7/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", @@ -867,7 +867,7 @@ " Z = [(0, -1), (2, -2), (1, -2), (2, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.118 | pval = 0.34583 \n", + " val = -0.118 | pval = 0.34583 | dependent = False \n", "\n", " link ($X^2$ -2) -?> $X^0$ (8/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", @@ -878,7 +878,7 @@ " Z = [(0, -1), (2, -3), (1, -3), (2, -4)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.007 | pval = 0.95741 \n", + " val = 0.007 | pval = 0.95741 | dependent = False \n", "\n", " link ($X^0$ 0) o?o $X^1$ (1/8):\n", " with conds_y = [ ($X^1$ -1) ($X^0$ -1) ]\n", @@ -889,7 +889,7 @@ " Z = [(1, -1), (0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.072 | pval = 0.48950 [cached]\n", + " val = -0.072 | pval = 0.48950 | dependent = False [cached]\n", "\n", " link ($X^0$ -1) -?> $X^1$ (2/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", @@ -900,7 +900,7 @@ " Z = [(1, -1), (0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.654 | pval = 0.00000 [cached]\n", + " val = 0.654 | pval = 0.00000 | dependent = True [cached]\n", "\n", " link ($X^0$ -2) -?> $X^1$ (3/8):\n", " with conds_y = [ ($X^1$ -1) ($X^0$ -1) ]\n", @@ -911,7 +911,7 @@ " Z = [(1, -1), (0, -1), (0, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.098 | pval = 0.34941 \n", + " val = 0.098 | pval = 0.34941 | dependent = False \n", "\n", " link ($X^1$ -1) -?> $X^1$ (4/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", @@ -922,7 +922,7 @@ " Z = [(0, -1), (1, -2), (0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.560 | pval = 0.00000 \n", + " val = 0.560 | pval = 0.00000 | dependent = True \n", "\n", " link ($X^1$ -2) -?> $X^1$ (5/8):\n", " with conds_y = [ ($X^1$ -1) ($X^0$ -1) ]\n", @@ -933,7 +933,7 @@ " Z = [(1, -1), (0, -1), (1, -3), (0, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.151 | pval = 0.15061 \n", + " val = 0.151 | pval = 0.15061 | dependent = False \n", "\n", " link ($X^2$ 0) o?o $X^1$ (6/8):\n", " with conds_y = [ ($X^1$ -1) ($X^0$ -1) ]\n", @@ -944,7 +944,7 @@ " Z = [(1, -1), (0, -1), (2, -1), (2, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.057 | pval = 0.65168 \n", + " val = 0.057 | pval = 0.65168 | dependent = False \n", "\n", " link ($X^2$ -1) -?> $X^1$ (7/8):\n", " with conds_y = [ ($X^1$ -1) ($X^0$ -1) ]\n", @@ -955,7 +955,7 @@ " Z = [(1, -1), (0, -1), (2, -2), (1, -2), (2, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.250 | pval = 0.04498 \n", + " val = -0.250 | pval = 0.04498 | dependent = False \n", "\n", " link ($X^2$ -2) -?> $X^1$ (8/8):\n", " with conds_y = [ ($X^1$ -1) ($X^0$ -1) ]\n", @@ -966,7 +966,7 @@ " Z = [(1, -1), (0, -1), (2, -3), (1, -3), (2, -4)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.057 | pval = 0.64695 \n", + " val = 0.057 | pval = 0.64695 | dependent = False \n", "\n", " link ($X^0$ 0) o?o $X^2$ (1/8):\n", " with conds_y = [ ($X^2$ -1) ($X^1$ -1) ($X^2$ -2) ]\n", @@ -977,7 +977,7 @@ " Z = [(2, -1), (1, -1), (2, -2), (0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.068 | pval = 0.59118 [cached]\n", + " val = -0.068 | pval = 0.59118 | dependent = False [cached]\n", "\n", " link ($X^0$ -1) -?> $X^2$ (2/8):\n", " with conds_y = [ ($X^2$ -1) ($X^1$ -1) ($X^2$ -2) ]\n", @@ -988,7 +988,7 @@ " Z = [(2, -1), (1, -1), (2, -2), (0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.135 | pval = 0.28206 \n", + " val = -0.135 | pval = 0.28206 | dependent = False \n", "\n", " link ($X^0$ -2) -?> $X^2$ (3/8):\n", " with conds_y = [ ($X^2$ -1) ($X^1$ -1) ($X^2$ -2) ]\n", @@ -999,7 +999,7 @@ " Z = [(2, -1), (1, -1), (2, -2), (0, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = -0.188 | pval = 0.13451 \n", + " val = -0.188 | pval = 0.13451 | dependent = False \n", "\n", " link ($X^1$ 0) o?o $X^2$ (4/8):\n", " with conds_y = [ ($X^2$ -1) ($X^1$ -1) ($X^2$ -2) ]\n", @@ -1010,7 +1010,7 @@ " Z = [(2, -1), (1, -1), (2, -2), (0, -1)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.057 | pval = 0.65168 [cached]\n", + " val = 0.057 | pval = 0.65168 | dependent = False [cached]\n", "\n", " link ($X^1$ -1) -?> $X^2$ (5/8):\n", " with conds_y = [ ($X^2$ -1) ($X^2$ -2) ]\n", @@ -1021,7 +1021,7 @@ " Z = [(2, -1), (2, -2), (1, -2), (0, -2)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.731 | pval = 0.00000 \n", + " val = 0.731 | pval = 0.00000 | dependent = True \n", "\n", " link ($X^1$ -2) -?> $X^2$ (6/8):\n", " with conds_y = [ ($X^2$ -1) ($X^1$ -1) ($X^2$ -2) ]\n", @@ -1032,7 +1032,7 @@ " Z = [(2, -1), (1, -1), (2, -2), (1, -3), (0, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.152 | pval = 0.23139 \n", + " val = 0.152 | pval = 0.23139 | dependent = False \n", "\n", " link ($X^2$ -1) -?> $X^2$ (7/8):\n", " with conds_y = [ ($X^1$ -1) ($X^2$ -2) ]\n", @@ -1043,7 +1043,7 @@ " Z = [(1, -1), (2, -2), (1, -2), (2, -3)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.415 | pval = 0.00108 \n", + " val = 0.415 | pval = 0.00108 | dependent = True \n", "\n", " link ($X^2$ -2) -?> $X^2$ (8/8):\n", " with conds_y = [ ($X^2$ -1) ($X^1$ -1) ]\n", @@ -1054,7 +1054,7 @@ " Z = [(2, -1), (1, -1), (2, -3), (1, -3), (2, -4)]\n", " extraZ = []\n", " with missing values = 999.0 removed\n", - " val = 0.238 | pval = 0.08553 \n", + " val = 0.238 | pval = 0.08553 | dependent = False \n", "\n", "## Significant links at alpha = 0.01:\n", "\n", @@ -1263,15 +1263,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Note, however, that the failure to detect the link on the whole sample occurs only for partial correlation because the positive and negative dependencies cancel out. Using CMIknn recovers the link.\n", - "\n", - "To make CMIknn faster, here we use the option ``significance='fixed_thres'`` and choose a threshold ``fixed_thres`` $I^*$ in any conditional independence test. Then no hypothesis testing on conditional independence is conducted which avoids computationally expensive permutation testing. The criterion for conditional independence for a test statistic $I(X;Y|Z)$ is then \n", - "\n", - "$$\n", - "I(X;Y|Z) < I^*\n", - "$$\n", - "\n", - "$I^*$ should then be regarded as a hyperparameter. Note that picking $I^*$ for CMIknn is tricky because the value of $I(X;Y|Z)$ depends on the dimensionality of the variables due to an estimation bias for finite samples. This option only makes sense for conditional independence tests that rely on permutation testing, these are CMIknn and CMIsymb." + "Note, however, that the failure to detect the link on the whole sample occurs only for partial correlation because the positive and negative dependencies cancel out. As shown below, using CMIknn recovers the link. To make CMIknn faster, here we use the option ``significance='fixed_thres'``, then ``pc_alpha`` and ``alpha_level`` are interpreted as a threshold $I^*$ in any conditional independence test. See the tutorial on conditional independence tests for further details." ] }, { @@ -1280,10 +1272,11 @@ "metadata": {}, "outputs": [], "source": [ - "cmi_knn = CMIknn(significance='fixed_thres', fixed_thres=0.01, mask_type=None)\n", + "cmi_knn = CMIknn(significance='fixed_thres', mask_type=None)\n", "\n", + "fixed_thres = 0.01\n", "pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cmi_knn)\n", - "results = pcmci.run_pcmci(tau_max=2,pc_alpha=0.05, alpha_level=0.01)\n" + "results = pcmci.run_pcmci(tau_max=2, pc_alpha=fixed_thres, alpha_level=fixed_thres)\n" ] }, { diff --git a/tutorials/dataset_challenges/tigramite_tutorial_multiple_datasets.ipynb b/tutorials/dataset_challenges/tigramite_tutorial_multiple_datasets.ipynb index cb18859f..d0ece194 100644 --- a/tutorials/dataset_challenges/tigramite_tutorial_multiple_datasets.ipynb +++ b/tutorials/dataset_challenges/tigramite_tutorial_multiple_datasets.ipynb @@ -221,7 +221,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHXCAYAAADay6wsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACm90lEQVR4nOzddVRU2/s/8PfQGKBYKILYWBiY10AUsUBQsa7d3d0tdqOCgY2EAQqIYHcgdjcIGBdkCBlg5vn9cb/yu34sYmbOzPC81jrrs+7MOXu/+Sxkntn77H1ERERgjDHGGGNqTUvoAIwxxhhjLO+4qGOMMcYY0wBc1DHGGGOMaQAu6hhjjDHGNAAXdYwxxhhjGoCLOsYYY4wxDcBFHWOMMcaYBuCijjHGGGNMA3BRxxhjjDGmAdSmqHvw4AGaNm0KW1tbdOzYEcnJyX+8hoggFovBD81gjDHGmKYTqctjwjIyMqCrqwsAWLhwISpUqIC+ffv+9hqxWAxjY2MkJibCyMhIGTEZY4wxxgShI3SA7PpW0AFAamoqrKysfjhHIpFAIpFk/bdYLFZKNsYYY4wxoanN9CsAhIWFoW7dujh79iwqVqz4w/tubm4wNjbOOszNzQVIyRhjjDGmfGoz/fpfK1euhEwmw4wZM757/Wcjdebm5jz9yhhjjDGNpzbTrxKJBPr6+gAAY2NjpKen/3COvr5+1jmMMcYYY/mJ2ky/hoWFwdbWFnZ2djh9+jQGDx4sdCTGGGOMsWyRyWSYMmUK7ty5o7A+1HL6Nbt49StjjDHGVMH+/fvRt29fNGrUCFevXoVIJJJ7H2ozUscYY4wxpo4kEgnmzJkDKysrXL9+HSdOnFBIP1zUMcYYY4wp0NatWxEVFYWjR4/C1tYWc+bMgUwmk3s/XNQxxhhjjClIYmIilixZgsGDB8PKygpLly7FvXv34O/vL/e+uKhjjDHGGFOQ1atXIzU1FfPnzwcANG3aFO3bt8e8efOQmZkp1764qGOMMcYYU4DY2FisXbsWEyZMgJmZWdbrixcvxtOnT7F//3659serXxljjDHGFGDkyJHw8fHBq1evUKRIke/e69q1K27fvo2nT59CT09PLv3xSB1jjDHGmJw9e/YM27dvx+zZs38o6ABg0aJFePv2LXbs2CG3PnmkjjHGGGNMzrp164br16/j2bNnMDAw+Ok5ffv2xenTp/HixQsUKFAgz33ySB1jjDHGmBxdv34d/v7+WLx48S8LOgBYsGABPn36hC1btsilXx6pY4wxxhiTEyJCq1at8PnzZ9y5cwfa2tq/PX/48OE4fPgwXr16ledahUfqGGOMMcbkJDQ0FOfOnYObm9sfCzoAmDt3LpKTk7F+/fo8980jdYwxxhhjciCTyVC3bl0YGxvj/Pnz2X6+68SJE7Fr1y68fv0aJiYmue6fR+oYY4wxxuTg4MGDuHfvHlasWJHtgg4AZs6cCalUipUrV+apf7Up6iIiItC8eXPY2tqie/fuyMjIEDoSY4wxxhgAQCKRYM6cOejcuTOaNGmSo2tLliyJ8ePHY+PGjYiLi8t1BrUp6szMzBAaGorz58+jUqVKOHbsmNCRGGOMMcYAAFu3bkVUVBSWLVuWq+unTJkCPT29XF8PqFFRZ2pqmrWHi66uLnR0dH44RyKRQCwWf3dogujoaMTExAgdgzHGGGM/kZiYiCVLlmDQoEGwsrLKVRtFixbF1KlT4eHhgXfv3uWqDbUp6r559+4dwsPD4ejo+MN7bm5uMDY2zjrMzc0FSCh/bdu2haWlJUaOHIm3b98KHYcxxhhj/7F69WqkpKRgwYIFeWpn3LhxMDIywuLFi3N1vVoVdWKxGH379oWXlxd0dXV/eH/mzJlITEzMOqKiogRIKV9Pnz7Fo0eP0K1bN/j5+aFy5coYNmwYXr9+LXQ0xhhjTC0REWbOnIkGDRrgxIkTyMtGILGxsVi7di0mTJgAMzOzPOUqXLgwZs6cCS8vLzx//jzH16tNUSeVStG7d2/MmzcPVapU+ek5+vr6MDIy+u5Qd4GBgTA0NMSOHTvw5s0bLF26FMeOHUOVKlUwePBgvHz5UuiIjDHGmNogIkyaNAnLly9HZmYmnJyc0LJlS1y7di1X7S1atAj6+vqYPn26XPKNHDkSpUqVytWon9oUdb6+vrhy5QoWL16Mli1bwsfHR+hIShEYGAgHBwcYGhqiUKFCmDp1Kt68eYOVK1ciODgYVatWxYABA3JV0TPGGGP5CRFh4sSJWL9+Pdzd3XH79m0EBwcjISEBTZo0gaurK54+fZrt9p49e4bt27dj1qxZKFKkiFwyGhoaYu7cufD29saDBw9ydjFpsMTERAJAiYmJQkfJlY8fP5KWlhbt3Lnzp++npqbShg0bqEyZMqSlpUV9+vShx48fKzklY4wxpvpkMhmNHz+eAJC7u/t372VmZtKePXvIwsKCtLW1afjw4RQTE/PHNl1dXcnc3Jy+fv0q16wSiYTKly9PLi4uObqOizoV5uXlRSKRiD58+PDb875+/UqbN2+msmXLkkgkol69etHDhw+VlJIxxhhTbTKZjMaNG0cAaMuWLb887+vXr7R69WoqWrQoFShQgObMmfPLGuL69esEgLy8vBSSec+ePQSAbty4ke1r+DFhKqxLly748OEDLl++nK3zJRIJvLy84ObmhqioKLi6umL69OmoV69ejna2ZowxxjQFEWH8+PHYtGkTtm7dihEjRvzxmi9fvmDFihVYv349ChUqhLlz52L48OHQ19fParNVq1b49OkT7t69m61nvOaUVCpFrVq1YG5ujtDQ0OxdpJDyUkWo80hdamoqFShQgJYvX57jayUSCXl6epKlpSUBoHLlytGYMWPo1KlTJJFIFJCWMcZYfhcbG0vHjx+ngwcPUnp6utBxiOjfEbqxY8cSANq2bVuOr4+KiqLBgweTlpYWlS9fng4cOEBSqZRCQkIIAB0/flwBqf8/Pz8/AkDnz5/P1vk8UpdDycnJuHDhAjp06CCX9n4lKCgIjo6OePToEapVq5arNjIyMnD27FkEBgbi+PHjePfuHQoXLox27drByckJHTp0QLFixeScnDHGmKaLi4tDREQEIiIicOvWLURERHy3SX716tWxZcsW2NraCpaRiDBu3Dhs3rwZHh4eGDZsWK7bevjwIWbNmoXAwEDUrVsXqampKFGiBC5cuKDQmTCZTIb69eujYMGC2etLkRWm0BQxUjdy5EgCQHfv3pVbmz8zbNgwqly5MslkMrm0J5PJ6M6dO7R48WJq0KABASAtLS1q3rw5rVy5kp48eSKXfhhjjGmWuLg4CgoKokWLFlGnTp3IzMyMABAAMjExoTZt2tDMmTPJ39+f3rx5Q5GRkdSkSRMCQL1796bY2FilZ5bJZDR69GgCQB4eHnJr9+LFi9SkSRPS0tKiy5cvy63d3wkKCiIAFBIS8sdzuajLgcjISNLS0iIANGHCBLm0+TNSqZRMTU1p8uTJCusjJiaGPD09ycnJiQwNDQkAVa5cmSZPnkznzp2jjIwMhfXNGGNMtV28eJGcnZ2pbNmyWQVc0aJFyd7enmbMmEF+fn70+vXrXw48SKVS2rlzJxUvXpyMjIxow4YNSvtckclkNGrUKLkXdP9tX5mFqkwmo7/++otat279x3N5+jWbiAgtWrRAfHw8WrduDW9vb7x//x56enpySvv/3bhxA40aNcL58+fRokULubf/v1JTU3H69GkcP34cx48fR1xcHEqWLIlTp06hdu3aCu+fMcaY6iAiVK9eHTKZDC4uLqhfvz5sbGxQvnz5HE81xsfHY9asWfD09ETt2rWxZcsWNGnSREHJ/52uHDNmDLZu3QpPT08MHTpUYX0p04sXL1C8ePE/74Wn4AJTUPIcqdu/fz8BoPDwcLp37x4BoKNHj+Y95E/Mnj2bihUrJshomVQqpRs3blDt2rWpQoUKFB8fr/QMjDHGhHP79m0CQMHBwXJr88aNG2RjY0MAaNCgQfTx40e5tf2NVCqlESNGEADavn273NtXB2rzRAkhJSUlYerUqejatStat26NWrVqwcbGBl5eXgrpLyAgAB07doSOjo5C2v8dLS0tNGjQAEePHkVCQgJ69+4NqVSq9ByMMcaEcfDgQRQvXhz29vZya7NBgwa4fv06tmzZgiNHjqBq1arw8PCQ2+eLTCbD6NGj4eHhgR07dmDIkCFyaVfdcFGXDUuWLMGXL1+wZs2arNcGDBiAoKAgfPjwQa59vXr1Cg8ePECnTp3k2m5OlS9fHt7e3jh58iQWLlwoaBbGGGPKIZPJ4O3tje7du0NXV1eubWtra2PkyJF4+vQpnJ2dMWLECDRu3Bi3bt3KU7symQyjRo3KKugGDx4sp8Tqh++p+4Nnz56hZs2amDNnDubNm5f1enx8PEqXLg03NzdMmjRJXpGxYcMGTJs2Df/88w8KFSokt3Zza9myZZg9ezYCAgIELzQZy49ev36NYcOGoUaNGli/fr3QcZiGO3fuHOzs7HD58mX89ddfCu3r8uXLGDVqFO7fv4/hw4dj6dKlMDExAfDvfX3Jycn48uULEhMT8eXLl18eL168wIULF7Bjxw4MGjRIoZlVHRd1v0FE6NixIx4/foxHjx7B0NDwu/e7d++Ox48f4969e3Lbp6ZVq1YwMDBAcHCwXNrLK5lMhq5du+LMmTO4efMmqlSpInQkxvIFIsL+/fsxevRo6OjoICEhASEhIWjXrp3Q0ZgGGzZsGMLCwvDq1SulPIkoMzMT7u7umDt3LrS1tWFiYpJVyP1qalZPTw9FihTJOoyNjTFo0CD07NlT4XlVHRd1v3H8+HF06tQJR48ehYuLyw/vh4SEoEOHDrh58ybq16+f57wJCQkoUaIENm/enK3HmCiLWCxGw4YNoa2tjevXr6vECCJjmuzLly8YOXIkDh06hD59+mDz5s3o3r07Hj16hIcPH6rlYw+Z6pNIJDA1NcWoUaOwdOlSpfYdGxuLzZs3QyaTfVes/bd4+3YYGBgoNZtaEWyJRg6JxWJq2LAhFSxYkO7fv5+ta/Ky+vXr169UoUIFcnBw+OU+PBkZGVS6dGkaPXp0jtv/mW8rbKOjo+XSnjw9evSIChUqRN26dZPbhsiMsR+dO3eOzM3NydjYmA4ePJj1+tu3b6lQoUI0bNgwAdMxTXbs2DECQA8ePBA6CssltVkoYWhoiBMnTsDV1fWX50gkEojF4u+O3FqzZg3evXuHDRs2/HIIWkdHB/369cPBgweRlpaW676+CQwMRP369WFmZpbntuStWrVq2LNnD/z8/L5bMMIYk4/09HTMnDkTdnZ2KF++PO7evYtevXplvW9hYYFVq1bB09MTp0+fFjAp01QHDhxA7dq1UaNGDaGjsFxSm6JOR0cHJUqU+O05bm5uMDY2zjrMzc1z1VdUVBSWLVuG8ePHw8rK6rfnDhw4EAkJCQgMDMxVX9+kp6cjJCREpRcjdOnSBTNmzMD06dNx5swZoeMwpjGePn2Kv/76C6tXr8ayZctw5swZlCtX7ofzhg0bBjs7OwwZMgTJyckCJGWaSiwW4/jx4/j777+FjsLyQG2KuuyYOXMmEhMTs46oqKhctTN16lQYGRl9t9r1V6pWrYomTZpg9+7duerrm3PnziEpKQnOzs55akfRlixZglatWqFHjx549+6d0HFyjYgQHx8vdAyWzxERPD09Ua9ePSQlJeHq1auYMWMGtLW1f3q+lpYWduzYgY8fP2LmzJlKTss02bFjx5CWlsaLDdScRhV1+vr6MDIy+u7IqXPnzsHHxwcrVqzI9vUDBgxAaGgo3r9/n+P+vgkMDES5cuVQq1atXLehDNra2vD29kbBggXRtWtXuUw7K0NycjLOnDmDpUuXomPHjihevDiKFSuGFStWCB2N5VOfPn1C586dMXz4cPTp0we3b9/O1oKrChUqwM3NDZs3b8aFCxeUkJTlBwcOHECLFi1gYWEhdBSWBxpV1OVVZmYmxo0bhyZNmqBPnz7Zvq5Hjx7Q19fHvn37ctUvESEwMBCdOnVSyhLyvCpevDiOHDmCBw8eYPTo0SAVW0BNRHj58iX279+PUaNGoW7dujA2Nkbr1q2xatUqSKVSjBs3DiNHjsTMmTNx7NgxoSOzfCY0NBTW1ta4dOkSjh07Bg8PDxQsWDDb148ZMwbNmjXDoEGDkJqaqsCkLD/48OEDwsPDeepVEwi6TCOH2rdvT6VLl6bGjRuTl5fXH8/P6erXjRs3kkgkolu3buU4W+/evalKlSq5Whn67Tl74eHhOb5WSLt37yYAtG3bNkFzpKSk0Pnz52n58uXk7OxMJUuWJAAEgKysrGjQoEG0fft2evDgAUml0qzrpFIpde3alQoWLEh37twR8Cdg+cXXr19p/PjxBIAcHBwoJiYm1209ffqUDAwMaNKkSXJMyPKjDRs2kK6uLn3+/FnoKCyP1Kqoy6mcFHUfP36kIkWK0NChQ3PVV3h4OAGgK1eu5PjaBQsWkLGxMaWnp+eqbyGNHj2adHV16erVq4L0f/z4cdLT0yMAVKhQIWrdujXNmTOHgoOD6Z9//vnj9cnJyVS3bl0yNzen2NhYJSRm+dXbt2/J2tqa9PX1af369d99wcitVatWkUgkytXfHca+adSoETk5OQkdg8kBbz78f4YNGwY/Pz88e/bsj6tsf0Ymk6F8+fJo27YtPD09c3StjY0NqlSpAm9v7xz3K7T09HTY2dnhzZs3uH37NkqVKqW0vqVSKWrVqoWSJUtiw4YNqFmz5i9vMP+d6OhoNGjQAJaWljh79ixvbMnkLjIyEh07doSBgQGOHTsGa2trubQrlUrRtGlTJCYmIjIykn93WY69fPkSlSpVwqFDh9CjRw+h47A84nvqANy6dQs7duzA4sWLc1XQAf+uSuvfvz8OHTqUo3tcoqKicPv2bZVf9forenp68PPzg0wmQ/fu3ZGRkaG0vg8fPozHjx9jxYoVqF27dq4KOgAoW7YsAgICcOfOHQwdOlTl7hFk6i0kJAQtWrRA2bJlcfXqVbkVdMC/C5d27dqFV69eYcGCBXJrl+UfBw8eRKFCheDk5CR0FCYPAo8UKlR2pl+lUik1btyYatWqRRkZGXnq7+XLlwSA9u3bl+1r3N3dSUdHhxISEvLUt9AuXrxIOjo6NGHCBKX0J5VKqUaNGtS2bVu5tent7U0AaNmyZXJrk+Vv27dvJ21tbXJycqLk5GSF9bNs2TLS0tKiGzduKKwPpnlkMhlVrVqV+vbtK3QUJif5vqj7drP/uXPn5NKnra0ttW7dOtvnt23bNkfnq7JNmzYRAPL391d4X35+fgSALl++LNd2582bRwDoyJEjcm2X5S8ymYzmzJlDAGjUqFGUmZmp0P7S09OpXr16VLNmTUpLS1NoX0xzREREEAAKCQkROgqTk3xd1CUmJlKpUqWoR48ecuvTy8uLRCIRvXnzJlv5dHV1aePGjXLrX0gymYw6depEZcuWpZSUFIX1I5VKqVatWmRvb6+Qtrt160YFChSg27dvy719pvkkEgn17duXANDKlSuV9qzku3fvkq6uLs2dO1cp/TH1N3nyZCpRokSeZ6mY6sjXRd3kyZOpQIECFBUVJbc+k5KSqGDBgrRw4cI/nuvr60sA6PXr13LrX2gvXrwgPT09mj9/vsL6OHz4MAGgixcvKqT9lJQUsrGxobJly/KKWJYjCQkJZGdnR3p6enTo0CGl979gwQLS0dGhyMhIpffN1EtmZiaVKVOGxowZI3QUJkf5dvXr48ePYW1tjYULF2LWrFly7XfQoEE4d+4cXrx4AS2tX69F6du3L+7du4e7d+/KtX+hzZw5E+vXr8fTp0/lvju5TCZDvXr1UKxYMYU+1Pz9+/do0KABLCwscO7cOV5VyP7o3bt36NChA2JiYhAQEIDmzZsrPUN6ejoaNGgALS0t3LhxA7q6ukrPwNTD2bNn0apVK1y5cgVNmjQROg6Tk3y7+nX+/PkoV64cJk+eLPe2Bw4ciNevX+PixYu/PCcjIwNBQUFqu+r1d2bNmoUiRYpg2rRpcm/7+PHjuHv3LubPny/3tv/LzMwMAQEBuHv3LgYPHswrYtlv3blzB40bN0ZKSgouX74sSEEH/Lsa3cvLC/fv3+dH4LHfOnjwIMqXL4/GjRsLHYXJk8AjhQr1u+nXf/75R2FPEZDJZFSxYkXq37//L885e/YsAaCbN28qJIPQvi1AuXDhgtzalMlkVLduXWrZsqXc2vwTHx8fAkBLly5VWp9MvZw8eZIKFSpENjY2KjNdP2vWLNLV1aX79+8LHYWpoLS0NCpSpAjNnj1b6ChMznI8/frly5esh9eLRCKULl0abdu2RdGiRRVRc+ZJTjYflrclS5bAzc0NcXFxKFy48A/vT5o0CT4+PoiKivrtFK26kslkaNy4MTIzM3Hz5s1c7yH3X8ePH0enTp1w5swZ2NnZySFl9ixcuBALFizA4cOH0aVLF6X1y1Tfzp07MXz4cLRv3x6HDh3K0fNbFUkikaBevXooUKAArl69Ch0dHaEjsRwiIjx//hxhYWE4deoUXr9+DU9PT7mMrB07dgydO3fGo0ePUK1aNTmkZaoiR9XEzp070bBhQ1y7dg0ymQxSqRTXrl1D48aNsXPnTkVlVEv9+vXD169f4e/v/8N7RISAgAB06tRJIws64N/NmDds2IDIyEjs2rUrz+0RERYuXIjmzZujZcuWeQ+YA/PmzUP37t3Rt29fREZGKrVvppqICPPmzcOQIUMwdOhQHD16VGUKOgDQ19fHrl27cPv2baxZs0boOCybPn/+DB8fHwwZMgSWlpaoWrUqJk6ciMTEROjo6KBjx4548uRJnvs5cOAA6tSpwwWdJsrJsF6VKlUoKSnph9fFYjFVrlxZDgOH8pWTZ78qgr29PTVv3vyH1x88eEAAKDg4WIBUytWnTx8qUaJEnjdXPnHiBAGg8PBw+QTLoZSUFKpfvz6VLVs2Tw9hZ+rvv1uWLF++XGlbluTG5MmTydDQkD5+/Ch0FPYTaWlpdPr0aZoxYwbZ2NiQSCQiAFS9enWaMGECBQUFZX3mxsfHU40aNcjCwoKio6Nz3WdiYiLp6+vTypUr5fVjMBWSo6KuatWqP71nJCYmhqpUqSK3UL8yefJkatasGf39998kkUj+eL7QRd2BAwcIAD1//vy715cuXUoFCxakr1+/CpJLmaKjo6lAgQI0adKkXLchk8moQYMG1LRpU0E/QN+/f09lypShhg0bUmpqqmA5mHD+u2XJwYMHhY7zR58/f6YCBQrQvHnzhI7C6N+/Zffv36c1a9ZQu3btqECBAgSASpYsSb1796bdu3f/tmCLjo4mCwsLqlmzJsXHx+cqw+7du0kkEsl1Ky+mOnJU1B0/fpyqVKlCXbp0obFjx9LYsWOpc+fOVKVKFTp+/LiiMhIR0e3bt6l3795ERLRkyRI6cODAH68RuqhLTU0lY2NjmjNnznevN2rUiLp06SJIJiEsWbKEdHR06MmTJ7m6PiQkhADQqVOn5Jws527dukWGhoY0Y8YMoaMwJXv9+jVVq1aNihYtSufPnxc6TraNGzeOTExMFPqYMpY9CxYsIABkYGBADg4OtGrVKrpz5w5JpdJst/H48WMyMTGhZs2a5erLZZs2bcjW1jbH1zH1kOPVr5mZmXTlyhXy9/cnPz8/unLlisIfgUP07zNS9+zZQ0T/frCOHj36h3PS0tIoMTEx64iKihK0qCMiGj58OJmbm2f9fxQbG0sAsn6W/CA1NZUsLS2pQ4cOOb5WJpNR48aNqUmTJiozzTV8+HCqUKGCyuRhinf9+nUqWbIkVahQIddfToTy5s0b0tbWpg0bNggdJV97/fo16evr06RJk/I8S3P16lUyNDQkFxeXHD0NIjY2lrS0tMjT0zNP/TPVpTZbmixdupSOHj1KRETPnz+nXr16/XDO/PnzCcAPh5BF3dWrV78bZfL09CQtLS369OmTYJmE4O/vTwAoKCgoR9eFhoYSADp58qSCkuXct5HDe/fuCR2FKcHRo0fJ0NCQGjdurLb3pvXu3ZssLCwoPT1d6Cj5Vs+ePal06dJyGzENCgoibW1tGjp0aLa/YK5fv550dXXpn3/+kUsGpnpyvfTy8OHDub00V4oWLQqxWAzg321VTExMfjhn5syZSExMzDqioqKUmvFnGjVqBCsrK3h5eQEAAgMD0bRpUxQvXlzgZMrVpUsXtGzZEpMmTUJ6enq2rqH/W/HasGFDODg4KDhh9tnZ2aFw4cIICAgQOgpTICLC+vXr0aVLF3Ts2BFnzpxBiRIlhI6VK9OmTcO7d+/g6+ur0H7S0tJQs2ZNbNq0SaH9qJurV6/i0KFDWLZsmdxWSXfo0AG7du3C9u3bs70Z+8GDB9GhQ4effn4yDZHbalBPT4/Wrl3723PkOT31v/fUZecmZaHvqftmxYoVZGBgQO/fvycDAwNavXq1oHmEcufOHdLS0vrj7803YWFhuRrdU4Zu3bpR/fr1hY7BFCQzM5PGjBlDAGjatGk5uudJVbVv356sra0VetvA8uXLCQBVrVqVb0/4PzKZjBo1akR169ZVyO/RihUrCAC5u7v/9rxnz54RAPLx8ZF7BqY6cl3UnTx5koyMjGjs2LE//OPNzMwkLy8vqlq1ap4D/pe6rX79JiYmhrS0tKh9+/YEgJ49eyZoHiGNGDGCjI2N6cOHD789TyaTUbNmzah+/foq+eHwbWUzryDTPElJSeTo6Eja2trk4eEhdBy5+fYUG0VtpfTx40cyMjKi+vXrEwC6fv26QvpRN97e3gSAzpw5o5D2ZTIZTZw4kUQiEfn5+f3yvIULF1KhQoV45b6Gy9M9dXfu3KGyZcuSi4sLpaamkkQioS1btpClpSUVLVpU8GX0qlLUERF16NCBAJCVlZXQUQT18eNHKlKkCA0bNuy35505c4YAKHxVdW4lJCSQjo7OH78dM/USExND9erVo0KFClFISIjQceRKJpNRw4YNFfaYvVGjRmV9YStTpsxPF7PlN6mpqWRhYUHOzs4K7UcqldLff/9Nenp6Py0eZTIZVa1alfr166fQHEx4eV4oER0dTdbW1mRtbU1lypShEiVK0NKlS0ksFssjX56oUlHn5+dHAGj69OlCRxHc+vXrSSQSUWRk5C/PsbW1JRsbG5UcpfumdevW5ODgIHQMJif37t0jc3NzMjMzU9hzoYX2bcGSvEfRHj16RNra2rRq1SoiIpo2bRqZmJhka0ZFk7m5uZGOjg49ffpU4X1JJBJycHCgwoUL0+3bt79779atWyq34IwpRp6Kui9fvtCiRYuoWLFiZGhoSAUKFFCpFYGqVNSlpaVRnz598vXU6zfp6elUrVo1atGixU+LtnPnzhEACggIECBd9m3atIl0dXXpy5cvQkdheXTq1CkyMjKiOnXq5Gm3flWXmZlJlStXpq5du8q1XUdHR7K0tMzaquPbU3OOHDki137USVxcHBUuXJgmTJigtD7FYjHVr1+fSpUqRS9fvsx6fdKkSVSyZMkcbX/C1FOui7oZM2aQsbExVahQgTw8PCg5OZn69+9PJUuWpBs3bsgzY66pUlHHvnfy5EkCQL6+vj+8Z2dnR3Xq1FHpUToiordv3xIA8vb2FjoKy4MdO3aQjo4OtW/fXiVmGBTN09OTRCKR3EaPTp8+TQDo0KFD371uY2NDLi4uculDHQ0bNoyKFi2q9O1DPnz4QJUrV6ZKlSrRhw8fKDMzk0qXLk1jx45Vag4mjFwXdVZWVrRnz54fNh6eM2cOFSxYkI4dO5bncHnFRZ1qc3JyIgsLi+9u3L1w4YJafcOvW7cu9ezZU+gYLBekUinNmjWLANCIESPyzSjG169fqVSpUjR06NA8t5WZmUl16tShxo0b//AlbMOGDaSrq5vv9uQk+ncqX0tLi9avXy9I/69evSJTU1OysbGhY8eOEQC6du2aIFmYcuW6qPvdKMr27dtJX1+fNm3alNvm5YKLOtX27Nkz0tXVpUWLFmW9Zm9vT9bW1mqzhcTChQvJyMgo3987pIpkMhl9/PiRIiIi6OjRo7RhwwaaPHkyde/enRo3bkympqYEgFatWqXyo8Ly5ubmRnp6ej99lndOeHl5EQC6fPnyD+99/PiRdHR0BP8cUDaZTEZt2rShypUrC/p3ITIykoyMjEhPT48qVqyY737H8ysREZEi9r8LCQlBjx49sjYMFoJYLIaxsTESExNhZGQkWA72a9OmTcPmzZvx9OlTREVFoWnTpvD390fXrl2FjpYtd+/eRZ06dRAaGqpSGyTnJ48fP8bVq1fx7t07REVF4d27d1lHWlpa1nn6+vowNzeHhYVF1tGyZUvY2dkJmF4YX758gYWFBUaPHg03N7dctZGSkoIqVaqgadOmv9zU2NnZGbGxsbhx40Ze4qqVkJAQdOjQAceOHYOzs7OgWc6dO4e2bdtizpw5mDt3rqBZmHIorKgDgNu3b6NevXqKav6PuKhTfWKxGJUrV4a9vT0+f/6MmJgY3L17F1pauX7YiVIREcqXL4+OHTvC3d1d6Dj5zrlz59CuXTtIJBKYmpp+V7D9bwFXokQJiEQioSOrjKlTp2L79u149+5drv4+Llq0CEuXLsXjx49RoUKFn55z+PBhuLq64tGjR6hWrVpeI6u8zMxMWFtbo1SpUjhz5oxK/L7FxcWhRIkS0NbWFjoKUwZBxwkVjKdf1cPOnTuzntP7s4UTqm78+PFkZmbG0xtKduPGDSpUqBC1adNGbs/TzE+io6NJV1c3axuSnIiJiaGCBQvS5MmTf3teWloaFSlShGbMmJHbmGply5YtJBKJfthShDFlUehIndB4pE49yGQyNGrUCBKJBHfu3FGbUbpvzp49i1atWuHmzZuoX7++0HHyhYcPH6JFixaoWrUqwsLC5PY8zfxm0KBBCA0NxatXr6Cvr5/t64YMGYKjR4/ixYsXKFq06G/PHTlyJE6cOIE3b95o9GjRly9fULlyZTg5OWHXrl1Cx2H5lHp9ejKNpKWlhbNnz+L8+fNqV9ABQPPmzVG0aFEEBAQIHSVfePXqFdq0aYOyZcsiKCiIC7o8mDp1KmJiYnDw4MFsX3Pv3j3s2rUL8+fP/2NBBwD9+/dHdHQ0zp07l4ekqm/ZsmVITU3FkiVLhI7C8jEeqWNMDvr27Yu7d+/i3r17QkfRaDExMWjevDm0tLRw6dIllCpVSuhIas/Z2RnPnj3Dw4cP//iliojQtm1bvHnzBg8ePICent4f2yciVK1aFU2aNMGePXvkFVulvHr1CtWqVcPs2bMxb948oeOwfEz9hkUYU0EuLi64f/8+Xr16JXQUjfXPP//AwcEB6enpCA8P54JOTqZPn44nT57gxIkTfzz35MmTCAsLw8qVK7NV0AGASCRCv379cPjwYSQnJ+c1rkqaMWMGSpQogcmTJwsdheVzXNQxJgdt27aFvr4+T8EqSFJSEjp06IAPHz4gLCwM5cqVEzqSxvjrr7/QrFkzrFix4rfnZWZmYsqUKWjRokWOt+ro27cvUlJScOTIkbxEVUmXL1+Gn58f3Nzc+FYAJji1KOqSkpLQqFEjFCpUCA8ePBA6DmM/KFSoEFq3bs1FnQKkpaXB2dkZT548QWhoKKysrISOpHGmTZuGK1eu4NKlS788Z+fOnXj06BHWrFmT4606ypUrh5YtW2Lv3r15japSZDIZJk6cCBsbG/Tu3VvoOIypR1FnaGiIEydOwNXVVegojP2Si4sLLl68iM+fPwsdJc8kEgkyMzOFjoGMjAz06NEDV69exYkTJwTd91KTdezYEdWrV8fKlSt/+r5YLMa8efPQp0+fXK/w7tevH86cOYOoqKi8RFUp3t7euHnzJtauXauWi7yY5lGL30IdHR2UKFHij+dJJBKIxeLvDsaUxcnJCUSEoKAgoaPkCRGhffv2sLGxwZcvXwTLIZPJMGjQIAQHB+PIkSNo3ry5YFk0nZaWFqZOnYrjx4/j4cOHP7y/YsUKiMViLFu2LNd9uLq6wsDAAPv3789LVJWRmpqKGTNmoEuXLmjRooXQcRgDoCZFXXa5ubnB2Ng46zA3Nxc6EstHTE1N0ahRI7Wfgg0LC8PZs2fx7NkzdO7cGRKJROkZiAjjxo3DgQMHcODAAbRv317pGfKbv//+G2XLlsXq1au/ez0qKgpr167FpEmT8vQ3tXDhwujSpQv27t0LTdh0Yd26dfjw4cMf70VkTJlUqqiLi4tDs2bNfjji4+Ozdf3MmTORmJiYdWjSMD9TDy4uLggNDcXXr1+FjpIrRIS5c+eicePGOHXqFK5evYoBAwZAJpMpNcfcuXPh7u4OT09PdO/eXal951d6enqYOHEiDhw4gOjo6KzXZ82aBSMjI8yYMSPPffTr1w9PnjzBrVu38tyWkOLi4uDm5oaxY8eiUqVKQsdh7P8T6EkWudK/f3+6f/9+ts/nx4QxZXv8+DEBoMDAQKGj5MqJEycIAJ06dYqIiPz9/UkkEtGUKVOUlmHVqlUEIFePr2J5IxaLqUiRIjRp0iQiIrp58yYBoG3btsml/czMTCpTpgyNHj1aLu0JITU1lTp37kzFihWjhIQEoeMw9h21Kerat29PpUuXpsaNG5OXl1e2ruGijgmhSpUqNHjwYKFj5JhMJqN69epR8+bNv3uO7YYNGwgAbdiwQeEZPD09CQDNnj1b4X2xn5s1axYVKlSI4uPjqUWLFlS9enXKyMiQW/vTpk0jExMTkkgkcmtTWSIjI6l69epkYGCgls+pZppPbYq63OCijglh2rRpVLJkScrMzBQ6So4cPXqUANDZs2d/eG/KlCkkEonIz89PYf37+PiQSCSi0aNHf1dUMuWKi4sjfX19srOzIwAUHBws1/bv379PAOjo0aNybVeRpFIprVq1inR1dal27dr04MEDoSMx9lNc1DEmZ5cvXyYAdOnSJaGjZJtUKqVatWpRq1atfvl+z549SV9fny5cuCDXvjMzM2n58uWko6NDffr0IalUKtf2Wc4NHz6cAFCbNm0UUmDXq1ePXFxc5N6uIkRFRVGrVq0IAE2ZMoXS0tKEjsTYL3FRx5icZWZmUsmSJWnq1KlCR8k2X1/fPxaiaWlpZGdnR0WKFKGHDx/Kpd/Xr19T8+bNSSQS0fTp0yk9PV0u7bK8efnyJTVq1ChH9zDnxIYNG0hXV5c+ffqkkPblxdfXl4oWLUpmZmZ0+vRpoeMw9kciIg1YW/4LYrEYxsbGSExMhJGRkdBxWD4ydOhQnD9/Hk+fPs3x7vvKJpVKUatWLVhYWODkyZO/PffLly9o3rw5xGIxrl69ijJlyuSqTyLCvn37MGbMGJiYmGDv3r2811c+8vHjR5iZmWH9+vUYPXq00HF+IBaLMW7cOOzZswfdunXDtm3bYGJiInQsxv5IpbY0YUxTODs74/nz53jy5InQUf7Ix8cHjx8/xqJFi/54bpEiRRASEgKZTIb27dvnaoPv+Ph49OjRA/3794eLiwvu3r3LBV0+U7JkSbRv3x579uwROsoPrly5gjp16uDw4cPYvXs3fHx8uKBjaoOLOsYUoHXr1ihQoIDKb0ScmZmJBQsWwNHREQ0bNszWNWXLlkVISAjevn2LLl26ID09Pdv9hYWFoVatWggPD4evry/27t0LY2Pj3MZnaqxfv364efMmHj9+LHQUAP/+W5g/fz6aN28OU1NT3LlzB/3791f5kXbG/ouLOsYUwNDQEG3btlX5ou7AgQN4/vx5tkbp/qtmzZo4duwYLl68iMGDB//xCQFfv37F+PHj4eDggBo1auD+/fvo1q1bXqIzNefk5IQiRYpg3759QkfBixcv0KxZMyxduhTz5s3DhQsXULFiRaFjMZZjXNQxpiAuLi64fv06YmNjhY7yUxkZGVi0aBE6d+6MunXr5vj6li1bYs+ePdi/fz9mzZr1y/MiIyNRv359eHh4YMOGDTh58iTMzMzyEp1pAH19ffTs2RP79u1T+hNLviEi7Nq1C3Xq1MGnT59w6dIlzJ8/Hzo6OoLkYSyvuKhjTEE6duwILS0tHD9+XOgoP7V79268evUKCxcuzHUbPXv2xOrVq7F8+XJs2bLlu/ekUimWL1+ORo0aQU9PDxERERg3bhy0tPjPDvtXv379EB0djbNnzyq9b6lUip49e2Lw4MHo3r077ty5g8aNGys9B2PyxKtfGVOgli1bomDBgggKChI6ynckEgmqVKmCxo0bw8fHJ09tEREmTpyIjRs34siRI3BxccGbN2/Qr18/XLp0CdOmTcOiRYugp6cnp/RMUxARqlatiiZNmih90cTevXvRv39/eHt7o2fPnkrtmzFF4a/MjCmQi4sLTp8+jaSkJKGjfGfnzp2IiorCggUL8tyWSCTC2rVr4erqil69emHBggWwtrbGu3fvcO7cOSxfvpwLOvZTIpEI/fr1w+HDh5GcnKy0ftPT0zF//nx07tyZCzqmUbioY0yBnJ2dIZFIEBoaKnSULGlpaVi6dCn+/vtvVKtWTS5tamlpYe/evWjYsCEWLlyIzp0781YlLFv69OmDlJQUHDlyRGl9enp64t27d1iyZInS+mRMGXj6lTEFs7a2Ru3atVVilR8AbNiwAZMnT8bjx49RuXJlubadnJyMBw8e8L1JLEfs7Oygra2N8PBwhfeVkpKCihUrol27dti9e7fC+2NMmXikjjEFc3FxQVBQEDIyMoSOgtTUVLi5uaFv375yL+gAoFChQlzQsRzr168fzpw5g6ioKIX3tXHjRsTHx8vl1gPGVI1aFHURERFo3rw5bG1t0b17d5X4cGQsu5ydnZGQkICLFy8KHQVbtmzBP//8g7lz5wodhbEsXbt2hYGBAQ4cOKDQfhISErBy5UoMHz4clpaWCu2LMSGoRVFnZmaG0NBQnD9/HpUqVcKxY8eEjsRYttWrVw9ly5YVfCPi5ORkrFixAgMHDkSFChUEzcLYfxkZGcHV1TVrFE1RVq1ahfT0dMyePVthfTAmJLUo6kxNTVGgQAEAgK6u7i83hpRIJBCLxd8djAlNJBLB2dkZAQEBf3zygiJt2rQJYrEYc+bMESwDY7+ybNkyfP36FWPGjFFI+3FxcdiwYQPGjx8PU1NThfTBmNDUoqj75t27dwgPD4ejo+NP33dzc4OxsXHWYW5uruSEjP2cs7Mz3r59i7t37wrSv1gsxqpVqzB06FBYWFgIkoGx3ylbtizc3d3h7e0NX19fube/ZMkS6OnpYerUqXJvmzFVoVKrX+Pi4uDq6vrD64GBgdDR0YGTkxO2b9+OKlWq/PR6iUQCiUSS9d9isRjm5ua8+pUJLj09HSVKlMCkSZMwf/58pfe/aNEiLFu2DC9fvuRHdDGVRUTo0aMHTp8+jQcPHqB06dJyaff169eoWrUqFi1ahBkzZsilTcZUkUoVdb8ilUrh4uKCCRMmoHXr1tm+jrc0Yark77//xrlz57BlyxY4OztDJBIppd+EhASUL18eAwcOxLp165TSJ2O59fnzZ9SsWRM2NjY4ceKEXP6d9O/fH6GhoXj58iUKFiwoh5SMqSa1mH719fXFlStXsHjxYrRs2TLPjzViTAjLli1DjRo10LlzZ7Ro0QLXrl1TSr9r165Feno6pk+frpT+GMuL4sWLY8eOHQgODsaOHTvy3N7Dhw+xb98+zJ07lws6pvHUYqQut3ikjqmiU6dOYerUqbh37x5cXV2xbNkyhewZBwD//PMPLC0tMXLkSKxcuVIhfTCmCEOHDoW3tzfu3buXp9XaXbp0QWRkJJ4+fcqPq2MaTy1G6hjTJA4ODrh9+zZ2796Na9euoXr16hg3bhw+ffok975WrVoFIuKbw5naWbt2LUqUKIEBAwZAKpXmqo0bN27g6NGjWLhwIRd0LF/goo4xAWhra6N///549uwZFi9ejD179qBixYpYtmwZUlNTc92uRCJBeHg4pkyZgpo1a2LFihWYMGECSpQoIcf0jCle4cKFsWfPHly6dCnX94LOmjULNWrUQO/eveWcjjHVxNOvjKmAz58/Y8mSJdiyZQtKliyJxYsXo1+/ftDW1v7jtS9evMDJkydx8uRJnD17FqmpqShdujTatWuHdu3aoUuXLr/c25ExVTdlyhRs2rQJERERqFmzZravO336NOzt7XH06FG4uLgoLiBjKoSLOsZUyMuXLzFr1iz4+vqiVq1aWLlyJdq2bfvdCsDk5GScO3cuq5B7+fIldHV10axZs6xCrlatWkpbXcuYIqWlpcHGxgZ6enq4fv16tqZRiSjrGcTXrl3jfwss3+CijjEVdP36dUydOhUXL15E69atMXnyZDx8+BAnT57ExYsXkZ6ejvLly2cVcXZ2dihcuLDQsRlTiNu3b6NRo0aYPn06lixZ8sfzjx07hs6dOyM8PDxH22Axpu64qGNMRRERTpw4genTp+Px48cwNDSEnZ1dViFXqVIlHoFg+caSJUswf/58XL58OWsU7mekUilq164NU1NThIeHKzEhY8Ljoo4xFZeZmYl79+6hevXqMDAwEDoOY4LIzMxE06ZNkZCQgDt37mQ9D/x/7du3D/369cO1a9fQqFEjJadkTFhc1DHGGFMLT58+Rd26dTF48GBs2rTph/fT09NhZWWF2rVr4+jRowIkZExYvKUJY4wxtVC1alWsWLECmzdvRlhY2A/vb9++HW/evMnWfXeMaSIeqWOMMaY2ZDIZHBwc8OTJEzx48ABFihQBAKSkpKBixYpwcHDA3r17hQ3JmEB4pI4xxpja0NLSgpeXF5KTkzFu3Lis1zdt2oT4+HgsXLhQwHSMCYuLOsYYY2rF3NwcmzZtwr59+3D48GEkJCRgxYoVGDZsGMqXLy90PMYEw9OvjDHG1A4RwdXVFefPn0fnzp1x4MABvHz5EqVLlxY6GmOCUYuRugcPHqBp06awtbVFx44dkZycLHQkxhhjAhKJRNi2bRu0tbWxY8cOjB8/ngs6lu+pxUhdRkYGdHV1AQALFy5EhQoV0Ldv3x/Ok0gkkEgkWf8tFothbm7OI3WMMaahTp48icWLF+PEiRMoWrSo0HEYE5RajNR9K+gAIDU1FVZWVj89z83NDcbGxlmHubm5siIyxhgTQLt27XD58mUu6BiDmozUAUBYWBimTZsGXV1dnDx5EiYmJj+cwyN1jDHGGMuvVKqoi4uLg6ur6w+vBwYGZhVxK1euhEwmw4wZM/7YHi+UYIwxxlh+oSN0gP8yNTXFpUuXfnj9v6NvxsbGSE9PV2YsxhhjjDGVp1JF3a+EhYVh1apV0NLSQokSJbB7926hIzHGGGOMqRSVmn6VN55+ZYwxxlh+odFFHREhKSkJhQsXhkgkEjoOY4wxxpjCaHRRxxhjjDGWX6jFPnWMMcYYY+z3uKhjjDHGGNMAXNQxxhhjjGkALuoYY4wxxjQAF3WMMcYYYxqAizrGGGOMMQ3ARR1jjDHGmAbgoo4xxhhjTANwUccYY4wxpgG4qGOMMcYY0wBc1DHGGGOMaQAu6hhjjDHGNIBGF3VEBLFYDCISOgpjjDHGmEJpdFGXlJQEY2NjJCUlCR2FMcYYY0yhNLqoY4wxxhjLL7ioY4wxxhjTAFzUMcYYY4xpAC7qGGOMMcZyID4+XugIP6V2RZ23tzdKlCghdAzGGGOM5UOnTp1CsWLF0LVrVzx//lzoON9Rq6JOJpPB398f5ubmQkdhjDHGWD7k6ekJCwsL3Lx5E9WrV8fYsWPx6dMnoWMBULOi7uDBg3B1dYWW1s9jSyQSiMXi7w7GGGOMMXn4/PkzAgMDMXHiRDx9+hRLlizB3r17UalSJSxfvhxfv34VNJ/aFHVSqRS+vr7o0aPHL89xc3ODsbFx1sEjeowxxhiTF29vbxARevfuDUNDQ0yfPh0vX75E//79MXfuXFStWhX79u2DTCYTJJ/aFHX79+9H9+7dfzlKBwAzZ85EYmJi1hEVFaXEhIwxxhjTZF5eXnBycvru3v7ixYtj48aNePToERo0aIB+/fqhQYMGOHPmjNLzqU1R9+jRI+zduxft2rXD8+fPMXHixB/O0dfXh5GR0XcHY4wxxlhe3b17F5GRkRgwYMBP369cuTIOHz6MS5cuQVdXF61bt4ajoyMePXqktIwiUsMHo9avXx+3bt3643lisRjGxsZITEzkAo8xxhhjuTZx4kQcPHgQ0dHR0NXV/e25RAR/f3/MmDEDb968weDBg7Fw4UKULl1aoRnVsqjLLi7qGGOMMZZX6enpMDMzQ//+/bF69epsXyeRSLB161YsWrQI6enpmDp1Ktq1a4fixYujePHiMDIygkgkkltOLuoYY4wxxn7j6NGj6NKlC+7fv4+aNWvm+PqEhAQsW7YMGzduRHp6etbrOjo6WQXe744SJUqgdOnSfxzp46KO/VRaWhoMDAyEjsEYY4wJztnZGTExMbh582ae2klISEBUVBQ+f/78x+PTp09IS0vLutbR0RHHjx//bfs6eUrHNMr79+/h4+MDb29v3Lp1C40bN0bPnj3RrVs3lClTRuh4KkEqlaJ169YwMzPDrl27oK+vL3QkxhhjCvThwwcEBQVh48aNeW6raNGiKFq0aLbPT01NzSry9PT0/ni+2qx+ZYrx6dMnbNu2Dba2tjA3N8esWbNgbm6ODRs2oGTJkpg6dSrKli2Lli1bYuvWrSqza7ZQ9uzZg/Pnz+Pw4cNo3749b3DNGGMabv/+/dDW1kbPnj2V3neBAgVgYWGBevXqZWval6df8yGxWIxjx47B29sbYWFhAAB7e3v06tULLi4uMDY2zjr3y5cvOHbsGA4dOoTw8HAAQKtWrdCzZ0907tw5R9841F1SUhKqVKkCOzs7jBw5Ek5OTqhQoQJCQkJQqlQpoeMxxhiTMyKCtbU1qlevDh8fH6Hj/BEXdfnE169fERQUBG9vbwQFBUEikaB58+bo1asXunbtipIlS/6xjc+fP+Pw4cPw8fHBuXPnoKOjg7Zt26JHjx5wdnZG4cKFlfCTCGfu3LlYvXo1njx5gnLlyuH+/fto27YtChQogFOnTqFChQpCR2SMMSZHt27dQoMGDRAcHIz27dsLHeePuKjTYFKpFKGhofD29saxY8eQnJwMGxsb9OrVC927d8/TY9RiY2Ph7++PQ4cO4cqVKzAwMECHDh3Qs2dPODs7Z2vuX51ERUWhSpUqmDRpEpYuXZr1+ps3b+Dg4ACxWIyTJ0+iTp06woVk7H+kpaXh9evXqFatmtBRGFNLo0ePxrFjx/Du3Ttoa2sLHefPSIMlJiYSAEpMTBQ6iiDmzZtHAKhatWq0aNEievbsmUL6efv2La1atYrq169PAKhRo0YUHR2tkL6E0rt3bypVqhSJxeIf3vv48SPVr1+fjIyM6OzZs8oPx9gvjB49mrS0tMjX11foKIypna9fv1LRokVpxowZQkfJNh6p01AZGRkwNzdH165dsXnzZrlubvg7165dg6urK6RSKfz9/dG0aVOl9KtIN27cQKNGjbB9+3YMGTLkp+ckJSWhS5cuuHjxIg4ePIguXbooOSVj3/v8+TMsLCxQrFgxxMXFwd/fH87OzkLHYkxt+Pr6okePHnjy5AmqVq0qdJxs4dWvGiooKAgfPnzA8OHDlVbQAUDjxo0RERGBypUrw87ODtu2bYM6f28gIkyaNAnW1tYYOHDgL88rXLgwgoKC4OLigm7dusHT01OJKRn7kbu7O4B/7wn69nsZEhIicCrG1Mfu3bvRpEkTtSnoAPD0q6ZydHSkBg0aCNa/RCKh0aNHEwAaMmQIpaWlCZYlL3x9fQkAhYWFZet8qVRKY8aMIQC0aNEikslkCk7I2I9SUlKoePHiNHr0aCIiSk9Pp06dOpGBgQGFh4cLnI4x1RcdHU1aWlrk6ekpdJQc4aJOA337Zdy2bZvQUWjXrl2kp6dHjRs3pvfv3wsdJ0e+fv1KlpaW5OjomKPrZDIZLV68mADQ6NGjSSqVKighYz+3ZcsW0tLSopcvX2a9lpaWRu3ataMCBQrQhQsXBEzHmOpzc3MjQ0ND+vLli9BRcoSnXzXQnj17YGBggF69egkdBQMHDsTFixcRFRUFGxsbXLlyRehI2bZx40ZER0dj1apVObpOJBJhzpw58PDwwNatW9GrVy9IJBIFpWTse1KpFGvWrEHXrl2/22ZHX18fR44cQePGjdGhQwdcu3ZNwJSMqS4iwu7du9GlS5fv9m1VB1zUaRiZTIadO3eiW7duKrM4pGHDhoiIiEClSpXQsmVLeHh4CB3pjz5+/IglS5Zg5MiRsLKyylUbw4YNg5+fHwICAtCxY0ckJSXJOSVjPzp27BhevnyJqVOn/vCeoaEhAgMDUadOHbRr1w4RERECJGRMtV27dg1Pnz797X3UqoqLOg1z7tw5vHr16perNIVSqlQpnD59GkOHDsWIESMwbNgwlR69mj9/PrS1tTF//vw8tdOlSxeEhobi5s2bsLOzw8ePH+WUkLEfERFWrVoFW1tbNGjQ4KfnFCxYEEFBQbCysoKDgwPu3r2r5JSMqTYvLy9YWFjAzs5O6Cg5xkWdhtm5cyeqVq2qkluJ6Onpwd3dHTt37sSePXvQsmVLxMTECB3rBw8fPoSnpyfmzZuHYsWK5bk9W1tbnD9/HtHR0bC3t0d6erocUjL2o0uXLuH69es/HaX7LyMjI5w8eRKWlpZo06YNHj16pKSEjKm21NRU+Pj4oH///tDSUr8SSf0Ss19KSEjA4cOHMXjwYKVuY5JTgwYNUun77CZPnowKFSpg9OjRcmuzTp06OHnyJB49eoS1a9fKrV3G/mvVqlWoXr16th5nVKRIEZw6dQqmpqZo3bo1nj17poSEjKm2o0ePQiwWo3///kJHyRUu6jTIgQMHIJVK0a9fP6Gj/FHDhg1x69YtlbvP7uTJkwgNDcWqVavk/qizOnXqYNy4cVi0aBHevn0r17YZe/z4MY4fP44pU6Zke4ShWLFiCA8PR9GiRdGqVSu8evVKwSkZU21eXl5o0aIFKlasKHSUXOEnSmgIIkKdOnVQsWJFHDlyROg42Zaeno4JEyZg69atmDdvHhYuXChYlszMTNSuXRslSpTA2bNnFTLamZSUhGrVqsHGxgYBAQFyb5/lX0OGDEFwcDBev34NfX39HF0bGxuLFi1aIDMzE+fPn4eFhYWCUjKmut6+fYvy5ctj165dGDBggNBxcoVH6jREREQE7t27p3ILJP5ET08PW7ZswcSJE7F+/XqkpaUJlmX79u14/Pgx1q5dq7Dp68KFC2P9+vUIDAxEYGCgQvpg+U9sbCz27duH8ePH57igA4DSpUvjzJkzEIlEaNWqlUre68rYr2zcuBGHDh3Kczt79+5FgQIF4OrqKodUwuCiTkPs3LkTZmZmaNu2rdBRcmXo0KEQi8WCPcboy5cvmDdvHvr374969eoptK+uXbuiXbt2GDt2LFJSUhTaF8sfNm3aBD09PQwfPjzXbZibm+PMmTNIT09H69at8eHDBzkmZEwx3N3dMX78ePTq1Qt9+vSBWCzOVTvf9qbr1q0bChUqJOeUyqM2RV1ERASaN28OW1tbdO/eHRkZGUJHUhmpqak4ePAgBg4cCG1tbaHj5Eq1atVQu3ZtuXzbyo1ly5YhNTUVS5cuVXhfIpEImzdvxsePH7F48WKF98c0W1JSErZu3Yphw4ahSJEieWrL0tISp0+fRmJiIuzt7XlvRabSQkNDMX78eIwfPx4HDhzI2oMxNxtrX7x4Ea9evVLLvem+I+TjLHIiNjaWUlJSiIho5syZ5Ovr+8dr8stjwvbs2UMA6NWrV0JHyZNvj2VJSkpSar8vX74kPT09WrhwoVL7XbRoEeno6NCDBw+U2i/TLOvWrSMdHR169+6d3Np8+PAh6erq0tq1a+XWJmPy9PDhQzIyMqIOHTpQZmYmEf37t7xRo0akra1NS5cuzXo9OwYMGEAVKlRQ++d1q81InampKQoUKAAA0NXVhY6Ozg/nSCQSiMXi7478YMeOHWjdujXKly8vdJQ86dGjB75+/ar0e82mT5+OEiVKYPLkyUrtd9q0aahQoQJGjRoF0tz1SkyBMjIysG7dOvTs2RPm5uZya7d69ero3r07Nm/eDKlUKrd2GZOHT58+wdHRERYWFvD29s6aoapQoQIuXryIGTNmYM6cObC3t0d0dPQf20tOToafnx8GDBig0tuBZYvQVWVOvX37lv766y9KT0//4b358+cTgB8OTR6pe/r0KQEgb29voaPIRePGjcnJyUlp/V28eJEA0N69e5XW53+Fh4cTANq9e7cg/TP1duDAAQJAd+7ckXvb169fJwAUEBAg97YZy620tDRq2rQplSxZkl6/fv3L886ePUtmZmZkYmJCR48e/W2bXl5eJBKJ6O3bt/INKwC1KuoSExOpRYsW9PTp05++n5aWRomJiVlHVFSUxhd106ZNo6JFi9LXr1+FjiIX69evJ11dXYqPj1d4X1KplOrXr082NjYklUoV3t+v9OrVi4oXL07//POPYBmY+pHJZFSnTh1ycHBQWB+NGjWi1q1bK6x9xnJCJpNR3759SV9fn65cufLH8z9//kwuLi4EgIYPH551C9f/atGiBdnb28s7riDUpqjLzMwkR0dHCg8Pz/Y1qnRPXWpqKo0cOZLu3r0rtzbT09OpZMmSNG7cOLm1KbSYmBgSiUS0Y8cOhfe1b98+AkAXLlxQeF+/ExsbS0ZGRjRs2DBBczD1EhYWRgAoLCxMYX0cPHiQAPB9n0wlLF26lADQwYMHs32NTCajbdu2kaGhIVWvXv2Hz+AXL14QANq/f7+84wpCbYq6gwcPkomJCdna2pKtrS0dOnToj9eoUlE3Z84cAkDm5uYUFxcnlzaPHj1KAORaKKoCOzs7hX9rSk1NpbJly1LXrl0V2k92bdq0iQDQ1atXhY7C1ISDgwPVqVNHoTd2SyQSKl26NA0fPlxhfTCWHX5+fgSA5s+fn6vrHz58SLVq1SJ9fX3auHFj1r+buXPnkpGR0S9H8dSN2hR1uaEqRd3jx49JV1eXhg0bRqamptSkSRNKS0vLc7sdO3akBg0ayCGhavHw8CAtLS2KjY1VWB/bt28nkUj0y6l8ZcvMzCQbGxuqXbs2ZWRkCB2Hqbg7d+4obXRh0aJFZGhoyLcHMMHcuHGDDA0NqVevXnn6EvP161caN24cAaCOHTtSXFwcWVhYaNQsCRd1CiaTycjOzo4qVKhAqampdO3aNdLX16cBAwbk6ZczOjqatLS0yMPDQ45pVcPnz59JR0eHNm3apJD2ZTIZVa9enZydnRXSfm7dvHmTRCIRrVu3TugoTMX17duXzM3Nf7pgTN7i4uJIT0+PVq5cqfC+GPtf7969I1NTU2rcuLHc7h0/ceIEFS9enAoXLkwAsnV/nrrgok7B9u/fTwAoJCQk67Vv93KtXr061+0uWbKEChQoIPgopKJ06NCBmjZtqpC2T548SQDo3LlzCmk/L0aNGkWFChWi6OhooaMwFfXu3TvS0dFR6h5y/fv3JwsLCx5FZkqVlJREderUIQsLC7ndtvRNTEwMtWvXjho1aqT2e9P9Fxd1CpSQkEAlS5YkV1fXH96bPn06aWlpUXBwcI7blUqlVKFCBRowYIA8YqqkvXv3EgCFLDFv27Yt1a1bVyX/IX/7nenWrZvQUZiKmjx5MhkbG5NYLFZan7du3SIAdOTIEaX1yfK3zMxM6tSpExUqVIju3bunsH5U8XMgL7ioU6Dfjbp8W81rZGREjx49ylG7p0+fJgB08eJFeUVVOYmJiWRgYCD3KZ+HDx8Kui9ddnwbyT158qTQUZiK+fLlCxUuXJhmzJih9L6bNm1KLVu2VHq/LH+aOnUqaWlp0YkTJ4SOola4qFOQGzdu/PH+qMTERKpRowZVrFgxRzch9+rVi6pWrapx3zD+V9euXalevXpybXPo0KFUunRpkkgkcm1Xnr7dh1mxYkVKTU0VOg5TIStWrCA9PT2KiYlRet8+Pj4audqeydeFCxfI2tqa+vTpQ5s3b6aIiIgc3/u5Y8cOAkDr169XUErNxUWdAmRmZlK9evWoTp06f7wH5eXLl1SsWDFq3bp1tn7x//nnH9LX16dVq1bJK67K8vf3JwByW6H68eNH0tfXp6VLl8qlPUX6tmJ63rx5QkdhKkIikVCZMmVo0KBBgvSfnp5OZmZmNHjwYEH6Z+qhV69eVLp0aWrYsCHp6uoSACpQoAC1aNGCpk+fTkePHv3t/XFnz54lHR0dGjFihMYPXCgCF3UKsHHjRhKJRNnec+zbL/GYMWOy1baOjg59+PAhrzFVXmpqKhUqVIgWLlwol/a+bc3w+fNnubSnaLNmzSI9PT2V2XaFCcvLy4sA5Ph2DXlatmwZGRgY0KdPnwTLwFRXamoqFSxYkJYsWUJE/24hcvnyZVq9ejW5urqSmZlZ1uM7LS0tqVevXrRx40a6ceMGSSQSevbsGRUtWpTs7e2VsrJbE3FRJ2cxMTG5ejrAtm3bCABt27btl+fIZDKytramLl265DWm2ujTpw9ZWVnl+RtbWloalSpVSq02UU1JSSFLS0uyt7fnb6z5nEwmoxo1apCjo6OgOT59+kT6+vrk5uYmaA6mmg4fPvzH2ZV3796Rr68vTZw4kZo0aUJ6enoEgAwMDKho0aJkZWVFCQkJygutYURERNBQYrEYxsbGSExMhJGRkVL67NWrF06fPo0nT57AxMQkR9eOGTMGHh4eCAsLQ8uWLX94/9atW2jQoAGCgoLQoUMHOSVWbcHBwejYsSPu3LmD2rVr57qdPXv2YMCAAXj8+DGsrKzkmFCxgoKC4OjoCG9vb/Ts2VPoOCwP4uPjYW9vj7i4OBQpUiRHR2RkJHr27Inz58+jRYsWgv4cgwcPxqlTp/D69Wvo6OgImoWplh49euDZs2eIjIzM9jUSiQR37tzB1atX8fLlS0ycOBEVKlRQYErNxkWdHIWFhcHBwQG7d+9G//79c3x9RkYG2rdvj8jISNy8efOHX+wRI0bgxIkTePv2LbS1teUVW6Wlp6ejdOnSGDZsGNzc3HLVBhGhbt26MDMzQ1BQkJwTKl6XLl1w9epVvHjxAgULFhQ6DsulMWPGYO/evZg0aRISExORmJiIL1++/PT42Z/lhg0b4tq1axCJRAKk///u3LmDunXrwtfXF926dRM0C1MdKSkpKFmyJObOnYsZM2YIHSff4qJOTtLS0mBtbY0yZcrg7Nmzuf7DGx8fj0aNGkFfXx9XrlzJyp2SkoIyZcpg3LhxWLx4sTyjq7zhw4fj1KlTePXqVa7+fz1z5gxat26NsLAw2NvbKyChYj179gxVq1bF4cOH0aVLF6HjsFy4e/cu6tWrh5UrV2Ly5Mm/PVcmkyE5OfmHQq9u3bowNzdXUuLfs7W1hUwmw8WLF4WOwlSEn58funfvjhcvXqBixYpCx8m/hJv5VTxl3lO3cOFC0tHRoYcPH+a5rUePHpGRkRE5OjpSZmYmERHt3r2bANCrV6/y3L66OXPmTJ4edu/o6Ei1atVS6/vSatSoQX379hU6BssFmUxGzZs3JysrK5XeSicnvt07FRERIXQUpiJcXV3JxsZG6Bj5npawJaVmePHiBZYtW4YpU6agevXqeW6vWrVqOHToEIKDgzF79mwAwM6dO2Fvb4/y5cvnuX1106JFC5QuXRqHDh3K8bXPnj3DiRMnMGHCBMGnrfLC2dkZQUFByMzMFDoKyyFvb29cvHgRGzduhJ6entBx5KJTp06wsLDApk2bhI7CVEBycjKCgoLQvXt3oaMwoatKRVLGSJ1MJiMHBwcqV64cpaSkyLXtNWvWEACaN28eASBvb2+5tq9Oxo8fT6amplkjl9k1atQoKlmypNweBC2UGzduEAA6e/as0FFYDiQlJVGZMmU0csX6t42Q88P2Suz3vL29CQC9fv1a6Cj5Ho/U5ZGfnx9OnTqFTZs2oUCBAnJte+LEiRgwYAAWLVoEExMTuLi4yLV9ddKzZ0/ExcXhwoUL2b4mPj4eu3fvxqhRo2BgYKDAdIpnY2ODMmXKICAgQOgoLAeWLFmC+Ph4rFmzRugocjdkyBBoa2vD09NT6ChMYL6+vmjYsCEsLS2FjpLvcVGXB2KxGBMmTICzszOcnJzk3r5IJMK2bdvg5OSEqVOnqn1hkheNGjWCpaVljqZgPT09IZVKMXLkSAUmUw4tLS106tQJAQEBP10ZyVTPs2fPsHbtWsyYMUMjP+xMTEzQp08fbNmyBRkZGULHYQJJSkpCcHAwT72qCLkVdREREfJqSm3MmzcPiYmJ2Lhxo8L60NfXR2BgYL5fIi4SidCzZ0/4+/sjPT39j+dnZGRg8+bN6N27N0qWLKmEhIrn7OyM169f48GDB0JHYX9ARBg/fjzMzMwwbdo0oeMozLhx4xAbG4vDhw8LHYUJJDAwEBKJhLe3URFyK+o6d+4sr6bUQmRkJDZt2oQFCxbAwsJC6Dj5Qs+ePREfH4/w8PA/nuvn54f3799j4sSJSkimHHZ2dihcuDBPwaqB48eP4+TJk1i3bh0MDQ2FjqMwNWvWRKtWrRT6xZapNl9fXzRp0oQ/B1VEjvap+9XwKhEhJCQEycnJcgsmD4rap04mk+Gvv/5CSkoKbt++DV1dXbm1zX6NiFCjRg3Y2Nhg3759vz2vYcOGKFq0KE6dOqXEhIrXvXt3vH79Gjdv3hQ6CvuFtLQ01KhRA5UqVcLJkyfVetV1dgQEBMDFxQU3btxAgwYNhI7DlCgxMRElS5bEihUrMGHCBKHjMAA5esZLeHg49u3bh0KFCn33OhHl6AZ2dbd9+3Zcv34dFy9e5IJOib5Nwa5atQpfv3795QjIpUuXcOvWLQQHBys5oeI5OzujT58+eP/+PczMzISOw35i9erVePfuHYKCgjS+oAMAR0dHlC9fHhs3bvztly2meQIDA5Geng5XV1eho7D/k6Pp15YtW6JQoUKwtbX97mjZsiXq1q2rqIwq5fXr15gxYwYGDhyIZs2aCR0n3+nZsyeSk5N/W7CtW7cOVlZWaNu2rRKTKUeHDh2gra2NwMBAoaOwn3j37h2WLVuGiRMnqtUzhvNCW1sbY8aMgY+PD+Li4oSOw5TI19cXTZs2RdmyZYWOwv5Pjoq6I0eOwNbW9qfvnTx5Ui6BfmfKlClo3rw5evfuna2b5eUpNTUVCxYsQPXq1VG4cGGsXLlSqf2zf1WpUgX16tWDt7f3T99/9eoVjh07hokTJ0JLS/MWdxctWhS2trZ8X52KmjJlCooUKYK5c+cKHUWpBg0aBF1dXXh4eAgdhSlJQkICQkND0aNHD6GjsP9Qm0+9yMhIxMXF4eLFi6hevTr8/f2V0i8RwcfHB1ZWVnBzc8P48ePx8OFDFC9eXCn9sx/17NkTQUFBEIvFP7y3ceNGmJiYoG/fvgIkUw5nZ2ecOXPmpz8/E86ZM2fg5+eHlStXonDhwkLHUaoiRYqgf//+2Lp1q9K/cDNhBAQEIDMzE127dhU6CvuPXBd1yl7CfvXqVTg4OAAA2rVrhytXrvxwjkQigVgs/u7Ii8jISNja2qJnz56oW7cuHj58iOXLl+e7P9iqpkePHkhLS/thCjIxMRE7d+7EiBEjNHrFobOzMzIyMhASEiJ0FPZ/MjIyMHbsWDRt2hS9e/cWOo4gxowZgw8fPsDX11foKEwJfH190bx5c5QpU0boKOw/cl3U/f3331i3bt1vz5HnJqlfvnzJWsFqbGyM+Pj4H85xc3ODsbFx1mFubp6rvj59+oThw4fDxsYGnz9/RmhoKAICAlCpUqU8/QxMPiwsLNC0adMfpmB37NgBiUSC0aNHC5RMOcqVK4c6derwFKwKcXd3x5MnT7B58+Z8sTjiZ6pXr442bdpgw4YNvEG2houPj0dYWBhPvaqgXBd1gYGBWLBgAcaNG/fDP2CpVIrdu3ejWrVqeQ74TdGiRbNG3r58+QITE5Mfzpk5cyYSExOzjqioqBz1kZGRgfXr16Ny5crw8fHBunXrcPfu3awRQqY6evbsiVOnTuGff/4BAGRmZmLjxo3o1asXSpcuLXA6xXN2dkZwcDDv5K8CPnz4gPnz52P48OGoU6eO0HEENX78eNy6dQuhoaFCR2EKdPToUchkMnTp0kXoKOx/5eXBsXfu3KGyZcuSi4sLpaamkkQioS1btpClpSUVLVqU5s2bl5fmv3P79m3q3bs3EREtWbKEDh48+MdrEhMTCQAlJib+8dzQ0FCqVq0aiUQiGj58OH38+DHPmZnixMXFkZaWFnl4eBARka+vLwGgyMhIYYMpye3btwkAhYWFCR0l3xs4cCCZmJjQ58+fhY4iOKlUSjY2NgSA7OzsKCAggDIzM4WOxeTMwcGB7OzshI7BfiJPRR0RUXR0NFlbW5O1tTWVKVOGSpQoQUuXLiWxWCyPfN+ZPHkyNWvWjP7++2+SSCR/PD87Rd3z58+pU6dOBICaN2+eb4oCTWBvb5/1h6VJkybUsmVLgRMpj0wmIwsLCxozZozQUfK1a9euEQDaunWr0FFURnp6Oh06dIgaN25MAKhixYq0fv36bH25Zqrv06dPpK2tzb/zKipPRd2XL19o0aJFVKxYMTI0NKQCBQrQvXv35JUtz35X1InFYpo+fTrp6emRubk5+fj4kEwmEyAly60dO3aQSCSiI0eOEAAKCAgQOpJSjRkzhszNzfn3ViBSqZTq169PdevW5dGoX7h27Rr16tWLdHR0qHDhwjR+/Hh68eKF0LFYHnh6epKWlhbPZqmoXBd1M2bMIGNjY6pQoQJ5eHhQcnIy9e/fn0qWLEk3btyQZ8Zc+11R161bNzIwMKD58+dTSkqKAOlYXsXHx5Ouri4ZGRlRpUqVSCqVCh1JqcLCwggA3b59W+go+dL27dsJAF2+fFnoKCovKiqKZs6cSSYmJiQSicjZ2ZnOnDnDX0jUUOvWrcne3l7oGOwXcl3UWVlZ0Z49e374hjpnzhwqWLAgHTt2LM/h8up3Rd2zZ8/ozZs3AqRi8uTk5EQAaPPmzUJHUbr09HQyNjam+fPnCx0l34mPj6fixYtT3759hY6iVlJSUsjT05Nq1KhBAMja2pp27dpFX79+FToay4YPHz6QlpYWeXp6Ch2F/UKui7rffcPavn076evr06ZNm3LbvFzkZKEEU0/BwcFUvXp1SkpKEjqKIHr16kV16tQROka+M3bsWCpcuDDFxMQIHUUtyWQyCgsLI0dHRwJAJUqUoLlz59KzZ8/y3Yi7Otm6dStpa2vTp0+fhI7CfkFEpJgNhUJCQtCjRw9Bd70Xi8UwNjZGYmJi1h53jGkSHx8f9OzZE2/evEG5cuWEjpMvXLhwAa1atcKKFSswefJkoeOovWfPnmHTpk3w8vJCSkoKChQogGrVqqFGjRqoUaMGqlevjho1aqBcuXIa+eg/ddKqVSvo6ekp5bGgLHcUVtQBwO3bt1GvXj1FNf9HXNQxTScWi1G8eHGsWbMGY8eOFTqOxgsODoarqysaN26MkydPQk9PT+hIGiMxMRHXrl3Dw4cPs45Hjx4hKSkJAFCwYMHvir1vh4WFRb7d8FmZ4uLiYGZmhu3bt2PQoEFCx2G/oNCiTmhc1LH8oG3btpBKpQgPDxc6ikY7cOAABgwYAEdHR3h7e8PAwEDoSBqPiBAVFfVdofet2EtJSQEAFCpUCHZ2dvDz84O+vr7AiTWXu7s7JkyYgA8fPvx083+mGrioY0zNbd26FWPHjsWnT59QtGhRoeNopM2bN2Ps2LEYOHAgPD09oaOjI3SkfE0mk+Hdu3d4+PAhIiMjMXfuXBw8eBC9evUSOprGsrW1RcGCBREcHCx0FPYbXNQxpubev3+PsmXLYv/+/fn2YfKKQkRYtGgRFixYgMmTJ2PVqlU81aeC7OzsIJPJcP78eaGjaKSYmBiULVsWXl5e6N+/v9Bx2G/wXaeMqTkzMzPUr18fAQEBQkfRKDKZDOPGjcOCBQvg5ubGBZ0KGz58OC5cuIDHjx8LHUUj+fv7Q0dHB87OzkJHYX/ARR1jGsDZ2RkhISGQSCRCR9EIGRkZ6Nu3L9zd3eHh4YEZM2ZwQafCOnfujOLFi8PT01PoKBrJ19cXbdu2RZEiRYSOwv6AizrGNICzszOSk5Nx9uxZoaOovdTUVLi4uMDPzw++vr4YNmyY0JHYH+jr62PQoEHYvXs3vn79KnQcjRIdHY3Lly+je/fuQkdh2cBFHWMaoGbNmihfvjxPwebRly9f4ODggPPnzyMoKAiurq5CR2LZNHToUHz58gV+fn5CR9Eo/v7+0NfX56lXNcFFHWMaQCQSwdnZGYGBgZDJZELHUUuxsbGwtbXF48ePcfr0abRp00boSCwHKlWqhDZt2mDbtm1CR9EoPj4+aNeuHS82VBNc1DGmIZydnRETE4OIiAiho6idV69eoVmzZvj8+TMuXLiARo0aCR2J5cLw4cNx9epV3Lt3T+goGuHt27e4du0aT72qES7qGNMQzZo1g4mJCU/B5tD9+/fRtGlTaGtr4/Lly6hRo4bQkVguderUCaampvDw8BA6ikbw9/eHgYEBnJychI7CsomLOsY0hI6ODjp27MhFXQ5cuXIFLVq0gKmpKS5evAhLS0uhI7E80NXVxeDBg7Fv3z4kJycLHUft+fr6okOHDihcuLDQUVg2cVHHmAZxdnbGgwcP8OrVK6GjqLzz58/D3t4etWrVwrlz51CqVCmhIzE5GDp0KJKTk3Ho0CGho6i1169f48aNGzz1qma4qGNMg7Rt2xb6+vo8WvcHRITJkyejTp06CA0NhbGxsdCRmJyUK1cO7du35ynYPPLz84OhoSE6duwodBSWA1zUMaZBChUqBHt7exw7dkzoKCrtxo0biIiIwOzZs2FoaCh0HCZnw4cPx61bt3jRUC6JxWKsW7cOrq6uKFSokNBxWA5wUceYhnF2dsalS5fw+fNnoaOoLHd3d5QvXx7t2rUTOgpTgA4dOqBs2bI8WpdLCxYsgFgsxtKlS4WOwnKIizrGNIyTkxOICEFBQUJHUUkfP36Ej48PRo4cCW1tbaHjMAXQ0dHBkCFDcPDgQYjFYqHjqJUHDx5g48aNmDdvHszNzYWOw3JILYq6iIgING/eHLa2tujevTsyMjKEjsSYyjI1NUWjRo34vrpf2LlzJ7S0tDBo0CChozAFGjJkCNLS0nDgwAGho6gNIsKYMWNQqVIlTJw4Ueg4LBfUoqgzMzNDaGgozp8/j0qVKvH9Qoz9gbOzM0JDQ/k5mP9DKpVi27Zt6NmzJ4oVKyZ0HKZAZmZmcHR0hIeHB4hI6Dhq4dChQzh//jw2bdoEPT09oeOwXFCLos7U1BQFChQA8O8+RDo6Oj89TyKRQCwWf3cwlh85OzsjNTUVp0+fFjqKSjlx4gTevXuHMWPGCB2FKcHw4cNx9+5dXL9+XegoKi8pKQlTpkxB165d+RF5akwtirpv3r17h/DwcDg6Ov70fTc3NxgbG2cdfD8Ay6+srKxQuXJlnoL9H+7u7mjUqBFsbGyEjsKUwMHBAZaWlrxgIhsWLVqEL1++YO3atUJHYXkgIhUal46Li4Orq+sPrwcGBkJHRwdOTk7Yvn07qlSp8tPrJRIJJBJJ1n+LxWKYm5sjMTGRH0bM8p2pU6di3759iImJgZaWWn1/U4inT5/CysoKe/fuRd++fYWOw5Rk2bJlWLx4MWJiYlC0aFGh46ikR48eoXbt2li4cCFmzZoldByWBypV1P2KVCqFi4sLJkyYgNatW2f7OrFYDGNjYy7qWL506dIlNG/eHGFhYbC3txc6juDGjx+PgwcPIioqCgYGBkLHYUoSFxcHc3NzrFmzBuPGjRM6jsohIrRu3RrR0dG4f/8+9PX1hY7E8kAtvr77+vriypUrWLx4MVq2bAkfHx+hIzGm8po0aQJra2t06NAB8+bNy9eLJpKTk7F7924MGTKEC7p8xtTUFC4uLrxg4hd8fX1x9uxZbNy4kQs6DaAWI3W5xSN1LL/7+vUr3NzcsHz5clhYWGDr1q358iZoDw8PjBo1Cq9evUK5cuWEjsOU7PTp07C3t8eFCxfQvHlzoeOojOTkZFhZWaFBgwY4evSo0HGYHKjFSB1jLHcMDQ2xaNEi3Lt3D+bm5nBwcMDff/+NuLg4oaMpDRHB3d0dTk5OXNDlU3Z2dqhUqRIvmPgfixcvRnx8PNatWyd0FCYnXNQxlg9YWVnhzJkz2Lt3L8LCwmBlZYWtW7dCJpMJHU3hLl26hPv372P06NFCR2EC0dLSwrBhw+Dn58ePz/s/T548wdq1azFr1ixYWloKHYfJCRd1jOUTIpEIffv2xdOnT9GtWzeMGjUKf/31F+7cuSN0NIVyd3dHlSpVcrTIimmeAQMGAAD27NkjbBAVQEQYO3YsypUrhylTpggdh8kRF3WM5TMmJibYvn07Ll26hJSUFNjY2GDSpElITk4WOprcxcbG4vDhwxg1ahRv65LPlShRAl27duUFEwD8/f0RHh6OjRs38sIhDcN/5RjLp5o2bYrbt2/Dzc0N27ZtQ7Vq1TTuEXyenp7Q09ND//79hY7CVMCIESPw/PlznD17VugogklOTsakSZPQqVMndOjQQeg4TM64qGMsH9PV1cW0adOyNh/t3LkznJ2d8fbtW6Gj5VlGRgY8PDzQp08fFClSROg4TAU0b94c1apVw7Zt24SOIpilS5fi8+fPWL9+vdBRmAJwUccYg6WlJY4fP47Dhw8jIiIC1atXx/bt24WOlSfHjh1DbGwsL5BgWUQiEYYPH46jR4/iw4cPQsdRuqdPn2LNmjWYMWMGypcvL3QcpgC8Tx1j7DvfHuzt6emJjRs3YuzYsUJHypWWLVtCJpPhwoULQkdhKiQhIQFlypTB/PnzMWPGDKHjKA0RoV27dnj+/DkePnwIQ0NDoSMxBdAROgBjTLUULlwY27Ztg7GxcdZjldStsHvw4AHOnz+PQ4cOCR2FqZiiRYuie/fu8PT0xLRp0/LNApqjR4/i1KlTCAwM5IJOg+WP32bGWI6IRCKsWLECU6dOxbhx47Bp0yahI+WIu7s7TE1N0blzZ6GjMBU0YsQIvH79GmFhYUJHUYqUlBRMmDABjo6OcHJyEjoOUyAu6hhjP6XMwu727dvo0qULLl26lOe2EhMTsW/fPgwbNgx6enpySMc0TePGjVGrVq18s2Bi2bJl+PjxIzZs2CB0FKZgXNQxxn5J0YUdEWH9+vVo3LgxwsLCYGdnB3d39zztI7Z3716kpaVh2LBhckzKNIlIJMKIESNw/PhxvHv3Tug4CvX8+XOsXr0a06dPR4UKFYSOwxSMizrG2G8pqrD79OkTHB0dMXHiRIwZMwZxcXEYPXo0xowZg4EDB+Lr1685bpOIsGXLFnTu3BlmZmZyyck0U+/evVGiRAnY29vj5cuXQsdRiK9fv2LEiBEoU6ZMvloUkp9xUccY+yN5F3ZnzpxB7dq1cePGDQQFBWHt2rUoWLAg1q9fj3379sHX1xfNmjXL8X55Z86cwZMnT3gbE/ZHxsbGuHz5MkQiEZo0aYIbN24ovM/k5GSlFZAvX77EX3/9hStXrsDT05MXR+QTXNQxxrLlW2E3ZcqUXBd2GRkZmDVrFuzt7VGtWjXcvXv3h13t+/TpgytXriA+Ph42NjY4ffp0ttt3d3dHjRo1YGtrm+NsLP+pUKECrly5gsqVK6Nly5YIDAxUWF83btxA7dq1UaVKFcyePRsSiURhfQUEBMDGxgbJycm4fv062rRpo7C+mIohDZaYmEgAKDExUegojGkMmUxGU6ZMIQC0cePGbF/3+vVraty4MWlra5ObmxtlZmb+9vzPnz+Tg4MDaWlp0cqVK0kmk/32/Ldv35KWlhZt2bIl25kYIyJKTU2lrl27kpaWFrm7u8u1balUSsuXLycdHR1q2LAhzZ49m3R1dalmzZoUEREh174yMjJo2rRpBIA6d+5MX758kWv7TPVxUccYy7GcFnY+Pj5kbGxMlpaWdPXq1Wz3k5mZSTNmzCAA1L17d0pKSvrlubNmzaLChQuTWCzOdvuMfZOZmUkTJkwgADR9+nSSSqV5bjMmJobs7e1JJBLRjBkzKD09nYiI7ty5Q7Vr1yYdHR2aP38+SSSSPPcVGxtLtra2pK2tTatXr/7jlyCmmbioY4zlSnYKu+TkZBoyZEhWUZaQkJCrvvz9/alQoUJUs2ZNev78+Q/vp6WlUYkSJWjMmDG5ap+xb9auXUsikYh69epFaWlpuW4nKCiIihcvTqamphQWFvbD+xKJhObNm0fa2tpUp04dunv3bq77On/+PJmampKpqSmdP38+1+0w9cdFHWMs135X2N29e5esrKzI0NCQduzYkeeRg4cPH1KVKlXI2NiYTpw48d17+/fvJwD06NGjPPXBGBGRn58f6evrU8uWLXP8RSQtLY3Gjx9PAKhjx4708ePH355/69YtqlGjBunq6tKSJUsoIyMj233JZDJauXIlaWtrk62tLcXGxuYoK9M8XNQxxvLkfws7mUxGmzdvJn19fbK2tpZrofXlyxfq1KkTAaAFCxZkTZE1adKEWrVqJbd+GLt48SKZmJhQ9erV6e3bt9m65vHjx1SnTh3S09OjDRs2ZPuLTFpaGs2cOZO0tLSoQYMG2fo38+XLF3JxccmaLs5JMcg0Fxd1jLE8+29h16BBAwJAY8eOpa9fv8q9L6lUSosXLyaRSEROTk505swZAkBHjhyRe18sf3v8+DFZWlpS6dKlKTIy8pfnyWQy2rFjBxUoUICsrKx+e+7vXLt2japWrUr6+vq0cuXKXy4munPnDlWsWJGMjY0pICAgV30xzaRWRd3BgwepePHi2T6fizrGlEcmk9H06dOpZMmSSvmgCQoKoiJFipCWlhaZm5vzSAVTiNjYWLKxsaFChQpRaGjoD+8nJCRQjx49CAANGTKEkpOT89RfamoqTZ48mUQiETVp0oSePn363fteXl5kYGBAderUoRcvXuSpL6Z51Kaok0ql1KVLF6pbt262r+GijjHlU+aqu+fPn1OzZs3Iw8NDaX2y/CcpKYk6dOhAOjo65OXllfX65cuXqVy5cmRsbEy+vr5y7fPSpUtUqVIlMjQ0pPXr11NKSkrWoqPBgwdTamqqXPtjmkFElIeHLCrR/v37oa2tjTVr1uDWrVs/PUcikXy3oaNYLIa5uTkSExNhZGSkrKiMMcY0TGZmJkaNGoXt27djwYIF0NHRwfz589GoUSMcPHgQ5cqVk3ufKSkpmDVrFjZu3AgjIyOkp6fD3d0dgwYNkntfTDOoRVEnlUrRuXNnHDt2DA0bNvxlUbdgwQIsXLjwh9e5qGOMMZZXRIRly5Zhzpw5EIlEmDNnDubNmwcdHR2F9nvu3Dls2rQJc+fORZ06dRTaF1NvKlXUxcXFwdXV9YfXhw4dCm1tbfTp0wf169fnkTrGGGOCCQ4ORpEiRfDXX38JHYWx76hUUfcr06dPR2RkJLS0tHD16lUMGjQI69at++N1YrEYxsbGXNQxxhhjTOOpRVH3X78bqftfXNQxxhhjLL/QEjpATmW3oGOMMcYYy0/UrqhjjDHGGGM/4qKOMcYYY0wDcFHHGGOMMaYB1G6hRE4QEZKSklC4cGGIRCKh4zDGGGOMKYxGF3WMMcYYY/kFT78yxhhjjGkALuoYY4wxxjQAF3WMMcYYYxqAizrGGGOMMQ3ARR1jjDHGmAbgoo4xxhhjTANwUccYY4wxpgG4qGOMMcYY0wBc1DHGGGOMaQAu6hhjjDHGNAAXdYwxxhhjGkCjizoiglgsBj/eljHGGGOaTqOLuqSkJBgbGyMpKUnoKIwxxhhjCqXRRR1jjDHGWH7BRR1jjDHGmAbgoo4xxhhjTANwUccYY4wxpgF0hA7AGGPK9OHDB0RERCAiIgKWlpbo27ev0JEYY0wuuKhjjGmsjx8/IiIiArdu3coq5KKjowEARkZGEIvF+PTpEyZNmiRwUsYYyzsu6hhjGuFbAfftuHXrVlYBV6RIEdSvXx+9e/eGjY0N6tevD0tLS8yePRuTJ0+GsbExBg8eLPBPwBhjecNFHWNMbRERZsyYAW9vb0RFRQH4t4CzsbHB33//jfr168PGxgbly5eHSCT64fqlS5ciMTERw4YNg5GREbp166bsH4ExxuSGizrGmNry8fHBypUrMWrUKNja2sLGxgYVKlT4aQH3MyKRCJs2bYJYLEbv3r1RqFAhtG/fXsGpGWNMMUSkwc/QEovFMDY2RmJiIoyMjISOwxiTo8+fP6NatWqws7ODr69vntrKyMiAq6srwsLCEBoaiubNm8spJWOMKQ9vacIYU0vjx4+HTCbDpk2b8tyWrq4ufHx80LhxYzg6OuL27dtySMgYY8rFRR1jTO2cOHECBw8exPr161GqVCm5tGlgYICAgABUq1YNbdu2xePHj+XSLmOMKQtPvzLG1EpiYiJq1KgBa2trBAUFZfv+ueyKj4+Hra0tEhIScOnSJVhaWsq1fcYYUxQeqWOMqZXp06cjMTER27Ztk3tBBwAmJiY4deoUDAwMYG9vj9jYWLn3wRhjisBFHWNMbZw7dw4eHh5YsWIFLCwsFNZP6dKlER4ejrS0NDg4OCA+Pl5hfTHGmLzw9CtjTC2kpqbC2toaZcqUwblz56ClpfjvpI8fP0aLFi1QoUIFhIeHo3DhwgrvkzHGckvtRuq8vb1RokQJoWMwxpRs/vz5eP/+PXbs2KGUgg4AqlWrhtDQUDx58gQuLi5IS0tTSr9MM508eRKzZ8/GmTNnkJGRIXQcpoHUqqiTyWTw9/eHubm50FEYY0p08+ZNrF27FgsXLkSVKlWU2ne9evVw4sQJXLlyBT169OAPY5ZjCQkJ6N+/P9q3bw93d3e0bt0axYsXR48ePbBv3z58/vxZ6IhMQ6jV9Ov+/fuhra2NNWvW4NatWz+8L5FIIJFIsv5bLBbD3Nycp18ZU2Pp6emwsbGBvr4+rl27Bh0dYR6EExISgk6dOqFHjx7Yu3ev0kYLmXoLDAzEiBEjkJqaivXr16Nfv364e/cuTpw4gRMnTuDGjRsQiURo0qQJOnbsCEdHR9SqVStXi4AyMzPx4sUL3L9/H/fv38e9e/fw9OlT2NvbY+HChTAxMVHAT8hUCqmJzMxMcnJyIqlUSjY2Nj89Z/78+QTghyMxMVHJaRlj8rJgwQLS0dGhO3fuCB2FfHx8SEtLi0aNGkUymUzoOEyFff78mXr37k0AqGPHjhQdHf3T82JjY2nXrl3UpUsXKlSoEAEgc3NzGjlyJAUFBVFqauoP18hkMoqJiaHQ0FBavXo19evXj+rWrUv6+vpZn3umpqbUpk0bGjJkCBUuXJhMTExo8+bNlJGRoegfnQlIbUbq9uzZA21tbfTp0wf169fnkTrG8oEHDx6gXr16mD59OhYvXix0HADAjh07MHToUKxfvx7jx48XOg5TQUePHsXIkSORnp6ODRs2oE+fPtkaeZNIJLhw4QJOnDiB48eP4/Xr1zA0NIS9vT1atGiBqKiorBG4f/75BwBQoEAB1KxZE7Vq1UKtWrVgbW2NWrVqoXjx4lntfvjwAbNnz8auXbtQvXp1bNiwAa1bt1bYz8+EozZF3fTp0xEZGQktLS1cvXoVgwYNwrp16357Da9+ZUx9SaVS/PXXX0hKSkJkZCT09fWFjpRl6tSpWLduHU6dOoVWrVoJHYepiM+fP2Ps2LE4dOgQOnXqhG3btqF06dK5aouI8OTJk6xp2mvXrqF8+fJZxdu3Aq58+fLZvhXg9u3bGD9+PC5dugQXFxesXr0aFStWzFU+pprUpqj7r1+N1P0vLuoYU19r167FlClTcPnyZTRp0kToON/JzMxE+/btERkZiVu3bvFTJxj8/f0xatQoSKVSbNq0Cb169ZLr5thEJJf2iAi+vr6YOnUqPnz4gIkTJ2L27Nm8XY+GUMuiLru4qGNMPb148QLW1tYYNmwY1q9fL3Scn/rnn3/QoEEDGBsb4/LlyyhQoIDQkZgAPn78iDFjxsDPzw9dunSBu7s7TE1NhY71R6mpqVi1ahVWrFgBY2NjuLm5oV+/fnleAERESE9PV6mR9fyEizrGmEohIrRq1Qpv3rzBgwcPULBgQaEj/dK9e/fQpEkTODs748CBAwp5bBlTTd9GvMaMGQMAcHd3R7du3dTud+Ddu3eYPn06Dh06hPr162Pjxo3ZGhknIsTFxeHhw4d48ODBd/+rra2NBw8ewMzMTAk/AfsvXpPPGFMpO3bswLlz57B9+3aVLugAwNraGl5eXvD29saaNWuEjsOU5MOHD+jatSt69uwJOzs7PHz4EN27d1e7gg4ALCws4O3tjQsXLmTdx9qnTx9ER0dnnfPPP//g/Pnz2LJlC0aNGgVbW1sUL14cZcqUQZs2bTBz5kxERESgcuXKmDVrFvT09DBt2jQBf6r8i0fqGGMqIzo6GjVq1ICrqyt27twpdJxsmzlzJlauXImTJ0+iTZs2QsdhCtakSRO8fPkSW7Zsgaurq9Bx5EYqlWL37t2YNWsWkpOT0bBhQzx+/BgfPnwAAOjq6qJq1aqoUaMGatasiZo1a6JGjRqoUKECtLW1s9rZvXs3Bg4ciPPnz6NFixZC/Tj5Ehd1jDGVQETo1KkTIiIi8OjRIxQpUkToSNkmlUrh6OiI69ev49atW6hQoYLQkZiCvHr1ChUrVoSPjw+6d+8udByFSExMxIoVK/Ds2TPUqFEjq4irXLkydHV1/3i9TCZD06ZNkZKSgtu3bwu2YXh+xEUdY0wleHt74++//8bRo0fh4uIidJwcS0hIQIMGDVCgQAFcvXpV5aeOWe6sWrUK8+fPx8ePH1GoUCGh46isiIgINGjQABs2bMDYsWOFjpNvcFHHGBPco0ePYGtri1atWsHHx0foOLn28OFDNGrUCB06dICPj49a3mPFfq9Ro0YoW7YsDh8+LHQUlTdixAgcOnQIT58+RalSpYSOky/wQgnGmKCCg4PRuHFjlCpVCps2bRI6Tp7UqFEDe/fuhZ+fH1asWCF0HCZnb9++xY0bNzTqPjpFWrp0KbS1tTFz5kyho+QbXNQxxgRBRFi9ejUcHR3RsmVLXL16FSVLlhQ6Vp516dIFc+bMwaxZsxASEiJ0HCZHhw8fhr6+Pjp27Ch0FLVQrFgxLFu2DF5eXrh27ZrQcfIFnn5ljCmdRCLB8OHDsWfPHsycORNLlizJ86anqkQmk8HZ2RmXLl3CjRs3ULlyZaEjMTn466+/UKJECQQEBAgdRW1IpVI0bNgQIpEI169f/26VLJM/zfkryhhTC3FxcbCzs8OhQ4ewf/9+LFu2TKMKOgDQ0tLC/v37UbJkSbi4uCApKUnoSCyPoqOjcfXqVZ56zSFtbW1s3rwZERERarVNkbrSrL+kjDGVFhkZiYYNG+LNmze4cOECevfuLXQkhTE2NsaxY8cQFRWF/v37QyaTCR2J5cGRI0egq6sLJycnoaOonSZNmmDAgAGYOXMm/vnnH6HjaDQu6hhjSuHv749mzZqhZMmSuHnzJho2bCh0JIWrVq0a9u/fj6NHj2LZsmVCx2F54O/vDwcHB7XaP1GVLF++HFKpFHPmzBE6ikbjoo4xplAymQwLFy5Et27d4OTkhAsXLuSrZ0J26tQJCxYswLx583DixAmh47BciI2NxaVLl3jqNQ9KlSqFRYsWwcPDA7dv3xY6jsbihRKMMYVJSUnBgAED4O/vj8WLF2P27Nn5cu82mUyGLl264OzZs9i+fTtcXFygp6cndCyWTVu2bMH48ePx4cMHmJiYCB1HbWVmZqJu3booXLgwLl26pHH30qoC/n+UMfaDcePGwcLCAl27dsWKFStw9uxZiMXiHLURFRWF5s2bIyQkBEeOHMGcOXPyZUEH/LtwYu/evahfvz569OgBCwsLzJw5E69evRI6GssGPz8/tG7dmgu6PNLR0cHmzZtx9epV7Nu3T+g4GolH6hhj38nIyECJEiVQu3ZtaGtr4+bNm0hOToZIJEK1atXQsGFDNGjQAA0bNoS1tfVPR5yuXr2Kzp07Q19fH4GBgahdu7YAP4lqun//Pjw9PbFv3z4kJibCwcEBw4YNQ6dOnbL1XE2mXB8+fECZMmXg4eGBIUOGCB1HI/z99984ffo0nj17BmNjY6HjaBQu6hhj37lw4QJsbW1x8+ZN1K9fH1KpFE+fPsWNGzeyjrt37yIzMxN6enqoW7cuGjZsmHVcvXoVw4YNQ8OGDXH48GGN2FBYEVJTU+Hr6wtPT09cvXoVpqamGDRoEIYMGYLy5csLHY/9Hw8PD4wePRpxcXEoXry40HE0wvv371G1alUMHToU69atEzqORuGijjH2nRkzZsDLywuxsbG/vOclLS0Nd+7c+a7Qe/78edb7AwcOxNatW6Gvr6+s2Grt3r17WaN3SUlJcHBwwPDhw+Ho6MijdwJr06YNiAjh4eFCR9EoK1euxKxZsxAZGYlatWoJHUdjqE1RFxERgQkTJkBLSwulSpXCgQMH/vjHjos6xnKudu3aqFOnDvbs2ZOj6xISEnDr1i1kZGSgffv2+fb+ubxISUmBr68vPDw8cP36dZQuXRqDBg3C0KFDUa5cOaHj5TufP3+Gqakp3N3dMXz4cKHjaJT09HRYW1vD1NQUZ8+e5b8XcqI2CyXMzMwQGhqK8+fPo1KlSjh27JjQkRjTONHR0bh37x46dOiQ42uLFi2KNm3aoEOHDvwHOpcKFiyIgQMH4tq1a7hz5w46d+6MTZs2oXz58pg9e7bQ8fKdgIAAEBFcXFyEjqJx9PT0sHHjRpw/fx4+Pj5Cx9EYalPUmZqaokCBAgAAXV1d6Ojo/HCORCKBWCz+7mCMZV9ISAi0tLTQpk0boaPke7Vr14a7uztiYmIwa9YsLFu2DGfOnBE6Vr7i7++PFi1aoFSpUkJH0UgODg7o0qULJk+ejOTkZKHjaAS1Keq+effuHcLDw+Ho6PjDe25ubjA2Ns46zM3NBUjImPoKCQlBkyZNeOsGFVKwYEEsWrQItra2GDx4MH/4KUl8fDzCw8N5w2EFW7t2LeLj47FkyRKho2gEtSrqxGIx+vbtCy8vr5/eTzdz5kwkJiZmHVFRUQKkZEw9paenIywsLFdTr0yxtLS0sGvXLnz69AnTpk0TOk6+EBgYCKlUis6dOwsdRaOVK1cOs2bNwtq1a/H06VOh46g9tVkoIZVK4eLiggkTJqB169bZuoYXSjCWfWfOnEHr1q0RGRmJOnXqCB2H/YS7uzvGjBmD8PDwbP8dZLnj6OiIxMREXLx4UegoGi8tLQ01atRApUqVcPLkSb4nNw/UZqTO19cXV65cweLFi9GyZUu+sZIxOQsJCUHp0qV5o2AVNnLkSNjZ2WHw4MFISkoSOo7GSkxMxKlTp3jqVUkMDAywYcMGnDp1CjNmzEBmZqbQkdSW2ozU5QaP1DGWfTVq1EDjxo2xc+dOoaOw33j9+jVq1aqFPn36YNu2bULH0Uj79+9H3759ERUVhbJlywodJ99Ys2YNpk2bBjs7O3h7e6NEiRJCR1I7ajNSxxhTnDdv3uDRo0d8P50aKF++PFavXg0PDw+EhYUJHUcj+fv7o0mTJlzQKdnkyZMRHh6O+/fvo169erhx44bQkdQOF3WMMYSEhEBHRwf29vZCR2HZMHz4cLRu3RqDBw/mrZvkLCkpCSdPnuSpV4HY2dnh9u3bMDc3R/PmzeHh4QENnlCUOy7qGGMICQlB06ZN+eHaakIkEmHnzp1ISEjA5MmThY6jUYKCgiCRSNC1a1eho+RbZmZmOHfuHIYOHYoRI0Zg0KBB+Pr1q9Cx1AIXdYzlc2lpaTh9+jRPvaqZcuXKYc2aNdixYwdCQ0OFjqMx/Pz80KBBA34sm8D09PSwefNm7N27Fz4+Pvjrr7/w6tUroWOpPC7qGMvnLly4gNTUVLRv317oKCyHhg4dijZt2mDIkCFITEwUOo7aS05ORnBwME+9qpC+ffvi2rVrSEpKQv369RESEiJ0JJXGRR1j+VxISAjKli2LmjVrCh2F5ZBIJMKOHTuQmJiISZMmCR1H7YWEhCAtLY2nXlWMtbU1bt26haZNm6Jjx45YuHAhZDKZ0LFUEhd1jOVzwcHB6NChA2/4qaYsLCywdu1a7Nq1i0cx8sjf3x9169ZFxYoVhY7C/keRIkUQEBCARYsWYeHChXByckJ8fLzQsVROjou6r1+/4v379z+8/vDhQ7kEYowpz8uXL/Hs2TOeelVzgwcPRtu2bTF06FB8+fJF6DhqKTU1FUFBQejWrZvQUdgvaGlpYc6cOQgJCcG1a9dQv359REZGCh1LpeSoqPP390eVKlXQoUMHWFtb4/r161nv9e3bV+7hGGOKFRISAl1dXX7klJoTiUTYvn07kpKSMHHiRKHjqKXQ0FCkpKTw1KsaaNu2LSIiImBiYoK//voLe/bsETqSyshRUbdkyRLcvn0bd+/exa5duzBo0CAcPHgQAHgfGcbUUHBwMFq0aIHChQsLHYXlkbm5OdatW4fdu3cjKChI6Dhqx9/fH9bW1qhSpYrQUVg2WFpa4tKlS+jduzcGDBgAR0dHBAcHQyqVCh1NUDkq6jIyMrIe21G/fn1cuHABHh4eWLRoEd+Pw5ia+fr1K86ePctTrxpk4MCBaN++PYYNG4aEhASh46iNtLQ0HD9+nFe9qhkDAwPs2LEDBw8exPv379GxY0dUqFABS5cuRWxsrNDxBJGjoq5kyZK4d+9e1n8XK1YMYWFhePz48Xevs/8vMzMTYWFhGDhwIEqXLg0vLy+hIzEGADh37hzS0tJ4fzoNIhKJ4OnpiZSUFEyYMEHoOGrj1KlTSEpK4qJOTfXq1Qu3b9/G9evXYW9vj6VLl8LCwgKurq4ICwvLVytlc1TU7du3DyVLlvzuNT09PXh7e+P8+fNyDabOiAjXrl3DuHHjYGZmBgcHB1y+fBm1a9fGkCFD4OfnJ3RExhAcHAxLS0tYWVkJHYXJUdmyZbF+/Xrs3bsXx48fFzqOWvD390f16tVRrVo1oaOwXBKJRGjYsCF27tyJmJgYrFu3Dk+ePIGDgwOqVKmClStX4tOnT0LHVDgRafDNcGKxGMbGxkhMTISRkZHC+3v48CEOHjwIb29vvH79GmXKlEHPnj3Rq1cv2NjYgIjQt29f+Pn5ITAwEO3atVN4JsZ+hohQqVIltG3bFlu2bBE6DpMzIoKTkxMiIiLw8OFDmJiYCB1JZUkkEpQqVQrjx4/HwoULhY7D5IiIcOXKFWzbtg1+fn6QyWTo2rUrRowYgRYtWmjmbWOUS/7+/rm9VGkSExMJACUmJiqsjzdv3tDy5cvJ2tqaAFCRIkVoyJAhdObMGcrMzPzh/PT0dHJyciJDQ0O6ePGiwnIx9jtPnz4lAHT8+HGhozAFiY6OpiJFilDfvn2FjqLSgoKCCADdv39f6ChMgT5//kxr1qyhKlWqEACysrKitWvXUnx8vNDR5CrXRZ2enh6tXbv2t+fIZLLcNi8XiirqPn78SO7u7tS0aVMCQIaGhtSjRw8KCAigtLS0P17/9etXsrOzIyMjI4qIiJBrNsayY926daSvr0/JyclCR2EKtG3bNgJAL1++FDqKyho4cCBVrVpV8M8rphwymYzOnj1LPXr0IF1dXbK0tKSkpCShY8lNrp8oERgYiAULFmDcuHE/bGcilUqxe/dujbk/IT4+HoGBgZgyZQoaNWqE0qVLY9y4cTA2Nsb+/fvx4cMHHDp0CJ06dYK+vv4f2zMwMEBAQACsrKzQtm1bPHnyRAk/BWP/X3BwMFq2bImCBQsKHYUpUL9+/VCkSBFs375d6CgqKSMjA8eOHYOrq6tmTsWxH4hEIrRs2RKHDh3CgwcPEBcXp1nT7nmpCO/cuUNly5YlFxcXSk1NJYlEQlu2bCFLS0sqWrQozZs3T061Z+7kdqQuOjqavL29aeTIkVSzZk0CQACobNmy9Pfff5Onpyd9/Pgxz/n++ecfqlmzJpmZmdHr16/z3B5j2ZGUlER6enq0fv16oaMwJRg3bhyVLFmSJBKJ0FFUTmhoKAGgyMhIoaMwgSxbtoy0tbXp7t27QkeRizwvlHj//n3WlgifP39GRkYGJkyYgLFjx8p9Q9MpU6bg+vXrsLCwgJeXF/T09H57fnYWShARXrx4gYsXL+LChQu4ePEiXr16BQCoWrUqmjdvjhYtWqB58+YoV66c3L/NxcbGolmzZtDS0sLFixdhamoq1/YZ+1/Hjx9Hp06d8OzZM1SuXFnoOEzBHj16hBo1asDHxwfdu3cXOo5KGTp0KM6ePYvnz5/zSF0+lZ6ejjp16sDY2BiXL1+GllauJzBVQp7SJyYmYteuXXj//j2eP3+OL1++4PTp05g1a5bcC7rIyEjExcXh4sWLqF69Ovz9/fPUnp+fH7p3744yZcqgSpUqGDJkCO7duwdHR0f4+/sjLi4OT548wfbt29G3b19YWloq5B996dKlER4ejtTUVDg4OPADipnCBQcHo1KlSlzQ5RPVq1dH8+bNsW3bNqGjqJS3b9/i6NGjPPWaz+np6WHbtm24du0aduzYIXScPMt1UTdz5kyUK1cOu3fvxrJly/Dp0yd069YN9vb2uHnzpjwzAgCuXr0KBwcHAEC7du1w5cqVH86RSCQQi8XfHb9y69YtxMTEYODAgQgODkZCQgJu376NDRs2oGvXrihVqpTcf4ZfKV++PMLCwhATE4MOHTogOTlZaX2z/IWIEBwczE+RyGdGjBiBs2fP4tmzZ0JHERwRYe/evbC2tkaBAgXw/9q797icz/8P4K+O9yKRpoVfNknaoi3ZF7W6I7YcYiOaIrGSMR5fh+b4cPgWMyUbk6/D0IGREhYhZ1rfFaHTdPANDTmug0P33X3f1++PcX8dOsl939d9eD8fj/vx6M7n87leu3alt+tzf65r0qRJvCMRztzd3REYGIg5c+bgzp07vOO8mebet7W3t2cxMTGvLNuxcOFC1rJlS7Z37943uS38imXLlrHk5GTGGGPFxcVszJgxrxyzePFi+effnn8pc0kTRTp37hxr1aoV8/T0ZE+ePOEdh2ih/Px8BoClpqbyjkJUqKamhllYWLBZs2bxjsLVvXv3mI+PDwPAxo0bxyoqKnhHImri7t27rG3bthq/BFCzZ+oKCgoQEBAAAwODF74fFhaGH374Ab6+vvjpp5+aX22+xNzcXD7zVlFRUedimvPmzUNlZaX8VVZWprD2VcHZ2RkpKSlIT0/Hl19+CYlEwjsS0TIHDx6EiYkJhEIh7yhEhQQCAQIDA7F161bU1NTwjsPF4cOH0aNHDxw7dgwJCQmIjY1F69atecciauLtt99GREQE4uLicOLECd5xmq3ZRV1Dn0EICgpCcnIy5s+f39zLv6JPnz44cuQIgL9/OF1dXV85RiAQwMzM7IWXpnF3d0dSUhIOHDiAiRMn6tSedUT5Dh48iH79+sHExIR3FKJikyZNwoMHD5CUlMQ7iko9fvwY06ZNg5eXF3r06IHc3FyMGjWKdyyihgIDA/HJJ5/g66+/hkgk4h2nWZT2mMegQYNw8uRJhV3PyckJVlZWcHNzQ0FBAUaOHKmwa6ubwYMHIz4+HvHx8XWuA0hIc1RVVeHs2bPyp9WJbrGzs0P//v116oGJ8+fPw9nZGZs3b8aaNWuQmpqKjh078o5F1JS+vj7Wr1+PK1euICIignec5uF9/1eZVLFNmDJt2rSJAWALFizgHYVogT179tDuAjouISGBAWB5eXm8oyhVbW0tCwsLY4aGhqxnz56soKCAdySiQebMmcMEAgErLi7mHeW1vfE6deqsKevUqbtVq1Zh9uzZGDp0KD7++GP06NEDPXr0gI2Njcavp0NUKzg4GGfOnKEdTHSYWCyGtbU1fH19sWbNGt5xlOLKlSsYN24cfv/9d8ybNw+LFi1qdE1TQp736NEjODg4oFu3bjh06JBGLXlDRZ0GiI6Oxu7du5Gbm4v79+8DAFq0aAEHBwd5kffsZWlpyTktUUeMMVhbW2P06NGIioriHYdwNH/+fERHR+PmzZto0aIF7zgKwxjD5s2bMWPGDLzzzjuIi4uDi4sL71hEQ6WkpMDb21vjFu2mok6DMMZQXl6O3NzcF14FBQXyJ9osLS3lBV737t3h4eGBLl26cE5OeMvJycGHH36ItLQ0DBgwgHccwlFpaSm6dOmCLVu2IDAwkHcchbhz5w6Cg4Oxf/9+BAUFISoqSuEL4BPdM2LECGRkZODy5csa86Q0FXVaQCqVoqSk5JVi78qVKzAxMcHZs2fh5OTEOybhaMWKFQgPD8f9+/chEAh4xyGceXl5oaKiAv/5z394R3ljly9fhlAoBGMMmzZtwvDhw3lHIlqirKwMH3zwAQIDA7F27VrecZqEijotVlVVBU9PT5SXlyMzMxPt27fnHYlwIhQK0aZNG+zbt493FKIG9u7diy+++AIXLlzARx99xDvOG5kyZQr27duH7Oxsle4ERHTD6tWrMWvWLGRmZqJXr1684zSKPmmvxczMzLBv3z4wxjB8+HA8efKEdyTCQUVFBdLT02kpEyI3dOhQdOjQARs2bOAd5Y2IRCLs3LkTAQEBVNARpZg2bRocHR0REhICqVTKO06jqKjTch06dMD+/fuRn5+PwMBAWsxYB6WlpUEqldJ+r0TO0NAQQUFBiI+PR3V1Ne84zZaSkoK//voLAQEBvKMQLWVoaIgNGzbgwoULiI6O5h2nUVTU6YCePXsiLi4OCQkJWLp0Ke84RMVSU1Ph4OCATp068Y5C1EhQUBAeP36MX375hXeUZouJicHHH3+M999/n3cUosV69+6NkJAQLFiwADdv3uQdp0FU1OmIESNGYPny5fjXv/6l0X+Jk9cjk8mQmppKt17JK6ytrTF48GD8+9//1shda+7cuYPU1FSMHz+edxSiA5YvXw4TExPMmDGDd5QGUVGnQ+bOnYuAgABMmDBBK556I427ePEiysvLqagjdZo8eTIuXLiAc+fO8Y7y2nbu3Ak9PT34+vryjkJ0gLm5OaKiopCQkIBDhw7xjlMvevpVx4hEInh6eqKkpASZmZl0S07LhYeHY+XKlbh//z6MjIx4xyFqRiqVwsbGBgMHDsTmzZt5x3ktzs7O6NSpE5KTk3lHITqCMYYBAwbg6tWryMvLg4mJCe9Ir6CZOh0jEAiQnJwMExMTeHt7a/SHpEnjUlNTMXDgQCroSJ0MDAwQHByMX375BZWVlbzjNFleXh6ys7Pp1itRKT09PURHR+PPP//E8uXLecepExV1Oqhdu3ZISUlBaWkp/P39NeIxbfL6Ll68iIyMDFqMlTRo4sSJEIlEiI+P5x2lyWJjY2FhYUEfKyAq161bN8ydOxfff/89SktLecd5BRV1OsrBwQG7du3CgQMHMHfuXN5xiIIxxjBr1izY2dlhzJgxvOMQNdahQwcMGzYMGzZs0IgHJqRSKeLj4zFmzBgYGxvzjkN00Jw5c2BmZobVq1fzjvIKKup02KBBgxAVFYXIyEj8/PPPvOOo3Pnz5yGRSHjHUIoDBw7g+PHjiIyMpFuvpFGTJ09Gbm4uMjIyeEdp1NGjR3Hr1i1am45w06JFC0ybNg2bN2/GvXv3eMd5ARV1Om769OkICQnB5MmTcerUKd5xVObIkSPo1asXFi5cyDuKwtXW1iI0NBT9+/fHkCFDeMchGmDAgAGwsbHRiB0mYmNj8f7772vElk1Ee02dOhUA1G5BYirqdJyenh7Wrl0Ld3d3jBgxAiUlJbwjKZ1MJsO8efNgamqKiIgIrVveZdOmTSgsLMSqVaugp6fHOw7RAPr6+pg0aRJ27dqFBw8e8I5Tr6qqKiQnJyMgIIDGNuHq7bffxsSJE7F27Vo8fvyYdxw5jSjqzp8/Dzc3NwiFQowePRq1tbW8I2kVIyMj7N69GxYWFvD29kZFRQXvSEqVlJSE7Oxs7Nu3D7169UJgYKDW7ItbWVmJxYsXY/z48Rq/UTtRrQkTJkAmkyE2NpZ3lHolJiaipqYGY8eO5R2FEMycORMPHjxATEwM7yhyGrFOXXl5OczMzNCiRQvMnz8fTk5OGDVqVKPn0Tp1r6eoqAh9+vRBr169cPDgQRgaGvKOpHASiQTdu3dH586dkZqaisuXL+Ojjz7ClClTEBUVxTveG5s7dy7Wrl2LoqIidOzYkXccomF8fX2Rk5ODgoICtZwJ8/DwgJGREdLS0nhHIQQA8OWXXyIrKwtFRUUwMDDgHQca8VvbyspK/rWRkVG9xYZIJIJIJJK/r6qqUno2bWJnZ4fExER89tln+Prrr/Hll19CIpFAIpGgtrZW/vXL75//GgDGjh2LDh06cP6vqVtMTAwKCwvlW6XZ29tj2bJlCA0NxRdffAE3NzfOCZvv6tWr+OGHHzBnzhwq6EizTJ48Gf3798fp06chFAp5x3lBaWkpTp06pdYziUT3hIaGolevXtizZ0+TJpuUTSNm6p65fv06xowZg5MnT9b5RN+SJUvq3LCeZupez6ZNmzBp0qQmHfusyDY0NISRkREeP36M7t27Iz09Xe2WG6ipqUHXrl3h4uKCXbt2yb8vlUohFApRXl6OS5cuoWXLlhxTNp+fnx9OnDiB4uJimJqa8o5DNBBjDPb29nB2dsaOHTt4x3lBWFgYvv/+e9y+fVtjf0aJdhowYAAqKiqQlZXFfYZbrYq68vJy+Pj4vPL9/fv3w9DQEN7e3ti0aRPs7OzqPL+umTpra2sq6prh1q1bEIlE8oLtWdH2/Pu6ppqzsrLg4uKC2bNn47vvvuOQvH5RUVH49ttvUVBQ8MoYKikpgaOjI7766iusXbuWU8Lmy8zMRO/evbF582Z89dVXvOMQDRYVFYW5c+fixo0baNeuHe84AP4uNu3s7ODq6opt27bxjkPICw4fPgwvLy8cP34c/fr14xuGaQCJRMKGDh3Kjh49+lrnVVZWMgCssrJSSclIXZYvX8709PTY8ePHeUeRq6ysZBYWFiw4OLjeY9asWcMAsGPHjqkw2ZuTyWTM1dWVOTo6MolEwjsO0XD37t1jAoGArVy5kncUufT0dI382SS6QSaTMUdHR+bl5cU7CtOIom7Hjh2sbdu2TCgUMqFQyHbu3Nmk86io40MikTChUMg6duzI7t+/zzsOY4yxxYsXM4FAwMrKyuo9RiqVMg8PD/buu+9q1JhJTExkANiRI0d4RyFaYuzYsaxLly5MKpXyjsIYYywkJIRZW1urTR5CXhYfH88AsEuXLnHNoVa3XxWNnn7lp6ysDI6OjvD09MTu3bu5fs7g7t27sLGxQUhICCIjIxs8trS0FI6OjvDz89OIhVjFYjE++OAD2NnZ4eDBg7zjEC2RkZEBFxcXODk5YeHChfj888+hr89nBayamhq0b98eU6ZMwbJly7hkIKQxtbW1sLW1hbu7O+Li4rjl0Ih16ojmsba2xsaNG5GUlIStW7dyzbJ8+XLo6ek1aY/bzp07IzIyEhs3bsThw4dVkO7NrFu3DqWlpYiIiOAdhWiRvn374sSJEzA3N8fIkSPRo0cPbN++ncu2er/++isqKipoWzCi1oyMjDBz5kzs3LkT169f5xeE6zyhktHtV/4mTJjAWrZsyYqKiri0f+3aNWZsbMyWLl3a5HNkMhkbOHAg69ixI/vrr7+UF+4N3b9/n5mbm7OQkBDeUYgWS09PZ4MHD2YAWJcuXdjmzZuZSCRSWftDhgxhvXv3Vll7hDRXdXU1Mzc3ZzNmzOCWgWbqiFKtWbMG7du3h5+fH8RiscrbX7p0KVq3bo0ZM2Y0+Rw9PT38/PPPqK6ufq3zVC0sLAy1tbV1LuNDiKK4uLjgwIEDOH/+PD766CMEBQXB1tYW69atU/pOLLdv38ahQ4cwfvx4pbZDiCKYmppi6tSp2LhxI/766y8uGaioI0plamqKHTt24OLFi1iyZIlK2758+TK2bduGBQsWoFWrVq91rrW1NVavXo1t27YhJSVFSQmbr6SkBOvWrcO8efPwzjvv8I5DdEDPnj2RmJiIvLw8uLu7Y/r06bCxsUFkZCQePnyolDZ37NgBfX19+Pr6KuX6hCjaN998A4lEgvXr13Npnx6UICrx3XffYcGCBTh+/Dg8PDxU0qaPj498+xaBQPDa5zPGMHToUGRnZyM/Px9t27ZVQsrmGTlyJLKyslBYWAgTExPecYgOKikpwYoVKxATEwMzMzPMmDED33zzDdq0aaOwNpycnGBjY4OkpCSFXZMQZZs8eTKSk5Nx7do1vPXWW6ptnNuNXxWgz9Spj2fLnPzf//2fSpY5ycrKYgDYli1b3ug6N27cYG3atGF+fn4KSvbmTp8+zQCwuLg43lEIYdeuXWNTp05lAoGAmZmZsfnz57MHDx688XUvXbrEALB9+/YpICUhqlNUVMT09PTYhg0bVN42zdQRlXm2zMmAAQOQkJCg1GVOPv30U/z555/Iycmpd6/gpoqPj8e4ceOQlJSEESNGKChh88hkMvTp0weMMfz+++/clpkg5GW3bt1CVFQU1q9fD0tLSyQnJ+PDDz9s9vVmz56NmJgY3LhxQ+22HCSkMT4+PsjJycEff/xR5+5LykK/EYjKPFvmJDExUanLnBw/fhxpaWkIDw9/44IOAPz9/TF8+HBMnjwZd+/eVUDC5tu5cyeysrKwatUqKuiIWmnfvj0iIiKQm5uL1q1bo2/fvoiPj2/WtSQSCbZv3w4/Pz8q6IhGCg0NRXFxMfbv36/SdmmmjqjcxIkTkZCQgAsXLqBr164KvTZj7IWZLEXNBt6+fRsODg7o16+f0mcZ6/PkyRPY29ujZ8+eSE5OVnn7hDTVkydPEBISgri4OEyfPh2RkZEwMjJq8vmpqakYPHgwzp07B2dnZyUmJUR5PDw8UFNTg4yMDJX9zqB/6hOVe7bMib+/P2praxV67X379iEzM1O+4LCivPPOO1i3bh0SExORkJCgsOu+jh9//BE3b97E999/z6V9QprKxMQEMTEx+OmnnxAdHQ1PT0+Ul5c3+fzY2Fg4ODigZ8+eSkxJiHKFhobi999/x9mzZ1XWJs3UES6ysrLg4uKC0NBQLF++XCHXlEqlcHR0RPv27XH06FGFXPNlo0ePxrFjx5Cfnw8rKyultFGXO3fuwNbWFhMmTMCPP/6osnYJeVPp6enw8fGBnp4ekpKS0Ldv3waPr6yshJWVFZYuXYpvv/1WRSkJUTyZTAZHR0d07twZv/76q0rapJk6wsXHH3+MpUuXYsWKFTh58qRCrrl9+3YUFBQorEisy7p162BoaAgvLy+VbgWzZMkSGBgYYNGiRSprkxBFcHV1RXZ2NmxsbCAUCrF+/Xo0NJewe/duiMVi+Pv7qzAlIYqnr6+P0NBQpKSkID8/XyVt0kwd4UYqlcLT0xNXrlxBTk4OzM3Nm30tkUiEbt26oWfPntizZ48CU74qJycHw4YNQ01NDZKTkxudeXhTKSkp+Pzzz7Fy5UrMnDlTqW0RoixisRizZs3CTz/9hMDAQERHR9e5xqK7uztMTEw0Yu9lQhojFothY2ODgQMHqmQfdJqpI9wYGBggLi4ODx8+REhISIP/em/Mxo0bUVZWhvDwcAUmrJujoyMyMzPRtWtXeHh4IDY2VintPPsl6O3tjUGDBmHq1KlKaYcQVTA2NsbatWsRGxuLnTt34pNPPsG1a9deOOa///0vzpw5g4CAAE4pCVEsY2NjzJgxA9u3b8eNGzeU36DKV8ZTIVp8WDMkJCQwAOzbb79lR44cYdeuXWNSqbTJ51dXVzNLS0s2fvx45YWsQ01NDZswYYI8u0QiUdi1i4uLmbOzMzMyMmKrV69mMplMYdcmhLfs7Gz23nvvMQsLC3bkyBH595csWcJMTU3Zo0ePOKYjRLEqKytZ69atWWhoqNLboqKOqIWZM2cyY2NjBoABYCYmJszR0ZGNGjWKLVy4kMXFxbHMzMw6/1+Gh4czY2NjVlpaqvLcMpmMrVq1iunr67OhQ4cqZKxt376dmZqaMltbW3bu3DkFpCRE/dy7d4999tlnTF9fn61YsYJJpVJmY2PDJkyYwDsaIQo3d+5c1qpVK1ZRUfFa50kkElZYWMj27NnDDh061Ojx9Jk6ojYkEgmuXbuGwsJC+auoqAiFhYW4efOm/DgrKyt069YNdnZ2sLOzQ1hYGAIDA7k+FXrw4EGMGTMG1tbW2L9/P2xsbF77Go8ePcK0adOwdetW+Pv7Y/369WjVqpUS0hKiHqRSKRYvXoxly5ahb9++yMjIwMmTJyEUCnlHI0Shbt26hffeew9hYWF1PtUtk8lw9epV5OXlIT8/X/66fPkyampqAADe3t6NLmZMRR3RCNXV1fIC7+WCz9jYGIWFhbC0tOSasaCgAMOGDUNFRQX27NkDd3f3Jp976dIl+Pr6oqysDNHR0QgICOCywDEhPOzduxcBAQGwsLDAlStXaLcUopWCgoJw8OBBnD59GkVFRcjPz5cXcX/88QceP34MADAzM4ODg4P81b17dzg4OMDKyqrR3wsaVdT98ssvmD59epO3aqKiTvsxxiAWiyEQCHhHAQDcv38fo0aNwpkzZ7B+/XoEBQU1eDxjDNHR0Zg1axbs7e2xa9cudOvWTUVpCVEf169fh1gshq2tLe8ohCjF5cuX8f7778vft2zZ8oXi7VkB17Fjx2b/o/7NN8ZUEZlMhsTERFhbW/OOQtSInp6e2hR0AGBhYYHDhw9j+vTpCA4ORl5eHiIjI+vcg/bBgwf46quvsHfvXkybNg0rV67EW2+9xSE1Ifx16tSJdwRClMre3h6pqamQSqVwcHBAp06dFD4rrTEzdfHx8TAwMMCqVatw7ty5Oo8RiUQQiUTy91VVVbC2tqaZOsJFdHQ0pk+fDk9PT+zatQtt2rSR/9nZs2fh5+eHhw8fYuvWrRg+fDi/oIQQQrSCRnxwQSqVIiEhAb6+vg0e991336F169byF83qEZ6mTJmCQ4cOITMzE3369EFRURGkUinCw8MhFArx7rvv4uLFi1TQEUIIUQi1mqkrLy+Hj4/PK98PDg6GgYEBxo4di169etFMHdEoxcXF8Pb2xu3bt+Hg4IDffvsNCxcuxKJFi+q8LUsIIYQ0h1oVdfWZM2cOLly4AH19fWRkZGDixIlYvXp1o+fRgxJEXVRUVGDMmDHIyclBfHw8+vXrxzsSIYQQLaMRRd3zGpqpexkVdUSdMMYgk8lgYGDAOwohhBAtpBGfqXteUws6QtSNnp4eFXSEEEKURuOKOkIIIYQQ8ioq6gghhBBCtAAVdYQQQgghWoCKOkIIIYQQLaBxT7++DsYYqqur0apVK9ocnRBCCCFaTauLOkIIIYQQXUG3XwkhhBBCtAAVdYQQQgghWoCKOkIIIYQQLaCzu4k/e4iCEEIIIUQTNPbgp84Wdffu3YOlpSXvGIQQQgghTdLYXvY6W9QZGxsDAMrKyhrsIF1UVVUFa2tr6pt6UP/Uj/qmYdQ/9aO+qR/1TcN0qX9atWrV4J/rbFH3bPrSzMxM6wdBc1HfNIz6p37UNw2j/qkf9U39qG8aRv1DD0oQQgghhGgFKuoIIYQQQrSAzhZ1AoEAixcvhkAg4B1F7VDfNIz6p37UNw2j/qkf9U39qG8aRv3zP7RNGCGEEEKIFtDZmTpCCCGEEG1CRR0hhBBCiBagoo4QQgghRAtQUUcIIYQQogV0tqibPXs23Nzc4O/vD7FYzDuO2rh69SratWsHDw8PeHh44O7du7wjqYXq6mr07t0bpqamyMvLAwDs2rULffv2Rf/+/VFWVsY5IT919U3Xrl3lYygtLY1zQn7Onz8PNzc3CIVCjB49GrW1tTRunqqrb2jc/E9eXh5cXV0hFAoxZMgQPHz4kMbOU3X1DY2dp5gOys7OZv7+/owxxsLDw9n27ds5J1IfpaWlbOTIkbxjqJ3a2lp2584dNn78eJabm8vEYjH7xz/+wUQiETt79iwLDg7mHZGbl/uGMcacnZ05p1IPt27dYo8ePWKMMTZv3jyWkJBA4+apuvqGxs3/iMVi+ddLlixhsbGxNHaeqqtvaOz8TSdn6jIyMvDpp58CALy8vPDbb79xTqRe0tPT4ebmhvnz54PRijcAAENDQ7Rr107+vri4GA4ODjA2Noarqytyc3M5puPr5b4BgIcPH0IoFMLPzw8PHjzglIw/KysrtGjRAgBgZGSEoqIiGjdPvdw3hoaGNG6eY2RkJP/68ePH6NSpE42dp17uG3t7exo7T+lkUVdRUSHfH65169Y6PQBe1r59e5SUlOD06dO4c+cOkpOTeUdSS8+PIQCQSqUc06if9PR0nDp1Cl5eXliyZAnvONxdv34dR48exSeffELj5iXP+mbo0KE0bl6SlpYGJycnnDhxAkZGRjR2nvN833Tp0oXGzlM6WdSZm5ujqqoKwN+/nNu2bcs5kfoQCARo2bIl9PT0MHLkSFy8eJF3JLX0/BgCAAMDA45p1I+FhQUAYNSoUTo/hqqqqjBu3Dhs3boVlpaWNG6e83zfGBkZ0bh5ycCBA3HhwgX4+Pjg1KlTNHae83zfbNy4kcbOUzpZ1PXp0wdHjhwBABw+fBiurq6cE6mP6upq+denT5+Gra0txzTqy9bWFgUFBRCLxUhPT4ejoyPvSGpDLBZDJBIBoDEklUrh7++PRYsWwc7OjsbNc17uGxo3L3rWF8Dfd5RMTU1p7Dz1ct+YmJjQ2HnKkHcAHpycnGBlZQU3Nzd06tQJoaGhvCOpjbNnz2LhwoVo0aIFOnfujLCwMN6R1MbgwYNx8eJFFBYWIiQkBP/85z8hFArx1ltvITY2lnc8rp7vm88//xwJCQlo2bIlBAIBtmzZwjseNwkJCfjtt99QXV2NsLAwfP311zRunqqrb1auXEnj5qm0tDRERERAX18f7dq1w7Zt29CuXTsaO3i1byIiIuDi4kJjB7T3KyGEEEKIVtDJ26+EEEIIIdqGijpCCCGEEC1ARR0hhBBCiBagoo4QQgghRAtQUUcIIYQQogWoqCOEEEII0QJU1BFCCCGEaAEq6gghhBBCtAAVdYQQQgghWoCKOkIIIYQQLfD/kVmKMnjomJAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHXCAYAAADay6wsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACm90lEQVR4nOzddVRU2/s/8PfQGKBYKILYWBiY10AUsUBQsa7d3d0tdqOCgY2EAQqIYHcgdjcIGBdkCBlg5vn9cb/yu34sYmbOzPC81jrrs+7MOXu/+Sxkntn77H1ERERgjDHGGGNqTUvoAIwxxhhjLO+4qGOMMcYY0wBc1DHGGGOMaQAu6hhjjDHGNAAXdYwxxhhjGoCLOsYYY4wxDcBFHWOMMcaYBuCijjHGGGNMA3BRxxhjjDGmAdSmqHvw4AGaNm0KW1tbdOzYEcnJyX+8hoggFovBD81gjDHGmKYTqctjwjIyMqCrqwsAWLhwISpUqIC+ffv+9hqxWAxjY2MkJibCyMhIGTEZY4wxxgShI3SA7PpW0AFAamoqrKysfjhHIpFAIpFk/bdYLFZKNsYYY4wxoanN9CsAhIWFoW7dujh79iwqVqz4w/tubm4wNjbOOszNzQVIyRhjjDGmfGoz/fpfK1euhEwmw4wZM757/Wcjdebm5jz9yhhjjDGNpzbTrxKJBPr6+gAAY2NjpKen/3COvr5+1jmMMcYYY/mJ2ky/hoWFwdbWFnZ2djh9+jQGDx4sdCTGGGOMsWyRyWSYMmUK7ty5o7A+1HL6Nbt49StjjDHGVMH+/fvRt29fNGrUCFevXoVIJJJ7H2ozUscYY4wxpo4kEgnmzJkDKysrXL9+HSdOnFBIP1zUMcYYY4wp0NatWxEVFYWjR4/C1tYWc+bMgUwmk3s/XNQxxhhjjClIYmIilixZgsGDB8PKygpLly7FvXv34O/vL/e+uKhjjDHGGFOQ1atXIzU1FfPnzwcANG3aFO3bt8e8efOQmZkp1764qGOMMcYYU4DY2FisXbsWEyZMgJmZWdbrixcvxtOnT7F//3659serXxljjDHGFGDkyJHw8fHBq1evUKRIke/e69q1K27fvo2nT59CT09PLv3xSB1jjDHGmJw9e/YM27dvx+zZs38o6ABg0aJFePv2LXbs2CG3PnmkjjHGGGNMzrp164br16/j2bNnMDAw+Ok5ffv2xenTp/HixQsUKFAgz33ySB1jjDHGmBxdv34d/v7+WLx48S8LOgBYsGABPn36hC1btsilXx6pY4wxxhiTEyJCq1at8PnzZ9y5cwfa2tq/PX/48OE4fPgwXr16ledahUfqGGOMMcbkJDQ0FOfOnYObm9sfCzoAmDt3LpKTk7F+/fo8980jdYwxxhhjciCTyVC3bl0YGxvj/Pnz2X6+68SJE7Fr1y68fv0aJiYmue6fR+oYY4wxxuTg4MGDuHfvHlasWJHtgg4AZs6cCalUipUrV+apf7Up6iIiItC8eXPY2tqie/fuyMjIEDoSY4wxxhgAQCKRYM6cOejcuTOaNGmSo2tLliyJ8ePHY+PGjYiLi8t1BrUp6szMzBAaGorz58+jUqVKOHbsmNCRGGOMMcYAAFu3bkVUVBSWLVuWq+unTJkCPT29XF8PqFFRZ2pqmrWHi66uLnR0dH44RyKRQCwWf3dogujoaMTExAgdgzHGGGM/kZiYiCVLlmDQoEGwsrLKVRtFixbF1KlT4eHhgXfv3uWqDbUp6r559+4dwsPD4ejo+MN7bm5uMDY2zjrMzc0FSCh/bdu2haWlJUaOHIm3b98KHYcxxhhj/7F69WqkpKRgwYIFeWpn3LhxMDIywuLFi3N1vVoVdWKxGH379oWXlxd0dXV/eH/mzJlITEzMOqKiogRIKV9Pnz7Fo0eP0K1bN/j5+aFy5coYNmwYXr9+LXQ0xhhjTC0REWbOnIkGDRrgxIkTyMtGILGxsVi7di0mTJgAMzOzPOUqXLgwZs6cCS8vLzx//jzH16tNUSeVStG7d2/MmzcPVapU+ek5+vr6MDIy+u5Qd4GBgTA0NMSOHTvw5s0bLF26FMeOHUOVKlUwePBgvHz5UuiIjDHGmNogIkyaNAnLly9HZmYmnJyc0LJlS1y7di1X7S1atAj6+vqYPn26XPKNHDkSpUqVytWon9oUdb6+vrhy5QoWL16Mli1bwsfHR+hIShEYGAgHBwcYGhqiUKFCmDp1Kt68eYOVK1ciODgYVatWxYABA3JV0TPGGGP5CRFh4sSJWL9+Pdzd3XH79m0EBwcjISEBTZo0gaurK54+fZrt9p49e4bt27dj1qxZKFKkiFwyGhoaYu7cufD29saDBw9ydjFpsMTERAJAiYmJQkfJlY8fP5KWlhbt3Lnzp++npqbShg0bqEyZMqSlpUV9+vShx48fKzklY4wxpvpkMhmNHz+eAJC7u/t372VmZtKePXvIwsKCtLW1afjw4RQTE/PHNl1dXcnc3Jy+fv0q16wSiYTKly9PLi4uObqOizoV5uXlRSKRiD58+PDb875+/UqbN2+msmXLkkgkol69etHDhw+VlJIxxhhTbTKZjMaNG0cAaMuWLb887+vXr7R69WoqWrQoFShQgObMmfPLGuL69esEgLy8vBSSec+ePQSAbty4ke1r+DFhKqxLly748OEDLl++nK3zJRIJvLy84ObmhqioKLi6umL69OmoV69ejna2ZowxxjQFEWH8+PHYtGkTtm7dihEjRvzxmi9fvmDFihVYv349ChUqhLlz52L48OHQ19fParNVq1b49OkT7t69m61nvOaUVCpFrVq1YG5ujtDQ0OxdpJDyUkWo80hdamoqFShQgJYvX57jayUSCXl6epKlpSUBoHLlytGYMWPo1KlTJJFIFJCWMcZYfhcbG0vHjx+ngwcPUnp6utBxiOjfEbqxY8cSANq2bVuOr4+KiqLBgweTlpYWlS9fng4cOEBSqZRCQkIIAB0/flwBqf8/Pz8/AkDnz5/P1vk8UpdDycnJuHDhAjp06CCX9n4lKCgIjo6OePToEapVq5arNjIyMnD27FkEBgbi+PHjePfuHQoXLox27drByckJHTp0QLFixeScnDHGmKaLi4tDREQEIiIicOvWLURERHy3SX716tWxZcsW2NraCpaRiDBu3Dhs3rwZHh4eGDZsWK7bevjwIWbNmoXAwEDUrVsXqampKFGiBC5cuKDQmTCZTIb69eujYMGC2etLkRWm0BQxUjdy5EgCQHfv3pVbmz8zbNgwqly5MslkMrm0J5PJ6M6dO7R48WJq0KABASAtLS1q3rw5rVy5kp48eSKXfhhjjGmWuLg4CgoKokWLFlGnTp3IzMyMABAAMjExoTZt2tDMmTPJ39+f3rx5Q5GRkdSkSRMCQL1796bY2FilZ5bJZDR69GgCQB4eHnJr9+LFi9SkSRPS0tKiy5cvy63d3wkKCiIAFBIS8sdzuajLgcjISNLS0iIANGHCBLm0+TNSqZRMTU1p8uTJCusjJiaGPD09ycnJiQwNDQkAVa5cmSZPnkznzp2jjIwMhfXNGGNMtV28eJGcnZ2pbNmyWQVc0aJFyd7enmbMmEF+fn70+vXrXw48SKVS2rlzJxUvXpyMjIxow4YNSvtckclkNGrUKLkXdP9tX5mFqkwmo7/++otat279x3N5+jWbiAgtWrRAfHw8WrduDW9vb7x//x56enpySvv/3bhxA40aNcL58+fRokULubf/v1JTU3H69GkcP34cx48fR1xcHEqWLIlTp06hdu3aCu+fMcaY6iAiVK9eHTKZDC4uLqhfvz5sbGxQvnz5HE81xsfHY9asWfD09ETt2rWxZcsWNGnSREHJ/52uHDNmDLZu3QpPT08MHTpUYX0p04sXL1C8ePE/74Wn4AJTUPIcqdu/fz8BoPDwcLp37x4BoKNHj+Y95E/Mnj2bihUrJshomVQqpRs3blDt2rWpQoUKFB8fr/QMjDHGhHP79m0CQMHBwXJr88aNG2RjY0MAaNCgQfTx40e5tf2NVCqlESNGEADavn273NtXB2rzRAkhJSUlYerUqejatStat26NWrVqwcbGBl5eXgrpLyAgAB07doSOjo5C2v8dLS0tNGjQAEePHkVCQgJ69+4NqVSq9ByMMcaEcfDgQRQvXhz29vZya7NBgwa4fv06tmzZgiNHjqBq1arw8PCQ2+eLTCbD6NGj4eHhgR07dmDIkCFyaVfdcFGXDUuWLMGXL1+wZs2arNcGDBiAoKAgfPjwQa59vXr1Cg8ePECnTp3k2m5OlS9fHt7e3jh58iQWLlwoaBbGGGPKIZPJ4O3tje7du0NXV1eubWtra2PkyJF4+vQpnJ2dMWLECDRu3Bi3bt3KU7symQyjRo3KKugGDx4sp8Tqh++p+4Nnz56hZs2amDNnDubNm5f1enx8PEqXLg03NzdMmjRJXpGxYcMGTJs2Df/88w8KFSokt3Zza9myZZg9ezYCAgIELzQZy49ev36NYcOGoUaNGli/fr3QcZiGO3fuHOzs7HD58mX89ddfCu3r8uXLGDVqFO7fv4/hw4dj6dKlMDExAfDvfX3Jycn48uULEhMT8eXLl18eL168wIULF7Bjxw4MGjRIoZlVHRd1v0FE6NixIx4/foxHjx7B0NDwu/e7d++Ox48f4969e3Lbp6ZVq1YwMDBAcHCwXNrLK5lMhq5du+LMmTO4efMmqlSpInQkxvIFIsL+/fsxevRo6OjoICEhASEhIWjXrp3Q0ZgGGzZsGMLCwvDq1SulPIkoMzMT7u7umDt3LrS1tWFiYpJVyP1qalZPTw9FihTJOoyNjTFo0CD07NlT4XlVHRd1v3H8+HF06tQJR48ehYuLyw/vh4SEoEOHDrh58ybq16+f57wJCQkoUaIENm/enK3HmCiLWCxGw4YNoa2tjevXr6vECCJjmuzLly8YOXIkDh06hD59+mDz5s3o3r07Hj16hIcPH6rlYw+Z6pNIJDA1NcWoUaOwdOlSpfYdGxuLzZs3QyaTfVes/bd4+3YYGBgoNZtaEWyJRg6JxWJq2LAhFSxYkO7fv5+ta/Ky+vXr169UoUIFcnBw+OU+PBkZGVS6dGkaPXp0jtv/mW8rbKOjo+XSnjw9evSIChUqRN26dZPbhsiMsR+dO3eOzM3NydjYmA4ePJj1+tu3b6lQoUI0bNgwAdMxTXbs2DECQA8ePBA6CssltVkoYWhoiBMnTsDV1fWX50gkEojF4u+O3FqzZg3evXuHDRs2/HIIWkdHB/369cPBgweRlpaW676+CQwMRP369WFmZpbntuStWrVq2LNnD/z8/L5bMMIYk4/09HTMnDkTdnZ2KF++PO7evYtevXplvW9hYYFVq1bB09MTp0+fFjAp01QHDhxA7dq1UaNGDaGjsFxSm6JOR0cHJUqU+O05bm5uMDY2zjrMzc1z1VdUVBSWLVuG8ePHw8rK6rfnDhw4EAkJCQgMDMxVX9+kp6cjJCREpRcjdOnSBTNmzMD06dNx5swZoeMwpjGePn2Kv/76C6tXr8ayZctw5swZlCtX7ofzhg0bBjs7OwwZMgTJyckCJGWaSiwW4/jx4/j777+FjsLyQG2KuuyYOXMmEhMTs46oqKhctTN16lQYGRl9t9r1V6pWrYomTZpg9+7duerrm3PnziEpKQnOzs55akfRlixZglatWqFHjx549+6d0HFyjYgQHx8vdAyWzxERPD09Ua9ePSQlJeHq1auYMWMGtLW1f3q+lpYWduzYgY8fP2LmzJlKTss02bFjx5CWlsaLDdScRhV1+vr6MDIy+u7IqXPnzsHHxwcrVqzI9vUDBgxAaGgo3r9/n+P+vgkMDES5cuVQq1atXLehDNra2vD29kbBggXRtWtXuUw7K0NycjLOnDmDpUuXomPHjihevDiKFSuGFStWCB2N5VOfPn1C586dMXz4cPTp0we3b9/O1oKrChUqwM3NDZs3b8aFCxeUkJTlBwcOHECLFi1gYWEhdBSWBxpV1OVVZmYmxo0bhyZNmqBPnz7Zvq5Hjx7Q19fHvn37ctUvESEwMBCdOnVSyhLyvCpevDiOHDmCBw8eYPTo0SAVW0BNRHj58iX279+PUaNGoW7dujA2Nkbr1q2xatUqSKVSjBs3DiNHjsTMmTNx7NgxoSOzfCY0NBTW1ta4dOkSjh07Bg8PDxQsWDDb148ZMwbNmjXDoEGDkJqaqsCkLD/48OEDwsPDeepVEwi6TCOH2rdvT6VLl6bGjRuTl5fXH8/P6erXjRs3kkgkolu3buU4W+/evalKlSq5Whn67Tl74eHhOb5WSLt37yYAtG3bNkFzpKSk0Pnz52n58uXk7OxMJUuWJAAEgKysrGjQoEG0fft2evDgAUml0qzrpFIpde3alQoWLEh37twR8Cdg+cXXr19p/PjxBIAcHBwoJiYm1209ffqUDAwMaNKkSXJMyPKjDRs2kK6uLn3+/FnoKCyP1Kqoy6mcFHUfP36kIkWK0NChQ3PVV3h4OAGgK1eu5PjaBQsWkLGxMaWnp+eqbyGNHj2adHV16erVq4L0f/z4cdLT0yMAVKhQIWrdujXNmTOHgoOD6Z9//vnj9cnJyVS3bl0yNzen2NhYJSRm+dXbt2/J2tqa9PX1af369d99wcitVatWkUgkytXfHca+adSoETk5OQkdg8kBbz78f4YNGwY/Pz88e/bsj6tsf0Ymk6F8+fJo27YtPD09c3StjY0NqlSpAm9v7xz3K7T09HTY2dnhzZs3uH37NkqVKqW0vqVSKWrVqoWSJUtiw4YNqFmz5i9vMP+d6OhoNGjQAJaWljh79ixvbMnkLjIyEh07doSBgQGOHTsGa2trubQrlUrRtGlTJCYmIjIykn93WY69fPkSlSpVwqFDh9CjRw+h47A84nvqANy6dQs7duzA4sWLc1XQAf+uSuvfvz8OHTqUo3tcoqKicPv2bZVf9forenp68PPzg0wmQ/fu3ZGRkaG0vg8fPozHjx9jxYoVqF27dq4KOgAoW7YsAgICcOfOHQwdOlTl7hFk6i0kJAQtWrRA2bJlcfXqVbkVdMC/C5d27dqFV69eYcGCBXJrl+UfBw8eRKFCheDk5CR0FCYPAo8UKlR2pl+lUik1btyYatWqRRkZGXnq7+XLlwSA9u3bl+1r3N3dSUdHhxISEvLUt9AuXrxIOjo6NGHCBKX0J5VKqUaNGtS2bVu5tent7U0AaNmyZXJrk+Vv27dvJ21tbXJycqLk5GSF9bNs2TLS0tKiGzduKKwPpnlkMhlVrVqV+vbtK3QUJif5vqj7drP/uXPn5NKnra0ttW7dOtvnt23bNkfnq7JNmzYRAPL391d4X35+fgSALl++LNd2582bRwDoyJEjcm2X5S8ymYzmzJlDAGjUqFGUmZmp0P7S09OpXr16VLNmTUpLS1NoX0xzREREEAAKCQkROgqTk3xd1CUmJlKpUqWoR48ecuvTy8uLRCIRvXnzJlv5dHV1aePGjXLrX0gymYw6depEZcuWpZSUFIX1I5VKqVatWmRvb6+Qtrt160YFChSg27dvy719pvkkEgn17duXANDKlSuV9qzku3fvkq6uLs2dO1cp/TH1N3nyZCpRokSeZ6mY6sjXRd3kyZOpQIECFBUVJbc+k5KSqGDBgrRw4cI/nuvr60sA6PXr13LrX2gvXrwgPT09mj9/vsL6OHz4MAGgixcvKqT9lJQUsrGxobJly/KKWJYjCQkJZGdnR3p6enTo0CGl979gwQLS0dGhyMhIpffN1EtmZiaVKVOGxowZI3QUJkf5dvXr48ePYW1tjYULF2LWrFly7XfQoEE4d+4cXrx4AS2tX69F6du3L+7du4e7d+/KtX+hzZw5E+vXr8fTp0/lvju5TCZDvXr1UKxYMYU+1Pz9+/do0KABLCwscO7cOV5VyP7o3bt36NChA2JiYhAQEIDmzZsrPUN6ejoaNGgALS0t3LhxA7q6ukrPwNTD2bNn0apVK1y5cgVNmjQROg6Tk3y7+nX+/PkoV64cJk+eLPe2Bw4ciNevX+PixYu/PCcjIwNBQUFqu+r1d2bNmoUiRYpg2rRpcm/7+PHjuHv3LubPny/3tv/LzMwMAQEBuHv3LgYPHswrYtlv3blzB40bN0ZKSgouX74sSEEH/Lsa3cvLC/fv3+dH4LHfOnjwIMqXL4/GjRsLHYXJk8AjhQr1u+nXf/75R2FPEZDJZFSxYkXq37//L885e/YsAaCbN28qJIPQvi1AuXDhgtzalMlkVLduXWrZsqXc2vwTHx8fAkBLly5VWp9MvZw8eZIKFSpENjY2KjNdP2vWLNLV1aX79+8LHYWpoLS0NCpSpAjNnj1b6ChMznI8/frly5esh9eLRCKULl0abdu2RdGiRRVRc+ZJTjYflrclS5bAzc0NcXFxKFy48A/vT5o0CT4+PoiKivrtFK26kslkaNy4MTIzM3Hz5s1c7yH3X8ePH0enTp1w5swZ2NnZySFl9ixcuBALFizA4cOH0aVLF6X1y1Tfzp07MXz4cLRv3x6HDh3K0fNbFUkikaBevXooUKAArl69Ch0dHaEjsRwiIjx//hxhYWE4deoUXr9+DU9PT7mMrB07dgydO3fGo0ePUK1aNTmkZaoiR9XEzp070bBhQ1y7dg0ymQxSqRTXrl1D48aNsXPnTkVlVEv9+vXD169f4e/v/8N7RISAgAB06tRJIws64N/NmDds2IDIyEjs2rUrz+0RERYuXIjmzZujZcuWeQ+YA/PmzUP37t3Rt29fREZGKrVvppqICPPmzcOQIUMwdOhQHD16VGUKOgDQ19fHrl27cPv2baxZs0boOCybPn/+DB8fHwwZMgSWlpaoWrUqJk6ciMTEROjo6KBjx4548uRJnvs5cOAA6tSpwwWdJsrJsF6VKlUoKSnph9fFYjFVrlxZDgOH8pWTZ78qgr29PTVv3vyH1x88eEAAKDg4WIBUytWnTx8qUaJEnjdXPnHiBAGg8PBw+QTLoZSUFKpfvz6VLVs2Tw9hZ+rvv1uWLF++XGlbluTG5MmTydDQkD5+/Ch0FPYTaWlpdPr0aZoxYwbZ2NiQSCQiAFS9enWaMGECBQUFZX3mxsfHU40aNcjCwoKio6Nz3WdiYiLp6+vTypUr5fVjMBWSo6KuatWqP71nJCYmhqpUqSK3UL8yefJkatasGf39998kkUj+eL7QRd2BAwcIAD1//vy715cuXUoFCxakr1+/CpJLmaKjo6lAgQI0adKkXLchk8moQYMG1LRpU0E/QN+/f09lypShhg0bUmpqqmA5mHD+u2XJwYMHhY7zR58/f6YCBQrQvHnzhI7C6N+/Zffv36c1a9ZQu3btqECBAgSASpYsSb1796bdu3f/tmCLjo4mCwsLqlmzJsXHx+cqw+7du0kkEsl1Ky+mOnJU1B0/fpyqVKlCXbp0obFjx9LYsWOpc+fOVKVKFTp+/LiiMhIR0e3bt6l3795ERLRkyRI6cODAH68RuqhLTU0lY2NjmjNnznevN2rUiLp06SJIJiEsWbKEdHR06MmTJ7m6PiQkhADQqVOn5Jws527dukWGhoY0Y8YMoaMwJXv9+jVVq1aNihYtSufPnxc6TraNGzeOTExMFPqYMpY9CxYsIABkYGBADg4OtGrVKrpz5w5JpdJst/H48WMyMTGhZs2a5erLZZs2bcjW1jbH1zH1kOPVr5mZmXTlyhXy9/cnPz8/unLlisIfgUP07zNS9+zZQ0T/frCOHj36h3PS0tIoMTEx64iKihK0qCMiGj58OJmbm2f9fxQbG0sAsn6W/CA1NZUsLS2pQ4cOOb5WJpNR48aNqUmTJiozzTV8+HCqUKGCyuRhinf9+nUqWbIkVahQIddfToTy5s0b0tbWpg0bNggdJV97/fo16evr06RJk/I8S3P16lUyNDQkFxeXHD0NIjY2lrS0tMjT0zNP/TPVpTZbmixdupSOHj1KRETPnz+nXr16/XDO/PnzCcAPh5BF3dWrV78bZfL09CQtLS369OmTYJmE4O/vTwAoKCgoR9eFhoYSADp58qSCkuXct5HDe/fuCR2FKcHRo0fJ0NCQGjdurLb3pvXu3ZssLCwoPT1d6Cj5Vs+ePal06dJyGzENCgoibW1tGjp0aLa/YK5fv550dXXpn3/+kUsGpnpyvfTy8OHDub00V4oWLQqxWAzg321VTExMfjhn5syZSExMzDqioqKUmvFnGjVqBCsrK3h5eQEAAgMD0bRpUxQvXlzgZMrVpUsXtGzZEpMmTUJ6enq2rqH/W/HasGFDODg4KDhh9tnZ2aFw4cIICAgQOgpTICLC+vXr0aVLF3Ts2BFnzpxBiRIlhI6VK9OmTcO7d+/g6+ur0H7S0tJQs2ZNbNq0SaH9qJurV6/i0KFDWLZsmdxWSXfo0AG7du3C9u3bs70Z+8GDB9GhQ4effn4yDZHbalBPT4/Wrl3723PkOT31v/fUZecmZaHvqftmxYoVZGBgQO/fvycDAwNavXq1oHmEcufOHdLS0vrj7803YWFhuRrdU4Zu3bpR/fr1hY7BFCQzM5PGjBlDAGjatGk5uudJVbVv356sra0VetvA8uXLCQBVrVqVb0/4PzKZjBo1akR169ZVyO/RihUrCAC5u7v/9rxnz54RAPLx8ZF7BqY6cl3UnTx5koyMjGjs2LE//OPNzMwkLy8vqlq1ap4D/pe6rX79JiYmhrS0tKh9+/YEgJ49eyZoHiGNGDGCjI2N6cOHD789TyaTUbNmzah+/foq+eHwbWUzryDTPElJSeTo6Eja2trk4eEhdBy5+fYUG0VtpfTx40cyMjKi+vXrEwC6fv26QvpRN97e3gSAzpw5o5D2ZTIZTZw4kUQiEfn5+f3yvIULF1KhQoV45b6Gy9M9dXfu3KGyZcuSi4sLpaamkkQioS1btpClpSUVLVpU8GX0qlLUERF16NCBAJCVlZXQUQT18eNHKlKkCA0bNuy35505c4YAKHxVdW4lJCSQjo7OH78dM/USExND9erVo0KFClFISIjQceRKJpNRw4YNFfaYvVGjRmV9YStTpsxPF7PlN6mpqWRhYUHOzs4K7UcqldLff/9Nenp6Py0eZTIZVa1alfr166fQHEx4eV4oER0dTdbW1mRtbU1lypShEiVK0NKlS0ksFssjX56oUlHn5+dHAGj69OlCRxHc+vXrSSQSUWRk5C/PsbW1JRsbG5UcpfumdevW5ODgIHQMJif37t0jc3NzMjMzU9hzoYX2bcGSvEfRHj16RNra2rRq1SoiIpo2bRqZmJhka0ZFk7m5uZGOjg49ffpU4X1JJBJycHCgwoUL0+3bt79779atWyq34IwpRp6Kui9fvtCiRYuoWLFiZGhoSAUKFFCpFYGqVNSlpaVRnz598vXU6zfp6elUrVo1atGixU+LtnPnzhEACggIECBd9m3atIl0dXXpy5cvQkdheXTq1CkyMjKiOnXq5Gm3flWXmZlJlStXpq5du8q1XUdHR7K0tMzaquPbU3OOHDki137USVxcHBUuXJgmTJigtD7FYjHVr1+fSpUqRS9fvsx6fdKkSVSyZMkcbX/C1FOui7oZM2aQsbExVahQgTw8PCg5OZn69+9PJUuWpBs3bsgzY66pUlHHvnfy5EkCQL6+vj+8Z2dnR3Xq1FHpUToiordv3xIA8vb2FjoKy4MdO3aQjo4OtW/fXiVmGBTN09OTRCKR3EaPTp8+TQDo0KFD371uY2NDLi4uculDHQ0bNoyKFi2q9O1DPnz4QJUrV6ZKlSrRhw8fKDMzk0qXLk1jx45Vag4mjFwXdVZWVrRnz54fNh6eM2cOFSxYkI4dO5bncHnFRZ1qc3JyIgsLi+9u3L1w4YJafcOvW7cu9ezZU+gYLBekUinNmjWLANCIESPyzSjG169fqVSpUjR06NA8t5WZmUl16tShxo0b//AlbMOGDaSrq5vv9uQk+ncqX0tLi9avXy9I/69evSJTU1OysbGhY8eOEQC6du2aIFmYcuW6qPvdKMr27dtJX1+fNm3alNvm5YKLOtX27Nkz0tXVpUWLFmW9Zm9vT9bW1mqzhcTChQvJyMgo3987pIpkMhl9/PiRIiIi6OjRo7RhwwaaPHkyde/enRo3bkympqYEgFatWqXyo8Ly5ubmRnp6ej99lndOeHl5EQC6fPnyD+99/PiRdHR0BP8cUDaZTEZt2rShypUrC/p3ITIykoyMjEhPT48qVqyY737H8ysREZEi9r8LCQlBjx49sjYMFoJYLIaxsTESExNhZGQkWA72a9OmTcPmzZvx9OlTREVFoWnTpvD390fXrl2FjpYtd+/eRZ06dRAaGqpSGyTnJ48fP8bVq1fx7t07REVF4d27d1lHWlpa1nn6+vowNzeHhYVF1tGyZUvY2dkJmF4YX758gYWFBUaPHg03N7dctZGSkoIqVaqgadOmv9zU2NnZGbGxsbhx40Ze4qqVkJAQdOjQAceOHYOzs7OgWc6dO4e2bdtizpw5mDt3rqBZmHIorKgDgNu3b6NevXqKav6PuKhTfWKxGJUrV4a9vT0+f/6MmJgY3L17F1pauX7YiVIREcqXL4+OHTvC3d1d6Dj5zrlz59CuXTtIJBKYmpp+V7D9bwFXokQJiEQioSOrjKlTp2L79u149+5drv4+Llq0CEuXLsXjx49RoUKFn55z+PBhuLq64tGjR6hWrVpeI6u8zMxMWFtbo1SpUjhz5oxK/L7FxcWhRIkS0NbWFjoKUwZBxwkVjKdf1cPOnTuzntP7s4UTqm78+PFkZmbG0xtKduPGDSpUqBC1adNGbs/TzE+io6NJV1c3axuSnIiJiaGCBQvS5MmTf3teWloaFSlShGbMmJHbmGply5YtJBKJfthShDFlUehIndB4pE49yGQyNGrUCBKJBHfu3FGbUbpvzp49i1atWuHmzZuoX7++0HHyhYcPH6JFixaoWrUqwsLC5PY8zfxm0KBBCA0NxatXr6Cvr5/t64YMGYKjR4/ixYsXKFq06G/PHTlyJE6cOIE3b95o9GjRly9fULlyZTg5OWHXrl1Cx2H5lHp9ejKNpKWlhbNnz+L8+fNqV9ABQPPmzVG0aFEEBAQIHSVfePXqFdq0aYOyZcsiKCiIC7o8mDp1KmJiYnDw4MFsX3Pv3j3s2rUL8+fP/2NBBwD9+/dHdHQ0zp07l4ekqm/ZsmVITU3FkiVLhI7C8jEeqWNMDvr27Yu7d+/i3r17QkfRaDExMWjevDm0tLRw6dIllCpVSuhIas/Z2RnPnj3Dw4cP//iliojQtm1bvHnzBg8ePICent4f2yciVK1aFU2aNMGePXvkFVulvHr1CtWqVcPs2bMxb948oeOwfEz9hkUYU0EuLi64f/8+Xr16JXQUjfXPP//AwcEB6enpCA8P54JOTqZPn44nT57gxIkTfzz35MmTCAsLw8qVK7NV0AGASCRCv379cPjwYSQnJ+c1rkqaMWMGSpQogcmTJwsdheVzXNQxJgdt27aFvr4+T8EqSFJSEjp06IAPHz4gLCwM5cqVEzqSxvjrr7/QrFkzrFix4rfnZWZmYsqUKWjRokWOt+ro27cvUlJScOTIkbxEVUmXL1+Gn58f3Nzc+FYAJji1KOqSkpLQqFEjFCpUCA8ePBA6DmM/KFSoEFq3bs1FnQKkpaXB2dkZT548QWhoKKysrISOpHGmTZuGK1eu4NKlS788Z+fOnXj06BHWrFmT4606ypUrh5YtW2Lv3r15japSZDIZJk6cCBsbG/Tu3VvoOIypR1FnaGiIEydOwNXVVegojP2Si4sLLl68iM+fPwsdJc8kEgkyMzOFjoGMjAz06NEDV69exYkTJwTd91KTdezYEdWrV8fKlSt/+r5YLMa8efPQp0+fXK/w7tevH86cOYOoqKi8RFUp3t7euHnzJtauXauWi7yY5lGL30IdHR2UKFHij+dJJBKIxeLvDsaUxcnJCUSEoKAgoaPkCRGhffv2sLGxwZcvXwTLIZPJMGjQIAQHB+PIkSNo3ry5YFk0nZaWFqZOnYrjx4/j4cOHP7y/YsUKiMViLFu2LNd9uLq6wsDAAPv3789LVJWRmpqKGTNmoEuXLmjRooXQcRgDoCZFXXa5ubnB2Ng46zA3Nxc6EstHTE1N0ahRI7Wfgg0LC8PZs2fx7NkzdO7cGRKJROkZiAjjxo3DgQMHcODAAbRv317pGfKbv//+G2XLlsXq1au/ez0qKgpr167FpEmT8vQ3tXDhwujSpQv27t0LTdh0Yd26dfjw4cMf70VkTJlUqqiLi4tDs2bNfjji4+Ozdf3MmTORmJiYdWjSMD9TDy4uLggNDcXXr1+FjpIrRIS5c+eicePGOHXqFK5evYoBAwZAJpMpNcfcuXPh7u4OT09PdO/eXal951d6enqYOHEiDhw4gOjo6KzXZ82aBSMjI8yYMSPPffTr1w9PnjzBrVu38tyWkOLi4uDm5oaxY8eiUqVKQsdh7P8T6EkWudK/f3+6f/9+ts/nx4QxZXv8+DEBoMDAQKGj5MqJEycIAJ06dYqIiPz9/UkkEtGUKVOUlmHVqlUEIFePr2J5IxaLqUiRIjRp0iQiIrp58yYBoG3btsml/czMTCpTpgyNHj1aLu0JITU1lTp37kzFihWjhIQEoeMw9h21Kerat29PpUuXpsaNG5OXl1e2ruGijgmhSpUqNHjwYKFj5JhMJqN69epR8+bNv3uO7YYNGwgAbdiwQeEZPD09CQDNnj1b4X2xn5s1axYVKlSI4uPjqUWLFlS9enXKyMiQW/vTpk0jExMTkkgkcmtTWSIjI6l69epkYGCgls+pZppPbYq63OCijglh2rRpVLJkScrMzBQ6So4cPXqUANDZs2d/eG/KlCkkEonIz89PYf37+PiQSCSi0aNHf1dUMuWKi4sjfX19srOzIwAUHBws1/bv379PAOjo0aNybVeRpFIprVq1inR1dal27dr04MEDoSMx9lNc1DEmZ5cvXyYAdOnSJaGjZJtUKqVatWpRq1atfvl+z549SV9fny5cuCDXvjMzM2n58uWko6NDffr0IalUKtf2Wc4NHz6cAFCbNm0UUmDXq1ePXFxc5N6uIkRFRVGrVq0IAE2ZMoXS0tKEjsTYL3FRx5icZWZmUsmSJWnq1KlCR8k2X1/fPxaiaWlpZGdnR0WKFKGHDx/Kpd/Xr19T8+bNSSQS0fTp0yk9PV0u7bK8efnyJTVq1ChH9zDnxIYNG0hXV5c+ffqkkPblxdfXl4oWLUpmZmZ0+vRpoeMw9kciIg1YW/4LYrEYxsbGSExMhJGRkdBxWD4ydOhQnD9/Hk+fPs3x7vvKJpVKUatWLVhYWODkyZO/PffLly9o3rw5xGIxrl69ijJlyuSqTyLCvn37MGbMGJiYmGDv3r2811c+8vHjR5iZmWH9+vUYPXq00HF+IBaLMW7cOOzZswfdunXDtm3bYGJiInQsxv5IpbY0YUxTODs74/nz53jy5InQUf7Ix8cHjx8/xqJFi/54bpEiRRASEgKZTIb27dvnaoPv+Ph49OjRA/3794eLiwvu3r3LBV0+U7JkSbRv3x579uwROsoPrly5gjp16uDw4cPYvXs3fHx8uKBjaoOLOsYUoHXr1ihQoIDKb0ScmZmJBQsWwNHREQ0bNszWNWXLlkVISAjevn2LLl26ID09Pdv9hYWFoVatWggPD4evry/27t0LY2Pj3MZnaqxfv364efMmHj9+LHQUAP/+W5g/fz6aN28OU1NT3LlzB/3791f5kXbG/ouLOsYUwNDQEG3btlX5ou7AgQN4/vx5tkbp/qtmzZo4duwYLl68iMGDB//xCQFfv37F+PHj4eDggBo1auD+/fvo1q1bXqIzNefk5IQiRYpg3759QkfBixcv0KxZMyxduhTz5s3DhQsXULFiRaFjMZZjXNQxpiAuLi64fv06YmNjhY7yUxkZGVi0aBE6d+6MunXr5vj6li1bYs+ePdi/fz9mzZr1y/MiIyNRv359eHh4YMOGDTh58iTMzMzyEp1pAH19ffTs2RP79u1T+hNLviEi7Nq1C3Xq1MGnT59w6dIlzJ8/Hzo6OoLkYSyvuKhjTEE6duwILS0tHD9+XOgoP7V79268evUKCxcuzHUbPXv2xOrVq7F8+XJs2bLlu/ekUimWL1+ORo0aQU9PDxERERg3bhy0tPjPDvtXv379EB0djbNnzyq9b6lUip49e2Lw4MHo3r077ty5g8aNGys9B2PyxKtfGVOgli1bomDBgggKChI6ynckEgmqVKmCxo0bw8fHJ09tEREmTpyIjRs34siRI3BxccGbN2/Qr18/XLp0CdOmTcOiRYugp6cnp/RMUxARqlatiiZNmih90cTevXvRv39/eHt7o2fPnkrtmzFF4a/MjCmQi4sLTp8+jaSkJKGjfGfnzp2IiorCggUL8tyWSCTC2rVr4erqil69emHBggWwtrbGu3fvcO7cOSxfvpwLOvZTIpEI/fr1w+HDh5GcnKy0ftPT0zF//nx07tyZCzqmUbioY0yBnJ2dIZFIEBoaKnSULGlpaVi6dCn+/vtvVKtWTS5tamlpYe/evWjYsCEWLlyIzp0781YlLFv69OmDlJQUHDlyRGl9enp64t27d1iyZInS+mRMGXj6lTEFs7a2Ru3atVVilR8AbNiwAZMnT8bjx49RuXJlubadnJyMBw8e8L1JLEfs7Oygra2N8PBwhfeVkpKCihUrol27dti9e7fC+2NMmXikjjEFc3FxQVBQEDIyMoSOgtTUVLi5uaFv375yL+gAoFChQlzQsRzr168fzpw5g6ioKIX3tXHjRsTHx8vl1gPGVI1aFHURERFo3rw5bG1t0b17d5X4cGQsu5ydnZGQkICLFy8KHQVbtmzBP//8g7lz5wodhbEsXbt2hYGBAQ4cOKDQfhISErBy5UoMHz4clpaWCu2LMSGoRVFnZmaG0NBQnD9/HpUqVcKxY8eEjsRYttWrVw9ly5YVfCPi5ORkrFixAgMHDkSFChUEzcLYfxkZGcHV1TVrFE1RVq1ahfT0dMyePVthfTAmJLUo6kxNTVGgQAEAgK6u7i83hpRIJBCLxd8djAlNJBLB2dkZAQEBf3zygiJt2rQJYrEYc+bMESwDY7+ybNkyfP36FWPGjFFI+3FxcdiwYQPGjx8PU1NThfTBmNDUoqj75t27dwgPD4ejo+NP33dzc4OxsXHWYW5uruSEjP2cs7Mz3r59i7t37wrSv1gsxqpVqzB06FBYWFgIkoGx3ylbtizc3d3h7e0NX19fube/ZMkS6OnpYerUqXJvmzFVoVKrX+Pi4uDq6vrD64GBgdDR0YGTkxO2b9+OKlWq/PR6iUQCiUSS9d9isRjm5ua8+pUJLj09HSVKlMCkSZMwf/58pfe/aNEiLFu2DC9fvuRHdDGVRUTo0aMHTp8+jQcPHqB06dJyaff169eoWrUqFi1ahBkzZsilTcZUkUoVdb8ilUrh4uKCCRMmoHXr1tm+jrc0Yark77//xrlz57BlyxY4OztDJBIppd+EhASUL18eAwcOxLp165TSJ2O59fnzZ9SsWRM2NjY4ceKEXP6d9O/fH6GhoXj58iUKFiwoh5SMqSa1mH719fXFlStXsHjxYrRs2TLPjzViTAjLli1DjRo10LlzZ7Ro0QLXrl1TSr9r165Feno6pk+frpT+GMuL4sWLY8eOHQgODsaOHTvy3N7Dhw+xb98+zJ07lws6pvHUYqQut3ikjqmiU6dOYerUqbh37x5cXV2xbNkyhewZBwD//PMPLC0tMXLkSKxcuVIhfTCmCEOHDoW3tzfu3buXp9XaXbp0QWRkJJ4+fcqPq2MaTy1G6hjTJA4ODrh9+zZ2796Na9euoXr16hg3bhw+ffok975WrVoFIuKbw5naWbt2LUqUKIEBAwZAKpXmqo0bN27g6NGjWLhwIRd0LF/goo4xAWhra6N///549uwZFi9ejD179qBixYpYtmwZUlNTc92uRCJBeHg4pkyZgpo1a2LFihWYMGECSpQoIcf0jCle4cKFsWfPHly6dCnX94LOmjULNWrUQO/eveWcjjHVxNOvjKmAz58/Y8mSJdiyZQtKliyJxYsXo1+/ftDW1v7jtS9evMDJkydx8uRJnD17FqmpqShdujTatWuHdu3aoUuXLr/c25ExVTdlyhRs2rQJERERqFmzZravO336NOzt7XH06FG4uLgoLiBjKoSLOsZUyMuXLzFr1iz4+vqiVq1aWLlyJdq2bfvdCsDk5GScO3cuq5B7+fIldHV10axZs6xCrlatWkpbXcuYIqWlpcHGxgZ6enq4fv16tqZRiSjrGcTXrl3jfwss3+CijjEVdP36dUydOhUXL15E69atMXnyZDx8+BAnT57ExYsXkZ6ejvLly2cVcXZ2dihcuLDQsRlTiNu3b6NRo0aYPn06lixZ8sfzjx07hs6dOyM8PDxH22Axpu64qGNMRRERTpw4genTp+Px48cwNDSEnZ1dViFXqVIlHoFg+caSJUswf/58XL58OWsU7mekUilq164NU1NThIeHKzEhY8Ljoo4xFZeZmYl79+6hevXqMDAwEDoOY4LIzMxE06ZNkZCQgDt37mQ9D/x/7du3D/369cO1a9fQqFEjJadkTFhc1DHGGFMLT58+Rd26dTF48GBs2rTph/fT09NhZWWF2rVr4+jRowIkZExYvKUJY4wxtVC1alWsWLECmzdvRlhY2A/vb9++HW/evMnWfXeMaSIeqWOMMaY2ZDIZHBwc8OTJEzx48ABFihQBAKSkpKBixYpwcHDA3r17hQ3JmEB4pI4xxpja0NLSgpeXF5KTkzFu3Lis1zdt2oT4+HgsXLhQwHSMCYuLOsYYY2rF3NwcmzZtwr59+3D48GEkJCRgxYoVGDZsGMqXLy90PMYEw9OvjDHG1A4RwdXVFefPn0fnzp1x4MABvHz5EqVLlxY6GmOCUYuRugcPHqBp06awtbVFx44dkZycLHQkxhhjAhKJRNi2bRu0tbWxY8cOjB8/ngs6lu+pxUhdRkYGdHV1AQALFy5EhQoV0Ldv3x/Ok0gkkEgkWf8tFothbm7OI3WMMaahTp48icWLF+PEiRMoWrSo0HEYE5RajNR9K+gAIDU1FVZWVj89z83NDcbGxlmHubm5siIyxhgTQLt27XD58mUu6BiDmozUAUBYWBimTZsGXV1dnDx5EiYmJj+cwyN1jDHGGMuvVKqoi4uLg6ur6w+vBwYGZhVxK1euhEwmw4wZM/7YHi+UYIwxxlh+oSN0gP8yNTXFpUuXfnj9v6NvxsbGSE9PV2YsxhhjjDGVp1JF3a+EhYVh1apV0NLSQokSJbB7926hIzHGGGOMqRSVmn6VN55+ZYwxxlh+odFFHREhKSkJhQsXhkgkEjoOY4wxxpjCaHRRxxhjjDGWX6jFPnWMMcYYY+z3uKhjjDHGGNMAXNQxxhhjjGkALuoYY4wxxjQAF3WMMcYYYxqAizrGGGOMMQ3ARR1jjDHGmAbgoo4xxhhjTANwUccYY4wxpgG4qGOMMcYY0wBc1DHGGGOMaQAu6hhjjDHGNIBGF3VEBLFYDCISOgpjjDHGmEJpdFGXlJQEY2NjJCUlCR2FMcYYY0yhNLqoY4wxxhjLL7ioY4wxxhjTAFzUMcYYY4xpAC7qGGOMMcZyID4+XugIP6V2RZ23tzdKlCghdAzGGGOM5UOnTp1CsWLF0LVrVzx//lzoON9Rq6JOJpPB398f5ubmQkdhjDHGWD7k6ekJCwsL3Lx5E9WrV8fYsWPx6dMnoWMBULOi7uDBg3B1dYWW1s9jSyQSiMXi7w7GGGOMMXn4/PkzAgMDMXHiRDx9+hRLlizB3r17UalSJSxfvhxfv34VNJ/aFHVSqRS+vr7o0aPHL89xc3ODsbFx1sEjeowxxhiTF29vbxARevfuDUNDQ0yfPh0vX75E//79MXfuXFStWhX79u2DTCYTJJ/aFHX79+9H9+7dfzlKBwAzZ85EYmJi1hEVFaXEhIwxxhjTZF5eXnBycvru3v7ixYtj48aNePToERo0aIB+/fqhQYMGOHPmjNLzqU1R9+jRI+zduxft2rXD8+fPMXHixB/O0dfXh5GR0XcHY4wxxlhe3b17F5GRkRgwYMBP369cuTIOHz6MS5cuQVdXF61bt4ajoyMePXqktIwiUsMHo9avXx+3bt3643lisRjGxsZITEzkAo8xxhhjuTZx4kQcPHgQ0dHR0NXV/e25RAR/f3/MmDEDb968weDBg7Fw4UKULl1aoRnVsqjLLi7qGGOMMZZX6enpMDMzQ//+/bF69epsXyeRSLB161YsWrQI6enpmDp1Ktq1a4fixYujePHiMDIygkgkkltOLuoYY4wxxn7j6NGj6NKlC+7fv4+aNWvm+PqEhAQsW7YMGzduRHp6etbrOjo6WQXe744SJUqgdOnSfxzp46KO/VRaWhoMDAyEjsEYY4wJztnZGTExMbh582ae2klISEBUVBQ+f/78x+PTp09IS0vLutbR0RHHjx//bfs6eUrHNMr79+/h4+MDb29v3Lp1C40bN0bPnj3RrVs3lClTRuh4KkEqlaJ169YwMzPDrl27oK+vL3QkxhhjCvThwwcEBQVh48aNeW6raNGiKFq0aLbPT01NzSry9PT0/ni+2qx+ZYrx6dMnbNu2Dba2tjA3N8esWbNgbm6ODRs2oGTJkpg6dSrKli2Lli1bYuvWrSqza7ZQ9uzZg/Pnz+Pw4cNo3749b3DNGGMabv/+/dDW1kbPnj2V3neBAgVgYWGBevXqZWval6df8yGxWIxjx47B29sbYWFhAAB7e3v06tULLi4uMDY2zjr3y5cvOHbsGA4dOoTw8HAAQKtWrdCzZ0907tw5R9841F1SUhKqVKkCOzs7jBw5Ek5OTqhQoQJCQkJQqlQpoeMxxhiTMyKCtbU1qlevDh8fH6Hj/BEXdfnE169fERQUBG9vbwQFBUEikaB58+bo1asXunbtipIlS/6xjc+fP+Pw4cPw8fHBuXPnoKOjg7Zt26JHjx5wdnZG4cKFlfCTCGfu3LlYvXo1njx5gnLlyuH+/fto27YtChQogFOnTqFChQpCR2SMMSZHt27dQoMGDRAcHIz27dsLHeePuKjTYFKpFKGhofD29saxY8eQnJwMGxsb9OrVC927d8/TY9RiY2Ph7++PQ4cO4cqVKzAwMECHDh3Qs2dPODs7Z2vuX51ERUWhSpUqmDRpEpYuXZr1+ps3b+Dg4ACxWIyTJ0+iTp06woVk7H+kpaXh9evXqFatmtBRGFNLo0ePxrFjx/Du3Ttoa2sLHefPSIMlJiYSAEpMTBQ6iiDmzZtHAKhatWq0aNEievbsmUL6efv2La1atYrq169PAKhRo0YUHR2tkL6E0rt3bypVqhSJxeIf3vv48SPVr1+fjIyM6OzZs8oPx9gvjB49mrS0tMjX11foKIypna9fv1LRokVpxowZQkfJNh6p01AZGRkwNzdH165dsXnzZrlubvg7165dg6urK6RSKfz9/dG0aVOl9KtIN27cQKNGjbB9+3YMGTLkp+ckJSWhS5cuuHjxIg4ePIguXbooOSVj3/v8+TMsLCxQrFgxxMXFwd/fH87OzkLHYkxt+Pr6okePHnjy5AmqVq0qdJxs4dWvGiooKAgfPnzA8OHDlVbQAUDjxo0RERGBypUrw87ODtu2bYM6f28gIkyaNAnW1tYYOHDgL88rXLgwgoKC4OLigm7dusHT01OJKRn7kbu7O4B/7wn69nsZEhIicCrG1Mfu3bvRpEkTtSnoAPD0q6ZydHSkBg0aCNa/RCKh0aNHEwAaMmQIpaWlCZYlL3x9fQkAhYWFZet8qVRKY8aMIQC0aNEikslkCk7I2I9SUlKoePHiNHr0aCIiSk9Pp06dOpGBgQGFh4cLnI4x1RcdHU1aWlrk6ekpdJQc4aJOA337Zdy2bZvQUWjXrl2kp6dHjRs3pvfv3wsdJ0e+fv1KlpaW5OjomKPrZDIZLV68mADQ6NGjSSqVKighYz+3ZcsW0tLSopcvX2a9lpaWRu3ataMCBQrQhQsXBEzHmOpzc3MjQ0ND+vLli9BRcoSnXzXQnj17YGBggF69egkdBQMHDsTFixcRFRUFGxsbXLlyRehI2bZx40ZER0dj1apVObpOJBJhzpw58PDwwNatW9GrVy9IJBIFpWTse1KpFGvWrEHXrl2/22ZHX18fR44cQePGjdGhQwdcu3ZNwJSMqS4iwu7du9GlS5fv9m1VB1zUaRiZTIadO3eiW7duKrM4pGHDhoiIiEClSpXQsmVLeHh4CB3pjz5+/IglS5Zg5MiRsLKyylUbw4YNg5+fHwICAtCxY0ckJSXJOSVjPzp27BhevnyJqVOn/vCeoaEhAgMDUadOHbRr1w4RERECJGRMtV27dg1Pnz797X3UqoqLOg1z7tw5vHr16perNIVSqlQpnD59GkOHDsWIESMwbNgwlR69mj9/PrS1tTF//vw8tdOlSxeEhobi5s2bsLOzw8ePH+WUkLEfERFWrVoFW1tbNGjQ4KfnFCxYEEFBQbCysoKDgwPu3r2r5JSMqTYvLy9YWFjAzs5O6Cg5xkWdhtm5cyeqVq2qkluJ6Onpwd3dHTt37sSePXvQsmVLxMTECB3rBw8fPoSnpyfmzZuHYsWK5bk9W1tbnD9/HtHR0bC3t0d6erocUjL2o0uXLuH69es/HaX7LyMjI5w8eRKWlpZo06YNHj16pKSEjKm21NRU+Pj4oH///tDSUr8SSf0Ss19KSEjA4cOHMXjwYKVuY5JTgwYNUun77CZPnowKFSpg9OjRcmuzTp06OHnyJB49eoS1a9fKrV3G/mvVqlWoXr16th5nVKRIEZw6dQqmpqZo3bo1nj17poSEjKm2o0ePQiwWo3///kJHyRUu6jTIgQMHIJVK0a9fP6Gj/FHDhg1x69YtlbvP7uTJkwgNDcWqVavk/qizOnXqYNy4cVi0aBHevn0r17YZe/z4MY4fP44pU6Zke4ShWLFiCA8PR9GiRdGqVSu8evVKwSkZU21eXl5o0aIFKlasKHSUXOEnSmgIIkKdOnVQsWJFHDlyROg42Zaeno4JEyZg69atmDdvHhYuXChYlszMTNSuXRslSpTA2bNnFTLamZSUhGrVqsHGxgYBAQFyb5/lX0OGDEFwcDBev34NfX39HF0bGxuLFi1aIDMzE+fPn4eFhYWCUjKmut6+fYvy5ctj165dGDBggNBxcoVH6jREREQE7t27p3ILJP5ET08PW7ZswcSJE7F+/XqkpaUJlmX79u14/Pgx1q5dq7Dp68KFC2P9+vUIDAxEYGCgQvpg+U9sbCz27duH8ePH57igA4DSpUvjzJkzEIlEaNWqlUre68rYr2zcuBGHDh3Kczt79+5FgQIF4OrqKodUwuCiTkPs3LkTZmZmaNu2rdBRcmXo0KEQi8WCPcboy5cvmDdvHvr374969eoptK+uXbuiXbt2GDt2LFJSUhTaF8sfNm3aBD09PQwfPjzXbZibm+PMmTNIT09H69at8eHDBzkmZEwx3N3dMX78ePTq1Qt9+vSBWCzOVTvf9qbr1q0bChUqJOeUyqM2RV1ERASaN28OW1tbdO/eHRkZGUJHUhmpqak4ePAgBg4cCG1tbaHj5Eq1atVQu3ZtuXzbyo1ly5YhNTUVS5cuVXhfIpEImzdvxsePH7F48WKF98c0W1JSErZu3Yphw4ahSJEieWrL0tISp0+fRmJiIuzt7XlvRabSQkNDMX78eIwfPx4HDhzI2oMxNxtrX7x4Ea9evVLLvem+I+TjLHIiNjaWUlJSiIho5syZ5Ovr+8dr8stjwvbs2UMA6NWrV0JHyZNvj2VJSkpSar8vX74kPT09WrhwoVL7XbRoEeno6NCDBw+U2i/TLOvWrSMdHR169+6d3Np8+PAh6erq0tq1a+XWJmPy9PDhQzIyMqIOHTpQZmYmEf37t7xRo0akra1NS5cuzXo9OwYMGEAVKlRQ++d1q81InampKQoUKAAA0NXVhY6Ozg/nSCQSiMXi7478YMeOHWjdujXKly8vdJQ86dGjB75+/ar0e82mT5+OEiVKYPLkyUrtd9q0aahQoQJGjRoF0tz1SkyBMjIysG7dOvTs2RPm5uZya7d69ero3r07Nm/eDKlUKrd2GZOHT58+wdHRERYWFvD29s6aoapQoQIuXryIGTNmYM6cObC3t0d0dPQf20tOToafnx8GDBig0tuBZYvQVWVOvX37lv766y9KT0//4b358+cTgB8OTR6pe/r0KQEgb29voaPIRePGjcnJyUlp/V28eJEA0N69e5XW53+Fh4cTANq9e7cg/TP1duDAAQJAd+7ckXvb169fJwAUEBAg97YZy620tDRq2rQplSxZkl6/fv3L886ePUtmZmZkYmJCR48e/W2bXl5eJBKJ6O3bt/INKwC1KuoSExOpRYsW9PTp05++n5aWRomJiVlHVFSUxhd106ZNo6JFi9LXr1+FjiIX69evJ11dXYqPj1d4X1KplOrXr082NjYklUoV3t+v9OrVi4oXL07//POPYBmY+pHJZFSnTh1ycHBQWB+NGjWi1q1bK6x9xnJCJpNR3759SV9fn65cufLH8z9//kwuLi4EgIYPH551C9f/atGiBdnb28s7riDUpqjLzMwkR0dHCg8Pz/Y1qnRPXWpqKo0cOZLu3r0rtzbT09OpZMmSNG7cOLm1KbSYmBgSiUS0Y8cOhfe1b98+AkAXLlxQeF+/ExsbS0ZGRjRs2DBBczD1EhYWRgAoLCxMYX0cPHiQAPB9n0wlLF26lADQwYMHs32NTCajbdu2kaGhIVWvXv2Hz+AXL14QANq/f7+84wpCbYq6gwcPkomJCdna2pKtrS0dOnToj9eoUlE3Z84cAkDm5uYUFxcnlzaPHj1KAORaKKoCOzs7hX9rSk1NpbJly1LXrl0V2k92bdq0iQDQ1atXhY7C1ISDgwPVqVNHoTd2SyQSKl26NA0fPlxhfTCWHX5+fgSA5s+fn6vrHz58SLVq1SJ9fX3auHFj1r+buXPnkpGR0S9H8dSN2hR1uaEqRd3jx49JV1eXhg0bRqamptSkSRNKS0vLc7sdO3akBg0ayCGhavHw8CAtLS2KjY1VWB/bt28nkUj0y6l8ZcvMzCQbGxuqXbs2ZWRkCB2Hqbg7d+4obXRh0aJFZGhoyLcHMMHcuHGDDA0NqVevXnn6EvP161caN24cAaCOHTtSXFwcWVhYaNQsCRd1CiaTycjOzo4qVKhAqampdO3aNdLX16cBAwbk6ZczOjqatLS0yMPDQ45pVcPnz59JR0eHNm3apJD2ZTIZVa9enZydnRXSfm7dvHmTRCIRrVu3TugoTMX17duXzM3Nf7pgTN7i4uJIT0+PVq5cqfC+GPtf7969I1NTU2rcuLHc7h0/ceIEFS9enAoXLkwAsnV/nrrgok7B9u/fTwAoJCQk67Vv93KtXr061+0uWbKEChQoIPgopKJ06NCBmjZtqpC2T548SQDo3LlzCmk/L0aNGkWFChWi6OhooaMwFfXu3TvS0dFR6h5y/fv3JwsLCx5FZkqVlJREderUIQsLC7ndtvRNTEwMtWvXjho1aqT2e9P9Fxd1CpSQkEAlS5YkV1fXH96bPn06aWlpUXBwcI7blUqlVKFCBRowYIA8YqqkvXv3EgCFLDFv27Yt1a1bVyX/IX/7nenWrZvQUZiKmjx5MhkbG5NYLFZan7du3SIAdOTIEaX1yfK3zMxM6tSpExUqVIju3bunsH5U8XMgL7ioU6Dfjbp8W81rZGREjx49ylG7p0+fJgB08eJFeUVVOYmJiWRgYCD3KZ+HDx8Kui9ddnwbyT158qTQUZiK+fLlCxUuXJhmzJih9L6bNm1KLVu2VHq/LH+aOnUqaWlp0YkTJ4SOola4qFOQGzdu/PH+qMTERKpRowZVrFgxRzch9+rVi6pWrapx3zD+V9euXalevXpybXPo0KFUunRpkkgkcm1Xnr7dh1mxYkVKTU0VOg5TIStWrCA9PT2KiYlRet8+Pj4audqeydeFCxfI2tqa+vTpQ5s3b6aIiIgc3/u5Y8cOAkDr169XUErNxUWdAmRmZlK9evWoTp06f7wH5eXLl1SsWDFq3bp1tn7x//nnH9LX16dVq1bJK67K8vf3JwByW6H68eNH0tfXp6VLl8qlPUX6tmJ63rx5QkdhKkIikVCZMmVo0KBBgvSfnp5OZmZmNHjwYEH6Z+qhV69eVLp0aWrYsCHp6uoSACpQoAC1aNGCpk+fTkePHv3t/XFnz54lHR0dGjFihMYPXCgCF3UKsHHjRhKJRNnec+zbL/GYMWOy1baOjg59+PAhrzFVXmpqKhUqVIgWLlwol/a+bc3w+fNnubSnaLNmzSI9PT2V2XaFCcvLy4sA5Ph2DXlatmwZGRgY0KdPnwTLwFRXamoqFSxYkJYsWUJE/24hcvnyZVq9ejW5urqSmZlZ1uM7LS0tqVevXrRx40a6ceMGSSQSevbsGRUtWpTs7e2VsrJbE3FRJ2cxMTG5ejrAtm3bCABt27btl+fIZDKytramLl265DWm2ujTpw9ZWVnl+RtbWloalSpVSq02UU1JSSFLS0uyt7fnb6z5nEwmoxo1apCjo6OgOT59+kT6+vrk5uYmaA6mmg4fPvzH2ZV3796Rr68vTZw4kZo0aUJ6enoEgAwMDKho0aJkZWVFCQkJygutYURERNBQYrEYxsbGSExMhJGRkVL67NWrF06fPo0nT57AxMQkR9eOGTMGHh4eCAsLQ8uWLX94/9atW2jQoAGCgoLQoUMHOSVWbcHBwejYsSPu3LmD2rVr57qdPXv2YMCAAXj8+DGsrKzkmFCxgoKC4OjoCG9vb/Ts2VPoOCwP4uPjYW9vj7i4OBQpUiRHR2RkJHr27Inz58+jRYsWgv4cgwcPxqlTp/D69Wvo6OgImoWplh49euDZs2eIjIzM9jUSiQR37tzB1atX8fLlS0ycOBEVKlRQYErNxkWdHIWFhcHBwQG7d+9G//79c3x9RkYG2rdvj8jISNy8efOHX+wRI0bgxIkTePv2LbS1teUVW6Wlp6ejdOnSGDZsGNzc3HLVBhGhbt26MDMzQ1BQkJwTKl6XLl1w9epVvHjxAgULFhQ6DsulMWPGYO/evZg0aRISExORmJiIL1++/PT42Z/lhg0b4tq1axCJRAKk///u3LmDunXrwtfXF926dRM0C1MdKSkpKFmyJObOnYsZM2YIHSff4qJOTtLS0mBtbY0yZcrg7Nmzuf7DGx8fj0aNGkFfXx9XrlzJyp2SkoIyZcpg3LhxWLx4sTyjq7zhw4fj1KlTePXqVa7+fz1z5gxat26NsLAw2NvbKyChYj179gxVq1bF4cOH0aVLF6HjsFy4e/cu6tWrh5UrV2Ly5Mm/PVcmkyE5OfmHQq9u3bowNzdXUuLfs7W1hUwmw8WLF4WOwlSEn58funfvjhcvXqBixYpCx8m/hJv5VTxl3lO3cOFC0tHRoYcPH+a5rUePHpGRkRE5OjpSZmYmERHt3r2bANCrV6/y3L66OXPmTJ4edu/o6Ei1atVS6/vSatSoQX379hU6BssFmUxGzZs3JysrK5XeSicnvt07FRERIXQUpiJcXV3JxsZG6Bj5npawJaVmePHiBZYtW4YpU6agevXqeW6vWrVqOHToEIKDgzF79mwAwM6dO2Fvb4/y5cvnuX1106JFC5QuXRqHDh3K8bXPnj3DiRMnMGHCBMGnrfLC2dkZQUFByMzMFDoKyyFvb29cvHgRGzduhJ6entBx5KJTp06wsLDApk2bhI7CVEBycjKCgoLQvXt3oaMwoatKRVLGSJ1MJiMHBwcqV64cpaSkyLXtNWvWEACaN28eASBvb2+5tq9Oxo8fT6amplkjl9k1atQoKlmypNweBC2UGzduEAA6e/as0FFYDiQlJVGZMmU0csX6t42Q88P2Suz3vL29CQC9fv1a6Cj5Ho/U5ZGfnx9OnTqFTZs2oUCBAnJte+LEiRgwYAAWLVoEExMTuLi4yLV9ddKzZ0/ExcXhwoUL2b4mPj4eu3fvxqhRo2BgYKDAdIpnY2ODMmXKICAgQOgoLAeWLFmC+Ph4rFmzRugocjdkyBBoa2vD09NT6ChMYL6+vmjYsCEsLS2FjpLvcVGXB2KxGBMmTICzszOcnJzk3r5IJMK2bdvg5OSEqVOnqn1hkheNGjWCpaVljqZgPT09IZVKMXLkSAUmUw4tLS106tQJAQEBP10ZyVTPs2fPsHbtWsyYMUMjP+xMTEzQp08fbNmyBRkZGULHYQJJSkpCcHAwT72qCLkVdREREfJqSm3MmzcPiYmJ2Lhxo8L60NfXR2BgYL5fIi4SidCzZ0/4+/sjPT39j+dnZGRg8+bN6N27N0qWLKmEhIrn7OyM169f48GDB0JHYX9ARBg/fjzMzMwwbdo0oeMozLhx4xAbG4vDhw8LHYUJJDAwEBKJhLe3URFyK+o6d+4sr6bUQmRkJDZt2oQFCxbAwsJC6Dj5Qs+ePREfH4/w8PA/nuvn54f3799j4sSJSkimHHZ2dihcuDBPwaqB48eP4+TJk1i3bh0MDQ2FjqMwNWvWRKtWrRT6xZapNl9fXzRp0oQ/B1VEjvap+9XwKhEhJCQEycnJcgsmD4rap04mk+Gvv/5CSkoKbt++DV1dXbm1zX6NiFCjRg3Y2Nhg3759vz2vYcOGKFq0KE6dOqXEhIrXvXt3vH79Gjdv3hQ6CvuFtLQ01KhRA5UqVcLJkyfVetV1dgQEBMDFxQU3btxAgwYNhI7DlCgxMRElS5bEihUrMGHCBKHjMAA5esZLeHg49u3bh0KFCn33OhHl6AZ2dbd9+3Zcv34dFy9e5IJOib5Nwa5atQpfv3795QjIpUuXcOvWLQQHBys5oeI5OzujT58+eP/+PczMzISOw35i9erVePfuHYKCgjS+oAMAR0dHlC9fHhs3bvztly2meQIDA5Geng5XV1eho7D/k6Pp15YtW6JQoUKwtbX97mjZsiXq1q2rqIwq5fXr15gxYwYGDhyIZs2aCR0n3+nZsyeSk5N/W7CtW7cOVlZWaNu2rRKTKUeHDh2gra2NwMBAoaOwn3j37h2WLVuGiRMnqtUzhvNCW1sbY8aMgY+PD+Li4oSOw5TI19cXTZs2RdmyZYWOwv5Pjoq6I0eOwNbW9qfvnTx5Ui6BfmfKlClo3rw5evfuna2b5eUpNTUVCxYsQPXq1VG4cGGsXLlSqf2zf1WpUgX16tWDt7f3T99/9eoVjh07hokTJ0JLS/MWdxctWhS2trZ8X52KmjJlCooUKYK5c+cKHUWpBg0aBF1dXXh4eAgdhSlJQkICQkND0aNHD6GjsP9Qm0+9yMhIxMXF4eLFi6hevTr8/f2V0i8RwcfHB1ZWVnBzc8P48ePx8OFDFC9eXCn9sx/17NkTQUFBEIvFP7y3ceNGmJiYoG/fvgIkUw5nZ2ecOXPmpz8/E86ZM2fg5+eHlStXonDhwkLHUaoiRYqgf//+2Lp1q9K/cDNhBAQEIDMzE127dhU6CvuPXBd1yl7CfvXqVTg4OAAA2rVrhytXrvxwjkQigVgs/u7Ii8jISNja2qJnz56oW7cuHj58iOXLl+e7P9iqpkePHkhLS/thCjIxMRE7d+7EiBEjNHrFobOzMzIyMhASEiJ0FPZ/MjIyMHbsWDRt2hS9e/cWOo4gxowZgw8fPsDX11foKEwJfH190bx5c5QpU0boKOw/cl3U/f3331i3bt1vz5HnJqlfvnzJWsFqbGyM+Pj4H85xc3ODsbFx1mFubp6rvj59+oThw4fDxsYGnz9/RmhoKAICAlCpUqU8/QxMPiwsLNC0adMfpmB37NgBiUSC0aNHC5RMOcqVK4c6derwFKwKcXd3x5MnT7B58+Z8sTjiZ6pXr442bdpgw4YNvEG2houPj0dYWBhPvaqgXBd1gYGBWLBgAcaNG/fDP2CpVIrdu3ejWrVqeQ74TdGiRbNG3r58+QITE5Mfzpk5cyYSExOzjqioqBz1kZGRgfXr16Ny5crw8fHBunXrcPfu3awRQqY6evbsiVOnTuGff/4BAGRmZmLjxo3o1asXSpcuLXA6xXN2dkZwcDDv5K8CPnz4gPnz52P48OGoU6eO0HEENX78eNy6dQuhoaFCR2EKdPToUchkMnTp0kXoKOx/5eXBsXfu3KGyZcuSi4sLpaamkkQioS1btpClpSUVLVqU5s2bl5fmv3P79m3q3bs3EREtWbKEDh48+MdrEhMTCQAlJib+8dzQ0FCqVq0aiUQiGj58OH38+DHPmZnixMXFkZaWFnl4eBARka+vLwGgyMhIYYMpye3btwkAhYWFCR0l3xs4cCCZmJjQ58+fhY4iOKlUSjY2NgSA7OzsKCAggDIzM4WOxeTMwcGB7OzshI7BfiJPRR0RUXR0NFlbW5O1tTWVKVOGSpQoQUuXLiWxWCyPfN+ZPHkyNWvWjP7++2+SSCR/PD87Rd3z58+pU6dOBICaN2+eb4oCTWBvb5/1h6VJkybUsmVLgRMpj0wmIwsLCxozZozQUfK1a9euEQDaunWr0FFURnp6Oh06dIgaN25MAKhixYq0fv36bH25Zqrv06dPpK2tzb/zKipPRd2XL19o0aJFVKxYMTI0NKQCBQrQvXv35JUtz35X1InFYpo+fTrp6emRubk5+fj4kEwmEyAly60dO3aQSCSiI0eOEAAKCAgQOpJSjRkzhszNzfn3ViBSqZTq169PdevW5dGoX7h27Rr16tWLdHR0qHDhwjR+/Hh68eKF0LFYHnh6epKWlhbPZqmoXBd1M2bMIGNjY6pQoQJ5eHhQcnIy9e/fn0qWLEk3btyQZ8Zc+11R161bNzIwMKD58+dTSkqKAOlYXsXHx5Ouri4ZGRlRpUqVSCqVCh1JqcLCwggA3b59W+go+dL27dsJAF2+fFnoKCovKiqKZs6cSSYmJiQSicjZ2ZnOnDnDX0jUUOvWrcne3l7oGOwXcl3UWVlZ0Z49e374hjpnzhwqWLAgHTt2LM/h8up3Rd2zZ8/ozZs3AqRi8uTk5EQAaPPmzUJHUbr09HQyNjam+fPnCx0l34mPj6fixYtT3759hY6iVlJSUsjT05Nq1KhBAMja2pp27dpFX79+FToay4YPHz6QlpYWeXp6Ch2F/UKui7rffcPavn076evr06ZNm3LbvFzkZKEEU0/BwcFUvXp1SkpKEjqKIHr16kV16tQROka+M3bsWCpcuDDFxMQIHUUtyWQyCgsLI0dHRwJAJUqUoLlz59KzZ8/y3Yi7Otm6dStpa2vTp0+fhI7CfkFEpJgNhUJCQtCjRw9Bd70Xi8UwNjZGYmJi1h53jGkSHx8f9OzZE2/evEG5cuWEjpMvXLhwAa1atcKKFSswefJkoeOovWfPnmHTpk3w8vJCSkoKChQogGrVqqFGjRqoUaMGqlevjho1aqBcuXIa+eg/ddKqVSvo6ekp5bGgLHcUVtQBwO3bt1GvXj1FNf9HXNQxTScWi1G8eHGsWbMGY8eOFTqOxgsODoarqysaN26MkydPQk9PT+hIGiMxMRHXrl3Dw4cPs45Hjx4hKSkJAFCwYMHvir1vh4WFRb7d8FmZ4uLiYGZmhu3bt2PQoEFCx2G/oNCiTmhc1LH8oG3btpBKpQgPDxc6ikY7cOAABgwYAEdHR3h7e8PAwEDoSBqPiBAVFfVdofet2EtJSQEAFCpUCHZ2dvDz84O+vr7AiTWXu7s7JkyYgA8fPvx083+mGrioY0zNbd26FWPHjsWnT59QtGhRoeNopM2bN2Ps2LEYOHAgPD09oaOjI3SkfE0mk+Hdu3d4+PAhIiMjMXfuXBw8eBC9evUSOprGsrW1RcGCBREcHCx0FPYbXNQxpubev3+PsmXLYv/+/fn2YfKKQkRYtGgRFixYgMmTJ2PVqlU81aeC7OzsIJPJcP78eaGjaKSYmBiULVsWXl5e6N+/v9Bx2G/wXaeMqTkzMzPUr18fAQEBQkfRKDKZDOPGjcOCBQvg5ubGBZ0KGz58OC5cuIDHjx8LHUUj+fv7Q0dHB87OzkJHYX/ARR1jGsDZ2RkhISGQSCRCR9EIGRkZ6Nu3L9zd3eHh4YEZM2ZwQafCOnfujOLFi8PT01PoKBrJ19cXbdu2RZEiRYSOwv6AizrGNICzszOSk5Nx9uxZoaOovdTUVLi4uMDPzw++vr4YNmyY0JHYH+jr62PQoEHYvXs3vn79KnQcjRIdHY3Lly+je/fuQkdh2cBFHWMaoGbNmihfvjxPwebRly9f4ODggPPnzyMoKAiurq5CR2LZNHToUHz58gV+fn5CR9Eo/v7+0NfX56lXNcFFHWMaQCQSwdnZGYGBgZDJZELHUUuxsbGwtbXF48ePcfr0abRp00boSCwHKlWqhDZt2mDbtm1CR9EoPj4+aNeuHS82VBNc1DGmIZydnRETE4OIiAiho6idV69eoVmzZvj8+TMuXLiARo0aCR2J5cLw4cNx9epV3Lt3T+goGuHt27e4du0aT72qES7qGNMQzZo1g4mJCU/B5tD9+/fRtGlTaGtr4/Lly6hRo4bQkVguderUCaampvDw8BA6ikbw9/eHgYEBnJychI7CsomLOsY0hI6ODjp27MhFXQ5cuXIFLVq0gKmpKS5evAhLS0uhI7E80NXVxeDBg7Fv3z4kJycLHUft+fr6okOHDihcuLDQUVg2cVHHmAZxdnbGgwcP8OrVK6GjqLzz58/D3t4etWrVwrlz51CqVCmhIzE5GDp0KJKTk3Ho0CGho6i1169f48aNGzz1qma4qGNMg7Rt2xb6+vo8WvcHRITJkyejTp06CA0NhbGxsdCRmJyUK1cO7du35ynYPPLz84OhoSE6duwodBSWA1zUMaZBChUqBHt7exw7dkzoKCrtxo0biIiIwOzZs2FoaCh0HCZnw4cPx61bt3jRUC6JxWKsW7cOrq6uKFSokNBxWA5wUceYhnF2dsalS5fw+fNnoaOoLHd3d5QvXx7t2rUTOgpTgA4dOqBs2bI8WpdLCxYsgFgsxtKlS4WOwnKIizrGNIyTkxOICEFBQUJHUUkfP36Ej48PRo4cCW1tbaHjMAXQ0dHBkCFDcPDgQYjFYqHjqJUHDx5g48aNmDdvHszNzYWOw3JILYq6iIgING/eHLa2tujevTsyMjKEjsSYyjI1NUWjRo34vrpf2LlzJ7S0tDBo0CChozAFGjJkCNLS0nDgwAGho6gNIsKYMWNQqVIlTJw4Ueg4LBfUoqgzMzNDaGgozp8/j0qVKvH9Qoz9gbOzM0JDQ/k5mP9DKpVi27Zt6NmzJ4oVKyZ0HKZAZmZmcHR0hIeHB4hI6Dhq4dChQzh//jw2bdoEPT09oeOwXFCLos7U1BQFChQA8O8+RDo6Oj89TyKRQCwWf3cwlh85OzsjNTUVp0+fFjqKSjlx4gTevXuHMWPGCB2FKcHw4cNx9+5dXL9+XegoKi8pKQlTpkxB165d+RF5akwtirpv3r17h/DwcDg6Ov70fTc3NxgbG2cdfD8Ay6+srKxQuXJlnoL9H+7u7mjUqBFsbGyEjsKUwMHBAZaWlrxgIhsWLVqEL1++YO3atUJHYXkgIhUal46Li4Orq+sPrwcGBkJHRwdOTk7Yvn07qlSp8tPrJRIJJBJJ1n+LxWKYm5sjMTGRH0bM8p2pU6di3759iImJgZaWWn1/U4inT5/CysoKe/fuRd++fYWOw5Rk2bJlWLx4MWJiYlC0aFGh46ikR48eoXbt2li4cCFmzZoldByWBypV1P2KVCqFi4sLJkyYgNatW2f7OrFYDGNjYy7qWL506dIlNG/eHGFhYbC3txc6juDGjx+PgwcPIioqCgYGBkLHYUoSFxcHc3NzrFmzBuPGjRM6jsohIrRu3RrR0dG4f/8+9PX1hY7E8kAtvr77+vriypUrWLx4MVq2bAkfHx+hIzGm8po0aQJra2t06NAB8+bNy9eLJpKTk7F7924MGTKEC7p8xtTUFC4uLrxg4hd8fX1x9uxZbNy4kQs6DaAWI3W5xSN1LL/7+vUr3NzcsHz5clhYWGDr1q358iZoDw8PjBo1Cq9evUK5cuWEjsOU7PTp07C3t8eFCxfQvHlzoeOojOTkZFhZWaFBgwY4evSo0HGYHKjFSB1jLHcMDQ2xaNEi3Lt3D+bm5nBwcMDff/+NuLg4oaMpDRHB3d0dTk5OXNDlU3Z2dqhUqRIvmPgfixcvRnx8PNatWyd0FCYnXNQxlg9YWVnhzJkz2Lt3L8LCwmBlZYWtW7dCJpMJHU3hLl26hPv372P06NFCR2EC0dLSwrBhw+Dn58ePz/s/T548wdq1azFr1ixYWloKHYfJCRd1jOUTIpEIffv2xdOnT9GtWzeMGjUKf/31F+7cuSN0NIVyd3dHlSpVcrTIimmeAQMGAAD27NkjbBAVQEQYO3YsypUrhylTpggdh8kRF3WM5TMmJibYvn07Ll26hJSUFNjY2GDSpElITk4WOprcxcbG4vDhwxg1ahRv65LPlShRAl27duUFEwD8/f0RHh6OjRs38sIhDcN/5RjLp5o2bYrbt2/Dzc0N27ZtQ7Vq1TTuEXyenp7Q09ND//79hY7CVMCIESPw/PlznD17VugogklOTsakSZPQqVMndOjQQeg4TM64qGMsH9PV1cW0adOyNh/t3LkznJ2d8fbtW6Gj5VlGRgY8PDzQp08fFClSROg4TAU0b94c1apVw7Zt24SOIpilS5fi8+fPWL9+vdBRmAJwUccYg6WlJY4fP47Dhw8jIiIC1atXx/bt24WOlSfHjh1DbGwsL5BgWUQiEYYPH46jR4/iw4cPQsdRuqdPn2LNmjWYMWMGypcvL3QcpgC8Tx1j7DvfHuzt6emJjRs3YuzYsUJHypWWLVtCJpPhwoULQkdhKiQhIQFlypTB/PnzMWPGDKHjKA0RoV27dnj+/DkePnwIQ0NDoSMxBdAROgBjTLUULlwY27Ztg7GxcdZjldStsHvw4AHOnz+PQ4cOCR2FqZiiRYuie/fu8PT0xLRp0/LNApqjR4/i1KlTCAwM5IJOg+WP32bGWI6IRCKsWLECU6dOxbhx47Bp0yahI+WIu7s7TE1N0blzZ6GjMBU0YsQIvH79GmFhYUJHUYqUlBRMmDABjo6OcHJyEjoOUyAu6hhjP6XMwu727dvo0qULLl26lOe2EhMTsW/fPgwbNgx6enpySMc0TePGjVGrVq18s2Bi2bJl+PjxIzZs2CB0FKZgXNQxxn5J0YUdEWH9+vVo3LgxwsLCYGdnB3d39zztI7Z3716kpaVh2LBhckzKNIlIJMKIESNw/PhxvHv3Tug4CvX8+XOsXr0a06dPR4UKFYSOwxSMizrG2G8pqrD79OkTHB0dMXHiRIwZMwZxcXEYPXo0xowZg4EDB+Lr1685bpOIsGXLFnTu3BlmZmZyyck0U+/evVGiRAnY29vj5cuXQsdRiK9fv2LEiBEoU6ZMvloUkp9xUccY+yN5F3ZnzpxB7dq1cePGDQQFBWHt2rUoWLAg1q9fj3379sHX1xfNmjXL8X55Z86cwZMnT3gbE/ZHxsbGuHz5MkQiEZo0aYIbN24ovM/k5GSlFZAvX77EX3/9hStXrsDT05MXR+QTXNQxxrLlW2E3ZcqUXBd2GRkZmDVrFuzt7VGtWjXcvXv3h13t+/TpgytXriA+Ph42NjY4ffp0ttt3d3dHjRo1YGtrm+NsLP+pUKECrly5gsqVK6Nly5YIDAxUWF83btxA7dq1UaVKFcyePRsSiURhfQUEBMDGxgbJycm4fv062rRpo7C+mIohDZaYmEgAKDExUegojGkMmUxGU6ZMIQC0cePGbF/3+vVraty4MWlra5ObmxtlZmb+9vzPnz+Tg4MDaWlp0cqVK0kmk/32/Ldv35KWlhZt2bIl25kYIyJKTU2lrl27kpaWFrm7u8u1balUSsuXLycdHR1q2LAhzZ49m3R1dalmzZoUEREh174yMjJo2rRpBIA6d+5MX758kWv7TPVxUccYy7GcFnY+Pj5kbGxMlpaWdPXq1Wz3k5mZSTNmzCAA1L17d0pKSvrlubNmzaLChQuTWCzOdvuMfZOZmUkTJkwgADR9+nSSSqV5bjMmJobs7e1JJBLRjBkzKD09nYiI7ty5Q7Vr1yYdHR2aP38+SSSSPPcVGxtLtra2pK2tTatXr/7jlyCmmbioY4zlSnYKu+TkZBoyZEhWUZaQkJCrvvz9/alQoUJUs2ZNev78+Q/vp6WlUYkSJWjMmDG5ap+xb9auXUsikYh69epFaWlpuW4nKCiIihcvTqamphQWFvbD+xKJhObNm0fa2tpUp04dunv3bq77On/+PJmampKpqSmdP38+1+0w9cdFHWMs135X2N29e5esrKzI0NCQduzYkeeRg4cPH1KVKlXI2NiYTpw48d17+/fvJwD06NGjPPXBGBGRn58f6evrU8uWLXP8RSQtLY3Gjx9PAKhjx4708ePH355/69YtqlGjBunq6tKSJUsoIyMj233JZDJauXIlaWtrk62tLcXGxuYoK9M8XNQxxvLkfws7mUxGmzdvJn19fbK2tpZrofXlyxfq1KkTAaAFCxZkTZE1adKEWrVqJbd+GLt48SKZmJhQ9erV6e3bt9m65vHjx1SnTh3S09OjDRs2ZPuLTFpaGs2cOZO0tLSoQYMG2fo38+XLF3JxccmaLs5JMcg0Fxd1jLE8+29h16BBAwJAY8eOpa9fv8q9L6lUSosXLyaRSEROTk505swZAkBHjhyRe18sf3v8+DFZWlpS6dKlKTIy8pfnyWQy2rFjBxUoUICsrKx+e+7vXLt2japWrUr6+vq0cuXKXy4munPnDlWsWJGMjY0pICAgV30xzaRWRd3BgwepePHi2T6fizrGlEcmk9H06dOpZMmSSvmgCQoKoiJFipCWlhaZm5vzSAVTiNjYWLKxsaFChQpRaGjoD+8nJCRQjx49CAANGTKEkpOT89RfamoqTZ48mUQiETVp0oSePn363fteXl5kYGBAderUoRcvXuSpL6Z51Kaok0ql1KVLF6pbt262r+GijjHlU+aqu+fPn1OzZs3Iw8NDaX2y/CcpKYk6dOhAOjo65OXllfX65cuXqVy5cmRsbEy+vr5y7fPSpUtUqVIlMjQ0pPXr11NKSkrWoqPBgwdTamqqXPtjmkFElIeHLCrR/v37oa2tjTVr1uDWrVs/PUcikXy3oaNYLIa5uTkSExNhZGSkrKiMMcY0TGZmJkaNGoXt27djwYIF0NHRwfz589GoUSMcPHgQ5cqVk3ufKSkpmDVrFjZu3AgjIyOkp6fD3d0dgwYNkntfTDOoRVEnlUrRuXNnHDt2DA0bNvxlUbdgwQIsXLjwh9e5qGOMMZZXRIRly5Zhzpw5EIlEmDNnDubNmwcdHR2F9nvu3Dls2rQJc+fORZ06dRTaF1NvKlXUxcXFwdXV9YfXhw4dCm1tbfTp0wf169fnkTrGGGOCCQ4ORpEiRfDXX38JHYWx76hUUfcr06dPR2RkJLS0tHD16lUMGjQI69at++N1YrEYxsbGXNQxxhhjTOOpRVH3X78bqftfXNQxxhhjLL/QEjpATmW3oGOMMcYYy0/UrqhjjDHGGGM/4qKOMcYYY0wDcFHHGGOMMaYB1G6hRE4QEZKSklC4cGGIRCKh4zDGGGOMKYxGF3WMMcYYY/kFT78yxhhjjGkALuoYY4wxxjQAF3WMMcYYYxqAizrGGGOMMQ3ARR1jjDHGmAbgoo4xxhhjTANwUccYY4wxpgG4qGOMMcYY0wBc1DHGGGOMaQAu6hhjjDHGNAAXdYwxxhhjGkCjizoiglgsBj/eljHGGGOaTqOLuqSkJBgbGyMpKUnoKIwxxhhjCqXRRR1jjDHGWH7BRR1jjDHGmAbgoo4xxhhjTANwUccYY4wxpgF0hA7AGGPK9OHDB0RERCAiIgKWlpbo27ev0JEYY0wuuKhjjGmsjx8/IiIiArdu3coq5KKjowEARkZGEIvF+PTpEyZNmiRwUsYYyzsu6hhjGuFbAfftuHXrVlYBV6RIEdSvXx+9e/eGjY0N6tevD0tLS8yePRuTJ0+GsbExBg8eLPBPwBhjecNFHWNMbRERZsyYAW9vb0RFRQH4t4CzsbHB33//jfr168PGxgbly5eHSCT64fqlS5ciMTERw4YNg5GREbp166bsH4ExxuSGizrGmNry8fHBypUrMWrUKNja2sLGxgYVKlT4aQH3MyKRCJs2bYJYLEbv3r1RqFAhtG/fXsGpGWNMMUSkwc/QEovFMDY2RmJiIoyMjISOwxiTo8+fP6NatWqws7ODr69vntrKyMiAq6srwsLCEBoaiubNm8spJWOMKQ9vacIYU0vjx4+HTCbDpk2b8tyWrq4ufHx80LhxYzg6OuL27dtySMgYY8rFRR1jTO2cOHECBw8exPr161GqVCm5tGlgYICAgABUq1YNbdu2xePHj+XSLmOMKQtPvzLG1EpiYiJq1KgBa2trBAUFZfv+ueyKj4+Hra0tEhIScOnSJVhaWsq1fcYYUxQeqWOMqZXp06cjMTER27Ztk3tBBwAmJiY4deoUDAwMYG9vj9jYWLn3wRhjisBFHWNMbZw7dw4eHh5YsWIFLCwsFNZP6dKlER4ejrS0NDg4OCA+Pl5hfTHGmLzw9CtjTC2kpqbC2toaZcqUwblz56ClpfjvpI8fP0aLFi1QoUIFhIeHo3DhwgrvkzHGckvtRuq8vb1RokQJoWMwxpRs/vz5eP/+PXbs2KGUgg4AqlWrhtDQUDx58gQuLi5IS0tTSr9MM508eRKzZ8/GmTNnkJGRIXQcpoHUqqiTyWTw9/eHubm50FEYY0p08+ZNrF27FgsXLkSVKlWU2ne9evVw4sQJXLlyBT169OAPY5ZjCQkJ6N+/P9q3bw93d3e0bt0axYsXR48ePbBv3z58/vxZ6IhMQ6jV9Ov+/fuhra2NNWvW4NatWz+8L5FIIJFIsv5bLBbD3Nycp18ZU2Pp6emwsbGBvr4+rl27Bh0dYR6EExISgk6dOqFHjx7Yu3ev0kYLmXoLDAzEiBEjkJqaivXr16Nfv364e/cuTpw4gRMnTuDGjRsQiURo0qQJOnbsCEdHR9SqVStXi4AyMzPx4sUL3L9/H/fv38e9e/fw9OlT2NvbY+HChTAxMVHAT8hUCqmJzMxMcnJyIqlUSjY2Nj89Z/78+QTghyMxMVHJaRlj8rJgwQLS0dGhO3fuCB2FfHx8SEtLi0aNGkUymUzoOEyFff78mXr37k0AqGPHjhQdHf3T82JjY2nXrl3UpUsXKlSoEAEgc3NzGjlyJAUFBVFqauoP18hkMoqJiaHQ0FBavXo19evXj+rWrUv6+vpZn3umpqbUpk0bGjJkCBUuXJhMTExo8+bNlJGRoegfnQlIbUbq9uzZA21tbfTp0wf169fnkTrG8oEHDx6gXr16mD59OhYvXix0HADAjh07MHToUKxfvx7jx48XOg5TQUePHsXIkSORnp6ODRs2oE+fPtkaeZNIJLhw4QJOnDiB48eP4/Xr1zA0NIS9vT1atGiBqKiorBG4f/75BwBQoEAB1KxZE7Vq1UKtWrVgbW2NWrVqoXjx4lntfvjwAbNnz8auXbtQvXp1bNiwAa1bt1bYz8+EozZF3fTp0xEZGQktLS1cvXoVgwYNwrp16357Da9+ZUx9SaVS/PXXX0hKSkJkZCT09fWFjpRl6tSpWLduHU6dOoVWrVoJHYepiM+fP2Ps2LE4dOgQOnXqhG3btqF06dK5aouI8OTJk6xp2mvXrqF8+fJZxdu3Aq58+fLZvhXg9u3bGD9+PC5dugQXFxesXr0aFStWzFU+pprUpqj7r1+N1P0vLuoYU19r167FlClTcPnyZTRp0kToON/JzMxE+/btERkZiVu3bvFTJxj8/f0xatQoSKVSbNq0Cb169ZLr5thEJJf2iAi+vr6YOnUqPnz4gIkTJ2L27Nm8XY+GUMuiLru4qGNMPb148QLW1tYYNmwY1q9fL3Scn/rnn3/QoEEDGBsb4/LlyyhQoIDQkZgAPn78iDFjxsDPzw9dunSBu7s7TE1NhY71R6mpqVi1ahVWrFgBY2NjuLm5oV+/fnleAERESE9PV6mR9fyEizrGmEohIrRq1Qpv3rzBgwcPULBgQaEj/dK9e/fQpEkTODs748CBAwp5bBlTTd9GvMaMGQMAcHd3R7du3dTud+Ddu3eYPn06Dh06hPr162Pjxo3ZGhknIsTFxeHhw4d48ODBd/+rra2NBw8ewMzMTAk/AfsvXpPPGFMpO3bswLlz57B9+3aVLugAwNraGl5eXvD29saaNWuEjsOU5MOHD+jatSt69uwJOzs7PHz4EN27d1e7gg4ALCws4O3tjQsXLmTdx9qnTx9ER0dnnfPPP//g/Pnz2LJlC0aNGgVbW1sUL14cZcqUQZs2bTBz5kxERESgcuXKmDVrFvT09DBt2jQBf6r8i0fqGGMqIzo6GjVq1ICrqyt27twpdJxsmzlzJlauXImTJ0+iTZs2QsdhCtakSRO8fPkSW7Zsgaurq9Bx5EYqlWL37t2YNWsWkpOT0bBhQzx+/BgfPnwAAOjq6qJq1aqoUaMGatasiZo1a6JGjRqoUKECtLW1s9rZvXs3Bg4ciPPnz6NFixZC/Tj5Ehd1jDGVQETo1KkTIiIi8OjRIxQpUkToSNkmlUrh6OiI69ev49atW6hQoYLQkZiCvHr1ChUrVoSPjw+6d+8udByFSExMxIoVK/Ds2TPUqFEjq4irXLkydHV1/3i9TCZD06ZNkZKSgtu3bwu2YXh+xEUdY0wleHt74++//8bRo0fh4uIidJwcS0hIQIMGDVCgQAFcvXpV5aeOWe6sWrUK8+fPx8ePH1GoUCGh46isiIgINGjQABs2bMDYsWOFjpNvcFHHGBPco0ePYGtri1atWsHHx0foOLn28OFDNGrUCB06dICPj49a3mPFfq9Ro0YoW7YsDh8+LHQUlTdixAgcOnQIT58+RalSpYSOky/wQgnGmKCCg4PRuHFjlCpVCps2bRI6Tp7UqFEDe/fuhZ+fH1asWCF0HCZnb9++xY0bNzTqPjpFWrp0KbS1tTFz5kyho+QbXNQxxgRBRFi9ejUcHR3RsmVLXL16FSVLlhQ6Vp516dIFc+bMwaxZsxASEiJ0HCZHhw8fhr6+Pjp27Ch0FLVQrFgxLFu2DF5eXrh27ZrQcfIFnn5ljCmdRCLB8OHDsWfPHsycORNLlizJ86anqkQmk8HZ2RmXLl3CjRs3ULlyZaEjMTn466+/UKJECQQEBAgdRW1IpVI0bNgQIpEI169f/26VLJM/zfkryhhTC3FxcbCzs8OhQ4ewf/9+LFu2TKMKOgDQ0tLC/v37UbJkSbi4uCApKUnoSCyPoqOjcfXqVZ56zSFtbW1s3rwZERERarVNkbrSrL+kjDGVFhkZiYYNG+LNmze4cOECevfuLXQkhTE2NsaxY8cQFRWF/v37QyaTCR2J5cGRI0egq6sLJycnoaOonSZNmmDAgAGYOXMm/vnnH6HjaDQu6hhjSuHv749mzZqhZMmSuHnzJho2bCh0JIWrVq0a9u/fj6NHj2LZsmVCx2F54O/vDwcHB7XaP1GVLF++HFKpFHPmzBE6ikbjoo4xplAymQwLFy5Et27d4OTkhAsXLuSrZ0J26tQJCxYswLx583DixAmh47BciI2NxaVLl3jqNQ9KlSqFRYsWwcPDA7dv3xY6jsbihRKMMYVJSUnBgAED4O/vj8WLF2P27Nn5cu82mUyGLl264OzZs9i+fTtcXFygp6cndCyWTVu2bMH48ePx4cMHmJiYCB1HbWVmZqJu3booXLgwLl26pHH30qoC/n+UMfaDcePGwcLCAl27dsWKFStw9uxZiMXiHLURFRWF5s2bIyQkBEeOHMGcOXPyZUEH/LtwYu/evahfvz569OgBCwsLzJw5E69evRI6GssGPz8/tG7dmgu6PNLR0cHmzZtx9epV7Nu3T+g4GolH6hhj38nIyECJEiVQu3ZtaGtr4+bNm0hOToZIJEK1atXQsGFDNGjQAA0bNoS1tfVPR5yuXr2Kzp07Q19fH4GBgahdu7YAP4lqun//Pjw9PbFv3z4kJibCwcEBw4YNQ6dOnbL1XE2mXB8+fECZMmXg4eGBIUOGCB1HI/z99984ffo0nj17BmNjY6HjaBQu6hhj37lw4QJsbW1x8+ZN1K9fH1KpFE+fPsWNGzeyjrt37yIzMxN6enqoW7cuGjZsmHVcvXoVw4YNQ8OGDXH48GGN2FBYEVJTU+Hr6wtPT09cvXoVpqamGDRoEIYMGYLy5csLHY/9Hw8PD4wePRpxcXEoXry40HE0wvv371G1alUMHToU69atEzqORuGijjH2nRkzZsDLywuxsbG/vOclLS0Nd+7c+a7Qe/78edb7AwcOxNatW6Gvr6+s2Grt3r17WaN3SUlJcHBwwPDhw+Ho6MijdwJr06YNiAjh4eFCR9EoK1euxKxZsxAZGYlatWoJHUdjqE1RFxERgQkTJkBLSwulSpXCgQMH/vjHjos6xnKudu3aqFOnDvbs2ZOj6xISEnDr1i1kZGSgffv2+fb+ubxISUmBr68vPDw8cP36dZQuXRqDBg3C0KFDUa5cOaHj5TufP3+Gqakp3N3dMXz4cKHjaJT09HRYW1vD1NQUZ8+e5b8XcqI2CyXMzMwQGhqK8+fPo1KlSjh27JjQkRjTONHR0bh37x46dOiQ42uLFi2KNm3aoEOHDvwHOpcKFiyIgQMH4tq1a7hz5w46d+6MTZs2oXz58pg9e7bQ8fKdgIAAEBFcXFyEjqJx9PT0sHHjRpw/fx4+Pj5Cx9EYalPUmZqaokCBAgAAXV1d6Ojo/HCORCKBWCz+7mCMZV9ISAi0tLTQpk0boaPke7Vr14a7uztiYmIwa9YsLFu2DGfOnBE6Vr7i7++PFi1aoFSpUkJH0UgODg7o0qULJk+ejOTkZKHjaAS1Keq+effuHcLDw+Ho6PjDe25ubjA2Ns46zM3NBUjImPoKCQlBkyZNeOsGFVKwYEEsWrQItra2GDx4MH/4KUl8fDzCw8N5w2EFW7t2LeLj47FkyRKho2gEtSrqxGIx+vbtCy8vr5/eTzdz5kwkJiZmHVFRUQKkZEw9paenIywsLFdTr0yxtLS0sGvXLnz69AnTpk0TOk6+EBgYCKlUis6dOwsdRaOVK1cOs2bNwtq1a/H06VOh46g9tVkoIZVK4eLiggkTJqB169bZuoYXSjCWfWfOnEHr1q0RGRmJOnXqCB2H/YS7uzvGjBmD8PDwbP8dZLnj6OiIxMREXLx4UegoGi8tLQ01atRApUqVcPLkSb4nNw/UZqTO19cXV65cweLFi9GyZUu+sZIxOQsJCUHp0qV5o2AVNnLkSNjZ2WHw4MFISkoSOo7GSkxMxKlTp3jqVUkMDAywYcMGnDp1CjNmzEBmZqbQkdSW2ozU5QaP1DGWfTVq1EDjxo2xc+dOoaOw33j9+jVq1aqFPn36YNu2bULH0Uj79+9H3759ERUVhbJlywodJ99Ys2YNpk2bBjs7O3h7e6NEiRJCR1I7ajNSxxhTnDdv3uDRo0d8P50aKF++PFavXg0PDw+EhYUJHUcj+fv7o0mTJlzQKdnkyZMRHh6O+/fvo169erhx44bQkdQOF3WMMYSEhEBHRwf29vZCR2HZMHz4cLRu3RqDBw/mrZvkLCkpCSdPnuSpV4HY2dnh9u3bMDc3R/PmzeHh4QENnlCUOy7qGGMICQlB06ZN+eHaakIkEmHnzp1ISEjA5MmThY6jUYKCgiCRSNC1a1eho+RbZmZmOHfuHIYOHYoRI0Zg0KBB+Pr1q9Cx1AIXdYzlc2lpaTh9+jRPvaqZcuXKYc2aNdixYwdCQ0OFjqMx/Pz80KBBA34sm8D09PSwefNm7N27Fz4+Pvjrr7/w6tUroWOpPC7qGMvnLly4gNTUVLRv317oKCyHhg4dijZt2mDIkCFITEwUOo7aS05ORnBwME+9qpC+ffvi2rVrSEpKQv369RESEiJ0JJXGRR1j+VxISAjKli2LmjVrCh2F5ZBIJMKOHTuQmJiISZMmCR1H7YWEhCAtLY2nXlWMtbU1bt26haZNm6Jjx45YuHAhZDKZ0LFUEhd1jOVzwcHB6NChA2/4qaYsLCywdu1a7Nq1i0cx8sjf3x9169ZFxYoVhY7C/keRIkUQEBCARYsWYeHChXByckJ8fLzQsVROjou6r1+/4v379z+8/vDhQ7kEYowpz8uXL/Hs2TOeelVzgwcPRtu2bTF06FB8+fJF6DhqKTU1FUFBQejWrZvQUdgvaGlpYc6cOQgJCcG1a9dQv359REZGCh1LpeSoqPP390eVKlXQoUMHWFtb4/r161nv9e3bV+7hGGOKFRISAl1dXX7klJoTiUTYvn07kpKSMHHiRKHjqKXQ0FCkpKTw1KsaaNu2LSIiImBiYoK//voLe/bsETqSyshRUbdkyRLcvn0bd+/exa5duzBo0CAcPHgQAHgfGcbUUHBwMFq0aIHChQsLHYXlkbm5OdatW4fdu3cjKChI6Dhqx9/fH9bW1qhSpYrQUVg2WFpa4tKlS+jduzcGDBgAR0dHBAcHQyqVCh1NUDkq6jIyMrIe21G/fn1cuHABHh4eWLRoEd+Pw5ia+fr1K86ePctTrxpk4MCBaN++PYYNG4aEhASh46iNtLQ0HD9+nFe9qhkDAwPs2LEDBw8exPv379GxY0dUqFABS5cuRWxsrNDxBJGjoq5kyZK4d+9e1n8XK1YMYWFhePz48Xevs/8vMzMTYWFhGDhwIEqXLg0vLy+hIzEGADh37hzS0tJ4fzoNIhKJ4OnpiZSUFEyYMEHoOGrj1KlTSEpK4qJOTfXq1Qu3b9/G9evXYW9vj6VLl8LCwgKurq4ICwvLVytlc1TU7du3DyVLlvzuNT09PXh7e+P8+fNyDabOiAjXrl3DuHHjYGZmBgcHB1y+fBm1a9fGkCFD4OfnJ3RExhAcHAxLS0tYWVkJHYXJUdmyZbF+/Xrs3bsXx48fFzqOWvD390f16tVRrVo1oaOwXBKJRGjYsCF27tyJmJgYrFu3Dk+ePIGDgwOqVKmClStX4tOnT0LHVDgRafDNcGKxGMbGxkhMTISRkZHC+3v48CEOHjwIb29vvH79GmXKlEHPnj3Rq1cv2NjYgIjQt29f+Pn5ITAwEO3atVN4JsZ+hohQqVIltG3bFlu2bBE6DpMzIoKTkxMiIiLw8OFDmJiYCB1JZUkkEpQqVQrjx4/HwoULhY7D5IiIcOXKFWzbtg1+fn6QyWTo2rUrRowYgRYtWmjmbWOUS/7+/rm9VGkSExMJACUmJiqsjzdv3tDy5cvJ2tqaAFCRIkVoyJAhdObMGcrMzPzh/PT0dHJyciJDQ0O6ePGiwnIx9jtPnz4lAHT8+HGhozAFiY6OpiJFilDfvn2FjqLSgoKCCADdv39f6ChMgT5//kxr1qyhKlWqEACysrKitWvXUnx8vNDR5CrXRZ2enh6tXbv2t+fIZLLcNi8XiirqPn78SO7u7tS0aVMCQIaGhtSjRw8KCAigtLS0P17/9etXsrOzIyMjI4qIiJBrNsayY926daSvr0/JyclCR2EKtG3bNgJAL1++FDqKyho4cCBVrVpV8M8rphwymYzOnj1LPXr0IF1dXbK0tKSkpCShY8lNrp8oERgYiAULFmDcuHE/bGcilUqxe/dujbk/IT4+HoGBgZgyZQoaNWqE0qVLY9y4cTA2Nsb+/fvx4cMHHDp0CJ06dYK+vv4f2zMwMEBAQACsrKzQtm1bPHnyRAk/BWP/X3BwMFq2bImCBQsKHYUpUL9+/VCkSBFs375d6CgqKSMjA8eOHYOrq6tmTsWxH4hEIrRs2RKHDh3CgwcPEBcXp1nT7nmpCO/cuUNly5YlFxcXSk1NJYlEQlu2bCFLS0sqWrQozZs3T061Z+7kdqQuOjqavL29aeTIkVSzZk0CQACobNmy9Pfff5Onpyd9/Pgxz/n++ecfqlmzJpmZmdHr16/z3B5j2ZGUlER6enq0fv16oaMwJRg3bhyVLFmSJBKJ0FFUTmhoKAGgyMhIoaMwgSxbtoy0tbXp7t27QkeRizwvlHj//n3WlgifP39GRkYGJkyYgLFjx8p9Q9MpU6bg+vXrsLCwgJeXF/T09H57fnYWShARXrx4gYsXL+LChQu4ePEiXr16BQCoWrUqmjdvjhYtWqB58+YoV66c3L/NxcbGolmzZtDS0sLFixdhamoq1/YZ+1/Hjx9Hp06d8OzZM1SuXFnoOEzBHj16hBo1asDHxwfdu3cXOo5KGTp0KM6ePYvnz5/zSF0+lZ6ejjp16sDY2BiXL1+GllauJzBVQp7SJyYmYteuXXj//j2eP3+OL1++4PTp05g1a5bcC7rIyEjExcXh4sWLqF69Ovz9/fPUnp+fH7p3744yZcqgSpUqGDJkCO7duwdHR0f4+/sjLi4OT548wfbt29G3b19YWloq5B996dKlER4ejtTUVDg4OPADipnCBQcHo1KlSlzQ5RPVq1dH8+bNsW3bNqGjqJS3b9/i6NGjPPWaz+np6WHbtm24du0aduzYIXScPMt1UTdz5kyUK1cOu3fvxrJly/Dp0yd069YN9vb2uHnzpjwzAgCuXr0KBwcHAEC7du1w5cqVH86RSCQQi8XfHb9y69YtxMTEYODAgQgODkZCQgJu376NDRs2oGvXrihVqpTcf4ZfKV++PMLCwhATE4MOHTogOTlZaX2z/IWIEBwczE+RyGdGjBiBs2fP4tmzZ0JHERwRYe/evbC2tkaBAgXw/9q797icz/8P4K+O9yKRpoVfNknaoi3ZF7W6I7YcYiOaIrGSMR5fh+b4cPgWMyUbk6/D0IGREhYhZ1rfFaHTdPANDTmug0P33X3f1++PcX8dOsl939d9eD8fj/vx6M7n87leu3alt+tzf65r0qRJvCMRztzd3REYGIg5c+bgzp07vOO8mebet7W3t2cxMTGvLNuxcOFC1rJlS7Z37943uS38imXLlrHk5GTGGGPFxcVszJgxrxyzePFi+effnn8pc0kTRTp37hxr1aoV8/T0ZE+ePOEdh2ih/Px8BoClpqbyjkJUqKamhllYWLBZs2bxjsLVvXv3mI+PDwPAxo0bxyoqKnhHImri7t27rG3bthq/BFCzZ+oKCgoQEBAAAwODF74fFhaGH374Ab6+vvjpp5+aX22+xNzcXD7zVlFRUedimvPmzUNlZaX8VVZWprD2VcHZ2RkpKSlIT0/Hl19+CYlEwjsS0TIHDx6EiYkJhEIh7yhEhQQCAQIDA7F161bU1NTwjsPF4cOH0aNHDxw7dgwJCQmIjY1F69atecciauLtt99GREQE4uLicOLECd5xmq3ZRV1Dn0EICgpCcnIy5s+f39zLv6JPnz44cuQIgL9/OF1dXV85RiAQwMzM7IWXpnF3d0dSUhIOHDiAiRMn6tSedUT5Dh48iH79+sHExIR3FKJikyZNwoMHD5CUlMQ7iko9fvwY06ZNg5eXF3r06IHc3FyMGjWKdyyihgIDA/HJJ5/g66+/hkgk4h2nWZT2mMegQYNw8uRJhV3PyckJVlZWcHNzQ0FBAUaOHKmwa6ubwYMHIz4+HvHx8XWuA0hIc1RVVeHs2bPyp9WJbrGzs0P//v116oGJ8+fPw9nZGZs3b8aaNWuQmpqKjh078o5F1JS+vj7Wr1+PK1euICIignec5uF9/1eZVLFNmDJt2rSJAWALFizgHYVogT179tDuAjouISGBAWB5eXm8oyhVbW0tCwsLY4aGhqxnz56soKCAdySiQebMmcMEAgErLi7mHeW1vfE6deqsKevUqbtVq1Zh9uzZGDp0KD7++GP06NEDPXr0gI2Njcavp0NUKzg4GGfOnKEdTHSYWCyGtbU1fH19sWbNGt5xlOLKlSsYN24cfv/9d8ybNw+LFi1qdE1TQp736NEjODg4oFu3bjh06JBGLXlDRZ0GiI6Oxu7du5Gbm4v79+8DAFq0aAEHBwd5kffsZWlpyTktUUeMMVhbW2P06NGIioriHYdwNH/+fERHR+PmzZto0aIF7zgKwxjD5s2bMWPGDLzzzjuIi4uDi4sL71hEQ6WkpMDb21vjFu2mok6DMMZQXl6O3NzcF14FBQXyJ9osLS3lBV737t3h4eGBLl26cE5OeMvJycGHH36ItLQ0DBgwgHccwlFpaSm6dOmCLVu2IDAwkHcchbhz5w6Cg4Oxf/9+BAUFISoqSuEL4BPdM2LECGRkZODy5csa86Q0FXVaQCqVoqSk5JVi78qVKzAxMcHZs2fh5OTEOybhaMWKFQgPD8f9+/chEAh4xyGceXl5oaKiAv/5z394R3ljly9fhlAoBGMMmzZtwvDhw3lHIlqirKwMH3zwAQIDA7F27VrecZqEijotVlVVBU9PT5SXlyMzMxPt27fnHYlwIhQK0aZNG+zbt493FKIG9u7diy+++AIXLlzARx99xDvOG5kyZQr27duH7Oxsle4ERHTD6tWrMWvWLGRmZqJXr1684zSKPmmvxczMzLBv3z4wxjB8+HA8efKEdyTCQUVFBdLT02kpEyI3dOhQdOjQARs2bOAd5Y2IRCLs3LkTAQEBVNARpZg2bRocHR0REhICqVTKO06jqKjTch06dMD+/fuRn5+PwMBAWsxYB6WlpUEqldJ+r0TO0NAQQUFBiI+PR3V1Ne84zZaSkoK//voLAQEBvKMQLWVoaIgNGzbgwoULiI6O5h2nUVTU6YCePXsiLi4OCQkJWLp0Ke84RMVSU1Ph4OCATp068Y5C1EhQUBAeP36MX375hXeUZouJicHHH3+M999/n3cUosV69+6NkJAQLFiwADdv3uQdp0FU1OmIESNGYPny5fjXv/6l0X+Jk9cjk8mQmppKt17JK6ytrTF48GD8+9//1shda+7cuYPU1FSMHz+edxSiA5YvXw4TExPMmDGDd5QGUVGnQ+bOnYuAgABMmDBBK556I427ePEiysvLqagjdZo8eTIuXLiAc+fO8Y7y2nbu3Ak9PT34+vryjkJ0gLm5OaKiopCQkIBDhw7xjlMvevpVx4hEInh6eqKkpASZmZl0S07LhYeHY+XKlbh//z6MjIx4xyFqRiqVwsbGBgMHDsTmzZt5x3ktzs7O6NSpE5KTk3lHITqCMYYBAwbg6tWryMvLg4mJCe9Ir6CZOh0jEAiQnJwMExMTeHt7a/SHpEnjUlNTMXDgQCroSJ0MDAwQHByMX375BZWVlbzjNFleXh6ys7Pp1itRKT09PURHR+PPP//E8uXLecepExV1Oqhdu3ZISUlBaWkp/P39NeIxbfL6Ll68iIyMDFqMlTRo4sSJEIlEiI+P5x2lyWJjY2FhYUEfKyAq161bN8ydOxfff/89SktLecd5BRV1OsrBwQG7du3CgQMHMHfuXN5xiIIxxjBr1izY2dlhzJgxvOMQNdahQwcMGzYMGzZs0IgHJqRSKeLj4zFmzBgYGxvzjkN00Jw5c2BmZobVq1fzjvIKKup02KBBgxAVFYXIyEj8/PPPvOOo3Pnz5yGRSHjHUIoDBw7g+PHjiIyMpFuvpFGTJ09Gbm4uMjIyeEdp1NGjR3Hr1i1am45w06JFC0ybNg2bN2/GvXv3eMd5ARV1Om769OkICQnB5MmTcerUKd5xVObIkSPo1asXFi5cyDuKwtXW1iI0NBT9+/fHkCFDeMchGmDAgAGwsbHRiB0mYmNj8f7772vElk1Ee02dOhUA1G5BYirqdJyenh7Wrl0Ld3d3jBgxAiUlJbwjKZ1MJsO8efNgamqKiIgIrVveZdOmTSgsLMSqVaugp6fHOw7RAPr6+pg0aRJ27dqFBw8e8I5Tr6qqKiQnJyMgIIDGNuHq7bffxsSJE7F27Vo8fvyYdxw5jSjqzp8/Dzc3NwiFQowePRq1tbW8I2kVIyMj7N69GxYWFvD29kZFRQXvSEqVlJSE7Oxs7Nu3D7169UJgYKDW7ItbWVmJxYsXY/z48Rq/UTtRrQkTJkAmkyE2NpZ3lHolJiaipqYGY8eO5R2FEMycORMPHjxATEwM7yhyGrFOXXl5OczMzNCiRQvMnz8fTk5OGDVqVKPn0Tp1r6eoqAh9+vRBr169cPDgQRgaGvKOpHASiQTdu3dH586dkZqaisuXL+Ojjz7ClClTEBUVxTveG5s7dy7Wrl2LoqIidOzYkXccomF8fX2Rk5ODgoICtZwJ8/DwgJGREdLS0nhHIQQA8OWXXyIrKwtFRUUwMDDgHQca8VvbyspK/rWRkVG9xYZIJIJIJJK/r6qqUno2bWJnZ4fExER89tln+Prrr/Hll19CIpFAIpGgtrZW/vXL75//GgDGjh2LDh06cP6vqVtMTAwKCwvlW6XZ29tj2bJlCA0NxRdffAE3NzfOCZvv6tWr+OGHHzBnzhwq6EizTJ48Gf3798fp06chFAp5x3lBaWkpTp06pdYziUT3hIaGolevXtizZ0+TJpuUTSNm6p65fv06xowZg5MnT9b5RN+SJUvq3LCeZupez6ZNmzBp0qQmHfusyDY0NISRkREeP36M7t27Iz09Xe2WG6ipqUHXrl3h4uKCXbt2yb8vlUohFApRXl6OS5cuoWXLlhxTNp+fnx9OnDiB4uJimJqa8o5DNBBjDPb29nB2dsaOHTt4x3lBWFgYvv/+e9y+fVtjf0aJdhowYAAqKiqQlZXFfYZbrYq68vJy+Pj4vPL9/fv3w9DQEN7e3ti0aRPs7OzqPL+umTpra2sq6prh1q1bEIlE8oLtWdH2/Pu6ppqzsrLg4uKC2bNn47vvvuOQvH5RUVH49ttvUVBQ8MoYKikpgaOjI7766iusXbuWU8Lmy8zMRO/evbF582Z89dVXvOMQDRYVFYW5c+fixo0baNeuHe84AP4uNu3s7ODq6opt27bxjkPICw4fPgwvLy8cP34c/fr14xuGaQCJRMKGDh3Kjh49+lrnVVZWMgCssrJSSclIXZYvX8709PTY8ePHeUeRq6ysZBYWFiw4OLjeY9asWcMAsGPHjqkw2ZuTyWTM1dWVOTo6MolEwjsO0XD37t1jAoGArVy5kncUufT0dI382SS6QSaTMUdHR+bl5cU7CtOIom7Hjh2sbdu2TCgUMqFQyHbu3Nmk86io40MikTChUMg6duzI7t+/zzsOY4yxxYsXM4FAwMrKyuo9RiqVMg8PD/buu+9q1JhJTExkANiRI0d4RyFaYuzYsaxLly5MKpXyjsIYYywkJIRZW1urTR5CXhYfH88AsEuXLnHNoVa3XxWNnn7lp6ysDI6OjvD09MTu3bu5fs7g7t27sLGxQUhICCIjIxs8trS0FI6OjvDz89OIhVjFYjE++OAD2NnZ4eDBg7zjEC2RkZEBFxcXODk5YeHChfj888+hr89nBayamhq0b98eU6ZMwbJly7hkIKQxtbW1sLW1hbu7O+Li4rjl0Ih16ojmsba2xsaNG5GUlIStW7dyzbJ8+XLo6ek1aY/bzp07IzIyEhs3bsThw4dVkO7NrFu3DqWlpYiIiOAdhWiRvn374sSJEzA3N8fIkSPRo0cPbN++ncu2er/++isqKipoWzCi1oyMjDBz5kzs3LkT169f5xeE6zyhktHtV/4mTJjAWrZsyYqKiri0f+3aNWZsbMyWLl3a5HNkMhkbOHAg69ixI/vrr7+UF+4N3b9/n5mbm7OQkBDeUYgWS09PZ4MHD2YAWJcuXdjmzZuZSCRSWftDhgxhvXv3Vll7hDRXdXU1Mzc3ZzNmzOCWgWbqiFKtWbMG7du3h5+fH8RiscrbX7p0KVq3bo0ZM2Y0+Rw9PT38/PPPqK6ufq3zVC0sLAy1tbV1LuNDiKK4uLjgwIEDOH/+PD766CMEBQXB1tYW69atU/pOLLdv38ahQ4cwfvx4pbZDiCKYmppi6tSp2LhxI/766y8uGaioI0plamqKHTt24OLFi1iyZIlK2758+TK2bduGBQsWoFWrVq91rrW1NVavXo1t27YhJSVFSQmbr6SkBOvWrcO8efPwzjvv8I5DdEDPnj2RmJiIvLw8uLu7Y/r06bCxsUFkZCQePnyolDZ37NgBfX19+Pr6KuX6hCjaN998A4lEgvXr13Npnx6UICrx3XffYcGCBTh+/Dg8PDxU0qaPj498+xaBQPDa5zPGMHToUGRnZyM/Px9t27ZVQsrmGTlyJLKyslBYWAgTExPecYgOKikpwYoVKxATEwMzMzPMmDED33zzDdq0aaOwNpycnGBjY4OkpCSFXZMQZZs8eTKSk5Nx7do1vPXWW6ptnNuNXxWgz9Spj2fLnPzf//2fSpY5ycrKYgDYli1b3ug6N27cYG3atGF+fn4KSvbmTp8+zQCwuLg43lEIYdeuXWNTp05lAoGAmZmZsfnz57MHDx688XUvXbrEALB9+/YpICUhqlNUVMT09PTYhg0bVN42zdQRlXm2zMmAAQOQkJCg1GVOPv30U/z555/Iycmpd6/gpoqPj8e4ceOQlJSEESNGKChh88hkMvTp0weMMfz+++/clpkg5GW3bt1CVFQU1q9fD0tLSyQnJ+PDDz9s9vVmz56NmJgY3LhxQ+22HCSkMT4+PsjJycEff/xR5+5LykK/EYjKPFvmJDExUanLnBw/fhxpaWkIDw9/44IOAPz9/TF8+HBMnjwZd+/eVUDC5tu5cyeysrKwatUqKuiIWmnfvj0iIiKQm5uL1q1bo2/fvoiPj2/WtSQSCbZv3w4/Pz8q6IhGCg0NRXFxMfbv36/SdmmmjqjcxIkTkZCQgAsXLqBr164KvTZj7IWZLEXNBt6+fRsODg7o16+f0mcZ6/PkyRPY29ujZ8+eSE5OVnn7hDTVkydPEBISgri4OEyfPh2RkZEwMjJq8vmpqakYPHgwzp07B2dnZyUmJUR5PDw8UFNTg4yMDJX9zqB/6hOVe7bMib+/P2praxV67X379iEzM1O+4LCivPPOO1i3bh0SExORkJCgsOu+jh9//BE3b97E999/z6V9QprKxMQEMTEx+OmnnxAdHQ1PT0+Ul5c3+fzY2Fg4ODigZ8+eSkxJiHKFhobi999/x9mzZ1XWJs3UES6ysrLg4uKC0NBQLF++XCHXlEqlcHR0RPv27XH06FGFXPNlo0ePxrFjx5Cfnw8rKyultFGXO3fuwNbWFhMmTMCPP/6osnYJeVPp6enw8fGBnp4ekpKS0Ldv3waPr6yshJWVFZYuXYpvv/1WRSkJUTyZTAZHR0d07twZv/76q0rapJk6wsXHH3+MpUuXYsWKFTh58qRCrrl9+3YUFBQorEisy7p162BoaAgvLy+VbgWzZMkSGBgYYNGiRSprkxBFcHV1RXZ2NmxsbCAUCrF+/Xo0NJewe/duiMVi+Pv7qzAlIYqnr6+P0NBQpKSkID8/XyVt0kwd4UYqlcLT0xNXrlxBTk4OzM3Nm30tkUiEbt26oWfPntizZ48CU74qJycHw4YNQ01NDZKTkxudeXhTKSkp+Pzzz7Fy5UrMnDlTqW0RoixisRizZs3CTz/9hMDAQERHR9e5xqK7uztMTEw0Yu9lQhojFothY2ODgQMHqmQfdJqpI9wYGBggLi4ODx8+REhISIP/em/Mxo0bUVZWhvDwcAUmrJujoyMyMzPRtWtXeHh4IDY2VintPPsl6O3tjUGDBmHq1KlKaYcQVTA2NsbatWsRGxuLnTt34pNPPsG1a9deOOa///0vzpw5g4CAAE4pCVEsY2NjzJgxA9u3b8eNGzeU36DKV8ZTIVp8WDMkJCQwAOzbb79lR44cYdeuXWNSqbTJ51dXVzNLS0s2fvx45YWsQ01NDZswYYI8u0QiUdi1i4uLmbOzMzMyMmKrV69mMplMYdcmhLfs7Gz23nvvMQsLC3bkyBH595csWcJMTU3Zo0ePOKYjRLEqKytZ69atWWhoqNLboqKOqIWZM2cyY2NjBoABYCYmJszR0ZGNGjWKLVy4kMXFxbHMzMw6/1+Gh4czY2NjVlpaqvLcMpmMrVq1iunr67OhQ4cqZKxt376dmZqaMltbW3bu3DkFpCRE/dy7d4999tlnTF9fn61YsYJJpVJmY2PDJkyYwDsaIQo3d+5c1qpVK1ZRUfFa50kkElZYWMj27NnDDh061Ojx9Jk6ojYkEgmuXbuGwsJC+auoqAiFhYW4efOm/DgrKyt069YNdnZ2sLOzQ1hYGAIDA7k+FXrw4EGMGTMG1tbW2L9/P2xsbF77Go8ePcK0adOwdetW+Pv7Y/369WjVqpUS0hKiHqRSKRYvXoxly5ahb9++yMjIwMmTJyEUCnlHI0Shbt26hffeew9hYWF1PtUtk8lw9epV5OXlIT8/X/66fPkyampqAADe3t6NLmZMRR3RCNXV1fIC7+WCz9jYGIWFhbC0tOSasaCgAMOGDUNFRQX27NkDd3f3Jp976dIl+Pr6oqysDNHR0QgICOCywDEhPOzduxcBAQGwsLDAlStXaLcUopWCgoJw8OBBnD59GkVFRcjPz5cXcX/88QceP34MADAzM4ODg4P81b17dzg4OMDKyqrR3wsaVdT98ssvmD59epO3aqKiTvsxxiAWiyEQCHhHAQDcv38fo0aNwpkzZ7B+/XoEBQU1eDxjDNHR0Zg1axbs7e2xa9cudOvWTUVpCVEf169fh1gshq2tLe8ohCjF5cuX8f7778vft2zZ8oXi7VkB17Fjx2b/o/7NN8ZUEZlMhsTERFhbW/OOQtSInp6e2hR0AGBhYYHDhw9j+vTpCA4ORl5eHiIjI+vcg/bBgwf46quvsHfvXkybNg0rV67EW2+9xSE1Ifx16tSJdwRClMre3h6pqamQSqVwcHBAp06dFD4rrTEzdfHx8TAwMMCqVatw7ty5Oo8RiUQQiUTy91VVVbC2tqaZOsJFdHQ0pk+fDk9PT+zatQtt2rSR/9nZs2fh5+eHhw8fYuvWrRg+fDi/oIQQQrSCRnxwQSqVIiEhAb6+vg0e991336F169byF83qEZ6mTJmCQ4cOITMzE3369EFRURGkUinCw8MhFArx7rvv4uLFi1TQEUIIUQi1mqkrLy+Hj4/PK98PDg6GgYEBxo4di169etFMHdEoxcXF8Pb2xu3bt+Hg4IDffvsNCxcuxKJFi+q8LUsIIYQ0h1oVdfWZM2cOLly4AH19fWRkZGDixIlYvXp1o+fRgxJEXVRUVGDMmDHIyclBfHw8+vXrxzsSIYQQLaMRRd3zGpqpexkVdUSdMMYgk8lgYGDAOwohhBAtpBGfqXteUws6QtSNnp4eFXSEEEKURuOKOkIIIYQQ8ioq6gghhBBCtAAVdYQQQgghWoCKOkIIIYQQLaBxT7++DsYYqqur0apVK9ocnRBCCCFaTauLOkIIIYQQXUG3XwkhhBBCtAAVdYQQQgghWoCKOkIIIYQQLaCzu4k/e4iCEEIIIUQTNPbgp84Wdffu3YOlpSXvGIQQQgghTdLYXvY6W9QZGxsDAMrKyhrsIF1UVVUFa2tr6pt6UP/Uj/qmYdQ/9aO+qR/1TcN0qX9atWrV4J/rbFH3bPrSzMxM6wdBc1HfNIz6p37UNw2j/qkf9U39qG8aRv1DD0oQQgghhGgFKuoIIYQQQrSAzhZ1AoEAixcvhkAg4B1F7VDfNIz6p37UNw2j/qkf9U39qG8aRv3zP7RNGCGEEEKIFtDZmTpCCCGEEG1CRR0hhBBCiBagoo4QQgghRAtQUUcIIYQQogV0tqibPXs23Nzc4O/vD7FYzDuO2rh69SratWsHDw8PeHh44O7du7wjqYXq6mr07t0bpqamyMvLAwDs2rULffv2Rf/+/VFWVsY5IT919U3Xrl3lYygtLY1zQn7Onz8PNzc3CIVCjB49GrW1tTRunqqrb2jc/E9eXh5cXV0hFAoxZMgQPHz4kMbOU3X1DY2dp5gOys7OZv7+/owxxsLDw9n27ds5J1IfpaWlbOTIkbxjqJ3a2lp2584dNn78eJabm8vEYjH7xz/+wUQiETt79iwLDg7mHZGbl/uGMcacnZ05p1IPt27dYo8ePWKMMTZv3jyWkJBA4+apuvqGxs3/iMVi+ddLlixhsbGxNHaeqqtvaOz8TSdn6jIyMvDpp58CALy8vPDbb79xTqRe0tPT4ebmhvnz54PRijcAAENDQ7Rr107+vri4GA4ODjA2Noarqytyc3M5puPr5b4BgIcPH0IoFMLPzw8PHjzglIw/KysrtGjRAgBgZGSEoqIiGjdPvdw3hoaGNG6eY2RkJP/68ePH6NSpE42dp17uG3t7exo7T+lkUVdRUSHfH65169Y6PQBe1r59e5SUlOD06dO4c+cOkpOTeUdSS8+PIQCQSqUc06if9PR0nDp1Cl5eXliyZAnvONxdv34dR48exSeffELj5iXP+mbo0KE0bl6SlpYGJycnnDhxAkZGRjR2nvN833Tp0oXGzlM6WdSZm5ujqqoKwN+/nNu2bcs5kfoQCARo2bIl9PT0MHLkSFy8eJF3JLX0/BgCAAMDA45p1I+FhQUAYNSoUTo/hqqqqjBu3Dhs3boVlpaWNG6e83zfGBkZ0bh5ycCBA3HhwgX4+Pjg1KlTNHae83zfbNy4kcbOUzpZ1PXp0wdHjhwBABw+fBiurq6cE6mP6upq+denT5+Gra0txzTqy9bWFgUFBRCLxUhPT4ejoyPvSGpDLBZDJBIBoDEklUrh7++PRYsWwc7OjsbNc17uGxo3L3rWF8Dfd5RMTU1p7Dz1ct+YmJjQ2HnKkHcAHpycnGBlZQU3Nzd06tQJoaGhvCOpjbNnz2LhwoVo0aIFOnfujLCwMN6R1MbgwYNx8eJFFBYWIiQkBP/85z8hFArx1ltvITY2lnc8rp7vm88//xwJCQlo2bIlBAIBtmzZwjseNwkJCfjtt99QXV2NsLAwfP311zRunqqrb1auXEnj5qm0tDRERERAX18f7dq1w7Zt29CuXTsaO3i1byIiIuDi4kJjB7T3KyGEEEKIVtDJ26+EEEIIIdqGijpCCCGEEC1ARR0hhBBCiBagoo4QQgghRAtQUUcIIYQQogWoqCOEEEII0QJU1BFCCCGEaAEq6gghhBBCtAAVdYQQQgghWoCKOkIIIYQQLfD/kVmKMnjomJAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -231,7 +231,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACvgklEQVR4nOzddVxUafs/8M/QIIKBGIiiomLhYiAGirniionYroGu3a1r99rdXaCYoKKYSIgCJnYiohJK91y/P54ffNcFpc7MmRmu9+s1r2d35pz7/riPwMVdR0JEBMYYY4wxptTUxA7AGGOMMcYKj4s6xhhjjDEVwEUdY4wxxpgK4KKOMcYYY0wFcFHHGGOMMaYCuKhjjDHGGFMBXNQxxhhjjKkALuoYY4wxxlSAShd1RITY2Fjw+cqMMcYYU3UqXdTFxcXB0NAQcXFxYkdhjDHGGJMplS7qGGOMMcaKCqUp6h4/fozmzZujVatW+OOPPxAfHy92JMYYY4wxhaE0RV3NmjXh4+ODmzdvwtraGqdPnxY7EmOMMcaYwtAQO0BeaWpqZv1zYmIiLCwssl2TkpKClJSUrH+PjY2VSzbGGGOMMbEpzUgdAFy5cgVWVla4fv06qlWrlu3z5cuXw9DQMOtlamoqQkrGGGOMsZwlJCRg//796NWrF86cOSNo2xJSwvM+Vq1aBalUipkzZ/7wfk4jdaampoiJiYGBgYG8YzLGGGOMgYhw9+5d7N69G8ePH0dcXBxq1qyJ58+fY8iQIVi/fr0gdYrSjNT9u1gzNDREsWLFsl2jra0NAwODH16MMcYYY2KIjIzE+vXrYWlpiSZNmuDixYuYNGkS3r59i6dPn2Lv3r04ceIE6tevD29v70L3pzQjde7u7vjnn3+gpqaGMmXKYP/+/dDT0/vlPbGxsTA0NOSROsYYY4zJhVQqhZeXF/bs2YMzZ86AiNC1a1cMGzYM7du3h7q6+g/Xv337FoMGDYKPjw+mT5+OhQsXQltbu0B9K01RVxBc1DHGGGNMHhITE/HPP/9g3759eP/+PWrXro1hw4Zh4MCBKFOmzC/vzcjIwOrVq/H333+jdu3aOHz4MOrWrZvvDEoz/coYY4wxpqg2bNiApUuXol27dvDz88Pjx48xefLkXAs6AFBXV8eMGTMQEBCA9PR0NGzYEGvWrIFUKs1XBh6pY4wxxhgrJHt7ewDAxYsXC9VOcnIy5syZg3Xr1qFVq1Y4cOAAKlWqlKd7eaSOMcYYY6wQpFIp/Pz80Lx580K3paOjgzVr1uDq1at4/fo16tWrh0OHDiEvY3Bc1DHGGFMJRITNmzejX79+OHr0KB9Az+QmJCQEMTExaNasmWBttm7dGg8fPkTXrl0xaNAgDBs2LNd7lOaJEowxxtjPxMbGYtiwYTh58iTq1q2LY8eOQUtLC+3bt4ejoyO6dOmCUqVKiR2TqShfX1+oq6vD2tpa0HZLlCiBgwcPokuXLkhNTc31ei7qGGOMKbUnT56gZ8+e+PTpE9zc3NCjRw+Ehobi1KlTcHNzw9ChQ6Guro42bdqgZ8+e6NatG4yNjcWOzVSIj48P6tevD319fZm07+jomKfrePo1D5KSkrBnzx6kp6eLHYUxxti/HDt2DNbW1tDU1MS9e/fQo0cPAICpqSkmTJiAW7du4dOnT9i4cSMyMjIwevRolC9fHq1bt8bmzZvx6dMnkf8ETBX4+voKsp6usLioy4PTp0/D2dkZq1evFjsKY4wxAKmpqRg3bhz69euHHj16wN/fHzVq1Mjx2nLlymHUqFHw8vLC58+fsXPnTujo6GDy5MmoVq0anj9/Luf0TJV8+fIFr169EnQ9XUFxUZcHmY/umD9/PkJCQkROwxhjRVtoaChatWqFHTt2YOvWrTh48GCOj47MiZGREYYNG4aLFy8iPDwcAHDhwgVZxmUqztfXFwB4pE5Z3Lp1CwMHDkTVqlUxZMgQnoZlTEkkJiYiIiJC7BhMQFevXkWDBg0QFhaG27dvY9SoUZBIJAVqq3Tp0mjWrBlu3LghbEhWpPj6+sLU1BSmpqZiR+GiLjdRUVEICQlB+/btsW/fPty7dw9r164VOxZjLBfh4eFo3LgxGjRogKSkJLHjsEKSSqVYtmwZOnToACsrKwQFBQmy09DOzg63bt1CRkaGAClZUeTj46MQU68AF3W5un37NgDA1tYWNjY2mDx5MubNm4enT5+KnIwx9jMfPnxAy5Yt8f37d4SHh2Pr1q1iR2KF8O3bN3Tt2hVz5szB3LlzcfHiRRgZGQnStp2dHb5//46HDx8K0h4rWpKTkxEYGKgQU68AF3W58vb2hqmpKSpXrgwAWLRoESpXrowhQ4bwb3aMKaBXr17B1tYWGRkZuH37NoYNG4bly5fzQbRKrH379vDx8YGHhwcWLlwIdXV1wdq2traGrq4url+/LlibrOgIDAxEamoqj9QpC29vb9ja2mat2dDV1cW+ffsQEBCAdevWiZyOMfZvISEhaNmyJXR0dHDr1i1UqVIFf//9N+Lj4/nrVUlFRkYiMDAQmzdvRqdOnQRvX1tbm9fVsQLz9fWFnp4e6tevL3YUAFzU/VJ8fDwCAwNha2v7w/vNmjXDpEmTMHfuXDx79kykdIyxf7t//z5atWoFIyMj3Lp1CxUrVgQAVKxYEaNHj8aaNWsQFRUlckqWX8HBwQCARo0ayawPXlfHCsrHxwdNmjSBhoZiPMuBi7pf8Pf3R0ZGRraiDgAWL16MSpUqYejQofyNgDGR3blzB61bt4aZmRmuX7+OsmXL/vD5rFmzQERYuXKlSAlZQQUFBUFfXx/m5uYy68POzg4xMTF48OCBzPpgqoeIFObQ4UxKU9Rljpi1atUKTk5OSEtLk3mf3t7eKFWqFGrVqpXtMz09Pezbtw/+/v5Yv369zLMwxnJ269YttGvXDnXq1IGXlxdKly6d7ZoyZcpg0qRJ2LRpEz9BQMkEBwfjt99+g5qa7H5cNW7cGLq6ujwFy/Ll1atXiIiI4KKuIExMTODp6YmbN2/C3NwcZ86ckXmfmevpfvbNpHnz5pg4cSLmzp3LJ5IzJoLLly+jY8eOsLa2hqenJwwNDX967ZQpU6Crq4slS5bIMSErrKCgIDRo0ECmfWSuq+PNEiw/fHx8IJFIYGNjI3aULEpT1JUrVw56enoAAE1NzRznr1NSUhAbG/vDq6BSU1Ph7++f49Trvy1ZsgQVK1bkaVjG5OzcuXNwcHBA69at4e7unusTBQwNDTFz5kzs2rULb968kVNKVhixsbF4+fIlrKysZN5X69ateV0dyxdfX1/UqVMHJUqUEDtKFqUp6jJ9+PABXl5e6Ny5c7bPli9fDkNDw6xXYU53DgwMRFJSUq5FnZ6eHvbu3Qs/Pz9s3LixwP3JwsWLF3Hz5k2xYzAmOBcXF/Ts2RMODg44ffo0dHV183Tf2LFjYWRkhIULF8o4IRNC5ho3eRR1dnZ2iI2Nxf3792XeF1MNinTocCalKupiY2MxcOBA7Nu3D5qamtk+nzVrFmJiYrJeoaGhBe7L29sbenp6efpmYmtri/Hjx2P27Nl4+fJlgfsUUmpqKvr164fWrVtj4cKFkEqlYkdiTBAHDx5Ev3790LdvXxw/fhxaWlp5vldPTw9///03Dh06hCdPnsgwJRNCcHAwtLS0ULt2bZn3xevqWH58+/YNISEhCrWeDlCioi4jIwP9+/fHvHnzUKNGjRyv0dbWhoGBwQ+vgvL29kbTpk1zLB5zsnTpUpiYmCjMocRXrlzB9+/f4ezsjIULF6JTp06IjIwUOxZjhZKamoqRI0eif//+2L9/f4GOEXB2dkblypUxb948GSRkQgoKCkK9evXy/H24MLS0tNC8eXMu6lie+Pn5AQCP1BWUq6srfH19sXjxYtjZ2cHFxUVmfUmlUvj4+KBly5Z5vqdYsWLYu3cvfHx8sHnzZpllyytXV1dYWFhgx44d8PT0RGBgIBo0aICAgACxozFWYPfv30dSUhLGjh1b4N2QWlpaWLBgAU6dOoV79+4JnJAJKTg4WOabJP4t87y69PR0ufXJlJOPjw+MjY1RrVo1saP8QGmKur59+yIqKgo3btzAjRs30Lt3b5n19eTJE3z79i3X9XT/1bJlS4wbNw6zZs3Cq1evZJQud8nJyThz5gycnJwgkUjQvn17BAUFwcTEBC1atMDWrVtBRKLlY6yg/Pz8oK2tjd9++61Q7QwYMAC1atXC3LlzhQnGBJecnIyQkBC5rKfLxOvqWF5lnk+X+bQpRaE0RZ083bp1C5qammjSpEm+712+fDlKlSqFNWvWyCBZ3ly+fBmxsbFwcnLKes/U1BQ3b97EyJEjMWbMGAwYMADx8fGiZWSsIPz9/dGwYcN8raPLibq6OhYvXpx1TFJB3LhxAx8/fixUDvZzjx8/Rnp6ulxH6ho3bgw9PT2egmW/lJaWhjt37ijc1CvARV2OvL290bBhw6wjVPKjWLFicHR0xPnz50UbDXNxcUGdOnVQp06dH97X0tLCxo0bcezYMZw9exZNmjThx5wxpeLn54emTZsK0laPHj3QsGFDzJkzJ19fq2/fvs06SqVdu3aFOjopJ0lJSVi6dCm+f/8uaLvKJjg4GGpqaqhXr57c+uR1dSwvHjx4gKSkJIXbJAFwUZcNEcHb2ztf6+n+q0uXLggLC8t6ZqE8JSUl4dy5c7+cnu7Tpw/u3r0LIkLjxo3h6uoqx4SMFUx4eDjev38v2EGfEokES5cuhY+PDy5evJjr9SkpKViyZAlq166NBw8eYMuWLQgPD8eQIUME+wWOiODs7Iy5c+fi0qVLgrSprIKCglCrVq0C/XJdGLyujuXGx8cH2trach1Fzisu6v7j7du3+PTpU77X0/2bra0tDA0Nce7cOQGT5c3FixcRHx//w9RrTmrVqoWAgAA4ODigd+/emDhxIlJTU+WUkrH88/f3BwDBRuoAoEOHDmjZsiXmzJnzy2N/rly5gnr16mHhwoWYMGECnj59itGjR+PgwYM4deoUVq9eLUieFStW4OjRo9DQ0MDr168FaVNZBQcHy3U9XSY7OzvExcWJ8ks5Uw6+vr5o1KgRtLW1xY6SDRd1/3Hr1i1IJJJCDatqamrC3t5elKLO1dUV9evXR82aNXO9Vl9fH0eOHMGmTZuwdetW/P777wpxHAtjOfHz84OpqSlMTEwEazNztO7+/ftwc3PL9nlYWBh69+6NDh06oEKFCnjw4AFWrFiR9fSKrl27Yvbs2Zg5cyauXbtWqCxnzpzB7NmzMW/ePFhZWRXpoi49PR0PHjwQZSSkUaNGvK6O/RQRKeShw5m4qPsPb29v1K1bFyVLlixUO126dEFwcHChDkDOr8TERJw/fz7XUbp/k0gkGDt2LC5cuIAbN27gxIkTMkzIWMH5+fnJ5BmLLVq0gL29Pf7++++sKbe0tDSsXbsWFhYWuHnzJg4fPozr16/neAjuokWL0KZNG/Tp06fAX+8PHjzAgAED4OjoiPnz58Pc3FzUHfRie/78OZKTk0UZqeN1dexXPnz4gLCwMIVcTwdwUZeNt7d3oaZeM3Xs2BEaGhpwd3cXIFXeeHh4IDExMV9FXaZ27dqhU6dOWLhwIY/WMYWTlpaGe/fuCTr1+m9LlizB8+fPcejQIXh7e6NBgwaYNm0ahgwZgmfPnqF///4/PbpAXV0dx44dg66uLhwdHZGSkpKvvr9+/YouXbqgRo0a2L9/P9TU1Ip8URcUFAQAhT66pqBat24Nb29vXlfHsvH19QWgeIcOZ+Ki7l8+f/6Mly9fFmqTRKaSJUuiZcuWcp2CdXV1RYMGDWBubl6g+xcsWIBnz57h+PHjAidjrHAePHiA5ORkmRV1DRo0QK9evTBu3Di0bNkSenp6uHv3LjZu3Jinh3UbGRnBzc0N9+/fx8SJE/Pcb0pKCnr06IGUlBScPXs2a1q3WrVqCA8PR0JCQgH/RMotODgYVatWFe1B6Znr6jKLS8Yy+fj4oHr16ihTpozYUXLERd2/3L59GwAEGakD/jcFe+3aNcTFxQnS3q/Ex8fDw8OjQKN0mRo3bozOnTtj0aJF/BsqUyh+fn7Q0tKS6XTckiVLUKtWLezcuRN+fn75Xs/VqFEjbNmyBdu3b8f+/ftzvZ6IMHLkSNy7dw9nzpyBqalp1meZv5i9efMmXxlUhVibJDLxujr2M5mHDisqLur+5datW6hatSoqVKggSHsODg5ITU3F5cuXBWnvV9zd3ZGUlFSoog4AFi5ciBcvXuDo0aMCJWOs8Pz9/dGgQQOZ7jarUaMG7t69i+HDhxf4EWTOzs4YNmwYRo4cmesoz9q1a7F//37s3r0721rBzKKuKG6WICK5Px7svzQ1NdGiRQsu6tgP4uLi8ODBA4WdegW4qPuBUOvpMlWtWhV16tSRyxSsi4sLGjdujCpVqhSqnQYNGqBr165YvHgxj9YxhSHkocOytnnzZtStWxc9e/ZEdHR0jtd4eHhg2rRpmDlzJgYMGJDtc2NjYxQrVqxIrqt7+/YtYmJiRB2pA/43Bcvr6ti/BQQEQCqV8kidMoiJicGDBw8ELeqA/03Benh4yPQbQ2xsLC5evCjY83AXLFiAV69e4fDhw4K0x1hhfPnyBW/fvpXJzldZ0NHRgZubG+Li4tC/f/9sG4+ePHmCvn37wsHBAUuXLs2xDYlEUmQ3S2SOcIp9sKudnR3i4+N5XR3L4uPjgxIlSsDCwkLsKD/FRd3/5+vrCyISZJPEv3Xp0gVRUVHw8/MTtN1/O3fuHFJSUtCrVy9B2vvtt9/Qo0cPLFq0CGlpaYK0yVhByeLQYVmrXLkyjh07Bk9PTyxatCjr/cjISHTp0gVmZmY4fPjwL6d5q1WrViSnX4ODg1G+fHmULVtW1ByNGjVCsWLFcP36dVFzMMWReT5dQZdnyIPiJpMzb29vlC1btsA7R3/G2toaxsbGMp2CdXV1RdOmTVGpUiXB2pw/fz7evn2LgwcPCtYmYwXh5+cHExOTHzYSKIP27dtjyZIlWLRoEdzd3ZGamgpHR0fExsbi3LlzKF68+C/vL8ojdWKP0gG8ro79KCMjA/7+/go99QpwUZfl1q1bsLW1/elZVAWlpqYGBwcHnD9/XtB2M33//h2enp6F3iDxX5aWlnB0dMTixYv58WFMVP7+/koz9fpfM2fORJcuXTBgwAAMGDAAvr6+OHXqFMzMzHK919zcHB8+fChSX39EhKCgINHX02Wys7PD7du3ecaC4cmTJ4iNjVXoTRIAF3UAgOTkZNy9e1fw9XSZunTpgufPn+P58+eCt3327FmkpqYKNvX6b/Pnz8eHDx/ydDwDY7KQnp6Ou3fvKtXU67+pqanh4MGDKFOmDE6cOIHt27fn+ftMtWrVIJVK8e7dO9mGVCDh4eH4+vWrQozUAbyujv0fX19fqKurw9raWuwov6Q0RV1cXByaNGkCfX19PH78WNC2AwICkJqaKrOirl27dtDR0ZHJaJ2rqytatGgh6PMwM9WtWxdOTk5YunRpvk/JZ0wIDx8+RGJiotIWdQBgaGgIT09PuLi4YOjQoXm+L3MpSFGagg0ODgYAhRmpa9iwIYoVK8ZTsAw+Pj6wsrKCnp6e2FF+SWmKOl1dXbi7u8PR0VHwtr29vWFgYABLS0vB2wYAPT09tGvXTvB1ddHR0bh8+bJgu15zMm/ePISGhmLv3r0y64Oxn/H394empqbCjNwUVNWqVfO9RKJixYrQ1tYuUpslgoODUbJkSVSuXFnsKAD+b10db5Zgin7ocCalKeo0NDRyfSxHSkoKYmNjf3jlhbe3N5o3bw51dXUhouaoS5cu8PHxQWRkpGBtnjlzBhkZGejZs6dgbf5X7dq10bdvXyxbtoxH65jc+fn5wcrKCjo6OmJHkTs1NTVUqVKlSI3UZa6nE3ptc2G0bt2a19UVcZ8/f8abN28Ufj0doERFXV4sX74choaGWa+87JZLT0+Hj4+PzKZeM3Xu3BlSqRQXLlwQrE0XFxe0atUK5cuXF6zNnMybNw+fPn3C7t27ZdoPY/+lTIcOy0JR2wEr9uPBcmJnZ4eEhAQEBgaKHYWJxMfHBwB4pE7eZs2ahZiYmKxXaGhorvc8ePAA8fHxMi/qypcvD2tra8GmYCMjI3H16lXBd73mpGbNmujXrx+WLVuG5ORkmffHGABERETg9evXSrvzVQhF6ay66OhovHv3TuGm2hs0aAB9fX1eV1eE+fr6onLlyjJZuy40lSrqtLW1YWBg8MMrN97e3tDW1kbjxo1lnq9Lly7w9PQUZBrz1KlTICKZTr3+27x58/Dlyxfs3LlTLv0xpoyHDgvN3Nwcb968yfZUClV0//59AIqzSSITn1fHMg8dVgZKVdR16tQJly9fxvDhwwU7ZsPb2xtNmjSR6YPCM3Xp0gXx8fGCfHNwdXVF69atYWxsXPhgeVC9enUMGDAAy5cvR1JSklz6ZIojJiYGDRo0gJubm9z69PPzQ7ly5QQ9VFvZmJubIy0tLU+zDsouKCgIenp6qFGjhthRsuHz6oqupKQkBAUFKcXUK6BkRd2FCxfw6dMn+Pn5YfDgwYVuj4jg7e0t86nXTHXr1oWZmVmhp2C/fPmC69evy3TXa07+/vtvREREYPv27XLtl4lv586dCA4OhrOzMz5+/CiXPv39/dG0aVOFWjQvb9WqVQOAIjEFGxwcjPr168t0w1pBZa6ru3fvnthRmJzdu3cPaWlpqjtS9/37d7i4uGDt2rVYt24djh8/jm/fvskim8w9f/4cERERcivqJBIJHBwccO7cORBRgds5deoUJBIJunfvLmC63FWrVg1//vknVqxYgYSEBLn2zcSTlpaGjRs3onv37tDT08OQIUMglUpl2md6ejoCAgKK9NQr8L9nyKqrqxeJzRLBwcEKt54uU8OGDXldXRHl6+sLfX191KtXT+woeZKvom7Pnj2wtraGv78/pFJp1rPQbGxssGfPHllllBlvb2+oqanJ9QdHly5d8PHjx6z1IwXh6uqKdu3awcjISLhgeTR37lxER0dj27Ztcu+bicPV1RUfP37EwoULsXfvXnh5eWHLli0y7fPJkydISEgo0pskAEBLSwuVKlVS+ZG6hIQEPHv2TOHW02XS0NCAra0tF3VF0O3bt9GkSRNoaGiIHSVvKB9q1KhBcXFx2d6PjY2l6tWr56cpuYiJiSEAFBMTk+PnAwcOpIYNG8o1U0pKChkYGNCCBQsKdP+nT59IIpHQnj17BE6Wd8OHD6cyZcrk+HeBqRapVEpWVlb0+++/Z703ZswY0tHRoadPn8qs323btpGGhgYlJibKrA9l0b59e+revbvYMWTK19eXAFBgYKDYUX5q5cqVpKenR6mpqYK3nZSURPv376fo6GjB22YFFx4eTpqamrR69Wqxo+RZvkbqJBIJ4uPjs70fHx+vlOte5LmeLpOWlhbs7e0LvK7Ozc0NGhoacp96/bc5c+YgLi4Obdu2LRILuIuyGzduIDg4GFOmTMl6b9WqVahUqRIGDBggs4Xjfn5++O2336CrqyuT9pVJUTirLigoCJqamqhTp47YUX7Kzs4OiYmJuHv3rqDt3rlzB1ZWVhg8eDBatWqFz58/C9o+K7jt27dDU1MzX4/3E1u+irrVq1ejVatW6NmzJ8aPH4/x48ejR48esLOzw5o1a2SVUSZCQ0Px7t07uRd1wP+mYIOCggq04NzFxQXt27dHyZIlZZAsbypXroxbt24hPDwcDRo0wLVr10TLoozCwsJw9epVsWPkyZo1a2BpaYl27dplvaenp4dDhw7h/v37WLJkiUz6zVzWwf7vrDoqxDpcRRccHIw6derI5RSCgso8r27r1q15flrRryQnJ2P69Olo1qwZihcvjjNnziAqKgotWrTAu3fvCh+YFUpKSgq2bduGP//8U9Sft/mW36G99PR08vX1pZMnT9KJEyfI19eX0tPTZTCIWHi/mn49cuQIAaAvX77IPVd0dDSpq6vTtm3b8nWfi4sLAaADBw7IKFn+REREULt27UhNTY1WrlxJUqlU7EhKYdCgQaStrU3fvn0TO8ovhYSEEADav39/jp/Pnz+f1NXVyd/fX9B+IyMjCQAdOXJE0HaV1ZkzZwgAffr0SewoMmNlZUVDhw4VO0au1q5dS9ra2lSqVClavnx5gZeg+Pn5kYWFBWlpadGKFSsoLS2NiIjevHlD1apVIxMTEwoJCREyOsunAwcOEACZLjORhXwXdcrkV0XdyJEjqWbNmiKk+p/WrVuTvb19nq799u0b9e/fnwBQr169KCkpScbp8i49PZ1mzZpFAKhHjx4/Xb/I/icpKYmKFy9OAGjnzp1ix/klZ2dnKl++PKWkpOT4eWpqKjVq1IiqV69O8fHxgvXr7u5OAOjNmzeCtanMHj9+TADI29tb7CgykZKSQpqamrRp0yaxo+TJx48fafTo0aSpqUllypShNWvW5HntZ2JiIk2dOpXU1NTI2tqanjx5ku2aT58+Ud26dcnIyIju3bsndHyWBzmtJVYWBS7qTp48KWQOmfhVUXf16lVycXERIdX/rF27lrS0tHL9Te/q1atUsWJFMjQ0pMOHDyvsaNiZM2fIwMCAatasmeM3KvY/p0+fJgBkYWFBLVq0EDvOT33+/Jm0tbVp2bJlv7zu2bNnpKurS6NHjxas77lz55KxsbHC/l2Xt8TERAJA+/btEzuKTAQFBREA8vHxETtKvrx7946GDRtG6urqVL58edq0aRMlJyf/9HpfX1+qWbMmaWtr08qVK7NG53ISFRVF1tbWVLx4cbp586Ys4rNfuHXrFgGgixcvih0l3wpc1GlpadHatWt/eY3Y35Rz2/0qplevXhEAcnNzy/HzxMREmjhxIgGgNm3a0IcPH+ScMP+eP39OderUoWLFipGrq6vYcRRSnz59yNLSMmv6//Xr12JHytG8efNIT0+PoqKicr1206ZNBIAuXbokSN9t27alrl27CtKWqjAxMaE5c+aIHUMm9uzZQxKJRGl30798+ZIGDhxIampqZGpqSjt27Phhh2xiYiJNmTKFJBIJWVtb53laNTY2ltq0aUM6Ojrk4eEhq/gsBz179qSaNWtSRkaG2FHyrcBF3aVLl8jAwIDGjRuXrXhLT0+nffv2iTq9SaTYRR0RUe3atenPP//M9n5QUBDVrl2btLW1ad26dUr1Fys+Pp769OlDAGjKlCm//G20qImPjyc9PT1aunQpJSQkkL6+Pi1cuFDsWNkkJiaSkZERjR07Nk/XZ2RkUIcOHah8+fIUGRlZqL7T09NJX1+fVqxYUah2VE3Lli2pT58+YseQibFjx5KFhYXYMQrt6dOn1Lt3bwJAVapUoX379tGtW7eoRo0apK2tTatWrcr398OkpCTq0qULaWho0PHjx2WUnP3bu3fvSE1NjbZs2SJ2lAIp1Jq6+/fvU8WKFalbt26UmJhIKSkptHXrVjIzM6OSJUvSvHnzhMpZIIpe1M2cOZNKly6dtdEkLS2Nli5dShoaGmRlZUWPHz8WOWHBSKVS2rBhA2loaFCrVq3o8+fPYkdSCJkbXV69ekVERIMHD6Zq1aqJPqL9X9u3byeJRJKVMy8+fvxIJUuWJCcnp0L9eR4+fEgA6MaNGwVuQxUNHTqUGjVqJHYMmWjWrBn17dtX7BiCefjwIXXv3p0AEABq0qRJoTY9pKamUv/+/UkikSj8OlxVMG3aNDI0NFTakeNCb5T4+PEjWVpakqWlJVWoUIHKlClDS5cupdjYWCHyFYqiF3WZB256e3vTq1evqGnTpqSmpkazZ8/+6eJ0ZeLt7U3lypWjChUqUEBAgNhxRNe9e/cffjBfu3ZN4dYSZWRkUI0aNahHjx75vvfYsWOF3rW6Y8cOUldXF3TjhSpYtmwZlShRQuwYgktPT6dixYrRP//8I3YUwQUGBpKLi4sgp0NkZGTQmDFjCIBK/rdSFPHx8VSiRAmaMmWK2FEKrFBF3ffv32nRokVUunRp0tXVJT09PXr48KFQ2QpN0Yu69PR0MjY2pmbNmlGxYsWoatWqCvUDXgifPn2i3377jZo0aSJ2FFHFxMSQtrb2DyeTZ2RkkKmpKf31118iJvvRuXPnCAD5+voW6P6+fftSiRIlKDQ0tED3Dx48mBo0aFCge1VZ5ihvXtY4KpOnT58SAPLy8hI7isKTSqU0Z84cAkBz5sxRuBF+VbBt2zZSU1Ojt2/fih2lwApc1M2cOZMMDQ2patWqtGPHDoqPj6c///yTjI2NFWZURtGLOiKiYcOGEQAaPny40g735mbv3r0kkUgoIiJC7CiiOXToEAHItuFl9uzZVKJECYU5pqZVq1bUtGnTAt8fHR1NJiYm1LZt2wKtBbWwsBB0J62qCAwMJAB0584dsaMI6ujRoypZrMrSqlWrCAAtWrRI7CgqRSqVUq1atZT+kXwFLuosLCzowIED2YaW586dS8WKFaMzZ84UOlxhKUNRFxERoXLfqP/r06dPRf4w2T/++IOaN2+e7f3MkQpFOCLo7t27gmS5fPkyAaBVq1bl676oqCgCQIcOHSpU/6ro+/fvBICOHj0qdhRBTZ06lSpXrix2DKUzbtw4Kl26tEos01EUnp6eKrGet8BF3a+Gfnft2kXa2tqiHyapDEVdUfHbb79R//79xY4hiqioKNLU1KSNGzfm+Lm1tTV16dJFzqmy69OnD1WtWlWQNUAzZswgADRz5sw8j9hduHDhh40k7EdGRkYqNzrTtm1b6tatm9gxlE7mhiJFGDxRFZ06daL69esr/bR2vp79+m8SieSnnzk7O+P06dOYPXt2QZvP0dSpU2Fra4v+/fsjNTVV0LaZbNnb28PT0xNSqVTsKHJ3+vRppKenw9HRMcfPBw4ciAsXLiAiIkLOyf7Phw8fcOLECUycOBHq6uqFbm/58uVYs2YNVq5cCUdHRyQkJOR6j7+/P4yMjFC1atVC96+KzM3N8erVK7FjCIaIEBQUhAYNGogdRenUq1cPv/32Gw4ePCh2FJXw4sULXLhwARMmTPhlbaMMClzU5cbe3h43btwQrL3g4GB8/vwZ3t7eqF27Nk6ePClY20z27O3tERkZiXv37okdRe5cXFxgZ2eH8uXL5/h5nz59AADHjx+XZ6wfbNiwAcWLF8eQIUMEaU8ikWDy5Mk4e/YsLl++DFtbW4SFhf3yHj8/PzRt2lTpv6nKSrVq1fD69WuxYwjmw4cP+PbtG6ysrMSOopQGDRoEd3d3REdHix1F6W3atAllypRB3759xY5SaDIr6gAI+huYn58fOnToAADo2LEjfH19s12TkpKC2NjYH15MMTRt2hSGhoa4ePGi2FHk6uvXr7h69Sp69+7902uMjIzwxx9/iPZbd0xMDHbt2oWRI0dCX19f0LYdHBzg4+ODyMhIWFtbIzAwMMfrpFIp7ty5AxsbG0H7VyWqNlIXHBwMQNifE0VJ3759kZGRAVdXV7GjKLWYmBjs378ff/31F3R0dMSOU2gyLeqE9P37dxgYGAAADA0Nc/ztZPny5TA0NMx6mZqayjsm+wkNDQ20b9++yBV1bm5ukEgk6Nmz5y+vGzRoEO7du4enT5/KKdn/2b17N5KTkzFu3DiZtF+/fn0EBASgYsWKsLW1xalTp7Jd8/TpU8TGxqJp06YyyaAKzM3N8eXLF8TFxYkdRRBBQUEwNjb+6Qg2+7Vy5crh999/5ynYQtq7dy9SUlIwatQosaMIQmmKupIlS2aNvH3//h2lSpXKds2sWbMQExOT9QoNDZV3TPYL9vb2CAgIQGRkpNhR5MbFxQXt2rWDkZHRL6/7448/ULJkSRw6dEhOyf4nLS0NGzZsQN++fVGhQgWZ9VOuXDncuHEDDg4O6NmzJ1asWAEiyvrcz88PampqaNy4scwyKLtq1aoBAN68eVPgNkJDQ7FmzZof/tuLJTg4GA0aNODp9kIYOHAg/Pz88PLlS7GjKKWMjAxs2rQJTk5OMv3+J09KU9TZ2Njg8uXLAABPT080b9482zXa2towMDD44cUUR8eOHUFEWf8/qrpPnz7h1q1bWWvmfkVbWxt9+vTBoUOH5LqZ5OTJkwgNDcXkyZNl3peuri6OHTuGefPmYdasWRg8eDBSUlIA/G+TRL169QSf/lUl5ubmAFCoKdgtW7Zg6tSpuHr1qlCxCiwoKIjX0xVS165dYWBgIPdfBlXF+fPn8fbtW0yYMEHsKIJRmqLOysoK5cqVg62tLUJCQnKdzmKKp0KFCqhfv36RmYI9ceIENDU10a1btzxdP3DgQHz8+FHQDUa/QkRYvXo12rdvj/r168ulTzU1NSxcuBCHDx/G8ePH0a5dO0RGRmZtkmA/Z2RkhOLFixdqs4SHhwcAYNWqVULFKpAvX77g06dPvJ6ukHR1ddGrVy+5/zKoKjZs2ICmTZuq1AyB0hR1ALB69Wp4e3vjyJEj0NLSEjsOK4CidLTJ8ePH0bFjR5QoUSJP19vY2MDc3Fxua2SuX7+OoKAgTJkyRS79/Vv//v1x/fp1PH/+HNbW1nj69CkXdbmQSCSF2izx4cMHPH78GN27d8eVK1eyNiqIIfMXu4YNG4qWQVUMGjQI7969g4+Pj9hRlMrDhw9x48YNlRqlA5SsqGPKz97eHhERET/dBakq3r17B39//1/uev0viUSCQYMG4eTJk3k6160w0tLSMHHiRDRu3DhrV7m8NWvWDAEBAdDT0wMRcVGXB4Up6jw8PKCuro5du3bBzMwM//zzj8Dp8iYmJgazZs1Cr169UKVKFVEyqJIWLVrAzMyMN0zk04YNG2BiYoIePXqIHUVQXNQxuWratCkMDAxUfgrW1dUVOjo6cHBwyNd9AwYMQEJCAs6cOSObYP/f+vXr8eTJE2zfvl3UhepmZmbw9fXF1atXUb16ddFyKIvCnFXn4eEBW1tblC5dGlOmTIGrqyvevXsnbMA8mD9/PuLi4rB27Vq5962K1NTUMHDgQLi6uiIpKUnsOEohIiICR44cwZgxY6CpqSl2HEFxUcfkSlNTs0gcbeLi4oLOnTujePHi+bqvSpUqaNmypUx/637//j0WLFiAcePGKcSaJgMDA7Rp00bsGErB3NwcoaGhSE5Oztd9iYmJuHr1Kv744w8AwJAhQ1CiRAmsW7dOFjF/6sGDB9i0aRPmz5+PihUryrVvVTZw4EDExsbi3LlzYkdRCjt37oREIsGIESPEjiI4LuqY3Nnb2+POnTuIiooSO4pMvHz5EkFBQfmaev23QYMGwcvLK9cnMBQEEWHcuHEoWbIkFi9eLHj7TLbMzc1BRHj79m2+7rt+/TqSk5OzirpixYphzJgx2L17t9y+DqVSKUaPHg0LCwtMnDhRLn0WFdWrV4eNjQ1PweZBWloatm7digEDBqB06dJixxEcF3VM7uzt7VX6aBMXFxfo6+ujU6dOBbrf0dERWlpaOHr0qMDJgDNnzuD8+fPYuHFjvkcRmfgyz6rL7xSsh4cHqlSpAgsLi6z3xo4dC6lUiq1btwqa8WcOHjwIX19fbNmyReWmvBTBoEGD4OnpiS9fvogdRaFdv34dnz59wujRo8WOIhNc1DG5U/WjTVxcXNClSxfo6ekV6H5DQ0N07doVBw4cEPSQ2Li4OIwfPx5//PEHunfvLli7TH4qVKgAHR2dfG2WICJ4eHjgjz/++GH9ZJkyZTB06FBs3LhR5muxvn37hunTp6Nfv36ws7OTaV9FVe/evaGmpoZjx46JHUWhubu7o1KlSvjtt9/EjiITXNQxUdjb2+PSpUsqd7TJkydP8Pjx4zwdOPwrgwYNwpMnT3D//n1hguF/C9SjoqKwefNmPsVfSampqaFq1ar5Gql78uQJPnz4kDX1+m+TJ09GdHQ09u/fL2DK7ObMmYOUlBSsXr1apv0UZaVKlYKDgwNPwf4CEcHd3R2dO3dW2e+BXNQxUWQebRIUFCR2FEG5uLjA0NCw0MeEdOjQAcbGxoKdFB8cHIwNGzZg/vz5MDMzE6RNJo78Hmvi4eEBPT29HEfIqlWrBkdHR6xevRoZGRkCpvw/gYGB2L59OxYtWsTPeZWxQYMGITg4GI8ePRI7ikJ69uwZ3r59m+MvOKqCizomClU82oSI4OLigu7du0NbW7tQbWloaKB///44cuQI0tPTC9VWRkYGRo4ciVq1asnlcWBMtgpS1LVr1w46Ojo5fj5t2jS8efMGp06dEipilszNEfXq1cOYMWMEb5/9yN7eHqVLl+bHhv2Eu7s7dHV10bp1a7GjyAwXdUwUin60yb179zBv3jz4+PjkeV3b/fv38eLFi0JPvWYaNGgQvn79WugNJTt37kRAQAB27NjBC9RVQLVq1fDu3bs8FfvR0dHw8fH55chEo0aN0KZNG6xcuVLQNZwAsHv3bgQEBGDr1q3Q0NAQtG2WnZaWFvr06YMjR47IbOQ1U3p6OsaNG4dRo0bJtB8hubu7o127dtDV1RU7iuyQCouJiSEAFBMTI3YUloPdu3eTmpoaRUVFiR0li7e3N/3+++8EgHR1dQkA1axZk1atWkWfP3/+5b0zZsyg0qVLU2pqqiBZpFIp1a1bl3r37l3gNsLDw8nQ0JCcnZ0FycTE5+npSQDo9evXuV579OhRAkChoaG/vO7SpUsEgK5duyZUTIqIiKBSpUrR4MGDBWuT5e7OnTsEgC5fviyzPpKSkqhbt24EgACQn5+fzPoSSlRUFKmrq9OOHTvEjiJTPFLHRNOxY0dIpVLRjzYhInh5ecHOzg62trYICwvDsWPHEBMTg6tXr6JBgwb4+++/UbFiRfTo0QMeHh7ZRkno/0+9Ojo6CjYalvnYsDNnzuDTp08FamPy5MnQ1NTEypUrBcnExGdubg4AeZqC9fDwQP369XM96LdDhw6wtLTEqlWrBMkIALNmzYJUKuW/e3LWuHFj1KxZU2YbJmJjY9GpUydcunQJ586dQ926dTFnzhyZ9CUkT09PZGRkqPR6OgA8UsfEZWlpSYMGDRKlb6lUSufOnSNra2sCQA0bNqTTp09TRkZGtmujoqJo48aNZGlpSQDIxMSE5syZkzVa4u/vL/hIBxHRp0+fqHTp0qSvr08LFiyg2NjYPN+bOaJz4MABQTMxcaWlpZGGhgZt3br1l9elp6dT6dKlac6cOXlq9/DhwwSAHjx4UOiMfn5+BIC2bNlS6LZY/i1dupT09PTy9f0iL75+/UoNGzYkAwMDunXrFhERnT59mgDQ1atXBe1LaP379ycrKyuxY8gcF3VMVDNmzCBjY+McCylZSU9PJxcXF6pfvz4BoBYtWtClS5dIKpXmeq9UKqW7d+/SyJEjycDAgABQmzZt6Pfff6dy5cpRenq64HkjIyNpypQppKWlRWXKlKFNmzZRSkrKL+9JTEykatWqkZ2dXZ7+XEy5mJub0+TJk395jY+PDwEgX1/fPLWZmppKlSpVogEDBhQqW3p6OllZWVHDhg1l8vXAcvf+/XsCQPv37xeszQ8fPlDNmjXJ2NiYgoODs96XSqXUuHFjsrGxUdjvNWlpaVSqVCmaO3eu2FFkjos6JqobN24QALp7967M+0pNTaUDBw5QzZo1CQC1b9+ebt68WeD2EhIS6MCBA2Rra0sAaNKkSQKmze79+/c0ePBgkkgkVLVqVTp69OhPi+G///6bNDU16enTpzLNxMTx+++/U9euXX95zezZs8nIyChfhdX69etJXV2d3r17V+BsmzdvJolEQnfu3ClwG6zwWrduTW3atBGkrWfPnpGpqSlVrlyZXrx4ke3zzFmB8+fPC9Kf0Ly9vQkA+fv7ix1F5rioY6JKTU0lAwMDWrRokcz76t27NwEgBwcHwb+4P3z4QElJSYK2+TOPHj0iBwcHAkBWVlbZRhmfPn1Kmpqa9Pfff8slD5O/MWPGUJ06dX55jaWlZb5H3eLi4qhkyZI0ceLEAuX6/PkzGRoa0vDhwwt0PxPOvn37SCKR0IcPHwrVTmBgIBkZGVHt2rXp48ePOV4jlUqpZcuWVL9+fbnOuuTVjBkzqEyZMgqZTWhKUdTFxsaStbU1FStWjB49epTn+7ioUw49evSgpk2byrSPzHUfhw4dkmk/8uTt7U3NmzfPmgIOCAggqVRKdnZ2VK1aNUpMTBQ7IpORdevWkY6Ozk9/SH348IEA0LFjx/Ld9ty5c6lYsWIF2pU+aNAgKl26NEVGRub7Xias2NhY0tXVpeXLlxe4jevXr1Px4sXJ2to61/9PM0fDXFxcCtyfrNSpU6fI7MJWiqIuLS2Nvn79Sn/++ScXdSpo165dMj3a5Nu3b1S+fHnq3Lmzwq75KCipVEpnz56l2rVrEwBq2rSpzI8zYOI7d+4cAfjpyMn27dtJXV2doqOj8932ly9fSFtbm5YsWZLne6RSKbm7uxMA2rVrV777ZLLRr18/qlWrVoG+7509e5a0tbWpXbt2FBcXl6d7OnbsSDVr1qS0tLR89ycrb9++JQB08uRJsaPIhVIcaaKhoYEyZcrkel1KSgpiY2N/eDHFJ+ujTaZPn474+Hhs27ZN5Z73J5FI0KVLFzx8+BD79u1DWFgYBg8ejPbt24sdjclQbseaeHh4oHnz5ihZsmS+2zY2NsaQIUOwceNGJCUl/fS6pKQkXLhwAaNHj0blypXRuXNn2NraYujQofnuk8nGoEGD8PTpUwQGBubrvoMHD6JHjx7o3Lkz3N3doa+vn6f7lixZgufPn+Pw4cMFiSsTHh4eWYfdFwliV5X5kdtI3fz587MOQ/z3i0fqFF+9evVkcrTJ9evXi9TRClKpVOVGI1l2SUlJJJFIaM+ePdk+S0xMJD09PVq5cmWB23/58iVJJBLavn37D++HhYXRzp07qUuXLqSnp0cAqEqVKjR+/Hi6fPlyrruymXylpaVR+fLlady4cT+8n5qaSlFRUfT+/Xt6/Pgx+fn50ZUrV+jUqVM0d+5cAkDOzs4F2r3co0cPMjMzU5i/Cx07dqS2bduKHUNuFKqoCw8Pp+bNm2d7ZU7L5VbUJScnU0xMTNYrNDSUizolMX36dMGPNklMTCRzc3Nq0aJFkVggy4oWU1NTmjVrVrb3L1y4QADo8ePHhWrf0dGRzM3NKSAggObPn08NGzYkAKSmpka2tra0cuVKCgkJ4V8iFNzUqVNJW1ubzMzMyMjIiLS1tXMc/Mh8SSQSmjlzZoH/f338+DFJJBKF+EU6Li6OtLS0aN26dWJHkRuFehhfuXLlcPv27QLfr62tXegHqTNx2NvbY9WqVQgODkbDhg0FaXPBggX48OEDzp8/DzU1pVhpwFiemZub5zj96uHhgcqVK6N27dqFan/69OmwtraGtbU1DA0NYW9vj0mTJsHe3h6lSpUqVNtMfiZOnIiMjAxoa2ujePHiWS99ff0f/v3f7xXm52idOnXQv39/LFmyBIMHD4aenp6Af5r8uXr1KlJTU9G5c2fRMsibQhV1v9KpUyfcv38fz58/x19//YXBgweLHYkJqHnz5ihevDguXrwoSFEXFBSENWvWYOHChbCwsBAgIWOKpVq1aggKCvrhPSKCh4cHOnfuXOj1o40bN4aLiwuMjY3RvHlzwR5/x+TLxMQEa9eulWufCxYswPHjx7F161ZMnTpVrn3/m4eHB2rWrJm1BrUokBARiR1CVmJjY2FoaIiYmBgYGBiIHYflokePHvjy5Qt8fHwK1U5aWhqsra0hlUpx7949/mHEVNLKlSuxbNkyfP/+PauACwkJQZ06dXDhwgXY29uLnJAVZX/99Rfc3Nzw5s0bUX7+EhFMTEzQr18/rF69Wu79i4XnpJjC6NSpE/z9/REdHV2odtasWYOHDx9iz549XNAxlWVubo7Y2FhERkZmvefh4QFdXV3Y2dmJF4wxAH///Tfi4+Oxfv16UfoPDg5GeHg4/vjjD1H6FwsXdUxhZB5tcuXKlQK38eLFCyxYsACTJk1Co0aNBEzHmGKpVq0aAOD169dZ73l4eKBt27bQ1dUVKxZjAICKFSti1KhRWLNmTaF/US8Id3d3GBgYoEWLFnLvW0xc1DGFUbFiRdSrVw8XL14s0P1SqRQjRoyAiYkJFi1aJHA6xhRLZlGXuVni27dvuH37dpEbmWCKa9asWcjIyMA///wj977d3d3RsWPHIjdbw0UdUyj29va4ePHiTw9V/ZXdu3fj5s2b2Llzp6g7rhiTh+LFi8PY2DhrpO7y5cvIyMjgoo4pDGNjY0yYMAEbN27E58+f5dbvly9fcPfu3SK16zUTF3VMofz5558gItSoUQPdu3eHj48P8rKXJywsDNOmTcPQoUPRtm1bOSRlTHz/PtbEw8MDlpaWMDU1FTkVY/9n6tSp0NTUxPLly+XW54ULFyCRSIrkZiEu6phCqV27Nt6/f48dO3bg2bNnaNGiBZo2bYoTJ04gPT09x3uICGPGjIGenl6R2uXEWGZRl5GRgYsXL/IoHVM4JUuWxLRp07B9+3Z8+PBBLn26u7ujadOmMDIykkt/ioSLOqZwdHV1MXz4cDx58gTu7u7Q1dWFk5MTqlevjo0bNyI+Pv6H60+ePImzZ89i8+bNBXrWJWPKqlq1anj9+jXu3r2LyMhILuqYQpowYQIMDQ2xePFimfeVkpKCy5cvF9mvBS7qmMJSU1PDH3/8gevXryMwMBDNmjXD5MmTYWpqipkzZyIsLAzR0dEYO3Ysunfvjp49e4odmTG5Mjc3R0REBI4ePYpSpUrBxsZG7EiMZaOvr4/Zs2dj3759OHr0qEz7unXrFuLj44vkejqAizqmJBo0aIAjR47gzZs3GDZsGLZu3YoqVaqgefPmSElJwebNm8WOyJjcZZ6Uv2/fPtjb20NdXV3kRIzlbPTo0ejXrx/69++P2bNnQyqVyqQfDw8PmJqaol69ejJpX9FxUceUSqVKlbB69Wp8/PgRK1asgEQiwZYtW1ChQgWxozEmd5nHmsTHxxfZ6SamHLS0tHDgwAGsWrUKK1asQLdu3RAXFydoH0SE8+fPC/KYPGXFjwljjDElRUQoVaoUYmNjERERgVKlSokdibFcXbhwAX379oWpqSnOnTuHqlWrCtLus2fPUKtWLXh4eKBTp06CtKlseKSOMcaUlEQigbm5OZo1a8YFHVMamY+ETElJgbW1NW7cuCFIu5kb61q3bi1Ie8qIizrGGFNimzZtwpYtW8SOwVi+1KpVC3fu3IGVlRXat2+Pbdu2FbpNd3f3Iv+YPC7qGGNMidnY2MDS0lLsGIzlW6lSpXDx4kWMGjUKo0ePxqhRo5CWllagtjIfk1dUd71m4qKOMcYYY6LQ0NDAxo0bsXPnTuzZswcdOnRAZGRkvtvhx+T9Dxd1jDHGGBPV8OHDcfXqVTx58gTW1tZ4/Phxvu53d3fHb7/9hooVK8oooXJQiqIuMDAQtra2aNWqFZycnAo8PMsYY4wxxWRra4u7d++iePHiaNq0KcaOHYv169fj/PnzCAkJQXJyco73ZWRk4MKFC0V+6hVQkiNNPn/+DAMDA+jp6WH27NmwsrJCr169cr2PjzRhjDHGlEt8fDymTZsGb29vvHnzBklJSVmfVaxYEdWqVct6mZubIzExEUOGDIGfn1+Rf6qKhtgB8qJcuXJZ/6ypqQkNjZxjp6SkICUlJevfY2NjZZ6NMcYYY8LR19fP2g1LRAgPD8erV6/w+vXrrNfDhw9x+vRpfPv2DQBQtmxZNG7cWMzYCkEpRuoyffjwAX379sWNGzegqamZ7fMFCxZg4cKF2d7nkTrGGGNM9URHR+P169coUaIEqlevLnYc0SlUUff582c4Ojpme//cuXPQ0NCAg4MDdu3ahRo1auR4f04jdaamplzUMcYYY0zlKVRR9zMZGRno1q0bJk6ciLZt2+b5Pl5TxxhjjLGiQil2v7q6usLX1xeLFy+GnZ0dXFxcxI7EGGOMMaZQlGKkrqB4pI4xxhhjRYVSjNQxxhhjjLFf46KOMcYYY0wFqPT0KxEhLi4OxYsXh0QiETsOY4wxxpjMqHRRxxhjjDFWVPD0K2OMMcaYCuCijjHGGGNMBXBRxxhjjDGmArioY4wxxhhTAVzUMcYYY4ypAC7qGGOMMcZUABd1jDHGGGMqgIs6xhhjjDEVwEUdY4wxxpgK4KKOMcYYY0wFcFHHGGOMMaYCuKhjjDHGGFMBKl3UERFiY2NBRGJHYYwxxhiTKZUu6uLi4mBoaIi4uDixozDGGGOMyZRKF3WMMcYYY0UFF3WMMcYYYyqAizrGGGOMMRXARR1jjDHGmArgoo4xxpTY7NmzsWnTJrFjMMYUgIRU+LyP2NhYGBoaIiYmBgYGBmLHYYwxQYWHh6NSpUqoW7cugoODxY7DGBMZj9QxxpiS2r17N9LT0/Hw4UMkJCSIHYcxJjIu6hhjTAmlp6djx44daNq0KaRSKe7duyd2JMaYyLioY4wxJeTu7o6wsDBs3LgRxYsXh5+fn9iRGGMi46KOMcaU0LZt29CkSRM0atQI1tbW8Pf3FzsSY0xkSlfUHTt2DGXKlBE7BmOMiebly5e4fPkyRo0aBQCwsbGBn58fP+easSJOqYo6qVSKkydPwtTUVOwojDEmmh07dqBUqVJwcnICADRt2hRfv37Fu3fvxA3GGBOVUhV1R48ehaOjI9TUco6dkpKC2NjYH16MMaZKkpKSsG/fPgwZMgS6uroAgCZNmgAAT8EyVsQpTVGXkZEBV1dX9O7d+6fXLF++HIaGhlkvHtFjjKkaV1dXREdHY+TIkVnvGRkZwdzcnDdLMFbEKU1Rd/jwYTg5Of10lA4AZs2ahZiYmKxXaGioHBMyxpjsbdu2DR06dIC5ufkP7zdt2pRH6hhTUUlJSXlaM6s0RV1ISAgOHjyIjh074uXLl5g0aVK2a7S1tWFgYPDDizHGVEVQUBDu3LmTtUHi32xsbBAcHIykpCQRkjHGZMnZ2RkDBgzI9ToNOWQRxMqVK7P+uVGjRli3bp2IaZispKenIyIiAuXLlxc7CmMKZ9u2bahYsSI6d+6c7TMbGxukp6cjKCgIzZs3FyEdY0wWrl27hqNHj2Lfvn25Xqs0I3X/xienq5b09HR4eXlhxIgRKFeuHCpXrozXr1+LHYsxhfL9+3ccPXoUI0aMgIZG9t/HLS0toaury1OwjKmQ1NRUjBkzBi1atMCgQYNyvV4pizomvri4OKSkpBT4/vT0dFy7dg0jR45E+fLl0b59e3h5eWHYsGEwNDTE+vXrhQvLmAo4ePAgUlNT4ezsnOPnGhoaaNy4MW+WYEyFrF27Fi9fvsTWrVt/uacgk9JMvzLFcePGDXTs2BFpaWmoUqUKLCwssl41a9aEhYUFjIyMIJFIfrgvIyMDt27dgqurK06dOoWvX7/CzMwMQ4cOhZOTExo0aACJRAI9PT2sWrUKCxcuRKlSpUT6UzKmOIgI27dvR/fu3X+5NMHGxgZHjhyRYzLGmKy8f/8eixcvxoQJE1CvXr083SMhFT6CPDY2FoaGhoiJieFNEwJ58+YNGjdujPr166Nfv3549uwZnj9/jmfPnuHNmzeQSqUAgFKlSv1Q5L1//x5ubm748uULKlWqBCcnJzg5OaFRo0bZir+IiAhUqlQJf//9N2bPni3GH5MxhXLjxg20bt0a169fh52d3U+vO3PmDLp3747Q0FBUrFhRfgEZY4Lr3r07AgIC8OzZMxQvXjxP93BRx/IsNjYWTZs2RWpqKu7cuZNtFC0lJQWvXr3Cs2fPfij2nj17hpIlS6JXr17o1asXrK2tsxVy/zVq1CicPn0a79+/h7a2tiz/WIwpPCcnJzx+/BhPnjz55ddOeHg4KlSoAFdXV/Tq1UuOCZk8JCYmIioqClFRUTAzM0OJEiXEjsRkxMPDA507d4aLi0vWk2Pygos6licZGRno2rUrbt++DX9/f1hYWOT5XiLKtYj7rxcvXsDCwgK7d+/G0KFD8xuXMZURHh6OSpUqYc2aNRg/fnyu15uZmaFnz55Ys2aNHNIxIRARPDw88OrVK0RFRSEyMjKrePv3vycnJ2fdU7p0aezcuRM9evQQMTmThaSkJNSpUwfVqlXD5cuX8/Xzk9fUsTyZNWsWLl68CA8Pj3wVdADyXdABQI0aNdClSxesXr0agwcPztMCUcZU0e7du6GlpZWnnW8AH0KsbIgIM2bMwD///ANdXV0YGRmhdOnSKF26NMqUKQMLCwuULl36h/cNDAywevVq9OzZEwMHDsTGjRt51E6FrFixAmFhYbh06VL+f36SCouJiSEAFBMTI3YUpbZ//34CQOvWrZNrv97e3gSAPDw85NovY4oiLS2NKlasSM7Oznm+Z/369aStrU0pKSkyTMaEIJVKadasWQSA1q9fn+97Dxw4QAYGBmRqakpeXl4ySsnk6cWLF6SlpUVz5swp0P1c1LFf8vHxIS0tLXJ2diapVCrXvqVSKTVp0oRat24t134ZUxRnzpwhABQYGJjne+7cuUMA6M6dOzJMxoTw999/EwBas2ZNgdt49+4dtW7dmgDQhAkTKDExUcCETJ6kUin9/vvvZGZmRgkJCQVqg4s69lPv3r0jY2NjsrW1Fe23/hMnThAAunfvnij9MyamDh06UJMmTfJ1T0pKCmlra+d75IfJ18KFCwkArVy5stBtZWRk0Lp160hbW5ssLCwoICBAgIRM3jJ/3p07d67AbfBCJZaj+Ph4dO3aFXp6enBzc4OWlpYoObp3744qVarwom9W5Lx69QqXL1/O8Tmvv6KlpYUGDRrwujoFtnTpUsyfPx/Lli3D9OnTC92empoaJk6ciKCgIBQrVgxNmzbFggULkJaWJkBaJg9xcXGYOHEiunTpAgcHhwK3w0Udy0YqlWLQoEF4/fo1zp07hzJlyoiWRV1dHZMnT4arqyvev38vWg7G5G379u0oVapUvo4zyMSbJWRj+/bt2L17d6GKpRUrVmDu3LlYtGgRZs2aJWA6oHbt2vDz88OcOXOwZMkSNGvWDM+ePRO0DyYbixYtQnR0NDZs2FC4hgQcOVQ4PP1aMHPnziWJRFKoIWAhxcfHU8mSJWnSpEliR2FMLhITE6lUqVI0ZcqUAt3v6upKACg8PFzgZEXX8ePHCQABoCpVqtC+ffsoLS0tX238888/BIDmzZsno5T/586dO1SjRg3S0dGh1atXF3iNFpO9R48ekYaGBi1durTQbXFRJwOPHz+m4OBguW8sEMLRo0cFW+chpDlz5pC+vj59+/ZN7CiMydyBAwcIAL18+bJA93/48IEA0OnTp4UNVkSFhIRQsWLFqG/fvvTw4UPq0aMHAaDq1avT4cOHKT09Pdc21q5dSwBozpw5cvvZkJCQQGPHjiWJREIlSpSgiRMn0rNnz+TSN8sbqVRKLVu2pBo1alBycnKh2+OiTmDnzp0jdXV1AkBly5algQMH0uHDh+nLly9yy1BQd+7cIR0dHRo4cKDCFaTh4eGkpaWlcMUmY3mVlJREMTExFBERQZ8+faL379/Tq1ev6OnTp/Tw4UMKDAwkf39/8vb2poYNG1KHDh0K1Z+JiQnNmDFDoPRFV1xcHNWqVYtq165NcXFxWe8HBQWRg4MDAaBatWqRi4sLZWRk5NjGxo0bCQDNmDFDlO+tr1+/punTp1Pp0qUJALVt25bc3NzyPdLIhHfw4EECQFeuXBGkPS7qBOTt7U06OjrUvXt38vLyounTp1P9+vWzhuytrKxo5syZdO3aNYU7QyosLIzKly9PNjY2lJSUJHacHA0dOpQqVKigcP/tGPuvhIQE8vb2pn/++Yd69uxJJiYmWd8H8vo6f/58oTL07NmTWrZsKdCfqGiSSqXUp08f0tfXp6dPn+Z4TUBAAHXs2JEAUL169ejUqVM/FG5btmwhADR16lTRf1lOSkqiQ4cOUbNmzQgAVahQgRYsWEBhYWGi5iqqvn37RsbGxtS7d2/B2uTHhAnk0aNHaNmyJerXr49Lly5BR0cn67PPnz/jypUr8PT0xOXLlxEREYFixYqhdevW6NChA9q2bYuaNWtCXV1dphl/ZfTo0Th58iQePnyIcuXKiZbjV548eYK6deviwIEDeT5dnzFZIyK8evUK/v7+Wa8HDx4gIyMDenp6aNy4MWxsbFC7dm3o6OhAU1Mz11exYsVQqVKlQuVavXo15s2bh9jYWGho8MODCmLTpk0YP358np6l6+vri/nz58PLywtWVlZYtGgRwsLCMHLkSEycOBFr164t0NN1ZOXBgwfYtm0bDh8+jOTkZHTr1g2jRo1CmzZtFCqnKhs7diwOHjyIZ8+eoUKFCoK0yUWdAN6/f49mzZqhTJkyuHnzJgwNDX96rVQqxYMHD7IKvNu3byMtLQ36+vpo0KABGjVqlPWqVq2aXB6PFRMTAxMTE0ydOhULFiyQeX+F8ccffyA0NBQPHjzgbzxMUN7e3pgzZw5SU1OhpaUFTU1NaGlp/fSfNTQ08PLlS9y5cwfR0dEAAAsLC9jY2KBJkyawsbFB3bp1RSuofHx80KJFCwQGBqJBgwaiZFBmfn5+aNWqFcaMGYN169bl+b6bN29i3rx5uHXrFgBg3Lhx2LBhg8J+v4qJicHhw4exdetWhISEoGbNmnBxcUH9+vXFjqbSvn37BiMjI6xYsQLTpk0TrF0u6gopIiICLVq0QHp6Onx8fPI9yhUfH487d+4gMDAQ9+7dw7179/D27VsAgKGhIRo2bPhDoWdmZib4N4eNGzdiypQpeP/+vWC/LcjK9evX0aZNG3h6eqJDhw5ix2EqgIiwfv16TJs2DY0aNULdunWRmpqKtLQ0pKam/vKfK1WqBBsbG9jY2MDa2holS5YU+4+TJSkpCQYGBtiwYQNGjx4tdhylEhERASsrK5iZmeH69evQ1NTM1/1EhGvXruH58+cYNWqUwhZ0/0ZE8Pb2xvDhw1GpUiVcuXJF7Egq7fbt27C1tcWjR49Qt25dwdpVmqIuMDAQEydOhJqaGsqWLYsjR47k+oUm66IuLi4Obdq0QWhoKHx8fFCtWjVB2o2KivqhyLt37x5CQ0MBABUqVMDVq1dhYWEhSF9SqRS1atWClZUVjh8/LkibskREaNSoEYyMjODp6Sl2HKbk4uLiMGzYMJw4cQLTpk3DsmXLVGqqsnHjxqhVqxYOHjwodhSlkZGRgd9//x2PHj1CUFAQTExMxI4kV25ubnB0dISPjw+aNWsmdhyVtXPnTowePRoJCQnQ1tYWrmHBVufJWHh4eNY5O7NmzSJXV9dc75HlRomUlBRq164dFS9enIKCggRv/7++fPlCFy5coEqVKlHfvn0Fa/fy5csEgG7duiVYm7KWeezKgwcPxI7ClFhISAhZWFhQ8eLFyc3NTew4MjFu3DgyNzcXO4ZcSaXSPB0x8jNz5swhNTU1unr1qoCplEdGRgbVqVOHfv/9d7GjqLQJEyZQzZo1BW9XaZ4oUa5cOejp6QEANDU1Rf1tOvOJC7du3cK5c+dgZWUl8z6NjY1hb2+PWbNmwcXFBS9evBCk3c2bN8PS0hItWrQQpD15cHR0RKVKlfjRYazAXF1d0bhxY6irq+Pu3bvo0aOH2JFkwsbGBq9evUJkZKTYUeRmwYIFKFWqFKZPn46PHz/m614PDw8sXboUS5YsQZs2bWSUULGpqanh77//hqenJ+7cuSN2HJUVEhKC2rVrC9+w4GWijL1//56aNWtGqamp2T5LTk6mmJiYrFdoaKjgI3VSqZTGjh1Lampqovx2n5SURBUqVKAhQ4YUuq23b9+SRCKhnTt3CpBMvtauXUsaGhoUGhoqdhSmRFJTU2nixIkEgPr27Uvx8fFiR5KpN2/eEAByd3cXO4pcSKVSqlKlCtWpU4cMDAxIQ0ODBg0aRA8fPsz13jdv3lCJEiXIwcHhp+fNFRXp6elUq1Yt6tSpk9hRVJaJiQnNmTNH8HaVqqiLiYmhli1b0vPnz3P8fP78+Tme9yRkUbd48WICQDt27BCszfxat24daWho0Nu3bwvVzvTp06lEiRJK+YMtNjaWDA0Nafr06WJHYUri06dP1KJFC9LQ0KCNGzeKfmaYPEilUjI2NpbJDw9FdP/+fQJAnp6eFBMTQ2vWrCFTU1MCQB07diQvL68c/39PSkoiKysrqlq1KkVHR4uQXPEcOXKEANDdu3fFjqJyvn//TgDoyJEjgretNEVdeno6de7cmby8vH56jaxH6rZv304AaMmSJYK0V1Dx8fFUpkwZGjVqVIHbyHy25OTJkwVMJl/Tp08nAwMDfrYvy9XNmzepbNmyVKFCBfLx8RE7jlx16dKF2rZtK3YMuZg/fz4ZGhr+cEB5amoqHT58OOsgeCsrKzpy5MgPsz3Ozs6kra0tl/XRyiI9PZ1q1KhBXbp0ETuKyvHz8yMAdP/+fcHbVpqi7ujRo1SqVClq1aoVtWrVio4fP57rPUJulHBzcyM1NTUaN26cQvyGv3z5ctLS0irwSeB79+4liURS4GdLKoKPHz+ShoYGbdiwQewoTEFJpVJavXo1qaurk52dHX3+/FnsSHK3fPly0tfXL9TmAWVhaWlJ/fv3z/EzqVRKly9fpg4dOhAAqlSpEq1du5Y2b95MAGjPnj1yTqv4Mh9hxcWusPbs2UNqamqUmJgoeNtKU9QVhFBF3ZMnT0hLS4v69u2rMGstYmJiqESJEjRp0qR83yuVSsnKyors7e1lkEy+evbsSXXr1lWIQpspnsz1czNmzCiyz7m8fv06AcjTujJl9vr1awJAJ0+ezPXa+/fv08CBA0lDQ4MA0LBhw+SQUPmkpaWRubk5de/eXewoKmXy5Mky25XORV0ejBs3jsqVK6dwzxydP38+6erq0tevX/N1n6+vLwEgDw8PGSWTn4sXLxIAunPnjthRmII5ffo0ASjyI7lxcXGkpqamlBui8mP16tWko6OTrzXCHz58oB07dshkxERV7Nu3j4+QEljHjh1lNq2tNEeaiCUlJQVHjhzBwIEDoaWlJXacH4wfPx7q6ur5eoQNAGzZsgVVq1ZFx44dZZRMftq3bw9TU1Ps2bNH7ChMgYSGhmLo0KHo3r07xo0bJ3YcUenr68PS0hJ+fn5iR5GpU6dOoUOHDihWrFie7zE1NcWIESOgq6srw2TKrX///qhSpQoWL14sdhSVIbPjTABwUZeLc+fOITo6GkOGDBE7SjalSpXCmDFjsHnzZnz79i1P93z58gWurq4YM2aMXJ4rK2vq6uoYMmQIjh49ivj4eLHjMAWQnp6O/v37Q19fH7t371aKRzTJmo2NDfz9/cWOITOfP3+Gn58funfvLnYUlaOpqYnZs2fj5MmTePz4sdhxlF5cXBw+fPjARZ1Y9u3bBxsbG9SqVUvsKDmaPHky0tPTsWnTpjxdv2vXLmhoaChkkVpQQ4YMQUJCAk6cOCF2FKYAlixZAh8fHxw5cgSlSpUSO45CsLGxwdOnT/H9+3exo8jE2bNnoaamBgcHB7GjqKRBgwahcuXKWLJkidhRlN6zZ88AgIs6MYSFhcHT01OhCyBjY2OMGDEC69evR1xc3C+vTUtLw/bt2zFgwACFevB4YZmZmaFdu3Y8Bctw8+ZNLF68GAsWLICtra3YcRRG06ZNAUBlnxBw+vRptGzZEqVLlxY7ikrS0tLCrFmz4OrqiqdPn4odR6mFhIQAgGDPb/8vLup+4dChQ9DW1kbv3r3FjvJLU6dORUJCArZt2/bL686ePYuwsDCMGTNGTsnkx9nZGT4+PvwNR0GkpqYiPT1drn1GRUWhf//+aNmyJWbPni3XvhVd9erVUbJkSZWcgo2JicG1a9d46lXGBg8ejIoVK2Lp0qViR1FqISEhMDMzy9faz/zgou4niAh79+5Fz549YWhoKHacX6pYsSKGDBmCNWvWIDEx8afXbd68GS1atED9+vXlmE4+unbtitKlS2Pv3r1iR2H43w+AGjVqyG0NDhFhyJAhSE5OxuHDh6Guri6XfpWFRCKBjY2NSm6W8PDwQFpaGrp16yZ2FJWmra2NmTNn4tixY4I9e7wokuUmCYCLup/y9fXFy5cvFXrq9d9mzJiBqKgo7Nq1K8fPHz16hJs3b2Ls2LFyTiYf2traGDhwIA4cOIDU1FSx4xRpsbGxcHNzw9evX9GsWTN4eHjIvM/Nmzfj/Pnz2LdvH0xMTGTenzJq2rQp7ty5A6lUKnYUQZ0+fRqNGjWCqamp2FFU3tChQ1GuXDkerSsELupEsm/fPpiZmcHOzk7sKHlSpUoVDBgwAKtWrUJKSkq2z7ds2YLy5cur9BTFsGHDEBERAXd3d7GjFGnnzp1Damoq7t69i9atW8PBwQFr164FEcmkv+DgYEydOhXjx4/nhfK/YGNjg+/fv6vUKEtSUhIuXryo0t/XFImOjg5mzpyJI0eO4NWrV2LHUTqJiYl4+/YtF3XylpCQABcXF/z5559KdezHrFmzEB4ejv379//w/vfv33Ho0CH89ddfCnfWnpDq1q2LJk2aYPfu3WJHKdJcXV3RrFkz1KpVC6dOncK0adMwZcoUDB8+XPBR1Pj4ePTp0wd16tTBqlWrBG1b1VhbW0MikajUFKyXlxcSEhK4qJMjZ2dnlClTBsuWLRM7itJ5/vw5iIiLOnk7efIk4uPjMXjwYLGj5EvNmjXh5OSEFStWIC0tLev9zCnJESNGiJhOPpydnXHp0iWEhoaKHaVI+v79Ozw9PeHk5ATgf+cIrly5Evv378ehQ4fQvn17REZGCtbfuHHjEBYWhuPHj0NbW1uwdlWRoaEhateurVKbJU6fPo2aNWsq7JFTqkhXVxfTp0/HwYMH8fbtW7HjKJXMna+y/PvKRV0O9u3bhzZt2sDMzEzsKPk2e/ZsvHv3DkePHgUASKVSbNmyBY6OjihfvrzI6WSvd+/e0NPTyzZayeQjc+rV0dHxh/f//PNPXLt2DU+fPkWTJk2yvrkVxpEjR7B//35s2bIFNWrUKHR7RYEqHUKcnp6Oc+fO8SidCP766y+ULl0ay5cvFzuKUgkJCUHFihVhYGAgsz4EK+oCAwOFakpUb968wc2bN5Vmg8R/WVpaomvXrli2bBkyMjJw5coVvHz5UiWPMclJ8eLF0bt3b+zdu1flFoQrA1dXV7Ro0SLHzQrNmzdHQEAAihUrhqZNm+LixYsF7ufVq1cYOXIk+vfvj0GDBhUmcpHSqlUrPHr0CGfPnhU7SqHdvn0bUVFRXNSJQE9PD9OmTcO+ffvw/v17seMoDVlvkgAACPUQWVNTU6GaEkxMTAwBoJiYmDzf8/fff5OBgQElJCTIMJlsBQQEEAA6fvw4de7cmerXr09SqVTsWHLj6+tLAOjKlSsy7Sc0NJT27NlDvXv3prJlyxb5B8dHR0eTpqYmbdy48ZfXxcbGUufOnUlNTY3Wrl2b77+bKSkp1KhRIzI3N6fY2NjCRC5y0tPTydHRkXR0dMjX11fsOIUyfvx4MjExoYyMDLGjFEnx8fFkZGREI0eOFDuK0qhRowZNnDhRpn1IiPK+JS1znUwOhSEuXryocM/ejI2NhaGhIWJiYvI03JmRkYEqVarA3t4eO3bskENC2enYsSNevHiBd+/eYefOnXB2dhY7ktwQEerUqQNLS0scP35csHYTExNx69YtXL58GZ6enggJCYFEIkHjxo2RmpqKpKQkPH36tMg+a3T//v0YOnQoPn78iAoVKvzy2oyMDMyaNQv//PMPnJ2dsWXLlmybeDIyMvD9+3dER0fj27dvWf/r4eEBV1dX+Pn5oWHDhrL8I6mk5ORk/P7773j8+DF8fHxkdrK9LBERzMzM4ODggM2bN4sdp8hasmQJli1bho8fP/Ij+XKRkpICPT09bN++HcOHD5ddR/mpAEuWLEnu7u5048aNH17Xr18nY2NjGdSchZPfkbrLly8TAPLz85NxMtnz9vYmAFSiRAmlHnUsqDVr1pCWlhZFRkYWuA2pVEoPHjygVatWUbt27UhbW5sAUMWKFWnYsGHk4uKS1f6FCxcIAAUFBQn1R1A69vb21LJly3zds2/fPtLU1CRLS0tq164dNWjQgKpUqUKGhoYEIMeXtrY2bd26VUZ/iqIhOjqa6tSpQ5UrV6awsDCx4+TbvXv3CAB5eXmJHaVI+/LlC2lpadHq1avFjqLwHj58SADo9u3bMu1HIz8FoJ2dHfT19dGqVatsn1lZWRWmtlQI+/btg4WFBZo0aSJ2lEJr0aIFevfujd9++w16enpix5G7gQMHYubMmTh8+DAmTJiQ7/tv3LiBAQMGICwsDLq6urCzs8PKlSvRoUMHWFhYZBuNa9euHUqXLo1jx46pxNdCfkVHR+PKlStYv359vu4bPHgwzM3NsXLlSujq6qJatWooWbIkSpUqlfW///7nkiVLolixYkV2NFQoJUuWxKVLl9C0aVN06tQJN2/eVPgn5/zb6dOnUbJkSbRs2VLsKEWasbExnJycsHXrVkyaNEmpjgCTN3nsfAUg3Jo6RZSfkbro6GjS1tamlStXyiEZkwdHR0eqW7duvtdseXp6ko6ODrVp04a8vLwoOTk5T/eNHDmSTE1Ni+Qanz179pBEIqHw8HCxo7B8ePToEZUoUYLatGmT57/niqB27do0aNAgsWMwIvLz8yMA5OHhIXYUhTZv3jwqV66czPvhsvr/O378ONLT0zFw4ECxozCBODs74/Hjx7h7926e7zl//jwcHBzQrl07eHh4oG3btnk+/6xv374IDQ2Fr69vQSMrLVdXV7Rq1QrlypUTOwrLh7p16+Ls2bPw8fHBkCFDlGLH+IsXLxASEoIePXqIHYUBaNKkCRo2bMhrG3Mhl52vKMSRJm5ubkLmyJOpU6fC1tYW/fv3F/xk+n379sHe3r5InOVWVLRr1w6mpqZ5fsKEm5sbevToAQcHB7i5uUFHRydf/bVo0QIVK1bEsWPHChJXaUVFRcHLy+unG6mYYmvZsiWOHDmC48ePY/r06WLHydXp06ehp6eHDh06iB2FAZBIJBgzZgwuXbrEjw77BYUv6vr164d169b98hoS8FmPwcHB+Pz5M7y9vVG7dm2cPHlSsLYzR3OU9Ww6ljN1dXUMHToUx44dy3Vn9tGjR9G7d284OTnh+PHjBXqcmpqaGvr06YMTJ04gPT29oLGVzunTp0FEPHKixHr27ImNGzdizZo1uX5fF9vp06fRsWNH6Orqih2F/X99+vRByZIlsW3bNrGjKKS0tDS8ePFCsYu6c+fOYcGCBRg/fny24i0jIwP79+8XdEGgn59f1m9mHTt2zHGKKyUlBbGxsT+88mLfvn0wMjJC586dBcvLFMOQIUOQkJCAEydO/PSavXv3YsCAARg0aBAOHjwIDY187R/6Qd++fREREYGrV68WuA1l4+rqCjs7O5QtW1bsKKwQxo4dixkzZmDy5MmCHgUkpLCwMNy5c4cPHFYwurq6cHZ2xt69e5GYmCh2HIXz6tUrpKenK3ZR9/vvv+PWrVs4ffo0evTogaSkJKSmpmLbtm0wNzfH5MmT0bt3b8GCfv/+PeusOUNDQ0RHR2e7Zvny5TA0NMx6mZqa5tpuWloaDh8+jP79+6v0w+6LqsqVK6N9+/Y/nYLdtm0bhg0bhr/++gu7d++Gurp6ofqzsrJCjRo1iswUbEREBK5du8ZTrypi+fLlGDhwIAYNGoRr166JHSebs2fPQkNDA3/88YfYUdh/jBw5EjExMVmPqGT/J3Pnq0IXdQBQv359+Pv7482bN7CxsUGVKlUwf/58DB8+HO/fv8fChQuFyomSJUtmjbx9//49x4MOZ82ahZiYmKxXXh7qfuHCBXz9+pWnXlWYs7MzfH198fTp0x/eX7duHUaPHo2JEydi69atgmzHl0gk6Nu3L06fPo3k5ORCt6foeOpVtUgkEuzZswetW7dG9+7d8eDBA7Ej/eD06dNo3bo1SpYsKXYU9h9VqlRB586dsXnzZkGXXqmCkJAQGBkZoUyZMjLvq1A/xWJiYrB3716EhYXh5cuX+P79O65evYrZs2ejePHiQmUE8L8HUV++fBkA4OnpiebNm2e7RltbGwYGBj+8crNv3z40aNAA9evXFzQvUxxdunRB6dKlsWfPnqz3li1bhsmTJ2PWrFlYu3atoOee9e3bF7Gxsbhw4YJgbSoqV1dXtGnTRi7frJh8aGpq4uTJk6hevTrs7e1x48YNhfghHR0djRs3bvDUqwIbO3YsHjx4UCRPAPgVeW2SAApR1M2aNQuVK1fG/v37sWzZMkRERKBXr15o165dvo6QyCsrKyuUK1cOtra2CAkJQc+ePQvd5pcvX+Du7s6jdCpOW1s7a71camoq5s2bhzlz5mDhwoVYunSp4AfZ1qxZE1ZWVio/Bfv161dcv36dp15VUPHixeHh4YGyZcuidevWqFu3LjZv3oyYmBjRMrm7uyM9PR1du3YVLQP7tXbt2qF69ep8vMl/yLOoK/DhwxYWFnTgwAFKT0//4f25c+dSsWLF6MyZM4U4Pk8YuR0+vHr1atLS0qKoqCg5J2Py9vjxYwJAdnZ2BEDmh0yvWrWKdHR08vyIOmW0bds2UldXp4iICLGjMBmRSqV07do1cnR0JA0NDSpWrBiNGDGCgoOD5Z6lW7duZGNjI/d+Wf6sX7+eNDQ06NOnT2JHUQhpaWmkra1NGzdulEt/BS7qfnVK/65du0hbW5s2bdpU0OYF8auiTiqVUp06dcjJyUmEZEwMNjY2BIA2bNgg877ev39PAOjgwYMy70ssrVu3pg4dOogdg8lJWFgYLVy4kExMTAgANW3alA4dOkRJSUky7zshIYF0dXX5iT9K4Nu3b6Snp0cLFy4UO4pCePHihVyfUyyzx4RduHCBihcvLqvm8+RXRV1AQAABoIsXL4qQjInh0aNHdOHCBbn116JFC7K3t5dbf/IUHh5OampqtHv3brGjMDlLS0ujU6dOUfv27QkAlS5dmqZPn06vX7+WWZ+nTp0iAPTixQuZ9cGE89dff1H58uUpNTVV7CiiO3PmDAGQ28ilzB4TlrnAVlHt3bsXJiYmaN++vdhRmJzUrVsX9vb2cuuvb9++uHz5MiIiIuTWp7ycOnUKampq6Natm9hRmJxpaGige/fuuHz5Mp4/f45BgwZh165dMDc3h62tLWbNmoXz588jMjJSkP4yMjJw4sQJ1KlTB9WrVxekTSZbY8aMQXh4OE6fPi12FNGFhISgRIkScnuEooRIAbY1yUhsbCwMDQ0RExOTbSesj48PwsPD4ejoKFI6puoiIiJQvnx5bNq0CaNGjRI7jqDs7Oygq6uLixcvih2FKYDExES4uLjgwoULWd9bAaBGjRpo1qxZ1qtWrVo/PTpIKpXi3bt3ePLkCR4/fownT57gyZMnePr0KVJSUrBkyRLMmTNHnn8sVgitWrUCANy8eVPkJOIaOHAg3rx5Ax8fH7n0V2SLOsbkoWPHjkhMTMStW7fEjiKY8PBwmJiYYM+ePbxznGVDRPjw4QN8fX2zXg8ePEBGRgYMDQ3RtGlTNGvWDLVr18abN2+yirinT59mPY3A0NAQderUQZ06dVC3bl3UrVsXdnZ2gpwlyeTjxIkTcHJywoMHD2BpaSl2HNE0bNgQDRo0wK5du+TSHxd1jMnQgQMHMHjwYHz48CFPTzhRBps3b8bkyZPx5csXPgSW5Ul8fDzu3r37Q6H3/ft36Ovro3bt2qhbt+4PRVyFChUEP2qIyVdaWhrMzMzQuXNn7NixQ+w4opBKpdDX18fSpUsxadIkufTJRR1jMhQbGwtjY2MsWbIEU6dOFTuOIFq2bJl1jhljBSGVShEREYEyZcrw6JsKW7RoEVauXImwsDCUKFFC7Dhy9/btW1StWhWXLl3C77//Lpc++auJMRkyMDBA586dVeYg4rCwMNy+fZsPHGaFoqamhrJly3JBp+JGjBiBtLQ07N+/X+woopDnM18z8VcUYzLWt29fBAUF4cWLF2JHKTQ3NzdoaGjwqf6MsVyVK1cOPXv2xNatWyGVSsWOI3chISHQ19dHxYoV5dYnF3WMyVinTp1QvHhxlRitO3HiBH7//fciOZXCGMu/sWPH4uXLl7hy5YrYUeQu8/Fg8lwfykUdYzKmq6uL7t2749ixYwrxYPSC4qlXxlh+NWvWDL/99luRfB6sXJ/5+v9pyLU3xoqovn374uDBg7h//z6srKxk1s+rV6/w4MEDpKamIiUlBampqTm+Mj9TU1ODiYkJTE1Ns17ly5eHhkb2bw0nT56ElpYWunTpIrP8jDHVIpFIMGbMGIwYMQJv375FlSpVxI4kF0SEkJAQuZ+Fy0UdY3LQtm1bGBkZ4dixYzIr6k6dOoUBAwYgKSnph/e1tbWhpaWV9b+ZL21tbaSnp+Pjx4+Ii4vLul5dXR0VKlT4odAzNTXF3r170bFjRxgaGsokP2NMNfXr1w/Tpk3Dtm3bsGrVKrHjyMXHjx8RHx/PI3WMqSJNTU306tULx48fx4oVKwTd9UdEWLNmDaZPn45evXph8+bNKFasGLS0tKCurp6n9RwxMTEIDQ3Fhw8fEBoa+sMrMDAQoaGhSElJwd9//y1YbsZY0aCnp4ehQ4di9+7dmDdvHvT19cWOJHNi7HwF+Jw6xuTG29sbLVu2hLe3N1q0aCFIm2lpaRg7dix27tyJ2bNnY/HixTI5JoKIEBcXx19HjLECef/+PWrVqoW//voL69atEzuOzK1btw5z5sxBfHy8XI/u4Y0SjMlJ8+bNUbFiRcF2wcbExOCPP/7A3r17sXfvXixdulRm3zwkEgkXdIyxAqtcuTIWL16MDRs2wN/fX+w4MhcSEvLLZx3LChd1jMmJmpoa+vTpgxMnTiAtLa1Qbb179w7NmzfH3bt3cfnyZX4GK2NM4U2YMAGNGjXCsGHDkJKSInYcmRJj5yvARR1jctW3b19ERETg6tWrBW4jICAATZo0QVJSEvz8/NC6dWsBEzLGmGxoaGhgz549ePHiBZYvXy52HJnJ3PnKRd1PBAYGwtbWFq1atYKTk1OhRzkYE4uVlRVq1KiB3bt3Iz4+Pt/3u7m5oVWrVjA3N4e/vz8sLCxkkJIxxmSjXr16mD17NpYtW4ZHjx6JHUcmPn/+jO/fv3NR9zMmJibw9PTEzZs3YW5ujjNnzogdibECkUgkGDVqFNzc3FCiRAlYW1tj6tSpOHfuHKKjo396HxFh1apVcHR0RLdu3XD16lWUKVNGjskZY0wYs2fPhrm5OYYNG4aMjAyx4whOrJ2vgJIUdeXKlYOenh6A/x0NkdPBqIwpiwkTJuDp06fYunUratSoAVdXV3Tt2hWlS5eGpaUlxo4dCxcXF4SHhwP43w7XESNGYMaMGZg7dy6OHDkCHR0dkf8UjDFWMNra2tizZw/u3buHDRs2iB1HcCEhIdDW1hbloGWlOtLkw4cP6Nu3L27cuAFNTc1sn6ekpPyw+DI2NhampqZ8pAlTeO/fv8etW7eyXi9evAAAmJubQ19fH0+ePMGuXbvw559/ipyUMcaEMXHiROzcuROPHj1CtWrVxI4jmFGjRsHX1xcPHjyQe98KVdR9/vw5x0dqnDt3DhoaGnBwcMCuXbtQo0aNHO9fsGABFi5cmO19LuqYsvn8+TO8vb1x69YtPHv2DHPmzIGdnZ3YsRhjTDDx8fGoV68eqlSpgqtXr8r1wfey1KpVK1SoUEGw46vyQ6GKup/JyMhAt27dMHHiRLRt2/an1/FIHWOMMaY8rly5gg4dOmDXrl1wdnYWO44gypQpg/Hjx4vyBB6lWFPn6uoKX19fLF68GHZ2dnBxccnxOm1tbRgYGPzwYowxxphiat++PYYMGYIpU6YgLCxM7DiFFhERgcjISFE2SQBKMlJXUPyYMMYYY0yxffv2DbVr14a1tTXOnDmj1NOwN2/ehJ2dXdYTJeRNKUbqGGOMMaaaSpYsiS1btuDcuXM4ceKE2HEKJSQkBBoaGjA3Nxelfy7qGGOMMSaqHj16oGfPnhg7diyioqLEjlNgISEhqFGjRo4ndMgDF3WMMcYYE93mzZuRlpaGSZMmiR2lwMR6PFgmLuoYY4wxJrpy5cph3bp1OHToEC5evCh2nALhoo4xxhhjDMCff/6J9u3b46+//kJcXJzYcfIlOjoanz9/5qKOMcYYY0wikWDnzp2Ijo7GrFmzxI6TL0+fPgUgzjNfM3FRxxhjjDGFYWZmhsWLF2Pr1q3w9/cXO06uEhMTcezYMcycORPq6uqoXr26aFm4qGOMMcaYQhk3bhwaNGiA4cOHIy0tTew42aSnp+PSpUsYOHAgjI2N0a9fP6Snp+PYsWPQ0dERLRcXdYwxxhhTKBoaGti1axeePn2KNWvWiB0HAEBEuHPnDsaPHw8TExPY29vj7t27mDFjBl69egU/Pz/06tVL1Iz8RAnGGGOMKaRp06Zh8+bNePTokWgH+j5//hxHjx7FkSNH8Pr1a5QvXx59+vTBgAEDYGVlpVBPwOCijjHGGGMKKSEhAXXr1kW1atVw5coVuRZQUqkUvXv3xsmTJ2FgYICePXuif//+sLOzg7q6utxy5AdPvzLGGGNMIRUrVgzbtm3D1atXcejQIbn2vXr1ari5uWHXrl34/Pkz9u7di7Zt2ypsQQfwSB1jjDHGFFy/fv1w+fJlPHv2DEZGRjLvLyAgAM2bN8eUKVOwYsUKmfcnFC7qGGOMMabQvnz5glq1asHBwQEHDhyQaV9xcXGwsrJCqVKl4OPjI9pzXAuCp18ZY4wxptDKli2L1atX4+DBg/Dy8pJpX2PGjMHXr19x7NgxpSroAB6pY4wxxpgSICK0adMGHz58wKNHj6Cnpyd4H4cPH8bAgQNx6NAhDBgwQPD2ZY1H6hhjjDGm8CQSCXbs2IGwsDAsXrxY8PZfv36NUaNGYcCAAUpZ0AFc1DHGGGNMSdSoUQNz587FP//8g4cPHwrWbmpqKvr27YuyZctiy5YtgrUrb0pV1B07dgxlypQROwZjjDHGRDJ9+nTUrFkTI0aMQEZGhiBtzps3D8HBwTh27JhSL9dSmqJOKpXi5MmTMDU1FTsKY4wxxkSipaWFnTt34s6dO9i2bVuh2/Py8sLKlSuxdOlSNG7cWICE4lGajRKHDx+Guro61qxZg3v37uXpHt4owRhjjKmmUaNG4fDhwwgJCSnwgE9ERAQsLS1Rt25deHp6Qk1Naca6cqQU6TMyMuDq6orevXv/8rqUlBTExsb+8GKMMcaY6lm+fDmKFy+OsWPHoiDjU0SEIUOGID09HQcPHlT6gg4ANMQO8G+fP3+Go6NjtveHDx8OJyenXP+DL1++HAsXLpRVPMYYY4wpiBIlSmDTpk1wdHTEqVOn0LNnz3zdv2nTJnh4eMDd3R3ly5eXUUr5Uorp1xkzZiA4OBhqamrw8/PD0KFDsW7dumzXpaSkICUlJevfY2NjYWpqytOvjDHGmAoiInTr1g3nzp2DpaUl2rZtizZt2qBly5a//Ln/4MEDWFtbY9SoUVi/fr38AsuYUhR1/9aoUSNeU8cYY4wxAEBiYiLc3Nxw7do1XL16FaGhoVBXV0ejRo3Qpk0btGnTBs2bN4euri4AICEhAY0aNYK2tjbu3LkDbW1tkf8EwlG6oi4/uKhjjDHGig4iwps3b3D16lVcu3YN165dQ0REBLS0tNCsWTO0adMGISEhOHv2LAIDA1GrVi2xIwuKizrGGGOMqSQiwpMnT7IKvBs3biAmJga7du2Cs7Oz2PEEx0UdY4wxxoqE9PR0hIaGokqVKmJHkQnl37/LGGOMMZYHGhoaKlvQAVzUMcYYY4ypBC7qGGOMMcZUABd1jDHGGGMqgIs6xhhjjDEVoNK7X4kIcXFxKF68OCQSidhxGGOMMcZkRqWLOsYYY4yxooKnXxljjDHGVAAXdYwxxhhjKoCLOsYYY4wxFcBFHWOMMcaYCuCijjHGGGNMBXBRxxhjjDGmArioY4wxxhhTAVzUMcYYY4ypAC7qGGOMMcZUABd1jDHGGGMqgIs6xhhjjDEVwEUdY4wxxpgK4KKOMcYYY0wFqHRRR0SIjY0FEYkdhTHGGGNMplS6qIuLi4OhoSHi4uLEjsIYY4wxJlMqXdQxxhhjjBUVXNQxxhhjjKkApSrqbty4gbZt26JVq1Y4e/as2HEYY4wxxhSGhtgB8io5ORlr1qzBxYsXoaWlJXYcxhhjjDGFojQjdb6+vtDV1YWDgwO6d++Oz58/Z7smJSUFsbGxP7wYY4wxxgAgLCwMNWvWxNOnT8WOIhNKU9R9+fIFb9++xfnz5zFixAgsWLAg2zXLly+HoaFh1svU1FT+QRljjDGmkM6cOYMXL15g3759YkeRCaUp6kqUKIEWLVpAS0sLbdq0QUhISLZrZs2ahZiYmKxXaGioCEkZY4wxpog8PDwAAMePH4dUKhU5jfCUpqiztrbOKuSCg4NRtWrVbNdoa2vDwMDghxdjjDHGWEJCAq5du4aePXsiNDQUPj4+YkcSnNJslChdujS6dOmCli1bQk1NDXv37hU7EmOMMcaUxNWrV5GSkoJly5YhICAAx44dg62trdixBCUhFX6GVmxsLAwNDRETE8OjdowxxlgRNmLECNy6dQvPnj3DjBkzsGfPHoSHh0NTU1PsaIJRmulXxhhjjLGCICK4u7ujc+fOAIB+/fohKioKV65cETmZsLioY4wxxphKCw4ORnh4eFZRZ2lpiVq1auHYsWMiJxMWF3WMMcYYU2nu7u4wNDRE8+bNAQASiQT9+vXD6dOnkZiYKHI64XBRxxhjjDGV5u7ujo4dO/6wfq5Pnz5ISEiAu7u7iMmExUUdY4wxxlTW58+fcffu3ayp10zm5uawtrbG0aNHRUomPC7qGGOMMaayLly4AIlEgo4dO2b7rF+/frhw4QK+ffsmQjLhcVHHGGOMMZXl7u6Opk2bwsjIKNtnTk5OyMjIwKlTp0RIJjwu6hhjjDGmklJSUnD58uVsU6+Zypcvj9atW6vMFCwXdYwxxhhTSTdv3kRCQsJPizoA6Nu3L65fv47w8HA5JpMNLuoYY4wxppLc3d1RqVIl1K1b96fX9OjRA5qamnBxcZFjMtngoo4xxhhjKuffT5GQSCQ/va5kyZLo1KmTSkzBclHHGGOMMZXz9OlTvH379pdTr5n69u2Lu3fv4tWrV3JIJjtc1DHGGGNM5bi7u0NPTw+tW7fO9drOnTtDX19f6R8bxkUdY4wxxlSOu7s72rVrBx0dnVyv1dPTQ7du3XD06FEQkRzSyYbSFXXHjh1DmTJlxI7BGGOMMQUVHR0NHx+fPE29ZurXrx+ePXuGBw8eyDCZbClVUSeVSnHy5EmYmpqKHYUxxhhjCsrT0xNSqRSdOnXK8z3t2rWDkZGRUm+YUKqi7ujRo3B0dISaWs6xU1JSEBsb+8OLMcYYY0WLu7s7GjRoABMTkzzfo6mpiV69euH48eOQSqUyTPc/T548QUZGhqBtKk1Rl5GRAVdXV/Tu3fun1yxfvhyGhoZZLx7RY4wxxoqW9PR0XLx4MV9Tr5n69euH0NBQ+Pj4yCDZ/3n48CHq1auHnTt3Ctqu0hR1hw8fhpOT009H6QBg1qxZiImJyXqFhobKMSFjjDHGxObn54dv374VqKhr1qwZTE1NZb4LdtWqVSAi7Nq1S9B2laaoCwkJwcGDB9GxY0e8fPkSkyZNynaNtrY2DAwMfngxxhhjrOhwd3dH2bJl0bBhw3zfq6amhr59+8LV1RVpaWkySAe8e/cOx48fh729PYKDgxEYGChY2xJSwr27jRo1wr1793K9LjY2FoaGhoiJieECjzHGGCsC6tSpgyZNmmDv3r0Fuv/Bgwf47bff4OHhka+NFnk1fvx4HDlyBG/fvkXt2rXh4OCAbdu2CdK20ozU/VteCjrGGGOMFS1v3rxBSEhIgaZeM1laWqJWrVoymYKNjIzE7t27MXbsWBgYGGDo0KE4cuQIEhISBGlfKYs6xhhjjLH/8vDwgKamJtq3b1/gNiQSCfr164fTp08jMTFRwHTAli1bAADjxo0DAAwdOhTx8fE4ceKEIO1zUccYY4wxleDu7g47OzsUL168UO306dMHCQkJcHd3FygZkJCQgE2bNmHYsGEwMjICAJiZmaFdu3bYvXu3IH1wUccYY4wxpRcXF4cbN24Uauo1k7m5OaytrQU9iHjv3r34/v07pkyZ8sP7w4cPh4+PD0JCQgrdBxd1jDHGGFN6Xl5eSE1NxR9//CFIe/369cOFCxfw7du3QreVlpaGNWvWoHfv3jAzM/vhsy5dusDIyAh79uwpdD9c1DHGGGNM6bm7u6NWrVqoVq2aIO05OTkhIyMDbm5uhW7L1dUV79+/x/Tp07N9pq2tjT///BMHDhxASkpKofrhoo4xxhhjSk0qlcLDw0OQqddM5cuXh4ODA+bOnYvw8PACt0NEWLVqFTp27Ij69evneM2wYcMQFRWFs2fPFrgfgIs6xhhjjCm5wMBAfPnyRdCiDgB27NgBdXV1ODk5Ffgw4kuXLuHhw4eYMWPGT6+pVasWWrRoUegnTHBRxxhjjDGl5u7ujhIlSqBZs2aCtlu2bFmcOHEC/v7+mDlzZoHaWLlyJaytrdGqVatfXufs7AwvLy+8ffu2QP0AXNQxxhhjTMm5u7vD3t4eGhoagrfdrFkzrFmzBmvXrsXJkyfzde+dO3dw8+ZNTJ8+HRKJ5JfXOjo6wsDAoMBPwgC4qGOMMcaYEgsLC0NQUJDgU6//Nm7cOPTu3RtDhgzB8+fP83zfqlWrUL16dXTr1i3Xa4sVK4b+/ftj7969SE9PL1BOLuoYY4wxprQuXLgANTU1dOzYUWZ9SCQS7N69G6ampujRowfi4+Nzvef58+c4ffo0pk2bBnV19Tz14+zsjE+fPuHSpUsFyslFHWOMMcaU1pUrV9CkSROUKlVKpv3o6+vDzc0NHz58wIgRI0BEv7x+9erVKFu2LAYOHJjnPho0aIAGDRoUeMMEF3WMMcYYU0pEhBs3bqBNmzZy6a9WrVrYs2cPjh07lvUc15yEh4fj4MGDmDhxInR0dPLVh7OzMzw8PPDp06d85+OijjHGGGNK6cmTJ4iIiEDr1q3l1qeTkxMmTpyIyZMnw8/PL8dr1q9fDx0dHYwcOTLf7ffr1w9aWlrYv39/vu9VmqIuMDAQtra2aNWqVaHOi2GMMcaYarh27Rq0tLQEP8okN6tWrYK1tTV69eqFiIiIHz6LiYnB9u3bMXLkSBgaGua7bUNDQzg5OWHPnj2QSqX5uldpijoTExN4enri5s2bMDc3x5kzZ8SOxBhjTIFIpVJMmjQJzZs3x5MnT8SOw+Tg+vXrsLGxga6urlz71dTUhIuLC9LS0tC3b19kZGRkfbZ9+3YkJydj4sSJBW7f2dkZb968wY0bN/J1n9IUdeXKlYOenh6A//3HlMVZNIwxxpRTWloaBg4ciI0bNyI8PBwNGzbExo0b8z3SwZSHVCrFzZs35Tr1+m8mJiZwcXHB9evXMW/ePABAcnIy1q9fj0GDBqF8+fIFbrt58+awsLDI94YJpSnqMn348AFeXl45nkeTkpKC2NjYH16MMcZUW1JSEnr27IkTJ07g+PHjePLkCf766y9MmDABHTt2LNCCc6b4Hjx4gG/fvolW1AGAnZ0dli9fjmXLluH8+fM4dOgQvnz5gqlTpxaqXYlEAmdnZ5w6dQpRUVF5v5GUSExMDLVs2ZKeP3+e4+fz588nANleMTExck7KGGNMHmJiYqhVq1akq6tLFy9e/OEzT09PKl++PJUqVYpOnDghUkImK2vWrCEdHR1KTk4WNYdUKqVu3bqRoaEhmZmZUffu3QVp9+vXr6SpqUnr1q3L8z0SolwOWlEQGRkZ6NatGyZOnIi2bdvmeE1KSgpSUlKy/j02NhampqaIiYmBgYGBvKIyxhiTg8jISNjb2+Ply5dwd3dHixYtsl0TFRWFv/76C25ubhg8eDA2bNjAPw9UhIODA5KSkuDl5SV2FMTExKBRo0Z49eoV/P390aRJE0HadXJyQkhICB49epTrY8YAJZp+dXV1ha+vLxYvXgw7Ozu4uLhku0ZbWxsGBgY/vBgrSq5fv46nT5+KHYMxmQsLC0PLli3x/v173LhxI8eCDgBKly6NEydOYP/+/XBzc0P9+vVx+/ZtOadlQktPT8etW7dEnXr9N0NDQ1y4cAE7d+4UrKAD/rdh4smTJ/D398/T9UozUlcQsbGxMDQ05JE6pvKioqIwfvx4HD16FOXLl8f9+/dhbGwsdizGZOLVq1do3749MjIy4OXlhRo1auTpvrdv32LgwIHw8/PDzJkzMX/+fGhpack4LZOFu3fvwtraGj4+PnI/zkSepFIpqlatirZt22LPnj25Xq80I3WMsZydPHkStWvXxoULF7Bx40ZkZGSgf//+P2yxZ0xVPHr0CLa2ttDS0sLt27fzXNABQJUqVXDz5k0sXrwYq1atQrNmzfDs2TMZpmWycu3aNRQrVgyNGzcWO4pMqampYdiwYTh+/HieNn9yUceYkvry5Qt69eqFXr16oVmzZggJCcG4ceNw9OhRXL16FUuXLhU7ImOC8vf3R6tWrVCuXDl4e3ujUqVK+W5DXV0ds2fPhr+/P+Lj49GwYUM8f/5cBmmZLF2/fh0tWrSApqam2FFkbsiQIUhOTsbx48dzvTbfRV1SUhLCwsKyvc8HPTImH0SEo0ePok6dOrhx4waOHz+OU6dOZZ2J1LZtW8yfPx8LFizA1atXRcm4ZMkSTJ8+XZS+mWry8vJCu3btUKdOHVy/fr3QywsaNmyIwMBA6OvrY+vWrQKlZPKQlpaG27dvK8x6OlmrWLEi7O3tcerUqdwvzs/22hMnTlDFihXJ0tKS6tWrR/7+/lmfWVlZ5acpuYiJieEjTZhKCQsLIwcHBwJAvXv3pq9fv+Z4XXp6OrVr146MjY3p06dPcs346tUrUldXJwB048YNufbNVIdUKqXIyEh6+PAh7dy5k7S0tKhjx46UkJAgaD8zZ84kQ0NDwdtlsuPj40MA6M6dO2JHkZtPnz5RSkpKrtfla6PEb7/9hitXrqBMmTK4d+8e/vzzT8yZMwf9+vWDlZUVgoODC1qIygRvlGCqgoiwf/9+TJo0CTo6Oti2bRu6d+/+y3u+fv2K3377DTVq1ICXl5fcnsLy559/4sqVKzA1NUVSUhKCgoL4CTDsB0SE169f4+PHj/j06RPCwsLw6dOnbP/87yOqevfujYMHDwq+seHNmzcwNzfHnj17MGTIEEHbZrKxdOlSrFq1ClFRUfy95T/yVdTVqVPnh2nWqKgo9OjRA23btsWZM2cQFBQkk5AFxUUdUwUfPnzAiBEj4OnpiUGDBmHdunUoVapUnu69efMm2rRpg1mzZmHJkiUyTgo8e/YMderUwYYNG2BjYwNra2ts2LAB48aNk3nfTLElJibi6tWrcHd3h7u7+w9PeTAwMECFChVQoUIFmJiY5PjPlSpVytM5XQVhb2+P6Oho3LlzRybtM2G1a9cOurq6OH/+vNhRFE9+hv/s7OzowYMHP7yXkpJCffr0IXV19fw0JRc8/cqU3efPn6lEiRJUsWJF8vDwKFAby5YtIwDZTtuXhT59+pCpqWnWCe/Dhw+nEiVK/HSamKm29+/f09atW6lTp06ko6NDAMjc3JwmTZpEFy9epOfPn1NcXJzYMen06dMEgIKCgsSOwnKRnJxMOjo6tGbNGrGjKKR8jdR9/PgRGhoaKFeuXLbPfHx80Lx5c8GKTSHwSB1Tdnv27MGIESMQFhaW49ddXkilUnTu3BkBAQEIDg6GqampwCn/5/Hjx7C0tMT27dsxYsQIAEBERARq1KgBR0fHfD+YmimfjIwMBAQEZI3GPXz4EBoaGrC1tUXnzp3RuXPnfB1BIi/p6emoXLkyHBwcsH37drHjsF+4desWWrVqhaCgIFhZWYkdR+Hw4cN5lJSUBF1dXYGSMZY3PXv2xOfPn+Hj41OodiIjI2FlZYVKlSrhxo0bMjkGoGfPnggODsbz589/aH/Lli0YN24c7ty5o/JnShVl69evx9KlSxEZGYnSpUujU6dO6Ny5Mzp06IASJUqIHS9XCxYswJo1a/Dp0ycUL15c7DjsJxYsWICNGzciMjISamp8Ktt/Ffi/iJubm5A5FFZqaiomTJiA4sWLY8WKFZBKpWJHYkVEamoqrly5gk6dOhW6LSMjI7i4uCAgIABz5swRIN2PgoODcerUKcybNy9bwfjXX3+hXr16GDt2LH/9qKjDhw9j0qRJ6Nq1K3x8fPDlyxccPHgQTk5OSlHQAf97HFNiYiKOHDkidhT2C9evX0erVq24oPuZgs7bamlp0dq1a395jVQqLWjzgijsmrqwsDBq3rw5aWpqkqOjIwGgLl260Ldv34QNylgOrl69SgAoODhYsDZXr15NAOjcuXOCtUlE1LlzZ6pRowalpaXl+PnNmzcJAO3du1fQfpn4bt68SZqamjR48GDRv+cXVpcuXah+/fpK/+dQVYmJiaSlpUUbNmwQO4rCKnBRd+nSJTIwMKBx48Zl+wJIT0+nffv2Uc2aNQsdsDAKU9TdvHmTypYtSxUqVCBfX18iIjp37hwZGhqSubl5tg0jjAltypQpVL58eUF/wEilUurSpQuVLFmS3r59K0ib/v7+BICOHDnyy+v69etHxsbG/EuRCnnx4gWVKlWKWrdunacztBTdhQsXCMAPZ7AyxeHl5UUA6OHDh2JHUVgFLuqIiO7fv08VK1akbt26UWJiIqWkpNDWrVvJzMyMSpYsSfPmzRMqZ4EUpKiTSqW0Zs0aUldXJzs7O/r8+fMPn7969Yrq169Purq6dPDgQaEjM5bFwsKChg0bJni70dHRZGZmRtbW1oL8IO7QoQPVrl2b0tPTf3ndx48fqVixYjRhwoRC98nEFxkZSebm5mRhYUHR0dFixxFEeno6mZmZ0eDBg8WOwnIwZ84cKlOmDGVkZIgdRWEVqqgj+t83aktLS7K0tKQKFSpQmTJlaOnSpRQbGytEvkLJb1EXGxtLvXr1IgA0bdq0n04lJSYm0uDBgwkAjRw5Muv4BsaE8vr1awJAp06dkkn7AQEBpKmpSePGjStUO97e3gSATpw4kafrV6xYQerq6vTo0aNC9cvElZycTC1atCAjIyN6/fq12HEEtXTpUtLR0VGZQlWVNGvWjHr16iV2DIVWqKLu+/fvtGjRIipdujTp6uqSnp6eQg2L5qeoCwkJIQsLCypevDidPHky1+ulUmnWo2usra3p/fv3QkRmjIiINm/eTJqamjI9Y3Hz5s0EgGbOnFngKV47OzuqX79+nn9zTk5Opho1alDr1q153ZKSkkqlNGDAANLW1iYfHx+x4wguPDycNDQ0eN2WgomLiyMNDQ3aunWr2FEUWoGLuszn5VWtWpV27NhB8fHx9Oeff5KxsTEFBAQImTHLlClTqEWLFtSvX788TRvltag7ceIE6evrU+3atenZs2f5ynT37l2qXLkylS5dmjw9PfN1L2M/Y29vT23atJF5P5kbJ0aPHp3vKY3MjRxnz57N130XL14kAOTi4pKv+5hiWLBgAQGg48ePix1FZnr16kW1atXiXzwUyKVLlwgAPX36VOwoCq3ARZ2FhQUdOHAg2zqauXPnUrFixejMmTOFDvdvQUFB1L9/fyIiWrJkSa6LsolyL+rS0tJoypQpWQ9HL+jJ5pGRkfT777+TRCKhxYsX83w/K5SEhATS0dGh1atXy6W/nTt3kkQioYEDB/50ycF/SaVSatasGTX+f+3dd1RUV9cH4N8MDEMQpIiCKNg7oqixIQJRCSiiJopBAhILJmp8YzfmNZKYtiwhYjQqCYgiKNEYQVCKgr0iothrRMGCKIjShtnfH37yJrFRZuZO2c9as5aZuffsTc7A7Dn3nnPefrtWH3ze3t7UtGlTKi4urvG5TDgbNmwgAPTNN98InYpSPf/CsnfvXqFTYf9v7ty5ZG1tzYX2G9S6qHvd/9iwsDCSSqW0YsWK2jb/gpUrV1JkZCQREZ04cYKmTJnywjGlpaVUWFhY9cjJyXllUZeXl0cuLi6kr69PISEhdX6jyGQyWrhwIYlEIhoyZAjP8GO1lpCQoPJvpDExMaSvr08jRoyo1j2iz0fbarv12NWrV0kqldIXX3xRo/NkMhmdPHmSt/4TwL59+8jAwEArli55E7lcTm3atCFfX1+hU2H/7+233+b+qIY6T5R4lcTERDIxMVFYe99++y1t27aNiIguX7780s5duHAhAXjh8bIPAB8fH7K2tqZ9+/YpLEei//3c06dPV2i7THdMnjyZWrRoofIPzvj4eJJKpTRo0KDXjqDJ5XLq0aMH9e3bt045LliwgAwMDOjy5cuvPa6srIx27txJQUFB1KhRIwJADRs2pJUrV1J5eXmt47Pq07alS6pj6dKlZGBgwPsWq4FHjx6RWCymtWvXCp2K2lNaUUdElJGRobC2Vq1aVTVSd/z4cYWM1OXm5iosv7+bPHkyNW/eXOu/zTLFk8vl1Lx585e+v1Vhz549ZGxsTE5OTq8cbd6+fTsBoN27d9cp1pMnT8jOzo68vLxeeK24uJi2bNlCY8aMIVNTUwJALVu2pFmzZlFycjIFBgaSSCSidu3a0Z9//sm/a0qUn59Pbdq0oXbt2unUjND79++TVCqlxYsXC52KVqisrKTDhw/X6nc1Pj6eANCVK1eUkJl2UWpRp0j/vqcuOjr6jefUdUeJ2kpOTiYAdOrUKZXGZZrv3LlzBIASExMFy+HIkSNkbm5OXbt2fWGUorKykrp06UKurq4KibVlyxYCQDt27KAHDx7QunXryNvbmwwNDQkAOTg4UHBwMGVlZb3wYZCZmUkDBw4kANS/f3+lTdDSZaWlpeTs7EyWlpY6+YH64YcfUqtWrfg+aQWIjIwkALRo0aIanztjxgyytbXlL2/VoDFFHZHyZr8qWllZGZmamlJwcLBK4zLNt2TJEjI0NKSnT58Kmsfp06fJysqK2rdvTzk5OVXP//777wSA9u/fr5A4crmcBgwYQCYmJqSnp0cAqG/fvrRkyZJqFRFyuZx27txJnTp1IgA0ZswYhe2UwYjGjh2rtUuXVMfzdRhTUlKETkXjOTs7V42613TmtKOjIwUEBCgpM+2iUUVdTQlV1BE92xKpS5cuKo/LNJubmxsNHjxY6DSI6Nl9VHZ2dtSsWTO6cuUKyWQy6tixI7m7uys8jo+PD61atYpu375dqzYqKiooLCyMrK2tSSqV0pw5c3iyUh1dvnyZANCaNWuETkUwcrmcOnXqRO+//77QqWi0ixcvEgCKioqqWuPw+fabb/LgwQMSiUQUERGh3CS1BBd1ShIbG0sA6Nq1ayqPzTRTYWEh6evr08qVK4VOpcrNmzepbdu2ZG1tTQsWLCAAdPToUaHTeqXHjx9TcHAwGRkZUYMGDWj58uU6c2O/oi1dupQMDQ11ftmZFStWkJ6eXq2/cLBn69qamZnR06dPq3YjadiwYbVG1bdt20YA6MaNG8pPVAuIwZTCw8MDUqkU27dvFzoVpiFSUlIgk8ng6ekpdCpVbG1tsW/fPlhZWWHRokXw8vJCz549hU7rlYyNjbFw4UJcuXIFI0aMwPTp0+Ho6IizZ88KnZrG2b59OwYOHIh69eoJnYqg/P39IZVKER4eLnQqGkkmkyEyMhJjxozBW2+9BalUim3btsHExAReXl4oLCx87flpaWlo0aIFmjVrpqKMNRsXdUpiYmKCgQMH4s8//xQ6FVYLRITz58+rNGZiYiI6dOiAFi1aqDTum1hZWSEtLQ1TpkzBsmXLhE6nWho3boywsDBkZmZCJBKhZ8+eiIyMFDotjZGfn4+DBw/C29tb6FQEZ2pqig8++ABhYWGorKwUOh2Ns2vXLuTl5WH8+PFVz1laWiIhIQG3bt2Cj48PZDLZK8/fs2cP3NzcVJGqVuCiTomGDx+O/fv34/79+0Knwmrojz/+QMeOHXH48GGVxCMiJCYmYvDgwSqJV1Pm5ub4+eef0bZtW6FTqREHBwccPXoUPj4+CAwMxPjx4/H06VOh01J7CQkJICIMHTpU6FTUwscff4ybN29i165dQqeiccLDw9GlSxc4Ojr+4/n27dtj69at2LNnD6ZNmwYieuHc+/fvIzs7G++8846q0tV4XNQp0dChQ0FE2LFjh9CpvNHZs2cxc+ZMlJaWCp2KWggJCQEAREREqCReZmYm7ty5gyFDhqgkni6pV68eIiIiEBERgZiYGPTq1QsXLlwQOi21tn37dvTq1QvW1tZCp6IWevTogW7dumH16tVCp6JR7t69i/j4eIwfPx4ikeiF1wcMGIBVq1bhl19+QWho6Auvp6enAwCP1NUAF3VKZGVlBScnJ424BBsaGooff/wRvr6+rx0K1wUZGRk4ePAgunfvjs2bN6OkpETpMRMTE2FiYgInJyelx9JVgYGBOHbsGGQyGXr06IHo6GihU1JLJSUlSEpKwrBhw4RORW2IRCJMmjQJiYmJuHnzptDpaIwNGzZALBbDz8/vlcdMnDgRs2bNwowZM14YAElLS0Pbtm1hY2Oj7FS1Bhd1SjZ8+HAkJyfjyZMnQqfySkSEpKQk9OrVC/Hx8QgKCnrpULiuWL58OZo1a4aNGzeiqKhIJUV5YmIiBg0aBAMDA6XH0mX29vY4fvw4hg8fDj8/P0yaNIlHp/9l9+7dePr0KRd1/+Lr64t69eph7ty5qKioEDodtUdECA8Px4gRI2BhYfHaY3/44QcMHToUH3zwAbKysqqeT0tL41G6mhJu4q3yCbmkyXPP13raunWrYDm8yfM1hHbs2EFRUVEEgGbOnKmTq3fn5eWRRCKhJUuWEBFRv379FL4u27/dv3+fRCIR/fbbb0qNw/5HLpdTWFgYSaVS6tKlC126dEnolNTGxIkTqXXr1jr5+/8mUVFRJJFIyM3NjfLz84VOR60dOnSIAFBycnK1ji8uLiZHR0dq2rQp5ebmUm5ubq0WKtZ1PFKnZK1bt4a9vb1aX4JNTk6GRCKBi4sL/Pz8EBoaimXLluGHH34QOjWVW716NQwMDKpmagUGBiIlJQW3bt1SWsykpCQQETw8PJQWg/2TSCTChAkTcPToUTx9+hTdu3dHbGys0GkJTi6XIz4+HsOGDXvpPVC6zs/PD6mpqTh9+jR69+7N92a+Rnh4OOzs7DBgwIBqHV+vXj3Ex8dDLpfD29sbiYmJAABXV1clZql9RETae52tqKgIpqamKCwsRP369QXLY8GCBVi5ciXu3r0LiUQiWB6v4u3tjcePHyMtLa3queDgYHz11VdYs2YNgoKCBMxOdcrKymBnZ4eRI0di5cqVAJ69h6ytrfHll19i3rx5Sonr5+eH8+fP4+TJk0ppn71eUVERgoKCsHnzZkyYMAE9e/aEvr7+Gx8SiQSOjo5atY7bkSNH0KdPH+zbtw/Ozs5Cp6O2rl27hqFDh+L27duIjY2Fu7u70CmpleLiYjRu3BgzZ85EcHBwjc7NzMxEv379UFlZiVatWvEakzUl8EihUqnD5VciooyMDAJAu3fvFjSPlykrKyNjY2P6/vvv//G8XC6nqVOnkkgkotjYWIGyU61169YRALpw4cI/nvfz86N27dop5XKUTCYjCwsL+u9//6vwtln1yeVyWrVqFZmYmBCAaj+CgoKETl2h5s2bR5aWliSTyYRORe0VFhaSp6cn6enp0YoVK4ROR61ERESQSCSq9S4Q27dvJ5FIRFOnTlVwZtqPizoVkMvlZGtrq5Zv0PT0dAJAGRkZL7xWWVlJfn5+JJFIKCkpSYDsVEcul5OjoyN5eHi88FpycjIBoCNHjig87sGDBwlAtfdBZMonl8tJJpNRaWkpFRcX06NHjyg/P5/u3LlDt27dohs3btCVK1fos88+IxMTE3ry5InQKStMhw4dKDAwUOg0NIZMJqPp06cTAPrkk0+ovLxc6JTUQr9+/WjgwIF1auPQoUNUUFCgoIx0Bxd1KvLpp59S06ZN1e7m4/nz55OlpSVVVla+9PXy8nIaMmQIGRkZ0eHDh1Wcners27ePANDOnTtfeE0mk1HTpk3p448/VnjcL774giwsLHhkRANduXKFANDGjRuFTkUhLl26RABo27ZtQqeiccLCwkhfX58GDBig84XI84l3MTExQqeik3iihIoMHz4ct27dUrv7ppKTkzFo0CCIxS9/K0gkEsTGxqJbt24YPHgwsrOzVZyhaixfvhzt27d/6b0xenp6CAgIwKZNmxS+/EVCQgI8PDygp6en0HaZ8rVq1Qr9+vXTmu3H4uLiYGhoiEGDBgmdisaZMGECUlJSkJmZid69e+PSpUtKi1VSUoJjx47h2rVrSotRF+Hh4TA3N8fw4cOFTkUnaURRl5GRAWdnZ7i4uMDHx0cj1wjq378/zM3N1WoWbH5+PjIyMvDuu+++9jgjIyPEx8fDzs4O7u7uuH79uooyVI2//voL27Ztw7Rp015Z3AYEBODRo0eIi4tTWNzbt2/j1KlTvIuEBlPF7GhV2b59OwYOHKhVEz9UydXVFUePHoVYLEavXr2Qmppa5zYfPXqE9PR0hISEwN/fH/b29jAxMUGvXr3QqlUrDB48GImJiZDL5Qr4CepOJpMhMjISfn5+MDQ0FDodnaQRs1/v3LmD+vXrw8jICPPnz4ejoyNGjRr1xvPUZfbrc2PHjkVGRobajHZt2rQJvr6+uH37drVW7L579y769esHIsKBAweUsoXQw4cPcezYMbi7u6tsSYXZs2fj119/xa1bt177gda3b1+YmZlVTbWvq99++w0TJ07E/fv30aBBA4W0yVRLFbOjVSE/Px9WVlZYs2YNJkyYIHQ6Gq2wsBCjR49GamoqPv/8c7Ro0QJSqRSGhoaQSqUvfRgaGkIkEuH8+fPIzMzEyZMnkZmZWTUa99Zbb8HBwQHdunWDo6MjunbtiuzsbKxYsQKZmZlo1aoVJk+ejI8++gjm5uaC/ezx8fHw9vbGyZMnX9jrlamIwJd/a+zLL7+kP/74o1rHqtM9dUREf/zxBwFQm4VOP/roI7K3t6/ROdevXycbGxtycHCo9cymlykrK6OffvqJLCwsCACNGDGCHj58qLD2X6W4uJjMzMxo1qxZbzx29erVJBaLKTc3VyGxR4wYQX369FFIW0w4Y8aMUdrsaFV5Plvxzp07QqeiFSoqKuizzz4jiURSo9nUAMjU1JRcXV1p+vTptGHDBsrOzqaKioqXxpHL5XTo0CEaM2YMSSQSMjIyoqCgIMrKylLxT/zMsGHDyNHRUZDY7BmNKur++usv6tu37ytnGJWWllJhYWHVIycnR62KuuLiYjI0NKzarUBIcrmcmjRpQjNmzKjxudnZ2WRlZUX6+voUGBhI58+fr1MeW7dupdatW5NYLKagoCBav349mZqaUqtWrSgzM7PWbVfHqlWrSCwWV6tAffjwIUmlUlq8eHGd4z5fSuabb76pc1tMWMqcHa0qw4cP5y8YSiKTyejJkydUUFBAeXl5dP36dbpw4QJlZWXRsWPHaP/+/ZSamkq7du2iq1ev1vrLQV5eHn399ddkY2NDAKh///4UGxurshm5eXl5pKenRz///LNK4rGXU6uiLi8vj5ycnF54PHjwgAoLC6l///508eLFV56/cOHCl37zUZeijojI29ubnJychE6Dzp49SwBqvVRJcXExhYSEUJMmTUgkEtH7779PJ06cqFEbR48epX79+hEA8vDwoDNnzlS9dvXqVerWrRtJpVIKCwtTyihIZWUltW/fnt5///1qn/PBBx9Qx44d65zP7t27CQCdPHmyTu0w4clkMmrSpIlSZkerwtOnT8nIyOiFtSqZZiovL6fY2Fjq378/ASAbGxv69ttvqbS0VKlxFy9eTFKpVOdn/wpNrYq6V5HJZOTl5UWpqamvPU7dR+qI1Ocyx48//khSqZSePn1ap3ZKS0spLCyMWrduTQDI3d2d0tPTX1v03Lhxg3x9fQkAde7c+ZWFZUlJCU2aNIkAUEBAABUXF9cp13/btWsXAaB9+/ZV+5ydO3cSADp+/HidYs+YMYMaN26s0Zfs2P98/vnnZGZmRiUlJUKnUmPx8fEEgM6dOyd0KkzBsrKyKCgoiCQSCTk4ONDp06eVEkcul1P79u3J19dXKe2z6tOIoi46OposLCzIxcWFXFxcqr3Br7rdU0f0bPN2sVhMa9euFTQPDw8PGjRokMLak8lktGnTJnJwcCAA1KdPH4qPj/9H0fLo0SOaM2cOSaVSsra2pl9//bVa67Nt2LCBjIyMqFOnTi/s9lAXnp6e5OjoWKPCSiaTkY2NDU2ZMqVOsdu3b0/jx4+vUxtMfVy4cIEAaOTuKxMmTKA2bdrwFwwtlpmZSZ06dSIDAwNatmzZK9clra3ni6inpKQotF1WcxpR1NWWOhZ1REQuLi40ePBgweKXlJTQW2+9pZR7++RyOe3YsYP69u1bNRIXHR1NP//8M1laWpKRkREtXLiQHj9+XKN2s7OzqX379mRsbFztov51zp8/TwBo3bp1NT53zpw5ZGFhUevLGVevXiUAtHXr1lqdz9RT7969Bf29ro3KykqysrKq1kQhptlKSkpoxowZBIDc3Nzor7/+Uljb48ePp+bNmyu8WGQ1x0WdAEJCQsjAwICKiooEiZ+amkoAlDYUT/SsuNu7dy+9++67BIBEIhF99NFHdOvWrVq3+fjx46rLtlOnTq3TPSKTJ0+mRo0a1aqN5/cjbtmypVaxFyxYQPr6+mr3vmR188svv5Cenp7CZkerwqFDhwgA7d+/X+hUmIrs3r2bmjZtSqamphQVFVXnEdrHjx+TsbExffXVVwrKkNUFF3UCuH79uqCXaubMmUPW1tYqu9xy+vTpOs2Q/bvnG68bGBjQ22+/XatlVR4+fEj16tWjhQsX1jqPnj17kpeXV43PW7p0KQGgefPm1To2U08FBQUklUrrPAL+6NEj8vf3p9DQUMrPz1dQdi83d+5csrS05G3qdExBQQGNGTOGANDo0aPpwYMHtW4rPDycRCKRQkf+WO1xUSeQrl27CnZTaZcuXSggIECQ2Ipy/Phxat68OZmbm1NISEiN/igtXbqUJBIJ5eXl1Tr+ypUrSU9Pr0YTXhYtWkQAaP78+Xz/kpby8fEhe3v7OvXv+PHjSSqVkr6+PhkYGNCoUaNo586dSim8OnToQIGBgQpvl2mGmJgYMjMzoyZNmtT6fjgnJydyd3dXcGastrioE0hwcDDVr1+fysrKVBo3Ly+PAFBUVJRK4ypDQUEB+fv7k0QiIUNDQwoICKCDBw++9gNVJpNR8+bNyd/fv06xHzx4UHXT8ZvI5XL64osvCAAtWrSoTnGZektISCAAlJGRUavzn8+uXrNmDd29e5d+/PFH6tSpEwGgJk2a0Pz58+ny5csKyfXSpUsEgLZt26aQ9phmysnJoQEDBhAA+s9//lOjFRGe35usiPucmWJoxDZhtaVu24T9XVZWFrp27YqkpKSXbiKvLFFRUfD398fdu3fRqFEjlcVVprt37yIiIgJr167F9evX0blzZ0yaNAkffvghTE1N/3Hstm3b8N577+HEiRPo3r17neKOGjUKFy9eRFZW1iu3NCMizJ49G8uWLcPixYsxe/bsOsVk6k0mk8HW1hajRo1CaGhojc599OgR7O3t0bFjRyQlJVW9p4gIJ06cQHh4OGJiYlBYWAhnZ2eMGzcOI0eOhLGxca1yXbp0KRYsWID8/Hze71XHyeVyrFixAnPnzkXLli3h4uKC8vLyfzzKyspeeO7evXsoKSlBbm4upFKp0D8Gg4bs/Vpb6lzUERFatmwJT09PrFq1SmVxAwICkJ2djZMnT6ospqrI5XKkpqZi9erViIuLg1Qqha+vLz7++GP06NEDAODi4oLKykocOHCgzvESEhLg5eX1yn0O5XI5pk2bhpUrVyI0NBSffvppnWMy9Td79mxEREQgNzcXBgYG1T5v3Lhx2LJlC7Kzs2FnZ/fSY0pKSrBt2zaEh4dj9+7dMDY2ho+PD6ZPnw57e/sa5ens7Axzc3PExcXV6Dymvc6ePYsZM2YgPz8fBgYGkEqlMDAweOnj+Wtubm7w9vYWOnX2nICjhEqnzpdfiYimT59OjRs3Vtk08OfLF8ydO1cl8YR0+/Zt+vrrr8nW1pYAULdu3Sg4OJgA0O+//66QGBUVFWRlZUXTpk174TWZTEbjx48nkUgk+JqETLXOnDlDAKq9RzXR/y7bhoWFVfuc69evU3BwMNnZ2ZFEIqHvvvvulXuE/tu9e/dILBbXKB5jTP1xUSegvXv3qnTPyFOnThEA2r17t0riqQOZTEY7duwgLy8vEovFZGdnV+0PvuqYOXMmWVpa/uPeyIqKCvLz8yOxWEzr169XWCymObp3707Dhg2r1rEFBQVkY2ND7777bq0mWJSWltK8efNILBZTnz59qnXPnbrsbMMYUyyxcGOErG/fvrC0tMSff/6pknjJyckwMjKCk5OTSuKpAz09PQwZMgTx8fG4ceMG9u/fD319fYW1P3bsWOTn5yMxMREAUF5eDl9fX2zevBkxMTHw9/dXWCymOcaOHYuEhATcv3//jcdOnz4dxcXFCAsLe+W9ma8jlUrx/fffY9++fbh37x66dOmCX375BfSaO2u2b9+O3r17w8rKqsbxGGPqi4s6Aenr68Pb2xuhoaEYPXo0IiMjcffuXaXFS05Ohqurq87e0Gpra/vKe5Vqq3PnzujWrRsiIyNRWlqKkSNHIi4uDlu2bIGPj49CYzHN4evrC5FIhOjo6Ncel5CQgMjISISEhMDW1rZOMZ2cnHDq1CkEBARg8uTJ8PT0xO3bt184rqSkBMnJyRg2bFid4jHG1JDQQ4XKpO6XX4meLY0RHBxMPXv2JJFIRACoR48e9OWXX9KRI0cUtjbVkydPSCqV0k8//aSQ9tj/hIaGkr6+Prm5uZGhoSHt3LlT6JSYGhgxYgQ5Ojq+8vWCggJq3LgxeXp6KnzdwsTERGrcuDGZmZlRdHT0P16Li4sjAApbEJwxpj549qsauXfvHpKSkpCYmIikpCQ8fPgQlpaW8PDwwODBg+Hu7o4GDRrUqu1du3bB09MT586dQ4cOHRScuW7Lz8+HjY0NJBIJ4uPj8c477widElMDcXFxGDZsGLKysuDg4PDC6wEBAYiLi0N2djaaNm2q8PgFBQWYMmUKNm3aBB8fH6xatQoNGjTAhAkTsH//fly8eFHhMRljwuLLr2qkUaNG8Pf3R0xMDO7du4cDBw4gKCgIZ8+exZgxY9CoUSM4OzvjwoULNW47OTkZtra2aN++vRIy122WlpbYuHEj9u7dywUdq+Lp6YmGDRsiMjLyhdfi4+OxYcMG/PTTT0op6ADAwsICMTExiImJQUpKCuzt7bFjxw7Ex8fzEhSMaSkeqdMQubm52LVrF5YuXYqHDx8iPT0d7dq1q/b59vb26N27N3799VclZskY+7vPPvsMmzZtQk5ODiQSCYBnI2idOnVC9+7dER8fX6vJETWVm5uLCRMmYOfOnQCA/fv3o1+/fkqPyxhTLY0aqYuJiUHDhg2FTkMQNjY2GDduHNLT02FhYQE3NzdcunSpWufeunULZ8+eVenOFYwxIDAwEHfv3kVSUlLVc//5z39QUlKCNWvWqKSgA579/UhISMDq1avh6+uLPn36qCQuY0y1NKaok8vl2LJlS51niGm6Ro0aYc+ePTAzM4ObmxsuX778xnNSUlIgEokwYMAAFWTIGHuua9eucHBwqLoEu337dkRFRSE0NBRNmjRRaS4ikQiTJk1CdHQ09PT0VBqbMaYaGlPURUdHY+TIkRCLNSZlpbGyssKePXtQv359uLm54cqVK689Pjk5GW+//XatJ1kwxmovMDAQcXFxuHz5MiZNmgQvLy9ev5AxphQaUSFVVlYiNjYWo0ePfu1xZWVlKCoq+sdDW1lbWyMtLQ0mJiZwdXV9ZWEnl8uRkpLCl14ZE8iYMWNQWVkJFxcXlJWVqfSyK2NMtyhuaX0FuHPnDkaOHPnC8xMnToSPj88bR+m+//57fPXVV8pKT+1YW1tjz549cHV1hZubG9LT09GqVat/HJOZmYkHDx5wUceYQKysrODp6YkdO3Zgw4YNsLGxETolxpiW0ojZr3PnzkVmZibEYjEOHz6McePGISQk5IXjysrKUFZWVvXfRUVFsLW11YrZr6+Tm5sLNzc3lJSUID09HS1btqx67bvvvsMPP/yABw8eVM2+Y4yp1tmzZ7Fr1y7MmDGDR+kYY0qjEUXd3/Xo0QMnTpyo1rHatKTJm+Tm5sLV1RVlZWVIT09HixYtAACurq4wMzNT2f6yjDHGGBOGRtxT93fVLeh0jY2NDdLS0mBgYABXV1fcuHEDjx8/xqFDh/jSK2OMMaYDNK6oY6/WpEkTpKWlQSKRwNXVFZGRkaioqOCijjHGGNMBGnf5tSZ06fLr3+Xk5MDV1RXXrl1DixYtcPXqVb6PhzHGGNNyPFKnhWxtbZGWloY2bdrAx8eHCzrGGGNMB/BInRaTy+UAwAs2M8YYYzpArdapY4rFxRxjjDGmO/hTnzHGGGNMC3BRxxhjjDGmBbioY4wxxhjTAlzUMcYYY4xpAa2e/UpEePz4MUxMTHhZD8YYY4xpNa0u6hhjjDHGdAVffmWMMcYY0wJc1DHGGGOMaQEu6hhjjDHGtIDO7ijxfBIFY4wxxpgmeNPET50t6vLz89GoUSOh02CMMcYYq5Y37WWvs0WdgYEBACAnJ+e1/4OYeisqKoKtrS33owbjPtQO3I/agftRvZmYmLz2dZ0t6p4PX9avX5/fuFqA+1HzcR9qB+5H7cD9qJl4ogRjjDHGmBbgoo4xxhhjTAvobFEnlUqxcOFCSKVSoVNhdcD9qPm4D7UD96N24H7UbLxNGGOMMcaYFtDZkTrGGGOMMW3CRR1jjDHGmBbgoo4xxhhjTAvobFE3a9YsODs7w8/PD+Xl5UKnw6rp8ePH6NWrF4yNjZGdnQ0A2Lx5M/r06YN33nkHOTk5AmfIqiMjIwPOzs5wcXGBj48PKioquB81THZ2NpycnODi4oIhQ4aguLiY+1CDxcTEoGHDhgD4b6pGIx108uRJ8vPzIyKib775hjZu3ChwRqy6Kioq6N69ezR27Fg6c+YMlZeXU8+ePamsrIwOHDhAEydOFDpFVg15eXn05MkTIiL6/PPPKTY2lvtRw5SXl1f9Ozg4mNavX899qKEqKyvpvffeI0dHR/6bquF0cqTu8OHDcHd3BwB4eHjg0KFDAmfEqktfX7/q2yQAXL58GZ06dYKBgQGcnJxw5swZAbNj1WVtbQ0jIyMAgEQiwaVLl7gfNYxEIqn699OnT2FnZ8d9qKGio6MxcuRIiMVi/puq4XSyqHv06FHV9iempqYoKCgQOCNWW3/vSwCorKwUMBtWUzdv3kRqair69evH/aiBUlJS4OjoiLS0NEgkEu5DDVRZWYnY2FiMHj0aAP9N1XQ6WdSZm5ujqKgIwLM3sIWFhcAZsdr6e18CgJ6enoDZsJooKiqCv78/IiIi0KhRI+5HDTRo0CBkZmZi5MiR2Lt3L/ehBoqKioKPjw/E4mflAP9N1Ww6WdT17t0bycnJAICkpCQ4OTkJnBGrrdatW+PcuXMoLy/HwYMH4eDgIHRKrBoqKyvh5+eHL7/8Em3btuV+1EBlZWVV/zY1NYWxsTH3oQY6d+4c1q9fDw8PD1y+fBlr167lftRgOrujxKxZs3D06FHY2dkhIiICBgYGQqfEqmnw4ME4deoUmjVrhkmTJsHQ0BDLly+HoaEh1q9fD1tbW6FTZG8QExODqVOnonPnzgCATz75BETE/ahBduzYgSVLlkAsFqNhw4ZYt24d4uLiuA81WI8ePXDixAls2rSJ+1FD6WxRxxhjjDGmTXTy8itjjDHGmLbhoo4xxhhjTAtwUccYY4wxpgW4qGOMMcYY0wJc1DHGGGOMaQEu6hhjjDHGtAAXdYwxxhhjWoCLOsYYY4wxLcBFHWOMMcaYFuCijjHGGGNMC3BRxxhjjDGmBf4PdoJnAHmJo6YAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACvgklEQVR4nOzddVxUafs/8M/QIIKBGIiiomLhYiAGirniionYroGu3a1r99rdXaCYoKKYSIgCJnYiohJK91y/P54ffNcFpc7MmRmu9+s1r2d35pz7/riPwMVdR0JEBMYYY4wxptTUxA7AGGOMMcYKj4s6xhhjjDEVwEUdY4wxxpgK4KKOMcYYY0wFcFHHGGOMMaYCuKhjjDHGGFMBXNQxxhhjjKkALuoYY4wxxlSAShd1RITY2Fjw+cqMMcYYU3UqXdTFxcXB0NAQcXFxYkdhjDHGGJMplS7qGGOMMcaKCqUp6h4/fozmzZujVatW+OOPPxAfHy92JMYYY4wxhaE0RV3NmjXh4+ODmzdvwtraGqdPnxY7EmOMMcaYwtAQO0BeaWpqZv1zYmIiLCwssl2TkpKClJSUrH+PjY2VSzbGGGOMMbEpzUgdAFy5cgVWVla4fv06qlWrlu3z5cuXw9DQMOtlamoqQkrGGGOMsZwlJCRg//796NWrF86cOSNo2xJSwvM+Vq1aBalUipkzZ/7wfk4jdaampoiJiYGBgYG8YzLGGGOMgYhw9+5d7N69G8ePH0dcXBxq1qyJ58+fY8iQIVi/fr0gdYrSjNT9u1gzNDREsWLFsl2jra0NAwODH16MMcYYY2KIjIzE+vXrYWlpiSZNmuDixYuYNGkS3r59i6dPn2Lv3r04ceIE6tevD29v70L3pzQjde7u7vjnn3+gpqaGMmXKYP/+/dDT0/vlPbGxsTA0NOSROsYYY4zJhVQqhZeXF/bs2YMzZ86AiNC1a1cMGzYM7du3h7q6+g/Xv337FoMGDYKPjw+mT5+OhQsXQltbu0B9K01RVxBc1DHGGGNMHhITE/HPP/9g3759eP/+PWrXro1hw4Zh4MCBKFOmzC/vzcjIwOrVq/H333+jdu3aOHz4MOrWrZvvDEoz/coYY4wxpqg2bNiApUuXol27dvDz88Pjx48xefLkXAs6AFBXV8eMGTMQEBCA9PR0NGzYEGvWrIFUKs1XBh6pY4wxxhgrJHt7ewDAxYsXC9VOcnIy5syZg3Xr1qFVq1Y4cOAAKlWqlKd7eaSOMcYYY6wQpFIp/Pz80Lx580K3paOjgzVr1uDq1at4/fo16tWrh0OHDiEvY3Bc1DHGGFMJRITNmzejX79+OHr0KB9Az+QmJCQEMTExaNasmWBttm7dGg8fPkTXrl0xaNAgDBs2LNd7lOaJEowxxtjPxMbGYtiwYTh58iTq1q2LY8eOQUtLC+3bt4ejoyO6dOmCUqVKiR2TqShfX1+oq6vD2tpa0HZLlCiBgwcPokuXLkhNTc31ei7qGGOMKbUnT56gZ8+e+PTpE9zc3NCjRw+Ehobi1KlTcHNzw9ChQ6Guro42bdqgZ8+e6NatG4yNjcWOzVSIj48P6tevD319fZm07+jomKfrePo1D5KSkrBnzx6kp6eLHYUxxti/HDt2DNbW1tDU1MS9e/fQo0cPAICpqSkmTJiAW7du4dOnT9i4cSMyMjIwevRolC9fHq1bt8bmzZvx6dMnkf8ETBX4+voKsp6usLioy4PTp0/D2dkZq1evFjsKY4wxAKmpqRg3bhz69euHHj16wN/fHzVq1Mjx2nLlymHUqFHw8vLC58+fsXPnTujo6GDy5MmoVq0anj9/Luf0TJV8+fIFr169EnQ9XUFxUZcHmY/umD9/PkJCQkROwxhjRVtoaChatWqFHTt2YOvWrTh48GCOj47MiZGREYYNG4aLFy8iPDwcAHDhwgVZxmUqztfXFwB4pE5Z3Lp1CwMHDkTVqlUxZMgQnoZlTEkkJiYiIiJC7BhMQFevXkWDBg0QFhaG27dvY9SoUZBIJAVqq3Tp0mjWrBlu3LghbEhWpPj6+sLU1BSmpqZiR+GiLjdRUVEICQlB+/btsW/fPty7dw9r164VOxZjLBfh4eFo3LgxGjRogKSkJLHjsEKSSqVYtmwZOnToACsrKwQFBQmy09DOzg63bt1CRkaGAClZUeTj46MQU68AF3W5un37NgDA1tYWNjY2mDx5MubNm4enT5+KnIwx9jMfPnxAy5Yt8f37d4SHh2Pr1q1iR2KF8O3bN3Tt2hVz5szB3LlzcfHiRRgZGQnStp2dHb5//46HDx8K0h4rWpKTkxEYGKgQU68AF3W58vb2hqmpKSpXrgwAWLRoESpXrowhQ4bwb3aMKaBXr17B1tYWGRkZuH37NoYNG4bly5fzQbRKrH379vDx8YGHhwcWLlwIdXV1wdq2traGrq4url+/LlibrOgIDAxEamoqj9QpC29vb9ja2mat2dDV1cW+ffsQEBCAdevWiZyOMfZvISEhaNmyJXR0dHDr1i1UqVIFf//9N+Lj4/nrVUlFRkYiMDAQmzdvRqdOnQRvX1tbm9fVsQLz9fWFnp4e6tevL3YUAFzU/VJ8fDwCAwNha2v7w/vNmjXDpEmTMHfuXDx79kykdIyxf7t//z5atWoFIyMj3Lp1CxUrVgQAVKxYEaNHj8aaNWsQFRUlckqWX8HBwQCARo0ayawPXlfHCsrHxwdNmjSBhoZiPMuBi7pf8Pf3R0ZGRraiDgAWL16MSpUqYejQofyNgDGR3blzB61bt4aZmRmuX7+OsmXL/vD5rFmzQERYuXKlSAlZQQUFBUFfXx/m5uYy68POzg4xMTF48OCBzPpgqoeIFObQ4UxKU9Rljpi1atUKTk5OSEtLk3mf3t7eKFWqFGrVqpXtMz09Pezbtw/+/v5Yv369zLMwxnJ269YttGvXDnXq1IGXlxdKly6d7ZoyZcpg0qRJ2LRpEz9BQMkEBwfjt99+g5qa7H5cNW7cGLq6ujwFy/Ll1atXiIiI4KKuIExMTODp6YmbN2/C3NwcZ86ckXmfmevpfvbNpHnz5pg4cSLmzp3LJ5IzJoLLly+jY8eOsLa2hqenJwwNDX967ZQpU6Crq4slS5bIMSErrKCgIDRo0ECmfWSuq+PNEiw/fHx8IJFIYGNjI3aULEpT1JUrVw56enoAAE1NzRznr1NSUhAbG/vDq6BSU1Ph7++f49Trvy1ZsgQVK1bkaVjG5OzcuXNwcHBA69at4e7unusTBQwNDTFz5kzs2rULb968kVNKVhixsbF4+fIlrKysZN5X69ateV0dyxdfX1/UqVMHJUqUEDtKFqUp6jJ9+PABXl5e6Ny5c7bPli9fDkNDw6xXYU53DgwMRFJSUq5FnZ6eHvbu3Qs/Pz9s3LixwP3JwsWLF3Hz5k2xYzAmOBcXF/Ts2RMODg44ffo0dHV183Tf2LFjYWRkhIULF8o4IRNC5ho3eRR1dnZ2iI2Nxf3792XeF1MNinTocCalKupiY2MxcOBA7Nu3D5qamtk+nzVrFmJiYrJeoaGhBe7L29sbenp6efpmYmtri/Hjx2P27Nl4+fJlgfsUUmpqKvr164fWrVtj4cKFkEqlYkdiTBAHDx5Ev3790LdvXxw/fhxaWlp5vldPTw9///03Dh06hCdPnsgwJRNCcHAwtLS0ULt2bZn3xevqWH58+/YNISEhCrWeDlCioi4jIwP9+/fHvHnzUKNGjRyv0dbWhoGBwQ+vgvL29kbTpk1zLB5zsnTpUpiYmCjMocRXrlzB9+/f4ezsjIULF6JTp06IjIwUOxZjhZKamoqRI0eif//+2L9/f4GOEXB2dkblypUxb948GSRkQgoKCkK9evXy/H24MLS0tNC8eXMu6lie+Pn5AQCP1BWUq6srfH19sXjxYtjZ2cHFxUVmfUmlUvj4+KBly5Z5vqdYsWLYu3cvfHx8sHnzZpllyytXV1dYWFhgx44d8PT0RGBgIBo0aICAgACxozFWYPfv30dSUhLGjh1b4N2QWlpaWLBgAU6dOoV79+4JnJAJKTg4WOabJP4t87y69PR0ufXJlJOPjw+MjY1RrVo1saP8QGmKur59+yIqKgo3btzAjRs30Lt3b5n19eTJE3z79i3X9XT/1bJlS4wbNw6zZs3Cq1evZJQud8nJyThz5gycnJwgkUjQvn17BAUFwcTEBC1atMDWrVtBRKLlY6yg/Pz8oK2tjd9++61Q7QwYMAC1atXC3LlzhQnGBJecnIyQkBC5rKfLxOvqWF5lnk+X+bQpRaE0RZ083bp1C5qammjSpEm+712+fDlKlSqFNWvWyCBZ3ly+fBmxsbFwcnLKes/U1BQ3b97EyJEjMWbMGAwYMADx8fGiZWSsIPz9/dGwYcN8raPLibq6OhYvXpx1TFJB3LhxAx8/fixUDvZzjx8/Rnp6ulxH6ho3bgw9PT2egmW/lJaWhjt37ijc1CvARV2OvL290bBhw6wjVPKjWLFicHR0xPnz50UbDXNxcUGdOnVQp06dH97X0tLCxo0bcezYMZw9exZNmjThx5wxpeLn54emTZsK0laPHj3QsGFDzJkzJ19fq2/fvs06SqVdu3aFOjopJ0lJSVi6dCm+f/8uaLvKJjg4GGpqaqhXr57c+uR1dSwvHjx4gKSkJIXbJAFwUZcNEcHb2ztf6+n+q0uXLggLC8t6ZqE8JSUl4dy5c7+cnu7Tpw/u3r0LIkLjxo3h6uoqx4SMFUx4eDjev38v2EGfEokES5cuhY+PDy5evJjr9SkpKViyZAlq166NBw8eYMuWLQgPD8eQIUME+wWOiODs7Iy5c+fi0qVLgrSprIKCglCrVq0C/XJdGLyujuXGx8cH2trach1Fzisu6v7j7du3+PTpU77X0/2bra0tDA0Nce7cOQGT5c3FixcRHx//w9RrTmrVqoWAgAA4ODigd+/emDhxIlJTU+WUkrH88/f3BwDBRuoAoEOHDmjZsiXmzJnzy2N/rly5gnr16mHhwoWYMGECnj59itGjR+PgwYM4deoUVq9eLUieFStW4OjRo9DQ0MDr168FaVNZBQcHy3U9XSY7OzvExcWJ8ks5Uw6+vr5o1KgRtLW1xY6SDRd1/3Hr1i1IJJJCDatqamrC3t5elKLO1dUV9evXR82aNXO9Vl9fH0eOHMGmTZuwdetW/P777wpxHAtjOfHz84OpqSlMTEwEazNztO7+/ftwc3PL9nlYWBh69+6NDh06oEKFCnjw4AFWrFiR9fSKrl27Yvbs2Zg5cyauXbtWqCxnzpzB7NmzMW/ePFhZWRXpoi49PR0PHjwQZSSkUaNGvK6O/RQRKeShw5m4qPsPb29v1K1bFyVLlixUO126dEFwcHChDkDOr8TERJw/fz7XUbp/k0gkGDt2LC5cuIAbN27gxIkTMkzIWMH5+fnJ5BmLLVq0gL29Pf7++++sKbe0tDSsXbsWFhYWuHnzJg4fPozr16/neAjuokWL0KZNG/Tp06fAX+8PHjzAgAED4OjoiPnz58Pc3FzUHfRie/78OZKTk0UZqeN1dexXPnz4gLCwMIVcTwdwUZeNt7d3oaZeM3Xs2BEaGhpwd3cXIFXeeHh4IDExMV9FXaZ27dqhU6dOWLhwIY/WMYWTlpaGe/fuCTr1+m9LlizB8+fPcejQIXh7e6NBgwaYNm0ahgwZgmfPnqF///4/PbpAXV0dx44dg66uLhwdHZGSkpKvvr9+/YouXbqgRo0a2L9/P9TU1Ip8URcUFAQAhT66pqBat24Nb29vXlfHsvH19QWgeIcOZ+Ki7l8+f/6Mly9fFmqTRKaSJUuiZcuWcp2CdXV1RYMGDWBubl6g+xcsWIBnz57h+PHjAidjrHAePHiA5ORkmRV1DRo0QK9evTBu3Di0bNkSenp6uHv3LjZu3Jinh3UbGRnBzc0N9+/fx8SJE/Pcb0pKCnr06IGUlBScPXs2a1q3WrVqCA8PR0JCQgH/RMotODgYVatWFe1B6Znr6jKLS8Yy+fj4oHr16ihTpozYUXLERd2/3L59GwAEGakD/jcFe+3aNcTFxQnS3q/Ex8fDw8OjQKN0mRo3bozOnTtj0aJF/BsqUyh+fn7Q0tKS6XTckiVLUKtWLezcuRN+fn75Xs/VqFEjbNmyBdu3b8f+/ftzvZ6IMHLkSNy7dw9nzpyBqalp1meZv5i9efMmXxlUhVibJDLxujr2M5mHDisqLur+5datW6hatSoqVKggSHsODg5ITU3F5cuXBWnvV9zd3ZGUlFSoog4AFi5ciBcvXuDo0aMCJWOs8Pz9/dGgQQOZ7jarUaMG7t69i+HDhxf4EWTOzs4YNmwYRo4cmesoz9q1a7F//37s3r0721rBzKKuKG6WICK5Px7svzQ1NdGiRQsu6tgP4uLi8ODBA4WdegW4qPuBUOvpMlWtWhV16tSRyxSsi4sLGjdujCpVqhSqnQYNGqBr165YvHgxj9YxhSHkocOytnnzZtStWxc9e/ZEdHR0jtd4eHhg2rRpmDlzJgYMGJDtc2NjYxQrVqxIrqt7+/YtYmJiRB2pA/43Bcvr6ti/BQQEQCqV8kidMoiJicGDBw8ELeqA/03Benh4yPQbQ2xsLC5evCjY83AXLFiAV69e4fDhw4K0x1hhfPnyBW/fvpXJzldZ0NHRgZubG+Li4tC/f/9sG4+ePHmCvn37wsHBAUuXLs2xDYlEUmQ3S2SOcIp9sKudnR3i4+N5XR3L4uPjgxIlSsDCwkLsKD/FRd3/5+vrCyISZJPEv3Xp0gVRUVHw8/MTtN1/O3fuHFJSUtCrVy9B2vvtt9/Qo0cPLFq0CGlpaYK0yVhByeLQYVmrXLkyjh07Bk9PTyxatCjr/cjISHTp0gVmZmY4fPjwL6d5q1WrViSnX4ODg1G+fHmULVtW1ByNGjVCsWLFcP36dVFzMMWReT5dQZdnyIPiJpMzb29vlC1btsA7R3/G2toaxsbGMp2CdXV1RdOmTVGpUiXB2pw/fz7evn2LgwcPCtYmYwXh5+cHExOTHzYSKIP27dtjyZIlWLRoEdzd3ZGamgpHR0fExsbi3LlzKF68+C/vL8ojdWKP0gG8ro79KCMjA/7+/go99QpwUZfl1q1bsLW1/elZVAWlpqYGBwcHnD9/XtB2M33//h2enp6F3iDxX5aWlnB0dMTixYv58WFMVP7+/koz9fpfM2fORJcuXTBgwAAMGDAAvr6+OHXqFMzMzHK919zcHB8+fChSX39EhKCgINHX02Wys7PD7du3ecaC4cmTJ4iNjVXoTRIAF3UAgOTkZNy9e1fw9XSZunTpgufPn+P58+eCt3327FmkpqYKNvX6b/Pnz8eHDx/ydDwDY7KQnp6Ou3fvKtXU67+pqanh4MGDKFOmDE6cOIHt27fn+ftMtWrVIJVK8e7dO9mGVCDh4eH4+vWrQozUAbyujv0fX19fqKurw9raWuwov6Q0RV1cXByaNGkCfX19PH78WNC2AwICkJqaKrOirl27dtDR0ZHJaJ2rqytatGgh6PMwM9WtWxdOTk5YunRpvk/JZ0wIDx8+RGJiotIWdQBgaGgIT09PuLi4YOjQoXm+L3MpSFGagg0ODgYAhRmpa9iwIYoVK8ZTsAw+Pj6wsrKCnp6e2FF+SWmKOl1dXbi7u8PR0VHwtr29vWFgYABLS0vB2wYAPT09tGvXTvB1ddHR0bh8+bJgu15zMm/ePISGhmLv3r0y64Oxn/H394empqbCjNwUVNWqVfO9RKJixYrQ1tYuUpslgoODUbJkSVSuXFnsKAD+b10db5Zgin7ocCalKeo0NDRyfSxHSkoKYmNjf3jlhbe3N5o3bw51dXUhouaoS5cu8PHxQWRkpGBtnjlzBhkZGejZs6dgbf5X7dq10bdvXyxbtoxH65jc+fn5wcrKCjo6OmJHkTs1NTVUqVKlSI3UZa6nE3ptc2G0bt2a19UVcZ8/f8abN28Ufj0doERFXV4sX74choaGWa+87JZLT0+Hj4+PzKZeM3Xu3BlSqRQXLlwQrE0XFxe0atUK5cuXF6zNnMybNw+fPn3C7t27ZdoPY/+lTIcOy0JR2wEr9uPBcmJnZ4eEhAQEBgaKHYWJxMfHBwB4pE7eZs2ahZiYmKxXaGhorvc8ePAA8fHxMi/qypcvD2tra8GmYCMjI3H16lXBd73mpGbNmujXrx+WLVuG5ORkmffHGABERETg9evXSrvzVQhF6ay66OhovHv3TuGm2hs0aAB9fX1eV1eE+fr6onLlyjJZuy40lSrqtLW1YWBg8MMrN97e3tDW1kbjxo1lnq9Lly7w9PQUZBrz1KlTICKZTr3+27x58/Dlyxfs3LlTLv0xpoyHDgvN3Nwcb968yfZUClV0//59AIqzSSITn1fHMg8dVgZKVdR16tQJly9fxvDhwwU7ZsPb2xtNmjSR6YPCM3Xp0gXx8fGCfHNwdXVF69atYWxsXPhgeVC9enUMGDAAy5cvR1JSklz6ZIojJiYGDRo0gJubm9z69PPzQ7ly5QQ9VFvZmJubIy0tLU+zDsouKCgIenp6qFGjhthRsuHz6oqupKQkBAUFKcXUK6BkRd2FCxfw6dMn+Pn5YfDgwYVuj4jg7e0t86nXTHXr1oWZmVmhp2C/fPmC69evy3TXa07+/vtvREREYPv27XLtl4lv586dCA4OhrOzMz5+/CiXPv39/dG0aVOFWjQvb9WqVQOAIjEFGxwcjPr168t0w1pBZa6ru3fvnthRmJzdu3cPaWlpqjtS9/37d7i4uGDt2rVYt24djh8/jm/fvskim8w9f/4cERERcivqJBIJHBwccO7cORBRgds5deoUJBIJunfvLmC63FWrVg1//vknVqxYgYSEBLn2zcSTlpaGjRs3onv37tDT08OQIUMglUpl2md6ejoCAgKK9NQr8L9nyKqrqxeJzRLBwcEKt54uU8OGDXldXRHl6+sLfX191KtXT+woeZKvom7Pnj2wtraGv78/pFJp1rPQbGxssGfPHllllBlvb2+oqanJ9QdHly5d8PHjx6z1IwXh6uqKdu3awcjISLhgeTR37lxER0dj27Ztcu+bicPV1RUfP37EwoULsXfvXnh5eWHLli0y7fPJkydISEgo0pskAEBLSwuVKlVS+ZG6hIQEPHv2TOHW02XS0NCAra0tF3VF0O3bt9GkSRNoaGiIHSVvKB9q1KhBcXFx2d6PjY2l6tWr56cpuYiJiSEAFBMTk+PnAwcOpIYNG8o1U0pKChkYGNCCBQsKdP+nT59IIpHQnj17BE6Wd8OHD6cyZcrk+HeBqRapVEpWVlb0+++/Z703ZswY0tHRoadPn8qs323btpGGhgYlJibKrA9l0b59e+revbvYMWTK19eXAFBgYKDYUX5q5cqVpKenR6mpqYK3nZSURPv376fo6GjB22YFFx4eTpqamrR69Wqxo+RZvkbqJBIJ4uPjs70fHx+vlOte5LmeLpOWlhbs7e0LvK7Ozc0NGhoacp96/bc5c+YgLi4Obdu2LRILuIuyGzduIDg4GFOmTMl6b9WqVahUqRIGDBggs4Xjfn5++O2336CrqyuT9pVJUTirLigoCJqamqhTp47YUX7Kzs4OiYmJuHv3rqDt3rlzB1ZWVhg8eDBatWqFz58/C9o+K7jt27dDU1MzX4/3E1u+irrVq1ejVatW6NmzJ8aPH4/x48ejR48esLOzw5o1a2SVUSZCQ0Px7t07uRd1wP+mYIOCggq04NzFxQXt27dHyZIlZZAsbypXroxbt24hPDwcDRo0wLVr10TLoozCwsJw9epVsWPkyZo1a2BpaYl27dplvaenp4dDhw7h/v37WLJkiUz6zVzWwf7vrDoqxDpcRRccHIw6derI5RSCgso8r27r1q15flrRryQnJ2P69Olo1qwZihcvjjNnziAqKgotWrTAu3fvCh+YFUpKSgq2bduGP//8U9Sft/mW36G99PR08vX1pZMnT9KJEyfI19eX0tPTZTCIWHi/mn49cuQIAaAvX77IPVd0dDSpq6vTtm3b8nWfi4sLAaADBw7IKFn+REREULt27UhNTY1WrlxJUqlU7EhKYdCgQaStrU3fvn0TO8ovhYSEEADav39/jp/Pnz+f1NXVyd/fX9B+IyMjCQAdOXJE0HaV1ZkzZwgAffr0SewoMmNlZUVDhw4VO0au1q5dS9ra2lSqVClavnx5gZeg+Pn5kYWFBWlpadGKFSsoLS2NiIjevHlD1apVIxMTEwoJCREyOsunAwcOEACZLjORhXwXdcrkV0XdyJEjqWbNmiKk+p/WrVuTvb19nq799u0b9e/fnwBQr169KCkpScbp8i49PZ1mzZpFAKhHjx4/Xb/I/icpKYmKFy9OAGjnzp1ix/klZ2dnKl++PKWkpOT4eWpqKjVq1IiqV69O8fHxgvXr7u5OAOjNmzeCtanMHj9+TADI29tb7CgykZKSQpqamrRp0yaxo+TJx48fafTo0aSpqUllypShNWvW5HntZ2JiIk2dOpXU1NTI2tqanjx5ku2aT58+Ud26dcnIyIju3bsndHyWBzmtJVYWBS7qTp48KWQOmfhVUXf16lVycXERIdX/rF27lrS0tHL9Te/q1atUsWJFMjQ0pMOHDyvsaNiZM2fIwMCAatasmeM3KvY/p0+fJgBkYWFBLVq0EDvOT33+/Jm0tbVp2bJlv7zu2bNnpKurS6NHjxas77lz55KxsbHC/l2Xt8TERAJA+/btEzuKTAQFBREA8vHxETtKvrx7946GDRtG6urqVL58edq0aRMlJyf/9HpfX1+qWbMmaWtr08qVK7NG53ISFRVF1tbWVLx4cbp586Ys4rNfuHXrFgGgixcvih0l3wpc1GlpadHatWt/eY3Y35Rz2/0qplevXhEAcnNzy/HzxMREmjhxIgGgNm3a0IcPH+ScMP+eP39OderUoWLFipGrq6vYcRRSnz59yNLSMmv6//Xr12JHytG8efNIT0+PoqKicr1206ZNBIAuXbokSN9t27alrl27CtKWqjAxMaE5c+aIHUMm9uzZQxKJRGl30798+ZIGDhxIampqZGpqSjt27Phhh2xiYiJNmTKFJBIJWVtb53laNTY2ltq0aUM6Ojrk4eEhq/gsBz179qSaNWtSRkaG2FHyrcBF3aVLl8jAwIDGjRuXrXhLT0+nffv2iTq9SaTYRR0RUe3atenPP//M9n5QUBDVrl2btLW1ad26dUr1Fys+Pp769OlDAGjKlCm//G20qImPjyc9PT1aunQpJSQkkL6+Pi1cuFDsWNkkJiaSkZERjR07Nk/XZ2RkUIcOHah8+fIUGRlZqL7T09NJX1+fVqxYUah2VE3Lli2pT58+YseQibFjx5KFhYXYMQrt6dOn1Lt3bwJAVapUoX379tGtW7eoRo0apK2tTatWrcr398OkpCTq0qULaWho0PHjx2WUnP3bu3fvSE1NjbZs2SJ2lAIp1Jq6+/fvU8WKFalbt26UmJhIKSkptHXrVjIzM6OSJUvSvHnzhMpZIIpe1M2cOZNKly6dtdEkLS2Nli5dShoaGmRlZUWPHz8WOWHBSKVS2rBhA2loaFCrVq3o8+fPYkdSCJkbXV69ekVERIMHD6Zq1aqJPqL9X9u3byeJRJKVMy8+fvxIJUuWJCcnp0L9eR4+fEgA6MaNGwVuQxUNHTqUGjVqJHYMmWjWrBn17dtX7BiCefjwIXXv3p0AEABq0qRJoTY9pKamUv/+/UkikSj8OlxVMG3aNDI0NFTakeNCb5T4+PEjWVpakqWlJVWoUIHKlClDS5cupdjYWCHyFYqiF3WZB256e3vTq1evqGnTpqSmpkazZ8/+6eJ0ZeLt7U3lypWjChUqUEBAgNhxRNe9e/cffjBfu3ZN4dYSZWRkUI0aNahHjx75vvfYsWOF3rW6Y8cOUldXF3TjhSpYtmwZlShRQuwYgktPT6dixYrRP//8I3YUwQUGBpKLi4sgp0NkZGTQmDFjCIBK/rdSFPHx8VSiRAmaMmWK2FEKrFBF3ffv32nRokVUunRp0tXVJT09PXr48KFQ2QpN0Yu69PR0MjY2pmbNmlGxYsWoatWqCvUDXgifPn2i3377jZo0aSJ2FFHFxMSQtrb2DyeTZ2RkkKmpKf31118iJvvRuXPnCAD5+voW6P6+fftSiRIlKDQ0tED3Dx48mBo0aFCge1VZ5ihvXtY4KpOnT58SAPLy8hI7isKTSqU0Z84cAkBz5sxRuBF+VbBt2zZSU1Ojt2/fih2lwApc1M2cOZMMDQ2patWqtGPHDoqPj6c///yTjI2NFWZURtGLOiKiYcOGEQAaPny40g735mbv3r0kkUgoIiJC7CiiOXToEAHItuFl9uzZVKJECYU5pqZVq1bUtGnTAt8fHR1NJiYm1LZt2wKtBbWwsBB0J62qCAwMJAB0584dsaMI6ujRoypZrMrSqlWrCAAtWrRI7CgqRSqVUq1atZT+kXwFLuosLCzowIED2YaW586dS8WKFaMzZ84UOlxhKUNRFxERoXLfqP/r06dPRf4w2T/++IOaN2+e7f3MkQpFOCLo7t27gmS5fPkyAaBVq1bl676oqCgCQIcOHSpU/6ro+/fvBICOHj0qdhRBTZ06lSpXrix2DKUzbtw4Kl26tEos01EUnp6eKrGet8BF3a+Gfnft2kXa2tqiHyapDEVdUfHbb79R//79xY4hiqioKNLU1KSNGzfm+Lm1tTV16dJFzqmy69OnD1WtWlWQNUAzZswgADRz5sw8j9hduHDhh40k7EdGRkYqNzrTtm1b6tatm9gxlE7mhiJFGDxRFZ06daL69esr/bR2vp79+m8SieSnnzk7O+P06dOYPXt2QZvP0dSpU2Fra4v+/fsjNTVV0LaZbNnb28PT0xNSqVTsKHJ3+vRppKenw9HRMcfPBw4ciAsXLiAiIkLOyf7Phw8fcOLECUycOBHq6uqFbm/58uVYs2YNVq5cCUdHRyQkJOR6j7+/P4yMjFC1atVC96+KzM3N8erVK7FjCIaIEBQUhAYNGogdRenUq1cPv/32Gw4ePCh2FJXw4sULXLhwARMmTPhlbaMMClzU5cbe3h43btwQrL3g4GB8/vwZ3t7eqF27Nk6ePClY20z27O3tERkZiXv37okdRe5cXFxgZ2eH8uXL5/h5nz59AADHjx+XZ6wfbNiwAcWLF8eQIUMEaU8ikWDy5Mk4e/YsLl++DFtbW4SFhf3yHj8/PzRt2lTpv6nKSrVq1fD69WuxYwjmw4cP+PbtG6ysrMSOopQGDRoEd3d3REdHix1F6W3atAllypRB3759xY5SaDIr6gAI+huYn58fOnToAADo2LEjfH19s12TkpKC2NjYH15MMTRt2hSGhoa4ePGi2FHk6uvXr7h69Sp69+7902uMjIzwxx9/iPZbd0xMDHbt2oWRI0dCX19f0LYdHBzg4+ODyMhIWFtbIzAwMMfrpFIp7ty5AxsbG0H7VyWqNlIXHBwMQNifE0VJ3759kZGRAVdXV7GjKLWYmBjs378ff/31F3R0dMSOU2gyLeqE9P37dxgYGAAADA0Nc/ztZPny5TA0NMx6mZqayjsm+wkNDQ20b9++yBV1bm5ukEgk6Nmz5y+vGzRoEO7du4enT5/KKdn/2b17N5KTkzFu3DiZtF+/fn0EBASgYsWKsLW1xalTp7Jd8/TpU8TGxqJp06YyyaAKzM3N8eXLF8TFxYkdRRBBQUEwNjb+6Qg2+7Vy5crh999/5ynYQtq7dy9SUlIwatQosaMIQmmKupIlS2aNvH3//h2lSpXKds2sWbMQExOT9QoNDZV3TPYL9vb2CAgIQGRkpNhR5MbFxQXt2rWDkZHRL6/7448/ULJkSRw6dEhOyf4nLS0NGzZsQN++fVGhQgWZ9VOuXDncuHEDDg4O6NmzJ1asWAEiyvrcz88PampqaNy4scwyKLtq1aoBAN68eVPgNkJDQ7FmzZof/tuLJTg4GA0aNODp9kIYOHAg/Pz88PLlS7GjKKWMjAxs2rQJTk5OMv3+J09KU9TZ2Njg8uXLAABPT080b9482zXa2towMDD44cUUR8eOHUFEWf8/qrpPnz7h1q1bWWvmfkVbWxt9+vTBoUOH5LqZ5OTJkwgNDcXkyZNl3peuri6OHTuGefPmYdasWRg8eDBSUlIA/G+TRL169QSf/lUl5ubmAFCoKdgtW7Zg6tSpuHr1qlCxCiwoKIjX0xVS165dYWBgIPdfBlXF+fPn8fbtW0yYMEHsKIJRmqLOysoK5cqVg62tLUJCQnKdzmKKp0KFCqhfv36RmYI9ceIENDU10a1btzxdP3DgQHz8+FHQDUa/QkRYvXo12rdvj/r168ulTzU1NSxcuBCHDx/G8ePH0a5dO0RGRmZtkmA/Z2RkhOLFixdqs4SHhwcAYNWqVULFKpAvX77g06dPvJ6ukHR1ddGrVy+5/zKoKjZs2ICmTZuq1AyB0hR1ALB69Wp4e3vjyJEj0NLSEjsOK4CidLTJ8ePH0bFjR5QoUSJP19vY2MDc3Fxua2SuX7+OoKAgTJkyRS79/Vv//v1x/fp1PH/+HNbW1nj69CkXdbmQSCSF2izx4cMHPH78GN27d8eVK1eyNiqIIfMXu4YNG4qWQVUMGjQI7969g4+Pj9hRlMrDhw9x48YNlRqlA5SsqGPKz97eHhERET/dBakq3r17B39//1/uev0viUSCQYMG4eTJk3k6160w0tLSMHHiRDRu3DhrV7m8NWvWDAEBAdDT0wMRcVGXB4Up6jw8PKCuro5du3bBzMwM//zzj8Dp8iYmJgazZs1Cr169UKVKFVEyqJIWLVrAzMyMN0zk04YNG2BiYoIePXqIHUVQXNQxuWratCkMDAxUfgrW1dUVOjo6cHBwyNd9AwYMQEJCAs6cOSObYP/f+vXr8eTJE2zfvl3UhepmZmbw9fXF1atXUb16ddFyKIvCnFXn4eEBW1tblC5dGlOmTIGrqyvevXsnbMA8mD9/PuLi4rB27Vq5962K1NTUMHDgQLi6uiIpKUnsOEohIiICR44cwZgxY6CpqSl2HEFxUcfkSlNTs0gcbeLi4oLOnTujePHi+bqvSpUqaNmypUx/637//j0WLFiAcePGKcSaJgMDA7Rp00bsGErB3NwcoaGhSE5Oztd9iYmJuHr1Kv744w8AwJAhQ1CiRAmsW7dOFjF/6sGDB9i0aRPmz5+PihUryrVvVTZw4EDExsbi3LlzYkdRCjt37oREIsGIESPEjiI4LuqY3Nnb2+POnTuIiooSO4pMvHz5EkFBQfmaev23QYMGwcvLK9cnMBQEEWHcuHEoWbIkFi9eLHj7TLbMzc1BRHj79m2+7rt+/TqSk5OzirpixYphzJgx2L17t9y+DqVSKUaPHg0LCwtMnDhRLn0WFdWrV4eNjQ1PweZBWloatm7digEDBqB06dJixxEcF3VM7uzt7VX6aBMXFxfo6+ujU6dOBbrf0dERWlpaOHr0qMDJgDNnzuD8+fPYuHFjvkcRmfgyz6rL7xSsh4cHqlSpAgsLi6z3xo4dC6lUiq1btwqa8WcOHjwIX19fbNmyReWmvBTBoEGD4OnpiS9fvogdRaFdv34dnz59wujRo8WOIhNc1DG5U/WjTVxcXNClSxfo6ekV6H5DQ0N07doVBw4cEPSQ2Li4OIwfPx5//PEHunfvLli7TH4qVKgAHR2dfG2WICJ4eHjgjz/++GH9ZJkyZTB06FBs3LhR5muxvn37hunTp6Nfv36ws7OTaV9FVe/evaGmpoZjx46JHUWhubu7o1KlSvjtt9/EjiITXNQxUdjb2+PSpUsqd7TJkydP8Pjx4zwdOPwrgwYNwpMnT3D//n1hguF/C9SjoqKwefNmPsVfSampqaFq1ar5Gql78uQJPnz4kDX1+m+TJ09GdHQ09u/fL2DK7ObMmYOUlBSsXr1apv0UZaVKlYKDgwNPwf4CEcHd3R2dO3dW2e+BXNQxUWQebRIUFCR2FEG5uLjA0NCw0MeEdOjQAcbGxoKdFB8cHIwNGzZg/vz5MDMzE6RNJo78Hmvi4eEBPT29HEfIqlWrBkdHR6xevRoZGRkCpvw/gYGB2L59OxYtWsTPeZWxQYMGITg4GI8ePRI7ikJ69uwZ3r59m+MvOKqCizomClU82oSI4OLigu7du0NbW7tQbWloaKB///44cuQI0tPTC9VWRkYGRo4ciVq1asnlcWBMtgpS1LVr1w46Ojo5fj5t2jS8efMGp06dEipilszNEfXq1cOYMWMEb5/9yN7eHqVLl+bHhv2Eu7s7dHV10bp1a7GjyAwXdUwUin60yb179zBv3jz4+PjkeV3b/fv38eLFi0JPvWYaNGgQvn79WugNJTt37kRAQAB27NjBC9RVQLVq1fDu3bs8FfvR0dHw8fH55chEo0aN0KZNG6xcuVLQNZwAsHv3bgQEBGDr1q3Q0NAQtG2WnZaWFvr06YMjR47IbOQ1U3p6OsaNG4dRo0bJtB8hubu7o127dtDV1RU7iuyQCouJiSEAFBMTI3YUloPdu3eTmpoaRUVFiR0li7e3N/3+++8EgHR1dQkA1axZk1atWkWfP3/+5b0zZsyg0qVLU2pqqiBZpFIp1a1bl3r37l3gNsLDw8nQ0JCcnZ0FycTE5+npSQDo9evXuV579OhRAkChoaG/vO7SpUsEgK5duyZUTIqIiKBSpUrR4MGDBWuT5e7OnTsEgC5fviyzPpKSkqhbt24EgACQn5+fzPoSSlRUFKmrq9OOHTvEjiJTPFLHRNOxY0dIpVLRjzYhInh5ecHOzg62trYICwvDsWPHEBMTg6tXr6JBgwb4+++/UbFiRfTo0QMeHh7ZRkno/0+9Ojo6CjYalvnYsDNnzuDTp08FamPy5MnQ1NTEypUrBcnExGdubg4AeZqC9fDwQP369XM96LdDhw6wtLTEqlWrBMkIALNmzYJUKuW/e3LWuHFj1KxZU2YbJmJjY9GpUydcunQJ586dQ926dTFnzhyZ9CUkT09PZGRkqPR6OgA8UsfEZWlpSYMGDRKlb6lUSufOnSNra2sCQA0bNqTTp09TRkZGtmujoqJo48aNZGlpSQDIxMSE5syZkzVa4u/vL/hIBxHRp0+fqHTp0qSvr08LFiyg2NjYPN+bOaJz4MABQTMxcaWlpZGGhgZt3br1l9elp6dT6dKlac6cOXlq9/DhwwSAHjx4UOiMfn5+BIC2bNlS6LZY/i1dupT09PTy9f0iL75+/UoNGzYkAwMDunXrFhERnT59mgDQ1atXBe1LaP379ycrKyuxY8gcF3VMVDNmzCBjY+McCylZSU9PJxcXF6pfvz4BoBYtWtClS5dIKpXmeq9UKqW7d+/SyJEjycDAgABQmzZt6Pfff6dy5cpRenq64HkjIyNpypQppKWlRWXKlKFNmzZRSkrKL+9JTEykatWqkZ2dXZ7+XEy5mJub0+TJk395jY+PDwEgX1/fPLWZmppKlSpVogEDBhQqW3p6OllZWVHDhg1l8vXAcvf+/XsCQPv37xeszQ8fPlDNmjXJ2NiYgoODs96XSqXUuHFjsrGxUdjvNWlpaVSqVCmaO3eu2FFkjos6JqobN24QALp7967M+0pNTaUDBw5QzZo1CQC1b9+ebt68WeD2EhIS6MCBA2Rra0sAaNKkSQKmze79+/c0ePBgkkgkVLVqVTp69OhPi+G///6bNDU16enTpzLNxMTx+++/U9euXX95zezZs8nIyChfhdX69etJXV2d3r17V+BsmzdvJolEQnfu3ClwG6zwWrduTW3atBGkrWfPnpGpqSlVrlyZXrx4ke3zzFmB8+fPC9Kf0Ly9vQkA+fv7ix1F5rioY6JKTU0lAwMDWrRokcz76t27NwEgBwcHwb+4P3z4QElJSYK2+TOPHj0iBwcHAkBWVlbZRhmfPn1Kmpqa9Pfff8slD5O/MWPGUJ06dX55jaWlZb5H3eLi4qhkyZI0ceLEAuX6/PkzGRoa0vDhwwt0PxPOvn37SCKR0IcPHwrVTmBgIBkZGVHt2rXp48ePOV4jlUqpZcuWVL9+fbnOuuTVjBkzqEyZMgqZTWhKUdTFxsaStbU1FStWjB49epTn+7ioUw49evSgpk2byrSPzHUfhw4dkmk/8uTt7U3NmzfPmgIOCAggqVRKdnZ2VK1aNUpMTBQ7IpORdevWkY6Ozk9/SH348IEA0LFjx/Ld9ty5c6lYsWIF2pU+aNAgKl26NEVGRub7Xias2NhY0tXVpeXLlxe4jevXr1Px4sXJ2to61/9PM0fDXFxcCtyfrNSpU6fI7MJWiqIuLS2Nvn79Sn/++ScXdSpo165dMj3a5Nu3b1S+fHnq3Lmzwq75KCipVEpnz56l2rVrEwBq2rSpzI8zYOI7d+4cAfjpyMn27dtJXV2doqOj8932ly9fSFtbm5YsWZLne6RSKbm7uxMA2rVrV777ZLLRr18/qlWrVoG+7509e5a0tbWpXbt2FBcXl6d7OnbsSDVr1qS0tLR89ycrb9++JQB08uRJsaPIhVIcaaKhoYEyZcrkel1KSgpiY2N/eDHFJ+ujTaZPn474+Hhs27ZN5Z73J5FI0KVLFzx8+BD79u1DWFgYBg8ejPbt24sdjclQbseaeHh4oHnz5ihZsmS+2zY2NsaQIUOwceNGJCUl/fS6pKQkXLhwAaNHj0blypXRuXNn2NraYujQofnuk8nGoEGD8PTpUwQGBubrvoMHD6JHjx7o3Lkz3N3doa+vn6f7lixZgufPn+Pw4cMFiSsTHh4eWYfdFwliV5X5kdtI3fz587MOQ/z3i0fqFF+9evVkcrTJ9evXi9TRClKpVOVGI1l2SUlJJJFIaM+ePdk+S0xMJD09PVq5cmWB23/58iVJJBLavn37D++HhYXRzp07qUuXLqSnp0cAqEqVKjR+/Hi6fPlyrruymXylpaVR+fLlady4cT+8n5qaSlFRUfT+/Xt6/Pgx+fn50ZUrV+jUqVM0d+5cAkDOzs4F2r3co0cPMjMzU5i/Cx07dqS2bduKHUNuFKqoCw8Pp+bNm2d7ZU7L5VbUJScnU0xMTNYrNDSUizolMX36dMGPNklMTCRzc3Nq0aJFkVggy4oWU1NTmjVrVrb3L1y4QADo8ePHhWrf0dGRzM3NKSAggObPn08NGzYkAKSmpka2tra0cuVKCgkJ4V8iFNzUqVNJW1ubzMzMyMjIiLS1tXMc/Mh8SSQSmjlzZoH/f338+DFJJBKF+EU6Li6OtLS0aN26dWJHkRuFehhfuXLlcPv27QLfr62tXegHqTNx2NvbY9WqVQgODkbDhg0FaXPBggX48OEDzp8/DzU1pVhpwFiemZub5zj96uHhgcqVK6N27dqFan/69OmwtraGtbU1DA0NYW9vj0mTJsHe3h6lSpUqVNtMfiZOnIiMjAxoa2ujePHiWS99ff0f/v3f7xXm52idOnXQv39/LFmyBIMHD4aenp6Af5r8uXr1KlJTU9G5c2fRMsibQhV1v9KpUyfcv38fz58/x19//YXBgweLHYkJqHnz5ihevDguXrwoSFEXFBSENWvWYOHChbCwsBAgIWOKpVq1aggKCvrhPSKCh4cHOnfuXOj1o40bN4aLiwuMjY3RvHlzwR5/x+TLxMQEa9eulWufCxYswPHjx7F161ZMnTpVrn3/m4eHB2rWrJm1BrUokBARiR1CVmJjY2FoaIiYmBgYGBiIHYflokePHvjy5Qt8fHwK1U5aWhqsra0hlUpx7949/mHEVNLKlSuxbNkyfP/+PauACwkJQZ06dXDhwgXY29uLnJAVZX/99Rfc3Nzw5s0bUX7+EhFMTEzQr18/rF69Wu79i4XnpJjC6NSpE/z9/REdHV2odtasWYOHDx9iz549XNAxlWVubo7Y2FhERkZmvefh4QFdXV3Y2dmJF4wxAH///Tfi4+Oxfv16UfoPDg5GeHg4/vjjD1H6FwsXdUxhZB5tcuXKlQK38eLFCyxYsACTJk1Co0aNBEzHmGKpVq0aAOD169dZ73l4eKBt27bQ1dUVKxZjAICKFSti1KhRWLNmTaF/US8Id3d3GBgYoEWLFnLvW0xc1DGFUbFiRdSrVw8XL14s0P1SqRQjRoyAiYkJFi1aJHA6xhRLZlGXuVni27dvuH37dpEbmWCKa9asWcjIyMA///wj977d3d3RsWPHIjdbw0UdUyj29va4ePHiTw9V/ZXdu3fj5s2b2Llzp6g7rhiTh+LFi8PY2DhrpO7y5cvIyMjgoo4pDGNjY0yYMAEbN27E58+f5dbvly9fcPfu3SK16zUTF3VMofz5558gItSoUQPdu3eHj48P8rKXJywsDNOmTcPQoUPRtm1bOSRlTHz/PtbEw8MDlpaWMDU1FTkVY/9n6tSp0NTUxPLly+XW54ULFyCRSIrkZiEu6phCqV27Nt6/f48dO3bg2bNnaNGiBZo2bYoTJ04gPT09x3uICGPGjIGenl6R2uXEWGZRl5GRgYsXL/IoHVM4JUuWxLRp07B9+3Z8+PBBLn26u7ujadOmMDIykkt/ioSLOqZwdHV1MXz4cDx58gTu7u7Q1dWFk5MTqlevjo0bNyI+Pv6H60+ePImzZ89i8+bNBXrWJWPKqlq1anj9+jXu3r2LyMhILuqYQpowYQIMDQ2xePFimfeVkpKCy5cvF9mvBS7qmMJSU1PDH3/8gevXryMwMBDNmjXD5MmTYWpqipkzZyIsLAzR0dEYO3Ysunfvjp49e4odmTG5Mjc3R0REBI4ePYpSpUrBxsZG7EiMZaOvr4/Zs2dj3759OHr0qEz7unXrFuLj44vkejqAizqmJBo0aIAjR47gzZs3GDZsGLZu3YoqVaqgefPmSElJwebNm8WOyJjcZZ6Uv2/fPtjb20NdXV3kRIzlbPTo0ejXrx/69++P2bNnQyqVyqQfDw8PmJqaol69ejJpX9FxUceUSqVKlbB69Wp8/PgRK1asgEQiwZYtW1ChQgWxozEmd5nHmsTHxxfZ6SamHLS0tHDgwAGsWrUKK1asQLdu3RAXFydoH0SE8+fPC/KYPGXFjwljjDElRUQoVaoUYmNjERERgVKlSokdibFcXbhwAX379oWpqSnOnTuHqlWrCtLus2fPUKtWLXh4eKBTp06CtKlseKSOMcaUlEQigbm5OZo1a8YFHVMamY+ETElJgbW1NW7cuCFIu5kb61q3bi1Ie8qIizrGGFNimzZtwpYtW8SOwVi+1KpVC3fu3IGVlRXat2+Pbdu2FbpNd3f3Iv+YPC7qGGNMidnY2MDS0lLsGIzlW6lSpXDx4kWMGjUKo0ePxqhRo5CWllagtjIfk1dUd71m4qKOMcYYY6LQ0NDAxo0bsXPnTuzZswcdOnRAZGRkvtvhx+T9Dxd1jDHGGBPV8OHDcfXqVTx58gTW1tZ4/Phxvu53d3fHb7/9hooVK8oooXJQiqIuMDAQtra2aNWqFZycnAo8PMsYY4wxxWRra4u7d++iePHiaNq0KcaOHYv169fj/PnzCAkJQXJyco73ZWRk4MKFC0V+6hVQkiNNPn/+DAMDA+jp6WH27NmwsrJCr169cr2PjzRhjDHGlEt8fDymTZsGb29vvHnzBklJSVmfVaxYEdWqVct6mZubIzExEUOGDIGfn1+Rf6qKhtgB8qJcuXJZ/6ypqQkNjZxjp6SkICUlJevfY2NjZZ6NMcYYY8LR19fP2g1LRAgPD8erV6/w+vXrrNfDhw9x+vRpfPv2DQBQtmxZNG7cWMzYCkEpRuoyffjwAX379sWNGzegqamZ7fMFCxZg4cKF2d7nkTrGGGNM9URHR+P169coUaIEqlevLnYc0SlUUff582c4Ojpme//cuXPQ0NCAg4MDdu3ahRo1auR4f04jdaamplzUMcYYY0zlKVRR9zMZGRno1q0bJk6ciLZt2+b5Pl5TxxhjjLGiQil2v7q6usLX1xeLFy+GnZ0dXFxcxI7EGGOMMaZQlGKkrqB4pI4xxhhjRYVSjNQxxhhjjLFf46KOMcYYY0wFqPT0KxEhLi4OxYsXh0QiETsOY4wxxpjMqHRRxxhjjDFWVPD0K2OMMcaYCuCijjHGGGNMBXBRxxhjjDGmArioY4wxxhhTAVzUMcYYY4ypAC7qGGOMMcZUABd1jDHGGGMqgIs6xhhjjDEVwEUdY4wxxpgK4KKOMcYYY0wFcFHHGGOMMaYCuKhjjDHGGFMBKl3UERFiY2NBRGJHYYwxxhiTKZUu6uLi4mBoaIi4uDixozDGGGOMyZRKF3WMMcYYY0UFF3WMMcYYYyqAizrGGGOMMRXARR1jjDHGmArgoo4xxpTY7NmzsWnTJrFjMMYUgIRU+LyP2NhYGBoaIiYmBgYGBmLHYYwxQYWHh6NSpUqoW7cugoODxY7DGBMZj9QxxpiS2r17N9LT0/Hw4UMkJCSIHYcxJjIu6hhjTAmlp6djx44daNq0KaRSKe7duyd2JMaYyLioY4wxJeTu7o6wsDBs3LgRxYsXh5+fn9iRGGMi46KOMcaU0LZt29CkSRM0atQI1tbW8Pf3FzsSY0xkSlfUHTt2DGXKlBE7BmOMiebly5e4fPkyRo0aBQCwsbGBn58fP+easSJOqYo6qVSKkydPwtTUVOwojDEmmh07dqBUqVJwcnICADRt2hRfv37Fu3fvxA3GGBOVUhV1R48ehaOjI9TUco6dkpKC2NjYH16MMaZKkpKSsG/fPgwZMgS6uroAgCZNmgAAT8EyVsQpTVGXkZEBV1dX9O7d+6fXLF++HIaGhlkvHtFjjKkaV1dXREdHY+TIkVnvGRkZwdzcnDdLMFbEKU1Rd/jwYTg5Of10lA4AZs2ahZiYmKxXaGioHBMyxpjsbdu2DR06dIC5ufkP7zdt2pRH6hhTUUlJSXlaM6s0RV1ISAgOHjyIjh074uXLl5g0aVK2a7S1tWFgYPDDizHGVEVQUBDu3LmTtUHi32xsbBAcHIykpCQRkjHGZMnZ2RkDBgzI9ToNOWQRxMqVK7P+uVGjRli3bp2IaZispKenIyIiAuXLlxc7CmMKZ9u2bahYsSI6d+6c7TMbGxukp6cjKCgIzZs3FyEdY0wWrl27hqNHj2Lfvn25Xqs0I3X/xienq5b09HR4eXlhxIgRKFeuHCpXrozXr1+LHYsxhfL9+3ccPXoUI0aMgIZG9t/HLS0toaury1OwjKmQ1NRUjBkzBi1atMCgQYNyvV4pizomvri4OKSkpBT4/vT0dFy7dg0jR45E+fLl0b59e3h5eWHYsGEwNDTE+vXrhQvLmAo4ePAgUlNT4ezsnOPnGhoaaNy4MW+WYEyFrF27Fi9fvsTWrVt/uacgk9JMvzLFcePGDXTs2BFpaWmoUqUKLCwssl41a9aEhYUFjIyMIJFIfrgvIyMDt27dgqurK06dOoWvX7/CzMwMQ4cOhZOTExo0aACJRAI9PT2sWrUKCxcuRKlSpUT6UzKmOIgI27dvR/fu3X+5NMHGxgZHjhyRYzLGmKy8f/8eixcvxoQJE1CvXr083SMhFT6CPDY2FoaGhoiJieFNEwJ58+YNGjdujPr166Nfv3549uwZnj9/jmfPnuHNmzeQSqUAgFKlSv1Q5L1//x5ubm748uULKlWqBCcnJzg5OaFRo0bZir+IiAhUqlQJf//9N2bPni3GH5MxhXLjxg20bt0a169fh52d3U+vO3PmDLp3747Q0FBUrFhRfgEZY4Lr3r07AgIC8OzZMxQvXjxP93BRx/IsNjYWTZs2RWpqKu7cuZNtFC0lJQWvXr3Cs2fPfij2nj17hpIlS6JXr17o1asXrK2tsxVy/zVq1CicPn0a79+/h7a2tiz/WIwpPCcnJzx+/BhPnjz55ddOeHg4KlSoAFdXV/Tq1UuOCZk8JCYmIioqClFRUTAzM0OJEiXEjsRkxMPDA507d4aLi0vWk2Pygos6licZGRno2rUrbt++DX9/f1hYWOT5XiLKtYj7rxcvXsDCwgK7d+/G0KFD8xuXMZURHh6OSpUqYc2aNRg/fnyu15uZmaFnz55Ys2aNHNIxIRARPDw88OrVK0RFRSEyMjKrePv3vycnJ2fdU7p0aezcuRM9evQQMTmThaSkJNSpUwfVqlXD5cuX8/Xzk9fUsTyZNWsWLl68CA8Pj3wVdADyXdABQI0aNdClSxesXr0agwcPztMCUcZU0e7du6GlpZWnnW8AH0KsbIgIM2bMwD///ANdXV0YGRmhdOnSKF26NMqUKQMLCwuULl36h/cNDAywevVq9OzZEwMHDsTGjRt51E6FrFixAmFhYbh06VL+f36SCouJiSEAFBMTI3YUpbZ//34CQOvWrZNrv97e3gSAPDw85NovY4oiLS2NKlasSM7Oznm+Z/369aStrU0pKSkyTMaEIJVKadasWQSA1q9fn+97Dxw4QAYGBmRqakpeXl4ySsnk6cWLF6SlpUVz5swp0P1c1LFf8vHxIS0tLXJ2diapVCrXvqVSKTVp0oRat24t134ZUxRnzpwhABQYGJjne+7cuUMA6M6dOzJMxoTw999/EwBas2ZNgdt49+4dtW7dmgDQhAkTKDExUcCETJ6kUin9/vvvZGZmRgkJCQVqg4s69lPv3r0jY2NjsrW1Fe23/hMnThAAunfvnij9MyamDh06UJMmTfJ1T0pKCmlra+d75IfJ18KFCwkArVy5stBtZWRk0Lp160hbW5ssLCwoICBAgIRM3jJ/3p07d67AbfBCJZaj+Ph4dO3aFXp6enBzc4OWlpYoObp3744qVarwom9W5Lx69QqXL1/O8Tmvv6KlpYUGDRrwujoFtnTpUsyfPx/Lli3D9OnTC92empoaJk6ciKCgIBQrVgxNmzbFggULkJaWJkBaJg9xcXGYOHEiunTpAgcHhwK3w0Udy0YqlWLQoEF4/fo1zp07hzJlyoiWRV1dHZMnT4arqyvev38vWg7G5G379u0oVapUvo4zyMSbJWRj+/bt2L17d6GKpRUrVmDu3LlYtGgRZs2aJWA6oHbt2vDz88OcOXOwZMkSNGvWDM+ePRO0DyYbixYtQnR0NDZs2FC4hgQcOVQ4PP1aMHPnziWJRFKoIWAhxcfHU8mSJWnSpEliR2FMLhITE6lUqVI0ZcqUAt3v6upKACg8PFzgZEXX8ePHCQABoCpVqtC+ffsoLS0tX238888/BIDmzZsno5T/586dO1SjRg3S0dGh1atXF3iNFpO9R48ekYaGBi1durTQbXFRJwOPHz+m4OBguW8sEMLRo0cFW+chpDlz5pC+vj59+/ZN7CiMydyBAwcIAL18+bJA93/48IEA0OnTp4UNVkSFhIRQsWLFqG/fvvTw4UPq0aMHAaDq1avT4cOHKT09Pdc21q5dSwBozpw5cvvZkJCQQGPHjiWJREIlSpSgiRMn0rNnz+TSN8sbqVRKLVu2pBo1alBycnKh2+OiTmDnzp0jdXV1AkBly5algQMH0uHDh+nLly9yy1BQd+7cIR0dHRo4cKDCFaTh4eGkpaWlcMUmY3mVlJREMTExFBERQZ8+faL379/Tq1ev6OnTp/Tw4UMKDAwkf39/8vb2poYNG1KHDh0K1Z+JiQnNmDFDoPRFV1xcHNWqVYtq165NcXFxWe8HBQWRg4MDAaBatWqRi4sLZWRk5NjGxo0bCQDNmDFDlO+tr1+/punTp1Pp0qUJALVt25bc3NzyPdLIhHfw4EECQFeuXBGkPS7qBOTt7U06OjrUvXt38vLyounTp1P9+vWzhuytrKxo5syZdO3aNYU7QyosLIzKly9PNjY2lJSUJHacHA0dOpQqVKigcP/tGPuvhIQE8vb2pn/++Yd69uxJJiYmWd8H8vo6f/58oTL07NmTWrZsKdCfqGiSSqXUp08f0tfXp6dPn+Z4TUBAAHXs2JEAUL169ejUqVM/FG5btmwhADR16lTRf1lOSkqiQ4cOUbNmzQgAVahQgRYsWEBhYWGi5iqqvn37RsbGxtS7d2/B2uTHhAnk0aNHaNmyJerXr49Lly5BR0cn67PPnz/jypUr8PT0xOXLlxEREYFixYqhdevW6NChA9q2bYuaNWtCXV1dphl/ZfTo0Th58iQePnyIcuXKiZbjV548eYK6deviwIEDeT5dnzFZIyK8evUK/v7+Wa8HDx4gIyMDenp6aNy4MWxsbFC7dm3o6OhAU1Mz11exYsVQqVKlQuVavXo15s2bh9jYWGho8MODCmLTpk0YP358np6l6+vri/nz58PLywtWVlZYtGgRwsLCMHLkSEycOBFr164t0NN1ZOXBgwfYtm0bDh8+jOTkZHTr1g2jRo1CmzZtFCqnKhs7diwOHjyIZ8+eoUKFCoK0yUWdAN6/f49mzZqhTJkyuHnzJgwNDX96rVQqxYMHD7IKvNu3byMtLQ36+vpo0KABGjVqlPWqVq2aXB6PFRMTAxMTE0ydOhULFiyQeX+F8ccffyA0NBQPHjzgbzxMUN7e3pgzZw5SU1OhpaUFTU1NaGlp/fSfNTQ08PLlS9y5cwfR0dEAAAsLC9jY2KBJkyawsbFB3bp1RSuofHx80KJFCwQGBqJBgwaiZFBmfn5+aNWqFcaMGYN169bl+b6bN29i3rx5uHXrFgBg3Lhx2LBhg8J+v4qJicHhw4exdetWhISEoGbNmnBxcUH9+vXFjqbSvn37BiMjI6xYsQLTpk0TrF0u6gopIiICLVq0QHp6Onx8fPI9yhUfH487d+4gMDAQ9+7dw7179/D27VsAgKGhIRo2bPhDoWdmZib4N4eNGzdiypQpeP/+vWC/LcjK9evX0aZNG3h6eqJDhw5ix2EqgIiwfv16TJs2DY0aNULdunWRmpqKtLQ0pKam/vKfK1WqBBsbG9jY2MDa2holS5YU+4+TJSkpCQYGBtiwYQNGjx4tdhylEhERASsrK5iZmeH69evQ1NTM1/1EhGvXruH58+cYNWqUwhZ0/0ZE8Pb2xvDhw1GpUiVcuXJF7Egq7fbt27C1tcWjR49Qt25dwdpVmqIuMDAQEydOhJqaGsqWLYsjR47k+oUm66IuLi4Obdq0QWhoKHx8fFCtWjVB2o2KivqhyLt37x5CQ0MBABUqVMDVq1dhYWEhSF9SqRS1atWClZUVjh8/LkibskREaNSoEYyMjODp6Sl2HKbk4uLiMGzYMJw4cQLTpk3DsmXLVGqqsnHjxqhVqxYOHjwodhSlkZGRgd9//x2PHj1CUFAQTExMxI4kV25ubnB0dISPjw+aNWsmdhyVtXPnTowePRoJCQnQ1tYWrmHBVufJWHh4eNY5O7NmzSJXV9dc75HlRomUlBRq164dFS9enIKCggRv/7++fPlCFy5coEqVKlHfvn0Fa/fy5csEgG7duiVYm7KWeezKgwcPxI7ClFhISAhZWFhQ8eLFyc3NTew4MjFu3DgyNzcXO4ZcSaXSPB0x8jNz5swhNTU1unr1qoCplEdGRgbVqVOHfv/9d7GjqLQJEyZQzZo1BW9XaZ4oUa5cOejp6QEANDU1Rf1tOvOJC7du3cK5c+dgZWUl8z6NjY1hb2+PWbNmwcXFBS9evBCk3c2bN8PS0hItWrQQpD15cHR0RKVKlfjRYazAXF1d0bhxY6irq+Pu3bvo0aOH2JFkwsbGBq9evUJkZKTYUeRmwYIFKFWqFKZPn46PHz/m614PDw8sXboUS5YsQZs2bWSUULGpqanh77//hqenJ+7cuSN2HJUVEhKC2rVrC9+w4GWijL1//56aNWtGqamp2T5LTk6mmJiYrFdoaKjgI3VSqZTGjh1Lampqovx2n5SURBUqVKAhQ4YUuq23b9+SRCKhnTt3CpBMvtauXUsaGhoUGhoqdhSmRFJTU2nixIkEgPr27Uvx8fFiR5KpN2/eEAByd3cXO4pcSKVSqlKlCtWpU4cMDAxIQ0ODBg0aRA8fPsz13jdv3lCJEiXIwcHhp+fNFRXp6elUq1Yt6tSpk9hRVJaJiQnNmTNH8HaVqqiLiYmhli1b0vPnz3P8fP78+Tme9yRkUbd48WICQDt27BCszfxat24daWho0Nu3bwvVzvTp06lEiRJK+YMtNjaWDA0Nafr06WJHYUri06dP1KJFC9LQ0KCNGzeKfmaYPEilUjI2NpbJDw9FdP/+fQJAnp6eFBMTQ2vWrCFTU1MCQB07diQvL68c/39PSkoiKysrqlq1KkVHR4uQXPEcOXKEANDdu3fFjqJyvn//TgDoyJEjgretNEVdeno6de7cmby8vH56jaxH6rZv304AaMmSJYK0V1Dx8fFUpkwZGjVqVIHbyHy25OTJkwVMJl/Tp08nAwMDfrYvy9XNmzepbNmyVKFCBfLx8RE7jlx16dKF2rZtK3YMuZg/fz4ZGhr+cEB5amoqHT58OOsgeCsrKzpy5MgPsz3Ozs6kra0tl/XRyiI9PZ1q1KhBXbp0ETuKyvHz8yMAdP/+fcHbVpqi7ujRo1SqVClq1aoVtWrVio4fP57rPUJulHBzcyM1NTUaN26cQvyGv3z5ctLS0irwSeB79+4liURS4GdLKoKPHz+ShoYGbdiwQewoTEFJpVJavXo1qaurk52dHX3+/FnsSHK3fPly0tfXL9TmAWVhaWlJ/fv3z/EzqVRKly9fpg4dOhAAqlSpEq1du5Y2b95MAGjPnj1yTqv4Mh9hxcWusPbs2UNqamqUmJgoeNtKU9QVhFBF3ZMnT0hLS4v69u2rMGstYmJiqESJEjRp0qR83yuVSsnKyors7e1lkEy+evbsSXXr1lWIQpspnsz1czNmzCiyz7m8fv06AcjTujJl9vr1awJAJ0+ezPXa+/fv08CBA0lDQ4MA0LBhw+SQUPmkpaWRubk5de/eXewoKmXy5Mky25XORV0ejBs3jsqVK6dwzxydP38+6erq0tevX/N1n6+vLwEgDw8PGSWTn4sXLxIAunPnjthRmII5ffo0ASjyI7lxcXGkpqamlBui8mP16tWko6OTrzXCHz58oB07dshkxERV7Nu3j4+QEljHjh1lNq2tNEeaiCUlJQVHjhzBwIEDoaWlJXacH4wfPx7q6ur5eoQNAGzZsgVVq1ZFx44dZZRMftq3bw9TU1Ps2bNH7ChMgYSGhmLo0KHo3r07xo0bJ3YcUenr68PS0hJ+fn5iR5GpU6dOoUOHDihWrFie7zE1NcWIESOgq6srw2TKrX///qhSpQoWL14sdhSVIbPjTABwUZeLc+fOITo6GkOGDBE7SjalSpXCmDFjsHnzZnz79i1P93z58gWurq4YM2aMXJ4rK2vq6uoYMmQIjh49ivj4eLHjMAWQnp6O/v37Q19fH7t371aKRzTJmo2NDfz9/cWOITOfP3+Gn58funfvLnYUlaOpqYnZs2fj5MmTePz4sdhxlF5cXBw+fPjARZ1Y9u3bBxsbG9SqVUvsKDmaPHky0tPTsWnTpjxdv2vXLmhoaChkkVpQQ4YMQUJCAk6cOCF2FKYAlixZAh8fHxw5cgSlSpUSO45CsLGxwdOnT/H9+3exo8jE2bNnoaamBgcHB7GjqKRBgwahcuXKWLJkidhRlN6zZ88AgIs6MYSFhcHT01OhCyBjY2OMGDEC69evR1xc3C+vTUtLw/bt2zFgwACFevB4YZmZmaFdu3Y8Bctw8+ZNLF68GAsWLICtra3YcRRG06ZNAUBlnxBw+vRptGzZEqVLlxY7ikrS0tLCrFmz4OrqiqdPn4odR6mFhIQAgGDPb/8vLup+4dChQ9DW1kbv3r3FjvJLU6dORUJCArZt2/bL686ePYuwsDCMGTNGTsnkx9nZGT4+PvwNR0GkpqYiPT1drn1GRUWhf//+aNmyJWbPni3XvhVd9erVUbJkSZWcgo2JicG1a9d46lXGBg8ejIoVK2Lp0qViR1FqISEhMDMzy9faz/zgou4niAh79+5Fz549YWhoKHacX6pYsSKGDBmCNWvWIDEx8afXbd68GS1atED9+vXlmE4+unbtitKlS2Pv3r1iR2H43w+AGjVqyG0NDhFhyJAhSE5OxuHDh6Guri6XfpWFRCKBjY2NSm6W8PDwQFpaGrp16yZ2FJWmra2NmTNn4tixY4I9e7wokuUmCYCLup/y9fXFy5cvFXrq9d9mzJiBqKgo7Nq1K8fPHz16hJs3b2Ls2LFyTiYf2traGDhwIA4cOIDU1FSx4xRpsbGxcHNzw9evX9GsWTN4eHjIvM/Nmzfj/Pnz2LdvH0xMTGTenzJq2rQp7ty5A6lUKnYUQZ0+fRqNGjWCqamp2FFU3tChQ1GuXDkerSsELupEsm/fPpiZmcHOzk7sKHlSpUoVDBgwAKtWrUJKSkq2z7ds2YLy5cur9BTFsGHDEBERAXd3d7GjFGnnzp1Damoq7t69i9atW8PBwQFr164FEcmkv+DgYEydOhXjx4/nhfK/YGNjg+/fv6vUKEtSUhIuXryo0t/XFImOjg5mzpyJI0eO4NWrV2LHUTqJiYl4+/YtF3XylpCQABcXF/z5559KdezHrFmzEB4ejv379//w/vfv33Ho0CH89ddfCnfWnpDq1q2LJk2aYPfu3WJHKdJcXV3RrFkz1KpVC6dOncK0adMwZcoUDB8+XPBR1Pj4ePTp0wd16tTBqlWrBG1b1VhbW0MikajUFKyXlxcSEhK4qJMjZ2dnlClTBsuWLRM7itJ5/vw5iIiLOnk7efIk4uPjMXjwYLGj5EvNmjXh5OSEFStWIC0tLev9zCnJESNGiJhOPpydnXHp0iWEhoaKHaVI+v79Ozw9PeHk5ATgf+cIrly5Evv378ehQ4fQvn17REZGCtbfuHHjEBYWhuPHj0NbW1uwdlWRoaEhateurVKbJU6fPo2aNWsq7JFTqkhXVxfTp0/HwYMH8fbtW7HjKJXMna+y/PvKRV0O9u3bhzZt2sDMzEzsKPk2e/ZsvHv3DkePHgUASKVSbNmyBY6OjihfvrzI6WSvd+/e0NPTyzZayeQjc+rV0dHxh/f//PNPXLt2DU+fPkWTJk2yvrkVxpEjR7B//35s2bIFNWrUKHR7RYEqHUKcnp6Oc+fO8SidCP766y+ULl0ay5cvFzuKUgkJCUHFihVhYGAgsz4EK+oCAwOFakpUb968wc2bN5Vmg8R/WVpaomvXrli2bBkyMjJw5coVvHz5UiWPMclJ8eLF0bt3b+zdu1flFoQrA1dXV7Ro0SLHzQrNmzdHQEAAihUrhqZNm+LixYsF7ufVq1cYOXIk+vfvj0GDBhUmcpHSqlUrPHr0CGfPnhU7SqHdvn0bUVFRXNSJQE9PD9OmTcO+ffvw/v17seMoDVlvkgAACPUQWVNTU6GaEkxMTAwBoJiYmDzf8/fff5OBgQElJCTIMJlsBQQEEAA6fvw4de7cmerXr09SqVTsWHLj6+tLAOjKlSsy7Sc0NJT27NlDvXv3prJlyxb5B8dHR0eTpqYmbdy48ZfXxcbGUufOnUlNTY3Wrl2b77+bKSkp1KhRIzI3N6fY2NjCRC5y0tPTydHRkXR0dMjX11fsOIUyfvx4MjExoYyMDLGjFEnx8fFkZGREI0eOFDuK0qhRowZNnDhRpn1IiPK+JS1znUwOhSEuXryocM/ejI2NhaGhIWJiYvI03JmRkYEqVarA3t4eO3bskENC2enYsSNevHiBd+/eYefOnXB2dhY7ktwQEerUqQNLS0scP35csHYTExNx69YtXL58GZ6enggJCYFEIkHjxo2RmpqKpKQkPH36tMg+a3T//v0YOnQoPn78iAoVKvzy2oyMDMyaNQv//PMPnJ2dsWXLlmybeDIyMvD9+3dER0fj27dvWf/r4eEBV1dX+Pn5oWHDhrL8I6mk5ORk/P7773j8+DF8fHxkdrK9LBERzMzM4ODggM2bN4sdp8hasmQJli1bho8fP/Ij+XKRkpICPT09bN++HcOHD5ddR/mpAEuWLEnu7u5048aNH17Xr18nY2NjGdSchZPfkbrLly8TAPLz85NxMtnz9vYmAFSiRAmlHnUsqDVr1pCWlhZFRkYWuA2pVEoPHjygVatWUbt27UhbW5sAUMWKFWnYsGHk4uKS1f6FCxcIAAUFBQn1R1A69vb21LJly3zds2/fPtLU1CRLS0tq164dNWjQgKpUqUKGhoYEIMeXtrY2bd26VUZ/iqIhOjqa6tSpQ5UrV6awsDCx4+TbvXv3CAB5eXmJHaVI+/LlC2lpadHq1avFjqLwHj58SADo9u3bMu1HIz8FoJ2dHfT19dGqVatsn1lZWRWmtlQI+/btg4WFBZo0aSJ2lEJr0aIFevfujd9++w16enpix5G7gQMHYubMmTh8+DAmTJiQ7/tv3LiBAQMGICwsDLq6urCzs8PKlSvRoUMHWFhYZBuNa9euHUqXLo1jx46pxNdCfkVHR+PKlStYv359vu4bPHgwzM3NsXLlSujq6qJatWooWbIkSpUqlfW///7nkiVLolixYkV2NFQoJUuWxKVLl9C0aVN06tQJN2/eVPgn5/zb6dOnUbJkSbRs2VLsKEWasbExnJycsHXrVkyaNEmpjgCTN3nsfAUg3Jo6RZSfkbro6GjS1tamlStXyiEZkwdHR0eqW7duvtdseXp6ko6ODrVp04a8vLwoOTk5T/eNHDmSTE1Ni+Qanz179pBEIqHw8HCxo7B8ePToEZUoUYLatGmT57/niqB27do0aNAgsWMwIvLz8yMA5OHhIXYUhTZv3jwqV66czPvhsvr/O378ONLT0zFw4ECxozCBODs74/Hjx7h7926e7zl//jwcHBzQrl07eHh4oG3btnk+/6xv374IDQ2Fr69vQSMrLVdXV7Rq1QrlypUTOwrLh7p16+Ls2bPw8fHBkCFDlGLH+IsXLxASEoIePXqIHYUBaNKkCRo2bMhrG3Mhl52vKMSRJm5ubkLmyJOpU6fC1tYW/fv3F/xk+n379sHe3r5InOVWVLRr1w6mpqZ5fsKEm5sbevToAQcHB7i5uUFHRydf/bVo0QIVK1bEsWPHChJXaUVFRcHLy+unG6mYYmvZsiWOHDmC48ePY/r06WLHydXp06ehp6eHDh06iB2FAZBIJBgzZgwuXbrEjw77BYUv6vr164d169b98hoS8FmPwcHB+Pz5M7y9vVG7dm2cPHlSsLYzR3OU9Ww6ljN1dXUMHToUx44dy3Vn9tGjR9G7d284OTnh+PHjBXqcmpqaGvr06YMTJ04gPT29oLGVzunTp0FEPHKixHr27ImNGzdizZo1uX5fF9vp06fRsWNH6Orqih2F/X99+vRByZIlsW3bNrGjKKS0tDS8ePFCsYu6c+fOYcGCBRg/fny24i0jIwP79+8XdEGgn59f1m9mHTt2zHGKKyUlBbGxsT+88mLfvn0wMjJC586dBcvLFMOQIUOQkJCAEydO/PSavXv3YsCAARg0aBAOHjwIDY187R/6Qd++fREREYGrV68WuA1l4+rqCjs7O5QtW1bsKKwQxo4dixkzZmDy5MmCHgUkpLCwMNy5c4cPHFYwurq6cHZ2xt69e5GYmCh2HIXz6tUrpKenK3ZR9/vvv+PWrVs4ffo0evTogaSkJKSmpmLbtm0wNzfH5MmT0bt3b8GCfv/+PeusOUNDQ0RHR2e7Zvny5TA0NMx6mZqa5tpuWloaDh8+jP79+6v0w+6LqsqVK6N9+/Y/nYLdtm0bhg0bhr/++gu7d++Gurp6ofqzsrJCjRo1iswUbEREBK5du8ZTrypi+fLlGDhwIAYNGoRr166JHSebs2fPQkNDA3/88YfYUdh/jBw5EjExMVmPqGT/J3Pnq0IXdQBQv359+Pv7482bN7CxsUGVKlUwf/58DB8+HO/fv8fChQuFyomSJUtmjbx9//49x4MOZ82ahZiYmKxXXh7qfuHCBXz9+pWnXlWYs7MzfH198fTp0x/eX7duHUaPHo2JEydi69atgmzHl0gk6Nu3L06fPo3k5ORCt6foeOpVtUgkEuzZswetW7dG9+7d8eDBA7Ej/eD06dNo3bo1SpYsKXYU9h9VqlRB586dsXnzZkGXXqmCkJAQGBkZoUyZMjLvq1A/xWJiYrB3716EhYXh5cuX+P79O65evYrZs2ejePHiQmUE8L8HUV++fBkA4OnpiebNm2e7RltbGwYGBj+8crNv3z40aNAA9evXFzQvUxxdunRB6dKlsWfPnqz3li1bhsmTJ2PWrFlYu3atoOee9e3bF7Gxsbhw4YJgbSoqV1dXtGnTRi7frJh8aGpq4uTJk6hevTrs7e1x48YNhfghHR0djRs3bvDUqwIbO3YsHjx4UCRPAPgVeW2SAApR1M2aNQuVK1fG/v37sWzZMkRERKBXr15o165dvo6QyCsrKyuUK1cOtra2CAkJQc+ePQvd5pcvX+Du7s6jdCpOW1s7a71camoq5s2bhzlz5mDhwoVYunSp4AfZ1qxZE1ZWVio/Bfv161dcv36dp15VUPHixeHh4YGyZcuidevWqFu3LjZv3oyYmBjRMrm7uyM9PR1du3YVLQP7tXbt2qF69ep8vMl/yLOoK/DhwxYWFnTgwAFKT0//4f25c+dSsWLF6MyZM4U4Pk8YuR0+vHr1atLS0qKoqCg5J2Py9vjxYwJAdnZ2BEDmh0yvWrWKdHR08vyIOmW0bds2UldXp4iICLGjMBmRSqV07do1cnR0JA0NDSpWrBiNGDGCgoOD5Z6lW7duZGNjI/d+Wf6sX7+eNDQ06NOnT2JHUQhpaWmkra1NGzdulEt/BS7qfnVK/65du0hbW5s2bdpU0OYF8auiTiqVUp06dcjJyUmEZEwMNjY2BIA2bNgg877ev39PAOjgwYMy70ssrVu3pg4dOogdg8lJWFgYLVy4kExMTAgANW3alA4dOkRJSUky7zshIYF0dXX5iT9K4Nu3b6Snp0cLFy4UO4pCePHihVyfUyyzx4RduHCBihcvLqvm8+RXRV1AQAABoIsXL4qQjInh0aNHdOHCBbn116JFC7K3t5dbf/IUHh5OampqtHv3brGjMDlLS0ujU6dOUfv27QkAlS5dmqZPn06vX7+WWZ+nTp0iAPTixQuZ9cGE89dff1H58uUpNTVV7CiiO3PmDAGQ28ilzB4TlrnAVlHt3bsXJiYmaN++vdhRmJzUrVsX9vb2cuuvb9++uHz5MiIiIuTWp7ycOnUKampq6Natm9hRmJxpaGige/fuuHz5Mp4/f45BgwZh165dMDc3h62tLWbNmoXz588jMjJSkP4yMjJw4sQJ1KlTB9WrVxekTSZbY8aMQXh4OE6fPi12FNGFhISgRIkScnuEooRIAbY1yUhsbCwMDQ0RExOTbSesj48PwsPD4ejoKFI6puoiIiJQvnx5bNq0CaNGjRI7jqDs7Oygq6uLixcvih2FKYDExES4uLjgwoULWd9bAaBGjRpo1qxZ1qtWrVo/PTpIKpXi3bt3ePLkCR4/fownT57gyZMnePr0KVJSUrBkyRLMmTNHnn8sVgitWrUCANy8eVPkJOIaOHAg3rx5Ax8fH7n0V2SLOsbkoWPHjkhMTMStW7fEjiKY8PBwmJiYYM+ePbxznGVDRPjw4QN8fX2zXg8ePEBGRgYMDQ3RtGlTNGvWDLVr18abN2+yirinT59mPY3A0NAQderUQZ06dVC3bl3UrVsXdnZ2gpwlyeTjxIkTcHJywoMHD2BpaSl2HNE0bNgQDRo0wK5du+TSHxd1jMnQgQMHMHjwYHz48CFPTzhRBps3b8bkyZPx5csXPgSW5Ul8fDzu3r37Q6H3/ft36Ovro3bt2qhbt+4PRVyFChUEP2qIyVdaWhrMzMzQuXNn7NixQ+w4opBKpdDX18fSpUsxadIkufTJRR1jMhQbGwtjY2MsWbIEU6dOFTuOIFq2bJl1jhljBSGVShEREYEyZcrw6JsKW7RoEVauXImwsDCUKFFC7Dhy9/btW1StWhWXLl3C77//Lpc++auJMRkyMDBA586dVeYg4rCwMNy+fZsPHGaFoqamhrJly3JBp+JGjBiBtLQ07N+/X+woopDnM18z8VcUYzLWt29fBAUF4cWLF2JHKTQ3NzdoaGjwqf6MsVyVK1cOPXv2xNatWyGVSsWOI3chISHQ19dHxYoV5dYnF3WMyVinTp1QvHhxlRitO3HiBH7//fciOZXCGMu/sWPH4uXLl7hy5YrYUeQu8/Fg8lwfykUdYzKmq6uL7t2749ixYwrxYPSC4qlXxlh+NWvWDL/99luRfB6sXJ/5+v9pyLU3xoqovn374uDBg7h//z6srKxk1s+rV6/w4MEDpKamIiUlBampqTm+Mj9TU1ODiYkJTE1Ns17ly5eHhkb2bw0nT56ElpYWunTpIrP8jDHVIpFIMGbMGIwYMQJv375FlSpVxI4kF0SEkJAQuZ+Fy0UdY3LQtm1bGBkZ4dixYzIr6k6dOoUBAwYgKSnph/e1tbWhpaWV9b+ZL21tbaSnp+Pjx4+Ii4vLul5dXR0VKlT4odAzNTXF3r170bFjRxgaGsokP2NMNfXr1w/Tpk3Dtm3bsGrVKrHjyMXHjx8RHx/PI3WMqSJNTU306tULx48fx4oVKwTd9UdEWLNmDaZPn45evXph8+bNKFasGLS0tKCurp6n9RwxMTEIDQ3Fhw8fEBoa+sMrMDAQoaGhSElJwd9//y1YbsZY0aCnp4ehQ4di9+7dmDdvHvT19cWOJHNi7HwF+Jw6xuTG29sbLVu2hLe3N1q0aCFIm2lpaRg7dix27tyJ2bNnY/HixTI5JoKIEBcXx19HjLECef/+PWrVqoW//voL69atEzuOzK1btw5z5sxBfHy8XI/u4Y0SjMlJ8+bNUbFiRcF2wcbExOCPP/7A3r17sXfvXixdulRm3zwkEgkXdIyxAqtcuTIWL16MDRs2wN/fX+w4MhcSEvLLZx3LChd1jMmJmpoa+vTpgxMnTiAtLa1Qbb179w7NmzfH3bt3cfnyZX4GK2NM4U2YMAGNGjXCsGHDkJKSInYcmRJj5yvARR1jctW3b19ERETg6tWrBW4jICAATZo0QVJSEvz8/NC6dWsBEzLGmGxoaGhgz549ePHiBZYvXy52HJnJ3PnKRd1PBAYGwtbWFq1atYKTk1OhRzkYE4uVlRVq1KiB3bt3Iz4+Pt/3u7m5oVWrVjA3N4e/vz8sLCxkkJIxxmSjXr16mD17NpYtW4ZHjx6JHUcmPn/+jO/fv3NR9zMmJibw9PTEzZs3YW5ujjNnzogdibECkUgkGDVqFNzc3FCiRAlYW1tj6tSpOHfuHKKjo396HxFh1apVcHR0RLdu3XD16lWUKVNGjskZY0wYs2fPhrm5OYYNG4aMjAyx4whOrJ2vgJIUdeXKlYOenh6A/x0NkdPBqIwpiwkTJuDp06fYunUratSoAVdXV3Tt2hWlS5eGpaUlxo4dCxcXF4SHhwP43w7XESNGYMaMGZg7dy6OHDkCHR0dkf8UjDFWMNra2tizZw/u3buHDRs2iB1HcCEhIdDW1hbloGWlOtLkw4cP6Nu3L27cuAFNTc1sn6ekpPyw+DI2NhampqZ8pAlTeO/fv8etW7eyXi9evAAAmJubQ19fH0+ePMGuXbvw559/ipyUMcaEMXHiROzcuROPHj1CtWrVxI4jmFGjRsHX1xcPHjyQe98KVdR9/vw5x0dqnDt3DhoaGnBwcMCuXbtQo0aNHO9fsGABFi5cmO19LuqYsvn8+TO8vb1x69YtPHv2DHPmzIGdnZ3YsRhjTDDx8fGoV68eqlSpgqtXr8r1wfey1KpVK1SoUEGw46vyQ6GKup/JyMhAt27dMHHiRLRt2/an1/FIHWOMMaY8rly5gg4dOmDXrl1wdnYWO44gypQpg/Hjx4vyBB6lWFPn6uoKX19fLF68GHZ2dnBxccnxOm1tbRgYGPzwYowxxphiat++PYYMGYIpU6YgLCxM7DiFFhERgcjISFE2SQBKMlJXUPyYMMYYY0yxffv2DbVr14a1tTXOnDmj1NOwN2/ehJ2dXdYTJeRNKUbqGGOMMaaaSpYsiS1btuDcuXM4ceKE2HEKJSQkBBoaGjA3Nxelfy7qGGOMMSaqHj16oGfPnhg7diyioqLEjlNgISEhqFGjRo4ndMgDF3WMMcYYE93mzZuRlpaGSZMmiR2lwMR6PFgmLuoYY4wxJrpy5cph3bp1OHToEC5evCh2nALhoo4xxhhjDMCff/6J9u3b46+//kJcXJzYcfIlOjoanz9/5qKOMcYYY0wikWDnzp2Ijo7GrFmzxI6TL0+fPgUgzjNfM3FRxxhjjDGFYWZmhsWLF2Pr1q3w9/cXO06uEhMTcezYMcycORPq6uqoXr26aFm4qGOMMcaYQhk3bhwaNGiA4cOHIy0tTew42aSnp+PSpUsYOHAgjI2N0a9fP6Snp+PYsWPQ0dERLRcXdYwxxhhTKBoaGti1axeePn2KNWvWiB0HAEBEuHPnDsaPHw8TExPY29vj7t27mDFjBl69egU/Pz/06tVL1Iz8RAnGGGOMKaRp06Zh8+bNePTokWgH+j5//hxHjx7FkSNH8Pr1a5QvXx59+vTBgAEDYGVlpVBPwOCijjHGGGMKKSEhAXXr1kW1atVw5coVuRZQUqkUvXv3xsmTJ2FgYICePXuif//+sLOzg7q6utxy5AdPvzLGGGNMIRUrVgzbtm3D1atXcejQIbn2vXr1ari5uWHXrl34/Pkz9u7di7Zt2ypsQQfwSB1jjDHGFFy/fv1w+fJlPHv2DEZGRjLvLyAgAM2bN8eUKVOwYsUKmfcnFC7qGGOMMabQvnz5glq1asHBwQEHDhyQaV9xcXGwsrJCqVKl4OPjI9pzXAuCp18ZY4wxptDKli2L1atX4+DBg/Dy8pJpX2PGjMHXr19x7NgxpSroAB6pY4wxxpgSICK0adMGHz58wKNHj6Cnpyd4H4cPH8bAgQNx6NAhDBgwQPD2ZY1H6hhjjDGm8CQSCXbs2IGwsDAsXrxY8PZfv36NUaNGYcCAAUpZ0AFc1DHGGGNMSdSoUQNz587FP//8g4cPHwrWbmpqKvr27YuyZctiy5YtgrUrb0pV1B07dgxlypQROwZjjDHGRDJ9+nTUrFkTI0aMQEZGhiBtzps3D8HBwTh27JhSL9dSmqJOKpXi5MmTMDU1FTsKY4wxxkSipaWFnTt34s6dO9i2bVuh2/Py8sLKlSuxdOlSNG7cWICE4lGajRKHDx+Guro61qxZg3v37uXpHt4owRhjjKmmUaNG4fDhwwgJCSnwgE9ERAQsLS1Rt25deHp6Qk1Naca6cqQU6TMyMuDq6orevXv/8rqUlBTExsb+8GKMMcaY6lm+fDmKFy+OsWPHoiDjU0SEIUOGID09HQcPHlT6gg4ANMQO8G+fP3+Go6NjtveHDx8OJyenXP+DL1++HAsXLpRVPMYYY4wpiBIlSmDTpk1wdHTEqVOn0LNnz3zdv2nTJnh4eMDd3R3ly5eXUUr5Uorp1xkzZiA4OBhqamrw8/PD0KFDsW7dumzXpaSkICUlJevfY2NjYWpqytOvjDHGmAoiInTr1g3nzp2DpaUl2rZtizZt2qBly5a//Ln/4MEDWFtbY9SoUVi/fr38AsuYUhR1/9aoUSNeU8cYY4wxAEBiYiLc3Nxw7do1XL16FaGhoVBXV0ejRo3Qpk0btGnTBs2bN4euri4AICEhAY0aNYK2tjbu3LkDbW1tkf8EwlG6oi4/uKhjjDHGig4iwps3b3D16lVcu3YN165dQ0REBLS0tNCsWTO0adMGISEhOHv2LAIDA1GrVi2xIwuKizrGGGOMqSQiwpMnT7IKvBs3biAmJga7du2Cs7Oz2PEEx0UdY4wxxoqE9PR0hIaGokqVKmJHkQnl37/LGGOMMZYHGhoaKlvQAVzUMcYYY4ypBC7qGGOMMcZUABd1jDHGGGMqgIs6xhhjjDEVoNK7X4kIcXFxKF68OCQSidhxGGOMMcZkRqWLOsYYY4yxooKnXxljjDHGVAAXdYwxxhhjKoCLOsYYY4wxFcBFHWOMMcaYCuCijjHGGGNMBXBRxxhjjDGmArioY4wxxhhTAVzUMcYYY4ypAC7qGGOMMcZUABd1jDHGGGMqgIs6xhhjjDEVwEUdY4wxxpgK4KKOMcYYY0wFqHRRR0SIjY0FEYkdhTHGGGNMplS6qIuLi4OhoSHi4uLEjsIYY4wxJlMqXdQxxhhjjBUVXNQxxhhjjKkApSrqbty4gbZt26JVq1Y4e/as2HEYY4wxxhSGhtgB8io5ORlr1qzBxYsXoaWlJXYcxhhjjDGFojQjdb6+vtDV1YWDgwO6d++Oz58/Z7smJSUFsbGxP7wYY4wxxgAgLCwMNWvWxNOnT8WOIhNKU9R9+fIFb9++xfnz5zFixAgsWLAg2zXLly+HoaFh1svU1FT+QRljjDGmkM6cOYMXL15g3759YkeRCaUp6kqUKIEWLVpAS0sLbdq0QUhISLZrZs2ahZiYmKxXaGioCEkZY4wxpog8PDwAAMePH4dUKhU5jfCUpqiztrbOKuSCg4NRtWrVbNdoa2vDwMDghxdjjDHGWEJCAq5du4aePXsiNDQUPj4+YkcSnNJslChdujS6dOmCli1bQk1NDXv37hU7EmOMMcaUxNWrV5GSkoJly5YhICAAx44dg62trdixBCUhFX6GVmxsLAwNDRETE8OjdowxxlgRNmLECNy6dQvPnj3DjBkzsGfPHoSHh0NTU1PsaIJRmulXxhhjjLGCICK4u7ujc+fOAIB+/fohKioKV65cETmZsLioY4wxxphKCw4ORnh4eFZRZ2lpiVq1auHYsWMiJxMWF3WMMcYYU2nu7u4wNDRE8+bNAQASiQT9+vXD6dOnkZiYKHI64XBRxxhjjDGV5u7ujo4dO/6wfq5Pnz5ISEiAu7u7iMmExUUdY4wxxlTW58+fcffu3ayp10zm5uawtrbG0aNHRUomPC7qGGOMMaayLly4AIlEgo4dO2b7rF+/frhw4QK+ffsmQjLhcVHHGGOMMZXl7u6Opk2bwsjIKNtnTk5OyMjIwKlTp0RIJjwu6hhjjDGmklJSUnD58uVsU6+Zypcvj9atW6vMFCwXdYwxxhhTSTdv3kRCQsJPizoA6Nu3L65fv47w8HA5JpMNLuoYY4wxppLc3d1RqVIl1K1b96fX9OjRA5qamnBxcZFjMtngoo4xxhhjKuffT5GQSCQ/va5kyZLo1KmTSkzBclHHGGOMMZXz9OlTvH379pdTr5n69u2Lu3fv4tWrV3JIJjtc1DHGGGNM5bi7u0NPTw+tW7fO9drOnTtDX19f6R8bxkUdY4wxxlSOu7s72rVrBx0dnVyv1dPTQ7du3XD06FEQkRzSyYbSFXXHjh1DmTJlxI7BGGOMMQUVHR0NHx+fPE29ZurXrx+ePXuGBw8eyDCZbClVUSeVSnHy5EmYmpqKHYUxxhhjCsrT0xNSqRSdOnXK8z3t2rWDkZGRUm+YUKqi7ujRo3B0dISaWs6xU1JSEBsb+8OLMcYYY0WLu7s7GjRoABMTkzzfo6mpiV69euH48eOQSqUyTPc/T548QUZGhqBtKk1Rl5GRAVdXV/Tu3fun1yxfvhyGhoZZLx7RY4wxxoqW9PR0XLx4MV9Tr5n69euH0NBQ+Pj4yCDZ/3n48CHq1auHnTt3Ctqu0hR1hw8fhpOT009H6QBg1qxZiImJyXqFhobKMSFjjDHGxObn54dv374VqKhr1qwZTE1NZb4LdtWqVSAi7Nq1S9B2laaoCwkJwcGDB9GxY0e8fPkSkyZNynaNtrY2DAwMfngxxhhjrOhwd3dH2bJl0bBhw3zfq6amhr59+8LV1RVpaWkySAe8e/cOx48fh729PYKDgxEYGChY2xJSwr27jRo1wr1793K9LjY2FoaGhoiJieECjzHGGCsC6tSpgyZNmmDv3r0Fuv/Bgwf47bff4OHhka+NFnk1fvx4HDlyBG/fvkXt2rXh4OCAbdu2CdK20ozU/VteCjrGGGOMFS1v3rxBSEhIgaZeM1laWqJWrVoymYKNjIzE7t27MXbsWBgYGGDo0KE4cuQIEhISBGlfKYs6xhhjjLH/8vDwgKamJtq3b1/gNiQSCfr164fTp08jMTFRwHTAli1bAADjxo0DAAwdOhTx8fE4ceKEIO1zUccYY4wxleDu7g47OzsUL168UO306dMHCQkJcHd3FygZkJCQgE2bNmHYsGEwMjICAJiZmaFdu3bYvXu3IH1wUccYY4wxpRcXF4cbN24Uauo1k7m5OaytrQU9iHjv3r34/v07pkyZ8sP7w4cPh4+PD0JCQgrdBxd1jDHGGFN6Xl5eSE1NxR9//CFIe/369cOFCxfw7du3QreVlpaGNWvWoHfv3jAzM/vhsy5dusDIyAh79uwpdD9c1DHGGGNM6bm7u6NWrVqoVq2aIO05OTkhIyMDbm5uhW7L1dUV79+/x/Tp07N9pq2tjT///BMHDhxASkpKofrhoo4xxhhjSk0qlcLDw0OQqddM5cuXh4ODA+bOnYvw8PACt0NEWLVqFTp27Ij69evneM2wYcMQFRWFs2fPFrgfgIs6xhhjjCm5wMBAfPnyRdCiDgB27NgBdXV1ODk5Ffgw4kuXLuHhw4eYMWPGT6+pVasWWrRoUegnTHBRxxhjjDGl5u7ujhIlSqBZs2aCtlu2bFmcOHEC/v7+mDlzZoHaWLlyJaytrdGqVatfXufs7AwvLy+8ffu2QP0AXNQxxhhjTMm5u7vD3t4eGhoagrfdrFkzrFmzBmvXrsXJkyfzde+dO3dw8+ZNTJ8+HRKJ5JfXOjo6wsDAoMBPwgC4qGOMMcaYEgsLC0NQUJDgU6//Nm7cOPTu3RtDhgzB8+fP83zfqlWrUL16dXTr1i3Xa4sVK4b+/ftj7969SE9PL1BOLuoYY4wxprQuXLgANTU1dOzYUWZ9SCQS7N69G6ampujRowfi4+Nzvef58+c4ffo0pk2bBnV19Tz14+zsjE+fPuHSpUsFyslFHWOMMcaU1pUrV9CkSROUKlVKpv3o6+vDzc0NHz58wIgRI0BEv7x+9erVKFu2LAYOHJjnPho0aIAGDRoUeMMEF3WMMcYYU0pEhBs3bqBNmzZy6a9WrVrYs2cPjh07lvUc15yEh4fj4MGDmDhxInR0dPLVh7OzMzw8PPDp06d85+OijjHGGGNK6cmTJ4iIiEDr1q3l1qeTkxMmTpyIyZMnw8/PL8dr1q9fDx0dHYwcOTLf7ffr1w9aWlrYv39/vu9VmqIuMDAQtra2aNWqVaHOi2GMMcaYarh27Rq0tLQEP8okN6tWrYK1tTV69eqFiIiIHz6LiYnB9u3bMXLkSBgaGua7bUNDQzg5OWHPnj2QSqX5uldpijoTExN4enri5s2bMDc3x5kzZ8SOxBhjTIFIpVJMmjQJzZs3x5MnT8SOw+Tg+vXrsLGxga6urlz71dTUhIuLC9LS0tC3b19kZGRkfbZ9+3YkJydj4sSJBW7f2dkZb968wY0bN/J1n9IUdeXKlYOenh6A//3HlMVZNIwxxpRTWloaBg4ciI0bNyI8PBwNGzbExo0b8z3SwZSHVCrFzZs35Tr1+m8mJiZwcXHB9evXMW/ePABAcnIy1q9fj0GDBqF8+fIFbrt58+awsLDI94YJpSnqMn348AFeXl45nkeTkpKC2NjYH16MMcZUW1JSEnr27IkTJ07g+PHjePLkCf766y9MmDABHTt2LNCCc6b4Hjx4gG/fvolW1AGAnZ0dli9fjmXLluH8+fM4dOgQvnz5gqlTpxaqXYlEAmdnZ5w6dQpRUVF5v5GUSExMDLVs2ZKeP3+e4+fz588nANleMTExck7KGGNMHmJiYqhVq1akq6tLFy9e/OEzT09PKl++PJUqVYpOnDghUkImK2vWrCEdHR1KTk4WNYdUKqVu3bqRoaEhmZmZUffu3QVp9+vXr6SpqUnr1q3L8z0SolwOWlEQGRkZ6NatGyZOnIi2bdvmeE1KSgpSUlKy/j02NhampqaIiYmBgYGBvKIyxhiTg8jISNjb2+Ply5dwd3dHixYtsl0TFRWFv/76C25ubhg8eDA2bNjAPw9UhIODA5KSkuDl5SV2FMTExKBRo0Z49eoV/P390aRJE0HadXJyQkhICB49epTrY8YAJZp+dXV1ha+vLxYvXgw7Ozu4uLhku0ZbWxsGBgY/vBgrSq5fv46nT5+KHYMxmQsLC0PLli3x/v173LhxI8eCDgBKly6NEydOYP/+/XBzc0P9+vVx+/ZtOadlQktPT8etW7dEnXr9N0NDQ1y4cAE7d+4UrKAD/rdh4smTJ/D398/T9UozUlcQsbGxMDQ05JE6pvKioqIwfvx4HD16FOXLl8f9+/dhbGwsdizGZOLVq1do3749MjIy4OXlhRo1auTpvrdv32LgwIHw8/PDzJkzMX/+fGhpack4LZOFu3fvwtraGj4+PnI/zkSepFIpqlatirZt22LPnj25Xq80I3WMsZydPHkStWvXxoULF7Bx40ZkZGSgf//+P2yxZ0xVPHr0CLa2ttDS0sLt27fzXNABQJUqVXDz5k0sXrwYq1atQrNmzfDs2TMZpmWycu3aNRQrVgyNGzcWO4pMqampYdiwYTh+/HieNn9yUceYkvry5Qt69eqFXr16oVmzZggJCcG4ceNw9OhRXL16FUuXLhU7ImOC8vf3R6tWrVCuXDl4e3ujUqVK+W5DXV0ds2fPhr+/P+Lj49GwYUM8f/5cBmmZLF2/fh0tWrSApqam2FFkbsiQIUhOTsbx48dzvTbfRV1SUhLCwsKyvc8HPTImH0SEo0ePok6dOrhx4waOHz+OU6dOZZ2J1LZtW8yfPx8LFizA1atXRcm4ZMkSTJ8+XZS+mWry8vJCu3btUKdOHVy/fr3QywsaNmyIwMBA6OvrY+vWrQKlZPKQlpaG27dvK8x6OlmrWLEi7O3tcerUqdwvzs/22hMnTlDFihXJ0tKS6tWrR/7+/lmfWVlZ5acpuYiJieEjTZhKCQsLIwcHBwJAvXv3pq9fv+Z4XXp6OrVr146MjY3p06dPcs346tUrUldXJwB048YNufbNVIdUKqXIyEh6+PAh7dy5k7S0tKhjx46UkJAgaD8zZ84kQ0NDwdtlsuPj40MA6M6dO2JHkZtPnz5RSkpKrtfla6PEb7/9hitXrqBMmTK4d+8e/vzzT8yZMwf9+vWDlZUVgoODC1qIygRvlGCqgoiwf/9+TJo0CTo6Oti2bRu6d+/+y3u+fv2K3377DTVq1ICXl5fcnsLy559/4sqVKzA1NUVSUhKCgoL4CTDsB0SE169f4+PHj/j06RPCwsLw6dOnbP/87yOqevfujYMHDwq+seHNmzcwNzfHnj17MGTIEEHbZrKxdOlSrFq1ClFRUfy95T/yVdTVqVPnh2nWqKgo9OjRA23btsWZM2cQFBQkk5AFxUUdUwUfPnzAiBEj4OnpiUGDBmHdunUoVapUnu69efMm2rRpg1mzZmHJkiUyTgo8e/YMderUwYYNG2BjYwNra2ts2LAB48aNk3nfTLElJibi6tWrcHd3h7u7+w9PeTAwMECFChVQoUIFmJiY5PjPlSpVytM5XQVhb2+P6Oho3LlzRybtM2G1a9cOurq6OH/+vNhRFE9+hv/s7OzowYMHP7yXkpJCffr0IXV19fw0JRc8/cqU3efPn6lEiRJUsWJF8vDwKFAby5YtIwDZTtuXhT59+pCpqWnWCe/Dhw+nEiVK/HSamKm29+/f09atW6lTp06ko6NDAMjc3JwmTZpEFy9epOfPn1NcXJzYMen06dMEgIKCgsSOwnKRnJxMOjo6tGbNGrGjKKR8jdR9/PgRGhoaKFeuXLbPfHx80Lx5c8GKTSHwSB1Tdnv27MGIESMQFhaW49ddXkilUnTu3BkBAQEIDg6GqampwCn/5/Hjx7C0tMT27dsxYsQIAEBERARq1KgBR0fHfD+YmimfjIwMBAQEZI3GPXz4EBoaGrC1tUXnzp3RuXPnfB1BIi/p6emoXLkyHBwcsH37drHjsF+4desWWrVqhaCgIFhZWYkdR+Hw4cN5lJSUBF1dXYGSMZY3PXv2xOfPn+Hj41OodiIjI2FlZYVKlSrhxo0bMjkGoGfPnggODsbz589/aH/Lli0YN24c7ty5o/JnShVl69evx9KlSxEZGYnSpUujU6dO6Ny5Mzp06IASJUqIHS9XCxYswJo1a/Dp0ycUL15c7DjsJxYsWICNGzciMjISamp8Ktt/Ffi/iJubm5A5FFZqaiomTJiA4sWLY8WKFZBKpWJHYkVEamoqrly5gk6dOhW6LSMjI7i4uCAgIABz5swRIN2PgoODcerUKcybNy9bwfjXX3+hXr16GDt2LH/9qKjDhw9j0qRJ6Nq1K3x8fPDlyxccPHgQTk5OSlHQAf97HFNiYiKOHDkidhT2C9evX0erVq24oPuZgs7bamlp0dq1a395jVQqLWjzgijsmrqwsDBq3rw5aWpqkqOjIwGgLl260Ldv34QNylgOrl69SgAoODhYsDZXr15NAOjcuXOCtUlE1LlzZ6pRowalpaXl+PnNmzcJAO3du1fQfpn4bt68SZqamjR48GDRv+cXVpcuXah+/fpK/+dQVYmJiaSlpUUbNmwQO4rCKnBRd+nSJTIwMKBx48Zl+wJIT0+nffv2Uc2aNQsdsDAKU9TdvHmTypYtSxUqVCBfX18iIjp37hwZGhqSubl5tg0jjAltypQpVL58eUF/wEilUurSpQuVLFmS3r59K0ib/v7+BICOHDnyy+v69etHxsbG/EuRCnnx4gWVKlWKWrdunacztBTdhQsXCMAPZ7AyxeHl5UUA6OHDh2JHUVgFLuqIiO7fv08VK1akbt26UWJiIqWkpNDWrVvJzMyMSpYsSfPmzRMqZ4EUpKiTSqW0Zs0aUldXJzs7O/r8+fMPn7969Yrq169Purq6dPDgQaEjM5bFwsKChg0bJni70dHRZGZmRtbW1oL8IO7QoQPVrl2b0tPTf3ndx48fqVixYjRhwoRC98nEFxkZSebm5mRhYUHR0dFixxFEeno6mZmZ0eDBg8WOwnIwZ84cKlOmDGVkZIgdRWEVqqgj+t83aktLS7K0tKQKFSpQmTJlaOnSpRQbGytEvkLJb1EXGxtLvXr1IgA0bdq0n04lJSYm0uDBgwkAjRw5Muv4BsaE8vr1awJAp06dkkn7AQEBpKmpSePGjStUO97e3gSATpw4kafrV6xYQerq6vTo0aNC9cvElZycTC1atCAjIyN6/fq12HEEtXTpUtLR0VGZQlWVNGvWjHr16iV2DIVWqKLu+/fvtGjRIipdujTp6uqSnp6eQg2L5qeoCwkJIQsLCypevDidPHky1+ulUmnWo2usra3p/fv3QkRmjIiINm/eTJqamjI9Y3Hz5s0EgGbOnFngKV47OzuqX79+nn9zTk5Opho1alDr1q153ZKSkkqlNGDAANLW1iYfHx+x4wguPDycNDQ0eN2WgomLiyMNDQ3aunWr2FEUWoGLuszn5VWtWpV27NhB8fHx9Oeff5KxsTEFBAQImTHLlClTqEWLFtSvX788TRvltag7ceIE6evrU+3atenZs2f5ynT37l2qXLkylS5dmjw9PfN1L2M/Y29vT23atJF5P5kbJ0aPHp3vKY3MjRxnz57N130XL14kAOTi4pKv+5hiWLBgAQGg48ePix1FZnr16kW1atXiXzwUyKVLlwgAPX36VOwoCq3ARZ2FhQUdOHAg2zqauXPnUrFixejMmTOFDvdvQUFB1L9/fyIiWrJkSa6LsolyL+rS0tJoypQpWQ9HL+jJ5pGRkfT777+TRCKhxYsX83w/K5SEhATS0dGh1atXy6W/nTt3kkQioYEDB/50ycF/SaVSatasGTX+f+3dd1RUV9cH4N8MDEMQpIiCKNg7oqixIQJRCSiiJopBAhILJmp8YzfmNZKYtiwhYjQqCYgiKNEYQVCKgr0iothrRMGCKIjShtnfH37yJrFRZuZO2c9as5aZuffsTc7A7Dn3nnPefrtWH3ze3t7UtGlTKi4urvG5TDgbNmwgAPTNN98InYpSPf/CsnfvXqFTYf9v7ty5ZG1tzYX2G9S6qHvd/9iwsDCSSqW0YsWK2jb/gpUrV1JkZCQREZ04cYKmTJnywjGlpaVUWFhY9cjJyXllUZeXl0cuLi6kr69PISEhdX6jyGQyWrhwIYlEIhoyZAjP8GO1lpCQoPJvpDExMaSvr08jRoyo1j2iz0fbarv12NWrV0kqldIXX3xRo/NkMhmdPHmSt/4TwL59+8jAwEArli55E7lcTm3atCFfX1+hU2H/7+233+b+qIY6T5R4lcTERDIxMVFYe99++y1t27aNiIguX7780s5duHAhAXjh8bIPAB8fH7K2tqZ9+/YpLEei//3c06dPV2i7THdMnjyZWrRoofIPzvj4eJJKpTRo0KDXjqDJ5XLq0aMH9e3bt045LliwgAwMDOjy5cuvPa6srIx27txJQUFB1KhRIwJADRs2pJUrV1J5eXmt47Pq07alS6pj6dKlZGBgwPsWq4FHjx6RWCymtWvXCp2K2lNaUUdElJGRobC2Vq1aVTVSd/z4cYWM1OXm5iosv7+bPHkyNW/eXOu/zTLFk8vl1Lx585e+v1Vhz549ZGxsTE5OTq8cbd6+fTsBoN27d9cp1pMnT8jOzo68vLxeeK24uJi2bNlCY8aMIVNTUwJALVu2pFmzZlFycjIFBgaSSCSidu3a0Z9//sm/a0qUn59Pbdq0oXbt2unUjND79++TVCqlxYsXC52KVqisrKTDhw/X6nc1Pj6eANCVK1eUkJl2UWpRp0j/vqcuOjr6jefUdUeJ2kpOTiYAdOrUKZXGZZrv3LlzBIASExMFy+HIkSNkbm5OXbt2fWGUorKykrp06UKurq4KibVlyxYCQDt27KAHDx7QunXryNvbmwwNDQkAOTg4UHBwMGVlZb3wYZCZmUkDBw4kANS/f3+lTdDSZaWlpeTs7EyWlpY6+YH64YcfUqtWrfg+aQWIjIwkALRo0aIanztjxgyytbXlL2/VoDFFHZHyZr8qWllZGZmamlJwcLBK4zLNt2TJEjI0NKSnT58Kmsfp06fJysqK2rdvTzk5OVXP//777wSA9u/fr5A4crmcBgwYQCYmJqSnp0cAqG/fvrRkyZJqFRFyuZx27txJnTp1IgA0ZswYhe2UwYjGjh2rtUuXVMfzdRhTUlKETkXjOTs7V42613TmtKOjIwUEBCgpM+2iUUVdTQlV1BE92xKpS5cuKo/LNJubmxsNHjxY6DSI6Nl9VHZ2dtSsWTO6cuUKyWQy6tixI7m7uys8jo+PD61atYpu375dqzYqKiooLCyMrK2tSSqV0pw5c3iyUh1dvnyZANCaNWuETkUwcrmcOnXqRO+//77QqWi0ixcvEgCKioqqWuPw+fabb/LgwQMSiUQUERGh3CS1BBd1ShIbG0sA6Nq1ayqPzTRTYWEh6evr08qVK4VOpcrNmzepbdu2ZG1tTQsWLCAAdPToUaHTeqXHjx9TcHAwGRkZUYMGDWj58uU6c2O/oi1dupQMDQ11ftmZFStWkJ6eXq2/cLBn69qamZnR06dPq3YjadiwYbVG1bdt20YA6MaNG8pPVAuIwZTCw8MDUqkU27dvFzoVpiFSUlIgk8ng6ekpdCpVbG1tsW/fPlhZWWHRokXw8vJCz549hU7rlYyNjbFw4UJcuXIFI0aMwPTp0+Ho6IizZ88KnZrG2b59OwYOHIh69eoJnYqg/P39IZVKER4eLnQqGkkmkyEyMhJjxozBW2+9BalUim3btsHExAReXl4oLCx87flpaWlo0aIFmjVrpqKMNRsXdUpiYmKCgQMH4s8//xQ6FVYLRITz58+rNGZiYiI6dOiAFi1aqDTum1hZWSEtLQ1TpkzBsmXLhE6nWho3boywsDBkZmZCJBKhZ8+eiIyMFDotjZGfn4+DBw/C29tb6FQEZ2pqig8++ABhYWGorKwUOh2Ns2vXLuTl5WH8+PFVz1laWiIhIQG3bt2Cj48PZDLZK8/fs2cP3NzcVJGqVuCiTomGDx+O/fv34/79+0Knwmrojz/+QMeOHXH48GGVxCMiJCYmYvDgwSqJV1Pm5ub4+eef0bZtW6FTqREHBwccPXoUPj4+CAwMxPjx4/H06VOh01J7CQkJICIMHTpU6FTUwscff4ybN29i165dQqeiccLDw9GlSxc4Ojr+4/n27dtj69at2LNnD6ZNmwYieuHc+/fvIzs7G++8846q0tV4XNQp0dChQ0FE2LFjh9CpvNHZs2cxc+ZMlJaWCp2KWggJCQEAREREqCReZmYm7ty5gyFDhqgkni6pV68eIiIiEBERgZiYGPTq1QsXLlwQOi21tn37dvTq1QvW1tZCp6IWevTogW7dumH16tVCp6JR7t69i/j4eIwfPx4ikeiF1wcMGIBVq1bhl19+QWho6Auvp6enAwCP1NUAF3VKZGVlBScnJ424BBsaGooff/wRvr6+rx0K1wUZGRk4ePAgunfvjs2bN6OkpETpMRMTE2FiYgInJyelx9JVgYGBOHbsGGQyGXr06IHo6GihU1JLJSUlSEpKwrBhw4RORW2IRCJMmjQJiYmJuHnzptDpaIwNGzZALBbDz8/vlcdMnDgRs2bNwowZM14YAElLS0Pbtm1hY2Oj7FS1Bhd1SjZ8+HAkJyfjyZMnQqfySkSEpKQk9OrVC/Hx8QgKCnrpULiuWL58OZo1a4aNGzeiqKhIJUV5YmIiBg0aBAMDA6XH0mX29vY4fvw4hg8fDj8/P0yaNIlHp/9l9+7dePr0KRd1/+Lr64t69eph7ty5qKioEDodtUdECA8Px4gRI2BhYfHaY3/44QcMHToUH3zwAbKysqqeT0tL41G6mhJu4q3yCbmkyXPP13raunWrYDm8yfM1hHbs2EFRUVEEgGbOnKmTq3fn5eWRRCKhJUuWEBFRv379FL4u27/dv3+fRCIR/fbbb0qNw/5HLpdTWFgYSaVS6tKlC126dEnolNTGxIkTqXXr1jr5+/8mUVFRJJFIyM3NjfLz84VOR60dOnSIAFBycnK1ji8uLiZHR0dq2rQp5ebmUm5ubq0WKtZ1PFKnZK1bt4a9vb1aX4JNTk6GRCKBi4sL/Pz8EBoaimXLluGHH34QOjWVW716NQwMDKpmagUGBiIlJQW3bt1SWsykpCQQETw8PJQWg/2TSCTChAkTcPToUTx9+hTdu3dHbGys0GkJTi6XIz4+HsOGDXvpPVC6zs/PD6mpqTh9+jR69+7N92a+Rnh4OOzs7DBgwIBqHV+vXj3Ex8dDLpfD29sbiYmJAABXV1clZql9RETae52tqKgIpqamKCwsRP369QXLY8GCBVi5ciXu3r0LiUQiWB6v4u3tjcePHyMtLa3queDgYHz11VdYs2YNgoKCBMxOdcrKymBnZ4eRI0di5cqVAJ69h6ytrfHll19i3rx5Sonr5+eH8+fP4+TJk0ppn71eUVERgoKCsHnzZkyYMAE9e/aEvr7+Gx8SiQSOjo5atY7bkSNH0KdPH+zbtw/Ozs5Cp6O2rl27hqFDh+L27duIjY2Fu7u70CmpleLiYjRu3BgzZ85EcHBwjc7NzMxEv379UFlZiVatWvEakzUl8EihUqnD5VciooyMDAJAu3fvFjSPlykrKyNjY2P6/vvv//G8XC6nqVOnkkgkotjYWIGyU61169YRALpw4cI/nvfz86N27dop5XKUTCYjCwsL+u9//6vwtln1yeVyWrVqFZmYmBCAaj+CgoKETl2h5s2bR5aWliSTyYRORe0VFhaSp6cn6enp0YoVK4ROR61ERESQSCSq9S4Q27dvJ5FIRFOnTlVwZtqPizoVkMvlZGtrq5Zv0PT0dAJAGRkZL7xWWVlJfn5+JJFIKCkpSYDsVEcul5OjoyN5eHi88FpycjIBoCNHjig87sGDBwlAtfdBZMonl8tJJpNRaWkpFRcX06NHjyg/P5/u3LlDt27dohs3btCVK1fos88+IxMTE3ry5InQKStMhw4dKDAwUOg0NIZMJqPp06cTAPrkk0+ovLxc6JTUQr9+/WjgwIF1auPQoUNUUFCgoIx0Bxd1KvLpp59S06ZN1e7m4/nz55OlpSVVVla+9PXy8nIaMmQIGRkZ0eHDh1Wcners27ePANDOnTtfeE0mk1HTpk3p448/VnjcL774giwsLHhkRANduXKFANDGjRuFTkUhLl26RABo27ZtQqeiccLCwkhfX58GDBig84XI84l3MTExQqeik3iihIoMHz4ct27dUrv7ppKTkzFo0CCIxS9/K0gkEsTGxqJbt24YPHgwsrOzVZyhaixfvhzt27d/6b0xenp6CAgIwKZNmxS+/EVCQgI8PDygp6en0HaZ8rVq1Qr9+vXTmu3H4uLiYGhoiEGDBgmdisaZMGECUlJSkJmZid69e+PSpUtKi1VSUoJjx47h2rVrSotRF+Hh4TA3N8fw4cOFTkUnaURRl5GRAWdnZ7i4uMDHx0cj1wjq378/zM3N1WoWbH5+PjIyMvDuu+++9jgjIyPEx8fDzs4O7u7uuH79uooyVI2//voL27Ztw7Rp015Z3AYEBODRo0eIi4tTWNzbt2/j1KlTvIuEBlPF7GhV2b59OwYOHKhVEz9UydXVFUePHoVYLEavXr2Qmppa5zYfPXqE9PR0hISEwN/fH/b29jAxMUGvXr3QqlUrDB48GImJiZDL5Qr4CepOJpMhMjISfn5+MDQ0FDodnaQRs1/v3LmD+vXrw8jICPPnz4ejoyNGjRr1xvPUZfbrc2PHjkVGRobajHZt2rQJvr6+uH37drVW7L579y769esHIsKBAweUsoXQw4cPcezYMbi7u6tsSYXZs2fj119/xa1bt177gda3b1+YmZlVTbWvq99++w0TJ07E/fv30aBBA4W0yVRLFbOjVSE/Px9WVlZYs2YNJkyYIHQ6Gq2wsBCjR49GamoqPv/8c7Ro0QJSqRSGhoaQSqUvfRgaGkIkEuH8+fPIzMzEyZMnkZmZWTUa99Zbb8HBwQHdunWDo6MjunbtiuzsbKxYsQKZmZlo1aoVJk+ejI8++gjm5uaC/ezx8fHw9vbGyZMnX9jrlamIwJd/a+zLL7+kP/74o1rHqtM9dUREf/zxBwFQm4VOP/roI7K3t6/ROdevXycbGxtycHCo9cymlykrK6OffvqJLCwsCACNGDGCHj58qLD2X6W4uJjMzMxo1qxZbzx29erVJBaLKTc3VyGxR4wYQX369FFIW0w4Y8aMUdrsaFV5Plvxzp07QqeiFSoqKuizzz4jiURSo9nUAMjU1JRcXV1p+vTptGHDBsrOzqaKioqXxpHL5XTo0CEaM2YMSSQSMjIyoqCgIMrKylLxT/zMsGHDyNHRUZDY7BmNKur++usv6tu37ytnGJWWllJhYWHVIycnR62KuuLiYjI0NKzarUBIcrmcmjRpQjNmzKjxudnZ2WRlZUX6+voUGBhI58+fr1MeW7dupdatW5NYLKagoCBav349mZqaUqtWrSgzM7PWbVfHqlWrSCwWV6tAffjwIUmlUlq8eHGd4z5fSuabb76pc1tMWMqcHa0qw4cP5y8YSiKTyejJkydUUFBAeXl5dP36dbpw4QJlZWXRsWPHaP/+/ZSamkq7du2iq1ev1vrLQV5eHn399ddkY2NDAKh///4UGxurshm5eXl5pKenRz///LNK4rGXU6uiLi8vj5ycnF54PHjwgAoLC6l///508eLFV56/cOHCl37zUZeijojI29ubnJychE6Dzp49SwBqvVRJcXExhYSEUJMmTUgkEtH7779PJ06cqFEbR48epX79+hEA8vDwoDNnzlS9dvXqVerWrRtJpVIKCwtTyihIZWUltW/fnt5///1qn/PBBx9Qx44d65zP7t27CQCdPHmyTu0w4clkMmrSpIlSZkerwtOnT8nIyOiFtSqZZiovL6fY2Fjq378/ASAbGxv69ttvqbS0VKlxFy9eTFKpVOdn/wpNrYq6V5HJZOTl5UWpqamvPU7dR+qI1Ocyx48//khSqZSePn1ap3ZKS0spLCyMWrduTQDI3d2d0tPTX1v03Lhxg3x9fQkAde7c+ZWFZUlJCU2aNIkAUEBAABUXF9cp13/btWsXAaB9+/ZV+5ydO3cSADp+/HidYs+YMYMaN26s0Zfs2P98/vnnZGZmRiUlJUKnUmPx8fEEgM6dOyd0KkzBsrKyKCgoiCQSCTk4ONDp06eVEkcul1P79u3J19dXKe2z6tOIoi46OposLCzIxcWFXFxcqr3Br7rdU0f0bPN2sVhMa9euFTQPDw8PGjRokMLak8lktGnTJnJwcCAA1KdPH4qPj/9H0fLo0SOaM2cOSaVSsra2pl9//bVa67Nt2LCBjIyMqFOnTi/s9lAXnp6e5OjoWKPCSiaTkY2NDU2ZMqVOsdu3b0/jx4+vUxtMfVy4cIEAaOTuKxMmTKA2bdrwFwwtlpmZSZ06dSIDAwNatmzZK9clra3ni6inpKQotF1WcxpR1NWWOhZ1REQuLi40ePBgweKXlJTQW2+9pZR7++RyOe3YsYP69u1bNRIXHR1NP//8M1laWpKRkREtXLiQHj9+XKN2s7OzqX379mRsbFztov51zp8/TwBo3bp1NT53zpw5ZGFhUevLGVevXiUAtHXr1lqdz9RT7969Bf29ro3KykqysrKq1kQhptlKSkpoxowZBIDc3Nzor7/+Uljb48ePp+bNmyu8WGQ1x0WdAEJCQsjAwICKiooEiZ+amkoAlDYUT/SsuNu7dy+9++67BIBEIhF99NFHdOvWrVq3+fjx46rLtlOnTq3TPSKTJ0+mRo0a1aqN5/cjbtmypVaxFyxYQPr6+mr3vmR188svv5Cenp7CZkerwqFDhwgA7d+/X+hUmIrs3r2bmjZtSqamphQVFVXnEdrHjx+TsbExffXVVwrKkNUFF3UCuH79uqCXaubMmUPW1tYqu9xy+vTpOs2Q/bvnG68bGBjQ22+/XatlVR4+fEj16tWjhQsX1jqPnj17kpeXV43PW7p0KQGgefPm1To2U08FBQUklUrrPAL+6NEj8vf3p9DQUMrPz1dQdi83d+5csrS05G3qdExBQQGNGTOGANDo0aPpwYMHtW4rPDycRCKRQkf+WO1xUSeQrl27CnZTaZcuXSggIECQ2Ipy/Phxat68OZmbm1NISEiN/igtXbqUJBIJ5eXl1Tr+ypUrSU9Pr0YTXhYtWkQAaP78+Xz/kpby8fEhe3v7OvXv+PHjSSqVkr6+PhkYGNCoUaNo586dSim8OnToQIGBgQpvl2mGmJgYMjMzoyZNmtT6fjgnJydyd3dXcGastrioE0hwcDDVr1+fysrKVBo3Ly+PAFBUVJRK4ypDQUEB+fv7k0QiIUNDQwoICKCDBw++9gNVJpNR8+bNyd/fv06xHzx4UHXT8ZvI5XL64osvCAAtWrSoTnGZektISCAAlJGRUavzn8+uXrNmDd29e5d+/PFH6tSpEwGgJk2a0Pz58+ny5csKyfXSpUsEgLZt26aQ9phmysnJoQEDBhAA+s9//lOjFRGe35usiPucmWJoxDZhtaVu24T9XVZWFrp27YqkpKSXbiKvLFFRUfD398fdu3fRqFEjlcVVprt37yIiIgJr167F9evX0blzZ0yaNAkffvghTE1N/3Hstm3b8N577+HEiRPo3r17neKOGjUKFy9eRFZW1iu3NCMizJ49G8uWLcPixYsxe/bsOsVk6k0mk8HW1hajRo1CaGhojc599OgR7O3t0bFjRyQlJVW9p4gIJ06cQHh4OGJiYlBYWAhnZ2eMGzcOI0eOhLGxca1yXbp0KRYsWID8/Hze71XHyeVyrFixAnPnzkXLli3h4uKC8vLyfzzKyspeeO7evXsoKSlBbm4upFKp0D8Gg4bs/Vpb6lzUERFatmwJT09PrFq1SmVxAwICkJ2djZMnT6ospqrI5XKkpqZi9erViIuLg1Qqha+vLz7++GP06NEDAODi4oLKykocOHCgzvESEhLg5eX1yn0O5XI5pk2bhpUrVyI0NBSffvppnWMy9Td79mxEREQgNzcXBgYG1T5v3Lhx2LJlC7Kzs2FnZ/fSY0pKSrBt2zaEh4dj9+7dMDY2ho+PD6ZPnw57e/sa5ens7Axzc3PExcXV6Dymvc6ePYsZM2YgPz8fBgYGkEqlMDAweOnj+Wtubm7w9vYWOnX2nICjhEqnzpdfiYimT59OjRs3Vtk08OfLF8ydO1cl8YR0+/Zt+vrrr8nW1pYAULdu3Sg4OJgA0O+//66QGBUVFWRlZUXTpk174TWZTEbjx48nkUgk+JqETLXOnDlDAKq9RzXR/y7bhoWFVfuc69evU3BwMNnZ2ZFEIqHvvvvulXuE/tu9e/dILBbXKB5jTP1xUSegvXv3qnTPyFOnThEA2r17t0riqQOZTEY7duwgLy8vEovFZGdnV+0PvuqYOXMmWVpa/uPeyIqKCvLz8yOxWEzr169XWCymObp3707Dhg2r1rEFBQVkY2ND7777bq0mWJSWltK8efNILBZTnz59qnXPnbrsbMMYUyyxcGOErG/fvrC0tMSff/6pknjJyckwMjKCk5OTSuKpAz09PQwZMgTx8fG4ceMG9u/fD319fYW1P3bsWOTn5yMxMREAUF5eDl9fX2zevBkxMTHw9/dXWCymOcaOHYuEhATcv3//jcdOnz4dxcXFCAsLe+W9ma8jlUrx/fffY9++fbh37x66dOmCX375BfSaO2u2b9+O3r17w8rKqsbxGGPqi4s6Aenr68Pb2xuhoaEYPXo0IiMjcffuXaXFS05Ohqurq87e0Gpra/vKe5Vqq3PnzujWrRsiIyNRWlqKkSNHIi4uDlu2bIGPj49CYzHN4evrC5FIhOjo6Ncel5CQgMjISISEhMDW1rZOMZ2cnHDq1CkEBARg8uTJ8PT0xO3bt184rqSkBMnJyRg2bFid4jHG1JDQQ4XKpO6XX4meLY0RHBxMPXv2JJFIRACoR48e9OWXX9KRI0cUtjbVkydPSCqV0k8//aSQ9tj/hIaGkr6+Prm5uZGhoSHt3LlT6JSYGhgxYgQ5Ojq+8vWCggJq3LgxeXp6KnzdwsTERGrcuDGZmZlRdHT0P16Li4sjAApbEJwxpj549qsauXfvHpKSkpCYmIikpCQ8fPgQlpaW8PDwwODBg+Hu7o4GDRrUqu1du3bB09MT586dQ4cOHRScuW7Lz8+HjY0NJBIJ4uPj8c477widElMDcXFxGDZsGLKysuDg4PDC6wEBAYiLi0N2djaaNm2q8PgFBQWYMmUKNm3aBB8fH6xatQoNGjTAhAkTsH//fly8eFHhMRljwuLLr2qkUaNG8Pf3R0xMDO7du4cDBw4gKCgIZ8+exZgxY9CoUSM4OzvjwoULNW47OTkZtra2aN++vRIy122WlpbYuHEj9u7dywUdq+Lp6YmGDRsiMjLyhdfi4+OxYcMG/PTTT0op6ADAwsICMTExiImJQUpKCuzt7bFjxw7Ex8fzEhSMaSkeqdMQubm52LVrF5YuXYqHDx8iPT0d7dq1q/b59vb26N27N3799VclZskY+7vPPvsMmzZtQk5ODiQSCYBnI2idOnVC9+7dER8fX6vJETWVm5uLCRMmYOfOnQCA/fv3o1+/fkqPyxhTLY0aqYuJiUHDhg2FTkMQNjY2GDduHNLT02FhYQE3NzdcunSpWufeunULZ8+eVenOFYwxIDAwEHfv3kVSUlLVc//5z39QUlKCNWvWqKSgA579/UhISMDq1avh6+uLPn36qCQuY0y1NKaok8vl2LJlS51niGm6Ro0aYc+ePTAzM4ObmxsuX778xnNSUlIgEokwYMAAFWTIGHuua9eucHBwqLoEu337dkRFRSE0NBRNmjRRaS4ikQiTJk1CdHQ09PT0VBqbMaYaGlPURUdHY+TIkRCLNSZlpbGyssKePXtQv359uLm54cqVK689Pjk5GW+//XatJ1kwxmovMDAQcXFxuHz5MiZNmgQvLy9ev5AxphQaUSFVVlYiNjYWo0ePfu1xZWVlKCoq+sdDW1lbWyMtLQ0mJiZwdXV9ZWEnl8uRkpLCl14ZE8iYMWNQWVkJFxcXlJWVqfSyK2NMtyhuaX0FuHPnDkaOHPnC8xMnToSPj88bR+m+//57fPXVV8pKT+1YW1tjz549cHV1hZubG9LT09GqVat/HJOZmYkHDx5wUceYQKysrODp6YkdO3Zgw4YNsLGxETolxpiW0ojZr3PnzkVmZibEYjEOHz6McePGISQk5IXjysrKUFZWVvXfRUVFsLW11YrZr6+Tm5sLNzc3lJSUID09HS1btqx67bvvvsMPP/yABw8eVM2+Y4yp1tmzZ7Fr1y7MmDGDR+kYY0qjEUXd3/Xo0QMnTpyo1rHatKTJm+Tm5sLV1RVlZWVIT09HixYtAACurq4wMzNT2f6yjDHGGBOGRtxT93fVLeh0jY2NDdLS0mBgYABXV1fcuHEDjx8/xqFDh/jSK2OMMaYDNK6oY6/WpEkTpKWlQSKRwNXVFZGRkaioqOCijjHGGNMBGnf5tSZ06fLr3+Xk5MDV1RXXrl1DixYtcPXqVb6PhzHGGNNyPFKnhWxtbZGWloY2bdrAx8eHCzrGGGNMB/BInRaTy+UAwAs2M8YYYzpArdapY4rFxRxjjDGmO/hTnzHGGGNMC3BRxxhjjDGmBbioY4wxxhjTAlzUMcYYY4xpAa2e/UpEePz4MUxMTHhZD8YYY4xpNa0u6hhjjDHGdAVffmWMMcYY0wJc1DHGGGOMaQEu6hhjjDHGtIDO7ijxfBIFY4wxxpgmeNPET50t6vLz89GoUSOh02CMMcYYq5Y37WWvs0WdgYEBACAnJ+e1/4OYeisqKoKtrS33owbjPtQO3I/agftRvZmYmLz2dZ0t6p4PX9avX5/fuFqA+1HzcR9qB+5H7cD9qJl4ogRjjDHGmBbgoo4xxhhjTAvobFEnlUqxcOFCSKVSoVNhdcD9qPm4D7UD96N24H7UbLxNGGOMMcaYFtDZkTrGGGOMMW3CRR1jjDHGmBbgoo4xxhhjTAvobFE3a9YsODs7w8/PD+Xl5UKnw6rp8ePH6NWrF4yNjZGdnQ0A2Lx5M/r06YN33nkHOTk5AmfIqiMjIwPOzs5wcXGBj48PKioquB81THZ2NpycnODi4oIhQ4aguLiY+1CDxcTEoGHDhgD4b6pGIx108uRJ8vPzIyKib775hjZu3ChwRqy6Kioq6N69ezR27Fg6c+YMlZeXU8+ePamsrIwOHDhAEydOFDpFVg15eXn05MkTIiL6/PPPKTY2lvtRw5SXl1f9Ozg4mNavX899qKEqKyvpvffeI0dHR/6bquF0cqTu8OHDcHd3BwB4eHjg0KFDAmfEqktfX7/q2yQAXL58GZ06dYKBgQGcnJxw5swZAbNj1WVtbQ0jIyMAgEQiwaVLl7gfNYxEIqn699OnT2FnZ8d9qKGio6MxcuRIiMVi/puq4XSyqHv06FHV9iempqYoKCgQOCNWW3/vSwCorKwUMBtWUzdv3kRqair69evH/aiBUlJS4OjoiLS0NEgkEu5DDVRZWYnY2FiMHj0aAP9N1XQ6WdSZm5ujqKgIwLM3sIWFhcAZsdr6e18CgJ6enoDZsJooKiqCv78/IiIi0KhRI+5HDTRo0CBkZmZi5MiR2Lt3L/ehBoqKioKPjw/E4mflAP9N1Ww6WdT17t0bycnJAICkpCQ4OTkJnBGrrdatW+PcuXMoLy/HwYMH4eDgIHRKrBoqKyvh5+eHL7/8Em3btuV+1EBlZWVV/zY1NYWxsTH3oQY6d+4c1q9fDw8PD1y+fBlr167lftRgOrujxKxZs3D06FHY2dkhIiICBgYGQqfEqmnw4ME4deoUmjVrhkmTJsHQ0BDLly+HoaEh1q9fD1tbW6FTZG8QExODqVOnonPnzgCATz75BETE/ahBduzYgSVLlkAsFqNhw4ZYt24d4uLiuA81WI8ePXDixAls2rSJ+1FD6WxRxxhjjDGmTXTy8itjjDHGmLbhoo4xxhhjTAtwUccYY4wxpgW4qGOMMcYY0wJc1DHGGGOMaQEu6hhjjDHGtAAXdYwxxhhjWoCLOsYYY4wxLcBFHWOMMcaYFuCijjHGGGNMC3BRxxhjjDGmBf4PdoJnAHmJo6YAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -241,7 +241,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADBw0lEQVR4nOzdd1iUV7c34N8MQ0dQkWLB3guKvYAUxYKiqIhdk9hjibEkwe5rIZZoLDEaNfZeQOwNLKBGRUFRUWNv2JDemfX9kQ9ODG3KM5V1X9dcJ2H2s/byvJFZs6uIiAiMMcYYY0yniTWdAGOMMcYYUx4XdYwxxhhjeoCLOsYYY4wxPcBFHWOMMcaYHuCijjHGGGNMD3BRxxhjjDGmB7ioY4wxxhjTA1zUMcYYY4zpAb0u6ogIiYmJ4POVGWOMMabvdK6o2717N2xsbGRqm5SUBCsrKyQlJak4K8YYY4wxzdKpok4qleLAgQNwcHDQdCqMMcYYY1pFp4q6Xbt2wdfXF2JxwWlnZGQgMTHxixdjjDHGWEmgM0VdTk4O9u3bh379+hXaJiAgAFZWVnkvHtFjjDHGWEmhM0Xdjh074OfnV+goHQD4+/sjISEh7/Xy5Us1ZsgYY4wxpjk6U9Tdu3cP27ZtQ5cuXfDo0SN8//33+doYGxvD0tLyixdjTDNu3LiBjRs3ajoNxhgrMUSkg+d9NG/eHDdu3Ci2XWJiIqysrJCQkMAFHmNq9PnzZzRq1AgfPnzA58+fYWZmpumUGGNM7+nMSN2/yVLQMcY059tvv0VcXBwyMzNx8eJFTafDGGMlgk4WdYwx7bV7927s2bMHGzduRIUKFXDmzBlNp8QYYyUCF3WMMcG8fPkS3377Lfr374+BAwfC09OTizrGGFMTLuoYY4KQSqX46quvYG5ujrVr1wIAPD09cefOHcTGxmo4O8YY039c1DHGBLFq1SqEhIRg69atKFOmDACgY8eOAICzZ89qMjXGGCsRuKhjjCktOjoaP/30EyZNmoQOHTrk/dzOzg6Ojo48BcsYY2rARR1jTCkZGRkYPHgwatSogUWLFuV7P3ddnQ6ensQYYzqFizrGmFLmzp2Le/fuYceOHTA1Nc33vqenJ96+fYt79+5pIDvGGCs5uKhjjCns0qVLWLx4Mf73v//BycmpwDYuLi4wMjLiKVjGGFMxnbxRQlZ8owRjqpOYmIjGjRujUqVKOH/+PAwMDApt26FDB5iYmODYsWNqzJAxxkoWHqljjCnku+++w8ePH7Ft27YiCzoA6NSpEy5cuIDMzEw1ZccYYyUPF3WMMbkdOnQIW7ZswapVq1CtWrVi23t6eiIlJQVXrlxRQ3aMMVYycVHHGJNLamoqxowZAx8fH3z11VcyPdOkSROUK1eO19UxxpgK6UxRFx0djXbt2sHV1RXdunVDcnKyplNirETavHkzPn36hBUrVkAkEsn0jFgsRocOHbioY4wxFdKZoq5OnToIDw/HhQsX0LJlSwQGBmo6JcZKnJycHCxfvhx9+/ZF1apV5XrW09MTN27cwOfPn1WTHGOMlXA6U9QZGhrm/XNqairq1q2br01GRgYSExO/eDHGhBMYGIgnT55g6tSpcj/r6ekJqVSKkJAQFWTGGGNMZ4o6ADhz5gycnJwQGhqKGjVq5Hs/ICAAVlZWeS8HBwcNZMmYfiIiLF26FG5ubmjevLncz1euXBm1a9fmKVjGGFMRnTynbsmSJZBKpfjpp5+++HlGRgYyMjLy/j0xMREODg58Th1jAggLC4OLiwuOHj2Kbt26KRRj/PjxOHHiBB4/fixwdowxxnRmpO7fxZqVlRXMzc3ztTE2NoalpeUXL8aYMJYuXYr69euja9euCsfw9PTEkydP8OTJEwEzY4wxBuhQUXfmzBm4urrC3d0d586dw/DhwzWdEmMlxoMHDxAcHIwpU6ZALFb814abmxsMDAx4CpYxxlRAJ6dfZcXXhDEmjNGjRyM4OBjPnj2DsbGxUrHatWuH8uXL48CBAwJlxxhjDNChkTrGmGa8e/cOW7duxcSJE5Uu6IB/pmBDQkKQk5MjQHaMMcZycVHHGCvSb7/9BolEgjFjxggSz9PTE58/f0ZERIQg8RhjjP2DizrGWKFSUlLw22+/YcSIEShTpowgMVu2bIlSpUrxujrGGBMYF3WMsUJt2bIF8fHxmDRpkmAxDQ0N4e7uzkUdY4wJjIs6xliBlLkSrDienp64fPky3+HMGGMC4qKOMVYgZa4EK46npyeysrJw8eJFwWMzxlhJxUUdYywfZa8EK07t2rXh4ODAU7CMMSYgiaYTYIxpn/DwcFy7dg3Hjh1TSXyRSARPT08u6hhjTEA8UscYyyf3SrAuXbqorA9PT0/cvXsXb968UVkfjDFWknBRxxj7glBXghWnQ4cOAMCjdYwxJhAu6hhjX1i+fDns7e0xaNAglfZjY2MDJycnLuoYY0wgXNQxxvIIfSVYcTw9PXH27Fno8RXUjDGmNjpT1EVERMDFxQWurq7w8/NDVlaWplNiTO8cOHAAUqlUsCvBiuPp6Yl3797hzp07aumPMcb0mc4UdRUrVsSpU6dw4cIF1KxZE0FBQZpOiTG9c+fOHdSrV0+wK8GK4+zsDGNjY4SEhKilP8YY02c6U9TZ29vDzMwMwD/XDEkk+U9jycjIQGJi4hcvxpjs7t69iwYNGqitPxMTE7Ru3Rrnz59XW5+yiI+Px9q1a/HixQtNp8IYYzLTmaIu14sXL3D27Fl0794933sBAQGwsrLKezk4OGggQ8Z0ExHh7t27aNiwoVr7dXd3x4ULF5CTk6PWfosye/ZsjBs3DlWrVoWXlxeCgoJ4yQdjTOvpVFGXmJiIIUOGYPPmzTA0NMz3vr+/PxISEvJeL1++1ECWjOmmt2/f4vPnz2odqQP+Keri4+MRFRWl1n4L8+zZM6xbtw4zZszAH3/8gU+fPqFXr16oXLkypk+fjidPnmg6RcYYK5DOFHU5OTkYNGgQZs+ejdq1axfYxtjYGJaWll+8GGOyuXv3LgCofaSuVatWMDEx0Zop2Llz56Js2bLw9/fHiBEj8NdffyEyMhJ9+vTB2rVrUaNGDXTs2BF79+5FRkaGptNljLE8ItKRswR2796N8ePHo1GjRgCAsWPHol+/fkU+k5iYCCsrKyQkJHCBx1gxVqxYgRkzZiA5OVmlhw4XpEOHDjAzM8ORI0fU2u9/3bt3D40aNcLKlSsxfvz4fO+npqbiwIED2LBhA8LCwlCuXDnUqFEDWVlZyMrKQmZmZt4///vfa9WqhevXr6v9/6+MsZJFZ4o6RXBRx5jsRowYgcjISNy4cUPtfc+fPx/Lli1DXFwcDAwM1N5/rj59+uDmzZt48OABjIyMimx77949bNu2DR8/foShoWGBLyMjI3z69AnLli1DeHg42rZtq6Y/CWOsJOKijjEGAGjdujXq1KmDrVu3qr3vsLAwuLi44Pr162jevLna+weA69evo2XLlti6dSuGDh0qWNycnBxUqFABQ4YMwbJlywSLyxhj/8VzAYyxvJ2v6t4kkatFixYwNTXV6Lq66dOno379+oJfj2ZgYAAfHx8EBgbyzRk66vnz5/Dy8sLixYsRGxur6XQYKxQXdYwxvHjxAsnJyWrfJJHL2NgY7dq1Q2hoqEb6DwkJwdmzZ7FgwQKVTP/26tULT548we3btwWPzVQrLS0NvXv3xrVr1zB37lxUqlQJPj4+OHr0KLKzszWdHmNf4KKOMZa381VTI3XAP0ebXLp0Se0flESE6dOno2XLlvDx8VFJHx4eHrC0tERgYKBK4jPVICKMHTsW9+7dw9mzZ/HmzRusXLkSz58/h7e3N6pUqYIZM2bg8ePHmk6VMQBc1DHGAERHR8PCwgKVK1fWWA5ubm5ISkrCzZs31dpvcHAw/vrrLyxatAgikUglfRgZGcHb2xuHDh1SSXymGr///ju2bt2KDRs2oEmTJihTpgzGjRuHW7duISIiAj179sSaNWtQs2ZNdOjQAbt27UJ6erqm02YlGBd1jLG89XSqKmpk0aJFC5iZmal1CjYnJwczZsxAhw4d0KFDB5X21atXL9y5cwd///23SvthwggPD8d3332HiRMnYvDgwfneb9q0KdauXYu3b99i27ZtyM7OxqBBg9C5c2eelmUaw0UdY3K4e/euXv7Cjo6O1th6ulyGhoZwdnZW62aJXbt24e7du1i0aJHK++rSpQtMTEx4ClYHvHnzBr6+vmjTpk2xO5bNzMwwZMgQXLhwASEhIQgPD8fs2bPVlGnx4uLi4OnpibVr12o6FaYEWa9R5KKO6b2PHz8KUog9ffoUjo6O+O233wTISntIpVLcv39fo+vpcuWuq1PHPauZmZmYM2cOevXqhZYtW6q8P3Nzc3Tu3JmLOi2XmZmJvn37QiwWY9++fQVeSVkYd3d3LFq0CAEBAThx4oQKs5RNZmYmevfujbCwMIwbNw7Tp0/nHdg6aty4cRg7dmyx7bioY3pNKpXC0dERc+bMUTrWxo0bIZVKsXnzZgEy0x5Pnz5FWlqaxkfqgH/W1aWkpCAiIkLlfW3cuBHPnj3D/PnzVd5Xrt69e+PKlSt48+aNyvqIi4tD+/bt8fDhQ5X1oc++//57XL9+HQcPHoS9vb3cz0+dOhVeXl4YMmQIXr16pYIMZUNEGDNmDK5cuYIzZ85g2bJlCAgIwNdff62WL01MOGFhYVi/fr1sv6NJjyUkJBAASkhI0HQqTENu375NAMja2prS0tIUjpOZmUn29vZUv359AkC3bt0SLkkNCwoKIgD0+vVrTadCmZmZZGFhQYsWLVJpP8nJyWRvb09Dhw5VaT//9enTJzIwMKC1a9eqrI8VK1YQAJoxY4bK+tBXmzdvJgC0bt06peJ8+PCBKlWqRO3ataOsrCyBspNPQEAAAaDt27fn/Wznzp1kaGhIXbt2peTkZI3kxeSTnp5O9erVozZt2lBOTk6x7eUu6j5//kx79uyhX375hZYvX067d++muLg4hZJVNS7q2OrVq8nAwIAA0JYtWxSOc+jQIQJAN27cIFtbW5o0aZKAWWrWwoULqUyZMiSVSjWdChERde3alTp16qTSPgICAsjQ0JCePn2q0n4K0rFjR+rYsaNKYkul0rwvHg0aNFBJH/rqxo0bZGxsTMOHDxfk70JYWBgZGBjQTz/9JEB28jlw4AABoFmzZuV778yZM2RhYUEtWrSg9+/fqz03Jp958+aRRCKhO3fuyNRerqJu48aNVKtWLZo0aRItXbqUli5dSt999x3Vrl2bNm7cqFDCqsRFHevbty+1a9eOOnXqRC1atFA4TpcuXahly5ZERPT999+TjY0NZWZmCpWmRg0YMICcnZ01nUaexYsXk5mZGWVkZKgkflxcHJUuXZrGjx+vkvjFWbt2LUkkEvr06ZPgscPDwwkAffvttwSAHj58KHgf+uj9+/dUuXJlatGihVIj+v+1ePFiAkDHjx8XLGZxrl27RqamptSvX79Ci9ObN2+SnZ0d1apVix4/fqy23Jh87t+/T0ZGRnKNustV1NWuXZuSkpLy/TwxMZFq1aolTyi5JSYmUsuWLcnc3FzmipWLupJNKpWSra0t+fv70+HDhwkAXbt2Te44z549I5FIlPfFJSoqigDQ4cOHhU5ZIxwdHWn06NGaTiPPtWvXCACFh4erJL6/vz+ZmZnR27dvVRK/OK9fvyYAtHXrVsFjf/3111StWjVKSkoiExMTWrJkieB96JusrCzy8PAgGxsbevHihaCxc3JyyMvLi6ytrQWPXZDnz5+Tvb09tW7dmlJTU4ts+/jxY6pVqxbZ2dlRRESEynNj8snJySEXFxeqVauWXF805NooIRKJkJycnO/nycnJKj/fytTUFEePHoWvr69K+2H64+HDh3j//j1cXV3RrVs3VK5cWaFt/Zs2bYKFhQX69esHAHB0dESTJk00cvG90LKzsxETE6MVmyRyOTk5oVSpUio5r+7OnTtYtmwZpk6dqtAieCFUqFABbdq0EXwXbGJiIvbu3Yvhw4fDwsICnTt3RlBQkKB96KO5c+fiwoUL2LdvHxwcHASNLRaLsW3bNpiamqJ///4q3aCQlJQEb29vGBsbIygoCKampkW2r169OsLDw1G5cmW4urri7NmzKsuNye/PP//EpUuXsH79epiYmMj+oDyV45EjR6h27drUu3dvmjBhAk2YMIF69epFtWvXpiNHjshdiSpi2LBhPFLHZLJ+/XoyMDCgxMREIiJatGgRmZiY0MePH2WOkZWVRRUqVKAxY8Z88fNff/2VDA0N5Yqlje7fv08AKCQkRNOpfKFbt27UoUMHQWNmZWVRs2bNqH79+pSeni5obHktWbKETExMBF2s/vvvv5OBgUHehpfNmzeTSCTS2IikLrh58yYZGBjQ//73P5X2Ex4eTgYGBvTjjz+qJH52djZ169aNSpUqJfPnY67k5GTq2rUrGRoa0u7du1WSH5PP27dvqXTp0vT111/L/azcGyWys7Pp8uXLdODAAdq/fz9dvnyZsrOz5e5YUUUVdenp6ZSQkJD3evnyZYku6vRlzZeiBg4c+MU6uvfv35ORkZFcU1K507Y3b9784ufv378niURCq1evFixfTdi/fz8B0LoF00uXLiVTU1NBi6+AgAASi8UKTcEL7dGjRwSADh48KFjMZs2aUY8ePfL+/ePHjyQWi2n9+vWC9aFPsrKyqGnTptSoUSOVrd/8tyVLlhAAOnbsmOCxv/vuOxKLxXTixAmFns/MzKShQ4eSRCKhy5cvC5wdk5efnx/Z2NgoNGigc0eaFFXUzZkzhwDke5XEom7Pnj1kZmZGO3bs0HQqGiGVSqlixYo0derUL34+ePBgqlatmkxbw4n+GTFq3rx5ge/17Nmz0Pd0xdy5c8nGxkbTaeRz48YNAkAXL14UJN7du3fJyMiIfvjhB0HiCaFRo0Y0aNAgQWLdvHmTAFBwcPAXP3dzc6OuXbsK0oe+WbJkCYlEIvrrr7/U0l9OTg5169aNypYtK+j6urVr1xIA+u2335SKk5mZSc7OzlSpUiWt+5JXkhw5coQA0M6dOxV6XuGi7sCBA4o+qhQeqStadnY2/fDDDwSATExMyNvbW9MpacTjx48L/JC7cuWKzN+WX7x4UeRIR+4xJ9HR0YLkrAm+vr7k7u6u6TTyyc7OJisrK0GmxbKzs6lVq1ZUt25dQXc2KmvOnDlkZWUlyCjR2LFjqUKFCvnORPv111/JyMioRP0OlMWjR4/IxMRE7UcTffz4kSpVqkRt27YVZIbr0qVLZGBgQBMnThQgu3828dja2lLHjh3VOgPH/pGUlEQODg7UuXNnhY/VUbioMzIyouXLlxfZRuhzr7p27Urly5en1q1b0+bNm4ttX9LW1MXFxVHnzp1JLBbTL7/8Qj///DOZmZlp1QeZuuSuJ/rvGYpSqZScnJzIy8ur2Bhz584lc3PzvDV5/5WRkUHW1tY0bdo0QXLWhHr16mnsaI/ieHt7C1JwLl26lEQikdZNK+Xuoj558qRScZKTk8nS0rLAYw+ePXtGAGjPnj1K9aFPpFIpeXh4UNWqVTVyAG9oaCgBoKNHjyodq0ePHuTo6ChoARYSEkJisbjAM+6Yak2aNIlMTU3pyZMnCsdQuKg7efIkWVpa0oQJE/IVb9nZ2bR582aqU6eOwokJoaii7tGjR/Ts2TMNZKUa0dHRVKNGDSpbtiydOXOGiIju3LlDAOjUqVMazk79vvrqK2rcuHGB723cuJFEIlGR5zNlZ2dTpUqVaOTIkUX2M2HCBLK3t9fYqfHKSE9PJ4lEovTp+aqyfPlyMjExUepLSUxMDBkbG9PkyZMFzEwYUqmUqlevTqNGjVIqzpYtWwhAoR8ETk5O1L9/f6X60Cd//vmnIMW0oqRSKTVt2pS6d++uVJyXL1+SWCym33//XaDM/s/ChQvVfr5eSXft2jUSi8W0dOlSpeIotaYuMjKSKlWqRD4+PpSamkoZGRm0du1aqlq1KpUpU4Zmz56tVHLKKqqo8/PzIzMzM1q8eLHObyg4ePAgmZubU6NGjb4oVKRSKTk4ONB3332nueQ0pHr16oVOSaSkpFCZMmXyrbf7t6NHjxIAun79epH95K790sVffrlXqF26dEnTqRQod53Y+fPnFXo+Ozub2rZtSzVr1qSUlBSBsxPG1KlTyc7OTqmRlnbt2pGnp2eh78+bN49KlSql8R2/2uDt27dUpkwZGjJkiEbzWL9+PYnFYnr+/LnCMebNm0dmZmYqmYnKycmh7t27U9myZVU2+PHhwwdavXq1WjapaLvMzExq3LgxNWnSROkBAqU3Srx69YocHR3J0dGRKlSoQDY2NrRw4cJCp6zUqaiiLjExkSZNmkRisZgaNmyosoNOVSknJ4dmzZpFAKhv374FTiWMHj1a5QdDa5vctZRFrfucPHkylS1bttADOnv06EFOTk7FLiGQSqXUsGFD8vPzUypnTdi9ezcB0Npr/nJycqhMmTI0d+5chZ5fvnw5iUQiwTZbqELuDRCKFtZ3794lALR3795C2+QW74rujNQnfn5+VK5cOfrw4YNG80hMTKRSpUopPMWZnZ1NDg4ONHz4cIEz+z+fPn2iqlWrUosWLQT/QnD79m2qVq2a0tc36oslS5aQWCwudhBBFkoVdfHx8fS///2PrK2tydTUlMzMzOj27dtKJyUUWdbU3bx5k1q0aEEAaOTIkSq5ukcV4uPjqXv37iQSiWjRokWFFh+5R3KUpOuCdu7cWewxHQ8fPiQABa7NfPXqlVzTGkuXLiVjY2OtLY4KM2PGDKpQoYKm0yiSj48Pubq6yv3co0ePyNTUVLAF5KqSk5ND9vb2Ck8PT548mcqVK1fkh65Q07y6Lvd34a5duzSdChERjRkzhsqXL6/QTFHuTIKqj+e5fv06GRkZ0bfffitYzMDAQDI3NydHR0dq3bo1tW7dWrDYuuj169dkampK33//vSDxFC7qfvrpJ7KysqLq1avT+vXrKTk5mYYNG0a2trZacQ4UkewbJbKzs+m3334jS0tLsrGxoW3btmnN5eYFef78OdWpU4esrKyK3cWZnJxMRkZG9Ouvv6opO80bNWoU1atXr9h2nTt3LvBIkvnz58s1rfHmzRsyMDDQ2rVphfHx8Sly2k4b5O7eLO7Ko3/LvV6nevXqGlkIL68xY8ZQ1apV5f6dk56eTtbW1jRlypRi206ZMoXs7OxkPspH38THx1OFChXIy8tLa36337p1iwDQoUOH5H62R48e1KRJE7X8WdatW6fUERu5pFIpzZ8/nwBQnz59KCkpKe8EgVu3bgmTrA6aMWMGWVhYUHx8vCDxFC7q6tatS1u3bs23FmTmzJlkbm5OQUFBSienLHl3v75584b69+9PAMjd3Z1iYmJUnKFivvrqKypfvjw9ePBApvadOnWiTp06qTgr7VG3bt18N0AUJDg4mAB8cU5VdnY2ValShb755hu5+vTy8tK5b5w1a9YU7NuhquTuEJXnxotVq1YRAAoNDVVdYgI6ffq0Qh9se/bsIQB07969YtteunSJAGjdDmB1GTt2LFlYWCi1hk0VWrVqRZ07d5brGVVukCiIVCqlIUOGkJmZmcLHNyUnJ1Pfvn0JAM2dOzfvy0VmZmaBN/aUFGlpaVSuXDmaMGGCYDEVLuqK+oawYcMGMjY21vhp+4oeaXLq1CmqUaMGGRkZ0Zw5c7Tq2+379+/J2NiYFi9eLPMzuaMdujBqoazY2FgCINN1N7kF3LBhw/J+duLECQJAV69elavfvXv3EgCt/SLwX6mpqSQSiWjjxo2aTqVIOTk5ZG1tLfPao8ePH5OZmZmg00WqlpmZSaVLl5Z7fVXHjh3J2dlZprbZ2dlkY2Oj08fvKCq3oNX051FB/vzzz2J34v/XvHnzyNzcXK1HdSUnJ1ODBg2oTp06cq+Xf/78OTVp0oTMzMwKvEFl9uzZZGFhoRXr8NVt06ZNJBKJBF0epbIbJY4fP06lSpVSVXiZKHNOXWpqKvn7+xMAOn36tAqyU8zChQvlvr80d/3Yfw/i1Ue5117l3n9ZnICAADI2Ns5bON2rVy9ydHSUe1ojLS2NSpcuTf7+/jK1z8nJocjISI0dhRIREaFQ8aoJvXv3JhcXl2LbJSUlkZubG1WpUoWSkpLUkJlwhgwZQg0bNpS5fe7h2lu3bpX5mREjRlDNmjW1ZvpRHdLS0qhu3brUpk0brTxMNyUlhaysrOinn36SqX3uBokRI0aoOLP8YmJiqFSpUtSvXz+Z1wFeunSJbGxsqEqVKhQZGVlgm+IOeddXUqmUHB0dlT7a5r9Uek1YRESEKsMXS9nDh6VSKdnb28v8F07VsrKyqFKlSgrteKpZs2aJGOIeP3481axZU+b2uffBLl68OG9t3Jo1axTqe8yYMVSpUqViPzxCQ0PJycmJAFCLFi3kvoBbCNu2bSMAOvHteNWqVWRoaFjgsSSJiYm0a9cu6tWrF5mYmJCBgUHeOY26JDAwUOapVCKi6dOnk5WVlVxHteQurtflG1DkNXPmTDI0NNTqP/OECRPI1tZWpqM91LVBojC5X5oNDAyoWrVq5OnpSWPGjKFly5ZRUFAQ3blzJ++/yQ0bNpChoSG1b9++2GvHvL29ZTptQJ/kHkIt9O8rnbv7VR5C3CgxYMAAatmypYBZKS73L1Rh33iKMnHiRKpcubLe/6VxdHSUez3ckCFDqGrVqjR//nwyNTWlz58/K9T31atXi/xL+vDhQ/Lx8SEA1KpVK9q2bRvVq1ePDA0NacGCBWo9L/GHH36gKlWqqK0/ZeQeon327Fkiyl/I5RbHS5YsoadPn2o2WQWlpKSQra0tWVhY0NSpU4scac7KyqLy5cvLPcWclpZGFhYWtGDBAmXT1Ql//PEHGRgY0Jw5czSdSpGio6OLPZYmlzYUP9euXaP169fTtGnTqHfv3uTo6Ejm5uZf3LduZ2dHAGj06NEyFavHjh3Lt75Z3/Xs2ZMaNGgg+P+WXNQV448//iCxWCzYzhRluLi4UPv27RV69uTJk3r/Lf3Tp08kEonkmpIi+r9izMTE5Iv1dfKSSqVUp06dfJe0x8XF0aRJk0gikVDlypVp165deX+R09LSyN/fnwwMDMjJyUmhgl0R3bp1k+mqNG0glUqpXLly1L17d/Lx8SFjY2MCQC1btqSlS5fqbCH3X7GxseTv70+WlpZkZGREI0eOpEePHuVrl3s0hyI7Bvv27Vvgjm99kpOTQ9OmTSMA9O233+rEbS/Ozs7k4eFRZBt1b5CQh1Qqpbdv39KlS5doy5YtNHPmTLl2yyq6QS3XiRMnqH79+rRv3z6dGLh4/PgxiUQilUw5c1FXjL///psA0JEjRwTMTH6529/379+v0PNpaWlkamoq1wYLXRMUFEQA5P6Qz722B4DSh1AHBASQqakpJSQkUGZmJq1cuZLKli1LFhYWtHDhwkKP5rh+/To1bNiQJBIJzZkzR+WnrFetWlWnFs0PHDgwr5BbtmyZXl3x91/x8fEUEBBAtra2JBaLqV+/fl8UcN27d6dmzZopFDv3DMcXL14IlO0/Hj16RO/evRM0piJSUlKod+/eJBKJ6Ndff9WJD3giou3btxOAIk800MQGCXVasGCBQjMl8fHxVLFiRbKxsSEA1LNnT3r16pVqkhTI999/T2XLllXJTTdc1BUj96otTd8d+c0331ClSpWU+tbZvXt3hQ5yVTepVEqjRo2iVatWyfXc5MmTqXLlygr1efToURo8eLDSHwIvX74kkUhEI0eOpDp16pBIJKIRI0bQ27dvi302IyODZs+eTRKJhBwdHVW2JjUpKUnuRfaalpiYqPW/qIWWmppKa9euzTt5v0uXLrR//34Si8UKn4kYHx9PhoaGguwETUxMpA0bNlCrVq0IABkbG9OoUaM0dtD527dvqUWLFmRmZkaHDx/WSA6KSktLo7JlyxZ65qAmN0ioy5s3b0gikcj9e3/s2LFkbm5Oz58/p4MHD5K9vT1ZWlrS+vXrterkilyJiYlkaWlJP/74o0ric1Eng2HDhlGTJk0Eykp+Hz9+JBMTE1q0aJFScdauXUsGBgZaMZVclA0bNhAAMjQ0lHnhOBFRs2bNaPDgwSrMTDadOnUiANShQweFplNv3bpFjRs3JgMDA5o+fbrgV/T89ddfBIBu3LghaFymGllZWbRjxw5q2LAhAVD6vs9OnTpRhw4dFHpWKpVSeHg4ffPNN2Rubk4ikYi6dOlCe/fupYULF5KtrS2JRCLq06ePWhfz37lzhypXrkzly5fX2f+uJ0+eTNbW1pSWlpbvPVnvotZ1vr6+VL9+fZm/XF+8eJEAfFEIxsXF0TfffEMAyM3NrcAlDJq0evVqMjAwEHy0PJdOFXVTpkwhZ2dnGjhwoEzTU0IVdVu2bCGRSCTXMSJC+vnnn784dkNRz549U2oKVx2ePn1KFhYWNGTIEKpVqxa5urrK9Bc8ISGBxGIxbdiwQQ1ZFu3p06cUEhKi1KhfZmYmzZs3jwwNDcne3p5++OEHun//viD55Z6NpK2X3LOCSaVSOnr0KB09elSpOLlf7uS5EvH9+/e0bNkyqlevHgGgKlWq0Lx58/Id5puWlkbr1q2jmjVr5n2oHj9+XKXToKdOnSJLS0tydHRU2QelOsTExBAA2rFjR773tGGDhDqcPXtW5ruQ09LSqE6dOoUeV3P27FmqXr06mZiY0OLFi7VibWVOTg7VqlVLpXeF60xRd/PmzbwF6AsWLJBpEaZQRd3z588JQIEHJ6paVlYWOTg40Ndffy1IvAYNGggWS2g5OTnk7u5OlStXpoSEBDpz5ozM04THjx/Xyztu7927R+PHj6cyZcoQAGrbti1t2LBBqf+mJ0+eTDVq1BAwS6ZLXr9+TQBo27ZtRbbLycmhU6dOUZ8+fcjQ0JCMjIyoX79+dPr06WKntbKzs+nAgQN592o3atSItm/fLvgO7/Xr15OBgQF5eXnpxPE8xXF3d893JmPuBgldu4ZQEblFz383mxVkxowZxR5Xk5ycTJMnTyaxWExNmzbV+HVkubt8lV27XRSdKep+++23vA/3Gzdu0Lhx4/K1SU9Pp4SEhLzXy5cvBSnqiIhq1KhB48ePVzqOvA4ePEgA6ObNm4LEmzZtGtnb22vlWoPVq1d/cXQF0T9HypQrV67YUYWffvqJ7O3t9fabbFpaGu3Zs4c6d+5MIpGIzMzMaOjQoXT+/Hm5/8ydOnWinj17qiZRphNatWpFvXr1KvC92NhYCggIoOrVqxMAatiwIf36668KzVRIpVIKDQ2lrl27EgCqXbu2IMs/cnJyaOrUqQSAxo8frxWjMELIvZnm34XK3Llz9XqDxH8tXbqUjIyMipyZioqKIolEQnPnzpUp5l9//UUNGzYkAwMDmj17tsb+e+nUqRM1b95cpZ9TOlPULVy4kAIDA4non51WAwYMyNdmzpw5X5yVk/sS4i/DyJEjqX79+krHkZerq6vMVwHJIvfAQ00fDP1fDx8+JFNT03zF+tu3b8nKyopGjhxZ5PNt2rShfv36qTJFrfHixQtasGAB1ahRgwBQ9erVKSAgQOYT8ytWrEjTp09XcZZMm/38889kamqaNwWfk5NDZ86cIV9fX5JIJGRiYkJDhw6l8PBwwT6AIiIiyNzcnL777julY/n7+5NIJKKVK1cqn5gWycjIIFtbW5o4cSIR/TPiWalSpWJ//+mTDx8+kJGRES1btqzA97Ozs6lFixbUoEEDuU4JyMjIoDlz5pBYLKY2bdrQkydPhEpZJnfv3iUAtH37dpX2ozNF3dq1a/NG6q5fv672kbpdu3YRAIqNjVU6lqxyLzOX5VBKWWVmZlKpUqVo/vz5gsVUVnZ2NrVt25Zq1KhR4P20v/32W5FD1ikpKSSRSOi3335TdapaRSqV0oULF+irr74iAwMD+vbbb4v9AP78+TMBoF27dqkpS6aNctdvbdy4kRYvXpy3Bq5evXr066+/yrXeTh6LFy8mAwMDun37tsIxIiMjycDAQG8PUf7xxx+pdOnSlJKSUmI2SPzXoEGDqFatWgXOKC1fvpxEIhFdvnxZodjh4eFUtWpVsrS0LHD9oqqMHj2a7O3tVX5clc4Udf9dUyfLh5JQa+qI/tluDYD27NmjdCxZjRw5kipWrCj4OpQ+ffpQ69atBY2pjKVLl5JIJCp0cWzuN7NGjRoV+P+L3MW1+nywcnH++OMPAkBLliwpsl1YWBgBoKioKDVlxrRV3bp1844iGTRoEF28eFHlyxcyMjKobt265OLiolBf2dnZ1LJlS7lHaXRJ7r2+mzdvLjEbJP7r0qVL+ZbiEBE9efKEzMzM8kYyFRUfH0+DBg0iADR48GCVT21/+vSJTE1Nad68eSrth0iHijoize1+zVWvXj0aNWqUILGKk/sfgSq+jebuflR2N60Q7t69S8bGxsWeAxgREUFisbjAIfnZs2eTtbW1Vq4TVKcZM2YU+8Vj3bp1ZGBgIPgxKUz3nDlzhlauXKn2Xf2nT58udJdncXLX3apyobk26NSpE9WtW7fEbJD4L6lUSvXr1ydfX98vftaxY0eqXLkyJSUlCdLPjh07qFSpUlStWjWFR/5ksXjxYjIyMlLLTJ9OFXXyErqo+/bbb6lWrVqCxCrOkiVLyMjISCWntOfuflPn0HNBsrKyqHnz5lS3bt1Cb1r4t++++y7vkMl/c3V1LXTRd0kilUpp8ODBZGRkRBcvXiywzYQJE6hu3bpqzoyxL/Xp04fs7e3l+t388uVLsrCwoLFjx6owM+1w6NAhAlCiNkj816pVq0gikeQd3L5lyxYCQMePHxe0nydPnlCbNm3IwMCA5s2bJ/gmitwTLL766itB4xaGizo5HDhwgADQy5cvBYlXmNx78IYOHaqyPpycnGjgwIEqiy+L+fPnk1gslvkS54SEBKpQoQL5+Pjk/Sw9PZ2MjY1pxYoVKspSt2RkZJC7uzuVKVOmwHPt3N3dqU+fPhrIjLH/8/z5czIzMyv0BoWC+Pj4UPny5bX+8HQhZGZmkoODA40ZM0bTqWjM58+fydTUlBYuXEixsbFUpkwZmY46UURWVhbNnj2bxGIxtWvXTtBrCPfv36/wXc2K4KJODh8+fJDpfCdlBQYGqvzE/5kzZ1LZsmVl3jEptFu3bpFEIpF7F+a+ffsIQN41QLknigt15Is++Pz5MzVo0ICqVq2ab7jf1taW5syZo5nEGPuXhQsXkkQiobt37xbbNnfkSpsPThfa+/fvZZrB0GfffPMNValShfr27UvlypVT+ZKhS5cuUZUqVahUqVK0YsUKQUbtnJ2dqX379gJkJxsu6uTUuHFjlQ+jenh4UJs2bVTax+XLlwmAStcRFCY9PZ0cHR3J0dFR7rVdUqmUunTpQpUrV6bk5GRasGABWVlZaaw41VbPnz+n8uXLU/PmzfN2FL9//54A0L59+zScHWP//B6oVasWubu7F7kRICEhgSpWrEjdu3cvcRsGSrpr167lHU0my4UDQoiPj6dx48aRSCSixo0bK/UZGRERofaLC7iok9OkSZOocuXKKvvlcufOHbUcOZGdnU1ly5almTNnqrSfgkyfPp0kEonCw9F///03mZiY0A8//ECenp7UrVs3YRPUEzdv3iQLCwvq3r07ZWVl5Z1RKM99uoyp0okTJ4rd3DN+/PgC19Iy/SeVSsnZ2Zl69uyp9oL++vXr1Lx5cwJAI0aMkGtDUXR0NE2YMIGsrKyoevXqaj3smIs6OQUHBxMAevz4sWAx/2306NFUvnx5tWzXHzhwIDk5Oam8n3/bs2cPicVi+t///qdUnAULFuQdklrcMR4l2cmTJ8nAwIDGjh1Lq1evJkNDQ8GPyGFMGT4+PlSxYsUCdzRevXqVRCIRr5ktwdLT0zV2skF2djatXbuWrKysyNramjZu3FhoLunp6bRz505ycXEhAGRra0v+/v706tUrtebMRZ2c4uPjSSwW08aNGwWLmSs9PZ1KlSpFs2bNEjx2QXbs2EEA6PXr1yrvSyqV5t34MXDgQKULi/T09Lxztq5evSpQlvpp48aNBIAqVKhAjRo10nQ6jH3h6dOneSPv/5aZmUmNGjWiZs2a8fIKplGxsbE0dOhQAkBt2rShyMjIvPf+/vtv+uGHH6hcuXIEgNzc3GjPnj0aO0eRizoFNG/eXCU7R0+dOkUAvvgPRpU+fPhAIpGINm3apNJ+UlNTyc/PjwDQggULBBtGv3z5Mnl7e/PIkwxmzZpFAKh///6aToWxfObNm0eGhoZf7Nj++eefycDAgDdBMa1x/vx5ql+/PonFYho9ejR16tSJAFDp0qXpu+++K/DEAXXjok4BP/zwA5UvX17wOf5x48apdL1eQVq3bk29e/dWWfzXr19TixYtyNTUlA4cOKCyfljRpFIpzZ07N98J7Yxpg7S0NKpevTp5enqSVCqlx48fk6mpqVxHnjCmDhkZGbR48WKysLCgli1b0ubNm/PuUNYGIiIi6KnExERYWVkhISEBlpaWgsU9efIkunbtivv376Nu3bqCxCQiVKlSBT179sTq1asFiSmLhQsXIiAgAB8+fICpqamgsW/evIkePXoAAIKDg9G0aVNB4zPG9MfRo0fh7e2NAwcO4I8//sCDBw9w9+5dmJubazo1xvIhIohEIk2nkY9Y0wnoImdnZ0gkEoSGhgoWMyoqCi9fvkTPnj0FiymLvn37IiUlBcePHxc07sGDB+Hs7IwKFSrg2rVrXNAxxorUvXt3dO/eHcOGDcPp06exdu1aLuiY1tLGgg7gok4hFhYWaNmyJUJCQgSLGRwcDEtLS7Rv316wmLKoXbs2mjRpgn379gkSj4iwcOFC+Pr6okePHrhw4QIqVKggSGzGmH5buXIlsrOz0a9fP3h5eWk6HcZ0Dhd1CvLw8MD58+chlUoFiRccHIyuXbvCyMhIkHjy8PPzw9GjR5GSkqJUnPT0dAwZMgQzZ87E3LlzsXv3bsGndBlj+qt69eq4d+8etm7dqulUGNNJOlHUJSUloVWrVrCwsEB0dLSm0wEAuLu74+PHj4Lk8+rVK0REROStP1O3vn37IjU1Vekp2NGjR+PgwYPYs2cP5syZo7XD04wx7VW9enUYGxtrOg3GdJJOFHWmpqY4evQofH19NZ1KnjZt2sDY2FiQdXVHjhyBgYEBunbtKkBm8qtZsyaaNm2q1BTs+/fvsXv3bixatAj9+vUTMDvGGGOMyUInijqJRAIbG5ti22VkZCAxMfGLl6qYmpqiTZs2gqyrCw4ORvv27VGmTBkBMlNMv379cOzYMSQnJyv0/JYtWyAWizFs2DCBM2OMMcaYLHSiqJNVQEAArKys8l4ODg4q7c/d3R0XLlxATk6OwjGSkpIQEhKi9l2v/9W3b1+kpaXh6NGjcj8rlUqxYcMG9O3bF2XLllVBdowxxhgrjlYVdbGxsXB2ds73iouLk+l5f39/JCQk5L1evnyp0nw9PDyQkJCAyMhIhWOcPn0amZmZ8Pb2Fi4xBVSrVg0tWrRQaAo2NDQUf//9N0aPHq2CzBhjjDEmC4mmE/g3e3t7hIWFKfy8sbGxWhfYtmzZEmZmZggJCUGzZs0UihEcHIyGDRuievXqAmcnPz8/P8ycORNJSUkoVaqUzM+tX78e9erVQ7t27VSYHWOMMcaKolUjdUXx8vLC6dOnMXLkSGzZskXT6QAAjIyM4OzsrPBmiezsbBw7dkxju17/q2/fvsjIyMCRI0dkfubdu3cIDAzE6NGjebcrY4wxpkFaNVJXFKFvPBCKu7s7FixYgKysLBgaGsr17JUrV/Dp0yetKeqqVKmC1q1bY9++fRg4cKBMz2zZsgUGBgYYMmSIirNjjDHGWFF0ZqROW3l4eCAlJQU3btyQ+9ng4GDY29ujRYsWKshMMX5+fjhx4gQSEhKKbZu7QcLPz483SDDGGGMaxkWdkpo2bYpSpUrh3Llzcj1HRDh8+DC8vb0hFmvP/wy+vr7IzMxEcHBwsW1DQkLw+PFjjBo1Sg2ZMcYYY6wo2lNN6CiJRILu3bvjt99+w6dPn2R+7sGDB3j06JHWTL3mcnBwQNu2bWXaBfvHH3+gfv36vEGCMcYY0wJc1Alg2bJlyMjIwIQJE2R+Jjg4GKampujQoYMKM1NMv379cOrUKcTHxxfaJneDxKhRo3iDBGOMMaYFuKgTQIUKFbB69Wrs3r0bBw8elOmZ4OBgdOrUSSsvvO/Tpw+ys7Nx+PDhQtts2bIFEomEN0gwxhhjWoKLOoEMHDgQvXr1wpgxY/D+/fsi23748AGXL1/WuqnXXBUrVoSzszP27t1b4PtSqRR//PEH3yDBGGOMaREu6gQiEomwbt06AMDYsWNBRIW2PXbsGACgW7duaslNEX5+fjhz5kyBt3mcO3cOT5484RskGGOMMS3CRZ2AbG1t8fvvv+PQoUPYvXt3oe2Cg4PRpk0b2NnZqTE7+fTp0wc5OTkICgrK917uBom2bduqPzHGGGOMFYiLOoH5+vqif//+GD9+PN68eZPv/bS0NJw6dUprp15zlS9fHq6urvl2wcbGxiIoKIhvkGCMMca0DBd1KrBmzRoYGxtj1KhR+aZhQ0JCkJqaqvVFHfDPFOzZs2e/OKqFN0gwxhhj2omLOhWwtrbGH3/8gWPHjuW7pzY4OBg1a9ZE3bp1NZOcHHr37g0iQmBgIIAvb5AoU6aMhrNjjDHG2L9xUaci3t7eGDZsGCZNmoSXL18C+KcoOnLkCHr06KETU5d2dnZwc3PL2wWbu0GCb5BgjDHGtI9OFHURERFwcXGBq6sr/Pz8kJWVpemUZPLrr7+iVKlSGD58OIgIERERePv2rU5Mveby8/NDSEgIPnz4gPXr16NBgwa8QYIxxhjTQjpR1FWsWBGnTp3ChQsXULNmzQJ3ZGqj0qVLY9OmTThz5gzWr1+P4OBglC1bVqeu1erduzdEIhHWrl2Lw4cP8w0SjDHGmJaSaDoBWdjb2+f9s6GhISSSgtPOyMhARkZG3r8nJiaqPLfidO7cGaNGjcLUqVNhY2ODbt26FZq/NrKxsYGHhwfmz58PQ0ND3iDBGGOMaSmdGKnL9eLFC5w9exbdu3cv8P2AgABYWVnlvRwcHNScYcGWLVuGcuXK4dmzZzo19ZrLz88POTk5vEGCMcYY02IiKurqAzWLjY2Fr69vvp8HBwdDIpHA29sbGzZsQO3atQt8vqCROgcHByQkJMDS0lJlecvi4sWL+PHHH3H69GmUKlVKo7nIKy4uDp6enti0aROaNGmi6XQYY4wxVgCtKuoKk5OTAx8fH0yaNAkdOnSQ+bnExERYWVlpRVHHGGOMMaZKOjH9um/fPly+fBnz58//4ogNxhhjjDH2D50YqVMUj9QxxhhjrKTQiZE6xhhjjDFWNC7qGGOMMcb0ABd1jDHGGGN6QK/X1BERkpKSUKpUKb4FgTHGGGN6Ta+LOsYYY4yxkoKnXxljjDHG9AAXdYwxxhhjeoCLOsYYY4wxPcBFHWOMMcaYHuCijjHGGGNMD3BRxxhjjDGmB7ioY4wxxhjTA1zUMcYYY4zpAS7qGGOMMcb0ABd1jDHGGGN6gIs6xhhjjDE9oNdFHREhMTERfL0tY4wxxvSdXhd1SUlJsLKyQlJSkqZTYYwxxhhTKb0u6hhjjDHGSgou6hhjjDHG9AAXdYwxxhhjekBnirro6Gi0a9cOrq6u6NatG5KTkzWdEmOMMcaY1tCZoq5OnToIDw/HhQsX0LJlSwQGBmo6JcYY02tpaWlYu3YtsrOzNZ0KY0wGOlPUGRoa5v1zamoq6tatm69NRkYGEhMTv3gxxhhTzL59+zBu3DicPn1a06kwxmSgM0UdAJw5cwZOTk4IDQ1FjRo18r0fEBAAKyurvJeDg4MGsmSMMf1w7NgxAMCBAwc0nAljTBYi0sGTeZcsWQKpVIqffvrpi59nZGQgIyMj798TExPh4OCAhIQEWFpaqjtNxhjTWVlZWShXrhwMDAwAAO/evftixoQxpn10ZqTu38WalZUVzM3N87UxNjaGpaXlFy/GGGPyu3z5MhITE7FkyRJ8/vwZoaGhmk6JMVYMnSnqzpw5A1dXV7i7u+PcuXMYPny4plNirECxsbG4ffu2ptNgTCnHjh2DnZ0dvvnmG9SoUYOnYBnTATpT1HXv3h0XLlxAaGgo9u3bBzMzM02nxFiBpk+fjiZNmmDhwoWQSqWaTocxhRw7dgxdu3aFWCyGr68vAgMDeRcs01mZmZlwcnLCunXrNJ2KSulMUceYrrh79y4qVaqEWbNmoUePHvj8+bOmU2JMLs+ePcO9e/fQrVs3AICvry8+fvyIixcvajgzxhSzefNmREZGYteuXZpORaW4qGNMQESE+/fvY9y4cTh+/DiuXLmCpk2b4ubNm5pOTWcREZYsWYI1a9ZoOpUS4/jx45BIJPD09AQANGvWDFWqVOEpWKaT0tPTMX/+fFhbW+Py5cuIj4/XdEoqw0UdYwJ6+/YtkpKSULduXXTp0gU3b95EuXLl0LZtW2zatEnT6emc9PR0DBo0CD/++COWLl2q6XRKjGPHjsHZ2RlWVlYAAJFIBF9fXxw6dAg5OTkazo4x+axbtw6xsbHYt28fcnJycObMGU2npDJc1DEmoJiYGABAvXr1AABVqlRBWFgYvv76a4wYMQLffPMN0tLSNJmizvj48SM8PT1x6NAhDB06FC9evMCHDx80nZbeS0tLQ0hISN7Uay5fX1+8e/cO4eHhGsqMMfklJycjICAAX331FTw8PNCwYUMcP35c02mpDBd1jAkoJiYGhoaGqFatWt7PjI2N8fvvv2Pr1q3Ys2cP2rZti8ePH2swS+336NEjtGnTBg8ePEBoaCjmzJkDAIiIiNBwZvovNDQU6enp+Yq6li1bolKlSjwFq4M2bNiA58+fazoNjVizZg3i4+Mxe/ZsAEDXrl1x4sQJvd3ExkUdYwKKiYlBzZo1CzykdejQobh69SqSk5PRrFkzBAcHayBD7RcWFobWrVvDwMAAV69eRZs2bVCtWjWUKVMGN27c0HR6eu/YsWOoWrVqvqsYxWIx+vTpg4MHD+rtB6I+evr0KUaNGoXFixdrOhW1i4+Px5IlSzBq1ChUrlwZAODl5YV3794hMjJSs8mpCBd1jAkoJiamwHuJczk6OuL69etwc3NDz549cerUKTVmp/12796NDh06oFGjRrh8+TKqV68O4J81Xc2aNeOROhUjIhw/fhzdunWDSCTK976vry/evHmDq1evaiA7pojDhw8DAPbv31/ijqRZsWIF0tPTMX369LyftWvXDqVKldLbKVgu6hgT0P3794ss6gCgdOnSCAwMhLu7OyZMmPDFbSklFRFh4cKFGDhwIPr164fTp0+jbNmyX7Rp1qwZj9Sp2P379/Hs2bN8U6+52rZti/Lly/MUrA4JDAxE9erV8fHjR4SEhGg6HbX5+PEjVqxYgfHjx6N8+fJ5Pzc0NISnpydOnDihwexUh4s6xgSSlJSEV69eFVvUAf+MPK1atQpPnjzBr7/+qvrktFhWVhaGDx+OmTNnYu7cudi6dSuMjIzytWvevDlevXqFd+/eaSDLkuHYsWMwNTWFm5tbge+LxWL07t0bBw4cgA5eG17ifPjwAWFhYfD390etWrWwZ88eTaekNkuWLAER4Ycffsj3npeXF65evYpPnz5pIDPV4qKOMYE8fPgQwP/tfC1Ow4YNMX78eMyfPx+vX79WZWpaKyMjA15eXtixYwe2b9+OOXPmFDjtB/wzUgfwZglVOn78ODw8PGBqalpoG19fX7x8+RLXr19XY2ZMEUeOHAEA9OjRA/3798ehQ4dKxMzA27dvsWbNGnz//fcoV65cvve7dOkCqVSK06dPayA71eKijjGB5B5nUqdOHZmfmTt3LszMzAr8NlkSzJo1CxcuXMCpU6cwePDgIttWrVoVZcqU4aJORRISEhAWFlbo1GsuFxcX2NjY8BSsDggMDES7du1ga2uL/v37IyEhoUSs4w0ICICJiQkmT55c4PsVK1ZE48aN9XIKVmeKuoiICLi4uMDV1RV+fn7IysrSdEqMfSEmJgYVKlSApaWlzM+ULl0aixcvxq5du0rcFUyhoaFYtmwZFi5cCHd392Lbi0QiNG/enNfVqcjp06eRnZ0NLy+vItsZGBjwFKwOSEpKwpkzZ+Dj4wMAqF+/Pho1aqT3U7AvXrzA+vXrMW3aNJQuXbrQdl5eXnp5tInOFHUVK1bEqVOncOHCBdSsWRNBQUGaTomxLxS387Uww4YNQ6tWrTBhwoQSszvt8+fPGDp0KNzc3DBlyhSZn+MdsKpz/PhxNGjQAFWqVCm2ra+vL54+fYpbt26pITOmiFOnTiEjIwO9evXK+1n//v1x+PBhpKSkaDAz1Zo/fz5Kly6NCRMmFNmua9eu+Pjxo959SdSZos7e3h5mZmYA/tm9IpFI8rXJyMhAYmLiFy/G1EXRok4sFmP16tW4c+cO1q1bp4LMtAsRYezYsUhOTsbWrVshFsv+a6h58+Z4/fo1YmNjVZhhySOVSvOOMpGFq6srrK2teQpWiwUGBqJx48ZfHITer18/pKam4tixYxrMTHX+/vtvbN68Gf7+/rCwsCiybZs2bWBlZaV3U7A6U9TlevHiBc6ePYvu3bvney8gIABWVlZ5LwcHBw1kyEqi7OxsPHz4UKGiDgBatGiB4cOHY9asWXJfhbV161a0bt0aCQkJCvWtbjt37sTevXuxbt06uf+O8mYJ1YiIiMD79++LnXrNZWhoCB8fH+zfv5+nYLVQZmYmjh07ljf1mqtGjRpo0aKF3k7Bzp07F/b29hgzZkyxbSUSCTp16qR/59WRDklISKD27dvTgwcPCnw/PT2dEhIS8l4vX74kAJSQkKDmTFlJ8+jRIwJAp0+fVjjG+/fvqXTp0jRy5EiZ2mdnZ9OUKVMIAAGgo0ePKty3ujx9+pQsLS1p8ODBCj0vlUrJ2tqa5s6dK3BmJducOXPIysqKMjMzZX7mxIkTBICioqJUmBlTxMmTJwkARUZG5nvvl19+IWNjY4qPj9dAZqoTHR1NIpGIfv/9d5mf2bx5M4lEInr//r0KM1MvnRmpy8nJwaBBgzB79mzUrl27wDbGxsawtLT84sWYOuTufJX1OJOC2NjYYP78+di4cWOx6zwSEhLQo0cPrFixAitWrICdnR0uX76scN/qkJOTg6FDh6JMmTJYs2aNQjH0+WaJLVu2aOwMvuPHj6Nz584FXm9XGA8PD5QuXZqnYLVQUFAQqlWrBkdHx3zv+fn5ISMjI++mCX0xZ84cVK1aFd98843Mz3Tp0gVEpFc7gnWmqNu3bx8uX76M+fPnw83NDXv37tV0SozliYmJgbm5OSpWrKhUnDFjxuSdX1fYrqzHjx+jTZs2CA8Px/HjxzFp0iS0bdsWV65cUapvVVuyZAnCwsKwfft2WFlZKRxHH3fAnj59Gl9//TWWLVum9r7fvXuH69evy7yeLpeRkRF69uwpV1FHPFWrclKpFIcPH4aPj0+BZz5WqlQJLi4uejUFe/PmTRw8eBBz5swp8ODywtjb26Np06b6NQWr6aFCVUpISODpV6YWw4cPp2bNmgkS6/z58wSA/vzzz3zvhYSEUNmyZalWrVoUExOT9/MlS5aQmZkZZWVlCZKD0G7cuEESiYT8/f2VjnXw4EECQK9fvxYgM83Lzs6mxo0bEwCqVKkS5eTkqLX/3Cmod+/eyf3skSNHCADdvXu30DY5OTl0+PBhcnZ2pnLlylFKSooy6bJiXL58mQDQxYsXC23z22+/kUQioQ8fPqgxM9Xp3Lkz1a1bV6HffzNnzqSyZctSdna2CjJTP50ZqWNMmym687Ugrq6uGDBgAH766acvNj+sW7cOnTp1QtOmTfHXX399cchx27ZtkZqaijt37giSg5BSU1MxaNAgNG7cGHPnzlU6nr5tlti5cyeioqKwZMkSvHr1CuHh4Wrt//jx42jRogVsbW3lftbT0xOlSpUqcLQuPT0dGzduRIMGDdCzZ08kJibi48ePuHr1qhBps0IEBQXBxsYGbdu2LbSNr68vpFIpDh06pMbMVCM0NBSnTp3CokWLCjwVozhdu3ZFXFwcrl27poLs1I+LOsYEIGRRBwBLly5FSkoK5s6di6ysLIwfPx5jx47F2LFjceLECZQpU+aL9s2aNYOhoaFWrqubOnUqXrx4gR07dsg1NVKYypUro1y5cnpR1KWlpWHmzJno06cPpkyZAgcHB+zevVtt/WdlZeHUqVNyT73mMjY2Ro8ePb4o6j5//oxFixahatWqGDVqFOrUqYOwsDDcunULZcuWLXGHbKsTESEwMBA9evSAgYFBoe1sbW3RoUMHnZ+CJSL89NNPaNmyZb6dvrJq1aoVypYtqz9Hm2h6qFCVePqVqcP79+8JAO3fv1/QuAEBAWRgYEBt27YliURC69evL7J9q1ataNCgQYLmoKzc6Tl5dqTJonPnztStWzdBY2rC4sWLSSKR5O3onzZtGpUrV06uXajKCA0NJQB0/fp1hWMEBgbm7fyeNGkSmZubk7GxMY0aNeqLJQJERD179iR3d3dl02aFiI6Olnkn/KZNm0gkEtGbN2/UkJlqHDp0iABQSEiIUnH69+8v2PIZTeOijjElXbx4kQBQdHS0oHHT09OpVq1aVLZsWQoNDS22/aRJk6hatWqC5qCM2NhYsrGxoe7du5NUKhU09owZM8je3l7QmOr28eNHsrKyonHjxuX97ObNmwSATpw4oZYcpk2bRnZ2dkqt40tNTSVzc3MCQGXKlKGZM2dSbGxsgW1/+eUXMjExoYyMDIX7Y4VbsGABWVhYUFpaWrFt4+LiyNDQkFauXKmGzISXlZVF9erVo06dOikda9u2bQSA3r59K0BmmsXTr4wpKSYmBmKxGDVr1hQ0rrGxMcLCwhATEwM3N7di27dp0wZPnz7VmtsWFi9eDKlUio0bNxa4C08ZzZo1Q2xsLN68eSNoXHVauHAhcnJyMHv27LyfNWnSBHXq1FHbFOyxY8fg5eUl160e/2VqaorffvsNq1evxsuXLzF//nzY2dkV2LZ9+/ZIT0/Xu93L2iIwMBBeXl4wMTEptm2ZMmXQpUsXnZ2C3b59O+7fv4+AgAClY3Xu3BkikUgvjjbhoo4xJcXExKB69eowNjYWPLatrS1sbGxkapu7MFobjjYhIhw8eBADBgwo9ANeGc2bNwcAnS0Onj59ijVr1uDHH3/8YoOCSCTCgAEDEBgYiLS0NIVix8fHw8vLC4MGDUJAQACOHDmCp0+f5jsi59mzZ7h3757Mt0gUZdiwYRg/fjzMzc2LbNekSRNYWFioZV2dVCrF9OnTcfjw4RJxlMqLFy8QEREh19qy/v3748qVK3j27JnK8lKF9PR0zJkzB/369UPTpk2Vjmdra4vmzZvrxdEmXNQxpiShN0koqlKlSqhUqZJWFHU3b97EixcvvrhMXEiVKlWCjY2Nzm6WmDFjBsqVK4fvv/8+33sDBgxAUlKSwh8wq1atQmhoKJ4/f47FixejR48eqF69OiwtLdGqVSsMHz4879BqiUQCT09PZf84MpNIJGjXrp1airrnz58jICAAPj4+cHNz05vdjYUJCgqCoaGhXEV6jx49YGpqin379qkwM+GtXbsWb968wfz58wWL6eXlhdOnTyM7O1uwmJrARR1jStKWog6A1hxCHBgYiLJly6J9+/YqiS8SiXT2EOKIiAjs3r0b//vf/woc2apduzaaNm2q0BRsUlISfv31V4waNQphYWH4/PkzXr58iRMnTmDu3LmoV68ebt++jRkzZmDVqlVwd3dX6iBoRbRv3x5hYWHIyclRaT+5t7xs2LABcXFxaNWqFQYMGICnT5+qtF9NCQoKQocOHeT639PCwgLdu3fXqSnYhIQELFq0CCNGjECtWrUEi9u1a1fEx8fr/pE7ml7Up0q8UYKpWlpaGolEItq4caOmUyEiohUrVpCxsbHGF6LXr1+fhg0bptI+Zs6cSXZ2doJvwlAlqVRK7u7uVL9+/SIPSl26dKlC93P+/PPPZGRkRC9fviyyXXZ2Nv3999/0+fNnueIL4dKlSwSAIiIiVNrP8uXLydTUlHJycig7O5s2bdpEFSpUICMjI5o8eTJ9+vRJpf2r08ePH8nAwIDWrVsn97O5h3n/d6eytpo1axaZmJgIfvh4dnY2lStXTpAD0jWJR+oYU8LDhw9BRFo1UpeRkYHIyEiN5fDgwQPcu3cPvXv3Vmk/zZs3x7t37/D69WuV9iOkkydPIjQ0FIsXLy7yoNR+/fohIyMDQUFBMsdOTU3FL7/8gq+//hqVKlUqsq2BgQFq1KiB0qVLyxxfKC1atICxsbHKp2BjYmJQp04diMViGBgY4JtvvsHDhw8xa9Ys/PHHH6hZsyZ++eUXZGRkqDQPdThy5AikUil69uwp97Ndu3ZFqVKldOLqzXfv3mH58uX47rvvUKFCBUFjGxgYoEuXLjp/Xh0XdYwpIXeKR1uKuiZNmsDExESjhxAHBgbC3Nxc5Wu1dO1miZycHPzwww9wdXUt9rBfBwcHtG/fXq4p2D/++ANxcXH48ccflU1VpYyNjdG6dWuVF3UPHjzI9/fS3NwcM2fOxN9//43+/fvjxx9/RN26dbF69Wpcu3ZN4c0pmhYUFIQ2bdrA3t5e7mdNTU3h4+OD3bt3C7ah5OnTp7h69argG1QWLFgAQ0NDlf033rVrV0RGRurUF8X/0pmiLikpCa1atYKFhQWio6M1nQ5jAP4p6mxsbGBtba3pVAD8c8l6s2bNNLquLjAwEF26dIGpqalK+6lYsSJsbW11Zl3dtm3bEB0djSVLlsh0xMuAAQNw9uxZfPjwodi26enpWLp0KYYMGYJq1aoJka5KtW/fHhcvXlTprtSi1rra2dlh7dq1iI6ORpMmTTB58mS0atUKpUqVgqOjI77++musXr0a4eHhSE5OVlmOQkhJScGpU6cUvlEB+GcXbExMjCDXDD58+BCtW7dGmzZtULduXfz888+CHD305MkTrF+/Hj/99FO+G3WEknu0ycmTJ1USXx10pqgzNTXF0aNH4evrq+lUGMujTZskcrVt21ZjI3WvXr3CtWvXVD71CvzfZgldGKlLTU3FrFmz0K9fP7Rs2VKmZ3x9fSESibB///5i227evBmxsbHw9/dXNlW1aN++PT59+oT79++rJP7nz5/x7t27L+5HLkjdunURGBiIpKQkXL9+HWvXrkXbtm1x9+5dTJs2Dc7OzrC0tES9evUwcOBALFq0CIGBgXjw4IHW7JI8deoU0tPTldpp3rFjR5QtW1bpDRMvX75Ex44dYW1tjSNHjqBly5aYN28eHBwc0L17dxw6dAiZmZkKxZ4zZw7KlSuHCRMmKJVjUaytrdGqVSvdnoLV7JI++Q0bNozu3LlT4Hvp6emUkJCQ93r58iVvlGAq5eTkRCNHjtR0Gl/IvTrnxYsXau979erVZGhoKPcCf0XNmjWLbGxstH6zxKJFi8jQ0JD+/vtvuZ7r2rUrOTs7F9kmMzOTKleuTAMGDFAmRbVKTk4miUQi+PVxua5cuUIA6NatWwrHyMzMpMjISPrzzz9p/Pjx1K5dOypdujQBIABkaGhIDRo0oL59+9KcOXNoz549dPv2bUGueJNKpXTmzBk6duwYvX79usj/vocMGUINGzZUus/Ro0dTmTJl6OLFiwo9/+7dO6pTpw5VrVqVXr16lffzz58/07p166hly5YEgMqVK0eTJk2i27dvyxw7KiqKRCKRQhtB5LVo0SIyMjKi4OBglfelCnpV1M2ZMyfvL9y/X1zUMVXIyckhMzMz+uWXXzSdyhfevn1LAGjv3r1q79vDw4M6d+6stv4OHz6ssQJWVu/fv6dSpUrRd999J/ezudcXPX/+vNA2mzZtIgCF/l7UVq1atVJZIbp582YCQCkpKYLGlUql9PbtWzp37hytXr2avv32W3JzcyNbW9u8zxsHBwf6/fffKT09XaE+zp8/T61bt/7iM8zGxoY8PT3phx9+oF27dtG9e/coOzubMjMzqXTp0jRz5kyl/2yfPn0iNzc3MjQ0pD///FOuZ+Pj48nJyYns7Ozo0aNHhbaLjo6mKVOmkI2NDQEgJycnGjduHP3xxx907do1Sk1NLfC5bt26Ua1atdRyJ3JaWhr16dOHDAwMaNOmTSrvT2h6VdTxSB1Tp+fPnxMAOnbsmKZTyadatWo0adIktfapzLEKinr16hUBoEOHDqmtT3nNnj2bLCws6MOHD3I/m5iYSCYmJrRkyZIC38/KyqKaNWtS7969lU1T7aZNm0YVK1ZUySjrjz/+SFWqVBE8blE+fvxI58+fpwEDBpBIJKJKlSrR2rVrZS7ubt68SV26dCEA1KxZMzp9+jQ9ffqUAgMDac6cOdSzZ0+qUqVKXqFnampKDRo0EPR4mIyMDBo1ahQBoMmTJ1N2dnaxz6SkpJCzszOVKVNG5tG3zMxMCgwMpIEDB1K9evVILBYTABKLxVS3bl3q168fLVq0iI4fP06BgYFq/5KanZ1NY8aMIQC0cOFCrZ8J+De9Kur+i8+pY6p08uRJAkBPnjzRdCr5DBo0iFq2bKnWPjdv3kwikUitl2JLpVKyt7enGTNmqK1PeeTk5FDVqlVpxIgRCsfw9fUlJyenAt/bsWMHAaCbN28qHF9Tjhw5QgDo8ePHgsfu2bOnWkeM/+vevXs0cODAvOLut99+K7S4e/ToEfXv358AUO3atWn//v1FFhGfPn2ikJAQWr58OQ0dOpS++uorQYsOqVRKK1euJLFYTF5eXkV+fmZkZFDXrl3J3Nycrly5onCfqampdP36ddqwYQONHz+eXFxcyNLSMq+Abdq0KeXk5CgcXxFSqZTmzZtHAGjChAlq719ROlXUde3alcqXL0+tW7emzZs3F9ueizqmSr/++iuZmJjI9G1W3dasWUOGhoaUlpamtj579OhB7dq1U1t/ubp166bRD/CinD9/ngAovE6JqPDDYXNycqhevXrUrVs3ZdPUiLi4OBKJRDL9LpdX3bp1FZruFlpucScWi6lSpUq0Zs2avL+Tr1+/pjFjxpBEIqGKFSvShg0bijyQWt1OnjxJVlZW1KBBgwIL7+zsbOrXrx8ZGRnRmTNnBO9fKpXSkydPKCgoiJ4+fSp4fFmtW7eOxGIx+fn5KTylrk46VdTJi4s6pkpjxowhR0dHTadRoIiICAJAYWFhaukvKSmJTExMaNmyZWrp79/mzJlD5cqV08opkm+++YaqVaumVG5paWlkaWlJc+bM+eLn+/fvJwBKjZBoWuPGjenrr78WNGZmZqZKN2Eo4v79+zRo0CASi8VUsWJFGj58OJmamlKZMmVo6dKlha4l07T79+9TjRo1yNrams6fP5/3c6lUSiNHjiSxWKzVSx+EcujQITI2NiYPDw+trye4qGNMQW5ubuTn56fpNAqUlZVFZmZmha7FElpugaGKqbTiBAcHEwB69uyZ2vsuSkpKCpUqVSpfMaaIYcOGUa1atfKKQ6lUSo0bN6aOHTsqHVuTJkyYQDVr1hQ0ZkxMDAGgkJAQQeMKISYmhgYPHky2trY0Y8YMjVzTJq+PHz+Su7s7SSQS2rhxI0mlUpo2bRoBoC1btmg6PbW5cOECWVlZkZOTk1qXmMiLizrGFGRvb0+zZ8/WdBqFcnNzo169eqmlr4EDB1Ljxo3V0td/vX79mgDQwYMHNdJ/YXbu3EkA5D7GpCC56zdv3LhBRP9XyF64cEHp2JqU+2VAyHs8g4KCCAC9efNGsJglXWZmJo0ePZoAUPv27QkA/frrr5pOS+2ioqKofPnyVL169SJ3+WqSzhw+zJg2iY+PR2xsrNYdPPxvuYcQkwpP7QeAzMxMHD16VKnDT5VRoUIFlC9fXutulti2bRucnZ1Ro0YNpWN16NABNjY2eVc5zZ8/Hy4uLmjfvr0AmWqOi4sLAODSpUuCxYyJiYGlpaVCV2axghkaGuL333/Pu2Vj3rx5+O677zSdlto5Ojri8uXLkEgkaNeuXd7VfNqEizrGFPDgwQMA2nPna0HatGmDd+/e4dmzZyrtJyQkBImJiRor6oB/7oHVppsl3rx5gzNnzmDo0KGCxJNIJPDz88PevXtx6tQpXL9+HbNmzRIktibZ2dmhTp06gt4Dm3vLiyxXsTHZiUQijB8/HvHx8Zg9e7am09GYqlWrIiwsDC1btsTYsWNhb2+PHj16YM+ePUhJSdF0elzUMaaI3OuNiruGSJNat24NACq/MiwwMBA1atRAo0aNVNpPUZo3b44bN26ofFRSVjt37oShoSH8/PwEizlgwAC8evUK33zzDVq2bImOHTsKFluTcu+BFYo2Xt2nTywsLDSdgsbZ2NjgyJEjeP36NX755Rd8+PABAwYMgJ2dHQYNGoRjx44hKytLI7lxUceYAmJiYlClShWYmZlpOpVClStXDrVr18aVK1dU1kdOTg4OHz6MXr16aXRkpFmzZoiLi8Pz5881lkMuIsLWrVvh4+MDKysrweK2adMGlStXxtu3bzFr1iy9GYlq3749oqOj8enTJ6VjEREXdUxt7O3tMWHCBFy5cgWPHz/G9OnTERkZie7du8Pe3h5jxozBvXv31JoTF3WMKUBXPjhy19WpypUrV/Du3TuNTr0C/xR1ALRiXd2tW7dw9+5dwaZec4nFYowdOxZubm7o1q2boLE1KXddYFhYmNKxPnz4gPj4eK0eQWf6qXr16pg+fTqio6MRFRWFUaNG4ejRo/D29lZrHiW2qMvJyYFUKtV0GkxH6UpR16ZNG9y+fRvJyckqiR8YGAh7e/u8qV5NKV++PCpUqKAV6+q2bdsGOzs7dOrUSfDYP/30E0JDQ/VmlA4AKleujCpVqggyBRsTEwNAu9e6Mv0mEong6OiIgIAArF27Fk+ePMHTp0/V1r9gRZ02/DKVx/Tp09G7d2+Vfdgx3fLmzRscOXJEprZZWVl4/PixTnxwtGnTBjk5Obh+/brgsYkIgYGB8PHxgVis+e+HuevqNCkrKwu7du3CoEGDIJFINJqLLhFqXV1MTAwMDAwE2XHMmLLat28PsViMkJAQtfUp2G9iTU+/yMvFxQXnzp1Du3bt8OLFC02nwzRs1apV6NGjB4KCgopt+/jxY2RnZ+tEUVe/fn1YWlqqZF3d7du38fTpU635u5+7A1aTmyVOnjyJDx8+CD71qu/at2+PmzdvIikpSak4MTExqF69OoyNjQXKjDHFlS5dGs2aNVNrUSfXV8nCdnIRkdad1VKc7t2748qVK/D29kaLFi0QFBSENm3aaDotpiGRkZEAgGHDhiEiIgI1a9YstK0uTfEYGBigVatWKinqDh06BCsrK7i5uQkeWxHNmjXD58+f8eTJE42N1GzduhWNGzdG48aNNdK/rmrfvj2kUikuX76Mzp07KxxHV5ZFsJLDw8MDW7duBRGpZdmEXCN1Z8+exbBhwzBu3Lh8L3Nzc1XlmGfq1KlwcXHBoEGDkJmZqXS8hg0b4tq1a6hduzbc3NywY8cOuWNIpVIcOXIkryhguikqKgoTJ06EnZ0dfH19kZaWVmjb+/fvo3Tp0rCzs1Njhopr27Ytrly5IvgIVmBgILy9vWFkZCRoXEW1adMGIpEI58+f10j/cXFxOHLkCI/SKaBWrVqws7NTegqWizqmbTw8PBAbG5s3GKBqchV1bm5usLCwgKur6xcvNzc3ODk5qSpHAP/sKIuNjcWlS5dQv359HDhwQJC4NjY2OHv2LAYNGoQhQ4Zg+vTpMm2gyMrKwtatW9GgQQP06NEDnTp1QmxsrCA5MfV69+4dYmNj4eLigoMHD+Lhw4cYN25coe117XDTNm3a4NOnT3j06JFgMf/++2/cuXNHa6ZeAaBs2bJo0aIFTp8+rZH+9+3bh5ycHAwcOFAj/esykUik9Lq6tLQ0PHv2jIs6plXatWsHQ0NDtU3BylXUHTp0CK6urgW+d/LkSUESKsyVK1fydpN16dKlwGMaMjIykJiY+MVLFsbGxti0aROWLl2Kn3/+GX369Cl0A0VaWhrWrFmDmjVr4quvvkKdOnVw/PhxiMViDBs2jHfU6qCoqCgAQJMmTdCoUSOsW7cOmzdvxqZNmwpsr2ujAa1atYJIJBL0aJPAwECYmJgoNVWmCp6enjh79ixycnLU3vfWrVvRuXNnvp5KQe3bt8e1a9eKHCUvyt9//w0i4uNMmFYxNzdH69attbOo06T4+HhYWloCAKysrApcwxcQEAArK6u8l4ODg8zxRSIRpk6diuDgYJw9exbOzs5fbKBISEjAzz//jKpVq+K7776Di4sL7ty5g6CgIHTt2hXbtm3D6dOnsWLFCuX/sEytoqKiYGFhgerVqwMAhg4dilGjRmHcuHG4devWF2118XDT0qVLo379+oKuqwsMDESXLl3UsuxCHp06dUJcXFy+/91U7eHDh7h69SpPvSqhffv2yMzMxLVr1xR6XpfWurKSxcPDA6GhoWoZ9FG4qDt48KCQeRSrTJkyeSNv8fHxKFu2bL42/v7+SEhIyHu9fPlS7n66d++Oy5cvIz4+Hi1btsSJEycwc+ZMVKlSBXPmzEGvXr3w8OFD7NixAw0bNsx7rlOnTpg6dSr8/f117niXki4qKgqNGjX64liOlStXokGDBvD19UV8fHzez2NjY5GYmKhzHxxt2rQRbKTu8ePHuHLlCnx9fQWJJ6TWrVvD3NwcZ86cUWu/27dvh5WVFXr06KHWfvVJw4YNUbp0aYWnYGNiYlCuXDlYW1sLnBljyvHw8MDnz5/zZoVUSeGibuDAgcWOSgm5MLt169Z5a2VOnTqFdu3a5WtjbGwMS0vLL16KaNSoEa5du4aaNWvCy8sLv/76K0aMGIGnT59i3bp1he6sW7hwIRwdHTFgwAA+/06HREVF5dutaGJiggMHDiAuLu6LaXVdHQ1o27Yt7t69i4SEBKVj/fnnn7CyskLv3r0FyExYRkZGcHd3V+u6OqlUim3btsHPzw+mpqZq61ffiMViuLi4KFXU6drfS1YytGrVCqampmqZglW4qAsODsbcuXMxceLEfMVbTk4OtmzZgnr16imdYC4nJyfY29vDxcUF9+7dQ58+fQSLXRBbW1ucO3cOu3btwvPnz7Fs2TJUqFChyGeMjIywe/duvHnzBhMmTFBpfkwY6enpuH//foFHUFSrVg3bt29HcHAwli5dCuCfna+GhoZ5U7W6ok2bNiAi/PXXX0rFyc7OxubNmzFo0CCtLWA8PT0RHh6OlJQUtfR38eJFvHjxgqdeBdC+fXtcvnxZocvQuahj2srY2BjOzs7qWVdHSoiMjKRKlSqRj48PpaamUkZGBq1du5aqVq1KZcqUodmzZysTXmkJCQkEgBISEtTa7+bNmwkA7d69W639MvlFREQQALpy5Uqhbfz9/UksFlNoaChNmDCB6tWrp8YMhZGTk0Nly5alGTNmKBUnODiYANDNmzcFykx49+/fJwB0/PhxtfT31VdfUfXq1UkqlaqlP332119/EQC6evWqXM/l5OSQmZkZLVu2TEWZMaacgIAAsrCwoMzMTJX2o9RGicaNG+Pq1at48uQJWrdujWrVqmHOnDkYOXIknj9/jnnz5ilfdeqgYcOGYcCAARg9erRa73xj8ouKioJIJEKjRo0KbfO///0Prq6u6N+/P8LCwnRyNEAsFqN3797YtGkTMjIyFI6zadMmNG3aVOVHGCmjTp06qFSpklqmYFNSUnDgwAEMHTpUZ4640WZOTk6wsLDAuXPn5Hru9evXSE1N1cm/m6xk8PDwQHJyssqvMlSqqEtISMCff/6J169f49GjR4iPj8e5c+cwffp0lCpVSqgcdY5IJMLvv/+OsmXLYuDAgQpNJTD1iIqKQs2aNYvcxSmRSLB7926IxWLcunVLZz84pk6dinfv3il0yDYAvH37FkePHsWIESMEzkxYIpEInTp1UstmiaCgICQnJ2PIkCEq76skMDQ0hJeXl9znkOaudeXjTJi2atq0KSwtLVU+BatwUefv748qVapgy5YtWLRoET58+IC+ffuiY8eOKrk8XNdYWVlh9+7duH79eokdsdQFBW2SKIidnR327dsHiUSCJk2aqD4xFahTpw569uyJpUuXKrS1fuvWrTA0NMSAAQNUkJ2wPD09cffuXbx+/Vql/WzduhUuLi46t8ZSm/Xr1w+3bt2S67DsBw8ewMjICFWrVlVdYowpQSKRwNXVVXuLuqCgIKxatQoPHz7EqFGjYG5uji1btmDUqFFwd3fH4cOHhcxTJ7Vu3Rr/+9//sGjRIo1dXcQKR0SIjIyUuUhzdnbGq1evtPIoD1lNmzYNDx48wNGjR+V6joiwceNG9O3bF6VLl1ZNcgLq2LEjRCIRzp49q7I+YmJicObMGXzzzTcq66Mk6tq1K8zNzbF//36Zn4mJiUGtWrUgkch1nTljauXh4YHw8HCkp6errA+Fi7p79+5h6NChMDAw+OLn8+fPx6+//op+/fphzZo1Sieo63788Ue4urpi8ODB+PTpk6bTYf/y8uVLxMfHy3X5up2d3Rfn2ematm3bol27dliyZIlcz124cAGPHz/W+qnXXOXKlYOTk5NK19WtXLkSdnZ2OjFyqUtMTU3Ro0cP7Nu3T+ZneOcr0wUeHh7IyMgQ9CD4/1L406moRcEjRoxAYGAgpk+frmh4vWFgYIAdO3YgLS0NI0aMEPxSdaa43IMg5Snq9MG0adMQHh4u12HEmzZtQq1ateDi4qLCzITVqVMnnD17ViWnuH/69Albt27FuHHjYGxsLHj8ks7Pzw9RUVF48OCBTO25qGO6oGHDhihXrpxKp2BVNuTQtWtXnnL8/ypWrIiVK1ciKCgIjx8/1nQ67P+LiopCmTJlUKlSJU2nolbe3t6oU6dO3tl7xfn8+TMOHDiA4cOH69QOT09PT7x//x63b98WPPb69etBRBgzZozgsdk/93tbWFjINFqXlJSE169fc1HHtJ5YLIa7u7tuFnXAP7s92D86deoEAGq/k5IVLjIyEo0bN9apQkUIYrEYU6dOxeHDh2UaCdm1axeysrIwbNgwNWQnnHbt2sHU1FTwXbCZmZlYs2YNhgwZAhsbG0Fjs3+YmJigZ8+eMhV1uf8Nc1HHdIGHhweuXbuGpKQklcTX3cVBOsbW1hYVKlTgok6LREVF6exOVmUNHjwYdnZ2+OWXX4psR0TYsGEDvL29YW9vr6bshGFsbAxXV1fB19Xt3bsXb9++xaRJkwSNy77k5+eH6Oho3Lt3r8h2uceZ1K5dWx1pMaYUDw8PZGdnIywsTCXxuahTIycnJy7qtERycjIeP35c4tbT5TIxMcHEiROxdetWxMbGFtru5s2biIqK0pkNEv/VqVMnXLp0CWlpaYLEIyIsX74cXbp0Qf369QWJyQrWuXNnWFpaFrsL9sGDB6hQoYLCd30zpk61atVCxYoVVTYFy0WdGnFRpz3u3LkDIiqxRR0AjBkzBkZGRli9enWhbTZt2oSKFSuic+fOasxMOJ6ensjIyMClS5cEiXf+/HlERkZi8uTJgsRjhTM2NoaPj0+xU7C8SYLpEpFIBA8Pj5Jd1CUlJaFVq1awsLBAdHS0ptNRmJOTE969e4e3b99qOhW5EBHOnTun1PVS2iYqKgoSiaREj7aUKVMGI0eOxNq1awtc35GamoqdO3fiq6++0tnzvxo0aIDy5csLtq5uxYoVaNiwITp27ChIPFY0Pz8/3Lt3D3fv3i20DRd1TNd4eHjg1q1biIuLEzy2ThR1pqamOHr0qE4f+gog775MXRutW7NmDTp27IgJEyZoOhXBREZGol69eiX+OIpJkyYhOTkZmzZtyvfegQMHkJiYqNOH64pEInh6egqyru7hw4c4cuQIvv/++xK3uUZTPD09YWVlhb179xb4fk5ODh4+fMhFHdMp7u7uICJcuHBB8Ng6UdRJJBKZdpllZGQgMTHxi5c2qVq1KkqXLq1TRV1ERASmTp2KFi1aYMOGDdi5c6emUxKErNeD6bvKlSujf//+WL58eb47ijdu3IgOHTro/BVYnTp1wu3bt4tcOyiLlStXwtbWFgMHDhQoM1YcIyMj9OrVC/v27SvwjM9nz54hMzOTizqmU6pUqYIaNWqoZApWJ4o6WQUEBMDKyirv5eDgoOmUviASidCkSROdKeoSEhLg5+cHR0dHXLp0CYMHD8bo0aNlPhBUW0mlUty5c4eLuv9v2rRpePny5RejIQ8ePMClS5d0doPEv+VOlSpzZVhcXBy2bNmCb7/9FiYmJkKlxmTg5+eHBw8e4M6dO/ney935ykUd0zWqWlenVUVdbGwsnJ2d871knXf29/dHQkJC3uvly5cqzlh+urJZgogwcuRIfPz4EXv37oWxsTF+//13ODg4oG/fvkhNTdV0igp7/PgxUlJSuKj7/xwdHdGlSxcsXbo0bzTkzz//RNmyZeHj46PZ5ARgZ2eHxo0bK7Wu7o8//kBOTg7Gjh0rYGZMFh07dkSZMmUK3DARExMDMzMzVKxYUQOZMaY4Dw8P3Lt3T+kZhP/SqqLO3t4eYWFh+V5ly5aV6XljY2NYWlp+8dI2Tk5OePLkCRISEjSdSpHWrVuH/fv3Y9OmTXnTbxYWFti/fz/+/vtvfPfddxrOUHGRkZEASt71YEWZNm0abt++jdOnTyMrKwtbtmzB4MGD9WZUytPTE2fOnFHomr7MzEysXr0agwcPhq2trQqyY0UxNDRE7969C5yCjYmJQZ06dXT6PmZWMrm7uwMAQkNDBY2rM38TvLy8cPr0aYwcORJbtmzRdDoKy90skVtYaKPIyEh8//33+Pbbb/NtTmnYsCHWrFmDjRs3YseOHRrKUDlRUVEoX748f0D/i7u7O5o1a4alS5fi6NGjeP/+PYYPH67ptATTqVMnvH37tshdlIXZv38/3rx5w4cNa5Cfnx8ePXqUd19zrgcPHvDUK9NJdnZ2aNCggeBTsDpzTsHx48c1nYIg6tatCxMTE9y6dQuurq6aTiefpKQk+Pn5oV69eoXeNvD111/jwoULGDNmDJo3b65zv1R5k0R+IpEI06ZNQ//+/fHq1Su0bNkSjo6Omk5LMM7OzjA2Nsbp06fRsGFDmZ/LPWy4U6dOcj3HhOXu7g5ra2vs3bv3i1tgYmJi+HgZprM8PDxw7NgxQWPqzEidvpBIJGjUqJFWrqsjIowePRpv377Fvn37Cp16E4lEWLt2LSpXrqyT6+u4qCtYnz59UK1aNTx48EAvNkj8m6mpKdq3by/3urpLly7h5s2b+P7771WUGZNFQVOwnz59wocPH3TuSyVjuTw8PPDkyRM8e/ZMsJhc1GmAtm6W2LhxI3bv3o0NGzagVq1aRbY1NzfHvn378PjxY0ycOFEt+UmlUmRmZiI1NRWJiYmIi4tDSkqKXDHi4uLw8uVLLuoKIJFIMH36dFhbW6Nfv36aTkdwnp6euHDhAtLT02V+Zvny5ahfv77O3qihT/z8/PDkyRPcvHkTAPJ24XNRx3SVq6srRCKRoOvquKjTACcnJ9y7d0+uDxdVu337NiZOnIhRo0ahf//+Mj3TsGFDrF27Fps2bcL27dsFyyU5ORleXl6wtLSEmZkZjIyMIBaLYWBgAGNjY5ibm8PKygrW1tawt7eX64aO3DU5/57CYf9nxIgRePPmjVZuMlJWp06dkJaWhsuXL8vU/u+//0ZwcDAmTZrEhw1rATc3N9jY2OTtgo2JiYFIJCr2Cyhj2qpMmTJo2rSpoOvqdGZNnT5xcnJCTk4OoqOj0bx5c02ng+TkZPj5+aF27dr49ddf5Xr2q6++wvnz5/PW19WrV0+pXFJTU+Ht7Y2IiAhMnz4dZmZmkEgk+V6GhoYQiUQYPnw4VqxYgSVLlsgUPyoqCiYmJvxBUAQjIyNNp6ASjRo1gq2tLU6fPg0PD49i269cuRLW1tYYPHiwGrJjxZFIJOjTpw/27duHn3/+GTExMahSpQpMTU01nRpjCvPw8MDOnTtBRMJ8eSQ9lpCQQAAoISFB06l8ISUlhcRiMW3YsEHTqZBUKqUhQ4aQubk5xcTEKBQjOTmZ6tevTw0aNKCUlBSFc0lLSyNPT08yNzensLAwmZ7x9/cnCwsL+vTpk0ztv/rqK2revLnCOTLdNmjQIGratGmRbaRSKUVGRpK5uTnNmjVLTZkxWYSEhBAAunbtGnl7e1OXLl00nRJjSjlx4gQBoHPnzgkSj6dfNcDMzAx169bVinV1u3btwvbt27Fu3TrUqVNHoRjm5ubYv38/nj59igEDBiA+Pl7uGJmZmfD19cWlS5dw5MgRtGvXTqbnJk2ahOzsbKxZs0am9rxJomTz9PTEzZs38eHDh7yf5eTk4NatW1i5ciV69+4NW1tbNGnSBKampvj22281mC37r/bt28PW1hZ79+5FTEwMr6djOs/NzQ1t27ZFly5dsHbtWoXO0vw3Luo0RBs2S2RmZmL69Onw9fVVeoqpfv362LNnDy5cuIBGjRrJtUYgKysL/fr1w5kzZ3D48OG8QxllYWtri5EjR2LlypVITk4utp+7d+/yeroSzNPTEwDw+++/Y+nSpfD29oa1tTWaNm2KH3/8EXFxcRg7dizOnj2LZ8+ewd7eXsMZs38zMDCAr68v9u7diydPnnBRx3SeiYkJQkNDMWbMGIwbNw5DhgyRewPgFwQZ79NS2jr9SkS0bNkyMjMzo+zsbI3lsH79ehKJRHT37l3BYj5//pzc3NwIAE2ePJnS0tKKbJ+VlUV+fn5kaGhIR48eVbhPiURCv/zyS5Htbt++TQDo4sWLCvXD9EOjRo0IAJmZmVHHjh3pf//7H124cKHY/1aZdjh//jwBIAB0/vx5TafDmGB2795N5ubm1KBBA4WXQ3FRpyHnzp0jAHT//n2N9J+RkUGVK1em/v37Cx47JyeHli1bRkZGRtSoUSOKiooqsF12djYNHjyYDAwM6NChQ0r1+fXXX1P58uWL/GDevn07AaD4+Hil+mK67e+//6bLly9TRkaGplNhCsjOzqby5csTAIqNjdV0OowJ6u7du1S3bl2ysLCg/fv3y/08T79qSO4UoKamYDdv3oyXL19i1qxZgscWi8WYMmUKrl+/DiJCixYtsGzZMkil0rw2UqkUo0aNwq5du7Br1y706tVLqT5//PFHxMbGYuvWrYW2iYqKQtWqVWFlZaVUX0y31ahRA23atNHbXb76zsDAAH379oW1tTVf9cf0Tv369XHt2jV069YNffv2xeTJk5GVlSV7AOHrTO2hzSN1RERVqlShadOmqb3fjIwMcnBwUMko3X+lpaXRlClTSCQSkZubGz1//pykUimNHTuWRCIRbd++XbC+/Pz8qFq1apSVlVXg+56entSzZ0/B+mOMaUZCQgLduXNH02kwpjJSqZRWrVpFEomE2rVrR69evZLpOZ0YqYuIiICLiwtcXV3h5+cnX9WqxTS1WWLz5s149eqVSkbp/svExATLli3DuXPn8PjxYzg6OqJ37974/fffsWHDBkHPAPP398fTp0+xd+/efO8RESIjI3mTBGN6wNLSku/iZXpNJBJhwoQJuHDhAp49e4amTZvKdPOEThR1FStWxKlTp3DhwgXUrFkTQUFBmk5JELlFHSm5hVkemZmZWLhwIfr164f69eurrV93d3fcvn0b3bp1Q1BQEH777TcMHz5c0D6aNGkCLy8vBAQEfDHVCwCxsbH48OEDH2fCGGNMZ7Rt2xY3b97Mu8GpODpR1Nnb28PMzAzAPxc7SyT6cRGGk5MTPn36hFevXqmtz9xRutmzZ6utz1ylS5fGzp078eHDB5Wd/zV9+nTcvXsXR44c+eLnudeDcVHHGGNMl+TehLNly5Zi2+pEUZfrxYsXOHv2LLp3717g+xkZGUhMTPzipc3UvVkid5Suf//+Sl/npYxy5cqpLHa7du3Qvn17LFy48IsR0KioKJQqVQpVq1ZVWd+MMcaYKhgYGMDc3LzYdlpV1MXGxsLZ2TnfKy4uDomJiRgyZAg2b94MQ0PDAp8PCAiAlZVV3svBwUHNfwL5VKpUCdbW1mor6tS5lk6TZsyYgevXr+PcuXN5P4uMjETjxo0hFmvVf/KMMcaYYESkzgVdCsrJyYGPjw8mTZqEDh06FNouIyMDGRkZef+emJgIBwcHJCQkwNLSUh2pys3T0xPm5uYqXyeYkZGBWrVqwdnZGbt27VJpX5pG//8YFUtLy7ybLerXrw8PDw+ZrxNjjDHGdI1ODFvs27cPly9fxvz58+Hm5lbg7kYAMDY2hqWl5RcvbaeuHbAlZZQO+GfX0PTp0xEaGoorV64gLS0NDx484PV0jDHG9JpOjNQpKjExEVZWVlo9Urd7924MHDgQHz9+hLW1tUr6KEmjdLmkUikaNGiAWrVqYfbs2WjRogX++usvtGzZUtOpMcYYYyqhEyN1+szJyQnAP2u+VEWTO141RSwWw9/fH0eOHMH27dshFov5XCvGGGN6jYs6DatVqxbMzMxUNgWbkZGBRYsWYcCAAahbt65K+tBWAwYMQNWqVbF69WrUrl0771gcxhhjTB9xUadhBgYGaNy4scqKupK0lu6/DA0N8cMPP4CIeD0dY4wxvcdFnRZQ1WaJkjxKl+vrr79G1apV0b59e02nwhhjjKmUflzNoOOcnJywbt06pKamCjpFWJJH6XKZmJjg0aNHenMLCWOMMVYYHqnTAk5OTpBKpbh9+7ZgMRMSErBw4cISPUqXiws6xhhjJQEXdVqgYcOGkEgkgk3BEhG++eYbJCUlYcGCBYLEZIwxxph24yEMLWBsbIz69esLVtStWrUKhw4dQmBgIKpVqyZITMYYY4xpNx6p0xJCbZb466+/MHXqVEyePBk+Pj7KJ8YYY4wxncBFnZZwcnLCnTt3kJWVpXCMuLg4+Pn5oXnz5vj5558FzI4xxhhj2o6LOi3h5OSEjIwMPHjwQKHnpVIphg0bhuTkZOzduxeGhoYCZ8gYY4wxbaYTRV10dDTatWsHV1dXdOvWDcnJyZpOSXBNmjQBAIWnYJctW4ajR49i+/btqFy5soCZMcYYY0wX6ERRV6dOHYSHh+PChQto2bIlAgMDNZ2S4CwtLVGjRg2FirqwsDBMnz4dP/30E7y8vFSQHWOMMca0nU4Udf+eSkxNTdXbc9cU2Szx4cMH9OvXD23btsX8+fNVlBljjDHGtJ1OFHUAcObMGTg5OSE0NBQ1atQosE1GRgYSExO/eOkSJycnREZGgohkai+VSjF48GBkZWVhz549fMguY4wxVoJpVVEXGxsLZ2fnfK+4uDh4enri1q1b8PX1xR9//FHg8wEBAbCyssp7OTg4qPlPoBwnJyfEx8fj2bNnMrVftGgRzpw5g507d6JChQqqTY4xxhhjWk2rhnbs7e0RFhaW7+cZGRl5/2xlZYXMzMwCn/f398fkyZPz/j0xMVGnCjsnJycAwI0bN4o9NDgkJARz5szB7Nmz4enpqY70GGOMMabFRCTrXJ8GHT16FEuXLoVYLIaNjQ22bNki08X3iYmJsLKyQkJCAiwtLdWQqfIqVaqE169fw9TUFNbW1ihbtiysra2/+OcyZcrgl19+QcOGDXHq1CkYGBhoOm3GGGOMaZhOFHWK0sWi7u7du7h16xY+ffqEuLi4Qv9v+fLlcf78edjZ2Wk6ZcYYY4xpAS7qGGOMMcb0gFZtlGCMMcYYY4rhoo4xxhhjTA9wUccYY4wxpge4qGOMMcYY0wNc1DHGGGOM6QG93v1KREhKSkKpUqUgEok0nQ5jjDHGmMrodVHHGGOMMVZS8PQrY4wxxpge4KKOMcYYY0wPcFHHGGOMMaYHuKhjjDHGGNMDXNQxxhhjjOkBLuoYY4wxxvQAF3WMMcYYY3qAizrGGGOMMT3ARR1jjDHGmB7goo4xxhhjTA9wUccYY4wxpgf0uqgjIiQmJoKvt2WMMcaYvtProi4pKQlWVlZISkrSdCqMMcYYYyql10UdY4wxxlhJwUUdY4wxxpge4KKOMcYYY0wPcFHHGGOMMaYHuKgr4R48eIDQ0FBNp8EYY4wxJXFRV4IFBQWhWbNm8PT0xMWLF5WOl5ycjISEBAEyY4wxxpi8uKgrgYgICxYsQK9evdClSxc4OzujX79+ePv2rcIxP3/+jBYtWqB+/fp48OCBgNkyxhhjTBZc1JUwKSkp6NevH2bNmoV58+Zh37592LNnD0QiEfr164esrCy5Y2ZmZqJ379748OEDLC0t4erqirt376oge8YYY4wVhou6EuTFixdwcXHB8ePHcejQIcyePRtisRj29vbYt28fLl++jOnTp8sVk4gwcuRIXL58GUFBQbhw4QLs7Ozg5uaGqKgoFf1JGGOMMfZfXNSVEOHh4WjRogXi4uJw+fJl9OrV64v3nZ2dsXTpUixbtgyHDh2SOe6CBQuwbds2bNmyBc7OzrC1tUVISAgqV64Md3d3RERECP1HYYwxxlgBuKgrAf7880+4u7ujbt26uH79OhwdHQtsN2nSJPj6+uKrr77Cw4cPi427c+dOzJ49G/Pnz8eAAQPyfm5tbY1z586hdu3a6NChA65evSrYn4UxxhhjBRORHt92n5iYCCsrKyQkJMDS0lLT6ahddnY2pk6dipUrV2L06NFYtWoVjIyMinwmKSkJLVq0gKGhIa5evQpzc/MC2126dAkdO3bEwIED8eeff0IkEuVrk5iYiG7duiEyMhLHjx+Hi4uLIH8uxhhjjOXHI3V6iojQs2dPrFmzBmvXrsW6deuKLegAoFSpUjh06BCePn2KMWPGoKCa/+HDh/Dx8UG7du2wfv36Ags6ALC0tMTJkyfRokULdOnSBSEhIUr/uRhjjDFWMC7q9NSZM2dw/PhxHDx4EGPHjpXr2fr162PDhg3YsWMH1q1b98V7Hz9+RLdu3WBra4uDBw8WWyiam5vj2LFjcHFxQbdu3XDq1Cm5/yyMMcYYKx5Pv+opLy8vvHv3Djdu3Ch0JK04EydOxLp16xAWFoaWLVsiPT0dHTt2xMOHD/HXX3+hWrVqMsdKT09H3759cfr0aRw8eBDdu3dXKCfGGGOMFYyLOj0UExODevXqYdu2bRgyZIjCcTIzM+Hq6orXr18jIiICEydORFBQEEJDQ9G6dWuF4g0YMCDvJgsPDw94eHigXbt2ha7dY4wxxphsuKjTQ99++y0OHTqE58+fw9jYWKlYr169gpOTEyQSCWJjY7F//374+voqHC8rKws7d+7EmTNnEBISgtjYWBgaGqJ169Z5RV6rVq2Uzpsxxhgrabio0zNxcXFwcHDAjz/+iNmzZwsS89y5c+jatSsWLlyIadOmCRIT+GczR0xMDEJCQhASEoLQ0FB8/vwZpqamaNeuHebPn6/QiCBjjDFWEnFRp2eWLFmCWbNm4eXLl7C1tRUsbkpKisqnSKVSKW7fvo2QkBCsW7cO5cuXx4ULF1TaJ2OMMaYvJJpOgAknKysLq1evxqBBgwQt6ACoZc2bWCxGkyZN0KRJE1hYWODbb79FXFwcypYtq/K+GWOMMV3HR5rokcDAQLx69QrfffedplNRWvfu3ZGTk4OTJ09qOhXGGGNMJ/D0qx5p27YtTExM9OaQ3+bNm6NWrVrYvXu3plNhjDHGtB6P1OmJv/76C1euXMGkSZM0nYpgvL29ceLECWRlZWk6FcYYY0zr6UxRFxERARcXF7i6usLPz48/6P9j5cqVqFGjBrp166bpVATj7e2NhIQEhIWFaToVVsK8e/cOU6dOxcWLFwu8Ko8xxrSRzhR1FStWxKlTp3DhwgXUrFkTQUFBmk5Ja7x69Qr79+/HxIkTYWBgoOl0BOPk5IQKFSrgyJEjmk6FlTCBgYH45Zdf4Orqinr16mH58uX4+PGjptNijLEi6UxRZ29vDzMzMwCAoaEhJBLeuJtr7dq1MDMzw9dff63pVAQlEonQvXt3HDlyhEdLmFrduXMH9erVQ2hoKJycnODv74+KFSti4MCBOH/+PP/3yBjTSjpT1OV68eIFzp49W+DdoRkZGUhMTPzipe9SU1Oxfv16DB8+HKVKldJ0OoLz9vbG33//jQcPHmg6FfYvYWFhSEpK0nQaKhMdHQ1HR0e4ublh9+7dePXqFRYtWoSIiAi4u7ujbt26WLZsGT58+KDpVBljLI9OFXWJiYkYMmQINm/eDENDw3zvBwQEwMrKKu/l4OCggSzVa8eOHYiPj8eECRM0nYpKdOjQAaampjwFq0VOnjwJFxcXTJ48WdOpqAQRITo6Gg0bNsz7mY2NDaZMmYKYmBicP38ezZs3x4wZM1CxYkX4+Phg586dJeJLJGNMu+nMkSY5OTnw8fHBpEmT0KFDhwLbZGRkICMjI+/fExMT4eDgoLdHmhARGjRogLp16+LQoUOaTkdlevTogfj4eFy8eFHTqZR47969g6OjI7KyspCcnIwnT56gUqVKmk5LUG/fvkWFChUQGBgIHx+fQtt9+vQJ27dvx969e3H16lUYGxujc+fO8PX1RY8ePWBlZaW+pBljDDo0Urdv3z5cvnwZ8+fPh5ubG/bu3ZuvjbGxMSwtLb946bMzZ87g/v37enWMSUG8vb0RHh6OT58+aTqVEk0qlWLYsGEQiUS4du0azM3NsXz5ck2nJbjo6GgA+GKkriDW1taYNGkSrly5gufPnyMgIAAfPnzA0KFDYWtrC29vb2zbtg3x8fFqyJoxxnRopE4R+n74sJeXF2JjYxEREQGRSKTpdFQmd+Rk+/btGDx4sKbTKbGWL1+OKVOm4OTJk+jcuTNmzZqFFStW4Pnz57C2ttZ0eoJZsWIFZsyYgaSkJIV2k798+RIHDx7E/v37cfnyZRgaGmLEiBFYu3atCrJljLH/ozMjdexLMTExOHHiBCZNmqTXBR0AlC9fHs2bN8fRo0c1nUqJdfPmTfz000+YPHkyOnfuDACYOHEipFIpVq9ereHshHXnzh00aNBA4eOBHBwcMGnSJISHh+PVq1cYO3Ysfv/9dx5pZoypHBd1OmrVqlWws7NDv379NJ2KWnh7e+PkyZN86LQGJCcnY8CAAWjUqBEWLVqU93MbGxuMHDkSq1at0qudsP/dJKGMihUrYuzYsQCAyMhIQWIyxlhhuKjTQXFxcdi6dSu+/fZbGBsbazodtci9XeLSpUuaTqXEmThxIl6/fo3du3fn++9typQpSEpKwh9//KGh7IQllUpx9+5dwYo6AKhVqxbMzMxw69YtwWIyxlhBuKjTQTt27EBWVhZGjx6t6VTUpkmTJqhYsSIfbaJme/fuxebNm7F69WrUrl073/uVK1fG4MGDsXz58i92nuuqZ8+eITU1VdCizsDAAI0bN+aijjGmclzU6aCgoCB07NgRdnZ2mk5Fbfh2CfV79uwZRo0ahf79++Orr74qtN2PP/6It2/fYtu2bepLTkVk3fkqr6ZNm3JRxxhTOS7qdMznz59x8eJF9OjRQ9OpqJ23tzceP36MmJgYwWO/evVKr8/6k1d2djYGDhyIsmXLYt26dUVuxqlbty569+6NxYsXIzs7W41ZCi86OhqlS5dGhQoVBI3r5OSEBw8eIDU1VdC4jDH2b1zU6ZgTJ04gJyenwGvS9J2Hh4dKbpcgIgwYMAB9+vTB4sWLBY2tq+bNm4dr165h165dMh2i6+/vj8ePH+PAgQNqyE51cjdJCL2j3MnJCVKpFLdv3xY0LmOM/RsXdTrmyJEjaNasmd6d4i8LU1NTeHp6Cl7U7dy5E2FhYejTpw9++uknvTuiQ14XLlzAwoULMXfuXLRp00amZ5o1awZPT0/8/PPPOj09fufOHTRq1EjwuA0aNIBEIsHNmzcFj80YY7m4qNMhmZmZOHHiRImces3l7e2Ny5cvC3bmV2JiIqZNmwZfX1/s378fU6ZMwcSJE/Hnn38KEl/XxMXFYfDgwWjfvj38/f3lenb69OmIiorCiRMnVJSdamVmZiImJkbw9XTAP7fdNGjQgNfVMcZUios6HXLp0iUkJCTA29tb06loTLdu3SCVSnH8+HFB4s2bNw+JiYlYvnw5RCIRli5dirFjx2LEiBHYvXu3IH3oks2bN+PTp0/YsWOH3Ifvurq6onXr1ggICFBRdqr16NEjZGdnq6SoA/6ZguWijjGmSlzU6ZDg4GBUqlQJTZo00XQqGlO+fHm0aNFCkCnYu3fvYuXKlZg5cyYcHBwA/LPLds2aNRg6dCiGDBmCoKAgpfvRJWFhYWjdurVC0/sikQj+/v4ICwvTyfMEc3e+NmjQQCXxnZyccOfOHT5AmzGmMlzU6QgiQnBwMHr06KH314IVJ/d2iczMTIVjEBHGjx+P6tWrY/LkyV+8JxaLsXHjRvTu3Rv9+vXDqVOnlE1ZJxARwsPD0a5dO4VjdO/eHQ0aNNDJ0bro6GiUL19eZffYOjk5ITMzE/fv31dJfMYY46JOR0RHR+PZs2clej1dLm9vbyQlJSk1GrRv3z6cP38eq1atKvBWDolEgh07dqBTp07w8fHBhQsXlElZJzx69AgfPnxQqqgTi8Xw9/fHiRMndO5aLCGvBytI7gg7T8EyxlSFizodERwcDAsLC7i5uWk6FY1r3LgxHBwcFJ6CTU5OxpQpU+Dj44MuXboU2s7IyAj79++Hs7MzunfvjqtXryqask4IDw+HSCSSecdrYfr164dq1arh559/Figz9VDVztdcpUqVQq1atbioY4ypDBd1OiI4OBhdunQpMXe9FkXZ2yXmz5+PT58+YcWKFcW2NTExQVBQEJo0aYKuXbvq3OiTPMLDw9GoUSOZzqUrikQiwbRp07B//348evRIoOxUKyUlBU+ePFHpSB3wzxQsH2vCGFMVLup0wNu3b3Ht2jWeev2X7t2748mTJ3KvT4qJicGKFSvg7++PqlWryvSMubk5jh07hpo1a8LT0xNPnjxRIGPtp+x6un/7+uuvYWNjgyVLlggST9Xu378PIlJLURcZGQmpVKrSfhhjJRMXdWpy8+ZNNGnSBO/fv5f72aNHj0IsFsPLy0sFmekmDw8PmJmZyTUFS0SYOHEiHBwc8MMPP8jVn6WlJU6dOgWJRIJffvlF3nS13sePHxETEyNYUWdiYoJx48Zh9+7dSm1oUZfcna/169dXaT9OTk5ISkrS2y8GjDHN4qJOTXbt2oWoqCgsWrRI7mePHDkCZ2dnle3K00UmJiZy3y5x6NAhnDlzBitXroSJiYncfZYtWxbDhw/Hjh07kJKSIvfz2uzy5csAIFhRB/yzoSUlJQXh4eGCxVSV6OhoVK9eHebm5irtx8nJCQBvlmCMqQYXdWpy7NgxWFpa4vfff8fz589lfi41NRVnzpwp0QcOF8bX1xfh4eFo1qwZVq1ahY8fPxbaNiUlBd9//z26deum1L25I0aMQFJSEvbt26dwDG0UHh6OChUqoEqVKoLFdHR0hJ2dHU6ePClYTFVR9c7XXLa2tqhQoQIXdYwxleCiTg2ePHmCmJgYrFmzBqVLl8bcuXNlfvbs2bNIT0/n9XQFGDRoEA4fPowqVapgypQpqFChAnr16oXDhw/nO+A1ICAA79+/x8qVK5Xqs2rVqujcuTPWr1+vVBxtEx4eDmdnZ0HPQBSLxejcubNOnPOn6p2v/8Y3SzDGVIWLOjU4ceIEDA0N0bNnT8yaNQvbtm3D3bt3ZXo2ODgYderUQe3atVWcpe4RiUTo0aMHDh06hLdv3+KXX37Bixcv4OPjgwoVKmDSpEmIjIzEo0ePsHTpUvzwww+oUaOG0v2OGjUKf/31F6KiogT4U2heeno6rl+/LujUa64uXbogKioKb9++FTy2UOLi4vDmzRu1jNQBQNOmTXHz5k2Fdm4zxlhRuKhTg+PHj8PFxQWWlpYYNWoUKleujJkzZxb7nFQqxZEjR3iUTgblypXDhAkTEBERgdu3b2PYsGHYs2cPnJyc0LRpU5QvXx4//fSTIH11794d9vb22LBhgyDxNC0iIgKZmZkqKeo8PT0hEolw+vRpwWMLJfcLlrqKOicnJ7x//16rC13GmG7iok7F0tLSEBISkrdz1cjICP/73/8QFBSEv/76q8hnr127hvfv33NRJ6dGjRph2bJlePXqFY4ePYrevXtj8+bNMDMzEyS+oaEhvvnmG2zfvh2pqamCxNSk8PBwmJubo3HjxoLHLleuHJo3b67V6+qio6MhkUjUNhrOmyUYY6rCRZ2KhYaGIj09/YvjSAYOHIgGDRrA39+/yCmY4OBgWFtbK33Cf0klkUjQrVs3bN26Fe7u7oLGzt0wsXfvXkHjakJ4eDhatWoFiUSikvidO3fGmTNnkJOTo5L4yoqOjkadOnVgZGSklv6qVKmCMmXKcFHHGBMcF3Uqdvz4cVSrVg1169bN+5mBgQEWLVqE0NBQnD17ttBng4OD0b17dxgYGKgjVSaHatWqoVOnTvjjjz80nYpSiAiXL19WydRrri5duuDTp0+IiIhQWR/KUNfO11wikQhNmjThoo4xJjgu6lSIiHDs2DF4eXnl21Xo7e2NNm3awN/fv8DT5R8/foy7d+/y1KsWGzVqFK5evYrbt29rOhXEx8cr9NzDhw/x8eNHODs7C5vQv7Rq1QpWVlZaOQVLRGov6gDeAcsYUw25i7q0tDS8fv06389l3c1Zkjx48ADPnj0r8CYIkUiEgIAARERE4ODBg/neP3LkCIyMjNCpUyd1pMoU4O3tDTs7O41vmLhw4QJsbW0RExMj97NhYWEQi8Vo3bq1CjL7h0QiQceOHbXyaJO3b98iLi5ObceZ5HJycsLTp08VLsYZY6wgchV1Bw4cQO3ateHl5QVHR8cvFvoPGTJE8OT+a+rUqXBxccGgQYOUvnro7t27CAsLEyizgh0/fhwmJiZwc3Mr8H1XV1d06dIFM2fORHZ29hfvHTlyBB4eHrCwsFBpjkxx2rJh4syZM8jKylKouAwPD0ejRo1gaWmpgsz+T+fOnXH16lV8/vxZpf3IK/d6MHWP1DVt2hQAEBkZqdZ+GWP6Ta6ibsGCBbh58yaioqLw559/4ptvvsGuXbsAQOVnLt26dQux/6+9+w6rum7/AP4+rMNGpgM1wIWLBFEBQTE1UFAcuFHJTFtmylOKuSrNNEdqy8xUVBB3aubo5IjhgoOimHuLCxVENuf+/eHvkMQ6+8u4X9fF9dA5n3E/X/Vw85n37+Pvv/9GmzZtsG3bNrXaW7BggdLXTCnr999/R48ePSrddfnVV1/h0qVLWLduXclrT58+xdGjR3nqtQZ45513kJmZKegNE/JfTtatW4e8vDyl6sbHx2t1PZ1cQEAAZDIZJBKJ1vtSxrlz52BiYgJnZ2ed9tuqVSuYmJggOTlZp/0yxmo3pZK6wsJC2NvbAwA8PT1x7NgxrFq1Cl988YVGT6IvT2JiYslUZGBgYMldla/Kz89HVlZWqa+K/PLLL+jTpw8GDhyIqKgojceblZWFv//+G0FBQZWWc3d3x7Bhw/D5558jNzcXALB//34UFxfz1WA1gNAbJgoLC3Hy5ElMnDgRT548wY4dOxSu++jRI1y6dEknSV3Tpk3Rpk2bareu7ty5c2jbti309HS7vFhfXx9ubm68ro4xplFKfZI5ODiUWhRua2uLQ4cO4cKFC1pfLP7s2bOSKSIrKys8efKkTJkFCxbAysqq5KtJkyYVtmdsbIwtW7YgPDwcY8eOxdKlSzUar0QiQWFhIfr06VNl2S+//BLp6en44YcfALzc9erh4YHGjRtrNCamHRMmTEBiYiJSU1N13rdUKkVubi7eeust+Pv7K5Vcyn8x0uYmiVcFBARg//791eomBSE2ScgJvVniyJEj2LVrl2D9M1bbJScn47ffftNpn0oldRs2bICDg0Op14yMjBATE4OjR49qNLD/sra2Lhl5e/bsGWxsbMqUiYyMRGZmZsnX7du3K23TwMAAq1evxvTp0xEREVHluXHK2LdvH1xdXeHi4lJl2RYtWuDtt9/GV199hcePH+OPP/7gqdcapH///oJtmIiLi4OxsTHc3d0xYcIEHD16VOENE3FxcWjcuDGaNm2q5ShfCgwMxN27d5GWlqaT/qoik8lw/vx5QZO6f/75p2SEXpeuXr2Kfv36YeDAgRg5cmS1W+tYm+Xk5CAzM1PoMJgOTJ8+He+9955O+1QqqWvcuDEaNGhQ7nvansLx8vIquWrowIED5fYnFothaWlZ6qsq8l2oS5Yswddff40JEyaU2bSgLCLCvn37yt31WpHZs2cjJycHoaGhyMzM5KSuBjE0NMRbb72FqKgonW+YkB8cbGRkhEGDBsHW1lbh5FJX6+nk/Pz8YGxsXG2mYK9fv46cnByd73yVc3d3R3Fxsc5HeIuKijB69Gg4ODjgl19+wb59++Dm5obDhw/rNI7a6O7du9i0aROWLVuGyMhIvP322+jXrx+6dOkCFxcXmJubw8zMDLa2tpg9e7baG/5Y9fX06VMcPnwY6enpur0SkFS0bds2VauqLCIignx9fWnkyJGUn59fZfnMzEwCQJmZmQq1v379etLX16eBAwdSbm6uynFKpVICQBKJRKl6n376KQGgxo0bk0wmU7l/pntXr14lALRu3Tqd9SmTyah+/fo0Y8aMktciIiLI1ta2yr+/ubm5ZGRkRCtWrNB2mKUEBgZS7969ddpnRXbt2kUA6O7du4L0n5ubS/r6+vTTTz/ptN+5c+eSvr4+JSQkEBHRzZs3yd/fn0QiEUVERFBeXp5O46ktXrx4Qa+99hoBIDMzM3J2dqYuXbpQcHAwjRs3jqZPn05Lly6ljRs30qxZs8jAwIDc3d3p3LlzQofOtGDjxo0EgADQ3r17ddavykmdkZERLV26tNIyQicmyiZ1RES7d+8mY2Nj6tGjh1L1XjV//nwyNzdXKPF8VUZGBtWrV48+/PBDlfplwurduzf5+PjorL/Lly8TANq3b1/Ja//88w8BoE2bNlVa9++//yYAlJSUpO0wS1m2bBmJxWJ68eKFTvstz7x588ja2lrQz6l27drRxIkTddZfYmIi6evr05w5c0q9XlxcTN988w0ZGRmRm5sbnT17Vmcx1RYzZ84kIyMjunDhgkLlT58+TW3atCGxWEyLFy+moqIiLUfIdGnw4MHUqVMnsrGxoS+++EJn/aqc1O3fv58sLS1p0qRJZT4Ui4qKaO3atdSqVSu1A1SHKkkdEdGxY8fIysqKPDw86MGDB0r327VrVxo4cKDS9YiIrl27RllZWSrVZcLaunUrAaDU1FSd9Ldu3ToSiUT09OnTUq/7+/tT9+7dK6379ddfk5mZGRUWFmovwHJcuHChTCIqlOHDh5Ofn5+gMYwZM4Y6deqkk76ysrLIxcWFvLy8KvxzT0lJobZt25JYLKalS5dScXGxTmKr6S5dukRGRkY0a9Ysperl5uZSREQEiUQi8vPzo2vXrmkpQqZLOTk5ZGZmRl999RX16tWLQkJCdNa3ykkd0csPgMaNG9OAAQMoJyeH8vPz6YcffiAnJyeytram2bNnaypOlaia1BG9/P/WoEEDatGiBd2/f1/hehkZGaSnp0erV69Wuk9Ws+Xn55ODgwNNmjRJJ/2NHz+e2rVrV+b16OhoAkD//PNPhXWDg4OpV69e2gyvXDKZjF577TX66KOPdN73f7Vr147ee+89QWNYtmwZGRsb6yS5fuutt8jc3JyuXLlSabnc3FyaMmUKAaCePXvS7du3tR5bTSaTySggIICcnJxUHoE+cuQIOTk5kbm5Oa1evVrjo8dnz55VeuaIqW7Pnj0EgNLS0mjatGnUpEkTnfWtVlJHRHTnzh1yc3MjNzc3atSoEdnb29P8+fOrxWiTOkkd0ct1Ug0aNKAePXoo/KEbExNDAOjOnTsq9clqtmnTplG9evV0Mr3YunVrevfdd8u8npubS7a2tjR16tRy6xUXF5ONjU2ZKThdmTBhArVs2VKQvuXy8/PJwMCAvv/+e0HjOHLkiE5Gd7dt20YA6Ndff1W4zqFDh8jR0ZFsbGzo3r17WoyuZtuxYwcBoN9++02tdrKysmj8+PEEgIKCgig9PV3t2IqLi2n27NkEgL755hu122OKGTduXMlMZWxsLAGghw8f6qRvtZK6Z8+e0RdffEG2trZkYmJCpqam1WothrpJHdHLD109Pb1Si9ErExYWRh06dFC5P1azXblyhQDQ+vXrtdrP48ePCQBt2LCh3PenTp1a4YaJtLQ0AkAHDx7UaowVkf8QFHKqKTU1lQDQ0aNHBYuB6OVnKACKiorSWh937twha2trGjx4sNIjQA8ePCBjY2P6+uuvtRRdzZadnU1NmzaloKAgjY2u7dmzh+rXr0+2tra0efNmldt98eIFDR06lACQvb09BQcHayQ+VrmioiKys7OjadOmEdG/a5/379+vk/5VTuqmT59OVlZW5OLiQqtWraLs7GwaO3YsOTg40MmTJzUZo8o0kdQRvVx/BID27NlTaTn5H6aiCSCrnXr16kWenp5aXYC/e/fuShMj+YaJ6OjoMu+tXr2a9PT0BBtNf/bsGenr69OPP/4oSP9E/46oZ2RkCBaDnIuLC02ZMkUrbRcXF1PPnj2pUaNG9PjxY5XaGDFiBLVu3VrwjW/V0YwZM0gsFlc5pa2sR48e0ZAhQwgADRw4UOlRu3v37lGnTp3I1NSUtm/fTp9//jlZW1vzGkkdOHr0KAGg48ePE9HL6XkrKyuaP3++TvpXOalzdXWl9evXl9mxM3PmTDIzM6Ndu3apHZy6NJXUFRcXU//+/alevXqVji4cP36cAFBcXJxa/bGa7fDhwxUmVJoybdo0atSoUaU/aLt3717uhonw8HDBR5P9/PxowIABgvX/2WefUaNGjQTr/1WDBw8mf39/rbS9ZMkSAkCHDh1SuY0DBw4QADpx4oQGI6v5Ll68SIaGhlpdxrB161ayt7cnGxsb2rhxo0KJdXJyMjk6OpKjo2PJ7naJREIA+PgUHZgyZQo1bNiwVALt7+9PgwcP1kn/Kid1lf3lWr16NYnFYlq5cqWqzWuEppI6IqInT56Qs7MzdezYscIzwGbPnk3W1tY631HIqp8BAwZQ06ZNKScnRyvtd+3alYYMGVJpmU2bNpW7YaJ58+aCH5szb948srCwEGzxdkhICL355puC9P1f8+bNIysrK42PhKWkpJCRkVGFaysVVVRURI6OjvT+++9rKLKaTyaT0ZtvvknOzs5a+zcu9+jRIxoxYgQBoH79+lV6ruKOHTvI1NSUPD09S5XLzs4W5EzEukYmk5GTk1OZDVgRERHk5OSkkxjU3ihRkX379pGFhYW2mleIJpM6IqKkpCQSi8XlLk4nIvL09KThw4drpC9Ws126dIkMDQ21MuSel5dHYrGYli9fXmk5+YaJiIiIktfu379PACgmJkbjcSnj9OnTBICOHDkiSP/NmjVTO9nRlN9//50A0NWrVzXWZk5ODrVt25bc3Nw0cpjwtGnTyNramg8m/n/yjSdVLcnRpF27dlGDBg3IysqKfv3111K/BMhkMlqwYAEBoCFDhpS7UatTp04UFhams3jropSUFAJABw4cKPW6/BdsdZZ7TJs2rWSdXmW0ltQRkc4PNv0vTSd1REQ///xzuQvU09PTK124zuqeKVOmkLm5uUZ2sb0qPj6eANDp06erLPvfDRPyTQq3bt3SaEzKKi4uJnt7e4qMjNR539nZ2SQSiZTaCapN8s8OTd7S89FHH5GxsbHGptvkm2u2bt2qkfZ0IT8/n3r16qXxX2Cys7OpcePG1K9fP422q4iMjAwaM2YMAaDAwEC6desW5eXllbw2e/bsCtfNTZkyRWejRXXVnDlzyMrKqswMhHyN859//qly287Ozgodl6XVpE5o2kjqZDIZjRkzhkxNTUsdQ7B27VoSiUQ627bMqr8nT56QjY0NjR8/XqPtLly4UOGDg+WH/crX90VEROj0zKTKjBo1itzd3XXe76lTpwhAtdnQRUTUoEED+uyzzzTSljwB+/bbbzXSnlznzp0pKChIo21qU1JSEgEgPT09io2N1Vi706dPJ2NjY0F3b+/du5caNWpEFhYW5O7uTmKxuMo1vNu3bycAfO6gFr3++us0cuTIMq8XFxeTubk5LVy4UKV2r127RgAU2qugp9KFsXWYSCTCjz/+iGbNmiE0NBTPnz8HAOzbtw+dO3eGvb29wBGy6sLa2hpz587FmjVrcObMGY21Gx8fDy8vLxgYGFRZ1tXVFd27d8fPP/9cUrdr164ai0UdgYGBkEqlePDggU77TU1NhUgkQps2bXTab2Xc3d0hlUo10tamTZtQr149vPvuuxppTy48PBz79+9X+c/rzJkzGD9+PGQymUbjqohUKoVIJEJoaChGjhyJHTt2qN3mP//8gyVLliAyMhLOzs4aiFI1QUFBOH/+PIYOHYqnT5/iyJEjGDFiRKV15P/u4+PjdRFinXP9+nWcOXMGAwcOLPOenp4eOnTogOTkZJXalkgk0NPTQ/fu3asurFLaWENoY6RO7uLFi2RhYUFDhw6lgoICsrKyos8//1zj/bCaraCggFq1akU9e/bUyEJ4mUxGtra2St3WIl/PIZVKydDQUPANTHIPHjzQ+hlt5Zk6dSo1a9ZMp31WZcaMGdSwYUO125HJZOTs7Kzx0WGil1N/RkZGtGTJEpXi8vHxIQB0/vx5jcdWng8//JBatWpFRUVFNHz4cDIwMFDrgGCZTEa9evUiFxeXCjfLVXctWrQQfJNUbbV06VISi8X0/Pnzct+fPHkyNW/eXKW2hw8fTp07d1aoLI/Uqahly5b49ddfsWXLFowZMwaZmZkICgoSOixWzRgaGmLx4sWQSCT4/fff1W7v4sWLyMjIUGq0bdCgQbC1tcW7776LwsJC+Pr6qh2HJjg4OMDDwwMHDhzQab8pKSlo27atTvusiru7O9LT09UetTxx4gSuX7+OkSNHaiiyf9nY2CAkJATr1q0DESlVd+fOnUhISACAkv/VNqlUCnd3d+jr62PDhg0YMGAAQkNDsW/fPpXa27ZtG/7880+sWLECxsbGGo5WN3x9fREXFyd0GBqXl5eHnTt3oqioSLAYdu3ahd69e8Pc3Lzc9z08PHDlyhVkZmYq1S4R4a+//kLPnj0VrlBraXOkTu7jjz8mAFS/fn0+2JGVSyaTUc+ePalVq1ZUUFCgVlu//PIL6enpKf13eurUqQSALCwsypwtKaTIyEiys7PT2b+dR48ekYGBAa1YsUIn/SlKfhPJvn371Gpn0qRJ1KhRI639Ge/du5cAUHJyssJ1CgoKqEWLFhQQEEAdOnSgcePGaSW2V5W3hqmgoIAGDBhAYrG4zO7Eqhw/fpwcHR11ejG7NqxZs4b09PTo2bNnQoeiUT/++CMBoG7dugmyZvDhw4ekp6dHv/zyS4Vlzp07RwDo8OHDSrV99uxZpTZZ8EidmhYuXIjAwECEh4dDT48fJytLJBJh6dKluHTpEn766Se12oqLi4ObmxssLS2VqvfOO+8AALy8vKCvr69WDJoUGBiIx48fIykpSSf9bdu2DUSEoUOH6qQ/Rbm4uKBx48bYvn27ym0UFRUhNjYWw4cP19qfcUBAAOrXr49169YpXGfVqlW4cuUKFi1aBG9vb52M1F25cgXZ2dlwd3cvec3Q0BCxsbHo3bs3QkJCIJFIKm1DJpNh79696NatG7y8vGBubo7ly5drO3St8vX1hUwmw/Hjx4UORaMSEhLw2muv4dq1a3j99dexZ88enfYv769fv34VlmnVqhVMTEyUXlcnkUggFovh4+OjWAWlUsYaRhcjdXJ8hQ6ryvjx48nGxoaePHmichvqrIl57733tHrLhSoKCgrIzs6OPvnkE530161bNwoICNBJX8qaP38+GRsbq3ydl/zmB0WOulFHREQE2dnZKXRw9LNnz8jOzo7eeustIiLasGGDTq5nq+wS9by8PAoMDCQTE5Nyz0nMy8ujX3/9lVq3bk0AyMvLi3bs2FGtRrhVJZPJyN7enmbOnCl0KBolP1D98ePH1L9/fwJAkydP1tm5isHBweTn51dlOW9v73J3x1bV9htvvKFweU7qGNOR9PR0Mjc3V/meT/nGAqEPDta0Dz74gBwdHbX+Q/PWrVsEgNavX6/VflT18OFDMjIyUvnYg7Fjx1LLli21/gumfDpo586dVZaNjIwkExMTunPnDhH9O838+++/azXG6dOnk6OjY4Xv5+TkUK9evcjMzIz+/vtvInqZgC5cuJAaNmxIAKh///70999/17pf2AcOHKi1a+mE8PDhQwJAmzZtIqKXievy5cvJyMiIPDw86NKlS1rt//nz5yQWixXaQPTBBx+Qq6urwm0XFhaShYWFUofYc1LHmA7Nnz+fDA0NVfqgqS4HB2taYmIiASCJRKLVfhYtWkTGxsbV+vNgzJgx9Nprrymd4Obk5JCFhYXOduB7eHhUeXfvrVu3yNjYuNT5e7oaKQoICKDg4OBKy7x48YJ69OhB5ubm9N5775GFhQUZGRnR22+/TWlpaVqNT0hLliwhExMTwa7o07Tdu3cTgDLnBiYlJVHz5s3J3NycNm7cqLX+t27dqvCNMGvWrCGRSFThDtn/SkhIIACUmJiocDyc1DGmQzk5OdS0aVOVFlxHRERQ06ZNNR+UwGQyGTVr1qxkik5bOnToQKGhoVrtQ13yg5EVGQV71ZYtWwiA1kcl5JYvX04GBgaVHrYeHh5O9vb2ZT5/Q0JClJpOUpZMJiMHBweaNWtWlWWzs7OpW7duZGVlRdOmTav0XtXa4sSJEwSAjh8/LnQoGhEZGUn169cvd0Q1KyuLRo0aRQAoPDycsrOzNd7/qFGjyM3NTaGy8mvE5KPDVZk3bx5ZWloqdZ88J3WM6Vh0dDQBoL/++kupel26dKERI0ZoKSphzZkzhywsLLR2Obr8loUdO3ZopX1N8vLyop49eypVZ8CAAdSpUyctRVTWo0ePyNDQsML7h1NSUkgkEtH3339f5r2vv/6azM3NlfpBpYx79+4RANq+fbtC5QsLC2vsuXOqKCgoIBMTE1q8eLHQoWiEv79/paPGMpmM1q1bR6amptSqVSu6ePGixvrOz88nKysrmjNnjkLlCwoKFLq3W65Hjx5KX0fH2zUZ07Hhw4fDy8sLU6dORXFxsUJ1cnNzkZycXG1ug9C0sLAwPH/+HLt379ZK+zExMbCyskKfPn200r4mTZo0CRKJBGlpaQqVf/r0Kfbt26eVs+kqYmdnh6CgIKxfv77c9z/99FO0aNGiZNf1q3x8fJCdnY1z585pJTb5zRyv7nytjIGBQY09d04VhoaG6NKli1bPqyMiFBYWaq19uaKiIpw8ebLSnaEikQhjx45FUlIS8vPz8b///U9j/R89ehSZmZkYMGCAQuUNDQ3h5uam0G7/3NxcJCQkKH4+3f/jpI4xHZMfcXLmzBnMnDlToTqnTp2qVgcHa1rz5s3h5eWFjRs3arxtIkJ0dDQGDx5cI354h4aGokGDBvjuu+8UKr9jxw4UFhZi2LBhWo6stPDwcCQnJyM1NbXU6wcPHsTBgwexcOFCGBoalqnn6ekJAwMDJCYmaiUuqVQKKysrODk5aaX92kB+CDEpeYi0IvLy8uDv748hQ4ZovO3/Sk1NRU5ODry9vass6+rqilmzZmHPnj24dOmSRvrftWsXnJyc8Prrrytcx8PDQ6FjTeLj45Gfn89JHWM1gbe3NxYvXoyvv/4aq1atqrJ8XFwcLC0t0a5dOx1EJ4ywsDDs378fjx490mi7p06dwtWrV6u8G7O6MDIywsSJExEVFaXQ6fPR0dF444030LBhQx1E968+ffrAzs6u1GhdcXExPvnkE/j6+iIkJKTceiYmJnB3d9faeXVSqRQdOnSASCTSSvu1ga+vLx4/fqyx5EaOiDB+/HgcO3YMv//+O7KysjTa/n8lJibCwMAAHTt2VKj8yJEj4eDggGXLlqndt0wmw65duzBgwACl/q517NgRaWlpyMnJqbScRCJB/fr1lb79hpM6xgQyZcoUfPjhh3j//fervLooPj4e3t7e1ergYE2THwi8ZcsWjbYbExOD+vXro0ePHhptV5smTJiA/Px8rF27ttJy9+7dw+HDh3U69SpnZGSEUaNGYePGjSXXM23YsAFnz57FN998U+kPOm9vb62N1KWkpCg89VpXeXt7Q09PT+NTsPPnz8emTZuwcOFCFBUVVXnAs7oSEhLg7u4OExMThcobGxvjww8/xPr16/H48WO1+j59+jTu3buHgQMHKlXPw8MDMpkMZ8+erbScRCLBG2+8ofQvJ5zUMSYQkUiEb7/9FsHBwRg6dGiF6yxkMhkSEhJq7Xo6OXt7ewQGBmp0Cra4uBibN2/W6i0L2tCoUSOEhobi+++/h0wmq7BcbGwsDA0NMWjQIB1G96+xY8fiwYMHOHDgAHJycjBz5kwMGTIEXl5eldbz8fHB1atX8fDhQ43Gk5mZiatXr3JSVwVLS0u4ublpNKnbunUrZs2ahS+++AKffvopXF1dVb5nV1GJiYkKTb2+6t133wURKTRDUpmdO3fCzs5O8Zse/l+7du1gaGhY6bq6Z8+eISkpSempV4CTOsYEpa+vj5iYGLRt2xbBwcG4efNmmTJpaWl49uxZrU/qAGD06NE4fvw4rly5opH2jhw5gvv37wsykqWuSZMm4cqVKzhw4ECFZaKjoxEUFIR69erpLrBXdOjQAW5ubli3bh2WL1+Ohw8fYsGCBVXWk/8g1vRo3ZkzZwAovkmiLpOvq9OEU6dOYcyYMRg5cmTJOuG+ffvijz/+0Mq6PQB4+PAhrl27pnRSZ29vjzFjxuC7775Dfn6+Sn0TEXbu3Il+/frBwMBAqbpisRjt2rWrdF3dkSNHIJPJam9Sl5SUBD8/P3Tv3h1Dhw7Vya4axnTF1NQUe/bsgYmJCfr06YOnT5+Wej8+Ph76+vro0qWLQBHqTr9+/WBhYaGx0bro6Gg0a9YMnTp10kh7uuTt7Q0PDw+sXLmy3PcvXbqE06dPC5qwyncW7t69GwsWLMD777+PZs2aVVmvSZMmcHR01Pi6upSUFIjFYri6umq03drI19cXV65cwf3799Vq5/bt2+jfvz/c3d2xZs2akunCvn374u7du2U20miK/BcCZZM64OXSl/v372Pz5s0q9R0TE4OLFy8iLCxMpfpVbZaQSCRwcXFRabNPjUjqHB0dceDAARw9ehTNmzfHrl27hA6JMY1ycHDAH3/8gQcPHmDQoEGlfoOMi4uDu7s7zMzMBIxQN0xMTBAaGoqNGzeq/Rt+fn4+tm/fjhEjRtTIRfMikQiTJk3CH3/8gcuXL5d5PyYmBhYWFggKChIgun+NGjUKxcXF0NPTw6xZsxSqIxKJtLKuTiqVlkxvscrJR/7j4+NVbiM7Oxv9+/eHkZERdu7cWWp3ua+vL8zNzbU2BZuYmIiGDRuiadOmStd1dXVFUFAQlixZovTnzNOnTzFlyhSEhobijTfeULpv4OVmiXPnziEvL6/c9yUSiUqjdEANSeoaNGgAU1NTAC/PeVF2uJOxmqBVq1b47bffkJiYiLfffrvkwyY+Pr5OTL3KhYWF4erVqzhx4oRa7fzxxx/IzMyskVOvcsOGDYOtrS2+//77Uq+/ekyLoovEtaV+/fqYMWMGVq5cCVtbW4Xr+fj44NSpUygoKNBYLFKplKdeFdS4cWM4OTmpPAUrk8kQFhaGK1euYO/evahfv36p98ViMXr27KnVpM7b21vlX9imTp2K1NRUpTdzREZGIjc3F8uXL1epX+DlSF1RUVG5ZzXeu3cPFy5cUDmpq1E3Sty8eZN8fHyooKCg3Pfz8vIoMzOz5Ov27dt8owSrcWJjYwkAffbZZ3T37l0CQFu3bhU6LJ0pKioiR0dH+uCDD9RqZ8iQIdShQwcNRSWc6dOnk6WlZan7Ik+fPk0A6ODBgwJGph75nb8nT57USHt5eXlkYGBQ7i0WrHxhYWHk6empUt1PP/2U9PT0aO/evRWWWbVqFenr69PTp09VjLB8mrgVQyaT0euvv059+vRRuI78LtYVK1ao3C/Ry+si9fX16aeffirz3oYNGwgAPXjwQKW2q1VSl56eTl27di3zlZGRQZmZmdStW7dKr/iYM2cOASjzxUkdq2m++eYbAkD9+/cnAHTv3j2hQ9KpTz75hGxtbSv8Ba4qmZmZZGxsTIsWLdJwZLp38+ZN0tPTox9++KHktalTp1L9+vW1dtWWLuTl5ZFYLKZvv/1WI+0lJycTAIqPj9dIe3XBTz/9RPr6+gpfMC/366+/EgBatmxZpeVu3bpFAGjLli1qRFmW/Jcadf+so6KiCACdP3++yrIFBQXUvn178vT0pKKiIrX6JSJq3749TZgwoczr4eHh1L59e5XbrVZJXUWKioooODiY/vzzz0rL8Ugdqy1kMhl98MEHBIBcXFyEDkfnzp49SwBoz549KtWXf1jfvHlTw5EJY9CgQdSmTRuSyWRUVFREjRo1oo8++kjosNTm4+NDw4YN00hba9asIZFIpHSCUpedO3eOAFT5s/VVR44cIUNDQ5o4cSLJZLIqy7dr147Cw8PVCbOMlStXkqGhodp39ubn51PDhg1p/PjxVZZdtGgR6enpUVJSklp9yoWHh1PHjh1LvSaTyahp06b08ccfq9xujVhTt2XLFiQkJODLL7+Ev78/YmNjyy0nFothaWlZ6ouxmkgkEmH58uUYN24cxo0bJ3Q4Ote+fXu4ubmpvAs2Ojoafn5+Ki2iro4mTZqEtLQ0/PXXXzh27Bju3btXo9cKyvn4+GhsB6xUKkXLli1hbm6ukfbqgtatW8Pa2lrhdXVpaWkYNGgQunXrhpUrVyq0nk1+tEll5y0qKzExER4eHmpf+2dkZIRJkyZhw4YNlZ6ZePPmTcydOxeTJk2Ch4eHWn3KeXh4IDU1tdSa0qtXr+LWrVuqr6cDataaOmVlZmbySB1jNdSiRYvI2NiYnj17plS9Bw8ekL6+Pv34449aikz3ZDIZtWvXjkJCQujtt98mFxcXhUZJqrvt27cTALp9+7babXXt2lVjo351SXBwMPXq1avKcpcvX6aGDRuSm5sbPXnyROH2jxw5QgA0NsJFROTk5KTWaNarMjIyyNTUlObOnVvu+zKZjIKDg8nR0ZGysrI00icRUVxcHAGg5OTkktfk0+Hq5Cw1YqSOMVb3jBgxAvn5+dixY4dS9bZu3QqRSITQ0FAtRaZ7IpEIH374Ifbs2YPY2FiMHDmyRh7T8l+aOoRYJpPhzJkzvPNVBb6+vkhMTCy56q088tEjS0tLHDp0CNbW1gq37+PjA0tLS43tgr1//z5u3Lih0vl05bGxscFbb72F77//vtwjRnbu3Im9e/dixYoVsLCw0EifAEruJ371vDqJRILOnTurNcvISR1jrFpq3LgxevToofQUbExMDAICAmBnZ6elyIQRFhYGS0tLZGdn14qpVwBo2LAhnJyc1E7qrl69iuzsbE7qVODr64sXL15UeBfp/fv30atXL+jr60MikcDBwUGp9g0NDdG7d2+NJXXqHDpckcmTJ+Px48fYtGlTqdefP3+Ojz76CMHBwUrf8VoVMzMzuLq6liR1MpkMf/31l3pTr+CkjjFWjY0ePRqHDx/GnTt3FCp/48YNxMfHY8SIEVqOTPfMzMwwefJk9OjRA61btxY6HI3RxLo6qVQK4OXoB1OOp6cnxGJxuevqMjIy0KtXL+Tk5EAikcDR0VGlPvr27YsTJ04gIyND3XCRmJgIR0dHNGnSRO225Fq0aIH+/ftj6dKlpQ4jnjVrFp4+fYrvvvtOKyPjHTt2LLkD9uzZs8jIyOCkjjFWew0aNAhisRgxMTEKld+8eTNMTEwQEhKi5ciEMXfuXPz1119Ch6FR3t7eSE5OrvB0fUWkpKSgUaNGSo8isZcbDDt16lQmqcvMzERAQAAePXoEiUQCZ2dnlfsIDAyETCbDwYMH1Q235NBhTZs6dSrS0tJK7lpOTk7GypUr8fnnn+O1117TeH/Ay80SZ86cQVFRESQSCUxMTNT+/8ZJHWOs2rK0tERISIjCU7DR0dEICQnhHZA1iI+PDwoLC0tGLFTBN0mox9fXF3FxcSWjVC9evEDfvn1x7do1HDp0CK1atVKr/UaNGqFDhw5qT8EWFBTg9OnT8PHxUaud8vj5+cHT0xNLly5FcXExJk6ciHbt2mHy5Mka70uuY8eOyMvLw4ULFyCRSODr6wuxWKxWm5zUMcaqtbCwMJw9e7bUmp/nz5/j1KlTiIqKQmRkJAYMGIBWrVohNTW11qw3qyvc3Nxgamqq1ro6TurU07VrV6Snp+P69evIy8tDSEgIzp49i/3798PNzU0jffTt2xf79+9X62iTM2fOIC8vTysjdSKRCFOnTsWhQ4fwwQcfICkpCatWrdLqPcLy5QLHjx/HsWPH1J56BQARkZq3ZldjWVlZsLKyQmZmJp9Zx1gNVVhYiIYNG6JFixawsLDAhQsXSq2xa9KkCVq3bo3WrVujc+fOGDFiRK3YGVqX9OjRA9bW1krvdAaA9PR0NGrUCNu3b8egQYO0EF3t9+TJE9ja2mL16tX47bffIJFIsH//fnTr1k1jfcTHx8PX1xcnTpxA586dVWpjxYoV+OSTT5CVlaX2iFZ5CgsL4eLigjt37uDdd9/Fjz/+qPE+/qtly5awsLBAcnIyTp06BU9PT7XaM9BQXIwxphWGhoaIiIhAVFQUGjRogNGjR5ckca6urjzVWgt4e3tj7dq1ICKlE/KUlBQAvElCHTY2Nmjbti0mT56MoqIi7N69W6MJHQB06dIF9erVw759+1RO6hITE9GxY0etJHTAy8+aWbNmYfHixViwYIFW+vivjh07YvPmzahXr55GRpt5+pUxVu1FRkbiwoUL2LlzJ7766iuMHj0anp6enNDVEj4+PiXnjylLKpXCyspKrYX8DOjWrRvy8/MRGxuLgIAAjbdvYGCAgIAAtdbVJSQkaGXq9VUTJkzAP//8g3r16mm1Hzn5DRX+/v7Q19dXuz1O6hhjjAnKy8sLgGqHEEul0pKDXJnq5s+fj+TkZAwYMEBrffTt2xenT5+u9Equity7dw+3bt3SelIHAHp6ukuNOnbsCAAaWU8HcFLHGGNMYHZ2dmjZsqVK59XxJgnNsLa21timiIoEBASAiEqODVGGNg4drg68vLwQHh6usRtwOKljjDEmOG9vb6VH6rKysnD16lVeT1dD1K9fH56enipNwSYmJqJJkyYqH4BcXZmammLt2rVo0KCBRtrjpI4xxpjgfHx8cObMGbx48ULhOmfOnAEAHqmrQfr27YsDBw6guLhYqXraOnS4tuGkjjHGmOC8vb1RXFyMU6dOKVxHKpXCyMioVl2bVtv16dMHT58+xYkTJxSuU1BQgKSkJE7qFMBJHWOMMcG1adMGlpaWSq2rk0qlaNeunVYPiGWa1alTJ9ja2io1BSuVSpGfn6+VmyRqG07qGGOMCU5fXx9dunRRal1dSkoKT73WMPr6+ggMDFQqqUtMTISxsTGvnVQAJ3WMMcaqBR8fHyQmJkKRi44KCgpw/vx5TupqoL59+0IqlSI9PV2h8vJDh42MjLQcWc3HSR1jjLFqwdvbGxkZGbh8+XKVZc+fP4/CwkJO6mqgN998EyKRCPv371eoPG+SUBwndYwxxqqFLl26QCQSYc2aNSgqKqq0bEpKCkQikdbPVmOaZ2dnhy5duig0BXvnzh3cvn2bkzoFcVLHGGOsWqhXrx4+/vhjLFq0CB4eHpBIJBWWlUqlaNGiBV8VV0P17dsXBw8exMmTJ/Ho0aMKp9xr66HD2iIiRRYv1FBZWVmwsrJCZmYmLC0thQ6HMcaYAk6dOoWPP/4YCQkJ6N+/PxYvXowWLVqUKuPn5wdHR0ds3rxZoCiZOlJTU+Hu7l5yXp2ZmRmcnZ3h5OQEZ2fnku937tyJY8eOqXQvcF1kIHQAjDHG2Ks6deqEuLg4xMbG4tNPP0Xbtm3x0UcfYebMmahXrx5kMhlSUlIQHBwsdKhMRe3bt8fjx49x7do1XL9+HdevX8eNGzdw/fp1/Pnnn7hx4wZyc3MBAGFhYQJHW3PwSB1jjLFqKzc3F0uWLMGCBQtgamqKefPmoXv37mjdujX279+PgIAAoUNkWkBEePjwIW7cuIGWLVvC2tpa6JBqBE7qGGOMVXt3797FjBkzEBUVBVtbW2RkZODBgwdwcHAQOjTGqg3eKMEYY6zac3R0xPr163Hy5Em4urqiffv2nNAx9h88UscYY6zGISKIRCKhw2CsWuGROsYYYzUOJ3SMlVWjkrqYmBjY29sLHQZjjDHGWLVTY5I6mUyGbdu2oUmTJkKHwhhjjDFW7dSYpC46OhqhoaHQ06s45Pz8fGRlZZX6YowxxhirC2pEUldcXIwtW7Zg2LBhlZZbsGABrKysSr54VI8xxhhjdUW12v16//59hIaGlnn9nXfegb6+PsLCwuDp6YnTp0+XWz8/Px/5+fkl/01EKCgogJ2dHS+qZYwxxlitVq2SuopMmzYNUqkUenp6SExMxLhx47Bs2TKhw2KMMcYYqzZqRFL3qspG6hhjjDHG6qoal9QxxhhjjLGyasRGCcYYY4wxVjkDoQMQChHh+fPnQofBGGOMMaYQCwuLSjd+1tmk7vHjx3wZNGOMMcZqjKrusq+zSZ2RkREA4Pbt25U+IKZZWVlZaNKkCT93AfCzFwY/d+HwsxcGP3ftsbCwqPT9OpvUyYcvLS0t+S+dAPi5C4efvTD4uQuHn70w+LnrHm+UYIwxxhirBTipY4wxxhirBepsUicWizFnzhyIxWKhQ6lT+LkLh5+9MPi5C4efvTD4uQuHDx9mjDHGGKsF6uxIHWOMMcZYbcJJHWOMMcZYLcBJHWOMMcZYLVBnk7r//e9/8PPzw6hRo1BQUCB0OLXa8+fP0aVLF5ibm+PcuXMAgNjYWHh7e+ONN97A7du3BY6wdkpKSoKfnx+6d++OoUOHorCwkJ+7jpw7dw5du3ZF9+7dERQUhOzsbH72OhQTEwN7e3sA/FmjCzdu3IC9vT38/f3h7++PR48e8XMXCtVBycnJNGrUKCIimjdvHm3atEngiGq3wsJCevjwIY0dO5ZSU1OpoKCAOnfuTPn5+RQXF0fvvPOO0CHWSunp6fTixQsiIoqMjKQtW7bwc9eRgoKCku/nzp1LUVFR/Ox1pLi4mAYNGkTu7u78WaMj169fp8GDB5f8Nz934dTJkbrExES8+eabAIDAwEAkJCQIHFHtZmBgUPJbMwBcvnwZbdu2hZGREbp27YrU1FQBo6u9GjRoAFNTUwCAoaEhLl26xM9dRwwNDUu+z8nJQdOmTfnZ60h0dDRCQ0Ohp6fHnzU6FB8fDz8/P8yYMYM/awRUJ5O6Z8+elVxdYmVlhSdPnggcUd3y6vMHgOLiYgGjqf1u3bqFP//8E76+vvzcdejQoUNwd3fH4cOHYWhoyM9eB4qLi7FlyxYMGzYMAH/W6ErDhg1x5coVHDt2DA8fPsRvv/3Gz10gdTKps7a2RlZWFoCX/+htbGwEjqhuefX5A4C+vr6A0dRuWVlZGD16NNauXQsHBwd+7jrUu3dvSKVShIaG4ujRo/zsdWDjxo0YOnQo9PRe/mjjzxrdEIvFMDMzg0gkwuDBgyGVSvm5C6ROJnVeXl44ePAgAODAgQPo2rWrwBHVLc2bN0daWhoKCgoQHx8PNzc3oUOqlYqLizFq1CjMnj0bLVu25OeuQ/n5+SXfW1lZwdzcnJ+9DqSlpSEqKgqBgYG4fPkyfv75Z37uOvD8+fOS748dO4bg4GB+7gIxEDoAIbi7u6NBgwbw8/ND06ZN8cknnwgdUq3Xt29fpKSk4OLFi5g4cSI+/vhjdO/eHcbGxoiKihI6vFppy5YtSEhIwPPnz/Hll1/ivffe4+euI4cOHcI333wDPT092NvbY926dbC3t+dnr2ULFy4s+d7T0xPLli3D5s2b+blrWVxcHGbOnAlTU1M4Ozvjyy+/hFgs5ucuAL4mjDHGGGOsFqiT06+MMcYYY7UNJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7XA/wEQtQ63gud7lQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADBw0lEQVR4nOzdd1iUV7c34N8MQ0dQkWLB3guKvYAUxYKiqIhdk9hjibEkwe5rIZZoLDEaNfZeQOwNLKBGRUFRUWNv2JDemfX9kQ9ODG3KM5V1X9dcJ2H2s/byvJFZs6uIiAiMMcYYY0yniTWdAGOMMcYYUx4XdYwxxhhjeoCLOsYYY4wxPcBFHWOMMcaYHuCijjHGGGNMD3BRxxhjjDGmB7ioY4wxxhjTA1zUMcYYY4zpAb0u6ogIiYmJ4POVGWOMMabvdK6o2717N2xsbGRqm5SUBCsrKyQlJak4K8YYY4wxzdKpok4qleLAgQNwcHDQdCqMMcYYY1pFp4q6Xbt2wdfXF2JxwWlnZGQgMTHxixdjjDHGWEmgM0VdTk4O9u3bh379+hXaJiAgAFZWVnkvHtFjjDHGWEmhM0Xdjh074OfnV+goHQD4+/sjISEh7/Xy5Us1ZsgYY4wxpjk6U9Tdu3cP27ZtQ5cuXfDo0SN8//33+doYGxvD0tLyixdjTDNu3LiBjRs3ajoNxhgrMUSkg+d9NG/eHDdu3Ci2XWJiIqysrJCQkMAFHmNq9PnzZzRq1AgfPnzA58+fYWZmpumUGGNM7+nMSN2/yVLQMcY059tvv0VcXBwyMzNx8eJFTafDGGMlgk4WdYwx7bV7927s2bMHGzduRIUKFXDmzBlNp8QYYyUCF3WMMcG8fPkS3377Lfr374+BAwfC09OTizrGGFMTLuoYY4KQSqX46quvYG5ujrVr1wIAPD09cefOHcTGxmo4O8YY039c1DHGBLFq1SqEhIRg69atKFOmDACgY8eOAICzZ89qMjXGGCsRuKhjjCktOjoaP/30EyZNmoQOHTrk/dzOzg6Ojo48BcsYY2rARR1jTCkZGRkYPHgwatSogUWLFuV7P3ddnQ6ensQYYzqFizrGmFLmzp2Le/fuYceOHTA1Nc33vqenJ96+fYt79+5pIDvGGCs5uKhjjCns0qVLWLx4Mf73v//BycmpwDYuLi4wMjLiKVjGGFMxnbxRQlZ8owRjqpOYmIjGjRujUqVKOH/+PAwMDApt26FDB5iYmODYsWNqzJAxxkoWHqljjCnku+++w8ePH7Ft27YiCzoA6NSpEy5cuIDMzEw1ZccYYyUPF3WMMbkdOnQIW7ZswapVq1CtWrVi23t6eiIlJQVXrlxRQ3aMMVYycVHHGJNLamoqxowZAx8fH3z11VcyPdOkSROUK1eO19UxxpgK6UxRFx0djXbt2sHV1RXdunVDcnKyplNirETavHkzPn36hBUrVkAkEsn0jFgsRocOHbioY4wxFdKZoq5OnToIDw/HhQsX0LJlSwQGBmo6JcZKnJycHCxfvhx9+/ZF1apV5XrW09MTN27cwOfPn1WTHGOMlXA6U9QZGhrm/XNqairq1q2br01GRgYSExO/eDHGhBMYGIgnT55g6tSpcj/r6ekJqVSKkJAQFWTGGGNMZ4o6ADhz5gycnJwQGhqKGjVq5Hs/ICAAVlZWeS8HBwcNZMmYfiIiLF26FG5ubmjevLncz1euXBm1a9fmKVjGGFMRnTynbsmSJZBKpfjpp5+++HlGRgYyMjLy/j0xMREODg58Th1jAggLC4OLiwuOHj2Kbt26KRRj/PjxOHHiBB4/fixwdowxxnRmpO7fxZqVlRXMzc3ztTE2NoalpeUXL8aYMJYuXYr69euja9euCsfw9PTEkydP8OTJEwEzY4wxBuhQUXfmzBm4urrC3d0d586dw/DhwzWdEmMlxoMHDxAcHIwpU6ZALFb814abmxsMDAx4CpYxxlRAJ6dfZcXXhDEmjNGjRyM4OBjPnj2DsbGxUrHatWuH8uXL48CBAwJlxxhjDNChkTrGmGa8e/cOW7duxcSJE5Uu6IB/pmBDQkKQk5MjQHaMMcZycVHHGCvSb7/9BolEgjFjxggSz9PTE58/f0ZERIQg8RhjjP2DizrGWKFSUlLw22+/YcSIEShTpowgMVu2bIlSpUrxujrGGBMYF3WMsUJt2bIF8fHxmDRpkmAxDQ0N4e7uzkUdY4wJjIs6xliBlLkSrDienp64fPky3+HMGGMC4qKOMVYgZa4EK46npyeysrJw8eJFwWMzxlhJxUUdYywfZa8EK07t2rXh4ODAU7CMMSYgiaYTYIxpn/DwcFy7dg3Hjh1TSXyRSARPT08u6hhjTEA8UscYyyf3SrAuXbqorA9PT0/cvXsXb968UVkfjDFWknBRxxj7glBXghWnQ4cOAMCjdYwxJhAu6hhjX1i+fDns7e0xaNAglfZjY2MDJycnLuoYY0wgXNQxxvIIfSVYcTw9PXH27Fno8RXUjDGmNjpT1EVERMDFxQWurq7w8/NDVlaWplNiTO8cOHAAUqlUsCvBiuPp6Yl3797hzp07aumPMcb0mc4UdRUrVsSpU6dw4cIF1KxZE0FBQZpOiTG9c+fOHdSrV0+wK8GK4+zsDGNjY4SEhKilP8YY02c6U9TZ29vDzMwMwD/XDEkk+U9jycjIQGJi4hcvxpjs7t69iwYNGqitPxMTE7Ru3Rrnz59XW5+yiI+Px9q1a/HixQtNp8IYYzLTmaIu14sXL3D27Fl0794933sBAQGwsrLKezk4OGggQ8Z0ExHh7t27aNiwoVr7dXd3x4ULF5CTk6PWfosye/ZsjBs3DlWrVoWXlxeCgoJ4yQdjTOvpVFGXmJiIIUOGYPPmzTA0NMz3vr+/PxISEvJeL1++1ECWjOmmt2/f4vPnz2odqQP+Keri4+MRFRWl1n4L8+zZM6xbtw4zZszAH3/8gU+fPqFXr16oXLkypk+fjidPnmg6RcYYK5DOFHU5OTkYNGgQZs+ejdq1axfYxtjYGJaWll+8GGOyuXv3LgCofaSuVatWMDEx0Zop2Llz56Js2bLw9/fHiBEj8NdffyEyMhJ9+vTB2rVrUaNGDXTs2BF79+5FRkaGptNljLE8ItKRswR2796N8ePHo1GjRgCAsWPHol+/fkU+k5iYCCsrKyQkJHCBx1gxVqxYgRkzZiA5OVmlhw4XpEOHDjAzM8ORI0fU2u9/3bt3D40aNcLKlSsxfvz4fO+npqbiwIED2LBhA8LCwlCuXDnUqFEDWVlZyMrKQmZmZt4///vfa9WqhevXr6v9/6+MsZJFZ4o6RXBRx5jsRowYgcjISNy4cUPtfc+fPx/Lli1DXFwcDAwM1N5/rj59+uDmzZt48OABjIyMimx77949bNu2DR8/foShoWGBLyMjI3z69AnLli1DeHg42rZtq6Y/CWOsJOKijjEGAGjdujXq1KmDrVu3qr3vsLAwuLi44Pr162jevLna+weA69evo2XLlti6dSuGDh0qWNycnBxUqFABQ4YMwbJlywSLyxhj/8VzAYyxvJ2v6t4kkatFixYwNTXV6Lq66dOno379+oJfj2ZgYAAfHx8EBgbyzRk66vnz5/Dy8sLixYsRGxur6XQYKxQXdYwxvHjxAsnJyWrfJJHL2NgY7dq1Q2hoqEb6DwkJwdmzZ7FgwQKVTP/26tULT548we3btwWPzVQrLS0NvXv3xrVr1zB37lxUqlQJPj4+OHr0KLKzszWdHmNf4KKOMZa381VTI3XAP0ebXLp0Se0flESE6dOno2XLlvDx8VFJHx4eHrC0tERgYKBK4jPVICKMHTsW9+7dw9mzZ/HmzRusXLkSz58/h7e3N6pUqYIZM2bg8ePHmk6VMQBc1DHGAERHR8PCwgKVK1fWWA5ubm5ISkrCzZs31dpvcHAw/vrrLyxatAgikUglfRgZGcHb2xuHDh1SSXymGr///ju2bt2KDRs2oEmTJihTpgzGjRuHW7duISIiAj179sSaNWtQs2ZNdOjQAbt27UJ6erqm02YlGBd1jLG89XSqKmpk0aJFC5iZmal1CjYnJwczZsxAhw4d0KFDB5X21atXL9y5cwd///23SvthwggPD8d3332HiRMnYvDgwfneb9q0KdauXYu3b99i27ZtyM7OxqBBg9C5c2eelmUaw0UdY3K4e/euXv7Cjo6O1th6ulyGhoZwdnZW62aJXbt24e7du1i0aJHK++rSpQtMTEx4ClYHvHnzBr6+vmjTpk2xO5bNzMwwZMgQXLhwASEhIQgPD8fs2bPVlGnx4uLi4OnpibVr12o6FaYEWa9R5KKO6b2PHz8KUog9ffoUjo6O+O233wTISntIpVLcv39fo+vpcuWuq1PHPauZmZmYM2cOevXqhZYtW6q8P3Nzc3Tu3JmLOi2XmZmJvn37QiwWY9++fQVeSVkYd3d3LFq0CAEBAThx4oQKs5RNZmYmevfujbCwMIwbNw7Tp0/nHdg6aty4cRg7dmyx7bioY3pNKpXC0dERc+bMUTrWxo0bIZVKsXnzZgEy0x5Pnz5FWlqaxkfqgH/W1aWkpCAiIkLlfW3cuBHPnj3D/PnzVd5Xrt69e+PKlSt48+aNyvqIi4tD+/bt8fDhQ5X1oc++//57XL9+HQcPHoS9vb3cz0+dOhVeXl4YMmQIXr16pYIMZUNEGDNmDK5cuYIzZ85g2bJlCAgIwNdff62WL01MOGFhYVi/fr1sv6NJjyUkJBAASkhI0HQqTENu375NAMja2prS0tIUjpOZmUn29vZUv359AkC3bt0SLkkNCwoKIgD0+vVrTadCmZmZZGFhQYsWLVJpP8nJyWRvb09Dhw5VaT//9enTJzIwMKC1a9eqrI8VK1YQAJoxY4bK+tBXmzdvJgC0bt06peJ8+PCBKlWqRO3ataOsrCyBspNPQEAAAaDt27fn/Wznzp1kaGhIXbt2peTkZI3kxeSTnp5O9erVozZt2lBOTk6x7eUu6j5//kx79uyhX375hZYvX067d++muLg4hZJVNS7q2OrVq8nAwIAA0JYtWxSOc+jQIQJAN27cIFtbW5o0aZKAWWrWwoULqUyZMiSVSjWdChERde3alTp16qTSPgICAsjQ0JCePn2q0n4K0rFjR+rYsaNKYkul0rwvHg0aNFBJH/rqxo0bZGxsTMOHDxfk70JYWBgZGBjQTz/9JEB28jlw4AABoFmzZuV778yZM2RhYUEtWrSg9+/fqz03Jp958+aRRCKhO3fuyNRerqJu48aNVKtWLZo0aRItXbqUli5dSt999x3Vrl2bNm7cqFDCqsRFHevbty+1a9eOOnXqRC1atFA4TpcuXahly5ZERPT999+TjY0NZWZmCpWmRg0YMICcnZ01nUaexYsXk5mZGWVkZKgkflxcHJUuXZrGjx+vkvjFWbt2LUkkEvr06ZPgscPDwwkAffvttwSAHj58KHgf+uj9+/dUuXJlatGihVIj+v+1ePFiAkDHjx8XLGZxrl27RqamptSvX79Ci9ObN2+SnZ0d1apVix4/fqy23Jh87t+/T0ZGRnKNustV1NWuXZuSkpLy/TwxMZFq1aolTyi5JSYmUsuWLcnc3FzmipWLupJNKpWSra0t+fv70+HDhwkAXbt2Te44z549I5FIlPfFJSoqigDQ4cOHhU5ZIxwdHWn06NGaTiPPtWvXCACFh4erJL6/vz+ZmZnR27dvVRK/OK9fvyYAtHXrVsFjf/3111StWjVKSkoiExMTWrJkieB96JusrCzy8PAgGxsbevHihaCxc3JyyMvLi6ytrQWPXZDnz5+Tvb09tW7dmlJTU4ts+/jxY6pVqxbZ2dlRRESEynNj8snJySEXFxeqVauWXF805NooIRKJkJycnO/nycnJKj/fytTUFEePHoWvr69K+2H64+HDh3j//j1cXV3RrVs3VK5cWaFt/Zs2bYKFhQX69esHAHB0dESTJk00cvG90LKzsxETE6MVmyRyOTk5oVSpUio5r+7OnTtYtmwZpk6dqtAieCFUqFABbdq0EXwXbGJiIvbu3Yvhw4fDwsICnTt3RlBQkKB96KO5c+fiwoUL2LdvHxwcHASNLRaLsW3bNpiamqJ///4q3aCQlJQEb29vGBsbIygoCKampkW2r169OsLDw1G5cmW4urri7NmzKsuNye/PP//EpUuXsH79epiYmMj+oDyV45EjR6h27drUu3dvmjBhAk2YMIF69epFtWvXpiNHjshdiSpi2LBhPFLHZLJ+/XoyMDCgxMREIiJatGgRmZiY0MePH2WOkZWVRRUqVKAxY8Z88fNff/2VDA0N5Yqlje7fv08AKCQkRNOpfKFbt27UoUMHQWNmZWVRs2bNqH79+pSeni5obHktWbKETExMBF2s/vvvv5OBgUHehpfNmzeTSCTS2IikLrh58yYZGBjQ//73P5X2Ex4eTgYGBvTjjz+qJH52djZ169aNSpUqJfPnY67k5GTq2rUrGRoa0u7du1WSH5PP27dvqXTp0vT111/L/azcGyWys7Pp8uXLdODAAdq/fz9dvnyZsrOz5e5YUUUVdenp6ZSQkJD3evnyZYku6vRlzZeiBg4c+MU6uvfv35ORkZFcU1K507Y3b9784ufv378niURCq1evFixfTdi/fz8B0LoF00uXLiVTU1NBi6+AgAASi8UKTcEL7dGjRwSADh48KFjMZs2aUY8ePfL+/ePHjyQWi2n9+vWC9aFPsrKyqGnTptSoUSOVrd/8tyVLlhAAOnbsmOCxv/vuOxKLxXTixAmFns/MzKShQ4eSRCKhy5cvC5wdk5efnx/Z2NgoNGigc0eaFFXUzZkzhwDke5XEom7Pnj1kZmZGO3bs0HQqGiGVSqlixYo0derUL34+ePBgqlatmkxbw4n+GTFq3rx5ge/17Nmz0Pd0xdy5c8nGxkbTaeRz48YNAkAXL14UJN7du3fJyMiIfvjhB0HiCaFRo0Y0aNAgQWLdvHmTAFBwcPAXP3dzc6OuXbsK0oe+WbJkCYlEIvrrr7/U0l9OTg5169aNypYtK+j6urVr1xIA+u2335SKk5mZSc7OzlSpUiWt+5JXkhw5coQA0M6dOxV6XuGi7sCBA4o+qhQeqStadnY2/fDDDwSATExMyNvbW9MpacTjx48L/JC7cuWKzN+WX7x4UeRIR+4xJ9HR0YLkrAm+vr7k7u6u6TTyyc7OJisrK0GmxbKzs6lVq1ZUt25dQXc2KmvOnDlkZWUlyCjR2LFjqUKFCvnORPv111/JyMioRP0OlMWjR4/IxMRE7UcTffz4kSpVqkRt27YVZIbr0qVLZGBgQBMnThQgu3828dja2lLHjh3VOgPH/pGUlEQODg7UuXNnhY/VUbioMzIyouXLlxfZRuhzr7p27Urly5en1q1b0+bNm4ttX9LW1MXFxVHnzp1JLBbTL7/8Qj///DOZmZlp1QeZuuSuJ/rvGYpSqZScnJzIy8ur2Bhz584lc3PzvDV5/5WRkUHW1tY0bdo0QXLWhHr16mnsaI/ieHt7C1JwLl26lEQikdZNK+Xuoj558qRScZKTk8nS0rLAYw+ePXtGAGjPnj1K9aFPpFIpeXh4UNWqVTVyAG9oaCgBoKNHjyodq0ePHuTo6ChoARYSEkJisbjAM+6Yak2aNIlMTU3pyZMnCsdQuKg7efIkWVpa0oQJE/IVb9nZ2bR582aqU6eOwokJoaii7tGjR/Ts2TMNZKUa0dHRVKNGDSpbtiydOXOGiIju3LlDAOjUqVMazk79vvrqK2rcuHGB723cuJFEIlGR5zNlZ2dTpUqVaOTIkUX2M2HCBLK3t9fYqfHKSE9PJ4lEovTp+aqyfPlyMjExUepLSUxMDBkbG9PkyZMFzEwYUqmUqlevTqNGjVIqzpYtWwhAoR8ETk5O1L9/f6X60Cd//vmnIMW0oqRSKTVt2pS6d++uVJyXL1+SWCym33//XaDM/s/ChQvVfr5eSXft2jUSi8W0dOlSpeIotaYuMjKSKlWqRD4+PpSamkoZGRm0du1aqlq1KpUpU4Zmz56tVHLKKqqo8/PzIzMzM1q8eLHObyg4ePAgmZubU6NGjb4oVKRSKTk4ONB3332nueQ0pHr16oVOSaSkpFCZMmXyrbf7t6NHjxIAun79epH95K790sVffrlXqF26dEnTqRQod53Y+fPnFXo+Ozub2rZtSzVr1qSUlBSBsxPG1KlTyc7OTqmRlnbt2pGnp2eh78+bN49KlSql8R2/2uDt27dUpkwZGjJkiEbzWL9+PYnFYnr+/LnCMebNm0dmZmYqmYnKycmh7t27U9myZVU2+PHhwwdavXq1WjapaLvMzExq3LgxNWnSROkBAqU3Srx69YocHR3J0dGRKlSoQDY2NrRw4cJCp6zUqaiiLjExkSZNmkRisZgaNmyosoNOVSknJ4dmzZpFAKhv374FTiWMHj1a5QdDa5vctZRFrfucPHkylS1bttADOnv06EFOTk7FLiGQSqXUsGFD8vPzUypnTdi9ezcB0Npr/nJycqhMmTI0d+5chZ5fvnw5iUQiwTZbqELuDRCKFtZ3794lALR3795C2+QW74rujNQnfn5+VK5cOfrw4YNG80hMTKRSpUopPMWZnZ1NDg4ONHz4cIEz+z+fPn2iqlWrUosWLQT/QnD79m2qVq2a0tc36oslS5aQWCwudhBBFkoVdfHx8fS///2PrK2tydTUlMzMzOj27dtKJyUUWdbU3bx5k1q0aEEAaOTIkSq5ukcV4uPjqXv37iQSiWjRokWFFh+5R3KUpOuCdu7cWewxHQ8fPiQABa7NfPXqlVzTGkuXLiVjY2OtLY4KM2PGDKpQoYKm0yiSj48Pubq6yv3co0ePyNTUVLAF5KqSk5ND9vb2Ck8PT548mcqVK1fkh65Q07y6Lvd34a5duzSdChERjRkzhsqXL6/QTFHuTIKqj+e5fv06GRkZ0bfffitYzMDAQDI3NydHR0dq3bo1tW7dWrDYuuj169dkampK33//vSDxFC7qfvrpJ7KysqLq1avT+vXrKTk5mYYNG0a2trZacQ4UkewbJbKzs+m3334jS0tLsrGxoW3btmnN5eYFef78OdWpU4esrKyK3cWZnJxMRkZG9Ouvv6opO80bNWoU1atXr9h2nTt3LvBIkvnz58s1rfHmzRsyMDDQ2rVphfHx8Sly2k4b5O7eLO7Ko3/LvV6nevXqGlkIL68xY8ZQ1apV5f6dk56eTtbW1jRlypRi206ZMoXs7OxkPspH38THx1OFChXIy8tLa36337p1iwDQoUOH5H62R48e1KRJE7X8WdatW6fUERu5pFIpzZ8/nwBQnz59KCkpKe8EgVu3bgmTrA6aMWMGWVhYUHx8vCDxFC7q6tatS1u3bs23FmTmzJlkbm5OQUFBSienLHl3v75584b69+9PAMjd3Z1iYmJUnKFivvrqKypfvjw9ePBApvadOnWiTp06qTgr7VG3bt18N0AUJDg4mAB8cU5VdnY2ValShb755hu5+vTy8tK5b5w1a9YU7NuhquTuEJXnxotVq1YRAAoNDVVdYgI6ffq0Qh9se/bsIQB07969YtteunSJAGjdDmB1GTt2LFlYWCi1hk0VWrVqRZ07d5brGVVukCiIVCqlIUOGkJmZmcLHNyUnJ1Pfvn0JAM2dOzfvy0VmZmaBN/aUFGlpaVSuXDmaMGGCYDEVLuqK+oawYcMGMjY21vhp+4oeaXLq1CmqUaMGGRkZ0Zw5c7Tq2+379+/J2NiYFi9eLPMzuaMdujBqoazY2FgCINN1N7kF3LBhw/J+duLECQJAV69elavfvXv3EgCt/SLwX6mpqSQSiWjjxo2aTqVIOTk5ZG1tLfPao8ePH5OZmZmg00WqlpmZSaVLl5Z7fVXHjh3J2dlZprbZ2dlkY2Oj08fvKCq3oNX051FB/vzzz2J34v/XvHnzyNzcXK1HdSUnJ1ODBg2oTp06cq+Xf/78OTVp0oTMzMwKvEFl9uzZZGFhoRXr8NVt06ZNJBKJBF0epbIbJY4fP06lSpVSVXiZKHNOXWpqKvn7+xMAOn36tAqyU8zChQvlvr80d/3Yfw/i1Ue5117l3n9ZnICAADI2Ns5bON2rVy9ydHSUe1ojLS2NSpcuTf7+/jK1z8nJocjISI0dhRIREaFQ8aoJvXv3JhcXl2LbJSUlkZubG1WpUoWSkpLUkJlwhgwZQg0bNpS5fe7h2lu3bpX5mREjRlDNmjW1ZvpRHdLS0qhu3brUpk0brTxMNyUlhaysrOinn36SqX3uBokRI0aoOLP8YmJiqFSpUtSvXz+Z1wFeunSJbGxsqEqVKhQZGVlgm+IOeddXUqmUHB0dlT7a5r9Uek1YRESEKsMXS9nDh6VSKdnb28v8F07VsrKyqFKlSgrteKpZs2aJGOIeP3481axZU+b2uffBLl68OG9t3Jo1axTqe8yYMVSpUqViPzxCQ0PJycmJAFCLFi3kvoBbCNu2bSMAOvHteNWqVWRoaFjgsSSJiYm0a9cu6tWrF5mYmJCBgUHeOY26JDAwUOapVCKi6dOnk5WVlVxHteQurtflG1DkNXPmTDI0NNTqP/OECRPI1tZWpqM91LVBojC5X5oNDAyoWrVq5OnpSWPGjKFly5ZRUFAQ3blzJ++/yQ0bNpChoSG1b9++2GvHvL29ZTptQJ/kHkIt9O8rnbv7VR5C3CgxYMAAatmypYBZKS73L1Rh33iKMnHiRKpcubLe/6VxdHSUez3ckCFDqGrVqjR//nwyNTWlz58/K9T31atXi/xL+vDhQ/Lx8SEA1KpVK9q2bRvVq1ePDA0NacGCBWo9L/GHH36gKlWqqK0/ZeQeon327Fkiyl/I5RbHS5YsoadPn2o2WQWlpKSQra0tWVhY0NSpU4scac7KyqLy5cvLPcWclpZGFhYWtGDBAmXT1Ql//PEHGRgY0Jw5czSdSpGio6OLPZYmlzYUP9euXaP169fTtGnTqHfv3uTo6Ejm5uZf3LduZ2dHAGj06NEyFavHjh3Lt75Z3/Xs2ZMaNGgg+P+WXNQV448//iCxWCzYzhRluLi4UPv27RV69uTJk3r/Lf3Tp08kEonkmpIi+r9izMTE5Iv1dfKSSqVUp06dfJe0x8XF0aRJk0gikVDlypVp165deX+R09LSyN/fnwwMDMjJyUmhgl0R3bp1k+mqNG0glUqpXLly1L17d/Lx8SFjY2MCQC1btqSlS5fqbCH3X7GxseTv70+WlpZkZGREI0eOpEePHuVrl3s0hyI7Bvv27Vvgjm99kpOTQ9OmTSMA9O233+rEbS/Ozs7k4eFRZBt1b5CQh1Qqpbdv39KlS5doy5YtNHPmTLl2yyq6QS3XiRMnqH79+rRv3z6dGLh4/PgxiUQilUw5c1FXjL///psA0JEjRwTMTH6529/379+v0PNpaWlkamoq1wYLXRMUFEQA5P6Qz722B4DSh1AHBASQqakpJSQkUGZmJq1cuZLKli1LFhYWtHDhwkKP5rh+/To1bNiQJBIJzZkzR+WnrFetWlWnFs0PHDgwr5BbtmyZXl3x91/x8fEUEBBAtra2JBaLqV+/fl8UcN27d6dmzZopFDv3DMcXL14IlO0/Hj16RO/evRM0piJSUlKod+/eJBKJ6Ndff9WJD3giou3btxOAIk800MQGCXVasGCBQjMl8fHxVLFiRbKxsSEA1LNnT3r16pVqkhTI999/T2XLllXJTTdc1BUj96otTd8d+c0331ClSpWU+tbZvXt3hQ5yVTepVEqjRo2iVatWyfXc5MmTqXLlygr1efToURo8eLDSHwIvX74kkUhEI0eOpDp16pBIJKIRI0bQ27dvi302IyODZs+eTRKJhBwdHVW2JjUpKUnuRfaalpiYqPW/qIWWmppKa9euzTt5v0uXLrR//34Si8UKn4kYHx9PhoaGguwETUxMpA0bNlCrVq0IABkbG9OoUaM0dtD527dvqUWLFmRmZkaHDx/WSA6KSktLo7JlyxZ65qAmN0ioy5s3b0gikcj9e3/s2LFkbm5Oz58/p4MHD5K9vT1ZWlrS+vXrterkilyJiYlkaWlJP/74o0ric1Eng2HDhlGTJk0Eykp+Hz9+JBMTE1q0aJFScdauXUsGBgZaMZVclA0bNhAAMjQ0lHnhOBFRs2bNaPDgwSrMTDadOnUiANShQweFplNv3bpFjRs3JgMDA5o+fbrgV/T89ddfBIBu3LghaFymGllZWbRjxw5q2LAhAVD6vs9OnTpRhw4dFHpWKpVSeHg4ffPNN2Rubk4ikYi6dOlCe/fupYULF5KtrS2JRCLq06ePWhfz37lzhypXrkzly5fX2f+uJ0+eTNbW1pSWlpbvPVnvotZ1vr6+VL9+fZm/XF+8eJEAfFEIxsXF0TfffEMAyM3NrcAlDJq0evVqMjAwEHy0PJdOFXVTpkwhZ2dnGjhwoEzTU0IVdVu2bCGRSCTXMSJC+vnnn784dkNRz549U2oKVx2ePn1KFhYWNGTIEKpVqxa5urrK9Bc8ISGBxGIxbdiwQQ1ZFu3p06cUEhKi1KhfZmYmzZs3jwwNDcne3p5++OEHun//viD55Z6NpK2X3LOCSaVSOnr0KB09elSpOLlf7uS5EvH9+/e0bNkyqlevHgGgKlWq0Lx58/Id5puWlkbr1q2jmjVr5n2oHj9+XKXToKdOnSJLS0tydHRU2QelOsTExBAA2rFjR773tGGDhDqcPXtW5ruQ09LSqE6dOoUeV3P27FmqXr06mZiY0OLFi7VibWVOTg7VqlVLpXeF60xRd/PmzbwF6AsWLJBpEaZQRd3z588JQIEHJ6paVlYWOTg40Ndffy1IvAYNGggWS2g5OTnk7u5OlStXpoSEBDpz5ozM04THjx/Xyztu7927R+PHj6cyZcoQAGrbti1t2LBBqf+mJ0+eTDVq1BAwS6ZLXr9+TQBo27ZtRbbLycmhU6dOUZ8+fcjQ0JCMjIyoX79+dPr06WKntbKzs+nAgQN592o3atSItm/fLvgO7/Xr15OBgQF5eXnpxPE8xXF3d893JmPuBgldu4ZQEblFz383mxVkxowZxR5Xk5ycTJMnTyaxWExNmzbV+HVkubt8lV27XRSdKep+++23vA/3Gzdu0Lhx4/K1SU9Pp4SEhLzXy5cvBSnqiIhq1KhB48ePVzqOvA4ePEgA6ObNm4LEmzZtGtnb22vlWoPVq1d/cXQF0T9HypQrV67YUYWffvqJ7O3t9fabbFpaGu3Zs4c6d+5MIpGIzMzMaOjQoXT+/Hm5/8ydOnWinj17qiZRphNatWpFvXr1KvC92NhYCggIoOrVqxMAatiwIf36668KzVRIpVIKDQ2lrl27EgCqXbu2IMs/cnJyaOrUqQSAxo8frxWjMELIvZnm34XK3Llz9XqDxH8tXbqUjIyMipyZioqKIolEQnPnzpUp5l9//UUNGzYkAwMDmj17tsb+e+nUqRM1b95cpZ9TOlPULVy4kAIDA4non51WAwYMyNdmzpw5X5yVk/sS4i/DyJEjqX79+krHkZerq6vMVwHJIvfAQ00fDP1fDx8+JFNT03zF+tu3b8nKyopGjhxZ5PNt2rShfv36qTJFrfHixQtasGAB1ahRgwBQ9erVKSAgQOYT8ytWrEjTp09XcZZMm/38889kamqaNwWfk5NDZ86cIV9fX5JIJGRiYkJDhw6l8PBwwT6AIiIiyNzcnL777julY/n7+5NIJKKVK1cqn5gWycjIIFtbW5o4cSIR/TPiWalSpWJ//+mTDx8+kJGRES1btqzA97Ozs6lFixbUoEEDuU4JyMjIoDlz5pBYLKY2bdrQkydPhEpZJnfv3iUAtH37dpX2ozNF3dq1a/NG6q5fv672kbpdu3YRAIqNjVU6lqxyLzOX5VBKWWVmZlKpUqVo/vz5gsVUVnZ2NrVt25Zq1KhR4P20v/32W5FD1ikpKSSRSOi3335TdapaRSqV0oULF+irr74iAwMD+vbbb4v9AP78+TMBoF27dqkpS6aNctdvbdy4kRYvXpy3Bq5evXr066+/yrXeTh6LFy8mAwMDun37tsIxIiMjycDAQG8PUf7xxx+pdOnSlJKSUmI2SPzXoEGDqFatWgXOKC1fvpxEIhFdvnxZodjh4eFUtWpVsrS0LHD9oqqMHj2a7O3tVX5clc4Udf9dUyfLh5JQa+qI/tluDYD27NmjdCxZjRw5kipWrCj4OpQ+ffpQ69atBY2pjKVLl5JIJCp0cWzuN7NGjRoV+P+L3MW1+nywcnH++OMPAkBLliwpsl1YWBgBoKioKDVlxrRV3bp1844iGTRoEF28eFHlyxcyMjKobt265OLiolBf2dnZ1LJlS7lHaXRJ7r2+mzdvLjEbJP7r0qVL+ZbiEBE9efKEzMzM8kYyFRUfH0+DBg0iADR48GCVT21/+vSJTE1Nad68eSrth0iHijoize1+zVWvXj0aNWqUILGKk/sfgSq+jebuflR2N60Q7t69S8bGxsWeAxgREUFisbjAIfnZs2eTtbW1Vq4TVKcZM2YU+8Vj3bp1ZGBgIPgxKUz3nDlzhlauXKn2Xf2nT58udJdncXLX3apyobk26NSpE9WtW7fEbJD4L6lUSvXr1ydfX98vftaxY0eqXLkyJSUlCdLPjh07qFSpUlStWjWFR/5ksXjxYjIyMlLLTJ9OFXXyErqo+/bbb6lWrVqCxCrOkiVLyMjISCWntOfuflPn0HNBsrKyqHnz5lS3bt1Cb1r4t++++y7vkMl/c3V1LXTRd0kilUpp8ODBZGRkRBcvXiywzYQJE6hu3bpqzoyxL/Xp04fs7e3l+t388uVLsrCwoLFjx6owM+1w6NAhAlCiNkj816pVq0gikeQd3L5lyxYCQMePHxe0nydPnlCbNm3IwMCA5s2bJ/gmitwTLL766itB4xaGizo5HDhwgADQy5cvBYlXmNx78IYOHaqyPpycnGjgwIEqiy+L+fPnk1gslvkS54SEBKpQoQL5+Pjk/Sw9PZ2MjY1pxYoVKspSt2RkZJC7uzuVKVOmwHPt3N3dqU+fPhrIjLH/8/z5czIzMyv0BoWC+Pj4UPny5bX+8HQhZGZmkoODA40ZM0bTqWjM58+fydTUlBYuXEixsbFUpkwZmY46UURWVhbNnj2bxGIxtWvXTtBrCPfv36/wXc2K4KJODh8+fJDpfCdlBQYGqvzE/5kzZ1LZsmVl3jEptFu3bpFEIpF7F+a+ffsIQN41QLknigt15Is++Pz5MzVo0ICqVq2ab7jf1taW5syZo5nEGPuXhQsXkkQiobt37xbbNnfkSpsPThfa+/fvZZrB0GfffPMNValShfr27UvlypVT+ZKhS5cuUZUqVahUqVK0YsUKQUbtnJ2dqX379gJkJxsu6uTUuHFjlQ+jenh4UJs2bVTax+XLlwmAStcRFCY9PZ0cHR3J0dFR7rVdUqmUunTpQpUrV6bk5GRasGABWVlZaaw41VbPnz+n8uXLU/PmzfN2FL9//54A0L59+zScHWP//B6oVasWubu7F7kRICEhgSpWrEjdu3cvcRsGSrpr167lHU0my4UDQoiPj6dx48aRSCSixo0bK/UZGRERofaLC7iok9OkSZOocuXKKvvlcufOHbUcOZGdnU1ly5almTNnqrSfgkyfPp0kEonCw9F///03mZiY0A8//ECenp7UrVs3YRPUEzdv3iQLCwvq3r07ZWVl5Z1RKM99uoyp0okTJ4rd3DN+/PgC19Iy/SeVSsnZ2Zl69uyp9oL++vXr1Lx5cwJAI0aMkGtDUXR0NE2YMIGsrKyoevXqaj3smIs6OQUHBxMAevz4sWAx/2306NFUvnx5tWzXHzhwIDk5Oam8n3/bs2cPicVi+t///qdUnAULFuQdklrcMR4l2cmTJ8nAwIDGjh1Lq1evJkNDQ8GPyGFMGT4+PlSxYsUCdzRevXqVRCIRr5ktwdLT0zV2skF2djatXbuWrKysyNramjZu3FhoLunp6bRz505ycXEhAGRra0v+/v706tUrtebMRZ2c4uPjSSwW08aNGwWLmSs9PZ1KlSpFs2bNEjx2QXbs2EEA6PXr1yrvSyqV5t34MXDgQKULi/T09Lxztq5evSpQlvpp48aNBIAqVKhAjRo10nQ6jH3h6dOneSPv/5aZmUmNGjWiZs2a8fIKplGxsbE0dOhQAkBt2rShyMjIvPf+/vtv+uGHH6hcuXIEgNzc3GjPnj0aO0eRizoFNG/eXCU7R0+dOkUAvvgPRpU+fPhAIpGINm3apNJ+UlNTyc/PjwDQggULBBtGv3z5Mnl7e/PIkwxmzZpFAKh///6aToWxfObNm0eGhoZf7Nj++eefycDAgDdBMa1x/vx5ql+/PonFYho9ejR16tSJAFDp0qXpu+++K/DEAXXjok4BP/zwA5UvX17wOf5x48apdL1eQVq3bk29e/dWWfzXr19TixYtyNTUlA4cOKCyfljRpFIpzZ07N98J7Yxpg7S0NKpevTp5enqSVCqlx48fk6mpqVxHnjCmDhkZGbR48WKysLCgli1b0ubNm/PuUNYGIiIi6KnExERYWVkhISEBlpaWgsU9efIkunbtivv376Nu3bqCxCQiVKlSBT179sTq1asFiSmLhQsXIiAgAB8+fICpqamgsW/evIkePXoAAIKDg9G0aVNB4zPG9MfRo0fh7e2NAwcO4I8//sCDBw9w9+5dmJubazo1xvIhIohEIk2nkY9Y0wnoImdnZ0gkEoSGhgoWMyoqCi9fvkTPnj0FiymLvn37IiUlBcePHxc07sGDB+Hs7IwKFSrg2rVrXNAxxorUvXt3dO/eHcOGDcPp06exdu1aLuiY1tLGgg7gok4hFhYWaNmyJUJCQgSLGRwcDEtLS7Rv316wmLKoXbs2mjRpgn379gkSj4iwcOFC+Pr6okePHrhw4QIqVKggSGzGmH5buXIlsrOz0a9fP3h5eWk6HcZ0Dhd1CvLw8MD58+chlUoFiRccHIyuXbvCyMhIkHjy8PPzw9GjR5GSkqJUnPT0dAwZMgQzZ87E3LlzsXv3bsGndBlj+qt69eq4d+8etm7dqulUGNNJOlHUJSUloVWrVrCwsEB0dLSm0wEAuLu74+PHj4Lk8+rVK0REROStP1O3vn37IjU1Vekp2NGjR+PgwYPYs2cP5syZo7XD04wx7VW9enUYGxtrOg3GdJJOFHWmpqY4evQofH19NZ1KnjZt2sDY2FiQdXVHjhyBgYEBunbtKkBm8qtZsyaaNm2q1BTs+/fvsXv3bixatAj9+vUTMDvGGGOMyUInijqJRAIbG5ti22VkZCAxMfGLl6qYmpqiTZs2gqyrCw4ORvv27VGmTBkBMlNMv379cOzYMSQnJyv0/JYtWyAWizFs2DCBM2OMMcaYLHSiqJNVQEAArKys8l4ODg4q7c/d3R0XLlxATk6OwjGSkpIQEhKi9l2v/9W3b1+kpaXh6NGjcj8rlUqxYcMG9O3bF2XLllVBdowxxhgrjlYVdbGxsXB2ds73iouLk+l5f39/JCQk5L1evnyp0nw9PDyQkJCAyMhIhWOcPn0amZmZ8Pb2Fi4xBVSrVg0tWrRQaAo2NDQUf//9N0aPHq2CzBhjjDEmC4mmE/g3e3t7hIWFKfy8sbGxWhfYtmzZEmZmZggJCUGzZs0UihEcHIyGDRuievXqAmcnPz8/P8ycORNJSUkoVaqUzM+tX78e9erVQ7t27VSYHWOMMcaKolUjdUXx8vLC6dOnMXLkSGzZskXT6QAAjIyM4OzsrPBmiezsbBw7dkxju17/q2/fvsjIyMCRI0dkfubdu3cIDAzE6NGjebcrY4wxpkFaNVJXFKFvPBCKu7s7FixYgKysLBgaGsr17JUrV/Dp0yetKeqqVKmC1q1bY9++fRg4cKBMz2zZsgUGBgYYMmSIirNjjDHGWFF0ZqROW3l4eCAlJQU3btyQ+9ng4GDY29ujRYsWKshMMX5+fjhx4gQSEhKKbZu7QcLPz483SDDGGGMaxkWdkpo2bYpSpUrh3Llzcj1HRDh8+DC8vb0hFmvP/wy+vr7IzMxEcHBwsW1DQkLw+PFjjBo1Sg2ZMcYYY6wo2lNN6CiJRILu3bvjt99+w6dPn2R+7sGDB3j06JHWTL3mcnBwQNu2bWXaBfvHH3+gfv36vEGCMcYY0wJc1Alg2bJlyMjIwIQJE2R+Jjg4GKampujQoYMKM1NMv379cOrUKcTHxxfaJneDxKhRo3iDBGOMMaYFuKgTQIUKFbB69Wrs3r0bBw8elOmZ4OBgdOrUSSsvvO/Tpw+ys7Nx+PDhQtts2bIFEomEN0gwxhhjWoKLOoEMHDgQvXr1wpgxY/D+/fsi23748AGXL1/WuqnXXBUrVoSzszP27t1b4PtSqRR//PEH3yDBGGOMaREu6gQiEomwbt06AMDYsWNBRIW2PXbsGACgW7duaslNEX5+fjhz5kyBt3mcO3cOT5484RskGGOMMS3CRZ2AbG1t8fvvv+PQoUPYvXt3oe2Cg4PRpk0b2NnZqTE7+fTp0wc5OTkICgrK917uBom2bduqPzHGGGOMFYiLOoH5+vqif//+GD9+PN68eZPv/bS0NJw6dUprp15zlS9fHq6urvl2wcbGxiIoKIhvkGCMMca0DBd1KrBmzRoYGxtj1KhR+aZhQ0JCkJqaqvVFHfDPFOzZs2e/OKqFN0gwxhhj2omLOhWwtrbGH3/8gWPHjuW7pzY4OBg1a9ZE3bp1NZOcHHr37g0iQmBgIIAvb5AoU6aMhrNjjDHG2L9xUaci3t7eGDZsGCZNmoSXL18C+KcoOnLkCHr06KETU5d2dnZwc3PL2wWbu0GCb5BgjDHGtI9OFHURERFwcXGBq6sr/Pz8kJWVpemUZPLrr7+iVKlSGD58OIgIERERePv2rU5Mveby8/NDSEgIPnz4gPXr16NBgwa8QYIxxhjTQjpR1FWsWBGnTp3ChQsXULNmzQJ3ZGqj0qVLY9OmTThz5gzWr1+P4OBglC1bVqeu1erduzdEIhHWrl2Lw4cP8w0SjDHGmJaSaDoBWdjb2+f9s6GhISSSgtPOyMhARkZG3r8nJiaqPLfidO7cGaNGjcLUqVNhY2ODbt26FZq/NrKxsYGHhwfmz58PQ0ND3iDBGGOMaSmdGKnL9eLFC5w9exbdu3cv8P2AgABYWVnlvRwcHNScYcGWLVuGcuXK4dmzZzo19ZrLz88POTk5vEGCMcYY02IiKurqAzWLjY2Fr69vvp8HBwdDIpHA29sbGzZsQO3atQt8vqCROgcHByQkJMDS0lJlecvi4sWL+PHHH3H69GmUKlVKo7nIKy4uDp6enti0aROaNGmi6XQYY4wxVgCtKuoKk5OTAx8fH0yaNAkdOnSQ+bnExERYWVlpRVHHGGOMMaZKOjH9um/fPly+fBnz58//4ogNxhhjjDH2D50YqVMUj9QxxhhjrKTQiZE6xhhjjDFWNC7qGGOMMcb0ABd1jDHGGGN6QK/X1BERkpKSUKpUKb4FgTHGGGN6Ta+LOsYYY4yxkoKnXxljjDHG9AAXdYwxxhhjeoCLOsYYY4wxPcBFHWOMMcaYHuCijjHGGGNMD3BRxxhjjDGmB7ioY4wxxhjTA1zUMcYYY4zpAS7qGGOMMcb0ABd1jDHGGGN6gIs6xhhjjDE9oNdFHREhMTERfL0tY4wxxvSdXhd1SUlJsLKyQlJSkqZTYYwxxhhTKb0u6hhjjDHGSgou6hhjjDHG9AAXdYwxxhhjekBnirro6Gi0a9cOrq6u6NatG5KTkzWdEmOMMcaY1tCZoq5OnToIDw/HhQsX0LJlSwQGBmo6JcYY02tpaWlYu3YtsrOzNZ0KY0wGOlPUGRoa5v1zamoq6tatm69NRkYGEhMTv3gxxhhTzL59+zBu3DicPn1a06kwxmSgM0UdAJw5cwZOTk4IDQ1FjRo18r0fEBAAKyurvJeDg4MGsmSMMf1w7NgxAMCBAwc0nAljTBYi0sGTeZcsWQKpVIqffvrpi59nZGQgIyMj798TExPh4OCAhIQEWFpaqjtNxhjTWVlZWShXrhwMDAwAAO/evftixoQxpn10ZqTu38WalZUVzM3N87UxNjaGpaXlFy/GGGPyu3z5MhITE7FkyRJ8/vwZoaGhmk6JMVYMnSnqzpw5A1dXV7i7u+PcuXMYPny4plNirECxsbG4ffu2ptNgTCnHjh2DnZ0dvvnmG9SoUYOnYBnTATpT1HXv3h0XLlxAaGgo9u3bBzMzM02nxFiBpk+fjiZNmmDhwoWQSqWaTocxhRw7dgxdu3aFWCyGr68vAgMDeRcs01mZmZlwcnLCunXrNJ2KSulMUceYrrh79y4qVaqEWbNmoUePHvj8+bOmU2JMLs+ePcO9e/fQrVs3AICvry8+fvyIixcvajgzxhSzefNmREZGYteuXZpORaW4qGNMQESE+/fvY9y4cTh+/DiuXLmCpk2b4ubNm5pOTWcREZYsWYI1a9ZoOpUS4/jx45BIJPD09AQANGvWDFWqVOEpWKaT0tPTMX/+fFhbW+Py5cuIj4/XdEoqw0UdYwJ6+/YtkpKSULduXXTp0gU3b95EuXLl0LZtW2zatEnT6emc9PR0DBo0CD/++COWLl2q6XRKjGPHjsHZ2RlWVlYAAJFIBF9fXxw6dAg5OTkazo4x+axbtw6xsbHYt28fcnJycObMGU2npDJc1DEmoJiYGABAvXr1AABVqlRBWFgYvv76a4wYMQLffPMN0tLSNJmizvj48SM8PT1x6NAhDB06FC9evMCHDx80nZbeS0tLQ0hISN7Uay5fX1+8e/cO4eHhGsqMMfklJycjICAAX331FTw8PNCwYUMcP35c02mpDBd1jAkoJiYGhoaGqFatWt7PjI2N8fvvv2Pr1q3Ys2cP2rZti8ePH2swS+336NEjtGnTBg8ePEBoaCjmzJkDAIiIiNBwZvovNDQU6enp+Yq6li1bolKlSjwFq4M2bNiA58+fazoNjVizZg3i4+Mxe/ZsAEDXrl1x4sQJvd3ExkUdYwKKiYlBzZo1CzykdejQobh69SqSk5PRrFkzBAcHayBD7RcWFobWrVvDwMAAV69eRZs2bVCtWjWUKVMGN27c0HR6eu/YsWOoWrVqvqsYxWIx+vTpg4MHD+rtB6I+evr0KUaNGoXFixdrOhW1i4+Px5IlSzBq1ChUrlwZAODl5YV3794hMjJSs8mpCBd1jAkoJiamwHuJczk6OuL69etwc3NDz549cerUKTVmp/12796NDh06oFGjRrh8+TKqV68O4J81Xc2aNeOROhUjIhw/fhzdunWDSCTK976vry/evHmDq1evaiA7pojDhw8DAPbv31/ijqRZsWIF0tPTMX369LyftWvXDqVKldLbKVgu6hgT0P3794ss6gCgdOnSCAwMhLu7OyZMmPDFbSklFRFh4cKFGDhwIPr164fTp0+jbNmyX7Rp1qwZj9Sp2P379/Hs2bN8U6+52rZti/Lly/MUrA4JDAxE9erV8fHjR4SEhGg6HbX5+PEjVqxYgfHjx6N8+fJ5Pzc0NISnpydOnDihwexUh4s6xgSSlJSEV69eFVvUAf+MPK1atQpPnjzBr7/+qvrktFhWVhaGDx+OmTNnYu7cudi6dSuMjIzytWvevDlevXqFd+/eaSDLkuHYsWMwNTWFm5tbge+LxWL07t0bBw4cgA5eG17ifPjwAWFhYfD390etWrWwZ88eTaekNkuWLAER4Ycffsj3npeXF65evYpPnz5pIDPV4qKOMYE8fPgQwP/tfC1Ow4YNMX78eMyfPx+vX79WZWpaKyMjA15eXtixYwe2b9+OOXPmFDjtB/wzUgfwZglVOn78ODw8PGBqalpoG19fX7x8+RLXr19XY2ZMEUeOHAEA9OjRA/3798ehQ4dKxMzA27dvsWbNGnz//fcoV65cvve7dOkCqVSK06dPayA71eKijjGB5B5nUqdOHZmfmTt3LszMzAr8NlkSzJo1CxcuXMCpU6cwePDgIttWrVoVZcqU4aJORRISEhAWFlbo1GsuFxcX2NjY8BSsDggMDES7du1ga2uL/v37IyEhoUSs4w0ICICJiQkmT55c4PsVK1ZE48aN9XIKVmeKuoiICLi4uMDV1RV+fn7IysrSdEqMfSEmJgYVKlSApaWlzM+ULl0aixcvxq5du0rcFUyhoaFYtmwZFi5cCHd392Lbi0QiNG/enNfVqcjp06eRnZ0NLy+vItsZGBjwFKwOSEpKwpkzZ+Dj4wMAqF+/Pho1aqT3U7AvXrzA+vXrMW3aNJQuXbrQdl5eXnp5tInOFHUVK1bEqVOncOHCBdSsWRNBQUGaTomxLxS387Uww4YNQ6tWrTBhwoQSszvt8+fPGDp0KNzc3DBlyhSZn+MdsKpz/PhxNGjQAFWqVCm2ra+vL54+fYpbt26pITOmiFOnTiEjIwO9evXK+1n//v1x+PBhpKSkaDAz1Zo/fz5Kly6NCRMmFNmua9eu+Pjxo959SdSZos7e3h5mZmYA/tm9IpFI8rXJyMhAYmLiFy/G1EXRok4sFmP16tW4c+cO1q1bp4LMtAsRYezYsUhOTsbWrVshFsv+a6h58+Z4/fo1YmNjVZhhySOVSvOOMpGFq6srrK2teQpWiwUGBqJx48ZfHITer18/pKam4tixYxrMTHX+/vtvbN68Gf7+/rCwsCiybZs2bWBlZaV3U7A6U9TlevHiBc6ePYvu3bvney8gIABWVlZ5LwcHBw1kyEqi7OxsPHz4UKGiDgBatGiB4cOHY9asWXJfhbV161a0bt0aCQkJCvWtbjt37sTevXuxbt06uf+O8mYJ1YiIiMD79++LnXrNZWhoCB8fH+zfv5+nYLVQZmYmjh07ljf1mqtGjRpo0aKF3k7Bzp07F/b29hgzZkyxbSUSCTp16qR/59WRDklISKD27dvTgwcPCnw/PT2dEhIS8l4vX74kAJSQkKDmTFlJ8+jRIwJAp0+fVjjG+/fvqXTp0jRy5EiZ2mdnZ9OUKVMIAAGgo0ePKty3ujx9+pQsLS1p8ODBCj0vlUrJ2tqa5s6dK3BmJducOXPIysqKMjMzZX7mxIkTBICioqJUmBlTxMmTJwkARUZG5nvvl19+IWNjY4qPj9dAZqoTHR1NIpGIfv/9d5mf2bx5M4lEInr//r0KM1MvnRmpy8nJwaBBgzB79mzUrl27wDbGxsawtLT84sWYOuTufJX1OJOC2NjYYP78+di4cWOx6zwSEhLQo0cPrFixAitWrICdnR0uX76scN/qkJOTg6FDh6JMmTJYs2aNQjH0+WaJLVu2aOwMvuPHj6Nz584FXm9XGA8PD5QuXZqnYLVQUFAQqlWrBkdHx3zv+fn5ISMjI++mCX0xZ84cVK1aFd98843Mz3Tp0gVEpFc7gnWmqNu3bx8uX76M+fPnw83NDXv37tV0SozliYmJgbm5OSpWrKhUnDFjxuSdX1fYrqzHjx+jTZs2CA8Px/HjxzFp0iS0bdsWV65cUapvVVuyZAnCwsKwfft2WFlZKRxHH3fAnj59Gl9//TWWLVum9r7fvXuH69evy7yeLpeRkRF69uwpV1FHPFWrclKpFIcPH4aPj0+BZz5WqlQJLi4uejUFe/PmTRw8eBBz5swp8ODywtjb26Np06b6NQWr6aFCVUpISODpV6YWw4cPp2bNmgkS6/z58wSA/vzzz3zvhYSEUNmyZalWrVoUExOT9/MlS5aQmZkZZWVlCZKD0G7cuEESiYT8/f2VjnXw4EECQK9fvxYgM83Lzs6mxo0bEwCqVKkS5eTkqLX/3Cmod+/eyf3skSNHCADdvXu30DY5OTl0+PBhcnZ2pnLlylFKSooy6bJiXL58mQDQxYsXC23z22+/kUQioQ8fPqgxM9Xp3Lkz1a1bV6HffzNnzqSyZctSdna2CjJTP50ZqWNMmym687Ugrq6uGDBgAH766acvNj+sW7cOnTp1QtOmTfHXX399cchx27ZtkZqaijt37giSg5BSU1MxaNAgNG7cGHPnzlU6nr5tlti5cyeioqKwZMkSvHr1CuHh4Wrt//jx42jRogVsbW3lftbT0xOlSpUqcLQuPT0dGzduRIMGDdCzZ08kJibi48ePuHr1qhBps0IEBQXBxsYGbdu2LbSNr68vpFIpDh06pMbMVCM0NBSnTp3CokWLCjwVozhdu3ZFXFwcrl27poLs1I+LOsYEIGRRBwBLly5FSkoK5s6di6ysLIwfPx5jx47F2LFjceLECZQpU+aL9s2aNYOhoaFWrqubOnUqXrx4gR07dsg1NVKYypUro1y5cnpR1KWlpWHmzJno06cPpkyZAgcHB+zevVtt/WdlZeHUqVNyT73mMjY2Ro8ePb4o6j5//oxFixahatWqGDVqFOrUqYOwsDDcunULZcuWLXGHbKsTESEwMBA9evSAgYFBoe1sbW3RoUMHnZ+CJSL89NNPaNmyZb6dvrJq1aoVypYtqz9Hm2h6qFCVePqVqcP79+8JAO3fv1/QuAEBAWRgYEBt27YliURC69evL7J9q1ataNCgQYLmoKzc6Tl5dqTJonPnztStWzdBY2rC4sWLSSKR5O3onzZtGpUrV06uXajKCA0NJQB0/fp1hWMEBgbm7fyeNGkSmZubk7GxMY0aNeqLJQJERD179iR3d3dl02aFiI6Olnkn/KZNm0gkEtGbN2/UkJlqHDp0iABQSEiIUnH69+8v2PIZTeOijjElXbx4kQBQdHS0oHHT09OpVq1aVLZsWQoNDS22/aRJk6hatWqC5qCM2NhYsrGxoe7du5NUKhU09owZM8je3l7QmOr28eNHsrKyonHjxuX97ObNmwSATpw4oZYcpk2bRnZ2dkqt40tNTSVzc3MCQGXKlKGZM2dSbGxsgW1/+eUXMjExoYyMDIX7Y4VbsGABWVhYUFpaWrFt4+LiyNDQkFauXKmGzISXlZVF9erVo06dOikda9u2bQSA3r59K0BmmsXTr4wpKSYmBmKxGDVr1hQ0rrGxMcLCwhATEwM3N7di27dp0wZPnz7VmtsWFi9eDKlUio0bNxa4C08ZzZo1Q2xsLN68eSNoXHVauHAhcnJyMHv27LyfNWnSBHXq1FHbFOyxY8fg5eUl160e/2VqaorffvsNq1evxsuXLzF//nzY2dkV2LZ9+/ZIT0/Xu93L2iIwMBBeXl4wMTEptm2ZMmXQpUsXnZ2C3b59O+7fv4+AgAClY3Xu3BkikUgvjjbhoo4xJcXExKB69eowNjYWPLatrS1sbGxkapu7MFobjjYhIhw8eBADBgwo9ANeGc2bNwcAnS0Onj59ijVr1uDHH3/8YoOCSCTCgAEDEBgYiLS0NIVix8fHw8vLC4MGDUJAQACOHDmCp0+f5jsi59mzZ7h3757Mt0gUZdiwYRg/fjzMzc2LbNekSRNYWFioZV2dVCrF9OnTcfjw4RJxlMqLFy8QEREh19qy/v3748qVK3j27JnK8lKF9PR0zJkzB/369UPTpk2Vjmdra4vmzZvrxdEmXNQxpiShN0koqlKlSqhUqZJWFHU3b97EixcvvrhMXEiVKlWCjY2Nzm6WmDFjBsqVK4fvv/8+33sDBgxAUlKSwh8wq1atQmhoKJ4/f47FixejR48eqF69OiwtLdGqVSsMHz4879BqiUQCT09PZf84MpNIJGjXrp1airrnz58jICAAPj4+cHNz05vdjYUJCgqCoaGhXEV6jx49YGpqin379qkwM+GtXbsWb968wfz58wWL6eXlhdOnTyM7O1uwmJrARR1jStKWog6A1hxCHBgYiLJly6J9+/YqiS8SiXT2EOKIiAjs3r0b//vf/woc2apduzaaNm2q0BRsUlISfv31V4waNQphYWH4/PkzXr58iRMnTmDu3LmoV68ebt++jRkzZmDVqlVwd3dX6iBoRbRv3x5hYWHIyclRaT+5t7xs2LABcXFxaNWqFQYMGICnT5+qtF9NCQoKQocOHeT639PCwgLdu3fXqSnYhIQELFq0CCNGjECtWrUEi9u1a1fEx8fr/pE7ml7Up0q8UYKpWlpaGolEItq4caOmUyEiohUrVpCxsbHGF6LXr1+fhg0bptI+Zs6cSXZ2doJvwlAlqVRK7u7uVL9+/SIPSl26dKlC93P+/PPPZGRkRC9fviyyXXZ2Nv3999/0+fNnueIL4dKlSwSAIiIiVNrP8uXLydTUlHJycig7O5s2bdpEFSpUICMjI5o8eTJ9+vRJpf2r08ePH8nAwIDWrVsn97O5h3n/d6eytpo1axaZmJgIfvh4dnY2lStXTpAD0jWJR+oYU8LDhw9BRFo1UpeRkYHIyEiN5fDgwQPcu3cPvXv3Vmk/zZs3x7t37/D69WuV9iOkkydPIjQ0FIsXLy7yoNR+/fohIyMDQUFBMsdOTU3FL7/8gq+//hqVKlUqsq2BgQFq1KiB0qVLyxxfKC1atICxsbHKp2BjYmJQp04diMViGBgY4JtvvsHDhw8xa9Ys/PHHH6hZsyZ++eUXZGRkqDQPdThy5AikUil69uwp97Ndu3ZFqVKldOLqzXfv3mH58uX47rvvUKFCBUFjGxgYoEuXLjp/Xh0XdYwpIXeKR1uKuiZNmsDExESjhxAHBgbC3Nxc5Wu1dO1miZycHPzwww9wdXUt9rBfBwcHtG/fXq4p2D/++ANxcXH48ccflU1VpYyNjdG6dWuVF3UPHjzI9/fS3NwcM2fOxN9//43+/fvjxx9/RN26dbF69Wpcu3ZN4c0pmhYUFIQ2bdrA3t5e7mdNTU3h4+OD3bt3C7ah5OnTp7h69argG1QWLFgAQ0NDlf033rVrV0RGRurUF8X/0pmiLikpCa1atYKFhQWio6M1nQ5jAP4p6mxsbGBtba3pVAD8c8l6s2bNNLquLjAwEF26dIGpqalK+6lYsSJsbW11Zl3dtm3bEB0djSVLlsh0xMuAAQNw9uxZfPjwodi26enpWLp0KYYMGYJq1aoJka5KtW/fHhcvXlTprtSi1rra2dlh7dq1iI6ORpMmTTB58mS0atUKpUqVgqOjI77++musXr0a4eHhSE5OVlmOQkhJScGpU6cUvlEB+GcXbExMjCDXDD58+BCtW7dGmzZtULduXfz888+CHD305MkTrF+/Hj/99FO+G3WEknu0ycmTJ1USXx10pqgzNTXF0aNH4evrq+lUGMujTZskcrVt21ZjI3WvXr3CtWvXVD71CvzfZgldGKlLTU3FrFmz0K9fP7Rs2VKmZ3x9fSESibB///5i227evBmxsbHw9/dXNlW1aN++PT59+oT79++rJP7nz5/x7t27L+5HLkjdunURGBiIpKQkXL9+HWvXrkXbtm1x9+5dTJs2Dc7OzrC0tES9evUwcOBALFq0CIGBgXjw4IHW7JI8deoU0tPTldpp3rFjR5QtW1bpDRMvX75Ex44dYW1tjSNHjqBly5aYN28eHBwc0L17dxw6dAiZmZkKxZ4zZw7KlSuHCRMmKJVjUaytrdGqVSvdnoLV7JI++Q0bNozu3LlT4Hvp6emUkJCQ93r58iVvlGAq5eTkRCNHjtR0Gl/IvTrnxYsXau979erVZGhoKPcCf0XNmjWLbGxstH6zxKJFi8jQ0JD+/vtvuZ7r2rUrOTs7F9kmMzOTKleuTAMGDFAmRbVKTk4miUQi+PVxua5cuUIA6NatWwrHyMzMpMjISPrzzz9p/Pjx1K5dOypdujQBIABkaGhIDRo0oL59+9KcOXNoz549dPv2bUGueJNKpXTmzBk6duwYvX79usj/vocMGUINGzZUus/Ro0dTmTJl6OLFiwo9/+7dO6pTpw5VrVqVXr16lffzz58/07p166hly5YEgMqVK0eTJk2i27dvyxw7KiqKRCKRQhtB5LVo0SIyMjKi4OBglfelCnpV1M2ZMyfvL9y/X1zUMVXIyckhMzMz+uWXXzSdyhfevn1LAGjv3r1q79vDw4M6d+6stv4OHz6ssQJWVu/fv6dSpUrRd999J/ezudcXPX/+vNA2mzZtIgCF/l7UVq1atVJZIbp582YCQCkpKYLGlUql9PbtWzp37hytXr2avv32W3JzcyNbW9u8zxsHBwf6/fffKT09XaE+zp8/T61bt/7iM8zGxoY8PT3phx9+oF27dtG9e/coOzubMjMzqXTp0jRz5kyl/2yfPn0iNzc3MjQ0pD///FOuZ+Pj48nJyYns7Ozo0aNHhbaLjo6mKVOmkI2NDQEgJycnGjduHP3xxx907do1Sk1NLfC5bt26Ua1atdRyJ3JaWhr16dOHDAwMaNOmTSrvT2h6VdTxSB1Tp+fPnxMAOnbsmKZTyadatWo0adIktfapzLEKinr16hUBoEOHDqmtT3nNnj2bLCws6MOHD3I/m5iYSCYmJrRkyZIC38/KyqKaNWtS7969lU1T7aZNm0YVK1ZUySjrjz/+SFWqVBE8blE+fvxI58+fpwEDBpBIJKJKlSrR2rVrZS7ubt68SV26dCEA1KxZMzp9+jQ9ffqUAgMDac6cOdSzZ0+qUqVKXqFnampKDRo0EPR4mIyMDBo1ahQBoMmTJ1N2dnaxz6SkpJCzszOVKVNG5tG3zMxMCgwMpIEDB1K9evVILBYTABKLxVS3bl3q168fLVq0iI4fP06BgYFq/5KanZ1NY8aMIQC0cOFCrZ8J+De9Kur+i8+pY6p08uRJAkBPnjzRdCr5DBo0iFq2bKnWPjdv3kwikUitl2JLpVKyt7enGTNmqK1PeeTk5FDVqlVpxIgRCsfw9fUlJyenAt/bsWMHAaCbN28qHF9Tjhw5QgDo8ePHgsfu2bOnWkeM/+vevXs0cODAvOLut99+K7S4e/ToEfXv358AUO3atWn//v1FFhGfPn2ikJAQWr58OQ0dOpS++uorQYsOqVRKK1euJLFYTF5eXkV+fmZkZFDXrl3J3Nycrly5onCfqampdP36ddqwYQONHz+eXFxcyNLSMq+Abdq0KeXk5CgcXxFSqZTmzZtHAGjChAlq719ROlXUde3alcqXL0+tW7emzZs3F9ueizqmSr/++iuZmJjI9G1W3dasWUOGhoaUlpamtj579OhB7dq1U1t/ubp166bRD/CinD9/ngAovE6JqPDDYXNycqhevXrUrVs3ZdPUiLi4OBKJRDL9LpdX3bp1FZruFlpucScWi6lSpUq0Zs2avL+Tr1+/pjFjxpBEIqGKFSvShg0bijyQWt1OnjxJVlZW1KBBgwIL7+zsbOrXrx8ZGRnRmTNnBO9fKpXSkydPKCgoiJ4+fSp4fFmtW7eOxGIx+fn5KTylrk46VdTJi4s6pkpjxowhR0dHTadRoIiICAJAYWFhaukvKSmJTExMaNmyZWrp79/mzJlD5cqV08opkm+++YaqVaumVG5paWlkaWlJc+bM+eLn+/fvJwBKjZBoWuPGjenrr78WNGZmZqZKN2Eo4v79+zRo0CASi8VUsWJFGj58OJmamlKZMmVo6dKlha4l07T79+9TjRo1yNrams6fP5/3c6lUSiNHjiSxWKzVSx+EcujQITI2NiYPDw+trye4qGNMQW5ubuTn56fpNAqUlZVFZmZmha7FElpugaGKqbTiBAcHEwB69uyZ2vsuSkpKCpUqVSpfMaaIYcOGUa1atfKKQ6lUSo0bN6aOHTsqHVuTJkyYQDVr1hQ0ZkxMDAGgkJAQQeMKISYmhgYPHky2trY0Y8YMjVzTJq+PHz+Su7s7SSQS2rhxI0mlUpo2bRoBoC1btmg6PbW5cOECWVlZkZOTk1qXmMiLizrGFGRvb0+zZ8/WdBqFcnNzo169eqmlr4EDB1Ljxo3V0td/vX79mgDQwYMHNdJ/YXbu3EkA5D7GpCC56zdv3LhBRP9XyF64cEHp2JqU+2VAyHs8g4KCCAC9efNGsJglXWZmJo0ePZoAUPv27QkA/frrr5pOS+2ioqKofPnyVL169SJ3+WqSzhw+zJg2iY+PR2xsrNYdPPxvuYcQkwpP7QeAzMxMHD16VKnDT5VRoUIFlC9fXutulti2bRucnZ1Ro0YNpWN16NABNjY2eVc5zZ8/Hy4uLmjfvr0AmWqOi4sLAODSpUuCxYyJiYGlpaVCV2axghkaGuL333/Pu2Vj3rx5+O677zSdlto5Ojri8uXLkEgkaNeuXd7VfNqEizrGFPDgwQMA2nPna0HatGmDd+/e4dmzZyrtJyQkBImJiRor6oB/7oHVppsl3rx5gzNnzmDo0KGCxJNIJPDz88PevXtx6tQpXL9+HbNmzRIktibZ2dmhTp06gt4Dm3vLiyxXsTHZiUQijB8/HvHx8Zg9e7am09GYqlWrIiwsDC1btsTYsWNhb2+PHj16YM+ePUhJSdF0elzUMaaI3OuNiruGSJNat24NACq/MiwwMBA1atRAo0aNVNpPUZo3b44bN26ofFRSVjt37oShoSH8/PwEizlgwAC8evUK33zzDVq2bImOHTsKFluTcu+BFYo2Xt2nTywsLDSdgsbZ2NjgyJEjeP36NX755Rd8+PABAwYMgJ2dHQYNGoRjx44hKytLI7lxUceYAmJiYlClShWYmZlpOpVClStXDrVr18aVK1dU1kdOTg4OHz6MXr16aXRkpFmzZoiLi8Pz5881lkMuIsLWrVvh4+MDKysrweK2adMGlStXxtu3bzFr1iy9GYlq3749oqOj8enTJ6VjEREXdUxt7O3tMWHCBFy5cgWPHz/G9OnTERkZie7du8Pe3h5jxozBvXv31JoTF3WMKUBXPjhy19WpypUrV/Du3TuNTr0C/xR1ALRiXd2tW7dw9+5dwaZec4nFYowdOxZubm7o1q2boLE1KXddYFhYmNKxPnz4gPj4eK0eQWf6qXr16pg+fTqio6MRFRWFUaNG4ejRo/D29lZrHiW2qMvJyYFUKtV0GkxH6UpR16ZNG9y+fRvJyckqiR8YGAh7e/u8qV5NKV++PCpUqKAV6+q2bdsGOzs7dOrUSfDYP/30E0JDQ/VmlA4AKleujCpVqggyBRsTEwNAu9e6Mv0mEong6OiIgIAArF27Fk+ePMHTp0/V1r9gRZ02/DKVx/Tp09G7d2+Vfdgx3fLmzRscOXJEprZZWVl4/PixTnxwtGnTBjk5Obh+/brgsYkIgYGB8PHxgVis+e+HuevqNCkrKwu7du3CoEGDIJFINJqLLhFqXV1MTAwMDAwE2XHMmLLat28PsViMkJAQtfUp2G9iTU+/yMvFxQXnzp1Du3bt8OLFC02nwzRs1apV6NGjB4KCgopt+/jxY2RnZ+tEUVe/fn1YWlqqZF3d7du38fTpU635u5+7A1aTmyVOnjyJDx8+CD71qu/at2+PmzdvIikpSak4MTExqF69OoyNjQXKjDHFlS5dGs2aNVNrUSfXV8nCdnIRkdad1VKc7t2748qVK/D29kaLFi0QFBSENm3aaDotpiGRkZEAgGHDhiEiIgI1a9YstK0uTfEYGBigVatWKinqDh06BCsrK7i5uQkeWxHNmjXD58+f8eTJE42N1GzduhWNGzdG48aNNdK/rmrfvj2kUikuX76Mzp07KxxHV5ZFsJLDw8MDW7duBRGpZdmEXCN1Z8+exbBhwzBu3Lh8L3Nzc1XlmGfq1KlwcXHBoEGDkJmZqXS8hg0b4tq1a6hduzbc3NywY8cOuWNIpVIcOXIkryhguikqKgoTJ06EnZ0dfH19kZaWVmjb+/fvo3Tp0rCzs1Njhopr27Ytrly5IvgIVmBgILy9vWFkZCRoXEW1adMGIpEI58+f10j/cXFxOHLkCI/SKaBWrVqws7NTegqWizqmbTw8PBAbG5s3GKBqchV1bm5usLCwgKur6xcvNzc3ODk5qSpHAP/sKIuNjcWlS5dQv359HDhwQJC4NjY2OHv2LAYNGoQhQ4Zg+vTpMm2gyMrKwtatW9GgQQP06NEDnTp1QmxsrCA5MfV69+4dYmNj4eLigoMHD+Lhw4cYN25coe117XDTNm3a4NOnT3j06JFgMf/++2/cuXNHa6ZeAaBs2bJo0aIFTp8+rZH+9+3bh5ycHAwcOFAj/esykUik9Lq6tLQ0PHv2jIs6plXatWsHQ0NDtU3BylXUHTp0CK6urgW+d/LkSUESKsyVK1fydpN16dKlwGMaMjIykJiY+MVLFsbGxti0aROWLl2Kn3/+GX369Cl0A0VaWhrWrFmDmjVr4quvvkKdOnVw/PhxiMViDBs2jHfU6qCoqCgAQJMmTdCoUSOsW7cOmzdvxqZNmwpsr2ujAa1atYJIJBL0aJPAwECYmJgoNVWmCp6enjh79ixycnLU3vfWrVvRuXNnvp5KQe3bt8e1a9eKHCUvyt9//w0i4uNMmFYxNzdH69attbOo06T4+HhYWloCAKysrApcwxcQEAArK6u8l4ODg8zxRSIRpk6diuDgYJw9exbOzs5fbKBISEjAzz//jKpVq+K7776Di4sL7ty5g6CgIHTt2hXbtm3D6dOnsWLFCuX/sEytoqKiYGFhgerVqwMAhg4dilGjRmHcuHG4devWF2118XDT0qVLo379+oKuqwsMDESXLl3UsuxCHp06dUJcXFy+/91U7eHDh7h69SpPvSqhffv2yMzMxLVr1xR6XpfWurKSxcPDA6GhoWoZ9FG4qDt48KCQeRSrTJkyeSNv8fHxKFu2bL42/v7+SEhIyHu9fPlS7n66d++Oy5cvIz4+Hi1btsSJEycwc+ZMVKlSBXPmzEGvXr3w8OFD7NixAw0bNsx7rlOnTpg6dSr8/f117niXki4qKgqNGjX64liOlStXokGDBvD19UV8fHzez2NjY5GYmKhzHxxt2rQRbKTu8ePHuHLlCnx9fQWJJ6TWrVvD3NwcZ86cUWu/27dvh5WVFXr06KHWfvVJw4YNUbp0aYWnYGNiYlCuXDlYW1sLnBljyvHw8MDnz5/zZoVUSeGibuDAgcWOSgm5MLt169Z5a2VOnTqFdu3a5WtjbGwMS0vLL16KaNSoEa5du4aaNWvCy8sLv/76K0aMGIGnT59i3bp1he6sW7hwIRwdHTFgwAA+/06HREVF5dutaGJiggMHDiAuLu6LaXVdHQ1o27Yt7t69i4SEBKVj/fnnn7CyskLv3r0FyExYRkZGcHd3V+u6OqlUim3btsHPzw+mpqZq61ffiMViuLi4KFXU6drfS1YytGrVCqampmqZglW4qAsODsbcuXMxceLEfMVbTk4OtmzZgnr16imdYC4nJyfY29vDxcUF9+7dQ58+fQSLXRBbW1ucO3cOu3btwvPnz7Fs2TJUqFChyGeMjIywe/duvHnzBhMmTFBpfkwY6enpuH//foFHUFSrVg3bt29HcHAwli5dCuCfna+GhoZ5U7W6ok2bNiAi/PXXX0rFyc7OxubNmzFo0CCtLWA8PT0RHh6OlJQUtfR38eJFvHjxgqdeBdC+fXtcvnxZocvQuahj2srY2BjOzs7qWVdHSoiMjKRKlSqRj48PpaamUkZGBq1du5aqVq1KZcqUodmzZysTXmkJCQkEgBISEtTa7+bNmwkA7d69W639MvlFREQQALpy5Uqhbfz9/UksFlNoaChNmDCB6tWrp8YMhZGTk0Nly5alGTNmKBUnODiYANDNmzcFykx49+/fJwB0/PhxtfT31VdfUfXq1UkqlaqlP332119/EQC6evWqXM/l5OSQmZkZLVu2TEWZMaacgIAAsrCwoMzMTJX2o9RGicaNG+Pq1at48uQJWrdujWrVqmHOnDkYOXIknj9/jnnz5ilfdeqgYcOGYcCAARg9erRa73xj8ouKioJIJEKjRo0KbfO///0Prq6u6N+/P8LCwnRyNEAsFqN3797YtGkTMjIyFI6zadMmNG3aVOVHGCmjTp06qFSpklqmYFNSUnDgwAEMHTpUZ4640WZOTk6wsLDAuXPn5Hru9evXSE1N1cm/m6xk8PDwQHJyssqvMlSqqEtISMCff/6J169f49GjR4iPj8e5c+cwffp0lCpVSqgcdY5IJMLvv/+OsmXLYuDAgQpNJTD1iIqKQs2aNYvcxSmRSLB7926IxWLcunVLZz84pk6dinfv3il0yDYAvH37FkePHsWIESMEzkxYIpEInTp1UstmiaCgICQnJ2PIkCEq76skMDQ0hJeXl9znkOaudeXjTJi2atq0KSwtLVU+BatwUefv748qVapgy5YtWLRoET58+IC+ffuiY8eOKrk8XNdYWVlh9+7duH79eokdsdQFBW2SKIidnR327dsHiUSCJk2aqD4xFahTpw569uyJpUuXKrS1fuvWrTA0NMSAAQNUkJ2wPD09cffuXbx+/Vql/WzduhUuLi46t8ZSm/Xr1w+3bt2S67DsBw8ewMjICFWrVlVdYowpQSKRwNXVVXuLuqCgIKxatQoPHz7EqFGjYG5uji1btmDUqFFwd3fH4cOHhcxTJ7Vu3Rr/+9//sGjRIo1dXcQKR0SIjIyUuUhzdnbGq1evtPIoD1lNmzYNDx48wNGjR+V6joiwceNG9O3bF6VLl1ZNcgLq2LEjRCIRzp49q7I+YmJicObMGXzzzTcq66Mk6tq1K8zNzbF//36Zn4mJiUGtWrUgkch1nTljauXh4YHw8HCkp6errA+Fi7p79+5h6NChMDAw+OLn8+fPx6+//op+/fphzZo1Sieo63788Ue4urpi8ODB+PTpk6bTYf/y8uVLxMfHy3X5up2d3Rfn2ematm3bol27dliyZIlcz124cAGPHz/W+qnXXOXKlYOTk5NK19WtXLkSdnZ2OjFyqUtMTU3Ro0cP7Nu3T+ZneOcr0wUeHh7IyMgQ9CD4/1L406moRcEjRoxAYGAgpk+frmh4vWFgYIAdO3YgLS0NI0aMEPxSdaa43IMg5Snq9MG0adMQHh4u12HEmzZtQq1ateDi4qLCzITVqVMnnD17ViWnuH/69Albt27FuHHjYGxsLHj8ks7Pzw9RUVF48OCBTO25qGO6oGHDhihXrpxKp2BVNuTQtWtXnnL8/ypWrIiVK1ciKCgIjx8/1nQ67P+LiopCmTJlUKlSJU2nolbe3t6oU6dO3tl7xfn8+TMOHDiA4cOH69QOT09PT7x//x63b98WPPb69etBRBgzZozgsdk/93tbWFjINFqXlJSE169fc1HHtJ5YLIa7u7tuFnXAP7s92D86deoEAGq/k5IVLjIyEo0bN9apQkUIYrEYU6dOxeHDh2UaCdm1axeysrIwbNgwNWQnnHbt2sHU1FTwXbCZmZlYs2YNhgwZAhsbG0Fjs3+YmJigZ8+eMhV1uf8Nc1HHdIGHhweuXbuGpKQklcTX3cVBOsbW1hYVKlTgok6LREVF6exOVmUNHjwYdnZ2+OWXX4psR0TYsGEDvL29YW9vr6bshGFsbAxXV1fB19Xt3bsXb9++xaRJkwSNy77k5+eH6Oho3Lt3r8h2uceZ1K5dWx1pMaYUDw8PZGdnIywsTCXxuahTIycnJy7qtERycjIeP35c4tbT5TIxMcHEiROxdetWxMbGFtru5s2biIqK0pkNEv/VqVMnXLp0CWlpaYLEIyIsX74cXbp0Qf369QWJyQrWuXNnWFpaFrsL9sGDB6hQoYLCd30zpk61atVCxYoVVTYFy0WdGnFRpz3u3LkDIiqxRR0AjBkzBkZGRli9enWhbTZt2oSKFSuic+fOasxMOJ6ensjIyMClS5cEiXf+/HlERkZi8uTJgsRjhTM2NoaPj0+xU7C8SYLpEpFIBA8Pj5Jd1CUlJaFVq1awsLBAdHS0ptNRmJOTE969e4e3b99qOhW5EBHOnTun1PVS2iYqKgoSiaREj7aUKVMGI0eOxNq1awtc35GamoqdO3fiq6++0tnzvxo0aIDy5csLtq5uxYoVaNiwITp27ChIPFY0Pz8/3Lt3D3fv3i20DRd1TNd4eHjg1q1biIuLEzy2ThR1pqamOHr0qE4f+gog775MXRutW7NmDTp27IgJEyZoOhXBREZGol69eiX+OIpJkyYhOTkZmzZtyvfegQMHkJiYqNOH64pEInh6egqyru7hw4c4cuQIvv/++xK3uUZTPD09YWVlhb179xb4fk5ODh4+fMhFHdMp7u7uICJcuHBB8Ng6UdRJJBKZdpllZGQgMTHxi5c2qVq1KkqXLq1TRV1ERASmTp2KFi1aYMOGDdi5c6emUxKErNeD6bvKlSujf//+WL58eb47ijdu3IgOHTro/BVYnTp1wu3bt4tcOyiLlStXwtbWFgMHDhQoM1YcIyMj9OrVC/v27SvwjM9nz54hMzOTizqmU6pUqYIaNWqoZApWJ4o6WQUEBMDKyirv5eDgoOmUviASidCkSROdKeoSEhLg5+cHR0dHXLp0CYMHD8bo0aNlPhBUW0mlUty5c4eLuv9v2rRpePny5RejIQ8ePMClS5d0doPEv+VOlSpzZVhcXBy2bNmCb7/9FiYmJkKlxmTg5+eHBw8e4M6dO/ney935ykUd0zWqWlenVUVdbGwsnJ2d871knXf29/dHQkJC3uvly5cqzlh+urJZgogwcuRIfPz4EXv37oWxsTF+//13ODg4oG/fvkhNTdV0igp7/PgxUlJSuKj7/xwdHdGlSxcsXbo0bzTkzz//RNmyZeHj46PZ5ARgZ2eHxo0bK7Wu7o8//kBOTg7Gjh0rYGZMFh07dkSZMmUK3DARExMDMzMzVKxYUQOZMaY4Dw8P3Lt3T+kZhP/SqqLO3t4eYWFh+V5ly5aV6XljY2NYWlp+8dI2Tk5OePLkCRISEjSdSpHWrVuH/fv3Y9OmTXnTbxYWFti/fz/+/vtvfPfddxrOUHGRkZEASt71YEWZNm0abt++jdOnTyMrKwtbtmzB4MGD9WZUytPTE2fOnFHomr7MzEysXr0agwcPhq2trQqyY0UxNDRE7969C5yCjYmJQZ06dXT6PmZWMrm7uwMAQkNDBY2rM38TvLy8cPr0aYwcORJbtmzRdDoKy90skVtYaKPIyEh8//33+Pbbb/NtTmnYsCHWrFmDjRs3YseOHRrKUDlRUVEoX748f0D/i7u7O5o1a4alS5fi6NGjeP/+PYYPH67ptATTqVMnvH37tshdlIXZv38/3rx5w4cNa5Cfnx8ePXqUd19zrgcPHvDUK9NJdnZ2aNCggeBTsDpzTsHx48c1nYIg6tatCxMTE9y6dQuurq6aTiefpKQk+Pn5oV69eoXeNvD111/jwoULGDNmDJo3b65zv1R5k0R+IpEI06ZNQ//+/fHq1Su0bNkSjo6Omk5LMM7OzjA2Nsbp06fRsGFDmZ/LPWy4U6dOcj3HhOXu7g5ra2vs3bv3i1tgYmJi+HgZprM8PDxw7NgxQWPqzEidvpBIJGjUqJFWrqsjIowePRpv377Fvn37Cp16E4lEWLt2LSpXrqyT6+u4qCtYnz59UK1aNTx48EAvNkj8m6mpKdq3by/3urpLly7h5s2b+P7771WUGZNFQVOwnz59wocPH3TuSyVjuTw8PPDkyRM8e/ZMsJhc1GmAtm6W2LhxI3bv3o0NGzagVq1aRbY1NzfHvn378PjxY0ycOFEt+UmlUmRmZiI1NRWJiYmIi4tDSkqKXDHi4uLw8uVLLuoKIJFIMH36dFhbW6Nfv36aTkdwnp6euHDhAtLT02V+Zvny5ahfv77O3qihT/z8/PDkyRPcvHkTAPJ24XNRx3SVq6srRCKRoOvquKjTACcnJ9y7d0+uDxdVu337NiZOnIhRo0ahf//+Mj3TsGFDrF27Fps2bcL27dsFyyU5ORleXl6wtLSEmZkZjIyMIBaLYWBgAGNjY5ibm8PKygrW1tawt7eX64aO3DU5/57CYf9nxIgRePPmjVZuMlJWp06dkJaWhsuXL8vU/u+//0ZwcDAmTZrEhw1rATc3N9jY2OTtgo2JiYFIJCr2Cyhj2qpMmTJo2rSpoOvqdGZNnT5xcnJCTk4OoqOj0bx5c02ng+TkZPj5+aF27dr49ddf5Xr2q6++wvnz5/PW19WrV0+pXFJTU+Ht7Y2IiAhMnz4dZmZmkEgk+V6GhoYQiUQYPnw4VqxYgSVLlsgUPyoqCiYmJvxBUAQjIyNNp6ASjRo1gq2tLU6fPg0PD49i269cuRLW1tYYPHiwGrJjxZFIJOjTpw/27duHn3/+GTExMahSpQpMTU01nRpjCvPw8MDOnTtBRMJ8eSQ9lpCQQAAoISFB06l8ISUlhcRiMW3YsEHTqZBUKqUhQ4aQubk5xcTEKBQjOTmZ6tevTw0aNKCUlBSFc0lLSyNPT08yNzensLAwmZ7x9/cnCwsL+vTpk0ztv/rqK2revLnCOTLdNmjQIGratGmRbaRSKUVGRpK5uTnNmjVLTZkxWYSEhBAAunbtGnl7e1OXLl00nRJjSjlx4gQBoHPnzgkSj6dfNcDMzAx169bVinV1u3btwvbt27Fu3TrUqVNHoRjm5ubYv38/nj59igEDBiA+Pl7uGJmZmfD19cWlS5dw5MgRtGvXTqbnJk2ahOzsbKxZs0am9rxJomTz9PTEzZs38eHDh7yf5eTk4NatW1i5ciV69+4NW1tbNGnSBKampvj22281mC37r/bt28PW1hZ79+5FTEwMr6djOs/NzQ1t27ZFly5dsHbtWoXO0vw3Luo0RBs2S2RmZmL69Onw9fVVeoqpfv362LNnDy5cuIBGjRrJtUYgKysL/fr1w5kzZ3D48OG8QxllYWtri5EjR2LlypVITk4utp+7d+/yeroSzNPTEwDw+++/Y+nSpfD29oa1tTWaNm2KH3/8EXFxcRg7dizOnj2LZ8+ewd7eXsMZs38zMDCAr68v9u7diydPnnBRx3SeiYkJQkNDMWbMGIwbNw5DhgyRewPgFwQZ79NS2jr9SkS0bNkyMjMzo+zsbI3lsH79ehKJRHT37l3BYj5//pzc3NwIAE2ePJnS0tKKbJ+VlUV+fn5kaGhIR48eVbhPiURCv/zyS5Htbt++TQDo4sWLCvXD9EOjRo0IAJmZmVHHjh3pf//7H124cKHY/1aZdjh//jwBIAB0/vx5TafDmGB2795N5ubm1KBBA4WXQ3FRpyHnzp0jAHT//n2N9J+RkUGVK1em/v37Cx47JyeHli1bRkZGRtSoUSOKiooqsF12djYNHjyYDAwM6NChQ0r1+fXXX1P58uWL/GDevn07AaD4+Hil+mK67e+//6bLly9TRkaGplNhCsjOzqby5csTAIqNjdV0OowJ6u7du1S3bl2ysLCg/fv3y/08T79qSO4UoKamYDdv3oyXL19i1qxZgscWi8WYMmUKrl+/DiJCixYtsGzZMkil0rw2UqkUo0aNwq5du7Br1y706tVLqT5//PFHxMbGYuvWrYW2iYqKQtWqVWFlZaVUX0y31ahRA23atNHbXb76zsDAAH379oW1tTVf9cf0Tv369XHt2jV069YNffv2xeTJk5GVlSV7AOHrTO2hzSN1RERVqlShadOmqb3fjIwMcnBwUMko3X+lpaXRlClTSCQSkZubGz1//pykUimNHTuWRCIRbd++XbC+/Pz8qFq1apSVlVXg+56entSzZ0/B+mOMaUZCQgLduXNH02kwpjJSqZRWrVpFEomE2rVrR69evZLpOZ0YqYuIiICLiwtcXV3h5+cnX9WqxTS1WWLz5s149eqVSkbp/svExATLli3DuXPn8PjxYzg6OqJ37974/fffsWHDBkHPAPP398fTp0+xd+/efO8RESIjI3mTBGN6wNLSku/iZXpNJBJhwoQJuHDhAp49e4amTZvKdPOEThR1FStWxKlTp3DhwgXUrFkTQUFBmk5JELlFHSm5hVkemZmZWLhwIfr164f69eurrV93d3fcvn0b3bp1Q1BQEH777TcMHz5c0D6aNGkCLy8vBAQEfDHVCwCxsbH48OEDH2fCGGNMZ7Rt2xY3b97Mu8GpODpR1Nnb28PMzAzAPxc7SyT6cRGGk5MTPn36hFevXqmtz9xRutmzZ6utz1ylS5fGzp078eHDB5Wd/zV9+nTcvXsXR44c+eLnudeDcVHHGGNMl+TehLNly5Zi2+pEUZfrxYsXOHv2LLp3717g+xkZGUhMTPzipc3UvVkid5Suf//+Sl/npYxy5cqpLHa7du3Qvn17LFy48IsR0KioKJQqVQpVq1ZVWd+MMcaYKhgYGMDc3LzYdlpV1MXGxsLZ2TnfKy4uDomJiRgyZAg2b94MQ0PDAp8PCAiAlZVV3svBwUHNfwL5VKpUCdbW1mor6tS5lk6TZsyYgevXr+PcuXN5P4uMjETjxo0hFmvVf/KMMcaYYESkzgVdCsrJyYGPjw8mTZqEDh06FNouIyMDGRkZef+emJgIBwcHJCQkwNLSUh2pys3T0xPm5uYqXyeYkZGBWrVqwdnZGbt27VJpX5pG//8YFUtLy7ybLerXrw8PDw+ZrxNjjDHGdI1ODFvs27cPly9fxvz58+Hm5lbg7kYAMDY2hqWl5RcvbaeuHbAlZZQO+GfX0PTp0xEaGoorV64gLS0NDx484PV0jDHG9JpOjNQpKjExEVZWVlo9Urd7924MHDgQHz9+hLW1tUr6KEmjdLmkUikaNGiAWrVqYfbs2WjRogX++usvtGzZUtOpMcYYYyqhEyN1+szJyQnAP2u+VEWTO141RSwWw9/fH0eOHMH27dshFov5XCvGGGN6jYs6DatVqxbMzMxUNgWbkZGBRYsWYcCAAahbt65K+tBWAwYMQNWqVbF69WrUrl0771gcxhhjTB9xUadhBgYGaNy4scqKupK0lu6/DA0N8cMPP4CIeD0dY4wxvcdFnRZQ1WaJkjxKl+vrr79G1apV0b59e02nwhhjjKmUflzNoOOcnJywbt06pKamCjpFWJJH6XKZmJjg0aNHenMLCWOMMVYYHqnTAk5OTpBKpbh9+7ZgMRMSErBw4cISPUqXiws6xhhjJQEXdVqgYcOGkEgkgk3BEhG++eYbJCUlYcGCBYLEZIwxxph24yEMLWBsbIz69esLVtStWrUKhw4dQmBgIKpVqyZITMYYY4xpNx6p0xJCbZb466+/MHXqVEyePBk+Pj7KJ8YYY4wxncBFnZZwcnLCnTt3kJWVpXCMuLg4+Pn5oXnz5vj5558FzI4xxhhj2o6LOi3h5OSEjIwMPHjwQKHnpVIphg0bhuTkZOzduxeGhoYCZ8gYY4wxbaYTRV10dDTatWsHV1dXdOvWDcnJyZpOSXBNmjQBAIWnYJctW4ajR49i+/btqFy5soCZMcYYY0wX6ERRV6dOHYSHh+PChQto2bIlAgMDNZ2S4CwtLVGjRg2FirqwsDBMnz4dP/30E7y8vFSQHWOMMca0nU4Udf+eSkxNTdXbc9cU2Szx4cMH9OvXD23btsX8+fNVlBljjDHGtJ1OFHUAcObMGTg5OSE0NBQ1atQosE1GRgYSExO/eOkSJycnREZGgohkai+VSjF48GBkZWVhz549fMguY4wxVoJpVVEXGxsLZ2fnfK+4uDh4enri1q1b8PX1xR9//FHg8wEBAbCyssp7OTg4qPlPoBwnJyfEx8fj2bNnMrVftGgRzpw5g507d6JChQqqTY4xxhhjWk2rhnbs7e0RFhaW7+cZGRl5/2xlZYXMzMwCn/f398fkyZPz/j0xMVGnCjsnJycAwI0bN4o9NDgkJARz5szB7Nmz4enpqY70GGOMMabFRCTrXJ8GHT16FEuXLoVYLIaNjQ22bNki08X3iYmJsLKyQkJCAiwtLdWQqfIqVaqE169fw9TUFNbW1ihbtiysra2/+OcyZcrgl19+QcOGDXHq1CkYGBhoOm3GGGOMaZhOFHWK0sWi7u7du7h16xY+ffqEuLi4Qv9v+fLlcf78edjZ2Wk6ZcYYY4xpAS7qGGOMMcb0gFZtlGCMMcYYY4rhoo4xxhhjTA9wUccYY4wxpge4qGOMMcYY0wNc1DHGGGOM6QG93v1KREhKSkKpUqUgEok0nQ5jjDHGmMrodVHHGGOMMVZS8PQrY4wxxpge4KKOMcYYY0wPcFHHGGOMMaYHuKhjjDHGGNMDXNQxxhhjjOkBLuoYY4wxxvQAF3WMMcYYY3qAizrGGGOMMT3ARR1jjDHGmB7goo4xxhhjTA9wUccYY4wxpgf0uqgjIiQmJoKvt2WMMcaYvtProi4pKQlWVlZISkrSdCqMMcYYYyql10UdY4wxxlhJwUUdY4wxxpge4KKOMcYYY0wPcFHHGGOMMaYHuKgr4R48eIDQ0FBNp8EYY4wxJXFRV4IFBQWhWbNm8PT0xMWLF5WOl5ycjISEBAEyY4wxxpi8uKgrgYgICxYsQK9evdClSxc4OzujX79+ePv2rcIxP3/+jBYtWqB+/fp48OCBgNkyxhhjTBZc1JUwKSkp6NevH2bNmoV58+Zh37592LNnD0QiEfr164esrCy5Y2ZmZqJ379748OEDLC0t4erqirt376oge8YYY4wVhou6EuTFixdwcXHB8ePHcejQIcyePRtisRj29vbYt28fLl++jOnTp8sVk4gwcuRIXL58GUFBQbhw4QLs7Ozg5uaGqKgoFf1JGGOMMfZfXNSVEOHh4WjRogXi4uJw+fJl9OrV64v3nZ2dsXTpUixbtgyHDh2SOe6CBQuwbds2bNmyBc7OzrC1tUVISAgqV64Md3d3RERECP1HYYwxxlgBuKgrAf7880+4u7ujbt26uH79OhwdHQtsN2nSJPj6+uKrr77Cw4cPi427c+dOzJ49G/Pnz8eAAQPyfm5tbY1z586hdu3a6NChA65evSrYn4UxxhhjBRORHt92n5iYCCsrKyQkJMDS0lLT6ahddnY2pk6dipUrV2L06NFYtWoVjIyMinwmKSkJLVq0gKGhIa5evQpzc/MC2126dAkdO3bEwIED8eeff0IkEuVrk5iYiG7duiEyMhLHjx+Hi4uLIH8uxhhjjOXHI3V6iojQs2dPrFmzBmvXrsW6deuKLegAoFSpUjh06BCePn2KMWPGoKCa/+HDh/Dx8UG7du2wfv36Ags6ALC0tMTJkyfRokULdOnSBSEhIUr/uRhjjDFWMC7q9NSZM2dw/PhxHDx4EGPHjpXr2fr162PDhg3YsWMH1q1b98V7Hz9+RLdu3WBra4uDBw8WWyiam5vj2LFjcHFxQbdu3XDq1Cm5/yyMMcYYKx5Pv+opLy8vvHv3Djdu3Ch0JK04EydOxLp16xAWFoaWLVsiPT0dHTt2xMOHD/HXX3+hWrVqMsdKT09H3759cfr0aRw8eBDdu3dXKCfGGGOMFYyLOj0UExODevXqYdu2bRgyZIjCcTIzM+Hq6orXr18jIiICEydORFBQEEJDQ9G6dWuF4g0YMCDvJgsPDw94eHigXbt2ha7dY4wxxphsuKjTQ99++y0OHTqE58+fw9jYWKlYr169gpOTEyQSCWJjY7F//374+voqHC8rKws7d+7EmTNnEBISgtjYWBgaGqJ169Z5RV6rVq2Uzpsxxhgrabio0zNxcXFwcHDAjz/+iNmzZwsS89y5c+jatSsWLlyIadOmCRIT+GczR0xMDEJCQhASEoLQ0FB8/vwZpqamaNeuHebPn6/QiCBjjDFWEnFRp2eWLFmCWbNm4eXLl7C1tRUsbkpKisqnSKVSKW7fvo2QkBCsW7cO5cuXx4ULF1TaJ2OMMaYvJJpOgAknKysLq1evxqBBgwQt6ACoZc2bWCxGkyZN0KRJE1hYWODbb79FXFwcypYtq/K+GWOMMV3HR5rokcDAQLx69QrfffedplNRWvfu3ZGTk4OTJ09qOhXGGGNMJ/D0qx5p27YtTExM9OaQ3+bNm6NWrVrYvXu3plNhjDHGtB6P1OmJv/76C1euXMGkSZM0nYpgvL29ceLECWRlZWk6FcYYY0zr6UxRFxERARcXF7i6usLPz48/6P9j5cqVqFGjBrp166bpVATj7e2NhIQEhIWFaToVVsK8e/cOU6dOxcWLFwu8Ko8xxrSRzhR1FStWxKlTp3DhwgXUrFkTQUFBmk5Ja7x69Qr79+/HxIkTYWBgoOl0BOPk5IQKFSrgyJEjmk6FlTCBgYH45Zdf4Orqinr16mH58uX4+PGjptNijLEi6UxRZ29vDzMzMwCAoaEhJBLeuJtr7dq1MDMzw9dff63pVAQlEonQvXt3HDlyhEdLmFrduXMH9erVQ2hoKJycnODv74+KFSti4MCBOH/+PP/3yBjTSjpT1OV68eIFzp49W+DdoRkZGUhMTPzipe9SU1Oxfv16DB8+HKVKldJ0OoLz9vbG33//jQcPHmg6FfYvYWFhSEpK0nQaKhMdHQ1HR0e4ublh9+7dePXqFRYtWoSIiAi4u7ujbt26WLZsGT58+KDpVBljLI9OFXWJiYkYMmQINm/eDENDw3zvBwQEwMrKKu/l4OCggSzVa8eOHYiPj8eECRM0nYpKdOjQAaampjwFq0VOnjwJFxcXTJ48WdOpqAQRITo6Gg0bNsz7mY2NDaZMmYKYmBicP38ezZs3x4wZM1CxYkX4+Phg586dJeJLJGNMu+nMkSY5OTnw8fHBpEmT0KFDhwLbZGRkICMjI+/fExMT4eDgoLdHmhARGjRogLp16+LQoUOaTkdlevTogfj4eFy8eFHTqZR47969g6OjI7KyspCcnIwnT56gUqVKmk5LUG/fvkWFChUQGBgIHx+fQtt9+vQJ27dvx969e3H16lUYGxujc+fO8PX1RY8ePWBlZaW+pBljDDo0Urdv3z5cvnwZ8+fPh5ubG/bu3ZuvjbGxMSwtLb946bMzZ87g/v37enWMSUG8vb0RHh6OT58+aTqVEk0qlWLYsGEQiUS4du0azM3NsXz5ck2nJbjo6GgA+GKkriDW1taYNGkSrly5gufPnyMgIAAfPnzA0KFDYWtrC29vb2zbtg3x8fFqyJoxxnRopE4R+n74sJeXF2JjYxEREQGRSKTpdFQmd+Rk+/btGDx4sKbTKbGWL1+OKVOm4OTJk+jcuTNmzZqFFStW4Pnz57C2ttZ0eoJZsWIFZsyYgaSkJIV2k798+RIHDx7E/v37cfnyZRgaGmLEiBFYu3atCrJljLH/ozMjdexLMTExOHHiBCZNmqTXBR0AlC9fHs2bN8fRo0c1nUqJdfPmTfz000+YPHkyOnfuDACYOHEipFIpVq9ereHshHXnzh00aNBA4eOBHBwcMGnSJISHh+PVq1cYO3Ysfv/9dx5pZoypHBd1OmrVqlWws7NDv379NJ2KWnh7e+PkyZN86LQGJCcnY8CAAWjUqBEWLVqU93MbGxuMHDkSq1at0qudsP/dJKGMihUrYuzYsQCAyMhIQWIyxlhhuKjTQXFxcdi6dSu+/fZbGBsbazodtci9XeLSpUuaTqXEmThxIl6/fo3du3fn++9typQpSEpKwh9//KGh7IQllUpx9+5dwYo6AKhVqxbMzMxw69YtwWIyxlhBuKjTQTt27EBWVhZGjx6t6VTUpkmTJqhYsSIfbaJme/fuxebNm7F69WrUrl073/uVK1fG4MGDsXz58i92nuuqZ8+eITU1VdCizsDAAI0bN+aijjGmclzU6aCgoCB07NgRdnZ2mk5Fbfh2CfV79uwZRo0ahf79++Orr74qtN2PP/6It2/fYtu2bepLTkVk3fkqr6ZNm3JRxxhTOS7qdMznz59x8eJF9OjRQ9OpqJ23tzceP36MmJgYwWO/evVKr8/6k1d2djYGDhyIsmXLYt26dUVuxqlbty569+6NxYsXIzs7W41ZCi86OhqlS5dGhQoVBI3r5OSEBw8eIDU1VdC4jDH2b1zU6ZgTJ04gJyenwGvS9J2Hh4dKbpcgIgwYMAB9+vTB4sWLBY2tq+bNm4dr165h165dMh2i6+/vj8ePH+PAgQNqyE51cjdJCL2j3MnJCVKpFLdv3xY0LmOM/RsXdTrmyJEjaNasmd6d4i8LU1NTeHp6Cl7U7dy5E2FhYejTpw9++uknvTuiQ14XLlzAwoULMXfuXLRp00amZ5o1awZPT0/8/PPPOj09fufOHTRq1EjwuA0aNIBEIsHNmzcFj80YY7m4qNMhmZmZOHHiRImces3l7e2Ny5cvC3bmV2JiIqZNmwZfX1/s378fU6ZMwcSJE/Hnn38KEl/XxMXFYfDgwWjfvj38/f3lenb69OmIiorCiRMnVJSdamVmZiImJkbw9XTAP7fdNGjQgNfVMcZUios6HXLp0iUkJCTA29tb06loTLdu3SCVSnH8+HFB4s2bNw+JiYlYvnw5RCIRli5dirFjx2LEiBHYvXu3IH3oks2bN+PTp0/YsWOH3Ifvurq6onXr1ggICFBRdqr16NEjZGdnq6SoA/6ZguWijjGmSlzU6ZDg4GBUqlQJTZo00XQqGlO+fHm0aNFCkCnYu3fvYuXKlZg5cyYcHBwA/LPLds2aNRg6dCiGDBmCoKAgpfvRJWFhYWjdurVC0/sikQj+/v4ICwvTyfMEc3e+NmjQQCXxnZyccOfOHT5AmzGmMlzU6QgiQnBwMHr06KH314IVJ/d2iczMTIVjEBHGjx+P6tWrY/LkyV+8JxaLsXHjRvTu3Rv9+vXDqVOnlE1ZJxARwsPD0a5dO4VjdO/eHQ0aNNDJ0bro6GiUL19eZffYOjk5ITMzE/fv31dJfMYY46JOR0RHR+PZs2clej1dLm9vbyQlJSk1GrRv3z6cP38eq1atKvBWDolEgh07dqBTp07w8fHBhQsXlElZJzx69AgfPnxQqqgTi8Xw9/fHiRMndO5aLCGvBytI7gg7T8EyxlSFizodERwcDAsLC7i5uWk6FY1r3LgxHBwcFJ6CTU5OxpQpU+Dj44MuXboU2s7IyAj79++Hs7MzunfvjqtXryqask4IDw+HSCSSecdrYfr164dq1arh559/Figz9VDVztdcpUqVQq1atbioY4ypDBd1OiI4OBhdunQpMXe9FkXZ2yXmz5+PT58+YcWKFcW2NTExQVBQEJo0aYKuXbvq3OiTPMLDw9GoUSOZzqUrikQiwbRp07B//348evRIoOxUKyUlBU+ePFHpSB3wzxQsH2vCGFMVLup0wNu3b3Ht2jWeev2X7t2748mTJ3KvT4qJicGKFSvg7++PqlWryvSMubk5jh07hpo1a8LT0xNPnjxRIGPtp+x6un/7+uuvYWNjgyVLlggST9Xu378PIlJLURcZGQmpVKrSfhhjJRMXdWpy8+ZNNGnSBO/fv5f72aNHj0IsFsPLy0sFmekmDw8PmJmZyTUFS0SYOHEiHBwc8MMPP8jVn6WlJU6dOgWJRIJffvlF3nS13sePHxETEyNYUWdiYoJx48Zh9+7dSm1oUZfcna/169dXaT9OTk5ISkrS2y8GjDHN4qJOTXbt2oWoqCgsWrRI7mePHDkCZ2dnle3K00UmJiZy3y5x6NAhnDlzBitXroSJiYncfZYtWxbDhw/Hjh07kJKSIvfz2uzy5csAIFhRB/yzoSUlJQXh4eGCxVSV6OhoVK9eHebm5irtx8nJCQBvlmCMqQYXdWpy7NgxWFpa4vfff8fz589lfi41NRVnzpwp0QcOF8bX1xfh4eFo1qwZVq1ahY8fPxbaNiUlBd9//z26deum1L25I0aMQFJSEvbt26dwDG0UHh6OChUqoEqVKoLFdHR0hJ2dHU6ePClYTFVR9c7XXLa2tqhQoQIXdYwxleCiTg2ePHmCmJgYrFmzBqVLl8bcuXNlfvbs2bNIT0/n9XQFGDRoEA4fPowqVapgypQpqFChAnr16oXDhw/nO+A1ICAA79+/x8qVK5Xqs2rVqujcuTPWr1+vVBxtEx4eDmdnZ0HPQBSLxejcubNOnPOn6p2v/8Y3SzDGVIWLOjU4ceIEDA0N0bNnT8yaNQvbtm3D3bt3ZXo2ODgYderUQe3atVWcpe4RiUTo0aMHDh06hLdv3+KXX37Bixcv4OPjgwoVKmDSpEmIjIzEo0ePsHTpUvzwww+oUaOG0v2OGjUKf/31F6KiogT4U2heeno6rl+/LujUa64uXbogKioKb9++FTy2UOLi4vDmzRu1jNQBQNOmTXHz5k2Fdm4zxlhRuKhTg+PHj8PFxQWWlpYYNWoUKleujJkzZxb7nFQqxZEjR3iUTgblypXDhAkTEBERgdu3b2PYsGHYs2cPnJyc0LRpU5QvXx4//fSTIH11794d9vb22LBhgyDxNC0iIgKZmZkqKeo8PT0hEolw+vRpwWMLJfcLlrqKOicnJ7x//16rC13GmG7iok7F0tLSEBISkrdz1cjICP/73/8QFBSEv/76q8hnr127hvfv33NRJ6dGjRph2bJlePXqFY4ePYrevXtj8+bNMDMzEyS+oaEhvvnmG2zfvh2pqamCxNSk8PBwmJubo3HjxoLHLleuHJo3b67V6+qio6MhkUjUNhrOmyUYY6rCRZ2KhYaGIj09/YvjSAYOHIgGDRrA39+/yCmY4OBgWFtbK33Cf0klkUjQrVs3bN26Fe7u7oLGzt0wsXfvXkHjakJ4eDhatWoFiUSikvidO3fGmTNnkJOTo5L4yoqOjkadOnVgZGSklv6qVKmCMmXKcFHHGBMcF3Uqdvz4cVSrVg1169bN+5mBgQEWLVqE0NBQnD17ttBng4OD0b17dxgYGKgjVSaHatWqoVOnTvjjjz80nYpSiAiXL19WydRrri5duuDTp0+IiIhQWR/KUNfO11wikQhNmjThoo4xJjgu6lSIiHDs2DF4eXnl21Xo7e2NNm3awN/fv8DT5R8/foy7d+/y1KsWGzVqFK5evYrbt29rOhXEx8cr9NzDhw/x8eNHODs7C5vQv7Rq1QpWVlZaOQVLRGov6gDeAcsYUw25i7q0tDS8fv06389l3c1Zkjx48ADPnj0r8CYIkUiEgIAARERE4ODBg/neP3LkCIyMjNCpUyd1pMoU4O3tDTs7O41vmLhw4QJsbW0RExMj97NhYWEQi8Vo3bq1CjL7h0QiQceOHbXyaJO3b98iLi5ObceZ5HJycsLTp08VLsYZY6wgchV1Bw4cQO3ateHl5QVHR8cvFvoPGTJE8OT+a+rUqXBxccGgQYOUvnro7t27CAsLEyizgh0/fhwmJiZwc3Mr8H1XV1d06dIFM2fORHZ29hfvHTlyBB4eHrCwsFBpjkxx2rJh4syZM8jKylKouAwPD0ejRo1gaWmpgsz+T+fOnXH16lV8/vxZpf3IK/d6MHWP1DVt2hQAEBkZqdZ+GWP6Ta6ibsGCBbh58yaioqLw559/4ptvvsGuXbsAQOVnLt26dQux/6+9+w6rum7/AP4+rMNGpgM1wIWLBFEBQTE1UFAcuFHJTFtmylOKuSrNNEdqy8xUVBB3aubo5IjhgoOimHuLCxVENuf+/eHvkMQ6+8u4X9fF9dA5n3E/X/Vw85n37+Pvv/9GmzZtsG3bNrXaW7BggdLXTCnr999/R48ePSrddfnVV1/h0qVLWLduXclrT58+xdGjR3nqtQZ45513kJmZKegNE/JfTtatW4e8vDyl6sbHx2t1PZ1cQEAAZDIZJBKJ1vtSxrlz52BiYgJnZ2ed9tuqVSuYmJggOTlZp/0yxmo3pZK6wsJC2NvbAwA8PT1x7NgxrFq1Cl988YVGT6IvT2JiYslUZGBgYMldla/Kz89HVlZWqa+K/PLLL+jTpw8GDhyIqKgojceblZWFv//+G0FBQZWWc3d3x7Bhw/D5558jNzcXALB//34UFxfz1WA1gNAbJgoLC3Hy5ElMnDgRT548wY4dOxSu++jRI1y6dEknSV3Tpk3Rpk2bareu7ty5c2jbti309HS7vFhfXx9ubm68ro4xplFKfZI5ODiUWhRua2uLQ4cO4cKFC1pfLP7s2bOSKSIrKys8efKkTJkFCxbAysqq5KtJkyYVtmdsbIwtW7YgPDwcY8eOxdKlSzUar0QiQWFhIfr06VNl2S+//BLp6en44YcfALzc9erh4YHGjRtrNCamHRMmTEBiYiJSU1N13rdUKkVubi7eeust+Pv7K5Vcyn8x0uYmiVcFBARg//791eomBSE2ScgJvVniyJEj2LVrl2D9M1bbJScn47ffftNpn0oldRs2bICDg0Op14yMjBATE4OjR49qNLD/sra2Lhl5e/bsGWxsbMqUiYyMRGZmZsnX7du3K23TwMAAq1evxvTp0xEREVHluXHK2LdvH1xdXeHi4lJl2RYtWuDtt9/GV199hcePH+OPP/7gqdcapH///oJtmIiLi4OxsTHc3d0xYcIEHD16VOENE3FxcWjcuDGaNm2q5ShfCgwMxN27d5GWlqaT/qoik8lw/vx5QZO6f/75p2SEXpeuXr2Kfv36YeDAgRg5cmS1W+tYm+Xk5CAzM1PoMJgOTJ8+He+9955O+1QqqWvcuDEaNGhQ7nvansLx8vIquWrowIED5fYnFothaWlZ6qsq8l2oS5Yswddff40JEyaU2bSgLCLCvn37yt31WpHZs2cjJycHoaGhyMzM5KSuBjE0NMRbb72FqKgonW+YkB8cbGRkhEGDBsHW1lbh5FJX6+nk/Pz8YGxsXG2mYK9fv46cnByd73yVc3d3R3Fxsc5HeIuKijB69Gg4ODjgl19+wb59++Dm5obDhw/rNI7a6O7du9i0aROWLVuGyMhIvP322+jXrx+6dOkCFxcXmJubw8zMDLa2tpg9e7baG/5Y9fX06VMcPnwY6enpur0SkFS0bds2VauqLCIignx9fWnkyJGUn59fZfnMzEwCQJmZmQq1v379etLX16eBAwdSbm6uynFKpVICQBKJRKl6n376KQGgxo0bk0wmU7l/pntXr14lALRu3Tqd9SmTyah+/fo0Y8aMktciIiLI1ta2yr+/ubm5ZGRkRCtWrNB2mKUEBgZS7969ddpnRXbt2kUA6O7du4L0n5ubS/r6+vTTTz/ptN+5c+eSvr4+JSQkEBHRzZs3yd/fn0QiEUVERFBeXp5O46ktXrx4Qa+99hoBIDMzM3J2dqYuXbpQcHAwjRs3jqZPn05Lly6ljRs30qxZs8jAwIDc3d3p3LlzQofOtGDjxo0EgADQ3r17ddavykmdkZERLV26tNIyQicmyiZ1RES7d+8mY2Nj6tGjh1L1XjV//nwyNzdXKPF8VUZGBtWrV48+/PBDlfplwurduzf5+PjorL/Lly8TANq3b1/Ja//88w8BoE2bNlVa9++//yYAlJSUpO0wS1m2bBmJxWJ68eKFTvstz7x588ja2lrQz6l27drRxIkTddZfYmIi6evr05w5c0q9XlxcTN988w0ZGRmRm5sbnT17Vmcx1RYzZ84kIyMjunDhgkLlT58+TW3atCGxWEyLFy+moqIiLUfIdGnw4MHUqVMnsrGxoS+++EJn/aqc1O3fv58sLS1p0qRJZT4Ui4qKaO3atdSqVSu1A1SHKkkdEdGxY8fIysqKPDw86MGDB0r327VrVxo4cKDS9YiIrl27RllZWSrVZcLaunUrAaDU1FSd9Ldu3ToSiUT09OnTUq/7+/tT9+7dK6379ddfk5mZGRUWFmovwHJcuHChTCIqlOHDh5Ofn5+gMYwZM4Y6deqkk76ysrLIxcWFvLy8KvxzT0lJobZt25JYLKalS5dScXGxTmKr6S5dukRGRkY0a9Ysperl5uZSREQEiUQi8vPzo2vXrmkpQqZLOTk5ZGZmRl999RX16tWLQkJCdNa3ykkd0csPgMaNG9OAAQMoJyeH8vPz6YcffiAnJyeytram2bNnaypOlaia1BG9/P/WoEEDatGiBd2/f1/hehkZGaSnp0erV69Wuk9Ws+Xn55ODgwNNmjRJJ/2NHz+e2rVrV+b16OhoAkD//PNPhXWDg4OpV69e2gyvXDKZjF577TX66KOPdN73f7Vr147ee+89QWNYtmwZGRsb6yS5fuutt8jc3JyuXLlSabnc3FyaMmUKAaCePXvS7du3tR5bTSaTySggIICcnJxUHoE+cuQIOTk5kbm5Oa1evVrjo8dnz55VeuaIqW7Pnj0EgNLS0mjatGnUpEkTnfWtVlJHRHTnzh1yc3MjNzc3atSoEdnb29P8+fOrxWiTOkkd0ct1Ug0aNKAePXoo/KEbExNDAOjOnTsq9clqtmnTplG9evV0Mr3YunVrevfdd8u8npubS7a2tjR16tRy6xUXF5ONjU2ZKThdmTBhArVs2VKQvuXy8/PJwMCAvv/+e0HjOHLkiE5Gd7dt20YA6Ndff1W4zqFDh8jR0ZFsbGzo3r17WoyuZtuxYwcBoN9++02tdrKysmj8+PEEgIKCgig9PV3t2IqLi2n27NkEgL755hu122OKGTduXMlMZWxsLAGghw8f6qRvtZK6Z8+e0RdffEG2trZkYmJCpqam1WothrpJHdHLD109Pb1Si9ErExYWRh06dFC5P1azXblyhQDQ+vXrtdrP48ePCQBt2LCh3PenTp1a4YaJtLQ0AkAHDx7UaowVkf8QFHKqKTU1lQDQ0aNHBYuB6OVnKACKiorSWh937twha2trGjx4sNIjQA8ePCBjY2P6+uuvtRRdzZadnU1NmzaloKAgjY2u7dmzh+rXr0+2tra0efNmldt98eIFDR06lACQvb09BQcHayQ+VrmioiKys7OjadOmEdG/a5/379+vk/5VTuqmT59OVlZW5OLiQqtWraLs7GwaO3YsOTg40MmTJzUZo8o0kdQRvVx/BID27NlTaTn5H6aiCSCrnXr16kWenp5aXYC/e/fuShMj+YaJ6OjoMu+tXr2a9PT0BBtNf/bsGenr69OPP/4oSP9E/46oZ2RkCBaDnIuLC02ZMkUrbRcXF1PPnj2pUaNG9PjxY5XaGDFiBLVu3VrwjW/V0YwZM0gsFlc5pa2sR48e0ZAhQwgADRw4UOlRu3v37lGnTp3I1NSUtm/fTp9//jlZW1vzGkkdOHr0KAGg48ePE9HL6XkrKyuaP3++TvpXOalzdXWl9evXl9mxM3PmTDIzM6Ndu3apHZy6NJXUFRcXU//+/alevXqVji4cP36cAFBcXJxa/bGa7fDhwxUmVJoybdo0atSoUaU/aLt3717uhonw8HDBR5P9/PxowIABgvX/2WefUaNGjQTr/1WDBw8mf39/rbS9ZMkSAkCHDh1SuY0DBw4QADpx4oQGI6v5Ll68SIaGhlpdxrB161ayt7cnGxsb2rhxo0KJdXJyMjk6OpKjo2PJ7naJREIA+PgUHZgyZQo1bNiwVALt7+9PgwcP1kn/Kid1lf3lWr16NYnFYlq5cqWqzWuEppI6IqInT56Qs7MzdezYscIzwGbPnk3W1tY631HIqp8BAwZQ06ZNKScnRyvtd+3alYYMGVJpmU2bNpW7YaJ58+aCH5szb948srCwEGzxdkhICL355puC9P1f8+bNIysrK42PhKWkpJCRkVGFaysVVVRURI6OjvT+++9rKLKaTyaT0ZtvvknOzs5a+zcu9+jRIxoxYgQBoH79+lV6ruKOHTvI1NSUPD09S5XLzs4W5EzEukYmk5GTk1OZDVgRERHk5OSkkxjU3ihRkX379pGFhYW2mleIJpM6IqKkpCQSi8XlLk4nIvL09KThw4drpC9Ws126dIkMDQ21MuSel5dHYrGYli9fXmk5+YaJiIiIktfu379PACgmJkbjcSnj9OnTBICOHDkiSP/NmjVTO9nRlN9//50A0NWrVzXWZk5ODrVt25bc3Nw0cpjwtGnTyNramg8m/n/yjSdVLcnRpF27dlGDBg3IysqKfv3111K/BMhkMlqwYAEBoCFDhpS7UatTp04UFhams3jropSUFAJABw4cKPW6/BdsdZZ7TJs2rWSdXmW0ltQRkc4PNv0vTSd1REQ///xzuQvU09PTK124zuqeKVOmkLm5uUZ2sb0qPj6eANDp06erLPvfDRPyTQq3bt3SaEzKKi4uJnt7e4qMjNR539nZ2SQSiZTaCapN8s8OTd7S89FHH5GxsbHGptvkm2u2bt2qkfZ0IT8/n3r16qXxX2Cys7OpcePG1K9fP422q4iMjAwaM2YMAaDAwEC6desW5eXllbw2e/bsCtfNTZkyRWejRXXVnDlzyMrKqswMhHyN859//qly287Ozgodl6XVpE5o2kjqZDIZjRkzhkxNTUsdQ7B27VoSiUQ627bMqr8nT56QjY0NjR8/XqPtLly4UOGDg+WH/crX90VEROj0zKTKjBo1itzd3XXe76lTpwhAtdnQRUTUoEED+uyzzzTSljwB+/bbbzXSnlznzp0pKChIo21qU1JSEgEgPT09io2N1Vi706dPJ2NjY0F3b+/du5caNWpEFhYW5O7uTmKxuMo1vNu3bycAfO6gFr3++us0cuTIMq8XFxeTubk5LVy4UKV2r127RgAU2qugp9KFsXWYSCTCjz/+iGbNmiE0NBTPnz8HAOzbtw+dO3eGvb29wBGy6sLa2hpz587FmjVrcObMGY21Gx8fDy8vLxgYGFRZ1tXVFd27d8fPP/9cUrdr164ai0UdgYGBkEqlePDggU77TU1NhUgkQps2bXTab2Xc3d0hlUo10tamTZtQr149vPvuuxppTy48PBz79+9X+c/rzJkzGD9+PGQymUbjqohUKoVIJEJoaChGjhyJHTt2qN3mP//8gyVLliAyMhLOzs4aiFI1QUFBOH/+PIYOHYqnT5/iyJEjGDFiRKV15P/u4+PjdRFinXP9+nWcOXMGAwcOLPOenp4eOnTogOTkZJXalkgk0NPTQ/fu3asurFLaWENoY6RO7uLFi2RhYUFDhw6lgoICsrKyos8//1zj/bCaraCggFq1akU9e/bUyEJ4mUxGtra2St3WIl/PIZVKydDQUPANTHIPHjzQ+hlt5Zk6dSo1a9ZMp31WZcaMGdSwYUO125HJZOTs7Kzx0WGil1N/RkZGtGTJEpXi8vHxIQB0/vx5jcdWng8//JBatWpFRUVFNHz4cDIwMFDrgGCZTEa9evUiFxeXCjfLVXctWrQQfJNUbbV06VISi8X0/Pnzct+fPHkyNW/eXKW2hw8fTp07d1aoLI/Uqahly5b49ddfsWXLFowZMwaZmZkICgoSOixWzRgaGmLx4sWQSCT4/fff1W7v4sWLyMjIUGq0bdCgQbC1tcW7776LwsJC+Pr6qh2HJjg4OMDDwwMHDhzQab8pKSlo27atTvusiru7O9LT09UetTxx4gSuX7+OkSNHaiiyf9nY2CAkJATr1q0DESlVd+fOnUhISACAkv/VNqlUCnd3d+jr62PDhg0YMGAAQkNDsW/fPpXa27ZtG/7880+sWLECxsbGGo5WN3x9fREXFyd0GBqXl5eHnTt3oqioSLAYdu3ahd69e8Pc3Lzc9z08PHDlyhVkZmYq1S4R4a+//kLPnj0VrlBraXOkTu7jjz8mAFS/fn0+2JGVSyaTUc+ePalVq1ZUUFCgVlu//PIL6enpKf13eurUqQSALCwsypwtKaTIyEiys7PT2b+dR48ekYGBAa1YsUIn/SlKfhPJvn371Gpn0qRJ1KhRI639Ge/du5cAUHJyssJ1CgoKqEWLFhQQEEAdOnSgcePGaSW2V5W3hqmgoIAGDBhAYrG4zO7Eqhw/fpwcHR11ejG7NqxZs4b09PTo2bNnQoeiUT/++CMBoG7dugmyZvDhw4ekp6dHv/zyS4Vlzp07RwDo8OHDSrV99uxZpTZZ8EidmhYuXIjAwECEh4dDT48fJytLJBJh6dKluHTpEn766Se12oqLi4ObmxssLS2VqvfOO+8AALy8vKCvr69WDJoUGBiIx48fIykpSSf9bdu2DUSEoUOH6qQ/Rbm4uKBx48bYvn27ym0UFRUhNjYWw4cP19qfcUBAAOrXr49169YpXGfVqlW4cuUKFi1aBG9vb52M1F25cgXZ2dlwd3cvec3Q0BCxsbHo3bs3QkJCIJFIKm1DJpNh79696NatG7y8vGBubo7ly5drO3St8vX1hUwmw/Hjx4UORaMSEhLw2muv4dq1a3j99dexZ88enfYv769fv34VlmnVqhVMTEyUXlcnkUggFovh4+OjWAWlUsYaRhcjdXJ8hQ6ryvjx48nGxoaePHmichvqrIl57733tHrLhSoKCgrIzs6OPvnkE530161bNwoICNBJX8qaP38+GRsbq3ydl/zmB0WOulFHREQE2dnZKXRw9LNnz8jOzo7eeustIiLasGGDTq5nq+wS9by8PAoMDCQTE5Nyz0nMy8ujX3/9lVq3bk0AyMvLi3bs2FGtRrhVJZPJyN7enmbOnCl0KBolP1D98ePH1L9/fwJAkydP1tm5isHBweTn51dlOW9v73J3x1bV9htvvKFweU7qGNOR9PR0Mjc3V/meT/nGAqEPDta0Dz74gBwdHbX+Q/PWrVsEgNavX6/VflT18OFDMjIyUvnYg7Fjx1LLli21/gumfDpo586dVZaNjIwkExMTunPnDhH9O838+++/azXG6dOnk6OjY4Xv5+TkUK9evcjMzIz+/vtvInqZgC5cuJAaNmxIAKh///70999/17pf2AcOHKi1a+mE8PDhQwJAmzZtIqKXievy5cvJyMiIPDw86NKlS1rt//nz5yQWixXaQPTBBx+Qq6urwm0XFhaShYWFUofYc1LHmA7Nnz+fDA0NVfqgqS4HB2taYmIiASCJRKLVfhYtWkTGxsbV+vNgzJgx9Nprrymd4Obk5JCFhYXOduB7eHhUeXfvrVu3yNjYuNT5e7oaKQoICKDg4OBKy7x48YJ69OhB5ubm9N5775GFhQUZGRnR22+/TWlpaVqNT0hLliwhExMTwa7o07Tdu3cTgDLnBiYlJVHz5s3J3NycNm7cqLX+t27dqvCNMGvWrCGRSFThDtn/SkhIIACUmJiocDyc1DGmQzk5OdS0aVOVFlxHRERQ06ZNNR+UwGQyGTVr1qxkik5bOnToQKGhoVrtQ13yg5EVGQV71ZYtWwiA1kcl5JYvX04GBgaVHrYeHh5O9vb2ZT5/Q0JClJpOUpZMJiMHBweaNWtWlWWzs7OpW7duZGVlRdOmTav0XtXa4sSJEwSAjh8/LnQoGhEZGUn169cvd0Q1KyuLRo0aRQAoPDycsrOzNd7/qFGjyM3NTaGy8mvE5KPDVZk3bx5ZWloqdZ88J3WM6Vh0dDQBoL/++kupel26dKERI0ZoKSphzZkzhywsLLR2Obr8loUdO3ZopX1N8vLyop49eypVZ8CAAdSpUyctRVTWo0ePyNDQsML7h1NSUkgkEtH3339f5r2vv/6azM3NlfpBpYx79+4RANq+fbtC5QsLC2vsuXOqKCgoIBMTE1q8eLHQoWiEv79/paPGMpmM1q1bR6amptSqVSu6ePGixvrOz88nKysrmjNnjkLlCwoKFLq3W65Hjx5KX0fH2zUZ07Hhw4fDy8sLU6dORXFxsUJ1cnNzkZycXG1ug9C0sLAwPH/+HLt379ZK+zExMbCyskKfPn200r4mTZo0CRKJBGlpaQqVf/r0Kfbt26eVs+kqYmdnh6CgIKxfv77c9z/99FO0aNGiZNf1q3x8fJCdnY1z585pJTb5zRyv7nytjIGBQY09d04VhoaG6NKli1bPqyMiFBYWaq19uaKiIpw8ebLSnaEikQhjx45FUlIS8vPz8b///U9j/R89ehSZmZkYMGCAQuUNDQ3h5uam0G7/3NxcJCQkKH4+3f/jpI4xHZMfcXLmzBnMnDlToTqnTp2qVgcHa1rz5s3h5eWFjRs3arxtIkJ0dDQGDx5cI354h4aGokGDBvjuu+8UKr9jxw4UFhZi2LBhWo6stPDwcCQnJyM1NbXU6wcPHsTBgwexcOFCGBoalqnn6ekJAwMDJCYmaiUuqVQKKysrODk5aaX92kB+CDEpeYi0IvLy8uDv748hQ4ZovO3/Sk1NRU5ODry9vass6+rqilmzZmHPnj24dOmSRvrftWsXnJyc8Prrrytcx8PDQ6FjTeLj45Gfn89JHWM1gbe3NxYvXoyvv/4aq1atqrJ8XFwcLC0t0a5dOx1EJ4ywsDDs378fjx490mi7p06dwtWrV6u8G7O6MDIywsSJExEVFaXQ6fPR0dF444030LBhQx1E968+ffrAzs6u1GhdcXExPvnkE/j6+iIkJKTceiYmJnB3d9faeXVSqRQdOnSASCTSSvu1ga+vLx4/fqyx5EaOiDB+/HgcO3YMv//+O7KysjTa/n8lJibCwMAAHTt2VKj8yJEj4eDggGXLlqndt0wmw65duzBgwACl/q517NgRaWlpyMnJqbScRCJB/fr1lb79hpM6xgQyZcoUfPjhh3j//fervLooPj4e3t7e1ergYE2THwi8ZcsWjbYbExOD+vXro0ePHhptV5smTJiA/Px8rF27ttJy9+7dw+HDh3U69SpnZGSEUaNGYePGjSXXM23YsAFnz57FN998U+kPOm9vb62N1KWkpCg89VpXeXt7Q09PT+NTsPPnz8emTZuwcOFCFBUVVXnAs7oSEhLg7u4OExMThcobGxvjww8/xPr16/H48WO1+j59+jTu3buHgQMHKlXPw8MDMpkMZ8+erbScRCLBG2+8ofQvJ5zUMSYQkUiEb7/9FsHBwRg6dGiF6yxkMhkSEhJq7Xo6OXt7ewQGBmp0Cra4uBibN2/W6i0L2tCoUSOEhobi+++/h0wmq7BcbGwsDA0NMWjQIB1G96+xY8fiwYMHOHDgAHJycjBz5kwMGTIEXl5eldbz8fHB1atX8fDhQ43Gk5mZiatXr3JSVwVLS0u4ublpNKnbunUrZs2ahS+++AKffvopXF1dVb5nV1GJiYkKTb2+6t133wURKTRDUpmdO3fCzs5O8Zse/l+7du1gaGhY6bq6Z8+eISkpSempV4CTOsYEpa+vj5iYGLRt2xbBwcG4efNmmTJpaWl49uxZrU/qAGD06NE4fvw4rly5opH2jhw5gvv37wsykqWuSZMm4cqVKzhw4ECFZaKjoxEUFIR69erpLrBXdOjQAW5ubli3bh2WL1+Ohw8fYsGCBVXWk/8g1vRo3ZkzZwAovkmiLpOvq9OEU6dOYcyYMRg5cmTJOuG+ffvijz/+0Mq6PQB4+PAhrl27pnRSZ29vjzFjxuC7775Dfn6+Sn0TEXbu3Il+/frBwMBAqbpisRjt2rWrdF3dkSNHIJPJam9Sl5SUBD8/P3Tv3h1Dhw7Vya4axnTF1NQUe/bsgYmJCfr06YOnT5+Wej8+Ph76+vro0qWLQBHqTr9+/WBhYaGx0bro6Gg0a9YMnTp10kh7uuTt7Q0PDw+sXLmy3PcvXbqE06dPC5qwyncW7t69GwsWLMD777+PZs2aVVmvSZMmcHR01Pi6upSUFIjFYri6umq03drI19cXV65cwf3799Vq5/bt2+jfvz/c3d2xZs2akunCvn374u7du2U20miK/BcCZZM64OXSl/v372Pz5s0q9R0TE4OLFy8iLCxMpfpVbZaQSCRwcXFRabNPjUjqHB0dceDAARw9ehTNmzfHrl27hA6JMY1ycHDAH3/8gQcPHmDQoEGlfoOMi4uDu7s7zMzMBIxQN0xMTBAaGoqNGzeq/Rt+fn4+tm/fjhEjRtTIRfMikQiTJk3CH3/8gcuXL5d5PyYmBhYWFggKChIgun+NGjUKxcXF0NPTw6xZsxSqIxKJtLKuTiqVlkxvscrJR/7j4+NVbiM7Oxv9+/eHkZERdu7cWWp3ua+vL8zNzbU2BZuYmIiGDRuiadOmStd1dXVFUFAQlixZovTnzNOnTzFlyhSEhobijTfeULpv4OVmiXPnziEvL6/c9yUSiUqjdEANSeoaNGgAU1NTAC/PeVF2uJOxmqBVq1b47bffkJiYiLfffrvkwyY+Pr5OTL3KhYWF4erVqzhx4oRa7fzxxx/IzMyskVOvcsOGDYOtrS2+//77Uq+/ekyLoovEtaV+/fqYMWMGVq5cCVtbW4Xr+fj44NSpUygoKNBYLFKplKdeFdS4cWM4OTmpPAUrk8kQFhaGK1euYO/evahfv36p98ViMXr27KnVpM7b21vlX9imTp2K1NRUpTdzREZGIjc3F8uXL1epX+DlSF1RUVG5ZzXeu3cPFy5cUDmpq1E3Sty8eZN8fHyooKCg3Pfz8vIoMzOz5Ov27dt8owSrcWJjYwkAffbZZ3T37l0CQFu3bhU6LJ0pKioiR0dH+uCDD9RqZ8iQIdShQwcNRSWc6dOnk6WlZan7Ik+fPk0A6ODBgwJGph75nb8nT57USHt5eXlkYGBQ7i0WrHxhYWHk6empUt1PP/2U9PT0aO/evRWWWbVqFenr69PTp09VjLB8mrgVQyaT0euvv059+vRRuI78LtYVK1ao3C/Ry+si9fX16aeffirz3oYNGwgAPXjwQKW2q1VSl56eTl27di3zlZGRQZmZmdStW7dKr/iYM2cOASjzxUkdq2m++eYbAkD9+/cnAHTv3j2hQ9KpTz75hGxtbSv8Ba4qmZmZZGxsTIsWLdJwZLp38+ZN0tPTox9++KHktalTp1L9+vW1dtWWLuTl5ZFYLKZvv/1WI+0lJycTAIqPj9dIe3XBTz/9RPr6+gpfMC/366+/EgBatmxZpeVu3bpFAGjLli1qRFmW/Jcadf+so6KiCACdP3++yrIFBQXUvn178vT0pKKiIrX6JSJq3749TZgwoczr4eHh1L59e5XbrVZJXUWKioooODiY/vzzz0rL8Ugdqy1kMhl98MEHBIBcXFyEDkfnzp49SwBoz549KtWXf1jfvHlTw5EJY9CgQdSmTRuSyWRUVFREjRo1oo8++kjosNTm4+NDw4YN00hba9asIZFIpHSCUpedO3eOAFT5s/VVR44cIUNDQ5o4cSLJZLIqy7dr147Cw8PVCbOMlStXkqGhodp39ubn51PDhg1p/PjxVZZdtGgR6enpUVJSklp9yoWHh1PHjh1LvSaTyahp06b08ccfq9xujVhTt2XLFiQkJODLL7+Ev78/YmNjyy0nFothaWlZ6ouxmkgkEmH58uUYN24cxo0bJ3Q4Ote+fXu4ubmpvAs2Ojoafn5+Ki2iro4mTZqEtLQ0/PXXXzh27Bju3btXo9cKyvn4+GhsB6xUKkXLli1hbm6ukfbqgtatW8Pa2lrhdXVpaWkYNGgQunXrhpUrVyq0nk1+tEll5y0qKzExER4eHmpf+2dkZIRJkyZhw4YNlZ6ZePPmTcydOxeTJk2Ch4eHWn3KeXh4IDU1tdSa0qtXr+LWrVuqr6cDataaOmVlZmbySB1jNdSiRYvI2NiYnj17plS9Bw8ekL6+Pv34449aikz3ZDIZtWvXjkJCQujtt98mFxcXhUZJqrvt27cTALp9+7babXXt2lVjo351SXBwMPXq1avKcpcvX6aGDRuSm5sbPXnyROH2jxw5QgA0NsJFROTk5KTWaNarMjIyyNTUlObOnVvu+zKZjIKDg8nR0ZGysrI00icRUVxcHAGg5OTkktfk0+Hq5Cw1YqSOMVb3jBgxAvn5+dixY4dS9bZu3QqRSITQ0FAtRaZ7IpEIH374Ifbs2YPY2FiMHDmyRh7T8l+aOoRYJpPhzJkzvPNVBb6+vkhMTCy56q088tEjS0tLHDp0CNbW1gq37+PjA0tLS43tgr1//z5u3Lih0vl05bGxscFbb72F77//vtwjRnbu3Im9e/dixYoVsLCw0EifAEruJ371vDqJRILOnTurNcvISR1jrFpq3LgxevToofQUbExMDAICAmBnZ6elyIQRFhYGS0tLZGdn14qpVwBo2LAhnJyc1E7qrl69iuzsbE7qVODr64sXL15UeBfp/fv30atXL+jr60MikcDBwUGp9g0NDdG7d2+NJXXqHDpckcmTJ+Px48fYtGlTqdefP3+Ojz76CMHBwUrf8VoVMzMzuLq6liR1MpkMf/31l3pTr+CkjjFWjY0ePRqHDx/GnTt3FCp/48YNxMfHY8SIEVqOTPfMzMwwefJk9OjRA61btxY6HI3RxLo6qVQK4OXoB1OOp6cnxGJxuevqMjIy0KtXL+Tk5EAikcDR0VGlPvr27YsTJ04gIyND3XCRmJgIR0dHNGnSRO225Fq0aIH+/ftj6dKlpQ4jnjVrFp4+fYrvvvtOKyPjHTt2LLkD9uzZs8jIyOCkjjFWew0aNAhisRgxMTEKld+8eTNMTEwQEhKi5ciEMXfuXPz1119Ch6FR3t7eSE5OrvB0fUWkpKSgUaNGSo8isZcbDDt16lQmqcvMzERAQAAePXoEiUQCZ2dnlfsIDAyETCbDwYMH1Q235NBhTZs6dSrS0tJK7lpOTk7GypUr8fnnn+O1117TeH/Ay80SZ86cQVFRESQSCUxMTNT+/8ZJHWOs2rK0tERISIjCU7DR0dEICQnhHZA1iI+PDwoLC0tGLFTBN0mox9fXF3FxcSWjVC9evEDfvn1x7do1HDp0CK1atVKr/UaNGqFDhw5qT8EWFBTg9OnT8PHxUaud8vj5+cHT0xNLly5FcXExJk6ciHbt2mHy5Mka70uuY8eOyMvLw4ULFyCRSODr6wuxWKxWm5zUMcaqtbCwMJw9e7bUmp/nz5/j1KlTiIqKQmRkJAYMGIBWrVohNTW11qw3qyvc3Nxgamqq1ro6TurU07VrV6Snp+P69evIy8tDSEgIzp49i/3798PNzU0jffTt2xf79+9X62iTM2fOIC8vTysjdSKRCFOnTsWhQ4fwwQcfICkpCatWrdLqPcLy5QLHjx/HsWPH1J56BQARkZq3ZldjWVlZsLKyQmZmJp9Zx1gNVVhYiIYNG6JFixawsLDAhQsXSq2xa9KkCVq3bo3WrVujc+fOGDFiRK3YGVqX9OjRA9bW1krvdAaA9PR0NGrUCNu3b8egQYO0EF3t9+TJE9ja2mL16tX47bffIJFIsH//fnTr1k1jfcTHx8PX1xcnTpxA586dVWpjxYoV+OSTT5CVlaX2iFZ5CgsL4eLigjt37uDdd9/Fjz/+qPE+/qtly5awsLBAcnIyTp06BU9PT7XaM9BQXIwxphWGhoaIiIhAVFQUGjRogNGjR5ckca6urjzVWgt4e3tj7dq1ICKlE/KUlBQAvElCHTY2Nmjbti0mT56MoqIi7N69W6MJHQB06dIF9erVw759+1RO6hITE9GxY0etJHTAy8+aWbNmYfHixViwYIFW+vivjh07YvPmzahXr55GRpt5+pUxVu1FRkbiwoUL2LlzJ7766iuMHj0anp6enNDVEj4+PiXnjylLKpXCyspKrYX8DOjWrRvy8/MRGxuLgIAAjbdvYGCAgIAAtdbVJSQkaGXq9VUTJkzAP//8g3r16mm1Hzn5DRX+/v7Q19dXuz1O6hhjjAnKy8sLgGqHEEul0pKDXJnq5s+fj+TkZAwYMEBrffTt2xenT5+u9Equity7dw+3bt3SelIHAHp6ukuNOnbsCAAaWU8HcFLHGGNMYHZ2dmjZsqVK59XxJgnNsLa21timiIoEBASAiEqODVGGNg4drg68vLwQHh6usRtwOKljjDEmOG9vb6VH6rKysnD16lVeT1dD1K9fH56enipNwSYmJqJJkyYqH4BcXZmammLt2rVo0KCBRtrjpI4xxpjgfHx8cObMGbx48ULhOmfOnAEAHqmrQfr27YsDBw6guLhYqXraOnS4tuGkjjHGmOC8vb1RXFyMU6dOKVxHKpXCyMioVl2bVtv16dMHT58+xYkTJxSuU1BQgKSkJE7qFMBJHWOMMcG1adMGlpaWSq2rk0qlaNeunVYPiGWa1alTJ9ja2io1BSuVSpGfn6+VmyRqG07qGGOMCU5fXx9dunRRal1dSkoKT73WMPr6+ggMDFQqqUtMTISxsTGvnVQAJ3WMMcaqBR8fHyQmJkKRi44KCgpw/vx5TupqoL59+0IqlSI9PV2h8vJDh42MjLQcWc3HSR1jjLFqwdvbGxkZGbh8+XKVZc+fP4/CwkJO6mqgN998EyKRCPv371eoPG+SUBwndYwxxqqFLl26QCQSYc2aNSgqKqq0bEpKCkQikdbPVmOaZ2dnhy5duig0BXvnzh3cvn2bkzoFcVLHGGOsWqhXrx4+/vhjLFq0CB4eHpBIJBWWlUqlaNGiBV8VV0P17dsXBw8exMmTJ/Ho0aMKp9xr66HD2iIiRRYv1FBZWVmwsrJCZmYmLC0thQ6HMcaYAk6dOoWPP/4YCQkJ6N+/PxYvXowWLVqUKuPn5wdHR0ds3rxZoCiZOlJTU+Hu7l5yXp2ZmRmcnZ3h5OQEZ2fnku937tyJY8eOqXQvcF1kIHQAjDHG2Ks6deqEuLg4xMbG4tNPP0Xbtm3x0UcfYebMmahXrx5kMhlSUlIQHBwsdKhMRe3bt8fjx49x7do1XL9+HdevX8eNGzdw/fp1/Pnnn7hx4wZyc3MBAGFhYQJHW3PwSB1jjLFqKzc3F0uWLMGCBQtgamqKefPmoXv37mjdujX279+PgIAAoUNkWkBEePjwIW7cuIGWLVvC2tpa6JBqBE7qGGOMVXt3797FjBkzEBUVBVtbW2RkZODBgwdwcHAQOjTGqg3eKMEYY6zac3R0xPr163Hy5Em4urqiffv2nNAx9h88UscYY6zGISKIRCKhw2CsWuGROsYYYzUOJ3SMlVWjkrqYmBjY29sLHQZjjDHGWLVTY5I6mUyGbdu2oUmTJkKHwhhjjDFW7dSYpC46OhqhoaHQ06s45Pz8fGRlZZX6YowxxhirC2pEUldcXIwtW7Zg2LBhlZZbsGABrKysSr54VI8xxhhjdUW12v16//59hIaGlnn9nXfegb6+PsLCwuDp6YnTp0+XWz8/Px/5+fkl/01EKCgogJ2dHS+qZYwxxlitVq2SuopMmzYNUqkUenp6SExMxLhx47Bs2TKhw2KMMcYYqzZqRFL3qspG6hhjjDHG6qoal9QxxhhjjLGyasRGCcYYY4wxVjkDoQMQChHh+fPnQofBGGOMMaYQCwuLSjd+1tmk7vHjx3wZNGOMMcZqjKrusq+zSZ2RkREA4Pbt25U+IKZZWVlZaNKkCT93AfCzFwY/d+HwsxcGP3ftsbCwqPT9OpvUyYcvLS0t+S+dAPi5C4efvTD4uQuHn70w+LnrHm+UYIwxxhirBTipY4wxxhirBepsUicWizFnzhyIxWKhQ6lT+LkLh5+9MPi5C4efvTD4uQuHDx9mjDHGGKsF6uxIHWOMMcZYbcJJHWOMMcZYLcBJHWOMMcZYLVBnk7r//e9/8PPzw6hRo1BQUCB0OLXa8+fP0aVLF5ibm+PcuXMAgNjYWHh7e+ONN97A7du3BY6wdkpKSoKfnx+6d++OoUOHorCwkJ+7jpw7dw5du3ZF9+7dERQUhOzsbH72OhQTEwN7e3sA/FmjCzdu3IC9vT38/f3h7++PR48e8XMXCtVBycnJNGrUKCIimjdvHm3atEngiGq3wsJCevjwIY0dO5ZSU1OpoKCAOnfuTPn5+RQXF0fvvPOO0CHWSunp6fTixQsiIoqMjKQtW7bwc9eRgoKCku/nzp1LUVFR/Ox1pLi4mAYNGkTu7u78WaMj169fp8GDB5f8Nz934dTJkbrExES8+eabAIDAwEAkJCQIHFHtZmBgUPJbMwBcvnwZbdu2hZGREbp27YrU1FQBo6u9GjRoAFNTUwCAoaEhLl26xM9dRwwNDUu+z8nJQdOmTfnZ60h0dDRCQ0Ohp6fHnzU6FB8fDz8/P8yYMYM/awRUJ5O6Z8+elVxdYmVlhSdPnggcUd3y6vMHgOLiYgGjqf1u3bqFP//8E76+vvzcdejQoUNwd3fH4cOHYWhoyM9eB4qLi7FlyxYMGzYMAH/W6ErDhg1x5coVHDt2DA8fPsRvv/3Gz10gdTKps7a2RlZWFoCX/+htbGwEjqhuefX5A4C+vr6A0dRuWVlZGD16NNauXQsHBwd+7jrUu3dvSKVShIaG4ujRo/zsdWDjxo0YOnQo9PRe/mjjzxrdEIvFMDMzg0gkwuDBgyGVSvm5C6ROJnVeXl44ePAgAODAgQPo2rWrwBHVLc2bN0daWhoKCgoQHx8PNzc3oUOqlYqLizFq1CjMnj0bLVu25OeuQ/n5+SXfW1lZwdzcnJ+9DqSlpSEqKgqBgYG4fPkyfv75Z37uOvD8+fOS748dO4bg4GB+7gIxEDoAIbi7u6NBgwbw8/ND06ZN8cknnwgdUq3Xt29fpKSk4OLFi5g4cSI+/vhjdO/eHcbGxoiKihI6vFppy5YtSEhIwPPnz/Hll1/ivffe4+euI4cOHcI333wDPT092NvbY926dbC3t+dnr2ULFy4s+d7T0xPLli3D5s2b+blrWVxcHGbOnAlTU1M4Ozvjyy+/hFgs5ucuAL4mjDHGGGOsFqiT06+MMcYYY7UNJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7UAJ3WMMcYYY7XA/wEQtQ63gud7lQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -251,7 +251,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/S0lEQVR4nOzdd1hTWdc28DuhCYgg2FCxIihWsKIoKopYGFGxt3Ece29jGbujqGPXRyxjL6jYxQ6C4gAqFrCLvXcp0knW98d88I5DS0KSk4T1u65c72uyz943zygszj57bxERERhjjDHGmFYTCx2AMcYYY4wVHBd1jDHGGGM6gIs6xhhjjDEdwEUdY4wxxpgO4KKOMcYYY0wHcFHHGGOMMaYDuKhjjDHGGNMBOl3UERHi4+PBW/ExxhhjTNfpdFGXkJAAc3NzJCQkCB2FMcYYY0yldLqoY4wxxhgrLLioY4wxxhjTAVzUMcYYY4zpAC7qGGOMMcZ0ABd1jGmob9++oUOHDnj69KnQURhjjGkBLuoY01AbNmzA6dOn8ddffwkdhTHGmBYQkQ5v4hYfHw9zc3PExcWhWLFiQsdhTGZpaWmoVKkSPn/+jHLlyuHp06cQiURCx2KMMabB+E4dYxpo3759ePfuHVavXo3nz58jIiJC6EiMMcY0HBd1jGkYIsLy5cvRoUMHDB06FOXKlcPevXuFjsUYY0zDcVHHmIa5cOECoqOjMXHiROjp6aFnz544cOAAMjIyhI7GGGNMg3FRx5iGWb58OerWrYvWrVsDAPr06YOPHz8iODhY4GSMMcY0GRd1jGmQe/fu4fTp05g4cWLWwggnJydUq1aNp2AZY4zliYs6xjTIypUrYW1tjV69emW9JxKJ0Lt3bxw+fBgpKSkCpmOMMabJuKhjTEN8/PgRu3btwpgxY2BoaPjDZ71790Z8fDxOnTolUDrGGGOajos6xjTE+vXroaenh2HDhmX7rHr16nB0dISfn58AyRhjjGkDrSvq/Pz8ULJkSaFjMKZUycnJWL9+PQYNGgRLS8sc2/Tp0wcnTpxAfHy8mtMxxhjTBlpV1EmlUhw8eBA2NjY5fp6amor4+PgfXoxpg927d+Pz588YP358rm169uyJ1NRUHD16VG25GGOMaQ+tKur27t0Lb29viMU5x/bx8YG5uXnWK7fijzFNIpVKsXLlSnTu3Bm2tra5trOxsUHz5s15CpYxxliOtKaok0gkOHDgAHr27Jlrm+nTpyMuLi7r9erVKzUmZEwxZ86cwf379zFp0qR82/bp0wfnz5/Hp0+f1JCMMcaYNtGaom737t3o0aNHrnfpAMDIyAjFihX74cWYpluxYgUaNmyIZs2a5dvW29sbIpEI/v7+akjGGGNMm2hNUXfv3j3s3LkTHh4eiImJwYQJE4SOxFiB3bp1C0FBQZg0aVLWZsN5KVGiBNzd3XkjYsYYY9mIiIiEDiGvBg0aIDIyMt928fHxMDc3R1xcHN+1Yxpp4MCBCAkJwZMnT6Cvry/TNbt370b//v3x/PlzVKxYUcUJGWOMaQutuVP3b7IUdIxpupCQEPj5+WHcuHEyF3QA0LlzZxgbG2Pfvn0qTMcYY0zbaGVRx5g2S05Oxvjx49GqVSs0bdoUQ4cOlet6MzMzeHp68ipYxhhjP+CijjE1unr1KhwdHbFhwwasWLECFy5cQNGiReXup3fv3oiKisK9e/dUkJIxxpg24qKOMTVIS0vDrFmz0LRpU5iZmeHmzZuYMGFCnqu589K+fXuYm5vz3TrGVOjdu3eYOnUqKleujClTpiAuLk7oSIzliYs6xlTszp07aNKkCRYvXow5c+YgLCwMNWrUKFCfRkZG6NatG/z8/KCFa50Y02hPnz7F8OHDUblyZfj6+qJZs2ZYv349qlWrhk2bNkEikQgdkbEccVHHmIpIpVIsXboU9evXR2pqKq5cuYJZs2bBwMBAKf336dMHT548QXBwsFL6Y6ywi46ORp8+fVCtWjUcPnwYc+bMwcuXL7F79248fPgQHh4eGDZsGJycnPjfHdNIXNQxpiIrVqzAtGnTMHbsWFy/fh1OTk5K7b9ly5ZwdnZGjx49cPfuXaX2zVhhEhYWhk6dOqFu3boICwvDmjVr8OLFC0yfPh0WFhYAgPLly2Pnzp2IiIiAiYkJWrduja5du+LJkyfChmfsX7RynzpZ8T51TCj379+Ho6MjRo0aheXLl6tsnG/fvqFly5b49OkTQkNDUbVqVZWNxZguOn36NDp06AAHBwdMmzYNvXr1yvduOhHBz88PU6dOxcePHzF+/HjMnz8fRkZGakrNWM64qGNMySQSCZo1a4Zv377h1q1bMDY2Vul4Hz58QIsWLZCamorLly+jfPnyKh2PMV2RkpKCWrVqoWLFijh//rzcC5cSExOxbNkyLFy4ELNmzcKsWbNUlJQx2fD0K2NKtnz5cly9ehXbtm1TeUEHAKVLl0ZgYCCICG3atMHHjx9VPiZjumDZsmV48eIF1q1bp9BKdFNTU8yZMwfDhw/HypUrkZCQoIKUjMmOizrGlOj+/fuYPXs2Jk2ahKZNm6ptXBsbGwQFBSEuLg7u7u749u2b2sZmTBu9ePECixYtwvjx4wu8Gv23335DYmIi/ve//ykp3Y/WrVuHy5cvq6Rvplt4+pUxJcnIyECzZs0QFxeHmzdvquUu3X/duXMHrq6usLOzw/nz5xXa2JixwqBbt24IDw/Hw4cPYWZmVuD+hg8fjkOHDuH58+cwNTVVQsJ//P3333BxcUH79u1x6tQppfXLdBPfqWNMSZYtW4bIyEhs375dkIIOAGrVqoUzZ87g7t276Ny5M1JSUgTJwZgmO3fuHA4fPoxly5YppaADgGnTpiE2NhYbN25USn/AP78ojho1CgYGBggODkZSUpLS+ma6iYs6xpTg7t27mDNnDiZPnowmTZoImqVhw4YICAhAWFgYevTogfT0dEHzMKZJ0tLSMGbMGLi6uqJ3795K67dSpUoYMGAAli5diuTkZKX06evri+joaGzduhUpKSkICQlRSr9Md3FRx1gBZWRk4Oeff0bVqlUxb948oeMAAFq0aIEjR47g9OnTWLNmjdBxGNMYK1euxJMnT7B27VqIRCKl9j19+nR8+vQJf/31V4H7+vDhA2bNmoUhQ4agb9++qFy5Mk6ePKmElEyXcVHHWAH9+eefuHHjBrZv344iRYoIHSeLh4cHvL29sXnzZj5KjDEAr1+/xoIFCzB69GjUrl1b6f3b2tqib9++WLJkCVJTUwvU17Rp06Cnp4dFixZBJBKhQ4cOOHXqFP9bZnnioo7lKDk5GWvXrsWePXvw+fNnoeNorDt37mDu3LmYMmUKGjVqJHScbH799Vc8fPgQYWFhQkdhTHCTJ09G0aJFVXpHfcaMGXj79i22bdumcB9hYWHYvn07fHx8YGVlBQDo2LEjnj9/jvv37ysrKtNBvPqVZXPt2jUMGDAAMTExkEgkEIlEaNiwIdq3b4/27dujQYMG0NPTEzqm4DIyMtCkSRMkJyfj+vXrGnWXLpNUKoWtrS1cXV0L9EOGMW0XHByM1q1bY8eOHRgwYIBKx+rVqxciIiIQExMj91nPGRkZaNiwIfT19REREZH1vTY5ORlWVlaYP38+Jk+erIrYTAfwnTqWJS0tDbNmzYKzszNMTU0RFRWFN2/eYMuWLahYsSJWrVqFJk2aoEyZMujbty92796NtLQ0oWMrTCKR4NOnTwpdGxUVBRcXF9y6dUvjpl3/TSwW45dffsGBAwcQHx8vdBzGBJGeno7Ro0ejWbNm6N+/v8rHmzlzJl68eIFdu3bJfe2GDRsQFRWF9evX//DLs7GxMVq3bs3P1bG8kQ6Li4sjABQXFyd0FI0XHR1N9erVI319fZo3bx6lpaVla5Oenk6hoaE0Y8YMcnR0JAA0ffp0AdL+4+bNm3TmzBmFrpVKpdS7d2/S09Ojn3/+mR49eiTTdQkJCTRp0iTS09MjBwcHCg0NVWh8dXr16hWJxWLauHGj0FEYE8Ty5ctJLBbTzZs31TZm165dqUqVKpSeni7zNR8+fCBzc3MaMmRIjp//73//I319fYqNjVVWTKZjuKgr5NLT02nRokVkYGBANWvWpOvXr8t87YgRI6hChQokkUhUmDB3rVu3JrFYrFBht3r1agJAw4cPpzJlypBYLKb+/fvTgwcPcr3m6NGjZGNjQ8bGxuTj40OpqakFia9WHTp0oEaNGgkdgzG1e//+PZmZmdGoUaPUOu6NGzcIAO3cuVPmawYNGkSWlpb06dOnHD9/9uwZAaCDBw8qKybTMVzUFWIPHjygxo0bk1gspqlTp1JKSopc11+6dIkA0N9//62ihLlLTEwkQ0NDKl68OJmbm+dZjP3X5cuXSV9fnyZMmEBERElJSbR27VoqV64cicVi6tOnD929ezer/YsXL6hz584EgNq3b09Pnz5V+tejaocOHSIAFB0dLXQUxtRq165dBIA+fvyo9rE7depE9vb2lJGRkW/bsLAwAkAbNmzIs52DgwMNGjRIWRGZjuGirpDK/O3V1tZW4aJMIpFQuXLlaPTo0UpOl7+zZ88SAAoPDycHBweqVq0aff36Nd/r3r9/T2XLliUXF5dsU8wpKSm0fv16srGxIZFIRD169KAFCxaQqakplS1blvz9/UkqlarqS1Kp1NRUKlWqFI0bN07oKIyp1eTJk6lSpUqCjH3lyhUCQH5+fnm2y8jIoHr16lH9+vXzLQAnT55MZcqUEWyGhGk2LuoKqdmzZ5OJiQl9/vy5QP1MnDiRSpUqJddzI8owZcoUsra2JqlUSo8fPyZLS0tq06ZNnjnS09OpZcuWVKZMGXr79m2u7VJTU2nTpk1UqVIlEovFNHbsWJ34OzR58mSytLSU+44sY9qsbdu21LlzZ8HGb9euHdWsWfOHIiwjI4MSEhLow4cP9PTpU/Lx8SEAFBERkW9/wcHBBIAiIyNVGZtpKS7qCqHk5GQqWbKkUp4xuXbtGgGgwMBAJSSTnaOjI/Xv3z/rzxcuXCB9fX0aO3Zsrtf89ttvpKenRxcvXpRpjLS0tFyfbdFG9+/fJwC0b98+oaMwpjalSpWi2bNnCzb+5cuXCQCVKVOGihcvTkZGRgQg2yu3xRH/lZaWRmZmZjR//nwVJ2faiPepK4S2bNmCIUOG4OHDh6hWrVqB+iIiVKtWDS1btlTK0Tiy+Pz5M0qWLJltv6kNGzZgxIgR2LhxI4YOHfrDNUeOHEHXrl2xbNkyTJo0SS05NZGLiwtMTExw7tw5oaMwpnLv37+HtbU1Dh06hK5duwqWw9fXF+/fv4eJiQlMTU1hYmLyw/9ftGhRufb/9Pb2xps3bxAeHq7i5EzrCFxUqhTfqctOKpVSzZo1ydPTU2l9zpw5kywsLOReDTpx4kRat26d3OPt37+fANDr16+zfTZy5EjS19enkJCQrPcePnxIZmZm5O3trbXPxCnLtm3bCAA9e/ZM6CiMqdyZM2cIAD1+/FjoKEq1detWEolEgiz+YJpNazYfvn79Opo3bw5XV1f06NED6enpQkfSSoGBgbh79y4mTJigtD579eqF2NhYnD17VuZrbt68iRUrVmDJkiWQSqVyjRcYGIgaNWqgXLly2T5btWoVWrRogW7duuHZs2dITExEt27dULZsWWzdulXpB3hrm+7du8PMzIxPl2CFQlRUFIoWLYrKlSsLHUWp2rdvDyKS63suKxy0pqgrV64czp49i4sXL8LW1hZHjx7N1iY1NRXx8fE/vNiPVq5cibp166Jly5ZK67NmzZqoVasW9u3bJ/M1c+fOhZmZGV69eoWIiAi5xgsMDESbNm1y/MzAwAD+/v6wsLCAp6cnBg0ahGfPnuHw4cMwMzOTaxxdZGpqit69e2Pr1q2QSCRCx2EsX/7+/vj5558VOsg+KioKderUgVisNT/qZFKmTBnUr1+fT5dg2WjN3/QyZcrAxMQEwD8/uPX19bO18fHxgbm5edbLxsZG3TE12v3793H69GlMmDBB6XesevfujWPHjiEpKSnfttevX8fx48exdu1alC1bVq5i8OnTp3j27FmuRR0AWFpa4sSJE3j16hX8/f2xZcsWODg4yDyGrhs8eDBev36N8+fPCx2FsTzt2rULvXr1wo4dO/DkyRO5r4+KikLdunVVkEx4HTp0wNmzZ5GRkSF0FKZBtKaoy/Ty5UsEBgaiU6dO2T6bPn064uLisl6vXr0SIKHmWr16NUqXLo1evXopve+ePXsiMTERAQEB+badM2cO7Ozs0LdvX/To0QP+/v4y3zUKDAyEnp4eXF1d82xXo0YNnDp1Cn/99Rd69uwpU9+FRcOGDVG7dm21LWxhTBFbt27FwIEDs/79yrsoICUlBQ8ePNDpou7bt29yz3Qw3aZVRV18fDz69++Pbdu2wcDAINvnRkZGKFas2A8v9o8vX75g586dGDVqFIyMjJTef9WqVdGoUaN877pdvXoVJ0+exJw5c6Cvr4+ePXvi/fv3CA0NlWmc8+fPo1GjRjA3N8+3bbNmzTB48GCZ+i1MRCIRBg8ejOPHj+Pjx49Cx2Esm02bNmHw4MEYPnw4du/eDXt7e7mLunv37kEikehsUdewYUOUKFECp06dEjoK0yBaU9RJJBL07dsXs2fPhp2dndBxtM7GjRshlUoxfPhwlY3Rq1cvnDp1CnFxcbm2mTt3LmrUqJH123fjxo1RsWJFmaZgJRIJLly4kOfUK5NNv379IBKJsGvXLqGjKOTLly9Yt24dGjRogIYNGyr0vBXTTP/73/8wbNgwjB07Fv/73/8gFovh7Owsd1EXFRUFkUiE2rVrqyipsPT09ODh4cFFHfuB1hR1Bw4cQFhYGBYsWICWLVti//79QkfSGmlpaVi3bh369++PkiVLqmycHj16IC0tLcdFLAAQERGB06dPY/bs2Vn7MYlEIvTs2ROHDh3K99mQW7du4evXr2jbtq2yoxc6VlZW6NKlC7Zs2aI1BVF6ejqOHz+Orl27wtraGhMmTIBYLEZkZCQeP34sdDymBKtWrcLo0aMxadIkrFq1KuvZ36ZNmyI6Ohrfv3+Xua+oqCjY2trC1NRUVXEF17FjR0RFReH169dCR2GaQtgdVVSL96n7R+aB1nfu3FH5WK6uruTh4ZHjZ+7u7lSzZs1sZxtev36dANDZs2fz7Hvx4sVkamoq9354LGfnz58nAAqf/asuN2/epHHjxlHJkiUJADk6OtKqVavo48ePFBcXR3p6evkegs4039KlSwkATZs2Ldt+krdv3yYAdOHCBZn7a9myJXl7eys7pkb58uULicVi2rRpk9BRmIaQ+05dbGws9u/fjxUrVmDlypXYt28fvn37ptRCkykPEWHlypVwd3dHzZo1VT5er169cP78eXz69OmH98PCwnDu3DnMmTMn267pjo6OsLW1zXcKNjAwEK6urjA0NFR67sKodevWsLa2xrFjx4SOkqvly5fD0dERfn5+6NevH27duoUbN25g3LhxKFmyJIoVK4aGDRviwoULQkdlBbBw4UL89ttvmDVrFhYtWpRtdb6DgwOKFSuGsLAwmfojIp1e+ZrJ0tISzs7OvLUJyyJXUbdlyxY0atQIERERkEqlkEgkiIiIQJMmTbBlyxZVZWQFEBoaihs3bih1s+G8eHt7AwAOHTr0w/tz5sxB7dq10a1bt2zXiEQi9OrVC0eOHEFaWlqO/SYnJyM0NJSfp1MisViMRo0a4caNG0JHydX27dvRrVs3vH79GitWrMjxh7SbmxsuXLgg9ybWTDPs3r0bM2fOxPz58zF//vwct1sSi8Vo3LixzM/VvX79Gt++fdP5og74Zwo2MDAQqampQkdhmkCe23p2dnaUkJCQ7f34+HiqVq2akm4eKg9PvxJ5eXlRjRo11Ho8loeHB7Vo0SLrz5cuXSIAdOjQoVyvyZxeOXHiRI6fBwYGEgCKjo5Wet7CbO7cuWRlZaWRx6c9e/aMAJC/v3+e7YKCgggARUVFqSkZUyZPT09ydXXNt93s2bNl/rt64sQJAkAvXrxQQkLNduvWLQJA58+fFzoK0wBy3akTiUQ5Pqj6/fv3Qn/8kiZ68uQJjh07hvHjx6v1v0+vXr0QGhqa9fDunDlzULduXXh5eeV6Ta1ateDg4JDrFGxgYCBKlSqFWrVqqSJyoeXk5IQvX75o5J6OJ0+ehL6+Ptzd3fNs17RpUxgZGSEoKEhNyZiypKenIyQkJN//xgDg7OyML1++ICYmJt+2UVFRsLCwKBQb0NepUwflypXDjh07hI6Sq8jISHTv3h23bt0SOorOk6uoW7ZsGVxdXdGtWzeMHTsWY8eORdeuXdGyZUssX75cVRmZgtasWQNLS0v0799freN6eXnB0NAQ/v7+CAkJQXBwMObOnZvvUT29evXCsWPHkJycnO2zzKPB+JcH5XJ0dATwz1m8miYgIACurq757jdZpEgRNGvWjJ+r00LXrl1DQkKCTI9VNGnSBIBsmxBnPk9XGL5fiEQizJkzB7t378aaNWuEjpOj9evX4+DBg6hfvz7Gjh2b57ZXrIDkvbWXkZFBYWFhdPDgQfL396ewsLBsqxk1RWGefo2Pj6eiRYvSzJkzBRm/S5cu1LBhQ2rRogU5OjrKNGXy8OHDHKdpv3z5QiKRiLZu3aqquIWWVCqlkiVL0uzZs4WO8oOEhAQyNDSklStXytT+jz/+IDMzM0pPT1dtMKZU8+fPJ3Nzc5l/hjg4ONCwYcPybWdnZ0djx44taDytMmnSJBKJRHTs2DGho/xAIpFQqVKlaMKECfTnn3+SqakplS5dmnbt2qWRj31oO97SREdlPlMSExMjyPgHDhwgAASAjh8/LvN19erVo+7du//w3sGDBwvN8zFCaNeuHXl6egod4wdHjx6V6+9veHg4AaDw8HAVJ2PK1KJFC/Ly8pK5/eDBg6l27dp5tvn+/TuJRCLasmVLQeNpFYlEQl27diUTExOKjIwUOk6WiIgIAkChoaFERPTq1Svq0aMHASBXV1e1bLVVmCi8+fB/VzcyzRISEoLy5cujatWqgozfsWNHmJqaokGDBjme05ubXr16ISAg4IdnN8+fPw87OztUqFBBFVELPUdHR41bARsQEAB7e3vY2trK1L5BgwYwMzPjKVgtkpiYiPDwcLlWtDs7O+POnTuIj4/Ptc2dO3dARIVi5eu/icVi7Nq1C7Vq1UKnTp3w4sULoSMBAE6cOAFLS8us6fPy5ctj//79OH/+PN69e4d69eph8uTJSEhIEDhpwcTHx2vECnyFi7o+ffpg5cqVebYhLdmpXhcFBwejVatWgj1TYmJigv3792PHjh1yZejRoweSk5MREBCQ9V5gYCCfIqFCTk5OePPmjcacAyuVSnHy5Em5fhnQ19eHq6srF3VaJDQ0FOnp6XBzc5P5GmdnZxARrl69mmubqKgo6OnpqWVfTk1jYmKC48ePo0iRIujYsaNGPLsWEBCADh06QF9f/4f327Rpg+joaMyfPx/r169HzZo18ejRI4FSFkxMTAwqVqyIHj16CF7YKVzUHT9+HHPnzsXYsWOzFW8SiQTbt29HjRo1ChyQye/bt2+4efMmWrZsKWiOjh07wsHBQa5rKleujEaNGmWtgn327BmePHnC+9OpkKYtlrh58ybevXsnV1EH/LOZ8t9//42UlBQVJWPKFBgYiHLlysHe3l7ma6pXrw4LC4s8F0tERUXB3t4eRYoUUUZMrVO6dGmcPHkSr1+/Rvfu3ZGeni5YlpcvXyIqKirXf8tGRkaYPn067t+/DzMzM7Ru3RpPnz5Vc8qC+f79O7y8vGBqaorDhw9j6tSpguZRuKhr164dLl26hCNHjqBr165ITk5GWloafH19YWtri4kTJ2Yd2s7UKzQ0FESEVq1aCR1FIb169cLp06cRFxeHoKAgiMViwQtUXValShUUK1ZMY6ZgAwICYG5ujmbNmsl1XevWrZGSkiL3we9MGIqsaBeLxWjSpEm+RV1hm3r9LwcHBxw+fBjBwcEYOXKkYLNmmdsStWvXLs92FStWRGBgIExMTNC6dWuNmTrODxFh0KBBePnyJc6fP49Vq1Zh2bJl8PX1FTRUgbx+/Zrq1KlDderUobJly1LJkiVp4cKFFB8fX9CuC6ywLpQYP348VaxYUegYCnv16hUBoB07dlDPnj2pcePGQkfSeS1atMi2QEUoDRo0oJ49e8p9nUQioRIlStDvv/+uglRMmT5+/EgAaOfOnXJfO2/ePLKwsCCJRJLtM4lEQmZmZrR48WJlxNR627dvJwDk4+MjyPjt27enVq1aydz+1atXVLlyZapSpQq9fv1apmvS09Ppjz/+IBsbG3r58qWiURWyePFiAkCHDx/Oem/s2LEkFovp5MmTas2SqUBFXWxsLM2fP5+srKzI2NiYTExMNGrH/8Ja1NWtW5cGDhwodIwCcXFxIQ8PD/4hrSbjx4+nqlWrCh2D3r59SwBo165dCl3fvXt3cnZ2VnIqpmz79u0jAPTmzRu5rz137hwBoHv37mX77MmTJwSATp8+rYyYOmHWrFkyncyibN+/fycjIyNasWKFXNc9e/aMKlSoQHZ2dvTu3bs8296+fZvq169PYrGYANDBgwcLElkuZ8+eJbFYnO3nU0ZGBv30009kampKN27cUFueTApPv06fPh0VK1bE9u3bsWjRInz69Andu3dHmzZtcO3atYLeQGQK+vr1K6Kjo7V26jVTr169cObMGXz+/Jmfp1MDR0dHPHnyRPAHq0+dOgWxWAwPDw+Frndzc8PVq1e1fiWdrgsMDISDgwPKli0r97WNGzeGSCTKcQo2KioKAAr99Ou/zZs3D56enpg+fbpap2Ezz6OV99nYSpUq4cKFC/j+/Tvc3Nzw6dOnbG0yMjLg4+OD+vXrIykpCeHh4bCwsFDbQotnz56hV69ecHd3x7x58374TE9PD3v37kX16tXRqVOnrJOV1EbRarB69eq0Y8eObJtGzpw5k0xNTeno0aMFLTgLrDDeqTt8+DABoOfPnwsdpUDev39PYrGYjI2NKSUlReg4Oi/z7N2QkBBBc3h5eVGzZs0Uvv7Ro0cEgAICApSYSrf98ccfNHToUHrw4IHaxqxcuTKNGTNG4etr1apFv/76a7b358yZQyVLluRNbf8j83zky5cvq23MwYMHk729vcLXP3jwgEqXLk1169alL1++ZL1/9+5datiwIYnFYpo6dSolJycTEVHjxo3VMkOVmJhIdevWpSpVqtDXr19zbffu3TuqUKEC1alTR601iMJFXV7/aDZv3kxGRka0du1aRbtXisJY1I0ZM4YqV64sdAyl8PDwoJ9++knoGIVCeno6FSlSROYTHFQhOTmZTE1NC/T8j1QqpfLly9PEiROVmEx3xcXFkZGRERkaGpJIJCIvLy8KCwtT6ZiZU6QFOflgyJAhVLNmzWzve3l5UZs2bQoSTydJJBKysbGhoUOHqm28MmXK0OTJkwvUz+3bt8nKyooaNGhAnz9/psWLF5OhoSFVr14920bj/fv3V/mjF1KplPr27Svzo2Z37tyhYsWKUbt27SgtLU2l2TKp7ESJU6dOkZmZmaq6l0lhLOpq165Nv/zyi9AxlCIhIYESEhKEjlFoNGrUiPr37y/Y+GfOnCEAdPv27QL1M3DgQKpbt65yQum4nTt3Zp3csWXLFqpevToBIBcXFzp+/HiOixEKauPGjSQWiyk2NlbhPrZt20YikYi+ffv2w/uVK1emSZMmFTChbpoxYwaZm5tTUlKSyse6evWq0u7837x5k4oXL04mJiYkFotpypQpOX4Nf/zxB1laWhZ4vLysXLmSANC+fftkviYwMJD09fVp6NCharmDrNJjwq5fv67K7vNV2Iq6zBVlij5kzgq34cOHU61atQQbf/To0VSxYsUCf+PbsWMHAaBPnz4pKZnuat++Pbm4uGT9WSKR0LFjx6hp06YEgKpXr05btmxR6iMQPXr0oCZNmhSojwcPHhAAOnPmTNZ7md/vFVlRWxhk/m+2f/9+lY81e/ZssrCwUNpZzNeuXSNPT8887yJnHk35+fNnpYz5X8HBwaSnp6fQ3cetW7cSAJoxY4bKCzs++1WH+Pv7EwB69eqV0FGYFsq8g5KYmKj2saVSKVWqVIlGjRpV4L4yt8RR92o/bfPp0yfS19endevW5fj55cuXqXPnzgSAqlSpQqdOnSrwmBKJhKysrGjmzJkF6kcqlZKlpSXNmTMn673Q0FACoFE7MGiaJk2aUIcOHVQ+jqOjI/Xu3Vvl4/xbVFQUAaC///5b6X1fu3aNrKysyM3NTeFC9c8//yQA1LdvX5U+J67w6lemeYKDg2Fra4vy5csLHYVpIScnJ0ilUty+fVvtY9+7dw/Pnz+Xe6VcTsqXLw87OzsEBQUpIZnuOnToEKRSKbp3757j582aNcPRo0dx584dVK5cGR06dEDXrl3x8uVLhceMiorCly9f5DoaLCcikSjbJsRRUVEwNDRE9erVC9S3LhswYADOnj2L9+/fq2yMN2/e4ObNm/D09FTZGDnJPCda2Stgz58/j5YtW6JatWo4cOBAtuPOZDV58mTs378fBw8eRJs2bfD582el5szERZ0OCQkJ0fqtTJhwatWqBT09PUGOCwsICICJiYnSTg5p3bo1nwObDz8/P7i5uaFUqVJ5tqtZsybOnz+Pffv2ISIiAjVq1MCSJUuQlpYm95hBQUEwNjaGs7OzorGzODs748qVK1lnbUZFRcHBwQEGBgYF7ltX9ezZM2vLDVUJCAiAnp6ewtsSKcrExAQVKlTAw4cPldann58fOnbsCFdXVwQGBsLS0rJA/fXo0QPBwcF4+PAhnJ2dVbIFCxd1OuLDhw+4d+8eH6fFFFakSBHUrFlTkOPCTpw4gbZt2yrtvE43Nzc8evRI/XtEaYk3b97g0qVL6N27t0ztRSIRevbsiQcPHmDo0KH4/fffUa9ePQQHB8s1bmBgIFq0aAEjIyNFYv+gadOmiIuLw/379wHw8WCysLS0hKenJ3bu3KmyMQICAuDi4oLixYurbIzc2NnZKa2oW7VqFfr06YM+ffrg6NGjMDU1VUq/zs7OiIiIgL6+PpydnXHp0iWl9JuJizodERISAgB8p44ViKOjo9rv1H3+/Bnh4eFKmXrNlPnLDd+ty9mBAwdgYGCALl26yHVdsWLFsHLlSly/fh3FixdH69at0bdvX5mm81JTUxEaGlrgqddMjRo1glgsRnh4OCQSCW7fvs1FnQwGDhyIqKiorI2aZREREQFfX998Ny9OSkpCYGCgUv8ty8Pe3r7Ad7+ICNOmTcOECRMwdepUbNu2Tel3f6tUqYKwsDDUq1cPbdq0wa5du5TWNxd1OiIkJAT29vawtrYWOgrTYk5OToiOjkZ6erpS+hs6dCgaNGiA48eP5/oD4cyZM5BKpejQoYNSxgSAEiVKoF69elzU5cLPzw/t27eHhYWFQtfXrVsXoaGh2Lp1K86dO4dGjRrh1atXeV4TERGBpKQkpZ0QU7RoUdSuXRthYWF4/PgxkpOTuaiTgYeHB0qWLCnz3bovX77Ay8sLI0eOxIQJE/Is7IKCgpCSkqL25+ky2dvb4/Hjx5BIJApdn56ejkGDBmHJkiVYuXIlFi9eDJFIpOSU/yhevDhOnz6N/v37Y8CAAZg7d65yTvxQ2RIMDVCYVr/a29vTsGHDhI7BtFzmCsKoqKgC9/X48WMSi8VUpUoVAkCNGjWis2fPZlvS37NnT6pfv36Bx/uviRMnUvny5fl0gf94/Pix3Htt5eX169dUsWJFqlGjRp7bScycOZOsrKyUuvfd8OHDqXr16llnyapqOwtdM27cOCpdurRMKzl79uxJxYsXpwULFhAAGj58eK7/DYcOHUq2traC/ZvL3Ovy6dOncl/7/ft36tChA+nr69OePXtUkC5nUqmUFi1aRABo2rRpBe6Pizod8ObNG6V+k2aFV3x8PIlEItq2bVuB+xo9ejSVKFGCkpKSKDAwkJo0aUIAqHnz5nTx4kUiIkpLSyNzc/MftqZQloCAAAJAjx49Unrf2uyPP/4gU1NT+v79u9L6fPToEZUsWZIaNWqU64bhzs7O1L17d6WNSfR/exIOHz6cypUrp9S+ddmNGzdkOk4vc++3zCJny5YtJBKJaNCgQdmOCJVKpVS2bFmaMGGCynLn59mzZwSATp8+Ldd1GRkZ1KxZMzI1NaWzZ8+qKF3eFixYQPr6+hQTE1OgfrSqqJs0aRK5uLhQnz59KDU1Nd/2haWo27t3LwGg9+/fCx2F6QA7O7sCnctJRPTlyxcyMTH5oViTSqUUEBBAjo6OBIDc3d1pxYoVBICuXbtWwNTZxcfHk56eHvn6+iq9b2U6f/581vmV6lCrVi2V7CF2/fp1MjMzI3d392zfn2NjY0lPT482btyo1DEzz/o1MzNTy/5rukIqlVKtWrWoR48eubZ5//49WVlZUdeuXX+487Z7927S09OjPn36/HCn7/r16wSAgoKCVJo9LxkZGWRkZESrV6+W67ro6GgCIOiZ9UlJSWRjY0Pe3t4F6kdrnqm7efMm3r9/j9DQUDg4OODgwYPZ2qSmpiI+Pv6HV2EQHByMGjVqoHTp0kJHYTpAGYslNmzYAKlUipEjR2a9JxKJ0LFjR0RGRuLQoUN4/fo1Jk6ciDJlysDJyamgsbMxMzNDo0aNVPpcnVQqzVp9qYhnz56hbdu2WLVqlfJC5eHOnTu4c+eOzKte5eHk5IRjx44hJCQEAwYM+OG5posXL0IikShtkUQmW1tblChRAgkJCfw8nRxEIhEGDhyIY8eO4du3b9k+JyIMHz4cIpEIvr6+PzxX1rdvX+zbtw8HDhxAr169sra2OXHiBMzNzdG8eXO1fR3/paenh2rVqsm9AjYyMhIikQitW7dWUbL8GRsb448//sDBgwcRFhamcD9aU9SFh4fD3d0dwD8Peub0Rfv4+MDc3DzrZWNjo/B4d+/exf79+xW+PjdEhGvXrmHo0KGoU6cOxo4di6CgoAI9mB4cHMyrXpnSODk54datW1n7f8krNTUVa9euxYABA3LcA00sFqNr166Ijo7Gvn37sGXLFojFqvlW5ObmhsDAQJVstvrp0yd06tQJDg4O+PvvvxXqI3OD5G3btinnIel8+Pn5wcLCIut7qbK1atUKfn5+8Pf3x9ixY7O+pqCgIFSqVAlVqlRR6ngikShrzzsu6uTTt29fpKenw9/fP9tne/bswdGjR7Fhw4Yc/w17e3vj8OHDOHHiBLy9vZGamoqAgAB4eHgIvk+gnZ2d3Ctgr127hurVq8PMzExFqWTTr18/1KtXD5MnT1b8+0HBbxqqx8KFC+nIkSNERBQTE5Pj9EFKSgrFxcVlvTKPC1Jk+jXz7ENlTd18+/aN1q1bR3Xr1iUAZGNjQ/379ycbGxsCQBYWFtSnTx/at2+fXHn5SCSmbOfOnSMA9PDhQ4Wuzzzn8MGDB0pOJr9Xr15R2bJlqW7dutkOfy+I4OBgKlu2LJUoUYKKFStGv//+u0L99OrVi4oVK0YAKDQ0VGn5ciKVSqlKlSo0ePBglY5DRLRp0yYCkDX97uDgQL/++qtKxsp8yPz+/fsq6V+XeXh4UNOmTX947/Xr12RhYSHTFP3p06epSJEi1KJFC405d3z69OlkY2Mj1zUNGzak/v37qyiRfAIDAwkAHTx4UKHrtaaoW79+Pe3YsYOI/jmHTZYzIhV9pu7atWsEgJydnUksFtPhw4cVyiyVSik0NJQGDBhAxsbGpKenR15eXnTq1Kmsh0ylUinduHGD5syZQ/Xq1SMAZGBgQO7u7rRx48Z8Vyft2rWLANDHjx8VysjYf3369IkAkJ+fn9zXSqVScnBwoJ9++kkFyRRz584dKl68OLm4uBT4XNuMjAyaPXs2iUQiatmyJb1584Z69uxJjRo1krsvqVRKpUqVomnTplHlypVp0KBBBcqWnytXrhAACgwMVOk4mTKLrd9//13hv0+yeP78OY0dOzbbg/ssf35+fgQg6+F8qVRK7du3pzJlytCXL19k6iMoKIhMTExILBZrxOrjbdu2EQCZ/62npqaSoaEhrVmzRsXJZNe+fXuqWrWqTGsH/ktrirobN25Q3759ieif1Vt79+7N9xpFi7oBAwZQxYoVKS0tjXr06EFGRkZ06dIlufo4deoU1ahRI+sw7EWLFtHbt2/zve7Fixe0du1aatOmDYnFYnJ3d6evX7/m2v6XX36hWrVqyZWNsfxUqFCBfvvtN7mvO3XqFAHIWt2qKcLDw8nExIQ6depEaWlpCvXx+vVratGiBYnFYpo3b15WEbFlyxYSi8Uy/xDMlPlwdmBgIM2fP59MTU0pPj5eoWyyGD9+PJUuXVptxY9UKqUJEyYQAAJAHz58UMu4THZJSUlUrFgxmjVrFhER/fXXXwSATpw4IVc/V69epa1bt6oiotzCwsIIAN26dUum9pGRkQSAwsLCVJxMdrdv3yaxWCz3gg8iLSrqiNSz+vXDhw9kaGhIS5YsIaJ/pnRbtWpFFhYWdPv27XyvT09Pp2nTphEAatu2LZ0/f17hfZkCAwPJ0tKSbG1t6d69ezm2qVy5coFXKjL2X507d6Y2bdrIfZ2bmxs1bNhQI/eGO3PmDBkYGFC/fv3k/jcZEBBAVlZWVK5cOQoJCfnhs5cvXyr0CMTKlSvJyMiIkpKS6MWLFyQSieivv/6Sqw9ZZWRkkLW1tdq/V0gkEho2bBh17NhRreMy2f36669UqVIlevbsGZmZmdHPP/8sdKQC+fz5MwGgAwcOyNTe19eX9PT0KCkpScXJ5PPrr7+SlZWV3I+NaFVRJy9FiroFCxaQsbHxD791x8bGUt26dalcuXL04sWLXK998+YNtWjRgvT09GjJkiVK2WTzyZMnVLNmTTIzM6Pjx4//8Nnz588JAB06dKjA4zD2b/PmzSMrKyu5irObN28SANq/f78KkxWMn58fiUQiGj9+vExfW1xcHE2cOJEAUKdOnejTp085trO3t6ehQ4fKlaVTp07UunXrrD+3a9cu2/NNyhIcHKxxdyOYZsjccLxq1apUvnx5io2NFTpSgVlZWdGCBQtkajt48GCqW7euagMp4O3bt2RiYiL3jAkXdf+SlpZGZcuWpSFDhmT77O3bt1SpUiWqXr16js8NnDt3jkqWLElly5ZV+gPP8fHx1KVLFxKJRLRw4cKsH0bbt28nkUikEc8xMN1y/PhxApDnLzH/1a9fP6pYsaJMu9QLaf369QSAFi5cmOPnUqmUwsLCaNCgQWRiYkIGBga0YsWKPIvAMWPGUKVKlWQugtPT08nMzIz++OOPrPf279+vsgf+hw4dShUrVtTIO6hMWJkLaAAItvGusjk7O8u88KFOnToqW8RTULNnzyYjIyN6/vy5zNdwUfcvmUfNREdH5/j5w4cPqUSJEuTs7Jz1EOa/H5x2d3dX2YIFiURCc+bMIQDUvXt3+v79Ow0cOFAjf8Ng2u/169cEIGvFeX5evnxJ+vr6tGrVKtUGU5L58+cTANqwYUPWe1++fKHVq1dTrVq1CABVrFiRFixYQK9fv863v8wiWNbd4DOf+wkPD896LyUlhSwtLWnKlCnyf0F5SEtLI0tLS5o6dapS+2W649ixYxq1UKCgfv75Z5kWLyUmJqpkU2xlSUhIoNKlS2etJ5AFF3X/0rRpU2rZsmWeba5cuZL1wPXr16/Jzc2NxGIxLViwQKlnGubm0KFDZGpqSnXr1iVra2saN26cysdkhY9UKqWSJUvS7NmzZWo/efJksrCwUOmD/soklUppzJgxJBKJaMmSJdSvXz8yMjIifX196tatG509e1auf8/x8fGkr69P69evl6n9ggULqFixYtnuao4dO5ZKly6t8GKOnJw8eZIA0M2bN5XWJ2OazMfHhywsLPK9M/33338TALp+/bqakslv48aNBIAiIyNlas9F3f+XuY2JLNuXnD59mvT19cnQ0JDKlClDFy5cUEZcmUVHR1PlypUFP9aE6bZ27dpRp06d8m0XFxdHxYoV07o7QRKJhPr06UMAyNbWlpYsWVKgo/aaN29OXl5eMrVt1aoVeXp6Znv/1q1bBICOHTumcI7/6tevH1WvXp2nXlmhcejQIZlWXK9atYqMjIwU2jpEXdLT06lGjRrUsmVLmf4Nc1H3/2VuYyLr80D79++n3r1707t37woaUyGfPn2i1atXa/RfRqbdpk2bJtMh6cuXLycDAwOZpik1TXp6Ot26dUspd9nnz5+f4923/0pKSiIjI6Ncp6qdnJyUts/fo0ePyMDAgBYvXqyU/hjTBnfu3JFpQ+9+/foptMekup04cULmrWa05pgwVfr48SP27duHUaNGQV9fX6ZrevTogb1796JMmTIqTpezEiVKYOzYsTA0NBRkfKb7nJyc8ObNG3z8+DHXNunp6Vi1ahV69+6NcuXKqTGdcujr66Nu3bpKOabM3d0d8fHxuHr1ap7t/v77b6SmpuZ6DurgwYNx8uRJpRxtNnHiRFhbW2Ps2LEF7osxbVG1alWIRKJ8z4C9du0aGjZsqKZUiuvYsSNatmyJNWvW5NuWizoAmzZtgp6eHgYPHix0FMY0hpOTEwDg5s2b2T6TSqVISEjAzp078erVK0yaNEnd8TROgwYNYGFhgfPnz+fZLigoCKVLl0bNmjVz/Lx3797Q19fHrl27CpTnzJkzCAgIwLJly2BsbFygvhjTJkWKFEGlSpXyPAM2Pj4eDx8+RIMGDdSYTDEikQi7du3CsWPH8m9LpIZTpAUSHx8Pc3NzxMXFoVixYjm2SU9PR8WKFdGpUyds2rRJzQkZ01xSqRTFixdHyZIlUaxYMXz//h0JCQlISEhAYmJiVjsPDw+cPn1awKSaw9vbG+/fv8fly5dzbdOoUSPY2tpi7969ubbp06cPbty4gfv370MkEsmdIy0tDXXq1EGZMmUQHBysUB+MaTMPDw8UKVIER48ezfHz4OBgtG7dGnfu3Mn1FyxtJNtcow47dOgQ3r17hzFjxggdhTGNIhaLMX/+fFy7dg1mZmYoWrQozMzMsl6Zf3Z1dRU6qsZo27YtRo0ahbi4OJibm2f7PDY2FtevX8ewYcPy7Gfw4MHw8/NDeHg4mjZtKneO//3vf4iJicGBAwe4oGOFkr29fZ53zSMjI2Fqaorq1aurMZXqFfqibu3atWjVqhVq164tdBTGNM64ceOEjqBV2rZtC4lEgpCQEHTu3Dnb5yEhIZBKpbk+T5epVatWqFSpErZu3Sp3Uffx40fMnTsXw4YNQ506deS6ljFdYWdnB19fX2RkZOT4rPy1a9fg5OQEPT09AdKpTqF+pi4yMhJhYWH8EDFjTCmqVKmCqlWr4ty5czl+HhQUhCpVqqBSpUp59iMWizFo0CDs378f379/lyvD77//Dj09PSxYsECu6xjTJfb29khPT8eLFy9y/DwyMlIrFknIq1AXdWvXrkXFihXh6ekpdBTGmI5o27ZtrtM+QUFB+d6lyzRw4EAkJibC399f5rGvX7+OLVu2YP78+bCyspL5OsZ0jZ2dHQDkuAL28+fPePbsmVYskpBXoS3q/r2Nia7dfmWMCcfd3R0xMTF4/vz5D++/ffsW9+/fR+vWrWXqp2LFimjTpg22bt0qU3siwrhx4+Dg4IDhw4fLG5sxnVK+fHkYGxvnWNRdv34dAPhOnS7hbUwYY6rQqlUriMXibHfrLly4AAAyF3XAPwsmLl++jFu3buXb1s/PD3///TdWr14t836bjOkqsViMatWq5bitybVr12BhYYGqVasKkEy1Cm1RZ2VlhUmTJsHS0lLoKIwxHWJhYYFGjRplK+qCgoJQu3ZtlCpVSua+OnfujEqVKqFhw4YYNGgQ7t+/n2O7xMRE/Pbbb+jSpYvM07uM6Tp7e/sc79RFRkaiQYMGOrkyvNAWdSNGjOAHiRljKuHu7o7AwEBIJBIA/0yNXrhwQe6Cq0iRIrh9+zaWLl2K8+fPw8HBAV26dMGVK1d+aOfj44PPnz9j+fLlSvsaGNN2dnZ2ud6p08Xn6YBCXNQxxpiqtG3bFt++fcONGzcAAE+ePMHLly8VuotWtGhRTJgwAU+fPsXWrVtx//59NGnSBK1atcLZs2fx9OlTLFu2DJMnT0blypWV/aUwprXs7e3x5s2bH1aQv337Fm/fvtXJ5+kALuoYY0zpGjduDDMzs6wp2KCgIOjp6aFFixYK92loaIhBgwbh3r17OHz4MBITE+Hh4YG6devCysoK06ZNU1Z8xnSCvb09ACAmJibrvcjISADgO3WMMcZkY2BggFatWmXtVxcUFIRGjRrlelyhPMRicdYUbFBQENzd3bF582YULVq0wH0zpkty2tbk2rVrKFWqFGxsbISKpVJc1DHGmAq0bdsWYWFhSEhIUOh5uvyIRCK0bt0ahw4dQocOHZTaN2O6wMLCAqVKlfrhuTpdXiQBcFHHGGMq4e7ujvT0dKxduxZfvnzhVamMCcDOzi7rTh0R4dq1azr7PB3ARR1jjKlEtWrVUKFCBSxZsgTGxsZwdnYWOhJjhY69vX3WnboXL17gy5cvXNQxxhiTj0gkgru7O+Lj4+Hi4gIjIyOhIzFW6GTeqcu8Swfo7iIJgIs6xhhTmbZt2wIAT70yJhB7e3skJCTgw4cPiIyMhI2NDUqXLi10LJXhoo4xxlTE3d0dzZs3R7du3YSOwlih9O8VsLq86XAmLuoYY0xFLCwscOnSJdja2godhbFCqWrVqhCLxXjw4AGuX7+u08/TAVpS1F2/fh3NmzeHq6srevTogfT0dKEjMcYYY0zDGRoaonLlyjh58iTi4+P5Tp0mKFeuHM6ePYuLFy/C1tYWR48ezbFdamoq4uPjf3gxxhhjrPCyt7fH6dOnAej2IglAS4q6MmXKwMTEBMA/O7Xr6+vn2M7Hxwfm5uZZL13dMZoxxhhjsrGzs0NGRgaqVq2K4sWLCx1HpbSiqMv08uVLBAYGolOnTjl+Pn36dMTFxWW9Xr16peaEjDHGGNMkmWfA6vrzdACQ8y0vgbx//x7e3t7Z3j9+/Dj09fXRv39/bNu2DQYGBjleb2RkxHtBMcYYYywLF3UCKVOmDC5fvpztfYlEAi8vL8yePTtreTJjjDHGWH7q1KmDcuXKoU2bNkJHUTkREZHQIfLj5+eH0aNHo3bt2gCAESNGoGfPnvleFx8fD3Nzc8TFxaFYsWKqjskYY4wxJhitKOoUxUUdY4wxxgoLrVoowRhjjDHGcsZFHWOMMcaYDuCijjHGGGNMB3BRxxhjjDGmA3R6oQQRISEhAWZmZhCJRELHYYwxxhhTGZ0u6hhjjDHGCguefmWMMcYY0wFc1DHGGGOM6QAu6hhjjDHGdAAXdYwxxhhjOoCLOsYYY4wxHcBFHWOMMcaYDuCijjHGGGNMB3BRxxhjjDGmA7ioY4wxxhjTAVzUMcYYY4zpAC7qGGOMMcZ0ABd1jDHGGGM6gIs6xhhjjDEdwEUdY4wxxpgO4KKOMcYYY0wH6HRRR0SIj48HEQkdhTHGGGNMpXS6qEtISIC5uTkSEhKEjsIYY4wxplI6XdQxxhhjjBUWWlXUhYSEwM3NDa6urjh27JjQcRhjjDHGNIa+0AFklZKSguXLl+P06dMwNDTMsU1qaipSU1Oz/hwfH6+ueIwxxhhjgtKaO3VhYWEwNjaGp6cnunTpgvfv32dr4+PjA3Nz86yXjY2NAEkZ0xwxMTHIyMgQOgZjjDE10Jqi7sOHD3j27BlOnDiBoUOHYu7cudnaTJ8+HXFxcVmvV69eqT8oYxogOjoanTp1gp2dHZYuXSp0HMYYY2qgNUWdhYUFXFxcYGhoiNatW+PevXvZ2hgZGaFYsWI/vBgrTJ4+fYp+/fqhXr16ePjwIVxcXLBp0yZIJBKhozHGGFMxrSnqGjVqlFXI3bx5E1WqVBE4EWOa4/379xg9ejTs7e1x4cIF+Pr64t69e1i2bBlevHiB8+fPK9Tv169ff3hOlTHGmObSmoUSVlZW+Omnn9CiRQuIxWJs3bpV6EiMCS42NhZ//vknVq1aBUNDQyxcuBCjR4+GiYkJgH9+GapTpw42b94MDw8PufpOTU2Fo6MjevfujcWLF6siPmOMMSUSkQ4ftxAfHw9zc3PExcXxVCzTObGxsXBwcEBsbCzGjx+PKVOmoHjx4tnarVu3DhMmTMDLly9hbW0tc/9bt27F4MGD0bx5c1y6dEmZ0RljjKmA1ky/MsZ+tHPnTnz69Am3b9/GokWLcizoAKBfv37Q19fH9u3bZe5bKpVi6dKlMDAwwM2bNyGVSpWUmjHGmKpwUceYFiIirF+/Hl26dEHVqlXzbGthYYGePXti8+bNMhdnx44dw8OHDzF79mx8//4djx8/VkZsxhhjKsRFHWNaKDg4GA8fPsTIkSNlaj906FA8e/YMQUFB+bYlIixevBgtW7bE8OHDAQA3btwoUF7GtJkOP6XEdAwXdYxpIV9fX9SoUQOurq4ytXd2dkbNmjWxadOmfNuGhITg6tWrmDZtGkqUKIEKFSrg5s2bBY3MmFZ6/vw5ypYti/Xr1wsdhbF8cVHHmJZ5+/Ytjhw5ghEjRkAkEsl0jUgkwtChQ3H06FF8+PAhz7aLFy9GvXr14O7uDgBwcnLiO3Ws0NqwYQM+fvyIUaNGYdWqVULHYSxPXNQxpmX++usvGBkZYcCAAXJdJ8uCiRs3buDcuXOYNm1aVsGYWdTxFBQrbFJSUrBlyxaMGTMGU6ZMwYQJE/Dnn38KHYuxXHFRx5gWSU9Px8aNG9G3b1+Ym5vLda2lpSW6d++e54KJJUuWoGrVqujWrVvWe46Ojvj69StevnxZoOyMaZuDBw/i8+fPGDFiBJYsWYKZM2fit99+w8KFC5U2RkJCAqZMmYJr164prU9WeGnN5sOMMeDEiRN4+/atzAsk/mvIkCHYtWsXgoOD4ebm9sNnMTExOHjwINavXw99/f/71uDk5ATgn7t4FStWVDw8Y1rG19cXbdq0gb29PQBgwYIFMDQ0xMyZM5GWloa5c+fK/AhETh48eICuXbvi/v37ePLkCQ4fPqys6KyQ4jt1jGkRX19fNGnSBPXq1VPoehcXF1SvXh2bN2/O9tmyZctQsmRJDBw48If3ra2tUbp0aV4swQqVW7duISwsDCNGjPjh/VmzZsHHxwfz58/H77//rvBjCYcPH0ajRo0AAMOGDcPp06fx/fv3AudmhRsXdYxpiUePHiEwMFDhu3TA/y2YOHz4MD59+pT1/rt377B9+3ZMmDABRYoUyXYNL5ZghY2vry/Kli2Ln376Kdtn06ZNw/Lly+Hj44MpU6bIVdhlZGRg6tSp6NatGzw8PHDlyhX89ttvSElJwalTp5T5JbBCiIs6xrTEhg0bYGVlhe7duxeonwEDBkAkEmHHjh1Z761atQpFihTJ2pfuv7ioY4VJXFwcdu/ejWHDhv3wKMK/TZw4EWvXrsXy5csxbtw4pKWl5dvvx48f4e7ujuXLl2P58uXYv38/zMzMUKVKFTg5OeHgwYPK/lJYIcNFHWNaICkpCdu2bcMvv/yS7U6avKysrODt7Y1NmzaBiBAbGwtfX1+MGDEi18UXjo6OePfuHd69e1egsRnTBjt37kRaWhp+/fXXPNuNHj0aGzZswNq1a2Fubg4XFxdMnjwZBw8exOvXr39oe+XKFdSvXx93795FUFAQJk6c+MPzeN27d8fJkyeRlJSkkq+JFQ4i0uF9CuLj42Fubo64uDgUK1ZM6DiMKWzr1q349ddfERMTk++xYLK4ePEiWrZsieDgYERERGDu3Ll49uwZrK2tc2z/7NkzVKlSBSdPnkSHDh0KPD5jmoqIULNmTdSsWRP+/v4yXRMVFZX1bykiIgIvXrwAAJQvXx5NmjSBjY0N1q1bhwYNGsDf3x/lypXL1kdMTAzs7Oxw6NAhdO3aValfEys8uKhjTAs0bNgQJUqUwOnTp5XSHxGhevXqcHBwQHh4OLy8vLBhw4Y821taWmLy5Mn4/ffflZKBMU0UEhKCVq1a4cKFC2jVqpVCfbx79w5XrlxBeHg4IiIiEB0djf79+2PZsmUwNDTM9bp69erBwcEBe/fuVTQ+K+R4SxPGNNy1a9cQGRmJ48ePK63PzAUTkydPhlgsxuTJk/Ntz8/VscJg/fr1qF69Olq2bKlwH9bW1vDy8oKXl5dc13l7e2PJkiVISUkp8GMW8li0aBG+fPmC5cuXq21Mphr8TB1jGs7X1xcVKlRQ+rTnwIEDYWhoiO7du8PW1jbf9lzUMV2XeQTfyJEjC7T/nKK8vb3x/ft3nDt3Tm1jRkVFYfbs2di0aRPS09PVNi5TDS7qGBPIo0ePUKlSJXTr1g27d+9GbGxstjZfv36Fn58fhg0bBj09PaWOX6JECZw7dw6rV6+Wqb2joyOeP3+Or1+/KjUHY5rir7/+gqGhodxH8ClL9erVUbNmTbWtgpVKpRgxYgSKFy+O79+/86kWOoCLOsYEsmLFCnz//h2vX79G//79UbJkSbi7u8PX1xdv374FAGzfvh0SiQSDBw9WSQZXV1eULl1apraZJ0vwJsRMF2VkZGDTpk0KHcGnTN7e3jh+/DhSU1NVPtaWLVsQHh6OAwcOwNzcHEFBQSofk6kWF3VMY3z58gUXL17E+vXrMXLkSLi6umLBggVCx1KJr1+/YufOnRg3bhyuXLmCV69eYdWqVZBKpRgzZgzKlSsHZ2dnrFixAt7e3jIXXqpUrVo1mJqa8hQs00knTpzAmzdvCrS5tzJ4e3sjLi5O5QXWp0+fMHXqVAwYMACtWrVCy5YtuajTAVpX1Pn5+aFkyZJCx2BKEB4ejvHjx6Nt27awtrZGiRIl0LJlS4wbNw6hoaHIyMjAvHnz8PDhQ6GjKt3mzZshkUgwbNgwAP9sfTBq1CgEBgbi48eP2LFjB8qUKYO0tDSMHz9e2LD/n56eHurVq8d36phOWr9+PZydnRU+gk9ZatasCXt7e5VPwf72228AgD///BMA4ObmhvDwcN4nT8tp1ZYmUqkU3bt3x7Nnz2S6W8Bbmmiuz58/w9bWFmZmZmjYsCFq1aqFWrVqoWbNmqhWrRoMDQ2RkpICOzs7NGrUSKd2Wk9PT0eVKlXQtm1bbN26Veg4chk7dizOnTuHBw8eCB2FMaV5+PAhqlevjl27dqFfv35Cx8HMmTOxfv16fPjwAQYGBkrvPzQ0FC1atMCGDRuyfrG8d+8eatasibNnz8Ld3V3pYzL10Ko7dXv37oW3tzfE4pxjp6amIj4+/ocX00zz58+HVCrF9evXcfjwYcyfPx89evRAzZo1s/ZxKlKkCBYsWIBDhw4hIiJC4MTKc+TIEbx+/Rrjxo0TOorcHB0d8ejRIyQkJAgdhTGl2bBhA0qUKAFvb2+howD4Zwr227dvuHDhgtL7Tk9Px8iRI9G4cWMMGTIk6/0aNWrA2tpaJWMy9dGaok4ikeDAgQPo2bNnrm18fHxgbm6e9bKxsVFjQiarR48ewdfXFzNmzECpUqXybNuvXz/UqlULU6dOlevQbE22evVqtGzZEnXr1hU6itycnJxARIiKihI6CmNKkZSUhO3btyvlCD5lqVu3LqpWraqSGYpVq1bh3r178PX1/eEGiUgkQuvWrfm5Oi2nNUXd7t270aNHj1zv0gHA9OnTERcXl/V69eqVGhMyWf32228oW7asTM+K6enpYfHixbh06ZLSTlMQ0rVr1xAWFqaVd+kAwMHBAYaGhrxYgumMv//+G7GxsYJtY5ITkUgEb29vHDlyBBkZGUrr9+XLl5g7dy7GjBkDR0fHbJ+3bt0a169fx7dv35Q2JlMvrSnq7t27h507d8LDwwMxMTGYMGFCtjZGRkYoVqzYDy+mWS5evIhjx47Bx8dH5t+KO3ToAFdXV0ybNg0SiUTFCf/PmTNn0KRJkxz3j1PU6tWrUblyZXh6eiqtT3UyMDBAnTp1eLEE0xlRUVEwMTFB9erVhY7yA29v76wdAZRl3LhxsLCwwPz583P83M3NDUSEkJAQpY3J1EtrirolS5bg3LlzOHPmDKpVq4aVK1cKHYnJSSqVYuLEiWjYsCF69eol83UikQhLlizB7du3sWfPHhUm/NGOHTtw5coVpd1Ve/v2Lfbv348xY8YofSNhdeKTJZguiYqKQu3atTXu32T9+vVRqVIlpU3BBgQE4OjRo1i5cmWuNzwqVqyIqlWr8hSsFtOaou7fIiMjhY7AFLB3717cuHEDK1asyHMaPSeNGzdGt27dMGvWLKSkpKgo4f/JyMjAmTNn4OjoiJ07d+Lw4cMF7tPX1xdFihTBL7/8ooSEwnF0dMTdu3fV8t+BMVWLiorSyOdbM6dgDx8+XOAZiqSkJIwZMwZt27ZF9+7d82zr5ubGRZ0W08qijmmf5ORkzJgxA127doWLi4tCfSxcuBBv3rzB+vXrlZwuu/DwcMTGxsLX1xdeXl4YNmwYPnz4oHB/KSkp2LBhAwYNGiTobvXK4OTkBIlEgtu3bwsdhbECSU1Nxf379zWyqAP+mYL9+PEjLl++XKB+Fi9ejHfv3uF///tfvmfaurm54cGDB1mn2jDtwkUdU4uVK1fi/fv3WLJkicJ92Nvb49dff8XChQuV+pxbTk6dOoWSJUuiYcOG2LhxI0QiEYYOHarwCty9e/fiy5cvGDNmjJKTql/mVBVPwTJtd//+fWRkZGhsUdeoUSPY2NgUaAo2LS0Nvr6+GD58OKpVq5Zv+1atWgEAb22ipbioYyr34cMH+Pj4YNSoUbC1tS1QX3PmzEFKSgqWLl2qpHQ5O3nyJNq3bw+xWIxSpUph8+bNOH78OHbs2CF3X0SEVatWoWPHjjJ9U9V0xsbGcHBw4MUSTOtlbs1Tp04dgZPkTCQSoVu3bjh06BCkUqlCfZw+fRqfP3+W+bGPkiVLok6dOjwFq6W4qGMqN2fOHBgYGGDWrFkF7sva2hoTJkzAqlWr8ObNGyWky+7ly5e4ffs2OnbsmPVe586d8fPPP2Ps2LF48eKFXP2FhITg9u3bGnPclzJoy2KJx48f48yZMyod4+PHjyrtn6lOVFQUqlSpAjMzM6Gj5Mrb2xvv3r1DeHi4Qtfv2LED9erVk6twzXyuTlf2Bi1MuKhjKnX37l1s3rwZs2bNgqWlpVL6nDJlCkxMTDB37lyl9Pdfp06dgp6eXrajclatWoXixYvj559/luu35lWrVqFWrVpo3bq1sqMKxtHREdHR0UhPTxc6SjZEhNDQUHTp0gV2dnZo37499u3bp5KxwsPDUbp0afz+++/8A1ALaeoiiX9zdnZG2bJlFVr5/+XLFwQEBGDgwIFyXefm5oZXr17h8ePHco/JhMVFHVOpKVOmoFKlShg5cqTS+jQ3N8fMmTOxdetW3L9/X2n9Zjp16hSaNWsGCwuLbONu27YNISEhWLt2rUx9PXnyBCdOnMC4cePyfUBZmzg5OWU9ZK4pMjIysG/fPjRu3BgtWrTAw4cPsWnTJvTu3RuDBw/GnTt3lD7m3r17YWxsjEWLFmHixIlc2GmRzJNRNL2oE4vFGDJkCHbs2IGvX7/Kda2fnx+ICH369JHruhYtWkBfX5+fq9NGpMPi4uIIAMXFxQkdpVA6d+4cASB/f3+l952SkkIVK1akzp07K7Xf5ORkMjExoSVLluTaZty4cVSkSBG6d+9evv2NGzeOrKysKCkpSZkxBRcfH08AaNu2bUJHodjYWFq2bBlVqFCBAJCbmxudOnWKJBIJERF9//6dateuTdWqVaPY2FiljSuRSMja2prGjRtH//vf/wgADRs2LGtcptlev35NAOjIkSNCR8nX+/fvycjIiHx8fOS6rkGDBvTTTz8pNGbTpk2pe/fuCl3LhMNFHVOZhg0bUtOmTUkqlaqk/z179hAAunjxotL6PH36NAGgO3fu5NomKSmJ7O3tqUGDBpSWlpbt8/T0dIqJiaHjx4+TmZkZzZgxQ2n5NImdnR2NHTtW0AxnzpwhMzMzMjAwoAEDBtCtW7dybBcTE0Pm5ub0008/Ka3ounTpEgGgy5cvExHR1q1bSSwWU//+/Sk9PV0pYzDVOXnyJAGgp0+fCh1FJoMHD6ayZctSamqqTO3v3r1LAOjQoUMKjTdz5kyysrLiX1K0DBd1TCViYmIIAB08eFBlY0gkEmrQoAE1bNhQad94Ro8eTRUrVsy3EL1y5Qrp6enR+PHjaffu3TRz5kzy9vammjVrkqGhIQEgAFSuXDl68+aNUrJpml69epGLi4ugGVxcXKhJkyYy/W984sQJAkB//PGHUsYeM2YMlStX7oe/e35+fqSnp0fe3t4y//Blwli0aBEVK1ZMZb90KtudO3cIAO3atUum9r/99htZWlpSSkqKQuMFBwcTALp586ZC1zNhcFHHVGLRokVkYmJCiYmJKh0nJCSEANDevXsL3JdUKqUqVarQiBEjZGo/e/bsH4o3Nzc3GjlyJK1Zs4bOnTtHL1++1OnfcpcsWUKmpqaCfY0PHz4kAOTn5yfzNbNnzyaRSERnzpwp0Nj/nnr9r6NHj5KhoSF17NiRkpOTCzQOU52ePXsK/kuJvNq1a0eOjo75FqIZGRlUtmxZGjVqlMJjpaSkkLGxMS1btkzhPpj6cVHHVKJevXrUo0cPtYzVuXNnqlixYoF/gN6/f58AUEBAgEztJRIJRUdHF9q/X+fPnycA9ODBA0HGnzZtGllYWMj1310ikVD79u3J0tKSnj17pvDY/516/a8zZ86QsbExtWnThr5//67wOEx1qlevXqCiRwhnz54lABQSEpJnuzNnzhAAunr1aoHGa9u2LbVv375AfTD14tWvTOkeP36MW7du5XvGoLIsWbIEr1+/lnlFam5OnjyJIkWKZO2onh+xWIzatWvneji2rnN0dAQAQfary8jIwM6dO9G3b18UKVJE5uvEYjF2794Nc3NzdO3aFcnJyQqN7+/vj3LlysHZ2TnHz9u1a4czZ84gIiICHh4eSExMVGgcphrJycl49OiRxq98/a+2bduiZs2aWLFiRZ7tduzYgRo1aqBBgwYFGs/NzQ2XLl3SyK2LWM64qGNK5+/vDxMTE3To0EEt49nb22P48OFYuHAhPn/+rHA/p06dQqtWrWBiYqLEdLrLysoKFStWLPC5lIo4d+4c3r59i0GDBsl9raWlJQ4fPoz79+9j5MiRcm9DIpVKcfDgQXh7e0Mszv1baIsWLRAYGIiIiAhs2bJF7pxMde7cuQOpVKp1RZ1IJMLEiRNx4sQJPHr0KMc2cXFxOHLkCAYOHFjgbZTc3NyQmJiIq1ev5ttW3n9HTDW4qGNK5+/vj44dO6q1OJozZw6kUikWLFig0PXx8fG4dOnSD6dIsPwNHDgQvr6+OHLkiFrH3bp1K+rUqQMnJyeFrq9Xrx42bdqE7du3Y+PGjXJd+/fff+Pdu3cy3Ylu3LgxvLy8sHHjRv6hp0GioqIgFotRq1YtoaPIrU+fPihZsiRWr16d4+f+/v5IS0tDv379CjyWo6MjLCws8jwy7OnTp/Dw8EDt2rUhkUgKPCYrIIGnf1WKn6lTv8ePHxMAOnDggNrH9vHxIX19fXr06JHc1x48eJAAFOg5q8JIIpFQjx49qEiRIhQeHq6WMT99+kQGBga0atWqAvc1atQoMjAwkOvvTE6rXvOS+exhaGioojGZko0ePZrs7e2FjqGwefPmkbGxMX358iXbZy4uLuTu7q60sby8vKhFixbZ3k9LS6PFixeTsbExlSpVigBQYGCg0sZliuE7dUyp1D31+m/jxo2DtbU1pk2bJve1J0+ehIODAypVqqT8YDpMLBZjx44daNCgATw9PdVyrFDmcUl9+/YtcF9//vknrK2tMWXKFJnaS6VSHDp0KN+p139r3bo1qlatKvcdQaY62nCSRF6GDx8OqVSa7e/UkydPcPnyZbmPBcuLm5sbwsPDf3gu9MqVK2jQoAFmzJiBkSNH4smTJ6hWrRp27typtHGZgoSuKlWJ79Spn5OTk6C7kO/atUvuuyISiYTKlClDkydPVmEy3fblyxeyt7cnW1tb+vTpk8rGkUqlVLt2berWrZvS+ty3b5/MdxlCQ0PzXPWamyVLlpCRkRF9/vxZ0ZhMSaRSKZmbm9PChQuFjlIgv/76K1lbW/+wH+Ls2bPJzMxMqVtJ3bt3jwDQ2bNnKS4ujkaPHk0ikYjq169P169fz2o3b948MjU15dXeAuOijimNkFOvmSQSCTk5OVGjRo1k3lQ0MjKSAFBwcLBqw+m4J0+eUKlSpcjZ2Vllx6Jl/rc6efKk0vqUSqXUtGlTql27NmVkZOTZVt6p10wfPnwgAwMDWrFiRUGiMiV49uyZXFsXaarMzYh37txJRP9876tYsSINHjxYqeNIpVKytramNm3aULly5cjU1JRWrlyZ7dSUJ0+eEADavXu3Usdn8uGijimNj48PGRsbC/6b2oULFwgA7du3T6b28+bNo2LFiuV45BeTz9WrV8nY2Ji6du2ab4GkiJEjR1LZsmWVfgzX1atXCQBt3Lgx1zYSiYTKli2r8NFoPXv2JHt7e605wUBXHT16lADQq1evhI5SYB4eHlSvXj2SSqVZJ0Co4tnNfv36EQDq1KkTvXjxItd2Li4u1K5dO6WPz2SnNUVdZGQkubi4UIsWLah79+4y/QDmok69nJycyNvbW+gYRETk6elJlSpVkumInEaNGmlMbl1w7NgxEovFNGHCBKX2m5ycTBYWFjRt2jSl9ptpwIABVLJkSYqNjc3xc0WnXjNl/rKhzLOKGdGtW7fI3d1d5inHefPmkaWlpU4U1+fOnSMAdOHCBfr555+patWqKvm6Xr16RYGBgfn2vXHjRhKLxfT27VulZyjsvn//LtN/W6UVdZGRkcrqKkfv3r3L+kc7ffp0mab4uKhTn8xb7/v37xc6ChH98xyInp4e+fj45Nnuw4cPJBKJaNu2beoJVkisW7eOAChlhWomPz8/AkAPHz5UWp//9vr1azIxMaEpU6bk+PnYsWMVmnrNJJVKyc7Ojvr06VOQmOw/Mo/r27Fjh0ztu3btSq1atVJxKvWQSqVUq1Ytat26NRUtWpTmzZsnaJ6vX7+SoaEhLV++XNAcuqhnz54yPa+utKLOxsZGWV3la/bs2XT48OFs76ekpFBcXFzW69WrV1zUqUnm0nahp17/bezYsQSA2rVrR2FhYTm22bFjBwGg9+/fqzmd7psyZQqJRCLasWOHUu4etG3bVuVndc6bN48MDAwoJibmh/cLOvWaadmyZWRoaKjSxSSFjbu7OwGgZs2aydS+atWqNH78eBWnUp+tW7dmnUGtCVsydevWjerWrSt0DJ3y9OlTEovFtG7dunzbylXUde/ePceXt7c3mZqaKhxYHi9evKCmTZvmOP06Z86crL/c/35xUad69evXV+qKRGWQSCR04MABqlmzZlZx99+91Hr06EENGzYUKKFuk0gkNGDAAAJAHh4eBbrD9uLFCxKJRLRlyxYlJswuMTGRypcvT126dPnh/YJOvWb69OkTGRoa8iHpSiKRSMjc3JycnJwIAN25cyfP9vHx8QRAp+7Mp6SkUOnSpcnV1VXoKET0f88sRkdHCx1FZ4wZM4asrKxkesRArqKuePHiFBAQQCEhIT+8goODqVSpUgoHllVcXBy1aNEi1x8OfKdOGJo29fpfEomE9u/fTw4ODlkFRnh4OKWlpZG5uTnNmTNH6Ig6SyqV0rFjx6hy5cpkYGBAU6dOpYSEBLn7mT9/PpmamlJ8fLwKUv5oz5492VZDF3Tq9d/69OlDdnZ2OvFMl9Du3r1LAOj06dNUsmRJGjduXJ7t//77bwJAN27cUE9ANblx4wY9fvxY6BhERJSamkpWVla5PsbA5PP582cyMTGh2bNny9RerqKuS5cuFBISkuNnql7xkpGRQZ06dZJrx2p+pk49lixZonFTrzn5b3FXv359AkBXr14VOprOS0pKonnz5lGRIkWoXLly5OfnJ3NRI5FIqHLlyjRo0CAVp/yHVCqlJk2aUL169SgjI0NpU6+ZLl68mPVwOyuYLVu2kFgspvj4eJoyZQoVL16ckpOTc22/fv160tfXl2kBFVNc5ip1VayAL2zmz59PRYoUoY8fP8rUXmtWv+7du5csLS3J1dWVXF1dZdqugos69WjQoIHGTb3m5d/FXeXKlZVy94XJ5tmzZ9SlSxcCQK6urnT79u18r8lcNarOY7bCw8MJAP311190+fJlpY4vlUqpRo0a1LNnT6X0V5j9+uuvVKdOHSIievjwYb77pA0bNoxq1aqlrniFVkREBAGg8+fPCx1FqyUlJVHJkiVpxIgRMl+jNUWdIrioU72nT5/KtSecJpFIJPwbu0DOnDlDdnZ2pKenR/369aMdO3bQy5cvc2zbv39/qlatmtqnK/v27UulS5emQYMGUdmyZZVa/K9cuZIMDAzow4cPSuuzMKpVqxYNHTo068+tWrXK8ZzSTE2aNKG+ffuqI1qhJpVKqVq1ajRgwACho2i1DRs2kEgkyrZwKy8Kn/166NAhRS9lOsTf3x9FihRBx44dhY4iN7FYDCMjI6FjFErt2rXD7du3sXjxYkRFRWHgwIGoUKECbG1tMWTIEOzduxdv375FXFwcDh48iEGDBkEkEqk1o4+PD+Lj47Ft2za5znqVxYABAyAWi7F9+3al9VnYxMXF4e7du3B2ds56b+jQobh06RIePHiQrb1UKsXt27e1+sxXbSESidC/f38cOnTohzNjmewkEgmWL1+Orl27wtbWVubrFP4u1adPH6xcuTLPNkSkaPdMS/j7+6NDhw4oWrSo0FGYljE0NMTkyZMRHR2Njx8/4uDBg/Dw8EBYWBj69u2LcuXKwc7ODqmpqRgwYIDa89nY2GDKlCkAgO7duyu1b0tLS/To0QObNm2CVCpVat+FxbVr10BEaNKkSdZ7Xbp0gZWVFTZv3pyt/ZMnT5CYmMhFnZr069cPiYmJOHLkiNBRtNKxY8cQExOT9T1IZoreFjxz5gwVK1aMxowZk21aJCMjg7Zt20b29vaKdq8UPP2qWplTr35+fkJHYTrm/fv3tH//fho+fDjNnz9fsBwpKSl09OhRlUz9Zj6rx88dKWb+/PlUvHjxbNPiEydOJCsrq2yPVvj7+/OelGrm4uJC7u7uQsfQOpmLtfJ6lCA3BXqm7tatW1S+fHny8vKipKQkSk1NpfXr11OlSpWoePHiMi/BVRUu6lRr6dKlVKRIEYW2qGCssJNKpeTg4MBH1CmoQ4cO5OHhke39+/fv5/jL5syZM6l06dLqiseIjw1TVOa+mCdOnJD72gI9JFK3bl1ERETg6dOnaNKkCSpXrow5c+ZgyJAhePHiBebNm1eQ7pkGIyLs37+fp14ZU5BIJMKwYcNw9OhRvH//Xug4WoWIEBER8cPUa6bq1aujRYsW2LRp0w/vR0VF8dSrmnXv3h0GBgbYu3ev0FG0yp9//okaNWqgQ4cOcl9boKIuLi4OW7duxZs3bxATE4PY2FgEBQVhxowZMDMzK0jXTMOdOHEC169fx5AhQ4SOwpjW6t+/P4oWLYr+/fsjLS1N6DhaIyYmBl+/fv1hkcS/DR06FMHBwXj06FHWe1zUqV/x4sXh6emJXbt2CR1Fazx48ADHjx/HlClTFFqcpXBRN336dFSsWBHbt2/HokWL8OnTJ3Tv3h1t2rTBtWvXFO2WaYH09HRMmTIFbdq0Qbt27YSOw5jWKl68OA4fPoyLFy9iyJAhvLhMRuHh4QCARo0a5fh5t27dULx4cfz1118AgG/fvuHly5dc1Amgf//+iIqKQnR0tNBRtMLy5cthbW2NPn36KHS9wkXd0aNHsWbNGjx69AhDhw6Fqakptm/fjqFDh6JVq1Y4duyYol0zDbdx40bExMRg+fLlat9mgjFd06pVK2zfvh07d+7EnDlzhI6jFSIiIuDg4AALC4scPy9SpAgGDhyI7du3Iy0tLaug4KJO/Tw8PGBlZcV362Tw7t077Ny5E+PGjVN8uy1FH+TLazXY5s2bycjIiNauXato90rBCyWU79u3b2RlZUWDBw8WOgpjOmXx4sUEgDZv3ix0FI1Xt25d+uWXX/Jsk3ku7IEDB2j16tVkaGhIaWlpakrI/m3UqFFkbW3N//vnY/r06WRmZkbfvn1TuA+F79TldYfm119/xZEjRzBjxgxFu2caauHChUhJScGCBQuEjsKYTvntt98wYsQIDB8+HKdPnxY6jsb6/v07bt++nevzdJkcHBzQrFkzbNq0CVFRUahZsyYMDAzUlJL927Bhw/Du3TscOHBA6CgaKyEhAb6+vhg6dGiud6Blobwt0v+jffv2CAkJUVX3TABPnz7FmjVrMHXqVFhbWwsdhzGdIhKJsGbNGnTo0AHdu3fH9evXhY6kNKTEZwWvXbsGqVSa48rX/xo6dCgCAwNx9uxZnnoVUO3atdGuXTssW7aMnxvNxZYtW/D9+3eMGzeuQP2orKgDACcnJ1V2z9Rs2rRpKFmyJCZNmiR0FMZ0kr6+Pvz8/ODg4ICOHTvi+fPnQkcqsBkzZqBx48ZITk5WSn8REREwMzNDjRo18m3bvXt3WFhY4M2bN1zUCWzy5Mm4desWgoKChI6ice7du4e5c+eiX79+sLGxKVBfKi3qmO74+++/4e/vj4ULF8LExEToOIzpLFNTUwQEBMDU1BQeHh74+vWr0JEUFhkZiSVLluDatWuYNm2aUvqMiIhA48aNoaenl29bY2Nj9O/fHwAvkhCam5sb6tWrhz///FPoKBrlw4cP6NixIypUqIDVq1cXuD8u6li+iAiTJk2Ck5NT1jdIxpjqlCpVCmfOnMHnz5/RuXNnpd3lUieJRILhw4ejVq1aWLZsGdasWYPAwMAC9UlECA8Pl2nqNdO4cePQvn17NGzYsEBjs4IRiUSYMmUKzp07x9ub/H9JSUn46aefkJKSgoCAABQrVqzAfXJRx/K1f/9+XLlyBcuXL1doM0TGmPyqVauGEydOIDIyEnXr1sWpU6eEjiSXDRs24Pr169iwYQMmTJgANzc3/Pzzz/j27ZvCfT579gyfPn3Kd5HEv1WtWhWnTp3ik280QPfu3WFjY4Nly5apfWypVKr2MfMilUoxYMAA3LlzBwEBAahQoYJS+uWf0CxPKSkpmDZtGjp37oyWLVsKHYexQsXZ2RmRkZGwsbFBx44d4enpiSdPnggdK1/v3r3DjBkzMGTIEDg7O0MsFmPbtm34/v07Ro8erXC/mZsON27cWFlRmRoZGBhgwoQJ8PPzw+vXr9U27rFjx2BlZYUrV66opH8igouLC7p37443b97IdM306dNx+PBh7N27F/Xr11dqGJ3F+9QV3OLFi0lfX58ePnwodBTGCi2pVEr+/v5kY2NDhoaG9Pvvv9P379+FjpWr3r17U4kSJejLly8/vL9nzx4CQH5+fgr1O3r0aLKzs1NGRCaQ+Ph4Mjc3p8mTJ6tlvICAADIwMCAANH78eJWM8ejRIwJAxsbGZGZmRuvWraOMjIxc22/atIkA0MqVK5WehYs6lqsPHz6QmZkZjRkzRugojDEi+v79O82cOZOMjIzIxsaG9u/fn+dG8EI4d+4cAaDt27dn+0wqlVKPHj3IwsKCXr9+LXff9evXpwEDBigjJhPQ1KlTyczMjGJjY1U6zpkzZ8jQ0JA6d+5MgwcPpipVqqjk38uGDRtIT0+PXr58SUOHDiUA1LhxY4qKisrW9ty5c6Snp0cjR45USRYu6liuRowYQRYWFvT582ehozDG/uXJkyf0008/EQBq1aoVvXr1SuhIRESUnJxM1apVI1dX11x/YH358oWsra2pbdu2JJFIZO47MTGR9PX1af369cqKywTy5s0bMjAwoD///FNlYwQGBlKRIkWoY8eOlJKSQidPniQAdPfuXaWP1b17d3J2ds76c2hoKDk4OJC+vj5NnTqVEhMTiYjo9u3bVKxYMWrfvj2lp6crPQcRF3UsF0+fPiU9PT2V/qNjjBXMqVOnqESJEjRq1CihoxAR0dy5c8nAwIDu3buXZ7szZ84QALmOkrx06RIBoJs3bxYwJdMEgwYNonLlylFqaqrS+w4JCSFjY2Nq164dJScnE9E/v3CYmJjQ4sWLlTqWRCKhEiVK0O+///7D+6mpqbRgwQIyMjKiypUrk5+fH1WoUIHq1KlD8fHxSs3wb1pV1E2aNIlcXFyoT58+Mv1F4KJOcSNGjKASJUpk/YbBGNNMI0aMIFtbW6Fj0KNHj8jIyIimT58uU/tRo0aRsbEx3b9/X6b2S5cuJVNTU5Xd4WDqdefOHQJAO3fuVGq/oaGhZGpqSm3atKGkpKQfPvPy8qKmTZsqdbyoqCgCQBcuXMjx84cPH1KrVq0IAJUtW1bld9W1ZvXrzZs38f79e4SGhsLBwQEHDx7M1iY1NRXx8fE/vJj83r17h61bt2LChAm80TBjGq5du3Z4/PixoKtiiQijRo2CtbU1Zs6cKdM1S5cuhY2NDfr374/09PR824eHh6Nhw4bQ19cvaFymAWrWrIkOHTrgzz//zPPosNTUVCxduhS1a9dG37598ddff+Hp06c5XhMREYEOHTqgYcOGOHbsGIyNjX/43NPTE+Hh4fj06ZPSvo6goCAYGRnlus2OnZ0dgoKCcPjwYVy4cAHly5dX2tg50ZqiLjw8HO7u7gAADw8PhIWFZWvj4+MDc3PzrFdBj9sorFauXAkjIyOMHDlS6CiMsXy0bt0a+vr6OHv2rGAZ9u/fj/Pnz2PdunUy/yJoYmKC3bt34+bNm5g3b16ebUmBTYeZ5psyZQpu376Nc+fO5fj56dOnUbt2bcyYMQM1a9ZETEwMhg0bhqpVq6JSpUr4+eefsXPnTrx69QqRkZFo164d6tatixMnTuT497Bjx44AoNQ9Hy9cuIBmzZqhSJEiubYRiUTo0qUL7O3tlTZubrSmqIuNjc3abdnc3DzHo3OmT5+OuLi4rNerV6/UHVPrff36Fb6+vhg1ahQsLCyEjsMYy4eZmRmaNWsmWFEXFxeHCRMmoGvXrlk/NGXVsGFDzJs3DwsXLsTw4cORkpKSY7uXL1/i/fv3cm06zDSfq6sr6tevn20z4sePH8PT0xMdOnSAjY0NoqKisG/fPly9ehVfv37F8ePH0a1bN9y6dQsDBw5EhQoV0KRJEzg4OOS50XTp0qXRuHFjHD9+XCn5MzIycPHiRbi5uSmlP2XQmvvYxYsXz5pOjY2NhaWlZbY2RkZGMDIyUnc0nbJu3TpkZGRg/PjxQkdhjMmoXbt2WLRoEdLS0mBoaKjWsRcsWICEhASsWrVKoetnzJiBUqVKYcyYMbh69Sr8/f1RtWrVH9pEREQA4E2HdU3m0WG9evXCzZs3Ua1aNSxcuBArVqxAmTJlcPDgQXTt2hUikSjrGnNzc3h6esLT0xMA8PnzZ1y8eBFPnjzBsGHDYGZmlueYnp6e8PHxQWpqaoHrhcjISCQkJKB169YF6kepVPrEnhLduHGD+vbtS0REf/zxB+3duzffa3ihhHwSEhLI0tKS96VjTMvcuHGDAFBwcLBax42PjyczMzOZF0fk5caNG1S1alUyNzenw4cP//DZuHHjqHLlygUeg2me9PR0qlSpEjVu3JjKli1LRkZGNHv2bJUt0ouOjiYAdObMmQL3tXDhQjIzM9OoxTtaM/3q6OiIMmXKoHnz5rh37x66desmdCSds2nTJsTHx2Py5MlCR2GMyaFu3booVaqU2qdgd+7ciaSkJKU8f+vo6Ijr16/Dzc0NXbt2xaRJk7IWUERERPDUq47S19fH5MmTceXKFTRp0gT379/HvHnzVLZIr1atWqhYsaJSpmCDgoLg6uqqUYt3RER5LDvRcvHx8TA3N0dcXFzW83gsZ6mpqahcuTLatWuHbdu2CR2HMSan/v37486dO7h586ZaxiMiODg4oFatWvD391dqv2vWrMHkyZPRsGFD7Ny5EzVr1sSyZcswZswYpY3DNAcR4cmTJ7C1tVXLeGPHjsXRo0fx4sWLH6Z25ZGSkgILCwv4+PhgwoQJSk6oOK25U8dUa8eOHXj//j2mTp0qdBTGmAI8PDxw69YtfPjwQS3jBQYG4sGDB0ovtEQiEcaNG4fQ0FC8fv0aderUQVpaGt+p02EikUhtBR3wz3N1r169QnR0tMJ9hIWFITU1VaMWSQBc1DH8s4JnyZIl6NatG6pXry50HMaYAtq2bQsAuW4PoWxr1qxBnTp10Lx5c5X036RJE9y4cQMtW7ZEqVKlUKdOHZWMwwofV1dXmJmZFWgK9sKFCyhRogRq1aqlxGQFx0Udg7+/P54+fYrp06cLHYUxpqBSpUrByckJZ86cUflYT58+xcmTJzFmzBiFp69kUaJECZw8eRLPnz9X+6peprsMDQ3h4eGBEydOKNzHhQsX0Lp1a4jFmlVGaVYapnZSqRSLFi2Ch4cHnJychI7DGCsADw8PnDt3DlKpVKXj/O9//0Px4sXRp08flY4D/DM199+TARgrKE9PT1y7dg3v3r2T+9r4+HhcvXpVs7Yy+f+4qCvkTp48iTt37mDGjBlCR2GMFVC7du3w+fNnlS6WSExMxNatW/Hrr7/yMYJMa3Xo0AFisRgBAQFyXxsaGgqJRMJFHdMsRISFCxfCxcVFZc/FMMbUx9nZGWZmZiqdgt29ezfi4+P5GEGm1aysrNCsWTOFpmCDgoJgY2Oj1sUdsuKirhALCQnBlStX+C4dYzrCwMAAbm5uKtuvjoiwdu1a/PTTT6hYsaJKxmBMXTw9PREYGIikpCS5rst8nk6Vz5MqivepUxARITo6Gu/evcP79++z/u+/X5aWljh27BhKlSql1LGVpW3btvj8+TNu3LihkX85GWPy27BhA8aMGYPPnz/D3NxcqX1fuHABbm5uCAoK0sipJ8bk8eDBA9SoUQPHjx/POnYsP58/f0bJkiWxc+dO9O/fX8UJ5cd36hQ0d+5c1KtXD+3bt8egQYOwbNkyBAUF4cuXL7CxsUGnTp3w7NkzdOnSJddDqvNy/vx5NGzYEJGRkSpID9y/fx+BgYGYOnUqF3SM6ZB27dohIyMDFy5cUHrfa9euRc2aNdGqVSul982Yutnb28PW1lauKdjg4GAA0Nh/A1zUKSA+Ph6rVq3C8OHD8fLlS6SkpODLly+4c+cOAgMDsXv3bixfvhzHjh3D9evXMXToUMhzQzQsLAxeXl64f/8+WrdujcuXLyv9a9izZw8sLCzg5eWl9L4ZY8KpXLky7OzslD4F++LFCxw/flzl25gwpi4ikQg//fQTAgICZF4xfuHCBdjZ2aF8+fIqTqcYLuoUsHnzZiQnJ2PmzJmwsbGBkZFRju0aN26Mbdu2YdeuXVi8eLFMfUdFRaFDhw5o2LAhnj17hvr168Pd3R3nz59XWn4iwp49e+Dt7Y0iRYoorV/GmGZo164dzp49K9cvk/lZv349ihUrhn79+imtT8aE5unpiXfv3uH69esytQ8KCtK4UyT+jYs6OaWnp2PVqlXo06cPypUrl2/73r17Y9asWZgxYwYOHz6cZ9tHjx7B3d0d1apVw/Hjx1GyZEmcOnUKrVq1QqdOnZRyADHwz53A58+f8zdnxnRUu3bt8Pz5czx69Egp/SUlJWHz5s345ZdfYGpqqpQ+GdMEzZo1g4WFhUxTsK9evUJMTIxGP0/KRZ2c9u/fj9evX2Py5MkyXzN37lx0794d/fv3z3X/qFevXqFNmzawsrLC6dOnsxZ2GBsb48iRI/D09ETXrl2xb9++An8Ne/bsgY2NDW9jwpiOatmyJQwNDZU2Bbt3717ExsZi1KhRSumPMU1hYGCADh06yFTUZT6nqqnP0wFc1MmFiPDnn3/Cw8NDrvPexGIxtm/fjho1auCnn37KtoP1x48f0bZtW+jp6eH8+fMoUaLED58bGhpi37596Nu3L/r06YOtW7cq/DWkpaVh//796NOnj8Ydb8IYUw5TU1M0b95cKUVd5jYmHTt2RJUqVZSQjjHN4unpiVu3buHZs2d5trtw4QLq1asHKysrNSWTH/9Ul8P58+cRHR2NKVOmyH2tiYkJjh07BqlUCi8vLyQnJwMAYmNj0a5dO8TFxeH8+fO5Tunq6+tj27ZtGDZsGAYPHow1a9Yo9DWcOXMGX79+5alXxnRcu3btEBwcrNDq+38LDQ1FdHQ0xowZo6RkjGkWDw8PFC9eHI0aNcL//vc/pKenZ2tDRFn702k00mFxcXEEgOLi4pTSX5s2bcjJyYmkUqnCfURGRpKxsTH17NmTvn//Ts2aNaPixYtTdHS0TNdLpVKaPHkyAaCFCxfKPX6PHj2oTp06cl/HGNMu0dHRBIDOnz+vcB/fvn2jxo0bk729PUkkEiWmY0yzvH79mgYNGkQikYjs7OzoyJEjP/ysf/jwIQGgkydPCpgyf1zUyejGjRsEgPz8/Arcl7+/PwGgChUqkKmpKUVERMh1vVQqpblz5xIAOn78uMzXxcXFUZEiRWjp0qXyRmaMaRmpVEply5alyZMnK3T9q1evqFatWlS8eHEKCwtTcjrGNNOtW7fI3d2dAFDz5s3pypUrRETk6+tLenp6FB8fL3DCvBXaEyW+f/+OlJSUbM+v5aZfv364fPkyHj9+DH19/QJn8/HxwYIFC3DixAmFlkcTEdzd3fHy5UvcuXMHBgYG+V6zfft2/PLLL3j58qXG7rHDGFOeQYMGITIyErdv35brurt378LDwwNisRhnzpxBjRo1VJSQMc109uxZTJkyBbdv30avXr3w8eNHJCcnIywsTOhoeSq0z9QNGzYMzZs3x5s3b/Jt+/LlS+zbtw8TJkxQSkEHANOnT8fXr18V3u9GJBJh2bJliImJwcaNG2W6Zvfu3WjZsiUXdIwVEh4eHrhz545M3+cyhYaGwsXFBZaWlggPD+eCjhVK7dq1w82bN7FlyxZcvHhRO56ng5YUddevX0fz5s3h6uqKHj165PgQo7zmzp2LpKQkuLi44PHjx3m2XbVqFYoVK4bBgwcXeNx/K+jGv3Xr1sUvv/yCuXPnIjY2Ns+2b9++xYULF3iBBGOFSJs2bSASibBx48asxVl5OXToENq2bQtHR0dcunQJZcuWVUNKxjSTnp4efvnlF8TExGDTpk0YN26c0JHypRVFXbly5XD27FlcvHgRtra2OHr0aI7tUlNTER8f/8MrN9WqVUNoaCgMDQ3RvHlz3LlzJ8d2sbGx2Lx5M0aMGIGiRYsq48tRqgULFiAlJQULFy7Ms52fnx8MDQ3RrVs3NSVjjAnNysoKffv2xYIFC1CqVCn07dsXx48fz3FF7Lp169C9e3d06dIFp0+fhrm5uQCJGdM8pqamGDJkCEqWLCl0lHxpRVFXpkwZmJiYAPhno8DcpkB9fHxgbm6e9bKxscmz3woVKuDSpUsoXbo0XF1dcfXq1WxtNmzYgLS0NI1dzm9tbY3ffvsNa9aswdOnT3Ntt3v3bnh6evI3asYKmV27duHBgwf47bffEB0djc6dO6N06dIYMGAAAgICkJqaihkzZmDMmDGYMGEC9uzZk+vRh4wxzaZVCyVevnyJ3r17IyQkJMeFAampqUhNTc36c3x8PGxsbHJcKPFvsbGx6NixI6Kjo3HixAm0bNkyq7/KlSujY8eO2Lx5s9K/HmVJTEyEvb09mjZtigMHDmT7/O7du6hVqxaOHDkCLy8v9QdkjGmMe/fuwd/fH/v378f9+/dRpEgRpKSkYPny5Zg4caLQ8RhjBaBRRd379+/h7e2d7f3jx49DX18fnp6e2Lx5M+zs7GTqL6/Vr/+VmJiILl264NKlSzh48CA6deqEbdu24ZdffsG9e/c0/mHhHTt24Oeff8bly5fRrFmzHz6bMWMGNmzYgHfv3vFv4IwxAP+soL979y6OHDkCJycndOzYUehIjLEC0qiiLjcSiQReXl4YP368XKtF5SnqgH/uzPXu3RsnTpzAjh07sHDhQlStWhXHjx8vSHy1kEqlaNiwIfT19REeHp51BJhUKkWVKlXQrl07mVfJMsYYY0z7aMUzdQcOHEBYWBgWLFiAli1bYv/+/SoZx8jICAcOHECfPn3Qt29f3Lt3T6EjwYQgFouxfPlyXL169Yf/ff7++2+8ePGCV70yxhhjOk4r7tQpSt47dZmkUimmTZuGly9fws/PDyKRSIUplcvLyws3b97EgwcPYGxsjOHDh+PMmTN4+vRp1t07xhhjjOkeLup0zKNHj1CzZk0sWLAAEyZMgLW1NYYPH45FixYJHY0xxhhjKqSc4xGYxrCzs8PIkSOxaNEiWFpa4tu3bzz1yhhjjBUCfKdOB3358gW2trb4/v07atWqhZs3bwodiTHGGGMqxg9Z6SArKyvMnDkTGRkZfJeOMcYYKyR4+lVHjR49GqmpqUo/r5YxxhhjmomnXxljjDHGdABPvzLGGGOM6QAu6hhjjDHGdAAXdYwxxhhjOoCLOsYYY4wxHcBFHWOMMcaYDtDp1a9EhISEBJiZmWnV+a2MMcYYY/LS6aKOMcYYY6yw4OlXxhhjjDEdwEUdY4wxxpgO4KKOMcYYY0wHcFHHGGOMMaYDuKhjjDHGGNMBXNQxxhhjjOkALuoYY4wxxnQAF3WMMcYYYzqAizrGGGOMMR3ARR1jjDHGmA7goo4xxhhjTAdwUccYY4wxpgO4qGOMMcYY0wFaV9T5+fmhZMmSQsdgjDHGGNMo+kIHkIdUKsXBgwdhY2OT4+epqalITU3N+jMRIS0tDSVKlIBIJFJXTMYYY4wxtdOqO3V79+6Ft7c3xOKcY/v4+MDc3DzrZWFhgVKlSiEhIUHNSRljjDHG1EtERCR0CFlIJBJ06dIFR48eRaNGjRAZGZmtzX/v1MXHx8PGxgZxcXEoVqyYOuMyxhhjjKmV1ky/7t69Gz169Mj1Lh0AGBkZwcjISI2pGGOMMcY0g9ZMv967dw87d+6Eh4cHYmJiMGHCBKEjMcYYY4xpDK2Zfv23Bg0a5Dj9+l/x8fEwNzfn6VfGGGOM6TytuVP3b7IUdEy1kpKSMH36dFy/fl3oKIwxxhiDFj1TxzTHixcv4OXlhVu3buHRo0c4dOiQ0JEYY4yxQk8r79Qx4Vy8eBENGjRAbGwsfvnlF5w+fRqJiYlCx2KMMcYKPS7qmEyICP/73//Qpk0b1K5dG9euXcPvv/+O5ORknD59Wuh4jDHGWKHHRR3LV2pqKoYOHYrRo0dj5MiROHv2LEqUKIEqVarA0dERBw8eFDoiY4wxVuhxUcfy9P79e7Ru3Ro7d+7E1q1bsXr1ahgYGGR97u3tjYCAACQnJwuYkjHGGGNc1LFcXbt2DQ0aNMCzZ89w8eJFDBo0KFsbb29vJCYm4ty5cwIkZIwxxlgmLupYjhISEtCmTRuUL18ekZGRaNKkSY7t7OzsUKtWLZ6CZYwxxgTGRR3L0ZEjRxAfH48DBw6gbNmyebb19vbG8ePHfzh3lzHGGGPqxUUdy9Hu3bvRsmVLVKhQId+23t7eiI+PR1BQkBqSMcYYYywnXNSxbN6+fYugoCD069dPpvYODg6wt7fnKVjGGGNMQFzUsWz27dsHAwMDdOvWTab2IpEI3t7eOHr0KNLT01WcjjGmTo8ePcLDhw+FjsEYkwEXdSybXbt2wdPTExYWFjJf4+3tjW/fviEkJERluRhj6pWSkoI2bdqgVatWiI+PFzoOYywfXNSxH9y5cwe3bt2Seeo1U926dVGlShWegmVMh/j6+uLt27eIi4vDnDlzhI7DGMsHF3UCefv2LZYsWYKMjAyho/xgz549sLS0RPv27eW6LnMK9siRI5BIJCpKxxhTl7i4OCxcuBC//PIL5s6dizVr1uDWrVtCx2KM5UFrirrr16+jefPmcHV1RY8ePbT+2a1JkyZh2rRpWLhwodBRskilUuzZswc9e/aEoaGh3Nd7e3vj06dPCA0NVUE6xpg6LV++HImJiZgzZw7Gjx+PGjVqYMSIEZBKpUJHY4zlQmuKunLlyuHs2bO4ePEibG1tcfToUaEjKezWrVvYt28fGjZsiAULFiAiIkLoSACA0NBQvHr1Su6p10wNGjRAhQoVeAqWMS334cMHrFixAmPHjkW5cuVgYGAAX19fREREYOvWrULHY4zlQmuKujJlysDExAQAYGBgAH19/WxtUlNTER8f/8NLE82YMQPVqlXDpUuX0KBBA/Tr1w/fv38XOhZ27dqFypUrw9nZWaHrRSIRunXrhsOHD/Nv84xpsT/++AP6+vqYOnVq1nvNmzfHwIEDMXXqVHz+/FnAdIyx3GhNUZfp5cuXCAwMRKdOnbJ95uPjA3Nz86yXjY2NAAnzFhoaitOnT+OPP/5AkSJFsHv3brx//x4TJkwQNFdKSgr8/f3Rr18/iEQihfvx9vbGu3fvEB4ersR0jDF1efr0KTZu3IipU6fC0tLyh8+WLl0KIvqh2GOMaQ4REZHQIWQVHx8PT09PbN68GXZ2dtk+T01N/eGoqvj4eNjY2CAuLg7FihVTZ9QcERGaN2+OpKQkREZGQiz+p6b+66+/MGTIEBw5cgReXl6CZDt48CC6d++OBw8ewN7eXuF+pFIpbGxs0KNHD6xcuVKJCRlj6tC/f38EBQXh8ePHWbMj/7Zx40YMHz4cly9fRrNmzQRIyBjLjdYUdRKJBF5eXhg/fjzc3NxkuiY+Ph7m5uYaU9SdPHkSnTp1wunTp+Hh4ZH1PhGhS5cuuHz5Mm7fvg1ra2u1Z/Py8sLbt29x9erVAvc1ZswYHDt2DC9evCjQXT/GmHpFR0ejXr16WL9+PYYPH55jG4lEgqZNmyI5ORk3btzI8VEYxpgwtGb69cCBAwgLC8OCBQvQsmVL7N+/X+hIcpFKpZgxYwZatGiBdu3a/fCZSCTC5s2boa+vj19++QXqrrO/fPmCU6dOoX///krpz9vbG69evcK1a9eU0h9jTD1mzJiBqlWrYvDgwbm20dPTg6+vL+7evYu1a9eqMR1jLF+kw+Li4ggAxcXFCR2F9uzZQwDo77//zrXNqVOnCACtW7dOjcmI1q9fT3p6evThwwel9JeRkUGlSpWiKVOmKKU/xpjqXbp0iQDQvn37ZGo/ZswYKlq0KL169UrFyRhjstKa6VdFaMr0a3p6OmrUqAEHBwccP348z7ajR4/Gli1bcOPGDdSoUUMt+Zo1awYLCwucPHlSaX0OHz4c586dw5MnT3gKljENR0RwcXFBSkoKrl27lvW8b17i4uJgb2+PFi1a4MCBA2pIyZhm+vLlC2bOnIm+ffvCxcVF0CxaM/2qzbZs2YKnT5/KtNHw0qVLUalSJfTt2xdpaWkqz/b06VOEhYUpvDddbry9vfHs2TPegZ4xLRAQEICwsDD4+PjIVNABgLm5OVasWAF/f3+cPXtWxQkZ00yXL19GvXr1sGHDBsyaNUvoOFzUqVpSUhLmz5+PPn36oHbt2vm2NzExwZ49e3D79m3MmjVL5c/X7dmzB0WLFkXnzp2V2q+rqyssLS15I2LGNJxEIsH06dPRqlUrtG3bVq5re/fuDTc3NwwZMgSfPn1SUULGNI9EIsHChQvRsmVLVKpUCUuWLEFISAhiYmIEzcVFnYqtXbsWnz59wvz582W+xsnJCQsWLMDSpUthbm4OFxcXjBo1Cps2bcKVK1eQmJiolGxEhN27d6Nr1645bl1QEAYGBujYsSMCAgKU2i9jTLn27NmDu3fvYvHixXI/KiESibB9+3akpKSgV69eGneWNWOq8P79e3h4eGDWrFmYPn06goODMXbsWBQvXhxbtmwRNpygT/SpmNALJb59+0bFixenkSNHyn2tVCqlwMBAWrx4MfXu3ZscHBxIT0+PAJBIJKJq1apR//796evXrwrnu3LlCgGg8+fPK9xHXvbv308A6OXLlyrpnzFWMC9fvqSSJUtSt27dCtRPSEgI6enp0eTJk5WUjDHNdP78eSpVqhSVLl0628/OMWPGUOnSpSktLU2gdERc1KnQjBkzyNjYmN6+fauU/pKTk+n69eu0detWGjduHJmZmdGQIUMU7m/MmDFkbW1NGRkZSsn3X9++fSM9PT3y9fVVSf+MMcUlJSVR/fr1qWLFivTp06cC97dy5Uq5Vs8ypk3S09Pp999/J5FIRG3btqX3799naxMVFUUA6PDhwwIk/AcXdSry7t07MjExoWnTpqlsjHXr1uW7TUpuvn//TiVLlqRJkyapINn/admyJXXq1EmlYzDG5COVSql///5kbGxMN2/eVFqfffr0IRMTE7p9+7ZS+mRME2RkZFDr1q1JT0+PFi1aRBKJJNe2jRo1og4dOqgx3Y+4qFORSZMmkbm5eYGmR/OTkZFBDRo0oNq1a8t9u/fXX38lExMTiomJUVG6f/z5559kbGxMSUlJKh2HMSa7VatWEQDau3evUvtNTEykOnXqkK2tLX379k2pfavK8+fPqUaNGvT06VOhozANtW/fPgJAp0+fzrft5s2bSSwWC/bYES+UUIHY2Fhs3LgRI0eORPHixVU2jp6eHjZs2IC7d+9izZo1Ml938OBB/PXXX1i9ejVsbW1Vlg8AOnXqhOTkZAQHB6t0HMaYbIKDgzFp0iRMnjwZvXv3VmrfJiYmOHLkCD5//oy+fftCKpUqtX9VOHz4MO7fv489e/YIHYVpIKlUij/++APu7u4/HO+Zm549e8LY2Bjbtm1TQ7ocCFJKqolQd+oWLVpERkZG9O7dO7WMN2bMGDI1NaUXL17k2/bFixdkYWFB3t7eJJVKVZ5NKpVSlSpVaMSIESofizGWt2fPnpGVlRW1bduW0tPTVTbO6dOnSSQS0ezZs1U2hrK0adOGAFCdOnWEjsJUJCEhgby8vOjBgwdyX3vkyBECQJcuXZL5ml9//ZUqVKgg8/PqEomEevbsqZTHtQptUbd9+3by8fFR+pjJyclUunRpGjp0qNL7zk1sbCxZW1uTl5dXnu3S09PJxcWFKlSooNJp4f8aO3Ys2djYqKWIZIzlLDExkerVq0eVK1emL1++qHy8P/74gwDQ8ePHVT6WohISEsjAwIBatWpFAOjhw4dCR2IqcPLkSQJAbm5ucv0ckkql5OTkRK6urnKNFxERQQDozJkzMrVfvXo1ASAAdO7cObnG+q9CW9T9/vvvZGZmRgkJCUodc9OmTSQSidT+zSFz+5C8voHOnTuXxGIxhYaGqjEZ0dmzZwkARUdHq3Vcxtg//r2IISoqSi1jSiQS8vLyomLFimlssXT06FECQLdv3yZTU1P6448/hI7EVGD69OlkaGhIAMjf31/m6zKLwcDAQLnGk0qlVLt2bZm2Crp//z4VKVKERo8eTW5ubmRjY1Og2cVCW9Q9f/6cRCIRbd68WWnjZWRkULVq1ahr165K61NWUqmU2rVrRxUrVqTv379n+zw0NJTEYjHNmTNH7dlSUlLI1NSUFi1apPaxGWNEy5YtIwC0f/9+tY4bFxdH9vb2ZGNjQ8eOHVPr2LIYOnQo2dnZERFRr169eApWR7m4uJC3tzd5enqSjY1Njj8j/0sqlVKTJk3I2dlZoVmm1atXk76+Pn348CHXNmlpadSgQQOys7OjxMREev78ORUtWrRAW5UV2qKOiKhDhw5Uv359pY136NAhAkARERFK61Mejx8/JiMjI5o6deoP73/9+pUqVKhAzZo1U+lzNHnp0qULNWvWTJCxGSvMzp07R2KxONv3BXV5/vw5tWvXjgBQp06dNGaVqVQqpfLly9P48eOJ6P++f2vqXUWmmOTkZDI0NKRVq1bRkydPyMjIiH7//fd8rwsMDCQAdOrUKYXG/fLlCxkZGdHSpUtzbTNv3jzS09OjK1euZL23YcMGuaZu/6tQF3XHjx8nAHTt2rUCjyWVSqlRo//X3n1HRXV1fQD+zTBDk6YGRAT1VSwYQbBhlCKgiIIGa2IMtpioMSYmlkheezf6RhNj770rBuwFBcSCEWwYS2LBgmADBKTM7O+PLPhiaFO5M8N+1pq1zNx7z9mcOLjn1LZKj71r2syZM0kikRTvEyWXy6lv375kbW1N9+/fFyyuNWvWkFgspufPnwsWA2NVSVpaGn311VckkUioS5cuWttkXBFyuZz27NlDjo6OZGpqSjNmzKDc3FzB4iEiunr16jtzmHJycngI1gDFxcURAPr999+JiGjKlClkbGxc4XZevr6+1KpVK7Xmgn/yySfUuHHjUsu4dOkSSSQSmjx58jvvy+Vy6tSpEzk6OtLr16+VrlOvkrqxY8eSl5cXffLJJ5SXl1fh/RUldQUFBeTo6EjDhg1TO7bTp0+rldVrytu3b6lJkybk5eVFMpmM1qxZQwBo165dgsb15MkTAkBbtmwRNA7GDF12djbNnj2bLC0tycrKiubNmyd4AlUkKyuLvv/+e5JIJOTs7KzQvl/aMm/ePDI3N6e3b98Wv/fxxx9TixYtBIuJad7cuXPJwsKieJQqOzub6tWrR8HBwWU+ExMTQwBo//79atUdHR1NAOjMmTPvvJ+Tk0MuLi7UsmXLUnOZBw8ekKWlJQ0dOlTpOvUmqbt8+TINGDCAiP5eVbV169YS97x9+5YyMjKKXykpKRVuaTJ9+nSqVq2aShnxP3Xr1o2aN2+uEys8T548SQAoPDyczM3N6bPPPhM6JCIiatWqFX388cdCh8GYQSosLKT169dTnTp1SCqV0jfffKOR47+0ITk5uXjFaa9evRTajknTfHx8qEePHu+8x0Owhic4OJg6d+78znv79u0jABQZGVnqM507dyZXV9dyT45QhFwuJ2dnZwoLC3vn/e+++45MTEzo+vXrZT67atUqlTqK9CapW7p0KW3cuJGI/u62HDVqVIl7pk6dWrws+J+v8pK6R48ekZGRES1dulTl2Iq68Tdt2qRyGZr26aefEgBq0qSJQpNCK8PUqVPJxsZGsHl9jBmqI0eOkJubGwGgvn370t27d4UOqUJyuZy2bdtGtWvXJgcHh3d6zLStrHOpeQjWsMhkMrKxsaEZM2a8875cLqfAwEBq0KBBiV7sou1INLWoaN68eWRqalq8jVh0dDSJRCJauHBhuc8VxVinTh2lTmfRm6Ru9uzZxV2hd+7cof79+5e4R5WeOiKi0NBQcnV1VbmXLSwsjJycnJQ+qkubUlNTqUePHpSUlCR0KMUuXrxYalc0Y0x1RV/gOnToQOfOnRM6HKX98ccflf6leNeuXQSg1HnGPARrOIo6XE6dOlXi2h9//EFSqZRmzpz5zvshISHUtGlTjc1Bffr0KUkkEvr1118pIyOD6tWrRz4+PgqV//DhQ7KysqLBgwcrXJ/eJHXLli0r7qlLSEgotafu3xQ9UeLw4cMEgOLj45WO68GDBySRSGjRokVKP1vVyGQyqlWrFo0fP17oUBgzCKmpqQSA5s+frxNTP1QVGBhIbdq0qbT6Bg8eTO+//36p13gI1nAsW7aMJBIJZWdnl3p9woQJZGZmVpzcX758mQDQ5s2bNRpHz549qUWLFjR06FCysLBQagV40bz4qKgohe7Xm6Tu33PqFDmIWtGkTiaTUf369WnQoEFKxzVmzBiqXr26xjcxNlRDhgyhZs2aCR0GYwah6KDxJ0+eCB2KWiIjIyttOyiZTEb29vZlfrnkIVjD0b9/f/L09CzzemZmJjk4OBRvEtyrVy9q2LChxqcIFW1iDIDWrFmj1LNyuZyCgoKodu3aCp0EJVb37NjK4uHhAXt7e3h7eyM5ORm9e/fWWNlisRhffPEFdu7ciVevXin83MuXL7F69WqMGjUKFhYWGovHkIWEhCA5ORl//fWX0KEwpveio6PRtGlT1K5dW+hQ1NK1a1c0aNAAS5Ys0XpdSUlJSE1NRbdu3Uq9bmZmhpCQEOzevVvrsTDtiouLg5eXV5nXLS0tsXDhQuzduxeLFy/Gvn37EB4eDolEotE4unTpgoYNG6J79+4YOnSoUs+KRCKsXr0aOTk5GDNmTMUPqJp56gNFe+qI/h7GkEgktHjxYoXLnzVrFpmampa7YzR7V2ZmJkmlUvrll1+EDoUxvde4cWMaOXKk0GFoxP/+9z+SSqX09OlTrdYzc+ZMsrS0LHcOdNEQ7O3bt7UaC9OeBw8eEACKiIgo9z65XE4+Pj4EgOrWravQdmmqeP36tVrz9Hbs2KHQFit601OnbbVq1ULPnj2xYsUKEFGF9+fm5uLnn3/GkCFDYGdnVwkRGgZLS0v4+vri4MGDQofCmF57/Pgxbt++DT8/P6FD0YihQ4dCKpVi1apVWq3n0KFDCAwMhFQqLfOerl27olq1atxbp8diY2MBAO3bty/3PpFIhF9//RXGxsaYPHkyjI2NtRKPtbU1jIyMVH7+o48+QmhoaIX3cVL3DyNGjMAff/xR/JehLDKZDOHh4Xjx4gXGjh1bSdEZjuDgYERHR+PNmzdCh8KY3oqOjgYAdOzYUdhANMTGxgZhYWFYsWIF8vPztVLH8+fPcf78+TKHXosUDcHu2rVLK3Ew7YuLi0PTpk1ha2tb4b2urq549uwZhg0bVgmRaRcndf/g5+eHRo0aYeXKlWXek56ejqCgICxZsgQLFixAw4YNKzFCwxASEoL8/HycPHlS6FAY01vR0dFwdXVV6B8tffHVV1/h6dOn2Ldvn1bKP3bsGIgIQUFBFd7br18/XLlyBXfu3NFKLEy7YmNj4e3trfD9NjY22gumEnFS9w8ikQjDhw/Hnj178Pz58xLXL1y4gJYtW+LKlSs4duwYvvvuOwGi1H/Ozs5o0qQJoqKihA6FMaXJZDL8/vvvWLBgAYKCglC3bl1cuXKl0uOIjo42mKHXIs2bN4efn5/WFkwcOnQIHh4ecHBwqPBeHoLVXy9fvsSNGzfKXSRhqDip+5dBgwYBADZs2FD8HhFh2bJl8Pb2hpOTEy5fvoyAgACBIjQMwcHBOHjwoELzFxkTEhHh5s2bWLp0KXr16gVbW1u0bt0a06ZNAwAYGxtj+PDhkMlklRbT/fv3ce/ePYNL6gBg9OjRiI+Px+XLlzVarkwmw5EjRyocei3Cq2D1V3x8PAAo1VNnKDip+5f33nsPffv2xcqVKyGXy5GdnY2wsDCMGjUKI0eOxOnTp+Ho6Ch0mHovJCQET58+RWJiotChMFam5ORk1K9fH82aNcO3336L58+f4+uvv0ZMTAxevXqFI0eOYMOGDbhw4YLWJ/j/U3R0NEQiEXx9fSutzsrSvXt31K1bV+Heuvz8fIV6ShMSEvDixQt07dpV4Vj69u2LpKQkHoLVM7GxsXBwcED9+vWFDqXScVJXiuHDh+Pu3btYuXIlPD09ERERgR07duDnn3/W2sqYqsbLywtWVlY8BMt0WtGeVUeOHMGrV68QExODadOmwdvbu/h3gZeXFz777DOEh4cjNTW1UuKKjo6Gh4cHqlevXin1VSaJRIIvv/wS27dvR3p6ern3vn79GkFBQXB3d8eXX36JvLy8Mu89dOgQqlevDk9PT4Vj4SFY/VS0P51IJBI6lEqndFKXm5uLx48fl3j/xo0bGglIF3h5eaFZs2b48ssvIZPJkJCQgI8++kjosAyKVCpFYGAgDh8+LHQojJXq4sWL+O233zBjxgx06dIF1apVK/Pe+fPnQyqVVso8WyLCqVOnDHLotciwYcMgEomwZs2aMu9JSUmBt7c3EhMTER4ejrVr18LX1xcpKSml3n/o0CF06dJFqY1lzc3NeQhWz+Tm5iIhIaFKDr0CUG7z4d27d5OjoyO5ubmRq6vrO0e6eHh4KFNUpVBm8+F/O3jwIH399deUmZmphcgY0d9n2onFYnrx4oXQoTBWQmBgIDVr1kzhDUM3btxIAOjo0aNajev27dsEgA4ePKjVeoQ2dOhQcnJyKvXIpitXrlCdOnWoXr16lJycTEREFy9eJCcnJ3rvvffoxIkT79z/9OlTAkCbNm1SOo49e/YQALpz545qPwirVGfOnCEAlJiYKHQoglAqqWvRogWlpaUREVFCQgI1a9aMtm7dSkRE7u7umo9OTeokdUz7UlJSCADt3LlT6FAYe0dMTAwBoN27dyv8jFwup44dO1LDhg0pJydHa7GtXLmSjIyMDP4LZ2JiIgGgPXv2vPP+iRMnyNLSkjw8PEqceZuenk6dO3cmsVhMc+fOJblcTkRE69evJ5FIpNLpP1lZWSQWi2n16tWq/zCs0syePZusrKzUOr1Bnyk1/FpQUFC8J1Lr1q0RExODlStXYsaMGVVy7Jqpx9HREe+//z6OHDkidCiMFSMiTJo0Ce7u7ujVq5fCz4lEIixfvhwPHz7EnDlztBZfdHQ0WrduDUtLS63VoQvc3d3h7e39zoKJzZs3IygoCO3bt8eZM2dKnHn73nvv4fDhw/jhhx8QHh6Onj17IiMjA4cPH0abNm1UOv3HwsICzZs3x4ULF9T+mZj2xcXFoX379mqd3qDPlErq7OzscPXq1eL/rlmzJo4fP46bN2++8z5jigoKCsLRo0d5axOmM06ePImYmBjMnDkTYrFy046bNm2KiRMnYv78+bh586bGYyMig9yfriyjR4/GmTNncPXqVcyZMwcDBw5EWFgYIiMjy0xqjYyMMHPmTPz22284ffo0WrdurdRWJqXx9PTkpE4PyGQynD17tkruT1dMmW69lJSUMg9bjouLU7/fUMN4+FX3HT9+nADQ1atXhQ6FMZLL5eTp6Umenp7FQ3fKys3NJWdnZ/L19VW5jLLcuHGDANCxY8c0Wq6uys/Ppzp16lDt2rUJAE2bNk2pNr1z5w65ubkRALp48aLKcRTN/83KylK5DKZ9SUlJBIDOnDkjdCiCUeprqKOjI+zt7Uu91qFDBzXTS1YVeXl5wdzcnIdgmU44dOgQLly4gJkzZ6o8pcTU1BTLly/HmTNnsHHjRo3GFx0dDalUWmV+30qlUowePRppaWlYu3Ytpk6dqtT/F2dnZ5w7dw6nTp1CmzZtVI7D09MTcrkcly5dUrkMpn2xsbGQSqVq/b/WdyrvU7d3715NxlGu33//Hd7e3vD19UW/fv1QUFBQaXUz7TI1NUXHjh05qWMqiY6Oxrp16zRSllwux+TJk+Hj44NOnTqpVVanTp3wySefYNy4caUeOaiqU6dOwdPTE+bm5horU9eNHz8eKSkpGDp0qErPm5ubqz1c7eLiAgsLCx6CLcObN29w+/ZtocNAXFwc2rRpAzMzM6FDEYzKSd0nn3yCRYsWlXsPaWieVJ06dXD06FGcOXMGzs7OiIiI0Ei5TDcEBQUhNjYWb968EToUpidevHiBIUOGwN/fH5999plG9sncv38/EhMT1eql+6effvoJMpkMEyZMULss4O+k8/Tp0/D399dIefpCLBaXWBBR2YyMjNCmTRtO6sowb948tGrVChkZGYLFQESIjY2t2vPpoEZS99tvv2HatGn4+uuvSyRvMpkMGzZsgIuLi9oBAoC9vX3xN1OpVFrm5pF5eXnIzMx858V0X1BQEAoKChAdHS10KEzHERF27NiBZs2aYf/+/VixYgWcnJzw448/qlWuTCbDlClT0LlzZ/j4+Ggk1lq1amHevHlYv3499u3bp3Z5165dw8uXL6vMIgldw4slyhYdHY03b95g8+bNKj1PRPjzzz/ViuH+/ft48uRJlU/qlFoo8W9JSUnk6OhIoaGhlJOTQ3l5ebRs2TKqX78+Va9enaZMmaKBaX//78GDB9S+fXvKz88v9frUqVMJQIkXL5TQbXK5nBo0aECjRo0SOhSmwx48eEDBwcEEgHr37l28R9nixYtJIpHQ/fv3VS5769atBOCdDdU1QSaTUb9+/cjY2FjtTYkXLVpEJiYmlJubq6HomDL2799PACglJUXoUHRKdnY2SaVSMjc3JxcXF5UWB/36668EgPz9/VVe5LBp0yYCUOU3s1crqSMievToEbm5uZGbmxs5ODiQra0tzZ49W6WNMZ8+fUodOnQo8Xrx4gVlZGSQj48P3bp1q8zn3759SxkZGcWvos1tOanTfV9++SU1bNhQ6DCYDiosLKRffvmFLCwsyMHBgSIiIt65/ubNG6pRowZ9/fXXKpVfUFBAzs7O1L17d02EW0JeXh4FBweTmZkZxcTEqFxO9+7dyc/PT4ORMWU8efKk1M2Qq7pTp04RAPr5558JAEVHRyv1fH5+PtWtW5e8vb3J3d29OLlT9rPyxRdf0Pvvv6/UM4ZIraTu9evXNGPGDKpZsyaZmZmRubm5VramKCwspJCQkBJHv1SEtzTRHwcOHOCjeFgJf/75J7Vr144A0MiRI+n169el3jdt2jQyMzOj9PR0petYu3at1o8VysnJIT8/P7K0tKSEhASlny8sLCRra2uaOXOmFqJjinJycqLx48cLHYZOmT59OtnY2FBhYSG5uLhQ3759lXp+y5YtBICSkpJILpdTRESESsmdi4sLDR8+XJUfwaConNRNnDiRrK2tqUGDBrRy5Up68+YNDRo0iOzs7NTaD6g027Ztoxo1apCvry/5+vrSjh07FHqOkzr9kZmZSVKplJYsWSJ0KEyHdO/enZycnCg2Nrbc+54/f07m5uZKT/nIy8ujevXqUZ8+fdQJUyFZWVnUrl07qlGjBl27dk2pZxMSEgiATu4HWpX06dOHfHx8hA5D49LT0+nRo0cqPRsQEFDcy71kyRKSSCT0+PFjhZ6Vy+Xk5uZGQUFBJd7fv38/tWjRggBQQEAAHTp0iM6cOUNRUVG0fft2Wr16Nf300080ffp0Gjt2LAGgLVu2qPQzGBKVk7qmTZvSxo0bS5yvNmnSJKpWrVqJIRIhcFKnX/z8/CgkJEToMJiOePz4MRkZGdHy5csVun/MmDFUvXp1pTaInT59OonFYrpx44aqYSrl5cuX5O7uTvb29nT79m2Fn5s/fz6Zm5tTXl6eFqNjFVmwYAGZm5tTQUGB0KFozMWLF8nOzo7c3NyUfjY/P5/Mzc1pwYIFRPT36F21atVo+vTpCj1/6NChcodsZTLZO8ndv18WFhZkb29PjRo1og4dOhSfTV+VqZzUlTcZcvXq1WRiYiJ4rwsndfql6B+ut2/fCh0K0wFz5swhMzOzModc/+3hw4ckkUjop59+Uuj+U6dOkVgspqlTp6oRpfKePXtGTZs2pbp169KDBw8UeiYoKIi6dOmi5chYRWJiYoqHCg1BREQEmZmZFZ/Yoexio/Pnz5dYYDR8+HBycHAoc0HjP3Xs2JHatm1b4eIKmUxG169fp1u3btGTJ08oKyuLZDKZUrFWFWovlCjLoUOHyNLSUlvFK4STOv1SdMSLsnMnmeGRyWTUsGFDGjhwoFLPDR48mOrUqVNhj1ZqairZ29uTn59fidGGypCSkkL169enRo0alXn0YpH8/HyqVq0azZs3r5KiY2XJzs4mIyMjWrlypdChqO3nn38mkUhEvXv3ptTUVJJIJLR06VKlyvjxxx/J3Nz8nQSu6Pf43r17y332woULvPBEC1Tep64iXbt2xenTp7VVPDNAbm5usLe315nTJR4/foz169cLHUaZrl27hiZNmmDXrl1Ch6JxZ86cwZ9//olhw4Yp9dyECRPw+PFjbN26tcx75HI5wsLCIJfLsW3bNhgZGakbrtIcHR1x8uRJZGdno3Pnzjh79iwKCwtLvTchIQHZ2dm8P50OMDc3h6urq17vVyeTyfDtt9/im2++wdixY7Fr1y7UqlUL3t7eiIqKUqqsmJgYtG/fHlKptPi9Fi1aoEOHDli6dGm5z86fPx+NGjVCaGioKj8GK4vQWaU2cU+d/hk8eDC5uroKHQYREY0ePZoA0L1794QOpYQ7d+6Qvb09mZqakrm5OV2/fl3okDRqwIAB1LhxY5X2vAoNDaUmTZqUOTwza9YsEolEdPz4cXXDVFtycjI5OTkRALKxsaF+/frRhg0bKDU1tfieWbNmkZWVlUHN49Jnw4cP19utM7Kzs6lnz54kFotL9MotXLiQTE1NKTs7W6GyZDIZ2djY0IwZM0pcK9r3MTk5udRnb926RSKRiFatWqX8D8HKxUkd0yk7duwgACqvxNKUwsJCsre3JwC0ePFiQWP5t0ePHlH9+vWpcePGdO/ePWrevDk1adJEpb0hddHLly/JxMSE5s+fr9Lz586dIwC0b9++EtdOnz5NYrGYJk2apG6YGlNYWEjnz5+nqVOnUtu2bUkkEhEAatmyJf33v/+lVq1a8QIiHbJ27VoSiUR693l79uwZeXp6krm5OUVGRpa4/scffxCAUq+V5sqVK2Uucnj79i3Z2tqWuXfk559/Tvb29ryRthZwUsd0yvPnz0ksFtPatWsFjSM6OpoAUN26daljx46CxvJPz58/p2bNmpGTk1PxJPtbt26RpaUl9evXT6WeLV1TtC1CRXPNylPaBOy0tDRycHAgX19fne71SktLo82bN1P//v2pRo0axRu7Mt1w/fp1AkCnTp0SOhSF3bp1ixo0aED29vZ06dKlUu+Ry+XUsGFDGjFihEJlLlmyhKRSKeXk5JR6PTw8nKysrOjNmzfvvP/kyRMyNjamuXPnKvdDMIVwUsd0jqenp9IbWGraiBEjqF69erRixQoSi8X0/PlzQeMh+nsvvzZt2pCtrS398ccf71zbs2ePTvYqKksul1OLFi2oZ8+eapVz5MiRd/7hlclk1KVLF7K1tVV4Dy1dUFhYSFevXuWtTHRIYWEhWVpa6lVS0r59e2rcuHGFq1u//vprcnR0VOjLYd++falDhw5lXr9//z6JxeISQ6zff/89WVpa0qtXrxSKnSmHkzqmc6ZOnUrVq1cXrDeloKCA3nvvPRo/fjw9ffqURCIRbdiwQZBYiuTm5pKfnx9ZWVnR5cuXS73nu+++I4lEQmfPnq3k6DTn0qVLBIAOHjyoVjlyuZzc3d0pMDCQiP7eHgUAHTlyRBNhsirO39+fQkNDhQ5DIXfu3CEACm3af/ToUQJAV65cKfc+uVxOtWrVovDw8HLv69GjB7m7uxcniRkZGWRlZcWncmgRJ3VM5xTNiYqPjxek/qJfbEXDFB988IGgv8Dz8/OpR48eZGZmVu7JCvn5+eTl5UUODg707NmzSoxQc0aMGEF16tTRyDYjRfMzf/75ZzIyMqIffvhBAxEy9vfQYu3atfViusPUqVPJ0tKyzGHSf3r79i1Vq1aN5syZU+59t2/fJgB0+PDhcu8r6jEv+l3+448/klQqFXzOtCHjpI7pnMLCQqpevbrSRz5pytChQ8nZ2bn4F/b8+fPJzMxM4VVhmiSTyejTTz8liURChw4dqvD+x48fk52dHQUEBAiy/5o63rx5Q1ZWVhpbxFBQUEANGzYkAOTt7a3T8+iYfomIiCAA9PDhQ6FDKVfRPLkhQ4Yo/ExoaGi5w6pERGvWrCGxWFzhv61F+01++umn9PbtW6pduzYNHTpU4ViY8rS2Tx1jqjIyMkLnzp0F2a8uPz8f+/btw0cffQSRSAQACA0NRW5uLk6cOFFpceTl5eH69esYOXIktm7diq1bt6Jr164VPufg4ICdO3ciOjoaU6dOrYRINWfPnj3IzMzE0KFDNVKeRCLBjBkz0LBhQ2zbtg0SiUQj5TLm6ekJADq/X9358+fx559/IiwsTOFngoODce7cObx48aLMe2JiYuDu7g4rK6tyyxKLxRg5ciR27dqFxYsXIzU1FePHj1c4FqYCobNKbeKeOv21bt06EolElJ6eXqn1RkZGEgC6evXqO++7uLgo9W1XURkZGXT+/Hlav349TZgwgbp3707Ozs4kFosJQKkTjRUxd+5cpbYn0AXe3t7UqVMnjZerD0NkTP/UrVuXxo0bJ3QY5Ro5ciQ5OjoqdaTW48ePCQBt2bKlzHvq169PY8aMUai858+fk6mpKYlEIr2Zh6jPuKeO6aQuXbqAiCq1dwwAdu7ciWbNmqF58+bvvB8aGorffvutzF3/VXH06FHY2dmhXbt2GDJkCHbs2IH8/HyEhIRg+fLliImJQVpaGj7//HOly54wYQJ69OiBsLAw3L9/X2Mxa8utW7cQGxuLzz77TONlF/W4MqZJnp6eOt1Tl5+fj507d2LAgAEQixX/p97BwQEtW7bEwYMHS72ekpKC+/fvw8fHR6HyatasiY8//hhEhAkTJigcB1OR0FmlNnFPnX5zc3Oj3r17V1p9OTk5ZGlpSdOnTy9xreicwjNnzmikrnv37lGNGjUoMDCQLl26RFlZWRop959evXpFNWrU0KmNdssyfvx4qlGjBm9GyvTGwoULydzcXGfnahbN+1PltJnJkyeXuQNB0WkRaWlpCpf34MEDpc+VZarhnjqms8aMGYO9e/ciIiKiUuo7fPgwsrKy8NFHH5W41rp1azg4OGgkltzcXPTu3RvW1tbYvn07WrVqBQsLC7XL/TcbGxsEBATg1KlTGi9bkwoKCrBx40aEhYXB1NRU6HAYU4inpydycnJw/fp1oUMp1ebNm+Hu7o73339f6WeDg4Px6tUrnDt3rsS1mJgYuLi4wNbWVuHy6tatiy+//FLpOJjy9Cqp2759u1J/kZh+Gzx4MEJDQ/H5558jNTVV6/Xt3LkTLVq0QJMmTUpcE4vF+PDDDxEREQEiUrkOIsKoUaOQnJyMvXv3okaNGuqEXCF/f39cvHgRWVlZWq1HHVFRUUhLS9PK0Ctj2tKyZUsYGRnp5BDs69evERkZqdQCiX9q06YNbG1tSx2CjYmJUXjolVU+vUnq5HI59uzZAycnpzLvycvLQ2Zm5jsvpr9EIhFWrVoFsViMYcOGqZVMVSQ7OxtRUVH4+OOPy7wnNDQU9+7dw7Vr11SuZ82aNVi/fj1WrFgBDw8PlctRVEBAAAoLCxEbG6v1ulS1Zs0atG3bFq6urkKHwpjCzM3N4ebmppNJ3e7du1FYWIj+/fur9LxYLEa3bt1KJHXp6em4efMmJ3U6TG+Sum3btqFPnz7lTvicO3curK2ti1/lJYBMP9ja2mLdunU4ePAgVq1apbV6oqKikJOTg379+pV5T8eOHWFlZaXyEOzFixfx1VdfYcSIERg0aJCKkSrH2dkZjo6OOHnyZKXUp6yUlBQcOXIEw4YNEzoUxpSmq4slNm/ejE6dOqF27doqlxEcHIzr16/jwYMHxe/FxcUBALy9vdWOkWmHXiR1MpkMu3btKnWu0z+Fh4cjIyOj+JWSklJJETJtCg4OxvDhw/Hdd9/hzp07Wqljx44daNOmDRo0aFDmPcbGxggODlYpqUtPT0efPn3g4eGBxYsXqx6okkQiEfz9/XV2Xt26detgZmZWbg8pY7rK09MTN2/e1KlRofv37yM2NlblodcigYGBkEgk7/TWxcTEoH79+txhosN0KqlLTU2Fl5dXideWLVvQr1+/Cpdlm5iYwMrK6p0XMwwLFy6Eg4MDwsLCNLqtCABkZmbi8OHDFX5pAP4egk1MTHzn22tFZDIZ+vfvj7dv32LPnj0wMTFRJ1ylBQQEICkpCc+fP6/Ueivy4sULLFq0CEOGDIGlpaXQ4TCmNE9PTxAREhIShA6l2NatW1GtWjX07NlTrXKsra3h5eVVIqnjoVfdplNJnb29PeLi4kq8kpOTsWnTJgQFBeHOnTv49ttvhQ6VVTILCwts2bIFly5dwpw5czRa9oEDB5CXl1fu0GuRoKAgGBsb48CBAwqXP3nyZERHR2PHjh1wdHRUJ1SV+Pv7AwBOnz5d6XWXZ9asWZDL5ZgyZYrQoTCmkiZNmsDa2lpnhmCJCJs3b0bPnj1RrVo1tcsLCQnBqVOnkJOTg8zMTCQlJXFSp+sE3VBFBa1atVL4Xt6nzvBMmTKFjIyM6MKFCxors1u3bhWedfhPXbt2JT8/P4Xu3b9/PwGgH3/8UdXwNKJx48Y0YsQIQWP4p7t375JUKqXZs2cLHQpjaunUqRP16NFD6DCIiCghIYEA0NGjRzVS3s2bNwkARUVF0eHDhwkA3b59WyNlM+3QqZ46RVy6dEnoEJiAJk2ahJYtW+LTTz9Fdna22uW9fPkSx44dU2jotUhoaChiYmLKPRsRAOLj4zFw4ED06tUL48aNUzdUtejavLrw8HDY2dlhzJgxQofCmFqKFkuQFlfnK2rz5s2wt7dHQECARspr0qQJGjRogKioKMTExKBWrVpwdnbWSNlMO/QuqWNVm1QqxZYtW/Do0SONHAy9f/9+yOVy9O3bV+FnevToAblcXuYxOnK5HPPnz4ePjw9atGiB9evXC35UVUBAAG7fvo1Hjx4JGgcAnDt3Drt378asWbNgbm4udDiMqcXT0xPPnj3Dw4cPBY2joKAA27dvxyeffAIjIyONlCkSiRAcHIyDBw8Wz6cT+ncZKx8ndUzvNG7cGP/73/+wfPnyMhMrRe3cuRO+vr6wt7dX+Bl7e3u0a9eu1FWw6enpCAkJwcSJEzFhwgRER0frxIKdjh07AoDgvXVEhHHjxqFFixZqr85jTBd4enpCJBJh+/btgsZx/PhxpKena/xzFRwcjJSUFJw9e5bn0+kBTuqYXhoxYgSCg4PRs2dPTJs2DXl5eUqXkZaWhpMnTyo19FokNDQUR48eRW5ubvF7sbGxcHd3R0JCAg4fPow5c+ZAIpEoXbY2vPfee3B3dxc8qdu/fz/i4+OxYMECjfUmMCYkOzs7jB07FpMnTxZ0wcTmzZvRvHlztGjRQqPl+vr6Fi+64KRODwg9qU+beKGEYcvNzaXJkyeTRCIhFxcXOnv2rMLP3rp1i3r37k1GRkaUnp6udN23bt0iAPTbb7+RTCaj2bNnk1gsJh8fH3r06JHS5VWG7777jhwdHUkulwtSf35+PjVq1Ii6dOkiSP2MaUt+fj61a9eO6tWrRy9fvqz0+jMyMsjU1JTmzZunlfI//PBDsrGxIZlMppXymeZwUsf03tWrV6lt27YkEonoq6++oszMzDLvvXDhAvXq1YtEIhHVqlWLVq1apXK9Li4uFBoaSoGBgSQSiWjSpElUUFCgcnnaFhUVJejqtSVLlpBIJKIrV64IUj9j2vTgwQOqXr06ffjhh5X+xWn9+vUkEokoJSVFK+Vfu3aNIiIitFI20yxO6phBKCwspMWLF5O5uTk5OTnRwYMHi6/J5XI6cuQI+fn5EQBydnamlStXUm5urlp1hoeHEwCys7OjY8eOqfsjaF1mZiYZGRnR8uXLK73u169fU82aNWno0KGVXjdjleXAgQMEgBYvXlxpdebn51OrVq0U3maJGTZO6phBuXfvHnXp0oUAUP/+/WnTpk3k7u5OAKhVq1a0e/duKiws1EhdDx48oNGjR9OTJ080Ul5l+OCDD6hv376VXu/EiRPJzMxMZ4emGdOUb7/9lqRSKV28eLFS6hs7dixJpVI6f/58pdTHdJuISAc219GSzMxMWFtbIyMjQydWILLKQUTYunUrxowZgxcvXqBz5874/vvv4e/vX+WX40+ePBnLly9HWlpahcfuacrDhw/RpEkTjBs3DjNnzqyUOhkTSn5+Pry9vZGWlobExETY2Nhora4DBw4gNDQUixcvxjfffKO1epj+4KSOGayXL1/ixYsXaNSokdCh6Izo6Gj4+/sjKSlJ46vkyjJw4EAcPXoUd+/e5TNeWZVw7949eHh4ICAgAHv27NHKl8m//voLLVu21GodTP/wlibMYNWoUYMTun/54IMPYGpqipMnT1ZKfYmJidiyZQumT5/OCR2rMv7zn/9g/fr12LdvH5YuXarx8ovOqq5ZsybWrVvHCR0rxj11jFUxnTp1gqmpKaKiorRaj1wuh5+fH9LS0nDt2jWd2bOPscryzTffYMWKFYiPj0erVq2K38/MzMSVK1eQmJiIxMRE3LhxA0FBQZg0aRKMjY0rLHfUqFFYu3Yt4uPj0bJlS23+CEzP8G9ZxqoYf39/zJ07FwUFBZBKpVqrZ+3atYiJicGJEyc4oWNV0o8//oizZ8+iX79+GDZsWHESd/fuXQCAsbExXF1d0aBBA8ydOxeRkZHYtGkTXF1dyyxzx44dWLZsGVasWMEJHSuBe+oYq2IuXLiAdu3aIT4+Hh988IFW6nj69ClcXFzQq1cvrFu3Tit1MKYP/vrrL7Rv3x65ublwd3eHh4dH8cvFxaX4i9Xly5cxcOBA3L59GzNmzMD48eNLnLpy69YttG7dGj169MCWLVt42JWVwEkdY1VMYWEhatasiQkTJuC///2vVuro06cPYmNjcfPmTdSoUUMrdTCmLwoLCyEWiytccZ6Xl4cpU6ZgwYIFaNeuHTZu3Fg8LzgnJwft2rVDQUEBEhISYGFhURmhMz2jNwslTp8+jYCAAPj6+uLAgQNCh8OY3pJIJPD19dXaYomIiAjs3bsXv/zyCyd0jOHvz5wiWwiZmJhg/vz5iI2NRVpaGtzd3bF06VLI5XKMHj0ad+/exe7duzmhY2XSi566t2/fom/fvti7d2+5k0jz8vLeOdg9MzMTTk5O3FPH2L8sXrwYEydOxKtXr2BmZqaxcjMyMtCsWTN4eHggMjKSh4cYU9GbN28wYcIELF++HK6urrh27RrWr1+PwYMHCx0a02F60VMXHx8PMzMzdO/eHT179kRqamqp982dOxfW1tbFLycnp0qOlDH9EBAQgLy8PMTHx2u03PDwcGRmZmLZsmWc0DGmBgsLCyxbtgxHjx5FRkYGvvjiC07oWIX0oqdu+/bt+Omnn3D27FmcPHkSBw4cwIoVK0rcxz11jClGLpfD3t4en3/+OWbPnq2RMuPi4uDt7Y1ffvkFo0eP1kiZjLG/P68ikYi/KLEK6VRSl5qaij59+pR4f+TIkbh06RIWLVqEvLw8dO7cGTExMRWWxwslGCvbxx9/jPv37+P8+fNql5WXlwd3d3fY2NggLi6uxKo9xhhj2qdTm0fZ29sjLi6uxPsvXrzApk2bAPy9Q32DBg0qOzTGDI6/vz9GjhyJjIwMWFtbq1XWnDlz8Oeff+Ly5cuc0DHGmEB0KqkrS82aNdGjRw/4+PhALBbzvleMaYC/vz/kcjlOnz6NDz/8UOVybty4gblz52LixIlo3ry5BiNkjDGmDJ0aftU0Hn5lrGxEBA8PD6SkpGDLli3o2rWr0mXI5XJ4eXnh5cuXSEpKgqmpqRYiZYwxpgi9WP3KGNM8kUiEkydPol27dujWrRsmTZoEmUym8PNEhAULFuDcuXNYvXo1J3SMMSYwTuoYq8Jq1qyJyMhIzJkzB3PnzkVgYCCePXtW7jNEhOPHj8PT0xMTJ07Et99+C29v70qKmDHGWFk4qWOsihOLxQgPD8eJEydw48YNeHh4IDY2ttR7z549Cz8/PwQGBkIikeDUqVP46aefKjlixhhjpeGkjjEGAPDz80NiYiIaNWoEPz8/LFy4EEVTbpOSkhASEgIvLy+8evUKkZGRxQkeY4wx3aAXq18ZY5Wjdu3aOHnyJCZNmoTx48cjLi4OJiYm2LVrFxo1aoQdO3agb9++Cp1jyRhjrHLx6lfGWKkiIyMxcOBAWFpaYurUqRg0aBAkEv4eyBhjuoqTOsZYmTIyMmBmZgZjY2OhQ2GMMVYB/trNGCuTuidNMMYYqzw8MYYxxhhjzABwUscYY4wxZgA4qWOMMcYYMwCc1DHGGGOMGQCDXv1KRMjKyoKlpSVEIpHQ4TDGGGOMaY1BJ3WMMcYYY1UFD78yxhhjjBkATuoYY4wxxgwAJ3WMMcYYYwagyp4oUbSIgjHGGGNMH1S08LPKJnXPnz+HnZ2d0GEwxhhjjCmkorPsq2xSV3RAeUpKSrkNxMqWmZkJJycnbkM1cBuqh9tPfdyG6uM2VA+3n+IsLS3LvV5lk7qi7ksrKyv+S6QmbkP1cRuqh9tPfdyG6uM2VA+3n/p4oQRjjDHGmAHgpI4xxhhjzABU2aTOxMQEU6dOhYmJidCh6C1uQ/VxG6qH20993Ibq4zZUD7ef5vAxYYwxxhhjBqDK9tQxxhhjjBkSTuoYY4wxxgwAJ3WMMcYYYwaAkzrGGGOMMQNQZZO6cePGwdvbGwMGDEB+fr7Q4eiFrKwseHp6wsLCAtevXwcA7Ny5Ex988AH8/f2RkpIicIS67/fff4e3tzd8fX3Rr18/FBQUcBsq6fr16+jQoQN8fX0RHByMN2/ecBuqYPv27bC1tQXAn2Nl3b9/H7a2tujYsSM6duyI9PR0bkMVnD59GgEBAfD19cWBAwe4DTWBqqDLly/TgAEDiIho1qxZtHXrVoEj0g8FBQWUlpZGgwYNomvXrlF+fj61bduW8vLyKC4ujj7//HOhQ9R5T58+pezsbCIiCg8Pp127dnEbKik/P7/4z9OmTaNNmzZxGypJJpNRr169yMPDgz/HKrh37x717t27+L+5DZWXm5tLISEhlJeXR0TchppSJXvqzp07h8DAQABAUFAQ4uPjBY5IP0gkkuJv9gBw584dvP/++zA2NkaHDh1w7do1AaPTD/b29jA3NwcASKVS3L59m9tQSVKptPjPOTk5qFu3LrehkrZt24Y+ffpALBbz51hFZ8+ehbe3N3744Qf+HKsgPj4eZmZm6N69O3r27ImEhARuQw2okknd69evi8+Xs7a2xsuXLwWOSD/9sx0BQCaTCRiNfnn48CFOnDgBLy8vbkMVHD9+HB4eHoiOjoZUKuU2VIJMJsOuXbvw0UcfAeDPsSpq166Nu3fvIiYmBmlpaThw4AC3oZKePXuGe/fuITIyEl988QWmTZvGbagBVTKpq169OjIzMwH8/QutRo0aAkekn/7ZjgBgZGQkYDT6IzMzE2FhYVi/fj3s7Oy4DVXQuXNnJCYmok+fPjhz5gy3oRK2bNmCfv36QSz++9c/f46VZ2JigmrVqkEkEqF3795ITEzkNlSSjY0NvLy8YGxsDH9/f25DDamSSV27du1w7NgxAMDRo0fRoUMHgSPST87OzkhOTkZ+fj7Onj0LNzc3oUPSeTKZDAMGDMCUKVPQuHFjbkMV5OXlFf/Z2toaFhYW3IZKSE5OxqZNmxAUFIQ7d+5g1apV3H5KysrKKv5zTEwMQkJCuA2V1LZtWyQnJwMAEhMTERgYyG2oARKhAxCCh4cH7O3t4e3tjbp162L8+PFCh6Q3unXrhqSkJNy6dQvDhw/HmDFj4OvrC1NTU2zatEno8HTerl27EB8fj6ysLMycORMjR47kNlTS8ePHsWDBAojFYtja2mLDhg2wtbXlNlTQ/Pnzi//cunVrLFq0CDt27OD2U0JcXBwmTZoEc3Nz/Oc//8HMmTNhYmLCbaiEmjVrokePHvDx8YFYLMa6detw8eJFbkM18dmvjDHGGGMGoEoOvzLGGGOMGRpO6hhjjDHGDAAndYwxxhhjBoCTOsYYY4wxA8BJHWOMMcaYAeCkjjHGGGPMAHBSxxhjjDFmADipY4wxxhgzAJzUMcYYY4wZAE7qGGOMMcYMwP8B68xsCPCpKZ4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHVCAYAAACXAw0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/S0lEQVR4nOzdd1hTWdc28DuhCYgg2FCxIihWsKIoKopYGFGxt3Ece29jGbujqGPXRyxjL6jYxQ6C4gAqFrCLvXcp0knW98d88I5DS0KSk4T1u65c72uyz943zygszj57bxERERhjjDHGmFYTCx2AMcYYY4wVHBd1jDHGGGM6gIs6xhhjjDEdwEUdY4wxxpgO4KKOMcYYY0wHcFHHGGOMMaYDuKhjjDHGGNMBOl3UERHi4+PBW/ExxhhjTNfpdFGXkJAAc3NzJCQkCB2FMcYYY0yldLqoY4wxxhgrLLioY4wxxhjTAVzUMcYYY4zpAC7qGGOMMcZ0ABd1jGmob9++oUOHDnj69KnQURhjjGkBLuoY01AbNmzA6dOn8ddffwkdhTHGmBYQkQ5v4hYfHw9zc3PExcWhWLFiQsdhTGZpaWmoVKkSPn/+jHLlyuHp06cQiURCx2KMMabB+E4dYxpo3759ePfuHVavXo3nz58jIiJC6EiMMcY0HBd1jGkYIsLy5cvRoUMHDB06FOXKlcPevXuFjsUYY0zDcVHHmIa5cOECoqOjMXHiROjp6aFnz544cOAAMjIyhI7GGGNMg3FRx5iGWb58OerWrYvWrVsDAPr06YOPHz8iODhY4GSMMcY0GRd1jGmQe/fu4fTp05g4cWLWwggnJydUq1aNp2AZY4zliYs6xjTIypUrYW1tjV69emW9JxKJ0Lt3bxw+fBgpKSkCpmOMMabJuKhjTEN8/PgRu3btwpgxY2BoaPjDZ71790Z8fDxOnTolUDrGGGOajos6xjTE+vXroaenh2HDhmX7rHr16nB0dISfn58AyRhjjGkDrSvq/Pz8ULJkSaFjMKZUycnJWL9+PQYNGgRLS8sc2/Tp0wcnTpxAfHy8mtMxxhjTBlpV1EmlUhw8eBA2NjY5fp6amor4+PgfXoxpg927d+Pz588YP358rm169uyJ1NRUHD16VG25GGOMaQ+tKur27t0Lb29viMU5x/bx8YG5uXnWK7fijzFNIpVKsXLlSnTu3Bm2tra5trOxsUHz5s15CpYxxliOtKaok0gkOHDgAHr27Jlrm+nTpyMuLi7r9erVKzUmZEwxZ86cwf379zFp0qR82/bp0wfnz5/Hp0+f1JCMMcaYNtGaom737t3o0aNHrnfpAMDIyAjFihX74cWYpluxYgUaNmyIZs2a5dvW29sbIpEI/v7+akjGGGNMm2hNUXfv3j3s3LkTHh4eiImJwYQJE4SOxFiB3bp1C0FBQZg0aVLWZsN5KVGiBNzd3XkjYsYYY9mIiIiEDiGvBg0aIDIyMt928fHxMDc3R1xcHN+1Yxpp4MCBCAkJwZMnT6Cvry/TNbt370b//v3x/PlzVKxYUcUJGWOMaQutuVP3b7IUdIxpupCQEPj5+WHcuHEyF3QA0LlzZxgbG2Pfvn0qTMcYY0zbaGVRx5g2S05Oxvjx49GqVSs0bdoUQ4cOlet6MzMzeHp68ipYxhhjP+CijjE1unr1KhwdHbFhwwasWLECFy5cQNGiReXup3fv3oiKisK9e/dUkJIxxpg24qKOMTVIS0vDrFmz0LRpU5iZmeHmzZuYMGFCnqu589K+fXuYm5vz3TrGVOjdu3eYOnUqKleujClTpiAuLk7oSIzliYs6xlTszp07aNKkCRYvXow5c+YgLCwMNWrUKFCfRkZG6NatG/z8/KCFa50Y02hPnz7F8OHDUblyZfj6+qJZs2ZYv349qlWrhk2bNkEikQgdkbEccVHHmIpIpVIsXboU9evXR2pqKq5cuYJZs2bBwMBAKf336dMHT548QXBwsFL6Y6ywi46ORp8+fVCtWjUcPnwYc+bMwcuXL7F79248fPgQHh4eGDZsGJycnPjfHdNIXNQxpiIrVqzAtGnTMHbsWFy/fh1OTk5K7b9ly5ZwdnZGjx49cPfuXaX2zVhhEhYWhk6dOqFu3boICwvDmjVr8OLFC0yfPh0WFhYAgPLly2Pnzp2IiIiAiYkJWrduja5du+LJkyfChmfsX7RynzpZ8T51TCj379+Ho6MjRo0aheXLl6tsnG/fvqFly5b49OkTQkNDUbVqVZWNxZguOn36NDp06AAHBwdMmzYNvXr1yvduOhHBz88PU6dOxcePHzF+/HjMnz8fRkZGakrNWM64qGNMySQSCZo1a4Zv377h1q1bMDY2Vul4Hz58QIsWLZCamorLly+jfPnyKh2PMV2RkpKCWrVqoWLFijh//rzcC5cSExOxbNkyLFy4ELNmzcKsWbNUlJQx2fD0K2NKtnz5cly9ehXbtm1TeUEHAKVLl0ZgYCCICG3atMHHjx9VPiZjumDZsmV48eIF1q1bp9BKdFNTU8yZMwfDhw/HypUrkZCQoIKUjMmOizrGlOj+/fuYPXs2Jk2ahKZNm6ptXBsbGwQFBSEuLg7u7u749u2b2sZmTBu9ePECixYtwvjx4wu8Gv23335DYmIi/ve//ykp3Y/WrVuHy5cvq6Rvplt4+pUxJcnIyECzZs0QFxeHmzdvquUu3X/duXMHrq6usLOzw/nz5xXa2JixwqBbt24IDw/Hw4cPYWZmVuD+hg8fjkOHDuH58+cwNTVVQsJ//P3333BxcUH79u1x6tQppfXLdBPfqWNMSZYtW4bIyEhs375dkIIOAGrVqoUzZ87g7t276Ny5M1JSUgTJwZgmO3fuHA4fPoxly5YppaADgGnTpiE2NhYbN25USn/AP78ojho1CgYGBggODkZSUpLS+ma6iYs6xpTg7t27mDNnDiZPnowmTZoImqVhw4YICAhAWFgYevTogfT0dEHzMKZJ0tLSMGbMGLi6uqJ3795K67dSpUoYMGAAli5diuTkZKX06evri+joaGzduhUpKSkICQlRSr9Md3FRx1gBZWRk4Oeff0bVqlUxb948oeMAAFq0aIEjR47g9OnTWLNmjdBxGNMYK1euxJMnT7B27VqIRCKl9j19+nR8+vQJf/31V4H7+vDhA2bNmoUhQ4agb9++qFy5Mk6ePKmElEyXcVHHWAH9+eefuHHjBrZv344iRYoIHSeLh4cHvL29sXnzZj5KjDEAr1+/xoIFCzB69GjUrl1b6f3b2tqib9++WLJkCVJTUwvU17Rp06Cnp4dFixZBJBKhQ4cOOHXqFP9bZnnioo7lKDk5GWvXrsWePXvw+fNnoeNorDt37mDu3LmYMmUKGjVqJHScbH799Vc8fPgQYWFhQkdhTHCTJ09G0aJFVXpHfcaMGXj79i22bdumcB9hYWHYvn07fHx8YGVlBQDo2LEjnj9/jvv37ysrKtNBvPqVZXPt2jUMGDAAMTExkEgkEIlEaNiwIdq3b4/27dujQYMG0NPTEzqm4DIyMtCkSRMkJyfj+vXrGnWXLpNUKoWtrS1cXV0L9EOGMW0XHByM1q1bY8eOHRgwYIBKx+rVqxciIiIQExMj91nPGRkZaNiwIfT19REREZH1vTY5ORlWVlaYP38+Jk+erIrYTAfwnTqWJS0tDbNmzYKzszNMTU0RFRWFN2/eYMuWLahYsSJWrVqFJk2aoEyZMujbty92796NtLQ0oWMrTCKR4NOnTwpdGxUVBRcXF9y6dUvjpl3/TSwW45dffsGBAwcQHx8vdBzGBJGeno7Ro0ejWbNm6N+/v8rHmzlzJl68eIFdu3bJfe2GDRsQFRWF9evX//DLs7GxMVq3bs3P1bG8kQ6Li4sjABQXFyd0FI0XHR1N9erVI319fZo3bx6lpaVla5Oenk6hoaE0Y8YMcnR0JAA0ffp0AdL+4+bNm3TmzBmFrpVKpdS7d2/S09Ojn3/+mR49eiTTdQkJCTRp0iTS09MjBwcHCg0NVWh8dXr16hWJxWLauHGj0FEYE8Ty5ctJLBbTzZs31TZm165dqUqVKpSeni7zNR8+fCBzc3MaMmRIjp//73//I319fYqNjVVWTKZjuKgr5NLT02nRokVkYGBANWvWpOvXr8t87YgRI6hChQokkUhUmDB3rVu3JrFYrFBht3r1agJAw4cPpzJlypBYLKb+/fvTgwcPcr3m6NGjZGNjQ8bGxuTj40OpqakFia9WHTp0oEaNGgkdgzG1e//+PZmZmdGoUaPUOu6NGzcIAO3cuVPmawYNGkSWlpb06dOnHD9/9uwZAaCDBw8qKybTMVzUFWIPHjygxo0bk1gspqlTp1JKSopc11+6dIkA0N9//62ihLlLTEwkQ0NDKl68OJmbm+dZjP3X5cuXSV9fnyZMmEBERElJSbR27VoqV64cicVi6tOnD929ezer/YsXL6hz584EgNq3b09Pnz5V+tejaocOHSIAFB0dLXQUxtRq165dBIA+fvyo9rE7depE9vb2lJGRkW/bsLAwAkAbNmzIs52DgwMNGjRIWRGZjuGirpDK/O3V1tZW4aJMIpFQuXLlaPTo0UpOl7+zZ88SAAoPDycHBweqVq0aff36Nd/r3r9/T2XLliUXF5dsU8wpKSm0fv16srGxIZFIRD169KAFCxaQqakplS1blvz9/UkqlarqS1Kp1NRUKlWqFI0bN07oKIyp1eTJk6lSpUqCjH3lyhUCQH5+fnm2y8jIoHr16lH9+vXzLQAnT55MZcqUEWyGhGk2LuoKqdmzZ5OJiQl9/vy5QP1MnDiRSpUqJddzI8owZcoUsra2JqlUSo8fPyZLS0tq06ZNnjnS09OpZcuWVKZMGXr79m2u7VJTU2nTpk1UqVIlEovFNHbsWJ34OzR58mSytLSU+44sY9qsbdu21LlzZ8HGb9euHdWsWfOHIiwjI4MSEhLow4cP9PTpU/Lx8SEAFBERkW9/wcHBBIAiIyNVGZtpKS7qCqHk5GQqWbKkUp4xuXbtGgGgwMBAJSSTnaOjI/Xv3z/rzxcuXCB9fX0aO3Zsrtf89ttvpKenRxcvXpRpjLS0tFyfbdFG9+/fJwC0b98+oaMwpjalSpWi2bNnCzb+5cuXCQCVKVOGihcvTkZGRgQg2yu3xRH/lZaWRmZmZjR//nwVJ2faiPepK4S2bNmCIUOG4OHDh6hWrVqB+iIiVKtWDS1btlTK0Tiy+Pz5M0qWLJltv6kNGzZgxIgR2LhxI4YOHfrDNUeOHEHXrl2xbNkyTJo0SS05NZGLiwtMTExw7tw5oaMwpnLv37+HtbU1Dh06hK5duwqWw9fXF+/fv4eJiQlMTU1hYmLyw/9ftGhRufb/9Pb2xps3bxAeHq7i5EzrCFxUqhTfqctOKpVSzZo1ydPTU2l9zpw5kywsLOReDTpx4kRat26d3OPt37+fANDr16+zfTZy5EjS19enkJCQrPcePnxIZmZm5O3trbXPxCnLtm3bCAA9e/ZM6CiMqdyZM2cIAD1+/FjoKEq1detWEolEgiz+YJpNazYfvn79Opo3bw5XV1f06NED6enpQkfSSoGBgbh79y4mTJigtD579eqF2NhYnD17VuZrbt68iRUrVmDJkiWQSqVyjRcYGIgaNWqgXLly2T5btWoVWrRogW7duuHZs2dITExEt27dULZsWWzdulXpB3hrm+7du8PMzIxPl2CFQlRUFIoWLYrKlSsLHUWp2rdvDyKS63suKxy0pqgrV64czp49i4sXL8LW1hZHjx7N1iY1NRXx8fE/vNiPVq5cibp166Jly5ZK67NmzZqoVasW9u3bJ/M1c+fOhZmZGV69eoWIiAi5xgsMDESbNm1y/MzAwAD+/v6wsLCAp6cnBg0ahGfPnuHw4cMwMzOTaxxdZGpqit69e2Pr1q2QSCRCx2EsX/7+/vj5558VOsg+KioKderUgVisNT/qZFKmTBnUr1+fT5dg2WjN3/QyZcrAxMQEwD8/uPX19bO18fHxgbm5edbLxsZG3TE12v3793H69GlMmDBB6XesevfujWPHjiEpKSnfttevX8fx48exdu1alC1bVq5i8OnTp3j27FmuRR0AWFpa4sSJE3j16hX8/f2xZcsWODg4yDyGrhs8eDBev36N8+fPCx2FsTzt2rULvXr1wo4dO/DkyRO5r4+KikLdunVVkEx4HTp0wNmzZ5GRkSF0FKZBtKaoy/Ty5UsEBgaiU6dO2T6bPn064uLisl6vXr0SIKHmWr16NUqXLo1evXopve+ePXsiMTERAQEB+badM2cO7Ozs0LdvX/To0QP+/v4y3zUKDAyEnp4eXF1d82xXo0YNnDp1Cn/99Rd69uwpU9+FRcOGDVG7dm21LWxhTBFbt27FwIEDs/79yrsoICUlBQ8ePNDpou7bt29yz3Qw3aZVRV18fDz69++Pbdu2wcDAINvnRkZGKFas2A8v9o8vX75g586dGDVqFIyMjJTef9WqVdGoUaN877pdvXoVJ0+exJw5c6Cvr4+ePXvi/fv3CA0NlWmc8+fPo1GjRjA3N8+3bbNmzTB48GCZ+i1MRCIRBg8ejOPHj+Pjx49Cx2Esm02bNmHw4MEYPnw4du/eDXt7e7mLunv37kEikehsUdewYUOUKFECp06dEjoK0yBaU9RJJBL07dsXs2fPhp2dndBxtM7GjRshlUoxfPhwlY3Rq1cvnDp1CnFxcbm2mTt3LmrUqJH123fjxo1RsWJFmaZgJRIJLly4kOfUK5NNv379IBKJsGvXLqGjKOTLly9Yt24dGjRogIYNGyr0vBXTTP/73/8wbNgwjB07Fv/73/8gFovh7Owsd1EXFRUFkUiE2rVrqyipsPT09ODh4cFFHfuB1hR1Bw4cQFhYGBYsWICWLVti//79QkfSGmlpaVi3bh369++PkiVLqmycHj16IC0tLcdFLAAQERGB06dPY/bs2Vn7MYlEIvTs2ROHDh3K99mQW7du4evXr2jbtq2yoxc6VlZW6NKlC7Zs2aI1BVF6ejqOHz+Orl27wtraGhMmTIBYLEZkZCQeP34sdDymBKtWrcLo0aMxadIkrFq1KuvZ36ZNmyI6Ohrfv3+Xua+oqCjY2trC1NRUVXEF17FjR0RFReH169dCR2GaQtgdVVSL96n7R+aB1nfu3FH5WK6uruTh4ZHjZ+7u7lSzZs1sZxtev36dANDZs2fz7Hvx4sVkamoq9354LGfnz58nAAqf/asuN2/epHHjxlHJkiUJADk6OtKqVavo48ePFBcXR3p6evkegs4039KlSwkATZs2Ldt+krdv3yYAdOHCBZn7a9myJXl7eys7pkb58uULicVi2rRpk9BRmIaQ+05dbGws9u/fjxUrVmDlypXYt28fvn37ptRCkykPEWHlypVwd3dHzZo1VT5er169cP78eXz69OmH98PCwnDu3DnMmTMn267pjo6OsLW1zXcKNjAwEK6urjA0NFR67sKodevWsLa2xrFjx4SOkqvly5fD0dERfn5+6NevH27duoUbN25g3LhxKFmyJIoVK4aGDRviwoULQkdlBbBw4UL89ttvmDVrFhYtWpRtdb6DgwOKFSuGsLAwmfojIp1e+ZrJ0tISzs7OvLUJyyJXUbdlyxY0atQIERERkEqlkEgkiIiIQJMmTbBlyxZVZWQFEBoaihs3bih1s+G8eHt7AwAOHTr0w/tz5sxB7dq10a1bt2zXiEQi9OrVC0eOHEFaWlqO/SYnJyM0NJSfp1MisViMRo0a4caNG0JHydX27dvRrVs3vH79GitWrMjxh7SbmxsuXLgg9ybWTDPs3r0bM2fOxPz58zF//vwct1sSi8Vo3LixzM/VvX79Gt++fdP5og74Zwo2MDAQqampQkdhmkCe23p2dnaUkJCQ7f34+HiqVq2akm4eKg9PvxJ5eXlRjRo11Ho8loeHB7Vo0SLrz5cuXSIAdOjQoVyvyZxeOXHiRI6fBwYGEgCKjo5Wet7CbO7cuWRlZaWRx6c9e/aMAJC/v3+e7YKCgggARUVFqSkZUyZPT09ydXXNt93s2bNl/rt64sQJAkAvXrxQQkLNduvWLQJA58+fFzoK0wBy3akTiUQ5Pqj6/fv3Qn/8kiZ68uQJjh07hvHjx6v1v0+vXr0QGhqa9fDunDlzULduXXh5eeV6Ta1ateDg4JDrFGxgYCBKlSqFWrVqqSJyoeXk5IQvX75o5J6OJ0+ehL6+Ptzd3fNs17RpUxgZGSEoKEhNyZiypKenIyQkJN//xgDg7OyML1++ICYmJt+2UVFRsLCwKBQb0NepUwflypXDjh07hI6Sq8jISHTv3h23bt0SOorOk6uoW7ZsGVxdXdGtWzeMHTsWY8eORdeuXdGyZUssX75cVRmZgtasWQNLS0v0799freN6eXnB0NAQ/v7+CAkJQXBwMObOnZvvUT29evXCsWPHkJycnO2zzKPB+JcH5XJ0dATwz1m8miYgIACurq757jdZpEgRNGvWjJ+r00LXrl1DQkKCTI9VNGnSBIBsmxBnPk9XGL5fiEQizJkzB7t378aaNWuEjpOj9evX4+DBg6hfvz7Gjh2b57ZXrIDkvbWXkZFBYWFhdPDgQfL396ewsLBsqxk1RWGefo2Pj6eiRYvSzJkzBRm/S5cu1LBhQ2rRogU5OjrKNGXy8OHDHKdpv3z5QiKRiLZu3aqquIWWVCqlkiVL0uzZs4WO8oOEhAQyNDSklStXytT+jz/+IDMzM0pPT1dtMKZU8+fPJ3Nzc5l/hjg4ONCwYcPybWdnZ0djx44taDytMmnSJBKJRHTs2DGho/xAIpFQqVKlaMKECfTnn3+SqakplS5dmnbt2qWRj31oO97SREdlPlMSExMjyPgHDhwgAASAjh8/LvN19erVo+7du//w3sGDBwvN8zFCaNeuHXl6egod4wdHjx6V6+9veHg4AaDw8HAVJ2PK1KJFC/Ly8pK5/eDBg6l27dp5tvn+/TuJRCLasmVLQeNpFYlEQl27diUTExOKjIwUOk6WiIgIAkChoaFERPTq1Svq0aMHASBXV1e1bLVVmCi8+fB/VzcyzRISEoLy5cujatWqgozfsWNHmJqaokGDBjme05ubXr16ISAg4IdnN8+fPw87OztUqFBBFVELPUdHR41bARsQEAB7e3vY2trK1L5BgwYwMzPjKVgtkpiYiPDwcLlWtDs7O+POnTuIj4/Ptc2dO3dARIVi5eu/icVi7Nq1C7Vq1UKnTp3w4sULoSMBAE6cOAFLS8us6fPy5ctj//79OH/+PN69e4d69eph8uTJSEhIEDhpwcTHx2vECnyFi7o+ffpg5cqVebYhLdmpXhcFBwejVatWgj1TYmJigv3792PHjh1yZejRoweSk5MREBCQ9V5gYCCfIqFCTk5OePPmjcacAyuVSnHy5Em5fhnQ19eHq6srF3VaJDQ0FOnp6XBzc5P5GmdnZxARrl69mmubqKgo6OnpqWVfTk1jYmKC48ePo0iRIujYsaNGPLsWEBCADh06QF9f/4f327Rpg+joaMyfPx/r169HzZo18ejRI4FSFkxMTAwqVqyIHj16CF7YKVzUHT9+HHPnzsXYsWOzFW8SiQTbt29HjRo1ChyQye/bt2+4efMmWrZsKWiOjh07wsHBQa5rKleujEaNGmWtgn327BmePHnC+9OpkKYtlrh58ybevXsnV1EH/LOZ8t9//42UlBQVJWPKFBgYiHLlysHe3l7ma6pXrw4LC4s8F0tERUXB3t4eRYoUUUZMrVO6dGmcPHkSr1+/Rvfu3ZGeni5YlpcvXyIqKirXf8tGRkaYPn067t+/DzMzM7Ru3RpPnz5Vc8qC+f79O7y8vGBqaorDhw9j6tSpguZRuKhr164dLl26hCNHjqBr165ITk5GWloafH19YWtri4kTJ2Yd2s7UKzQ0FESEVq1aCR1FIb169cLp06cRFxeHoKAgiMViwQtUXValShUUK1ZMY6ZgAwICYG5ujmbNmsl1XevWrZGSkiL3we9MGIqsaBeLxWjSpEm+RV1hm3r9LwcHBxw+fBjBwcEYOXKkYLNmmdsStWvXLs92FStWRGBgIExMTNC6dWuNmTrODxFh0KBBePnyJc6fP49Vq1Zh2bJl8PX1FTRUgbx+/Zrq1KlDderUobJly1LJkiVp4cKFFB8fX9CuC6ywLpQYP348VaxYUegYCnv16hUBoB07dlDPnj2pcePGQkfSeS1atMi2QEUoDRo0oJ49e8p9nUQioRIlStDvv/+uglRMmT5+/EgAaOfOnXJfO2/ePLKwsCCJRJLtM4lEQmZmZrR48WJlxNR627dvJwDk4+MjyPjt27enVq1aydz+1atXVLlyZapSpQq9fv1apmvS09Ppjz/+IBsbG3r58qWiURWyePFiAkCHDx/Oem/s2LEkFovp5MmTas2SqUBFXWxsLM2fP5+srKzI2NiYTExMNGrH/8Ja1NWtW5cGDhwodIwCcXFxIQ8PD/4hrSbjx4+nqlWrCh2D3r59SwBo165dCl3fvXt3cnZ2VnIqpmz79u0jAPTmzRu5rz137hwBoHv37mX77MmTJwSATp8+rYyYOmHWrFkyncyibN+/fycjIyNasWKFXNc9e/aMKlSoQHZ2dvTu3bs8296+fZvq169PYrGYANDBgwcLElkuZ8+eJbFYnO3nU0ZGBv30009kampKN27cUFueTApPv06fPh0VK1bE9u3bsWjRInz69Andu3dHmzZtcO3atYLeQGQK+vr1K6Kjo7V26jVTr169cObMGXz+/Jmfp1MDR0dHPHnyRPAHq0+dOgWxWAwPDw+Frndzc8PVq1e1fiWdrgsMDISDgwPKli0r97WNGzeGSCTKcQo2KioKAAr99Ou/zZs3D56enpg+fbpap2Ezz6OV99nYSpUq4cKFC/j+/Tvc3Nzw6dOnbG0yMjLg4+OD+vXrIykpCeHh4bCwsFDbQotnz56hV69ecHd3x7x58374TE9PD3v37kX16tXRqVOnrJOV1EbRarB69eq0Y8eObJtGzpw5k0xNTeno0aMFLTgLrDDeqTt8+DABoOfPnwsdpUDev39PYrGYjI2NKSUlReg4Oi/z7N2QkBBBc3h5eVGzZs0Uvv7Ro0cEgAICApSYSrf98ccfNHToUHrw4IHaxqxcuTKNGTNG4etr1apFv/76a7b358yZQyVLluRNbf8j83zky5cvq23MwYMHk729vcLXP3jwgEqXLk1169alL1++ZL1/9+5datiwIYnFYpo6dSolJycTEVHjxo3VMkOVmJhIdevWpSpVqtDXr19zbffu3TuqUKEC1alTR601iMJFXV7/aDZv3kxGRka0du1aRbtXisJY1I0ZM4YqV64sdAyl8PDwoJ9++knoGIVCeno6FSlSROYTHFQhOTmZTE1NC/T8j1QqpfLly9PEiROVmEx3xcXFkZGRERkaGpJIJCIvLy8KCwtT6ZiZU6QFOflgyJAhVLNmzWzve3l5UZs2bQoSTydJJBKysbGhoUOHqm28MmXK0OTJkwvUz+3bt8nKyooaNGhAnz9/psWLF5OhoSFVr14920bj/fv3V/mjF1KplPr27Svzo2Z37tyhYsWKUbt27SgtLU2l2TKp7ESJU6dOkZmZmaq6l0lhLOpq165Nv/zyi9AxlCIhIYESEhKEjlFoNGrUiPr37y/Y+GfOnCEAdPv27QL1M3DgQKpbt65yQum4nTt3Zp3csWXLFqpevToBIBcXFzp+/HiOixEKauPGjSQWiyk2NlbhPrZt20YikYi+ffv2w/uVK1emSZMmFTChbpoxYwaZm5tTUlKSyse6evWq0u7837x5k4oXL04mJiYkFotpypQpOX4Nf/zxB1laWhZ4vLysXLmSANC+fftkviYwMJD09fVp6NCharmDrNJjwq5fv67K7vNV2Iq6zBVlij5kzgq34cOHU61atQQbf/To0VSxYsUCf+PbsWMHAaBPnz4pKZnuat++Pbm4uGT9WSKR0LFjx6hp06YEgKpXr05btmxR6iMQPXr0oCZNmhSojwcPHhAAOnPmTNZ7md/vFVlRWxhk/m+2f/9+lY81e/ZssrCwUNpZzNeuXSNPT8887yJnHk35+fNnpYz5X8HBwaSnp6fQ3cetW7cSAJoxY4bKCzs++1WH+Pv7EwB69eqV0FGYFsq8g5KYmKj2saVSKVWqVIlGjRpV4L4yt8RR92o/bfPp0yfS19endevW5fj55cuXqXPnzgSAqlSpQqdOnSrwmBKJhKysrGjmzJkF6kcqlZKlpSXNmTMn673Q0FACoFE7MGiaJk2aUIcOHVQ+jqOjI/Xu3Vvl4/xbVFQUAaC///5b6X1fu3aNrKysyM3NTeFC9c8//yQA1LdvX5U+J67w6lemeYKDg2Fra4vy5csLHYVpIScnJ0ilUty+fVvtY9+7dw/Pnz+Xe6VcTsqXLw87OzsEBQUpIZnuOnToEKRSKbp3757j582aNcPRo0dx584dVK5cGR06dEDXrl3x8uVLhceMiorCly9f5DoaLCcikSjbJsRRUVEwNDRE9erVC9S3LhswYADOnj2L9+/fq2yMN2/e4ObNm/D09FTZGDnJPCda2Stgz58/j5YtW6JatWo4cOBAtuPOZDV58mTs378fBw8eRJs2bfD582el5szERZ0OCQkJ0fqtTJhwatWqBT09PUGOCwsICICJiYnSTg5p3bo1nwObDz8/P7i5uaFUqVJ5tqtZsybOnz+Pffv2ISIiAjVq1MCSJUuQlpYm95hBQUEwNjaGs7OzorGzODs748qVK1lnbUZFRcHBwQEGBgYF7ltX9ezZM2vLDVUJCAiAnp6ewtsSKcrExAQVKlTAw4cPldann58fOnbsCFdXVwQGBsLS0rJA/fXo0QPBwcF4+PAhnJ2dVbIFCxd1OuLDhw+4d+8eH6fFFFakSBHUrFlTkOPCTpw4gbZt2yrtvE43Nzc8evRI/XtEaYk3b97g0qVL6N27t0ztRSIRevbsiQcPHmDo0KH4/fffUa9ePQQHB8s1bmBgIFq0aAEjIyNFYv+gadOmiIuLw/379wHw8WCysLS0hKenJ3bu3KmyMQICAuDi4oLixYurbIzc2NnZKa2oW7VqFfr06YM+ffrg6NGjMDU1VUq/zs7OiIiIgL6+PpydnXHp0iWl9JuJizodERISAgB8p44ViKOjo9rv1H3+/Bnh4eFKmXrNlPnLDd+ty9mBAwdgYGCALl26yHVdsWLFsHLlSly/fh3FixdH69at0bdvX5mm81JTUxEaGlrgqddMjRo1glgsRnh4OCQSCW7fvs1FnQwGDhyIqKiorI2aZREREQFfX998Ny9OSkpCYGCgUv8ty8Pe3r7Ad7+ICNOmTcOECRMwdepUbNu2Tel3f6tUqYKwsDDUq1cPbdq0wa5du5TWNxd1OiIkJAT29vawtrYWOgrTYk5OToiOjkZ6erpS+hs6dCgaNGiA48eP5/oD4cyZM5BKpejQoYNSxgSAEiVKoF69elzU5cLPzw/t27eHhYWFQtfXrVsXoaGh2Lp1K86dO4dGjRrh1atXeV4TERGBpKQkpZ0QU7RoUdSuXRthYWF4/PgxkpOTuaiTgYeHB0qWLCnz3bovX77Ay8sLI0eOxIQJE/Is7IKCgpCSkqL25+ky2dvb4/Hjx5BIJApdn56ejkGDBmHJkiVYuXIlFi9eDJFIpOSU/yhevDhOnz6N/v37Y8CAAZg7d65yTvxQ2RIMDVCYVr/a29vTsGHDhI7BtFzmCsKoqKgC9/X48WMSi8VUpUoVAkCNGjWis2fPZlvS37NnT6pfv36Bx/uviRMnUvny5fl0gf94/Pix3Htt5eX169dUsWJFqlGjRp7bScycOZOsrKyUuvfd8OHDqXr16llnyapqOwtdM27cOCpdurRMKzl79uxJxYsXpwULFhAAGj58eK7/DYcOHUq2traC/ZvL3Ovy6dOncl/7/ft36tChA+nr69OePXtUkC5nUqmUFi1aRABo2rRpBe6Pizod8ObNG6V+k2aFV3x8PIlEItq2bVuB+xo9ejSVKFGCkpKSKDAwkJo0aUIAqHnz5nTx4kUiIkpLSyNzc/MftqZQloCAAAJAjx49Unrf2uyPP/4gU1NT+v79u9L6fPToEZUsWZIaNWqU64bhzs7O1L17d6WNSfR/exIOHz6cypUrp9S+ddmNGzdkOk4vc++3zCJny5YtJBKJaNCgQdmOCJVKpVS2bFmaMGGCynLn59mzZwSATp8+Ldd1GRkZ1KxZMzI1NaWzZ8+qKF3eFixYQPr6+hQTE1OgfrSqqJs0aRK5uLhQnz59KDU1Nd/2haWo27t3LwGg9+/fCx2F6QA7O7sCnctJRPTlyxcyMTH5oViTSqUUEBBAjo6OBIDc3d1pxYoVBICuXbtWwNTZxcfHk56eHvn6+iq9b2U6f/581vmV6lCrVi2V7CF2/fp1MjMzI3d392zfn2NjY0lPT482btyo1DEzz/o1MzNTy/5rukIqlVKtWrWoR48eubZ5//49WVlZUdeuXX+487Z7927S09OjPn36/HCn7/r16wSAgoKCVJo9LxkZGWRkZESrV6+W67ro6GgCIOiZ9UlJSWRjY0Pe3t4F6kdrnqm7efMm3r9/j9DQUDg4OODgwYPZ2qSmpiI+Pv6HV2EQHByMGjVqoHTp0kJHYTpAGYslNmzYAKlUipEjR2a9JxKJ0LFjR0RGRuLQoUN4/fo1Jk6ciDJlysDJyamgsbMxMzNDo0aNVPpcnVQqzVp9qYhnz56hbdu2WLVqlfJC5eHOnTu4c+eOzKte5eHk5IRjx44hJCQEAwYM+OG5posXL0IikShtkUQmW1tblChRAgkJCfw8nRxEIhEGDhyIY8eO4du3b9k+JyIMHz4cIpEIvr6+PzxX1rdvX+zbtw8HDhxAr169sra2OXHiBMzNzdG8eXO1fR3/paenh2rVqsm9AjYyMhIikQitW7dWUbL8GRsb448//sDBgwcRFhamcD9aU9SFh4fD3d0dwD8Peub0Rfv4+MDc3DzrZWNjo/B4d+/exf79+xW+PjdEhGvXrmHo0KGoU6cOxo4di6CgoAI9mB4cHMyrXpnSODk54datW1n7f8krNTUVa9euxYABA3LcA00sFqNr166Ijo7Gvn37sGXLFojFqvlW5ObmhsDAQJVstvrp0yd06tQJDg4O+PvvvxXqI3OD5G3btinnIel8+Pn5wcLCIut7qbK1atUKfn5+8Pf3x9ixY7O+pqCgIFSqVAlVqlRR6ngikShrzzsu6uTTt29fpKenw9/fP9tne/bswdGjR7Fhw4Yc/w17e3vj8OHDOHHiBLy9vZGamoqAgAB4eHgIvk+gnZ2d3Ctgr127hurVq8PMzExFqWTTr18/1KtXD5MnT1b8+0HBbxqqx8KFC+nIkSNERBQTE5Pj9EFKSgrFxcVlvTKPC1Jk+jXz7ENlTd18+/aN1q1bR3Xr1iUAZGNjQ/379ycbGxsCQBYWFtSnTx/at2+fXHn5SCSmbOfOnSMA9PDhQ4Wuzzzn8MGDB0pOJr9Xr15R2bJlqW7dutkOfy+I4OBgKlu2LJUoUYKKFStGv//+u0L99OrVi4oVK0YAKDQ0VGn5ciKVSqlKlSo0ePBglY5DRLRp0yYCkDX97uDgQL/++qtKxsp8yPz+/fsq6V+XeXh4UNOmTX947/Xr12RhYSHTFP3p06epSJEi1KJFC405d3z69OlkY2Mj1zUNGzak/v37qyiRfAIDAwkAHTx4UKHrtaaoW79+Pe3YsYOI/jmHTZYzIhV9pu7atWsEgJydnUksFtPhw4cVyiyVSik0NJQGDBhAxsbGpKenR15eXnTq1Kmsh0ylUinduHGD5syZQ/Xq1SMAZGBgQO7u7rRx48Z8Vyft2rWLANDHjx8VysjYf3369IkAkJ+fn9zXSqVScnBwoJ9++kkFyRRz584dKl68OLm4uBT4XNuMjAyaPXs2iUQiatmyJb1584Z69uxJjRo1krsvqVRKpUqVomnTplHlypVp0KBBBcqWnytXrhAACgwMVOk4mTKLrd9//13hv0+yeP78OY0dOzbbg/ssf35+fgQg6+F8qVRK7du3pzJlytCXL19k6iMoKIhMTExILBZrxOrjbdu2EQCZ/62npqaSoaEhrVmzRsXJZNe+fXuqWrWqTGsH/ktrirobN25Q3759ieif1Vt79+7N9xpFi7oBAwZQxYoVKS0tjXr06EFGRkZ06dIlufo4deoU1ahRI+sw7EWLFtHbt2/zve7Fixe0du1aatOmDYnFYnJ3d6evX7/m2v6XX36hWrVqyZWNsfxUqFCBfvvtN7mvO3XqFAHIWt2qKcLDw8nExIQ6depEaWlpCvXx+vVratGiBYnFYpo3b15WEbFlyxYSi8Uy/xDMlPlwdmBgIM2fP59MTU0pPj5eoWyyGD9+PJUuXVptxY9UKqUJEyYQAAJAHz58UMu4THZJSUlUrFgxmjVrFhER/fXXXwSATpw4IVc/V69epa1bt6oiotzCwsIIAN26dUum9pGRkQSAwsLCVJxMdrdv3yaxWCz3gg8iLSrqiNSz+vXDhw9kaGhIS5YsIaJ/pnRbtWpFFhYWdPv27XyvT09Pp2nTphEAatu2LZ0/f17hfZkCAwPJ0tKSbG1t6d69ezm2qVy5coFXKjL2X507d6Y2bdrIfZ2bmxs1bNhQI/eGO3PmDBkYGFC/fv3k/jcZEBBAVlZWVK5cOQoJCfnhs5cvXyr0CMTKlSvJyMiIkpKS6MWLFyQSieivv/6Sqw9ZZWRkkLW1tdq/V0gkEho2bBh17NhRreMy2f36669UqVIlevbsGZmZmdHPP/8sdKQC+fz5MwGgAwcOyNTe19eX9PT0KCkpScXJ5PPrr7+SlZWV3I+NaFVRJy9FiroFCxaQsbHxD791x8bGUt26dalcuXL04sWLXK998+YNtWjRgvT09GjJkiVK2WTzyZMnVLNmTTIzM6Pjx4//8Nnz588JAB06dKjA4zD2b/PmzSMrKyu5irObN28SANq/f78KkxWMn58fiUQiGj9+vExfW1xcHE2cOJEAUKdOnejTp085trO3t6ehQ4fKlaVTp07UunXrrD+3a9cu2/NNyhIcHKxxdyOYZsjccLxq1apUvnx5io2NFTpSgVlZWdGCBQtkajt48GCqW7euagMp4O3bt2RiYiL3jAkXdf+SlpZGZcuWpSFDhmT77O3bt1SpUiWqXr16js8NnDt3jkqWLElly5ZV+gPP8fHx1KVLFxKJRLRw4cKsH0bbt28nkUikEc8xMN1y/PhxApDnLzH/1a9fP6pYsaJMu9QLaf369QSAFi5cmOPnUqmUwsLCaNCgQWRiYkIGBga0YsWKPIvAMWPGUKVKlWQugtPT08nMzIz++OOPrPf279+vsgf+hw4dShUrVtTIO6hMWJkLaAAItvGusjk7O8u88KFOnToqW8RTULNnzyYjIyN6/vy5zNdwUfcvmUfNREdH5/j5w4cPqUSJEuTs7Jz1EOa/H5x2d3dX2YIFiURCc+bMIQDUvXt3+v79Ow0cOFAjf8Ng2u/169cEIGvFeX5evnxJ+vr6tGrVKtUGU5L58+cTANqwYUPWe1++fKHVq1dTrVq1CABVrFiRFixYQK9fv863v8wiWNbd4DOf+wkPD896LyUlhSwtLWnKlCnyf0F5SEtLI0tLS5o6dapS+2W649ixYxq1UKCgfv75Z5kWLyUmJqpkU2xlSUhIoNKlS2etJ5AFF3X/0rRpU2rZsmWeba5cuZL1wPXr16/Jzc2NxGIxLViwQKlnGubm0KFDZGpqSnXr1iVra2saN26cysdkhY9UKqWSJUvS7NmzZWo/efJksrCwUOmD/soklUppzJgxJBKJaMmSJdSvXz8yMjIifX196tatG509e1auf8/x8fGkr69P69evl6n9ggULqFixYtnuao4dO5ZKly6t8GKOnJw8eZIA0M2bN5XWJ2OazMfHhywsLPK9M/33338TALp+/bqakslv48aNBIAiIyNlas9F3f+XuY2JLNuXnD59mvT19cnQ0JDKlClDFy5cUEZcmUVHR1PlypUFP9aE6bZ27dpRp06d8m0XFxdHxYoV07o7QRKJhPr06UMAyNbWlpYsWVKgo/aaN29OXl5eMrVt1aoVeXp6Znv/1q1bBICOHTumcI7/6tevH1WvXp2nXlmhcejQIZlWXK9atYqMjIwU2jpEXdLT06lGjRrUsmVLmf4Nc1H3/2VuYyLr80D79++n3r1707t37woaUyGfPn2i1atXa/RfRqbdpk2bJtMh6cuXLycDAwOZpik1TXp6Ot26dUspd9nnz5+f4923/0pKSiIjI6Ncp6qdnJyUts/fo0ePyMDAgBYvXqyU/hjTBnfu3JFpQ+9+/foptMekup04cULmrWa05pgwVfr48SP27duHUaNGQV9fX6ZrevTogb1796JMmTIqTpezEiVKYOzYsTA0NBRkfKb7nJyc8ObNG3z8+DHXNunp6Vi1ahV69+6NcuXKqTGdcujr66Nu3bpKOabM3d0d8fHxuHr1ap7t/v77b6SmpuZ6DurgwYNx8uRJpRxtNnHiRFhbW2Ps2LEF7osxbVG1alWIRKJ8z4C9du0aGjZsqKZUiuvYsSNatmyJNWvW5NuWizoAmzZtgp6eHgYPHix0FMY0hpOTEwDg5s2b2T6TSqVISEjAzp078erVK0yaNEnd8TROgwYNYGFhgfPnz+fZLigoCKVLl0bNmjVz/Lx3797Q19fHrl27CpTnzJkzCAgIwLJly2BsbFygvhjTJkWKFEGlSpXyPAM2Pj4eDx8+RIMGDdSYTDEikQi7du3CsWPH8m9LpIZTpAUSHx8Pc3NzxMXFoVixYjm2SU9PR8WKFdGpUyds2rRJzQkZ01xSqRTFixdHyZIlUaxYMXz//h0JCQlISEhAYmJiVjsPDw+cPn1awKSaw9vbG+/fv8fly5dzbdOoUSPY2tpi7969ubbp06cPbty4gfv370MkEsmdIy0tDXXq1EGZMmUQHBysUB+MaTMPDw8UKVIER48ezfHz4OBgtG7dGnfu3Mn1FyxtJNtcow47dOgQ3r17hzFjxggdhTGNIhaLMX/+fFy7dg1mZmYoWrQozMzMsl6Zf3Z1dRU6qsZo27YtRo0ahbi4OJibm2f7PDY2FtevX8ewYcPy7Gfw4MHw8/NDeHg4mjZtKneO//3vf4iJicGBAwe4oGOFkr29fZ53zSMjI2Fqaorq1aurMZXqFfqibu3atWjVqhVq164tdBTGNM64ceOEjqBV2rZtC4lEgpCQEHTu3Dnb5yEhIZBKpbk+T5epVatWqFSpErZu3Sp3Uffx40fMnTsXw4YNQ506deS6ljFdYWdnB19fX2RkZOT4rPy1a9fg5OQEPT09AdKpTqF+pi4yMhJhYWH8EDFjTCmqVKmCqlWr4ty5czl+HhQUhCpVqqBSpUp59iMWizFo0CDs378f379/lyvD77//Dj09PSxYsECu6xjTJfb29khPT8eLFy9y/DwyMlIrFknIq1AXdWvXrkXFihXh6ekpdBTGmI5o27ZtrtM+QUFB+d6lyzRw4EAkJibC399f5rGvX7+OLVu2YP78+bCyspL5OsZ0jZ2dHQDkuAL28+fPePbsmVYskpBXoS3q/r2Nia7dfmWMCcfd3R0xMTF4/vz5D++/ffsW9+/fR+vWrWXqp2LFimjTpg22bt0qU3siwrhx4+Dg4IDhw4fLG5sxnVK+fHkYGxvnWNRdv34dAPhOnS7hbUwYY6rQqlUriMXibHfrLly4AAAyF3XAPwsmLl++jFu3buXb1s/PD3///TdWr14t836bjOkqsViMatWq5bitybVr12BhYYGqVasKkEy1Cm1RZ2VlhUmTJsHS0lLoKIwxHWJhYYFGjRplK+qCgoJQu3ZtlCpVSua+OnfujEqVKqFhw4YYNGgQ7t+/n2O7xMRE/Pbbb+jSpYvM07uM6Tp7e/sc79RFRkaiQYMGOrkyvNAWdSNGjOAHiRljKuHu7o7AwEBIJBIA/0yNXrhwQe6Cq0iRIrh9+zaWLl2K8+fPw8HBAV26dMGVK1d+aOfj44PPnz9j+fLlSvsaGNN2dnZ2ud6p08Xn6YBCXNQxxpiqtG3bFt++fcONGzcAAE+ePMHLly8VuotWtGhRTJgwAU+fPsXWrVtx//59NGnSBK1atcLZs2fx9OlTLFu2DJMnT0blypWV/aUwprXs7e3x5s2bH1aQv337Fm/fvtXJ5+kALuoYY0zpGjduDDMzs6wp2KCgIOjp6aFFixYK92loaIhBgwbh3r17OHz4MBITE+Hh4YG6devCysoK06ZNU1Z8xnSCvb09ACAmJibrvcjISADgO3WMMcZkY2BggFatWmXtVxcUFIRGjRrlelyhPMRicdYUbFBQENzd3bF582YULVq0wH0zpkty2tbk2rVrKFWqFGxsbISKpVJc1DHGmAq0bdsWYWFhSEhIUOh5uvyIRCK0bt0ahw4dQocOHZTaN2O6wMLCAqVKlfrhuTpdXiQBcFHHGGMq4e7ujvT0dKxduxZfvnzhVamMCcDOzi7rTh0R4dq1azr7PB3ARR1jjKlEtWrVUKFCBSxZsgTGxsZwdnYWOhJjhY69vX3WnboXL17gy5cvXNQxxhiTj0gkgru7O+Lj4+Hi4gIjIyOhIzFW6GTeqcu8Swfo7iIJgIs6xhhTmbZt2wIAT70yJhB7e3skJCTgw4cPiIyMhI2NDUqXLi10LJXhoo4xxlTE3d0dzZs3R7du3YSOwlih9O8VsLq86XAmLuoYY0xFLCwscOnSJdja2godhbFCqWrVqhCLxXjw4AGuX7+u08/TAVpS1F2/fh3NmzeHq6srevTogfT0dKEjMcYYY0zDGRoaonLlyjh58iTi4+P5Tp0mKFeuHM6ePYuLFy/C1tYWR48ezbFdamoq4uPjf3gxxhhjrPCyt7fH6dOnAej2IglAS4q6MmXKwMTEBMA/O7Xr6+vn2M7Hxwfm5uZZL13dMZoxxhhjsrGzs0NGRgaqVq2K4sWLCx1HpbSiqMv08uVLBAYGolOnTjl+Pn36dMTFxWW9Xr16peaEjDHGGNMkmWfA6vrzdACQ8y0vgbx//x7e3t7Z3j9+/Dj09fXRv39/bNu2DQYGBjleb2RkxHtBMcYYYywLF3UCKVOmDC5fvpztfYlEAi8vL8yePTtreTJjjDHGWH7q1KmDcuXKoU2bNkJHUTkREZHQIfLj5+eH0aNHo3bt2gCAESNGoGfPnvleFx8fD3Nzc8TFxaFYsWKqjskYY4wxJhitKOoUxUUdY4wxxgoLrVoowRhjjDHGcsZFHWOMMcaYDuCijjHGGGNMB3BRxxhjjDGmA3R6oQQRISEhAWZmZhCJRELHYYwxxhhTGZ0u6hhjjDHGCguefmWMMcYY0wFc1DHGGGOM6QAu6hhjjDHGdAAXdYwxxhhjOoCLOsYYY4wxHcBFHWOMMcaYDuCijjHGGGNMB3BRxxhjjDGmA7ioY4wxxhjTAVzUMcYYY4zpAC7qGGOMMcZ0ABd1jDHGGGM6gIs6xhhjjDEdwEUdY4wxxpgO4KKOMcYYY0wH6HRRR0SIj48HEQkdhTHGGGNMpXS6qEtISIC5uTkSEhKEjsIYY4wxplI6XdQxxhhjjBUWWlXUhYSEwM3NDa6urjh27JjQcRhjjDHGNIa+0AFklZKSguXLl+P06dMwNDTMsU1qaipSU1Oz/hwfH6+ueIwxxhhjgtKaO3VhYWEwNjaGp6cnunTpgvfv32dr4+PjA3Nz86yXjY2NAEkZ0xwxMTHIyMgQOgZjjDE10Jqi7sOHD3j27BlOnDiBoUOHYu7cudnaTJ8+HXFxcVmvV69eqT8oYxogOjoanTp1gp2dHZYuXSp0HMYYY2qgNUWdhYUFXFxcYGhoiNatW+PevXvZ2hgZGaFYsWI/vBgrTJ4+fYp+/fqhXr16ePjwIVxcXLBp0yZIJBKhozHGGFMxrSnqGjVqlFXI3bx5E1WqVBE4EWOa4/379xg9ejTs7e1x4cIF+Pr64t69e1i2bBlevHiB8+fPK9Tv169ff3hOlTHGmObSmoUSVlZW+Omnn9CiRQuIxWJs3bpV6EiMCS42NhZ//vknVq1aBUNDQyxcuBCjR4+GiYkJgH9+GapTpw42b94MDw8PufpOTU2Fo6MjevfujcWLF6siPmOMMSUSkQ4ftxAfHw9zc3PExcXxVCzTObGxsXBwcEBsbCzGjx+PKVOmoHjx4tnarVu3DhMmTMDLly9hbW0tc/9bt27F4MGD0bx5c1y6dEmZ0RljjKmA1ky/MsZ+tHPnTnz69Am3b9/GokWLcizoAKBfv37Q19fH9u3bZe5bKpVi6dKlMDAwwM2bNyGVSpWUmjHGmKpwUceYFiIirF+/Hl26dEHVqlXzbGthYYGePXti8+bNMhdnx44dw8OHDzF79mx8//4djx8/VkZsxhhjKsRFHWNaKDg4GA8fPsTIkSNlaj906FA8e/YMQUFB+bYlIixevBgtW7bE8OHDAQA3btwoUF7GtJkOP6XEdAwXdYxpIV9fX9SoUQOurq4ytXd2dkbNmjWxadOmfNuGhITg6tWrmDZtGkqUKIEKFSrg5s2bBY3MmFZ6/vw5ypYti/Xr1wsdhbF8cVHHmJZ5+/Ytjhw5ghEjRkAkEsl0jUgkwtChQ3H06FF8+PAhz7aLFy9GvXr14O7uDgBwcnLiO3Ws0NqwYQM+fvyIUaNGYdWqVULHYSxPXNQxpmX++usvGBkZYcCAAXJdJ8uCiRs3buDcuXOYNm1aVsGYWdTxFBQrbFJSUrBlyxaMGTMGU6ZMwYQJE/Dnn38KHYuxXHFRx5gWSU9Px8aNG9G3b1+Ym5vLda2lpSW6d++e54KJJUuWoGrVqujWrVvWe46Ojvj69StevnxZoOyMaZuDBw/i8+fPGDFiBJYsWYKZM2fit99+w8KFC5U2RkJCAqZMmYJr164prU9WeGnN5sOMMeDEiRN4+/atzAsk/mvIkCHYtWsXgoOD4ebm9sNnMTExOHjwINavXw99/f/71uDk5ATgn7t4FStWVDw8Y1rG19cXbdq0gb29PQBgwYIFMDQ0xMyZM5GWloa5c+fK/AhETh48eICuXbvi/v37ePLkCQ4fPqys6KyQ4jt1jGkRX19fNGnSBPXq1VPoehcXF1SvXh2bN2/O9tmyZctQsmRJDBw48If3ra2tUbp0aV4swQqVW7duISwsDCNGjPjh/VmzZsHHxwfz58/H77//rvBjCYcPH0ajRo0AAMOGDcPp06fx/fv3AudmhRsXdYxpiUePHiEwMFDhu3TA/y2YOHz4MD59+pT1/rt377B9+3ZMmDABRYoUyXYNL5ZghY2vry/Kli2Ln376Kdtn06ZNw/Lly+Hj44MpU6bIVdhlZGRg6tSp6NatGzw8PHDlyhX89ttvSElJwalTp5T5JbBCiIs6xrTEhg0bYGVlhe7duxeonwEDBkAkEmHHjh1Z761atQpFihTJ2pfuv7ioY4VJXFwcdu/ejWHDhv3wKMK/TZw4EWvXrsXy5csxbtw4pKWl5dvvx48f4e7ujuXLl2P58uXYv38/zMzMUKVKFTg5OeHgwYPK/lJYIcNFHWNaICkpCdu2bcMvv/yS7U6avKysrODt7Y1NmzaBiBAbGwtfX1+MGDEi18UXjo6OePfuHd69e1egsRnTBjt37kRaWhp+/fXXPNuNHj0aGzZswNq1a2Fubg4XFxdMnjwZBw8exOvXr39oe+XKFdSvXx93795FUFAQJk6c+MPzeN27d8fJkyeRlJSkkq+JFQ4i0uF9CuLj42Fubo64uDgUK1ZM6DiMKWzr1q349ddfERMTk++xYLK4ePEiWrZsieDgYERERGDu3Ll49uwZrK2tc2z/7NkzVKlSBSdPnkSHDh0KPD5jmoqIULNmTdSsWRP+/v4yXRMVFZX1bykiIgIvXrwAAJQvXx5NmjSBjY0N1q1bhwYNGsDf3x/lypXL1kdMTAzs7Oxw6NAhdO3aValfEys8uKhjTAs0bNgQJUqUwOnTp5XSHxGhevXqcHBwQHh4OLy8vLBhw4Y821taWmLy5Mn4/ffflZKBMU0UEhKCVq1a4cKFC2jVqpVCfbx79w5XrlxBeHg4IiIiEB0djf79+2PZsmUwNDTM9bp69erBwcEBe/fuVTQ+K+R4SxPGNNy1a9cQGRmJ48ePK63PzAUTkydPhlgsxuTJk/Ntz8/VscJg/fr1qF69Olq2bKlwH9bW1vDy8oKXl5dc13l7e2PJkiVISUkp8GMW8li0aBG+fPmC5cuXq21Mphr8TB1jGs7X1xcVKlRQ+rTnwIEDYWhoiO7du8PW1jbf9lzUMV2XeQTfyJEjC7T/nKK8vb3x/ft3nDt3Tm1jRkVFYfbs2di0aRPS09PVNi5TDS7qGBPIo0ePUKlSJXTr1g27d+9GbGxstjZfv36Fn58fhg0bBj09PaWOX6JECZw7dw6rV6+Wqb2joyOeP3+Or1+/KjUHY5rir7/+gqGhodxH8ClL9erVUbNmTbWtgpVKpRgxYgSKFy+O79+/86kWOoCLOsYEsmLFCnz//h2vX79G//79UbJkSbi7u8PX1xdv374FAGzfvh0SiQSDBw9WSQZXV1eULl1apraZJ0vwJsRMF2VkZGDTpk0KHcGnTN7e3jh+/DhSU1NVPtaWLVsQHh6OAwcOwNzcHEFBQSofk6kWF3VMY3z58gUXL17E+vXrMXLkSLi6umLBggVCx1KJr1+/YufOnRg3bhyuXLmCV69eYdWqVZBKpRgzZgzKlSsHZ2dnrFixAt7e3jIXXqpUrVo1mJqa8hQs00knTpzAmzdvCrS5tzJ4e3sjLi5O5QXWp0+fMHXqVAwYMACtWrVCy5YtuajTAVpX1Pn5+aFkyZJCx2BKEB4ejvHjx6Nt27awtrZGiRIl0LJlS4wbNw6hoaHIyMjAvHnz8PDhQ6GjKt3mzZshkUgwbNgwAP9sfTBq1CgEBgbi48eP2LFjB8qUKYO0tDSMHz9e2LD/n56eHurVq8d36phOWr9+PZydnRU+gk9ZatasCXt7e5VPwf72228AgD///BMA4ObmhvDwcN4nT8tp1ZYmUqkU3bt3x7Nnz2S6W8Bbmmiuz58/w9bWFmZmZmjYsCFq1aqFWrVqoWbNmqhWrRoMDQ2RkpICOzs7NGrUSKd2Wk9PT0eVKlXQtm1bbN26Veg4chk7dizOnTuHBw8eCB2FMaV5+PAhqlevjl27dqFfv35Cx8HMmTOxfv16fPjwAQYGBkrvPzQ0FC1atMCGDRuyfrG8d+8eatasibNnz8Ld3V3pYzL10Ko7dXv37oW3tzfE4pxjp6amIj4+/ocX00zz58+HVCrF9evXcfjwYcyfPx89evRAzZo1s/ZxKlKkCBYsWIBDhw4hIiJC4MTKc+TIEbx+/Rrjxo0TOorcHB0d8ejRIyQkJAgdhTGl2bBhA0qUKAFvb2+howD4Zwr227dvuHDhgtL7Tk9Px8iRI9G4cWMMGTIk6/0aNWrA2tpaJWMy9dGaok4ikeDAgQPo2bNnrm18fHxgbm6e9bKxsVFjQiarR48ewdfXFzNmzECpUqXybNuvXz/UqlULU6dOlevQbE22evVqtGzZEnXr1hU6itycnJxARIiKihI6CmNKkZSUhO3btyvlCD5lqVu3LqpWraqSGYpVq1bh3r178PX1/eEGiUgkQuvWrfm5Oi2nNUXd7t270aNHj1zv0gHA9OnTERcXl/V69eqVGhMyWf32228oW7asTM+K6enpYfHixbh06ZLSTlMQ0rVr1xAWFqaVd+kAwMHBAYaGhrxYgumMv//+G7GxsYJtY5ITkUgEb29vHDlyBBkZGUrr9+XLl5g7dy7GjBkDR0fHbJ+3bt0a169fx7dv35Q2JlMvrSnq7t27h507d8LDwwMxMTGYMGFCtjZGRkYoVqzYDy+mWS5evIhjx47Bx8dH5t+KO3ToAFdXV0ybNg0SiUTFCf/PmTNn0KRJkxz3j1PU6tWrUblyZXh6eiqtT3UyMDBAnTp1eLEE0xlRUVEwMTFB9erVhY7yA29v76wdAZRl3LhxsLCwwPz583P83M3NDUSEkJAQpY3J1EtrirolS5bg3LlzOHPmDKpVq4aVK1cKHYnJSSqVYuLEiWjYsCF69eol83UikQhLlizB7du3sWfPHhUm/NGOHTtw5coVpd1Ve/v2Lfbv348xY8YofSNhdeKTJZguiYqKQu3atTXu32T9+vVRqVIlpU3BBgQE4OjRo1i5cmWuNzwqVqyIqlWr8hSsFtOaou7fIiMjhY7AFLB3717cuHEDK1asyHMaPSeNGzdGt27dMGvWLKSkpKgo4f/JyMjAmTNn4OjoiJ07d+Lw4cMF7tPX1xdFihTBL7/8ooSEwnF0dMTdu3fV8t+BMVWLiorSyOdbM6dgDx8+XOAZiqSkJIwZMwZt27ZF9+7d82zr5ubGRZ0W08qijmmf5ORkzJgxA127doWLi4tCfSxcuBBv3rzB+vXrlZwuu/DwcMTGxsLX1xdeXl4YNmwYPnz4oHB/KSkp2LBhAwYNGiTobvXK4OTkBIlEgtu3bwsdhbECSU1Nxf379zWyqAP+mYL9+PEjLl++XKB+Fi9ejHfv3uF///tfvmfaurm54cGDB1mn2jDtwkUdU4uVK1fi/fv3WLJkicJ92Nvb49dff8XChQuV+pxbTk6dOoWSJUuiYcOG2LhxI0QiEYYOHarwCty9e/fiy5cvGDNmjJKTql/mVBVPwTJtd//+fWRkZGhsUdeoUSPY2NgUaAo2LS0Nvr6+GD58OKpVq5Zv+1atWgEAb22ipbioYyr34cMH+Pj4YNSoUbC1tS1QX3PmzEFKSgqWLl2qpHQ5O3nyJNq3bw+xWIxSpUph8+bNOH78OHbs2CF3X0SEVatWoWPHjjJ9U9V0xsbGcHBw4MUSTOtlbs1Tp04dgZPkTCQSoVu3bjh06BCkUqlCfZw+fRqfP3+W+bGPkiVLok6dOjwFq6W4qGMqN2fOHBgYGGDWrFkF7sva2hoTJkzAqlWr8ObNGyWky+7ly5e4ffs2OnbsmPVe586d8fPPP2Ps2LF48eKFXP2FhITg9u3bGnPclzJoy2KJx48f48yZMyod4+PHjyrtn6lOVFQUqlSpAjMzM6Gj5Mrb2xvv3r1DeHi4Qtfv2LED9erVk6twzXyuTlf2Bi1MuKhjKnX37l1s3rwZs2bNgqWlpVL6nDJlCkxMTDB37lyl9Pdfp06dgp6eXrajclatWoXixYvj559/luu35lWrVqFWrVpo3bq1sqMKxtHREdHR0UhPTxc6SjZEhNDQUHTp0gV2dnZo37499u3bp5KxwsPDUbp0afz+++/8A1ALaeoiiX9zdnZG2bJlFVr5/+XLFwQEBGDgwIFyXefm5oZXr17h8ePHco/JhMVFHVOpKVOmoFKlShg5cqTS+jQ3N8fMmTOxdetW3L9/X2n9Zjp16hSaNWsGCwuLbONu27YNISEhWLt2rUx9PXnyBCdOnMC4cePyfUBZmzg5OWU9ZK4pMjIysG/fPjRu3BgtWrTAw4cPsWnTJvTu3RuDBw/GnTt3lD7m3r17YWxsjEWLFmHixIlc2GmRzJNRNL2oE4vFGDJkCHbs2IGvX7/Kda2fnx+ICH369JHruhYtWkBfX5+fq9NGpMPi4uIIAMXFxQkdpVA6d+4cASB/f3+l952SkkIVK1akzp07K7Xf5ORkMjExoSVLluTaZty4cVSkSBG6d+9evv2NGzeOrKysKCkpSZkxBRcfH08AaNu2bUJHodjYWFq2bBlVqFCBAJCbmxudOnWKJBIJERF9//6dateuTdWqVaPY2FiljSuRSMja2prGjRtH//vf/wgADRs2LGtcptlev35NAOjIkSNCR8nX+/fvycjIiHx8fOS6rkGDBvTTTz8pNGbTpk2pe/fuCl3LhMNFHVOZhg0bUtOmTUkqlaqk/z179hAAunjxotL6PH36NAGgO3fu5NomKSmJ7O3tqUGDBpSWlpbt8/T0dIqJiaHjx4+TmZkZzZgxQ2n5NImdnR2NHTtW0AxnzpwhMzMzMjAwoAEDBtCtW7dybBcTE0Pm5ub0008/Ka3ounTpEgGgy5cvExHR1q1bSSwWU//+/Sk9PV0pYzDVOXnyJAGgp0+fCh1FJoMHD6ayZctSamqqTO3v3r1LAOjQoUMKjTdz5kyysrLiX1K0DBd1TCViYmIIAB08eFBlY0gkEmrQoAE1bNhQad94Ro8eTRUrVsy3EL1y5Qrp6enR+PHjaffu3TRz5kzy9vammjVrkqGhIQEgAFSuXDl68+aNUrJpml69epGLi4ugGVxcXKhJkyYy/W984sQJAkB//PGHUsYeM2YMlStX7oe/e35+fqSnp0fe3t4y//Blwli0aBEVK1ZMZb90KtudO3cIAO3atUum9r/99htZWlpSSkqKQuMFBwcTALp586ZC1zNhcFHHVGLRokVkYmJCiYmJKh0nJCSEANDevXsL3JdUKqUqVarQiBEjZGo/e/bsH4o3Nzc3GjlyJK1Zs4bOnTtHL1++1OnfcpcsWUKmpqaCfY0PHz4kAOTn5yfzNbNnzyaRSERnzpwp0Nj/nnr9r6NHj5KhoSF17NiRkpOTCzQOU52ePXsK/kuJvNq1a0eOjo75FqIZGRlUtmxZGjVqlMJjpaSkkLGxMS1btkzhPpj6cVHHVKJevXrUo0cPtYzVuXNnqlixYoF/gN6/f58AUEBAgEztJRIJRUdHF9q/X+fPnycA9ODBA0HGnzZtGllYWMj1310ikVD79u3J0tKSnj17pvDY/516/a8zZ86QsbExtWnThr5//67wOEx1qlevXqCiRwhnz54lABQSEpJnuzNnzhAAunr1aoHGa9u2LbVv375AfTD14tWvTOkeP36MW7du5XvGoLIsWbIEr1+/lnlFam5OnjyJIkWKZO2onh+xWIzatWvneji2rnN0dAQAQfary8jIwM6dO9G3b18UKVJE5uvEYjF2794Nc3NzdO3aFcnJyQqN7+/vj3LlysHZ2TnHz9u1a4czZ84gIiICHh4eSExMVGgcphrJycl49OiRxq98/a+2bduiZs2aWLFiRZ7tduzYgRo1aqBBgwYFGs/NzQ2XLl3SyK2LWM64qGNK5+/vDxMTE3To0EEt49nb22P48OFYuHAhPn/+rHA/p06dQqtWrWBiYqLEdLrLysoKFStWLPC5lIo4d+4c3r59i0GDBsl9raWlJQ4fPoz79+9j5MiRcm9DIpVKcfDgQXh7e0Mszv1baIsWLRAYGIiIiAhs2bJF7pxMde7cuQOpVKp1RZ1IJMLEiRNx4sQJPHr0KMc2cXFxOHLkCAYOHFjgbZTc3NyQmJiIq1ev5ttW3n9HTDW4qGNK5+/vj44dO6q1OJozZw6kUikWLFig0PXx8fG4dOnSD6dIsPwNHDgQvr6+OHLkiFrH3bp1K+rUqQMnJyeFrq9Xrx42bdqE7du3Y+PGjXJd+/fff+Pdu3cy3Ylu3LgxvLy8sHHjRv6hp0GioqIgFotRq1YtoaPIrU+fPihZsiRWr16d4+f+/v5IS0tDv379CjyWo6MjLCws8jwy7OnTp/Dw8EDt2rUhkUgKPCYrIIGnf1WKn6lTv8ePHxMAOnDggNrH9vHxIX19fXr06JHc1x48eJAAFOg5q8JIIpFQjx49qEiRIhQeHq6WMT99+kQGBga0atWqAvc1atQoMjAwkOvvTE6rXvOS+exhaGioojGZko0ePZrs7e2FjqGwefPmkbGxMX358iXbZy4uLuTu7q60sby8vKhFixbZ3k9LS6PFixeTsbExlSpVigBQYGCg0sZliuE7dUyp1D31+m/jxo2DtbU1pk2bJve1J0+ehIODAypVqqT8YDpMLBZjx44daNCgATw9PdVyrFDmcUl9+/YtcF9//vknrK2tMWXKFJnaS6VSHDp0KN+p139r3bo1qlatKvcdQaY62nCSRF6GDx8OqVSa7e/UkydPcPnyZbmPBcuLm5sbwsPDf3gu9MqVK2jQoAFmzJiBkSNH4smTJ6hWrRp27typtHGZgoSuKlWJ79Spn5OTk6C7kO/atUvuuyISiYTKlClDkydPVmEy3fblyxeyt7cnW1tb+vTpk8rGkUqlVLt2berWrZvS+ty3b5/MdxlCQ0PzXPWamyVLlpCRkRF9/vxZ0ZhMSaRSKZmbm9PChQuFjlIgv/76K1lbW/+wH+Ls2bPJzMxMqVtJ3bt3jwDQ2bNnKS4ujkaPHk0ikYjq169P169fz2o3b948MjU15dXeAuOijimNkFOvmSQSCTk5OVGjRo1k3lQ0MjKSAFBwcLBqw+m4J0+eUKlSpcjZ2Vllx6Jl/rc6efKk0vqUSqXUtGlTql27NmVkZOTZVt6p10wfPnwgAwMDWrFiRUGiMiV49uyZXFsXaarMzYh37txJRP9876tYsSINHjxYqeNIpVKytramNm3aULly5cjU1JRWrlyZ7dSUJ0+eEADavXu3Usdn8uGijimNj48PGRsbC/6b2oULFwgA7du3T6b28+bNo2LFiuV45BeTz9WrV8nY2Ji6du2ab4GkiJEjR1LZsmWVfgzX1atXCQBt3Lgx1zYSiYTKli2r8NFoPXv2JHt7e605wUBXHT16lADQq1evhI5SYB4eHlSvXj2SSqVZJ0Co4tnNfv36EQDq1KkTvXjxItd2Li4u1K5dO6WPz2SnNUVdZGQkubi4UIsWLah79+4y/QDmok69nJycyNvbW+gYRETk6elJlSpVkumInEaNGmlMbl1w7NgxEovFNGHCBKX2m5ycTBYWFjRt2jSl9ptpwIABVLJkSYqNjc3xc0WnXjNl/rKhzLOKGdGtW7fI3d1d5inHefPmkaWlpU4U1+fOnSMAdOHCBfr555+patWqKvm6Xr16RYGBgfn2vXHjRhKLxfT27VulZyjsvn//LtN/W6UVdZGRkcrqKkfv3r3L+kc7ffp0mab4uKhTn8xb7/v37xc6ChH98xyInp4e+fj45Nnuw4cPJBKJaNu2beoJVkisW7eOAChlhWomPz8/AkAPHz5UWp//9vr1azIxMaEpU6bk+PnYsWMVmnrNJJVKyc7Ojvr06VOQmOw/Mo/r27Fjh0ztu3btSq1atVJxKvWQSqVUq1Ytat26NRUtWpTmzZsnaJ6vX7+SoaEhLV++XNAcuqhnz54yPa+utKLOxsZGWV3la/bs2XT48OFs76ekpFBcXFzW69WrV1zUqUnm0nahp17/bezYsQSA2rVrR2FhYTm22bFjBwGg9+/fqzmd7psyZQqJRCLasWOHUu4etG3bVuVndc6bN48MDAwoJibmh/cLOvWaadmyZWRoaKjSxSSFjbu7OwGgZs2aydS+atWqNH78eBWnUp+tW7dmnUGtCVsydevWjerWrSt0DJ3y9OlTEovFtG7dunzbylXUde/ePceXt7c3mZqaKhxYHi9evKCmTZvmOP06Z86crL/c/35xUad69evXV+qKRGWQSCR04MABqlmzZlZx99+91Hr06EENGzYUKKFuk0gkNGDAAAJAHh4eBbrD9uLFCxKJRLRlyxYlJswuMTGRypcvT126dPnh/YJOvWb69OkTGRoa8iHpSiKRSMjc3JycnJwIAN25cyfP9vHx8QRAp+7Mp6SkUOnSpcnV1VXoKET0f88sRkdHCx1FZ4wZM4asrKxkesRArqKuePHiFBAQQCEhIT+8goODqVSpUgoHllVcXBy1aNEi1x8OfKdOGJo29fpfEomE9u/fTw4ODlkFRnh4OKWlpZG5uTnNmTNH6Ig6SyqV0rFjx6hy5cpkYGBAU6dOpYSEBLn7mT9/PpmamlJ8fLwKUv5oz5492VZDF3Tq9d/69OlDdnZ2OvFMl9Du3r1LAOj06dNUsmRJGjduXJ7t//77bwJAN27cUE9ANblx4wY9fvxY6BhERJSamkpWVla5PsbA5PP582cyMTGh2bNny9RerqKuS5cuFBISkuNnql7xkpGRQZ06dZJrx2p+pk49lixZonFTrzn5b3FXv359AkBXr14VOprOS0pKonnz5lGRIkWoXLly5OfnJ3NRI5FIqHLlyjRo0CAVp/yHVCqlJk2aUL169SgjI0NpU6+ZLl68mPVwOyuYLVu2kFgspvj4eJoyZQoVL16ckpOTc22/fv160tfXl2kBFVNc5ip1VayAL2zmz59PRYoUoY8fP8rUXmtWv+7du5csLS3J1dWVXF1dZdqugos69WjQoIHGTb3m5d/FXeXKlZVy94XJ5tmzZ9SlSxcCQK6urnT79u18r8lcNarOY7bCw8MJAP311190+fJlpY4vlUqpRo0a1LNnT6X0V5j9+uuvVKdOHSIievjwYb77pA0bNoxq1aqlrniFVkREBAGg8+fPCx1FqyUlJVHJkiVpxIgRMl+jNUWdIrioU72nT5/KtSecJpFIJPwbu0DOnDlDdnZ2pKenR/369aMdO3bQy5cvc2zbv39/qlatmtqnK/v27UulS5emQYMGUdmyZZVa/K9cuZIMDAzow4cPSuuzMKpVqxYNHTo068+tWrXK8ZzSTE2aNKG+ffuqI1qhJpVKqVq1ajRgwACho2i1DRs2kEgkyrZwKy8Kn/166NAhRS9lOsTf3x9FihRBx44dhY4iN7FYDCMjI6FjFErt2rXD7du3sXjxYkRFRWHgwIGoUKECbG1tMWTIEOzduxdv375FXFwcDh48iEGDBkEkEqk1o4+PD+Lj47Ft2za5znqVxYABAyAWi7F9+3al9VnYxMXF4e7du3B2ds56b+jQobh06RIePHiQrb1UKsXt27e1+sxXbSESidC/f38cOnTohzNjmewkEgmWL1+Orl27wtbWVubrFP4u1adPH6xcuTLPNkSkaPdMS/j7+6NDhw4oWrSo0FGYljE0NMTkyZMRHR2Njx8/4uDBg/Dw8EBYWBj69u2LcuXKwc7ODqmpqRgwYIDa89nY2GDKlCkAgO7duyu1b0tLS/To0QObNm2CVCpVat+FxbVr10BEaNKkSdZ7Xbp0gZWVFTZv3pyt/ZMnT5CYmMhFnZr069cPiYmJOHLkiNBRtNKxY8cQExOT9T1IZoreFjxz5gwVK1aMxowZk21aJCMjg7Zt20b29vaKdq8UPP2qWplTr35+fkJHYTrm/fv3tH//fho+fDjNnz9fsBwpKSl09OhRlUz9Zj6rx88dKWb+/PlUvHjxbNPiEydOJCsrq2yPVvj7+/OelGrm4uJC7u7uQsfQOpmLtfJ6lCA3BXqm7tatW1S+fHny8vKipKQkSk1NpfXr11OlSpWoePHiMi/BVRUu6lRr6dKlVKRIEYW2qGCssJNKpeTg4MBH1CmoQ4cO5OHhke39+/fv5/jL5syZM6l06dLqiseIjw1TVOa+mCdOnJD72gI9JFK3bl1ERETg6dOnaNKkCSpXrow5c+ZgyJAhePHiBebNm1eQ7pkGIyLs37+fp14ZU5BIJMKwYcNw9OhRvH//Xug4WoWIEBER8cPUa6bq1aujRYsW2LRp0w/vR0VF8dSrmnXv3h0GBgbYu3ev0FG0yp9//okaNWqgQ4cOcl9boKIuLi4OW7duxZs3bxATE4PY2FgEBQVhxowZMDMzK0jXTMOdOHEC169fx5AhQ4SOwpjW6t+/P4oWLYr+/fsjLS1N6DhaIyYmBl+/fv1hkcS/DR06FMHBwXj06FHWe1zUqV/x4sXh6emJXbt2CR1Fazx48ADHjx/HlClTFFqcpXBRN336dFSsWBHbt2/HokWL8OnTJ3Tv3h1t2rTBtWvXFO2WaYH09HRMmTIFbdq0Qbt27YSOw5jWKl68OA4fPoyLFy9iyJAhvLhMRuHh4QCARo0a5fh5t27dULx4cfz1118AgG/fvuHly5dc1Amgf//+iIqKQnR0tNBRtMLy5cthbW2NPn36KHS9wkXd0aNHsWbNGjx69AhDhw6Fqakptm/fjqFDh6JVq1Y4duyYol0zDbdx40bExMRg+fLlat9mgjFd06pVK2zfvh07d+7EnDlzhI6jFSIiIuDg4AALC4scPy9SpAgGDhyI7du3Iy0tLaug4KJO/Tw8PGBlZcV362Tw7t077Ny5E+PGjVN8uy1FH+TLazXY5s2bycjIiNauXato90rBCyWU79u3b2RlZUWDBw8WOgpjOmXx4sUEgDZv3ix0FI1Xt25d+uWXX/Jsk3ku7IEDB2j16tVkaGhIaWlpakrI/m3UqFFkbW3N//vnY/r06WRmZkbfvn1TuA+F79TldYfm119/xZEjRzBjxgxFu2caauHChUhJScGCBQuEjsKYTvntt98wYsQIDB8+HKdPnxY6jsb6/v07bt++nevzdJkcHBzQrFkzbNq0CVFRUahZsyYMDAzUlJL927Bhw/Du3TscOHBA6CgaKyEhAb6+vhg6dGiud6Blobwt0v+jffv2CAkJUVX3TABPnz7FmjVrMHXqVFhbWwsdhzGdIhKJsGbNGnTo0AHdu3fH9evXhY6kNKTEZwWvXbsGqVSa48rX/xo6dCgCAwNx9uxZnnoVUO3atdGuXTssW7aMnxvNxZYtW/D9+3eMGzeuQP2orKgDACcnJ1V2z9Rs2rRpKFmyJCZNmiR0FMZ0kr6+Pvz8/ODg4ICOHTvi+fPnQkcqsBkzZqBx48ZITk5WSn8REREwMzNDjRo18m3bvXt3WFhY4M2bN1zUCWzy5Mm4desWgoKChI6ice7du4e5c+eiX79+sLGxKVBfKi3qmO74+++/4e/vj4ULF8LExEToOIzpLFNTUwQEBMDU1BQeHh74+vWr0JEUFhkZiSVLluDatWuYNm2aUvqMiIhA48aNoaenl29bY2Nj9O/fHwAvkhCam5sb6tWrhz///FPoKBrlw4cP6NixIypUqIDVq1cXuD8u6li+iAiTJk2Ck5NT1jdIxpjqlCpVCmfOnMHnz5/RuXNnpd3lUieJRILhw4ejVq1aWLZsGdasWYPAwMAC9UlECA8Pl2nqNdO4cePQvn17NGzYsEBjs4IRiUSYMmUKzp07x9ub/H9JSUn46aefkJKSgoCAABQrVqzAfXJRx/K1f/9+XLlyBcuXL1doM0TGmPyqVauGEydOIDIyEnXr1sWpU6eEjiSXDRs24Pr169iwYQMmTJgANzc3/Pzzz/j27ZvCfT579gyfPn3Kd5HEv1WtWhWnTp3ik280QPfu3WFjY4Nly5apfWypVKr2MfMilUoxYMAA3LlzBwEBAahQoYJS+uWf0CxPKSkpmDZtGjp37oyWLVsKHYexQsXZ2RmRkZGwsbFBx44d4enpiSdPnggdK1/v3r3DjBkzMGTIEDg7O0MsFmPbtm34/v07Ro8erXC/mZsON27cWFlRmRoZGBhgwoQJ8PPzw+vXr9U27rFjx2BlZYUrV66opH8igouLC7p37443b97IdM306dNx+PBh7N27F/Xr11dqGJ3F+9QV3OLFi0lfX58ePnwodBTGCi2pVEr+/v5kY2NDhoaG9Pvvv9P379+FjpWr3r17U4kSJejLly8/vL9nzx4CQH5+fgr1O3r0aLKzs1NGRCaQ+Ph4Mjc3p8mTJ6tlvICAADIwMCAANH78eJWM8ejRIwJAxsbGZGZmRuvWraOMjIxc22/atIkA0MqVK5WehYs6lqsPHz6QmZkZjRkzRugojDEi+v79O82cOZOMjIzIxsaG9u/fn+dG8EI4d+4cAaDt27dn+0wqlVKPHj3IwsKCXr9+LXff9evXpwEDBigjJhPQ1KlTyczMjGJjY1U6zpkzZ8jQ0JA6d+5MgwcPpipVqqjk38uGDRtIT0+PXr58SUOHDiUA1LhxY4qKisrW9ty5c6Snp0cjR45USRYu6liuRowYQRYWFvT582ehozDG/uXJkyf0008/EQBq1aoVvXr1SuhIRESUnJxM1apVI1dX11x/YH358oWsra2pbdu2JJFIZO47MTGR9PX1af369cqKywTy5s0bMjAwoD///FNlYwQGBlKRIkWoY8eOlJKSQidPniQAdPfuXaWP1b17d3J2ds76c2hoKDk4OJC+vj5NnTqVEhMTiYjo9u3bVKxYMWrfvj2lp6crPQcRF3UsF0+fPiU9PT2V/qNjjBXMqVOnqESJEjRq1CihoxAR0dy5c8nAwIDu3buXZ7szZ84QALmOkrx06RIBoJs3bxYwJdMEgwYNonLlylFqaqrS+w4JCSFjY2Nq164dJScnE9E/v3CYmJjQ4sWLlTqWRCKhEiVK0O+///7D+6mpqbRgwQIyMjKiypUrk5+fH1WoUIHq1KlD8fHxSs3wb1pV1E2aNIlcXFyoT58+Mv1F4KJOcSNGjKASJUpk/YbBGNNMI0aMIFtbW6Fj0KNHj8jIyIimT58uU/tRo0aRsbEx3b9/X6b2S5cuJVNTU5Xd4WDqdefOHQJAO3fuVGq/oaGhZGpqSm3atKGkpKQfPvPy8qKmTZsqdbyoqCgCQBcuXMjx84cPH1KrVq0IAJUtW1bld9W1ZvXrzZs38f79e4SGhsLBwQEHDx7M1iY1NRXx8fE/vJj83r17h61bt2LChAm80TBjGq5du3Z4/PixoKtiiQijRo2CtbU1Zs6cKdM1S5cuhY2NDfr374/09PR824eHh6Nhw4bQ19cvaFymAWrWrIkOHTrgzz//zPPosNTUVCxduhS1a9dG37598ddff+Hp06c5XhMREYEOHTqgYcOGOHbsGIyNjX/43NPTE+Hh4fj06ZPSvo6goCAYGRnlus2OnZ0dgoKCcPjwYVy4cAHly5dX2tg50ZqiLjw8HO7u7gAADw8PhIWFZWvj4+MDc3PzrFdBj9sorFauXAkjIyOMHDlS6CiMsXy0bt0a+vr6OHv2rGAZ9u/fj/Pnz2PdunUy/yJoYmKC3bt34+bNm5g3b16ebUmBTYeZ5psyZQpu376Nc+fO5fj56dOnUbt2bcyYMQM1a9ZETEwMhg0bhqpVq6JSpUr4+eefsXPnTrx69QqRkZFo164d6tatixMnTuT497Bjx44AoNQ9Hy9cuIBmzZqhSJEiubYRiUTo0qUL7O3tlTZubrSmqIuNjc3abdnc3DzHo3OmT5+OuLi4rNerV6/UHVPrff36Fb6+vhg1ahQsLCyEjsMYy4eZmRmaNWsmWFEXFxeHCRMmoGvXrlk/NGXVsGFDzJs3DwsXLsTw4cORkpKSY7uXL1/i/fv3cm06zDSfq6sr6tevn20z4sePH8PT0xMdOnSAjY0NoqKisG/fPly9ehVfv37F8ePH0a1bN9y6dQsDBw5EhQoV0KRJEzg4OOS50XTp0qXRuHFjHD9+XCn5MzIycPHiRbi5uSmlP2XQmvvYxYsXz5pOjY2NhaWlZbY2RkZGMDIyUnc0nbJu3TpkZGRg/PjxQkdhjMmoXbt2WLRoEdLS0mBoaKjWsRcsWICEhASsWrVKoetnzJiBUqVKYcyYMbh69Sr8/f1RtWrVH9pEREQA4E2HdU3m0WG9evXCzZs3Ua1aNSxcuBArVqxAmTJlcPDgQXTt2hUikSjrGnNzc3h6esLT0xMA8PnzZ1y8eBFPnjzBsGHDYGZmlueYnp6e8PHxQWpqaoHrhcjISCQkJKB169YF6kepVPrEnhLduHGD+vbtS0REf/zxB+3duzffa3ihhHwSEhLI0tKS96VjTMvcuHGDAFBwcLBax42PjyczMzOZF0fk5caNG1S1alUyNzenw4cP//DZuHHjqHLlygUeg2me9PR0qlSpEjVu3JjKli1LRkZGNHv2bJUt0ouOjiYAdObMmQL3tXDhQjIzM9OoxTtaM/3q6OiIMmXKoHnz5rh37x66desmdCSds2nTJsTHx2Py5MlCR2GMyaFu3booVaqU2qdgd+7ciaSkJKU8f+vo6Ijr16/Dzc0NXbt2xaRJk7IWUERERPDUq47S19fH5MmTceXKFTRp0gT379/HvHnzVLZIr1atWqhYsaJSpmCDgoLg6uqqUYt3RER5LDvRcvHx8TA3N0dcXFzW83gsZ6mpqahcuTLatWuHbdu2CR2HMSan/v37486dO7h586ZaxiMiODg4oFatWvD391dqv2vWrMHkyZPRsGFD7Ny5EzVr1sSyZcswZswYpY3DNAcR4cmTJ7C1tVXLeGPHjsXRo0fx4sWLH6Z25ZGSkgILCwv4+PhgwoQJSk6oOK25U8dUa8eOHXj//j2mTp0qdBTGmAI8PDxw69YtfPjwQS3jBQYG4sGDB0ovtEQiEcaNG4fQ0FC8fv0aderUQVpaGt+p02EikUhtBR3wz3N1r169QnR0tMJ9hIWFITU1VaMWSQBc1DH8s4JnyZIl6NatG6pXry50HMaYAtq2bQsAuW4PoWxr1qxBnTp10Lx5c5X036RJE9y4cQMtW7ZEqVKlUKdOHZWMwwofV1dXmJmZFWgK9sKFCyhRogRq1aqlxGQFx0Udg7+/P54+fYrp06cLHYUxpqBSpUrByckJZ86cUflYT58+xcmTJzFmzBiFp69kUaJECZw8eRLPnz9X+6peprsMDQ3h4eGBEydOKNzHhQsX0Lp1a4jFmlVGaVYapnZSqRSLFi2Ch4cHnJychI7DGCsADw8PnDt3DlKpVKXj/O9//0Px4sXRp08flY4D/DM199+TARgrKE9PT1y7dg3v3r2T+9r4+HhcvXpVs7Yy+f+4qCvkTp48iTt37mDGjBlCR2GMFVC7du3w+fNnlS6WSExMxNatW/Hrr7/yMYJMa3Xo0AFisRgBAQFyXxsaGgqJRMJFHdMsRISFCxfCxcVFZc/FMMbUx9nZGWZmZiqdgt29ezfi4+P5GEGm1aysrNCsWTOFpmCDgoJgY2Oj1sUdsuKirhALCQnBlStX+C4dYzrCwMAAbm5uKtuvjoiwdu1a/PTTT6hYsaJKxmBMXTw9PREYGIikpCS5rst8nk6Vz5MqivepUxARITo6Gu/evcP79++z/u+/X5aWljh27BhKlSql1LGVpW3btvj8+TNu3LihkX85GWPy27BhA8aMGYPPnz/D3NxcqX1fuHABbm5uCAoK0sipJ8bk8eDBA9SoUQPHjx/POnYsP58/f0bJkiWxc+dO9O/fX8UJ5cd36hQ0d+5c1KtXD+3bt8egQYOwbNkyBAUF4cuXL7CxsUGnTp3w7NkzdOnSJddDqvNy/vx5NGzYEJGRkSpID9y/fx+BgYGYOnUqF3SM6ZB27dohIyMDFy5cUHrfa9euRc2aNdGqVSul982Yutnb28PW1lauKdjg4GAA0Nh/A1zUKSA+Ph6rVq3C8OHD8fLlS6SkpODLly+4c+cOAgMDsXv3bixfvhzHjh3D9evXMXToUMhzQzQsLAxeXl64f/8+WrdujcuXLyv9a9izZw8sLCzg5eWl9L4ZY8KpXLky7OzslD4F++LFCxw/flzl25gwpi4ikQg//fQTAgICZF4xfuHCBdjZ2aF8+fIqTqcYLuoUsHnzZiQnJ2PmzJmwsbGBkZFRju0aN26Mbdu2YdeuXVi8eLFMfUdFRaFDhw5o2LAhnj17hvr168Pd3R3nz59XWn4iwp49e+Dt7Y0iRYoorV/GmGZo164dzp49K9cvk/lZv349ihUrhn79+imtT8aE5unpiXfv3uH69esytQ8KCtK4UyT+jYs6OaWnp2PVqlXo06cPypUrl2/73r17Y9asWZgxYwYOHz6cZ9tHjx7B3d0d1apVw/Hjx1GyZEmcOnUKrVq1QqdOnZRyADHwz53A58+f8zdnxnRUu3bt8Pz5czx69Egp/SUlJWHz5s345ZdfYGpqqpQ+GdMEzZo1g4WFhUxTsK9evUJMTIxGP0/KRZ2c9u/fj9evX2Py5MkyXzN37lx0794d/fv3z3X/qFevXqFNmzawsrLC6dOnsxZ2GBsb48iRI/D09ETXrl2xb9++An8Ne/bsgY2NDW9jwpiOatmyJQwNDZU2Bbt3717ExsZi1KhRSumPMU1hYGCADh06yFTUZT6nqqnP0wFc1MmFiPDnn3/Cw8NDrvPexGIxtm/fjho1auCnn37KtoP1x48f0bZtW+jp6eH8+fMoUaLED58bGhpi37596Nu3L/r06YOtW7cq/DWkpaVh//796NOnj8Ydb8IYUw5TU1M0b95cKUVd5jYmHTt2RJUqVZSQjjHN4unpiVu3buHZs2d5trtw4QLq1asHKysrNSWTH/9Ul8P58+cRHR2NKVOmyH2tiYkJjh07BqlUCi8vLyQnJwMAYmNj0a5dO8TFxeH8+fO5Tunq6+tj27ZtGDZsGAYPHow1a9Yo9DWcOXMGX79+5alXxnRcu3btEBwcrNDq+38LDQ1FdHQ0xowZo6RkjGkWDw8PFC9eHI0aNcL//vc/pKenZ2tDRFn702k00mFxcXEEgOLi4pTSX5s2bcjJyYmkUqnCfURGRpKxsTH17NmTvn//Ts2aNaPixYtTdHS0TNdLpVKaPHkyAaCFCxfKPX6PHj2oTp06cl/HGNMu0dHRBIDOnz+vcB/fvn2jxo0bk729PUkkEiWmY0yzvH79mgYNGkQikYjs7OzoyJEjP/ysf/jwIQGgkydPCpgyf1zUyejGjRsEgPz8/Arcl7+/PwGgChUqkKmpKUVERMh1vVQqpblz5xIAOn78uMzXxcXFUZEiRWjp0qXyRmaMaRmpVEply5alyZMnK3T9q1evqFatWlS8eHEKCwtTcjrGNNOtW7fI3d2dAFDz5s3pypUrRETk6+tLenp6FB8fL3DCvBXaEyW+f/+OlJSUbM+v5aZfv364fPkyHj9+DH19/QJn8/HxwYIFC3DixAmFlkcTEdzd3fHy5UvcuXMHBgYG+V6zfft2/PLLL3j58qXG7rHDGFOeQYMGITIyErdv35brurt378LDwwNisRhnzpxBjRo1VJSQMc109uxZTJkyBbdv30avXr3w8eNHJCcnIywsTOhoeSq0z9QNGzYMzZs3x5s3b/Jt+/LlS+zbtw8TJkxQSkEHANOnT8fXr18V3u9GJBJh2bJliImJwcaNG2W6Zvfu3WjZsiUXdIwVEh4eHrhz545M3+cyhYaGwsXFBZaWlggPD+eCjhVK7dq1w82bN7FlyxZcvHhRO56ng5YUddevX0fz5s3h6uqKHj165PgQo7zmzp2LpKQkuLi44PHjx3m2XbVqFYoVK4bBgwcXeNx/K+jGv3Xr1sUvv/yCuXPnIjY2Ns+2b9++xYULF3iBBGOFSJs2bSASibBx48asxVl5OXToENq2bQtHR0dcunQJZcuWVUNKxjSTnp4efvnlF8TExGDTpk0YN26c0JHypRVFXbly5XD27FlcvHgRtra2OHr0aI7tUlNTER8f/8MrN9WqVUNoaCgMDQ3RvHlz3LlzJ8d2sbGx2Lx5M0aMGIGiRYsq48tRqgULFiAlJQULFy7Ms52fnx8MDQ3RrVs3NSVjjAnNysoKffv2xYIFC1CqVCn07dsXx48fz3FF7Lp169C9e3d06dIFp0+fhrm5uQCJGdM8pqamGDJkCEqWLCl0lHxpRVFXpkwZmJiYAPhno8DcpkB9fHxgbm6e9bKxscmz3woVKuDSpUsoXbo0XF1dcfXq1WxtNmzYgLS0NI1dzm9tbY3ffvsNa9aswdOnT3Ntt3v3bnh6evI3asYKmV27duHBgwf47bffEB0djc6dO6N06dIYMGAAAgICkJqaihkzZmDMmDGYMGEC9uzZk+vRh4wxzaZVCyVevnyJ3r17IyQkJMeFAampqUhNTc36c3x8PGxsbHJcKPFvsbGx6NixI6Kjo3HixAm0bNkyq7/KlSujY8eO2Lx5s9K/HmVJTEyEvb09mjZtigMHDmT7/O7du6hVqxaOHDkCLy8v9QdkjGmMe/fuwd/fH/v378f9+/dRpEgRpKSkYPny5Zg4caLQ8RhjBaBRRd379+/h7e2d7f3jx49DX18fnp6e2Lx5M+zs7GTqL6/Vr/+VmJiILl264NKlSzh48CA6deqEbdu24ZdffsG9e/c0/mHhHTt24Oeff8bly5fRrFmzHz6bMWMGNmzYgHfv3vFv4IwxAP+soL979y6OHDkCJycndOzYUehIjLEC0qiiLjcSiQReXl4YP368XKtF5SnqgH/uzPXu3RsnTpzAjh07sHDhQlStWhXHjx8vSHy1kEqlaNiwIfT19REeHp51BJhUKkWVKlXQrl07mVfJMsYYY0z7aMUzdQcOHEBYWBgWLFiAli1bYv/+/SoZx8jICAcOHECfPn3Qt29f3Lt3T6EjwYQgFouxfPlyXL169Yf/ff7++2+8ePGCV70yxhhjOk4r7tQpSt47dZmkUimmTZuGly9fws/PDyKRSIUplcvLyws3b97EgwcPYGxsjOHDh+PMmTN4+vRp1t07xhhjjOkeLup0zKNHj1CzZk0sWLAAEyZMgLW1NYYPH45FixYJHY0xxhhjKqSc4xGYxrCzs8PIkSOxaNEiWFpa4tu3bzz1yhhjjBUCfKdOB3358gW2trb4/v07atWqhZs3bwodiTHGGGMqxg9Z6SArKyvMnDkTGRkZfJeOMcYYKyR4+lVHjR49GqmpqUo/r5YxxhhjmomnXxljjDHGdABPvzLGGGOM6QAu6hhjjDHGdAAXdYwxxhhjOoCLOsYYY4wxHcBFHWOMMcaYDtDp1a9EhISEBJiZmWnV+a2MMcYYY/LS6aKOMcYYY6yw4OlXxhhjjDEdwEUdY4wxxpgO4KKOMcYYY0wHcFHHGGOMMaYDuKhjjDHGGNMBXNQxxhhjjOkALuoYY4wxxnQAF3WMMcYYYzqAizrGGGOMMR3ARR1jjDHGmA7goo4xxhhjTAdwUccYY4wxpgO4qGOMMcYY0wFaV9T5+fmhZMmSQsdgjDHGGNMo+kIHkIdUKsXBgwdhY2OT4+epqalITU3N+jMRIS0tDSVKlIBIJFJXTMYYY4wxtdOqO3V79+6Ft7c3xOKcY/v4+MDc3DzrZWFhgVKlSiEhIUHNSRljjDHG1EtERCR0CFlIJBJ06dIFR48eRaNGjRAZGZmtzX/v1MXHx8PGxgZxcXEoVqyYOuMyxhhjjKmV1ky/7t69Gz169Mj1Lh0AGBkZwcjISI2pGGOMMcY0g9ZMv967dw87d+6Eh4cHYmJiMGHCBKEjMcYYY4xpDK2Zfv23Bg0a5Dj9+l/x8fEwNzfn6VfGGGOM6TytuVP3b7IUdEy1kpKSMH36dFy/fl3oKIwxxhiDFj1TxzTHixcv4OXlhVu3buHRo0c4dOiQ0JEYY4yxQk8r79Qx4Vy8eBENGjRAbGwsfvnlF5w+fRqJiYlCx2KMMcYKPS7qmEyICP/73//Qpk0b1K5dG9euXcPvv/+O5ORknD59Wuh4jDHGWKHHRR3LV2pqKoYOHYrRo0dj5MiROHv2LEqUKIEqVarA0dERBw8eFDoiY4wxVuhxUcfy9P79e7Ru3Ro7d+7E1q1bsXr1ahgYGGR97u3tjYCAACQnJwuYkjHGGGNc1LFcXbt2DQ0aNMCzZ89w8eJFDBo0KFsbb29vJCYm4ty5cwIkZIwxxlgmLupYjhISEtCmTRuUL18ekZGRaNKkSY7t7OzsUKtWLZ6CZYwxxgTGRR3L0ZEjRxAfH48DBw6gbNmyebb19vbG8ePHfzh3lzHGGGPqxUUdy9Hu3bvRsmVLVKhQId+23t7eiI+PR1BQkBqSMcYYYywnXNSxbN6+fYugoCD069dPpvYODg6wt7fnKVjGGGNMQFzUsWz27dsHAwMDdOvWTab2IpEI3t7eOHr0KNLT01WcjjGmTo8ePcLDhw+FjsEYkwEXdSybXbt2wdPTExYWFjJf4+3tjW/fviEkJERluRhj6pWSkoI2bdqgVatWiI+PFzoOYywfXNSxH9y5cwe3bt2Seeo1U926dVGlShWegmVMh/j6+uLt27eIi4vDnDlzhI7DGMsHF3UCefv2LZYsWYKMjAyho/xgz549sLS0RPv27eW6LnMK9siRI5BIJCpKxxhTl7i4OCxcuBC//PIL5s6dizVr1uDWrVtCx2KM5UFrirrr16+jefPmcHV1RY8ePbT+2a1JkyZh2rRpWLhwodBRskilUuzZswc9e/aEoaGh3Nd7e3vj06dPCA0NVUE6xpg6LV++HImJiZgzZw7Gjx+PGjVqYMSIEZBKpUJHY4zlQmuKunLlyuHs2bO4ePEibG1tcfToUaEjKezWrVvYt28fGjZsiAULFiAiIkLoSACA0NBQvHr1Su6p10wNGjRAhQoVeAqWMS334cMHrFixAmPHjkW5cuVgYGAAX19fREREYOvWrULHY4zlQmuKujJlysDExAQAYGBgAH19/WxtUlNTER8f/8NLE82YMQPVqlXDpUuX0KBBA/Tr1w/fv38XOhZ27dqFypUrw9nZWaHrRSIRunXrhsOHD/Nv84xpsT/++AP6+vqYOnVq1nvNmzfHwIEDMXXqVHz+/FnAdIyx3GhNUZfp5cuXCAwMRKdOnbJ95uPjA3Nz86yXjY2NAAnzFhoaitOnT+OPP/5AkSJFsHv3brx//x4TJkwQNFdKSgr8/f3Rr18/iEQihfvx9vbGu3fvEB4ersR0jDF1efr0KTZu3IipU6fC0tLyh8+WLl0KIvqh2GOMaQ4REZHQIWQVHx8PT09PbN68GXZ2dtk+T01N/eGoqvj4eNjY2CAuLg7FihVTZ9QcERGaN2+OpKQkREZGQiz+p6b+66+/MGTIEBw5cgReXl6CZDt48CC6d++OBw8ewN7eXuF+pFIpbGxs0KNHD6xcuVKJCRlj6tC/f38EBQXh8ePHWbMj/7Zx40YMHz4cly9fRrNmzQRIyBjLjdYUdRKJBF5eXhg/fjzc3NxkuiY+Ph7m5uYaU9SdPHkSnTp1wunTp+Hh4ZH1PhGhS5cuuHz5Mm7fvg1ra2u1Z/Py8sLbt29x9erVAvc1ZswYHDt2DC9evCjQXT/GmHpFR0ejXr16WL9+PYYPH55jG4lEgqZNmyI5ORk3btzI8VEYxpgwtGb69cCBAwgLC8OCBQvQsmVL7N+/X+hIcpFKpZgxYwZatGiBdu3a/fCZSCTC5s2boa+vj19++QXqrrO/fPmCU6dOoX///krpz9vbG69evcK1a9eU0h9jTD1mzJiBqlWrYvDgwbm20dPTg6+vL+7evYu1a9eqMR1jLF+kw+Li4ggAxcXFCR2F9uzZQwDo77//zrXNqVOnCACtW7dOjcmI1q9fT3p6evThwwel9JeRkUGlSpWiKVOmKKU/xpjqXbp0iQDQvn37ZGo/ZswYKlq0KL169UrFyRhjstKa6VdFaMr0a3p6OmrUqAEHBwccP348z7ajR4/Gli1bcOPGDdSoUUMt+Zo1awYLCwucPHlSaX0OHz4c586dw5MnT3gKljENR0RwcXFBSkoKrl27lvW8b17i4uJgb2+PFi1a4MCBA2pIyZhm+vLlC2bOnIm+ffvCxcVF0CxaM/2qzbZs2YKnT5/KtNHw0qVLUalSJfTt2xdpaWkqz/b06VOEhYUpvDddbry9vfHs2TPegZ4xLRAQEICwsDD4+PjIVNABgLm5OVasWAF/f3+cPXtWxQkZ00yXL19GvXr1sGHDBsyaNUvoOFzUqVpSUhLmz5+PPn36oHbt2vm2NzExwZ49e3D79m3MmjVL5c/X7dmzB0WLFkXnzp2V2q+rqyssLS15I2LGNJxEIsH06dPRqlUrtG3bVq5re/fuDTc3NwwZMgSfPn1SUULGNI9EIsHChQvRsmVLVKpUCUuWLEFISAhiYmIEzcVFnYqtXbsWnz59wvz582W+xsnJCQsWLMDSpUthbm4OFxcXjBo1Cps2bcKVK1eQmJiolGxEhN27d6Nr1645bl1QEAYGBujYsSMCAgKU2i9jTLn27NmDu3fvYvHixXI/KiESibB9+3akpKSgV69eGneWNWOq8P79e3h4eGDWrFmYPn06goODMXbsWBQvXhxbtmwRNpygT/SpmNALJb59+0bFixenkSNHyn2tVCqlwMBAWrx4MfXu3ZscHBxIT0+PAJBIJKJq1apR//796evXrwrnu3LlCgGg8+fPK9xHXvbv308A6OXLlyrpnzFWMC9fvqSSJUtSt27dCtRPSEgI6enp0eTJk5WUjDHNdP78eSpVqhSVLl0628/OMWPGUOnSpSktLU2gdERc1KnQjBkzyNjYmN6+fauU/pKTk+n69eu0detWGjduHJmZmdGQIUMU7m/MmDFkbW1NGRkZSsn3X9++fSM9PT3y9fVVSf+MMcUlJSVR/fr1qWLFivTp06cC97dy5Uq5Vs8ypk3S09Pp999/J5FIRG3btqX3799naxMVFUUA6PDhwwIk/AcXdSry7t07MjExoWnTpqlsjHXr1uW7TUpuvn//TiVLlqRJkyapINn/admyJXXq1EmlYzDG5COVSql///5kbGxMN2/eVFqfffr0IRMTE7p9+7ZS+mRME2RkZFDr1q1JT0+PFi1aRBKJJNe2jRo1og4dOqgx3Y+4qFORSZMmkbm5eYGmR/OTkZFBDRo0oNq1a8t9u/fXX38lExMTiomJUVG6f/z5559kbGxMSUlJKh2HMSa7VatWEQDau3evUvtNTEykOnXqkK2tLX379k2pfavK8+fPqUaNGvT06VOhozANtW/fPgJAp0+fzrft5s2bSSwWC/bYES+UUIHY2Fhs3LgRI0eORPHixVU2jp6eHjZs2IC7d+9izZo1Ml938OBB/PXXX1i9ejVsbW1Vlg8AOnXqhOTkZAQHB6t0HMaYbIKDgzFp0iRMnjwZvXv3VmrfJiYmOHLkCD5//oy+fftCKpUqtX9VOHz4MO7fv489e/YIHYVpIKlUij/++APu7u4/HO+Zm549e8LY2Bjbtm1TQ7ocCFJKqolQd+oWLVpERkZG9O7dO7WMN2bMGDI1NaUXL17k2/bFixdkYWFB3t7eJJVKVZ5NKpVSlSpVaMSIESofizGWt2fPnpGVlRW1bduW0tPTVTbO6dOnSSQS0ezZs1U2hrK0adOGAFCdOnWEjsJUJCEhgby8vOjBgwdyX3vkyBECQJcuXZL5ml9//ZUqVKgg8/PqEomEevbsqZTHtQptUbd9+3by8fFR+pjJyclUunRpGjp0qNL7zk1sbCxZW1uTl5dXnu3S09PJxcWFKlSooNJp4f8aO3Ys2djYqKWIZIzlLDExkerVq0eVK1emL1++qHy8P/74gwDQ8ePHVT6WohISEsjAwIBatWpFAOjhw4dCR2IqcPLkSQJAbm5ucv0ckkql5OTkRK6urnKNFxERQQDozJkzMrVfvXo1ASAAdO7cObnG+q9CW9T9/vvvZGZmRgkJCUodc9OmTSQSidT+zSFz+5C8voHOnTuXxGIxhYaGqjEZ0dmzZwkARUdHq3Vcxtg//r2IISoqSi1jSiQS8vLyomLFimlssXT06FECQLdv3yZTU1P6448/hI7EVGD69OlkaGhIAMjf31/m6zKLwcDAQLnGk0qlVLt2bZm2Crp//z4VKVKERo8eTW5ubmRjY1Og2cVCW9Q9f/6cRCIRbd68WWnjZWRkULVq1ahr165K61NWUqmU2rVrRxUrVqTv379n+zw0NJTEYjHNmTNH7dlSUlLI1NSUFi1apPaxGWNEy5YtIwC0f/9+tY4bFxdH9vb2ZGNjQ8eOHVPr2LIYOnQo2dnZERFRr169eApWR7m4uJC3tzd5enqSjY1Njj8j/0sqlVKTJk3I2dlZoVmm1atXk76+Pn348CHXNmlpadSgQQOys7OjxMREev78ORUtWrRAW5UV2qKOiKhDhw5Uv359pY136NAhAkARERFK61Mejx8/JiMjI5o6deoP73/9+pUqVKhAzZo1U+lzNHnp0qULNWvWTJCxGSvMzp07R2KxONv3BXV5/vw5tWvXjgBQp06dNGaVqVQqpfLly9P48eOJ6P++f2vqXUWmmOTkZDI0NKRVq1bRkydPyMjIiH7//fd8rwsMDCQAdOrUKYXG/fLlCxkZGdHSpUtzbTNv3jzS09OjK1euZL23YcMGuaZu/6tQF3XHjx8nAHTt2rUCjyWVSqlRo//X3n1HRXV1fQD+zTBDk6YGRAT1VSwYQbBhlCKgiIIGa2IMtpioMSYmlkheezf6RhNj770rBuwFBcSCEWwYS2LBgmADBKTM7O+PLPhiaFO5M8N+1pq1zNx7z9mcOLjn1LZKj71r2syZM0kikRTvEyWXy6lv375kbW1N9+/fFyyuNWvWkFgspufPnwsWA2NVSVpaGn311VckkUioS5cuWttkXBFyuZz27NlDjo6OZGpqSjNmzKDc3FzB4iEiunr16jtzmHJycngI1gDFxcURAPr999+JiGjKlClkbGxc4XZevr6+1KpVK7Xmgn/yySfUuHHjUsu4dOkSSSQSmjx58jvvy+Vy6tSpEzk6OtLr16+VrlOvkrqxY8eSl5cXffLJJ5SXl1fh/RUldQUFBeTo6EjDhg1TO7bTp0+rldVrytu3b6lJkybk5eVFMpmM1qxZQwBo165dgsb15MkTAkBbtmwRNA7GDF12djbNnj2bLC0tycrKiubNmyd4AlUkKyuLvv/+e5JIJOTs7KzQvl/aMm/ePDI3N6e3b98Wv/fxxx9TixYtBIuJad7cuXPJwsKieJQqOzub6tWrR8HBwWU+ExMTQwBo//79atUdHR1NAOjMmTPvvJ+Tk0MuLi7UsmXLUnOZBw8ekKWlJQ0dOlTpOvUmqbt8+TINGDCAiP5eVbV169YS97x9+5YyMjKKXykpKRVuaTJ9+nSqVq2aShnxP3Xr1o2aN2+uEys8T548SQAoPDyczM3N6bPPPhM6JCIiatWqFX388cdCh8GYQSosLKT169dTnTp1SCqV0jfffKOR47+0ITk5uXjFaa9evRTajknTfHx8qEePHu+8x0Owhic4OJg6d+78znv79u0jABQZGVnqM507dyZXV9dyT45QhFwuJ2dnZwoLC3vn/e+++45MTEzo+vXrZT67atUqlTqK9CapW7p0KW3cuJGI/u62HDVqVIl7pk6dWrws+J+v8pK6R48ekZGRES1dulTl2Iq68Tdt2qRyGZr26aefEgBq0qSJQpNCK8PUqVPJxsZGsHl9jBmqI0eOkJubGwGgvn370t27d4UOqUJyuZy2bdtGtWvXJgcHh3d6zLStrHOpeQjWsMhkMrKxsaEZM2a8875cLqfAwEBq0KBBiV7sou1INLWoaN68eWRqalq8jVh0dDSJRCJauHBhuc8VxVinTh2lTmfRm6Ru9uzZxV2hd+7cof79+5e4R5WeOiKi0NBQcnV1VbmXLSwsjJycnJQ+qkubUlNTqUePHpSUlCR0KMUuXrxYalc0Y0x1RV/gOnToQOfOnRM6HKX98ccflf6leNeuXQSg1HnGPARrOIo6XE6dOlXi2h9//EFSqZRmzpz5zvshISHUtGlTjc1Bffr0KUkkEvr1118pIyOD6tWrRz4+PgqV//DhQ7KysqLBgwcrXJ/eJHXLli0r7qlLSEgotafu3xQ9UeLw4cMEgOLj45WO68GDBySRSGjRokVKP1vVyGQyqlWrFo0fP17oUBgzCKmpqQSA5s+frxNTP1QVGBhIbdq0qbT6Bg8eTO+//36p13gI1nAsW7aMJBIJZWdnl3p9woQJZGZmVpzcX758mQDQ5s2bNRpHz549qUWLFjR06FCysLBQagV40bz4qKgohe7Xm6Tu33PqFDmIWtGkTiaTUf369WnQoEFKxzVmzBiqXr26xjcxNlRDhgyhZs2aCR0GYwah6KDxJ0+eCB2KWiIjIyttOyiZTEb29vZlfrnkIVjD0b9/f/L09CzzemZmJjk4OBRvEtyrVy9q2LChxqcIFW1iDIDWrFmj1LNyuZyCgoKodu3aCp0EJVb37NjK4uHhAXt7e3h7eyM5ORm9e/fWWNlisRhffPEFdu7ciVevXin83MuXL7F69WqMGjUKFhYWGovHkIWEhCA5ORl//fWX0KEwpveio6PRtGlT1K5dW+hQ1NK1a1c0aNAAS5Ys0XpdSUlJSE1NRbdu3Uq9bmZmhpCQEOzevVvrsTDtiouLg5eXV5nXLS0tsXDhQuzduxeLFy/Gvn37EB4eDolEotE4unTpgoYNG6J79+4YOnSoUs+KRCKsXr0aOTk5GDNmTMUPqJp56gNFe+qI/h7GkEgktHjxYoXLnzVrFpmampa7YzR7V2ZmJkmlUvrll1+EDoUxvde4cWMaOXKk0GFoxP/+9z+SSqX09OlTrdYzc+ZMsrS0LHcOdNEQ7O3bt7UaC9OeBw8eEACKiIgo9z65XE4+Pj4EgOrWravQdmmqeP36tVrz9Hbs2KHQFit601OnbbVq1ULPnj2xYsUKEFGF9+fm5uLnn3/GkCFDYGdnVwkRGgZLS0v4+vri4MGDQofCmF57/Pgxbt++DT8/P6FD0YihQ4dCKpVi1apVWq3n0KFDCAwMhFQqLfOerl27olq1atxbp8diY2MBAO3bty/3PpFIhF9//RXGxsaYPHkyjI2NtRKPtbU1jIyMVH7+o48+QmhoaIX3cVL3DyNGjMAff/xR/JehLDKZDOHh4Xjx4gXGjh1bSdEZjuDgYERHR+PNmzdCh8KY3oqOjgYAdOzYUdhANMTGxgZhYWFYsWIF8vPztVLH8+fPcf78+TKHXosUDcHu2rVLK3Ew7YuLi0PTpk1ha2tb4b2urq549uwZhg0bVgmRaRcndf/g5+eHRo0aYeXKlWXek56ejqCgICxZsgQLFixAw4YNKzFCwxASEoL8/HycPHlS6FAY01vR0dFwdXVV6B8tffHVV1/h6dOn2Ldvn1bKP3bsGIgIQUFBFd7br18/XLlyBXfu3NFKLEy7YmNj4e3trfD9NjY22gumEnFS9w8ikQjDhw/Hnj178Pz58xLXL1y4gJYtW+LKlSs4duwYvvvuOwGi1H/Ozs5o0qQJoqKihA6FMaXJZDL8/vvvWLBgAYKCglC3bl1cuXKl0uOIjo42mKHXIs2bN4efn5/WFkwcOnQIHh4ecHBwqPBeHoLVXy9fvsSNGzfKXSRhqDip+5dBgwYBADZs2FD8HhFh2bJl8Pb2hpOTEy5fvoyAgACBIjQMwcHBOHjwoELzFxkTEhHh5s2bWLp0KXr16gVbW1u0bt0a06ZNAwAYGxtj+PDhkMlklRbT/fv3ce/ePYNL6gBg9OjRiI+Px+XLlzVarkwmw5EjRyocei3Cq2D1V3x8PAAo1VNnKDip+5f33nsPffv2xcqVKyGXy5GdnY2wsDCMGjUKI0eOxOnTp+Ho6Ch0mHovJCQET58+RWJiotChMFam5ORk1K9fH82aNcO3336L58+f4+uvv0ZMTAxevXqFI0eOYMOGDbhw4YLWJ/j/U3R0NEQiEXx9fSutzsrSvXt31K1bV+Heuvz8fIV6ShMSEvDixQt07dpV4Vj69u2LpKQkHoLVM7GxsXBwcED9+vWFDqXScVJXiuHDh+Pu3btYuXIlPD09ERERgR07duDnn3/W2sqYqsbLywtWVlY8BMt0WtGeVUeOHMGrV68QExODadOmwdvbu/h3gZeXFz777DOEh4cjNTW1UuKKjo6Gh4cHqlevXin1VSaJRIIvv/wS27dvR3p6ern3vn79GkFBQXB3d8eXX36JvLy8Mu89dOgQqlevDk9PT4Vj4SFY/VS0P51IJBI6lEqndFKXm5uLx48fl3j/xo0bGglIF3h5eaFZs2b48ssvIZPJkJCQgI8++kjosAyKVCpFYGAgDh8+LHQojJXq4sWL+O233zBjxgx06dIF1apVK/Pe+fPnQyqVVso8WyLCqVOnDHLotciwYcMgEomwZs2aMu9JSUmBt7c3EhMTER4ejrVr18LX1xcpKSml3n/o0CF06dJFqY1lzc3NeQhWz+Tm5iIhIaFKDr0CUG7z4d27d5OjoyO5ubmRq6vrO0e6eHh4KFNUpVBm8+F/O3jwIH399deUmZmphcgY0d9n2onFYnrx4oXQoTBWQmBgIDVr1kzhDUM3btxIAOjo0aNajev27dsEgA4ePKjVeoQ2dOhQcnJyKvXIpitXrlCdOnWoXr16lJycTEREFy9eJCcnJ3rvvffoxIkT79z/9OlTAkCbNm1SOo49e/YQALpz545qPwirVGfOnCEAlJiYKHQoglAqqWvRogWlpaUREVFCQgI1a9aMtm7dSkRE7u7umo9OTeokdUz7UlJSCADt3LlT6FAYe0dMTAwBoN27dyv8jFwup44dO1LDhg0pJydHa7GtXLmSjIyMDP4LZ2JiIgGgPXv2vPP+iRMnyNLSkjw8PEqceZuenk6dO3cmsVhMc+fOJblcTkRE69evJ5FIpNLpP1lZWSQWi2n16tWq/zCs0syePZusrKzUOr1Bnyk1/FpQUFC8J1Lr1q0RExODlStXYsaMGVVy7Jqpx9HREe+//z6OHDkidCiMFSMiTJo0Ce7u7ujVq5fCz4lEIixfvhwPHz7EnDlztBZfdHQ0WrduDUtLS63VoQvc3d3h7e39zoKJzZs3IygoCO3bt8eZM2dKnHn73nvv4fDhw/jhhx8QHh6Onj17IiMjA4cPH0abNm1UOv3HwsICzZs3x4ULF9T+mZj2xcXFoX379mqd3qDPlErq7OzscPXq1eL/rlmzJo4fP46bN2++8z5jigoKCsLRo0d5axOmM06ePImYmBjMnDkTYrFy046bNm2KiRMnYv78+bh586bGYyMig9yfriyjR4/GmTNncPXqVcyZMwcDBw5EWFgYIiMjy0xqjYyMMHPmTPz22284ffo0WrdurdRWJqXx9PTkpE4PyGQynD17tkruT1dMmW69lJSUMg9bjouLU7/fUMN4+FX3HT9+nADQ1atXhQ6FMZLL5eTp6Umenp7FQ3fKys3NJWdnZ/L19VW5jLLcuHGDANCxY8c0Wq6uys/Ppzp16lDt2rUJAE2bNk2pNr1z5w65ubkRALp48aLKcRTN/83KylK5DKZ9SUlJBIDOnDkjdCiCUeprqKOjI+zt7Uu91qFDBzXTS1YVeXl5wdzcnIdgmU44dOgQLly4gJkzZ6o8pcTU1BTLly/HmTNnsHHjRo3GFx0dDalUWmV+30qlUowePRppaWlYu3Ytpk6dqtT/F2dnZ5w7dw6nTp1CmzZtVI7D09MTcrkcly5dUrkMpn2xsbGQSqVq/b/WdyrvU7d3715NxlGu33//Hd7e3vD19UW/fv1QUFBQaXUz7TI1NUXHjh05qWMqiY6Oxrp16zRSllwux+TJk+Hj44NOnTqpVVanTp3wySefYNy4caUeOaiqU6dOwdPTE+bm5horU9eNHz8eKSkpGDp0qErPm5ubqz1c7eLiAgsLCx6CLcObN29w+/ZtocNAXFwc2rRpAzMzM6FDEYzKSd0nn3yCRYsWlXsPaWieVJ06dXD06FGcOXMGzs7OiIiI0Ei5TDcEBQUhNjYWb968EToUpidevHiBIUOGwN/fH5999plG9sncv38/EhMT1eql+6effvoJMpkMEyZMULss4O+k8/Tp0/D399dIefpCLBaXWBBR2YyMjNCmTRtO6sowb948tGrVChkZGYLFQESIjY2t2vPpoEZS99tvv2HatGn4+uuvSyRvMpkMGzZsgIuLi9oBAoC9vX3xN1OpVFrm5pF5eXnIzMx858V0X1BQEAoKChAdHS10KEzHERF27NiBZs2aYf/+/VixYgWcnJzw448/qlWuTCbDlClT0LlzZ/j4+Ggk1lq1amHevHlYv3499u3bp3Z5165dw8uXL6vMIgldw4slyhYdHY03b95g8+bNKj1PRPjzzz/ViuH+/ft48uRJlU/qlFoo8W9JSUnk6OhIoaGhlJOTQ3l5ebRs2TKqX78+Va9enaZMmaKBaX//78GDB9S+fXvKz88v9frUqVMJQIkXL5TQbXK5nBo0aECjRo0SOhSmwx48eEDBwcEEgHr37l28R9nixYtJIpHQ/fv3VS5769atBOCdDdU1QSaTUb9+/cjY2FjtTYkXLVpEJiYmlJubq6HomDL2799PACglJUXoUHRKdnY2SaVSMjc3JxcXF5UWB/36668EgPz9/VVe5LBp0yYCUOU3s1crqSMievToEbm5uZGbmxs5ODiQra0tzZ49W6WNMZ8+fUodOnQo8Xrx4gVlZGSQj48P3bp1q8zn3759SxkZGcWvos1tOanTfV9++SU1bNhQ6DCYDiosLKRffvmFLCwsyMHBgSIiIt65/ubNG6pRowZ9/fXXKpVfUFBAzs7O1L17d02EW0JeXh4FBweTmZkZxcTEqFxO9+7dyc/PT4ORMWU8efKk1M2Qq7pTp04RAPr5558JAEVHRyv1fH5+PtWtW5e8vb3J3d29OLlT9rPyxRdf0Pvvv6/UM4ZIraTu9evXNGPGDKpZsyaZmZmRubm5VramKCwspJCQkBJHv1SEtzTRHwcOHOCjeFgJf/75J7Vr144A0MiRI+n169el3jdt2jQyMzOj9PR0petYu3at1o8VysnJIT8/P7K0tKSEhASlny8sLCRra2uaOXOmFqJjinJycqLx48cLHYZOmT59OtnY2FBhYSG5uLhQ3759lXp+y5YtBICSkpJILpdTRESESsmdi4sLDR8+XJUfwaConNRNnDiRrK2tqUGDBrRy5Up68+YNDRo0iOzs7NTaD6g027Ztoxo1apCvry/5+vrSjh07FHqOkzr9kZmZSVKplJYsWSJ0KEyHdO/enZycnCg2Nrbc+54/f07m5uZKT/nIy8ujevXqUZ8+fdQJUyFZWVnUrl07qlGjBl27dk2pZxMSEgiATu4HWpX06dOHfHx8hA5D49LT0+nRo0cqPRsQEFDcy71kyRKSSCT0+PFjhZ6Vy+Xk5uZGQUFBJd7fv38/tWjRggBQQEAAHTp0iM6cOUNRUVG0fft2Wr16Nf300080ffp0Gjt2LAGgLVu2qPQzGBKVk7qmTZvSxo0bS5yvNmnSJKpWrVqJIRIhcFKnX/z8/CgkJEToMJiOePz4MRkZGdHy5csVun/MmDFUvXp1pTaInT59OonFYrpx44aqYSrl5cuX5O7uTvb29nT79m2Fn5s/fz6Zm5tTXl6eFqNjFVmwYAGZm5tTQUGB0KFozMWLF8nOzo7c3NyUfjY/P5/Mzc1pwYIFRPT36F21atVo+vTpCj1/6NChcodsZTLZO8ndv18WFhZkb29PjRo1og4dOhSfTV+VqZzUlTcZcvXq1WRiYiJ4rwsndfql6B+ut2/fCh0K0wFz5swhMzOzModc/+3hw4ckkUjop59+Uuj+U6dOkVgspqlTp6oRpfKePXtGTZs2pbp169KDBw8UeiYoKIi6dOmi5chYRWJiYoqHCg1BREQEmZmZFZ/Yoexio/Pnz5dYYDR8+HBycHAoc0HjP3Xs2JHatm1b4eIKmUxG169fp1u3btGTJ08oKyuLZDKZUrFWFWovlCjLoUOHyNLSUlvFK4STOv1SdMSLsnMnmeGRyWTUsGFDGjhwoFLPDR48mOrUqVNhj1ZqairZ29uTn59fidGGypCSkkL169enRo0alXn0YpH8/HyqVq0azZs3r5KiY2XJzs4mIyMjWrlypdChqO3nn38mkUhEvXv3ptTUVJJIJLR06VKlyvjxxx/J3Nz8nQSu6Pf43r17y332woULvPBEC1Tep64iXbt2xenTp7VVPDNAbm5usLe315nTJR4/foz169cLHUaZrl27hiZNmmDXrl1Ch6JxZ86cwZ9//olhw4Yp9dyECRPw+PFjbN26tcx75HI5wsLCIJfLsW3bNhgZGakbrtIcHR1x8uRJZGdno3Pnzjh79iwKCwtLvTchIQHZ2dm8P50OMDc3h6urq17vVyeTyfDtt9/im2++wdixY7Fr1y7UqlUL3t7eiIqKUqqsmJgYtG/fHlKptPi9Fi1aoEOHDli6dGm5z86fPx+NGjVCaGioKj8GK4vQWaU2cU+d/hk8eDC5uroKHQYREY0ePZoA0L1794QOpYQ7d+6Qvb09mZqakrm5OV2/fl3okDRqwIAB1LhxY5X2vAoNDaUmTZqUOTwza9YsEolEdPz4cXXDVFtycjI5OTkRALKxsaF+/frRhg0bKDU1tfieWbNmkZWVlUHN49Jnw4cP19utM7Kzs6lnz54kFotL9MotXLiQTE1NKTs7W6GyZDIZ2djY0IwZM0pcK9r3MTk5udRnb926RSKRiFatWqX8D8HKxUkd0yk7duwgACqvxNKUwsJCsre3JwC0ePFiQWP5t0ePHlH9+vWpcePGdO/ePWrevDk1adJEpb0hddHLly/JxMSE5s+fr9Lz586dIwC0b9++EtdOnz5NYrGYJk2apG6YGlNYWEjnz5+nqVOnUtu2bUkkEhEAatmyJf33v/+lVq1a8QIiHbJ27VoSiUR693l79uwZeXp6krm5OUVGRpa4/scffxCAUq+V5sqVK2Uucnj79i3Z2tqWuXfk559/Tvb29ryRthZwUsd0yvPnz0ksFtPatWsFjSM6OpoAUN26daljx46CxvJPz58/p2bNmpGTk1PxJPtbt26RpaUl9evXT6WeLV1TtC1CRXPNylPaBOy0tDRycHAgX19fne71SktLo82bN1P//v2pRo0axRu7Mt1w/fp1AkCnTp0SOhSF3bp1ixo0aED29vZ06dKlUu+Ry+XUsGFDGjFihEJlLlmyhKRSKeXk5JR6PTw8nKysrOjNmzfvvP/kyRMyNjamuXPnKvdDMIVwUsd0jqenp9IbWGraiBEjqF69erRixQoSi8X0/PlzQeMh+nsvvzZt2pCtrS398ccf71zbs2ePTvYqKksul1OLFi2oZ8+eapVz5MiRd/7hlclk1KVLF7K1tVV4Dy1dUFhYSFevXuWtTHRIYWEhWVpa6lVS0r59e2rcuHGFq1u//vprcnR0VOjLYd++falDhw5lXr9//z6JxeISQ6zff/89WVpa0qtXrxSKnSmHkzqmc6ZOnUrVq1cXrDeloKCA3nvvPRo/fjw9ffqURCIRbdiwQZBYiuTm5pKfnx9ZWVnR5cuXS73nu+++I4lEQmfPnq3k6DTn0qVLBIAOHjyoVjlyuZzc3d0pMDCQiP7eHgUAHTlyRBNhsirO39+fQkNDhQ5DIXfu3CEACm3af/ToUQJAV65cKfc+uVxOtWrVovDw8HLv69GjB7m7uxcniRkZGWRlZcWncmgRJ3VM5xTNiYqPjxek/qJfbEXDFB988IGgv8Dz8/OpR48eZGZmVu7JCvn5+eTl5UUODg707NmzSoxQc0aMGEF16tTRyDYjRfMzf/75ZzIyMqIffvhBAxEy9vfQYu3atfViusPUqVPJ0tKyzGHSf3r79i1Vq1aN5syZU+59t2/fJgB0+PDhcu8r6jEv+l3+448/klQqFXzOtCHjpI7pnMLCQqpevbrSRz5pytChQ8nZ2bn4F/b8+fPJzMxM4VVhmiSTyejTTz8liURChw4dqvD+x48fk52dHQUEBAiy/5o63rx5Q1ZWVhpbxFBQUEANGzYkAOTt7a3T8+iYfomIiCAA9PDhQ6FDKVfRPLkhQ4Yo/ExoaGi5w6pERGvWrCGxWFzhv61F+01++umn9PbtW6pduzYNHTpU4ViY8rS2Tx1jqjIyMkLnzp0F2a8uPz8f+/btw0cffQSRSAQACA0NRW5uLk6cOFFpceTl5eH69esYOXIktm7diq1bt6Jr164VPufg4ICdO3ciOjoaU6dOrYRINWfPnj3IzMzE0KFDNVKeRCLBjBkz0LBhQ2zbtg0SiUQj5TLm6ekJADq/X9358+fx559/IiwsTOFngoODce7cObx48aLMe2JiYuDu7g4rK6tyyxKLxRg5ciR27dqFxYsXIzU1FePHj1c4FqYCobNKbeKeOv21bt06EolElJ6eXqn1RkZGEgC6evXqO++7uLgo9W1XURkZGXT+/Hlav349TZgwgbp3707Ozs4kFosJQKkTjRUxd+5cpbYn0AXe3t7UqVMnjZerD0NkTP/UrVuXxo0bJ3QY5Ro5ciQ5OjoqdaTW48ePCQBt2bKlzHvq169PY8aMUai858+fk6mpKYlEIr2Zh6jPuKeO6aQuXbqAiCq1dwwAdu7ciWbNmqF58+bvvB8aGorffvutzF3/VXH06FHY2dmhXbt2GDJkCHbs2IH8/HyEhIRg+fLliImJQVpaGj7//HOly54wYQJ69OiBsLAw3L9/X2Mxa8utW7cQGxuLzz77TONlF/W4MqZJnp6eOt1Tl5+fj507d2LAgAEQixX/p97BwQEtW7bEwYMHS72ekpKC+/fvw8fHR6HyatasiY8//hhEhAkTJigcB1OR0FmlNnFPnX5zc3Oj3r17V1p9OTk5ZGlpSdOnTy9xreicwjNnzmikrnv37lGNGjUoMDCQLl26RFlZWRop959evXpFNWrU0KmNdssyfvx4qlGjBm9GyvTGwoULydzcXGfnahbN+1PltJnJkyeXuQNB0WkRaWlpCpf34MEDpc+VZarhnjqms8aMGYO9e/ciIiKiUuo7fPgwsrKy8NFHH5W41rp1azg4OGgkltzcXPTu3RvW1tbYvn07WrVqBQsLC7XL/TcbGxsEBATg1KlTGi9bkwoKCrBx40aEhYXB1NRU6HAYU4inpydycnJw/fp1oUMp1ebNm+Hu7o73339f6WeDg4Px6tUrnDt3rsS1mJgYuLi4wNbWVuHy6tatiy+//FLpOJjy9Cqp2759u1J/kZh+Gzx4MEJDQ/H5558jNTVV6/Xt3LkTLVq0QJMmTUpcE4vF+PDDDxEREQEiUrkOIsKoUaOQnJyMvXv3okaNGuqEXCF/f39cvHgRWVlZWq1HHVFRUUhLS9PK0Ctj2tKyZUsYGRnp5BDs69evERkZqdQCiX9q06YNbG1tSx2CjYmJUXjolVU+vUnq5HI59uzZAycnpzLvycvLQ2Zm5jsvpr9EIhFWrVoFsViMYcOGqZVMVSQ7OxtRUVH4+OOPy7wnNDQU9+7dw7Vr11SuZ82aNVi/fj1WrFgBDw8PlctRVEBAAAoLCxEbG6v1ulS1Zs0atG3bFq6urkKHwpjCzM3N4ebmppNJ3e7du1FYWIj+/fur9LxYLEa3bt1KJHXp6em4efMmJ3U6TG+Sum3btqFPnz7lTvicO3curK2ti1/lJYBMP9ja2mLdunU4ePAgVq1apbV6oqKikJOTg379+pV5T8eOHWFlZaXyEOzFixfx1VdfYcSIERg0aJCKkSrH2dkZjo6OOHnyZKXUp6yUlBQcOXIEw4YNEzoUxpSmq4slNm/ejE6dOqF27doqlxEcHIzr16/jwYMHxe/FxcUBALy9vdWOkWmHXiR1MpkMu3btKnWu0z+Fh4cjIyOj+JWSklJJETJtCg4OxvDhw/Hdd9/hzp07Wqljx44daNOmDRo0aFDmPcbGxggODlYpqUtPT0efPn3g4eGBxYsXqx6okkQiEfz9/XV2Xt26detgZmZWbg8pY7rK09MTN2/e1KlRofv37yM2NlblodcigYGBkEgk7/TWxcTEoH79+txhosN0KqlLTU2Fl5dXideWLVvQr1+/Cpdlm5iYwMrK6p0XMwwLFy6Eg4MDwsLCNLqtCABkZmbi8OHDFX5pAP4egk1MTHzn22tFZDIZ+vfvj7dv32LPnj0wMTFRJ1ylBQQEICkpCc+fP6/Ueivy4sULLFq0CEOGDIGlpaXQ4TCmNE9PTxAREhIShA6l2NatW1GtWjX07NlTrXKsra3h5eVVIqnjoVfdplNJnb29PeLi4kq8kpOTsWnTJgQFBeHOnTv49ttvhQ6VVTILCwts2bIFly5dwpw5czRa9oEDB5CXl1fu0GuRoKAgGBsb48CBAwqXP3nyZERHR2PHjh1wdHRUJ1SV+Pv7AwBOnz5d6XWXZ9asWZDL5ZgyZYrQoTCmkiZNmsDa2lpnhmCJCJs3b0bPnj1RrVo1tcsLCQnBqVOnkJOTg8zMTCQlJXFSp+sE3VBFBa1atVL4Xt6nzvBMmTKFjIyM6MKFCxors1u3bhWedfhPXbt2JT8/P4Xu3b9/PwGgH3/8UdXwNKJx48Y0YsQIQWP4p7t375JUKqXZs2cLHQpjaunUqRP16NFD6DCIiCghIYEA0NGjRzVS3s2bNwkARUVF0eHDhwkA3b59WyNlM+3QqZ46RVy6dEnoEJiAJk2ahJYtW+LTTz9Fdna22uW9fPkSx44dU2jotUhoaChiYmLKPRsRAOLj4zFw4ED06tUL48aNUzdUtejavLrw8HDY2dlhzJgxQofCmFqKFkuQFlfnK2rz5s2wt7dHQECARspr0qQJGjRogKioKMTExKBWrVpwdnbWSNlMO/QuqWNVm1QqxZYtW/Do0SONHAy9f/9+yOVy9O3bV+FnevToAblcXuYxOnK5HPPnz4ePjw9atGiB9evXC35UVUBAAG7fvo1Hjx4JGgcAnDt3Drt378asWbNgbm4udDiMqcXT0xPPnj3Dw4cPBY2joKAA27dvxyeffAIjIyONlCkSiRAcHIyDBw8Wz6cT+ncZKx8ndUzvNG7cGP/73/+wfPnyMhMrRe3cuRO+vr6wt7dX+Bl7e3u0a9eu1FWw6enpCAkJwcSJEzFhwgRER0frxIKdjh07AoDgvXVEhHHjxqFFixZqr85jTBd4enpCJBJh+/btgsZx/PhxpKena/xzFRwcjJSUFJw9e5bn0+kBTuqYXhoxYgSCg4PRs2dPTJs2DXl5eUqXkZaWhpMnTyo19FokNDQUR48eRW5ubvF7sbGxcHd3R0JCAg4fPow5c+ZAIpEoXbY2vPfee3B3dxc8qdu/fz/i4+OxYMECjfUmMCYkOzs7jB07FpMnTxZ0wcTmzZvRvHlztGjRQqPl+vr6Fi+64KRODwg9qU+beKGEYcvNzaXJkyeTRCIhFxcXOnv2rMLP3rp1i3r37k1GRkaUnp6udN23bt0iAPTbb7+RTCaj2bNnk1gsJh8fH3r06JHS5VWG7777jhwdHUkulwtSf35+PjVq1Ii6dOkiSP2MaUt+fj61a9eO6tWrRy9fvqz0+jMyMsjU1JTmzZunlfI//PBDsrGxIZlMppXymeZwUsf03tWrV6lt27YkEonoq6++oszMzDLvvXDhAvXq1YtEIhHVqlWLVq1apXK9Li4uFBoaSoGBgSQSiWjSpElUUFCgcnnaFhUVJejqtSVLlpBIJKIrV64IUj9j2vTgwQOqXr06ffjhh5X+xWn9+vUkEokoJSVFK+Vfu3aNIiIitFI20yxO6phBKCwspMWLF5O5uTk5OTnRwYMHi6/J5XI6cuQI+fn5EQBydnamlStXUm5urlp1hoeHEwCys7OjY8eOqfsjaF1mZiYZGRnR8uXLK73u169fU82aNWno0KGVXjdjleXAgQMEgBYvXlxpdebn51OrVq0U3maJGTZO6phBuXfvHnXp0oUAUP/+/WnTpk3k7u5OAKhVq1a0e/duKiws1EhdDx48oNGjR9OTJ080Ul5l+OCDD6hv376VXu/EiRPJzMxMZ4emGdOUb7/9lqRSKV28eLFS6hs7dixJpVI6f/58pdTHdJuISAc219GSzMxMWFtbIyMjQydWILLKQUTYunUrxowZgxcvXqBz5874/vvv4e/vX+WX40+ePBnLly9HWlpahcfuacrDhw/RpEkTjBs3DjNnzqyUOhkTSn5+Pry9vZGWlobExETY2Nhora4DBw4gNDQUixcvxjfffKO1epj+4KSOGayXL1/ixYsXaNSokdCh6Izo6Gj4+/sjKSlJ46vkyjJw4EAcPXoUd+/e5TNeWZVw7949eHh4ICAgAHv27NHKl8m//voLLVu21GodTP/wlibMYNWoUYMTun/54IMPYGpqipMnT1ZKfYmJidiyZQumT5/OCR2rMv7zn/9g/fr12LdvH5YuXarx8ovOqq5ZsybWrVvHCR0rxj11jFUxnTp1gqmpKaKiorRaj1wuh5+fH9LS0nDt2jWd2bOPscryzTffYMWKFYiPj0erVq2K38/MzMSVK1eQmJiIxMRE3LhxA0FBQZg0aRKMjY0rLHfUqFFYu3Yt4uPj0bJlS23+CEzP8G9ZxqoYf39/zJ07FwUFBZBKpVqrZ+3atYiJicGJEyc4oWNV0o8//oizZ8+iX79+GDZsWHESd/fuXQCAsbExXF1d0aBBA8ydOxeRkZHYtGkTXF1dyyxzx44dWLZsGVasWMEJHSuBe+oYq2IuXLiAdu3aIT4+Hh988IFW6nj69ClcXFzQq1cvrFu3Tit1MKYP/vrrL7Rv3x65ublwd3eHh4dH8cvFxaX4i9Xly5cxcOBA3L59GzNmzMD48eNLnLpy69YttG7dGj169MCWLVt42JWVwEkdY1VMYWEhatasiQkTJuC///2vVuro06cPYmNjcfPmTdSoUUMrdTCmLwoLCyEWiytccZ6Xl4cpU6ZgwYIFaNeuHTZu3Fg8LzgnJwft2rVDQUEBEhISYGFhURmhMz2jNwslTp8+jYCAAPj6+uLAgQNCh8OY3pJIJPD19dXaYomIiAjs3bsXv/zyCyd0jOHvz5wiWwiZmJhg/vz5iI2NRVpaGtzd3bF06VLI5XKMHj0ad+/exe7duzmhY2XSi566t2/fom/fvti7d2+5k0jz8vLeOdg9MzMTTk5O3FPH2L8sXrwYEydOxKtXr2BmZqaxcjMyMtCsWTN4eHggMjKSh4cYU9GbN28wYcIELF++HK6urrh27RrWr1+PwYMHCx0a02F60VMXHx8PMzMzdO/eHT179kRqamqp982dOxfW1tbFLycnp0qOlDH9EBAQgLy8PMTHx2u03PDwcGRmZmLZsmWc0DGmBgsLCyxbtgxHjx5FRkYGvvjiC07oWIX0oqdu+/bt+Omnn3D27FmcPHkSBw4cwIoVK0rcxz11jClGLpfD3t4en3/+OWbPnq2RMuPi4uDt7Y1ffvkFo0eP1kiZjLG/P68ikYi/KLEK6VRSl5qaij59+pR4f+TIkbh06RIWLVqEvLw8dO7cGTExMRWWxwslGCvbxx9/jPv37+P8+fNql5WXlwd3d3fY2NggLi6uxKo9xhhj2qdTm0fZ29sjLi6uxPsvXrzApk2bAPy9Q32DBg0qOzTGDI6/vz9GjhyJjIwMWFtbq1XWnDlz8Oeff+Ly5cuc0DHGmEB0KqkrS82aNdGjRw/4+PhALBbzvleMaYC/vz/kcjlOnz6NDz/8UOVybty4gblz52LixIlo3ry5BiNkjDGmDJ0aftU0Hn5lrGxEBA8PD6SkpGDLli3o2rWr0mXI5XJ4eXnh5cuXSEpKgqmpqRYiZYwxpgi9WP3KGNM8kUiEkydPol27dujWrRsmTZoEmUym8PNEhAULFuDcuXNYvXo1J3SMMSYwTuoYq8Jq1qyJyMhIzJkzB3PnzkVgYCCePXtW7jNEhOPHj8PT0xMTJ07Et99+C29v70qKmDHGWFk4qWOsihOLxQgPD8eJEydw48YNeHh4IDY2ttR7z549Cz8/PwQGBkIikeDUqVP46aefKjlixhhjpeGkjjEGAPDz80NiYiIaNWoEPz8/LFy4EEVTbpOSkhASEgIvLy+8evUKkZGRxQkeY4wx3aAXq18ZY5Wjdu3aOHnyJCZNmoTx48cjLi4OJiYm2LVrFxo1aoQdO3agb9++Cp1jyRhjrHLx6lfGWKkiIyMxcOBAWFpaYurUqRg0aBAkEv4eyBhjuoqTOsZYmTIyMmBmZgZjY2OhQ2GMMVYB/trNGCuTuidNMMYYqzw8MYYxxhhjzABwUscYY4wxZgA4qWOMMcYYMwCc1DHGGGOMGQCDXv1KRMjKyoKlpSVEIpHQ4TDGGGOMaY1BJ3WMMcYYY1UFD78yxhhjjBkATuoYY4wxxgwAJ3WMMcYYYwagyp4oUbSIgjHGGGNMH1S08LPKJnXPnz+HnZ2d0GEwxhhjjCmkorPsq2xSV3RAeUpKSrkNxMqWmZkJJycnbkM1cBuqh9tPfdyG6uM2VA+3n+IsLS3LvV5lk7qi7ksrKyv+S6QmbkP1cRuqh9tPfdyG6uM2VA+3n/p4oQRjjDHGmAHgpI4xxhhjzABU2aTOxMQEU6dOhYmJidCh6C1uQ/VxG6qH20993Ibq4zZUD7ef5vAxYYwxxhhjBqDK9tQxxhhjjBkSTuoYY4wxxgwAJ3WMMcYYYwaAkzrGGGOMMQNQZZO6cePGwdvbGwMGDEB+fr7Q4eiFrKwseHp6wsLCAtevXwcA7Ny5Ex988AH8/f2RkpIicIS67/fff4e3tzd8fX3Rr18/FBQUcBsq6fr16+jQoQN8fX0RHByMN2/ecBuqYPv27bC1tQXAn2Nl3b9/H7a2tujYsSM6duyI9PR0bkMVnD59GgEBAfD19cWBAwe4DTWBqqDLly/TgAEDiIho1qxZtHXrVoEj0g8FBQWUlpZGgwYNomvXrlF+fj61bduW8vLyKC4ujj7//HOhQ9R5T58+pezsbCIiCg8Pp127dnEbKik/P7/4z9OmTaNNmzZxGypJJpNRr169yMPDgz/HKrh37x717t27+L+5DZWXm5tLISEhlJeXR0TchppSJXvqzp07h8DAQABAUFAQ4uPjBY5IP0gkkuJv9gBw584dvP/++zA2NkaHDh1w7do1AaPTD/b29jA3NwcASKVS3L59m9tQSVKptPjPOTk5qFu3LrehkrZt24Y+ffpALBbz51hFZ8+ehbe3N3744Qf+HKsgPj4eZmZm6N69O3r27ImEhARuQw2okknd69evi8+Xs7a2xsuXLwWOSD/9sx0BQCaTCRiNfnn48CFOnDgBLy8vbkMVHD9+HB4eHoiOjoZUKuU2VIJMJsOuXbvw0UcfAeDPsSpq166Nu3fvIiYmBmlpaThw4AC3oZKePXuGe/fuITIyEl988QWmTZvGbagBVTKpq169OjIzMwH8/QutRo0aAkekn/7ZjgBgZGQkYDT6IzMzE2FhYVi/fj3s7Oy4DVXQuXNnJCYmok+fPjhz5gy3oRK2bNmCfv36QSz++9c/f46VZ2JigmrVqkEkEqF3795ITEzkNlSSjY0NvLy8YGxsDH9/f25DDamSSV27du1w7NgxAMDRo0fRoUMHgSPST87OzkhOTkZ+fj7Onj0LNzc3oUPSeTKZDAMGDMCUKVPQuHFjbkMV5OXlFf/Z2toaFhYW3IZKSE5OxqZNmxAUFIQ7d+5g1apV3H5KysrKKv5zTEwMQkJCuA2V1LZtWyQnJwMAEhMTERgYyG2oARKhAxCCh4cH7O3t4e3tjbp162L8+PFCh6Q3unXrhqSkJNy6dQvDhw/HmDFj4OvrC1NTU2zatEno8HTerl27EB8fj6ysLMycORMjR47kNlTS8ePHsWDBAojFYtja2mLDhg2wtbXlNlTQ/Pnzi//cunVrLFq0CDt27OD2U0JcXBwmTZoEc3Nz/Oc//8HMmTNhYmLCbaiEmjVrokePHvDx8YFYLMa6detw8eJFbkM18dmvjDHGGGMGoEoOvzLGGGOMGRpO6hhjjDHGDAAndYwxxhhjBoCTOsYYY4wxA8BJHWOMMcaYAeCkjjHGGGPMAHBSxxhjjDFmADipY4wxxhgzAJzUMcYYY4wZAE7qGGOMMcYMwP8B68xsCPCpKZ4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -261,7 +261,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADJVUlEQVR4nOzddVjVd/sH8Pc5dAsIIoqBOafOoEQBg1Kc2IizdTp1Tp3bbIzZzulsnU7sFixC7ADsbuwuuuPcvz/2g0dGnQ68X9d1rufZ9/uJ24KbTwqIiMAYY4wxxjSaUNUBMMYYY4wx2XFSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDpTrpI6IkJycDD5fmTHGGGPlXblO6lJSUmBmZoaUlBRVh8IYY4wxplDlOqljjDHGGPtScFLHGGOMMVYOcFLHGGOMMVYOcFLHGGOMMVYOcFLHGGNMaZ4+fYp58+bBx8cHS5Ys4Y1sjMkRJ3WMMcYU6v3791ixYgVatmyJmjVrYubMmcjKysKvv/4KOzs7/Pbbb3j58qWqw2RM43FSxxhjTCF27NgBX19f2NraYsyYMTA3N8eWLVvw/v17nDx5Ek+ePMGwYcOwdu1a1KxZE3369MHVq1dVHTZjGktA5fhk3uTkZJiZmSEpKQmmpqaqDocxxr4Yp06dQuvWrdGqVSv06dMH3bp1Q8WKFYstm5KSgn/++QdLlizB06dP0aZNG2zevBlVqlRRctSMaTZO6hhjjMndb7/9hs2bN+P169cQCARi1cnNzUVISAhGjRqFVq1aYc+ePQqOkrHyRVvVAYjr1q1bGDZsGLS1tWFsbIydO3fC2NhY1WExxhgrRnh4OHx8fMRO6ABAW1sbPXr0QHZ2Nvr06YNjx46hXbt2CoySsfJFY0bqcnJyoKOjAwCYMWMG7O3t0bdv31Lr8EgdY4wp38uXL2FnZ4cdO3YgICBA4vpEBHd3d3z69AnXr18v+NrPGCudxmyU+PwfdXp6OurXr1+kTFZWFpKTkwt9GGOMKVdERASEQiG8vLykqi8QCLBs2TLcv38fy5cvl3N0TB5u3bqFjh07YsuWLcjKylJ1OOz/aUxSBwBRUVFo2rQpTpw4gVq1ahV5P3fuXJiZmRV87OzsVBAlY4x92SIiIuDs7AwLCwup22jSpAl++OEHTJs2DW/fvpVjdEwelixZgqNHj6Jv376oXr06ZsyYgXfv3qk6rC+exky/fm7BggUQiUSYMGFCoedZWVmFfmJITk6GnZ0dT78yxpiS5OTkoGLFivjll18wdepUmdqKj49H3bp10bFjRwQHB8snQCaz9PR02NjYYOzYsQgICMDy5cuxceNG5ObmIiAgAKNHj0bz5s1VHeYXSWNG6j5P1szMzGBkZFSkjJ6eHkxNTQt9GGOMKU9MTAySk5Ph6+src1sWFhaYM2cONm7ciJiYGDlEx+QhNDQUKSkp6NevHxo0aICVK1fi5cuXmD17Nk6fPg0HBwd4enoiIyND1aF+cTRmpO7QoUNYuHAhhEIhrKysEBwcDENDw1Lr8EYJxhhTrkmTJmHdunV4+/YthELZxw3y8vLg5OQEALhw4QK0tLRkbpPJxtfXF2lpaThz5kyRd3l5edi1axd69+6NPXv2oFu3biqI8MulMUmdNDipY4yxfxERMjMzYWBgoNB+mjZtioYNG2Lz5s1yazMmJgaurq5Ys2YNhg4dKrd2meRev34NOzs7rFmzBkOGDCmxXNOmTVGnTh3s2rVLidExjZl+ZYwxJr1du3ahQoUK2LBhg8L6ePPmDa5duyaXqdfPtWjRAv3798ekSZMQHx8v17aZZLZs2QJdXV306NGj1HIBAQE4dOgQUlNTlRQZAzipY4yxL0J4eDgEAgEGDRqEH3/8ETk5OXLvIzIyEgKBAD4+PnJve968ecjOzkZQUJDc22biISJs3LgRnTt3hpmZWalle/bsiYyMDBw6dEhJ0TGAkzrGGJPJihUrMHnyZIhEIlWHUqqzZ89i2LBhWL16NdauXYt27drJ/QiK8PBwODo6lnjHqyxsbGwwY8YMrFq1Crdu3ZJ7+6xsV65cwZ07d9C/f/8yy9rb28PR0RE7d+5UQmQsHyd1jDEmpfyRozlz5mDYsGFqm9i9ffsWjx49QsuWLTFs2DCcOHECDx48gIODAy5evCiXPnJzcxEVFSX3qdfP/fjjj7CyssKmTZsU1gcr2caNG2FjYwNPT0+xygcEBCA8PJwvAlAiTuoYY0xKR44cQXx8PMaPH4/169erbWJ37tw5AEDLli0L/vfy5cuoUqUK3NzcsHHjRpn7uHDhAhISEtC+fXuZ2yqJjo4Ovv32W+zfv19hfbDiZWdnY9u2bejTpw+0tcW7Nr5nz57IysriPy8l4qSOMcaktG3bNjRs2BDz5s1DcHAw1q9fj6FDh6pdYnf27FnUqFEDVapUKXhWpUoVnDp1Cn369MGAAQMwatQomc4VCw8Ph4WFBRwdHeURcon8/f3x4MED3Lt3T6H9sMLCw8Px6dMnsaZe89nZ2cHV1ZWnYJWIkzrGviDnzp1DpUqV8PHjR1WHovFSU1Oxf/9+9O7dGwDQr18/bNy4Ef/88w++//57tUrszp07h1atWhV5rqenh7///hsrV67E2rVr0bBhQ0RFRUnVR0REBLy9vRV+jly7du1gaGiI0NBQhfbDCtu4cSOaNWuGhg0bSlQvICAAR44cQUJCgoIiY5/jpI6xL8jKlSvx/v17xMbGqjoUjXfgwAGkp6ejV69eBc/69u2LTZs2ITg4WG0Su7S0NFy5cqXYpA4ABAIBhg8fjps3b6J69erw9vbGd999h/fv34vdx/v373Hp0iWFTr3mMzAwgI+PD0/pKdGnT59w6NAh9OvXT+K63bt3R25uLkJCQhQQGfsvTuoY+0IkJSVh3759AP5d/8Rks23bNri6uqJmzZqFnvfp0wcbN25EcHAwhgwZovLE7sKFC8jLyytYT1eSunXr4tixYwgODkZkZCTq16+P9evXixX/kSNHAEAhR5kUx9/fH+fPn8fbt29lbis7Oxt+fn4asYNZVbZv3w4iKhiVloStrS3c3d15ClZJOKlj7Auxc+dOZGdno3nz5pzUyejjx4+IjIws8Ztcnz59sGnTJmzcuBEDBgxQyJlw4jp79iwqVKiABg0alFlWIBCgf//+uHfvHjp16oQhQ4agdevWuHv3bqn1wsPD0axZM1SqVEleYZfKz88PAoEABw8elLmt+fPnIzIyEnPnzkW3bt2QlpYmhwjVy+HDhzFlyhSp62/atAkdOnSAlZWVVPUDAgJw7NgxfPjwQeoYmJhIQ1y6dIlatWpF7u7u1KNHD8rOzi6zTlJSEgGgpKQkJUTImHpr0aIFtW/fnmbOnEnm5uYkEolUHZLGWrVqFWlpadG7d+9KLbd9+3bS1tYmPz8/SktLU1J0hXl7e1OHDh2kqnv8+HGqU6cO6erq0syZM4v9upubm0uWlpY0efJkWUOViIeHB/n5+cnUxu3bt0lHR4cmTpxIBw8eJGNjY2ratCm9ePFCTlGq3s2bN8nQ0JAA0Js3bySuf+fOHQJAe/bskTqGd+/ekVAopNWrV0vdBhOPxiR1b968KfiiOHHiRNq1a1eZdTipY+xfd+/eJQC0c+dOioiIIAD08OFDVYelsdzc3MjX11esshEREWRkZESurq706dMnBUdWWG5uLpmYmNCcOXOkbiMjI4MmTZpEWlpa1LhxY7p06VKh9+fPnycAdObMGVnDlciff/5Jenp6lJKSIlX93NxccnFxoXr16lFGRgYREV2/fp2qVatGlStXposXL8ozXJVITEykOnXqUP369UkgEFBwcLDEbYwfP57Mzc0pMzNTplg8PT2pTZs2MrXByqYx0682NjYwNDQE8O9ZReKek8MY+3fnmrm5OTp16lRw5ARPwUrn2bNnOHPmjNjri3x8fHD8+HHcv38f7u7uePnypYIj/J+bN28iJSWlxE0S4tDX18fs2bNx8eJFCIVCODk5Yfz48QXHn4SHh8PMzAwuLi7yClss/v7+yMrKQmRkpFT1ly1bhvPnz2P9+vXQ19cHADRu3Bjnz59HtWrV4O7ujj179sgzZKUiIgwYMADv37/HwYMH4eDggPDwcInayMvLw5YtWxAYGAg9PT2Z4gkICMCpU6fksg6SlULVWaWknj17Rq6ursVOA2RmZlJSUlLB58WLFzxSx754ubm5ZGtrSyNGjCh4VqtWLRo9erTqgtJg8+bNIwMDA0pOTpao3t27d6latWpkZ2dHd+/eVVB0hS1fvpx0dHQoPT1dLu1lZ2fTnDlzSE9Pj+rUqUOnT58mFxcX6t69u1zal1TDhg2pb9++Etd79OgRGRoa0o8//ljs+/T0dOrVqxcBoNmzZ2vkUoV58+YRANq/fz8REU2dOpXMzc0pNzdX7DaOHDlCAOj8+fMyx/Pp0yfS1tamZcuWydwWK5lGJXVJSUnk7u5O9+/fL/b9tGnTCECRDyd17EsWHh5OAApNJwUGBpKrq6sKo9JcjRs3poCAAKnqvnjxgr7++muytLSk2NhYOUdWVK9evahFixZyb/fu3bvUsmXLgq+x69evl3sf4pg8eTJZWFhQTk6O2HVEIhG1a9eOqlWrVurUrUgkounTpxMAmjdvnjzCVZpjx46RUCikSZMmFTyLjo4mABQdHS12OwMHDqQ6derILalt3749tWrVSi5tseJpTFKXm5tLHTt2pKNHj5ZYhkfqGCsqICCAvv7660JfmBcvXkz6+vpibThi/3Pz5s1Cox/S+PTpE7m6upKhoSFFRkbKMbqiqlatSr/88otC2s7Ly6Nly5aRg4NDmRtGFOXChQsEgE6cOCF2nXXr1hEAioiIEKv80KFDydbWVqLEUZVevHhBVlZW5OnpWWhULjc3l8zNzWnq1KlitZOVlUUVKlSgKVOmyC224OBgAlCuNqKoG41J6rZt20YWFhbk4eFBHh4etGPHjjLr8EYJ9qWLj48nPT09+uOPPwo9P3fuHAGgK1euqCgyzTRp0iQyNzenrKwsmdpJS0sjLy8vqly5skTTYZJ49uwZAaDQ0FCFtK8O8vLyyNbWlsaMGSNW+VevXpGZmRn1799f7D6uXr2qMb+PWVlZ5OLiQnZ2dvT+/fsi7wMCAsjR0VGstg4dOkQA6MaNG3KLLzExkXR1denPP/+UW5usMI1J6qTBSR370q1cuZK0tLSKHGWQnp5OWlpafMSABEQiEdWoUYO+//57ubSXP8qkqNG6rVu3EoBiv7mXJz/88APVrFmzzClCkUhE/v7+VKlSJYl3ITs6Okp9LIwyjRw5knR1dUtcAxccHEwCgUCsvxN9+/alr776Su7rCTt16kTOzs5ybZP9j8bsfmWMSW7Dhg1o3749bGxsCj03MDBA48aNeQesBGJjY/H06VOpTtUvjoODA+rXr49NmzbJpb3/Onv2LOrVqyf1gbGaonPnznjy5Alu3bpVarndu3dj//79WLFiBSwsLCTqY9iwYQgPD8fz589lCVWhdu7ciRUrVuCvv/6Ck5NTsWV8fHxARGXuGM7MzERoaCgCAgIgEAjkGmdAQADOnz9f5oHWTDqc1DFWTt2+fRsXL17EwIEDi33v6OjISZ0Etm3bhipVqsDNzU0u7QkEAvTt2xchISFITU2VS5ufO3funExHmWiK1q1bw8TEBKGhoSWWiY6Oxg8//IBu3bqhW7duEvcREBAAY2NjrF+/XoZIFSclJQVjxoxB9+7dMWzYsBLL2djYoGnTpoiIiCi1vcjISKSkpKBnz57yDhVdu3ZFtWrVEBQUJPe2GSd1jJVbwcHBsLS0RMeOHYt97+TkhDt37igkoZCHv/76C8+ePVN1GACA3Nxc7Ny5E7169YKWlpbc2v3uu++Qnp5ecCevvCQmJuLmzZtl3vdaHujp6aF9+/bYv39/se/37t2Ltm3bolGjRvj777+l6sPY2Bjfffcd1q1bh9zcXFnCVYi5c+ciKSkJixYtKnNkrX379oiMjCz1ntudO3eiUaNG+Oqrr+QdKvT19TFjxgzs2bMHFy9elHv7XzxVz/8qEq+pY1+qnJwcqlSpEv30008llrlx4wYBoFOnTsnU1+XLl2n69OmUmJgoUzufu3TpEgGguXPnyq1NWeQfC3P58mW5t+3h4UHt2rWTa5v58T548ECu7aqr/PWDn++qFIlE9Oeff5JAIKBevXrJfCPClStXZN75rAiPHj0iXV1dmjZtmljlz5w5U+rZc2lpaWRkZESzZs2SY5SF5ebmUoMGDaht27YaeQagOuOkjrFyKH/nWmm7W3Nzc8nIyIgWLlwocfsZGRm0adMmcnZ2LjirTNxvKuL4/vvvCQANGjRIbm3Kol+/flS/fn2FfANav349CQQCuR7zMHnyZLKysvpivmEmJCSQtrY2rVixgoj+/bs9atQoAkATJkygvLw8ufTj4OAg9n2zu3fvpuPHj8ul39J07dqVqlatKvbdwjk5OWRmZkYzZswo9v3u3buVco1gaGgoAaAjR44otJ8vDSd1jJVD3bp1o2+++abMcu7u7tSjRw+x233y5AmNHz+eKlasSADIy8uLQkJCaPjw4VSxYkW5XFqflJRERkZGJBQKyc3NTeb25MHOzk5h570lJSWRvr4+zZ8/X25tenh4UJcuXeTWniZo164deXt7U1paGvn7+yvkAvm1a9eSUCikZ8+elVru9OnTpKWlRS1btpRr//91/PhxAkDbtm2TqF737t3JxcWl2Hc9evSgZs2aySO8UolEInJ1daVmzZrJLelmnNQxVu58/PiRdHR0aPHixWWW/eWXX6h69epllktOTqbOnTuTQCAgMzMzGjNmDN27d6/g/aNHj0goFNKqVatkiPxfq1evJqFQSIMGDSIbGxuZ25PV8+fPCQCFhIQorI/iDoiWVlZWFhkYGNCiRYvkEJnmWLp0Keno6JCjoyMZGRnR4cOH5d5HSkoKGRsbU1BQUIll3r17R7a2tmRkZEQ6Ojpy+UGnODk5OdS4cWNydXWV+O/NunXrSCAQ0MePHws9T0lJIQMDA6XdoHH69GkCINa5s0w8nNQxVs5s2bKFAIh1yv+uXbsIAL19+7bUcvPmzSNdXV1au3YtpaamFlumR48eVLt2bZkO0xWJRNS0aVP69ttvafPmzQSg1KuclGHnzp1i/R7J4vDhw3I7DDo2NpYAKOUaMnWSf9iyjY2NQtY+5hs2bBhVqVKl2BsmcnNzydPTk6ytrSkyMpIA0LFjxxQSx6pVq4pc/yeuly9fEgDavn17oefbt28nAPT48WN5hVmmDh06UO3atfl2GznhpI6xcmbSpElUtWpVsco+efKEANDBgwdLLJORkUGVKlWiIUOGlNpW/mG6+/btkyje4to4dOhQQXJy9epVqduTh9GjR1OtWrUU2kdOTg5ZW1vT2LFjZW5r0aJFZGBgIPOtF5ooNDSUnj9/rtA+Ll++TADowIEDRd5Nnz6dBAIBHT16lPLy8sjCwqLUUT1pxcfHk6WlJQ0YMEDqNho3bkz9+vUr9Kxz587k5OQka3gSuX79OgkEArmM8jM+fJixcufu3buoX7++WGWrV68OKyurUs+r27RpE96/f49ff/211LYcHR3h7u6OP/74Q6J4P7dmzRrY2dnB19cXderUAQA8fPhQ6vbkITo6Gq6urgrtQ1tbG4GBgdi2bZvMR2acPXsWTk5O0NXVlVN0msPf3x92dnYK7aNZs2Zo3rw51q5dW+j50aNHMWPGDMyYMQPt2rWDUCiEu7s7Tp06JfcYZs6ciaysLMyZM0fqNnx9fREREVFwtElycjLCw8MREBAgrzDF0rhxY3z33XeYMWMG0tLSlNp3ecRJHWPlzN27d8U+X0ogEMDJyanE86Ly8vKwcOFCdO3aFXXr1i2zvV9++QXR0dGIjo6WKGbg328q27dvx5AhQ6ClpQULCwuYm5urNKlLT0/H1atXFZ7UAUDfvn3x7t07REVFSd0GEeHs2bNfxKHDqjR06FCEhYXhxYsXAIBXr16hd+/e8PLywuTJkwvKeXh4IDY2FpmZmXLr+969e1i+fDkmT56MypUrS91O+/bt8f79e1y7dg0AcODAAWRlZaFHjx5yilR8M2fOxKdPn7B06VKl913eaExSl5KSAmdnZxgbG5d5HQxjX6qcnBzExcVJdGiok5MTLly4ACIq8m7fvn2Ii4vD+PHjxWrLz88P9evXl2q0buvWrcjKysLgwYMLntWpUwdxcXEStyUvly5dQm5urlKSumbNmqFBgwbYvHmz1G3ExcXhw4cPnNQpWGBgIAwNDbF+/Xrk5uaiV69e0NXVxZYtWyAU/u/bqoeHB7KysuR6c8vPP/8MOzs7jBkzRqZ2XF1dYWJigvDwcAD/Hjjs6uqq8JHO4tSsWRM//PAD5s+fj/j4eKX3X55oTFJnYGCAQ4cOoXv37qoOhTG19ejRI+Tm5kqc1MXHx+Px48eFnhMR5s+fjzZt2sDR0VGstoRCIcaNG4fQ0FCJRtiICGvWrEHHjh1RpUqVgud16tRR6UhddHQ0TExM8PXXXyu8r/xrw0JDQ5GcnCxVGydOnIBAIICLi4uco2OfMzExQe/evbFu3TpMmDABMTEx2LlzZ5F7dhs3bgwzMzO5TcGGh4cjPDwcixYtgr6+vkxt6erqol27dggPD0diYiIiIyOVPvX6uSlTpiAvLw9z585VWQzlgcYkddra2uX+YmrGZJV/SbYkSV1+wvbf0YTjx4/j8uXLmDBhgkQx9OnTB1ZWVvjzzz/FrnPx4kVcv34dQ4cOLfS8du3aKk/qnJ2d5Xo1WGm+++47ZGZmYu/evRLXFYlEWLJkCTp06IAKFSrIPzhWyNChQ/Hq1SssWrQI8+bNK/ZKNi0tLbi5ucktqVu6dClcXFzQuXNnubTXvn17xMTEIDg4GLm5uSodNLG2tsa4ceOwbNkynDx5UmVxaDqNSerEkZWVheTk5EIfxr4kd+/eRYUKFWBtbS12HUtLS9SqVatIUjdv3jw0bdoUXl5eEsWgr6+PUaNGITg4GB8+fBCrzpo1a1CtWjX4+PgUel6nTh28e/cOKSkpEsUgD0SEmJgYpUy95rOzs0ObNm2kmoINCQnB3bt3C63pYorTvHlztG7dGj169MC4ceNKLOfh4YHo6GhkZ2fL1F9SUhKOHTuGwMDAMu93FZevry9EIhGCgoLg5uYGW1tbubQrrV9++QUtWrRA27ZtMXXqVLW8Z1fdlaukbu7cuTAzMyv4qGJtgLpITU3FoUOHSr20mZU/+ZskJP2i7+joWCipu3z5Mo4ePYrx48dL9Q1k+PDhEAqFWLlyZZllk5KSsGPHDnz//fdFRsTyd8CqYl1dXFwcPn78qNSkDvh3w8TJkyfx/PlzsesQEWbNmoV27dqhRYsWCoyOfe7o0aPYtWtXqf9GPDw8kJGRgUuXLsnUV3h4OHJycuDv7y9TO5+rVq0aGjRogJSUFJVOveYzNjbG0aNH8fvvv2Pu3Llwd3fH06dPVR2WRilXSd3EiRORlJRU8MnfmSSpFy9e4Pjx48UuHFd3IpEImzdvRt26dfHtt9/in3/+UXVITInu3bsn0dRrPicnJ1y9ehU5OTkAgAULFsDe3h7dunWTKg5LS0sMGjQIy5cvR3p6eqllt2zZgqysLAwaNKjIO1UeaxIdHQ2BQABnZ2el9tutWzfo6+tj69atYtc5fPgwrl27hqlTpyowMvZf4kzLN23aFCYmJjJPwYaGhqJZs2aoXr26TO38V/v27SEUCqX+ty5vWlpamDx5Ms6cOYPXr1+jSZMm2Llzp6rD0hwqPCNPYu3bt6fKlSuTi4sLbdiwoczy0h4+7O3tTQDI2dmZoqKiNOZS7AsXLpCLiwsBoB49epC/vz9ZWVlRQkKCwvsWiUS0efNmio+PV3hfrHgikYiMjY1p4cKFEtc9e/ZswUG/Dx8+JKFQSCtXrpQpnri4uDKvDhOJRNSoUSPq3LlziWUsLCxo1qxZMsUijaFDh1LDhg2V3i8RUe/evalGjRpi3aYhEonI2dmZWrVqpTFfq740vr6+5OPjI3X9zMxMMjExoZkzZ8oxqn+9e/eOwsLC5N6uPCQkJFBAQAABoEGDBpV4mw37H41K6iQlTVJ37949AkBjxowhJycnAkAeHh509uxZBUYqmzdv3tCAAQMIAH3zzTd08uRJIiJ69eoVGRkZyeWU+rKsXLmSANBvv/2m8L5Y8fLvKD106JDEddPS0khLS4vWrFlDw4YNI2tra0pPT5c5pu7du5d6dVhMTAwBoPDw8BLbcHZ2lunkfGk1bNiQhg4dqvR+iYju379PRkZGYv26jxw5QgAoIiJCCZExacydO5eMjY2LvVpMHOHh4QSAbty4IefI1J9IJKJ//vmHDA0NqVatWjRs2DCaMWMGrVu3jsLCwuj69ev04cMH/oHm/3FS9x8//fQTWVlZUUZGBolEIjpw4AA1btyYAFD79u3p0qVLCoxYMnl5ebRw4UIyMTEhS0tLWrVqVZFvnnPmzCFtbW26c+eOwuK4e/cuGRgYUIUKFahSpUp8h5+K5N81GRcXJ1X9Jk2akJ+fH+np6dHs2bPlEtP58+cJAJmamlLz5s0pMDCQgoKCaMuWLXT+/Hnq3bs3Va9enfLy8kpso0+fPtSyZUu5xCOuhIQEEggEFBwcrNR+P7dhwwYCQFu3bi21nLu7Ozk4OPA3NTUWHR1NAOj8+fNS1R82bBjZ29t/0X/G9+7dox49elCzZs2oUqVKJBAICEDBx8zM7Iu777g4nNR9JiUlhUxNTWnixImFnufl5dHOnTupXr16BICGDRumiHAltmfPHgJAo0aNok+fPhVbJiMjg+zt7cnHx0chXxCysrKoWbNmVK9evYIvXMXdicgUb8mSJaSnp1fiqFhZhg4dSgDIxMRErlP2p06donnz5tHgwYPJzc2NKlWqVOiLcVlTq9OnTydra2u5xSOOiIgIAkAPHjxQar+fE4lE1Lt3bzIxMSkxUT916hQBoP379ys5OiaJ7OxsMjQ0lGppRF5eHtnY2NDPP/+sgMg0V3Z2Nj1//pxiY2Np79699NVXX5Gfn5+qw1I5iZO6hIQE2rFjBy1atIj+/PNP2r59u9quo5I0qVu1ahUJhUJ69uxZse9zcnJowYIFBIBOnz4tz1ClMmjQIGrQoEGZ5UJCQhSWbE2aNIm0tbXp4sWLRETUrFkz8vf3l3s/rGw//PADNW7cWOr6f//9NwGgX375RY5RFS8pKYkuXbpEISEhZU7zbt26Vaq1sbIICgqiihUrqnxkJCkpiezt7cnR0ZGysrKKvPfy8qLGjRuXOtLJ1IOnpyd17NhR4nr5PyyfOXNGAVGVH8HBwQRAobNSmkCi3a/r16+Hk5MTYmNjIRKJkJeXh9jYWLi4uGD9+vWS7tFQK0SEFStWwN/fH9WqVSu2jLa2NsaNG4cmTZpg6tSpKt0dS0SIjIyEr69vmWX9/f3h6emJn3/+GVlZWXKL4cyZM5g7dy5mzJgBBwcHAMCgQYNw6NAhvH37Vm79MPFIcudrcXx8fODm5oaff/5ZjlEVz9TUFM2bN0fnzp1hYGBQallVHGsSHR0NV1dXuZ0HJi1TU1Ns374dV69eLbKz9fz584iKisLkyZMLXU3F1JO7uzvOnDmDvLw8ieqFhobCysqKj6opQ2BgICpXrozFixerOhTVkiQDrFu3brG7sZKTk6lOnTrySTPlSJKRupMnTxIAOnr0aJllDxw4IHZZRbl58yYBoMjISLHK3759m7S0tGj+/Ply6T8xMZGqV69OLVu2LDTdFx8fT3p6elJNMzDZWFtb0/Tp01UdhtzFx8cTANqxY4dS+svNzSVjY2OaN2+eUvoTR/4Mwef/3r/99luqV6+e1NPtTLnyp8qvXLkidh2RSER16tShwYMHKzCy8mPOnDmkp6dH7969U3UoKiPRj3cCgQCpqalFnqempqr8J1pZrVixAvXr10fbtm3LLNuxY0c4OTmpdLQuMjISBgYGcHd3F6t8gwYNMHLkSPz+++948+aNzP3/9NNPiI+Px+bNmwud1WRubo6uXbti/fr1GnnOn6aKj4/H+/fvUb9+fVWHInfm5uawtLRU2ll1t27dQmpqqtIPHS7NuHHj4O3tjX79+uHdu3e4du0aDh48iMmTJyvtCjMmGycnJ+jp6Ul0Xt29e/fw8OFDuV0LVt4NGzYMWlpaYh16Xm5JkgEePHiQ6tatS127dqVRo0bRqFGjqEuXLlS3bl06ePCgYtJOGYg7Uvfy5UvS0tKiZcuWid12/kJqVZ3v4+npSe3bt5eoTnx8PFlaWlL//v1l6nvnzp0EgDZu3Fjs+6ioKAJA0dHRMvXDxJd/ztz169dVHYpCuLi4UL9+/ZTS18qVK0lbW1suR7rI05s3b8ja2pp8fHyoa9euVLNmTamPyGCq4eHhUeqZjP81e/ZsMjIyooyMDAVGVb78+OOPVLFiRbX796ssEm+UyM3NpejoaNqzZw/t3r2boqOj1Xb4X9ykLigoiIyNjSVaiC0Siahly5YqOUogNTWVdHV1acmSJRLXXb16NQGQeuv3ixcvyNzcnHr06FHirzsvL4+qV6/OUwZKtG7dOhIKheX2i3/fvn3J1dVV5nbOnj1b5pEvffr0IScnJ5n7UoT8HyYB0Nq1a1UdDpNQUFAQWVhYiL2xxdHRkbp3767gqMqXuLg4EggEtGbNGlWHohJf/JEmWVlZVKlSJRo5cqTE7R8/fpwAUGhoqCxhSuzw4cMEgO7duydx3dzcXGrSpAk5OTlJvGNOJBJRu3btyNbWtsQjVPJNnz6djI2NxToRn8lu3LhxVKtWLVWHoTAzZswgKysrmdpIT08nExMTqlq1aqlrbuzt7Wn06NEy9aVIU6dOpUaNGlFmZqaqQ2ESOnbsmNiHCL948YIA0JYtW5QQWfnStWtXqlev3he5K1zqLVN79+6Vbd5XTezduxfv3r3DiBEjJK7bpk0btGnTBkFBQRCJRKWWXb9+Pby8vPD777/j2rVrMq03i4iIQPXq1VG3bl2J62ppaWHx4sW4cOECjh49KlHdixcv4tixY1i5ciUsLCxKLTtgwACkpaVhz549EsfIJCfrzld1V6dOHXz48AFJSUlSt3Ho0CGkpKQgPT0dPXv2LLjn9nNv377F48eP1Wo93X/NnDkT169fh56enqpDYRJycXGBjo6OWOvqDhw4AG1tbXTo0EEJkZUv48aNw/379xEWFqbqUJRO6qSud+/eZW4dliVxUZYVK1agbdu2aNCggVT1Z86ciRs3bpSY5Obm5mL06NEYMmQI0tPTsXDhQjRt2hTVqlXD8OHDcfjwYWRkZEjUZ/5RJtJuTvHw8IC9vb3Eifm+fftgaWkJPz+/MstWr14dnp6eGn/Ujaa4e/duudwkkU8ex5ps27YNDg4OCA0Nxblz5/Drr78WKRMTEwMAap3UAdD4jWlfKkNDQzg5OYmV1IWGhqJ169YwNzdXQmTli6urK1xcXPDHH3+oOhTlk3aILyIigkxNTWnUqFFF1lbl5ubShg0bqF69ejIOJBY2btw4atWqFfXu3bvYgzj/q6zp16tXrxIA2rt3r0xxeXt701dffVVkbWFCQgJ5e3uTlpYWrVixgoj+ne49evQojR49muzt7QkAGRgYUL9+/cRam/j48WMCQPv27ZMp5l9//ZWsra3FXg8pEomodu3aNGjQILH72L59OwGg+/fvSxsmE0N6ejoJBAJav369qkNRmISEBAJA27dvl6p+fHw86erq0uLFi4mIaPny5QSANm3aVKjcL7/8QnZ2drKGy1iJJk2aRNbW1qWuxU5ISCBtbe2C7xtMcrt37yYAanW1pzLItKbu2rVrVLVqVercuTOlp6dTVlYWrVy5kmrUqEHm5uYUFBQkrzjpypUr9N133xER0axZs8q8D5Go7KRuyJAhVLVqVZl3kOXfb/n52of79+9TvXr1yNzcvMTz7EQiEd25c4dmzpwp9jlcq1atIm1tbUpMTJQp5tjYWAJAJ0+eFKt8/rl4hw8fFruPjIwMqlChAk2YMEHaMJkYrl279kXsNq5YsSLNnDlTqrpr164loVBIb968IaJ//+0NGDCA9PX16fLlywXlWrZsSQEBAXKJl7Hi5N/RXNrNB1u2bCEA9OLFCyVGVr7k5uZSzZo1KTAwUNWhKJXMGyVevnxJjRs3psaNG5OtrS1ZWVnR7NmzKTk5WR7xFVixYkXBERqXLl0Sa2NDaUldfHw8GRgYyO3i8o4dO1KdOnUoJyeHoqKiqEKFClSvXj2x74709vamRo0albmw09/fn9zc3GSONy8vj6pWrUqjRo0Sq/yMGTPIxMRE4sXZI0eOpMqVK/PRCwqUPyIqz/ta1VGLFi2ob9++UtX18PAgLy+vQs8yMjLIwcGBqlWrRu/fv6fMzEzS09Ojv/76Sx7hMlaslJQU0tLSolWrVpVYpnv37uTo6KjEqMqnv/76i7S0tEq8+rM8kulumaSkJPzzzz949eoVHj58iMTERBw7dgyTJk2CiYmJLE0XkZiYCFNTUwCAmZkZ4uPji5TJyspCcnJyoU9JNmzYgLy8PAwZMkQu8c2cORMPHz5EQEAAfH194ezsjNjY2IK1QGWZMmUKbt68iUOHDpVYJjs7G8ePHxfrarCyCIVCdO3aFfv27Stzkwfw73q6jh07Srw4e/DgwXjz5g0iIiKkDZWV4e7du7CxsUGFChVUHYpC1alTR6o1dS9evMCpU6fw3XffFXqur6+Pffv2ISMjAwEBAbh48SKysrLUfj0d02zGxsZwcHDAnDlzMGHCBBw/frzQ9Y2ZmZkIDw/nA4flYNCgQTAxMcHSpUtVHYrSSJ3UTZw4EdWrV0dwcDDmzJmDDx8+oEePHvD09MTFixflGSOAf0+Vz0/SEhMTi919OXfuXJiZmRV87OzsSmwvKysLgwcPhrW1tVzia9q0aUGSNGrUKBw6dEiib7Jubm5wc3PD7NmzS9xgEhMTg5SUFPj4+Mgl5m7duuHVq1e4cOFCqeUePXqE69evo2vXrhL30bRpUzRp0gT//POPtGGyMpT3TRL56tSpI9WtEtu3b4e+vj66dOlS5J2dnR127dqF06dPo2/fvjAwMMA333wjj3AZK9Hq1avh4eGBDRs2oF27drCwsICfnx/++usvrF+/HmlpaZzUyYGxsTGGDRuGv//+u9RBnnJF2iG++vXr08aNG4sstJ8yZQoZGRnJ/ey2/66p27ZtW5EymZmZlJSUVPDJP+dHkkOFZfHhwweZ7oPNP1g0Kiqq2PcTJ04kKysruZ29k5ubS9bW1vTLL7+UWm7hwoWkr68v9ZlzS5cuJW1tbXr79q1U9VnpGjZsSMOHD1d1GAon7TTzN998Qz169Ci1zJIlSwgAeXh4SB8gYxLKy8uja9eu0fz586ldu3akq6tLAKhu3bpKP9S+vHr58iXp6OhIvR5X00id1JX2F+7vv/8mPT09ia7dEoe8d7+qG5FIRM2bNy/xG0vTpk2pT58+cu1z2LBhVLNmzVL/PFu0aEH+/v5S9/Hp0yfS09OjiRMnSt1GeZWZmUmvX7+Wun5ubi7p6urS0qVL5RiVerp06RIBoAsXLohd59atW2IdEC4SiWjSpEm0c+dOWcNkTGppaWkUHh4u1uHETHzjxo0jIyMjevXqlapDUTiF3SgRFhZGJiYmimpeLJqW1BERhYSEEAA6e/Zsoedv374lALR582a59pe/E+vKlSvFvn/16lWp97yKa9q0aaSjo0O3b9+WqZ3yZtq0aWRiYkLPnz+Xqv7Dhw9LHd0tTxITEwlAsaP0JZk4cSKZm5uL9UMgY6x8SkhIIEtLS4mO5NJUMm2UKE379u1x8uRJRTVfbnXq1Alff/01Zs+eXej5kSNHAADe3t5y7a9NmzYwNzcv8SDi0NBQaGtro2PHjjL1M2HCBNSoUQPDhg0Ta2PGl2L//v1ISUnB8OHDpTqs++7duwBQrm+TyGdmZgYrKyux19WJRCJs27YNPXr0gK6uroKjY4ypqwoVKmD69OnYsGEDrl27pupwFEphSR0ANGvWTJHNl0tCoRCTJk1CeHg4Ll++XPA8MjISzZo1k9vGjnw6Ojro1KlTiUndvn370KZNmzKvBSuLvr4+Vq9ejbNnz2LDhg0ytVVevHnzBteuXUNAQAAOHz6MnTt3StzG3bt3YWJiAltbWwVEqH4k2SwRHR2NZ8+eFdn1yhj78gwbNgz16tXDuHHjNOK2K2kpNKlj0unZsydq166NOXPmAPh3xCH/ajBF6NatG+7du1cw6pPv06dPOHnyJLp16yaXftq2bYt+/frh119/xfv37+XSpiaLiIiAQCDA8uXL0b17d/z000/49OmTRG3cu3cP9evX/2KujZIkqdu6dSvs7OzQqlUrBUfFGFN3Ojo6+OOPP3D8+HEcPHhQ1eEoDCd1akhbWxsTJkzAvn37cPv2bVy9ehUfP36U21Em/+Xl5QVjY+Mio3UHDx6ESCSCv7+/3Pr6448/IBAI8Msvv8itTU0VFhYGJycnVKxYEcuWLUNOTg5+/vlnidq4e/fuFzH1mk/cs+qys7Oxa9cuBAYGQijkL3OMMaBDhw7w9PTEL7/8guzsbFWHoxD81U5N9e3bF3Z2dpg7dy4iIiJgYmKCFi1aKKQvfX19dOzYsUhSt3fvXrRs2RI2NjZy68vKygoLFy7E5s2bcfz4cbm1q2lycnIQFRWF9u3bAwBsbGywaNEibNq0qWD9ZFmI6ItL6mrXro1Pnz4hISGh1HJHjhxBfHw8T70yxgoIBAL8+eefePToEVavXq3qcBSCkzo1pauri99++w3bt2/Hxo0b0a5dO+jo6Cisv27duuHatWt4/PgxACAlJQVHjhyR6sDhsgwcOBDu7u744YcfkJmZKff2NUFMTAySkpLQoUOHgmcDBw5E27ZtMWzYMKSmppbZxtu3b5GUlPRFJXX5N7SUNQW7detWNGzYEI0bN1ZGWIwxDdGoUSMMHjwY06dPL/ZmKlUhIowYMaLIJklJcVKnxgYPHlyw209R6+nytW/fHgYGBgWjdWFhYcjOzi72FH5ZCQQCrF69Gk+fPsXcuXPl3r4mCA8Ph5WVFZo3b17wTCAQYO3atXj79i2CgoLKbCN/DeSXcJtEvtq1awMoPalLSUnB/v37eZSOMVasmTNnIicnB7///ruqQynwzz//YNWqVQgKCsL169elboeTOjVmYGCAcePGQSAQKGw9XT4jIyP4+voWJHX79u1Ds2bNUKNGDYX099VXX2H8+PGYN28e7t27p5A+1Fl4eDh8fX2LrPeqVasWZs6cib/++qvM69vu3bsHHR0d1KpVS5GhqhVTU1NYW1uXuq4uNDQUGRkZCAwMVGJkjDFNYWNjg0mTJmH58uV48OCBqsPBo0ePMHr0aPTr1w/16tXDqFGjpN6hy0mdmhs7diwuXbqksOTqc926dcP58+cRFxeHw4cPK2Tq9XOTJk1CtWrV8MMPP0j1F3jTpk1lJj7q6NWrV7h+/XrBerr/Gjt2LJo0aYIhQ4aUupj37t27qFOnDrS1tRUVqloqbQdsdnY2/v77b7i5uaF69epKjowxpinGjBkDW1tbjB8/XqVx5Obmom/fvqhUqRKWL1+Ov/76C2fOnMGOHTuka1CVJx8rmibeKKFKiYmJpKOjQ15eXgSA7ty5o/A+o6KipLop4/Hjx6SlpUUdO3ZUUGSKs27dOhIKhfTx48cSy1y5coW0tLRoxowZJZZp164ddevWTREhqrUBAwaQk5NTkecPHz4kBwcH0tHRoQMHDqggMsaYJtm2bRsBoDNnzqgsht9//52EQiGdO3eu4FmXLl3I1tZWqvvWOaljhXTo0IEA0FdffaW0Prt27Uo1a9aU6CqnoUOHEgAyMjLSuCugunbtSi1atCiz3MSJEwkAtWrVikJCQig3N7fQe1tbW5oyZYqiwlRbs2fPJgsLi0LPNm/eTMbGxlS7dm26dOmSiiJjjGkSkUhE9vb2NHz4cJX0f/HiRdLW1qbJkycXev7kyRPS19enCRMmSNymRky/pqSkwNnZGcbGxrh165aqwynX8g8aVvTU6+dmzJiBp0+fin3TxIsXL7Bhwwb06tULaWlpOHfunIIjlJ+cnBwcPXq0xKnXz82aNQv79u0DEaFLly6oX78+Vq5cifT0dCQlJeH169df1CaJfLVr10Z8fDzi4+ORkpKC/v37o2/fvujSpQuuXLlSaPMJY4yVRCAQwM/PD4cPH1b6LRPp6eno06cPvvnmG0ybNq3Quxo1amD8+PFYtGiR2IetF5BPvqlYOTk59P79e+rfvz/dvHlT7Ho8Uie5T58+UatWrej+/ftK7bd3795UtWpVysjIKLPsjz/+SBYWFpSUlESVKlWi8ePHKyFC+Th58iQBkHg0KTY2lnr27ElCoZAsLCyoT58+BIAuX76soEjV15UrVwgArVy5kurUqUPGxsa0adMmVYfFGNNAERERBECi3EIeRowYQQYGBnT37t1i36enp1P16tWpQ4cOErWrEUldvrKSuszMTEpKSir4vHjxgpM6DXH//n0SCoX0119/lVru9evXpKenRzNnziQior59+1KTJk2UEaJc/Pbbb2RtbU15eXlS1X/y5AmNGTOGjI2NSVdXl1JTU+UcofpLTk4mAASAmjdvTg8ePFB1SIwxDZWRkUGGhoY0b948pfUZFhZGAGj58uWlltu7dy8BoIMHD4rdtkZMv4pr7ty5MDMzK/jY2dmpOiQmprp166J///6YM2cO0tPTSyy3aNEi6OnpYdSoUQAAHx8fXLt2De/evVNWqDIJDw9H+/btpb66qkaNGli8eDFevHiBy5cvw8jISM4Rqj8TExP4+/vjl19+QXR0dMGBxIwxJil9fX14enri8OHDSunvw4cPGDRoEHx9fTFixIhSy3bp0gWenp4YM2aM2Af1q1VS9/btW7Rq1arIR9xTnydOnIikpKSCz4sXLxQcMZOnoKAgxMfHY8WKFcW+//DhA1atWoWffvoJFSpUAPDvvbUAxL5aS5VevHiBmzdvirWeriwVKlRAw4YN5RCVZgoNDcXChQuhq6ur6lAYYxrOz88P0dHRSrlhYsSIEcjJycE///wDgUBQalmBQIClS5fi2bNn+PPPP8VqX62SOhsbG5w9e7bIx8LCQqz6enp6MDU1LfRhmqNGjRoYPHgw5s+fj+Tk5CLvFy9eDKFQiDFjxhQ8s7a2RrNmzRAREaHESKUTEREBoVAIb29vVYfCGGPs//n5+SEvLw+RkZEK7SciIgJ79uzBsmXLULlyZbHqfPXVV/jpp58we/ZssQaq1CqpK02HDh1w5MgRfP/99wgODlZ1OExBJk+ejNTUVPz111+FnsfHx2P58uUYMWIELC0tC73z8fHBkSNHIBKJFBpbYmIi3rx5I3X98PBwtGjRAubm5nKMijHGmCyqVKmCJk2aKHQKNisrC6NGjUKbNm3Qq1cviepOmzYNJiYm+PXXX8ssqzFJXVhYGF6/fo2YmBgMGDBA1eEwBalatSqGDx+ORYsWISEhoeD50qVLkZubi3HjxhWp4+Pjg48fP+Lq1asKi4uI0LFjR9StWxf79++XuH52djaioqLkMvXKGGNMvvz8/BAREYG8vDyFtP/HH3/g6dOnWL58eZnTrv9lamqKtWvXYsiQIWWW1Zikjn05JkyYgJycHCxatAgAkJycjL/++gtDhw6FtbV1kfItWrSAsbGxQofOQ0JCcO7cOTRq1AidO3fGrFmzJDrX6Ny5c0hNTUWHDh0UFiNjjDHp+Pn54dOnTzh//rzc23727Blmz56NMWPGoEGDBlK10alTJ3h6epZZjpM6pnYqVaqEUaNGYcmSJfjw4QOWL1+O9PT0EoeedXV10bZtW4UldTk5OZgwYQJ8fHxw9uxZTJ8+HVOnTkVAQADS0tLEaiMsLAw2NjZo0qSJQmJkjDEmPScnJ1SsWFEhU7A///wzzM3NERQUJPe2/4uTOqaWfv31VwiFQgQFBeHPP//E4MGDUaVKlRLL+/j4IDo6utgNFrJas2YN4uLisGDBAgiFQkybNg179+5FWFgYWrZsiWfPnpXZRv5RJpIOuzPGGFM8LS0t+Pr6yj2pi4yMxL59+/DHH3/AxMRErm0Xh5M6ppYsLS0xduxYrF69GklJSRg/fnyp5X18fJCbm4sTJ07INY6kpCTMmDEDAwYMQOPGjQued+3aFTExMUhOToaDgwNOnz5dYhvPnz/H7du3eT0dY4ypMT8/P1y/fh0vX76US3v5myNat24t8eYIaWkrpRfGpPDzzz9j5cqV6Nq1K6pXr15q2Vq1aqFWrVqIjIyEv7+/3GJYsGAB0tLS8Pvvvxd516hRI1y4cAE9e/ZEu3btMGzYMBgYGCAnJ6fgk5ubiydPnkBLS6vgTD3GGGPqx8fHB1paWggLC8PQoUNlbm/RokV48uQJQkJClDZLIyBJVntrmOTkZJiZmSEpKYnPrNNQHz9+hLm5ObS0tMosO3LkSERERODRo0dy6fvly5eoU6cOxo0bh1mzZpVYLn/NXUhICHR0dKCtrQ0dHZ1C/79Vq1aYM2eOXOJijDGmGO7u7jA3N5fqlIPPPX/+HPXr18eIESPwxx9/yCm6snFSx8qNAwcOwN/fHw8fPkTt2rVLLHfhwgUIBAI4OjqW2t7AgQNx+PBhxMXF8d8fxhj7AsyfPx8zZ87Ep0+foK+vL3U73bt3R3R0NO7fv6+UtXT5eE0dKzfatGkDbW3tUnfBXrx4Ea1bt4aLiwsmT56MnJycYstdv34dGzduxPTp0zmhY4yxL4Sfnx/S09Nx6tQpqds4cuQI9u7di0WLFik1oQN4pI6VM61bt4apqSkOHDhQ5N3z58/h7OyMGjVqoEOHDpg5cyaaNGmCrVu3om7duoXK+vj44OnTp7h16xZ0dHSUFT5jjDEVIiLUqFED/v7+WLp0qVRtNGnSBBUqVMCJEyeUfuIBj9SxcsXHxwcnTpxAdnZ2oefJycno2LEj9PX1sX//fkydOhXR0dFISkpC06ZNsXbt2oLDhI8cOYIjR45g/vz5nNAxxtgXRCAQwM/PD4cPH5bogPl89+/fx/Xr1zF27FiVHGHFSR0rV3x8fJCamoro6OiCZ7m5uQgICMCzZ89w+PDhglspHB0dcfXqVfTp0wfDhg1Dly5d8O7dO/z6669o1aqVXHfRMsYY0wx+fn54/Pgx7t+/L3HdkJAQGBgYqOy0A41I6i5fvgw3Nzd4eHigZ8+eJa6DYqxJkyawsrIqWFdHRBg9ejSioqKwZ8+eIle0GBkZYc2aNQgNDcXZs2dRq1Yt3LhxA3/88QcfFMwYY1+gNm3aQF9fX6qDiENCQuDr6wtDQ0MFRFY2jUjqqlSpgsjISJw6dQq1a9dGaGioqkNiakooFMLb27sgqVu6dClWrlyJVatWlfqTk7+/P27evAkvLy+MHDkSzs7OygqZMcaYGjE0NETbtm0lTupevXqFCxcuoEuXLgqKrGwacfiwjY1Nwf/PP/urOFlZWcjKyir4b0VcGcXUn4+PD7Zu3Yr169dj7Nix+OWXX/D999+XWa9y5coICQlRQoSMMcbUmZ+fH0aPHo2kpCSYmZmJVWf//v3Q1tZGx44dFRxdyTRipC7f8+fPcfTo0RJ/w+bOnQszM7OCj52dnZIjZOrA29sbADBkyBD4+/tj/vz5Ko6IMcaYJvHz80Nubm6pR2T9V0hICFq3bg1zc3MFRlY6tTrS5O3bt+jevXuR5wcOHIC2tja+/fZb/P3330WOn8hX3EidnZ0dH2nyBWrZsiWys7Nx8uRJGBkZqTocxhhjGsbZ2RmmpqaIiooqs2xCQgKsra3x119/YcSIEUqIrnhqldSVJC8vD507d8aYMWPQrl07sevxOXVfruTkZBgYGPCRJIwxxqSyfft29O7dG9evX0fjxo1LLbt582b069cPL1++RJUqVZQUYVEaMf26a9cuREdH4/fff0fr1q2xc+dOVYfE1JypqSkndIwxxqTWvXt3VK1aFUuWLCmzbEhICJydnVWa0AEaMlInLR6pY4wxxpi05s+fj6CgIDx//hyVKlUqtkx6ejoqVqyIadOmYfz48UqOsDCNGKljjDHGGFO2oUOHQltbG6tWrSqxzJEjR5CRkaHSo0zycVLHGGOMMVYMc3NzDBgwACtXrkRmZmaxZUJCQtCgQYMSN3EqEyd1jDHGGGMlGD16ND58+IBt27YVeZeTk4ODBw+ic+fOyg+sGJzUMcYYY4yVoG7duvj222+xZMkS/HcbwunTp5GQkKAWU68AJ3WMMcYYY6UaO3Ysbt68iWPHjhV6HhISAjs7OzRv3lxFkRXGSR1jjDHGWClat26Nb775BosXLy54JhKJEBoais6dO0MgEKgwuv/hpI4xxhhjrBQCgQBjx45FWFgY7t27BwC4dOkSXr16pTZTrwAndYwxxhhjZerVqxcqVapUcBhxSEgILC0t4ebmptrAPsNJHWOMMcZYGfT09DBy5Ehs2rQJnz59QkhICL799ltoa2urOrQCnNQxxhhjjInhhx9+gEgkwtixY3H//n21mnoFOKljjDHGGBOLlZUV+vbti82bN8PIyAheXl6qDqkQjUjqbt26hZYtW8LDwwN+fn5ITU1VdUiMMcYY+wKNGTMGAODr6wsDAwPVBvMfAvrvSXpqKCcnBzo6OgCAGTNmwN7eHn379i2zXnJyMszMzJCUlARTU1NFh8kYY4yxL8DixYvh7u6uNufT5VOf1X2lyE/oACA9PR3169cvtlxWVhaysrIK/js5OVnhsTHGGGPsyzJ27FhVh1AsjZh+BYCoqCg0bdoUJ06cQK1atYotM3fuXJiZmRV87OzslBwlY4wxxphqqNX069u3b9G9e/cizw8cOAALCwsAwIIFCyASiTBhwoQi5YobqbOzs+PpV8YYY4yVe2o1/WpjY4OzZ88Wef55omZmZobs7Oxi6+vp6UFPT09h8THGGGOMqSu1SupKEhUVhYULF0IoFMLKygrBwcGqDokxxhhjTK2o1fSrvPHuV8YYY4x9Kcp1UkdESElJgYmJCQQCgarDYYwxxhhTmHKd1DHGGGOMfSk05kgTxhhjjDFWMk7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKgXKd1BERkpOTQUSqDoUxxhhjTKHKdVKXkpICMzMzpKSkqDoUxhhjjDGFKtdJHWOMMcbYl4KTOsYYY4yxcoCTOsYYY4yxcoCTOsYYY4yxcoCTOsYYY6wEe/bswdWrV1UdBmNiEVA5Pu8jOTkZZmZmSEpKgqmpqarDYYwxpkGysrJQsWJFVKhQATdv3kSFChVUHRJjpeKROsYYY6wYZ8+eRWpqKt6/f4/Ro0erOhzGysRJHWOMMVaMw4cPo0qVKli9ejU2bdqE0NBQVYfEWKk4qWOMMcaKERYWhg4dOmDAgAHw9/fH0KFD8f79e1WHxViJOKljjDGm0YgIISEhaNSoESZPnoycnByZ23z06BHu37+PDh06QCAQYO3atSAiDBs2jK+eZGqLkzrGGGMaKy4uDn5+fujatStMTEywYMECtGzZEg8fPpSp3bCwMOjo6MDT0xMAYG1tjTVr1iA0NBSbN2+WR+iMyR0ndYwxxjRORkYGpk2bhoYNG+LOnTsIDQ3FuXPnEB0djcTERDRt2hT//POP1KNqYWFh8PDwgLGxccGzrl27om/fvhg1ahRevHghr18KY3LDSR1jjDGNcvjwYXz99deYO3cuxo0bhzt37sDf3x8CgQCOjo64cuUKevXqhcGDB6NHjx6Ij4+XqP20tDScOHECfn5+Rd4tXboUpqamGDhwIEQikbx+SYzJBSd1jDHGNEJmZia6d++Ojh07onbt2rh16xZmz54NQ0PDQuWMjY2xbt067NmzB8ePH0fjxo1x/Phxsfs5ceIEsrKy0KFDhyLvKlSogH/++QfHjh3DypUrZf41MSZPGpfUbd++HVZWVqoOgzHGmBKJRCIMGDAAYWFh2LlzJyIjI1G3bt1S63Tr1g03btxAvXr14OnpiR07dojV1+HDh1GrVi3UqVOn2PdeXl4YMWIEfvvtNzx48EDiXwtjiqJRSZ1IJMKePXtgZ2en6lAYY4wp0bRp07Bz505s3rwZPXv2hEAgEKte1apVERUVhW+//RZTpkxBbm5uqeWJCGFhYfDz8yu1jwULFqBSpUqYO3euRL8OxhRJo5K6bdu2oXv37hAKiw87KysLycnJhT6MMcY026ZNmzBr1izMnz8f3bp1k7i+UCjE9OnT8ejRI+zcubPUsrdv38bz58+LnXr9nJGRETp27Ijo6GiJ42GSe/XqFRwdHWXe1VzeaUxSl5eXh127diEgIKDEMnPnzoWZmVnBh0f0GGNMs506dQpDhgzB4MGD8euvv0rdTtOmTdGhQwfMmTOn1A0OYWFhMDQ0hIeHR5lturi44MGDBxJvxGCSmzt3Li5duoTt27erOhS1pjFJ3ZYtW9CzZ88SR+kAYOLEiUhKSir48JZzxjRXdna2qkNgKvbgwQN06dIFbm5uWLVqldhTriWZMmVKwfEnJTl8+DDatWsHfX39MttzdnYGAFy4cEGmuFjpXr16hb///huGhobYv3+/qsNRaxqT1N25cwebNm2Cr68vHj58iLFjxxYpo6enB1NT00IfxphmSUtLQ1BQEMzMzLBixQpVh8NU5NOnT+jYsSMqVaqEPXv2QEdHR+Y2W7RogTZt2mD27NnFnl+XmJiIc+fOFXuUSXFq1aoFS0tLxMbGyhwbK9n8+fNhZGSEP//8E1euXMHLly9VHZLaEpAG3nfi4OCAS5culVkuOTkZZmZmSEpK4gSPMTVHRNi5cyd+/fVXfPjwAXXq1MGHDx/w+PHjIkdWsPItKysL3t7euHPnDmJjY1GrVi25tX38+HG0a9cOYWFhaN++faF3u3fvRs+ePfHs2TNUq1ZNrPY6duyI3NxcREREyC1G9j9v3rxBzZo1MXnyZIwaNQpWVlb466+/MGLECFWHppY0ZqTuc+IkdIwxzXHlyhW4ubkhMDAQjo6OuHPnDvbv34+PHz9izZo1qg6PKcmnT59w9uxZ9OvXD7GxsQgNDZVrQgcAbdq0gYuLC2bNmlVktO7w4cNo2LCh2Akd8O8U7IULF/ggYgVZsGABDAwM8NNPP6FChQrw8PDAgQMHVB2W2tLIpI4xVj68f/8e33//PRwcHJCUlISjR49i3759sLe3h729Pfr3748FCxYgIyND1aEyOTt37hz++usv/PDDD/Dw8IC1tTUqVqwINzc3hIaGYuPGjWjZsqXc+xUIBJgyZQqio6Nx6tSpgucikQjh4eFiT73mc3FxQUJCAu/KVIC3b99i9erVGDNmDMzMzAAAnTp1wvHjx/l0ixJwUscYU4lr167hq6++wt69e7Fs2TJcvXoV7dq1K1Rm8uTJ+PDhA4/WlTNr1qxBq1atMH78eMTExKBy5coYOXIkdu7ciRs3biApKQm9evVSWP8dOnRAkyZNMHv27IJnly9fxvv378s8yuS/nJycIBAIeF2dAixcuBC6urr46aefCp516tQJOTk5iIyMVGFkaozKsaSkJAJASUlJqg6FMfaZ+/fvk5WVFTk4ONCHDx9KLTtw4ECysbGh9PR0JUXHFOn06dOkra1NI0aMoNzcXJXFsXv3bgJAsbGxREQ0ffp0MjMzo5ycHInbatCgAQ0fPlzeIX7R3r59SwYGBjR16tQi7xo3bkx9+vRRQVTqj0fqGGNK9fz5c3h6esLKygrh4eGoWLFiqeV5tK78eP78Obp164aWLVtiyZIl0NLSUlksXbt2Rf369QtG6w4fPgwfHx9oa2tL3JazszOP1H3m4cOH6NevHx49eiR1G3/88Qe0tbUxZsyYIu86deqEw4cPIycnR4YoyydO6hhjSvPu3Tt4enpCW1sbUVFRZSZ0wL/HRvTr1w/z58/ntXUaLD09HV26dIGhoSF2794tlyNKZCEUCjFp0iQcPHgQR44cwcWLFyVeT5fPxcUFN27cQFpampyj1DxEhO+//x6bN29G8+bNcfDgQYnbeP/+PVauXImffvoJFhYWRd77+/sjISEB586dk0fI5QondYwxpUhISIC3tzfS0tJw9OhR2Nrail03f7Ru7dq1CoyQFSc+Ph5TpkxBRESE1AdCExGGDBmCe/fuITQ0FFZWVnKOUjqBgYGoWbMmevfuDQDw9fWVqh0XFxfk5eXh8uXL8gxPI23atAmnTp3C3r170aZNG3Tq1AlTpkxBXl6e2G0sWrQIQqGw2PNoAaBZs2awtbXlXbDFUfX8ryLxmjrG1ENKSgq5uLiQpaUl3b59W6o2BgwYwGvrVGDKlCkEgACQqakpBQYG0s6dOyk5OVnsNhYsWEAAaNeuXQqMVDpr1qwhAOTo6Ch1G7m5uWRkZEQLFiyQY2Sa5+PHj1SxYkXq3bs3ERGJRCKaN28eCYVC8vLyKnP9LBHRhw8fyMjIiCZMmFBquWHDhpG9vT2JRCK5xF5ecFLHGFOojIwMateuHZmYmNDFixelbufhw4ekpaVFS5YskWN0rDRZWVlUqVIlGjlyJF2/fp1mzJhBTZo0IQCkq6tLHTp0oDVr1tCjR49K/OYaHh5OAoGAJk2apOToxZOZmUm1atWihQsXytRO69atqWvXrnKKSjMNGTKEzMzM6M2bN4WeHzt2jKysrMjOzo7Onz9fahsTJ04kIyOjMhPAsLAwAkC3bt2SOe7yRCNvlBAX3yjBmGo9ePAAP//8M44dO4bIyEi4u7vL1N7AgQMRERGBx48fw8DAQE5RspLs2LEDgYGBuH37Nho0aFDw/OnTp9i/fz9CQkJw5swZiEQiVKtWDW3atCn4VKtWDQ8ePICTkxPc3Nywf//+Uu/uVqXc3FxoaWnJdLfsxIkTsWnTJrx69UqOkWmOc+fOoVWrVli5ciWGDx9e5P3Lly/Ro0cPXLlyBXPmzEGNGjUK7mlPTEws+P+7d+/GyJEjMX/+/FL7y8zMRMWKFTF58mRMnDhRUb8sjcNJHWNMrlJSUrB79278888/OHfuHCpUqICtW7dKfP5XceLi4lC/fn0sWrQIo0ePlkO0rDRubm7Q0dHB8ePHSyyTmJiI06dP48SJEzhx4gSuX78OALC3t0dOTg6MjIwQGxtbcHhseRUaGoouXbrgxYsXqFq1aqll8zdUGBkZKSM0hcvJyUGzZs1gaGiI6OjoEnc1Z2dnY9y4cVi+fHnBMyMjI1SoUAFmZmYwMzND9erVsXz5clhaWpbZb7du3fDq1Sveefw51Q4UKhZPvzKmHCKRiE6ePEn9+/cnQ0NDEggE5O3tTdu3b6eMjAy59jVgwACqXLkyr61TsOvXrxMA2r17t0T1Pn78SHv37qUff/yR2rZtS/fv31dQhOrl9evXYv9+tW3bllq3bq2EqJRjwYIFJBQK6cqVK2KVf/v2LX369EmqMwE/t3HjRgJQZLr3S8ZJHWNMKiKRiC5fvkwTJkwge3t7AkC1atWi33//nZ49e6awfvPX1q1du1ZhfTCioUOHkq2tLWVnZ6s6FI1RvXp1GjduXKllYmJiCjae5B98rMmePn1KhoaGNGbMGKX3/eHDBxIKhfy14DM8/coYExsR4eLFi9izZw/27NmDJ0+ewNLSEp07d0a/fv3g5uYm07okcbVo0QL29vbYunWrwvuSRU5ODnJycmBoaKjqUCSSmJiIKlWqYPz48QgKClJ1OBqjV69eePXqFc6cOVNimW7duuHmzZsQCARo3Lgxdu/ercQI5YuI4O/vjytXruDu3bswMTFRegweHh4wNTWV6jy88kjyo7MZY1+czMxMTJs2DTt27MDz589hZWWFrl27onv37mjdurVUp/DLwsXFRe3PqBKJRPDx8cHbt29x6dIlmRI7IsL9+/cRHh6OsLAwGBkZITQ0VH7B/sfGjRuRnZ2N77//XmF9lEfOzs6YNGkScnJyij1c+cGDBwgJCcGaNWtARBg+fDgePXqEWrVqqSBa2e3fvx8HDx7Enj17VJLQASg4By8tLa3crFGUiSqHCRWNp18Zk49p06aRjo4OjRw5kk6cOKHSOzuJiHbs2EEA6N27dyqNozTLli0rOPpj9OjREtdPS0ujw4cP08iRI6lmzZoEgPT09AqOFHn69Kn8gyaivLw8qlu3LgUEBCik/fIsOjqaANClS5eKfT9s2DCqVKkSZWRkUHp6OllZWdGIESOUHKV8pKSkUNWqValDhw4qPSvuwYMHBIBCQkJUFoM64aSOMVaqBw8ekJ6eHk2ePFnVoRR4+vQpAaADBw6oOpRiPXr0iIyMjGj48OG0ePFiAkDHjx8Xu/4ff/xB+vr6BIBq1KhBI0aMoEOHDlFaWholJCSQUCikv//+WyGxHzlyhADQ6dOnFdJ+eZaRkUE6Ojq0fPnyIu/evn1Lenp6NGfOnIJnM2fOJAMDA7EO5VU369atI6FQSI8fP1Z1KPTVV1/RwIEDVR2GWtCYpO7SpUvUqlUrcnd3px49eoi1eJeTOsZkIxKJyNvbm2rUqEFpaWmqDqeASCQiGxsbtTzQNi8vj1q3bk3Vq1en5ORkysvLIw8PD6pevbpYX4s2b95MAGjkyJF09+7dYkdBWrRoQT169FBE+OTv70+NGjXik/ql5OjoSH379i3yfPLkyWRkZETx8fEFzz58+EAGBgY0Y8YMZYYoF4MGDaLGjRurOgwiIho/fjxZWVmpfAZBHajnSZDFqFKlCiIjI3Hq1CnUrl1boetJGGP/2rNnD44cOYJly5ap1WJ/gUAAFxcXtTyfas2aNTh58iTWrVsHExMTCIVCbNiwAZ8+fcK4ceNKrXv8+HEMGjQIAwcOxLJly1C/fv1iN554eXnh2LFjEt2nKY7nz5/j4MGDGDlypFI2vJRHxf29TE1NxYoVKzB06FCYm5sXPK9YsSIGDRqE5cuXIyMjQ9mhyiQ2NhYtWrRQdRgAAH9/f3z48AHr1q1TdSiqp+qsUhpBQUG0b9++MsvxSB1j0ktOTiZbW1vq3LmzqkMp1rx588jY2Fitfjp/8uQJGRsb09ChQ4u8W7t2LQGgw4cPF1v35s2bZGZmRl5eXmXORJw5c4YA0IULF+QSd76JEyeSqakppaSkyLXdL8nWrVsJAH38+LHg2eLFi0lbW7vYo37i4uJIKBTS6tWrlRmmTBISEggABQcHqzoUIvp3dHzQoEEFI9xZWVmqDkllNC6pe/bsGbm6uhb7RS8zM5OSkpIKPi9evFB6UsdTFqy8GDt2LBkaGipsQb6sTp48SQDoxo0bqg6FiP79t9+uXTuys7Mr9muOSCQiX19fqly5Mn369KnQu1evXpGdnR01btxYrK9X2dnZZGJiQrNnz5Zb/JmZmWRlZUU//fST3Nr8Ej169IgAUFhYGBH9+2dlZ2dX7JRsvu7du1OdOnUoLy9PWWHKJCIiggCo1cHSIpGIVq1aRTo6OuTq6kqvXr1SdUgqoVFJXVJSErm7u5f4F2natGkFhzp+/lFWUhcUFETOzs6c2DGNd+3aNdLS0qJ58+apOpQSpaamqtXBo2vWrCEAFBERUWKZly9fUoUKFSgwMLDgWXJyMjVp0oSqVq1KL1++FLu/Tp06kYeHhywhF5K/lu/evXtya/NLJBKJqGLFihQUFERE//t9Le2Hj9jYWI3awTl9+nSysLBQy+91MTExVKVKFapUqRKdOnVK1eEoncYkdbm5udSxY0c6evRoiWVUOVKXP+QOgG7fvq3w/hhTlLy8PHJ1daUGDRqo/TRGkyZNaNCgQaoOg549e0YmJiY0ePDgMstu2bKFANCuXbsoOzubfHx8yNTUVOIRx+XLl5OOjo7cpkpdXFzI09NTLm196Tp27Eje3t4kEomoUaNG1L59+zLruLm5kaurqxKik52Pjw916NBB1WGU6O3bt+Th4UFaWlq0ePFitUw+FUVjkrpt27aRhYUFeXh4kIeHB+3YsaPMOspaU3f58mXS19ennj17kq6uLi1ZskSh/TGmSOvWrSMAdPLkSVWHUqYffviBGjRooNIY8ncIV61alRITE8Uq37VrV7K0tKTevXuTtrY2RUVFSdzv/fv3CQAdOnRImrALuXLlikaNFKm7WbNmUYUKFejw4cMEgE6cOFFmnf379xMAOnfunOIDlEFeXh6ZmZnR77//rupQSpWTk0M///wzAaDAwEC530GtrjQmqZOGMpK6d+/ekZ2dHTk4OFB6ejq1bduWOnbsqLD+mOwuXbqkNuuw1M2HDx/IwsKi1PU/6iQ4OJgAUEJCgspi+OeffwqtoRLH+/fvycrKSqbF5iKRiKpXry7Vwcb/lX8khKwXrLN/RUVFFdyF7OjoKNZIUV5eHtWrV4+6dOmihAild/v2bQJQ6qyZOtm5cydpaWnRqlWrVB2KUmjMkSbqKCcnBz169EBWVhb27dsHAwMDeHl54eTJk8jJyVF1eKwEAwYMwPDhw1UdhlqaOHEi8vLysHDhQlWHIhYXFxcAwMWLF1UWw7Jly9ClSxe0b99e7DpWVlY4ePAgtm3bhv79+0vVr0AggJeXF44cOSJV/c+FhoaiU6dOSr/urbxydHSEQCDAo0eP8Ntvv4l1PIxQKMS4ceMQGhqKhw8fKiFK6cTGxkIgEMDR0VHVoYilZ8+ecHV1lcu/E03ASZ0Mxo4di5iYGOzduxd2dnYA/j0/KjU1VS3Pz2LAmzdvcOvWLcTExCAhIUHV4aiV27dvY926dZgzZw4qVaqk6nDEUqdOHZibm6vs39u7d+9w9epVdOnSReK6zs7OCAwMlKl/b29v3L17Fy9fvpS6jXv37uH+/fvo3LmzTLGw/zEzM0ODBg1Qq1Ytif5u9O3bF9bW1vjzzz8VGJ1sYmJi0LBhQ5iamqo6FLF5eXnh+PHjyM3NVXUoCsdJnZTWr1+PFStWYNmyZWjVqlXB8yZNmsDCwgJRUVEqjI6V5NixYwD+vWz96NGjKo5GvRw4cADGxsYYMmSIqkMRm1AohLOzs8qSuvy/Q97e3irpv23bthAIBDJ9vQkNDYWRkRHatWsnx8jYihUrsHXrVmhpaYldR19fH0OHDsXWrVvV9jDimJgYtTl0WFxeXl5ISkpS6Yi+snBSJ4WYmBgMHz4cw4YNw7Bhwwq909LSQrt27TipU1NRUVH45ptv8PXXXyMiIkLV4aiVyMhItGnTBrq6uqoORSL5J/gTkdL7joyMRJMmTVQ2smlpaQkHBweZkzpfX18YGBjIMTLm4eEBZ2dniev169cPKSkp2L9/vwKikk1SUhLu3LmjcUmdg4MDKlSo8EV8X+akTkKvXr1C165d4ezsjKVLlxZbxsvLCxcuXEBiYqJyg2OlIiIcPXoUnp6e8PX1RUREhEoSAXWUkpKCc+fOwcfHR9WhSMzFxQXx8fGIi4tTar8ikQhHjhxR2ShdPi8vL0RFRUEkEklc9/Xr1zh//jxPvaqR2rVrw9XVFZs2bVJ1KEVcuHABRFSwllVTaGtro23btl/EujpO6iRARBg8eDC0tLSwZ8+eEkc0vLy8IBKJcOLECSVHyEpz7949vH79Gl5eXvD19cXr169x8+ZNVYelFk6cOIHc3FyNTOqcnJwAQOlTsDdu3MC7d+9U/nvm5eWFjx8/4vr16xLXPXDgALS0tODn56eAyJi0+vXrhyNHjuDt27eqDqWQmJgYmJubo27duqoORWLe3t6IjY1FcnKyqkNRKE7qJLBz505ERkZi9erVpU631KhRA7Vr1/4ihno1SVRUFHR1ddGqVSu4ubnB0NAQ4eHhqg5LLRw5cgT29vaoXbu2qkORmLm5OerXr6/0pC4yMhKGhoZo2bKlUvv9rxYtWsDIyEiqrzehoaFo3bp1oUvmmer17NkTWlpa2L59u9h1li1bhu7duyswqn+TOhcXFwiFmpc6eHl5IS8vDydPnlR1KAqleX8yKpKQkIDRo0eje/fu6NixY5nlvby8eCG+mjl69ChcXV1hZGQEPT09tG3bltfV/b/IyEiVjzjJIn9dnTIdOXIEbdq0gZ6enlL7/S89PT14eHhIPLWUlJSE48ePw9/fX0GRMWmZm5vj22+/FXsKNjk5GdOmTcPevXvx7t07hcQkEolw/vx5jVtPl8/e3h729vblfgqWkzoxTZgwAZmZmfjrr7/EKu/l5YWHDx/i2bNnCo6MiSMnJwcnT56El5dXwbP27dvj7Nmz5X44viyPHz9GXFycyteGycLFxQXXr19Henq6UvpLS0vD2bNn1SYR9vb2xtmzZyX69YeHhyMnJ4eTOjXVr18/XLt2TawlIitXrkRqaioAKGyG6MGDB0hISNC49XSf8/b2LvczaJzUieHcuXNYu3Yt5s6dC1tbW7HqtGnTBkKhsNz/BdIUFy5cQEpKCjw9PQue+fr6Ijc3F8ePH1dhZKoXGRlZsJBYU7m4uCAvLw+XL19WSn8nT55Edna22iTCXl5eyMrKwpkzZ8SuExoaimbNmqFatWoKjIxJy9fXFxUrVsTmzZtLLZeWloZFixZh0KBBaNKkCSIjIxUST0xMDAQCgVQ7etWFl5cXHjx4UK4HW+SW1Cnri6myZWdnY+jQoXB2di5yfElpKlSoAEdHR07q1MTRo0dRoUIFNG/evOCZvb096tat+8VPwUZGRqJFixYadZjof3399dcwMjJS2hRsZGQkqlevrjYLxr/66itUqVJF7K83WVlZCAsL412vakxXVxe9evXCli1bkJeXV2K5tWvXIiEhARMmTICPj4/UO6HLEhsbi6+//lqjv060bdu23A+2yC2pk+ZEdU3wxx9/4P79+1i7dq1Eh0gC//5UcOzYMYX8A2OSiYqKQtu2bYv8Gfr6+iI8PFwtjzY5fPgwvv32W4X+/cnJycHx48fVZhpRWtra2nB0dFRaUnfkyBH4+PiIdf2TMkh6ZdiJEyeQkpLCSZ2a69evH968eVNwaPp/ZWZmYuHChejbty9q1KgBb29vvHv3Djdu3JB7LJp46PB/VahQAU5OTpzU5evZs2exnx49eiA+Pl5RMapMXFwcfv/9d4wbNw6NGzeWuL6Xlxc+ffqEq1evKiA6Jq7k5GTExsYWmnrN5+vri+fPn+PevXsqiKxkWVlZ+PHHH3Ho0CGFJioxMTFISUnR+KQO+HcKNiYmRuEJ+rNnz3D//n21+z3z9vbGzZs38ebNmzLLhoaGwt7eHg0bNlRCZExaDg4OqF+/fokbJv755x+8e/cOEydOBAC0bNkShoaGcp+CTU5Oxq1btzR6PV2+/E2MpY1+ajKJkrqjR4+if//+GDlyZJGPkZGRomJUCSLC8OHDYWNjg6CgIKnacHFxkfqoASY/p06dQl5eXqFNEvlat24NfX19tTvaZNWqVXj+/DksLCywY8cOhfVz5MgRWFpaolmzZgrrQ1lcXFzw5s0bme5BFUdkZCS0tLTUbg1i/jVfZe26F4lE2L9/Pzp37qw2I42seAKBAP369UNISAhSUlIKvcvOzsb8+fMREBBQsAxAT08Pbdq0kXtSl3/osKaP1AH/JnXx8fHldrBFoqSudevWMDY2hoeHR6FP69at0bRpU0XFqBLbtm3D0aNHsXLlSqkTVl1dXbRu3ZqTOhU7evQoqlevjlq1ahV5Z2BgAA8PD7VaV5eYmIjff/8dgwcPRv/+/bFr1y6F/VQZGRkJLy8vjTx36r/yF3Arego2MjISzs7OqFChgkL7kZS1tTWaNm1a5tebCxcu4O3btzz1qiG+++47pKenY9++fYWeb968Gc+fP8fkyZMLPffx8cHZs2cLdsPKQ2xsLCpUqIB69erJrU1VcXFxgbGxcbk92kSir+T79u2Dh4dHse/U6ZuirOLj4zF27FgEBASgffv2MrXl5eUl8VEDTL6OHj0KLy+vEkcl2rdvj1OnTiEtLU3JkRVv/vz5yMzMxPTp09GrVy+8e/cOp06dkns/Hz9+xOXLl9VuGlFaNjY2qFGjhkKTutzcXBw7dkxtf8+8vLxw6NAh3L59u8QyoaGhqFixIlxdXZUYGZNWtWrV0KZNm0JTsLm5uZgzZw66du2Kr7/+ulB5Hx+fgiOc5EWTDx3+Lx0dHbRp06bcDrZo1J/QL7/8Ajc3N3z33XfIzs5WWD+TJk1CdnY2Fi9eLHNbXl5eyM7OxtmzZ+UQGZPUq1evcOfOnWLX0+Xz9fVFdna2Wpw0/uLFCyxZsgQ///wzbG1t4ejoiJo1a2Lnzp1y7ysqKgpEpDbHcsiDog8hvnDhApKSktQ2qRs9ejTs7Ozg4uKCgwcPFlsmNDQUnTp1knjjF1Odfv364cSJE3jx4gUAYMeOHXj8+DGmTJlSpGydOnVQo0YNuU3BEhFiY2PLxXq6fN7e3jh37pza/CAvT1IndXv37pVnHGW6evUq3r59izNnzqBBgwbYs2ePQvq5efMm/v77b8yYMQOVK1eWub2vvvoKtra25fanAnWXv2ustPVPdevWRY0aNdRitHnatGkwMTHBr7/+CuDfNTUBAQHYs2cPcnJy5NpXZGQkGjVqJPbZi5rAxcUFly9fLvaHPiLCixcvZBo1j4yMhLm5ORwcHGQJU2FsbW1x7tw5eHl5wd/fH3PmzCm0ceTevXu4f/8+T71qmG7dukFfXx9bt25FXl4eZs+eDT8/v2KXPQkEAnh7e8ttevHhw4eIj48vF+vp8nl5eSEnJ0chMyCqJnVS17t37zJHsuS5Cy0mJqZgRMHX1xfR0dFyazsfEWHs2LGoXbs2RowYIZc2BQIBPD09OalTkaioKDRt2hRWVlYllhEIBGjfvr3CNktkZGSItXj/5s2bCA4OxrRp0wqdBdWrVy/Ex8fL9do5Iio4lqM8cXFxQVZWFq5du4bnz58jJCQEkydPho+PD6ysrFCtWjXY2tpi1KhRuHXrlsTtR0ZGwtPTU61HuYyNjbFnzx4EBQVh8uTJCAwMLEhkQ0NDYWhoWOrINVM/JiYm6NKlCzZt2oS9e/fi3r17xY7S5fPx8cGDBw/w9OlTmfsuD4cO/1fdunVhZ2dX5vflhIQEzTuSjKQUERFBpqamNGrUKBKJRIXe5ebm0oYNG6hevXrSNl/E7NmzKSQkhIiIHj58SIGBgUXKZGZmUlJSUsHnxYsXBICSkpLE6uPAgQMEgA4ePCi3uImINm/eTADo7du3cm1Xk6SlpSm9T5FIRDY2NvTrr7+WWXb//v0EgB4+fCjXGBISEsjBwYF0dXVp5cqVRf6tfK5Dhw5Uu3Ztys7OLvRcJBJR/fr1qX///nKL6/r16wSAoqKi5NamOsjMzCRdXV3S19cnAASAKleuTN9++y3NmDGDQkNDadKkSWRtbU0AqFWrVrRlyxbKyMgos+1Pnz6RUCikdevWKeFXIh+7d+8mQ0NDatasGT1//pycnZ2pa9euqg6LSSEiIoIAUKVKlcjT07PUsomJiaSlpUWrV6+Wud9hw4bR119/LXM76mbw4MHUoEGDEt9v2bKF9PT0aN68eUqMSnZSJ3VERNeuXaOqVatS586dKT09nbKysmjlypVUo0YNMjc3p6CgIHnFSStXrqSNGzcSEdHFixdp5MiRRcpMmzat4Av55x9xkrqsrCyqW7cueXp6lvqNVxpv3rwhALR161a5tqspjhw5QoaGhjR9+nSl9nvr1i0CQEeOHCmzbEpKCuno6NDSpUvl1n9SUhI5OzuTubk59evXjwBQQEBAsX8fjx8/TgBo9+7dxbY1bdo0MjU1FSv5EMfChQvJwMBAbu2pkxUrVlBQUBAdOHCAXr16VWyZrKws2rVrF7Vt25YAkKWlJf3yyy/07NmzEtvdtWsXAaDnz58rKnSFuHr1KlWrVq0gkd20aZOqQ2JSyMnJocqVKxMAOnXqVJnlW7ZsSV26dJG538aNG9PgwYNlbkfd7NixgwDQy5cvCz3Py8ujiRMnEgCqWLEi2dvbyz0nUCSZkjoiopcvX1Ljxo2pcePGZGtrS1ZWVjR79mxKTk6WR3wFrly5Qt999x0REc2aNYu2bdtWpIwsI3WLFy8moVBIN27ckGvc+Ro1akQDBgxQSNvqbN++faSrq0tVq1YlLS0tunz5stL6Xrx4Menp6VF6erpY5du2bUsdOnSQS9/Jycnk6upKZmZmdOnSJSIi2rlzJ5mYmFCdOnXo2rVrBWXz8vLIwcGBnJ2dS/zicefOHQJQMFotK09PT/L19ZVLW5ru3r179PPPP5OFhQUZGBjQnDlzKCsrq0i5wYMH01dffaWCCGX37t07cnNzIwMDA/r06ZOqw2FSWrBgAfXo0UOssjNnziRTU9MiI/+SSE5O1rjRaXF9+PCBBAIBbdiwoeBZSkoK+fv7k0AgoIULF9KJEycIAJ0+fVp1gUpIpqQuMTGRZs6cSZaWlmRgYECGhoYKS4qIiMaNG0etWrWi3r17F/tF97+SkpLESuo+fvxIFSpUoGHDhskr1CJ+/vlnsrW1pby8PIX1oW42b95MWlpa1KNHD0pNTaVvvvmGGjVqJNafnTz4+flR27ZtxS4vr9Gr1NRUcnNzI1NTUzp//nyhdw8ePKAmTZqQnp4erVmzhkQiEW3fvl2sn76/+eYbCggIkCk2on+nwvX09Gjx4sUyt1WeJCcn07hx40hLS4vq169Px44dK3gnEomoatWqNGbMGBVGKJvs7OwioxKs/Dp//jwBoDNnzkjdxrFjxwgA3b59W46RqY/mzZtT7969iYjo6dOn1LhxYzI2Ni5YgpWXl0c1a9akQYMGqTJMiUid1E2YMIHMzMzI3t6e1qxZQ6mpqdS/f3+ytramCxcuyDNGqYmb1I0aNYpMTU3p3bt3CoslJiaGANDhw4cV1sfnPn36RP3796e5c+dSdHS0TD+tSWPlypUEgAYNGkS5ublE9O80kLa2Nk2dOlXh/WdlZZGRkRHNnTtX7Do3b94kABQZGSl1v2lpadSmTRsyNjam6OjoYstkZGTQDz/8QACod+/eZG9vT99++22Zbc+dO5cMDQ0pNTVV6viIiMLCwggA3blzR6Z2yqsbN25Qq1atCAAFBgbS69evC0ZKw8PDVR0eY2LJzc0lCwsLmjJlilT18/LyyN3dnWrWrFluByMmTJhA1tbWdObMGbKysqKaNWvSzZs3C5WZPn06GRsby/x1V1mkTurq169PGzduLPiGnW/KlClkZGREoaGhMgcnK3GSujt37pCWlhbNnz9fobGIRCJq3ry50qa81q5dSwKBgIyMjAgAGRoakqenJ/3+++90+vRpyszMVFjf8+bNIwA0evToIl8Mpk+frpRp2NOnTxMAunjxoth1RCIRValSRerRmPT0dPL09CQjIyOxfjretm0bGRsbk1AoFOsn4UePHhEA2rFjh1Tx5Rs9ejTZ2dlp1DoRZROJRBQcHExWVlZkYmJC3t7epKenp5INP4xJq2fPnuTo6ChV3UWLFpFAIKCTJ0/KOSr1kb+WWSgUkru7O3348KFImSdPnmjUWlSpk7rSviH8/fffpKenR8uWLZO2ebkQJ6nr0KED2dvbKzTJyRccHEwA6P79+wrvq1u3buTq6krZ2dkUGxtLCxYsID8/PzI1NSUAZG5uTk+ePJFrnyKRiCZNmkQAKCgoqNi/I1lZWUqZhg0KCiILC4siP3SUZeDAgdS4cWOJ+8vIyCBfX18yMDCQ6Ivgw4cPKSIiQuzyTk5O1LlzZ4nj+1z9+vVpyJAhMrXxpYiPj6fhw4eTQCAgb29vVYfDmETWr19PAoGAPn78KFG9W7dukZ6eHv38888Kikw9ZGZmUvXq1en7778v9ftRmzZtJFrKo0oyb5QoSVhYGJmYmCiqebGUldTlbxHfs2ePUuLJyMigihUr0k8//aTQfnJycsjMzIxmzJhR5F1ubi5dvHiRtLW15bLd/XNjx44lALRw4cJSyyl6GlYkElGjRo2oe/fuEtcNDg4mgUAg8WLyCRMmkL6+Ph09elTiPiXx559/kq6uLiUmJkpV/9mzZwSAdu3aJefIyrfbt2/TixcvVB0GYxLJ3ywoyeh+VlYWNW3alBo0aFAud8f/lzgzFhs3biQA9PTpUyVEJBuFJXVEpNSdjsUpLanLycmhBg0akLu7u1KnoSZOnEimpqZy3x38ubNnzxKAIov0P+fg4ED9+vWTW58fP34kADRr1iyxyk+bNk1h07B79uwRe9v/fz1+/JgA0IEDBySq16hRI6Usps3/Ip1/vI+kli5dSjo6OhQfHy/nyBhj6ujrr7+mgQMHil1+8uTJpK2trfLv3+okNTWVjI2Nix0oUTcKvfu1WbNmimxeJmvXrsXdu3exePHiEi96V4Thw4cjLS0NmzdvVlgfERERsLCwQPPmzUss4+rqKtdbOeLi4gAAHTp0EKv8pEmT0LBhQwwcOFCu9/jm5eUhKCgIXl5ecHd3l7h+jRo1ULVqVZw+fVrsOh8+fMDNmzdLvYpMXqpWrQo3Nzfs2LFDqvrbtm2Dr68vzM3N5RwZY0wd+fj4IDIyUqwbnmJjYzF37lxMmzZNrb9/K5uRkRF69OiB4OBgld0w8ezZM7HuqlVoUqfOkpOTMXToUKX/xbWzs0Pnzp2xfPlyuV6j9rnIyEh4e3uXepWRq6sr4uLi8P79e7n0mZ/U1a5dW6zyurq6CA4Oxp07dzB79uwSy0n6e7Rjxw7cuXMHs2bNkqhePoFAAHd3d4mSupMnTwIA2rRpI1WfkurVqxeioqLw6dMnieo9fvwYsbGxCAwMVFBkjDF14+Pjg9evX+P27dullktLS0O/fv3g6OiICRMmKCk6zTFgwAA8efIEZ8+eVUn/w4cPR5cuXcos98UmdRMmTMCqVatU0vePP/6Iu3fvFlw2L08fP37EpUuXyrzT09XVFcC/9/rJQ1xcHCpVqgQTExOx6zRp0gSTJ0/GnDlzMGTIEPTo0QOenp5o3rw57O3tYW5uDh0dHUydOlWs9nJycjBt2jR06tQJTk5O0v5S4O7ujsuXLyM1NVWs8idOnEDdunVha2srdZ+S6N69O0QiEfbt2ydRvR07dsDQ0BCdOnVSUGSMMXXj5uYGfX19REZGllrut99+w8uXL7Fp0yZoa2srKTrN4ebmBnt7ewQHByu978TERBw9ehTffvttmWW/2KQOgFKnXT/n4eGBhg0bYvny5XJvOyoqCkRUZlJnZ2eHqlWrym0KNi4uTuxRus9NmjQJXbt2xfXr15GUlARLS0s4ODigZ8+emDBhAoYOHYpZs2bh8OHDZba1ceNGPHr0CL///rs0v4QCbm5uyMvLQ2xsrFjlT5w4obRROgCwtrZG27ZtJZqCJSJs3boVnTt3hpGRkQKjY4ypEwMDA7i7u2PHjh04duwY3r59W2QGJDIyEitXrsTChQtRt25dFUWq3gQCAQYMGIBdu3aJ/QO/vBw8eBA5OTno2rVr2YVVuaBP0cQ9fFgV1qxZQ0KhUO7HivTr10/sIzl69uxJrVq1kku/zs7Ocr1wPp9IJCI/Pz+ytLQs9TT8zMxMsrOzk8uNCyKRiCpWrCjW7txXr14RANq5c6fM/Uoi/6iChw8filX++vXrBKDgpHTG2Jcj/3J6/P996JaWluTu7k7Dhw+n5cuXk62tLXl5efHZlWV4+vSpTBvVpNWpUydq0aKFWGW/6JE6Vfruu+9gamqKlStXyq1NkUiEyMhI+Pr6ilXe1dUVFy9elMtGBWlH6soiEAgQHBwMPT09fPfdd8jLyyu23Nq1a/Hq1StMnz5dLn26ubmJta4ufz1d69atZe5XEoGBgbCyssKCBQvEKr99+3ZYWFjA29tbwZExxtTNd999h9TUVNy/fx/79u3DmDFjULlyZZw5cwZjx45FZmYm/vnnH5XNXmmK6tWro23btkqdgk1JSUFkZCS6d+8uXgUFJ5gqpc4jdUT/3gdrbm4ut1Pqr169SgAK3VlZmgsXLhAAio2Nlanf+Ph4AkDbt2+XqZ3SnDx5koRCIU2fPr3Iu7S0NKpUqRINGDBAbv0tXryY9PT0yjyUesiQIfT111/LrV9JzJ07l3R1denVq1ellhOJRFS9enWF3m3MGNNM2dnZlJKSouowNMamTZsIgNxn2UqSfze4uP3xSJ0KjRgxAomJidi+fbtc2ouMjISRkRFatmwpVvlvvvkG+vr6Mq+re/ToEQDxd75Kw8PDA0FBQZg5cyZOnTpV6N3y5csRHx+PoKAgufXn7u6OrKwsXLx4sdRyyl5P97nhw4dDX18fixcvLrVcTEwMnj17xrteGWNF6OjowNjYWNVhaIyuXbvC2NgYmzZtKvSciHDt2jX8/PPPsLW1xYgRI+RywsXevXvh4OCAGjVqiFWekzoVqlWrFjp06IBly5bJ5Q8/IiICbdq0gZ6enljldXV14ejoKHNSl3+cSa1atWRqpyxTpkyBm5sbevfujY8fPwL492ia+fPnY8iQIahZs6bc+vrmm29gYmJS6hTs8+fP8ejRI6WcT1ccMzMzjBw5EqtXr0ZCQkKJ5bZt24YqVarAzc1NidExxlj5Y2RkhJ49exacWffmzRv88ccf+Oabb9C0aVNs2bIF7u7uWLVqVanHdYkjPT0dYWFh6Natm9h1OKlTsVGjRuH69esyn32TkpKCs2fPlrnr9b/yDyGWJamMi4uDpaWlwg+01dLSwtatW5GdnY0BAwaAiLBkyRKkp6dj8uTJcu+rVatWpSZ1J06cgEAggIeHh1z7lsSYMWOQm5tb4k7q3Nxc7Nq1C4GBgRAK+Z87Y4zJauDAgXjy5AlatmyJqlWrYsqUKahfvz4OHTqEV69eYceOHZg5cyamTp1aZERPEhEREUhPT5coqeM1dSqWl5dHdevWJX9/f6nv8yQi2r9/PwEQezfkf+vJcqdd//79ydnZWer6kjp06BABoClTppCpqanCLp2eO3cuGRsbU05OTrHv+/fvT02aNFFI35IYOXIkWVpaUmpqapF3+fcb85U/jDEmHyKRiFq1akWurq60Zs2aYq9dFIlENHjwYNLW1pb6TvDAwECxT7PIx0mdGlizZk3BVvOKFStSixYtqG/fvjRjxgzatm0b3bt3r8w2hg8fTvb29hL3/f79ewJA27ZtkyZ0IiJq2bIl9enTR+r60vj5558JABkZGdG7d+8U0se5c+cIAF28eLHIO5FIRNWqVaOxY8cqpG9JPHnyhLS0tGjJkiVF3vXr14/q1avHRxUwxpiSZWdnk4+PD5mamtKNGzckqpuRkUEmJiY0c+ZMierxfIwaGDp0KK5cuYLt27fjp59+Qp06dRAXF4fly5ejd+/e+OqrrxAeHl5ifSJCRESE2EeZfM7Kygp16tSRaV3dw4cPFbpJojhz586Fn58fZs2aBWtra4X04eDgAH19/WKnYB8/foznz5+rbD3d52rUqIHAwEAsWrSo0PE0GRkZ2LdvHwIDA/moAsYYUzIdHR3s3r0btWrVQvv27fHy5Uux60ZFRSElJUWyqVdAM6ZfL126RK1atSJ3d3fq0aMHZWdni1VPU0bqSpOYmEgdO3YkMzMzevDgQbFlHjx4QABo//79UvXRv39/atasmVR183+Pt2zZIlV9dde6dWvy9/cv8vzvv/8moVAo05S5PN26dYsA0IYNGwqe7d69mwDQ/fv3VRcYY4x94V69ekXVqlWjxo0bi52P9O/fn7766iuJ+9KIkboqVaogMjISp06dQu3atREaGqrqkJTGzMwMW7ZsgY2NDfz9/ZGSklKkTGRkJHR0dKQ+WsPV1RXXr1+X6uoTZRxnokru7u44c+YMRCJRoecnTpxA8+bNYWZmpqLICvv666/RqVMnzJ8/vyDWbdu2wcHBga/9YYwxFbK1tUVYWBiePXuGbt26lXngf3Z2Nvbv3y/5KB00ZPerjY0NDA0NAfw7nFnSZcNZWVlITk4u9CkPzMzMsH//frx69Qr9+vUrkmBERESgZcuWMDExkap9V1dX5OXllXkmW3HyjzMpz0ldfHw87t69W/CMiHDixAm1mHr93MSJE3Hv3j2EhoYiMTERYWFhfDYdY4ypga+//hqhoaE4ffo0Bg0aVOT7+OdOnDiBxMRE8W+R+IxGJHX5nj9/jqNHj6Jjx47Fvp87dy7MzMwKPnZ2dkqOUHHq1auHrVu3Yv/+/Zg1a1bB86ysLJw4cUKq9XT5GjRoAFNTU6nW1cXFxaFChQqwsLCQun915uLiAm1t7ULr6u7fv483b96o7NDhkri4uKB169aYO3cu9u3bh+zsbAQEBKg6LMYYY/j3OsnNmzdj+/bt+PHHH0s8SmzPnj2oVasWGjduLHEfapXUvX37Fq1atSryiY+PR3JyMvr27YsNGzZAR0en2PoTJ05EUlJSwefFixdK/hUoVseOHTFz5kxMmzYNBw4cAACcPXsW6enpEp9P9zmhUIgWLVogJiZG4rr5d76W14X4RkZGcHBwKJTUnThxAtra2mLf3KFMEydOxKVLlzB16lS0bt0aVapUUXVIjDHG/l/Pnj3x999/Y9WqVZgwYUKRxC43NxehoaHo3r27VN9Xi5/HVBEbG5tiD+HNy8tD586dERQUVOr6ID09PbFvU9BUkyZNwtWrV9GnTx+cP38ekZGRsLGxwTfffCNTu66urvjrr78gEokkOqQ2P6krz9zd3bFlyxYQEQQCAU6cOAEnJye1vFrHy8sLzZo1w5UrVzB9+nRVh8MYY+w/Bg0ahOTkZIwdOxZmZmaYNGlSwbvTp0/j48ePUq2nA9RspK4ku3btQnR0NH7//Xe0bt0aO3fuVHVIKiMUChEcHIxq1arB398f+/fvh7e3t8wjZa6uroiPj8eDBw8kqhcXF4c6derI1Le6c3d3x+vXr/H48WOIRCKcPHlS7dbT5RMIBJgxYwasra2l/qLAGGNMscaMGYOZM2di8uTJWLZsWcHzvXv3olq1anBwcJCqXbUaqStJYGAgL/j+jImJCUJDQ+Ho6IjExES5jMg4OTlBKBQiOjoa9evXF6tOWloaXr9+Xe5H6lq2bAmBQIDTp08jPT0dHz58ULv1dJ/r2LEj3r17p+owGGOMlWLKlClITk7GTz/9BBMTE/Tr10/ms0U1IqljRdWuXRu7du1CUFCQTOvp8pmamqJRo0aIjo7GoEGDxKpT3o8zyVehQgV88803OH36NFJSUqCrq4sWLVqoOizGGGMaTCAQYMGCBUhOTsbgwYNx8+ZNvH37Vqpdr/k4qdNgXl5e8PLyklt7rq6uOHnypNjly/txJp9zd3fHoUOHkJiYiBYtWsDAwEDVITHGGNNwAoEAK1euRGpqKv7880/Y2trCxcVF6vY0Yk0dU44WLVrg7t27iI+PF6t8XFwcTExMYGVlpeDIVM/NzQ2PHz9GZGSk2q6nY4wxpnm0tLQQHByM77//Hr/99ptEmxX/i0fqWAFXV1cAQGxsLDp06FBm+fJ+nMnn3NzcAPx7n6o6r6djjDGmeXR0dLB27VqZ2+GROlbA3t4e1tbWYh9C/CUcZ5KvUqVKqFevHgwMDODk5KTqcBhjjLEieKSOFRAIBHB1dZUoqZNl7l/T9OrVC8+ePSv3ZyEyxhjTTJzUsUJcXV0xffp05ObmlnjHLvDvNOSLFy++mJE6AHyYL2OMMbXG06+sEFdXV6Snp+PatWullnv8+DEAlPuDhxljjDFNwUkdK8TR0REWFhbYt29fqeW+pONMGGOMMU3ASR0rRFdXF926dcOOHTuKXDT8ubi4OBgaGsLGxkaJ0THGGGOsJJzUsSJ69eqFJ0+e4MKFCyWW+ZKOM2GMMcY0ASd1rAgPDw9UrlwZ27dvL7HMl3ScCWOMMaYJOKljRWhpaaFnz57YuXMn8vLyii3DSR1jjDGmXjipY8UKDAzE27dvcerUqSLvsrKy8Pz5c07qGGOMMTXCSR0rlpOTE+zt7Yudgn369ClEIhEndYwxxpga4aSOFUsgEKBXr17Yu3cvsrOzC717+PAhAD6jjjHGGFMnGpXUbd++HVZWVqoO44vRq1cvJCQk4MiRI4Wex8XFQV9fH7a2tiqKjDHGGGP/pTFJnUgkwp49e2BnZ6fqUL4YjRo1wtdff11kCjYuLg61atWCUKgxf30YY4yxck9jvitv27YN3bt350RCyQIDA7F//36kp6cXPOOdr4wxxpj60YgMKS8vD7t27UJAQECp5bKyspCcnFzow2TTq1cvpKWl4eDBgwXPOKljjDHG1I+2qgP43Nu3b9G9e/ciz7///nv07NmzzFG6uXPnYsaMGYoK74tUq1YtODk5YceOHQgICEBOTg6ePn3KSR1jjDGmZgRU2gWfamL8+PG4evUqhEIhYmJiMGjQICxevLhIuaysLGRlZRX8d3JyMuzs7JCUlARTU1NlhlyuLFmyBOPHj8e7d+/w8eNH1KlTB1FRUfD09FR1aIwxxhj7fxqR1H3OwcEBly5dEqtscnIyzMzMOKmT0evXr1G1alWsX78elStXRvv27fHkyRPUqFFD1aExxhhj7P9pxJq6z4mb0DH5sbW1hYeHB7Zv3464uDjo6uryLmTGGGNMzajVmjqmvgIDAzF8+HBYWlrC3t4eWlpaqg6JMcYYY5/RuJE6phrdunWDUCjErl27eJMEY4wxpoY4qWNisbS0hI+PD9/5yhhjjKkpTuqY2AIDAwGAkzrGGGNMDXFSx8Tm7+8PDw8PtG7dWtWhMMYYY+w/NO5IE0nwkSaMMcYY+1LwSB1jjDHGWDnASR1jjDHGWDnASR1jjDHGWDnASR1jjDHGWDnASR1jjDHGWDlQrne/EhFSUlJgYmICgUCg6nAYY4wxxhSmXCd1jDHGGGNfCp5+ZYwxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzQuqdu+fTusrKxUHQZjjDHGmFrRqKROJBJhz549sLOzE6s8ESE5ORlEpODIGGOMMcZUS6OSum3btqF79+4QCsULOyUlBWZmZkhJSVFwZIwxxhhjqqUxSV1eXh527dqFgICAEstkZWUhOTm50Icxxhhj7EugMUndli1b0LNnz1JH6ebOnQszM7OCj7jTtIwxxhhjmk5AGrLgbPz48bh69SqEQiFiYmIwaNAgLF68uFCZrKwsZGVlFfx3cnIy7OzskJSUBFNTU2WHzBhjjDGmNBqT1H3OwcEBly5dKrNccnIyzMzMOKljjDHGWLmnreoApCFOQseU79KlSyAi2Nvbw8LCAgKBQNUhMcYYY18MjUzqmPp58+YNnJ2dIRKJAABmZmawt7dHrVq1YG9vj9q1ayMgIKDcjpguXboUsbGx2LZtm6pDYYwx9oXipI7JRUREBIgIJ0+exIcPH/D48WM8evQIjx8/xu7du/H06VO8f/8ekydPVnWoCrF69WrcvXsX48ePxzfffKPqcBhjjH2BNHJNnbh4TZ3y9OzZE8+ePcP58+eLfe/v74+kpCScPHlSuYEpQVxcHOrUqQOhUIhBgwbh77//VnVIjDHGvkAac6QJU1+5ubk4cuQIOnToUGIZLy8vREdHIy0tTYmRKcfBgwehp6eH8ePHY+vWrYiPj1d1SIwxxr5AnNQxmcXExCApKQnt27cvsYynpydycnJw5swZJUamHAcOHEDbtm0xZswY5OXl4Z9//lF1SIwxxr5AnNQxmYWHh6NixYpwcHAosUy9evVQpUoVHD16VImRKV5CQgLOnDmDTp06wdraGgEBAVixYgXy8vJUHRpjjLEvDCd1TGZhYWHw9fUt9bYPgUAAT0/PcpfUhYeHIy8vDx07dgQAjBo1Ck+fPkVYWJiKI2OMMfal4aSOyeT169e4fv16qVOv+by8vHD9+nW8e/dOCZEpx8GDB9GsWTNUrVoVAODo6AgnJycsW7ZMxZExxhj70nBSx2QSEREBgUAAHx+fMsu2a9cOAHD8+HFFh6UU2dnZCA8PR6dOnQo9HzVqFKKionDv3j0VRcYYY+xLxEkdk0lYWBicnZ1haWlZZlkbGxs0bNhQ7ClYIkKHDh2wZs0aWcNUiDNnziApKalIUtejRw9YW1tjxYoVKoqMMcYUa8uWLahduzYyMzNVHQr7DCd1TGo5OTmIiooSa+o1n6enJ6KioiDO8Yjnz59HeHg4pkyZgtTUVFlCVYiDBw+iatWqaNKkSaHnenp6GDp0KIKDg5GcnKya4BhjTEGuXLmCIUOG4NGjR3jy5Imqw2Gf4aSOSS0mJgbJycmlnk/3X56ennjx4gUePnxYZtl169bBxsYGSUlJWL58uSyhyh0R4cCBA/j222+LveN22LBhyMjIwKZNm1QQHWOMKcanT5/QtWtXVK9eHQDw+PFjFUfEPsdJHZNaWFgYrK2t0axZM7HreHh4QFtbu8wp2JSUFOzYsQPDhw/HkCFD8McffyAlJUXWkOXm9u3bePLkCb799tti31etWhVdu3bF8uXLxRqVZIwxdZeXl4fevXsjLS0NkZGR0NPTw6NHj1QdFvsMJ3Xl1Pv37zF16lSFJkLh4eHw8fEp9SiT/zI2NkaLFi3KTOp27tyJ9PR0DBw4EJMmTUJKSopajdYdPHgQRkZGaNOmTYllfvzxR9y/f7/cHePCGPsyTZs2DUePHsWOHTtQo0YN1KxZk0fq1AwndeVQbm4uAgICMGvWLEyZMkUhfbx69Qo3btyQaOo1n6enJ44fP17qAb1///03fH19YWdnh6pVq+L7779Xq9G6AwcOwMfHB/r6+iWWcXNzQ+PGjdUqGWWMMWns378fs2fPxpw5cwpOMrC3t+ekTs1wUlcOTZ06FWfOnEHv3r2xfPlyXLp0Se59hIeHQygUwtvbW+K6np6eSEpKKjGuGzdu4MKFC/j+++8Lnk2YMAGpqalqcf7bu3fvcP78+RKnXvMJBAL8+OOPOHjwoMYvJk5JScHUqVPL5d29jLHSPXjwAP369UO3bt3w22+/FTznpE79aExSd/nyZbi5ucHDwwM9e/ZETk6OqkNSSwcOHMC8efMwZ84cbNy4EY0aNcKwYcOQm5sr137Cw8Ph4uICCwsLies6OTnBxMSkxGnJ9evXw9rauuCWBuDfNWpDhw7FH3/8ofIdpYcPHwYA+Pn5lVn2u+++g5mZGVatWqXosBRq3rx5mDVrFt+UwdgXJjU1FV26dIGtrS02bNhQaGNYflLH64bVh8YkdVWqVEFkZCROnTqF2rVrIzQ0VNUhqZ3Hjx+jX79+8Pf3x6+//gptbW2sWbMGV69eleuZadIcZfI5bW1ttGnTptikLjMzE5s3b8aAAQOgo6NT6N2ECROQnp6u8tG6AwcOwNXVFVZWVmWWNTQ0xMCBAxEcHKwW98GmpKRg9erVEv1Q9OLFC/z5558AgNOnTysqNMaYmiEiDBo0CM+fP0dISAhMTEwKva9VqxYyMjLw9u1bFUX45Zg1axZmzZpVZjmNSepsbGxgaGgIANDR0YG2traKI1IvmZmZ6N69OypWrIjg4OCCn6acnZ0xfPhwTJkyBS9fvpRLX+fOnUNKSorUSR3w7xRsdHR0kem8kJAQJCQkYPDgwUXqVKlSBUOHDsWiRYuQlJQkdd+yyMjIQFRUVJlTr5/r1q0bPnz4gPPnzyswMvEsXboUw4cPx/z588WuM2XKFJiamqJHjx44deqUAqNjjKmT4OBg7N69G8HBwahfv36R9/b29gD4WBNFe/jwIX7//XdkZ2eXXZg0zLNnz8jV1ZWys7OLvMvMzKSkpKSCz4sXLwgAJSUlqSBS5RoyZAjp6+vT1atXi7xLTEwkGxsb6tKli1z6+u2336hSpUqUl5cndRt37twhABQREVHoedu2bcnd3b3Eeq9evSI9PT2aOXOm1H3L4tChQwSA7ty5I3ad3NxcqlixIk2YMEGBkYkXR/Xq1cnCwoJ0dHTo5s2bZda5fPkyCQQCWrVqFW3cuJEA0KdPn5QQLWNMlTIzM8nOzo4CAgJKLJOamkoAaNOmTUqM7MsiEonIx8eHatSoQWlpaWWW16ikLikpidzd3en+/fvFvp82bRrh/9q777Amr7cP4N+EDbLFDSpYt1TELcMFKGLVgtrWuq22ahWcddY6UOuuv2oduPeoWlcdoOCsita6Kg5EQAERZQkBkvv9o4VXy0pCkoeE+3NduS5MznPOzZGEm+csoNBD15O6TZs2EQDatGlTsWX27t1LAOjIkSNlbq9Zs2Y0ePDgMtUhk8moRo0aNHHixILnHj9+TABo+/btJV47btw4srKyordv35YpBmWMHDmSnJycSCaTKXTd4MGDqUmTJmqKSj4nTpwgABQeHk6NGzcmV1dXys3NLba8TCajTp06UcOGDSk3N5eePXtGAOjw4cMajJoxJoSffvqJxGIx/f333yWWq1q1Ks2ZM0dDUVU8Bw8eVOh3t9YkdXl5eeTn50dnz54ttkxFvFN369YtMjY2puHDh5dYTiaTUffu3cne3p7S09OVbu/58+cEgPbs2aN0HfkGDx5MH3/8ccG/p02bRpaWlvTu3bsSr3vx4gUZGxvTDz/8UGyZvLw8hROv0kilUqpRowYFBQUpfO2BAwcIAD19+lSlMSmiV69e9PHHH5NMJqNr166RWCym4ODgYsvn35U8evRowXMODg40YcIETYTLGBNIZmYmVa1alYYMGVJq2Xbt2tHAgQM1EFXFk5GRQfb29uTn5yf3NVqT1O3atYtsbGzI09OTPD095UoqUlNTdTqpS0xMJCcnJ2revHmpiRAR0dOnT8nExKRMv5TXr19PYrGYUlJSlK4j3/bt2wkAJSYmUm5uLlWrVo3GjBkj17Xjx48nKysrSkhIoNu3b9Pu3btp1qxZFBAQQI0bNyYDAwOqV68eLVu2TCWxEhFdv36dANC5c+cUvjYtLY0MDQ1p1apVKolFUXFxcaSnp0dr1qwpeG7q1KlkaGhI9+7dK1Q+NzeXGjVqRJ06dfogOR44cCC5urpqJGbGmDAWL15MBgYGcv0R+uWXX1KHDh00EFXFM23aNDIyMqInT57IfY3WJHXK0OWkLjw8nGrUqEFVqlRR6D980aJFpKenRzdv3lSq3T59+qjsDfzixQsCQLt376YjR44QgCLnBBZ3rbGx8QfD7NWqVaNOnTrRmDFj6KeffqIvvviCDAwMyMTEhEaMGCF33cWZOnUqWVlZFTmfUx7e3t7UtWvXMsWgrLlz55KpqekHQ9ZZWVnUsGFDat26daFh2F9++YVEIhFFRkZ+8PyGDRtILBbr5HuKMfbP700bGxv65ptv5Co/e/Zsql69upqjqngePHhABgYGCg9tc1KnZaRSKS1YsIDEYjF5enpSfHy8Qtfn5ORQ06ZNqWXLlnTmzBmKjIykp0+f0tu3bz+4IyOTySghIYGuXr1Ke/fupR9//JFGjx5NpqamtGDBApV9P02aNKFhw4ZRz549Fb4DdPLkSdqwYQNdunSp2LtxCQkJNH/+fKpVqxYBoPbt29POnTtJIpEo1NbZs2dJT0+PpkyZotB171u9ejXp6+trfC5gXl4e2dvbFzlEf+XKFRKLxbR48eKC51JTU6lKlSo0aNCgQuWjoqIIAJ04cUKtMTPGhPHDDz+QkZERxcXFyVV+y5YtBECuSfxMPjKZjLp27UqOjo5yjcK9j5M6LZKUlETe3t4kEolo1qxZJU5yL8nly5fJxMSk0IISsVhMtra2VLt27UJ3wczNzalp06bUq1cviomJUdn3FBgYSJUrVyaxWExr165VWb3/lZubSwcPHqTOnTsTAGrVqpXcw7JRUVFkbW1N3t7eSvc5ERUsNNi7d6/SdSjj+PHjBICuXbtW5OuTJk0iIyMjevDgARERzZgxg4yNjen58+eFyspkMqpWrZrgK3kZY6r3+vVrsrCwUGjecEREBAGgu3fvqjGyimXfvn0EgI4dO6bwtSIi3d0KOi0tDZaWlkhNTYWFhYXQ4ZRJREQEPv/8c+Tm5mLnzp3w8vIqU30ZGRlISkrCmzdvkJKSgjdv3hR8nZaWhmrVqqF27dqoXbs26tSpAysrqw92EleV48ePw8/PD6ampnj58qVG/p/++OMP9OjRA/b29jhz5gwqV65cbNk3b96gbdu2EIlEuHr1KqysrMrU9scffwxnZ2ds3769TPUoolevXoiNjUVkZGSR/4dZWVlo3rw5bGxssGfPHjRs2BATJkzAggULiqyvf//+iI2NxeXLl9UdOmNMg6ZNm4bVq1fj6dOnqFKlilzXvHjxAjVr1sRvv/2m0P6drGjp6elo1KgRWrZsqdwhCypPMcsRXbhTV9bh1vIuLS2N9PX15VplpUp37tyhKlWqULNmzSgxMbHIMrm5udS1a1eytramqKgolbQ7Y8YMsrGxKdMdP0XExsbKdRf00qVLJBKJyN7enuzs7Ep8z/z888+kr6/Pwy2M6ZCXL1+SqakpTZ8+XaHrpFIpGRsb08qVK9UUWcUyefJkMjY2pujoaKWu56SunPvpp58IAM2cOVNjiYCmHTt2TJBk9f79+1StWjVq1KgRvXjxotDrY8eOJX19fQoNDVVZm1evXiUAFBERobI6SzJnzhwyMzOT6z0QFBREAD5YIVuUO3fuEIAStxdijGmX8ePHk6WlpVK7BTRq1IjGjRunhqgqlnv37pG+vj7NmzdP6To4qSvH3rx5QzY2NjRixAihQ9FZDx8+pJo1a9JHH31EsbGxBc+vXbuWAKh8np9UKqWqVavS5MmTVVpvUfLy8qhWrVr01VdfyVU+KyuL9u/fX+ofD1KplGxtbWn27NmqCJMxJrDnz5+ToaGh0slEjx49qEePHiqOqmJJTk4mFxcXqlevHmVnZytdj9ac/VoRBQcHIzs7G3PnzhU6FJ1Vv359hIeHQyKRwNPTEzExMQgLC8PYsWPx7bff4uuvv1Zpe2KxGD169MDRo0dVWm9RTp48ibi4OIwaNUqu8sbGxggICCj1XGWxWAx3d3dERESoIkzGmMDmz58Pc3NzjB8/XqnrnZyc+PzXMoiLi4O7uzvi4uKwf/9+GBkZKV0XJ3Xl1LNnz7Bq1SpMmTIF1atXFzocnebk5ITw8HAQETw8PBAQEIAuXbpg+fLlammvZ8+e+Pvvv/Ho0SO11J9v3bp1aNGiBVxdXVVet6enJ65evQqJRKLyuhljmvPkyRNs2rQJ3333HczNzZWqw9HREdHR0ZDJZCqOTvc9evQIbm5uyMzMxMWLF9G8efMy1cdJXTk1ffp02NraYtKkSUKHUiHUqVMH4eHhMDIyQtWqVbF3795S71gpy8vLC0ZGRmq9WxcbG4sTJ07IfZdOUR4eHsjOzsb169fVUj9jTDMWL14MW1tbjB49Wuk6HB0dkZ2djYSEBBVGpvv+/PNPuLm5wcTEBJcuXUL9+vXLXCcndeXQtWvXsHv3bsyfPx9mZmZCh1Nh2Nvb4/bt27hx40aZty4piZmZGbp06aLWpC4kJASmpqb4/PPP1VL/xx9/DAsLC4SHh6ulfsaY+iUkJGDbtm0IDAyEqamp0vU4OjoC+OeuH5PPxYsX0bFjRzg4OODChQuoVauWSurlpK6cISJMmjQJzZo1w+DBg4UOp8IxMTHRSCLds2dPXLhwAW/evFF53Xl5edi4cSMGDBig9HBKafT09ODm5sbz6hjTYqtXr4aBgUGZ5w7XrVsXAHhenZxOnDgBb29vuLi4IDQ0tMS9UhXFSV05c+TIEVy4cAFLly6Fnp6e0OEwNfHz84NUKsXvv/+u8rrXrFmD+Ph4jBw5UuV1v8/T0xOXLl1Cbm6uWtthjKleRkYG1q5di6+++qrMIxOmpqaoXr06J3VyOHDgAHr16gUvLy+cPHlS5Rvuc1JXjuTm5mLKlCnw8fGBt7e30OEwNapVqxZcXFxUPgS7Y8cOBAYGYvz48WjRooVK6/4vDw8PZGZm4tatW2pthzGmeiEhIUhPT0dgYKBK6nN0dOSkrhREhKCgIPj6+uLgwYMwNjZWeRuc1JUj69atw5MnT7BkyRKhQ2Ea8Mknn+DkyZMqu9P166+/YsiQIRg6dKjaVu6+z9XVFaampjyvjjEtk5ubi+XLl+Ozzz6Dg4ODSup0dHTkOXWlePToEeLi4jBy5Ei1LcTjpK6cSE1NxZw5czB06FA0a9ZM6HCYBvTs2RNv377FpUuXylzX77//js8++wwBAQFYv349xGL1v7UNDAzQvn17nlfHmJbZv38/nj9/rtLdFXivutKFhYVBT08PHh4eamuDk7pyYuHChcjKyuKNhiuQFi1aoEaNGmUego2IiECfPn3QrVs3bN++XaNzMT09PXHhwgVIpVKNtSmE8PBw7N+/X+e/T6b7iAg//vgjfHx88PHHH6usXkdHRyQmJiIzM1Nldeqa0NBQtG7dWm0L2AAtS+omTZoEd3d3DBgwADk5OUKHozIxMTFYuXIlpkyZgho1aggdDtMQkUgEPz8/bN68GXPmzFFqM+Jr167Bz88PHTp0wL59+2BgYKCGSIvn4eGB1NRU3LlzR6PtatqoUaPQr18/NGrUCFu2bOHFIUxrnT17Frdv38bkyZNVWm/+tibR0dEqrVdXyGQynDt3Dp07d1ZrO1qT1N26dQsJCQm4cOECGjdujAMHDggdksrs2rULBgYGmDhxotChMA37/vvv0atXLyxfvhz169dHq1atsHLlSrk28fzrr7/QrVs3NGvWDIcPH1bLpNvStG7dGkZGRjo9ry4+Ph4PHz7E7Nmz0bhxYwwdOhT169fHunXr+EQNpnWWLFkCFxcXlScX+UkdD8EW7c6dO3j9+jW6dOmi1nZERERqbUFF1qxZg0qVKmHQoEGIjIzE5s2b8b///e+DMhKJ5IMP2bS0NNjb2yM1NVXly4ZVqVu3bhCJRDh58qTQoTCBZGVl4dixY9i1axeOHz8OqVSKLl26FPxs5OTkFHrs3r0bNWrUQFhYmFo3Sy6Np6cnKleujIMHDwoWgzpt374dgwYNQlJSEuzs7PDXX39h/vz5OHDgAGrWrIkpU6ZgxIgRMDExETpUxkp069YttGjRArt378Znn32m0rqJCGZmZliwYAGCgoJUWrcuWL58OWbMmIE3b96o9Q9w9Sy/UIO3b98WDE1aWloiJSWlUJmFCxfihx9+0HRoZZKXl4dLly5hxowZQofCBGRiYoK+ffuib9++ePPmDQ4cOICdO3dixowZ0NfXh6GhYaFHixYtsHXrVkETOuCfpG7t2rUgIohEIkFjUYewsDA4OzvDzs4OAODs7Ix9+/bhwYMHCA4ORmBgICIiIrB//36BI2WsZEuXLkWdOnUQEBCg8rpFIhFva1KCsLAwdOjQQe0jKloz/GptbY20tDQA/yR4NjY2hcpMmzYNqampBY/Y2FhNh6mwW7duISMjQ62rYZh2sba2xldffYXz588jKysL6enpeP36NV6+fImYmBg8evQI9+7dw4kTJwoSDSF5eHggOTkZ9+/fFzoUlSMihIWFFTlU1ahRI2zfvh1LlizBb7/9VvD5xFh5FBMTg7179yIoKEht22lwUle03NxchIeHq30+HaBFSV3btm1x+vRpAMCpU6fQoUOHQmWMjIxgYWHxwaO8Cw8Ph4mJCVq2bCl0KIwppX379jA1NVXrWbZCefr0KZ4/f17iPJhPP/0UOTk5Oj19QpcWplVUK1asgKWlJYYPH662NjipK9qNGzeQkZHBSd37XFxcUK1aNbi7u+P+/fvw9/cXOiSViIiIQLt27WBoaCh0KIwpxdTUFL6+vjq1eCmfPPtK1alTBy4uLjh06JAGI9OM1NRUDB06FNbW1jp5J7aiePPmDTZu3IjRo0er9WxrJycnREdHQyaTqa0NbRQWFgZzc3ON3LzRmqQO+Gc+wIULF7Bz506dSIKkUikuXLgAT09PoUNhrEwCAgIQGRmJZ8+eCR2KSoWGhqJly5al3vXv06cPTpw4oVOrYc+dOwdnZ2ccPHgQlpaWmDJlitAhMSW8evUKAwcORF5eHsaOHavWthwdHSGRSPDixQu1tqNtQkND4enpqbZh7/dpVVKna+7cuYO3b99yUse0nq+vL4yMjHRqBWxJ8+n+q0+fPkhPT0doaKgGIlOvrKwsTJgwAZ07d4ajoyPu3LmDVatW4fjx4zrx/VUkhw8fRpMmTXD16lXs3bsXVatWVWt7vK1JYVlZWbh8+bLatzLJx0mdgCIiImBoaIjWrVsLHQpjZWJubo5u3brpVFJ37949vHr1Sq6krkmTJqhXr57WD8FGRkbC1dUVa9aswYoVKxAaGoratWsjICAA7dq1w8SJE/lUDS3w9u1bDB48GH369EG7du1w79499OrVS+3t1qlTB0DpSV1FGp69cuUKJBKJRubTAZzUCSo8PBxt2rTh/a2YTvD398eVK1cQFxcndCgqERYWBkNDwyIXZf2XSCRCnz59cOTIEa1MeqRSKebNm4e2bdvCxMQEN2/eRGBgYMEZwiKRCMuWLcPt27exY8cOgaNlJTlz5kzBhuRbtmzB4cOH1X6HLp+JiQlq1qyJJ0+eFFsmNDQU1apVw9WrVzUSk9BCQ0NRuXJlNG3aVCPtcVInECJCREQED70yndGzZ08YGBho/d2qfGFhYWjfvr3cf3T16dMHr169wpUrV9QcmeqFhITg+++/x7Rp03DlyhU0bty4UJl27dqhb9++mDFjBt69eydAlKwkmZmZGDNmDLy9vdGgQQPcuXMHgwcP1vjekSWtgJVIJBg9enTBPL+KcE5s/hSO/D+Q1E3hVrKyshAfH1/o+Xv37qkkoIriwYMHSE5O5v3pmM6wsrJC165ddWIVbF5eHs6fP6/QkEmbNm1QvXp1rUxq169fDz8/P8ydO7fERWiLFi1CUlISli9frsHomDwCAwOxefNmrF69GqdPn4aDg4MgcZSU1C1fvhxPnz7FoUOH8OLFC0yaNEnD0WlWWloarl+/rrGhV0DBpO7AgQOoX78+fH194ezsjD/++KPgtYEDB6o8OF0WHh4OfX19tG/fXuhQGFOZgIAAXLhwAYmJiUKHUia3bt1CamqqQh/GYrEYvXr1wqFDh6Alpy8CAG7fvo3IyEi59i9zdHTEt99+i0WLFsl1PjHTjLi4OGzduhXz5s3D2LFjNXZXqCjFJXXPnz/H/PnzMX78ePTu3RvLli3DL7/8ghMnTggQpWZEREQUHPmoKQr9z8+fPx83b97E7du3sWnTJgwbNgy7du0CAK36ECsPIiIi4OrqqtY9gxjTtF69ekEsFmvl3ar3hYWFwczMDK1atVLout69eyM6Ohp//fWXmiJTvZCQEFStWhW+vr5ylZ85cyYMDQ3x/fffqzkyJq8VK1bAzMwMI0eOFDoUODk5ISkpCenp6R88P2HCBFhaWhb83IwaNQrdu3fHsGHDkJycLESoahcWFgZ7e3s4OTlprE2Fkrrc3NyCY4latmyJiIgIrFu3DnPnztWpMx83b96s1v18iAjh4eE8n47pHFtbW3Tq1Enrh2DDwsLg7u6u8H6YnTp1gqWlpdYktdnZ2dixYwcGDx4MAwMDua6xtrbG7NmzsXHjRty9e1fNEbLSpKSkYN26dRg7dizMzc2FDqdgW5Po6OiC506fPo2DBw9i2bJlBTGKRCKEhIQgLy8PI0eO1MkbQ/nz6TSaH5ECOnbsSLdv3/7gOYlEQp999hnp6ekpUpVGpKamEgBKTU2V+5qcnByqXr06AaArV66oJa6oqCgCQMePH1dL/YwJae3ataSnp0evXr0SOhSlSCQSMjExoSVLlih1/RdffEHOzs4qjko9du3aRQDo4cOHCl0nkUjIycmJunfvrqbImLzmzp1LJiYmlJSUJHQoRESUkJBAAOjQoUNERJSdnU3169cnT09PkslkhcofPHiQANDmzZs1G6iaJSUlEQDatm2bRttVKKmLjY2lly9fFvnaxYsXVRKQKimT1O3evZsAUI0aNcjX11ctcW3cuJHEYjG9fftWLfUzJqSEhAQSiUS0ceNGoUNRSnh4OAGgyMhIpa7fv38/AaAnT56UWC4jI4MiIyPp9evXRf6y04QuXbqQu7u7UtceOHCAANDp06dVHBWTV0ZGBtna2tLYsWOFDqWATCYjMzMzWrZsGRERLVy4kPT09OjOnTvFXjNkyBAyNzenp0+faipMtdu3bx8BoLi4OI22q1BSp22USeratWtHnTt3pp07dxIAun79usrjGjhwILVo0ULl9TJWXnh4eGjtXZzvv/+erK2tKS8vT6nr09PTycjIiJYuXVpsmeTkZGrSpAkBIABkaWlJLi4u5O/vT5MnT6a1a9cqfPdMUU+ePCEAtGXLFqWul8lk1KFDB3J2dla6r1jZ/PTTT6Snp0fR0dFCh/KBZs2a0ZgxYygmJoZMTU1pwoQJJZZPTU2l2rVrk7u7e7n5WZLJZNSrVy/y9vam2bNn0/HjxxUafRg1ahQ1aNBAjREWTemk7sCBA6qMQy0UTequXbtGAOjw4cOUl5dH9evXp08++UTlcTk4OFBQUJDK62WsvPjpp5/IwMCA3rx5I3QoCnN3d6c+ffqUqY6ePXtShw4dinwtNTWVWrZsSXZ2dnTy5Enav38/LV68mEaNGkVdu3YlR0dH0tPTIysrK7XezZ85cyZZWFhQRkaG0nXk39U8f/68CiNj8sjJySEHBwcaMGCA0KEU0qtXL+rWrRsFBARQtWrV5PodHB4eTiKRiBYvXqyBCEv3119/EQBq164dVa5cueAPMCcnJ/riiy9o1apVFBMTU+z1H330EX3zzTcajPgfSid1hoaGtHz58hLLCDWkkE/RpO7LL7+kunXrFvylsHXrVgJAN2/eVFlMz549+2C+AWO6KC4uTpD5JGWVkZFBBgYGtHr16jLVs2nTJhKJRJSQkPDB85mZmeTu7k6WlpZ069atYq+Pj48nY2Njmjt3bpniKE5eXh7VrFmTRo0aVaZ6pFIpValShaZOnaqiyJi8tm3bRgDor7/+EjqUQoKCgsjExIQA0I4dO+S+bsqUKWRgYECPHz9WY3TyCQ4OJjMzM8rOziaZTEZPnjyhXbt20bhx46hNmzZkaGhIenp6FBAQQBcvXvwg33n+/DkBoP3792s8bqWTut9//50sLCzo22+/LZS85eXl0ebNmwW59fg+RZK6ly9fkoGBQcE8ACKi3NxccnR0pE8//VRlMeUnisnJySqrk7HyqF27dmq5061Ov//+OwGg+/fvl6meV69ekVgspnXr1hU8l52dTT4+PmRmZkaXL18utY5x48aRtbW1QtNH5HX8+HECQNeuXStzXYMGDdKahSG6QiqVUpMmTahHjx5Ch1Kk1atXEwDy8PBQ6ObOu3fvyMLCgmbNmqXG6OTTvn37Eu/Yp6en088//0z169cnANSyZUvavn07SSQS2rJli2C/58s0p+7PP/+kWrVqUe/evendu3ckkUhozZo1VKdOHbK2tqbZs2erKk6lKJLUzZkzh0xNTQsNF4WEhKj0r6Hhw4dT06ZNVVIXY+XZ0qVLycjIiNLS0oQORW5TpkyhatWqqWSUoWPHjtStWzci+ucPRH9/fzIyMqKzZ8/KdX18fDwZGRnR/PnzyxzLf3366afk7Oysku8zf3FZbGysCiJj8vjtt98IAF24cEHoUIp06dIlMjExUer35ogRI6hOnToklUrVEJl8kpKSSCQSUUhISKllpVIpnThxgry9vQkAVatWjZo0aULNmzfXQKSFlXmhRFxcHDk7O5OzszPVqFGD7OzsaMGCBeXig1zepE4ikVDVqlWLHP/Oycmh2rVrU79+/VQSU7169WjMmDEqqYux8iw6OpoA0O7du4UORW4tW7akL774QiV1rVq1qmBe4eDBg0lPT49+++03heoYO3Ys2djYqPTzNCEhgfT19WnVqlUqqe/169ckFotpw4YNKqmPlUwmk1G7du2KnbNZXkgkEqWuy5+nGRERoeKI5Jc/olbcbh/FuXfvHo0aNYpMTEwEu6lVpqTu7du3NHfuXLK1tSUTExMyNTVVy/j+jRs3yM3NjTw8PKhv376Uk5Mj13XyJnU7duwgAHTv3r0iX1+3bh2JRKJiX5dXfHw8AaB9+/aVqR7GtIWrqysFBAQIHYZcUlJSSCwWq2wrlpiYGAJALVq0IJFIRLt27VK4jtjYWDI0NKTg4GCVxEREtGTJEjI0NFTp0FD79u1VOk2FFS8iIoIA0NGjR4UORS2kUinVqVOHRowYIVgMffv2pdatWyt9fVZWlmCreJVO6r777juytLQkR0dHWrduHWVkZNDgwYOpSpUqKpmn8b6XL19SZmYmERFNmzZN7qRInqROJpNRq1atyMvLq9gy2dnZZG9vX+a/4POHKRTN/hnTVgsXLiRTU9OC9295dvjwYQKg0r2yXF1dCQCtX79e6TpGjx5Ntra2KrlbJ5PJqGHDhvTZZ5+Vua73zZ8/n8zNzZW+O8Pk5+vrS02bNhV0eFLdZs2aRZaWlvTu3TuNty2RSMjCwkJti5TUTemkrmHDhrR169ZC2ejMmTPJzMyMDh8+XObgijJ79mz69ddfi3wtOzubUlNTCx6xsbGlJnVXrlyR66+en3/+mcRiMf39999Kx/71118LvniEMU3KPz2lvG2BlJeXR2/fvqW4uDh68OABXb9+nT7//HOqW7euStu5dOlSmb/358+fk4GBAS1cuLDM8Vy8eJEA0JkzZ8pc1/siIyMJAJ07d06l9bIP3b59mwDQ9u3bhQ5FrfI/N/bu3avxts+ePavyXS80SemkrqQJths2bCAjI6MybwvwXzExMdS+fftih1+///77gr1k3n+UlNR9/vnn5OTkVOpfPVlZWVSjRg0aNGiQ0vE3atSIRo4cqfT1jGmj5s2bq2xOaln17t27YKuFoh6jR48WOsQiff3112Rra0vp6ellqmfo0KFqmYQulUqpatWqNGXKFJXWy/5fTk4OeXp6Uu3ateWegqTN2rZtK8jq3sDAQKpZs6bgW7IpS20nSpw4cYLMzc0Vuubly5fUoUOHQo/Xr19TamoqeXh4lLjLuqJ36uLj40lfX59WrlwpV3yrVq0iPT09evTokULfFxFRYmKiwnv2MKYLgoODydTUtEyb3KrCvXv3CACNGzeOQkJCaO/evXT8+HGKiIigmzdvUlRUFOXm5goaY3FiYmLIwMCgTBuzpqamkqmpqdqGlYYMGcIr+9VozJgxpK+vT+Hh4UKHohFr1qwhPT09SkxM1FibMpmMnJycyrx/o5DUekyYsmcn/ldeXh75+fnJvRVAvtLm1M2aNYsqVaok967t7969o6pVq9LQoUMVioOIaM+ePQSAnj9/rvC1jGmz/OOo9uzZI2gckyZNIhsbG8rOzhY0DmWNHDmS7OzslEqO3759SwEBASQWi9X2GbR3717+jFOT9evXEwBau3at0KFozOvXr8nAwEDumy6q8Pfff2v9IhStOPt1165dZGNjQ56enuTp6Sn3L4eSkrrs7Gyys7NT+CDk1atXk0gkorCwMLmvSUtLo7p165KHh4dCbTGmK1q2bCno6sicnByqWrUqffvtt4LFUFbR0dGkr69PS5YsUei6K1euUJ06dcjCwkKtK+/zVw+/v+EyK1pUVFSJJ4q878KFC2RgYEBff/21eoMqh/r06aPRc9KXLFlCxsbGWrGwqzhakdQpq6SkLn/HZ0UXPkilUurYsSPZ29vLfa7lyJEjyczMrFwcfcKYEH788UcyNjYWbP/K/M1atXXyc74RI0ZQlSpV5PqlI5VKKTg4mPT09Kht27YqXdVbHDc3N+rdu7fa29F23t7eJBKJ6LvvvitxxXBMTAzZ2dmRh4dHhVxZfOjQIQJAd+/e1Uh7np6e5Ofnp5G21KXCJnWjR48u2O1dUTExMWRhYSHXQcr5x/H88ssvSrXFmC7IP/N4586dgrTfp08f+vjjjwVpW5WePn1K+vr6tHTp0hLLxcfHU5cuXUgkEtH06dM1NrF+wYIFVKlSpQqZgCjCwcGBnJ2dycDAgJo3b0537twpVCYzM5NcXFyodu3alJSUJECUwpNIJGRjY6ORs4VTUlJIT09P639XV9ikjuifFa3K2r59e6nzhJKTk6l69erUrVs3rV1Jw5iqtG3bVpCzYJOSkhRaEFXejRgxouA4os6dO9PYsWNpzZo1dP78eUpKSqJjx45R5cqVqXr16hQaGqrR2G7dukUANN6uNsnMzCQAtHnzZrp58yY1btyYjIyMaPny5QWrkmUyGfXv359MTU3pzz//FDhiYY0ePZpq1qyp9s18deW4uwqd1JWFTCajfv36kZWVVbE/BP379ydra2uKj49XefuMaZvly5eToaGh3NMWVGXFihVkYGBAr1690mi76pKVlUV79uyh2bNnU0BAADVu3Jj09fU/2JrFz89PkO9XJpNR9erVadKkSRpvW1vk7zV36dIlIvrn/zMoKIgAUKdOnSgmJoYWLFhAAGj//v0CRyu8q1evEgCFF0oq6osvviAXFxe1tqEJnNSVwevXr6lGjRrUpUuXQvs+5Wf9Qq/4Y6y8yN9iaOvWrRprUyaTkbOzM/n7+2usTSHk5OTQ/fv36cCBA3Tw4EFBRwaGDh1KTZo0Eaz98m7//v0EoNAxbaGhoVSrVi0yNzcnkUhEs2bNEijC8kUmk1H9+vXLtEdsaXJzc8na2lon+pyTujI6ffo0AfhgaCc+Pp6sra1VfhQPY9rOzc2NfH19NdZe/kkHx44d01ibFV1+0hITEyN0KOXSggULyMbGpsjX3rx5Q8OGDaPhw4fr9DFgipo3bx6ZmZmpba/L/PN0//jjD7XUr0lisDLx8vLCuHHjMHXqVNy7dw9EhOHDh8PY2Bg///yz0OExVq7069cPp0+fxps3bzTS3ubNm1G9enX4+PhopD0GdO3aFXp6ejh58qTQoZRLDx8+RP369Yt8zcrKCiEhIdi4cSPEYv71nO/LL79EZmYmDh06pJb6jx07hqpVq6Jly5ZqqV+T+KdGBRYtWgRHR0d8+eWX+N///offf/8dISEhsLGxETo0xsqVgIAASKXSMn84P3z4EBkZGSWWkUgk2LVrFwYOHAh9ff0ytcfkZ2Vlhfbt23NSV4yoqKhikzpWtDp16sDT0xPbtm1TS/1Hjx5Fjx49dCKR1v7voBwwMTHBjh07cPfuXYwbNw6jRo1C9+7dhQ6LsXKnevXq8PT0xN69e5Wu48mTJ3B2doanpydSUlKKLffbb78hJSUFQ4cOVbotphxfX1+cPXsWEolE6FDKnaioKDRo0EDoMLTOwIEDcfbsWcTHx6u03idPnuDBgwfw8/NTab1C4aRORVq0aIFly5ahTZs2WLp0qdDhMFZu9evXD6GhoUhOTlbq+kmTJqFy5cp4/vw5unTpgtevXxdZbvPmzWjbti0aNmxYlnCZErp3747MzExcvHhR6FDKleTkZKSkpPCdOiX4+/tDJBLhxIkTKq33+PHjMDQ0RNeuXVVar1A4qVOhcePG4erVq6hUqZLQoTBWbvn7+4OI8Ouvvyp8bVhYGA4fPoylS5ciLCwM8fHx6NKlS6EEMT4+HqdOneK7dAJxdnZGjRo1VP4LWNtFRUUBACd1SrCyskLr1q1x5swZldZ79OhRdOzYEebm5iqtVyic1DHGNKpKlSro1KkT9u3bp9B1eXl5CAwMRPv27fHZZ5+hWbNmOHfuHF6+fInOnTvj1atXBWW3b98OIyMj9O/fX9XhMzmIRCJ0796d59X9R35SV69ePYEj0U5eXl4IDQ2FVCpVSX3Pnj3D+fPn8cknn6ikvvKAkzrGmMb1798f586dQ2JiotzXbNy4EXfu3MHKlSshEokAAE2aNMG5c+eQlJSEzp07IykpCUSEzZs349NPP4WlpaW6vgVWiu7du+PBgwd49uyZ0KGUG1FRUXBwcICpqanQoWglLy8vpKSk4M8//1RJfTNmzICdnR2GDBmikvrKA07qGGMa9+mnn0IkEuHgwYNylX/79i1mzZqFwYMHo1WrVh+81rhxY5w/fx7Jycno1KkTDh8+jKioKAwbNkwdoTM55W9tcurUKaFDKTdK2s6Ela5NmzYwMzNTyRDsjRs3sGvXLsydOxdmZmYqiK584KSOMaZxtra26Nq1q9xDsHPnzkVWVhaCg4OLfL1hw4Y4f/483rx5A39/f9SpUwcdO3ZUYcRMUZaWlmjbti0nde/h7UzKxtDQEB07dixzUkdEmDx5Mpo0aaJTd+kATuoYYwLp378/IiIi8OLFixLLPXz4EKtXr8b06dNRo0aNYss1aNAA4eHhqFu3LsaNG6cTe05pOx8fH4SGhiIvL0/oUAQnk8nw6NEj3s6kjLy8vHDx4kW8e/dO6TpOnDiB8+fPY/HixTq3h6VWfert3r0bdnZ2QofBGFOB3r17w9zcHB06dMDRo0eLLTdx4kTUqlULEyZMKLXOjz76CI8fP0ZQUJAqQ2VK8vHxQVpaGv744w+hQxHc8+fPIZFI+E5dGXXt2hU5OTlKb5eTl5eHKVOmoGPHjvD19VVxdMLTmqROJpPhwIEDsLe3FzoUxpgKWFtb48aNG2jQoAE++eQT9OzZE9HR0R+UOXXqFI4fP44lS5bA2NhYrnrzF1Ew4bm6usLGxoaHYMHbmahK48aNUaNGDaWHYLds2YL79+9jyZIlOvlZoTVJ3a5duxAQEMBDKozpkI8++ggnT57EgQMH8Oeff6Jx48aYN28esrOzkZubi6CgIHh4eMDf31/oUJkS9PT04OXlpbKkjoiwY8eOD7av0RZRUVEwNDRE7dq1hQ5Fq4lEInTt2lWppC4zMxOzZ8/G559/rhPnvBZFKzIkqVSKffv2lbrnlEQiQVpa2gcPxlj5JhKJ4O/vj7///hvjx4/H3Llz0axZM4wZMwZ///33B1uYMO3j7e2N69evF3vyhyIOHjyIgQMHYuDAgSAiFUSnOVFRUahXrx709PSEDkXrde3aFbdv30ZSUpJC1y1fvhyvX7/GggUL1BSZ8MpVUpeQkAA3N7dCjx07dqBfv36l3qVbuHAhLC0tCx48VMuY9jAzM8OiRYvw119/wcHBARs2bMCwYcPg4uIidGisDLy9vUFEOHv2bJnqyc7OxuTJk9GoUSOcOnUKa9euVVGEmsHbmahO/pFeoaGhcl+TmJiIH3/8EWPHjkXdunXVFZrgRKQFf+5MnToVt27dglgsxpUrVzBs2DCsWLGiUDmJRPLBAdJpaWmwt7dHamoqLCwsNBkyY6wMiAgXLlyAq6urTu0hVVE1bdoUbdq0QUhIiNJ1BAcHY86cObh79y5WrFiBrVu34vbt2/joo49UGKn61K1bF/369cPixYuFDkUnNGvWDK1atcKmTZvkKj969Gjs3r0bT548gY2NjZqjE45WJHXva9myJW7cuCFX2bS0NFhaWnJSxxhjApo4cSL27t2L2NhYpYbSX7x4gfr162PUqFFYtmwZMjMz0bx5c9ja2uLixYvlfluK7OxsmJqaYsOGDRg+fLjQ4eiEoKAgHDx4EDExMaX+TD18+BBNmjTBokWLMGnSJA1FKIxyNfwqD3kTOsYYY+WDj48P4uPjcf/+faWunz59OkxMTDBr1iwA/wzVb9u2DdevX9eKO19PnjwBEfEedSrk5eWF2NjYglXFJfnuu+9Qq1YtjB07VgORCUvrkjrGGGPaxd3dHcbGxkqtgr1+/Tq2bt2KefPmwcrKquD5du3a4bvvvsOcOXNw8+ZNFUb7/xISEvDtt9/i2LFjZarn4cOHAHg7E1Xy8PCAgYFBqatgf//9dxw+fBjBwcFyb4ukzbRu+FURPPzKGGPlg4+PDwAolNgREdzc3JCeno6bN28WGmbNyclBmzZtkJOTg8jISJX90s7Ly8OaNWswa9YspKWloXr16nj8+DFMTU2Vqm/RokVYtGgR3rx5wyu5VcjT0xNWVlY4cuRIka9nZGSgSZMmqF+/Pk6fPl0h+p7v1DHGGFM7Hx8fREREICsrS+5r9uzZg8uXL2PlypVFzpszNDTE9u3b8fjxY8yYMUMlcV68eBGurq4IDAzEgAEDcOPGDSQnJ2PVqlVK15l/5mtFSCo0ycvLC+fOnSv2GLoZM2YgOTkZ69atqzB9z0kdY4wxtfPx8UF2djYuXLggV/l3795hypQp6N27Nzp37lxsuaZNmyI4OBgrVqzA+fPnlY4vMTERQ4YMKRgqvnbtGtasWQNXV1d88803WLRoEZKTk5Wq++HDhzyfTg28vLyQnp6Oa9euFXrt6tWrWL16NebNmwdHR0cBohMGJ3WMMcbUrnHjxqhZs6bcw69LlixBUlISli5dWmrZ/JNHhgwZotSm81u2bEGDBg1w7NgxbNiwAVeuXPngxIGZM2eCiBAcHKxw3cD/36ljquXq6gpLS8tC8+pycnIwYsQIuLq6Yty4cQJFJwxO6hhjjKmdSCSCj4+PXEldXFwcFi9ejMDAQDg5OZVaXiwWY8uWLUhOTsaPP/6oUFxxcXH46quv4Ovri4cPH2LEiBGFNrq3s7PD5MmT8fPPP+PZs2cK1Z+SkoLk5GRO6tRAX18fnTt3LrSx9aJFi/Dw4UOEhISU++1uVI2TOsYYYxrh4+ODe/fuIS4ursRy3333HSwsLBSaJ1enTh189dVXWLt2LTIzM+W+7n//+x9MTU2xbt062NraFlsuKCgI1tbWmD17ttx1A8CjR48AgIdf1cTLywtXr15Feno6AOD+/fuYP38+pk6dCmdnZ4Gj0zxO6hhjjGlEly5dIBKJcPr06WLL/PTTT9i5cycWLFig8K4F48ePx9u3b7F161a5ymdkZGDdunUYOXIkzM3NSyxbqVIlzJkzBzt27MDt27fljil/O5N69erJfQ2Tn5eXF/Ly8nD+/HlIpVKMGDECjo6OmDlzptChCYKTOsYYYxpha2uLVq1aFTsEu2zZMowfPx6TJ0/GsGHDFK6/Tp06CAgIwPLlyyGVSkstv2XLFqSnp+Pbb7+Vq/7hw4ejXr16mDZtmtwxRUVFoWbNmqhUqZLc1zD5OTk5oXbt2jhz5gzWrl2LK1euYMOGDRViT7qicFLHGGNMY3x8fHD27NlCSdfChQsxadIkzJgxA4sXL1Z6C4pJkybhyZMn+O2330osJ5VKsXLlSvTt2xcODg5y1W1gYIDg4GCcPHkS586dk+saXiShXiKRCF5eXjh06BCmTZuGr7/+Gu7u7kKHJRhO6hhjjGmMj48PUlJSEBkZCeCfDYZ/+OEHTJ8+HT/88APmz59fpj3FWrVqBXd391JXzR49ehRPnjxBUFCQQvX7+/ujdevWmDp1KuTZu5+3M1E/Ly8vxMXFwdLSUiuOjVMnTuoYY4xpTJs2bWBpaYlTp06BiDBr1izMmTMHwcHBCi9CKM6kSZNw+fJlXL16tdgyy5cvh5ubG1q3bq1Q3SKRCIsXL8b169dx8ODBEsvKZDI8evSI79SpWdeuXWFvb4/169dX+NOj+JgwxhhjGuXv74/ExES0b98eS5YswdKlSzFx4kSV1S+TydCoUSM4Oztj//79hV6/fv06WrdujV9//RV9+vRRqg1fX188fvwY9+7dg4GBQZFlYmNj4eDggGPHjqFHjx5KtcOYIvhOHWOMMY3y9vbGpUuXsGTJEqxatUqlCR3wz751QUFB+PXXX/H06dNCr69YsQKOjo745JNPlG5j0aJFePz4MdatW1dsmaioKADgO3VMYzipY4wxplE9evRAtWrVsGbNGrXt+D9o0CDY2Nhg5cqVHzwfGxuLffv2ITAwEHp6ekrX7+zsjJEjR2LKlCm4d+9ekWUePnwIfX191K1bV+l2GFMEJ3WMMcY0qlatWnjx4gW++eYbtbVhamqK0aNHIyQkBCkpKQXPr169GpUqVcLQoUPL3Mby5cvh5OSEvn37FrnhcVRUFJycnCrcqQZMOFqT1J0/fx5dunSBp6cnjhw5InQ4jDHGyqAsK1zlNWbMGEil0oIh0vT0dKxfvx6jRo1Syb5xpqam2L9/P54/f44xY8YUep23M2GaphVJXXZ2NpYtW4aTJ08iPDwcvXr1Ejokxhhj5VyVKlUwaNAgrF69GhKJBJs3b0ZmZqbcmw3Lo2HDhvjll1+wdetWbNmy5YPXOKljmqYVSd3ly5dhYmKCnj17ok+fPkhISBA6JMYYY1pgwoQJePnyJXbs2IGVK1eiX79+qFWrlkrb+PLLLzFs2DCMHj26YH6dRCJBdHQ071HHNEorkrrExERER0fj6NGjGDlyJObMmVNkOYlEgrS0tA8ejDHGKq6GDRvCz88PgYGBiI6OVnizYXmtXr0ajo6OBfPrnj59CplMxnfqmEaVq6QuISEBbm5uhR4ymQxubm4wNDRE586dcf/+/SKvX7hwISwtLQse9vb2Gv4OGGOMlTcTJ05ERkYGPDw80LJlS7W0kT+/LiYmBmPGjOHtTJggtGLz4devX+OLL77AqVOncPXqVfzyyy+F5i4A/9ypk0gkBf9OS0uDvb09bz7MGGMVGBFh4sSJCAgIQPv27dXa1rZt2zB48GC0atUKDx48QFpamkYWhTAGaElSBwA///wz9u7dC7FYjE2bNsHR0bHUa/hECcYYY5o2fPhwbNq0Ca6urrhx44bQ4bAKRGuSOmVwUscYY0zT3r17h3bt2qFNmzZYv3690OGwCoR3RGSMMcZUyNTUFNeuXSvTiRWMKYOTOsYYY0zFjIyMhA6BVUDlavUrY4wxxhhTDid1jDHGGGM6gJM6xhhjjDEdwEkdY4wxxpgO0OktTYgI6enpMDc3580fGWOMMabTdDqpY4wxxhirKHj4lTHGGGNMB3BSxxhjjDGmAzipY4wxxhjTARX2RIn8RRSMMcYYY9qgtIWfFTapS05ORpUqVYQOgzHGGGNMLqmpqbCwsCj29Qqb1BkaGgIAYmNjS+ygiigtLQ329vbcN//B/VI87puicb8Uj/umaNwvxeO++edOXUkqbFKXf/vSwsKiwv5wlIb7pmjcL8Xjvika90vxuG+Kxv1SPO6b4vFCCcYYY4wxHcBJHWOMMcaYDqiwSZ2RkRG+//57GBkZCR1KucN9UzTul+Jx3xSN+6V43DdF434pHvdN6fiYMMYYY4wxHVBh79QxxhhjjOkSTuoYY4wxxnQAJ3WMMcYYYzqgwiZ1kyZNgru7OwYMGICcnByhwxFUeno62rRpg0qVKuHu3bsAgL1796Jdu3bo3LkzYmNjBY5QGJGRkXB3d4enpyf69euH3Nxc7pd/3b17Fx06dICnpyd69OiBjIwM7pv37N69G3Z2dgD4vZTv2bNnsLOzQ8eOHdGxY0e8evWK++Zf58+fR5cuXeDp6YkjR45wv/zr2rVrBT8vDRo0QFBQEPdNaagCunnzJg0YMICIiObPn087d+4UOCJh5ebmUlJSEg0ePJju3LlDOTk51Lp1a5JIJHTx4kX66quvhA5REC9fvqTMzEwiIpo2bRrt27eP++VfOTk5BV/PmTOHtm3bxn3zL6lUSp9++im5uLjwe+k90dHR5O/vX/Bv7pt/ZGVlkZ+fH0kkEiLifinO8OHD6fz589w3paiQd+quXLkCb29vAEC3bt1w+fJlgSMSlr6+fsFdBQB49OgRmjRpAkNDQ3To0AF37twRMDrhVKtWDaampgAAAwMDREVFcb/8y8DAoODrd+/ewcHBgfvmX7t27UJAQADEYjG/l/7j0qVLcHd3x/Tp0/n99K/Lly/DxMQEPXv2RJ8+fXD9+nXul//Iy8vD1atXYWdnx31TigqZ1L19+7bgiBFLS0ukpKQIHFH58n7/AIBUKhUwGuE9f/4cZ8+ehZubG/fLe86cOQMXFxecO3cOBgYG3Df45/vet28f+vfvD4DfS++rXr06Hj9+jIiICCQlJeHIkSPcNwASExMRHR2No0ePYuTIkZgzZw73y3+EhYXB09OT309yqJBJnbW1NdLS0gD886FrY2MjcETly/v9AwB6enoCRiOstLQ0DBw4EJs3b0aVKlW4X97j5eWFW7duISAgAOHh4dw3AHbs2IF+/fpBLP7no5XfS//PyMgIZmZmEIlE8Pf3x61bt7hvAFhZWcHNzQ2Ghobo3Lkz90sR9u/fj759+/L7SQ4VMqlr27YtTp8+DQA4deoUOnToIHBE5Uu9evVw//595OTk4NKlS3B2dhY6JEFIpVIMGDAAs2fPRv369blf3iORSAq+trS0RKVKlbhvANy/fx/btm1Dt27d8OjRI6xfv5775V/p6ekFX0dERMDPz4/7BkDr1q1x//59AMCtW7fg7e3N/fKevLw8XLlyBR4eHvwZLAd9oQMQgouLC6pVqwZ3d3c4ODhg8uTJQockOF9fX/z55594+PAhRo0ahcDAQHh6esLY2Bjbtm0TOjxB7Nu3D5cvX0Z6ejrmzZuHb775hvvlX2fOnMGSJUsgFothZ2eHLVu2wM7OrsL3zeLFiwu+btmyJVasWIE9e/ZU+H4BgIsXL2LmzJkwNTVF3bp1MW/ePBgZGVX4vrG1tcUnn3wCDw8PiMVibNq0CdeuXavw/ZLv3LlzBX0jFov5M7gUfEwYY4wxxpgOqJDDr4wxxhhjuoaTOsYYY4wxHcBJHWOMMcaYDuCkjjHGGGNMB3BSxxhjjDGmAzipY4wxxhjTAZzUMcYYY4zpAE7qGGOMMcZ0ACd1jDHGGGM6gJM6xhhjjDEdwEkdY4wxxpgO+D8eQDAITvdF2wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADJVUlEQVR4nOzddVjVd/sH8Pc5dAsIIoqBOafOoEQBg1Kc2IizdTp1Tp3bbIzZzulsnU7sFixC7ADsbuwuuuPcvz/2g0dGnQ68X9d1rufZ9/uJ24KbTwqIiMAYY4wxxjSaUNUBMMYYY4wx2XFSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDnBSxxhjjDFWDpTrpI6IkJycDD5fmTHGGGPlXblO6lJSUmBmZoaUlBRVh8IYY4wxplDlOqljjDHGGPtScFLHGGOMMVYOcFLHGGOMMVYOcFLHGGOMMVYOcFLHGGNMaZ4+fYp58+bBx8cHS5Ys4Y1sjMkRJ3WMMcYU6v3791ixYgVatmyJmjVrYubMmcjKysKvv/4KOzs7/Pbbb3j58qWqw2RM43FSxxhjTCF27NgBX19f2NraYsyYMTA3N8eWLVvw/v17nDx5Ek+ePMGwYcOwdu1a1KxZE3369MHVq1dVHTZjGktA5fhk3uTkZJiZmSEpKQmmpqaqDocxxr4Yp06dQuvWrdGqVSv06dMH3bp1Q8WKFYstm5KSgn/++QdLlizB06dP0aZNG2zevBlVqlRRctSMaTZO6hhjjMndb7/9hs2bN+P169cQCARi1cnNzUVISAhGjRqFVq1aYc+ePQqOkrHyRVvVAYjr1q1bGDZsGLS1tWFsbIydO3fC2NhY1WExxhgrRnh4OHx8fMRO6ABAW1sbPXr0QHZ2Nvr06YNjx46hXbt2CoySsfJFY0bqcnJyoKOjAwCYMWMG7O3t0bdv31Lr8EgdY4wp38uXL2FnZ4cdO3YgICBA4vpEBHd3d3z69AnXr18v+NrPGCudxmyU+PwfdXp6OurXr1+kTFZWFpKTkwt9GGOMKVdERASEQiG8vLykqi8QCLBs2TLcv38fy5cvl3N0TB5u3bqFjh07YsuWLcjKylJ1OOz/aUxSBwBRUVFo2rQpTpw4gVq1ahV5P3fuXJiZmRV87OzsVBAlY4x92SIiIuDs7AwLCwup22jSpAl++OEHTJs2DW/fvpVjdEwelixZgqNHj6Jv376oXr06ZsyYgXfv3qk6rC+exky/fm7BggUQiUSYMGFCoedZWVmFfmJITk6GnZ0dT78yxpiS5OTkoGLFivjll18wdepUmdqKj49H3bp10bFjRwQHB8snQCaz9PR02NjYYOzYsQgICMDy5cuxceNG5ObmIiAgAKNHj0bz5s1VHeYXSWNG6j5P1szMzGBkZFSkjJ6eHkxNTQt9GGOMKU9MTAySk5Ph6+src1sWFhaYM2cONm7ciJiYGDlEx+QhNDQUKSkp6NevHxo0aICVK1fi5cuXmD17Nk6fPg0HBwd4enoiIyND1aF+cTRmpO7QoUNYuHAhhEIhrKysEBwcDENDw1Lr8EYJxhhTrkmTJmHdunV4+/YthELZxw3y8vLg5OQEALhw4QK0tLRkbpPJxtfXF2lpaThz5kyRd3l5edi1axd69+6NPXv2oFu3biqI8MulMUmdNDipY4yxfxERMjMzYWBgoNB+mjZtioYNG2Lz5s1yazMmJgaurq5Ys2YNhg4dKrd2meRev34NOzs7rFmzBkOGDCmxXNOmTVGnTh3s2rVLidExjZl+ZYwxJr1du3ahQoUK2LBhg8L6ePPmDa5duyaXqdfPtWjRAv3798ekSZMQHx8v17aZZLZs2QJdXV306NGj1HIBAQE4dOgQUlNTlRQZAzipY4yxL0J4eDgEAgEGDRqEH3/8ETk5OXLvIzIyEgKBAD4+PnJve968ecjOzkZQUJDc22biISJs3LgRnTt3hpmZWalle/bsiYyMDBw6dEhJ0TGAkzrGGJPJihUrMHnyZIhEIlWHUqqzZ89i2LBhWL16NdauXYt27drJ/QiK8PBwODo6lnjHqyxsbGwwY8YMrFq1Crdu3ZJ7+6xsV65cwZ07d9C/f/8yy9rb28PR0RE7d+5UQmQsHyd1jDEmpfyRozlz5mDYsGFqm9i9ffsWjx49QsuWLTFs2DCcOHECDx48gIODAy5evCiXPnJzcxEVFSX3qdfP/fjjj7CyssKmTZsU1gcr2caNG2FjYwNPT0+xygcEBCA8PJwvAlAiTuoYY0xKR44cQXx8PMaPH4/169erbWJ37tw5AEDLli0L/vfy5cuoUqUK3NzcsHHjRpn7uHDhAhISEtC+fXuZ2yqJjo4Ovv32W+zfv19hfbDiZWdnY9u2bejTpw+0tcW7Nr5nz57IysriPy8l4qSOMcaktG3bNjRs2BDz5s1DcHAw1q9fj6FDh6pdYnf27FnUqFEDVapUKXhWpUoVnDp1Cn369MGAAQMwatQomc4VCw8Ph4WFBRwdHeURcon8/f3x4MED3Lt3T6H9sMLCw8Px6dMnsaZe89nZ2cHV1ZWnYJWIkzrGviDnzp1DpUqV8PHjR1WHovFSU1Oxf/9+9O7dGwDQr18/bNy4Ef/88w++//57tUrszp07h1atWhV5rqenh7///hsrV67E2rVr0bBhQ0RFRUnVR0REBLy9vRV+jly7du1gaGiI0NBQhfbDCtu4cSOaNWuGhg0bSlQvICAAR44cQUJCgoIiY5/jpI6xL8jKlSvx/v17xMbGqjoUjXfgwAGkp6ejV69eBc/69u2LTZs2ITg4WG0Su7S0NFy5cqXYpA4ABAIBhg8fjps3b6J69erw9vbGd999h/fv34vdx/v373Hp0iWFTr3mMzAwgI+PD0/pKdGnT59w6NAh9OvXT+K63bt3R25uLkJCQhQQGfsvTuoY+0IkJSVh3759AP5d/8Rks23bNri6uqJmzZqFnvfp0wcbN25EcHAwhgwZovLE7sKFC8jLyytYT1eSunXr4tixYwgODkZkZCTq16+P9evXixX/kSNHAEAhR5kUx9/fH+fPn8fbt29lbis7Oxt+fn4asYNZVbZv3w4iKhiVloStrS3c3d15ClZJOKlj7Auxc+dOZGdno3nz5pzUyejjx4+IjIws8Ztcnz59sGnTJmzcuBEDBgxQyJlw4jp79iwqVKiABg0alFlWIBCgf//+uHfvHjp16oQhQ4agdevWuHv3bqn1wsPD0axZM1SqVEleYZfKz88PAoEABw8elLmt+fPnIzIyEnPnzkW3bt2QlpYmhwjVy+HDhzFlyhSp62/atAkdOnSAlZWVVPUDAgJw7NgxfPjwQeoYmJhIQ1y6dIlatWpF7u7u1KNHD8rOzi6zTlJSEgGgpKQkJUTImHpr0aIFtW/fnmbOnEnm5uYkEolUHZLGWrVqFWlpadG7d+9KLbd9+3bS1tYmPz8/SktLU1J0hXl7e1OHDh2kqnv8+HGqU6cO6erq0syZM4v9upubm0uWlpY0efJkWUOViIeHB/n5+cnUxu3bt0lHR4cmTpxIBw8eJGNjY2ratCm9ePFCTlGq3s2bN8nQ0JAA0Js3bySuf+fOHQJAe/bskTqGd+/ekVAopNWrV0vdBhOPxiR1b968KfiiOHHiRNq1a1eZdTipY+xfd+/eJQC0c+dOioiIIAD08OFDVYelsdzc3MjX11esshEREWRkZESurq706dMnBUdWWG5uLpmYmNCcOXOkbiMjI4MmTZpEWlpa1LhxY7p06VKh9+fPnycAdObMGVnDlciff/5Jenp6lJKSIlX93NxccnFxoXr16lFGRgYREV2/fp2qVatGlStXposXL8ozXJVITEykOnXqUP369UkgEFBwcLDEbYwfP57Mzc0pMzNTplg8PT2pTZs2MrXByqYx0682NjYwNDQE8O9ZReKek8MY+3fnmrm5OTp16lRw5ARPwUrn2bNnOHPmjNjri3x8fHD8+HHcv38f7u7uePnypYIj/J+bN28iJSWlxE0S4tDX18fs2bNx8eJFCIVCODk5Yfz48QXHn4SHh8PMzAwuLi7yClss/v7+yMrKQmRkpFT1ly1bhvPnz2P9+vXQ19cHADRu3Bjnz59HtWrV4O7ujj179sgzZKUiIgwYMADv37/HwYMH4eDggPDwcInayMvLw5YtWxAYGAg9PT2Z4gkICMCpU6fksg6SlULVWaWknj17Rq6ursVOA2RmZlJSUlLB58WLFzxSx754ubm5ZGtrSyNGjCh4VqtWLRo9erTqgtJg8+bNIwMDA0pOTpao3t27d6latWpkZ2dHd+/eVVB0hS1fvpx0dHQoPT1dLu1lZ2fTnDlzSE9Pj+rUqUOnT58mFxcX6t69u1zal1TDhg2pb9++Etd79OgRGRoa0o8//ljs+/T0dOrVqxcBoNmzZ2vkUoV58+YRANq/fz8REU2dOpXMzc0pNzdX7DaOHDlCAOj8+fMyx/Pp0yfS1tamZcuWydwWK5lGJXVJSUnk7u5O9+/fL/b9tGnTCECRDyd17EsWHh5OAApNJwUGBpKrq6sKo9JcjRs3poCAAKnqvnjxgr7++muytLSk2NhYOUdWVK9evahFixZyb/fu3bvUsmXLgq+x69evl3sf4pg8eTJZWFhQTk6O2HVEIhG1a9eOqlWrVurUrUgkounTpxMAmjdvnjzCVZpjx46RUCikSZMmFTyLjo4mABQdHS12OwMHDqQ6derILalt3749tWrVSi5tseJpTFKXm5tLHTt2pKNHj5ZYhkfqGCsqICCAvv7660JfmBcvXkz6+vpibThi/3Pz5s1Cox/S+PTpE7m6upKhoSFFRkbKMbqiqlatSr/88otC2s7Ly6Nly5aRg4NDmRtGFOXChQsEgE6cOCF2nXXr1hEAioiIEKv80KFDydbWVqLEUZVevHhBVlZW5OnpWWhULjc3l8zNzWnq1KlitZOVlUUVKlSgKVOmyC224OBgAlCuNqKoG41J6rZt20YWFhbk4eFBHh4etGPHjjLr8EYJ9qWLj48nPT09+uOPPwo9P3fuHAGgK1euqCgyzTRp0iQyNzenrKwsmdpJS0sjLy8vqly5skTTYZJ49uwZAaDQ0FCFtK8O8vLyyNbWlsaMGSNW+VevXpGZmRn1799f7D6uXr2qMb+PWVlZ5OLiQnZ2dvT+/fsi7wMCAsjR0VGstg4dOkQA6MaNG3KLLzExkXR1denPP/+UW5usMI1J6qTBSR370q1cuZK0tLSKHGWQnp5OWlpafMSABEQiEdWoUYO+//57ubSXP8qkqNG6rVu3EoBiv7mXJz/88APVrFmzzClCkUhE/v7+VKlSJYl3ITs6Okp9LIwyjRw5knR1dUtcAxccHEwCgUCsvxN9+/alr776Su7rCTt16kTOzs5ybZP9j8bsfmWMSW7Dhg1o3749bGxsCj03MDBA48aNeQesBGJjY/H06VOpTtUvjoODA+rXr49NmzbJpb3/Onv2LOrVqyf1gbGaonPnznjy5Alu3bpVarndu3dj//79WLFiBSwsLCTqY9iwYQgPD8fz589lCVWhdu7ciRUrVuCvv/6Ck5NTsWV8fHxARGXuGM7MzERoaCgCAgIgEAjkGmdAQADOnz9f5oHWTDqc1DFWTt2+fRsXL17EwIEDi33v6OjISZ0Etm3bhipVqsDNzU0u7QkEAvTt2xchISFITU2VS5ufO3funExHmWiK1q1bw8TEBKGhoSWWiY6Oxg8//IBu3bqhW7duEvcREBAAY2NjrF+/XoZIFSclJQVjxoxB9+7dMWzYsBLL2djYoGnTpoiIiCi1vcjISKSkpKBnz57yDhVdu3ZFtWrVEBQUJPe2GSd1jJVbwcHBsLS0RMeOHYt97+TkhDt37igkoZCHv/76C8+ePVN1GACA3Nxc7Ny5E7169YKWlpbc2v3uu++Qnp5ecCevvCQmJuLmzZtl3vdaHujp6aF9+/bYv39/se/37t2Ltm3bolGjRvj777+l6sPY2Bjfffcd1q1bh9zcXFnCVYi5c+ciKSkJixYtKnNkrX379oiMjCz1ntudO3eiUaNG+Oqrr+QdKvT19TFjxgzs2bMHFy9elHv7XzxVz/8qEq+pY1+qnJwcqlSpEv30008llrlx4wYBoFOnTsnU1+XLl2n69OmUmJgoUzufu3TpEgGguXPnyq1NWeQfC3P58mW5t+3h4UHt2rWTa5v58T548ECu7aqr/PWDn++qFIlE9Oeff5JAIKBevXrJfCPClStXZN75rAiPHj0iXV1dmjZtmljlz5w5U+rZc2lpaWRkZESzZs2SY5SF5ebmUoMGDaht27YaeQagOuOkjrFyKH/nWmm7W3Nzc8nIyIgWLlwocfsZGRm0adMmcnZ2LjirTNxvKuL4/vvvCQANGjRIbm3Kol+/flS/fn2FfANav349CQQCuR7zMHnyZLKysvpivmEmJCSQtrY2rVixgoj+/bs9atQoAkATJkygvLw8ufTj4OAg9n2zu3fvpuPHj8ul39J07dqVqlatKvbdwjk5OWRmZkYzZswo9v3u3buVco1gaGgoAaAjR44otJ8vDSd1jJVD3bp1o2+++abMcu7u7tSjRw+x233y5AmNHz+eKlasSADIy8uLQkJCaPjw4VSxYkW5XFqflJRERkZGJBQKyc3NTeb25MHOzk5h570lJSWRvr4+zZ8/X25tenh4UJcuXeTWniZo164deXt7U1paGvn7+yvkAvm1a9eSUCikZ8+elVru9OnTpKWlRS1btpRr//91/PhxAkDbtm2TqF737t3JxcWl2Hc9evSgZs2aySO8UolEInJ1daVmzZrJLelmnNQxVu58/PiRdHR0aPHixWWW/eWXX6h69epllktOTqbOnTuTQCAgMzMzGjNmDN27d6/g/aNHj0goFNKqVatkiPxfq1evJqFQSIMGDSIbGxuZ25PV8+fPCQCFhIQorI/iDoiWVlZWFhkYGNCiRYvkEJnmWLp0Keno6JCjoyMZGRnR4cOH5d5HSkoKGRsbU1BQUIll3r17R7a2tmRkZEQ6Ojpy+UGnODk5OdS4cWNydXWV+O/NunXrSCAQ0MePHws9T0lJIQMDA6XdoHH69GkCINa5s0w8nNQxVs5s2bKFAIh1yv+uXbsIAL19+7bUcvPmzSNdXV1au3YtpaamFlumR48eVLt2bZkO0xWJRNS0aVP69ttvafPmzQSg1KuclGHnzp1i/R7J4vDhw3I7DDo2NpYAKOUaMnWSf9iyjY2NQtY+5hs2bBhVqVKl2BsmcnNzydPTk6ytrSkyMpIA0LFjxxQSx6pVq4pc/yeuly9fEgDavn17oefbt28nAPT48WN5hVmmDh06UO3atfl2GznhpI6xcmbSpElUtWpVsco+efKEANDBgwdLLJORkUGVKlWiIUOGlNpW/mG6+/btkyje4to4dOhQQXJy9epVqduTh9GjR1OtWrUU2kdOTg5ZW1vT2LFjZW5r0aJFZGBgIPOtF5ooNDSUnj9/rtA+Ll++TADowIEDRd5Nnz6dBAIBHT16lPLy8sjCwqLUUT1pxcfHk6WlJQ0YMEDqNho3bkz9+vUr9Kxz587k5OQka3gSuX79OgkEArmM8jM+fJixcufu3buoX7++WGWrV68OKyurUs+r27RpE96/f49ff/211LYcHR3h7u6OP/74Q6J4P7dmzRrY2dnB19cXderUAQA8fPhQ6vbkITo6Gq6urgrtQ1tbG4GBgdi2bZvMR2acPXsWTk5O0NXVlVN0msPf3x92dnYK7aNZs2Zo3rw51q5dW+j50aNHMWPGDMyYMQPt2rWDUCiEu7s7Tp06JfcYZs6ciaysLMyZM0fqNnx9fREREVFwtElycjLCw8MREBAgrzDF0rhxY3z33XeYMWMG0tLSlNp3ecRJHWPlzN27d8U+X0ogEMDJyanE86Ly8vKwcOFCdO3aFXXr1i2zvV9++QXR0dGIjo6WKGbg328q27dvx5AhQ6ClpQULCwuYm5urNKlLT0/H1atXFZ7UAUDfvn3x7t07REVFSd0GEeHs2bNfxKHDqjR06FCEhYXhxYsXAIBXr16hd+/e8PLywuTJkwvKeXh4IDY2FpmZmXLr+969e1i+fDkmT56MypUrS91O+/bt8f79e1y7dg0AcODAAWRlZaFHjx5yilR8M2fOxKdPn7B06VKl913eaExSl5KSAmdnZxgbG5d5HQxjX6qcnBzExcVJdGiok5MTLly4ACIq8m7fvn2Ii4vD+PHjxWrLz88P9evXl2q0buvWrcjKysLgwYMLntWpUwdxcXEStyUvly5dQm5urlKSumbNmqFBgwbYvHmz1G3ExcXhw4cPnNQpWGBgIAwNDbF+/Xrk5uaiV69e0NXVxZYtWyAU/u/bqoeHB7KysuR6c8vPP/8MOzs7jBkzRqZ2XF1dYWJigvDwcAD/Hjjs6uqq8JHO4tSsWRM//PAD5s+fj/j4eKX3X55oTFJnYGCAQ4cOoXv37qoOhTG19ejRI+Tm5kqc1MXHx+Px48eFnhMR5s+fjzZt2sDR0VGstoRCIcaNG4fQ0FCJRtiICGvWrEHHjh1RpUqVgud16tRR6UhddHQ0TExM8PXXXyu8r/xrw0JDQ5GcnCxVGydOnIBAIICLi4uco2OfMzExQe/evbFu3TpMmDABMTEx2LlzZ5F7dhs3bgwzMzO5TcGGh4cjPDwcixYtgr6+vkxt6erqol27dggPD0diYiIiIyOVPvX6uSlTpiAvLw9z585VWQzlgcYkddra2uX+YmrGZJV/SbYkSV1+wvbf0YTjx4/j8uXLmDBhgkQx9OnTB1ZWVvjzzz/FrnPx4kVcv34dQ4cOLfS8du3aKk/qnJ2d5Xo1WGm+++47ZGZmYu/evRLXFYlEWLJkCTp06IAKFSrIPzhWyNChQ/Hq1SssWrQI8+bNK/ZKNi0tLbi5ucktqVu6dClcXFzQuXNnubTXvn17xMTEIDg4GLm5uSodNLG2tsa4ceOwbNkynDx5UmVxaDqNSerEkZWVheTk5EIfxr4kd+/eRYUKFWBtbS12HUtLS9SqVatIUjdv3jw0bdoUXl5eEsWgr6+PUaNGITg4GB8+fBCrzpo1a1CtWjX4+PgUel6nTh28e/cOKSkpEsUgD0SEmJgYpUy95rOzs0ObNm2kmoINCQnB3bt3C63pYorTvHlztG7dGj169MC4ceNKLOfh4YHo6GhkZ2fL1F9SUhKOHTuGwMDAMu93FZevry9EIhGCgoLg5uYGW1tbubQrrV9++QUtWrRA27ZtMXXqVLW8Z1fdlaukbu7cuTAzMyv4qGJtgLpITU3FoUOHSr20mZU/+ZskJP2i7+joWCipu3z5Mo4ePYrx48dL9Q1k+PDhEAqFWLlyZZllk5KSsGPHDnz//fdFRsTyd8CqYl1dXFwcPn78qNSkDvh3w8TJkyfx/PlzsesQEWbNmoV27dqhRYsWCoyOfe7o0aPYtWtXqf9GPDw8kJGRgUuXLsnUV3h4OHJycuDv7y9TO5+rVq0aGjRogJSUFJVOveYzNjbG0aNH8fvvv2Pu3Llwd3fH06dPVR2WRilXSd3EiRORlJRU8MnfmSSpFy9e4Pjx48UuHFd3IpEImzdvRt26dfHtt9/in3/+UXVITInu3bsn0dRrPicnJ1y9ehU5OTkAgAULFsDe3h7dunWTKg5LS0sMGjQIy5cvR3p6eqllt2zZgqysLAwaNKjIO1UeaxIdHQ2BQABnZ2el9tutWzfo6+tj69atYtc5fPgwrl27hqlTpyowMvZf4kzLN23aFCYmJjJPwYaGhqJZs2aoXr26TO38V/v27SEUCqX+ty5vWlpamDx5Ms6cOYPXr1+jSZMm2Llzp6rD0hwqPCNPYu3bt6fKlSuTi4sLbdiwoczy0h4+7O3tTQDI2dmZoqKiNOZS7AsXLpCLiwsBoB49epC/vz9ZWVlRQkKCwvsWiUS0efNmio+PV3hfrHgikYiMjY1p4cKFEtc9e/ZswUG/Dx8+JKFQSCtXrpQpnri4uDKvDhOJRNSoUSPq3LlziWUsLCxo1qxZMsUijaFDh1LDhg2V3i8RUe/evalGjRpi3aYhEonI2dmZWrVqpTFfq740vr6+5OPjI3X9zMxMMjExoZkzZ8oxqn+9e/eOwsLC5N6uPCQkJFBAQAABoEGDBpV4mw37H41K6iQlTVJ37949AkBjxowhJycnAkAeHh509uxZBUYqmzdv3tCAAQMIAH3zzTd08uRJIiJ69eoVGRkZyeWU+rKsXLmSANBvv/2m8L5Y8fLvKD106JDEddPS0khLS4vWrFlDw4YNI2tra0pPT5c5pu7du5d6dVhMTAwBoPDw8BLbcHZ2lunkfGk1bNiQhg4dqvR+iYju379PRkZGYv26jxw5QgAoIiJCCZExacydO5eMjY2LvVpMHOHh4QSAbty4IefI1J9IJKJ//vmHDA0NqVatWjRs2DCaMWMGrVu3jsLCwuj69ev04cMH/oHm/3FS9x8//fQTWVlZUUZGBolEIjpw4AA1btyYAFD79u3p0qVLCoxYMnl5ebRw4UIyMTEhS0tLWrVqVZFvnnPmzCFtbW26c+eOwuK4e/cuGRgYUIUKFahSpUp8h5+K5N81GRcXJ1X9Jk2akJ+fH+np6dHs2bPlEtP58+cJAJmamlLz5s0pMDCQgoKCaMuWLXT+/Hnq3bs3Va9enfLy8kpso0+fPtSyZUu5xCOuhIQEEggEFBwcrNR+P7dhwwYCQFu3bi21nLu7Ozk4OPA3NTUWHR1NAOj8+fNS1R82bBjZ29t/0X/G9+7dox49elCzZs2oUqVKJBAICEDBx8zM7Iu777g4nNR9JiUlhUxNTWnixImFnufl5dHOnTupXr16BICGDRumiHAltmfPHgJAo0aNok+fPhVbJiMjg+zt7cnHx0chXxCysrKoWbNmVK9evYIvXMXdicgUb8mSJaSnp1fiqFhZhg4dSgDIxMRErlP2p06donnz5tHgwYPJzc2NKlWqVOiLcVlTq9OnTydra2u5xSOOiIgIAkAPHjxQar+fE4lE1Lt3bzIxMSkxUT916hQBoP379ys5OiaJ7OxsMjQ0lGppRF5eHtnY2NDPP/+sgMg0V3Z2Nj1//pxiY2Np79699NVXX5Gfn5+qw1I5iZO6hIQE2rFjBy1atIj+/PNP2r59u9quo5I0qVu1ahUJhUJ69uxZse9zcnJowYIFBIBOnz4tz1ClMmjQIGrQoEGZ5UJCQhSWbE2aNIm0tbXp4sWLRETUrFkz8vf3l3s/rGw//PADNW7cWOr6f//9NwGgX375RY5RFS8pKYkuXbpEISEhZU7zbt26Vaq1sbIICgqiihUrqnxkJCkpiezt7cnR0ZGysrKKvPfy8qLGjRuXOtLJ1IOnpyd17NhR4nr5PyyfOXNGAVGVH8HBwQRAobNSmkCi3a/r16+Hk5MTYmNjIRKJkJeXh9jYWLi4uGD9+vWS7tFQK0SEFStWwN/fH9WqVSu2jLa2NsaNG4cmTZpg6tSpKt0dS0SIjIyEr69vmWX9/f3h6emJn3/+GVlZWXKL4cyZM5g7dy5mzJgBBwcHAMCgQYNw6NAhvH37Vm79MPFIcudrcXx8fODm5oaff/5ZjlEVz9TUFM2bN0fnzp1hYGBQallVHGsSHR0NV1dXuZ0HJi1TU1Ns374dV69eLbKz9fz584iKisLkyZMLXU3F1JO7uzvOnDmDvLw8ieqFhobCysqKj6opQ2BgICpXrozFixerOhTVkiQDrFu3brG7sZKTk6lOnTrySTPlSJKRupMnTxIAOnr0aJllDxw4IHZZRbl58yYBoMjISLHK3759m7S0tGj+/Ply6T8xMZGqV69OLVu2LDTdFx8fT3p6elJNMzDZWFtb0/Tp01UdhtzFx8cTANqxY4dS+svNzSVjY2OaN2+eUvoTR/4Mwef/3r/99luqV6+e1NPtTLnyp8qvXLkidh2RSER16tShwYMHKzCy8mPOnDmkp6dH7969U3UoKiPRj3cCgQCpqalFnqempqr8J1pZrVixAvXr10fbtm3LLNuxY0c4OTmpdLQuMjISBgYGcHd3F6t8gwYNMHLkSPz+++948+aNzP3/9NNPiI+Px+bNmwud1WRubo6uXbti/fr1GnnOn6aKj4/H+/fvUb9+fVWHInfm5uawtLRU2ll1t27dQmpqqtIPHS7NuHHj4O3tjX79+uHdu3e4du0aDh48iMmTJyvtCjMmGycnJ+jp6Ul0Xt29e/fw8OFDuV0LVt4NGzYMWlpaYh16Xm5JkgEePHiQ6tatS127dqVRo0bRqFGjqEuXLlS3bl06ePCgYtJOGYg7Uvfy5UvS0tKiZcuWid12/kJqVZ3v4+npSe3bt5eoTnx8PFlaWlL//v1l6nvnzp0EgDZu3Fjs+6ioKAJA0dHRMvXDxJd/ztz169dVHYpCuLi4UL9+/ZTS18qVK0lbW1suR7rI05s3b8ja2pp8fHyoa9euVLNmTamPyGCq4eHhUeqZjP81e/ZsMjIyooyMDAVGVb78+OOPVLFiRbX796ssEm+UyM3NpejoaNqzZw/t3r2boqOj1Xb4X9ykLigoiIyNjSVaiC0Siahly5YqOUogNTWVdHV1acmSJRLXXb16NQGQeuv3ixcvyNzcnHr06FHirzsvL4+qV6/OUwZKtG7dOhIKheX2i3/fvn3J1dVV5nbOnj1b5pEvffr0IScnJ5n7UoT8HyYB0Nq1a1UdDpNQUFAQWVhYiL2xxdHRkbp3767gqMqXuLg4EggEtGbNGlWHohJf/JEmWVlZVKlSJRo5cqTE7R8/fpwAUGhoqCxhSuzw4cMEgO7duydx3dzcXGrSpAk5OTlJvGNOJBJRu3btyNbWtsQjVPJNnz6djI2NxToRn8lu3LhxVKtWLVWHoTAzZswgKysrmdpIT08nExMTqlq1aqlrbuzt7Wn06NEy9aVIU6dOpUaNGlFmZqaqQ2ESOnbsmNiHCL948YIA0JYtW5QQWfnStWtXqlev3he5K1zqLVN79+6Vbd5XTezduxfv3r3DiBEjJK7bpk0btGnTBkFBQRCJRKWWXb9+Pby8vPD777/j2rVrMq03i4iIQPXq1VG3bl2J62ppaWHx4sW4cOECjh49KlHdixcv4tixY1i5ciUsLCxKLTtgwACkpaVhz549EsfIJCfrzld1V6dOHXz48AFJSUlSt3Ho0CGkpKQgPT0dPXv2LLjn9nNv377F48eP1Wo93X/NnDkT169fh56enqpDYRJycXGBjo6OWOvqDhw4AG1tbXTo0EEJkZUv48aNw/379xEWFqbqUJRO6qSud+/eZW4dliVxUZYVK1agbdu2aNCggVT1Z86ciRs3bpSY5Obm5mL06NEYMmQI0tPTsXDhQjRt2hTVqlXD8OHDcfjwYWRkZEjUZ/5RJtJuTvHw8IC9vb3Eifm+fftgaWkJPz+/MstWr14dnp6eGn/Ujaa4e/duudwkkU8ex5ps27YNDg4OCA0Nxblz5/Drr78WKRMTEwMAap3UAdD4jWlfKkNDQzg5OYmV1IWGhqJ169YwNzdXQmTli6urK1xcXPDHH3+oOhTlk3aILyIigkxNTWnUqFFF1lbl5ubShg0bqF69ejIOJBY2btw4atWqFfXu3bvYgzj/q6zp16tXrxIA2rt3r0xxeXt701dffVVkbWFCQgJ5e3uTlpYWrVixgoj+ne49evQojR49muzt7QkAGRgYUL9+/cRam/j48WMCQPv27ZMp5l9//ZWsra3FXg8pEomodu3aNGjQILH72L59OwGg+/fvSxsmE0N6ejoJBAJav369qkNRmISEBAJA27dvl6p+fHw86erq0uLFi4mIaPny5QSANm3aVKjcL7/8QnZ2drKGy1iJJk2aRNbW1qWuxU5ISCBtbe2C7xtMcrt37yYAanW1pzLItKbu2rVrVLVqVercuTOlp6dTVlYWrVy5kmrUqEHm5uYUFBQkrzjpypUr9N133xER0axZs8q8D5Go7KRuyJAhVLVqVZl3kOXfb/n52of79+9TvXr1yNzcvMTz7EQiEd25c4dmzpwp9jlcq1atIm1tbUpMTJQp5tjYWAJAJ0+eFKt8/rl4hw8fFruPjIwMqlChAk2YMEHaMJkYrl279kXsNq5YsSLNnDlTqrpr164loVBIb968IaJ//+0NGDCA9PX16fLlywXlWrZsSQEBAXKJl7Hi5N/RXNrNB1u2bCEA9OLFCyVGVr7k5uZSzZo1KTAwUNWhKJXMGyVevnxJjRs3psaNG5OtrS1ZWVnR7NmzKTk5WR7xFVixYkXBERqXLl0Sa2NDaUldfHw8GRgYyO3i8o4dO1KdOnUoJyeHoqKiqEKFClSvXj2x74709vamRo0albmw09/fn9zc3GSONy8vj6pWrUqjRo0Sq/yMGTPIxMRE4sXZI0eOpMqVK/PRCwqUPyIqz/ta1VGLFi2ob9++UtX18PAgLy+vQs8yMjLIwcGBqlWrRu/fv6fMzEzS09Ojv/76Sx7hMlaslJQU0tLSolWrVpVYpnv37uTo6KjEqMqnv/76i7S0tEq8+rM8kulumaSkJPzzzz949eoVHj58iMTERBw7dgyTJk2CiYmJLE0XkZiYCFNTUwCAmZkZ4uPji5TJyspCcnJyoU9JNmzYgLy8PAwZMkQu8c2cORMPHz5EQEAAfH194ezsjNjY2IK1QGWZMmUKbt68iUOHDpVYJjs7G8ePHxfrarCyCIVCdO3aFfv27Stzkwfw73q6jh07Srw4e/DgwXjz5g0iIiKkDZWV4e7du7CxsUGFChVUHYpC1alTR6o1dS9evMCpU6fw3XffFXqur6+Pffv2ISMjAwEBAbh48SKysrLUfj0d02zGxsZwcHDAnDlzMGHCBBw/frzQ9Y2ZmZkIDw/nA4flYNCgQTAxMcHSpUtVHYrSSJ3UTZw4EdWrV0dwcDDmzJmDDx8+oEePHvD09MTFixflGSOAf0+Vz0/SEhMTi919OXfuXJiZmRV87OzsSmwvKysLgwcPhrW1tVzia9q0aUGSNGrUKBw6dEiib7Jubm5wc3PD7NmzS9xgEhMTg5SUFPj4+Mgl5m7duuHVq1e4cOFCqeUePXqE69evo2vXrhL30bRpUzRp0gT//POPtGGyMpT3TRL56tSpI9WtEtu3b4e+vj66dOlS5J2dnR127dqF06dPo2/fvjAwMMA333wjj3AZK9Hq1avh4eGBDRs2oF27drCwsICfnx/++usvrF+/HmlpaZzUyYGxsTGGDRuGv//+u9RBnnJF2iG++vXr08aNG4sstJ8yZQoZGRnJ/ey2/66p27ZtW5EymZmZlJSUVPDJP+dHkkOFZfHhwweZ7oPNP1g0Kiqq2PcTJ04kKysruZ29k5ubS9bW1vTLL7+UWm7hwoWkr68v9ZlzS5cuJW1tbXr79q1U9VnpGjZsSMOHD1d1GAon7TTzN998Qz169Ci1zJIlSwgAeXh4SB8gYxLKy8uja9eu0fz586ldu3akq6tLAKhu3bpKP9S+vHr58iXp6OhIvR5X00id1JX2F+7vv/8mPT09ia7dEoe8d7+qG5FIRM2bNy/xG0vTpk2pT58+cu1z2LBhVLNmzVL/PFu0aEH+/v5S9/Hp0yfS09OjiRMnSt1GeZWZmUmvX7+Wun5ubi7p6urS0qVL5RiVerp06RIBoAsXLohd59atW2IdEC4SiWjSpEm0c+dOWcNkTGppaWkUHh4u1uHETHzjxo0jIyMjevXqlapDUTiF3SgRFhZGJiYmimpeLJqW1BERhYSEEAA6e/Zsoedv374lALR582a59pe/E+vKlSvFvn/16lWp97yKa9q0aaSjo0O3b9+WqZ3yZtq0aWRiYkLPnz+Xqv7Dhw9LHd0tTxITEwlAsaP0JZk4cSKZm5uL9UMgY6x8SkhIIEtLS4mO5NJUMm2UKE379u1x8uRJRTVfbnXq1Alff/01Zs+eXej5kSNHAADe3t5y7a9NmzYwNzcv8SDi0NBQaGtro2PHjjL1M2HCBNSoUQPDhg0Ta2PGl2L//v1ISUnB8OHDpTqs++7duwBQrm+TyGdmZgYrKyux19WJRCJs27YNPXr0gK6uroKjY4ypqwoVKmD69OnYsGEDrl27pupwFEphSR0ANGvWTJHNl0tCoRCTJk1CeHg4Ll++XPA8MjISzZo1k9vGjnw6Ojro1KlTiUndvn370KZNmzKvBSuLvr4+Vq9ejbNnz2LDhg0ytVVevHnzBteuXUNAQAAOHz6MnTt3StzG3bt3YWJiAltbWwVEqH4k2SwRHR2NZ8+eFdn1yhj78gwbNgz16tXDuHHjNOK2K2kpNKlj0unZsydq166NOXPmAPh3xCH/ajBF6NatG+7du1cw6pPv06dPOHnyJLp16yaXftq2bYt+/frh119/xfv37+XSpiaLiIiAQCDA8uXL0b17d/z000/49OmTRG3cu3cP9evX/2KujZIkqdu6dSvs7OzQqlUrBUfFGFN3Ojo6+OOPP3D8+HEcPHhQ1eEoDCd1akhbWxsTJkzAvn37cPv2bVy9ehUfP36U21Em/+Xl5QVjY+Mio3UHDx6ESCSCv7+/3Pr6448/IBAI8Msvv8itTU0VFhYGJycnVKxYEcuWLUNOTg5+/vlnidq4e/fuFzH1mk/cs+qys7Oxa9cuBAYGQijkL3OMMaBDhw7w9PTEL7/8guzsbFWHoxD81U5N9e3bF3Z2dpg7dy4iIiJgYmKCFi1aKKQvfX19dOzYsUhSt3fvXrRs2RI2NjZy68vKygoLFy7E5s2bcfz4cbm1q2lycnIQFRWF9u3bAwBsbGywaNEibNq0qWD9ZFmI6ItL6mrXro1Pnz4hISGh1HJHjhxBfHw8T70yxgoIBAL8+eefePToEVavXq3qcBSCkzo1pauri99++w3bt2/Hxo0b0a5dO+jo6Cisv27duuHatWt4/PgxACAlJQVHjhyR6sDhsgwcOBDu7u744YcfkJmZKff2NUFMTAySkpLQoUOHgmcDBw5E27ZtMWzYMKSmppbZxtu3b5GUlPRFJXX5N7SUNQW7detWNGzYEI0bN1ZGWIwxDdGoUSMMHjwY06dPL/ZmKlUhIowYMaLIJklJcVKnxgYPHlyw209R6+nytW/fHgYGBgWjdWFhYcjOzi72FH5ZCQQCrF69Gk+fPsXcuXPl3r4mCA8Ph5WVFZo3b17wTCAQYO3atXj79i2CgoLKbCN/DeSXcJtEvtq1awMoPalLSUnB/v37eZSOMVasmTNnIicnB7///ruqQynwzz//YNWqVQgKCsL169elboeTOjVmYGCAcePGQSAQKGw9XT4jIyP4+voWJHX79u1Ds2bNUKNGDYX099VXX2H8+PGYN28e7t27p5A+1Fl4eDh8fX2LrPeqVasWZs6cib/++qvM69vu3bsHHR0d1KpVS5GhqhVTU1NYW1uXuq4uNDQUGRkZCAwMVGJkjDFNYWNjg0mTJmH58uV48OCBqsPBo0ePMHr0aPTr1w/16tXDqFGjpN6hy0mdmhs7diwuXbqksOTqc926dcP58+cRFxeHw4cPK2Tq9XOTJk1CtWrV8MMPP0j1F3jTpk1lJj7q6NWrV7h+/XrBerr/Gjt2LJo0aYIhQ4aUupj37t27qFOnDrS1tRUVqloqbQdsdnY2/v77b7i5uaF69epKjowxpinGjBkDW1tbjB8/XqVx5Obmom/fvqhUqRKWL1+Ov/76C2fOnMGOHTuka1CVJx8rmibeKKFKiYmJpKOjQ15eXgSA7ty5o/A+o6KipLop4/Hjx6SlpUUdO3ZUUGSKs27dOhIKhfTx48cSy1y5coW0tLRoxowZJZZp164ddevWTREhqrUBAwaQk5NTkecPHz4kBwcH0tHRoQMHDqggMsaYJtm2bRsBoDNnzqgsht9//52EQiGdO3eu4FmXLl3I1tZWqvvWOaljhXTo0IEA0FdffaW0Prt27Uo1a9aU6CqnoUOHEgAyMjLSuCugunbtSi1atCiz3MSJEwkAtWrVikJCQig3N7fQe1tbW5oyZYqiwlRbs2fPJgsLi0LPNm/eTMbGxlS7dm26dOmSiiJjjGkSkUhE9vb2NHz4cJX0f/HiRdLW1qbJkycXev7kyRPS19enCRMmSNymRky/pqSkwNnZGcbGxrh165aqwynX8g8aVvTU6+dmzJiBp0+fin3TxIsXL7Bhwwb06tULaWlpOHfunIIjlJ+cnBwcPXq0xKnXz82aNQv79u0DEaFLly6oX78+Vq5cifT0dCQlJeH169df1CaJfLVr10Z8fDzi4+ORkpKC/v37o2/fvujSpQuuXLlSaPMJY4yVRCAQwM/PD4cPH1b6LRPp6eno06cPvvnmG0ybNq3Quxo1amD8+PFYtGiR2IetF5BPvqlYOTk59P79e+rfvz/dvHlT7Ho8Uie5T58+UatWrej+/ftK7bd3795UtWpVysjIKLPsjz/+SBYWFpSUlESVKlWi8ePHKyFC+Th58iQBkHg0KTY2lnr27ElCoZAsLCyoT58+BIAuX76soEjV15UrVwgArVy5kurUqUPGxsa0adMmVYfFGNNAERERBECi3EIeRowYQQYGBnT37t1i36enp1P16tWpQ4cOErWrEUldvrKSuszMTEpKSir4vHjxgpM6DXH//n0SCoX0119/lVru9evXpKenRzNnziQior59+1KTJk2UEaJc/Pbbb2RtbU15eXlS1X/y5AmNGTOGjI2NSVdXl1JTU+UcofpLTk4mAASAmjdvTg8ePFB1SIwxDZWRkUGGhoY0b948pfUZFhZGAGj58uWlltu7dy8BoIMHD4rdtkZMv4pr7ty5MDMzK/jY2dmpOiQmprp166J///6YM2cO0tPTSyy3aNEi6OnpYdSoUQAAHx8fXLt2De/evVNWqDIJDw9H+/btpb66qkaNGli8eDFevHiBy5cvw8jISM4Rqj8TExP4+/vjl19+QXR0dMGBxIwxJil9fX14enri8OHDSunvw4cPGDRoEHx9fTFixIhSy3bp0gWenp4YM2aM2Af1q1VS9/btW7Rq1arIR9xTnydOnIikpKSCz4sXLxQcMZOnoKAgxMfHY8WKFcW+//DhA1atWoWffvoJFSpUAPDvvbUAxL5aS5VevHiBmzdvirWeriwVKlRAw4YN5RCVZgoNDcXChQuhq6ur6lAYYxrOz88P0dHRSrlhYsSIEcjJycE///wDgUBQalmBQIClS5fi2bNn+PPPP8VqX62SOhsbG5w9e7bIx8LCQqz6enp6MDU1LfRhmqNGjRoYPHgw5s+fj+Tk5CLvFy9eDKFQiDFjxhQ8s7a2RrNmzRAREaHESKUTEREBoVAIb29vVYfCGGPs//n5+SEvLw+RkZEK7SciIgJ79uzBsmXLULlyZbHqfPXVV/jpp58we/ZssQaq1CqpK02HDh1w5MgRfP/99wgODlZ1OExBJk+ejNTUVPz111+FnsfHx2P58uUYMWIELC0tC73z8fHBkSNHIBKJFBpbYmIi3rx5I3X98PBwtGjRAubm5nKMijHGmCyqVKmCJk2aKHQKNisrC6NGjUKbNm3Qq1cviepOmzYNJiYm+PXXX8ssqzFJXVhYGF6/fo2YmBgMGDBA1eEwBalatSqGDx+ORYsWISEhoeD50qVLkZubi3HjxhWp4+Pjg48fP+Lq1asKi4uI0LFjR9StWxf79++XuH52djaioqLkMvXKGGNMvvz8/BAREYG8vDyFtP/HH3/g6dOnWL58eZnTrv9lamqKtWvXYsiQIWWW1Zikjn05JkyYgJycHCxatAgAkJycjL/++gtDhw6FtbV1kfItWrSAsbGxQofOQ0JCcO7cOTRq1AidO3fGrFmzJDrX6Ny5c0hNTUWHDh0UFiNjjDHp+Pn54dOnTzh//rzc23727Blmz56NMWPGoEGDBlK10alTJ3h6epZZjpM6pnYqVaqEUaNGYcmSJfjw4QOWL1+O9PT0EoeedXV10bZtW4UldTk5OZgwYQJ8fHxw9uxZTJ8+HVOnTkVAQADS0tLEaiMsLAw2NjZo0qSJQmJkjDEmPScnJ1SsWFEhU7A///wzzM3NERQUJPe2/4uTOqaWfv31VwiFQgQFBeHPP//E4MGDUaVKlRLL+/j4IDo6utgNFrJas2YN4uLisGDBAgiFQkybNg179+5FWFgYWrZsiWfPnpXZRv5RJpIOuzPGGFM8LS0t+Pr6yj2pi4yMxL59+/DHH3/AxMRErm0Xh5M6ppYsLS0xduxYrF69GklJSRg/fnyp5X18fJCbm4sTJ07INY6kpCTMmDEDAwYMQOPGjQued+3aFTExMUhOToaDgwNOnz5dYhvPnz/H7du3eT0dY4ypMT8/P1y/fh0vX76US3v5myNat24t8eYIaWkrpRfGpPDzzz9j5cqV6Nq1K6pXr15q2Vq1aqFWrVqIjIyEv7+/3GJYsGAB0tLS8Pvvvxd516hRI1y4cAE9e/ZEu3btMGzYMBgYGCAnJ6fgk5ubiydPnkBLS6vgTD3GGGPqx8fHB1paWggLC8PQoUNlbm/RokV48uQJQkJClDZLIyBJVntrmOTkZJiZmSEpKYnPrNNQHz9+hLm5ObS0tMosO3LkSERERODRo0dy6fvly5eoU6cOxo0bh1mzZpVYLn/NXUhICHR0dKCtrQ0dHZ1C/79Vq1aYM2eOXOJijDGmGO7u7jA3N5fqlIPPPX/+HPXr18eIESPwxx9/yCm6snFSx8qNAwcOwN/fHw8fPkTt2rVLLHfhwgUIBAI4OjqW2t7AgQNx+PBhxMXF8d8fxhj7AsyfPx8zZ87Ep0+foK+vL3U73bt3R3R0NO7fv6+UtXT5eE0dKzfatGkDbW3tUnfBXrx4Ea1bt4aLiwsmT56MnJycYstdv34dGzduxPTp0zmhY4yxL4Sfnx/S09Nx6tQpqds4cuQI9u7di0WLFik1oQN4pI6VM61bt4apqSkOHDhQ5N3z58/h7OyMGjVqoEOHDpg5cyaaNGmCrVu3om7duoXK+vj44OnTp7h16xZ0dHSUFT5jjDEVIiLUqFED/v7+WLp0qVRtNGnSBBUqVMCJEyeUfuIBj9SxcsXHxwcnTpxAdnZ2oefJycno2LEj9PX1sX//fkydOhXR0dFISkpC06ZNsXbt2oLDhI8cOYIjR45g/vz5nNAxxtgXRCAQwM/PD4cPH5bogPl89+/fx/Xr1zF27FiVHGHFSR0rV3x8fJCamoro6OiCZ7m5uQgICMCzZ89w+PDhglspHB0dcfXqVfTp0wfDhg1Dly5d8O7dO/z6669o1aqVXHfRMsYY0wx+fn54/Pgx7t+/L3HdkJAQGBgYqOy0A41I6i5fvgw3Nzd4eHigZ8+eJa6DYqxJkyawsrIqWFdHRBg9ejSioqKwZ8+eIle0GBkZYc2aNQgNDcXZs2dRq1Yt3LhxA3/88QcfFMwYY1+gNm3aQF9fX6qDiENCQuDr6wtDQ0MFRFY2jUjqqlSpgsjISJw6dQq1a9dGaGioqkNiakooFMLb27sgqVu6dClWrlyJVatWlfqTk7+/P27evAkvLy+MHDkSzs7OygqZMcaYGjE0NETbtm0lTupevXqFCxcuoEuXLgqKrGwacfiwjY1Nwf/PP/urOFlZWcjKyir4b0VcGcXUn4+PD7Zu3Yr169dj7Nix+OWXX/D999+XWa9y5coICQlRQoSMMcbUmZ+fH0aPHo2kpCSYmZmJVWf//v3Q1tZGx44dFRxdyTRipC7f8+fPcfTo0RJ/w+bOnQszM7OCj52dnZIjZOrA29sbADBkyBD4+/tj/vz5Ko6IMcaYJvHz80Nubm6pR2T9V0hICFq3bg1zc3MFRlY6tTrS5O3bt+jevXuR5wcOHIC2tja+/fZb/P3330WOn8hX3EidnZ0dH2nyBWrZsiWys7Nx8uRJGBkZqTocxhhjGsbZ2RmmpqaIiooqs2xCQgKsra3x119/YcSIEUqIrnhqldSVJC8vD507d8aYMWPQrl07sevxOXVfruTkZBgYGPCRJIwxxqSyfft29O7dG9evX0fjxo1LLbt582b069cPL1++RJUqVZQUYVEaMf26a9cuREdH4/fff0fr1q2xc+dOVYfE1JypqSkndIwxxqTWvXt3VK1aFUuWLCmzbEhICJydnVWa0AEaMlInLR6pY4wxxpi05s+fj6CgIDx//hyVKlUqtkx6ejoqVqyIadOmYfz48UqOsDCNGKljjDHGGFO2oUOHQltbG6tWrSqxzJEjR5CRkaHSo0zycVLHGGOMMVYMc3NzDBgwACtXrkRmZmaxZUJCQtCgQYMSN3EqEyd1jDHGGGMlGD16ND58+IBt27YVeZeTk4ODBw+ic+fOyg+sGJzUMcYYY4yVoG7duvj222+xZMkS/HcbwunTp5GQkKAWU68AJ3WMMcYYY6UaO3Ysbt68iWPHjhV6HhISAjs7OzRv3lxFkRXGSR1jjDHGWClat26Nb775BosXLy54JhKJEBoais6dO0MgEKgwuv/hpI4xxhhjrBQCgQBjx45FWFgY7t27BwC4dOkSXr16pTZTrwAndYwxxhhjZerVqxcqVapUcBhxSEgILC0t4ebmptrAPsNJHWOMMcZYGfT09DBy5Ehs2rQJnz59QkhICL799ltoa2urOrQCnNQxxhhjjInhhx9+gEgkwtixY3H//n21mnoFOKljjDHGGBOLlZUV+vbti82bN8PIyAheXl6qDqkQjUjqbt26hZYtW8LDwwN+fn5ITU1VdUiMMcYY+wKNGTMGAODr6wsDAwPVBvMfAvrvSXpqKCcnBzo6OgCAGTNmwN7eHn379i2zXnJyMszMzJCUlARTU1NFh8kYY4yxL8DixYvh7u6uNufT5VOf1X2lyE/oACA9PR3169cvtlxWVhaysrIK/js5OVnhsTHGGGPsyzJ27FhVh1AsjZh+BYCoqCg0bdoUJ06cQK1atYotM3fuXJiZmRV87OzslBwlY4wxxphqqNX069u3b9G9e/cizw8cOAALCwsAwIIFCyASiTBhwoQi5YobqbOzs+PpV8YYY4yVe2o1/WpjY4OzZ88Wef55omZmZobs7Oxi6+vp6UFPT09h8THGGGOMqSu1SupKEhUVhYULF0IoFMLKygrBwcGqDokxxhhjTK2o1fSrvPHuV8YYY4x9Kcp1UkdESElJgYmJCQQCgarDYYwxxhhTmHKd1DHGGGOMfSk05kgTxhhjjDFWMk7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKAU7qGGOMMcbKgXKd1BERkpOTQUSqDoUxxhhjTKHKdVKXkpICMzMzpKSkqDoUxhhjjDGFKtdJHWOMMcbYl4KTOsYYY4yxcoCTOsYYY4yxcoCTOsYYY4yxcoCTOsYYY6wEe/bswdWrV1UdBmNiEVA5Pu8jOTkZZmZmSEpKgqmpqarDYYwxpkGysrJQsWJFVKhQATdv3kSFChVUHRJjpeKROsYYY6wYZ8+eRWpqKt6/f4/Ro0erOhzGysRJHWOMMVaMw4cPo0qVKli9ejU2bdqE0NBQVYfEWKk4qWOMMcaKERYWhg4dOmDAgAHw9/fH0KFD8f79e1WHxViJOKljjDGm0YgIISEhaNSoESZPnoycnByZ23z06BHu37+PDh06QCAQYO3atSAiDBs2jK+eZGqLkzrGGGMaKy4uDn5+fujatStMTEywYMECtGzZEg8fPpSp3bCwMOjo6MDT0xMAYG1tjTVr1iA0NBSbN2+WR+iMyR0ndYwxxjRORkYGpk2bhoYNG+LOnTsIDQ3FuXPnEB0djcTERDRt2hT//POP1KNqYWFh8PDwgLGxccGzrl27om/fvhg1ahRevHghr18KY3LDSR1jjDGNcvjwYXz99deYO3cuxo0bhzt37sDf3x8CgQCOjo64cuUKevXqhcGDB6NHjx6Ij4+XqP20tDScOHECfn5+Rd4tXboUpqamGDhwIEQikbx+SYzJBSd1jDHGNEJmZia6d++Ojh07onbt2rh16xZmz54NQ0PDQuWMjY2xbt067NmzB8ePH0fjxo1x/Phxsfs5ceIEsrKy0KFDhyLvKlSogH/++QfHjh3DypUrZf41MSZPGpfUbd++HVZWVqoOgzHGmBKJRCIMGDAAYWFh2LlzJyIjI1G3bt1S63Tr1g03btxAvXr14OnpiR07dojV1+HDh1GrVi3UqVOn2PdeXl4YMWIEfvvtNzx48EDiXwtjiqJRSZ1IJMKePXtgZ2en6lAYY4wp0bRp07Bz505s3rwZPXv2hEAgEKte1apVERUVhW+//RZTpkxBbm5uqeWJCGFhYfDz8yu1jwULFqBSpUqYO3euRL8OxhRJo5K6bdu2oXv37hAKiw87KysLycnJhT6MMcY026ZNmzBr1izMnz8f3bp1k7i+UCjE9OnT8ejRI+zcubPUsrdv38bz58+LnXr9nJGRETp27Ijo6GiJ42GSe/XqFRwdHWXe1VzeaUxSl5eXh127diEgIKDEMnPnzoWZmVnBh0f0GGNMs506dQpDhgzB4MGD8euvv0rdTtOmTdGhQwfMmTOn1A0OYWFhMDQ0hIeHR5lturi44MGDBxJvxGCSmzt3Li5duoTt27erOhS1pjFJ3ZYtW9CzZ88SR+kAYOLEiUhKSir48JZzxjRXdna2qkNgKvbgwQN06dIFbm5uWLVqldhTriWZMmVKwfEnJTl8+DDatWsHfX39MttzdnYGAFy4cEGmuFjpXr16hb///huGhobYv3+/qsNRaxqT1N25cwebNm2Cr68vHj58iLFjxxYpo6enB1NT00IfxphmSUtLQ1BQEMzMzLBixQpVh8NU5NOnT+jYsSMqVaqEPXv2QEdHR+Y2W7RogTZt2mD27NnFnl+XmJiIc+fOFXuUSXFq1aoFS0tLxMbGyhwbK9n8+fNhZGSEP//8E1euXMHLly9VHZLaEpAG3nfi4OCAS5culVkuOTkZZmZmSEpK4gSPMTVHRNi5cyd+/fVXfPjwAXXq1MGHDx/w+PHjIkdWsPItKysL3t7euHPnDmJjY1GrVi25tX38+HG0a9cOYWFhaN++faF3u3fvRs+ePfHs2TNUq1ZNrPY6duyI3NxcREREyC1G9j9v3rxBzZo1MXnyZIwaNQpWVlb466+/MGLECFWHppY0ZqTuc+IkdIwxzXHlyhW4ubkhMDAQjo6OuHPnDvbv34+PHz9izZo1qg6PKcmnT59w9uxZ9OvXD7GxsQgNDZVrQgcAbdq0gYuLC2bNmlVktO7w4cNo2LCh2Akd8O8U7IULF/ggYgVZsGABDAwM8NNPP6FChQrw8PDAgQMHVB2W2tLIpI4xVj68f/8e33//PRwcHJCUlISjR49i3759sLe3h729Pfr3748FCxYgIyND1aEyOTt37hz++usv/PDDD/Dw8IC1tTUqVqwINzc3hIaGYuPGjWjZsqXc+xUIBJgyZQqio6Nx6tSpgucikQjh4eFiT73mc3FxQUJCAu/KVIC3b99i9erVGDNmDMzMzAAAnTp1wvHjx/l0ixJwUscYU4lr167hq6++wt69e7Fs2TJcvXoV7dq1K1Rm8uTJ+PDhA4/WlTNr1qxBq1atMH78eMTExKBy5coYOXIkdu7ciRs3biApKQm9evVSWP8dOnRAkyZNMHv27IJnly9fxvv378s8yuS/nJycIBAIeF2dAixcuBC6urr46aefCp516tQJOTk5iIyMVGFkaozKsaSkJAJASUlJqg6FMfaZ+/fvk5WVFTk4ONCHDx9KLTtw4ECysbGh9PR0JUXHFOn06dOkra1NI0aMoNzcXJXFsXv3bgJAsbGxREQ0ffp0MjMzo5ycHInbatCgAQ0fPlzeIX7R3r59SwYGBjR16tQi7xo3bkx9+vRRQVTqj0fqGGNK9fz5c3h6esLKygrh4eGoWLFiqeV5tK78eP78Obp164aWLVtiyZIl0NLSUlksXbt2Rf369QtG6w4fPgwfHx9oa2tL3JazszOP1H3m4cOH6NevHx49eiR1G3/88Qe0tbUxZsyYIu86deqEw4cPIycnR4YoyydO6hhjSvPu3Tt4enpCW1sbUVFRZSZ0wL/HRvTr1w/z58/ntXUaLD09HV26dIGhoSF2794tlyNKZCEUCjFp0iQcPHgQR44cwcWLFyVeT5fPxcUFN27cQFpampyj1DxEhO+//x6bN29G8+bNcfDgQYnbeP/+PVauXImffvoJFhYWRd77+/sjISEB586dk0fI5QondYwxpUhISIC3tzfS0tJw9OhR2Nrail03f7Ru7dq1CoyQFSc+Ph5TpkxBRESE1AdCExGGDBmCe/fuITQ0FFZWVnKOUjqBgYGoWbMmevfuDQDw9fWVqh0XFxfk5eXh8uXL8gxPI23atAmnTp3C3r170aZNG3Tq1AlTpkxBXl6e2G0sWrQIQqGw2PNoAaBZs2awtbXlXbDFUfX8ryLxmjrG1ENKSgq5uLiQpaUl3b59W6o2BgwYwGvrVGDKlCkEgACQqakpBQYG0s6dOyk5OVnsNhYsWEAAaNeuXQqMVDpr1qwhAOTo6Ch1G7m5uWRkZEQLFiyQY2Sa5+PHj1SxYkXq3bs3ERGJRCKaN28eCYVC8vLyKnP9LBHRhw8fyMjIiCZMmFBquWHDhpG9vT2JRCK5xF5ecFLHGFOojIwMateuHZmYmNDFixelbufhw4ekpaVFS5YskWN0rDRZWVlUqVIlGjlyJF2/fp1mzJhBTZo0IQCkq6tLHTp0oDVr1tCjR49K/OYaHh5OAoGAJk2apOToxZOZmUm1atWihQsXytRO69atqWvXrnKKSjMNGTKEzMzM6M2bN4WeHzt2jKysrMjOzo7Onz9fahsTJ04kIyOjMhPAsLAwAkC3bt2SOe7yRCNvlBAX3yjBmGo9ePAAP//8M44dO4bIyEi4u7vL1N7AgQMRERGBx48fw8DAQE5RspLs2LEDgYGBuH37Nho0aFDw/OnTp9i/fz9CQkJw5swZiEQiVKtWDW3atCn4VKtWDQ8ePICTkxPc3Nywf//+Uu/uVqXc3FxoaWnJdLfsxIkTsWnTJrx69UqOkWmOc+fOoVWrVli5ciWGDx9e5P3Lly/Ro0cPXLlyBXPmzEGNGjUK7mlPTEws+P+7d+/GyJEjMX/+/FL7y8zMRMWKFTF58mRMnDhRUb8sjcNJHWNMrlJSUrB79278888/OHfuHCpUqICtW7dKfP5XceLi4lC/fn0sWrQIo0ePlkO0rDRubm7Q0dHB8ePHSyyTmJiI06dP48SJEzhx4gSuX78OALC3t0dOTg6MjIwQGxtbcHhseRUaGoouXbrgxYsXqFq1aqll8zdUGBkZKSM0hcvJyUGzZs1gaGiI6OjoEnc1Z2dnY9y4cVi+fHnBMyMjI1SoUAFmZmYwMzND9erVsXz5clhaWpbZb7du3fDq1Sveefw51Q4UKhZPvzKmHCKRiE6ePEn9+/cnQ0NDEggE5O3tTdu3b6eMjAy59jVgwACqXLkyr61TsOvXrxMA2r17t0T1Pn78SHv37qUff/yR2rZtS/fv31dQhOrl9evXYv9+tW3bllq3bq2EqJRjwYIFJBQK6cqVK2KVf/v2LX369EmqMwE/t3HjRgJQZLr3S8ZJHWNMKiKRiC5fvkwTJkwge3t7AkC1atWi33//nZ49e6awfvPX1q1du1ZhfTCioUOHkq2tLWVnZ6s6FI1RvXp1GjduXKllYmJiCjae5B98rMmePn1KhoaGNGbMGKX3/eHDBxIKhfy14DM8/coYExsR4eLFi9izZw/27NmDJ0+ewNLSEp07d0a/fv3g5uYm07okcbVo0QL29vbYunWrwvuSRU5ODnJycmBoaKjqUCSSmJiIKlWqYPz48QgKClJ1OBqjV69eePXqFc6cOVNimW7duuHmzZsQCARo3Lgxdu/ercQI5YuI4O/vjytXruDu3bswMTFRegweHh4wNTWV6jy88kjyo7MZY1+czMxMTJs2DTt27MDz589hZWWFrl27onv37mjdurVUp/DLwsXFRe3PqBKJRPDx8cHbt29x6dIlmRI7IsL9+/cRHh6OsLAwGBkZITQ0VH7B/sfGjRuRnZ2N77//XmF9lEfOzs6YNGkScnJyij1c+cGDBwgJCcGaNWtARBg+fDgePXqEWrVqqSBa2e3fvx8HDx7Enj17VJLQASg4By8tLa3crFGUiSqHCRWNp18Zk49p06aRjo4OjRw5kk6cOKHSOzuJiHbs2EEA6N27dyqNozTLli0rOPpj9OjREtdPS0ujw4cP08iRI6lmzZoEgPT09AqOFHn69Kn8gyaivLw8qlu3LgUEBCik/fIsOjqaANClS5eKfT9s2DCqVKkSZWRkUHp6OllZWdGIESOUHKV8pKSkUNWqValDhw4qPSvuwYMHBIBCQkJUFoM64aSOMVaqBw8ekJ6eHk2ePFnVoRR4+vQpAaADBw6oOpRiPXr0iIyMjGj48OG0ePFiAkDHjx8Xu/4ff/xB+vr6BIBq1KhBI0aMoEOHDlFaWholJCSQUCikv//+WyGxHzlyhADQ6dOnFdJ+eZaRkUE6Ojq0fPnyIu/evn1Lenp6NGfOnIJnM2fOJAMDA7EO5VU369atI6FQSI8fP1Z1KPTVV1/RwIEDVR2GWtCYpO7SpUvUqlUrcnd3px49eoi1eJeTOsZkIxKJyNvbm2rUqEFpaWmqDqeASCQiGxsbtTzQNi8vj1q3bk3Vq1en5ORkysvLIw8PD6pevbpYX4s2b95MAGjkyJF09+7dYkdBWrRoQT169FBE+OTv70+NGjXik/ql5OjoSH379i3yfPLkyWRkZETx8fEFzz58+EAGBgY0Y8YMZYYoF4MGDaLGjRurOgwiIho/fjxZWVmpfAZBHajnSZDFqFKlCiIjI3Hq1CnUrl1boetJGGP/2rNnD44cOYJly5ap1WJ/gUAAFxcXtTyfas2aNTh58iTWrVsHExMTCIVCbNiwAZ8+fcK4ceNKrXv8+HEMGjQIAwcOxLJly1C/fv1iN554eXnh2LFjEt2nKY7nz5/j4MGDGDlypFI2vJRHxf29TE1NxYoVKzB06FCYm5sXPK9YsSIGDRqE5cuXIyMjQ9mhyiQ2NhYtWrRQdRgAAH9/f3z48AHr1q1TdSiqp+qsUhpBQUG0b9++MsvxSB1j0ktOTiZbW1vq3LmzqkMp1rx588jY2Fitfjp/8uQJGRsb09ChQ4u8W7t2LQGgw4cPF1v35s2bZGZmRl5eXmXORJw5c4YA0IULF+QSd76JEyeSqakppaSkyLXdL8nWrVsJAH38+LHg2eLFi0lbW7vYo37i4uJIKBTS6tWrlRmmTBISEggABQcHqzoUIvp3dHzQoEEFI9xZWVmqDkllNC6pe/bsGbm6uhb7RS8zM5OSkpIKPi9evFB6UsdTFqy8GDt2LBkaGipsQb6sTp48SQDoxo0bqg6FiP79t9+uXTuys7Mr9muOSCQiX19fqly5Mn369KnQu1evXpGdnR01btxYrK9X2dnZZGJiQrNnz5Zb/JmZmWRlZUU//fST3Nr8Ej169IgAUFhYGBH9+2dlZ2dX7JRsvu7du1OdOnUoLy9PWWHKJCIiggCo1cHSIpGIVq1aRTo6OuTq6kqvXr1SdUgqoVFJXVJSErm7u5f4F2natGkFhzp+/lFWUhcUFETOzs6c2DGNd+3aNdLS0qJ58+apOpQSpaamqtXBo2vWrCEAFBERUWKZly9fUoUKFSgwMLDgWXJyMjVp0oSqVq1KL1++FLu/Tp06kYeHhywhF5K/lu/evXtya/NLJBKJqGLFihQUFERE//t9Le2Hj9jYWI3awTl9+nSysLBQy+91MTExVKVKFapUqRKdOnVK1eEoncYkdbm5udSxY0c6evRoiWVUOVKXP+QOgG7fvq3w/hhTlLy8PHJ1daUGDRqo/TRGkyZNaNCgQaoOg549e0YmJiY0ePDgMstu2bKFANCuXbsoOzubfHx8yNTUVOIRx+XLl5OOjo7cpkpdXFzI09NTLm196Tp27Eje3t4kEomoUaNG1L59+zLruLm5kaurqxKik52Pjw916NBB1WGU6O3bt+Th4UFaWlq0ePFitUw+FUVjkrpt27aRhYUFeXh4kIeHB+3YsaPMOspaU3f58mXS19ennj17kq6uLi1ZskSh/TGmSOvWrSMAdPLkSVWHUqYffviBGjRooNIY8ncIV61alRITE8Uq37VrV7K0tKTevXuTtrY2RUVFSdzv/fv3CQAdOnRImrALuXLlikaNFKm7WbNmUYUKFejw4cMEgE6cOFFmnf379xMAOnfunOIDlEFeXh6ZmZnR77//rupQSpWTk0M///wzAaDAwEC530GtrjQmqZOGMpK6d+/ekZ2dHTk4OFB6ejq1bduWOnbsqLD+mOwuXbqkNuuw1M2HDx/IwsKi1PU/6iQ4OJgAUEJCgspi+OeffwqtoRLH+/fvycrKSqbF5iKRiKpXry7Vwcb/lX8khKwXrLN/RUVFFdyF7OjoKNZIUV5eHtWrV4+6dOmihAild/v2bQJQ6qyZOtm5cydpaWnRqlWrVB2KUmjMkSbqKCcnBz169EBWVhb27dsHAwMDeHl54eTJk8jJyVF1eKwEAwYMwPDhw1UdhlqaOHEi8vLysHDhQlWHIhYXFxcAwMWLF1UWw7Jly9ClSxe0b99e7DpWVlY4ePAgtm3bhv79+0vVr0AggJeXF44cOSJV/c+FhoaiU6dOSr/urbxydHSEQCDAo0eP8Ntvv4l1PIxQKMS4ceMQGhqKhw8fKiFK6cTGxkIgEMDR0VHVoYilZ8+ecHV1lcu/E03ASZ0Mxo4di5iYGOzduxd2dnYA/j0/KjU1VS3Pz2LAmzdvcOvWLcTExCAhIUHV4aiV27dvY926dZgzZw4qVaqk6nDEUqdOHZibm6vs39u7d+9w9epVdOnSReK6zs7OCAwMlKl/b29v3L17Fy9fvpS6jXv37uH+/fvo3LmzTLGw/zEzM0ODBg1Qq1Ytif5u9O3bF9bW1vjzzz8VGJ1sYmJi0LBhQ5iamqo6FLF5eXnh+PHjyM3NVXUoCsdJnZTWr1+PFStWYNmyZWjVqlXB8yZNmsDCwgJRUVEqjI6V5NixYwD+vWz96NGjKo5GvRw4cADGxsYYMmSIqkMRm1AohLOzs8qSuvy/Q97e3irpv23bthAIBDJ9vQkNDYWRkRHatWsnx8jYihUrsHXrVmhpaYldR19fH0OHDsXWrVvV9jDimJgYtTl0WFxeXl5ISkpS6Yi+snBSJ4WYmBgMHz4cw4YNw7Bhwwq909LSQrt27TipU1NRUVH45ptv8PXXXyMiIkLV4aiVyMhItGnTBrq6uqoORSL5J/gTkdL7joyMRJMmTVQ2smlpaQkHBweZkzpfX18YGBjIMTLm4eEBZ2dniev169cPKSkp2L9/vwKikk1SUhLu3LmjcUmdg4MDKlSo8EV8X+akTkKvXr1C165d4ezsjKVLlxZbxsvLCxcuXEBiYqJyg2OlIiIcPXoUnp6e8PX1RUREhEoSAXWUkpKCc+fOwcfHR9WhSMzFxQXx8fGIi4tTar8ikQhHjhxR2ShdPi8vL0RFRUEkEklc9/Xr1zh//jxPvaqR2rVrw9XVFZs2bVJ1KEVcuHABRFSwllVTaGtro23btl/EujpO6iRARBg8eDC0tLSwZ8+eEkc0vLy8IBKJcOLECSVHyEpz7949vH79Gl5eXvD19cXr169x8+ZNVYelFk6cOIHc3FyNTOqcnJwAQOlTsDdu3MC7d+9U/nvm5eWFjx8/4vr16xLXPXDgALS0tODn56eAyJi0+vXrhyNHjuDt27eqDqWQmJgYmJubo27duqoORWLe3t6IjY1FcnKyqkNRKE7qJLBz505ERkZi9erVpU631KhRA7Vr1/4ihno1SVRUFHR1ddGqVSu4ubnB0NAQ4eHhqg5LLRw5cgT29vaoXbu2qkORmLm5OerXr6/0pC4yMhKGhoZo2bKlUvv9rxYtWsDIyEiqrzehoaFo3bp1oUvmmer17NkTWlpa2L59u9h1li1bhu7duyswqn+TOhcXFwiFmpc6eHl5IS8vDydPnlR1KAqleX8yKpKQkIDRo0eje/fu6NixY5nlvby8eCG+mjl69ChcXV1hZGQEPT09tG3bltfV/b/IyEiVjzjJIn9dnTIdOXIEbdq0gZ6enlL7/S89PT14eHhIPLWUlJSE48ePw9/fX0GRMWmZm5vj22+/FXsKNjk5GdOmTcPevXvx7t07hcQkEolw/vx5jVtPl8/e3h729vblfgqWkzoxTZgwAZmZmfjrr7/EKu/l5YWHDx/i2bNnCo6MiSMnJwcnT56El5dXwbP27dvj7Nmz5X44viyPHz9GXFycyteGycLFxQXXr19Henq6UvpLS0vD2bNn1SYR9vb2xtmzZyX69YeHhyMnJ4eTOjXVr18/XLt2TawlIitXrkRqaioAKGyG6MGDB0hISNC49XSf8/b2LvczaJzUieHcuXNYu3Yt5s6dC1tbW7HqtGnTBkKhsNz/BdIUFy5cQEpKCjw9PQue+fr6Ijc3F8ePH1dhZKoXGRlZsJBYU7m4uCAvLw+XL19WSn8nT55Edna22iTCXl5eyMrKwpkzZ8SuExoaimbNmqFatWoKjIxJy9fXFxUrVsTmzZtLLZeWloZFixZh0KBBaNKkCSIjIxUST0xMDAQCgVQ7etWFl5cXHjx4UK4HW+SW1Cnri6myZWdnY+jQoXB2di5yfElpKlSoAEdHR07q1MTRo0dRoUIFNG/evOCZvb096tat+8VPwUZGRqJFixYadZjof3399dcwMjJS2hRsZGQkqlevrjYLxr/66itUqVJF7K83WVlZCAsL412vakxXVxe9evXCli1bkJeXV2K5tWvXIiEhARMmTICPj4/UO6HLEhsbi6+//lqjv060bdu23A+2yC2pk+ZEdU3wxx9/4P79+1i7dq1Eh0gC//5UcOzYMYX8A2OSiYqKQtu2bYv8Gfr6+iI8PFwtjzY5fPgwvv32W4X+/cnJycHx48fVZhpRWtra2nB0dFRaUnfkyBH4+PiIdf2TMkh6ZdiJEyeQkpLCSZ2a69evH968eVNwaPp/ZWZmYuHChejbty9q1KgBb29vvHv3Djdu3JB7LJp46PB/VahQAU5OTpzU5evZs2exnx49eiA+Pl5RMapMXFwcfv/9d4wbNw6NGzeWuL6Xlxc+ffqEq1evKiA6Jq7k5GTExsYWmnrN5+vri+fPn+PevXsqiKxkWVlZ+PHHH3Ho0CGFJioxMTFISUnR+KQO+HcKNiYmRuEJ+rNnz3D//n21+z3z9vbGzZs38ebNmzLLhoaGwt7eHg0bNlRCZExaDg4OqF+/fokbJv755x+8e/cOEydOBAC0bNkShoaGcp+CTU5Oxq1btzR6PV2+/E2MpY1+ajKJkrqjR4+if//+GDlyZJGPkZGRomJUCSLC8OHDYWNjg6CgIKnacHFxkfqoASY/p06dQl5eXqFNEvlat24NfX19tTvaZNWqVXj+/DksLCywY8cOhfVz5MgRWFpaolmzZgrrQ1lcXFzw5s0bme5BFUdkZCS0tLTUbg1i/jVfZe26F4lE2L9/Pzp37qw2I42seAKBAP369UNISAhSUlIKvcvOzsb8+fMREBBQsAxAT08Pbdq0kXtSl3/osKaP1AH/JnXx8fHldrBFoqSudevWMDY2hoeHR6FP69at0bRpU0XFqBLbtm3D0aNHsXLlSqkTVl1dXbRu3ZqTOhU7evQoqlevjlq1ahV5Z2BgAA8PD7VaV5eYmIjff/8dgwcPRv/+/bFr1y6F/VQZGRkJLy8vjTx36r/yF3Arego2MjISzs7OqFChgkL7kZS1tTWaNm1a5tebCxcu4O3btzz1qiG+++47pKenY9++fYWeb968Gc+fP8fkyZMLPffx8cHZs2cLdsPKQ2xsLCpUqIB69erJrU1VcXFxgbGxcbk92kSir+T79u2Dh4dHse/U6ZuirOLj4zF27FgEBASgffv2MrXl5eUl8VEDTL6OHj0KLy+vEkcl2rdvj1OnTiEtLU3JkRVv/vz5yMzMxPTp09GrVy+8e/cOp06dkns/Hz9+xOXLl9VuGlFaNjY2qFGjhkKTutzcXBw7dkxtf8+8vLxw6NAh3L59u8QyoaGhqFixIlxdXZUYGZNWtWrV0KZNm0JTsLm5uZgzZw66du2Kr7/+ulB5Hx+fgiOc5EWTDx3+Lx0dHbRp06bcDrZo1J/QL7/8Ajc3N3z33XfIzs5WWD+TJk1CdnY2Fi9eLHNbXl5eyM7OxtmzZ+UQGZPUq1evcOfOnWLX0+Xz9fVFdna2Wpw0/uLFCyxZsgQ///wzbG1t4ejoiJo1a2Lnzp1y7ysqKgpEpDbHcsiDog8hvnDhApKSktQ2qRs9ejTs7Ozg4uKCgwcPFlsmNDQUnTp1knjjF1Odfv364cSJE3jx4gUAYMeOHXj8+DGmTJlSpGydOnVQo0YNuU3BEhFiY2PLxXq6fN7e3jh37pza/CAvT1IndXv37pVnHGW6evUq3r59izNnzqBBgwbYs2ePQvq5efMm/v77b8yYMQOVK1eWub2vvvoKtra25fanAnWXv2ustPVPdevWRY0aNdRitHnatGkwMTHBr7/+CuDfNTUBAQHYs2cPcnJy5NpXZGQkGjVqJPbZi5rAxcUFly9fLvaHPiLCixcvZBo1j4yMhLm5ORwcHGQJU2FsbW1x7tw5eHl5wd/fH3PmzCm0ceTevXu4f/8+T71qmG7dukFfXx9bt25FXl4eZs+eDT8/v2KXPQkEAnh7e8ttevHhw4eIj48vF+vp8nl5eSEnJ0chMyCqJnVS17t37zJHsuS5Cy0mJqZgRMHX1xfR0dFyazsfEWHs2LGoXbs2RowYIZc2BQIBPD09OalTkaioKDRt2hRWVlYllhEIBGjfvr3CNktkZGSItXj/5s2bCA4OxrRp0wqdBdWrVy/Ex8fL9do5Iio4lqM8cXFxQVZWFq5du4bnz58jJCQEkydPho+PD6ysrFCtWjXY2tpi1KhRuHXrlsTtR0ZGwtPTU61HuYyNjbFnzx4EBQVh8uTJCAwMLEhkQ0NDYWhoWOrINVM/JiYm6NKlCzZt2oS9e/fi3r17xY7S5fPx8cGDBw/w9OlTmfsuD4cO/1fdunVhZ2dX5vflhIQEzTuSjKQUERFBpqamNGrUKBKJRIXe5ebm0oYNG6hevXrSNl/E7NmzKSQkhIiIHj58SIGBgUXKZGZmUlJSUsHnxYsXBICSkpLE6uPAgQMEgA4ePCi3uImINm/eTADo7du3cm1Xk6SlpSm9T5FIRDY2NvTrr7+WWXb//v0EgB4+fCjXGBISEsjBwYF0dXVp5cqVRf6tfK5Dhw5Uu3Ztys7OLvRcJBJR/fr1qX///nKL6/r16wSAoqKi5NamOsjMzCRdXV3S19cnAASAKleuTN9++y3NmDGDQkNDadKkSWRtbU0AqFWrVrRlyxbKyMgos+1Pnz6RUCikdevWKeFXIh+7d+8mQ0NDatasGT1//pycnZ2pa9euqg6LSSEiIoIAUKVKlcjT07PUsomJiaSlpUWrV6+Wud9hw4bR119/LXM76mbw4MHUoEGDEt9v2bKF9PT0aN68eUqMSnZSJ3VERNeuXaOqVatS586dKT09nbKysmjlypVUo0YNMjc3p6CgIHnFSStXrqSNGzcSEdHFixdp5MiRRcpMmzat4Av55x9xkrqsrCyqW7cueXp6lvqNVxpv3rwhALR161a5tqspjhw5QoaGhjR9+nSl9nvr1i0CQEeOHCmzbEpKCuno6NDSpUvl1n9SUhI5OzuTubk59evXjwBQQEBAsX8fjx8/TgBo9+7dxbY1bdo0MjU1FSv5EMfChQvJwMBAbu2pkxUrVlBQUBAdOHCAXr16VWyZrKws2rVrF7Vt25YAkKWlJf3yyy/07NmzEtvdtWsXAaDnz58rKnSFuHr1KlWrVq0gkd20aZOqQ2JSyMnJocqVKxMAOnXqVJnlW7ZsSV26dJG538aNG9PgwYNlbkfd7NixgwDQy5cvCz3Py8ujiRMnEgCqWLEi2dvbyz0nUCSZkjoiopcvX1Ljxo2pcePGZGtrS1ZWVjR79mxKTk6WR3wFrly5Qt999x0REc2aNYu2bdtWpIwsI3WLFy8moVBIN27ckGvc+Ro1akQDBgxQSNvqbN++faSrq0tVq1YlLS0tunz5stL6Xrx4Menp6VF6erpY5du2bUsdOnSQS9/Jycnk6upKZmZmdOnSJSIi2rlzJ5mYmFCdOnXo2rVrBWXz8vLIwcGBnJ2dS/zicefOHQJQMFotK09PT/L19ZVLW5ru3r179PPPP5OFhQUZGBjQnDlzKCsrq0i5wYMH01dffaWCCGX37t07cnNzIwMDA/r06ZOqw2FSWrBgAfXo0UOssjNnziRTU9MiI/+SSE5O1rjRaXF9+PCBBAIBbdiwoeBZSkoK+fv7k0AgoIULF9KJEycIAJ0+fVp1gUpIpqQuMTGRZs6cSZaWlmRgYECGhoYKS4qIiMaNG0etWrWi3r17F/tF97+SkpLESuo+fvxIFSpUoGHDhskr1CJ+/vlnsrW1pby8PIX1oW42b95MWlpa1KNHD0pNTaVvvvmGGjVqJNafnTz4+flR27ZtxS4vr9Gr1NRUcnNzI1NTUzp//nyhdw8ePKAmTZqQnp4erVmzhkQiEW3fvl2sn76/+eYbCggIkCk2on+nwvX09Gjx4sUyt1WeJCcn07hx40hLS4vq169Px44dK3gnEomoatWqNGbMGBVGKJvs7OwioxKs/Dp//jwBoDNnzkjdxrFjxwgA3b59W46RqY/mzZtT7969iYjo6dOn1LhxYzI2Ni5YgpWXl0c1a9akQYMGqTJMiUid1E2YMIHMzMzI3t6e1qxZQ6mpqdS/f3+ytramCxcuyDNGqYmb1I0aNYpMTU3p3bt3CoslJiaGANDhw4cV1sfnPn36RP3796e5c+dSdHS0TD+tSWPlypUEgAYNGkS5ublE9O80kLa2Nk2dOlXh/WdlZZGRkRHNnTtX7Do3b94kABQZGSl1v2lpadSmTRsyNjam6OjoYstkZGTQDz/8QACod+/eZG9vT99++22Zbc+dO5cMDQ0pNTVV6viIiMLCwggA3blzR6Z2yqsbN25Qq1atCAAFBgbS69evC0ZKw8PDVR0eY2LJzc0lCwsLmjJlilT18/LyyN3dnWrWrFluByMmTJhA1tbWdObMGbKysqKaNWvSzZs3C5WZPn06GRsby/x1V1mkTurq169PGzduLPiGnW/KlClkZGREoaGhMgcnK3GSujt37pCWlhbNnz9fobGIRCJq3ry50qa81q5dSwKBgIyMjAgAGRoakqenJ/3+++90+vRpyszMVFjf8+bNIwA0evToIl8Mpk+frpRp2NOnTxMAunjxoth1RCIRValSRerRmPT0dPL09CQjIyOxfjretm0bGRsbk1AoFOsn4UePHhEA2rFjh1Tx5Rs9ejTZ2dlp1DoRZROJRBQcHExWVlZkYmJC3t7epKenp5INP4xJq2fPnuTo6ChV3UWLFpFAIKCTJ0/KOSr1kb+WWSgUkru7O3348KFImSdPnmjUWlSpk7rSviH8/fffpKenR8uWLZO2ebkQJ6nr0KED2dvbKzTJyRccHEwA6P79+wrvq1u3buTq6krZ2dkUGxtLCxYsID8/PzI1NSUAZG5uTk+ePJFrnyKRiCZNmkQAKCgoqNi/I1lZWUqZhg0KCiILC4siP3SUZeDAgdS4cWOJ+8vIyCBfX18yMDCQ6Ivgw4cPKSIiQuzyTk5O1LlzZ4nj+1z9+vVpyJAhMrXxpYiPj6fhw4eTQCAgb29vVYfDmETWr19PAoGAPn78KFG9W7dukZ6eHv38888Kikw9ZGZmUvXq1en7778v9ftRmzZtJFrKo0oyb5QoSVhYGJmYmCiqebGUldTlbxHfs2ePUuLJyMigihUr0k8//aTQfnJycsjMzIxmzJhR5F1ubi5dvHiRtLW15bLd/XNjx44lALRw4cJSyyl6GlYkElGjRo2oe/fuEtcNDg4mgUAg8WLyCRMmkL6+Ph09elTiPiXx559/kq6uLiUmJkpV/9mzZwSAdu3aJefIyrfbt2/TixcvVB0GYxLJ3ywoyeh+VlYWNW3alBo0aFAud8f/lzgzFhs3biQA9PTpUyVEJBuFJXVEpNSdjsUpLanLycmhBg0akLu7u1KnoSZOnEimpqZy3x38ubNnzxKAIov0P+fg4ED9+vWTW58fP34kADRr1iyxyk+bNk1h07B79uwRe9v/fz1+/JgA0IEDBySq16hRI6Usps3/Ip1/vI+kli5dSjo6OhQfHy/nyBhj6ujrr7+mgQMHil1+8uTJpK2trfLv3+okNTWVjI2Nix0oUTcKvfu1WbNmimxeJmvXrsXdu3exePHiEi96V4Thw4cjLS0NmzdvVlgfERERsLCwQPPmzUss4+rqKtdbOeLi4gAAHTp0EKv8pEmT0LBhQwwcOFCu9/jm5eUhKCgIXl5ecHd3l7h+jRo1ULVqVZw+fVrsOh8+fMDNmzdLvYpMXqpWrQo3Nzfs2LFDqvrbtm2Dr68vzM3N5RwZY0wd+fj4IDIyUqwbnmJjYzF37lxMmzZNrb9/K5uRkRF69OiB4OBgld0w8ezZM7HuqlVoUqfOkpOTMXToUKX/xbWzs0Pnzp2xfPlyuV6j9rnIyEh4e3uXepWRq6sr4uLi8P79e7n0mZ/U1a5dW6zyurq6CA4Oxp07dzB79uwSy0n6e7Rjxw7cuXMHs2bNkqhePoFAAHd3d4mSupMnTwIA2rRpI1WfkurVqxeioqLw6dMnieo9fvwYsbGxCAwMVFBkjDF14+Pjg9evX+P27dullktLS0O/fv3g6OiICRMmKCk6zTFgwAA8efIEZ8+eVUn/w4cPR5cuXcos98UmdRMmTMCqVatU0vePP/6Iu3fvFlw2L08fP37EpUuXyrzT09XVFcC/9/rJQ1xcHCpVqgQTExOx6zRp0gSTJ0/GnDlzMGTIEPTo0QOenp5o3rw57O3tYW5uDh0dHUydOlWs9nJycjBt2jR06tQJTk5O0v5S4O7ujsuXLyM1NVWs8idOnEDdunVha2srdZ+S6N69O0QiEfbt2ydRvR07dsDQ0BCdOnVSUGSMMXXj5uYGfX19REZGllrut99+w8uXL7Fp0yZoa2srKTrN4ebmBnt7ewQHByu978TERBw9ehTffvttmWW/2KQOgFKnXT/n4eGBhg0bYvny5XJvOyoqCkRUZlJnZ2eHqlWrym0KNi4uTuxRus9NmjQJXbt2xfXr15GUlARLS0s4ODigZ8+emDBhAoYOHYpZs2bh8OHDZba1ceNGPHr0CL///rs0v4QCbm5uyMvLQ2xsrFjlT5w4obRROgCwtrZG27ZtJZqCJSJs3boVnTt3hpGRkQKjY4ypEwMDA7i7u2PHjh04duwY3r59W2QGJDIyEitXrsTChQtRt25dFUWq3gQCAQYMGIBdu3aJ/QO/vBw8eBA5OTno2rVr2YVVuaBP0cQ9fFgV1qxZQ0KhUO7HivTr10/sIzl69uxJrVq1kku/zs7Ocr1wPp9IJCI/Pz+ytLQs9TT8zMxMsrOzk8uNCyKRiCpWrCjW7txXr14RANq5c6fM/Uoi/6iChw8filX++vXrBKDgpHTG2Jcj/3J6/P996JaWluTu7k7Dhw+n5cuXk62tLXl5efHZlWV4+vSpTBvVpNWpUydq0aKFWGW/6JE6Vfruu+9gamqKlStXyq1NkUiEyMhI+Pr6ilXe1dUVFy9elMtGBWlH6soiEAgQHBwMPT09fPfdd8jLyyu23Nq1a/Hq1StMnz5dLn26ubmJta4ufz1d69atZe5XEoGBgbCyssKCBQvEKr99+3ZYWFjA29tbwZExxtTNd999h9TUVNy/fx/79u3DmDFjULlyZZw5cwZjx45FZmYm/vnnH5XNXmmK6tWro23btkqdgk1JSUFkZCS6d+8uXgUFJ5gqpc4jdUT/3gdrbm4ut1Pqr169SgAK3VlZmgsXLhAAio2Nlanf+Ph4AkDbt2+XqZ3SnDx5koRCIU2fPr3Iu7S0NKpUqRINGDBAbv0tXryY9PT0yjyUesiQIfT111/LrV9JzJ07l3R1denVq1ellhOJRFS9enWF3m3MGNNM2dnZlJKSouowNMamTZsIgNxn2UqSfze4uP3xSJ0KjRgxAomJidi+fbtc2ouMjISRkRFatmwpVvlvvvkG+vr6Mq+re/ToEQDxd75Kw8PDA0FBQZg5cyZOnTpV6N3y5csRHx+PoKAgufXn7u6OrKwsXLx4sdRyyl5P97nhw4dDX18fixcvLrVcTEwMnj17xrteGWNF6OjowNjYWNVhaIyuXbvC2NgYmzZtKvSciHDt2jX8/PPPsLW1xYgRI+RywsXevXvh4OCAGjVqiFWekzoVqlWrFjp06IBly5bJ5Q8/IiICbdq0gZ6enljldXV14ejoKHNSl3+cSa1atWRqpyxTpkyBm5sbevfujY8fPwL492ia+fPnY8iQIahZs6bc+vrmm29gYmJS6hTs8+fP8ejRI6WcT1ccMzMzjBw5EqtXr0ZCQkKJ5bZt24YqVarAzc1NidExxlj5Y2RkhJ49exacWffmzRv88ccf+Oabb9C0aVNs2bIF7u7uWLVqVanHdYkjPT0dYWFh6Natm9h1OKlTsVGjRuH69esyn32TkpKCs2fPlrnr9b/yDyGWJamMi4uDpaWlwg+01dLSwtatW5GdnY0BAwaAiLBkyRKkp6dj8uTJcu+rVatWpSZ1J06cgEAggIeHh1z7lsSYMWOQm5tb4k7q3Nxc7Nq1C4GBgRAK+Z87Y4zJauDAgXjy5AlatmyJqlWrYsqUKahfvz4OHTqEV69eYceOHZg5cyamTp1aZERPEhEREUhPT5coqeM1dSqWl5dHdevWJX9/f6nv8yQi2r9/PwEQezfkf+vJcqdd//79ydnZWer6kjp06BABoClTppCpqanCLp2eO3cuGRsbU05OTrHv+/fvT02aNFFI35IYOXIkWVpaUmpqapF3+fcb85U/jDEmHyKRiFq1akWurq60Zs2aYq9dFIlENHjwYNLW1pb6TvDAwECxT7PIx0mdGlizZk3BVvOKFStSixYtqG/fvjRjxgzatm0b3bt3r8w2hg8fTvb29hL3/f79ewJA27ZtkyZ0IiJq2bIl9enTR+r60vj5558JABkZGdG7d+8U0se5c+cIAF28eLHIO5FIRNWqVaOxY8cqpG9JPHnyhLS0tGjJkiVF3vXr14/q1avHRxUwxpiSZWdnk4+PD5mamtKNGzckqpuRkUEmJiY0c+ZMierxfIwaGDp0KK5cuYLt27fjp59+Qp06dRAXF4fly5ejd+/e+OqrrxAeHl5ifSJCRESE2EeZfM7Kygp16tSRaV3dw4cPFbpJojhz586Fn58fZs2aBWtra4X04eDgAH19/WKnYB8/foznz5+rbD3d52rUqIHAwEAsWrSo0PE0GRkZ2LdvHwIDA/moAsYYUzIdHR3s3r0btWrVQvv27fHy5Uux60ZFRSElJUWyqVdAM6ZfL126RK1atSJ3d3fq0aMHZWdni1VPU0bqSpOYmEgdO3YkMzMzevDgQbFlHjx4QABo//79UvXRv39/atasmVR183+Pt2zZIlV9dde6dWvy9/cv8vzvv/8moVAo05S5PN26dYsA0IYNGwqe7d69mwDQ/fv3VRcYY4x94V69ekXVqlWjxo0bi52P9O/fn7766iuJ+9KIkboqVaogMjISp06dQu3atREaGqrqkJTGzMwMW7ZsgY2NDfz9/ZGSklKkTGRkJHR0dKQ+WsPV1RXXr1+X6uoTZRxnokru7u44c+YMRCJRoecnTpxA8+bNYWZmpqLICvv666/RqVMnzJ8/vyDWbdu2wcHBga/9YYwxFbK1tUVYWBiePXuGbt26lXngf3Z2Nvbv3y/5KB00ZPerjY0NDA0NAfw7nFnSZcNZWVlITk4u9CkPzMzMsH//frx69Qr9+vUrkmBERESgZcuWMDExkap9V1dX5OXllXkmW3HyjzMpz0ldfHw87t69W/CMiHDixAm1mHr93MSJE3Hv3j2EhoYiMTERYWFhfDYdY4ypga+//hqhoaE4ffo0Bg0aVOT7+OdOnDiBxMRE8W+R+IxGJHX5nj9/jqNHj6Jjx47Fvp87dy7MzMwKPnZ2dkqOUHHq1auHrVu3Yv/+/Zg1a1bB86ysLJw4cUKq9XT5GjRoAFNTU6nW1cXFxaFChQqwsLCQun915uLiAm1t7ULr6u7fv483b96o7NDhkri4uKB169aYO3cu9u3bh+zsbAQEBKg6LMYYY/j3OsnNmzdj+/bt+PHHH0s8SmzPnj2oVasWGjduLHEfapXUvX37Fq1atSryiY+PR3JyMvr27YsNGzZAR0en2PoTJ05EUlJSwefFixdK/hUoVseOHTFz5kxMmzYNBw4cAACcPXsW6enpEp9P9zmhUIgWLVogJiZG4rr5d76W14X4RkZGcHBwKJTUnThxAtra2mLf3KFMEydOxKVLlzB16lS0bt0aVapUUXVIjDHG/l/Pnj3x999/Y9WqVZgwYUKRxC43NxehoaHo3r27VN9Xi5/HVBEbG5tiD+HNy8tD586dERQUVOr6ID09PbFvU9BUkyZNwtWrV9GnTx+cP38ekZGRsLGxwTfffCNTu66urvjrr78gEokkOqQ2P6krz9zd3bFlyxYQEQQCAU6cOAEnJye1vFrHy8sLzZo1w5UrVzB9+nRVh8MYY+w/Bg0ahOTkZIwdOxZmZmaYNGlSwbvTp0/j48ePUq2nA9RspK4ku3btQnR0NH7//Xe0bt0aO3fuVHVIKiMUChEcHIxq1arB398f+/fvh7e3t8wjZa6uroiPj8eDBw8kqhcXF4c6derI1Le6c3d3x+vXr/H48WOIRCKcPHlS7dbT5RMIBJgxYwasra2l/qLAGGNMscaMGYOZM2di8uTJWLZsWcHzvXv3olq1anBwcJCqXbUaqStJYGAgL/j+jImJCUJDQ+Ho6IjExES5jMg4OTlBKBQiOjoa9evXF6tOWloaXr9+Xe5H6lq2bAmBQIDTp08jPT0dHz58ULv1dJ/r2LEj3r17p+owGGOMlWLKlClITk7GTz/9BBMTE/Tr10/ms0U1IqljRdWuXRu7du1CUFCQTOvp8pmamqJRo0aIjo7GoEGDxKpT3o8zyVehQgV88803OH36NFJSUqCrq4sWLVqoOizGGGMaTCAQYMGCBUhOTsbgwYNx8+ZNvH37Vqpdr/k4qdNgXl5e8PLyklt7rq6uOHnypNjly/txJp9zd3fHoUOHkJiYiBYtWsDAwEDVITHGGNNwAoEAK1euRGpqKv7880/Y2trCxcVF6vY0Yk0dU44WLVrg7t27iI+PF6t8XFwcTExMYGVlpeDIVM/NzQ2PHz9GZGSk2q6nY4wxpnm0tLQQHByM77//Hr/99ptEmxX/i0fqWAFXV1cAQGxsLDp06FBm+fJ+nMnn3NzcAPx7n6o6r6djjDGmeXR0dLB27VqZ2+GROlbA3t4e1tbWYh9C/CUcZ5KvUqVKqFevHgwMDODk5KTqcBhjjLEieKSOFRAIBHB1dZUoqZNl7l/T9OrVC8+ePSv3ZyEyxhjTTJzUsUJcXV0xffp05ObmlnjHLvDvNOSLFy++mJE6AHyYL2OMMbXG06+sEFdXV6Snp+PatWullnv8+DEAlPuDhxljjDFNwUkdK8TR0REWFhbYt29fqeW+pONMGGOMMU3ASR0rRFdXF926dcOOHTuKXDT8ubi4OBgaGsLGxkaJ0THGGGOsJJzUsSJ69eqFJ0+e4MKFCyWW+ZKOM2GMMcY0ASd1rAgPDw9UrlwZ27dvL7HMl3ScCWOMMaYJOKljRWhpaaFnz57YuXMn8vLyii3DSR1jjDGmXjipY8UKDAzE27dvcerUqSLvsrKy8Pz5c07qGGOMMTXCSR0rlpOTE+zt7Yudgn369ClEIhEndYwxxpga4aSOFUsgEKBXr17Yu3cvsrOzC717+PAhAD6jjjHGGFMnGpXUbd++HVZWVqoO44vRq1cvJCQk4MiRI4Wex8XFQV9fH7a2tiqKjDHGGGP/pTFJnUgkwp49e2BnZ6fqUL4YjRo1wtdff11kCjYuLg61atWCUKgxf30YY4yxck9jvitv27YN3bt350RCyQIDA7F//36kp6cXPOOdr4wxxpj60YgMKS8vD7t27UJAQECp5bKyspCcnFzow2TTq1cvpKWl4eDBgwXPOKljjDHG1I+2qgP43Nu3b9G9e/ciz7///nv07NmzzFG6uXPnYsaMGYoK74tUq1YtODk5YceOHQgICEBOTg6ePn3KSR1jjDGmZgRU2gWfamL8+PG4evUqhEIhYmJiMGjQICxevLhIuaysLGRlZRX8d3JyMuzs7JCUlARTU1NlhlyuLFmyBOPHj8e7d+/w8eNH1KlTB1FRUfD09FR1aIwxxhj7fxqR1H3OwcEBly5dEqtscnIyzMzMOKmT0evXr1G1alWsX78elStXRvv27fHkyRPUqFFD1aExxhhj7P9pxJq6z4mb0DH5sbW1hYeHB7Zv3464uDjo6uryLmTGGGNMzajVmjqmvgIDAzF8+HBYWlrC3t4eWlpaqg6JMcYYY5/RuJE6phrdunWDUCjErl27eJMEY4wxpoY4qWNisbS0hI+PD9/5yhhjjKkpTuqY2AIDAwGAkzrGGGNMDXFSx8Tm7+8PDw8PtG7dWtWhMMYYY+w/NO5IE0nwkSaMMcYY+1LwSB1jjDHGWDnASR1jjDHGWDnASR1jjDHGWDnASR1jjDHGWDnASR1jjDHGWDlQrne/EhFSUlJgYmICgUCg6nAYY4wxxhSmXCd1jDHGGGNfCp5+ZYwxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzipY4wxxhgrBzQuqdu+fTusrKxUHQZjjDHGmFrRqKROJBJhz549sLOzE6s8ESE5ORlEpODIGGOMMcZUS6OSum3btqF79+4QCsULOyUlBWZmZkhJSVFwZIwxxhhjqqUxSV1eXh527dqFgICAEstkZWUhOTm50Icxxhhj7EugMUndli1b0LNnz1JH6ebOnQszM7OCj7jTtIwxxhhjmk5AGrLgbPz48bh69SqEQiFiYmIwaNAgLF68uFCZrKwsZGVlFfx3cnIy7OzskJSUBFNTU2WHzBhjjDGmNBqT1H3OwcEBly5dKrNccnIyzMzMOKljjDHGWLmnreoApCFOQseU79KlSyAi2Nvbw8LCAgKBQNUhMcYYY18MjUzqmPp58+YNnJ2dIRKJAABmZmawt7dHrVq1YG9vj9q1ayMgIKDcjpguXboUsbGx2LZtm6pDYYwx9oXipI7JRUREBIgIJ0+exIcPH/D48WM8evQIjx8/xu7du/H06VO8f/8ekydPVnWoCrF69WrcvXsX48ePxzfffKPqcBhjjH2BNHJNnbh4TZ3y9OzZE8+ePcP58+eLfe/v74+kpCScPHlSuYEpQVxcHOrUqQOhUIhBgwbh77//VnVIjDHGvkAac6QJU1+5ubk4cuQIOnToUGIZLy8vREdHIy0tTYmRKcfBgwehp6eH8ePHY+vWrYiPj1d1SIwxxr5AnNQxmcXExCApKQnt27cvsYynpydycnJw5swZJUamHAcOHEDbtm0xZswY5OXl4Z9//lF1SIwxxr5AnNQxmYWHh6NixYpwcHAosUy9evVQpUoVHD16VImRKV5CQgLOnDmDTp06wdraGgEBAVixYgXy8vJUHRpjjLEvDCd1TGZhYWHw9fUt9bYPgUAAT0/PcpfUhYeHIy8vDx07dgQAjBo1Ck+fPkVYWJiKI2OMMfal4aSOyeT169e4fv16qVOv+by8vHD9+nW8e/dOCZEpx8GDB9GsWTNUrVoVAODo6AgnJycsW7ZMxZExxhj70nBSx2QSEREBgUAAHx+fMsu2a9cOAHD8+HFFh6UU2dnZCA8PR6dOnQo9HzVqFKKionDv3j0VRcYYY+xLxEkdk0lYWBicnZ1haWlZZlkbGxs0bNhQ7ClYIkKHDh2wZs0aWcNUiDNnziApKalIUtejRw9YW1tjxYoVKoqMMcYUa8uWLahduzYyMzNVHQr7DCd1TGo5OTmIiooSa+o1n6enJ6KioiDO8Yjnz59HeHg4pkyZgtTUVFlCVYiDBw+iatWqaNKkSaHnenp6GDp0KIKDg5GcnKya4BhjTEGuXLmCIUOG4NGjR3jy5Imqw2Gf4aSOSS0mJgbJycmlnk/3X56ennjx4gUePnxYZtl169bBxsYGSUlJWL58uSyhyh0R4cCBA/j222+LveN22LBhyMjIwKZNm1QQHWOMKcanT5/QtWtXVK9eHQDw+PFjFUfEPsdJHZNaWFgYrK2t0axZM7HreHh4QFtbu8wp2JSUFOzYsQPDhw/HkCFD8McffyAlJUXWkOXm9u3bePLkCb799tti31etWhVdu3bF8uXLxRqVZIwxdZeXl4fevXsjLS0NkZGR0NPTw6NHj1QdFvsMJ3Xl1Pv37zF16lSFJkLh4eHw8fEp9SiT/zI2NkaLFi3KTOp27tyJ9PR0DBw4EJMmTUJKSopajdYdPHgQRkZGaNOmTYllfvzxR9y/f7/cHePCGPsyTZs2DUePHsWOHTtQo0YN1KxZk0fq1AwndeVQbm4uAgICMGvWLEyZMkUhfbx69Qo3btyQaOo1n6enJ44fP17qAb1///03fH19YWdnh6pVq+L7779Xq9G6AwcOwMfHB/r6+iWWcXNzQ+PGjdUqGWWMMWns378fs2fPxpw5cwpOMrC3t+ekTs1wUlcOTZ06FWfOnEHv3r2xfPlyXLp0Se59hIeHQygUwtvbW+K6np6eSEpKKjGuGzdu4MKFC/j+++8Lnk2YMAGpqalqcf7bu3fvcP78+RKnXvMJBAL8+OOPOHjwoMYvJk5JScHUqVPL5d29jLHSPXjwAP369UO3bt3w22+/FTznpE79aExSd/nyZbi5ucHDwwM9e/ZETk6OqkNSSwcOHMC8efMwZ84cbNy4EY0aNcKwYcOQm5sr137Cw8Ph4uICCwsLies6OTnBxMSkxGnJ9evXw9rauuCWBuDfNWpDhw7FH3/8ofIdpYcPHwYA+Pn5lVn2u+++g5mZGVatWqXosBRq3rx5mDVrFt+UwdgXJjU1FV26dIGtrS02bNhQaGNYflLH64bVh8YkdVWqVEFkZCROnTqF2rVrIzQ0VNUhqZ3Hjx+jX79+8Pf3x6+//gptbW2sWbMGV69eleuZadIcZfI5bW1ttGnTptikLjMzE5s3b8aAAQOgo6NT6N2ECROQnp6u8tG6AwcOwNXVFVZWVmWWNTQ0xMCBAxEcHKwW98GmpKRg9erVEv1Q9OLFC/z5558AgNOnTysqNMaYmiEiDBo0CM+fP0dISAhMTEwKva9VqxYyMjLw9u1bFUX45Zg1axZmzZpVZjmNSepsbGxgaGgIANDR0YG2traKI1IvmZmZ6N69OypWrIjg4OCCn6acnZ0xfPhwTJkyBS9fvpRLX+fOnUNKSorUSR3w7xRsdHR0kem8kJAQJCQkYPDgwUXqVKlSBUOHDsWiRYuQlJQkdd+yyMjIQFRUVJlTr5/r1q0bPnz4gPPnzyswMvEsXboUw4cPx/z588WuM2XKFJiamqJHjx44deqUAqNjjKmT4OBg7N69G8HBwahfv36R9/b29gD4WBNFe/jwIX7//XdkZ2eXXZg0zLNnz8jV1ZWys7OLvMvMzKSkpKSCz4sXLwgAJSUlqSBS5RoyZAjp6+vT1atXi7xLTEwkGxsb6tKli1z6+u2336hSpUqUl5cndRt37twhABQREVHoedu2bcnd3b3Eeq9evSI9PT2aOXOm1H3L4tChQwSA7ty5I3ad3NxcqlixIk2YMEGBkYkXR/Xq1cnCwoJ0dHTo5s2bZda5fPkyCQQCWrVqFW3cuJEA0KdPn5QQLWNMlTIzM8nOzo4CAgJKLJOamkoAaNOmTUqM7MsiEonIx8eHatSoQWlpaWWW16ikLikpidzd3en+/fvFvp82bRrh/9q777Amr7cP4N+EDbLFDSpYt1TELcMFKGLVgtrWuq22ahWcddY6UOuuv2oduPeoWlcdoOCsita6Kg5EQAERZQkBkvv9o4VXy0pCkoeE+3NduS5MznPOzZGEm+csoNBD15O6TZs2EQDatGlTsWX27t1LAOjIkSNlbq9Zs2Y0ePDgMtUhk8moRo0aNHHixILnHj9+TABo+/btJV47btw4srKyordv35YpBmWMHDmSnJycSCaTKXTd4MGDqUmTJmqKSj4nTpwgABQeHk6NGzcmV1dXys3NLba8TCajTp06UcOGDSk3N5eePXtGAOjw4cMajJoxJoSffvqJxGIx/f333yWWq1q1Ks2ZM0dDUVU8Bw8eVOh3t9YkdXl5eeTn50dnz54ttkxFvFN369YtMjY2puHDh5dYTiaTUffu3cne3p7S09OVbu/58+cEgPbs2aN0HfkGDx5MH3/8ccG/p02bRpaWlvTu3bsSr3vx4gUZGxvTDz/8UGyZvLw8hROv0kilUqpRowYFBQUpfO2BAwcIAD19+lSlMSmiV69e9PHHH5NMJqNr166RWCym4ODgYsvn35U8evRowXMODg40YcIETYTLGBNIZmYmVa1alYYMGVJq2Xbt2tHAgQM1EFXFk5GRQfb29uTn5yf3NVqT1O3atYtsbGzI09OTPD095UoqUlNTdTqpS0xMJCcnJ2revHmpiRAR0dOnT8nExKRMv5TXr19PYrGYUlJSlK4j3/bt2wkAJSYmUm5uLlWrVo3GjBkj17Xjx48nKysrSkhIoNu3b9Pu3btp1qxZFBAQQI0bNyYDAwOqV68eLVu2TCWxEhFdv36dANC5c+cUvjYtLY0MDQ1p1apVKolFUXFxcaSnp0dr1qwpeG7q1KlkaGhI9+7dK1Q+NzeXGjVqRJ06dfogOR44cCC5urpqJGbGmDAWL15MBgYGcv0R+uWXX1KHDh00EFXFM23aNDIyMqInT57IfY3WJHXK0OWkLjw8nGrUqEFVqlRR6D980aJFpKenRzdv3lSq3T59+qjsDfzixQsCQLt376YjR44QgCLnBBZ3rbGx8QfD7NWqVaNOnTrRmDFj6KeffqIvvviCDAwMyMTEhEaMGCF33cWZOnUqWVlZFTmfUx7e3t7UtWvXMsWgrLlz55KpqekHQ9ZZWVnUsGFDat26daFh2F9++YVEIhFFRkZ+8PyGDRtILBbr5HuKMfbP700bGxv65ptv5Co/e/Zsql69upqjqngePHhABgYGCg9tc1KnZaRSKS1YsIDEYjF5enpSfHy8Qtfn5ORQ06ZNqWXLlnTmzBmKjIykp0+f0tu3bz+4IyOTySghIYGuXr1Ke/fupR9//JFGjx5NpqamtGDBApV9P02aNKFhw4ZRz549Fb4DdPLkSdqwYQNdunSp2LtxCQkJNH/+fKpVqxYBoPbt29POnTtJIpEo1NbZs2dJT0+PpkyZotB171u9ejXp6+trfC5gXl4e2dvbFzlEf+XKFRKLxbR48eKC51JTU6lKlSo0aNCgQuWjoqIIAJ04cUKtMTPGhPHDDz+QkZERxcXFyVV+y5YtBECuSfxMPjKZjLp27UqOjo5yjcK9j5M6LZKUlETe3t4kEolo1qxZJU5yL8nly5fJxMSk0IISsVhMtra2VLt27UJ3wczNzalp06bUq1cviomJUdn3FBgYSJUrVyaxWExr165VWb3/lZubSwcPHqTOnTsTAGrVqpXcw7JRUVFkbW1N3t7eSvc5ERUsNNi7d6/SdSjj+PHjBICuXbtW5OuTJk0iIyMjevDgARERzZgxg4yNjen58+eFyspkMqpWrZrgK3kZY6r3+vVrsrCwUGjecEREBAGgu3fvqjGyimXfvn0EgI4dO6bwtSIi3d0KOi0tDZaWlkhNTYWFhYXQ4ZRJREQEPv/8c+Tm5mLnzp3w8vIqU30ZGRlISkrCmzdvkJKSgjdv3hR8nZaWhmrVqqF27dqoXbs26tSpAysrqw92EleV48ePw8/PD6ampnj58qVG/p/++OMP9OjRA/b29jhz5gwqV65cbNk3b96gbdu2EIlEuHr1KqysrMrU9scffwxnZ2ds3769TPUoolevXoiNjUVkZGSR/4dZWVlo3rw5bGxssGfPHjRs2BATJkzAggULiqyvf//+iI2NxeXLl9UdOmNMg6ZNm4bVq1fj6dOnqFKlilzXvHjxAjVr1sRvv/2m0P6drGjp6elo1KgRWrZsqdwhCypPMcsRXbhTV9bh1vIuLS2N9PX15VplpUp37tyhKlWqULNmzSgxMbHIMrm5udS1a1eytramqKgolbQ7Y8YMsrGxKdMdP0XExsbKdRf00qVLJBKJyN7enuzs7Ep8z/z888+kr6/Pwy2M6ZCXL1+SqakpTZ8+XaHrpFIpGRsb08qVK9UUWcUyefJkMjY2pujoaKWu56SunPvpp58IAM2cOVNjiYCmHTt2TJBk9f79+1StWjVq1KgRvXjxotDrY8eOJX19fQoNDVVZm1evXiUAFBERobI6SzJnzhwyMzOT6z0QFBREAD5YIVuUO3fuEIAStxdijGmX8ePHk6WlpVK7BTRq1IjGjRunhqgqlnv37pG+vj7NmzdP6To4qSvH3rx5QzY2NjRixAihQ9FZDx8+pJo1a9JHH31EsbGxBc+vXbuWAKh8np9UKqWqVavS5MmTVVpvUfLy8qhWrVr01VdfyVU+KyuL9u/fX+ofD1KplGxtbWn27NmqCJMxJrDnz5+ToaGh0slEjx49qEePHiqOqmJJTk4mFxcXqlevHmVnZytdj9ac/VoRBQcHIzs7G3PnzhU6FJ1Vv359hIeHQyKRwNPTEzExMQgLC8PYsWPx7bff4uuvv1Zpe2KxGD169MDRo0dVWm9RTp48ibi4OIwaNUqu8sbGxggICCj1XGWxWAx3d3dERESoIkzGmMDmz58Pc3NzjB8/XqnrnZyc+PzXMoiLi4O7uzvi4uKwf/9+GBkZKV0XJ3Xl1LNnz7Bq1SpMmTIF1atXFzocnebk5ITw8HAQETw8PBAQEIAuXbpg+fLlammvZ8+e+Pvvv/Ho0SO11J9v3bp1aNGiBVxdXVVet6enJ65evQqJRKLyuhljmvPkyRNs2rQJ3333HczNzZWqw9HREdHR0ZDJZCqOTvc9evQIbm5uyMzMxMWLF9G8efMy1cdJXTk1ffp02NraYtKkSUKHUiHUqVMH4eHhMDIyQtWqVbF3795S71gpy8vLC0ZGRmq9WxcbG4sTJ07IfZdOUR4eHsjOzsb169fVUj9jTDMWL14MW1tbjB49Wuk6HB0dkZ2djYSEBBVGpvv+/PNPuLm5wcTEBJcuXUL9+vXLXCcndeXQtWvXsHv3bsyfPx9mZmZCh1Nh2Nvb4/bt27hx40aZty4piZmZGbp06aLWpC4kJASmpqb4/PPP1VL/xx9/DAsLC4SHh6ulfsaY+iUkJGDbtm0IDAyEqamp0vU4OjoC+OeuH5PPxYsX0bFjRzg4OODChQuoVauWSurlpK6cISJMmjQJzZo1w+DBg4UOp8IxMTHRSCLds2dPXLhwAW/evFF53Xl5edi4cSMGDBig9HBKafT09ODm5sbz6hjTYqtXr4aBgUGZ5w7XrVsXAHhenZxOnDgBb29vuLi4IDQ0tMS9UhXFSV05c+TIEVy4cAFLly6Fnp6e0OEwNfHz84NUKsXvv/+u8rrXrFmD+Ph4jBw5UuV1v8/T0xOXLl1Cbm6uWtthjKleRkYG1q5di6+++qrMIxOmpqaoXr06J3VyOHDgAHr16gUvLy+cPHlS5Rvuc1JXjuTm5mLKlCnw8fGBt7e30OEwNapVqxZcXFxUPgS7Y8cOBAYGYvz48WjRooVK6/4vDw8PZGZm4tatW2pthzGmeiEhIUhPT0dgYKBK6nN0dOSkrhREhKCgIPj6+uLgwYMwNjZWeRuc1JUj69atw5MnT7BkyRKhQ2Ea8Mknn+DkyZMqu9P166+/YsiQIRg6dKjaVu6+z9XVFaampjyvjjEtk5ubi+XLl+Ozzz6Dg4ODSup0dHTkOXWlePToEeLi4jBy5Ei1LcTjpK6cSE1NxZw5czB06FA0a9ZM6HCYBvTs2RNv377FpUuXylzX77//js8++wwBAQFYv349xGL1v7UNDAzQvn17nlfHmJbZv38/nj9/rtLdFXivutKFhYVBT08PHh4eamuDk7pyYuHChcjKyuKNhiuQFi1aoEaNGmUego2IiECfPn3QrVs3bN++XaNzMT09PXHhwgVIpVKNtSmE8PBw7N+/X+e/T6b7iAg//vgjfHx88PHHH6usXkdHRyQmJiIzM1Nldeqa0NBQtG7dWm0L2AAtS+omTZoEd3d3DBgwADk5OUKHozIxMTFYuXIlpkyZgho1aggdDtMQkUgEPz8/bN68GXPmzFFqM+Jr167Bz88PHTp0wL59+2BgYKCGSIvn4eGB1NRU3LlzR6PtatqoUaPQr18/NGrUCFu2bOHFIUxrnT17Frdv38bkyZNVWm/+tibR0dEqrVdXyGQynDt3Dp07d1ZrO1qT1N26dQsJCQm4cOECGjdujAMHDggdksrs2rULBgYGmDhxotChMA37/vvv0atXLyxfvhz169dHq1atsHLlSrk28fzrr7/QrVs3NGvWDIcPH1bLpNvStG7dGkZGRjo9ry4+Ph4PHz7E7Nmz0bhxYwwdOhT169fHunXr+EQNpnWWLFkCFxcXlScX+UkdD8EW7c6dO3j9+jW6dOmi1nZERERqbUFF1qxZg0qVKmHQoEGIjIzE5s2b8b///e+DMhKJ5IMP2bS0NNjb2yM1NVXly4ZVqVu3bhCJRDh58qTQoTCBZGVl4dixY9i1axeOHz8OqVSKLl26FPxs5OTkFHrs3r0bNWrUQFhYmFo3Sy6Np6cnKleujIMHDwoWgzpt374dgwYNQlJSEuzs7PDXX39h/vz5OHDgAGrWrIkpU6ZgxIgRMDExETpUxkp069YttGjRArt378Znn32m0rqJCGZmZliwYAGCgoJUWrcuWL58OWbMmIE3b96o9Q9w9Sy/UIO3b98WDE1aWloiJSWlUJmFCxfihx9+0HRoZZKXl4dLly5hxowZQofCBGRiYoK+ffuib9++ePPmDQ4cOICdO3dixowZ0NfXh6GhYaFHixYtsHXrVkETOuCfpG7t2rUgIohEIkFjUYewsDA4OzvDzs4OAODs7Ix9+/bhwYMHCA4ORmBgICIiIrB//36BI2WsZEuXLkWdOnUQEBCg8rpFIhFva1KCsLAwdOjQQe0jKloz/GptbY20tDQA/yR4NjY2hcpMmzYNqampBY/Y2FhNh6mwW7duISMjQ62rYZh2sba2xldffYXz588jKysL6enpeP36NV6+fImYmBg8evQI9+7dw4kTJwoSDSF5eHggOTkZ9+/fFzoUlSMihIWFFTlU1ahRI2zfvh1LlizBb7/9VvD5xFh5FBMTg7179yIoKEht22lwUle03NxchIeHq30+HaBFSV3btm1x+vRpAMCpU6fQoUOHQmWMjIxgYWHxwaO8Cw8Ph4mJCVq2bCl0KIwppX379jA1NVXrWbZCefr0KZ4/f17iPJhPP/0UOTk5Oj19QpcWplVUK1asgKWlJYYPH662NjipK9qNGzeQkZHBSd37XFxcUK1aNbi7u+P+/fvw9/cXOiSViIiIQLt27WBoaCh0KIwpxdTUFL6+vjq1eCmfPPtK1alTBy4uLjh06JAGI9OM1NRUDB06FNbW1jp5J7aiePPmDTZu3IjRo0er9WxrJycnREdHQyaTqa0NbRQWFgZzc3ON3LzRmqQO+Gc+wIULF7Bz506dSIKkUikuXLgAT09PoUNhrEwCAgIQGRmJZ8+eCR2KSoWGhqJly5al3vXv06cPTpw4oVOrYc+dOwdnZ2ccPHgQlpaWmDJlitAhMSW8evUKAwcORF5eHsaOHavWthwdHSGRSPDixQu1tqNtQkND4enpqbZh7/dpVVKna+7cuYO3b99yUse0nq+vL4yMjHRqBWxJ8+n+q0+fPkhPT0doaKgGIlOvrKwsTJgwAZ07d4ajoyPu3LmDVatW4fjx4zrx/VUkhw8fRpMmTXD16lXs3bsXVatWVWt7vK1JYVlZWbh8+bLatzLJx0mdgCIiImBoaIjWrVsLHQpjZWJubo5u3brpVFJ37949vHr1Sq6krkmTJqhXr57WD8FGRkbC1dUVa9aswYoVKxAaGoratWsjICAA7dq1w8SJE/lUDS3w9u1bDB48GH369EG7du1w79499OrVS+3t1qlTB0DpSV1FGp69cuUKJBKJRubTAZzUCSo8PBxt2rTh/a2YTvD398eVK1cQFxcndCgqERYWBkNDwyIXZf2XSCRCnz59cOTIEa1MeqRSKebNm4e2bdvCxMQEN2/eRGBgYMEZwiKRCMuWLcPt27exY8cOgaNlJTlz5kzBhuRbtmzB4cOH1X6HLp+JiQlq1qyJJ0+eFFsmNDQU1apVw9WrVzUSk9BCQ0NRuXJlNG3aVCPtcVInECJCREQED70yndGzZ08YGBho/d2qfGFhYWjfvr3cf3T16dMHr169wpUrV9QcmeqFhITg+++/x7Rp03DlyhU0bty4UJl27dqhb9++mDFjBt69eydAlKwkmZmZGDNmDLy9vdGgQQPcuXMHgwcP1vjekSWtgJVIJBg9enTBPL+KcE5s/hSO/D+Q1E3hVrKyshAfH1/o+Xv37qkkoIriwYMHSE5O5v3pmM6wsrJC165ddWIVbF5eHs6fP6/QkEmbNm1QvXp1rUxq169fDz8/P8ydO7fERWiLFi1CUlISli9frsHomDwCAwOxefNmrF69GqdPn4aDg4MgcZSU1C1fvhxPnz7FoUOH8OLFC0yaNEnD0WlWWloarl+/rrGhV0DBpO7AgQOoX78+fH194ezsjD/++KPgtYEDB6o8OF0WHh4OfX19tG/fXuhQGFOZgIAAXLhwAYmJiUKHUia3bt1CamqqQh/GYrEYvXr1wqFDh6Alpy8CAG7fvo3IyEi59i9zdHTEt99+i0WLFsl1PjHTjLi4OGzduhXz5s3D2LFjNXZXqCjFJXXPnz/H/PnzMX78ePTu3RvLli3DL7/8ghMnTggQpWZEREQUHPmoKQr9z8+fPx83b97E7du3sWnTJgwbNgy7du0CAK36ECsPIiIi4OrqqtY9gxjTtF69ekEsFmvl3ar3hYWFwczMDK1atVLout69eyM6Ohp//fWXmiJTvZCQEFStWhW+vr5ylZ85cyYMDQ3x/fffqzkyJq8VK1bAzMwMI0eOFDoUODk5ISkpCenp6R88P2HCBFhaWhb83IwaNQrdu3fHsGHDkJycLESoahcWFgZ7e3s4OTlprE2Fkrrc3NyCY4latmyJiIgIrFu3DnPnztWpMx83b96s1v18iAjh4eE8n47pHFtbW3Tq1Enrh2DDwsLg7u6u8H6YnTp1gqWlpdYktdnZ2dixYwcGDx4MAwMDua6xtrbG7NmzsXHjRty9e1fNEbLSpKSkYN26dRg7dizMzc2FDqdgW5Po6OiC506fPo2DBw9i2bJlBTGKRCKEhIQgLy8PI0eO1MkbQ/nz6TSaH5ECOnbsSLdv3/7gOYlEQp999hnp6ekpUpVGpKamEgBKTU2V+5qcnByqXr06AaArV66oJa6oqCgCQMePH1dL/YwJae3ataSnp0evXr0SOhSlSCQSMjExoSVLlih1/RdffEHOzs4qjko9du3aRQDo4cOHCl0nkUjIycmJunfvrqbImLzmzp1LJiYmlJSUJHQoRESUkJBAAOjQoUNERJSdnU3169cnT09PkslkhcofPHiQANDmzZs1G6iaJSUlEQDatm2bRttVKKmLjY2lly9fFvnaxYsXVRKQKimT1O3evZsAUI0aNcjX11ctcW3cuJHEYjG9fftWLfUzJqSEhAQSiUS0ceNGoUNRSnh4OAGgyMhIpa7fv38/AaAnT56UWC4jI4MiIyPp9evXRf6y04QuXbqQu7u7UtceOHCAANDp06dVHBWTV0ZGBtna2tLYsWOFDqWATCYjMzMzWrZsGRERLVy4kPT09OjOnTvFXjNkyBAyNzenp0+faipMtdu3bx8BoLi4OI22q1BSp22USeratWtHnTt3pp07dxIAun79usrjGjhwILVo0ULl9TJWXnh4eGjtXZzvv/+erK2tKS8vT6nr09PTycjIiJYuXVpsmeTkZGrSpAkBIABkaWlJLi4u5O/vT5MnT6a1a9cqfPdMUU+ePCEAtGXLFqWul8lk1KFDB3J2dla6r1jZ/PTTT6Snp0fR0dFCh/KBZs2a0ZgxYygmJoZMTU1pwoQJJZZPTU2l2rVrk7u7e7n5WZLJZNSrVy/y9vam2bNn0/HjxxUafRg1ahQ1aNBAjREWTemk7sCBA6qMQy0UTequXbtGAOjw4cOUl5dH9evXp08++UTlcTk4OFBQUJDK62WsvPjpp5/IwMCA3rx5I3QoCnN3d6c+ffqUqY6ePXtShw4dinwtNTWVWrZsSXZ2dnTy5Enav38/LV68mEaNGkVdu3YlR0dH0tPTIysrK7XezZ85cyZZWFhQRkaG0nXk39U8f/68CiNj8sjJySEHBwcaMGCA0KEU0qtXL+rWrRsFBARQtWrV5PodHB4eTiKRiBYvXqyBCEv3119/EQBq164dVa5cueAPMCcnJ/riiy9o1apVFBMTU+z1H330EX3zzTcajPgfSid1hoaGtHz58hLLCDWkkE/RpO7LL7+kunXrFvylsHXrVgJAN2/eVFlMz549+2C+AWO6KC4uTpD5JGWVkZFBBgYGtHr16jLVs2nTJhKJRJSQkPDB85mZmeTu7k6WlpZ069atYq+Pj48nY2Njmjt3bpniKE5eXh7VrFmTRo0aVaZ6pFIpValShaZOnaqiyJi8tm3bRgDor7/+EjqUQoKCgsjExIQA0I4dO+S+bsqUKWRgYECPHz9WY3TyCQ4OJjMzM8rOziaZTEZPnjyhXbt20bhx46hNmzZkaGhIenp6FBAQQBcvXvwg33n+/DkBoP3792s8bqWTut9//50sLCzo22+/LZS85eXl0ebNmwW59fg+RZK6ly9fkoGBQcE8ACKi3NxccnR0pE8//VRlMeUnisnJySqrk7HyqF27dmq5061Ov//+OwGg+/fvl6meV69ekVgspnXr1hU8l52dTT4+PmRmZkaXL18utY5x48aRtbW1QtNH5HX8+HECQNeuXStzXYMGDdKahSG6QiqVUpMmTahHjx5Ch1Kk1atXEwDy8PBQ6ObOu3fvyMLCgmbNmqXG6OTTvn37Eu/Yp6en088//0z169cnANSyZUvavn07SSQS2rJli2C/58s0p+7PP/+kWrVqUe/evendu3ckkUhozZo1VKdOHbK2tqbZs2erKk6lKJLUzZkzh0xNTQsNF4WEhKj0r6Hhw4dT06ZNVVIXY+XZ0qVLycjIiNLS0oQORW5TpkyhatWqqWSUoWPHjtStWzci+ucPRH9/fzIyMqKzZ8/KdX18fDwZGRnR/PnzyxzLf3366afk7Oysku8zf3FZbGysCiJj8vjtt98IAF24cEHoUIp06dIlMjExUer35ogRI6hOnToklUrVEJl8kpKSSCQSUUhISKllpVIpnThxgry9vQkAVatWjZo0aULNmzfXQKSFlXmhRFxcHDk7O5OzszPVqFGD7OzsaMGCBeXig1zepE4ikVDVqlWLHP/Oycmh2rVrU79+/VQSU7169WjMmDEqqYux8iw6OpoA0O7du4UORW4tW7akL774QiV1rVq1qmBe4eDBg0lPT49+++03heoYO3Ys2djYqPTzNCEhgfT19WnVqlUqqe/169ckFotpw4YNKqmPlUwmk1G7du2KnbNZXkgkEqWuy5+nGRERoeKI5Jc/olbcbh/FuXfvHo0aNYpMTEwEu6lVpqTu7du3NHfuXLK1tSUTExMyNTVVy/j+jRs3yM3NjTw8PKhv376Uk5Mj13XyJnU7duwgAHTv3r0iX1+3bh2JRKJiX5dXfHw8AaB9+/aVqR7GtIWrqysFBAQIHYZcUlJSSCwWq2wrlpiYGAJALVq0IJFIRLt27VK4jtjYWDI0NKTg4GCVxEREtGTJEjI0NFTp0FD79u1VOk2FFS8iIoIA0NGjR4UORS2kUinVqVOHRowYIVgMffv2pdatWyt9fVZWlmCreJVO6r777juytLQkR0dHWrduHWVkZNDgwYOpSpUqKpmn8b6XL19SZmYmERFNmzZN7qRInqROJpNRq1atyMvLq9gy2dnZZG9vX+a/4POHKRTN/hnTVgsXLiRTU9OC9295dvjwYQKg0r2yXF1dCQCtX79e6TpGjx5Ntra2KrlbJ5PJqGHDhvTZZ5+Vua73zZ8/n8zNzZW+O8Pk5+vrS02bNhV0eFLdZs2aRZaWlvTu3TuNty2RSMjCwkJti5TUTemkrmHDhrR169ZC2ejMmTPJzMyMDh8+XObgijJ79mz69ddfi3wtOzubUlNTCx6xsbGlJnVXrlyR66+en3/+mcRiMf39999Kx/71118LvniEMU3KPz2lvG2BlJeXR2/fvqW4uDh68OABXb9+nT7//HOqW7euStu5dOlSmb/358+fk4GBAS1cuLDM8Vy8eJEA0JkzZ8pc1/siIyMJAJ07d06l9bIP3b59mwDQ9u3bhQ5FrfI/N/bu3avxts+ePavyXS80SemkrqQJths2bCAjI6MybwvwXzExMdS+fftih1+///77gr1k3n+UlNR9/vnn5OTkVOpfPVlZWVSjRg0aNGiQ0vE3atSIRo4cqfT1jGmj5s2bq2xOaln17t27YKuFoh6jR48WOsQiff3112Rra0vp6ellqmfo0KFqmYQulUqpatWqNGXKFJXWy/5fTk4OeXp6Uu3ateWegqTN2rZtK8jq3sDAQKpZs6bgW7IpS20nSpw4cYLMzc0Vuubly5fUoUOHQo/Xr19TamoqeXh4lLjLuqJ36uLj40lfX59WrlwpV3yrVq0iPT09evTokULfFxFRYmKiwnv2MKYLgoODydTUtEyb3KrCvXv3CACNGzeOQkJCaO/evXT8+HGKiIigmzdvUlRUFOXm5goaY3FiYmLIwMCgTBuzpqamkqmpqdqGlYYMGcIr+9VozJgxpK+vT+Hh4UKHohFr1qwhPT09SkxM1FibMpmMnJycyrx/o5DUekyYsmcn/ldeXh75+fnJvRVAvtLm1M2aNYsqVaok967t7969o6pVq9LQoUMVioOIaM+ePQSAnj9/rvC1jGmz/OOo9uzZI2gckyZNIhsbG8rOzhY0DmWNHDmS7OzslEqO3759SwEBASQWi9X2GbR3717+jFOT9evXEwBau3at0KFozOvXr8nAwEDumy6q8Pfff2v9IhStOPt1165dZGNjQ56enuTp6Sn3L4eSkrrs7Gyys7NT+CDk1atXk0gkorCwMLmvSUtLo7p165KHh4dCbTGmK1q2bCno6sicnByqWrUqffvtt4LFUFbR0dGkr69PS5YsUei6K1euUJ06dcjCwkKtK+/zVw+/v+EyK1pUVFSJJ4q878KFC2RgYEBff/21eoMqh/r06aPRc9KXLFlCxsbGWrGwqzhakdQpq6SkLn/HZ0UXPkilUurYsSPZ29vLfa7lyJEjyczMrFwcfcKYEH788UcyNjYWbP/K/M1atXXyc74RI0ZQlSpV5PqlI5VKKTg4mPT09Kht27YqXdVbHDc3N+rdu7fa29F23t7eJBKJ6LvvvitxxXBMTAzZ2dmRh4dHhVxZfOjQIQJAd+/e1Uh7np6e5Ofnp5G21KXCJnWjR48u2O1dUTExMWRhYSHXQcr5x/H88ssvSrXFmC7IP/N4586dgrTfp08f+vjjjwVpW5WePn1K+vr6tHTp0hLLxcfHU5cuXUgkEtH06dM1NrF+wYIFVKlSpQqZgCjCwcGBnJ2dycDAgJo3b0537twpVCYzM5NcXFyodu3alJSUJECUwpNIJGRjY6ORs4VTUlJIT09P639XV9ikjuifFa3K2r59e6nzhJKTk6l69erUrVs3rV1Jw5iqtG3bVpCzYJOSkhRaEFXejRgxouA4os6dO9PYsWNpzZo1dP78eUpKSqJjx45R5cqVqXr16hQaGqrR2G7dukUANN6uNsnMzCQAtHnzZrp58yY1btyYjIyMaPny5QWrkmUyGfXv359MTU3pzz//FDhiYY0ePZpq1qyp9s18deW4uwqd1JWFTCajfv36kZWVVbE/BP379ydra2uKj49XefuMaZvly5eToaGh3NMWVGXFihVkYGBAr1690mi76pKVlUV79uyh2bNnU0BAADVu3Jj09fU/2JrFz89PkO9XJpNR9erVadKkSRpvW1vk7zV36dIlIvrn/zMoKIgAUKdOnSgmJoYWLFhAAGj//v0CRyu8q1evEgCFF0oq6osvviAXFxe1tqEJnNSVwevXr6lGjRrUpUuXQvs+5Wf9Qq/4Y6y8yN9iaOvWrRprUyaTkbOzM/n7+2usTSHk5OTQ/fv36cCBA3Tw4EFBRwaGDh1KTZo0Eaz98m7//v0EoNAxbaGhoVSrVi0yNzcnkUhEs2bNEijC8kUmk1H9+vXLtEdsaXJzc8na2lon+pyTujI6ffo0AfhgaCc+Pp6sra1VfhQPY9rOzc2NfH19NdZe/kkHx44d01ibFV1+0hITEyN0KOXSggULyMbGpsjX3rx5Q8OGDaPhw4fr9DFgipo3bx6ZmZmpba/L/PN0//jjD7XUr0lisDLx8vLCuHHjMHXqVNy7dw9EhOHDh8PY2Bg///yz0OExVq7069cPp0+fxps3bzTS3ubNm1G9enX4+PhopD0GdO3aFXp6ejh58qTQoZRLDx8+RP369Yt8zcrKCiEhIdi4cSPEYv71nO/LL79EZmYmDh06pJb6jx07hqpVq6Jly5ZqqV+T+KdGBRYtWgRHR0d8+eWX+N///offf/8dISEhsLGxETo0xsqVgIAASKXSMn84P3z4EBkZGSWWkUgk2LVrFwYOHAh9ff0ytcfkZ2Vlhfbt23NSV4yoqKhikzpWtDp16sDT0xPbtm1TS/1Hjx5Fjx49dCKR1v7voBwwMTHBjh07cPfuXYwbNw6jRo1C9+7dhQ6LsXKnevXq8PT0xN69e5Wu48mTJ3B2doanpydSUlKKLffbb78hJSUFQ4cOVbotphxfX1+cPXsWEolE6FDKnaioKDRo0EDoMLTOwIEDcfbsWcTHx6u03idPnuDBgwfw8/NTab1C4aRORVq0aIFly5ahTZs2WLp0qdDhMFZu9evXD6GhoUhOTlbq+kmTJqFy5cp4/vw5unTpgtevXxdZbvPmzWjbti0aNmxYlnCZErp3747MzExcvHhR6FDKleTkZKSkpPCdOiX4+/tDJBLhxIkTKq33+PHjMDQ0RNeuXVVar1A4qVOhcePG4erVq6hUqZLQoTBWbvn7+4OI8Ouvvyp8bVhYGA4fPoylS5ciLCwM8fHx6NKlS6EEMT4+HqdOneK7dAJxdnZGjRo1VP4LWNtFRUUBACd1SrCyskLr1q1x5swZldZ79OhRdOzYEebm5iqtVyic1DHGNKpKlSro1KkT9u3bp9B1eXl5CAwMRPv27fHZZ5+hWbNmOHfuHF6+fInOnTvj1atXBWW3b98OIyMj9O/fX9XhMzmIRCJ0796d59X9R35SV69ePYEj0U5eXl4IDQ2FVCpVSX3Pnj3D+fPn8cknn6ikvvKAkzrGmMb1798f586dQ2JiotzXbNy4EXfu3MHKlSshEokAAE2aNMG5c+eQlJSEzp07IykpCUSEzZs349NPP4WlpaW6vgVWiu7du+PBgwd49uyZ0KGUG1FRUXBwcICpqanQoWglLy8vpKSk4M8//1RJfTNmzICdnR2GDBmikvrKA07qGGMa9+mnn0IkEuHgwYNylX/79i1mzZqFwYMHo1WrVh+81rhxY5w/fx7Jycno1KkTDh8+jKioKAwbNkwdoTM55W9tcurUKaFDKTdK2s6Ela5NmzYwMzNTyRDsjRs3sGvXLsydOxdmZmYqiK584KSOMaZxtra26Nq1q9xDsHPnzkVWVhaCg4OLfL1hw4Y4f/483rx5A39/f9SpUwcdO3ZUYcRMUZaWlmjbti0nde/h7UzKxtDQEB07dixzUkdEmDx5Mpo0aaJTd+kATuoYYwLp378/IiIi8OLFixLLPXz4EKtXr8b06dNRo0aNYss1aNAA4eHhqFu3LsaNG6cTe05pOx8fH4SGhiIvL0/oUAQnk8nw6NEj3s6kjLy8vHDx4kW8e/dO6TpOnDiB8+fPY/HixTq3h6VWfert3r0bdnZ2QofBGFOB3r17w9zcHB06dMDRo0eLLTdx4kTUqlULEyZMKLXOjz76CI8fP0ZQUJAqQ2VK8vHxQVpaGv744w+hQxHc8+fPIZFI+E5dGXXt2hU5OTlKb5eTl5eHKVOmoGPHjvD19VVxdMLTmqROJpPhwIEDsLe3FzoUxpgKWFtb48aNG2jQoAE++eQT9OzZE9HR0R+UOXXqFI4fP44lS5bA2NhYrnrzF1Ew4bm6usLGxoaHYMHbmahK48aNUaNGDaWHYLds2YL79+9jyZIlOvlZoTVJ3a5duxAQEMBDKozpkI8++ggnT57EgQMH8Oeff6Jx48aYN28esrOzkZubi6CgIHh4eMDf31/oUJkS9PT04OXlpbKkjoiwY8eOD7av0RZRUVEwNDRE7dq1hQ5Fq4lEInTt2lWppC4zMxOzZ8/G559/rhPnvBZFKzIkqVSKffv2lbrnlEQiQVpa2gcPxlj5JhKJ4O/vj7///hvjx4/H3Llz0axZM4wZMwZ///33B1uYMO3j7e2N69evF3vyhyIOHjyIgQMHYuDAgSAiFUSnOVFRUahXrx709PSEDkXrde3aFbdv30ZSUpJC1y1fvhyvX7/GggUL1BSZ8MpVUpeQkAA3N7dCjx07dqBfv36l3qVbuHAhLC0tCx48VMuY9jAzM8OiRYvw119/wcHBARs2bMCwYcPg4uIidGisDLy9vUFEOHv2bJnqyc7OxuTJk9GoUSOcOnUKa9euVVGEmsHbmahO/pFeoaGhcl+TmJiIH3/8EWPHjkXdunXVFZrgRKQFf+5MnToVt27dglgsxpUrVzBs2DCsWLGiUDmJRPLBAdJpaWmwt7dHamoqLCwsNBkyY6wMiAgXLlyAq6urTu0hVVE1bdoUbdq0QUhIiNJ1BAcHY86cObh79y5WrFiBrVu34vbt2/joo49UGKn61K1bF/369cPixYuFDkUnNGvWDK1atcKmTZvkKj969Gjs3r0bT548gY2NjZqjE45WJHXva9myJW7cuCFX2bS0NFhaWnJSxxhjApo4cSL27t2L2NhYpYbSX7x4gfr162PUqFFYtmwZMjMz0bx5c9ja2uLixYvlfluK7OxsmJqaYsOGDRg+fLjQ4eiEoKAgHDx4EDExMaX+TD18+BBNmjTBokWLMGnSJA1FKIxyNfwqD3kTOsYYY+WDj48P4uPjcf/+faWunz59OkxMTDBr1iwA/wzVb9u2DdevX9eKO19PnjwBEfEedSrk5eWF2NjYglXFJfnuu+9Qq1YtjB07VgORCUvrkjrGGGPaxd3dHcbGxkqtgr1+/Tq2bt2KefPmwcrKquD5du3a4bvvvsOcOXNw8+ZNFUb7/xISEvDtt9/i2LFjZarn4cOHAHg7E1Xy8PCAgYFBqatgf//9dxw+fBjBwcFyb4ukzbRu+FURPPzKGGPlg4+PDwAolNgREdzc3JCeno6bN28WGmbNyclBmzZtkJOTg8jISJX90s7Ly8OaNWswa9YspKWloXr16nj8+DFMTU2Vqm/RokVYtGgR3rx5wyu5VcjT0xNWVlY4cuRIka9nZGSgSZMmqF+/Pk6fPl0h+p7v1DHGGFM7Hx8fREREICsrS+5r9uzZg8uXL2PlypVFzpszNDTE9u3b8fjxY8yYMUMlcV68eBGurq4IDAzEgAEDcOPGDSQnJ2PVqlVK15l/5mtFSCo0ycvLC+fOnSv2GLoZM2YgOTkZ69atqzB9z0kdY4wxtfPx8UF2djYuXLggV/l3795hypQp6N27Nzp37lxsuaZNmyI4OBgrVqzA+fPnlY4vMTERQ4YMKRgqvnbtGtasWQNXV1d88803WLRoEZKTk5Wq++HDhzyfTg28vLyQnp6Oa9euFXrt6tWrWL16NebNmwdHR0cBohMGJ3WMMcbUrnHjxqhZs6bcw69LlixBUlISli5dWmrZ/JNHhgwZotSm81u2bEGDBg1w7NgxbNiwAVeuXPngxIGZM2eCiBAcHKxw3cD/36ljquXq6gpLS8tC8+pycnIwYsQIuLq6Yty4cQJFJwxO6hhjjKmdSCSCj4+PXEldXFwcFi9ejMDAQDg5OZVaXiwWY8uWLUhOTsaPP/6oUFxxcXH46quv4Ovri4cPH2LEiBGFNrq3s7PD5MmT8fPPP+PZs2cK1Z+SkoLk5GRO6tRAX18fnTt3LrSx9aJFi/Dw4UOEhISU++1uVI2TOsYYYxrh4+ODe/fuIS4ursRy3333HSwsLBSaJ1enTh189dVXWLt2LTIzM+W+7n//+x9MTU2xbt062NraFlsuKCgI1tbWmD17ttx1A8CjR48AgIdf1cTLywtXr15Feno6AOD+/fuYP38+pk6dCmdnZ4Gj0zxO6hhjjGlEly5dIBKJcPr06WLL/PTTT9i5cycWLFig8K4F48ePx9u3b7F161a5ymdkZGDdunUYOXIkzM3NSyxbqVIlzJkzBzt27MDt27fljil/O5N69erJfQ2Tn5eXF/Ly8nD+/HlIpVKMGDECjo6OmDlzptChCYKTOsYYYxpha2uLVq1aFTsEu2zZMowfPx6TJ0/GsGHDFK6/Tp06CAgIwPLlyyGVSkstv2XLFqSnp+Pbb7+Vq/7hw4ejXr16mDZtmtwxRUVFoWbNmqhUqZLc1zD5OTk5oXbt2jhz5gzWrl2LK1euYMOGDRViT7qicFLHGGNMY3x8fHD27NlCSdfChQsxadIkzJgxA4sXL1Z6C4pJkybhyZMn+O2330osJ5VKsXLlSvTt2xcODg5y1W1gYIDg4GCcPHkS586dk+saXiShXiKRCF5eXjh06BCmTZuGr7/+Gu7u7kKHJRhO6hhjjGmMj48PUlJSEBkZCeCfDYZ/+OEHTJ8+HT/88APmz59fpj3FWrVqBXd391JXzR49ehRPnjxBUFCQQvX7+/ujdevWmDp1KuTZu5+3M1E/Ly8vxMXFwdLSUiuOjVMnTuoYY4xpTJs2bWBpaYlTp06BiDBr1izMmTMHwcHBCi9CKM6kSZNw+fJlXL16tdgyy5cvh5ubG1q3bq1Q3SKRCIsXL8b169dx8ODBEsvKZDI8evSI79SpWdeuXWFvb4/169dX+NOj+JgwxhhjGuXv74/ExES0b98eS5YswdKlSzFx4kSV1S+TydCoUSM4Oztj//79hV6/fv06WrdujV9//RV9+vRRqg1fX188fvwY9+7dg4GBQZFlYmNj4eDggGPHjqFHjx5KtcOYIvhOHWOMMY3y9vbGpUuXsGTJEqxatUqlCR3wz751QUFB+PXXX/H06dNCr69YsQKOjo745JNPlG5j0aJFePz4MdatW1dsmaioKADgO3VMYzipY4wxplE9evRAtWrVsGbNGrXt+D9o0CDY2Nhg5cqVHzwfGxuLffv2ITAwEHp6ekrX7+zsjJEjR2LKlCm4d+9ekWUePnwIfX191K1bV+l2GFMEJ3WMMcY0qlatWnjx4gW++eYbtbVhamqK0aNHIyQkBCkpKQXPr169GpUqVcLQoUPL3Mby5cvh5OSEvn37FrnhcVRUFJycnCrcqQZMOFqT1J0/fx5dunSBp6cnjhw5InQ4jDHGyqAsK1zlNWbMGEil0oIh0vT0dKxfvx6jRo1Syb5xpqam2L9/P54/f44xY8YUep23M2GaphVJXXZ2NpYtW4aTJ08iPDwcvXr1Ejokxhhj5VyVKlUwaNAgrF69GhKJBJs3b0ZmZqbcmw3Lo2HDhvjll1+wdetWbNmy5YPXOKljmqYVSd3ly5dhYmKCnj17ok+fPkhISBA6JMYYY1pgwoQJePnyJXbs2IGVK1eiX79+qFWrlkrb+PLLLzFs2DCMHj26YH6dRCJBdHQ071HHNEorkrrExERER0fj6NGjGDlyJObMmVNkOYlEgrS0tA8ejDHGKq6GDRvCz88PgYGBiI6OVnizYXmtXr0ajo6OBfPrnj59CplMxnfqmEaVq6QuISEBbm5uhR4ymQxubm4wNDRE586dcf/+/SKvX7hwISwtLQse9vb2Gv4OGGOMlTcTJ05ERkYGPDw80LJlS7W0kT+/LiYmBmPGjOHtTJggtGLz4devX+OLL77AqVOncPXqVfzyyy+F5i4A/9ypk0gkBf9OS0uDvb09bz7MGGMVGBFh4sSJCAgIQPv27dXa1rZt2zB48GC0atUKDx48QFpamkYWhTAGaElSBwA///wz9u7dC7FYjE2bNsHR0bHUa/hECcYYY5o2fPhwbNq0Ca6urrhx44bQ4bAKRGuSOmVwUscYY0zT3r17h3bt2qFNmzZYv3690OGwCoR3RGSMMcZUyNTUFNeuXSvTiRWMKYOTOsYYY0zFjIyMhA6BVUDlavUrY4wxxhhTDid1jDHGGGM6gJM6xhhjjDEdwEkdY4wxxpgO0OktTYgI6enpMDc3580fGWOMMabTdDqpY4wxxhirKHj4lTHGGGNMB3BSxxhjjDGmAzipY4wxxhjTARX2RIn8RRSMMcYYY9qgtIWfFTapS05ORpUqVYQOgzHGGGNMLqmpqbCwsCj29Qqb1BkaGgIAYmNjS+ygiigtLQ329vbcN//B/VI87puicb8Uj/umaNwvxeO++edOXUkqbFKXf/vSwsKiwv5wlIb7pmjcL8Xjvika90vxuG+Kxv1SPO6b4vFCCcYYY4wxHcBJHWOMMcaYDqiwSZ2RkRG+//57GBkZCR1KucN9UzTul+Jx3xSN+6V43DdF434pHvdN6fiYMMYYY4wxHVBh79QxxhhjjOkSTuoYY4wxxnQAJ3WMMcYYYzqgwiZ1kyZNgru7OwYMGICcnByhwxFUeno62rRpg0qVKuHu3bsAgL1796Jdu3bo3LkzYmNjBY5QGJGRkXB3d4enpyf69euH3Nxc7pd/3b17Fx06dICnpyd69OiBjIwM7pv37N69G3Z2dgD4vZTv2bNnsLOzQ8eOHdGxY0e8evWK++Zf58+fR5cuXeDp6YkjR45wv/zr2rVrBT8vDRo0QFBQEPdNaagCunnzJg0YMICIiObPn087d+4UOCJh5ebmUlJSEg0ePJju3LlDOTk51Lp1a5JIJHTx4kX66quvhA5REC9fvqTMzEwiIpo2bRrt27eP++VfOTk5BV/PmTOHtm3bxn3zL6lUSp9++im5uLjwe+k90dHR5O/vX/Bv7pt/ZGVlkZ+fH0kkEiLifinO8OHD6fz589w3paiQd+quXLkCb29vAEC3bt1w+fJlgSMSlr6+fsFdBQB49OgRmjRpAkNDQ3To0AF37twRMDrhVKtWDaampgAAAwMDREVFcb/8y8DAoODrd+/ewcHBgfvmX7t27UJAQADEYjG/l/7j0qVLcHd3x/Tp0/n99K/Lly/DxMQEPXv2RJ8+fXD9+nXul//Iy8vD1atXYWdnx31TigqZ1L19+7bgiBFLS0ukpKQIHFH58n7/AIBUKhUwGuE9f/4cZ8+ehZubG/fLe86cOQMXFxecO3cOBgYG3Df45/vet28f+vfvD4DfS++rXr06Hj9+jIiICCQlJeHIkSPcNwASExMRHR2No0ePYuTIkZgzZw73y3+EhYXB09OT309yqJBJnbW1NdLS0gD886FrY2MjcETly/v9AwB6enoCRiOstLQ0DBw4EJs3b0aVKlW4X97j5eWFW7duISAgAOHh4dw3AHbs2IF+/fpBLP7no5XfS//PyMgIZmZmEIlE8Pf3x61bt7hvAFhZWcHNzQ2Ghobo3Lkz90sR9u/fj759+/L7SQ4VMqlr27YtTp8+DQA4deoUOnToIHBE5Uu9evVw//595OTk4NKlS3B2dhY6JEFIpVIMGDAAs2fPRv369blf3iORSAq+trS0RKVKlbhvANy/fx/btm1Dt27d8OjRI6xfv5775V/p6ekFX0dERMDPz4/7BkDr1q1x//59AMCtW7fg7e3N/fKevLw8XLlyBR4eHvwZLAd9oQMQgouLC6pVqwZ3d3c4ODhg8uTJQockOF9fX/z55594+PAhRo0ahcDAQHh6esLY2Bjbtm0TOjxB7Nu3D5cvX0Z6ejrmzZuHb775hvvlX2fOnMGSJUsgFothZ2eHLVu2wM7OrsL3zeLFiwu+btmyJVasWIE9e/ZU+H4BgIsXL2LmzJkwNTVF3bp1MW/ePBgZGVX4vrG1tcUnn3wCDw8PiMVibNq0CdeuXavw/ZLv3LlzBX0jFov5M7gUfEwYY4wxxpgOqJDDr4wxxhhjuoaTOsYYY4wxHcBJHWOMMcaYDuCkjjHGGGNMB3BSxxhjjDGmAzipY4wxxhjTAZzUMcYYY4zpAE7qGGOMMcZ0ACd1jDHGGGM6gJM6xhhjjDEdwEkdY4wxxpgO+D8eQDAITvdF2wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -290,7 +290,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABK20lEQVR4nO3dd3gc1dk28Htmtkm76sWyii3LTe4VGzewAWNjDIbQCZ1ACOVNKB8h5YVAQkIg8JICJITQW0IJvRmDwQbjinvvTb1L22fm+2Nt2bIleVaa0czu3r/rMqx2z848Wmu9t86cIqiqqoKIiIgSlmh2AURERGQuhgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMHZzC7AaGo4jFBVGYLl+yG3NEENh4CwDAgCBJsNgt0BW1YuHHmFkFLTIQiC2SUTERH1qLgKA6qqIrB3B3yb1yJYtg+BA3sQrqkEVOVQCwEQBEBofULkz+FHnS44ehfBkd8HzoJiuEeMh5SS1uPfBxERUU8SVPWoT8MYFSzfj+ZV36Jp+SLI9TWAKB73QR8VUQKUSO9B0qDh8IybCveI8RBdSfoWTkREZAExGwZUWUbTd1+iYfFnCJXvjwQARTnxE6MliJGeBckG9/BxSJ85D86CYv3PQ0REZJKYDAPeTatR/faLCFeX9+yJDwUOz8TpyDzrItjSMnr2/ERERAaIqTAQLNuH6ndegn/r+iO/sZtBFCFIEtJnno+0U+dAdDjMqYOIiEgHMREGVEVB3advoX7+O5EBgEZcDugSAVJ6BnpdeztcffqbXQwREVGXWD4MyN5mVL74N/i2rDW7lPYJIiAKyLnoeqRMnG52NURERFGzdBgI19Xg4JMPIlxbaaHegI6lnzEPGXMu5loFREQUUywbBoIVB1D2xO8gtzTFRBA4zDPhVORccgMEkYs7EhFRbLDkJ5bc0oyyvz8Uc0EAAJqXfYW6T98yuwwiIiLNLBcGVEVB5Ut/g9xYF3NB4LD6z/6LlvUrzS6DiIhIE8uFgbpP344MFozRIBAhoPKlJxCq6uF1EIiIiLrAUmGgZcMq1H/2ttll6ECFGg6i/Jk/QQn4zS6GiIioU5YJA2o4hOp//xNHdhGKcYqCUFUZGr762OxKiIiIOmWZMNC07GvITQ0ALDm5oWtUFfVffgDF7zO7EiIiog5ZIgyochh1n72NuOkVOIoa8KPxm/lml0FERNQhS4SBphWLITfUIa56BQ5TVdR/8T7HDhARkWVZIgzUz38H8dgrcJjibUHT8q/NLoOIiKhdpoeBcF01wjWVMLtX4Kb3F2HMU2/ilg8W639wQYBvs0X3ViAiooRnehjw7dxsdgkAgKtHD8KfZk0y5uCqCv+OzVBjeu0EIiKKV6aHAf/OLYAomV0GJhX1gttuM+z4it+LUFWZYccnIiLqKvPDwPaNgCIbcmxFVTHzhQ/wx0Wr29z/9e4ylP7l3/ho615DztsR/84tPXo+IiIiLUwNA0owgFClcb8ti4KAm04ailfXbUODPwgA2FRVh9s+Wow7p4zEnEF9DDv38cVICOzd0XPnIyIi0sjcMNADi/HMKy1GhsuJF1ZvQVmTFz969yucV9oPN4wbYvi521AVKD5vz56TiIhIA+MukmugBgOGn8Mmirhx/FA8+u0afLJ9H4blZuLe6WMNP+9xVBVKD3y/RERE0TJ9zEBPmFfaF76QDFUFHj9rMiTx+G/7mre/xG0ffYOFuw9iyjPvYG15jQGVxOGiSkREFPNM7RkQHM4eOc9vvlwJAKjzBSAJ7S9u9PwPZhhbhCBAdLiMPQcREVEXmNozIDqN/3B87Nu1WLj7IN66dCZkVcV/Npg0iE8QIbqSzDk3ERFRJ0wPA7bsXoYd/9/rd+Bfqzbj6XNPwZCcDFwzZjCeXrEJIdmExX8UGc6ikp4/LxER0QmYPmYgaeAwQxYdWrjrIH7z5Qo8NnsSxvTOBgBcNWoQmoMhvLN5l+7n08JVUmrKeYmIiDpjehhw9Rus+6JD6ypqcdtH3+DuqaMxa0BR6/0pTjuuGj0If1++CXIPLw0sOJNg75Xfo+ckIiLSQlBV1dQh7qGaSuz73c/MLMF4goCk0lHofePdZldCRER0HNN7BmyZObBlZCOetzAGgOTSkWaXQERE1C7Tw4AgCEg/Yx7ieQ6+6ExCysTpZpdBRETULtPDAACkTDgFUkqa2WUYQxCQdtrcHplGSURE1BWWCAOCzY70meeZXYYhBIcTaVPPNLsMIiKiDlkiDABAysQZEN0pZpehL0FA2qlzICYlm10JERFRhywTBkSHA9kXXW92GfoRRdgyc5E+Y47ZlRAREXXKMmEAADyjJiDttHPMLkMHAgTJhrwb7oLoYq8AERFZm6XCAABkzrkYrv5DgHZ2FowdKnIu/wkcvQrMLoSIiOiELPeJK0gSel3zU0ieVECwXHmapJ12DjyjJ5pdBhERkSaW/LSVPKnI+/E9EJOTY66HwD1mEjLnXGx2GURERJqZvhxxZ0LVFSh78kGEG2qBHt5LoCvSTj0Lmef+EEKMBRgiIkpslg4DACA3N6Liucfh37nZ7FLaJwgABGTOvRS+DcvhyCuEo6gEzqL+sPcqhGCzmV0hERFRpywfBgBAlWXUfvA6GhZ+GLlsYJVeAkGA6E5B3rU/g6ukFHUfvormJQuOPG6zwZFfHAkHhSVwFJVASsuEIMT3PgxERBRbYiIMHBbYtxPVb7+IwO6tkd/IzSpdFAFBRPppc5F+2jkQXUkAgHBdNcr+7xedhhXRkwZnUQkchSVwFBTDnt8HUrKnpyonIiI6TkyFAQBQVRUta5ej9t2XEK6r6dmTH+qVcI+ZjKxzLj2022JbNf95Gt61S6M6rJSWCXvvPnD07gNHfh/Ye/dhDwIREfWYmAsDh6nhEBoWf4bGxfMRrqk07vLB4R4IQURz4WAMOP8SJPcb1GHzYNleVDxxf7dPKyZ7YM8rgiO/byQoFBTDnt2r28clIiI6VsyGgcNUVUVw/y40r/oWTSsWQ2luBEQJUOSuH1QUIwFAVeHt1Q/fZw7BfBSixZaEB+YMwbC81E6fXvX8Y/Bv39D187cjbfZFSJ06W9djEhERAXEQBo6mKgr8OzfDu2kNgmX7EDy4F3JD7ZEGoghAAAQAKiL/OfShDwCw2SBm90ZdSh42CRlYIBSi3tF286S5w/Jw7cS+ndbh37ERVc89qtv35Sodjewf3srLBkREZIi4mvcmiCKSBgxF0oChrfcpAT+CFQcQKtsH2dsMNRyGGg5BEEQINjsEux1+TybWhtz4qlrA5spmdJaOlu2pwzUT+nT6wewsGQJ7fl+EDu7p9vckpWcj64LrGASIiMgwcRUG2iM6XXD16Q9Xn/4dtvly7UG8tGafpuNVNgewp9aL4ix3h20EQUDqtNmo+fc/oq63DcmG7Mt+AjGp43MRERF1F5fKAzChb2ZU7ZftrTthm6Sh4yC1M9sgGvbcfNgyc7p1DCIiohNhGACQn+ZCYXqS5vZL95w4DAiShJQps7pTFkJle1H+xAMI7N/ZreMQERF1hmHgkAl9MjS33V3rRUWT/4Tt3GOnQHSnnLBdZ+T6alQ+/RCavvkUcTTWk4iILIRh4JCJfbWHAQBYruFSgehwImXymV0t6QhFRv3H/0H1K3+F7G3u/vGIiIiOwjBwSEm2G5nJds3ttVwqAADPxBkQk5K7WlYb/s1rUPHE/Qjs3a7L8YiIiACGgVaiIEQ1kHBzRRMafKETH9eVBM+kM7pTWhtyQy0qn3kYjYs+gWqVDZuIiCimMQwcJZpxA4oKrNxXr6mt5+TTIThdXayqvZPLaPj0DVS//BfILU36HZeIiBISw8BRhvVOQbJD0tx+6Z7aEzcCICV74Jl4WlfL6pB/6zqU/+0++Let1/3YRESUOBgGjmITRYwvStfcfs3BBvhC2vZASJk8E4Ld0cXKOqY0NaDqhf9D3YevQQkFdT8+ERHFP4aBY0QzbiAkq1h3sEFTW8mTCvdJpx53v3v8KXANHqn5nB1pXvI5Kp76LYJl2lZSJCIiOoxh4BijC9Jgl7TvA7CurFFz29SpswDpyArQjqISZMz9IbJ/eBvSZl8U2W2xG8KVB1Hx999ycCEREUWFYeAYSXYJI/PTNLdfc0BbzwAASKkZcI+bCgAQk9zIuuQmCDYbBFFE6tTZyP3R3ZDSolsa+ThyZHBh1XN/Qrhe25gGIiJKbAwD7Yhm3MCBBj9qWgKa26dOOwuQbMi86AbY0rPaPObsMwC9brkPrtLRmo/XkcCuLSj/273wrl3a7WMREVF8E1SucXucskY/bn1zjeb2t04rwYyB2jcUCuzZBmffgR0+rqoqmr+dj/rP3gRkbQMUO5M86mRkzP2hbosfERFRfGHPQDvyUpzIdmsf+b9W4yDCwzoLAkBkC+SUKWci94Z7IKV3b+dDAPCu+S4yBXHXlm4fi4iI4g/DQDsEQcDw3qma26892GjIJkLOwhLk3XIfkoaO7fax5IZaVD37COo/fRNqOKxDdUREFC8YBjoQTRio94Wwr95nSB1iUjKyLrsZGfOu6v46BaqKpkUfo+Ifv0Oo8qA+BRIRUcxjGOhANGEAiPQOGEUQBHhOOhW9bvkNHIX9un28UNk+VDz5AJq+W8BtkYmIiGGgIzkeJ/JSnZrbRztuoCvs2b2Qe8M9SJ1xDiBoXwuhPWo4hPoPXkX1i49DbqrXp0AiIopJDAOdGNFb+3oDG8oaEe6BhX4EyYa008+LDC7M0D6DoSP+betR/tf74N2wQofqiIgoFjEMdCKaSwX+sIJtlS0GVtOWs88A5N16H9xjp3b7WIq3GTWvPYXqV59gLwERUQJiGOhE9OMGjL9UcDTRmYTMH1yLrMtuhpjk7vbxfBtXoezP/4vmlYs4loCIKIEwDHQiPcmOovQkze17OgwcljxsHPJuux+uAcO6fSzV70Xdf59H1fOPIVxbpUN1RERkdQwDJzAiX3vvwNaqZniD5szhl1IzkH3Vz5B+9uWAzXbiJ5xAYMdGlP/1XjR98xk3PSIiinMMAycwPE97GFBUYGN5k4HVdE4QRaRMOh15P7kX9ryibh9PDQVR//G/Ufn07xGs2K9DhUREZEUMAycwtHcqopnEZ+R6A1rZexWg102/Qsq02d2egggAwf27UPHkA2hY8A7UcEiHComIyEoYBk4gxWlDvyztG/ysMWncwLEEmx3psy5CzrV3dX9bZACQZTR++T7Kn3wAgX07un88IiKyDIYBDYZHsd7A/nofar1BA6uJjqukFHm33o/kkRN1OV648iAqn/4D6j58DUrAr8sxiYjIXAwDGlh9iuGJiEnJyLr4RmRedAMEl/bZER1SVTQv+Rzlf70P/u0bun88IiIyFcOABkPzUiBGcel97QHzxw20xz3qZPT+n98iacgYXY4n11ej6vnHUPPWs5C9zbock4iIeh7DgAZJdgkDczya22+uNG9GwYlIqRnIuvwWZF36E4ie6Ho8OuL9/huU/+V/4V2/gosVERHFIIYBjaK5VFDRFECDz7qj7gVBQPLw8cj7n98iecwUXY6pNDei5vWnUPPq3xCuq9blmERE1DMYBjSKdtzA1irrd5tLyR5kXXAdcq6+HVJ6ti7H9G1ajfK//C8avnwfasi6gYiIiI5gGNBocG4KbFEMHNhaaf0wcJhr4HDk3XY/PJNn6rIugRoKonHBOyj7y//Ct2k1Lx0QEVkcw4BGTpuIwbnaxw1si4GegaOJThcy5lyK3BvugS03X5djynVVqH7lr6h+6c8IVZfrckwiItIfw0AURuRrX29gW1UzZCX2fiN29hmAvJvvReqMcwFJ0uWY/q3rUP7Xe1H/2Vtcm4CIyIIYBqIQzT4F/rCC/fU+A6sxjmCzI+30eeh1871wFPbT56CyjKavP0L5n38N79qlvHRARGQhDANRGJDjhtOm/SWLhUGEnXH0KkTujb9E+lmXQLA7dDmm3FiHmv88jap/PYJgOTc/IiKyAoaBKNglEUN6pWhuH0uDCDsiiCJSppyJvNsegLNkiG7HDezegoon70fdh69C8Xl1Oy4REUWPYSBKg6JYfCjWewaOZsvMQc61dyLj/GshuLRv3NQpRUHzkgUoe/yXaF65GKqi6HNcIiKKCsNAlPpmav8g3F/vQ0sgbGA1PUsQBHjGTUXvn/4WScPG6XZcpaUJdf99DpVP/wGB/bt0Oy4REWnDMBClaMIAAGyvbjGoEvNIKenIvuxmZF/1M9iyeul23OD+naj8x4Oo/e/zkFusu6QzEVG8YRiIUq8UJ1wJNIiwM0mDRiDvtvuRNvMC3QYYQlXRsnIRyv7vl2j6dj7UMFcxJCIyGsNAlERBQJ8M7b0D8TCIsDOCzY7UU+cg72cPInnEBN2Oq/q9qP/odZQ9/mu0rP6O4wmIiAwkqJzwHbV/fLMLn22p1NQ2M9mOf1461uCKrMO/czPqP3wVoYoDuh7X3rsI6WdeCOeAYRB0WDKZiIiOYBjogk82VeCfS3Zrbv/85WOR4rIbV5DFqLKM5mVfouHzd6AG9F14yVkyBOmzLoSjoFjX4xIRJTJeJuiCvlFcJgCA3XWJNY9ekCSkTDoDvW9/EO6x+myRfFhg5yZUPPVbVP/77wjVVOh6bCKiRMWegS5oCYZx1csrNbe/dmJfzB2WZ2BF1hbYtxN1H7yC0IHd+h5YlOA56VSkzpgLyaN93wgiImqLPQNd4HbYkOtxam6/pzaxegaO5SwqQa8f/woZ510NMVn7ok0npMhoXvoFyh77BRoWvAtF50sSRESJgmGgi/pmJmlum+hhAIgsa+wZfwryfvYgPBNPA3QcBKgGA2j88j2UPfZLNH33BdRw/Cz0RETUE3iZoIteW7Ufb67WNmLeLgl45cqTIIkcBX9YsGwf6j54BcE923Q/ti0zF2kzz0fSsPEQROZdIqIT4b+UXVScob1nICSrKGv0G1hN7HH0LkLuj36OzAtvgJii7/X+cG0lav79D1T8/Xfw79io67GJiOIRewa66GCDH7e9tUZz+zumD8CUkiwDK4pdSsCHpsWfoembT6EGA7of3zVwONLOOJ/TEYmIOsAw0EWyouLKl1cgENa2Mt4PRubjh+OLDK4qtsnNDWj88n00L/8aUGTdj+8aOBypM86Bs88A3Y9NRBTLGAa64Z731mObxo2IxhWl45czBxtcUXwIVVeg4fP/wrd+uSHHd5aUInXGuXD1498HERHAMNAtTy3eic+3Vmlqm+V24OlLxhhcUXwJ7N+Fhk/fRGDXZkOO7+w7EKnT53KJYyJKeAwD3fDRxnL867s9mts//8NxSHHaDKwo/qiqCv/2DWj49E2EyvcZcg5HYQlSp8+Fa/BIhgIiSkgMA92wobwR9360SXP7B+YMwbC8VAMril+qosC7dikaPv8v5PoaQ85h790HqdPnImnIGE5JJKKEwjDQDS2BMK56RfuyxDdP7YfTB+UaWFH8U8MhNC9biMaFH0DxGrM9tL1XQSQUcJ0CIkoQDAPd9ON/f4/qlqCmtueP7I0rxvcxuKLEoPi9aFr0CZq+nQ81pO31j5YtOw+pp56N5JETIUiSIecgIrIChoFu+sP8LVixr15T25OLM/D/ThtkbEEJRm6sQ8MX76Nl1SJA0TbNM1q2zFyknDIH7tGTINg45oOI4g/DQDe9unIf3lpzUFPb4sxkPHreCIMrSkyhqjI0zH8bvo2rDDuHlJaJ1FPmwD12KgS73bDzEBH1NIaBbvpmZw0eW7hdU1uXTcTLV47niHUDBfbtQMP8/yKwU/vAzmiJnlR4JsyAZ8J0SB4OCCWi2Mcw0E0HGnz4n7fWam7/z0vHIDPZYWBFBACBvdvRuPAD+LeuM+4kNhvcIyfCM3kmHHlcXZKIYhfDQDfJioorXlqOoKztZeT0wp4VPLAbjQvfh2/TakPP4ywpRcrkmXANGskZCEQUcxgGdHD3u+uxo0bbssQ/mdoPZ3B6YY8Llu9D48IP4NuwEjDwR96WlQvPpDPgHjMFotNl2HmIiPTEMKCDP32xDUt212pqe96I3rjyJE4vNEuo8iAav/oQ3rVLDQ0FgisJnvGnwDPxNNgysg07DxGRHhgGdPD80j14f0O5pracXmgNoeoKNH39IVpWf2fIDomtBAFJQ8ciZcqZcBT15+BRIrIkhgEdfLChHM8t1bZHQd+MZDx2PqcXWkW4rhqNX3+EllWLAdnAUADAUdAPnslnIHn4eAgS1ysgIutgGNDBd7tr8cgX2zS1ddpEvMLphZYTrq9F0+KP0bziayAcNvRcUko6PCefBvdJp0JK9hh6LiIiLRgGdLC9uhk/f2+D5vacXmhdclM9mhZ/iuZlCw1b5vgwwe5A8qhJ8Ew4FY78vlE/3+v1Yu3ataivr0fv3r0xatQoA6okokTAMKCDel8I17+mfeW7B88eitJeKQZWRN0ltzSh6ZvP0Lz0C6gBv+Hns+f3hWfcNCSPnAgxKbnTtvPnz8fdd9+NdevWQT7q0sbjjz+On/70p0aXSkRxiGFAB4qq4rIXliOsaHsp75g+AFNKsgyuivSg+FrQvGIRmr9bALlB24yR7hDsDiQNGw/P+Glw9B3Y7uWkMWPGwOl04vrrr8f48eORm5uL6667Dg6HA++//77hNRJR/OHqKDoQBQHZbu3d/rVeY7ufST9ikhup02aj9x0PIeuSm+Ao6m/o+dRQEN7V36LymT+i/M+/QuOiTyA3N7RpU19fj6FDhyI5ORlvvPEGCgoK4HJxTQMi6jr2DOjk3o82YkN5k6a25w7vjasncK2BWBXYtxPN386Hd8MKw3ZKbEOUkDRkNNzjpsE1YBhu/PGP8cwzzwAA3G43mpubMW/ePCiKwp4BIuoSzm/SSY7HCUBbGGDPQGxzFpXAecmPkVZ/EZqXfoGWFV9B8XmNO6Eiw7dhJXwbVkJKy8QfLzoLt157Nd6ZvwCPPPKIceclooTBMKCTLF4mSDi29Eykz7oQqTPOgXf1EjR9Ox/ham2LT3WV3FCLlq8/RKYgwLazxtBzEVHiYBjQSbbbqbltbQvDQDwRHU54JkyHe/wp8G/fgOZv58O/XftU0y5RVYSqytrcpfTArAciik8MAzqJdgChqqpceCjOCKKIpEEjkDRoBEIVB9C05HN4Vy+BGg71yPkDu7ag4h+/R/KoiUgePh6SJ61HzktEsY9hQCfZHu1hICiraA7KSHHy5Y9X9l4FyDzvaqTN/AFaln+FpqVfQGlqOPETNVBVFWvLqrGlsq7N/VUtPnz+1deYtHsb7B++Bme/UiSPnIikoWO40iERdYqzCXTiDYZx5csrNbd/7LwR6JvZ+eIyFD/UcBje9cvRtORzhA7s7taxnlu+Efd99h2AtrMJ3nvvPQDAmYP64JmLzjjyBEmCa8BwJI+YgKQhoyA6k7p1fiKKP/zVVCfJDhuS7RK8IW2b3dR6gwwDCUSw2eAePQnu0ZMQPLgHLSsXo2XNEqh+X9TH+m5vOU4//XS8/vrrrZeaXn75ZQQCATz55JN49PcPtn2CLMO/ZQ38W9ZAsDvgGjwSySMmwDVoBEQ7l8UmIoYBXWV7HNhbp+0f9xrOKEhYjvy+cOT3Rdrsi+DbsBItKxYhsHuL5ucXprnxxsqVmDdv3nGPHTx4EAVp7g6fq4aC8K1fAd/6FRCcLiQNGRMJBgOGcidFogTGd7+OstzawwBnFJBod7T2FoSqyyO9Bd9/A6W5sdPn3TxpJFw2G8qbqo57bECWC5efoW3DIjXgh3f1EnhXL4GY5EbSsHFIHjkRzuJBEEQuTkqUSDhmQEd//2YX5m+p1NR25uBc3DSln8EVUaxR5TB8W9aiZeUi+LeuA0x4e4qeNCSPGI/kERPgKOrPWS9ECYA9AzqKZnpho79npptRbBEkG5KHjkXy0LEI19ei5ftv0LJyEeT6nltgSGluQPOSBWhesgBSWiaSSkfDVToKrn6DIdjsPVYHEfUc9gzo6LPNFfjHt7s1tR3eOxX3nzXE2IIoLqiKgsDOTWhesQi+TasAWdsgVb0JDidcA4bBNXgUkgaP4DoGRHGEPQM6cju0v5wtgbCBlVA8EUQx8iE8YBjkliZ4Vy9B84qvET5mBUKjqcEAfBtXwbdxFeoEAY6CfnANHomk0tGw5xXycgJRDGPPgI7WHGjAA59u1tQ22+3APy4ZY3BFFK9UVUVw3w60rFgE74aVUAPRT1HUk5SW2RoMXP1KIdh5OYEoljAM6GhHdQvufm+9prZJdhEvX3mSwRVRIlBDIfi2rYN33TL4N6+BGjJ3popgd8A1YOihywkjIaWkm1oPEZ0YLxPoyO2QNLf1hRSEFQU2TuGibhLs9tZBh0rAD/+WNfCuWwbf1vWA3POXo9RQEL5Nq+HbtBp1AOwFxUgaPApJpaNg792HlxPIcsJNjQhVVUAJBaGGglAVFaLdDsFmh5SSCkduLwii9n/fYxF7BnTUHAjj6le0L0n87GVjkZbE7lQyhuLzwrtxFXzrlsG/cxOgKGaXBCk1A87+Q+EqKYWzXyls6Zlml0QJRFVV+Hdth2/3DgT274F/32749+6GfIK1PQSbDY68Arj6lsBV2AfOwmK4S4dDSo6fVWQZBnSkqCoufm4ZtL6gf71gJPLTuE48GU9uboRvw0p41y1DYPdWs8tpZcvKhbNfaWs4kFI4Q4H059+/Bw3fLkT9oi8Qqq2O3ClJ0c/MOdyTqygQbDakjJmA9Ckz4Bk1HqIjtpf2ZhjQ2dUvr0BzUNsP2B/mDsOgXO4mRz0r3FAL3/rl8K5djuCBXWaX04YtpzdcJUPgLBkcCQfcbZG6SG5pRu0Xn6B+0QIEDuyNfJDr3TsmSoAiQ3S6kHryNGSefhaS+w/W9xw9hGFAZze/sRoVTQFNbX81czDGFqUbWxBRJ8I1lfCuWw7vumUIVew3u5zj2POK4CwphatfKZzFgyAmxU+3LBlDlWXUfvExKv7zIhSft+dW8TwUDFJPnoa8S6+DIye3Z86rE4YBnd397nrsqGnR1PZnp/bHtP7ZBldEpE2o4kAkGGxY0eNrGGgiCLDn940Eg5JSOPsOhOh0mV0VWUjTmhUoe/FpBMsPmFeEKEIQRWSf/QNkn3MRpBgJsAwDOnvgk01Yc7DzwSiH/ejkvjhraJ7BFRFFL1RTAf+WtfBtXhMZY6CYs+php0QJjoLiSDAoKoGjsB9XRUxQ4YY67P/7/6F57UpAEAHV/MGyEARI7hQU3PA/SB0/yexqTohhQGePfrkN3+6q1dT20rGFuGh0gcEVEXWP4vfCv20DfFvWwL91HRRvs9kldUhKz4KjsB8chSVwFvaDPb8vRIfT7LLIQN7tm7H3sd8i3NRkwdAqAFCRM+9i5F54haWnJ3KdAZ15uCQxxRnRlYzkESchecRJUBUFwX074Nu8Br4taxCuPGh2eW3I9TXw1dfAt35F5A5RhD23oDUgOAr7wZ6bzy2a40TDd4uw78lHIuMCLDB19niR37Wr3v0PfHt3o89tP7fspS32DOjsxeV78e46bddbZ5Xm4sbJ3MaYYle4tgq+LWsOXU7YYtomStEQHE448osPBYRISJDSMrgYUoyp+ewDlL3wlNllaCeISOo/EMV33w/JnWJ2NcdhGNDZayv34c01nf+2pKoqVEXG6YPzcOsp/XuoMiJjKX4f/Ds2wLd5Dfxb1lr6csKxRE8anEX94CgoORQQiiG6YmPgVyKq/+ZL7H/yT2aXET1RRFL/wSj59UMQbNbqmGcY0Nmbqw/gtVXHT9FqrtyPHZ//B3W7N6Fh31bIwQDSsnvh0w/excSJE02olMg4qqIguH8nfFvWwr95jSWnLZ6IlJYJe6+CyJ/cyP9tOb0h2mN7cZlY59uzEzvvvQNqOGR2KV0jCMiadS56X3mj2ZW0wTCgs3fXleHF5XuPu//z+36IVARwyimnYNy4ccjMzMSDDz6IM844A089FUNdXURdIDfVw79zCwI7NyGwawvCtZVml9Q1ggBbZu5RASEf9twC2LJ7QZCs9ZtePJJbmrD9F7chVFdj0TEC2hXe8v+QPnm62WW04k+vzuxS+9cdW6oO4v6Hfo+LLroIW7duxYwZM/D0008jENC2QBFRLJNS0uEeNRHuUZFesHB9DQI7N8O/azMCOzdDbtA2A8d0qopwTQXCNRXwbVx15H5Jgj07LxIMcvNbexRsGTkcrKgTVVGw72+PxEUQAIAD/3gcrsK+cPWxxrgxhgGd2aX23/jurN645557cPvtt6O4uBi7dllrGViinmRLz4Jt7BS4x06BqqqQa6tag4F/12YoTQ1mlxgdWUao4gBCFW0XuxHsDthyeh+5zJCVC1tGDmwZ2RBd3JckGnVfzY+sIxAnVEXGvicewYCHnrDE4FWGAZ111DNw8m0Po2z1IlRtXgk0xN71UyKjCIIAW1YuPFm58Iw/BaqqIlxd3qbnIJYGIx5NDQUROrgHoYN7jntMTPbAlpEDKSMbtsxIQIj8yYGUnsnLDkdRw2FU/fdVs8vQl6IgsH8PmlYtReq4k82uhmFAb44OegY8uYUYeOZlCDY3IMAwQNQhQRBgz+kNe05veCbOgKooCFUeRKC152ALVL/X7DK7TfE2I+htBtrbLEoQIKVlHgkHRweGzByI7lRL/DbZU+q/XYhQTbXZZehPEFH51itIGTvR9L9PhgGddXSZgIi6RhBFOPIK4cgrRMqkMyLhoHwfAnu2Ibh/F4L7dyJcE6MDEjuiqpDrayDX1yCwa8txDwt2RyQgZOTAlpEFyZMG0ZPa5v+SJwWCzW5C8fpSFRmV/30NEISe23Sop6gK/Ht2onntSqSMGm9qKQwDOuvoMgER6UMQRTjy+8KR37f1PtnbjOCB3Qju24nggV0I7tsZs5cWtFBDQYQrD55wBUjBlQwpJQ2SOxViSiqkNoHhqNvuVMvNez+scek3CFWWm12GcUQRlW+/xjAQb+ydjBxWwmEoctu5saFQCMFgEA4H5y4TdZWU7EHSwOFIGjgcQGRhL7muGsH9OxHYvwvB/bsQOrgnduemd5Hq9yLs92rahVJMch/Vq5AK0Z0C0emC4HRBdCZBcCYd+dqVBMHhguhyQXC4INgdhnVzN676DhBFU2cQfHWgAn9atRmKquK6of1xwYAi/Q6uKPBt34xwUyNsKan6HTdKDAM66+gywf7lC7Dq+QcR9ntRXFzcev/LL7+MN998E48++ihuvvnmHqqSKL4JghC5xp6Zg+SRkemMqhxGqOJA66WFwP5dkQ/JeOt67iLF1wLF19K17atFMRIUHIeCwtHBweGC4Drma5sNkGwQbDYIUuTP0V/j0P/FZA9aNqw1NQiEFQWPrNqEf51+Mjx2Gy7+eDHOKOqFNKe+v8B5t240dSAhw4DOOrpMsPvrdzDppHH4yU9+Ao/HAwB44IEHUFVVhddeew1PPPEEwwCRgQTJduTywoTpACJLKAcP7jlyeWH/LsiNdeYWGosUBYrPC/i8kHWcFeoaNRnhBnP/PtbXNKB/Wgp6JUc2GJqWn4tvyqoxpzhfv5NIErxbGAbiik1sPwyINgcaGhqwZUtkMNDKlUfmy9bW1sLp5DarRD1NdCXBVVIKV0lp632Kz4tQZWTNgFDlwUPrB+yP6zEIVhWqNm4GgaKqmPfh15hR0At3jDny9//NwSrc+vUKPDR5NGb16Y1Knx+5SUd2GuyV7EKlz69vMbKMlk1r9T1mlBgGdNZRh+Og2Vdgzev/h4f/cmTpYUEAMpMdSEtLw+9///ueKZCIOiUmJcPZdyCcfQe2uV9ubjwqHBxoDQxqwGdSpfEvUFUFSJIhu2GKgoAfDe2PP6zYiOuH9Ueaw44tdY24c/H3+OmowZjVpzeA9v9NN2J0hG/3DiihEES7OTNAGAZ01tHlx+zBY3D6fS+2uS/JLuLlK0/qgaqIqLukQyPwj+5FUFUVckNdJBgc7k2oOIBwVRnUUNDEauODEggYOl7g7OJ8PLVuG17dshvn9y/EzQtXYG6/fFwzpKS1Ta+ktj0BFV4/RmSn6V/MoUstot2AY2vAMKCzaPZ9MnuRCSLqHkEQYEvPhC09E0mDRrTeryoK5LrqIwGhqgzhumrIddWQm+rNKzjGqHLY0AGeNlHEdUP74y9rtmD+vnIMzUzFL8YNa9NmeFYattc3ocLrh8duw6KDlbhpxABD6lFM3KuGYUBn0WRYLk9EFJ8EUYzsQ5CVi6QhY9o8poSCkOtrEK6tQriuGuG6Ksh11a1f87LDUXpgpsfc4nw8vGojVFXFH6eMhnTMuC+bKOKusUNw/YLvoKjAtUNLkK7zTILDVEX/yyFaMQzoLJqfXfYMECUe0e6AeGi55WOpqgrF1xIJB3VVRwJDbRXk+mqE62oAEz8weppgN379lQdXbAAA1AdCkDr4N3lGYS/MKOxleC2iw7yB5AwDOovuMoGBhRBRzBEEAVKyB1KyB46C4uMeVxUFcmNda0iQG2qhtDRCbmqA3NwIpbkRcnMD1GB8bI0u2u2GLjj01zVbsehgFV45czJu+GIZ3t6xD5cNKjbkXFqIJs4qYxjQmRJFz4DINEBEURBEMbL9c3pWp+2UYKA1GMjNjVAOhQW5ueHQ/UduW3mgoz07B9i21ZBjv7V9H17cvBPPnD4RgzNSccXgYjy3cScuHNCn05VkjWJLz4SU7O7x87ae37Qzxym1w8mFx2MUICIjiA4nxEMrMHZGVVWoQf+hwNAIuaUBclMjlJYmKAEf1ID/qP/7oQZ8bf5v9MqAroIiQNX/HIsOVuLBFRvw8JTRGJWdAQC4fHBfPL9pJz7YdQDn99dxuWEtRBHuYSN79pzHYBjQWXRjBoyrg4joRARBOLR0cBKQFd01cVVVoYZDkWDg90MN+qH4jw0OR74+fFsNBaGGw1DlyB/I4davcdT9qhyGs3c+BJsNajis2/e8obYBdy7+HneMHowzivJa7/fY7bh8cDH+tXEHzu1XeNxAQkMpKtyDhp24nYEYBnSmRJEGeJmAiGKVIAiRAX52BySPcXPjkz79CN4tG3U73rDMNCy7eFa7j906chBuHTlIt3NppyJ58FATznsEZ7fpjD0DRET6cQ8bHRlEGMdEtwfOgj7m1mDq2eOQEtWYAaYBIqLOZJ42O75/cxIEZM+eB8HkwMMwoLNoegZ68pIUEVEssmdkIXPG7LjtHRAcTmTNOtfsMhgG9BYMax/5autgu2MiIjoi+5wLzS7BGIKI7NnzILk9ZlfCMKA3fxRhwGWTDKyEiCg+OLJzkX7KGXHXOyDYbMg6a57ZZQBgGNCdP6R9qVCXnWGAiEiL3B9cDtHpiqvxA7kXXA5bijm7FB6LYUBn/nAUYcDGl5+ISAtHVg6K/ueeHtm8yHCiiJSxE5E91zqXP/hppDN/KIrLBOwZICLSLGXkOORedKXZZXSPKMKenYvCn9xlqc3qGAZ0xp4BIiLj5Jx7MTxjJsTs+AFBsqHvnfdBSk42u5Q2YvPVtDD2DBARGUcQRRTdfBechX1jKxAIAiBJKLrt53AVmrvAUHti6JWMDewZICIylpTsRsm9D8M9eFhsDCgURQh2B4p//lukjjvZ7GraxU8jnbFngIjIeFJSMvr+/LdIn3a62aV0ThRhS8tAyX2PwDNslNnVdIhhQGfsGSAi6hmi3Y6CG3+G3tfeHLlkYMHLBu7S4Rjwh78hqbi/2aV0irsW6iyangEnewaIiLpFEARknXE23KUjUP7yP9G8bhUgiICq/d9iA4qC5ElB3qXXIv2U0yGI1v+3nmFAZ9H0DCSxZ4CISBeuwj4ovue3aFq7EmUv/APB8gM9X4QoQhBFZJ99AbLPuRBSkrVmDHSGYUBnHDNARGSelJHj4Hn4KdR9+Skq334V4YY6QJQARfsvalERhMhCSKKItJOnodcl18CRnWvMuQzEMKAzbzCsua2TPQNERLoTJAmZZ8xBxmmz4d2yAfXfLkTDkq+g+HyRcQWKDpcQDoWA5EFDkT71NKROmAKbJ6X7xzUJw4COFFVFU0B7GEhx8uUnIjKKIIpwDxkB95AR6H31TWheuwqNSxfDu2MLghVlR0KBJEV+uz/858gBInvNywqAyP1SSipcRf2QMno80k4+Bfas7J7/xgzATyMdNQfCUKJYNjstyW5cMURE1Eq02ZE6diJSx04EAKjhMALlBxE4sAf+fXsQqqqAEgpCDQWhygpEhwOCzQ4pJQWugr5wFvWFq7APJHfs/vbfGYYBHTX4QprbigLgYc8AEZEpBJsNrsI+cBX2QdrEaWaXYzpetNZRoz+6SwRiLKycRUREcY9hQEcNfu09A6kuXiIgIiJrYBjQUTQ9A6kuXiIgIiJrYBjQUTRjBjh4kIiIrIJhQEeNvExAREQxiGFARw1RXCZI42UCIiKyCIYBHbFngIiIYhHDgI6imU3AMQNERGQVDAM64mwCIiKKRQwDOgkrCpqiGjPAngEiIrIGhgGdVDcHEcW2BLxMQERElsEwoJOKpoDmti6bCI9DMrAaIiIi7RgGdBJNGMj2OCFwXwIiIrIIhgGdVDT5NbfN8TgMrISIiCg6DAM6qWzW3jOQ43EaWAkREVF0GAZ0Es1lghw3wwAREVkHw4BOKqMIA7kpDANERGQdDAM6aAmG0RTQvsYAxwwQEZGVMAzoIJpeAYBjBoiIyFoYBnQQTRiwiQLSueAQERFZCMOADqJaY8DtgMg1BoiIyEIYBnRQwWmFREQUwxgGdBDdgkMMA0REZC0MAzqIZswAZxIQEZHVMAx0k6KqUa0+yDUGiIjIahgGuqneF0JI1r55cWF6koHVEBERRY9hoJsqGqNbY6AgjWGAiIishWGgm6IZPJjldiDJLhlYDRERUfQYBropmvEChWkuAyshIiLqGoaBbipr1N4zUMDxAkREZEEMA920q8aruS0HDxIRkRUxDHRDICzjQINPc/tCDh4kIiILYhjoht21XijaZxXyMgEREVkSw0A37Kxu0dzW45CQ5rIZWA0REVHXMAx0w84oxgsUpCdB4G6FRERkQQwD3bCzRnvPAAcPEhGRVTEMdFEwrGBfHQcPEhFR7GMY6KK9dV7IqvbRgwXpXHCIiIisiWGgi3ZEcYkAAPpkJBtUCRERUfcwDHRRNDMJUl02ZLsdBlZDRETUdQwDXRTN4MGSLDdnEhARkWUxDHRBSFawN4rBgyVZbgOrISIi6h6GgS7YV+dDOIqlB0uyGQaIiMi6GAa6IJpLBABQksXBg0REZF0MA10QzUwCj0NCrsdpYDVERETdwzDQBbuimEnQj4MHiYjI4hgGohRWFOyu074nQX+OFyAiIotjGIjS/no/QnIUgwc5k4CIiCyOYSBK0Sw2BHAmARERWR/DQJSimUmQ7JCQl8LBg0REZG0MA1GKJgz0y0zm4EEiIrI8hoEoyIqKXTXaBw9yvAAREcUChoEoHGjwISgrmtsP7pViYDVERET6YBiIQrQrD5bmegyqhIiISD8MA1HYWa39EkFeqhMZydy2mIiIrI9hIArR9AwM7ZVqYCVERET6YRjQKCQrUYWB0l68REBERLGBYUCjHdUtCIS1Dx4cwsGDREQUIxgGNFpf1qi5bZrLht6pLgOrISIi0g/DgEbRhIHSXilcbIiIiGIGw4AGIVnBlsomze15iYCIiGIJw4AGWyubEYxip0KGASIiiiUMAxpEc4nAaRNRnJVsYDVERET6YhjQYH259jAwKMcDm8iXlYiIYgc/tU4gEFawtbJZc3teIiAioljDMHACWyqbEFa0jxcoZRggIqIYwzBwAtGMF7BLAsMAERHFHIaBE4gmDAzOTYHTxpeUiIhii83sAqzi7TUHsafOi1EFaRiVn4YstwO+kIztVdr3IxiZz82JiIgo9jAMHJLtceCVlfuweGcNAKAoPQn5aS7IqvbxAiN6pxlVHhERkWEYBg4pyXK3+XpfvQ/76n2an5/skNA/233ihkRERBbDC9yH9E51wdWN6/3D8lIhidyPgIiIYg/DwCGSKKA4s+srB/pCMr7fX49AWNaxKiIiIuPxMsFRSrLd2BzFAkNHW1/WiPVljbCJAob0SsHogjSMLUpHnwwuTUxERNbGMHCUflndv+YfVlSsK2vEpoomFGclMwwQEZHl8TLBUY4dRNgdt04rweiCdN2OR0REZBSGgaMUprtgl7o/CPDaiX0xrX+2DhUREREZj2HgKDZRRHE3u/V/MDIfc4fl6VQRERGR8RgGjtGvG2sFnDYwB5ePK9SxGiIiIuMxDByjq+MGTuqTjpum9IMgcK0BIiKKLQwDx+ibkRT1c4b0SsHt0wdy0SEiIopJDAPHKEiLLgz0yUjCPWcM4m6FREQUs/gJdgy304b0JLumttluB359Zik8Ti7XQEREsYthoB0Faa4TtklPsuPe2aXIcjt6oCIiIiLjMAy0ozC980sFKU4b7ptdGvUlBSIiIitiGGhHZx/yyQ4J984q5TLDREQUNxgG2tFRz4DLJuJ/zxyMkm6sRUBERGQ1DAPtaG/MgEMS8cszB2NQbooJFRERERmHYaAdWW4HXEdNFbRLAu45YxCG5aWaWBUREZExGAbaIQhC67gBSRBw14yBGFWQZnJVRERExkiYMKCqKlQ5DDXoh+JrgeL3Qg0FoSpKu+0L0l0QBeD26f0xvk9GD1dLRETUcwRVVVWzi9Cb0tKIcE055NoKyLXlCFcfhFxbAYRD7bYX3KmwZfWGlN0btsxekDLz8MF+BZlpyTiFWxETEVGci5swIDfWIrh1NQJbVkKuq4zcKQgABEBt/7f/44gicLinQJRgLx4C5+CxcPQthWDTtiohERFRrInpMKD4WhDcthr+LSshV+yLfPjr+e0IYiRI2BxwDBgJ5+AxsBcO5M6EREQUV2IyDKhyGP41i+FdNh8IBwEIAAz+Ng4FAym3EO5TzoM9r6+x5yMiIuohMRUGVFVFcMc6eBe/D6W53pwiDoUCx8DRSJ40B1IqBxcSEVFsi5kwEK6tQMsXbyBcvgc90hNwIoIICAKSxk5H0kkzIUiSufUQERF1UUyEgcD2tWie/1pkcJ/WwYA9RoAtrw9SzroKopuLEhERUeyxdBhQVRW+ZZ/Bt/xzs0vpnCBCcCUjdd4NsGXnm10NERFRVCwbBlRFRsvCtxDYuNzsUrQRBECyI3XudbAX9je7GiIiIs0suQKhqqpo/uLN2AkCQGRKoxxC43tPI1S22+xqiIiINLNkGAisX4Lg5hVmlxE9VQVUFU0fvQDF22R2NURERJpYLgyEynaj5et3zS6j61QVqt+Lpo9fhKrIZldDRER0QpYKA4q3CU0fvQDTpw12l6ogXLYb3m8/MrsSIiKiE7JUGGj+/N9Q/V59lxQ2kX/11wju2WJ2GURERJ2yTBgIVexFaO8WC64j0A2CAO/ST2DRCRtEREQALBQGfMvmR1b1iyeqCrlyP0L7tpldCRERUYcs8ekbrjqA0J7N8dUrcJggwLfsM7OrICIi6pAlwoA3HnsFDlNVhMv3IHRgh9mVEBERtctmdgFqMIDQ7o2mDho8UNeIn7z4EaqbvbCJIu6cPQnzxgzW7wSCiMDW72Ev4MqERERkPaaHgXDFXtNnD0iiiAcvOA0jCnNR1dSC0x5+CWcM7Qe306HPCVQFof3sGSAiImsyvW8+VLbL9EsEeWkejCjMBQDkpLiRkexCvdev6zmUhmoovhZdj0lERKQH88PAgZ2GDRxUFBUn//ZZ3P/uV23u/2LTLvT+2WN49/vj1wD4fm85FFVFQYb+2xGHy/fofkwiIqLuMjUMqIps6AekKAr42ZkT8NziNa2/6a/fX4nrnn0fvzpn2nHjAmpbfLjlpY/w2KVn6l+MICJ0cKf+xyUiIuomc8NAwA/IYUPPceH4ochyJ+HphatwsK4Jl/3jbVx80lDcevpJbdoFQmFc9c938bOZEzGhpMCASlQozQ0GHJeIiKh7TB1AqIaDhp/DJom47YwJePD9RfhgzVaMLOyFP1x4Wts6VBW3vvwJpg0qwsUThhlTiKpCDYeMOTYREVE3mDtmQO6ZXf0uPGkIfKEwVBV4+pqzIYltv+2lOw/gne834+O12zH9oRcw/aEXsPFglf6FMAwQEZEFmTu10NYzp7/nPwsAADUtvuOCAACc3L8QVX+5y/A6BLtOUxWJiIh0ZGrPgGAz/sPxDx8sxvyNO/HJHZdDVhS8smSd4edslyAANrs55yYiIuqEuWHAmQTB4TLs+C99uxZPfrECr9x4PoYX5uLH08fhr58vQ6iHLk+0JUBKzzbhvERERJ0zNwwIAmz5/SK/Nevs8w078fM3FuCpq+ZgfL98AMANp4xBkz+I/yzbqPv5TkhVYO/dr+fPS0REdAKmLzpkzy/R/Zir95bj+mffx33zTsHc0YNa709JcuJHp47Bn+cvg6z08A6JggBbrz49e04iIiINBFU1d2OAUNluNL71hJkl9AgpOx/pl95udhlERETHMb1nwJZbCEim75dkLEHkjoVERGRZpocBQbLBWTrO9M2KDKUqcA6dYHYVRERE7bLEJ3DSuNMAmLuNsWEEEfZ+w2DLyjO7EiIionZZIgxIqZlwDI7T3gFVQfKEmWZXQURE1CHLfPomjz8dMHcso/4EEfa+pbDlGLHxERERkT4sEwak9Gw4h55kyJoD5lGRPHGW2UUQERF1yjJhAADc0+ZBysiNm8sF7mnzIrMliIiILMxSn7qC3YGUs6+FYLMDiOEeAkGAY9BYOEdMNrsSIiKiE7JUGAAAKS0LntlXIGZnFwgipIxceGZcACGuLnkQEVG8slwYAABH31IkT5pjdhnRE0QIDlekd4PbFRMRUYwwfTnizvjWLIJ30Xtml6GNIEJ0pyL1/B9DSuPuhEREFDssHQYAILBtNZo/fx1QFAtPPRQg5eQj9ZzrISanmF0MERFRVCwfBgAgXHUATR8+B6Wl0ZKBwDl0Atynng8h3vdYICKiuBQTYQAAFL8X3u8+QWD9d5G1CNQe3oK4HYI7Fe6p58A5cLTZpRAREXVZzISBw8I15fAufg+hfdsOhYIeLl8QAMmG5PFnwDV62qFpkERERLEr5sLAYcE9m9Gy6F0o9dWRRYoM7ykQAKhwDp2A5ImzILpTDT4fERFRz4jZMAAAqqogfHA3Alu/R3DbaqhBv77B4FDPg5SdD2fpODgGjILkSdPn2ERERBYR02HgaKocRmjfNgS2rEJoz+ZIMAAO7XWgYYyBKEZmLESeBDE9G85Bo+EcOAZSRo6RpRMREZkqbsLA0VRVheptglxbgXBtOeSaCoSrD0L1NUOVZUAJRxYIkiRAskNKz4aU1Ru2rF6QMvMgZeRyLAARESWMuAwDREREpJ0llyMmIiKinsMwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMExDBARESU4hgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowdnMLuBojjHXQbQ5IIgSBFGCZD9yWxDFI49JEkSbA2LrY9JxjwmiBFEUIIgCJEmEcMxtURQgSkJrm04fEwRINhGSKEASBTgO3ba1fi0deUw60s52VFupvduCAFEQIAmAXRJbb9skEZKAyNeiALsotHM78rhdFFtvS4IAQQBEARAEHDo+IACQRAEiEPleRLTeFgVAEo6+HTmGoKqAqkBQwkCb20rkj9LxY4KqALJ85LYSBhQZqqIA4SBUWQYUJXJfOARVkSO3QyHg8O3DbQ+3CwWPPEeRoYTCUGUFqqJACYahyJHnqLICJRSGIh+5rR66LYfCUI9qJwfDR92WoSoqFFk99PWh5ytq5DFZhSqrUGQFckg5dEwVckg+9Jwjz1NUFbKqIqiokFUcc/vYryO3FURuyyoOPXbk9t/V3aa+L/XC9zff33x/W/f9zZ4BIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMExDBARESU4hgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiRKfGKb/fr953332q3+83u5TjWLk2VWV93WHl2uKJlV9nK9emqqyvO6xcW3cJqqqqZgcSIzQ2NiItLQ0NDQ1ITU01u5w2rFwbwPq6w8q1xRMrv85Wrg1gfd1h5dq6i5cJiIiIEhzDABERUYJjGCAiIkpwcRsGnE4n7rvvPjidTrNLOY6VawNYX3dYubZ4YuXX2cq1AayvO6xcW3fF7QBCIiIi0iZuewaIiIhIG4YBIiKiBMcwQERElODiLgzcddddmDZtGn74wx8iGAy2eczn82Hu3Lk49dRTMXPmTNTW1lqqvsP+8Ic/YPz48abXFA6Hcc0112DatGn46U9/2mP1aK3vsJ5+vY7WUW1W+FmLR3x/61cT398nlkjv77gKA99//z3Ky8uxaNEiDB06FG+++Wabxz/++GMMHz4cX331FS6++GK89NJLlqoPAJqamrB+/XpL1PT++++jsLAQixYtgtfrxbfffttjdWmpD+j510trbWb/rMUjvr/1rYnv767XZvbPmhHiKgwsWbIEZ555JgBg9uzZx/1wDxw4EF6vFwBQX1+PnJwcS9UHAH/+859xyy23WKImLfWaWR/Q86/X0TqrzeyftXjE97e+NfH93blEe3/bzC5AT/X19cjPzwcApKWlHdd1079/f6xfvx7Dhw+HIAhYunSppepraGjAunXr8Otf/9oSNdXX17euv91evWbXZ8brpbU2s3/W4hHf3/rWxPd312sz+2fNCDHZM1BeXo6pU6ce90dVVTQ2NgKI/EVmZma2ed4LL7yA6dOnY/369bj//vvxwAMPWKq+xx9/HLfeeqshNXUkIyOjw5o6e8wK9Znxeh2ts9p66mctHvH9rR++v7su0d7fMRkG8vLysHjx4uP+zJkzB5999hkA4NNPP8WUKVOOe+7hv9D09HTU19dbqr7t27fjwQcfxOzZs7Ft2zY89NBDhtR3tJNPPrnDmjp7rKd0VoMZr5fW2oCe+VmLR3x/64fvb2NqA+Lw/W3e7snGuPPOO9WpU6eql19+uRoIBFRVVdUbb7xRVVVVbWhoUOfMmaOeeuqp6pQpU9QtW7ZYqr6jjRs3zrSaDtcTCoXUq666Sp06dap622239Vg9Wus7Wk++XkfrqDYr/KzFI76/u18T39/aJdL7m8sRExERJbiYvExARERE+mEYICIiSnAMA0RERAmOYYCIiCjBMQwkgOeffx7p6em6HGv37t0QBAE2mw0HDhxo81hZWRlsNhsEQcDu3bvbPPbWW29h+vTpSEtLg8fjwciRI/HAAw+0LuShZ41Eieaaa66BIAi46aabjnvs5ptvhiAIuOaaa1rvKy8vx2233YaSkhI4nU4UFRXhnHPOwYIFC1rbFBcX4/HHH++B6skKGAaoS/Lz8/Hiiy+2ue+FF15AQUHBcW1/9atf4ZJLLsFJJ52Ejz/+GOvXr8ejjz6KNWvWxMWa3kRWUFRUhNdffx0+n6/1Pr/fj9deew19+vRpvW/37t0YN24cvvjiCzz88MNYt24dPvnkE8yYMcO0pX/JfAwDMeCTTz7B1KlTkZ6ejqysLMydOxc7duwAACxcuBCCILRZ9GL16tWtv50vXLgQ1157LRoaGiAIAgRBwG9+8xsAQF1dHa666ipkZGQgOTkZZ511FrZt26appquvvhrPPfdcm/uef/55XH311W3uW7ZsGX7/+9/j0UcfxSOPPILJkyejuLgYM2fOxFtvvXVceyLqmrFjx6JPnz54++23W+97++23UVRUhDFjxrTed7inYNmyZbjwwgsxaNAgDBs2DHfccQe+++47M0onC2AYiAEtLS244447sHz5cixYsACiKOL888+HoignfO7kyZPx+OOPIzU1FWVlZSgrK8Ndd90FINK1uGLFCrz33ntYsmQJVFXFnDlzEAqFTnjcc889F3V1dVi8eDEAYPHixaitrcU555zTpt0rr7wCj8eDm2++ud3j8NIAkX6uvfbaNiH92WefxXXXXdf6dW1tLT755BPccsstcLvdxz2f78fEFVcbFcWrCy64oM3X//rXv5Cbm4uNGzee8LkOhwNpaWkQBAF5eXmt92/btg3vvfcevvnmG0yePBlA5IO7qKgI77zzDi666KJOj2u323HFFVfg2WefxdSpU/Hss8/iiiuugN1ub9Nu27ZtKCkpOe5+ItLflVdeiV/84hetY3u++eYbvP7661i4cCGAyBK/qqqitLTU3ELJctgzEAN27NiByy+/HCUlJUhNTUW/fv0AAHv37u3yMTdt2gSbzYaJEye23peVlYXBgwdj06ZNAICzzjoLHo8HHo8Hw4YNO+4Y119/Pd544w2Ul5fjjTfeaPMbyGGqqkIQhC7XSUTaZWdn4+yzz8YLL7yA5557DmeffTays7NbHz+84Czfk3Qs9gzEgHPOOQdFRUX45z//ifz8fCiKguHDhyMYDMLj8QA48iYHoKmbv6NVqI/+8H7mmWdaByO195v98OHDUVpaissuuwxDhgzB8OHDsXr16jZtBg0ahMWLFyMUCrF3gKgHXHfdda27/T3xxBNtHhs4cCAEQcCmTZtw3nnnmVAdWRV7BiyupqYGmzZtwq9//WucfvrpGDJkCOrq6lofz8nJARCZ1nfYsR/IDocDsiy3uW/o0KEIh8Nt9uGuqanB1q1bMWTIEABAQUEBBgwYgAEDBqBv377t1nfddddh4cKF7fYKAMDll1+O5uZmPPnkk+0+Hhe7fRFZyOzZsxEMBhEMBjFr1qw2j2VmZmLWrFl44okn0NLSctxz+X5MXAwDFpeRkYGsrCw8/fTT2L59O7744gvccccdrY8PGDAARUVF+M1vfoOtW7fiww8/xKOPPtrmGMXFxWhubsaCBQtQXV0Nr9eLgQMHYt68ebjhhhuwePFirFmzBldccQUKCgowb948zfXdcMMNqKqqwo9+9KN2H584cSLuvvtu3Hnnnbj77ruxZMkS7NmzBwsWLMBFF12EF154oWsvDBG1S5IkbNq0CZs2bYIkScc9/uSTT0KWZUyYMAFvvfUWtm3bhk2bNuEvf/kLJk2aZELFZAUMAxYniiJef/11rFy5EsOHD8ftt9+ORx55pPVxu92O1157DZs3b8aoUaPwxz/+Eb/73e/aHGPy5Mm46aabcMkllyAnJwcPP/wwAOC5557DuHHjMHfuXEyaNAmqquKjjz6KqjvfZrMhOzsbNlvHV5z++Mc/4tVXX8XSpUsxa9as1mlMI0eO5NRCIgOkpqYiNTW13cf69euHVatWYcaMGbjzzjsxfPhwzJw5EwsWLMBTTz3Vw5WSVXALYyIiogTHngEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgS3P8H+HzXSexxHH8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABK2ElEQVR4nO3dd5wU9f0/8NfMbLvbvV65AsfRjl4FaQoKgoiiUWyxG42xfBPLz5jy1WhiYjT6NUVNjLG3xBJ7QxAFRKp0OHq/3u+278zvj4WDg7tj9m7mZnb39Xw80L3d2Zn3Lbfs6z5VUBRFAREREcUt0egCiIiIyFgMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIjiHMMAERFRnLMYXYDelGAQgaoy+MsPItTSBCUYAIIhQBAgWCwQrDZYMrJhyy2AlJwKQRCMLpmIiKhHxVQYUBQFvv274Nm2Af6yA/Ad2odgTSWgyEeOEABBAITWJ4T/HH3U7oCtVyFseb1hzy+Cc/g4SEkpPf59EBER9SRBUY77NIxS/vKDaF77LZpWLUGovgYQxZM+6CMiSoAcbj1IGDgMrrFT4Bw+DqIjQdvCiYiITCBqw4ASCqHpu6/QsPQLBMoPhgOALJ/6iZESxHDLgmSBc9hYpM6cB3t+kfbXISIiMkhUhgH31nWofvdlBKvLe/bCRwKHa8I0pJ87H5aUtJ69PhERkQ6iKgz4yw6g+r1X4N2+6dhv7EYQRQiShNSZFyHlzDkQbTZj6iAiItJAVIQBRZZR9/k7qF/wXngAoB7dAV0iQEpNQ871d8LRu5/RxRAREXWJ6cNAyN2Mypf/Bk/pBqNLaZ8gAqKArPk3ImnCNKOrISIiipipw0CwrgaHn34YwdpKE7UGdCx1xjykzbmUaxUQEVFUMW0Y8FccQtlTv0OopSkqgsBRrvFnIuuymyCIXNyRiIiigyk/sUItzSj7+yNRFwQAoHnl16j7/B2jyyAiIlLNdGFAkWVUvvI3hBrroi4IHFX/xX/RsmmN0WUQERGpYrowUPf5u+HBglEaBMIEVL7yFAJVPbwOAhERUReYKgy0bF6L+i/eNboMDShQgn6UP/cnyD6v0cUQERF1yjRhQAkGUP3vf+LYLkJRTpYRqCpDw9efGl0JERFRp0wTBppWfoNQUwMAU05u6BpFQf1XH0H2eoyuhIiIqEOmCANKKIi6L95FzLQKHEfxedG4bIHRZRAREXXIFGGgafVShBrqEFOtAkcpCuoXfcixA0REZFqmCAP1C95DLLYKHCW7W9C06hujyyAiImqX4WEgWFeNYE0ljG4VuOXDJRj9zNu47aOl2p9cEODZZtK9FYiIKO4ZHgY8u7cZXQIA4NpRA/GnWRP1ObmiwLtrG5SoXjuBiIhileFhwLu7FBAlo8vAxMIcOK0W3c4ve90IVJXpdn4iIqKuMj4M7NwCyCFdzi0rCma+9BH+uGRdm/u/2VuGkr/8G59s36/LdTvi3V3ao9cjIiJSw9AwIPt9CFTq99uyKAi45bQheH3jDjR4/QCArVV1uOOTpbh78gjMGdhbt2ufXIwE3/5dPXc9IiIilYwNAz2wGM+8kiKkOex4aV0pyprc+NH7X+PCkr64aexg3a/dhiJD9rh79ppEREQq6NdJroLi9+l+DYso4uZxQ/D4t+vx2c4DGJqdjvunjdH9uidRFMg98P0SERFFyvAxAz1hXkkfeAIhKArw5LmTIIknf9vXvfsV7vhkGRbvPYzJz72HDeU1OlQSg4sqERFR1DO0ZUCw2XvkOr/5ag0AoM7jgyS0v7jRiz+Yrm8RggDR5tD3GkRERF1gaMuAaNf/w/GJbzdg8d7DeOfymQgpCv6z2aBBfIII0ZFgzLWJiIg6YXgYsGTm6Hb+f2/ahX+t3YZnLzgDg7PScN3oQXh29VYEQgYs/iOHYC8s7vnrEhERnYLhYwYSBgzVZdGhxXsO4zdfrcYTsydidK9MAMA1Iwei2R/Ae9v2aH49NRzFJYZcl4iIqDOGhwFH30GaLzq0saIWd3yyDPdOGYVZ/Qtb70+yW3HNqIH4+6qtCPXw0sCCPQHWnLwevSYREZEagqIohg5xD9RU4sDvfmZkCfoTBCSUjESvm+81uhIiIqKTGN4yYEnPgiUtE7G8hTEAJJaMMLoEIiKidhkeBgRBQOqMeYjlOfiiPQFJE6YZXQYREVG7DA8DAJA0/gxISSlGl6EPQUDKWXN7ZBolERFRV5giDAgWK1JnXmh0GboQbHakTDnH6DKIiIg6ZIowAABJE6ZDdCYZXYa2BAEpZ86BmJBodCVEREQdMk0YEG02ZM6/0egytCOKsKRnI3X6HKMrISIi6pRpwgAAuEaOR8pZ5xtdhgYECJIFuTfdA9HBVgEiIjI3U4UBAEifcykc/QYD7ewsGD0UZF35E9hy8o0uhIiI6JRM94krSBJyrvspJFcyIJiuPFVSzjofrlETjC6DiIhIFVN+2kquZOT++D6IiYlR10LgHD0R6XMuNboMIiIi1QxfjrgzgeoKlD39MIINtUAP7yXQFSlnnov0C34IIcoCDBERxTdThwEACDU3ouKFJ+Hdvc3oUtonCAAEpM+9HN4tq2HNyYetsBj2wn6w5hRAsFiMrpCIiKhTpg8DAKCEQqj96E00LP443G1gllYCQYDoTELu9T+Do7gEdR+/jublC489brHAllcUDgcFxbAVFkNKSYcgxPY+DEREFF2iIgwc5TuwG9Xvvgzf3u3h38iNKl0UAUFE6llzkXrW+RAdCQCAYF01yv7vF52GFdGVAnthMWwFxbDlF8Ga1xtSoqunKiciIjpJVIUBAFAUBS0bVqH2/VcQrKvp2YsfaZVwjp6EjPMvP7LbYls1/3kW7g0rIjqtlJIOa6/esPXqDVteb1h79WYLAhER9ZioCwNHKcEAGpZ+gcalCxCsqdSv++BIC0Sj1YXtA6bivLMnwFk8sMPD/WX7UfHUg92+rJjogjW3ELa8PuGgkF8Ea2ZOt89LRER0oqgNA0cpigL/wT1oXvstmlYvhdzcCIgSIIe6flJRDAcAKQFbiydjY+ogbPdIUAA8NGcwhuYmd/r0qhefgHfn5q5fvx0ps+cjecpsTc9JREQExEAYOJ4iy/Du3gb31vXwlx2A//B+hBpqjx0gigAEQACgIPwfRTk29sBigSenGJuyh2GdJRc7vFac+OLMHZqL6yf06bQO764tqHrhcc2+L0fJKGT+8HZ2GxARkS5iat6bIIpI6D8ECf2HtN4n+7zwVxxCoOwAQu5mKMEglGAAgiBCsFghWK1oTsrC2mAKVlT5sa2iGUoQQLD9a6zcV4frxvfu9IPZXjwY1rw+CBze1+3vSUrNRMbFNzAIEBGRbmIqDLRHtDvg6N0Pjt79Ojzmqw2H8cq6A6rOV9nsw75aN4oynB0eIwgCkqfORs2//xFxvW1IFmRe8ROICR1fi4iIqLu4VB6A8X3SIzp+5f66Ux6TMGQspHZmG0TCmp0HS3pWt85BRER0KgwDAPJSHChITVB9/Ip9pw4DgiQhafKs7pSFQNl+lD/1EHwHd3frPERERJ1hGDhifO801cfurXWjosl7yuOcYyZDdCZ1pyyE6qtR+ewjaFr2OWJorCcREZkIw8ARE/qoDwMAsEpFV4FosyNp0jldLekYOYT6T/+D6tf+ipC7ufvnIyIiOg7DwBHFmU6kJ1pVH6+mqwAAXBOmQ0xI7GpZbXi3rUfFUw/Ct3+nJucjIiICGAZaiYIQ0UDCbRVNaPAETn1eRwJcE2d0p7Q2Qg21qHzuUTQu+QyKWTZsIiKiqMYwcJxIxg3ICrDmQL2qY12nnw3B7uhiVe1dPISGz99C9at/QailSbvzEhFRXGIYOM7QXklItEmqj1+xr/bUBwGQEl1wTTirq2V1yLt9I8r/9gC8OzZpfm4iIoofDAPHsYgixhWmqj5+/eEGeALq9kBImjQTgtXWxco6Jjc1oOql/0Pdx29ADvg1Pz8REcU+hoETRDJuIBBSsPFwg6pjJVcynKededL9znFnwDFohOprdqR5+ZeoeOa38JepW0mRiIjoKIaBE4zKT4FVUr8PwMayRtXHJk+ZBUjHVoC2FRYjbe4PkfnDO5Aye354t8VuCFYeRsXff8vBhUREFBGGgRMkWCWMyEtRffz6Q+paBgBASk6Dc+wUAICY4ETGZbdAsFggiCKSp8xG9o/uhZQS2dLIJwmFBxdWvfAnBOvVjWkgIqL4xjDQjkjGDRxq8KKmxaf6+OSp5wKSBenzb4IlNaPNY/be/ZFz2wNwlIxSfb6O+PaUovxv98O9YUW3z0VERLFNULjG7UnKGr24/e31qo+/fWoxpg9Qv6GQb98O2PsM6PBxRVHQ/O0C1H/xNhBSN0CxM4kjT0fa3B9qtvgRERHFFrYMtCM3yY5Mp/qR/xtUDiI8qrMgAIS3QE6afA6yb7oPUmr3dj4EAPf678JTEPeUdvtcREQUexgG2iEIAob1SlZ9/IbDjbpsImQvKEbubQ8gYciYbp8r1FCLqucfQ/3nb0MJBjWojoiIYgXDQAciCQP1ngAO1Ht0qUNMSETGFbcibd413V+nQFHQtORTVPzjdwhUHtamQCIiinoMAx2IJAwA4dYBvQiCANdpZyLntt/AVtC32+cLlB1AxdMPoem7hdwWmYiIGAY6kuWyIzfZrvr4SMcNdIU1MwfZN92H5OnnA4L6tRDaowQDqP/odVS//CRCTfXaFEhERFGJYaATw3upX29gc1kjgj2w0I8gWZBy9oXhwYVp6mcwdMS7YxPK//oA3JtXa1AdERFFI4aBTkTSVeANythR2aJjNW3Ze/dH7u0PwDlmSrfPJbubUfPGM6h+/Sm2EhARxSGGgU5EPm5A/66C44n2BKT/4HpkXHErxARnt8/n2bIWZX/+XzSvWcKxBEREcYRhoBOpCVYUpiaoPr6nw8BRiUPHIveOB+HoP7Tb51K8btT990VUvfgEgrVVGlRHRERmxzBwCsPz1LcObK9qhttvzBx+KTkNmdf8DKnnXQlYLKd+win4dm1B+V/vR9OyL7jpERFRjGMYOIVhuerDgKwAW8qbdKymc4IoImni2cj9yf2w5hZ2+3xKwI/6T/+Nymd/D3/FQQ0qJCIiM2IYOIUhvZIRySQ+PdcbUMuak4+cW36FpKmzuz0FEQD8B/eg4umH0LDwPSjBgAYVEhGRmTAMnEKS3YK+Geo3+Flv0LiBEwkWK1JnzUfW9fd0f1tkAAiF0PjVhyh/+iH4Duzq/vmIiMg0GAZUGBbBegMH6z2odft1rCYyjuIS5N7+IBJHTNDkfMHKw6h89g+o+/gNyD6vJuckIiJjMQyoYPYphqciJiQi49KbkT7/JggO9bMjOqQoaF7+Jcr/+gC8Ozd3/3xERGQohgEVhuQmQYyg633DIePHDbTHOfJ09Pqf3yJh8GhNzheqr0bVi0+g5p3nEXI3a3JOIiLqeQwDKiRYJQzIcqk+flulcTMKTkVKTkPGlbch4/KfQHRF1uLREff3y1D+l/+Fe9NqLlZERBSFGAZUiqSroKLJhwaPeUfdC4KAxGHjkPs/v0Xi6MmanFNubkTNm8+g5vW/IVhXrck5iYioZzAMqBTpuIHtVeZvNpcSXci4+AZkXXsnpNRMTc7p2boO5X/5XzR89SGUgHkDERERHcMwoNKg7CRYIhg4sL3S/GHgKMeAYci940G4Js3UZF0CJeBH48L3UPaX/4Vn6zp2HRARmRzDgEp2i4hB2erHDeyIgpaB44l2B9LmXI7sm+6DJTtPk3OG6qpQ/dpfUf3KnxGoLtfknEREpD2GgQgMz1O/3sCOqmaE5Oj7jdjeuz9yb70fydMvACRJk3N6t29E+V/vR/0X73BtAiIiE2IYiEAk+xR4gzIO1nt0rEY/gsWKlLPnIefW+2Er6KvNSUMhNH3zCcr//Gu4N6xg1wERkYkwDESgf5YTdov6lywaBhF2xpZTgOybf4nUcy+DYLVpcs5QYx1q/vMsqv71GPzl3PyIiMgMGAYiYJVEDM5JUn18NA0i7IggikiafA5y73gI9uLBmp3Xt7cUFU8/iLqPX4fscWt2XiIiihzDQIQGRrD4ULS3DBzPkp6FrOvvRtpF10NwqN+4qVOyjOblC1H25C/RvGYpFFnW5rxERBQRhoEI9UlX/0F4sN6DFl9Qx2p6liAIcI2dgl4//S0Sho7V7LxySxPq/vsCKp/9A3wH92h2XiIiUodhIEKRhAEA2FndolMlxpGSUpF5xa3IvOZnsGTkaHZe/8HdqPzHw6j974sItZh3SWcioljDMBChnCQ7HHE0iLAzCQOHI/eOB5Ey82LNBhhCUdCyZgnK/u+XaPp2AZQgVzEkItIbw0CEREFA7zT1rQOxMIiwM4LFiuQz5yD3Zw8jcfh4zc6reN2o/+RNlD35a7Ss+47jCYiIdCQonPAdsX8s24MvSitVHZueaMU/Lx+jc0Xm4d29DfUfv45AxSFNz2vtVYjUcy6Bvf9QCBosmUxERMcwDHTBZ1sr8M/le1Uf/+KVY5DksOpXkMkooRCaV36Fhi/fg+LTduEle/FgpM66BLb8Ik3PS0QUz9hN0AV9IugmAIC9dfE1j16QJCRNnIFedz4M5xhttkg+yrd7Kyqe+S2q//13BGoqND03EVG8YstAF7T4g7jm1TWqj79+Qh/MHZqrY0Xm5juwG3UfvYbAob3anliU4DrtTCRPnwvJpX7fCCIiaostA13gtFmQ7bKrPn5fbXy1DJzIXliMnB//CmkXXgsxUf2iTackh9C8YhHKnvgFGha+D1njLgkionjBMNBFfdITVB8b72EACC9r7Bp3BnJ/9jBcE84CNBwEqPh9aPzqA5Q98Us0fbcISjB2FnoiIuoJ7CboojfWHsTb69SNmLdKAl67+jRIIkfBH+UvO4C6j16Df98Ozc9tSc9GysyLkDB0HASReZeI6FT4L2UXFaWpbxkIhBSUNXp1rCb62HoVIvtHP0f6JTdBTNK2vz9YW4maf/8DFX//Hby7tmh6biKiWMSWgS463ODFHe+sV338XdP6Y3Jxho4VRS/Z50HT0i/QtOxzKH6f5ud3DBiGlBkXcToiEVEHGAa6KCQruPrV1fAF1a2M94MRefjhuEKdq4puoeYGNH71IZpXfQPIIc3P7xgwDMnTz4e9d3/Nz01EFM0YBrrhvg82YYfKjYjGFqbilzMH6VxRbAhUV6Dhy//Cs2mVLue3F5cgefoFcPTl3wcREcAw0C3PLN2NL7dXqTo2w2nDs5eN1rmi2OI7uAcNn78N355tupzf3mcAkqfN5RLHRBT3GAa64ZMt5fjXd/tUH//iD8ciyW7RsaLYoygKvDs3o+HztxEoP6DLNWwFxUieNheOQSMYCogoLjEMdMPm8kbc/8lW1cc/NGcwhuYm61hR7FJkGe4NK9Dw5X8Rqq/R5RrWXr2RPG0uEgaP5pREIoorDAPd0OIL4prX1C9LfOuUvjh7YLaOFcU+JRhA88rFaFz8EWS3PttDW3Pyw6GA6xQQUZxgGOimH//7e1S3+FUde9GIXrhqXG+dK4oPsteNpiWfoenbBVAC6l7/SFkyc5F85nlIHDEBgiTpcg0iIjNgGOimPywoxeoD9aqOPb0oDf/vrIH6FhRnQo11aFj0IVrWLgFkddM8I2VJz0bSGXPgHDURgoVjPogo9jAMdNPraw7gnfWHVR1blJ6Ixy8crnNF8SlQVYaGBe/Cs2WtbteQUtKRfMYcOMdMgWC16nYdIqKexjDQTct21+CJxTtVHeuwiHj16nEcsa4j34FdaFjwX/h2qx/YGSnRlQzX+OlwjZ8GycUBoUQU/RgGuulQgwf/884G1cf/8/LRSE+06VgRAYBv/040Lv4I3u0b9buIxQLniAlwTZoJWy5XlySi6MUw0E0hWcFVr6yCP6TuZeT0wp7lP7QXjYs/hGfrOl2vYy8uQdKkmXAMHMEZCEQUdRgGNHDv+5uwq0bdssQ/mdIXMzi9sMf5yw+gcfFH8GxeA+j4I2/JyIZr4gw4R0+GaHfodh0iIi0xDGjgT4t2YPneWlXHXji8F64+jdMLjRKoPIzGrz+Ge8MKXUOB4EiAa9wZcE04C5a0TN2uQ0SkBYYBDby4Yh8+3Fyu6lhOLzSHQHUFmr75GC3rvtNlh8RWgoCEIWOQNPkc2Ar7cfAoEZkSw4AGPtpcjhdWqNujoE9aIp64iNMLzSJYV43Gbz5By9qlQEjHUADAlt8XrkkzkDhsHASJ6xUQkXkwDGjgu721eGzRDlXH2i0iXuP0QtMJ1teiaemnaF79DRAM6notKSkVrtPPgvO0MyElunS9FhGRGgwDGthZ3Yyff7BZ9fGcXmheoaZ6NC39HM0rF+u2zPFRgtWGxJET4Rp/Jmx5fSJ+vtvtxoYNG1BfX49evXph5MiROlRJRPGAYUAD9Z4AbnxD/cp3D583BCU5STpWRN0VamlC07Iv0LxiERSfV/frWfP6wDV2KhJHTICYkNjpsQsWLMC9996LjRs3InRc18aTTz6Jn/70p3qXSkQxiGFAA7Ki4IqXViEoq3sp75rWH5OLM3SuirQge1rQvHoJmr9biFCDuhkj3SFYbUgYOg6ucVNh6zOg3e6k0aNHw26348Ybb8S4ceOQnZ2NG264ATabDR9++KHuNRJR7OHqKBoQBQGZTvXN/rVufZufSTtighPJU2ej112PIOOyW2Ar7Kfr9ZSAH+5136LyuT+i/M+/QuOSzxBqbmhzTH19PYYMGYLExES89dZbyM/Ph8PBNQ2IqOvYMqCR+z/Zgs3lTaqOvWBYL1w7nmsNRCvfgd1o/nYB3JtX67ZTYhuihITBo+AcOxWO/kNx849/jOeeew4A4HQ60dzcjHnz5kGWZbYMEFGXcH6TRrJcdgDqwgBbBqKbvbAY9st+jJT6+WhesQgtq7+G7HHrd0E5BM/mNfBsXgMpJR1/nH8ubr/+Wry3YCEee+wx/a5LRHGDYUAjGewmiDuW1HSkzroEydPPh3vdcjR9uwDBanWLT3VVqKEWLd98jHRBgGV3ja7XIqL4wTCgkUynXfWxtS0MA7FEtNnhGj8NznFnwLtzM5q/XQDvTvVTTbtEURCoKmtzl9wDsx6IKDYxDGgk0gGEiqJw4aEYI4giEgYOR8LA4QhUHELT8i/hXrccSjDQI9f37SlFxT9+j8SRE5A4bBwkV0qPXJeIoh/DgEYyXerDgD+koNkfQpKdL3+ssubkI/3Ca5Ey8wdoWfU1mlYsgtzUcOonqqAoCjaUVaO0sq7N/VUtHnz59TeYuHcHrB+/AXvfEiSOmICEIaO50iERdYqzCTTi9gdx9atrVB//xIXD0Se988VlKHYowSDcm1ahafmXCBza261zvbBqCx744jsAbWcTfPDBBwCAcwb2xnPzZxx7giTB0X8YEoePR8LgkRDtCd26PhHFHv5qqpFEmwWJVgnugLrNbmrdfoaBOCJYLHCOmgjnqInwH96HljVL0bJ+ORSvJ+Jzfbe/HGeffTbefPPN1q6mV199FT6fD08//TQe//3DbZ8QCsFbuh7e0vUQrDY4Bo1A4vDxcAwcDtHKZbGJiGFAU5kuG/bXqfvHvYYzCuKWLa8PbHl9kDJ7Pjyb16Bl9RL49paqfn5BihNvrVmDefPmnfTY4cOHkZ/i7PC5SsAPz6bV8GxaDcHuQMLg0eFg0H8Id1IkimN892sow6k+DHBGAYlWW2trQaC6PNxa8P0yyM2NnT7v1okj4LBYUN5UddJj/TMcuHKGug2LFJ8X7nXL4V63HGKCEwlDxyJxxATYiwZCELk4KVE84ZgBDf192R4sKK1UdezMQdm4ZXJfnSuiaKOEgvCUbkDLmiXwbt8IGPD2FF0pSBw+DonDx8NW2I+zXojiAFsGNBTJ9MJGb89MN6PoIkgWJA4Zg8QhYxCsr0XL98vQsmYJQvU9t8CQ3NyA5uUL0bx8IaSUdCSUjIKjZCQcfQdBsFh7rA4i6jlsGdDQF9sq8I9v96o6dlivZDx47mB9C6KYoMgyfLu3onn1Eni2rgVC6gapak2w2eHoPxSOQSORMGg41zEgiiFsGdCQ06b+5WzxBXWshGKJIIrhD+H+QxFqaYJ73XI0r/4GwRNWINSb4vfBs2UtPFvWok4QYMvvC8egEUgoGQVrbgG7E4iiGFsGNLT+UAMe+nybqmMznTb847LROldEsUpRFPgP7ELL6iVwb14DxRf5FEUtSSnprcHA0bcEgpXdCUTRhGFAQ7uqW3DvB5tUHZtgFfHq1afpXBHFAyUQgGfHRrg3roR323ooAWNnqghWGxz9hxzpThgBKSnV0HqI6NTYTaAhp01SfawnICMoy7BwChd1k2C1tg46lH1eeEvXw71xJTzbNwGhnu+OUgJ+eLaug2frOtQBsOYXIWHQSCSUjIS1V292J5DpBJsaEaiqgBzwQwn4ocgKRKsVgsUKKSkZtuwcCKL6f9+jEVsGNNTsC+La19QvSfz8FWOQksDmVNKH7HHDvWUtPBtXwrt7KyDLRpcEKTkN9n5D4Cgugb1vCSyp6UaXRHFEURR49+yEZ+8u+A7ug/fAXnj370XoFGt7CBYLbLn5cPQphqOgN+wFRXCWDIOUGDuryDIMaEhWFFz6wkqofUH/evEI5KVwnXjSX6i5EZ7Na+DeuBK+vduNLqeVJSMb9r4lreFASuIMBdKe9+A+NHy7GPVLFiFQWx2+U5Iin5lztCVXliFYLEgaPR6pk6fDNXIcRFt0L+3NMKCxa19djWa/uh+wP8wdioHZ3E2OelawoRaeTavg3rAK/kN7jC6nDUtWLziKB8NePCgcDrjbInVRqKUZtYs+Q/2ShfAd2h/+INe6dUyUADkE0e5A8ulTkX72uUjsN0jba/QQhgGN3frWOlQ0+VQd+6uZgzCmMFXfgog6EayphHvjKrg3rkSg4qDR5ZzEmlsIe3EJHH1LYC8aCDEhdpplSR9KKITaRZ+i4j8vQ/a4e24VzyPBIPn0qci9/AbYsrJ75roaYRjQ2L3vb8KumhZVx/7szH6Y2i9T54qI1AlUHAoHg82re3wNA1UEAda8PuFgUFwCe58BEO0Oo6siE2lavxplLz8Lf/kh44oQRQiiiMzzfoDM8+dDipIAyzCgsYc+24r1hzsfjHLUj07vg3OH5OpcEVHkAjUV8JZugGfb+vAYA9mYVQ87JUqw5ReFg0FhMWwFfbkqYpwKNtTh4N//D80b1gCCCCjGD5aFIEByJiH/pv9B8riJRldzSgwDGnv8qx34dk+tqmMvH1OA+aPyda6IqHtkrxveHZvhKV0P7/aNkN3NRpfUISk1A7aCvrAVFMNe0BfWvD4QbXajyyIduXduw/4nfotgU5MJQ6sAQEHWvEuRfclVpp6eyHUGNObiksQUY0RHIhKHn4bE4adBkWX4D+yCZ9t6eErXI1h52Ojy2gjV18BTXwPPptXhO0QR1uz81oBgK+gLa3Yet2iOEQ3fLcGBpx8LjwswwdTZk4V/1656/z/w7N+L3nf83LRdW2wZ0NjLq/bj/Y3q+ltnlWTj5kncxpiiV7C2Cp7S9Ue6E0oN20QpEoLNDlte0ZGAEA4JUkoaF0OKMjVffISyl54xugz1BBEJ/Qag6N4HITmTjK7mJAwDGntjzQG8vb7z35YURYEih3D2oFzcfka/HqqMSF+y1wPvrs3wbFsPb+kGU3cnnEh0pcBe2Be2/OIjAaEIoiM6Bn7Fo/plX+Hg038yuozIiSIS+g1C8a8fgWAxV8M8w4DG3l53CG+sPXmKVnPlQez68j+o27sVDQe2I+T3ISUzB59/9D4mTJhgQKVE+lFkGf6Du+Ep3QDvtvWmnLZ4KlJKOqw5+eE/2eH/W7J6QbRG9+Iy0c6zbzd2338XlGDA6FK6RhCQMesC9Lr6ZqMraYNhQGPvbyzDy6v2n3T/lw/8EMnw4YwzzsDYsWORnp6Ohx9+GDNmzMAzz0RRUxdRF4Sa6uHdXQrf7q3w7SlFsLbS6JK6RhBgSc8+LiDkwZqdD0tmDgTJXL/pxaJQSxN2/uIOBOpqTDpGQL2C2/4fUidNM7qMVvzp1ZhVar/fsaXqMB585PeYP38+tm/fjunTp+PZZ5+Fz6dugSKiaCYlpcI5cgKcI8OtYMH6Gvh2b4N3zzb4dm9DqEHdDBzDKQqCNRUI1lTAs2XtsfslCdbM3HAwyM5rbVGwpGVxsKJGFFnGgb89FhNBAAAO/eNJOAr6wNHbHOPGGAY0ZpXaf+M7M3rhvvvuw5133omioiLs2WOuZWCJepIlNQOWMZPhHDMZiqIgVFvVGgy8e7ZBbmowusTIhEIIVBxCoKLtYjeC1QZLVq9j3QwZ2bCkZcGSlgnRwX1JIlH39YLwOgIxQpFDOPDUY+j/yFOmGLzKMKCxjloGTr/jUZStW4KqbWuAhujrPyXSiyAIsGRkw5WRDde4M6AoCoLV5W1aDqJpMOLxlIAfgcP7EDi876THxEQXLGlZkNIyYUkPB4TwnyxIqensdjiOEgyi6r+vG12GtmQZvoP70LR2BZLHnm50NQwDWrN10DLgyi7AgHOugL+5AT6GAaIOCYIAa1YvWLN6wTVhOhRZRqDyMHytLQelULxuo8vsNtndDL+7GWhvsyhBgJSSfiwcHB8Y0rMgOpNN8dtkT6n/djECNdVGl6E9QUTlO68hacwEw/8+GQY01lE3ARF1jSCKsOUWwJZbgKSJM8LhoPwAfPt2wH9wD/wHdyNYE6UDEjuiKAjV1yBUXwPfntKTHhastnBASMuCJS0DkisFoiu5zf8lVxIEi9WA4rWlyCFU/vcNQBB6btOhnqLI8O7bjeYNa5A0cpyhpTAMaKyjbgIi0oYgirDl9YEtr0/rfSF3M/yH9sJ/YDf8h/bAf2B31HYtqKEE/AhWHj7lCpCCIxFSUgokZzLEpGRIbQLDcbedyaab935U44plCFSWG12GfkQRle++wTAQa6ydjByWg0HIobZzYwOBAPx+P2w2zl0m6iop0YWEAcOQMGAYgPDCXqG6avgP7obv4B74D+5B4PC+6J2b3kWK142g161qF0oxwXlcq0IyRGcSRLsDgt0B0Z4AwZ5w7GtHAgSbA6LDAcHmgGC16dbM3bj2O0AUDZ1B8PWhCvxp7TbIioIbhvTDxf0LtTu5LMOzcxuCTY2wJCVrd94IMQxorKNugoOrFmLtiw8j6HWjqKio9f5XX30Vb7/9Nh5//HHceuutPVQlUWwTBCHcx56ehcQR4emMSiiIQMWh1q4F38E94Q/JWGt67iLZ0wLZ09K17atFMRwUbEeCwvHBweaA4Djha4sFkCwQLBYIUvjP8V/jyP/FRBdaNm8wNAgEZRmPrd2Kf519OlxWCy79dClmFOYgxa7tL3Du7VsMHUjIMKCxjroJ9n7zHiaeNhY/+clP4HK5AAAPPfQQqqqq8MYbb+Cpp55iGCDSkSBZjnUvjJ8GILyEsv/wvmPdCwf3INRYZ2yh0UiWIXvcgMeNkIazQhNHT0awwdi/j001DeiXkoScxPAGQ1PzsrGsrBpzivK0u4gkwV3KMBBTLGL7YUC02NDQ0IDS0vBgoDVrjs2Xra2thd3ObVaJeproSICjuASO4pLW+2SPG4HK8JoBgcrDR9YPOBjTYxDMKlCvXxCQFQXzPv4G0/NzcNfoY3//yw5X4fZvVuORSaMwq3cvVHq8yE44ttNgTqIDlR6vtsWEQmjZukHbc0aIYUBjHTU4Dpx9Fda/+X949C/Hlh4WBCA90YaUlBT8/ve/75kCiahTYkIi7H0GwN5nQJv7Q82Nx4WDQ62BQfF5DKo09gXrawFJ0mU3TFEQ8KMh/fCH1Vtw49B+SLFZUVrXiLuXfo+fjhyEWb17AWj/33Q9Rkd49u6CHAhAtBozA4RhQGMddT9mDhqNsx94uc19CVYRr159Wg9URUTdJR0ZgX98K4KiKAg11IWDwdHWhIpDCFaVQQn4Daw2Nsg+v67jBc4rysMzG3fg9dK9uKhfAW5dvBpz++bhusHFrcfkJLRtCahwezE8M0X7Yo50tYhWHc6tAsOAxiLZ98noRSaIqHsEQYAlNR2W1HQkDBzeer8iywjVVR8LCFVlCNZVI1RXjVBTvXEFRxlFDuo6wNMiirhhSD/8ZX0pFhwox5D0ZPxi7NA2xwzLSMHO+iZUuL1wWS1YcrgStwzvr0s9soF71TAMaCySDMvliYhikyCK4X0IMrKRMHh0m8fkgB+h+hoEa6sQrKtGsK4Kobrq1q/Z7XAcWf+ZHnOL8vDo2i1QFAV/nDwK0gnjviyiiHvGDMaNC7+DrADXDylGqsYzCY5SZO27Q9RiGNBYJCGWLQNE8Ue02iAeWW75RIqiQPa0hMNBXdWxwFBbhVB9NYJ1NYCBHxg9rSdWUHx49WYAQL0vAKmDf5OnF+RgekGO7rWINuMGkjMMaCyybgIdCyGiqCMIAqREF6REF2z5RSc9rsgyQo11rSEh1FALuaURoaYGhJobITc3ItTcAMUfG1ujC1arrgsO/XX9diw5XIXXzpmEmxatxLu7DuCKgUW6XEsN0cBZZQwDGoukVUtkGiCiCAiiGN7+OTWj0+Nkv681GISaGyEfCQuh5oYj9x+7beaBjpa0jI6naHXTOzsP4OVtu/Hc2RMwKC0ZVw0qwgtbduOS/r07XUlWL5bUdEiJzh6/buv1DbtyjFIi+MllFCAiPYg2O8QjKzB2RlEUKH7vkcDQiFBLA0JNjZBbmiD7PFB83uP+74Xi87T5v94rA9pz8gBF+2ssOVyJh1dvxqOTR2FkZhoA4MpBffDi1t34aM8hXNRPw+WG1RBFOIeO6NlrnoBhQGORjRnQrw4iolMRBOHI0sEJQEZkfeKKokAJBsLBwOuF4vdC9p4YHI59ffS2EvBDCQahhMJ/EAq2fo3j7ldCQVizcyFYLFCCQc2+5821Dbh76fe4a9QgzCjMbb3fZbXiykFF+NeWXbigb8FJAwl1JStwDhx66uN0xDCgMTmCNMBuAiKKVoIgQLDaAKsNkku/ufEJn38Cd+kWzc43ND0FKy+d1e5jt48YiNtHDNTsWuopSBw0xIDrHsPZbRpjywARkXacQ0eFBxHGMNHpgj2/t7E1GHr1GCRHNGaAaYCIqDPpZ82O7d+cBAGZs+dBMDjwMAxoLJKWgZ7skiIiikbWtAykT58ds60Dgs2OjFkXGF0Gw4DW/EH1I18tHWx3TEREx2Sef4nRJehDEJE5ex4kp8voShgGtOaNIAw4LJKOlRARxQZbZjZSz5gRc60DgsWCjHPnGV0GAIYBzXkD6pcKdVgZBoiI1Mj+wZUQ7Y6YGj+QffGVsCQZs0vhiRgGNOYNRhAGLHz5iYjUsGVkofB/7tN1F8MeI4pIGjMBmXPN0/3BTyONeQMRdBOwZYCISLWkEWORPf9qo8voHlGENTMbBT+5x1Sb1TEMaIwtA0RE+sm64FK4Ro+P2vEDgmRBn7sfgJSYaHQpbUTnq2libBkgItKPIIoovPUe2Av6RFcgEARAklB4x8/hKDB2gaH2RNErGR3YMkBEpC8p0Yni+x+Fc9DQ6BhQKIoQrDYU/fy3SB57utHVtIufRhpjywARkf6khET0+flvkTr1bKNL6ZwowpKShuIHHoNr6Eijq+kQw4DG2DJARNQzRKsV+Tf/DL2uvzXcZWDCbgNnyTD0/8PfkFDUz+hSOsVdCzUWScuAnS0DRETdIggCMmacB2fJcJS/+k80b1wLCCKgqP+3WIeiILmSkHv59Ug942wIovn/rWcY0FgkLQMJbBkgItKEo6A3iu77LZo2rEHZS/+Av/xQzxchihBEEZnnXYzM8y+BlGCuGQOdYRjQGMcMEBEZJ2nEWLgefQZ1X32OyndfR7ChDhAlQFb/i1pEBCG8EJIoIuX0qci57DrYMrP1uZaOGAY05vYHVR9rZ8sAEZHmBElC+ow5SDtrNtylm1H/7WI0LP8asscTHlcga9CFcCQEJA4cgtQpZyF5/GRYXEndP69BGAY0JCsKmnzqw0CSnS8/EZFeBFGEc/BwOAcPR69rb0HzhrVoXLEU7l2l8FeUHQsFkhT+7f7on2MnCO81H5IBhO+XkpLhKOyLpFHjkHL6GbBmZPb8N6YDfhppqNkXhBzBstkpCVb9iiEiolaixYrkMROQPGYCAEAJBuErPwzfoX3wHtiHQFUF5IAfSsAPJSRDtNkgWKyQkpLgyO8De2EfOAp6Q3JG72//nWEY0FCDJ6D6WFEAXGwZICIyhGCxwFHQG46C3kiZMNXocgzHTmsNNXoj6yIQo2HlLCIiinkMAxpq8KpvGUh2sIuAiIjMgWFAQ5G0DCQ72EVARETmwDCgoUjGDHDwIBERmQXDgIYa2U1ARERRiGFAQw0RdBOksJuAiIhMgmFAQ2wZICKiaMQwoKFIZhNwzAAREZkFw4CGOJuAiIiiEcOARoKyjKaIxgywZYCIiMyBYUAj1c1+RLAtAbsJiIjINBgGNFLR5FN9rMMiwmWTdKyGiIhIPYYBjUQSBjJddgjcl4CIiEyCYUAjFU1e1cdmuWw6VkJERBQZhgGNVDarbxnIctl1rISIiCgyDAMaiaSbIMvJMEBERObBMKCRygjCQHYSwwAREZkHw4AGWvxBNPnUrzHAMQNERGQmDAMaiKRVAOCYASIiMheGAQ1EEgYsooBULjhEREQmwjCggYjWGHDaIHKNASIiMhGGAQ1UcFohERFFMYYBDUS24BDDABERmQvDgAYiGTPAmQRERGQ2DAPdJCtKRKsPco0BIiIyG4aBbqr3BBAIqd+8uCA1QcdqiIiIIscw0E0VjZGtMZCfwjBARETmwjDQTZEMHsxw2pBglXSshoiIKHIMA90UyXiBghSHjpUQERF1DcNAN5U1qm8ZyOd4ASIiMiGGgW7aU+NWfSwHDxIRkRkxDHSDLxjCoQaP6uMLOHiQiIhMiGGgG/bWuiGrn1XIbgIiIjIlhoFu2F3dovpYl01CisOiYzVERERdwzDQDbsjGC+Qn5oAgbsVEhGRCTEMdMPuGvUtAxw8SEREZsUw0EX+oIwDdRw8SERE0Y9hoIv217kRUtSPHsxP5YJDRERkTgwDXbQrgi4CAOidlqhTJURERN3DMNBFkcwkSHZYkOm06VgNERFR1zEMdFEkgweLM5ycSUBERKbFMNAFgZCM/REMHizOcOpYDRERUfcwDHTBgToPghEsPVicyTBARETmxTDQBZF0EQBAcQYHDxIRkXkxDHRBJDMJXDYJ2S67jtUQERF1D8NAF+yJYCZBXw4eJCIik2MYiFBQlrG3Tv2eBP04XoCIiEyOYSBCB+u9CIQiGDzImQRERGRyDAMRimSxIYAzCYiIyPwYBiIUyUyCRJuE3CQOHiQiInNjGIhQJGGgb3oiBw8SEZHpMQxEICQr2FOjfvAgxwsQEVE0YBiIwKEGD/whWfXxg3KSdKyGiIhIGwwDEYh05cGSbJdOlRAREWmHYSACu6vVdxHkJtuRlshti4mIyPwYBiIQScvAkJxkHSshIiLSDsOASoGQHFEYKMlhFwEREUUHhgGVdlW3wBdUP3hwMAcPEhFRlGAYUGlTWaPqY1McFvRKduhYDRERkXYYBlSKJAyU5CRxsSEiIooaDAMqBEIySiubVB/PLgIiIoomDAMqbK9shj+CnQoZBoiIKJowDKgQSReB3SKiKCNRx2qIiIi0xTCgwqZy9WFgYJYLFpEvKxERRQ9+ap2CLyhje2Wz6uPZRUBERNGGYeAUSiubEJTVjxcoYRggIqIowzBwCpGMF7BKAsMAERFFHYaBU4gkDAzKToLdwpeUiIiii8XoAszi3fWHsa/OjZH5KRiZl4IMpw2eQAg7q9TvRzAij5sTERFR9GEYOCLTZcNraw5g6e4aAEBhagLyUhwIKerHCwzvlaJXeURERLphGDiiOMPZ5usD9R4cqPeofn6iTUK/TOepDyQiIjIZdnAf0SvZAUc3+vuH5iZDErkfARERRR+GgSMkUUBRetdXDvQEQvj+YD18wZCGVREREemP3QTHKc50YlsECwwdb1NZIzaVNcIiChick4RR+SkYU5iK3mlcmpiIiMyNYeA4fTO63+cflBVsLGvE1oomFGUkMgwQEZHpsZvgOCcOIuyO26cWY1R+qmbnIyIi0gvDwHEKUh2wSt0fBHj9hD6Y2i9Tg4qIiIj0xzBwHIsooqibzfo/GJGHuUNzNaqIiIhIfwwDJ+jbjbUCzhqQhSvHFmhYDRERkf4YBk7Q1XEDp/VOxS2T+0IQuNYAERFFF4aBE/RJS4j4OYNzknDntAFcdIiIiKISw8AJ8lMiCwO90xJw34yB3K2QiIiiFj/BTuC0W5CaYFV1bKbThl+fUwKXncs1EBFR9GIYaEd+iuOUx6QmWHH/7BJkOG09UBEREZF+GAbaUZDaeVdBkt2CB2aXRNylQEREZEYMA+3o7EM+0Sbh/lklXGaYiIhiBsNAOzpqGXBYRPzvOYNQ3I21CIiIiMyGYaAd7Y0ZsEkifnnOIAzMTjKgIiIiIv0wDLQjw2mD47ipglZJwH0zBmJobrKBVREREemDYaAdgiC0jhuQBAH3TB+AkfkpBldFRESkj7gJA4qiQAkFofi9kD0tkL1uKAE/FFlu9/j8VAdEAbhzWj+M653Ww9USERH1HEFRFMXoIrQmtzQiWFOOUG0FQrXlCFYfRqi2AggG2j1ecCbDktELUmYvWNJzIKXn4oNDCjKTE3AGtyImIqIYFzNhINRYC//2dfCVrkGorjJ8pyAAEACl/d/+TyKKwJGWgoBoRWLRINgHjYGtTwkEi7pVCYmIiKJNVIcB2dMC/4518JauQajiQPjDX8tvRxDDQcJig63/CNgHjYa1YAB3JiQiopgSlWFACQXhXb8U7pULgKAfgABA52/jSDCQsgvgPONCWHP76Hs9IiKiHhJVYUBRFPh3bYR76YeQm+uNKeJIKLANGIXEiXMgJXNwIRERRbeoCQPB2gq0LHoLwfJ96JGWgFMRREAQkDBmGhJOmwlBkoyth4iIqIuiIgz4dm5A84I3woP71A4G7DECLLm9kXTuNRCdXJSIiIiij6nDgKIo8Kz8Ap5VXxpdSucEEYIjEcnzboIlM8/oaoiIiCJi2jCgyCG0LH4Hvi2rjC5FHUEAJCuS594Aa0E/o6shIiJSzZQrECqKguZFb0dPEADCUxpDATR+8CwCZXuNroaIiEg1U4YB36bl8G9bbXQZkVMUQFHQ9MlLkN1NRldDRESkiunCQKBsL1q+ed/oMrpOUaB43Wj69GUocsjoaoiIiE7JVGFAdjeh6ZOXYPi0we5SZATL9sL97SdGV0JERHRKpgoDzV/+G4rXre2SwgbyrvsG/n2lRpdBRETUKdOEgUDFfgT2l5pwHYFuEAS4V3wGk07YICIiAmCiMOBZuSC8ql8sURSEKg8icGCH0ZUQERF1yBSfvsGqQwjs2xZbrQJHCQI8K78wugoiIqIOmSIMuGOxVeAoRUGwfB8Ch3YZXQkREVG7LEYXoPh9COzdYuigwUN1jfjJy5+gutkNiyji7tkTMW/0IO0uIIjwbf8e1nyuTEhEROZjeBgIVuw3fPaAJIp4+OKzMLwgG1VNLTjr0VcwY0hfOO02bS6gyAgcZMsAERGZk+Ft84GyPYZ3EeSmuDC8IBsAkJXkRFqiA/Vur6bXkBuqIXtaND0nERGRFowPA4d26zZwUJYVnP7b5/Hg+1+3uX/R1j3o9bMn8P73J68B8P3+csiKgvw07bcjDpbv0/ycRERE3WVoGFDkkK4fkKIo4GfnjMcLS9e3/qa/6WAlbnj+Q/zq/KknjQuobfHgtlc+wROXn6N9MYKIwOHd2p+XiIiom4wNAz4vEArqeo1Lxg1BhjMBzy5ei8N1TbjiH+/i0tOG4PazT2tznC8QxDX/fB8/mzkB44vzdahEgdzcoMN5iYiIusfQAYRK0K/7NSySiDtmjMfDHy7BR+u3Y0RBDv5wyVlt61AU3P7qZ5g6sBCXjh+qTyGKAiUY0OfcRERE3WDsmIFQz+zqd8lpg+EJBKEowLPXnQdJbPttr9h9CO99vw2fbtiJaY+8hGmPvIQth6u0L4RhgIiITMjYqYWWnrn8ff9ZCACoafGcFAQA4PR+Baj6yz261yFYNZqqSEREpCFDWwYEi/4fjn/4aCkWbNmNz+66EiFZxmvLN+p+zXYJAmCxGnNtIiKiThgbBuwJEGwO3c7/yrcb8PSi1Xjt5oswrCAbP542Fn/9ciUCPdQ90ZYAKTXTgOsSERF1ztgwIAiw5PUN/9assS8378bP31qIZ66Zg3F98wAAN50xGk1eP/6zcovm1zslRYa1V9+evy4REdEpGL7okDWvWPNzrttfjhuf/xAPzDsDc0cNbL0/KcGOH505Gn9esBIhuYd3SBQEWHJ69+w1iYiIVBAUxdiNAQJle9H4zlNGltAjpMw8pF5+p9FlEBERncTwlgFLdgEgGb5fkr4EkTsWEhGRaRkeBgTJAnvJWMM3K9KVIsM+ZLzRVRAREbXLFJ/ACWPPAmDsNsa6EURY+w6FJSPX6EqIiIjaZYowICWnwzYoRlsHFBmJ42caXQUREVGHTPPpmzjubMDYsYzaE0RY+5TAkqXHxkdERETaME0YkFIzYR9ymi5rDhhHQeKEWUYXQURE1CnThAEAcE6dByktO2a6C5xT54VnSxAREZmYqT51BasNSeddD8FiBRDFLQSCANvAMbAPn2R0JURERKdkqjAAAFJKBlyzr0LUzi4QREhp2XBNvxhCTHV5EBFRrDJdGAAAW58SJE6cY3QZkRNECDZHuHWD2xUTEVGUMHw54s541i+Be8kHRpehjiBCdCYj+aIfQ0rh7oRERBQ9TB0GAMC3Yx2av3wTkGUTTz0UIGXlIfn8GyEmJhldDBERUURMHwYAIFh1CE0fvwC5pdGUgcA+ZDycZ14EIdb3WCAiopgUFWEAAGSvG+7vPoNv03fhtQiUHt6CuB2CMxnOKefDPmCU0aUQERF1WdSEgaOCNeVwL/0AgQM7joSCHi5fEADJgsRxM+AYNfXINEgiIqLoFXVh4Cj/vm1oWfI+5Prq8CJFurcUCAAU2IeMR+KEWRCdyTpfj4iIqGdEbRgAAEWRETy8F77t38O/Yx0Uv1fbYHCk5UHKzIO9ZCxs/UdCcqVoc24iIiKTiOowcDwlFETgwA74StcisG9bOBgAR/Y6UDHGQBTDMxbCT4KYmgn7wFGwDxgNKS1Lz9KJiIgMFTNh4HiKokBxNyFUW4FgbTlCNRUIVh+G4mmGEgoBcjC8QJAkAZIVUmompIxesGTkQErPhZSWzbEAREQUN2IyDBAREZF6plyOmIiIiHoOwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojhnMbqA49lG3wDRYoMgShBECZL12G1BFI89JkkQLTaIrY9JJz0miBJEUYAgCpAkEcIJt0VRgCgJrcd0+pggQLKIkEQBkijAduS2pfVr6dhj0rHjLMcdK7V3WxAgCgIkAbBKYuttiyRCEhD+WhRgFYV2bocft4pi621JECAIgCgAgoAj5wcEAJIoQATC34uI1tuiAEjC8bfD5xAUBVBkCHIQaHNbDv+RO35MUGQgFDp2Ww4CcgiKLANBP5RQCJDl8H3BABQ5FL4dCABHbx899uhxAf+x58ghyIEglJAMRZYh+4OQQ+HnKCEZciAIOXTstnLkdigQhHLccSF/8LjbISiyAjmkHPn6yPNlJfxYSIESUiCHZIQC8pFzKggFQkeec+x5sqIgpCjwywpCCk64feLX4dsywrdDCo48duz235W9hr4vtcL3N9/ffH+b9/3NlgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqJ4p8Qor9erPPDAA4rX6zW6lJOYuTZFYX3dYebaYomZX2cz16YorK87zFxbdwmKoihGBxI9NDY2IiUlBQ0NDUhOTja6nDbMXBvA+rrDzLXFEjO/zmauDWB93WHm2rqL3QRERERxjmGAiIgozjEMEBERxbmYDQN2ux0PPPAA7Ha70aWcxMy1AayvO8xcWywx8+ts5toA1tcdZq6tu2J2ACERERGpE7MtA0RERKQOwwAREVGcYxggIiKKczEXBu655x5MnToVP/zhD+H3+9s85vF4MHfuXJx55pmYOXMmamtrTVXfUX/4wx8wbtw4w2sKBoO47rrrMHXqVPz0pz/tsXrU1ndUT79ex+uoNjP8rMUivr+1q4nv71OLp/d3TIWB77//HuXl5ViyZAmGDBmCt99+u83jn376KYYNG4avv/4al156KV555RVT1QcATU1N2LRpkylq+vDDD1FQUIAlS5bA7Xbj22+/7bG61NQH9PzrpbY2o3/WYhHf39rWxPd312sz+mdNDzEVBpYvX45zzjkHADB79uyTfrgHDBgAt9sNAKivr0dWVpap6gOAP//5z7jttttMUZOaeo2sD+j51+t4ndVm9M9aLOL7W9ua+P7uXLy9vy1GF6Cl+vp65OXlAQBSUlJOarrp168fNm3ahGHDhkEQBKxYscJU9TU0NGDjxo349a9/bYqa6uvrW9ffbq9eo+sz4vVSW5vRP2uxiO9vbWvi+7vrtRn9s6aHqGwZKC8vx5QpU076oygKGhsbAYT/ItPT09s876WXXsK0adOwadMmPPjgg3jooYdMVd+TTz6J22+/XZeaOpKWltZhTZ09Zob6jHi9jtdZbT31sxaL+P7WDt/fXRdv7++oDAO5ublYunTpSX/mzJmDL774AgDw+eefY/LkySc99+hfaGpqKurr601V386dO/Hwww9j9uzZ2LFjBx555BFd6jve6aef3mFNnT3WUzqrwYjXS21tQM/8rMUivr+1w/e3PrUBMfj+Nm73ZH3cfffdypQpU5Qrr7xS8fl8iqIoys0336woiqI0NDQoc+bMUc4880xl8uTJSmlpqanqO97YsWMNq+loPYFAQLnmmmuUKVOmKHfccUeP1aO2vuP15Ot1vI5qM8PPWizi+7v7NfH9rV48vb+5HDEREVGci8puAiIiItIOwwAREVGcYxggIiKKcwwDREREcY5hIA68+OKLSE1N1eRce/fuhSAIsFgsOHToUJvHysrKYLFYIAgC9u7d2+axd955B9OmTUNKSgpcLhdGjBiBhx56qHUhDy1rJIo31113HQRBwC233HLSY7feeisEQcB1113Xel95eTnuuOMOFBcXw263o7CwEOeffz4WLlzYekxRURGefPLJHqiezIBhgLokLy8PL7/8cpv7XnrpJeTn55907K9+9StcdtllOO200/Dpp59i06ZNePzxx7F+/fqYWNObyAwKCwvx5ptvwuPxtN7n9XrxxhtvoHfv3q337d27F2PHjsWiRYvw6KOPYuPGjfjss88wffp0w5b+JeMxDESBzz77DFOmTEFqaioyMjIwd+5c7Nq1CwCwePFiCILQZtGLdevWtf52vnjxYlx//fVoaGiAIAgQBAG/+c1vAAB1dXW45pprkJaWhsTERJx77rnYsWOHqpquvfZavPDCC23ue/HFF3Httde2uW/lypX4/e9/j8cffxyPPfYYJk2ahKKiIsycORPvvPPOSccTUdeMGTMGvXv3xrvvvtt637vvvovCwkKMHj269b6jLQUrV67EJZdcgoEDB2Lo0KG466678N133xlROpkAw0AUaGlpwV133YVVq1Zh4cKFEEURF110EWRZPuVzJ02ahCeffBLJyckoKytDWVkZ7rnnHgDhpsXVq1fjgw8+wPLly6EoCubMmYNAIHDK815wwQWoq6vD0qVLAQBLly5FbW0tzj///DbHvfbaa3C5XLj11lvbPQ+7Boi0c/3117cJ6c8//zxuuOGG1q9ra2vx2Wef4bbbboPT6Tzp+Xw/xq+Y2qgoVl188cVtvv7Xv/6F7OxsbNmy5ZTPtdlsSElJgSAIyM3Nbb1/x44d+OCDD7Bs2TJMmjQJQPiDu7CwEO+99x7mz5/f6XmtViuuuuoqPP/885gyZQqef/55XHXVVbBarW2O27FjB4qLi0+6n4i0d/XVV+MXv/hF69ieZcuW4c0338TixYsBhJf4VRQFJSUlxhZKpsOWgSiwa9cuXHnllSguLkZycjL69u0LANi/f3+Xz7l161ZYLBZMmDCh9b6MjAwMGjQIW7duBQCce+65cLlccLlcGDp06EnnuPHGG/HWW2+hvLwcb731VpvfQI5SFAWCIHS5TiJSLzMzE+eddx5eeuklvPDCCzjvvPOQmZnZ+vjRBWf5nqQTsWUgCpx//vkoLCzEP//5T+Tl5UGWZQwbNgx+vx8ulwvAsTc5AFXN/B2tQn38h/dzzz3XOhipvd/shw0bhpKSElxxxRUYPHgwhg0bhnXr1rU5ZuDAgVi6dCkCgQBbB4h6wA033NC6299TTz3V5rEBAwZAEARs3boVF154oQHVkVmxZcDkampqsHXrVvz617/G2WefjcGDB6Ourq718aysLADhaX1HnfiBbLPZEAqF2tw3ZMgQBIPBNvtw19TUYPv27Rg8eDAAID8/H/3790f//v3Rp0+fduu74YYbsHjx4nZbBQDgyiuvRHNzM55++ul2H4+J3b6ITGT27Nnw+/3w+/2YNWtWm8fS09Mxa9YsPPXUU2hpaTnpuXw/xi+GAZNLS0tDRkYGnn32WezcuROLFi3CXXfd1fp4//79UVhYiN/85jfYvn07Pv74Yzz++ONtzlFUVITm5mYsXLgQ1dXVcLvdGDBgAObNm4ebbroJS5cuxfr163HVVVchPz8f8+bNU13fTTfdhKqqKvzoRz9q9/EJEybg3nvvxd133417770Xy5cvx759+7Bw4ULMnz8fL730UtdeGCJqlyRJ2Lp1K7Zu3QpJkk56/Omnn0YoFML48ePxzjvvYMeOHdi6dSv+8pe/YOLEiQZUTGbAMGByoijizTffxJo1azBs2DDceeedeOyxx1oft1qteOONN7Bt2zaMHDkSf/zjH/G73/2uzTkmTZqEW265BZdddhmysrLw6KOPAgBeeOEFjB07FnPnzsXEiROhKAo++eSTiJrzLRYLMjMzYbF03OP0xz/+Ea+//jpWrFiBWbNmtU5jGjFiBKcWEukgOTkZycnJ7T7Wt29frF27FtOnT8fdd9+NYcOGYebMmVi4cCGeeeaZHq6UzIJbGBMREcU5tgwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5/4/kDbdis2L3g4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -394,7 +394,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKUklEQVR4nO3deXxU5b0/8M9zzpk1+0pCCIQlrGFHEEQBN9xtXat1t9pW29pau9323ra22lrr/dneq97bWhFr1V7Ftmpdi6KiILJvYYewJUD2ZSaznPP8/pgQCCQwk5zJOTPzeb9evAgzJ8/5MmTIJ88qpJQSRERElLIUqwsgIiIiazEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpTrO6gHiTehh6wxGE62og/W2QehjQw4AQgKpBaA6oWXlQ84qgpGVCCGF1yURERP0qqcKAlBLhmr0IVm1BuLYa+pED0JvqACmPXSQEgKPf8GWX54TTBTWvGFrBQGgFJXCNGA/Fm9GvfwciIqL+JqQ8/jtlYgrX1SCwZTXaKz+H0dIICAUnfqOPiaIAhgEIAUfpSLjHTIVzxHgoTreZZRMREdlCwoYBaeho37Ac/nVLodfVRAKANMy/kRCRUKGocA6vQNr0C6AVlph/HyIiIoskZBgI7K5E65JXYTTW9u+NOwKHa9wMpM26GGp6Vv/en4iIKA4SKgyEa6vR+uHfEdq77dhP7FYQCqCo8M64AN6pcyA0pzV1EBERmSAhwoA0DPiWvwPfZ+91hIA4DAf0kpKejczLb4ejaLDVpRAREfWK7cOA0e5D85vPIVS11epSuicEIBRknH8t3ONmWF0NERFRzGwdBvSWBjS+8iSMpnpb9Qb0xDv9fHhnXcK9CoiIKKHYNgyE6w6h8ZUnIP1tCREEjnKNm46M86+HULi5IxERJQZbfscy2tvQ9Lf/SbggAACBTSvgW/6O1WUQERFFzXZhQEoDzW/+GUZrc8IFgaN8n72LwM6NVpdBREQUFduFAd+ydyKTBRM0CBzV/NafoTcesboMIiKi07JVGAjs2gTfZ+9aXYY5wmE0/eNpyFDA6kqIiIhOyTZhQIbDaHnvr1aXYR5pQG84At/qD62uhIiI6JRsEwbaN6+A9LVYXYa5pIR/5Qcwgu1WV0JERNQjW4QBqevJMzxwAhkMoH3dJ1aXQURE1CNbhIH2ypUwWpusLiNOJHyfv8+5A0REZFu2CAO+Fe9ZXUJcyYAP7Zs+t7oMIiKiblkeBvTmBhhNdVaXgVufeR3lP34Kdzz7hvmNC4Fg1Rbz2yUiIjKB5WEgdGCX1SUAAO46exL++8b58WlcSoT274RM8L0TiIgoOVkfBg7uAmywj//s8lKkuxxxa18G26HXcxMiIiKyH8u/C4f27QCM+PzEbBgSs369EA++/nGXx9/fsgcl3/s9Xlu7LS737UnooD16QYiIiI5naRiQoSD0hsNxa19RBL513hl49tMNaPRF1vpvPHAEX1n4Jv7tkrNwxaSRcbt3N8UgXLO3/+5HREQUJWvDQD9sxnPNlNHITXPjjx+vxcHGFnz56X/g2mmjce+8qXG/dxeGhAz4+/eeREREUdCsvLkMBeN+D01V8M1zp+HhNz/FG+t3YMKgQjz8xblxv+/JJIxw/P++REREsbJ8zkB/uHrqaPiDIUBK/M9NF0PtZsLidf/7Kr6y8E0srtyDiT9/Gmv21phfiDS/SSIior6ytGdAOJz9cp8fvfoBAKCuzQ9VEd1e839fvSrOVQgo/fT3JSIiioWlPQPC6Yr7PX791qf41+Y9ePO+L0E3JP7y2aa437NbQkC43Nbcm4iI6BSsDQMOF5Ts/Li1//zyjXhqyWr8+c4rUFFSgLvPmYwnPliJkK7H7Z49kga0wtL+vy8REdFpWD5nwFlaHpdNhxZX7sYPF32AJ758EaaVFQMAvnL2RLS0B/HySmu2BnaUDLPkvkRERKdieRhwDBxq+qZD6/Ydwp0L38R/XD4bl00Y0fl4htuFO2dPwu/f/xx6nDY66olwuqDmDejXexIREUVDSCktneOuN9Wh/plfWllC/AkBx5DRyP7i3VZXQkREdBLLewaUzFwoGTlWlxFfEnCWjba6CiIiom5ZHgaEEPBOP9/qMuJKuFzwjJthdRlERETdsjwMAIB77HQIb4bVZcSHEPBMPbdfllESERH1hi3CgNA0pM24wOoy4kJoTngmzba6DCIioh7ZIgwAgLtiBoQnzeoyzCUEPFPmQHF5rK6EiIioR7YJA0JzIuO8a60uwzxCgZKZC8/UeVZXQkREdEq2CQMA4CqfCM+0c60uwxyqiqwr74LCLYiJiMjmbBUGACDtrEvgGDQcELYrLSaZ82+Exk2GiIgoAdjuO65QVGReehsUbzoguj9h0O48086Fa+Qkq8sgIiKKiu3CAAAo3nRkffGrEC5vwvUQuEZORtpZl1hdBhERUdQs3474VPTGWjQuehJGSxMg+/csgd7wTJmDtHOugEiwAENERKnN1mEAAAxfK5rfWIDQgV1Wl9K9jqGMtLMug3/T59AKB8JRNASOgWXQCgZCqJrFBRIREZ2a7cMAAEhDR9vSN+BftSQybGCXXgIhIDxpyLrsdjhKhqHl/UXwr/7o2POqBseAUmjFQ+AoLoNj4BAoGTkQCToXgoiIklNChIGjQof2ofWDVxGu3gNAALCodKEAQsA77Vx4zjgXijOyfFBvqkPd0788ZVhR0jI7wsEQOIoGQyscBCXZNlsiIqKEklBhAACklAjuWI/WD/8Bo6Whf2/e0SvhGjUZabMvh5p58mmLTf98DoHKVTE1q2RkQyscBK1wEBwDBkErLGEPAhER9ZuECwNHyXAY/nVL4V+3FEZTXfyGD4QApASEQGPeUAw+9zK4Sob2eHno8H40PPdo32/rSYNWUNIRDgZBKyqFllPY53aJiIhOlLBh4CgpJcKH9yOwZTXaK1dC+lsBRQGMPgQDoUQCACSas0uwTCvDa615aBUuPHLFOIwfmHXKT2985SkE92zp/f27kT7nSnjPSJLdGYmIyFYSfqq7EAKOAaVwDChF2tmXI3RgF4J7KhGurYZeexBGa9NxFyuRqQZH5xtIdPzekYdUDcgqwGFXHjYE0/DP1nzUBbxAoONTACzbXX/aMOA941xTw4BzeAU803jGARERxUfC9wycjgwGEK4/BL2uGobfB6mHAT0cWQmgaoDmgN+VhZWtTvyrWsfmmpZTTksckOHCMzdOOeV4vpQSDc//FuFD+/tcv5KZi9xbvgfF7e1zW0RERN1J+J6B0xFOFxxFg+EoGtzjNf9ccwAL1lRF1d6hlgB21/kwLL/nFQBCCHjPOA/NbyyMud4uVBVZV9zBIEBERHHFrfIAzBqaG9P1y/bUn/Ya18iJULLyelsSAEDLK4aa3bc2iIiITodhAEBJtgeDczxRX79sd91prxGKCm8fx/nDh/ej/rlHEaqOrteCiIioNxgGOswsi753YFedDzXN7ae9zlMxA8KT3peyYDTXo+HFx+Fb+QGSfHoHERFZhGGgw8wYhwqWRzFUIBxOeKfN7WVFxzEMtC75O5r+/jQMf1vf2yMiIjoOw0CHEQXpyEtzRn39p7tPHwYAwDPpbAiTJgAGd25E/XO/QejgblPaIyIiAhgGOilCxDRUsLmmGU3+0OnbdbnhnXJOX0rrwmhpRMNLv0fbisWQdjmwiYiIEhrDwHFiGSowJPBZVZS9A5PPgXC6eltWNzc30PbRa2h69Y8wfK3mtUtERCmJYeA444szkeZUo75+WZRDBYonDZ5JZ/e2rB4Fd29G/cJHEDB562MiIkotDAPH0VQF04ecfBJhT1bvb4Q/pEd1rXfqXEBz9LKynhltzWh65Sm0vP8qZChoevtERJT8GAZOMHNo9Jv8hHSJtfubTn8hACUtA56JZ530uHvCTDiHjY36nj3xr/4Q9c8/htDhA31ui4iIUgvDwAmmlmbDofZ87sCJ1h1ojPpa7xnnAuqxYQituAwZ512DrC/ehfQ5V0ZOW+wDva4GDc8/xsmFREQUE4aBE3gcKiYPyo76+jVR9gwAgJqeBU/FmQAA4fYi6/JbIVQNQijwnnEucr70LSgZ0Q9TdMvQ0fbRa2j8vyegNzf0rS0iIkoJDAPdiGXewL5GP2pbA1Ff751+HqCqyLzkZqiZXVcvOAYORe4t34NzeEXU7fUktG8H6hc+gvYtq/vcFhERJTeGgW5MKsmK6fq1B2LoHcjKQ/Z134Crh3kCiicNWV/4CtLnfgFQol/Z0B0Z8KP5jYVo+udzMNp9fWqLiIiSF8NAN4oz3ShIj343wliGCgDAWTLslM8LIeCdNg85N9wHJTO2bZK7E6hchfqFv0Fw344+t0VERMmHYaAbQghMHBh978DaA41xOUTIUTwEubd8D67yCX1uy2hpQONf/xutH70GqYdNqI6IiJIFw0APJsQwVNDgC2Fvgz8udShuLzKvuAMZF14PaNH3VnRPwrdiMRr+8p8I19aYUh8RESU+hoEeTIihZwAA1uxvjE8hiPRUeCbMQu6t34NWNKTP7YUPH0D987+Fb/VHPBaZiIgYBnpSmOHCwEx31NfHOm+gN7ScQuTccB+8M+cDIvq9ELoVDqH1/UVoWvS/0FvjXzsREdkXw8ApTIxhqGDDwSaE9fhv9CNUFelnXRKZXJgV/W6JPQnuqYwsQdy2tu/FERFRQmIYOIVY5g20hw1sPdx/Jwg6Bg5F7q3fh7tiRp/bkv42NL+2AE3/+BN7CYiIUhDDwClMGJgZ0/XxnDfQHcXpRuZFNyLzijsg3N4+txfYvh71C34F/4blnEtARJRCGAZOIcfrxJAcT9TXx7L5kJncIyci97Yfwlk2us9tyYAfLe+8iMZXnoTeWGtCdUREZHcMA6cRy7yBLYda4Atas4ZfTc9C1tVfRfq5VwOq1uf2QlXbUPfsI/Ct/ADS4KFHRETJjGHgNGKZN2BIYEN1cxyrOTUhFHinnIPcmx+AVlDS9wbDQbQu+TsaXngc4SMH+94eERHZEsPAaYwvzkQsi/jW9sMSw9PR8ouR8+X74T3jPCCm6rsXrqlC/Z9/i9ZP3oQMc/dCIqJkwzBwGhluB4bnp0V9fX9PIuyJ0DSkz7kC2dfdCyUju+8NGjp8y95B/Z8fRejgnr63R0REtsEwEIVY5g3sbfCjri0Yx2pi4xxcjtxbfwDXmKmmtKfX1aDhhcfR8v6rMILRH91MRET2xTAQhVi3Jl57oDE+hfSS4vYi69JbkHnpzRCu6FdH9EzCv/pD1D/7awT3bDGhPSIishLDQBTGFWdCiWHovT+2Ju4N95hpyL39R3COGG9Ke0ZzPRpfeQrNb/0Fhr/NlDaJiKj/MQxEwetUMaowI+rrN9dYt6LgdNT0LGRdeScyL78dijf6v9OptG9agfoFv0L71rXcrIiIKAExDEQpliWGNc0BNPrtM2/gREIIuEdNQu7tP4J73HRT2jR8LWh+vWNL46Z6U9okIqL+wTAQpYkxbk289VD/nVPQW4onDZkXfxlZ13wdSmauKW0Gd2xA3YKH0bbsHchwyJQ2iYgovhgGojSmKANaDBMHthxqiWM15nKVjUbubT+EZ+ocmLEvAcIhtH3yJuoW/AqBHRs4dEBEZHMMA1FyaSrGFkU/xr6lH08wNIPidCFj3lXIufE+qHlFprRpNNWh6e9Po+nV/0W4/rApbRIRkfkYBmIQy7yBbYdboBuJ9xOxY+BQ5N78PXhnXgQoqiltBndXov7ZX6P1o9e5NwERkQ0xDMRgYgz7DfhDBvY2+OJYTfwITUP6WRdHzjgoGmJOo4YO34p/of6Zh9C+ZTWHDoiIbIRhIAYjC9Ph0qJ/yRJhEuGpaAUDkXPjt5E+9wuA5jSlTaO1Cc1vLETjX/+bhx8REdkEw0AMHKqCiuLoVxVsOZw4kwh7IhQF3mnzkHfbD+AYPNK0dkP7d6D+uUfR8v4iGO2J2YNCRJQsGAZiNKowPeprE2lFwemo2fnIvvYeZMy/waQtjQFIA/7VH6HuTw/Bv2E5pDTMaZeIiGLCMBCjoXnRn2C4t8GP1kDyHPkrhIBn/JnIvf1HcJVPNK1d6W9FyzsvouGFxxGqrjKtXSIiig7DQIyG5nljun5bgi0xjEZkS+M7kHXVV6HmFJjWbri6Cg1/+X9ofuclGL7ke92IiOyKYSBGRZluuGOYRJgM8wZ64ho2Frm3/hBpZ19m2gRDQKJ9wzLU/emX8K1aAhlOnp4VIiK7YhiIkSIEymLoHdiaRPMGuiM0DWkzLkDenT+Ga/QU09qVAT9aP/gb6p55CO2bV3I+ARFRHDEM9EIs8wZ21aXGTHk1IxtZl92K7Ou+ATW/2LR2jeZ6NL/5ZzT8+bcI7NnC/QmIiOKAYaAXhuZG3zNQ1xZEc3vqHNjjHFyO3Fu+h/Rzr4Jwuk1rN3z4AJpeeQqNLz+JUM1e09olIiKGgV6JpWcAAHanSO/AUUJR4Z0yB3l3/hjuihmmth3auw0Nzz+GptefRbjhiKltExGlKoaBXiiLoWcAAHbXtcWpEntT0jKRedGNyPnyd6ANKDW17cDWNahf8DBa/vUKjLZmU9smIko1DAO9kObSMCDDFfX1qdYzcCJHcRlybrofGRd+CcITW6/KKRkG/Gs/Rt3Tv0DrJ2/BCLab1zYRUQphGOilWPYb2F2fmj0DxxNCgWfCTOTd8WN4Jp0NCGFa2zIUhG/Z26h7+hfwrfkYUudyRCKiWDAM9FIs8waq6n0JeZxxPCieNGScfw1ybv4eHCXDTG1b+lrRuvgV1C/4VcfJiFyOSEQUDYaBXoplRUFIlzjQ5I9jNYnHUViC7C99C5mX3AwlLfrDn6KhN9ai+Y2FaHj+PxGs2mpq20REyYhhoJe4oqDvhBBwj52G3Dt/DO/MiyAcZu1iGBE+tA+NLz+Jxlee4nJEIqJTEJK7uPSKbkhc88xnCISj64q+bnIJbpsxJM5VJTajrRlty96Bf/2ngGF+F7+zbAzSZs6Ho2So6W0TESUyzeoCEpWqCAzJ9UZ9EBF7Bk5PSctExvnXwjN1DtqWvonA1jWmth/cU4ngnko4BpcjbeZFcJaOMLV9IqJExZ6BPvj9hzvxduWhqK7NT3PiuZunxbmi5BKqrkLrR68jtG97XNp3DBoO75kXwjlkFISJqxuIiBINw0AfvL6xGk8t3R319X+97QxkuB1xrCj5SCkR3LMFbR+9jvCRA3G5h1Y8BGlnXgjnsHEMBUSUkjhM0Aex7kS4p96H8QOz4lRNchJCwDV0DJxloxCoXIXWpW/CaK439R7h6io0/e2P0AoHwXvmhXCVj4cQnFtLRKmDPQN90BoI47oFK6K+/ttzh+PC0QPiWFHyk+Ew/OuWom35u5D++GzmpOYXI+3MC+EaOQlCYSggouTHMNBHtz6/Ekdag1Fde+3kEtzOFQWmMAJ++D5/H76VHwDh+JwKqeYWwjvjQrjHTIFQ1Ljcg4jIDvhjTx8Ni2G/gYPceMg0isuD9NmXIu8r/w73hFlAHLr19frDaHnredQ/8zD8G5Zxm2MiSloMA31UFkMYqG7iQTpmU9OzkHnh9ci97YdwlU+Iyz30xlq0vPMS6p7+JXxrl0LGqSeCiMgqHCboo4921OLX/9oW1bVuTcGiO2dwxnochQ7uQevSfyK0N7p/k95QvBnwTJoNz8SzoKRlxO0+RET9hWGgj/Y3+nH3S9FvjvPnm6chL83cbXfpZKGDu9G27B0Ed1fG7yaqBveYqfBOnQOtoCR+9yEiijOGgT7SDYmr//QZgnp02+c+csU4Li/sR6GavWhb/i6COzbE9T6OweXwTp0L57CxXJZIRAmHYcAE31q0DjuORLfM7b45wzF/DJcX9rfwkQNoW/YuAtvWAYjfl7yanQ/PlDlwV8yA4nTF7T5ERGZiGDDBw+9uxdJddVFde+2kEtx+JpcXWiVcW4O2z95FYMtqII5f+sLlgWf8THgmnw01Kzdu9yEiMgN3IDRBQXr0cwAONnN5oZW0/CJkXXoLwrMugu+zf6F98+dxOSFRBvzwrXwfvlUfwFU+Ed6pc6ENLOPkUSKyJYYBExSkR98dfJDLC21ByylE5kU3Im3mfLSt+BfaN3wGGLr5N5ISgW1rEdi2FlrRYHinzoFr5GQIlZsYEZF9cJjABJ/sqsND726N6lqXpuBVLi+0Hb25Ab7PF8O/fhkQ582FlPQseCafDc+EWVA80e9TQUQULwwDJth2uBXffnV91NdzeaF96a1N8K38AP61nwDh6LaZ7jXNAffYM+CZeBYcAwbF/Ok+nw/r169HY2MjiouLMXHixDgUSUSpgGHABA2+IL783Mqor3/0ygqMK86MY0XUV4avFb5VH8C/5mPIYCDu99MGDIJ7/Ey4R0+B4j71aZjvvfcevv/972PDhg3Q9WNDG48//jjuu+++eJdKREmIYcAEhpT4wh+XI2xE91L+8PyROGdEfpyrIjMY7T741y+Df81HMFoa439DzQH3yElwT5gJR8mwboeTJk+eDJfLhTvvvBPTpk1DYWEh7rjjDjidTrz++uvxr5GIkg53RzGBIkRMkwjr2uLc/UymUdxepE0/D3l3/QcyL7sN2sCy+N4wHEL75s/R+NLvUf/Mw2hbsRhGW3OXSxobGzF27Fh4vV68/PLLKCkpgdvtjm9dRJTU2DNgkh++thHrDzaf/kIAV08ciDtnlsW3IIqbUPUe+FZ9iMDWtYA0f1niSRQFruHj4Z4wE84ho3D3V7+Kp59+GgCQlpaG1tZWXHnllTAMgz0DRNQrXFpoklh6BmrZM5DQHMVlyLqsDPo5V8C/9mP41y+DbPfF74aGgcD2dQhsXwclIxu/vflKfPPO2/G3d97Do48+Gr/7ElHKYBgwST6HCVKOmpmD9HOuQNqZ89G++XP4Vn8Ivf5wXO9ptDQisOI9FEHAtedAXO9FRKmDYcAkhTHsQsgwkFyE0wXPpNlwT5yF4O4t8K/+EME9W+J8V4nwCcGjP1Y9EFFyYhgwSaw9A1JKbjyUZIRQ4Bo2Fq5hYxGurYZv9Ydo37wSCIf65f7BfdtR/8L/g3v0VLhHTYKSxuWrRBQdhgGTxHI+QVA30BoII8PtiGNFZCUtvxiZF34J6bMvg3/9p/Cv+fikVQG9JaXE2v2HUVlT2+XxIy0+LF7yEWbt2wnHB6/CUVoO95gpcI2YwJ0OieiUGAZMUhhDzwAQmUTIMJD8FG860s68EN4zzkVg6xr4Vn2I8KF9fWrzT5+sx4//8SGAyGqCo9buP4zr/vh3XDRuGBbedhlCe7chtHcbWt57Gc6y0XCPngLniAooTi5DJKKuGAZM4nVq8DpV+ILRHXZT1xbE0Dz+tJYqhKrBPfYMuMeegdCh/WjfsBztlSshA7GfYrls136cd955eOmllzqHmp5//nkEAgE8+eSTeOxXD3X9BENHcNcmBHdtAjQHXMPGwTV6ClxDx0A4uC02ETEMmKog3YWq+uiWmHESYepyDBgEx4BrkD7nCgS2r4N//XKE9u+I+vMH5WTipVWrcOWVV5703MGDBzEo5xRzBcKhzlMUhdMF14gJcI2eDOeQ0TxJkSiFMQyYqCDNyTBAURMOZ2dvQbj+MNo3Lkf7xhUwfC2n/LxvzpsKt0NDTVPDSc+NKs7AzWfOjOr+MhhA++bP0b75cwi3F66RE+EePRWOQcMhFG5OSpRKuAOhif7rw514q/JQVNdePGYAvjlneJwrokQj9UiXvn/DMgR3VwIWvD2VtEy4Rk2Ce/QUaMVlXPVClALYM2Ci/BhWFDS1989yM0osQlXhKp8AV/kE6M0NaN+0Av4Ny2E01/dbDUZbM/yrP4J/9UdQMnLgGl4B5/BxcJaWQ2j8L4MoGfGdbaIsT/SrA1oD4ThWQslAzcxB2sz58J55AUJV2+DfsByB7esBI7pJqmYwWhoiWy6v/RjC4YSzbDScw8bBNWws9zEgSiIMAyZKd0b/crYG+u8/dEpsQiiRb8Jlo2H4WtG++XP41y+DXh/dkJRZZCiIwPb1CGxfjxYIaMWD4Ro2Ds7hFdAKBnI4gSiBMQyYKN0V/cvZEuAwAcVO8abDO20ePFPnIly9B/71yxDYtg4y2N7PlUiEq6sQrq5C2ydvQsnI7gwGzsHlEBr30CBKJJxAaKLtR1px36L1UV3rcahYdOeMOFdEqUCGQwjurkT7ltUI7NzYb9sf90hzwlk2KhIOho2Fmp5lbT1EdFrsGTBRLD0D/pCOsG5AU7mEi/pGaI7OSYdGMIDgrk1o37Iawd2bAd2C4ahwEMEdGxDcsQEAoA0o7ZyEqBUO4nAC2Y7ua4XeUAsZDkGGQ4CUkcmyqgbVmwE1Jz/pl9uyZ8BELYEwrl+wIurrX7z1jJgmHRLFwmj3Rcb4t65BsGobIA2rS4KSngXnkFFwDC6Hs7QcamaO1SVRCpFSInSwCsHqvQgfPojQof0IHT4Aw9d66k9UVWh5RXAWlUIrHAhH4UC4hoyE4vb0T+H9gGHARIaUuPx/lyHaF/QPX5qMQdnJ88VE9mW0taB9+zoEtqxGaP9Oq8vppGbnR4LB4JFwlI6AyhUKFAehwwfgW78CvnXLoDd3bNalqLGvzFGUyN4fUgKqCvfIiUibOAPuEeMhHIn9gx3DgMmuW7Ai6mWD//nF8Rg9ICPOFRF1pbc0IrB1Ddq3rEa4Zq/V5XSh5g6IBIPBI+AsLedpi9Rrht+HtlUfoW3tpwgfqQaEYn7vmKIAhgHhdMEzbhrSp82Bc9BQc+/RTxgGTHbHC6tQ0xyI6tqfXzIGZwxmNylZJ9xYi8CW1Wjfshp6bbXV5ZxEKyjpDAaOQcOhuL1Wl0Q2J3Udbas+QtPiv0cOAuuvb3EdwcAzbhqyLrwGWnZe/9zXJAwDJvvWonXYcaQtqmu/d1455pUXxLkiouiEa6vRvmUNAtvW9vseBlERAlrhIDgHl8MxeCQcJcOgOGM7OpySW/v2jWh86yWE6yz8+lUUQAhkzJqPjLMvhuJKjCPDGQZM9uM3NmHN/qaorv367KG4vKI4zhURxS7ccATBXZsQ2LkpcqKiYf3kw5MoCrSiwZFeg4FlcBQN5q6IKUpvbUb9355BYMcmQAhLzvQ4iRBQ3F7kXHkrPGMmW13NaTEMmOxX723Fxzvrorr2pjNKcePU0jhXRNQ3RsCP4O4tkXCwezOkP7qeLysomblwFA2Go3gItOIhcBQOgmDvQVIL7N+FuheegOFvtWdoBZBx9iXIPPdKWy9P5D4DJotlr4E2nk9ACUBxeeAePRnu0ZMhDQOh6j0I7tyIwM5N0OtqrC6vC6O5HoHmegS2rY08IBRo+cXQiiMBwVE0BGpeka3/U6bo+TZ+jvpFTwMStlg625OWj99E6NB+5F57t22HttgzYLI/LduDResORnXtpWMH4N5zeIwxJS69sRaBo8MJ+3b06yFKvSUcTmgDBsNRPBha0RA4iodAycjmZkgJpvWzD9D45gtWlxE9IeAsGYr8m75ly1Uy7BkwmSOKHQWllJCGjqBu3yRLFA01Ox/eKXPgnTIHRqAdwaotCO7chMCuTbYdTpChIEL7d0TmQnRQ0jIjwwpHhxiKBkNxcQ8Qu/KtX55YQQAApETwwB7U/uW/UHD7AxCqvb79smfAZC+t2o/nPj957Xbbkf2o+uAVNFVVonnfdhihADLzB+DdN/6BGTN4RgElF2kYCNdUIbBzEwI7N9py2eLpKBk5kSGG/GKo+cXQ8oug5Q6AcDitLi2lBWv24fAfHgb0xB1mTT/zfGRffL3VZXTBMGCyRWsP4E/Lq056fOkvb0GWCOCcc87B1KlTkZubi4ceegjnn38+nnrqKQsqJeo/emsTQvt2ILh3O0L7tkNvrLW6pN4RAmp2fiQg5HUEhPxiqDmFEKpqdXVJz/C34dBTD0JvbrT1HIFo5F7zFXjH2+cHQXv1UyQBp9b9MIGv9iAe/PXDuPbaa7Ft2zbMmzcPf/jDHxAIRLdBEVEiU9OzoI6ZCveYqQAAvbkewb07ENq3HcG922G0NFhcYZSkhN5wBHrDEWD7cSeUKirU3MJIT0JeUWdvgpqVx8mKJpGGgbpX/pgUQQAA6v/2LLSCEjiLBlldCgCGAdM5enjje3KL8MMf/hDf+c53UFZWht27d/dzZUT2oWbmwlMxHZ6K6ZBSQm+qQ2jvdgT3bUdo73YYbc1WlxgbQ4deWw29thpd4r3miISDvKLIUENOAZSsPKhZeQmzGY1d+NZ8EtlHIFkYBuoX/RED7vmZLSavMgyYzKF1/4865eu/xuH1S1G/dTXQcqCfqyKyLyEEtOx8aNn58EyYGQkH9Yc7g0Fw33bbTkY8rXAI4UP7ED6076SnhCcNakcwOPYrF0p2PtSMHA47HEfqYTQved3qMswlDYQPH0T71nXwjJ5kdTUMA2Zz9rCaIK1gEIae9yWEWpuhb2EYIOqJEAJa3gBoeQOASbMhpQG9tgbBjiGF0L4dkT3nE5z0tyHsb+v+sCghoGTkQM3KPRYUso+FBuHNsMVPk/3Ft2HFsdMGk4kQaP7gNbhHTbT835NhwGTRLC0kougJoUArGAitYCC8U+ZEViocOYDQgV0IVVchXF2VuBMSeyIljOZ6GM31kf0bTqQ5jwsKuVDSMqF4M6CkZXT8Hvmz0BL/v3hpGB29AgKI+oD4BCElQjX7ENixCe7yCktLSfyvFJvpqWeAiMwhFAWOAaVwDDi2lbfhb0OoZi/C1VUI1VQhVF2VuEML0QgHodfVnHYHSOHydA0KaceCQmdoSMuA4k233br3o/ybV0FvSLKwdzyhoHnJ6wwDycah9tzVY+hhGHqoy2OhUAjBYBBOJ9cuE/WW4kmDa+gYuIaOARDZ2Mtoqu8MBuGaKoQO7QfCodO0lFxkwA894I/qFErh9nYNCJ50CJcbwuGCcLmhON0QTheE0x153OnqeMwNaI64dXP7t6ztPB7YKv/athe/eO8zGFLinlkTcMOU0eY1Lg0E9++C7muF6k03r90YMQyYrKdhgupV72PD87+C3u5DWVlZ5+PPP/88XnnlFTz22GO45557+qlKouQmhIiMsWfnwT16CoDIOffh2mqEq/cgVLMXoeoq6HWHkHRdz70k233Q2329O75aKD0HB6erIzwcexyqFpkgqWqRHglVg1DUyLCGcuw5xZOGwO6tlgaBsGHgwXeX46+3XIoMlwMX//HvuGhMGXI85q4GCe7dYelEQoYBk/UUBvYt/QdmnTEVX//615GeHkl/Dz74II4cOYIXX3wRTzzxBMMAURwJVYVjwCA4BgzC0Y2GjUA7wof2IVS9B+GavQjV7IXR0mhlmYlJGpDtPsh2H9ACmHVChWvcDBit0R0JHy9rDxzByIIcFGdGzhM4d0QpPtx5AF+oMPFcGUVBgGEguTiU7rvKFM2JpqYmbN26FQCwatWqzufq6+vhctnzJCuiZKa43HAOLodzcHnnY0a7D+G6Gui11QjX1kR6E2oPJvccBJvSmxvj1rYhJc598hVcOGoI/u386Z2PL9mxH3e89C5+f9VcXDZ2GA61+FCUeexgoeLMNNQ0m/y1YBgI7NlqbpsxYhgwWU8djsMu/DIqX/4dHvn9sa2HBYC8NCeysrLw8MMP90t9RHRqitsLZ8kwoGRYl8eNthaE646Gg+qOsFANGWy3qNLkF25uABQ1LqdhKkLg3tkT8R9vLcM9Z01EtseFzTV1+Pori/H9c6fhsrGRf3/Zzf/q8ZgeEareCxkOQWgO8xuPAsOAyYwejnrILZ+Es/5tQZfHPA4Vi+60z97URNQzJS0DzrSMLr0IUkoYLY3H9SR0/KqrSbnJivEgQ6G4bj38xfEj8PiHa7BgxSZ8afIo3PriO7hqwgh8bdaEzmuKMrr2BFQ3t2FSSYH5xRgGjEA7VIaB5BDLsU89jCgQUYIQQkDNzIGamQN0rGQAImvj9eb6YwGh/hCMpjroTfWWj4EnEmnosf2nGiNNUfD1sybgkfdX4s3K3agozseDF83scs2kkgJsPdKA6uY2ZLgceH/HPnz7nMlxqUeGgnFpNxoMAybrrkupJ1bvOEVE8SEUpXOLZdeI8V2ek6Eg9OYG6E210JvqoTfWwmiuh95YB72pjsMOx+uHQ3W/OH4EfvbOckgAT1w1D+oJ58toioJ/v2AGrn/unzAk8PVZE5DjjdO5EnEYDokWw4DJDPYMENEpCIfz2HbLJ5BSRpb4NUWCgd5YB7058rvRVAe9ud7SZXb9rT/Gz3/y1qcAgAZfO5Qe/lO+cNQQXDhqSNxrEQ7r9pthGDCZjCHJMgsQ0fGEEBCeNCieNDiKBp/0vDQMGK2Nnb0IRksjDF8LjLbmjt8jv2QoOY5Gj+w7EL8Nhx79YCXe374Pr91xBW54/i28tGYbbjtjbFzuFQ2GgSQSW88A4wARRU8oCtTMXKiZuQDKe7xOBgPHwoGvGXrbsY8jvx8NDs22nuioZuYCB6ri0vaLq7fgD8s24K+3XIqxRXm4c8Y4/M+n6/HlKaMtOWNGyciC4vb2+32PYhgwWSxDXMwCRBQPwumC6nRBzc4/5XVSSshQoDMYHAsQrZDB9sivQDtkMAAZbIcRPPaxDLTHdaY/ADgKiuDfbP68gQ+278NP3voU/33VPEwZVAgAuH36OPxh2QYsWr8dX5o8yvR7npKiwD3UxC2Oe4FhwGQ9LS3sDicQEpGVhBCd2wQjJ7blclJKIBzqGhICHQEiGIg8FmiHDB3/eDtkKASphwEjDBkOA4YOqYchdR3Qw5HnOv6s5RYAqgro5k2sW3+wFl97ZTH+7fzpuHjM0M7HM1xO3HbGODz5yTpcO7H8pImEcWUYcA4e0X/36wbDgMliybCcQEhEiUoIATicEA4nlLTMuN2nddUnCO7t5hjnXpowMB9bf3Rbt889MG8qHpg31bR7xcI1uOdhn/7A83ZNFtsEQqYBIqJTcQ0bA4jk/lYl3F5oBcWW1pDcr7AFuLSQiMg86VPPSe4JVkIgY+b5EP05LNENhgGTxdQzkMxf4EREJlAzs5E29eyk7R0QmgPpM86zugyGAbMF9Ohn12oqwwAR0elkzL4oOTdmEQLpM8+H4rFuSeFRDAMmaw9FHwY8mhrHSoiIkoOWnQfvpFmRDYiSiaoh/czzra4CAMOA6fyh6JfAuB18+YmIopE593IIhyup5g9kzr0calqG1WUAYBgwXXsMYcDjYM8AEVE0tKxc5F13d78cXhR3QsA9amJk+MMmGAZMFsswgZthgIgoau4RFcg89wtWl9E3igI1Ow+5V91pq0nkDAMm84fZM0BEFC8ZZ18M98gJibu6QFGRf+M3obg9VlfSRYK+mvYVyzCBW+PLT0QUC6EoyL36TjgKByZWIBACUBTkXXt3pHabSaBXMjHENoGQPQNERLFS3F4U3PkDOIeUJ8aEQqFAaA7k3/xteEZPsrqabjEMmCympYVcTUBE1CuKy42Cm++Dd+JMq0s5NaFASc9EwZ0/gHvYGKur6REPKjJZTMME7BkgIuo1oTmQ84Xb4CwZisa3Xow8aMT3WOVYOcvKkXfd16B6060u5ZQYBkzmD8ewmoCbDhER9YkQAunT58JVNhKNb/8fAjs3RYYOrFyCKAQUTxqyLrga3kmzLD93IBoMAyaLbZ8B+3+BEBElAkfhQBTc8m2079iIxjdfQrjuUP8XoSiRg4fOmo+M2RdDcbn7v4ZeYhgwGScQEhFZxz2iAgPu/TnaVn+M5iWvw2htjnyTjtfwwdFeCEWBZ9w0ZJ1/FbTsvPjcK44YBkzmCzIMEBFZSagq0s+Yi7Sp5yC4dzt861fAt3EFZKDdvGDQEQKcpSPgnXgmvGOnQvGm9b1dizAMmMiQEs3toaivz3Tx5SciihehKHCVjYKrbBSyL7kB7Ts3wb9pJYL7dyPccORYKFAUQAKA7DrXQIjIXgbGsR/yFG86HAMGwV0+Hp6KadCycvv17xQv/G5kopb2MIwY5qxkeRzxK4aIiDoJTYNn1ER4Rk0EAEg9jHDdYYSOHETo0AHojbWQ4RBkOAxp6FA0J6BpUDxpcBQOhKOwBI7CgVA8ifvT/6kwDJioyR99r4AigAw3X34iIisIVev4Jj8QGDfN6nIsx+nsJmqKZYjA7YCSCDtnERFR0mMYMFFjDD0DWewVICIim2AYMFEswwScL0BERHbBMGCimHoGGAaIiMgmGAZM1NQejvraLDfDABER2QPDgIliGSbIZs8AERHZBMOAiThngIiIEhHDgIkaY1hayDBARER2wTBgoph6Bri0kIiIbIJhwCRh3UBLDBMIOWeAiIjsgmHAJEdag4jhWAKGASIisg2GAZNUN7dHfa1bU5DOEwuJiMgmGAZMcqgl+jBQmOGC4LkERERkEwwDJqlpDkR9bWG6K46VEBERxYZhwCQ1MfYMEBER2QXDgElqYpgzwDBARER2wjBgkkMt0Q8TDMhwx7ESIiKi2DAMmKAtEEZzDHsMcM4AERHZCcOACWpi6BUAOExARET2wjBggliWFWqKQI6XGw4REZF9MAyYIJbJgwXpLijcY4CIiGyEYcAEsewxMIBDBEREZDMMAybgskIiIkpkDAMmiGVZIVcSEBGR3TAM9JEhZUy7Dw7IZBggIiJ7YRjoowZfCCE9+sOLS7O9cayGiIgodgwDfRTLfAEAKM3xxKkSIiKi3mEY6KNYwkB+mhMehxrHaoiIiGLHMNBHsew+yF4BIiKyI4aBPjrYFH3PAOcLEBGRHTEM9NGu2taor2XPABER2RHDQB+0h3Tsa/RHff1ghgEiIrIhhoE+2F3ngxH9qkIMymYYICIi+2EY6IMdMQwRpLs0ZHt4WiEREdkPw0Af7DjSFvW1pdkeCJ5WSERENsQw0Ac7OXmQiIiSAMNALwXDBqoaOHmQiIgSH8NAL+2pb4Mew+xBTh4kIiK7Yhjope0xzBcAgLLctDhVQkRE1DcMA720szb6MJDp1lCQ7oxjNURERL3HMNBLO45EP3mwvCCdKwmIiMi2GAZ6IaQb2FPvi/r64fkcIiAiIvtiGOiFqnofwjFMHhxRkB7HaoiIiPqGYaAXdsQwXwAARrBngIiIbIxhoBdimS+Q7tIwIMMVx2qIiIj6hmGgF2LpGRiRn8bJg0REZGsMAzEK6wZ218UQBgo4REBERPbGMBCjfY1+hPQYJg/mc/IgERHZG8NAjLbHMF8AYM8AERHZH8NAjGLZeTDNqaI40x3HaoiIiPqOYSBGO2I4k2A4Jw8SEVECYBiIgW5I7Iph8iB3HiQiokTAMBCD/Y1+BMJG1NePKcqMYzVERETmYBiIwY7a2CYPji3KiFMlRERE5mEYiEEs8wUGZrqR6+WxxUREZH8MAzGIZefBccUcIiAiosTAMBClkG7EdCbBuGIOERARUWJgGIjStsOtMU0eHMvJg0RElCAYBqK0/mBT1NdmexwoyeJmQ0RElBgYBqK0/mBz1NeOLcrgZkNERJQwGAaiENINVNa0RH39OA4REBFRAmEYiMKWQy0I6tHPF+DkQSIiSiQMA1FYdyD6+QIuTcGwPG5DTEREiYNhIAqxzBcYPSADmsqXlYiIEge/a51GIKxjy6FY5gtwiICIiBILw8BpVNa0IGzIqK/nzoNERJRoGAZOY10MQwQOVfBwIiIiSjgMA6exPobJg2MGZMClqXGshoiIyHya1QXYxf+t2Y/ddT5MGZSNyYOykJ/ugj+kY1sM5xFMHpQdvwKJiIjihGGgQ0GaC89+thcf7qgFAAzJ8aAk2wM9hvkCE0uy4lUeERFR3DAMdBhR0HVvgKoGP6oa/FF/fppTRXlButllERERxR3nDHQYmOWBW+v9yzF+YBZUhecREBFR4mEY6KAqAsPye79zoC8Yxsq9DWgP6SZWRUREFH8cJjjOiPw0bI7hQKLjrT/YjPUHm6EpAhXFmZg8KBvTh+RgSK7X5CqJiIjMxTBwnOH5fR/zDxsSaw80YWN1M4bnpzEMEBGR7XGY4DgnTiLsi/vnjcCU0mzT2iMiIooXhoHjlGZ74FD7Pgnw7lllmFteYEJFRERE8ccwcBxNVTC0j8cPXze5BF+YMNCkioiIiOKPYeAEI/qwouDC0YW4dfpgE6shIiKKP4aBE4zo5STCM8ty8M1zhkMI7jVARESJhWHgBGV5sc/+H1eUgR+cP5KbDhERUUJiGDjBoGxPTNcPyfXiPy4ew9MKiYgoYTEMnCDdpSHH64jq2oJ0J35xyRhkuLhdAxERJS6GgW6URtE7kONx4KHLxiE/3dUPFREREcUPw0A3ThcGMt0aHrp8bMxDCkRERHbEMNCNQTk9TyJMc6r45aVjUZZr3m6FREREVmIY6EZPPQMeh4JfXDoWIwr6foYBERGRXTAMdKM05+Qw4NIU/OziMRg9IMOCioiIiOKHYaAb+WlOuLVjL41DFfj3+aMxfmCWhVURERHFB8NAN4QQGNTRO6AqAv924SieQEhEREkrZcKAlBJS1yFDAciADzLohwyHIA2j2+tLs71QBPCD88oxY0huP1dLRETUf4SUUlpdhNkMfwtk4xEYTR2/Gg/BaKoF9FC31wtPOkT2AKjZhRBZBVCyCvC33QHkZaRh3kgeRUxERMktacKA0dqIcNUmhPdsgGyu7XhUAEIAsvuf/k8ilGPXCgVqSTm0svFQB46AULnLIBERJaeEDgMy4EO4ajPCe9bDqDsIQAAw8a8jBCAloDqgDh4DR1kFlAFDeTIhEREllYQMA1IPI7Ttc4Q2fgSEu+/6N11Hr4GSWwzn1PlQ8wf1z32JiIjiLKHCgJQS+r4tCK55D9LXbE0RHb0F6uCxcE46F0patjV1EBERmSRhwoDRdASBFf+EUbsfpg8H9IYQgFDgGDMTjoqzIRQeYUxERIkpIcJAeG8lAsv/ARh6ZAzfZpT8QXDNvgaKh9sUExFR4rF1GJBSIrTxI4Q2fmx1KacmBOD0wj3vRqg5A6yuhoiIKCa2DQPSMBD4/E3ou9ZaXUp0hABUDe5zroc6oMzqaoiIiKJmyx0IpZQIrHgjcYIAEBm+CIfR/sEL0Gv3W10NERFR1GwZBsI7VkPfvd7qMnpBApBo/+hlSH+r1cUQERFFxXZhQK/dj+Cqt60uo/ekBII+tC9d1OO5B0RERHZiqzAg/a1o/+hlq8voOylh1O5DcO1iqyshIiI6LVuFgfbPXgeCPlsuH+yN8NbPEK7eaXUZREREp2SbMKDXHYBRvTNpggAAQAiE1i+BTRdsEBERAbBRGAhu+Ciy/38ykRJGfTWMmt1WV0JERNQjW3z31etrOnoFknDCnRAIbvzI6iqIiIh6ZIswENr0cWTTnmQkJYza/dAPV1ldCRERUbc0qwuQoSD0/dtg5cFD++ua8JUnX8GR5jZoioIffHEurjqzwrwbCAXhPRuhFg4xr00iIiKTWB4GjLoDsPoEQk1R8JubL8GEsmIcbmrF7B8/hfmTRiLN7TTnBtJgzwAREdmW5WFAP7IvMkRg4Yz7opwMFOVkAAAKs9KRk+ZBQ5vfvDAAQLbUQwZ8EC6vaW0SERGZwfI5A/rhqrgFAcMwMPm7v8O/v/hOl8f/tW47cm7+GV5dvvGkz1m96wAMKTEoL8v0enhmARER2ZGlYUAaRscwQXwoioIHrjwHT//rczS0+gEAG6qqcfPv/4qfXX/+SfMC6lp8uOupRfivr1xpfjFCgXF4n/ntEhER9ZG1PQOhdkAPx/UW1581AXnpXjz1zjIcqGvC1Y8+jy/Nnoj7Lpvd5bpAKIwb/t8LeOCKc3DmyMFxqETC8DfHoV0iIqK+sXTOgAyH4n4PTVXxnSvOxs//+h7+sWIzJpUV47e3Xtq1Dinx1f95FXPGDsMNZ0+KTyFSAv3w9yUiIoqVtT0Dht4vt7n+rAnwBUKQkFjwjeugKl3/2su27sWi5RvxxqpKzPzRE5j5oyewcW+N6XXIOPeCEBER9Ya1qwnU/rn9d5/9J4DInABVOXlzo1mjh6DlLw/GvQ6hOeJ+DyIiolhZ2jMg1Ph/c3zw//6Ft9dsxQcP3o2wbmDhktVxv2e3hOi38ENERBQLa4cJnG7A4Ypb889+sBL/9eanePmBmzB+SDHuvXgmHn/jY4TC/TM8cSIlI8+S+xIREZ2KtT0DQkAtGAzA/HMJ3l27DfcveANP33M1ppeXAgC+duGZaPEF8OLStabf77SkhFpQ2v/3JSIiOg3LNx1SCs1fxrdm1wHc/Lu/4hc3zMeV08d1Pp7pdeOr88/Ef772MXSjv09IFFDySvr5nkRERKcnpLRwH2BEduVrf+9ZK0voF0r2AHguvsvqMoiIiE5ifc9ATjGgqFaXEV9CgTKgzOoqiIiIumV5GBCqCm3ohMhs+2QlDTiGTbS6CiIiom5ZHgYAwDH2LKtLiB+hQB00Ckp2odWVEBERdcsWYUBJz4ZaNj45ewekAce4s62ugoiIqEe2CAMA4Bw3O25HGVtGKFCKh0PNLbK6EiIioh7ZJgwoGblQh01CPPYcsI6Ec8Jcq4sgIiI6JduEAQBwTZ0PkZWfNMMFzinzoeYWW10GERHRKdkqDAjNAfc51wH9cGZBfAmoQyqglU+1uhAiIqLTslUYAAAlPQeus66yuozeEwIiKx+u6ZdCJEkPBxERJTfbhQEA0AaOgGPiuVaXETshAIcb7nOu43HFRESUMCzfjvhUQltXILj6XavLiI4QEJ4MuM+9CUpGrtXVEBERRc3WYQAAwlWbEFj+GiANGy89FFByBsA950sQnnSriyEiIoqJ7cMAAOgNNQh8+FfI9lZbBgJ12CS4pl0EoWpWl0JERBSzhAgDACADfgTXf4DwjtWRsXkblC086XBOvgDakHGnv5iIiMimEiYMHGU0HUFg1bswDu1GZIOifi5fCEBR4Rh3NhyjpnOiIBERJbyECwNHhQ/uRHD1O5At9YBQInMK+oE6bBKcE+ZC4dwAIiJKEgkbBgBASgnjyF6EqzYhXLUJCAXMDQYdwxFK9gBoQydAHTwGijfTnLaJiIhsIqHDwPGkrkOv2YVw1UboB3dEggEAQHR8Uz9NQDghRIiMXGhDKqANGQclMy9+hRMREVksacLA8aSUkO1tkE1HYBz91VADGfABug5p6JF9AVQNUFSIzDyoWYVQsgogsgqgZOZxLgAREaWMpAwDREREFD1bbkdMRERE/YdhgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRitOsLuB4zsl3QNGcEIoKoahQHcc+Fopy7DlVhaI5oXQ+p570nFBUKIqAUARUVYE44WNFEVBU0XnNKZ8TAqqmQFUEVEXA2fGx1vln9dhz6rHrtOOuVbv7WAgoQkAVgENVOj/WVAWqQOTPioBDEd18HHneoSidH6tCQAhAEYAQ6GgfEABURUABIn8XBZ0fKwJQxfEfR9oQUgLSgDDCQJePjcgvo+fnhDQAXT/2sREGDB3SMIBwEFLXAcOIPBYOQRp65ONQCDj68dFrj14XCh77HEOHEQpD6gakYcAIhmHokc+RugEjFIahH/tYdnysh8KQx12nB8PHfaxDGhKGLjv+3PH5how8p0tIXcLQDegho6NNCT2kd3zOsc8zpIQuJYKGhC5xwscn/jnysYHIx7pEx3PHPv4fucfS96VZ+P7m+5vvb/u+v9kzQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOpkkmpvb5c//elPZXt7u9WlnMTOtUnJ+vrCzrUlEzu/znauTUrW1xd2rq2vhJRSWh1I4qG5uRlZWVloampCZmam1eV0YefaANbXF3auLZnY+XW2c20A6+sLO9fWVxwmICIiSnEMA0RERCmOYYCIiCjFJW0YcLlc+OlPfwqXy2V1KSexc20A6+sLO9eWTOz8Otu5NoD19YWda+urpJ1ASERERNFJ2p4BIiIiig7DABERUYpjGCAiIkpxSRcGHnjgAZx99tn48pe/jGAw2OU5v9+Pyy67DHPmzMEFF1yA+vp6W9V31K9+9StMmzbN8prC4TBuu+02nH322bjvvvv6rZ5o6zuqv1+v4/VUmx2+1pIR39/m1cT39+ml0vs7qcLAmjVrUFNTg48//hhjx47FK6+80uX5t956CxUVFfjwww9x3XXX4c9//rOt6gOAlpYWbNy40RY1vf766xg0aBA+/vhj+Hw+fPrpp/1WVzT1Af3/ekVbm9Vfa8mI729za+L7u/e1Wf21Fg9JFQaWLVuGCy+8EABw0UUXnfTFXV5eDp/PBwBobGxEQUGBreoDgN/97ne49957bVFTNPVaWR/Q/6/X8U5Vm9Vfa8mI729za+L7+9RS7f2tWV2AmRobGzFw4EAAQFZW1kldN8OHD8fGjRtRUVEBIQQ+++wzW9XX1NSEDRs24Cc/+YktampsbOzcf7u7eq2uz4rXK9rarP5aS0Z8f5tbE9/fva/N6q+1eEjInoGamhrMnj37pF9SSjQ3NwOI/EPm5uZ2+byFCxdi7ty52LhxI37+85/jwQcftFV9jz/+OL7xjW/Epaae5OTk9FjTqZ6zQ31WvF7HO1Vt/fW1loz4/jYP39+9l2rv74QMA0VFRVi6dOlJvy655BK8++67AIB33nkHZ5111kmfe/QfNDs7G42Njbaqb8eOHXjooYdw0UUXYfv27fj1r38dl/qOd+aZZ/ZY06me6y+nqsGK1yva2oD++VpLRnx/m4fv7/jUBiTh+9u605Pj47vf/a6cPXu2vPHGG2UgEJBSSnn33XdLKaVsamqSl1xyiZwzZ44866yz5NatW21V3/GmTp1qWU1H6wmFQvKWW26Rs2fPlt/85jf7rZ5o6ztef75ex+upNjt8rSUjvr/7XhPf39FLpfc3tyMmIiJKcQk5TEBERETmYRggIiJKcQwDREREKY5hgIiIKMUxDKSAZ599FtnZ2aa0tWfPHgghoGkaDhw40OW56upqaJoGIQT27NnT5blFixZh7ty5yMrKQnp6OiZMmIAHH3ywcyMPM2skSjW33XYbhBD42te+dtJz99xzD4QQuO222zofq6mpwTe/+U0MGzYMLpcLpaWluPzyy7F48eLOa8rKyvD444/3Q/VkBwwD1CsDBw7Ec8891+WxhQsXoqSk5KRrf/zjH+P666/HGWecgbfeegsbN27EY489hnXr1iXFnt5EdlBaWoqXXnoJfr+/87H29na8+OKLGDx4cOdje/bswdSpU/H+++/jN7/5DTZs2IC3334b8+bNs2zrX7Iew0ACePvttzF79mxkZ2cjLy8Pl112GXbu3AkAWLJkCYQQXTa9WLt2bedP50uWLMHtt9+OpqYmCCEghMDPfvYzAEBDQwNuueUW5OTkwOv14uKLL8b27dujqunWW2/FggULujz27LPP4tZbb+3y2IoVK/Dwww/jsccew6OPPopZs2ahrKwMF1xwARYtWnTS9UTUO1OmTMHgwYPx6quvdj726quvorS0FJMnT+587GhPwYoVK3DNNddg5MiRGDduHO6//34sX77citLJBhgGEkBbWxvuv/9+fP7551i8eDEURcEXv/hFGIZx2s+dNWsWHn/8cWRmZqK6uhrV1dV44IEHAES6FleuXInXXnsNy5Ytg5QSl1xyCUKh0GnbveKKK9DQ0IClS5cCAJYuXYr6+npcfvnlXa77y1/+gvT0dNxzzz3dtsOhASLz3H777V1C+jPPPIM77rij88/19fV4++23ce+99yItLe2kz+f7MXUl1UFFyerqq6/u8uc//elPKCwsxObNm0/7uU6nE1lZWRBCoKioqPPx7du347XXXsMnn3yCWbNmAYh84y4tLcXf//53XHvttads1+Fw4KabbsIzzzyD2bNn45lnnsFNN90Eh8PR5brt27dj2LBhJz1OROa7+eab8aMf/ahzbs8nn3yCl156CUuWLAEQ2eJXSonRo0dbWyjZDnsGEsDOnTtx4403YtiwYcjMzMTQoUMBAHv37u11m5WVldA0DTNmzOh8LC8vD6NGjUJlZSUA4OKLL0Z6ejrS09Mxbty4k9q488478fLLL6OmpgYvv/xyl59AjpJSQgjR6zqJKHr5+fm49NJLsXDhQixYsACXXnop8vPzO58/uuEs35N0IvYMJIDLL78cpaWl+OMf/4iBAwfCMAxUVFQgGAwiPT0dwLE3OYCouvl72oX6+G/eTz/9dOdkpO5+sq+oqMDo0aNxww03YMyYMaioqMDatWu7XDNy5EgsXboUoVCIvQNE/eCOO+7oPO3viSee6PJceXk5hBCorKzEF77wBQuqI7tiz4DN1dXVobKyEj/5yU9w3nnnYcyYMWhoaOh8vqCgAEBkWd9RJ35Ddjqd0HW9y2Njx45FOBzucg53XV0dtm3bhjFjxgAASkpKMGLECIwYMQJDhgzptr477rgDS5Ys6bZXAABuvPFGtLa24sknn+z2+aQ47YvIRi666CIEg0EEg0HMnz+/y3O5ubmYP38+nnjiCbS1tZ30uXw/pi6GAZvLyclBXl4e/vCHP2DHjh14//33cf/993c+P2LECJSWluJnP/sZtm3bhn/+85947LHHurRRVlaG1tZWLF68GLW1tfD5fCgvL8eVV16Ju+66C0uXLsW6detw0003oaSkBFdeeWXU9d111104cuQIvvKVr3T7/IwZM/D9738f3/3ud/H9738fy5YtQ1VVFRYvXoxrr70WCxcu7N0LQ0TdUlUVlZWVqKyshKqqJz3/5JNPQtd1TJ8+HYsWLcL27dtRWVmJ3//+95g5c6YFFZMdMAzYnKIoeOmll7Bq1SpUVFTgO9/5Dh599NHO5x0OB1588UVs2bIFEydOxCOPPIJf/vKXXdqYNWsWvva1r+H6669HQUEBfvOb3wAAFixYgKlTp+Kyyy7DzJkzIaXEm2++GVN3vqZpyM/Ph6b1POL0yCOP4IUXXsBnn32G+fPndy5jmjBhApcWEsVBZmYmMjMzu31u6NChWL16NebNm4fvfve7qKiowAUXXIDFixfjqaee6udKyS54hDEREVGKY88AERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKe7/A50DhvdFR4jNAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKTUlEQVR4nO3deXxU5b0/8M9zzpk1+wohBMIS1rAjCIKAG+62rtW6W22rbW2t3W57b1tbba31/mzvVe9trYi1aq9iW7WuRVFREGVfwr5DAmRfZj/n+f0xIRBIYCY5k3Nm5vN+vXgRZk6e82XIkE+eVUgpJYiIiChtKVYXQERERNZiGCAiIkpzDANERERpjmGAiIgozTEMEBERpTmGASIiojTHMEBERJTmGAaIiIjSHMMAERFRmmMYICIiSnMMA0RERGmOYYCIiCjNMQwQERGlOYYBIiKiNMcwQERElOYYBoiIiNIcwwAREVGaYxggIiJKcwwDREREaY5hgIiIKM0xDBAREaU5hgEiIqI0xzBARESU5hgGiIiI0pxmdQGJJvUI9IYjiNTVQPrbIPUIoEcAIQBVg9AcUHMKoBb0h5KRDSGE1SUTERH1qZQKA1JKRGr2IrRnMyK11dCPHIDeVAdIeewiIQAc/YYvOz0nnC6oBSXQigZAKyqFa/g4KN6sPv07EBER9TUh5fHfKZNTpK4Gwc2rEKj6DEZLIyAUnPiNPi6KAhgGIAQcZSPgHj0FzuHjoDjdZpZNRERkC0kbBqShI7B+Ofxrl0Kvq4kGAGmYfyMhoqFCUeEcVomMaedDKy41/z5EREQWScowENxVhdYlr8BorO3bG7cHDtfY6ciYeRHUzJy+vT8REVECJFUYiNRWo/WDvyO8d+uxn9itIBRAUeGdfj68U+ZAaE5r6iAiIjJBUoQBaRjwLX8bvk/fbQ8BCRgO6CElMxfZl90GR/9BVpdCRETUI7YPA0bAh+Y3nkV4zxarS+maEIBQkHXeNXCPnW51NURERHGzdRjQWxrQ+PITMJrqbdUb0B3vtPPgnXkx9yogIqKkYtswEKk7hMaXH4f0tyVFEDjKNXYass67DkLh5o5ERJQcbPkdywi0oelv/5N0QQAAghtXwLf8bavLICIiipntwoCUBprf+DOM1uakCwJH+T59B8EdG6wug4iIKCa2CwO+ZW9HJwsmaRA4qvnNP0NvPGJ1GURERKdlqzAQ3LkRvk/fsboMc0QiaPrHU5DhoNWVEBERnZJtwoCMRNDy7l+tLsM80oDecAS+VR9YXQkREdEp2SYMBDatgPS1WF2GuaSE//P3YYQCVldCRETULVuEAanrqTM8cAIZCiKw9mOryyAiIuqWLcJAoOpzGK1NVpeRIBK+z97j3AEiIrItW4QB34p3rS4hoWTQh8DGz6wug4iIqEuWhwG9uQFGU53VZeCWp19DxY+fxO3PvG5+40IgtGez+e0SERGZwPIwED6w0+oSAAB3zp6I/75hfmIalxLh/Tsgk3zvBCIiSk3Wh4GDOwEb7OM/q6IMmS5HwtqXoQD0em5CRERE9mP5d+Hwvu2AkZifmA1DYuavF+KB1z7q9Ph7m3ej9Hu/x6trtibkvt0JH7RHLwgREdHxLA0DMhyC3nA4Ye0risC3zj0Dz3yyHo2+6Fr/DQeO4CsL38C/XXwWLp84ImH37qIYRGr29t39iIiIYmRtGOiDzXiunjwK+Rlu/PGjNTjY2IIvP/UPXDN1FO6ZNyXh9+7EkJBBf9/ek4iIKAaalTeX4VDC76GpCr55zlQ89MYneH3ddowfWIyHvjg34fc9mYQRSfzfl4iIKF6WzxnoC1dNGQV/KAxIif+58SKoXUxYvPZ/X8FXFr6BxVW7MeHnT2H13hrzC5HmN0lERNRblvYMCIezT+7zo1feBwDUtfmhKqLLa/7vq1cmuAoBpY/+vkRERPGwtGdAOF0Jv8ev3/wE/9q0G2/c+yXohsRfPt2Y8Ht2SQgIl9uaexMREZ2CtWHA4YKSW5iw9p9bvgFPLlmFP99xOSpLi3DX2ZPw+PufI6zrCbtnt6QBrbis7+9LRER0GpbPGXCWVSRk06HFVbvww0Xv4/EvX4ip5SUAgK/MnoCWQAgvfW7N1sCO0qGW3JeIiOhULA8DjgFDTN90aO2+Q7hj4Rv4j8tm4dLxwzsez3K7cMesifj9e59BT9BGR90RThfUgn59ek8iIqJYCCmlpXPc9aY61D/9SytLSDwh4Bg8CrlfvMvqSoiIiE5iec+Akp0PJSvP6jISSwLO8lFWV0FERNQly8OAEALeaedZXUZCCZcLnrHTrS6DiIioS5aHAQBwj5kG4c2yuozEEAKeKef0yTJKIiKinrBFGBCahozp51tdRkIIzQnPxFlWl0FERNQtW4QBAHBXTofwZFhdhrmEgGfyHCguj9WVEBERdcs2YUBoTmSde43VZZhHKFCy8+GZMs/qSoiIiE7JNmEAAFwVE+CZeo7VZZhDVZFzxZ1QuAUxERHZnK3CAABknHUxHAOHAcJ2pcUle/4N0LjJEBERJQHbfccViorsS26F4s0ERNcnDNqdZ+o5cI2YaHUZREREMbFdGAAAxZuJnC9+FcLlTboeAteIScg462KryyAiIoqZ5dsRn4reWIvGRU/AaGkCZN+eJRAvKSW8U+Yi4+zLIZIswBARUXqzdRgAAMPXiubXFyB8YKfVpXStfSgjY9al8G/8DFrRADj6D4ZjQDm0ogEQqmZxgURERKdm+zAAANLQ0bb0dfhXLokOG9ill0AICE8Gci69DY7SoWh5bxH8qz489ryqwdGvDFrJYDhKyuEYMBhKVh5Eks6FICKi1JQUYeCo8KF9aH3/FUSqdwMQACwqXSiAEPBOPQeeM86B4owuH9Sb6lD31C9PGVaUjOz2cDAYjv6DoBUPhJJqmy0REVFSSaowAETH5kPb16H1g3/AaGno25u390q4Rk5CxqzLoGaffNpi0z+fRbBqZVzNKlm50IoHQiseCEe/gdCKS9mDQEREfSbpwsBRMhKBf+1S+NcuhdFUl7jhAyEAKdEoPFhbNAmXzp0Kd+mQbi8PH96Phmcf6f1tPRnQikrbw8FAaP3LoOUV97pdIiKiEyVtGDhKSonI4f0Ibl6FQNXnkP5WQFEAoxfBQCjRAAAXVuWPx2eOwahqjg5KPHz5WIwbkHPKT298+UmEdm/u+f27kDnnCnjPSJHdGYmIyFaSfqq7EAKOfmVw9CtDxuzLED6wE6HdVYjUVkOvPQijtem4i5XoVIOj8w0k2n9vz0OqhuacgVjpGYpPw3nY3KJA+gH4jzWxbFf9acOA94xzTA0DzmGV8EzlGQdERJQYSd8zcDoyFESk/hD0umoYfh+kHgH0SHQlgKoBmgNN7jx82urBxwcD2FTTcsppif2yXHj6hsmnHM+XUqLhud8icmh/r+tXsvORf/P3oLi9vW6LiIioK0nfM3A6wumCo/8gOPoP6vaaf64+gAWr9sTU3qGWIHbV+TC0sPsVAEIIeM84F82vL4y73k5UFTmX384gQERECcWt8gDMHJIf1/XLdtef9hrXiAlQcgp6WhIAQCsogZrbuzaIiIhOh2EAQGmuB4PyPDFfv2xX3WmvEYoKby/H+SOH96P+2UcQro6t14KIiKgnGAbazSiPvXdgZ50PNc2B017nqZwO4cnsTVkwmuvR8MJj8H3+PlJ8egcREVmEYaDdjDiHCpbHMFQgHE54p87tYUXHMQy0Lvk7mv7+FAx/W+/bIyIiOg7DQLvhRZkoyHDGfP0nu04fBgDAM3E2hEkTAEM7NqD+2d8gfHCXKe0REREBDAMdFCHiGirYVNOMJn/49O263PBOPrs3pXVitDSi4cXfo23FYki7HNhERERJjWHgOPEMFRgS+HRPjL0Dk86GcLp6WlYXNzfQ9uGraHrljzB8rea1S0REaYlh4DjjSrKR4VRjvn5ZjEMFiicDnomze1pWt0K7NqF+4cMImrz1MRERpReGgeNoqoJpg08+ibA7q/Y3wh/WY7rWO2UuoDl6WFn3jLZmNL38JFreewUyHDK9fSIiSn0MAyeYMST2TX7CusSa/U2nvxCAkpEFz4SzTnrcPX4GnEPHxHzP7vhXfYD65x5F+PCBXrdFRETphWHgBFPKcuFQuz934ERrDzTGfK33jHMA9dgwhFZSjqxzr0bOF+9E5pwroqct9oJeV4OG5x7l5EIiIooLw8AJPA4Vkwbmxnz96hh7BgBAzcyBp/JMAIBwe5Fz2S0QqgYhFHjPOAd5X/oWlKzYhym6ZOho+/BVNP7f49CbG3rXFhERpQWGgS7EM29gX6Mfta3BmK/3TjsXUFVkX3wT1OzOqxccA4Yg/+bvwTmsMub2uhPetx31Cx9GYPOqXrdFRESpjWGgCxNLc+K6fs2BOHoHcgqQe+034OpmnoDiyUDOF76CzLlfAJTYVzZ0RQb9aH59IZr++SyMgK9XbRERUepiGOhCSbYbRZmx70YYz1ABADhLh57yeSEEvFPnIe/6e6Fkx7dNcleCVStRv/A3CO3b3uu2iIgo9TAMdEEIgQkDYu8dWHOgMSGHCDlKBiP/5u/BVTG+120ZLQ1o/Ot/o/XDVyH1iAnVERFRqmAY6Mb4OIYKGnxh7G3wJ6QOxe1F9uW3I+uC6wAt9t6Krkn4VixGw1/+E5HaGlPqIyKi5Mcw0I3xcfQMAMDq/Y2JKQTRngrP+JnIv+V70PoP7nV7kcMHUP/cb+Fb9SGPRSYiIoaB7hRnuTAg2x3z9fHOG+gJLa8YedffC++M+YCIfS+ELkXCaH1vEZoW/S/01sTXTkRE9sUwcAoT4hgqWH+wCRE98Rv9CFVF5lkXRycX5sS+W2J3QruroksQt67pfXFERJSUGAZOIZ55A4GIgS2H++4EQceAIci/5ftwV07vdVvS34bmVxeg6R9/Yi8BEVEaYhg4hfEDsuO6PpHzBrqiON3IvvAGZF9+O4Tb2+v2gtvWoX7Br+Bfv5xzCYiI0gjDwCnkeZ0YnOeJ+fp4Nh8yk3vEBOTf+kM4y0f1ui0Z9KPl7RfQ+PIT0BtrTaiOiIjsjmHgNOKZN7D5UAt8IWvW8KuZOci56qvIPOcqQNV63V54z1bUPfMwfJ+/D2nw0CMiolTGMHAa8cwbMCSwvro5gdWcmhAKvJPPRv5N90MrKu19g5EQWpf8HQ3PP4bIkYO9b4+IiGyJYeA0xpVkI55FfGv6YInh6WiFJcj78n3wnnEuEFf1XYvU7EH9n3+L1o/fgIxw90IiolTDMHAaWW4HhhVmxHx9X08i7I7QNGTOuRy5194DJSu39w0aOnzL3kb9nx9B+ODu3rdHRES2wTAQg3jmDext8KOuLZTAauLjHFSB/Ft+ANfoKaa0p9fVoOH5x9Dy3iswQrEf3UxERPbFMBCDeLcmXnOgMTGF9JDi9iLnkpuRfclNEK7YV0d0T8K/6gPUP/NrhHZvNqE9IiKyEsNADMaWZEOJY+i9L7Ym7gn36KnIv+1HcA4fZ0p7RnM9Gl9+Es1v/gWGv82UNomIqO8xDMTA61Qxsjgr5us31Vi3ouB01Mwc5FxxB7Ivuw2KN/a/06kENq5A/YJfIbBlDTcrIiJKQgwDMYpniWFNcxCNfvvMGziREALukRORf9uP4B47zZQ2DV8Lml9r39K4qd6UNomIqG8wDMRoQpxbE2851HfnFPSU4slA9kVfRs7VX4eSnW9Km6Ht61G34CG0LXsbMhI2pU0iIkoshoEYje6fBS2OiQObD7UksBpzucpHIf/WH8IzZQ7M2JcAkTDaPn4DdQt+heD29Rw6ICKyOYaBGLk0FWP6xz7GvrkPTzA0g+J0IWvelci74V6oBf1NadNoqkPT359C0yv/i0j9YVPaJCIi8zEMxCGeeQNbD7dAN5LvJ2LHgCHIv+l78M64EFBUU9oM7apC/TO/RuuHr3FvAiIiG2IYiMOEOPYb8IcN7G3wJbCaxBGahsyzLoqecdB/sDmNGjp8K/6F+qcfRGDzKg4dEBHZCMNAHEYUZ8Klxf6SJcMkwlPRigYg74ZvI3PuFwDNaUqbRmsTml9fiMa//jcPPyIisgmGgTg4VAWVJbGvKth8OHkmEXZHKAq8U+eh4NYfwDFohGnthvdvR/2zj6DlvUUwAsnZg0JElCoYBuI0sjgz5muTaUXB6ai5hci95m5kzb/epC2NAUgD/lUfou5PD8K/fjmkNMxpl4iI4sIwEKchBbGfYLi3wY/WYOoc+SuEgGfcmci/7UdwVUwwrV3pb0XL2y+g4fnHEK7eY1q7REQUG4aBOA0p8MZ1/dYkW2IYi+iWxrcj58qvQs0rMq3dSPUeNPzl/6H57Rdh+FLvdSMisiuGgTj1z3bDHcckwlSYN9Ad19AxyL/lh8iYfalpEwwBicD6Zaj70y/hW7kEMpI6PStERHbFMBAnRQiUx9E7sCWF5g10RWgaMqafj4I7fgzXqMmmtSuDfrS+/zfUPf0gAps+53wCIqIEYhjogXjmDeysS4+Z8mpWLnIuvQW5134DamGJae0azfVofuPPaPjzbxHcvZn7ExARJQDDQA8MyY+9Z6CuLYTmQPoc2OMcVIH8m7+HzHOuhHC6TWs3cvgAml5+Eo0vPYFwzV7T2iUiIoaBHomnZwAAdqVJ78BRQlHhnTwHBXf8GO7K6aa2Hd67FQ3PPYqm155BpOGIqW0TEaUrhoEeKI+jZwAAdtW1JagSe1MyspF94Q3I+/J3oPUrM7Xt4JbVqF/wEFr+9TKMtmZT2yYiSjcMAz2Q4dLQL8sV8/Xp1jNwIkdJOfJuvA9ZF3wJwhNfr8opGQb8az5C3VO/QOvHb8IIBcxrm4gojTAM9FA8+w3sqk/PnoHjCaHAM34GCm7/MTwTZwNCmNa2DIfgW/YW6p76BXyrP4LUuRyRiCgeDAM9FM+8gT31vqQ8zjgRFE8Gss67Gnk3fQ+O0qGmti19rWhd/DLqF/yq/WRELkckIooFw0APxbOiIKxLHGjyJ7Ca5OMoLkXul76F7ItvgpIR++FPsdAba9H8+kI0PPefCO3ZYmrbRESpiGGgh7iioPeEEHCPmYr8O34M74wLIRxm7WIYFTm0D40vPYHGl5/kckQiolMQkru49IhuSFz99KcIRmLrir52UilunT44wVUlN6OtGW3L3oZ/3SeAYX4Xv7N8NDJmzIejdIjpbRMRJTPN6gKSlaoIDM73xnwQEXsGTk/JyEbWedfAM2UO2pa+geCW1aa2H9pdhdDuKjgGVSBjxoVwlg03tX0iomTFnoFe+P0HO/BW1aGYri3McOLZm6YmuKLUEq7eg9YPX0N437aEtO8YOAzeMy+Ac/BICBNXNxARJRuGgV54bUM1nly6K+br/3rrGchyOxJYUeqRUiK0ezPaPnwNkSMHEnIPrWQwMs68AM6hYxkKiCgtcZigF+LdiXB3vQ/jBuQkqJrUJISAa8hoOMtHIli1Eq1L34DRXG/qPSLVe9D0tz9CKx4I75kXwFUxDkJwbi0RpQ/2DPRCazCCaxesiPn6b88dhgtG9UtgRalPRiLwr12KtuXvQPoTs5mTWliCjDMvgGvERAiFoYCIUh/DQC/d8tznONIaiunaayaV4jauKDCFEfTD99l78H3+PhBJzKmQan4xvNMvgHv0ZAhFTcg9iIjsgD/29NLQOPYbOMiNh0yjuDzInHUJCr7y73CPnwkkoFtfrz+MljefQ/3TD8G/fhm3OSailMUw0EvlcYSB6iYepGM2NTMH2Rdch/xbfwhXxfiE3ENvrEXL2y+i7qlfwrdmKWSCeiKIiKzCYYJe+nB7LX79r60xXevWFCy6YzpnrCdQ+OButC79J8J7Y/s36QnFmwXPxFnwTDgLSkZWwu5DRNRXGAZ6aX+jH3e9GPvmOH++aSoKMszddpdOFj64C23L3kZoV1XibqJqcI+eAu+UOdCKShN3HyKiBGMY6CXdkLjqT58ipMe2fe7Dl4/l8sI+FK7Zi7bl7yC0fX1C7+MYVAHvlLlwDh3DZYlElHQYBkzwrUVrsf1IbMvc7p0zDPNHc3lhX4scOYC2Ze8guHUtgMR9yau5hfBMngN35XQoTlfC7kNEZCaGARM89M4WLN1ZF9O110wsxW1ncnmhVSK1NWj79B0EN68CEvilL1weeMbNgGfSbKg5+Qm7DxGRGbgDoQmKMmOfA3CwmcsLraQV9kfOJTcjMvNC+D79FwKbPkvICYky6Ifv8/fgW/k+XBUT4J0yF9qAck4eJSJbYhgwQVFm7N3BB7m80Ba0vGJkX3gDMmbMR9uKfyGw/lPA0M2/kZQIbl2D4NY10PoPgnfKHLhGTIJQuYkREdkHhwlM8PHOOjz4zpaYrnVpCl7h8kLb0Zsb4PtsMfzrlgEJ3lxIycyBZ9JseMbPhOKJfZ8KIqJEYRgwwdbDrfj2K+tivp7LC+1Lb22C7/P34V/zMRCJbZvpHtMccI85A54JZ8HRb2Dcn+7z+bBu3To0NjaipKQEEyZMSECRRJQOGAZM0OAL4cvPfh7z9Y9cUYmxJdkJrIh6y/C1wrfyffhXfwQZCib8flq/gXCPmwH3qMlQ3Kc+DfPdd9/F97//faxfvx66fmxo47HHHsO9996b6FKJKAUxDJjAkBJf+ONyRIzYXsofnjcCZw8vTHBVZAYj4IN/3TL4V38Io6Ux8TfUHHCPmAj3+BlwlA7tcjhp0qRJcLlcuOOOOzB16lQUFxfj9ttvh9PpxGuvvZb4Goko5XB3FBMoQsQ1ibCuLcHdz2Qaxe1FxrRzUXDnfyD70luhDShP7A0jYQQ2fYbGF3+P+qcfQtuKxTDamjtd0tjYiDFjxsDr9eKll15CaWkp3G53YusiopTGngGT/PDVDVh3sPn0FwK4asIA3DGjPLEFUcKEq3fDt/IDBLesAaT5yxJPoihwDRsH9/gZcA4eibu++lU89dRTAICMjAy0trbiiiuugGEY7Bkgoh7h0kKTxNMzUMuegaTmKClHzqXl0M++HP41H8G/bhlkwJe4GxoGgtvWIrhtLZSsXPz2pivwzTtuw9/efhePPPJI4u5LRGmDYcAkhRwmSDtqdh4yz74cGWfOR2DTZ/Ct+gB6/eGE3tNoaURwxbvoDwHX7gMJvRcRpQ+GAZMUx7ELIcNAahFOFzwTZ8E9YSZCuzbDv+oDhHZvTvBdJSInBI++WPVARKmJYcAk8fYMSCm58VCKEUKBa+gYuIaOQaS2Gr5VHyCw6XMgEu6T+4f2bUP98/8P7lFT4B45EUoGl68SUWwYBkwSz/kEId1AazCCLLcjgRWRlbTCEmRf8CVkzroU/nWfwL/6o5NWBfSUlBJr9h9GVU1tp8ePtPiweMmHmLlvBxzvvwJHWQXcoyfDNXw8dzokolNiGDBJcRw9A0B0EiHDQOpTvJnIOPMCeM84B8Etq+Fb+QEih/b1qs0/fbwOP/7HBwCiqwmOWrP/MK79499x4dihWHjrpQjv3Yrw3q1oefclOMtHwT1qMpzDK6E4uQyRiDpjGDCJ16nB61ThC8V22E1dWwhDCvjTWroQqgb3mDPgHnMGwof2I7B+OQJVn0MG4z/FctnO/Tj33HPx4osvdgw1PffccwgGg3jiiSfw6K8e7PwJho7Qzo0I7dwIaA64ho6Fa9RkuIaMhnBwW2wiYhgwVVGmC3vqY1tixkmE6cvRbyAc/a5G5pzLEdy2Fv51yxHevz3mzx+Yl40XV67EFVdccdJzBw8exMC8U8wViIQ7TlEUThdcw8fDNWoSnINH8SRFojTGMGCiogwnwwDFTDicHb0FkfrDCGxYjsCGFTB8Laf8vG/OmwK3Q0NNU8NJz40sycJNZ86I6f4yFERg02cIbPoMwu2Fa8QEuEdNgWPgMAiFm5MSpRPuQGii//pgB96sOhTTtReN7odvzhmW4Ioo2Ug92qXvX78MoV1VgAVvTyUjG66RE+EeNRlaSTlXvRClAfYMmKgwjhUFTYG+WW5GyUWoKlwV4+GqGA+9uQGBjSvgX78cRnN9n9VgtDXDv+pD+Fd9CCUrD65hlXAOGwtnWQWExv8yiFIR39kmyvHEvjqgNRhJYCWUCtTsPGTMmA/vmecjvGcr/OuXI7htHWDENknVDEZLQ3TL5TUfQTiccJaPgnPoWLiGjuE+BkQphGHARJnO2F/O1mDf/YdOyU0IJfpNuHwUDF8rAps+g3/dMuj1sQ1JmUWGQwhuW4fgtnVogYBWMgiuoWPhHFYJrWgAhxOIkhjDgIkyXbG/nC1BDhNQ/BRvJrxT58EzZS4i1bvhX7cMwa1rIUOBPq5EIlK9B5HqPWj7+A0oWbkdwcA5qAJC4x4aRMmEEwhNtO1IK+5dtC6maz0OFYvumJ7giigdyEgYoV1VCGxeheCODX22/XG3NCec5SOj4WDoGKiZOdbWQ0SnxZ4BE8XTM+AP64joBjSVS7iod4Tm6Jh0aISCCO3ciMDmVQjt2gToFgxHRUIIbV+P0Pb1AACtX1nHJESteCCHE8h2dF8r9IZayEgYMhIGpIxOllU1qN4sqHmFKb/clj0DJmoJRnDdghUxX//CLWfENemQKB5GwBcd49+yGqE9WwFpWF0SlMwcOAePhGNQBZxlFVCz86wuidKIlBLhg3sQqt6LyOGDCB/aj/DhAzB8raf+RFWFVtAfzv5l0IoHwFE8AK7BI6C4PX1TeB9gGDCRISUu+99liPUF/cOXJmFgbup8MZF9GW0tCGxbi+DmVQjv32F1OR3U3MJoMBg0Ao6y4VC5QoESIHz4AHzrVsC3dhn05vbNuhQ1/pU5ihLd+0NKQFXhHjEBGROmwz18HIQjuX+wYxgw2bULVsS8bPA/vzgOo/plJbgios70lkYEt6xGYPMqRGr2Wl1OJ2p+v2gwGDQczrIKnrZIPWb4fWhb+SHa1nyCyJFqQCjm944pCmAYEE4XPGOnInPqHDgHDjH3Hn2EYcBktz+/EjXNwZiu/fnFo3HGIHaTknUijbUIbl6FwOZV0GurrS7nJFpRaUcwcAwcBsXttboksjmp62hb+SGaFv89ehBYX32Law8GnrFTkXPB1dByC/rmviZhGDDZtxatxfYjbTFd+71zKzCvoijBFRHFJlJbjcDm1QhuXdPnexjERAhoxQPhHFQBx6ARcJQOheKM7+hwSm2BbRvQ+OaLiNRZ+PWrKIAQyJo5H1mzL4LiSo4jwxkGTPbj1zdi9f6mmK79+qwhuKyyJMEVEcUv0nAEoZ0bEdyxMXqiomH95MOTKAq0/oOivQYDyuHoP4i7IqYpvbUZ9X97GsHtGwEhLDnT4yRCQHF7kXfFLfCMnmR1NafFMGCyX727BR/tqIvp2hvPKMMNU8oSXBFR7xhBP0K7NkfDwa5NkP7Yer6soGTnw9F/EBwlg6GVDIajeCAEew9SWnD/TtQ9/zgMf6s9QyuArNkXI/ucK2y9PJH7DJgsnr0G2ng+ASUBxeWBe9QkuEdNgjQMhKt3I7RjA4I7NkKvq7G6vE6M5noEm+sR3Lom+oBQoBWWQCuJBgRH/8FQC/rb+j9lip1vw2eoX/QUIGGLpbPdafnoDYQP7Uf+NXfZdmiLPQMm+9Oy3Vi09mBM114yph/uOZvHGFPy0htrETw6nLBve58eotRTwuGE1m8QHCWDoPUfDEfJYChZudwMKcm0fvo+Gt943uoyYicEnKVDUHjjt2y5SoY9AyZzxLCjoJQS0tAR0u2bZIlioeYWwjt5DryT58AIBhDasxmhHRsR3LnRtsMJMhxCeP/26FyIdkpGdnRY4egQQ/9BUFzcA8SufOuWJ1cQAAApETqwG7V/+S8U3XY/hGqvb7/sGTDZiyv349nPTl673XZkP/a8/zKa9lShed82GOEgsgv74Z3X/4Hp03lGAaUWaRiI1OxBcMdGBHdssOWyxdNRsvKiQwyFJVALS6AV9oeW3w/C4bS6tLQWqtmHw394CNCTd5g188zzkHvRdVaX0QnDgMkWrTmAPy3fc9LjS395M3JEEGeffTamTJmC/Px8PPjggzjvvPPw5JNPWlApUd/RW5sQ3rcdob3bEN63DXpjrdUl9YwQUHMLowGhoD0gFJZAzSuGUFWrq0t5hr8Nh558AHpzo63nCMQi/+qvwDvOPj8I2qufIgU4ta6HCXy1B/HArx/CNddcg61bt2LevHn4wx/+gGAwtg2KiJKZmpkDdfQUuEdPAQDozfUI7d2O8L5tCO3dBqOlweIKYyQl9IYj0BuOANuOO6FUUaHmF0d7Egr6d/QmqDkFnKxoEmkYqHv5jykRBACg/m/PQCsqhbP/QKtLAcAwYDpHN298T35//PCHP8R3vvMdlJeXY9euXX1cGZF9qNn58FROg6dyGqSU0JvqEN67DaF92xDeuw1GW7PVJcbH0KHXVkOvrUaneK85ouGgoH90qCGvCEpOAdScgqTZjMYufKs/ju4jkCoMA/WL/oh+d//MFpNXGQZM5tC6/ked/PVf4/C6pajfsgpoOdDHVRHZlxACWm4htNxCeMbPiIaD+sMdwSC0b5ttJyOeViSMyKF9iBzad9JTwpMBtT0YHPuVDyW3EGpWHocdjiP1CJqXvGZ1GeaSBiKHDyKwZS08oyZaXQ3DgNmc3awmyCgaiCHnfgnh1mbomxkGiLojhIBW0A9aQT9g4ixIaUCvrUGofUghvG97dM/5JCf9bYj427o+LEoIKFl5UHPyjwWF3GOhQXizbPHTZF/xrV9x7LTBVCIEmt9/Fe6REyz/92QYMFksSwuJKHZCKNCKBkArGgDv5DnRlQpHDiB8YCfC1XsQqd6TvBMSuyMljOZ6GM310f0bTqQ5jwsK+VAysqF4s6BkZLX/Hv2z0JL/v3hpGO29AgKI+YD4JCElwjX7ENy+Ee6KSktLSf6vFJvprmeAiMwhFAWOfmVw9Du2lbfhb0O4Zi8i1XsQrtmDcPWe5B1aiEUkBL2u5rQ7QAqXp3NQyDgWFDpCQ0YWFG+m7da9H+XftBJ6Q4qFveMJBc1LXmMYSDUOtfuuHkOPwNDDnR4Lh8MIhUJwOrl2mainFE8GXENGwzVkNIDoxl5GU31HMIjU7EH40H4gEj5NS6lFBv3Qg/6YTqEUbm/ngODJhHC5IRwuCJcbitMN4XRBON3Rx52u9sfcgOZIWDe3f/OajuOBrfKvrXvxi3c/hSEl7p45HtdPHmVe49JAaP9O6L5WqN5M89qNE8OAybobJqhe+R7WP/cr6AEfysvLOx5/7rnn8PLLL+PRRx/F3Xff3UdVEqU2IUR0jD23AO5RkwFEz7mP1FYjUr0b4Zq9CFfvgV53CCnX9dxDMuCDHvD17PhqoXQfHJyu9vBw7HGoWnSCpKpFeyRUDUJRo8MayrHnFE8Ggru2WBoEIoaBB95Zjr/efAmyXA5c9Me/48LR5cjzmLsaJLR3u6UTCRkGTNZdGNi39B+YecYUfP3rX0dmZjT9PfDAAzhy5AheeOEFPP744wwDRAkkVBWOfgPh6DcQRzcaNoIBRA7tQ7h6NyI1exGu2QujpdHKMpOTNCADPsiAD2gBzDqhwlU5HUZrbEfCJ8qaA0cwoigPJdnR8wTOGV6GD3YcwBcqTTxXRlEQZBhILQ6l664yRXOiqakJW7ZsAQCsXLmy47n6+nq4XPY8yYoolSkuN5yDKuAcVNHxmBHwIVJXA722GpHammhvQu3B1J6DYFNGa+L2mzCkxDlPvIwLRg7Gv503rePxJdv34/YX38Hvr5yLS8cMxaEWH/pnHztYqCQ7AzXNJn8tGAaCu7eY22acGAZM1l2H49ALvoyql36Hh39/bOthAaAgw4mcnBw89NBDfVIfEZ2a4vbCWToUKB3a6XGjrQWRuqPhoLo9LFRDhgIWVZr69JYmQFETchqmIgTumTUB//HmMtx91gTkelzYVFOHr7+8GN8/ZyouHRP995dd/K+eiOkR4eq9kJEwhOYwv/EYMAyYzOjmqIf8iok4698WdHrM41Cx6A777E1NRN1TMrLgzMjq1IsgpYTR0nhcT0L7r7qatJusmAgyHEro1sNfHDccj32wGgtWbMSXJo3ELS+8jSvHD8fXZo7vuKZ/VueegOrmNkwsLTK/GMOAEQxAZRhIDfEc+9TNiAIRJQkhBNTsPKjZeUD7SgYgujZeb64/FhDqD8FoqoPeVG/5GHhSMYz4/lONk6Yo+PpZ4/Hwe5/jjapdqCwpxAMXzuh0zcTSImw50oDq5jZkuRx4b/s+fPvsSQmpR4ZDCWk3FgwDJuuqS6k7Vu84RUSJIRSlY4tl1/BxnZ6T4RD05gboTbXQm+qhN9bCaK6H3lgHvamOww7HkX1wINEXxw3Hz95eDgng8SvnQT3hfBlNUfDv50/Hdc/+E4YEvj5zPPK8CTpXIgHDIbFiGDCZwZ4BIjoF4XAe2275BFLK6BK/pmgw0BvroDdHfzea6qA311u6zK6v9cX4+U/e/AQA0OALQOnmP+ULRg7GBSMHJ7wW4bBuvxmGAZPJOLq0mAWI6HhCCAhPBhRPBhz9B530vDQMGK2NHb0IRksjDF8LjLbm9t+jv2Q4NY5GF6qW0A2HHnn/c7y3bR9evf1yXP/cm3hx9VbcesaYhNwrFgwDKSS+ngHGASKKnVAUqNn5ULPzAVR0e50MBY+FA18z9LZjH0d/Pxocmm090VHNzgPkzoS0/cKqzfjDsvX4682XYEz/AtwxfSz+55N1+PLkUZacMaNk5UBxe/v8vkcxDJgsnrkuzAJElAjC6YLqdEHNLTzldVJKyHCwIxgcCxCtkKFA9FcwABkKQoYCMELHPpbBQEJn+gOAWlCckAmE72/bh5+8+Qn++8p5mDywGABw27Sx+MOy9Vi0bhu+NGmk6fc8JUWBe4iJWxz3AMOAybpbWtgVTiAkIisJITq2CUZefMvlpJRAJNw5JATbA0QoGH0sGIAMH/94ADIchtQjgBGBjEQAQ4fUI5C6DuiR6HPtf9byigBVBXTzJtatO1iLr728GP923jRcNHpIx+NZLiduPWMsnvh4La6ZUHHSRMKEMgw4Bw3vu/t1gWHAZPFkWE4gJKJkJYQAHE4IhxNKRnbC7tO68mOE9nZxjHMPjR9QiC0/urXL5+6fNwX3z5ti2r3i4RrU/bBPX+B5uyaLbwIh0wAR0am4ho4GRGp/qxJuL7SiEktrSO1X2AJcWkhEZJ7MKWen9gQrIZA14zyIvhyW6ALDgMni6hlI5S9wIiITqNm5yJgyO2V7B4TmQOb0c60ug2HAbEE99tm1msowQER0OlmzLkzNjVmEQOaM86B4rFtSeBTDgMkC4djDgEdTE1gJEVFq0HIL4J04M7oBUSpRNWSeeZ7VVQBgGDCdPxz7Ehi3gy8/EVEssudeBuFwpdT8gey5l0HNyLK6DAAMA6YLxBEGPA72DBARxULLyUfBtXcl9BTDPiME3CMnRIc/bIJhwGTxDBO4GQaIiGLmHl6J7HO+YHUZvaMoUHMLkH/lHbaaRM4wYDJ/hD0DRESJkjX7IrhHjE/e1QWKisIbvgnF7bG6kk6S9NW0r3iGCdwaX34iongIRUH+VXfAUTwguQKBEICioOCau6K120wSvZLJIb4JhOwZICKKl+L2ouiOH8A5uCI5JhQKBUJzoPCmb8MzaqLV1XSJYcBkcS0t5GoCIqIeUVxuFN10L7wTZlhdyqkJBUpmNoru+AHcQ0dbXU23eFCRyeIaJmDPABFRjwnNgbwv3Apn6RA0vvlC9EEjsccqx8tZXoGCa78G1ZtpdSmnxDBgMn8kjtUE3HSIiKhXhBDInDYXrvIRaHzr/xDcsTE6dGDlEkQhoHgykHP+VfBOnGn5uQOxYBgwWXz7DNj/C4SIKBk4igeg6OZvI7B9AxrfeBGRukN9X4SiRA8eOms+smZdBMXl7vsaeohhwGScQEhEZB338Er0u+fnaFv1EZqXvAajtTn6TTpRwwdHeyEUBZ6xU5Fz3pXQcgsSc68EYhgwmS/EMEBEZCWhqsg8Yy4yppyN0N5t8K1bAd+GFZDBgHnBoD0EOMuGwzvhTHjHTIHizeh9uxZhGDCRISWaA+GYr8928eUnIkoUoShwlY+Eq3wkci++HoEdG+Hf+DlC+3ch0nDkWChQFEACgOw810CI6F4GxrEf8hRvJhz9BsJdMQ6eyqnQcvL79O+UKPxuZKKWQARGHHNWcjyOxBVDREQdhKbBM3ICPCMnAACkHkGk7jDCRw4ifOgA9MZayEgYMhKBNHQomhPQNCieDDiKB8BRXApH8QAonuT96f9UGAZM1OSPvVdAEUCWmy8/EZEVhKq1f5MfAIydanU5luN0dhM1xTNE4HZASYads4iIKOUxDJioMY6egRz2ChARkU0wDJgonmECzhcgIiK7YBgwUVw9AwwDRERkEwwDJmoKRGK+NsfNMEBERPbAMGCieIYJctkzQERENsEwYCLOGSAiomTEMGCixjiWFjIMEBGRXTAMmCiungEuLSQiIptgGDBJRDfQEscEQs4ZICIiu2AYMMmR1hDiOJaAYYCIiGyDYcAk1c2BmK91awoyeWIhERHZBMOASQ61xB4GirNcEDyXgIiIbIJhwCQ1zcGYry3OdCWwEiIiovgwDJikJs6eASIiIrtgGDBJTRxzBhgGiIjIThgGTHKoJfZhgn5Z7gRWQkREFB+GARO0BSNojmOPAc4ZICIiO2EYMEFNHL0CAIcJiIjIXhgGTBDPskJNEcjzcsMhIiKyD4YBE8QzebAo0wWFewwQEZGNMAyYIJ49BvpxiICIiGyGYcAEXFZIRETJjGHABPEsK+RKAiIishuGgV4ypIxr98F+2QwDRERkLwwDvdTgCyOsx354cVmuN4HVEBERxY9hoJfimS8AAGV5ngRVQkRE1DMMA70UTxgozHDC41ATWA0REVH8GAZ6KZ7dB9krQEREdsQw0EsHm2LvGeB8ASIisiOGgV7aWdsa87XsGSAiIjtiGOiFQFjHvkZ/zNcPYhggIiIbYhjohV11PhixryrEwFyGASIish+GgV7YHscQQaZLQ66HpxUSEZH9MAz0wvYjbTFfW5brgeBphUREZEMMA72wg5MHiYgoBTAM9FAoYmBPAycPEhFR8mMY6KHd9W3Q45g9yMmDRERkVwwDPbQtjvkCAFCen5GgSoiIiHqHYaCHdtTGHgay3RqKMp0JrIaIiKjnGAZ6aPuR2CcPVhRlciUBERHZFsNAD4R1A7vrfTFfP6yQQwRERGRfDAM9sKfeh0gckweHF2UmsBoiIqLeYRjoge1xzBcAgOHsGSAiIhtjGOiBeOYLZLo09MtyJbAaIiKi3mEY6IF4egaGF2Zw8iAREdkaw0CcIrqBXXVxhIEiDhEQEZG9MQzEaV+jH2E9jsmDhZw8SERE9sYwEKdtccwXANgzQERE9scwEKd4dh7McKooyXYnsBoiIqLeYxiI0/Y4ziQYxsmDRESUBBgG4qAbEjvjmDzInQeJiCgZMAzEYX+jH8GIEfP1o/tnJ7AaIiIiczAMxGF7bXyTB8f0z0pQJUREROZhGIhDPPMFBmS7ke/lscVERGR/DANxiGfnwbElHCIgIqLkwDAQo7BuxHUmwdgSDhEQEVFyYBiI0dbDrXFNHhzDyYNERJQkGAZitO5gU8zX5nocKM3hZkNERJQcGAZitO5gc8zXjumfxc2GiIgoaTAMxCCsG6iqaYn5+rEcIiAioiTCMBCDzYdaENJjny/AyYNERJRMGAZisPZA7PMFXJqCoQXchpiIiJIHw0AM4pkvMKpfFjSVLysRESUPftc6jWBEx+ZD8cwX4BABERElF4aB06iqaUHEkDFfz50HiYgo2TAMnMbaOIYIHKrg4URERJR0GAZOY10ckwdH98uCS1MTWA0REZH5NKsLsIv/W70fu+p8mDwwF5MG5qAw0wV/WMfWOM4jmDQwN3EFEhERJQjDQLuiDBee+XQvPtheCwAYnOdBaa4HehzzBSaU5iSqPCIiooRhGGg3vKjz3gB7GvzY0+CP+fMznCoqijLNLouIiCjhOGeg3YAcD9xaz1+OcQNyoCo8j4CIiJIPw0A7VREYWtjznQN9oQg+39uAQFg3sSoiIqLE4zDBcYYXZmBTHAcSHW/dwWasO9gMTRGoLMnGpIG5mDY4D4PzvSZXSUREZC6GgeMMK+z9mH/EkFhzoAkbqpsxrDCDYYCIiGyPwwTHOXESYW/cN284JpflmtYeERFRojAMHKcs1wOH2vtJgHfNLMfciiITKiIiIko8hoHjaKqCIb08fvjaSaX4wvgBJlVERESUeAwDJxjeixUFF4wqxi3TBplYDRERUeIxDJxgeA8nEZ5Znodvnj0MQnCvASIiSi4MAycoL4h/9v/Y/ln4wXkjuOkQERElJYaBEwzM9cR1/eB8L/7jotE8rZCIiJIWw8AJMl0a8ryOmK4tynTiFxePRpaL2zUQEVHyYhjoQlkMvQN5HgcevHQsCjNdfVARERFR4jAMdOF0YSDbreHBy8bEPaRARERkRwwDXRiY1/0kwgynil9eMgbl+ebtVkhERGQlhoEudNcz4HEo+MUlYzC8qPdnGBAREdkFw0AXyvJODgMuTcHPLhqNUf2yLKiIiIgocRgGulCY4YRbO/bSOFSBf58/CuMG5FhYFRERUWIwDHRBCIGB7b0DqiLwbxeM5AmERESUstImDEgpIXUdMhyEDPogQ37ISBjSMLq8vizXC0UAPzi3AtMH5/dxtURERH1HSCml1UWYzfC3QDYegdHU/qvxEIymWkAPd3m98GRC5PaDmlsMkVMEJacIL+8KozjLg3kjeBQxERGltpQJA0ZrIyJ7NiKyez1kc237owIQApBd//R/EqF0XBuCBs/AYdDKx0EdMBxC5S6DRESUmpI6DMigD5E9mxDZvQ5G3UEAAoCJfx0hACkB1QF10Gg4yiuh9BvCkwmJiCilJGUYkHoE4a2fIbzhQyDSdde/6dp7DZT8EjinzIdaOLBv7ktERJRgSRUGpJTQ921GaPW7kL5ma4po7y1QB42Bc+I5UDJyramDiIjIJEkTBoymIwiu+CeM2v0wfTigJ4QAhALH6BlwVM6GUHiEMRERJaekCAORvVUILv8HYOjRMXybUQoHwjXraigeblNMRETJx9ZhQEqJ8IYPEd7wkdWlnJoQgNML97wboOb1s7oaIiKiuNg2DEjDQPCzN6DvXGN1KbERAlA1uM++Dmq/cqurISIiipktdyCUUiK44vXkCQJAdPgiEkHg/eeh1+63uhoiIqKY2TIMRLavgr5rndVl9IAEIBH48CVIf6vVxRAREcXEdmFAr92P0Mq3rC6j56QEQj4Eli7q9twDIiIiO7FVGJD+VgQ+fMnqMnpPShi1+xBas9jqSoiIiE7LVmEg8OlrQMhny+WDPRHZ8iki1TusLoOIiOiUbBMG9LoDMKp3pEwQAAAIgfC6JbDpgg0iIiIANgoDofUfRvf/TyVSwqivhlGzy+pKiIiIumWL7756fU17r0AKTrgTAqENH1pdBRERUbdsEQbCGz+KbtqTiqSEUbsf+uE9VldCRETUJc3qAmQ4BH3/Vlh58ND+uiZ85YmXcaS5DZqi4AdfnIsrz6w07wZCQWT3BqjFg81rk4iIyCSWhwGj7gCsPoFQUxT85qaLMb68BIebWjHrx09i/sQRyHA7zbmBNNgzQEREtmV5GNCP7IsOEVg4475/Xhb652UBAIpzMpGX4UFDm9+8MABAttRDBn0QLq9pbRIREZnB8jkD+uE9CQsChmFg0nd/h39/4e1Oj/9r7Tbk3fQzvLJ8w0mfs2rnARhSYmBBjun18MwCIiKyI0vDgDSM9mGCxFAUBfdfcTae+tdnaGj1AwDW76nGTb//K3523XknzQuoa/HhzicX4b++coX5xQgFxuF95rdLRETUS9b2DIQDgB5J6C2uO2s8CjK9ePLtZThQ14SrHnkOX5o1AfdeOqvTdcFwBNf/v+dx/+Vn48wRgxJQiYThb05Au0RERL1j6ZwBGQkn/B6aquI7l8/Gz//6Lv6xYhMmlpfgt7dc0rkOKfHV/3kFc8YMxfWzJyamECmBPvj7EhERxcvangFD75PbXHfWePiCYUhILPjGtVCVzn/tZVv2YtHyDXh9ZRVm/OhxzPjR49iwt8b0OmSCe0GIiIh6wtrVBGrf3P67z/wTQHROgKqcvLnRzFGD0fKXBxJeh9AcCb8HERFRvCztGRBq4r85PvB//8Jbq7fg/QfuQkQ3sHDJqoTfs0tC9Fn4ISIiioe1wwRON+BwJaz5Z97/HP/1xid46f4bMW5wCe65aAYee/0jhCN9MzxxIiWrwJL7EhERnYq1PQNCQC0aBMD8cwneWbMV9y14HU/dfRWmVZQBAL52wZlo8QXxwtI1pt/vtKSEWlTW9/clIiI6Dcs3HVKKzV/Gt3rnAdz0u7/iF9fPxxXTxnY8nu1146vzz8R/vvoRdKOvT0gUUApK+/ieREREpyektHAfYER35Qu8+4yVJfQJJbcfPBfdaXUZREREJ7G+ZyCvBFBUq8tILKFA6VdudRVERERdsjwMCFWFNmR8dLZ9qpIGHEMnWF0FERFRlywPAwDgGHOW1SUkjlCgDhwJJbfY6kqIiIi6ZIswoGTmQi0fl5q9A9KAY+xsq6sgIiLqli3CAAA4x85K2FHGlhEKlJJhUPP7W10JERFRt2wTBpSsfKhDJyIRew5YR8I5fq7VRRAREZ2SbcIAALimzIfIKUyZ4QLn5PlQ80usLoOIiOiUbBUGhOaA++xrgT44syCxBNTBldAqplhdCBER0WnZKgwAgJKZB9dZV1pdRs8JAZFTCNe0SyBSpIeDiIhSm+3CAABoA4bDMeEcq8uInxCAww332dfyuGIiIkoalm9HfCrhLSsQWvWO1WXERggITxbc59wIJSvf6mqIiIhiZuswAACRPRsRXP4qIA0bLz0UUPL6wT3nSxCeTKuLISIiiovtwwAA6A01CH7wV8hAqy0DgTp0IlxTL4RQNatLISIiiltShAEAkEE/QuveR2T7qujYvA3KFp5MOCedD23w2NNfTEREZFNJEwaOMpqOILjyHRiHdiG6QVEfly8EoKhwjJ0Nx8hpnChIRERJL+nCwFGRgzsQWvU2ZEs9IJTonII+oA6dCOf4uVA4N4CIiFJE0oYBAJBSwjiyF5E9GxHZsxEIB80NBu3DEUpuP2hDxkMdNBqKN9uctomIiGwiqcPA8aSuQ6/ZicieDdAPbo8GAwCAaP+mfpqAcEKIEFn50AZXQhs8Fkp2QeIKJyIisljKhIHjSSkhA22QTUdgHP3VUAMZ9AG6Dmno0X0BVA1QVIjsAqg5xVByiiByiqBkF3AuABERpY2UDANEREQUO1tuR0xERER9h2GAiIgozTEMEBERpTmGASIiojTHMEBERJTmGAaIiIjSHMMAERFRmmMYICIiSnMMA0RERGmOYYCIiCjNMQwQERGlOYYBIiKiNMcwQERElOYYBoiIiNIcwwAREVGa06wu4HjOSbdD0ZwQigqhqFAdxz4WinLsOVWFojmhdDynnvScUFQoioBQBFRVgTjhY0URUFTRcc0pnxMCqqZAVQRURcDZ/rHW8Wf12HPqseu0465Vu/pYCChCQBWAQ1U6PtZUBapA9M+KgEMRXXwcfd6hKB0fq0JACEARgBBobx8QAFRFQAGifxcFHR8rAlDF8R9H2xBSAtKAMCJAp4+N6C+j++eENABdP/axEQEMHdIwgEgIUtcBw4g+FglDGnr043AYOPrx0WuPXhcOHfscQ4cRjkDqBqRhwAhFYOjRz5G6ASMcgaEf+1i2f6yHI5DHXaeHIsd9rEMaEoYu2//c/vmGjD6nS0hdwtAN6GGjvU0JPay3f86xzzOkhC4lQoaELnHCxyf+OfqxgejHukT7c8c+/h+529L3pVn4/ub7m+9v+76/2TNARESU5hgGiIiI0hzDABERUZpjGCAiIkpzDANERERpjmGAiIgozTEMEBERpTmGASIiojTHMEBERJTmGAaIiIjSHMMAERFRmmMYICIiSnMMA0RERGmOYYCIiCjNMQwQERGlOYYBIiKiNMcwQERElOYYBoiIiNIcwwAREVGaYxggIiJKcwwDREREaY5hgIiIKM0xDBAREaU5hgEiIqI0xzBARESU7mSKCgQC8qc//akMBAJWl3ISO9cmJevrDTvXlkrs/DrbuTYpWV9v2Lm23hJSSml1IEmE5uZm5OTkoKmpCdnZ2VaX04mdawNYX2/YubZUYufX2c61AayvN+xcW29xmICIiCjNMQwQERGlOYYBIiKiNJeyYcDlcuGnP/0pXC6X1aWcxM61AayvN+xcWyqx8+ts59oA1tcbdq6tt1J2AiERERHFJmV7BoiIiCg2DANERERpjmGAiIgozaVcGLj//vsxe/ZsfPnLX0YoFOr0nN/vx6WXXoo5c+bg/PPPR319va3qO+pXv/oVpk6danlNkUgEt956K2bPno177723z+qJtb6j+vr1Ol53tdnhay0V8f1tXk18f59eOr2/UyoMrF69GjU1Nfjoo48wZswYvPzyy52ef/PNN1FZWYkPPvgA1157Lf785z/bqj4AaGlpwYYNG2xR02uvvYaBAwfio48+gs/nwyeffNJndcVSH9D3r1estVn9tZaK+P42tya+v3tem9Vfa4mQUmFg2bJluOCCCwAAF1544Ulf3BUVFfD5fACAxsZGFBUV2ao+APjd736He+65xxY1xVKvlfUBff96He9UtVn9tZaK+P42tya+v08t3d7fmtUFmKmxsREDBgwAAOTk5JzUdTNs2DBs2LABlZWVEELg008/tVV9TU1NWL9+PX7yk5/YoqbGxsaO/be7qtfq+qx4vWKtzeqvtVTE97e5NfH93fParP5aS4Sk7BmoqanBrFmzTvolpURzczOA6D9kfn5+p89buHAh5s6diw0bNuDnP/85HnjgAVvV99hjj+Eb3/hGQmrqTl5eXrc1neo5O9Rnxet1vFPV1ldfa6mI72/z8P3dc+n2/k7KMNC/f38sXbr0pF8XX3wx3nnnHQDA22+/jbPOOuukzz36D5qbm4vGxkZb1bd9+3Y8+OCDuPDCC7Ft2zb8+te/Tkh9xzvzzDO7relUz/WVU9VgxesVa21A33ytpSK+v83D93diagNS8P1t3enJifHd735Xzpo1S95www0yGAxKKaW86667pJRSNjU1yYsvvljOmTNHnnXWWXLLli22qu94U6ZMsaymo/WEw2F58803y1mzZslvfvObfVZPrPUdry9fr+N1V5sdvtZSEd/fva+J7+/YpdP7m9sRExERpbmkHCYgIiIi8zAMEBERpTmGASIiojTHMEBERJTmGAbSwDPPPIPc3FxT2tq9ezeEENA0DQcOHOj0XHV1NTRNgxACu3fv7vTcokWLMHfuXOTk5CAzMxPjx4/HAw880LGRh5k1EqWbW2+9FUIIfO1rXzvpubvvvhtCCNx6660dj9XU1OCb3/wmhg4dCpfLhbKyMlx22WVYvHhxxzXl5eV47LHH+qB6sgOGAeqRAQMG4Nlnn+302MKFC1FaWnrStT/+8Y9x3XXX4YwzzsCbb76JDRs24NFHH8XatWtTYk9vIjsoKyvDiy++CL/f3/FYIBDACy+8gEGDBnU8tnv3bkyZMgXvvfcefvOb32D9+vV46623MG/ePMu2/iXrMQwkgbfeeguzZs1Cbm4uCgoKcOmll2LHjh0AgCVLlkAI0WnTizVr1nT8dL5kyRLcdtttaGpqghACQgj87Gc/AwA0NDTg5ptvRl5eHrxeLy666CJs27YtpppuueUWLFiwoNNjzzzzDG655ZZOj61YsQIPPfQQHn30UTzyyCOYOXMmysvLcf7552PRokUnXU9EPTN58mQMGjQIr7zySsdjr7zyCsrKyjBp0qSOx472FKxYsQJXX301RowYgbFjx+K+++7D8uXLrSidbIBhIAm0tbXhvvvuw2effYbFixdDURR88YtfhGEYp/3cmTNn4rHHHkN2djaqq6tRXV2N+++/H0C0a/Hzzz/Hq6++imXLlkFKiYsvvhjhcPi07V5++eVoaGjA0qVLAQBLly5FfX09Lrvssk7X/eUvf0FmZibuvvvuLtvh0ACReW677bZOIf3pp5/G7bff3vHn+vp6vPXWW7jnnnuQkZFx0ufz/Zi+UuqgolR11VVXdfrzn/70JxQXF2PTpk2n/Vyn04mcnBwIIdC/f/+Ox7dt24ZXX30VH3/8MWbOnAkg+o27rKwMf//733HNNdecsl2Hw4Ebb7wRTz/9NGbNmoWnn34aN954IxwOR6frtm3bhqFDh570OBGZ76abbsKPfvSjjrk9H3/8MV588UUsWbIEQHSLXyklRo0aZW2hZDvsGUgCO3bswA033IChQ4ciOzsbQ4YMAQDs3bu3x21WVVVB0zRMnz6947GCggKMHDkSVVVVAICLLroImZmZyMzMxNixY09q44477sBLL72EmpoavPTSS51+AjlKSgkhRI/rJKLYFRYW4pJLLsHChQuxYMECXHLJJSgsLOx4/uiGs3xP0onYM5AELrvsMpSVleGPf/wjBgwYAMMwUFlZiVAohMzMTADH3uQAYurm724X6uO/eT/11FMdk5G6+sm+srISo0aNwvXXX4/Ro0ejsrISa9as6XTNiBEjsHTpUoTDYfYOEPWB22+/veO0v8cff7zTcxUVFRBCoKqqCl/4whcsqI7sij0DNldXV4eqqir85Cc/wbnnnovRo0ejoaGh4/mioiIA0WV9R534DdnpdELX9U6PjRkzBpFIpNM53HV1ddi6dStGjx4NACgtLcXw4cMxfPhwDB48uMv6br/9dixZsqTLXgEAuOGGG9Da2oonnniiy+dT4rQvIhu58MILEQqFEAqFMH/+/E7P5efnY/78+Xj88cfR1tZ20ufy/Zi+GAZsLi8vDwUFBfjDH/6A7du347333sN9993X8fzw4cNRVlaGn/3sZ9i6dSv++c9/4tFHH+3URnl5OVpbW7F48WLU1tbC5/OhoqICV1xxBe68804sXboUa9euxY033ojS0lJcccUVMdd355134siRI/jKV77S5fPTp0/H97//fXz3u9/F97//fSxbtgx79uzB4sWLcc0112DhwoU9e2GIqEuqqqKqqgpVVVVQVfWk55944gnouo5p06Zh0aJF2LZtG6qqqvD73/8eM2bMsKBisgOGAZtTFAUvvvgiVq5cicrKSnznO9/BI4880vG8w+HACy+8gM2bN2PChAl4+OGH8ctf/rJTGzNnzsTXvvY1XHfddSgqKsJvfvMbAMCCBQswZcoUXHrppZgxYwaklHjjjTfi6s7XNA2FhYXQtO5HnB5++GE8//zz+PTTTzF//vyOZUzjx4/n0kKiBMjOzkZ2dnaXzw0ZMgSrVq3CvHnz8N3vfheVlZU4//zzsXjxYjz55JN9XCnZBY8wJiIiSnPsGSAiIkpzDANERERpjmGAiIgozTEMEBERpTmGASIiojTHMEBERJTmGAaIiIjSHMMAERFRmmMYICIiSnMMA0RERGmOYYCIiCjN/X8FyIw8QxEo0gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -404,7 +404,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHV0lEQVR4nO3deZwcdZ038M+vqq/p6blnMkcymcl9X4QjhIRDhHAfq8CqoIDgurCsj8DDo7v6CKy6Hss+6Iq4rnLpCoqgiyIIBgMJ5ICEEELuO5nMJHNfPX1V/Z4/ajJHMjOpmqnuqu7+vF+v0Znu6qrvNNPpT/9OIaWUICIioqylOF0AEREROYthgIiIKMsxDBAREWU5hgEiIqIsxzBARESU5RgGiIiIshzDABERUZZjGCAiIspyDANERERZjmGAiIgoyzEMEBERZTmGASIioizHMEBERJTlGAaIiIiyHMMAERFRlmMYICIiynIMA0RERFmOYYCIiCjLMQwQERFlOYYBIiKiLMcwQERElOUYBoiIiLIcwwAREVGWYxggIiLKch6nC0g2qSWgtRxHorkBek83oCUgtQQgFAhVhfB4oRaUQC2thJKbDyGE0yUTERGlVEaFASklEg0HEdu/A4mmeiSO10FrbwKk7D9ICONLAoAcdJ/w+aGWVMI7bjw84ybAP3UelNy8lP8eREREqSSkHPhOmZ4STQ2I7NiIyEfvQu9sBYSCk9/oLVEUQNcBIeCdOB2B2WfBP20eFF/A1rqJiIjcIG3DgNQ1RLasRfj91dCaG4wAIHX7LySEESoUFf6p8xBccgm84ybYfx0iIiKHpGUYiO7bhq6/vgittTG1F+4NHIG5S5C77AqooYLUXp+IiCgJ0ioMJBqPonPV7xA/uKv/E7sThAKoKnKXXIrg4gshvD5n6iAiIrJBWoQBqevofudVhNe91hsCktAdMEpKqBAF194Ob2WN06UQERGNiuvDgB4Jo+OPTyN2YIfTpQxNCEAoyLvkRuTMW+J0NURERJa5OgxoHa1oe/4xaG3NrmoNGE7wnEuQu+xKrlVARERpxbVhINHcgLbf/Ah6uDstgsAJgbnnIO/Sv4VQuLgjERGlB1e+Y+k93Wj77eNpFwQAILJ1PbrfedXpMoiIiExzXRiQUkfHy89A7+pIuyBwQnjdnxHdu9XpMoiIiExxXRjofudVY7BgmgaBEzr++AwSqV4HgYiIaBRcFQaie7civPbPTpdhC5mIo/13/wUZizpdChER0YhcEwZkIoGOPz/ndBn2kTq01uMIb1zldCVEREQjck0YiHy0HjLc6XQZ9pIS4XffgB6LOF0JERHRsFwRBqSmoTtDugdOJmNR9Ly/xukyiIiIhuWKMBDZ9i70rnany0gSifC7Kzl2gIiIXMsVYaB7/etOl5BUMhJGz0cbnC6DiIhoSI6HAa2jBXpbk9Nl4Nan/ojp//c/8flnXrb/5EK4d28FIiLKeo6HgfiRfU6XAAC4Y9kC/MffXpKck0uJ+JE9kGm+dgIREWUm58NA3T7ABev4L5tajZDfl7Tzy2gEWsvxpJ2fiIhotBx/F44d3g3oyfnErOsS533vF/iXl98edPtfdx7EhK/8CC99sDsp1x1OvM4drSBEREQDORoGZDyW1E/LiiLwjx87E0+t3YK2sDHX/6OjjbjjF3/CP122FNcsmJa0aw9RDOL1h1J3PSIiIpMcDQOpWIznE4tmoDg3Bz9b8wGOtnXiM0+8hBvOmIm7Ljwj6dceRJeQ0Z7UXpOIiMgEj6NXj8eSfgmPquCeCxfj26+uxR8/3IN548fhW9ddkPTrnkpCJpL/+xIREVnl+JiBVPjEGTPQE4tDAvjJZy6DOsSAxZv+6/e48xd/wsodB7Hwmz/H+4eP2V+IlPafk4iIaIycbRnwJm/0/kBf/d2bAICW7h6oQgx5zK/vvC7JVQgIrz/J1yAiIrLO0ZYBJQVvjt95dS3+smM//nTPjdB0Hb/a8FHSrzkkRUD4A85cm4iIaASOhgHh80MtLE3a+X+5fit+8tb7eOa2qzGnqgx3Ll+Ex1ZtQlzTknbNYek6vOXVqb8uERHRaTg+ZsA7cXpSFh1aueMAvvq7VXjsU5fizJpKAMAd581HZzSG5zc6szSwd8IUR65LREQ0EufDwPjJti869MGR47jjF6/g61cuw5Xzpvbdnhfw4/PnLcB//HUjtCQtdDQc4fNDLSlP6TWJiIjMEFI6O8Rda2tG888edrKE5BMCvtpZKPzE3zldCRER0SkcbxlQCoqh5Bc5XUZyScA3aabTVRAREQ3J8TAghEDuOZc6XUZSCX8AgblLnC6DiIhoSI6HAQAIzDkbSm6e02UkhxAInvUxKD6uMUBERO7kijAgPB4EM7R1QHh9yFm03OkyiIiIhuWKMAAAOfOWQOTkOl2GvYRAzuILofhznK6EiIhoWK4JA8LrQ94lNzpdhn2EAqWgBMEzP+Z0JURERCNyTRgAgMD0hQiedbHTZdhDVVF4/Z1QuAQxERG5nKvCAADkLr8S3glTAeG60izJv/xmeEoqnC6DiIjotFz3jisUFQXX3AYlGAKG2WHQ7YJnXYzAjIVOl0FERGSK68IAACjBEAo/+UUIfzDtWgj8M85A7vIrnS6DiIjINMeXIx6J1taE1t/8CHpnOyBTu5fAaOQsvhChC6+FSLMAQ0RE2c3VYQAA9HAX2l96AvEje50uZWi9XRmhC6+DN9cHJZgHESyACBYAgTyIJOzISEREZCfXhwEAkLqGrrf+gJ73/mp0G7illUAIiJxcFFxzO3wTpkCr2wHZdGjA/QqQkw+RW9AfELwBiDQdC0FERJkpLcLACfGGw+h84wUkju43PpE7VbpQjGWGz74YwbMvhuIzpg/KWA+07WsAjFCXxwcRLDSCQTAfIicPwuNLTd1ERERDSKswAABSSkR3f4Cuv/4eemdrai/e2yrhn3kGQudfDTW/+JRDtINbINsarJ3XG4DIyQNy8iByjIDAFgQiIkqVtAsDJ8hEAj2bVyP8/mro7c3J6z440QIhBDrHTcH4i65CYMKk4evq6YC2a93Yr6t6ewNCb+tBMB/Cn2HLNRMRkSukbRg4QUqJxLEjiGx/D5Ht70GGuwBFAfQxBAOhAJCAlOgursYHoSlYpVUirAZw/0VTMb0sNOLDtb0bIbuaR3/9ISiV06GMq7X1nEREREAGhIGBpK4jfmQvYge2I9FYj0TjUehdbf0HCAUQQO//4MQbft/YA9UDUViGlmAZdssCvKlXoN0z+I3/4mlluGnR+BHr0Duboe/baNevBZFfBqV2IbsNiIgoKTIqDAxFj0WhNTcg0VQPGQlDagnIRAJCEcabv8eLSE4htsVysLZZYE9zeKThfyjJ9eHbV8wa8Y1ZSglt9zqgp3Psv4AvAHXauRAe79jPRURENASP0wUkm+LzQ6msgbeyZthj3tpxDC/uqjd1vubuGI60R1BdOPy2xEIIKGWToB/aYrnek04EtWYhgwARESUVV8QBsGh8oaXjN9e1n/YYUTgO8A0fGEwJhMZ+DiIiotNgGABQnudHZb75rYbfr2s77TFCKFDKhm+NMKWnE9rutZDh04cPIiKi0WIY6LVwfIHpY4+0RdDUFT3tcaJ4PDDWJv5YBNruDdAbDyDDh3cQEZFDGAZ6LbIQBgBg81ETXQWKCqW0dpQVDSShH90F/cBmyETchvMRERH1YxjoNbEoB4U55j/Fv29i3AAAiNJqQLVnnKbsaIS2ay1kd5st5yMiIgIYBvooQljqKtjT1I3OSOK0xwnVA6V0jGMHBopHoO15F/rx/ew2ICIiWzAMDGAlDEgJbKk32zowEVDU0ZY11NWh1++Gvv99yETMxvMSEVE2YhgYYHpZCDle80+J6a4Cj9cIBDaTnU3Qdq6F3tlk+7mJiCh7MAwM4FEE5leabx3Y1tCJSFwzdaxSOrF3zwObJaLQ922CVrcDUjdXCxER0UAMAydZOMF8GEjoEjuOd5k6Vnj9ECXVp95ePB4ir9T0NYcjmw5B270O0o4lkImIKKswDJxkTnkePIr5DYF2HDP/5quMqzG2RD4hWABl/CwokxZBqZyO/g2URinSDW33Og4uJCIiSxgGThLwqphdnmf6+G0WwoDwBoyFiABA9UKtmQ+hKMZeBuNqoU49C/CaXwlxSLJ3cOHe9yBjkbGdi4iIsgLDwBDmVeWbPrahM4rWsPkR/cq4SYAQUCbOhThp3wGRWwh1+rkQ+WWmzzcc2d0Kbec70FvNbcBERETZi2FgCLPGmW8ZAIDtJscNAIDw5UCdciaUYd7whccLpXYhlKoZg7sURkNPQD/0IbSDH0JqXLmQiIiGxjAwhLKQD0VB86sRbrfQVQAAIrdo5PuFgFJWA3Xq2YBvjN0GAGRbPbSdayG7WsZ8LiIiyjwMA0MQQmDmuJDp47cf60zKgD0RLDC6DQrGjf1k8Qi0ve9BO7oLUtfHfj4iIsoYDAPDmGGhq6AjkkB9R3IG6wnVC6VmAZQJswFl7P+5ZOMBaLvXQ0bMd20QEVFmYxgYxowy8y0DALD9WPLeXIUQUEomQJ1+LhA0P7hxWJFOaLvWQW86xCmIRETEMDCcklwfxoV8po+3MsVwtIQ/F+rUsyHKJ4/9ZFKHXrcD+v5NkPHo2M9HRERpi2FgBFa6CnY1diGhJ/9TthAK1IqpvYMLc07/gNOQnc3GFMS2YzZUR0RE6YhhYAQzLAwijCZ07G/uTmI1g/WtSXBiEaOx0OLQD34A7cBmthIQEWUhhoERWJlRAFifYjhWQvVArZ4DpWYBoJqfCjkc2X4c2s63oTfXcSwBEVEWYRgYQX7Ai6p88/P8rSw+ZCelsBzqjHMhQiVjP5mWgH7kI+j7NkJGw2M/HxERuR7DwGlYaR3Y39yNHpNbGttNeANQJp8BpWqmLVsly64WaLvegd54kK0EREQZjmHgNKyMG9AlsLvRufn7xsqFE6FOXwIErC2pPCRdh350J7Q967k1MhFRBmMYOI3pZSFLGwunetzAUEQgBHXaORBltfacMNwBbfc6aA17uHohEVEGYhg4jVy/B9VF5qfwbUvi4kNWCEWBWjUdypQzx74tMgBICXlsH7RdayG728Z+PiIicg2GAROsjBuo74igrcc9OwQqoWJjcGFhhT0njHZD27MBWt0OSC1hzzmJiMhRDAMmWFl8CHBHV8FAQvVCrZkPZeI8QPHYck7ZdMgYYNjZbMv5iIjIOQwDJkwrzYViYeCA28LACUpRJdSZSyHybdgFEQBiEej7NkI7tBUy4Z7WECIisoZhwISAV0VtcdD08XuaUrcSoVXCG4BSuwBKzXzAY37vhZHI1qPGYkVtDZyGSESUhhgGTJppoaugqTuGjoh7PykLIaAUVkCdcR5EUZU9J03EoB/cAv3AZshYjz3nJCKilGAYMMnKegMAsL/F/av3CY8X6sS5UCafAfhsmHEAQHY0QtvxNvRjeyF1ZxZgIiIiaxgGTJpSkguPhYED+5rdHwZOUPJKoU5fClE60Z4TSh16w15jN8T24+w6ICJyOYYBk3weBZNLck0fn8odDO0gVA/U8TONrZH95n/PEcV6oB/YDH3/+5DR9Ho+iIiyCcOABZb2KWgJQ9fT7xNx39bI5ZMBYWXtxeHJziZoO9+BVr+baxMQEbkQw4AFVsYNRBM6jnZEklhN8ghFgVoxFeq0JUAw356TSgl5fL8x66C1nl0HREQuwjBgwaTiIHyq+adsfxqNGxiKyMmDOvUcKFUzAMWmP5V4FPqhD6HtfY+bHxERuQTDgAUeVcG0MvP96fta0r+f3NgJscYYYBgqtu/E3a3Qdq3rXdbYvdMwiYiyAcOARZMsLD6UTjMKTkf4g1AmL4ZSPQdQ7VnSGJDGssY71kBvqWPXARGRQxgGLJpQaH4Hw/qOCMKxzBkwJ4SAUjzeWKyowKYljQEgEYd++CNoezZAhtvtOy8REZnCMGDRhALzYQAADrRk3mp8wuuHWrsQyqRFgM98S8lphduh7V4P7fBHkImYfeclIqIRMQxYVBrywe8x/7TtS7P1BqxQ8sugzlgKpWKafQMMAciWOqProPEgpK7bdl4iIhoaw4BFihAYX2B+6d59abAs8VgIRYFSPgnqjGUQhRX2nVhLQD+6E9rONZyKSESUZAwDo2Clq+BIW+Z1EwxF+AJQa+ZDmXImELC2j8OIYhFjKuKuddA7mxgKiIiSgGFgFKwMImzriaMrmjmDCE9HCRVDnb6kd20Cu2YdAIh0Qt+3Cfq+jRxkSERkM4aBUbDSTQAAR9qzo3XgBCEUY22CmTZukdxLdrUYgwwPboGMZnYXDBFRqjAMjMJ4izMK6trSc1nisRJeP9SJc43Nj3JsWta4l2xrgLbjbWhHtkPGo7aem4go2zAMjELQp6Ik12f6+MNZMm5gOCK3EOq0c6BMmA2oXhvPLCGbD0PbsQZawx5ugkRENEoMA6M0wUJXQV2WdRMMRQgBpWQC1JnLIEqq7T25rkEe22dMR2w6xOmIREQWMQyMkpVBhHXtEWhpuJ1xMgiPF+qEWVCnnwvkFtp78kQMet2O3p0RGzjzgIjIJIaBUbIyvTChSxzvYr/2QCInD+qUs6BMnAd4/PaePNYD/dAWaLvXQ+9stvfcREQZiGFglKy0DADZs96AFUIIKEWVxqyD8smAotp7gZ4O6Ps2QuN0RCKiETEMjFJZrg8+1fzTxzAwPKF6oFZMHTCeQNh6ftnZbExH3LcRsrvN1nMTEWUChoFRUhSBKguDCI+0Z+f0QiuE12+MJ5i5FKKg3Pbzy85maHs2QNv7HmRXi+3nJyJKVzYuEZd9qgtzcMDk3gNsGTBP+HOh1i6ADLdDr98F2dVq6/llVwu0rhYgtxBK+WSIUAmEsLc1gogonbBlYAysrETY2hNHdxYtS2wHESyAMvlMKJPOAAJ59l+guw36vk3Q9myA3tHI2QdElLUYBsbA6iDCug52FVglhICSX2rsdzBxLuC1thS0KeF26Pvfh7Z7HfS2YwwFRJR1GAbGwMrCQwBwvJPTC0fLmHlQBXXmMmMTJFtXMuzV0wn94AfQdq3lOgVElFUYBsYg6POgOGj+TYlrDYydUHo3QZq1DGLcJEAk4U840mWsU7DzbegtRyElVzQkoszGMDBGVroKGAbsI1Qv1MppRigongC7pyMCAKJh6Ie3QtvxNvTmI1zmmIgyFsPAGFlZiZBhwH7CG4BaPRvqjKUQBeOSc5FYD/Qj23r3PjgMqWvJuQ4RkUM4tXCMJhSaHzfQ2BWDlJLT2JJABHKh1i6E7G6D3rAnOesIxCPQ67YDx/ZCKamGKJkA4bV5KWUiIgcwDIyRlZaBaEJHeySBwpwkDH4jAL3bJU850wgFx/ZBdjbZf5FEDPqxvcDx/RCFFVDKaiBykjD1kYgoRRgGxmhcyA+vKhDXzI08P94VZRhIAZFbCHXyGcbCRcf2QXY02n8RqUO2HoXWehQiVAxROhEiv4wtP0SUdjhmYIwURaAq33xXAacXppYIFkCdtAjq9HOTssTxCbKrBfqBzcZgw6ZDkBoXmCKi9MEwYIPSXPP9xhxE6AyRkwe1doEx0LCwMnkXioWh1+2Atu0taEd3Qsa4DDURuR+7CWzAtQbShwiEoNbMg6yYDP3YfsjWegBJWFxIT0A2HoTWeBCioBxKWQ0QLGAXAhG5EsOADYqDPtPHspvAHYQ/F+rEuZAVU6Af3w/ZUgckacVB2X4MWvsxICffGGxYWA6RjMWSiIhGif8i2aDIUstAjMvcuojw5UCdMBvqzOUQJdXJWdHwhJ4O6Ic+hLZttTGoMRFL3rWIiCxgy4ANrLQMxDROL3Qj4QtAnTALsnwy9MYDkM2HgWStOJiIQm/YAxzbB1FUBaVkAkQw3/JpwuEwtmzZgra2NlRWVmLBggVJKJaIsgFbBmxgZcwAADR1s6vArYTXD7VqBtRZ5xt7Hyhq8i4mdciWI9B2r0Ni11pjdUMtftqHvf7661i0aBHy8/Nx7rnn4vLLL8fChQvxgx/8IHm1ElFGYxiwQcjvgUcxPzCsref0/+CTs4TH17v3wflQKqclZ+vkgXo6oddth/bRm9AOfQjZ1Tpsd9IDDzwAv9+Pxx9/HJs2bcKRI0dw6aWX4i9/+UtyaySijMUwYANFCEvjBlrDDAPpQni8UMZNgjprGZSa+UCwILkXlDpkaz20ve8auyYe3w8ZH9yS1NbWhtmzZyMYDOL555/H+PHjEQgkOawQUUZjGLBJUY75cQPtEYaBdCOEAqWwAp5p50CdejZEYQWSslPiQNEw9PrdxpoFBzZD72iClBIf//jH8eSTT+Lmm2/GD3/4w+TWQERZgWHAJiUWWgbYTZDeRG4h1Jr5UGcthyirBdRkj8OVkO3Hoe/fBG37ajz24P348P338OCDDyb5ukSULTibwCZFFmYUtDIMZAThC0Ctmg5ZPhmytR5600EgGk7uReMRKE0HMVMA+YnO5F6LiLIGw4BNrMwoYMtAZhGqB6LU2NJYdjZBNh6C7GpO+nVltHvwDTr3QyCi0WEYsImVloG2njiklFyaNsMIISDyy4D8MshIF/TGg8ZyxzJJ6xWcRHa1IrF7PZSiSoiCcgiv+T0ziCi7ccyATay0DMQ1iXBMS2I15DQRCEGtngN19vlQKqYCHvvemKWUeHfrTmzdc2DQ7Q1NrfjLyjcQPbAV2rY3oe19D3rzEcgEW6KIaGRsGbCJlVUIAWPcQK6fT3+mEx4fRPlkiLJayPYG6I2HgJ6OMZ3zsedewpe/+2MAQG5ubt/tG7ftwuV//0+45sJz8cKjD0J2tUB2tQB12yHySiAKKyHyyyCSPuCRiNINWwZskuNVEfCafzo5biC7CEWBUlQFz/QlUKctMfZBUEb3prx64xZcfPHFaGxsxMGDBwEAv/zlL9HY2IiHHnoIb763ZfADpITsaDL2RfhoFbQDH0BvOwaps3WKiAz8iGCj4qAPR9sjpo5lGMheIpgPNZgPWTUdsv0Y9OY6oLvV9OMnVo7DU394A9dee+0p9x09ehQTq8YN/2CpQ7Yfg2w/BigqRME4iMIKo+WAOykSZS2GARsV53gZBsg0oajGRkVFVZDRbujNdZCtR4HT7Gb4wG03IcfvR93xplPumz9hHu74xOXmCtA1yNZ6Y5Cj6jWCQVElRG4RB7cSZRkhuZ+ubX7x3mGs3mduStnyySW45czqJFdE6UZKHbKjCbL5CGTnqW/2KeHxQRRWQCmsAIIFDAZEWYAtAzayMqOgK8o54XQqIRSIgnFAwTjIWASytc7oRoiba3GyRSIG2XQIWtMhwBswBh3ml0GEiiEUdiUQZSKGARuFLMwOCMc5eItGJnwBiPIpEOMmGzMDmo9AdhwHUtmYF49ANh+GbD5sjDHIKzGCQV4p1zEgyiAMAzbK9ammj+U6A2SWEAIirwTIK4FMxIylj5uPACevQJhsugbZfhyy/bjxc7AASm+rAQIhdicQpTGGARsFveafzu4YuwnIOuHxQZTVQJROBMLt0FvqINuOObMUcbgdergdaNjT251QOqA7wXwwJiLnMQzYiC0DlCpCCCC3EGpuIeT4mZCdzZBtDcan9hQtfzxIPGJ0YzQfARQFIlTSP9aA3QlErscwYKOghTAQSehI6BIehU2rNDaid70AFIyD1BKQHY1GMOhsSu34ghN03aiho9H4OSe/vzshJ4/dCeQ6Wlcn4s3HIONx40vqEB4vhMcLNZQHb+m4jG/tYhiwkZUwAAA9MQ15Af4nIPsI1QNRVAkUVUJqcaOPv7XBWJYYDs0i7umA3tMBHNsLeP1Gq0Go2PjyBZypibKSlBLRQ3sRPbwfsaOHEa07iGjdIejdp9kOXPXAV14F/4Ra+Kqq4auqRs7U2VBzgqkpPAX4TmSjHK8KAfP/5IbjCYYBShqheiGKxwPF4yHjUcj249DbGiytdmi7eBSy9aixuBIA+IIQoaL+cMAuBUqC6NHD6Hx3NTrXv4lEa+9aMKoKaCa7a7UEYkcPIdZwxPgHXuqA6kHu/MXIP/t8BOcsguK1tj+N2/CdyEaKEMjxqabHA3Rz3ACliPD6IUqroZRWG+sXtDdAb20Y86ZJYxYLQ7aEIVvqjJ/9uf3BIFQE4Unvf2DJOVq4G+1rXkfnulWI1RtjWaAPGE9jNggMNOjxCXR/8C66318P4Q8gb/FSFCy/BIHaaWMv3gEMAzYLehkGyN2ELwBRVgulrBYyGoZsazBaDCJdTpcGRLsho93GugYAEMgb0HJQBKGaX9iLspPUNLSveR3N//Ms9Ei4f9yMnoSBtb3nlNEIOtatQsc7byC0eClKr78F3pIy+6+XRAwDNsv1qWgyOf2bMwrIacIfhCifDKV8MmSkC3pbgzFVMdVrGAwn0gkZ6YRsOmT8nJPf33KQW8jtmGmQ7o/eR+NvnkD8eH3qL94bDLreX4euzRtQdMk1KF5xPZRATuprGQW+kmwW9FlYhZBrDZCLiEAIasVUoGKq0WLQOyNAdrXCscGHJ+vpgOzpgGw8AEAAwd5wECwwvjjmICslOtpw7OkfIbxtM+D0bBVdB6Cj9c+/Q/vq11F+898jtPBsZ2sygWHAZlbWGmA3AbmV8AchymqAshpjVkJnc284aAI0t+y4KYFwO2S4vT+qeAP9wSBYYExlZOtBRovs34WjP/ketK7e8S9u2XtPSujdXaj/z++h6LK/QcnVN7l6eiJfJTYLes3/x+7h/gSUBoTqhSisAAorIKUEwm3Q2xshOxuBiEu6E06IRyDbI5Dtx3pvEMZSycH8/oDApZMzRufGd9DwxA8AyOSMCRgzI5i0vvoiYnUHUXHHvVB87my9YhiwWcBCGIhpbvzjJRqesfJhEdTcIgDTB3QnNEF2t7jnU1kf2T/u4MSMBUU1xh4EC3pDQqGx/gEDQlppW/UKGn/9c6fLMK176ybUPfoQqu7+J6i5IafLOQXDgM28JlYUlFJC6hriDAOU5gZ3JyQGdCc0uqg74SS6BnS3Qna39ncveHz9LQcnQgJnLrhWx4a30ioIAACkROTgHhz98b9iwr0Pua77yl3VZACPOnQY6Gg4jK2vPovGvR+h+cAuaLEIXiirwKw//B7nnHNOiqsksp9QPRCF5UBheW93Qjv0E8HADdMWR5KIDV5CGTDGHwRCRrdC7xcCua7u980G0SMHcPwXP3a6jNHRdUT27ULTi79A2Q23OV3NIAwDNvMqypC3v/7IfQjqPfj4+edj8d99DsXFxfjWt76Fp556imGAMs7AjZRQOc1YAbGrpe8LsR6nSzy9eAQyHgE6mwbPpfAFIXJ6Q4I/ZHzvD0KIoV/7ZB+tuwtHH/8OpCvHB5gl0fbGywjUTkPeWcucLqYPw4DNhm0ZOHYEX//Ot3HDDTdg165duOiii/DTn/4U0Wg0xRUSpZ7w+vv2TAAAGevpDQatRjiIRxyu0IJYGDIWBtqP94cEIYzVE/taEHr/35fDsQg2kbqOhiceRaKtxaWDBa059syP4KucAP+EWqdLAcAwYLvhWgbyyqrwla98BV/+8pdRW1uL/fv3p7gyIvcQvpz+fROkBPrCgREQkEizkCwlEOmCjHQNbkUQSm8wMIIC/LkQvhwjJLisz9jtOt55w1hHIEMY4eYHmPj1f3dFYORfo82Gaxm49H//Pxzc+CaOfvQu0HwoxVURuZcQwmhm9weBkglGOIiGB3cruHUw4ulIvX+hpJPvU71GKPDlGL//iZDgywF8AXY7DCC1BFr+9LzTZdhL1xGrP4zuLe8htOAsp6thGLCbVx36BZxfUY15V96MSGc72hgGiIYlhDAG6gVygdJqIxxEuvq7FbpbAC0DVu/U4kBPHLJ3s6hTwoI3MExQyDFmP7jg02SqdG5Y07/bYCYRClr++Gvkzj/T8f+eDAM285iYWkhE5gkhjJUEc/KMKYxSAj2dxtTAcAdkuB2IhZ0u034nBjAOnAJ5gqL0hwNvjrEMs8dnrJfg8QEe42cxTLdlOpG6ZrQKCOHCdSzGSOqIHjmA8LbNyJ2zyNFSGAZs5h2mm4CI7CFE754Ewfy+22QiboSCE8sTh9vTt2vBDF0HIt2QvStADvsWqXr6g0FvYOgLC14fRO99bg4OXZvWId507PQHpiuhoOXl5xkGMo1nhBeUnohDTwz+ByoejyMWi8Hn477tRKMlPF6I/FIgvxQA+gclhtv7Ww96Oow+/GyiJYyvaHdfYBg+OHh7Q0N/ywIU1RjoqHiMYKGogOqBUDyAqvbfLpSkNXN3bXnXaAlxcAbBXw/W4zvvbIEuJe5cNAM3zppk38mljsj+XdC6OqGG8uw7r0UMAzYbrmVg39rX8dZ/PoR4Tzdqa2v7bv/lL3+J3/72t3jkkUdw1113pahKosw2aFDiiemMUgd6uvpaDmS43T1bNbuBFge0OORJz4m5hnkxOBwoHohBP58UIoQy4EsYb/ZCMQZNDrxN9aJn51ZHg0BC1/Gv72zBM1efj5DPg+t/uxKXThqPwoC9H+B69u5wdCAhw4DNhluOeMfKF7DkzDPw93//9wiFjHWpH374YTQ2NuLZZ5/FY489xjBAlERCKAO6F6oBGKPUZU8H0N0O2dMbEOJpNq3RFWR/K0S875ahjrJE8xZA62gbY21js+V4K6YW5aMilAMAuGBiBdYcPoarplXbdxFFRYRhILOow3QTKF4f2tvbsXPnTgDAxo0b++5raWmB3+/OnayIMplQPRChYiBU3Heb1OL9awZEuo2Njnq6MnsMgktFDh9M2rl1KXH5r1/Dx2ur8L+XzOu7ffXhBnzxlXfwbxefjcunTMDx7h6U5wb67q8I5eBYt80raOoawrs+svecFjEM2G7o7Lvg6s9h7dP/hn/70U/6bhMACnO8KCgowLe//e0U1UdEIxGqF8gtgsgtGnS7jEeNJvSeE0Ghy9hzQc+AaY4uFak7ZHQx6PZv964Igb9bNBP/smYzvrBoBgr8PmxvasM/vrYe9549F5dPmQBgmH/RkzA8Inp4H/R4HIrXmQ2yGAZspg/TDlY5ezH+5rvPDrot4FHww7+Zn4KqiGishNdvjMgf2IogJRCP9gWDQSEh2wYrJoEWDif1ebxmWjV+9N42PPPhHtwwsxZfeOUdXDt9Ij6/cHrfMeW5OTjW3b9cdkNXDxaUFw91urHRdeiRMBRvgf3nNoFhwGZW+sSyaM0QoowkhDBWC/QF+mYyAANmM5wICdFuyGiPsUFTui217CAZjyV1bQGPouALi2bg39d/hNf21WFOaSG+ft7CQcfMH1eE3S3taOjqQcjnwZuHGnD3mbOSUo+MxZJyXjMYBmwmLfzhOr3iFBElx6DZDAXjBt0ndQ2IRYzNjmI9kDEjJPSFBXY79JFa8ltXrp42Ed96+wNIAP/+8bOhnjQI3KMo+MrS+fjsH96CLiXuWDgdRYHkjPGSSegOMYthwGZWQiyjAFH2EYrav9zySaTsHZUfC/eHhFgPEO0PDdbH5KcvJQXrrzy8ejMAoDUSgzrMB7SLa6twcW1V0mtRfM4NJGcYsJmVl6nClgEiGkAIAXi8gKcAInhq37ExRiHSHwxiEchEDEhEjSb1RBRIxJIy4M4JwudP6oJDj274CKsO1eM311+EW/+4Gs/vOICb505JyrXMEA4uPscwYDPdUjdBEgshooxjjFHo3ZNgBFJLGKEgEYNMRIF47/8nYid9H3X1QEdfeSWwZVNSzv2b7fvxxJbdeObq5ZhVWohb503Dzzbvwk2zJg274VwyqQVFUHNObS1KFYYBm7GbgIicJtTelf/8wRH/nZFSGq0IvcGgr5UhEQM0zRi/oCUAPQF50s/QNCS7yyKndkpSBhC+eagBD63ejH//+NlYWF4CALhl3hT8/INd+J/dh/DJmbW2X3NEioLgjLmpveZJGAZsJi28ODiAkIicJIQwQoOJ4HAyKaXRqjAgHMi+sKANCBGDf4auAVKH1Hsf3/clje6AAT/7q6qN2mzcsnprYyu+9No6PLBkLlZMHt93e8jnxS3zpuCn7+/E9dNrThlImFS6RGDKzNRdbwgMAzaz1DLALEBEaUoIAQjVWBQIxsC3ZPyTFqidisjeHbadb25ZETbfcd2Q933prDn40llzbLuWeRI5U5IzXdEsd+5ZmcaGW3RoKHzyiYhGFpw5zxhEmMGUYC58lROcrcHRq2cgdhMQEdmnYNklmd2MKgQKP3YVhMOBh2HAZuwmICKyj6ewGAXnfTxjWweE14fCi65wugyGAbvFLayY5UnlABUiojRVtOI6p0tIjt5WATXo3JTCExgGbBZJmA8Dfo+axEqIiDKDt7gM+edelHGtA8LjQdHFVzpdBgCGAdtFLYUBPv1ERGYUX3EDFF8go/pXi6+8EWoo3+kyADAM2C6aML8MKMMAEZE53uJSVNx5b1J3MUwZoSB3/pkouvQ6pyvpw3cjm1lpGQgwDBARmZY7eyFKrvmU02WMjaLAW1KG8lv/0VUzyvhuZDNr3QQcM0BEZEXRiuuRO29x2o4fEKoHlXd9BWpO0OlSBknPZ9PFrIQBnwObYRARpTOhKCi/7R/hq6wGRBr9GyoEoKio+PyX4a+sdrqaU6TRM5ke2E1ARJRcak4uqu//JnKmzUqPAYWKAuH1Yfw9X0NowVlOVzMkvhvZjLMJiIiSTwnkoOofvoa8cy5wupSRKQrU/EJU3/9NY2lll+K7kc04m4CIKDUUrxfln70bZX97pzGGwIXjCHKmzkbNPz8Cf/Ukp0sZEXcttBlbBoiIUkcIgcILViBn+mw0/fYphLd9YHQdODkFUQgouSGUXn8z8pdcCKG4f7A4w4DNuAIhEVHq+SurMf6er6N722Y0/vrniB+vT30RigIIBUWXXIviFddBCeSkvoZRYhiwGVsGiIickzt7IYL/91G0v/0XtLz8PLSONkBRAd18F64lJ1ohFAWhxUtRet1n4C0uS861kohhwGY9cY4ZICJyklBVFJ6/AgXLLkHPnu3ofHcNut5bAz3SY3x6181/aBv+IkYICEyZifxzzkdo0RKouXljP69DGAZspEuJrljC9PG5Pj79RETJIhQFwelzEJw+B+Nuuh3d2z5A16Z3EDmwB/HGhv5QoKgApPEJf+BYA6EAigC0/g95SigP/vE1yJ17BkKLz4O3qCS1v1SS8N3IRt0xzdKYlbwAn34iolQQHi9C889EaP6ZAACpJRA7Xo/Y0cOIHT2MePMxyHjc+NI1CK8PwuOFGsqDr3IC/FUT4aushpobcvg3SQ6+G9moM2K+VUAIINfHAYRERE4Qqgf+ympjNcDFTlfjPHZa26gzaj4MhHweKOmwchYREWU8hgEbWQkDeX42yhARkTswDNioy0rLAMMAERG5BMOAjToicdPH5nPwIBERuQTDgI26oubXGGDLABERuQXDgI06ohZaBhgGiIjIJRgGbMQxA0RElI4YBmxkaTYBxwwQEZFLMAzYiFMLiYgoHTEM2CShS3RbGEDIMEBERG7BMGCTlnAMFrYl4ABCIiJyDYYBmzR1xUwf6/coCHJfAiIicgmGAZs0dUdNH1sc9EFwXwIiInIJhgGbNHWbbxkoCXqTWAkREZE1DAM2sRQGcn1JrISIiMgahgGbNHZZ6yYgIiJyC4YBm7BlgIiI0hXDgA3CMQ3dMfNrDJSwZYCIiFyEYcAGzRZmEgBsGSAiIndhGLCBlS4CjyKQz30JiIjIRRgGbNBoIQwUBb1QuMYAERG5CMOADaytMcAuAiIicheGARs0WZhWyPECRETkNgwDNmDLABERpTOGgTHSpeQaA0RElNYYBsaoI5JAQje/eXFlfiCJ1RAREVnHMDBGVpYhBoCKPH+SKiEiIhodhoExstJFUJTjRcCrJrEaIiIi6xgGxshKGKhgFwEREbkQw8AYHbfQTVCZzy4CIiJyH4aBMTrc2mP62Mo8tgwQEZH7MAyMQTSho74zYvp4dhMQEZEbMQyMwZG2HkjzswrZTUBERK7EMDAGh1rDpo8N+lTk+blbIRERuQ/DwBgctDheQHC3QiIiciGGgTE41Ga+ZYBdBERE5FYMA6MU13QcbefgQSIiSn8MA6NU1x6BhS0JuAwxERG5FsPAKB1sMd9FAADjC3KSVAkREdHYMAyM0qE284MHQ34VxUFvEqshIiIaPYaBUTpoYVphTVGQMwmIiMi1GAZGIaHpqLMweHBiIbsIiIjIvRgGRqGuIwLNwujBicXBJFZDREQ0NgwDo3DIwmJDAFDDlgEiInIxhoFRsLoMcUmuL4nVEBERjQ3DwChYWYZ4YmEOBw8SEZGrMQxYlNAljliYVlhTxPECRETkbgwDFjV0RJCwMHiwppjjBYiIyN0YBiyysr4AAEwsZMsAERG5G8OARVZmEuR4FZSFOHiQiIjcjWHAIistA9WFXHmQiIjcj2HAAl2XOGxp8CDHCxARkfsxDFjQ0BlBXDM/eHByaW4SqyEiIrIHw4AFVtYXAICpJQwDRETkfgwDFlhZeXBcyIeCHG5bTERE7scwYIGVmQRTS0NJrISIiMg+DAMmJTTdUjfBVI4XICKiNMEwYNKB1jBimm76+GllDANERJQeGAZM2nm8y/SxeX4PxoX8SayGiIjIPgwDJlkJA1NLc7nYEBERpQ2GARPimo69zd2mj+d4ASIiSicMAybsaw5bWmxoWhlnEhARUfpgGDBh5/FO08f6VAUTCrkMMRERpQ+GARN2NpofLzC5JAiPwvECRESUPhgGTiOW0LG/2fzKgxwvQERE6YZh4DT2NncjoZsfLzCV4wWIiCjNMAychpUphR5FcHMiIiJKOwwDp2ElDEwpzYXPw6eUiIjSi8fpAtzile3HUNfeg9nleZhVnoeioA+RuIb9LebXF5g1Li+JFRIRESUHw0Cv4qAXv/uwHhsOtQEAqvIDKM/zw8JwAcws53gBIiJKPwwDvSYWBQf9fLQjgqMdEdOPz/EqqDnpHEREROmAHdy9ykN++MfQ3z+9LASV6wsQEVEaYhjopShiTCsHRhI6ttZ3IJowv80xERGRG7CbYICawhzsbTI/YHCgnce7sPN4lzG9sDQXsyvyML8yH1UFXJqYiIjcjWFggIlFY3/jTugSO453YXdTN6oLcxgGiIjI9dhNMMDJgwjH4razJ2JORb5t5yMiIkoWhoEBKvIDtmwydNPC8Th7YpENFRERESUfw8AAnjEOIgSAy2eOw8XTy2yqiIiIKPkYBk5SM4ZxA+dNKsZ18yptrIaIiCj5GAZOMrFwdOMGFlTl4+bF1RCCaw0QEVF6YRg4yfjCgOXHTC3NxZ1LarnoEBERpSWGgZNU5PktHV9VEMDdyyZxt0IiIkpbfAc7SdDnQX7A3PILxUEvvrR8MnJ9XK6BiIjSF8PAECryTt9VkB/w4H+dPwVFQV8KKiIiIkoehoEhVOaP3FWQ61Px5QumoCLf+vgCIiIit2EYGMJILQM5XgX/64IpGM9lhomIKEMwDAyhcphP/H6Pgi+dPwU1Ni5bTERE5DSGgSFUDNFN4FUF7lk+GZNLch2oiIiIKHkYBoZQlOOFf8BUQY8icPd5kzG9LORgVURERMnBMDAEIUTfegOKAL64tBazK/IcroqIiCg5siYMSCkhNQ0yHoWMhiFjPZCJOKSuD3l8RX4AQgB3LqnF/KqCFFdLRESUOkJKKZ0uwm56TydkWyP09t6vtmPQ25sALT7k8SInBFFYDrVwHERBGZSCMvylXkdhKAfn1BSnuHoiIqLUypgwoHe1IXHwIyQOfAjZ0dR7qwCEAOTQn/5PIZT+Y4UCdfw0eGrnQa2aCqFylUEiIspMaR0GZDSMxMFtSBzYAr35KAABwMZfRwhASkD1Qp04C97auVDKJ3FnQiIiyihpGQaklkB817uIb30LSAzd9G+73lYDpbgSvsUroJZOSM11iYiIkiytwoCUEtrhHYi9/zpkuMOZInpbC9SJs+Fb+DEouYXO1EFERGSTtAkDensjohteht50BLZ3B4yGEIBQ4J11Lrxzl0MoqrP1EBERjVJahIHEoe2IrvsfQNeMPnyXUUonwL/sk1ByuCgRERGlH1eHASkl4lvfQnzraqdLGZkQgC+IwEWfhlpU7nQ1RERElrg2DEhdR/TdP0Hbt9npUswRAlA9CJx/E9TyWqerISIiMs2VKxBKKRHd8Mf0CQKA0X2RSCDy119BazridDVERESmuTIMJPZsgrZ/i9NljIIEIBF563nIni6niyEiIjLFdWFAazqC2MZXnS5j9KQEYmFE1rww7L4HREREbuKqMCB7uhB563mnyxg7KaE3HUZs80qnKyEiIjotV4WByPo/ALGwK6cPjkZi53ok6vc6XQYREdGIXBMGtOY66PV7MyYIAACEQHzLKrh0wgYREREAF4WB2IdvGev/ZxIpobfUQ2/Y73QlREREw3LFu6/W0tDbKpCBA+6EQGzrW05XQURENCxXhIH4R6uNRXsykZTQm45AO37Q6UqIiIiG5HG6ABmPQTuyC05uPHSkuR13/Pi3aOzohkdR8H+uvxB/s2SufRcQChIHtkIdV2PfOYmIiGzieBjQm+vg9A6EHkXB9265AvNrK3G8vQvL/vlxrFg4HbkBnz0XkDpbBoiIyLUcDwNa42Gji8DBEfcVRXmoKMoDAIwrCKEoNwet3T32hQEAsrMFMhqG8AdtOycREZEdHB8zoB0/mLQgoOs6Ft33A3z92T8Puv0vH+xG0S0P4sV1W095zKZ9ddClxISSAtvr4Z4FRETkRo6GAanrvd0EyaEoCu6/9nz87C/vorWrBwDw4cF63PLDX+PBmz5+yriA5s4w7nz8BfzHHdfaX4xQoB8/bP95iYiIxsjZloF4BNASSb3ETefNR0koiMf/vBZ1ze34xPd/ib9dtgBfumrZoOOi8QQ+9f9+hfuvOR9Lpk9MQiUSek9HEs5LREQ0No6OGZCJeNKv4VFVfPma5Xjo16/jfzZsw8LaSvzb564cXIeU+LufvIgLZk/Gp5YvTE4hUgIp+H2JiIiscrZlQNdScpmbzpuPcDQOCYkn/+FGqMrgX3vtzkN4Yd1W/HHjdpz71cdw7lcfw9ZDDbbXIZPcCkJERDQazs4mUFNz+fueehmAMSZAVU5d3GjpzBp0/vfDSa9DeLxJvwYREZFVjrYMCDX5b44P/+YvePX9nfjrw19AQtPx9KpNSb/mkIRIWfghIiKywtluAl8A8PqTdvqn/voe/uNP7+D5+2/GvJpK3H35uXj0j6sRT6Sme+JkSl6JI9clIiIaibMtA0JALZsIwP59CV7bvAv3PvlH/OyuT+DsadUAgC9eugSd4SieXbPZ9uudlpRQy6pTf10iIqLTcHzRIWWc/dP43t9Xh1t+8Gv8y6dW4Nqz5/Tdnh8M4O9WLMG/v7Qamp7qHRIFlJLxKb4mERHR6QkpHVwHGMaqfJHXn3KyhJRQCsuRc/mdTpdBRER0CudbBooqAUV1uozkEgqU8lqnqyAiIhqS42FAqCo8k+Ybo+0zldThnbzA6SqIiIiG5HgYAADv7POcLiF5hAJ1wgwoheOcroSIiGhIrggDSqgQau28zGwdkDq8c5Y7XQUREdGwXBEGAMA3Z1nStjJ2jFCgVE6BWlzhdCVERETDck0YUPKKoU5eiGSsOeAcCd/8C50ugoiIaESuCQMA4F+8AqKgNGO6C3xnrIBaXOl0GURERCNyVRgQHi8C598IpGDPguQSUGvmwjNtsdOFEBERnZarwgAAKKEi+M/7G6fLGD0hIApK4T/7SogMaeEgIqLM5rowAACeqqnwLviY02VYJwTgDSBw/o3crpiIiNKG48sRjyS+cwNim15zugxzhIDIyUPgYzdDySt2uhoiIiLTXB0GACBx8CNE170ESN3FUw8FlKJyBC74W4ickNPFEBERWeL6MAAAWmsDom/+GjLS5cpAoE5eCP+Zl0GoHqdLISIisiwtwgAAyGgPYlv+isSeTUbfvAvKFjkh+BZdAk/NnNMfTERE5FJpEwZO0NsbEd34GvRj+2EsUJTi8oUAFBXeOcvhnXE2BwoSEVHaS7swcELi6F7ENv0ZsrMFEIoxpiAF1MkL4Zt/IRSODSAiogyRtmEAAKSU0BsPIXHwIyQOfgTEo/YGg97uCKWwHJ5J86FOnAUlmG/PuYmIiFwircPAQFLToDXsQ+LgVmhH9xjBAAAget/UTxMQTgoRIq8Ynpq58NTMgZJfkrzCiYiIHJYxYWAgKSVkpBuyvRH6ia/WBshoGNA0SF0z1gVQPYCiQuSXQC0YB6WgDKKgDEp+CccCEBFR1sjIMEBERETmuXI5YiIiIkodhgEiIqIsxzBARESU5RgGiIiIshzDABERUZZjGCAiIspyDANERERZjmGAiIgoyzEMEBERZTmGASIioizHMEBERJTlGAaIiIiyHMMAERFRlmMYICIiynIMA0RERFnO43QBA/kW3Q7F44NQVAhFhert/14oSv99qgrF44PSd596yn1CUaEoAkIRUFUF4qTvFUVAUUXfMSPeJwRUjwJVEVAVAV/v956+n9X++9T+4zwDjlWH+l4IKEJAFYBXVfq+96gKVAHjZ0XAq4ghvjfu9ypK3/eqEBACUAQgBHrPDwgAqiKgAMbvoqDve0UAqhj4vXEOISUgdQg9AQz6Xje+9OHvE1IHNK3/ez0B6BqkrgOJGKSmAbpu3JaIQ+qa8X08Dpz4/sSxJ46Lx/ofo2vQ4wlITYfUdeixBHTNeIzUdOjxBHSt/3vZ+70WT0AOOE6LJQZ8r0HqErome3/ufbwujfs0CalJ6JoOLa73nlNCi2u9j+l/nC4lNCkR0yU0iZO+P/ln43sdxveaRO99/d//RB5w9HVpF76++frm69u9r2+2DBAREWU5hgEiIqIsxzBARESU5RgGiIiIshzDABERUZZjGCAiIspyDANERERZjmGAiIgoyzEMEBERZTmGASIioizHMEBERJTlGAaIiIiyHMMAERFRlmMYICIiynIMA0RERFmOYYCIiCjLMQwQERFlOYYBIiKiLMcwQERElOUYBoiIiLIcwwAREVGWYxggIiLKcgwDREREWY5hgIiIKMsxDBAREWU7maEikYj8xje+ISORiNOlnMLNtUnJ+sbCzbVlEjc/z26uTUrWNxZurm2shJRSOh1IkqGjowMFBQVob29Hfn6+0+UM4ubaANY3Fm6uLZO4+Xl2c20A6xsLN9c2VuwmICIiynIMA0RERFmOYYCIiCjLZWwY8Pv9+MY3vgG/3+90Kadwc20A6xsLN9eWSdz8PLu5NoD1jYWbaxurjB1ASEREROZkbMsAERERmcMwQERElOUYBoiIiLJcxoWB+++/H8uXL8dnPvMZxGKxQff19PTgqquuwgUXXIBLLrkELS0trqrvhH/913/FmWee6XhNiUQCt956K5YvX44vfelLKavHbH0npPr5Gmi42tzwt5aJ+Pq2rya+vk8vm17fGRUG3n//fTQ0NGD16tWYPXs2fvvb3w66/5VXXsHcuXPx5ptv4sYbb8QvfvELV9UHAJ2dndi6dasravrDH/6ACRMmYPXq1QiHw3jnnXdSVpeZ+oDUP19ma3P6by0T8fVtb018fY++Nqf/1pIho8LA2rVrcemllwIALrvsslP+uKdNm4ZwOAwAaGtrQ1lZmavqA4Af/OAHuPvuu11Rk5l6nawPSP3zNdBItTn9t5aJ+Pq2tya+vkeWba9vj9MF2KmtrQ1VVVUAgIKCglOabqZMmYKtW7di7ty5EEJg/fr1rqqvvb0dH374Ib72ta+5oqa2tra+9beHqtfp+px4vszW5vTfWibi69vemvj6Hn1tTv+tJUNatgw0NDRg2bJlp3xJKdHR0QHA+A9ZXFw86HFPP/00LrzwQmzduhUPPfQQHn74YVfV9+ijj+If/uEfklLTcIqKioataaT73FCfE8/XQCPVlqq/tUzE17d9+PoevWx7fadlGKioqMCaNWtO+briiivw2muvAQD+/Oc/47zzzjvlsSf+gxYWFqKtrc1V9e3Zswff+ta3cNlll2H37t34zne+k5T6BlqyZMmwNY10X6qMVIMTz5fZ2oDU/K1lIr6+7cPXd3JqAzLw9e3c7snJcd9998lly5bJT3/60zIajUoppfzCF74gpZSyvb1dXnHFFfKCCy6Q5513nty5c6er6hto8eLFjtV0op54PC4/+9nPymXLlsl77rknZfWYrW+gVD5fAw1Xmxv+1jIRX99jr4mvb/Oy6fXN5YiJiIiyXFp2ExAREZF9GAaIiIiyHMMAERFRlmMYICIiynIMA1ngqaeeQmFhoS3nOnDgAIQQ8Hg8qKurG3RffX09PB4PhBA4cODAoPteeOEFXHjhhSgoKEAoFML8+fPx8MMP9y3kYWeNRNnm1ltvhRACX/ziF0+576677oIQArfeemvfbQ0NDbjnnnswefJk+P1+VFdX4+qrr8bKlSv7jqmtrcWjjz6agurJDRgGaFSqqqrwzDPPDLrt6aefxvjx40859p//+Z9x00034ayzzsIrr7yCrVu34pFHHsEHH3yQEWt6E7lBdXU1nnvuOfT09PTdFolE8Oyzz2LixIl9tx04cACLFy/GG2+8ge9973v48MMP8eqrr+Kiiy5ybOlfch7DQBp49dVXsWzZMhQWFqKkpARXXXUV9u7dCwBYtWoVhBCDFr3YvHlz36fzVatW4bbbbkN7ezuEEBBC4MEHHwQAtLa24rOf/SyKiooQDAZx+eWXY/fu3aZq+tznPocnn3xy0G1PPfUUPve5zw26bcOGDfj2t7+NRx55BN///vexdOlS1NbW4pJLLsELL7xwyvFENDpnnHEGJk6ciBdffLHvthdffBHV1dVYtGhR320nWgo2bNiAT37yk5g+fTrmzJmDe++9F+vWrXOidHIBhoE00N3djXvvvRfvvvsuVq5cCUVRcP3110PX9dM+dunSpXj00UeRn5+P+vp61NfX4/777wdgNC2+9957eOmll7B27VpIKXHFFVcgHo+f9rzXXHMNWltbsWbNGgDAmjVr0NLSgquvvnrQcf/93/+NUCiEu+66a8jzsGuAyD633XbboJD+xBNP4Pbbb+/7uaWlBa+++iruvvtu5ObmnvJ4vh6zV0ZtVJSpPvGJTwz6+ec//znGjRuHbdu2nfaxPp8PBQUFEEKgoqKi7/bdu3fjpZdewttvv42lS5cCMN64q6ur8fvf/x433HDDiOf1er24+eab8cQTT2DZsmV44okncPPNN8Pr9Q46bvfu3Zg8efIptxOR/W655RZ89atf7Rvb8/bbb+O5557DqlWrABhL/EopMXPmTGcLJddhy0Aa2Lt3Lz796U9j8uTJyM/Px6RJkwAAhw4dGvU5t2/fDo/Hg3POOafvtpKSEsyYMQPbt28HAFx++eUIhUIIhUKYM2fOKef4/Oc/j+effx4NDQ14/vnnB30COUFKCSHEqOskIvNKS0tx5ZVX4umnn8aTTz6JK6+8EqWlpX33n1hwlq9JOhlbBtLA1VdfjerqavzXf/0XqqqqoOs65s6di1gshlAoBKD/RQ7AVDP/cKtQD3zz/tnPftY3GGmoT/Zz587FzJkz8alPfQqzZs3C3LlzsXnz5kHHTJ8+HWvWrEE8HmfrAFEK3H777X27/T322GOD7ps2bRqEENi+fTuuu+46B6ojt2LLgMs1Nzdj+/bt+NrXvoaLL74Ys2bNQmtra9/9ZWVlAIxpfSec/Ibs8/mgadqg22bPno1EIjFoH+7m5mbs2rULs2bNAgCMHz8eU6dOxdSpU1FTUzNkfbfffjtWrVo1ZKsAAHz6059GV1cXfvzjHw95f0bs9kXkIpdddhlisRhisRhWrFgx6L7i4mKsWLECjz32GLq7u095LF+P2YthwOWKiopQUlKCn/70p9izZw/eeOMN3HvvvX33T506FdXV1XjwwQexa9cuvPzyy3jkkUcGnaO2thZdXV1YuXIlmpqaEA6HMW3aNFx77bW48847sWbNGnzwwQe4+eabMX78eFx77bWm67vzzjvR2NiIO+64Y8j7zznnHDzwwAO477778MADD2Dt2rU4ePAgVq5ciRtuuAFPP/306J4YIhqSqqrYvn07tm/fDlVVT7n/xz/+MTRNw9lnn40XXngBu3fvxvbt2/HDH/4Q5557rgMVkxswDLicoih47rnnsHHjRsydOxdf/vKX8f3vf7/vfq/Xi2effRY7duzAggUL8N3vfhff/OY3B51j6dKl+OIXv4ibbroJZWVl+N73vgcAePLJJ7F48WJcddVVOPfccyGlxJ/+9CdLzfkejwelpaXweIbvcfrud7+LX/3qV1i/fj1WrFjRN41p/vz5nFpIlAT5+fnIz88f8r5JkyZh06ZNuOiii3Dfffdh7ty5uOSSS7By5Uo8/vjjKa6U3IJbGBMREWU5tgwQERFlOYYBIiKiLMcwQERElOUYBoiIiLIcwwAREVGWYxggIiLKcgwDREREWY5hgIiIKMsxDBAREWU5hgEiIqIsxzBARESU5f4/xfv41F5E0ZkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHV0lEQVR4nO3deZwcdZ0//tenqq/p6blnMkcymcl9XwRCCAmHCOE+VGBVUEBwXVjWr8CXn35XvwKrrseyX3RFXFe5dAVF0EURBIOBBBICISEk5L4zmUnmvnr6qvr8/qjJHMnMpGqmuqu6+/V8PEZnuqur3tNMp1/9OYWUUoKIiIiyluJ0AUREROQshgEiIqIsxzBARESU5RgGiIiIshzDABERUZZjGCAiIspyDANERERZjmGAiIgoyzEMEBERZTmGASIioizHMEBERJTlGAaIiIiyHMMAERFRlmMYICIiynIMA0RERFmOYYCIiCjLMQwQERFlOYYBIiKiLMcwQERElOUYBoiIiLIcwwAREVGWYxggIiLKcgwDREREWY5hgIiIKMt5nC4g2aSWgNZyHInmBug93YCWgNQSgFAgVBXC44VaUAK1tBJKbj6EEE6XTERElFIZFQaklEg0HERs/w4kmuqROF4Hrb0JkLL/ICGMLwkActB9wueHWlIJ77jx8IybAP/UeVBy81L+exAREaWSkHLgO2V6SjQ1ILJjIyLb3oXe2QoIBSe/0VuiKICuA0LAO3E6ArPPgn/aPCi+gK11ExERuUHahgGpa4hsWYfwpjXQmhuMACB1+y8khBEqFBX+qfMQXHoxvOMm2H8dIiIih6RlGIju+whdf3sBWmtjai/cGzgCc5cid/nlUEMFqb0+ERFREqRVGEg0HkXn6t8jfnBX/yd2JwgFUFXkLr0EwcUXQHh9ztRBRERkg7QIA1LX0f32Kwivf7U3BCShO2CUlFAhCq65Dd7KGqdLISIiGhXXhwE9EkbHn55C7MAOp0sZmhCAUJB38Q3ImbfU6WqIiIgsc3UY0Dpa0fbco9Daml3VGjCc4NkXI3f5FVyrgIiI0oprw0CiuQFtv/0x9HB3WgSBEwJzz0beJX8HoXBxRyIiSg+ufMfSe7rR9rvH0i4IAEBk6zvofvsVp8sgIiIyzXVhQEodHS89Db2rI+2CwAnh9X9BdO9Wp8sgIiIyxXVhoPvtV4zBgmkaBE7o+NPTSKR6HQQiIqJRcFUYiO7divC6vzhdhi1kIo723/8XZCzqdClEREQjck0YkIkEOv7yrNNl2Efq0FqPI7xxtdOVEBERjcg1YSCy7R3IcKfTZdhLSoTffR16LOJ0JURERMNyRRiQmobuDOkeOJmMRdGzaa3TZRAREQ3LFWEg8tG70LvanS4jSSTC767i2AEiInItV4SB7ndec7qEpJKRMHq2bXC6DCIioiE5Hga0jhbobU1Ol4FbnvwTpv/f/8QXnn7J/pML4d69FYiIKOs5HgbiR/Y5XQIA4PblC/Aff3dxck4uJeJH9kCm+doJRESUmZwPA3X7ABes4798ajVCfl/Szi+jEWgtx5N2fiIiotFy/F04dng3oCfnE7OuS5z7/V/iX156a9Dtf9t5EBO++mO8+MHupFx3OPE6d7SCEBERDeRoGJDxWFI/LSuKwD997Ew8uW4L2sLGXP9tRxtx+y//jP9z6TJcvWBa0q49RDGI1x9K3fWIiIhMcjQMpGIxnk8umoHi3Bz8fO0HONrWic8+/iKuP2Mm7rzgjKRfexBdQkZ7UntNIiIiEzyOXj0eS/olPKqCuy9YjO+8sg5/+nAP5o0fh29fe37Sr3sqCZlI/u9LRERkleNjBlLhk2fMQE8sDgngp5+9FOoQAxZv/K8/4I5f/hmrdhzEwm/9ApsOH7O/ECntPycREdEYOdsy4E3e6P2Bvvb7NwAALd09UIUY8pjf3HFtkqsQEF5/kq9BRERknaMtA0oK3hy/+8o6/HXHfvz57hug6Tp+vWFb0q85JEVA+APOXJuIiGgEjoYB4fNDLSxN2vl/9c5W/PTNTXj61qswp6oMd6xYhEdXv4+4piXtmsPSdXjLq1N/XSIiotNwfMyAd+L0pCw6tGrHAXzt96vx6KcvwZk1lQCA28+dj85oDM9tdGZpYO+EKY5cl4iIaCTOh4Hxk21fdOiDI8dx+y9fxjeuWI4r5k3tuz0v4McXzl2A//jbRmhJWuhoOMLnh1pSntJrEhERmSGkdHaIu9bWjOafP+RkCcknBHy1s1D4yb93uhIiIqJTON4yoBQUQ8kvcrqM5JKAb9JMp6sgIiIakuNhQAiB3LMvcbqMpBL+AAJzlzpdBhER0ZAcDwMAEJizBEpuntNlJIcQCJ71MSg+rjFARETu5IowIDweBDO0dUB4fchZtMLpMoiIiIblijAAADnzlkLk5Dpdhr2EQM7iC6D4c5yuhIiIaFiuCQPC60PexTc4XYZ9hAKloATBMz/mdCVEREQjck0YAIDA9IUInnWR02XYQ1VReN0dULgEMRERuZyrwgAA5K64At4JUwHhutIsyb/sJnhKKpwug4iI6LRc944rFBUFV98KJRgChtlh0O2CZ12EwIyFTpdBRERkiuvCAAAowRAKP/UlCH8w7VoI/DPOQO6KK5wug4iIyDTHlyMeidbWhNbf/hh6ZzsgU7uXwGjkLL4AoQuugUizAENERNnN1WEAAPRwF9pffBzxI3udLmVovV0ZoY99Ar6gByInDyJYABEsAAJ5EEnYkZGIiMhOrg8DACB1DV1v/hE97/3N6DZwSyuBEBA5uSi4+jb4JkyBVrcDsunQgPsVICcfIregPyB4AxBpOhaCiIgyU1qEgRPiDYfR+frzSBzdb3wid6p0oRjLDC+5CMElF0HxGdMHZawH2va1AEaoy+ODCBYawSCYb7QkeHypqZuIiGgIaRUGAEBKiejuD9D1tz9A72xN7cV7WyX8M89A6LyroOYXn3KIdnALZFuDtfN6AxA5eUBOHkSOERDYgkBERKmSdmHgBJlIoGfzGoQ3rYHe3py87oPeFohONYhdE5bgwmULERg/afi6ejqg7Vo/9uuq3t6A0Nt6EMyH8GfYcs1EROQKaRsGTpBSInHsCCLb30Nk+3uQ4S5AUQB9DMFAKAAkOkUA26sWY1vuZOzrUSEB3HfhVEwvC434cG3vRsiu5tFffwhK5XQo42ptPScRERGQAWFgIKnriB/Zi9iB7Ug01iPReBR6V1v/AUIBBND7PwCkMe7gxFOgetBdXI3thTOwRZRhf8RzSu//RdPKcOOi8SPWoXc2Q9+30Z5fCoDIL4NSu5DdBkRElBQZFQaGosei0JobkGiqh4yEIbUEZCIBoQhA9UB4vOgKFuODeD42NcWxt6l7pOF/KMn14TuXzxrxjVlKCW33eqCnc+y/gC8Addo5EB7v2M9FREQ0BI/TBSSb4vNDqayBt7Jm2GPe3HEML+yoN3W+5u4YjrRHUF04/LbEQggoZZOgH9piud6TTgS1ZiGDABERJRVXxAGwaHyhpeM317Wf9hhROA7wDR8YTAmExn4OIiKi02AYAFCe50dlvvmthjfVtZ32GCEUKGXDt0aY0tMJbfc6yPDpwwcREdFoMQz0Wji+wPSxR9oiaOqKnvY4UTweGGsTfywCbfcG6I0HkOHDO4iIyCEMA70WWQgDALD5qImuAkWFUlo7yooGktCP7oJ+YDNkIm7D+YiIiPoxDPSaWJSDwhzzn+I3mRg3AACitBpQ7RmnKTsaoe1aB9ndZsv5iIiIAIaBPooQlroK9jR1ozOSOO1xQvVAKR3j2IGB4hFoe96Ffnw/uw2IiMgWDAMDWAkDUgJb6s22DkwEFHW0ZQ11dej1u6Hv3wSZiNl4XiIiykYMAwNMLwshx2v+KTHdVeDxGoHAZrKzCdrOddA7m2w/NxERZQ+GgQE8isD8SvOtAx81dCIS10wdq5RO7N3zwGaJKPR970Or2wGpm6uFiIhoIIaBkyycYD4MJHSJHce7TB0rvH6IkupTby8eD5FXavqaw5FNh6DtXg9pxxLIRESUVRgGTjKnPA8exfyGQDuOmX/zVcbVGFsinxAsgDJ+FpRJi6BUTkf/BkqjFOmGtns9BxcSEZElDAMnCXhVzC7PM338RxbCgPAGjIWIAED1Qq2ZD6Eoxl4G42qhTj0L8JpfCXFIsndw4d73IGORsZ2LiIiyAsPAEOZV5Zs+tqEzitaw+RH9yrhJgBBQJs6FOGnfAZFbCHX6ORD5ZabPNxzZ3Qpt59vQW81twERERNmLYWAIs8aZbxkAgO0mxw0AgPDlQJ1yJpRh3vCFxwuldiGUqhmDuxRGQ09AP/QhtIMfQmpcuZCIiIbGMDCEspAPRUHzqxFut9BVAAAit2jk+4WAUlYDdeoSwDfGbgMAsq0e2s51kF0tYz4XERFlHoaBIQghMHNcyPTx2491JmXAnggWGN0GBePGfrJ4BNre96Ad3QWp62M/HxERZQyGgWHMsNBV0BFJoL4jOYP1hOqFUrMAyoTZgDL2/1yy8QC03e9ARsx3bRARUWZjGBjGjDLzLQMAsP1Y8t5chRBQSiZAnX4OEDQ/uHFYkU5ou9ZDbzrEKYhERMQwMJySXB/GhXymj7cyxXC0hD8X6tQlEOWTx34yqUOv2wF9//uQ8ejYz0dERGmLYWAEVroKdjV2IaEn/1O2EArUiqm9gwtzTv+A05CdzcYUxLZjNlRHRETpiGFgBDMsDCKMJnTsb+5OYjWD9a1JcGIRo7HQ4tAPfgDtwGa2EhARZSGGgRFYmVEAWJ9iOFZC9UCtngOlZgGgmp8KORzZfhzazregN9dxLAERURZhGBhBfsCLqnzz8/ytLD5kJ6WwHOqMcyBCJWM/mZaAfmQb9H0bIaPhsZ+PiIhcj2HgNKy0Duxv7kaPyS2N7Sa8ASiTz4BSNdOWrZJlVwu0XW9DbzzIVgIiogzHMHAaVsYN6BLY3ejc/H1j5cKJUKcvBQLWllQekq5DP7oT2p53uDUyEVEGYxg4jellIUsbC6d63MBQRCAEddrZEGW19pww3AFt93poDXu4eiERUQZiGDiNXL8H1UXmp/B9lMTFh6wQigK1ajqUKWeOfVtkAJAS8tg+aLvWQXa3jf18RETkGgwDJlgZN1DfEUFbj3t2CFRCxcbgwsIKe04Y7Ya2ZwO0uh2QWsKecxIRkaMYBkywsvgQ4I6ugoGE6oVaMx/KxHmA4rHlnLLpkDHAsLPZlvMREZFzGAZMmFaaC8XCwAG3hYETlKJKqDOXQeTbsAsiAMQi0PdthHZoK2TCPa0hRERkDcOACQGvitrioOnj9zSlbiVCq4Q3AKV2AZSa+YDH/N4LI5GtR43FitoaOA2RiCgNMQyYNNNCV0FTdwwdEfd+UhZCQCmsgDrjXIiiKntOmohBP7gF+oHNkLEee85JREQpwTBgkpX1BgBgf4v7V+8THi/UiXOhTD4D8Nkw4wCA7GiEtuMt6Mf2QurOLMBERETWMAyYNKUkFx4LAwf2Nbs/DJyg5JVCnb4MonSiPSeUOvSGvcZuiO3H2XVARORyDAMm+TwKJpfkmj4+lTsY2kGoHqjjZxpbI/vN/54jivVAP7AZ+v5NkNH0ej6IiLIJw4AFlvYpaAlD19PvE3Hf1sjlkwFhZe3F4cnOJmg734ZWv5trExARuRDDgAVWxg1EEzqOdkSSWE3yCEWBWjEV6rSlQDDfnpNKCXl8vzHroLWeXQdERC7CMGDBpOIgfKr5p2x/Go0bGIrIyYM69WwoVTMAxaY/lXgU+qEPoe19j5sfERG5BMOABR5VwbQy8/3p+1rSv5/c2AmxxhhgGCq278TdrdB2re9d1ti90zCJiLIBw4BFkywsPpROMwpOR/iDUCYvhlI9B1DtWdIYkMayxjvWQm+pY9cBEZFDGAYsmlBofgfD+o4IwrHMGTAnhIBSPN5YrKjApiWNASARh354G7Q9GyDD7fadl4iITGEYsGhCgfkwAAAHWjJvNT7h9UOtXQhl0iLAZ76l5LTC7dB2vwPt8DbIRMy+8xIR0YgYBiwqDfng95h/2val2XoDVij5ZVBnLINSMc2+AYYAZEud0XXQeBBS1207LxERDY1hwCJFCIwvML907740WJZ4LISiQCmfBHXGcojCCvtOrCWgH90JbedaTkUkIkoyhoFRsNJVcKQt87oJhiJ8Aag186FMORMIWNvHYUSxiDEVcdd66J1NDAVEREnAMDAKVgYRtvXE0RXNnEGEp6OEiqFOX9q7NoFdsw4ARDqh73sf+r6NHGRIRGQzhoFRsNJNAABH2rOjdeAEIRRjbYKZNm6R3Et2tRiDDA9ugYxmdhcMEVGqMAyMwniLMwrq2tJzWeKxEl4/1Ilzjc2Pcmxa1riXbGuAtuMtaEe2Q8ajtp6biCjbMAyMQtCnoiTXZ/r4w1kybmA4IrcQ6rSzoUyYDaheG88sIZsPQ9uxFlrDHm6CREQ0SgwDozTBQldBXZZ1EwxFCAGlZALUmcshSqrtPbmuQR7bZ0xHbDrE6YhERBYxDIySlUGEde0RaGm4nXEyCI8X6oRZUKefA+QW2nvyRAx63Y7enREbOPOAiMgkhoFRsjK9MKFLHO9iv/ZAIicP6pSzoEycB3j89p481gP90BZou9+B3tls77mJiDIQw8AoWWkZALJnvQErhBBQiiqNWQflkwFFtfcCPR3Q922ExumIREQjYhgYpbJcH3yq+aePYWB4QvVArZg6YDyBsPX8srPZmI64byNkd5ut5yYiygQMA6OkKAJVFgYRHmnPzumFVgiv3xhPMHMZREG57eeXnc3Q9myAtvc9yK4W289PRJSubFwiLvtUF+bggMm9B9gyYJ7w50KtXQAZbodevwuyq9XW88uuFmhdLUBuIZTyyRChEghhb2sEEVE6YcvAGFhZibC1J47uLFqW2A4iWABl8plQJp0BBPLsv0B3G/R970PbswF6RyNnHxBR1mIYGAOrgwjrOthVYJUQAkp+qbHfwcS5gNfaUtCmhNuh798Ebfd66G3HGAqIKOswDIyBlYWHAOB4J6cXjpYx86AK6szlxiZItq5k2KunE/rBD6DtWsd1CogoqzAMjEHQ50Fx0PybEtcaGDuh9G6CNGs5xLhJgEjCn3Cky1inYOdb0FuOQkquaEhEmY1hYIysdBUwDNhHqF6oldOMUFA8AXZPRwQARMPQD2+FtuMt6M1HuMwxEWUshoExsrISIcOA/YQ3ALV6NtQZyyAKxiXnIrEe6Ec+6t374DCkriXnOkREDuHUwjGaUGh+3EBjVwxSSk5jSwIRyIVauxCyuw16w57krCMQj0Cv2w4c2wulpBqiZAKE1+allImIHMAwMEZWWgaiCR3tkQQKc5Iw+I0A9G6XPOVMIxQc2wfZ2WT/RRIx6Mf2Asf3QxRWQCmrgchJwtRHIqIUYRgYo3EhP7yqQFwzN/L8eFeUYSAFRG4h1MlnGAsXHdsH2dFo/0WkDtl6FFrrUYhQMUTpRIj8Mrb8EFHa4ZiBMVIUgap8810FnF6YWiJYAHXSIqjTz0nKEscnyK4W6Ac2G4MNmw5BalxgiojSB8OADUpzzfcbcxChM0ROHtTaBcZAw8LK5F0oFoZetwPaR29CO7oTMsZlqInI/dhNYAOuNZA+RCAEtWYeZMVk6Mf2Q7bWA0jC4kJ6ArLxILTGgxAF5VDKaoBgAbsQiMiVGAZsUBz0mT6W3QTuIPy5UCfOhayYAv34fsiWOiBJKw7K9mPQ2o8BOfnGYMPCcohkLJZERDRK/BfJBkWWWgZiXObWRYQvB+qE2VBnroAoqU7OioYn9HRAP/QhtI/WGIMaE7HkXYuIyAK2DNjASstATOP0QjcSvgDUCbMgyydDbzwA2XwYSNaKg4ko9IY9wLF9EEVVUEomQATzLZ8mHA5jy5YtaGtrQ2VlJRYsWJCEYokoG7BlwAZWxgwAQFM3uwrcSnj9UKtmQJ11nrH3gaIm72JSh2w5Am33eiR2rTNWN9Tip33Ya6+9hkWLFiE/Px/nnHMOLrvsMixcuBA//OEPk1crEWU0hgEbhPweeBTzA8Paek7/Dz45S3h8vXsfnAelclpytk4eqKcTet12aNvegHboQ8iu1mG7k+6//374/X489thjeP/993HkyBFccskl+Otf/5rcGokoYzEM2EARwtK4gdYww0C6EB4vlHGToM5aDqVmPhAsSO4FpQ7ZWg9t77vGronH90PGB7cktbW1Yfbs2QgGg3juuecwfvx4BAJJDitElNEYBmxSlGN+3EB7hGEg3QihQCmsgGfa2VCnLoEorEBSdkocKBqGXr/bWLPgwGboHU2QUuLjH/84nnjiCdx000340Y9+lNwaiCgrMAzYpMRCywC7CdKbyC2EWjMf6qwVEGW1gJrscbgSsv049P3vQ9u+Bo8+cB8+3PQeHnjggSRfl4iyBWcT2KTIwoyCVoaBjCB8AahV0yHLJ0O21kNvOghEw8m9aDwCpekgZgogP9GZ3GsRUdZgGLCJlRkFbBnILEL1QJQaWxrLzibIxkOQXc1Jv66Mdg++Qed+CEQ0OgwDNrHSMtDWE4eUkkvTZhghBER+GZBfBhnpgt540FjuWCZpvYKTyK5WJHa/A6WoEqKgHMJrfs8MIspuHDNgEystA3FNIhzTklgNOU0EQlCr50CdfR6UiqmAx743Zikl3t26E1v3HBh0e0NTK/666nVED2yF9tEb0Pa+B735CGSCLVFENDK2DNjEyiqEgDFuINfPpz/TCY8PonwyRFktZHsD9MZDQE/HmM756LMv4ivf+wkAIDc3t+/2jR/twmX/8H9w9QXn4PlHHoDsaoHsagHqtkPklUAUVkLkl0EkfcAjEaUbtgzYJMerIuA1/3Ry3EB2EYoCpagKnulLoU5bauyDoIzuTXnNxi246KKL0NjYiIMHDwIAfvWrX6GxsREPPvgg3nhvy+AHSAnZ0WTsi7BtNbQDH0BvOwaps3WKiAz8iGCj4qAPR9sjpo5lGMheIpgPNZgPWTUdsv0Y9OY6oLvV9OMnVo7Dk398Hddcc80p9x09ehQTq8YN/2CpQ7Yfg2w/BigqRME4iMIKo+WAOykSZS2GARsV53gZBsg0oajGRkVFVZDRbujNdZCtR4HT7GZ4/603IsfvR93xplPumz9hHm7/5GXmCtA1yNZ6Y5Cj6jWCQVElRG4RB7cSZRkhuZ+ubX753mGs2WduStmKySW4+czqJFdE6UZKHbKjCbL5CGTnqW/2KeHxQRRWQCmsAIIFDAZEWYAtAzayMqOgK8o54XQqIRSIgnFAwTjIWASytc7oRoiba3GyRSIG2XQIWtMhwBswBh3ml0GEiiEUdiUQZSKGARuFLMwOCMc5eItGJnwBiPIpEOMmGzMDmo9AdhwHUtmYF49ANh+GbD5sjDHIKzGCQV4p1zEgyiAMAzbK9ammj+U6A2SWEAIirwTIK4FMxIylj5uPACevQJhsugbZfhyy/bjxc7AASm+rAQIhdicQpTGGARsFveafzu4YuwnIOuHxQZTVQJROBMLt0FvqINuOObMUcbgdergdaNjT251QOqA7wXwwJiLnMQzYiC0DlCpCCCC3EGpuIeT4mZCdzZBtDcan9hQtfzxIPGJ0YzQfARQFIlTSP9aA3QlErscwYKOghTAQSehI6BIehU2rNDaid70AFIyD1BKQHY1GMOhsSu34ghN03aiho9H4OSe/vzshJ4/dCeQ6Wlcn4s3HIONx40vqEB4vhMcLNZQHb+m4jG/tYhiwkZUwAAA9MQ15Af4nIPsI1QNRVAkUVUJqcaOPv7XBWJYYDs0i7umA3tMBHNsLeP1Gq0Go2PjyBZypibKSlBLRQ3sRPbwfsaOHEa07iGjdIejdp9kOXPXAV14F/4Ra+Kqq4auqRs7U2VBzgqkpPAX4TmSjHK8KAfP/5IbjCYYBShqheiGKxwPF4yHjUcj249DbGiytdmi7eBSy9aixuBIA+IIQoaL+cMAuBUqC6NHD6Hx3DTrfeQOJ1t61YFQV0Ex212oJxI4eQqzhiPEPvNQB1YPc+YuRv+Q8BOcsguK1tj+N2/CdyEaKEMjxqabHA3Rz3ACliPD6IUqroZRWG+sXtDdAb20Y86ZJYxYLQ7aEIVvqjJ/9uf3BIFQE4Unvf2DJOVq4G+1rX0Pn+tWI1RtjWaAPGE9jNggMNOjxCXR/8C66N70D4Q8gb/EyFKy4GIHaaWMv3gEMAzYLehkGyN2ELwBRVgulrBYyGoZsazBaDCJdTpcGRLsho93GugYAEMgb0HJQBKGaX9iLspPUNLSvfQ3N//MM9Ei4f9yMnoSBtb3nlNEIOtavRsfbryO0eBlKr7sZ3pIy+6+XRAwDNsv1qWgyOf2bMwrIacIfhCifDKV8MmSkC3pbgzFVMdVrGAwn0gkZ6YRsOmT8nJPf33KQW8jtmGmQ7m2b0PjbxxE/Xp/6i/cGg65N69G1eQOKLr4axSuvgxLISX0to8BXks2CPgurEHKtAXIREQhBrZgKVEw1Wgx6ZwTIrlY4NvjwZD0dkD0dkI0HAAgg2BsOggXGF8ccZKVERxuOPfVjhD/aDDg9W0XXAeho/cvv0b7mNZTf9A8ILVzibE0mMAzYzMpaA+wmILcS/iBEWQ1QVmPMSuhs7g0HTYDmlh03JRBuhwy390cVb6A/GAQLjKmMbD3IaJH9u3D0p9+H1tU7/sUte+9JCb27C/X/+X0UXfoJlFx1o6unJ/JVYrOg1/x/7B7uT0BpQKheiMIKoLACUkog3Aa9vRGysxGIuKQ74YR4BLI9Atl+rPcGYSyVHMzvDwhcOjljdG58Gw2P/xCATM6YgDEzgknrKy8gVncQFbffA8XnztYrhgGbBSyEgZjmxj9eouEZKx8WQc0tAjB9QHdCE2R3i3s+lfWR/eMOTsxYUFRj7EGwoDckFBrrHzAgpJW21S+j8Te/cLoM07q3vo+6Rx5E1V3/B2puyOlyTsEwYDOviRUFpZSQuoY4wwClucHdCYkB3QmNLupOOImuAd2tkN2t/d0LHl9/y8GJkMCZC67VseHNtAoCAAApETm4B0d/8q+YcM+Druu+clc1GcCjDh0GOhoOY+srz6Bx7zY0H9gFLRbB82UVmPXHP+Dss89OcZVE9hOqB6KwHCgs7+1OaId+Ihi4YdriSBKxwUsoA8b4g0DI6Fbo/UIg19X9vtkgeuQAjv/yJ06XMTq6jsi+XWh64Zcou/5Wp6sZhGHAZl5FGfL21x6+F0G9Bx8/7zws/vvPo7i4GN/+9rfx5JNPMgxQxhm4kRIqpxkrIHa19H0h1uN0iacXj0DGI0Bn0+C5FL4gRE5vSPCHjO/9QQgx9Guf7KN1d+HoY9+FdOX4ALMk2l5/CYHaacg7a7nTxfRhGLDZsC0Dx47gG9/9Dq6//nrs2rULF154IX72s58hGo2muEKi1BNef9+eCQAgYz29waDVCAfxiMMVWhALQ8bCQPvx/pAghLF6Yl8LQu//+3I4FsEmUtfR8PgjSLS1uHSwoDXHnv4xfJUT4J9Q63QpABgGbDdcy0BeWRW++tWv4itf+Qpqa2uxf//+FFdG5B7Cl9O/b4KUQF84MAICEmkWkqUEIl2Qka7BrQhC6Q0GRlCAPxfCl2OEBJf1Gbtdx9uvG+sIZAgj3PwQE7/x764IjPxrtNlwLQOX/O//h4Mb38DRbe8CzYdSXBWRewkhjGZ2fxAomWCEg2h4cLeCWwcjno7U+xdKOvk+1WuEAl+O8fufCAm+HMAXYLfDAFJLoOXPzzldhr10HbH6w+je8h5CC85yuhqGAbt51aFfwPkV1Zh3xU2IdLajjWGAaFhCCGOgXiAXKK02wkGkq79bobsF0DJg9U4tDvTEIXs3izolLHgDwwSFHGP2gws+TaZK54a1/bsNZhKhoOVPv0Hu/DMd/+/JMGAzj4mphURknhDCWEkwJ8+Ywigl0NNpTA0Md0CG24FY2Oky7XdiAOPAKZAnKEp/OPDmGMswe3zGegkeH+AxfhbDdFumE6lrRquAEC5cx2KMpI7okQMIf7QZuXMWOVoKw4DNvMN0ExCRPYTo3ZMgmN93m0zEjVBwYnnicHv6di2YoetApBuydwXIYd8iVU9/MOgNDH1hweuD6L3PzcGh6/31iDcdO/2B6UooaHnpOYaBTOMZ4QWlJ+LQE4P/gYrH44jFYvD5uG870WgJjxcivxTILwWA/kGJ4fb+1oOeDqMPP5toCeMr2t0XGIYPDt7e0NDfsgBFNQY6Kh4jWCgqoHogFA+gqv23CyVpzdxdW941WkIcnEHwt4P1+O7bW6BLiTsWzcANsybZd3KpI7J/F7SuTqihPPvOaxHDgM2GaxnYt+41vPmfDyLe043a2tq+23/1q1/hd7/7HR5++GHceeedKaqSKLMNGpR4Yjqj1IGerr6WAxlud89WzW6gxQEtDnnSc2KuYV4MDgeKB2LQzyeFCKEM+BLGm71QjEGTA29TvejZudXRIJDQdfzr21vw9FXnIeTz4LrfrcIlk8ajMGDvB7ievTscHUjIMGCz4ZYj3rHqeSw98wz8wz/8A0IhY13qhx56CI2NjXjmmWfw6KOPMgwQJZEQyoDuhWoAxih12dMBdLdD9vQGhHiaTWt0BdnfChHvu2Woo6ydNVQGraNtjLWNzZbjrZhalI+KUA4A4PyJFVh7+BiunFZt30UUFRGGgcyiDtNNoHh9aG9vx86dOwEAGzdu7LuvpaUFfr87d7IiymRC9UCEioFQcd9tUov3rxkQ6TY2OurpyuwxCC6VaGtN2rl1KXHZb17Fx2ur8L+Xzuu7fc3hBnzp5bfxbxctwWVTJuB4dw/KcwN991eEcnCs2+YVNHUN4V3b7D2nRQwDths6+y646vNY99S/4d9+/NO+2wSAwhwvCgoK8J3vfCdF9RHRSITqBXKLIHKLBt0u41GjCb3nRFDoMvZc0DNgmqNLJdqajS4G3f7t3hUh8PeLZuJf1m7GFxfNQIHfh+1NbfinV9/BPUvm4rIpEwAM8y96EoZHRA/vgx6PQ/E6s0EWw4DN9GHawSpnL8YnvvfMoNsCHgU/+sT8FFRFRGMlvH5jRP7AVgQpgXi0LxgMCgnZNlgxCfRoNKnP49XTqvHj9z7C0x/uwfUza/HFl9/GNdMn4gsLp/cdU56bg2Pd/ctlN3T1YEF58VCnGxtdhx4JQ/EW2H9uExgGbGalTyyL1gwhykhCCGO1QF+gbyYDMGA2w4mQEO2GjPYYGzSl21LLDpKJeFLXFvAoCr64aAb+/Z1teHVfHeaUFuIb5y4cdMz8cUXY3dKOhq4ehHwevHGoAXedOSsp9chYLCnnNYNhwGbSwh+u0ytOEVFyDJrNUDBu0H1S14BYxNjsKNYDGTNCQl9YYLdDn1TsTnjVtIn49lsfQAL4948vgXrSIHCPouCry+bjc398E7qUuH3hdBQFkjPGSyahO8QshgGbWQmxjAJE2Ucoav9yyyeRsndUfizcHxJiPUC0PzRYH5OfvoSiJv0aD63ZDABojcSgDvMB7aLaKlxUW5X0WhSfcwPJGQZsZuVlqrBlgIgGEEIAHi/gKYAIntp3bIxRiPQHg1gEMhEDElHIuPH/SMSSMuDOEaqa1AWHHtmwDasP1eO3112IW/60Bs/tOICb5k5JyrXMEA4uPscwYDPdUjdBEgshooxjjFHo3ZNgBFJLGKEgEYNMRIF47/8nYid9n9wBemPlyS9K2piB327fj8e37MbTV63ArNJC3DJvGn6+eRdunDVp2A3nkkktKIKac2prUaowDNiM3QRE5DSh9q785w+O+O+MlNJoRegNBn2tDIkYoGnG+AUtAegJyJN+hqYh2V0W3rKKpISBNw414ME1m/HvH1+CheUlAICb503BLz7Yhf/ZfQifmllr+zVHpCgIzpib2muehGHAZtLCi4MDCInISUIIIzSYCA4nk1IarQoDwoHsCwvagBAx+GfoGiB1SL338X1f0ugOGPCzp6TMqM3GLau3Nrbiy6+ux/1L52Ll5PF9t4d8Xtw8bwp+tmknrptec8pAwqTSJQJTZqbuekNgGLCZpZYBZgEiSlNCCECoxqJAMAa+JeOftEDtVET27rDtfHPLirD59muHvO/LZ83Bl8+aY9u1zJPImZKc6YpmuXPPyjQ23KJDQ+GTT0Q0suDMecYgwgymBHPhq5zgbA2OXj0DsZuAiMg+BcsvzuxmVCFQ+LErIRwOPAwDNmM3ARGRfTyFxSg49+MZ2zogvD4UXni502UwDNgtrpmfpuNJ5QAVIqI0VbTyWqdLSI7eVgE16NyUwhMYBmwWSZgPA35P8lfXIiJKd97iMuSfc2HGtQ4IjwdFF13hdBkAGAZsF7UUBvj0ExGZUXz59VB8gYzqXy2+4gaooXynywDAMGC7aML8MqAMA0RE5niLS1Fxxz1J3cUwZYSC3PlnouiSa52upA/fjWxmpWUgwDBARGRa7uyFKLn6006XMTaKAm9JGcpv+SdXzSjju5HNrHUTcMwAEZEVRSuvQ+68xWk7fkCoHlTe+VWoOUGnSxkkPZ9NF7MSBnwObIZBRJTOhKKg/NZ/gq+yGhBp9G+oEICiouILX4G/strpak6RRs9kemA3ARFRcqk5uai+71vImTYrPQYUKgqE14fxd38doQVnOV3NkPhuZDPOJiAiSj4lkIOqf/w68s4+3+lSRqYoUPMLUX3ft4yllV2K70Y242wCIqLUULxelH/uLpT93R3GGAIXjiPImTobNf/8MPzVk5wuZUTctdBmbBkgIkodIQQKz1+JnOmz0fS7JxH+6AOj68DJKYhCQMkNofS6m5C/9AIIxf2DxRkGbMYVCImIUs9fWY3xd38D3R9tRuNvfoH48frUF6EogFBQdPE1KF55LZRATuprGCWGAZuxZYCIyDm5sxci+H8fQftbf0XLS89B62gDFBXQzXfhWnKiFUJREFq8DKXXfhbe4rLkXCuJGAZs1hPnmAEiIicJVUXheStRsPxi9OzZjs5316LrvbXQIz3Gp3fd/Ie24S9ihIDAlJnIP/s8hBYthZqbN/bzOoRhwEa6lOiKJUwfn+vj009ElCxCURCcPgfB6XMw7sbb0P3RB+h6/21EDuxBvLGhPxQoKgBpfMIfONZAKIAiAK3/Q54SyoN/fA1y556B0OJz4S0qSe0vlSR8N7JRd0yzNGYlL8Cnn4goFYTHi9D8MxGafyYAQGoJxI7XI3b0MGJHDyPefAwyHje+dA3C64PweKGG8uCrnAB/1UT4Kquh5oYc/k2Sg+9GNuqMmG8VEALI9XEAIRGRE4Tqgb+y2lgNcLHT1TiPndY26oyaDwMhnwdKOqycRUREGY9hwEZWwkCen40yRETkDgwDNuqy0jLAMEBERC7BMGCjjkjc9LH5HDxIREQuwTBgo66o+TUG2DJARERuwTBgo46ohZYBhgEiInIJhgEbccwAERGlI4YBG1maTcAxA0RE5BIMAzbi1EIiIkpHDAM2SegS3RYGEDIMEBGRWzAM2KQlHIOFbQk4gJCIiFyDYcAmTV0x08f6PQqC3JeAiIhcgmHAJk3dUdPHFgd9ENyXgIiIXIJhwCZN3eZbBkqC3iRWQkREZA3DgE0shYFcXxIrISIisoZhwCaNXda6CYiIiNyCYcAmbBkgIqJ0xTBgg3BMQ3fM/BoDJWwZICIiF2EYsEGzhZkEAFsGiIjIXRgGbGCli8CjCORzXwIiInIRhgEbNFoIA0VBLxSuMUBERC7CMGADa2sMsIuAiIjchWHABk0WphVyvAAREbkNw4AN2DJARETpjGFgjHQpucYAERGlNYaBMeqIJJDQzW9eXJkfSGI1RERE1jEMjJGVZYgBoCLPn6RKiIiIRodhYIysdBEU5XgR8KpJrIaIiMg6hoExshIGKthFQERELsQwMEbHLXQTVOazi4CIiNyHYWCMDrf2mD62Mo8tA0RE5D4MA2MQTeio74yYPp7dBERE5EYMA2NwpK0H0vysQnYTEBGRKzEMjMGh1rDpY4M+FXl+7lZIRETuwzAwBgctjhcQ3K2QiIhciGFgDA61mW8ZYBcBERG5FcPAKMU1HUfbOXiQiIjSH8PAKNW1R2BhSwIuQ0xERK7FMDBKB1vMdxEAwPiCnCRVQkRENDYMA6N0qM384MGQX0Vx0JvEaoiIiEaPYWCUDlqYVlhTFORMAiIici2GgVFIaDrqLAwenFjILgIiInIvhoFRqOuIQLMwenBicTCJ1RAREY0Nw8AoHLKw2BAA1LBlgIiIXIxhYBSsLkNckutLYjVERERjwzAwClaWIZ5YmMPBg0RE5GoMAxYldIkjFqYV1hRxvAAREbkbw4BFDR0RJCwMHqwp5ngBIiJyN4YBi6ysLwAAEwvZMkBERO7GMGCRlZkEOV4FZSEOHiQiIndjGLDISstAdSFXHiQiIvdjGLBA1yUOWxo8yPECRETkfgwDFjR0RhDXzA8enFyam8RqiIiI7MEwYIGV9QUAYGoJwwAREbkfw4AFVlYeHBfyoSCH2xYTEZH7MQxYYGUmwdTSUBIrISIisg/DgEkJTbfUTTCV4wWIiChNMAyYdKA1jJimmz5+WhnDABERpQeGAZN2Hu8yfWye34NxIX8SqyEiIrIPw4BJVsLA1NJcLjZERERpg2HAhLimY29zt+njOV6AiIjSCcOACfuaw5YWG5pWxpkERESUPhgGTNh5vNP0sT5VwYRCLkNMRETpg2HAhJ2N5scLTC4JwqNwvAAREaUPhoHTiCV07G82v/IgxwsQEVG6YRg4jb3N3Ujo5scLTOV4ASIiSjMMA6dhZUqhRxHcnIiIiNIOw8BpWAkDU0pz4fPwKSUiovTicboAt3h5+zHUtfdgdnkeZpXnoSjoQySuYX+L+fUFZo3LS2KFREREycEw0Ks46MXvP6zHhkNtAICq/ADK8/ywMFwAM8s5XoCIiNIPw0CviUXBQT8f7YjgaEfE9ONzvApqTjoHERFROmAHd6/ykB/+MfT3Ty8LQeX6AkRElIYYBnopihjTyoGRhI6t9R2IJsxvc0xEROQG7CYYoKYwB3ubzA8YHGjn8S7sPN5lTC8szcXsijzMr8xHVQGXJiYiIndjGBhgYtHY37gTusSO413Y3dSN6sIchgEiInI9dhMMcPIgwrG4dclEzKnIt+18REREycIwMEBFfsCWTYZuXDgeSyYW2VARERFR8jEMDOAZ4yBCALhs5jhcNL3MpoqIiIiSj2HgJDVjGDdw7qRiXDuv0sZqiIiIko9h4CQTC0c3bmBBVT5uWlwNIbjWABERpReGgZOMLwxYfszU0lzcsbSWiw4REVFaYhg4SUWe39LxVQUB3LV8EncrJCKitMV3sJMEfR7kB8wtv1Ac9OLLKyYj18flGoiIKH0xDAyhIu/0XQX5AQ/+13lTUBT0paAiIiKi5GEYGEJl/shdBbk+FV85fwoq8q2PLyAiInIbhoEhjNQykONV8L/On4LxXGaYiIgyBMPAECqH+cTv9yj48nlTUGPjssVEREROYxgYQsUQ3QReVeDuFZMxuSTXgYqIiIiSh2FgCEU5XvgHTBX0KAJ3nTsZ08tCDlZFRESUHAwDQxBC9K03oAjgS8tqMbsiz+GqiIiIkiNrwoCUElLTIONRyGgYMtYDmYhD6vqQx1fkByAEcMfSWsyvKkhxtURERKkjpJTS6SLspvd0QrY1Qm/v/Wo7Br29CdDiQx4vckIQheVQC8dBFJRBKSjDq/USxaEAzq4pTnH1REREqZUxYUDvakPi4DYkDnwI2dHUe6sAhADk0J/+TyGUvmPjwoPA+Cnw1M6DWjUVQuUqg0RElJnSOgzIaBiJgx8hcWAL9OajAAQAG38dIQApAdULdeIseGvnQimfxJ0JiYgoo6RlGJBaAvFd7yK+9U0gMXTTv+16Ww2U4kr4Fq+EWjohNdclIiJKsrQKA1JKaId3ILbpNchwhzNF9LYWqBNnw7fwY1ByC52pg4iIyCZpEwb09kZEN7wEvekIbO8OGA0hAKHAO+sceOeugFBUZ+shIiIapbQIA4lD2xFd/z+Arhl9+C6jlE6Af/mnoORwUSIiIko/rg4DUkrEt76J+NY1TpcyMiEAXxCBCz8Dtajc6WqIiIgscW0YkLqO6Lt/hrZvs9OlmCMEoHoQOO9GqOW1TldDRERkmitXIJRSIrrhT+kTBACj+yKRQORvv4bWdMTpaoiIiExzZRhI7Hkf2v4tTpcxChKAROTN5yB7upwuhoiIyBTXhQGt6QhiG19xuozRkxKIhRFZ+/yw+x4QERG5iavCgOzpQuTN55wuY+ykhN50GLHNq5yuhIiI6LRcFQYi7/wRiIVdOX1wNBI730Gifq/TZRAREY3INWFAa66DXr83Y4IAAEAIxLeshksnbBAREQFwURiIffimsf5/JpESeks99Ib9TldCREQ0LFe8+2otDb2tAhk44E4IxLa+6XQVREREw3JFGIhvW2Ms2pOJpITedATa8YNOV0JERDQkj9MFyHgM2pFdcHLjoSPN7bj9J79DY0c3PIqC/++6C/CJpXPtu4BQkDiwFeq4GvvOSUREZBPHw4DeXAendyD0KAq+f/PlmF9biePtXVj+z49h5cLpyA347LmA1NkyQEREruV4GNAaDxtdBA6OuK8oykNFUR4AYFxBCEW5OWjt7rEvDACQnS2Q0TCEP2jbOYmIiOzg+JgB7fjBpAUBXdex6N4f4hvP/GXQ7X/9YDeKbn4AL6zfespj3t9XB11KTCgpsL0e7llARERu5GgYkLre202QHIqi4L5rzsPP//ouWrt6AAAfHqzHzT/6DR648eOnjAto7gzjjseex3/cfo39xQgF+vHD9p+XiIhojJxtGYhHAC2R1EvceO58lISCeOwv61DX3I5P/uBX+LvlC/DlK5cPOi4aT+DT/+/XuO/q87B0+sQkVCKh93Qk4bxERERj4+iYAZmIJ/0aHlXFV65egQd/8xr+Z8NHWFhbiX/7/BWD65ASf//TF3D+7Mn49IqFySlESiAFvy8REZFVzrYM6FpKLnPjufMRjsYhIfHEP94AVRn8a6/beQjPr9+KP23cjnO+9ijO+dqj2HqowfY6ZJJbQYiIiEbD2dkEamouf++TLwEwxgSoyqmLGy2bWYPO/34o6XUIjzfp1yAiIrLK0ZYBoSb/zfGh3/4Vr2zaib899EUkNB1PrX4/6dcckhApCz9ERERWONtN4AsAXn/STv/k397Df/z5bTx3302YV1OJuy47B4/8aQ3iidR0T5xMyStx5LpEREQjcbZlQAioZRMB2L8vwaubd+GeJ/6En9/5SSyZVg0A+NIlS9EZjuKZtZttv95pSQm1rDr11yUiIjoNxxcdUsbZP41v07463PzD3+BfPr0S1yyZ03d7fjCAv1+5FP/+4hpoeqp3SBRQSsan+JpERESnJ6R0cB1gGKvyRV570skSUkIpLEfOZXc4XQYREdEpnG8ZKKoEFNXpMpJLKFDKa52ugoiIaEiOhwGhqvBMmm+Mts9UUod38gKnqyAiIhqS42EAALyzz3W6hOQRCtQJM6AUjnO6EiIioiG5IgwooUKotfMys3VA6vDOWeF0FURERMNyRRgAAN+c5UnbytgxQoFSOQVqcYXTlRAREQ3LNWFAySuGOnkhkrHmgHMkfPMvcLoIIiKiEbkmDACAf/FKiILSjOku8J2xEmpxpdNlEBERjchVYUB4vAicdwOQgj0LkktArZkLz7TFThdCRER0Wq4KAwCghIrgP/cTTpcxekJAFJTCv+QKiAxp4SAioszmujAAAJ6qqfAu+JjTZVgnBOANIHDeDdyumIiI0objyxGPJL5zA2Lvv+p0GeYIAZGTh8DHboKSV+x0NURERKa5OgwAQOLgNkTXvwhI3cVTDwWUonIEzv87iJyQ08UQERFZ4vowAABaawOib/wGMtLlykCgTl4I/5mXQqgep0shIiKyLC3CAADIaA9iW/6GxJ73jb55F5QtckLwLboYnpo5pz+YiIjIpdImDJygtzciuvFV6Mf2w1igKMXlCwEoKrxzVsA7YwkHChIRUdpLuzBwQuLoXsTe/wtkZwsgFGNMQQqokxfCN/8CKBwbQEREGSJtwwAASCmhNx5C4uA2JA5uA+JRe4NBb3eEUlgOz6T5UCfOghLMt+fcRERELpHWYWAgqWnQGvYhcXArtKN7jGAAABC9b+qnCQgnhQiRVwxPzVx4auZAyS9JXuFEREQOy5gwMJCUEjLSDdneCP3EV2sDZDQMaBqkrhnrAqgeQFEh8kugFoyDUlAGUVAGJb+EYwGIiChrZGQYICIiIvNcuRwxERERpQ7DABERUZZjGCAiIspyDANERERZjmGAiIgoyzEMEBERZTmGASIioizHMEBERJTlGAaIiIiyHMMAERFRlmMYICIiynIMA0RERFmOYYCIiCjLMQwQERFlOYYBIiKiLOdxuoCBfItug+LxQSgqhKJC9fZ/LxSl/z5VheLxQem7Tz3lPqGoUBQBoQioqgJx0veKIqCoou+YEe8TAqpHgaoIqIqAr/d7T9/Pav99av9xngHHqkN9LwQUIaAKwKsqfd97VAWqgPGzIuBVxBDfG/d7FaXve1UICAEoAhACvecHBABVEVAA43dR0Pe9IgBVDPzeOIeQEpA6hJ4ABn2vG1/68PcJqQOa1v+9ngB0DVLXgUQMUtMAXTduS8Qhdc34Ph4HTnx/4tgTx8Vj/Y/RNejxBKSmQ+o69FgCumY8Rmo69HgCutb/vez9XosnIAccp8USA77XIHUJXZO9P/c+XpfGfZqE1CR0TYcW13vPKaHFtd7H9D9OlxKalIjpEprESd+f/LPxvQ7je02i977+738qDzj6urQLX998ffP17d7XN1sGiIiIshzDABERUZZjGCAiIspyDANERERZjmGAiIgoyzEMEBERZTmGASIioizHMEBERJTlGAaIiIiyHMMAERFRlmMYICIiynIMA0RERFmOYYCIiCjLMQwQERFlOYYBIiKiLMcwQERElOUYBoiIiLIcwwAREVGWYxggIiLKcgwDREREWY5hgIiIKMsxDBAREWU5hgEiIqIsxzBARESU5RgGiIiIsp3MUJFIRH7zm9+UkUjE6VJO4ebapGR9Y+Hm2jKJm59nN9cmJesbCzfXNlZCSimdDiTJ0NHRgYKCArS3tyM/P9/pcgZxc20A6xsLN9eWSdz8PLu5NoD1jYWbaxsrdhMQERFlOYYBIiKiLMcwQERElOUyNgz4/X5885vfhN/vd7qUU7i5NoD1jYWba8skbn6e3VwbwPrGws21jVXGDiAkIiIiczK2ZYCIiIjMYRggIiLKcgwDREREWS7jwsB9992HFStW4LOf/Sxisdig+3p6enDllVfi/PPPx8UXX4yWlhZX1XfCv/7rv+LMM890vKZEIoFbbrkFK1aswJe//OWU1WO2vhNS/XwNNFxtbvhby0R8fdtXE1/fp5dNr++MCgObNm1CQ0MD1qxZg9mzZ+N3v/vdoPtffvllzJ07F2+88QZuuOEG/PKXv3RVfQDQ2dmJrVu3uqKmP/7xj5gwYQLWrFmDcDiMt99+O2V1makPSP3zZbY2p//WMhFf3/bWxNf36Gtz+m8tGTIqDKxbtw6XXHIJAODSSy895Y972rRpCIfDAIC2tjaUlZW5qj4A+OEPf4i77rrLFTWZqdfJ+oDUP18DjVSb039rmYivb3tr4ut7ZNn2+vY4XYCd2traUFVVBQAoKCg4pelmypQp2Lp1K+bOnQshBN555x1X1dfe3o4PP/wQX//6111RU1tbW9/620PV63R9TjxfZmtz+m8tE/H1bW9NfH2Pvjan/9aSIS1bBhoaGrB8+fJTvqSU6OjoAGD8hywuLh70uKeeegoXXHABtm7digcffBAPPfSQq+p75JFH8I//+I9JqWk4RUVFw9Y00n1uqM+J52ugkWpL1d9aJuLr2z58fY9etr2+0zIMVFRUYO3atad8XX755Xj11VcBAH/5y19w7rnnnvLYE/9BCwsL0dbW5qr69uzZg29/+9u49NJLsXv3bnz3u99NSn0DLV26dNiaRrovVUaqwYnny2xtQGr+1jIRX9/24es7ObUBGfj6dm735OS499575fLly+VnPvMZGY1GpZRSfvGLX5RSStne3i4vv/xyef7558tzzz1X7ty501X1DbR48WLHajpRTzwel5/73Ofk8uXL5d13352yeszWN1Aqn6+BhqvNDX9rmYiv77HXxNe3edn0+uZyxERERFkuLbsJiIiIyD4MA0RERFmOYYCIiCjLMQwQERFlOYaBLPDkk0+isLDQlnMdOHAAQgh4PB7U1dUNuq++vh4ejwdCCBw4cGDQfc8//zwuuOACFBQUIBQKYf78+XjooYf6FvKws0aibHPLLbdACIEvfelLp9x35513QgiBW265pe+2hoYG3H333Zg8eTL8fj+qq6tx1VVXYdWqVX3H1NbW4pFHHklB9eQGDAM0KlVVVXj66acH3fbUU09h/Pjxpxz7z//8z7jxxhtx1lln4eWXX8bWrVvx8MMP44MPPsiINb2J3KC6uhrPPvssenp6+m6LRCJ45plnMHHixL7bDhw4gMWLF+P111/H97//fXz44Yd45ZVXcOGFFzq29C85j2EgDbzyyitYvnw5CgsLUVJSgiuvvBJ79+4FAKxevRpCiEGLXmzevLnv0/nq1atx6623or29HUIICCHwwAMPAABaW1vxuc99DkVFRQgGg7jsssuwe/duUzV9/vOfxxNPPDHotieffBKf//znB922YcMGfOc738HDDz+MH/zgB1i2bBlqa2tx8cUX4/nnnz/leCIanTPOOAMTJ07ECy+80HfbCy+8gOrqaixatKjvthMtBRs2bMCnPvUpTJ8+HXPmzME999yD9evXO1E6uQDDQBro7u7GPffcg3fffRerVq2Coii47rrroOv6aR+7bNkyPPLII8jPz0d9fT3q6+tx3333ATCaFt977z28+OKLWLduHaSUuPzyyxGPx0973quvvhqtra1Yu3YtAGDt2rVoaWnBVVddNei4//7v/0YoFMKdd9455HnYNUBkn1tvvXVQSH/88cdx22239f3c0tKCV155BXfddRdyc3NPeTxfj9krozYqylSf/OQnB/38i1/8AuPGjcNHH3102sf6fD4UFBRACIGKioq+23fv3o0XX3wRb731FpYtWwbAeOOurq7GH/7wB1x//fUjntfr9eKmm27C448/juXLl+Pxxx/HTTfdBK/XO+i43bt3Y/LkyafcTkT2u/nmm/G1r32tb2zPW2+9hWeffRarV68GYCzxK6XEzJkznS2UXIctA2lg7969+MxnPoPJkycjPz8fkyZNAgAcOnRo1Ofcvn07PB4Pzj777L7bSkpKMGPGDGzfvh0AcNlllyEUCiEUCmHOnDmnnOMLX/gCnnvuOTQ0NOC5554b9AnkBCklhBCjrpOIzCstLcUVV1yBp556Ck888QSuuOIKlJaW9t1/YsFZvibpZGwZSANXXXUVqqur8V//9V+oqqqCruuYO3cuYrEYQqEQgP4XOQBTzfzDrUI98M375z//ed9gpKE+2c+dOxczZ87Epz/9acyaNQtz587F5s2bBx0zffp0rF27FvF4nK0DRClw22239e329+ijjw66b9q0aRBCYPv27bj22msdqI7cii0DLtfc3Izt27fj61//Oi666CLMmjULra2tffeXlZUBMKb1nXDyG7LP54OmaYNumz17NhKJxKB9uJubm7Fr1y7MmjULADB+/HhMnToVU6dORU1NzZD13XbbbVi9evWQrQIA8JnPfAZdXV34yU9+MuT9GbHbF5GLXHrppYjFYojFYli5cuWg+4qLi7Fy5Uo8+uij6O7uPuWxfD1mL4YBlysqKkJJSQl+9rOfYc+ePXj99ddxzz339N0/depUVFdX44EHHsCuXbvw0ksv4eGHHx50jtraWnR1dWHVqlVoampCOBzGtGnTcM011+COO+7A2rVr8cEHH+Cmm27C+PHjcc0115iu74477kBjYyNuv/32Ie8/++yzcf/99+Pee+/F/fffj3Xr1uHgwYNYtWoVrr/+ejz11FOje2KIaEiqqmL79u3Yvn07VFU95f6f/OQn0DQNS5YswfPPP4/du3dj+/bt+NGPfoRzzjnHgYrJDRgGXE5RFDz77LPYuHEj5s6di6985Sv4wQ9+0He/1+vFM888gx07dmDBggX43ve+h29961uDzrFs2TJ86Utfwo033oiysjJ8//vfBwA88cQTWLx4Ma688kqcc845kFLiz3/+s6XmfI/Hg9LSUng8w/c4fe9738Ovf/1rvPPOO1i5cmXfNKb58+dzaiFREuTn5yM/P3/I+yZNmoT3338fF154Ie69917MnTsXF198MVatWoXHHnssxZWSW3ALYyIioizHlgEiIqIsxzBARESU5RgGiIiIshzDABERUZZjGCAiIspyDANERERZjmGAiIgoyzEMEBERZTmGASIioizHMEBERJTlGAaIiIiy3P8Pltr7M9SA6SEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -414,7 +414,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0j0lEQVR4nO3deXhU9d3//9c5M5OZ7AkhgIRdQFlEBXFBrFqr4IZt1dp6W9fqz9vWb1vtz1+378/urfb2e9n2tr3butZa7W31dqmKViwqbiiKBY2CrAJhT0L2Wc7n+0cgEAlhTnJmzpnM83FdXA5zTs55Z8wwr3xWyxhjBAAA8pbtdwEAAMBfhAEAAPIcYQAAgDxHGAAAIM8RBgAAyHOEAQAA8hxhAACAPEcYAAAgzxEGAADIc4QBAADyHGEAAIA8RxgAACDPEQYAAMhzhAEAAPIcYQAAgDxHGAAAIM8RBgAAyHOEAQAA8hxhAACAPEcYAAAgzxEGAADIc4QBAADyHGEAAIA8RxgAACDPhf0uINNMKqlUw3aldm6WaWuRSSUlJyVZlhQKywqFZZdVKTxoqKziMlmW5XfJAABk1YAKA8YYJbd8rMT6D5XasVnJ7Zvk7NohGbP3JMuStOcD33Q/FokqXDVMocGHKDy4RgXjpsouKsnmtwAAQNZZxuz7aZibkju3KL7iHXV8sEROc4Nk2drvg94N25YcR7IsRUZMUPSw6SoYN0VWQczLsgEACIScDQPGSanj/cVq/9crSu3c0vkbfya+lT3XtUMqGDtFhcd8WuHqGu/vAwCAT3IyDMTXfaCWlx6X07g9uze2bMk4ik6aqaLj58ouLsvu/QEAyICcCgPJHZvVuugJJT5embmWgHRYlmSHVDjzMyo86lOywhF/6gAAwAM5EQaM46jtzX+o7c0Fu0OA43dJXeyScpWeeZnCQ0f6XQoAAH0S+DDgtLeq+dkHlPh4hd+l9MyyJMtW8SnnKzZ5pt/VAADgWqDDQKqpQbse+/3+0wMDqnDGp1V4/FzWKgAA5JTAhoHkzi3a9djvZdpaAtUtcDAFk45RyakXyrJZ3BEAkBsC+YnltLeq6Yk7cy4ISFK89i21vfkPv8sAACBtgQsDxjhqfvYBOS2NORcE9mh783nF17zvdxkAAKQlcGGgbfE/OgcLBrP3Im1Nzz2gVEOW10EAAKAPAhUG4mveV9ubz/tdhjeSSe166h6ZRNzvSgAA6FVgwoBJJdX8z4f9LsM7xpHTsE1tS1/yuxIAAHoVmDDQUfumTGuz32V4yxi1v/OiTLzd70oAADigQIQBk0qp9c0FfpeRESbeofZlr/ldBgAABxSIMNDx4RKZlka/y8gQo7a3/8nYAQBAYAUiDLS99YLfJWSU6WhTR+2bfpcBAECPfA8Dqab6zuWGfXbpHx/ToTf9Rlfc9bj3F7csxYO6twIAIO/5HgaSm9b4XYIk6eqTp+uOL5+VmYsbo+TG1TI5uogSAGBg8z0MJOrWSAFYx/+kiaNUEotk7Pom3q5U/baMXR8AgL7y/VM4sWGV5GTmN2bHMTr+x3frh4+/2O35F2rX6JBv/B89/s6HGbnvgSTr1mb1fgAApMPXMGAScTkNmftt2bYtfeOMY3XPonfV0No513/5hq268u4n9b1zT9J5Rx+WsXvvx7KV3LI+e/cDACBN/oaBLCzGc8Exk1VVXKg/LHxbm+qb9KXfP6ovzJysr502M+P37sYYFh8CAARS2M+bm2Qi4/cIh2xd/5lj9dMnX9bf312haSOG6ucXfDrj992fYa0BAEAg+T5mIBsumDlJbYmkjJH+cPnZCvUwYPHCO/6mq+5+Us+/t0ZH/O//0tvr6rwvJLc3YgQADFC+tgxY4cyN3t/Xt/+7c6njHS1tPQYBSXr4qxdkuApLVkFBhu8BAIB7vrYMWAWxjN/j539fpH+8v1rzb7hYKcfRA68ty/g9e2RZWfl+AQBwy98wECmQXV6Vsevf/+q/9NsX3tID13xOU0cM0f9zygz95vnFSqRSGbvnARlH4SEjsn9fAAAOwvcxA5ER4zOy6NDz763W//fwAv3u0rN0zNjhkqSrP3W0mtrj+u/F73t+v3SEDxnry30BAOiN/2HgkLGeLzq0dP1mXXX3k7r5vE/pnKMmdj1fWhjVV04+Wr/6x2KlMrTQ0QFFogoNGpLdewIAkAbLGOPrGPfUrp1q+NPP/Swh8yxLkVGHqezcq/yuBACA/fjeMmCXVsourfS7jMwyUmRUFlc7BADABd/DgGVZKpzhxyJA2WMVRBWblOUVDwEASJPvYUCSopOOkVVU6ncZGWIpNv0UWQVRvwsBAKBHgQgDViiswmNO87uMzIgUKHbELL+rAADggAIRBiQpNvlYWbFiv8vwlmWp8KiTZEcL/a4EAIADCkwYsMIRFZ/yeb/L8I5lyy4bpNjRJ/tdCQAAvQpMGJCk6Phpik0/xe8yvBEKqfTsK2SzBDEAIOACFQYkqej4uQoPHydZgSvNlZLPfFHhQUP9LgMAgIMK3CeuZYdUeuaXZRUWS5bldzl9Ept+iqLjp/ldBgAAaQlcGJAku7BEZfO+IitamHMtBAUTjlLR8XP9LgMAgLT5vhxxb1KNO7Trsd/LaW6UTJb3EuiD2JEnqWj2ObJyLMAAAPJboMOAJDltzWp65n4lN632u5Se7e7KKP7UZxWdeoKsHO3aAADkr8CHAUkyTkqtrz6t9qUvdXYbBKWVwLJkxYpVeualigxne2IAQG7KiTCwR3LrBrW89JiSm9dJsiT5VLpldy4oNP0UFU4/RRbTBwEAOSynwoAkGWMUX7VMrYuelNPckN2bW5ZkTOcgwVlnKTTQd1sEAOSFnAsDe5hUUu3/ekXty16Vs2tn5roPdgcAWZbahozTkBPnqmD4GO/vAwCAT3I2DOxhjFFq20Z1rHhHHR++LdPW3P9gYNmdAUBG7YNG6KOKiXo7MkId4ZguPnqERlWw1wAAYODI+TCwL+M4Sm5ao/j6D5XaUafk9jqZlsa9J1jW7tH/u8cbGO3+7+6XIBSSVV6tXcVD9HGoQksLRqglUtLtHseMqNBnJlRn6TsCACDzBlQY6ImJdyhVv1XJHZtl2ltknJSUSnbOBAiFpVBE8aJyrTGlWt4c0oZdHb1erzwW1rXHj2EKIQBgwBjwYSAdr6/bqYWrd6R9/hUzR2loSTSDFQEAkD0slSdpYnXJwU/ax8ptzRmqBACA7CMMSBpUVKDBRQVpn79iO2EAADBwEAZ2m1BdnPa5W5vjamhLZLAaAACyhzCw28TBLrsKaB0AAAwQhIHdhpVGVRoNp33+im0tGawGAIDsIQzsZlmWJgxOv6tgQ2ObWuPJDFYEAEB2EAb24aarwEj6aAetAwCA3EcY2MfIikJFw+m/JHQVAAAGAsLAPkK2pfFV6XcVrKlvVTyZgc2RAADIIsLAJ7gZN5ByjNbWt2awGgAAMo8w8AnjBhUrZKe/78A6wgAAIMcRBj6hIGxrTGVR2ufTMgAAyHWEgR64GTewozWhXe2sRggAyF2EgR6MqSx0df66+rYMVQIAQOYRBnpQURhRmYvVCOkqAADkMsJADyzL0igXrQNr61tljMlgRQAAZA5h4ABGV6Q/iLAlntL21ngGqwEAIHMIAwfgpmVAktbupKsAAJCbCAMHUB6LqLIwkvb5jBsAAOQqwkAvRrtoHVjf0KaUw7gBAEDuIQz0YpSLcQOJlNGmXe0ZrAYAgMwgDPTCTcuARFcBACA3EQZ6UVwQ1uDigrTPZ58CAEAuIgwcxOiK9FsHNu5qV0cylcFqAADwHmHgIEa52LTIGOnjBpYmBgDkFsLAQYxy0TIgSWvZpwAAkGMIAwdRGAlpaEk07fNZfAgAkGsIA2lwM6tge2tcTR3JDFYDAIC3CANpGO1i3IDErAIAQG4hDKRhRHmhLCv989fQVQAAyCGEgTREw7aGl8bSPn9jIysRAgByB2EgTW7GDTS0J9QSZ9wAACA3EAbS5GafAknsUwAAyBmEgTTVlMcUcjFwgDAAAMgVhIE0RUK2asrTHzewiXEDAIAcQRhwwc24gbqmdjnGZLAaAAC8QRhwwc24gXjKaHtLPIPVAADgDcKAC8PLYorYjBsAAAwshAEXQralES42LiIMAAByAWHApeFlDCIEAAwshAGXhrjYwXB7a1ztiVQGqwEAoP8IAy4NKS5wdX5dE60DAIBgIwy4VFEYUSTEIEIAwMBBGHDJsixVF6ffVcC4AQBA0BEG+mBISfpdBVtZawAAEHCEgT5wM4iwqSOpNgYRAgACjDDQB266CSRpa3NHhioBAKD/CAN9UO2im0AiDAAAgo0w0AexcEjlsXDa529tZtwAACC4CAN9VO1i3MC2FloGAADBRRjooyEuxg1sa4nLcdjOGAAQTISBPnIzvTDlGO1sS2SwGgAA+o4w0EduphdK0jYGEQIAAoow0EcVhRFF7PSXJWZGAQAgqAgDfWRblga72LRoK4MIAQABRRjoBzddBUwvBAAEFWGgH1iWGAAwEBAG+sHNWgNS5xRDAACChjDQD0NcjBmQpPo2wgAAIHgIA/0Qi4RUFk1/WeL6VtYaAAAED2Ggn9yMG6hn4SEAQAARBvrJzUqEdBMAAIKIMNBPbgYR1rclZAx7FAAAgoUw0E9uugkSKaPmONMLAQDBQhjop8rCiMIuliVm3AAAIGgIA/3kdlni+lbGDQAAgoUw4IGKWCTtc2kZAAAEDWHAA6UxF2sNEAYAAAFDGPCAm4WHdtJNAAAIGMKAB8pcdBM0ML0QABAwhAEPuGkZSDhMLwQABAthwANlLsYMSFIj4wYAAAFCGPBAUSSkkJX+WgNN8WQGqwEAwB3CgAcsy3I1o6CpgzAAAAgOwoBH3IwbaCYMAAAChDDgETfjBggDAIAgIQx4xE3LQFMHswkAAMFBGPCIm7UGGEAIAAgSwoBHSl2OGWDhIQBAUBAGPOKmmyDpGLUnnQxWAwBA+ggDHnG78BDTCwEAQUEY8Eg0HFI0lP7LyYwCAEBQEAY85KZ1gJYBAEBQEAY85GYQIWEAABAUhAEPuVp4iOmFAICAIAx4qDSa/loDrQkWHgIABANhwENFkVDa57YnmFoIAAgGwoCHYpH0X07WGQAABAVhwEOxsIswQDcBACAgCAMeKnTTTUDLAAAgINwtm4dexcLph4F4ylHKMQrZVgYrAgAcTLJ5lxLbtsgkEjKJuIwxssIR2ZGwQiVlilQPlWWn/+97LiIMeMhNN4EkdSRTKirgfwEAZIMxRu1rP1L7+tXq2LBeHRvWqmPDWqWam3r9OiscVsHQGkVHjVW0ZpSiNaNVdNgUhQqLslR55vFJ5KGoyzDQnnRUVJChYgAAkqSOjevV+PqLanz1n0ru3N75ZCgkpdIbu2WSSXVsXKeOuo87n3AcWaGwSo6aqbITTlHJtBmyI7n9jzlhwEOWZSkWttMeD8D0QgDIjFRrsxoWPquGV15QfNPHkm1Lzj7/5qYZBLrZ5+tNKqmmd95Q05LXZEVjKjt2tipPmavCcRM9qD77CAMei4VDaYeBtiQzCgDASyaVUv2Lz2rbI/fLaWuVjOk84GTgl6/d1zQd7Wp85QU1vvy8So+draEXXq7I4CHe3y+DCAMei0VsqT29c9sJAwDgmeZlS7TlL39UfPOm7N98dzBoeutVNS95XYPO/Jyqzjo/Z8YVEAY85mZGAd0EANB/ycZ6bbrzV2pZ/rZk+Txj3nFk5GjHU39Tw8L5OuSK61U6/Xh/a0oD6wx4zN0qhLQMAEB/tK36UKv//6+r5f2lnU+YgPySZYxSzc3a8Jufaesj98s4wf73njDgMVerELLwEAD02a7Fi7T2599WqnlXZsYE9FvneIUdf39YG379MzkdHT7Xc2CEAY9FQ+l3EyRTJoOVAMDAtXPBU9r4u1s7ZwUEMgh01/yvt7Tul99XqqXZ71J6RBjwmJsVBVOGMAAAbjW+tlBb/vx7v8twxxi1r1mpj2//kUwy6Xc1+yEMeCzsIgwkHcIAALjRvn6N6u7+jd9l9I3jqG3Vh9r68L1+V7IfwoDH3LQMJHOgaQsAgiLV0qyPf/2TwA/G65Ux2vncE2p8/UW/K+mGMOAxNy0DKVoGACAtxnG08b/+Q8n6HTkxRuBg6u76tdo/XuN3GV0IAx5z1zJAGACAdDS8/HznOgIDIAhIknFS2vj722QCMnaMMOAxWgYAwFsmmdT2Jx7yuwxvOY7iG9ereelivyuRRBjwHAMIAcBbja+/uHe3wYHEsrXtsQcD0TpAGPCYq6mFhAEA6JVxUtr+xF8lK/1/W3OGcdSxfnVn94fP2JvAYwdrGdi1fYvWLntLGz5crpZtm/T80HJdfvnlmjNnTpYqBIDc0fTmq0ps2+x3GZlj29r++EMqOWKGr2UQBjwW6iW9rl32lu761uVKJuIaPXq0Jk6cqNraWn3pS1/Sli1bFIlEslgpAARf09I3JNv2deDgwo+36NY335NjpK8ccagumDjau4vvXnsg2bxL4ZIy767rEt0EHgvbB35JV7y5SNWDq7Rt2zatXbtWzz33nL773e+qvr5ebW1tWawSAHJDS+0yX4NA0nF0y5vv6Z45J+iReZ/SnctWqaEj7vl92lbWen5NNwgDHuttzEBBLKaWlhZde+21GjNmjJ544oksVgYAuSWxY5tSjfW+1rBse4PGV5RqaHGhiiNhfWrEEL2ycZu3N7FDal35vrfXdFuCr3cfgEK9vKJHn/5ZDTv8KL1Zu1rr1q0LxAhSAAiq1hWZ+4B0jNHZj76g297qfo9FG7dq2p/+rvlrN0mStra2a2hRrOv40OKYtrS2e1xMSq0fLPf2mi4RBjzW28d7efUwXfGLO/Xln/wua/UAQK5q+6hWcrETrBu2ZenqaRP00Ifr1Li72f+DnY365sIl+sb0SZo7Zriknv9Nz8S8hvZ1q+QkEhm4cnoIAx7jl30A8EayaVdGxwucM65GldEC/bl2jTa3tOnfn1+seYeO0JVTD+06Z2hR95aALS3tqi6Kel+M48hpa/X+umkiDHiMLAAA3nDiHRn9DSts27rqiEP159o1uvb5NzS5qlzfPXZqt3OOGFyhlfVN2tLSppZEUi9t2KrZw4dkpB4T78jIddPB1EKPMQ4AADySSmb8FueMG6FfLH5Pxki//NT0/QaBh21bN82crMuffU2OMbpq6nhVxAoyUoufuzESBrLIGKOX/3qXVi55Zb9jF110kc444wx94xvfkDUQV9oCAJfsaOzgJ/XTT19fJkmq74gfcJ2YT48apk+PGpbxWqyCDHQ/pIluAo/11jDwce27euYPt2rCkDLNmzdPhxxyiGpqajRv3jwZY3TDDTfonXfeyV6xABBgdjTWueBQhvz67Q/04oatevDs2Uo5Ro+sXJ+xe6XD9jEM0DLgsd7CQNPOzrmpN998s8rLy7uev+WWW7Rt2zY9++yz2rx5AC+7CQAuREeMztiYgb+tWKd731ule+bM0uGDyvXlyWN11/JVuvCw0YpkMIAcSLiiUqGi4qzft+v+vt15gDK9DCEcc8QMxYpLdfzxx/d4fNCgQZo1a1amSgOAnFI0cXJGwsBLG7box68v13+cPF1HDqmUJF0yaazufW+1nli1QedPGOX5PXtl2yo6fFp27/kJhAGP9fZzW1w+SN/+64uqW/2hJKkoEtL5RwzvOn7UUUepuNi/ZAgAQRIbfaiscFgm6d1Awve2N+ibC5foW8dM0umjD+l6vqQgon+bNEZ3LvtInz10pKsdaPvNMZ3Bx0eWYfi7pz5uaNMD72xI69yyaFjXzRqb4YoAIHet/dm31ebzUr3ZMPbHv1FshIcbILnEAEKPucpWTBoAgF4VT56W0UGEQWAXFSs6fKS/Nfh69wHITTMLWQAAeldx8hxpIE+3tiwNOuM8WT4HHsKAx1w1DAzkH3AA8ECkskqVJ88ZsK0DVkGBBp1+jt9lEAa8lnSxjvaBFrgAAOxVddb5fpeQGZalQaefp1BRid+VEAa8Fk+l3zRQECIMAMDBRKqqVT77tAHXOmCFIxp0xjy/y5BEGPBcIpV+y0AkxMsPAOmonvfFzhUJB1CL6uDzvqRwaZnfZUgiDHgu7iIMFBAGACAtkapq1fz7TQNjn3jbVslRx6rqrM/7XUkXPo08lqCbAAAyouSI6ar+/CV+l9E/tq1I1RANv+aGQA0iJwx4zE3LAN0EAOBO1dkXqOTImTk7fsAKhTXy699XqLDI71K6yc1XM8AIAwCQOZZta/g1NyhaMyq3AoFlSaGQav79/+2sPWBy6JXMDW4GEDJmAADcCxUVa/R3fqGiiVNyY0ChbcuKFGjUDT9Q6dHH+V1Nj/g08hhjBgAg80KFRRp5ww9UPuvTfpfSO9tWuLxSY753i4onH+l3NQdEGPAY3QQAkB12JKJDrvpfGvblazu7DALYbVA0cYrG/uhXio0a53cpvWILY48RBgAgeyzLUuWnz1LRYVO15aG71LL8HcmyJZP+v8UZKEqh4lINufAylc/+tCw75F8taSIMeIxuAgDIvmjNKI268YdqXva2tvzlD4pv3pT9ImxblmVr0JmfV9VZnw/cjIHeEAY8xqJDAOCfkiOmq/gnd6jhpee07fGHlGqsl+yQ5KQyc0PL6lwIybZVNnO2hlx4mSJV1Zm5VwYRBjzWkaSbAAD8ZIVCqjz1TFWcPEetK97Xrtdf1K43XpLT3tY5rsDFhnIHvklnCCicMEnls05V2YxZCpWU9v+6PiEMeMgYo7ZE+umzMEIYAIBMsWxbxYdPVfHhUzXskmvUvPwdNb35itpWr1B8a93eUGCHJJnO3/D3Xe7YsiXbklJO53FJoZIyRUeOUcm0GSo79iRFBg3O+veVCYQBD7UlHLlZNbsowssPANlghSMqPepYlR51rCTJJJOKb9mkjk3r1bFhvRLbt8hJxGUSCZlUSnZBgaxwRKGSUkVrRilaM1rRmlEKFfu/3XAm8GnkodZEMu1zLdEyAAB+scLh3R/yo6SZflfjPz6NPNQad9NFEArUJhUAgPxFGPBQq4vxAkUFwZ93CgDID4QBD7kKAxHCAAAgGAgDHmpx0U1AywAAICgIAx5yM62QlgEAQFAQBjzkqmWAMAAACAjCgIcYQAgAyEWEAQ+5mVpIywAAICgIAx5y1zLAek8AgGAgDHgk5bjbl6CYlgEAQEAQBjyyqyPh6nzGDAAAgoIw4JGGtvTDQCRkKRbmpQcABAOfSB5pbE9/k6LyaIR9CQAAgUEY8IibloGyGIMHAQDBQRjwSEN7+mGgPBbJYCUAALhDGPAILQMAgFxFGPBIIy0DAIAcRRjwQHsypbaEk/b55bQMAAAChDDggca29GcSSFIZLQMAgAAhDHjAzeDBkGWphAWHAAABQhjwgJvBg6WxMGsMAAAChTDgAXeDBxkvAAAIFsKAB9y0DDCTAAAQNIQBD7hpGSiL0jIAAAgWwkA/GWPU4GJfgopCWgYAAMFCGOin5nhKKcekfX5VUUEGqwEAwD3CQD+5GS8gEQYAAMFDGOgnN2sMlEbDKgjzkgMAgoVPpn5qdNEyQKsAACCICAP9VO8mDBQTBgAAwUMY6KctzR1pnzu4iJkEAIDgIQz0QyLlaEdLPO3z6SYAAAQRYaAftjZ3KP1JhXQTAACCiTDQD5ub0u8iiIVtFUXYrRAAEDyEgX5wEwaqigrYrRAAEEiEgX7Y0tye9rl0EQAAgoow0EfJlKPtDB4EAAwAhIE+2tYSl4stCQgDAIDAIgz00eam9LsIJKm6hDAAAAgmwkAfuRk8WBgJqSwazmA1AAD0HWGgj9yEgWGlUWYSAAACizDQBynHaFuLizBQEs1gNQAA9A9hoA+2tXS4Gjw4tJQwAAAILsJAH2xx0UUgScNKYxmqBACA/iMM9IHbZYjLYwweBAAEF2GgD9xMKxzK4EEAQMARBlxKOUZbXaw8SBcBACDoCAMu7WiNK+Vi9OAwBg8CAAKOMOCS25UHmVYIAAg6woBLbgYPRsO2KgojGawGAID+Iwy45GZa4dASBg8CAIKPMOCCY4y2NLsIA4wXAADkAMKACzta40q6GDxYU8ZMAgBA8BEGXHC78uCI8sIMVQIAgHcIAy64GTxYWRhRCdsWAwByAGHABTfTCmkVAADkCsJAmlKOcdVNMKKC8QIAgNxAGEhT3a52JVwMHhxJywAAIEcQBtK0rqEt7XOLIiFVstgQACBHEAbStL6+Ne1zR1TEWGwIAJAzCANpSDqONu5i8CAAYGAiDKRhU2O7q8WGGC8AAMglhIE0uBkvELEtDWGnQgBADiEMpGF9ffphYHhZTCGb8QIAgNxBGDiIRMrRJjfjBSroIgAA5BbCwEFsbGxXyjBeAAAwcBEGDmJ9Q/pTCkO2pZpyVh4EAOQWwsBBrHMxXqCmLKZIiJcUAJBb2FZvt9fW7dS25g6NGVSssYOKVBoNK550VOdic6IxlUUZrBAAgMwgDOxWFg3rxdU79P7WZknS4OICDSqKyMXyAoQBAEBOIgzsNqy0e1//9pa4trfE0/76aNjWsFLWFwAA5B46uHerLIooEur7+gCjKgpls74AACAHEQZ2sy1LQ/uxcmBH0tHqHS1KpBwPqwIAIPPoJtjH0JKoNjSmP2BwX+sb2rS+oU0hy9KIipjGVhbp0MHFqi6m6wAAEGy0DOxjaGn/1whIGaN19W16ac0ONXckPagKAIDMIgzsw8sBgOdMGqaxg4o9ux4AAJlCGNhHVVGBJ5sMnTZ+sCYPLfWgIgAAMo8wsI+QbWlIcUG/rnHCqErNHFnpUUUAAGQeYeATPrnegBvTDinTp8ZVeVgNAACZRxj4hKF9HDcwfnCx5k4cIstirQEAQG4hDHxCdR+6CUaUx3Te5GEsOgQAyEmEgU+oKnIXBqqLC3TBEcPZrRAAkLP4BPuEWCSk4oJQWueWRcP6wpE1ikXSOx8AgCAiDPQgndaB4oKQLjqqRqVRFnEEAOQ2wkAPDhYGCiO2vnhkjesuBQAAgogw0IOqXgYRRsO2LjqyRtX92NQIAIAgIQz0oKoo0uPzBSFLX5g2vF9rEQAAEDSEgR701Pwfti1dMK1GNeWFPlQEAEDmEAZ6UBoNKxLau2ZAyLZ0/hGHaFQFQQAAMPAQBnpgWVZX64BtSZ+bwg6EAICBK2/mxRljJCclk0xKTkqyLFmhsBQKy7L3z0RVRQXa0tSheZOHafzgEh8qBgAgOyxjjPG7CK+lmhuV3F7X+WdbnZLbNiq5fbOUjPd4vl1SrnB1jcLVwxUePEzhwcO1pKVApcWFmjKsLMvVAwCQXQMmDKQad6i9donali9WaueWzictq/OP46R3ETvU2Wqw+3H00KmKTTlG0XFTZIV7nmEAAECuy+kw4LS1dAaA9xYrWbeu84Pfy2/HsiXjSJECxQ47WrHJx6hg9GHsTAgAGFByMgyYZEKtS15U86vPSIm4JEtShr8N25YcR+Fho1T6mQtUMHxsZu8HAECW5FQYMMaoY8VSNb3wP3Ka6v0pYndrQfTw6So9+TyFygf5UwcAAB7JmTCQ3F6nXfMfVGLTGu+7A/rCsiXLUvFxn1HxrDNlhdi5EACQm3IiDLR/+I4an7pfSqU6+/ADxVJk+BiVf/YrCpUw8wAAkHsCHQaMMWp55Wm1vDrf71J6Z9myCotV+YXrFBkywu9qAABwJbBhwDgp7Xrur2r/12t+l5Iey5LCEVWef60KRk3wuxoAANIWyOWIjTHaNf/B3AkCUucYhmRC9f/9n4pvXON3NQAApC2QYaBt6SK1L3/D7zLcM0YyRg3/80elWnb5XQ0AAGkJXBiIb1yjpuf/5ncZfWeMTFuLGh+7S2bPaoYAAARYoMJAqmWXGv7nj8r4AkKZZhwlNq5W88LH/a4EAICDClQY2PX0n2XaWvxfQ8AjrW/9Ux1rav0uAwCAXgUmDCTq1iq+pjaA6wj0g2Wp+aUnFdAJGwAASApQGGh+5ZnOVf0GEmOU3PKx4us+9LsSAAAOKBCfvoktHyu++v2B1Sqwh2WrZdHTflcBAMABBSIMtLw6f+C1CuxhHCU2rVF8/Uq/KwEAoEdhvwtw4h3q+GiZr4MGNzY06Wt//Ye2N7cpbNv65mkzNW/aeO9uYNtqr13CyoQAgEDyPQwk6tb6PnsgbNv68bknaerwam1rbtUZv/qrTjt8tIoLIt7cwHEUX7/Cm2sBAOAx39vmExtW+d5FMLSsWFOHV0uSqkuKVFEUU0Nru6f3SNVvk9PW4uk1AQDwgu9hIP7xRxkbOOg4RrP/48/68dOvdnv+nx+u08jv/lZP/Ouj/b5m6YYtcoxRTUWp5/UkNq72/JoAAPSXr2HAOCklNq3N2PVt29L1p87Qfa8v6/pN/71N23X1A/P1nTnH7zcuYGdLm67/6/P6j8+fmoliFN+wyvvrAgDQT/6GgfY2KZnI6D3OP+owDSou1J2v/EubGpp1yT1P6oLph+u6k6d3O68jmdKV9z+j/3XqDM0cc4j3hRgjp6nB++sCANBPvg4gNMl4xu8RDtn62snT9fNnX9NTy1fpiJpq/XTeSd3rMEZf/+/ndeKhNbpw+uGZKcQYmUTmv18AANzyt2UglZ1d/c4/eqLa4kkZGf3u4jkK2d2/7cVr6/T4v1Zq/ntrdNrtD+m02x9Sbd12z+swGW4FAQCgL3xtGbDC2bn9dx5/SZK0s6VdIcva7/hxY4er7hdfy3gdVqQg4/cAAMAtX1sGrHDmPxxvefZ1Pf/BWj311QuVdBz95c33M37PHllWVr5fAADc8jcMxIpkRWMZu/4Di9/Tf728VPdfdo6mDB+sa2YfpTtefEeJLHVPdGcpNKjah/sCANA7f8OAZSkyYrzUQ9N9fy34YJ2+89iL+s8vnq4Zo4dJkq6aNU3NHXE9/LYPuwgaR5ERh2b/vgAAHITviw4VZOAD8t0NW3X1A/P1v886UWdP3Xv90liBrpw1Tf+5cIlSTpZ3SLQsRQ4Zk917AgCQBssYfzcGiG9co/oH/o+fJWRFeEiNqi7/tt9lAACwH99bBiLDRkoh3/dLyizbVsGoiX5XAQBAj3wPA1YorNjU43zfrCijHEeFRxzvdxUAAPQoEJ/AJcefLsnfbYwzxrIVnTBN4erhflcCAECPAhEGQuVVik05dmC2DhhHxbPm+l0FAAAHFJhP3+IT5kj+jmX0nmWrYNxkRYaO9LsSAAAOKDBhIFxZrdi04zOy5oB/jEpmn+N3EQAA9CowYUCSyk67QKGqYQOmu6D0tAs6Z0sAABBggfrUtSIFqvj8Nbs39MnhFgLLUmzyTBUefdLBzwUAwGeBCgOSFK4YrPJ5lytnZxdYtkJVw1Q254uyBlSXBwBgoApcGJCk6LgpKjl5nt9luGfZsqKxfVo3AAAIPt+XI+5N61sL1fTCI36XkR7Lll1arsqLrle4kt0JAQC5I9BhQJLaa5eo8ek/S04quFMPLUvhISNUccG1ChWX+V0NAACuBD4MSFJiywY1PPp7Oc2NAQsEliSj2LQTVPaZC2WFI34XBACAazkRBiTJaWtR88t/V9vSVzrXIjBZ3oK4B3ZJuUpP/Zxik2b4XQoAAH2WM2Fgj+T2OjUteETxdR/uDgVZLt+ypVBIJbPmqmjGKQwUBADkvJwLA3t0rH5fTQseUap+a+cHdMZbCvZ2CZTMPkehEsYGAAAGhpwNA5JkjKPEhtVqf/8ttdcukYm3exsMdrc8hIfUKDblWMUOn65QaYU31wYAICByOgzsy6SSiq/9QG3vv6X4qvc6g4HU+YFuWZJzkIBghzpnLHR+kUKV1YpNnqHYpGMUHjQko7UDAOCnARMG9mWMkdPSpOSOOqW21Sm5vU6JrRvktDVLyaSMk5IsS1YoLCscUahyiMLVhyg8eLjCg4cpPGgoYwEAAHljQIYBAACQvkAuRwwAALKHMAAAQJ4jDAAAkOcIAwAA5DnCAAAAeY4wAABAniMMAACQ5wgDAADkOcIAAAB5jjAAAECeIwwAAJDnCAMAAOQ5wgAAAHmOMAAAQJ4jDAAAkOfCfhewr4Kjr5QdLpBlh2TZIYUiex9btr33WCgkO1wgu+tYaL9jlh2SbVuybEuhkC3rE49t25IdsrrO6fWYZSkUthWyLYVsSwW7H4e7/h7aeyy097zwPueGenpsWbItSyFLioTsrsfhkK2Qpc6/25YittXD487jEdvuehyyLFmWZFuSZWn39SVLUsi2ZEud34utrse2JYWsfR93XsMyRjKOLCcpdXvsdP5xDnzMMo6USu197CQlJyXjOFIyLpNKSY7T+VwyIeOkOh8nEtKex3vO3XNeIr73a5yUnERSJuXIOI6ceFJOqvNrTMqRk0jKSe19bHY/TiWSMvucl4on93mcknGMnJTZ/ffdX++YzmMpI5MyclKOUgln9zWNUonU7q/Z+3WOMUoZo7hjlDL6xONP/r3zsaPOxymj3cf2Pv4vs9bX96VXeH/z/ub9Hdz3Ny0DAADkOcIAAAB5jjAAAECeIwwAAJDnCAMAAOQ5wgAAAHmOMAAAQJ4jDAAAkOcIAwAA5DnCAAAAeY4wAABAniMMAACQ5wgDAADkOcIAAAB5jjAAAECeIwwAAJDnCAMAAOQ5wgAAAHmOMAAAQJ4jDAAAkOcIAwAA5DnCAAAAeY4wAABAniMMAACQ5wgDAADkOzNAtbe3m5tvvtm0t7f7Xcp+glybMdTXH0GubSAJ8usc5NqMob7+CHJt/WUZY4zfgSQTdu3apfLycjU2NqqsrMzvcroJcm0S9fVHkGsbSIL8Oge5Non6+iPItfUX3QQAAOQ5wgAAAHmOMAAAQJ4bsGEgGo3q5ptvVjQa9buU/QS5Non6+iPItQ0kQX6dg1ybRH39EeTa+mvADiAEAADpGbAtAwAAID2EAQAA8hxhAACAPDfgwsC3vvUtnXTSSfq3f/s3xePxbsfa2tp0zjnn6OSTT9bpp5+unTt3Bqq+PX7+85/rmGOO8b2mZDKpyy+/XCeddJK+/vWvZ62edOvbI9uv174OVFsQftYGIt7f3tXE+/vg8un9PaDCwDvvvKPNmzfr5Zdf1uTJk/W3v/2t2/FnnnlGU6dO1YsvvqgvfOELuv/++wNVnyQ1NTVp+fLlgajpySef1IgRI/Tyyy+rtbVVr776atbqSqc+KfuvV7q1+f2zNhDx/va2Jt7ffa/N75+1TBhQYeC1117TGWecIUmaO3fufj/cEyZMUGtrqySpoaFB1dXVgapPkn71q1/pq1/9aiBqSqdeP+uTsv967au32vz+WRuIeH97WxPv797l2/s77HcBXmpoaNDw4cMlSeXl5fs13Rx66KFavny5pk6dKsuy9MYbbwSqvsbGRi1btkzf//73A1FTQ0ND1/rbPdXrd31+vF7p1ub3z9pAxPvb25p4f/e9Nr9/1jIhJ1sGNm/erNmzZ+/3xxijXbt2Ser8Hzlo0KBuX3fffffplFNO0fLly/XDH/5QP/rRjwJV3+23366vfe1rGanpQCorKw9YU2/HglCfH6/XvnqrLVs/awMR72/v8P7uu3x7f+dkGBg2bJgWLVq035+zzjpLzz33nCTp2Wef1Yknnrjf1+75H1pRUaGGhoZA1ffRRx/ppz/9qebOnauVK1fqF7/4RUbq29fxxx9/wJp6O5YtvdXgx+uVbm1Sdn7WBiLe397h/Z2Z2qQB+P72b/fkzLjxxhvN7NmzzcUXX2w6OjqMMcZcc801xhhjGhsbzVlnnWVOPvlkc+KJJ5oPP/wwUPXta8aMGb7VtKeeRCJhLr30UjN79mxz/fXXZ62edOvbVzZfr30dqLYg/KwNRLy/+18T7+/05dP7m+WIAQDIcznZTQAAALxDGAAAIM8RBgAAyHOEAQAA8hxhIA/ce++9qqio8ORaa9eulWVZCofD2rhxY7djdXV1CofDsixLa9eu7XbskUce0SmnnKLy8nKVlJRo2rRp+tGPftS1kIeXNQL55vLLL5dlWbr22mv3O3bdddfJsixdfvnlXc9t3rxZ119/vcaNG6doNKqRI0fq3HPP1YIFC7rOGTNmjG6//fYsVI8gIAygT4YPH64//elP3Z677777VFNTs9+53/ve93TRRRdp5syZeuaZZ7R8+XLddtttevfddwfEmt5AEIwcOVIPPfSQ2traup5rb2/Xgw8+qFGjRnU9t3btWs2YMUMvvPCCbr31Vi1btkzz58/Xqaee6tvSv/AfYSAHzJ8/X7Nnz1ZFRYWqqqp0zjnnaNWqVZKkhQsXyrKsboteLF26tOu384ULF+qKK65QY2OjLMuSZVn6wQ9+IEmqr6/XpZdeqsrKShUVFenMM8/UypUr06rpsssu0z333NPtuXvvvVeXXXZZt+cWL16sn/3sZ7rtttv0y1/+UrNmzdKYMWN0+umn65FHHtnvfAB9M336dI0aNUqPPvpo13OPPvqoRo4cqaOPPrrruT0tBYsXL9YFF1ygiRMnasqUKbrhhhv0+uuv+1E6AoAwkANaWlp0ww036M0339SCBQtk27Y+97nPyXGcg37trFmzdPvtt6usrEx1dXWqq6vTt771LUmdTYtvvfWWnnjiCb322msyxuiss85SIpE46HXnzZun+vp6LVq0SJK0aNEi7dy5U+eee2638x544AGVlJTouuuu6/E6dA0A3rniiiu6hfS7775bV155Zdffd+7cqfnz5+urX/2qiouL9/t63o/5a0BtVDRQnX/++d3+ftddd2nIkCF6//33D/q1BQUFKi8vl2VZGjZsWNfzK1eu1BNPPKFXXnlFs2bNktT5wT1y5Eg99thjuvDCC3u9biQS0SWXXKK7775bs2fP1t13361LLrlEkUik23krV67UuHHj9nsegPe+/OUv6zvf+U7X2J5XXnlFDz30kBYuXCipc4lfY4wOP/xwfwtF4NAykANWrVqliy++WOPGjVNZWZnGjh0rSVq/fn2fr1lbW6twOKzjjjuu67mqqioddthhqq2tlSSdeeaZKikpUUlJiaZMmbLfNa666io9/PDD2rx5sx5++OFuv4HsYYyRZVl9rhNA+gYPHqyzzz5b9913n+655x6dffbZGjx4cNfxPQvO8p7EJ9EykAPOPfdcjRw5Un/84x81fPhwOY6jqVOnKh6Pq6SkRNLeN7mktJr5D7QK9b4f3nfeeWfXYKSefrOfOnWqDj/8cH3pS1/SpEmTNHXqVC1durTbORMnTtSiRYuUSCRoHQCy4Morr+za7e+OO+7odmzChAmyLEu1tbX67Gc/60N1CCpaBgJux44dqq2t1fe//32ddtppmjRpkurr67uOV1dXS+qc1rfHJz+QCwoKlEqluj03efJkJZPJbvtw79ixQytWrNCkSZMkSTU1NRo/frzGjx+v0aNH91jflVdeqYULF/bYKiBJF198sZqbm/Xb3/62x+MDYrcvIEDmzp2reDyueDyuOXPmdDs2aNAgzZkzR3fccYdaWlr2+1rej/mLMBBwlZWVqqqq0h/+8Ad99NFHeuGFF3TDDTd0HR8/frxGjhypH/zgB1qxYoWeeuop3Xbbbd2uMWbMGDU3N2vBggXavn27WltbNWHCBJ133nm6+uqrtWjRIr377ru65JJLVFNTo/POOy/t+q6++mpt27ZNX/nKV3o8ftxxx+mmm27SjTfeqJtuukmvvfaa1q1bpwULFujCCy/Ufffd17cXBkCPQqGQamtrVVtbq1AotN/x3/72t0qlUjr22GP1yCOPaOXKlaqtrdWvf/1rnXDCCT5UjCAgDAScbdt66KGHtGTJEk2dOlXf/OY39ctf/rLreCQS0YMPPqgPPvhARx55pG655Rb95Cc/6XaNWbNm6dprr9VFF12k6upq3XrrrZKke+65RzNmzNA555yjE044QcYYPf30066a88PhsAYPHqxw+MA9Trfccov+8pe/6I033tCcOXO6pjFNmzaNqYVABpSVlamsrKzHY2PHjtXbb7+tU089VTfeeKOmTp2q008/XQsWLNDvfve7LFeKoGALYwAA8hwtAwAA5DnCAAAAeY4wAABAniMMAACQ5wgDAADkOcIAAAB5jjAAAECeIwwAAJDnCAMAAOQ5wgAAAHmOMAAAQJ77v8KxBKzrFTqiAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0oElEQVR4nO3deZgU5b3//U9Vd0/37DMMA8iwCyiLqCAuBKPGKIiISdSYeIyiRh+Pib8kmidPtt9j9kRz/F0mOSYniWuM0RyjxyUqGjGouIFrQEdAVtm3mWH2Xur+/TEwMDIMXTPVXdXT79d1cdl01VR9p52mP3Pf37rLMsYYAQCAvGX7XQAAAPAXYQAAgDxHGAAAIM8RBgAAyHOEAQAA8hxhAACAPEcYAAAgzxEGAADIc4QBAADyHGEAAIA8RxgAACDPEQYAAMhzhAEAAPIcYQAAgDxHGAAAIM8RBgAAyHOEAQAA8hxhAACAPEcYAAAgzxEGAADIc4QBAADyHGEAAIA8RxgAACDPEQYAAMhzYb8LyDSTSipVv1Op3VtlWptlUknJSUmWJYXCskJh2WVVCg8YLKu4TJZl+V0yAABZ1a/CgDFGyW0fKbFhhVK7tiq5c7OcPbskY/bvZFmS9n3gm67bIlGFq4YoNPAIhQfWqGDMZNlFJdn8FgAAyDrLmAM/DXNTcvc2xVe+rfYP3pTTVC9Ztg76oHfDtiXHkSxLkWHjFD1qqgrGTJJVEPOybAAAAiFnw4BxUmp/f4na/vWyUru3dfzGn4lvZd9x7ZAKRk9S4QmfUri6xvvzAADgk5wMA/H1H6j5xcfkNOzM7oktWzKOohOmq+jk2bKLy7J7fgAAMiCnwkBy11a1LH5ciY9WZW4kIB2WJdkhFU7/tAqP+6SscMSfOgAA8EBOhAHjOGpd+g+1Ll24NwQ4fpfUyS4pV+k5lys8eLjfpQAA0CuBDwNOW4uanrlfiY9W+l1K9yxLsmwVn36BYhOn+10NAACuBToMpBrrtefR3x98eWBAFU77lApPns1aBQCAnBLYMJDcvU17Hv29TGtzoKYFDqdgwgkqOeMiWTaLOwIAckMgP7GcthY1Pn5HzgUBSYrXvqHWpf/wuwwAANIWuDBgjKOmZ+6X09yQc0Fgn9alzym+9n2/ywAAIC2BCwOtS/7R0SwYzNmLtDU+e79S9VleBwEAgF4IVBiIr31frUuf87sMbyST2vPk3TKJuN+VAADQo8CEAZNKqumfD/ldhneMI6d+h1rfedHvSgAA6FFgwkB77VKZlia/y/CWMWp7+wWZeJvflQAAcEiBCAMmlVLL0oV+l5ERJt6utmWv+l0GAACHFIgw0L7iTZnmBr/LyBCj1rf+Se8AACCwAhEGWt943u8SMsq0t6q9dqnfZQAA0C3fw0Cqsa5juWGfXfbHR3Xkt36jK+58zPuDW5biQb23AgAg7/keBpKb1/pdgiTp6tOm6vYvzcnMwY1RctMamRxdRAkA0L/5HgYSW9ZKAVjH/9TxI1QSi2Ts+CbeplTdjowdHwCA3vL9UzixcbXkZOY3ZscxOvnHd+mHj73Q5fnna9fqiK//Hz329oqMnPdQklvWZfV8AACkw9cwYBJxOfWZ+23Zti19/ewTdffid1Xf0nGt//KN23XlXU/oe+edqvOPPypj5z6IZSu5bUP2zgcAQJr8DQNZWIznwhMmqqq4UH9Y9JY21zXqi79/RJ+fPlFfPXN6xs/dhTEsPgQACKSwnyc3yUTGzxEO2br+0yfqp0+8pL+/u1JThg3Wzy/8VMbPezDDWgMAgEDyvWcgGy6cPkGtiaSMkf4w/1yFumlYvOj2v+mqu57Qc++t1TH/+7/01vot3heS2zdiBAD0U76ODFjhzHXvH+jb/92x1PGu5tZug4AkPfSVCzNchSWroCDD5wAAwD1fRwasgljGz/Hzvy/WP95fowU3XKKU4+j+V5dl/JzdsqysfL8AALjlbxiIFMgur8rY8e975V/67fNv6P5rPqvJwwbp/zl9mn7z3BIlUqmMnfOQjKPwoGHZPy8AAIfhe89AZNjYjCw69Nx7a/T/PbRQv7tsjk4YPVSSdPUnj1djW1z/veR9z8+XjvARo305LwAAPfE/DBwx2vNFh97ZsFVX3fWEbjr/k5p73PjO50sLo/ryacfrV/9YolSGFjo6pEhUoQGDsntOAADSYBljfO1xT+3Zrfo//dzPEjLPshQZcZTKzrvK70oAADiI7yMDdmml7NJKv8vILCNFRmRxtUMAAFzwPQxYlqXCaX4sApQ9VkFUsQlZXvEQAIA0+R4GJCk64QRZRaV+l5EhlmJTT5dVEPW7EAAAuhWIMGCFwio84Uy/y8iMSIFix8zwuwoAAA4pEGFAkmITT5QVK/a7DG9ZlgqPO1V2tNDvSgAAOKTAhAErHFHx6Z/zuwzvWLbssgGKHX+a35UAANCjwIQBSYqOnaLY1NP9LsMboZBKz71CNksQAwACLlBhQJKKTp6t8NAxkhW40lwp+fQXFB4w2O8yAAA4rMB94lp2SKXnfElWYbFkWX6X0yuxqacrOnaK32UAAJCWwIUBSbILS1Q278uyooU5N0JQMO44FZ082+8yAABIm+/LEfck1bBLex79vZymBslk+V4CvRA79lQVzZwrK8cCDAAgvwU6DEiS09qkxqfvU3LzGr9L6d7eqYziT35G0cmnyMrRqQ0AQP4KfBiQJOOk1PLKU2p758WOaYOgjBJYlqxYsUrPuUyRodyeGACQm3IiDOyT3L5RzS8+quTW9ZIsST6VbtkdCwpNPV2FU0+XxeWDAIAcllNhQJKMMYqvXqaWxU/IaarP7sktSzKmo0lwxhyF+vvdFgEAeSHnwsA+JpVU279eVtuyV+Ts2Z256YO9AaAlUqSPRpykacdNVPSIUd6fBwAAn+RsGNjHGKPUjk1qX/m22le8JdPa1PdgYNkdASAc0/phJ2htxVhtSkQkSZccP0wjKrjXAACg/8j5MHAg4zhKbl6r+IYVSu3aouTOLTLNDft3sKy93f97+w2M9v5370sQCqltwHCtG3i0VhcM0eZkwUHnOGFYhT49rjoL3w0AANnRr8JAd0y8Xam67Uru2irT1izjpKRUsuNKgFBYCkXUWjxAq1WuFY1GGxvaejxeeSysa08exSWEAIB+I+x3AZlmFUQVHjxc4cHDD7nPu+t3a9GaXWkdr6Etqe3NcQ0uiXpVIgAAvmKpPEnjq0tc7b9qR1OGKgEAIPsIA5IGFBVoYNHB/QGHsnInYQAA0H8QBvYaV12c9r7bm+Kqb01ksBoAALKHMLDX+IEupwoYHQAA9BOEgb2GlEZVGk2/n3LljuYMVgMAQPYQBvayLEvjBqY/VbCxoVUt8WQGKwIAIDsIAwdwM1VgJH24i9EBAEDuIwwcYHhFoaLh9F8SpgoAAP0BYeAAIdvS2Kr0pwrW1rUonszAzZEAAMgiwsDHuOkbSDlG6+paMlgNAACZRxj4mDEDihWy07/vwHrCAAAgxxEGPqYgbGtUZVHa+zMyAADIdYSBbrjpG9jVktCeNlYjBADkLsJAN0ZVFrraf31da4YqAQAg8wgD3agojKjMxWqETBUAAHIZYaAblmVphIvRgXV1LTLGZLAiAAAyhzBwCCMr0m8ibI6ntLMlnsFqAADIHMLAIbgZGZCkdbuZKgAA5CbCwCGUxyKqLIykvT99AwCAXEUY6MFIF6MDG+pblXLoGwAA5B7CQA9GuOgbSKSMNu9py2A1AABkBmGgB25GBiSmCgAAuYkw0IPigrAGFhekvT/3KQAA5CLCwGGMrEh/dGDTnja1J1MZrAYAAO8RBg5jhIubFhkjfVTP0sQAgNxCGDiMES5GBiRpHfcpAADkGMLAYRRGQhpcEk17fxYfAgDkGsJAGtxcVbCzJa7G9mQGqwEAwFuEgTSMdNE3IHFVAQAgtxAG0jCsvFCWlf7+a5kqAADkEMJAGqJhW0NLY2nvv6mBlQgBALmDMJAmN30D9W0JNcfpGwAA5AbCQJrc3KdAEvcpAADkDMJAmmrKYwq5aBwgDAAAcgVhIE2RkK2a8vT7BjbTNwAAyBGEARfc9A1saWyTY0wGqwEAwBuEARfc9A3EU0Y7m+MZrAYAAG8QBlwYWhZTxKZvAADQvxAGXAjZloa5uHERYQAAkAsIAy4NLaOJEADQvxAGXBrk4g6GO1viakukMlgNAAB9RxhwaVBxgav9tzQyOgAACDbCgEsVhRFFQjQRAgD6D8KAS5Zlqbo4/akC+gYAAEFHGOiFQSXpTxVsZ60BAEDAEQZ6wU0TYWN7Uq00EQIAAoww0AtupgkkaXtTe4YqAQCg7wgDvVDtYppAIgwAAIKNMNALsXBI5bFw2vtvb6JvAAAQXISBXqp20Tewo5mRAQBAcBEGemmQi76BHc1xOQ63MwYABBNhoJfcXF6Ycox2tyYyWA0AAL1HGOglN5cXStIOmggBAAFFGOilisKIInb6yxJzRQEAIKgIA71kW5YGurhp0XaaCAEAAUUY6AM3UwVcXggACCrCQB+wLDEAoD8gDPSBm7UGpI5LDAEACBrCQB8MctEzIEl1rYQBAEDwEAb6IBYJqSya/rLEdS2sNQAACB7CQB+56RuoY+EhAEAAEQb6yM1KhEwTAACCiDDQR26aCOtaEzKGexQAAIKFMNBHbqYJEimjpjiXFwIAgoUw0EeVhRGFXSxLTN8AACBoCAN95HZZ4roW+gYAAMFCGPBARSyS9r6MDAAAgoYw4IHSmIu1BggDAICAIQx4wM3CQ7uZJgAABAxhwANlLqYJ6rm8EAAQMIQBD7gZGUg4XF4IAAgWwoAHylz0DEhSA30DAIAAIQx4oCgSUshKf62Bxngyg9UAAOAOYcADlmW5uqKgsZ0wAAAIDsKAR9z0DTQRBgAAAUIY8IibvgHCAAAgSAgDHnEzMtDYztUEAIDgIAx4xM1aAzQQAgCChDDgkVKXPQMsPAQACArCgEfcTBMkHaO2pJPBagAASB9hwCNuFx7i8kIAQFAQBjwSDYcUDaX/cnJFAQAgKAgDHnIzOsDIAAAgKAgDHnLTREgYAAAEBWHAQ64WHuLyQgBAQBAGPFQaTX+tgZYECw8BAIKBMOChokgo7X3bElxaCAAIBsKAh2KR9F9O1hkAAAQFYcBDsbCLMMA0AQAgIAgDHip0M03AyAAAICDcLZuHHsXC6YeBeMpRyjEK2VYGKwIAHE6yaY8SO7bJJBIyibiMMbLCEdmRsEIlZYpUD5Zlp//vey4iDHjIzTSBJLUnUyoq4H8BAGSDMUZt6z5U24Y1at+4Qe0b16l94zqlmhp7/DorHFbB4BpFR4xWtGaEojUjVXTUJIUKi7JUeebxSeShqMsw0JZ0VFSQoWIAAJKk9k0b1PDaC2p45Z9K7t7Z8WQoJKXS690yyaTaN61X+5aPOp5wHFmhsEqOm66yU05XyZRpsiO5/Y85YcBDlmUpFrbT7gfg8kIAyIxUS5PqFz2j+pefV3zzR5JtS84B/+amGQS6OODrTSqpxrdfV+Obr8qKxlR24kxVnj5bhWPGe1B99hEGPBYLh9IOA61JrigAAC+ZVEp1LzyjHQ/fJ6e1RTKmY4OTgV++9h7TtLep4eXn1fDScyo9caYGXzRfkYGDvD9fBhEGPBaL2FJbevu2EQYAwDNNy97Utr/8UfGtm7N/8r3BoPGNV9T05msacM5nVTXngpzpKyAMeMzNFQVMEwBA3yUb6rT5jl+peflbkuXzFfOOIyNHu578m+oXLdARV1yv0qkn+1tTGlhnwGPuViFkZAAA+qJ19Qqt+f+/pub33+l4wgTklyxjlGpq0sbf/EzbH75Pxgn2v/eEAY+5WoWQhYcAoNf2LFmsdT//tlJNezLTE9BnHf0Ku/7+kDb++mdy2tt9rufQCAMei4bSnyZIpkwGKwGA/mv3wie16Xe3dFwVEMgg0FXTv97Q+l9+X6nmJr9L6RZhwGNuVhRMGcIAALjV8Ooibfvz7/0uwx1j1LZ2lT667UcyyaTf1RyEMOCxsIswkHQIAwDgRtuGtdpy12/8LqN3HEetq1do+0P3+F3JQQgDHnMzMpDMgaEtAAiKVHOTPvr1TwLfjNcjY7T72cfV8NoLflfSBWHAY25GBlKMDABAWozjaNN//YeSdbtyokfgcLbc+Wu1fbTW7zI6EQY85m5kgDAAAOmof+m5jnUE+kEQkCTjpLTp97fKBKR3jDDgMUYGAMBbJpnUzscf9LsMbzmO4ps2qOmdJX5XIokw4DkaCAHAWw2vvbD/boP9iWVrx6MPBGJ0gDDgMVeXFhIGAKBHxklp5+N/laz0/23NGcZR+4Y1HdMfPuPeBB473MjAnp3btG7ZG9q4Yrmad2zWc4PLNX/+fM2aNStLFQJA7mhc+ooSO7b6XUbm2LZ2PvagSo6Z5msZhAGPhXpIr+uWvaE7vzlfyURcI0eO1Pjx41VbW6svfvGL2rZtmyKRSBYrBYDga3zndcm2fW0cXPTRNt2y9D05RvryMUfqwvEjvTv43rUHkk17FC4p8+64LjFN4LGwfeiXdOXSxaoeWKUdO3Zo3bp1evbZZ/Xd735XdXV1am1tzWKVAJAbmmuX+RoEko6jm5e+p7tnnaKH531Sdyxbrfr2uOfnaV1V6/kx3SAMeKynnoGCWEzNzc269tprNWrUKD3++ONZrAwAckti1w6lGup8rWHZznqNrSjV4OJCFUfC+uSwQXp50w5vT2KH1LLqfW+P6bYEX8/eD4V6eEWPP+szGnL0cVpau0br168PRAcpAARVy8rMfUA6xujcR57XrW90PcfiTds15U9/14J1myVJ21vaNLgo1rl9cHFM21raPC4mpZYPlnt7TJcIAx7r6eO9vHqIrvjFHfrST36XtXoAIFe1flgrubgTrBu2ZenqKeP04Ir1atg77P/B7gZ9Y9Gb+vrUCZo9aqik7v9Nz8R1DW3rV8tJJDJw5PQQBjzGL/sA4I1k456M9gvMHVOjymiB/ly7VlubW/Xvzy3RvCOH6crJR3buM7io60jAtuY2VRdFvS/GceS0tnh/3DQRBjxGFgAAbzjx9oz+hhW2bV11zJH6c+1aXfvc65pYVa7vnji5yz7HDKzQqrpGbWtuVXMiqRc3btfMoYMyUo+Jt2fkuOng0kKP0QcAAB5JJTN+irljhukXS96TMdIvPzn1oCbwsG3rW9Mnav4zr8oxRldNHquKWEFGavHzboyEgSwyxuilv96pVW++fNC2iy++WGeffba+/vWvy+qPK20BgEt2NHb4nfrop68tkyTVtccPuU7Mp0YM0adGDMl4LVZBBqYf0sQ0gcd6Ghj4qPZdPf2HWzRuUJnmzZunI444QjU1NZo3b56MMbrhhhv09ttvZ69YAAgwOxrrWHAoQ3791gd6YeN2PXDuTKUco4dXbcjYudJh+xgGGBnwWE9hoHF3x7WpN910k8rLyzufv/nmm7Vjxw4988wz2rq1Hy+7CQAuRIeNzFjPwN9Wrtc9763W3bNm6OgB5frSxNG6c/lqXXTUSEUyGEAOJVxRqVBRcdbP23l+387cT5keWghHHTNNseJSnXzyyd1uHzBggGbMmJGp0gAgpxSNn5iRMPDixm368WvL9R+nTdWxgyolSZdOGK173lujx1dv1AXjRnh+zh7ZtoqOnpLdc34MYcBjPf3cFpcP0Lf/+oK2rFkhSSqKhHTBMUM7tx933HEqLvYvGQJAkMRGHikrHJZJetdI+N7Oen1j0Zv65gkTdNbIIzqfLymI6N8mjNIdyz7UZ44c7uoOtH3mmI7g4yPL0P7uqY/qW3X/2xvT2rcsGtZ1M0ZnuCIAyF3rfvZttfq8VG82jP7xbxQb5uENkFyigdBjrrIVFw0AQI+KJ07JaBNhENhFxYoOHe5vDb6evR9yM8xCFgCAnlWcNkvqz5dbW5YGnH2+LJ8DD2HAY64GBvrzDzgAeCBSWaXK02b129EBq6BAA86a63cZhAGvJV2so32oBS4AAPtVzbnA7xIyw7I04KzzFSoq8bsSwoDX4qn0hwYKQoQBADicSFW1ymee2e9GB6xwRAPOnud3GZIIA55LpNIfGYiEePkBIB3V877QsSJhPxpRHXj+FxUuLfO7DEmEAc/FXYSBAsIAAKQlUlWtmn//Vv+4T7xtq+S4E1U153N+V9KJTyOPJZgmAICMKDlmqqo/d6nfZfSNbStSNUhDr7khUE3khAGPuRkZYJoAANypOvdClRw7PWf7B6xQWMO/9n2FCov8LqWL3Hw1A4wwAACZY9m2hl5zg6I1I3IrEFiWFAqp5t//347aAyaHXsnc4KaBkJ4BAHAvVFSskd/5hYrGT8qNhkLblhUp0IgbfqDS40/yu5pu8WnkMXoGACDzQoVFGn7DD1Q+41N+l9Iz21a4vFKjvneziice63c1h0QY8BjTBACQHXYkoiOu+l8a8qVrO6YMAjhtUDR+kkb/6FeKjRjjdyk94hbGHiMMAED2WJalyk/NUdFRk7XtwTvVvPxtybIlk/6/xRkoSqHiUg266HKVz/yULDvkXy1pIgx4jGkCAMi+aM0Ijbjxh2pa9pa2/eUPim/dnP0ibFuWZWvAOZ9T1ZzPBe6KgZ4QBjzGokMA4J+SY6aq+Ce3q/7FZ7XjsQeVaqiT7JDkpDJzQsvqWAjJtlU2faYGXXS5IlXVmTlXBhEGPNaeZJoAAPxkhUKqPOMcVZw2Sy0r39ee117QntdflNPW2tFX4OKGcoc+SUcIKBw3QeUzzlDZtBkKlZT2/bg+IQx4yBij1kT66bMwQhgAgEyxbFvFR09W8dGTNeTSa9S0/G01Ln1ZrWtWKr59y/5QYIckmY7f8A9c7tiyJduSUk7HdkmhkjJFh49SyZRpKjvxVEUGDMz695UJhAEPtSYcuVk1uyjCyw8A2WCFIyo97kSVHneiJMkkk4pv26z2zRvUvnGDEju3yUnEZRIJmVRKdkGBrHBEoZJSRWtGKFozUtGaEQoV+3+74Uzg08hDLYlk2vtaYmQAAPxihcN7P+RHSNP9rsZ/fBp5qCXuZoogFKibVAAA8hdhwEMtLvoFigqCf90pACA/EAY85CoMRAgDAIBgIAx4qNnFNAEjAwCAoCAMeMjNZYWMDAAAgoIw4CFXIwOEAQBAQBAGPEQDIQAgFxEGPOTm0kJGBgAAQUEY8JC7kQHWewIABANhwCMpx919CYoZGQAABARhwCN72hOu9qdnAAAQFIQBj9S3ph8GIiFLsTAvPQAgGPhE8khDW/o3KSqPRrgvAQAgMAgDHnEzMlAWo3kQABAchAGP1LelHwbKY5EMVgIAgDuEAY8wMgAAyFWEAY80MDIAAMhRhAEPtCVTak04ae9fzsgAACBACAMeaGhN/0oCSSpjZAAAECCEAQ+4aR4MWZZKWHAIABAghAEPuGkeLI2FWWMAABAohAEPuGsepF8AABAshAEPuBkZ4EoCAEDQEAY84GZkoCzKyAAAIFgIA31kjFG9i/sSVBQyMgAACBbCQB81xVNKOSbt/auKCjJYDQAA7hEG+shNv4BEGAAABA9hoI/crDFQGg2rIMxLDgAIFj6Z+qjBxcgAowIAgCAiDPRRnZswUEwYAAAED2Ggj7Y1tae978AiriQAAAQPYaAPEilHu5rjae/PNAEAIIgIA32wvald6V9UyDQBACCYCAN9sLUx/SmCWNhWUYS7FQIAgocw0AduwkBVUQF3KwQABBJhoA+2NbWlvS9TBACAoCIM9FIy5WgnzYMAgH6AMNBLO5rjcnFLAsIAACCwCAO9tLUx/SkCSaouIQwAAIKJMNBLbpoHCyMhlUXDGawGAIDeIwz0kpswMKQ0ypUEAIDAIgz0Qsox2tHsIgyURDNYDQAAfUMY6IUdze2umgcHlxIGAADBRRjohW0upggkaUhpLEOVAADQd4SBXnC7DHF5jOZBAEBwEQZ6wc1lhYNpHgQABBxhwKWUY7TdxcqDTBEAAIKOMODSrpa4Ui66B4fQPAgACDjCgEtuVx7kskIAQNARBlxy0zwYDduqKIxksBoAAPqOMOCSm8sKB5fQPAgACD7CgAuOMdrW5CIM0C8AAMgBhAEXdrXElXTRPFhTxpUEAIDgIwy44HblwWHlhRmqBAAA7xAGXHDTPFhZGFEJty0GAOQAwoALbi4rZFQAAJArCANpSjnG1TTBsAr6BQAAuYEwkKYte9qUcNE8OJyRAQBAjiAMpGl9fWva+xZFQqpksSEAQI4gDKRpQ11L2vsOq4ix2BAAIGcQBtKQdBxt2kPzIACgfyIMpGFzQ5urxYboFwAA5BLCQBrc9AtEbEuDuFMhACCHEAbSsKEu/TAwtCymkE2/AAAgdxAGDiORcrTZTb9ABVMEAIDcQhg4jE0NbUoZ+gUAAP0XYeAwNtSnf0lhyLZUU87KgwCA3EIYOIz1LvoFaspiioR4SQEAuYXb6u316vrd2tHUrlEDijV6QJFKo2HFk462uLg50ajKogxWCABAZhAG9iqLhvXCml16f3uTJGlgcYEGFEXkYnkBwgAAICcRBvYaUtp1rn9nc1w7m+Npf300bGtIKesLAAByDxPce1UWRRQJ9X59gBEVhbJZXwAAkIMIA3vZlqXBfVg5sD3paM2uZiVSjodVAQCQeUwTHGBwSVQbG9JvGDzQhvpWbahvVciyNKwiptGVRTpyYLGqi5k6AAAEGyMDBxhc2vc1AlLGaH1dq15cu0tN7UkPqgIAILMIAwfwsgFw7oQhGj2g2LPjAQCQKYSBA1QVFXhyk6Ezxw7UxMGlHlQEAEDmEQYOELItDSou6NMxThlRqenDKz2qCACAzCMMfMzH1xtwY8oRZfrkmCoPqwEAIPMIAx8zuJd9A2MHFmv2+EGyLNYaAADkFsLAx1T3YppgWHlM508cwqJDAICcRBj4mKoid2GgurhAFx4zlLsVAgByFp9gHxOLhFRcEEpr37JoWJ8/tkaxSHr7AwAQRISBbqQzOlBcENLFx9WoNMoijgCA3EYY6MbhwkBhxNYXjq1xPaUAAEAQEQa6UdVDE2E0bOviY2tU3YebGgEAECSEgW5UFUW6fb4gZOnzU4b2aS0CAACChjDQje6G/8O2pQun1KimvNCHigAAyBzCQDdKo2FFQvvXDAjZli445giNqCAIAAD6H8JANyzL6hwdsC3ps5O4AyEAoP/Km+vijDGSk5JJJiUnJVmWrFBYCoVl2QdnoqqiAm1rbNe8iUM0dmCJDxUDAJAdljHG+F2E11JNDUru3NLxZ8cWJXdsUnLnVikZ73Z/u6Rc4eoahauHKjxwiMIDh+qNlpjKiqKaNKQsy9UDAJBd/SYMpBp2qa32TbUuX6LU7m0dT1pWxx/HSe8gdqhj1EBSMlSg4jETFJt0gqJjJskKd3+FAQAAuS6nw4DT2twRAN5bouSW9R0f/F5+O5YtGUeKFCh21PGKTTxBBSOP4s6EAIB+JSfDgEkm1PLmC2p65WkpEZdkScrwt2HbkuMoPGSESj99oQqGjs7s+QAAyJKcCgPGGLWvfEeNz/+PnMY6f4rYO1oQPXqqSk87X6HyAf7UAQCAR3ImDCR3btGeBQ8osXmt99MBvWHZkmWp+KRPq3jGObJC3LkQAJCbciIMtK14Ww1P3ielUh1z+IFiKTJ0lMo/82WFSrjyAACQewIdBowxan75KTW/ssDvUnpm2bIKi1X5+esUGTTM72oAAHAlsGHAOCntefavavvXq36Xkh7LksIRVV5wrQpGjPO7GgAA0hbI5YiNMdqz4IHcCQJSRw9DMqG6//5PxTet9bsaAADSFsgw0PrOYrUtf93vMtwzRjJG9f/zR6Wa9/hdDQAAaQlcGIhvWqvG5/7mdxm9Z4xMa7MaHr1TZu9qhgAABFmgwkCqeY/q/+ePyvgCQplmHCU2rVHTosf8rgQAgMMKVBjY89SfZVqb/V9DwCMtb/xT7Wtr/S4DAIAeBSYMJLasU3xtbQDXEegDy1LTi08ooBdsAAAgKUBhoOnlpztW9etPjFFy20eKr1/hdyUAABxSID59E9s+UnzN+/1rVGAfy1bz4qf8rgIAgEMKRBhofmVB/xsV2Mc4Smxeq/iGVX5XAgBAt8J+F+DE29X+4TJfmwY31Tfqq3/9h3Y2tSps2/rGmdM1b8pY705g22qrfZOVCQEAgeR7GEhsWef71QNh29aPzztVk4dWa0dTi87+1V915tEjVVwQ8eYEjqP4hpXeHAsAAI/5Pjaf2Lja9ymCwWXFmjy0WpJUXVKkiqKY6lvaPD1Hqm6HnNZmT48JAIAXfA8D8Y8+zFjjoOMYzfyPP+vHT73S5fl/rliv4d/9rR7/14cHfc07G7fJMUY1FaWe15PYtMbzYwIA0Fe+hgHjpJTYvC5jx7dtS9efMU33vras8zf99zbv1NX3L9B3Zp18UF/A7uZWXf/X5/QfnzsjE8UovnG198cFAKCP/A0Dba1SMpHRc1xw3FEaUFyoO17+lzbXN+nSu5/QhVOP1nWnTe2yX3sypSvve1r/64xpmj7qCO8LMUZOY733xwUAoI98bSA0yXjGzxEO2frqaVP182de1ZPLV+uYmmr9dN6pXeswRl/77+f0iSNrdNHUozNTiDEyicx/vwAAuOXvyEAqO3f1u+D48WqNJ2Vk9LtLZilkd/22l6zbosf+tUoL3lurM297UGfe9qBqt+z0vA6T4VEQAAB6w9eRASucndN/57EXJUm7m9sUsqyDtp80eqi2/OKrGa/DihRk/BwAALjl68iAFc78h+PNz7ym5z5Ypye/cpGSjqO/LH0/4+fslmVl5fsFAMAtf8NArEhWNJax49+/5D3910vv6L7L52rS0IG6ZuZxuv2Ft5XI0vREV5ZCA6p9OC8AAD3zNwxYliLDxkrdDN331cIP1us7j76g//zCWZo2cogk6aoZU9TUHtdDb/lwF0HjKDLsyOyfFwCAw/B90aGCDHxAvrtxu66+f4H+95xP6NzJ+49fGivQlTOm6D8XvamUk+U7JFqWIkeMyu45AQBIg2WMvzcGiG9aq7r7/4+fJWRFeFCNquZ/2+8yAAA4iO8jA5Ehw6WQ7/dLyizbVsGI8X5XAQBAt3wPA1YorNjkk3y/WVFGOY4KjznZ7yoAAOhWID6BS04+S5K/tzHOGMtWdNwUhauH+l0JAADdCkQYCJVXKTbpxP45OmAcFc+Y7XcVAAAcUmA+fYtPmSX528voPctWwZiJigwe7nclAAAcUmDCQLiyWrEpJ2dkzQH/GJXMnOt3EQAA9CgwYUCSys68UKGqIf1muqD0zAs7rpYAACDAAvWpa0UKVPG5a/be0CeHRwgsS7GJ01V4/KmH3xcAAJ8FKgxIUrhioMrnzVfOXl1g2QpVDVHZrC/I6ldTHgCA/ipwYUCSomMmqeS0eX6X4Z5ly4rGDhjdAAAg+HxfjrgnLW8sUuPzD/tdRnosW3ZpuSovvl7hSu5OCADIHYEOA5LUVvumGp76s+SkgnvpoWUpPGiYKi68VqHiMr+rAQDAlcCHAUlKbNuo+kd+L6epIWCBwJJkFJtyiso+fZGscMTvggAAcC0nwoAkOa3Nanrp72p95+WOtQhMlm9B3A27pFylZ3xWsQnT/C4FAIBey5kwsE9y5xY1LnxY8fUr9oaCLJdv2VIopJIZs1U07XQaBQEAOS/nwsA+7WveV+PCh5Wq297xAZ3xkYL9UwIlM+cqVEJvAACgf8jZMCBJxjhKbFyjtvffUFvtmzLxNm+Dwd6Rh/CgGsUmnajY0VMVKq3w5tgAAAREToeBA5lUUvF1H6j1/TcUX/1eRzCQOj7QLUtyDhMQ7FDHFQsdX6RQZbViE6cpNuEEhQcMymjtAAD4qd+EgQMZY+Q0Nyq5a4tSO7YouXOLEts3ymltkpJJGSclWZasUFhWOKJQ5SCFq49QeOBQhQcOUXjAYHoBAAB5o1+GAQAAkL5ALkcMAACyhzAAAECeIwwAAJDnCAMAAOQ5wgAAAHmOMAAAQJ4jDAAAkOcIAwAA5DnCAAAAeY4wAABAniMMAACQ5wgDAADkOcIAAAB5jjAAAECeIwwAAJDnwn4XcKCC46+UHS6QZYdk2SGFIvsfW7a9f1soJDtcILtzW+igbZYdkm1bsmxLoZAt62OPbduSHbI69+lxm2UpFLYVsi2FbEsFex+HO/8e2r8ttH+/8AH7hrp7bFmyLUshS4qE7M7H4ZCtkKWOv9uWIrbVzeOO7RHb7nwcsixZlmRbkmVp7/ElS1LItmRLHd+Lrc7HtiWFrAMfdxzDMkYyjiwnKXV57HT8cQ69zTKOlErtf+wkJScl4zhSMi6TSkmO0/FcMiHjpDoeJxLSvsf79t23XyK+/2uclJxEUiblyDiOnHhSTqrja0zKkZNIykntf2z2Pk4lkjIH7JeKJw94nJJxjJyU2fv3vV/vmI5tKSOTMnJSjlIJZ+8xjVKJ1N6v2f91jjFKGaO4Y5Qy+tjjj/+947Gjjscpo73b9j/+L7PO1/elV3h/8/7m/R3c9zcjAwAA5DnCAAAAeY4wAABAniMMAACQ5wgDAADkOcIAAAB5jjAAAECeIwwAAJDnCAMAAOQ5wgAAAHmOMAAAQJ4jDAAAkOcIAwAA5DnCAAAAeY4wAABAniMMAACQ5wgDAADkOcIAAAB5jjAAAECeIwwAAJDnCAMAAOQ5wgAAAHmOMAAAQJ4jDAAAkOcIAwAA5DvTT7W1tZmbbrrJtLW1+V3KQYJcmzHU1xdBrq0/CfLrHOTajKG+vghybX1lGWOM34EkE/bs2aPy8nI1NDSorKzM73K6CHJtEvX1RZBr60+C/DoHuTaJ+voiyLX1FdMEAADkOcIAAAB5jjAAAECe67dhIBqN6qabblI0GvW7lIMEuTaJ+voiyLX1J0F+nYNcm0R9fRHk2vqq3zYQAgCA9PTbkQEAAJAewgAAAHmOMAAAQJ7rd2Hgm9/8pk499VT927/9m+LxeJdtra2tmjt3rk477TSdddZZ2r17d6Dq2+fnP/+5TjjhBN9rSiaTmj9/vk499VR97Wtfy1o96da3T7ZfrwMdqrYg/Kz1R7y/vauJ9/fh5dP7u1+Fgbfffltbt27VSy+9pIkTJ+pvf/tbl+1PP/20Jk+erBdeeEGf//zndd999wWqPklqbGzU8uXLA1HTE088oWHDhumll15SS0uLXnnllazVlU59UvZfr3Rr8/tnrT/i/e1tTby/e1+b3z9rmdCvwsCrr76qs88+W5I0e/bsg364x40bp5aWFklSfX29qqurA1WfJP3qV7/SV77ylUDUlE69ftYnZf/1OlBPtfn9s9Yf8f72tibe3z3Lt/d32O8CvFRfX6+hQ4dKksrLyw8aujnyyCO1fPlyTZ48WZZl6fXXXw9UfQ0NDVq2bJm+//3vB6Km+vr6zvW3u6vX7/r8eL3Src3vn7X+iPe3tzXx/u59bX7/rGVCTo4MbN26VTNnzjzojzFGe/bskdTxP3LAgAFdvu7ee+/V6aefruXLl+uHP/yhfvSjHwWqvttuu01f/epXM1LToVRWVh6ypp62BaE+P16vA/VUW7Z+1voj3t/e4f3de/n2/s7JMDBkyBAtXrz4oD9z5szRs88+K0l65pln9IlPfOKgr933P7SiokL19fWBqu/DDz/UT3/6U82ePVurVq3SL37xi4zUd6CTTz75kDX1tC1beqrBj9cr3dqk7Pys9Ue8v73D+zsztUn98P3t392TM+PGG280M2fONJdccolpb283xhhzzTXXGGOMaWhoMHPmzDGnnXaa+cQnPmFWrFgRqPoONG3aNN9q2ldPIpEwl112mZk5c6a5/vrrs1ZPuvUdKJuv14EOVVsQftb6I97ffa+J93f68un9zXLEAADkuZycJgAAAN4hDAAAkOcIAwAA5DnCAAAAeY4wkAfuueceVVRUeHKsdevWybIshcNhbdq0qcu2LVu2KBwOy7IsrVu3rsu2hx9+WKeffrrKy8tVUlKiKVOm6Ec/+lHnQh5e1gjkm/nz58uyLF177bUHbbvuuutkWZbmz5/f+dzWrVt1/fXXa8yYMYpGoxo+fLjOO+88LVy4sHOfUaNG6bbbbstC9QgCwgB6ZejQofrTn/7U5bl7771XNTU1B+37ve99TxdffLGmT5+up59+WsuXL9ett96qd999t1+s6Q0EwfDhw/Xggw+qtbW187m2tjY98MADGjFiROdz69at07Rp0/T888/rlltu0bJly7RgwQKdccYZvi39C/8RBnLAggULNHPmTFVUVKiqqkpz587V6tWrJUmLFi2SZVldFr145513On87X7Roka644go1NDTIsixZlqUf/OAHkqS6ujpddtllqqysVFFRkc455xytWrUqrZouv/xy3X333V2eu+eee3T55Zd3eW7JkiX62c9+pltvvVW//OUvNWPGDI0aNUpnnXWWHn744YP2B9A7U6dO1YgRI/TII490PvfII49o+PDhOv744zuf2zdSsGTJEl144YUaP368Jk2apBtuuEGvvfaaH6UjAAgDOaC5uVk33HCDli5dqoULF8q2bX32s5+V4ziH/doZM2botttuU1lZmbZs2aItW7bom9/8pqSOocU33nhDjz/+uF599VUZYzRnzhwlEonDHnfevHmqq6vT4sWLJUmLFy/W7t27dd5553XZ7/7771dJSYmuu+66bo/D1ADgnSuuuKJLSL/rrrt05ZVXdv599+7dWrBggb7yla+ouLj4oK/n/Zi/+tWNivqrCy64oMvf77zzTg0aNEjvv//+Yb+2oKBA5eXlsixLQ4YM6Xx+1apVevzxx/Xyyy9rxowZkjo+uIcPH65HH31UF110UY/HjUQiuvTSS3XXXXdp5syZuuuuu3TppZcqEol02W/VqlUaM2bMQc8D8N6XvvQlfec73+ns7Xn55Zf14IMPatGiRZI6lvg1xujoo4/2t1AEDiMDOWD16tW65JJLNGbMGJWVlWn06NGSpA0bNvT6mLW1tQqHwzrppJM6n6uqqtJRRx2l2tpaSdI555yjkpISlZSUaNKkSQcd46qrrtJDDz2krVu36qGHHuryG8g+xhhZltXrOgGkb+DAgTr33HN177336u6779a5556rgQMHdm7ft+As70l8HCMDOeC8887T8OHD9cc//lFDhw6V4ziaPHmy4vG4SkpKJO1/k0tKa5j/UKtQH/jhfccdd3Q2I3X3m/3kyZN19NFH64tf/KImTJigyZMn65133umyz/jx47V48WIlEglGB4AsuPLKKzvv9nf77bd32TZu3DhZlqXa2lp95jOf8aE6BBUjAwG3a9cu1dbW6vvf/77OPPNMTZgwQXV1dZ3bq6urJXVc1rfPxz+QCwoKlEqlujw3ceJEJZPJLvfh3rVrl1auXKkJEyZIkmpqajR27FiNHTtWI0eO7La+K6+8UosWLep2VECSLrnkEjU1Nem3v/1tt9v7xd2+gACZPXu24vG44vG4Zs2a1WXbgAEDNGvWLN1+++1qbm4+6Gt5P+YvwkDAVVZWqqqqSn/4wx/04Ycf6vnnn9cNN9zQuX3s2LEaPny4fvCDH2jlypV68skndeutt3Y5xqhRo9TU1KSFCxdq586damlp0bhx43T++efr6quv1uLFi/Xuu+/q0ksvVU1Njc4///y067v66qu1Y8cOffnLX+52+0knnaRvfetbuvHGG/Wtb31Lr776qtavX6+FCxfqoosu0r333tu7FwZAt0KhkGpra1VbW6tQKHTQ9t/+9rdKpVI68cQT9fDDD2vVqlWqra3Vr3/9a51yyik+VIwgIAwEnG3bevDBB/Xmm29q8uTJ+sY3vqFf/vKXndsjkYgeeOABffDBBzr22GN188036yc/+UmXY8yYMUPXXnutLr74YlVXV+uWW26RJN19992aNm2a5s6dq1NOOUXGGD311FOuhvPD4bAGDhyocPjQM04333yz/vKXv+j111/XrFmzOi9jmjJlCpcWAhlQVlamsrKybreNHj1ab731ls444wzdeOONmjx5ss466ywtXLhQv/vd77JcKYKCWxgDAJDnGBkAACDPEQYAAMhzhAEAAPIcYQAAgDxHGAAAIM8RBgAAyHOEAQAA8hxhAACAPEcYAAAgzxEGAADIc4QBAADy3P8Fxo0JRIca9egAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -424,7 +424,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGa0lEQVR4nO3deXwb9Z0//tdnZiT5vq/YsXM6p3MfQAiEo4EkBNgW2LaUAoXSpQfbLfTbb3fLd9tlewHL48eyC2wvjpZSthRKKeVOCBAgJISQgziJcx92YseHfOqYmc/vDzmOndiJxh5pRtLr+XjkYUUazbwRVvTS5xRSSgkiIiJKWYrTBRAREZGzGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohSnOV1ArElDh9HWBKP5KMyeLsAwIE0dEAJC1QDVAzW3AGpBGZTMHAghnC6ZiIgorpIqDEgpoR87iPCBndCbG6A31cNsbwakPHmQEABOfODLAY8Jjw9qYRm04nJoxRXwjq+BkpEd1/8GIiKieBNS9v+kTEx681EEd21CsPYjmJ1tgFBw6ge9JYoCmCYgBDyV1fBNngfvhBoo3jQ7yyYiInKFhA0D0jQQ+PRDBDavhdFyLBIApGn/hYSIhApFhXd8DTIWXAqtuML+6xARETkkIcNAaH8tOt95AWbb8fheuDdw+KYtROZ5y6Fk5sT3+kRERDGQUGFAb25A1zsvInxo18lv7E4QCqAoyFi4FOlzlkBoHmfqICIiskFChAFpmuhe/zp61r/ZGwJi0B0wTEpWLrKvuBme0iqnSyEiIhoW14cBM9CNjlefQvjgTqdLGZwQgFCQdcm1SJu20OlqiIiILHN1GDA6WuH/8//A9Le4qjVgKOnzL0XGecu5VgERESUU14YBveUY/M8/CtnTlRBB4ATftAXIuuTvIRQu7khERInBlZ9YZqAb7S/8MuGCAAAEt29A9/rXnS6DiIgoaq4LA1Ka6Hj1KZhd7QkXBE7oWf8Ggns/dboMIiKiqLguDHR/+HpksGCCBoETOl57Cka810EgIiIaBleFgdC+7ehZ/4bTZdhD19H+199AhoNOV0JERHRGrgkDUtfRseqPTpdhH2nCaGtCz6Z3nK6EiIjojFwTBgK1GyC7O5wuw15SoufjNTBDAacrISIiGpIrwoA0jOTpHjiFDAUR2PK+02UQERENyRVhILjjI5hdfqfLiBGJno2rOXaAiIhcyxVhoPujVU6XEFMy2IPA9g1Ol0FERDQox8OA0dEK09/sdBm46dd/wcTvP4yvPPZX+08uBEIHd9l/XiIiIhtoThcQPrLX6RIAALctmYPrz63BM+u3239yKaEf2QOj+QjMhjpAUQChQvRuhYwBP1VAKJHljBUVUD2A5oFQtchtVYPo/QnVw2WPiYhoxBwPA3rDvsgHoensIkOLq6vwXt2hmJ1fhgIwjtcD/saT99lxYkU9GQz6hwRtiPCgeSL3e3wQnjTA442EEiIiSlmOh4HQod0xCwKmKXH+z57A8hkT8K9XXdh3/+ra/bjhVy/g0S+vwNVzJsXk2oPRm+qh2b2hoWlE/oSDA8JF9EFD9AYDH+BN6w0IaRDe/j9PBAcfd2QkIkpCjoYBGQ7BbGuK2fkVReDbSxfin//0Fv7xMwuRl5GGbUeacOvjL+EHKxfHNQhAUaC3NEIrzI3fNaMigXAAMhwAuv1nCRG9weFEUOgfIHp/Cl8G4MuAUNQ41U9ERCPlbBiIw2I8186biv94dR1+9fYmfOm8Glz/iz/jugVT8c1L5sf82gOYMgmmF/YLDjhL64M3HSItEyItC8KXCaRlRv7uy4oEB7YwEBG5hrNhQA/H/BqaquCOSxfgJy+txUub6zCzsgQ/u+bimF/3dBJS1x24rkNCPZChHsj2QTZrEsqAcCB6b8PXe5/mjX+9REQpzPExA/FwzfwpuPvPb0FC4hc3XgF1kBH41z36HLYeakR3KIyZ//pLPHnrVZgzpszmSmwZMpj4pAn0dED2dAz+imheiN5ggBOtC+nZEBm5ka4JIiKylaNhQGieuFzn+39aDQBo7gpAVQZvnn7269fEuAoRmR5IZ6eHIPUQZFfr6Y950iAyciLBoO9nbtx+l4iIkpGzYcAb+295P/vbe3jz03145TvX49qH/4Tfr9uGWy+YHfPrnkYIfmDZIRyA9Acg+03RBBAZtNg/HGTkRloTGMCIiM7K2TDg8UHJLYLpH6Rf2Qa/+2ArHn1rI57/1rWoqSjG1y6ai/9etQE3LpoBjxrn0e7ShJpXEN9rppJgN2SwG7L16MD707IGtiJk5ka6HTjbgYioj+Nfm7yVExHoaLF9rYE3t+/D959djV/ctALzx5YDAG67cDYeWf0R/rihFl86t8bW60VDKygBOhrPfiDZJ9AJGeiEbDly8j4hTo5ByCro/ZPPVgQiSlmO/+unjRoHbFtn6zk3HzqGWx9/Cf961QVYOau67/7sNB++euFsPPTmenxh4bRBBxLGivD4oI2dAfT4I8FHmn0/Zd/fjYH3GzpghAFDh+z9CT0MmCk0KyEWpITsbofsbgeOn1h1UkRaDbIKILILILIKITKyuTojEaUEIaV0dIi74W9G65M/dbKE2BMCnjFTkHvVV205nZQmYBi9QSF8MjToJ0LD6QGi77YRjqx3EA5GggcNTdEiLQbZBVCyCiGyCyLrJ3CNBCJKMo63DCg5BVCy82F2DDJyPFlIwFs12bbTCaEAmgL0DkgczkeTlBLQQ5FljMOByAJQ/X+GA0Ao8hjCAcDZzOgMU4dsb4Jsb0JfbPKkQWQXQskuONnFwIGhRJTgHG8ZAIDAtg/QufpPTpcRM8KbhoJb/jUusydi4URwiASEQL+fwYEBItAVaZVINek5J8NBdgFEZh67F4goobgiDEhdR8sTP4bs7nC6lBgQyDhvGTIWfMbpQuJC6qFIKAh0QQY7IQNdfX8Q7EqNrglFg8gtgpJbApFbwnBARK7nijAAAD2b16Lr7T87XYb9PD4U3PL/oPjSna7EcVLKyDLFgS7IYBdkoLM3NPSGhVCP0yXGhuqByC0+GQ4ycjnugIhcxTVhQOphtDz275EPhWQhBNIXfAaZ5y5zupKEIE1jQDiQJ6YFdrcDgU6ny7OP5usLB0puCZCezXBARI5yTRgAgODuLeh4+Umny7CHUKDk5CPvC3dC8aU5XU3Ck4YO2ROZDii7/JDdkT9J0ZrgSettNSiGklsa2Y+B4YCI4shVYQAAut57CT0b33K6jJHTPMj7wnegFZQ6XUlSk3qod82AEwEhchuJvF20NwNKbjFEXmnkpy/T6YqIKMm5LgxI04D/z7+AXr8voQebZS+/Eb7qWU6XkbJkKDB4SEjE2Q5pmVDyyqDkl0PkFnOlRCKynevCAACY3Z1offoByJ6OhJzfnj7vYmSev9LpMugUfQMYu/yQnS0wO1sgO5oj6y0kCkWNtBjkl0MpGAXh5cBUIho5V4YBANCP18P//KOQwUBCtRB4q2cj+/LruRFOgpBSAsEumB2RYCA7WyC72iJLQycAkZUfaTEoKO+dwsixBkRknWvDABBZqtj//KMwO/0JEQjSZl+IzAuu5JzyBCdNM9K10BsOzI4WoKfd6bLOzpsOJX8UlILyyBRGdicQUZRcHQaASJdB+8tPQq/f63Qpg+v9Jpa55LNIm7GI38ySlNRDkJ2tfeFAdjRHlml2K0WFyC2BUlAOJX8UhC/D6YqIyMVcHwaAyKDC7vf+hp5NbwNCcU8rgRAQaZnIueImeMrHO10NxVHf+IOOFpidzZFWhI4W9/xunkJk5kMUjIp0KWTlM7QS0QAJEQZO0BsPofPtF6A37Edkex6HShdKZEGheRcjfd7FULxcR4B610LoaIbpb4T0N0J2trhzAKwnLdJiUDgaIq+E3VpElFhhAIh8Iwvt2Yqud/8Cs6MtvhfvbZXwTpqDzPOvgJqdH9/rU0KRRhiy/Xi/cNAGxwLsUDw+KIWjoRRVQeQUscWAKEUlXBg4Qeo6AlveQ8+WtTDbW2LXfSBE5NudEOgoGo/yJSvgKx9r/3Uo6Uk9BOlvioSD9qbIrAU38aZDKaqMBAN2JRCllIQNAydIKWE0HUZg5yYEd2yE7OkEFAUwRxAMhNLbvCvRlT8aWzImYI1Rim4lDXcumYDq4izb6qfUJcPBk+HA3wjpphkLaZlQiqoi4SAzz+lqiCjGEj4M9CdNE+H6vQgf2AG9+SiM4/WRaYknCNE7+r93vIFE78/el0DVgNwitKYXoU7m4h2jDH514FKwl0wswnWzK+L0X0SpRIZ6YPqbIP2NMP2NrtmcSWTk9AUDkZ7tdDlEFANJFQYGI0NB6K3HYDQfhRnoAgwD0tAjTaCqBqF6EEjPxfZgOta1COxp7j5jr25hhhf/vnwKm1Ap5mSgE2ZLA8zWekh/kytmKojMfCjFlZFgwD0TiJJG0oeBaLy+sxF/3toQ9fE/+MwkjM7jMrAUP1IPQ7Ydg9laD7O1wRUbMYnsokgwKKyE4IwaooTGMACgsSOIH762I+rjr5hWipXTymJYEdHQpDQj6xu0NkC21Ec2YHKUiCxwVNzblcCVD4kSDsNAr3te34GG9ui+bY3OTcMPlk6OcUVE0ZGBrkiLQUsDpL/R2e4EVYuMLygdzxkJRAmEEb7XrPJcNLQ3RnXsYX8Ax7uCKMr0xbgqorMTaZlQR1VDHVUdWdug7VjfWIO4dycYOsxje2Ee2wuRkQuldDyU4ioID98rRG7GloFe+1u6ce/quqiPv3ZWOS6tLo5hRUQjI6WM7KXQUg/Z2mD7ugbdgSC27D6Aj3fuRWOLHzmZGfjSsgtQWpA38EChRBY2Kh0PkVvM1gIiF2IY6GVKiR+8XIu2nnBUx1cXZeLOiybGuCoi+8hAF8zjh2AePwTZ1Tqic/3l7fW4+d//G92BIHw+H0pLS9Ha2opL5kzBH3/63aGfmJYFtXQclJKxEF4OwiVyCy5K3ksRArPKc6I+fvfxLnQE9RhWRGQvkZYJdfQUeGYvhWfucqhV04H06H/n+3vspdWYPXceNm7ciI6ODhw4cAC33XYbdh6sP/MTA50wDmxFeMNLCNeujbRauGDKJFGqYxjoZ1Z5btTHSgBbG1y0YhyRBSI9G2rldHjmXA5t9mVQRk8BLKwbIKVEIBDAU089hUsvvRTHjx+3WIGEbKmHXrsW4Q0vQT+wNbJ6KBE5ggMI+5lUnIV0j4KecHTfVD454seisQUxrooodoQQEJl5UDLzIKtmRMYY9HYlINQz5PNuvfJS/MPP/wf7d+9CS3sndH0ErWThAMzDtTAP10amKJaOh1JYAaGowz8nEVnCloF+VEVgxqjom01rj3UgoBsxrIgofoQQULILoY2bDc/8ldBqLoJSNgHQTp8JcPWShTj6ymP49Q++YWsN0t8IY9c6hDf8FfreTWwtIIoTtgycYlZ5LtYfbIvqWN2U2NnYaal7gSgRCNG7kFBuCeS4OZH9Eo4fhNl8BDCiG2Q7InoIZkMdzIY6iIJyqOWTIHI4E4EoVhgGTjGtLBuaIqCb0U2y2MEwQElOKApEfhmU/DLICQZk69FIMGg5y2BBm8iWeugt9ZHujPJJkVUO2YVAZCuGgVOkaSqmlmZHPThwx7GOGFdE5B5CUSEKK6AUVkDqYSi7RzZF0QrZ1Qajbj2M/Vuglk2AUjaBeyIQ2YRjBgZhZdzA0Y4gWrtDMayGyH2CwSAee/K3+O0Lrwy4v7HFjx/+8hlsqdsfu4uHAzAOfYrwRy9Br9sA0+bFlIhSEcPAICaXZFk6fkcjBzlRannqqafw9a9/HVu3bkV1dTU0TUNxcTEKS0fht29+iJXf/TnCI5lhEA1pwmzcB/2T1xHetqZ3zQKuoUY0HAwDgyjO9CI/3RP18QwDlGp27dqFMWPGYNeuXdi1axeKiorw/e9/H7t27cLDDz+MY82t6Jl4PpTRU4E4rDQo/Y2RNQs+fgVGQx1kPAY5EiURjhkYhBACk0uysO5AdP2hOxo7IKXkSGdKGfPnz8d999035O/8+PHjUTCqEoqiQFZNh2w9CuPYXsiWBkSW7IqRQCeMvZtgHNgGpWw81FETISwspkSUqrg3wRA+2N+C3350KOrj/9/SySjP5WAmSg1SSrzzzjvYtWvXaY95PB6sWLECJSUlpz8v1AOzcT+MY/uAQDxa1ERkk6Tyaig5RXG4HlFiYhgYQkt3CD94uTbq46+bVY5LuIshUVSklJDtTZHtjo8fBuKwP4HILoQ6ehpEfhlb8YhOwTEDQyjI8KI4yxv18bWcYkgUNSEElNwSaJPOhWfBlVDHzYHIGN6mSdGSHc3Qa9+FvvlNmM1HONiQqB+OGTiDycVZaOpsierYuqYuGKaEqvAbB5EVwuODWl4NZdTEyHLE9bsgWxtidj3Z1Qp9x3sQGblQKqdF9kEQ/F5EqY3vgDOYZGGKYdAwsa+lK4bVECU3IQSUvFJ4pl0Az5xlkX0RYrjSoOz2w9j5AcKbXoPReIBbKVNKYxg4g8nFFtcbOMYphkR2EBk50CbMg2f+SqhjZsZ2emJPB4y6DxH++NXIjAeToYBSD8PAGeSkeTAqJ/oZAjsaOW6AyE7C44M6ego8866AOulciOzC2F0s0Alj90cIf/wyjIbdkCZ3JKXUwTEDZzG5JAsN7YGojt3X0o2esIF0DzdRIbKTUBSoxVVQi6tgdjTDrN8VmYUQizULgt0w9n4M43At1IopUErHQaj8p5KSG1sGzsJKV4Epgd1NHDdAFEtKdiG0yefBM/8KKBWTATX61UItCfXA2LcJ4Y0vwziyg6saUlJjGDiL6uJMWJkfUMuuAqK4EL4MaGNnRaYmjp8LpGXH5kLhAIz9WxD+6G8wDm2H1BkKKPmw7essMr0aRuel41BbT1THc9wAUXwJVYM6aiKUsgmRZY/rd0H6j9l/IT0E4+A2GEd2Qimvhlo+CUKLfi0SIjdjGIjC5JKsqMNAQ3sQbT1h5FnY6IiIRk4IAVEwCkrBKJhdbTAP74B5/BBsH1dghGEe2g6zYTfUymlQyiZAxHAKJFE8sJsgClanGO5k6wCRo5TMPGiTz4Vn7jIoJWMBS519UdJDMPZ9EtkpsfEAVzSkhMYwEIWJRZmwsrBgLdcbIHIFkZ4NrXohPPOWQykdD8RipcFgN4y6D6FvfgNmawNDASUkhoEopHlUjM3PiPr4Pc2cUUDkJiItC9rE+ZFQUDYxJqFAdrVB3/4u9E/fhtkR3TLmRG7BMBAlK0sTH+8KoT3AEcdEbiN8mdAmzIVn3hVQyifFZLlj6W+EvuVN6Dveh+xhlyElBoaBKFkdN7C/pTtGlRDRSAlfOrRxsyOhoGIKoNg/ltpsPozwpleh79kIGYpu4TIipzAMRGl8USY0CwMH9jEMELme8KZBGzszsoDR6Gn2L2AkJcyjexDe+DL0g9u4RgG5FsNAlLyqgvGF0Y8b2NfMMECUKITHB21MDTzzr4BaVQPYvX6AqcM8tD2y70F9Hfc9INdhGLBgcnH0K5ztb+2GyVHFRAlFaF6oldMiGyONmQl4fPZeIByMLHG86VUYTQc584Bcg2HAgkklmVEfG9TNqDc4IiJ3EZrn5G6J42bbHwoCXTB2rYO++U2YbTFYLZHIIoYBC8YWZMCrRv+SsauAKLEJVYNaPgmeuSugVk63faCh7GqF/unbCG9/hzMPyFEMAxZoioKJRdG3DnAQIVFyEJoHatV0eOatgDJqIiDsXdFQth5FeNNr0Pdv4e6I5AiGAYvGFVgYRNjCxYeIkonwpkEbPxeeOcugFFXae3JpwjyyA+GPOZ6A4o9hwKKKvLSoj21oD6I7xFHDRMlGpGdDm3wetFmfgcgtsffkoZ7IeIJta2B2tdl7bqIhMAxYVJGbbun4A63sKiBKVkpWAbTpS6BNuxAiM8/Wc8v2JuifvAF97yZIPWTruYlOxTBgUVGmFz4OIiSiXkIIKPll0GYthTrpHMAX/biis5MwG+oiOyMe28uuA4oZhgGLFCFQnht9VwHHDRClBiEE1OIx8MxdFpmOqNk4HTEchLH7I+hbVnETJIoJhoFhGJ0XfVfBYT/XGiBKJUJRI9MR562ILHFs42ZIsrMlsgnS7g2QYf7bQvZhGBiGCgstA209YXQG9RhWQ0RuJDRPZInjeSuglE0AYN90RPPYPoQ3vgKjoQ5Smradl1IXw8AwWAkDAHCErQNEKUt406FNmAfP3GUQhaPtO7ERhrF3E/RP3oDpb7LvvJSSGAaGweqMgiP+nhhVQkSJQqRnwzNlEbSaiyAycm07r+z2Q9/2FvSd6yCD/LeGhodhYBjSPSoKM6Lf1ewwwwAR9VJyS6DNXhoZZGjjlsnm8YORWQdHdrLrgCxjGBgmK10F7CYgov6EUHr3PFgOpWScfSc2dRj7N0Pfshpml9++81LSYxgYJiszCur9ARgm5wcT0UDCmwategG0mZdCZOXbdl7Z2QJ98xvQD26DNLkKKp0dw8AwWWkZ0E2Jxs5gDKshokSmZBdCm/kZqBPm27c+gTRhHtoeGWDY0WzPOSlpMQwM02gOIiQiGwkhoJaNh2fe8sjOiDZNRZQ97dC3rIosa2xwmjMNjmFgmIqyvPBaWJb4cBvHDRDR2QnNC238XGizl0LkFNl2XrOhDuFNr8FsO2bbOSl5MAwMkyIEynOsDCJkywARRU/JzINWc3FkvwOPtbVNhhTsgv7p29Dr1nPzIxqAYWAERlvYzpgzCojIqpP7HSyHUjEZEPZ0HZiN+xH++FWYxw/bcj5KfAwDI2Bl8aHWnjC6QuyvIyLrhOaBNnYWPLMvh8grteek4QD0ne8jXPseZIgtl6mOYWAErC5LXM/WASIaAZGRA23ahdCmnA/4Mmw5p2w5gvDHr3KL5BTHMDACVpclbuL0QiIaISEElMIKeOZcDmVUtT0nNcKRLZI/fRsy0GnPOSmhMAyMQIZXRUFG9MuJNnZywA4R2UOoHmjj50CbcQlEeo4t55T+RoQ3vcYljVMQw8AIWWkd4MJDRGQ3JacI2uylUCqnAcKGf9JNo29JY9ndPvLzUUJgGBghK+MG2E1ARLEgFBVaVQ20WUshsgpsOafsbEF48xswGnZzLEEKYBgYISsrETZ1hvimIqKYUTJzoc28BOrYWYCijvyEpgFj78fQa9dChjgAOpkxDIxQhYW1BoKGCX+A0wuJKHaEUKBWTIZnzuUQuSW2nFO2NiD8yWswW+ptOR+5D8PACJVk+eBRol8IhF0FRBQPIi0L2vQlUCcuANToBzoPKRyEXrsW+u6PuMdBEmIYGCFFCIyyMG6AgwiJKF6EEFBLx8EzdxlEYYUt5zSP7UX4k9dhdrTYcj5yB4YBGxRleqM+lmGAiOJNeNPhmXI+tMmL7NnnINAJfcsqGIe2cwpikmAYsEF+evRhoIlrDRCRQ5Si0fDMXQalZJwNZ5MwDm6DvvUtLlSUBBgGbGBt4SG2DBCRc4TmhVa9ANr0JYAvc8Tnkx3NCG96HcaxfZwtlcAYBmyQbyEMcHohEbmBkldq35LGpg5j9wboO9+HDPMLTyJiGLBBgYVughCnFxKRSwhViyxpPH0J4LW218pgZPMRhDe9BrP1qA3VUTwxDNjASssAADR3cdwAEbmHklcKz+zLoBRWjvxk4QD07e9A37uJUxATCMOADbJ8GjQLaw209YRjWA0RkXXC44M6+Vyo1efYsi6B2VAHffObMDtbbaiOYo1hwAaKEMhPj/7NwzBARG4khIBaMgae2ZdB5BSN+Hyypz0yBfHITo6VcjmGAZtY6SpoCzAMEJF7ibRMaDUXQR0zAxDRt3oOSpqRXRB3vMfBhS7GMGCT/IzoBxGyZYCI3E4IBeroqdBmfgZIzx7x+WRLPcKb34DZfvzsx3JTpLhjGLCJlW4CP8MAESUIJSsfnllLoZRNHPnJgt3Qt70F4/COIbsNZHc7wlvehNT572Q8MQzYpIAtA0SUpISqQZswF9rUC0a+nLGUMA5siWyLfEq3gTR06Ds/AILdMI/uHtl1yBKGAZtYHUDIwTRElGiUglHwzLkMoqB8xOeKbIv8Osz2pr77jL0fQ3b7I7frd3FqYhwxDNjEygDCsCnRHTZiWA0RUWwITxq0KedDnTAfUNSRnSzUA33rGhiHa2Ec2wuzcf/Jx8JBmMf2juz8FDWGAZtY6SYA2FVARIlLCAG1bHxkCmJWwQjPJmEc2Apj90enPWIc2Qlp8otTPDAM2CTdoyJNi/7lZBggokQn0rOhzbgESuU0ACOcgjiYUA/MY/vsPy+dhmHARhxESESpRigKtKoaaDMuBnwZtp/fOLID0jRtPy8NxDBgI0sLDzEMEFESUXKK4Jm11JbBhQMEu2E2HbD3nHQahgEbcUliIkplwuOLDC4cOwsQ9n28GIdrISVbB2KJYcBGVlYh7AxxUAwRJR8hBNSKyb3dBpn2nDTQCfP4YXvORYNiGLBRtk+L+thuhgEiSmJKdiE8s5dCFFTYcj7z8HauzxJDDAM2yvBEP+e2O8zFNIgouQnNC23KIqjj5oy420B2t0O21NtUGZ2KYcBGGV4LYYAtA0SUAoQQUMuroc28ZMSzDYwjO22qik7FMGAjhgEiosEJbzowwimCsuN4VLseknXRd3LTWVnpJgjoJgxTQlVisFAHEZGLSGlC37kOCI98a2LjyA4oOYttqOokvbMd4aZjkOEwZDgEKSWE5oHi0aBm5cBTXAox0qWXXY5hwEZWWgYAoDtsWBp0SESUiIyDn0L225BoJGRLPWR3O0RGjvXnSonA/t0IHNyL4OGDCB7ej+Dh/TA6O874PKFp8JZWwFc1Dr6KKvgqxiBj8nSo6fYvsuQUfhLZKN2jQgCIdrxrd4hhgIiSm9naAPNwra3nNI7shFa9IOrjg0cOwr/ubfjffwt6S283g6oCRnTdtVLXETxyAMGGQ5E7TBNC1ZA1ewFyzrsIWTPnQfFY25/GbfhJZCNFCKR71Kh3JOwO6QB8sS2KiMhJhgGlbAJkVxtkVxtgw8ZDZtMByKoaCF/60Jft7kTbmtfQ9t5qhOoPAYoycMxClEFg4IVPPl8aOjo2fYiOjR9A+NKQs3Ax8i9ahvTxk6yf1wUYBmyW4Y0+DHRxECERJTmlaDSUotEAImMH0NMJs6sVsrMNsqs1EhD0kLWTShNGQx20sTNPf8gw0Pr2a2h67ncwe7qBE2sTxGJ/g95zymAA/vdWw//um8heuBil190MT1GJ/deLIYYBm2V4VaArumOjDQ1ERMlACAXIyIGakQMUjwEQ6cdHqBuys603JLRCdrYA4eAZz2Ue3QM5eiqEdnIZ+M6tG3Hs6V8hdNSB9Qh6g0HHR++jc+M6FCz/LApXXJMw4woYBmyWaWXhIbYMEFGKE0IAvkwIXyaUwshqhVJKINgFs6MZsqMFsqM50oLQf38CIwzz2B6oFVOg+1tR/+v/RNe2j23dE2FYTBMSJpr/9ie0rXkVo75yB7LnnutsTVFgGLAZ1xogIhoZIQSQlgU1LetkC4JpRMYddDRDdjTD7GiBUV+HYI/E4f/6GYzOdvQe6GDl/UgJo7MTh//rpyhceR2KP3u9q6cnMgzYLMNrYX8CdhMQEUVFKCpEdiGQXdh3n//91aj/2b8AkLEZEzBikfEKzS89i+Ch/aj4+veg+Nw5aJwrENosTYv+JQ0bbvzlJSJyv5ZVf0P9rx6MzE5wZRAYqHPLRzhw/90wujqdLmVQDAM206JYUVBKCdPQGQaIiIbB/8EaHHvqF06XYY2UCOyrw6EH74HU3bdRHbsJbOZRB89X/qOHsPXlp9G051M0798FPRTAs8VlmPzXF3DOOefEuUoiosQUOLgPDY/9l9NlDI9pomfPTjQ++wRKv/hVp6sZgC0DNhuqZeC1++9E29Z3cen8Gtz7s5/g8ccfR2FuFp544on4FkhElKCMrk4ceujHkDYsXOQYKdHy+ovwr3vb6UoGYBiw2VAtA+3HDuOuu+7Cfffdhzlz5uDmm29GcXExgsEzz6UlIiJAmiaO/M9/QG9tTogxAmfT8JuHEDi0z+ky+jAM2GyoloHsknJ8//vfx+jRo3HLLbfEuSoiosTW9u6bkXUEkiAIAJGpkkd+8UBkTQUXYBiwmUcdPAws+96DmPuFb2HMvCVxroiIKLFJXcfxF59xugx7mSZCRw6i85P1TlcCgGHAdtoQ3QS5ZZWYtfLLKBxTHeeKiIgSm3/d2yd3G0wmQkHTC39wResAw4DNoplaSERE0ZGmgeMv/i8gkvDfVmkieHBvpPvDYQwDNvMofEmJiOzSseF9hJuOntx9MNkoCo7/xfkuEH5y2UwbYswAABh6GIYeHnBfOBxGKGRx+04iohTR8cmHgMNfstYcOoYVz6/GsudW40+7Dth78t61B/QTeys4hGHAZp4hugn2fPA6nrjlImx+8ckB9z/11FPIzc3FI488Eo/yiIgSSlftVkdnEOimiXs3fIrHLz8Pz111IX69dQ/agvZ/geupq7X9nFYwDNhsqAGE2994DufOn4unn34aDz30EADgnnvuwdNPP42lS5fi4YcfjmeZRESuF25uguFvdbSGrcfbMDEvG6WZ6cj0aLhwdAneO9Jk70UUFd112+09p0VcjthmQw0gVD1e+P1+7Ny5EwCwcePGvsdaWlrgc+lOVkRETuneFbsPSFNKXPnnt3BJVRnumj+t7/61RxrxjVXrcd+Fc7FsbDkauwMozUjre7w0Mw3HugM2F2Oge8c2e89pEcOAzYYa4zL76pvx/hP34z/++3/67hMA8tI9yM3NxU9/+tP4FEhElCB6dtcCqgoY9i8/rAiB22ZW4ycfbsNXZ0xErs+LHS1+fGfNRvzT3KlYNrYcwIlNiAeKxbyGwIE9MMNhKB5PDM5+dgwDNpOD/uoA5dPm4dr7Bo4YTdMU/H9/NyMeZRERJRy9oz2m4wVWjq/AI5/swlO1+3BNdRW+/uZ6XDVhNG6pmdB3TGnGwJaAY10BzCzOs78Y04TZ0w3Fk2v/uaPAMQM2szL7JRmnzRIR2cUMBWM6pVBTFNw6YwKeqt2H29/8ENMKc/EvC2sGHDOjKA91rR041tWDrrCOdw43YnF5SUzqkSHn9qphy4DNrKwkJWLS2ERElCQMPeaXWDl+NH6+/lNICdx/4Vyop4z70hQF31swDTe/9gFMKXFrzUTkpXljUouTuzEyDNjMSoMWWwaIiIam+NLOftAI/WTdVgBAazAEdYh/lC+pKsMlVWUxr0V4nRtIzm4Cm1nrJmAaICIaiuJLi+mCQw99vANvH27EH65YDMOUeK7uYMyuFQ2FYSB5WOkm4ItPRDQ03+gxMRsz8KddB/DEp3vwyKULMaUgF1+eNg6/2bYHYYcWONLy8qFmZDpybYCfR7az8mvLhgEioqFlTJoWkzDwzuFj+Pd123DvhXMxqyQfAHDD1HHoCut4cc9h2693VoqCjCkz43/d/iU4evUkxG4CIiJ7pI2ZAKHZO7Tt0+Nt+M6ajfju/KlYOmZU3/1ZXg++NHUsfr11NwwzzpsimTISfBzEAYQ2My3NJiAioqEIzYO0cZPQY+NSvdOL8rDxhhWDPnbHnCm4Y84U264VPYn0amfDAFsGbMZuAiIi+2ROm+n4roWxpmRkwlde6WwNjl49CbGbgIjIPnlLLk/ub05CoOCyqyEcDjwMAzbjbAIiIvt48guRv+TypG0dEF4vCpaudLoMfh7ZLWxEHwZOXemKiIhOV7jiGqdLiA0hULD0aqgZWU5XwjBgt4CF3bV8Gl9+IqKz8RQWI3fxpUnXOiA0Dwouu8rpMgAwDNguqEe/YIVPU2NYCRFR8ii+6guRFQmTaPxA0dVfhJad43QZABgGbGctDPDlJyKKhqewGBVf/15MdzGMG0VB1uyFKFzxOacr6cNPI5uFGAaIiGIia8ZcFH/uBqfLGBlFgaewBOVfu9NVM8r4aWQzKy0DaQwDRESWFF5xLbJmLUjY8QNC1VD57buhpmc4XcoAiflqulhQj34AoVfly09EZIVQFJR/7U74KqoSKxAIAagqKr7+fyK1u0wCvZKJgWMGiIhiS83IxJh//jkyJk1PjAGFigLh8aLqzh8he845TlczKH4a2SxocDYBEVGsqekZqLzzR8hddInTpZyZokDLzcfYH9yLzGmznK5mSAwDNmPLABFRfCgeD0bd+o8o+/LtkS4DF3YbZEyajnH3/CfSqsY7XcoZcddCmzEMEBHFjxAC+ZesQMbkGhx75jfo2rYJEAogo/+3OAZFQc3MRsl1NyF38SUQivtbgRkGbMYwQEQUf76KKlTd9W/o3Poxjj39S4SO1se/CEWBEAoKln8OhSs+57oZA2fCMGAzK7MJGAaIiOyVNWMuMn/8MNreeR1Nf3kGhr8VUFTAjP7fZkuEiCyEpCjIWbAYJdfdBE9hcWyuFUMMAzbrCUffMsCphURE9hOqivyLlyNvyeXo3rUd7eveRvuH78AM9ETGFZg2dCH0hoD06qnIXXQxcuYtgpqVPfLzOoRhwEamlOgM6lEfn+Xjy09EFCtCUZA5pQaZU2pQdsPX0LltEzo2vIeevbsQamw4GQoUFYCMfMPvv9yxUABFAIYZeRyAmpUDX+VYZM2ch5yFF8BTUBT3/65Y4KeRjbpDBqysmp3NMEBEFBdC8yB79kJkz14IAJC6jtCxegTrDyJ4+CDCx4/BDIcgw2FIw4Di9UJoHqhZ2fBVVMFXMQa+iiqomc5vNxwL/DSyUYeFVgEBIMPr/hGmRETJSGha74d8FbDA6Wqcx05rG1kJA1k+DUoirJxFRERJj2HARlbDABERkRswDNjIyuDBbB+7CIiIyB0YBmzUEbASBtgyQERE7sAwYKOOELsJiIgo8TAM2KiTLQNERJSAGAZsxAGERESUiBgGbGQlDLBlgIiI3IJhwEbWZhMwDBARkTswDNjEMCW6QtHvisUwQEREbsEwYJOW7pC1fQnSGAaIiMgdGAZscrwrFPWxPlVBhoeLDhERkTswDNjEShgoyPRAcF8CIiJyCYYBmxzvCkZ9bEGGN4aVEBERWcMwYJNmKy0DDANEROQiDAM2sdJNUJjhiWElRERE1jAM2MTamAG2DBARkXswDNigJ2xYWmOgkN0ERETkIgwDNrDSKgBwzAAREbkLw4ANrAwe1BSBHC44RERELsIwYAMr0wrz0z1QuMYAERG5CMOADTh4kIiIEhnDgA2sTStkGCAiIndhGLCBtQWHuMYAERG5C8PACJlSWmoZKGI3ARERuQzDwAi1B3ToZvSbF5dlp8WwGiIiIusYBkbIykwCACjN8cWoEiIiouFhGBghK10E+ekepGlqDKshIiKyjmFghKyEgbJstgoQEZH7MAyMUFOnhTCQw/ECRETkPgwDI3SorSfqY9kyQEREbsQwMAIh3cTR9kDUx7NlgIiI3IhhYAQO+3sQ/aRCtgwQEZE7MQyMwMHW6LsIMjwqsn3crZCIiNyHYWAEDrZ1R31sWY4PgrsVEhGRCzEMjMAhCy0DXHmQiIjcimFgmMKGiXoLgwdHceVBIiJyKYaBYTriD8DClgQoZcsAERG5FMPAMB1sjX68AABU5DIMEBGROzEMDJOVxYayvCry0z0xrIaIiGj4GAaG6YCFwYNV+RmcSUBERK7FMDAMummi3h/94MHKvPQYVkNERDQyDAPDUO8PwJDRjx6symcYICIi92IYGIaDFsYLAAwDRETkbgwDw2B1GeLCDG8MqyEiIhoZhoFhsLLyYGV+OgcPEhGRqzEMWGSYEof90YeBMRw8SERELscwYFFDewC6haUHq/IzYlgNERHRyDEMWGR18GAlBw8SEZHLMQxYdMjCMsTpHgXFmRw8SERE7sYwYJGVmQSVeRw8SERE7scwYIEpJQ5ZGDxYmcfxAkRE5H4MAxYcbQ8ibEQ/eHB8IcMAERG5H8OABYfarG1bPKEoM0aVEBER2YdhwAIrOxUWZ3mRm8Zti4mIyP0YBiw4ZGFa4US2ChARUYJgGIiSbpqWZhJMLGQYICKixMAwEKUDLT0IGWbUx08oyophNURERPZhGIjSzqbOqI/N9mkoyeJiQ0RElBgYBqK0qzH6MDChKJOLDRERUcJgGIhC2DCxt7kr6uM5XoCIiBIJw0AU9rV0I2xhp0KuL0BERImEYSAKVroIvKqCyjzuVEhERImDYSAKuywMHhxXkAFV4XgBIiJKHAwDZxEyTOxriX4ZYi42REREiYZh4Cz2Hu+CzvECRESUxBgGzsLK+gKaIhgGiIgo4TAMnIWV8QLjCzPhVfmSEhFRYtGcLsAtXttxDIf9AUwrzcbU0mzkpXsQ0A3stzBeYEoJlyAmIqLEwzDQKz/Dixe2HcVHh9oAAKNy0lCa7YOF4QIMA0RElJAYBnpVnbI2QEN7AA3tgaifn+5RUJWfYXdZREREMccO7l4l2T74RtDfP6k4i+sLEBFRQmIY6KUIgdF5acN+fk/YxKdH2xHSo9/mmIiIyA3YTdBPZX4G9jRHP2Cwv11NndjV1Nk3vXBaaTZqynJQnjv8gEFERBQPDAP9nDpuYDh0U2JnYyd2N3VhdG46wwAREbkeuwn6sXODoZsWVGJaWbZt5yMiIooVhoF+RuWkQbNhEOB1s8qxoCrfhoqIiIhij2GgH1URGJ07staByyeX4JLqYpsqIiIiij2GgVNU5g8/DCwaW4Cra8psrIaIiCj2GAZOMdxBhDNH5eD6uaMhBNcaICKixMIwcIrhjP6fUJiJW88dw0WHiIgoITEMnKIs21oYKM9Jw9fPH8vdComIKGHxE+wUGV4VOWnRLb9QkOHBHReMR6aXyzUQEVHiYhgYRFm276zH5Pg03HHBeOSle+JQERERUewwDAzibF0FmV4V/3jheMtdCkRERG7EMDCI0jO0DKR7FPzjBeNRMcL1CIiIiNyCYWAQo3IG/8bv0xR8a/F4VOVnxLkiIiKi2GEYGMRgLQMeVeCb54/D+MJMByoiIiKKHYaBQeSne+DrN1VQUwS+vmgcqouzHKyKiIgoNhgGBiGEQGlOpHVAEcDXzh2LqaXcgZCIiJJTyoQBKSWkocMMBmB0d8Ls6YIZDkGa5qDHl2WnQQC49ZwxmFGeE99iiYiI4khIKaXTRdjN6PAj3HgEelM9wo31CB87DL2pATIcGvR4JTsXntLR8JRUwFNSDq2kAmuaFeTlZGIhtyImIqIklzRhQG87jp6tG9C9ZR3040cjdwoR+TPEt//TKCpgGn230ybNRMbMhUirngGhcXEhIiJKTgkdBozuTvRs24DuLR8ifGRf5IPfzv8coQDShPB4kTZ9PjJmLIRv3BTuTEhEREklIcOA1MPo/HA1Ot5+qbfpXwCI8X+GogCmCU/5GOQt/wK8o8fH9npERERxklBhQEqJQO3H8L/2LIz2VmeK6G0tSJ8+Hzmf+Ry0vEJn6iAiIrJJwoSBcFM92l58CqHDe+zvDhgOoQCKQPaiy5G9ZCWEqjpbDxER0TAlRBjo2b4RLX9+HDAMQEY5GDBuBLyjx6Pg8/8ANSvX6WKIiIgsc3UYkFKiY81f0fHO35wu5cyEAiUjE0U3fBueskqnqyEiIrLEtWFAmgbaXvo9uje953Qp0REKhKah8PpvwTd2stPVEBERRc2VKxBKKdH6198lThAAAGlC6mEc/92DCB7a43Q1REREUXNlGOj66B30fPKB02VYJyUgJVr+91EYne1OV0NERBQV14WB4KE98L/6jNNlDJ+UMHu60PLsLyBPrGZIRETkYq4KA0ZnO1r+91Hnpw2OlGkidHA32t943ulKiIiIzspVYaD1L0/A7OlK/DDQq3Pdmwjs/tTpMoiIiM7INWEgdGQfgrs/jX5ToUQgBNpX/wUunbBBREQEwEVhoH3NS5H1/5OJlAg3HEBwb63TlRAREQ3JFZ++oYaDCO7ellytAicIBR1rXnK6CiIioiG5Igx0vPO35GsVOEGaCB3eg+D+XU5XQkRENCjN6QLMUACBnZsdHTRY7+/EPz7/Fpq7eqAqCv5pyVysnG7jFsWKgu6t6+EbO8m+cxIREdnE8TAQOrzP8dkDqqLg35adh+mjinC8swfLfvE8LqmuRIbXY88FTBPB/TvtORcREZHNHG+bDx3cHdkO2EGl2RmYPqoIAFCUlY68dB/aeoK2XsNoaYTR3WnrOYmIiOzgeBgIHqiL2bbEpimx5L/+Fz9548MB96/ZfQjj7vk1Xvp072nP2XykCVJKlOdm2V5PiHsWEBGRCzkaBqRpIHT49A9kuyiKwLcumIPfbdje901/+9Fm3P7HN/F/L11w2riA1u4A/unPb+HeKy+IRTGRVhAiIiKXcTQMmIEeQA/H9BqfnTERBRlpeOzDbaj3d+LG37+Ka2ZV4/bzZw04Lqgb+Oozr+ObF8zG/Koy+wuREkZ7q/3nJSIiGiFHBxDKcCjm19BUBd9YPAs/X7UBL2/fhxmjCnHP8kUD65ASd76wBovGlePaWTEa8S9lXP57iYiIrHJ2zIChx+Uyn51RjZ6wDgmJh6+9FOopaxpsOHgML27bg9d2HMBljz6Hyx59DrXHWmyvQ8a4FYSIiGg4HG0ZEJpNU/fO4u6X3wMQGROgCHHa4wvHlOHQj74W8zqExxvzaxAREVnlaMtAPD4c71+9AavqDuKvX/076KbEM5scmu8vBMMAERG5krNhIC0Dwpces/M/vXEHfvH+Fjz+xcsxrawQXz23Bo++txlhw4k9EAS0ghIHrktERHRmzoYBIeAbUw0M0nQ/UqvrDuLul9fioc9dgnmVpQCAryysQWcwhOc2O7BPgDThrZoY/+sSERGdheOLDsXiA3JLfRNu/+Ob+Jel52DFtHF992eneXHzwho8vHYzjHjvkCgEvKPHnf04IiKiOBNSOrsxQPDQHhx/7D4nS4gLrawSpf9wt9NlEBERncb5loHyMYDq+H5JsaUo3LGQiIhcy/EwIFQNGbPPc3yzopgyTWTOOd/pKoiIiAblik/g7MXLADi7jXHMKArSpsyGp6TC6UqIiIgG5YowoOUVIX3WeYDiinLsZZrIvvAKp6sgIiIakms+fXMuWA6YSdY6oCjwTayBd1SV05UQERENyTVhQCsoQcbc82Oy5oBjJJBzydVOV0FERHRGrgkDAJC77PPQikYlTXdB7rK/Z6sAERG5nqs+dRWPF4Vf/EbvGv4J3EIgBNJnnIPMBRc5XQkREdFZuSoMAICWX4yCa25Dws4uUBRoRaOQd+UNEMnU5UFEREnLdWEAANKqa5Bz6WedLsM6oUD40lH4xW9A4Q6FRESUIBxfjvhMOtetgv+1PzpdRnQUBWp2HopuvBNaQbHT1RAREUXN1WEAALq3bUDrC08ApglIJ7YejoIQ8JRVovD6O6Bm5ThdDRERkSWuDwMAEDp6CM1/eBhmh99lgUAAkMiYuxh5y78AoXmcLoiIiMiyhAgDAGD2dMG/+gV0f/RuZC0CF4QCJTsXuZddh4yaBU6XQkRENGwJEwZOCDfWw//aHxHcW9sbCuJcvlAgVBXZF16BrHMv7Z0GSURElLgSLgycENi9Df5X/wi9+VhkkSIzxi0FvcEjY875yLnkaqhZubG9HhERUZwkbBgAAClNhA7uRvfWDejZth4yGLA3GPQGAK2sEpkzz0X69HlQc/LtOTcREZFLJHQY6E8aOoJ7atG99UME6rZGggEQ+UAX4uwBQVEB0+h7jlZQgvSaBUifsRCewtLYFk9EROSgpAkD/UkpYXa1I9xYD72xHuGmeoSPHobZ3QGp64ChR1oQVA1C80ArLIGnpAKeknJoxeXwFJVxLAAREaWMpAwDREREFD1XLkdMRERE8cMwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxWlOF9Cfd84tUDQvhKJCKCpUz8nbQlFOPqaqUDQvlL7H1NMeE4oKRREQioCqKhCn3FYUAUUVfcec8TEhoGoKVEVAVQS8vbe1vr+rJx9TTx6n9TtWHey2EFCEgCoAj6r03dZUBapA5O+KgEcRg9yOPO5RlL7bqhAQAlAEIAR6zw8IAKoioACR/xYFfbcVAaii/+3IOYSUgDQhTB0YcNuM/DGHfkxIEzCMk7dNHTANSNME9BCkYQCmGblPD0OaRuR2OAycuH3i2BPHhUMnn2MaMMM6pGFCmibMkA7TiDxHGibMsA7TOHlb9t42wjpkv+OMkN7vtgFpSpiG7P177/NNGXnMkJCGhGmYMMJm7zkljLDR+5yTzzOlhCElQqaEIXHK7VP/HrltInLbkOh97OTt/5H7HX1f2oXvb76/+f527/ubLQNEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANERESpTiapQCAgf/jDH8pAIOB0Kadxc21Ssr6RcHNtycTNr7Oba5OS9Y2Em2sbKSGllE4Hklhob29Hbm4u/H4/cnJynC5nADfXBrC+kXBzbcnEza+zm2sDWN9IuLm2kWI3ARERUYpjGCAiIkpxDANEREQpLmnDgM/nww9/+EP4fD6nSzmNm2sDWN9IuLm2ZOLm19nNtQGsbyTcXNtIJe0AQiIiIopO0rYMEBERUXQYBoiIiFIcwwAREVGKS7ow8N3vfhcXXHABvvSlLyEUCg14rKenBytXrsSSJUuwdOlStLS0uKq+E372s59h/vz5jtek6zpuvvlmXHDBBfj2t78dt3qire+EeL9e/Q1Vmxt+15IR39/21cT399ml0vs7qcLApk2bcPToUbz77ruYNm0a/vSnPw14/JVXXkFNTQ3efvtt/P3f/z1+97vfuao+AOjo6MC2bdtcUdNf//pXjB49Gu+++y66u7vx/vvvx62uaOoD4v96RVub079ryYjvb3tr4vt7+LU5/bsWC0kVBj744ANcdtllAIBly5ad9stdXV2N7u5uAEBbWxuKi4tdVR8A/Od//ie++c1vuqKmaOp1sj4g/q9Xf2eqzenftWTE97e9NfH9fWap9v7WnC7ATm1tbSgvLwcA5ObmntZ0M2HCBGzbtg01NTUQQuDDDz90VX1+vx9bt27F3Xff7Yqa2tra+tbfHqxep+tz4vWKtjanf9eSEd/f9tbE9/fwa3P6dy0WErJl4OjRo1i8ePFpf6SUaG9vBxD5H1lQUDDgeU8++SQuuugibNu2Df/2b/+Ge+65x1X1Pfjgg/jWt74Vk5qGkp+fP2RNZ3rMDfU58Xr1d6ba4vW7loz4/rYP39/Dl2rv74QMA2VlZVi7du1pf1asWIHXX38dAPDaa6/h/PPPP+25J/6H5uXloa2tzVX17d69Gz/5yU+wbNky1NXV4ec//3lM6uvv3HPPHbKmMz0WL2eqwYnXK9ragPj8riUjvr/tw/d3bGoDkvD97dzuybFx1113ycWLF8vrr79eBoNBKaWUX/va16SUUvr9frlixQq5ZMkSef7558udO3e6qr7+5s2b51hNJ+oJh8PyxhtvlIsXL5Z33HFH3OqJtr7+4vl69TdUbW74XUtGfH+PvCa+v6OXSu9vLkdMRESU4hKym4CIiIjswzBARESU4hgGiIiIUhzDABERUYpjGEgBTzzxBPLy8mw51/79+yGEgKZpOHLkyIDHGhoaoGkahBDYv3//gMeee+45XHTRRcjNzUVWVhZmzpyJe+65p28hDztrJEo1N998M4QQuP3220977Bvf+AaEELj55pv77jt69CjuuOMOjB8/Hj6fD5WVlbjyyiuxatWqvmPGjh2LBx98MA7VkxswDNCwlJeX47e//e2A+5588klUVFScduwPfvADfP7zn8eCBQvwyiuvYNu2bXjggQewefPmpFjTm8gNKisr8cwzz6Cnp6fvvkAggD/84Q+oqqrqu2///v2YN28eVq9ejfvuuw9bt27Fq6++iosvvtixpX/JeQwDCeDVV1/F4sWLkZeXh8LCQqxcuRJ79uwBAKxZswZCiAGLXnzyySd9387XrFmDr3zlK/D7/RBCQAiBH/3oRwCA1tZW3HjjjcjPz0dGRgaWL1+Ourq6qGq66aab8Pjjjw+474knnsBNN9004L7169fjpz/9KR544AHcf//9WLRoEcaOHYulS5fiueeeO+14IhqeuXPnoqqqCs8//3zffc8//zwqKysxZ86cvvtOtBSsX78e1157LSZNmoTp06fjzjvvxLp165wonVyAYSABdHV14c4778SGDRuwatUqKIqCz372szBN86zPXbRoER588EHk5OSgoaEBDQ0N+O53vwsg0rT40Ucf4cUXX8QHH3wAKSVWrFiBcDh81vNeddVVaG1txdq1awEAa9euRUtLC6688soBx/3+979HVlYWvvGNbwx6HnYNENnnK1/5yoCQ/thjj+GWW27p+3tLSwteffVVfPOb30RmZuZpz+f7MXUl1UZFyeqaa64Z8Pff/OY3KCkpwfbt28/6XK/Xi9zcXAghUFZW1nd/XV0dXnzxRbz33ntYtGgRgMgHd2VlJV544QVcd911Zzyvx+PBDTfcgMceewyLFy/GY489hhtuuAEej2fAcXV1dRg/fvxp9xOR/b785S/jn//5n/vG9rz33nt45plnsGbNGgCRJX6llJgyZYqzhZLrsGUgAezZswfXX389xo8fj5ycHIwbNw4AcPDgwWGfs7a2Fpqm4Zxzzum7r7CwEJMnT0ZtbS0AYPny5cjKykJWVhamT59+2jluvfVWPPvsszh69CieffbZAd9ATpBSQggx7DqJKHpFRUW44oor8OSTT+Lxxx/HFVdcgaKior7HTyw4y/cknYotAwngyiuvRGVlJX71q1+hvLwcpmmipqYGoVAIWVlZAE6+yQFE1cw/1CrU/T+8f/3rX/cNRhrsm31NTQ2mTJmCL37xi5g6dSpqamrwySefDDhm0qRJWLt2LcLhMFsHiOLglltu6dvt7+GHHx7wWHV1NYQQqK2txd/93d85UB25FVsGXK65uRm1tbW4++67cemll2Lq1KlobW3te7y4uBhAZFrfCad+IHu9XhiGMeC+adOmQdf1AftwNzc3Y9euXZg6dSoAoKKiAhMnTsTEiRMxZsyYQeu75ZZbsGbNmkFbBQDg+uuvR2dnJx555JFBH0+K3b6IXGTZsmUIhUIIhUK4/PLLBzxWUFCAyy+/HA8//DC6urpOey7fj6mLYcDl8vPzUVhYiF/+8pfYvXs3Vq9ejTvvvLPv8YkTJ6KyshI/+tGPsGvXLvztb3/DAw88MOAcY8eORWdnJ1atWoXjx4+ju7sb1dXVuPrqq3Hbbbdh7dq12Lx5M2644QZUVFTg6quvjrq+2267DU1NTfjqV7866OPnnHMOvve97+Guu+7C9773PXzwwQc4cOAAVq1aheuuuw5PPvnk8F4YIhqUqqqora1FbW0tVFU97fFHHnkEhmFg4cKFeO6551BXV4fa2lo89NBDOO+88xyomNyAYcDlFEXBM888g40bN6Kmpgbf+c53cP/99/c97vF48Ic//AE7duzArFmzcO+99+LHP/7xgHMsWrQIt99+Oz7/+c+juLgY9913HwDg8ccfx7x587By5Uqcd955kFLi5ZdfttScr2kaioqKoGlD9zjde++9ePrpp/Hhhx/i8ssv75vGNHPmTE4tJIqBnJwc5OTkDPrYuHHj8PHHH+Piiy/GXXfdhZqaGixduhSrVq3Co48+GudKyS24hTEREVGKY8sAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKe7/B7ZBW52WEAQxAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGbklEQVR4nO3deXwb9Z0//tdnZiTZ8n07duyczuncBxAC4WggCQHaAj0oBQqlS2nZbqG//rrf8t122V7A8vix7AI9OVpK2VIopZQ7IUA4khBCSIgTO/dhJ3Z8Xzpm5vP7Q44TJ3aisUeakfR6Ph55WJFGM2+EFb30OYWUUoKIiIhSluJ0AUREROQshgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMVpThcQa9LQYbQ1wWg+DLO3GzAMSFMHhIBQNUD1QM3Jh5pfCiUjG0IIp0smIiKKq6QKA1JK6Ef2I7xvB/TmBuhN9TA7mgEpjx8kBIBjH/hywGPC44NaUAqtqAxaUTm846uh+LPi+t9AREQUb0LKEz8pE5PefBjB2k0I1nwIs6sNEApO/qC3RFEA0wSEgKeiCr7J8+CdUA3Fm2Zn2URERK6QsGFAmgYCn65DYPNaGC1HIgFAmvZfSIhIqFBUeMdXw7/gYmhF5fZfh4iIyCEJGQZCe2vQ9fbzMNuOxvfCfYHDN20hMs5ZDiUjO77XJyIiioGECgN6cwO6334B4QO1x7+xO0EogKLAv3Ap0ucsgdA8ztRBRERkg4QIA9I00bP+NfSuf6MvBMSgO2CYlMwcZF12IzwllU6XQkRENCyuDwNmoAedrzyJ8P4dTpcyOCEAoSDzoquRNm2h09UQERFZ5uowYHS2ov2vv4TZ3uKq1oChpM+/GP5zlnOtAiIiSiiuDQN6yxG0P/cIZG93QgSBY3zTFiDzoi9AKFzckYiIEoMrP7HMQA86nv91wgUBAAhu24Ce9a85XQYREVHUXBcGpDTR+cqTMLs7Ei4IHNO7/nUEd3/qdBlERERRcV0Y6Fn3WmSwYIIGgWM6X30SRrzXQSAiIhoGV4WB0J5t6F3/utNl2EPX0fH330GGg05XQkREdFquCQNS19G56s9Ol2EfacJoa0LvpredroSIiOi0XBMGAjUbIHs6nS7DXlKi96M1MEMBpyshIiIakivCgDSM5OkeOIkMBRH45D2nyyAiIhqSK8JAcPuHMLvbnS4jRiR6N67m2AEiInItV4SBng9XOV1CTMlgLwLbNjhdBhER0aAcDwNGZyvM9many8ANv/0bJv7gIXzt0b/bf3IhENpfa/95iYiIbKA5XUD40G6nSwAA3LJkDq49uxpPr99m/8mlhH5oF4zmgzAbdgKKAggVom8rZAz4qQJCiSxnrKiA6gE0D4SqRW6rGkTfT6geLntMREQj5ngY0Bv2RD4ITWcXGVpcVYl36w7E7PwyFIDZ1gTZ3nj8PjtOrKjHg8GJIUEbIjxonsj9Hh+EJw3weCOhhIiIUpbjYSB0YGfMgoBpSpz788exfMYE/NsV5/ffv7pmL677zfN45KsrcOWcSTG59mCMtqP298uYRuRPODggXEQfNERfMPAB3rS+gJAG4T3x57Hg4OOOjEREScjRMCDDIZhtTTE7v6IIfGfpQvzrX97EP39mIXL9adh6qAk3P/YifrhycVyDABQFZmcrFE/8LhkdCYQDkOEA0NN+hhDRFxyOBYUTA0TfT+HzAz4/hKLGqX4iIhopZ8NAHBbjuXreVPznKx/gN29twlfOqca1v/orrlkwFd+6aH7Mrz2AKSH1MOBxXRqw4ITggDO0PnjTIdIyINIyIXwZQFpG5O++zEhwYAsDEZFrOBsG9HDMr6GpCm6/eAF++uJavLi5DjMrivHzqy6M+XVPJSPN+UjkMGBBqBcy1AvZMchmTUIZEA5E3234+u7TvPGvl4gohTk+ZiAerpo/BXf99U1ISPzq+sugDjIC/5pHnsWWA43oCYUx899+jSduvgJzxpQ6UG0KkCbQ2wnZ2zl464LmhegLBjjWupCeBeHPiXRNEBGRrRwNA0KLz7fkH/xlNQCguTsAVRm8efqZb14V4ypEZHognZkegtRDkN2tpz7mSYPwZ0eCQf/PnLj9LhERJSNnw4A39t/yfv6Pd/HGp3vw8nevxdUP/QV//GArbj5vdsyvewohAJWD6kYsHIBsDwyYogkgMmjxxHDgz4m0JjCAERGdkbNhwOODklMIs32QfmUb/OH9LXjkzY147ttXo7q8CN+4YC7+Z9UGXL9oBjzx/mCWJpSMLCDUFd/rpopgD2SwB7L18MD70zIHtiJk5ES6HTjbgYion+Nfm7wVExHobLF9rYE3tu3BD55ZjV/dsALzx5YBAG45fzYeXv0h/ryhBl85u9rW60VDychhGIi3QBdkoAuy5dDx+4Q4PgYhM7/vTx5bEYgoZTn+r582ahyw9QNbz7n5wBHc/NiL+LcrzsPKWVX992el+fD182fjwTfW40sLpw06kDBWhMcHdfRkoGBUJPhIs/+n7P+7MfB+QweMMGDokH0/oYcBU49b3UlJSsieDsieDuDosVUnRaTVIDMfIisfIrMAwp/F1RmJKCUIKaUtq+IOl9HejNYnfuZkCbEnBDxjpiDniq/bcjopTcAw+oJC+Hho0I+FhlMDRP9tIxzZTjkcjAQPGpqiRVoMsvKhZBZAZOVH1k/gGglElGQcbxlQsvOhZOXB7Bxk5HiykIC3crJtpxNCATQF6BtBP5yPJikloIciyxiHA5EFoE78GQ4AochjCAcAZzOjM0wdsqMJsqMJ/bHJkwaRVQAlK/94FwNnMhBRgnO8ZQAAAlvfR9fqvzhdRswIbxryb/q3uMyeiIVjwSESEAIn/AwODBCB7kirRKpJzz4eDrLyITJy2b1ARAnFFWFA6jpaHv8JZE+n06XEgID/nGXwL/iM04XEhdRDkVAQ6IYMdkEGuvv/INidGl0TigaRUwglpxgip5jhgIhczxVhAAB6N69F91t/dboM+3l8yL/p/0LxpTtdieOklJFligPdkMFuyEBXX2joCwuhXqdLjA3VA5FTdDwc+HM47oCIXMU1YUDqYbQ8+h+RD4VkIQTSF3wGGWcvc7qShCBNY0A4kMemBfZ0AIEkmpKp+frDgZJTDKRnMRwQkaNcEwYAILjzE3S+9ITTZdhDKFCy85D7pTug+NKcribhSUOH7I1MB5Td7ZA9kT9J0ZrgSetrNSiCklMS2Y+B4YCI4shVYQAAut99Eb0b33S6jJHTPMj90neh5Zc4XUlSk3qob82AYwEhchvhoNOlDZ/XDyWnCCK3JPLTl+F0RUSU5FwXBqRpoP2vv4JevyehB5tlLb8evqpZTpeRsmQoMHhISMTZDmkZUHJLoeSVQeQUcaVEIrKd68IAAJg9XWh96n7I3s6EnN+ePu9CZJy70uky6CT9Axi72yG7WmB2tUB2NkfWW0gUihppMcgrg5I/CsLLgalENHKuDAMAoB+tR/tzj0AGAwnVQuCtmo2sS6/lRjgJQkoJBLthdkaCgexqgexuiywNnQBEZl6kxSC/rG8KI8caEJF1rg0DQGSp4vbnHoHZ1Z4QgSBt9vnIOO9yzilPcNI0I10LfeHA7GwBejucLuvMvOlQ8kZByS+LTGFkdwIRRcnVYQCIdBl0vPQE9PrdTpcyuL5vYhlLPoe0GYv4zSxJST0E2dXaHw5kZ3NkmWa3UlSInGIo+WVQ8kZB+PxOV0RELub6MABEBhX2vPsP9G56CxCKe1oJhIBIy0D2ZTfAUzbe6WoojvrHH3S2wOxqjrQidLa453fzJCIjDyJ/VKRLITOPoZWIBkiIMHCM3ngAXW89D71hLyLb8zhUulAiCwrNuxDp8y6E4uU6AtS3FkJnM8z2Rsj2RsiuFncOgPWkRVoMCkZD5BazW4uIEisMAJFvZKFdW9D9zt9gdrbF9+J9rRLeSXOQce5lULPy4nt9SijSCEN2HD0hHLTBsQA7FI8PSsFoKIWVENmFbDEgSlEJFwaOkbqOwCfvoveTtTA7WmLXfSAEICU6VT9qy+ZjyVmzkFY21v7rUNKTegiyvSkSDjqaIrMW3MSbDqWwIhIM2JVAlFISNgwcI6WE0XQQgR2bENy+EbK3C1AUwBxBMBBKJAAoaagpmYNt/nHY3atCArhjyQRUFWXaVj+lLhkOHg8H7Y2QbpqxkJYBpbAyEg4ycp2uhohiLOHDwImkaSJcvxvhfduhNx+GcbQ+Mi3xGCH6Rv/3jTeQ6PvZ9xKoGrrzRqMmuwpbUIQ9Ae2URt2LJhbimtnlcfnvodQiQ70w25sg2xthtje6ZnMm4c/uDwYiPcvpcogoBpIqDAxGhoLQW4/AaD4MM9ANGAakoUeaQFUNQvWg05+HLcEsfNwSxq6jPaft1S3we/Efy6ewCZViTga6YLY0wGyth2xvcsVMBZGRB6WoIhIMuGcCUdJI+jAQjdd2NOKvWxqiPv6Hn5mE0blcBpbiR+phyLYjMFvrYbY2uGIjJpFVGAkGBRUQnFFDlNAYBgA0dgbxo1e3R338ZdNKsHJaaQwrIhqalGZkfYPWBsiW+sgGTI4SkQWOivq6ErjyIVHCYRjoc/dr29HQEd23rdE5afjh0skxrogoOjLQHWkxaGmAbG90tjtB1SLjC0rGc0YCUQJhhO8zqywHDR2NUR17sD2Ao91BFGb4YlwV0ZmJtAyoo6qgjqqKrG3QdqR/rEHcuxMMHeaR3TCP7Ibw50ApGQ+lqBLCw/cKkZuxZaDP3pYe3LO6Lurjr55VhourimJYEdHISCkjeym01EO2Nti+rkFPIIhPdu7DRzt2o7GlHdkZfnxl2Xkoyc8deKBQIgsblYyHyCliawGRCzEM9DGlxA9fqkFbbziq46sKM3DHBRNjXBWRfWSgG+bRAzCPHoDsbh3Ruf721nrc+B//g55AED6fDyUlJWhtbcVFc6bgzz/73tBPTMuEWjIOSvFYCC8H4RK5BRcl76MIgVll2VEfv/NoNzqDegwrIrKXSMuAOnoKPLOXwjN3OdTK6UB69L/zJ3r0xdWYPXceNm7ciM7OTuzbtw+33HILduyvP/0TA10w9m1BeMOLCNesjbRauGDKJFGqYxg4wayynKiPlQC2NLhoxTgiC0R6FtSK6fDMuRTa7EugjJ4CWFg3QEqJQCCAJ598EhdffDGOHj1qsQIJ2VIPvWYtwhtehL5vS2T1UCJyBAcQnmBSUSbSPQp6w9F9U/n4UDsWjc2PcVVEsSOEgMjIhZKRC1k5IzLGoK8rAaHeIZ938+UX459+8Uvs3VmLlo4u6PoIWsnCAZgHa2AerIlMUSwZD6WgHEJRh39OIrKELQMnUBWBGaOibzatOdKJgG7EsCKi+BFCQMkqgDZuNjzzV0KrvgBK6QRAO3UmwJVLFuLwy4/itz+8zdYaZHsjjNoPEN7wd+i7N7G1gChO2DJwklllOVi/vy2qY3VTYkdjl6XuBaJEIETfQkI5xZDj5kT2Szi6H2bzIcCIbpDtiOghmA11MBvqIPLLoJZNgsjmTASiWGEYOMm00ixoioBuRjfJYjvDACU5oSgQeaVQ8kohJxiQrYcjwaDlDIMFbSJb6qG31Ee6M8omRVY5ZBcCka0YBk6SpqmYWpIV9eDA7Uc6Y1wRkXsIRYUoKIdSUA6ph6HsHNkURStkdxuMuvUw9n4CtXQClNIJ3BOByCYcMzAIK+MGDncG0doTimE1RO4TDAbx6BO/x++ff3nA/Y0t7fjRr5/GJ3V7Y3fxcADGgU8R/vBF6HUbYNq8mBJRKmIYGMTk4kxLx29v5CAnSi1PPvkkvvnNb2LLli2oqqqCpmkoKipCQcko/P6NdVj5vV8gPJIZBtGQJszGPdA/fg3hrWv61izgGmpEw8EwMIiiDC/y0j1RH88wQKmmtrYWY8aMQW1tLWpra1FYWIgf/OAHqK2txUMPPYQjza3onXgulNFTgTisNCjbGyNrFnz0MoyGOsh4DHIkSiIcMzAIIQQmF2fig33R9Ydub+yElJIjnSllzJ8/H/fee++Qv/Pjx49H/qgKKIoCWTkdsvUwjCO7IVsaEFmyK0YCXTB2b4KxbyuU0vFQR02EsLCYElGq4t4EQ3h/bwt+/+GBqI//v0snoyyHg5koNUgp8fbbb6O2tvaUxzweD1asWIHi4uJTnxfqhdm4F8aRPUAgHi1qIrJJUlkVlOzCOFyPKDExDAyhpSeEH75UE/Xx18wqw0XcxZAoKlJKyI6myHbHRw8CcdifQGQVQB09DSKvlK14RCfhmIEh5Pu9KMr0Rn18DacYEkVNCAElpxjapLPhWXA51HFzIPzD2zQpWrKzGXrNO9A3vwGz+RAHGxKdgGMGTmNyUSaaulqiOrauqRuGKaEq/MZBZIXw+KCWVUEZNTGyHHF9LWRrQ8yuJ7tboW9/F8KfA6ViWmQfBMHvRZTa+A44jUkWphgGDRN7WrpjWA1RchNCQMktgWfaefDMWRbZFyGGKw3KnnYYO95HeNOrMBr3cStlSmkMA6cxucjiegNHOMWQyA7Cnw1twjx45q+EOmZmbKcn9nbCqFuH8EevRGY8mAwFlHoYBk4jO82DUdnRzxDY3shxA0R2Eh4f1NFT4Jl3GdRJZ0NkFcTuYoEuGDs/RPijl2A07IQ0uSMppQ6OGTiDycWZaOgIRHXsnpYe9IYNpHu4iQqRnYSiQC2qhFpUCbOzGWZ9bWQWQizWLAj2wNj9EYyDNVDLp0ApGQeh8p9KSm5sGTgDK10FpgR2NnHcAFEsKVkF0CafA8/8y6CUTwbU6FcLtSTUC2PPJoQ3vgTj0HauakhJjWHgDKqKMmBlfkANuwqI4kL4/NDGzopMTRw/F0jLis2FwgEYez9B+MN/wDiwDVJnKKDkw7avM8jwahidm44Dbb1RHc9xA0TxJVQN6qiJUEonRJY9rq+FbD9i/4X0EIz9W2Ec2gGlrApq2SQILfq1SIjcjGEgCpOLM6MOAw0dQbT1hpFrYaMjIho5IQRE/igo+aNgdrfBPLgd5tEDsH1cgRGGeWAbzIadUCumQSmdABHDKZBE8cBugihYnWK4g60DRI5SMnKhTT4bnrnLoBSPBSx19kVJD8HY83Fkp8TGfVzRkBIaw0AUJhZmwMrCgjVcb4DIFUR6FrSqhfDMWw6lZDwQi5UGgz0w6tZB3/w6zNYGhgJKSAwDUUjzqBib54/6+F3NnFFA5CYiLRPaxPmRUFA6MSahQHa3Qd/2DvRP34LZGd0y5kRuwTAQJStLEx/tDqEjwBHHRG4jfBnQJsyFZ95lUMomxWS5Y9neCP2TN6Bvfw+yl12GlBgYBqJkddzA3paeGFVCRCMlfOnQxs2OhILyKYBi/1hqs/kgwptegb5rI2QouoXLiJzCMBCl8YUZ0CwMHNjDMEDkesKbBm3szMgCRqOn2b+AkZQwD+9CeONL0Pdv5RoF5FoMA1HyqgrGF0Q/bmBPM8MAUaIQHh+0MdXwzL8MamU1YPf6AaYO88C2yL4H9XXc94Bch2HAgslF0a9wtre1ByZHFRMlFKF5oVZMi2yMNGYm4PHZe4FwMLLE8aZXYDTt58wDcg2GAQsmFWdEfWxQN6Pe4IiI3EVonuO7JY6bbX8oCHTDqP0A+uY3YLbFYLVEIosYBiwYm++HV43+JWNXAVFiE6oGtWwSPHNXQK2YbvtAQ9ndCv3TtxDe9jZnHpCjGAYs0BQFEwujbx3gIEKi5CA0D9TK6fDMWwFl1ERA2LuioWw9jPCmV6Hv/YS7I5IjGAYsGpdvYRBhCxcfIkomwpsGbfxceOYsg1JYYe/JpQnz0HaEP+J4Aoo/hgGLynPToj62oSOInhBHDRMlG5GeBW3yOdBmfQYip9jek4d6I+MJtq6B2d1m77mJhsAwYFF5Trql4/e1squAKFkpmfnQpi+BNu18iIxcW88tO5qgf/w69N2bIPWQrecmOhnDgEWFGV74OIiQiPoIIaDklUKbtRTqpLMAX/Tjis5Mwmyoi+yMeGQ3uw4oZhgGLFKEQFlO9F0FHDdAlBqEEFCLxsAzd1lkOqJm43TEcBDGzg+hf7KKmyBRTDAMDMPo3Oi7Cg62c60BolQiFDUyHXHeisgSxzZuhiS7WiKbIO3cABnmvy1kH4aBYSi30DLQ1htGV1CPYTVE5EZC80SWOJ63AkrpBAD2TUc0j+xBeOPLMBrqIKVp23kpdTEMDIOVMAAAh9g6QJSyhDcd2oR58MxdBlEw2r4TG2EYuzdB//h1mO1N9p2XUhLDwDBYnVFwqL03RpUQUaIQ6VnwTFkErfoCCH+ObeeVPe3Qt74JfccHkEH+W0PDwzAwDOkeFQX+6Hc1O8gwQER9lJxiaLOXRgYZ2rhlsnl0f2TWwaEd7DogyxgGhslKVwG7CYjoREIofXseLIdSPM6+E5s6jL2boX+yGmZ3u33npaTHMDBMVmYU1LcHYJicH0xEAwlvGrSqBdBmXgyRmWfbeWVXC/TNr0PfvxXS5CqodGYMA8NkpWVANyUau4IxrIaIEpmSVQBt5megTphv3/oE0oR5YFtkgGFnsz3npKTFMDBMozmIkIhsJISAWjoennnLIzsj2jQVUfZ2QP9kVWRZY4PTnGlwDAPDVJjphdfCssQH2zhugIjOTGheaOPnQpu9FCK70Lbzmg11CG96FWbbEdvOScmDYWCYFCFQlm1lECFbBogoekpGLrTqCyP7HXisrW0ypGA39E/fgl63npsf0QAMAyMw2sJ2xpxRQERWHd/vYDmU8smAsKfrwGzci/BHr8A8etCW81HiYxgYASuLD7X2htEdYn8dEVknNA+0sbPgmX0pRG6JPScNB6DveA/hmnchQ2y5THUMAyNgdVnierYOENEICH82tGnnQ5tyLuDz23JO2XII4Y9e4RbJKY5hYASsLkvcxOmFRDRCQggoBeXwzLkUyqgqe05qhCNbJH/6FmSgy55zUkJhGBgBv1dFvj/65UQbuzhgh4jsIVQPtPFzoM24CCI925ZzyvZGhDe9yiWNUxDDwAhZaR3gwkNEZDcluxDa7KVQKqYBwoZ/0k2jf0lj2dMx8vNRQmAYGCEr4wbYTUBEsSAUFVplNbRZSyEy8205p+xqQXjz6zAadnIsQQpgGBghKysRNnWF+KYiophRMnKgzbwI6thZgKKO/ISmAWP3R9Br1kKGOAA6mTEMjFC5hbUGgoaJ9gCnFxJR7AihQC2fDM+cSyFyim05p2xtQPjjV2G21NtyPnIfhoERKs70waNEvxAIuwqIKB5EWia06UugTlwAqNEPdB5SOAi9Zi30nR9yj4MkxDAwQooQGGVh3AAHERJRvAghoJaMg2fuMoiCclvOaR7ZjfDHr8HsbLHlfOQODAM2KMzwRn0swwARxZvwpsMz5VxokxfZs89BoAv6J6tgHNjGKYhJgmHABnnp0YeBJq41QEQOUQpHwzN3GZTicTacTcLYvxX6lje5UFESYBiwgbWFh9gyQETOEZoXWtUCaNOXAL6MEZ9PdjYjvOk1GEf2cLZUAmMYsEGehTDA6YVE5AZKbol9SxqbOoydG6DveA8yzC88iYhhwAb5FroJQpxeSEQuIVQtsqTx9CWA19peK4ORzYcQ3vQqzNbDNlRH8cQwYAMrLQMA0NzNcQNE5B5Kbgk8sy+BUlAx8pOFA9C3vQ199yZOQUwgDAM2yPRp0CysNdDWG45hNURE1gmPD+rks6FWnWXLugRmQx30zW/A7Gq1oTqKNYYBGyhCIC89+jcPwwARuZEQAmrxGHhmXwKRXTji88nejsgUxEM7OFbK5RgGbGKlq6AtwDBARO4l0jKgVV8AdcwMQETf6jkoaUZ2Qdz+LgcXuhjDgE3y/NEPImTLABG5nRAK1NFToc38DJCeNeLzyZZ6hDe/DrPj6JmP5aZIcccwYBMr3QTtDANElCCUzDx4Zi2FUjpx5CcL9kDf+iaMg9uH7DaQPR0If/IGpM5/J+OJYcAm+WwZIKIkJVQN2oS50KaeN/LljKWEse+TyLbIJ3UbSEOHvuN9INgD8/DOkV2HLGEYsInVAYQcTENEiUbJHwXPnEsg8stGfK7Itsivwexo6r/P2P0RZE975HZ9LacmxhHDgE2sDCAMmxI9YSOG1RARxYbwpEGbci7UCfMBRR3ZyUK90LesgXGwBsaR3TAb9x5/LByEeWT3yM5PUWMYsImVbgKAXQVElLiEEFBLx0emIGbmj/BsEsa+LTB2fnjKI8ahHZAmvzjFA8OATdI9KtK06F9OhgEiSnQiPQvajIugVEwDMMIpiIMJ9cI8ssf+89IpGAZsxEGERJRqhKJAq6yGNuNCwOe3/fzGoe2Qpmn7eWkghgEbWVp4iGGAiJKIkl0Iz6yltgwuHCDYA7Npn73npFMwDNiISxITUSoTHl9kcOHYWYCw7+PFOFgDKdk6EEsMAzaysgphV4iDYogo+QghoJZP7us2yLDnpIEumEcP2nMuGhTDgI2yfFrUx/YwDBBRElOyCuCZvRQiv9yW85kHt3F9lhhiGLCR3xP9nNueMBfTIKLkJjQvtCmLoI6bM+JuA9nTAdlSb1NldDKGARv5vRbCAFsGiCgFCCGgllVBm3nRiGcbGId22FQVnYxhwEYMA0REgxPedGCEUwRl59Godj0k66Lv5KYzstJNENBNGKaEqsRgoQ4iIheR0oS+4wMgPPKtiY1D26FkL7ahquP0rg6Em45AhsOQ4RCklBCaB4pHg5qZDU9RCcRIl152OYYBG1lpGQCAnrBhadAhEVEiMvZ/CnnChkQjIVvqIXs6IPzZ1p8rJQJ7dyKwfzeCB/cjeHAvggf3wujqPO3zhKbBW1IOX+U4+Mor4SsfA//k6VDT7V9kySn8JLJRukeFABDteNeeEMMAESU3s7UB5sEaW89pHNoBrWpB1McHD+1H+wdvof29N6G39HUzqCpgRNddK3UdwUP7EGw4ELnDNCFUDZmzFyD7nAuQOXMeFI+1/Wnchp9ENlKEQLpHjXpHwp6QDsAX26KIiJxkGFBKJ0B2t0F2twE2bDxkNu2DrKyG8KUPfdmeLrSteRVt765GqP4AoCgDxyxEGQQGXvj486Who3PTOnRufB/Cl4bshYuRd8EypI+fZP28LsAwYDO/N/ow0M1BhESU5JTC0VAKRwOIjB1AbxfM7lbIrjbI7tZIQNBD1k4qTRgNddDGzjz1IcNA61uvounZP8Ds7QGOrU0Qi/0N+s4pgwG0v7sa7e+8gayFi1FyzY3wFBbbf70YYhiwmd+rAt3RHRttaCAiSgZCKIA/G6o/GygaAyDSj49QD2RXW19IaIXsagHCwdOeyzy8C3L0VAjt+DLwXVs24shTv0HosAPrEfQFg84P30PXxg+Qv/xzKFhxVcKMK2AYsFmGlYWH2DJARClOCAH4MiB8GVAKIqsVSimBYDfMzmbIzhbIzuZIC8KJ+xMYYZhHdkEtnwK9vRX1v/0vdG/9yNY9EYbFNCFhovkff0Hbmlcw6mu3I2vu2c7WFAWGAZtxrQEiopERQgBpmVDTMo+3IJhGZNxBZzNkZzPMzhYY9XUI9Uoc+O+fw+jqQN+BDlZ+AilhdHXh4H//DAUrr0HR56519fREhgGb+b0W9idgNwERUVSEokJkFQBZBf33dax7C/X/+W+Q4XBsxgSMWGS8QvOLzyB4YC/Kv/l9KD53DhrnCoQ2S9Oif0nDhht/eYmI3K9l1T9w6Jf3QwaDLg0CA3V98iH23XcXjO4up0sZFMOAzbQoVhSUUsI0dIYBIqJhaH9/DY48+Suny7BGSgT21OHAA3dD6u7bqI7dBDbzqIPnq/bDB7DlpafQtOtTNO+thR4K4JmiUkz++/M466yz4lwlEVFiCuzfg4ZH/9vpMobHNNG7awcan3kcJV/+utPVDMCWAZsN1TLw6n13oG3LO7h4fjXu+flP8dhjj6EgJxOPP/54fAskIkpQRncXDjz4E0gbFi5yjJRoee0FtH/wltOVDMAwYLOhWgY6jhzEnXfeiXvvvRdz5szBjTfeiKKiIgSDp59LS0REgDRNHPrlf0JvbU6IMQJn0vC7BxE4sMfpMvoxDNhsqJaBrOIy/OAHP8Do0aNx0003xbkqIqLE1vbOG5F1BJIgCACRqZKHfnV/ZE0FF2AYsJlHHTwMLPv+A5j7pW9jzLwlca6IiCixSV3H0ReedroMe5kmQof2o+vj9U5XAoBhwHbaEN0EOaUVmLXyqygYUxXnioiIElv7B28d320wmQgFTc//yRWtAwwDNotmaiEREUVHmgaOvvC/gEjCf1ulieD+3ZHuD4cxDNjMo/AlJSKyS+eG9xBuOnx898Fkoyg4+jfnu0D4yWUzbYgxAwBg6GEYenjAfeFwGKGQxe07iYhSROfH6wCHv2StOXAEK55bjWXPrsZfavfZe/K+tQf0Y3srOIRhwGaeIboJdr3/Gh6/6QJsfuGJAfc/+eSTyMnJwcMPPxyP8oiIEkp3zRZHZxDopol7NnyKxy49B89ecT5+u2UX2oL2f4Hrraux/ZxWMAzYbKgBhNtefxZnz5+Lp556Cg8++CAA4O6778ZTTz2FpUuX4qGHHopnmURErhduboLR3upoDVuOtmFibhZKMtKR4dFw/uhivHuoyd6LKCp66rbZe06LuByxzYYaQKh6vGhvb8eOHTsAABs3bux/rKWlBT6X7mRFROSUntrYfUCaUuLyv76JiypLcef8af33rz3UiNtWrce958/FsrFlaOwJoMSf1v94SUYajvQEbC7GQM/2rfae0yKGAZsNNcZl9pU34r3H78N//s8v++8TAHLTPcjJycHPfvaz+BRIRJQgenfWAKoKGPYvP6wIgVtmVuGn67bi6zMmIsfnxfaWdnx3zUb8y9ypWDa2DMCxTYgHisW8hsC+XTDDYSgeTwzOfmYMAzaTg/7qAGXT5uHqeweOGE3TFPx/n50Rj7KIiBKO3tkR0/ECK8eX4+GPa/FkzR5cVVWJb76xHldMGI2bqif0H1PiH9gScKQ7gJlFufYXY5owe3ugeHLsP3cUOGbAZlZmvyTjtFkiIruYoWBMpxRqioKbZ0zAkzV7cOsb6zCtIAf/Z2H1gGNmFOairrUTR7p70R3W8fbBRiwuK45JPTLk3F41bBmwmZWVpERMGpuIiJKEocf8EivHj8Yv1n8KKYH7zp8L9aRxX5qi4PsLpuHGV9+HKSVurp6I3DRvTGpxcjdGhgGbWWnQYssAEdHQFF/amQ8aoZ9+sAUA0BoMQR3iH+WLKktxUWVpzGsRXucGkrObwGbWugmYBoiIhqL40mK64NCDH23HWwcb8afLFsMwJZ6t2x+za0VDYRhIHla6CfjiExENzTd6TMzGDPyldh8e/3QXHr54Iabk5+Cr08bhd1t3IezQAkdabh5Uf4Yj1wb4eWQ7K7+2bBggIhqaf9K0mISBtw8ewX98sBX3nD8Xs4rzAADXTR2H7rCOF3YdtP16Z6Qo8E+ZGf/rnliCo1dPQuwmICKyR9qYCRCavUPbPj3ahu+u2YjvzZ+KpWNG9d+f6fXgK1PH4rdbdsIw47wpkikjwcdBHEBoM9PSbAIiIhqK0DxIGzcJvTYu1Tu9MBcbr1sx6GO3z5mC2+dMse1a0ZNIr3I2DLBlwGbsJiAisk/GtJmO71oYa4o/A76yCmdrcPTqSYjdBERE9sldcmlyf3MSAvmXXAnhcOBhGLAZZxMQEdnHk1eAvCWXJm3rgPB6kb90pdNl8PPIbmEj+jBw8kpXRER0qoIVVzldQmwIgfylV0L1ZzpdCcOA3QIWdtfyaXz5iYjOxFNQhJzFFydd64DQPMi/5AqnywDAMGC7oB79ghU+TY1hJUREyaPoii9FViRMovEDhVd+GVpWttNlAGAYsJ21MMCXn4goGp6CIpR/8/sx3cUwbhQFmbMXomDF552upB8/jWwWYhggIoqJzBlzUfT565wuY2QUBZ6CYpR94w5XzSjjp5HNrLQMpDEMEBFZUnDZ1cictSBhxw8IVUPFd+6Cmu53upQBEvPVdLGgHv0AQq/Kl5+IyAqhKCj7xh3wlVcmViAQAlBVlH/z/4nU7jIJ9EomBo4ZICKKLdWfgTH/+gv4J01PjAGFigLh8aLyjh8ja85ZTlczKH4a2SxocDYBEVGsqel+VNzxY+QsusjpUk5PUaDl5GHsD+9BxrRZTlczJIYBm7FlgIgoPhSPB6Nu/meUfvXWSJeBC7sN/JOmY9zd/4W0yvFOl3Ja3LXQZgwDRETxI4RA3kUr4J9cjSNP/w7dWzcBQgFk9P8Wx6AoqBlZKL7mBuQsvghCcX8rMMOAzRgGiIjiz1deico7/x1dWz7Ckad+jdDh+vgXoSgQQkH+8s+jYMXnXTdj4HQYBmxmZTYBwwARkb0yZ8xFxk8eQtvbr6Hpb0/DaG8FFBUwo/+32RIhIgshKQqyFyxG8TU3wFNQFJtrxRDDgM16w9G3DHBqIRGR/YSqIu/C5chdcil6areh44O30LHubZiB3si4AtOGLoS+EJBeNRU5iy5E9rxFUDOzRn5ehzAM2MiUEl1BPerjM318+YmIYkUoCjKmVCNjSjVKr/sGurZuQueGd9G7uxahxobjoUBRAcjIN/wTlzsWCqAIwDAjjwNQM7PhqxiLzJnzkL3wPHjyC+P+3xUL/DSyUU/IgJVVs7MYBoiI4kJoHmTNXois2QsBAFLXETpSj2D9fgQP7kf46BGY4RBkOAxpGFC8XgjNAzUzC77ySvjKx8BXXgk1w/nthmOBn0Y26rTQKiAA+L3uH2FKRJSMhKb1fchXAgucrsZ57LS2kZUwkOnToCTCyllERJT0GAZsZDUMEBERuQHDgI2sDB7M8rGLgIiI3IFhwEadASthgC0DRETkDgwDNuoMsZuAiIgSD8OAjbrYMkBERAmIYcBGHEBIRESJiGHARlbCAFsGiIjILRgGbGRtNgHDABERuQPDgE0MU6I7FP2uWAwDRETkFgwDNmnpCVnblyCNYYCIiNyBYcAmR7tDUR/rUxX4PVx0iIiI3IFhwCZWwkB+hgeC+xIQEZFLMAzY5Gh3MOpj8/3eGFZCRERkDcOATZqttAwwDBARkYswDNjESjdBgd8Tw0qIiIisYRiwibUxA2wZICIi92AYsEFv2LC0xkABuwmIiMhFGAZsYKVVAOCYASIicheGARtYGTyoKQLZXHCIiIhchGHABlamFeale6BwjQEiInIRhgEbcPAgERElMoYBG1ibVsgwQERE7sIwYANrCw5xjQEiInIXhoERMqW01DJQyG4CIiJyGYaBEeoI6NDN6DcvLs1Ki2E1RERE1jEMjJCVmQQAUJLti1ElREREw8MwMEJWugjy0j1I09QYVkNERGQdw8AIWQkDpVlsFSAiIvdhGBihpi4LYSCb4wWIiMh9GAZG6EBbb9THsmWAiIjciGFgBEK6icMdgaiPZ8sAERG5EcPACBxs70X0kwrZMkBERO7EMDAC+1uj7yLwe1Rk+bhbIRERuQ/DwAjsb+uJ+tjSbB8EdyskIiIXYhgYgQMWWga48iAREbkVw8AwhQ0T9RYGD47iyoNERORSDAPDdKg9AAtbEqCELQNERORSDAPDtL81+vECAFCewzBARETuxDAwTFYWG8r0qshL98SwGiIiouFjGBimfRYGD1bm+TmTgIiIXIthYBh000R9e/SDByty02NYDRER0cgwDAxDfXsAhox+9GBlHsMAERG5F8PAMOy3MF4AYBggIiJ3YxgYBqvLEBf4vTGshoiIaGQYBobBysqDFXnpHDxIRESuxjBgkWFKHGyPPgyM4eBBIiJyOYYBixo6AtAtLD1YmeePYTVEREQjxzBgkdXBgxUcPEhERC7HMGDRAQvLEKd7FBRlcPAgERG5G8OARVZmElTkcvAgERG5H8OABaaUOGBh8GBFLscLEBGR+zEMWHC4I4iwEf3gwfEFDANEROR+DAMWHGiztm3xhMKMGFVCRERkH4YBC6zsVFiU6UVOGrctJiIi92MYsOCAhWmFE9kqQERECYJhIEq6aVqaSTCxgGGAiIgSA8NAlPa19CJkmFEfP6EwM4bVEBER2YdhIEo7mrqiPjbLp6E4k4sNERFRYmAYiFJtY/RhYEJhBhcbIiKihMEwEIWwYWJ3c3fUx3O8ABERJRKGgSjsaelB2MJOhVxfgIiIEgnDQBSsdBF4VQUVudypkIiIEgfDQBRqLQweHJfvh6pwvAARESUOhoEzCBkm9rREvwwxFxsiIqJEwzBwBruPdkPneAEiIkpiDANnYGV9AU0RDANERJRwGAbOwMp4gfEFGfCqfEmJiCixaE4X4Bavbj+Cg+0BTCvJwtSSLOSmexDQDey1MF5gSjGXICYiosTDMNAnz+/F81sP48MDbQCAUdlpKMnywcJwAYYBIiJKSAwDfSpPWhugoSOAho5A1M9P9yiozPPbXRYREVHMsYO7T3GWD74R9PdPKsrk+gJERJSQGAb6KEJgdG7asJ/fGzbx6eEOhPTotzkmIiJyA3YTnKAiz49dzdEPGDxRbVMXapu6+qcXTivJQnVpNspyhh8wiIiI4oFh4AQnjxsYDt2U2NHYhZ1N3Ridk84wQERErsdughPYucHQDQsqMK00y7bzERERxQrDwAlGZadBs2EQ4DWzyrCgMs+GioiIiGKPYeAEqiIwOmdkrQOXTi7GRVVFNlVEREQUewwDJ6nIG34YWDQ2H1dWl9pYDRERUewxDJxkuIMIZ47KxrVzR0MIrjVARESJhWHgJMMZ/T+hIAM3nz2Giw4REVFCYhg4SWmWtTBQlp2Gb547lrsVEhFRwuIn2En8XhXZadEtv5Dv9+D288Yjw8vlGoiIKHExDAyiNMt3xmOyfRpuP288ctM9caiIiIgodhgGBnGmroIMr4p/Pn+85S4FIiIiN2IYGETJaVoG0j0K/vm88Sgf4XoEREREbsEwMIhR2YN/4/dpCr69eDwq8/xxroiIiCh2GAYGMVjLgEcV+Na54zC+IMOBioiIiGKHYWAQeeke+E6YKqgpAt9cNA5VRZkOVkVERBQbDAODEEKgJDvSOqAI4Btnj8XUEu5ASEREySllwoCUEtLQYQYDMHq6YPZ2wwyHIE1z0ONLs9IgANx81hjMKMuOb7FERERxJKSU0uki7GZ0tiPceAh6Uz3CjfUIHzkIvakBMhwa9HglKweektHwFJfDU1wGrbgcq1s05GelYyG3IiYioiSXNGFAbzuK3i0b0PPJB9CPHo7cKUTkzxDf/k+hqIBpRM6nepFZNR3+mQuRVjUDQuPiQkRElJwSOgwYPV3o3boBPZ+sQ/jQnsgHv53/OUIBpAnh8SJt+nz4ZyyEb9wU7kxIRERJJSHDgNTD6Fq3Gp1vvdjX9C8AxPg/Q1EA04SnbAxyl38J3tHjY3s9IiKiOEmoMCClRKDmI7S/+gyMjlZniuhrLUifPh/Zn/k8tNwCZ+ogIiKyScKEgXBTPdpeeBKhg7vs7w4YDqEAikDWokuRtWQlhKo6Ww8REdEwJUQY6N22ES1/fQwwDEBGORgwbgS8o8cj/4v/BDUzx+liiIiILHN1GJBSonPN39H59j+cLuX0hALFn4HC674DT2mF09UQERFZ4towIE0DbS/+ET2b3nW6lOgIBULTUHDtt+EbO9npaoiIiKLmyhUIpZRo/fsfEicIAIA0IfUwjv7hAQQP7HK6GiIioqi5Mgx0f/g2ej9+3+kyrJMSkBIt//sIjK4Op6shIiKKiuvCQPDALrS/8rTTZQyflDB7u9HyzK8g+1YzJCIicjNXhQGjqwMt//uI89MGR8o0Edq/Ex2vP+d0JURERGfkqjDQ+rfHYfZ2J34Y6NP1wRsI7PzU6TKIiIhOyzVhIHRoD4I7P41+U6FEIAQ6Vv8NLp2wQUREBMBFYaBjzYuR9f+TiZQIN+xDcHeN05UQERENyRWfvqGG/Qju3JpcrQLHCAWda150ugoiIqIhuSIMdL79j+RrFThGmggd3IXg3lqnKyEiIhqU5nQBZiiAwI7Njg4arG/vwj8/9yaau3uhKgr+ZclcrJxu4xbFioKeLevhGzvJvnMSERHZxPEwEDq4x/HZA6qi4N+XnYPpowpxtKsXy371HC6qqoDf67HnAqaJ4N4d9pyLiIjIZo63zYf274xsB+ygkiw/po8qBAAUZqYjN92Htt6grdcwWhph9HTZek4iIiI7OB4GgvvqYrYtsWlKLPnv/8VPX1834P41Ow9g3N2/xYuf7j7lOZsPNUFKibKcTNvrCXHPAiIiciFHw4A0DYQOnvqBbBdFEfj2eXPwhw3b+r/pbzvcjFv//Ab+34sXnDIuoLUngH/565u45/LzYlFMpBWEiIjIZRwNA2agF9DDMb3G52ZMRL4/DY+u24r69i5c/8dXcNWsKtx67qwBxwV1A19/+jV867zZmF9Zan8hUsLoaLX/vERERCPk6ABCGQ7F/BqaquC2xbPwi1Ub8NK2PZgxqgB3L180sA4pccfza7BoXBmunhWjEf9SxuW/l4iIyCpnxwwYelwu87kZVegN65CQeOjqi6GetKbBhv1H8MLWXXh1+z5c8sizuOSRZ1FzpMX2OmSMW0GIiIiGw9GWAaHZNHXvDO566V0AkTEBihCnPL5wTCkO/PgbMa9DeLwxvwYREZFVjrYMxOPD8b7VG7Cqbj/+/vXPQjclnt7k0Hx/IRgGiIjIlZwNA2l+CF96zM7/1Mbt+NV7n+CxL1+KaaUF+PrZ1Xjk3c0IG07sgSCg5Rc7cF0iIqLTczYMCAHfmCpgkKb7kVpdtx93vbQWD37+IsyrKAEAfG1hNbqCITy72YF9AqQJb+XE+F+XiIjoDBxfdCgWH5Cf1Dfh1j+/gf+z9CysmDau//6sNC9uXFiNh9ZuhhHvHRKFgHf0uDMfR0REFGdCSmc3Bgge2IWjj97rZAlxoZVWoOSf7nK6DCIiolM43zJQNgZQHd8vKbYUhTsWEhGRazkeBoSqwT/7HMc3K4op00TGnHOdroKIiGhQrvgEzlq8DICz2xjHjKIgbcpseIrLna6EiIhoUK4IA1puIdJnnQMorijHXqaJrPMvc7oKIiKiIbnm0zf7vOWAmWStA4oC38RqeEdVOl0JERHRkFwTBrT8YvjnnhuTNQccI4Hsi650ugoiIqLTck0YAICcZV+EVjgqaboLcpZ9ga0CRETkeq761FU8XhR8+ba+NfwTuIVACKTPOAsZCy5wuhIiIqIzclUYAAAtrwj5V92ChJ1doCjQCkch9/LrIJKpy4OIiJKW68IAAKRVVSP74s85XYZ1QoHwpaPgy7dB4Q6FRESUIBxfjvh0uj5YhfZX/+x0GdFRFKhZuSi8/g5o+UVOV0NERBQ1V4cBAOjZugGtzz8OmCYgndh6OApCwFNagYJrb4eame10NURERJa4PgwAQOjwATT/6SGYne0uCwQCgIR/7mLkLv8ShOZxuiAiIiLLEiIMAIDZ24321c+j58N3ImsRuCAUKFk5yLnkGvirFzhdChER0bAlTBg4JtxYj/ZX/4zg7pq+UBDn8oUCoarIOv8yZJ59cd80SCIiosSVcGHgmMDOrWh/5c/Qm49EFikyY9xS0Bc8/HPORfZFV0LNzInt9YiIiOIkYcMAAEhpIrR/J3q2bEDv1vWQwYC9waAvAGilFciYeTbSp8+Dmp1nz7mJiIhcIqHDwImkoSO4qwY9W9YhULclEgyAyAe6EGcOCIoKmEb/c7T8YqRXL0D6jIXwFJTEtngiIiIHJU0YOJGUEmZ3B8KN9dAb6xFuqkf48EGYPZ2Qug4YeqQFQdUgNA+0gmJ4isvhKS6DVlQGT2EpxwIQEVHKSMowQERERNFz5XLEREREFD8MA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUpzmdAEn8s65CYrmhVBUCEWF6jl+WyjK8cdUFYrmhdL/mHrKY0JRoSgCQhFQVQXipNuKIqCoov+Y0z4mBFRNgaoIqIqAt++21v939fhj6vHjtBOOVQe7LQQUIaAKwKMq/bc1VYEqEPm7IuBRxCC3I497FKX/tioEhAAUAQiBvvMDAoCqCChA5L9FQf9tRQCqOPF25BxCSkCaEKYODLhtRv6YQz8mpAkYxvHbpg6YBqRpAnoI0jAA04zcp4chTSNyOxwGjt0+duyx48Kh488xDZhhHdIwIU0TZkiHaUSeIw0TZliHaRy/LftuG2Ed8oTjjJB+wm0D0pQwDdn3977nmzLymCEhDQnTMGGEzb5zShhho+85x59nSglDSoRMCUPipNsn/z1y20TktiHR99jx27+Uex19X9qF72++v/n+du/7my0DREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREqU4mqUAgIH/0ox/JQCDgdCmncHNtUrK+kXBzbcnEza+zm2uTkvWNhJtrGykhpZROB5JY6OjoQE5ODtrb25Gdne10OQO4uTaA9Y2Em2tLJm5+nd1cG8D6RsLNtY0UuwmIiIhSHMMAERFRimMYICIiSnFJGwZ8Ph9+9KMfwefzOV3KKdxcG8D6RsLNtSUTN7/Obq4NYH0j4ebaRippBxASERFRdJK2ZYCIiIiiwzBARESU4hgGiIiIUlzShYHvfe97OO+88/CVr3wFoVBowGO9vb1YuXIllixZgqVLl6KlpcVV9R3z85//HPPnz3e8Jl3XceONN+K8887Dd77znbjVE219x8T79TrRULW54XctGfH9bV9NfH+fWSq9v5MqDGzatAmHDx/GO++8g2nTpuEvf/nLgMdffvllVFdX46233sIXvvAF/OEPf3BVfQDQ2dmJrVu3uqKmv//97xg9ejTeeecd9PT04L333otbXdHUB8T/9Yq2Nqd/15IR39/21sT39/Brc/p3LRaSKgy8//77uOSSSwAAy5YtO+WXu6qqCj09PQCAtrY2FBUVuao+APiv//ovfOtb33JFTdHU62R9QPxfrxOdrjanf9eSEd/f9tbE9/fppdr7W3O6ADu1tbWhrKwMAJCTk3NK082ECROwdetWVFdXQwiBdevWuaq+9vZ2bNmyBXfddZcrampra+tff3uwep2uz4nXK9ranP5dS0Z8f9tbE9/fw6/N6d+1WEjIloHDhw9j8eLFp/yRUqKjowNA5H9kfn7+gOc98cQTuOCCC7B161b8+7//O+6++25X1ffAAw/g29/+dkxqGkpeXt6QNZ3uMTfU58TrdaLT1Rav37VkxPe3ffj+Hr5Ue38nZBgoLS3F2rVrT/mzYsUKvPbaawCAV199Feeee+4pzz32PzQ3NxdtbW2uqm/nzp346U9/imXLlqGurg6/+MUvYlLfic4+++whazrdY/FyuhqceL2irQ2Iz+9aMuL72z58f8emNiAJ39/O7Z4cG3feeadcvHixvPbaa2UwGJRSSvmNb3xDSille3u7XLFihVyyZIk899xz5Y4dO1xV34nmzZvnWE3H6gmHw/L666+Xixcvlrfffnvc6om2vhPF8/U60VC1ueF3LRnx/T3ymvj+jl4qvb+5HDEREVGKS8huAiIiIrIPwwAREVGKYxggIiJKcQwDREREKY5hIAU8/vjjyM3NteVce/fuhRACmqbh0KFDAx5raGiApmkQQmDv3r0DHnv22WdxwQUXICcnB5mZmZg5cybuvvvu/oU87KyRKNXceOONEELg1ltvPeWx2267DUII3Hjjjf33HT58GLfffjvGjx8Pn8+HiooKXH755Vi1alX/MWPHjsUDDzwQh+rJDRgGaFjKysrw+9//fsB9TzzxBMrLy0859oc//CG++MUvYsGCBXj55ZexdetW3H///di8eXNSrOlN5AYVFRV4+umn0dvb239fIBDAn/70J1RWVvbft3fvXsybNw+rV6/Gvffeiy1btuCVV17BhRde6NjSv+Q8hoEE8Morr2Dx4sXIzc1FQUEBVq5ciV27dgEA1qxZAyHEgEUvPv744/5v52vWrMHXvvY1tLe3QwgBIQR+/OMfAwBaW1tx/fXXIy8vD36/H8uXL0ddXV1UNd1www147LHHBtz3+OOP44Ybbhhw3/r16/Gzn/0M999/P+677z4sWrQIY8eOxdKlS/Hss8+ecjwRDc/cuXNRWVmJ5557rv++5557DhUVFZgzZ07/fcdaCtavX4+rr74akyZNwvTp03HHHXfggw8+cKJ0cgGGgQTQ3d2NO+64Axs2bMCqVaugKAo+97nPwTTNMz530aJFeOCBB5CdnY2GhgY0NDTge9/7HoBI0+KHH36IF154Ae+//z6klFixYgXC4fAZz3vFFVegtbUVa9euBQCsXbsWLS0tuPzyywcc98c//hGZmZm47bbbBj0PuwaI7PO1r31tQEh/9NFHcdNNN/X/vaWlBa+88gq+9a1vISMj45Tn8/2YupJqo6JkddVVVw34++9+9zsUFxdj27ZtZ3yu1+tFTk4OhBAoLS3tv7+urg4vvPAC3n33XSxatAhA5IO7oqICzz//PK655prTntfj8eC6667Do48+isWLF+PRRx/FddddB4/HM+C4uro6jB8//pT7ich+X/3qV/Gv//qv/WN73n33XTz99NNYs2YNgMgSv1JKTJkyxdlCyXXYMpAAdu3ahWuvvRbjx49HdnY2xo0bBwDYv3//sM9ZU1MDTdNw1lln9d9XUFCAyZMno6amBgCwfPlyZGZmIjMzE9OnTz/lHDfffDOeeeYZHD58GM8888yAbyDHSCkhhBh2nUQUvcLCQlx22WV44okn8Nhjj+Gyyy5DYWFh/+PHFpzle5JOxpaBBHD55ZejoqICv/nNb1BWVgbTNFFdXY1QKITMzEwAx9/kAKJq5h9qFeoTP7x/+9vf9g9GGuybfXV1NaZMmYIvf/nLmDp1Kqqrq/Hxxx8POGbSpElYu3YtwuEwWweI4uCmm27q3+3voYceGvBYVVUVhBCoqanBZz/7WQeqI7diy4DLNTc3o6amBnfddRcuvvhiTJ06Fa2trf2PFxUVAYhM6zvm5A9kr9cLwzAG3Ddt2jTouj5gH+7m5mbU1tZi6tSpAIDy8nJMnDgREydOxJgxYwat76abbsKaNWsGbRUAgGuvvRZdXV14+OGHB308KXb7InKRZcuWIRQKIRQK4dJLLx3wWH5+Pi699FI89NBD6O7uPuW5fD+mLoYBl8vLy0NBQQF+/etfY+fOnVi9ejXuuOOO/scnTpyIiooK/PjHP0ZtbS3+8Y9/4P777x9wjrFjx6KrqwurVq3C0aNH0dPTg6qqKlx55ZW45ZZbsHbtWmzevBnXXXcdysvLceWVV0Zd3y233IKmpiZ8/etfH/Txs846C9///vdx55134vvf/z7ef/997Nu3D6tWrcI111yDJ554YngvDBENSlVV1NTUoKamBqqqnvL4ww8/DMMwsHDhQjz77LOoq6tDTU0NHnzwQZxzzjkOVExuwDDgcoqi4Omnn8bGjRtRXV2N7373u7jvvvv6H/d4PPjTn/6E7du3Y9asWbjnnnvwk5/8ZMA5Fi1ahFtvvRVf/OIXUVRUhHvvvRcA8Nhjj2HevHlYuXIlzjnnHEgp8dJLL1lqztc0DYWFhdC0oXuc7rnnHjz11FNYt24dLr300v5pTDNnzuTUQqIYyM7ORnZ29qCPjRs3Dh999BEuvPBC3HnnnaiursbSpUuxatUqPPLII3GulNyCWxgTERGlOLYMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOL+f9zVYMEMkzYRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -434,7 +434,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJRUlEQVR4nO3deXwU9f0/8NfMXtlkk819hzPcAUHuQ8EDOQQVrVqtVYrVav1qq9jrV/16tNVqa2tttf3W1qO1HvWoYkVEQS4FFAXlCJBwBUJIyLU59p6Z3x8bIpEEZrOzmdnd1/PxyIPNzuxn3lmy2dd+5jOfj6AoigIiIiJKWKLeBRAREZG+GAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMExDBARESU4hgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogRn1ruAaFOCAfhra+CvOQyprQVKMAhFCgKCAMFsgWixwJydB1tBCUzODAiCoHfJREREfSquwoCiKPAdrED7ri/gP1oF3+EDCDTUAbLcsYcAiELoXyiA0vF1YmuSHbaCEtiKB8BWMhApZ02COc2px49CRETUZwRFOendMEb5ag6j9ZMNaN28FsGmekAUAQWAIp/xsd0ymQBJAgQB9uFjkDb5XDjOmgQxya5p3UREREYQs2FAkSS4PvoArjUr4K85HAoAci/f/E9HEEOhwmSG46yJyJx7OWwlA7U/DhERkU5iMgy07/gcx199FoG6mr49cEfgSJt2PrIuuQZmZ0bfHp+IiCgKYioM+KqrcPy15+DZ/eVXn9j1IIoQTGZkzrsC6RcsgGi16VMHERGRBmIiDCiyhMZ3XkXju68DghCd0wG9IsCcnomC7/0ISQNK9S6GiIioVwwfBqT2Nhx75vdw7/pC71K6J4iAKCD32u/BOe18vashIiIKm6HDQKCxHtV/eACB+loD9Qb0LGPu5ci65BrOVUBERDHFsGHAX3MERx6/H1JbS0wEgRNSp56HvOtugSCa9C6FiIhIFUNORyy1t6L6j7+IuSAAAK0bP0TjO6/qXQYREZFqhgsDiizj2DOPI+hqirkgcELj8tfQ9uUWvcsgIiJSxXBhoPGdV0ODBWM0CAAABAHHnnkc/r6eB4GIiKgXDBUG2rZvQePyOOhiVxQoAT+O/vnXkH1evashIiI6LcOEATkQQN0LfwnNIxAPZBmB2qNoXvVfvSshIiI6LcOEgdZNH0Jqae6yimDMUxQ0vb8MstejdyVEREQ9MkQYUKQgGpa/htDSwvFF9nnQvHaF3mUQERH1yBBhoGXzWkjNjQitOxxnFAVNK9/i2AEiIjIsQ4SBxnffiJ+xAt2Q3W1o2fih3mUQERF1S/cwEGg8jmB9re5jBb6/YiMmPLMMt6/cpH3jggh3uUHXViAiooRn1rsAT2W53iUAAK4fPRjfGN4f/9lbpX3jigxPxS607/wcLRtWQjCZIJgtEExmCGYz0PFv6Puv7hesVog2OwSbHWKSHaItCWLSie+TINqSIJh0/y8kIqIYp/s7ibdyNyCaAFnStY4pRbnYXH08au3LHjd8VfvgrdipabuCxQqhIySItpMCw4nw0BEkOvc5sZ8jFebUdIgpqRBE3TuIiIhIR7qHAffeHVELArKiYN4rK3HhgEL8aMrozvvXHz6GW979GL+9YBLmDS6OyrG74689qnmbSsAPJeCH3NbSuwYEASZHWugrNR2m1DSYHE6YUr/25UhjcCAiilO6hgHZ70MgCm+QJ4iCgO+NG45fbNiGm8cNg9NmRXl9M+5YuRl3TSrr0yAA0RRaitloFAVSqwtSqwuoOXz6fUURppTU04YGc3omzBnZEMyWvqmfiIgipm8Y8LijfoxLhpTgT1t24R/bK3Hl8AG4+d2PcenQfrhx7NCoH7sLRYbi8/ftMbUmy18Fh9MRBJjSMmDOzIElKwfmzByYs3JhycyBOTMXplQnexiIiAxE1zCg+KP/5mgWRdw8bhh+t3knVu6vxqjsdNw7fWzUj3sKRYEcDPT9cfWgKJBcjZBcjfAd2HPKZsFsCQWEzGyYMztCQlZuKDxk5kC0J+tQNBFR4tJ9zEBfWDikH3710RdQAPzuwkkwiafOabDkv+uxs74ZnqCEc/65HE/OmYIxuZnaFhJPUy1HQAkGEKg7ikBd96eIxGRHZzDo7FXIKYC1oBimlNQ+rpaIKP7pGgYEq7VPjvPg+m0AgCavH6YeJjd6ZsE50S1CECCYTPE4x6LmZHcb/O42+I8cOGWbKdUJS34xrHlFoX87vsQkuw6VEhHFB13DQF/8AX/8k51YU1WDfy86D4v/ux6v7j6I68oGR/24pxDE0JwCFJETYxa+fommKT0L1vwiWPOLYckvCf2bVwjR0jeBk4golukbBmxJsOTkI3D8WFTa/3f5ATzzZQX+sfAcjMhOx+LRQ/C3bXtx9YiBsJj6eACbLMGclg6pITo/a6KTmhvgaW6AZ/eXX90pCDBn5Xb2HpzoSbBk5zOYERGdRPe/iPZhoxFoOK75XANrq47hgfXb8LsLJ2FsXhYA4NujB+PvX+zFWxVV+MbwAZoeTw1TusZjEOj0FAXB+loE62vh3vHZV/eLJlhy8mEtKIGteCBs/QbDWjwAotWmX61ERDrSPwyUDkfLhvc1bXPH8Sb8YOUm/HhKGeYMKuq832G14NujB+OvW/dg0dD+3Q4kjBYhyQ7njNlIHjISSjAIRQpCCQaBjn9D3wc671eCQSh+L2SfF7LXA8XrCd32eaBwBcTIyBICtdUI1FajfVvHWhSiCGt+MWz9BsNWMgi2foNhySviJZBElBAERdF3iHugvhYH771NzxKiTxCQPGocim77f5o0p8gyFL8PstcT+vJ5oPg8kL2hsNB534kA0bGf0nFbam+F1OYCJH2ngDY6wWrr7Dk48WVyZkCI4xU2iSgx6d4zcOL68mBjPRDHY+1TRpylWVuCKIbWHohgAKaiKJA97R0D8logtTZDauv4t/Wkf9tC2/VeO0IPit8H7/7d8O7f3XmfKS29S++BrWQQr2Qgopine88AALjWv4+6F/9P7zKiRrQnY+BD/xezbxqKLJ8UHDq+2lxdQ0NrM4JN9X0yq6ShCAIsOQUdPQehgGAt6AfBZNK7MiIi1QwRBuRAAAfvuRVSS7PepWhPEJC18JvInHeF3pX0CcndjmDj8Y6vOgQaTrrdWA9IQb1LjDrBloSkgUNhLx2JpNKRsBb259gDIjI0Q4QBAGhe8y6Ov/J3vcvQnGBLwsCH/w8me4repehOkWVILc0INh5HoKGuMzQEGkO3JVeT3iVGhWhPRtKg4UgqHQn74BGw5BczHBCRoRgmDMh+Hw7+/FZIvV2K14gEAZnzvoGshVfrXUlMkAN+BJsaEOwICoHGOgTra+E/dgTBxuNxM52zmJKKpMHDYR88EklDRsKSU8BBiUSkK8OEAQBo/XwTjj39W73L0IYowpKVi5KfPQoTF96JmOz3IVB3FP6aIwgcOwJ/x5fkatS7tIiZUp1IKh2JpMEjYC8dCXNWLsMBEfUpQ4UBAKj/zz/RtPItvcuIkADBYkG/nz0Ka0Gx3sXENcnTjkBtNfzHOkJCzRH4a6shx3APkyk9C/bBI0KnFUpHwJyRrXdJRBTnDBcGFElC9R8ehGdfOSDLepfTa/k3LUXq2VP1LiNhSa0u+E8OCceqETh2BLI39q52MGflwj60DMkjxyGpdCTXWyAizRkuDABAsNWFql/dDanVFZOBIOOiS5G96Nt6l0FfoygKJFcT/DVV8B3eD1/Vfviq9kF2t+ldmmqCxdoZDOwjxsKclq53SUQUBwwZBgDAd+Qgjjz+AGRPe0wFAseE6chffAevM48RiqIg2Hgcvqp9oa/D++E/chBKMKB3aapYiwcieeRYJI88G9ai/hxrQES9YtgwAACB47U48vj9CDY3xEQgSL9gAbIvv56XjcU4RQrCX3MEvqrKzt6DwPEaw1/NYErL6AgG45A0ZBRPJxCRaoYOA0DolEHN04/BW7FL71K6JwgABORcvQTOc+fwk1mckj1u+I4c6Ow98FXtM/QkWYLFiqTSkUgeNQ7JI8bC7OSKmUTUM8OHASA0qLD+zRfQ/MHbgCgap5dAEGBypKHg5rthLx2hdzXUh06MPzhxesF7qBK+qn2GnWHRWjQAySPHIXnkWFiLBrD3ioi6iIkwcIL30D4c//cz8O7fE/pErlfpoggIIjJmX4rMOZfF7JoDpC3Z74PvUCU8lbvgrdwF3+EDhlzgyZSWjuQRY5E8ZhLspSM5voWIYisMAKFPZG1bN6P+9ec6VjrsQx29Eo4J05G96DpYMnP69vgUU2SfF94De+Gt3AlPZTn81QcNN+5ATElFyphJSBk7BUkDh7LHgChBxVwYOEEOBOBauwLNa1cgWF8bvdMHJ3ogBBH+gSMx4PJrkDJ4mPbHobgnedrh3b8H3spd8O4rh/9old4ldWFyZiDlrMlwjJ0Ka8lAjn8hSiAxGwZOUBQFvqr9aP10A1o/WReam0A0dQSDXv5oohgKAIoCf1Ep9hWfhS2ppfBak3HLtAEYlMVFhyhyUnsrvPt2h04r7CtHoLZa75I6mbNykTJ2Chxjp8BaUKJ3OUQUZTEfBk6myBI8leVw79wG39Eq+I4chNR80tz1oghAAE584FEAKHJn161gNkPMLURbZhGqknLweWop2uzOLseYMTATl5QV9MnPQ4kl2NIM775yePeVw1NZjmD9Mb1LAgBY8oqQMm4KHGdNgSUnX+9yiCgK4ioMdEf2euA/Vg3f0SrI7a1QgsHQhDKCCMFigWC2IODMwn4xA1vdFhxs8p62PyHDbsFPLxjCLlSKukBDHdzl2+DetRXefeWApP9gRGvxQDjGTkbKWZO5ZgJRHIn7MKDGmsp6LC+vVb3/D88djEJnUhQrIupK9nrg2bsD7l1b4S7fBrm9Ve+SYBswFI5xU5AyZhJMqc4zP4CIDIthAMDxNh9+82Gl6v1nD83B7GG5UayIqGeKLMNXta+z1yBQc1jfggQBSaUj4Rg3DSlnTYJoY1AmijUMAx0e+7AStW0+VfsWpCXhzpmDo1wRkTqBxuPwdAQDT2W5rhMfCbYkOMZNReqkWbwigSiGMAx0WFFei9WV6uct+OkFQ5CZzLnfyVhknzd0OqF8K9y7tkFua9GtFmtBCRyTZ8Fx9jSYkh261UFEZ8Yw0OFwswd/XL9f9f4LR+XjnEFZUayIKDKKLMN3eH9nr4HW8xp4AkGUH2/CjtpG1Ls9SLVacdnIgchJ6Tojp2C2IHn0BKROnoWkQcM5sRGRATEMdJAVBQ9/sBcur7ou1oGZybh1+sAoV0WknUBjPdq/2Iz2bZtCsyFG4L2KKty1/CN4ghJsNhvy8vLQ1NSEqXnp+MulM3t8nDkrF6mTZsIx8VyY09IjqoGItMMwcJI3t9fg44ONZ94RoakK7r1oGBw2c3SLIoqCwPEatG3bjPatGxGoOxr245e8sRr+ggH44x//iNGjR8NisWDp0qVY9tzfsfI7C8/cgCgiecRYpE6aCfvws7g+ApHO+E52klH5qarDgAKgvLYVE/tlRLcooiiw5BQgY/ZlSL/wUgRqDqNt2ya0b9uEYONxVY9XAHi9XrzwwgvYsmUL3njjjfAKkGW4d34O987PYUpLh2PiuUideC4s2Xnh/zBEFDGGgZMMykpBklmEN6hujYMdxxgGKLYJggBrYT9kFvZDxrwr4T+8vyMYbIbU0tTj4745uhQ/XbkJ+3ftQLPXj2Cw91cwSC3NcK1aBteqZUgqHYnUybOQXDYeooUDdIn6CsPASUyigBF5qdha7VK1f8XxNviCEmxmdnFS7BMEAbZ+g2HrNxiZC66B98AetG/bhPYvPz1lkqM5Q/phzpB+WLXvCG56c41mNXg7ln8Wkx1wjJ+OtOmz2VtA1AcYBr6mLD9NdRgIygoq69sxKj8tylUR9S1BFGEfPAL2wSOQddm34anchfatm9C+YwsUryfqx5fdbWhZ/x5aNqxE8shxSDt3buhKBM5bQBQVDANfMzQ3BWZRQFBWN66SYYDinWAyI3nYGCQPG4OswGJ49mxH+7ZNcO/8PPoHV5TOsQXWwv5IO2cOHOOmQDBbon9sogTCMPA1NrMJQ3JSUF7bpmr/iuPq9iOKB6LFipSy8UgpGw/Z60Hak48DGp4mOB3/0UOof+WvaFr+ClKnXoC0qedzTQQijXD2j26MyE1VvW9dmx/NnkAUqyEyHp/Ph2f/9SJe+XhLl/vrPV48tmEbyut6HnwYKanVheaVb+Dwr+7E8X8/Db/eazMQxQGGgW6U5qSEtX9lfXuUKiEyphdeeAG33nortm/fjiFDhsBsNiMnJwc5xf3wn8ONWPzWWgQkdVfl9JYSDKDtk3Wofuz/oeb/fg33rq1Q5OgekyhecdKhbiiKgoc/qECzV90n/rOLnPjm2cVRrorIOH7yk5/gjTfeQEVFxSnb3nzzTSxatAg1e8thrdyOtk/Xn/YyRS2Zs/PhPOciOCacw9UTicLAMNCDV7ZW47Mjzar2TbWZcc/soRzpTAnj1VdfxVVXXdXj9kGDBqGiogKiKEKRJHj2fInWzWvgLt8G9MGnd9GejNTJs5A2fTbMGdlRPx5RrGMY6MGWw83497Zq1fvfNWsw8lP5SYQSg6IoWLduHfbu3XvKNovFgvnz5yM3N/eUbcGWZrRtWY/WzWsQbKiLfqGiiJTRE5F2zhwkDRgS/eMRxSiGgR40uf14eNWpXaA9uWRUPmZwFUMiVRRZhnf/HrR+sgbuLz+FEoz+IFxb/1KkX3hpaC0E9uIRdcEwcBqPrK5AQ7tf1b7Dcx1YMrl/lCsiij+Suw1tn3+M1o2rEahV3xvXW9bigUi/8BIkjzybyykTdWAYOI3XvziKzVXqBj5ZTSIemDscJpGfOIh6Q1EUeCt2wrVuBTy7v4j68SwFJUi/4FKkjJnIUEAJj2HgNLZVu/Di50dU73/rtAEYmBXeZYlEdCp/XQ1aNryHtk/XQwmo653rLUtuIdIvuAQpY6dwKWVKWAwDp9HqC+IXK/eo3v/CoTm4aNipg6aIqHckdxtaN69By4b3IbnULS/eW+bsPKSfvxCO8dMhmDg5KyUWhoEzeGxNJWpbfar2HZCRjO/PGBjliogSjyIF0b59C1rWvwffocqoHsuckQ3neQuQOulcroFACYNh4Aze2lGDjw6o+0QiCsD9c4YjycKuRqJo8R6qRMv6FWj/8tOozllgcmaEQsHkWRAt1qgdh8gIGAbOYEdNC/6xRf3c54sn9cPIPPVrGxBR7wSbG9Cy4X20bv4QsscdteOYUp1wzpyH1KkXcFZDilsMA2fg9gfxwHt7oPZJmjEwE5eUFUS1JiL6iuzzom3LBrRseA+B48eidhwx2QHnzHlImz4bYpI9asch0gPDgAp/WLcP1S6vqn3zHDYsPa80yhUR0dcpsgzPni/hWrcC3oqdUTuOaE9G2ow5cJ47F6I9OWrHIepLDAMq/HfXMazb16B6/5/PHgpnEgceEenFX3MYzavfRvu2TUCU/sSJyQ6kX3gp0qZdwIGGFPMYBlQor23Fs59Uqd7/6rFFGF+SHr2CiEiVwPEaNK9ahrbPP47aYENzRjYy5n4DKeOmcvIiilkMAyp4gxLuX7Ebsspn6uxiJ745jksaExlFoKEOrtVvo3XLekCSonIMa2E/ZMy/GvZho7n2AcUchgGVntywH4eaPKr2zUy24KcXDI1yRUQUrmBTPZo/fAdtn6yN2uJISYNHIPPib8LWb1BU2ieKBoYBlVbsrsXqinrV+//vRcPgsHEWMyIjCrqa4Fq7HK0bV0dtuuOUMZOQMe9KWHLyo9I+kZYYBlSqON6GpzcdUr3/4on9MDKf8w0QGZnU6oJr3Qq0fPwBFJ+6K4bCIpqQOmUWMmYvginVqX37RBphGFApIMn43xW7IakcOHB+aTbmjsiLclVEpAWpvRUt61eiZcNKyF7tJzASrDY4Z86Dc+Z8zlFAhsQwEIa/fHwA+xvU/aEozU7BzVMHRLcgItKU5GlHy0fvo2Xde5DdbZq3L6akIn32ZUibcj4EM08jknEwDIThg711WLnnuKp9rSYRD84bDpGjiolijuz1oGXjKrjWLIfc3qp5++as3NDliGdN5uWIZAgMA2E40NCOP398UPX+d84cjII0zmVOFKtkvw+tmz5E8+q3Ibe1aN6+tWgAMi++GvahZZq3TRQOhoEwBGUZ963YjYCk7im7YkwBJvfPjHJVRBRtstcD17p34VqzHIpf3ZLm4bAPH4OsS7/NKw9INwwDYfrbpkPYe1zducSJJem4cmxRlCsior4itbrQ/MFbaNm4GpA1nrzIZIZz5lykX3ApV0ekPscwEKaVe+rwwV514wa4aBFRfArU16JpxWuhtQ80ZnJmIHPBNUgZO4UzGVKfYRgI0/aaFvxzy2HV+z8wdzjsFlMUKyIivfiOHEDjO69EZZXEpEHDkbXoelgLSjRvm+jrGAbCVN/uw6OrK1Xv/90p/TE0xxHFiohIT4qiwLN3B5reeQX+o+onJlNFFJE27UKkz7kcJnuKtm0TnYRhIEyyouB/390Nv6RuBbSLhuXgwqG5Ua6KiPSmyDLat21C07uvItikfupyNcSUVGRefDUcE87hpYgUFQwDvfCnDftRpXLRouG5DiyZ3D/KFRGRUSjBAFo2rkbzB29pPkeBrWQQshbdwEWQSHMMA73w+pdHsflQk6p9nUlm/Hz2sChXRERGI3s9cK1ZDtfa5douhiQIcEyaicx5V8LkSNOuXUpoDAO98PHBRry5vUb1/vfNGYYUK6ceJUpEwZZmNL//Jlo3fwjI6k4vqiHak5Ex5xtInXo+BBMHKVNkGAZ6IdyZCG+eOgCl2Rz8Q5TIAsdr0Pjuq3B/+amm7VoLSpC16AYkDWIPJPUew0AveAIS7luxW/X+l4zKx4xBWVGsiIhihaeyHA1v/gOBY0c0bTdl3FRkLrgGZmeGpu1SYuCw1F6wW0zIsFtU73+0JQrrpBNRTLKXjkDRnb9E5qXXQUxK1qzd9q0bceTRH8O17l0oGp6OoMTAMNBL4SxAVMMwQEQnEUwmOM+Zg+KfPArHpHM1a1fxedG47EXU/OlB+GvUT45GxDDQS+GEgdpWHySZZ2OIqCtTqhM5V92Egtvvg7V4oGbt+qr2ofrxe9H03htQggHN2qX4xTDQSwVpNtX7BmUF9e0aXlpERHElqX8pCu+4H9lX3ggxJVWbRiUJze//B9W/vxfeQ+pnTaXExDDQS+H0DAA8VUBEpyeIIlInz0LxT36DtOmzAY0WKQrUVqPmTw+i4a0XIPv4d4i6xzDQS1kpVlhM6l+sDANEpIYpOQVZi65H4Z2/gG3gUG0aVRS0rH8P1b/9GTx7d2jTJsUVhoFeEgUB+akcREhE0WEr7I+C79+DnGtvhSktXZM2g031OPbXR3D8lachuds1aZPiA8NABHhFARFFkyAIcJw9DcU/fhTOWfMBUZuZBts+XYfq3/wE7RpPgESxi2EgAuEMInR5g3D7g1GshojilZhkR+aCa1B090OwDx2tSZtSqwt1/3gCtc/9AcGWZk3apNjFMBCBcAcRHmv1RakSIkoE1txC5N30I+Qu/gHMGdmatOnesQXVv/kJWj9ZC05Im7gYBiIQbhho4OWFRBQhQRCQUjYBRXc/jLRz5mhy1YHscaP+33/Dsb8+gkBDnQZVUqxhGIiA3WJCehjTEnOuASLSimhLQtal16HgtnthySvSpE1vxU5U//ZncK3llMaJhmEgQuH0DjAMEJHWkgYMQdGdv0D67EWABksZKwE/Gt9+ETV/fAD+uqMaVEixgGEgQuEMImQYIKJoEMwWZMy5HEU//AVsJYM0adN3eD+O/v5etHz8AccSJACGgQiF0zPQ0O7ni4qIosZaUIKC2+9D5iXXQrBYI25PCfjR8MbzqH3md5BaXRpUSEbFMBChcMKAX5LR4uPlhUQUPYIownnuPBTd/TCShozSpE1P+TYc+e3P4N75uSbtkfEwDEQoO8UKs6h+NC+vKCCivmDJykX+zT9B9lU3QbQnR9ye3N6K2md/j/rXnuUaB3GIYSBCoiAgL5XjBojIeARBQOqkc1H0o0eQPHqCJm22blqN6t/fC1/Vfk3aI2NgGNBAVrL6c3MMA0TU18xp6ci74QfIvf4OmFKdEbcXrD+Go396AE0fvAlFkjSokPTGMKABZxhzDfA0ARHpJWXMRBT96BE4Jp0beWOyjOYVr6Pmz7/iREVxgGFAAxlhTTzEKYmJSD+m5BTkXHUT8m/+CcyZORG35ztYgerf/Rytn67j1VIxjGFAA+H0DNTz8kIiMgD70DIULX0oNKVxhBSfF/WvPI26fzwBqb1Vg+qorzEMaCCcKYkDksLLC4nIEE5MaZz/vZ/C5MyIuD339i2ofuz/wb1nuwbVUV9iGNBAOGEAAJrcgShVQkQUPvuQUSha+hBSzpoccVtSSzNqn34UDW/+E3KAY6RiBcOABlKsJpjCmGvA5WUYICJjMSU7kHPdbci55hYISfaI22vZsBJHH/9f+KoPaVAdRRvDgAZEQUB6kvreAZeHYYCIjEcQBDjGT0fRXb+CbeCwiNsL1Fbj6BP3wbXuXY6VMjiGAY047WbV+3LMABEZmSUzBwW3/j9kzL8KECNcCVGS0LjsRdQ99zgkd5s2BZLmGAY0Es7lhS1ehgEiMjZBFJF+/kIU3nE/LLmFEbfn3vk5qn93D7wHK864LxdF6nsMAxoJ5/JCniYgolhhKx6Awh8+iNRpF0bcltTcgJqnfoXmD9+BIsvd7uOvq0H1H+6D7PVEfDxSj2FAI+FcUcCeASKKJaLVhuzLb0DejUsjn85YltD0zsuoffb3p8xJIPt9obkKmhvQ8vGqyI5DYWEY0EhYAwi9AQ6mIaKYkzxiLIqWPoTkUWdH3JanfFvotMGBPZ33NbzxPALHjgAAXGuXc3XEPsQwoJFwegaCsgJPgIt7EFHsMTnSkLv4h8i+8kYIFvWLtHVHcjWi5s8PoXn122jdvAZtW9Z3bpPbW9G6eU2E1ZJa6ofA02mFO/GQyxtEspVPPxHFHkEQkDp5FpIGDcfxF/8M3+EIljOWZTQt/3e3m1xrliN16vkQIwwddGbsGdBIksWEJLP6p7OFEw8RUYyz5OSj4H/uRfrsRYCgfuI1taSWJrR9uv7MO1LEGAY0FE7vgIuDCIkoDggmMzLmXI6C2+6BKT1L8/ZdH/4XisS/l9HGMKChsC4vZM8AEcWRpAFDUXTXLzUZXHiyYFM92j77WNM26VQMAxoK54qCFg+TLhHFF1OyA7mLf4jMS64FTBHOXHiS5tXLepyXgLTBMKChcE4TtPsZBogo/giCAOe581B4270wZ2Rr0mawvhbtX2zWpC3qHsOAhlKs6pOwJ8CUS0Txy9ZvMArv+iWSyyZo0l7zB2+xdyCKGAY0ZA8rDHCeASKKbyZ7CnJvuAOZl30bMEV2KXWgthru8m3aFEanYBjQkN2iPgy4GQaIKAEIggDnjItQePv/RnzawPXhOxpVRV/HMKCh5DDCAHsGiCiRmNIyoAQju4rKd3AvvAf2alQRnYxT4GkonJ4BX1CGJCswidpP1EFEZCSKLOP4v57SZGli15p3kDRwqAZVfUVqa4G/vg5KwA8lEAAUGYLZAsFsgcmRBktOLgRRu6sjjIhhQEPhhAEg1DvgsPG/gIjiW9N7r8O7r1yTttw7P4e/7iisuYVhP1ZRFHgP7YOvaj981VXwHTkIX/UhSG2tp32cYDLDml8IW8lA2Ar7wVbUD/aho2CyJ/f2xzAcvhNpKMkiQgCgdj1ChgEiinfu8i/gWrVM0zZda5Yj56rvqt7fV12Fls3r4Nq4BsGm+tCdJhMgqTtdq0jBUHioCa2oCFkGTGY4zpoI55SZSBl9dsyvn8B3Ig2JgoAki0n1eACOGyCieKcE/EiddgH81YfgP1oFJeCPuM22zz5CxpwrYHZm9LiP5G5D89qVcH38Ifw1hwFRDL2Jd+7Qi7+/XR4fRNu2zWj7fCMEWxLSJk5H+rlzYB+k7SmMviIoiqL2gyyp8OtVe9HoVjdIZsmkfhielxrlioiIjEGRZQSO14SCQfUh+I6G/pXdbWG35TxvATIvvvrUY0gSmte9h+P/+Rdkjxvoq7e4jrCROnE6cr9xAyxZuX1zXI2wZ0BjoXED6sIAewaIKJEIoghrXhGseUXA2dMAhM7jS80N8J0ICEcOwFe1D3L76c/jt2xchfQLLoGYZO+8r23H56h76W/w1x6N6s/RrY5eg9bPNqL1883ImnMZMudfAdNJ9RkZw4DGeHkhEZF6giDAnJENc0Y2UsrGAwgFhGDjcfgOVcJXtS/079FDXbr2Fa8HrZtWwznrYgRdzah59g9o37E1Kksph0WWAchoePd1NK97D/k33IbUcVP0rUkFnibQ2AufHcaXR1tU7XvRsBxcODS2upKIiPQgB/zwH63qEhAUSUL2Nbeg+s+PQmpr6XpO3xBCQ8qz5n8D2ZddY+jLE9kzoLFwLi/k+gREROqIFiuS+pciqX9p533N61ai6jf3AlAMGASAE9eWNSx/Db4jB1H4vR9BtNl0rql7nIFQY0lm9U9pUDLiLy8RkfE1rV6OY/94CpAlgwaBrtq2f4aqx/4XUnv4gyX7AsOAxswqZhRUFAWyFESAYYCIKGyuTWtR++Jf9S4jPIoC78EKHHnil1CCxlvCnqcJNGYWu89XTTVV+Py//8Kxih2o278HQb8XGbn56L/sTUyePLmPqyQiik3ewwdw7Lk/6V1G78gyPPv2oO6155H3zRv1rqYL9gxozGzqvmfgzYd+gLqtazHr7FF45OFf4dlnn0VWmgPPPfdc3xZIRBSjpPY2HPnjQ1DkWL4SS0HTB2+jZfM6vQvpgmFAYz2dJnDVHsHSpUvx6KOPYty4cVi8eDFycnLg8/n6uEIiotijyDKOPv0Ygs0NMTFG4Exqnv0jvIcP6l1GJ4YBjfUUBpy5RfjpT3+K4uJiLFmypI+rIiKKba4Nq0LzCMRBEAAARZZw9OnfwShX9zMMaKynMQOX/fwJTLvuBxg8aVbfFkREFOOUYBD1/31F7zK0JcvwH61C2xef6l0JAIYBzVl6GDOQUdAPEy69HjkDYnMRCyIivbRsXodgY73eZWhPEFH/1kuG6B1gGNCYScWlhUREpI4iS6FeAb2nGY4GRYbv8AG079yqdyUMA1qz9HCagIiIwte6ZSMCx2v7bvXBviaKqF+m/ykQvnNp7HQ9A1IwACnQdUXDQCAAvz/y9b2JiOJR67ZPQssD6+jDqmOY99oHmPPqB3h1zyFtG5dlePfvCa2toCOGAY31NGZgz4b38KdvzcCn/3m2y/0vvPACnE4nnnrqqb4oj4goprj3bNf1CoKgLOORzTvw3LzpeOPSmfjblxVo9mn/Ac5duVvzNsPBMKCxni4t/OK9VzF5wtl48cUX8cQTTwAAHnzwQbz44ouYPXs2nnzyyb4sk4jI8AINxyG5mnStYfvxZpRmpCIvxY4UqwUzi/Pw0ZE6bQ8imuCp2KVtm2HidMQa6+k0gclihcvVjD179gAAPvvss85tjY2NsBl0JSsiIr24K6P3BikrCha8vhrn98vH3ZNGdd6/4Ugdvv/+Jjw6azzmDixCnduLvGR75/a8lCTUur0aFyPBvWentm2GiWFAYz0NcZl0+RKs/tsj+N2TfznpXgHOJDOcTiceeuihviiPiChmeCr3ACYTIGk//bAoCLj5rCH45cbtuOmsIXDarNjd4MIPV3+KH04YibkDiwAASjd/1aNxXYO3ah/kQACixRKF1s+MYUBjPQ14LSmbgBsef7XLfTaziF/MG9EHVRERxR6p1RXV8QILBhfjya178MLO/bhiWH/csnITLiktxpLRpZ375CXbUev2dH5f2+7FmNwM7YuRZcheN0SLU/u2VeCYAY2Fc/VLHF41S0SkGdnvi+olhWZRxHfHDME/d+3H997bhJHZ6fj5lDFd9hmdk46KplbUtnvQ7g9g7ZFaTC/KjUo9il+/tWrYM6Cx7rqUeiLE4yQaRERakYJRP8SCwcV4eNN2KFDw21njTxn3ZRZF/GTSKNyw/CMoCnDjmFJkJFmjUosShdMhajEMaIw9A0RE2hBsSVE/xi83fgkAaPL6YerhA9r5/Qtwfv+CqNciWvUbSM7TBBoLp0OLHQNERD0TbUlRnXDoD5+VY+3hWry88FxIioLX9mo8oVCYBIaB+BHOghM8TUBE1DNbUf+ojRl4dc8hPLd9H56aPRnDs5y4ftQg/P3LSgR0muDI5MyAKTlFl2MDDAOa42kCIiJtJA8ZGZUwsO5wLX7x8Zd4ZNbZGJubCQC4buQgtAeCWFZ5WPPjnZEoImX4mDPvF80SdD16HArn15YLHBIR9Syp/yAIJm2Htu2sb8adqz/F3RNH4qIBhZ33O6wWfGvkQDz9RQUkuY8XRZIV2Ifoe5k5BxBqLKzTBOwbICLqkWC2IGngEHgqyzVrc1R2Oj67YUG32+4YPwJ3jNfjTVlBss5hgD0DGgsnUHLIABHR6SWPGKP7qoXRJianwFpQom8Nuh49DvFqAiIi7aTPnBPffywFAZmzL4Ggc+BhGNAYTxMQEWnHkp6J9HMvitveAcFqRcYFF+tdBsOA1gJhnCfoaYVDIiL6Stbcy/UuIToEAZkXXgJTskPvShgGtOYPqr9G1Wbm009EdCaWrBw4p58fd70DgtmCjAsX6l0GAIYBzfnCCANWE59+IiI1shdeHZqRMI7GD2Rf8k2YU9P0LgMAw4Dm/FIYYYA9A0REqlgyc1D4vR9FdRXDPiOIcJw1EZlzF+ldSSe+G2mMpwmIiKLDUTYO2Zd9S+8yIiOKsGTnoOC7dxpqSnq+G2ksrJ4BniYgIgpL1vwr4BgzIWbHDwgmM4pvvwcme7LepXQRm8+mgYU3ZsA4qZCIKBYIooiC794JW2G/2AoEggCIJhR+727YCvWdYKg7MfRMxoZwegZ4moCIKHym5BT0++nDoYWMDNTV3iNRhGCxouTO+5A6dpLe1XSL70YaC2fMAAcQEhH1jinJjuIf3oe0qefpXcrpiSLMaRno/9OHkTJC35UJT4fvRhrzhdMzwDEDRES9JlosKPjO7cj71vdCpwwMeNogeegoDLz/90jqN0jvUk6LqxZqjD0DRER9RxAEZJw3D8nDylD7yjNw79waOnWg5yWIggBTSipyvnE9nNPOgyCa9KtFJYYBjXHSISKivmcrLEG/O+9D246tqHvpafhrj/Z9EaIICCKy5i5C5rzLYUqy930NvcQwoDEOICQi0o+jbBxSHvwjmte/j/plL0NqaQZEEyBL0TngiV4IUUTqhBnIveLbsGTlROdYUcQwoDFvQP0vHHsGiIi0J5hMyJg1F+nnXgRPxS60bF6Hlk/WQ/Z6Qp/eZfUf2no+SCgE2EtHwDl1FlLPngqTIzXydnXCMKAhWVHQ7lcfBpKtxj+PREQUqwRRRPKwMiQPK0PetTehbcdWtH72MbwHKuCvq/kqFIgmAEroE/7JYw0EERAFQJJD2wGYHGmwFfdHyujxSJs4A5bM7D7/uaKBYUBDHr+EcIasOKx8+omI+oJgtiB17KTO6/yVYBD+uhr4jlbBV12FQH0tlIAfSiAARZIgWK0QzRaIjlTYCvvBVtQPtsJ+MKXov9xwNPDdSENt/qDqfQUAdvYMEBHpQjCbYSssCc0GOGG63uXojietNdTmU3+KIMVqghgLM2cREVHcYxjQUHsYPQMpNnbKEBGRMTAMaKgtjMGDKTxFQEREBsEwoKE2n/qeAQd7BoiIyCAYBjQUzmkCXklARERGwTCgobAGENp4moCIiIyBYUBD7BkgIqJYxDCgoXB6BhgGiIjIKBgGNBTepYU8TUBERMbAMKARSVbgDuPSQvYMEBGRUTAMaKTZEwhvXQL2DBARkUEwDGikwe1Xva/VJMJuYRggIiJjYBjQSGMYYSDDboHAdQmIiMggGAY00ugOqN43PdkSxUqIiIjCwzCgkXB7BoiIiIyCYUAjje0MA0REFJsYBjQSzmmCjGRrFCshIiIKD8OABjwBCe6A+jkG2DNARERGwjCggaYwxgsAHEBIRETGwjCggXBOEZhEAak2zj5IRETGwTCggXAmHEpPskDkHANERGQgDAMaaApr8CBPERARkbEwDGggnJ4BDh4kIiKjYRjQQDgDCDl4kIiIjIZhIEKyooQ1gDDTzjkGiIjIWBgGItTqCyIoq1+8ODfVFsVqiIiIwscwEKFwpiEGgFwHewaIiMhYGAYiFM4pAmeSGTazKYrVEBERhY9hIELhrFaY6+ApAiIiMh6GgQg1hHGagOMFiIjIiBgGIlTd4lW9L3sGiIjIiBgGIuAPyqhr9anen2GAiIiMiGEgAjUtXqi/qJCnCYiIyJgYBiJQ7fKo3tduMcFh5ZUERERkPAwDETjiCme8gBUCVyskIiIDYhiIQHU4YYCnCIiIyKAYBnopIMmobeWVBEREFPsYBnrpWKsPYSxJwDBARESGxTDQS0ea1Q8eBIB8niYgIiKDYhjopXDGC6RYTUi3W6JYDRERUe8xDPRSOJcVFjntvJKAiIgMi2GgF4KyjGMt6mceLHImRbEaIiKiyDAM9MKxFh8kRf3owWKnPYrVEBERRYZhoBfCGS8AAEXp7BkgIiLjYhjohXCnIc7g4EEiIjIwhoFeCKdnoMiZxMGDRERkaAwDYZJkBTUt6sNAMQcPEhGRwTEMhKmuzYdgGFMPFqVz8CARERkbw0CYwp15kJcVEhGR0TEMhCmc8QJJZhFZydYoVkNERBQ5hoEwhXMlQSEHDxIRUQxgGAiDrCg4GtaVBBwvQERExscwEIa6Nh8CYQweHJCRHMVqiIiItMEwEIbq5vBmHhyQyZ4BIiIyPoaBMIQzXiArxYrUJM48SERExscwEIZwriQYmMlTBEREFBsYBlQKyjKOhNEzwDBARESxgmFApSPNXgSkMAYPMgwQEVGMYBhQaV99u+p9HVYTslM42RAREcUGhgGV9jWoDwMDMpM52RAREcUMhgEVgpKMg41u1fvzFAEREcUShgEVDjV5wlqpcGBWShSrISIi0hbDgArhnCKwmAQUpnGlQiIiih0MAyqEM3iwf0YyTCLHCxARUexgGDiDgCSjqln9/AIcL0BERLGGYeAMDja6IYUzXoBhgIiIYgzDwBmEM17ALArsGSAiopjDMHAG4Y4XsJj4lBIRUWwx612AUXxYcRw1rT4MzUnBkGwHnHYLfEEJh8MYLzAkh5cUEhFR7GEY6OC0W/Du7jpsq3YBAPJSbchJsSKM4QIozWYYICKi2MMw0KHYae/yfW2rD7WtPtWPTzKLKPpaG0RERLGAJ7g7ZDussEZwvn9wVgrnFyAiopjEMNBBFCKbOdAblLGnrhX+oKxhVURERNHH0wQnKUpPwsEm9QsSnWxfQzv2NbTDJAoYmJmMoTkODM9zID+VUxMTEZGxMQycpMgZ+Ru3JCuorG/HgQY3CtOSkJ+qQWFERERRxNMEJ9FyAOBV44owNNehWXtERETRwjBwklyHDWYNBgFeMiof44qcGlREREQUfQwDJzGJAgoiXH74vNJszBiUpVFFRERE0ccw8DWRjBuYWJKOucNzNayGiIgo+hgGvqa3YWBkXiouH1MIQeBcA0REFFsYBr4mvxenCQZkJuNb44s56RAREcUkhoGvyXXYwto/P9WGxRP7cbVCIiKKWXwH+xq7xYRUm7rpF9LtFtw4uT+SraYoV0VERBQ9DAPdyHFYz7iPw2bGd6f0h9Nu6YOKiIiIoodhoBt5ZzhVkGwx4eYp/cM+pUBERGREDAPdyDnNm3ySWcR3p/Tv1UBDIiIiI2IY6EZuavdhwGoSceOU/ihO127aYiIiIr0xDHSju+5/iyhgyeR+6J+RrENFRERE0cMw0A1nkhnWky4VNIsCbpjUD4OyUnSsioiIKDoYBrohCELnFQWiAFw3oQRDc7gCIRERxaeECQOKokAJBiH7PJDcbZA97ZD9Piiy3O3+eQ4bBADXnl2MkXmpfVssERFRHxIURVH0LkJrUmszArXVCNQdRaC2Gv5jhxGsOwol4O92fzE1Hdb8Yljyi2HJLYIlrwgfuyxIS03G2cXpfVs8ERFRH4ubMBBsqof7y81o37YRweM1oTsFIfTVw6f/U4gmQJY6b9uHn4Xks6bAPnQMBAsnFyIiovgU02FAcrfB/eUncG/7GP4jB0Jv/Fr+OKIIyDIEiw320ROQMmYKbINHcGVCIiKKKzEZBpRgAK0bV6Fl9TIoAZ/2IaA7HcHAUjQAGQuuha1kcHSPR0RE1EdiKgwoigLPzs/Q/O4rkFyN+hQhiIAiwz56EtIvugLmjGx96iAiItJIzISBQN1RNL75HPxV+/qmJ+BMRBEQBKSdMw9p5y2EYFK30iEREZHRxEQYcO/YgobX/hYa3Kd2MGBfEQRYSwYh+5rbYEp16l0NERFR2AwdBhRFQcvqt9Dy4dsABAAGLVUUIdpTkLN4KawFJXpXQ0REFBbDhgFFktC07J9o/2y93qWoI4gQzBZkf/sOJA0arnc1REREqhlyBkJFUdD45vOxEwQAQJGhBP04/tzv4Kuq1LsaIiIi1QwZBto/WQP31o/0LiN8igIoCur/9SdIbS69qyEiIlLFcGHAV1WJpnde1LuM3lNkyJ521L/0ZyiSpHc1REREZ2SoMCC1uVD/rz8ZdpygarIM/6FKNK98Te9KiIiIzshQYaDh9Wcge9oBxWCXD/aKgraPVsJTsUPvQoiIiE7LMGHAd2Q/fBU7jDePQCQEEa73/wODXrBBREQEwEBhoGX1stCsfvFEkRE4ehC+fbv0roSIiKhHhnj39R89BO/e7fHVK3CCIMK1+i29qyAiIuqRIcJAy4dvx1+vwAmKDH/VPngP7NG7EiIiom7pvrqO7PPCs3ubrgsPHW1pww/fWod6txdmUcAdM8ZiwYiB2h1AFOH+YjOSBg7Trk0iIiKN6B4G/Ef2674CoUkQcd/syRiVn4X6dg/m//0tnD+4GMlWizYHkGX4DuzWpi0iIiKN6d437ztUofspgrzUZIzKzwIAZKfYkW63odnr0/QYwYZaSO42TdskIiLSgv5h4MDeqA0clBUF5/3ldTy0+tMu96/ddwSDH34O/y0/cMpjvjhaD1lRUJjm0LweP9csICIiA9I1DCiSBN/hfVFrXxQEfH/aGLzw2W40e0Kf9HfVNuDWNz7Ej88bf8q4gCa3F3e+vQ6/nj89CsWI8B2s0L5dIiKiCOkaBmSvGwgGonqMRWWDkZFsw7Of7kJNSzsWv/I+Lh89GN+bMrrLfr6ghJteW4Xbpo3BhOI87QtRFEgtTdq3S0REFCFdBxAqAX/Uj2EWRdw6dQweXfMZ3t1zEGX5WXjgoild61AULH17HaYNKMAVo0ujU4iiQAloOw6BiIhICzqfJgj2yXEWlQ2GJxCEogB/umwWTF8bsPjpkVq8vesAVu6pwtyn38Tcp9/E7rpGzeuQA9HtBSEiIuoNXXsGBLNGl+6dwb3vbQQANLq9EEXhlO2TSvJx6OdLol6HaLVF/RhERETh0rVnQLBYo36M3675DKsrj+CtxQsgKQpe2bY36sfsliD2WfghIiIKh65hQLSnQEiyR639l7buwV8378AzV12IkXlZuHHiSPxl43YEJB3WQBAAc3YUBiYSERFFSN+eAUGArf9QQDi16z5SH1Yexr3vbcQfLp2Js4tyAQCLJ45Eqz+AN7brcL2/LMPWf0jfH5eIiOgMdJ90yDZgqOZtfllTj1vf+BA/O38i5g0f0Hl/qs2K70wYiac2fgmpr1dIFARYiwf17TGJiIhUEBRF34UBfFWVqPvrw3qW0Ccs+SXI/5/79S6DiIjoFLr3DFgLBwAm3ddLii5RhG3QcL2rICIi6pbuYUAwm5Fy9nRA0L2U6JFlpIyfoXcVRERE3TLEO3DaufP1LiF6RBH2EeNgzSvWuxIiIqJuGSIMmDOykTxuqu5LGUeFLCPtvIV6V0FERNQjw7z7ps28GJB1HcuoPVFE0tDRsBb217sSIiKiHhkmDFiy8kLn1aMw54BuFMB54SK9qyAiIjotw4QBAEi/+BqYcwri5nRB+sXXsFeAiIgMz1DvuqLVhpzr7gitWRDLPQSCgOSzpsAx+Ty9KyEiIjojQ4UBADBn5iDr6lsAfedC6j1RhDmnABmXXg8hlgMNERElDMOFAQCwDx0N50VX6F1G+EQRos2OnOvu4HLFREQUM3Sfjvh0Wj9+H83LX9a7DHVEEabUdOQu+RHMWbl6V0NERKSaocMAALi3f4KG1/4OyDKg6LD0sBqCAEtBP+Rc/wOYHE69qyEiIgqL4cMAAPhrqlD/zycgtboMFggEAApSxp+DjIXfgmC26F0QERFR2GIiDACA5G6D64P/oP2TtYAohHoKdGZKTUf6/KuRPHqS3qUQERH1WsyEgRMCtdVoWv4yfPt2hS4/7OvyBRGC2YS0WQvhmDYbosXat8cnIiLSWMyFgRM8e7ej+Z2XEGyoDU1SFO2ego7gkTL+HDgvXARTKscGEBFRfIjZMAAAiizDd6gC7i83w/3lJ1B8Hm2DgSACigxLfglSxk2DffREmNMytGmbiIjIIGI6DJxMCQbh3bcT7V9sgnfP9lAwAEKf6AUVYwxEEyBLnY8xZ+UiecxkJI+ZDEt2fnSLJyIi0lHchIGTKYoCua0FgbpqBGqrEag7ikBNFaT2NihSAJAkQBAgmMwQLBaYs/JgySuGJa8IltxCmHMKOBaAiIgSRlyGASIiIlLPkNMRExERUd9hGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElODMehdwMuu4JRDNVgiiCYJogsny1W1BFL/aZjJBNFshdm4znbJNEE0QRQGCKMBkEiF87bYoChBNQuc+p90mCDCZRZhEASZRgLXjtrnze9NX20xf7Wc+aV9Td7cFAaIgwCQAFpPYedtsEmESEPpeFGARhW5uh7ZbRLHztkkQIAiAKACCgI72AQGASRQgAqGfRUTnbVEATMLJt0NtCIoCKDIEOQh0uS2HvuSetwmKDEjSV7flICBLUGQZCPqhSBIgy6H7ggEoshS6HQgAJ26f2PfEfgH/V4+RJciBIBRJhiLLkP1ByFLoMYokQw4EIUtf3VY6bkuBIJST9pP8wZNuS1BkBbKkdHzf8XhZCW2TFCiSAlmSIQXkjjYVSAGp4zFfPU5WFEiKAr+sQFLwtdtf/z50W0botqSgY9tXt/+iHNT1dakVvr75+ubr27ivb/YMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMExDBARESU4hgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTolTnm9XuW+++5TvF6v3qWcwsi1KQrri4SRa4snRn6ejVyborC+SBi5tkgJiqIoegeSaGhpaYHT6YTL5UJaWpre5XRh5NoA1hcJI9cWT4z8PBu5NoD1RcLItUWKpwmIiIgSHMMAERFRgmMYICIiSnBxGwZsNhvuu+8+2Gw2vUs5hZFrA1hfJIxcWzwx8vNs5NoA1hcJI9cWqbgdQEhERETqxG3PABEREanDMEBERJTgGAaIiIgSXNyFgbvvvhvnnHMOvvWtb8Hv93fZ5vF4sGDBAsycOROzZ89GY2Ojoeo74eGHH8aECRN0rykYDGLx4sU455xz8IMf/KDP6lFb3wl9/XydrKfajPC7Fo/4+tauJr6+zyyRXt9xFQa2bt2KY8eOYf369Rg5ciRee+21LtvfffddlJWVYe3atbjqqqvwz3/+01D1AUBrayt27NhhiJrefvttFBcXY/369XC73fj444/7rC419QF9/3yprU3v37V4xNe3tjXx9d372vT+XYuGuAoDGzduxEUXXQQAmDt37im/3EOGDIHb7QYANDc3Iycnx1D1AcAf/vAH3HbbbYaoSU29etYH9P3zdbLT1ab371o84utb25r4+j69RHt9m/UuQEvNzc0oLCwEADidzlO6bgYPHowdO3agrKwMgiBg8+bNhqrP5XJh+/btuOeeewxRU3Nzc+f8293Vq3d9ejxfamvT+3ctHvH1rW1NfH33vja9f9eiISZ7Bo4dO4YZM2ac8qUoClpaWgCE/iMzMzO7PO7555/HrFmzsGPHDjzwwAN48MEHDVXf448/jv/5n/+JSk09ycjI6LGm020zQn16PF8nO11tffW7Fo/4+tYOX9+9l2iv75gMA/n5+diwYcMpX/Pnz8fKlSsBAO+99x6mT59+ymNP/Iemp6ejubnZUPVVVlbiV7/6FebOnYuKigr8+te/jkp9J5syZUqPNZ1uW185XQ16PF9qawP65nctHvH1rR2+vqNTGxCHr2/9Vk+OjqVLlyozZsxQrr32WsXn8ymKoig333yzoiiK4nK5lPnz5yszZ85Upk+fruzZs8dQ9Z1s/PjxutV0op5AIKBcf/31yowZM5Tbb7+9z+pRW9/J+vL5OllPtRnhdy0e8fUdeU18fauXSK9vTkdMRESU4GLyNAERERFph2GAiIgowTEMEBERJTiGASIiogTHMJAAnnvuOaSnp2vS1sGDByEIAsxmM6qrq7tsq6mpgdlshiAIOHjwYJdtr7/+OmbNmgWn0wmHw4ExY8bgwQcf7JzIQ8saiRLN4sWLIQgCbrnlllO2ff/734cgCFi8eHHnfceOHcPtt9+OQYMGwWazoaSkBAsXLsSqVas69xkwYAAef/zxPqiejIBhgHqlsLAQ//jHP7rc9/zzz6OoqOiUfX/+85/j6quvxsSJE/Huu+9ix44deOyxx/DFF1/ExZzeREZQUlKCl19+GR6Pp/M+r9eLl156Cf369eu87+DBgxg/fjxWr16NRx99FNu3b8eKFStw3nnn6Tb1L+mPYSAGrFixAjNmzEB6ejqysrKwYMEC7Nu3DwCwZs0aCILQZdKLbdu2dX46X7NmDb7zne/A5XJBEAQIgoD7778fANDU1ITrr78eGRkZSE5Oxrx581BRUaGqphtuuAHPPvtsl/uee+453HDDDV3u++STT/DQQw/hsccew29+8xtMmzYNAwYMwOzZs/H666+fsj8R9c7ZZ5+Nfv364Y033ui874033kBJSQnGjRvXed+JnoJPPvkE3/jGNzB06FCMGjUKd911FzZt2qRH6WQADAMxoL29HXfddRc+/fRTrFq1CqIoYtGiRZBl+YyPnTZtGh5//HGkpaWhpqYGNTU1uPvuuwGEuha3bNmCZcuWYePGjVAUBfPnz0cgEDhju5dccgmampqwYcMGAMCGDRvQ2NiIhQsXdtnvX//6FxwOB77//e932w5PDRBp5zvf+U6XkP7MM89gyZIlnd83NjZixYoVuO2225CSknLK4/l6TFxxtVBRvLriiiu6fP/3v/8dubm52LVr1xkfa7Va4XQ6IQgC8vPzO++vqKjAsmXL8NFHH2HatGkAQm/cJSUlePPNN3HllVeetl2LxYLrrrsOzzzzDGbMmIFnnnkG1113HSwWS5f9KioqMGjQoFPuJyLtffvb38bPfvazzrE9H330EV5++WWsWbMGQGiKX0VRMHz4cH0LJcNhz0AM2LdvH6699loMGjQIaWlpGDhwIACgqqqq122Wl5fDbDZj8uTJnfdlZWVh2LBhKC8vBwDMmzcPDocDDocDo0aNOqWNG2+8Ea+++iqOHTuGV199tcsnkBMURYEgCL2uk4jUy87OxsUXX4znn38ezz77LC6++GJkZ2d3bj8x4Sxfk/R17BmIAQsXLkRJSQmefvppFBYWQpZllJWVwe/3w+FwAPjqRQ5AVTd/T7NQn/zm/be//a1zMFJ3n+zLysowfPhwXHPNNRgxYgTKysqwbdu2LvsMHToUGzZsQCAQYO8AUR9YsmRJ52p/Tz75ZJdtQ4YMgSAIKC8vx2WXXaZDdWRU7BkwuIaGBpSXl+Oee+7BBRdcgBEjRqCpqalze05ODoDQZX0nfP0N2Wq1QpKkLveNHDkSwWCwyzrcDQ0N2Lt3L0aMGAEAKCoqQmlpKUpLS9G/f/9u61uyZAnWrFnTba8AAFx77bVoa2vDU0891e32uFjti8hA5s6dC7/fD7/fjzlz5nTZlpmZiTlz5uDJJ59Ee3v7KY/l6zFxMQwYXEZGBrKysvDXv/4VlZWVWL16Ne66667O7aWlpSgpKcH999+PvXv34p133sFjjz3WpY0BAwagra0Nq1atQn19PdxuN4YMGYJLL70UN910EzZs2IAvvvgC1113HYqKinDppZeqru+mm27C8ePH8d3vfrfb7ZMnT8aPf/xjLF26FD/+8Y+xceNGHDp0CKtWrcKVV16J559/vndPDBF1y2Qyoby8HOXl5TCZTKdsf+qppyBJEiZNmoTXX38dFRUVKC8vxxNPPIGpU6fqUDEZAcOAwYmiiJdffhmfffYZysrKcOedd+I3v/lN53aLxYKXXnoJu3fvxllnnYVHHnkEv/zlL7u0MW3aNNxyyy24+uqrkZOTg0cffRQA8Oyzz2L8+PFYsGABpk6dCkVRsHz58rC6881mM7Kzs2E293zG6ZFHHsGLL76IzZs3Y86cOZ2XMY0ZM4aXFhJFQVpaGtLS0rrdNnDgQHz++ec477zzsHTpUpSVlWH27NlYtWoV/vznP/dxpWQUXMKYiIgowbFngIiIKMExDBARESU4hgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogT3/wE1SDzjXWSiiQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJQ0lEQVR4nO3deXwU5f0H8M/MXtlkk819h/smIMh9KHggh6DiWa0HxWo9ftoq9vpV69FWq9ZWbbX91dajtR71qGJFREEuBRQFBQmQcAVCSMh97D0zvz82RCIJzGZnd2Z3P+/XK69sdmaf+WbJsp995pnnERRFUUBEREQJS9S7ACIiItIXwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMExDBARESU4hgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElODMehcQaUrAD19NNXzVByG1tUAJBKBIAUAQIJgtEC0WmLPzYCsogcmZAUEQ9C6ZiIgoquIqDCiKAu/+crTv+BK+w5XwHtwHf30tIMsdewiAKAS/QwGUjq9jW5PssBWUwFbcD7aS/kg5bSLMaU49fhUiIqKoERTluHfDGOWtPojWT9ejddMaBBrrAFEEFACKfMrHdstkAiQJEATYh41G2qQz4ThtIsQku6Z1ExERGUHMhgFFktD88YdoXr0cvuqDwQAg9/LN/2QEMRgqTGY4TpuAzDkXw1bSX/vjEBER6SQmw0D79i9w9LXn4K+tju6BOwJH2tSzkXXBlTA7M6J7fCIiogiIqTDgrarE0defh3vnV998YteDKEIwmZE59xKknzMfotWmTx1EREQaiIkwoMgSGt59DQ3vvQEIQmROB/SKAHN6Jgp+8GMk9RukdzFERES9YvgwILW34cizf4Brx5d6l9I9QQREAblX/QDOqWfrXQ0REVHIDB0G/A11qHrifvjragzUG9CzjDkXI+uCKzlXARERxRTDhgFf9SEcevw+SG0tMREEjkmdchbyrr4JgmjSuxQiIiJVDDkdsdTeiqo//irmggAAtG74CA3vvqZ3GURERKoZLgwosowjzz6OQHNjzAWBYxqWvY62rzbrXQYREZEqhgsDDe++FhwsGKNBAAAgCDjy7OPwRXseBCIiol4wVBho27YZDcvioItdUaD4fTj8599C9nr0roaIiOikDBMGZL8ftS/+JTiPQDyQZfhrDqNp5X/1roSIiOikDBMGWjd+BKmlqcsqgjFPUdD4wVLIHrfelRAREfXIEGFAkQKoX/Y6gksLxxfZ60bTmuV6l0FERNQjQ4SBlk1rIDU1ILjucJxRFDSueJtjB4iIyLAMEQYa3nszfsYKdEN2taFlw0d6l0FERNQt3cOAv+EoAnU1uo8VuGX5Box/diluW7FR+8YFEa4yg66tQERECc+sdwHuijK9SwAAXDtqIC4d1hf/2V2pfeOKDHf5DrRv/wItH6+AYDJBMFsgmMwQzGag43vw52/uF6xWiDY7BJsdYpIdoi0JYtKxn5Mg2pIgmHT/JyQiohin+zuJp2InIJoAWdK1jslFudhUdTRi7ctuF7wH98JT/rWm7QoWK4SOkCDajgsMx8JDR5Do3OfYfo5UmFPTIaakQhB17yAiIiId6R4GXLu3RywIyIqCua+uwLn9CvHjyaM671938Ahueu8T/O6ciZg7sDgix+6Ov/aw5m0qfh8Uvw9yW0vvGhAEmBxpwa/UdJhS02ByOGFK/daXI43BgYgoTukaBmSfF/4a7d8gjxEFAT8YOwy/Wr8VN44dCqfNirK6Jty+YhPunFga1SAA0QR/feR6HnpNUSC1NkNqbQaqD558X1GEKSX1pKHBnJ4Jc0Y2BLMlOvUTEVHY9A0DblfEj3HB4BL8afMO/GNbBS4b1g83vvcJLhzSB9ePGRLxY3ehyFD8vugeU2uy/E1wOBlBgCktA+bMHFiycmDOzIE5KxeWzByYM3NhSnWyh4GIyEB0DQOKL/JvjmZRxI1jh+L3m77Gir1VGJmdjnumjYn4cU+gKFAC/ugfVw+KAqm5AVJzA7z7dp2wWTBbggEhMxvmzI6QkJUbDA+ZORDtyToUTUSUuHQfMxANCwb3wW8+/hIKgN+fOxEm8cQ5DRb/dx2+rmuCOyDhjH8uw1OzJ2N0bqa2hcTTVMthUAJ++GsP9ziGQkx2dAaDzl6FnAJYC4phSkmNcrVERPFP1zAgWK1ROc4D67YCABo9Pph6mNzo2flnRLYIQQBMpsgeI07Irjb4XG3wHdp3wjZTqhOW/GJY84qC3zu+xCS7DpUSEcUHXcNANP4Df/zTr7G6shr/XngWFv13HV7buR9Xlw6M+HFPIIicE0ADx8YsfPsSTVN6Fqz5RbDmF8OSXxL8nlcI0RKdwElEFMv0DQO2JFhy8uE/eiQi7f+7bB+e/aoc/1hwBoZnp2PRqMH429bduGJ4f1hMUR7AJkswpToRqK2K7nEThNRUD3dTPdw7v/rmTkGAOSu3s/fgWE+CJTs/ONkTEREBMMCYAfvQUcFL7jSea2BN5RHcv24rfn/uRIzJywIAXDNqIP7+5W68XV6JS4f10/R4apidGfBG/agJTFEQqKtBoK4Gru2ff3O/aIIlJx/WghLYivvD1mcgrMX9IFpt+tVKRKQj/cPAoGFoWf+Bpm1uP9qIH67YiJ9MLsXsAUWd9zusFlwzaiD+umUXFg7p2+1AwkgRkuxIm3Yu7IOGQwkEoEgBKIEA0PE9+LO/834lEIDi80D2eiB73FA87uBtrxsKV0AMjyzBX1MFf00V2rd2rEUhirDmF8PWZyBsJQNg6zMQlrwiXgJJRAlBUBR9h7j762qw/55b9Swh8gQBySPHoujW/9WkOUWWofi8kD3u4JfXDcXrhuwJhoXO+44FiI79lI7bUnsrpLZmQNJ3CmijE6y2zp6DY18mZwaEOF5hk4gSk+49A8euLw801AGI30vvUoafpllbgigG1x4IYwCmoiiQ3e0dA/JaILU2QWrr+N563Pe24Ha9147Qg+LzwrN3Jzx7d3beZ0pL79J7YCsZwCsZiCjm6d4zAADN6z5A7Uv/p3cZESPak9H/wf+L2TcNRZaPCw4dX23NXUNDaxMCjXVRmVXSUAQBlpyCjp6DYECwFvSBwMtIiSiGGCIMyH4/9t99M6SWJr1L0Z4gIGvBd5A59xK9K4kKydWOQMPRjq9a+OuPu91QB0gBvUuMOMGWhKT+Q2AfNAJJg0bAWtiXYw+IyNAMEQYAoGn1ezj66t/1LkNzgi0J/R/6P5jsKXqXojtFliG1NCHQcBT++trO0OBvCN6Wmhv1LjEiRHsykgYMQ9KgEbAPHA5LfjHDAREZimHCgOzzYv8vbobU26V4jUgQkDn3UmQtuELvSmKC7Pch0FiPQEdQ8DfUIlBXA9+RQwg0HI2b6ZzFlFQkDRwG+8ARSBo8ApacAg5KJCJdGSYMAEDrFxtx5Jnf6V2GNkQRlqxclPz8EZi48E7YZJ8X/trD8FUfgv/IIfg6vqTmBr1LC5sp1YmkQSOQNHA47INGwJyVy3BARFFlqDAAAHX/+ScaV7ytdxlhEiBYLOjz80dgLSjWu5i4Jrnb4a+pgu9IR0ioPgRfTRXkGO5hMqVnwT5wePC0wqDhMGdk610SEcU5w4UBRZJQ9cQDcO8pA2RZ73J6Lf+GJUg9fYreZSQsqbUZvuNDwpEq+I8cguyJvasdzFm5sA8pRfKIsUgaNILrLRCR5gwXBgAg0NqMyt/cBam1OSYDQcZ5FyJ74TV6l0HfoigKpOZG+Kor4T24F97KvfBW7oHsatO7NNUEi7UzGNiHj4E5LV3vkogoDhgyDACA99B+HHr8fsju9pgKBI7x05C/6HZeZx4jFEVBoOEovJV7gl8H98J3aD+UgF/v0lSxFvdH8ogxSB5xOqxFfTnWgIh6xbBhAAD8R2tw6PH7EGiqj4lAkH7OfGRffC0vG4txihSAr/oQvJUVnb0H/qPVhr+awZSW0REMxiJp8EieTiAi1QwdBoDgKYPqZx6Dp3yH3qV0TxAACMi5YjGcZ87mJ7M4Jbtd8B7a19l74K3cY+hJsgSLFUmDRiB55FgkDx8DszNT75KIyMAMHwaA4KDCurdeRNOH7wCiaJxeAkGAyZGGghvvgn3QcL2roSg6Nv7g2OkFz4EKeCv3GHaGRWtRPySPGIvkEWNgLerH3isi6iImwsAxngN7cPTfz8Kzd1fwE7lepYsiIIjImHUhMmdfFLNrDpC2ZJ8X3gMVcFfsgKdiB7wH9xlygSdTWjqSh49B8uiJsA8awfEtRBRbYQAIfiJr27IJdW8837HSYRR19Eo4xk9D9sKrYcnMie7xKabIXg88+3bDU/E13BVl8FXtN9y4AzElFSmjJyJlzGQk9R/CHgOiBBVzYeAY2e9H85rlaFqzHIG6msidPujogXDZ03D4tHNxxvRxcAwcqv1xKO5J7nZ49u6Cp2IHPHvK4DtcqXdJXZicGUg5bRIcY6bAWtKf41+IEkjMhoFjFEWBt3IvWj9bj9ZP1wbnJhBNHcGgl7+aKAYDgDUFB0vPwv7CUTgo2aAAuGlqPwzI4qJDFD6pvRWePTuDpxX2lMFfU6V3SZ3MWblIGTMZjjGTYS0o0bscIoqwmA8Dx1NkCe6KMri+3grv4Up4D+2H1HTc3PWiCEAAjn3gUQAocmfXrWA2w1c0CAf6jUNFah8ckpNOiBPT+2figtKCKPw2lGgCLU3w7CmDZ08Z3BVlCNQd0bskAIAlrwgpYyfDcdpkWHLy9S6HiCIgrsJAd2SPG74jVfAeroTc3golEAhOKCOIECwWCGYLPBl52G3Jxo4WBfsb3CftT8iwW/CzcwazC5Uizl9fC1fZVrh2bIFnTxkg6T8Y0VrcH44xk5By2iSumUAUR+I+DKixuqIOy8pqVO//ozMHotCZFMGKiLqSPW64d2+Ha8cWuMq2Qm5v1bsk2PoNgWPsZKSMnghTqlPvcogoDAwDAI62efHoRxWq9581JAezhuZGsCKinimyDG/lns5eA3/1QX0LEgQkDRoBx9ipSDltIkQbgzJRrGEY6PDYRxWoafOq2rcgLQl3zBgY4YqI1PE3HIW7Ixi4K8p0nfhIsCXBMXYKUifO5BUJRDGEYaDD8rIarKpQP2/Bz84ZjMxkzv1OxiJ7PcHTCWVb4NqxFXJbi261WAtK4Jg0E47Tp8KU7NCtDiI6NYaBDgeb3Pjjur2q918wMh9nDMiKYEVE4VFkGd6Dezt7DbSe18DtD6DsaCO21zSgzuVGqtWKi0b0R05K1xk5BbMFyaPGI3XSTCQNGMaJjYgMiGGgg6woeOjD3Wj2qOti7Z+ZjJun9Y9wVUTa8TfUof3LTWjfujE4G2IY3i+vxJ3LPoY7IMFmsyEvLw+NjY2YkpeOv1w4o8fHmbNykTpxBhwTzoQ5LT2sGohIOwwDx3lrWzU+2d9w6h0RnKrgnvOGwmEzR7YoogjwH61G29ZNaN+yAf7awyE/fvGbq+Ar6Ic//vGPGDVqFCwWC5YsWYKlz/8dK7634NQNiCKSh49B6sQZsA87jesjEOmM72THGZmfqjoMKADKaloxoU9GZIsiigBLTgEyZl2E9HMvhL/6INq2bkT71o0INBxV9XgFgMfjwYsvvojNmzfjzTffDK0AWYbr6y/g+voLmNLS4ZhwJlInnAlLdl7ovwwRhY1h4DgDslKQZBbhCahb42D7EYYBim2CIMBa2AeZhX2QMfcy+A7u7QgGmyC1NPb4uO+MGoSfrdiIvTu2o8njQyDQ+ysYpJYmNK9ciuaVS5E0aARSJ81Ecuk4iBYO0CWKFoaB45hEAcPzUrGlqlnV/uVH2+ANSLCZ2cVJsU8QBNj6DIStz0Bkzr8Snn270L51I9q/+uyESY5mD+6D2YP7YOWeQ7jhrdWa1eDpWP5ZTHbAMW4a0qbNYm8BURQwDHxLaX6a6jAQkBVU1LVjZH5ahKsiii5BFGEfOBz2gcORddE1cFfsQPuWjWjfvhmKxx3x48uuNrSsex8t61cgecRYpJ05J3glAuctIIoIhoFvGZKbArMoICCrG1fJMEDxTjCZkTx0NJKHjkaWfxHcu7ahfetGuL7+IvIHV5TOsQXWwr5IO2M2HGMnQzBbIn9sogTCMPAtNrMJg3NSUFbTpmr/8qPq9iOKB6LFipTScUgpHQfZ40baU48DGp4mOBnf4QOoe/WvaFz2KlKnnIO0KWdzTQQijXD2j24Mz01VvW9tmw9Nbn8EqyEyHq/Xi+f+9RJe/WRzl/vr3B48tn4rymp7HnwYLqm1GU0r3sTB39yBo/9+Bj6912YgigMMA90YlJMS0v4Vde0RqoTImF588UXcfPPN2LZtGwYPHgyz2YycnBzkFPfBfw42YNHba+CX1F2V01tKwI+2T9ei6rH/RfX//RauHVugyJE9JlG84qRD3VAUBQ99WI4mj7pP/KcXOfGd04sjXBWRcfz0pz/Fm2++ifLy8hO2vfXWW1i4cCGqd5fBWrENbZ+tO+lliloyZ+fDecZ5cIw/g6snEoWAYaAHr26pwueHmlTtm2oz4+5ZQzjSmRLGa6+9hssvv7zH7QMGDEB5eTlEUYQiSXDv+gqtm1bDVbYViMKnd9GejNRJM5E2bRbMGdkRPx5RrGMY6MHmg03499Yq1fvfOXMg8lP5SYQSg6IoWLt2LXbv3n3CNovFgnnz5iE3N/eEbYGWJrRtXofWTasRqK+NfKGiiJRRE5B2xmwk9Rsc+eMRxSiGgR40unx4aOWJXaA9uWBkPqZzFUMiVRRZhmfvLrR+uhqurz6DEoj8IFxb30FIP/fC4FoI7MUj6oJh4CQeXlWO+nafqn2H5TqweFLfCFdEFH8kVxvavvgErRtWwV+jvjeut6zF/ZF+7gVIHnE6l1Mm6sAwcBJvfHkYmyrVDXyymkTcP2cYTCI/cRD1hqIo8JR/jea1y+He+WXEj2cpKEH6ORciZfQEhgJKeAwDJ7G1qhkvfXFI9f43T+2H/lmhXZZIRCfy1VajZf37aPtsHRS/ut653rLkFiL9nAuQMmYyl1KmhMUwcBKt3gB+tWKX6v3PHZKD84aeOGiKiHpHcrWhddNqtKz/AFKzuuXFe8ucnYf0sxfAMW4aBBMnZ6XEwjBwCo+trkBNq1fVvv0yknHL9P4Rrogo8ShSAO3bNqNl3fvwHqiI6LHMGdlwnjUfqRPP5BoIlDAYBk7h7e3V+Hifuk8kogDcN3sYkizsaiSKFM+BCrSsW472rz6L6JwFJmdGMBRMmgnRYo3YcYiMgGHgFLZXt+Afm9XPfb5oYh+MyFO/tgER9U6gqR4t6z9A66aPILtdETuOKdUJ54y5SJ1yDmc1pLjFMHAKLl8A97+/C2qfpOn9M3FBaUFEayKib8heD9o2r0fL+vfhP3okYscRkx1wzpiLtGmzICbZI3YcIj0wDKjwxNo9qGr2qNo3z2HDkrMGRbgiIvo2RZbh3vUVmtcuh6f864gdR7QnI236bDjPnAPRnhyx4xBFE8OACv/dcQRr99Sr3v8Xs4bAmcSBR0R68VUfRNOqd9C+dSMQof/ixGQH0s+9EGlTz+FAQ4p5DAMqlNW04rlPK1Xvf8WYIowrSY9cQUSkiv9oNZpWLkXbF59EbLChOSMbGXMuRcrYKZy8iGIWw4AKnoCE+5bvhKzymTq92InvjOWSxkRG4a+vRfOqd9C6eR0gSRE5hrWwDzLmXQH70FFc+4BiDsOASk+t34sDjW5V+2YmW/Czc4ZEuCIiClWgsQ5NH72Ltk/XRGxxpKSBw5F5/ndg6zMgIu0TRQLDgErLd9ZgVXmd6v1/ed5QOGycxYzIiALNjWheswytG1ZFbLrjlNETkTH3Mlhy8iPSPpGWGAZUKj/ahmc2HlC9/6IJfTAin/MNEBmZ1NqM5rXL0fLJh1C86q4YColoQurkmciYtRCmVKf27RNphGFAJb8k45fLd0JSOXDg7EHZmDM8L8JVEZEWpPZWtKxbgZb1KyB7tJ/ASLDa4JwxF84Z8zhHARkSw0AI/vLJPuytV/cfxaDsFNw4pV9kCyIiTUnudrR8/AFa1r4P2dWmeftiSirSZ12EtMlnQzDzNCIZB8NACD7cXYsVu46q2tdqEvHA3GEQOaqYKObIHjdaNqxE8+plkNtbNW/fnJUbvBzxtEm8HJEMgWEgBPvq2/HnT/ar3v+OGQNRkMa5zIlilezzonXjR2ha9Q7kthbN27cW9UPm+VfAPqRU87aJQsEwEIKALOPe5Tvhl9Q9ZZeMLsCkvpkRroqIIk32uNG89j00r14GxaduSfNQ2IeNRtaF1/DKA9INw0CI/rbxAHYfVXcucUJJOi4bUxThiogoWqTWZjR9+DZaNqwCZI0nLzKZ4ZwxB+nnXMjVESnqGAZCtGJXLT7crW7cABctIopP/roaNC5/Pbj2gcZMzgxkzr8SKWMmcyZDihqGgRBtq27BPzcfVL3//XOGwW4xRbAiItKL99A+NLz7akRWSUwaMAxZC6+FtaBE87aJvo1hIER17V48sqpC9f7fn9wXQ3IcEayIiPSkKArcu7ej8d1X4TusfmIyVUQRaVPPRfrsi2Gyp2jbNtFxGAZCJCsKfvneTvgkdSugnTc0B+cOyY1wVUSkN0WW0b51Ixrfew2BRvVTl6shpqQi8/wr4Bh/Bi9FpIhgGOiFP63fi0qVixYNy3Vg8aS+Ea6IiIxCCfjRsmEVmj58W/M5CmwlA5C18DougkSaYxjohTe+OoxNBxpV7etMMuMXs4ZGuCIiMhrZ40bz6mVoXrNM28WQBAGOiTOQOfcymBxp2rVLCY1hoBc+2d+At7ZVq97/3tlDkWLl1KNEiSjQ0oSmD95C66aPAFnd6UU1RHsyMmZfitQpZ0MwcZAyhYdhoBdCnYnwxin9MCibg3+IEpn/aDUa3nsNrq8+07Rda0EJshZeh6QB7IGk3mMY6AW3X8K9y3eq3v+CkfmYPiArghURUaxwV5Sh/q1/wH/kkKbtpoydgsz5V8LszNC0XUoMHJbaC3aLCRl2i+r9D7dEYJ10IopJ9kHDUXTHr5F54dUQk5I1a7d9ywYceuQnaF77HhQNT0dQYmAY6KVQFiCqZhggouMIJhOcZ8xG8U8fgWPimZq1q3g9aFj6Eqr/9AB81eonRyNiGOilUMJATasXksyzMUTUlSnViZzLb0DBbffCWtxfs3a9lXtQ9fg9aHz/TSgBv2btUvxiGOilgjSb6n0DsoK6dg0vLSKiuJLUdxAKb78P2ZddDzElVZtGJQlNH/wHVX+4B54D6mdNpcTEMNBLofQMADxVQEQnJ4giUifNRPFPH0XatFmARosU+WuqUP2nB1D/9ouQvfx/iLrHMNBLWSlWWEzqX6wMA0Skhik5BVkLr0XhHb+Crf8QbRpVFLSsex9Vv/s53Lu3a9MmxRWGgV4SBQH5qRxESESRYSvsi4Jb7kbOVTfDlJauSZuBxjoc+evDOPrqM5Bc7Zq0SfGBYSAMvKKAiCJJEAQ4Tp+K4p88AufMeYCozUyDbZ+tRdWjP0W7xhMgUexiGAhDKIMImz0BuHyBCFZDRPFKTLIjc/6VKLrrQdiHjNKkTam1GbX/eBI1zz+BQEuTJm1S7GIYCEOogwiPtHojVAkRJQJrbiHybvgxchf9EOaMbE3adG3fjKpHf4rWT9eAE9ImLoaBMIQaBup5eSERhUkQBKSUjkfRXQ8h7YzZmlx1ILtdqPv333Dkrw/DX1+rQZUUaxgGwmC3mJAewrTEnGuAiLQi2pKQdeHVKLj1HljyijRp01P+Nap+93M0r+GUxomGYSBMofQOMAwQkdaS+g1G0R2/QvqshYAGSxkrfh8a3nkJ1X+8H77awxpUSLGAYSBMoQwiZBggokgQzBZkzL4YRT/6FWwlAzRp03twLw7/4R60fPIhxxIkAIaBMIXSM1Df7uOLiogixlpQgoLb7kXmBVdBsFjDbk/x+1D/5guoefb3kFqbNaiQjIphIEyhhAGfJKPFy8sLiShyBFGE88y5KLrrISQNHqlJm+6yrTj0u5/D9fUXmrRHxsMwEKbsFCvMovrRvLyigIiiwZKVi/wbf4rsy2+AaE8Ouz25vRU1z/0Bda8/xzUO4hDDQJhEQUBeKscNEJHxCIKA1IlnoujHDyN51HhN2mzduApVf7gH3sq9mrRHxsAwoIGsZPXn5hgGiCjazGnpyLvuh8i99naYUp1htxeoO4LDf7ofjR++BUWSNKiQ9MYwoAFnCHMN8DQBEeklZfQEFP34YTgmnhl+Y7KMpuVvoPrPv+FERXGAYUADGSFNPMQpiYlIP6bkFORcfgPyb/wpzJk5Ybfn3V+Oqt//Aq2freXVUjGMYUADofQM1PHyQiIyAPuQUhQteTA4pXGYFK8Hda8+g9p/PAmpvVWD6ijaGAY0EMqUxH5J4eWFRGQIx6Y0zv/Bz2ByZoTdnmvbZlQ99r9w7dqmQXUUTQwDGgglDABAo8sfoUqIiEJnHzwSRUseRMppk8JuS2ppQs0zj6D+rX9C9nOMVKxgGNBAitUEUwhzDTR7GAaIyFhMyQ7kXH0rcq68CUKSPez2WtavwOHHfwlv1QENqqNIYxjQgCgISE9S3zvQ7GYYICLjEQQBjnHTUHTnb2DrPzTs9vw1VTj85L1oXvsex0oZHMOARpx2s+p9OWaAiIzMkpmDgpv/FxnzLgfEMFdClCQ0LH0Jtc8/DsnVpk2BpDmGAY2Ecnlhi4dhgIiMTRBFpJ+9AIW33wdLbmHY7bm+/gJVv78bnv3lp9yXiyJFH8OARkK5vJCnCYgoVtiK+6HwRw8gdeq5YbclNdWj+unfoOmjd6HIcrf7+GqrUfXEvZA97rCPR+oxDGgklCsK2DNARLFEtNqQffF1yLt+SfjTGcsSGt99BTXP/eGEOQlknzc4V0FTPVo+WRnecSgkDAMaCWkAocfPwTREFHOSh49B0ZIHkTzy9LDbcpdtDZ422Ler8776N1+A/8ghAEDzmmVcHTGKGAY0EkrPQEBW4PZzcQ8iij0mRxpyF/0I2ZddD8GifpG27kjNDaj+84NoWvUOWjetRtvmdZ3b5PZWtG5aHWa1pJb6IfB0UqFOPNTsCSDZyqefiGKPIAhInTQTSQOG4ehLf4b3YBjLGcsyGpf9u9tNzauXIXXK2RDDDB10auwZ0EiSxYQks/qns4UTDxFRjLPk5KPgf+5B+qyFgKB+4jW1pJZGtH227tQ7UtgYBjQUSu9AMwcRElEcEExmZMy+GAW33g1Tepbm7Td/9F8oEv+/jDSGAQ2FdHkhewaIKI4k9RuCojt/rcngwuMFGuvQ9vknmrZJJ2IY0FAoVxS0uJl0iSi+mJIdyF30I2RecBVgCnPmwuM0rVra47wEpA2GAQ2Fcpqg3ccwQETxRxAEOM+ci8Jb74E5I1uTNgN1NWj/cpMmbVH3GAY0lGJVn4TdfqZcIopftj4DUXjnr5FcOl6T9po+fJu9AxHEMKAhe0hhgPMMEFF8M9lTkHvd7ci86BrAFN6l1P6aKrjKtmpTGJ2AYUBDdov6MOBiGCCiBCAIApzTz0Phbb8M+7RB80fvalQVfRvDgIaSQwgD7BkgokRiSsuAEgjvKirv/t3w7NutUUV0PE6Bp6FQega8ARmSrMAkaj9RBxGRkSiyjKP/elqTpYmbV7+LpP5DNKjqG1JbC3x1tVD8Pih+P6DIEMwWCGYLTI40WHJyIYjaXR1hRAwDGgolDADB3gGHjf8ERBTfGt9/A549ZZq05fr6C/hqD8OaWxjyYxVFgefAHngr98JbVQnvof3wVh2A1NZ60scJJjOs+YWwlfSHrbAPbEV9YB8yEiZ7cm9/DcPhO5GGkiwiBABq1yNkGCCieOcq+xLNK5dq2mbz6mXIufz7qvf3VlWiZdNaNG9YjUBjXfBOkwmQ1J2uVaRAMDxUB1dUhCwDJjMcp02Ac/IMpIw6PebXT+A7kYZEQUCSxaR6PADHDRBRvFP8PqROPQe+qgPwHa6E4veF3Wbb5x8jY/YlMDszetxHcrWhac0KNH/yEXzVBwFRDL6Jd+7Qi/9/uzw+gLatm9D2xQYItiSkTZiG9DNnwz5A21MY0SIoiqL2gyyp8NuVu9HgUjdIZvHEPhiWlxrhioiIjEGRZfiPVgeDQdUBeA8Hv8uutpDbcp41H5nnX3HiMSQJTWvfx9H//Auy2wVE6y2uI2ykTpiG3EuvgyUrNzrH1Qh7BjQWHDegLgywZ4CIEokgirDmFcGaVwScPhVA8Dy+1FQP77GAcGgfvJV7ILef/Dx+y4aVSD/nAohJ9s772rZ/gdqX/wZfzeGI/h7d6ug1aP18A1q/2ISs2Rchc94lMB1Xn5ExDGiMlxcSEaknCALMGdkwZ2QjpXQcgGBACDQchfdABbyVe4LfDx/o0rWveNxo3bgKzpnnI9DchOrnnkD79i0RWUo5JLIMQEb9e2+gae37yL/uVqSOnaxvTSrwNIHGXvz8IL463KJq3/OG5uDcIbHVlUREpAfZ74PvcGWXgKBIErKvvAlVf34EUltL13P6hhAcUp4171JkX3SloS9PZM+AxkK5vJDrExARqSNarEjqOwhJfQd13te0bgUqH70HgGLAIAAcu7asftnr8B7aj8If/BiizaZzTd3jDIQaSzKrf0oDkhH/eImIjK9x1TIceeFpQJYMGgS6atv2OSof+yWk9tAHS0YDw4DGzCpmFFQUBbIUgJ9hgIgoZM0b16Dmpb/qXUZoFAWe/eU49OSvoQSMt4Q9TxNozCx2n68aqyvxxX//hSPl21G7dxcCPg8ycvPRd+lbmDRpUpSrJCKKTZ6D+3Dk+T/pXUbvyDLce3ah9vUXkPed6/Wupgv2DGjMbOq+Z+CtB3+I2i1rMPP0kXj4od/gueeeQ1aaA88//3x0CyQiilFSexsO/fFBKHIsX4mloPHDd9Cyaa3ehXTBMKCxnk4TNNccwpIlS/DII49g7NixWLRoEXJycuD1eqNcIRFR7FFkGYefeQyBpvqYGCNwKtXP/RGeg/v1LqMTw4DGegoDztwi/OxnP0NxcTEWL14c5aqIiGJb8/qVwXkE4iAIAIAiSzj8zO9hlKv7GQY01tOYgYt+8SSmXv1DDJw4M7oFERHFOCUQQN1/X9W7DG3JMnyHK9H25Wd6VwKAYUBzlh7GDGQU9MH4C69FTr/YXMSCiEgvLZvWItBQp3cZ2hNE1L39siF6BxgGNGZScWkhERGpo8hSsFdA72mGI0GR4T24D+1fb9G7EoYBrVl6OE1ARESha928Af6jNdFbfTDaRBF1S/U/BcJ3Lo2drGdACvgh+buuaOj3++Hzhb++NxFRPGrd+mlweWAdfVR5BHNf/xCzX/sQr+06oG3jsgzP3l3BtRV0xDCgsZ7GDOxa/z7+9N3p+Ow/z3W5/8UXX4TT6cTTTz8djfKIiGKKa9c2Xa8gCMgyHt60Hc/PnYY3L5yBv31Vjiav9h/gXBU7NW8zFAwDGuvp0sIv338Nk8afjpdeeglPPvkkAOCBBx7ASy+9hFmzZuGpp56KZplERIbnrz8KqblR1xq2HW3CoIxU5KXYkWK1YEZxHj4+VKvtQUQT3OU7tG0zRJyOWGM9nSYwWaxobm7Crl27AACff/5557aGhgbYDLqSFRGRXlwVkXuDlBUF899YhbP75OOuiSM7719/qBa3fLARj8wchzn9i1Dr8iAv2d65PS8lCTUuj8bFSHDt+lrbNkPEMKCxnoa4TLx4MVb97WH8/qm/HHevAGeSGU6nEw8++GA0yiMiihnuil2AyQRI2k8/LAoCbjxtMH69YRtuOG0wnDYrdtY340erPsOPxo/AnP5FAAClm//VI3Fdg6dyD2S/H6LFEoHWT41hQGM9DXgtKR2P6x5/rct9NrOIX80dHoWqiIhij9TaHNHxAvMHFuOpLbvw4td7ccnQvrhpxUZcMKgYi0cN6twnL9mOGpe78+eadg9G52ZoX4wsQ/a4IFqc2retAscMaCyUq1/i8KpZIiLNyD5vRC8pNIsivj96MP65Yy9+8P5GjMhOxy8mj+6yz6icdJQ3tqKm3Y12nx9rDtVgWlFuROpRfPqtVcOeAY1116XUEyEeJ9EgItKKFIj4IeYPLMZDG7dBgYLfzRx3wrgvsyjipxNH4rplH0NRgOtHD0JGkjUitSgROB2iFsOAxtgzQESkDcGWFPFj/HrDVwCARo8Pph4+oJ3dtwBn9y2IeC2iVb+B5DxNoLFQOrTYMUBE1DPRlhTRCYee+LwMaw7W4JUFZ0JSFLy+W+MJhUIkMAzEj1AWnOBpAiKintmK+kZszMBruw7g+W178PSsSRiW5cS1Iwfg719VwK/TBEcmZwZMySm6HBtgGNAcTxMQEWkjefCIiISBtQdr8KtPvsLDM0/HmNxMAMDVIwag3R/A0oqDmh/vlEQRKcNGn3q/SJag69HjUCh/tlzgkIioZ0l9B0AwaTu07eu6Jtyx6jPcNWEEzutX2Hm/w2rBd0f0xzNflkOSo7wokqzAPljfy8w5gFBjIZ0mYN8AEVGPBLMFSf0Hw11RplmbI7PT8fl187vddvu44bh9nB5vygqSdQ4D7BnQWCiBkkMGiIhOLnn4aN1XLYw0MTkF1oISfWvQ9ehxiFcTEBFpJ33G7Pj+z1IQkDnrAgg6Bx6GAY3xNAERkXYs6ZlIP/O8uO0dEKxWZJxzvt5lMAxozR/CeYKeVjgkIqJvZM25WO8SIkMQkHnuBTAlO/SuhGFAa76A+mtUbWY+/UREp2LJyoFz2tlx1zsgmC3IOHeB3mUAYBjQnDeEMGA18eknIlIje8EVwRkJ42j8QPYF34E5NU3vMgAwDGjOJ4UQBtgzQESkiiUzB4U/+HFEVzGMGkGE47QJyJyzUO9KOvHdSGM8TUBEFBmO0rHIvui7epcRHlGEJTsHBd+/w1BT0vPdSGMh9QzwNAERUUiy5l0Cx+jxMTt+QDCZUXzb3TDZk/UupYvYfDYNLLQxA8ZJhUREsUAQRRR8/w7YCvvEViAQBEA0ofAHd8FWqO8EQ92JoWcyNoTSM8DTBEREoTMlp6DPzx4KLmRkoK72HokiBIsVJXfci9QxE/Wuplt8N9JYKGMGOICQiKh3TEl2FP/oXqRNOUvvUk5OFGFOy0Dfnz2ElOH6rkx4Mnw30pg3lJ4BjhkgIuo10WJBwfduQ953fxA8ZWDA0wbJQ0ai/31/QFKfAXqXclJctVBj7BkgIooeQRCQcdZcJA8tRc2rz8L19ZbgqQM9L0EUBJhSUpFz6bVwTj0LgmjSrxaVGAY0xkmHiIiiz1ZYgj533Iu27VtQ+/Iz8NUcjn4RoggIIrLmLETm3IthSrJHv4ZeYhjQGAcQEhHpx1E6FikP/BFN6z5A3dJXILU0AaIJkKXIHPBYL4QoInX8dORecg0sWTmROVYEMQxozONX/wfHngEiIu0JJhMyZs5B+pnnwV2+Ay2b1qLl03WQPe7gp3dZ/Ye2ng8SDAH2QcPhnDITqadPgcmRGn67OmEY0JCsKGj3qQ8DyVbjn0ciIopVgigieWgpkoeWIu+qG9C2fQtaP/8Enn3l8NVWfxMKRBMAJfgJ//ixBoIIiAIgycHtAEyONNiK+yJl1DikTZgOS2Z21H+vSGAY0JDbJyGUISsOK59+IqJoEMwWpI6Z2HmdvxIIwFdbDe/hSnirKuGvq4Hi90Hx+6FIEgSrFaLZAtGRClthH9iK+sBW2AemFP2XG44EvhtpqM0XUL2vAMDOngEiIl0IZjNshSXB2QDHT9O7HN3xpLWG2rzqTxGkWE0QY2HmLCIiinsMAxpqD6FnIMXGThkiIjIGhgENtYUweDCFpwiIiMggGAY01OZV3zPgYM8AEREZBMOAhkI5TcArCYiIyCgYBjQU0gBCG08TEBGRMTAMaIg9A0REFIsYBjQUSs8AwwARERkFw4CGQru0kKcJiIjIGBgGNCLJClwhXFrIngEiIjIKhgGNNLn9oa1LwJ4BIiIyCIYBjdS7fKr3tZpE2C0MA0REZAwMAxppCCEMZNgtELguARERGQTDgEYaXH7V+6YnWyJYCRERUWgYBjQSas8AERGRUTAMaKShnWGAiIhiE8OARkI5TZCRbI1gJURERKFhGNCA2y/B5Vc/xwB7BoiIyEgYBjTQGMJ4AYADCImIyFgYBjQQyikCkygg1cbZB4mIyDgYBjQQyoRD6UkWiJxjgIiIDIRhQAONIQ0e5CkCIiIyFoYBDYTSM8DBg0REZDQMAxoIZQAhBw8SEZHRMAyESVaUkAYQZto5xwARERkLw0CYWr0BBGT1ixfnptoiWA0REVHoGAbCFMo0xACQ62DPABERGQvDQJhCOUXgTDLDZjZFsBoiIqLQMQyEKZTVCnMdPEVARETGwzAQpvoQThNwvAARERkRw0CYqlo8qvdlzwARERkRw0AYfAEZta1e1fszDBARkRExDIShusUD9RcV8jQBEREZE8NAGKqa3ar3tVtMcFh5JQERERkPw0AYDjWHMl7ACoGrFRIRkQExDIShKpQwwFMERERkUAwDveSXZNS08koCIiKKfQwDvXSk1YsQliRgGCAiIsNiGOilQ03qBw8CQD5PExARkUExDPRSKOMFUqwmpNstEayGiIio9xgGeimUywqLnHZeSUBERIbFMNALAVnGkRb1Mw8WOZMiWA0REVF4GAZ64UiLF5KifvRgsdMewWqIiIjCwzDQC6GMFwCAonT2DBARkXExDPRCqNMQZ3DwIBERGRjDQC+E0jNQ5Ezi4EEiIjI0hoEQSbKC6hb1YaCYgweJiMjgGAZCVNvmRSCEqQeL0jl4kIiIjI1hIEShzjzIywqJiMjoGAZCFMp4gSSziKxkawSrISIiCh/DQIhCuZKgkIMHiYgoBjAMhEBWFBwO6UoCjhcgIiLjYxgIQW2bF/4QBg/2y0iOYDVERETaYBgIQVVTaDMP9stkzwARERkfw0AIQhkvkJViRWoSZx4kIiLjYxgIQShXEvTP5CkCIiKKDQwDKgVkGYdC6BlgGCAioljBMKDSoSYP/FIIgwcZBoiIKEYwDKi0p65d9b4OqwnZKZxsiIiIYgPDgEp76tWHgX6ZyZxsiIiIYgbDgAoBScb+Bpfq/XmKgIiIYgnDgAoHGt0hrVTYPyslgtUQERFpi2FAhVBOEVhMAgrTuFIhERHFDoYBFUIZPNg3IxkmkeMFiIgodjAMnIJfklHZpH5+AY4XICKiWMMwcAr7G1yQQhkvwDBAREQxhmHgFEIZL2AWBfYMEBFRzGEYOIVQxwtYTHxKiYgotpj1LsAoPio/iupWL4bkpGBwtgNOuwXegISDIYwXGJzDSwqJiCj2MAx0cNoteG9nLbZWNQMA8lJtyEmxIoThAhiUzTBARESxh2GgQ7HT3uXnmlYvalq9qh+fZBZR9K02iIiIYgFPcHfIdlhhDeN8/8CsFM4vQEREMYlhoIMohDdzoCcgY1dtK3wBWcOqiIiIIo+nCY5TlJ6E/Y3qFyQ63p76duypb4dJFNA/MxlDchwYludAfiqnJiYiImNjGDhOkTP8N25JVlBR14599S4UpiUhP1WDwoiIiCKIpwmOo+UAwMvHFmFIrkOz9oiIiCKFYeA4uQ4bzBoMArxgZD7GFjk1qIiIiCjyGAaOYxIFFIS5/PBZg7IxfUCWRhURERFFHsPAt4QzbmBCSTrmDMvVsBoiIqLIYxj4lt6GgRF5qbh4dCEEgXMNEBFRbGEY+Jb8Xpwm6JeZjO+OK+akQ0REFJMYBr4l12ELaf/8VBsWTejD1QqJiChm8R3sW+wWE1Jt6qZfSLdbcP2kvki2miJcFRERUeQwDHQjx2E95T4Omxnfn9wXTrslChURERFFDsNAN/JOcaog2WLCjZP7hnxKgYiIyIgYBrqRc5I3+SSziO9P7turgYZERERGxDDQjdzU7sOA1STi+sl9UZyu3bTFREREemMY6EZ33f8WUcDiSX3QNyNZh4qIiIgih2GgG84kM6zHXSpoFgVcN7EPBmSl6FgVERFRZDAMdEMQhM4rCkQBuHp8CYbkcAVCIiKKTwkTBhRFgRIIQPa6IbnaILvbIfu8UGS52/3zHDYIAK46vRgj8lKjWywREVEUCYqiKHoXoTWptQn+mir4aw/DX1MF35GDCNQehuL3dbu/mJoOa34xLPnFsOQWwZJXhPWtNqSnJOH04vToFk9ERBRlcRMGAo11cH21Ce1bNyBwtDp4pyAEv3r49H8C0QTIUrA9kxWpQ0uRfNpk2IeMhmDh5EJERBSfYjoMSK42uL76FK6tn8B3aF/wjV/LX0cUAVmGYLHBPmo8UkZPhm3gcK5MSEREcSUmw4AS8KN1w0q0rFoKxe/VPgR0pyMYWIr6IWP+VbCVDIzs8YiIiKIkpsKAoihwf/05mt57FVJzgz5FCCKgyLCPmoj08y6BOSNbnzqIiIg0EjNhwF97GA1vPQ9f5Z7o9ASciigCgoC0M+Yi7awFEEzqVjokIiIympgIA67tm1H/+t+Cg/vUDgaMFkGAtWQAsq+8FaZUp97VEBERhczQYUBRFLSsehstH70DQABg0FJFEaI9BTmLlsBaUKJ3NURERCExbBhQJAmNS/+J9s/X6V2KOoIIwWxB9jW3I2nAML2rISIiUs2QMxAqioKGt16InSAAAIoMJeDD0ed/D29lhd7VEBERqWbIMND+6Wq4tnysdxmhUxRAUVD3rz9BamvWuxoiIiJVDBcGvJUVaHz3Jb3L6D1FhuxuR93Lf4YiSXpXQ0REdEqGCgNSWzPq/vUnw44TVE2W4TtQgaYVr+tdCRER0SkZKgzUv/EsZHc7oBjs8sFeUdD28Qq4y7frXQgREdFJGSYMeA/thbd8u/HmEQiHIKL5g//AoBdsEBERATBQGGhZtTQ4q188UWT4D++Hd88OvSshIiLqkSHefX2HD8Cze1t89QocI4hoXvW23lUQERH1yBBhoOWjd+KvV+AYRYavcg88+3bpXQkREVG3dF9dR/Z64N65VdeFhw63tOFHb69FncsDsyjg9uljMH94f+0OIIpwfbkJSf2HatcmERGRRnQPA75De3VfgdAkiLh31iSMzM9CXbsb8/7+Ns4eWIxkq0WbA8gyvPt2atMWERGRxnTvm/ceKNf9FEFeajJG5mcBALJT7Ei329Dk8Wp6jEB9DSRXm6ZtEhERaUH/MLBvd8QGDsqKgrP+8gYeXPVZl/vX7DmEgQ89j/+W7TvhMV8eroOsKChMc2hej49rFhARkQHpGgYUSYL34J6ItS8KAm6ZOhovfr4TTe7gJ/0dNfW4+c2P8JOzxp0wLqDR5cEd76zFb+dNi0AxIrz7y7Vvl4iIKEy6hgHZ4wIC/ogeY2HpQGQk2/DcZztQ3dKORa9+gItHDcQPJo/qsp83IOGG11fi1qmjMb44T/tCFAVSS6P27RIREYVJ1wGEit8X8WOYRRE3TxmNR1Z/jvd27UdpfhbuP29y1zoUBUveWYup/QpwyahBkSlEUaD4tR2HQEREpAWdTxMEonKchaUD4fYHoCjAny6aCdO3Bix+dqgG7+zYhxW7KjHnmbcw55m3sLO2QfM6ZH9ke0GIiIh6Q9eeAcGs0aV7p3DP+xsAAA0uD0RROGH7xJJ8HPjF4ojXIVptET8GERFRqHTtGRAs1ogf43erP8eqikN4e9F8SIqCV7fujvgxuyWIUQs/REREodA1DIj2FAhJ9oi1//KWXfjrpu149vJzMSIvC9dPGIG/bNgGv6TDGggCYM6OwMBEIiKiMOnbMyAIsPUdAggndt2H66OKg7jn/Q144sIZOL0oFwCwaMIItPr8eHObDtf7yzJsfQdH/7hERESnoPukQ7Z+QzRv86vqOtz85kf4+dkTMHdYv877U21WfG/8CDy94StI0V4hURBgLR4Q3WMSERGpICiKvgsDeCsrUPvXh/QsISos+SXI/5/79C6DiIjoBLr3DFgL+wEm3ddLiixRhG3AML2rICIi6pbuYUAwm5Fy+jRA0L2UyJFlpIybrncVRERE3TLEO3DamfP0LiFyRBH24WNhzSvWuxIiIqJuGSIMmDOykTx2iu5LGUeELCPtrAV6V0FERNQjw7z7ps04H5B1HcuoPVFE0pBRsBb21bsSIiKiHhkmDFiy8oLn1SMw54BuFMB57kK9qyAiIjopw4QBAEg//0qYcwri5nRB+vlXsleAiIgMz1DvuqLVhpyrbw+uWRDLPQSCgOTTJsMx6Sy9KyEiIjolQ4UBADBn5iDripsAfedC6j1RhDmnABkXXgshlgMNERElDMOFAQCwDxkF53mX6F1G6EQRos2OnKtv53LFREQUM3SfjvhkWj/5AE3LXtG7DHVEEabUdOQu/jHMWbl6V0NERKSaocMAALi2fYr61/8OyDKg6LD0sBqCAEtBH+Rc+0OYHE69qyEiIgqJ4cMAAPiqK1H3zychtTYbLBAIABSkjDsDGQu+C8Fs0bsgIiKikMVEGAAAydWG5g//g/ZP1wCiEOwp0JkpNR3p865A8qiJepdCRETUazETBo7x11Shcdkr8O7ZEbz8MNrlCyIEswlpMxfAMXUWRIs1uscnIiLSWMyFgWPcu7eh6d2XEaivCU5SFOmego7gkTLuDDjPXQhTKscGEBFRfIjZMAAAiizDe6Acrq82wfXVp1C8bm2DgSACigxLfglSxk6FfdQEmNMytGmbiIjIIGI6DBxPCQTg2fM12r/cCM+ubcFgAAQ/0QsqxhiIJkCWOh9jzspF8uhJSB49CZbs/MgWT0REpKO4CQPHUxQFclsL/LVV8NdUwV97GP7qSkjtbVAkPyBJgCBAMJkhWCwwZ+XBklcMS14RLLmFMOcUcCwAEREljLgMA0RERKSeIacjJiIiouhhGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElODMehdwPOvYxRDNVgiiCYJogsnyzW1BFL/ZZjJBNFshdm4znbBNEE0QRQGCKMBkEiF867YoChBNQuc+J90mCDCZRZhEASZRgLXjtrnzZ9M320zf7Gc+bl9Td7cFAaIgwCQAFpPYedtsEmESEPxZFGARhW5uB7dbRLHztkkQIAiAKACCgI72AQGASRQgAsHfRUTnbVEATMLxt4NtCIoCKDIEOQB0uS0Hv+SetwmKDEjSN7flACBLUGQZCPigSBIgy8H7An4oshS87fcDx24f2/fYfn7fN4+RJcj+ABRJhiLLkH0ByFLwMYokQ/YHIEvf3FY6bkv+AJTj9pN8geNuS1BkBbKkdPzc8XhZCW6TFCiSAlmSIfnljjYVSH6p4zHfPE5WFEiKAp+sQFLwrdvf/jl4W0bwtqSgY9s3t/+i7Nf1dakVvr75+ubr27ivb/YMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQERElOIYBIiKiBMcwQERElOAYBoiIiBIcwwAREVGCYxggIiJKcAwDRERECY5hgIiIKMExDBARESU4hgEiIqIExzBARESU4BgGiIiIEhzDABERUYJjGCAiIkpwDANEREQJjmGAiIgowTEMEBERJTolTnk8HuXee+9VPB6P3qWcwMi1KQrrC4eRa4snRn6ejVyborC+cBi5tnAJiqIoegeSSGhpaYHT6URzczPS0tL0LqcLI9cGsL5wGLm2eGLk59nItQGsLxxGri1cPE1ARESU4BgGiIiIEhzDABERUYKL2zBgs9lw7733wmaz6V3KCYxcG8D6wmHk2uKJkZ9nI9cGsL5wGLm2cMXtAEIiIiJSJ257BoiIiEgdhgEiIqIExzBARESU4OIuDNx1110444wz8N3vfhc+n6/LNrfbjfnz52PGjBmYNWsWGhoaDFXfMQ899BDGjx+ve02BQACLFi3CGWecgR/+8IdRq0dtfcdE+/k6Xk+1GeFvLR7x9a1dTXx9n1oivb7jKgxs2bIFR44cwbp16zBixAi8/vrrXba/9957KC0txZo1a3D55Zfjn//8p6HqA4DW1lZs377dEDW98847KC4uxrp16+ByufDJJ59ErS419QHRf77U1qb331o84utb25r4+u59bXr/rUVCXIWBDRs24LzzzgMAzJkz54Q/7sGDB8PlcgEAmpqakJOTY6j6AOCJJ57Arbfeaoia1NSrZ31A9J+v452sNr3/1uIRX9/a1sTX98kl2uvbrHcBWmpqakJhYSEAwOl0ntB1M3DgQGzfvh2lpaUQBAGbNm0yVH3Nzc3Ytm0b7r77bkPU1NTU1Dn/dnf16l2fHs+X2tr0/luLR3x9a1sTX9+9r03vv7VIiMmegSNHjmD69OknfCmKgpaWFgDBf8jMzMwuj3vhhRcwc+ZMbN++Hffffz8eeOABQ9X3+OOP43/+538iUlNPMjIyeqzpZNuMUJ8ez9fxTlZbtP7W4hFf39rh67v3Eu31HZNhID8/H+vXrz/ha968eVixYgUA4P3338e0adNOeOyxf9D09HQ0NTUZqr6Kigr85je/wZw5c1BeXo7f/va3EanveJMnT+6xppNti5aT1aDH86W2NiA6f2vxiK9v7fD1HZnagDh8feu3enJkLFmyRJk+fbpy1VVXKV6vV1EURbnxxhsVRVGU5uZmZd68ecqMGTOUadOmKbt27TJUfccbN26cbjUdq8fv9yvXXnutMn36dOW2226LWj1q6zteNJ+v4/VUmxH+1uIRX9/h18TXt3qJ9PrmdMREREQJLiZPExAREZF2GAaIiIgSHMMAERFRgmMYICIiSnAMAwng+eefR3p6uiZt7d+/H4IgwGw2o6qqqsu26upqmM1mCIKA/fv3d9n2xhtvYObMmXA6nXA4HBg9ejQeeOCBzok8tKyRKNEsWrQIgiDgpptuOmHbLbfcAkEQsGjRos77jhw5gttuuw0DBgyAzWZDSUkJFixYgJUrV3bu069fPzz++ONRqJ6MgGGAeqWwsBD/+Mc/utz3wgsvoKio6IR9f/GLX+CKK67AhAkT8N5772H79u147LHH8OWXX8bFnN5ERlBSUoJXXnkFbre78z6Px4OXX34Zffr06bxv//79GDduHFatWoVHHnkE27Ztw/Lly3HWWWfpNvUv6Y9hIAYsX74c06dPR3p6OrKysjB//nzs2bMHALB69WoIgtBl0outW7d2fjpfvXo1vve976G5uRmCIEAQBNx3330AgMbGRlx77bXIyMhAcnIy5s6di/LyclU1XXfddXjuuee63Pf888/juuuu63Lfp59+igcffBCPPfYYHn30UUydOhX9+vXDrFmz8MYbb5ywPxH1zumnn44+ffrgzTff7LzvzTffRElJCcaOHdt537Gegk8//RSXXnophgwZgpEjR+LOO+/Exo0b9SidDIBhIAa0t7fjzjvvxGeffYaVK1dCFEUsXLgQsiyf8rFTp07F448/jrS0NFRXV6O6uhp33XUXgGDX4ubNm7F06VJs2LABiqJg3rx58Pv9p2z3ggsuQGNjI9avXw8AWL9+PRoaGrBgwYIu+/3rX/+Cw+HALbfc0m07PDVApJ3vfe97XUL6s88+i8WLF3f+3NDQgOXLl+PWW29FSkrKCY/n6zFxxdVCRfHqkksu6fLz3//+d+Tm5mLHjh2nfKzVaoXT6YQgCMjPz++8v7y8HEuXLsXHH3+MqVOnAgi+cZeUlOCtt97CZZdddtJ2LRYLrr76ajz77LOYPn06nn32WVx99dWwWCxd9isvL8eAAQNOuJ+ItHfNNdfg5z//eefYno8//hivvPIKVq9eDSA4xa+iKBg2bJi+hZLhsGcgBuzZswdXXXUVBgwYgLS0NPTv3x8AUFlZ2es2y8rKYDabMWnSpM77srKyMHToUJSVlQEA5s6dC4fDAYfDgZEjR57QxvXXX4/XXnsNR44cwWuvvdblE8gxiqJAEIRe10lE6mVnZ+P888/HCy+8gOeeew7nn38+srOzO7cfm3CWr0n6NvYMxIAFCxagpKQEzzzzDAoLCyHLMkpLS+Hz+eBwOAB88yIHoKqbv6dZqI9/8/7b3/7WORipu0/2paWlGDZsGK688koMHz4cpaWl2Lp1a5d9hgwZgvXr18Pv97N3gCgKFi9e3Lna31NPPdVl2+DBgyEIAsrKynDRRRfpUB0ZFXsGDK6+vh5lZWW4++67cc4552D48OFobGzs3J6TkwMgeFnfMd9+Q7ZarZAkqct9I0aMQCAQ6LIOd319PXbv3o3hw4cDAIqKijBo0CAMGjQIffv27ba+xYsXY/Xq1d32CgDAVVddhba2Njz99NPdbo+L1b6IDGTOnDnw+Xzw+XyYPXt2l22ZmZmYPXs2nnrqKbS3t5/wWL4eExfDgMFlZGQgKysLf/3rX1FRUYFVq1bhzjvv7Nw+aNAglJSU4L777sPu3bvx7rvv4rHHHuvSRr9+/dDW1oaVK1eirq4OLpcLgwcPxoUXXogbbrgB69evx5dffomrr74aRUVFuPDCC1XXd8MNN+Do0aP4/ve/3+32SZMm4Sc/+QmWLFmCn/zkJ9iwYQMOHDiAlStX4rLLLsMLL7zQuyeGiLplMplQVlaGsrIymEymE7Y//fTTkCQJEydOxBtvvIHy8nKUlZXhySefxJQpU3SomIyAYcDgRFHEK6+8gs8//xylpaW444478Oijj3Zut1gsePnll7Fz506cdtppePjhh/HrX/+6SxtTp07FTTfdhCuuuAI5OTl45JFHAADPPfccxo0bh/nz52PKlClQFAXLli0LqTvfbDYjOzsbZnPPZ5wefvhhvPTSS9i0aRNmz57deRnT6NGjeWkhUQSkpaUhLS2t2239+/fHF198gbPOOgtLlixBaWkpZs2ahZUrV+LPf/5zlCslo+ASxkRERAmOPQNEREQJjmGAiIgowTEMEBERJTiGASIiogTHMEBERJTgGAaIiIgSHMMAERFRgmMYICIiSnAMA0RERAmOYYCIiCjBMQwQEREluP8Hv4NB1HBkXLkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -513,7 +513,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIiUlEQVR4nO3deXxU1d0/8M+5d7ZMJvsCJCQkYYewyaZsioIigkrr8lSt+279+bjU2mrdqtba2mpbtY+7XVzq0rrhiqKgKLKDskPYA9m3STIz997fHwmBQBLuZO7NvTPzeb9eeWWYOXPulyHDfHLuuecITdM0EBERUdySrC6AiIiIrMUwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYfVBZhNU0JQqsoQqiiF1tgATQkBSggQApAdEA4n5JQMyBm9ISUmQwhhdclEREQ9KqbCgKZpCJXuRGDHBoTK90Ep2wOlpgLQtEONhABw8ANfa/eYcLkhZ/SBIysHjqxcuAeMgORN6tG/AxERUU8Tmnb4J2V0ClWUonnDCjSt/w5qXTUgJBz5QR8WSQJUFRACzrxB8AwdC9eAEZBcHiPLJiIisoWoDQOaqqBp7TdoXL0YSkVpSwDQVOMPJERLqJBkuPoXI3HCTDiyc40/DhERkUWiMgw0b1+P+oVvQa0u79kDtwYO9/CJSJx0OmRfSs8en4iIyARRFQZC5ftQ/8V/Edy56dBv7FYQEiDJ8E6cCe/YEyEcLmvqICIiMkBUhAFNVeH/5iP4v/2kNQSYcDqgmyRfKpLnXgZn73yrSyEiIuoW24cBtcmP2vl/R3DHRqtL6ZgQgJCQNONceIZPtLoaIiKisNk6DCh1Vah+40moNZW2Gg3ojHfCDHgnzeZaBUREFFVsGwZCFftR/cYT0BoboiIIHOQePgFJM86HkLi4IxERRQdbfmKpTQ2o+c/foi4IAEDz90vh/+Yjq8sgIiLSzXZhQNNU1M7/B9T62qgLAgf5v/0YzVvXWV0GERGRLrYLA/4lH7VMFozSIHBQ7Qf/gFJdZnUZREREx2SrMNC87Xv4v/3Y6jKMEQqh5u1noQWbra6EiIioS7YJA1oohLpPXrO6DONoKpSqMvhXfGF1JURERF2yTRho+mEpNH+d1WUYS9PQuOxzqIEmqyshIiLqlC3CgKYosXN64AhaoBlNq7+yugwiIqJO2SIMNK1fBrW+xuoyTKLB/91nnDtARES2ZYsw4F/6idUlmEpr9qPp+++sLoOIiKhDlocBpbYKak2F1WXgkuffxcA7n8LlL75nfOdCILBjg/H9EhERGcDyMBDcs83qEgAAV00djb9ecJo5nWsagru3QovytROIiCg2WR8G9m4DbLCO/5SBefC5nab1rwWaoFRyESIiIrIfyz+Fg7u2AKo5vzGrqoZJD7+E+99d1O7+zzaUIPfnf8Y7qzaZctzOBPfaYxSEiIjocJaGAS0YgFJ1wLT+JUng/50yHi9+vRbV/pZr/dftKcOVL83Hr2ZPxpmjB5l27A6KQah0Z88dj4iISCdrw0APLMZzznFDkJ7owTOLVmFvdR0ufPZtnDtuCG6YPtb0Y7ejatCaG3v2mERERDo4rDy4FgyYfgyHLOHGk8fhoflf4701WzCybzYemneS6cc9mgY1ZP7fl4iIKFyWzxnoCT8eOwSNgSCgafjbRadD7mDC4nn/9xaufGk+Fqwvwaj7nsXKnaXGF6IZ3yUREVGkLB0ZEE5Xjxznl299DgCoaGiELIkO2/z7mh+ZXIWA1EN/XyIionBYOjIgXG7Tj/HwB1/j0x9KMP+m/4GiavjXt9+bfswOCQHh9lhzbCIioi5YGwacbkipmab1/89v1uGphSvwjyvORHFuFq6eNgZPfL4MQUUx7Zid0lQ4svN6/rhERETHYPmcAVfeQFMWHVqwfjvuePNzPHHhLIwr6AMAuHLqKNQ1BfD6MmuWBnbmFllyXCIioq5YHgacOYWGLzq0etd+XPHSfNw9dwrmjBzQdn+Sx40rpozGnz/7DopJCx11RrjckDN69egxiYiI9BCaplk6x12pqUDl8w9YWYL5hICz3xCkzrva6kqIiIiOYvnIgJScDikpzeoyzKUBroIhVldBRETUIcvDgBAC3gkzrC7DVMLtRsLwiVaXQURE1CHLwwAAeIZNgPAmWV2GOYRAwtiTe+QySiIiou6wRRgQDgcSJ860ugxTCIcLCaOnWF0GERFRp2wRBgDAUzwRIiHR6jKMJQQSjjsRkjvB6kqIiIg6ZZswIBwuJJ1yrtVlGEdIkJLTkTB2utWVEBERdck2YQAA3ANHIWHcyVaXYQxZRspZV0HiEsRERGRztgoDAJA4eTacffsDwnalhSX5tAvg4CJDREQUBWz3iSskGclnXArJ6wNExzsM2l3CuJPhHjTa6jKIiIh0sV0YAADJ60PKvGsg3N6oGyFwDxqDxMmzrS6DiIhIN8uXI+6KUl2O6jefhFpXA2g9u5dAdyQcdyISp50JEWUBhoiI4putwwAAqP561L73AoJ7tlldSsdaT2V4J52BAx+8C3duPyQUDYKnaDA8fftBOJwWF0hERNQ124cBANBUBQ2L30Pj8oUtpw3sMkogBERCIlLmXAZnbhH2v/Isqha8d+hhhxOefv3hKRqEhKJBSCgaDEd6JkSUzoUgIqLYFBVh4KDg/l2o//wthPaVABAALCpdSIAQ8I47GQnjT4bkarl8MFC+H9t+dV2XWzLLKWktwaBwEDwFA+DJL4TsS+6pyomIiI4SVWEAADRNQ2DLGtR/8TbUuqqePXjrqIR78BgkTpkLOfno3Rb3PvNH1H77ZVjdOtIz4ckvgjuvEJ78InjyiziCQEREPSbqwsBBWiiExtWL0bh6MdSaCvNOHwgBaBogBKrSC9HvlDlw5xZ22rxp5zaU3H9LxIeVfUntwoGnYABcvXIi7peIiOhIURsGDtI0DaEDu9G8YQWa1i+D1lgPSFKXQ/XHJKSWAAANNSm5WCzy8VZ1GuqEG4+dMxKj+qZ2+fRdf7oXDd+v6v7xO5B17qXIOO1sQ/skIiICAIfVBURKCAFnrzw4e+UhcepcBPdsQ6BkPULl+6CU74VaX3NYY6llqsHB+QYaWr+35iHZAaRkYr8rA6savXi7Jh3ltd7W57Z8W7y14phhIH3WPEPDgG/0BKSfepZh/RERER0u6kcGjkULNCNUuR9KxT6ojX5oSghQQi1XAsgOwOGE352MpbUufLQrgLV767qcltg72Y2XL5vQ5fl8TdNQ8ptb0bwz8sshnZnZKPj1HyEn+iLui4iIqCNRPzJwLMLlhrN3Ppy98ztt8/ayXXj62+26+iutbcbW8gYMyOr8w1kIgYxZP8Lep/8Qdr3t+nE4kHvt7QwCRERkKi6VB2Bq/8yw2n+1teKYbZLGngBnZmQbFbly8uHM6h1RH0RERMfCMACgb1oC+qV7dbdftKX8mG2ELEd8nr955zaU/OYWNG7bFFE/REREXWEYaDWlf4butlvLG7CvpvGY7VImnwI5KSWSshAsP4Adv/slKj9+GzE+vYOIiCzCMNBqigmnCiS3G+kzz+xuSYcoCg78+wXs+etDUOrrIu+PiIjoMAwDrQb18iHT59LdfpGOMAAAqdNPh+Q1ZgJg/ervsP3+m9G4dYMh/REREQEMA20kIcIaHVi3twbV/sAx28kJXqTPmBNJae2EKsux45E7UfHhf6BFsrASERFRK4aBw4Qzb0DVgCXbK3W1TTv5DEiehO6WdTRFQdkbL2H3Xx5EqK7WuH6JiCguMQwcZlRuChJdsu72i7ce+6oCoGWfgdTps7tbVqca1i5Hyb03oeH7lYb3TURE8YNh4DAOWcIJRfpHB77bUYXGgKKrbfrMuRAu/XMS9ArVVGHXn+7D/lefhRpoNrx/IiKKfQwDRwjnVEFQ0bB8l75tlB3JqUg9cdZR96dMm4nEkeN0H7MzVZ++h5IHfo6mXfpWUiQiIjqIYeAIE/qlwyl3vu/AkVbsqtbdNv20syEch1aA9hQNRu8Lrkbfn/0KWedeCsj6T1F0JLB3J0oe+DknFxIRUVgYBo6Q4JIxLj9Nd/vlO/SNDACAMzUdKVNmAACkxCTkXnMbhMMJIUnIOO1s9Lv9QTjSs8KuuR0lhLI3XsKuR+9GsLIssr6IiCguMAx04PjCdN1td1Y1oqxO/7n69FnzIBwO5Fz5v3BmtP/gT+g/BIV3/xG+0RN099cZ/8Z12H7PTahduijivoiIKLbF/BbG3bGnuhEXvfid7va/OHUQZg3Tv6GQf/N6eAcO7fRxTdNQ9cm7OPDm31u2W45Q8sQT0evCqyAbtPgRERHFFo4MdCAnxYPsJLfu9it2VofVf1dBAGjZAjn91DPR7xcPwZmZHVbfHan99gtsv/dm+Deui7gvIiKKPQwDHRBCYEzfVN3tl++sNmUToYSiQSi4+4/wHXd8xH2FKsuw8w+/xoE3/g4tFDSgOiIiihUMA50Ynad/t8FKfwAllX5T6pC9PuRe9wv0vvh6CJf+0YoOaRoqP3wLJQ/ejua9u4wpkIiIoh7DQCfCGRkAWkYHzCKEQOq0U1F4z5/gKRwYcX/Nu7aj5De3ouqz97ktMhERMQx0pleyB7mpHt3tl+/Uf4lhd7l65aDfL36LjLnnAyKyfzotGMD+l5/B7sd/g1C1vj0WiIgoNjEMdCGc0YFVu6sRUsxf6Ec4HMg66yfod8dDcGb1iri/hnUrsP3em1C7/GsDqiMiomjEMNCFMXmputs2BVWsL60zr5gjJPQfgoJ7HkPKlFMi7kupr8Pepx7B7icf5igBEVEcYhjowuiw5w2Yf6rgcLInAX0uvRG51/0CUmJSxP3Vr/gG2+6+EdWLP+VcAiKiOMIw0IX0RBcKMry62y8PY58CIyWNPQGF9z2OxOGjI+5L9Teg9MW/Ytcf70WgrDTy4oiIyPYYBo4hnFMFP+yrRUNz5CsGdoczNR19b7ob2T+5EsLhjLg///rV2H7PTaj8+B1oqr5tmomIKDoxDBxDOJMIVQ1Ys6fGvGKOQUgS0k+Zg4JfPwp3XkHE/WmBZhz49/PY8ds70LxnR+QFEhGRLTEMHMOovinQv6GxuesN6OXOzUe/X/0e6bPmASKc6jvWtH0ztt9/K8refgVqkKsXEhHFGoaBY0j2ODEgW/8GP8t6eBJhZySnE9nnXIK8W++HIz0z8g6VECrefQ0lv7kFjVs3Rt4fERHZBsOADseFMW9gR6Uf5fX6tzQ2W+KQESi89zEkT5xmSH+Bvbuw4+E7sP/VZ6E2NRrSJxERWYthQIdwLzFcYdFVBZ2RvT7kXHUL+lx1M6QE/VdHdErTUPXpe9h+701o+H5V5P0REZGlGAZ0GJmbDCmMU+92OVVwpJSJJ6LwN3+Fb8xEQ/oLlh/Arj/di33P/xlKfc8tuERERMZiGNDB63JgaO9k3e2/31trYjWRcaamI/f6O5Bz7e2Qk1MN6bPm68+w7e4bUbvsay5WREQUhRgGdBoTxpbGe2uaUOUPmFhNZIQQSB43CUX3/wUpk042pE+lthp7//YI9jzxWwQrDhjSJxER9QyGAZ3CnTfQk/sUdJfsS0Kfy/8f8m6+B87MbEP6rF+1FNt+/TOUv/sa1KB9AxERER3CMKBTcU4ynLL+iQM/7LPvqYIjJQ4fg8J7H0fajLmGrEugBQIof/sVbL/7RtStWspTB0RENscwoJPbIWN4H/3zBn6IgpGBw0meBPT6nyvQ747fwpWTZ0ifwbL92PPXh7D78d8gULrHkD6JiMh4DANhCGefgg2ldVDU6PuNOKH/EBT8+o/ImHs+IDsM6bNh3Qpsu+cmHHjzH1ybgIjIhhgGwhDOPgWNQQU7Kv3mFWMiyelE1lk/QeHdj8JTONCYTpUQKj94E9t+/TPULl3EUwdERDbCMBCGIb2T4HHof8miad5AR9y5/dDvlw8j+7zLIVxuQ/oMVVVg79OPYufv70LT7hJD+iQiosgwDITBKUsYkav/EsMfSqM7DACAkGSkn3omCu97HN6hIw3rt3HT9yi5/xbsf+VZKP56w/olIqLwMQyEaVjvJN1tf9gXXZMIu+LK6o28W+5D70tvhORNNKZTVUXVgvew7c4bUL14ATRVNaZfIiIKC8NAmIqy9O9guKPSj/qmkInV9CwhBFKnnIKi+/+CpLEnGNavUleD0hf/gh0P34HG7ZsN65eIiPRhGAhT/8zwfivesD92RgcOcqSmI/e6X6DvTb+Gs1eOYf02bduEHQ/djn0vPYFQXY1h/RIRUdcYBsLUJ8UDjzOMSYQxMG+gM74RY1F47+PI+tFPDZtgCE1DzaJPsO3O61H5yTtQg0Fj+iUiok4xDIRJEgJFGfpHB2Jp3kBHJKcTGbN/jKIHnkDShKmG9av6G3Dgteex/dc3oOabLzifgIjIRELjBd9h++OCzXh37T5dbTN9Lrx+5fEmV2QfDRvW4sArz6B5z05D+3XnFSL7nIvhHTYawoAlk4mI6BCGgW747+q9ePzzLfrbX3MCUhKcJlZkL5qioOrzD1D+9stQG41deMk7dCSyfnwxEgoGGNovEVE842mCbgh3EuG28gaTKrEnIctInzEHRQ88iZTJpxjat3/9Gux44Dbs+b8/ILBf3+gMERF1jSMD3VDfHMLcp77W3f6GE/vjnDG5JlZkb43bNmH/y0+jqUT/aIousozUaachc855cKSkGts3EVEc4chAN/jcDvRO1j97fmtZfK+wl1A0CP1+9Qh6X3wDZJ/+RZuOSVFQ/fl8bP3VtSh7+xUo3ASJiKhbGAa6qShT/+JD8XaaoCNCkpA6bSaKHngSqdNnA8K4Hz2tuQkV776Gbb+8FlWfzYcW4uWIRETh4GmCbnp+SQn+8a2+GfNOWeCDG6ZAljgL/qCmXdux/+Wn0bh5veF9O7N6I2veRUgaNwlCYt4lIjoW/k/ZTeFMIgwqGnZXcwj7cJ68QuTf/hD6XHkzHClphvYdLCvF3qf/gB0P/hwN61cb2jcRUSziyEA37a5qxE9f+k53+1+fPgQnD842saLopTQ1ovKj/6Ly47ehNTcZ3n/i8DHInHchL0ckIuoEw0A3KaqGOU9+haaQvpXxLhifh6smF5pcVXQL1VSj/L3XUP3lx4CiGN5/YvFxyJhzHrwDhhjeNxFRNGMYiMB1r6zUvRHR8YXp+O1ZxSZXFBsC+/ei7D//Qt2yr0zp3ztkBDLnng/vYP57EBEBDAMR+cOnm/D+ulJdbbN8Lvw7jpYlNkLj9s0oe/Pv8G9Ya0r/CQOHIXPOuVzimIjiHsNABP6zag/+vHCr7vZvX3sCkj3xsyyxETRNQ8P3q1D25kto3lViyjE8RYOQeca5SBw5jqGAiOISw0AEVu+uxv++sUZ3+8fOGYlRfVPNKyiGaaqK2m+/RNl//4VQRZkpx3DnFyHzjHPhGzORlyQSUVxhGIhAfVMIc/+mf1nin88chNnDe5tYUexTg0FUL/wAFe+/DqXenO2h3bn5yDjjPCSNOwFCkk05BhGRnTAMROh/nvsW++uadbW9YFwerprCKwqMoPgbWi5H/ORtaIGAKcdw9c5FxhnnIHnCNAiZoYCIYhfHQiPUP0v/4kNceMg4sjcRWfMuRNFDf0PqtFMBE4b1A6V7sO+5x7HtrhtQvegTLnNMRDGLIwMReu7r7fjn0l262vbPTMSzF401uaL41LxvN8r+80/Ur/jGtGM40rOQcfqPkDLlFEhOl2nHISLqaQwDEfp8Uxnun69vfX2PU8L86ydzxrqJGrduRNl//wX/ev0TO8MlJ6cibfrpSD3xNDiSU007DhFRT2EYiNDOSj8u+fsy3e1fv3IiMn36tz+m7mncugHl7/4bDetWmHYM4XAieeI0pM2YC09egWnHISIyG8NAhBRVw+wnvkJA0bcsMS8v7FmNJVtQ8d6/Ub9qqanH8Q4ZgbQZc+EbOY6XJRJR1GEYMMA1L6/ApgP1utreNmMgzijuY3JFdKSmXSWoeP/fqFu+BDDxR96Z3QfpM+YgZdLJkDwJph2HiMhIDAMGuPf9H/DF5nJdbX8yLg9X8/JCyzTv3YWK999A7dJFgKZvNKc7pAQvUqedirSTZ8OZwd0qicjeGAYM8OSXW/H6ij262k4bkIn75gwzuSI6lsD+vaiY/yZqvlloyg6JbYSEpOOOR9rMM5HQfzAnjxKRLTEMGOCNlXvwxBf69igoykzEc7y80DYC5ftR+cFbqF68AFBCph7LUzAQaTPnIHnsZAiHw9RjERGFg2HAAF9uKcc97/2gq63HIWH+Dby80G6ClWWo+PA/qPnS/MWFHKnpSDt5NlKnnQrZl2zqsYiI9GAYMMDG/XW49pWVutvz8kL7ClVXovLjt1G18ENoAX3LTHeXcLmQcvxJSD1pFjz5RWE/3+/3Y82aNaiurkafPn0watQoE6okonjAMGCAyoYAfvyM/pXv/nzeKIzISTGxIopUqK4GVZ+8g6rP5kNtMn8ZaXd+EVKnzkTyxKmQvb4u237yySe4/fbbsXbtWiiHzXd47LHHcNNNN5ldKhHFIIYBA6iahll/XYygou+lvHv2UEwflGVyVWQEpaEe1Ys+QdVn7yNUqe+KkUgIlwtJYycjdeoMJAwc1uHppDFjxsDtduOKK67AuHHjkJ2djcsvvxwulwvvvvuu6TUSUezh6igGkIRAVhjD/uX15g4/k3HkRB8yZs1D/9/+H3KuuQ0J/QebejwtEEDtks+x85E7sf2uG1Dx4X8Qqqlu16a6uhrDhg2D1+vF66+/jtzcXHg8HlPrIqLYxpEBg9z8xmqs2l2jq+35Y/vi2qnhnyMme2jctgmVn76LumVfAap5axW0kWUkjZ6AlKkzkThsFK6+5lo8++yzAIDExETU19fjrLPOgqqqHBkgom7hyIBBspP0jwyUcWQgqiUUDULu1bei/8P/h/RZP4J0jHP8EVMU1C1fgt2P3Y+td1yD35x+ElYu/gL33nuvucclorjBi50NEk4YKK8PmFgJ9RRnehayz7kYmXPPQ82Shaj69F0ESvUtPtVdocpyVM9/HR4hoJU3mXosIoofDAMGyU7Sf86WcwZii+T2IO2kWUiddioavl+Jqk/fRcP3q8w9qKYhsG93u7t64qoHIopNDAMGyQ5rAmEAmqZx4aEYIyQJvhFj4RsxFs17dqJywbuoXfIFtGDPjAT5N67Djt/+AskTpyFp7GQ4UlJ75LhEFP0YBgwSzmmCgKKirjmEZI/TxIrISu7cfPS5+AZkzbsI1V98jOrP5yNUU2VI35qmYV15NTZV1ba7v7yxGZ9+uQgTNq+H85Xn4B1SjOQJU5E05njIviRDjk1EsYlXExikoTmEOU99rbv9cxeNRVFmookVkZ1ooSBqv/sKVQveQ1PJloj6+uf32/DgN2sBtL+a4J133gEAnJLfG3+dOfHQE2QHEoePRvKEqfCNngCZWysT0REYBgw058mv0BDQtwPe784uxoSCdJMrIjtq2rkN1Ys+Re03C6E2+sN+/k0LlkLpPwyvvvoqhBDIyMhAXV0dmpub8eSTT+IPD/4GS396RofPFS4XfCPHIXn8VCSOOA6Si8tiExFPExgqO8mN7RX6/nPn5YXxy5NfhN4XXo3scy9B3fIlqF70CRo3fa/7+Tk+L/67fDnOOuusox7bu3cvcnzeTp+rBQKoW/Y16pZ9DcmTAN+YiUgePwWJw0ZzJ0WiOMaRAQPd8d+1+LZE33nhS4/vh0uO72dyRRQtAqV7UL14AWq+/gxKbXWXbSsbm/H377fhgP/oqwc8DhnnDS7AkIzw9r6QEpOQNPZ4JE+YBu+gYRCSHNbziSi6MQwY6NFPN+G9daW62s4p7o1bZwwyuSKKNloohPq1y1C96FM0rF0BaD2wwuER5JQ0JI+bjOQJU+ApGsyrXojiAMcFDRTOFQU1TSETK6FoJRwOJI05Hkljjkewsgw1X32G6sWfIlRR1mM1KDVVqFrwHqoWvAdHehZ8o8bDN2o8vIOLITl5BQxRLOLIgIHeWbMXf/pM30zxMX1T8MdzuP88HZumqvCvX4PqRZ+gbuW3gGJNkBRuDxKHjW4JByPGch0DohjCkQEDJYWxbkBdM0cGSB8hSUgcPhqJw0cjVFeD2iVfoHrRx0etQGg2rbkJ9Su/Qf3KbwAh4CkcCN/IcfCNGg933wKeTiCKYhwZMNCyHVX4+X/W6mrbK8mNV6+YeOyGRB3QNA1N2za2jBYsX9KtSxSN5EjPbAsG3iEjIDldltZDROFhGDDQxv11uPaVlbrael0y3r9+sskVUTxQgwE0rFuB2qWLUb96KbSAtRthCZcbicNGwTdyPHwjx8KRyvU0iOyOYcBAe2saceEL3+lu/8mNU+CQuYs0GUdtakT9mmWoXboIDetWQAtZfzrKUzCgZZ7ByHFw5xfxdALZjtrkh1ZfBU0JtczJ0TRAlgHJAcnjhfClQUix/X81w4CB6pqCOPNvS3S3/8/VxyPVy+FUMofir0fdim9R990iNKxfA6g9f5nikRxpGUgcOgreISPgHVIMZ3qW1SVRHNE0DWrFXigV+6BWHYBStR9q1X5ozcc4zSbJkJIzIGf0gZSaBSmtFxy9+kG49O9Wa3cMAwZSNQ0zHl8EvS/o3y8Zh7y0zleLIzJKqLYadcuXoPa7xWGtdmg2Z3YfeIcUI3HISHgHF8ORkmZ1SRSDlKoDCG5bg+DWVdAaWjf4ElL463gICYDWMnIgyXDkDYaz/0g4cgdCOKL7sluGAYOd+dTXuq8UeOL80RjWJ9nkiojaC1aWo27ZV6hduhhNJZutLqcdV5++8A4Z2RIQBhdD9vH9Qd2jNTcisGkZgltWQa0uA4Ro+RA30sFA4XDBWVgM1+BxkLP6GnuMHsIwYLALX1iKvTVNuto+fFYxJhZychVZJ3BgH2q/W4y6pYvRvGeH1eUcxZ1XAO/gES2nFQYNg+z1WV0S2ZymKghuXI6mFZ8CgWZA91hthFqDgaOgGJ7xp0LypfbMcQ3CMGCwa15egU0H6nW1vXPWEMwYkm1yRUT6NO/Z2RIMln2NQGnPrmGgi5Dg6VcE7+BieIeOhHfAUEjcjpkOE9q9GU3fzodaW2FdEUIChICreDLcI6dCOKNjZ1CGAYP9/K01WLazWlfb/zd9AOaNyjG3IKJuCOzfh/o136F+zTL4N30PKPq25u5RsoyEggHwDh4BT9EgJBQO4qqIcUptrEfjoreg7NkCQKDHRgO6JCDcCfBMPgvOfkOtLuaYGAYMdt/767Fws7515C87oR8unsidC8neFH8DGr5fifo1y9CwdjmU+jqrS+qUIyMLCYUD4Skc1PK9X39I7tiZ8U1HC5XtQuOnr7RcEWDBxl56uEZOg3vMyba+PJHLERssyaP/Ja3nksQUBWRvIpLHT0Hy+CnQVAWNWzehfnXLqEFg706ry2snVFGGuooy1C37uuUOSYI7Nx+ewoFIKBwET+FAuHPyuEVzjAhuX4fGL95A2wx/mwqs+RJqZSkSpp8H4bDn5eQcGTDY3xZtw2vL9Z1vPXNkH9x88kCTKyIyT6CsFPWrl6F+zXfwb/zesk2UwiHcHnj69T80glA0EI60TC6GFGUC679F0zfvW12GfkJAzsyFd+ZPIdz2m+vCMGCw578uwT+Wdv3bkqZp0FQFs0fk4BenDumhyojMpTT60fDDKtSv/g4Na5ZDqa+1uiTd5JS01nDQOoJQMACyN9HqsqgTwa2r0fjlm1aXET4hIGf1hff0y203OsUwYLB/Lt2J574uOer+xvI92P3lm6jbtQH1e7ZADTYjOaMXPn7/bUycyA2LKLZoqoKm7ZtbRg1Wf2fLyxaPxZGeBXdu/qGvnHy4+vSF5IqO2eGxSqksRcO7/weoNpzUqpNr2AnwTDzd6jLaYRgw2GvLd+Fvi7Yfdf93j1yGNDmAadOmYezYsUhPT8eDDz6IGTNm4KmnnrKgUqKeE6quhH/jOjRsWAv/hrUIlpVaXVL3CAnO7N5w5xwKCO7cfLh65UA4OAXLbFpzI+rffhKav9bWcwT0SDjxHDiLRlpdRhv+9BrM1cnGQ40V+/DA7x7Cueeei02bNmH69Ol4+umn0dzc3MMVEvU8R2o6kidOQ/LEaQCAYEUZ/BvWomHjWvg3rEOoUt8VOJbTVAT370Vw/17Ur/zm0P2yA+7eOXDl9oM7J681KPSDMyvbdsPB0UrTVPi/eD0mggAANC76D6TUbMjpva0uBQDDgOGcnYQBT3pv3HHHHbj55ptRUFCA7duPHj0gihfOjCykTD4ZKZNPhqZpCJaVwr9hHfwbW0YOQjVVVpcYHiWE5j070bxnJw6/8FK4XHD3yYOrbQShD5yZveDM7AU5gfuShCO4eWXrOgIxQlPR+MUbSDz7BltMXmUYMJjL0XEYGHHFgyhf9xWqt6wEGvb2cFVE9iWEgCu7D1zZfZA6bSY0TUOgdA/8G9a2hoN1UTUZ8XBaIICmHVvRtGPrUY/JviQ4M3vDmZkNZ1ZvuDKzW4JCVi8407N42uEwmqqgedXnVpdhLE2DWn0AoV0b4cy3fiI5f9oM1tlpgoTMXOSddB6C/lpgM8MAUWeEEHD36Qt3n75Im346NFVF896dh0YONq6D6m+wusyIKfV1UOrrOt4sSkhwpGfAdTActH53ZfaCM7M35OQUW/w22VOCW9cc2m0wlgiB5pWfwZE32PJ/T4YBg3V2moCIukdIEjx9C+DpW4D0GXNafkvcVQL/5vVo2r4Zjds3IXhgn9VlGktTEaooQ6iiDNi47qiHhcvderohG87MbDiS0+BIToUjJRXywe9JqZCc0b2tLoCWMLh6odVlmEPToFaWQtmzBY6+1q45wzBgMJcjftI6kRWEJMPTrz88/fq33afU16GxZAuatm9C4/bNaNq2KWpPLeihBZoR2LvzmCtASt5EOJLTICenwJFyRGBo/Wq5nQLhsGdwCJV8D60uyuaQhEMINK/6nGEg1nQ1MqAqIWihYLv7gsEgAoEAXC57LlFJFA1kXxJ8xWPgKx4DoGVhr2D5gUPhYPtmNO3YCi0YsLjSnqX6GxDwNwA6dqGUEpPgaA0NcnIqHL5kSAleSJ6Elq/Dbsttt1u+C5fLtGHu4K4NbdsDW+XDVZtw52ufQNWA/509CZdMG2Nc55oGpWw31CY/JI91k0oZBgzW2ZyBA6s+x8ZXH4HS7EdBQUHb/f/85z/xxhtv4NFHH8X111/fQ1USxTYhBFxZveDK6oXkCVMBAFoohOa9O9G4bVPb6YXAvt0xcZmaEdSGOgQa6lpek3BJUlswkBMOhQQpIeFQaDgsTAiHo/XLCSE7Wk5ntH4XsgOi9bvsS4Kyb7ulQSCkqPjVa5/gvdt/iiSPG9PuexZzjxuCdJ+xSworB3ZCsnAiIcOAwToLA/uWvItJE8biuuuug8/nAwDcf//9KCsrwyuvvIInnniCYYDIRMLhgCe/CJ78IuCkWQBallBu2rEVTdtaRxBKNiNUVWFxpVFIVaH666H662Hk7hTpp8yGp6newB7Dt3z7HgzNyUJOWjIA4NSRA/DZuq045/hi4w4iJCj7d1h6VQHDgMEccsdDZcLhQk1NDTZu3AgAWL58edtjlZWVcLu5xClRT5MTvEgcMgKJQ0a03af469G8Zxea9+5EYM9ONO/diebdO2J6DoJdSZp5p3VUVcOEu57C7DGDcP+5M9ru/3TdVvzP46/imavnYd74YdhXXYc+aUltj+ekJWFvtcHbeGsqQqUlxvYZJoYBg3U24Jh/8k+w5T9/wcOPP9l2n4BAps+FlJQUPPTQQz1TIBF1Sfb64B04FN6BQ9vdH6qtRvPeXWjes6MlJLQGBbXRb1GlsU/Wmk2bLyBJArecMRm3/+tD3Dx7MtISE7B2ZykuffIN3P3jkzFv/DAAHZ9FMmN2hFqxD5oSgpCt+VhmGDBYZ6cfU/uPwrjbnm13n9cl4/3rJ/dAVUQUqYOz7w8fRdA0DaGq8taQsPNQUNi3C1ogviYrmkJTTZ3Tcd7xI/Dw21/i/z5dip9OHYPzHn8V558wEv9v1gltbXLSkrCv6tBIwN6qOowryjG+GE2FFmxmGIgVahg/uLwIkSi6CSHgTM+CMz0LvuLj2u7XVAXB8gNtSxQHSncjWH4AwfL9CFVXWlhxdBHQ0Pl4a+QcsoT/nT0J97/5Od5ZvgGj+vXGIxee1q7N2MJc/LCnDHurapHkcePjNVvwizOnmlPQEVeb9SSGAYOFE2KlOFpBjCieCEluW2I5aUz7LcrVQDOCFWUIlpUiWH4AgdbvwfKW7zztcJge+C/yvONH4JevfAxN0/DcNT+CLLWfBO6QJTx4/gzMeeQfUDUNN82ahHSfSZcAqtZdNcEwYLCwRgaYBYjijuRyty23fCRN06A21CNQvh/B8v0IlrV8bwsMFQcARbGgaov0wI6PP//XBwCAivrGo4LAQbPHDMbsMYNNrwUWLvzEMGAwjgwQUXcJISD7kpDgS0JCwYCjHtdUBaGqyrZwEKoqR6i2GqGaKii1Na3fq6E2N1lQvQmEw9QFhx5463N8tHoLPr3zMpz1h3/hH1+uxFWnjDflWHpYuQokw4DBODJARGYRkgxnRhacGVldtlObm1pDQjWU1rAQqm29ffB7TTVCtVW2nuioub1AkzlzLF76ciX++vE3ePfnP8WI/N64buYEPP7hElx64nFwOswfkTiSSEiCcHl6/LgHMQwYjCMDRGQ1ye2BK6s3XFm9u2ynaRrU5iYorcEgVFvdcruuBmpTI9RGP9QmP9SmprbbSlMj1MZGqE1+889xe1KA6l2Gd/vJmi247Z8f4Llr5mF8/5bTNdfMmIC/fPQNXl2yFj+dOtrwY3ZJSHD0KezZYx6BYcBgahgzX5kFiMhKQgjIngTIngS4evUJ67mapkELBtqCgdrUCKWx5fuhIHHottLkh9rYCC0YgBYKQguFjvldeFNa5g2oxs2TWFmyD5c89QbuP/cUnDn20FoSyQluXHPKePxp/le4YPLITucPmEJTIffq13PH64DQNC7MbaQ1e2pw0+urdbXNTnLjtSsmHrshEVGcanj/WSgHut6dMRYknn0D5LRelh2/B6NPfOA6A0RExpFzimJ/GNXlgZTa9TwQszEMGIxzBoiIjOMaPC7Gw4CAe/gJEMLaj2OGAYPxagIiIuNI3mQ4B8VwIHA44Bp6vNVVMAwYLRDSP7vW2cl2x0REdIh7xBTE5IlVIeAadgKEO8HqShgGjNYY1D/rNcHZ89eyEhFFG8mXCueA0S0LEMUSSYZr+AnHbtcDYuyVtV54YYAvPxGRHu7R01uX642dEQL36OmQPIlWlwGAYcBwjYEwwoCLIwNERHpIvhR4p58HM3cx7DFCwJE3GK4RU6yupA3DgMGawpgz4OFpAiIi3Ry5A+E+7hSry4iMkCB8qUiY9mMIG02KZBgwWFgjAwwDRERhcY2cCkffQdF7dYEkwTvjQkv3IegIw4DBOIGQiMg8QkhIOPEcSKnZURYIBCAkJJx0HuTUbKuLOQrDgMEYBoiIzCVcHiSecWXrev5REAiEABwOeE+9GM78IVZX0yGGAYMxDBARmU843fCeejEcA0ZZXUrXhIBISELi7CvhyCmyuppOcddCgzWFEQY8vJqAiKjbhOxAwpR5CGb1RdM381vu1EzeVjlMcq8CJEw/H5LHa3UpXWIYMFhYIwMODswQEUVCCAHXkAmQexeg6dsPoezdgpZTB1Zegigg3AlwjzsVzgGjIXpyO+RuYhgwWGNAfyrlOgNERMaQU7OReNrFCO3ZjKZv5kOtrej5IoTUssRw8WS4R06FcLp7voZuYhgwGOcMEBFZx5E7EInzfobgphVoXvU5tMb6lg9ps04fCNGyXa2Q4CgcDs/YmZB8qeYcy0QMAwZrCIR0t+WiQ0RExhOSDNeQ8XAOHgtl/w4Et65FcPtaINhsYDBoORUhZ+fD2X8UnAXDINz2nhfQFYYBA6mahprGoO72yR6+/EREZhFCgqN3IRy9C+E5fjZCe7YgVPI9lLLdUOuqDoUCIQHQWqcZaId3AEC0Cw/C7YWU1guOvEFwFhZDSkzpwb+RefhpZKC6phDUMOaspHld5hVDRERthOyAM39I23X+mqpAra2AWnUASvUBaHVV0JQQoISgaSqE7ARkGcLthZyaDSktG3Jqti22GzYDw4CBqvwB3W0lASRxZICIyBJCkiGntnzAO60uxgbsf71DFKkO4xRBSoITUlQtpUlERLGKYcBA1f7wwgAREZEdMAwYKJyRgVSGASIisgmGAQNVhzFnIDWBkweJiMgeGAYMFNbIgJcjA0REZA8MAwbiaQIiIopGDAMGCmcCIcMAERHZBcOAgXiagIiIohHDgIF4moCIiKIRw4BBQoqK2jDCAJciJiIiu2AYMMj+umaEsS0BTxMQEZFtMAwYZF9Nk+62HqeEJDf3JSAiIntgGDDIvlr9YaBXkgeC+xIQEZFNMAwYJJyRgd7JbhMrISIiCg/DgEHCCQO9kjwmVkJERBQehgGD7Ktt1N22F0cGiIjIRhgGDBLeaQKODBARkX0wDBigvjmE2qaQ7vY8TUBERHbCMGCA0jBGBQCeJiAiInthGDBAOJcVOmWB9ESuPkhERPbBMGCAcOYLZPnckLjGABER2QjDgAHCGRng5EEiIrIbhgED7KvhZYVERBS9GAYMwAWHiIgomjEMREjVtLBOE/RJYRggIiJ7YRiIUGVDAEFF/+bF/dK9JlZDREQUPoaBCIVzigAA8tMYBoiIyF4YBiK0N6zLCl1IcMkmVkNERBQ+hoEIlYYxX4CnCIiIyI4YBiK0p1r/ZYX5DANERGRDDAMR2lxWr7stRwaIiMiOGAYi0BRUsLPSr7s9RwaIiMiOGAYisLWsAar+qwp5JQEREdkSw0AENoVxiiDJ7UCa12liNURERN3DMBCBTfvrdLfNT/dCcLdCIiKyIYaBCGw+wMmDREQU/RgGuikQUlESxuRBhgEiIrIrhoFu2lbeACWM2YN56QkmVkNERNR9DAPdtOmA/vkCAFCUkWhSJURERJFhGOimTWHMF0hJcCI7yW1iNURERN3HMNBN4YSBQdk+XklARES2xTDQDUFFxfbyBt3tB2b7TKyGiIgoMgwD3bC9ogGhMCYPDmIYICIiG2MY6IZw1hcAGAaIiMjeGAa6YdP+8JYh7p3sMbEaIiKiyDAMdEM4kwcHcvIgERHZHMNAmEKKiq3l4V1JQEREZGcMA2HaUelHUAlj8mCvJBOrISIiihzDQJjCOUUAcGSAiIjsj2EgTOFcSZDokpGTwsmDRERkbwwDYeLkQSIiijUMA2FQVA1bysILA0RERHbHMBCGnVV+NIdU3e2H90k2sRoiIiJjMAyEIdyVB0fkpJhUCRERkXEYBsIQzsqDuakepCe6TKyGiIjIGAwDYdhcVqe7LUcFiIgoWjAM6BRU1LBGBkbkMgwQEVF0YBjQacP+OjSFMXlwRA4nDxIRUXRgGNBp1a5q3W3TvE70TU0wrxgiIiIDMQzotHJ3je62xTkpXGyIiIiiBsOADoGQiu/31upuz1MEREQUTRgGdPihtBYBJZz5Apw8SERE0YNhQIdw5gt4HBIGZCWaVwwREZHBGAZ0CGe+wNA+yXDIfFmJiCh68FPrGJpDCtaX6p8vMJLzBYiIKMowDBzDur21CCqa7vZcbIiIiKINw8AxrNpdrbutUxYo5sgAERFFGYaBY1i5K4z1Bfokw+2QTayGiIjIeA6rC7CLl7/bia3lDRifn4ax/dKQ5XOjMaBgw379mxMdl59mYoVERETmYBholZXkxjNfleCzjWUAgIIML/LSvFBU/fMFjstLNak6IiIi8zAMtBqcndTuzyUVfpRU+HU/P9ElY3CvpGM3JCIishnOGWiVm5oAj7P7L8fovqmQJe5HQERE0YdhoJUsCQzI8nX7+f5ACEtLKtEUVAysioiIyHw8TXCYgdk+rAtjQ6LDrdxdg5W7a+CUBUbkpGBcvzQcX5iOwgwuTUxERPbGMHCYQRGMDBwUVDSs2FWNNXtqMCArkWGAiIhsj6cJDjMwO/IwcNAdpw7G+H7phvVHRERkFoaBw/RL98IpRz4J8IYT++OUIdkGVERERGQ+hoHDOGQJ/TMjGx24YHwezhmTa1BFRERE5mMYOMKgCE4VnD68F66cVGBcMURERD2AYeAI3Z03MKkoA7eeMghCcK0BIiKKLgwDRyjKDH/2/4icZNw9ewgXHSIioqjEMHCE/DRvWO0LM7x48Mzh3K2QiIiiFsPAEXweB9K9Ll1teyW58bt5I5DkcZpcFRERkXkYBjqQn55wzDZpXicemTcCWT53D1RERERkHoaBDuSnd32qINnjwKM/GnnMdkRERNGAYaADXc0bSHTJ+P2PRqCwGxMNiYiI7IhhoAP9OvmNP8Ep45F5IzAoO6mHKyIiIjIPw0AHOpoz4HZI+O1ZwzGsT7IFFREREZmHYaADWT43PM5DL41TFnhg7nCM6ptqXVFEREQmYRjogBCibd6ALAncd8YwjOuXZnFVRERE5oibMKBpWqdfHemX7oUkgF+fPgQnFGX0cLVEREQ9x2F1AWbQNA2qqrZ82Ktq2+2uSJIEIUmQhICQJBRlejG+YDBOHJjVQ1UTERFZQ2jH+pSMEqqqQlUUKIpyzA9+vSRJguxwtAQFbkBEREQxKqrDgKZpUBQFSihkWADojCTLkGWZwYCIiGJOVIYBTdOghEIIhUI9fmwhBJwuFyQpbqZbEBFRjIuqMHBwLkAwELC6FEiSBKfTCcFQQEREUS5qwsDBEGC3cmWHAw6Hg6cOiIgoakVFGFAUxRajAZ0RQsDldjMQEBFRVLJ1GNA0DaFQCIoFcwO6w+V2cy4BERFFHduGAU3TEAwGoSqK1aWExelyQZZlq8sgIiLSzZa/xkZrEACAYCAQlXUTEVH8smUYUBQlqj9QAzac6EhERNQZ24UBVVEQCgatLiNigeZmBgIiIooKtgoDmqYhYOOrBsJxcPIjERGR3dkqDNj58sHuUEIhKFF8uoOIiOKDbcKA2rq7YKwJBYM8XUBERLZmmzAQC/MEOnJwCWUiIiK7skUYiNVRgYNiNegQEVFssEUYiPUPS03TovpSSSIiim2WhwE7DKPv2r0bp552GsYcdxzGT5iAN996y/BjcCIhERHZleXLEdthE6J9+/bhwIEDGDVqFA4cOIATJk3CmtWrkZiYaNgxhBBwezyG9UdERGQUh9UFaDaYK9CnTx/06dMHAJCdnY309HRUVlUZGgY0TYOmadzZkIiIbMfy0wSKiWFAVVWMGj0ad951V7v7P/nkEySnpHR4OmD58uVQVRV5ffuaUg8REZHdWBoGNE0zdWRAkiT8/Lbb8Mwzz6CqqgoAsGbNGlx40UW477778OMf/ahd+4qKClx51VX461//ako9DANERGRHls4Z0DQNzU1Nph4jFAphxMiRuOjCC3HJJZfgxJNOwtw5c/DYY4+1a9fc3Iwz5szB5ZddhgsuuMCUWiRZhsvlMqVvIiKi7rI2DKgqmpubTT/Os88+i3vuvRc5OTnol5+P1157DbIsH6pD03DJpZdi0MCBuOuIUwpGkiQJLrfbtP6JiIi6w9IwoKoqAj0QBurr65GXn4/+/fvji4ULj5oY+NXXX2PmzJkYUVzcdt9zzz2H4sP+bAQhSXAzDBARkc1YejVBT82sv/mWWwAAFeXl7UYEDpo8aRL8DQ2m18HrCIiIyI4sv5rAbPfddx8+/PBDfLFwIUKKghdffNG6YnhZIRER2VBMh4EXXngBj//5z3jjjTcwcuRI/OyGG/DHP/0JQYuWP5YYBoiIyIYsDQNCCEiSOSV89NFH+N+bb8bzzz2HiRMmAACuu+461NXV4eWXXzblmMciTPq7EhERRcLyTyczwsCKFStw4UUX4cEHH8TZZ5/ddn9ycjKuu/Za/OHRRy3ZK8Cs4ENERBQJy/cmUBUFAYv3JugJ3JuAiIjsyvJfVeNl6JyjAkREZFeWf0IJISB1cLlfrJEdlu8JRURE1CHLwwAAOGL8g1KSJI4MEBGRbdniE0qSpJgeHXA4nVaXQERE1ClbhAEgdkcHOCpARER2Z5tPqVgdHeCoABER2Z1twgAAOJ3OHtuvoCc4nE6OChARke3Z6pNKCAGny2V1GYaQJKnDTZGIiIjsxlZhAGj5EI32QHAw1MTSKAcREcUu24UBAJBlOaonFDIIEBFRNLFlGABazrdH4+Q7l9vNeQJERBRVbP3rt8PhgAAs23I4HEIIuNxujggQEVHUsXyjIj1UVUWgudnqMjolyXLMXQlBRETxIyrCAABomoZgMAjVgq2Hu+J0OrnvABERRbWoCQMHqaqKYDAITVUtrcPhcEB2ODgaQEREUS/qwsBBiqIgFAyip8vnKQEiIoo1URsGgJZTB5qqQlEUKCaePhBCQHY4IMsyQwAREcWcqA4Dh9M0DaqqQgmFoBpwCkEIAVmWIckyLxUkIqKYFjNh4HAH/0qqqraNHqiqCq3lwXZthRAtX5IEqfX7wfuIiIjiQUyGASIiItKP499ERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcc1hdwOFcYy6H5HBBSDKEJEN2HrotJOnQY7IMyeGC1PaYfNRjQpIhSQJCEpBlCeKI25IkIMmirU2XjwkB2SFBlgRkScDVetvR9mf50GPyoXaOw9rKHd0WApIQkAXglKW22w5ZgizQ8mdJwCmJDm63PO6UpLbbshAQApAEIARa+wcEAFkSkICWv4uEttuSAGRx+O2WPoSmAZoKoYaAdrfVli+188eEpgKKcui2GgJUBZqqAqEANEUBVLXlvlAQmqq03A4GgYO3D7Y92C4YOPQcVYEaDEFTVGiqCjUQgqq0PEdTVKjBEFTl0G2t9bYSDEE7rJ0SCB12W4GmalAVrfXPrc9XtZbHFA2aokFVVChBtbVPDUpQaX3OoeepmgZF0xBQNSgajrh95J9bbqtoua1oaH3s0O2/aSWWvi+Nwvc33998f9v3/c2RASIiojjHMEBERBTnGAaIiIjiHMMAERFRnGMYICIiinMMA0RERHGOYYCIiCjOMQwQERHFOYYBIiKiOMcwQEREFOcYBoiIiOIcwwAREVGcYxggIiKKcwwDREREcY5hgIiIKM4xDBAREcU5hgEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIioninxaimpibtnnvu0Zqamqwu5Sh2rk3TWF8k7FxbLLHz62zn2jSN9UXCzrVFSmiaplkdSMxQW1uLlJQU1NTUIDk52epy2rFzbQDri4Sda4sldn6d7VwbwPoiYefaIsXTBERERHGOYYCIiCjOMQwQERHFuZgNA263G/fccw/cbrfVpRzFzrUBrC8Sdq4tltj5dbZzbQDri4Sda4tUzE4gJCIiIn1idmSAiIiI9GEYICIiinMMA0RERHEu5sLAbbfdhqlTp+LCCy9EIBBo91hjYyPmzJmDE088ETNnzkRlZaWt6jvot7/9LcaNG2d5TaFQCJdeeimmTp2Km266qcfq0VvfQT39eh2us9rs8LMWi/j+Nq4mvr+PLZ7e3zEVBlauXInS0lIsWrQIw4YNwxtvvNHu8Q8++ADFxcX44osvcN555+Ef//iHreoDgLq6Oqxbt84WNb377rvo27cvFi1aBL/fj6+//rrH6tJTH9Dzr5fe2qz+WYtFfH8bWxPf392vzeqfNTPEVBhYsmQJTj31VADArFmzjvrhHjhwIPx+PwCguroaWVlZtqoPAB5//HHccMMNtqhJT71W1gf0/Ot1uK5qs/pnLRbx/W1sTXx/dy3e3t8OqwswUnV1NXJycgAAKSkpRw3d9O/fH+vWrUNxcTGEEPj2229tVV9NTQ3Wrl2Lu+66yxY1VVdXt62/3VG9Vtdnxeultzarf9ZiEd/fxtbE93f3a7P6Z80MUTkyUFpaiilTphz1pWkaamtrAbT8Q6anp7d73ksvvYSTTjoJ69atw3333Yf777/fVvU99thj+NnPfmZKTZ1JS0vrtKauHrNDfVa8Xofrqrae+lmLRXx/G4fv7+6Lt/d3VIaB3r17Y/HixUd9zZ49Gx9//DEA4KOPPsLkyZOPeu7Bf9DU1FRUV1fbqr4tW7bgwQcfxKxZs7B582Y8/PDDptR3uOOPP77Tmrp6rKd0VYMVr5fe2oCe+VmLRXx/G4fvb3NqA2Lw/W3d7snmuPXWW7UpU6ZoF1xwgdbc3KxpmqZdffXVmqZpWk1NjTZ79mztxBNP1CZPnqxt3LjRVvUdbuzYsZbVdLCeYDCoXXzxxdqUKVO0G2+8scfq0Vvf4Xry9TpcZ7XZ4WctFvH9HXlNfH/rF0/vby5HTEREFOei8jQBERERGYdhgIiIKM4xDBAREcU5hgEiIqI4xzAQB1588UWkpqYa0ldJSQmEEHA4HNizZ0+7x/bt2weHwwEhBEpKSto99uabb+Kkk05CSkoKfD4fRo4cifvvv79tIQ8jaySKN5deeimEELj22muPeuz666+HEAKXXnpp232lpaW48cYbUVRUBLfbjby8PMydOxcLFixoa1NQUIDHHnusB6onO2AYoG7JycnB3//+93b3vfTSS8jNzT2q7Z133onzzz8f48ePxwcffIB169bh0UcfxerVq2NiTW8iO8jLy8Orr76KxsbGtvuamprwyiuvID8/v+2+kpISjB07Fp999hkeeeQRrF27Fh9++CGmT59u2dK/ZD2GgSjw4YcfYsqUKUhNTUVGRgbmzJmDrVu3AgAWLlwIIUS7RS9WrVrV9tv5woULcdlll6GmpgZCCAghcO+99wIAqqqqcPHFFyMtLQ1erxenn346Nm/erKumSy65BC+88EK7+1588UVccskl7e5bunQpHnroITz66KP4/e9/j0mTJqGgoAAzZ87Em2++eVR7Iuqe4447Dvn5+Xjrrbfa7nvrrbeQl5eHMWPGtN13cKRg6dKlOOecczBo0CAMHz4ct9xyC7755hsrSicbYBiIAg0NDbjlllvw3XffYcGCBZAkCfPmzYOqqsd87qRJk/DYY48hOTkZ+/btw759+3DbbbcBaBlaXLZsGd555x0sWbIEmqZh9uzZCAaDx+z3zDPPRFVVFRYvXgwAWLx4MSorKzF37tx27f71r3/B5/Ph+uuv77AfnhogMs5ll13WLqQ///zzuPzyy9v+XFlZiQ8//BA33HADEhMTj3o+34/xK6Y2KopVP/7xj9v9+bnnnkN2djZ++OGHYz7X5XIhJSUFQgj07t277f7NmzfjnXfewVdffYVJkyYBaPngzsvLw3//+1+ce+65XfbrdDpx0UUX4fnnn8eUKVPw/PPP46KLLoLT6WzXbvPmzSgqKjrqfiIy3k9/+lP88pe/bJvb89VXX+HVV1/FwoULAbQs8atpGoYMGWJtoWQ7HBmIAlu3bsUFF1yAoqIiJCcno7CwEACwc+fObve5fv16OBwOTJw4se2+jIwMDB48GOvXrwcAnH766fD5fPD5fBg+fPhRfVxxxRV4/fXXUVpaitdff73dbyAHaZoGIUS36yQi/TIzM3HGGWfgpZdewgsvvIAzzjgDmZmZbY8fXHCW70k6EkcGosDcuXORl5eHZ555Bjk5OVBVFcXFxQgEAvD5fAAOvckB6Brm72wV6sM/vJ999tm2yUgd/WZfXFyMIUOG4Cc/+QmGDh2K4uJirFq1ql2bQYMGYfHixQgGgxwdIOoBl19+edtuf0888US7xwYOHAghBNavX4+zzz7bgurIrjgyYHMVFRVYv3497rrrLpxyyikYOnQoqqqq2h7PysoC0HJZ30FHfiC7XC4oitLuvmHDhiEUCrXbh7uiogKbNm3C0KFDAQC5ubkYMGAABgwYgH79+nVY3+WXX46FCxd2OCoAABdccAHq6+vx5JNPdvh4TOz2RWQjs2bNQiAQQCAQwGmnndbusfT0dJx22ml44okn0NDQcNRz+X6MXwwDNpeWloaMjAw8/fTT2LJlCz777DPccsstbY8PGDAAeXl5uPfee7Fp0ya8//77ePTRR9v1UVBQgPr6eixYsADl5eXw+/0YOHAgzjrrLFx11VVYvHgxVq9ejYsuugi5ubk466yzdNd31VVXoaysDFdeeWWHj0+cOBG33347br31Vtx+++1YsmQJduzYgQULFuDcc8/FSy+91L0Xhog6JMsy1q9fj/Xr10OW5aMef/LJJ6EoCiZMmIA333wTmzdvxvr16/HnP/8ZJ5xwggUVkx0wDNicJEl49dVXsXz5chQXF+Pmm2/G73//+7bHnU4nXnnlFWzYsAGjRo3C7373OzzwwAPt+pg0aRKuvfZanH/++cjKysIjjzwCAHjhhRcwduxYzJkzByeccAI0TcP8+fPDGs53OBzIzMyEw9H5Gaff/e53ePnll/Htt9/itNNOa7uMaeTIkby0kMgEycnJSE5O7vCxwsJCrFixAtOnT8ett96K4uJizJw5EwsWLMBTTz3Vw5WSXXALYyIiojjHkQEiIqI4xzBAREQU5xgGiIiI4hzDABERUZxjGCAiIopzDANERERxjmGAiIgozjEMEBERxTmGASIiojjHMEBERBTnGAaIiIji3P8H9b0kKO6f+REAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIlElEQVR4nO3dd3gc1bkG8PfMbNOqV9uSJVtyt+WGG65gsMEYG3BCuQFC74TLpYSQQGihhYQEkgAJnRRKKAnNVIPBxgb3Bu623GTZ6m0l7e7M3D8ky5YtybPaGc3s7vt7Hj1a754983mt9b46c+YcoWmaBiIiIopZktUFEBERkbUYBoiIiGIcwwAREVGMYxggIiKKcQwDREREMY5hgIiIKMYxDBAREcU4hgEiIqIYxzBAREQU4xgGiIiIYhzDABERUYxjGCAiIopxDANEREQxjmGAiIgoxjEMEBERxTiGASIiohjHMEBERBTjGAaIiIhiHMMAERFRjGMYICIiinEMA0RERDGOYYCIiCjGMQwQERHFOIYBIiKiGOewugCzaUoQSmUpguUl0BrqoSlBQAkCQgCyA8LhhJycDjm9J6T4JAghrC6ZiIioW0VVGNA0DcGS3fDv2oRg2X4opfugVJcDmna4kRAADn3ga20eEy435PRecGRmw5GZA3f/4ZC8id36dyAiIupuQtOO/KSMTMHyEjRtWoXGjcuh1lYBQsLRH/QhkSRAVQEh4MwdCM+QMXD1Hw7J5TGybCIiIluI2DCgqQoa13+LhrWLoZSXNAcATTX+QEI0hwpJhqtfIeLHz4QjK8f44xAREVkkIsNA086NqFv4DtSqsu49cEvgcA+bgPhJZ0BOSO7e4xMREZkgosJAsGw/6r76LwK7txz+jd0KQgIkGd4JM+EdcxKEw2VNHURERAaIiDCgqSp8334C33eftYQAE04HdJGUkIKkuZfD2TPP6lKIiIi6xPZhQG30oWb+3xHYtdnqUtonBCAkJM44D55hE6yuhoiIKGS2DgNKbSWq3noaanWFrUYDOuIdPwPeSbO5VgEREUUU24aBYPkBVL31FLSG+ogIAoe4h41H4owLICQu7khERJHBlp9YamM9qv/z14gLAgDQ9P0y+L79xOoyiIiIdLNdGNA0FTXz/wG1ribigsAhvu8+RdP2DVaXQUREpIvtwoBv6SfNkwUjNAgcUvPRP6BUlVpdBhER0XHZKgw07fgevu8+tboMYwSDqH73eWiBJqsrISIi6pRtwoAWDKL2szesLsM4mgqlshS+VV9ZXQkREVGnbBMGGn9YBs1Xa3UZxtI0NKz4Eqq/0epKiIiIOmSLMKApSvScHjiK5m9C49pvrC6DiIioQ7YIA40bV0Ctq7a6DJNo8C3/gnMHiIjItmwRBnzLPrO6BFNpTT40fr/c6jKIiIjaZXkYUGoqoVaXW10GLn3xfQy46xlc8fIHxncuBPy7NhnfLxERkQEsDwOBfTusLgEAcPXUUfjLhaeb07mmIbB3O7QIXzuBiIiik/VhoHgHYIN1/KcMyEWC22la/5q/EUoFFyEiIiL7sfxTOLBnG6Ca8xuzqmqY9OgreOD9RW3u/2JTEXJ+/ie8t2aLKcftSKDYHqMgRERER7I0DGgBP5TKg6b1L0kC/3vqOLy8ZD2qfM3X+m/YV4qrXpmPX82ejLNGDTTt2O0Ug2DJ7u47HhERkU7WhoFuWIzn3BMGIy3eg+cWrUFxVS0uev5dnDd2MG6cPsb0Y7ehatCaGrr3mERERDo4rDy4FvCbfgyHLOGmU8bi4flL8MG6bRjROwsPzzvZ9OMeS4MaNP/vS0REFCrL5wx0hx+PGYwGfwDQNPz14jMgtzNh8fy/vYOrXpmPBRuLMPL+57F6d4nxhWjGd0lERBQuS0cGhNPVLcf55TtfAgDK6xsgS6LdNv++9kcmVyEgddPfl4iIKBSWjgwIl9v0Yzz60RJ8/kMR5t/8P1BUDf/67nvTj9kuISDcHmuOTURE1Alrw4DTDSklw7T+//ntBjyzcBX+ceVZKMzJxDXTRuOpL1cgoCimHbNDmgpHVm73H5eIiOg4LJ8z4ModYMqiQws27sSdb3+Jpy6ahbF9ewEArpo6ErWNfry5wpqlgZ05BZYcl4iIqDOWhwFndr7hiw6t3XMAV74yH/fMnYI5I/q33p/ocePKKaPwpy+WQzFpoaOOCJcbcnqPbj0mERGRHkLTNEvnuCvV5ah48UErSzCfEHD2GYyUeddYXQkREdExLB8ZkJLSICWmWl2GuTTA1Xew1VUQERG1y/IwIISAd/wMq8swlXC7ETdsgtVlEBERtcvyMAAAnqHjIbyJVpdhDiEQN+aUbrmMkoiIqCtsEQaEw4H4CTOtLsMUwuFC3KgpVpdBRETUIVuEAQDwFE6AiIu3ugxjCYG4E06C5I6zuhIiIqIO2SYMCIcLiaeeZ3UZxhESpKQ0xI2ZbnUlREREnbJNGAAA94CRiBt7itVlGEOWkXz21ZC4BDEREdmcrcIAAMRPng1n736AsF1pIUk6/UI4uMgQERFFANt94gpJRtKZl0HyJgCi/R0G7S5u7ClwDxxldRlERES62C4MAIDkTUDyvGsh3N6IGyFwDxyN+MmzrS6DiIhIN8uXI+6MUlWGqrefhlpbDWjdu5dAqDRNg3fMyYifdhZEhAUYIiKKbbYOAwCg+upQ88FLCOzbYXUp7Ws5lRE38QyUfvQh3L37IK5gIDwFg+Dp3QfC4bS4QCIios7ZPgwAgKYqqF/8ARpWLmw+bWCXUQIhIOLikTzncjhzCnDgtedRueCDww87nPD06QdPwUDEFQxEXMEgONIyICJ0LgQREUWniAgDhwQO7EHdl+8guL8IgABgUelCAoSAd+wpiBt3CiRX8+WD/rID2PGr6zvdkllOTm0OBvkD4enbH568fMgJSd1VORER0TEiKgwAzefm/dvWoe6rd6HWVnbvwVtGJdyDRiN+ylzIScfutlj83B9Q893XIXXrSMuAJ68A7tx8ePIK4Mkr4AgCERF1m4gLA4dowSAa1i5Gw9rFUKvLzTt9IASgaagUHqxKG41zTh0HT05+h80bd+9A0QO3hn1YOSGxTTjw9O0PV4/ssPslIiI6WsSGgUM0TUPw4F40bVqFxo0roDXUAZLU6VD9cQmpOQDAheXJI/Ct1BvfVzWflHji3BEY2Tul06fv+eN9qP9+TdeP347M8y5D+unnGNonERERADisLiBcQgg4e+TC2SMX8VPnIrBvB/xFGxEs2w+lrBhqXfURjaXmqQaH5htoaPnekodkB6qTc7DMlY8lDSn4oUZAq2l7vMXby48bBtJmzTM0DCSMGo+00842rD8iIqIjRfzIwPFo/iYEKw5AKd8PtcEHTQkCSrD5SgDZATicqHKnYkmNB1/v8WFDcU2n0xJ7Jrnx6uXjOz2fr2kain5zG5p2h385pDMjC31//QfI8Qlh90VERNSeiB8ZOB7hcsPZMw/Onnkdtnl3xR48+91OXf2V1DRhe1k9+md2/OEshED6rB+h+Nnfh1xvm34cDuRcdweDABERmYpL5QGY2i8jpPbfbC8/bpvEMRPhzAhvoyJXdh6cmT3D6oOIiOh4GAYA9E6NQ580r+72i7aVHbeNkOWwz/M37d6Bot/cioYdW8Lqh4iIqDMMAy2m9EvX3XZ7WT32Vzcct13y5FMhJyaHUxYCZQex67e/RMWn7yLKp3cQEZFFGAZaTDHhVIHkdiNt5lldLekwRcHBf7+EfX95GEpdbfj9ERERHYFhoMXAHgnISHDpbr9IRxgAgJTpZ0DyGjMBsG7tcux84BY0bN9kSH9EREQAw0ArSYiQRgc2FFejyuc/bjs5zou0GXPCKa2NYEUZdj12F8o//g+0cBZWIiIiasEwcIRQ5g2oGrB0Z4WutqmnnAnJE9fVso6lKCh96xXs/fNDCNbWHL89ERFRJxgGjjAyJxnxLll3+8Xbj39VAdC8z0DK9NldLatD9etXoui+m1H//WrD+yYiotjBMHAEhyxhYoH+0YHluyrR4Fd0tU2bORfCpX9Ogl7B6krs+eP9OPD681D9TYb3T0RE0Y9h4CihnCoIKBpW7tG3jbIjKQUpJ8065v7kaTMRP2Ks7mN2pPLzD1D04M/RuEffSopERESHMAwcZXyfNDjljvcdONqqPVW626adfg6E4/AK0J6CQeh54TXo/bNfIfO8ywBZ/ymK9viLd6PowZ9zciEREYWEYeAocS4ZY/NSdbdfuUvfyAAAOFPSkDxlBgBAik9EzrW3QzicEJKE9NPPQZ87HoIjLTPkmttQgih96xXsefweBCpKw+uLiIhiAsNAO07MT9PddndlA0pr9Z+rT5s1D8LhQPZV/wdnetsP/rh+g5F/zx+QMGq87v464tu8ATvvvRk1yxaF3RcREUW3qN/CuCv2VTXg4peX627/i9MGYtZQ/RsK+bZuhHfAkA4f1zQNlZ+9j4Nv/715u+UwJU04CT0uuhqyQYsfERFRdOHIQDuykz3ISnTrbr9qd1VI/XcWBIDmLZDTTjsLfX7xMJwZWSH13Z6a777CzvtugW/zhrD7IiKi6MMw0A4hBEb3TtHdfuXuKlM2EYorGIi+9/wBCSecGHZfwYpS7P79r3Hwrb9DCwYMqI6IiKIFw0AHRuXq322wwudHUYXPlDpkbwJyrv8Fel5yA4RL/2hFuzQNFR+/g6KH7kBT8R5jCiQioojHMNCBUEYGgObRAbMIIZAy7TTk3/tHePIHhN1f056dKPrNbaj84kNui0xERAwDHemR5EFOikd3+5W79V9i2FWuHtno84tHkD73AkCE90+nBfw48Opz2PvkbxCs0rfHAhERRSeGgU6EMjqwZm8Vgor5C/0IhwOZZ/8Efe58GM7MHmH3V79hFXbedzNqVi4xoDoiIopEDAOdGJ2borttY0DFxpJa84o5Sly/weh77xNInnJq2H0pdbUofuYx7H36UY4SEBHFIIaBTowKed6A+acKjiR74tDrspuQc/0vIMUnht1f3apvseOem1C1+HPOJSAiiiEMA51Ii3ehb7pXd/uVIexTYKTEMRORf/+TiB82Kuy+VF89Sl7+C/b84T74S0vCL46IiGyPYeA4QjlV8MP+GtQ3hb9iYFc4U9LQ++Z7kPWTqyAczrD7821ci5333oyKT9+DpurbppmIiCITw8BxhDKJUNWAdfuqzSvmOIQkIe3UOej768fhzu0bdn+avwkH//0idj1yJ5r27Qq/QCIisiWGgeMY2TsZ+jc0Nne9Ab3cOXno86vfIW3WPECEUn37Gnduxc4HbkPpu69BDXD1QiKiaMMwcBxJHif6Z+nf4GdFN08i7IjkdCLr3EuRe9sDcKRlhN+hEkT5+2+g6De3omH75vD7IyIi22AY0OGEEOYN7KrwoaxO/5bGZosfPBz59z2BpAnTDOnPX7wHux69Ewdefx5qY4MhfRIRkbUYBnQI9RLDVRZdVdAR2ZuA7KtvRa+rb4EUp//qiA5pGio//wA777sZ9d+vCb8/IiKyFMOADiNykiCFcOrdLqcKjpY84STk/+YvSBg9wZD+AmUHseeP92H/i3+CUtd9Cy4REZGxGAZ08LocGNIzSXf774trTKwmPM6UNOTccCeyr7sDclKKIX1WL/kCO+65CTUrlnCxIiKiCMQwoNPoELY0Lq5uRKXPb2I14RFCIGnsJBQ88GckTzrFkD6VmioU//Ux7HvqEQTKDxrSJxERdQ+GAZ1CnTfQnfsUdJWckIheV/wvcm+5F86MLEP6rFuzDDt+/TOUvf8G1IB9AxERER3GMKBTYXYSnLL+iQM/7LfvqYKjxQ8bjfz7nkTqjLmGrEug+f0oe/c17LznJtSuWcZTB0RENscwoJPbIWNYL/3zBn6IgJGBI0meOPT4nyvR585H4MrONaTPQOkB7PvLw9j75G/gL9lnSJ9ERGQ8hoEQhLJPwaaSWihq5P1GHNdvMPr++g9In3sBIDsM6bN+wyrsuPdmHHz7H1ybgIjIhhgGQhDKPgUNAQW7KnzmFWMiyelE5tk/Qf49j8OTP8CYTpUgKj56Gzt+/TPULFvEUwdERDbCMBCCwT0T4XHof8kiad5Ae9w5fdDnl48i6/wrIFxuQ/oMVpaj+NnHsft3d6Nxb5EhfRIRUXgYBkLglCUMz9F/ieEPJZEdBgBASDLSTjsL+fc/Ce+QEYb127DlexQ9cCsOvPY8FF+dYf0SEVHoGAZCNLRnou62P+yPrEmEnXFl9kTurfej52U3QfLGG9OpqqJywQfYcdeNqFq8AJqqGtMvERGFhGEgRAWZ+ncw3FXhQ11j0MRqupcQAilTTkXBA39G4piJhvWr1Faj5OU/Y9ejd6Jh51bD+iUiIn0YBkLULyO034o3HYie0YFDHClpyLn+F+h986/h7JFtWL+NO7Zg18N3YP8rTyFYW21Yv0RE1DmGgRD1SvbA4wxhEmEUzBvoSMLwMci/70lk/uinhk0whKahetFn2HHXDaj47D2ogYAx/RIRUYcYBkIkCYGCdP2jA9E0b6A9ktOJ9Nk/RsGDTyFx/FTD+lV99Tj4xovY+esbUf3tV5xPQERkIqHxgu+Q/WHBVry/fr+uthkJLrx51YkmV2Qf9ZvW4+Brz6Fp325D+3Xn5iPr3EvgHToKwoAlk4mI6DCGgS7479piPPnlNv3tr52I5DiniRXZi6YoqPzyI5S9+yrUBmMXXvIOGYHMH1+CuL79De2XiCiW8TRBF4Q6iXBHWb1JldiTkGWkzZiDggefRvLkUw3t27dxHXY9eDv2/e338B/QNzpDRESd48hAF9Q1BTH3mSW62994Uj+cOzrHxIrsrWHHFhx49Vk0FukfTdFFlpEy7XRkzDkfjuQUY/smIoohHBnoggS3Az2T9M+e314a2yvsxRUMRJ9fPYael9wIOUH/ok3HpSio+nI+tv/qOpS++xoUboJERNQlDANdVJChf/GhWDtN0B4hSUiZNhMFDz6NlOmzAWHcj57W1Ijy99/Ajl9eh8ov5kML8nJEIqJQ8DRBF724tAj/+E7fjHmnLPDRjVMgS5wFf0jjnp048OqzaNi60fC+nZk9kTnvYiSOnQQhMe8SER0P/6fsolAmEQYUDXurOIR9JE9uPvLueBi9rroFjuRUQ/sOlJag+NnfY9dDP0f9xrWG9k1EFI04MtBFeysb8NNXlutu/+szBuOUQVkmVhS5lMYGVHzyX1R8+i60pkbD+48fNhoZ8y7i5YhERB1gGOgiRdUw5+lv0BjUtzLeheNycfXkfJOrimzB6iqUffAGqr7+FFAUw/uPLzwB6XPOh7f/YMP7JiKKZAwDYbj+tdW6NyI6MT8Nj5xdaHJF0cF/oBil//kXald8Y0r/3sHDkTH3AngH8d+DiAhgGAjL7z/fgg83lOhqm5ngwr9jaFliIzTs3IrSt/8O36b1pvQfN2AoMuacxyWOiSjmMQyE4T9r9uFPC7frbv/udROR5ImdZYmNoGka6r9fg9K3X0HTniJTjuEpGIiMM89D/IixDAVEFJMYBsKwdm8V/u+tdbrbP3HuCIzsnWJeQVFMU1XUfPc1Sv/7LwTLS005hjuvABlnnoeE0RN4SSIRxRSGgTDUNQYx96/6lyX++cyBmD2sp4kVRT81EEDVwo9Q/uGbUOrM2R7anZOH9DPPR+LYiRCSbMoxiIjshGEgTP/zwnc4UNukq+2FY3Nx9RReUWAExVfffDniZ+9C8/tNOYarZw7SzzwXSeOnQcgMBUQUvTgWGqZ+mfoXH+LCQ8aRvfHInHcRCh7+K1KmnQaYMKzvL9mH/S88iR1334iqRZ9xmWMiilocGQjTC0t24p/L9uhq2y8jHs9fPMbkimJT0/69KP3PP1G36lvTjuFIy0T6GT9C8pRTITldph2HiKi7MQyE6cstpXhgvr719T1OCfNvmMwZ6yZq2L4Zpf/9F3wb9U/sDJWclILU6Wcg5aTT4UhKMe04RETdhWEgTLsrfLj07yt0t3/zqgnISNC//TF1TcP2TSh7/9+o37DKtGMIhxNJE6YhdcZceHL7mnYcIiKzMQyESVE1zH7qG/gVfcsS8/LC7tVQtA3lH/wbdWuWmXoc7+DhSJ0xFwkjxvKyRCKKOAwDBrj21VXYcrBOV9vbZwzAmYW9TK6Ijta4pwjlH/4btSuXAib+yDuzeiFtxhwkTzoFkifOtOMQERmJYcAA9334A77aWqar7U/G5uIaXl5omabiPSj/8C3ULFsEaPpGc7pCivMiZdppSD1lNpzp3K2SiOyNYcAAT3+9HW+u2qer7bT+Gbh/zlCTK6Lj8R8oRvn8t1H97UJTdkhsJSQknnAiUmeehbh+gzh5lIhsiWHAAG+t3oenvtK3R0FBRjxe4OWFtuEvO4CKj95B1eIFgBI09VievgOQOnMOksZMhnA4TD0WEVEoGAYM8PW2Mtz7wQ+62nocEubfyMsL7SZQUYryj/+D6q/NX1zIkZKG1FNmI2XaaZATkkw9FhGRHgwDBth8oBbXvbZad3teXmhfwaoKVHz6LioXfgzNr2+Z6a4SLheSTzwZKSfPgievIOTn+3w+rFu3DlVVVejVqxdGjhxpQpVEFAsYBgxQUe/Hj5/Tv/Ldn84fieHZySZWROEK1laj8rP3UPnFfKiN5i8j7c4rQMrUmUiaMBWyN6HTtp999hnuuOMOrF+/HsoR8x2eeOIJ3HzzzWaXSkRRiGHAAKqmYdZfFiOg6Hsp75k9BNMHZppcFRlBqa9D1aLPUPnFhwhW6LtiJBzC5ULimMlImToDcQOGtns6afTo0XC73bjyyisxduxYZGVl4YorroDL5cL7779veo1EFH24OooBJCGQGcKwf1mducPPZBw5PgHps+ah3yN/Q/a1tyOu3yBTj6f5/ahZ+iV2P3YXdt59I8o//g+C1VVt2lRVVWHo0KHwer148803kZOTA4/HY2pdRBTdODJgkFveWos1e6t1tb1gTG9cNzX0c8RkDw07tqDi8/dRu+IbQDVvrYJWsozEUeORPHUm4oeOxDXXXofnn38eABAfH4+6ujqcffbZUFWVIwNE1CUcGTBIVqL+kYFSjgxEtLiCgci55jb0e/RvSJv1I0jHOccfNkVB7cql2PvEA9h+57X4zRknY/Xir3DfffeZe1wiihm82NkgoYSBsjq/iZVQd3GmZSLr3EuQMfd8VC9diMrP34e/RN/iU10VrChD1fw34RECWlmjqcciotjBMGCQrET952w5ZyC6SG4PUk+ehZRpp6H++9Wo/Px91H+/xtyDahr8+/e2uas7rnogoujEMGCQrJAmEPqhaRoXHooyQpKQMHwMEoaPQdO+3ahY8D5qln4FLdA9I0G+zRuw65FfIGnCNCSOmQxHckq3HJeIIh/DgEFCOU3gV1TUNgWR5HGaWBFZyZ2Th16X3IjMeRej6qtPUfXlfASrKw3pW9M0bCirwpbKmjb3lzU04fOvF2H81o1wvvYCvIMLkTR+KhJHnwg5IdGQYxNRdOLVBAapbwpizjNLdLd/4eIxKMiIN7EishMtGEDN8m9QueADNBZtC6uvf36/Aw99ux5A26sJ3nvvPQDAqXk98ZeZEw4/QXYgftgoJI2fioRR4yFza2UiOgrDgIHmPP0N6v36dsD77TmFGN83zeSKyI4ad+9A1aLPUfPtQqgNvpCff/OCZVD6DcXrr78OIQTS09NRW1uLpqYmPP300/j9Q7/Bsp+e2e5zhcuFhBFjkTRuKuKHnwDJxWWxiYinCQyVlejGznJ9/7nz8sLY5ckrQM+LrkHWeZeiduVSVC36DA1bvtf9/OwEL/67ciXOPvvsYx4rLi5GdoK3w+dqfj9qVyxB7YolkDxxSBg9AUnjpiB+6CjupEgUwzgyYKA7/7se3xXpOy982Yl9cOmJfUyuiCKFv2QfqhYvQPWSL6DUVHXatqKhCX//fgcO+o69esDjkHH+oL4YnB7a3hdSfCISx5yIpPHT4B04FEKSQ3o+EUU2hgEDPf75FnywoURX2zmFPXHbjIEmV0SRRgsGUbd+BaoWfY769asArRtWODyKnJyKpLGTkTR+CjwFg3jVC1EM4LiggUK5oqC6MWhiJRSphMOBxNEnInH0iQhUlKL6my9QtfhzBMtLu60GpboSlQs+QOWCD+BIy0TCyHFIGDkO3kGFkJy8AoYoGnFkwEDvrSvGH7/QN1N8dO9k/OFc7j9Px6epKnwb16Fq0WeoXf0doFgTJIXbg/iho5rDwfAxXMeAKIpwZMBAiSGsG1DbxJEB0kdIEuKHjUL8sFEI1lajZulXqFr06TErEJpNa2pE3epvUbf6W0AIePIHIGHEWCSMHAd37748nUAUwTgyYKAVuyrx8/+s19W2R6Ibr1854fgNidqhaRoad2xuHi1YubRLlygayZGW0RoMvIOHQ3K6LK2HiELDMGCgzQdqcd1rq3W19bpkfHjDZJMroligBvyo37AKNcsWo27tMmh+azfCEi434oeORMKIcUgYMQaOFK6nQWR3DAMGKq5uwEUvLdfd/rObpsAhcxdpMo7a2IC6dStQs2wR6jesgha0/nSUp2//5nkGI8bCnVfA0wlkO2qjD1pdJTQl2DwnR9MAWQYkBySPFyIhFUKK7v+rGQYMVNsYwFl/Xaq7/X+uOREpXg6nkjkUXx1qV32H2uWLUL9xHaB2/2WKR3OkpiN+yEh4Bw+Hd3AhnGmZVpdEMUTTNKjlxVDK90OtPAil8gDUygPQmo5zmk2SISWlQ07vBSklE1JqDzh69IFw6d+t1u4YBgykahpmPLkIel/Qv186FrmpHa8WR2SUYE0ValcuRc3yxSGtdmg2Z1YveAcXIn7wCHgHFcKRnGp1SRSFlMqDCOxYh8D2NdDqWzb4ElLo63gICYDWPHIgyXDkDoKz3wg4cgZAOCL7sluGAYOd9cwS3VcKPHXBKAztlWRyRURtBSrKULviG9QsW4zGoq1Wl9OGq1dveAePaA4IgwohJ/D9QV2jNTXAv2UFAtvWQK0qBYRo/hA30qFA4XDBmV8I16CxkDN7G3uMbsIwYLCLXlqG4upGXW0fPbsQE/I5uYqs4z+4HzXLF6N22WI07dtldTnHcOf2hXfQ8ObTCgOHQvYmWF0S2ZymKghsXonGVZ8D/iZA91htmFqCgaNvITzjToOUkNI9xzUIw4DBrn11FbYcrNPV9q5ZgzFjcJbJFRHp07Rvd3MwWLEE/pLuXcNAFyHB06cA3kGF8A4ZAW//IZC4HTMdIbh3Kxq/mw+1pty6IoQECAFX4WS4R0yFcEbGzqAMAwb7+TvrsGJ3la62/zu9P+aNzDa3IKIu8B/Yj7p1y1G3bgV8W74HFH1bc3crWUZc3/7wDhoOT8FAxOUP5KqIMUptqEPDoneg7NsGQKDbRgM6JSDccfBMPhvOPkOsLua4GAYMdv+HG7Fwq7515C+f2AeXTODOhWRviq8e9d+vRt26FahfvxJKXa3VJXXIkZ6JuPwB8OQPbP7epx8kd/TM+KZjBUv3oOHz15qvCLBgYy89XCOmwT36FFtfnsjliA2W6NH/ktZxSWKKALI3HknjpiBp3BRoqoKG7VtQt7Z51MBfvNvq8toIlpeitrwUtSuWNN8hSXDn5MGTPwBx+QPhyR8Ad3Yut2iOEoGdG9Dw1VtoneFvU/51X0OtKEHc9PMhHPa8nJwjAwb766IdeGOlvvOtZ43ohVtOGWByRUTm8ZeWoG7tCtStWw7f5u8t20QpFMLtgadPv8MjCAUD4EjN4GJIEca/8Ts0fvuh1WXoJwTkjBx4Z/4Uwm2/uS4MAwZ7cUkR/rGs89+WNE2DpiqYPTwbvzhtcDdVRmQupcGH+h/WoG7tctSvWwmlrsbqknSTk1NbwkHLCELf/pC98VaXRR0IbF+Lhq/ftrqM0AkBObM3vGdcYbvRKYYBg/1z2W68sKTomPsbyvZh79dvo3bPJtTt2wY10ISk9B749MN3MWECNyyi6KKpChp3bm0eNVi73JaXLR6PIy0T7py8w1/ZeXD16g3JFRmzw6OVUlGC+vf/Bqg2nNSqk2voRHgmnGF1GW0wDBjsjZV78NdFO4+5f/ljlyNV9mPatGkYM2YM0tLS8NBDD2HGjBl45plnLKiUqPsEqyrg27wB9ZvWw7dpPQKlJVaX1DVCgjOrJ9zZhwOCOycPrh7ZEA5OwTKb1tSAunefhuarsfUcAT3iTjoXzoIRVpfRij+9BnN1sPFQQ/l+PPjbh3Heeedhy5YtmD59Op599lk0NTV1c4VE3c+RkoakCdOQNGEaACBQXgrfpvWo37wevk0bEKzQdwWO5TQVgQPFCBwoRt3qbw/fLzvg7pkNV04fuLNzW4JCHzgzs2w3HBypNE2F76s3oyIIAEDDov9ASsmCnNbT6lIAMAwYztlBGPCk9cSdd96JW265BX379sXOnceOHhDFCmd6JpInn4LkyadA0zQESkvg27QBvs3NIwfB6kqrSwyNEkTTvt1o2rcbR154KVwuuHvlwtU6gtALzowecGb0gBzHfUlCEdi6umUdgSihqWj46i3En3OjLSavMgwYzOVoPwwMv/IhlG34BlXbVgP1xd1cFZF9CSHgyuoFV1YvpEybCU3T4C/ZB9+m9S3hYENETUY8kub3o3HXdjTu2n7MY3JCIpwZPeHMyIIzsydcGVnNQSGzB5xpmTztcARNVdC05kuryzCWpkGtOojgns1w5lk/kZw/bQbr6DRBXEYOck8+HwFfDbCVYYCoI0IIuHv1hrtXb6ROPwOaqqKpePfhkYPNG6D66q0uM2xKXS2Uutr2N4sSEhxp6XAdCgct310ZPeDM6Ak5KdkWv012l8D2dYd3G4wmQqBp9Rdw5A6y/N+TYcBgHZ0mIKKuEZIET+++8PTui7QZc5p/S9xTBN/WjWjcuRUNO7cgcHC/1WUaS1MRLC9FsLwU2LzhmIeFy91yuiELzowsOJJS4UhKgSM5BfKh74kpkJyRva0ugOYwuHah1WWYQ9OgVpRA2bcNjt7WrjnDMGAwlyN20jqRFYQkw9OnHzx9+rXep9TVoqFoGxp3bkHDzq1o3LElYk8t6KH5m+Av3n3cFSAlbzwcSamQk5LhSD4qMLR8Nd9OhnDYMzgEi76HVhthc0hCIQSa1nzJMBBtOhsZUJUgtGCgzX2BQAB+vx8ulz2XqCSKBHJCIhIKRyOhcDSA5oW9AmUHD4eDnVvRuGs7tIDf4kq7l+qrh99XD+jYhVKKT4SjJTTISSlwJCRBivNC8sQ1fx1xW2693fxduFymDXMH9mxq3R7YKh+v2YK73vgMqgb83+xJuHTaaOM61zQopXuhNvogeaybVMowYLCO5gwcXPMlNr/+GJQmH/r27dt6/z//+U+89dZbePzxx3HDDTd0U5VE0U0IAVdmD7gyeyBp/FQAgBYMoql4Nxp2bGk9veDfvzcqLlMzglpfC399bfNrEipJag0GctzhkCDFxR0ODUeECeFwtHw5IWRH8+mMlu9CdkC0fJcTEqHs32lpEAgqKn71xmf44I6fItHjxrT7n8fcEwYjLcHYJYWVg7shWTiRkGHAYB2Fgf1L38ek8WNw/fXXIyEhAQDwwAMPoLS0FK+99hqeeuophgEiEwmHA568AnjyCoCTZwFoXkK5cdd2NO5oGUEo2opgZbnFlUYgVYXqq4Pqq4ORu1OknHQ6vME6A3sM3cqd+zAkOxPZqUkAgNNG9McXG7bj3BMLjTuIkKAc2GXpVQUMAwZzyO0PlQmHC9XV1di8eTMAYOXKla2PVVRUwO3mEqdE3U2O8yJ+8HDEDx7eep/iq0PTvj1oKt4N/77daCrejaa9u6J6DoJtNdaZ9imlqhrG3/0MZo8eiAfOm9F6/+cbtuN/nnwdz10zD/PGDcX+qlr0Sk1sfTw7NRHFVQZv462pCJYUGdtniBgGDNbRgGPeKT/Btv/8GY8++XTrfQICGQkuJCcn4+GHH+6eAomoU7I3Ad4BQ+AdMKTN/cGaKjQV70HTvl3NIaElKKgNPosqjX5qYx2QaM58AUkSuPXMybjjXx/jltmTkRofh/W7S3DZ02/hnh+fgnnjhgJo/yySGbMj1PL90JQghGzNxzLDgME6Ov2Y0m8kxt7+fJv7vC4ZH94wuRuqIqJwHZp9f+QogqZpCFaWtYSE3YeDwv490PyxNVnRFIoCaOYt53z+icPx6Ltf42+fL8NPp47G+U++jgsmjsD/zprY2iY7NRH7Kw+PBBRX1mJsQbbxxWgqtEATw0C0UEOYjMSLEIkimxACzrRMONMykVB4Quv9mqogUHawdYlif8leBMoOIlB2AMGqCgsrjjQqAPPWbnHIEv5v9iQ88PaXeG/lJozs0xOPXXR6mzZj8nPww75SFFfWINHjxqfrtuEXZ001p6CjrjbrTgwDBgtlYrIUQyuIEcUSIcmtSywnjm67Rbnqb0KgvBSB0hIEyg7C3/I9UNb8nacdDuuOVfnOP3E4fvnap9A0DS9c+yPIUtvw4ZAlPHTBDMx57B9QNQ03z5qEtASTLgFUrbtqgmHAYCGNDDALEMUcyeVuXW75aJqmQa2vg7/sAAJlBxAobf7eGhjKDzYPnceI5iFzcy/9/Pm/PgIAlNc1HBMEDpk9ehBmjx5kah0AAAsXfmIYMBhHBoioq4QQkBMSEZeQiLi+/Y95XFMVBCsrWsNBsLIMwZoqBKsrodRUt3yvgtrUaEH1xhMOByAU09YZePCdL/HJ2m34/K7Lcfbv/4V/fL0aV586zpRj6WHlKpAMAwbjyAARmUVIMpzpmXCmZ3baTm1qbAkJVVBawkKwpuX2oe/VVQjWVNp6oqOITwYUc9Z9eOXr1fjLp9/i/Z//FMPzeuL6mePx5MdLcdlJJ8DpMG/SYkdEXCKEy9Ptxz2EYcBgHBkgIqtJbg9cmT3hyuzZaTtN06A2NUJpCQbBmqrm27XVUBsboDb4oDb6oDY2tt5WGhugNjRAbfSZfo5bTs4AyssM7/ezddtw+z8/wgvXzsO4fs2na66dMR5//uRbvL50PX46dZThx+yUkODold+9xzwKw4DB1BDObzELEJGVhBCQPXGQPXFw9egV0nM1TYMW8LcGA7WxAUpD8/fDQeLwbaXRB7WhAVrADy0YgBYMHve7lJwGVMqAatw8idVF+3HpM2/hgfNOxVljDq8lkRTnxrWnjsMf53+DCyeP6HD+gCk0FXKPPt13vHYITePC3EZat68aN7+5VlfbrEQ33rhywvEbEhHFqPoPn4dysPPdGaNB/Dk3Qk7tYdnxuzH6xAauM0BEZBw5uyD6h1FdHkgpnc8DMRvDgME4Z4CIyDiuQWOjPAwIuIdNhBDWfhwzDBiMVxMQERlH8ibBOTCKA4HDAdeQE62ugmHAaP6g/tm1zg62OyYiosPcw6cgKk+sCgHX0IkQ7jirK2EYMFpDQP+s1zhn91/LSkQUaaSEFDj7jwIsHko3nCTDNWzi8dt1gyh7Za0XWhjgy09EpId71PSW5XqjZ4TAPWo6JE+81WUAYBgwXIM/hDDg4sgAEZEeUkIyvNPPh9l7FXQLIeDIHQTX8ClWV9KKYcBgjSHMGfDwNAERkW6OnAFwn3Cq1WWER0gQCSmIm/bjbtmVUS+GAYOFNDLAMEBEFBLXiKlw9B4YuVcXSBK8My6ydB+C9jAMGIwTCImIzCOEhLiTzoWUkhVhgUAAQkLcyedDTsmyuphjMAwYjGGAiMhcwuVB/JlXtaznHwGBQAjA4YD3tEvgzBtsdTXtYhgwGMMAEZH5hNMN72mXwNF/pNWldE4IiLhExM++Co7sAqur6RB3LTRYYwhhwMOrCYiIukzIDsRNmYdAZm80fju/+U7N3G2VQyX36Iu46RdA8nitLqVTDAMGC2lkwMGBGSKicAgh4Bo8HnLPvmj87mMoxdvQfOrAyksQBYQ7Du6xp8HZfxREd26H3EUMAwZr8OtPpVxngIjIGHJKFuJPvwTBfVvR+O18qDXl3V+EkJqXGC6cDPeIqRBOd/fX0EUMAwbjnAEiIus4cgYgft7PENiyCk1rvoTWUNf8IW3W6QMhmrerFRIc+cPgGTMTUkKKOccyEcOAwer9Qd1tuegQEZHxhCTDNXgcnIPGQDmwC4Ht6xHYuR4INBkYDJpPRchZeXD2Gwln36EQbnvPC+gMw4CBVE1DdUNAd/skD19+IiKzCCHB0TMfjp758Jw4G8F92xAs+h5K6V6otZWHQ4GQAGgt0wy0IzsAINqEB+H2QkrtAUfuQDjzCyHFJ3fj38g8/DQyUG1jEGoIc1ZSvS7ziiEiolZCdsCZN7j1On9NVaDWlEOtPAil6iC02kpoShBQgtA0FUJ2ArIM4fZCTsmClJoFOSXLFtsNm4FhwECVPr/utpIAEjkyQERkCSHJkFOaP+CdVhdjA/a/3iGCVIVwiiA5zgkpopbSJCKiaMUwYKAqX2hhgIiIyA4YBgwUyshACsMAERHZBMOAgapCmDOQEsfJg0REZA8MAwYKaWTAy5EBIiKyB4YBA/E0ARERRSKGAQOFMoGQYYCIiOyCYcBAPE1ARESRiGHAQDxNQEREkYhhwCBBRUVNCGGASxETEZFdMAwY5EBtE0LYloCnCYiIyDYYBgyyv7pRd1uPU0Kim/sSEBGRPTAMGGR/jf4w0CPRA8F9CYiIyCYYBgwSyshAzyS3iZUQERGFhmHAIKGEgR6JHhMrISIiCg3DgEH21zTobtuDIwNERGQjDAMGCe00AUcGiIjIPhgGDFDXFERNY1B3e54mICIiO2EYMEBJCKMCAE8TEBGRvTAMGCCUywqdskBaPFcfJCIi+2AYMEAo8wUyE9yQuMYAERHZCMOAAUIZGeDkQSIishuGAQPsr+ZlhUREFLkYBgzABYeIiCiSMQyESdW0kE4T9EpmGCAiInthGAhTRb0fAUX/5sV90rwmVkNERBQ6hoEwhXKKAADyUhkGiIjIXhgGwlQc0mWFLsS5ZBOrISIiCh3DQJhKQpgvwFMERERkRwwDYdpXpf+ywjyGASIisiGGgTBtLa3T3ZYjA0REZEcMA2FoDCjYXeHT3Z4jA0REZEcMA2HYXloPVf9VhbySgIiIbIlhIAxbQjhFkOh2INXrNLEaIiKirmEYCMOWA7W62+aleSG4WyEREdkQw0AYth7k5EEiIop8DANd5A+qKAph8iDDABER2RXDQBftKKuHEsLswdy0OBOrISIi6jqGgS7aclD/fAEAKEiPN6kSIiKi8DAMdNGWEOYLJMc5kZXoNrEaIiKirmMY6KJQwsDArAReSUBERLbFMNAFAUXFzrJ63e0HZCWYWA0REVF4GAa6YGd5PYIhTB4cyDBAREQ2xjDQBaGsLwAwDBARkb0xDHTBlgOhLUPcM8ljYjVEREThYRjoglAmDw7g5EEiIrI5hoEQBRUV28tCu5KAiIjIzhgGQrSrwoeAEsLkwR6JJlZDREQUPoaBEIVyigDgyAAREdkfw0CIQrmSIN4lIzuZkweJiMjeGAZCxMmDREQUbRgGQqCoGraVhhYGiIiI7I5hIAS7K31oCqq62w/rlWRiNURERMZgGAhBqCsPDs9ONqkSIiIi4zAMhCCUlQdzUjxIi3eZWA0REZExGAZCsLW0VndbjgoQEVGkYBjQKaCoIY0MDM9hGCAiosjAMKDTpgO1aAxh8uDwbE4eJCKiyMAwoNOaPVW626Z6neidEmdeMURERAZiGNBp9d5q3W0Ls5O52BAREUUMhgEd/EEV3xfX6G7PUwRERBRJGAZ0+KGkBn4llPkCnDxIRESRg2FAh1DmC3gcEvpnxptXDBERkcEYBnQIZb7AkF5JcMh8WYmIKHLwU+s4moIKNpbony8wgvMFiIgowjAMHMeG4hoEFE13ey42REREkYZh4DjW7K3S3dYpCxRyZICIiCIMw8BxrN4TwvoCvZLgdsgmVkNERGQ8h9UF2MWry3dje1k9xuWlYkyfVGQmuNHgV7DpgP7NiU7ISzWxQiIiInMwDLTITHTjuW+K8MXmUgBA33QvclO9UFT98wVOyE0xqToiIiLzMAy0GJSV2ObPReU+FJX7dD8/3iVjUI/E4zckIiKyGc4ZaJGTEgePs+svx6jeKZAl7kdARESRh2GghSwJ9M9M6PLzff4glhVVoDGgGFgVERGR+Xia4AgDshKwIYQNiY60em81Vu+thlMWGJ6djLF9UnFifhry07k0MRER2RvDwBEGhjEycEhA0bBqTxXW7atG/8x4hgEiIrI9niY4woCs8MPAIXeeNgjj+qQZ1h8REZFZGAaO0CfNC6cc/iTAG0/qh1MHZxlQERERkfkYBo7gkCX0ywhvdODCcbk4d3SOQRURERGZj2HgKAPDOFVwxrAeuGpSX+OKISIi6gYMA0fp6ryBSQXpuO3UgRCCaw0QEVFkYRg4SkFG6LP/h2cn4Z7Zg7noEBERRSSGgaPkpXpDap+f7sVDZw3jboVERBSxGAaOkuBxIM3r0tW2R6Ibv503HIkep8lVERERmYdhoB15aXHHbZPqdeKxecORmeDuhoqIiIjMwzDQjry0zk8VJHkcePxHI47bjoiIKBIwDLSjs3kD8S4Zv/vRcOR3YaIhERGRHTEMtKNPB7/xxzllPDZvOAZmJXZzRUREROZhGGhHe3MG3A4Jj5w9DEN7JVlQERERkXkYBtqRmeCGx3n4pXHKAg/OHYaRvVOsK4qIiMgkDAPtEEK0zhuQJYH7zxyKsX1SLa6KiIjIHDETBjRN6/CrPX3SvJAE8OszBmNiQXo3V0tERNR9hNbRp2EE0zQNqqo2f9irauvtzkiSBCFJkISAkCS8tmIvspLcmDm4RzdVTUREZI2oCQOqqkJVFCiKctwPfj38QRUelwOyw9EcFLgBERERRamIDgOapkFRFCjBoCEBoDOSLEOWZQYDIiKKOhEZBjRNgxIMIhgMdvuxhRBwulyQpJiZbkFERFEuosLAobkAAb/f6lIgSRKcTicEQwEREUW4iAkDh0KA3cqVHQ44HA6eOiAioogVEWFAURRbjAZ0RAgBl9vNQEBERBHJ1mFA0zQEg0EoFswN6AqX2825BEREFHFsGwY0TUMgEICqKFaXEhKnywVZlq0ug4iISDdb/hobqUEAAAJ+f0TWTUREscuWYUBRlIj+QPXbcKIjERFRR2wXBlRFQTAQsLqMsPmbmhgIiIgoItgqDGiaBr+NrxoIxaHJj0RERHZnqzBg58sHu0IJBqFE8OkOIiKKDbYJA2rL7oLRJhgI8HQBERHZmm3CQDTME2jPoSWUiYiI7MoWYSBaRwUOidagQ0RE0cEWYSDaPyw1TYvoSyWJiCi6WR4G7DCMvmfvXpx2+ukYfcIJGDd+PN5+5x3Dj8GJhEREZFeWL0dsh02I9u/fj4MHD2LkyJE4ePAgJk6ahHVr1yI+Pt6wYwgh4PZ4DOuPiIjIKA6rC9BsMFegV69e6NWrFwAgKysLaWlpqKisNDQMaJoGTdO4syEREdmO5acJFBPDgKqqGDlqFO66++4293/22WdISk5u93TAypUroaoqcnv3NqUeIiIiu7E0DGiaZurIgCRJ+Pntt+O5555DZWUlAGDdunW46OKLcf/99+PHP/pRm/bl5eW46uqr8Ze//MWUehgGiIjIjiydM6BpGpoaG009RjAYxPARI3DxRRfh0ksvxUknn4y5c+bgiSeeaNOuqakJZ86ZgysuvxwXXnihKbVIsgyXy2VK30RERF1lbRhQVTQ1NZl+nOeffx733ncfsrOz0ScvD2+88QZkWT5ch6bh0ssuw8ABA3D3UacUjCRJElxut2n9ExERdYWlYUBVVfi7IQzU1dUhNy8P/fr1w1cLFx4zMfCbJUswc+ZMDC8sbL3vhRdeQOERfzaCkCS4GQaIiMhmLL2aoLtm1t9y660AgPKysjYjAodMnjQJvvp60+vgdQRERGRHll9NYLb7778fH3/8Mb5auBBBRcHLL79sXTG8rJCIiGwoqsPASy+9hCf/9Ce89dZbGDFiBH524434wx//iIBFyx9LDANERGRDloYBIQQkyZwSPvnkE/zfLbfgxRdewITx4wEA119/PWpra/Hqq6+acszjESb9XYmIiMJh+aeTGWFg1apVuOjii/HQQw/hnHPOab0/KSkJ1193HX7/+OOW7BVgVvAhIiIKh+V7E6iKAr/FexN0B+5NQEREdmX5r6qxMnTOUQEiIrIryz+hhBCQ2rncL9rIDsv3hCIiImqX5WEAABxR/kEpSRJHBoiIyLZs8QklSVJUjw44nE6rSyAiIuqQLcIAEL2jAxwVICIiu7PNp1S0jg5wVICIiOzONmEAAJxOZ7ftV9AdHE4nRwWIiMj2bPVJJYSA0+WyugxDSJLU7qZIREREdmOrMAA0f4hGeiA4FGqiaZSDiIiil+3CAADIshzREwoZBIiIKJLYMgwAzefbI3Hyncvt5jwBIiKKKLb+9dvhcEAAlm05HAohBFxuN0cEiIgo4li+UZEeqqrC39RkdRkdkmQ56q6EICKi2BERYQAANE1DIBCAasHWw51xOp3cd4CIiCJaxISBQ1RVRSAQgKaqltbhcDggOxwcDSAioogXcWHgEEVREAwE0N3l85QAERFFm4gNA0DzqQNNVaEoChQTTx8IISA7HJBlmSGAiIiiTkSHgSNpmgZVVaEEg1ANOIUghIAsy5BkmZcKEhFRVIuaMHCkQ38lVVVbRw9UVYXW/GCbtkKI5i9JgtTy/dB9REREsSAqwwARERHpx/FvIiKiGMcwQEREFOMYBoiIiGIcwwAREVGMYxggIiKKcQwDREREMY5hgIiIKMYxDBAREcU4hgEiIqIYxzBAREQU4xgGiIiIYhzDABERUYxjGCAiIopxDANEREQxjmGAiIgoxjmsLuBIrtFXQHK4ICQZQpIhOw/fFpJ0+DFZhuRwQWp9TD7mMSHJkCQBIQnIsgRx1G1JEpBk0dqm08eEgOyQIEsCsiTgarntaP2zfPgx+XA7xxFt5fZuCwFJCMgCcMpS622HLEEWaP6zJOCURDu3mx93SlLrbVkICAFIAhACLf0DAoAsCUhA899FQuttSQCyOPJ2cx9C0wBNhVCDQJvbavOX2vFjQlMBRTl8Ww0CqgJNVYGgH5qiAKrafF8wAE1Vmm8HAsCh24faHmoX8B9+jqpADQShKSo0VYXqD0JVmp+jKSrUQBCqcvi21nJbCQShHdFO8QePuK1AUzWoitby55bnq1rzY4oGTdGgKiqUgNrSpwYloLQ85/DzVE2DomnwqxoUDUfdPvrPzbdVNN9WNLQ8dvj2X7UiS9+XRuH7m+9vvr/t+/7myAAREVGMYxggIiKKcQwDREREMY5hgIiIKMYxDBAREcU4hgEiIqIYxzBAREQU4xgGiIiIYhzDABERUYxjGCAiIopxDANEREQxjmGAiIgoxjEMEBERxTiGASIiohjHMEBERBTjGAaIiIhiHMMAERFRjGMYICIiinEMA0RERDGOYYCIiCjGMQwQERHFOIYBIiKiGMcwQEREFOMYBoiIiGIcwwAREVGs06JUY2Ojdu+992qNjY1Wl3IMO9emaawvHHauLZrY+XW2c22axvrCYefawiU0TdOsDiRmqKmpQXJyMqqrq5GUlGR1OW3YuTaA9YXDzrVFEzu/znauDWB94bBzbeHiaQIiIqIYxzBAREQU4xgGiIiIYlzUhgG32417770Xbrfb6lKOYefaANYXDjvXFk3s/DrbuTaA9YXDzrWFK2onEBIREZE+UTsyQERERPowDBAREcU4hgEiIqIYF3Vh4Pbbb8fUqVNx0UUXwe/3t3msoaEBc+bMwUknnYSZM2eioqLCVvUd8sgjj2Ds2LGW1xQMBnHZZZdh6tSpuPnmm7utHr31HdLdr9eROqrNDj9r0Yjvb+Nq4vv7+GLp/R1VYWD16tUoKSnBokWLMHToULz11lttHv/oo49QWFiIr776Cueffz7+8Y9/2Ko+AKitrcWGDRtsUdP777+P3r17Y9GiRfD5fFiyZEm31aWnPqD7Xy+9tVn9sxaN+P42tia+v7tem9U/a2aIqjCwdOlSnHbaaQCAWbNmHfPDPWDAAPh8PgBAVVUVMjMzbVUfADz55JO48cYbbVGTnnqtrA/o/tfrSJ3VZvXPWjTi+9vYmvj+7lysvb8dVhdgpKqqKmRnZwMAkpOTjxm66devHzZs2IDCwkIIIfDdd9/Zqr7q6mqsX78ed999ty1qqqqqal1/u716ra7PitdLb21W/6xFI76/ja2J7++u12b1z5oZInJkoKSkBFOmTDnmS9M01NTUAGj+h0xLS2vzvFdeeQUnn3wyNmzYgPvvvx8PPPCArep74okn8LOf/cyUmjqSmpraYU2dPWaH+qx4vY7UWW3d9bMWjfj+Ng7f310Xa+/viAwDPXv2xOLFi4/5mj17Nj799FMAwCeffILJkycf89xD/6ApKSmoqqqyVX3btm3DQw89hFmzZmHr1q149NFHTanvSCeeeGKHNXX2WHfprAYrXi+9tQHd87MWjfj+Ng7f3+bUBkTh+9u63ZPNcdttt2lTpkzRLrzwQq2pqUnTNE275pprNE3TtOrqam327NnaSSedpE2ePFnbvHmzreo70pgxYyyr6VA9gUBAu+SSS7QpU6ZoN910U7fVo7e+I3Xn63Wkjmqzw89aNOL7O/ya+P7WL5be31yOmIiIKMZF5GkCIiIiMg7DABERUYxjGCAiIopxDANEREQxjmEgBrz88stISUkxpK+ioiIIIeBwOLBv3742j+3fvx8OhwNCCBQVFbV57O2338bJJ5+M5ORkJCQkYMSIEXjggQdaF/IwskaiWHPZZZdBCIHrrrvumMduuOEGCCFw2WWXtd5XUlKCm266CQUFBXC73cjNzcXcuXOxYMGC1jZ9+/bFE0880Q3Vkx0wDFCXZGdn4+9//3ub+1555RXk5OQc0/auu+7CBRdcgHHjxuGjjz7Chg0b8Pjjj2Pt2rVRsaY3kR3k5ubi9ddfR0NDQ+t9jY2NeO2115CXl9d6X1FREcaMGYMvvvgCjz32GNavX4+PP/4Y06dPt2zpX7Iew0AE+PjjjzFlyhSkpKQgPT0dc+bMwfbt2wEACxcuhBCizaIXa9asaf3tfOHChbj88stRXV0NIQSEELjvvvsAAJWVlbjkkkuQmpoKr9eLM844A1u3btVV06WXXoqXXnqpzX0vv/wyLr300jb3LVu2DA8//DAef/xx/O53v8OkSZPQt29fzJw5E2+//fYx7Ymoa0444QTk5eXhnXfeab3vnXfeQW5uLkaPHt1636GRgmXLluHcc8/FwIEDMWzYMNx666349ttvrSidbIBhIALU19fj1ltvxfLly7FgwQJIkoR58+ZBVdXjPnfSpEl44oknkJSUhP3792P//v24/fbbATQPLa5YsQLvvfceli5dCk3TMHv2bAQCgeP2e9ZZZ6GyshKLFy8GACxevBgVFRWYO3dum3b/+te/kJCQgBtuuKHdfnhqgMg4l19+eZuQ/uKLL+KKK65o/XNFRQU+/vhj3HjjjYiPjz/m+Xw/xq6o2qgoWv34xz9u8+cXXngBWVlZ+OGHH477XJfLheTkZAgh0LNnz9b7t27divfeew/ffPMNJk2aBKD5gzs3Nxf//e9/cd5553Xar9PpxMUXX4wXX3wRU6ZMwYsvvoiLL74YTqezTbutW7eioKDgmPuJyHg//elP8ctf/rJ1bs8333yD119/HQsXLgTQvMSvpmkYPHiwtYWS7XBkIAJs374dF154IQoKCpCUlIT8/HwAwO7du7vc58aNG+FwODBhwoTW+9LT0zFo0CBs3LgRAHDGGWcgISEBCQkJGDZs2DF9XHnllXjzzTdRUlKCN998s81vIIdomgYhRJfrJCL9MjIycOaZZ+KVV17BSy+9hDPPPBMZGRmtjx9acJbvSToaRwYiwNy5c5Gbm4vnnnsO2dnZUFUVhYWF8Pv9SEhIAHD4TQ5A1zB/R6tQH/nh/fzzz7dORmrvN/vCwkIMHjwYP/nJTzBkyBAUFhZizZo1bdoMHDgQixcvRiAQ4OgAUTe44oorWnf7e+qpp9o8NmDAAAghsHHjRpxzzjkWVEd2xZEBmysvL8fGjRtx991349RTT8WQIUNQWVnZ+nhmZiaA5sv6Djn6A9nlckFRlDb3DR06FMFgsM0+3OXl5diyZQuGDBkCAMjJyUH//v3Rv39/9OnTp936rrjiCixcuLDdUQEAuPDCC1FXV4enn3663cejYrcvIhuZNWsW/H4//H4/Tj/99DaPpaWl4fTTT8dTTz2F+vr6Y57L92PsYhiwudTUVKSnp+PZZ5/Ftm3b8MUXX+DWW29tfbx///7Izc3Ffffdhy1btuDDDz/E448/3qaPvn37oq6uDgsWLEBZWRl8Ph8GDBiAs88+G1dffTUWL16MtWvX4uKLL0ZOTg7OPvts3fVdffXVKC0txVVXXdXu4xMmTMAdd9yB2267DXfccQeWLl2KXbt2YcGCBTjvvPPwyiuvdO2FIaJ2ybKMjRs3YuPGjZBl+ZjHn376aSiKgvHjx+Ptt9/G1q1bsXHjRvzpT3/CxIkTLaiY7IBhwOYkScLrr7+OlStXorCwELfccgt+97vftT7udDrx2muvYdOmTRg5ciR++9vf4sEHH2zTx6RJk3DdddfhggsuQGZmJh577DEAwEsvvYQxY8Zgzpw5mDhxIjRNw/z580Maznc4HMjIyIDD0fEZp9/+9rd49dVX8d133+H0009vvYxpxIgRvLSQyARJSUlISkpq97H8/HysWrUK06dPx2233YbCwkLMnDkTCxYswDPPPNPNlZJdcAtjIiKiGMeRASIiohjHMEBERBTjGAaIiIhiHMMAERFRjGMYICIiinEMA0RERDGOYYCIiCjGMQwQERHFOIYBIiKiGMcwQEREFOMYBoiIiGLc/wPiZDL+P+2diQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -523,7 +523,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKZElEQVR4nO3dd3wc9Z038M/M9iKtepctyd2WG+6FYprBQCBHgITQAiGhhiPJ8eQueZ5wucAl4bgjuQAJIfRQjhICCfUMDjYY29jGVe6Srd5X0mr7zjx/rCRbtiTvSLOa2d3P+/USrHZHM1+vtd7P/qogy7IMIiIiSlmi1gUQERGRthgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUZ9S6gHiTw2GEWhsRbKpDpLcHcjgEhCOAIEAwGiGYzDBm58FcUAJDegYEQdC6ZCIionGVVGFAlmUEjh2Gb99OBBtrEag/inB7CyBLfUcIgCAAwsAPRL/6H7VYYS4shbloAizFZXDMXghDmmvc/xxERETjSZDlE94NE1SwqQ6ebZ+hZ8t6RNztgCie8kaviGgApGjrgW1qJZwLVsIxeyFEq03dwomIiHQgYcOAHImg5/OP0bXhA4Sa6qIBQJJO/4NKCWK0ZcFghKNyATIuuByW4jL1r0NERKSRhAwD3qov0fbGcwi3NY3vhfsCh3PJOci6+CoYXZnje30iIqI4SKgwEGysRdubz8N/YPfxT+xaEEUIBgMyLvgqXGevgWg2a1MHERGRChIiDMiShM73X4f7wzejAwDj0R0wKgIMGZnI/9a9sE6YpHUxREREo6L7MBDxetDy3G/h279T61KGJoiAKCD3qluQtuQcrashIiJSTNdhINzZjobHHkC4o0VHrQHDyzj/cmSuuZprFRARUULRbRgINtej8dGfI9LbkxBBoJ9z8dnIveZWCCIXdyQiosSgy3esSK8Hjb/7RcIFAQDwbP47Ot9/XesyiIiIYqa7MCBLElqe/y0i3Z0JFwT6uT/4M3p3b9W6DCIiopjoLgx0vv9GdLBgggaBKAEtzz+KUOs4r4NAREQ0CroKA717tsH9wRtal6ECGXI4iKYn/wNSwK91MURERCPSTRiQwyG0vfIHHN9FKMFJEkKtjej6+7taV0JERDQi3YSBns2fINLTBUCXkxtGR5bh/vivkPw+rSshIiIali7CgBwJo/ODN5A0rQInkAN+dH/6odZlEBERDUsXYaDniw2IdHUiqVoF+sky3B+9zbEDRESkW7oIA+4P30Qytgr0k7y96NnyidZlEBERDUnzMBDubEO4vQVatwrc9vZ6zH/8Ndz51w3qn1wQ4Nun070ViIgo5WkeBnxH9mldAgDgxnlT8R+rl8Xn5LIM/+F9kBN67QQiIkpWmocB/5H9gGjQugwsK82Hw2SM2/klvxeh1sa4nZ+IiGi0tA8Dh/YCUiQu55ZkGRc8+1f8cv2Xg+7/pKYR03/zCt45cCwu1x2O/8j+cb0eERFRLDQNA1IwgFBL/D4ti4KA2xbNxIu7DqLLHwQAVLV24u53NuAHK+ZgzdQJcbv2qcUYEDh2ePyuR0REFCNtw8A4LMZz+fQyZFotePbL/Wjs8eLbf/k7rphejlsXzIj7tQeRJUg+7/hek4iIKAbx6ySPgRwMxP0aRlHEdxbOxMOf7cB7h2oxKy8L/++cM+J+3VPIMqRx+PMSEREppfmYgfFw+fSJ8IUikGXgkYuXwyCe+se+6Y2Pcfc7n2JdTQNWPPkmdja1x6GSJFxUiYiIEp6mLQOC2TIu17n/460AgE5fAAZh6MWNnvmHVfEtQhAgmq3xvQYREdEoaNoyIFri/+b4n5/txLqaBrz+9QsQkWX8zx6NBvEJIkSrTZtrExERjUDzMGDMyY/b+V/ZfRh/3LYPT3zlLMzIzcRN86fhiS+qEIposPiPFIGltGL8r0tERHQamo8ZsE2ZFZdFh9ZVN+D+j7/Af160DPMLcwAAN8ydCk8whDf3Vat+vVhYK6Zrcl0iIqKRaB4GrOXTVF90aFdzB+5+51Pct3IeVk8uHbg/zWLCDfOm4ndbqhAZ56WBBYsNpvyicb0mERFRLARZljUd4h5qb0Htz/9RyxLiTxBgmz4Xhd+5T+tKiIiITqF5y4AxKxfGzBwk8xbGAGCfPkfrEoiIiIakeRgQBAEZ51+OZJ6DL1psSFtyjtZlEBERDUnzMAAAaYvPgiHNpXUZ8SEIcJ176bhMoyQiIhoNXYQBwWhCxgVXaF1GXAhmC1wrL9S6DCIiomHpIgwAQNqSVRAdaVqXoS5BgOvsNRBtdq0rISIiGpZuwoBoNiPnqlu0LkM9oghjVh4yVq3RuhIiIqIR6SYMAIBz7mK4zr1M6zJUIEAwGFFw6w8hWtkqQERE+qarMAAAWWuuhnXSDGCInQUTh4zca2+HOb9Y60KIiIhOS3fvuILBgPyb7oHBmQ4IuisvJq5zL4Nz3hKtyyAiIoqJLt9tDc50FHz3RxDt9oRrIXDMX4asNVdrXQYREVHMNF+OeCShtmY0PvYAwl0dwDjvJTAarrMvRtZXvgkhwQIMERGlNl2HAQCIeLrR/PQj8B/Zp3UpQxMEAALSL78erxqnIC/NihKXDSUZVuSnWWEUk3uZZSIiSny6DwMAIEci6Pjry+ha97dot4FeWgkEAaIjDQXf+kdYK6bjnapmbDrWOfCwURRQmG5FicuKkgwbSlw2uKxGCAIDAhER6UdChIF+gdojaHvjOQRqDkQ/kWtVuigCgoiMcy9FxrmXQbTaAACdviB+s/4IpBHKcpoNA8GgyGVFYZoVdrNhnAonIiI6VUKFAQCQZRm9O7eg4y/PI9zZPr4X72uVcMxfjuzLvt632+Jgr+1swK7GbkWndVmNKEizojDdgsJ0KwrSrGxBICKicZNwYaCfHA6ha8MH6N7wIcLtLfHrPuhvgRBE9JZMw6SvXgN7+dRhD2/s9uN3G2vGfFm7yYCCtGg4KEy3oijdimyHecznJSIiOlnChoF+siwjWFcNz7bP0PPFBkiebkA0AFJk9CcVxWgAkGV488uxI3sm/lcogddow08vmo6ZBekj/vhzX9TicHvv6K8/hAun5mJFebaq5yQiIgKSIAycSJYk+I/sg7dqB4KNtQg2HEOkq+P4AaIIQAAEADKi/+l70wcAGI0QcwrRmV6A/UImPhZL4TYP3jxpzcx83Lh44oh1HGnvxbNf1Kr255qW68Q35hez24CIiOIiqcLAUKSAH8HmeoQaaxHxeiCHw5DDIQiCCMFogmAywe/Mwq6wA+vbRexv8WCkJyTXacZ/Xzl3xDdmWZbx+89r0NgdGHP9GTYTbltWBpuJgwyJiCg+jFoXEG+ixQrrhEmwTpg07DHrdjXixV2xfZJv9QRxtNOHsqzhNyASBAEry7Lx6s4GxfWeyCAIuGZuMYMAERHFFZfKA7B4Yqai47ecsJbAcGbkpyHTZhptSQCAPKcZmfaxnYOIiOh0GAaA6MJAGbaYj99y9PRhwCAKWFaWNZay0NgTwO821qDO7RvTeYiIiEbCMNBn0YSMmI892ulFS8/pxwPML3bBMcYFhdy+EP64+Sg+q+lAkg/vICIijTAM9Fk4Qf2uArNBxLKJY2sdAABJBt7f34KXttfDGxzDlEkiIqIhMAz0qch2IEtB/3wsYQCItjjYjOo8zftbPfjdxmrUstuAiIhUxDDQRxQELFLQOrCvpQfd/tBpj7MaDViiQutAvy5/GE9tPooN1e2Q2G1AREQqYBg4gZKuAlkGtta6Yzp2yYRMWAzqPdWSDHx4oBUvbqtDbzCs2nmJiCg1MQycYGZBGuwK5vTH2lVgNxsUDVCM1cG2Xjz+WQ0Otam79DEREaUWhoETGEURZ5RmxHz8zvou+EOxDehbNjELJlH95YR7AmE8v7UW71Y1IxSJw0ZNRESU9BgGTrJYQVdBSJJj3q7YaTFi4RBBY0GJC1NzHTFfczifH+vEE5/XoKnbP+ZzERFRamEYOMncYpeiT/C7YwwDALC8LAuGE/Y0KHFZsWZGAb4xvwQXTs3FWBsOWjxBPPF5DQcXEhGRIgwDJ7GaDJhd5Ir5+J0NXTEfm2414YyS6LltJhFXzS2GURQgCgJWlGfj5sUT4bKObbuISN/gwme31KLLd/rZDkRERAwDQ1AybqChy4/23mDMx68oj7YOXDm7CBkn7V1QmmHDbcvKMS3XGfP5hlPT6cVjn1XH3I1BRESpi2FgCLML0xUdv7sx9taBTJsZNy0qxZRh3vDtZgO+Mb8Yq6flwTDGbgN/WMJrOxvw+s4G+GIc6EhERKmHYWAI+WkWZDvMMR+/q0HZp+8JmcNvfwxEt0BeXpaFmxdPPKX1YDR2Nnbj8c+qUdPhHfO5iIgo+TAMDEEQBFQWxN46sKuxOy6bCJVk2HDbsjLMyBt7t0GXP4xnthzDhwdaEJY4uJCIiI5jGBjGrMK0mI91+0Jx22bYZjLgmnnFuGxmAUxj7DeQAWyo7sAfPq9Bi+f0uy4SEVFqYBgYxiwFLQMA4jpQTxAELCzNwO3LylHsso75fE09Afx+Yw02He3ktshERMQwMJwcpwUFaZaYj9+lYIrhaGU7zLhl8UScPSkbY13LMCzJeGdfM17YVoeeAPc3ICJKZQwDI5ilYFbBnqYehKX4LwdsEAWcOzkXtyyZiEwVBhceauvFY59WY28TpyASEaUqhoERKOkqCIQlHGodvw2DSjNsuH15GeYXx75A0nC8oQhe2dGAl7ezlYCIKBUxDIxAScsAMD5dBSeyGA24orIQ18wrhs009r/KqhYPfrvhCLbVuTmWgIgohTAMjCDDZkJJhi3m47Va7W9mfhruWF6OSdlj3/DIH5bwlz1NeG5rLTq8sa+sSEREiYth4DQqFbQOHGz1wBvUZqW/dKsJ1y0owcXT82BUYavkI+3R5Yw/q+ngpkdEREmOYeA0ZhXEvt6AJANVzdoNxBMFAUsnZuG7y8oUzYQYTigi4/39LXhy01E093BdAiKiZMUwcBozC9IVTeNTujRxPOQ5Lbh16USsKMsa8xREAKjv8uP3G6vx0aHWcZkxQURE44th4DScFiPKskfeS+BEetkl0CiKuHBaHm5cVDrmbZGB6NbIfz/cjt99VoPaOK22SERE2mAYiIGSfQrq3D5dDbwrz3Lg9uXlindiHE5rbxB/3HQU71Y1IxBmKwERUTJgGIiB0imGu3XSOtDPZjLga3OKcOXsQliNY/8rlwF8fqwTj31WjcNt47e2AhERxQfDQAym56dByQD9neO83kCs5hS5cOeKckxXYRdEILpB03Nba/HnXY2azaIgIqKxYxiIgc1kwOSc2N9AD7R44ljN2KRbTfj6vGJcPbcITrNBlXN+2dCFRz89gj1N8dnKmYiI4othIEZKugqaewLo8oXiWM3YCIKAWQXpuHNFBeYVjX05YwDwBCP4nx0NePnLerh1/GcnIqJTMQzESMl6AwBwqE2/rQP97GYDvjq7ENcvKEWGCpseAcC+viWN1x1uQyjCAYZERImAYSBG0/LSFK3sd7BV/2Gg3+QcB+5YXo6lEzNVWZcgJMn4+FAbHv20Gvtaeth1QESkcwwDMTIbRUxVMPDu4DjuYKgGi1HExdPzccuSich1mFU5Z6cvhJe21+NP2+rQ1quf6ZZERDQYw4ACSvYpONTqgSQl3ifi0gwbbltehnMmZcOgRjMBgINtvXjs0yP48EAL1yYgItIhhgEFZilYfMgfllDXlZgr9RlFEasm5+K7y8pR7LKqcs6IDGyo7sBvNxzBrkbOOiAi0hOGAQUm5zhgUbBoTyKNGxhKfpoF314yEaun5cGkUjNBdyCM13Y24Jktx9Dc41flnERENDYMAwoYDSKm58U+qyDRwwAQ3QlxeVkW7lhejoqs2PdoOJ2aTh9+t7EG71Q1wxfigkVERFpiGFBoSq4j5mMTbRDhSLLsZtywsBRXVBaosqQxEN3yedOxTvz3hiPYXu+GxK4DIiJNMAwoNEHBp+M6tw+9gXAcqxlfgiBgfnEG7lpZgZn5ytZdGElvMII3dzfhj5uOoj5Bx1kQESUyhgGFJmYqayo/3J48rQP90ixGXDOvGNedUYJsuzqLFQFAXZcff/j8KP6yuxG9weQJUUREescwoFBemiWlBhGOZEquE3esKMf5U3JVG2AoA9hW34XfrD+CjTUdCEucikhEFG8MAwqJgoAJmbaYj0/mMABEpyGeWZGNu1dWoFLhks0j8YclvLe/Bf+9oRo7G7o4noCIKI4YBkZBSVfB0Q5vHCvRD5fVhKvmFuOmRaXIc1pUO6/bF8Lruxrx+401ONTWy/UJiIjigGFgFJQMIuzwhtDjT51d/MqzHLhtWRkunp6nqDvldJp6Anh+ay2e+6KWgwyJiFTGMDAKSgcRHu1MrTcvgyhg6cQsfG9lBeYXq7NFcr8jHV488flRvLqjHu3c74CISBUMA6OgZMwAABzrTI2ugpM5LUZcUVmIW5dMRFG6Ossa99vd1IPffnoEf9vbBE8STd8kItICw8Ao2M1G5Dpj39kvVcYNDKckw4Zbl07EV2YVwG4yqHZeSQY217rx6/WH8fGhVgTCXMmQiGg0GAZGSUlXQaq2DJxIFAQsKMnA3SsrsLg0AyptiAgACEZkrDvcjl+vP4JNxzoRTsDdIomItMQwMEoTFQwirO30IcI3KACA3WzAJTMLcNuyMkzIUNbdcjq9wQjeqWrGoxuOYHdjN6cjEhHFiGFglCYoaBkISTIau7lD34kK0q24efEEXDm7EGkWo6rn7vCF8OrOBvzh86M4koQrQBIRqY1hYJSUtAwA7CoYiiAImFPkwt0ry3HOpGyYVVrFsF9Dtx/PflGL5zkdkYhoRAwDo5TvVLYscaoPIhyJxWjAqsm5uOfMSVhUmgFR3UyAQ+29eOLzo3h+ay1DGRHRENRtn00hoiigNMOGQ22xNUPzTej0nBYjLp1ZgGUTs7D2UCv2NPWoev5Dbb041NaL8iw7zpmUgzKFrTtERMmKYWAMJmbZYw4DRzvYTB2rbIcZV88tRn2ZDx8eaEW1yq0q1R1eVHccw8RMG86qyMGkbDsEQeXmCCKiBMJugjFQMoiw3Rvk4jgKFbtsuHFhKa5fUIKCNPX2O+h3tNOH57fW4slNR7G/xcN9D4goZbFlYAxGsxLhzIL0OFWTnARBwOQcJyqyHdjV2I2PDrbC7Vc3VNV1+fHi9joUpllw1qQcTM9zQmRLARGlEIaBMVC6R0FzTwAzC+JUTJITBQFzi1yYVZCGLcfc+ORIO7whdVccbOwJ4JUv65HntODsimzMLEhjKCCilMAwMAYOixE5DjPaYtwwh2sNjJ1RFLGsLAvzi134tKYDG2s6EFJ5QacWTwCv7mxAzmEzzqrIRmVBOgxqT3EgItIRjhkYIyXrDTQxDKjGajLgvCm5+N6ZFVhQov50RABo6w3ijV2N+O2GI9ha5+Yyx0SUtBgGxkjJIMKm7kAcK0lN6VYTvjKrAHcsL8eMPGdcrtHhC+GtPU34zfrD2HysE6GIFJfrEBFpRZA5hHpMNla345G/H47pWItRxLPfXMBpbHFU6/bho4OtOBLHRZ6cZgMWlWZiYWkGnCovpUxEpAWGgTFq6PLh3j/vivn4x6+ehyx77Nsf0+jUun34++E2HIxxHYjRMIoCZhemY+nETBSkWeN2HSKieOPHmjEqSLPCZBAQisSWqZq6/QwD46A0w4brFpSivsuHT460Y1+LR/VrhCUZ2+u7sL2+C+VZdiybmIkpuZyWSESJh2FgjPqXJT7SHluzdFM3pxeOp2KXDd+YX4KmHj8+OdyOvc09iEdTWHRVQy+y7CYsnZCFecUuRXtXEBFpiWFABXlpVgVhgDMKtFCQZsXV84rR4glg/ZF27Grsjkso6PCG8M6+Znx0qBVnlGRgyYRMZNhMcbgSEZF6GAZUkO2Ivdm/qYdhQEt5TguunFOEcyblYH11O3Y0dCEeMwb9YQmf9a2DMCM/DcsmZqI0w8bBo0SkSwwDKshREAa48JA+ZDvMuKKyEGdPysaGIx3YXu9GjMM+FJEB7G3uwd7mHhSnW7F0YiZmcREjItIZziZQwaajHfjPjw/FdCynF+pTly+EDTXt2FbXFffFhdIsRiyekImFJRmwmw1xvRYRUSwYBlRwuM2Df/nr3piP5/RC/eoJhPFZTQe21HbGPENktEyigDlFLiwqzUBhuvKpiV6vFzt37oTb7UZhYSHmzp0bhyqJKBWwm0AF2Q5l2+u29AQYBnQqzWLE6ml5WFmehY01ndh8rBOBOK04GJJkbK1zY2udG4XpFpxRnIHZhemwmUZuLfjwww9x3333YdeuXYhEjm/W9Mgjj+Cee+6JS61ElNzYMqACSZZx/fNfxNy8/I9nT8Ky8uw4V0Vq8IUi2FrnxuZjnehSeevkoZhEATML0rCgJAMThhlwOH/+fFgsFtxyyy1YuHAh8vLycPPNN8NsNuPtt9+Oe41ElHw4EVoFoiAomlHQ4Q3FsRpSk81kwMrybNxz5iRcNbcIpRm2uF4vJMnY0dCNpzYfw39vqMaG6nZ4AoNDiNvtxsyZM2G32/Hqq6+iuLgYVitXQCSi0WM3gUqyHWY098S2EVGnN7Ytj0k/DKKAyoJ0VBako87tw8ajHdjb3BOXaYn92r1BfHigFWsPtmJ6XhrOKHZhUo4D559/Pp588kk8/fTTcDgcePDBB+NXBBGlBIYBlSiZXtjBMJDQSjJsuCqjGF2+EDbXdmJrrRu+cPx2MpTk49MTXVYjrvnhv+Hm2+7EB3/9Cx566KG4XZeIUgfDgEqUDCJkN0FycNlMuGBqHs6uyMGOxi58frQTbb3xDXpd/jDW17ghwIpD3RzuQ0TqYBhQCVsGUpfZKGJRaSYWlGTgcFsvNh7txOH2+O2WCEQXM2o76fcoGMfWCSJKbgwDKlE2gDAIWZa58FCSEQUBU3KdmJLrRIsngM+PdmBHQ3fcFzHqV93pxZObjmJ2QTpmFaTBaeHLm4hiw38tVKIkDIQiMnqDEf5jncTynBZ8ZVYhzpuSiy9q3dhS60ZPQJ2pibIso+HAbrRUHxh0f29HG9Z99L+ombMY7+4zoTzLjsrCdMzIS+NKh0Q0Ir4bqSRH4cJDHd4gw0AKcJiNOHtSDlaUZ2NPUzc+P9qJhjHuT7HlrT/hvccfiJ7f4Ri4v+HgbvzpX76NacvOwzU//S2OdHhxpMOLv+1twqQcB2YXpGNanhMWI4MBEQ3GdyOV2M0G2EwG+EKR0x8MoKM3iAmZ9jhXRXphFAXMLXJhbpELjd1+bKtzY2djN/yj6Oc/umsLzjvvPLz88ssDXU0vvPACAoEAHnvsMTz4q/8YdHxEBg609uJAay9MooCpuU5UFqZjSo4DJgOXGiEihgFV5TjMqHX7YjqWMwpSV2G6FZfMLMCF0/Kwt7kH2+rcqOmM7fcGAFx5Rdj60Zu4/PLLT3msoaEBGXlFw/5sSJKxp7kHe5p7YDGImJ7vRGVBOiZlO7iTIlEKYxhQUbaiMMAZBanOZBAHWgvaeoPYXu/Gl/Vd8ARHbl1acfWtMJot6GlvOeWxnMqJOGPN1TFdPxCRsKOhGzsaumEziZiZn4bZBemYmGWHyMGtRCmFexOo6InPqrH2QGtMx543NRffWV4e54oo0UQkGQdaPdhW78bB1l5o8eJ0mg2YVZCO2YXpKHFZOeuFKAWwZUBFSmYUqDWynJKLQRQwIz8NM/LT0OULYXtDF7bXueEeh02S+nmCEWw61olNxzrhshoxLdeJaXlOlGXZYRQ5xoAoGTEMqCjdaor52F6GAToNl82Ecybl4KyKbFS3e7G13o19zT2IjGNzQZc/jM21bmyudcNsEDAp24FpeU5MyXFyNgxREuGrWUVOBXO5e0/TL0zUTxQETMpxYFKOA73BMHY0dGNbnRutcV76+GTBiIyqFg+qWjwQABS7rJia68S0XCfy0yzsTiBKYAwDKnIo+KR08ra0RLFwmI1YXpaFZRMzUdflx9Y6N/Y29yAwzksRywDquvyo6/Ljo0NtcFmNA8GgLMvOKYtECYZhQEVOc+xPZ2+QYYBGTxAElGbYUJphwyUz8nGorRe7m7qxv8WD0Dgtf3yiLn8YW/pWWjT1dSdMzXViaq4TaexOINI9vkpV5LDE3k3gC0kISxIHZNGYmQziwKDDQFjCgVYPdjd142BrLyIaTBYKRWTsa/FgX4sHAFCUbsW0XCem5jlRyO4E0qFIbw/CHa2QwyHIoVB07xijEYLRBIMjDcasXAhJ/m81w4CKHApaBgDAG4wg3Zrcv2A0vixGEbMLo9MCfaEI9rX0YFdjD6o7eqFBgwEAoKHbj4ZuPz4+3IZ0ixEV2Q6UZ9lRnmWHyxb7oFuisZJlGcG6agTqjyLUVIdgYy2CjbWQvJ6Rf9BghCm3AOaiiTAXFMNcUAJrxXSIVtv4FD4OuM6AiiRZxrXPbol5bvh/fXU2ilzJ88tE+uUJhLG3uQe7m7pxVMFqh/GWZTf1BQMHyrLs7FKguAg21cGzfSM8Wzcg4u6I3ikaAEnhQG5RjA6YkSXAYIR95jw4z1gB2/Q5EE2xTy3XI4YBld384taYZwr8/JKZmJLrjHNFRIN1+UPY09SD3Y3dqB/jpklqy3WYB1oNyrIc3G2RRi3i60XP5x/D88UGhJrrAUGMvomrSRQBSYJgtsAxbwnSl54Ly4RJ6l5jnDAMqOx7r+9Ac08gpmN/dP5UzC/JiG9BRCPo8Aaxu6kbuxt70OyJ7fd2PBWkWVDWFw4mZtphMzEc0MjkSAQ9n3+MzvdeheT3AeP1FtcXDBxzlyDzkq/DlJUzPtdVCcOAyv757d040u6N6di7z6rAyorE+oWh5NXiCWB3Yzf2NPegbZzXMIiFgOgmT/0tBxMy7bAYOeaGjvPu24n2vzyPcGuTdkWIIiCIcJ2zBhmrLk2YcQUMAyp74IN92NnQHdOxNy+ZiNUz8uNcEZFy7b1BHGj14ECrBzWdXs0GH45EFIBilw1lWXaUuqwodtm4KmKKivR0ofXl38O3fxcgCOPXGjASQYBocyDn6lvgqFyodTWnxVeOypTMKPBwrQHSqWyHGcscWVhWlgV/KIJD7b040OrBwdZeeEP6WD1TkoFat2/QTqEZViOKXTYUZ1hR4rKhMM0KM1sPkpr/6CG0PP0IIt6e6B16CAIAIMuQvB60PPNruM77CjJXX6nr6YkMAypzcEliSjJWkwGVBemoLEiHJMuoc/uwv6/VoMWjr+4Etz8Mt78He5qjbwyiAOQ5LSjuazkocVmR67Rwi+Yk4flyE1pffDwaANQeHKiirrVvIdhwDHnX3wXRbNG6nCGxm0BlL3xxDG/vjq2/6oJpefj2srL4FkQURx3eE7oTOrzjuonSaJkNAorSo+Gg2BVtQUi3GrkYUoLp/vRDtP/5Oa3LiJ0gwFJagfxv/xMMdofW1ZyCLQMqM8XQDCTLMmQpglCELQOU2LLsZiydmIWlE7PgD0dwpK23r9VAP90JJwtGZNR0+lBzwnoLTrMBJRm2gRaE4nQrrJy5oFuebZ8mVhAAAFlGoK4azU89jMLb/wWCQV9vv2wZUNkbOxrwyva6U+73tNTh4IevoKO6Cu7aA4gEA3Dl5uP9t/+CJUuWaFApUfxIsoz6Ln80GLR4dDlt8XRcViPynBbkOS3IT7Mg12lBrsPMTZg0Fmg4iobf3A+EE3XMlYD0My9E9uXXaV3IIAwDKnt7dyNe+KL2lPvf/7/fRBr8OOuss7BgwQJkZWXhgQcewPnnn4/HH39cg0qJxk9PIIyaDi+OtPeipsOLDl9I65JGRUB01cT+kJDntCAvzYJsuxkGkd0M8Rbx9qL+P3+MSHcnIOl3jEAscr95B5zzl2ldxgB9tVMkgeE+NfS21uP+XzyIq666CgcOHMCqVavwxBNPIBBIvE9MREqlWYwDeyYAgNsXQk2HF9Udvaju8KLLnxif8mQA7d4Q2r0hVLUcX8/eIADZDgvynOZBQSHTbuJgRZXIkoTWPz2GSFenrgcLxqr1lSdgzi+GuWiC1qUAYBhQnckw9AvfnlOIH/3oR7j33ntRVlaG6urqca6MSD8ybCbMK3ZhXrELsiyj0xdCdYcX1R1e1HR40RNIjHDQLyJHF21q8QQA9AzcbxKFaPdCX0jItpuRaTMhw26C1cgxCUp4tnwC3/6dWpehHklCy58eQ/EP/10Xg1cZBlQ2XMvAyu89hPrt69G6byvgPrUbgShVCYKALLsZWXYzFpRkQJZltPUGB4JBdYdXt4MRTyckyQO7Np7MbjIMBINMmwmZtmhQyLSb4LKa2O1wAjkSRueHf9a6DHVJEkLN9fDu3Q7HrDO0roZhQG3DhQFnXgmmrf4Ggp4u+BgGiIYlCP2fpi1YPCETkiyj1RMY1HLgDyd+M7E3FIE3FBlysygB0QGMGTYzMgfCggmZfS0LDrNBF58mx4tn28bjuw0mE0GA+/03YJ85X/O/T4YBlZmY5olUJQoC8tOsyE+zYunELEiyjKaeAI51elHf5Uddlw8d3sQckDgcGf0LKIVR03nq4yaDEG1V6Ptymo1wWox9/zfAaTbCYTHAqOMV72IlSxLcH76JaERKsvHusoxgw1H49u+CffocTUthGFAZpx0RxZcoRBcNKkq3DtznDUbQ0O1DnduP+r7/J2rXQixCERktnuBpV4C0GsW+kGCA02KEYyA0GAbCg8NigMNshFGnH2R6d25GuKNF6zLiRxDh/vDPDAPJZrgBhAAghcOQIoM/wYRCIQSDQZjN5niXRpS07GYDJuc4MTnHCSC6sJfbF0Jdlx/1XT7Ud0X77cN63HEpjvxhCf5wEG29pz/WZhIHWhgc5mhAsBhFmA0iLEYRVqMIszF622I0wNJ3v9kowiQKcWvm9u7ZNrA9sFbWHq7Dg3/fCkkGbls0E9fMmaLeyWUJgaOHEOntgcGRpt55FWIYUNlwLQO1W9Ziy1M/R9jvRVlZ2cD9L7zwAl577TU8/PDDuOOOO8apSqLkJghCtH/dbh6YzhiRZLR4AqjrCwd1bh/aeoPJ1vA8ar6QBF8oiNZRbF8tCoDF0B8WDNHAcEJYsPR/9R1jFAUYBCH6f1GAQRRhEAGjKMIg9N8nwG4ywH9or6ZBICxJeODvW/HiVRfAaTHhsuffweopE5BhU3ePAX/NQU0HEjIMqGy4MQNH1r2JZYsW4Pbbb4fTGf308rOf/Qytra146aWX8OijjzIMEMWRQRRQmG5FYboVi0qj9/nDETR2+Y+3IHT70Z0gax7oiSQDvrAEX1gCoN7zd2Y2MKmnS7XzjcaOxnZMzc5AQZodALCqvAif1DTgKzPK1buIaECgej/DQDIxDtMyIJpM6Orqwv79+wEAW7duHXiso6MDFos+d7IiSmZWowHl2Q6UZx/fOMYXiqDVE0CzJ4BWTxAtngCaewJJPQZBrxzNNXE7tyTLuPDpt3H+5BL86Kzjb8Kf1DTg1j+vw3+tWYE10yaiudeLfKdt4PGCNDuaPb6hTjmGYiLwHd6n7jkVYhhQ2XCrO0+/+Hpsf/G/8KvfHF96WBCiG724XC48+OCD41UiEY3AZjJgQqYdEzLtg+73BMIDIaGlLyS0eAIIJME0R72yNdcAogGQ1A9ioiDg9iWz8K8ffYHbF8+Cy2pBVUsn7np7PX64ch7WTJsYPXCIf9LjMTwiWF8DORyCYDSpf/IYMAyobLj+x9xp83Hhvw7eZctmEvHMNxfGvygiGjOnJTq47sRWBFmW0e0PDwSDlr6g0OoJIJRigxXjweDvjevSw5fPKMdvNu7CM9v24+rZk3DLnz/GFTPKceuimQPH5DsHtwQ09XgxtzBH/WIkCZLfB4OTYSApKHn9C9DnVB4iio0gCHDZTHDZTJiS6xy4X+qbzdDfxdDWG4TbF0KnL5RwSy1rSYwEgTjupWcURXx30Uz8x4Yv8d7BY5iVl4mfnjv4A9rcwmzsb3OjqccLp8WEj6sbcPey+EwDlIJBaLVINcOAypRsAplCC4gRpRTxhCWWp+cNni4WikgDwaDTF0KnNzjoe3Y7HCeMwyyCy2eU49/WbYUM4NeXngnDSQs1GUURPz77DFz76oeQZRnfWTQLmSrPJBgQh+6QWDEMqExJiOVuZkSpx2QQB5ZbPpksy/CFJHT6ogGhwxvqCwpBdPqit1Oq98EU//VX7v9oCwCg0+eHYZh/k8+fXIrzJ5fGvRbBrN1AcoYBlUkKZi0zCxDRiQRBgN1sgN1sQ7HLdsrjUt8Yhf6w0OULwxMMwxMIozcYgScQhicYQTCSHK0LsskS1wWH/vPTL/HxkXq88Y2LcP1r/4tXdh3CDfOnxeVasRDHIfwMh2FAZUpaBjhmgIiUEAVhYD+CkQTD0qCQ0BMIozcYhicQgSd4QnAIhHU90DGSUwgciE99r+w8iCe/qMKfrjofM/Iy8a0zpuOJLXvxjTlTNFlW3pCeAdFmP/2BccIwoDIlYwZ0uhQ4ESU4s1FEljE6ZmEksiwjGJGOh4RAGD3BCLzBMAJh6fhX5PjtYDgycF+8c0S4aFJcBhCuq67HTz/agkcuWYn5RbkAgBvmT8MfvqjCn/cewdWzJ6t+zRGJIqyTZ57+uDhiGFCZotkEDANEpCFBEPqWDzYg26GsiVqWZYQl+aTAEOkLDBL8/eFhIEhEHwtJMiJ9X+H+2/JJ3/fdJxdMAAxGIKLeDIxdze246+31+D9nnYGLpkwYuD/NYsaN86fhd1v24MpZFacMJIwrSYK1bOr4XW8IDAMqU5Jhtd6/mohotARBgMkgwGQQMcRYSNU0TKhAoPqAauebnZ+N3d/7+pCP3btiLu5dMVe1aylhLdc2DHC/XZUp6iaIYx1ERMnANnkWICT3v5aizQ5TfrG2NWh69SSkrJuALQNERCNJW7oquQdYCQLSz7wIwnh2SwyBYUBlXHSIiEg9Rlcm0pacE51imIQEkxnpZ16odRkMA2pTMr/XmMxpl4hIJRmrLtW6hPgQBKSfuRoGm+P0x8YZw4DK/KHYw4DVpNUq1EREicOYmQPnwjOTrnVAMBjhOusircsAwDCgOn849rWlrUY+/UREsci88KvR5XqTqH8148J/gMGRdvoDxwHfjVTGlgEiIvUZM7KRd/1dcd3FcNwIIuwzz4Br1SVaVzKAYUBlSnYcY8sAEVHs7NPmIPOir2ldxtiIIoyZOci99jZdzSjju5HKFHUTsGWAiEgR17mXwTZjXsKuPSCIBuTf/H2I1lM3otJSYj6bOuYPxR4GLGwZICJSRBBF5F17O0wFxYkVCAQBEA3Ivf4umAu0XWBoKAn0TCYGv6JuArYMEBEpJdrsKLrz/8JaMS0xBhSKIgSjCQW3/hMcs87QupohMQyoTNGYAROffiKi0RCtNhTc+k9wLlipdSkjE0UY0lwovOv/wTZlltbVDIsbFalMSTcBWwaIiEZPMJqQc82tsEyoQPubz0fvlGL/QDYerBXTkHf93bqZQjgchgGVKekm4JgBIqKxEQQB6cvPh7ViBtrf+hP8B3ZFuw60nIIoCBDtTmRdcg2cC8/UfN+BWDAMqExRywBnExARqcJcUIzC79wH7/6daH/zeYRbm8a/CFEEBBGuc9YgY9WlupsxMBKGAZUFuAIhEZFm7NPmwPbDX6Bn0zq4P/wzIj1d0TfpeHUf9LdCiCIcc5cga83VMGbmxOdaccQwoDJvUMHUQrYMEBGpTjAYkL78PKQtXQV/9X70bt8Iz/aNkAN+9YJBXwiwlE2Fc8EKOOYsgsHuHPt5NcIwoCJJltEdCMd8fJqFTz8RUbwIogjbpBmwTZqB7CtugG//TvTu3IzAsSMItTcfDwWiAYAc/YR/4lgDQYiuZSAd/5AnOtJgLiyFffpcOOYthTEja3z/UHHCdyMVeQJhRWNW0q18+omIxoNgNMI+6wzY++b5y5EwQq3NCDXXIdhUh3BHK+RQCHI4BFmSIJhMEIwmGOxOmPKLYS4sgSm/BAa79tsNxwPfjVTU7Y+9VUAQACdbBoiINCEYjDAXFMNcUAzH3CVal6M5jmBTUbc/FPOx6RYjxERYOYuIiJIew4CKuhS0DKRZTXGshIiIKHYMAypS1DLA8QJERKQTDAMq6vbFHgZcbBkgIiKdYBhQkZJphWwZICIivWAYUFGXgpaBdLYMEBGRTjAMqKhHwQBCtgwQEZFeMAyoqEvBAEKOGSAiIr1gGFCRkkWH0tgyQEREOsEwoJKwJMGjYAAhWwaIiEgvGAZU0uYJQsG2BHDZGAaIiEgfGAZU0uIJxHysxSjCYeb2xUREpA8MAypp6Yk9DOQ6LRC4LwEREekEw4BKlISBHIc5jpUQEREpwzCgEiXdBLlOSxwrISIiUoZhQCXNbBkgIqIExTCgkla2DBARUYJiGFCBNxhGj4I1BnKdbBkgIiL9YBhQgZLBgwCQw5YBIiLSEYYBFSgZPGgUBWRwwSEiItIRhgEVKBk8mO0wQ+QaA0REpCMMAyrg4EEiIkpkDAMqUNIywMGDRESkNwwDKlAyZiDHwZYBIiLSF4aBMZJkGa0KWgby0hgGiIhIXxgGxsjtCyEkxb55cbHLGsdqiIiIlGMYGCOlawwUu2xxqoSIiGh0GAbGSNG0QrsZVpMhjtUQEREpxzAwRkoGDxZnsIuAiIj0h2FgjJq7/TEfyy4CIiLSI4aBMaru8MZ8LMMAERHpEcPAGATCEdR3+WI+nt0ERESkRwwDY3C0wws59lmFKGLLABER6RDDwBhUt8feReAwG+CyGuNYDRER0egwDIzBkfbemI8tzrBB4G6FRESkQwwDY6CkZYCDB4mISK8YBkYpGJZQ51YweJDLEBMRkU4xDIzSMbcXEQWjB9kyQEREesUwMErVbbF3EQDAhEyGASIi0ieGgVGq7oh98GCaxYhshzmO1RAREY0ew8AoKZlJUJHt4EwCIiLSLYaBUQhHJBzrjH3wYHm2PY7VEBERjQ3DwCgcc/sQkWIfPFiR7YhjNURERGPDMDAK1Qq6CACgnGGAiIh0jGFgFJQuQ5zr5OBBIiLSL4aBUVDSMlDOwYNERKRzDAMKhSUJRztibxngeAEiItI7hgGF6t1+hBQNHuRMAiIi0jeGAYWUrC8AcPAgERHpH8OAQkrGC9hNBuSnWeJYDRER0dgxDCikZCZBWbadgweJiEj3GAYUkCQZNQoGD7KLgIiIEgHDgAL1XT4EI1LMx0/LdcaxGiIiInUwDChQraBVAACm5TEMEBGR/jEMKHCkLfbBgwVpFmTYufIgERHpH8OAAkpaBqbnp8WxEiIiIvUwDMQoHJEUTStkGCAiokTBMBCjQ229CIQVDB7keAEiIkoQDAMx2tPUHfOxLqsRhenWOFZDRESkHoaBGO1t6on52Gn5aVxsiIiIEgbDQAxCEQn7W2IPA9PzOF6AiIgSB8NADA62ehCKxL5T4bR8jhcgIqLEwTAQgz2NsY8XsBhFlGVx22IiIkocDAMx2KNgvMCUXCeMIp9WIiJKHHzXOo1gWMLBVk/Mx0/nlEIiIkowDAOnsb+lB2FJyXgBDh4kIqLEwjBwGkq6CEyiwJkERESUcBgGTkPJYkNT85wwG/mUEhFRYjFqXYBevLmzAcc6vZhT5MKcIheyHGb4QxEcbo19P4LZRa44VkhERBQfDAN9sh1mvLStDp9WdwAASjJsKHJZEZFjHy9QWZger/KIiIjihmGgT0W2Y9D3dW4f6ty+mH/ebjKccg4iIqJEwA7uPoXpVljG0N8/syANBpH7ERARUeJhGOgjisKYVg70hSL4ss6NQDiiYlVERETxx26CE5RnO7C/JfYFhk60p6kHe5p6YBQFTM9Pw5wiF84ocaE0k0sTExGRvjEMnKBchT0FwpKM3Y3dqGruQVmWHaWZKhRGREQUR+wmOEG5igMA71xZgbnFnGpIRET6xzBwguIMK0wqDAK8cfEErKjIVqEiIiKi+GMYOIFRFDFxjF0FV8wuxJqZBSpVREREFH8MAycZS1fBqik5+PoZJSpWQ0REFH8MAycpzx5dy8DC0gzcuqwcgsC1BoiIKLEwDJykNEN5GJie58Q9Z0/mokNERJSQGAZOUuyyKjq+NMOGfzpvKncrJCKihMV3sJM4LEZk2EwxHZvjMONfLpgGp4XLNRARUeJiGBhCUQytAy6rCT++cBqyHOZxqIiIiCh+GAaGUOyyjfh4msWIn6yehqLTHEdERJQIGAaGMNK4AbvJgH+5cBomcM8BIiJKEgwDQyjOGPoTv9Uo4p8vmIYKFZctJiIi0hrDwBCGGjNgNoj4P+dPxdQ8pwYVERERxQ/DwBCy7WZYTpgqaBIF/NN5UzCzIF3DqoiIiOKDYWAIgiAMjBswCALuXTUZc4q4AyERESWnlAkDsixDjoQhBfyQvB5Ivl5IoSBkSRry+GKXDYIAfO/sSVhQmjnO1RIREY0fQZZlWesi1Bbp6UKotQHhvq9Qcz3CbY2QQ8EhjxedLpjyS2DKK4YxtxDG3CK82yQjK92BMyfljHP1RERE4ytpwkDY3Q7fni3w7dqEcFtT9E5BiH4N8+n/FKIBkCIDt61TZsM2ezGskyshGGNblZCIiCjRJHQYkLwe+PZ+Ae/OTQg11ETf+NX84wgiIEsQTGZYZyyAvXIRzOXTuTMhEREllYQMA3I4hN4tH6Pnk7/1Nf0LAOL8xxBFQJJgKpwI1+qrYS6piO/1iIiIxklChQFZluHftx1dH74GqbtTmyL6WgusMxci/dwrYMzI1qYOIiIilSRMGAi1NsL9txcQqjuifnfAaAgiIApwLrsQaWdeAsFg0LYeIiKiUUqIMOCr2obOvzwDRCKAHONgwHEjwFRSjqyvfQcGJ9ciICKixKPrMCDLMno++Ss869/RupSRCSJEuwPZ134PpvwSrashIiJSRLdhQJYicL/zInxffqZ1KbERRAhGI7KuuROWsqlaV0NERBQzXa5AKMsy3H99IXGCAADIEuRwCO0v/hrBuiNaV0NERBQzXYYB77ZP4Nv5udZlKCfLgCyj49XfIeLp1roaIiKimOguDATrjqDrvf/RuozRk2VI3l50vP4E5P7VDImIiHRMV2Eg4ulGx6u/Q9wXEIo3WUKo9jC61/5Z60qIiIhOS1dhwP32s5C8vdqvIaCS3k1r4T+8V+syiIiIRqSbMBCsr0Hg8F4driMwBoKAnnV/gU4nbBAREQHQURjo+eSv0fX/k4ksI9R4DIHqfVpXQkRENCxdvPuGmmoROLwn9q2GE4kgRoMOERGRTukiDPSs/1t0rf9kJEsI1R1B4OgBrSshIiIaklHrAqSgH/4DOzUdNFjf5cE9r61FW68fRlHAPecswGWVk9S7gCjCt3sLLBO5MiEREemP5mEgVF+j+ewBoyjg/jUrUFmYgzaPD6sffw3nTZ0Au9mkzgUkiS0DRESkW5q3zQdrD2neRZCf5kBlYQ4AIMdpQ6bNgk5fQNVrRDpaIHk9qp6TiIhIDZqHgcDRg3GbTihJMs769ct44P3BSxuvO1iLsvufwNu7D5/yMzvqWyDJMopdTtXr4Z4FRESkR5qGAVmKIFhfHbfzi6KAu86aj+e27IG775P+nsY2fPeVD/Cj8xefMi6gw+vHPa9/jF9efnY8ikGg9pD65yUiIhojTcOA5PcB4VBcr/EPc6Ygy27FUxt3oaHLgxteeBdXzp2K21bOG3RcIBzBt198H3edNR+LJhSoX4gsQ+ruVP+8REREY6TpAEI5FIz7NYwGEXecOR+/+HAT3tl7BLMLc/Bvl6wYXIcs4943PsaKiiJ8bV6cRvzLMuRQfIMPERHRaGg7ZiASHpfL/MOcKfCHwpBl4LGrz4fhpJUOtxxrwlu7D+G9qhpc8OiruODRV1HV1K56HXKcW0GIiIhGQ9OWAcGo0tS90/jx39YDiI4JEAXhlMcXTyxE3c9ui3sdgskc92sQEREppWnLwHi8Of7qfzdj7f5jeOs7X0VYkvDyNo32CRCEcQs/RERESmgbBqx2CBZb3M7/4hdV+P1nO/HMdRdjVmEOvr1sNh5b/yVCkUjcrjk8AcbsPA2uS0RENDJtw4AgwDxhMjBE0/1YfXTgGH781/X47yvPxYLSfADAzUtnwxMI4vUvD6p+vdOSJZhLJ4//dYmIiE5D80WHLBPUf4PcWd+K777yAX68einWzKoYuD/Nasa3ls7Gb9dvR2S8d0gUBJiKy8b3mkRERDEQZFnbjQGCdUfQ9sxDWpYwLoz5Jci79cdal0FERHQKzVsGTIUTAIPm+yXFlyjCUjZN6yqIiIiGpHkYEAxG2Ocs1XyzoriSJNjnLtO6CiIioiHp4h3YueIiANpuYxw3ogjrtLkw5RVrXQkREdGQdBEGjBnZsM1O0tYBSULamZdoXQUREdGwdPPum7byIkDbsYzqE0VYJs2CqaBU60qIiIiGpZswYMzKg23e8risOaAZWUbaOV/RugoiIqIR6SYMAIBr9dUw5hQkTXeBa/XVMBdO0LoMIiKiEenqXVc0mZF19e19exYkcAuBIMBWuRj2BWdrXQkREdFp6SoMAIAxMxeZ/3ALEnZ2gSDCmFMA1yXfhJBMXR5ERJS0dBcGAMA6uRJp516hdRnKCSIEqw1ZV98OkdsVExFRgtB8OeKReDZ/hO4PXtW6jNgIIsS0DORc948wZuVqXQ0REVHMdB0GAMC35wt0vvUsIEmAPM6bC8VKEGDKL0XW1++EwZmudTVERESK6D4MAECoqRbtrzwGydOts0AgAJBhm7cCGRddA8Fo0rogIiIixRIiDACA5OtF98d/gXfbhuhaBDoIBaLTBdcFX4Nt1kKtSyEiIhq1hAkD/UKtDej+4FUEqvf1hYJxLl8QAYMBaWeugXPxuX3TIImIiBJXwoWBfv7De9D1/v8g0tECiGJ0TEFcHe8SSD/nMhicrjhfj4iIaHwkbBgAAFmWEDx2GL49W+DbswVywK9uMOhreTDml8A+ZylsMxbAkJ6hzrmJiIh0IqHDwInkSBiBI1Xw7t6MwKHd0WAARN/QBeH0AUE0AFKk7xsBhqxc2CsXwTZrEYzZ+XGtnYiISEtJEwZOJMsypN5uhFsbEWptiP6/qRaS1wM5EoYcCUMQRMBohGAwwpidD1NeEYy5RTDlFsGYnc+xAERElDKSMgwQERFR7HS5HDERERGNH4YBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpzqh1AScyz78ZotEMQTRAEA0wmI7fFkTx+GMGA0SjGeLAY4ZTHhNEA0RRgCAKMBhECCfdFkUBokEYOGbExwQBBqMIgyjAIAow9902DnxvOP6Y4fhxxhOONQx1WxAgCgIMAmAyiAO3jQYRBgHR70UBJlEY4nb0cZMoDtw2CAIEARAFQBDQd35AAGAQBYhA9M8iYuC2KAAG4cTb0XMIsgzIEgQpDAy6LUW/pOEfE2QJiESO35bCgBSBLElAOAg5EgEkKXpfOARZikRvh0JA/+3+Y/uPCwWP/4wUgRQKQ45IkCUJUjAMKRL9GTkiQQqFIUWO35b7bkdCYcgnHBcJhk+4HYEsyZAict/3fT8vydHHIjLkiAwpIiESkvrOKSMSivT9zPGfk2QZEVlGUJIRkXHS7ZO/j96WEL0dkdH32PHbv5NrNH1dqoWvb76++frW7+ubLQNEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANERESpTk5Sfr9f/ulPfyr7/X6tSzmFnmuTZdY3FnquLZno+XnWc22yzPrGQs+1jZUgy7KsdSCJh+7ubrhcLnR1dSE9PV3rcgbRc20A6xsLPdeWTPT8POu5NoD1jYWeaxsrdhMQERGlOIYBIiKiFMcwQERElOKSNgxYLBb89Kc/hcVi0bqUU+i5NoD1jYWea0smen6e9VwbwPrGQs+1jVXSDiAkIiKi2CRtywARERHFhmGAiIgoxTEMEBERpbikCwM//OEPceaZZ+Kb3/wmgsHgoMd8Ph8uvfRSnH322bjgggvQ0dGhq/r6/fu//zsWLlyoeU3hcBg33XQTzjzzTNxzzz3jVk+s9fUb7+frRMPVpofftWTE17d6NfH1fXqp9PpOqjCwfft2NDU1Yf369Zg5cyZee+21QY+/++67qKysxN///ndcffXVeP7553VVHwD09PRg9+7duqjp7bffRklJCdavXw+v14vPPvts3OqKpT5g/J+vWGvT+nctGfH1rW5NfH2Pvjatf9fiIanCwMaNG3HhhRcCAC666KJTfrmnTJkCr9cLAHC73cjNzdVVfQDw61//GnfeeacuaoqlXi3rA8b/+TrRSLVp/buWjPj6Vrcmvr5Hlmqvb6PWBajJ7XajqKgIAOByuU5pupk0aRJ2796NyspKCIKATZs26aq+rq4u7Nq1Cz/5yU90UZPb7R5Yf3uoerWuT4vnK9batP5dS0Z8fatbE1/fo69N69+1eEjIloGmpiasXLnylC9ZltHd3Q0g+heZlZU16OeeffZZnHPOOdi9ezf+9V//FT/72c90Vd8jjzyCu+66Ky41DSczM3PYmkZ6TA/1afF8nWik2sbrdy0Z8fWtHr6+Ry/VXt8JGQYKCgqwYcOGU77WrFmDDz74AADw/vvvY8WKFaf8bP9faEZGBtxut67qO3ToEB544AFcdNFFOHjwIH7xi1/Epb4TLV26dNiaRnpsvIxUgxbPV6y1AePzu5aM+PpWD1/f8akNSMLXt3a7J8fHD37wA3nlypXytddeKwcCAVmWZfk73/mOLMuy3NXVJa9Zs0Y+++yz5RUrVsj79+/XVX0nWrBggWY19dcTCoXkG264QV65cqV89913j1s9sdZ3ovF8vk40XG16+F1LRnx9j70mvr5jl0qvby5HTERElOISspuAiIiI1MMwQERElOIYBoiIiFIcwwAREVGKYxhIAc888wwyMjJUOVdNTQ0EQYDRaER9ff2gxxobG2E0GiEIAmpqagY99vrrr+Occ86By+WC0+nEnDlz8LOf/WxgIQ81ayRKNTfddBMEQcBtt912ymN33HEHBEHATTfdNHBfU1MT7r77blRUVMBisaC0tBSXXXYZ1q5dO3BMWVkZHnnkkXGonvSAYYBGpaioCM8999yg+5599lkUFxefcuyPf/xjXHPNNVi0aBHeffdd7N69Gw8//DB27NiRFGt6E+lBaWkpXn75Zfh8voH7/H4/XnrpJUyYMGHgvpqaGixYsAAfffQRfvWrX2HXrl147733sGrVKs2W/iXtMQwkgPfeew8rV65ERkYGsrOzcemll+Lw4cMAgHXr1kEQhEGLXnz55ZcDn87XrVuHb33rW+jq6oIgCBAEAffffz8AoLOzEzfccAMyMzNht9tx8cUX4+DBgzHVdOONN+Lpp58edN8zzzyDG2+8cdB9mzdvxoMPPoiHH34YDz30EJYvX46ysjJccMEFeP311085nohG54wzzsCECRPwxhtvDNz3xhtvoLS0FPPnzx+4r7+lYPPmzfja176GqVOnYtasWfj+97+Pzz//XIvSSQcYBhJAb28vvv/972PLli1Yu3YtRFHEV7/6VUiSdNqfXb58OR555BGkp6ejsbERjY2N+OEPfwgg2rT4xRdf4K233sLGjRshyzLWrFmDUCh02vN+5StfQWdnJzZs2AAA2LBhAzo6OnDZZZcNOu5Pf/oTnE4n7rjjjiHPw64BIvV861vfGhTSn3rqKdx8880D33d0dOC9997DnXfeCYfDccrP8/WYupJqo6JkdeWVVw76/o9//CPy8vKwd+/e0/6s2WyGy+WCIAgoKCgYuP/gwYN466238Omnn2L58uUAom/cpaWlePPNN3HVVVeNeF6TyYTrrrsOTz31FFauXImnnnoK1113HUwm06DjDh48iIqKilPuJyL1XX/99fjnf/7ngbE9n376KV5++WWsW7cOQHSJX1mWMX36dG0LJd1hy0ACOHz4MK699lpUVFQgPT0d5eXlAIBjx46N+pxVVVUwGo1YsmTJwH3Z2dmYNm0aqqqqAAAXX3wxnE4nnE4nZs2adco5brnlFrz66qtoamrCq6++OugTSD9ZliEIwqjrJKLY5eTk4JJLLsGzzz6Lp59+GpdccglycnIGHu9fcJavSToZWwYSwGWXXYbS0lL84Q9/QFFRESRJQmVlJYLBIJxOJ4DjL3IAMTXzD7cK9Ylv3k8++eTAYKShPtlXVlZi+vTp+MY3voEZM2agsrISX3755aBjpk6dig0bNiAUCrF1gGgc3HzzzQO7/T366KODHpsyZQoEQUBVVRWuuOIKDaojvWLLgM61t7ejqqoKP/nJT3DeeedhxowZ6OzsHHg8NzcXQHRaX7+T35DNZjMikcig+2bOnIlwODxoH+729nYcOHAAM2bMAAAUFxdj8uTJmDx5MiZOnDhkfTfffDPWrVs3ZKsAAFx77bXweDx47LHHhnw8KXb7ItKRiy66CMFgEMFgEKtXrx70WFZWFlavXo1HH30Uvb29p/wsX4+pi2FA5zIzM5GdnY0nnngChw4dwkcffYTvf//7A49PnjwZpaWluP/++3HgwAH87W9/w8MPPzzoHGVlZfB4PFi7di3a2trg9XoxZcoUXH755bj11luxYcMG7NixA9dddx2Ki4tx+eWXx1zfrbfeitbWVnz7298e8vElS5bgvvvuww9+8APcd9992LhxI44ePYq1a9fiqquuwrPPPju6J4aIhmQwGFBVVYWqqioYDIZTHn/ssccQiUSwePFivP766zh48CCqqqrwm9/8BsuWLdOgYtIDhgGdE0URL7/8MrZu3YrKykrce++9eOihhwYeN5lMeOmll7Bv3z7MnTsXv/zlL/Hzn/980DmWL1+O2267Dddccw1yc3Pxq1/9CgDw9NNPY8GCBbj00kuxbNkyyLKMd955R1FzvtFoRE5ODozG4XucfvnLX+LFF1/Epk2bsHr16oFpTHPmzOHUQqI4SE9PR3p6+pCPlZeXY9u2bVi1ahV+8IMfoLKyEhdccAHWrl2Lxx9/fJwrJb3gFsZEREQpji0DREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpbj/D0l0vmTSuSknAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHBCAYAAAD0E7h1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKa0lEQVR4nO3dd3wc9Z038M/M9iKtepctyd2WG264UEwzGAjkCJAQWiAk1HAkOZ7cJc8TLhe4lOOO5AIkhNBDOUoIJIRyBgcbjG1s4yp3yVbvK2m1fWeeP1aSJVuSd6RZzezu5/166cVqdzTz1aL1fvZXBVmWZRAREVHKErUugIiIiLTFMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTij1gXEmxwOI9TaiGBTHSK9PZDDISAcAQQBgtEIwWSGMTsP5oISGNIzIAiC1iUTERFNqKQKA7IsI3D8CHz7dyHYWItA/TGE21sAWeo7QgAEARAGfiD61f+oxQpzYSnMRZNgKS6DY+5iGNJcE/57EBERTSRBlge9GyaoYFMdPNs/Rc/WDYi42wFRPOWNXhHRAEjR1gPb9Eo4F62CY+5iiFabuoUTERHpQMKGATkSQc9nH6Fr4/sINdVFA4Aknf4HlRLEaMuCwQhH5SJkXHgFLMVl6l+HiIhIIwkZBrxVX6DtjecQbmua2Av3BQ7nsnORdcnVMLoyJ/b6REREcZBQYSDYWIu2N5+H/+CeE5/YtSCKEAwGZFz4ZbjOWQvRbNamDiIiIhUkRBiQJQmd770O9wdvRgcAxqM7YEwEGDIykf+N+2CdNEXrYoiIiMZE92Eg4vWg5bnfwHdgl9alDE8QAVFA7tW3Im3ZuVpXQ0REpJiuw0C4sx0Njz2IcEeLjloDRpZxwRXIXHsN1yogIqKEotswEGyuR+OjP0WktychgkA/59JzkHvtbRBELu5IRESJQZfvWJFeDxp/+7OECwIA4Nnyd3S+97rWZRAREcVMd2FAliS0PP8bRLo7Ey4I9HO//yf07tmmdRlEREQx0V0Y6HzvjehgwQQNAlECWp5/FKHWCV4HgYiIaAx0FQZ6926H+/03tC5DBTLkcBBNT/4HpIBf62KIiIhGpZswIIdDaHvl9zixi1CCkySEWhvR9fe/aV0JERHRqHQTBnq2fIxITxcAXU5uGBtZhvujv0Dy+7SuhIiIaES6CANyJIzO999A0rQKDCIH/Oj+5AOtyyAiIhqRLsJAz+cbEenqRFK1CvSTZbg/fJtjB4iISLd0EQbcH7yJZGwV6Cd5e9Gz9WOtyyAiIhqW5mEg3NmGcHsLtG4VuP3tDVj4+Gu46y8b1T+5IMC3X6d7KxARUcrTPAz4ju7XugQAwE0LpuM/1iyPz8llGf4j+yEn9NoJRESUrDQPA/6jBwDRoHUZWF6aD4fJGLfzS34vQq2NcTs/ERHRWGkfBg7vA6RIXM4tyTIufPYv+PmGL4bc/3FNI2b++hW8c/B4XK47Ev/RAxN6PSIiolhoGgakYAChlvh9WhYFAbcvmY0Xdx9Clz8IAKhq7cQ972zE91bOw9rpk+J27VOLMSBw/MjEXY+IiChG2oaBCViM54qZZci0WvDsFwfQ2OPFN//8d1w5sxy3LZoV92sPIUuQfN6JvSYREVEM4tdJHgM5GIj7NYyiiG8tno2HP92Jdw/XYk5eFv7fuWfE/bqnkGVIE/D7EhERKaX5mIGJcMXMyfCFIpBl4JFLVsAgnvpr3/zGR7jnnU+wvqYBK598E7ua2uNQSRIuqkRERAlP05YBwWyZkOs88NE2AECnLwCDMPziRs/8w+r4FiEIEM3W+F6DiIhoDDRtGRAt8X9z/M9Pd2F9TQNe/+qFiMgy/mevRoP4BBGi1abNtYmIiEaheRgw5uTH7fyv7DmCP2zfjye+dDZm5Wbi5oUz8MTnVQhFNFj8R4rAUlox8dclIiI6Dc3HDNimzYnLokPrqxvwwEef4z8vXo6FhTkAgBvnT4cnGMKb+6tVv14srBUzNbkuERHRaDQPA9byGaovOrS7uQP3vPMJ7l+1AGumlg7cn2Yx4cYF0/HbrVWITPDSwILFBlN+0YRek4iIKBaCLMuaDnEPtbeg9qf/qGUJ8ScIsM2cj8Jv3a91JURERKfQvGXAmJULY2YOknkLYwCwz5yndQlERETD0jwMCIKAjAuuQDLPwRctNqQtO1frMoiIiIaleRgAgLSlZ8OQ5tK6jPgQBLjOu2xCplESERGNhS7CgGA0IePCK7UuIy4EswWuVRdpXQYREdGIdBEGACBt2WqIjjSty1CXIMB1zlqINrvWlRAREY1IN2FANJuRc/WtWpehHlGEMSsPGavXal0JERHRqHQTBgDAOX8pXOddrnUZKhAgGIwouO37EK1sFSAiIn3TVRgAgKy118A6ZRYwzM6CiUNG7nV3wJxfrHUhREREp6W7d1zBYED+zffC4EwHBN2VFxPXeZfDuWCZ1mUQERHFRJfvtgZnOgq+/QOIdnvCtRA4Fi5H1tprtC6DiIgoZpovRzyaUFszGh97EOGuDmCC9xJQSgaQcc4lyPrS1yEkWIAhIqLUpuswAAARTzean34E/qP7tS5leIIAQID9y9/AG4YK5DstKHHZUJJhRX6aFUYxuZdZJiKixKf7MAAAciSCjr+8jK71f412G+illUAQIDrSUPCNf4S1YibeqWrG5uOdAw8bRQGF6VaUuKwoybChxGWDy2qEIDAgEBGRfiREGOgXqD2KtjeeQ6DmYPQTuValiyIgiMg47zJknHc5RKsNANDpC+LXG45CGqUsp9kwEAyKXFYUpllhNxsmqHAiIqJTJVQYAABZltG7ays6/vw8wp3tE3vxvlYJx8IVyL78q327LQ712q4G7G7sVnRal9WIgjQrCtMtKEy3oiDNyhYEIiKaMAkXBvrJ4RC6Nr6P7o0fINzeEr/ug74WiG6TE4enn41LzlsKR8X0EQ9v7Pbjt5tqxn1Zu8mAgrRoOChMt6Io3Ypsh3nc5yUiIjpZwoaBfrIsI1hXDc/2T9Hz+UZInm5ANABSZOwnFcVoADDYsL9iJfZmzcAhnxEygB9fPBOzC9JH/fHnPq/FkfbesV9/GBdNz8XK8mxVz0lERAQkQRgYTJYk+I/uh7dqJ4KNtQg2HEekq+PEAaIIQAAEROcCQo6OO+h/CoxG+AoqsC9vLnYaC3A4YMLJT87a2fm4aenkUes42t6LZz+vVe33mpHrxNcWFrPbgIiI4iKpwsBwpIAfweZ6hBprEfF6IIfDkMMhCIIIwWiCYDLBk5aLLyIubGkN4UCL55QAMFiu04z/vmr+qG/Msizjd5/VoLE7MO76M2wm3L68DDYTBxkSEVF8GLUuIN5EixXWSVNgnTRlxGPW727Ei7ti+yTf6gniWKcPZVkjb0AkCAJWlWXj1V0NiusdzCAIuHZ+MYMAERHFFZfKA7B0cqai47cOWktgJLPy05BpM421JABAntOMTPv4zkFERHQ6DANAdGGgDFvMx289dvowYBAFLC/LGk9ZaOwJ4LebalDn9o3rPERERKNhGOizZFJGzMce6/Sipef04wEWFrvgGOeCQm5fCH/Ycgyf1nQgyYd3EBGRRhgG+iyepH5XgdkgYvnk8bUOAIAkA+8daMFLO+rhDY5jyiQREdEwGAb6VGQ7kKWgfz6WMABEWxxsRnWe5gOtHvx2UzVq2W1AREQqYhjoIwoClihoHdjf0oNuf+i0x1mNBixToXWgX5c/jKe2HMPG6nZI7DYgIiIVMAwMoqSrQJaBbbXumI5dNikTFoN6T7UkAx8cbMWL2+vQGwyrdl4iIkpNDAODzC5Ig13BnP5YuwrsZoOiAYqxOtTWi8c/rcHhNnWXPiYiotTCMDCIURRxRmlGzMfvqu+CPxTbgL7lk7NgEtVfTrgnEMbz22rxt6pmhCJx2KiJiIiSHsPASZYq6CoISXLM2xU7LUYsHiZoLCpxYXquI+ZrjuSz45144rMaNHX7x30uIiJKLQwDJ5lf7FL0CX5PjGEAAFaUZcEwaE+DEpcVa2cV4GsLS3DR9FyMt+GgxRPEE5/VcHAhEREpwjBwEqvJgLlFrpiP39XQFfOx6VYTziiJnttmEnH1/GIYRQGiIGBleTZuWToZLuv4touI9A0ufHZrLbp8p5/tQERExDAwDCXjBhq6/GjvDcZ8/MryaOvAVXOLkHHS3gWlGTbcvrwcM3KdMZ9vJDWdXjz2aXXM3RhERJS6GAaGMbcwXdHxexpjbx3ItJlx85JSTBvhDd9uNuBrC4uxZkYeDOPsNvCHJby2qwGv72qAL8aBjkRElHoYBoaRn2ZBtsMc8/G7G5R9+p6UOfL2x0B0C+QVZVm4ZenkU1oPxmJXYzce/7QaNR3ecZ+LiIiSD8PAMARBQGVB7K0Duxu747KJUEmGDbcvL8OsvPF3G3T5w3hm63F8cLAFYYmDC4mI6ASGgRHMKUyL+Vi3LxS3bYZtJgOuXVCMy2cXwDTOfgMZwMbqDvz+sxq0eE6/6yIREaUGhoERzFHQMgAgrgP1BEHA4tIM3LG8HMUu67jP19QTwO821WDzsU5ui0xERAwDI8lxWlCQZon5+N0KphiOVbbDjFuXTsY5U7Ix3rUMw5KMd/Y344XtdegJcH8DIqJUxjAwijkKZhXsbepBWIr/csAGUcB5U3Nx67LJyFRhcOHhtl489kk19jVxCiIRUapiGBiFkq6CQFjC4daJ2zCoNMOGO1aUYWFx7AskjcQbiuCVnQ14eQdbCYiIUhHDwCiUtAwAE9NVMJjFaMCVlYW4dkExbKbx/6+savHgNxuPYnudm2MJiIhSCMPAKDJsJpRk2GI+XqvV/mbnp+HOFeWYkj3+DY/8YQl/3tuE57bVosMb+8qKRESUuBgGTqNSQevAoVYPvEFtVvpLt5pw/aISXDIzD0YVtko+2h5dzvjTmg5uekRElOQYBk5jTkHs6w1IMlDVrN1APFEQcObkLHx7eZmimRAjCUVkvHegBU9uPobmHq5LQESUrBgGTmN2QbqiaXxKlyaOhzynBbedORkry7LGPQURAOq7/Pjdpmp8eLh1QmZMEBHRxGIYOA2nxYiy7NH3EhhML7sEGkURF83Iw01LSse9LTIQ3Rr570fa8dtPa1Abp9UWiYhIGwwDMVCyT0Gd26ergXflWQ7csaJc8U6MI2ntDeIPm4/hb1XNCITZSkBElAwYBmKgdIrhHp20DvSzmQz4yrwiXDW3EFbj+P+XywA+O96Jxz6txpG2iVtbgYiI4oNhIAYz89OgZID+rglebyBW84pcuGtlOWaqsAsiEN2g6blttfjT7kbNZlEQEdH4MQzEwGYyYGpO7G+gB1s8caxmfNKtJnx1QTGumV8Ep9mgyjm/aOjCo58cxd6m+GzlTERE8cUwECMlXQXNPQF0+UJxrGZ8BEHAnIJ03LWyAguKxr+cMQB4ghH8z84GvPxFPdw6/t2JiOhUDAMxUrLeAAAcbtNv60A/u9mAL88txA2LSpGhwqZHALC/b0nj9UfaEIpwgCERUSJgGIjRjLw0RSv7HWrVfxjoNzXHgTtXlOPMyZmqrEsQkmR8dLgNj35Sjf0tPew6ICLSOYaBGJmNIqYrGHh3aAJ3MFSDxSjikpn5uHXZZOQ6zKqcs9MXwks76vHH7XVo69XPdEsiIhqKYUABJfsUHG71QJIS7xNxaYYNt68ow7lTsmFQo5kAwKG2Xjz2yVF8cLCFaxMQEekQw4ACcxQsPuQPS6jrSsyV+oyiiNVTc/Ht5eUodllVOWdEBjZWd+A3G49idyNnHRAR6QnDgAJTcxywKFi0J5HGDQwnP82Cby6bjDUz8mBSqZmgOxDGa7sa8MzW42ju8atyTiIiGh+GAQWMBhEz82KfVZDoYQCI7oS4oiwLd64oR0VW7Hs0nE5Npw+/3VSDd6qa4QtxwSIiIi0xDCg0LdcR87GJNohwNFl2M25cXIorKwtUWdIYiG75vPl4J/5741HsqHdDYtcBEZEmGAYUmqTg03Gd24feQDiO1UwsQRCwsDgDd6+qwOx8ZesujKY3GMGbe5rwh83HUJ+g4yyIiBIZw4BCkzOVNZUfaU+e1oF+aRYjrl1QjOvPKEG2XZ3FigCgrsuP3392DH/e04jeYPKEKCIivWMYUCgvzZJSgwhHMy3XiTtXluOCabmqDTCUAWyv78KvNxzFppoOhCVORSQiijeGAYVEQcCkTFvMxydzGACi0xDPqsjGPasqUKlwyebR+MMS3j3Qgv/eWI1dDV0cT0BEFEcMA2OgpKvgWIc3jpXoh8tqwtXzi3HzklLkOS2qndftC+H13Y343aYaHG7r5foERERxwDAwBkoGEXZ4Q+jxp84ufuVZDty+vAyXzMxT1J1yOk09ATy/rRbPfV7LQYZERCpjGBgDpYMIj3Wm1puXQRRw5uQsfGdVBRYWq7NFcr+jHV488dkxvLqzHu3c74CISBUMA2OgZMwAABzvTI2ugpM5LUZcWVmI25ZNRlG6Ossa99vT1IPffHIUf93XBE8STd8kItICw8AY2M1G5Dpj39kvVcYNjKQkw4bbzpyML80pgN1kUO28kgxsqXXjVxuO4KPDrQiEuZIhEdFYMAyMkZKuglRtGRhMFAQsKsnAPasqsLQ0AyptiAgACEZkrD/Sjl9tOIrNxzsRTsDdIomItMQwMEaTFQwirO30IcI3KACA3WzApbMLcPvyMkzKUNbdcjq9wQjeqWrGoxuPYk9jN6cjEhHFiGFgjCYpaBkISTIau7lD32AF6VbcsnQSrppbiDSLUdVzd/hCeHVXA37/2TEcTcIVIImI1MYwMEZKWgYAdhUMRxAEzCty4Z5V5Th3SjbMKq1i2K+h249nP6/F85yOSEQ0KoaBMcp3KluWONUHEY7GYjRg9dRc3HvWFCwpzYCobibA4fZePPHZMTy/rZahjIhoGOq2z6YQURRQmmHD4bbYmqH5JnR6TosRl80uwPLJWVh3uBV7m3pUPf/htl4cbutFeZYd507JQZnC1h0iomTFMDAOk7PsMYeBYx1spo5VtsOMa+YXo77Mhw8OtqJa5VaV6g4vqjuOY3KmDWdX5GBKth2CoHJzBBFRAmE3wTgoGUTY7g1ycRyFil023LS4FDcsKkFBmnr7HfQ71unD89tq8eTmYzjQ4uG+B0SUstgyMA5jWYlwdkF6nKpJToIgYGqOExXZDuxu7MaHh1rh9qsbquq6/HhxRx0K0yw4e0oOZuY5IbKlgIhSCMPAOCjdo6C5J4DZBXEqJsmJgoD5RS7MKUjD1uNufHy0Hd6QuisONvYE8MoX9chzWnBORTZmF6QxFBBRSmAYGAeHxYgchxltMW6Yw7UGxs8oilheloWFxS58UtOBTTUdCKm8oFOLJ4BXdzUg54gZZ1dko7IgHQa1pzgQEekIxwyMk5L1BpoYBlRjNRlw/rRcfOesCiwqUX86IgC09Qbxxu5G/GbjUWyrc3OZYyJKWgwD46RkEGFTdyCOlaSmdKsJX5pTgDtXlGNWnjMu1+jwhfDW3ib8esMRbDneiVBEist1iIi0IsgcQj0um6rb8cjfj8R0rMUo4tmvL+I0tjiqdfvw4aFWHI3jIk9OswFLSjOxuDQDTpWXUiYi0gLDwDg1dPlw3592x3z849csQJY99u2PaWxq3T78/UgbDsW4DsRYGEUBcwvTcebkTBSkWeN2HSKieOPHmnEqSLPCZBAQisSWqZq6/QwDE6A0w4brF5WivsuHj4+2Y3+LR/VrhCUZO+q7sKO+C+VZdiyfnIlpuZyWSESJh2FgnPqXJT7aHluzdFM3pxdOpGKXDV9bWIKmHj8+PtKOfc09iEdTWHRVQy+y7CacOSkLC4pdivauICLSEsOACvLSrArCAGcUaKEgzYprFhSjxRPAhqPt2N3YHZdQ0OEN4Z39zfjwcCvOKMnAskmZyLCZ4nAlIiL1MAyoINsRe7N/Uw/DgJbynBZcNa8I507JwYbqduxs6EI8Zgz6wxI+7VsHYVZ+GpZPzkRpho2DR4lIlxgGVJCjIAxw4SF9yHaYcWVlIc6Zko2NRzuwo96NGId9KCID2Nfcg33NPShOt+LMyZmYw0WMiEhnOJtABZuPdeA/Pzoc07GcXqhPXb4QNta0Y3tdV9wXF0qzGLF0UiYWl2TAbjbE9VpERLFgGFDBkTYP/uUv+2I+ntML9asnEManNR3YWtsZ8wyRsTKJAuYVubCkNAOF6cqnJnq9XuzatQtutxuFhYWYP39+HKokolTAbgIVZDuUba/b0hNgGNCpNIsRa2bkYVV5FjbVdGLL8U4E4rTiYEiSsa3OjW11bhSmW3BGcQbmFqbDZhq9teCDDz7A/fffj927dyMSObFZ0yOPPIJ77703LrUSUXJjy4AKJFnGDc9/HnPz8j+eMwXLy7PjXBWpwReKYFudG1uOd6JL5a2Th2MSBcwuSMOikgxMGmHA4cKFC2GxWHDrrbdi8eLFyMvLwy233AKz2Yy333477jUSUfLhRGgViIKgaEZBhzcUx2pITTaTAavKs3HvWVNw9fwilGbY4nq9kCRjZ0M3ntpyHP+9sRobq9vhCQwNIW63G7Nnz4bdbserr76K4uJiWK1cAZGIxo7dBCrJdpjR3BPbRkSd3ti2PCb9MIgCKgvSUVmQjjq3D5uOdWBfc09cpiX2a/cG8cHBVqw71IqZeWk4o9iFKTkOXHDBBXjyySfx9NNPw+Fw4KGHHopfEUSUEhgGVKJkemEHw0BCK8mw4eqMYnT5QthS24lttW74wvHbyVCST0xPdFmNuPb7/4Zbbr8L7//lz/jlL38Zt+sSUepgGFCJkkGE7CZIDi6bCRdOz8M5FTnY2diFz451oq03vkGvyx/Ghho3BFhxuJvDfYhIHQwDKmHLQOoyG0UsKc3EopIMHGnrxaZjnTjSHr/dEoHoYkZtJ/0dBePYOkFEyY1hQCXKBhAGIcsyFx5KMqIgYFquE9NynWjxBPDZsQ7sbOiO+yJG/ao7vXhy8zHMLUjHnII0OC18eRNRbPivhUqUhIFQREZvMMJ/rJNYntOCL80pxPnTcvF5rRtba93oCagzNVGWZTQc3IOW6oND7u/taMP6D/8XNfOW4m/7TSjPsqOyMB2z8tK40iERjYrvRirJUbjwUIc3yDCQAhxmI86ZkoOV5dnY29SNz451omGc+1NsfeuPePfxB6PndzgG7m84tAd//JdvYsby83Htj3+Dox1eHO3w4q/7mjAlx4G5BemYkeeExchgQERD8d1IJXazATaTAb5Q5PQHA+joDWJSpj3OVZFeGEUB84tcmF/kQmO3H9vr3NjV2A3/GPr5j+3eivPPPx8vv/zyQFfTCy+8gEAggMceewwP/eI/hhwfkYGDrb042NoLkyhgeq4TlYXpmJbjgMnApUaIiGFAVTkOM2rdvpiO5YyC1FWYbsWlswtw0Yw87GvuwfY6N2o6Y/u7AQBXXhG2ffgmrrjiilMea2hoQEZe0Yg/G5Jk7G3uwd7mHlgMImbmO1FZkI4p2Q7upEiUwhgGVJStKAxwRkGqMxnEgdaCtt4gdtS78UV9FzzB0VuXVl5zG4xmC3raW055LKdyMs5Ye01M1w9EJOxs6MbOhm7YTCJm56dhbkE6JmfZIXJwK1FK4d4EKnri02qsO9ga07HnT8/Ft1aUx7kiSjQRScbBVg+217txqLUXWrw4nWYD5hSkY25hOkpcVs56IUoBbBlQkZIZBWqNLKfkYhAFzMpPw6z8NHT5QtjR0IUddW64J2CTpH6eYASbj3di8/FOuKxGzMh1YkaeE2VZdhhFjjEgSkYMAypKt5piPraXYYBOw2Uz4dwpOTi7IhvV7V5sq3djf3MPIhPYXNDlD2NLrRtbat0wGwRMyXZgRp4T03KcnA1DlET4alaRU8Fc7t7T9AsT9RMFAVNyHJiS40BvMIydDd3YXudGa5yXPj5ZMCKjqsWDqhYPBADFLium5zoxI9eJ/DQLuxOIEhjDgIocCj4pnbwtLVEsHGYjVpRlYfnkTNR1+bGtzo19zT0ITPBSxDKAui4/6rr8+PBwG1xW40AwKMuyc8oiUYJhGFCR0xz709kbZBigsRMEAaUZNpRm2HDprHwcbuvFnqZuHGjxIDRByx8P1uUPY2vfSoumvu6E6blOTM91Io3dCUS6x1epihyW2LsJfCEJYUnigCwaN5NBHBh0GAhLONjqwZ6mbhxq7UVEg8lCoYiM/S0e7G/xAACK0q2YkevE9DwnCtmdQDoU6e1BuKMVcjgEORSK7h1jNEIwmmBwpMGYlQshyf+tZhhQkUNBywAAeIMRpFuT+w+MJpbFKGJuYXRaoC8Uwf6WHuxu7EF1Ry80aDAAADR0+9HQ7cdHR9qQbjGiItuB8iw7yrPscNliH3RLNF6yLCNYV41A/TGEmuoQbKxFsLEWktcz+g8ajDDlFsBcNBnmgmKYC0pgrZgJ0WqbmMInANcZUJEky7ju2a0xzw3/ry/PRZEref6YSL88gTD2NfdgT1M3jilY7TDesuymvmDgQFmWnV0KFBfBpjp4dmyCZ9tGRNwd0TtFAyApHMgtitEBM7IEGIywz14A5xkrYZs5D6Ip9qnlesQwoLJbXtwW80yBn146G9NynXGuiGioLn8Ie5t6sKexG/Xj3DRJbbkO80CrQVmWg7st0phFfL3o+ewjeD7fiFBzPSCI0TdxNYkiIEkQzBY4FixD+pnnwTJpirrXmCAMAyr7zus70dwTiOnYH1wwHQtLMuJbENEoOrxB7Gnqxp7GHjR7Yvu7nUgFaRaU9YWDyZl22EwMBzQ6ORJBz2cfofPdVyH5fcBEvcX1BQPH/GXIvPSrMGXlTMx1VcIwoLJ/fnsPjrZ7Yzr2nrMrsKoisf5gKHm1eALY09iNvc09aJvgNQxiISC6yVN/y8GkTDssRo65oRO8+3eh/c/PI9zapF0RoggIIlznrkXG6ssSZlwBw4DKHnx/P3Y1dMd07C3LJmPNrPw4V0SkXHtvEAdbPTjY6kFNp1ezwYejEQWg2GVDWZYdpS4ril02roqYoiI9XWh9+XfwHdgNCMLEtQaMRhAg2hzIueZWOCoXa13NafGVozIlMwo8XGuAdCrbYcZyRxaWl2XBH4rgcHsvDrZ6cKi1F96QPlbPlGSg1u0bslNohtWIYpcNxRlWlLhsKEyzwszWg6TmP3YYLU8/goi3J3qHHoIAAMgyJK8HLc/8Cq7zv4TMNVfpenoiw4DKHFySmJKM1WRAZUE6KgvSIcky6tw+HOhrNWjx6Ks7we0Pw+3vwd7m6BuDKAB5TguK+1oOSlxW5Dot3KI5SXi+2IzWFx+PBgC1BweqqGvdWwg2HEfeDXdDNFu0LmdY7CZQ2QufH8fbe2Lrr7pwRh6+ubwsvgURxVGHd1B3Qod3QjdRGiuzQUBRejQcFLuiLQjpViMXQ0ow3Z98gPY/Pad1GbETBFhKK5D/zX+Cwe7QuppTsGVAZaYYmoFkWYYsRRCKsGWAEluW3YwzJ2fhzMlZ8IcjONrW29dqoJ/uhJMFIzJqOn2oGbTegtNsQEmGbaAFoTjdCitnLuiWZ/sniRUEAECWEairRvNTD6Pwjn+BYNDX2y9bBlT2xs4GvLKj7pT7PS11OPTBK+ioroK79iAiwQBcufl47+0/Y9myZRpUShQ/kiyjvssfDQYtHl1OWzwdl9WIPKcFeU4L8tMsyHVakOswcxMmjQUajqHh1w8A4UQdcyUg/ayLkH3F9VoXMgTDgMre3tOIFz6vPeX+9/7v15EGP84++2wsWrQIWVlZePDBB3HBBRfg8ccf16BSoonTEwijpsOLo+29qOnwosMX0rqkMREQXTWxPyTkOS3IS7Mg226GQWQ3Q7xFvL2o/88fItLdCUj6HSMQi9yv3wnnwuValzFAX+0USWCkTw29rfV44GcP4eqrr8bBgwexevVqPPHEEwgEEu8TE5FSaRbjwJ4JAOD2hVDT4UV1Ry+qO7zo8ifGpzwZQLs3hHZvCFUtJ9azNwhAtsOCPKd5SFDItJs4WFElsiSh9Y+PIdLVqevBgrFqfeUJmPOLYS6apHUpABgGVGcyDP/Ct+cU4gc/+AHuu+8+lJWVobq6eoIrI9KPDJsJC4pdWFDsgizL6PSFUN3hRXWHFzUdXvQEEiMc9IvI0UWbWjwBAD0D95tEIdq90BcSsu1mZNpMyLCbYDVyTIISnq0fw3dgl9ZlqEeS0PLHx1D8/X/XxeBVhgGVjdQysOo7v0T9jg1o3b8NcJ/ajUCUqgRBQJbdjCy7GYtKMiDLMtp6gwPBoLrDq9vBiKcTkuSBXRtPZjcZBoJBps2ETFs0KGTaTXBZTex2GESOhNH5wZ+0LkNdkoRQcz28+3bAMecMrathGFDbSGHAmVeCGWu+hqCnCz6GAaIRCUL/p2kLlk7KhCTLaPUEhrQc+MOJ30zsDUXgDUWG3SxKQHQAY4bNjMyBsGBCZl/LgsNs0MWnyYni2b7pxG6DyUQQ4H7vDdhnL9T8/yfDgMpMTPNEqhIFAflpVuSnWXHm5CxIsoymngCOd3pR3+VHXZcPHd7EHJA4Ehn9CyiFUdN56uMmgxBtVej7cpqNcFqMff81wGk2wmExwKjjFe9iJUsS3B+8iWhESrLx7rKMYMMx+A7shn3mPE1LYRhQGacdEcWXKEQXDSpKtw7c5w1G0NDtQ53bj/q+/yZq10IsQhEZLZ7gaVeAtBrFvpBggNNihGMgNBgGwoPDYoDDbIRRpx9kendtQbijResy4kcQ4f7gTwwDyWakAYQAIIXDkCJDP8GEQiEEg0GYzeZ4l0aUtOxmA6bmODE1xwkgurCX2xdCXZcf9V0+1HdF++3DetxxKY78YQn+cBBtvac/1mYSB1oYHOZoQLAYRZgNIixGEVajCLMxettiNMDSd7/ZKMIkCnFr5vbu3T6wPbBW1h2pw0N/3wZJBm5fMhvXzpum3sllCYFjhxHp7YHBkabeeRViGFDZSC0DtVvXYetTP0XY70VZWdnA/S+88AJee+01PPzww7jzzjsnqEqi5CYIQrR/3W4emM4YkWS0eAKo6wsHdW4f2nqDydbwPGa+kARfKIjWMWxfLQqAxdAfFgzRwDAoLFj6v/qOMYoCDIIQ/a8owCCKMIiAURRhEPrvE2A3GeA/vE/TIBCWJDz492148eoL4bSYcPnz72DNtEnIsKm7x4C/5pCmAwkZBlQ20piBo+vfxPIli3DHHXfA6Yx+evnJT36C1tZWvPTSS3j00UcZBojiyCAKKEy3ojDdiiWl0fv84Qgau/wnWhC6/ehOkDUP9ESSAV9Ygi8sAVDv+VuWb8Wsni7VzjcWOxvbMT07AwVpdgDA6vIifFzTgC/NKlfvIqIBgeoDDAPJxDhCy4BoMqGrqwsHDhwAAGzbtm3gsY6ODlgs+tzJiiiZWY0GlGc7UJ59YuMYXyiCVk8AzZ4AWj1BtHgCaO4JJPUYBL2SuocZPanWuWUZFz39Ni6YWoIfnH3iTfjjmgbc9qf1+K+1K7F2xmQ093qR77QNPF6QZkezxzfcKcdRTAS+I/vVPadCDAMqG2l155mX3IAdL/4XfvHrE0sPC0J0oxeXy4WHHnpookokolHYTAZMyrRjUqZ9yP2eQHggJLT0hYQWTwCBJJjmqFdSVwcgGgBJ/SAmCgLuWDYH//rh57hj6Ry4rBZUtXTi7rc34PurFmDtjMnRA4f5Jz0ewyOC9TWQwyEIRpP6J48Bw4DKRup/zJ2xEBf969BdtmwmEc98fXH8iyKicXNaooPrBrciyLKMbn94IBi09AWFVk8AoRQbrBgPQigQ16WHr5hVjl9v2o1nth/ANXOn4NY/fYQrZ5XjtiWzB47Jdw5tCWjq8WJ+YY76xUgSJL8PBifDQFJQ8voXoM+pPEQUG0EQ4LKZ4LKZMC3XOXC/1Debob+Loa03CLcvhE5fKOGWWtaSEA4BcdxLzyiK+PaS2fiPjV/g3UPHMScvEz8+b+gHtPmF2TjQ5kZTjxdOiwkfVTfgnuXxmQYoBYPQapFqhgGVKdkEMoUWECNKKeKgJZZn5g2dLhaKSAPBoNMXQqc3OOR7djucIMahe+BkV8wqx7+t3wYZwK8uOwuGkxZqMooifnjOGbju1Q8gyzK+tWQOMlWeSTBgAn7fkTAMqExJiOVuZkSpx2QQB5ZbPpksy/CFJHT6ogGhwxvqCwpBdPqit1Op90E0xP9z8gMfbgUAdPr8MIzwb/IFU0txwdTSuNcimLUbSM4woDJJwaxlZgEiGkwQBNjNBtjNNhS7bKc8LvWNUegPC12+MDzBMDyBMHqDEXgCYXiCEQQjydG6YDAY4rrg0H9+8gU+OlqPN752MW547X/xyu7DuHHhjLhcKxaiSbvF5xgGVKakZYBjBohICVEQBvYjGE0wLA0JCT2BMHqDYXgCEXiCg4JDIKzrgY7GdFfcxgy8susQnvy8Cn+8+gLMysvEN86YiSe27sPX5k3TZFl5Q3oGRJv99AfGCcOAypSMGdDpUuBElODMRhFZxuiYhdHIsoxgRDoREgJh9AQj8AbDCISlE1+RE7eD4cjAffHOEZac/LiEgfXV9fjxh1vxyKWrsLAoFwBw48IZ+P3nVfjTvqO4Zu5U1a85KlGEders0x8XRwwDKlM0m4BhgIg0JAhC3/LBBmQ7lDVRy7KMsCSfFBgifYFBgr8/PAwEiehjIUlGpO8r3H9bPun7vvvMmdmAwQhE1JuBsbu5HXe/vQH/5+wzcPG0SQP3p1nMuGnhDPx2615cNafilIGEcSVJsJZNn7jrDYNhQGVKMqzW+1cTEY2VIAgwGQSYDCKGGQupmoZJFQhUH1TtfHPzs7HnO18d9rH7Vs7HfSvnq3YtJazl2oYB7rerMkXdBHGsg4goGdimzgGE5P7XUrTZYcov1rYGTa+ehJR1E7BlgIhoNGlnrk7uAVaCgPSzLoYwkd0Sw2AYUBkXHSIiUo/RlYm0ZedGpxgmIcFkRvpZF2ldBsOA2pTM7zUmc9olIlJJxurLtC4hPgQB6WetgcHmOP2xccYwoDJ/KPYwYDVptQo1EVHiMGbmwLn4rKRrHRAMRrjOvljrMgAwDKjOH459bWmrkU8/EVEsMi/6cnS53iTqX8246B9gcKSd/sAJwHcjlbFlgIhIfcaMbOTdcHdcdzGcMIII++wz4Fp9qdaVDGAYUJmSHcfYMkBEFDv7jHnIvPgrWpcxPqIIY2YOcq+7XVczyvhupDJF3QRsGSAiUsR13uWwzVqQsGsPCKIB+bd8F6L11I2otJSYz6aO+UOxhwELWwaIiBQRRBF5190BU0FxYgUCQQBEA3JvuBvmAm0XGBpOAj2TicGvqJuALQNEREqJNjuK7vq/sFbMSIwBhaIIwWhCwW3/BMecM7SuZlgMAypTNGbAxKefiGgsRKsNBbf9E5yLVmldyuhEEYY0Fwrv/n+wTZujdTUj4kZFKlPSTcCWASKisROMJuRcexsskyrQ/ubz0Tul2D+QTQRrxQzk3XCPbqYQjoRhQGVKugk4ZoCIaHwEQUD6igtgrZiF9rf+CP/B3dGuAy2nIAoCRLsTWZdeC+fiszTfdyAWDAMqU9QywNkERESqMBcUo/Bb98N7YBfa33we4damiS9CFAFBhOvctchYfZnuZgyMhmFAZQGuQEhEpBn7jHmwff9n6Nm8Hu4P/oRIT1f0TTpe3Qf9rRCiCMf8Zchaew2MmTnxuVYcMQyozBtUMLWQLQNERKoTDAakrzgfaWeuhr/6AHp3bIJnxybIAb96waAvBFjKpsO5aCUc85bAYHeO/7waYRhQkSTL6A6EYz4+zcKnn4goXgRRhG3KLNimzEL2lTfCd2AXendtQeD4UYTam0+EAtEAQI5+wh881kAQomsZSCc+5ImONJgLS2GfOR+OBWfCmJE1sb9UnPDdSEWeQFjRmJV0K59+IqKJIBiNsM85A/a+ef5yJIxQazNCzXUINtUh3NEKORSCHA5BliQIJhMEowkGuxOm/GKYC0tgyi+Bwa79dsPxwHcjFXX7Y28VEATAyZYBIiJNCAYjzAXFMBcUwzF/mdblaI4j2FTU7Q/FfGy6xQgxEVbOIiKipMcwoKIuBS0DaVZTHCshIiKKHcOAihS1DHC8ABER6QTDgIq6fbGHARdbBoiISCcYBlSkZFohWwaIiEgvGAZU1KWgZSCdLQNERKQTDAMq6lEwgJAtA0REpBcMAyrqUjCAkGMGiIhILxgGVKRk0aE0tgwQEZFOMAyoJCxJ8CgYQMiWASIi0guGAZW0eYJQsC0BXDaGASIi0geGAZW0eAIxH2sxinCYuX0xERHpA8OASlp6Yg8DuU4LBO5LQEREOsEwoBIlYSDHYY5jJURERMowDKhESTdBrtMSx0qIiIiUYRhQSTNbBoiIKEExDKiklS0DRESUoBgGVOANhtGjYI2BXCdbBoiISD8YBlSgZPAgAOSwZYCIiHSEYUAFSgYPGkUBGVxwiIiIdIRhQAVKBg9mO8wQucYAERHpCMOACjh4kIiIEhnDgAqUtAxw8CAREekNw4AKlIwZyHGwZYCIiPSFYWCcJFlGq4KWgbw0hgEiItIXhoFxcvtCCEmxb15c7LLGsRoiIiLlGAbGSekaA8UuW5wqISIiGhuGgXFSNK3QbobVZIhjNURERMoxDIyTksGDxRnsIiAiIv1hGBin5m5/zMeyi4CIiPSIYWCcqju8MR/LMEBERHrEMDAOgXAE9V2+mI9nNwEREekRw8A4HOvwQo59ViGK2DJAREQ6xDAwDtXtsXcROMwGuKzGOFZDREQ0NgwD43C0vTfmY4szbBC4WyEREekQw8A4KGkZ4OBBIiLSK4aBMQqGJdS5FQwe5DLERESkUwwDY3Tc7UVEwehBtgwQEZFeMQyMUXVb7F0EADApk2GAiIj0iWFgjKo7Yh88mGYxItthjmM1REREY8cwMEZKZhJUZDs4k4CIiHSLYWAMwhEJxztjHzxYnm2PYzVERETjwzAwBsfdPkSk2AcPVmQ74lgNERHR+DAMjEG1gi4CAChnGCAiIh1jGBgDpcsQ5zo5eJCIiPSLYWAMlLQMlHPwIBER6RzDgEJhScKxjthbBjhegIiI9I5hQKF6tx8hRYMHOZOAiIj0jWFAISXrCwAcPEhERPrHMKCQkvECdpMB+WmWOFZDREQ0fgwDCimZSVCWbefgQSIi0j2GAQUkSUaNgsGD7CIgIqJEwDCgQH2XD8GIFPPxM3KdcayGiIhIHQwDClQraBUAgBl5DANERKR/DAMKHG2LffBgQZoFGXauPEhERPrHMKCAkpaBmflpcayEiIhIPQwDMQpHJEXTChkGiIgoUTAMxOhwWy8CYQWDBzlegIiIEgTDQIz2NnXHfKzLakRhujWO1RAREamHYSBG+5p6Yj52Rn4aFxsiIqKEwTAQg1BEwoGW2MPAzDyOFyAiosTBMBCDQ60ehCKx71Q4I5/jBYiIKHEwDMRgb2Ps4wUsRhFlWdy2mIiIEgfDQAz2KhgvMC3XCaPIp5WIiBIH37VOIxiWcKjVE/PxMzmlkIiIEgzDwGkcaOlBWFIyXoCDB4mIKLEwDJyGki4CkyhwJgERESUchoHTULLY0PQ8J8xGPqVERJRYjFoXoBdv7mrA8U4v5hW5MK/IhSyHGf5QBEdaY9+PYG6RK44VEhERxQfDQJ9shxkvba/DJ9UdAICSDBuKXFZE5NjHC1QWpserPCIiorhhGOhTke0Y8n2d24c6ty/mn7ebDKecg4iIKBGwg7tPYboVlnH0988uSINB5H4ERESUeBgG+oiiMK6VA32hCL6ocyMQjqhYFRERUfyxm2CQ8mwHDrTEvsDQYHuberC3qQdGUcDM/DTMK3LhjBIXSjO5NDEREekbw8Ag5SrsKRCWZOxp7EZVcw/KsuwozVShMCIiojhiN8Eg5SoOALxrVQXmF3OqIRER6R/DwCDFGVaYVBgEeNPSSVhZka1CRURERPHHMDCIURQxeZxdBVfOLcTa2QUqVURERBR/DAMnGU9XweppOfjqGSUqVkNERBR/DAMnKc8eW8vA4tIM3La8HILAtQaIiCixMAycpDRDeRiYmefEvedM5aJDRESUkBgGTlLssio6vjTDhn86fzp3KyQiooTFd7CTOCxGZNhMMR2b4zDjXy6cAaeFyzUQEVHiYhgYRlEMrQMuqwk/vGgGshzmCaiIiIgofhgGhlHsso36eJrFiB+tmYGi0xxHRESUCBgGhjHauAG7yYB/uWgGJnHPASIiShIMA8Mozhj+E7/VKOKfL5yBChWXLSYiItIaw8AwhhszYDaI+D8XTMf0PKcGFREREcUPw8Awsu1mWAZNFTSJAv7p/GmYXZCuYVVERETxwTAwDEEQBsYNGAQB962einlF3IGQiIiSU8qEAVmWIUfCkAJ+SF4PJF8vpFAQsiQNe3yxywZBAL5zzhQsKs2c4GqJiIgmjiDLsqx1EWqL9HQh1NqAcN9XqLke4bZGyKHgsMeLThdM+SUw5RXDmFsIY24R3mkWkJ1mw1lTcia4eiIioomVNGEg7G6Hb+9W+HZvRritKXqnIES/Rvj0fwrRAEgRAEBINCFt2hzY5i6FdWolBGNsqxISERElmoQOA5LXA9++z+HdtRmhhproG7+av44gArIEwWSGddYi2CuXwFw+kzsTEhFRUknIMCCHQ+jd+hF6Pv5rX9O/ACDOv4YoApIEU+FkuNZcA3NJRXyvR0RENEESKgzIsgz//h3o+uA1SN2d2hTR11pgnb0Y6eddCWNGtjZ1EBERqSRhwkCotRHuv76AUN1R9bsDxkIQAVGAc/lFSDvrUggGg7b1EBERjVFChAFf1XZ0/vkZIBIB5BgHA04YAaaScmR95VswOLkWARERJR5dhwFZltHz8V/g2fCO1qWMThAh2h3Ivu47MOWXaF0NERGRIroNA7IUgfudF+H74lOtS4mNIEIwGpF17V2wlE3XuhoiIqKY6XIFQlmW4f7LC4kTBABAliCHQ2h/8VcI1h3VuhoiIqKY6TIMeLd/DN+uz7QuQzlZBmQZHa/+FhFPt9bVEBERxUR3YSBYdxRd7/6P1mWMnSxD8vai4/UnIPetZkhERKRnugoDEU83Ol79LeK+gFC8yRJCtUfQve5PWldCRER0WroKA+63n4Xk7dV+DQGV9G5eB/+RfVqXQURENCrdhIFgfQ0CR/bpcB2BcRAE9Kz/M3Q6YYOIiAiAjsJAz8d/ia7/n0xkGaHG4whU79e6EiIiohHp4t031FSLwJG9sW81nEgEMRp0iIiIdEoXYaBnw1+ja/0nI1lCqO4oAscOal0JERHRsIxaFyAF/fAf3KXpoMH6Lg/ufW0d2nr9MIoC7j13ES6vnKLeBUQRvj1bYZnMlQmJiEh/NA8DofoazWcPGEUBD6xdicrCHLR5fFjz+Gs4f/ok2M0mdS4gSWwZICIi3dK8bT5Ye1jzLoL8NAcqC3MAADlOGzJtFnT6AqpeI9LRAsnrUfWcREREatA8DASOHYrbdEJJknH2r17Gg+8NXdp4/aFalD3wBN7ec+SUn9lZ3wJJllHscqpeD/csICIiPdI0DMhSBMH66ridXxQF3H32Qjy3dS/cfZ/09za24duvvI8fXLD0lHEBHV4/7n39I/z8inPiUQwCtYfVPy8REdE4aRoGJL8PCIfieo1/mDcNWXYrntq0Gw1dHtz4wt9w1fzpuH3VgiHHBcIRfPPF93D32QuxZFKB+oXIMqTuTvXPS0RENE6aDiCUQ8G4X8NoEHHnWQvxsw824519RzG3MAf/dunKoXXIMu574yOsrCjCVxbEacS/LEMOxTf4EBERjYW2YwYi4Qm5zD/MmwZ/KAxZBh675gIYTlrpcOvxJry15zDerarBhY++igsffRVVTe2q1yHHuRWEiIhoLDRtGRCMKk3dO40f/nUDgOiYAFEQTnl86eRC1P3k9rjXIZjMcb8GERGRUpq2DEzEm+Mv/ncL1h04jre+9WWEJQkvb9donwBBmLDwQ0REpIS2YcBqh2Cxxe38L35ehd99ugvPXH8J5hTm4JvL5+KxDV8gFInE7ZojE2DMztPgukRERKPTNgwIAsyTpgLDNN2P14cHj+OHf9mA/77qPCwqzQcA3HLmXHgCQbz+xSHVr3dasgRz6dSJvy4REdFpaL7okGWS+m+Qu+pb8e1X3scP15yJtXMqBu5Ps5rxjTPn4jcbdiAy0TskCgJMxWUTe00iIqIYCLKs7cYAwbqjaHvml1qWMCGM+SXIu+2HWpdBRER0Cs1bBkyFkwCD5vslxZcowlI2Q+sqiIiIhqV5GBAMRtjnnan5ZkVxJUmwz1+udRVERETD0sU7sHPlxQC03cY4bkQR1hnzYcor1roSIiKiYekiDBgzsmGbm6StA5KEtLMu1boKIiKiEenm3Tdt1cWAtmMZ1SeKsEyZA1NBqdaVEBERjUg3YcCYlQfbghVxWXNAM7KMtHO/pHUVREREo9JNGAAA15prYMwpSJruAteaa2AunKR1GURERKPS1buuaDIj65o7+vYsSOAWAkGArXIp7IvO0boSIiKi09JVGAAAY2YuMv/hViTs7AJBhDGnAK5Lvw4hmbo8iIgoaekuDACAdWol0s67UusylBNECFYbsq65AyK3KyYiogSh+XLEo/Fs+RDd77+qdRmxEUSIaRnIuf4fYczK1boaIiKimOk6DACAb+/n6HzrWUCSAHmCNxeKlSDAlF+KrK/eBYMzXetqiIiIFNF9GACAUFMt2l95DJKnW2eBQAAgw7ZgJTIuvhaC0aR1QURERIolRBgAAMnXi+6P/gzv9o3RtQh0EApEpwuuC78C25zFWpdCREQ0ZgkTBvqFWhvQ/f6rCFTv7wsFE1y+IAIGA9LOWgvn0vP6pkESERElroQLA/38R/ai673/QaSjBRDF6JiCuDrRJZB+7uUwOF1xvh4REdHESNgwAACyLCF4/Ah8e7fCt3cr5IBf3WDQ1/JgzC+Bfd6ZsM1aBEN6hjrnJiIi0omEDgODyZEwAker4N2zBYHDe6LBAIi+oQvC6QOCaACkSN83AgxZubBXLoFtzhIYs/PjWjsREZGWkiYMDCbLMqTeboRbGxFqbYj+t6kWktcDORKGHAlDEETAaIRgMMKYnQ9TXhGMuUUw5RbBmJ3PsQBERJQykjIMEBERUex0uRwxERERTRyGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKc6odQGDmRfeAtFohiAaIIgGGEwnbguieOIxgwGi0Qxx4DHDKY8JogGiKEAQBRgMIoSTbouiANEgDBwz6mOCAINRhEEUYBAFmPtuGwe+N5x4zHDiOOOgYw3D3RYEiIIAgwCYDOLAbaNBhEFA9HtRgEkUhrkdfdwkigO3DYIAQQBEARAE9J0fEAAYRAEiEP1dRAzcFgXAIAy+HT2HIMuALEGQwsCQ21L0Sxr5MUGWgEjkxG0pDEgRyJIEhIOQIxFAkqL3hUOQpUj0digE9N/uP7b/uFDwxM9IEUihMOSIBFmSIAXDkCLRn5EjEqRQGFLkxG2573YkFIY86LhIMDzodgSyJEOKyH3f9/28JEcfi8iQIzKkiIRISOo7p4xIKNL3Myd+TpJlRGQZQUlGRMZJt0/+PnpbQvR2REbfYydu/1au0fR1qRa+vvn65utbv69vtgwQERGlOIYBIiKiFMcwQERElOIYBoiIiFIcwwAREVGKYxggIiJKcQwDREREKY5hgIiIKMUxDBAREaU4hgEiIqIUxzBARESU4hgGiIiIUhzDABERUYpjGCAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjFMQwQERGlOjlJ+f1++cc//rHs9/u1LuUUeq5NllnfeOi5tmSi5+dZz7XJMusbDz3XNl6CLMuy1oEkHrq7u+FyudDV1YX09HStyxlCz7UBrG889FxbMtHz86zn2gDWNx56rm282E1ARESU4hgGiIiIUhzDABERUYpL2jBgsVjw4x//GBaLRetSTqHn2gDWNx56ri2Z6Pl51nNtAOsbDz3XNl5JO4CQiIiIYpO0LQNEREQUG4YBIiKiFMcwQERElOKSLgx8//vfx1lnnYWvf/3rCAaDQx7z+Xy47LLLcM455+DCCy9ER0eHrurr9+///u9YvHix5jWFw2HcfPPNOOuss3DvvfdOWD2x1tdvop+vwUaqTQ9/a8mIr2/1auLr+/RS6fWdVGFgx44daGpqwoYNGzB79my89tprQx7/29/+hsrKSvz973/HNddcg+eff15X9QFAT08P9uzZo4ua3n77bZSUlGDDhg3wer349NNPJ6yuWOoDJv75irU2rf/WkhFf3+rWxNf32GvT+m8tHpIqDGzatAkXXXQRAODiiy8+5Y972rRp8Hq9AAC3243c3Fxd1QcAv/rVr3DXXXfpoqZY6tWyPmDin6/BRqtN67+1ZMTXt7o18fU9ulR7fRu1LkBNbrcbRUVFAACXy3VK082UKVOwZ88eVFZWQhAEbN68WVf1dXV1Yffu3fjRj36ki5rcbvfA+tvD1at1fVo8X7HWpvXfWjLi61vdmvj6HnttWv+txUNCtgw0NTVh1apVp3zJsozu7m4A0f+RWVlZQ37u2Wefxbnnnos9e/bgX//1X/GTn/xEV/U98sgjuPvuu+NS00gyMzNHrGm0x/RQnxbP12Cj1TZRf2vJiK9v9fD1PXap9vpOyDBQUFCAjRs3nvK1du1avP/++wCA9957DytXrjzlZ/v/h2ZkZMDtduuqvsOHD+PBBx/ExRdfjEOHDuFnP/tZXOob7MwzzxyxptEemyij1aDF8xVrbcDE/K0lI76+1cPXd3xqA5Lw9a3d7snx8b3vfU9etWqVfN1118mBQECWZVn+1re+JcuyLHd1dclr166VzznnHHnlypXygQMHdFXfYIsWLdKspv56QqGQfOONN8qrVq2S77nnngmrJ9b6BpvI52uwkWrTw99aMuLre/w18fUdu1R6fXM5YiIiohSXkN0EREREpB6GASIiohTHMEBERJTiGAaIiIhSHMNACnjmmWeQkZGhyrlqamogCAKMRiPq6+uHPNbY2Aij0QhBEFBTUzPksddffx3nnnsuXC4XnE4n5s2bh5/85CcDC3moWSNRqrn55pshCAJuv/32Ux678847IQgCbr755oH7mpqacM8996CiogIWiwWlpaW4/PLLsW7duoFjysrK8Mgjj0xA9aQHDAM0JkVFRXjuueeG3Pfss8+iuLj4lGN/+MMf4tprr8WSJUvwt7/9DXv27MHDDz+MnTt3JsWa3kR6UFpaipdffhk+n2/gPr/fj5deegmTJk0auK+mpgaLFi3Chx9+iF/84hfYvXs33n33XaxevVqzpX9JewwDCeDdd9/FqlWrkJGRgezsbFx22WU4cuQIAGD9+vUQBGHIohdffPHFwKfz9evX4xvf+Aa6urogCAIEQcADDzwAAOjs7MSNN96IzMxM2O12XHLJJTh06FBMNd100014+umnh9z3zDPP4Kabbhpy35YtW/DQQw/h4Ycfxi9/+UusWLECZWVluPDCC/H666+fcjwRjc0ZZ5yBSZMm4Y033hi474033kBpaSkWLlw4cF9/S8GWLVvwla98BdOnT8ecOXPw3e9+F5999pkWpZMOMAwkgN7eXnz3u9/F1q1bsW7dOoiiiC9/+cuQJOm0P7tixQo88sgjSE9PR2NjIxobG/H9738fQLRp8fPPP8dbb72FTZs2QZZlrF27FqFQ6LTn/dKXvoTOzk5s3LgRALBx40Z0dHTg8ssvH3LcH//4RzidTtx5553DnoddA0Tq+cY3vjEkpD/11FO45ZZbBr7v6OjAu+++i7vuugsOh+OUn+frMXUl1UZFyeqqq64a8v0f/vAH5OXlYd++faf9WbPZDJfLBUEQUFBQMHD/oUOH8NZbb+GTTz7BihUrAETfuEtLS/Hmm2/i6quvHvW8JpMJ119/PZ566imsWrUKTz31FK6//nqYTKYhxx06dAgVFRWn3E9E6rvhhhvwz//8zwNjez755BO8/PLLWL9+PYDoEr+yLGPmzJnaFkq6w5aBBHDkyBFcd911qKioQHp6OsrLywEAx48fH/M5q6qqYDQasWzZsoH7srOzMWPGDFRVVQEALrnkEjidTjidTsyZM+eUc9x666149dVX0dTUhFdffXXIJ5B+sixDEIQx10lEscvJycGll16KZ599Fk8//TQuvfRS5OTkDDzev+AsX5N0MrYMJIDLL78cpaWl+P3vf4+ioiJIkoTKykoEg0E4nU4AJ17kAGJq5h9pFerBb95PPvnkwGCk4T7ZV1ZWYubMmfja176GWbNmobKyEl988cWQY6ZPn46NGzciFAqxdYBoAtxyyy0Du/09+uijQx6bNm0aBEFAVVUVrrzySg2qI71iy4DOtbe3o6qqCj/60Y9w/vnnY9asWejs7Bx4PDc3F0B0Wl+/k9+QzWYzIpHIkPtmz56NcDg8ZB/u9vZ2HDx4ELNmzQIAFBcXY+rUqZg6dSomT548bH233HIL1q9fP2yrAABcd9118Hg8eOyxx4Z9PCl2+yLSkYsvvhjBYBDBYBBr1qwZ8lhWVhbWrFmDRx99FL29vaf8LF+PqYthQOcyMzORnZ2NJ554AocPH8aHH36I7373uwOPT506FaWlpXjggQdw8OBB/PWvf8XDDz885BxlZWXweDxYt24d2tra4PV6MW3aNFxxxRW47bbbsHHjRuzcuRPXX389iouLccUVV8Rc32233YbW1lZ885vfHPbxZcuW4f7778f3vvc93H///di0aROOHTuGdevW4eqrr8azzz47tieGiIZlMBhQVVWFqqoqGAyGUx5/7LHHEIlEsHTpUrz++us4dOgQqqqq8Otf/xrLly/XoGLSA4YBnRNFES+//DK2bduGyspK3HffffjlL3858LjJZMJLL72E/fv3Y/78+fj5z3+On/70p0POsWLFCtx+++249tprkZubi1/84hcAgKeffhqLFi3CZZddhuXLl0OWZbzzzjuKmvONRiNycnJgNI7c4/Tzn/8cL774IjZv3ow1a9YMTGOaN28epxYSxUF6ejrS09OHfay8vBzbt2/H6tWr8b3vfQ+VlZW48MILsW7dOjz++OMTXCnpBbcwJiIiSnFsGSAiIkpxDANEREQpjmGAiIgoxTEMEBERpTiGASIiohTHMEBERJTiGAaIiIhSHMMAERFRimMYICIiSnEMA0RERCmOYYCIiCjF/X/AEMGO9RT10QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] From 690f9deb01b3eca4b2ad5f177222dfa00394b2c4 Mon Sep 17 00:00:00 2001 From: jakobrunge Date: Tue, 27 Jun 2023 17:11:06 +0200 Subject: [PATCH 5/5] revised docs --- README.md | 2 + docs/Pipfile | 12 + docs/Pipfile.lock | 313 + docs/_build/.buildinfo | 2 +- docs/_build/.doctrees/environment.pickle | Bin 4233118 -> 1199935 bytes docs/_build/.doctrees/index.doctree | Bin 2245147 -> 2197135 bytes ...43f6fc8c8fa5c1bcbe7ac1e6cb52ba65f14e0a.png | Bin 518 -> 0 bytes ...021f5b161b8c919e79247f310dde9b4ed3bb31.png | Bin 648 -> 0 bytes ...bd02270eed8e22d1d33fcc8b606dfb6a2cf77b.png | Bin 382 -> 0 bytes ...762ad4c19826633f4d45cf2474b09d3af721ad.png | Bin 977 -> 0 bytes ...febfb6602ca200cd0a1683a6c69ec20fde14b9.png | Bin 295 -> 0 bytes ...fee27df47b7ba9492d8ee1eb592578a399e6ee.png | Bin 977 -> 0 bytes ...82f9af24f0851d6d6c721d6fca48286566647e.png | Bin 383 -> 0 bytes ...d96ac57b370ce811ab9d31f0c7f2b1efa18711.png | Bin 403 -> 0 bytes docs/_build/_modules/abc.html | 20 +- docs/_build/_modules/index.html | 8 +- .../_modules/tigramite/causal_effects.html | 126 +- .../_modules/tigramite/data_processing.html | 21 +- .../tigramite/independence_tests/cmiknn.html | 120 +- .../tigramite/independence_tests/cmisymb.html | 8 +- .../tigramite/independence_tests/gpdc.html | 10 +- .../independence_tests/gpdc_torch.html | 10 +- .../independence_tests/gsquared.html | 8 +- .../independence_tests_base.html | 174 +- .../oracle_conditional_independence.html | 19 +- .../tigramite/independence_tests/parcorr.html | 11 +- .../independence_tests/parcorr_mult.html | 12 +- .../independence_tests/parcorr_wls.html | 10 +- .../independence_tests/regressionCI.html | 8 +- .../independence_tests/robust_parcorr.html | 10 +- docs/_build/_modules/tigramite/lpcmci.html | 98 +- docs/_build/_modules/tigramite/models.html | 21 +- docs/_build/_modules/tigramite/pcmci.html | 603 +- docs/_build/_modules/tigramite/plotting.html | 8 +- docs/_build/_modules/tigramite/rpcmci.html | 14 +- .../structural_causal_processes.html | 8 +- docs/_build/_sources/index.rst.txt | 2 +- docs/_build/_static/ajax-loader.gif | Bin 0 -> 673 bytes docs/_build/_static/alabaster.css | 218 +- docs/_build/_static/basic.css | 404 +- docs/_build/_static/comment-bright.png | Bin 0 -> 756 bytes docs/_build/_static/comment-close.png | Bin 0 -> 829 bytes docs/_build/_static/comment.png | Bin 0 -> 641 bytes docs/_build/_static/contents.png | Bin 0 -> 107 bytes docs/_build/_static/doctools.js | 419 +- docs/_build/_static/documentation_options.js | 13 +- docs/_build/_static/down-pressed.png | Bin 0 -> 222 bytes docs/_build/_static/down.png | Bin 0 -> 202 bytes docs/_build/_static/jquery-3.1.0.js | 10074 ++++++++++++++ docs/_build/_static/jquery-3.2.1.js | 10253 +++++++++++++++ docs/_build/_static/jquery-3.4.1.js | 10598 +++++++++++++++ .../jquery-3.5.1.js} | 227 +- docs/_build/_static/jquery.js | 6 +- docs/_build/_static/language_data.js | 106 +- docs/_build/_static/navigation.png | Bin 0 -> 120 bytes docs/_build/_static/pygments.css | 139 +- docs/_build/_static/searchtools.js | 1059 +- docs/_build/_static/sphinxdoc.css | 345 + docs/_build/_static/underscore-1.3.1.js | 999 ++ docs/_build/_static/underscore.js | 37 +- docs/_build/_static/up-pressed.png | Bin 0 -> 214 bytes docs/_build/_static/up.png | Bin 0 -> 203 bytes docs/_build/_static/websupport.js | 808 ++ docs/_build/doctrees/environment.pickle | Bin 4176306 -> 0 bytes docs/_build/doctrees/index.doctree | Bin 2223271 -> 0 bytes docs/_build/genindex.html | 14 +- docs/_build/html/.buildinfo | 4 - docs/_build/html/.nojekyll | 0 ...effbe50a9c1421627153afe77c1c013193dd90.png | Bin 1187 -> 0 bytes ...404a5b5e25ce89d718023e0444f48e6c472c3b.png | Bin 377 -> 0 bytes ...af846e07c93e1c0d4cdbba8f4cefca67a811cb.png | Bin 537 -> 0 bytes ...2da53015c9d2f2c52257723f812bf512b6818e.png | Bin 246 -> 0 bytes ...5e577d6216dca3af7d87aa122a0b9b360d6cb3.png | Bin 241 -> 0 bytes ...582dab63cb7f6604f5bf70224030ad3411ae16.png | Bin 239 -> 0 bytes ...efd09fac35da0e767657f265a363a8697a6c8d.png | Bin 254 -> 0 bytes ...bc6fbe0a632d2f173d16ac6bc4f11d108e7fe6.png | Bin 252 -> 0 bytes ...b09a13f97c2e89eb7687980b95a54839775fc8.png | Bin 541 -> 0 bytes ...82aa5d9b56c4f42679de5f902a74d8ae88a624.png | Bin 314 -> 0 bytes ...f7d59fe2ecd30074d48feb7da561ea838ea61f.png | Bin 267 -> 0 bytes ...f86ca220f43e569c6c7aefaf32742919222e6e.png | Bin 295 -> 0 bytes ...5aa019312e1bbc969deab8dca8b00f76025404.png | Bin 228 -> 0 bytes ...858b59a7270363c15ca14b0d5fc56d33af1f8a.png | Bin 1784 -> 0 bytes ...06eadc281dbd20de843b0034c8497320dae5cb.png | Bin 260 -> 0 bytes ...939c5280da7202ca4531f175a7780ad5e1f80a.png | Bin 228 -> 0 bytes ...a339d4daf45a810dda332e3c80a0698e526e04.png | Bin 196 -> 0 bytes ...71aa22c129c9a9fefccd42a37ecfff31311645.png | Bin 496 -> 0 bytes ...8c562c89b6bf12d27dc6cdc9dc090f7bb78e9c.png | Bin 521 -> 0 bytes ...932505aadaa1eac6316ff09c2c3b101b068168.png | Bin 445 -> 0 bytes ...7eda4bf3d5ce33b6cc785cadfef79bb95741ca.png | Bin 433 -> 0 bytes ...cffdf6c6b31ddba452a834568233441411465b.png | Bin 537 -> 0 bytes ...9735c1db036ea36cd0aa25a3af4b2528ed3abe.png | Bin 501 -> 0 bytes ...b6e77cc610bf56f5c64cb6dcc6d6ee49f886f9.png | Bin 711 -> 0 bytes ...5b384bfd47bd6e8d707b3189aaab3a46c5ed04.png | Bin 1176 -> 0 bytes ...af0d4815e763eb90f0d5f1dc406f668c1e21db.png | Bin 243 -> 0 bytes ...da5b28f5e08d9d8ed693d334e710f4adadbcfd.png | Bin 801 -> 0 bytes ...11c561ae4561d1808b1c7d4a0321745aa3a134.png | Bin 282 -> 0 bytes ...4b2d4b6659b86d3153d5510839dfb254dfc8a3.png | Bin 192 -> 0 bytes ...468ec117fc04c2589757eb61fc11c15d27bc1b.png | Bin 2020 -> 0 bytes ...f028ab2b20b895fa12d986e0d9f40f7b6e52d3.png | Bin 250 -> 0 bytes ...30132210b904754c9ab272b61cb527d12263ca.png | Bin 225 -> 0 bytes ...353382eebb42a8a9dec3a426d346d4842bd39d.png | Bin 441 -> 0 bytes ...b17d1c3442224393b5a845ae344dbe542593d7.png | Bin 292 -> 0 bytes ...9afdaf786ce53318d75d81f050af8560822fcd.png | Bin 252 -> 0 bytes ...bf5e0fc00c3cf8bdbef4581708d03703b5dca7.png | Bin 288 -> 0 bytes ...2df33f46595ed60c51f255186ee346c1fcc0cb.png | Bin 2016 -> 0 bytes ...c245d487949782a89cab9ee83504a62fdc2337.png | Bin 247 -> 0 bytes ...07aa32325c7a6161c0cef04f9b702054873211.png | Bin 337 -> 0 bytes ...38eb4004ec8179f569f36692f9132289acf8b1.png | Bin 269 -> 0 bytes ...d0f97cd9bb4e6571e2689163f9f2989b304f55.png | Bin 232 -> 0 bytes ...ed4f54ee00448249d2df22ad67f3e281df085b.png | Bin 494 -> 0 bytes ...7734af70861b2bd4dedf5c41c9aad231466f84.png | Bin 235 -> 0 bytes ...568cb2be91af3efd87bd543226444672c4126e.png | Bin 1418 -> 0 bytes ...26d17c031c4b264fb8f59f953381951cc2e9b4.png | Bin 1975 -> 0 bytes ...ac9b60213cb2ffe02c6d5dacac8796221c73ac.png | Bin 962 -> 0 bytes ...ee85ac4d75924cdf4b18f5fb3b46550932fc26.png | Bin 224 -> 0 bytes ...3d34854a6f48587cf5b9a41df90ad1c5e332d6.png | Bin 1383 -> 0 bytes ...fc28292267f066fee7718c64f4bbfece521f24.png | Bin 215 -> 0 bytes ...76f7877e03a3707387149ce203c5e79ed8f9a9.png | Bin 955 -> 0 bytes ...38fa24f1c94891bd312012aab3f6673be3eb83.png | Bin 254 -> 0 bytes ...8158476cb55e03cc8643afc1e10a56da446a3a.png | Bin 262 -> 0 bytes ...52990c4a225a95d2c694a9f1351f54bac3ba86.png | Bin 256 -> 0 bytes ...f7b4153a6590df59f8ed526be56220045b7f3b.png | Bin 259 -> 0 bytes docs/_build/html/_images/mci_schematic.png | Bin 61004 -> 0 bytes docs/_build/html/_modules/abc.html | 248 - docs/_build/html/_modules/index.html | 114 - .../_modules/tigramite/causal_effects.html | 2705 ---- .../_modules/tigramite/data_processing.html | 1643 --- .../tigramite/independence_tests/cmiknn.html | 580 - .../independence_tests/cmiknnmixed.html | 1597 --- .../tigramite/independence_tests/cmisymb.html | 368 - .../tigramite/independence_tests/gpdc.html | 755 -- .../independence_tests/gpdc_torch.html | 911 -- .../independence_tests/gsquared.html | 285 - .../independence_tests_base.html | 1187 -- .../oracle_conditional_independence.html | 1662 --- .../tigramite/independence_tests/parcorr.html | 407 - .../independence_tests/parcorr_mult.html | 472 - .../independence_tests/parcorr_wls.html | 511 - .../independence_tests/regressionCI.html | 465 - .../independence_tests/robust_parcorr.html | 494 - .../html/_modules/tigramite/lpcmci.html | 3687 ------ .../html/_modules/tigramite/models.html | 2050 --- .../_build/html/_modules/tigramite/pcmci.html | 3934 ------ .../html/_modules/tigramite/plotting.html | 4639 ------- .../structural_causal_processes.html | 1245 -- docs/_build/html/_sources/index.rst.txt | 191 - .../_sphinx_javascript_frameworks_compat.js | 134 - docs/_build/html/_static/alabaster.css | 701 - docs/_build/html/_static/basic.css | 930 -- docs/_build/html/_static/custom.css | 1 - docs/_build/html/_static/doctools.js | 264 - .../html/_static/documentation_options.js | 14 - docs/_build/html/_static/file.png | Bin 286 -> 0 bytes docs/_build/html/_static/jquery.js | 2 - docs/_build/html/_static/language_data.js | 199 - docs/_build/html/_static/minus.png | Bin 90 -> 0 bytes docs/_build/html/_static/plus.png | Bin 90 -> 0 bytes docs/_build/html/_static/pygments.css | 82 - docs/_build/html/_static/searchtools.js | 531 - docs/_build/html/_static/sphinx_highlight.js | 144 - docs/_build/html/_static/underscore-1.13.1.js | 2042 --- docs/_build/html/_static/underscore.js | 6 - docs/_build/html/genindex.html | 708 - docs/_build/html/index.html | 5693 -------- docs/_build/html/objects.inv | Bin 1827 -> 0 bytes docs/_build/html/py-modindex.html | 129 - docs/_build/html/search.html | 118 - docs/_build/html/searchindex.js | 1 - docs/_build/index.html | 335 +- docs/_build/objects.inv | Bin 1851 -> 1852 bytes docs/_build/py-modindex.html | 8 +- docs/_build/search.html | 8 +- docs/_build/searchindex.js | 2 +- docs/_modules/abc.html | 38 +- docs/_modules/index.html | 9 +- docs/_modules/tigramite/causal_effects.html | 157 +- docs/_modules/tigramite/data_processing.html | 77 +- .../tigramite/independence_tests/cmiknn.html | 123 +- .../independence_tests/cmiknnmixed.html | 1597 --- .../tigramite/independence_tests/cmisymb.html | 38 +- .../tigramite/independence_tests/gpdc.html | 14 +- .../independence_tests/gpdc_torch.html | 12 +- .../independence_tests/gsquared.html | 8 +- .../independence_tests_base.html | 232 +- .../oracle_conditional_independence.html | 19 +- .../tigramite/independence_tests/parcorr.html | 11 +- .../independence_tests/parcorr_mult.html | 12 +- .../independence_tests/parcorr_wls.html | 14 +- .../independence_tests/regressionCI.html | 40 +- .../independence_tests/robust_parcorr.html | 12 +- docs/_modules/tigramite/lpcmci.html | 98 +- docs/_modules/tigramite/models.html | 149 +- docs/_modules/tigramite/pcmci.html | 653 +- docs/_modules/tigramite/plotting.html | 290 +- docs/_modules/tigramite/rpcmci.html | 565 + .../structural_causal_processes.html | 8 +- docs/_sources/index.rst.txt | 10 +- docs/_static/ajax-loader.gif | Bin 0 -> 673 bytes docs/_static/alabaster.css | 218 +- docs/_static/basic.css | 404 +- docs/_static/comment-bright.png | Bin 0 -> 756 bytes docs/_static/comment-close.png | Bin 0 -> 829 bytes docs/_static/comment.png | Bin 0 -> 641 bytes docs/_static/contents.png | Bin 0 -> 107 bytes docs/_static/doctools.js | 419 +- docs/_static/documentation_options.js | 13 +- docs/_static/down-pressed.png | Bin 0 -> 222 bytes docs/_static/down.png | Bin 0 -> 202 bytes docs/_static/jquery-3.1.0.js | 10074 ++++++++++++++ docs/_static/jquery-3.2.1.js | 10253 +++++++++++++++ docs/_static/jquery-3.4.1.js | 10598 +++++++++++++++ docs/_static/jquery-3.5.1.js | 10872 ++++++++++++++++ docs/_static/jquery.js | 6 +- docs/_static/language_data.js | 106 +- docs/_static/navigation.png | Bin 0 -> 120 bytes docs/_static/pygments.css | 139 +- docs/_static/searchtools.js | 1059 +- docs/_static/sphinxdoc.css | 345 + docs/_static/underscore-1.3.1.js | 999 ++ docs/_static/underscore.js | 37 +- docs/_static/up-pressed.png | Bin 0 -> 214 bytes docs/_static/up.png | Bin 0 -> 203 bytes docs/_static/websupport.js | 808 ++ docs/conf.py | 3 +- docs/genindex.html | 20 +- docs/index.html | 590 +- docs/index.rst | 2 +- docs/objects.inv | Bin 1827 -> 1852 bytes docs/py-modindex.html | 8 +- docs/search.html | 8 +- docs/searchindex.js | 2 +- setup.py | 2 +- tigramite/data_processing.py | 2 +- 233 files changed, 83158 insertions(+), 47598 deletions(-) create mode 100644 docs/Pipfile create mode 100644 docs/Pipfile.lock delete mode 100644 docs/_build/_images/math/0f43f6fc8c8fa5c1bcbe7ac1e6cb52ba65f14e0a.png delete mode 100644 docs/_build/_images/math/23021f5b161b8c919e79247f310dde9b4ed3bb31.png delete mode 100644 docs/_build/_images/math/3ebd02270eed8e22d1d33fcc8b606dfb6a2cf77b.png delete mode 100644 docs/_build/_images/math/7f762ad4c19826633f4d45cf2474b09d3af721ad.png delete mode 100644 docs/_build/_images/math/bbfebfb6602ca200cd0a1683a6c69ec20fde14b9.png delete mode 100644 docs/_build/_images/math/dbfee27df47b7ba9492d8ee1eb592578a399e6ee.png delete mode 100644 docs/_build/_images/math/eb82f9af24f0851d6d6c721d6fca48286566647e.png delete mode 100644 docs/_build/_images/math/efd96ac57b370ce811ab9d31f0c7f2b1efa18711.png create mode 100644 docs/_build/_static/ajax-loader.gif create mode 100644 docs/_build/_static/comment-bright.png create mode 100644 docs/_build/_static/comment-close.png create mode 100644 docs/_build/_static/comment.png create mode 100644 docs/_build/_static/contents.png create mode 100644 docs/_build/_static/down-pressed.png create mode 100644 docs/_build/_static/down.png create mode 100644 docs/_build/_static/jquery-3.1.0.js create mode 100644 docs/_build/_static/jquery-3.2.1.js create mode 100644 docs/_build/_static/jquery-3.4.1.js rename docs/_build/{html/_static/jquery-3.6.0.js => _static/jquery-3.5.1.js} (98%) create mode 100644 docs/_build/_static/navigation.png create mode 100644 docs/_build/_static/sphinxdoc.css create mode 100644 docs/_build/_static/underscore-1.3.1.js create mode 100644 docs/_build/_static/up-pressed.png create mode 100644 docs/_build/_static/up.png create mode 100644 docs/_build/_static/websupport.js delete mode 100644 docs/_build/doctrees/environment.pickle delete mode 100644 docs/_build/doctrees/index.doctree delete mode 100644 docs/_build/html/.buildinfo delete mode 100644 docs/_build/html/.nojekyll delete mode 100644 docs/_build/html/_images/math/04effbe50a9c1421627153afe77c1c013193dd90.png delete mode 100644 docs/_build/html/_images/math/12404a5b5e25ce89d718023e0444f48e6c472c3b.png delete mode 100644 docs/_build/html/_images/math/15af846e07c93e1c0d4cdbba8f4cefca67a811cb.png delete mode 100644 docs/_build/html/_images/math/1a2da53015c9d2f2c52257723f812bf512b6818e.png delete mode 100644 docs/_build/html/_images/math/1b5e577d6216dca3af7d87aa122a0b9b360d6cb3.png delete mode 100644 docs/_build/html/_images/math/20582dab63cb7f6604f5bf70224030ad3411ae16.png delete mode 100644 docs/_build/html/_images/math/20efd09fac35da0e767657f265a363a8697a6c8d.png delete mode 100644 docs/_build/html/_images/math/25bc6fbe0a632d2f173d16ac6bc4f11d108e7fe6.png delete mode 100644 docs/_build/html/_images/math/26b09a13f97c2e89eb7687980b95a54839775fc8.png delete mode 100644 docs/_build/html/_images/math/2882aa5d9b56c4f42679de5f902a74d8ae88a624.png delete mode 100644 docs/_build/html/_images/math/2bf7d59fe2ecd30074d48feb7da561ea838ea61f.png delete mode 100644 docs/_build/html/_images/math/2bf86ca220f43e569c6c7aefaf32742919222e6e.png delete mode 100644 docs/_build/html/_images/math/2f5aa019312e1bbc969deab8dca8b00f76025404.png delete mode 100644 docs/_build/html/_images/math/42858b59a7270363c15ca14b0d5fc56d33af1f8a.png delete mode 100644 docs/_build/html/_images/math/5406eadc281dbd20de843b0034c8497320dae5cb.png delete mode 100644 docs/_build/html/_images/math/5a939c5280da7202ca4531f175a7780ad5e1f80a.png delete mode 100644 docs/_build/html/_images/math/5aa339d4daf45a810dda332e3c80a0698e526e04.png delete mode 100644 docs/_build/html/_images/math/5d71aa22c129c9a9fefccd42a37ecfff31311645.png delete mode 100644 docs/_build/html/_images/math/5f8c562c89b6bf12d27dc6cdc9dc090f7bb78e9c.png delete mode 100644 docs/_build/html/_images/math/64932505aadaa1eac6316ff09c2c3b101b068168.png delete mode 100644 docs/_build/html/_images/math/667eda4bf3d5ce33b6cc785cadfef79bb95741ca.png delete mode 100644 docs/_build/html/_images/math/6ecffdf6c6b31ddba452a834568233441411465b.png delete mode 100644 docs/_build/html/_images/math/789735c1db036ea36cd0aa25a3af4b2528ed3abe.png delete mode 100644 docs/_build/html/_images/math/78b6e77cc610bf56f5c64cb6dcc6d6ee49f886f9.png delete mode 100644 docs/_build/html/_images/math/7b5b384bfd47bd6e8d707b3189aaab3a46c5ed04.png delete mode 100644 docs/_build/html/_images/math/7daf0d4815e763eb90f0d5f1dc406f668c1e21db.png delete mode 100644 docs/_build/html/_images/math/88da5b28f5e08d9d8ed693d334e710f4adadbcfd.png delete mode 100644 docs/_build/html/_images/math/8b11c561ae4561d1808b1c7d4a0321745aa3a134.png delete mode 100644 docs/_build/html/_images/math/914b2d4b6659b86d3153d5510839dfb254dfc8a3.png delete mode 100644 docs/_build/html/_images/math/93468ec117fc04c2589757eb61fc11c15d27bc1b.png delete mode 100644 docs/_build/html/_images/math/95f028ab2b20b895fa12d986e0d9f40f7b6e52d3.png delete mode 100644 docs/_build/html/_images/math/9630132210b904754c9ab272b61cb527d12263ca.png delete mode 100644 docs/_build/html/_images/math/9c353382eebb42a8a9dec3a426d346d4842bd39d.png delete mode 100644 docs/_build/html/_images/math/a7b17d1c3442224393b5a845ae344dbe542593d7.png delete mode 100644 docs/_build/html/_images/math/ab9afdaf786ce53318d75d81f050af8560822fcd.png delete mode 100644 docs/_build/html/_images/math/aebf5e0fc00c3cf8bdbef4581708d03703b5dca7.png delete mode 100644 docs/_build/html/_images/math/b62df33f46595ed60c51f255186ee346c1fcc0cb.png delete mode 100644 docs/_build/html/_images/math/b6c245d487949782a89cab9ee83504a62fdc2337.png delete mode 100644 docs/_build/html/_images/math/be07aa32325c7a6161c0cef04f9b702054873211.png delete mode 100644 docs/_build/html/_images/math/be38eb4004ec8179f569f36692f9132289acf8b1.png delete mode 100644 docs/_build/html/_images/math/c0d0f97cd9bb4e6571e2689163f9f2989b304f55.png delete mode 100644 docs/_build/html/_images/math/c4ed4f54ee00448249d2df22ad67f3e281df085b.png delete mode 100644 docs/_build/html/_images/math/c67734af70861b2bd4dedf5c41c9aad231466f84.png delete mode 100644 docs/_build/html/_images/math/c7568cb2be91af3efd87bd543226444672c4126e.png delete mode 100644 docs/_build/html/_images/math/d226d17c031c4b264fb8f59f953381951cc2e9b4.png delete mode 100644 docs/_build/html/_images/math/d4ac9b60213cb2ffe02c6d5dacac8796221c73ac.png delete mode 100644 docs/_build/html/_images/math/d8ee85ac4d75924cdf4b18f5fb3b46550932fc26.png delete mode 100644 docs/_build/html/_images/math/db3d34854a6f48587cf5b9a41df90ad1c5e332d6.png delete mode 100644 docs/_build/html/_images/math/e3fc28292267f066fee7718c64f4bbfece521f24.png delete mode 100644 docs/_build/html/_images/math/e676f7877e03a3707387149ce203c5e79ed8f9a9.png delete mode 100644 docs/_build/html/_images/math/ed38fa24f1c94891bd312012aab3f6673be3eb83.png delete mode 100644 docs/_build/html/_images/math/f08158476cb55e03cc8643afc1e10a56da446a3a.png delete mode 100644 docs/_build/html/_images/math/f852990c4a225a95d2c694a9f1351f54bac3ba86.png delete mode 100644 docs/_build/html/_images/math/fff7b4153a6590df59f8ed526be56220045b7f3b.png delete mode 100644 docs/_build/html/_images/mci_schematic.png delete mode 100644 docs/_build/html/_modules/abc.html delete mode 100644 docs/_build/html/_modules/index.html delete mode 100644 docs/_build/html/_modules/tigramite/causal_effects.html delete mode 100644 docs/_build/html/_modules/tigramite/data_processing.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/cmiknn.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/cmiknnmixed.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/cmisymb.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/gpdc.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/gpdc_torch.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/gsquared.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/independence_tests_base.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/oracle_conditional_independence.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/parcorr.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/parcorr_mult.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/parcorr_wls.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/regressionCI.html delete mode 100644 docs/_build/html/_modules/tigramite/independence_tests/robust_parcorr.html delete mode 100644 docs/_build/html/_modules/tigramite/lpcmci.html delete mode 100644 docs/_build/html/_modules/tigramite/models.html delete mode 100644 docs/_build/html/_modules/tigramite/pcmci.html delete mode 100644 docs/_build/html/_modules/tigramite/plotting.html delete mode 100644 docs/_build/html/_modules/tigramite/toymodels/structural_causal_processes.html delete mode 100644 docs/_build/html/_sources/index.rst.txt delete mode 100644 docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js delete mode 100644 docs/_build/html/_static/alabaster.css delete mode 100644 docs/_build/html/_static/basic.css delete mode 100644 docs/_build/html/_static/custom.css delete mode 100644 docs/_build/html/_static/doctools.js delete mode 100644 docs/_build/html/_static/documentation_options.js delete mode 100644 docs/_build/html/_static/file.png delete mode 100644 docs/_build/html/_static/jquery.js delete mode 100644 docs/_build/html/_static/language_data.js delete mode 100644 docs/_build/html/_static/minus.png delete mode 100644 docs/_build/html/_static/plus.png delete mode 100644 docs/_build/html/_static/pygments.css delete mode 100644 docs/_build/html/_static/searchtools.js delete mode 100644 docs/_build/html/_static/sphinx_highlight.js delete mode 100644 docs/_build/html/_static/underscore-1.13.1.js delete mode 100644 docs/_build/html/_static/underscore.js delete mode 100644 docs/_build/html/genindex.html delete mode 100644 docs/_build/html/index.html delete mode 100644 docs/_build/html/objects.inv delete mode 100644 docs/_build/html/py-modindex.html delete mode 100644 docs/_build/html/search.html delete mode 100644 docs/_build/html/searchindex.js delete mode 100644 docs/_modules/tigramite/independence_tests/cmiknnmixed.html create mode 100644 docs/_modules/tigramite/rpcmci.html create mode 100644 docs/_static/ajax-loader.gif create mode 100644 docs/_static/comment-bright.png create mode 100644 docs/_static/comment-close.png create mode 100644 docs/_static/comment.png create mode 100644 docs/_static/contents.png create mode 100644 docs/_static/down-pressed.png create mode 100644 docs/_static/down.png create mode 100644 docs/_static/jquery-3.1.0.js create mode 100644 docs/_static/jquery-3.2.1.js create mode 100644 docs/_static/jquery-3.4.1.js create mode 100644 docs/_static/jquery-3.5.1.js create mode 100644 docs/_static/navigation.png create mode 100644 docs/_static/sphinxdoc.css create mode 100644 docs/_static/underscore-1.3.1.js create mode 100644 docs/_static/up-pressed.png create mode 100644 docs/_static/up.png create mode 100644 docs/_static/websupport.js diff --git a/README.md b/README.md index b548260f..3e77cbe7 100644 --- a/README.md +++ b/README.md @@ -42,6 +42,8 @@ Further, Tigramite provides several causal discovery methods that can be used un Tigramite is a causal inference for time series python package. It allows to efficiently estimate causal graphs from high-dimensional time series datasets (causal discovery) and to use graphs for robust forecasting and the estimation and prediction of direct, total, and mediated effects. Causal discovery is based on linear as well as non-parametric conditional independence tests applicable to discrete or continuously-valued time series. Also includes functions for high-quality plots of the results. Please cite the following papers depending on which method you use: +- Overview: Runge, J., Gerhardus, A., Varando, G. et al. Causal inference for time series. Nat Rev Earth Environ (2023). https://doi.org/10.1038/s43017-023-00431-y + - PCMCI: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019). https://advances.sciencemag.org/content/5/11/eaau4996 - PCMCI+: J. Runge (2020): Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, AUAI Press, 2020. http://auai.org/uai2020/proceedings/579_main_paper.pdf - LPCMCI: Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders Advances in Neural Information Processing Systems, 2020, 33. https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html diff --git a/docs/Pipfile b/docs/Pipfile new file mode 100644 index 00000000..4854f700 --- /dev/null +++ b/docs/Pipfile @@ -0,0 +1,12 @@ +[[source]] +url = "https://pypi.python.org/simple" +verify_ssl = true +name = "pypi" + +[packages] +sphinx = "*" + +[dev-packages] + +[requires] +python_version = "3.8" diff --git a/docs/Pipfile.lock b/docs/Pipfile.lock new file mode 100644 index 00000000..add5fca2 --- /dev/null +++ b/docs/Pipfile.lock @@ -0,0 +1,313 @@ +{ + "_meta": { + "hash": { + "sha256": "da019dff360cff717cb23424718de6f6b51b2bc53296c06f55c3c901e5f005c3" + }, + "pipfile-spec": 6, + "requires": { + "python_version": "3.8" + }, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.python.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "alabaster": { + "hashes": [ + "sha256:1ee19aca801bbabb5ba3f5f258e4422dfa86f82f3e9cefb0859b283cdd7f62a3", + "sha256:a27a4a084d5e690e16e01e03ad2b2e552c61a65469419b907243193de1a84ae2" + ], + "version": "==0.7.13" + }, + "babel": { + "hashes": [ + "sha256:b4246fb7677d3b98f501a39d43396d3cafdc8eadb045f4a31be01863f655c610", + "sha256:cc2d99999cd01d44420ae725a21c9e3711b3aadc7976d6147f622d8581963455" + ], + "version": "==2.12.1" + }, + "certifi": { + "hashes": [ + "sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7", + "sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716" + ], + "version": "==2023.5.7" + }, + "charset-normalizer": { + "hashes": [ + "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6", + "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1", + "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e", + "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373", + "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62", + "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230", + "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be", + "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c", + "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0", + "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448", + "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f", + "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649", + "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d", + "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0", + "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706", + "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a", + "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59", + "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23", + "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5", + "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb", + "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e", + "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e", + "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c", + "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28", + "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d", + "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41", + "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974", + "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce", + "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f", + "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1", + "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d", + "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8", + "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017", + "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31", + "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7", + "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8", + "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e", + "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14", + "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd", + "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d", + "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795", + "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b", + "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b", + "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b", + "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203", + "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f", + "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19", + "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1", + "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a", + "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac", + "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9", + "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0", + "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137", + "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f", + "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6", + "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5", + "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909", + "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f", + "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0", + "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324", + "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755", + "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb", + "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854", + "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c", + "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60", + "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84", + "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0", + "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b", + "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1", + "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531", + "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1", + "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11", + "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326", + "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df", + "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab" + ], + "version": "==3.1.0" + }, + "docutils": { + "hashes": [ + "sha256:96f387a2c5562db4476f09f13bbab2192e764cac08ebbf3a34a95d9b1e4a59d6", + "sha256:f08a4e276c3a1583a86dce3e34aba3fe04d02bba2dd51ed16106244e8a923e3b" + ], + "version": "==0.20.1" + }, + "idna": { + "hashes": [ + "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4", + "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2" + ], + "version": "==3.4" + }, + "imagesize": { + "hashes": [ + "sha256:0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b", + "sha256:69150444affb9cb0d5cc5a92b3676f0b2fb7cd9ae39e947a5e11a36b4497cd4a" + ], + "version": "==1.4.1" + }, + "importlib-metadata": { + "hashes": [ + "sha256:1aaf550d4f73e5d6783e7acb77aec43d49da8017410afae93822cc9cca98c4d4", + "sha256:cb52082e659e97afc5dac71e79de97d8681de3aa07ff18578330904a9d18e5b5" + ], + "markers": "python_version < '3.10'", + "version": "==6.7.0" + }, + "jinja2": { + "hashes": [ + "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852", + "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61" + ], + "version": "==3.1.2" + }, + "markupsafe": { + "hashes": [ + "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e", + "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e", + "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431", + "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686", + "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559", + "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc", + "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c", + "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0", + "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4", + "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9", + "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575", + "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba", + "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d", + "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3", + "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00", + "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155", + "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac", + "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52", + "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f", + "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8", + "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b", + "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24", + "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea", + "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198", + "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0", + "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee", + "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be", + "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2", + "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707", + "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6", + "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58", + "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779", + "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636", + "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c", + "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad", + "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee", + "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc", + "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2", + "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48", + "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7", + "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e", + "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b", + "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa", + "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5", + "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e", + "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb", + "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9", + "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57", + "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc", + "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2" + ], + "version": "==2.1.3" + }, + "packaging": { + "hashes": [ + "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61", + "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f" + ], + "version": "==23.1" + }, + "pygments": { + "hashes": [ + "sha256:8ace4d3c1dd481894b2005f560ead0f9f19ee64fe983366be1a21e171d12775c", + "sha256:db2db3deb4b4179f399a09054b023b6a586b76499d36965813c71aa8ed7b5fd1" + ], + "version": "==2.15.1" + }, + "pytz": { + "hashes": [ + "sha256:1d8ce29db189191fb55338ee6d0387d82ab59f3d00eac103412d64e0ebd0c588", + "sha256:a151b3abb88eda1d4e34a9814df37de2a80e301e68ba0fd856fb9b46bfbbbffb" + ], + "markers": "python_version < '3.9'", + "version": "==2023.3" + }, + "requests": { + "hashes": [ + "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f", + "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1" + ], + "version": "==2.31.0" + }, + "snowballstemmer": { + "hashes": [ + "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1", + "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a" + ], + "version": "==2.2.0" + }, + "sphinx": { + "hashes": [ + "sha256:60c5e04756c1709a98845ed27a2eed7a556af3993afb66e77fec48189f742616", + "sha256:61e025f788c5977d9412587e733733a289e2b9fdc2fef8868ddfbfc4ccfe881d" + ], + "index": "pypi", + "version": "==7.0.1" + }, + "sphinxcontrib-applehelp": { + "hashes": [ + "sha256:29d341f67fb0f6f586b23ad80e072c8e6ad0b48417db2bde114a4c9746feb228", + "sha256:828f867945bbe39817c210a1abfd1bc4895c8b73fcaade56d45357a348a07d7e" + ], + "version": "==1.0.4" + }, + "sphinxcontrib-devhelp": { + "hashes": [ + "sha256:8165223f9a335cc1af7ffe1ed31d2871f325254c0423bc0c4c7cd1c1e4734a2e", + "sha256:ff7f1afa7b9642e7060379360a67e9c41e8f3121f2ce9164266f61b9f4b338e4" + ], + "version": "==1.0.2" + }, + "sphinxcontrib-htmlhelp": { + "hashes": [ + "sha256:0cbdd302815330058422b98a113195c9249825d681e18f11e8b1f78a2f11efff", + "sha256:c38cb46dccf316c79de6e5515e1770414b797162b23cd3d06e67020e1d2a6903" + ], + "version": "==2.0.1" + }, + "sphinxcontrib-jsmath": { + "hashes": [ + "sha256:2ec2eaebfb78f3f2078e73666b1415417a116cc848b72e5172e596c871103178", + "sha256:a9925e4a4587247ed2191a22df5f6970656cb8ca2bd6284309578f2153e0c4b8" + ], + "version": "==1.0.1" + }, + "sphinxcontrib-qthelp": { + "hashes": [ + "sha256:4c33767ee058b70dba89a6fc5c1892c0d57a54be67ddd3e7875a18d14cba5a72", + "sha256:bd9fc24bcb748a8d51fd4ecaade681350aa63009a347a8c14e637895444dfab6" + ], + "version": "==1.0.3" + }, + "sphinxcontrib-serializinghtml": { + "hashes": [ + "sha256:352a9a00ae864471d3a7ead8d7d79f5fc0b57e8b3f95e9867eb9eb28999b92fd", + "sha256:aa5f6de5dfdf809ef505c4895e51ef5c9eac17d0f287933eb49ec495280b6952" + ], + "version": "==1.1.5" + }, + "urllib3": { + "hashes": [ + "sha256:48e7fafa40319d358848e1bc6809b208340fafe2096f1725d05d67443d0483d1", + "sha256:bee28b5e56addb8226c96f7f13ac28cb4c301dd5ea8a6ca179c0b9835e032825" + ], + "version": "==2.0.3" + }, + "zipp": { + "hashes": [ + "sha256:112929ad649da941c23de50f356a2b5570c954b65150642bccdd66bf194d224b", + "sha256:48904fc76a60e542af151aded95726c1a5c34ed43ab4134b597665c86d7ad556" + ], + "version": "==3.15.0" + } + }, + "develop": {} +} diff --git a/docs/_build/.buildinfo b/docs/_build/.buildinfo index 8f04c1fb..36e6eca9 100644 --- a/docs/_build/.buildinfo +++ b/docs/_build/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 921d6c7e445f291d7dc8f19863452108 +config: 76a64b56702803c95ff1395bf9f343be tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/_build/.doctrees/environment.pickle b/docs/_build/.doctrees/environment.pickle index 9adaf894b469ea81390a069b790ab511eea5c41f..d5483c96d6dfc218c5087d7608b8b9677647e98a 100644 GIT binary patch delta 45537 zcmdRX2V7KF)_8`_bjr|%@+iuHz|0$%8DK!cuJ90B?BWQ6fC$KdbrnrqO(8arlWIv> zlWY=k-OZ${yPMtgXg0lUG|6TY)5~Vl{hxd9d&7IE`C`8Re&7G^FJa!h=iGD8J@?#m z&$;dGJ#<;n(Y;ebHihm9I~=k*wC~=~X-8_qQiJ>YBcoI`eFq~8gP&-6qVJ7J^Smc& zw)OX_y&c_4>$;k|TD|>EDNQs@L(@FnT}|zs{Y~jCQAZP7J#EXnJ}&Ee^uFopc-0eq&1!C>jGnK)$-4qGzRog6(2U*94Vcn*NbSK4QJMv+p1u{DORH%% zM!MVQt!r*;@UH2&8-dIPG14R>hF!I^L2Ta zwtDM2y&au(?Mqv{^RQ{E zwfEQ5^nDbafY9)mj2;R#Fes_f8m!XV{wry6B1`US?`ZX|^0wCbupF#bbK5ecL8!(u zgogGNp5`_pjOKc;um1`;ObmaER;*1>8z~#J#jtDy)OUA`hSAcqL~kp$MO&Az ze*?pfW63C)W>U7NwXU(b6$@F!z#0bbqAl1mpt|Ien!eGoW}cQ~lmY8HJY7vvF0rhJ z_WJr(kB^qscTFr2$-&r6{QDIB`&n!pK1Z6;@o%0fF^STQB29w|Q@lXdh1pd_FvglO&TGgzHYUrv#qYZje)(WdJN%;Bd;c;t5mkW?-NJj-^`?u zW?K*n7BlIQqgHQ|x3#0L8P&PJrp4CRkW`Q&!Hq-kCz)Y-8?y6E6bE}2yM%E(7vnl|IEzEL@)ktAhDzomCkUj;v* z@1cUEzI*xUs;lsAc96XgHmAfE_I;T@mpq>gjvv`KEjLcJU4kC3(OTi?Z(<_)R@x~F zP5AMK*zn-~-kl;=-^o!H7);egVOqD8^Ru|f)V|<6nrZXf21nnIMRBSCv@$9&6|uKU z*q(5`72mHMqFB`Tue?hMQ=Z8|DF`|sp>8(DOvQJJMOygIStbLfZIp2M@m#iy93a?8Y*7FG65w=Kl~r}sUQqfxDvNbNeE$zj%h={-Fxqr7i- zUcKr%F@-U3Se?{oFCw+Y_fhcdO~$aE{++(wh~~EX*6s#xLx0OyY>1W#_~+OCGx~dV zo!(BbrvcS)wP&rbe@B0B#0qbhr@_YHtWy7h>jUo-jHvke=H@TD4b?eYv}< zxz$(D){Yjqzc-YP9Mmdq=$qh5(YJI`Dzm(62$jBvN^P3nuntcrTATis?!K8NH9g(E z;a#3(Z5|vAT6~Dzz0}vMZf$Q{rYx~~Y$0-qe4Wju+hxZ)u0N|@NN7?2kOD;aopJBgK1<4H^?JDPRLP2-NLIB6Ncu0S+HTCqNU*ATf1c1O zbI6E?WQPEaetha)+Hx)aD8wU4XYYjow_FIY9(pI{rxr36KSHdF(+gEJ#2n1G^bFI4 zGf3zciEBs`{&_JZdJuV0zu0g;TU?fwUm!0msW)=glu0uxg(uCGL%bT_#mrPruXv z>yfQqLs#>%PR|O=P|#7oqP|(wCnl)*D5wi|M@w(W8Z`RoRd=i1NN)2t08dl6~+8!;GpYT$ycAPM7ih>V<;9ELe+7}Qu9WKx;81Bj+HC(M{ z(2{=UxFhF$$Sh2|7!tqCEc}9&Z<&W|1$q;jvH;0E0Yj)#Mv$vkx z?%S!nFCZpMixsL zE>Ml1($k^V{`JL>_biq7zSv(y5Iy^$`$^`48+xp>m z^QRB*#UKAfyZmIc4E5p5!aI%7JTzDMf5p0=npiJso0Ah7tD^v5}WNRp4UrIe}bs8!x!MAQ`R; zOLg{$F8Gjno^>%zbbj+Z{pXYDX}MZX<3DenW!9O)J`6j;Q&Z#ydU}XzglM3zp_2X2 zw(C_?RIFXirQCR&#^O5Q&dAgxu?rJ~i*DY?M5}Xn@7?zE8%5bBL%ny)#gO>l>%B?L zHpl*$ZZgO^E;_<7Fg;Qg13O*Th#oo%b&N{)Kik9)Q>n2gjw|J6wXfyS--noDtBLhs zf^gAIysFq*J-mq@xR~~lce|k`_FoK%|Gg$oWKDeAj?B0rC;H7DnWE=-VN!3{%(W|)w##OWHo+R7wM^F=j>{T!x*cP8c*tj+h^8*M%bF1% zLnvL+-5XKg+~uKb&1AAX2FkjuwvqF&sx1kK(J~*O*b)driFvGPS&T_FEp=g+!0s-q zz0N~lm(ssvmae9y9-pslX~4gW`db?5PxsQ^P{IaX?U0HNWsBdmT*^&vI4-4hHZv?z z)kXaln2?~F8e(brbr>vaRxMypb2?Qs*^_O(YBqcN_vNa2kpvILky!)B_XZ_EYQHK| zQ`6s6ThoQ?BMDW%YEp!VeFt@Y2tqu)V1XU6= z-xi+D$X>f6VqpL}gF$b3IU-vp7LZR0=wu~a-DB0k{@BPumi6|lBCnO|Ru2arbR@t> zxmpftN2oKw_NrP9`Yd&wgyDtCQneW>9#&Vwzieucl->YQqtyxUVXih^mh;(i^%9N9 z!u)04E;ya5&6C03-l7hOdMT{DNAHpWU)rWiC9f8+U1p7eO>HrujN{aY)z7h~H(pT> zvZoV4n&*djNpFoxgfS1R1walaLRyT*1Sg(1hDsPS;rNfnk*q9!o<`KQyOwJ1Vbrc( zuDO#vtv;mros?@HRL?UN$T)oLTg^oH)ftU};WmG(`8|8us?&C`r<1wb{p@Lawf0u_ zx{qOXr{zC=T04mmdHRg@D)yvG);%B}1*@{@{h z(GYiqE=?j(Gt_)Tn5ea)v3~eRYL61S(u;#$j zr=s-|!Nt@(NLck^mEvPA6RTMg^E>u*&xDwJrA%{})ibumbc^L)9rK6;oW}(J=5;YZ zfdfZlb~CJB|20NbC1YioIRRSxd+k!>N>5BWz5HRfEwITg|eb9v8cXJz0d< zjZ%i$jF0`-#ja$)v-idZ%)lJRN7`GleGHfvVcH_)Tp&~TiY!wi{E0Jp7~0VSQ$U7O znCeoDv$ZDCc1@mV63t^yo2h~28u^k*WblvgnzpjE1OJkqrsl?NRf|K)xW;BsJs&>~ zRF}t%VTk*li|dm(tA>+N?pUb!I&M7!o=A@0#GdTVc(IJb-uUfOhKUe$OMEOW&W$UA z_P+SBQu-vQd?DTh#^>W#v+PrUh!>T&LP%(c64}W^m9499_cr=q*E@+O;0{{D;B0xK z8X9g)ut>z*5cN<(0u1~%VWE^%0)zLK#)Ba!ah{aK!;g0-X9h^PSh;bt5=Gx)?W2i- zK0gKye~QKRy_2|%p`FntHL<7DPU%VINfP_!`YWZUmkuX&GQ6GtND}ov(rjMG(%vjF zH?pUrbIfh*Y0^rwtk}wH%`wos!`#e(OOKivxq&y#n~b7RN{CQe+MC;8Q&w^zoc+Np zdQ9uGlAEO3j)#4-k`usLmE2|!^A(bOUA|>Rlm+nduad2-kZ&QlCyKf<5ZgSuEFg z+EnJd?b({PktNM|Jx$ajXDPRcrP&v8?d&P-*PM?%J^WkgDf1iY>Fb2_fDx+%z9fT( z#f!LTXjz(G%5tq+lP>0;x-VU9(VoAgdl~fj>*=dQEiKIvmw--{u~w2`Eu8$JJO&;N z&Jah$dUHmgBP@Z#OENN`VrhB;7~jgUz*Qv~;@JE6!xWdYaxdvk!WoS2R<9dYewP~qn|EhsFy8j`XNqRe{6?netiMw=LUgaT zuN%=U6;%nRr&~GDxGb5l{4XO*rF1)_&qQC({C&1)tv+*FRxsjkEy$^3PhZ96P9Ms! z>*moWX!cM<{t{SS$W(|yaCpVv=&G{}@RFa;% zM~S`Tpgym0h&aD1&jjU}c>>E2zAJBtuGmfXe3Lh`$m{Fw4Qe4VkENvviz2Qtq zia01_1=(3DB0$h{gHBpYTPl59AdTX8>db0wG1f0n-^0&#MRLH0H2IVKpS-f420@wV?>XMWHtpfVw z25UO(dow6JRaVA5a+D$2nz=^Y3y9&Kys*P^T+*B)<%RuT0mYi8z_FbnVQ|j|Yor{{ zufRj5Eb=-(AcxXAADA5KQq=ijISL?w%oGxs$~irzK%u-0ZnPTY1^r2mLJR7+E!>w2uCR@UZ>B+T*NS~|8^wF`Flr>38Qb2 z_}lcVIzmz5e<~2&ms^*~$(&I@Sv9wyv&>-_F30;wfoIsoipzqYd722bTpXVg#E6d0 zc0BOVwYDG5Zn4gi*YFEDA=Xq=NDV8&_$!TCUgTGDOgMQh7P;hi8oOLozmcO**{hz4 zrqdx=aP&isLao353EVSVtp<6~XXUt1+mA(K3?3CP)9j$|p)LS}2N;F{=(IqsLu-=P zIh5c^){xbCBB-WmC(Fx>kR!o?J_SWG(V%EmjRN}=X%9L}faRwt5cLYg(^pt)Qe?G= zl0zwHz&B~w+{LJZ6<&|8yAwA}%W}k$97FBPYEuHAU1=>zQ6R<>M462MPqJ>dqUR(H zFC3zJV>sB!732P8RCS=GZl0#62OJpLUR|>+rI=x)pdBe%|1NTJ?*EjgP2&F}|5=2pY zkbI4`O0Ft)ITcucjkQt^bts@{FQ>?%#R_QtcI!kr)UAM0wO%qsuZ1!0f@DQ|j8-7N zek1B1MQkfCh*#LYN;x8Hl>#_DQJ)PxWOtZ!l%pp0#jvdxgd5@b!;F3tFIgqA% z%CDjA8{v08a2tT}P zP;hps92c<9&XgN)Es;|r(lGlk-c&}AVy!BZ%R_&H7W4WbXCg*xLg5M^;_NYR&OIvS!K}JI^>mE zN#IgtkaRY(88t#qze_!Hwa0eJ@EPR*8+yHyUA>M=)A)r04tFjs_dXE+!WCztGi4nFW1`^Gl-N+{&5ezfi{gGcG8M(j2onc1L(g7i*LjHG$|`WvUTc}W*Bq6zMtvCD zjj>jFX@5MYG^);sW`?x;ViS`TF2|#CY|@B%uxTGoQH=Q{Hcn3UF*%-8htdT3p#G$s zHFP)T$=mN4d4A@Z;#_GeSn7|-WOjbP_co3ya#+Dhq9U%k(y`2 zj*NJ{!VmfUTvRHgY{>s(fk9cbf5~xS>TTBXav^>_9O{I9eep_n^*aU5x3^g*$OoYx zvV5g8^P}C@dpeUn?bg0~$kSUi?__;_nf|LxkL5UG? z>bD6>#?^9sSb3Kl2?4ujrwv%K6Zhapk!cWz0Km9HQ4Dv?;Z zBVluJS`zHrm#$OPbcYfd)*rDJ$V=Qk4F2#Dt4r>p>`}r=VbI=CUZ_|YxfYRHHfV64 z8g*vJ!saCzHrP>WjZx_14dvqDXoD?R#U9JVedvHQh7M-$JMsirdV}~S*F4B(CAHp z>7#H}Z^;{(8b#%gD3Kw`Z_SZc{@!8mQ}>bZBQDzjOI{oiE*Hc7N=zn(LRKth$dKbc zbUxfHhFkl6cC?~CN6&|x6R1xpbX;bMkyHQU`7&fEGlW3d_M8ZLu1C+8%RH1T4VSGI z{p&Gh20+o++s6CjcSNH;_h6{g zFqJI1{tAsm%U1+NBhX=F0&Y=Vi$}A?B~~)RG}SiM(rhjF5$r5&U;&ocnIY)k0?-1s zK1+IH0Nfo|?hWq5%Rhz|jd53QOMLi?=C}E2LT++DqWF zhpeN5o%k^Lkkt`gihQ)V$)7UvrySG&{g5@Qv6%9wg!XD#?YJqF8nKEkN{p5Xm~C7C z*8Zh*=h=@uCV7@n(|qkc7<-TVsdwP>nnseArrBirij8SjNm-`&-75xAD>& zp(zqZ*bMSEQ-q<6fPcg~c9MV#;CK@c730np@`k806^Z0+YkxPvB5(@bxfFLqx3UYM zTI!IQ2OhCj!+S@qxxw!p4T9r3=e=<1kFId2p5`$6-#TVpT>+cE2n~V3)8!GWE;u}= zC>e}3g}9fpr6^L9$2EA#1xvVX8CIqgah$``VcGzn4#%!_ zraDIv3}3;=!RR%%vIr>|HmtF24bJ207!#RmZC6t!A|xiDw#YG&6pzR1*SmF) zw%!)&Z(nDd7z~SlKz6EsWz)l}UdJe~J-~;6@uVv{bK>|J`StCco$SgkuC2X`t8ZU{ zmtZyH#bMm)=B_4=WJw9n$We3n4_1!l6a0^EuvM#KIZJydht;UVoeiDMYq&;yrO2ur z*qmCH3a@w_`B3+R6$On&hj*=Ruk$rGKze;)tgEq^T+)TN8gw*q1w0jcH?u^eu6 zAl1{_(d4P4cZ=n~;kS!3M<_E7*(D6851Z^kzKMV}o zR>7MGY!PtiWqXAGu2TNK;2>`+eD@WaHOmwK}+F<`ETMc~NYc~ex z;HGHRy3&~NOs=-czt9V`f<- zwCVVfuyYOK9kbg;L2b1y3@XygMwm0X32VAKJ@s8&M?U9iYanvXXL5y(vHWzhQPDw;Znk>%!Z+P=?6u z$xKHoXaiwAyuL0URnG=*qo=#Ii(BDoLENsjsO)0aPTbU#Lt7TkbnxkM zk_;sTx%?(|@Oo7_oM`70;pW?l&CGb5`hpKj_LT<&j%ERi@-4{rc{_aGE?+hrxUD#u z;SOs7NjD;y6fP)oNvJweTIUGWj&{uv0v&U)ZR=`y98ySIbo{k21X827ovEMWvkJ^)Ba#5EMdW0>M6{hZR0PB2|(KL9CNWTP7VtKw`9WmxFONp8!k7 z*hj#_pYTyAH%!QbTW%{(66Gf6I2GcJd%d`UpwpaB{OPD_j&fXjk*e;iB;2gH`-|h&)yp6;#s>n>U2T!ihe$#>U~D zk6vooh;{4qc6H-jcVtW8f^59Fu2D2?*^AId)wH*H)o|>eRuiQ7`EY2T&9}g)mx?v; zBRDkhPa~fN>Pu0`Q$HwH!-*3`VGwc9t^?bpe26+wL?&1!@orTn7<{&|@JdthNFs%B z=osK5;LTP(8bR+(;?D|cfq$LCm%`K^TxxjYIa@NchE=HH#i_gj%BG?sXTp@JydCCUW3I-bKHzTcLLKd09?$Pe$f=i-m5owwo7Nn$V1SS8}K zt(~{v&!K)B`AOS`iiMUWH8hhBO~w~POqx8Ir1`n1DyZ^ATy>qOboXuIbpvKcf=1pR zJ+)Y)V>SFp#9H|~TRa?l!HuGRa}1t-nZ~DMYUS&$IC+lhX?!KC=ylWhN$ja+oh=0- zYtiJ>Hbqas3?F~#iqI~S=ftwAkl^FBd?_-GHXfd=MNKZ>i~~f$bUp@Q71Q}b{8`eC zEwz0*e+SInU@OLi9UE*J_%pb{HaDO)VF7cjW@)yso#8NeD;jXL=V>xLG^`o$^h_$z z?`QIkpiB-P{yc1T=YCfxnKEj( zp(->$6#1Ddv_eM{Z4;nm1;0*DZ-lKwPYmTp>i?W84o@t^`;O>>E zbGAR)9ANF_)llKKr;#V>ikP9T5bKMt8mMUJyI@Ht`ih6NZZuJU7##v5yZ9^<@e%QQ zSFW+MeFYaVzEivSZ((&ccKt&QsDU^Vg~GG1pvBtO&FkQ@T0F>v-7IQ>lz|CHrhs@! z30`#A(cbB4!y8k5oOn)gIN})GXFJ5lTwR)B95`Ofr@-Z# zQTIQqMZLu*6TG$=WlVZkPbN3J1MiFUqLbJfpicbV?k+|eFNozx`}w-O9h{6a3j%zY ztBwUo}(?V;sG2ax)9wS<9+G%UJI1 zzzP%LF7;wtdf~)CAy2H)Z&=;_It>Sip}M8k@>8g>$&(u!ZW{Gnv8u$)p)Nj0>enF- zY6rJ%u&H2ijok>xHlbt2<)aNJcETVEiMpS7Q!l)>0v(-WUA$I9G=d;l?pdWY*F?ER43$uVpo+49_p%WFcG_J znF`W6a0K!BM|bc>RS<@HQSV}3WFA}_T0~jT@?+0JnbvH_-icmLoc+92J-_oLRvB*c zp|J1wp-XW1l^9nao*xc{87?^1)Y|NwoA_VMv;#y|n@Fm8O35 z0^1_|FOQQYLD^;eILy#<8J}wKWiMLL=3OnJ`|rGr|4e1f69dCQu)OPP2cCoewJpQ{ zl#2dEERwZb1NN5#Ikas~az5 z=Gq&%#@2REmk)bTv#$$ff|2IZ_V!lvMvF(lj<6VG4^1Obf*mkUKFV!CHna*{vy#u@ zbwQ@ur3z8YLu=UZ6Ls(wa4`6r5)-sM?lAb@xq_b<0#`oj(2_ZsosJAByM{l{bd2{J zzK_m?n54!nmoo~Le{xy}%!TL}t;NCpu1xfE{XsU|qD>-6>?|?z86Ll9J3lU3rme>3 zaQr(p!WQBGc0a!*2<{3mjr4E4g%44|y0JKVE?Vc0(8D_Ps!wOi?&r%D`@W^34((fDOj|IVjBWUm@9YNBY*4d)`tB&wnRB%{@KH~oOi^8=5 zMZ;+=;NQZj3F@fa7j7Fl@L~z^8~8Pez6BNwa&F5(c5{eCq}~jh??k6L>t2iS>e44ci1+j({66r^C;r({^oUQ6u*C7hG`3(Ui`nWFPm>D%!Qp9cH9K=AO;5apXS&8 z^n@pjeuG#0y>Icop;(pA{>hiK8oBW2-7om{_~ZE!BUm5Y_$5EVzvO-XBNe^~AMg|K z2dhpHAOC>w!5ey!l_y_9N{`txQo! zyyHI;Y*&>B)wPh>*f`)S?Q&$w~HGmOj+L6ruKg}-fj#Evby9J^r+0#OBIye*NOtQZR zm6Pox)bE*Wzpe*o_NX;27fDzY15Ji(pvlPNR(U&@w)=3ptGqA=N2p9Xx@2-gG-^Ga z|{oOq8+Nn0#mB(JfksHmTp&O&y1qe101fVc$xPnl9(je^_iJ;UXXG~-1@qqNnf9c z%)xZQo)od5Wf7eMM?Vr3y;rc?l0^Xyg@r?c=HX?*UJl$$Gz(;QFMffoz-HsoNEL{G z9pt$f4s1sEiA;jRv1~L=*GJ=|E>6g%Lr0@6628L=7hs^qJ{lTk+oRy^8hfmvqqDiK z%YrlJo$cLi4HlUGMQ9ASpfs;Ek9bA)95zuu9BV)7tVV_f&(zq{!bqMRHGE!U&x5qD zamGruvmy@e|K4Wyd#2g12@4uf!>6>2F!Ta^$C56rQrve&pE0Vj***fZJdh#O2!HY=TYm?6Itr%R+>=;HG)@EP+Db2@#4yF{6=5lEkyp zAwUXuh6=p|ZWw|uZC*uA-cj)OP~j~CPKL_$)>I8687hnj+lG7Vf>P8BD?3b>0gLBL z6`dU>c%gT`#KN*L;m$Cm5yOh0+9J9BVlj7x3C|J~85islVn+XDm~cb*HmJKJEWU@O z+!QXHj=&6=jHWEOJ9i;MEMrWha9bp1NjoQt6qd1>WfA@MNZ~I8JzI%B0@pguA5@9? z9*Y#7i$wEmH!*3w5Gf3(x54yzq1hV7`?YG}6*a6}U^lC&JYQD}BQ-Fvz@Ez9EgGRj z1CK1QC$sl5jZmS1cNW+=_C8i4RB1rJ(4IV<<`*==JPmSc3UKOaT^3l35!qURM6`$$ zEh3R)@1k2IVvN-amug|%LVFe~X0BG)sD<0{y@(d`hE{l+P>53$BgxJuQrV;x{;ET) z#66!mV&bT%coFotPIxB(g1?8`!?YsgU7Zl5hnhu_wuk72Ts;y=p+&(;ADE7~`-ml!tJ8X+%7Cb$6t%yl13wE>WfjxV%GTlDDT=tzAS@(^5pC^l^7KUpVG*Wx zlf`d|2ssQbs(c7}hW+#G>1j0e{7OubcFeb@GxYR>LCK+XB^jMHd&Xp%Q>NQu52MNF z>6kQK$HYuJEUGm7rU)44+T+C{7T9ChQ^f*%wt097V(%fzu;h-gxI)TJ_qn&bccE!G z=jw0E+|NC&KUpOi|v=H{KZS`X)6B=k3B~K-D4R22fJ||zc#ll4thuP5gFWy zZj9oVdNBxXTZYje4gJVaT+OPHkprJPaK1JC-_}_FwfETHX;gTT=+}$}=jEj-u*5V5 z_s^Jdt@8f23k|8mL+NrdS%VkTi}NoSJ>Zhlq(U2WyFcA&5BC?u6?%fGPpF6%{5ui~ z-wOGUm71A){!+Im6n?4lug)m^0uMtK+Ct$U?-eeD9S@giA?*d6D?Hz-zbJ~G130zw zGo@f=QlL={cP~bbX_ppOokt3Q{1gHA2F98Dw-;42ai=8~I*2=sQ~WO$+Wd>=6|M{! z&g_nNahdNYnEh|H8{rs`<1qiO#f6K`!?qvU_67Nu)E9o$9^lLk{eLS=VX}OvrARlt zZ5_e$>nh>Ei?|&Bvqj1Omdt|xXf?veZx?d@fBmiSW7WC31Rt+08U>rKD%AKBUM!rc z3$P@%?D@E%jcWP@ocNKG=JUveF){dIVGdmLX5j??C+`-1q56+V__>rYIwZj>)hT!u01@$L!NG`Y|Og^K6`(0?4heHLpX@F75EjBTAC#>u_R;2S! z{hfT{z<0%$kfip06&#*|bvi|EHL^ z{OY1JKPebLn#%bN@afpHe5f_zj;oXj_Urx6eo-_p7`|Ooq1Vbn;B2t`8|`ZM*F`3{ z>fc2l=rVCylCDMIgi$LTn`!sJ8($ZVXlf6^F9YH~y6es$4wH&N=aQ;xss_+wi4uXt z6%fD8L0y`vYlT7;!lR|k;@na5Iy?zNeIBPuSP3oP6lJl{z^4+{0(?^>#v|)h!bEs9 z0G%8ptbxzJDYBSo-gQC3wjiXQDpH42AKBxjnB&SIVJ}SowkS82;_eR;{z;;fY=#Td zgCo)<)HA_?0UrET;vqUzco5#hoQ$R8p~5LJe^*p6jS_l0ROlmdK%h$G<9%zX7b#Y0 zPnd9sV8lw5CXQ^Ir>>*HSBD=>qf~wuCh&0WcSSj@jG}O18$9t{QM#2vuL>8w2}cTX z5{0oCUDnO?cFaUdmE%Mj--inuAnE%eG0@u-A@oA|_eC5dxg$b20FB=li814?5yI=R z>-(a_9$LcRBZPmF;3P&Wf$*qg@l1s9JwY)lP}=b0ZLA7sBLqE(K9toYA4VL)iHa0B zf@6|s;5B7AKNRU0iGs8Qq2!=hNI_^~KN zO$9VvE!>I`5Poz}i{I0uNe9(J6?FV4$-71)_{nR$wq8VdKqI`&Qt)eiG|OumjJ99- zu_%qjC!tzFL*f&KNXa~lh_2TPi3Fa+#09l)6vj$QnyeLaq3W!pF?m{{1U8(Nm~m@` z$*})yk-3JJJ5?*pr=gT2_tm()%Zne_3lz0TD{Lkh3I$L`TU)e3|DH&P*fT*Z9NOb_ zSeX9&PAfd9C;(SS>zm{SJfao;robTEi0pJ7K&x4bfta7-Rc3rCz zUVu9S$S>=JH{pcJk;b5>b;3X4Yn3B~)%Jaz@D&LQ!?OM<%ZA|8aDj0k=2St-@`rxCTT%2?;A(cuq5|4Hv(C__a_^Cw!>K-Kaa$ zaUJMbZgHeP(cpM(G_8D9dDY@=kX8_BDx^wWwM6(EvEgCt>o{WNV`w6)j|8Bh99IyD zR{{;yK&$}!77kvAX#B-(5m9nu77vXR)>uB}Vy9g*;dZH|X<7uqDeoB6YGDic}$4NaET+!oY(@bksE-=>l4 zX!rTZcJM|1rYjt4RoR?{&haBezF2^+lyZF=PG9Lr)R4Pe>pJSlLLS6{BRz6f`7GQ} z-@Kw6(ynsU#Ab4WXSuY#EiMhi8x6SF`+?VCHVhLJoP69B58STO(1B-NQFOC;I;#K5 z?q+o8aD5K%;Xg<7Gk~929H-cQPB;4JbRo+_8_&<(aW1VU=fD9~MHXy-)DfOY@?c$t zHkwOFq_(l~wgMusz=9}UbHKGR@-|Gm6 z@~a(c9o0kpLziHHpNPxL`T{!zMrvjJsA1yOj@olJj?Q%gp+$n%}oGzQEBQH@My*2;15^Sq{V7;*re za15vZq)vhFf9uc(XX2vxCl5L}`e3=sv0A2b@SD3FsflRN0<>tICEH89axON(3eHoJ=xAo6mT4#v!L zYW?rt<@j@SWPl=E-CcYSJUxix^890t@iM^4cdW67S!8pVv~>#i60KiVd+;d<)n}dPPpF482B)F@ZTqU48j)z$mYfLOrh@$zM2TI@HTJ@Kzr?$bHT1~!= z<$b2=d89uArrXuoti%_qUdNOyFvMs^GKzn%dKX+@I|@m|#@+d%(Gp!ClK6{?Z{XZ-=XdczEGUksBdVC5#{Vm&2^5q3k4;a1#kX5@2PUCKl2LHKF1n z<$jf*2?F6?4xR;Vx*(wxw*AXtang)sLBe7(JCuO?s2lKvC()S#ng1otKrIOp4iY>( z5%;P(L0m4rBS?4}G+#N=)s)t=K|)+GIKOh_uoY8WCoc-#2IVu=7BPb}Sl9tKe&rC? z)prF87~^~;1E8}(Gc9X+h%hSz`AJgnji=!n z+wI-Bd$PTAg_v<+h_ISqYGjyVcxI#!8lEYkBrwCzabim*LhYskO*jqJ#I|Ltb)#ph zv&E%B{a21u`u!ceftI_>n#B-O{_V(PsZ3@f@+qw*Pb9|_gJGwB;YecGv7`y(*t4uT z#q5SpG}4OXfwP+AFcw3S`{P{xabG(o#UzmRPd(Y?M@|Ncw;vM)h2LtN*%?H5Rimo% zQ6MoA61^u{!t8)AHO^eR(;{8#OjC70rPi5(KXqDXGELs7b(-nJjap|GefX2~a7OE7 zJ390_=ST{2>6}@Gw9sp+c3`35m1D;V-Y%Riq6@qWX<{%YiV3^POewYqtx-@{KOEYY0N4|3QZ{GblP3jD^}na?7Zw52>KK+R8C~ zh`LE@5tGSDl!A1rr33O%^+UVUX%AXiL}cPr`CoB4zl=SPWXjpznzZH4bY_;Ss%nwj zBpCCqjZ&&c4c4}HqHa_O)uQ57r=6m#Xmu7>5)lh? zRKj*rf8C7srMP-LTnYq6r7#>$Wl`Dc%wbiYK2et&=oy=r>9Qi&VtMZ<*n5>OpCK8J z>T*ORR)J7Lr5jc{odrZ)PDkmpLM(GnE*hFUfz>13PQSa&i5q9n)tdwrG=J>e?a$us z{HBanEb~cGcdMTiJHpy0okbKh_@pzRKAd{e=_;j_*Qf+1sl0ZQr`zYN?QE}~;l{9V#mDZX_4Oto_3D1QSKUogxw@V2>Cb;;|jHsrqL!5(`ic_d&-%` z%uXC^YSJe#fmihE(?x-^Qp3b844?c>KSBhgK-3Ovn%EMg1xQOwJ8j6tmiTb(@RnHn ztnD37N_dd~qU0JgtDRn&K-DHnf@7QE)MR~=Qg^)7t~6TWwrbZ1`f#Y)#mv~N z)h^aK4T6j9mK!a&nCf;5E~dJ-2`*-%9~VTCekZtWlukj7D=wX|AiSay3UDEa>PRHf z9moOl$DC;SGinOlvj@E>V}V;geSlIrvGs!&3@k_B?Bh4QEuk zse-`%8dq*m#w?;EPxuF>xxUrL;&%|dt+=PDmEA9Z2h&;`@KBmFi6>7!;yBiK;`9>P z=-rIdw&ZLBdgSz&7tKo|6_ytc&2U&@J|Cs`|7D?TOb{&j))^W-jJB`55cn7Iez|6H zKrqQvX7N|lxnfjs)r+NS%W!0zV>us#c$6Z|HPzq0#MK>f9^H1r;8*q#|LkVhsI>Ed zi}A3kb1!WA$Qj}9xYG4}IP6~Gmzcn5&*V3-t-@po40vc(^ABo_Ojl}2Lc>&u8VFsF5qV2V{1E}IK!DBd|ZliVz_gj zJT~G7z>obUHW8}&ot6ZPv|)#wX`!w@B4HVD@+GI;-(htgQo$d?-7!5R@DUICwIUa7 z1riU~d~6qURgK7%5A7wA@X3zEC~^*ywv?ZWg-j9F(K-x82J^6mVC{f&ssGo!^8g;K z+FTd`^IvtC==^2Lhd3MdZB4lzT9>)ZaDRfc2yXe%$-xsnP6O0c<0RQwYcjU<xu zMi4BsAidvZg2%op)&l3jr)O5W>dJ_O$v@l*UdOb)oI8(9Ep2rH(U%ika(11Z=8v&b zxshXB!$fI8ooU9Es`gHrff6SNTaEMGX|Q&pTVIsN)vsc^IfgY3?W=fDs13j1vsB#h zvAVr;xwq3t$~3|D@ba)MR`5`yEuQ(yXX(V)wOL@yd&M2_KuF0r@K3Oh0&cf!0v_oP z9EF0FyImRZV-y~TAj=+b-)`3-*uAMF4uku3V3=gjg8h9iO=Kpw25V@+>C~_LTqSsZ z))j(jYlqS{gR|dd4Cj8u&CkXtbj1f4a2JG^M8T3i*E9&~ccsDfqxh+{Py1Zq`rLK6 z8yb&{jKcZZ+%@oRpQ{W$xV(ge<6niw!24en8DY+uVtsfySxrJ}t!IkU=|m>mSzW)P z89bkdr4_c6~X~~pZc<@SGK{) zhmGlC?EG5Q_lS%)fIM&HL^u1au$VZW2aFkF@aR$DQu2X4E(_bM@PJBqk_@9+tOSU{ zFVGb+hx}>W`c1r^Fa`?v<0O#|X#oIre5M~TriWp>$X+WpS4Eg$IRx={fatTe!QgU^g+FH;v0_d!BY}F zMw}Mh`Mgu@f4`;pMb-IFFDCg1TZ>-~qDSb0x;QxSwmSo?13164zr8pSPOQPbj@LZu zh=?R}n&cp%8Wul=D?~yt24kn%i*Ng{rZM4WvlDMhDzJx=d4A>5yqE8C6v7R6730}? zJVWLGdq?rHi9yT$2K)WRDbzzb<}YR;%bWh<^epOTwO6e~S;kDmaJSVvZc0HNEK68(=?ki@#WX*lW%<<{Gub8<@H{Dmv;+|)uhqLz;v$)lAe=&2%Ywj;*@l*T# z#jHJVz!WyYksKn-2-yaP-e_q?WL607y?OWk;%w%xuL}`&khzDEaJH*JoHr77g$MxE z4-}^`oa;h_I|xn+9Pf@6SJv+e5lpb}f#NiV5+5q$kN754-7L;i7pL(#kP$wI8 zr6?a=^zoJwvwz_e#d{*p15Z%-%`X%`9Y>YrgAaX~es(bv_$_DaE{H6^S~-m59G zun=!Y)e+2t_cGL!Bx=}r$vSn#v=Y`CTc?$<1~qib;s5c7Owq$Ye{0J82cF|#nMX7Vtd=TDWYZ_ z-dd8&bSK?ul5{KyP9Lx)i|nAjq)|?S`?1khj*T~mTISBUPDO68Gi_VGt;D~4Tj>Xz zV6)zxrX?SrY(zU=;K1*N@Y^f0!MDA_3=c-QU2wG4t^px@v=KCs?h&vhd~{62EW{-T z4&e@i+Zje92|QaE>E>bos){stIudXEsM%3b+=Dls5$6bVS+Yb@IxVW_ zyp>XtJ-4FgrFq`OKtYSp`D^G}+ky84l+7+g2bM^ES!Yk+hP?Xrj6VjOYz2#MKwDtXD`R`EhO}jC2O@D~+2+feT6rt&EJJ z5*Rw}Uc`$PEtDDDV@~Pd@0w;`xgG09(dQ!S0t-1hnX`x{kf?Bhr4SZGyNh9o+Fc&( zX;=aK)b5+%u^4xLP#4Z~yDafwon{Y%>6`H+>1mxiAqIDp7IZW;W)HO|et+_xV@ASv zTkt5?okq8D1d(`S^D-aq)-AUZw0X9lnpn z1N9Y2Zao}Xho7}!C+UDxSg9;xB2iALA+6Byx*EI5e8w zxDj9Ljt{|rh=)P5dqFf~ot=FpMPm%(F}uz11ft<4uTxs=>VG%8^ApZRq+-s5TAe#i zmFf5D+z;!6-cUnUvYRauR3*Ea$zCm`>`itvpZUpTcQ%`a+ouwqRso;t#*ro29j2*Y zTi@Euc8&s<;%07JRf@Zm+EXDZ2={l|Qr)pponAagi_5Zs&6{u}#m!u~*Hc6ef>XtZ z+*G%Pc~*A@34!G>BAb%%_iv%ac&n)d7pESq(h*v zEJWbZOB*;=5DV6Hw~m6xq`OP#!}@fw+&j`mS-yx5tZs9|gnqKaI*-&X7XI8@njp>? zkI8VeL9;DG%zk5rTb%gMa8IC=<1*dj>BFK-cNxxt?%Mvp$ z&JuBUNDs%d+(}uY$3*rZ(~(v;4yVdJtrHp>ah47RNC(@aubMb92=kmVNmI_Lu<^<>1S2DL=P4@V2IZ=?7mC+xuM z@z^zPv+5NIu zyANZyw7(yZWo7=(J<8vEm;294{nHF(!3N;|h_?!HrFebW_s8+7t5>JuC1BqcU^q2+ z+!m^5bC!713(;U7?0l-+1pC+6@P1i09@u*Pb-N)vr!*sf%xJt7>|J|~9&MXAX)ub< z*+4goQMwUm=;*D3{^_Y@D^&1(1z$z)7WM16vU!f6bR9I!E@RQu6|>96(l&m2cG*Pc zas9RGF;tmC*fqPXP%k=3f2L_^BrOfos5d86y^44#pbAZ7KK7wY%a}@jaB10SN;Gdy znNv^NUih<0c#Qa8COBYCF^Nie)f|zFJLi;T#8W@*A1dJ+f)^%`DPYu$4tRS`8SBN` zxn(1nUbh4ZTS%Y9YyRFz%wjHj)7&!V*k3!hjM#ZEL=wbiNIfLj*CGTiB(#-Ay~MZ0OH`}SaSkHJ`^k* zCuw;1-Dd?!(&^Se1q&|(!@dP&2{7iEIYJ8AUJ4dIAjo)W;G55)mR~Vsu$>tvTDk<~2ry2m%Wgqkc4}iix!$!ty}=IK8xBzam7~j=4YG zm6Q@CrR@w6?hK&D>%>}Nu=zB@OcO~y8zQ_<@DgD9yGaSs-ue$hgf!T@pe&Q|ogOMw zkWe#~@qOyvWGw@X3l%&BkTh_QHJMeVK2-3A;!c27lsQ95uF;ufWFf>jP(+{bDh2!Szjn1^Jny1 z@nSmbj*`)19Z`%7Diafk&D;NKfk`xGiKMF}O319^h#;zVagnGZv^e@2AB=A>?Tdm$ z`1IX^un+W(29!ryqMWv{%uI?t z{-_!607eBB`G^Jb<&?ln?aRrUd{%u$<57W}qcfD(PZySnt6qulw9y(6Ez=OZR-fkm zKXn~lY?D=V{oUHNTQ~R9;pp1A$;JkQAup`ooX)N3F?;)BqAT?dV`nn!Rxfwm;=zMhxvIviD4@bP|aq^taHGG6D5flE6HMF64bApD26 z>f;tx*Mk>bskfRw%A|_DZ~^9GQxHJJgVC z&=;!6bkO^Hi-GN)a3xA_>-o!%zaK9^5!A&YBQ489D;$luLe~?pj9dAk7vRUGfJsroM;I*7Mb446jC&p`I&54z~9n zBo84tmC3;#VP-UY1Y4UB{+>$;GV}Eq4Z(xC6VR@taD;aIkn#wF? zB?ZLXKvOU4$D`hgFb^3HMTJLWQTtM4@FpUtU@XDbvVcHMYTxbH%8@f_TREFHzQ1q? zS(0c>48psI^p-KyM@x-opyUy=Ht|$q7_iM6tCKP*D`8Z#IFU*efFuCGJe;#ZaBQB1 zUY)HG94PR4jo@A9Uupz?PG4`WkfCr+Ch=(4lQa-^u&u{w#ube*di7_Lagn|uxz@aR^3>=(S2x&hb4 zNjw&v@*YwJv{+)5Ok0xvbxJ?#4vXx_*mx!lX#TxhYV~hZbiITR4=d>#*o9k9Td4~VUV_%k5brECZa_EWb8#X8P0OS|P^)T`>` z^EoKtn%6VzAq`$5+8MXZAZ?{+gJ(1Wa1!lCJ}iKd$1nmgvN-rGU}@_}vXEnU9AF+i z6zWuS!<}8NM4-#&0txLz;1r3X8vY+qEUKevWANmypn$)f*NFqzKz${57)z7F z9G{2&5E#d(rEqDxX66(xiUn(Ad6S0TXsY_z{#GYQ_Tg!hHR9B?sTaZ@xn&jFIA{a( z=|rTe;2H*F3nKik zVkI-o_Llj@pCib-R%Ip!s-evrU05;9baBJieeK%lvt+mctm3adSS@*`XGV)H4VJMiFUYcFVGAsod)EZO)iD zTW_A8DAbF_L}R{Hs@L-TyJgNb^{Ux2Cfr~7Gkd&$OaQ1gk)NT#CvtKGt7EUWngt%{ z&S4G&xP^Lc)|~6u8zd2&f3H3y8r)g0tDiBNO|xiNAcDQhGFok>f^n{8)GV`JvpT0h z9G95qS~a9}8zQ_k)&TN(1GYxvI(&Pm9@VnzgykWA-I( zW363n%=_9NwKukmYNMjJ3@hKD`JU?7nY{a~quZN}bA?K~Xi#&@Xi8eI7JNc;DYdIJ zR<1aM-?>}v$=}neHw{cTQ)*Q!`BurO0?BoHMW4|vybt!~2CJpF%z``Sn!I>`0XG_r z_DsHDS@~JB0zw0$jr@x8Xaheg`#No~>g{I1$Xo5%S@RqSR;X7hpf~e}z5cFd(P$dQ zTTH9~IP30?y)xIdNZgtRDAg{s+GuWpr#hCs0fYi?=4b0oZ~=?n8cVhk*YGGxlrERZ1qgUFPCd9jR zMd?a=1$05@*y}nat#noCPW-U9NXCH}yR32^&?gFT&u5gLS$YBWTm$|ldFYgm^Q)z2 zm7XnNtb#b`^Uia79se^wTWxiYi4JQkdTp-F!m-={03LZg5Y~yA%qFkH8u4$dql@-S z#N_kNyS!pGomTv!hnn?z>*3r(PTRu|fwT`xz}lPvW;)l(>y=9VY<{-=vX{;0TTQ)Y zffaed9<$fTJ~Tx;Q)TWU)`bQzYenOn1htmN;pZiju`2B^9T4bkk{n^wKz39fMmPgO&KnK0QlE2{h95z2e2=y=p~$d7;PbN; z9b?ON+SmXMp}fIIOj&z*1H!^GaDEMT76f8L-8puQxN)<1=CeN!qXiA;SM?g3hkUyU z*%T1g*34GJES#S2JjR_i%75q0xfSHYA9GF}-t`-W(S-1>u{qjXmF+A&OEGKNw-W3cB}%#OZ5uOfy;Xv z*yg}O8LYiZSC)?Ra`IzGsos9mTK3w`vscn{p_jOauyUm@mA*u8ZS|hzeX_xA8PR68 zAZ-|hpRMO-(#}Ka^Fx7=Gv!X{e(_isM~q%EtrD!M(_I=(*FeA`FqlmY8?IBWWzL#p ze%G{Xr)%}I&>p_QtpeNW(znFJwft7wEOzjOr9j}#4pe7{|Ir+J8O|e#UDI$)w`4?y z*Qk@&Nt@0MrQM}HVnjhR$JJ0e*@6_%ijvJ&2%v&&^cdctlw-H61zQOU%g2HW&=`40 zIXQ1qDQ;uDs=9ohKWi3Aj?NPUh}p2-gfx@hHER{K2Cz&y(G0H73v=|Sc)Xcm!dERc zO;(IVLw-TDz{`amnt{WJ)srn-_?@#&liUKb7cih1czx!}&{?mD0ZX~kgw(6-`!Lfv z4wPuv>TB?Ep3sq^jXBT0{Dk9yYH%Ml=)^YJ0k*wTr%E>sShVu3zTXmFpJGkc@xai- zb?5~~<$QiJtDiAJ4EeCMw{#u1maZ@D6F(+PQ=kzeRTh{Vr%S1y@Ahz1KZ2yl#$=blQkTq5ux z-$jgrcf}q_c5rzN9fWDoT z04;CP#8k=jkjvmK#1%|B+BNW|f!;7`b;nODuSWbpte6;>%{II~+Tt`F^UIL;PW}m?#u$xw2I>D(0DHu4c3*YK`iI?0eJh3B%eufwdT~ zRx9HL!VR4z(b&r%h(V3B(HTmrO)}BT@6UGd$BvF6(05-hnidT6JlpZ*_uogIPC1=i zKwt=ROyq(%@9u(E81{U3@VT?;klX>WnI(I@*?CU88`23*!}(4_n@r(jqW4zkA?^9) zE?AnG%iJbUxwP~qo|1nejLOAMp9*O$XUjty{7Y|p;hlGC#||F7RlDKVqX!S)dDFpL zZn^u`d+xchBSyZ^dsS@Juus>k9edlI2anzU!h^Tty*ux`sbc2p%{k|t^J!~;4#F}= zhRa^tD8lc>6JkzGeUoT*^gp{%CDY!}a?C@H`YHhnH4d>FE>{~Cs)cQr+{T z&EgS4S71<9ryvHmTrOHj8Hrz2?69CaEA46x^!B4jea=B0!-*EpFBNaJ>WzwV#;8EU zuro>9yknxrHqoO?mHWZ^to!m>U7~e?c#+%4IKWRPmx15gDB2Kx;f)jNCVqaAcm-~bj*dpi;_(B-74M2q8^`B|l_6Yu7s7a&$=?cr zkF4r?Nv{>)-;jY|aF=)^$rg_w_VSlr5oQcp?#mS~MC`TBA#jQaN2}#-xHlE@W-*TdEbkmJ95{vhZlw?^ z41ZYL=0aZh%%_cc2tkq8*j@wIb*`q0I4H*7fQ3my}kw<{rY2mQI1@1qcj&LB3m9JZV-g#tpw|UJ) z;|xW5$m_6I8MSdpkK64MubUjs2}Rh;ro3(&y>4PdmRa#$@sZ1gE8f}SzT-4_Z)x5@@R#Xyfg~J< zGT6noAj0rcTv}`fX9-UAqFNNh<%i6qTgW`9T_Dkp=LgFmbt&(PxL?S|&}$^4={RkrtuCoUQ_%t2+R(YMwI?7E`-9X9GT8 zj5}QJz`?NMG|tmQjy>?u!r>71hYbW=JpInIBBV(f;iwo*_BszAfydR(Fm5L(LpT1E z7h4cSSt$e@pattVC_F3>J8O*gCEf7kK^P8SDIg@FT;%kVp?pMF;lDPWnO){In>B-P zwo%BC>o0AS$K^7<;c&}}26kgY;x{@yif2rEibE{%L&gDo&DNPY>}uDboqvfA8=MZj zCxRe~zeVE(P9vFcuo9t-IdEjgZ4=|=u^*>Z&DyKS=X6A)AQw})y@)rA-$Fm9Ch_O^ z3=mv@g3cqwp_>zlaOWwJbD-Io@$p)Hd=`p_4o5{u$U#c%;^erZ?IN`eDC<=^Gj_s1 z?l|N_l4ft24I(xJ-r~GW!$G0E%;+3BUo^Q?A{9p=3qb;sG8uXk%25Q>JYjblNx_p& z#`dD&h28wG<9r7>6fNRVe*GC?jd@D6V2*YenN^B2O4YCF%CCh}Bw$_Pht<#u?C!gEZcUQ%ArUPEL=QVLXeOnsoyKYgsV@?zjA0<$ojei_B7Z6A*FpG9JeB%@VHI+*-Lp=g4yV zlHkJ<(lKBXTZHw+!A4V_)S%5tdUBy5LF~v{dt2ZY_Dc!YrGbXBenuCr0-@n#OF7Ue zf=kaY47??FOr0Yuy2huJ8oUrh%W4(zxO6cvSS?_6j_hyS+vJ9Z%oUbK9LXSKX{+)a zv3wkpBO^qj1min_@DSV=A_;=QaK zMGy{$sG#v<_JsxXI*n6eL<%6HMan~fs6A?*-$1GY`LDd+v2mm!;^la3@VyDrXw4Sq1>!nIMOpAkljYq>W}xIrAvh?TvVW zH#zxpWNwLQ6b`c5GwRbVPLRklDzoC`;V~R8>PThbz$xNl_C@U2n>Y<>Qv4g?VsZtF znEnO+<9H|g2N_wMrBqsB_ewsoH#o;ASYI4#mhQLDXOMX(Eud|$h1zD{5KCFUY{hx! z-G1<^&nWz#{Fe?}Hqve=YK+4k%8)5d+v}x+h(I#safu87FarGI6(lZi>HJvdZUKgb z@Wr{@MEC#nnoiuN<6NV5#+qo%@7_OAF=z0D(j|B2_D@*w)5fteIZbDSbPm#})LYbr zgS52r9s9?+0pm$h*zSgl_Tssz+@5iuliQy&=H`64nIylG5C(S6IMte%YZMEN$Chfr z%<~C8G$0<4clGiG#I2yWEtoxHc9!^$QF_Y)4&SQJ(}{V-nsCzifQ-aRnjS-7_2>d( z6|!IjIOg-!877duxTrv(;*7GHKU)!$dFfElQN_f`z2y0}hB82ZvLd*Fhke}w4jaDW zr)xFF?}rB-x{ZSsA=iX#+#45gQXvFx)@R`V(}@77E5>Lc zHA&Osv|}j=;Y&iF$Rl)vJ!hWhVWtEa@Jt#a@_X8ZN1&fWP#7MZ)#9IgFvVlNekf!0 zC!8Ux=vW&%-DiB>v$*&`Zxs+acQ+jH7yMW=ia)-%D3WuBzz=e>7@I}*T>SEPV@kqM zb{Nkk=&lxV0J)GtUGao^k>vv6V%le7$93p1ljdzHX{+jl)N<+<0

9-7BH?Cd*zc z182of`3`K-%17}B?X~O;$T_1^V7+oypSL=1#O04X<-1e98*Nf?7)#0GC4=_umxz2c zYUpm1ArpI(3^!mSUZcY~Z1d2c6BX$0j<^fAuBo4uad1R%))q>*w}z8&j_uOsm=4^m zoP3{-wkcu9eZBlJ(6|5igmc`b=D=#=x`{^n;xVm&=^?jNo0-oD#Ks?NV}3XcZ??30 zO}iIucNJQiwpW|lH@$aidUBseSGjVT7uVZbL9c0gQE#-gR>`y&q$Up9TSjGGYt^-R zTwFqa#c3GyF%6l)n%UBD&eEyUskEpE>sV@{q-;i}e}mX0I>+-@qr3L}#SS=aTe$g=ROiqx1o)fp$D3*n||El&3FLvo>M=qGLOUETAWCbg% z635|6ANx7?8Wk|2K`iLX!FEfPgsWVhdX#3mJ?xz)9(jA$TVjo}f=EA0l=^9hT;+G+ z*Rk?@=+E|yUVa09V7ba~!r$QCH;cbI;;+ZWUvJ~T+U1|Z-{tqwA58t9p_;%H7IEnX0)}q zdLS<~EC-iDM{pjb6!*bekx7Jj-I4R`46n3R zuT_u?W@n%yeF)G$ol(l426~d9zm1=~Dn8<^6O;H&>J_y}_9jWP@v}{&Cg3<-FUPFg zZ_qHk*9}Zz1en6U`mEs9@m77@vv1b8BX=TiS67+GevW*LINW`!o5S^T2$z*^7O0Yd z$Ftab(L>mzpzOV0ZLzl=774JLUMp&x3W{tWsj^wT!a69D^w-_k3`dgwsvEG688$nT zw0@?IOSK}gK0;2U%2`Lb_k0Ge_OmxlL(fh>fP+Lk8) z_8R;-PB z^PdSO>zN!%Hcd?zwn18L?xS?)ijA-%MA&hPtnH=@7$h7l>uuml)X?Zj&(gq=h*E zw`~-vP+S{&AmeJn0JGT}lzwivAm3Fm1&1eteCKatzFRFuRk`j#g0O&GS4&Lv7_NH= zz>;#ELxmWg+a`FfoEX&@o|7LIC)kG)!0_l~`6XGdcHebS)e`dM`u zpiEyKP^QD#ccQ?Ec2u9&rlx3jy?fX6=@GpCUhpM0)Bz_v zj&;iKAU=5~{*Zj*?T}SA3G&iqA#;u;8_A{7Q%UM<6c##={3S)28$MkQ*-ivZ6>!U99l zAvqF;EG;YXz>Nydqn_U(lu2Dfx+cY2@uvf|-bC<~jwChYTp0xfX0ZVk-4U0SxFCkZ zj}SSeEG7CU?#hWM?HKS!MTar&P(?cjmYviY?T{deiwY5nlFy11W~PXr-qdtULs+9i zf8%xpl9Z6IX&}Z_KvY>~&|#{yw{{YSG)@@e%OkktfXpr;B8`E2U517^QE=I;wQ+T? zGC$7ss1Tm;mL;bhtXOq`>3UwE0R%(tdm^BNsYTQpscQyUge{H&aIoNJY7 z*ljXF@mdAh4`EkaHH0Nm^gE4UHqY*%FBAC4b7dg$=9c1KQ>1{~9l=d@$>vpBaH z(~jn}BM@dJ0alIXn08N2yRD+1!#&|K?UtN&k5NXTtd4Rk_$NdjI!S6Rh%FTcnx}tD zHHedvI?~ulZCMa`twIG1NYhC5cum-7Km&-i_~`k*|u|>`%3x;>U?7F#MIP;^LF%h_A8@XAAwanqekEQo{5C4lBB6@9i-{LaHaH5!hyiz1CA+q#1Ti?wHnYkxmyYAkqSK z|4~#CU>6BR`sU#MNZo{@r=DV>lz++!qi5*SOGDxEMu95k;>v*IpX|P_RnlaoM8Qms-LBa{dXa&!eNTIp_nnp$1da%5OKr@#IrolW58PH0o*@2tN+ zlUjCa3U2t+)b6RNy`EYv)`gQgHJO{5yl(fz-rOX7)xEp-Wg>N>{jDDn5;!s`_1!0* z8q-!);45RKze@#P<*2|&u5m~v)L0+=6;<@Q7-W)2xu=RABMlK$MKtH3siGZ16+Of- zlOQ>`D*D&kxkN{$GOzBpr}jb64+-sY%xF0c-P#dqXrY%W>im3y93GYIOU-| z_%S!Ai0~optF>MGwCwdjbMpGVyP<8 z1Qi<5V`vI(OenOUVVFsf99*H@e~b$^B2rhaqR6JG(QIkQv57>*ofa;>h-1WQS6!Sv zdp0MkJ#q>I-HF77KNJYqGqvZs>&FqH8=sn-n%q0SJ6dDhH^NaJW|AVgqwk?qhW~5~ zA9XSOE{Ea!Cys-r;Q2HF6t@3T47y1;%47R46E_Cgo~SZ3w$BN+{}jVag5=>s;Hl!aok2+GSN^i%A~{riVUR++e{&BvnN{EzVMWrt13HB!TBko{rw?{ zwv?K%M59R|iQiiUN&Ky&oTx*IJbaVT6GhFSyrdi-bnk`VdRTmD$A6wahsY=0i}hvv zpk@XOo~X90;ie%@+sEbES4Fc#xD%)QVRmm!yKYR|2Zz@^Qc|{EyZ24t!x+`7wI5xg z1@0qH)+sr1B~9mBm*_lHLw)}01jpRGJ;qT=^s+iM@NK8#`zx}#Ee4q+7S1!n7Xf0I z8KyZ8%?$4n!oQYbCP8v=GyJh=4x{uIlKL0;vS_HPzH@}ZU-!V_vQP9$hv=2Mmu^Ev zpIJSSC3X~oqX3SV=8-*jw}G^pTgSBhyRz5qfcWp)w`+f>@J~(do}gFo!mYXeyKI~%RAsO`M*h0I_8sK42ZTF(nH^dPrI6q~ML9e-2Dv11=P8E+ zB(p&uooFyL<*-L6hY5z61j&Jw!^sP99(d^JVHElD`2@sk9BXr2aQNN0`0J(Po}ffw zsDPWD%w8QHJ!%RV%}3_=P|ja#WnJm1#%YEqtK>09`$U?C6>}E>+W8 zc1T@Mou| z_UYpEH2RF-B%Pl=O)r&Rj^Iiq_QX@4KB_)^NsP+r(ud$M)`xxaqC;Du6qCNJXvUcs zG?OSDPcs%tVFfiKQDbPD@j9UyU&JtzAemS*Cb>;gem4?3?PcT6^_s9NhB9BV>srZ& zBl4xoAB}2AQ?;Y~KLHJ;Nd7?l^(p*yWO@0I@R#kY%~Adg9z0h5EdTk({O9NJ=aKWu zpXYyk0e=F>pWv_Zo4vITE4DE$7V5RJ3-x6H>a)IvO1HqBJ4({z3JRNXx2}!+Zd5|U z_tOwdRj+Qj$>@RmNpUHt_DY6hZ@&NJLsJhwwCiE#Z)dUJfhmf~hTv$=jiy}A^uFt- zZ=e(j#GW6beYYc*l7h$AzSDUxi{3wktWqYDY2pSEJ@`fyZ7t^T)!0_4%1K!= zvgeJAJqD-qk6Sp(!&Mxd^jXf;t5ylMrsN$f!Z0Lbi-L`~$_H$2v1q zQWA3h$;dj2;-uW0%za~8E|)t6N{JQ`U18Mu!&Ty*f}Dj&gb-mAx?JSkQ$Xskb32R9 zDuaYo@bF)X5(Un3-H$}gGjh4$w2`Zpy-#9E{+h%QP8qGX{Ddr`IX?G}Z(H>m*D0xY zTyGvi5_1+q5XaC_1^hH8ubH-s1g;mfK%LCH`Hq?jT0Fx^N%#ofH8bZ@S&jCw6-`8g zdm+HZsBb@h%ORIo^pAKNc|+cgQ)$aYoisMM4Cv1aTdS09&-6{&vOJu||x-*QkV&4^AWs*|K z9pyUmo`D(@+Rw97J_|q?`;ASAo|KR73y2d%^EDI7P1g zJ)LJ@E&euxTJo}Vn{pZ7b719#{kdixAB_y}BkLHTP-taHt}v<&R?eD5`hrSEZm53K z^?pCZu73F=_{(?4&BM6=Z3|U5bjEo})HqClRjrviKA;>s{}uQEaeNParLu)D&4xqi zDllEeFaV+1IBW z(t#+-JFKbDXVdXXKxLxkCujxz&`NoI55W9Il?V^De%zy8{kX^Mby#hvy*9pOb_}&s=coC=6d%;&8eb8# zl1%HCms{X%pi>v)e>2@gsOU0}`GWg8b!q9PsHII36p=LWPQF*J0pRyw%kQA~)x^sx zVSbrVWX||gF~hImuTZ5EtPV4obO-B-5Z_Zy{<;!zyM!o^OltbNmcK~sbs?scOe`bT zF9lnD(Pe?p2^RR12o}he`(}>&L)5Giweah9rC}iL{@ekEb=mWq>h#OcBUbZk^@}~N zuAr_8|H0%OI)Gk3keGou)*N0J^az0Uuh+}V(EV6>IseJ3Jd!|5M49hrVkK1O^iq_@ zNg;KfGCxIt{mT40MlVH3-c#ng#SHtF*S9UzNTDm0Y&4cGnu>9HFoso9EUU{Zi)5T? z!{WyjVloQjbRxt`C{bv?aZ(zB#_2w6J`kL}|5V(TBg`l%P-BL3**|EM-bO4IVU!f$ zs!@7Ja?TvUC_SE-abk?pe*>@~86}lKOT;L>nTaKg(pGPW;l!8Jb)?QCF-9LIz=_;T<6+!GCVo z|AC-inWuvwjLiLXuo!PxUcaP}b|ouls{Vmk-*2jJ^7c>ZD5UDbe@ZS|1K70hCg%JY zoA&PjHi%6doRUk#_D%Is`_7Jf z9dTOTu?E|)gzqX=>De^*r%n`2!*m9WqKTDTB37x^pMsZ1y3TQK4+|9NEvyaMnwV1) zV?hv!v>hFh3|!ZNJl zV|#TysXa=Cr4VD+u`ZVguzx3XkTFT&tb0458^vV$whNaYkIKSuWrb}(Og}~6zdVLm zDJJF;Ymov|^TS$^6pS*8z|^DtsoA)Mz8=ay?$y35!7CRTMVIe`yNv%ztnIfE`(tfH z93fN%^S zwq86k1YE8TT9AJumh@YYYho>kJ15m#{6})e9>84uOJcr@F&Arbmt_!h(J#H0h;8^G z(=IONL_J1g9WDc<73=U%iPy0!=JY)=oxZKZ$x&Uxa0QIb#^{Do>`9I&`qYVJU5n`q z7|9a+ute<1%llX7!3#Qln3muxeOsCO0;A=MM$q=Wkl5F6d!~BYp5UZaGjwlqc^JS9 z-IJJIW6Y2aV1t;U6r@`s7U?b~W1K~z9#Lv8g{Zr3bJ-%m{{70Gj7thv+}p1l7Ss6= zwMegvS*jFdb(d<9Vr{P-7C)q5(^16Q`aD}vu4nczMM~ekZIIrd4N`z7LnPAb{4%kq z-|Fm)wK@t4s=4`<b6-@O&MzjxoZq|bADC~`meq{z5zAKb;P$pq|4{E2e_4b`HoBUs5c^aEIwRTwSV zemlmZTmWE$Sd?T`TOu}P8B;LMrcjTl6-^<`t|BWxhXDI+%6|;5WBxUvO}V)rn?l$2 zqf2JEV#U^E7yuPJvOk9WPeMC#9rIfX#67=3tZ@p~8^wO)zx8KF`YoK&L#Ou(rfxL;e(`a-EAsinhIR zSZlmQtlMk*GY>Lzx2p(O4{H|nTHn^|>>{D(3PsR5{T8va-#YD$wN6n4P_5BNlgr2e z*624Avv7VfoiC_QpM(DKv;?;xh00^DG1~eeUbJl2Zyz? zDHv`PQMgC?Q{0ZftrpSkVNSwd>f5GRi-4Ld2SMv{n%LOCKiM5?UBaiXnwV;G$rxaF zVkTzXnBB=)02{=_q$1uDu`>n}GS1FWkCE7!#|W_B&de|_Db%QEXYyh?ecPF5^)8t0 z3K1KVeqK;4#!ttPFU3?B+hV+9SZlOIEXJ$*Q_GQM(R&z;$oGWZ=y7j~5{TO#)3cbS&LeuUlcr}mLp zk0%JQ-+FwMF-f6PJ?rriF`2%t$4f{1H3U}(+478fFvV*9FlO0Oka)4J);|r4HPAYl&EuiU9>OQH z@FAw|&)T^1!3H6wpQ6j}iXm2tiMhmDq?py6!&;FPj53OtRamWk`E{YA{LLc2{!|)- zwst>Kh+@Xve1Gb)#tQV9VO>59>ghAYYX04Uuavw3Tvg2Hl5^+)?td#W1I4)iuLiI| z6mukjmWU>9FtLOtzSJvg9Qb;cx}5aRNVIc@0Q78C4SJ3q@;>oMXx zUaokEh*2LeDEj*6V#t?bs*A0!-#4r^TKf7r@HMy)4I1bX)Zj5S9FK;${8FU`fc7)2 z%c4OI{yAbkzXr#L@bC@RDn6K%3m;CE{VybE-T_qkXA|>Qj4J;#02@S=_ombm(dnOJ zstKLG-qYzj)Rm-OBhli2M}YlW{F97N3f1Om@!uCy>RXFXCH^?0D>1CpQ@pR}_+=ZS ziJO8Di>>4TV^}M=M09-Emkp)%^L=&G_kF{z#-L^w9~z0#?}wuGd*4I4JQ~#MSzPUt9yf}YG7w_P8~p@UxU$x7BtxdV1p?1SRyT+F8|5p=Pf&r{!^6bvzT&1sc-g_ zy7*YEx}?-~B%1v;0_@l9&t#-hC^S#AUm@nzw`R|Jj2!=2Tvu3Fq4)oqqQ_qnL&_A> zUTi&n@37WuiRkg0LX>LY6UcsVInV?h?l4LBmuR0iAZQ12IjE~&MJ(ml)t7p@I)I=m z)~`v+F>1jn1KE&i=^;|lxs1Rxyi8g*W0rqR-bBsd@ zwd85zwwOlW+W6`d&hC*v@E-nsaaR;r6ZiLuLc(8*Az_N?F18l_;IP(diD=xEd2eR=`Wa9KL2-M>n#>eucQo_6nRimJ~4v*esVfX@GNV#bWo`QHSv zL3Dm%!YvU?@Fz^fFiSu!Be4YkhXDI6!RHx=6spm)1fLbt=-U!(^DKeK=dPHr<`3_p zX!^{?XcDEE&SGo&HJDDa?XG0v;5sZ3O}{Hd#WpJSR?Do-`IWizELLAnB?jiQQ&8(p z5!?8+?p9ChI=HBcb$4<`8$hv6B<6z{#d-k122reGv{@p$^IE1;nC_&Ok?7952(Vvw zW*LVR%Ept~=ZIb1F+K2tF|dbtBUPIbzUi@)B+e+k&7+XRxo5C=H){qj3#a___+63d@+vHZwNw5S<# z-ufQvriH!E)vG}E%>qk-v)U9kft$qy9wKZ4W4@c7u@GL-o+-Z<|Jw1Y&cmH-`CgKhp;|B>nAVOTI(q1^V=lUbI~Rq&=e*Drv-w#PCck~z z6c|!9E0R{0*s9NyG`vjBu zld$jB!f}k&rR@Jd7ua8SqiVl-qExRM6J`B$eWuy2%^4GVO{XQ*cTX6#GuA|7e)s-~ ziaCQHtx~EnBIyK+;xJ>z&Kw?Ajh&3SDT%+0yR{B*HiKtPDL z3;2+3IBQF9ObVZUzF?bTv8Gpp?6^4yL0zowW@YU*Zi-eb5o?#V*F!YM8%=|;u{RKM z%y#_maE;xyCg;<@yucxAQeIE3!XtHPu#RaELV#6@p_5`Do+(q+(oA(NO;yZuEg_I( ziqA+o#jQL=+(gDIw~S`Rv|0gCe2$w5JElcz9ft!Hb>@N%fL!N-bY2rmke8K|U_ONA zAun-w!}naF{f)_KZ!fFGtB4z1^6ta0WFdwwcD&97wu^z4ug70LgJ*A0$nBEqK!4qs zH~|m}f$pX8Rgcis(GhZ3K8$zb+~u-Ip?lDE)D&9pvwIGGvgIIw*15f$K0;!B&lSSd zM@yK~Oc=rOTUh*vtaui}W+* zvdI8alPXegNP!e&e^zf-TKO}2r5&{=voEmPjYhrM%3IjOwH|EOTk!23lg{pHez>in-xjCcQjTK(iFb>&{ra6Ni*uvg7btJ zxE)(bYwr+C?w6<3VZIqNOwiY}SD3}AV4N`!SCNK-y6*1SYp}f(s`WBpELH1Y(U9y# z&>ZcxVC;J3j8W_ySq4F5@AOSejbT-y#jedaFe$%JwDLYMdtedvs__0T;UescUxf1a ziLO|IJ)QCo33Md!%l`+>9@(Eeh)gP$C5}Q}PC!hYPO^+^S;}9d`S50ZMSq&y&Is*L z(yeKA75ohf@)vC$jal>|pNT;J2M`k<^Y}c6e^FcPUoD!mEcGqke47-(gDpYi&uAF< zgET07VAAbHz0ra#Xw|ifSu^yeR&Qo%^_u*L+aG?$7^`a1^=7RNHD8&BiGbH##4GNn zI7DVyHe*&B6{8AoN7$JM9`J%cek?c;X+7|O8-5Jh+9&Z;qyc)1u!mkPvxG!i5bzd`j z>TVI#edQuh_l8;QtHj<;L>9=nH|yBbVNZtNi0ZJbV8VY`hx&cR`DI9U&XCr6(1k{Dkd>Z<#*Fb{(JC;w2R*-bHb4;&sUZvsw?Wj`^eSJ z_Ds_Z97Efyj&TT8u@CZ@Lii64m+&7VaJ)HGkqyr1B3MJleigWNF1Ya>%jGnFK0U1= z0VQu0N(M1?A-6N5Y1;Hzv)C$4Yr7^V8!eB^6QmEUVhD(fGKh}7qTMtRjSP&1SY`oo zhIj@=qmh|luVbtx8nwAj`5r8ky@^5`W`PB6qEVdfl*@SBmTUQm{-{B&K|nK}+>SWt zVI(jhq$D;#vrfcnj32sg|2#rY&31v33+N13M_8&Q4uico7RQN@5rv!xOKTc9Zna#$ zU)S(SU$?7<;suS;P6`=WrTW<#Cs6>0+sru(kjtFF?;0Z5mKdw+O%aJgu(<{^03d|F zH@e=+c&;|RD`HDJZEQ}{-iIhj50yQUZ>p`5j{TBe(`Jket2|7F_AeO83-UP|sCli8 zjZ{-B7)=V;p%YTX;8@iWyMqs4z%hW+wIi1~NDXAc5WM4kSQ7~sg3N>%V1u?Gn*roF zCP%1?a335AP}0gwgFQ>r58O|GA&mIY@rNG}6mljXMi{wLa83kGGaPr5)M(X_6I8^C zwY2OE_HeB6n;3tlevTHhCf8(#8&j6MnYjgG8+CW^l^8uDBz>(>ZD1E~T55FNz95AE zR4cQki_O%rpNJVdg%kUAS88cea%XaK3K8X}#Ui0tsO!|5M^=*j1o=;t?V~a*vngND&e`4>Cn&UW`#16 zNo)6t&ji%@$?Z>*)-&j>SkkJpzi|s((TLO01q_>A6oW0D>$HXxat>+xM31A>bl^!2BV0JRQ;^6u&SP;{s9Vyf6^E4>__+pB z`%6;RIOHHaWD1n~ptkuC^ftu2jdMChxyQ8Qdh<}d+05?9!1qNq3Oi7>db6q{EClhD zh|CzRvxZUA#-~`or*hi!>u2ehcT6*9wfTCRP+uK-2J_^2KkeJ$LXuZH#v@eqdAPSNJjYdr`e_XwFR3L3bjI7} z<3PAp5T^(5T1oGnaPE-1s)SGFPCmU7OvuGq3B_{fhN~08qOLn4#Pc`c!uU?8?9AQH z;WH9z{J~^@gM$1G!$rQ|h`|(e9YqYv=V528q}3nuRk zS#fZ_2=;8w8653TGQm_I?Vf^}(+(ETe~!m?<~N5qi1ls zRK*+2v1HW>&3g9i*___iO;)F`I6F?iC-DDWle;D-8qIpaFkk`ZtcktX@6T5eAVhj8 z;(<9taeaFBcwj=y_Npw4e=F?wCiIWmbtGXw$t|9CwVC09abo*7o|FW3Xed>swFr|? zm+f6K%hsjpZYEVX7>79o5PEMI02MBLf6R1}aG|FJe~#EMs04{>LsNp+3neJ{yh{nL zhu_+z1ow6;!PV$T>TjP=a+Bh(De>2?K9!tAB}&Qh!Bu9~G%Ce>_r)qV=}Y=(+)wq< z+%D3Oldw3|Qgv-J*tm)tTtWBT*Ptx@7l*X;adD{pQ)8xHoR64l zx$oRKmpWa_?k^}N#|L2=-`6__)Ry+Bn{#y|TLl<{+MUL3D*fUPXNXjdtKo z+Mu^IoJr728NG#zlrwEQe{zS($+*Bgtu=2Dv>MKk<`D*HVw;Z5wpD`B(6X8O4E+By z(qx^$#a&9x<|DUbB3MW%J(S{ykfp9so&>#3$XZxm0mj|0JD2S$93HLY5%~bpDq(Hk z{WxXg=6kL%#y<>~F}~|E#&__`2}CW|vZ`XG#wdGOUZwhw-oo<*=grRaBMy$%bA(pj zG*L*Pv?xSayEPh}B#Kc=$7%w{(y;=+lHH24>F!RkPM$}{Uf!4wtqVW_&kkRT;qLOP zPdS6pxQu|+Fbd`@PX8a}+5zHf4Al?d`!NzrE*8L8`j;x0Y8Sgwob9nnd*YF|1TJj% ze(MuY3CUErC~neSmaEV7XkMRhvnZutL@x>Pn?f1`sfM0t1riPHAJQ?2TXBF7JfhEG zx)iQFjgjG1IwE1sDz3^vlg>8l)l6KDDZPU8d=x4$nv?*|q1*-nF7Wf|R38}_6+Szm z^LA426zY|u&fszmPI^QPm@ntV4wXBEnI5hcPXL5Z)qW2I^KV%KS8El;5@=JH;^1&q zi>F@?uxb&WVwZlU#^m~S4c_w4`D$W<$kR8u>Z;G$-zy4*UKE3C3ZD0r?>$VRBq03C zw|pgD4=c(Np?pu$G_JxQ{pno)@&$En?CM48+}>~P6!+CQQN}s@h!9TIT*rbAl!>!@ zo@J^WlOWgpWklkLv%4hAEDfM{Xcjv^CiuBU(@2V}#34G6iJ1mzlQ}Aqi0Mtt&4~Jl zDmGdcSzBYA-pdt31CXAO=yg zAEs&auVf|hg9KYX7N|Ew4-|5JW>n;o7)5Szf~c-_Hi+s1dyf^g|9n(ve{Dfm`7egE z%Gh)&vft$;{a{q&O1jD!PvNO3`x}&%UVTBd=13xp-8)tQPG$%Ok>|BEje+GE{*$uM zL4WEQqav1EXZ8?+gHl_hZjW^0dcSo^s4;xvk@u?_EDq2>p2FJ_tAYqmAq5tE3xc=A zPo&)ve;qG+k;_zJ>QB2M{xB^TpL9V4qRA9Vb+6i$KZl|uz73hTT~BbS!Cw=x{AU1Y zk7MslMN=q6UCVmga8W)^q-eTfPZUSIDzr<^2c;8MC^2?sUyqnsw){=C#a{0p#}V^q z;!x8^m~x#Y+@GhSyrpQ)2a_ve z1P^cyFkv%ZZSo28j9i|-i6JMYBWabY zZiGiT%Kak(1?wV$-$Ot|;mRLZh{+Up)j$e+9+vxchgh~pm65P)e*j$+wru6kL^Nc} zUr<}@l_DnM7r>P#C`PT!@!iVE1JBVrgZe1~%x6&E+K2wQX%Nsc2(3=hEL)B`~m4^_I^~=8)SVLl?dqB^2aehd!1|DBTBKA zUMV`R!7-W;?Qhe2T%XkU?=`hLZbca9P_6oW`4c`xa~}WRR6}YG=PJ^jLV6@w;xEXc zcriSl4tol;9|4m2e*0L>FdYqxiZ}Akq}1d@vL#iaP&~n+gZ8I(^0I7+&2_G zw3@nkq*e$VVN(Y2be4Ay=ks*#3X!FM2U88f)7cnfmhZ*<`tpCMWBG5% z06a{;{?7gN_xSZ#`Mdn*_vp{1;MnYJuyN7P_2bz*BiyrbK#bD0S?dns=$N2y(;;e0 z{lmVE_ljaL9;bc_=iI!xdpMtSb8m>CydG~1!MWKeoEwjB-QJByA;-P>d5j(7-rOrx z&>NLGB?{m?9OB+MD2DqtzQB#}Z}fBI-((u17GaD_!`)+CnnlJ%;mTi8NUCbQ6ed2* zjd`(HybmZNEu5m>cueAc zZ()9YxiQpHxG@_p#4mPZ_}7wjW5#6R53a=&>ZRb`yUfSO!4xVAqA*nzFNsgmiLZ9$ zJRqZVWiq~D98D8+X09fh`<)s8ON!yRhI%fXJM*mW;e77QOG5$fY^pb7_3B7^kqlS))@bzR5wk#qNO;3QQP{;1?VQ zgr#uCP0Ey1?K32o;sHUt1IkDX=~A3fMjm*Mo=fop0z4#_qDZg?b1BRr&2tf4irFEd z9^+EX2sWI-NFfR+iAzDt9%((}Y;%}PA<;Uf5FizTo=c&Mn#%AIMn4X1&!tcmV375p z*dw54%V#mazFZ3GC|ru4reEw*@UJE5Qat-uKOvEe!##;(qjVsa9di$%gMPz@h_HUY z0euyt@L}q(aPGpdbr0ur7m6Xm@BzFr1b1PLa2G(SE-#@>L~^`?PvLircTg0X<%7yJ z5_t#Pjn$eNf5z+&hJ(3Peq(aa$+p1Klyd7a!q@!Jx0IS zZ1bO+s8^bf(pj5Zn zCL%dz`y_tHnC-IAEH^6CNMyFNCwxWBQBna_A90C{%SFPHQ>6e@+s;~EwQP|V+W%{c zd4H*bsHz@@WZo-+B=;#JEu?vGDkBd(N6)<132-0geI+Gvx*`~~@2@5(ec5*bM_Iqu z4QXzJ7iqj8>K67zu29I51ehFd>qXPpWmzC69;*|yo|EHdYe*E zURYXVS_6UPDNQUU= zyN9!Xexg*b8WUyxbbY2t)mkU?nohSm^xYFi?Tj_inBTpBqGHbA2R^7<+nw7#Vd3}y zmpuxn@r@YYXRXKg=62<#a(l+{N^XD7n46n$IYoT(I@g$=#>Y!hIEkt@QKhBO1EeVW zz6WV>{9Vl{^`?t`<6vv;tX#HyeE{%U2e8wn>udMjJ!IC5P*{D9&nVq zC?hrYGvX$l-O=fa;`o+HaM@>R-CXmUD2j9N5E6p;b9UlGbX-3UX`%RNN2x9THPQy~b}IuNF@ z#}8I2^|PqkSI2(nG<^XHzw|<(-mbN}_CtZyOZcv`QXfzd>ubXkssMv4RsJOc%vwo) z!M=+GQP-@q3GP`ZulxJ4;ZE2K*ZnR5=5U=S>G0=*cdp$c0K+Ks`>-qF*+8Y;`;Lui z_#eB!`nhYTPI1|=Tg6vzQ3pWm#A(MT^UYD@*Qu;TrFVc@b*BXE8Ii zdQ01m%JRl`mkYa#jV0TI{qNx}iC1duD*%iYU>CNl))6&&>R09b=!;&#a#X9B?y4Un zpDA+o4>6-f1Qz1t%qutc_dLfWAO;A=mj8*S;S0r*$t*|L(Ul7jB-%>iJC$bQkwUV} zCD99%WWG{0c_foqMPB9$qPvQVSF8BSX9~iXj|$;S065vs(7(pz)p$KY-Oej%8UwHK za_v5qV)Q^E*X~h~E8+Tb-i&iZ!nz`uTy)E*Fg*ys3%9VGL^b%r_N*0n->Aqn^o6aA z3RCkbxv;Mp6}b{Fti8_lYg8TMd#3!mnw+B8U8iztx{G#{CFkf)w8Zci< z?AS?1$16bmMFvssyT(1POuHuuT9&JDc)J38O2nAe@l8+^AE3lMbAdlxTWeQEUK zB$;d1PC{bT_xgHOiWO$|9xJPS@u<+=2EYsFc3w);7<`p`7B8L{6}ghG@&-jws?r>2 zQ`Y;YQBB~$g0A>Y$OKuOvc1HKB~DOFwUXOqfR+6%4aR&iZ>wCxFykzcEg?z6a zE`ND`#3L+?5q<r3@WlGH{#GenBatMKdu+h$DTL|mp&ots|$g198s&hJpGVc!gE?2SW{hGQKMW| zDi2j)_YZ_LDAKhn;mB}-p znxTw04Vlw!1G2_BzS}Y;LJZt-lDcglAHQ*X#>BlBKtYItG9$F2*)$6D#cTp1aw$ym zCdw4d!1uPbNv(?GPyjXIUSwVb)MQ^85MSSG8rt^yczyerfRDd!7$4uB(+(r)q9{HX zhqG8@WK_*!v0`M9eRSISI^Xu^ZO3Up4qJ76qi+@f@ZO1%QNyq2-H0YXsxA7oA0Y_{ z^Z35EL}^UJ_gFP^mOj(UIPw=;Ei9S|dWjMpc#-Fx)9$4A{R>dT7rtq_Gh991!W{7y zzWJInauM`v8V|NXGfPspJZ6pw>e96NE9H7&zECj>W@}!Mj?z*p{ba$Qp|8QeLRNaqB)*n5)gyfs@*h={%w^ce=tOa)9q&W zfj1s0OmTQrB$HV6y?y8}H}fTM-BuSjpC=UXQ)g zWB3X&zRIx_j4lpO@I~Ysadv)>lu(Kx@) z_L%y==prfdlrqtZ4viD0f!y&66Dy?%cRU3a-dDapm-bN5 z`$!1oDMntdjLSLW8>ei7KPt`@`~Muyn!AlwyIHdwcS`J}-KWY5zI(W4#Y@oqDFU1% zK{J@6dz09QU$SPgTROgkeS6)`oeX#9PL*1#_^IkKe0aFD`VfKR75g({&xv~&rBucC?xTf znv-wS1dT+hszRf+mq&w3!Wsk7NT$%HqfuAt=l~Q7=5{_~@u?#cP*aj7_@U+@l4kc) zg*3vZ5oN5I9!e%EgYfx_PYWgMF&(!c^-oa^am+H1<^2w8xFp)8%kq-p8H(jiF%hr) ziF#{Ey(N+Yuvh*>z5N%ou*)K6jsj;mez#YP8#&RRtD|0`_Q@-Wb-DHl|5}o@PxeuT z2}IiGjAFiMGz@%1uU0^WzK`N33CN{!=_>x6+UIibF`UjnnaX3 zk@vRD+5vq2Ri-*0m>NT&%}TyrtIQv`O|MvpaQo6V4^U3#nD4IE0dYwyrfSN?Q6y3V z*^#{zMe?@f>T!^|DV^@&>|a=-byGrEq2pcG4i-*nFAA4 zH8@uZWJk+Y8`a%FG;6JOIyzkhrM$)jl$rM;6U^a+ekxk8%CIefZ_p-;0bpItBQi89VK;3Vgnm5+_1G zp=`3Tllnt7p5@l+%68Rj%f7HiHJOp8j%;P57<1?v`5tcY8o9=}ix&J2V*jrxa(Gh; zIqa*R-jgtBDwghmLJ=%oFj?p3!}M*7Dsslf9fEdW>!oEWndd%j>Qp}X35;O?R2KCv zWeV!iQdG#ZpG7SnBf$RBdp(KuM>0Q4+)Rr|{=5ruSrfZRP_!k*7a^j&D>uzF4scE`#<+F(J)rKB;f zX*4Q&0fI0y-*x51apJl!s05E&lr34XQQ<9nxTN+jr#uS4pe$!9b=6~}#^hN~T{kW0 z29ZM)xr^dQ$_(EdGgb=K>s?NH7tb&W2!B?Uy}U8sNl>ZpztS{(nIPmq#Z+UISGdyRI0*x^7i5)IVt4w<7g8l zBiaZ9iwKzSg5USl=z;C#2PxZd_o?C$9~-U(@NC>2Yyl$n-_$s`jq9iKSRrPl6gJ$m za1ZeOl7JXwOJ>kC`nPbB_`%(G@9L!wjfz|nqrNxX8BbKy2#dc#;bePMs6V!#EB%I4 zD;>J|j+L@VU#9n42b3CfiS?GUYH_0tr0j1`ylR8)$nCr3^@*UepAyR6U*!u#%V|fc z&JzkDRrKbZ(WJ;2N*&>VkH5>r->L1XAp>MoOZg zB?ov){!2W+Bp?P+@?WEA^snS4@slh0?~RIF5~CDKK9E`IDfvK(<+5i+^Hh>$>RRdl zSkRSTLDNXQ(xFN|R>~rkeDAmRDpd*l)>n#hj~itm<^DT~S8HJ9e$vTo)v`17dd26< zbK)ke_`5_+4(M;XIfrxTYNHK5-p$jXGJtfTOtt8oPoc%AcrR;Kapb+n3bFSMS2R2& zzXyOLPtvGya3#NzNUHjI;*m1LqcLL*B>Z>q43mHuM9tqt)97FLCHa%9d1F-Mk{I=^ z<~O>&d`OOSuu)m@GozY54Xo~= z?VtRgr}@Be#m6%VKhFyi;rCPH;3h$Sibk<~VV|e@c+6-?GcQK9|q1zqL88_p{C{5;JHEm{PVaCDbY zBwgjeCuo$V4zwxjy=_zz*aE-{cQAPoO=D20?)`b1u~AV=E_bLWLT!<1KGGBE{njWx zPZKxlK%U9_6RVGbJ(I`1`$)(jZ#6@|nkNgg@UHZbNSa2*vL*`ojA?~7@~CSq>`|%Y zJ7=yVhN0yRGMtgYj-12R07hn+XU(WH=S1OS@3FGVkB!xdq77rR=OHUGU)P2zVJbj?3T(->5;d;2Y49u>9Zl85>&)E24cBmI`%Z57$SGIY99rOSZ$ zhFf1Fg?(!~^af!rlW7bN+BvTAylptoda;ZneDa*}X(~9v!o7wcouLyRVLdQB-AC*f zgRxzwn2=%93%l1Cd2uqAxyyG3#VA_%3O4RO(p};_ZV%^)Tx0lvwt-Jd;fiFPZ)7%% zW&v9Rvw{y_(YL1Xl6yo|?)y5LZMv1^wd~Gb3%YX<-f^An0PmKsCFU0u&9mj-K!sP| zMY=?l?Vo?hkqaR81yS);~CJN1{F)#*H|H;r97v5o6pDP6HKH^(58LPLEW=!+Yl zei9tmF}yneanws;j=0W0D^l;m^K--ucJLymAi_W60*?T3jo^d8l}=mVxzkgNJ9qXi zNMX7oTs68p5tN-7TJI>?*{I^>0%6ATX>!#~nHw$(c~Vpq)Z@{+ZhBJVl98hM7-Ui~ zkS9fc5=;syO27n)q{k6#NP=^X;Q9x6-BQfEr{KJ1=T67u4=6V2&AuxY0nxIT5^~*k z@q9n&+&Qppt#xRs%JsX4%haA+zmxeRB3MU_OGd7LH3pd!{O!rLp9CkPm>h+sh7yxYLNG}t?~^NPwJNnPRtmu0Cs)*RZ^0N`+$UGKSVzxK zu23)W$(7u*@QXjW!oQZ}Cs%TfCO%J?$5*`Dl~z9=T6uQ(hgK9Yqx`(eE>ZAL880j9 zh2^QlPxtpwVm^MdK>?#`_CTAWy>6$K{b`C4JVbwxT)X8GBQ(t*A38bIJ)HfXCHSF} z05#omn8DARTp7Dw&N5`n!B0Z0_r2%zDhIzl655HkNlJ^do-getaIf_&C#Vbi5`a&p z*JD1H@gfG+MVk@VXg)Jq3N^)~l71iKwJESlP&rp(6|9`wUybHBr@(FS8qEUbBnGl4 zs|^IqtC}04#L6!u8o6rX7bEJfmfryV`fw*(eiQya)hWl6f8wN>7Twxxb?i&>)q1gw zfvS2Yb3qU_iggjkbawQ@ry;wpg)=L9HruRM zwR*dS3s`hScJ$C;x?jsk;;d_~-ZWdKYOrGNFaRnV|5M83`m*40$ISdQ-=VtI-U6>f7I-tj7PVU@`D&c*pF2Mu2(S<*_#%?2WRl=V_mp zB5Hc_A*x#TP4sa~>0(#j(vjR*o6}Ak^HwIa-3jS#$8YbfiT>q_uxxj{pzhpG#o1Ak z;*=I;8UA^=%iv{q{s4d@k5j49(=+PgM}Ma^n5?*x>w78_6_1n|ZhUt1SP_nUoY;H! z(bofTG8fOE-;I*_q%JpwarQ#KwLnku8? zQ^?65}=)$PlE6dzX;)<;WEUytc2bQjy;xSY)2+V zL^9c{3bWoYTxOjnaI6czOzgsL*J@z}u0s>#ljl!2{N=)_E8wkJ|H&pkJ?4@n5Hc^H zAiQ3&f?YdixQ#gbaMT}us`1koQE%5PQME-133d&4*&~W9d3`q%B?U|`aCjGk2v!cY z&-b%qBwbF^O#O7(3}SeE+(nt{=qV%F#T*%BHiSxMu&jUi)j`s10X2Lw-9?+%j-EDa zgeW~SEZTH!C1SQcG2!Mew!Skhf_D%NU%vu>2z8MJK^flNLmN@6ysLmjkj&qrn4^yqp@*k=J@4>$ zdFdk#@Tf6r)c(E0e(x-QIcBsJ>+ku8f68-A0>bYfmYYuk}Q$bYThdU`+~0Wa+=2AtK9Sc&n2TGSJG7u+)GxRqd=RY zxps_d0@na=`dwdAslIj?>)reA&%seqOD;E?ncy~*+9K6FzY(?#?fupT_qZX*0_yo0 zXN*c9ttt-2KwiT~6DtF$PrUtu@ETHJ;a$@C+qAxmmk>Zfv;h+WzLFLTFCjpURH_@l z6cq9j0@OISa8F+deBFbI2MKN2=lqo66VtjK$y)z&E&CFkZF|kTZf2DAf-j2(6>fQ zp}!KVoiw%M2Pv>hklG=!>Pqb(#qW?;L?l-7BZXoso)hh?MhV;CsT~642xlbplq!V` z@|9vXZ4MQ>zq`GPJ2~xwO7fXPrYlmADS=M91mL02lQP!M6j&u-EQwV*#@d$xx4{`p zpgdZ}x+vU#a+s)_$+mR8;Pe#?7t*dU-wRTZG6C})O~-us6j&u-K8aO2=BuW_ZE)rj zD36x;Mw}b@Us4b*0js?_9jkRxV3mN?BvxIlMtdMtQboF?BAh>y0=L0gO`tqfRvQSI zmm3+fy(<4QIY92VWf5{CuZ-P9_sWtCnUcF9>7v?OG1p;dNq&lWjI$)afM0HwWaReR z$(MX)?6ku&Cw(g=&PU&__^$9#`p=xaG$eD9<1g-Eo-ltg{S-<2Y6?l~=kxMU#@)YI zod2az1d9_qdTqauJ~uy$q*O0Um3e}{5Wv40l{UUxe;c~AO7xYO7IKC}p%$}-7f~(; zX-^sYV!abJ;!k#qZw%0Gu7aB?7L|1rd4NVSu)K?egTgxBRtTjAT%&e5{jg5?TLhRj z+lq)KS(GHye;e+6y(H9sCcvEa;Asllxr{OibqVGVTzn14FpB(v3ji48nA}AIu-1wn#P4Z-nI!^nR;%{y-dzu8mGi4yQc)|IZbe2xnPt zPRtx#`2!mmME_ZbH#&!5vee^v#XN2B?G@*Xh`6z3mGp+8Wsi+%_@DD(#cQ>xxJu*R zsg)vh-eX1Hem`b0lbAqB4=>a3_XIt{Jq2ovWTCz-2}(0I^?4?o8V2z-h{{;@KtvF^G2g8cm~rYvNyupfJa-M5HkHe(O2?aj~*GaZm>m@83zhIs=RMOX>m;%+?d~t9Z6aKnx<}*U&Wj z7jpkn1cf|yB_f5q_giU%JPztWLcTWf>I^L8_!>yCs4-h3uRby^r8-}`r?c%H!oZ6X z&#>?GzF9PC$d|+=ZlejMVbM+PFuQ;4)R?v_&hRT~2Z~})S`^K2-*9EcGynJUYD5GI zsBtkgLnCI~Bw{TY$I}c|o^28kgJ^~(O{0I!AeSO}$l%dYkxOFKx1;BMTSQ@N@3F$u zZyy!fk1yydzjHXN+%shGtD_=U(pC1t0^ONGfi`8mKR&7n{N94D_a}z2-n~NxUmF#* zw60+-L(iCMOcJ(ZG($bN!#I7+PeZ-(UaGHikGP$S5n7h&eekB@PW+&)gWE@wmnYog?(VC} zA&Gqo&xf=ttbg}#S>M||9Anmx*ga6=;DWxAE2SvY6_1n|&c%$CL^8W}3`L${5)gw3 zw@K6JU%36`4+?iI^&^G5_gk06FtD;Dai9j0=p%`jB*IRoz{0ykm`NL}^ez!n62yR) z2!F^RlCY5Aggw#u1BK!!64PPSUUrX{5 z;T~B6P1gM5!o1lXS~m28p!{U*j*h(}v^^IBY?PM=kB9`okWsVj!K$|g&03+-E*klY zKKC-CSt&vp-IzkdmqAr7Uin@JnI z063X+QJq!lzSI}kiv%xc1)7Cj5_f5oW&L(Ho!!*gDD9UZpZpsDpDgJh<{r`48Q22d zI;vxg1mEa#Cy&g!Yz&LrSR7!qb1`ufX9Y7>AkFLQec(f zzJkOmcwb=^>uHsW@|i-jJt?po{KkSnI*DV_Q&a~6=G|Bbu?6M7Aid@4*+saqaA~CF z?sZ!sWIC?O?V{KpVxGgkt#BXl7vEMW;Fo(_A=C$OZYo?JIo+^Z3cl45`9*(3%jJ3x zkl6ljDeS)6XtkR)OQWKzNOjkn^R&%(N<3TjCVhK#X5Lp{!QJr-O_d6QB9W(4NMt|h z=}$J7Ml5DYp#~N+c&njs*jpd^dTbkhtD!fwtWlgZs(SOZrJY6PZEbsfJJsXfer`Js zjGJ23EEX$6&)dFZEQ1>lHLX^ciyd=^q2A|+_~2O`1siEJ{5*%BT_fZ9^YFaK z=n8whOd*K6(~EMV`eBdqJOTFKUg#oy)a`}rNNZ@nVYn0at}pyJ0p{xqo(drYKg#P1 z1^-!rmwa%al5}|Ol=vd^p>&_Nc8q>^2(n*C{pW{Eaxc{QJ^%)Vd56$-qk$Sdy{&R~ zf*TE-r|8f?47KY2viB}$?lb%VyOCMOhgrKQ$M6AR*Ro;t0Mx;AX#HJNzO@e?4}|z5L@&RX zQo61vO4mTegA*+4XLiAk1colgHzk5C7samJ1$$;ul%D>e6zq5eJ)9+SU1!_=)M z0E%lTw6LLbJL#?3raiPVc`K_T{p}<>?)rjv=Bn$!nS)LjuHbjN)oGDor(z{u{V2s= zVDevMASTyeKslc;80F;PEo|s2CI?ukL}O~l(SNRp_SSd1iS+ivG3{pZi9W=7t5Zc5 z7xE+6jr5AjFN&aEh?Rs=FC>3;zC2!-3F<_Aam{8@6K~cQUuHFNm13*JDo-_=b>HO& zzD3IpDqS(}z`7O>=iyt^?94ZN^%)-7gYPPOYn*l$;(pAPaL?CU+6=EGC^uxts8YT~ zWc2fVhnQ3-KV~vgC=@Kru25DW>#57bACVreJXPJ6js^%#tPY2Y2RB_g61$OJi3s)w z*BWr$hoB_15cKGx*d-`RZ7$Y$_lY8Q(}IOW;v0+V!pJ}+KAwlflaI+ir6_LsH9*jg z#VP=$9ZUY|tc*IB;3%%SO!n&sdD$-mD&+aQH<~)z^86jH;%7X6_fqb!-??ttvY{6& zVM5+(Ay|Qz!>C;QA}#5!65E7Sk9kjt1YeLZw&nK4by%^^_C;{#Y|ej*%^DrGXfi;I z_hnr(wslu|Y{VKJ9~!aBo8iYM_))1;c8^%&TX(@<_!e7X8TAdK%f{$)(X+>>}VOBdVYg&J>)v->Mphd!K_IM;o(PP1Zv=W$?^AL ztT@Z~qnTZmP6;zb5h-84lvBqtOe_1M3+a8r|DU18fbSB!pEIpOVi!f13w8|#p**uq z_t)uur$NQ?%r-p$6U1oTnQgW)m3U?w-{NPsj~Ibp?94X%bx@w!K9f&yCqs!^QXJf_ z#2(xZ)tL75cK_W6@9E-jr`Vy8i(%XTt~JDb`y8b2(USfQIl&dGvfR4L%T6QLK1X0Z zqBU<%vSd~)=gbHMYM`gkS;*MLGw3I%L{9w+^=rg}oP;3v&Xdt`s?cOvPNP2}+}s}_ zUM`HvNpo%$KWGk?3k;o!l^=zkNnDgpU*}W?+_*S1_Qoo+`D;=84}-VK$Qj(1yw;L zro9*OAp`2NW04b`D;6_VChtW=cqO$_8i%8^FR%GRJPfX?qBhu-{t{lnd@?{DiN|g&VWqw9FahYQMD2VJw>*3Es@E2RA zV84u(DQX@9a4P%-I^p%E!nK=W=KyyQUIG8zy;O_gM}L*mfZ^bDmUhGY--HVL!|h&U za;my-x|(8b;v~h|gj+@0#RyO3Y0U3mBJ_{jR=MNUooQI~=Q(vn3R#@2PuiVMZ=r>k zsoc!6?5JS1F#+2O;?&>-L|eplfM%n<$S3zvYXP$}?a2i=&d{8h*wBFZjvHcbp&#XO zlDbR2=VSE4EV0{EV^6lV) zz#96t`yw|@!9oI=bHg(9hEfho15bkLLDA^W?=CT*O2exbR0X|io=cR@@51Rt_ZZNY z-KXXx>sYFo`P~z_RL)pSRzmy7N2)p(OyQZ`vBCGGm-ap}8=TM=_-XDc3cuF{RuK}ktQ1u-% zRQ=q5Dh*T#szRvpcq&jePI>hQ1FEv4iW6Hbs@6~+-vv$>T1UDsy036f$;Sj-Csee3 zcbz?&hd}iPj@aW2sL}wJpehKiw9A{P8BmuUWSrr@47E>rRFanYVCyveA7VMb!JF=g#lF> zNE1{Ak+zaA_)yNd4++=aY(QUjv~jX?MO&uIl9#=wTeleVes`<-??nnutz# zOD!QjJqCK0_eRYp5mjuX=JW8&+ojGVi+KTbjX9#Qhr0m)mIJ1RhqCve;mu6TufggJOD8T zw|pLZ!9uIj$gTsI;1a5KN42}4hO_tC;-o4mgf0V04p?=og?8KDlYzK4NVR@q>Z>hp9i6-0a zuKbAHw#azY#u7{Q;i*q z$B>$`F`YZ+Vwa~TA^ROv?h;^~f9@rtf&|!qk;vno$AhV31UxG?f{gVxb0X0k1D+!k z8sWf%NIN0l4$C_Z$7988|6AHDoD3HkBJBdYBLnxEAr>PB(PKH?*gYku1)~b@7>&S& zdaG_v^Pr5XMfLFY<>1B+*|`W75^QbGm(}vJ@!D5+{;Mgvfzh6Z-SAyZLB}m7Fq&Y0@Uk*QL2C!1EAdA} zJa$nm6I3bh28GBCC-dT4bA;S>QRFr=Nw~HfKGz6~*2QjUOPIkvco#T!e6cU0vTP@R zRX#VZsv-i4tJu{0VXoJRwt$2U{9kb7xXBx0RiqAXvvVbU8C1+%r?UVRQTHfoTdyfs z;i@TYTMcbx=gB7V#vi|H%KuuOmNQ+QU92|dO1={&mOa(%K>!Olc+#m@m(5o@;5@;+ z$gWqP3r-t)aNK!fAz{V&n-Y7pt2$B}ffjdL6SB#Qbv}%LXTObp{Rsb-y*P%iZ5SOr zYeT6DWpIiIDu>V+Hbf5Q9v`d3nr$~1tg6**S~ZJD*09E`g&v%mbN0j8xk~AoK-vs{ z7yAgOV2h!Ht;98jwk~Gg5-?hA;~6W1Xl`8NboduCv!V*1WwBrq-;N9EeqCrUXdAW*PXH z7z52My=vvM<;(DY!rch_CE<;K;+cetiQ0H4D#ZN!Ug?|sH6QcQz6lnpTFu)x`B+R_ zI*x_VYAcU(wc0SLN`NX?R&1jD09d|Ls@V@Mx5M&(t>l z>ul^qo~m0?oKb(viePCXT8YCef+G(qO-|Hq++fP&t-V!SDP{H6`p*(ag{(59NFTAh z_(x+rmpV983%vykB7A_Iv**wR;wo4LtYjAqBAQbS95xDN+>`0SvNZRHyfx^s)$>jw z5o6~)CCq*xUke~@+|L=a74vT_%x>cj2cFW^SoVbUuQaA^Nyj{eEZi!nSnsN777KSY zb|bxo6U+}zXEBg5!9*ys@ySK8OHh=0=3SCQg_7(qAd=o(6zO9FmGl-PNk`7YV@H|N zmr4F=VtXdNMWhzjS|(-xlff(dOPI2^_Xm~zI9K-eexmGUsM)&Ro`aZ@I5WPgXV;k( zuzQmW)kdO{Pj_6fmhaGzN`96N4TX}&!oeu{=f|{^Ny$Ht^-rgYEK2?b*p2i`UNB!@ z$-ky3b_t3MlziX}r&RKR?bUY_MfzV4RMPJDm`_T+cEXJ~nNV4p9~!vo_++SA!iHR^A?c?S!23#}gb@!s(fT-L-5Wn2ey_pf7A zygZ*voHqHGF#9|C4h^Z~zsZ=bQ1V!qUCE~l`+I*(TRJ*AJ8y z{%VVv?jq8PYbBGq|GM`0%&hJ~+k3IotnzHVX~Xi3cMzy7XQ!31Ekn$|zqC5nsLobl z=Ln7ovY2bQLv{6hb$XudW3)twHrzPr&cg-`Zo9C}ozk4s<$GZ<#$dINAUY!^B}5>X z~aOjN}3F_H3L7De`73{=WX`A9i2;{UsfVwbLzk0FYZiaJn6JTc zD({cxA@AgP|6eYOTSDBCo(PsH)x6RZN&f1*d<-dpQ(UW=Jd^F(aLVkNyjWw`i{d>qJbxQ{Qlcz1#LB)fc%{&ylk=|7i%-45SMv7vWpeVI$ zrB6a|EFTjoPZUM=)`3d-?0lr0=&D>^6uWe#yv}n~T;)l}b3{3j`)pAinI5Rz=kt(z zvdeN^QQQ(@k91kEOsVRXE=%%PyNWch1Y~ivWO8JF%}k_$6$+kYHlRZ0FM6Emrmf6H zfmdvlp$_A&C4FukfPC++gPVO=BQM>5gdC=wTu_c8=N{Gj`Tcy1Yu*0P<;aDv>ou3*Z%2a&k$t4gQ#!8C&ll8kTtAuNL$N}Kg$K>J-WfxT0lww9 z_OoE8dR!Zz6fTW4;MN^pgQ4P#V{A_2e*+)?XEFI2@F#Kne`pTV5I#$Il)_p zFDM&c5kru{h?5%0&xTvn8tK3d8RE>u$t5RcHpG?LJ_Zj1)&`ZC4q3HZR{-vAgFj+> zi>;cm^`6i)4oWPMaKK%brhL)<%VEm2VLHkl4K^e68-|B27jV&4YFij`9Zk3{+kZc%qs#= zGF0cG)GOSe9dVl4rBRtVjnKHup?X-f(M^D{-hir`)?!4(m_V7=!VA39f~sI>+;pi| z{>*^3>|t>^$vUL;hz2s)Cu_aRxynKYm;JK8wexuPvoWnC$cm4`A188!qxNwq>aPtfs4ms^ z!MV=b$@uLj@Xt#SR{x5>ZiZi8?iK%nqMLl>xM1g^vak3=z!z4&PnHD11fsMO4^Ue;Ci*e;EGvR^3II?kt}|4N!>!20FnysJwGmxOGSu>9WYa8V6l?EqWhPB zO{k#zGA1cl{wAir&}!zN!>Mm~ghh|4G$~kE7ZOsi#C0p`Bxb|rHTq6a`7VL($gxLTK z2C|PGU+jyh6fDVK8Kz)~tJu{0VVCuO%#@75D3*t@e!%rq;7Z2)4%f8^c*TcOupCOk zawr80%lP7+NeaiH52sdfM-$UM;bP+M*78;7(j}Q?>RjQHVBw%#lIO>?WuVNYOY%I{ zL!B!8E{U$edI5GLy}|OcKWMOGxvw->iC-Pcyb_xl3+{#-%Dm!BI`b!;c_nTzWpdJ{ zwUv@My>0BI9sHSB{ytv|AZ^_H8M75O4hyr}xHOqpJ{QxHj(HMDkQVOKtbaOHWU+9c z$8MyzaDw^4Nq2JQm3xa~m!K&1gj>emA9LM1jwOEq@z(Ayiu9ikRMNjRl62(cJ9d;Q zeVOF1^31#v*IFiJ|F_yw%dG4V+RQ7bo}pH^IvPxHNGkaaP_c4t6$=NWtT`1Ic{stey7sKoCwl6a)L zj~#DHb)WoI9+_9-TFIpDU#Bgt%cydwf5)`F23NmgvF$eN7F$9+uMfQ$?O8N49 zq?{Ped~Z?g(v@-`y9yC?pp3}-c|~<#aiH?PE)RJphcRC&id#b5k)8;aDb>8v6G{H6 zh|DW-t!DB})@Z{ivuE;ZU)*PP<`oRJS9snPtL!Ez81f=EhYw-+Gp!H>;4dJf|DR)^ zrDKpoe#=LgxD-=aEK~wIwOvb-g5|3*EgAGr`Yc~!{nM!;i_h{k>_&Q@MKE9AXZdka z>=G2EmaTM72#)1rg5uv7MfPt8D&=Ko<|5@ppXH(0PJYpv<)F}&@>-dKg=tZ`{}?JI zGT%^CCmsV8o1gL4Jy122hs=}xma~iEmJoTQ--2Z-oN>z#btF0Yt6FjCSFAD|km9-2 zAbc*^T7tPa(lR+W|3_QTD4ZJuDr7d6@0%X2mXROvwoS&!k6-4evx~{bvY78Ukk^d% zVZ}PvjDm;E4`pL%SNCJ07lVM;hqAHQt@$*eutgwj(<~gWFBZUV?G^-o9@$u4oA2a@Ez-%m^MR}{nj#)OAFXRg$Ig0M&++)sO=z=E}9yFuq?igYW03=6|p9LAS zvBWVfr-37~v3#1z&7j|j1Lt5$coK?caWD}V&Vrzyjb+tV^$0T%t{m5gL&Zw#h=m8u zxPEvHF$OG<P$rG!XT!mtjU`SlIVm%djpYmm4+GW)of#dnVzRNwa7<#Faue}A z^_G&wtW9QPxxrL*%QZP%n#yHOPKRNlBQhHcjWa}}ei>9Ov$4?dbHO#ZxNIyeSVv+u z7JQ3mV|g_Wb(W2V{W>VKv6L}^2;@~M4_W0vWI#aeK>^Uax|rT(KL%PXRSBJ;5P zgN!qXq;{OTGYzShC+pS5-p&LDfElsy_oUtF^cGs(YO~=!W;v;=jfpWYJ@v%+h}D8@ z#*MD~&Vs#v5|UKSbS7JiqBh^7{o)a(Uu{Af<%#nlKQc6E*IV=UWZl{4)F;L&V_Qai zX`d(f3geKwK~=7u1OXL&*^>LKT(-GuWNeb`Jtf-+f2(gYvZQQzceuI!>krbDEdYll z8Q(LQujQS8G)R#^IU@j+^$~rLZ%+i?UPIq@U*x-I!9oJEJHk@;;*P3}r$!9ke}U>@ z%BY*;mvHQ=KL@_xnp zsEfR#o}ivMsK$c^@&r|8$a|OpZP}5>NiG(7dFOZ;GvJg4wnm_O1Fd$J0aY5<5>y4T zm6YS_Bk`O{igv{8fX(#nW6262DD{I z8z*^iXyYp$E{x*Qw%>g%jJEysFyx9S>O0gLXj=x=8@OV}8BnExHbIpc+AIUwvZIZY zTrAoON{@D?0mC#Pw#5u$PcfiM17d=zAjHz9N4wmBy6hn1L>CLPg43fl3>c>Ywwf8( zo@YRn2G|5uL9nGuk9Ly*ZP}s5NiG&@#imDln*rZ6kanvX(*DkXDh;Fws)9&!Gog`f z6ZawUZvV-EzU*k@Wao;uOqI#>Xc5~wwU6S`>w!#6ZqhDOEnSKZ2b_E}&l!4uF6Hw;KADKw2}D3eSXgPJOP~u6E}atW8$6VeJ~ifnB7{G_6t{C{&bV0U6wDa zWo*YCP%&^e`tA%CDo?eh4w{fIIa)QQt&l}X9zF8*|19gFP8I%;7`n;P_F^}DAu-T_ zi%E_q*dGjukuEvf3yWfzpentDQzb{cr6_V=kx9a}>)>;ZdS z%%n^5E!IPwD*P^quEDw+yOG{t`Pm;dSh3t!8mz>x4kbrBlpGCiMs%v3F5H(Gv8olP zGGfiOA$-WL>PT&5Y_~OWC^;HmAB-DJnVhswXe*_xPTIkr9POcJsjZEU`WBp$Htsm6 zSUK&+!t6FKO>(qTV_GukpR{mg)<2ypvRJrL>_&PECzv0cbSEcA+g2321VyR+7nvR> zZF02BiX#0P1C{hMjU*j8`HmfBN?#`Vt2~pV#kH16*{{`>T4rT`&?ZNFS-wLLSU4CZe_KpTIvP4Ojd>I6pH3B7l>A$<8|jt2V7|VR|A(U3B`7jb@`1Y#Qu_yz zqkX0*((f3kq(5gQ=}09XJIa(wKKZLWlB317l1aJ$xwf=2EBAMc+b32TS5~ZM+rlk@ zA!~HhIu{~__jsyh|yf?3w2Rqd2oa6jLf8L=8o z|2J?K-|E5hm_YU3Z5gs*?L8%nL(9%q>u(*E7@8XVj!92pHLx(d)kwD^cYMA*l#_$w zpklrFBU$Xm!>}9a?S^1~&~BvLksB?FWrC{Iwj)-BaLHJ#q79`p%t_PWH(f9)bb#o85mIgS_?T0~^h%Xf6j zdC665bSf+i7G}3FX%?SuifPHff=c^x1M8no6{AG?v>z6j=<*_XE##WF!v&i3U4 zMUnfyflByxBMC>^m)Oyzv@gkDU0Iw~BRVOLl1z4@p)JwOa~8jy*spIVo>i=!NPpw? z2lU`&g)Wa5K$eBMC>^iP+Jlv=hl+CE5vdtw!ub93`3T#J$>MHnW}B>4s#q z%2Ul|eZ=z8gRu~eY?15fEE*(Q1dQDXGm3>)uj{~@EvGT#G^VRg$FdtUuq4&>GRed& zL>=iiNzW+B$AsCF`3@gx0CutAqc8wisM0YSC$W&Fw3jQ`BhtfeOj|noJ7fZ`Vm;KU zB8v&whuug&RS@hCntV8q|5)`FY|7++_p>hru5{bX5s4l#Ipc22;NaB$uA$Ghe zO+xZlTg-G9kyczQnbiGGZE0mz_n>;ch`UyKw%)YiL|T*Sce@Vz8_ulVt9Q3r7>sv_ zDgR5WbB*e3b=q!BI~I%7Yr&c9tLLk*L4g|=t;q!&7K!%5-UR#`R*dGG^%-XdtVLGE@KF~(rEk03gNNC^?hSMnV`(j@#F6NthjU}1KXa0KHy?WuT1`uN{5t?6j=kWsjg z^--q^zfpMAVat{;!~f}?)BPbdt6?34B=oJr@^jQu(&==FZ-S!K)7<;|D75i9F<;oJsf6 zqPQi*9qE!_nNr^?U6SOl&dbN55;(=Rn#o1^JTO5|ePnh~UX7`MdBOy%4Es-!{)xy9 zz&w;9GZSy%d5JgpLrwe)A~yKb5R@drQ~~%4h`64gFP^0Xa}68)3I_%Ym4Hrd*A54f z&~CCPq<>2>EoCyouVnqxslxBP==v z$!ud7QYK@zvCXWC+MU$5@j?)kYhR=#{Z*GZ-Cn!Vq1wZHN+kIBC#xZ;W6TBnWh|X7 zSg}qloj|;?orfK^Y#FtLNwI1T56>piCfm3wP&=2f>wd2Q0$hMgXJrq+X7t20&=&NfT098ZbCRu8ux z&^#P5n@!ufkxiVDQQgCOs<@%#K!i8oA5hf6BW#LpKi#((#YpVHdLx8}!xL|lRrr7W zZUmMp9XK2fRWJ%94_oEo zBR;25%phoxH77)VjNBU(pzmv9pHK^_Os6G0~=dMx;&*L?2ddvEywl0FnlN$>#*>k8P{KrA;tjT za$Ngauv0y*4NwXb$_8B0gXv^oHW|m*oW}n+AO9a?@-^U3;`sm6@UYM4PNM?A?dDEs zl-fM-es@rZJlHxI)uIzc4Z^EtQ8@x+SEh@pm{PWpcwI8jA<}Syf{$uagPvF;$ zwV$%TKf}MG&)-=CugO~hOpKpFauF_GpKD)$*P>QdrPGFvt#dbCZW@9w(QxNU}wljENFrq^P3o}Y#M>}%>9#~KW93V zGt~uA9e=hkRc(kb$A?@CQLdd7NYH)^;kNr8H(h};qAeSUBn9sjMx$Ii6)`jdf1;rp zN(}yJe4nAO7H+P8+s66kg0rz^?`=*&FXo($cEd(y*qb*xjeVVst;Nk}Zmd_Q;7519 z+1Ok;b7Kb>I@+?Q_u6w#XQKz4(JhrtmGR1Hqwq=P%!)HNC(AZ+(6tt~&NQd-4lhKR zz=hN(PzFFJQ`w9M*#7c^3Lmc6%e7$U_4N^S%D025W!KQR-4{8Uf`tT5FAmGs(=!S< z)ihE{y#T6*#Z%p!>$ezCrIAufP!¨`bU1TMTH+o=%FBtYbz)gZgxDP+!ZX62#o` z^=e~pNKLw63a9@(Hu%2#D#u;8m>}=N27J^&-rw^+>LTyc22^PvPf%rsyni>KEj#i! z$;Be?D9;kR5DKGhm3YT}gM-X_O0e})15RmR>xX98`o9KLX<$oG6~q?gVJ8Qnf_d3j zpR4Uq)Uuc{`N&{6ERBvD_HyKc+fhs|jE~=hn zKvi~Babk-_)$x(@19yyt5w zr%Yo{2*2KCKv{Npae|A5*Ky%B4VM{VkR3x_cHiSj3zQM|eZqi!8gTn3Gq`=xfGQ2R z395o{OE=&Ajsb1i0mn%m2;lq+W-gGzfIBw0y5_#hF&8c-u=}+E6E$FWzZvXSo~Q46 zYrsxW6@*>Vgy10tRAmPoCpK5WWvWc(%Z^wAtvwH?atAVB_WFpm@1(5R5gqZ?`a-;N zpoe*9&3*zRi)GE;2EV+l*@5M5H+S~&5nYVRpzV_dU$dSg^K6(>rO%+f?IL?_4$cbi z*anAf-CWHqmN7rcjBC(!{)!t<8J48&dfkh2+>r-y*@2u~Y9zYsLWA+SbU51(dNu#g zYuSIqo|AWK@{ea-pNsjagbyI*-~o)v4mca#=t5i{I3m4Z&%godeRj2uyIYpsfkV^v z*$RkmQb>{-6y1-Bh@M4Aqq}#iRrNF?s$Gc{`?FMsm~dbc4L9=bu)G|x7c0gMLZ8aT zRgyp5M8h}c%W8S=_Qg;!aF%JU&=FlMRBbzI#F9#t)$h$QZ5fOn85{2ntcN;P_;23o zCK|pCyWzWei#9JN(Xe2D@aAp0u;w2sie-YT)VFWb&1pVe6uF;-iuI1o_$6HX0DP{I zX!x_(4Q&at0T#^L7(2e$7g33ZlfN=dG#poP$W@FvX5#lT*m;5%Y70nIA^RMk()q~{B9g)wnHd5vJ zEH^xHbaVp?3TaO-PS>l`)$XFT0GA0Z3=hVl&)e*1QE8?LU*mN`yVY{+HeTSvuwrQK zcw!aEmG(d@$&WBWeGN9zz}Gs~JRDNO zV3yEJo`j|9%#TbS-64)2>Mwag{%H8%bs`a z84E%e2n!7H1-7Hz25ULjb|4@@+j_3kZhA{~VT0(MD=G2Eo{RglP!bsX z3kZ^LEQ<7(3{=uDGm>=VygYW4DczjpuXYxu(uhFg2+3q3&eaxZ)_HvYpiNKw&-soT zssBI1n5@wMSU4E{|J9h5bd+~!^7AFuKbM-_H`42W!F+xF|Kpi^`g@<>k{*GeYk{(rQkm07u01E*wTGPzta@4zY-EOj;6 zRXtc)6Ib;t=KI4!9!vyad$$L{{b8FIFQ$p4#0klTLuYY`(-bNthIR`=u81YDaj00i zD~E-uRyCHuQe}8~T1;CyDm-Kbp2B*lQ$-dla1nMRy%iAb*S7*wMX^gzl-ddeleiF2 z2MYuvg<9_44*~u=ci_ zuHKhh*eQ9$@H8^8M}wJX7OKyMT^)8%Y@gF!^iG3W_H?`1!L2!1d8+Pn8uEJ{suJ=T z@dpVtXJA;p6I)jDTO}F+ zS-K-8Un`1bf~wR8Z3PZ~cPo>li9aGJ{;#6Q{oX(&{DZtCJZlA5hU$~vZ(R0N^$^rS zbZAiMN_Zv9FBOQ&>^>w?URM;!YoOx6?aQvmZe$+E$xG8iMX^g)!biH{`za{pV2F-k0dM97^kirhT|m9CSIbVmYu8V5CD z*EL14OINyZH`2RU&&@D*~lI>p=#V!NcCfR$GQ49{;4n5JY8<-ZH2DD^A@bXmZ3u_uImzbT5?UqQu#^FDuv z-N@>F*4}#p)N&oaV8$2E0^v@NyP(+VMdXSd4i4qAf^x+!`Kxa|s8^B*%Hx=kX*uz2 z+B4~_%ZdFi30uGpo4E^p{Gge=pB*%7^cJRIiwUO4zU?FL(AfpE5le%3TAO`Uf?vG` zY(qiF!f8l6<7wgWDYHPN1TuUAWke)r-2oPb@zC!~Lu z#N#2MPs%xogQ9t}!%i^D8{nM!;i!u5vb|bwp63h=8qvRRfT}81=P?Xvb`A<0$Jo^g>l7C(l=|35$ zq<>)~=}4m#JIa(sDfz4SM;WDqTzwL##C0)~#e0u7R1_A^fQtJu&IY@t{XEkfKr(j( zM($8%P>8$!`8hA~!#t~^pnR^UKTT~wbab*{zYJNj87tNaSrUv}GwTaVV~vhl=X%$O z*^!rKd%?P9Z0oKv*!R)#p%JUR8GdYnAF$%Ld&C;wx(oio?`!b@N!NzEQ*gorrlTSi zs|a`Fo0i^wBFQJwhrB*M5{3hLZdUus=(O#^d|4{<`aC73V(uS2n`Na;&8d5?f4j#i z_?^TlGW6q!F&K0*VavJDOTAS;fjv3s5PO3jbgOw1Wvjc`a_GdKln@@aV+5LM@HMgG zEQ4#Hw?c?u~j@^(`$1-?&ebI&VzTS%%Y7F=;v3tE~6%xBBx?HepFbHL` zAsSGNhVC+`SSA~yQR#vhjY~GfqS7QL8^X7EvY`(n23fKp_UoWbHZ;uB-@wVs6p4mT zip%)|RTP+HXy+&#K=lVAM2cy)mG~S(?s-v28#LzT8G@8UV7u9kXN*ptGMkV{WyGQn zx-siW<{`{R)LINb+8^;~l1DLgOW;`P#0E(G1UY=#GaF#t02~Krp#>?9>UGFw-kxmt z>hQ*bU4uo4?jnC<7DA$QCt;zxS?^(-lZngPJtrpR(NUhvJ^jkmsP8$^rC&xI>n$u~ zNpn< zu#uyi{^r*PRB1#c7E}cz5~tfTSb3qgI>;eW2`5>{^2a1zx`#{Uz$RWg$$*a<$a@4- zZ-Bf}1FAHTC#W(*-V+RH%N`M%lUywFjv?-e)QZ6bbMmSPSxJ?TiQ&G?fL|I2+hK;V zDFdoB5GJS!Aq@RKm$Blu0((R_)-s?iJHj~0#Ujj0?KS2yAspM^3#&uG@87?N~plrZL4dgursyA@_PdA`S19^ffGvu9X zKwEa?agvKg-g>_NN7fP5xLZTtc3_EiI_G|(ofGDF+F2DD{I8z;F~ zw4LD7SNr{&YiiJ~kNCuWn`^qrH;BUfodH8NAoy!D2$r@NI++kunL+Rb1KP4fkds_2 z1lMA4Am1*oi>0u-TY+!7#T;t<5y95D0jD&uH44=mOc%~Jph`o%395qFD#^`p$~S)j z;of!wI(5)TKs90~*P_{ehw?)w~xigyTeXAPLE0nI5hXm$;#(txI*Dhy5U zR0d^aNgmgr%fc@-pffu(Ir+sx^8~g%ML+Ka;^}}RGG{%9C7xjb~m2IIFLDp*9OkLCFK{6 z=!AEqCB&!CLhtg!q10#D-*XB{9MzOM=pYsEvIZ%j8+@gt}VMKE0(_n z@93teoaF=*m9yBQ;%Fy@pgm)^AV2}jrh}Pv0-!33sR1@bJ&6BHx=#;D*S@!s-X=Lg z#Rh669umbX+UyY*>(47=koR36l#3Jl143k{QJ<7mI+W&ER(*FZWz`ClEM?2`EwsLe z>G0rR;3}1?WFxO!)$RuhYO9ZhKflCZC&CRdajE29{5QJ{#=7t;_~(UiN}V%lC5Im+ zEw-ycRIGPV;e#&id1yXMw9t?aACfbaMq}a03=7!?6QMeeMIjTJOtqK0z4kjCk<3|G zq0mqVCNcO^@)eW3Wp^%C%r5#!JB?%bPd736RKBd1L1CT)6}tmJlo%WfRfqJ`-@~W3 zu2h$+u8wI-b!Iw7|I0*VUDiXLD*X4ebQ6OwVmExZv(Q5_bf4|S&hLM{mws#?w4CHZkoTRQ%P=%I8;e!zODQ-$9p(KT2<#crfG zSbp{g4OT4ol?E&Et3!#w4X@ZzxgQYurssk&C6}k`;H<&UxX{txNVQ>!dedfV+q7O^#T$d_Pn9JYm9moaMW|^nF71|P5)(!{+gu+%@do8Ekao9UzWnTo`@rB^Iy4sy*Z|~SPUV@w4 zc&UDV!55L|XRvTL^n#^pm&&zkVM(qZJY!3aeFqE4jOsB@R~the>k=}-7F4WU6~Mym zCKxt8rqOo;S<{)Lzku}i%$Rl!dMnNG>8!UpRb(;8Prz=ZH^+Wa1kG`*B$Vbj`Kvoq z54>QkrGs(c5fH_7K9l-+%-&L)Cz;EV-qcyHY{rnC>`RD__+h=OT3`RlYA0nu}mzc15__CqJqQNeMymi(^{W z(PN>R$qQM3b*jjs3U9z}q*sMP7{S%YrOw zmHPXPq|VG)&;Z7cK&1gp{%S>dTRiro;09=Z+u~o!SLSjnG`2sCb&n6}^~9qLQ9H-6 z4FwsOb?5lI2aa8QKiPlsL*ERN;U34hOs+~*d$?zIRnB1n(cpMX8S+7lu(Z11`qyE` z$D^ZfwZ?{ck`9Pyy3kwT2cck&#m=uleAAfulNU>ZOq{%@gr`UCP@8NWs~4Iv9RU?9 zXG~a_-BCyr&-~FbEgAGr&XFF$`lnMx7RSKCZlre%1oQPBgVT#*m!K%MV{jxUn#K`9 z9Rm57p!g|8k$vt!rF=m?Qnt#JX(2y-vM6@xN?8V{4+MAd7Z6FeiXwespptIqA?cd6 z9<&0}q&P1r5srmEe9 zap5M23@z-uG`I;BYkRNL#dIhlVG1tqUeyB+1M{%hy~%}YBhiJh1J{GO3jt3Fzdslw zZyoy>av|Qw_^nuLz(OU;Qk$7HF2rYIS~BRLbRq6w{nM!;iwp5N>_&PQLNH(7g}A#Y zb_t47%U1ddL`TZU1jYYT6xlx=sFd%|N6LvVMClpo;irRWG3e!>(3P_E6ataF`~^hP zk0^@t6QE+flm=PG^P{jES;up-3$eK!S=J0Y_XNnVf~4+Th6SEPPU)r10fQ!Q&QQOb&kB0&dps zv%A%O4rET*(14pT8~CYAd6$!}MTCpy5_^Gm%4X4W3i!%;n zbgOqN*3%pHMPG;yc7GhVj%8C;-Lcu_Ub_LgVf=;=%zY$rijHtbiU#p zBJniPgu74e~jqu2C9r1Bm`$$j_ zM|~#$<#25jWcFX)1{?{-%d*N-&1OCF`~}PJ#*ScIF%Mx$z#{=aWx;Om#Us6}9*Am! zzD5-s3~+av4GZ(e31@}5FIWYfn1}Eu$ovjg5apd%X%59l2IeBZN#q+un(xSWOv^=< zzhcrcF$x53W_Q&{)qJOqcLsiI1&PE(iizK>!D5+S$vUy!fvGZMFjhke34fz zTLzi(;D3EQAxil6)uQ+&NK5UM=&iNfR}|Uz4piL#m5;a+*IIsG6uWe#EZ0-Q0rUc8 z1g2{*RjU%6u^AfPM?=Mf+qzkY-N-t;lh;}{6vZte?no~Q%aqz)=_Mt9wRezKn1C*h zwoE?ITeOu-W*_J!G7R@jbwPcq1ml;`gC&jL!W8&G5V8&2ANSHAo+ZJvsMZCu7Jg!Z ztJ8wpn$8Sl{6)Wqe^r8Cy$0mY?Y7~Ln==!$Yjg}DklOn|84=Q@`C?tVHcw}oLE+k9 zp%Uz=ZC;u~DDyEbWzu{O>z_^)Ssa@hb|by!6Udj8BSiz55x zflB$7e59P{&%CoJcIir4`YhqVPk}O`wLV-_2R<}Vd4D7ic_;fbUn+`QLfn!543;TX zywaaZ{_1k~C`!JDmB1^GicFr%McVMn?77Tx$6#Tq+F*+<9p=37D>C9xkDrsi_o&N) z|LV2dux0}RhubqyTfN#{EV-VH>v5E8!Hc)yd~;;=C0tBI@%tDU=@?(ZN9mvZhKWMq zpJ1U9ys2$i8vkVdW$Km;`nU2psE&n7I~FP)+|2BF>_&S3#LxWTRm@o4D-}obR~JPo z4r90zkj6EhNniYG@cQCSaw5@MG@Iy%h$g=I4k(W+#dbBW{cabrQee&Zg4t5c1PJFv zDJMYw6kLHoAhd``?rHfBKdD~MXTwjSUa)X5>SZ#frA+GO*{pv$Rb-j|*w~Hq>P0YL zfBJKEQS1^Fr8XUU)1Q|XMfQsaD&?Edlfij}C{;sGFymz4T z{y-k`PM-dJrYLR+aYs&nuuQ4qm0nEpR|{b;rbu&3U>8SSCO2oBHtaG_i~MfR{v6$$ zoda}p0=EqPZcgB;;R7*f)Un~AS=7&&

fW7AnU;YEzhI7FD`j-I787iO9OlKzYyJ( zuj*-LFX(^Bx0>T-oX*wTxq9AdSUYi@M!2DTd8dTi+iZC!Zhsp;^MWh*DUI3aj!bt= zR7&I50q5+_IX z3aEH+lboZl8(BwnvO9EAQQQ*Zj&z5xOsV3P?ojeq*QZ?d*=ZGJkBR+^BRG?X^g3Td?6%!BkrVOa~oL9v;tcu#5@W2=3e}0GXb;`9b(vtqF zOPp@6-RQVm@!SpZo)QUOneXV385f_473*YN4CKV!SvqXlvbnb1nzzb!yKOJx$;r+< z+-$XWT|8pJ|B1+6r;hJthZrt#I=y5e4AYaq8puKnCr9egImY#i;0H>^d&d&*z?C4lat!^hJNs-nD}w1U*Lx~^Y zlm$1%5M$u~+y&%^S@4u0>z?axu`+8FN_re04U9xoM&AkEm#dgK4cH;q7#bWA!Etr< z@UT>r8iOmVvh*+$99!=~JgCOj8cMBK2^(NOjZfwDxA{U$jV2#%_| zQU0n?b+n&6uL_3hBVD@bh`KLdILQ%pFOz{{sSOJcni2Ku7-9@CBuA8=1!t;9R1y-% zAd2H$PJ`%dK8U`<1Zcp3#6fiK@G$p%*$|TH!ML-R(*O0)9ULGhToE%sO0sFM0yaEW za*F8ScobHZU*=OeI8KC$l};TNs#>iDow}okef*F#%kxFN9LUdL_)%CnEKEI+R}M2^(0;AJXS6GGF_jwNSPou)SN8G2s|C<-w3bpt zv=$ahM7f$kv_KsDa?%3la4oQ%Nzs6NK`o#|R_)dm0FT??k60sR3!H3e?swa<1lCP1 z6tl(}aZ&X40z~a>PRiCk=S&T|Tt3BB#9Wq7br>c(a)-A9`$J@t!aN&P{He829pliQ zPYYFCyBnV|nJicKyv#FpuUvq*I?b6SCo&EC{PWpcwI8jA3g3gH`N!U`pTMshYd>Xw ze};cWpTDz)5X6Z543dj*xtNi4G58Z-fY+iH;c7R-YnX=i74YBPOSQk`|5@Vyc{Tsf zYuSJLtKbG1g#PI)?S}Wi2^IFwYWEtGt!W76Gudc1CNUEOgeQboCTHxfT^_Q^-72hz zEmXTsr8T`UU9GURx)$fc&{BVMWO*gF+NJp&7k8Iz-v9Y3mkaB%Lg2N#6rC^EzDG;? zuVeJZw_kR{IZup1)YK7JNZvn*7iOT-)rASX65~FTSCqtKc&+O!wBU7LILQgQ$U5Q$ zTAGB=0nK_3m$@fcSSDBdmun}1bbX@iKPsMEVn)afQNp`K$$nDboRn*)BJ@V!Pc*`7 zuLmgA-T;3Dd>@VPGthoK++6>C8|Rw~&c>R(w>bs9oO3qX4I6oFZ{FxM_H{P47B`={ zv0j~mA26;On=5B->;TwCTlVx`d(P=>^zb#hrLw6qUO8EO+CMH=pn9N$ z@kfNVUmMW&IwfuW^_^a;)ogbsI}o?6dsVLqn_Ek+tyl@Mu>6eFv4o+Kd%D;EuW+dZ z5q4ZyF}mC+*Mcw$1Uex~D^Nz*w{9nNNul?10NgQ9y#e4(GN4KWaDu83;KGp@RIYZD|Y-XUU`6I%yI}K>d4nazFr3 z3i0kE&|_Py%9Lv#!Ad>~e-yLpk3&&^ZD8KIRNDs!^J*vKx1Yd2zd)q@EB^W|{OTXU z`m~g^j&Q?L?GCK|u_;(k9$FG}x9`FN3qMrolO3Ofe2mO|z{~zLR39bJaxJ(!aq1<# zM#tK*O@@(Xr`2E$YLsOI<%>`jE<$@#%XwEdEmeB-byn{f0yo(%M zjLQgLK#W0QU3qDBp;cdmL!R|I9IJF!46UoH-FY`Jt2N;s4uxN1mC_~70-X6|Hv9oE%i}Sk24`O9z6N~ z&dHap@+#W|R192aPYf z?d)&WtJBr)(vAI9=n5>h9Bwb!>%udr?Zj^QF211MtR1!r{-9MA8hr(B+OefjqFlRyw3L8qS&P?WqF+~yi^@1BL?A} zMRnlqP_fSQWLv`FORna47%ZvVNMy#~;U_O~*zHfk{{9zq!Do zT^TG?Vm!5}BU%2)DiXOb@e-)%8% z={OPsY|7FY-S{b>OE1mG}L5$UAw7rL;?}Z*>${NCygWM>xS zK5QN+BmT^rit51Y2P*Gd^N@G4KXZFg+!ErB^k=Y4sp6IXO!8NQNc$H@MJCT>qc*%U zdoF+EY5(qyfsu~!6?~Nb$$v6YC{|psPzm1DHY|;Q^2?Z(4EiV6TYka%r&C21|K!)$ zjr9JBpZUSP=2+e<6-V+{1*ZLrYdn*__=dI+75c(}3Kk`RZIz#9y3{Q1@#EP%As>Q0%IGX4MJf)j8Zg5oMP(0z;>H)7ah6MZNp~S~y#X5%)1Ls|L{tw);WMLpx zAxQ@r{#3M;HC$VA*wdJX5~5g@N<6^QpIo@pywsvp?1deU>n>0{p;vmYZ1U-xdG=8m*I8cot zvv8)b%okd6G~LX3$=tF~I8!V0iuorN9%I8_5eFHGql@lzJ@?SGS7<4)j^i<2vZuzzMQnciChb8WKuNXUQi3@kQEcAR9VOb)H<_#8tjrmN#`6CORU+l+wHN^eVYQ#WGAOjja$|&WsCF z%I-`ihAG9jc$m_gaWu0qrR>*18K!iY2OWU;qbWj?o)ie5!9$jcu#Zqhk>N*w;E%0= zjfpWY(bfb+C+*n#oJk0YiFu=% zjn2gRcD(}uO8wCvx47|26JnT>Sf{N;66zE`ZS5D2?0Re7o`f_~P90;ULjAKd?MWW= zbz%cV>2Nj-xzoXLJkz5*X}RxkH`Di=>;(LO`t~GCoYJ?2o9n;vpp8?CfRzz*f-y<| z<3Wor7dquyFf8Tzh(61=gK;U>(6`+eIU<9F1ePBQ=Cdy$vW0HCKT%5bEyO|cYLJEcEJ>mz;S!Z~1f7a|zXW&_JG`$_#mH4QR`bJWg`4$UDmO3S0<<(Y8vw zJ7Bo=>}A3U`tRH#MbgL$}#vi;nleYRAomMCw361viDDT z@vT*;viDOSaa6%m!l~T`oYFwmm1d~gYe1C-ssvRbRCzq*<8b*n<<+7ARoPL+i7ggY z$4AapT>OL)wl?s-`zGgGsFWb?FAcb;fw-H^5O`H~@cennWX zg;O1f{bxQ>!^LFOjvFvh19qcOy}_K|Yy+w^^qin72s`lB2#((iLCAl|Vuc^J>WG+i5WR(&XFt<2bd!g?TyQ0SGg21*w1f z6>YoKa@v;NZuS~8kQ-+dvNAW@kYi=Rn(Z~F@$`>nLkSAieGm|sX(dElbA(iSrcJfa zn?_u2`GrhG?~6?JAA$o*c2Ro_E>~BuMHs zLF{&Yv0H@%JPZMi-U1})#(zPQ>0Z6t0nj)WRM>$8-_A_MdMbQby4ta(AeHwlR1YW3 zAe(IUxsKHZ>Nptz==>4UO+^2qd_^zsK}s>Nio!yK=+EI|cRHX^ZAjZ2rFz*hKx=Bz zvaRmb&CyQRX@TIH)6PtUy}J++XW3-~wy#IAo{0bjwn7 zwy?lG(VeHjh5T)hG`xyBaFieDf?r#$^P6qUv8U&)eSmIzs_s}@f%EfQ_tf@`Sgsr_ zyEF_*l_6b{(;ddN;4K&}4Hz`y-Dh{J^%>`yXXBSJrmop>?X~5dszhxUjRSMyFu z9KhU%V|!d?EgP{gHI}o$#+_w%tUY`9;m65N7wOrvr(%IZC}GO;0QDA=eH#QnjZlGc z3EAgSAv9sISG#}^(DnAdW_6|`KWB-}8&_*q?d8bnH&=asNJ5N5uKf(Su z{<-Wc^C{Sdl!&97`|pSuW3>kY=ItmCt!~@A>E$(A>HA_THL%F{d*%(P1x3d05+6fG z3?(48SHVmAzR^azb)-8AY32WtZ|~%F5`XWG_78m8er)H0B0D)*Y0yres8%nOjIZR& zhG-#g(${E|%2;N7ZzXl#)`heo<;^ifSJH;=%aJCMFg?o$-fFcmh)hsEZzxrV{sat_M#}rk%?2XdC#RUtUqEzm9~8UG2P* zvx~NjFQ{712}SEUidHaE3Pq6)!TlrAm1Md8`YRzD=2UeWR*PT)G+W&d*L(UaJH1)_ z*Zta2?|e>m@|y1Gv*Fn7wbrx2 zvus)DFkaKW)_R^5rSD7JpB#xS^w&02k^_QS<$~Md^8?P8GeE|jDIFR2S3#2G2IL~; ziIV#(K`2vBd+Fl-5p{dYsl$(zjpo&`u(5Pw=*;~V1aClR9Umnj5J0O(8{jnR+e>~sp>&}!htyU>Zl?A zz19GdMFb0~Yr;t0xqtbxWfwpFvh%jGWxZ%X&VX8Lz)BEKTmh%Oy4{8~9J>Q62I$rD zWu{W63$xle$jHoXteENGyfRR0uY*fOZ0fw<#@XwL1sR360bt8RC3isymZ2KW_5#dA zp9_mpVq{D?-K!m^VU5BJ7$&FVu+Y@J8ZHU8VH!MZEjD|&4h2I3E-S*w;)_{V^Ru!3B8HO@&Mp01-ji>wDy7_V1vH zaW7Lco*zR-Ci9E^bImXKy<|wm^*twxcS^b;weuq|O}z|vA#AWQvuy`9F1&p9ID$Cz z%1~&}@HJB$B;glJXg5@|%fN7hp#wt#KY(+K)rH;yTbeJ;fQPmymx1lxB(4JQzjlvR z2Jyo`;U9bU@NtJ9cdB!Z>MU%$!2A`O2O~G%tg|f}LW^9X<{qfKWW){@LESJM-P`+6 zI~%lwE*RHH7a!dn3yc_654(eq=$v_!s0d2Xb`Kf{wKP57gpD5yJ=OLM+F7Ag+`bCi z$o6?*BiMqJ=`1DzY6ea?dI9^b&LSA?g^G2B1N%zo=)zPTybcIF03NFaUdJ43t2&LW z1iM>pOxJs`b5&|N_TCQslhL_n&z#ep;Tp+ZXo6IIWOkkD`9}3Bm~d3A z3*h4t?ua1%g|7uv&cPg`VSxpZcwzAw_Q2*w08>@46c9^dfq82^==~gT5Lk)vC(sds z{Y7w^sy5lN5HbTKBP5_bZBy~`%h;%bio!#5@MD>3z1PI3+R$SBdY7d*@P!_rN`5s? z_(c(I=+>Bq40O6&yTu;3Iz1HZGq!sXvqVp$(QZZG=={5UyCi3c{w|%9S+`O-#BwCK zl)uImIM+dxDJ!4Np3>?+kuOi8#e6sz2-<9HuYz(uS}Kb@duX5J~)SK}L^=v5{0{4^!Au+W7YeA;Hx?>rI=F#b@?W_rLk}E_&3x>7aH&2FmZ%Q|euX z+>BZGK=@G_Yz(SZ*vfQ$cHx83fhsQ`vule)!9FTqhDIyc!$vHP?qwg98}sc{^r*ZL z&dTNG*lKVmDE#6U1J22pi_y>sE(XNu>zoz?%IOvZ`kT)0wb|?vXD@j0$-fwYb9P+( z>cM1;AB==^k-?>^QLP#%2(FCbe(k$!>0yQyyP$PC=!17d?U?#Pn)4;=K6%=<|FLM(2;}zn*J#gUZ$n*G) zLx=KFJ|=o|QHPz$ha^7e9ebj?GQmyACjcYa4)8IsyNN3WQJcU!r&lancGg*E;cU9u z?pm<(*;*{&gV}ZymzUg4hSoG}z`1X+wXLYP!i%!rCwyy$eI(kFmE&^pBs)IZVRL?1 zGikM=>hCre*#ZQt(r|iVx2QMW?X~UtBwrqKtARxgs0H5duzFa(Ds5PBYA#e@U1p|y z#tXJm!V+Ern!JC z7h>ZTMn4=FgGDcAM%2TWgxqx!*o}o9dTUp?%r|34EWG6~Gy-dau$u(`tyC(z*@vvY zN%pv7O<32AZN;x3%I4@eyf#*O{Lt=^k`?j4arPoa&GcRzvHTxyQGK|HeYh#`Ay%{r zS{xm#oIbSsT1Fd6aKxGfvXJE!ILGP=qUf z<3itv$KMYBrqzbcG|12dA67c^cFP$mm9fSVYcqcVOJ-qb%mG?jtqQhqKK_$^!e7DF z)=7XW+ctpL8=aAB=98x;&S%pJNhp4I0Kg^X5cf+_-cO!UV z%41>d1Q_~AOLnvm`+9I%Yj2RA>ka7Br8tInsq2KTW+(6_uj;`~FnSJ;U2Axzd+}q; zng{n_oH-BW&d^q7(92_Jy0=;_P}f|eg2fwyLwfw*pklW?{_&-fSIIc5WK*D$@uW&l zA3Hr|bElnlhOfCzk zJcfk0nvSEcdta_SAyDpV>@m^X951VKFO zAuTkj%c(|mvixu~y8?`ZdXND3n;_If?-4?=ni}dC=EzXWn_O!q z-27g?+>9DFS8{IN!?>Ag*l>a5G;D;B6NgR6I+asdCd5K|s}whEf&@@#NDC2qj|lqk zX;41-UC)RbHqYUL{)6_g$&aCwHy7q8D!OF)kbJorHEecsZmxrtd})SWb>Xt*%kY1- zR~)`<+3uy9j@jXo$!YuuY4h=8Q0K-|Tx;ZsFbpHd_ z*5oI_>n0b_93ni=IUdZyy}lu9bksW6!INWnvwZ{>Ibj(TF7)Fqe_Vg^XZmr6X}R_@ zN^d`yiiE_x2o@4n@5-0eKLx@#l&*k^fwR$>hOtnkR%=JV;&>F#YpaeU1^pE>)#gb7MJ>~aZ!6ep3SUwmu~E@ zf`77$X|;WaLCgbu9qvKGF^;8L8@usm(D+Mh%U8iqj2cus41b*r8#rQXX9cj1us_5y z1YUq;>=9wvjYY9cfFiwwQ-$$;eNp7TCX<9~FNV)GB>YC~hPH&+09!sp4Q=fBVqY9# z-E;jdfldG9uga-a6~R+n#RfKz*?l%6yi8j_VxY+T$9--wIol3skZk9dO z?1}4v;!a$(0ii(H%_`UmgN-lPDs0X3t0ZvX7((`RO6<|D>PT$_THFmwS6-8Wn_Ke5 zF??;q=;&D+N_a66YT>7}ZP-J{8;W3%uoAvMS;alL8eX2l1L0$QD+w;Qbh;H-4Xanh zyX;m8J3GIjIojMX!t00sJaKe%1DsoyXY~2yp@r(q3>=1rSVMc^vKPBEv*GLwu(JmT z%WZZ)W&?f)M}`|v)!Ao3k)PBq-WWt8p@u~~n+-?Rfus>@3OEQi%&Ou6ULAvLFc2II zFPXE`&F~@Xd&Rm4zxNBE0lSviT|6ld*T|qk_{zO}7RkT1b5##`1}CslGP`Oc)e+8J z>^9r4w5J!RnZ{q_tiyW%{2Vu@f2IjvV+Sy%7hKm9=d97%acE%=Fc6e`mB*gK*iFb9 zJXntxOJ}*v{XK#Au};*ejNib1@1E*BqzM$g6wf4>jmf<$M4KWY5 zT4O`ZUE2=slzXF(c{5<@aYwQOcCssOsy)|fH}P~3H-ZpeQ+Pza!-T>4xR*VTOvJsX zgzt}bduk?x>*z%g02@yNV)v=Rl>rJ0B@qWy-YB z?YmAPn=x$W3?cx|NyCC1j zrC4x5;k*(0As9oT+DLRW(j{5_bPOhRY-q^M_*cenj{cCI!$KtzQ=6hRZpMGcv}Djf z>1KR`^-rgYEN;ekup8;!48eSTH{*e#*d-`REnDeN5Irg%6Rok*QR7KRL;}T9%7;V6 zz769P`@~tKd?a=wyOa~%j7Jy6E?p^0Zz7N(&tE_!y|F0LM+PeC@jN7*>}EWrC~gTs zN4gnUrc~}qHzWD0E!&OEB!N#{E1BGjk87KQ%rS zD8YVxKjgNe*d-`REnVqw5ID=nM9P0x6xr_`sFXjDkCYSrkk1swE?p_F@s>Lxvfc*^ ziNwEAR2RNBP>Fvl4~ZxHBmYwrw}ikW{Shovs(Gb9lKj=#SxqScQe1nPJd?UMkTQEF z7rVD40Dp;t5Uurva1Y;z1GsH6jqs=j`8T3)kgvVGPb*jkXXKcZ4r1vv~0QCKg3yWfx zpeVI`r9(lH?CrJ?DL=a?vacMdl%JE2loS1oZc*&gmGUv3pAk-I94I65esNJ9c;P_h zeM27dPWCe1R1~*_xFfv`EK{m^rI(TXl`o=$!a5S9#8sHdjd++gQZl;{FM(jg5Mre< z)0u=ccIsUec4LB{+Yl>6JZA`=>+-E%cxN~uG%kLEM_&PgL@;093HfDF>=G2EmaU!>vT9C^Cmj(96iX?ufQkpV>2efyBfFFn zosg4?VwbLzrK1tPMiVF_T5GJR4vY>|-kb7}cd`@m)S|d0#2x8`V3|_IE1i(!uP%4D zUh*}p1YU7eWb$18McZg(_FV4ejsYfgVS6hbweu1<0^(<|?{n(O;JB}(8@B6@2mpS|tf~(2o!zG(1WoTpcLCCu{0`cIM_8yFIjIe38t3T7n3gh`&6lwL z=~R)$IeHm(BfZ%a%-460-cl611VyQ3tLGfOzbLZ*cA!%JU_Me#bdEk-6uWe#>_2!y zR^t2xL|=WgDAK<^P)Yx19+FOWi+)iQw}hZ0-6AYgDtDz@l>F8Equio{+-ei-#&t21 z&$Xb9-ON7Mjojf^O16*N7O5dUAj^ZEC~^(C{RYU)=P@&z>5Yd@0aEw z?_|H|%|&rbh&$3R!ZM|bSNcWCUtJmH7kTGMGnrNbu{cUHxi2SZLo8SKWq%&-%d?7g zU-qlrm;LnE&1Yj!rem8!?#mraN{R&?EL37UwTVmPzI-R9C4>G+_vKrxe>zoUabNDn zZlrf#1oQRXmtPgdE{3p2U#z0or7Put zi;~)X884~>m4V88a~|?ec3&62@(FFj zk=cEL%C4TT!gdn|7<1F<;4vL9FFK35R)WZvJd9e**__orf~c!P zN{B#u`Jz~EJzd4dyuwq#LM4n-TeGwWgl~#zEt4I)f%Q?RiY(qrAG?v>jtK$idn<1( zid}-D)biEyRz6S^+3y>ulyA>R%8A~}=Za#Nu9T&>qIW>}TSax?KL#rAZ|5QJWN+pE zqPQi*9qFxLnNrOwy_Mvz&WpG{V_-;$A&hG^lV{S3EJPC!_m@qB`>D1C{%YdB{E4Wx2H| zZV9nRx-3|xRP{=iCHbpeMH*NFvN&2YIWiB|2ART@j0)Gt*nY#`qV$GE^#1Dcq5Sa$9qa7_#ZJC)Un`#{W9s#zhlKZNq+(ve0ClN zxmZ{*f2$nGmc8rZ5exoLg#SBrd^fwCw$1K!;IuXS1ddfZjy2=#(v;*MW51m^jGdIjZp@9ELB35I=An9SWy0S!vJd zK;_;tTe?m}RoxopwMow!++=&E1~ClLM}~YC(gUw{N|#5E-4Y(u8_y-h0G6!Y1pWXlxAvJufCrIqTk|G3##_NJ!Hu4czjdU=xA!vMgP$`Y8Zbd7 z;`s^3K_IVM-yR;8YEfe#Md^-c)#za&ICh3n-m0;)hSKF#!Um8}lT(Ro%ojp(6pcW| z%29-c2hAutCx#dU0LfA0XTcaBMH(O=zDOLyavC^&K5)uRZU+5M95^o;9(GNB#$jV_ z_PtRN7+U>Xl+1*R28lEiI>9n)_jMe)JAV$XjNz|(~Yi;Zae6yzi3c(`qMNF&r_;_c;Yz+IyX4fCK!%WE<<f%w1uRD?7Gr-*$o6 zKptA^pAuP4t67@gadCIa=KY(ma=x=JDKco*?oxEFT>Bm^*|}x;vSo}U+GLp~G@rm5 zlOv&gqvEkhVln|SCB!P}#Q2EihV7hy!!PhpP?TL~p#>qp>X1FwX-~F$b!TG3f?b2q z72QQh9gC_IQl@q%AzW9p-ou5|iObqOXcrzh-ATx$GUv=pvRtJTY+HT=mPCC)#RNJ0 znY_7+#K`wri{v$S!*qYdBhj2Fk&B)ae6@4PwOi%dNdPV%lKRIG47l%cgBmC!I(%)N z0GGg3p>NBzQxVxC@F#iz)m{&1uDt>Nh|%$Ae4mYp)#2v)w{4tnE;t)&_TJ_c^kUB0 zXg6$-%Z$Bwqtn>e+1Og#eCEb_bqapK8H~o}%9$HGfbG$iJ-yeSb2=M6IFD|rY^sb` zP8)?!DrZ)lxj9+3kq?E|;?|kwG=^qt%(3O&sG&k}xx`gHsFm6{W&2JGkbDTWe2}P6 z>w>XdJA-nszdnL>^6iPh+iU3C?u#7b!9oJ^$AwYn>0|}SYZpN4cBFj}pnf8}z(IX7 zR1es=E;JL$ zCUA0G)xEH_OD%bk7rd~zunFpsXGSxUh3&yI5#BMD6Y^0 zjs1hsOf9$0J?DRxd+)jDW;;INryBgqfUO_vVQb?e;*Xd?ZCrGi0b7cyAhy=h2-RV% zgqOU;?ABv6Xv>cE84;&dwMxOA!0u;yu-mFZRR-88s)Ddv6&Qu!Z^o|!*pF~Yb;gQ^TTQ&a_Umd?B#(4Z|p+9b&zPn+|R1 z%j7L;@Gb+|YI5ZTZnANggiR&hgo{qyDslc+i~@@rv`b8pB3C z!3^GSX)rVc1mCI$!S`!Wl>vf^Dm@5(OoO)k5R@bj7lKNw zU(w)O2BiI^9@4&{K~)B%DXM}}T|B68!F`|EKRnM=#|d0t}Gdy+chrnrQ7wH`e*?bo3l$|3v+HS$sXh{@*qIBxY% zb#ts_O5w777@L>v3+UZX(2w()`0+{l?E?JPUnlyo9L!65*|Pmj&5C8=M6~(Nj@_4BhMna#B-fhQxINyg&N(KwEN$$WQQzXj=gSzq zfqdWxIe7bPiB9Jm@)N6e^Y->8v=>^f`~*_59Yv4KWwU<>3hd3aVfe@No6olV6a6ic zHbobHfrBHn~oZKTyI&|A6ieGe_B|*U`Bcx$a*@$j!Zb_7QnCsQ+ z$XXY9<57NPw4`VkwGfPQuSI3{sW`-qX8Ta{uwgyFSHsS9QHi2b$MMplriWVdcDz$b zWTcPaoN1)Bi?>mk11Zz(s)09pi=rfms9&Kr{NK`>o2yl7Xmx26_2p{a1rXY>&^ocf z_j!D%TBAI8*S{%a_Y^$|a65500aUhzIlMEWy^uNlWFh8Ibb*<}=}UpnM^OeP(m@$B zI!X8l#j!Gi&1xq%#n{PUAn`oU+E}U_PU@ghXs0oYA~vPDX0JVlIyNm>6@(VmUfY`D zE`FFFV$6MG7G=?6?rG_mJAFMgW^&vxu5_%;n9S~n-9e2_6G65q?Vb?A$dqvn>Ka)l zDtjL`+ck5xZk47`nrLC_pnY)EaO7i{#&)EdTWxIJ*-pDVlo@Wps5fBS)ho9hfyG`h zyT?kmQ5&%S$DV%t_)PbXv9d9Jhdt9BIcOY#g%oBHJ5AcCd4$qR`>*t!fIC{MEw<`T z8BY*<@Sxm+GXp~m@(vyxH^^YR=G50gLPMzyC{!$}OpY>67*#Yn=({+ES6F28aI;p$ zAjIL1*scOsgSw)1>#*7Aq7;Z^gf|dThWcqa8Ots9Zzq7p{!t*d*yIX@LwuFZ8+~6w zqam|B7>Pf0V+*3z2~tmHz~BTV_9|Har{sZ(cWa{qHs1KhitU}ZKiJ>9Ga~TK$w=&D zP;%ST>jvk+1%tJTllA3dxf3n>o!J$bQ<=!TZ>(pN4*jhm<>x$7JMffg;2(ORSav)J z(xeUcgT-D!W5ire5*rKh=VzpIIsJdx34a44ZgdX8gm&R*aNb16l0bo-rJbTqc_Sy-qL!OmNO@ z_Q8dJ=*(hS;2Bdt3vMbJq0B@i@v0ybabApxc#6sG_=~6SsLdSfj@^c>TE~q$Z$l*6 zx>JON$GZ6Yg?Ac0L5!AM&*xrs!bllK#y#PD0r95#;4$&V<0GXK7yLtkASo=#!BN1i zGn*ws>u4$2A>(nUF+n-w}oppM~3csl0HsQz)|a7BV~ zu!Awo$xaL-c*9}1Ne*prhkxLjgb!o^i88=m>_U_~2KaX=c6m6-iCMQK85CsQE=;Kr zAK0Y=Ag3ILfhrgj)rj)JA{d%7ZW5P5Sax11EjBUJ*)e7jIaLin7;9<^HLG65U#O{o z5pieSxJk@DLOU@3(Q1i0xectD9hSprtfDyuI1H-Cfs({j9@lM=N|lh#bw=D7NEshI z4C!Z3xT9EYahLFXYXI9)LgBd=D<}v7#KWL%(fSuzt$=Zp^Ut2p5LQ!D-duzf*$}_O zSX&=HYcER4+T(o1KrR)aNDZcWoT(e5+3TWiG(}b393w0ooE$IR~11FxA`wfV0Fl;Y;rro9m=|hLeMWx zXgHTMA&MPmGLe~~3};E5FUXpY$KWh|b?{$SOuw}@YL6n4y?xKv*cAs4ionAeYT)t} z69=(YhFa=`C`>_8{9#p{r7LHZie|Enxps5WnLMo>r1dIyp3lHZQJ7_QE>IkM&2(a)|#uh)`3@$Y65rqdZa z*qOkb`&U<@GaDUykfTFeeCQ1HX)R%sH~pRAcB>$(J}IsGTR^Nji)) ztY`-d-M`Rp*d`ojP^KZKbH^U7jpEMbV`B#ojzlRT%{lV5VsH2RixZ{H@O_9g}HiGMr9d*`umW)}ed&IIDP9Tji zn^fG3vuTR3f*F*?e5s4v1u>v>W@W^q{!zRbi(|~*t0Tn?rzOoIp8_*6H4GNZGR>^y zOEVjZH`D*{i0-#z@CG{qAywz`C`W(?xY3y}R;4^gP!aH#G(1}7 z5>13wSe2{kXEH-o&vTUMesw~IxOVOg~FTq?*n zT_Szc3|P0)zUi+6Hu~t;QTQhE9%bi_(p_=Kr%5!cE6QKPs}${<o}LezDV@fc|6J&;Q@~SPZX=ro-g{} z0`8745|HCxrU$frQG7=|JoC@}Rl?_T`67Qu{l3VL;WQe=$xY;rt}ptRVtL^CB0mqJ ze34df2Kl1@Sc%>|E7BL`wP5LGU62pDT>79t2Fr%*gR&5uaE^+%>qpIx@vT9a?g%U( zOrM0j@#`s154&Bu^`%ivVL1nmla6|&tPQa~=OyNi8nal$qv4ghsTNUOpBItWCpHF* zmuL$Xnv-iMIAB8NeTaoUvwp-}!p>XRa~v{oy_>bLHGD}2J^ec z&r9xKVos;~g@opFnOmaUne2)(HJSQ#3Wo&mS?r0Lm#jqJ{*QppBMqNy$uvn+SzG<{xc^sueG1Uo`o%5gfkH6qMTjW!+9o;^}_C!H93371-w zOLJfWTM?yUIBeFCGKYkjTBCIEptm94Pt}aboI&1zgK}jgKKID!I=65)C8%j=jThb` znQac&WJLS8q=z{f&q*L7mnEeBIhJr$;55mkz89og*Q8Xfe+5o);1Rak&$V$bJvLk+ ze}p+KJS)$E&_8{cNg0wZ?Np|(h~>bFhh@nBSkm8L!y>C$~UC5%F{of(b62U zyXrNRFF@o$hd)t`gcbr0gc~$&@pDzCDKf)|&88MMIw5XBQtx8z1?nwaZ7&&ODcmqC z?I!97kWHP(kg36%#D3j+4;f~?4rP(znNkNy?X)j;5h;*p4Ibg(K{EI=u=FB)8AqWc zs*+^YXWUJ}GZh@zhe{32MtKC$P3e{zS#8g;$c)O47>$|6ReP_MgEK^VzI84`mQ%p6 z3=echOLMh0u>~wyv=(PkM*(-blxi-YqhA~4iF8I2{~EMA zK=c9|nJLC2X0sj4vg@}_jF!g7$48BQx2xf*7#B*4Pg%w$f@s7>D1e(+jk&x@S~;=;0~mp5-A_F!ivAe1m}WC2*JEZWub`zM`Bl6n`)go zvlh;PN|h)Qla7?#Z5^fgQ0cA7vXbM&)QQnq!tS}n@zQf>a|147lQgy?7$}&5-D$`R zN6ka}R!xksFxv^QUGJellhLxwLmhH}co35r(HmKP?&C#Z)ai=yV75NER(qY^8D2cjPl7=&+1^UO^AV z7lY=G=4c>oRGZ)#%`{_+Fv6g5GGYF%&{9Xj0^@HFQ!1uNQ^3iIUQ{^k3ggpJ*obRR#dD=yU^;EiK;6o^d+#{#-=7r+%5X{HK}p`7Y{t5 zG>}{A$0k_mPzdX$X4d)J;nx}o#h?g=-lAVU%L{0TuUaOe>am*pO({Ia85jxjF+=DHlyp|op|m_ zFz>8LXU7Ri~r#l~)6ajG7o)Z@;a1I|Ymc!nV-Ou692?$PjHxs!WoMH`?%Zd+dIM2OuS+Q?$ zvR+dx_r0lEKlj(m=!<_jks(3YAqlZ@Or2hNUpj(_~^#dbRybgM@L6Vi!Y4%)7D zA|BQFe}m!s-?E5daMj8$gCNS^+s?NxfbQ#-=+%=*RV{FX0%0eA%OdnBEfVS1DqaaZlmrUB0`&0e@0Hl05Z8Jg&|&u`i@#KGFqGruuNQHESnk@%M?}VB~0t60dmD9M(z#6BKNvn61Ja$*E2}?M(Rdp z35#O|R*i7Kn5bX!AOhooyIvm%$_BqxPHn1~fRY;4bzow^wl1@Pl%jas{8x)6f}8n0 zqZ2Ua)9ayULBnhan=WlROcG{#QNWZYdocmJXdJVrj+JYp#u##YP+(iUOiDg#U^)7@ z{AqMB?~iyN+Ybam+0?fD4PsY*ESEIFB#h zZtU?sDMlYyWH4z}0kg-b2Dl)KtW3~j+fcq{n<%$U#gD}7xmT}7G$ISs)M%R8b_!5T z7>hlu?jygm(;Y888>GoBYnfOnLga1O%eZY+wvT^M{$QIp@WIJYlN0QVwQ3dR#usrq z1I`2zX`|bowhbM|(uXNhM7PmpzIPsD9y&BUe7B40{SiqSuO4YrPuJ=9 zA}zK@aZa=CHH5PwqHQ-GQ5<|JJ3-qMT5Qx*}0q`V0YXWKxVN6M#AH}XpvdnCA&gPSIvG%R*y zm2%0mcARAY4JPT`!yic0#DA|!1aX8gCm=sXyYZxmd zbj0cx#Sb#}7#KpBN4Zu;?~+<77Gz!s(Gw~e6GG6VMLx}%xSlm*Ajtn8_UaWDC4Iu`dj z?%PGCKdmg_plsTIDvAq)_n%?~CH?Nxg!swZhRl7B(`&vM`lQ40aL*DRC_H!(l!1n0 zQyl1Ktdgbnvg-s$xan2bnA%*H@HLG-dMgS~5q-?kM4l+>snm`1QIrxuFp8qg^T1S$ zyu?`cOT%KBqAInF*OEctB9@mJxwFF}cV-LifVCm79;jP zm%Q(Ybz=T0vFDX02$9<)_F9ekb}g5@=-#m&;k=rd{fjIJj(LVzoo^-RSe8&P6cPW6 zka^6UBHfJD?9|cHW}h$}PRS3lJFLGa9f|+4Mt{BN_`fn^JWq7In!1rbI#$96M#qD_ z>N&$=m!c@OtWV(z#Kj%F$s|59tS&qm4X@mi+P%tTeDkn~ zzG+2ed_YUak+D;vg^i7!2EX;HynYe+Q;r9wEHJ8(f=hl!OqZ!9L>m9dP>@7@uK4A_ z%(gvu{PGTPBv|~!D9<*V^~fA1+Vm;cC!ez*Yp5W&km=K^9Z~tkpXn@4d{D&)D9)iK zFj|^w5z{FlpXhtWJA#b-yZfIwmrqoB1P?wInFs zVR?!5@U02o$`y;eS@bYV6M15hd#M}gV-dyv?6Ju24~t!jqSUd7x3I~=ZSOLZ@_oZ1 z`;#jw<#+UmF&?vP#*Tt0BwCl{s*a$@}}m>cDqaRNg-*Lf(T{JvSbWx3^gg zm~yz@cua{qGB~1pu|_^NI2!!cp_O#L40K7fOwWbuRU`yI*O>K= zihgcRS#3>iWpc`=In~xm1FNmkl+XSvC%q_$wq%KlZIiN|2N{b|xu43M=f{jtkjsju z8N6s35-BnlO;cHCIKL}YG%c8|etMXx+^R)Az)*H^vC8U&WD{sOcKMWU#%gP7r=2b& zyFTGtxy;cuqK8?U$P<#?K;1|mk}39Q56R47u}e{uTDo5Bl_n%>4~y*Pib}a#jFbn4 zWUm+&yRu686nAM&n0#)%f;XAvdh@WlaL9s_5yP4(xE zg8MH;UFaD^jMdIewYC_)EkUH($qkGu<+9Op4pyMoQ6d6ir@NVvY75XSR5L)HNI_YG zR1iSCRl;w*1_DJk8Z|Vm(*cKnq3U* zm*T&qp@rUvb`2WN2Esfc3ApwsV$>-_h3v1Su;{d4@41Z$-)1=Y&0-bD3y$s)W+o;$ zqMNarliGo%364IH@Ffk9dco2E6#dK6M4sU2gVc@m!I5Hq_TcEV!(x}BD79>}1xJ53 zEV93{qEi0*Vx&AUIQqe`*p*ev{+*m`9@T$?*{d}#h_@VBlrgk?cM=+2xxvml>PB9D z9vl`uc39j}f{qM}=w7UGj}40kzx8`jVbMd}YcuR7bum}W^@hw=D)(&BTV&Khvqi0? z_;@R6vdB4&%9}Gnr1e~yI6}ljtDHApdA&Rgnl_!55+;#oZYkv?(iT76JW}GfnB=Z4 zR*$?W=}KXBVxlCv8LLRCJ!zUK>9&L~<+7^J75&T7M4l+=4(djFtE!lvJxb~hi(QJM z)UwSMCH?BK$bRvPO8I5QNO@qC^p;_Og8&m?q5Ga4h~y8vXMogVv(ql^Z;6qHd%Qa}@Kl zhdJjDi(QJM)UwSM=1dHW?6DP<^3GzUJTT0;ZdmNfDrMa;=efh`z_V9W-nSMZ@4;ct z^M}PPCGN;DhwjCi_}DOK@LOraoPyjf3v-gF%N6E)OE^mnf26;H_6NRMk)!I6_5vq$ zrjdz-gHxtyo<@bCa(bsk_0CbiAUQ{fUUMs)`YBCF7COWKoazyu?umSYN%$?rs)`p5 zy-66Bm~e=0#_CFHmzgFU`n`lNX~545hkjS|FG~}7W_>9q>B||G@tI+Vu4RY2~H}Y!r z;Be@1!{U|_cVsw3_hLGyj=HaIOgHjhQV^?unq|bJh0DA}Sp; zt40~g%8^A8WC0Ob7U9Y!QijB#X*gD%UUQ4BQaJN;t6`fsB&IfYU9++2?GW-R1Wd%iW`JnyEs z!uof6!k2Q{zvqemWoaT$R5L@}NN@iX^Rq`ayVX+0eaMGann- z41VjzV%;f&RnpgUg(-V8!zw0B(V*gobR@Spr}$?$cRpL#uBf=*Jx`sEuJ6riQ1NGO z6W%LI~|5K*`T{L;S zECOnEdi5@<*dzJ7*FmY-XIAOI5URQl8arwNVO`Zj6^o zD4ajDXkt4Z)+`x zv%J02eimFif?9{KH?Sc+pH<DDQnTDK9QU_Oh_<@B6lA?9h>0m)PG_0S2h zbn_vjWwiuiG+^avnV$vMNG;0^4HnZRv9TZ}`)#RY`-L<$xG_-47PfD9LW7(tHXuB3 z6(Xorca!|%v}%i=Jhusf>WvQFT%%rHESx-zdZmy-%-k8>e8_0jy$QroqT__WewAWz~zK_GvZ1o_8=AT&BX5ah4ezTF*sIRi9-cN(Kfq_6lOEubp>haipN zQP^3LjO0+?8e%m^{C^dTcu$f4L*OSyk?Ce?MP9#M0E71{;^eYZ?~HF$1IM27`nz&i zDsLu$hO5$-BC66S&n7S{ki@=%tiZda75Gt6Rv-&m_S@D%lK0|=nxqpGoYAAk(;1Sq z=03%kR7{_qs@q#{`jlo73z~E}RMA(Ok;djdJi&*!x;8(e`Jeu9Zl?YO}IzpNCGdjD#1XvHk|!?k=^g<^CF?qrVw{ zTSr^SX^Ewe-t2LRp3Zg z{LLEsM=<=w_r>QaJx1h>!vyT4NnuWE1vp5H8=0AF8o$x{dvAnAZLqb}Td( ztsS;`s5y($>+{wQvtg33%w0RI#^KJ6*3z!acGPRL_yyT!ja}oH?SR~1*UicybKdIg zaPc*^dwl2klp*(ZZp zKGo@O4ZY%sTuMCRJ`>oN!%T3cA0x1`eJ;7+^Y9}&mZNU$`dklWirr}Ur1#D9Ql>)O9Jn2a^H8JvG)vqM0i)< ztBhwq%+53WdVDicUoXc4QrzE1^V$4p2s=-48~e6sEX0+QnJtawOw40~JAr$QLt9>i z&hYqZkb-34&_*;rYz}Sqxfh2&4&KJH>rQMCz?m){Dnng~!e!KwO14XWN0OI81jPOsH!w!1SO90k{Xey@or zV%Zs%(J9DM`y{bhMzaI8FIQs|E*l5Cf%oEBABWx4jVvMJCW^VK?qhekf9?#zZXEsV zbI{5OFZb8sxmtDEz8?mL$MGs=cux}Ht~Chp<~?Z78RM1hk5D5Y#g7=L`ElHei1qEm z$ZbORKS8e(h4v@uw+11K{(R}O{b}cxBKJWGam2X5=UOEs-bW3%)(oNeXYg(mpUa^f ztFMC&>5D0|9tRw|#~F)!9hFE`brS0-{uV_y$2t`gM=m4z3CTb>l^HQRDwCUCI!mW{ zq$6IgBQJ{Te&S5SX0K7T+Vp{H2?rJ;HI4Q%j&)jAr8b8gDfJ!X3dtg*3$+%~kq+Sa z9*-W-hkUIz1YSY96&*!MLoKt`z+bh-RO!~q+l_0j_5!l3dYw^Y@3`?~<7SHXMvZ5T z8`st57sjxu0Q5Ou^Lj<8NoKFxtkAv#A{)n9qGwLWj?}sfpf}i?@zUNZGMg&sI@q$$ z>a~$`c0D@VMlKj7n(c2lakE2V;4MoX9B>V?c24X>b<$nC#!Cy`ZmTo3V@HdgvQQdz zzBArHBh>XuWrxUs+Ch)+STH*aJ1)D}x@6*#iQOoeYF)f@7sjRLP@1_G+Pl1Ern%a4R-;j@n?q5B<|LU8szwzpQ2lhVG0Cg34 zHnvJGrc^LW3F}bkx`4rLo07!PhLB$yOc9ODTGXvMaDS}Zg9ye;&w;Qi-5wac1b!Sw z{A|pjU$cmzkqM^G6FAarA2Mb!JR+8vEgC9Ii3@?Eq%5EW8Ifr5+amCT967?lA_Q&B z^%`OYZ&bA=8W70y0cDhsybW>wj10H8`F4O%U@(0Iw)9cVpAgJ*2ii$+p!OF7-uU*R z>I?VuL;ecz){Ja|oEEstv z0*4rnr-x=JBuJRiQgRSWBILXu;&TxaD=h{|peDGQyK}$i66Cog;>Z%1X*hd$p4-qp_6yuk(ie?dy z$de+eF>#PSUL8hnXz?wpdxX-p^-U zPm!|tYh45I43e*iY@|3fobtu-5c#++Svy>^KC0V6?Atw~mWZrlrg$|GXzMb60?Ul}zzuA^SZ*vr-6)Mn{`kC4L22wR+z z_c@nVVQu_37`jV$0Xpt)Bp}8JkLim*0(p*;*zc?p~YnJixvBmN+%1S6c zo+J3E5!ZQELW-gwE1}3*qf3@&C4M$sE0LwYGE3|wNS9DCmX{^w#aPOPhGMLs&wOv> z2q9#7rcjx_i}h`q;c@1l)Luq2Fx4bxnS`b4U@;fl6x~UwMNI8=DU51ci`dyovw*MLtu7$)O z7!ysu2Z=5Rjx@)x_0y^w4MfTiiLcmrl-VQbO*hmnPCH|A+<$v?1r&z z>}gkQ!@pC3&tWt{^Y=6#jnOyF-pa45m&UTZH0p!|Aeq_~8Uz*V9D6XWuEXT^b0Tm!#ULt}Xx8r%!4R|Kh7Y}#jG(jRAw z@xI3J*k}kLBEk~y9Kl|7Q{ctvNuiAn?v{%|@qGe~{4dbirUxXzl*G|!5=R0c@?*N} z3G#9%r2uZEdZ01!EJ4|^?7o$S0AV4=Fk;jep(j8Nt;^7Q3dN&KBa)#_56meE&%m=V zB${ae4dBLd5JWmiD59;woeAN(IhNwX2ZX7O*7tCWPfO9_zNWNX#F<62YDq2-JMo`z z`_jNPnyD-d$|dXtL`g46$1r&!jWm7*%*@#itv3pDjPKQud4;P0?4roR!tdgiW5ql# zBP3picbNd}q!KvBziQ0N#y#gnM=)cdvxdbyd_tOuQiK~bs!f=8(kSbwsF45*7>GmQ z?BrAOiCH+5h)4YXP&{688zov`kg1>P`X+)PXqB9Ik{t7`j|IZG>07W;@Teaz+>f*2 z*`rLJsSP7o;tM*@9e!|pmJE)cB}RpIFeLsImf|vpZrjE@Pv>{TWTS&_8ct@gV{jt_ zpO@QKM98-7@)Zu(Ky{%}RS7*Pw80F*@I^yjh_>ya5uT+F&9<#nSO(Fjh&?EBPY%f- z@gmw8ENFl51TLlc=z)}>7(kMuwNMzgEk_9EIInOr**U8pHF3#9+l)|o1erJoHDYCJ zdMA*A3=GUu+*>wF~aR_{ly-H2SkPeDAQi+vCIU z%oAj1mPBVX)>5KUE>xR}L8+Gr-*rM`o754FBi8Vu<2um+=f2uf0qsD@20iCE{qO9I?cA?@E&8q9~R4ksI^-|^5nz#l2(eBw{|OWonSl&zLiNbSM=#X#R4zJivef=Xp7 zNI}&yLnsF)eVRMABlKo)fD+}Cz^WR~q9C2AwAfpedmoXlfd$TSYaF>aShhq`JMDr* zCWwh@@rziD$095iLb3QL8x!d*PD_!?i+1YqVcjKg1<4DK@-{kTFh}3_E;Bft^2AwVjcyZO%KAwOVhE+I|EJI|^QdEoaO|wGKiEUksbRl3qZ-+L`>GB)K4N3c<+dBnK2JBIWjw2Cx|+ok=&-#BmMsBw`oskV4`aW)2J zoLw*0inb%QV!LY)Wuk}7uMj)f>r0f3=gTcLuEK{w6w+8Iy-($_Fk>n9%PU)nxKa|} z=3JyVia&9=Me2M4d3Ay~6=$D;pD6oGmzjmwp8!n_ZH}6U8}!r~QBT=T)F0 z;rdq}620eGF%z(22Twa$CyWNi;2PKw-efJINe%dU)pUtgL<54CNSCB6cQTwJM{PK! zi>Xx-t28`Zl;c%ub%*Gv2CqEFD>YMttSHB;$huyaEYI;?t=ojAK!hYI;?-X_gT{UJRc1^gH3MZToZlQ8E$_YJRkBd zunFl7?iJEa?+z}_%N%J7^qXOP`f#y)iqh{%$*14b)dEkyC94b4ZzaCB=#u5>_nUN^ z(A4i=Ys}zOyLt@+dK`8!gHk+n%p0O=()X*Vln?Hxx;ftF8SgP?2bHf81J(k2SYQ=o z=^UzdiegFb1{I9>yU^)vhqlqn@|p4>7mQrqs5}sok z_s_*@TvVXCQ)=7;0+;D6Q}2XwUYfO~q0)dAfJ3wd5Q$+XrJoclr6{|&OG@d7y4J(9 zi&D@9*+m7Ouj!KI*~PEwHlb%1rwyc?Vc&6wdqwV^JvDclKxMioZdq!DI4Tx=0wGNE0SmvLh z&G&Mn9!kc|h;6I*S6JBc$cWg~;hW`f_mPN$MQH<8Y+yEDJB;lhogQ|=bg6(FzG$|p zIJUFw_QdQt9T_#QEMGe^A|gF;G^vR#iA%-;w$nOuyFO+GySQs`7aPr$>t-X+Pwj5H zHal%tJN=j-s#X+JD~+fCpD~{`R6KdzTRAiphov{HIce2N^q)!s3QvReCI~7w5BEkR*_=hx1CO+0b*Y3`6w++`O$F2pw9@~-!r2+%gu1~BTV1lSFFBAS>ruY-+xDF zMS5%e(MN>bq+NfQ_k|(mqs1a7%0no`{4ZTQ>UjtWx`I4}BI}*HWO*Lq?Yd3qd5GyP znAah5@qAwZd<})EW@Q0|1!eY{m{E?JdKDuhSOmlYb*P^z0(NQ%i6h=usXE;(ixo+!+P#F`M$;Vr@#4 z7y3o%g}x~?FTEG~>7!znF6`%-5e%z8D;BF!{!d}`|LS@P&;Lod7v%pGS^uI-mgoQe zNw*12|Mw|ny=iq3b2l_N;!B{r_}Zs$jKfA%p}|gY^;5bUa*D3=3!bMSRy{$0x9%yN zB{E(cP8OI$R;FL$0+wX<3PKIqZ{^$(@$F+tA|7Ho1(-sBCKl=;^5{pk!Eb{+({{BQQ2{bNZJ<8 zaHRuXQD+&^iDgV)8hTpHSMc{c;(QvsChG1}Y~{;UM&P4n*(uIZ0ao3_ab3O>M?+tc zffs7l&svB!EkD7?bwkibr0ZU+0*=dEgb?|1-i%Q+jvo!n5XyX0|NrZW*CCmpbf z$IZ;fy<-DsDQMONyT&O)-L;!()0+G5i0D}wQ*|PG74{*ghpBg2AQEb#9$?z|p<=Z$ z%40lJYUBF_X489&*FIFmAZ__Wk31&VPZcZIC@ZVv`lq_K$g{E%8U}V8IzP>?#90H6RSE59bI$~GM`&KO+#*8Dp zjF#1geZ%@oJp+4_>9hgDGv&NLTB(mR8C+ki45BQVlEF3kEtwQ!L6%IBHK|LMXUWENo6xjmi;dC;Ytn`lE6Wy#cUaBK$ds_v zJvX-VE+a*JnD8944Ie4iHbhz8=SbV|heCtWTi(w+(u66^{UfJa3`bum7DrJ&=GhWQ zpVPI(o{y1GEXc+A3-Scaj>K3!|Er9xbO(b%)cm<;=x zP$GaFg~JIzalpMf_slPh(N$BTEL~g;Ca!x`^P#5IVl%o7Z z*B^N;AIe9ceedCQc zyMrV0I4ZZzwR5RG$nzuVgrSH?Xd6f+UQ177*lM2{MT^@dVY;IqVcPPG#cE5G{k}tL z%jH5_(%bLbR)Ve4Tn_hBjNiXhEWe`yZpH6?`K^-_SwYrGk#(6aS)O&;t=ojAb^0B( z=t1U&z=oC~WZULc0~VfhYUF7pNx~xW}~c#l>o2l+`n()w@$* zHNDk)V+0ekjY#|~QA4c)ktO`fi69aQ`lJns@Mki9eX%l*vb0LZuhq3j-qePKNkNuY zk#$U$EYH#&(QQJ{(oX*krZ(nkM{!z1ea5QJTb&uXJ7H!HrQPc@a-1q^yVI1%bEvRG z6PqY7Lrb*`oa$_&>Myn!C@(st1u*F#ACmido#UY!t?^o8F1RO`3O~pq@`zEfo3*>p z?9DIGLL!Ku;%_o+MS}=iMfw9~Il4>Zu+2DFLd?_%nw4c2Cnw?1i8j((vAv{YbecGA z2}x8n%FV(>=ehb3a|t^?7Ocu4u@peJ5W2RTPz9nyeik%{56i8-shCIIrHB=0mqt;K z4bD_~jy@+k;_n|VI$&9%f_LYzOQv~5tV0kVzz#~+4eU8_yQ8u5_RAU2@DRX4BrjJK z2`3&0sZkL2<=av!z8mBSSCslK<{Lg)tZ#_&|8vs+|B0}msr~=-?*Q|UV!3XW9!6Le zgUClE=lG+CgXEYs_^V>AK~$tzmDb=dbmJ*6Qj`Xzph!^}sgLTCSw&$v7j;0I|av_rI)?R>k2eBI^ z*&_@RCCb7JVy=ryJr2Le-<_z5uQZ*(dul?l_^yQg^=2Q*Zij_WW_OsTt$%5ubMsMt zwVHU zi-|ww0YDgbW3VoEavCV(NEI7f%^HeUQIeIvsDa@g&t}Z_FdW5L6qBBZ&}#Px8pijX zPtx~jj#M^!1fOy?AJj2OMl~w;U5t7g{&6?XfA7|C3J}?Jb=*5`mLkHO#>J6G$DN`I zZEMVZM~vuQyO-9`Pd`1L`%xB1)RZ)wMYWgBz=uxm_S5lJwqs+@_;h0W5w^*Hs^7nPA6VJ}?@1

q5R_MrpS$GV<`KKth(E z3i9txen-i*`f1&B|A!8EuBZd2PuQJ>4 zieha;l)r3C+wfAML8<3d``==mcw`HcOX}yU=M0T+E*6bZo~k9$c#p0<_vZ8@pbPR; zN=aU#OP1%UUZmSZI!~3QzxLbKV&>>2>oKWg|0cpX`-k-7t@LC0Mfh~k&{ECA1!fz*2wZyr5h&Ux5VTJ#n>Wf+y+A_ob3%jSJymLC_UBV$ z4yWGaz?;L`uw2#&3Y`0r_39eq?mrKoyFJO>2PAjjbr)0O{y??leHi>W>)sEG?cO^< zyw@AgqGg%8zM>eBOOfVnj4^B7%L>)BC@*|ia&I-hq@}%{7nX3!;+2#yx)@%>lbrNL z3Zh?=5Doa5ej}Szk20`XEV={uuu}Wni}R3#f&T^*>4n9LG|G4$ks>``h}2$L^`0!Y zd!BkzZ#QSVSczUr6i&F8U5)V%kc*wN`Bq3FhiYu7LsQAGwQB;(K z^&_Z_&ZoIbdzYC24;CxHD1}zh&}~A10~I<&OKMpFLR5pLl$oMit)SncKs3>E6Tq5eD z`HiszWkDuO0i8^iHzR}KI5=Q>rKi6~YV|6e+KCOqwD9AzWk}+Xw~P&R_yux8gek&4 z5@G7R+q45i7%z7&PUfg=m&qcu^Ca-bZJ0a5x>CousFYx3&WxgxLpk~phK7GE77bDM z<;4;Wf0xm|bWa4s9sZT&@MV9|G;me?UIO#&yD&%G-weMsi{tJvms(kV{j$&g+V|2V z^__SKMNP#@*{bcl_5Vm{Js3yy*Vd|&7cZOk>tut=@}D=#f9?_g^w+hmxmtBuJiBXI z%}4x%zVa$OU{i0PO@fvSW5Ior3vNzr5-&9LKgulqvZV9dg3cfZl6tPX>doFrENhSz z6-g=m2%060*1c$vFH4A#gFEYNf9VwF$rtuJFnTq_NXrwim10lA!Un7a(*+Z5#$w$0JI z;cRvEuBej^f0~* z6vokHVTAoRnA3mi%l#1$w+=COv20(2&)TE-VcAjM!Tt^M0dK|+Wi6jT&kM(JN%(UQ z7mdAP6+GG`XZZ9_uyFgR8b(xd_b~fNRYNa6yo7_Ie^w+Syyy1>o>+S843!ctC3GJ~R*D-x;8J)gDeH{$^Ai)S&7WgQz+lq-s-O zB4RChKu(yv#As`1(DtTS+WKd7dN@_O-JR)R*FpFBJXO z*jnZCRE@DFIO5--K~;WKNn%$5Rp!w>lMZI$P-PxHQ}lJn|sG^omtDoN~cQFSsKkvO;sBWt7cob!lely{k7>)$l^l>uAd z(ZklyG^omeEk#ujTWe{k$GIjiF^-*lH$0S^wwP)JVCP4eBzd?9J1>5a>u@Cuw{zlN za$b?}i+_wU_sJT}%>c&>(7Z-)cCiLk8Q`d>3c_*K08{sL4XW}3Q4%{`AfC)-R2(3M zvA5axob!}~8@t00cB=;0G9c_ZdI+m&P?Z5;imDL8283uwG^omtFiGri5q4T|lForo z7-U=gk2;S@l<`{(X0O#?T?Ux-^kt*&0lOa>j`(j9>55pe#SsB*DXl z+Sw96Y+8q=b{&p{5qCz!8_v@bc#%&qett@WpBeD?aXtL~r3O_Q@TaKK!Qa<4D9evO zN$_y-Crq7xk->pd7Ln>1LN0eo-J1K+zfsLB97 zMU@`-KCD4oe(*_>hYP-~%Cu3bFqyaEU@43{^)5F@| zYfzN|Yl^BM*4BxH8qPU&jq&W88r0=SnTX2lg3o_%l5mZq=YF0}d5cK^&%YxaVuomLG+Z0~i%mK`^E@iU%~P%MV9M^l;($_{2O(2VP-3o)h<; z^NK`d{9_E0iyHjRfXSL3CXZ=Ql>w8AsvsuQ8OXaeXv>dCN%C+Jd0H?v*FjVmgs1RF zod+fKf;So9eoKRW836ZIJ;1$RgQ^UGQ&a^3H)zrJV;WTDhnggIxKKMMF6Y}pQW$b) zM7-iWEpZq51Owk!G#Huze1EA2zHewyl>vN;sv!8%S-XGNpe;WHCCS5u;3;ZYt2P%n zPznQYi~m9AF^M>Si$QHmf2bpmjc8sY*gH>ystiz5R0W|n$j+5DsLBsAN$hYzc2R~M zD-N{62z+w7R-6VTHq*YuP`g({5*ZBS9zE3Fq(M~%)GDfis7+@eZ`YtLKXxU_!^Q5Y zfelm+yu$b_c~3eINeudLFq|FM;93Tpwe@iJD;iW~z?q^-4`;8_pe;YnB+0|Y*?IB% z@*FgUA$L~fOV0BWeKF54Aih_Ftr>v$ZapCWkp@*6fT*a_1LA!ewB-k)Bzd?%+~{lq zbzl^R-Fo?m^MJ&ebCCh-ehoHd0M_5@0qeUORAm5`qACciLA!hYuLf25Ati||6jHew zn{YRvMQr4?ucuuOq9QVFm3=Rs^%bemDlM=HWhPJnW!~y8_s^YKY*u?XxHhy2f7vZZ zu{E?we!0IMZD5Q3vVESnA^AN?{cv|rhFCR;4mx!)%JxU7k&og>%r5AU<5vGPx0-+| zez0sG#%6x|{yXvG6V$?mufmT{(r*{xxBhzBg=Myv`(?}ar>V6wLj5a`IMp{EM9lzM z7tSXKx%Kd3w*3UM`3xG1lufX*)9Y^TH4OPtD&R$RZK`J1q{>)S=SG}fL>H-C01h>3 zq97M4bGfJ4p(vMyk~l3CDL|zgb+&H>hcDoGVH7OrwtJN>%5wReDm7&>1NIV5P@3yC zD)a&GJYTV~{h>%8GqSr#ycxIGL~W{9`$@fGCc8XslTw~wU(zZ{dmq72Y}DtF3E`?Y z8&VEgBBb13-CBau$=V*v(W@3_Bx7r)(Ye^31UKK)c3{~E#D z7{tA4K&;EwP1wA=0Hy4@DP zW$E@J(L^ znqbomOw8NySCok<+wbCc`sYujK-o&yIQ1dBgt3 zdPaoZAg22ZCHc&={3_pl*`nupH(j2`?5!``XM#$l1+Aqq^eqMs3fK>VM#u7h%*d|!9?TS(3@~YLT%yeq=GaZyyvZf685o6mGSD;#%)J0WdO&L#ym-mLn z>M`R-0TNajPKy$Q_?tEM!Gy+Q)Y)DImzY>8y!1O$oJZ0;vi;o+NZWA6^r+JD0e z)wWU?jjwIRLG1cQ`(z$h_O}LgArQSq+-Cy&OqdC-^kW28w$G&?<~;m}4n9IW-$Ks| z0Y>oLzK=+7oPVg`(t7Tq)L>g(WL^1dov!E?S{mGyKq;gCjfENtM-j_*s78tV9p{-) ziIPp>M?|piyUuv~?d-hGQUd2+(R?<)9Kx7ax#dC8Scog9hi$XNp70dU$?Re0ISIbN zJ;tZCuLhR0g)>?BbP}3}pUqm%<#Y|IGEDd=s)7?f=}H9|8noq~_K_rK35T)+?yN}1 z?_ep6xzmErJC91(g>N(DU8cdu3{#D}^^kY122~l5r>N3H-m^4l%a1%s@^F#2$&D=? z2!+wMmY#8LON7Zw3{?#c9%Vq4t%s@?YEYE{Rf;M-RJ}rjw*07)Bo7x=Tl~Wm2RUJ2 zZE_!To{{MCU1tz`hX%tkKS3teE``rjIK<%gFfw@`TH zYRp?D861VL#43p#t+}ft_TL}`v#`$Wl3HZiQOF)prpjUQBe20mssB5CgO zLm(rHLJ8@U=wo8uVI4>gg7h*vjo@aBP&g)wsVihwYn@6HK5j`>SEnP=X%enoo5c!T ztue*jUXFGcYfdeeHQp+h$A1_Lm4!vCP0yfQyn)5edF!dAn=N;7l5`%Y)e@VXMa`~f1bheP3WYbC zv(Wa#;uu}C?pObD&01FJtz zOwB48;-z?=Vfq&mh{>Yv!qxWLwPkx7T2#L43$%(NCLO8I*=CJZ6H!XCF`bf3??PE( zaiEDfg29mW|KX)(t?m)a!WzbrrXeckcZ{(yQ>g$B;lg4Osf4&yD$`Q^V(kS2?_;yb z3aE|QwtYqYF(2M0;h zBh)hV*HWb6*wA*(#PKL(@5GS^ly9(Lc8TU{hdyVbG=BpfH5xske>h!Cez+sj7-|jU z$U?2MP{N@kB9Wnu6%X{I0iHN5a{oQOJ3SL0xa;+Wa}jMmT-nI4q~?O}iK0cbbBIpos*{e_<{M3{g^nA~ZT4_y$-pL7qPw(M6Nd%P%+<|#p>Rlb zsvy?K5n$qmI@R7a4rTlMoZ)@nx&;d|eb*U6YQ-YtdoDsOGz>t9#gx@XnLA&)>5Z9q zcpFT;aG_#vIGw3be=`Y9$(1VvyTkf>XTq1Wcv@uv)`KLe5ywP-vozt)p^!-&5jhhg zr9uo?#p5bN(Y}ki@kD(5>LhbrNm4Gfokr;Ikd~4&nYrTa55|9Y|^}lID(ZWdBTdDr3%hdrD$wi zIslObs=g}1L?@S2d=cZM_)m>riLPDWs2)JZN`i$Ata>sl8@R_n@%yB*?mQ8x_X^|CpC!<$!6DB!e@1X9OA~(EY`-3_N9D7{ z*yb-#H`3c?zxaZ-IZ=ACwt4Vd+l6gTrJUUCCpH~Of$SRxeVLYF)joKTBj#~Q%E`(2 zUa?5=@*)%aCm4S8gjpn}D@laraxuS~Sy%G9nCS@w_Q558que7-=q zsJYmxBhOGhHI8$wFk>L|3df%*{=l4Nn-1S@Hp(LgO|F}Ue2QiP)E(Kn@*SOpX0KkQ z03GJe8U2fW2W0+coNUHXqh^hkC}dY|4b6+Eoc0yTn6V!E4X&sJd7`7E1g|S^y#7!FlLWQyg0TW5)w@GryNQGYT>eqh#x{eaD;D+M2>N#fcVo1gZmx`0e>~w!SyVEl z)gKf6%hE(1t^NdcBfVBD<_9NtSC0mE*w6(Ahrb;byA(x%Er9X!&>J1i;AY#q%*g)c zu*m+G6_xV0i;*%`2AJ-LCa_ljTDHe({jac`f^?q&Kcp?cW9?pJ zMy9P|2C3}Lkg{!&Dgh6>e=mr6V%%$IIcg(tV%P3R@@w?|`fu<%{ddY0Z{OF-SUjIm z$uFZ=>pnVz1XoP1QQiv@%MrQ@PU4d?7$G_!NmFzZMIni26RwTt_W85=osd}HzXr?Q^OLMTp_u-{ab zeEee;{&;qqRkkm}XYEn^NV#qF3G}>Bgr)H3`u9F0x9a*ZuL!XCfAXe_j;RGeStQ|(y( z#6Bo^6uQg!^uFQp>33FuPg_G4&*4;f1JM@$v(963l*(^0CVg_aO!^Zk|ExQ2|3ZVR z4BLnlRl#jU>5e78UxT*%TZtseSt6_KTDdjkOdS}7(RK=d)_G9kEqIe5?msm6m%)7f zNDpxvUKbzO#~IZOh*MMr5x070;9zLFz_@jm23`5lCdnNx+Qix8Zk*--D2%j{7tc8l zNtF3-FrJNT@GJwuwxfBhO=h)emupa!0bz=&5W*&d2*U-&t!HS^l^E$~aZg;8X@&&FJCk`5IJZz?GsZh^s+m>0hKlRen@SVpjrHG>UXE z6Nf7EsPlv$Rk+Gfb&m$8GN5W%4^{8dpeh5Z6jfPK^&t(a@}o);J6u$4@lQxNun7Ze zqw|>ah(wlmnL+Cd8tlpdt#G`6Wq_8VDhRDLnCRh56IU3&{$CBs^219KJY0C4 z7M$U7SP_QUX5XXEQxawD4rAQv*JqEOGXU+s^?-Jo22~k=rl<-6jYg5KYmkhSml(&M zpg~)Hs7aEC3$;z|)Tx7>Fvix)XPgHlmz;}?PnT%$DFd>0p?Qs1{%Q@XG9XJ)6-3tH zGAFla(3KxmlH5X3m8&tY%t^!qxcy3+e{kz2zL(GGd&~B(#){PO<+A-+{F|KiCDuxl ziovTT0OS3E8Qs4o z;Y%9*^K}18(Z4KB_;uet1+Qn=)O;OvBfakXnIF{sMBc~h{@}N6EEeqyrAc4UWiGa7 zmSS#mG2%}vG0JoGrYSdN-6E3lP>2S}cni&XH9_Nf{s~ieev5JOIDu#wB@mVb7i0W9 z-HiKc`Vt811fTejO_%#rf#IycfSCF`ku)DSbZP- z*48jynIw{0$fdJ~GfN`3&Q9>;9M8kwd#?IZ zf}t_$OE>eYZ<;Xu9}~WmMejnY`&H4uEKTH5-TSE<=~dUy{GjS4@;+8|2fuYrENmIz zk{ZgT!GD@rAh|X8A}{I5(_SZHkx5gu{TX@YNy_WbkYbAKzrlET7OE7)sZSO}Dh7B; zyA=(`#@BQ+?yKp2ZW^WCp714&{(1g(o9JJbCh{olD0L&f()yVnRN6$|$13gMx6Y13 zE5ln-JGpfBl+5zTt+RVoDw$B&$PLgFa{u#KL5e6*p*evC3oXqh~y3vZdbcdrrs7Zno!97L^hip5H@>6*|A(?9D9JyhG^2mEL5qkS-^A%Nyh6 zoy9+fh5;MVaO^OEZpNZ4wVO#Z40vL~mo)n44FjGa`j@4NJR!t|)Q$8Zgkpa75aP07 zu}e{uTDD%SkS2t9#<0k~c15N9%wnWGFoc*L7Q3=a*^3kcd9?l;%s+I7MS5#RCEY7R z(t|^YR}PC?O3;xZ1l@}@?y(`n;J0?`xk(0}q_5-(FVR0I~-Z4-Si6ilWr=%@$DnXjo+b zU`3_;lVYSiFrYa3*W*<%3!;_cdrFa2%3HiSiQpzMev5g9Ck%`H$D-kE6;|@-v_aj- ztJ8ynil+>VTT0lGK?U85HS)1R#o)Idm*^K6N|GAO6+65?vrWhyJG{uZ^)ESmnAklq zelT#xojABooUzrKSu}Bc)=_!pmP#3-qwt!gd8=!P!)X&D4z~4>1s&`Tlgw=XamU1No(&kd$1K-pht+{kuc*BLtO$7zjy%3T zEN&@rM@AlWFV@V*MjnIT+LsV{=y+6ytEA88idAmSjH}$S$_wQd^7vI0r`o)?$K%TV z&k_gj(qTN9?}rcE;3=9d`~=rviRN5w8$nj9J|IsH)C;|+I^*2W4R#VOB((2Mt|pv{$*(*PiXQa z>PGs|L@_^mXfib{b}5Qd%QjnRa>KC5zHUXOd}A?E9vGTbhQ+R|Qf5`?nXzJbn8oT2 zi}>fSsH_hcA?v|mNq<<}QlgFwOXyy#d5;ZC2ETP+C|;DID~X6)!O8l}=!ywWG^p_E z+J8lNr>9rfp0;}DtZV-Xxmh&*PWKHrTisr}5jaBLy~-r`=>+g)ao39d-X8Z)P{UdF zxCaU|Our0A#;MKdM%iq)afo_z&gd+dEz2mQWWF_z!VM@ee?ZP^-PEwg7MfkdYE+t4 zOj4<>u7}NbO&lIv!a2gdj#41+O?D87V;`QgseUL*Uw|mgq=%I(23dxkAl`C69_kwvfm| zmWMD?TjDHx9HnVl2#T?-cLZcv?RK+0GuO5(RZ}0^4$xocWH!$%xSJ9XVlQCo&*@!N ze6867H>oLij?ezln&=uX<=|H4{x5Cct|YX5yHVbrD8KE3af1Zt#P4O^D!yOf zDP|>(Zl+f84cjGRcz@Q3i@Y;)3C(IC+f!_RXI>^1`@}<+8Hyy17Gx+MFAc>rgt123|Dzi^d($N}Yf#8^Nfw5wj(Eoa zM${v83;$^}e4l%`8!wj{oE}*f+w-z4=Cpp%>Mk^^%h89*ExbrPWqrq93qD)tG1!~5u(Q_nYsqhj6ka5lt#=j`5!RE1CGHj2a7rMFHF(8^S1qs^^9nH?Qft< zcY)X~` zwOLuV&qD{<0_JIGtdAL|x$aWSTJEnQI-+W`9WmRD<-6@w8%Xo0^$Q zO{4(`gD~YHOrVI}VdRfy2Tc8`T3)W1}pXL75RrYBcUwZ>j$?vtT8Tll?`V_r`rBL>@L9AzIg&*y#_O z{U_gdXo|bK=VBcEx@dL|&5$1L*@ua7oG|O#53^^R*)Z!%-CAYas4-VNYE|8nXK_F* zo}B5JiZDx|1 z5m&KEznwkT;0Gwi62fc~C*&^enHX_!T(-Z(;nLrE>*W`AQT2Sv z*e0aB?TS(3@~YLT%!q!p%!)N-xQ`gyuDAj=Rhrha)O6)LnLgZ!qgE8wpmOV{8)w-kgY&)sqQ6_KZH@@dHW-TPVad4GA_hfe`&@L!J`X>l zgW(Vmw$Sq;zKsBaeTYbK0#ZA8X!K^E9pc?*cUY%hpwlV+W1|OmDtIvSUq3Ppsw1E9 z;m#XWhrK8E1QcQ|J>lGz7EfMcl6`G<$=Vr?x9OvK1P@t{s(h;kRT+-AQB;MFx4AfQ zK-X$qVBC7223`4&w~^##2~R@?<0-Dec)66wB>}XY!UGWpH{p|$Hn|Tv&q!?ft}~W> zN`qw?0QPa&ovZ-+OAV?r08CL81lU@N@i^P$CC0I@YtWV-WRm3Jg6!;==+-wd~$ZNzV9z?`Bgh`EwCh~WJ5-(cK(j0Tf&MOY4;g1-OzVx!9Rx+-%=e`8l){<+4&z%@gKrsdc2EyzZ4Ih2;7m~!!Wm{h zIN#RL6~?c-G$_lDGfD7padswQBsf*$up`o2LDLOa`Bd+8<={zLC=D)#k_C*b@Wx(0z^l0QNII zfNj;FDg(e2RY8CuCcBI?O$s41#KQ1kIuGHwlBVf;FvL0NvNNrHz9wX+1&(no3% zn!e{b=EAob9~U+Fm;rY+J=`7Bpeh6I6jedorHj?>)}Spv@+8T_Mc&yl>$VP{!nST} z=ndytskagL8Tx)pgO?f5_f|dhy4Cqr-1<|)otdVp6scVd9AJd>NKmH`q!^Pib zUwVMUhcMmLV-xNI*x<$G_wuzdtyHH?lpaS_^1I9ZJu}FV>mg5Phnu4ikuec*NhDD$ z_t&AV8kTZjh;;{^mZx&%-jmchH~S#OziZH*lki!#KSGUs6hC5e5I&Au{fpfmM5JLw zT#`Mo53fGyB(U)l^a<*P{Ym=miEmMVzI56Cv~$ZzU8GbOk^bk)W{@cl*HHuRItn7- z&){8ODu^quawz9+%*(l>bQDBo2}z^gPGOOim+@VugHNWOx+L@D+?b@0$c!Mx95-+8 z=PBn$3jadJNeDlfR{6L4+s(sBc5#}8`$4&wUHG(*K3H4l5&$e?GvM&?cIoM zVWZQlEEr~|)LH1w&EceJ%$s^eswttE(wVTY-I#4QyU1=bTOw;trr8;EAGId28-Lu` zTkkYW3wRXTFLM2`nO_Yf$Bmn?Exs)hlw}$y9zh*!5QNLMt})kc;)t$=8m>~-cmR%% z;C?dI+06uAoa)#YQ^O)lYE2BZ?%Nt|SM2oFD@yyF1IYsgEc`cEf3GjLzg`WCYpCIX zMWy+JugCQ=b$tZa;D(g(I?6!`R7fkUnuNw4<6@@>JUvCFBW{MKG#78_nq8E|P|wY@ z8}q)z((iL}`{~l0s>O2EE5&*c4TFioL##&iB_>O{8E5u`I}to421|FPsdcuL@Ffig zgr)pW>PBuU zuPXDgBK~GF{^MaWE31s13h%<;ahmxpM*ioAMgC{eaK^1bG?;;1MnR$Ftg`-M5wad! z>+Hc{aZ3qX*!SR}baXG)yo)#1iRv&MmxJHB;FiJukYOdM$*PVC;$KKeG8miRe5+e?+k=jc+2Ag!p_FoO$ZMm z5Htpn$U~G=HX*pVyK^@?!|cpDk0cum(pIbJh_tR&w7zQ9R`At=kJf6f6jV^u)@nrs zQTtG<_!p!~wg2xs=iGblch5a{?zxXiNZ_Y1dmrb1@AIAS`_6ZuQ%m|8D#*`vZT?@;`SE?kQXW+iuW_hlRPb)`AU4 zZ~{%c(d26b-Zb8Aw$)-AlAwW=+;wP8J9ewnbP5}bqZe44tyfrEhFFt%;o3uEuSTZ^ z%L7OF{3F)JNd|F=J%;#UANo49_<~hRd8F`sm>xmBzzqT{+8qF;!dhjq_ubXTbfwk8 z->glRTo0%{V12c?WP76TI+35l-l-R4lc`@YUwTIe!@yea2ybfDC-w}w03?JORd$8o zcY4H^65uDjqf;4vCPVnWBU4*Ch-k#0HwE#{y`yz`kxM`no4012V6V&z?92Mf<*Tyc za?eh%lX;QLl*@<61)*9WAG}HQdS_lJwEN2O*(^BT+edn1Uepo{5A~7op4P}~eWadm zjUEYZf_oaRocJHP>8-Pm+;m$B{=ZB7ceneucf-9h>;Blqe(fht0a1`BI;L_Aml-Qa zTF0>aUJ`}XIEJvj*xNJBy~9ngx0>}@4aRWs&|+}Dz%>Jp3!|*C2l;w?yW<<7R2cN_ z0~ll>-$4-+W;@T}QqzgmmY?ocAzm51Mfmr35!z$obtsP6Cm8=UVJp0;)!EpScO1v; zs}WyHfS+{CzRd7586u5i_H{%fzGEhcZ|<1=XI|tI5XI)LnPc|ryukidU%C8bHeBxM zm>vEuz51C*v`~7f6sBBWAsjQmQKd_*&?krmJ2fw4PKJT|7sh%fqLEg^d%I|B^P-ku zeW;6u_q66->!S63Yu0?~1^>;RzR_(fz~8n5|+2N{?eXVydG|KLrnLd2dUdgdQ)EH5)j4aubB_@7kPpGp1yMV{n>E2rw{b$yvSwB zWj8~&)>3vf(_6%DeK{}iztmT5Kad5tdwV@U%8Ocp*`Zz!-qRX+t=H50t#-(atGF?l z&$>kVqJT{0@QfKtUuuWvWw>YAO{?LlFCp2$wHEC8=I)N{rtH3hWkuRLz9@Ia_hGu| zImmy95dQFY>t)Jh9#+CN%VA(`9u045B{}wV7N^SSjEFBKz)!ABPhZ;&9t%29ND!t!YZ9H2N$%*}mIP2*H#cIFk>~#KTf(UiptDM-%*{ zK#aE7P!=@NU}Z^oARp{cz@l2OYUs=eXGZDmLgFvVUBc#1M@XN^jIB5|pJZ&-#9;8I zR_0?*d~uwbuSI+*0e;e{`3l3&WQa6Q%|9a=@tqn$d~>Jfzw#oNfG9R^&77Lw=N9dDBf>s|w! zr`#RCp%viO$8aC+HXG8o1$k% zA}3M9rScz6G?tUp{=$c%o*O)idpQrCQjz;hY?>&fS>duzR&P886u4z@$ZO6d_O`E-`tP*-@M2rAd1af zGe2Vad-d{U!XhEXlFJ1cxPO_HLlKSiT<+;doSqlCOt~zbg<$LTH@|n@z&!k?OP?Xe z>)gEXIIFL0KQ9Zm_jV|*%!^ur>!A(>-qTuotwYiKEi1e($Tv|ENr@UTl}qsj<7ptZ zOK}%-DOhQaDD2U?6*9M@$u~-Rk-{G#Qc$ctP8qS(AOb6`H1 z7ua|8mCJvd4VQa5Fkj7!T&7$Oq-==c3fv=B>-%{j@V&nB`v+O@ySL}^>%6EX*d6M* z;61I0*Lp6!-+JX;dQ#*xk zQ%=OOis0PULbsx^@*N&;;<-iKRKIh|feP*>)bT(Ds{;i&z7CNsX!ZzYIMycIhd&MF z-jFt&v|EtZDp}*5b^$Yq6OC3I(_WbWYTDz_l78BmZZu~jLRKNi^biXga-UeyXPXF{ zNh!}+Ft9cehBvi_A+~?85V_;lHE}PKUm_S@9`P+joqA&^0~;F|h9*O#@&2wvG~#=I zg8b&*UpX&w35a5I*UbCtoSNjrfj-AilZdap?Q>j4{Dgh=U}TfG9R^%^VLaFR)L9 zf%}&?I~CDL&*h$u$9Z{?%aqFykDs(VwKjD8p-zYY2C-Kg^8)>nzH<7qEI8fU;jr_f zmSA+K!-4m-#$D@h^nPna*hEN#BWjFP4#I=R#$MwfB!J?v1wc-=7wnpMm>MGi#lsMv z;zQuUWQl@8_jyBXND9S0-VpR)L3++y^#M4IGVFxO>McNsJ#)qCt?*wsR3#!x&|L!C zt(p)Fn!663e-H-jPQdA)V{Ya5n5=3p4q3${=WLE_fb%TjER#*J1q=d2?Wsn2Xs$b& zcBl~zm~&HCUD=+qIX|Z=VTb53GIoEnYN|2qtg71AH^!Tt`gUg(APwl2?Xy-n^&PEM zGqY!%zp7RlhaUiR{j8DmSG6i_XIOOP_MMwLe9p+4kuyim9)?#&&L45MZ%=fl>d4IO z+Hzw8jt;@|RIr<6WqZ?}hHr+PVH$FY9c$_*x0XiiguyEz-u19Xgo@Q4(L3Gqd~DQ> zTV#DWOICTZ#LD5vpo-piNZ!e?4bvyD-D7ktB>uSeDPqv>G`HWy>a%e3XbJwMIb8N_ zXi(k`{}R^WBz&G3n2)NTds?8_7TYreOkNQp6RrnStUf#N^dk1Od%wCa`Zk{;`71;k z?o-+09XPCW&J9lDz88i!^L491Q99QXrO&g$6iUo5Pio2FzsG2R7YG4H`7f zRv6bD1f@ZJf)PVrCM0<>Uy?kLJxNSlAVt9B(c&Sts``&e40g;cZj0YXj~4Hq7Gutt z>v8sY2=<;SPzd}%AdB0HApf(+`JvUNZo3Wtf*d0J z4-b~}@A0=RfO`VE2srLZ({Q#mJEE=u0lX$;6){Cww`Lk}!W^U*yxZvomvD1wrX%%x&W9d;75M-22(^I7CL#Px(WYu-uf*)DUo zWb4BF0gb)T`QHO=p+l&YV5xJq)|~oBb{9LFV7*hBj#%a#rro9x?J;+LY1V^mcjWmcZGZ z$;u`S&bSL3&)ykiG2R(8C}98;?Pk-SEm?2^FZlM(j8iW=(A#=!+Ob=mrn3(B*og#( z*yg_uHnWN=zFm6$2O$%(4mxL?0|VM^dkh;cirZeT(z?|Vi-==&T=m=s<{{`GBg%gG z2mHn`ma?Z=LM&H5*M0H;S(Szf*qroIf-8t!drS6QISN^cOmu#Cjw{Hw28wb`=FyU_k)no#wUI*W>qx_~lUeH!RwQM0x znlDs4j`K?dwsr#8ZqvfnUD4{y%ru(qvDUQRY`?tIfPTJnZZLN-v~A#?9S2!ieweKA zdg>tG9PXQUT_&l5N1NcdSwyCq^cErA8xoMtAgFS4GGTjr0;mjxO+XbCwgtf^9bI;X z(Ce=fK$c$AIKcUe+EEkGOxu6{3iH_X@}~AJATp=kCUpGA1avfzyU!$(yRRmI%0TV} zR6)6mXXL(@0Jij!$3f0l@|H8nbJq-diIb%cMAGDCB4JM?pqGJ!{W6(^E&5C2wMf-K z!UR-`gyCY$C9K$t$u1F!tw;b{dI{qo=PO}{&}FDg33U=(<~`^>!>Q%FPDoZtKr#a% zE5h&)yfgLH)+T_;K*$7Cijc+f)h;{3q39a@dfGWLgabPo*tyF`_v{6VTs(La`i~D@q z=$UaMm%Xw^A?SNC7=^-1fi8O`YxEZ=v@C0M2mA_Tjr0*tH)(W697+{Kaz;Ku;Op4} zahM`mrb5pnwo9AnU8gN|;70U!s`u1r>-Ukv{= zJkXl5;oPVq6fu;B08ll~2cu1P>JzLKv?z8kTI;NqQ=4RUs_Gj<0 zH&Sp7n`$K2r`8U4Z0<2;Fdi|Y_Yw_{l_rad?aG|^KjOg5-q$Sdi7H5eqVP zl~~pntLM-=-4})Ee;VC)30bUO5cpEu{LXi>CDvL1gQxQ)v6gaTeTx(8{WlR}b-77o zrqIQPi-rFN;qQ;L1^Imdkc3bI4~)Hx64hg@;x}B7f{7ICR3i~GJ((?;!qh-;_J0^> zb=klO|Kx=zEv$^33y0#&M&uxbi*vSK;J(2HE~tZR!{*C)bEV5FRo&vG5s&*Tz}Bl} zN^O_IRP7*6&76n^`Ts;U%~`LQR>yEuDVMNuJ`7z6ZFg3qAyJYVw=n~IDHW+O2s~XlaRiXE$PEd z(;-~)noROinIXPn4tEaY*CZ?kC-IW|6WH}5svkGm>~Pt*&-XJae|K@VSG%b zaa2(f)xID}E=7yngzn{I8wxa&Uy5K_HNmkBXGe^u7_6H!IkthJ z@B~yDvqn*@4tF513oQ!E1U4|tG#|@#ZV2!<+b(pf`f{BXJ_YKUO=arDbLMo82d|st)H)s86OUx@mzEdO@ zZAe+-ZY<~oQ<<28-B_)OW@TI+UcvHAm3q0dgB@Xkug=uqHl#IeNbxl*>|BZ>BwOuT z&Akg5!6x*aX+T1=-f47rk`o>&S73C=dqI=c7A6;ck9cG86zZA$zWai_3u#cVYzeT{ zS#Xj5yIgHpT`0W7X?L2CjupAyLXj^+8$0pr4fY#~@tx)n48N%Z$g)f*rY<=izlS$j z%Cm;Aus1MyJK;brLI=~olm2S}VeqW_;56zh^&|7A?>d=Zt~W6)y#w=Me)1VyiMKN) zR{Ugt!iPZYzd=Br%@$-iB_f1Ury?>z#bEhB_e-gDBeh;+r4#PVs-(NVxZmLDp~&X7 z{Rl6jC%0s)Ct>sRiCnc`$5dPKM0%Txuvtuu`5HE+Hp?EIySf*|H05Dt+?5A4_~1KW zfEXv=bwcyM%9iF~=JZrf^Y?N31haj|>t`_+OYSj8JxEacM7AhNbBh?nGPjB)3hkLq z_!IgBLF)_Iq7|kcf>Zy*IF&#Ajlj=!AiLl)YbDHh6I0{m~Y1zzej!kSE{&r8d2Zq||yLkM)p z?SMyi@uV>8Fv#urLGY!NYg;ZL8CeG*bpOeOE`iYsT89K+NxR3_3<-t^vwH%wa(c|@ z3Y*EhzBIqL7bKg1(js=QNWMz<)E#m*qFDbFTYkO}f3XfZ>{p@=IUdeAHU8X!eN=D} z&6mX4cKdu$COvT^ba{5d*|0$#%fM=}k5rpX3Vdd3WF)?+VkaqKr!?EfTR>~HA<_KUal=$SCE z#Ul@=!4^t`59UjQ_j9J1ZYTa^0;mi&dkUz6n?2)oMYtycZ0Wara*$2DDsxp@=FLQ| z%&41*mxyQFC%6aiT_sb^LkTElU|k+eCR_iV04f975>N$YtJg;2Clf%GUaB~-`ASu8 zoe++^!+gDGAYO;T@Q_b1HC?ABfXYC;1XMxsif6i3Cx9)zka3VR6|z)=$=&K9&S~}K zsEGUgZuR5!tBYQH)I*T=d_IM)TYwsSWsmwbD5`9a`WXBQ>`@OcaNM2gC+MjXwjbTc zY980wN{lclzwUSzb*tr|yB}RT{g|9)sbBpr^w@8ad3AdNHICTZ|z*`~5N8)~Wyyb0k_eEhwtc|oLp;frVuC<`a zZV`5C&&-b0?Rp6}Zu6f*c$g61&mFNr-rf1W)~ZziOQ?EiW3`0X(O%kI+QO-5#W47gL)Vq?@F6G@flGn{a7-pX%SukX(h|tAJG)r91-!+EYFD6orDku3 zQV`*c_AUgu!roPx?o7jpkK$cm1t2*Mg)gwxz0-2aR=WXzUJrFK(1IAg1LrD<<`DoD zK+m8mS0*O`=6V~y&x&Ax3R_C7_GQZ6f$zZpth$EP$ylw*ZYOGo_M-=yG|_d#frmaZ zp5|QY5hZ}U8FDvZxYbokuB&l)rXMs3E)SmJ3915B|GiO|cnF zuc@cjU{$3TlOjbX-c`c=`?KYKn5{UB+lnu6G6!u%RAmo=Kk7k((zmlkN!k#^AejxB z-D_e(ZOdMSgRtl)*|I3i=7I|W4M`SU)eA~=fnNAnErxn^(1V5UBOlR*-W()%&%dykQno9 zHl}vT9-Mo+`%|IrOS9!%gi(G8r*hCJE2X%^GAnn9c`j!Qyfn`UYb^7u6yGPWuqAjW zABGU9lP!V5^iu5hY%=a9&`Y`2<^qzy!3=78eV6c(nicAP41cjgUG{6AEYuwjPcda%uzO7= z1-oh@ENMYdt`}LX{vOy;4uJ#`-KRr)~DhaxWhgN0Xs_9MNcgd4|JGb7a&*QHq*VZ14e&mPK>HSz1?qM_{@sMf5iq< zip5Fu-yj{xO-2QFg$TsaAJ!WmjX;>t;0PE#V;Y$FcZ%_mrEE3X4I!aXVpJh_2yO1jmo|TyJ#7@}yD~1t!n|3ZP;ifI2Lj|xFcIFY zx*=qxsEmLT@a@nIfjJqh=OObwrW&hy!?V7lAXL%AH{+F)#nPy?uCB0zKEUY;1{d+YwvuG-s$?zZS~{jnQQ2`X61h1i;(G}U>tXIaOsz6eY0urvRtJ{APn=_`^YPa!-UigJ{uv7JLLeUp&d-8@Ap;I@=iGYarZ)wWEs=a=^K zVZx}W4=7$vgfA&*!3qo5p?Aj_GfE8cYosX~;%GKRHMV}Q^(_O4mS2Jq4466~f`MK{ z2{-Fa+hxa^X|yWs$__bosCrEn2c)!v+#y7rMzQgHAgXO9qAMsOb-cnU60YNTQ}@+8 zbo>t@zLx+?spGF?Segvs*YWBL;q`8O9e)*~5nspsEC}j&BnPxQ-utanV+b%2z^EZp zY4xNrYcyJ&0E)*v!>}SL6c2l|CHf!QfNp32S0HkqH^l$JWB?OxeD`aK@N((=>0Kop zyceZ1I};)uue)(z6UQs)t6wn#ZWQ`XDSh?=@!5;jyN;*M#?qB5@k=XLQgSWCi*#!J zPPVkV69C~8(6=H6=8o12*_@pXB?$kcKAk{!|>XV~aa# zH-agEyeKoNUy?}n`HkTV!6sFHD+#2n)Kr~^>f{y9U$pPSGZ)#CRho#SNo{mpt8m@ z2fC%7L22Ah7~X8QQLskOPAg}c8P_GR-`5C_@B zEiqT6tox`woPbgW*5y0NWb0=MpfZpx0aZ}8di7EL-vm&lmnsfyzEYK2AJwBiX6(k8 z)XW?X!$V}r)O4Me04f9V5>N%jD_$SfGZVm;UdTAenF?8|!DN9=h-X@Dq9X3|1vbZM zRusMJX+kje96p7p*8(Z_N8@FKj8#s})Mi?i7wR0TE%yQF>?ysgN- zmTsFg&v?+*-dD;37vMm6J6n8*8)ZatZSh;=XKB=ls4jHojg;u zv$NozSe*=?`VC5_`o%~Zbm`w`iNUymh&Byn>elgb3`TVa4(u<9+6fmxb#$Gj)P|fl zMoDxkX^thyE_>9ToIX`^AL6+T{|!RrTeGFI?Cv3{T;Qgv%c&gf?h$OhNh%?NHwozP z%ocRn+XErx5pF~RB;)DMoJG#Vk7P@7ZxZ+ExHe@e$ z#3VG_i*OJY{WMz^h1s0tT94MIL8UfVF7Eoy;5w2J^QrQl5Tu+|xphU!T1jQZMq8KLKq8Vh1@gjkA z%T*_5X98C%Y}F|y)T@$$B|Si{V+p{LnDJ>n!4MIc9g!Y0>W4Ck)u(@YFaBl8BTb=j zRq*9m^d*lmyS97`#hP_(`D^^eN*>v-eX``S!b*yV9tSO*AVI?1x|3 zwrqJ>Hbsy+VB?lWj?ROH%7IeUrzO^#KZIm}e^|`itcj&sB&z#Nv0AcbY&_1bRkFl6 zH|thMbg?-xQXc8N+2dI<+1!u1XtqpBQ%L#+^>a^)9T=2|UN%RCii*o|wVlmC)xD>* zvhm$w^~LZv5r!YA-0|iXotI!x?e!20pII&GgKRLRmUM~GDlH9^2N)&1tArj;=1Y$! z`aqAY3j$aCjj_Ejsn|LchKE>+X~otl37|5l*b-0$E4F$S1g=T|Rr*>j4y=ja8c}A- zwJgSM^p14LlR8kog~hID4gf>!m2Uta|HZ@GDTg z)x*7T>$#p4n`U7ZUOu_tk(hrXwis-LuEI-MpO>EpO<8%7j|C?m!%@TN%=2@0+jtZ& z{IA|2lRc*~(X)KHjHZb?!l6*{btK{KZzC>{p^y zXVoJ{e!W7==;@1&Ii%lVwu{cqnJhZP;EcQ8>^^ybEH*=llwf%|7PP2g1N%-%C_z$= zHA?kTXJVIP(`k2_^|5-VRvUu^UV9xol09Ped8|$*JvWQ`V-W%YTp#<9@CEl#zOYemlbOAgfRF|O#3BrzAUd=*0aON}C!h+7-Xi8yQSymv zgl3l}fG)l8aiB95zEp$BC{c*JR((I3w0%BGq#R@t=AZWp5QU)c`8f)OZvndOl>ku# zg_Z?~cEYbffJna#aAQMf#9GM=&53Zq4-bK_u|82gLEyoNKPHpi(_tZqL=o%q$^_OW zR#@m(sgj%%uOMGC^QD!r5M`^v`_y5fw;-@AEcB=Ni-m>QuVi5%j~Mxdg|@OKcy7nW zyf~Y1kPp7NVIa@C85|Wes@MhMn(390ZSpbmO_~ zQbY*kups^E%&y)hYWPv29Jz-)?odD1{pEoYZS#pjL|T1qaw%~+uf{q^sb$c$CO7#C zA7G&7`d*cBo_=Hy<@h`dZ)TYzmK>jDgDFvtKtLx*g}`lXyyu~ODe+(*C_zFxK{}9| znt0C>`O@H*eW1a>CRbb3Y7}{k;SY}zn|bJ6Ff$uQ3=9^N2f^@p>%szs0^e{K$T3|ZcPANdTHYz zXDV%}29trU5U0HQ8Jyww`M}l*QOm7f0j&_UJ(pIY><54zdnKUt2^3Zq(E2R=3Iw#& z#hn|-Iw^`WVRcPDhV!t=UlAWKB7mjr%^ZCY3f09ED@mILR#z*p*4rETr3 z;K|5%JhBZd>&Zz6E7=QfZzcYiH@Y=GYr!6h$q_t`&ILr*JP9zMJB8_aQVc=ZVa)Q> z>RxJG;EPSvJ1gxeOEhPO?a@}Vv6F9HZj85_<_~42N zJjtp8wfVeX)8;J}6nw!x=*bF@lYbf>XieEOj#b3S!VrM830{VG*eh4tSW9Nroci|m zRG|Qm_-F#P zqi|J)2ft+)>H=>OW6Eu$oQ;a36S4Xc$q>1XQ~~STobcxa+A_T;WL8WwBf6YXH6?Bk z@1$%w6{al*acwysz67!u)E0lQ4YCE^e}f2DDO-@G-XMg@^yY#TOmun3wJX&~giPzQ zC6nBwE`?oib}i#~h%d_!no4+UwuBB-4$<6YjuBc>js>6-F8Ev}*cBoT@6Q%U zsR#&DGDTQU7(fvS+#{%bB3o3#1Y6MiPDbxkg3Vc$kzfn3G=jZGMgq*E0KtxEaq>ss z$d(adf`24;z`n*9kx1}=kS&l>@DZkDfn$@Q!VtlZU8C)R1FhquKcxnt&Q`lw zsc&bY&?`Evwl(fxq;=4Skmqc>GBH@P2Ho0Nj5y=pzB9)M)drI6tX$DS68ls_ymV%E zq;A*QH?HD=Z|}4Q)j{xei6qNF-*uvsr+mWCduBttq(uV#3A39Pm$DP#OPMTOS7i&b zw4w-MEGw#HD7s(Tf4WC{mj3DHks|Y9Lp}vt+458qoSp)$V=LoM3wOptqNrKeS2};v zlA4RN)swL4_86|(&tVm?o~c=3gqdy#-Toh_)+xFTe+jH}Yt;_M_mq^LgEH^d`1 zz15wbAGzta5}e2WR{s?3Uh_@UaEWTxjoA_@OtS<(Z(#gPpjk35&qX4E#~2ou7hsJh z1xq@zruu!V-ZSd$6)nVmx4{1n$ljfiTrNg`3LHF&?B+EzZV_R7;4)JClMHRILPHNu$A? z^#ntN84ZEi@#!(6D^{hQ)p*+J@z= z(5er>hQXoVpW8E6tnOJbZ{E~Zu1j(Y{DoIZ&W-b2d*OPgS@&pY{%*s~5yz9PIx1 z0N4rS(j-BfofZC?K5v{GnZy*UKcS-4tzLWKX>Dg$do6@F#=)PoC)$G-m8=VKIfU(- z##%G>gtON2p0Wln!u#$^t|at+3FOrUf+abYy5FN-*zu@Il;ct{9uGi2V7Y_x=?DHM z^UkRegX!jo0qsfIqO##J0D?;=!V19;j*d$S3PGmmoZSy}Of0Ulz3RsvZH`u9J@7P_ zbtyU-1j=X4yGsH}$>qnpN(6YLN<~i_GyFt2z{2@^L?mt1z&-dlo_y8(gaMiY(> z!sCNr8!s=@Eju$#9qMx@_?bdp6qt)eigAb_IRq2xV`&5_>O3LofggbbbMfFb8z)~f z+oC2oB0V_D0Pey0xYWyoTk08QCls5hS5{wv;4&X>5B_349Q&2XhpT$z$ZsqCOJ^WE z(H^VRCmY%JRJ<&;D<>g~yM4a<-v@v<=Oar3hwfOvLnnuV?HQg!6`W!U@-g=zZch9+ zh<*4|qP4N?Lz;=^P3q?kNJ$87V>n;3wisAQ0tM5Y&xYK&|cIu-fT5&FG zI+Ja?35_P^y6eWK8|6;TX|3{X$|}gGcvIaN=1p56m&V4S+woj?5sXzS&vlOum;GLw zwn7m0+$P0^c>_>lZ@4hkPa_MM$8tCP3V1AjO?9_x=`Dfc%J|sJr{!DmV~Jdui?71@ z1~TBV&1#x$JhJTZMyJjEn2AQcT*1vqu<^;yV17O#oMs?Sn5Skan<0q-yPx0}%YcQt z1cH*%!FeMN?00a!NWPTP!J%y74vvp^y&Rmy(~zrdl;^bW%?}V*=HC1ee=+xl{YvKE zc*Mxhz1h_4)R}q6*16f}8KM!toN_}Ha)}wD5x@Cy;fm|pcoxT?Gtl$GK3Ej{07cs$ z@4TIoHPLC0H6|z54X)WGt`0_c1xq~)+;}37TzHp>Lj9JAc`SuW;}QH?{ap7a2Y_$r z5noQm!M4UF6aKq~R_*RHFzVh@dJ6b%@dD&g8pS&DQ~t>#mMoZbFFp*0H?yOPvvV#u zFnpprm<^`%^%>Z#$6nsz*l(uTm-5BF*az$vZ(+v6C4t&iVqlAVk1rJ9Z(?yyJn1Ms3D2jr5B^Zj?k3Ig8)mGq;hz_ytU z&{U|!0%J1PX^DI<^du^?Zbp-piOPiSCj7jfMy(NR6J!P_rYf~^VWI|Sy+JYhH10p) zy@+Nl+k4i+cE0ixWByM#&^ibj{WO||@dh*za@!iU*gI~KEIFEsLB?*oHM9O+M?CPO7Fq^>^XaxS=!$~27mn0}w@7Lb>8okpkT%`#K`)?40pP4PfUj=|T zey8BTtS!H^@mS9DeG0ONX7zEXq4E`ScsGjG-)QaxZA5qHs8y`Nk!6_rZ+D={R%^%_ z9)?C=n@d|@I|?fa!14e#OI!=Bz?&s&7(#nP*OhQz3OoRpyv}FL(iGrI1$B$X-*+)x zhBtVX0rcv!YW8+-N-0(!rPy_Qg?^rsE%|@$k^cf17^ux6F7vG-4L9ITnXRA!r|P1G z;e4nrIfC5iE<{pOFPC2;0=6mQTM0@d76TAmz+TKSG#R3cIka+P+OE{+y7Omd=eh^M z1!vbx4W^9t+|Au3m}7&|k-6%Q`QYXFQf}3kA{wW_$6s3=SOP!M4XVz^U$1zZSL?D6 zNXLN_o~-!z2u1lwrd6ey{T)J*o4oxe3BoQ;A=S)W7%!u*-PH-JH}o@dNiF~qO& zZ8pR?YzTw-Ve>vWKlBKW--QC{<&~+WHZgsIbaH<97$;r${D3!gU(I@c_)^5T5@0Cj zhkF@@CPSpL9QPv{@hyiSf3o@Ek-SJIpvqx>_+?%oKiXF=Kc0xoq4Ptej%nwI-f#7L zeu#o7)%@^bW6q|ZAGYjs^Fxos;mW_$TWS;2r_2v$z`)w|1K#Y{{P3KJZzaG`&JPzd z3{8eeGe4|HG~&+>g8a$mhimd8nSd&X`C%$Ake$AAxtfT}q4Ptej%nwI-f#7Leu#o7 z)%P*pY5RJ|YC%7Dh$h)>3u<;NPyq^IX^2ljTX@kqA0tex7d_M|ZNYeO z&6=`z@O>^VsQi5yTJ9Df3H#h!kER;&6XnV zF=Bqw6&p6P{V&*I&SCx#7JPIj+Tc|+>IEF%=NCcV{}Sj42^*%I8hkJuZaA)}?s{gW z0{<*{X}s0|@MO*$CKc_@82rhzfLKl7R+_Xhfe2?RAqw!~WT(cEZcM`-9S6z`YV8X8 zXbg%LK*^}!gL1^OF1K6lQo*I_AbN>_A=W6sur4Lx@0mucRq-eL)vTjQ`Q8h&wFc7H zyM)9oVoAQOgOao2zxe7l#sD zbic(}qrPb5UB}bfvE?gQdPA;UNr|(}yFcq#Jur+G<1S-L*#aa2wLV(*WIw4S(DuI&GZ>E#RevZTu~OP)r@%C ze5uE1v{;aoh{AOdteDaKi z&i)(hss1z!Z{|2gv@!T38%*s8GONd4-s0HLQtZE#FZTb^2kaMfv*MCK-C;kl+r1}} zbh{}H9?h2qKjlm_?FjO_1W+05suxfNchxVvvQdXUIsTj`zeG&w!JpClnL3?GzmJ}S zY~r+-tI|QfxydDiDp8C1Q|<#?tlW!)Ql}@Nl!0|Q1%`*xQB&DED*;pnvL&EOCR^(h zz?NRNILJB6me193MJGhI_*3o!Lbk+3B3oM$P|85IUYbm{rV>D9AX@^eWU{p*0c`1I zi-VlAZ23HAS9C&Ti$CQ)AY@BiB(n9!1e7w6t=A`$t#>4V%0RXRRLNxP_5`q{mn{x* zrm~f4FxgusWc^e91o|}ld~X@joR%y#yNlVb=83uL@sKPL5uXow4f{e+_LdR~Ro@M? z*em^IzK(**`pbM9eg*o=(Dk$1W9E46!hUE@P(hwO;A1k6`TsfbWWin0ojsuTnR!91 zJ~LLi0$n}YwOOq8snlnnqc1xUvt@}zrk5Sz7B90=iOGB#Ve zCzvq%#(vqVhR)IZDUL*cenA*bBh|V^WgPvfK8geT`@tw8wRif#Ec&eZDmnsTnP{7j z1G7Y%w8gkg%(EZN`MazlH@d7YbysP&v|H%|Qxvt8C9v4jPQ3-))`vXXtkzZz^a$Nq z*%DCJQ=R|=1HD+pOex;So90QjU@_ogPAsbC?nR;(=R|xjfnLZRG;0`^CPVo1c&1%l zo{ebuYADh9i0JC#XF;&4K9U2BX<_|7dcXB76R9OUiW*z-{7gD`9B0fU;g8AA9Y?bv z;&<*ie>MkA?h%HbM&Zb#_eO;yAFj!GQ}|pP|@W37?vhOq|xNBA{y~E+0TNYCP#8WtI56JO0LOKW2e&O zzc%JkYE8bIC!B;j57#Q!JIu{4+ily8bwF7h-{mxA!-+7nHzMDEDc}MpmakLiwgI>{1v_^15y8Ht$u-4_ro9WF9 zP_=2#GUmCY;O5MKgJ64n#CH>5D;?st2^(D6j)erxDrCwE_*t?EldcLh^@jURFhlZ#|U_T@-ey4BZQjr6j#a$FuJHt)YuuY4DD0RbLvq z+Zaqx$ZZDWF-zWB$9{f4I`Ar}fa)0U4h=KW3kZONv)bI&ZLhdhJ1aPNR z36zX}s|49aO4NefA*yj!1d9^zUaH1w95{_?WVyfe(u}Z7F-wQ-FYS?ay_kt1SCo+b zrFh%iYhshQyN#2G!pkDYGZBR}L~;Q$aA!D`QtA78Mracpl_?O#JrjLTfQZ~*N^5Co z)lPze<^EDyH5k6}=QTfEC@V4EA(--Hu>&Bpa zV+YQZTjiOiRh7E$lt^re(+asXHg30^x$Yt;)3220y2okFMX#e`LvZ$(txRk00b=Zx zQvUxyF0fMmpTn;}DSyDAxwZVy(9$IA&{!Xzc{%ob@snPC2dtmt7xSOCv0iCc>>4yr zXKCq)DQDt(*2KuuXRjEPyP&b&AWHfK0gt*PIwg&$sg=jY9)n9%_vSMZ)5VQs%!)@;S8m7%$=Wn1;m z^b8buU{L|K0&20kk78rI@T&b2LhhibO0D~FicxsBanyNnIJgIm|*%h*cH zUp)fd#o%TI+TYfx7x7WXnt$_&*T_2HvsBT&dp1o6>$! z5sF_ab`bJK@YwS~*ayiSg73KzUru0}WHHBC3}2HW{Oe`YI_~oj4PWRVXP$^UZa*`E zq5nu;FlvU?arb`f%lntc5h;qoUU5t!{4EhqkP*n^jipG5NT3x>8If3=6bc!Upi>pq z@B|c+5ee%01gDFrh{R=pRkvqE0-xd$iC5q+7Lj1T_T7jCP9Lmg)4mvy@PO-UM8f-O z(fidaBH=wqrxNDC%X`EOycs3LbHk~SYi5Ep5s5!mKX<@HBqRsqf>()1_#V2EuXUA( zg!+gQkx(Du5ea#n2*DjHSG+~4MhL0~5sANq;WLX!{6+e~WJDrF9INj|Vm$RC5|Xt& znhS*B>@i!J*1AB9y%Lf5I&y(G7l2=35ebQ~HX`9Y5*Cs0@tH48Z^2J`rqC!N@ltRU z+feuphrscb5cVa+(?nozs&`gg8;_IYizchwfOSy4(Y7XPc5BMoS!qudp!LA)M9mq4 z8v9DQW7k@NAVyvvA*SFFLWEfJK~$B*ffx7iWNuCv5z&2s&~k4K+AGCez8)wZorOma1_w&U}Ho=<&nbkcg@u7N*zu* z!jHk3O0YSmh8;%mQ5J!LAc+W(@TTmb`EP#BJfH~tBSIkRUYBL~I`f&Sx97V~H2dJs z`^{Tw-peq_QW#hpCc&H1sM4>-50fkad7xObD+Iq&BEF<^Vj?28GAwcu!_Q=hG+~j` z5Di~ginix)QQMG!LNdTYJ-Oh#6cu1O7iil%z=BWl0Lym##R4qsSGoX8Dx5C`>kuGj z^?JPKE@d>M7pu3t18`o1j%aJn33cYCUdbNfD7QV7*)J26pS%s=K`+5ua41cf4%iaCG4WJU%qnEqR%ui04Mc@S%Y%iei9o z4{OjZR)0kAbPpHbD6U+2{Z7csw|r5op9G#=bM1wvwVhpXDEA=4ckrT;bs_FA9&1&$ zkF{p(3GnE=N36k%E`nkJ9w#aCJdKcJA{B3skc#T#0T2cPCo99>WU%)}45kyY0Vr#* zLp4j-#K!;#E>{SvnPpb0H-795_NOYW-Oud3`X3>jBQvvW%Z&+e>CpMboM8-!_9WG_ zXVvAjSfqP;tZ`g<;o=hW9U=jrRH^FOGmQiktH%Mb)#Kq`;TBe5;=%Yl^YB8LSp5Wo z;2QSo$pJzvakZMHPra)InR}8T^DG3e6d#$B43G&%M3=f|!(&`9AgVl3RQg!Y51vj14twcg|5{Vf7LU$Gs&cC|_4re4d*gZlC7xg5ML0U&wVF7%D8} zf*v5vrc-0JChU~DK;$#xIie&dAO;>N)MGIbM}f5G{_QW5CTG}jgi2tQf;C8g7RD9` zX@O^6nYQuB?)Fr((b+y_!Rg$N-GsI-P)TGrXRR8<&fti_m&57b5GgCZ=<=(FAgsL| z{=gQEtZK;S#}Hzqyxyn}?{=CEcbKbStQI`xmj?I~qG~WmcuaiX29*fsvk2L<6VB>N z9GGe30u6)jI*hDMx{I!CKus8(b;LCS^7+|2!CyZa&TkS-^P(T}|-;$sQS+hZO(5DTC= z^FEfkw4~oQLUftO2a4Rl7CNZi4}^}<$N~i=5q_iF0{D&6L0kR6ZxNGa`r$;_Yz|_x znGX8ueqeKCs4fz#6os7XL@i(&1|kCe-YoC4K+D3+6lln~HZ`Odk6LF~>nv-FwRPNS z+he2Fv#hPoOsi6B)W>cZ-D7RtTG&h<*-ReUyr)p0GL+4boM0S_cL3j7M!V#@OJIFo zhy7vve1h&`s1P1^nsZln7uD=>rv^V3*Bd*V_RQSP$~xd2pi$7GAFQEg(DT^d!8&0J z{07&0gWE8IhZhIZbgWPrjkV_(pqArq4lwsDn~pcb9146U;9mCat3-@HlC3(0iSeNt zvIoWZ8C#oEjjc6jvR!PBjh3wD*ygRx%J!-DP*6G}pY#je-|u~)J3@nfQ0R7C0=_7U z%eHM0Wvo{wAzxgdaMlglb-OkTCuI+A+h$$e?vx=qJJ=dt*h;jcF9n$~2^qpxQd0fVVrq__ z5rF}0N&w=vevm!(~C>W7g1)au21Cm8CTp|RHe&ES$@sy6DAJ5a`$T+chQFv!GaUZGC z`Mt8s=(v9ZdCx8!A**eU#)01no{cXMjQXTKmmz5KE_8#c*6^^kzPY`FHmPOJz&Z$* zOEB3sEC>R?MOL8Jviy7fTnSW5Qj|!nSW>uOqf$DOEqP=?%1Rj6wJu>BKk&YeFC604 z#xx;<9`%8wg3fXQgAB6-rdKvRLfJ7(Fo|f`ecn;vE0RJXQ~xvuMS~$ZrBYu6JA%jD zDSd3BQHPzq4$SjCcN~a7ubY8_0h)~UVay)u zzFlM+^577a$r83hXQ#%u? zW2#$s3KlS!OIs1bZ)wegd9_9CY4^U8y9(Uq^qw;})w9Y0sP{v}Sk(}b<~t_#CvZ0^E9 zSs3g-0o%(qp!m~g6Afn);u#h26GA-@ zjNppx)aOA%8n!g^B2iX**dK=q@b{U)7cjh{yh2#`TLMIOEUf-74(!iRD(LFg=fzyx zfE<30Uma5;EEnj9;J|EwE=@q>0{wAV%=_9-dDWxE_{XiC!F(^PI9Y4hyk7_{rR7^o zJSkCE?{OWvQnpl+>-HiH?5^9Dej9jGnoi2A_!~(UG3t0;40l@jHKGdZBfgfvn#s*1 z7cm@7hDfuSWCNn%+f0I!9^XuYWj|tJFE^9;84%n|5=nnfN9&QB-V~^o?fuqK;ZjPt z5jBe9OZ-W^j30}qoNmkwK{I(O;;C$i_-eYcJZTkSzUId+saXQiLkH7Tu9&K-+I!J4 zi=6j74XQ3C(kJkhO4{N0@}-Vdq)Q#VsrzbtC0zjIadGF)3cEr?;+BXnCBRQA=<6AN zCPVlYwE9wb-QWnsTM>=;3hF0*P(dSUuT{|AZ=Dp9%JK^-VN29-sWi1|%$C%ey4qd4 z`sdUQUfj@gx=WU`y=1K(Ip398RbS0k$Nz*vk%#VnjuDZolrq8MP2E@H>u%f$_S+F( zGf_UlWvRd4WH_1(kw$;NgJ{IpUq1ta`Ws1qt^W3Y>x4*=CE6P`SSs!Pj4@L*+M581 z$1qREX8V(qLLsv!=-8*so*cx6Fj&`k2SboByLXjv@Z@{-N^GJNg8Xtta{>-*vZ4tt zU^f-HIc@B8nj+iKnSl~c<_G;A{$h1(HN5W+ZHzZMust3o9DF?x?(i*U?mC_il zT&eqDa4*QQx(BImb9T0*l}Amiju@ER>U9=+)`^KkBqZu<3ABrq9Wm`11~kmN{0JeF z+J!>aZ|x%IOArkscL)uyjo?@+EgQvw(`Z?iCr`{|gk_5PHSFYx9&6YdlOe7*3(;;+ zEymmCUJjdn-2)zoDEv{xcqXEdhDa`8295})QYw9~FhZN)sOUS2dnWpx01;V>K!cHV zshnV7*@l2d`-6HN)rNqrB763E#HaY4{7<12vNi5>I4Q6h>kj?p+{5W~;eh*FFrShT(bjkP_dyZkFE^#_5-d~g?W;5J_?hE!twmr8q2 z>2-G8U=Q(+V0beJP)U@_N{sKb!4ygiY;vij)T8)rF$%!nM9>Gmpr83O!2Y*=zFh{mE&){fMDC z;bF_&`ab^h7}$Nta4)uORDp7hQh_ov%yZ7Tx7OXoF^EM5n7v}PD85}-g?M!-n`3=N z6f>B8hnRuw3CuvOdX@d&o8f{~CiDxbSlPB7H&w$HsP@jrFznuk>J^^^u&$XX9U<8z z*mwY)1X}RslwB{JS>gwjjMVKq-^z=1P`(XR+~3Xrb3}Z05cKJyQRhv>5ua)Y2WA#| zp@z_Vr&i{5*&-|>%df$KS2S zHHzZ-nAFO=)0i8=8NKV+-t08!mA5jBCF)X1N4#jDs5In^v4 z{3X4;HZgyK{4%n%34FZ)qiA0BX; z4aD2#ej}sNGIoSIW+3xv@%93HW#F=epn64=Mpw zMn;qY7Fd*l@z~{9NckTPMJVNe^fsTg`8C4de^m+Y)x_wmv_bjb*I{@wKToMulI4G2 zVS_2qyxFhsGvrqewHr{ew;lGOePqGptATYMBA!gMq=!9#a|~yTg6^|he8nb zq+Frp$AJQUsr)+fJ|H!#{5k=C`6|D3mf0=)!Zw^<3qRGggmoSAv6WYle3A&gQO(yg zcr_Mu22~Df@fO2;iiv!Z*r8`4EwanNdX2C5^Vx&*@)Sb6kg}^6Ki@m0#l{M%@Gj_L z1HbH^4i{{34oe}>e%+mzIG=MEpGe191VQR->t?A~g;i^CV1E-Lg_L`zu<8ZbA}qsS z7vsPzXdo>D%+R?OR=t?{9U|Q{T&rB~@IEJY+ZGun?3QjpkNM3dI5hzd#BMfrVo$TO z)fjJK53@F;mZ4EPo&r?sOxL~eyqZXko1q!cmcTL#^)eV(TZ4r+byiLvaS3K9xPQn9 zN!8GQgXquBi0>xQADNG8Gi*(U@JB67tFdMg4PR&nr_G3JEI%uP*@{R`aBn%J8msqP z7nD;-HQ`y*w-lenq-N_{W1cBFj8Qg3{F<%3m~Q?E%1CyOg;ez0ISrVsC{-hPQ}@;Q ziXPXP-5v2Y6WtVimg@aEhNH<4e)X<);dO)Zu6q!T`06bf5VVf*(#_w=i(~?-jML5k zofo)2hJno%=xI3o^F$nGDi$>0ks78o;Jx2Ul5UO~HI=FUOJnY6OmzY%WV-qHl0qSq zb?A1cjM=YeL*$fhUUR?RUYnRdL4N6Pufl;%{Ow@6dC<)^tBY;$hSf&C#cD7My=3Le zkRJEK=Ih7Pc@DZ4io`#P8a08q%iQ#H0bDbaD7Y@g9l73baVHt* zn7QeC1ZPr-{q;C-8nJg1xi|8veeHD0EqzEf`VTWgEyZ*fmW}SQWO*eMoCKto;`@rE zLrC#O?qwpr3G`5ASZOGR27M9?EHkV$^cfV>s0=G}XnST@@hP5R{WuCC%doOv`(%do z_b^vD-6%V?v6fSFCNS1AHqop=^LY4`Jkk0><3y_#h&=PHFZRdMwGb4mB@B1tfmkK0 zZFk0|?Op3uW6L@?qkIBR?i;f!6YDOqYb__DP0NXqq^7Z)9?z1g@BtJvvo&s-B<+3b z=epn750bQ6?nmTmSH>3%m%nN*ccALtQyZAbTYMQ*rNu=5uJXdmZ0V*EgZ%9yFua*B zq@){V{`PxpFeQJxL@1V)2Fe4B65ds!3ct&j9>3`WJ(hX)#idA55sM|_8TSe9MtfHY zNsj)qv2`#xYv~9W9s=Gs9!l!#y94VeZ16XM>X`|kdL4Yju0|ww_P_%?B_^O+Myvk2 z1FHj2t)@_|NdVPtTBy1!TF}n4(QJ>kreSUK@=gPKQ_S7$hS>%vuqHl@xt6U6nW|h` zsPeU(JncTmr7UodaP_hT^fNF=FGwb9n-f4~AZr4upsX!o?f|8oxJGEUJppv-WsU=# zsm!GsOjf0YxEIy$qFLYPs!~pm2@qdCno%9gjvvB34~ z)EeN<*IR8Hocur?%UU`NYcv#hAfoHdhKco( z3LIVR7OxXM$I=(!ZsKvqJM3n~9)}JRRaR}#6sM`dQ-v1HfX;|@xnu8eh8uPG ze+SMzZZ=vi-1bv}G%u`OhC14xZ-)fR!Cseot5GPN6Z=u1v#*qp4Zwh7O?H zaMG;PWW^9yZMb5?M%Zj$=apC!otn+hte=?}vuiU`cHnd;Hhn)$ogj6Hf_{hy7Y#b; z)>Cm5w0Z{)?5{LZ#8_8pWRUVGfYB8KLj4Z^4TA6Ivc*>>K0bp3vk0)X=eSPL9!H)* z2d6bv*^**oz3l8_DsML->>^bi)J4{4cy?Z`B=RlFLs#D4$(C}mu;5!TFc6A;R4FXL zo4Qa>{KA4bJ!5_m@udWsAd3oq#_%&4!XJY-tr_|yqTwqlKyN0ZX2?(cV9Gg?_KaO& z2g~<Vv*v%pWD`{B<@&{Q965x^r@|R%!85&@P7`ta%K0Yu2?z zh_w!%IaIQWXTgs(@MC0Tomnc7S)BD3knJ_HsL#g!rRAYvv*7x^_@FknBOBVXL*gMK9mYqqvQ){oa zRu8cn;VbN2mFdp31wJsed9$~VSevH6=bpA_t#RosPutf!Rts88VRO*71$}10Wrk22 zy55CyWpWZ+Yw*Y6edaeqq4AcI1>U+f18Eon!bK?==iRlOfU=kuIVU--rm}2MZ79 zmn>>^@d8odKhKL?0wQgdL=e=auEtS-Tw0N*QEe3*xP^^97?9&qn-=Sy58OnQC< ztr8$Ay}tE6CMnYn-qdj@zSkG1yW|EXq`Y!V#MctwD3_1dFdR*WNaOi!MKt1jetrf7 zmyeP3*Ba*DZyij8lL%VW%c+#|B4Z|KY-Iu{k|@k-X)QBhbWEBm!iRQ(q@VLzi67l3tD2#2xQlT=@vKne>uSJOhzO!@M?ktT~F)W$2c-jeH9MuFVa)Ur7O}a=31q9Teb+xD!sSh zz^qD7S_g~+=UJtIiU^S_I@k7c3@H8QhXSba=#B5 z^Gu2Levl0jzua#xwgVgZnqK8h-rcr(4C$BnKWoh^=1y;s1%W-DpG zdRM;(R4^#*I~LK1uik`DFdLJ=Ovzlisi}S*i`Q92ewrt%$$TkB@Yv1@vMgZx zoH})P5#Uu}daD7o@*!@3a7VV{F1@oR6L(D+CEiSLv=?*A(eR#ok$7dVkN92!o=da+ zT85>`5NXWz8xW27X4}t#pi)P2K&#Zf-&$=f!h}&#A4sL&4P!=WT(JaD$h7+hl3E#= zcE@F9%C!5N*boM*YOi35OrG9V!oja*t7>vR{bd~3WIY`WzZ~kGE++zOuH8`E`o%w7 z?nl{TD;xWLKVo2RR1ap2{ajoK529X9AiuH!+V=n|GcQ$Wk(6I#W54A$N&miszpkI6 zOzgcNfRy89IB*&{4%Crp{aCSa8-s5rC{}+Gc=DWUFFdX7?1GJNgDztRFDh9VmYvoFma>htX6y-Pt>rys4PJE7 zb<#OtW^}3hDlM<5qY!JVt*Va)02%NK)%gStf0J2zN5o*d8E4?o9&NiG10Z;M3Sl*~ zTuQq9$KGI771sSr8ZQG|S3Mc1>o4Ld=#g@RM?FUXe?d05hapzKh1rnNsso}iLu)(ORC>Xp^cAhRbpdNXasQLh%q`VoodJ80wgaNx3 zzoaqVX|=^1Z50`E*i9+Y9cr?d#%Am$wnzl;>3oC7N605bT_}b=WsxLAeAnX`@}=U+ zmDlftJ~%C3bK;;2vPQZfj1uPlhY$~9BK{o(L5Gg1^YOEY!F2Y=B)O6Cc=>D?&F`8jPZX6JFhr$1S6u2;_ zTn~{6Dq>MmR8}R=;UFTeh3!f-4E2!q5@52FGd0-l&d^b;d96KrwO4D#D4wL$K6!8>K?W zCO8n*W(DP}u@lPHZl~FBd#YaL*v%HmoL?H@Pg1As6(jKZcE7-gi2n}4M7oYjBmUJ6 z4$PdI1sZX=>o7XoFS?SoyC>;bagBids%$~N6Tk?Akgs+n8cRbY{N7CsE?;Y*f7sO8 zZKKv!?7C}hwq9Xv*;cY9E6rBBHe0eBdtwT@kZ~EtF2J6|^Zvc#&_Gy7JlH_AeNZuv zJ8hel@eUjpGh$(xJ$5UD<7A+a-g~_uzP$CSsmjZ47(R2))`?1UVk}=}NH6n{rXTrC zKM-BQG#S)~*rzD`6dy1m1Qqlsd?s~Sn85;}zHOYE)Go}8^>ziC6i#;P?4&MSyxZRF zDr}9kG}vGqrcKYP`0NOp9cOx`(!|E)^bK!tn8Mxpa|TZa+u;;kqc>9U7#H*tUcV1P z=>jP%;dx0xqayL`2x(L-=b^613*x&Vag((~*mnAXM)rnCr^FGDH&4;;o=lL0>?O+0z4F&$^FR$_}cWGYt(!n+<4A3Yt{I^YU!yssWX; zY}uo%dP-Kyan@4iXD}WyRrCHOpT&>QR2`-8&mMh#{R5r zaH`P1zZ|+n%v#q#ngPx~uf%bBj=-*6HF7%zAEfu;_O;Zz0IA7yA4 zTgTHCz_NAfa}auoPW+EH@#`i zS!>QKS!-6WK0m_B-SJdHgNof#3v?pkN98Z!M{o&09KMt&(I|`U4^e@YnuMh!zk$4! zKR_x~;}RPJ^B`d*>k16fZ-#k4mcA4&1^FNL%YQ&yUSN0N+!4^giN*{Z7{Yaexd7~t z6wr?K_4-KRYQEbS)Z*;b#j}S{GtT0gaV~1cnQLrNjW-X>gQHg9A9sxx^aP}!Jq7U5 z>Bv(7bfP1}s@Qo!%LEgq7Xp*Ad)d)kM~3!-j=cU#8v?+!3TQ{OS%LV`6|hvV*e&bg zX1f8#{HhJs`r7se9AG;&&Gw{R>7PBU7vLO#@?Kzl^>8+5KrbwqC}8rySpg2+!Bc;l z>{J1m8Q|x{6wD51ueHuP>)dmO&pPWoID-IG;H-$r;dT2CkW{SqCBTT#K0kky1PCw>Lo*YJtKyLjmtK?~f7r7|UNiPSm)z z!CCDxv7p<+!fhf#4Yb1(!f-+0uC_A4UwCU^WZKZxQ1Z z{cs{|HV3iUOb2~)Kd?D6RMLn#MImQmy&{5ImPVbk!5x{qS;?xO12hT-DNfVSGiaW+cUov;AbsX) zEG&fCLYgPTyb94-R`~;_NVf68Oa`R$z?kg>|EYj>DlDxQ($uMMUnOGv*=*G*%+)-}^d47CW zgh&SkBND4%^3n~#yOKpQTp}*h4;=Ijy)%=5Z_@AZ<9S*f87CGm3h#_2?q_Lq{@%lh zrpWTG`!zR;)vwVzUH>_xZqSI$*!~*?-=S>TAh)=lfdjK;mMo1zebTl*3!1zO-Finn z-eY}pJFKYSXz|i=*vnCdqaHWG1nV=FX-T1w8*FJbfXT8K=gVo&JB?@sAsaQr3|QsQ2to*njS4JO?OVL>8is!@i$ z6fZU?hoob$_V*!xh3>J4BwYMG7Hdf*w+@0L>!4Gz%9ABLuXJ*(=Iroo!w7EQJ4Qoc zI%R2}A}aLz5jv`o|1{hC_Nbrh{&@e}@}Oh1Z!1KwG=4>h47dypX|m6rcJC{t=yAIy zy;Wt0XC5@%H)*RrXKcWfRjw>Vzm*N9G})hDp45`Te~-;Kc!7xjNAo4X9ep6cQrBW= z$)G;Lh#@Z%l6)awlH8p=Nld1CMZo0dgb>?QeIpXX+o!W{ZBFQ(9&2)$>#=_!1Z~d- zD3sj=^vHex0^hj6wlMq*>Cd)V{|bI}1Dl_^+Bwecf<73FM8%L+=swPKZ)`V$;_Vs$ zzgM?ITipz?-fe~MdLL|-=WY?~CWUkim~)nh^cSX2G@MCjkzRq-fwvamj(!H?5taWP zL5+Hex@jOzv+M(LYUjf8B%vq>OK@d)>hoCJbXWp<5ihF^MH!;}8^f`lJ!jVXnZXw@ zjHA3l*t+~*{SuoUTdN1-!2Uvi1zlYnAm1M7r(}z;39t`Zp2b6xtcvG5FDxC2fn+JM`F-;NI zh$_4|;%f;koNSzVCBxBV2!FRR({|=pBO1QOnK&u(cILRbPXrJaVzB@VWB3^mY@8WM ze@;i%n2-9)z27=2TuKQyqDE0%j+o{04B>N(xglsK3-Z>mA%bOhdNo~Hp0tWEhqJ!7 zA=wB>Okj!((_yYbS5>w5Lgi-UyytyTbup1Xfv;53S95$B#}y^To4T*YSJDMQ9v64+ zz_2SsB;FbEr3Cm%1${fi&twR{f>tNtb%TcF??yD@E2y9NK?RMZy;ebczjaa%Ath{y z8ZMQl{(&)DQfumJccJW`Q#W|=NzW07t$W)`*6NY-U71z&RW6-LhC*H@MEnK{MIO5Q zHAY0PQi|^4P2E@H>u%f$_Qw%lGf_UlWvRda!EiJgB8~q36w!#UzkUV;^*56KTK(<) z)(Md!O9U@!uvFUn6=SAov^N11vJ3U9q)^B#4LbHIvoz0OL*&$jdet}eN^GJNg8Xtt zQ^J8wRy4uo$)+MVr;VLXQ)DeVGq4ky`9Z&jzgWFo4e$HI9peqyZG+_+_w zG!kuYk=lhq)^F`f(j)u&2#%%FvMC%mjg}p{sRNZvth%Yzu-h%^lJsbo&EBH|e^W+S zrkG#5i#S{cQ|v343~{~T2lWu~$J^#!4x4@#vzFp5N~E_$jAtSWX^7+kW=y42`aa7D zZGxkiRHVM6xM!m82@sJr4>TA_m&yqSmaQ>q1|X={QBB3!Dzax&aeRum1pOjPA!`ZB zewp;fWQ7Z8a=au?PIVqHBUK3gI>(GEJ+98E(!&p0p0yqqMC6+MFu2too1oyMGF`HE z&F+pU_Bc*UW_K>&wlU&4VlW>uH*jeRKE9`ZuKUydz2L*o?TC_(BSguEPY_(5=2r3X zYn30Kq0rfWgVuwO!|-NKqmq!96(7G~gDDjs1DjkbDRnQtTWpGlzlrc4{w=+?kOB6~ zVfehUUjQ~ki$A%^D8Q}|8Vu!2gVXy#12CC-8u)K=8sHT|gZ25+U|se!FmYTIm6A0s zA?CRHD4K+QwZ2i%y=^_sH;%#vJwGNmOV>K_n9b|=g^)H)aeMJ;Vn0<$s ziJb||M69})1JVQH!qp};4XKRTww~=ghuW5%jo}tV2+I&EY&IR_{CtnXs+N(0Zxv+YrY6=KMcLMCy+S`gC!s^FZQ=RQ1(3 zFtg$dHH6+fH92p~7GW8|{!<*7#nz+&1Mf?}Ip?WVlXF+LRFmockHNs&njE|-4L=pm z>{EtciuhUrRgfvedl`-I>zub z86u66mJyBkO6n(mP)Q?cuT|3CZwhgA=0SwM-h$qsw^0==NPdH}eAbU;4`7e@nz+?n4jJuzRG2X^nO7w@!~|lL&XBMond^ z|HPO(8dIGB3RxTZmr4CSS&8Cg0G2R4Z;1#2S@ zo5B5@(DLP~VV2_k|Lna9oE%4WKdxKWAo;dzWQ^OVX64oD@GUF{TgJA0$g(Z)N|ss8 z?)2_XYj$RtL(}W{uwA7dwaa91fq$QnqkGJjpMn9-6`+6Y7*Iz{?s;oxyv1{MsAy7DvFPCUx?yo7>EEO(o`1>r)Owb01;_| zR#tEm5RpaG5`l>L6bB;yH3}jFBC=nHB@pp;M975|OWhIwy!(Psh}-j_5Y>M56N30$ z6$YSofUoHp?hp`&6)30MnVEJsLk)b_fJ0mvPvu}X;MP(15b+ouv^Q>f5Qv{qKiB)t z5sE-mnQed{u40jjSUCu|8UsV5;SKo=vlR;W#?WZvjL6CNyv7J1Uqd0Ym&M zYfOP5E{q1UWIB+WY^rBhh#vf^zcl#89MIrsYCeS6$n;niJ{Ua14MyZTq0P!K>3ymK zOUM++A4bf`Di_kLDj`2&RZyPi8?H(9^ zCH4&O-U)5k&DU&oM%r+iU*|<#c24WvzN57Sj`ZOm6W(PTXC_h6ay2H9jxlE6`wD8@ z;fi!TJI&mkRLm=8)S+Ef2>S^j$6Uf3ccO?gm}3QgDKJN!^AKPh&rL(1xKdsbwsWcd z6tTQu2-27GI+a5YcbpIu_$vqK-hE?mwm3WQ z#y_)JKIKL_o|&I;Gvr+5PP+|O(zbLX97m4lIpUcJlWrq8XAmHZaM)A?*BV7IV!9h| zg(oVM;6f!hptNkvo<_dC{n&7{4w=IELxXwj6+2)NnZ6qv zX7M~>)6kL879=kK^LR7Q@bXpT+InrT%S#=>!qHFu;=v4ffYi=GIH0B0a9Yj%ZMONp zISNN~?yGd5njM_UfaeL;yHkxYbEcrMdTEyre_AYoMS}S4&@j-GdF%?#18>>~`sCzc ziP4i0l4^JK2GO7U4d2b6KO$B9K{i^OCZYjFTcG6s!C^$AuIL09fRa&G$fyq^CwTNZ zrg&NMThGB|N>-^RJTrYual~xklz(i^Gv8?!K(4p2Cep(x4;>SA)tZ<^70utjP&a5 zGe9Oz-shDiQjT)vk;K^@gL4ufC&1I^8z-&wg z6_!nPhF%CH$RB3yg~+3$+nF<+_A1sypO7H?i`6gTZ+Ea^8-H6~Xs!-`AP_{W0VX7} zlMQ~W^}WlU3=mnmW=#w}WT65N=@m-@0S|e#p<(VQpTprHNkb(5k*U=T;x1q#uY~T} zO?pc97`Z;z;+_RI@_qwnGFTlU_J4&9=Mnn=WAPHcp+-BMa!Vfr6!}y^L(AdN!~sPT zmMkAOT`a!Cmk0Dj~`3{Uyn5oU69ziCTtUS)eEUUdiZ*`Rggg;BP{!{TX_dA2-1}YvTvm zYuO1g(^o(XRlZh`r-SFXlu7pp{a%-Weir7amrd5*nxR(~vgY?nmbJyqMWD3vuMwL4 zS%%)_mpR_)LS-&jV*;xa<8pXsB8?7Ltj>8B&Ses0CuZ>Be6G;<89TKcbup-AXJN(o>ryNM&STJ51iDFs2vFtRBDe^ z>h6$pHS7xNOx9ren5L0#qlT?=KvAjNt~DlDNAe}qHYZyfOR>N|B9_!SiQhzs|pNi%>fesShrq5zPirz*hr;5Jz0?s-D9@k*OKIm=dUFxgCvp3;K#&h6*n1p zk7L78q?}?Nbx1jjlwE0is8ZAij@}^SUGmlFJf3^JB7?CI8)g{{;X6QBqpv`@jh?7> zv=soN2bhtB>BQ}T+3<}cm==LC3K7E!63+YT126zTeG(f6I-^+931rM^(6AN)hc|`e zMH!YJ8Iz_S*@cELW$=px=xrk#pG_0dB$6%Y?P4581QmmBv;p)MCBBTAFw&l9(qcew z$#1PrE38CyP3iu3xAI%iYjiJ+UJ|tquM*-;q11%y8>(hDlIv4OD0huh zhDnQpZ^fIsuclY-MMy(x|M?{{!rwG}E5itddcTy7(58u~dVANw>lUE5SKu(xt9O+A zvU(e-uT}5lw=PK%{{0f14jmXY=(STNX5N$yctr@b@?vw+|1}Gs~nHX|*z#aX- zRIQDV!)gSUFz`M@!2?o$*C4Jqok>^^vE@Y@Rw54kgOy6#wL4vt8L`L%d=RCxA7h=?J%H{tmhRaTw5=~LRW4@+WKO2cw zl){$FC1Fizm!mfbr=5Ov{WNIUE~%YIpU=c$!l>WHFM~uS|Wm`p5}6M-e+xWa=SS`rnHTf=mHH?A`QKzekLP$g3s#VRYIL= zu_7ndC3~2H@=wRrxX1fCvCGAlJJ^Ra*hPWSw_RYNd zAL5rid~?UOpP>uQklcZ!IUnNd(RGaxSI(O=~7-Y-NUCh>bHRX0_M?ij86D zoKWm}S$iR%*fiEpqe&SkB%s(d4KK&rO;BtWW=Vu%<5L`p{UcNq2E}H-4ofKZ9f<#J zPj<)0>+VSOY`TI_*tg_EVaN5Xp8)KeRnSLV7f3ZaNcMK&TnL^!9%*#z^%2a3Cql1J z(UG3cmiottT|4UQ`l(DaGvonWFH%3(``!@>xQ>$m1J-&VTB6P<908+MsI{~WTdqtd z-R3hTFLFnO;&hcuAxujn6rKgn@lIPlrKfp+k|2h{iWC# zqnLF?zix(JS>S~IUS-7z|5k?H<;My0PTM$!iKZx5V*)1}GgEpikw%9rPB^AyUF-~) zaCmXdxWlwT^O9b8W7D8?LJ9AQ33eak;n*d8}j6uc@PA(4PG~D>vzD!Kxhe)UC`b_6qq=EoH9lb~{ z2Y*9Is-k~;zs;b(bvTGF4PaM-$NH53ONjan%J{7vtuVYPo@xz`cVO948*4kw2H;o` zK^i;Snew<@him+Silm$hz&DX zqOe>DwtKqO@B4YN1QsFcC!k?1coA>r4^cJ3*g!TKLSFGp@MZbcHK6k#9Tom5SujpwbL%R%L%fM%$-nX$a+B6YW zZ|_Wa-2%$E8;6lzy?qAA(4KVl`&#`Xncu6_NF;u2W1u+9^2D6v_*?zz?#rOz>;~MH z!>`Q5VMY|$fEzVTYrvD=%2L12)M_qMeYrJvlr*HRslJlM8l5sf8Jl5HUw}Cgwv~h| zE!bALZX;Mogs9VSMG*raps`QRrkLR7hl&+{yK5Dp`~*^aV6R%#;$v`U@))_Q9ZCX6zDAeVl>-66ZOFhPhE)&NhGrV^?$h)j{(%V1r067R2EloGa<%MVSoi{?~hF*TvQ*a|ce<%Lgil-CgB zUN`v1i#p}Za4cuK)r0~Rotc5z-W8c!8S*=l7Q@y1;t_}`3TVKx2-_g?`}L!B4$Qac zo!&__?HIPiw_KFH?@7;Jc>85%b=(86IdFBrztxuyI+s=5_87wbM%vSrF?W*_KIN>w z{PH`5L%~e%QNgQpXV&{r@HHFtyeFlO%n!l*eA0)%$xQztLt{EqIbVAcpg&nZ0iEEf zHSDXMwNu~$-whl43$?FDzMNhUHq$#DC>}lKaj7JLoVVds!r=#1s)cv}4Ttjp6l0j= zeGa=2z%G>O<=t?14lxK?U1qR^N1!tbEFmPUk3#Ssg{OR3e-y=&d1H}La^b%hhaD;^ zuu*q%pmOBgbGI}bV}PK7T0*|{$C^eQQpFO)KL3NtN;Rk;5}Y%~5C?%J;ewIBIU-Tt zBjcjZgGQoa&kgk{$lNPN!S`UpTuwLz|C4+v)51ZxCX^it&$MQ$%yVDD8oRNhnS80Y z;1THm_fLR-7UD1FoUmV+oD(l32hLRwQo}A1IIo4w&cWHT_d575%pivJQg12jEN|7^ z_Us+-{Fk7?-px=OY`nR#fi>;w1wqfR&hDi|dz02x35}V>biRg8=h4rW4?w}RNdRDM z-r%lXf1%-!^X1XksKU`(M0uWtk`Wq(RLYab9G{|ouJ^Sg(6^(!2<94ZgEVm-O}QIz zO$CC_KM>qgV84-D%uR#835U;DNgm3m&OBOxzt=(Yc9u|asl;*R=ds2V@b@z!8W7My z#rQ5}PX+h+RO4SG1i8My1i6Nf!M4Km&J4Y>K=b;&Qqa82sz@~B*9grfGW0G#nwNK4 z@z4x&N}_D#YD}PcW9*o>25I!i3+K&aKJvX()iX_y%UbSuhZSL)?OlK;WpwLqdtEr6 zt&93uBZ%y5uWL0&yY0>hlyt(H*t5OG&_t~|+gqidVv>sd#*8&IAPPB803ytx_w2nE ziOyW*H^48&Ri-mvfZBbQo)~c@d?SqIe&9*?(Qwi&N;yw%+H?E*!3}rp3CsDm)0f$W+Dr|o_lxIwlP{FG zOD&pASzI?1O1}XpuG?;Rr`)!4V5mJ=nRcDcPb3kiAuW|q z@5y6n{9y&5n>3p-V$#O%Gc>Mqi436iC!jlAAh6dU25kI)C5ZhL;U6&(CI%>0-!LP~ zCc^tOBtDxa7izTV&;X|&E>y z>`NB1wR`Mx;)lhONdRoV3k?Ulqo5-3rkHUhbD+%_$^gG8%9#u@dV^@ef=Bh=&0r}6 zKJtIqXl#v5ugqFN(T6Iloc}2#>fdKF>y6;lHXcRqEl1p|(`mvn5cOsoe>r!$ttPwLa;NK%@2R2_!1^;- zYS*S}P%s`h6=8Rb?LZZLcnVsNv{Tx!mbK(pnXK$<)~ao1TV9iq%44 zb1s60wKfND=C?T#x`As*42a<-!`E!ggfF4O(%ittXwyX0(s(Ds>lR4tn{gQFElrdG zvZXQ7Uu$WS-}=UpuW`hDnkbUXe4cMDSsL@1p%+h}{bok|8(EFG0KuS#rp>pQ7QUYW zU?K0t1AHFn4+e1-l`4!kQ18b^v3>Fj*Yx+XVH?*}Uf`bVuPdQSACF_~uXQFJd9fMs zH{~P3OKaBfr`N2Z>$WBQGF`a+f5j3)z!TqTXqYeO&S3CF;~e zt9Ai*pY1~4k?nIW?^!U5|7_q&F1ddI8_py5(FH@WlF%+g*jyETg9ysE3L0dNS-ThQ zoW<<@4JJn!I3c9@t67^6(u~Y3M4B_GrGPNfSRl3085$Ni0UB(UrPc&tWUgBxgb| zC<8{E8xEQMvKjI(?}0|phJ-`z6DVTCHQTS+;*{B#@OZB<|1+fKe}*Qet78DoJU8*7 zA#61k)W8Nti7$qj9;0|MegHOu`E~F{#^L0)2AmbJc^g|lPE2ExsxsB~|6a3ZFC5u6 z(T;?XWfbE^fnsFDu!k`EfZ=eY1hU?=OUq64|{CW64M7A6Rp7)Y~jMo@i)fr3+ zAR~6#&gLnZQ2}Ipj@sAWeTNQ|fg(IKJ+rCW9K(YI;eZ-A%O<5fhX%r1LG!P@Gm~4O z4rrPeh#>7&$r$R5hUI1Nnb1vd75o!#tQ4*-$LE%ahw*HSVaTAF4c0a#V62L(Ia$+|ctfr=c)a>X@GxH}#63U={4#q2 z+f-wGF*FY`EnED_Ycur90)OK7O2(fo!pVTrk6$7bdvk`qU%0kHeUS$)q zhcfgnzmV}R_gBbZ`zQCU0?{ce)?tAhe!&YwpuU@dJQl3`HWw(_+Ag6T=Q1B$B>nq& zhW=RyJnvtje9G0BfTAV)0YyX6)}(`?p&u6l(7ZbEC!thi%t%59N+H%o(4HmG?2JSg zaMs(mVBS2y>U|9T6YMg_mYwr$|Ib&=dY=ex`C&D&<09gHaTo0pB9kyF>vmkIII&^2 z=z~KVt2KVy6s-KDO%)EW+6SjkUsLJA8PXLv`MK2`gX5$Do`WzTEI-bQJ|Yy*t+U)= z7>ebp)W6RVyw;?k8tVz6kn!rDOpX315zRd*@riQOfqqR1{K?Iqj8w6-a!;+3$nSD4y&NS_J)?Zn0ssqmc$=cW?9E!LPHL5bFV^%{~8hNpyELWM7Ljd$ln zlBn-+DUom~X!fY&5-&n23_KOy=lL6Hdsi6Rlg&wQQLVb+lG$LYh&3zT6VL~IaO3(} z@26wF z2yOr7u07a@KdV9`O_(IcTg|Cb@bVru&-#Duguf6VjZsUq?+$F*aKocQeG~k-j zVXYYi$ID=-Uu0-6)=*!X!ccqLu~og9W`iJRx>o{+!sofgfMuBZNde1=yij#qL4=8Z z>=hQ&NTHSjc8((k-D45mqXPM*-!^hq9_X@A_UYi}@1l*qVJ-%AvPS=CS2B%nc#kx` zVcO`s=VE+|nf;(2&NP~x@@RI_Mn5zcqd76w{*l?qG`NB$)T1>ktBWc${5n1CoC`Zx zobi$2@~#2rJZHB%-LBP}jgh;C4?4Sdmv#pCcgpv79(3@5$P0sT>D=7_q;+=VHlDFc z{jO~X%j*XnxHd6WdEv%^Qi;mj+<%@kf>Y=7AP?Uj%N*ohP@8gF zZ!s*PV4m9smzw)qmFd~Lm00+NKzrF^I6=cFX$9Q-Lbr`GDy&S!^44GJ`KBtMF`tcb z>gB6YSTHxL`)gG|r2%4@uQzeI$s63Wr@fagY4_}5OHO$~%uvqZMk;s>P}BkHI^3S; z%+%a^75nG+r8P1<*cw4s0M^OSl^U$*f_fM;XwA_1fW~lP9SDT)8m!U}lq&P124zF}5O zGC&*uRk5Rg6uQHOJv#cUijX?mZzECUiT)T#VkN@(f=oYf?0>*Wii_pNi^bW2SQvGO zOe>~=7c{M$tT9*ev~p%R0o-zMcOCX{mywbV*o57!+Qei>nF!Ln5H;Op;K3m_-KT13 zA)D^jj@VEfLOS3^T!P_3Fls%tHT-D#a&R*2s4OgAeQaH(qyMI-QKirU8QxPwr{A}npjsE zZLeE@$@=q$F4(YsL+H_!z3ozeA!JurBC_D4jycn?PL(yXH@=vZY~#xTZf=t zrwmZdL8s~Gs>@Y(ywa^hy-~z>4Y0Eyw!@kj*H3a9Oi9y4GFFdCCN&OQM{I1|14O6( zvRFolt)%xdE#hjfY+uKlI-l9o?i-P}uP+1|Q+vX$knw%o@Fg3Y;R~ABM*2}UKAR?@ z8&YgHtbYQB5!pt{02m9F!bJpS_?=r6nlPXEGQk!MO66wp0wLE|`b93kN2z(c)K?wK z-|#Bw^bh;h>F+_qc3aD$Jodf-uUl*tehi0^pT|y_(o9jlCI6{cJ{x&fRKk|WD~MI3 zy_W6~exKa00h|a8&mF&?iNnatZ_mMcrZ3^{0!w(v+s4=Ri&{RrV?T=bv<9BN5myx> z`K>h;vnG)lQ`3rDmNIM2KoIY?wh_MGh?*JiWKE>6nNbh1&sb|}jQJQXSp6Y*s0mme zxT?AvSA`F902AA61SO1HZFc%p0GZp)5p%b2)Ks%&a6TeXYa)P=>x2cj7b}Ru)wqqR zt;W^Bn_5XsJsp( zGj;gBipbU($Hn^ZOU8XBseW2!(@m zc@zGCgaQDkamzi&q@zy-4wb=`Qg$S9XGUBmM(C99=p{S@bA=;yA~YN%qT~E?yl+;m z4faGKLoVnm%6Udm-Ss zsyp5GV9ZX3NaYCmfTB}PgCfq5@kye(69(g;(Yrh+XN;+z>pk?8EYe_N@~o&{AaDDJ z?KHUMN6-IY0i*8nUmkrmcuYA+BmOBi$J1Lx3|^x0CET>A5d)ju{C8U0aRqoMHlgoh zjVZ@##3fAvrI0t|nx18(ihF<%><#@T*#9b?U^bJFLVdAOH%5cKE)pXw*l{>))a?Pv z(rk#6&Wnf{XQ&YhDPIT#2r|ND?|$5C^6KcD*2{DC27inn$wk< zkB^G%6=sMRQH7U#+C?==H2bq;kSr@5GG1p24Q2I1c)<}o&vEJaG$C9Jbmu`K1BjZ7 z=e}mwsIvvO>b6Uv2ZS#pzG=wW7Hp6O$!ftqQrND_5YBLSFTnUqZMQx?gpZHl^I@(Z zH?zVy5cM_`ldeLM=hzhgVTm_c2HdBx>>KcOyzQP0sS*Fg^$nB@lefn~|~ZHKK%4Dk-?KL);4 zl51J|ZgkSfEjc3Yu>=|p;vQ2t<6sPh)Xs4?x`23wdgbcr)wG9FD#SLz7{ajPAo-f<5QqTgmSINT(?f-tEmhT3y!=T0c&q6ZQIH?h~`~ zZzv04WQ2;d#<=GRqkmrgTk~HUvabtF#`cybwIgefOCAgl3DsXRQo2 z$%OgPJgoa{tG1qyp;s2AKmA@QRa?>UQ1UHemk7nq$k4a^Ra<$NZD!j<;mg&SNHWCO zH}6r@#KSAeurhuMN=hxnj4re(3IQL0VfR0^a4iZTOD$}NUqNaiX4VT53a7*mJuZz9 zVH}U}J&2qPCreP}^l604Lj^)EMHSZeTOrsZ>p5Rkv6Au z{y(3P3-~YXwjW-M<<`P{QEX(MWr`wkOQ$+6PIV51pu``5D1LBGH7R}~jy4{0o{!~b zC*016*ik()#kO3#rLedro?F5ZVp#4Ya2eYUOEExs9H^p+$$coa2KSp&eq6N;9fJ%* zDRvx~Vc_p4W*B}=7M{WZMJC!eLBuJQ?;Tq|(_gQL2|I5b8;+JXR0LO-nke^m8}41j z4p`(S4q(G9Hz8~`x?26rP25x+cgnQ}Pe@#a8(2VpASW>nKTwC(MY9vAEP>j^=MN3( zi)3g24aE{xL^1ytGz@f%k7D9YF&$F*O`ob*2sEUACc8p3|` znuta*Z4(uLj>CvVG0|l)Br2lBm!p_Q+H0ej$!~2bLXrvZOy5+TMw_(8?^*Ls32gRQ z6Y0|$uT&P8PIJb#k(7~k|ZKEVgHsouZ(D8NzZ|c69-i|CnMo>e- zFOd=c-0-aoBNUe8Nj5^8CZd+a`+IoZA|LV#97cLe;*;NgpWLzE*R#fEtiC`9a``<< zo$C@C;)pYLzg;S$X(mlfO>-sf- zYvz>SHx$9|9m2mLQ#R|JvbKZju+pIaIU{UW)PN&gxR2*n2W#VMDiCWfUR|lTMTNz(C!goO0?u;}T9wZfTNd7-VTkt@OCfQp z`=1*c=1a;A>{NHFp%dnszK}sNSOkTY*?13h-EN-u)l(=2%Ew$QMwV0F|J}f)3@)Bf zkblL7^C-xPl~$`V!*HIHm1)e&!F-;TTE7{kS{Qzmd!2ew&H8jfg2G7cEX9CO5-C1VW4k+i4IbL&E|g zM$?b7X*D6lSacx~A%;(JgxC(0a)uCNzYa@;*!7t73eJ*)ZK)HD+Bh6v2gQ}MAjO`W z8Y!mv=v*MiG@mZ-tJJ%2fZmQlh$2o6ItOO%G$6*Fsij*mweqRP@Eoy-Q}z}y4}z?w zey;c6Qx!p`VW2>a04YYQmZ%b%J5v1)E&=}| zOMn!>9DX~X-F9gA!#7+!3%$~sfwMjoa13mA7{GXDy;-Tc)uGZ>NO|MY(Bd>`l$S6I z4hM*KvDhrW62NHuldE@n!?TeO5z~kTJFZU_ z%sUnvjv@sWr9U)C!E=foun0<@i4C)$w3zW=_0dFQUg&i=l>VzITUySl=L=~QI_*#a^ zTp&_zVPmvuA{yehg#zA&!-&Li(Ze%90iz6%GwVkBb2_p#8(q#Mzjac)loD>3T2Z`a z8*tyH*4$9?;}@|e(u4a>*&*<}xAHl^?lvZ(hlD;x55)1dtOTy{d=z(CA(%ku^BQDx z=tWcAun{$Xa6%*R=7VGGRmuzCP2E@1Yh)T=?%NDs$}m2mjc;Y+vuPr#jh+XuTfphw zj>AZ=jZxyu+GwP`RvVMwT0upUNSW#FTw3@lYcAy0!V4f)CG_wrI8d_DX2(p_I&kJh z4Z_^u<&FZF7NPcT1u(I$*dV1&ooS+5|Bl@6hm!saBOkX6ijv|@-B*iM(jOSUWTRm| zZ-tV6myOS+i9AaBBOFG0C5;kaR#GGFwMv@&*6OtKO4QfXZZ7qG$eKU7)%P-pn>ytX zxB+`R+6)3eymOZW>sdGl_S2{I3{%%+38G zncpid#75~ZDg#~MEMk`khe!L>-H|!va5WQ$ndy~{wNb;g#ya_}bJE!)!W~nqxlHwG z*4)vU>I}UQc;NH1P8b6Ahyj+I7@X5t6Me!1|7o%MB_d1jz=mxiOHw$!ckDF8fe;Gp zr%fW$p$zkdlREHW8R5GKFVY3*{lyMffP4Se&@lISSForv* z6Zm>0Bp4Yv*Akosxci8K12z-6PXHmwU&n^?Nb>P4ZU;LTMMff+_saUE4L9X6A-|s& zG|(I#OD_mdrgvJNU}D5o0o;<71lz^i_I@Ly5diu9JP+0NqaV{ZX(JGM=oIOjg@eaw zl}qs-XXLgSrlR;L_k}2ahJgt9D9ymokYR>~KY0uY1>4g=Gy1ZEo8Y4?nwAJ3#iuxY z^a>P21|Ma=4ompxwedAmvS3FyTVO}kDlPp4j;;efFt~6IJmt7&EeRqFp@XF$8U^9^@1QpQ07$x&2 zkr;;;H1Je|8BD5q7c<0Az7;Co3}f#UID5P>IhL?FW@I(~JsaCyt;koZT4ntg%$h{jXueY@sid9cJ6Uf}w8asUPlruC3Shx-36b zt#m4WR*2y$hXw+*i$OU`Y4HZeRXGq7D8RQwYz zMPDfT)lBrc;weZEyqRCo(;Bl8!`CwK zS*Z7JHb$E!qU!CfhSx11Srr^cdiC}hAX~?DDdPS8BAMT-f>Xq=?pJqT2@PjA;I7b>~pZx%alkt_bHpNH`LNO%}7QXk4bozOmiNJkevsTCs#VIey;cMQ#V(t<*y-S zdQvRw0}iU$)A?R-PbsStxy2VN9);<=T%~rHQPR1W78%on(7fGjq9pi4#&m`?resW) z`dXr;f${)%w}aP+u;0^Pdc1xP=&>v`76C=n!|9g#&je3!$2Yu6Nb=tPlH|`hS8WfX z`$&dfSsX;?_ews9ZvJ{oG5DL%>VXWs%6|kM@2rhSlBi|58WTDB7-Q}oKpGuhIr%e_ zr{kp5e9TBgL#hz70wm~vYW@i%G)v9@Kll}-<`bs=AVYt4GD+eR^%3UsobMQRBJ>`t z67?H{(mnO&M0m=WgIT(IZL-;{vQj?RY==CsChMD}0iw=}eiH3GT>$82$5cuFBiW(h ze4kH97nAG%{M9w6af4}lhxtgD#K)|@KP_WjoPCv6tuk779nZlUH@t`p#|1Rp3CO+f zb4xne0Q^A3Z#Z03IPEd0mjhL7+D^C4OYc-&SY=Gr8g8jMjnIR-GdVNuwxAQ0DZIsU zyW6+ixMeHs_ibS3phiZwUV-y-u&-kymHPB#MJk%XXVW8bfJ8e^AS^CUJG|qu;VAY& z5hfk>!D63IX?w_HI;Tf(knyfAcDw@ma5gr~VpYO?g4^6z=)*=&Y;4~Og{TfN{j0QK z5h?TzBwl2VBSGEAjw7LN@2d~M0Q^8%>@wrZVo4`*otHzyT2KSt6mt(1(Da~&G^HnA zVE9soi9+N#Z)M}NX(Adfw1qJY<1o%Re%`!Sd-IpVPxKoMFor1c`9QwS#c zt<`CTm8h<%UBx@Ifh;`7nm=M>Q`qD7h1v6y14&XQjSh@jzuo@K2)|7L5dHtZX zcEiA+Q$8PlY=j>}Lqm5!ZNo;VQft&26Tuv-*XW+jn)$UTHKB_~)yzh6eaZ;s{vA#k zCM^n(0dMNQnqIjVAq}bh=a-21yxs7v3?mfk{l{#CHcdp;+uIATTfi9JiNi>*-cj<) z>TRUHR=tzox+F=Ip$cBSC=-U6K9oz}f7_a2x%K^ReyoPg*Rh8?t{-4l;Ks^<+EjPS z0Y4UMF;*t9SYWLUE2kN#6d8KFQ)=bnBf>juhgJ-XNU5 zqF-IVd`>yNr3g+ZpYyo0U)1s$&6k}6)P~?at#Q|SDamim9J;BNh@h#bx!jzGt*4aS zZjO&0YGcunU}{izQG_5lVvED8ggUP*R^-IG&`e`&N1BC?Wj%Fg|c)JO7$HFX$ zpgVkugYJ%f5`O*Q1o(&jIxInV*CAT0J=q-}ue-SqtoscMyj|Qk`w6wXHcVv4eK}Hi zWRPd^2K_waNO(f=W_HlA0eN?dj+S)#(?3QG)c{J5T^uA2-tHXrbG^?!b@6s_Og2F6 z21Ip|1pWuSRN;5hW;nTMhjg3IZoJ+J;rnw{MuZ3w-4t&D#k&lew~HSbKth+W#uO+X zsZS!)f!t(NP>Yug_m>7c=70v$`4}=4q}yB?VE0Q`I{J9Jzm%xY0VP&)z=mu{g(Atc zIaYolc$6<6)Z0XVUfo}cy@FB9v&AXCAw#b$aEgAfWSrt+Hf2%r`PT@|-jShq`SFUp z(>BgrqAAMNn7}K>OoraYNTb6GuPDmr#7=h!rwhgmGMs1>Iyx}={zDZ%gEVGP#fRZn z09DjGOaV&qbhC3eFzYY19z7b`X9$}JH#t!4O#F1{Zdm~ohXR0N^lU+&BXC5UI0Tw) zj||gf+?v_GO!W3kq|Ac|wX_Z@6Fin>$Cr9<77`wF}JRj~sWu)AMk z!;(=zFxfXKx=j=hc~VnVq?{hSb2wHUdgf1~7BII&i4g2b(6APqhc|`YrC&`Sf{hjy zA}N9B4Wd6ohVN!Dogx@}9viJq6VYI-EmUtk4kHqb#d*^J)r+!14#pZep$*0+zg1kt zA=9@MkHrSQcf2*vBC*@oFPaC3&cgrr>~aiiE4?W=gr$eZQFub1hw7e<0QYNdMD^U;0(p2wU{^NxOX_ifOyU8pP%hu@Wn!%W3wOK#LKttC%>D@*AiQ>(db z_J}oiA~rjlslJj0=$tY??T>*iUw|Pywr7H@57?fxZX;L?gz(C6S)f81(nbWoRIIoQ zqy2vwLHVjwG1_=DztLX8DMtfR!A0VpJ!bfxjm`CWF3k21*eGq9$fMLh#$lv4+ff$C zN^RtTR;iQUT5m1Fgi)ps}W+nv8xRYbECRE zdiWGYD4Jf*Aitsr(-!EJoe$%)QOGZ{ajxYzOAWCX85odDjvLr;9yyi(Vp{)~Tk#m= z*sBT}T8^nKu7+4bu;DkE;A9}Z5Z{+(Z9<4Ia<35a&7g+@&P0Q#bg7-8VF72Nc?(%g zO>ic*0!@T7;Zq#W^g$Ft24`Zw4of)GrT#$f>c{a?I{EUzVPQhj5 zOPPFj;T2GJaIYZ3Gp)5L^Zb)As&4FPCSU5Eh28x=f}79AU(7FHzcTp+UPum@X%x*! zPUVP^U-B)5VczX{O{;gj^|JSc{{SsmJXWu?+q2qX<3oJd8^U3;UpB-3mpqC_`m zguMYC(T0?d4uzkIb&A+2vB-?+uln9k@}_#4<)J1sN#8&|7+?S10V zdc0hIho)yXRhwgNPzfk?f>p(86Hv_y$_Woer;rhxLfS(U)73Hmy->^|c<~iu!5pID@WJXV7(G z2A%CKhSzJ=S#LjZDFKBZGoEm6Q%H6Nv}d_QULAJYJnheV`xdYh;y#Ac26mhS(SM1* z@XuGxdY=exDeK|L^vLJXE%;jK^BUH}W##nKyKpkaGHulw9)SS0NTbx|N9=G+au$nWrv4mNM?V)FJ0usOjXeqbw(;XZW(9HZ@&$r(og0j<5{j30(6I zX-|l{&-^snC-UCD@s5!ptnCXQ0zcb7)R&0hP-zDg z6N?jA-X^>m3MmxpW$)rgs_=EFU^uq7GT}OveU(}rYXq0ZTg@qFx;E`gJ3fit75hM| zHrhp%!rnBR9T-lfJ_Ch(p{&`AXkyTTr<^g+sZqBy-Ezm8Q`22Mi#YuBc(=h$Cvhg+ zhTDR3ibtR>@kkpAqp?kHIF@!9iY*Q}`zLF#_QpG)m!;inh8oj%I=E(ymSK$V<2VdY z)M0~SYoMsGo8(TnjTD0s@MfT!@ILkxs<};1*K7RHWYwb#b-T=!+no~upkBo>1~v8` zrSn#A5eg4=Q|51^?VW6BPcaKU2;BseN33!1oov&8&4nk9yutH5GbFrFWsQNYAu zCJ>A^n6z4>#OIP7O+GDbg7e`gH|-gAc4M7(XQ%UGXV;!VFp4dxf$QJgwFfP|KYu|Z zO|a`YKa_%(_plkw|7$1w)oyp83j73{#dz8HfMdSZ{N1^*nkflFZQ*8v;AF9_&oi{A z*w)t+Vq4h|h;8kapn9p#af{(TDJkDc0mF&31gz!r;R+&3^kcW#&>~qWp9qx_M+}q!+WIh4bw*Nnv3x*X4Zp#IMZl$ z%A?sy8-2}OjON5x>qq7$)8Go4PFKWDR-hplRp@j&J?xz8Y<8USk>T>L0p~ntw>#ag z)#1dzyM_-syLXp%2KRT$_jew2@PWt+gK+8G-R;_xvm0j>SP$H_?I4ya_h6(;8Jsct1>-% zw-Rx@5NI#^3&(5tB>51%FLv8FpVH%bcp$y>6=kr3FV}QMJET?M&jv zYJM)uoiK^>2KVd+7%BZg1dh>h>}iunrr9?Vy310tnj810~u2H#pjb$xl1+0ys} zDWJ_iRP6X4g${9fkB(yEmQrS^FUs@-j}%Loc)>V35DcUCkeS6a z@PcNRl^TmB&n#z#bHFVJch?~dUPekfU=?<^Y7>(kWiCkbLezTy5_oWkt@kPoEoAH6 z0>c^;KJ$<0ijCQ|C!5`R6~j>wI$ImW&W1`ifi-RIueDvL);#J5Amcrw*zt(tvHOx22YkQT(A@_V$RU_pB62GzghIyC%(KdKlvC8uV3Wyd!*fyBzJYG zuR4^!;Z?%pyZY7X1G#wYjl=6UwHI(0`FWgp2*w}ui(IxmUO}uP<+OB<@cSM88o=A2 zVLL>0RHtqE{jMVToqQC={r#er&u$h}ly{NiJ*|OfZ^WHsko?vfi&>M%jH&6Yo_~42^(1x=}Y-s86dCl@QN#16I}#Wv>{0ixD3cXK!~F0pSkC7G&W1PZwKVY zE$+k)glQXG3I*2XM*xCv(uLlC8u)B8H~KUY?!%*;CR$O!`(^>VC?jQv*qA<(OKiTu z#+QLave;zkg(y3)E^9BuzE^a(?NHu6uRjBI@3^;eYSvzeeXlexO4m<)+Vn7NLS+o3 z*cmG0z#TXOda_xC4G}k{1e1vk5krQ~#BP=_5-j~@iEA)V$sk^)9+Ww(1U6d&tYna_ z^y#*W$UX{r@7<}Uk&(5I@kyf97ynXkJTxkqXOG_b>gRgjJTmq!n7AI<*C6BG{qr34 z0ueZaD(roERF;CrJQ?8|{}h`|=q(}_+f+t{AW@B6*udMbgXZnrOC?7lP}x_r#*~`) zaSQ%HOJpLMo@Jzpdw>vZyuSn+EuLUD)1^Xv0gsMRY43SRjBxMD;RBEEos-H)&n6(K zV}=|mheFjMphWI%e=`{*^|f?X(omp4fTW*Bb0Qa)dk7^#T;#;agF+}U?Hn%-8uYHS z1@Ol0Qs_S6%a}?Ta<&CPWxtjTbVN<=CCn{OO}zJD!)%^eq!FV-lG6D|vEvmf zo%^w2meLXS7E=rTOz8|py-cTE2fbl+ID_-z2~Iw+xoUof`kH|smgI(hu~Lkv=wh zgF0`qTrAVxZGcR};3zs*$$3{XU8#y4w=yE?9rpks`s)9uS2r8^RU)TnLBm=l$D8?; zJWb;DGQ*cLj8CZerEGjQO+;1PTLiCLB;_v0VWd~_DDh<#H_~3K;>mBVw-#$6h^7zZ z(tgL9Q5x;f&3v_!=k?B%m zX-9mD*D`ty{$eGZ*e{z}Ml4=E7qyJGDGR1@zF_{A9Krlx&DPHl{>3rjkKnuI>i8fo z_8?UuKu+z=J6c`W5VAi`At7}LW9}1+^ez;WFp5GYU1Rt2gy;W6{ao+gkF@Z7z)?d` zewCit0squ+{DSIua8n7wNAI!u4KEN*e^@1b7*o`6+9u%sL1@0Pfct%{F(u%>GG09b zqLdY?9H+bxJj<6$G4~10{kdvyiV}YSvIDVO<(zP<+>rBpEG{(Rc1FS-aqfs;o3|9!U%>*S z9NUIF=mLMU?Xc7ZtLe=OnZT}mxDS%%4k881Emh%us9HV;u%z4~Y9e2vL22XTc zh1Hlq5n&J3IQ&2zTIXvKs}6+95~y8#UNTJfsnOHqg~52SgcT`}QD|5j9mSiv=_Gv$ zWFgRy`lRd%(UiLkU(zjn3^{ZW9X-ItXVXM9I%=B$If%oEL`Tt^F(g2u#FwL^M%rtm zqseb=DMFG7?@ZrRyh@vN$%r-Ylz{1O)N$Sx{aVLhDPk7GB+U|YpYZDa zD3HZDh{BHiB_}iwYrvKp@>RU4`)YbSvIrSL4GF(QzV#`?w`|OSFG|9a{39EoO%qW| z;=K-Dx5%^n6AmN2CGp8G?;1J4s31qwzvEG`o+Ki;oy{}39s3z6mF z@=uE4a^e=ZWxvuZpp8T;N@2@ov5ifQR7v*;zgP8Z04GDkbI0#z;V|-Qb@CRsjs2pQ z&u(VrWrqdtX^p(rVM%`LrlKcTB3P#H=W<^D%-WD>oR*{LU>{-ac;t^goE{BgOno|lE^)5vxk6}h}W8zH>sCLVJJhwVn8&~s) zSfAr+D32tnai}M*u2{1sY*nr%zbw2%-LIDyOCfRg>On)pJhr)koxN%`bi!QI7cwY@ zfMVSVUAMFQzIqD9K>3(!#mI6%>$?qH$}ss01$ienoJT=Uth8Dcwj63tR;FF&cF4F! z4jR<@j(j#@FH=eXa6v=O;nVdN^L|-O^B-h_%0*x45X>$)7nzIpy zTr}eS%1EOH&h2zaIVhy0;J_Nm;Qzocet01MIxLZAFTkW% za8>{wObcZs;m`o6SDh1qc6}BEnx-prhD6hRzr3$f@4^XuI|d=ZI5p@Tn7Pw{M0=)| zq%`Vcc#gPdn^Ab|!ijm1X_u;>>wW!*L8fUqY(S_TuQEU2ql!#h%pMNzD=;kSHg~c3 zD}?1cR33yF5}j?gI00%qG;imZ8&ES++Y$!UOB2o2ucUmCozcpBI^CW=Z4tXzx<_O3@_ z9FADIv!Ylzoq0{z<{vZQ(B3IDy#OdNSD3kfK&ms$+&{rDf|)Z+-vM@x)IiXXCJsXv z;WdX$U4-2TT>vW#-KDpo+^zwmt?Hzj)VVKgW6tUf|ReBbF@R0 z`txKc)UVe~Z3Ym6*vS91@lm))JV@vmgQ9yopy+nQ?UrW}&~WiYJ#M9zA+2fak=VD5h2gC=U!dTUo_qb`lv>l!MO^kPiwf z23)a*0GtX2kk3j9>gGc+{7M6kMuRX;1Oy1@y}9s+JBjc-dAJ>SpcyN9&M>CR zaXk^WC;?rdobK8-^r8yghqIRvcc2mx3i~^7uq2i&fOE_?U6xJh{84L{f*3W` zvf*Dd4ayS(J%dx|j7-A=x(*T3h)MefQN`j+n)h{VIEp}2l>X2l5T7h|z#`cFV{DiO zyTud;E0w+?5YOe)VtE{_9fu+AfO9Y$m>fG`bZTP`yC3SQ3M@>!s5^Gv{KzDpTTBEj zXgM^jg%{#Y;X2T-riTSBX4DD2dA@Mv*N7^dWB6Kz*X(Adrw}lw4#$iNa z!|41OAcj!}$QgSh{W%?3`i?GrlHWQhUP=i!OsyzxwGC)+nKd_*y!#T?M0(KRDLVvC z_*Q;kXx(j0M31U@42pY34!ZZYtOTyT1a?+Hx{Fa70uO{fcOaWXx0>pPji~v96B@ab z4~~6QsY8!9bze=dk!b+GFEV^7!}x?YHrV)Vnuuznw+UXifa$ey80ob!N_<%xjkMQl zWAa-os7MkiGrgTl3twQ(h1^P!;}dpB~wA4>WTMm}yC6eY!*x~~?iq#rhX$wtF`-U=oC5F4LO6M2;M zBRGuoN*X1;tfWTTYn3$lt<`Dem8h?&-CXMXHf#RmR^Q7Y#_E(qKnUy^X)|d3@XlQh ztY_hrqVXCiZ}4!X}R@KLdx6UX^_Y$gucD3}i$6FMf%T?2LYq%Rv_N%+==9I%1Wa2RQp$DiBZPYNWu}*&LoOCvcaL3eYE>r!3qD*y$UI?7= z!mPaza7qlYc;70r?(D&7 zCit+79A1PMsq*xS9j*WkzuM3+H*PCf)FB)U(IeB_86;Q$f?o;UvYW^JsZdBTGIFjZ zI13>7{RR$X@CAe<{}nczN0N_caXZ)%DKZklyjRvQZMZ3q3Hg1hpn>M_Sb9NtGQHFC zaVAFoJdd=Xiix*%o?HTrV1t04=b=r0)zGAkK;)rQq;D1u9;a0<#s4THx6LpW#Yed> zMDa5WM8HyM28M3YV^g7 zHWYP*pl1LX<_d54QY1OU8~!%@B6vfctq#D3XC@IP4rv%+F^83%g&hcuy%o~%M2<9M z%z9fv7~pGAsjH2tKZ(OdHcaH=tz<~W$%Xe8Y&Z(C zQiykGKvwT7cEBQl@R!&y3m^#XhncyrAgh~sN{PF!YwNYWF3USrE1im;ZDM%M;X!BT zpaZ$6hSO^9=ZBItN84^|AAqr%0Aj`pjLmv?su70j)ueJ-f9HW>2`n;FpN59Dcr3gr z3@nvnePlt-R&c+N5i;-#xrL41Ao}x7!*?^-Rgq@?8XK)m6VV8UEi&s-97ZI}gVUq| znH6P)oMtw1LYuire(O1Tq?+)|^ex3rvB7VB!kTAF>iJ`=iS+obLzsGAwNS5eHgfCJ zKq&f3XjrT0cr(AEr!{8l3}4GIMxow=Y>YNdMAh5-8HkAm)N2C{BfWb243Mp3y43SE z{UVv)tAbO{!~N>+^XHVqyE1W@nPb_28#PR8z?0v~l6p3^n#)w5V9gzksm{;~k$V37 ztP_Sv+@afBF&6=1b^g<;E{k~$yEppI*VQ82;tIuRP=-6Qq)|gt# zAl4!ueJ^y;E+(m@rI5RGE!J7`(O)od!)A8(2_VG#->~64;vFP!{qVJR+T<2JCIkJ$ zf`*pEaf!=7CoE0A%LFF_>4o_IN7g2URYvX=BEA{)P-InU$b~M7Gc+u+sx+J_i>WEA z${g3ktSUamv#Mt-f?q7F%6=V|S=C*b6P#*R-TDZeS>du$*&}1ETE}fcbR}nU^`>me zRc&|rnPa`2#>%yQD0_o&nn(+P(QVlCTarqnvudZRFm*5nE^MUbcJDg zsvsH@k|zgyk@~sbqeoBN= zw#^B3H$wAvUXPME6q(qqtT81MyVO@3Ee(_h7$w51MEYy}rH4BQ^jH>JkANcTA$?2z zXM!iVlN??pBzbv%Npg^L)%HNX-^; zBx+f%#zd|^#=3jgB8?8mT>t8nQ*~0xKW5OOO;zZ+0jM!oDgTcniB%@PUvYsbUXcVeH(*PL-poFc(|H_$-a7Rve~S%`YqRNhjg+g zd7PyIqUrxaI-kl-N_7_4)64ncg76TbB?y8XmiqkFHK@shZ~%w-QwR<~w17YJV;!G; zl~%1XT6Z1K!J0h0=ncmkG~5Zu>F#q&I$;4^Ld9=5T&y_lF{tkYRd?D>x6MlhRb5!U zOw}503C}i}f;}3OGt+JhI#HRzTP$b1eanqow!;4826hf=dUWd*I7bNkIyO?NPfu2) zA|HI_JrV~<)a4Pv;^NfB`zAIV#Z)N5q{CEL>?FLJtcmnci0gtGvRnty9Rot$ z06$QFp?uwxb9;IHptE+vz@Sq;AAW3vA45Y!cL4IK(W%rLwZ=p+$Lck@7p|mf>dXH$ zT_C*>r6%o)A7EDC#>#=(RCme&KNf07Rwl5xA(We(g5z68-O%Hms_bb0`P2E@1n~^j=!bc2WvatY)5xJj@&!&kyM&zS7jPyptC%%laN!l>WHFM~uS|Wm` zp5}6M-fnGda=SS`DyfY{QUZru-JKDF?}#l9uM+A!zgUqIL5G`}f^vsqaZLGDyss0x zTx{9KKAgcW{uh)n<#Act)#hm|X6i)h8{dcs5I>ZvXVhZ$UU1*16~9K9bfvUYylp3osvsp>u-y9%oJ12&7L70p_Ezei}{6 zKp_FHSu zJ?STe??#&Rj{AJ1P|6@r@D2JY$dT|6=gsUaXal0}6djrA%&32i*s%XX!LkdHXCZ=c>{4q%uz~n3hvw~8 zpa$^KQLHfq;z#PK$aEk#85PuGE9L&u;Ose|fpqqVOa8@({*VA=DGc)#AU@$ z;`Q^Oh8X_OUx=_)6|q>!Q69316&fWI=~(%N;8DKjP;V1O8tyOYcJM*k0wKpU^vVJV z>Gw(oLM~>L86}^8jnJ%ion`feFVg z#*9~wg?tQrh`GW-z6puWu#j(uUjz%Ocd!B&Cr)lW2vO? z6iZ+c035lqVFDvJ=Wi}=9v;4{u*l{y#+XgrIIc} znX!vcnKn=eMc)VwYZV=D>b{y@(bI-rt~Y$mMmK#v3-!L1jnSrwsCs)R!0Q%Rz#DNG z>DAk3fQ*evS1M_&UnKK;l^V*!kK`d{Jm!?1PQSYQB52qytd@tv`!aEunPb_28#PR8 zz?0v~QYy*RYA#c~&YC;9P4$&5nCF!FsfP^2`2q~@vAq~%S->{GbsNDVAcSp(s{s`% zkv4jGZ?WPojP{>0g7Vd=l7YvY`Hl7xPB|L03N8|_?C%ZVv$45~+5RvarA-rgl=>fV z80pP+lm)U<8#$m=>g2c9TZ=GZl<5Px^!pvwjMC_LhF*v~{g<;kgd$Im%gUU2`cHA6 zvOlHJ7BADQwvC?n`mS70~P@@MG};aXMfXhi|Em4=47QC%KA zgo~zxOfP4UU$LM$0eWTU!}x3z@{4SoYx&Jm^Xv)(19Hjn<=Ai@IhKHDTK|_@@fbwf z3kn)qj;SoJ=2=3F;T9%18Avb0_ol2(2=PVk6(YVF^iaU0XzY|mX)`n|U{W-HA&aRA zCdF2ui7+XAio>MtMj>P{Dfa8Igh^fHpG4u5t#M7xbgK!a1UfSVv%O2L-yZTmoE8Mt z``i%%%n8QLG6mZp=<{{RwZ#X;zeVr#juR=ou$7lUNd1o4viCjd*$Z#K?5vJ^0QP&V z4*0bC@A#a)t6s>hj18}X+0`j?53y z?tD^*zllG5uc0xWDV%@IJV?445_C^MCwR&V`)X&+l(hPH!^Zwd?dy>#m)CffuB3UlZhuI54V#W2SE2zDWWC@53LJ#cr9^7gTM%hLG&0-Ydf z{E(P_*53P9c*1uuMNU34GA`tA#-WA^39QpqB~q%?Ja+?LQUQ>fo8q+TP(-?!zvJk=vECv^b{LK+5`Z5_8bpkX}WU>k(Rr@Avn9ByI;1|f3 zGA#gvi$U4JU5p6NwC1SHb6CRay0N2~e5v;n?C$qZ03-JV{$frB`<2Pb@IrFHe57bf za=8dG@-07yE`@@~M?Q|%w0g)}FMH#^m^ZJtc&uJ&w`aA(#)tT@=a+(EvtKsD{^dQ; z2(C^-gXBF(=d3U)0&o8A#Dv3cJc%HMc#Bv+iZrr-J(QwLa zR9Ifg=p~I!)!=Dxrq-l*Y>2lV>pignQYMI@ruQ~H{)sYlYV-P`je`L~W2E8MCMHLl zt@h>%;bLu~Q5&y~Rlp!@ULC-#&@!xsny{@(qm4y7Hm`CZIeS)LkBmPB$YcRP7=E9bf)K!{V)wyp^-l zv_faEbgvLex>zM>sB0SLm%V2~SG`s6PrRX1__rLNe+`%*FNS~KMc9SFzA8@Jl7LWr zp}?o<;365y^Rf)(JnY(F`k_4AVkjHn*{J_H+J8$F$b-7EVX6Od@q`T2UIVuPor$ey?OW_ClCcBzoZ$La+T9dX^uG%{y%42q`Kn zDnQ@Ld2+EN%qIj>Wn?xDsG-(AK2CW$c$Q0A%zZ+~*JYri#o@(0K1N%)duxVXS;(E= zD_QR5Ur1>Oe-m2$S%zNampR_q{>t2`24^jxi7I=`qi+R|aj~Pf2o?V^0~IYK?xWcx z?%@o*vXD5xSF*$%P5oj@L-{75;x{t%H@__MVf0rPk5kqL0a;WDToyhXJj2B=a-C4^ z7a6E#A$vc~CVNLcL%-I?D@TtWpAm!@}iUruM)bg%+SO9(#AX9Uui3eWoJML zRm_(94+T$fAq%e(QmxBCDhm-i51P;5$ZgKhD+>|xdnJq5g0&kc$?yW9*7X_sm0z%U zcl#??fTQ3sjDP}V#rs~cW=(LDOB7xpX=pN|IZPrwUd7|)RQC@Xo7Ya#DZt>LNZP!fNt+v&o8Y7GokvZK`b zIg)(;TC?FaT-c%3?yL>gY5_d8*$VNgTz!gbmMGvmGAN)SI~wLej)>SFkBq&IkO*W! z!p05103%UGlq1yC>+i+VT6k)n+#tBkkV@)_vVWKqNYEHqq4NkGmZx=phE%2F?66t?OwO-G@1^iH@Z`B5<{~AyBwv8XMEOR>XU$j7znGuSDwS%c!Xke+MTIx|=xmuKmm zNvL}3!1zLu#`pYYV9RE$;W)PrIafnz+&iK88Joh`G$ZS9 z6^c@~YNK7G1MfY%jAdu=e2OM?t___9GDK~kGhS=8J0*6s1$6lK^Y0kpBZR=)+Q?Yi zQ2w{pVFzoly{16Yu;f2*xUv`NRw-e<@LHqW?6w_9PE0URI>W2OV6TQ(pp!f^8XVKX zPSs!?g_vr4W@^-7DT&Yol$i|}egLXK{94eCAVH(f+WU#2krIiIQg@)Y2!)h-fAi0$ z?fsphJ$YH!TU4uVJbyNrnPaoV-V@LV_TUAx-cNBdT?Lr~e=>ap|7Mv4HjJOapA723 z&_1s`JhX|-d?souUW*|;>yJO2`Mmcb*_ku3P&0wtcPvdmEZ)|H3>0Oie~oncUo9AF z$|(C?{s43%u7^CiE{3r}o%4FffT2RGKLIBRHDCszomcLXVLVdoFybhGblkXL7#CG2 zmcDT#y{7-f3ImJS%0YjTfziXNjOK zTpsn}sX?_Nj6uau&y)w`)#$?|^fj!v$=^!Mk=G zbasO`H*!~J^M->j+)>(HhjrZT?9uYxk-K&cb`HXpxA5;_`NB?qVRsAQ6rDR{F+9Y5 zi3;g)z@bAdq$g=OC<*EC8gRb$GiP@bILMQm_8{Z-pbbQa_o~`NWooM8jCULCbmt+5 zA0Z)}$4NX_4gN21$z6UB8sCP84yn8pY&-sk_U>`^Pu9jJ!TI)&Tw~uXwQF}W*OHyP zwss7l99Zw92|l~yR^ajSB(Q&N70$E(pBEa2%LN~rmJX``Fxf=avl zDZF$%Rz!MMK%_Xqr*u1!*<49E=%;U*3sP>%p^s!@G!d#G-}jW1X7%M@Rs&A#aRBUx zC+_U4x%*+o&rYKBBMwe`stK!iTwwb#4KSePO1(4L>`qKNwGJp_36I=cTd7tc3<4+a zbQ^dCDy;1fxK*ea)u_T03?YQjB)13navaX2gf)8D2>=&D;6y||M4$$PC0I~u3L-In zf3TNeZ_yiO1|ClTfyP?SXsyy7EI}N?sWshHbY-ce?CAdk&M@m8_y61g$HjZGKK@n~#Qf zp2vgoFhRgFA==W7JiWA4q?d+DTN}>yR&&gCtI#a-*m2g_xB)T`TN|)`Xs|RCcc2er?V-|Sr!&22-8$IQ6MSN5s@@u! z2Dxpo+jq$Y>smPO4VP4gCOcF0FaT2awo@|oAX-Vv3CYpR`-a)ri(G zY_9z^+kCbKoZ)$g-WQKtai+8S#|$#(eQptr9fE+{s6s$fZnAA(CdTeFhHl#U2`sPQ zZPjMI2T&)xH{(Wt2Vj_7QIHyT`$G(YvVo}bDYNW9L9kNFJ)nW8cyE9%!QSCF^8frJ zdrVF}%!B-^9D4LWM{~Dcn3d3#OYLj5)E^YYHlNC(y32R5VOAAG02$E4^|4y&@Y!H4 zA!N&rR&`)zVx=jHocS2pSIJSW1O4ys2H> zXiKKZ6%Ny!?0TBvOBu$u={Sr?Z83&ATCfy4gU}Jwik7?gx;NhJ;VC1U(9>KDoUUZv)*R7yu%G3T0ob@-}WJoYxi>lS4{x8g8z^EmnR z-jRNh%a*_5m|o(ii_1hTr~B3IDQMVk*L+lyZMobkhRcbk_rAJc%mJ*)Z$0_+bmNHlo2aC$ zZBk-~7b0 zL6FPuQEJ`_PmGAOxJ;z@)P8mQ6li$v9JJGL82P!J=%Ah7FLK#(8SLbErCWz`d(!Um z=ncZ@tNPXTE9R8bR~NzQWan&mzo_LiI@USEds^eJb!Waq~Tdm3rU}T^@fRjRU4tDQ|&q2zs1VN;*SD0CZCj9TiW}((Z z4S;}AeBNVHUM{lrolGl{>x7-JE>?d;i1HQ8+GxBZys1^7^fPF{v%q=eUpp$iOh)<^ z!#8tH{C~(sYSTm>Kk1Kf80lwFpAGhY(tZ6Rm*1n*TwX!+k+NF4NBI4TehuJbbIR{e z6~ga@V8zwj5s;T3p)Y$aT{3AN8x_-=9-XKVAr@lUG1XkI@@n8!M)) zfNc4^gioiG$-za!;Zyq6<&&V{xm*3L!ePvT?Oxw6a@lfNEM|!_A}$jyU(v5_Up}W? z-ja#Su?r2Px7JV6E;N$g+An<8Z@%n}tOV;fUv|$N_^pKBrhevHO1#|KZs%S~yw0x? z#1R$cCfmwisSg7DoUQ+z&Cc2la{M)T2YviDK;6OjM|3sR-`Jg40LMiJaj z4xs+5U)1uM9qZTNJ*|P)`ZdXKjf((kU*}dLZ>DbLa${a(EpNHqm^YCtJ&VZk zd=ZHCc<`Rq>}x%qsfec03sSEF*sF2g?g$n;A@&eXG9PS3NfMJ~6~ zb6HTU*IBz3c2Z7sq2vmbG@6E*jIhH5c2`1t2I4Yskr(!3n>b+`C~p2V#95RQz)_uAKj(98ietCrv#MYRWWeLV(^JosTFf2_?t5~9 zcIh_v9{4MSyBDbB4l8?WxNCE$)Ou*%E_bSw9TcY_4YJ0(i=psn^k}bzpbJ_$keiGO z>L}ChyF&G$~Wn+#E)mIet*?1Zl~LV66Cn`L#}8DwY)`Xe1D=2>sjHx@N3J% zFWxy2dc@r2ET&1K)4xduNUJyL>{_a-_eb(v#AV~9gme(3)Rj^w_qCS7|0dnY%|TI1 zVHO)^wG@O}U@W$ewG?{W*whQv>~LmZi$&`gEEucVK?ED|zO45B@Sw93>*=?e`ypo! z(BI~0+imS*^?X=0&M~MwFx3bPNvmP*wDbP^ilwdyZ2tu`tPO1AO<{H@PrcN^PwpQv zDu(kuo7$r{h&A}6;ky~Efe3SdoQ>9|iD;PHwg|zeaTt*>H%=U$z6e2-74qIuBPX=6 zrsTIS$t==@VWtl$Gq%n4%X_UEri6~(&6-HR{c;cZr@rRn3oe z9IwGX0B#20f%aqtvSekb>N^PKE3d`FH&`kR@H=g1JwpHuvvAx7_IqbInX1+xjraRM zC`6$vKy}hau$7?FFFBogoCCp=Q8;}XLcxqnu{Ix+~jBIg$Mz^GixtI2pApLoFU-f zXH8i6?MwaD9#z2bD&gR77OR88V}B_&Y~!&@mHm6CKoMn3+&qtmj>8pcWa_+c6^$w_ zU9$#Wl8;|p2-j#%=6@GE=np_Q_%iGd3=Q*T^GcSfQO87>VrnLXK(m^!tdPa)pnrB# zpYI_EfkwX0wLm|E3$)V#C=wNFa);3H{}@=2!LA6w{yS_qk6=p`y0nujxA&}q9~Iw+ z3mRGux26{iBE4txAQPMnq!;4**{n?n@kQgkt6xr+gIpO;Fluvk4-xZw zI*NzjJK?s*2IR>=o~nMX_xY!K22$nXVUmEnNTqg|o6#`WCIPt-nz!>(lzf>;Kn}6S zicdgp>n{ziE1m{66N^Gnk${X*HE%5v<8Vtro@O+NN%_Z^VTLlUP;w=Ve=hQm9i%hM zKfV}#iTtC^BnRoo(~YEv%RWXp$~}uy@YA6|hit*8!0Cvj^uv?T)w8#+46={Vi*Ol- z#|TwjIB~Z&3Sd0QpG40hW(N^F+i$tSKW{i(^YKMg5e<^r>J?;g)F0Csv{aeLBX|zt zV)1f9xkHwCyoYonHv`3L?+w^6TkQ#rfXS(^iN~AMCmsi(q~o0A9zRelfkp1|ub^RV z?h$VaqeI!6KI0HgF%mFc^aim9pEi6qgFO(rhflE4+B6Yeq}%2mKZC=Ftk7}NFytPi ztdJwqMowrW)5&i=CocDxR;mflOy5!_Y@77spIh@xNk6`aHIY93cv+tGW3XDwmRg*D zqF&`}znD&0+$TKtXwpS>>uljEokmSi2)+VY7{uC|S>k-b_S_`tFxEX&x) zhY+^Fk}R{H-Rad%Yj$QmhorSF+ZZrMhT}_?!<-2a2!s$I5C~TQClCUJ`~JBcj&R0F zYzUY0zgJb=)vv3oyQ{i;B+DlMFVFT-{pwxy>eV~S0(b2|DZIgo!c4@X3OrH5van0G=Sh9=6Ge=^$aH5#KeXj;3Dl?YA9hCEq^ReyKO z7eM`EL{FcFd=xmZsVHcaMV`~h$Eu&}f90Wm8W~6Gg!9N{%!$d8UQ@Whr)X*Ul21~} z5gg@csBdyyc`giZX74DcYx1~qB^#{x*N85d zEEf~C0bt_9cy%fTDTG@w~T_oiM8Y6{Kz zF;)wq=`TNx<3O7jcd4o<*I+VgAZAJQRv?ZJwy1&dQF-i=my)*}GtpqNQE+)OU|+El zSZllLj5S*0yMqph$R@+$cC7^?H(OmO!|h@cuM6G0rrjna{EgS)4&-35EIvs1WvRbA zM5-TV)nkEgh@OR{KwoP#-TJP{F|6bbjm@!;H>)@0w!s@IvIC*I4U`9GeBE)@OjWy+ zYi`^(TECH{5eI*JH!`MYz1WAu)tg7*Do$pqg}sDiR=?A%yOX=vR{`4K>H3YV+BgIY zbcPrfF=%8HKrOI(FZ&MzNUw4j#8y@Xe(oO=%(L&Bi?M+9`M-{|9z zqwp{wEgkr02?OgkCJDa(`vDX#T?nxsRIz|@6aBE|j68Kl9v%1(gP73~A$g#mx0)Bq zQiM`)i4J_!iQyHDvOr;!IwONbQ?M-Ot8nJcQOnPIhqU+7H{u4@VY^e+edI3*~MEBK#3a5R6pa(WuZ(!r9FjLz|9oo z_QSHk{Q(SYcA}Ao!aug6FcYz;0#B4MtpZPf%O=PzY1CY*`VGd^$*rm{;l8&@vo|&7 zwpk^lXX0TDN)_`OK(FI29P8G{+19Mr6fT8YT%6T?k=DkMa~)15_CdPYdGtwo^=YDw z6s3I<46L=z@MeCcy^v#$ZZrLhWLL8?;d>Udlxll9o2AJRd4zg3P9wY84wE1%)QJ?( z3U&HhD~(y05Gv^dx#as%#)Q(yw*?e3i1jL4EhEFAa9f!(4C+a2h?0U>d&P>H+)uZ0 zV3YlH#QEJndK&Z}7QYdv9=_gCgH)jz0X`e8c{3j`QuXYsI|}ua z1x+o-QWh75n&M;l1Y;Zv)JyjLN82GJ`y%xUVP6Y5lu@YkppR~~Ee4iRsPs@d%BD$C zsB8zC8ik5a@hH^aA``MGRQBtjj6z)}YTFp~*MMHc({8&v106P28w8z-Pi2iU?ceiI z4t?||%MJuK!!{v%Tacqf>_jlcZ7dkS;{6FT(<#tEKsmaboagER`55q!A+DqZ%EKN*-;uSqm1!-2uc#^%W^)aZ;DU*JYekfI<-#OwD-pl9BfnX*0pZ6-J;Gs_5I1bC|U}!gsn{=ifi@;c>dckVE+PGpF1;CV@`#~h(RHhG%E-n2Wx3K%X8R} z44;p+lh`B!)exC(b`xVQ1g(HH;l# zCZgB;c7~xOov7WiTG}lPgXTtyU?`$pUWBZpLyf7$@}~)d=~R`0#e%S!iDZJsa+eBg z|Dy-gc1E5WnVwlwYmGx=>NWtz!KxYIR__3FK-VYRuw*>6K zu+e*Frg7*xmhm0JPH$DQ8YmVG2UNUMFc08V_$Q+3g@#v%cqBg0Y}gngdT&7xd=0Bw zZ2_+M{y?anm<Q%tT!JmDhD1NdDefDGof;qVDLN( z3~qvTBQd*fZLqMcg5fRn-$o0l4ERt$73IUZt0?B+Z-T3*TR@ec+c>c0a@%q0#=u8~ z%5KL*ANC*R{HER}Nc1d_Xuxn2b_}=A0xAQB6Hu8l++7w>JMw%Br>&6R&mEK^19s{DihO<)Cx?D&B=S=TkB=G%>1$+jq&fzPRPPqn?Nx3sScmqdeDnGo93XJLBsi>N zihP5|x>oPjTTO^ui7B|o!UQKEp%co#Fwgdi@oLxI)oMewZo|PUu#sHdO9~i}h~4)r z#4aJ*PNwS~B0d_<0{@R-30NQ!o3w2oFkA|0AcqvQOQ%|pPrA!(x^1Mee?Bqeh_j2K z@zxZ&lvu)UwFze!z#fnU3oNu8UT?u^2gZ|PTJ7Fedp9JDb)Bi|Zpg!JwxD`^rw3WV z@N8$OI@aoS*%w6;F7On_p-%ayBf+;ZiFa%USg`GmcN;T)bSgptUmWVeDN4IBgMWH0 z2*C!Ro1J=hX2jVF(_tJuiLE_heq&Wk=xsIQ#u~!Oivb`g7AoBL5Ks;?4vrqORs(>n zH>Z1$d<=*ft2bdhmQ`FGg8XE_7)i^8(;tpWI1*x0#VSg{$P93H87nL~lQYvTfT06$ zwkC$c`VMCTSHV?R2TX%B!XKSpy;~h?h@9lGh(c;|yN&;%P*O7NH zTbO+r{8iB5+~KZt?1PLWP1X0gHOSoO!wjLAcib*#5B|c{_=I??Qg4nodNo85e-Rsg z$xlUEkUzqSk8t9F<3zHw{E8?|dYYs2+GJT;ykFwL%yTSKQPb3O|MU%w26iH6(${Nr z>&u}jF{&}PFk`dw$U2+l1v1$`lt0-enziVCk!1S?n^_?o5+^CH5s-&Y4cj%j>GR$o z(Vmin4IHA`G3xT!KONK_%gC>T8kBmt3d_o_`X09l>l58KXL*54_T*wG8`wFai5;t< z&-qn)#xuUDvhAYnx9(WxoVCu`2`jcUUAcLg!+)~B;ljS*nOouF&PHq3&`wzH$8X^m z9k{yx7Pt@p-8o*vsvMOWcG1~6T-)c=U?IPGXozBKAYbI@<~TSDu-zFm5%T^bI8JMV zRWs|I3dh!cKMiDae?g-<<~C+G!=={Vc6EC8g^IKKJiu_2&5qYlLzks)5Kcd|#V>0T z?8y1XHhhC{-}+*?PX;4jgafl+WVvlYA7YtF>i;0lh8(a=z)ov1gA+`%O3j_9f^uEs z;L*r3mJqd>NRT4nCn!#PQ$H&aST0>8sP1KE6gMs znyT)rPl1&11~3?~Fyox#tYUQ%_{qKx5ZG;CFT3qF7*Al)cE;<|GfO+pc)QhsT&%G` z$E!^sOisbJ7fZ}gLOcu%v}1vbN}lX9626)}Pxde%8PyH!3Srh}!k0`$TI{T4vej-j zKa(NC5$eV%@HmZ7vK8C?&s!us0s^@CP|1!f3dAoUKbmwpZ#WYDi5CdEo?jNa1Vowh zV-NQwkrG&5CSbp+EU;hB5NS(g?>X?gK_>L8aT@ul>{KYy6!CjkS?DsQ@)DwDDb$gB zgx()7YXTpIfz4tN!%}TZ?|X`%x94Ds-f&<^G`;ehWnoK@o9X!INAaF?G*W|{uL=uT z&KT7{>2JO4z^}sh-f?$$9VVQaGy%nDoDj??RJu$Ty2h9@#SpUb$n*~@plHXPsJ zRKOb*Yar1xd~PajMYj$bO3`wS7~~B8q!9Fys<2> zFCHkBpHd8!Qw^c(%R-kal}`!`A*%GKRBN9iJkTg>QuTrIK(h!QNH>n2TNbti3&a{n zcu%YL*&A`jQTkh+#kza%9j^+lykOg~wHL1XRc`TAj9sSdFX6c)&~lkQ4-Ve!sYZh8 z^sb>*+}OEha}v%E~W z_*Z3t{quoR`MzSPoNB==e2iZFOgLHyy%Y*lDnlK0;V_TH(uQvkN}p5~=#PSd2j|2& z1*ef$p407=6=h*d5IWXQ!FyWeuC-Ir-&$q9WD?d%`a&*q<88)DBDa_28i=_eshPI+ z##pP>1xG-2I>EkBL$rxbR&NuuUtcT_N*~E}Oky>MMR-%ogqc^NEEdLe!k2O>(Rfcb5hBD+WsC*AzqLR14$XWueQI z%3(u-&^dgAQ2G;Pf&PyJrSv})LFsf0<6C86OAtEN!oYi4<*v0b(%(8wV_}3ANx~{g zBj&Owwi>faZi`~ApJIdcB{#Hp^&mPBLeZunqMAoE!x;>3og|`iG1z-kv$ho+Jqfmh zlDWgzYk8Rr2m7})nl#Cgf^elka`G{y;;S<(k`vC97y#VQt1gv!F& zdfa4PLJZ_GtC=CF{23@5%_CTzWDA9?OBfTm8Km!&RBwiLiVkuS+)$+M@cpX-11pY1C!-QL8#0vjgdBQ9FY;!-8o2d zOZ$&Y){3(!d8aWG4Y*vvRZe^l{OT_fbDZt#G_&7e)(`X1 zsFq4hf7uXOxjC>IKW>+{I^p-11%Ul@4CssLXZP`pH^{sjpK*AS9LrXWhFcGT&0L*^ zQjHM44Oy*Nv~jFDR&PM=AfzmII)UBHjp9lBkCN!J^v{y@?}G$QH0VyJAG2gB9pbAR z=dt$_OvSv?t;KtVSMtygrTvzx8Q3?N-@Lda)AP)%tz-DVQMA)ZongB8Pae%&% zPaD@D-UAS8Ac*awOn?ZJA{v>TNC~aWDgCYDdH^PUOECaUf{6d!m}ZJI>icYn>_Nn9 z_s!hw@O>Z#1Y_GXmQ1y6JG82X?E5ZsbBC7NJRb@ph9|2KI$VL2)?t|quI4x$2E+Q> z4Zh^ED}?ngK%NPV1}btUe5<&io(KbL1s!kdzM5Uov+jtlO8A<^9Hn?~VskVZA}rqC zqu_Oe%$LnLjqKtr2oOE8nvWbtxq@FJY*8xU!|V6)wB z9t!WZqHye)L863d6?pnvHa!57M$M(FR~l1CqpB^Skj~)m*e)2-8H{FUPG|6^`I_@t z+Ey^A5nl1WNbmF)iR~8^uHY(>uMZY0U(()wKMrhSZ%69z^jC-$VR$@~PBupCJg8gOE)xQAPW-3w$ zp=5vLfpWa2_$p-D2#B$LlRJld0uc{^DAUrEFmq0n}E! zC)szt?GTcEk$Q!&uZ0}Sqde-Gp_aVGz_MEg^(#i%G^xcHGjLN|jNwzfUB-H3Le?dO z{W58n!OrSXf&wpaNynF4@F31l`v|8k*dJg%B}*asnT_=%qv?#7s3OSgow*ejJFVpfD-{-_eZsu_K5IM`TgHn-moBzS~VpSU10h$5#z;x zE8Y2o&UDBWBXFo&gq-FJ3HpHMQLo(_wzzF5%{t|FoT|g?JVOg+sF%*_Ub7n0Yn*+f zb-tB=hajz<6~N(7i5k&RVY&rnm-mf&j5GF5*2gEEo8hf>@UJ)GTw9%*hN{i%?OMCK zx5+9?W0mZ-JKca@!Wi>C1Vsm@dhjCrcN)qD*29H!_&RyeLrZw~WP*I^2gt*_-bpxc zxC*aA<^vN9GFXdNy zL*j7I2MLxA-yj0CGvT`y0wj-%x3k%r3=#IGnnr^>3#Sn}F2?mgAsQr1ifA-QA|f~0{S2ORUQ)#lY=gd@lCZ2v^ zkQM8c17*m&aQ4Al@i@@uX;&RvLsfcBv5~DU3j*$g9c+xHmeI?(_%yvHHBn3gG15|7 z00V0+HN2T$fBPK(h?VAFB#Zsy6250KOR2#h&1PvbL>~Eea2nY)c$frH3oVfXTKP_Y z>!Li|OlX$$tz1$+&zNQ!skeYa27#@y)jcwd0Jobt!wAk|Ll~r91mRvp=z^<+g5$+X zo!n>Nhy$DKv!m{$W2QkpVj}-EG}!{}8&agvC@;vw$A_ccGw0()deE@1*y+kRuWrJ? z+~Kr@#d!sjAyi0u+k%5-Ak0kwmYHoMsnkKSBmrDU5s%oP%qi{Z)}H1? zjne9W@*y5OOSbOb2Ut>=d9`3~2^a^4#Hx0BY z4mSs8ej8s!a4yI{9ATd|=IoQC2AB=RF!)1RN4=CmO^pSf(mm}EJz=4K06 zH|SaIwDBQ6?a^S`?3c;3e}A`-qaf(0tN{3@L37fEyK$3K;a#rb3_8&gYO&`>p@@i| zp*0$oH?X9V1K?BMAMxRdHLVz0=wc=jl-(rR=YOQqs5f_a*6}u!{KOp^GC^x^|60dw zKv#9>GaSCS3n~szikH~$(Ryces=AAZ#1BJJl^*=LPdu^5ZI89E*a+-52 z!mlq^$rkXdhQ%u0DKI(jRQM-eB`aKVBtHLQv{quc#G6GBd{a!ZD-V~*<+~WM=?E^9 z>AcBiI_DsG!`Y|vID_e|f@i~g&>XD(^BG4?5*dFdDwrBGg{;xLEo<|&}WdF^fNv+Q-=G41ylwMC!n%pxS=yZ z%W4ccjiUGRGaLuGT!uS7#$@z4N#(es=+pj#oaLf73D2Ejfk6YFdprzpq2yLsKxM#l z0xCP6d$I*=`FW0mTrSTI$sLK$K`N^)U=R8C#p=ng5yskPfhGgS+G@vG6BbYzFqVMI zjt9aXzEB2)n)50(l1P_Ch;$dyNHD2J9xF zin3eQyu`OzK$oB4IMC%X+>v45iO)kSt1S|b`A={z3$79d`-BCu3>fUAb`16f3#bej zOh6T7uxz`5?^?i?pS?K9<+9fiA!nS=J1TcA4xaL#;rtc4PB`p07WgvYu>Y~+umw*r zH?a*kOh6Uou(>NK&fsr?tK%)8%FkOI*g|nlw|6dNd|5`1&=Kl&+xQ!Z7>rHf9b5ZXWpDSP+IRE zbfn>Ic!u=`lyK^h#4DPD$ahp!nVa8VwD#;aA5d#wGz05*-6G9$>v(AUDZ=UnaMuJx0nP^Dt zb2m1i;y$E|wtA2niY`w$fO98+PpZ8R1k3K?H@fX!cXEWVN4*mi{)gP?jteQ#aKx~8 z658!R4dQJq)pR@0sb1c3p+^>!`mYJ5VhO46Tr6)L93T_wblLgw{4T_D|V7ld`If4-v^bao0jRB=akjSM?ms_l)fc6-@~ zvlYlORjoI1Ob3VydG}7QS?{tq2XT6|W#iRwp36Hb$%J995)LN72=T_tC*DGhwCNJv z4I=M{fI?NkxZ94DHxAz*^W9tQd}Y*f7YAkmByw#+S6-P-4=!Y@PpIfQuW5e$=3xi^ zpV+LOv+4$xQnk_7S#XLTELbr~Qfy3WO$r|tLFAtni%6Ly^%58u@D`usiZ|slPjyZ4 zNv>~A_?m@glPOYfW^*(dA{X^`V!jV^$1^DFyrSnxdjl2Tvz4PR#y1RkO?^s#b z5@e38h=BLB=9o5PI{mFB)L12Kk@U9W)k+UgmdS5_VyxGNuKO(pwXw*y7qB6+7pb|6 zg;8M>qVX;>(l3P{5cXPa&!9UBtGhY3tXy+_W#zE5eATjHXJlmLhGA#bn(O%w_;>%v z(1r$VfSOPuVUOFG0pA4pr5c@*WSz(suDxxNyNz#JIE&P1;{z6^$9Blz+dvm3}5 z`}LAyxlir}Uc_Wovm3yhTK3CqDb7di`zYXF;+F{9y(!^axz@)&XEQVzB9A%ompF~= z+9-_vXt{($>}!QT{jEJ|LU8XLZ{b3~f55*vg@BDf)oBu#xwOpljme!`%ePF0rRGjldkx3~#0Qo!eRORP>fv=!7wvXuSV26lvEb2q6aNpL znpiOsg7@oHsQQTBQg_Jz;E1znf{g~=h)ML9HyZRwQE$(!C3qwvA%Mi_kK7{?`>kRn zR_dg$F%oKY65cF8CuNEs{m+DNnJ5&+X8#47p~(<=bkcv}G_va?f&Li(L_4y{fu3w| zi7>^Yv-IRKnXiH}0af-@2c<8v>aa@$+>^@!_XHStaC@CoaT>WPjC)oh{mLeGWm)Jl zrS9RrR;2*T%Y@1s$^v`+K&ia37%DpziZrFt;r6o7WlH5GWW}UVNA3}Ndu2^v*Ffpr zD1zRegQ=>-k++Ph>^sZCmLPZR&KB=!mvOCeoBozJK#Pj-ToP!x4B9Un+X}f2+Aq-X z{Xtl?{EKj&Tv-QJ?A|IE!$GhJTy24E+jU%sV4Hy~!YS8jRCg^K8KTy2vlTIZ{Xr9q z-)J%dk(B67LhyGMD>l;neLGV!8uJ%#YUL)oag@pYy(i&Yxoo+Qu^E~Sk;nY~XPicM z<4B<2&iws$Stt`wWv6f^^Y<5Jf&0^eQutSeP&nQEoxfBsd?wtiY;H`cEA3pOujFN- zsZJ;h?BihI!EJI*!fE7|W3+Y&(iHP|d0FT(rE7B(gu{1_+V^lUZ zV@(vir&aD+6D9qvCs*|3a19gb1SkB4~ZsuDhLCEUWu% z7_eU(pLEA}Lu>n18>@zmPFK5=sXgsea{hwad?L35YW;1`lX(}6HxdJEZ2iAPL}su5 z_eZ~6SKNmyq8r~ZS1^20_;|IN8+TG45HtZ8u+-8mZ4N+2K^;*q^p3W_(SuCEa z)!R@)(5?B^0kQKXJkT8Fxm%1f9sedr1fJPVRU1$VU!Z${@UoAcpy}4an z7hR!|{(PKJ5yEKI+~ecu;IkvsWU)^Wopi0a3eHna_i5_qwjDNi&YXu?t-m-%4%PpQ z)_wclAd)dW;_tajKk{kBxMT;*pq4syAy zb`&+deHKy~ZE^6R{|sld&~?IOkFh|R0h65!!$U%`X&ukAEub=BG69txlRe1-w){-S zK`xic9u>En^VvvcwWA}C`%iL)Q|=PBd%6V@4cP8#JGL9OfXaaF1XOlxH)R1^ezxNv zm&P{?my^1!Z}S|CM`prto3((-fW-tV-x7k^>Liw{~rWx$I9DqCJW^6Ue#vEV?L z%!^ScddS1>^OnksC&s_!zrdMM_YmR6Gc7P{z>TND@D}@zCt5&dz>NZ`C^u&Fr);o* zEx%smAeYOF3d8UN9iOXIHas@Uh7pHu%zeUqJ9Mag`TRL>paTDc#%nsqfdLmj(~b)# zb>JmHWx$03DmyORV*y)!F61DW%Z0}($A@|bJRq1={hFj+!5<_OrUqGLAb;&qUhQ0_k_DIQ@qrMPm; z^n+tb1;bYWUIt%WnO9Y2^_9Pb%*(pUehYr}Wk0okY-oXKG24G!5{4?vW<}JFY(E=f z0A3O2D&ndKGf3BdR;|mt`Wm;}Yd1R%22nsg*X~{yN=W#%b9n*g#9FyF0}wTNuZ75G zscid5s05FU@JJ^@}S*O(iJXJ2Y0slEAIz8oE#xIWS?M{~}YO5okJ_E(-&B_u;_d(#UDZ+qMsk z$yFoHhM*WV95~mfdQ(BVsvmcSDF9IRx(hX`$039bDrmrkYIDXB*dM}BEC(W~mX9@B zc5KGk0mZ5CTHBp=p%N9;h4CGwTztE&z14QD6AV&^ez!r1YiB72W(BV{hk(#bn6#+mYp@D9|QZ;rEq@gN@}Zp7IOPhyEB3_BgF zh4o%^BgJ-xJEXlZ(zU^tE>KCX%rVD{7 zI`taVQD^G92+oHE2Y-iUs3FYWu5(D9GKPFmwOF#ua;S7f5SEhTGoR}1Pt8mO@oeO z#qq8Zmt^g`@yS*PbTBgyKo6tfFqIi_u~K2v+wj3?`I|`m>lMXfQl?H`1_J})Sm33S zWR5qr*)^Hd>*i;w^6;#LZ&_H$3y<@2NUmoyG#MhCJZV~H|3;ifD0vch+Md45zCeF8 zc@k>YO+?C^@k>OX>@5pr0;js7PUxd>zrZSIi zjuf^^lri?k0tXDBV=GRrgv==67m~G=HyYDO$!xor4UxUJ@`ml@ zDedxY2(d7DecP>zGX2(skAR; zGc*|@kJ8?R)5xy01^Vrj_Gnos6Ht|)w5Q7gd1|0kZd*|~R%s{7m{w`0zh$qqlg7@a zw14o$ue%mYCWcG!%FS9>75lRB#lwu!3r*+s3w<=;)rTc34(E>rH|^3GflT z!8#HS#d^K#FaWr%anB6i%VxJeF@sJQe9H%FqTQMTPbHpZwZY@f9ou?`Oh3rEBpLX@ zRkB}tYq63hSBy6?Dr$T)cr*Wsk)^EFhZDYJqU;qT{~y@=Ooqs_UVId%k$t@o$d9fU z>1D0HQWm-dM48tLS-*-fvAj&U_(x@deeXc2{F7p+oLbiEk7c3Dl**ABn}pPndxYLc zE!XQ06OmM;`Un_UAFLX8l$A%SkHKl=mFo23R%exkEkW*Bg9YztRlL?O*SHib)>C76Np~(<=bY>l=kzHqo(I0L9mWX|= zib{WL|ACbeLiHqQbLpikjj5hnFTqYJsHEmpZow_tu(PxaaT`nFztwiTH3>VZrTe3L ziiC$mqCt&%! zKvcqNe{)$N?;R+GZygYY|FkT0nNpan=|o?VJ49o>sVw0Ce4w=cODkH(uJ(!ARJ+=z zzjblSYM;JL5yB;XFxOgto-yGxYrO>&_e1G=o(-_hHiSpk^2dPtoVEOyu^|ld4Hk*i zUutXzR|y6Gqgc_CnFc??flV?EqWP*TS>p2Ykx9Qm_x;J_dzOw z%oD75?>lwQoMq3R#Xbc4ftdZn&psOmJNs;kk@CQ~Ml;-3P!Qm5D=nYsCdr%-i zO2TP4a2`om!n0=t=lk=i=wp)E0>J~3$rLXvXo@*Z-oA*B&TjOc2SEGbe~`=3js*1M zZS#ExUqYECp$gz>3B#FiK^_$OHC0S;luOcAGc=n_QIT|H^g<-vVj{9{4NVZH$paPx zf9hyoh0|gjQHh?boq2^v)i0cKyOXWjtn0-csRpWh2DR% zfA7P81?Im8J##{=|6;UTShE>aHbFTRubf^zqr2QLHhP)B$gy#^gf=}}i)qtC;ViR5 z&&r_Q3;m|woJTab=|aXmgx9TGnb6ecC^~|#^SPxEy-9TZYs?i`o>n%mR6o~$@Zr|S zCQ7WJhEueK%}F94A<79peG6^<@*b5mfl|=vd4n=#?}XvaOv8l!3~y(H71{dbU(22S zCkHV5g*zCZNaj$Q|D-g4xwl*#e3ui=v^Bte7El=!suNH}3)N*S&H11OZ28O7aga@n z6LV2o94tF}ep)1+@t@$!O>mX0GbgRo+ua3dm*Zi0u=-7T>r4x%40uaG73HnDk;bU- zH^J2tEuhNJRUFttxhmISviM<)(crxeB`;Vw5BB1RCuvN*w7Q2eGY{5e6}fpMAC(;FIwxEfH zy;_C^UixARA*U89m4p&6FN51=8;r1&F>lC=ZHJKVYb2f4wG->g5m3lx%rmx7NT(K+ z5XzbAx&aCXdM_t%rgUmiog3xRB&XIJVOITArxrfNom&5bznD{t{W>U}S}yM7S;FKf zCO(d0am-E$uB{!#xwfLvW_56FoBuFuI2=b_UPc!R@_X5Pai2rXoG1w@{#J`6?)sal ziWlu%{it|wZsX$1bb0(EWYM}8<;tvBP9BHfch%25!b(C@_!XIfm!h7(Bf~u5vxMUB zihWA$ni1^CiCq(1CG7EAm0rP)Lub<%cmW@P;bFR_`}9StjG5Lm*ryAqqWg4eMd^&C z6D(lMzgy=Zo2=ytKA`_%RMC+)&M;60le_g8iTCb9u6oGq)*qXwuG9AHG4l^3NTJs^ z05J!2&%PG9m+jdvgYA7*`H9f9^s@Kh~Gu>`^ znAHj;LR!;q8$2fPtFi@3RyUm0D_35)EP}XvLlFe+AYjvNjES~NK+ybn1Sx`=UVl+; zk|<;IO;U*awcEoA-y^4Pl5Rq@u#^8b{$iUX_RDIM7klV^wY0`+qb+Z~cZ7-=*{cSs8uGibL)k=xOu@W^c*-^WKJyznNKIDs*zTY(I= zLvMiL&3u-M;eCD(aQ2$~gGnnshAX{SBQhSMR=mPlDILdR<{uDVF%Iqo#2ip7{?kYq zX2pLIekoSGGWmEbKKfXk6(8aOZaF;G{Qp)(g& z@dG?{hFJpz?EW$1tc4y0 zHE8uTGQ|3hK>r%7jMHk?U|#{Hc%1QSv(>DRLw!Kpv{kODk56K|D%e(BJ6&%>PaWJ> ztd5c{Bk=d$F?(9xy0n9#k zsQoSF;$SZ)n&~m?3oW2BIA#@4*&VaK(gL>p$E+M=6LTcNL8B3+qC@T9Wq~OJpVd3; zcx(-ld({$4om| zkQL0H1Nbo)`wFxc%rOHu0P*=W>eAAt;VY>q;!CvW>Y?wllv?(3={Z z6}#$tpfl?ZXihDAim*plIWAOViEuzcV-j9Dj!dLDUh$5_ftfZuOoK9AHbS{QfX^y+ z!ZI1*3>=t+l}P=7F?`x&ga;rXHB?S#a*GH%tYmK|*^lo5ylr^<@D9do*c%u^R3=*O zDd+kMxT1%h<08pV#6D_9(>7F-)?_*)?p2 zCPU=NHu0{*X@qi3aA8fzH4*4nP?o8kaI-9w38=K`K2dP}&cP%s*uO}$>Fs5Kd}}T$ zdmg-Q&`$W-I1OVeb0~VuGf%Q$*xQSjA zD3puGdpHW?7Z1Ft`)c;ZBh3f+nS`%c%uOyE|H9^GGDLXUFjXj@!)at!C}G4$JA5SK zU8_*i-#RE1N)nj46w2QklRLLUdGU@LV%z2(Wa`CB?Z7+lT)m{52#}&*9%MxEBKppI z=gFYM!?BoiZ=eeA=#l}7S9l0*eubCKT0W!L8A`S1z`$llK6%vMnK+H?YESS()cl0% zj1vxB0{JCki(FI|$^=v;Sj$(H1@fkWQhBo#mANSsv6d5MOuM+HzjaV7Zb@L~THJm= z_{HrnMBb^R?Jm4>88fD@uI{T(^`@M_OX9FtzbOd63`H!lj(h0y1&<0es)DY-^(hEo z>Y(Fhs8*kt09Os97=f3igAN%8!q@@vgN=p*ab)<8>vXD9?4Rid{HK1ibR8<*n0}DZ zN*0;mD$y#>DONx`=DgBEgD4pI#c;0z>J!_)6#Lh-)KSAhN8wc-cmAlr)Nq=kR zz%8|e1(P7nW#-&!%z~Odyag2Z2Y$tKZH+Bi`w36Vw9&;$^_67pCx;DTP`4~-(?QmY z;3}cu+G52*9uZ!M1DhNXM$^yXxUKRfnwv6GjrI<8I_nA?GmW34*$b0b7b8qR{jrSJU;fYZ!HAjC{EIMR90 z3~p1HZ(jmQEcCx*^d1hJhtU^IG+Nbe;PlYig?zo>4-@uyaY0kdVU_p&Nn|(7U&t88 z0`-!8@3I|2vM*Av5cai@Ls^@ThS<A=pK7qe~2!?aqT9&;>a%d8s3IvO~sBTB^^hQ?y($bw{A zziwMnw~ogqvSzS2ur(m%S+X{K3&qmxz&KBK(bv?^J;HZ9IeIiuGzm5SPKf0jpZqbs zJv{%Or=;A-TYPWoQRDZ&R8j@{SGOt~qy+pDhBq@U6S5?J$_7&sjur_K)8asRfMFuI zN+f0R`Nops8Q^093|}@riq0B2tz48mmZ8MB@Z$;#s0^}31XQM3BkL@n%AYmDfi*D^ zQ>84|U@~hYW+m|c169sLCTrxZY)gGw9!U%$0zIqX`U`-e1DZ!tLpEl4Bn|i#&Lc^& zI{eI%N;a&;<(h=pgU9uK8TlnJULdwvR}E6BU0AyW%bAQfs-2Dl|Gzgi%}Nxq6UXjk z9ZnWI(EGLP)TiJOaSF^ds7&HGPP)tJjhfSfN+@k;QipNmO=r5* z>D0#>(gDRiI)nKnS+cqoIwv8}nr*C^C*w;}P&p-TB409F$ArsBZb~Ux`KB~Pd+l~S zYc0e-L10-ihCcpcn^N}6YE$Y3$SAKE!#0ry+XY7!lgcqm#!an*4Et4_-LoTYqT?69e39_!BfuC_3NRLgFha#e-HOxr5l2`5E-XV zDDQy?Aaf&8TJSefP47$?Ot-t33uWu7NoOMWW4BV)l>=eb>WSDP6uakV!C-GxVSSkM z@0H*gRC*08if|`i_JXT~{P(CR4U8TQ`SZ9PVkqc+0zvSNO~uf9E!;hjhE_jD=$YB| zbpR}Eb_Mtq2A1~?ct9+vKSUO03wCI-TtMD{vk!E#iRpB4URvicoN|WdHI51}yj=}#&zLeACq2y3# zrd4IaVhk3GDz@BTrUBemomYaUqA2(i8`}EN8`MAE{aOKI4PBhb+Rjvh81|DJoRn$YAtu;``0=E2qVh*xm1t;X`nu}7=rw@G#Oc`jG7ufOE zt1X~1;4J}Fl(*7qR{fO)RQb7z16wXv9Uo)!_zPA{TQl*r|Ag41`d5jK^KlED8SvLf z?D*^R7El@Rmw+nDUq^&2N{Tyjhv4r!7LexWIX;1MdG3giN$q1p<+a7ZQ~ooY+d|g~ zzJ6_iF9Ux2Z##aQ|0H8e-=vM6fGWywY5MFq3#jt*76-Oa-pVzYJWY++AbF2NehRh< z2Yb8wW0h@g+QDheoP*tkg4RWVj05S<^Dab=Wgff@@GI=WlUr>6jP!T~7jeg-A^LKU z)MBDQ5`20Uodc5iO$<(A;(!xC?D|-aF)1? z;1^gz$)eZ@sk6LyUr>w>oApifnyjBngw{^#NqfS$6z(51${ZT6F;Z1qM zLU})XQKW1&LSB>bEuEt+L5<4f#aFQznhX(665+imk7&CS?!M_peZ1bCePMqQ{Mm)h zFtgsCd2{Bl$Gg=wgg4K6ufu7CGDL8tOsJ?Q&>v0R&Q>Gjy=9?HK&4I7iGu4F&m+lr z{zalq|G6xXKLG=qIa0$^_TB}r8&uT$6i&mK%G|{osS%PWW9*H%ihAj99TYV}lE75# z+XPQt_$ZSFN8DjdZZU+csJEXDk-ef`fBQqC{?+@Hr6l6h{{!-FaBNPMx`~z)2$f68 z|8j)JFC}4=}Z5p%-#2B|9DxOG#=e#pz;2P%b46 zCW4w>3EmvkQu5q{Z&|R6TuPqJW@s`*9((mJoJRJgM4;bpDS2&KC=*bXu$25wSs=fC zpj7@_D=Nn>C5bYoT}sm5Iw+QsBrtO=C3RzR=iZf^pS5z~W=I8M9aXVUMBoz5S5EMU z#mbG;|KDeb)aZY_nP2~BDJS^bgfE$>Zb4E#5E zU85(A$y^n535YUlepxq=c%KaW)=`o5kMKp(>$wbq?-=X( z+y=oFA`r}}+!6|S8g`aWRrifT#bJo1_kWJI+M|Aq{eD*7ID(`gr!G>{zQ4$iHY0Ku zTqVeTX|Zf1jf6j8LZ>kj@TQiJGA|@YhH*$kpy(|!<2NUKJJ&k+7i`8RL*y|V-h$J} zzMu$ln41kBE(=`(qRiA@>&yluW0VK`bSP)fw< zjS1tKutFXr`G6T?DVMxIk0IJ*j*7e^yB8ww788-xkZG(hm1c{9W#K6rKp&Osq-w}4 z1TM82GCsv?Fnkrckkw#dzpQF71j!C1RYQJO$L)^Rs@>`YlqhyfD8g`UF+~^%m{}_^ z^#Ay9D<447#DeF|N*kXRWTlXyDglculZ)5mp;S}2F4Yq9ivJu}`jLA?TmPrIw$4*$ z;^*q;9$^${cf#sDt%}feaX|Qho)@G)60M>TGYVV0L)QsMEL^L%2Xt$jL6+n^7~ae% zPDq4*kS&)wsNw?fmBD0+Ukq=0e?)$L$fWq47_UIm^88{Z9xQ#za{nX1$N|ms8%F+Q zd4A`@uW+7UM9=xjekaFcB`)JHL~fqm^&doEC1m_5d0$6g+MAl1(WQAQcZmqDwGhEL zW*6qAtg-bI$4RBP8}Eh~C00?R6FZN*>Ax?{hrtUE72 z2CUKwo2Q5S%X!~)IzU5X*1cK0<|_`(=oRn7PXG>Hz>3|@Y72|uLwwrRVA|}L$+Ule zx8gbZJgq1>xy3&&dkHK^`)4cO%izCIx-tP3{Y6l@w_SHTvp2x=--ZGE7jLPyH@4dC ztD%*iQ{e@G>rl5YsSgKKkspUwMyKE%sF-?Q=7&c@AB#0i*|aHX0@Y?vB5ZZ&I~4@g zZ9prm7F17zJgargVUJhg^z!VpckhK{t4_#Ni7LEF zc<7x8gXvaVgW{nGtC`Fx%eE{Yx<`ez|Jeh#_XzXy$n?ybT5G%mBGTN&$~9({0>apV z9`Tk$%)hgzP9^- zb20EQ68IjpfX`qP&EYGQPPqn?o9J|fU38tC)uYf~tk-ZmD}u#vMYtp~@AbAKye`l7 z7eJ1Dy*BH;73kDo2!FsbJ?otc2CvxFygf-<2P>X}w3}c&!`<<+0PMIHbp&jd&<}R{ zJqR3v&iBFRtb?RphDd2C~+uiJx|el9dN0}ugQiE|Esr{=E44vE!Y(Jk_!X*zO(FDEzy zf=A;CUW=QyfO5ck3XP#_3v^DbPXT3XPIt21>g}3zTJ2iBS#8fa4Y!JIf^X_UOiE*omQyWo!wmb|GpYfh&%CAtYKoKkbA-Db^gj?XyNsTLT_U5HtLck8uYwb6+% z(7_EVVbv!Sv=_&!-g+E3T%$)J@cWLTrvwWigcdgI{zji4bn|Njq;6|Sic_rFgKkn0mL?(T=C^?Hasjj19-U33Cdb`_n9ZYNWszv5BvL7sSc2Cwy5@%z>EUr|3MAzG zDpjPHZgb9Z);Z1&XXlvPt&VPU&T)3S)17()oPxJ(+wbh$IkcTVvYkA#egDu9<)LDR z`VLzo1baa~tquVY9WjU7enNp|bNk z4{#LK=tpSq8MQn<)$5=Z28+Sh-e53{I9svZTdh7Z0a>BVt|JX3`679 zrZeWU#L^LGV-MW6&2D4HX*J=WsnV5X;$~%ad*PJh#=lmtU{3IQ_>VTO2at1s)GixzeBKj0Tzdz;}J_J ze1pvQ>&4DjMgV^W2WHWYa(9Lc@(+$B>P8;TJODe?P}oOsqmsQ+)RqwQvhxef#lrL} zyuOrYT3t6;AD;|Mm)~*-8WBO7Hb_v6VXkIts~$pPd8)Sw*8jU$tjpA_U%|k>)uU7u z#GAT}r9NadnpXt*R}!UEDbQPF#*5bLzipz%#R4ZYy63~dW{11s=u6WogNtz*q0}tq zpP08u_$&l)^XL0}f-pJeM(WQcQiE?_Sm-ykg3{kwZpPt+N=c*Jnj!44pNpHfnY;>R}WjU!h#0-BHTW~I@oeRUE<=)k8+_mS#49ZwiUbp z!D6QhzT)E*TMYkelw40PmhGjWU&Pp+e><*DA>P-@I^(XD#yBCYlJtRGtnwr_vjSMf z0t%V@^CMe^l?e{G0-7BK3;iLJf4*o7g$#J6juYylDJl4O8x&+6tv0KTnQna?*4`%g zqrvx;9tI32_O7SSj zv*g#a!Ib84^J)`XG=%Rl9N-0lfRC1ofDaA;0f+m#LW>6V35E=LnV{rr<)Y+E#iPW; zfKeDso?FLgCGT~Jj3ChHU^=(%pOIlnNelaqnQ|ci3Ra&7xG4Exo1bX2v+X}1=2?vQ z{3m1S^U!Q(``T5_5BNSa^tg7tT{bHWNqIsZqBr+Gy#T=o4w=Da@Go$>9_M~h_Eoh@ zs^BK!TPAkKG>ze+;8m=4;U91r!vAYR&Aa*(B&Xt@3w(!;1DmUH=<_UIbUQ*^B@k7mK-3pQ^PW|~(@;D_HlP{UM zG6bDvyf!5(_rHZ`uicJhjZ;4Zfn{;(PrzR+PM!TS3D{;9HggRI$SAK9^bTT9cIvyD z^@%!o&kNa(JS}s8OL#j&1vd;*)(uIZ%nSm(FVw1zFa*A_z7_2C`qZ$qZ|3F%Tm2L* za)U*iEy)Sb5vf~8WFeE(<+0Z20?{eV0bgls@PM~V84nDrWovVxB6I8wk@GsOdQ~E!uE}FXFoZB*&hblLOXwQ zlVN~eAvkz$xj49E5I6v3smDS1CdUC@Avkz#xj1-L@i4ew>MWo~wB}Nf@S0XYF z&Mk`G3MVQyCHgjI(t*xX@Omy_V{n_4Pay8uCgoq@S7eitu$cSXl%?5hjhKx}i0a%t zJ|98JvQbe(c`vxe?e^Nu4g?c%U$kE)N*w>P%%x^HJc1n>2Zuj=^I<&-5$!LLX=Ji& zvIX@%%M2wr#!ODMsQ zT5HOI6F~^}?OI(=#JYh__+!m&j2{G)(!QBh2&zGX3J1$@@MI91gox z5UmSRsgxR}@<6c@mQgDIjRUi-s8l={Kv8Ct%2~|5b}FpG6s!J=N6t>C3wgH?fIjZ9 z`+*ixkD#-9!H>B(tU7bEi9CEh5(d^rncz*Su<2K`N0}^O*a@sDW-y6sL=?_U_?m9x zkl?40aV4j-IhqWSC$3~EP9qdog3B)NUWv&sN?b{p0MWRTMEr9+#>ADRzjZ=9mlA3u zjiQ(|38tc$u&g(@*q9n(2pK=JkPVSNnC#@OPNm-LG6B7|iq1?}7n-}elRi@_g6VBM z5dwd1g8&sMEx<4x-RRwbWDblODjO!OCMG8(ayy?K`=}E4g*SCy%`TBy`gYuu@Fk1+ zNoj1d`I!t6mPT(4yl&8Cw1d;gE{$R2N2M_l_gZO8e`^V4Ng{w-lZW zeg!Fqm)7Ax0TZsOje2)x*r~hBK7%-JX2Q8uu+ChWPo+p`KZ_^guaNp>2bCK4uSD~0rfY@eaU^6iAIIeOD{>K@*O{S>`KJtAbf^RVqnZH9%V5rN`Vqh66 zNDo${0-n^cfO*qW8y4VGJXG-5OW+p^6=c7xLIs19@se_uuER*SAm`p46j}cViDKkJ&2~ku(&v)`^QGqAMmpTnFkNBC7suCp(M7^zB$|B9J$ z!0rlCPXkm8F8=FwL_CZCdOrM$#DD2Dw;%lVgml!zH7E!Xn+N%vfj|VxKOsd$jr@8d z_W;mxjk{fl+@WOhDIrik+}@R{Sjv%$yZcpTMeLYCzZ1`SBGuj+Zy;yIpq1 zg)NT6$=2R_chcE5>}(%~vTD#WqTSkyQK^vrHr8?5dsxE-NSwo1)JAWr85|3!2iRF{ zsm~RQV0rrWX&6`=`-L~9%BFmr{ScemoD7jv48u2w{M?)HT?<_+kF>wXW@|D;*jr*+ zUFe56jgU(T7vF>^urMj2N7{*$(4LZ{zjaX_t|l}~`j%q;n8b>G(wJt-G50-ei0rXq z2k@Bt)Qx(PGvQl-11aby!oXTV$D8>DJ*zTXk?=K(IZE*!W^*(dA}rqCZ-7khP9>Ep`iss!JLd5FFy-v~J;mZco_)VFVPL+0 zJd>Y&r%jQNENN5=c9&=3e+}T8`9YPVF{JvS+1=(${F@1sFWZP8 zWs8C3$u4!AM%gs!WS1GVsVBSm6hGNL?Na!~PIlR^gYsneS$G=B+Fy)z+=e^Onp=*y z>rf;c5(x@8;7x8tuR9=SMPRgGWj*KZ|Ll-Ep48)nIWo=aQ-)i%CS$zf4MS~UEC<{f zcDmKxC=|I~w=$vj&0`b!iaM@Ro+a!4MJQ9ju?JNP8pWCC%=-fMa}PhJimhCELM%u4 zgjG+$=X(Al%sG+$@y~@onyqU$P9MsB_?9G$z8VhsK!xO%+>RQWrMa$rp?w^S+1HJFU8h|%%hCdARf8C$Uod;z4WwB960 z39*Qoc%WAm+^zzQ3@*gtpAr8o#Nu=CD-vRnVlViS7UyI}R9wJChy(aB`?&~GV0nP= z|B;%YM6G<4;3t!1mXzTVM09vh#DTdia!P!Oe93I-7QPC(9i(LC+rbd+wHx8AH9>!Y zz_Oa4zr$v_gB8Ll~64q0h z$920KduRdi>$fURT{ zec~Fy*|RO6%fG|qKr0)Ugy5)DRg`Nmxx;5L_kg{Wtn%Xh)A$mUXSW%>KcvoaZmG1Xf`B|@I%Kw zp8w7|;|e-CVWXXOyN!hJo4!nh`vVrjohfqv;bk>)4tO6yCO8$M0U#SMgJftwCV%-D zG#9Dy{>4E-OsLO_ZH=*SvHu)IPeYwn!41*g#D$DVIO0=e5}9@!*>?V)#DT-{`3kxY zOnm;gi=D6xocIO~%mOE*t^o7;VHcnO>tYcs!*>502G)k{;!Ww{qkLRueEt!a>A$Pn zq9tfl8Nhou3~aVJ3&*>d#^*1=X@mlJadAzE&kvI#8s3>m3BI|BsnVMMR&nw9N#9b; zn*oJMxF9VS6ks1qrm73%c2RvNP~ zAym=_a>@6*jR~cZZwn}7{>@Kq4MG{wjoV7?L3YwsT$Y*qDz_=i$-g=7a=mDq$caF| z+)p2k1DoupqwbfZ{W6on&F1S3HP0q{mC2>W&Q@mHoRKgvSE@&{U6Vf-B1K6rTkx;k z&^Q2zyJa!3jG&^Y7*RG&N~mEw(A0z)e2Pa+dRR3G34<+iy-)c49Y_C7PvdGll^|Y1hb?59{?bcqy7M;;$+{u7oHKu=MRx3 znZ*^FA7}Wt;e-R>GzkR1cw?(M4$(+%pyi!zOT>$^16)CQ=FNfg+$}|Z~*s@$(O7)2h#kYkoFVFlI?$y zL}f#uM6*_H*XlRB>$bLgNrBjl1GG^=3tcA?b1Je!pb0WbOdjofqWZc1*A6Y?&8J{O zZ1rQpvDH!H`gAKToO+c?gMe>!O46VT^Kuy8Odl%7l*~n4#s(`soO)BaIC#ncaBz&C zaiZbFM}!{r*^8TGv%DsH(3lOe+~y56fGj(kho`)j&wnB3x@+r0!f5xALn884obFd62I>sH&4 ze>B@)jb%W3(A<4Ru->l-8=#|jzSvnY9ct+?+h5RjC+fA?{t2<`@N7zqaLgnFWvbxu zSeX65b`sv35!Y1;DB=o%m%uL2ktU)a{Si$z-P&Z*Xk>5?Q2Sh$Fk*l93VB{vEJZbwR z4$St;lE1-{DK&C+bN0&8gDETh!(y>310%i<0|PRd%TS4C!<$lnP@0w*w))$I@9Iq9 zOku0PX0tUJB7CZ38n*g-oJJ@>0`+}D*lL&*(Ey1=N@xQl(%*VgTv_Q%EKM|c(ub7g zHoP#Em|$WE83^?)HpD}sru3>!dU-QpT7d&8<;!7Ut(4=<{8FAZX7#d! zuUX7d20v|Nb2J$uEZg2u@VY_F>QiwV*=1W0KnVgxe{5t2!!8l&dRAE|6HpZ#v)U>P z+y)G6=EBHB;hU@|%ye;7dnZbmR(q$vWfQZSG-@tYeYP=ma;xe)Lk<+DGS+G}hMm?l z7Mg_G#+8~oQ3bEx8i)C2Sw!n~lP+Ylwef5u{3>R+af@%vh2U0q68yR&&egq6*BNu2 z9%jbDCPU;=4j;j3WLN(J{ZaKlZ#bg-@d82Dm&-zzfGD%-Kiroq zN@01Kfc?X=!2ZENsr=(&sO(fI(v*GHAId_PDV3KHok^jN+#~c}a)n-ln24kz)k84w z;FkQOaTk;xN?20~ZzX|{%V2qf zu`baVEEZ76ApEb}?r>!kD0;}W!3as7QW=DQ58ou06NEonEWbQkuermv?UJL6xAIQ(^PM(}dvMe?&d^AK4|IhrEQ5Ob?FuUxCXjc^Y_8!Fz9=$*dff27hJ?aWM#b=GZeHQiz7?6Y_8g}8=JsOoAoet)%$-)9&w z58f9XL6+pjS1L><=VcnXe{8~FIt6JExsR}#={P0&MMmx~P+{$V{J;e#`s_L~J+r3P z8t-)5_2w=XS6$!Lu1-OJn7SKN3h4Gc>q~^E&Qehu@RWuPD&8po zu6HW@6R)roN*;;Nv(vm7N_uA^2)>^5q8ST^`%*|JD=(AjoNF_ka}d1Y?9+Li!E{!^ zv*84c6XSJ>KRGqF^vLiF^081!EL=d7*r%0R6E)k4PSiqJ)f{=r(u^eJ|^@`-lfZa-QJ&uUK%#ghpz?3D(FpJ>klH{D#gL!i+>*;p&asHN{UezY-C1gEidbzXkSC)#4;`D2)BeK*Q9%2M zcXHbibLY%?M#t?q8z<|looa_A@?rA_2b({%>tj8nxdVsQBE_#e*@Bbmc5BMH{(>7u z;gox*TJ!J}8xOc^?yj~AgF(c}1pKJArbZknk5jMlDz8=87P2Yis!#R0RW?No5D!?k z!g=-rOVrTC>)!|wD7Sh)j4YS)5v_DJoO=Ns?`sL;MY+E}zg}B?-mI^uVx_>lA7Ee) zow~{$n?EI=v|rt){!YRtKT!@DP-3!_M}AZ8_JbJWHl{p8+peZnlG*c^`@%r@42t?C#p<;M-e0O!1ECk1=Z1^rg!Gqs` zZVNWIKn+pp7uN{LM_v_P(y2y?YJdz>doO?y2O;+|N@iW6E+G9Aw}Rf^#g6%7=2z|fO;O72_>%x;EDt-bB)^y~|jjp2EK(7bXWgTDN*Ibd$V|AI}02{pume19OU2sSV; zTZx~L1w|A5TA2Ny))UGMqA@*_`hN2vbx)Z8m_yBooh#)GQ#!; zPi-|Cuum9vwv1di;#5{$c)@wgoJ;E+Rx@OX#0G4D;Mti@y#sNxlWwa$!`|Nl>JzpG zE=0v{+Ujh9#UHwLZ>&y@wd*xl@B_VB@wP;u0|S``Lq!bc+locx)8O-*=r?l-jH<6Y z4?MOgLJkIi2y6F?rAXXbe^Qu4imd+#jK0XGs1IyZ^e;J=mTgqI(R@_Z%+5R z+%x4|JK5?rY8ZK6?K%y&3jPc5eKatcTsT37rmFkuQ(*P+pnbR51vPb!vuecIG~w`L zS|1>=LF!G=?RXwNHsi3}%F>QA-fneZ&obtVq8h#*9G(#E6{6w*|lwtcHg@Ju5 zLWvs2o6>j4NFFTO*|Reb1B&@r;N}XuLgx4NgfCfGNehqjb@W%*{7i-jM+}+fV}28- z5en~RKHGVV02p-K3KMSrd>=T0eDk3F`^rL>fT*OP{kd1``N@Pt0+Eu+59Xq>_X~L4 zAT#eUoJM{srv~kxQWm;QsVoEY)zi$#JtEa-mo2JOCz%Ro0-f?$m877RG1ixY|X7qb9FZqXz6_L4cZ z(OUn6-C4fe+0fnve&Qzcly)$y5Y9{>6%q0Z;i5PVfkKY8P0iX?dg5^(HQxHl!98EP zdfWfco3WOB&+Y#COD z8{>AsEEG@hyi5-H3tK2;xN&6bh1(NptA3t_UIrTw&!FDaBHRSj!F_WB)TjD34A{RG zYEO+;(U}2`3oM)5tWUt~CVQ1?woRm)uJJ5wL6s{YMF+4?2BeM5Pc#i0#k0vNR zjY7#&yYqwU=N<+;!_K**;g!d!boaNmYG`Gov3)eYEOMJ0TWoyl#r~>_{y?*7sBIEX z`9;z^)K^ zU$9wkUhh2XW-g>pvY{Q5JZ)+R>jO^>oQ zhUJsM77)wSbRpQUKJM`An6cb*mkvACaVWxG!_*VlK~{&xC+i{{lm-Xxt#>D#rM1?? z(zpP?K<1fPKidF~d+&G^g9NtmX0X7E01dnr3lC8$*IFo*gff8gAnNa>fO6VxAzw1n zwqm;^vjHh1@S~Uzw`ezGqHREG2Be3;vZevM@fXX0WWP+(0ohK2oe~AeD6eV27PPQ~ zw0d_`G^5C~4||HmK1_um>n1Evas~|q&LMh5{dTC8K*Hwa#CX(E!PPxPr0KbY$LVpA z#!ShxExAMeT>l$~##UCPWkOSdA=y;GCtA#2ggxZnSFG@?wH05Z;ymD74T(+mBCmwu z&2*z;ILW=ppRvJ|y-03L^zX{W!QU2-1I2JkaA_+Dm6m9Xz75@&#hXv>Y5{rGviTq04oy%Qw8 zuef|U=3GQNe+L1Z+~c45EwT>%lz^FO9g5A25O!B!)gAh)3n%lB3I1T8p$lKClp4SE zAORyc8D;#^?{Q#enMw|aWvA5mrE7Q~5jV+}H|o1x7OE6i9DCT=fdNbH)?P?eg3PPd zSjTPeVQES%l4-ov=uI^{fvBjFMOjz#Q=S%<=iC^Ur*m{Jae`SB*5&M^{y1Zzi6P|i>(OiogOhr2YC2p4p!WsB z;yO$TY}*b3UxVXCI6j1gMy@F^dU3Kk?Lzt^955|Qkal9wYP_ct$TY#qO=Zr6aRm;f zq>phNu+J*-gLqT-)$EdX}igSFH)}%_O*~h8NEndF4R7^7+4+^QkPwnO_PeH zGP5=Hs1TpxM}t0f9qt7^?;$?(e6v?a#3!>J1ol7u z&_BZRr)&{>c}(D^4hFf6C1X~+Xc5%&WD(Tqb_F#1Vb6Q4`&s=7|C)rUfxiqZ+J3hpx{i9&o?3c;32UdW6y=WMI z-Bs6SEx`^MXb?@<9^Ko3y5{{SCfZP;XGi3hVhyN*O0nNAKU3M&9qn{$qu^U;*Y}B% z?Cw4^FGhDmxub>)q zy4hW~Y9$mrY>h#w#QMa{y34AK&Vj7-{vc5bRQ(v6Hw&K*yc_6fI+#wE8JIT+tC{d7 zm^Z&uCw?H!n=q#v6?+fAD0w#&B(?;imO~{s`pYs)99{Pe-Xja#qs^HjPu=$zx_YM~ z2)>D=)P2XYDH}l}fexcH4&NYCT4pmP``Yj6Q;H@hbq;{)@^Pm|93H1aBOi`t0WBd9 z`_FM3JaUiF_vW`Q;XHvLOGHhsSZ zR0eD+po+5Tyj3eH+VBFw)<0Xom7mEtxaBh0(UHB0j|i2^76(uI&u|_KT_-sEt_98v zIP6cv>cC@RCc&Cy(4z%LsMmVn2^|@F3gnPOVXdJZ+Qh^w4KuY>982m>%DR?CHcL~!Qg z13OgV5A1euikN-W#95BDdTkkC&A9dvlnMGKqm0Py7-7R~e&8%}>s4`JroKeK6ouiV z)z-6i(wHt5WLaaKLdcJc$!f1i{!?*DjGBNtGyAnR8J4s03AlWMcX8}0p6ZLUPzil*8zYD~U8|mcc z?x2IdY7i4T37bE}@B#(JYJS_I^V>!TefuEhw}A07{jk++wnt~PoeuipLCoe+v9d@M zY0~5rt26x&J1~Gkiu4GLew!A53NRBW*i?0CP4oGVosnJDiA*%LcwEUa60fGnT(kvNqo(io& z;Jg@G=(WIl!D{r_?#r2MO_4KYKUM{b&7%nf?d!mH+B*6F+4~YO%Zl>Q*?|T|kbMyj zAk3YiyJuk^7PP@Id=56<28*)YB$~(EsnZoNl-I& z$&EL98@q5PW3#)YGqkL`Os^~zXf&IKE*iORXw{7|HJy;S@e(K>3m^MqkxWUx-v_gx z!hX?4P$~^k3-zZLQSbRNmK9J9;0VJ?>EMekgJ)25o`UIeoZzYgMd!c(wpa*zh)%$| z`tK@tUd;#0&{fXu((b%s*YiYp$yIbchs00^orZN)>P=qH6Uu5pS#*W_h{tq*RmHAT zDyY$Qo|J~hiNv$5yC8)@TyUdpaHi4_4jF3E3v7sSHQGSdyP;S#$UL=T+2wj3YQT{GiR1$c2!Npgeu3l| zD{TbdUoUF`UxAL@qVA(y?TYVj6oK#Lt7@Jp3t9r*OmSCh9blVL;Il8{s?{Wabyn7m zln{_@oUA$+OVJ*4CLpc)L6vopx=_vL*MYxCjeheg9q^`rcLmOLW3|yP)TQyqt22%6 zYA-Pso?pu+oIIkN6BEBW5mR)U+-ME=^!eL;xPy=d{M3T0Kx$8V23%4wwm2)jm?xpjrplqqJUQg z=aQBl0Jb0QFYQd$rlH6e+&u^tn3>gP2F|f?&3hZlG9$EYRlf8HL?Z3|*Z3m>vWvOTT^4CAoY^DCPFDmVQfLDdo;0C?#3Nduv(H5`+?~;$fR{doZeaiC=9#9~2s@ zemr^Sy;O0CN#T3)&Ucoeg22eC5`qKm>1qgJB^$(ZDZ2+bvr=AVx3?n_HqUOCj%cgCV8eEaufsUZjXEBbjDF!;dUc5Y#NJRF&$a8|vi;AUxX~=jnbZj(aU}OHB zZvi4L00rM;`6IHzYb|5tl80Bb6}ohhXYacnmyuo`3h=w{eK(Z_E-|Cjd*9-4?~BR% zQX2`zUscu;?&vGVf2RnHC+~o7FAG{x383zPRsmq#0h7O)-6N$np-$T(a_yjNoT)SS z4tn;oW!rYZ9@W9>!iJmTA$108{ERlhL*T(5ST@9ReA99qg`+tbiTcMME0%cW_VpPC zOg?s;V+`AkI~XJ2K__?+60voji$wmSC=$sq3t0>N65L7@vy7Sg212~=BZ|Rus&SxiQQN8 zHcD0nl;AQ^lq^K0R&C;eW`kbj4s5-cl5z)%nwzdPbM=GY_(;U^pbq;mpV@$FmvTuJ z=-w^X#Zu+xg{-sUuW!7lTo}B#co?{BRT@BLc76=w)lWiTgf-IkpzQqK35jwt=?=%3 z^@hZ*f%E_XM7hcPEKR@uS-efWj!(sv@O-;7XdjM$K0x^iK%o^<;s?5la1a z*l{$;Tmz*k)uG&5FyC41f@QA5+p%Mo>mY>#+B?h4b$D6fw_pa;r`wU!>O>za7QpfV z{vdR0v>#)ml)sdY(_f7jO;RAn@@NC$pD$a+%^+x{Z|w_gwJu#mZON|L3yvqh#+R*cx5Bh_ZM6Ngxx4w3TCV z8R^+uAV75$@e41BT;z|4L|j!C$i%EtyNlA@fq7wB(|vJYF??|*3^Q@83UDij83lOq zS6S}BwDp=xRR5+ZQJrBH((e6%th11IZ&W*T+P(jPb>Wa<9Nut@dsx`8Bj#CpHUJmL}Ht}{$e2ZV}biii##cs1=zg(_$Vva}TpwN0h*&!u);pDa`8Pf;a##fo{V%C+W9H#7=%k6=k5vmaJ}#CUCv!2Aw+Ip zQhmJ3($h$QYTXAsw;r@U9}rmH&PQK3Nxi$DPX#iP^OR>e1=zK=O9*9;Y&; zjll0c8Q|w|LBcz;(b|VH%*uh*#H>_WOM55C!x?6mpXT_a3#GYSoylmH7)_&o8p3Fg zjAp5%)h3gIT4I(R?&KO|j|F)2EvV%w1U?ID`62wGK`jXytGE-ow=6A`;zC>^$mg*T z$KixR)fXHz=|f!3<{>T}Z|$~fZJWQOpcr3QR%_uh za5e1)>u{#-hzQJ|lBJ~5;!|B0{adG-bISO40#2X|#nig_0H_ymNv#W|d4hW^nARWE zRTio!rn!ani0Z6LIlo_=1=b97V0VNIEH3w}+x?+d6aF760gb{f!JQ$nilb?Vy8G>t;hM{9)L;^O-eUTDq`p}~^MH?=$ zjASx9SfV;*G{S{!eJ))@jrXp>Mwj9;BGCw_-&lf;qQF;u)mGRWebvcdElEqPg#K*( zYRaTbV9}}0_|XE3Dy)n2fkl@En{owf=`jYrTolzq&CR>M0yf#9l}iV`%4zUp75o?; z9^Miy-Y0r6b967XCK0v{pAz8Sj#Lw>pOnp9C|3(Nx|u_UQHxfQ1shGHrf2R22tz9W z`6IHzw^+u?utLe+Z(=KS=_1PB_3PnthhU?-aT)2^I|_c4y{*tUvUl=VXD5;JlXu=1 zPs#*gwt;f-`wnM><>vSI2-_yxuVX8vi`q?BRCm^)z-4)cf zKy`Vly3O}GGgzPk%Q=baO@0S;Z>aS-J`OjufI<%6GsPM1^0*GJq=TxUlc3!*mAM0I zlL!Am0Z*?}yICsDnqtrkEwEIK1lC%Dvo9cZmLWzSV>siAi6%y{(KKp$F_K0{_(#h~ zE)qZxloTT0Ve510B99RHE-oXz5D~yvBNmg(ssF4jaETeEj#hLlr@rrXW_of#k%r}k z(6O8ADG!zha2ffroLHsPD+^q%SRM#Vm?$ohXakW~E6bYta9=TfS`nB|E?u&&ENBTt zGo3@#Qn1Y^+>KgF@>jcd-&RXV&^FUtYR+e!x0Kv!j)>)Bs^Y&VfzF0?e+z!|oYpM!0NTZCOtn=fF-U9U3UXjS=P^9sCE z)#Enb01Y~#7P1$Db^$B?jF9l#EwIY4P>H0sMv$aweb{KiPETBf%gmGt5FJ zES#KGV#^R%G(+bMfjv0uEMy2Qwe?eLQU(ag5LoIZRqgGz5LjkrNeqF-w|EHboa^Bi z3xQ?7_Q(*}YcLG6GdVLp-tb4FS2^a6e!Vk6SxiSwZ|aSf86&X_(FVdl$63bBAWo&x_ZYTXmoB14U)PX850?=! z`r^K72?>m%LN)qYF<~_NCVy32{W05EnquP;COFR-XPS-pzX9+-u zZ-bv<{cSa}e|Od&ySiA?myCWD10&aUG@lMO=4W)pFvH0*roi+z%V;jVDex@Wdy=iu zrHd$g*H44b9YO-9a2e^@TOdG<=1Et7?A2v~Ow1~EL{GZ1W~pDa`E@0&WJMbcZOL= zcm1!JHs?YvViwX}kH^ZK?)vX@o$^Zu$Lo}p`d4X7FATII;v{@ZFnID7Gizs9xI9mv zh#k9}rRuVkZ(lMXS z0j!c>uoi*?+s7H`S5{m*4QA!0!)Wx2XzVxrW+@n0wICoD9lruQ&O^sa{Fzbz=i=38Te2}OHtb?wQgnTSVl`x7lulv zwrDAK0u7_3?w&gbN({jNV#_p4-oXy6JZ$QIq(&At#eU@ro65ELpKZ{#uKLk0gJ*$D z&(M3NemC4y*IURgP@MHmOU9S@k{=3}%zn8n`Im1K?x)c8R#LIVwO9EQ;DhKu4TlTY zc@=&+BxHtL!@OkCh6~rhm33#Pei>X?aYmQtT{`imln+LJ0V&jm_471^ko{{S&jIP?BgEcntb;jQ&{~PJ39N z_Ar@tefvD-0{bj7C{CTn{=5{44gY-YZ2hsIN$h4aY9}I&MA!y)5N^dl?&-^@z2cIF zzq7U#65^q>238en*G946##jwYUxBe9x)Ns7W%>53CP%F~)0%;b%A?h;Khc5@s}0EV zZ+la;$+E*FPo4@MYwLk7l;V-W#<85Oj5?)99Kt{^}IN>VLQFId~@%uM+h z<>L>H)u#L=s@Fg#P;TK`1>Fhn5^Rl-fvIlnBG6Q9)n9=fM}u~>C4TfEx~(l--vU8H zw+8WyOnIu<>$U9t z&9`31!nsCUQ&@~=Y}mt)Fs#VI$7n*4Jm{b`K7b>R`P*wO<`2qw_)vGFwF|#k2i_rQ z9LMr~@*c}+EN2guI;5cNcw?;r=+NWUJt9$rT?jF&O!-wT2Qmf)^(0n^{1g8{E4ChNp*U<-KvgG4parzv&tizSslS^85m}o zPzbPH0|^MVMw(;Zbs!C!Shd8j!I*7aba&U_fP9S!$e9MLlz%qtUD0a$t?fRbpo>*c zf-$`vt@bu9Y@vwB0Kj`IR2M|xvUQvY2|S|^Lhhf)#yt^ac9#p}6B#dxT8Etgs-vyO z%v7^803f*TT#0PpV+N^F2<01$DO`x+9B12XP1S(QC2j_y7!8<392fTuXpyRVw^$ga z{;a}j@ZJBgRvOlN^3Hn$=6dqZ zckcP@1@jFU4Cc$22_8u%!-u%#^_R`a{$pb&O`S~{^Tmw%a)^8z~~dLP%e zCqM^;V#;u6=wJvqZXzvl#fr!6tQW!=0xBMEf+Jg~7V0q`nhAjmcKMi)!=uH5M@D*l z8afs-y%$#(1KZ^Ri)yEQ#w(m*LRMxQAS*93bJoLbWf?X+=`TXsaWkF@CH#xvgXi3J zf7V$@e-TyN6%;&9&CN2l^e)(?G2--1@Lw=$TclubA0X&<4HW+^@cy@76T34?Z{}0p`pE0AUm}pfGQOb5m`KWmHETFsg<4C}TfVpS8S4q{Y4?W^rU- z^*o963-sZB%V_AO;5M$S2J+|YG!UROCT*U*9JFip=(LH_$LpvFO_&DEyWA3W40P`n z9HSYKr8W8p)|r+zKX;Q63Xvuj`2l|ux<9Mj)t}af)z1fUVO&3HWDsCa2n?<)7X~lw z2MqESPM9bc2BXEpz(t4CSW5b2VkB|>a0Eu^oZORqGQCsMZKg>V>cp%%6nYw9e*>y! z$$lH|uwky7HzM#^+Vt4CeIJtP`p?_I7Hxm z2Ep>fL*SJ8S^UK!@YpYxa5Q#8Vy2OhhVaNx&XIC6o&+KuZQ;U5EL}#cjP( z+N;9J*fCm1aU{x2Jz55AvM26kpO+9z#l?0@K}2~!@E>r6Xck-B3l97rQSU!W>ZsDJ+(qe?`&t;PWc`#|?)!(cy+Vzl#i%qt8Yk>>;| zCzT78OKOIV$m{@p7Cc6gVCT@K zR7qdRcwChoYQQbEEJGf5Cx{(t!|g`wY>8n6a90st@!4+efB+x}BWi8!`0ec? z+6UvXc=S%lCb}mzt&a2hVj(PjsIP&J0ibLf)k>UTqm&pFuVvOU`rnpuO&Xnro@B9; zcd*sEbP-K8bggCdZd^trYaXRPuVsY6!s6V$U_sz+jiN%$nzv$tAurAWp8VB$xyYKx zb=zRt2Aphf}t-OWe4%S6_8E_sb*g^uJL9GTs6HEwfhG@zfM74LJDk6jl za&Z7JbSA6QzE?q~;!+E@r_tp928krxr76$35UzlMU%=7fu^!a@yu?JWHP#nWlfn9H(48<1RFktW7oEVcVNdPg!q6==NC`hcnM=BgYt)s`L~2< zy-Kp!Xaia8jh1n9NxCg;wJu%c5gl7`8RHbWa*fT z>qA%(CS^ec9kxC)kg`0FeFP@wrh*BElBA3n?KdfBsm1hN3m#lH5&-~7(*J-R=OO9b zwV3|1prz&5Bjai@CD=%Q!U!h==q367C~Fszd=YzvkZ%S)l(F^H_)9GX89J5$Ak;4L+sX!i7le z2FqUEwe-?UEuERfqeJN>oU5CJ)4b8L^wNv;x$e~z%JL4>Y?6Hx+T&_m_>`z_H|hWj zrJMn|d19Gj@KYbbDFo31+HP_VwD!$^-ZStp^Qd=WCaOn01gdbM*Jt1*p@PYJERhxR zBiebmM>{Dll# z2_a#LFg=ibLK#hIBV6;xgqBlrO&%G1zdl^=+k2N5rywHOT(k^5W(H>j9%4(aVHfj? z8Z{a7iZrtG-U+@R)e#Vqt4T^aL{NSjx_1+ZnnERW^gfxtGnt(fLwWU2ATUA%?NQlD zM-zpf(o{l-V9ZKG6l*HZ9|8#arsC9pfBcsc0I{N$Z+WYOdO--R!f-r_o7&bQ@E3LYW-KL2#ue)fa>#e?g{~N&=_STYf9# zD#!582na3lfetQ#0l2jkOAh*NB@7_iKoI%7(I}neMx?Z&9)KM)E2^Yzkh13RK-Dqu z{g7HAcn1UgT3hQ-&y2@^P(rQhO;tPF zg2Mzjtnr#o3_!vdL};u*@oXpvCx#wxR3}1SG&rN_Zfo5qUsxUx{O?pA9Sj02gdR@ARn%Z4s5zobCMBLH1%~)a)qsUO* z(Nb(AhS2TZ8G^EYLA~Rc=Gj1b7Zlt(FYGL) z&hu(>g;6#b^!8TfGN|9f{==DQ@&c}A-2%^)-KqXAe8!GY+hA9F5BwFMmvA3#>7BJ2 z%4x5@QBHQWI@75(M*Q({&`dfvuJ$fu54?-n1K9JS(p9Gx>S7gjJM0~w&||n0KD~%c zvi@E~F87ph9sWqutf-^o5AnP3TtQjcu-{eche8~@NFblyH3Tp)+-DNlabd0;`0s|% z+)mc?m>Atv>mP*9diy|ea?D$v?ajw|#6<+}sJ5H4udmPDXU?4UY#Uu)KLrgWsQtfnP^w1CkH+DAC>_Rg_v2o(8e|E zp#t}yH(48lECQ(50X2wG$rq2=DSBk%6(d+!xKW*6v#E{c%HWT!txm1GYt4#?p;L8T zmUCasKk9@a0p#km{GO#VgJ7sTI4yCmZi}=57qyxUvg>6AHMqTo~NSV4z)kHFu3N zt2K01cV(EB!#&a}kO~2a4Vgt=qb0~VZC-?aXC(yuFzq`Ztn_dO($ir$haMj!{e&d_CpKhra zTz5xaiMY)0zQB!3y{&K~--O@v+bouA3?5WRw~e)62Gy}Tgty>@LBrnFV5o*mL%BuU zL*EFNQSb-EIl&);YxEkO78J@EZOpJZ7p{hTp@mx^vfpAj5GJ~f5KJmpnav{~GEx0j z?3md@MTzJ{(){t|ocJ(^NTEJKq^&l?I*^FCJ*u;<0p!{YE|c^J1pVT*gse(hYX;(@ zn6E=p0;d$XZV`yNHd+JviZH=I*!MN<+Qejc30_tOmApq=;oBV#uUp(+tu@efBJQLM zXE?y<5cmOWvOyAtXz-!p@)+Frh?iUnCQ>N!Cwt=Zq0D%h03f9JhVn^q-;`4FbZlM#y>&|rHB4fz$A4j>>9H=#iphhN;4b&=X z!{yX)Luq826W3iHYa4{BgKx8drv4P{|HNX06I9g8GiiVCvGk|96?zM5W2??mqZw#4 zLj9+xgW!v2&({AFe%Fr%Pp;4={t5r)PF)=KXYeOWP-EuDGqORF5RMHxnr@XG#S$mO z4m1#sdI|8rRsOi&##_h3cnGf4L>tKDKjDCi6drVW9Wa%*JOoDy<%2;txC|~@ixAFc z4-9LU4SQG3G$+96yWWRIbgJ!L3`3onP*^gT1K!##LspnNG0=ht(J6Q=H*OEY<3U_P zAxf@3$WI}z!EZp(Be*4DKo!t~-rBM4c>OQ?biF?Vx`DT@3A_bmGf;qTXt!`~7-PC| zSEuVw!ENHJR;*e%=$&@@z+|^O-C4bSIpn~O!etBaQfIgceblBq!=t0i84oYVx0g>= zJCn=LKK<-7s{UzbpH)5Q?3H6@oqgK)*=L=3x_`!svsa$6a&+vRp|xA#R)^|ncX+Zp z)ffo)s#4!Tq1T&xX3)kl4u2Cwf4NvhUm4z#_j%}8*Yq|Y|3BDF!e)RlA&@`w+$VlY za^JR)T>Y;UL;sdi87BZW=Z%ubB7FBx79gm5olU^913rk6+4|GSaP@mJR_V(CM7}j3 ztleTiL>F<}jksNwbGEjH{Rs>em@{^ao&$GJtDAusPT4WSjoMVx zxzwDEh2x+rxW(|<4kj{ZV;*+Q0^p=^1LddjPTK-XI^V@MzDPk=am_o=nz(*F?6zA5 zJ@#L?7rZ(%GF9Dq>PmP7>ZJNK`U1-nxu^z#n4oiX)zh&TIURRUp%q$cc<|7ZF;a(4 z6pJ01gmEl%49H-*p;itW8%;E!MxBP0x9e&F(X>Tk&#;WSTS zcKyM_fSRKrb#vF#nZB;9nZ5=(c8l?fva%~;**fzhc2HsDdGLTB_FZLxt8m2rNm(=f zmNK)WrHmgub(RmS^}@?rh$Y-_)?>^zwYmh>K{7|L?e+DicEX5UDiyGfR6V*#I7t0T#ktC?H3;0sL+c%C%fzg zWlj7=eZ})dxQx6?N%G!xU0KjF>|G1l;hSPoJR?|~=8SyMS2hbhi;A??Nj%{*;uDLvX_n`uyPO^>^uFZrug8N3Tb zKe7#>dA3ppXRu(BqnwYa;^-!CbcjT)5P0$X@@W*YM5nFHo>^2ocs zQXBM!;4rXs&>J2e-okEis@9qqL4F zFXH?`aU47(SiYmIDc{;xEWa`nmSbhPmB-i@ak4!5t8*=a>d8CrvkNMMGuv3Xg!;M8 zILj^6ue>&$P_GYqD`F%%59UoJ(*H~o=}PYPL&dU!6zPA;z-sWSV`INW`WGx?xyWP9 z3i~;>LYFS`i1aVvGSZ850sd?v{mHUGCT3NFNdJ$rru^f+V)@xjSdJCxRvt5o^yIJ3 z(L}lsQ>r}I#S{_fwvloP^ba{>EVn?vW@9>mZqd?%!hZf(8o}O6swc6mW|punB1?cq z%JoyAW235$js24AFS3l4VTJO{dmdY%OBZ?M`dVB@dbuvZpG~e`Qx?d?tV)pUlVwfW z?<tiyd--c?#BF??m8354-6b|W?Ao?JYyy`XJUS$Y`hukl` zMu8?>{#Z%a(n~QBfuJ`Nd_7Yv+eoqSJ%%rXSir{oVj-RRbxz$pmJ3&Fg5lTB6q!db z%)@1*7YqXY*>t)i%L190RS7!X(z2#}3Uu7RAdFKpVL4W(v+|fx{3m}ko>JhUewRn! z5iw<(R<3R3DQ70my{%lLRxtA_TU)IL)BmoSgt{h>oDUTj*jwHX@nEATYFYDSWA6%! za(IwB0M(uJW&-LPi{&J_Biz6^$*?0}V*xt?0+OzF0eeJNIAa+r*N)I;D|G21&yKJI zmyv!)h=N~L6|K-W%8KN#PIaMYf+JhsxfuRhXB_2b_%&gLIj;iBA4Ft|JE-8YEPuQ@ z)99`SpA7fG``i5n9st8nEPNiRP)Ah0$a4bI2a2V8$=QFzU~1rOY|PKu^8s*_vDp){ zzDF!0xiF=s>3xc=&!vkzeEnHmMtZ&$z*jZB)s)1Ae9n2cWPPC5{QmHWMG?7xEmFRaL21NZO5U* zn0yGCNME-2@(bD3;(@8ShK6A%rANf#;udzn;t3HFUxlw1hWq!0%HnvVYA!^ z>Eg^4)EIZ4k`e`k#7?!0=W;rV0<(T1beg^#RxjTIe!vD_if2_*5}bR;8wZ~80n7rQr|{c^cPoE=g7aW=nz zA4NrtWw?ts%i;Vir^C4%tIX56xK5m&&gIbZsHY##g+o@pOm{xLnaHLci1qMHKnd5t zmw6889eudo!_UD3dKB8>@woI8dJOdHuR(~0Q`ns+^yA`A=n+6A9MNMIXFj4gVb!G_ z(eFi&vLpH*!Y}QJu5(myMo;Eq?T{WpAJ^%paqy5Koet?&D~I&hO7xz;lc|%{QMlHD zUFZPOBAX_shP~6UMm?*04`uIX+UquKWcB1jeUfX9Weq~4(gOqtsicyv?r~UMdM}YR zoKo&5K-vu__eaPCa$`vzoj!#fv!jz_4^-$=pWHV{vEvO5dBPgu;q`@HZ5-}$U_li6 zH4TC}AjSgYsCLw#Ou;2^m5m?rKt(eHEMB%u4yGCdg4-ZKQ=#XpzbO`U(j@RTOUImn zU*bJ^=Ua*Z3E^1VxET~+X^MCp7L?Nzf#j6)i0}#4Maia!Ut4fz(8X+0Px8|*u;V=Z z#KYhMzmG9AgB!r~kh$kiMfbGqf+BhVcC{vmB}6>wxVc-52#aCTnFvqP?*3W3kY+SQ zT_LoafeGdDmTol^ff+iM$6KoHs5ELj-g*GrUgGf<-{QyHOYj#v-m+hN=J9sC)*S)% z>EdNO(<80%GLN_FSY;k>$LP^O9lF9D=Yzt5J_04&;W8rx#7L()g(Zg8tX#1|JlWc4 zjlzw0&57>h8o2BT?sOPigV(cLJlF@R11d*kt(k0XBS<-+Mox*}AeQqSk+0W>dyc8C z8aUs}?n(+e_?y7$XBlRdpWygp%O$w|LKP{1fKF!%@SUKU(-wb3V02K^Src;E1P_4j z!OG(*#E#1_D+hWKvr_440qUFz#MmPOvB3;;%THB&%7s!@uFhnPVT^KHpF+;t6FnH3 z9-H97h*?~yBWm!w8dhDJ2V*0W9rIvZ55IH|hPE<;2Sa@i{E(UlBZ5Azer_g`)X9Uf z2HX!F$X#u9{H8bzdT`Y(?wIUI?1|%`H`cE1fI%I-|Y z%O2OP@TzS;ir4Gm`p1z*b%NCo9`rVCVOKE2o$^rMVq(G{8`xfj+s5JYc_5fb1q|?E zNs0&?;Ly{qLTwBf0-u2g3@T(ab`5kUYvWiqgGE%~CFf8u1JkFwlW@H~BRep}2&!Wj z**7~g&_{Q&+6|@wQCRFkW_C|AxD7OFWus0*=YD&;KNh+YIF&kr0@C95CQuM2YZLlO zWoNM+LqaC2--I2r4Q9TDQlkX=%1wy>@tGzopW*@CcL3+U$1m(2gs5h?Q+t%!>R3QD zyaeLP_n^S_*Z|NGTt$ckH(ndV>(F`emhIqC!Wu8EN1x?mU~nHR?6Mum5(>7cG17a$ zdLl3~Z?4egSoKlmO*u16l8EvFnwdnKxs{%rhgmQPhErp3Va9 z;k|&{fn?dR3(0<4ooYdib|BK)SjYiFwgFF!HmV&-o%-Fmf$=P`xS1_#A1W56GN1ed z&@q6JjjScKVx!5JYmWU?)1%Xr6noS%lF4Fd(HUel$Vb@vT)N2NH>*E}%ZPZ*P@%MV z&7#0p>qJ;#&(IZD(mVO9RT&7Fu(xdpO>uXLZ~Y@@R0$1HUeEA8)l;U~@uchQApqBswz_lP}?D(n4VQE2IxMZ;5Remu&rC91!tr zjg6*J)3fyg1ebEAXOGAV4{n*qa^XsWYRTA(p<_2EK$NlT-vSttt|1Sht>a&hppjOsF=H9H5dW(MNmq>D9Q7zeMPnc51Obf78f$6;V* zJP})1nYtzjFViLh)=P^eb;-;ZF;X||(b$-unbXvK*Ha# zXXPmHRaUmb-pIuV*p zjPyJ&fUh28lIuJ@QWm(xjEupA>QrSxCqm8gF`?qGl{M|h`-~lN(HtVg}YIyNdD@C z+B+SrBa;9=>= zk#=(;5;*x|r8;=Juz(j8OH)!~I2SrLTJo^bNK~nJl{BY>O_q^z@yyHE`dqrmqcL2K z%Sf*=2;i&RaI(hGC<|O-MyYWtRf9Ad!);|v`{ur4`Hmv6Tz~kTYQ4Y;4VSvRENHnR zd9f%ADP$hC-l>gbH+WxJOL%Wz5&nM*L3m<;$cM{N8E;e^lD|4J#imGT z#nxpm&EafkS}|x28D=5tMZPzyl~X1vp(itEqS9SiXCV`nXbcLCA;0 zWEoG@o`V@r6xv}ttD5oj#yyIJ0rBg`+Am~cGgS0fI8@|w0+pAR z3ze7j0V+qD1YiIpJ>g(6{Umsidk54;0;Wfe$@0x^gQ-)bNBq4}dsYwX?gwe8B0?^b#S)voe6zLE@bT z-Gj5qRq?wx!>k;LQOrsu#)ZrPK!GTp5twbvFuVNZ$R}MWIp*q2=AXux8tTh%UkK0Z zdr$>UOt&Leg@pXmn8k(XYYl#fz^Y5jKfM{rj^&@e3Vy}spOTeX@=v4h#pRzy(8p7T z4kP;U||{;n`Cgyh0N*NjM=N#;tkz_ z6%Ze693BWbw^Bb>8R@({BL&@ZshY1VB1hhwL5^6GSyscMnGJpKu=CC1g!e`O5|G`h+<{$W-Bw<=q!l73=z$W5^>;YVkkMA z=JbG8>e{q^FYC0Hhtv999foq8^?=RYl5hBVeO93)&wvG)Z}=E?%<>JT*hHEwGvDy3 z(2@*cN8t1DT3hRoX3c_=Hq|D;n^J>_B>56=9`@FCy(w_3c#~DQVhFQutKDw9wsocp z8QWvBCkS)=ftWHC~Q)?^cUyDrbO@ol&7-WyH zUy7OKtW+!dX&UgYhvy{x7>9*S4ETrj0`FmCt<$OT97!138;5*!OEh-G8cxDcBF_m| zKUFO5Wi-_j&@rHz8KbqlNNhB@e9|XS?H|D}m1U%btoP@Zku%V`%)$6iwqBPmqR~~3 z^+oHy#AQUHt5ET=_yM*wqfp*x!d$-B2a7L7)Bd#!ljg=jhFLW(3CFn{BZ1JG} z0~R(J#2WfbrfSXFRPAPeY$OPGVK0V{J^W;F097V@eYDkpiV{$AVBU2j*A>4-C;1&}T8|$TswOx!53~CuR znnq2pmZd3I@xLr1xkwzbJ}I<*pRLcOi#$SW7MGD;XbIq}LGEyAT-&2^pFbib@&2+v zCT5j7(0u{&hB96Dh)nkrWli^EeZ}y@MPYbc$1pr1Ap3e*Aalj=qAruo6vx3sGUcbr zn(}x1isgUKgk`2msLF>`h8mTRhXjPyE> zK#!{PBq#P=S{As(j8f}6Zi#)@mNo6G`-va#aN98_dA#4|QK+~x{!)U-@CBjA{JEh)Lj}4691mpt8RQ%dsC0y}s%iJlAWr0h~C^a>>=~xS9%oON?B0={O%X6V)x1_E-SYCw7 z$dBbj9qZV#z~zc%MUNr}D5Z^X^-x(0Sk_m3FE0Y$$vW1>WkE}zJ66ZSHshvX)UlGk zx+l=F_PG6=P^fJoxwNsraNc)vYh%9((>A=yE!>Q>WY?0xB|G8&Z^r+!Kk(Ns{^!k0 zZewn|Dwj>+2SWF!u%)?^0EF@M@`vg-;4ru-_q?qXeK z^SR!&-mTtsOW7+yZQ9OcYo;-V_Z{E_L8bD*Br45Z_;3JRbIn$l`3;A?i+4^pst|zy zE;rwp?S~7&?c6~MF8G@O>vLrR%N?^jHO#^jGTCpIHQ8_U6|;X=1ZL}>$6juq zKWEOCSuRpl)c&|EXt|^IW(~FQgrIiLcC+|*k*3o)1~U( zqAjKzQvnEa4lun$Q1`dR^1U?je4X*V!N`M+M&3$o1XzG5p|XuXA}jo%WvpB$ihp4% zbm=0GiRa&N8R<_HQShq~o>u4^C0p`Wwf=Di!LV&+xx~*`oH1+=KN)5rs}28c*0efV zZ5Z>Ib5(ueDPYWZYq%3ofuZfk9A&on3e<<({tgTkw)E%%$-JIkkcop#RhMr|wn0C+Y} z8$M@w2MQ7lO;<;^RVVz;@{n$Z&KO=bymI*TA^2qYoMC@rLbfeeXli=b>ao^n2MQKo zm=vfU2kA_7M2H`5#a%dw!cVFrQPwD6j#i>avaVYRrgYMmIYL+sjKI=@Y z54@NnLV|D2^GKzk-hSbW!8=^Dj65ft^qO*E^Gd!P*Wzby$uKL2;%8!3YVoslB}U(q zVQ%?LpYbWXZ2s;w$OWrkTf5SW;i zN?`kidujk#!JP6rf!*I^m}P!a{|~xzcJUUz-7B4n+3yY(zGZVO9=ACT5k5$YwIkEkBX*DHlp) zxjK`@YGaPG^)cL-_K0G&$0wLBW)rH_#;h(p?P&nK0+wA`wc2};?pU?jKZIXewb~dX z$M4S8AA|@^GdHnT78e^$qo%LFMvC7OQygg_QtTMZ$Qfu|W>g-@*6Y$m)XVQ$7WW0X zjEI*XH7rY6+$b_sFTWKRMlXNzS9@z&T-(YsY&fzk?tcRg-5e=e6v3}p7wOC5{%hzi z@hTz#ZmiaZD&pYv1U;12h72lLicB=TrZ&)PAsbDUS_;Zoif%BktqGZE5DA4fzxmVH zuLk@^#}D3Y!B3$%PglE>9adieyo((ybved@qga_rs9lZ$Qc%G%(4nCilqfI`UGUYx zLYk1M*RjM&MchL~jzpdlDYCIxDI%kxu4GcgAT_Zuztl`;4V|=%<)i?=d&1kDWr0h~D0QsczDoq>QI%glCUpGfvZj3(bnGU}@?iNb zgHb+?as0_ba17;UQ`9H@T3H}-#c)uHlx#}D zLqe4QRMwQA=qr|=&V*&ArK)-@!rHi78ui-buRbl4@vSNlR2$`@SX3q5bJQS0IJO1n zQfDuBCY-$L?B@A%=gi?j98l093@RA(mPB3XpxTBt*hM)97V(E6`VfZCieCw37K6;L zVF8j$uq=9a5(<<;5MXVzhLM4+EJN7U-~cMPdOde#XnZN!307=~zQQzJn8w)P0Av9~ z)_@<1ki_sExPAvUYq+bYHpb?C(b|`EmRj`OAVh`A6Am(($aVD1X6|uO-ULpihI=@4 zY_tntqmgG*>p%k%_jEUpHV`IQZW%YjYNb_Rkge9Gi#&SJN?b;IZC9YeUE6(0S>O^g zN{#8ol(Q+e)kcEx&1Eg&<$cBYb$!D4bXnkX#rQxdaFuMuXam9YE6bYt?R~}ct21Fb zRx`3nS)*o@{MA2Pk-U+DGGy9HNzr%1b_(xAcgsl4cDXOxw^ZmsY@^}FX}48ERyJ_t z(wh!(Cab)9Q}3B5Orc17OU?HSvts-o~47s!^2w!y_Ku4XFmqu-`n^VT8)NudwV-3{kHGb_(g?K z2Md&>>sJg9uOC{uh1IfxF1_>Dcq_aeweI8q+)TI?s+PjZE_9rG>xcP>VHa@2Y@=1} zT9hLiO-WQF+C=E!W5tRWsVF_j=)hnK#K!!J(gMUZ-8A_lvcfN0#&XeYG*jRg*a}^` z$fF!Rj>|}|97Vye9xbiVHww_?uf7@2aJtZQWV$EsypJ;-`!N9j_M7PlLD>M2OLTtN znV@ou&JneuGkQmur(`{p=VLXLr{J&%A{2`%^TTA|D``Q>_k}Gevy9~f#T!ADK2ZzM zBCfJmQ(kb3S$Mc`qjt8N105UBcGy^e$U^ukB8xpD6n2zltPCrZ=efh#3SGL$BeIUc zWuzBbQShrG%L;v?$V&d|l7h&bpwBjJE&=iD{tJlzDKZKL=k!|ekz%4m(~3MNB(b4b zj+ScH<&2{ZY8E!;msx3xjQW<*TttqhXl-R{bm=0G)SAF$q?cL(0q$0)+sXo$m{Dpg zRGK2Aca=5SH}n;^Zz=+}$@L2FD+^lgs7NoX*{6krj{dQkb`$T_G`=4b&%N4chs*EnW)x5d8?3LPfJ0CjkU+~MmxQx8pZL&x{ zt}JL}K(5NTF;zx~%bM<~eMRny{vh{~vY_RT+%#22uP$r48~cjf&HX`cvn*)2A~z@~ zN)CL%Lvq@?y{swU(pLoEnF+zMK0Ac9@g!=r-z0yv7giayEjpL=Xq~gtW-u>jn1w9! z_w%f20=4It9^Y?VtS;#VfG0AXY+F1q&$ufU5^H)tkvz7T{(d9vqlpmYuGn^wCm41sq60qfA$g% zh$ZI_dgnnh$>>O@HZjtHYIbk~RQQg!2a=Z(n71f^@Fgpr}Vk@KK-1kB^X0m zv$Ax=@k&9uLtKyvD`C0i=mQ>9lg8w45)@wKCJ%46|}5nj>bV7R_16WIhF*ct&7$Wro@1FPp*~H1cQf;@ZEH<_? zS)KMF(|*u{|AQFTk*Vs=Q&%n(cgjLh>zx=S2H~?9%gR57$X8MAnzw{pqK8zZRhb?t z7REA^;!mMtWB3;~8Vy*fUF{1QEGaRGXM~QvXc;X79mxQ&zhrB4=^`3R;acY7%eah) zZwL1SOPLRW05y~%UDE4QWr0l0Dm{)FngYT~F;9$CWkHW1!>yA(pK( zKVk(4xRK=|N{vcOe1VlOFcrWfv&h}}{axEvAN+b`5rsEmm`CluK%YvSAbisxxu zMqUQ4dxxmvZYky8*Omn>f#z6$BDNXTF{3{*`K!tm)s%WHp%`1oF7^wtImx10A9CKy zHJ{xBtc&zTwJwR;;Uf0|UNZ^lk#I1E<1b6wZ~NVub~Ertc$FnXL+3BSR5zyiN1PHr zR*qHF&_}jX+C)KIESX8Q|AUMv`KevgI zxg)*wXtHqgyNQK-5#$B8>fFsmS9*)hKBA~J-RHxn1cL|MVPC`XDk~r_dF9g8UTdf|=wT8v<|N<3f8f6nGs{PhCWf%ye#@4z z?w2j2Kw8M2(yjf3VnOsEOob!%1(uGvBtG8*228hp%m-!b=Rfe@VY&|6a2eP{ZqG-< zI^0fVf?6b-AhqS+S+b?4B!?zT) zupE14Pb?w*u6Zq^nhbE4w0m{dE+p+D>I$LV3`{5kv8e5z8r?H=ECaEq7fGd2TOby* zp(O@l;afZq>rF_5ED($R+H(W3m~PJ_vCs$Br$8)a)G`CH&eR={%IFogQHBl>cB5+K zw9~H;toxB<43*EFL$E$<>C7Z#973>gu5NNdiwck-Snt#4`W*CTDnykOf~CD4H9#|u zy7~s$ydTqHmgJYr6M_|kqWb^CDHubr4vAr^KtGKMzT&!SU^>u(uV^zrDDr0nD&KL3 zic9d-H=%nsHuNdWKu{1Oohlk;VsE>wQZ7vdUh zHSbQdxHCy8hhQr)D>c|EU9s_lGR!T1s1={Gi-MC#Ub#Axp;pQ4zlVidsj@TSjB~Cxwd$oOW9f)(vDD^gL+VDlF)d zhP`XCV`iz4TmUK1}EFjBCP*$RgT);2n= zAXJMLIt;#zdE0}_QQ(@t)((FxVpUXqI>LGwXkE zU<6|n7d9FXO-9R+7LbI(iK0yG#tT$n<@M@o)QbNDbq)EvRsXc{&Bm2dL_l2mZ8 zCuDu!vW%2reNt}x4O^c}7g4!Ue-C`_5EuAuTt<4iA%L%mTBJJ)F$f2RM+9X5UKYs2 ztkUlcsmeRfd!?C{T+kyZSYr6U`-c1z*1*@(fFadn;M_-EMov=eMn}D&i|VymK(JtH!wcS?`*wpFO1_^oC*~ zBwhWREgkbC`x@rz&%AtsXxnHRm_+JdFNbBg8FK}NOC~{D={J)Qe?DOp(n4VPY753P zY)_I|?!=DsFpDt!Kz5NK6)DgZDrS|8?}LFsqZSw>Wxk$9pE zSrj(AtF0VHF*z$Av~=e}8o6L3@@uleNK@={KuAsecy#wehi9i`1dW=RQ6Ol(wYPwV zAEgm8ovjH%#*|+0Z@V8BBqbsnwWun*jaYK+yl)0@<=lC3<0)k4&9D#|r$o);)GnQ& zV;QGJT`=knYl~B2XZplAC47s=DV_W(_{HLs*snb@PU%HhvL?7XyW`j$48HOzrNV=Qqb9QAlbXp92X{0yT-N4N4o)AI?XFyBXW^1dgoM zhwFX(IagjO#7*EH1Al~Cb7(-KEx<-hoC|v?XxEDj(Pp8wAvw^q-OF{TCi+?&iVVFB zx_1-MmOz9nSZ7+C%X}bjBOFL0g93X(2zjbp7}Sb~fyX6tk5B5Fu-jcoV z&-F59;{_2o8`Xsop^`UKoE&&H$a>j+`oBBNKB7MNYaiHXBtclN(7&DCm=)Ky^ z9xfCoRw7^Ei*cmACAxIg8xrJU68n~UWo zsq*Z=j$Kq9)m?l}ps#l@J^Tuxymz1?2T|5Ntd)+n&!K1~L`?&wM${VBO?=?8Wnr(X zt9ZY#g>GHHUo3>AyZ8;3j=AEqlDmstmQL8yHbMr*kS^la!PMRCAc8$5V<3I>n=yzZ zIHimDAq$pVb_xLi$sixWj`J`G(O->mTL#7Uiv=w!#|GHr3rN2MevXk$2B1sAeKczq zl5i1kg%EBA4wN1idSa$WpbQ;L4-2)ls03>BurT!}(ZhmoaSzLHkOY~Bh5gziJuGX{ znb4Z<)~2eB5jY)Y@v)rg;A4plRi>9^T(`$XMy^yFUBBIg+eEheBTx`}tcDe!J1p^X z(3`3?Yg4tGeSRaypx0)_u>d$wObaeYM<{i)+d5Py&GQtv(sQ`hN_Mp)eh26#v;|Vq zHwcG3j+#UC;d-BZ&N*r#=(V_NUQ!U|19a+so?|Q{$gk9--oxX+3O?Z4lIbNvJi|IR zLrc1Wcw7>pmqGV%LUv90Jukzo98!M8tg@y2UY22Q`BQ%RlwEc*%`qf1%1_}~Ig8$U z&|6GJSwKztRUZ2WF9xr0f|HL4iH&9en1c^;gfGUG#BRzkD+dx2vr&IZ+(*IdocQ8jA%u8O2B10+;%qiTyf4G790*a&Dk~vAm|=GL z36W2_P(sYrne?g0Xg~Fn5k`B2Pd&!39947@iW|hNEz|`x@GXW#m*!RfHbRtn)&B{8 zXQocz5gUEqyK1I6;d|@- znfAI38@*L4R;^SJV|93q8O_DK05h6dQVQzGWoSN!3!@LwY&SW$Sb4B5LGy4Lx`-~+X7SgymjN^qp-8i%;+TS7jRKpv*mSWwt`+bFj{STTYWGb zPqntgUV~}Bt(h(q)Yw*QPI$F0>^9r0FeKYw)ZqsQ*p&?7q##ieYH^6!M18+MrrT*x zT5HH&BOepgz6%LDREw#ccM+WeFLHNz2gghN?t+b`QPb}(i#P%m=_4MJRX%7LFT*P3 z9`j+gN|!F8dyK2}c?g%0Uit_Ws6rdBYa*nf-QV=3vcM%~lzM+zfUHR;%O4T!{(V`~ z{ky(m_aFO&-Dk@Jmn(J;R%PC86xA{91n-MpYnCD|EGcA{wKlXu<|Zh34Uh6`Jgwn9P_w#DSqRqk;X2Dx>W@i_B%{QXV* zO@6+`gRZ#o32O%mtw#PF2^*^riMug0ljz~`@y2(udBnd$P_m|2K9xGgIgC#YCs=IE zuVbXU=jkfTSh*z8m28DBUF4BOn{XNFB~cXo>gmP`eWN5w{^})>d!BO9JfTqAxVePJ zna=n#2#pN0knz38W))pB8VrqjIitb$WnGk14(bnz#^&s*tn?Cqg`Bdj8H@r`s9yT6jm_j#|g}*m*S~uGO&Lfo041U~0_oBL0{L z{60`D$Yj9pA6Yu)!uq8w;I|-f5Kgv@oq>mBMCJQnQEob+;AF`|NJ{^KiE9nUxbt3@_|H}JpA0Er3@KIjDJhs0u0tRKn_-!Ev@IX2*45Jr-I z4}OZ#6z8g#GMd=zt^~3Dc>zL{g6KDv-dqSH4~Y1*9JCY@gt!w9TNBIvEM!zhVR7j1 znjzaSScrLL2gbNkbu|aMK)G;aKq8En?Fldvg29!ga%~phWnAe(2HIwUva*oPBEv#t z_&s&KQ}b|!j%D~g4aZP71zY$%^VlSY-{V_6{C*1(Aq&4}zxK%R`%9+Vko+{-9ogDy zbvxa5b$X;Vo+SqV+>|l+apRR4h(ApOc;bey@M296cn_CSx5h@Q?FmqRAuNA6JeAOY6)J2QS1)9T1@HkBB>$3t{$cz$dSOLr3U1y?MyQY9uk6hqmH34$j-D8I0T`-9=dls zepuqfU&A`nDl+XK;k*E3T7|0Eml#+`3xUo1%7x8)`T&~)qJk&@jvmmwZ}3|13KuBy zF@ej&<-+C9IhtJ~=)ag@Rt|y7VpeM4@_Z2R6lm-Tf!DV(%q)MI;H_pJc#*gOvNXY!o}^b?#>|2Z|N5QYkh#tlti?id$wm zM8z`#v&9)^m!E3+qzk3mT%E~K`xsrO{yRulp)#;L%h#Qltf?kdv5Q$?s0wH>oPw2? z7H@wBk{*k8!gHwe0aVKOA*YT89m$xSRRA~T#K@4XHDT-0H~Q{H&3+l4@? zQ0JGGy*T$JzfKtQ;tY&wi9D6D_j`|K&M|la0aQ!?{;M{%FwzaLgz~E65KYZcg;8$o zt_#3hZWJZB#b>_LWI^f5fD;Cis^WehSusEvEyi3frhNzlU6WU?1H5e z!N-o76G2KEI2x6jR&W7789^FBx6Q&rFPv<3{H8Efc-5&EkUIC=jn6bkSs4M$CFoAV zMQNjrYDY>cJ;)+BP6lUC^BMEi#llnuQrrO@8&d(W(cOojMjg%v&{6G^Jt0hTk7c9` zOd@A|`gRF4BjDuZ-9|BGnOUu)o9s!RSQG@WDpYsOe*{`7Nnrp)nVyK5ZGxg)0TBC1XFyR_M}2l(Fl7 z44*q>e|!&@k)E-m;8z*j3VkDECx3N}jcN(i+4{=G!Jl`=Np22)X<&BqD&vh-74A;J zEWQ@x^Z`Hn<5h4BtoFdbw3Kb$n|8E@I*{ox#=HygqdDrsZVhTHY~dE(mR3AM@A5H$ z@3F5p^Op<33gF1i`bg;5xLIRkey(1~ph&lC@r9LV^$-r`j)dVg2L@M_Sp}tgK5G;Mp zLMkrXtEPo~mSKt8T{RJijYa}Zy-TIbz4(r0tPCrZI>@)!3SGL$ql5edE+f4T5(U31 z9<0zeiihN{hTQ0$(4npOT+-sx&R8-?iwv`n85Y~Ko_S<+INCLH2K;ShU6hnzal-GJ zdD?|Z1o)*v_c-j>#h|NZSR9I{KYok@2Rc8-g`wbeHA&*gWy|8;S5qe9J0&!IX0Z^F z2^6b}?N}x;EQgNWqKE{xB$*<%`c0-;k{GTn7KV~suf~q^kn7^+%+&O*@Z#%GF*oju zOk}HH5lU5M>HI_nW4;^E^p zELqEP6K)vB5?x#QRPDSFzCK){!QG*jlfO+C4+79>jbnb%LVOFA3!_kqW>7doUIoIa<@+j_}7&S z{)>wTzsuoC+va5SdW_yy|4ZC&Ld9nfj9w=yT0*t>m<5J9hX%tB!^%sGUT-0dvFP<3 z@XH*%PF9x?y&ioxE_ywJN*??C5yWkHEP%L+^mXG`Zs5`D9zR`TSaVc$3}d4)@_7m_ zs+O@Q+^v$~d%~l4WZ=;>F~@t+Ifdi+Rstx%v1(yH3u@}JP<4SPRLJMcM4vubb^i#YLw$;ALZpSP z_iL7sGq9U(WKkI`0~j{@1vShIdXKk^oMF9EbR5gp>(WJ3 zbkx5Gq~{RzegZBdz333gaF32Xt1NJd85#Yn>QrSIEZG_5V}j*N%bNDZeZ}%+nXt^n zy}ChIInKC2B!9IwX@f|XYXoz)5p!)1^PMr5dwbXtu^00kCS^~!GDwJEZag2NWWv0r z79=Xdr4{1jBF;A8cnc3V7Ikv}$heAJjJ6QC-%%{b$bH}z26sbDA~xpV2h!y`&05BC z5!-?+q~w1yTcJxAc_jZ^aT)0)zW~1~PLuN@9w-Z3Vn!uN{)fw&_Q(5*<-f>;4ZpH0K-I;dNx7}EDjAa#c zPqDs9u>8|vc~kB&KW11q>@nC_z#anyP8xLKJQSX+aKAU2$8y;qv^{1KbnNC;%(KVr zkIP8E#|ZGd?=dHo1uik8lJ=NYWlei|U$K08F<4H_y}PU|aJgc6ahQ9@OO2D0q}oXM z`ueh#u(_`o-%upRvz zis}gmtfQfHiyC+8RYu`%-|E(e&orJ3#UEaEdb&~LWj%NeDRj^-5y#&p!`?-_Z~$KR zyQDcij4`WAEGOZE)N$z!t~V15ysKC`mio#&7}p#06>KyTa{3)DfG=I~zTsoC(g!VL zW*`)KHvTYMsY@4m^p=Nk8R_+wC>m6InH390agzMiC3aGWtJVau!yRjc+@VDfJhsr9 z{XxYF_xX3kKkrkFtGU^`UXbAQQ*4qNNR9! zQnJXDQ^HTJ5%QGp(tbp^@|j|}Qp%t2F|-=w4>snPKk4#>=iFr;%SC8t=cQje6K)>4 zGY^-MUhW9+Yv-jzP5Q{Pz$IpsdUsKk<@B2L(z2Ft3Uu7R6Y{A=U_4oqURxHlq7p#e z`m6%Lxb-D}bx|R5nMg?6pt&}_r<~=7VdKj%3z@V!+wJNuJe%-9uxKRMwM&-{FC7?w>*)Os#D`V8{s_cph+KGYjku&9jI+>-xGD`! zGu+%7G0E1Sh11s3SI*uxTdCg$KO^w|1#RhFuxy!OuFIBrm1W7(T^1(tsZo~oyAh1H z!+=|09%|bDF_wX;{&R$3f>e)vd$GhIllT7sIyMHQV53pt`R+jk3%wVn0ViGiiOC3{ zV0geXp$uBl6R-q+Y>$FLmHIX)WDsIu;q6EW>mhs=Z(+#Dun=i~coWB`$_T5MW#zhM zA<7gnQ2!DlgEK%~AqLXMWZc(vZjPb`=Q&;@ zM+Pjjs==l4RSn4aae3yESR_``AXGvs_2ZvMciqEcp%}_+CVLI<5N&fAQcRdQM2X(8 zA?2wjaEd-$?=#QI8{!BuXJuZUT2SC5EtO)Bsm{?t6#?4xo8Myc9D=R4=q&!VI%>j< zIs+xRsw7fpj&P?<&TJTnaMD>{Fh4cDZ6ahiKLdRGntkfBmU}VBaHTlwA_CE8)4F{_$lm|oiiovqiN~8)CL+_>(ZO?bs%=bdOLxgn{f0B{#BL$&WM5-lq|Z-%E+rr>eUq76T?k$PP0EOq zp<|Nc?vU< zh|YC&S>O^gN*(MVb4&wc1QS^DF`4#6S<@baj@?WOd9Yl|gk=U8RrVvijXY+Q{mEYy znSf*)Etk|k(HUz7sh?pMGLYc$tb332TA<>a(`)ewzI~MwNbrD#%3MUF0Ke4u@5hc^ zG=5cmH~PKyk&)jP%XkNDaK~w*;kAtT#{fR0nd{kZAN;XtG=k{9sptIF%4&&b_ z`6l%}0BEOIGXO1v5-pXIpD>~CB5*aO1oz}Zl#&b!k)c1-Mo$f+89J7sKh*o9Dj&Ac zA7+C{4E@2kc<9f)NP#T$hyBVI`jczT-yGF8=lU=4S>WU}^j@i7HV$@|g{-W@tnmgH ze2Fjl{&30cm&=mhhVwyH(CD1(Ef1rMhDNJ1ooZu<7s&0I8NeIP@Ytyp_cj*Y9Ef;mk650hdd+z%xaKs=o`LF|fWB40`W@ zzvAPg@1rffOIL%3aP^IHg3MvqxpB3(2{Z|>Osi$C$9QvPx(cI2ow173yG`|3y_4aA|Or>WcvTCj}lHl!)C_zLj~yXidzp%|MA6y z=%t7AE?7P$HoS>5fCXs1eV~L5^5-ljAbcA-?45W8a%u-s$Q#v82g-MQD(ftr?H!>$ z8|Gid213RlA_P(W3Bw{P^`~h|ugQmCML@^lUM46F47BbyA~!g}wN~trxWkF2qORH4 z1$k3#k8Ol3ZNFVv3g1^d+eVOY#0QYUy0z7*b$6{<5eb)kMw!T}>(4u>>+kHY_LeXh zErENT&KvVPqa&T##7JklI_j_X!dJW{=bsN!hzp|%=NYjr5klJUf0_B9{;V>Exr%uo z{wAFrZ0XEIm2)8?u4;>`_$f?+lOoR5P0`YVqJ9u|wospI@9sW@aWZP@3{US`J=PlS z04Fpj(B5F8?ojKfAE<=T9;|&5pqyhorkx<{6ded5j~EbEsUL+gj7P&i@%oJh^8@gG zCL3d5UOyS95U5pJjPN4PeRNg9L$Z|9vn=IQoZ4Xer5xw56g7%=9OXj!5+neX9*DbN zIDz1ux*Ad%^9tLDBF_oXFLMXFOTg_V(7l_+q7k1AxV?aNrUl$CWXx!Uh|8WE*ECoIl^6okzbc#Rt~|)VpiFL zk>6^X+uif#%$>lpUkH;sdPXUSPk;LPs~aszH})WbKYV;vlz72dVV6~Q!bat_KzF| z1L}#Pu<)(m9YJC8IiawlGQi7$!VZJ(!7kvs&o0R@D+dY_vr;K+?g|Ps_?y7$j105N zPg{Jlh0<28&Sbhz@{z6RTlkJbW6Dg!??~(Qa(-Z*?JWd@V{L4Yv0;9yXr}AAzPA17>~uJXX=;v-mmAkf-j9B1Pe!ubr(w7BmIM zSu{s5yIbTK%+Jd6u!C$#Hz!Jiq6dZ2z^pBAE+EtZBO`J zxE!cm!!nw~18W-{c&)k(Tp6SABEB_M>vYgyw7uGx@jKj_h<^*O#&o+i>a#Z#B=0e^ zB9yd)0F(N&OnZ46N~&+ij+tF)z5#8fB&K@$SjK@3RWu3X9UpXCi8he+zM5+Ie`!Cs`-sEM&MrLRypJZabI6+D>(bMGv8jv+cX$*Psdxo6uDxcC2nMC z>;e`;?VK4~p^$zDa3^{}?tw)uV1pX5@|{LyhFI;)2^2y(jN{i{e&E{_69454RBtvaMWG;w%nF zfh4A9FeJUpnSw+YGH>f%)&F;J&lwxnzKVlwu2^W3#n3PRWT%vHDj4MsX1rEFgoO zMcC_HrJSt~;4;!nu_$^}DQ3lvQHmvhwXqBiAh@*6A(uS)A*1FDoR&# zvCJsN(YcHn4Js5i?kVDElVvU$=ue8HmoW&qbdg6KU5(2~FOCFyRIN1m#=AyY;1V-3 zCVr?>m6@ePdzO!hpt`NBY2VyeEZ9q z&83tv!tXoELg2QZ^82nL_?_HA{o`d(OR$^yFsj#sW7-8kRb$%%;Fp)0PByzbu z$5~5P-fh%|#Zc!!6aCWdfrgSY{295iJ#?=~)cpzW|6l)lED*G3nIv>qz)2k`l&$?Y}|*)mheYR znlwHb4rG91%c626Yijftlxzx93JCwscO1w_zI^vLBN z{*U$YmDfG&{w1isb1GNy*wmt_MFWer!vDV#|Cjv(|C-|eymHYt76&^E@`9LU#IXD- z=k&%%ZMX`qSevf4H3pEK- zsljnexYrIJ_4EBSUup36LdA!~{)K)gB5_l(+AQO2uV=PTT?<2sWT^j zBRJk|_?nH&C1h5*A$KwyZ9wGl+TM+5q>rQt2H1OTpDv4BVn(U?yE7;>Fv zP4+)}%G>`eg16omCP6~@NkFc6vj=F=XmOX2?Mpz5K5Z3;=tjYcn0Qb%f|0|-A zS8bD7yZ6m{lWJq3B1X=hwO2-13%?N79$waD9RS=r)*gXql+W7dmPIXF*3Ln%idtm; z6JhQP%bMIENa;^7j{9a=HgF8 zbN{uh>AtC_%zaC5nEU>+sAbFCUBE2E?v}FG|B*2GGi6QrlRahd=Q1%kHn4=W*6u{L z$-d;bKKrx?GZ5i1A)PCF^jd3wJa_bHb#Q{t!OQJpOQ)9dx~VhWEiS}kMxEdlQ}`u# zh-%|}`8%QMQ^hKz48J_d6jBp@!9lIir{A6f;V70n<1Yli-QTGHQm$ReZUDG&qgSEtmU(A|~aq zYIFd&ez=L^w<^aybaUV~bga z^+GMW&M*sk4Z|&2OTT4Xdpx^m*Vs&WI$welY5a8KKV_YT>>x|ewbG*=C3XE<1~pJa zqmy;fKo8EdR3aVC&f<*$;gscAa|D_I9;ta^kiv@X31~zyeNVvK`J9w5R;qvpRCD2R zUO2$x*4<&K?;7$C^R`8|zfN^>XuP^r{A+l!Gt?X%UA+i?8iM17L(SHZcw*6j^zo4;cwE?XFTW)8v)fmF6uhpkk>uopGN>IIdd7(lo zvY4xbM3=v0Z@Ti_wfs=@bKQ6DkWKm&SuotDe8Y|_C&xm2f>8I}?t+j+2QIzZGcNWa zwxEy^B1Vrz`5H85(Ajf~jwIg$@OHZZL!YYuV!$GOmf-q$HWycPoZvc>B_)54%7SGu$eMkCR)&JpCXe$)y>J-GEd3aa%5K)^O zGN?`5$#k(Fm5rQcl$XvK^3Q}8F@2pLVrPJ=p-ND!&5Zhi1HAHca~*EHhk8xizv9to z*mS{uuj zd`q;@Z;L%4l#pVVhj)AZ2cxWho@i*omM7XH(ajZx`6_HpclBFCUMOvR>ZQH2oka7 zDOk$OZP?u{6N@|&%y{-%G{NdarM4uq& zRBcVMQu&jEe`5X}4wzqdKi zU!nsw?NGhm$IdE>)_2fXq6YR5>=d(&>(`#O_VkdEQrm8kumTBPkr5(|zb%$IGNJlQ z0PI_hNb4;e)W+OXC*Ara`Kh@G4-jnU-J<_)1{*0W+vfmayPa>ivfZ}v)_g=GlwL)b zjNKs=-*_v`3ia@|krQm4i90Bi{Fa+m7aqIzjzAaSZ%bVu+%?TAt7TSzaG+$`v0aqNkiGfgtrcI!B6b%@lr+ithUMbceg-7Y(0omJgh8=oBKc?N8Ru68Wo!!UwT z@Nm2+xee$%F%P=h1iupczo1xomRq5<09YHk!9lG+r*@QCgx~j;g}^;M<@bAw;CHgm@?cri66}ukS#V5i;?eruyPVv zGJP_a2l9MtS<35yYyh8UmMCq522Jr*&x@9Cl_k*rBce^yY0WF30}|Y*gj#53b!dy4^H9~7;z=DnRDFU}fj0&wovKtRrSmhf&E$XE3R?a|u^ z8oV6t=s^8C#+`?o;}~&1fH{`%wQTPJJqH#i#SY#glh)alBY8E|%t;ZO)WuFMSi8;Bv&7bw$ z+w5MfE&F#W{sB6E_m((UhmIU}RA-e0Q%-FZI&wlYc>nwz^SoHaromU*Py122q8Oed z47s6Lt0VoXF0(ose+mcl`%}C6RHmrQp9!Y78@`##YkCL6)CNSJP}rS_MtZL)%m%e? z$;bt*eNBFA`Kk5-PgrI8L@q0Fy)~=y?n%4rL&sE{%Eo519$Rt5Pt`JWap4%8Mur_6 zSc|rQhbf-C1^dvdP8n>&g3za^N{|sk>i;fQE2RE^i;-HR|2UXm|K}hzDWd!*g5hrr z-?C9!AqjG~^h<`J4TwB?|2sq@z1|D*+wYd38(bsg5;ID@TavME5*L*}6E5#x z*0lEpz`ffOABbq==W=2Qe0f>qvgNWY0$~=AYO^{>IKH+l6rSHxj-OHl$CHELmy|^< z!SL7(9FA$tyw<@;e(R8=C6Wk=30^L5;y9Op=iS>3<9HHZ>0rc?tf*V2DO*sJ~P^l)qjp-U3c{ zhhOC!t|}xWgoY0rSen5plnVG&1e`|!SIYBCSkvy`z{bzT^83&EEh}#LXsxd!75#nR zY(-jl0#{*fFFWZQgM9_R7)~ji+P0~(Ab4H ze%tPPai_S)u3=AkKi?ZZcl298FMbjH^-K8cdhb{4zrV)+3d(dRAu|bo$rdsp zJ@C87#OaqXQa?l^#k{T%6SzS=5kC+p4pcCwZydAIcj&20hW2Q*He6%JWm&HfxOlGG z5*19r#)j*2Mi@l*w-FTRVx!UhSo1H4CEL!-6piMbypoUsIH~Sk`_J~zE{kHa(N=TZ z_n-&sj7vjoh}v9>_XuCQWJ1O9#d{3`4ma(Hpk74NjvzEa!qLI61l6|{i>ll&y#)a) znhXA&zFmjP^lObVm>)FhOrC(nT9X!FP6kIeDOX5U~Z(YV&RKv zA|H`6(_AA9l40o%n>yyQ-U~#?8QVZn)%xEigDd+^{|f_Q(O8E>Fo>R#5kkZNHt;*c zav^o~+Xy(1u96M@)!hFw@4&-v5F~$75R&0dwq?f^ZM*_K8AIolU%+rCQIwIopJoLi zBX!8kLZmr^TFQMiUD)UnngOufM^m>?m0Ht2`fos(ZsI-~pW^%IBi;&sv3)fAYlqxN zKNmMio7{%ms@8`vWDlLznIn{HTfNk@t&W3Q<}UlL&>ko5+m(w3oDBoc#eTqZ{Mj<*x$n*Yk$@88bkjLEJUq`NVZ!z+jA0_1c zQn}=Os0ZY<=;5!UZ3YmG&=&6zs{c>9RR4Yts2mO_BkYBOO%uaioq&y3L}JD3FsD{1v>Orpdrfw^}}B>3#8uy z`AMNe6L62aTp+|To>@4S$g@?BNOy05uX;?MbPo}wT81>R+sB!Ljxx(LLw9GKHG_mI zF-f1lUo$Y~`Z+Ffqk(dJ0^I>VpAeLW3%sn?44h^Fs@qn^6{v`?y}V`sXA4YcT4aCC zKqg$1t{J$v7r2&m&47s@5lf#ky}}X#Cm>P68Ow;?7Ll>+TMs=xpu!2dTn9TnCK}-Z zVpO*l%Pg4-nMA-0b-9|Lq?UQjz-b$Jw{Pf@0_|2Np=(N;ov%AnbN~JOYq%0Mbcdmr7(uzQSc1yqb*}@!zNSa62Eakx+NiI1RnLme z#a7#jzBwT*DtSNsL0NVvY!(8@03a?wVRR21nVa;V`HPz$OMlEA+#9jN4 z{MIsi14TGx`a;%KixmZQtvMwe6nTZi^$diU`U;2BE-KxICnf=QeVg8z+88H63~9sX z0AQ^R$HCs&@BAH^x7>Lpc=(=Hhe`{BonhL!G@nw)|5}` zDVJZ6iOaDz+^A(*8=m}DUK?)uLM|IV+nQ7PZTQ8d+wg&psEOQ*={EkQ#Y(=k;aeF! z`Hnl{hvQ)HZ1@d^uh|%2!EkBA|C!-v10s(Ne*>bC-i8YXWV7LSl|?c!s}gMZ17%J5 zgFWT)M>26a)`lCkOl!lF-^y#lO<%}m!zZmdmD`42AS(yt6>5C%ILLx3YlFfuHJTE< zS%sdm)yX#e4-|&G!<}#~xDr_DhT7rMy=i!W?0SA(tX@b9|8qudjfKa-{1!glrDk*A zuK$*eagNycod9s}cHr|6jr8_ikUyJ!Kd3B{iCLw#@AHJNP+<;!C6YW?)})W>DW8{S z;&ZHpH)@&I!Y9AAGMm*R+%kP7mzDoX@2&hyyurmSR$HXquQF}X*nJ$#Z}-#O;Buwm zOS!E66%0Qc5P7`%mm(VJt-c_>YW0(EaCt*nGYI8%Aox0U!kxR@dHUG&yErjc2 zgz$P@S(ATZPkFt*N4y>_i(Iz64qwzlSREc9oW7#0sdswH>8VVdj`g98R#)poCBF6d z8(g5lZ1zjra^2u!Vook^bH25Z=k+$99yhq$TddWQ{?y%!A({Xf4(9i#H>_BmweChN%sRJYLi15RLR+Q zgWurtRIyqi_5VpmYK{KmV1E5icZ19Bx9PuSqqGsd-wgowF7df1qLE(j1^MlFON+`P zmzYuN-I9!TQ|r#Jrmfa#iPmvtO?zcexxA_vE+>Y-*Ox^uTP~}Yv=CmagJeCgmW9HL zd&=?QA~>EL1fMF4T7u!R8#o-(nt82*k^Gk34K5~lxx9(ru_Z3U8ls+P$S@0egUc(j zo~w}U>F|7A&h~UIel(+;8(iLBtnkW%h3`ecHU|sUhNv_62A9tlOH|nc^|J=R+#l@e z4KAkXWKcZW7xGhpr=9;NTu7;SD1W_HJkraQEVpEYthK)~ur!1HlM48A1e`|!r|AZl zIq%f3Y&HbR5ed+CL`^t)It!-mC%R&8aKT~inyq!-*a%g`D=a)g9=uNg~@=3>^w^w6wp2x834=9v$UCvYDr9;XW7Z$#Llz$6z@EH7K$nB zJj?#tAv@0=AMSN3t_Fv0tf~6W4yNflD`A$|b@od!ZHDBRE42pnq}T!%LI7$*c=6o; zbc^>J&$1sxJ6e2a2zty{$Af;ft!kqU?divd!a&+X(13nOeqlAcOmsk8us1Y1*}@x@ z*#rJ&#-_qr3eH|?L=vKlr8Hq<3#+nMdcyrXhs+C zn|7Ktdlvqmyb8#o-|ZB9$Ijo5G?$b8ZYLSANWa@>##s_A<;+hr;>ABg=yy|U`eh>9 z>w7@9JycVxC7J$7My}{EA=ST?OR9JEfK&s)Ev+fmAT1fQL184edzFy?bLEo%Q#~O6 zp)GcCuwhZx(%j-zM(7mJ6Y74qT6z) zKQ*p*taMA`x~GPC#ana^5lMzPPWl`6maT{VP;Iy)4p3uXyRehUFX`gStVed(wg8jl7|bG_pcaJZpmge=q3&~ja|2+Oed3lT62drJk!plq29 zEl0!3&US=Or7<}^G38WSt?Cr(!>~^No85;#R-JI2N~bpN4mfqUQQ6Sn&ud3vo7Ab+ z8eB3*nlKQ(p-=6~5VMaY>4%tcB7U`ExgkrHTmbAx#3NmJa8PHp(s#pL5TbP812IpA zj1YXUHhejQy2)c6S228TK!np2mKV2q*CHCB!X;cX4V^K=%uov!jl5vgjO&@0{MOnc z!P^Pns<>3#vukGeHX>L5)*MM7<6@-8$D>lGT`|2Sg8!id9eoM zywx!me5&RnbZ-oeXEDY{MhQDUh%#54>mg0YeVmqT3K7$RgSxL;n2r#&71I$OA^3jD z@MRmlkJLPVp5bc)B5XRm8{u_}cB@}OG}4<6!3_JF$NwpdTw+Grw5d8(yPC%*%9{3X z0I*%8H4m4c%*17;a_RzM)Hv+|k^I()Nee`>T_gHw`eLr-;XT%z%e_2Y7K;7C(f}Jw zWlcDH0yA~cxQnIYSVMXEv)y(_9JuJY(+nZqMaW%ux21Fj4a1x@C-tr6b ztL8Mh;md}y$R%b}lI5?JHSN)!a(QzmF2`DaqmF4UfAU+a^I0#Vo2IYjvii@q=2~v6 z|B7^JET^)u*{s8|;Eq-&>z!2&E3JS{z>+1-g<~$(Rp1IR;kK|UgT=9GjV*BHi0hzp zI~05cmx|E(&~n=V&eQ|)$lz6Do{bvRv@a31zO7hgl#9xn8Cx|+sBo}=MFrVIX~0ia z5e)A)e9LAHts0i{$7L~-qHD4)4ab{oci5xu)(MEW!KP_T zwLa+%^x^AR1PKp{)eyiooQ?R;&Sb0MjuUGdA ztaf=>)4r^yT;5m=mlM66t!0tRmdmO`liu68zAO}8(Nm7UrU;HFdpmD0i&}!=vHN=* z)0%m$x0C#q*TdDA7)R68a`{9DSj${)pXf5R?9ZtTSL^la#=6U|cM$(@suL6S8n`g9 zitstjg(R}(+jCT!wCYU~E_+|!7rQh;>hN%sRJbud$5smbIOPCGn=E=wf ztvN}4>(sSIQHS1XLf9X>_7)=UFd_sVN2niV`fM&!@t`&PG^QfMEMx(DD zErqmQV14xk3rt<~?-K$%uOI^CFe6?4R4t6lae#0Vl`N$Wy00G6kFX|b~^-=@>Otk5L!bT2-|Pxm%aF4^f`_SX)1x_22K7=_@^(0H}e zs%=ems`p6Ksa^@I%+tL4hKl{=7opf)*vyKjo{U{c5%nMB4wX7c%*(5gjdpcjc}~Lq zWAt;~ckZ|+VI}nqCt!Dyobg_}^Q>9hwpY9x;D5~}-G(D5F+}oiM#4?&5tMymr84R0 zNenLfqbJt@l7$~V`8T8-J9=_I{3VZ`sA}OKInipLSdM`4&- ziKX}$L5{9j89cGzEW^ywf6nL+6IuYHRp;;@&vjoi35f<^Q>`<^4x+&7v(bf|J=`~O zVgvIKttm`Qh_&gG+JHCEsZL(zY^rU6*C1B`S1(F25Jy&k;hVX`S;LTk=Rj9#kOl|d z9DuV)!}ZCLT7&&_^-}4GGJkW&m=Y1GFB38rCsN**5ODZ-OoU-Y9FLhNbe1l+!LJ0> zM~g*O?qj}-fE9CuxgYJp7*$lykV1$xCMV+277Q|lq>mdLw>muL;K>%0xUjUrKbKtT zwwi&!RlNK6pEaxhy6w0WZiA(;yKwPh`I*IwDaHEa5Z%WAzF4BkhHJku0On59iOyr! z-k6UVg#V^5X7Kpsp6Hi=N~Ud<+!LV)<=hkf7XwjpEa1R*g_qad=0fVweh4^^4jsV` zge|GpHp8*6Ha`QlZoq;62Zk9e{8r~EXIaR9*G4UwrS6l^s6H$!hydYOfaT$&Zg_Ix z-9I{4hC@nAVCq3eT1|W6p!Az4V-un%a~ZWMnNBl+v+-2IWb#e`py>}{bj7@~QV4R0 z#C+tS(Cl>-)QhK|I^GBN0UtUPm(C556X4t;l8})wzppfJD2YO!0u6JvKY%* z&z)s(6pnk?v;Y zTkO>FC`=KYQZ_@{+L0a?SbbgxdOB8HBj-Uz+-+6*;hk!G^H67M!WG>i;grF~X1msz zTD>&n%l=H6#qvv@cX-F$3MUs9F-k33GvGXL#BC1`wQHM(+7s1bca;-7;w)OT1_Gs5 zvv_HR@4bX35V`uDL9V>tD^r-Q)Y-wm39vsKfa!#E_U^MFHW{azLR6oCNpQ);x!T$G zNHF-P0kB_1=h}Vi4i+(2_B?t4z@sU89W>2 z-o2>&Ltx;VqEUJc(cn(l3Z zPKa5}pF;(I&bns9r4!>nk-3d!nAwb=#Q z!g3qMr>yZUV;3xYX*(prSMW&_mA!@ZP5(hIed-{g=5-mUX`!UsvdQ1;GR(?C{=}?Q z`P)Nv&L|zD!-SG=$uQ^qa>-FCS1uP)7uBaqR1D__5Bkq=2@L&CNcO=DB(o5{`?3k& zXEV&oLioh2RN+f!{Qh5tx#br!KIL+SY(Z$><4aGBgauFe&j<;VzY_`jSq6GpNZ9{o zldwN!n3aWuiCL)(Vuz@?8d6n($-MR2wZDhOWfb4X4fq#rNhqrtC!;W6~Dt8C& zRm{YLKvaY_KZTudG1WkT{%3FwI740vv=Su>|M`mT-h=*-n651F32pVbuk~}X8Hbot z`U0P2d}9cgT=;>cDs=dnYQw<|C<@_u^)^J_p!S0kR@oV6c%SIdsth`0h<3>Gof#60 z;0!#LPyraIRzrOC)LN(Q)I)VutlLHv>#o`kM984hySb$X@vNZZ5)|t+#R+1(!lXTk zWk2o7;jzAI8x9yxwxN*|6!Ngvf1LXmT&2HPVU?(Ea@C*R&hVg9ZTDgLtX10x@6{U4 zB`Yo)f*PWFyXnBuiRKktfUv))I}ZDWYQt?#G88t4yM3??@jG^W?5O2Go$yPEjQ)@s zx$YdKjIxrfpzzKyz*8fC-8r?9<;QRLO;G$+>Is+wK6uQs?cS4UNJ4h+fAHTdj>ORT z1N`%akow?$K_xW{i5i;-60x8u+hnr%`e{g+aLH7ns$736*sV=&10=WZYYZw#quCJp zLxdcZN7y@Ar&h0aK(CV>g*#ZvA- z^CGOsT?0F!rrr zo%%gE%Ap{8;Hp>De#70ps69oD0w{_fK%6AB@cYin7(xB3WZbH=MHltmm|1qv zT-g)|(|uP~VR#d)&#IdzU?y%fPF>qDwXs=v$+kHPI4uvcd1 zXBxOqM%VC^tyT8?6}8S76@;RI5=l9_d`a1dOG<=jkOqI!q1Pt}{Q5u%?4Ng*y=W3v6d!vn( zb>~6+u>nO-JO&}J#DsCPA*rn0DqE(&Petjepx)P|Uis`-@iYw-5 z!vaXjo(2c>nBc(T*W<<=dP~A#4Ohy&QYD;PDyfim@7qHaqzh zjt=4Y(!u2`2OaQYV7S$s+%)C`yNJDx!wzc36g&Mj2B*RnLu_bqpEx##ssQf-An1u# z2Sot~c;l3W0kH@eW{nK|NeZ~f91AMf7L6`t;`q>QRuNPk) zY|6#<>L4R&=sx0XgBp3iSN5{|`ZGp(4Uv_K>h22F=?5<~e9%Vrd;=Qna}g6i;`5wr zjHWZSBF+4ON0b<|FQPzey+D6oUyc<)rBgBD_XCCXbD5A++;#@Jry#E?7Q07dnR`fr zs?jMKu~Y>-Ef@c}SUjJI#dAT(R1|>IhRZ4UW^bTCZ|wz64wp>5siSi$g?aDm1)|R& zrn&&EE>_uhF$MaWUSKs_Y5rv5kBwg}jCqjh3I!++(6|I@oOM^>f3~TV%b$t&_?=>@ zl{VUXC@xSme750m*bS^%vj)TZo7+R|C~(_Z?Oe5Vm2=5u1I{w|pGsxvfU{&7)QN*b z&<{T@XFo0r|G2FWfnW(3oP=ymx>$hD!nUg+XExOyguwq0Sarp z!Ux)}JF*b27rMd39JlFb9~s1PIAE6ym}cy{6vwi z6d&N(7y<}M36=g8(`)CE_-V}R?fBPK{B)m3WcvG(m;~axw9i1PRSt7*mp*63aZ8U~ ze*AIA_Nm|ZBh07|KJ&x$Ro~Z8&$$F1Jmxva9e?bK6)X8ik6m`$(xuDsZ%6#!Wqr!q zDiIkJ|7iwg#WBxWxpc)c{QH>WmcyS*pCh5DxcIb;fLXSDi2+7dY(Ya~YBXmBcsr__)_1PU zIxB%6LM&Q0JV0EvKTMCSb}UT(j6G?f@2)cjopUD}P(0*9x2XD{Q(3-r*~egS+RJh*F}u)1GR>-|fM^ zbyc_`0isCF@$tzfY!5ik8E}qUxpeuUGuG)$tUCJWk!EeM+1hmUvZaH|mL7B5 z(G37R-aZ~431Wv8Z@q%T>=l&k@NYux`TtgE0RC+FJQtO@02oNBMDn_K&JdFNR1+b# zSL_(mro7wNz&r1&$~l`u6Q#&UnHN!|c%BH-A%@A=#Q9j6>tw68-8&Q|$a^#7@V&2K z8iiRP#M$lus9~>pTv${i`&TU5P%6~ApgvXaW|$HjtbG&vpNe-0Jm=j4|6#>y%i);0 zTIn%sCz!sH^%37zENV~$qHCgM(Fdq+eHC|b9k{@ZvNk+Gcz9AlJQO6CU4TwNz>EO0 z?ia0twv$%s%8j6=BVuWO80<&M9nq`@{Q3Uza<+ly`(A#9^q_Nk#~H_KZpI)5iWvjw z0|)2UH%`J4G5IuXui@UCcHdOZt+TdpRVQ?*I%Xt9tD@#cs65`nO}cab0JNp^>+#n0 zW5}q_zp=VL1qnAiN`o)sXWPI#0R^)FFj#9tzF?EM+uj+4-e93jz^@gV-4^1u4VGwSUx3y{^~4sa^!WQ5?`GJM&_UI|&>WiQ`C zH5tA(Ai~X%EPFQJ zeYA~8kO}k1Vv@4xl&x_uvX&shXIaE`9s{8kap{ev%MM0}CKmkSWV|N1H5Ge*7#`W> z*Jh@^kd(pqbu)T@GCeF!3>F}D2Ub&POKYw)#>QSw`Zma8X`8x#0k-p6g$b|Sa; z@eB0dL)U9p+MDape4SmgEpnK+@!>nPSdWA@ap1nm1#QUFK_OUh_cq(U!6CyM9tv$@ z`|u8c9dz)pmCLIc2l~XP2jOZY`RPFlpB*a|<&tgD+pBgZ+vE*8=a0F42pT>PDOs@r zhhFornd?A{@)5(HO>Npi{2+CZNW%ri>V@=#&S6$WvwOoqtzx8J9}hHfoBBrPM+rqd z!`yN$44W85Y(V5$N9%}2db=vvrMe)=-qOp;BA1v^YH6_ZmToL-+Bfu+%QqFn+W5(F942E;$A;1KZ^3s9dAH(G)$G6zMmb9X#(2!>0u0`uMR) zm`V)}+e4i_K8h2?s5_0h8(gQ`(6OJcU#+i5smaNm|%dt3$~;za)}wG=I_p+(3HFE7sA^$ zWli?EJ>~85i{P#Ig-MW*@QLu*12jqUqOz!E&)TgK*1|7@wWDQCcDSdk9qSEiuP%#P z_N=`!!dm!+u=cfOP4+cCW$g{UVeK7dQOlOKbI_}z7McGxYA*gnGfQ1Tn*r%4?+k!@ z=P2)rXykR2lbxx9%c7Pob9Vu=47*#(UjIkJ;K8z{d{j>vyfhPoV$6XbFar@D6Vkb&M}O*l^k{X^ve~J?IltIk-cp{vJJa3bLOf>F30^UUUxJ6IHqMv7 z6PmikDx?g*RGC6*!Y??e75ensb08eWa%cR7;CH3rOSx8*D;Rz@Ao66tUW#a>Ur_|{ z?L#kbD2rTTMyYvgm;Jh}tZBckr(C|h7%nGfzdlkHxoo)%O@~LTlXbYqOXz?sgXdv_7X2k%vA9xpVCZ)$!36{2 zRz>v&MQEwe8EcNfWs8fG9+j;fVy|5^qMH8N#T81o3HjAZsG)@HA;AjMecz}Oxj}Az zKn?#H?x=-+CyMo)_vuwy;{sK@qp&r3rd#8dM?crSYsbEiP%>n@ytq%j+ipKCuY5LC zBA2i&2)*M!6}f#a_913!$q3=;Sy3VfN~qzf%>{L*19-cLOXRq&avAnG3#u6Q5C72sp=AI+txpMs(89_k9a-P?l4gxN(ppFs$BA@x3sf4vv} z>P9X&?S_`ESMs}dx(8_St@Ljf3Lr1x3Gs)YggzQS862pB1G?!i;W_BkTF1YtqEo}8 ztDzfrg2)ZGK?%X^{_Bw0W zg_lgZb>Z-x>u!RJblPzGOmzFjDtRc9@>_^CNBi7rs2+=zLSY*Vb_g1uWIeZP!!>Aw z0rgUFJ{tOa_-#usT|ZW1olE;x@vf|wu5aTHaC|y?*UrgJc(FQ+&He#sihFjZrVTwB zVS9-1fy!m1k?L*%C4e+^J)VQ)qM*NK0G&bPWw%M3Gf0fsjN<8Y`r(W?0e2%fwH2Ix z&_I1m77?RrVsvD2OL=se zwRdi1b)l_M_^39kvOPIC zRg9??G?c6y15G8NvE<<3AZs>>EhpjcZOr&W_i8A7?F%mjZW|VJXl*p& zV4rtq{o1qEo*t~`(R18n-$hE|$OsX}fnu2>b1@YF?3=sDDQ+B;t_~H6GEZ@zX!vdh zQIxsZQqHth(;(ggD$G4?>iA@g?hZw$O&!WH2Ezztu8!v?Hz$Gz~7d- zKxEl8tE`5V1woIn=58budl&#F85**ZhHN7oi zSzLl+G_U(w!wc)L zX@39!+eIhyaQT5^xSW{R{aRV%vgNYU=Yi<5GDfV{qh%rR-JbIMu_E}LoZbCnS=18j zW;R}RQgBRb;?gJRn5I}5?L~RGM5L^vX&){2a;hHG8ueG)>+78Fz(rMCW9Ab zorO#W(~U9pR5DQLA&e6P2EaRf6W7n{!yr1t4pIh^O z(1~9JfBh2vy59R0`|q#uzk>hYUkJ}ipNvhC<%fHb06!r}`3`MtHal%-1~O5xN`96@t%l1Z*o6=LNGuzM4wHCv7O#T{ zE~AVl&G(L>pzo~nP-5&8#3)^ek|ITbFka(x=1HWV7yVrKzL}CpmrOLI)Q`60ug|b( zqJ6I@B>C`auqvUHU3U-lVgFGs2+?681&t_M5>q*+!wih++~);`&jauf?y*fWzcjiADAJZ z0@2ciIrxk}%n8JQBJy-w1{zt&)2)2|w(|78470M3CowBkp3)U9d?Lf#@=Fz;a=B8) zO;2b=^Q9*$T)TxAKmRc7f>7%1V`FN9uC zWSCigQR5RXRMc_-ll3t%K8fcdji$9e=I|80WKyL}3}(Ty9wFX3K-tfN7FH>9zz2Yi ztWxH1_$#JTCe}msYi5o}L4&yJnGpB*&TBmpd2mJ2SI<;fRRb6%wn13}r|}EmRtRN)h3fq!`=1MC z6U}jFq*c8F3Rj@3<0iM^wlG6VEu!f`!i-hqlQa;Z*&C%|hIc#y4(H+{$W2QweqFKn z%3S;l5irZeOU=X$L5aEe4bO**sntD^pD$}+s_Uvn!w_*9YQc7V5p>GJd!UD^&}?eB z*=o6U)-qJ|$2ti&>ki+ovj(GV_r3(7GovtomsmqlR z+U^j3Vf7*?@2ZVVR_pCWEE5<1U8tLfQZDwHKJi`1#*N^OA>-^GYj$fjJ~QGDSEu}o zDfskRuP(g38q0`kqfQ7D}ePwlGfV_jq`!9z}1Nk=tlNQbVMfa0r&lDXdid8FC z&}1&q1;8Lz@wq@8)Y;ZzbAeYIzLddm$Xwu63_lwX;VhADCBe0bMkp7EOSqwuKoDQe z1H#8NuBZ<3Oh#86`;ERTdJr1K=F_!5iUqi!AWnh(>PC zC-=7fWLf00<@vtxc39~kp?!+Tz{6!B^;H1eI~n+TCK-rL(IGdqmRFmiOMGj?Tv+3a zT$~@f_Lg9IhQHYY{n)i{igOKMxX?u!J`=bj0NZw+fy!|Rs@&5kG%yF;3U~op~;>XmqjgG zCNHEmkNTwQAXyC>WudUSrwpGcgy9a>L=cAeQ-;5yENTgc$NEP&rnT`}|0wyb!%{4Y zL{>~7b9oN4t!0I;k~hto1wJ19pC@n7vvnbshqFq|m0*R@>n6uHx-E=;1c4m9*%Rw7 z41o`tha#dxhX`HoGced@U5vO6_cFR_0v>TQ#g+)230N*=zQ>v=nr%RaS;%_BOS5i9WW6EArL|Re zrcl0YK66^uS;%@r8vLheh71&v^@cR-r3TM5OCr8|& z+UoOLlWu6=dx%o-GtZwpS;vB3i8WbJ0aOk8AxWKiLcKlY`0~Ym4&d0S*gM{2Nx(x zHvSW#*!wcfEx(ZQDHkeaxq!)nwV1WhI{|4FtUJ@u&}m&#B>k$JNGEUlUl` z3hvn(bS}iE9=;b7IQPJK{=JP=yh9npTd9ioFdgak zt*`obPSX`HJU|d$@S(7w$c?b9$J-SFvwA#foG=4fVm)5>@R|(0!WEP5R*bx&>2jse z`*excnionRv}(oJ#KAsB_vSA^EL| zo|`_xXww99Ej4v(M(18?CWBy^gN+dCvDZwotOd)_UpNNW9>7uqdnEB9T_oTb7T*EM z{Zyyz)<+#!Y2XNl+v>v=DcJu+my%GBj;tl2-w7{%T&&VbKl6u-7u>o>784xIznIKH zf>Z0le5KjP7(Z0?qjy8 zENTgM$9gX~rZw_f?k6+_gKvdFf^hnH2H=Lcn=MeC}wyS(SIi zYP~#e_xZyFwci$mS`Ht(>m!lg0sAEroD8Iw;`_6#Af)&r_X-i;40sqB-5=@QF6@hM*RdBg+o7c2W@f9=R+pY3wWKHJk!_Svp@#m0?yEm3U%SY9*ds+2{2c z=9s@Ck5AoZZM2uRpzM=dQD5;4WuJ-$29aY$6W@`6WEPtE)@;J|-VC#{5H>L@RoK#% zeSSQ{-0}+mJ66H`;1u|y)%(U!Md{pm3_98%06ST309^E!BzsAg_nIkjf+%B zn-|IU^7mx2baSHf8=gjGpn)^TS@&B)jhHgfcZW+Vm9W)$gh5yidS1U%Ww9(Q2dxI> zZ;sc;YD1wK)X7;5+6T3DetAtoHRyYLJM~mWq2}omL7nsAuvQf(sNT*9I9wDO5rXL{ z3Vl|w2+Nq(J_wk_w4~_*=f2dU(1W~~qEJ7VAK0=;+TQ!#SJXBRinn!4u~d?I`lA7` zwjLA*rHQA)n7-&M&4K$D7`~LjKFciq$qYXm5a9@-Z9VAeh(;)Uhzqfy9yCmRwI0++ zdu{qG`K`TzdQd5s!~&T>L>w8LO3(poRzxyk{S3t4D?#}(eho@n;DJ%~w2^p0W@!|z z;$&u07AfArLETr=8wJ}+(Cvn=X24Y%h}Sb*Z9s$#gm)>tZczz(Goq2+KnOf-nRv~^o=PRCQRlRaLGoMETnTEL zV6LTRt2Lu@FEv~JN>FeCORfZ+Xt`Tz&B=D^V$hT!y(fy*JGq|xnz2Ju42pyK*OPR` zpz}YX|CY@XAf!dEBD(+U zMKN4XECxNJEOOa$St$q1q0PYis?U~#0#{|Eu+5qZC~ z@@jq&sn+r1OF>M1=>HXjT8<5UTzzOlfcGgTI2lMU#rF?cK}hjM?iC`w8T3%rhthl# zjaFs=EbBvQB3czwQ++54-X+$D;#0gnblFGYFIFGQ{@NkyLyu*xo1oQ!b!*Up#OudH zpv$ZiT@%}ROP~Y?U^DjzT@Xfq+SKp}v8iVu&+UTjc?w2Pjef3s_e|&$%GqNm8a*_T zbFw&1y~(+}R+-f(y@RqHo!z!5W4jE%LweP=X0n-KRu*M!VpeJyn_bQ1whVL3U(Uv- zZnIt(Y9=q@+)<@1sF~yqhoxAmm(&Nfk+P31b6`Th6I*g~29j9_+Z#AKw!-$#470Kj zHZdzz*wWQZ-j`u+`Gt&6xlkd?1x(gV#w-us2Bgun)=VB?Sg@1oCSx!P3~+>KCjzR4 z*G+yK>Bs6Oe*k~Q)J+n%!LOY>$bfTP{bYzsJbS+uKN~m}ut=nDo4LYJKgru>vWAJ+ z!OAc4kWEAQ20a@HV$FU+5TFjdZs|-_Q#k|u9nR7p5sCmy)yU7^+iU7uf~KmZG`9sM z;`v9yjN-)8`vU?FS5ijUK0TF`yL~KdP;w(Iqd)TzFpK_3BZgjWne8>7-aY&l70W7_ zX+InQ180~Q8mZjELAl~k0V%I?>v@K+W>_X<&i#0Xs||>7@Xxlia}A;q%DJPjU?}Yr zjIhtSUr-jg#Ei6|S9PkSK8prR!rlFd%^fXk^251!?VSU!TU6Y1{(=#)@`h#Af#MO zZsCNCUrcaN_to@^NxHJF`wZX8fT3JM-or4o0TEt8Y|Y9C5RLR^MUY>$%gJS1Uo4AU zVn(T#5WBLi@02y|Z}pVR-z|pAiDg^AD~nvVTvkf6h^wHC5ock}$MqJ(MkOP~n6m+} zUB*9;R_}snT&UlziQz_jhGx==zX{wM{#7JpK$Mb<_#LTLB~ z1BWuKj8Y9=hk)~_!QRzYs|v^YN1gUqb;5Nj>jpyiv1%PdzErSx=|=a?f-udofOqHe zd0DLCw=p^5x-tieL6O2??W&nTBSuyV?qddUHqwxbMtoiwX%vY>=Ah8*b(A_^pML6i zAJ_+u@27VG!{Rf0fTClhOstP)dLx&?eH)W<8wraTT(mcZ7~Bkq$jU>SpP>Pg41i_j zAx+_`hSgMg$O4jym52BguRMIlC*UtudC30S(JK!vyHna!9+ujn(olKWt{Cdq5?fS; zN(huTm1Kl?0Y@Uw?c#cQDi05fer^U;9tItbAp51Zt29*}s%`PqTCnme4_8O&9TdLk zjIKp7*zo`!Xkl9n_QDLavM2@z}>?#j0$}q?LMPYpEHtU6<@^B^Rjw)?I<)JE; z+RDR}N4r}YNM<2y4UUejuw9#BRu;l0W~B;Sy2``XW|&)kA>&gnRLF7xla+@t%Y(N9 zX|$tO9wv5djKL@{z!9Py1gI8Xd3Zn4k5wLi4E{1#9?GtbhRVa(&W#~1@iMhT@Uwwq z0gFWX%0rt5j3n4$^CIzrK1U`?op;?b`82CC4162TzE2a10Q=Nf<(;-I5J%xcQ+B(l zAHHOldiNF3xY1m%M%QW9xmxtU6{-gC22H#p<10PbQh(Y1R`Q%)g$bD>i(s;aeG` zMXn;RVHnzg2(KcxmgNRSBfVu2kXgG>LAI2E8NfL%>O^eeXK9<8Si6Nyoc#XH@F>` z*oNR&VilHuN-uIY3$-A>3}hUQfNcU9s;k(m9&s-ymIAWMaIFC__wwv}#F=1b5OrBw z_Vh2awWyN{LL%;Dgou2@z?WPizZn7N5&5EP3twIkra8RuxZ1*maLzSM zj$fL&%^!;7^ogAgf0dEsVu1NMO9 zUop{k>!U-w(N8<+a_rs0l=EAe@#TdM5ienmf>w ztb$RC51*HZuRgz`cW9Sam$;uj>phE7v3&qM=TEGQ%A6 zmyGeLYgPjlm$)bAjev_u#@hpFG_BRK2bvttq{f^vC3P|N5NZ3Um$x_Tx-s8 zccfPBxFgPRb+TQpJKS{-&WLk6W%VX8U*E`}jB$Q}*kZG=C z2K?aSV|ZFP<|gyLiE6E-2*jJpnPS@NSHm=k^gT{UO(P(htzxWKs!E^tLj)YIevL47 zda7UlR4l?WY4julW)XC0k#Mi{_v+W6w#u^l^_iamiUubga?7TyR@wsq17}#!G!lWv zLETr&tA6b_d^Lj}%DSZ^8Ll=U!r1`Z>er(XjZobZF8zk;SHTGTx}}rKBA1wvHW#B# zHB0sDd1Xz0eJ);mYv6T@>emYp4QpP_0DX@U_a+@|{V8P<#z z>$9wW?PDO)_u1U$@6|UKbVIW5kfCc8oLs7PFgos3JAMB3j_7vD_V*R<*Gj=iC^kiM z=%L?zHkO1+fWmB4o;W~@XMa^`*%g~JGlgQ{%7^}*2aKEY@lFwtQUi0S|hLZVv^rFJNcSqyTz0Umg)Ps zoRpVa3s!C?MJ_R;)ZDdm zT-s$#d!naYo-BsTiH^%_$|9F7mlfxPm@j3F*sV90g}^O6<@Z~Q;CHg)@`19bCDw}FRRBS&+K3pB4=Ig?-+=Z zdW8SdAZj)Xv>?Aszx)gV+oWIAoZ_M?lma?SmN+MFaa+|*t`nb64AOiR@BaPCsiy9( zix(q|#fxbP%N+cX7EbN_IlaPVpn^QN^EU%|dA{S>q&v6{N1}Bmpc&*{9^Cm$R;`or zj%@F>yp!WOWE~_UgocZY<+zmlMF=>L+!uXt=Y)bV&EbN_9o$LCL_HT~?Qeo&nu6o7 zc7@bB%6#dJIkBv_3Jv@t6a*)YP|gG*n14d_R)pJ=?dEQ zRJ_OONcW=HNlj<(?LOz zwYcgTofC4h(`Qxmn9gi@4njRD5gOtqTsa!?pHW%|^|w0vYf+T`Fo3r^@@_ab@)ZWm zQ;&_5cSz|MQ72aUEBE=-ZPrzLX$zXC z7kx7kuSy>31n3XDQ=?*Ea$uPJ4LdK_Du8>XNA*Bm5(9}W- z&&wu-ZiZP|NTHZjHYsdpm|K1+NxH}A{1WKHWKrDy4!?4$!qG3W#i zQiNjn1D=H+Q2G}XFm^!c9q?Do0VV0R`-hYE*I^rXFe$_wzOVTZaWG)f*s%{L-JL-J zQyom2X?qUNy*mjxfO~2J;l>;%euAnJXLE^XlHOR#42wRJ^Z+3=jqT`s+%$6M{W}5< zA4!U^bb5{?eWh50Wp3b$2$4yLqXu@{!k*GEf+Qfm6$^z$#3lyBbI~}CJ+(V#OBz>53E@c zsWSK;1CjpN#!dd=R;O~+qUy#roL*ft;4FeuutRvTV$n9HsAs~_*74?uJLsGO2V&ip zQx!Sz>Ts*sZnHzP__(vt?Ofry4SwGYo_clQ@|k9%KGj$4#2u1_FE;Cw9anR9I(nQ# zUW7pstMX^Usg)1u)ze1e1(~H$SO$Q#Mga%&8wK0@G0rf2H3P2FK)itAY6Bu{AiTZc zb&FGDXCfNu4TNBXYEhGqb!;q)Tw+Grq^~;FEGGopWleqp0Ncfl^YD5y6R%@aqDGz5 zE(XbOP4fvs(*$!ZHG|fS&b`z;T}}wzU99rSMdc306OE^dgZUSgbcObxFnr5q9S|ZT zmy(Y%3~fNs{IHoo7TE`{%t-_BA znm(D!S6OE*OB!D#!z|=c!S7^ECCEyC%ns(P2gTgb7Xt(o6B( zkQIa!U*ujP;+sJa<-sdjGDC}VG60qbuV`_cDyF7`S1bXUc<>6J;s>wZfI`R)Ua`M+ z$b(nU!*fI%o6SzU)2dDkHAn3ZU@c2^04of?%!61jh^v|mf4nj}*%6B|y_YMgX(BL=O&phhV74#2nYlN&2h(Ade1)$mu$$&KiO z@1Ni}ED8I#lN=$Y@v{K$B$fdR1=FA8c;Sf?6ZM)4rIfyRw*+b}+u-~_L&;HR{a9_l zS>J~LxSioar_*$*jj6yZa%zn}b~njzz1o&7C%F|X6f#llQ!*%anu`1x>-KOdIEj!2 zq+oiE4_r*9LAPW&2gkr287I3C0ke34Q~>aGNm`3T%C9jZLgR`9;-wZA5Cp zXsbD{nlXo|gug_^6c+n{{YS*oAN))tezI7a$_(mD0I;^O7zcG5k@Q{Scj1Jic=|sQ zEMIN-UIxjLl`gMjSlWOHM|5n@9CQ(lP&fw{1;d$xFbmW(2SyHP(;LZe^{1C$!XXpn z$Xc6RizEY54QmcXvKX5gi1bGhR`{yMb}>$6q&Cct37tKGdw;lD&40jw&Hv=M+vvz8 zE~?PVj)nwRl`%rnPos3$?eZzCG%)jCXmRjrNG*Q#~$TL&6NmoUWyESDyK#F{C& zHM!z%qn!#1^0PI1ErjZ7BW?qlXu@$fx3#5OHyrnqTW+Gb@@GQ4g4NR-65`LuR#? zW17~sndqWax$JUVi5?mkH3mc=OxvkW4mh46H@yo-n(o^CABipbzP&BUlZXCJ^mE*bH=jz!IO}(G2tKnm-mvEr*7f*@u4<7CjlIS&;kC*+GkB@^1lrVaeoQGGLKp z^3EW!TKvf%qX7Gb&|u-0^{Z$BH0T5HWz%4`r=>t>h)aM+CE&<%u|KSM>}?jXNNQAO zGh@t!_X|{qY0YN-L%d~9%3;PJ6XY;%o5ewC(WpqK z&!?nm%yzHgOBsY;#%1qe_}PF6hgocsr0+#ELUCDKbqq<;F!9y6tdaK2X__0;m@WCO zX9bPfROuwv$OI^|cH87cZ?tAeBsO~k1Cc%_dJI@@sh!w{4T63YdmJ9FJwODoiv*Ak_@RRELM~0sbh_JeP zpMlpclAnJ?G}5bUnE0x?8fmXp*W|a3OewBJc}-w*Dew2K*^^s&pY2K24NMpJje~x^ zdTsT-_Z9Hh$;zs1HJ5)yuQWDt7*W+h0IXeEaj-Y4daB_|8Ss;;x|ZQ*10s*Ao`z_o zSJg1_RaG_8UaP9fZ|$cSPokYBNV&B0C~J;rv@^pjWZLtev)TxmuRsSrXTD;Jfv`w> z&J$bkAZEoRA^4SW@HNHil-#+z3IW^fT-1&1P8hcp=1#pib(h79qxYub3k0{f6^olZ z3jO9{0m}s0EdbaqmMO$u3LMhC*8)ef=|0bx(2)_soX-?XLn(NlM8J6jPbt7L=g;FR zbG}s&YB?5}xKqmsJGe)f;MgpJLiVKiKAaVV6kp_CA>y0C@XP!z4J*-2PX@p;ze@wF zs+gMcyKFy@nBT>xcz$=mSK%*~-(`R8kon!`@KomzG#R%$uY6R>94|sH^Q5wRs9-RJ z5X4zcY2H5hXt2yNlNlZ$7W3K2QM;XZo^-Dh{ap85Ga}u~xGvL7>iv&%kTX8b3(fXE zH%hV~OQbWb7TMlo0lb}e5J}HH2M)sXM8Yu)SR~sUN@uFas6#_cP~qQ1KF=!``?HJ3 z-o}(iNGUU&F`D8nM`BECrZe{LsbQBXM|YQ&J37)F-tO%Wi7>H_-yO(C3_^h%M`(5c zU|M*#a|+4FvYpq#UoqLvu$A;Po(IO~cKPxW&3cAd#8u)T{AgfcA>c8cSz^s!4zbOCgp zx4y{!GdxL}{2gLW-$d{&P5`_&BH(ZmHA30xNus{HScK({@LdR)?FgmH!$LZflc*0B zODma``3wNohI(;O8b~UV#b#x`WB5`A>nB6K-(vXLfC%rxZIh_qMKnU8UR=x!Nz^d$ z)ljdI_RJrPOQI&fl`@HH0u*rxY?7#-v}Q;o()%$6B7G9I>^#igU(>6JjpPYLrE=~L zfVIkrgS}DCMTReBz)vdYvl)IiAi~P&{Tk%JB4yf-Xrx!pF!5F8G}2zHoXKyc&BK@= z<_>E3IBBiWXed6;(=OG7DmZ%4p+1TS|U=7EAx%dyDB z!26lt*errV_N4gUmlcE*U*ujP;+w(n%RCI-nbHkM2EZ~8Lqk2Pn40o1%*ja1 z!{Adq5A$;rLY9YNf9;TYn3XIS(S%YYyEM$=bZHm_TxJ&L*|BjyhE8z0%W&Xset^B7 z6ySlL(C;KLGxtA$qd}OE3Z+JE^WM?crSYbNAj7~5qGTusB2eDdzVDA|G-wuVcd zMK0!90N&0+h$IkXF6NmGSR@xi%5&9h3>jowjOfX`73I=kX%A=+N;;_&2o1&Nqs}ZB z`_qcY-eyUQh?C4m#aIk)ZzRUF=A-u0TIr<2cQN<`svIHNUtqm0JRQ|S>aldxmGDu^Bpr!17xgu0eaWptzVX zaE9l|g7-4SKA1|X1<%w0jrpm#F_?MF7-!8jgdV^eb<6yMaEfT8)^dkC^e80DKUJNH zYO7Nlo~&0}4r5jLY+m$W-f6j^#vaytJ;A0p?s_*M;BcNPLbvJ3Gu>V+!g9y^4g}10 zyi%LNNtnrbrcV}2D;diEC;--mvT;ynaEi?{J!1Hh&Pz08*<~pEVTPX#h;Wp_HqZ18 zL?aZ+##PFYX9^Qv4P_f?uMK4uvH(4_GrK63PA`1Cc(@)ceDFyFIK| z92;2_s7rO-6##416$g8xu7?`FlmS1ft_L&xY(Rw7)%yuZhDGM-a6}`$x`v6bs;iOq zT6Il+E7M^;6WCnJJJ*^$xs|u&$6-S!CpY!?d_@-HP18PIFV%aSerNwGAP68IwooJ#`p-ZlDv1)-K>wdwjP z@AM1KQ%rDdRzo3sQhfiA6@(ODdE(I^VR`p z^MKQ6b~YQ5%6rEUiLQOIPmq=H3={^txO<*N^QqC#b?=)IiDtql!&Reu1?2z%3w@px zdJeD}rDTw>(wS&wOdpL>D* zW?wg=U617ubK_@krYAw)RWA0o_W=7jXy3I2preci{3l|+KUFRnK2|&#Y`mn1O_2o% zF)N9;0f{lK1qg?ySmcvR5n?b4EPI4_Cj!camm>Tx(vg)S{0jbxDMg6&EBvB_BT~>H zt~?>cJ)Q$!i_-{v6G#oDFHbnyFHc|{f}6qO?Tou4wQ9#5p}BIUXuzBKVm;y`VtPZ4?80f2xd=F1{1Bn<^b|krUo65h zfU_?GW&s>&E5J*g$;A&Vi=~xJ(JTYN+H5KgO3O+`ve@E>(+ywBU<_r7=2V8C4Tx~i z%(nR9g@{HdVutIYq4*(8d^JU5q`fvpll)f7;s+C;h<9OA{4i+EkVuB+CZ@x$TC zor(jqAL$~Vsx$F*$oIenp^9Q7djeIdp4&L8jNg$ADh}$tTC95BZ1_?J{G@u`$ndiP z5mry{#qhdCvBR4Xjr8gnCcdhkM%ruDGx@E5i0w=~NH?`6Fu9cTN^5rHR?f1E8@_@( zFGDrIz-Xl@Zoom^SBq869~i!5qgR5FQZ>KF@UsDtM>YQk(MYeFVdAT*X{5bYHIv^; zTijrRluJ7wwB|@|?L2-n>l5z4Myg(Gcd*4j+>qR6H?}}y=Gw5^#^3mM86MhFZPlt9 z>#pJUbML1Q0;{hMT`8=_?4I?AUU_WfF|wLI698+ST^#I<$_^O5lmS1fvi%G{8xVO^ zb`a4>ud;&p^Y)rGtN*&~+qPG{ZFukk?mBHbL3ER;C;y3Tj!!O&WMWp@&bpE5q8cdE zWj~SWUQpI_&+RFPFD#0~qfrjSPlROSWs%I9!)V|X4zr)gbgwRJx>xm-!`EiwFw;_X z*)`fv?XsKv*1-wu3}K52T&}fuPiwa1UVC4F@yLwJuhVHd?$+V@=EG!FJ=IsT&IOEzn1#Dji_;b#LP&vN`_L?iujEQlXj-%>5dkCjC-F{^@? zDGZ~1I?&ql% zt79@>_hJNWldn_r!8=3QXW+4`1^@FFFNR^Y+@HNd1awQW=*eRLR>d>HbcSrJ{FkJv^7mnvS>AtGT-BTZVXW&nUDUH%m;%9q$1DpS zA_nFuEKlwJlhMz0@0kI$`#uv4Mf>Gl*R$t0ta)V9BJLRg-p*5ql+?;H{rL=7 zq)b0YiF$vz*dI|m_BLicLP}Yk9HT4Vu1Jh&txk@;ye3eOgbRCOP|}wr{|0PD;bqBZ zBLP`i@`dnMOj$Cum3}?)!A8s6AHB3E#3)|3`a5FzAkmn<5ZMVAA~RAOE02>OCo8}Z zQp9crNY^!OCfaq*t4j$tHn`9NJUyQ1fk&VVyGI5^;RmOz~u-tcr; zAEwEjW&{=VVnWTV46u(hFT zx!n#|EJKSnXq?CL?KP*?X}k5&Ahyqg=vH%n?Akk~Y0gA88-x+mdCt1MVEego1RO4V zj<9@s%AQ|VEW&atdkq3+s7uQPtNu(bdwxr?w34Z(TL7@O5(Ecz=Cau0t@jzeltK7q zCCI%DKN}F?@PTdF^ZOBvP}myRT|?P(nD}ZI*+_eB*gE;Glx5E*KsG*~2(-yy$IaFZ ziA1SyWFXR)J(pcs`4i-FabAT~&c`{TjN6f-XB^ahwOHl+tKmyFnk5)1mGdcvpACqx za(WNK>lQ`Ne?v6VD`%Mas&X1>uT{?Ex6)Qtnjq!U&d01dqS4L_vyeHY8?w$q21L;Z z$QclQDFabb4(X(C>b2KKAq4rQ^K$|MwsC$`fB#f}g9|rtI%}(w?P}c--uWo{`)+l3 z3>|(a#@}aUvCQ8O9P)~%=Am|5yx9MQnvB}jAD|_17Zyt_nUOlr0GRJ2PH^B{V}6DY1mP|2*;x#F?{rY&;U~gz%n~a!@a5rHDza+2cMXo#iw|7_DK|8mYrpP?U317){4#d zV;~CJY1OvcUE!6k6`S&jGIO>4ri_4(VnWK6wLnqlOin+=K0(~4-M^(@GBgUBCxN>l z`neg=d@VxdAc>~l_f=jV_sA&ig6x-uRW^Ct!vMUUzZ*$D$~^AD3|NtQ+%@H5zp8lb zZ5DtCDPV+&+5i@nNnyF*JUciJ)SV!6{itIJFSwt%My~i4qq+9+h<=onBSk_eX@RZ z$keF^q%%rSn@&>-ul?#C&eWF>%EV-W|Gm&Ga62w|)QiNh6&gxZCz{OWXef`Bga#4h zmlJjsC&=E*5O6qGoG2J)oY-(68{e8@;SS!+)$4cKooZvG&F)mgB);J}9x^BrFd^RS%O~DEjaE%hqW$(_5tgy$cOYOEF_WtVxMedr(f-L|X(e-c z9|geLL^}@3HI?dfvAMiQ3}4Ey1j=0A!wf$g5aCFhZKC}fh(;)vhaQn3(HivLlP; z+r@U6rrrIL+8_@PKSnr`1)rrSlRR?WKau1tg`jIJz}fHL{M#Q>OZ0oKGM-)(3@ z+4J@-+T?7H7GQAZ6=TWACQ!7r(0ylxoBW3!*}fHMT3KX0g)V$HYvVk;h?sM@O5H|FQv`jj-e))7)rAK4Gg6 zrcop#pMydq=S>XLV>tk`MG7ZJKi7Ttj5%e_`qc!vVYNJA z9@dlqmwe(EdLi6UlyE^pSHmZp3WZAmyq(#Nq}64G!i5Z2krfJ8l#6}47uW}KVSO3e z>&nIcHN|6Zv%p0JN!Dk?SPSn(NQ^)Sr=vdOAfv5Ly8kN%r$CV-WIF+nExa=0exx9) z%=j4m6;qj^tQUSw#vw+$883a>6>Lu_mQ4*_}fKsIK}-8zbcDl)*McCKf|p5)>{i31r#<)>hNEC%Hf?5 z4Qm}{i>SKn8ttcc*-d`S>bfKoxLj-Rjn-_@ti2g#A?y5}%<7-Z5+&S!=ga{=#$Eh! z>ikYAR9e~5Up#vxL6X(O1~Ew0CTVETvq9qnl?(rPaYTy(}o1%OjF39TC)1@JiyH^ z79kW|suoIEuT?8c_1|>{HfC76q>5dQfb*zWX`Od&E(qlu{&HOBorDn78<;?8>-=!o ze#gR>;+W1m?>2z55sO?jiq`pA&?pjy$w47fNk>f3r*{B4k=a=|aAAp39XJ!Qa+%iG zF)_9gp@?Zk%TkDG&47rkT%)-e8koocSXQpl?5}DhIy;OBxYlvPFE;o*wB_zXG9~E zal^IDP=yvIz8bJG(q5Z!OMWY56`Bc9#3Qh&Li?UILn67h?=TSQJKh`)I~=D1ncsfQ z?VJg>B0x6=Tmf8XOSM(2Zmhe(ie2%3y(cMd>!#TPE&HBcQEX&SpeogK2>{lrCl2;T zJx?`!DFc2|J=Ze)Y(Rw7(_09yThyVQhG?W$&oJ>-^)%96tDebk{ewn4iK}1&lS?@l zTeBm#a+X~px(#_Ac=~h=vyr=qYECg)arZEio4`TcSBqUaUvKzQ2K=OIzLw!<10s)V z-iT22}H9^Xyom;Fql3P2cr9|}e#fr3CO+U*Bs8LxQ?2XF) zx8X}R`X;z5RrcEqKN}EvRQ7v_MtYSM#E;ZmI|MiCrNQ6hR!StPUOaH5dN<>ZIa;?3evNo-nwKu~oWQpjvvTmMb9UBJ6au!>BmhZpIDG_ZKt5`BB zIDvp|qJnCP=*}$Jd^Lp8FWVluFLB=D#W1WEak5v)LiVa+(Uawy|5z+wSvz?h0Jd9l zgyc(^L(=zJ=CagI-cu|MrR?2>fb+=S+|hco+6mkwt-HeQEPt5D-6sn|Er&bN^^r*L zQGApMP6m%jithtiK}hjM?iC`w8En6-Por5I8py~1Sk|Y}T&OChrusA%eoL%R!>4$C z+V4;ZS$!J&Ylo~)JDC+}vHJg7voW-(Rh<|c8mV@wb_Hw4rz=>C`A(S?Y-h&i%wr}I zE@`VZhU=3f?oh+6Z5rFyY_(UPTCKNTL!sNVbTkYM7_(FQ$B60L?NN{#y9i#MQn+2C zpX+{TCX~X(u+dN(cUY)4PQziJTZLB49UdibP->zx^ru7DzpAOF(DUE{UMp}2fVcBj zB1Jy3V(tJ2toVw#=ax%@V|ze@92Iltm5cq^J-~k7M2%UkG^*S)@`kTnJRBJ_PK@B@ za*4Ky5zV_=nf2_|be8aMGOMW!vwC%sGH(l%S2+UmSyve|Ll+pqUSbkG`%TOdAZ8;>l}0_6fGYZhZxHgA8V(X`eq zR?_+;Nkxn?=mjfFgn~N*-h~%2-iyR!MT{SWzha6Q^&XF3)wnnJj06f1OZZWqn9Lhu_ zaoeUKlIV8+u_q0JB**xyB?rO?Li^7Gk|3$yCc4pz}#tbu!}G>86u527)LbXn*&LH?->BRl$6Pb@0Qa2d67#( z6q-=y1@%a!PaI(Vm~r_vd4c`PfpYnE*>Kq^a-#VH<#*>rE>kYA;kJ^4?QLWnzbh{k zJ~B{_-<<`=Yu0fvkz~syLwpJF@A9ISWH?0;-nawXLd|?=+|mE7t?8U86QiiFrHV~1 zGZv$enL`37^f`u|Nh2hkl#7dpDU))qq#4s5b&>e&(Q zJyYkjVm*Y*suL6;w&pRYgZ<7{b;1_=!4u7TvxUK*-su+`qjU9UM{oA~3tO*Qzg~aD zdnlryo47SNFDM-PzH|l!{^hPJM9}9?>&Gn@CXuU!48MNLc zIg9a(2%e?VpRG7>8vQ9uIvV2y2BGmI`4jgWOi-Se5t1oF_?{a$gHZmtBu5E2p{02w z=@43)k(rrDa{{&0M>F_F9bZ;XFt9$F!SlDgQX6$NgH~Mo9?igB;%LUJQ4;BB2K_oH zk7iKmVAxhRJBbmmbTAB?=fR7SptL?j1yinMVpIuJndI-SBh7|gQfo2>M=z*MA|k`$ zZs#epKJP}Jo9%|AIau)y|K|>gdW1wxCq>p3&)vYt^NoDT zbDzM-G{OGc37|4au$NGI6YQ6w_2G0Aj~K;%oB+1;>Gc9+6R&D6XM;c9vFrh3Q*2U4 zd@&3U*(0XXcU%If45Uv&<(0m;$2(3-09|_d6F_Gwf2ju3$2$W2YwaVbqmJ+TAV1!t z6RTbi86O80inTY0;sy~}Yc$j7R9bMtbD?+Q*lcsMTesUAozt!x;fY;uFZ7nR?5XPH zLNBl+HM-P3C8-0jaom-UV7CF9nV;r(CdwC`=C~Su1)Sz^qAGQGBd{bjMtMUEavuJ` z8dwpf$)}4mB8By>%$$O@#y_iZn#xG`r?As{&VDC_T{yuQ{h6g7O`vJ9&R`r0S4_CV zKf$QyF=_y#ybEl1T-t23JFV^no?Z|uYLsS3*B@EMk@b-01abcUlI8py68o#J*solm zlGB2JuqoTH#%&8qmQLcS1Pd47Xj>LfLHN0j$93pT&J9@9S{A#;%~mJIoqnVT~q3E;c__m1i23F>hu`Yd51M_P$V}%GteIrAz+xfR&#H4(w=nera#4j zO|;l#o3$|Ey)|22>a>P8!N9;engRNDRk1N_njb&?a4n`axVXiq2fkK@_Xi^&NT9Sj z+2PL#Z<8V1E2XAc!yiI4T*(d?7DQwXOQv`;2>K^Gd?7D#Nr*xhtG%G=tOh3F`Z443 z|H%vNzlVX%mKNMxu6-6>H%LDHM?@n%m-{9={3I`OnR0oxlkDK1_IuhGzyCWg1pX5S z9vr_HJ(vN%`=>gbfS)m2Y>ldTqHUmLH`#t~sspx#eN=dhWwi0h_hI|L)qQlFF%!Qi zD18&eh#9S%ndxn*|6weCa){sHxd}Qv(W4>apL}?sUaqu?6cLSKMC6ToD5xopz`UVk z$vMQCn}^g1H{7U)k`x`Q-GP+NcBeX_&PFR=?T=#I%c0E1yBiqUFUeMpbqsS63>+H6 zU}LBt$M$ChOwr%*bx50|G?X7+W(EG(b=?klqu zZM`mk84hf+F7MrbvS7yw6T5f#>RE}+B-f($Jty({K2XITUiKzzAAwt7%nH6BTjX`7 z_GrYwBC0!u7A(SXV{k?dmq5Vv8o~1bPO~K{sb*Thk=AeI8lcv zXy>r+Aqwmz4pAKQ1NcRUDCpNgd5B^d?`F{34Q6L4be>;XIGK$(x8 z=aGs{(Vs51=VxbaNEx}o?t5Rw8V}TbIl$A%jMaMNxY@2=nj;iX^?$DSp+n$q3N3FD zH&Pt!<(P`xeCGf{dj=c?(1SX|Q7BVzH87T5?5DAlcp4VZ7@U*X3d6%TmuV{Ya}q#h zkcus#N}7tjD*<%rQ?UimCcYu!D8SQ*FJTN0N+I+Orc<#4^t5(9(&$l5#Xcq4V)o0( z4nWFL3?CCt18g(T$bLDJkTSA+@GBrA+iS>GVzw2Hc~E|~i(O(*{|x-NW9mVLDe>&9e3E%JkMvRuxjk>zJJl73ez!=tRZ&G1c26 zx+P2kx3<$M3u~fYX{%BVjgCDF*OOElcC*_q$ncE&yvHDZOzPju7@VEd*WQBzyOYCx zqV(t_hkram=uNpy+or4?tuADGlU7uw`4trV zs`WZ%U+Y&Vt#)@}26|UIg@(`x(3812m~xb@=e6yrZXMFO8xxTDO{v{;a4`?0b%WMb zp~%Q=wPP0`)4SQ7o`K^KmfdQBKA}!E;Pwmk70Qxwj$qqx1%*6Y;n?DUv?=xS4W46? zp;6_1*>Xx}JbW1j2F6fK>s!deM(wk>LWD1edbjW6WjuT@;#&z^j!u>OHeqNognKE` zG|Bt>h=wcU0V9owByTtQy=y*^)EDci0oj-R-}>+&rbf(0N1^A7B2CgZ?==<^-cUH@rKPq1mdNvZa{bs4PVcER69*q}$0U!L%mobE&ju2=GX`e2l^~Xst=I zk@@@xmZj339XN0r?NM8NH;LodefHo2_9^Qbq2_j+wf_K97XRE#&^~1!-#J5qlYsPk zAKp$ngx-fo?qwpr3G`6!e((tekJJ(jtam^7vV~Vnqjo=t|9y8qu$S2VxC4cdc0cIX zLAm>JZUc5dI?XZ2XffOQIMbO?gzbFjk>l=q^geKqFWtLPqS@~VOfsB2BeO0Tk920A#nGZc-O#6nPiq7(K z2-8eT;M@npn*}<)^?iLY_?Kxg-@eolAjsh~a5oAX;1foJf6JE!4-9|?E2Kh)(!tk( zXyH6%^jP%o#)@nr6Ti!z9wxrpCt!L5DZr%EzJ$W@sBR#g6mHS`Z5{<62#W*-4e zGv7RVD#{XV9+lx&z~+(Lov4kYlfy9%+B9;pNNhRWg*?RuqStJ^p_`P|KhlRPXLm?PFTR z1^v!qUox}ba&#REb7qK8*u}BXNkCDoA@&W0w+3wY za>A~fLFuj)aGx^XZoIGyg12wMfW31e4#sd8BCM>#VLkF=CLDI5lpq`)@|qGoToEsa zjTH*(cO3sp?z7-(V5&O96e#ylc+&s5gFX~?kxsi;Zz#N)u}Bf$9|kYQeyZ6Q2lH0q zoOr}|cC(*|j<3uh621|JH?yR^Kt)Hw`)Dv7dV`l1W469hKC90y0lVeodjROl2 z7xeo(_9Zjh<%pNd476(8O|{(xHu z1>S4#bSND6Z!G_q-9{!JQPxD&!RSKK1Gr zq^ygHRZ(P7RU0~MM6U4;E%ct~Tldv(1_ri-f}`smWa2NL-k?8IoUC*zQ;^Prc{8m_ zwJ}z00PJ=f{)BQr`mZ?$Cy~2W!pcCC*gl3G<(&dJ+8E6wArod+KHO`!#+&VGXMXD@ z*GlY<_@tw^W#@%wbnN|bh2%P-*}98L)`gRHdtwZ0Dz@h;6ZWv>bg|Z5bkQyq3KhjX zR7w%EBddPs6HLwiM?4@b_S_T*f3v}kix?~{c3KRvNhMIOr4l_1KnP2Ou!d?%;1E9d z{zGT56@FNIw;yC%0$L1Rnft3f!Q3%EB~fe_Tn}hxOe^{c;YdIT(~7kd0f^d3@K3Nw z^3nY$>`&FX0_a{_hafm%)u|o?3vM#VU0N~kay2lN&P{^SnFwMjK1!z;pyZvL^6c+sI_@dkH9LaFp?1lF8i95ZH4A;ykZWoy=D$mE0B4CRA}OKh z%StHf`L65mp?lFd@Ze$m*O0!LQi zklQ5OT|z6HB1NRqn77({>Tq7JVG(D_)($w3iWjZSR_dy6v(?5Mh6-@@4%P{wr32Rt zb>U#$v~~5R+b`V)XJ6}WNI$9UfitcXl@{HzGFxp^4>*<4#kI)UN_!8!0WcH*2Dm~6 zmMF1@XA|Pk0GY{Qhp~aL>4tf^IC5BPa}UBSiUj@@c=2jy;H z_`W(@eDyh_SKz>OQbHRgbnv0aN*{r}fZ%N7--fjKROA6?eF?4=g0*j}IbO3TI&>a& zhdL%|=}w}#Y;EgUvv{k}Ol2=zu?0#~=|J|(co&u(bnmi|{=$6Ku1}KmTaE7Q+`PCb z2T!8POTU`qZM(G>>hibF&`jKkG=*2oa4jJo@%4)2mKsl(&$`;72fFN-Ul zH3eCuj*9t@s=C(5)Lwk#+Sz-v<-ID_Fb=JaU z{Sy&iPN3WR*y=rmugMVZ(>JEaR{sXka2;Ev&|t|587|0}VChn|1ny>r_t0XkLAYRRg^gifjc={Qr6WXKZmir54BKTt4*zZfY_+Xg0t1`vXt-@v?Q1}f_$LKx zD-ezNw#v;4udRyYM5wLm|JKvfN;>0P)b~Iv;e1k-kU$0-9}Uy++=%ZckPmGdMhIJzA<~$JYY~n3roqh$uW5+n zM5t-#|JDWOra{X%lhCMdr7{cW81pQ3;Bb?7yU{ALbqDvX>k6pAWACrb&eb8KN%kt& zsTi6_T#{8qud%107FQdlOmH{>%l1@c$+SYtX_2cM%7OalKmP4YWd%T7v zk~^V>rT<&k=Ajpimr*dJGB__W=4EPwb1&P6w~CiSs$&(GS72EaW+L{S4gX+eFpO8E z_0cy>(`@EB4Onbx*fw1BY*nY+i=nv0saHbx!M)M2?AdL@(3Sdhvju<8;{EKlTmx5y z%c>24pi+mD!;==hq}D{CrXQWs^UsLha@L~7i|~KaD)|kVC#is0FHaj|_CI8+xY~4m zgP0v+y09_5>3VV;ZgNu=?-fR&e~*CG#4h9&XRTFzK*ZiW}DB`!KQ~jRq56tX&UXzQ_nL&L|RQm5RLf>lK93MFjT+7Dh%`XAy4 zu`#_LJXwYCjO3EX-2X*)WfXZ~1Z=4c`A(vU$q;G$-fl!AzD1Pm@;a0Les6DH<%ghnBfDjK`QSVB`rV_Tg>S*uuWbo9!CE8f~9f~{xU zd+j=Ab2zU=#5t}+TNdKDo->+093fIBj#v^zM>h`kWSoLI$^`|fUFoZgui=%WMW^sX#8-9Jic=S3~a=)foi+d_?dXq3|b zt>c0mArp?MF;WExKOtw9z+ZUtBoaXJFeIvqSsL)2e*4`c;MZyAbkK5P7vgy)29HtYz}dY)7x~8 z``sv3REqQi@T=#pG1jB_U6mg_nqwAJa@0kBG1vTC7P5f(4=X(HKjVGE6>yT+ccj}{ zvlbR6tP@k5k0nr?IOk>$k(q?x#D^IXfD_&`+`oE$3$HYV^k%rJ6i#^V-YstT#YxE+ z+;Cb~HxcjN4Ji~&%dWtcsOtPEo-GRQ9!?ZxwD@)w5cb+#xW`u z!{sf!!`KlhSsHS!hYY-U#%CE7JxdM`E@!8NdryoYA$OFI4Q*Em>_91p{FbhiiBQ9kH@4+7V#1g_cG3g%a$XyWtTF;Co5Rf5kTUEK8; ze8xMh9z!wLf($1=WIol8FhIH>!-+UBp{^qcv`BdtWO$u#r3?1VMJ?t^Yo78GFLVCH zeRE1sym8a;&f=z$wPEv6$ts=&KeoV+a=E;#WNjYa3ID?H16c9610|9nc@b{@wp|X& zo6j!_ny)l0l46J;HuZ{vXhVI?O-n=bnb|?agsL$QN zuzhyKcN2I>y-mN3ur(RNolhWwYgM{d6O}ReaSl;Xo&b#4nE?Im#t#Gil>C8Ae`>l z(@-fVFrf#o-#&5WlnM{&=i zdcrM&AtdHL8-Q&%nTD+gWKi{e?_8 z-9M@QpYtM@F_%^0D-V~Q$BfHA$_wm&8z`55k`0&pCW;;L^KesZV!M3i&y>q+oJ2A5 zp`6#=M#k~u^FrYm7ZS5K(WKQnQ6&Hz#9=$%s`u%VG-=$xwmTeSg( z^31qJftG4gb->u2rJhv5X-~>u3qKE`&!29u?61ytXT>fP)~{5PBe4_=S#Z=0EifUI zGbmRI9ZsQO2VpW|V&r66Ftu`?GA{J8m1VtD^J+3hV(G*;4Z_AyVU8Un$2mjs?uaj? ziUQtA_?ZlmCNzF8q7mQJO5%GgTd#j;{MUJrOF|TzxB9RI6Jq_CN%7z11@@N)%H{jA z;d0;5`2M`eWy)pGnNG%PPaEU+FY`j+p@H)Iku3P#KVDh&i*RdeV!(VeA<6E*cm>-+ zO?+s)(*LbzX68ScL`8i#RW$MnV~I)~jX=tblRs}2v0!cBiY{e)iRIkq&%p5kNKJs{ z+_ozDjoJ62%56lb!IJHm`mz>A>hrP{M;&sU1p|lg4n=&`VC5C5$!G9O=@G;5*%9AL zrEuE_Lz5xW1RW!YM*N^dlHWY&n9Pe@5~7@fj&5FHw+71Pec5oiZ_x3_d6CPM%X-Nz zAP3gl$n^T1d7<#OfpYv^S#Z36*zs3+QOj-Ty~`xnW*&C*f9uqKE|LjK)Oe|)iA~0W z5)w@$fI=VUT%UA>MIYwG(@IyDApD)F$|aeGF(#?*qVfq4(Paa8GA+;HPcZP8@Ww+*A>)T#ysEu8 z6!W6U!&xp02Q1jNpq$y6o2ggr$GAuLN|eE$IKO@hzg|=O8U6bZ{wpc}oi)%`Csq-V zR9^tCj&sZ?r&0;$@OlHWt0t_Es+z#Z%(H;PTU@7|_*aYGv^`lW!FddK2<%bS6xtno zu02+nu`82XH^a7)EUo}Q=O)G~^|_hK)=lLtcx~bSF)StC9-FMr$^pf*+3{*aT-dgC z^Nghq*yZQ^;5lssI79hFgddlP|ZNj zPKMzV*tT*4s0`#xLgkgS#hW?R;BQ8&3ll(O~2lN-tFc*nFkxDEC|-T(FK*-BcH0v-D#oTCYt& zE(6heWirvaEdf*pq9vj7iq;V@$KphzCyZY2PXJkZ@e%;%D_+O?CzpyCe(SZGbyod^ zq(|8FILExo`AkOv}g?v)EANPdAk+Plo5 zx(b=|H#4z&H~|q2#O|SFVz=ZG^AOuW>?BlPvFjI>9i0HG^a3Y<%~ar04Wl*(vz8)Fa$!~W$s-0jtwsdSu@8f|qu z=A2XISX_@;ht+p+$YY|?u*Tt@FFG?{g<4QhK?=$f=|y@dZl$;_3qnl~2n;@j{v$>m zzDZT{7Mfb?K|x{AZ%yNc5g!R#35pO&T~G?42aeJf>f&;I%zReLq-xId5F2;Z9G`?e zI#qLCoGq1g0>L~EObGd(s&SGhGhD3(~t4YCYR=89*+X@wbk}V5$p7fhxV5KO&qgmMK+P>wRwxM|o-lX4n z6)OHB;#&z!fv!;T0m9H^2zO$HY2};`BO0!>2n<6aD(6V@`$!h6LdCs#kxW7rpTkh0 z!jnn2lpeA8Ie6Wm2FX7m8mT$l|M=Zc^CFiicl9|tww|mXGcNx= zFR*_H0}qbNi~l1NF89rZe>{FiXUH%UYhtrxP_E6MDVIG*>=>&(ZH(W=ybyQ_3_Lh~ zug`+t{qx|Tkr%ZjyG6k3DVl(7VKOE{>bf9aA)Ur_5(*LbXGB9F{by1&8d6fNOYZGq3sg6*Jr3 zg<{e$!Kh>D=N3+H>=$(_b@B^%4yD?NSTJ|;6`8eno-!i;QMUS_E&Vm5A0d_=8wX?Q z_e6XtmFb!x{7i;OW9erRjrjU6iEnP{UzQiSBt$t{`h~nef8#(oeQP342U_|_Eeo~u z{ogugdm?+q>`v5IQW^K>7;`JFaUWf~c+n!2-)j}8>P<*&0E>;~<#9KP9>DghWAq`T zm7@M@tJ96@R232%;2e0}-fP#fR%N9=-E37mGqbd;RFT7o^)0-BOI7}dQd0%ztMcu( zg+;Gtt2fB2vS7^CymJkJRheit+puv9*P2XM_u38p{@zNxYq#N2EnNG;_Vz>*maQh5 zvvXa%?hEb+!y}GkRrr6JnBdtux_e+uERMk>WNZS!wp;KEvVWxO@vn60lxOCh^kXI_ zU(HsjwR`#!iAjii!p8LOX&EtIQ9^u5K4Un3H{xq1{>2|%6OJZBq;XOABO38tlw^R{ zML`XK80%ZV&WmIcs@QHS-VXiBUx&++3444TUJe5fZW6Kz(a3_sG47B!EiaOpa(KBg z-&~E=L#D@D@&b9|K)HN&CS2~nsPL@3$Ysjmquh>}^O-j>Ztu(s{Lz7OdsiZE2ZozS z_fW4H8gBM~>sycIIEl$r6fIH(#a}Rv1kwh@y$(B!M9bc6msZUo8r|7(T;Z6)i}xn0 z9bC=U%isFOD_7hLL9lqM0KdA87A%yvU?VZIn!D%x6N^1PZHy&v%2v&F0Q!1T^N;`( z8$(qoc5o7BCH&7KzLY97c^~0tGDMo-^8<)R{Ln-aKUwhknY>6Qp^DAlcxTnVkr%jM z8z_hWJ`sll9aW@ug*vMKZ#^#`o5t)>6cnjk#OsW?nc7AClW-CGtYOIJs9bGwdkWV( z+;iYx-B!zPbl^luYZB@&)vKNPg0r7`nLSm3eN=KWn`vA1>PyGm2ZpRGU;+vYFw^)d z946B1F$GwQ5zFxcl9JW#!aeGhwzU~SXP-o{wE(uX=N95jp zW%BH9V3K@!UZ7txP)=W&h|_^iDN@Tqol^g|?h0~B2f6uVq7sE-Dv!6wSX4qhUIHj| z73kL{O`+AbIq@)AXobqaij)$Oufkox;zZ|Ok%fC7zZ`hxYN^e|+BbPi&#Cv!^xb*N zIQZIZm0h2rdle3Ba*ED-PIbn0J}p(|u)Z|jITJUj^0S&PcY2n$)byJ5>opMGg3|@v z#1lO4$d;tK?DX3r1{RamG0J#Po=4c1R7`fF;7Oo&x+d;zfT-Ehxl|ghcPM^?);m`0 zn&}>EVKn?=1W!$3B1r(Pf1k&J)99bb_Eum&LS4_9AM@r%pAn%5?&dNs^?5u{e9~>V=qz9dChO( z7u9p7Uk7hJXWX_QtF&5``RwXB>oMcjb3WKhUbrx#f&?QlE&eXl;&#<*c11-G@|NDo zSBvr$u!vp83<*72vF6H&2rK}t`|>>~D!$@sWTw4{(r0!EGED*KC;LBls4?^^Q2v^y z0Cer!UxPsSCaB1=YoX??hP$}t@WWgB*3~5DbTuBOUF0X1Q`INT0T@)c8iwJ`LYRnJ zz~`kOOqXX0kdxZENQ{H3Jd;bQddpk()MRsFp>`5Tfedu+bgl;oz{g>v&rh8Kh-O}% zX%eYN<(ca6E1*1+3z@L;Ou9=@c_tTs#GLRn{G?-BKx@LvGx^H@oGz~jqBAVw_Cs1~ zRkcH`nv=aO<`i*WV0N#=VB>*9m}W(kzi}!u)hrxXNU5O0i`bXU)J@8f4of&mMOfmZ zduTvb6vZ_9h9$2eI?)u0 z3{Td2c;xs)a(cd2rl{{{>Jv**(*!8*@qey&s4;br5z43h^l}_qm>o5UP(A^}o0-gr z2<4vigXst*Ku~ITBQYM;2<4=34eeJ!G5{fmlfDq;?SN_KA0*&^&v)QQ69p+xb%GT9B<8)-fxlod#uu)<^%;!OF`21n4PPDc~;(R_IrdDjs(kIhwDm05NF)kL>5)|{H! zx(?Gc>XqrSW@}6yV_X-pn6X0Pr6$xAB{)x+W}JbHceFQ_W~7M@PW6AT_wIu?Ei{;K zA!s$z7)29*RrDiOKh;IdarI+Hm}~MS%!t6n^b(}q37|5lf-a%*RzZ)K(AY=-Tl!k) z0%Tt#6*1d2m$0L~Mp#LZU&vOux~g76&R7c*wO1t|oI$YvvSgz6mIP24h?;~dnW()t z0c`0-O@N%QsGS_;-IYN3#cqXsP4y5W=R9TN_NfHKGZ42=Bonv4O8}LDxJjtI;&yyc z5XFfY+=Wr}pAx{HUK|BVnTlho!Sp0PAfBsjMjAN*)1z?<#IaZFO+XdG_1RwtK*WiT ze6%_VFwA`N{(B@FP2N}h&O3Q`Vs|xZKi-dF(2jzO6=Je}GLzqk9fhKAOJTkIBwWJ_ z6;V3+O#41KDsN3yJ9tW+4y1dw7EE4b%C;8hU^q94HETbFW*mZRM=?SG*SuMD=RuJ& zQB^=NKngv~lBc?j2|Uq-$GfPiz#h2Iq16avRN_$>*G^%;#+p&a;#%!VI563jBVv-} zw{Un(N-LaGgWD^hus2*I4aF5Cfk0xRSOe5rfT9UNKX~}Tq-kfi#MP&P zo(}^9Eom{wSNRtk!`xymG=tN7xFycf)VYW+g)JFH?D6ZY}_gFL3_^1~yv`baS}&3V7Y%UW>OQ8d-2S zMqQM<@*Vc@}W`rbsGCPTW|bF~1{JJgQS8$lJG`@gj= zt_NcLi5k~80gYJml$(e;Regssf8-GQhJfeN5bT>(RB8h&3D zD*Z#LPFNWOXFml+)}VA696W|PYE68IduVV}*oLqlch_tvkyen8;k9~mUqmpV_Y7D# zpdT|P{x(9SOuU`sfDQ=$LvSECAi%~@L5}S(R=HTkEedO4_^$o0@GmF8R|g13!N7wv zD#sui@!f}HhBrXye_VK7UgVMx#pboX|A8f#1I)NZy_d=(|B{S(0{fWUBk#h+BAHwwF6{AmkdivvYM=N)_`dnqzfnD`VV-DovQWTef!KbWGHC!duwb*Y?d+p-$6u7p7mZ zeS!nw)#KYQ-A3n=V0#5BUE_6aSb(sLbp*lb(EJWQ47)Sp>t%~7L(vWwd@&escNM5o zL3|e~LdnfBS;vZ2gy9Z{%6`}sf-N9`T$es9!Oe3BE#Lqz;?+NhHI(5-An67mAcfdJ zgSBPwjqtV$%(C_DO1o1kI0S~0-tc*-Q8kOTsuU&R?>VRhUWI$uBiyGGDKXdSJY|CW z>uk-9cAF2A;D#(lV`F-^d6Zi?d9cWv7{;srJN(-wK2Yk}@?%vkmI4esxY_4gL?gZ% zmFzHgqfg0;ToR(#Zgi!i8=Tdy=Zw$i<^}j!1LgDi1LE^YUgR?6^WzksnP=fV59!1B zKb99lFBmBQD~b3Y7)V80-Oxa)?^~m72pG~h{rhjZ%?UE@zvXu2O0#zS@EQM!2>9MX z1w>FY=^+T7=!Q6w;!%tDkM7rGCFbz?QUv7;R zcVgifYhj#xU$%xzCtti92R2E*@Ft8s;TpS5MOdd=%~_QVg*8(g>m2IM$-IQW&j|3> z84)1GDn&0GRD+=F9zet_B9uX;-iNy@=@44(k?onteF6p6C8KyYB2Vy3FtD!8z>`zG z@*Pz&iqZx8)@Hz7;<)3FQ7-AYBmGKr+%Y^oxc}~~#(C)v0TO=xuC@-JsRZf}iWX~M z`w^r_ESsoT+U*59(CE$FOq~SEzj08eUnVHu^G1LNtxYJ(y^EYNNmo#1c*A*^sva$WTt` zHu{gy$C*pSp1_Up%uDt=@EMW)9k5FLZurZ!nc)=MDAwN3TY47^131IGHN?1)IyTp8 zLh>2j=Cym+x(s*0^%H01yuI+2#fu>3g8xaEQuJnU^{jrwJ0|$aj8@#uvFzI;;1biuU6SheU%!dRf zM-nDtrR0fGTxU)a-wLC4i1r7nyM*sgQH*KhYngxGnuhtqAmmwBl<6&-1?skqfpoOH@^f^kxD5jz4^Ku+mc&Z@w zFap>J^kOR3r}w$-d#_A6n?S$^dw|=nNHD1|UF(9MTz-0r-38E0hscqGTp{ z?tivQZenZ-PWa15dm&v4&iX^OE>#KuevUO@F?wU{287uAvR^_6~FIqDk1*JABNtTK2K{1Y5T z`&e@n_9s3Eu%`A31VKgbHE*HOm5w3c0_u9s5L!rr(3uEeDLz7{7$D>=fbk`?JdXi; zrr6;x!LbxERL#Bu9K4l0w0OkWc&9lVYX&E=-w(r^h0s2sKG%_f_t0Rz;u|Y5|CZc~ zqJ{r(`cmwpnuX;Rj~FrjXTHSvTLHgm!HsVufXd)lx`fJmEInSqjc+G_E&Z``0kX*y z#9XS5Q2~Y%{V4JAOV?5EzN(v$GTy|b?NLbL=^_&S=B>~9{gltzbA!{ap%0S2@RLO+w zKmyp(3z+~pXCcGTbj(=>Py!SnWKKubM+%vK&V=mN1SB&MvNt6YviBu`%0S2@RLO+w zt^}~97cv2IzCyMdWyD!qQu5=Mu_IMK)kTPye#|87s|o03AYorhCSm_K0aOMOCZS3u zVLwO!TY3o-Am=M#Cj>87Dmn6t+G_TK>L=vQ)5e5u(PHzc+d$}kmrUr^B!J35=pu8Aw6_+{^CZ-3QQh@Zci(ea!FbTp8_%`kj| zDZ-@*pfZp^36)m@Hvw$vB~O5yujC!$+jdc+@8~J1@(bTd;jgNfgeXRJWP*7|0x}y2 z=G&49=7$nMWgwUmDz9KJqy1D)NcoJ>?2`$gOD~!N=uAa3)nK~zX#dT(tZR>+j@#*w zv(nz^Y+P=n3A9ezSm-T-_@FwuP`ecthIyirOwhU0*=Y&Dz}c zPQn-jAYm7k6>FQ$V0*x>yt;FE%jgA=$aEP@Jyk^**R{nWp8<=!IS2C4KdL&8R5lR{ zKEgRdd9J-c)nf{Ut5pSRBRXM%!Bns51pu?Il(74^gge~_w&PY4Ps*s&CkL&`T zPPE{ZCcWmzbsXvq;ptC3po5|_+6Xdgs=6O4ijoL2DbqC=peBPjIy(#njvBU*59d@f z%B~PE*l6#zJ6P-pz^7BEQ_a>aoTWus7i@=AOJFN`IWsdKW z1dcDF4B;@4gAzCo!7Q5Ng}wbbPz0>(Rh+RdTk6d-Tt?=Pvr9f>q+YSae1Rl_)H+k} z2ppKQVwMOLmcj!-A-+4<3=Ye0rvpuxOm`CoEV+G_wmBQS9LFXHBBSh%w8x?7sD6EI zv16o^9}31ZzWvR{_GV{yT{c%qyx$1M%iB3QTYYd$PfhE?u|gl7AoSt=x3KW2SD;vi zViJXmm}@6=LI?zxF>BceV=5T-H&F;srt!y;H<<;p|k9 z`m9sV5S(VHP^vzW4wE@czhQ~zB-1;{Y@A~($9QTVf^zG1Mo@1&{tl;$t57J%Z@*rY zttWeh0ugW$=<^_qbGng9hMfgN>K=q7BZcO>4cMS$1pHDF{}O3Y$ZL&YOfY1 z_hypxR90IkOGZ{(Dxk313C7&$IFs|!Vz#{&6D-aCY(sz*~EK=>ELIxMN`j)5UY5zA#a#`Q8tVh zVQkvL7_q*YEwO?O*5ic1`d=gysSK77tBllIimFiS1Y>H0CDyeP450&PvAUOFh#-R{ zG5e`lG4vR$(GQ*=7S$++l&wwE3ic({2CjnBvYWn(ifS^_g;cQCEFO!JiFn4dRUL;N z4p?o6mGKr0g7@(3txk3;b*K7a6)(GhLGsuj3qXGHj8%kf^LO1c-LWDz*j8Yhua_e_7!mGl|Cq6hVftr z2CfTh5M}7vf->ygw6PtYBQ9b)sxB`eqG43&N3j#(8LK%l(Zwr^U?HEj9%!eij0G?0 z-S7?gtvgz<8w4kEn-(6SX)7uczz7LF?9M?IOB!j*dRYY2D$X{6&QLL9qT06W^LXnR z>{U$Kb9Q6Wscfmrhr$I)-C5X$0uTiEKE_*yX^J^gx7byK^vipzlGbbxjxUMYG__!AiYs zT{}^|cyg~*+_Gu&(}v0g*C`EPCtUc{pl;bNu< zTc1-jRsfT5(<*pq{4f+cZ3DDa8OlXo0T^sERVF8)xrn!HbWs6?ZlIVAVX0IcoNl%b*M^0vWJv2PB-L4LGd+irceuP+iBKbnhi1g=~1$ZUJ6E zjJCBCLN{nSSns94MqdspbizMw-$-@0jGAw9D8g_MhX1s~DE@&WS z&B(HV?(QE$D_I13OoK=_tnqnu^$IGqM+iZ2`Of;VC0H8>zS?saoZT)rK-E*s0?_L{ zWdiOpyyIoI+5i!do=EsG^ca}v z|34I(d?321^^bLcsyAU2ScRLsB_Ir5iqjI}jb3o`WkLpEbk|Ljgpyz4^+vG^T@-8q zbjO}+Tae-ae6B+h0-712oUpPDmjQ@gP!Ji2A!HqPpn+nO$T=Lv`5+D_i$ef((hU^R z(9`8PSSfk~yn&n0Es;2ZvWj05%FjF!a3EaiLAC_{t_5Qc?`zE}Sv#=$#D>kgFe?Kw zN1agGDLg9mP>Ks4ZK_-sC{}6{vb5U1s7S{QX)_m z(1itRfo6BmlAF>7owT9!1m6=-BBa-PneX8`$qxDkb#o#}g3LjoCQ;FgkPZaHk$WN_ z1&+Wdu$L-9rXPUF5qyoZNzmAW1qN$N@&shB)WM-lLSjZ87ywU!yaX4f%MetEq;#z) zLZIj#j8#!m0LxJpQUg#q{IDr*$S}Ossx|LNO}8nhjUk71BSZ$(9l0s=H`SZ2q|@mSIdS#z73v?^35x zXlX~4+t#M|86g(IFg=VMkI3a41xFxC1%m9D7yVu|&>k-7*A&pRz#{nM&e@VR4F9)_ z=1sFGFCzNF#xiXN@7%O&CU zNlEp|q_ltB+At#xu(MY2ac_|9okuY6?oJ9;_p@O60eb=~ZzMtR6J>~CW!6Rt(sqCi%nFS?;$+(@n%JCOC`DDR`BhHX-++%%NC3LNm&Dk-CyE?XTU-<5rv+{tHrzhj}<^)_khYW(iu%Nbs z{25m(5oq!)s*l(oaXn{S9gC01G|@F^`|I^$tK+|DtE1-K{&MH>RwWI`MXs|m#bLR9r1CH2ux9c8*C{mTW#}HmjO`e>s zngnfPK3-_H1z$3&x+hOk-3D5u6;7nZ%Q2rsW5&;*9sM{YEx7|qu+k9yzyX(tMWhTi zw3M!jr8l*7EN8tDn_1xt*d`lU8Ej%v@ZwpPHr>E#V^m_h$2W|=3Y71# zGBrf>dvGX|NKrh@7_n7Sl?YqMR>wF<5&EiAZrcl^~N46bpP3aN7#cEGA0P0w)K1*gZ2B>4;KWmjOID0d;i zoFGiW!{SH7@)mG1nMKY502ID;8FAc})eB|5oV74Dd2zOC66DI)2{qX-gXv$^Vih;%s(S_RU>9D%=Mg!!(V4B z4nYoVy%2|c1l_$34312T{nS`Fg9>pmF*SUbA^xRo5!Wse@l50rd#y)LkOVyk48Z-j zynh!zGyPB5G9}13Noo8)B#o(zlMv{PjFSW_#5nE5T@%_)a&NartQ_u$pR1}=%5O__ zMPO!1^kb$_|B)^4f-Ff%Sdw25?|eHo@lG8vRN}qD&|JC{)Y~bcMT+j!0!tuH+HN3L z$?V3N3Aim3-snw6hR0<~h9FJdAh>-jd@0fDy*{WT1STU*l|mSzsh@9FoceZbREPA=nw&HVIaUZTmJ$ z2Lp2!>nw;$F;SWC-g6+XLlLk^2@`3^t%qobP7TIB10qsw>=vdJCq4h6blo2ac}mqY zTjyzGf;5+{AO)GXvxIr8lOXxb+mqvPNZ~E?u^91+yV}tZkKAv{7FBKR5VK^)?gNLM z1Gfqvbh~rbLugWZi3Nk}wE)@SGTcHRtq+5ji z_elOz8B(D_85vTkmcfQ}^pVAj7I_m}!JJ~wY5c=x&bcqABq_c>4AbU90fwGI;r*UX3r|2tW#swZGQ>NDM zV*J-pFfZe8W{&1V*(zF)qq$Hh+6PF{e2!*=k?blm2zzJvE<^m2*&?pp4&s@}?Tp?H z%I&DkVcmqZW-RFJ9Qr)yb(4fLAs6qzWubqrH=M&sY+>;O&Jo@WEi5d>8Xes|h`7i= z_XHsKWosUS0+4fsUHl5!#Z&=^Fs&H{Aktii1RxJCS+vOI%?-{qSNk4NRM9JX1bIr_ zbFx<+MRiWFQ;5?4EOX$eRrI-zPJz(G5s%Y&&oTRfN_&1e@^Eb5v&#m!=)*(eSeZga zKX<1W#Xhs_K9gKYb6&ZT_N=l?5b+3)**WD%Hk2a{qVU_8Sg^&LSiJGWYz<0Kpmmin zDE~?Z#TRHj71gSL{Q(|f#eIpP`s-{_)u9z)7B94lU39+J3REbkKDE*rVUx0{t)NKk zkLB~MDt+`aAYOLcPeB6s3?YC=!Iunjtb051B(j((oqv zuqdO5L4vhXu-%jQ+WSnPg2nK@Tq@Fd-AGg4&*O$`>v;(=QzHt|ydY>4zF-#`q3}hs zr)MjHK^lIU(C`ZctK-&P?!D?D&v;$kX0A_O5LJ0gWE z*p7_ufYp&8Rne8fn40JycetRWPd_sbd@~7pQw6+u|AfDTCifHs%JfB6_We(o3oYr zAa8J`@CGkV?+t|FWaJH`G74{yU`$=Gd3k!w#GE<-6hQ@>C1zrUEy0)?Gt;x=y?4>_ zYebE;Eb6PJsja4*hktH-LNMs+1rgGPbz%|LC$iP4AWw3&(5bsg@_b7%%SEOH2VFg6 zpnfr1Q1wy@LKbf+#d9LMcgw*dB7)<+T)=?L~^-@Y}P8@Q>Lt zFUWRFIr|5avs9715Y+_MD9FM|us%j$c@NBt{uJURQf9f0&dOX}rb|4fE1#$XN!VCp zmWM72=2GIiQ5R~UVYzYKR}duyqsKvL`P=wrArL%g?Zl}i7Xcs_ zSpJC{laxkGf`_tneyhI9B?zjQP;A!1jN&8N>Q#{a-X-k!&xHVcPaYMtY;l;~4GiQX zmS?*7s_i&J7|V_qy_aG2dIyuLaXP-?AOH=Fy_3x5nTj5tEjNP<`?W#Z;IlsLqn~kal5+-F!=o9dg2*SZ=1t5jU6d_8L4y2zfzJhmPpSw-kR+oBMUwfcg3R7M zi&CVZtdsiT(G9<_J~_@XTtthJuYic+w;|N@2<8j2Wn_?GjtWMO3W~)R%oQFg37K@B zGI5;E7K#hqaZ{^;wXtL#4*8`dP(5)q?iSjtdm+Iy-=9#_XhaAkAo2N z6CYSz+!eM)3c0uLx{Pumo;D3vqdybw<@}m_Y9EZa5}y&&8+2Duz^}h=%~tY*^jC(o zw~~C+LiIO{$weQR$D_&Xn|PpyGUT8ltDhl#;sEc*)j%=h0RFn4U3cZruARbAeYg+1 zysI;3rJ%APPNET*8UK8?)Cn@0boJLamZl%$@jwrQbPEnK=F;TP%Xa@r6Phe@0lO5=TLZjKoozd?Ahr#?(>8pQp!6 zIGzMh1Sy)t?9EBR(wK?ZCIMLbAgx#>N-#tOX2DCRy=hu5!x=g3f2zAhQrs&NcBhE) zmwv~4TmS^Bw{ReVJ(xzGy&}`qupqm#TWI7a_>xH~;i5)O*)CW*sE;yvd1?Bv>K#;6cZe1>9Kmn7j4DZ+F&k{JHV*HZqBNSGE!rWPzrI1$sM4lrMq8eS->{ z0k|6&$RExYWNm>E!ekccF?2l#4i-YCL>{!#10WQIJr(2U^=%c!XmV;zYD=Pzey1| z;Iv{gjq?Y;0S~%G-kzvL(l5VjJ@BZWlE>aw#^a-o%zYZ%5IjB-z7#bLj=$*tR4)-V zz1_4{WbhO0#LxlMJA!l({TLCSoIerkf{0chB6`&y_uU@q{~Q9B|C(mCKyvMKA)5xGhx~jKoPX~ zEHMl5y;qVq!&NS-yTQ_ScNp9sti;am99FY0sD8pBc-ojOE@Uf@V zlL^FS+8pZ8jL`RF3$mV&B815%q@^TG6wEPumGSN`vn5239eI)9-A9RcsqBbge@5CS zMJhzwN~8-sjYbttMYqRVl+gKAO3a@EI}6qYbzltoX0{9pQm&R@(AS7TKIKv;W7sN# zddNWiPPU+Gr9#M(Db>+otP<4sH#3AD$`+v@ zgv476(|yYUPWZg-IPcR_7Q6yJo6F<_NBfVfG6bi)*zcIJ^0j*vYeC*$yvGJ+- zvvIFrKkB>?1br0YV4ONHTTTVJ1<9$iiBqZEf?#$=Zb5=|st_RWBEgj* z`r)h!&!7-X8qnto!o^-gSa0rsgsPal$Y?Q@EiHm%dtO+f z38Fap-{3X1^Og#s{$KD`Y>Q zor(CZ*@}3Ox*rfC{w5Lx-;Bz=D#2z|?gj?(`?3XD&#Vx_cr&Z`n-q9_%PkN*==VsA zVx6DOXuv~CTSBWm3&4I{S{9_DZ4rPGY%uQ*{u6ryeq?Div~HCAnEh zRS~`ft0dmM-6H@u4ktZfKn`aMr1tX&Q#?QKo%|mg&JIECpbiYFtFlEZNS|*Jlz%2s zK9xQT=4B-HQXoR4{sNNS5uemU)HCw&}d7PIBzSzWjR#TOhSYAWX?LqO3K-gjIqQrY|#1dUdwM2-2jN z3XZ*kIF?G21k*FpBq>NCn)Eu-q#b&vwZcKM(!21-`IWKFLO54J`l=^nsR&~;DbgENT@KR9CiqBt_;)QAE4%NY}nLD^< zzCT+&2WjTZ1)twTeD-OkdmzVJ|%rLr7CC^NDg608u*@ny0cv{%^fjM4PF4R`KIpFCUHKX&6L>%y&I0^pzR z2dteInh@(u_e>og?1Jn6%67R#W<-u=73-Cb-R=w(a9Fr=6^3ou@T|HQZue_a*S7bD z9b6OJH&dOMu_~@x>I%*Aw%ytbuQnT&y}#N<8`Pi?q>*x}{QAv~D9Y(Wk(;5gPE3ft zpREuDnWa|?v-BMjBA;1`6GHzyTOhR|LYR^nq7NQ|awLq`Aq6>;)g`NdTiM;W5@hgR zC1myYB&(?mo)Gtp44zb>5QFy`GI(%%dIzfDR?yJ7mik?{j6}&^?Jeeli^DNlYH~Qshlmy+Fl`q$?R2aaB{$TJID_+xp{iFObD_TuM=`} zA<0cDYav80BWoeWSy+n%W9lVGQ4Kx85W1Ade=R|!N-#vwlB2}zr;FW=AkpX=#~-o5 zNV`UA?>b`9q7kqKUthCm(a=j44lERF2jJ1n)oSMSdiV>Uz5)KbYoYcg@t+0ppIgO$ zZlnM7R=~uvRkhm-yP*HKV8Gr*voFIo-&NOH3jkU_2=6I{yn6@`U_A;O} zSvhN?-PqgSI5&UR(>B(tTgscuXK#R4 z%1nPu z83@@#G9l|GfXYC~Bvi?S>}3gHOD|*sZ6XqB;w?3+liG@S6$9X&``K zOD2HdNdT3B07|I50=SHpbT|R!Ge)zYB!Dix2nwL{6~Q%pHA|7gFL*1Rj;fEcb80z^ zN8HO-n@8LRVzvZ^PY|&kp8zTYF_Tbv#cU}q6mqhOM@-00PXJqbArm0yD`dw9Es-jE z_(g54r@QJY1kTsWhf}Q2#LLu%vu`u5w;cMwmfk|`B)#`|XB1-2j+Bpf2LR)W+&C}RK81sP z8vY5{@cbM!^-grQA-$XA3$?vVV1QeHzj#sY^ElMMq0D^&e?0`hdMh2A7W~__uUe>m z5r==G)5(i?acDs<*FFF{-y#FY#WAsddox>Shfw&-FlZ1L{TIi6`%*ja~t^U1U4{e=UYzzOsBILJE1=n?1}Y(9P)(&D?4 z<2$2}u@0%_lzh>h0|ziXm7D4gcEW`~`<{c9pG*U0LsF z(x4}1x?fkAfrB=XG!MgLVmv&(!EQCnGCzn+TcbX2LDuRd_P?~!ZCC1-PfgiqB`4~Y zcH1#5#o9xhinWXX1_*r<&W0<$NI+4A{k4xgV40|Q&>qf4wJHv`xhmcm?H#y2aq zB&;}=NkVTa@|4G1;t`YN3nRW2w!<1B$;$xeY#AXW=!y74RpfdI>*H-DT`jy9m)Z4L<(r+Ts-e0{ZjX68weUUfRQ@Kso`O zB)^Yjr~)36(IZB(=jBB*2~}(kFYl1Ha)8xC2J%#1AWx*?a_zbBx&fDG5DjB43(X!f z&@p;rnRWjyZ?;U|`pTfpCY&M5*=#Ziin2+*s68Ul)g78pF3xGj5+sNC4cKj=&8N^1 zwfGM2x<6Eh_i>-Y^CZl@12rtW(=*!P-7a_(?C`KL?5kNjypKhE%fwqrDbx<{!-S#9 z5N?NOY6|}n(THyfCHa#%yszX%G6_`<4)34y0{I^Y%H{u;h|7TvFH*-s9bW&p9;*&7 z3iDJB?^a_8O7HNl|3h_nrB6bTz-D-!9O+}$hPxgUTP}H|9o}jfICO@Gje~M{Pl@#^$aqA*Y8@CwEfl-l7vAdWcvfqK1O{9_-l$kuFV_xBQFddLDNHV(@Dy*1)nCceuz z-}@87&}4`-?(gl0Mtt`t$)C*q-IW)~Bvd)Lzt86d@@EIi<$DuxInez@>R71z>;Kkc z)%`_bp342*WGq3c-Cs|hnzV{gdXzTvwpaF7XS=ghy$W~H%GQn&nHA*F3uD2@nx;0b5;#RQX z2jySrAJ|8<+SMEE@a?yrb4ruV(441i{rR`qD!6u3|3T~taa7ot-ciM=UbXh<@GqJ8 z7@wOu3I^_un+%c0O&x=1#CKC};xG2>&_vQc)PVJW>&8b@7nn>(!J5kC{BrOn=RrK( zXB8cOCrz(&eFl^z$+95JX&ryx^9=!&2KDv;F0QLy8mB@@x z$`T|1P%;x-$~9$GJGkc$rEp7_UeLh5v4TenDszfjo>b;a3<{M|rlAOks=0@QOktu& z*%_!H>Wk1wWW4Z}YkCsgA`_VT=?Y#(F7VkXl71?UJwqlo%mWNm|Y)o&(3Yxck z$JyP$BjP#dZPC`j8&*q zf>pdx#4_vV*Ok`ohyT9;|4V=1uX*w34eJib`CxlbwJ~i$#=kvmZEHX+&`PJ-qM4qo zLrjUBbQ=NWRbp_YQ$Y*vR8Z?W>&4dfLu&Ge`J<3)-t5*VDJK*Fv?nRza$+s2=T?9S z3ore|D64E;4q1MX_a~A#J6!;!TB%!5^cWFDKr!Kbwo0|`AU(9+wIlL6d#*|m%ow|# zGm-dtgua+W8IqqmEc*$GL`YbMjiFi^+gUFozH{>}pD`Sl9~1ty1UTw#z$0Mb!A&ra zL^R?DW0C>p!PqHzkxN1po4-eZLUZoY6UN((c>!A*C~r4s!Q0wbx^TRQZTXjYoPA|p z)G}x7ejjV$31jW^^8$9qKv{d;U|8GCi(2Nay}`#?c*0nFb6&u{c%ZC($zWLfCwWoJ zl(kDSs^S(|JYvlKv%J84-$0rBfx$5MGkH-f0du{I3(WOu?$`4I_r8HL_nU)Z?ho>! zmN|1_7Ub1je8e>OS9yW^@IaaSo53)5?XfvcD@>WY9LzGzZaI6^L&o4!^8)!~7NqU^K=lAvE@~C3u&T7TI@yJV z9C;@Up3tp01q-Yqo-l^o0oghPpRp~dINzx@y3KC80L_zC7!^)t!?p2ZZAv#g<3Ke8 zSRC3c+SLoXwT$=D>up0^rwZFP)Wm>u!y$Wz%E0(e6Zcj+ud6;{;m7ryiP9fsYlrlz z(=}v=LROuyF;v%MuS&T0{McmM-N3Nj6Y<>yQm@yaW(Zr8A<}FH&LSG|t*)CD-UNq8 zPJ~+BzHf~_9@P4<@&<1F^GGj>l&Ng_bBskY^-jRe{sN;`5pL3|2j*c={Y;UF;kxok z3;|UW=cRu4EC#VCLW!;wtP0Sd(z(95)NV(1W=yh?;+s5t$J|l}(w+20H(_WpL>lAx*N8@Z<0#2* zzBvE&yvQXXitPqE2Z>Ger^CFiim)AI%5&?CGy^W0H zD~}7eAtp-c)9d9h@ZhGJs}PN}dfh));PodM4Y-ue64$z6wm`Kp*X@YFMfu#Id74xD znptgEscc5`?b(W@4nMY$5{HBz*cd98u^m*r@MApUTdB;{7-48KM4Iqp648inrX=~z z!;c&CBA0|HHg|QL!30@9W^(+xyug0-K)L+K*>JgU`0?Jn$Ysi9os8+PNAGE4{JuLc z1U@!Ue*aY#{O%uo+?N-%B)bEH4{QrH@}a>;|F<@}f{$3vk_k@K_^E=7D~tsvb&zp` z=TZXGP(!?~SCd6?-Rn2X1Lkl#1lE)1=?n_oA}el2AGKiR`nrfE5#L=1%zXP=8FPLe zAu=Y8R#H|+BM%dELZT6D3>DPa{wiKHvikV&ZzaG`uM`(x;K5Cr)*>45qY+7d^JwHL zd67#(6q~y`>|o-oA2T^VH!rZy8Yq{~&xXr=qmhxk$Ysi9PsG7k?P+8D9?J`X7Yvl& zl`Qz(KN{JW7quk21EUda3pMhg(MbQdu5d*oY5XaZr>M`S3Q~SfelUTfNxl*P2DmRk zUSk92I9wOAl&p377W#FwmHlII_8toKtDj@d)|k_QcI};O>&K?L9XQE<0C&ID*ju++ zuEB>7-3#A`&pvP1DqeogHP5+b<5@%2^BPbk8Y+I%@ewFi-l^cp3I51}y0gwc8;fquPP)9u zVOv;=8_owol?Wn|Jqwo=L-Gb(LQ!qOhlpzJjy=~NlC>qKyHHiX(XnBpkg7=(;T(6p ziAQh;3*OSf6Dtw^_9P#(x6Ty+5~g>^mrq&N{?nZ*M}a4Z`D z7M1C#ZvAMfaGkhz;`(x71D@|j_5vp@gvsiRsk1{+(H^hFpd&>1dHKAApP=u^+b$3j z{aVR_D)rFE8Rkq&3zs8QT_E5NfV5uez+D2?9Ngm!zypb9nss0U%oXHhM1FLvJJ)HB zfmVZ3Z^gNN`4E!2v(NQNUA;N6$D(_yO{I=oD95<18!i;2$t%j628L9wkVqAZ*5pG< ziO)XYL(VixECio4S?%BZ2nn)}S_RLkFbs$w8bH*;2Al~L^<7Gqqf}5Y#%{wM3}6Xd zDO*Cb@%o2qqcGR1HYTcA_eGYJ8IUIWP?HK-0GpRqAq!sjDL>|Ryh2QiUNFF1RJy3$ zGOsN}Si$BVLRxXyxeSqZ$mPRle65zmjA+vLkJ{9YM$eDyThn9?;>-8*YOyOY}vuB|| zjtX4-A&1Yxd1nylhOfXFk76VUVe0l?i0gE8MTuZ=Ivir2SvtZE0UqkHo^=$|d}STR zhIT`Y)X^~{L`)F)d509y(qy6CotP1x20a#OyuNkJ3G&()UBMZ00Eb)~sNp_5g!67V0JK1$Qq9po_dktX?~JtFpBp=P8?|zc<@;482-?2d(;qtX5-V z=t4&9^~|H(GjWwpAil_(7{;H7_;!Lt1-*KG4`FOFM4G+yzd@%cA-k;|OVGEn!N1YGI(D4rxMHhv$cIF(C+FyX+FYC^?d%SvQel?7rtcXxqWF&E#o0-ci`=% zFI&Dy-DdhQ-hcQ`{737u1h7G)ducy<6KL>ZB|I3EkY#=25#W+p4)T@ z?q7XBtXHU|D=VixH|}uXl)n|(B&>)~(gdjrw}E30QGA~h-*g6Z;?8Z+#o9T%W%Ruu zjNuz`8*rltlMj;Z#2wy{!qw0$Hl&neE!HmJ4D6j4%02atSi5?Xryp1z$yRxSm%PS~S}sf@sSc?;Q-Ip%krM8>CEaIO~ORGexc9aVB_V!U?XU?ZWuDTfL9Tl?U89fnEQbl zUd|myhZ79E`DV)9`J;(5c$5&x9`&|}E7tKhbXeh9fb~Zhzspubf+CD7g?Rs3h+;+& zMq;6Kh~|wjjy)kD!btuZ7GWHZW544F(DWPeA6zvUq1C^UMC%wq5yr)W%16VO5{;=N zjMc_N#ELK^fCU=e7h#+R7U{6L=#wkr$Sy9cj~+TC3yJ_DG%L##E*=kT$X^dH5qc=Z zJb^RU@qjRx35E!Y2c!`Wi3e)_ctEGRZBU7nPKry^mcwDM-#5!#sj=VdKY{yjCnaK7 zy&_!w$-Eo5ddV%nf4?eQi4XGcR||>1QW*9O{QCx@+)9TuUWZ;m)ZI%4hT}31K9MaQ zgFN`N1RckSj;YoNUSK>#EDtULypBdc?7@>9FmZ(Sum_KOCWm|Q7w4~sR|!27VxGYL zY7Z_HZxx;?EClhntY1Ocdsrp@ zz*T}g@ryE$1ij)0I&g3tv~cUE1j@G}`{*6E;GX@15oV(Hy`$MadhbYOExCDGF3c_; z_%9;{P7r2)7eEo_1|fz-J<4%B)4n0rqECX*Drn|) zt>EXM6F(D(gpT-x2TA}|P{b#_nuz!kjJfd)C8<0wg|9y+7?@~Cdsc5ZJ}lu Ku zVL^+23rm_qFIhOSP^=w*pHAk1*J<~*!ZEDzW*ZBS7QuA|)>q#oN|rtwj%>j#rc;*l zO2o0Ml};yaQ(VuPTrPQhrfd58Xw`qa%!=>&YHSSKNvOp>Y;yz7C(KE z>UbE~Y>OhzL8=oGjra#IB=OA;QfxOgN&(NEIObXVRET??;OOApsPWp-*AT6Dh_>5ZQhA7!^VlXov(* zeAO9Zg@| zROW1}I9Z)74Oz0oJeDJY6ZlY+pw-+5l>tQe!bGzL6$0j(SaJ)__=}Q7cr_VZqJ#gT zq5<Mv+4S=4LG&@OAfYGXYrsM^EvEELZ!S&cCX1eC1-ppjxQ zWyk+)#bN_<^JRLexN}o!b7@Oy%Py$*wQUOS0YXU`lXnM=$=9%`6(C=4H?bTF)aDmO zhnyRRuDhPfl(k)9@jWLo>FinS*GDmL{dz8(Cr5SWcIzA2O6=VLxR}S?7csENxqJnP zBw13T(_y)L^yH4&uqehQu)KPj`W27}vnhw1rfU0-X0SV+0E!g$f0eNRRtKyWS2Nba zX!xrL;ZNWIwI6sG2TtJ!dgUE(b(xLRaVi1GZJ)65F6&oP2p7YrwIU>Ivb2 zlnD`1Ogwwb1Y8Dl&m#e9wVt>X>BN!3=FsRcbb3fMDrk!HF;9;eb5MkG1D64{gbzSs zwa5F34uuz-BIh3j6j>(VN=OXfno$bDIRYXtPM?v3fIb9OQtFhlQ>&Fuu*PXLc@WUZ z1zSQ&d1t4QVkG9XB~FK^HxhVK?a!A1fm8Z(bZ43P^8|=|(V1L5vO3(RCm8rkYgG(< zGtSj`#(7Q8-xh~rUaUPAW~sg9vv7xWb8^A1Ex=;@u7%pI;y<_1e`ao`UbP<|2cNqG zh5aYaub;xN*VKMS|2~BO%1G)vP-EK#5KYT}v>0Ax$?&zWL${#Gaqac+W!xNig8<}B z;y*#q^;W<|GC~L51opy zKISfn6&TRq+GY=5F3W=Nn(gO#hF?a*tM=N~=w=a{i&q%`zwT#N{q-FC$3v2)%LOvWmx1IT2gBzr`A4bJ`RGbQ2@%|jXu_MA zVc3{2dCnXFc~&~UHIz01U5GHQ=Zq>>=1Y}J2SAlI6kp*Y7DX0{G)12aS?P3CeMEAV z>p7#%SiZE`Nwlfm15O*SVMYA5MA)tyn8IU&4{cpm|jD>X4+FV;SVgM9k`XYWnm6BL0t}Z~69^aKp>UDaLH-6PqAUt-O6b-#M`u6p(A z)hqaqVj=fYXzHCBpdVeDFVzmfL6_Pqe!F~G?H>@-7g6XwhQGc6zj{XngIY>hrao_} z_6dalh~TZ*@~SepB$gES!GfFbcZ8V6?b*AC8w-s56hKX4WF?lpc;+sQM8Kx?Ow(~E z@m46@mY!-h+MO1^Zi%k4m~W8vBVxe5W1)^o;S@oRAaC{|v3llwypNCw`1naxPDA#b zje%Wo?G}WM;Ib|{%Y+*UqkcoMpz$!(vOvQqxnuWB1k85qqy)nXL7lnr04RI17-!DT zJ)4QIQ$Y=jq&J8yzTG@GSH2KRKDeLKzZVHPFl7+W2nkO<&3t90A)(C0JrMu{#aPF& zeHCm}t>@G`PtnxU0ZEC7z=RseXoofZS_q8H%pGK-H31RcAnhHou(;G)ix<`1vQV#1 zRXa=1@2$b7`|nOkkzlevP8*Z|yw`R1L!FT%r@UA+IkB;p=koxV9ZWH{kIe97b*)qvjC~$5gRV z7P(CM%eN-O+>LLc{$5$gJ`(_&MS#NkYs%Ya7sFfFkEOhgZqWX5S>!V0ZS9hiz!rsB zyL>lY`M;$sOyAU3#%S|DT7s|4wnjIxu}wK=b8DQCVx9igS~*#dQlZd& z8(S=Cwl%|kIGYfUGZqQ~LZ((9!$4#{d$ng3gmm^e6?U~PTUlkjba-Z3IS&5vd=9)hu{^@TueOZi9`lr8PBQyb# zXMS7$a3kMEkU#41W%Ex@#=aCu0Vd-WLLo^eu*%Hg)m*13kNt;)%ayWFJ_7*v&x;wd z;&S5LqSZ0w+>-v)kAG*3D-;Su<4WXAN1t5t=Y7W3q>%aZY5zBW>gLb)$L7yS4#9Y_ zc1O;idzsx)#Cot%WuUXida})*ZB1XfCW8ewLK6^q=Fct;Bl|K!kl$|pd|_E66Ihin zf4-(HlwZ|XF8`SomlNktt&S<@&-AZ;x93kCeR9p8dyM6*d*>0$UPtGx!|pS64o z(HsA7BGpZ#!yk?=L?h{FUntf9$%*uCCK!r|6dU_Bk$y+hm&q&`TUFi1MrZ;e&qVq? z97gtuRFL0pBK>VyBokPbFp(bj2(?6+uqejmV*qgf7NRHMFpRmJIFV{~OgWLJfAzaP zk?QD^Ya;!uu{FuP5FLPNn5V-1-z2J;M0tdL?h#m0Wk zrZ;K&%4KJt#ztrYBF}7kGY%uWofYJ_n@u}qkxXD!!fg87vQYm0zH<3_R$NY;O|?3v zoK4fe`rV#Qb@a(Kn?BK4&T`MD$HHtHJ{aRvcpcir+LV~5&r{$o!)-{|3H8rs!tQ6i z>$OLn9o061gB?)V=5+YQi;z$Sf5Y~vUu>0am=1_;#ivelYO32}C6OA7xS7hgPI0S~ z6#>FiJM91hb`2d2u!r3RESePDIF9v;VSCj*(5z0koyn>T*bF;u&x8M;>QtKz2mTLF zyWqZRwJ~rV90aI)^KkMOaU4@`koM>aATqJiCNjN#q*${gr`HcKaZyaK*qDEM^{Wz- zvHB0mC_k_1&t!g#EoJ_hjnV`}o+`wIYuuW;`l|EkjS6_MP&hd1YUQ3Gm=<%4|%DrRz#%YSl@-Yf; zw}}+I0FDj#M~o7y1k`?tCxjlr|NIR96FSxOpZGV+r&AB1_H%gYNqAz53r{3NLH(h! z%t|7b!a&I~H}5sJ=XqV(-p_&)%ueOj4T~FwH{1gM{|x+>{eiz0`Jd0&a2regyGD3{ zaQ4jG>Ric7YBpPK=GyYQn!YF6M%NUx@MNOkKsZqlas;30+&IWy@%`NPT(euBh9o`a zZhF&L?$Y7qN)Qs_I{=<4r1&}AHa1@hrw`m}!<%NEbvsS)f}sk$bXU+X*dCQ&<*1oSSWZ&Ia)_$Nr zto`S*sAbODXT(?wPY7%Oqby{<+E>=z(;wFUtSoAovUVlTyHsuYBf{L(r>o7si9L-i zkyZfU{;e>M#9@?gl20#-S{BTWDlRZLs=1?Op?g+enY*b!%)P8EYMC<^{N$+S;v=HD z*O!Ivb$w;-p8hbmQ5LmKnY$XyGOT|nd;N!m!OtoSrrVV&=X4It3q${nx@-|F&P;cg8$ zYzS3X;8nhhC7 zco#Dpiv2EZRH|m?l_p%D0?cCUrGpJO5IO%xO~1MP*H5z1nt;d?Qur(mBfI|^W<~Uz zvX&D{Bbolyryn}HMkGi#@?4hkoyHQRu#^^9{1lVqS!{a1_NK7bABS15zk^rFJUYM}z+;3i(AVvLB7_ zGh231yu0384*QDizC;ANRg0FzUlY6%-VX?#5|Te9PJ=*(lq9z=f}cS0+Ac)FHx#j2 z^6QhN(wDDFtRnhq{<{A{tg>&kop~_+LqeHZbIQ~V>aI=!c(Z_}rWEZs0~RC3(P2&Y zNfNI`yGFd`zrlU-;3=WX@0ClHTlqjtD;>Yc0;?B*9nhBYmz9nMR(92BUu}U~{%W)w zWyQ3cxaprNUb%qDYP9Jl;80ehtz8G~N~t=VFoM8l#)xzQ!1Gf=3aUB_<#}1jSwxkW zoc%QZ!ax5|6qY^8pVJen$cF4Kp9e3*uY+k9w)V4Ek$tqd7}jwiy@B0(T6bAe?o7AA zvU7t-1UD)f-Y4efZh{(h-xSkRqHqiMU)GL&(9QFlRi7pF09L6A#a3!%R*Jokpply` zvQq3f5imOGA+G?FO_X>17EmeniQHvyDq}lFSip#d0x?VmDdy-AV?O#+a~^K3_2P2g zYR>!fW~CM_8|yn3Br(H(NCf@2#Zpv;*?tXxmDxJjC^et*F?%tQBYnd8gy6a^ACr-; zchr4asPyU+e0TnM0Bq(_g+pwnMPpCGVT3|#%mic6*qy@G$bzw97DU5qS`H|~Yw2H| zWg@?XKRVd4*)2V9OePWjf=QwUi)D3&2e>e2E&}}$;o0IsypwVW241bscjsA2K6W5Q zHKX}ye^~Wz0pb?k^sqCw=?pk-GQctlLx!X7HD;mqAIA7uN}#VGaZ3?++r(4^PYH*v zE>?r2t+;||kRl|HjrncG3Sfj!1>O;RLdNH6da@87X(4WA<1+yfwh*;J_}rl6@DvUs zn}raBkL2|A(hr_2mPIOoQRb}{dBTJUuzXB7{DQL3ejWg}p94%e+{@45)I%qKUKXiL zIUG4yLf9N>BfNfhSp)d1zViCLd3l|F;N&x9QA)6yxf4+b1lyEmUFm?Ne>L5g`IJbS z4yjz8%caJW7TbE`o{I$*a_jBCZT%;?^@hukbGcxIEHE0NLM*VwKxDEH4V%+Arv+e{ z>~kS_LlK=1MXq(pJ}j7Uq`ys~&V9l6c<#&Jps=%aANK38%zZf@_nju|&8hw4Joc46 z31�P7(!LW;V=YqMh*^;b8~z>>)Jh0le8FK$FMt{}`}Xn#>ANZJ$oDgdx(%sKA~Ou{iND zu~{HZEKF!{EPyYY1}o9BDTzQ^85Q^=LWZ--CBuf|$zU?~$K*<;w503lAx&xd4v2k9 zN=w2B0tt>0>7M{zNhvLeDo<(IgTjP=`YA0ZL@jsH4ap(v$b%hsBS5>{mP`EHmgWLf zzJn7zY>IKjo*r%ywyU!ZxF8I!?t**9@IVfn)PXClJ^ZudwL9%d_DdlUiOSt

27{8;i)j1`hA6w;>#~nb30O;a0msWg@imV4j2F~+kb5_Ilb1@!nrjUB%Fni zvJ`?UKjXRu)w&)~vzv`Tc7wfDMI4i57E8S5gp?tRx&LDd;E-4(Cd7-}GQ`1P&AmF%yeHvjSFy>#hU0vjdsX?)V9G zAy2V4(99(pay1Dx5Vdg?Bu0%m7M0V*tQFS@*QjD{UG=`s6=)WMl#$F&5wTupgS|5i z)s%E!3V(EqqHiz;2*`ywJMz}*jn@+3a(ps`Dvtx}LlvqRK50ONrlC~W1DO4erkDkS z5|aH<)3b!N*HBP`Q7}QN<|>`@wSqXRzyhXh#}D58x*EZKsvJ5{dLSq0RG2Y-*|}~~ zx|I(hayev>UIrrI+Jzd?WdbTN0t5yWngd(s;lX_cKsbbj6wWLgC8+D{cV4tSR+KJ3 z$}1$JLfPb3UMvij#Jvx^G)!Pficm7~wTxeY#9oAEedF>S39n(ck*f!Nl_=Y|2}QtY z35RBkG`_+%TWh!)LklskVtAx{Zle7>^011aVwZF}0wrQ}hUplXh**0?OfnGgjqyZI za2K3*u!}n<$KCPXUT5jrsXZ-Oe-Z`4RXL;vNDVjvukV>Qi-KXX(=1&R7GzIQCc|#- zg8-zh%mgudYwPG0Aa}$lOdK^QkW(K)DvuM%nDf?7xLGvzuMRdUQ!_~8#Yw3RH#k>a zaOY!OalpXQQTryyWij2AHEd@s)tnCRx$>95!}Hep#T9sM()C=lR8(zL4+qRx!Llwd ze-$q~HYf!-NMudd|6`2#py3xk0%nIJbXS!aHBtX7W4piu2O0Z&krk-#<*+w>Bp%M{ zix+-Af6FS_=|VZ*gZ~tgi9Vex%w_#B)2F**jV(WYLG4ZYhfu?Gsfro)j$Tx&exmK~ z^RH(-`{7#z&#HdUm4#)zO*Qo#H&1>tx%>kC)z*q%I0=WuP;)e#>p{|et$Zi_;*C@D zsz+AF!Q(6j-|aigUj_Wc7Q|1gVXT;Wg-*P{MDvcYz|;tA9iJgcA%u{J%UoI^@I+qE zM;vwSSlWDxd^Kh55oaKw`$$`fb{}^O$ds8RIkaamP~9U=Mt|f8bekfXT7^Ez`^2`z zj!OniT9^rfPoV3PaIV~$Y(sQP+)K7u zqLe}8tb+DE+2Kv2Q;p;RYw{z55`>Gerua*&OE2UI1hcU2R%;Nl(j-0*r55hM1)wr) z?fxSFzHt1^1iLQ_LwlgUmw=-YeC-8eX%6;f;AtpQjP`nAm^!7?YH+o~Q-DCgGbj>u z*->gFLiQc-@;sBORfDex1jgQg|7C&1D5=KD#2rR(eyY`ZH05C6Z511`ldJGoo`rD+6Uq{Dj5dddNsj+yXAMhQ`b9D1_>9>Y5nLB$FV2EfReh*;3$H zLUXx5ARCmiJ2D;(0s#q;bqM)`8owyhkZ+yT@Y*0svsO*5#@8i&M9ETCo}Uv*`3{=G z(3jz;d;KrSvUafR*a2LCax569uP`S0R|B7LT8Qh z!e5*6s|v8yIJzF!mS#mFQ1QTq_kME6?s~)R+KuPR6iqgAb8p$AJ%! z+Gd0vSr0)WG>)H`Vz`bbwi0sGU>&1p!5fyo)hRFcN#DGx&c=eJ(c0# zTS?G=3Vb>*JxwJ$EWDEN{rC&Zsu(*X4Qs0US_owiKqB!Ppmhjn;&^Eo@&Jsi6_5)>KM@}LkHFK} zed9#Fn3k*DY5q<=T=QnoH~fQPzBoZvW6-7y1EFeTJPJ}ZUQv;+zy^ZN6;T*!$SYo4 z(0t?j_EQ*CH#FSV@{-sB#8s0{LDwXN!=L!Hysn5Zoj?yV|$! zaRZ^juFfGgvL0AIqdw9ZJ}VKjl29RRKhj7w6WYo*ue9Dua#ttKv`t){9Wh$}gEqMM()Phy7K?6Agy(HyBH>&xAdX z#aS`*Gz6>wm5qfL`)?*zH>x>u^ zK%|IKFj^D~kFt_8&LB*EZk`(KdmWcL7h6q84Lynm5w}BT2^Ze7=*9|Ej951#jV?f) zWz7TxB-7QX8gM{%?baFoE1kbf=)W(~E}ye3ZGp|>Vh zzIRq)<~b}yWWv`WHW?jXLp!83#U~W9FegL7cSNPk)`r~Vn^b)y=a8GQs2Mw>-K20Z z128UA0eWz)GbmFRJSQZoOg%UD3mwi2WUI%mMx&`q>*Q|i(o_Ck1bhoYLaC9j{6YwAJ+?61Xtxqxwu)Z&yN@`h%rGJ z)3Vr0(`2+ddsaEOTjR(DeyLZ1GkpXJ(3%n1u(^wV;yA;~#v7rmcbc6$H<22Jw(5uD zXN?X{Vw`&39CS#`DtCdrxzQ!!f(dkUt9nOe4v2aU(01;-1iH4p^^)9p>r~M$SrHS7 zihzU{%bW>x6TBZG4)@!4DQ}0(Hs9Q+&z-QzGM+n8wF{EWooys7O|s7Ci6xZ(`KD9e zI&M+X1aP*X$kHuamQw`Gq-ig@aPihln7-c9K*Z`+1P%>dMv@l`56#6IE638fi1G?+ zk#6Ept14ybuAsjJnxA@TA(lm0t^BqyVnJ>txiKQ>CyZtPbf;HO@O3EHlUHU@?A5 zBE}wkg@ZyjS28(p$;sUv^!CYe!<}FNbu4tSWc#y-1Q@8|i)TnZT&LiI6{v=O3}6n* z_^HU9^LQ6epXfR=ca{wrKFIlDI7`aFz{ZN@WoBvAo*+II{(EuBjj@)J>kA@75@roU zlDk3DtLC^?p68=aiq_!V8q&8t9Klax;#tEnlOv#U#^tk z$CHmhQD&$3H1&yYOCpDB7DJrXO(Ybz#D)j?gg9i)JFa{t9!5QN0Xfi#)YT5aa&RONf#h+4i~i3~V8aJ%K#Jo+YuAx4 zk%SI}_%KX>5ruijCseYG6=94%q?teTgW}-0OK)4`Ziz&R1ipeM_yAk+@QB@81^-zPuhRLwlEzx;WE+@BT zTv7BM*|DT6UwxJLWo>~q=!QN&sN?$h=QK=U3vAk>< z+Z~U*ZA)T*r#@xD^6xxJ4IwRj^ps{+#wB0mTHYw5KVrKD`?~Qzyt>hJadUH7QaTi|8tjtu3E=#`nbP(O{_5 zJ}_5!f|bcoc!XDOlEN%=YDwrg#P4olK+DixUu)yh5x%spwJ#lEbn@)d(emXM6L1}| z+j!qsiKX*e4g=KX(vjqOD&5v)tk6<>Qw?Yb-mTGDxKD_+|B|Nc2C?Pv# zMb2*jLlpTtpD1x6MI228F|QT)wHk;&c(>Ua8~yJ zS^uq9QP{J}gmIQZOpCAo)mPVdSpM~-@p_`lD)e7nKVStsjYlB-LPWL^FI)%AbGdauQ?S&*UEkKS4t@OgbEdAihYSNBj&}~GN6`Q87w;U858DUf_aE*KCkX!a?#sw# zQ4;~FlIX#M4lz(06uu;`hK#FX1s}mTcQR@#b)w0vyv9c&_x?1j)=KfwcwZup#%Eb8 zUQwg(K>9CnoGy|`Vo~!oz;kFD83i;&(?ckp)b)n}B;Ojbq!RQ43D|;Szq~JsSfsqbIxuwc`=Dk?6^Z#c07=MU z3z^8CB`6JjeLx~3THJ7aW&w}+a*tHHDRse-QhCip^yz4Km3XGEc4ASAN$KVkTz-mmupD$c=kUo{n4!OfqfoE{K`A4_ zJ|N1U@E|g$1tdL@{1FS%KeClGTMWT(L840-n-f-AqlBu57?$Mz??+&uvl>@#2i|Om zo2=TdxHDnY8e=foGZ|RA+e(to0o*|LDM3vy49#`vze#Bw zd~FgbjLenv*t6wrh&$cg8I+PYywvOrVchA)#FrwM9xbEzSo0q4?+YG()keKyjYUm_&n384 z%n;y~8+}zvc$Fx1vfT@X4OxcYKoGU^EHWQKvKGw}Gl>?V3quBFblg22cLD6(11Lwh zYT#kEArb;*)}JQe#G#@ITqUf8Srnvb#gzt22s1!Q*8(XJNp7?SOSl~f)^=g4z76?9 zB`9{71{+opjhWlY253Ig5H1h?aiDJN>&jYSw1{MCDga&ei4`qeB*DiK{1NDa3723+9A0Bx#%?^B zp7e&L>4U>e6Y63^84)0?RjD+mgbw|+Bz8r7?_8k9Lj1&i!~EGQXr9&vLy`^Zf`70| zvLXjSr8|#WEqMg=UOh+FR2%HGL@pW~gMo^jcH-Bv?K`^?E5*`8uGCMYc~m|GFoP0s zoDoZrS|+hzWmo)ErGxss?s|`CRWmp;*9y2%%ZGxKrdD31Tip(g3^qR=^t47WZA4q8 z+XMuhBL3i+fS%TuptRG(Lhhigeq-JMKn`(@5quoNQM4sj)o^ey9`7#8T@FHv+@bMV z-dmaB^4Yh<^3Cm4l2RJ&R5T*f{6u6pmhCJSSBVVuP=H9T9M|E=ArgXmm;6h;!iBI# zC#+M}j+tRhplut{S2pc~K{vTVvf9bavO=or>(mIPTC$9KNpzNyHAON7_{ige=qwGl z_x7h2%H6w`7TXY2$Oh*_3VVo5DVI#Z)y5D36jS*6LcvZoO&f7(7&VsBy|;S^7UB}O zV5*w8Dmg4*UH;}Z0RXr=_93={4OZ*TtIP24z&&+59-AZ#icg$oLLw53P&uhVw-A90 z4)%Gwn$SXrH0tgl0T=`)Qv?X=LJ%JX{+zf0zt0a?7c!l&&~g#yhd|^5FYgFcm#KPXI zC=tg6+W)x@ThbBQ;gunYQ@}V+q0YXPWBP3FVSq6Ii8?gP#B?;ECM|i+HMm@i#QMrcEDii9CnJZMI>go*VDvHqcI1H`P= zw=b8iMS+_f@C@;-0?WpVL6Mm}MD7$qU1B|YnuJ;dFp9r;iyR`NKVDf*-AvAAl)Rdi z4C%yhV9IS?lagW2nY2Z?kgYI~2km>|HE&jZ9eU^M@cz_;J_TwiX(yCAtCot*#l}F> zl0Xfkmk5|8YLNMAFeNYt)0P@Z2Y+E9`a+-F%BS9Mx{OsCkZtNDL)YmVWG%&c#nH z&5~GB1P?ysgk}z-50K;|#=6Br79hw+D{n((iE;WA!GVwi6`9_Vc^*r5wk)DN!NH^A zA)};`l@D|g5UgD{V4ahu?u=oZ8jW(O%22t*Mi6#fPGleyYi`!P2~CDC46O#o)T?V) zu-F1ap~hdKFt^heg{VN}thRfK9P+(dEa>#gtLPA#Ak)tB{+DFSyg*_ehVb;BWNM@$ z6nV^%<-Pw0p?`us#t^l2&1^oo$%!ktQ3{~WBsb2MTv!ytk(`WH_LguVO4ER#B4p%`rV(mb|`j_Z5`+Z=X@Jqp9HGjNS(zy*N~CqRS)$r%6}!^1Y? z44m5a;5%6ZSjpOiF)4`5u>lFEe(ut5R5tjWr9Z_E=N-%d`nU~Y7Phi)Rk4e&b0}I~ z*(!FqTDl2HknrO5mDMv68srM<%5FRxXk(|GRhhZ6Y<}~iD|?2O%{xeEQbH%qEBnJT z%$~chRfsLGYsA_CC#x(5rZq#vfHFe&nbEfs%BP4fimV$(HlLMtR}a8Ph z#ASZZgvu{~PrRQwka;-4R5PS$I-LN55e{5=p7cXDE)`&kRD;CE)Bu&3nUW4ZgX#D_ zU^nOD7hPn@5-_kLmyXLp#G&!bQFR9dkX#;Nger)V%L~^EZpwJ6sAa6D17-bc{#CZD zHC*55S-g-aX@7)(_rju^%F%d8NRq`a7z|l*WFQCnR3b9UY(0S~#0{d4Vn-rvOtg>J zv%IU%m~1u9mx3sT)$+gLv4rvcF6}DKScyF6O1t`&tRC#VcgKe?z@-78TzdKhmY0&% ztUG}!OY*ex9|hf=0ZOL&b7%1_^Qvy$1X1`XkU%O{>&bi2XzlXeXr14Nq|*n*BFg)9x1go-rfEemYf=Q%lA24W z8<_`kJTiDj(Ta~*)2I&%YOklV%rdZbF}cvh9;QSKb1L(;Y!*F+_gjx7WPF@uJ^~i! z=P6ZZEDDQ|2q!br<|c7rwS`$~sD{=dzQXJdTTnrvW6bOTNea2gP(n~0kn~YyfVg&H zcQ}Oe6ZNu`DOF}9>t!iH`P4h>qNfRa`5FuCJ6c`NZ1ureGL=k#v1)O)M?-*FNq||# zKh&FWwc7L;V8u)L9+LulvFd{P8*89BV`omhb^%2~W%?P3wGGnY=|H0FgpmpO5OB4(Y5 zT+-5tos;6|axM@E(!II5OiR~wS&wjnEEs*9dyPoa5p2tTpALm8l(t*++-v0FT!>7E z!@Gp#>(-k1f}eU|=9_98mF1{b4(lLSLI7moN9ZyYz3vR!@IL91n9cH#lZzH+xubs| zuF#*k0IZ{3MChM@kP;&m=^#QRbWM<9>+D^w05-iOTF_F7*i9$Nsw(=A9VJD%vb<87 z@NJlQsSfkTGy!c>oolQU=!pCptE+?39KB4*?PiuBmrhIwh;uY6d?;C-rWlo?sVu7@ zOLzDWFpzg4zooOZ32bt1{mk-e_Z-F?zAWo%Mn`;Z;VlXw9=?Mjk?;5M9r7-G zPdlxH1f6D!uZnkgU0->7nOWV7+kD)v z-d;nI-_43-lecp3-2VG0x0scyH%zq(_tw8hhqK?S)Tm`G%}wnGud2)4zm(Q8N44LU zSK_Gl=MUT|?H_ji+pRDC+yA*89Mx|BYvQQ(H-njYd#86Y?G3wq_!aLQPvMvLKYab_ zE8rRL1w(Qz0lG~*kHO;$9ml}as!`PhH;ct}B=kh^p5l*tk3dX)3ZFD=(nJ3EL-}`= zZfbo*h(CPywZ+#Ki;rL$2`$1}@xh(XiVylDm`x6gPfoUnaD1|N#pAcyS6+Lq#^1~y z!DIixU(@gsRx87)`hQ7s4=c8dR1*B{ZzP$MSQCT-!miPVM$5zn63K+?>ESs8bDODm zsrfeD$?JwJ<$Jo4E#pciSWA6T=o-5XD!MnOe;w(J$FNwCb%nqKxRe1yQGjL%W|#to zWt3-`w|%jlQ!7RnzqH_o1OXnL5TIX6eSelsZ@5`xMZmuWM>9Fe==<(6W5u=hb!Wgj zz+8-pS9ix4OK+D-vP1OImU!cE0759H-VqXeK!-?k;l7TD;g=-bu(``=Xc=4FNxQQ)P;>Ox+(s+t!H_qxDzsSP=Gf*3F{>r50MxR zZ4HhDnxz?1ANY7Ui3m9KsF4r`2FS4$J8~l2PTMF$%t~>6_c3i{q?tSY6Jn4wlE)_q zn1o~^fVQ-myJv9UJcPgGwJX&$oJx%&~wdps&t->TI)h2RnfqRQ^I?t(lzPB#(!U zFF#ESgf+MsqDYjFY;sy5unI7xD(?;0)i=b@^~f5QWL^?qN?LZR0`>?IfWX)u+u(QtlR>!dQ*m)^)b9c-V0|3HpR`LREy2=dAT*V#OI(+@QH(5jNlFt3@xUn ziP4dsiOd9QG0x9Pl&%z`)O~Adx3>?o?NCNwsPxZLZ}$*|W|ujh?!(7zu43~vCki8k z9GaZX(`r)M8lO4X#bW93+@Ycn=QLNrr2o0fAI;nQTm_Tf&o3WCbmL$M94JZ``)mXT zFTqGIa<1CGeN4;W2z65?-wbWMj+~p}hXGx3E)YKmrdEHjruZ0oL*RTme2RK%2>m1c z?m!VZ0qrJsxFEv461EwWDdVR4LtiN+IKUx3v?ph_rYw(S`Efka7=^kMA$4}S6ykK? z;+pC`Bv`$@K}j+a&`M{U%jvJXuscL1)RLuVb^SLs%Xd<_-`8PT7^byY$cE8n4tFFe zXmxVvpMs5=k`VyKzJC3K%b#5TAXw<{5{SM;tw+tkm@`DU!R2(H^kxt7pMjNI0IZFYBX!)8nlokWr zx;i-QAvhepC2@KrPqVN*;P$4Kix_Y8;;a@eU!*9icWJd~dPy%9xAq`206A%x5cO~= zo24wA*NuAvtNjQWN*^!|~PQ|{SV(v^>OLQFW zl8rJ{VQDw#yC6OW)C_w^!C=Xv>@;?Dx2~)7W&$|Rbu$4+s;F%W`rFthz0bumelr^Z zW&3J(?cUtr*$}`;XaaHH#=%S^G2By1%&>Hj{_TOu91OvKy&hIitlwv@pI{hz_yZ0Z z^Hg!xdS!Nt+|!y(<#iIfNB)qaeyPz#Ykj%2vt|BBWL#mmb$ft;RgZlY)S6d49H?SF zTY3Rz3^GT(m4!*%%DhI7fh#r2h!_R*a62Nd)L1W_^`w9!6g=8Yp^=Ryhi0+3NdiM; z_uI5_QgBZj0^hy49^gdg0%+P6F+_I+u{VhlpP~at+9gud7mM~Fzd@{T=!FLGPNTez zmsj2w<#?e7e9ur3FOZB3!~-yZt2&<2Ff&vk1D21|w{9)v1v!B7LjFb;s#co!p>o*)H? zo1`zr4|l@~GbDjTwVg&Gb;1>HQ^dPjGa)uo+abV;U zLNlwPRo^VoC{c)(m6`B5&V4PCvP2%GvYSoql71_djeG7xFJM1{F%ZR+%Er?k%jVNg zfuKSO&pZ@gjLPNn{>yJ`rpQ5o0*Ye`Cyv`x+8~FLoIWWmpDSh{rId&2 zw5a6}M3C;k7*_$CGdzKXCNhNw^f)lb5V42`oW}5!a}P6RLyN2^njJVb;~F&S95pBW zN+Fpx67;9dJSf|f^DN^Ac*9x3sB^)W zJIBLSzKhit6*REKaddO^A#%zkpuY%yab?7$J&T{}T z+tsAAMu<<;b;;NKLev$3$_GLzgBdUZFl2z?1SCk1JMO~M{W0ZOlks7;P5^)0^WkVD zDx!Rsu+lQxta1s;q<}e8!>Wk^y|dyk8|+}tOy>!ag})@Yi_qp^o9tn#e5eJcI6M{A z7fZ>LI?w`kJ3-!x5u?ru-ItUHR0?9MwO|k)(9A5#d!XCo*!rz`fHiiToSbGXT?SNw zl7F(%L}qr16B5(;Jw^IZ$2` z7yDsZ{kjvjhH|hVy_b>aI82-L6$pP9;`|5?8I8+AaEZhs^wMRxdHsVKn|=&Cl!W!i z#YQRxtao|AdI3*}*uauIDaD|XY^T(^LiDt`QmkuW;k)hPy0q7yJjN+|97WMO)?mGY z4MZ$qgu26Eh=VlV34}_k0nM;+;+?nv1!s0NJc&G@w#rfnf*=_)D3{`>Ht(tym?ijO zD|QSG`{g=L!$n$H|3#B%txKH%Z^!f%0q@y`U~DOCoDm%211x1GB1;%@)+`~^SPxfL zWtKT|O}9zxh$7?5p20Bt!!tT=0yFH36wNGFlX?5|B#G zU|O(d8$zM74`-%J))*rY-ut-tqxXtW-}~9EyYJnMBC4=7vdhg^k-wH@oJpiaz^jSh zQbqC&w8^{+xtMPi3?qkAoK1Kz!D=-Q#b_GQFj475CR_nJTR<6JtQ9srnx;z$kjvR$ z-!p{Wf_z|?n(xliJD9HJhKP@ZjP|?xA}!il zSY3U00p4KmtggZlESr~kN+?$)#JB8csf_RO{Ij)nm~;L{S#GUyVkJjOBn1F+psmeA zWJ4ZFU{A3xMYJ_BrGp(Zt^Rf0vC7%cgz@7->!rX3AHog>qZ7A*m=-%Y5J+q3=xZBd zlWc6DjSV=ya%1eIW;GhyW1Fahg&@|#w*iPcHj>K(^6QOPIO_nf%C-BDUk5prk=I~1 zz#@zqU%piM%0JdHlnP~hKX2pSQu%Kg4%7D{9`^~&>PY8=LB`XtMM#mo1u%gs0qifG z-voOXD38_A4wqd(k_RZ4f#j_wWuLBn`eY}=9rN- zJ!4KBPU)O;5dP8nX)CppI)7!V%w#_6=h{7vcE%jf8(pkkJ2~AkUlIPzhb|1qvu_j| zJOUFsV;9cpVI~~R)jTZ!XLQddc#UNDO*|seT89Pmwc(Sh20D<~>(>IR!g*;5a)-s)V-JI5rLiOmNe#1*=3+BMBeRUc2Z5dixu7+@Cu_v6Wh4(O zv`Y%qL`Xs|3T1k7*mdh17HDm3-tUOM+!atk@dVQ&8-f~?lnHIU3ZgnO>q>0=q4W~_ z9u-I&B(3=ZM%HSXHiPYvSp~OLFbWJ&+$SH!e31s zqWwED5L@<(x`wNF5EYP6J)hX>(Fl(XB#Tew9p8m0oD?SU!k><}`;#c43cd;)jtZP) zD2@Q-N4Qet7i=Yb>;$RPGa5g!ZoWZ4rcm_D6~-c=4(swHBZA^PV8RsbGJuyfekX5) zg{!m?$BFt=HN--`2=u>o1tOX|52|Wb4&j|*Ra*B0V<(~3N}|3yw32s6Zy|szI=#Y9 z_5S9bs7Vlp*cAcOxf=t#3`0MhNtH3H<%(JRQG&Ip3O-maf{mvyU1AlOCV1AUO_4+{ z=NX~66n-s~P>&$KAq@^h?m3^)&otyZ4s;j*> zm>_hj+g2Wo;pwIG7R_w578MgrNW3-)uhC{fCwJW1Iu-1C8gLg3P!SF#{G>gQlP^TE zVh)sek0-PCfk739-r#6Eb4WV!q&oJj8_^$rGCCxt-k^K-|-@x5vSEE7hA(RhiLQ)!jSOH66X%(?4cw zx3jucS+i4B*+ooLW@Kel{)n86%&N-jZRv!NSc#Q*U`{;TA|xJ82qc6~Cmo;@LI@rK z!5caW2_E6#A3#WaK4xz2=Kl3>WMox!&+P1kx+^2TUw3nJb8~ZZb2IaN&$}?*I!ip} zwo%ia6ZT2+1rB0PkcSJwWVsiC6LwRTRhDN{U})70Xe=DT9T;2+mepN64oR8J{S7rA zq<?)l=I z1H4Lz@0xx5D$V3q@he$2!~!D$SuYB?gk`ZRG6^n@<#csQET@L^^wI+(LhJ7m%dK8Y zGO8?r0;_}agK9+K~#k3&}zON~1e(eYpg3h){fpAqil z;jbR2Qesi6h_LWNrEn!HPF-j$dwrb@H7p7&$DO#vhq2&}rN)dLcU|n{0h9WW_9mMTaRf8w~3slk|y!5In2Q zhX)jL?T#)r>j=icf(VY|RsdY7ERM4`8Pco)_6T?DA>0UaWrAdVs=%V2m}j`t#s-{V z>eX;c)jXb4?QvR@jd+3t9Q(FTHl^jq5Bj`R?{K@Ph`3>fACIW+oT^)A*dU}$glHz5 z1iGu?+sRfi6ce^v3)ygs=L37gmZ4QMFA}kTAxO~zN7?>p|6s}+WpXs6BtjYg;1B*l zd+Ij70VfW-SzHUuuu6uMwi3*UK2hsT1cIUiW4N~I)@4`VfEO%apLsmSO**(sfcN-F z9k!&_QJA!jj;MJ-Se%4Q6yspp9gDKzIvgXxC1MhfeQCWnJmg`!k%sfV_udPn>wST{ z72uZ%IfexDy*K#<`OuM->hhOKf@M*d=U09!tDMJVX3B-A-KycG#-2=&ECHmj=dr&W z9(ma#HO9{hHo*w!b1nn{NPCI}9W6(STo!7GStr1cE%QBb?R-flizC4H(=ap2Eg+0_ zqg;&$8Hi_fg(?83eT}b*?y@F7p+nga@wwou+kc~1)}M?J@lAM&Yt4Fr)OtJKle|-5 zo^wQsO_59(n5B+!CJ(vbkd6}uCXa9sKzmC_0fGS7`Id+xTMWBcWQ^e>X&D9yY#L&p z_@$0ojM!9$Xb36(CXw$|fJ)OSHixDOpy75P=Yz|hc^m4^0LNj45mQsv?iiS9-)6rWU% z{AE}*#$UdklV^xS&xM#b+F}sdoSb~l1~4F9fq?@KmRGJ`LISuj%;q})J>=Qe{wZqm zwA%5kF_ZmWR6_q+)EdR?uPzGR!gijV^-{p##lLe#i)ErP`xOwvnL$YRowN-(3W$uw z)&xfMk)Gnizv6={nnu~5;lpWMf!Lu8wrH@z!s{S)jSxj&kXa!CqimNODs zDGG~3STQW`90?vuZ!&>1DwH;i{qYXGXhz3-7>`TuCM!_e2f~+R`+%6Xr`Afi;o#j8 zFYI(vGw;o7MlzKeM$(Q?{uVlzaJee9Kpqd+O;T02QX=u-)~?#@bcliwqN%?et96#e z!BZ##xkxF*?fKKm{x${+dbJD?t0r9^RQ6NiCKkg(4KsKe4o}30qzPs-YrMFai>EoQ zOY#fyFoXO@2vceB7QV+gla+L;W*{VD52rW=Q)3l%G%?IO+XYY~I!po8RFG-%!-0ej z_D3EM?q)sq_JwkF@;&tX8U7l?A&9}Abj zecdxxfEp@mLF@*;n29KDVJq5o3R1Z7RGXe{GtG~6a-7DBJ+rq!0b4CC z>6Q>pe-RPGsIp)(0`Tg^VzeLO&frJf=hNgN_toMip9q1vI+j}LmE4(BIcmaj(v1}< zv2p_&zZ_xP*Y_e6m|BH9P;D<%Q}9S5729QBm!Q(>T7o{v;6qr&g^0bM14#`RCt?;z zgd$k`h_J$;8I69Sp#t|BjJ$V*g@L;ua%~udqcaVM)u7a>QY7t}SinALP|F4jM&PeH zR8~R-6(h2Qcb8*Xu#9cV!}(lmn7GxzFci*ztZbk5x?^wbuWLquWg~B;9wKgTFG-PD zrjw1CqW(NS-jjf-8Xw=lpVw|kplPSXF*m=-v zoS9}h$@f)q_r(#e^IVJLLDD$J#smEOwQ+ovSYJJkuXw)8#Z6u#R#70tw_q5HV?akvfbS4eZA2sq%9z%>kqmO6>o(?eSu^ZjH{L)t8 zLN`Fx4B9|Tshemk=pAyPOY7zqjt#b991mmOGSqyjyP<3uYnh; z9*0r8dBm$g6jG)Kg5-j?1=Qp;4*0`rwY+-eJtWs&o?e;ipZAuN(Q4{DO89=g7?QOCK610j!5r}2Y%9=iYE;&5yA#eU1E|c zBnqONVw6D@igc}vZwH{xlX19}gR+Vyi&!T$s0RI?xLpqQk*73)|0JLGDhDB^pXRE4 zc5t)#H1RfD{aOw?W4G9%eN?T2kKIcjbymT%8HhhZYmp9v5v<>^42ir9Aj9%0KZsOJBy!HcqFzS1~AmA3}3z;REE#w|JO8p z*4(QZK82PG0_*YI5!6DFjB$ja9mxV}Gd};+{!;upWX$g1QKc=@5v#M>`qT{4F8 ze<@FJ&@8%n&XU;TeGTW#(Aasdvige7nWZ0b(0xbw9pbL1Jq>H5AK}hgtoe&Nj`axA zdp}MnKQE?nw!h)CqEgZp1%$|q`K#SP>w62+*O}5%U_Y6=^Oi1p3%zWnW`y| zxLi*C<`mvtk{$JqV)t1xA@ru)ccKR%Y2WDRt*sU!Z1 zww|_EOWw|qI*Ze21w`{(h{F_p09&z%xn0KNxXSjfGU2ivo56R8Vk<^xtW6g$Yj*8R z39}jVVYr`Z@6ff;Gaye>Q8Mc<@BS}MrS#1@aq06D^xqt=)U-r%T2QxacII6*Fr<(c z%$Mq-a`%?bVIg>E#d>3GG>QT(I9C<~#KOv2;g8PRY)OojnHKAKB;Vk(xc_{$;-u0M zFnZ;w7cWYSi!aGG9xYNWx+Wv&d)vH_lQ(^wSrxQ%W?@O}%X0P#8?|0_bD~btw)Lnq z(CQ1vj$_7l+Im=L@mIfMRFFM?Xn}QY2ULMoXhU=KX*E;GIf5RW#8VSQ-baF%6Xsg( zgpn@=tuy$rMb>jw9><%dnq%DI6l}9AHeF4W?%pou%K(kxm%v}aq1__ZD{@#6SB2t; zR}RQv6+PeIAUQ?gtXC)GJYNG)b*`rY2h*R1%4rt7@#ODbTlQ10Glz;)%x0<$pbFi< zl63#i!D>LjIq?9w=rN|lJTW_A^b&9+X`hXrKcKJR=pJ*vJhY!TqPnopJ9p>WN}BEQ zME|QAWj(vB9ern`9E&YD%2xgrjdF!pb~5g%6i41TC5gt!0$?7@u#22s%UR|K+B5H& zX9D#h11Btpo*1bFnOw{=kH^U|uDwUVtW}oe31NaEt~8SX@gfu|CXp@+rE zfc7yKT*j@RHAvZ@C*V7$$I#OCrclHlL01d`eRM`fimb5t;=5~>Z!WZNicYB zkG8g^2M5z_cE%{26r+$3Od_q(;;o1&CnP3l*kfR&toZcM9W7QMHRwfbS;3TnBM9e5 z$C8NTwnQ+@LISV2DN?}tz@!yhzBvrQcc9FPOy~qDS&+-h4ncU6 zGlIS?f`$5(H57+Dl0+nj$CRI4@Fp>;UGlr37mL8_#?KENQxQ8qL{fks?TBmG z*I8k>T1K8!#q~X}!u$cXT5>tkP?-qXSFUAnL#oxBRCM3YNu@5OinDLE(z%%8POmoR zolrAdF@4p%f1M3j)sBHazaAz@Nz71bE@3JhR8QfsAV;PF^hBu8FBSZSGe?C6@2*}g zSfh$Bh~CAHTz)oxxoHq*NH{-|A@(VqxGG~g;e{P}8eQEgA(?J)Rq9xlq4DZ%A2Cgy zcr8HTlJ&$dYqHmE9Uw&vi_0Y9^UNA1htCKSLOM}wv5;AZF+{U5E^MRu&Ed$gM9tg5 z=f~nLM!NEI(Sb%mR99!alO5)4V1N6u@dIe<4PR ziF_xl43}6MNLguOCf`X-O_PG1$+copm40IL0@$JWMC=Tx9ezJ3i2NzDKZr2I z*;X{q}9M)}xuR3k+#7RHi+V4j(|YO^ZL36O0Q zp|?cfWGZ?Gk&!T+bE+ysqA@8!eF?Oe-A1g>0Z4H1jrZd)7CHJYVyVtbYibCYk$_xi z3_m*^pHgkz?6FB4h^8yTFBg2KK15O>$C@aaW!KdQR4Lp)njX1OWtQeAFS)4z7%t~t zYd{+>&wh(eH{p+%hv(c3HNImoq=U1J#z&5#5mzsWE4 z8msWfm?5|@Z1#p;3r81Jaa#OD^j79?2{6-br%mrOTpYL0{qsA1|BPN*ddLw5;g}aw z0eWg*9aDlEyCr$S^$w?p(}%bonYSv6uVgxRBS>EGB-tGq^U8Epr$|07`T; z!w|3<>*uUBJ@#HaF>Qopr`DeTyy#B)A=v#HXfz?A9{-tkR%{=#qI#Tq6VPHFooMW+ z(h14!m{EG9Bmx`IPuGK%?qa|WM9>C}D7c}w$xHMYWznphMg0)1HxH2S^+;c0t@?^3YzROZ$Uh6Asor>IOw=~(VgE77#G)0IzfnoZo`xS(e?ZePZKGgH zH-{@Hk@UfapyaP|&kN#^+zbwjJpYEVl}M=i46q%V9s0dJoD83xQ3s4O&p`UWalasP zGu&E{CaW*X@4>sTwAo6c1PB4ioKSrUgVk~oS?po!RBlWBR7P8#(-&d4kkym2tk*0F zCVEv+cLL$mME*_Ef(W1~cgaL}Z^A0l~4HP&b=N4xtx7LV7YAa?6||za)U` z1%RPPuL=}LNlpO<%er$|egS;KYc$0ykAXi&7+A6HcCCc!7**{AyP@T7r6&P^E?BKk?S@Pr!Zb95gA&%du$ zw1t$!zk*84yH~C-&iE?+TwL11MB$W}D;lzVg|XT%upT=xha5JqM1!f$zZXF5E0TM{ zRl!*J@{+Grr_<0D>@I~7{NLB z$yiT9jOT;`B5Kj&kexEo3lR)FK1s)Pk?s6p9S*jT3l>+&;nJ-f9;hWL7^MLe17y7r zP;EtT9P(&Hj;sZ%S+diYsMX@T8s|9@5QH<7U#SAk%k_n>)J){pKz{Fz*+BVkUs#+Co&BEk6W^ z5#{i;hF`Wh)`^kJ&vf#BZS9Ketn3g5dRLA`*m!k1(}^3MfDqLv5lMzu9Vcw^q8Guf z-rRp;s_;s3hj?2}%J1O1pBid!*;Ds8o#SYohmrKrE`q^I5pT<>H5;LdqSu;33m(Y@ z7G%6@1c=cq=V?BAsX#QzwkL!!PYbj5JY&&HvGP%%!lonu1;6ZR%!#=1=_TXB2DcX6 z&>MmxU;vHhcMeQoNM43%!^s0ePbgbnF9q+K$YzL+Egt3Mm7!HzeVuT=03^!t74D|v z0Es3h$#7jcaqEG&&WFksz))|xpH50)JTal?;gep^!zPxh;}TyJllUWbYbkbcsrezj zL{D~C^}5~}{8hGg>1x3Yc2S^B4^xfw4NC+Z8+w;MM|6wKAlGS8A+)3Nm2uqXmr7GT zj(EwN1XMmt)uaiD$qDlM@Boo6A(xS)e)Q%)1JS=045%$4>n8!C7Svru!};&V>7IR28@dp^1$!f)Uj&GUTI z{+b4X4Mqmy4~|MkSPF;i!7LvtR^oevzUqy8^zq9oB>Bp+{D|OIw<0^;6~jpYz!d37 ztC=M~YB#ES2NvNo5A{mMq|D)-m5Y;TU=e3NMNcs~Gjb46?c>okN1?JYr^0#= zb1{zUxSU=?ogAt-?ar3pi(LTvh3u6s>a37(N4=;a$alGU!R`4pvkM;F=M z*iGMeeis>@_jB<+hG8oDnO$Aw^QFS2nl{-*aV=5h?-n~GktVkv_8>V3Kk+|id8`!0 zW{|buuON3-C?+Xfym2tXMT}Je8Zu4{u{$La!wK+EhtVMh7aWnW&1aCm-BBVQ@~W986Cph>yf2tE*R?6kUA`!!W0uXXk|4Oon43&g2n z;kc6!IHVB*2P6KdtW}9E`%-M&i>32H0^#YYoyuPx3@WDedV~nk(k&_uVA9H%uC(Ny zR2&yGiY~QhF{eFs2bmj{AcQ$|s#PtT3mPK>0pyON$gqi(bE-s^Nl49~zM%yZVxS9I zOs}*p#t{?;)a(?eJtu_QZO!BSei^OLW}s94WXJK#s`ho``?7jp9M^)r7_9tB&JHiE zE)Mr#GY#Fb(6y+{XH2S7DX@`T&}umO#V(-fp%&cb;55BU#*cudi%VA1aVV?#516!4 zfl?=cY_qJWyXBgbwKumqTaUw&+UfAk?9{s=h+C@a26O?YMQ-%*VhS47G6~w~XWEx0 zbQk{FgP$tI^gL}6EYTI8M-o`aT!WMKl8#Q~>NdqI{hO|lvT}Qm%Q#N$i86Ww>o4G{kCc!U z5jBkT7>hCQw6g3e@Q?K3M>S4^03&1zho?PHVyv=bArRT6?6v68v ztG4#1%-FKva@OQ4ui?zU#^#iSo4sYd?qK;cmNxwk$5(#8D%T*m?|ANvp$1W;X~$TR z1eD`431J>a)H4PSVP5;qGVi6Rj$3QQE<|T_=`CjcYS(=GDoFfQk=KkF`E(ExM?t4F zrXbjbU3k_kzxVD7k-6Sh!P0dJ+bP@rD$tq|vTbQJxn`z2?3UYx9yKs>B&>MNFj<-I zS}{^5ZyvMVz_lmzE3s)Bc-Ohs479oK|N5R<-Ium$E;TCaf+E&JBvMI>QCWKlfw<&U zHMPzK<vd*s3VCr$?|9#^Rh3KjykTJw${z4%A4aeff&Lgb))U)m-Ti z6%7vpC^kG!2(g75To0LuE%nDJh!($4CmC2&Pf=mnqG)GBwzd3aE`!zs<*ikr5}VW7 z5$x=gCxq1H52wxS6anccIUpo-V4S&{yS62YeR_I=l|^pJp77uU8RI6~(w7pcgLAc1OZEPX{1 zknoZsYa>xQ0uQVff0r!rDQGm@07^0*RA_i!#=j8(KFFD3KL65CJA!Bj9fh&f(`co^ z4btP|rxUw@IU$>S>@0!D$4Cw+#>_UGA*`Jt(ZqWuMI2K%8!`?^3@v}*&Tld( z88)|5(0@mEk{kW4>Cst{>EsEn>xs5D`B9c?+jj}EjzPqc9CbK;3gEGMNlgX5xQ11CYt>=eH8>c%v6I{g%kr@THumesCSCM%hXQ4ZY6rAk) z+!5deF=T5OM4-(y`J6WBFhEb?c z2Z@Gy>zBR3X~}s$Xja7&rsZrt#o6yk93zxU-x@ z_$8m#>X-_8T;!TH9y`xYCnr2X)A<4b#W9+m@sY1ma`OuF=nQ{$GTcW7j{P&MgDN;q zk@F-Eeqr z%@Z@&5`rKK3|=RfL0Xb#<80~dKFf2}&Rdnyi(q=5zCp#q-YZGoJ|Q`V8WsIdQNjMP?^bwEi?5a3LFslK{|<*0*St$BVmcoRm2*=+OxtLs#;|J z%wQESC*$|Hf>gjFqd zN|ltVAcU7ojrTbjyxDZRXD^M;cje> ztUH?`zxehrU@hB??7c%tj$~3#WCPpg=^WrDb*P}PYVJt?UU)04Ul8trW`%*8%7Q@Q z;+(K;w+v`l^It;BR-`H$UPPvr@>A$Z{SfjoBJB3E8vuzuqL`T=jj1M0Q~}`0E(~tbk{7I^v+3#a zR@m-Pl|QEOlv8e&)SEbzZpbGR0Y>wu8cq}C)k;iOhLiJTe>gox4vf)uFp{Qnbt`EM z12e=$XiLsWJ;qEua2C;Y4xq&5f$*f-|I8 z!6Ti%Uu`UNa2f!X<|l4Jg&6^#%ZTnB$fByF&f<2r4FFTIgB3+_Nm#&t05{v_!>Tv{ z@7>A%HdLop`}QIsU{(Czb|*6XLJ%MZ3xnPwTqftU%5{X}ew<`$K_hOUOYhb13b`X> zld31vi6C$(rg;^OfJ&4tqFCL$seT+Dl9x#`a{i?-gzU`fIbFOvfbK z<^x5Q0{xD71#5$U?BgUC zbkcJ%ZLhqBRrxpaS^2{Mju|B+P}vy&{JxyikGbMw`8#i6Xbs{7kg~*@3nm zf+vKpxGrQupb!oUgpxtQ;%>P(4f9YFN1W_yOK`P$OhxQmxGy>#LkkPZ zy2@0FIMrA_z9a=}4K0FnMgkiOoMh>lb3R+$JvM5ZO**M)UAeaY!R~kq7k`9v>`=7u zYzRpwlcYVv_Mxs1*AaJa2L6Ojt#L3To}cD^2Ji^BlfS`uf72SXjj^G>T1 z=^$O;F0gi^`REz4a6s>8K&2YUa<`7q`Pc#K3BxtaN~gl|gih7)R9E~-dSL_(#l2*x zN9qIeS#~TMfy)sa-5Ao7_-(OG=CDhGDX-+4S;Zu_AQq8MTc4dwJ8lz8WRia2Y}zo; zV`z}ZG<>x-MB6qjtLr7u8DvrY91@QOzwma$irup>>-b{0xx6Ld8o96{ASdzdYi5}!xa{H#7BX?igZMgV=%ZHH2=q+|2cm3?yY}tx%s^5L5q9%X>qPETyYaU&tynj z#zk6dv%Tw=n~$Ls(#omr+!Do@zj+mt^(X9qCwSQGPWRzPDef`_v`@KCHgcyA4Ts`% zETAE;v#c(ST29-xD6afq?^Z{MZG4lqZiZglB#~jp+TJ>$XEHV*xve6^ee+ncI2W$i zl8BOMUW4VEa4Kyzn$-URdB<}e4t=^dm8BCH(dWk*huo<@uTtcUtxef<_$KmgF3+GN4zas@z;MvIpCp& ziYD$KdW)RfsWsX8l7N7)-wn`0h4Q{devcy+4&;P~HsTSS>qv(+IqQQ#9Nr|sUWgwF z!fVia`dF}BN5|T{97&x_ZEV0kvG?H9Dx=-wh(BuKCRKG88PRka0v27F zCu=-`)~`2%35ZhbrepOQu0`-`!0*#&NCj4}<0dp18CBSEm497Kxj`nTALP5&XXzpi z>ofnpj%#ER(%hg@V+en5+Fy@s(Bo1i-2jT|SEs3H7ofN(9V^X!w}8RUDM}nL4_e%P zj-$EqC5?oe0=bzllD3s14ZTV;eBE>3Jx5#KXT3dzHJHK!RdfPgK%R8TlGOG+NSBDF zC$4>uQz{6Q`{z|?^>t9>V5m=BYmZ&E%XOEz{|PA{+@b)M%P5o2j4;Nzp{T7Ogkn*R z5F*4g03A%KmVpr>jqIScT)c8dxg9*1-xtqi`luy$&IpQL%P_>jxPIK+hc$4FE5v@- z|3UM~d_10l z{)lsz=HVG8|H09zByf|8KvFjuAiZi~_akt!nrlF;Nqgh*5vG|a3-{J5MoB{_y18jD zf|eXr@BjjVzi@bw`C2S>em_D)+MLO!_0|$SS!SuZFP50=Af^&>Ng<;dmZqlkHVg&VJt>a(v>Yqrai_}Pg_wBFqTypZk< z?4UGjPyzAZ`>LuYdZ)ATitN(B7)!B)H4zNj0a&D?W^W27a!bo2IIlpwkG5-SuEOTF z#CZr?RT*&|2iYktfThYHp@oW*_B!n;c~MQ0#M2c(7|}ewIE-DYWGU?zBsyD?sKXYe zG0&t6^A#R#hF4tDyE^lK$a(%3Ic=qr;h&e8wWD-^YIh;Rd@3}e4O-eQf z5E4;5T+iOjo6%W8cKOw?p-psdXH+&;<|dn4gbf#RfN)v^;qtQ(N6ukL?*a!{UMGvn zqsRh*;Y_}{puCux;s83cV_bFWHZh{+2&@tq0+DKsnaD&eo1-8~P|y>cp-au2(Cm05F$p)o%UJ{r zQ&|SiTkREtJkGgIAM;qacA=f~m$L>PPWGtFOz7MXsWnT|L4^4Au7BvN( zxosvyCel>_kVzW5EqlaJx{0Z_w?4fC4Rs4z1D{BEQ&B6G57(sQ`pQ*_u=I*BWmxY0 zZGnEXCXLB#=K;g0J@(}nsTv2 zOsk@YFY2pWD1N^fanc9;QXO%lMdS+Vc`J?ZMyms{ki6!Wnnu-*!)k+kbLDmpi1>pV z7&-7+hgX|bUIu$G^+7RE1i_CU;oi)cjL+-j;hUxAvk6XjMoB~pL>mP3)+exK zavHZNKmbY|>04rfm#dAoOzC6ON#%>ka@mQvn)F11eK`+0o>6WkZ21%qf{zw)=7*%V znz3WIInx}F_<|A?c~r;G7!QskdXbDY4@Dl$QBF_+ybrW{P#W1wv+_1cd zb_!_#uC6WJvTGL<+mU!|qpXaU_XKA#$!RJtdKw-OC zJvB}pHZU?)Qq8CoH>JFUF7xaDRX%dIg zc$-Pw2V2nPtb505c1du;(A8N#IWeLP7t?i2w|FBpNxET$3|JdaW&{ zR@&oTmW{t_EvEj?YuJ?%pHO8rm~aZ3g>IIQ^M?IE=e=~t7JwA-4uUr$9%ZTXzKu-Q zCdUPUnuK?N9qODWeo6qvFTONNB>M}c>N(!QB_#Nn3b5D3=zg z;j&WO)i#*B`?9e#A6xU+&8T3o;POOe-NMAv*;<-~R+NM`6Jp+Ud*oPWLLtgHSyrkx z4%zT^_~oWifUvD1LUeU_Mn}j?v)w~Lk+@8{sZG#N`*P7&FbeZqR!k}1>( zWJ%XhIrynMMDh`9)s;oHIKi{_{9ou&>L2VMmftHPr!0cswRuW%JTU#pp`RRWU4WBY ztX3H(+lo2cub{|UVsY|^; zprXstm2T8Pbw9#YjK{|#Nl`i59UYBvf{b{M<0q0#c-GvJ^iO()c7t0|aI}`8$Pu4v zlAjUM;>?hjaz{ux!*N-o5al=yCpa@CA$-K$15j#qaMe&cyo;;>YRvZbadiiC7;B#?=hpBbq=^D(k^i zW+%ry|L5kUBm2?K9psVJWBp|z1J8}9EHStT_eSD1cB7INYTE*-v|xNJ-ZW{7amYwO zRyD7u8Lip{5UdSM(-_>RXREP~W8%D?58(X7&9FtRW&6sc&T@G(1&t>lRn>)L?mJmc9PGm#sFG+qxD`J*&%fv0{ z@P$a+W*HaZEyPT>@Jvv>Cg5Ws&1_Y)H?=rNddcY2E80%Yi-=s_=XCg8&i z9!8#~G)XcB|J$Se5##~p7LYgviag1OFlRLpkeGJ4)JiNO_p_m^Ahrrj+lUj?)dCQ-~wH>5~A656cEMA zd^q)+lU&=hGTzs!qW$Qh-KAT&$xl=%JrQ&6op#9KQteTe1(hgWn2lKbGS(JXlRncn#eM*n!~tSNgUKeY896d=$`&X2u%giKjY|R8w;97Ng$?Rj z!&NDYe#wYO-imF?8WK|mYNN^sWwc3>%@Q0?!8A1!SD3hv<=B^%>n$3Tfm_`qBf|Np zSk<(Wz7zuD93N@cR@5M;IGeK;Ebe_v;G50KD#DsT$N+n71hV2rD)I4pmV zrT`srpuMVkw*$EjnX75e?l(O$c%0_WO&Qm_og$7_#J^OHBPES1v;k74LTQ}!;!CAT z`ZrGeLHw5MTB#^3Rs=SPibHq7h%k0JTFF0I005D38=(AWce`AvbZZp9br+5TU0n_0 z&&%57G(L%-eaZ(owZXu@KUDQW``0G$J%viG5(is%(=QyS1c#*xmsA{!BjsiZ#zwnW z;i^R~6MnQyZJi>G>(0(#Ih1faQyXYqkcK3=`5Z;=X)RXVIzu0WN>kfDr$-Hi@r#XdM7x^sF=(La=e*xx{}Ze@=hJ;KiCk*I;gozugu z0q#M9E_Ij)6xC83eZX85P}Q_Lp@Tqu{$~0!C4}23dswt`eh^fpeh zerS=~G+;}j#cibD3_1XdZL&Q+LTo5#ZqpmbnY?hTx*29VGvp@58OvRGu82B@@k3Gy zr~#t5PVpk_X_L}b3^7_I4}`sJ+CW^WeI(1Qw7)T!wOSX>P!?j#;MI;MKeY{-+Y;y| zkRloSrESF%N5lb2ot?v%K_5=dyRD$Cm}!yc5ZvT7e3Ebp4w%YZRBZOKFAaL*3=D() z0LI}^oohG-<7Y>D1DBW<5|0z4yvH;|r7%~}M9AsOw7GugQ_dP-k4@G-b2(-s^+9;p zs8)|PY1$wwFuZNawaWqX<$m*_ZhN^_FNYbpoanaL6bvMsPq?3?Y`{1cqYX_uj^xC& zL<{q!)rDj01~iZ*;T8LO`Jpu8oP;WWYsJviL`g9 zacnV`n%bDyGyp5476uuW*ZiQB`y z9*nKchAh(De~k~0PRlfKW3y4VUr>;uhVX?S<2YgrMfdu}Z~GwypO25Hvz|o8 zwuTl?HrdR8sBmYhVPg`u@Txg@1vQDFTs>_yGiW`@7mb3bgW`8yn5~+^=Dz2J=B$x} zIqz~Hi!B&~#fs&i%cXBnK3KtNUF0XlIOu))*v^!m>TNSRRO$y3t5F9k50&(^jjCp@ z2IFpm-RbsV8JY>hRh{0>dm?7IbOB8S4cVOuvWc|Pl`!LODR0Y(Pvpj38J*+l@GPlSI(m-2$p%KgDOp{|Jwle9^hwuMr=9JK^5#2Fm11BbYHcaDM zAT5lxzM9kP+20Sb>4H$B=PSmF3i$}9Utg@<*z86Bb;jd@e3w`H{XW8vuHD#_FImfY z@}*!5$&uuQ`h4TwHdEa|sLi#0{}yt1iF!#l5nKbmCVTJp659JHBn6#4s-d} zhfuP=byO<%KEEVN9??k30;WvCK29w^&m>*c6r1#UTvm^b=d6^^rRLuBREz-7*23wo zE}my_al&xj~1*&i|-DMv9Nth0(Y zGKrwq=kR`V7Ru1!Yoas(SMmDzW8KXW8y`)Qwt3PH;&&c&aG$^tlvWz1A&Vee&9Z5A zqn&8EY6+-Mli_T4vO_&(K&RUYh=V_mtHl%9@vS#{IAf9}7#v~E2(NOJ8j;|~6H&q% zeY=-QS1Hjf$xz@VWf*L=n~xuC_CVmZ%MUh}#SXIk02w33JHt)V)WtEf8L6$-5;TBY z#-9OlKrHKz#pozrjxoi!W_s@&Zv`l+w1jZOjwZgyw-pMt{rnffoW}GHTcMH&3)hRD za(Lm>ZME(C3#oe763WRh7_KaUOXf(M0bDDf$=ue@fkXm=>V7g?zjCobX5h!=D?O3W zp)h6wfKN3&kSx>xPRA$Q8iijkX+UM?I6OCgxgd`Y3 zI3%wRxlX%R^%9UYs>k9&*YtaF7#e!Du|8xrc-+TUo`jZdmcQ$S!>*qp&N=<$kUco^ z&~u`=K+quD>?B!4YVyid$*GbLBBTzRsUv`uU2uR3-Vsk~&9!aMvc+?^*N8(%vKZ$SC&*>`?c>29c-i7=Cn@Ucg_#a0zBx>Z#^8V6XgN z6?@9e!rP!hphkFDNbof$zDvOyCTfw5=a)&cE=7gHWRQ*dOUc$Kn!a*riW#!JJ$ke( z-c`^@3JFq|sFty_6y%nFG%O?M2y(IwnwJw0O#ynDXO_hgm1nN@Bz3E_F^ifUkEU>9 z#!0qlUgvC)eG`{dSYd@hvH-Cs@d8}9c8#{M&NmMytGcOyrX(8c@A^wB4Uow$=qzsC zgBsJ8Qn;Ni#k7VluweU$l)w$J3Pq8Ju7M(Mm=#`uAo4<})gqmpHXqalOgcs?4kn10 zeHNEj3(BgBoXWI5Hk@hWr5=toCZlP63fM?s$X1NXbpa`$AyJuq3*V~gq<_Q zOsCFbof~xJ%pe+;{lXT>x74W0!&BGU>4DxHgB{*BE@BP$$bfP(b+l{2urdj#Up)_-F7UJw#gG@$m^Rhn~TQO4`*NYvfBTubH#gUP>3+zbvU+}(1! zhaZn2+wo^o=WFXWH*G8o9gW8TQlVbMQ}RmK2+m~FC-t%av-(b5Fcgc?y*dbIQ!+3m z72@xuW_`4W^+5yUWGdQ0%;*VjVWJ;YgJ7B%XclV)pwohG|q?- z(iTrW$;JXfw89*yDvI|&=fujj5_f%xyY4_Z0q!%2jJxvBy-9*uiX=BqUq(GiQ6Tz~ zf(@3#KAJaFVPLqqUQRt%&$aE-gM%}A&kp5xui#aloDboJiTA^hIN?kNO7;7@;k#pq z0su!H!3n^OnuE-IsncdG>5dG~P=o#uN_^Cpuf0vzfXW30@<1k{NT>w*!R08tl#rA2sw# zB!%Nn*Br{ZU$JnYHtU42Yd1G@j76 z5;n0u%5fzmQKI;{=fnk>4}J$YcyQ7^xZ7pGwM`%u$5r^2l>xtysS`*$k*i7ja;@hg z7HPkZ(GqL`v)SlTu5j7F#X~pj=qjm-LR{hJhf4$|9ircf9>*~AIkKE14!d{euvgv` z?(`F|^PJhrQ^njHOXn!cd#4`lI;t0E9<7(GhSH56bHgmZCej9OKKf z>Z-({U^AeVdu2|YIjvdF7s>{XFD-gd!nr{U%ge5$EZbv>Hn?zjRjlvUk#^hd34JC6 z5jbbCbD}nQ(T`Ww=2FEi06Q6MlyJcBd_;5|NM0lbkUN$&LS3=w1PAKry_iK&MM#!| zA;c`P!lI-laezY$W#GsF5kroPju`= zp6FIpCkJ%!Z%uKAi`^ldZKCg(uQk(HJMWq3GHw!v+ktIQpYfg{iNjBFz=IRAR%VS{ zEQAS*Epc=A{>G|^rfgu?R0heUmo*x7&1)(vixk1E&xru(1ufhvw;?7$${PHHT9~%d zx4E1k{DDCTb#f150=qjXkXUK1T;U@cLJ`fCge^<+lbRQ#H$!^8i72P(C2^DJEw2VE z1Wxi?dnC(Ucoq@Zi*T{lhKF2pVxw-{rMKPlgERKLPiSju1u|_A+W>cMc2a8pN%qe&Hh2w)ie z+XmOx*6OCgSW>P|!V3TBWOs0_yX*}2{))csW*mK&PZ5^3rSZbS5{zJ<*av3Ckh}@o z$D^l*8n^Qy#LmY|2$766u`fTg&TH-lY;Xt2q6FKHtG^j`z$*=W6<3-&>VQbI7ZSWY z8mDYAX}?c5R}l#6fsinWFTyO2KCu#Mzn{Da>}+0Q?=i-V|DyR!mOAM!MlAG}&k?xK zG!o)fTcCx@qQyT)L>rw)OKM4n!6ZzI!@#3RojXjE65|!YEH0uE91-{`;~*H(B;SPu zpwXc;0t1q8FT&z?XdzH4z$kMmhlyF(2Ns(q_ya~Li*1eqXGlJqSd|5R++0$4)i}h$cJaggDH7M}3>3->l-1Z~YJ+pIglm~@AbPmy=Q1D3z18*R zHarWb2gu}trP*o>j}ITE;+bcsh-Qj;aVhMNkZ$P=*(W3tn+HV8%ucgEcBg_W8QU7# z2mYKs1XgaH9@Aq(E+WJ~Oh*DQM;NpPXp{DS3Y2`3eJ&9*9Kp`AZ5kFW+=__=9>^Zj+c-x^X5@=zf8HgF2fbk}F|t`h=>s{S2=5Y15Gb!-^Cc)b18x zyr|680EuC=n7K$T^Js!$lf_ycLtRzQ1zKL6l{F^ofO3k+f|IRS98!V?*laDj+`Do` z8sCnN}8{$Q`@K&XOM1_CL1-ZJBQq*{m>Q+dc9+VMCCtF;%e+c z8tqH0{Q2RfrsHKM5#)+27JfZjQ|H$85}>T_-c?X@^l+3-!rW8Q6-YB!NE@Ywd2XQ^ zw%4&eO7@4`bYTN*2IFbK?UUy zPCeShv3C$LP}L$FU@T~H$%CG8-5rUau`B z+h=$S1EWN~`p^v>YhJLkUo1;^9d|6>D4%reWo+=g&$1`X@(usXu?C@F??icGLyXKQ zv(b}yLL)npY)BT64Qad+tFoy&yKX+r4AoU}LB6Dr%F#(hG4%2ymqKX{c*C?l^@i!l zhcBvsQ==O0kDmth(>TLMdCJCM<_Byg)Mg){l-F$RHuxioToa#8M7u^47z4i(^kan5V!Wt6pIj& zMM;i=Uln!H1{NxqL@QO5I}Ccx=Xah?R~cg`Nrp;QJLz@{@B`WfkL<^x;VilxvW;`i zPrQ^k!ZrnP1^3Jmszp%YKqLN6yMmCdg}Z_*lL;9i7SEK&Ol84b+_d}@iz{QclgSQ= ze#sTGNQ@4nIY*11%uJMQ@ov%BT+YgHk;M8aho7+#Ss-k4?JV>yA(EIey$a;5n(aMc zq!0C}5ZXrkh)z^1>QcQA>-4NVhHeY&gkg|?SPfzmq@5ra4<{E`e2SGB8pH&<4CbxG z#l#L8JR?qFr*N{C&GD0PDyXI_m4i`U_fc0X7KfJ>te0Kz#3EXX9^K_*vciP`d3>M! zAPhG447BK()Qa@qq9nj{?p^D{^F;qOiFo;q>;1%N72%=U7&67sg>SMyZW}W@=>iA7 zXOr2WV#fLzg$oQ^R{}Cb5PmLvBFH|tym@2g#)@}u1p_P~Xp2poh}dpMU{tNyP@=R< zgQx9vm-$1gtCKCA|3YnQBjD{J?aM>DYYoMpT)o`I5u0`mNxB&PfD^)y#D6s22chH2 zOj89A#39&8BXGoa0njO0SllQVT%{vFC@iGjDUvzgT50fKa80>d*gDpQ)oA4a({Tw= zC_DrL4?;Q7Hx3t=vSV*+3!qCxBq7&<+@V_2!$m{yErYeSB_|KgTLOhBXpy53J57o3 zVMaS5%rNUOdbr?g_1fhd&2)7trpYfEVf_W;sr6@C>$zMK54FgTT(Tq>|(oIdplvclZQ+~JA=p5vA~_Jd8VL!=+T zeU%y6%LK~t4Ov_}jYhbSaZ=&D$*bgkHNr{uOV?!b;0yuzx0nt_k{+zdbw-JLnHo$f zE)fVw8XHb5;3|izg_2R1*kIq|$rxL2AtornETu-+aPt>nrM5}dtbIP9aG~>twwt5` z-|02Zz)VJh$_oJg{gebR{FTQB@NuX0;T8#w;0QnHgUFO2

kJGUj>_^WiXPg?N@>@)}!JRBqD-j!g4NKYf$=T6(u>9_i-&{_+ z4+TKzfJB!PlMFofuZBvk7*i(=hw5MKz65Kr^>>`Eb+`uo6 zoHhX1(gu5sF|AvVld7>D8XQ);Qt5i@Dw-Z!kIC(|=I3z3&0i_3}Kty6v2M-?$>&-&`BaLNqW z79pZnf*^x2q9IUF@6avb_Gu~N0%_NWpzzUAy|ttLsak^xP|Ju`fo&OI?N4w>q{(NF z&iH^0AMNW#$g%R?Uf}k#!QFhm) zAbf?e??Y~cR1m>7i`2g^^{?0K1MFH3wNNp>l-}F{#;|y(4n_u`C7u>8+G@xu-RzW% zFrEVNs2RZ0cR0nZ0G94hoPWNjGB%#s0shfZ|3fq>-aI|N2qIi&4&G;{|C-tzZZf;& zRx8jxRHkS0rjYMC?(Cx|pbzq94|GEM31zt@WNyaw8#wZRjtp*+t{DvaQ!%AT5;Qmm zKKiK+w`O8dt6@j#fE5*O8o|GuLqXa)f#YRU`Tgzy!6f$v_n13?o1F!!>`t~3*$y|r za4*fG^`bNLU@g!q$cWHEaiPuZ<}xti0^n{SnBS)*-Q=V>kuk_za#%Pv_P{b~fsK1M zOXQ0UY)MD^9eS2opUGZ;c&$%!1!#*ywyb8&ow{8n}ga~ z2Wr>9Ueq4KUjr@nK$6ww?7Gg{;6I@g()_xh6u#bndj~35kCn{51hIxkeG2^{cZEn0 zft~0q*dS%>)i1{;c|mn~tTfYdJVBQAbFlo8-l3+j`bXP4;Y>#hBKU}@j4La_doxhLR*~zv1rIX@V83uAB0uM=NrILZ73E09kTvpUrCr0XE`mlks3mNZxtQ4+ zQwJ92XaTF}hb}kj{d<8mMkGgAQwoUeYx$`zJE0zwtm83VJ4D5@OpdaPP=!d5+g!c2 z2D?AC(|6u^$A%|z3LdNBG|UXGq%KmG6-|`gPHqcG40*TUfUPlUaYEPJPUXS?*x&aK zr%&Ot{Ae8Pfyt25NCb1NDO4jf3HPW0E@&V0%ZVRhl_*-f%Lx}46HsnKwWz_fL0)Qp zj7+Su5QdWpF=Aq)t4c8uSPGq3c$qIOs?yom;*$C-M%0*=~AVuOM+7_1~|sb5)DNO%qk!A z21ZfOY;a`3uKy1#`FE-%x6ZZ@ksONtFW+4M=arkeL+Bzs0K-B9%Z`R4j> zzXqtQ1=OspILNDyf+xuO@4UAD4l9=^9pfAtY08J-t-a9B4_;gU6Bhm3MLRGbZ|(Ym z>#wbEv*5o{6x@Nc>JT~I0=%8q*8f4R7-NnIG8Fp{UR(cGAnLJD*@n65T{@-+! zrS~B(!M0KRZ(m#gUs<-~Tf)VeU4idEdu{#yoL4%>`JcbG{{OP{8x@>!fd~BYwny|P zb4E|krvKk->woK89jLkLfk40gt@Srp`u8f0*)_g0U(~`AYF+!*`UY#&nAXz%bt3rV zZ>^uQ^3__CBbdSw*uPI}u=At~?LPh1`hUu*%ay9(d~|3@40%2os{Lo*TK~UT?MkH@ zB0J%&#xt152oS{_%O=?W{jK%!-$2cB)~GC@90^T4`Wx%legg#ynL~bXyQxt4&EHu6 zFIjk{f=@o`3(_>;D_;{_C~=tMT89=>PrO z>wo7r+g&cVkpZ#4`w1J?N693`?Lef8R6;SavEzS&Vh zBx5?g3OGIZ&iX%Og?}k)K?(RL|FXXO4J@9+9qYt**8d4AoI;;@{4Z{Q^Ba$U=Udii@zBUsQY>l{qx@4|L%=%egj@*=|-g=BZzg>y#Cc4Q z3HsuLw$!|Tic|&1H<~{l?M)vxh}MM7^WDe%@rUy7>MyvkPJ z6~m&jauxyfK0P++NWhpdcov@NYqh(DF7hpdip-H3W*XdzO6MM40k4OaYFih7(G!Fd zBSfDjT$Idh^SqQ`wny)7Ix#{Pq%-{B(pfmb7U|XEMvmUtJO!LS@tjz{fW6GVQ4bzVBeh~5a8KlyuU5@`n#LiF$u!K*210l65AzucQSfqtY{?*zqJjW3xW)2Ip*Z8^IY7dwpU!S?+WmP-o?w_(WI3*BM-HYj(q*jI zx*IztM$o(b+8D=dNXmsUoKyD6Bw}D?zwx6G32LK}HQvw71TqveNCMV!iOW*qktaF2$cwPap`>jzn^mHS5GdT@_mM9tkM%?e?a z27FR5aG%-7LB{Fv0?(FinHFlQ$ndLwGyb zU(T9NaLx;{whtq7Ca>~|sZ@z4DeB{1<$Abhklp$D1RH3;-DzSy1rziLAt<=ySpYw}Mg35C@zjWHFmq{IXnlgh$c-Bl?IU>d`T@6JFzp|~DMZ+7OH(4saf@flDggMD6 za1(JkKmw#)wglMr+w82^0v54KeImsYSA{VY+D0~rwIYdJ1s${WATJzYfWYy4ERr4f za)?zUfZ%|5d^*|RC!sN%IAew!jnxDVXLA8;QZs*#LeM{8L{IB}t(f^<*WPh^6M|f= z329@g`9o+&I|z~Fu*o9|2kurLsaDLq&TLy)AtYsq=&=$%@I-@0+Wn4M7{@O7_qD2f zr|z~`iPr!Gk941kx?NgsDTl%v(&f#fjy}LC9Yp(KyNbGN%Gq2k!0}@!t!~Rt*7J-J@F=%+$m=71L}Gau0<5j=n;im665 za|45%6D}Epbt3LUdbcL6z8bCy@+aRX#`o2nV;?;zvu?B`M~T{e`=}Mai{V1 zX8}cCa2%$@vO3Zb7k>T-nK2Kz&$5Vp$aw&s?qE};%G$#*(lv1_s*Dl5DX~&R71kE7thirRPInC&!s6IM{{)&T4K^O$!o|fIS&k0yWD`RM6i9;?= z%m>%FQL^8Bf~%?>;e`$vG&lwyoPt0`dwQ~mt7#ISc1kG>yrrVcpne?k({ahB9u0{g zmuVmq?9?=ASolRh7om~ba^elpVY1q9-TP}ar>Ms z-G2GekW%jL^zLZeE$PJ9Wi!lNFH|#Xg!U>DHOoEI*WgkmfO0F*&p^dpmTZ6ARwofK z>dmBytk`q{yPI~0@{A(up1Pf|oL82xy{u_TX-c4Kd2vJbGX2OJxKFtC{JU}&#B&j@ z&$%9<=uY!o3gcIT7yQ*?&sgt%YD9WwG6@bSdPhWhPp2xK><~DR0~D-D{KBXZX&odL zz^C|4E;#8%gW|4Mrn*ewpbRgHZZ}~JuIgaiM|hUv8Czy123&1&xsO(h+vXA;d>4Lk zZPwP(1aNw#`kqm|v6r&!%8>#c$1j9n$Du#F?@{ETWKERGAv6M2-&%h&GE@X;da&}M*Q{dcFY#r&OVpm7v5;z z_s}I8@-$Kpt{hgjrD#L8K!uSER-ry2As3#6# z6)CpTJUe@?H?w}80b~go2#Ou?41@{VoCBmPoXwe=TJQqG4picXTEWDh7se)ts6Z2yR~H6yJU+lwwyQB`gF6Vszc7%v zNmN|oPshw82BHI?oy@?Q2eO{Y0t=y0$?z_mq8kR;t)#6gCRw&`Bw)aZyyr@GE*Xl< z$Cyr%*+lhus&X6o&Vb8FTs5h(PY#bxlbwQK__^!a#Ln98f~laC&nVV?2ICa0cTm_E zB#(;=Ao?|B2qxM9wj4ycwrjZ-8J5(O3APzwtu!|t^zXE*&86xWNKAjj_a)b~iR`_X z=;+z}j$W&G)V1h38ev_$qnpdfUJhD2z%4ljcA{IVP%Furj%y1^myMU83+vD3)8=}e zHbu*hJ`rA^PtxC5$3ETMu(`Y;L~{K~%aT=J!aRJMrUy1lQ(h`YeYr(ZZUo~*0`)I8 zM+7EnWl$s>FT%v)BBj9f{X03X>J2aZH?ag}$Z;LSQ6}d;=8;Gx(ay6%qXo0=k}}a8 z{tVOyc!*4~`PbSvoFYynMtUFmPJnaC=KiXw61wGVb-2d)?z_~Fevlfl94 z!^T&Sk4wdty#{5?mb=h3Z|?M1Sxcmta7fl}4tH}IORbc|-?`;PG$>3J30Z018&Ped zbjpgAjpH}1&a9DSq%_hkpfi9Bk4bc#qf|-qdF2afE@x@=-7c{sI7h|Uur*1^8CZ=X z7S&r@6zhf!C3xSp5+MdC{*}B-hI{$RS>TQKVMf5pqLU)RvuV?Ek8Z2CX^~gcI2Fux zDYit9QCtAiVg8Q;4&jfp4;Zw0vOgPwNM@(U@2>mj!^rHM9@Eq(6^vwERS?C8LwvF4 zi1okQ^6wZ39R4+v??=7 zt#!$qn6cS;?QdM>xq8|D#$eWJ-SHS(h8tZ+lb;6v7iY%9*BMM6wQ-!=dysHII~g74jOqE3{E{2pwHM>PEcUadnI`PZpJ}O z4zHK;!s0!_AYueH$2S?;@;op1W8@xlLvF-0 zApF~j4YEQZ&s`T?*D4wQ7R3pW1t$pznbSgcD-5vTz)D`*C`Zo5OP&?PGX923jh2IC z!lJ5@+b1Q$@D~_6#`# zzrLPgQ5g=-UztBm6n9) zKR{o)p2Va-;?t9-c*>;;;9P78JHgTlo%q7Mm0iJERBYL;KjN_g?xk}ZOq~DS4}RU^ zBwDe2J$E*s+_qaCblHUt25Q`iGL-##9wlV8qQlCzy_>OZHQ5A@Cj#T=4yt&;>?Vou zUj-s8YelNiS3QE!YDvs8Q+T!4fm{`H7JGm^~S}0a1({}M>-}rgaW-V=)LeYN%EGSKgXW$&J&W&KGiktI{ zkqM|`wJUD8ZB_9p2UKk%2Dx>QpkJCpS}ham2${mlNQv?sp;e-d96?p#18X`*OHL5i zJFZD`fk|6;ASizF5gAIlDWtnn<8c_Lu2i+%JhLd|YGFia^nt+xHWJBZE2j-AKb9DP&d=GyM;r0Al$6p_nm zi|$obLOGy3=XzyMyeJF9mCChik&Ps5Sz5*zI?kF{JW%9oFT1XfdcZJ-6G2S8Xn#zjLgTc~7-q$q9Oow9LbZT$^+2bwh@# zaNG!6KMvGokq;+D2m!W#cpzsZ^dWQ{eN6kZSnIPJX?kyJlI(ah4UXY?p$!#b zo}j=PDuXBHb>%N#2PalG z$JSqmQ~WxdBE@o8aKx{}Da3*(tM&!XtDIpf6J~PE>(7@%6yh&mIEAf;Rc~&DyCG6i zE)S*zwF@+t5#5p&^psg4${N{y`6B8Z7c_uatnJv}7K9RJ<0YD!UYVSH z9S(s=YI0QwpPN6_Rtnc`X!!_&y;kPg>02p{{BRBC!@?@<;~uO0Dk4B!)7ZzpR3wN4 zMD=WdkDq)43iL)}n zz6u-uiw2Wu3~qa~V|aG_4Fmp57Qzv>Ru}HgR~)_JX_!(vY{ReWka=w2@QaWssO?<4 zurbh7pwNP13CVJ9Qer_sTP<&cRA2O@XpPJWk%QTk1mvlgVr-r7S)V}zt=x{g zEiKK(lcOt0p+Y58r`7=5Zbl(cpj&n2 zS1krf)nqHjSn(iTWi!X6IPT`C3xUQNm6DTmPFk_Pq&1WnfIeVfuL#_7=Ru0IjSnN@3BhY0A`4(+t{A$&fgl_N3c*ZB_ZO35_3Eqj%k*Xje~8VhGA zo#UAySx(?^P6vboBFWNfv+t{Sur`ls-cmCYd!qAigFoPH^(ho@)MPV~J8dRg6Pg@l zCTY5}kj}tu@jf*pjC2-daqqf$r{?+nBB?@)@ps6<5r0eDvur~c-*ISi>sD}oMH&u7 z+0lSA_R;ogq}m&w&9W3E89Wmh91BXrlsFB`9`b4!8IS-$v&cQ)$&mJQWz3DR;%3+Z_9mckjS?Z;!LbPL9q$Y` z*^k%SXg zmy|xh(qo99tGoa<=hO%_vZ^ov<1P3EDKTRShq8Cvl=8qe`|A*2X}nhhQ4CkgBJ@=o zEm)I9z-8oUaSGBxVAG-;=`ax*fpt+KBFY#1B!p$mnPvfaVH1O751hm^WBoL2fuU1P zOAx9#AJ-*EJVat|ouLqR|2X3-v;bnvm_;5XU{o3HpUt3aus<>&n$|U!mmedc5xU8| zk@|v6hR%qPrSw4xt0%Y&6<|WJ1vqvZ)Hp`8F`XYSBt}*i=|2Qgmi>oOZ^Q^Xdhr}t zJda06C0jfmpKSGUL#Y5`R`TP?L)67sY`*ni7?O@avM}i>JI2!iETmJId&bjK=?bq> zm+BwmeaN(BU1X0A5j3bB&YDgHOS6g@n+|o=Px-+JBZSOEqKx*Dh?|EeBCS90_Zq0{ ze?W<89kp+=!U&pos1SyXQA``jq}UoSvNL5z83rCOO`{trj{}V3>GtWC5J}*XP&bUF zu2@w~#?=v@SjQ z06RRnh=G%0q4!{4Vuq! zP2#_Su=eKjG9(s}+AM%eU=f`D#mVZmFL7S3<@u^r{(dTduPBdK+Wa4JJ3!39dV4zk zlbp9aW2}7r%jR=TFjV|054I^WnH36w&ZsR^$+;F~*811q?j!TkM<{YUJ$R_kk`mJVTM;oV!2lrlN;V3a@lf^17ywdvP0g;%hhGP zJ$NhJGibnMuSntFzB`xlpT)rCDDa8Mn{|`TwQF2;f`lq!1yEhWX;A}@dR(00z8gs; z7r-@K3vwO{SMVaW+e@6Jpr6zuR&l%F2cY}O0zczdJ5?nuzo+RGohi6&@SPd+n`j{Qlr7w)-(^0pdOn*C;WhP>GaP-v_m|K1ugUp|aa2M4FT6NTy?92kCorTPBbYuEeD z?#ao~jW^!do=*DH<412?TkBt2d-MBm9HNnf**hqrOVVdC^Rz%O(oRNO7&pBToZ+}L zBJ$TDQ+o)#&UXD(KM_W6>!juIEF35+0$vD80w=R78nncHa2`t;_QMcVQOJ{!Cu9&i zEuo#!ysLxxOPBCm$PhDAfdaqIP(BXRJ|?#URiN!xhyQEOP#)$+hvS|wSz_p4Koats zNWhK^@J!M|-S%L7@DSc@X%hz(o3l2GGqD~V?M|SqRi4l4&qX(zO@@2bT1kT9kjYLK z@&*&b^YFSe?Rlak8p>rwgomR5ktZg!pvto&`Kf^PGAovu2HV#ES_NNUR}xA+DVgr< z89f8>tb_>mpiE=Y{Zj9@Siy3?#{~2!qVU%;o5yJn-9OhPVCWL zEppc&e(NqACC(sz3;x{Z4lMX80le=?+LXwWn3#_iDwvwg4AU}4Im@M3q_E*%l8*9VL#dZgnhUei{&nmY6gbdsDSC`V8haC}inRhLTm51>*rC3HMl%wOel7kjOCXX|Ut$}U9Eg;2iYt^!cHFmip7?6HVlNd+f;;Dt87NPhg;YrfxV>V(<_O1T#ymj zI)i&dC-AahtAl0m?_~QFL1suea}()js<>cv0jo=s8N`4OG@flur7K#6iRVg6|VWjzwAA))M8&aYtFe%hmxO(La3RDlH*fQ8!v zaf20jnxP|)y&NuovKqtV!$)Zo;sfACl^6Ph}WcPBbCfL@9n z^KD7Yn3Yv;s)Uq2haxPEE&^jVsltfTU|~qHhQW)y#8?VmQH5zc$%uupcj@!Pr6v9! zE-Mu0=oa}%(`>>vmzw5kY>nKbp8)Ps*Go@Tkm~hW^ZDVW=5-Z5cCkSRV5#c_RI9#w zS3wO*TzpD)d&qM&b(Hp4Ir+sdG27qmF-`?AVWLvYnz*)XcS_$o9FXI%Ad>6|+#CzW z1{IXnK{WiMS(3%-z9rUlq{)bI&^tkkf-nOkLyJbLdmOfdK0$)YMaW3fNtV_peJlne z`0;Q~_1g2Wz5iJl80Y-ehegz5B!b0g=MG)*_1tP1J-%2Linw83zEM8O7bo_h>$B|X zw0y(=(o++wDC#~4sXL(B@rCqoZp*sGSxBw#UAZDtSE_^!?d7?^Ny@YhQeWHr+1%=J zPoy>D&$*SNU_s98G_Oc9!F!%2DZO*5%-nWN0hCHDEs*WKh$hH-Q5#f*Yw942L6^hW zOY@!DAj?S!6xNBo`H+qd_?b;zEn`cCmT{1wKB7iiSt8gd=RNRLF}~L7u}LWr13rCm#+MwpXb88GTq@uq2KR=fEWv?8Xa)c~`_obGVhIO;9XJ5U@v`JM#bHYtv-5nM zetd+ykZ*i4eF}|;%@mNhq8nxjpG-M|AI@Yu-g3s|C!1Lhmu<@IEay{LUySQdxs9v6 zc|3)AcequpW$%JdTdg{d4r`Cm^K{>9y@&$usE=j829`6f>($n*yGH$0SKDl)<6ZKR zDjIXSyP+u92;22M#gHZw6*;yYt`n;} zA|v6dQd}4YcSRIJ`CLcHq+u#4+wP*|%*oAIG782PYODUWRZIa@e%?BZjSPlmoa;aeH;O5?3&|pe3@@=Phym z4|pKN>#O%=qxy8ZN`I+jvD{*68Q|Qz)<=ws{!2;7Me6b!*ZXOqP4Y2hqX9_iD?})+ zb3cItQab@oNgdpp_-rzR8%Z`q?D)?BY!jxDD**>K0=p!i2#yFth;@vgP$jZ4IIVau z9F^YVXI>yOjt7$-rsl%RUm<`?fiaYr#Nlj&W2LjeUV4eko*aR>*?|S*1IDt7XZ8f5 zS2ILUaY^`5Jl*JL%M2J0HU#E|M!wZ+=(YU3r$5h=Pj_gkB+qs-RqJy}5PCNn055rLcN&Bjrz_orGQGX#T_o87!S|Z?f{J^~jU`)X zuL*mR;#dqe;WcyXvb995G3vnU z7j%4oGhiG+Vv`>oNNL4FWsMx5fNvoJT+`=iUR)TeZsma!AS&UbM<4Sffr!jH9rk$! z16Ho1VxHw43Y)G-5YhCTL}o$He%h!!iSFXyXST}^vd!&Iz{y}})Tgd^VspI@G+nv( z_h(ZGUb@}`RS1sU0~zrGu`mbl>vA_I`Zn|6zz5&^1w74BNxPOfH<<7d)`6W^nzJ2j zE3VGw6By6X+Kej%i*#WGg9Zb{M~ksDaLPCrXboMZi+zZ3H=p)hE1U@XttB{SrfUe}-o}SR`vT2k&R5~Ui z1{DjWYRj78UQnk10S>%wFfSx<#?LGg%6xp9J-1+egnKF=&!PXF@e~PqfS6Dv>j~7d zlU+Pi*Lhv*WCco);!r@C&@=<_<$!;Ul8dzGXAfeDsy*g}%Vd?-9hUjia1A&LA|Mef z73@k%rXuKuM_kf**QW&}Bix=|v209(h_PcA_{lV7u#k9LT}b#T9G8X_tY%QQ5W$_B z9HGBX;E#kHy)ZlV_87u;;<%E)q&}~~#oHU4V~D)7M%rfxoL75#0s!f?mxPB^N#N9q z9$}^#B>j$(Vj;mj+!N7ljl8Jj1{jf~g&-B^g(wY0MSg4RNxLE%Z2>b^f?La_4DV<< zNFS}G5{QC44vYv}soSC98Kp!K?BX(HRMW88K*!WHC5 z@Eko?A)6wqWY{3kx03+Mc(OkYk*gi^_Vdl1Y&XEDdV9nDtr82QbBM|8+R(~=2RDQ4;h*{8}FVU;TWs{ zix7$&hdImuUXCg0H$ZU&`AD9ZrH(IMTOcrsDNR#HaoBtf2B`SM#Y+{c$L}7=NpMc; zY65cD0wQ|0NU2*k*|09+dvV7By4<88vvFwrvDuVa$5hvS(c0u{kpO5{Suk^FR+4Y> z`N~kvr?xq#ppZquFoi#yMV%w0a9nx{;Xu^F3H2$Ym`e+E&f2`}3}R#B zO|l9K#R|=uZfi^1lk%N!-*UXv3`^s3$}YE3xz7v*pk+3;ak>RXe<2bWz9xI=2|qF~ z?dysm5No6umO7pxtM=JS~VuoO4RV@>fCM4;eTpa`oW(b6qM=^}b znKUNHSkqrBC5?Y;o8J%1kSqXzdN4WS(f zdvkMbJxgAwty^26Mo~F5Nio50g2$K2-C1XBopKS zxi+a5uLu9~km08&^g#nKV%Y1a87b}{EZ8)dc{01 zv@S0ZSyOp5;9f5(eM%5UxH<77LT+`d)W_Nkz0CucIi+ehiD%loz1nW^vI7pzG#P?% z^>&Ci)%%K7Z%YIK%4LC#!#pvoWr-lZHa%OgP%;QsTHxa^8j2IzV+@L;s1BEjhld&N zWOe|Mim!-ZwlaUXXn3b`wsA-L=vrSGt6#VTv%q~u>hHm74KJ6f!lT=}Im3cFS zc6=$8OPxe$i=zv1tP6f#*h|)!AG0vh4nkzaL8`Ug?xH3J3ZzM!gpj>0P4x9_KcKdB z9iE7WIif<^G{uFFzXs8IUj$H)s*9E6f-HXw0i>d<4W)+El3}G@bI~PpTl$6ooTL`a zg9V~WjE+*FCy~{reshDo-5}5-UX)eh`?t6#!H#a1Wxk`t{Zz=M?icuz0n7bLY}x<7 z`;*SDA6rB{fLv1ZlRWtVzG=U;h@f&n7~3rzkbJ$+ShcN1CqXH(TE&%Z;vt#tc4h(B z)|CoF93-A2IJS|M^Nj5WW-=^MWs$qwVrE3VCm7TgZ9puo4i>ti9FoW@7LF7_=&it} zLbL_PKy5=|Fz)eyM0>cMCiM`j|DN;5q>E;d+QcX2mH*&Xj#d5MDiW&hbu<$jpGU(<76Kj}HM(-X zd)UtE9n5M)XPODLX{bE@3d={zQ%d2}(H_sjdIJ-XZgp^&Nq%{wPfB>{P9V$)=f<4d zeou%qr|1tQ6Y{@Qb2u;9robmBnHq8Vn^%(ibBdg}dVtKwRix=TAVGeJXyIQ}Tz> zX^~;_$w{Yr&cFq>$>n6#F3-;|v`FfEnDwK0!(CpP0VtV8GV5TuJAbrTB!@k>NDkX9 zl3C3nNg+*yfC8-hW6guD;qKiQ8zosnL~)?8q1h$Pm-aB{1@=os#w>k99a_6aA%b3+ z{c<~2`-4YN+RT#x_fQcOi#!GpD%8kUbRm_rpU=n-pdjE#KT$Kq!`6)FIHi)CQc%<- zgV`!1GJkw!D23(gx;1KXBB-q3w@-JIl8VoBdT*Hy3dO^1HJG+03I-IAt9HA%n!2Dg_lrfFG zdEOD2SLG;dw|`ofV0L*xzjuvCyoN_|(GD_}Vs^0e81}@g&9bpRy0yu4p=+Z5Tix+yC+WXhGHtQL583|YT3!Yx2PUwd-X zB3jo9NhoH^VPgg`;~=og7WixOHDJ0`4Z7qyVW^w2zJw1dv0dMLZ%s`jMgE!fz-w zacg*j%E;J$#sA$tWC@7U$R{NJWSxmUEQh^CeBgXqSFXf4na*(GR;*k)`!w}{2zzCdEO64+gw23=8kgKhTCvs* z4cu}RZ0tX6Z{%POuVOnWuVrTu;PhS!uS_6`&ZdL2*?~zR9B-8n3ofG@-ec-RDTcl= zIzsKSRKE{PS!RrPa%$oaAl{vx-e!71UXB~geR4|*Z22$@E1svtrI*?nl5o&vLJxQm zJ-{^dCXfsdjamaAB5C-Rr~xPNCi<$Leb#Xc7669+^y$V!8&yZ>xJLS=(NOFsO7qN< zW#(VarcW>Lf##G-Mi@F=#~oZwwooaIQOC?Kk`+P&Egq`LM8FHUjqL37d>6uIXiu}V z7B{chy2TpykE=SL8JcN5%buO7pcjHn~e`9W7I4f`q4C8Yl$9;b}X#xoqKCeG)1K6HcGjE1clMQWTBxMV3s2FjC4HJ7uNP8K{( zYK~JZ<)T;<){fKTBHk^~+nT#PNJ#z^K`3e)R{qOoE2$zER7`A+^=lewgGq$zX*{SF ziE5M(j9YJhJrLp`MDMBH+_{;g9~NKwBU68(Z)7{3XH;NQBX+TiVZX=%avQ#>5D3?Qgd9NUl%*|2ooBiQ3h4}CAatLE zcTmJ3@V7u2K}0lRU`GK5Q5}iax1mlu*D916%#eY+X>IGhD$Nw}5a+7|qECoS`o2a~ z2g2WlE~n+o6e^apZxS|t4g9d3(1q?LTcJ~ixsn{<@k|l`mAK}PrWrTP`{CzBeWl>1 zsW3DyRoAiKlsga|GhiwAl(i~z3ltlC)lgi#cFLBzj8=+1in8@MCmAn#Q*D7e(=(;u zud8RvgGpi&i&ue?Qm3@j353L?+s_J7sGf;{rYf4Cp~@%E(zLsz^oA+Fa_aDX%`bxN zfyTSF`Tn;tR9uqm#C`vL0?GWj_uqHXYvizdIH7LNpsM7!_*TzKW3W7_TK%2@LG{YD(LSIh%e%f_460sL1(CEe< z=yW>ffuHnNgD1Z~^;=q2zz?VYc-PPHv`iH)D}!RPv@|D~9V!8(cfn$5>8LSCiwvvB z8MaV%!bT!<1eVny1WHr=<{LZ8TZP%ITB+uJ2r|GK5|~=~%-Zg&U{XMB7v0 z6AzOtcimQVccW!F8`*oPL!57XJeVocTm!c61QV1(5mpLf9@X9HIc|Z(4#G6u?y@We zKBlbLay-RN%2M#r{HA-dtuy0I_PoHI#}i@L$_F`@7^7OI$U!fZ!&2sNw1=V+@fae_ z>EdouMu);dN)%Zbw`&a86j8Fzps^c`N@cxVJ-^4>32VhsTa9EVm_PgVg&XqPR&9-Dv&a=g`Kv6TSXRL;+lL9iK1NUPVrk<1t^AUfj>FY+= zaad1kigCv?zFKgTOC8Q6UTTBWz?A6Jj2U18AbE(QMWf{+1dkh~+f}xK0vd3**S#_R zI)e-yG%n?m1R!xhC_5j-$q~6iYuW*D-z?|kj&!k*$vC*$kMe`wSyPz6t(2*~eDR;Y z>cyItDf~p?F5rW9++guz!8V3__@HEKhwk=1272vN7;J6Pks~Dhz<}*!ucJ$dylFwG zlVE*BN6124+)MZ(e2*oi1$OmCB+Sr z*ot>B+v`jjNJ!!Dw4QaKsP+l8GMhVdp-^D+V&03sF4H&=t%C(|Am)rJ<+jDO|tEy+|em^jGm{RBXKxfIxBuClCs!^ z#y**OYj>mB^dk8u@;wMB3iZl$Vdg!2$;!&BS~ijXL+alx=#NqzdW;ca-P zyW)#NfseJ`73hd?99PQhHs5fE5bzNjM3G>^F{iBNkk#%crb{k2_R)dB=W4ohh~kQ| z^tNJ?DYeulxZx9q27{cpaF$WrLtff4MnViQj@DhpH2~fpkB-Ex9afNXC-*h#nnmZP zJBUl)v3qy6Xve8@hKtZ~lq2(eJw$s17(xjGp_iJ6TNyj9kqt@vtozJ$fSri(1ecg# z0)ca0208Gxs4P?dkbv&kBFx1Qp}%=NJe7G6ADJ*YDI|e)gBkv$dtrPw^ejWz|=9su55B4Y$;2auG$L4_|a&k^w^r&m#>GGGdABnM*wkhhQ%X3=j{CC zWXh}og?HiIK|~1)Vb;y_HJ39?Ri@KMxTb1D=Ey`n%&AN_FIPA8vQ~{o3O`aza=`^L z3o`J@{Ajp5t#`~XrCVp5W@I~i4{o)Fs}kvTKmegmV=X=Q!$4GnO~gOm)s4Mqu?4Ec zv+fo^#-rux8?GtA`@Fz5wdA%Q!4^UXHU$=Aysr#z1BqMX_;*@$sSSGG-iBF1NkXSX zQ)0JPDM+>W6TU3g(0jC28Pka##gUKEaAc#=iKJh|m#OQrF;1^z8sUS8isc`3pms$B zm@t-m#PQY&O{$f6!>1K{QoZU1xbr0vCS72gIIm?Dr|T{PjBsBsp?2A~)chLIfanDU zx@MKh*NGgiGk zvM}o*lXmPd{kfnU%>Ur*{>iAfa=&)ZW119X`ixF@rZe2v)QeA9YTR=5wevAzjY2Xi ze>1XVhzug$9UUD7&j>rxyg=+(I5Bv)Trp+4%dMJBv!q2+>sk2T4MblD_IIsm297Hx z`!i_@WF?_)--!%f90aUsc;L9)B7k9G7aD865M8E0fe<7qNos(S0fqBXfayXN2n}Td zJD9-4_b`zi7^X z?%a47U>(~k;mpLWzJ-`IQ|gAOc@6hgm(%I_WB}A55wMS`yaO>JVFiW{&SypRp>&Pl z*g~k%pS8@a*~w@Z*-UT;cJ5>Ic$P@}KDMy~ky>Pdb5@Hk@T&&@ZNi0wQ^-snTp``+ zMlcDY6f&>cE3x3{9{C7!+D-QnnAn$ffGDUM##|a%-6&#($bDM8;_5iCEUPL|7yg6W zBY_?mRKzdHKyWu=@0H_%&2>!Ec)NpJCD+z*9;tI3A2#p-J6MR$u5WJRUwlrMC7~$Y z?^CZKI|ss9D?bGZb%PKFr);^=Vg%A~&wRiT_ytxhk3QOyGyC=`eL8(98fLTWj-6Sj zo7wp`qSuG7#?t=6D$Hrb6cAXXDbv=(rEq8CH3F?k_Y>RsUaonP^E$M;R^DMs zs>1~z2c!<77~eSuYZDXhGLI*z4`0a`l^izAD|gBl;JxS=t34>fvA!7zeNdCQW*4q3 z%;mHkNpi+Q$jHhM)V5A=OkDvjP%%hgM@9rC{6L}s{^|YTN52<=+WBC7XEbStWloq1 z3$~phbpva7dVGQq90DfgdxZ|_a?4a~zkxD2BS*Ukn~V^8$O}ysl1}-<2V7v)x2Zx* zk9rY{fc?S##k40rv4vTZiiuD1Rsj&-o=*^2V!8r(JRa5s>P1Z3f>@HqHAIQFy3P!_ zB20-8(OH>J5j=lGT{s!ty0}@dzc9!pwghebYGa7$#62+ZNVmE-AZ32xekII>6~fkzW+XUpQ*QW z|3UW;xK`8~(ZIZ=P~LyPCK_Ow@?8ZL9m3XuNo?=DZST;E#bq$LbZQHIs|?c643JQ| zL61^F^R&t-Pb_4Fxt#gim_q0)nvqb9i!=2ez=))rGhrNJf(w}hN(>g}vTb>&;}9>@ zX9sv@cKQhBR=cgPamAZiW*@tLQ(Oqlk!)hv)Jia#sY37P@DMW%;zchRqIjt{EFmBM2;CQ?xA(X8`5O!_>k;O+P zC>>=|84}U0$c!J~xZqv~5Pe^aB@G+V^x;>5bZpEJ`#D;ysdoti5u!$np{T$ReKh0p z^WLw6Ol~Jo^XYB11Q6VUZ6S1$Iiu$bzX!gi92Mi}{D)%Rp7G=w;wRSvRkk6A$)UVf zEX!>fwincDA{(WSnhn{QC629k>l_;sOl#pUW^&`kpC&9xC`EpYREJIKgaG}gIVyb9 zseMbPF8WWfnv+y}7j&{2C}xF6U=XZI_zTq}a%6GORix?EV5M#y{Vu`+5H>Jk=!z(e zJeaz=$`dIiO_g2uyAi%?HX-=C!&7d}&$|53S;|pU%)kVlBr#X3Z7_fh^}UvDv!y9I zJQ|+xj4xyPIhxq?zBR?M)FPhS21D$9zx)igF_?N-9Sl#nKuIk3v~%FJVuMqaM0H+~ zNviQrdWW2Cx)Z|e66_tUEtV|ap>nXaN-95)u48(W~MOWdj&RI0K!=4683PWCwkfE zv`X|#mE1CJT8u`>!fI@ygTg;*28v-=5RHQ+5K?J)JTKI`i&{6+{r%pGvE^WT%4|F) z_pfAgo@G@zk2&ddotS+mNO>IGz`WJz{}JOWO-Rb zbTN^okQqTR=5k9nGxEd$(RYI`vJRUj5a1yY6t^62R4xnm7P8?Vk892fX|1O7X0gx*b(@&1Z$0a5|+#3WfaM@0OMUU%*%Qa zE)rKQfr=O@{e8YWv+PX2^B*l>8ZdLyehB;~Ds9bAK2tslvks7DA1k|*ufUXKmo7d3 z2b>IMLI`gcF*8X=gQ05d&GR0xo1I<-p!coK``E8XB4D!bvc<#U!N5;}?E=DUey}(? z@UWrOs-A{7Wb+Cg82q2QGc?fE2P+%*d<|Z$d}ZPW2>+Nb(lXrq4IEm>wGGHvlteIz zWC5_yMR&P&MhD{wHKybWd9<`{=@uB=y)}jdcyJE#foFUl3n`bP2i1h9(aw+#4wqxy zOeY0_I9Hm%r&x6>38aZk04D7N%L8Sl;8T2HjGJgND_&Stk0sG#WT(VP1C}VTC8KCs z^eo0fPC<;7p>zp$BZp2U7NWX(OfEy8bxmexB}zUsEA$aSks08CW6|w(Q{)?7%gL$3JhtvUF zFU{Z@6jca0m`1TS4Gwv?oVS&vGeoHQ+^1PrYf&--CBIY8odWF-l6)!c%M9%j;bmlK za|(}f+0v^P*Hliz^0cIPo1T2PnMVYU!;6pzIJ>!GioXls?x{|SqOqP4* z+rzc~9!Gb3gs764!P(2TdG$B=+c15aTkvY$b^t_oDb4WO#uqr*RnVa=gD&f^XbYNU zk7x!pJ$6MUY`t>c_z+bHZjE+Pkj3ucVb$5AF@&U$v)-Q(S+4)MlqbP1n#+63=SuvG z`>^5EN}M-sK++48$O_in1We4aTZvTo1+wp8sM{gzuC2buq3)d@AD25kZ(pw2yJ#l- zsRYP^v>_&o-kqwLqPwFN1afq<5T+!p7b2^9Otl1jQVXwy?Sv_v&zn-R!JBFZ-dq;Y zv^afZD%KO(g{h)P*!kD8T9k&O%p`>hib<9=zBCJ7h+d46=qhAK!_%*nR*2ro7cDO} zl>mX&!T8@Yx&{>S=mo2*)d2s;9K{RJ?^@7CIY{KS~=6JtAJxN==S)T9P; zDgEQmhXVFVaM>ruU%^TjaMl)VJ3YWbktwdG2yLERDYz=jmUaE1vQ(p4t~$0?2qR_I zt|aS=3Iw5f^I?UeE!g*Afows|bQFm*#yH%hJ#f3dRT`z2>8xKVj;UPUM zl39d481$Rq7w;`sZ=9>kM5_f(^E4eS;yCSFIEkif+i4}f;mUgvF)I2XoP2=W8=LQS z5lOjnC9{;W2qW8rz6oP_VTN2CDYIAFuWXDoP6_NVtpWd`hGPr{J7yNIQ@;X2hSo^~ zzh&H?cye|>vmvmxsxhzRi?WCluYqfOoj&a7-if%fNQL5T#Z0j@)xp`VMyEM()8{Ku zMm%-F*@Mk-|QLGTw@Y#t@g7o00 z@$`J8ZB7`fugaOpH{z&dnme=}?04?1Zn~hj_oS|Go+Dbnc1`yq1r^EX!M8kfwcUx- z(rex4qz2evf3<#$eO(%&WQXLSW(|>$%J;7!*1UGD`=xpBZ^-)_3*RrG0xWtX*ac9R ztLp-nDY49rEg-Z3xLN@&urPGfaD^-s!SbWQhh+$06l$f9y^U22y}UO)mS2dYg5za7 zS4i1~uRZIms%9k{qQ(fVG*oDT!UFen=W>`-9)NJ)>Oqlcf0k{7(D7dHr%e3i2ZI3f zx#yk}jF$zG?A|_1#RiWBav1775uNSv<|a6Rhq7`&$~z1{a!1=Rm0OBYt&{TZx-5dDxr8rE56Xn?vr&`Atlwm0A5KrrDZ5Nc{l5^R>f#8B^ zQJaJg(i)iveZS>_1wQace`W~77`W5IS{$1RoK3Om{zVecX1WPb|fbTI3EurglR1nd>`As?!0 z<#1*5`iDq$olf=#$dAUsi|6K}I7P{}gykBf!XZvn%pVa3eNWpT_BP7V%pG`R+^Hpt z&F3__-P_(kCjW!Iv3}LxVbXz3Pz&Vs#gIWTKU2?(RNC-@R{#tzfKyDS&S41|6WW-! zmD?+uGV~SpfzRwjr?NI1!Crckxg*+`j#|4I5gJ~tZZ{^m)_iy5>@Cxy(2Wi8&6kC# zKmTRSl;-&_SE*VE<($ug3yQpA<+wN2MFFPeT;m2ZmDFb^U77;}yginL)d9Dckx@_c zRv~n5(|+-}rjF=W*sKU~06Nn5hicR$$un_`;>F zk!Sg2wh-(z*Ui_rl-K`%Tp)Ueyx3 z_BPBblQZ%nBz9e}1b*z?yqf5EJKoNOy{bT1R0|eLbQ?mID&F2y;c7XGCWp8u*U7sF zUa=lz&R>s`6Rq=JLx!p<%E9zrSO2QB3LB$Zexd*J?a8FFFKaKF35X-EZF&lvYZ%hd!orgLqy~;rx4iqxO)two2Ud;q zeUt#6oa0(;mlByG`LNh==48SjyRwCao1-rQ9?RXC^8#F)@|_eARnOG*M^M|Sp{J4g zhnSz~Th}FNUR(;>Z^S%`!!u%G1^8NH|1(|^&rW@@3*Sk{TKzmQrOcck7a?}GctJ}) zdy-BNFKEn6IvQZn)Zo$q>VoAc4mS7Pgdd zfJXz=(MP2h0@6i556LqW5-MI?0vwSuA76`E(=Aj>I}B+pX^I{^&|+I_hM+V7yt2{wSqhRA%7D{GXb*X2;ZIX9G*P8DulO6e_~7@HC$Bv8dy`B{^|ew z_dg;(AAR^y=NJB<>d>h3@zLS8zxmiBuUvcOn?L{2FZ`4}q2LIR9!1+VYm1?0CzBRar~k{3_J4&huV4PLiEU-?Y`)@ShY=j!c9=3|K>{ z^PlPeGGDPsQo@15$o*1l|Er(rKlvEi|75+30XC?1Zx3cel-#**jeqp9{!g%RbAW`7 zTH4m`Cm-v7enGpLxBKE_{kPce#~YmsyxDkg+aSL4SpQ#V%YV7GrI@K%>z{wD|L?PP zgTMqU#-D-xbC31^Q#Smgb+FQKWUc<%WBvcW6-{l$fQYsH<;VJen=SvPHhAu>Tid_; zSpRp}wlTSc>TS&hw^x4mvHtIS9IyNfZQx;vTC*n~??26Et&nRm4tr(g@&0RkrNIUX znFRlh$NR@~(SS>4FsG0A|7|w=i8gG_d$Xp0>hbyM&noXbR{~0#xv{4=|kA+rJFvQ;bvrqK@PrmmDYwwwO z{l|~$<3DVQ5$d8Y+Wx?2`>%c$5I&bRA$3f^!(y?nZhp4^Z?fSZ$Qp)%?f+Y!?f)8| z{#f?ZK-l|#{j>e&e*`UlJZr&@vYkU~`NEI%Uu4TVN@+9J8h-sp`Y*HLlL@2^{CA(w zCr=!4Z^@c}>qq+ELi2MN8;4)~Q;$A!_~VZ~^2p)8_GkUm@t^ZgPyGk}=_mdp|MXY> zl7FiH6aVy={+fUKiT}(${hj~ZKmFE!>7V}Yf90Qk@xSp;zw+Ptr+@EP{L>fyx_^50 zfACND|409H`ak)n-~OBa>9zmaKkfY;|MZK0&p-XUzu}+$>i^=OzVVy>>F0jiKm99z z-#`7=@##zdhky6yf7d_#)c@n3_WqH7`d{PIKl#V@-TC3}zw_uLXPCjXbt%4Ga^pVg zy#2F}KKckYhPQlgR8vM$lSuhT4Mx;YcoNqNoS)qSLvB{z9NwPpFmD3EsIMIIkDr!* z*H8xFV1z`Yo>oJcf{DNUO(SC!X;q#th#f(d+o_5Wz%y2Lkl-Wau?XPI>pG1>;-Lwdq(Kf zVFkwKttDRRL5bH+_eQW@Z@`Ow(l>Xpd21j2(4NCW&0u@t72UigHaKqiXDcp@%$O7Z zYPLH*x!;{($7VKa`>u-xg932eRU2hTof3-yVv2d+Od!JQlE^8USF7{n?-bZ=4aP_YmSRMxtG#=Q zlPDT=WnCv8bs=-f_)+M)1~j@YAl~F;?vL*w6r^Ex@^QhQ>8RA)1Nw1nN?sPuMl`i{ z#Ug^H5CO7s;`&lU9;S(8bE0@j1SS z6>5hpp)&AyR(H**q5N2bH{C_$B|_zaG#^=)N56s`meuJaIX{8532z1nN&+#uo}tM7OqT_IFjoh-oC8Nz zvhrGZOKKDq8NP^a^Bm#+`6>1+PW8OtD$mhTwB4DG_h!}37%K_e6KEG`*|~QfB_pfz zfD(xECe!jq(l2CyDt{c27#?-2H+RR+@7<|78`svKv%{8mploq87gS_Xd+OK#PaO+A zOjZXVZ5ZSh0mB^@E+h@1QNX;28LX^t9UX&q}aQhiGT+LeZ!xFjx09G_0)rYprCFr zW8MWWH3qUiQ1hU5t?QArym-q^h&-WQOoqu>NLCzDB*ICHM4Q$EE?x~UTFJb}O72r=!+BYvozqvLcO`NQH-7FdRqZr3EhCOc2S z=VH(Sa4U($Pr(N$6(u4|7dPw>csAM!M~^|Abjk$qK}9LDN=VT$L9)&Q3;%|?L1r3lM-ApEaCaB|pPlgmoK*eB@W9D` zyn+M3DA1Yirl59t{tTJ!IBbmt=w5^yh*&UfL(*|)t@L`bWq)wyW( zsC<2qh>7CF{LMO()Hp+U%r$)R&iDj>Yx!RFSpyr6i>nq`s-1(oaVRFGI1rY2 z{>(-q(~)_;VjL9!C)3H=WOSfn1=7q)vBA+v><(aFvH#Dgc!OU^NF3;z3{& zIffWjpAPc9>q7%=@Jy7y$Ejl66p?T?pYpdu@OUUtJW@0ED%L&1_!BggiffZ2H z$yKC0Vod|698PswWv^R71(P+K)yl?R&iqJmT)E!(h8$svPmnf2)mp&sMsQbkYpOR~ ziBQiY1fj@v`LWCu0#4M8JU=5VC~92L!`eMHo74_RX5moFXILCZNa zz*ta?EU5#sHh*58i7&trB*R`FEQBkhY=u@V=hk6_=qle|JdoOKmaqCij@nO^5n#hM#2mws>~GV3XXKIFO8@#p;sb#ORog-Rz_ zCWv%Lw3b}UJmPRZOGsD3HN-6>J?u$lq zsRpjg8!iIS&U=uCh=mIG;Uh)0pjgN_71Z*5AATSNS@d%=BH%80<&m_#Ikzp=#F!Ur z%&Lw!-mow{Htt|Dxw-{7EkgB1vJk?i+zLz5!}R=yGe=2EO4;dMD1#V-cM0>1P7=r< z@4)AEEdieiMnXxOG|mPe)yB=(!w1)@ui#h&|LK2NZC8TUGx^-1PsI5|=LoU}wd%kD z#v#+>A;~D@LWm2UV~PT`>~iZi2A*wN;IuRJn~af^GLmGHBC?0tCnF2puogtLPFG9} zvpG}?UKBCb3=S0XqLs5zQnq{_*+;xj6M;5yU28|W6gAn*<$8zljRUm#<%co`#M+>G zHAArw`1Vy6X7q1d(r0On(g8HC*8ku-(#(3!guPaX$*SiuAD&k)1z-(qzIYAP{7_od z8;=?EA~+hopf!%VLXL|h_9IG=-#)|1^%zJ7WyRl-3^Z8px4`c^BUEPGrD&Z*({bG{ z#-i9xqfPOxT9IB62t_AIH7)**E}Dfxn$?YJ_;P`-eDERg_6UWe#K^-^v!cjSLbSWo zRX3gon0D^gFBk8=|XI_m3BtRzVf?TkYvEEALM}UFO7+VC|G;q#E zB{k4>_9{fiJd22pTc$35c_k){tBOPSNoboj0$gH>q|a_qC5}&*Z4v^kmbEMJU&bjx zsBB*9ipVx6PB%9@ID1^%TAte!A@=sxO)1B5Aq8LdnzFbA$%Y;I9FH27bFnJgVK%aY zft1@gK^;)Dx(Or?f23sXK!NMkn(C1iP}vZWS%ErhFD3FeO8b>9`6JwD4!tJJ1BczTKxGD}#wu_(y=5zr(;QkLj zOu`diE&`S_Cgm%)FJ(0(QJT++rSUs1GII@&ym2IatTNr`Cy)gtV&*cS0uz-vlKlhl{z)qs`rY>iEA0^4U{ zF%=(#g0@yKAmq~J$fqk;Y>$!v z!wMlgo&=|v;I|pZW1xK|^Z<{>e`-{o>V5IywMqPu9 zVjfT^UO>+ly?1SmBobj2e z<2I<9m1z!Ui{@>q!R?vFgCKSDfWQJKSaKu~+eaSn%@nW0#tL&ab>mnSgt6$&h1hXJ zW`wg*H3y)b;t#S!YKni(pq7I5n`FJL1-x9n$tx6O??iSMKyk)7Z9$0FfW)W~vW&6S zfGD{q)x;_hevIZ;!6Reo*zu1y&}VUlpv8h2fszB%V&mN$-pmq91YREoC!LNA_$q9b zPIEUcn-FQtGL~e?jRN+sBer%Y~Xa!>C;$Ll}VN$Fs>$eWs8cU1Y5R ztEX`1UsHuQ7bvMh)$dc(;Jp@!Zf3f7*`lzOM%$SXWVy!{PBwY1)%4SVG?@fC~dz&OKv)!Ff7Q z*|~&XYsx%ktI-lVySWwIXk~2n-SJ5$+twBe!CBkh?!b}Zl@Eat2jBKXmTTlSkkG67 z#T?7k)@wIj+q7kqZOc6s9q1HcdeX{CQln<*u^Sr9vHB-M z>nomM>a>NL&xMXGH;Cp_Bn-tw6Nsxu0R6(D2ONq1K`>)fhul{hwrQdziw@e##U>iJ z?D3E6yCdrz$3FhV3iVS=Y9@T0Bo!+t>+QGali2r6cW+>qc!;$500AoCRXgE<&gQL) zXoH=N3zKz7_@?5NDM+1RxjN7^B55O8WIaJ8$5XxritWiq`J3|D3V84>+*FF}GbA72 zSJDK;GT_TAB)uk!HG5Cb7Nd~bS%LW$JfaP%xJi|f_(G1I6)X7#xj2XV6uY3%+^XK` z<6?O*p}&?SZ{6VqRE@M;d286oJ>x_N8G8O`fLmNA+_Xa}VDw`L2e2ZQJ<@E6=vMuu zY$c|K;0C_R_%FzeuQ^t2GMC$;378EDmC&}l`wdqaHc;I@M#e}$=Zx~Fty%Sqe!YcP zaQ`Dj@-daKG}U0588;~>v&q6hpWIj5yWwcy(YNp4NC)|VP;1-&{1CVn$Txe8;rKh4 z6#rOEgj->jH1n*ce?izFMP_t|=|w_xX3a#Gf?G3p2fIk1INWspn#mq9>OFhzXRZq* z^3ZI;o}6nk%~8K$Sh{yS)2R-O@Kfu5Jn=f5B&=sO)K^zztl-)_q%tgCVbR!*33cjU z)K*&kakkp(k6KrpPxMNjy}1Hmia>KYvv~tbzbp+j8iJ!`8uEwiwq3~9jOW?{DlLQH zTwPs-MY=70wmhJkZQw%#790V4JJ6Ok^V5Xz!u*H%vUz#G(o5@6>Y^wQMH=iP^OE;g z!EO~RJ$heG*$0cn`wScH9w$+@i zrgG53f{Dz?{Sx&+Ljmb+w68_ejWchH({M$OZ%7uk2BBb5xG^3`YQvYA?`mnNo*%*^ zZnN_pdZ>w)wfPOV^X;e}UcO(!vGE{5qBZl>_zr)3-8t538VwD3=AC}$e2hbG@xlNp zI5;#GN<4v;t5WWckgbJ7y$ZqT1_LtQ2bU)hbGh5mqI^x+O;R5ZwMxMIJShU36qWjB zx0z{$8?}+yS zwtRaF>t?~2msBpbZEuyMtq--nOB2MIYmn7fi$rr5@#JEqXIA5Ub}rTdN_5FSJ56(h z=p-+@>2f)F{dbc;ZOWLV3NYlcjs*}`7m?WkE|D>9?mSe3s?98<;NiywlNC@}n3S^9 z2G{P0`^)~j2*8sh^%?etF|#ff;)|pWyzNEI|1&g}EV=9Z8k=jKs< ziKkR`Wm9d+@YLvAk!ZW zvPcR(Ofe?jB__!;a$ZS~@2|HEuYEz-K!jQ520iCv+QhOhCrkvxngnkvlh0XUM1?=H z(vrrE*FN|#oe{YRM2pmLk(>DNV#(Vwn`Sk(v(G~$SLvAb-;1efgP%E=bCd!8bD{4`BH^`@>47-rdF^K>$XscSA)oMFRny&);cDFveLDD#YymdcNe^j&r@xP0SGwcd@`3mxTj< z>)Gd`9jK7`g*n`d%-p=~_rTK4yF)e5Pv6+3?RCK-=bSCovci5)j9%g9oTxBj@;^U4 z(|57(^z5k2^v%)Aj-f4>oQq809Ad-fY}fj#XlPKFbzhrz)z)GT=g#RIB$v24lLIbR z@Is_eR2K;{Y~q_U;ZH%vU83envFevo1(xrQPE(yhGW0%*zwHh9wFb_u(n_zA7-0d1 zVmQN^YO%pq5v6ZhM6?EJx5CidQwlI$J_Cr&a5m5~GMSDbn*LLY@#?FsDH3xUBaGFO zPvMREdoD4yaDQb%3xBJfd;DqBTzTHZKXNQIo8XItPvKqVJdm+fQn78m?|f7n%)TW@ z0l?$XONj?*pOzdyhut~+CB&~Wl^J&R*{E_rq9PZq^8^fK)5BUS?`wj}hOt!<@-)2M^R+(^6|j zwtT9hweGO7aW+|SHJSBr%*}*a%hV^i6$gn?I?gIF6$@RaGv4(Ie!8>BL$7&CPh$r( zXYqP~u?|xXJ7-g-XuXW{9$vFB-e?&s@yC7(Rva&Mo8T@i>@M@XbTJqV(}DRp+N@AW z(e%P`ZwER?6r^1Tgo_6YN#DK^5$waAD6Y2X$2L)A*>bT1P@3yjt3z!H`^O5rHLR~=AaEzO0`dryqUid zWNqVh@;iS%A##d+2_x8-w}QWQKalxO^UIv&rvk zm6Dq*Xx5@(3rm2Kk#SZ`n1oxcwC-uP@j`Xg28MH7Q_qdDp>A&qr zS;9c{XzNW=4C>#C<@sJ(i$R=d=nG#L8W0riU=>3dcrk6E)<%&|a}oJq^~w;M`sU*h zbsm20gstZSd09-i92tv*8F`t>@uDH^V?v1u-lF|U&)-+(kg%N7AGXUTmokZ2LSkN( za@|*}cM*QmE8yn`9&z0Nbog$qq)twBer9a_5>2w=K0$~&C5~NQL}Y$ z@BVkSbkF>e>`gUwaV9yC^V?Zs4@(eUJ=)^WSy#yz9u%6!n-Riv5vr4jCh-04@a zWQta3j~ZSqua5cBuSp`U%|zneV3ZK%Eu^__5@?YXGUeQDi8vU;7a?R+r0->p}51{cYN2=A0TfZSR~at}{~!#_n6 zdW>Bk8Yh%R+2N^3L1MiCTd(j&;@A-a%ZUYy@oF{Eh;|?43Xji^RhOU>%3grxVJLJg zz?on)ybWKLv=OC*QfOnu`EkGkBQB`0H{O?0TY|7`4Zbb>@va!;k|ISyX(E`E7K2;y z-K=!9Y{KP*3|kAm(|9Q*`=#zuQT7K}Wr3jXD}vh0rG-R4E7v5Dgii#{!Gb)+mW*br ziJlP*L0v5ct#zdYpj{i{KnuDM;grUw8bko0a}pVLt>B^+;L^mgjplY(e%V+06 z5f%3H3qvSnEJf6IWfPS`C4j+2I+hnikhn~!}Z z4&m{~xlmY}(=?Br6Yb{nbWB@Qr-I^0E4|ds5=1L2QD_^3rk^2d-?<8NL#yw5K&9G) z*e1tKL+NC6Dk5C3T-9_1idjtV33hn|#pteP1w3@8 z3I{yxQv8v={0UfgC0;38z+>JqBIH@e&4|fbm98f86+_<(??aKo5YgP>ozcN~GNHVJ z#X#9Yb0a9OIPq|WRG{gsMDrENc2?6`l%~8p!o@kbR~kxke|!ovpdA>mx$rxT4$gVZ z5~Tqrf*gS4Dfd@m*xO*F7=8(U1EebpKgGhOF2^K$V{ zU@MGAgEPB~%V(VzQR2c!oHsY)tfUs3{ZnC#25F4s4YE$Zr~KkFFBf!kI0pyxL_7xf zgy(Bl+07AD%?YU4&->?+RU!r$?&3Ueu>mR;<@c5&Tp_lxfqO}pQBXgecX&Wx;AbfQegNjZZpqZ@uyGZ= zL?c0zBy?0gN~sEc&#wuSd){CxW(H7$!(IBUNIY|*kWpXBjS{FxIMPXjYZqqLHlWSU z<)%6_l*Euo;g(E)<9*3rW$-{ks(0y?HNZiCl<4R7TO$ZSAqLBQ0{O%<8&GLR_hbWH_m|mb-97 zQQI6=$lVbPY0d>Gsij*eU^5W@O4~R?7L#@bf;zh{IneGH!Gb$b`Wi`TP%Hu^NsvVB z53U3#*&6t`R{AclVla|b5btIovo|DFGfkGo%K{bgl&@9@j8@xM-+t#^oMTST;AXWY z_fx{45o1z=j`+($h5rafE5*#uBgr2aJi!u zkv54?ZEjX?BNb!2gF?h>>$o7G0P>DJLcC9|2z}T8LPNy<_{Ihbble}0X#K*dD``U=(@s4Nd5ari37a48t2fNJAg#@^{X3KH{OHi@^Tr7Z1K@ysM7BRv3Q#-Y%qAU zYP*K_{m#1*D$QbsMH1{X5*@^_0i(@$Uz4XVR`+q#^zQWZwmPP9#56{>T%pWo(zbew zd!F?guh3OtxF~ydbZ>Wba#lSriM8lfQtIl!F7I%gECkQH)3^@Twg|mqs<=g zz$Kf#7ckhE5{a+lHWmQjI#O7PT5QE1Z5d@-P|QR>`+E}QwC@08wvB&kHwh>p+y^di z@}65F)#Z&}lf6zSy_^Gwt-vly31(5C5>T23F1&cwc{{7~!*!RQypuiQ8ca_RqzpR6 ztfj~LRcwfHV6h{c1)o69+TKC{C5lp;;I-2|XurK1%-CcMhlkmKavCpDp5OAFtR;sq zzva7G%NWx9<~GDE-5`14zK2zEiKIZFFg|<|GSa)1Tx1RTW%nSG8WMqG>X_{8BUG+o zs~`(0Dbi4&kmnLO^xu)c82=?O_*gIoitpZ8E%`eJy4?V1k1hwb+0(n|DbR)<1nu7j zufBu--o<|kJsLoHadJ>N3{5kdHnNYv>uS+WkavrK=2)&!GTiA)FhNN@`eKaUxn4hpgJpzgf0)7kZ zIX$a*1!KERl-1%FKr^Cr0YZ}Mav;{Y<^&}W!=0IwUJ+Y^e7=o($?NZRaYHgH`Ok;j z?p-Ii_Iy47YdSw*lVIUfXEC0z$u<1F0OJe%!ey_C_QE$_eBqU9>l-h>8OW1C6FQ4g ziI}pM z!7j6Uz5BfGxwxe!yIwWuyd0kB8Mfais$eO|sXy+F_s+3F>R{s~^K(QbNq<&DFfDn3IHuc(~v|@LmwAICY)aUa@&Y4Vrr28Ze;8NXZR9 zc!$Sd5U{0t3;oJGjoP^2yd0fFzghuj&KxfC0$KU`iizX$G+=X3wQra^T?`u;eI_nS z-mkY~Iiljt1|-XC+bXD&Sw>2pS4Jb0oH-rt-sULGZ};ofJabW^I$97%!%-jtSfxfE z7jrBUbEU2s*xNkKXPc2V?Zr20V;pP@3@%t**Z>V+qocmN5%FU7AlUq8Q5SQc)rp-U z#(dBiemRHib}mSaXzsH`-Cb^)-$bIZ7>#ps7GbL6axyU=uS$)X3r{3W@OZ@PoQFk6KqOMTaXB|QsGBAyaM<`e{3T-3tA2z;ba z9mnwdA%pS!jB*a-qmNQ29r(TF>%@-bln@OI)fBLKc&-?#;afJUXKAw$e`+`_ znrMBY{I~gf?VIh*wH%R#2z!~w#h|fUlW{4`k4F1?80Ks|Ij32UBu7pfZ?J?ag{M7wpq3%6t)}e98Gs`qid#NnuLq@w^!;-R%)am z7<5~2CN+6?&v!$PMEYgwy%wc^33!eEGe zFo^+Utsn~6f|ADYnh>hywUgSE{o-`EQgEOo>{vA91gms_eGDT2gZfWRg%s{b4f^pQ!TZ1WU1CJAT>pC-^OY zntny2tK?vujSdi~$H59%ylLtYEjX=KTBjiQ7qmal;|sT@xTzG;=5M@Mz4?6qMIa%y z31`q0A}YE0a^Kew>(|}KMieFN%1qs1y1~f6L7r@5s1lXpI>dTcCGPeH7cGr!K7`no zOiP3-#GmF#o_HXq`S84 z$h+HkW3oj#Q)f)4ZNk?6&G{jz?+0|r{7E)j%i$*6JjzLo(hfsoI+$4`- z*-BEKAiesxMTF#!AwHZ~{yTq+xA$Ni%5{^aB->ue+tHtD09vkY_|~crI;mk1aoqMf z8zRdP4i!8TC{dJar|M;Fjk}KE-WHg{V>GWF_ao{kw0U%!?hj=Z5}9vxcSqx+&i>JK z*e<(PpRKPQL_r!Ig8l~iE7f}Kct)Za4~G0qR{iTWW=B1ZyjjZf&P*!<%O7iEf?%{) zm#XS%1N}^+TL)eIUV^KEr5Jax*YSUh9X*Ix8fZNoG>s>u2k(xoICU{n{IOg)-q>Bo)w!|B zCfMR-wdJ@S!*Whd?5RtoeyYS4RLpDFSL&D{zDl9qTLJI1NPPzQOcKq(qS-wec??RE zbSN=h?=d?Fk`G*(5$Wym=4SmJ7ObtCMKMRuRO9AShVX`C3z2eiI>k0S4H{S#4N}#B zqML-rX4~Y}Yz}neCs~BiDCKOvvKYvm$VY+AGVE?#0}VB5lCpSe*1HEVW`$P^tV5f3 zWGA}~bMT-{HClU&gTK4-WvTCF2KB5*+J75Ch>dv9iR=`V(P&QOLKLOQC}%P6y6)Fu zcLKW%avMQ|%wIbnBN?AdRyM_z8Pi5O*S3UNpeNht2U!+j|73;c{KwA(?IeC+qS8J+ zYFR=LMa()jK|dKqG5Zff#VsCu*`*19Xa`3Nx)prZ5-d|f(4T9ygA-So2r1w#S83u> zO2fm<9%of|Ofbdsr!bm*|IA|pr8JrG=<+jK=h*nh%FDQeOaU2_?wLLrQLp;iNqPZvc`Ah3YE)-gjn8<~m^{%b1vLEep%y?c;rAJ1=zv!51^eFIvRMHfSyDU2i-n`gN6L)(7=N8Hg!5xSR|RR<^0tc!wwr zL}u3+uGqug^>m`=u{7i>f}irK=#V2?CevY9d(GL00|%~!LX=HtcnkXyLPHUAdfd9d zaWs;11G29}hBrq*{%-CPp|kD?*PCGvYE7M2Y&YQ(!VuWK!3UhY#10NVTyG$16NfEZ z&2o?~WLs-~O;;VD*1-UEsa*?%F?29mDBV^95eD9s&EtlAwnPZ$W~x^LnPUPfIxl18 zPi^O!kXf?^+KO0EqNxx`nqSp^bK(e$Kg*3FakAmR?_iT=D2E9N8fGHTw!rV^`51iD zAh3cXK;|l}DK1l(rDx}-JS?Y4s}yvUT*xE>kNH`PlB*q(qK9*c6U|=BAc#9oS!V|$ z=3*m~6&KU6L)FwAiOvR5glO58UB(_60~ZBjky%Z%kZyBQ<0=r+k zm>RmYPzvWKz(AuFLM;&kMQ01eFNU-5IXCg!Fyu1N>__Z*Ba2ItX`-UV1H8x^rQ6|rHEylW@^bCk8wo5~< zlxmeCMXNpN3TSrAi5DOjbl9X@0lP@&3`Smt@L=R6H!{?^5K`nJVs9!BtUhqgWGae1 zyap)*OC3U(A`r$Gs%6^`0Z${w~#YIy$Xp|!GID#CngUMM7G9^rQjCoaM3ol{S*wRMElEkwqUudK$-kP6bGHLCjk20-+-09v6nMW(?5BSIj)A1;6*g@oL6|-NOTif!7v1 zz4snrc5WgXo|mnHi=+H?bR^@Jl+1T5AyaPp%}~#dG8B6Z@2s`Y4$|h++@y_BC!741 z*+Dcbq?Eyud6IAk(?SBsR>4c(=(x~{?IDz7j=v}%-PVap%cc=KhL)bK+68ytT* zd8(>$Q;R6+9}q41A*ijA-EPq3l7^Wi)Z$F8h8Ii4m%ywSlqGtHHjXKcB+8Ks&NE0c zK+fJpLY*uI}<_fC7Mop2~Jnt_egvylYp|6<~@w zN*C5ksuCe{b^#SNIM8}fj+SRRF)x8bMY|Xf3)^+88@OW&l@pkd4;hqvN+GdXd`if2 z5LRu$qJJ8t!(vw3Q+1}0Kn`8eI>UaiTJwSiIxFBw1C8=UKA0WE9Nw9Zk!!d!hIb0t zirsYlC;l=EOVH$_s;boscoXF!k4DGbAOWku)E#7W^uPj$_`weg3OOspe1!A?ePk{F z-YzJVi&jblbh+qJgm39Zz=(2lL`c~&U3&(CEQWQrJk zEdpE;z{r|I)UUD=7XT}+A=f+wwL=y`6TV;mBzZd=LF)0DCCO{!J0Q3VCde-kTjT6| zq+7sD!qjm{izGwjg6;tPX?SU~UATL6Hn<(nZeT|7da3}q`fPmcG7+HJd!Y(0k3cE> zW%}~rDsfe^%N7b;<|k>-Fjs82yN`nDtUbicB`Ft@8zfjIZ|IThs+O=;?VnFXT-)jF zn(0w1WN77$aBAYlnlO7T7}5muFV&9_8{b74k#mr-(Hqu^`i;KXAs){q^d#CxDH}Rs z4ahzYFYQK7V_q67*sWiC8k#1Mr74gjtO*5J+FDl7NMRI{xAFt(-m?o}>M*mqd{EfI zxtjRm`7%c^BRTorC0O&ma6l73o2|gv4jkj636a>@A9&Kxz0Mb4Z*|wNFnXzT;(;sd zb4;*fg7}lB7=yuPe&cXsd>b%6~w2TwB|kKzXBr}z#> zcO)fW;tR<>+`5ZxX3$L!uMY1ZX`kUAEs3CcuQ{EN*)H|H*a_4wx2+W+%NHqbVO zv_c_JEdAN7^Zk9E0-&WVkyuIJZ{*X`78f`keo}M}c^f)>6bBV3Zfm2k8ySh$u!8f6r8ZuL`>pU6?)Z{afVJf zlIU=4?$zp>Q|xqc+Z1&$N9V{L-W^LQt1lC6Nd3(82zf%)#`<$tQMY}DgmZ*y*1u4_ zwtF^ZHC-~#Rn)&dz>I8s=?iNc&#kL)U#vxhxGp_Q^Hrp>J{KFn!%q|^)4PnGg9&k` z;^`d;XA6Jq63fX}JP2uU z<%+(j3|ZGe`3e@S6Q5weOupd|CF#=0ljx;$D7}E%&}o>&5iUkKLS7_4*F}wwHLZc= z>dtsr-5MWZ{bC>Jbhw{xQ_;8YU?xkGvL_6&Jx0XVNZhmE$;PpF^&AJ<58y<#Y1RVH(Ez~FN9XfhaNrjH>#);j5l-*I9KvV#mi%?)%0}@m z{$9m@1u&v4Kl(cAY7%H29$&+M?BLnzdbb>L&d(rWC;qncH$*p^ZmXk%L&*$p)vD+a zmD&v&(gNd(ITkGn706ZN0s)lMZcQ0;A0H{h%rO8}+qNo}>;*IgEuR(#6aN2Mr+e)S zB&!?HN*!j7#JJF&_jYUEZ>MX&wp29Vfhx*5?w}LlTl2!V(b7nlD zgc8nh;mI1$+z_C=g!M^?rUj+Mk&7D|nn$qQp}ROW2I?ydc_*%b5>gik8=Q+Ijk9Zs_I@)aSNmnvdO+cyn}{?n;E#@ z5@4C&b!Tc8HuE@;e0j!Lel z@d(L!G3E{-!!iIn>FZ_MNvLwOjnFLeJ2FFpQiUM6OE;$fNdoY{47@%wa@d0BJGRzm z$2ci+%htF4F}OS4qtLrOI-QJ;dMgLRb5zD0PRdI@7)G<5tTC4UOL7Nwv#CZ=apEc++9qbRkhTTB&gK+0n}#>ytrz$<-JH&vB?f)7pEv6?X%x zNng~xNft;#IB5q2Hh)M6JyD5|h&q*rJVm1;irWSxcozv*aDyr96X$qiS;ke(dgbuXHD}c!~+Si zt6hxa))4m!GeIVOy;`ls@@yqV@@CRY308cEkWOZgw?bO2u3V|ad+3Nmkdpz5ccZHf z42&Ev&judCG&>z%SOGBUhDYh}(%rM;6X-youg4t&)3l7(WP6h)H(JRF*(OSeX1Yhs zK?SWPRMOQxyJu4z-yENPw?l}gTp75qO{_A|et~JgUK9-!ofIX&JSz&7E7m&_u&|XR z2T|5nK{&-J|1xH@v?JO;2YuLuC!n&S|2%;4!B+~@!xCw_&}_>tt;qw9tsK|GP_!f| zXe$}=J+)a@Ya|YO66?lK$CzRfjKp*$>I7DhEN9tIcS{R&d1-Yc#lBCwUY^HlDcSo$^gLO5$b1;C3h(p|as42@$S{UFs*#&c6 zn#`JpDy>O>zZyb0Az&?L=IjiR=!5Q!5EWw_(JZ-nhL+&0y+Zkl;}q1p!G$hgUFcB~ zUsc}m_VfIThNYtSEQY7KV$#Bf*68ys8S*816)5u*e#bgR`p((jDmszePBE<+98ST* zsJnehYT5}L4!33`C=Gd@Otb6tZ;{y7w5iXN=z-&5*ZwZ%yjM(o&!}V!DZ4WaGzbLB zU8f>eyUpPml?)Uw843>HEK!1x)5>oMj_eCneaeJ_kO+3=#k9~Ao=k&rdFl%|%)WzS zQjReV3)$JHQ87RO1op<+EjcZ0{#`uqxK=oEE!NC0SH zbOA3Kz4tCy5o&@6+>fy!YU8P`jaRjb5X?ZavM?59kx$#kU%Y6528WGnBb!S`qzkMQ zfk0k~mBSIN<+Gs@gHG>cbk`$;w0LC)QUHW$&CMCixG;fnd7W~)_fh*ciRgB_M!gz4 z1qSa|R*WP7aD=&OQOav>3_)Izi;! zv`)v8xY*Y>EQMUmHRik`1_Z|r8#`X4A+{v8phRnP%iN61xkj}Y^Sp99%M@C&(6XqR zcf>b!i|?WqBGtn zD=P2%K%ppA)o(OaT1H=F9wf54U?#|Kp)a_TEnB>udt;kmKF5N^mJYPNT1Kp6iRZC& z?sLZy0uUbZ>;#pKbeoTQ2dyB6QAS2Tr&o*<@e(LJIz2&4q&ZnPNSp$60iTai`jC=b z9M~eIkVN}j&z!@88AIOoacMdMQJPJLrZbZcVs-&v;!jf{w1P4>^V;ea1|3?V+9(M0 z97I&wi@XYmS;^+}?eiX19|fJP#6UFntDpS zsWA1de+z?0%Zd}RV=%4d*f#Tjxwx$DoDPbjZg3E)7KMh(LSt$)7$PpNU2qFt_AHuHc-& z-=dWZ8-l;Y!QqbF8DiS}*S;`y3#*A2JMltMY&i~hv8zHor^10rD_E3jkV!i$g(kYd zHxaQwqz)WmFf@XOFsRI~ zWc%SHx2hQblJJlw@9@wYwPccX-i~KjduVw@242iOo7~yH&6O|o+diXpI6Mb?CfVk2 zh{Q9vdzX+&$2dqx+O@^kZXS)a)>;>2-G?@-9mlQ zi-Xiah{w+YmT9gg#;pDauTCZusSb8JQ#ZiQ_6vS-?T+GsV$u8;y_hCax1iXQ=ok+vuQ=71RI@ z9N85cCbC{=212gg!tHNtoA%%-kDpQ=c*9HDZdPCGRX6M@ahKkU=>3DM;`A_TDu0PABX!v6HOV^R8wZ6Wwp-3-wG?Y(TjqDqAc7l%< z<^@SB5tr~e(nfQvLjfhS^>W+Em{<*bweIL{B#Ys7)t(eHnoBQTic*`uBb-G~ZXgp~ z>M(I#V|i4g_iKs&@19?J6x?_~rSsoRRdhL256xQ__ z7T)kkIak4W683P$Op(rtm@!}cyc;r55E=JjT{oj(5HyU;rDj?jlom3JJ6_+=>pe;( zms&&1g*_$Ty6J0nm4bl5Cqn~1Xf3fkX&utCEbAnuXXY*R%Dqr4e} z(#(7(JjKRWV7o9gCPBwHS?!=^U5^`h3tT8g$xxI|0@fO^r2fQ(-;fY046tj511}KZ zZE3Sgq-sg&ssMO_r65Oaaz5$=dbF)Q3ToV_<1`_VSAbHRe$KnKbs-&?5gzP2=hfg~ zj)A3;Mt*29R-~jf?XK}YDKJo26GEXv_M$Kyf?=*o*RO%Ca3=$j9cMV{F0mFN2mpf~ z0X|FiSVx(U;F%g`g~vn#LXyll%HB2d`4054cpk7SB$y?A73)UX%vO;*&Y+d{V*3*~Tyekqy}qR((n&YLMef+{E}u(|kSvswouV<{!^g&=H;@H^+Yk^pzt z$c}^3iQx()pd)(M`=YrHP(g3l`QN6!EFndtHx7^19GdJG!bJO?Z2l3`1#13_NhGIQ zNPNeTvw;Z>^JBUksFD}Jg)-8FtNn#A>q#pvXDm6nW`f#QtxVV2CVAOV<-1P%GSA3} z(F|0opc|#P+PV08FxrE8ta2XGNYa$BMWpfR4u`-~1%g$EY^Hd*>(wGC<&A^@GV>vM z*jH3uA#6Pm0Yl0zFjMPV-qp6!k=$aW9AgS_8ztKfcb1s!ZpkYGv8TO+o^w)2@;`60 z(8Hp}V!N_EV;RBCQOb5iuEr70K~fZ|Bnf))1o37(QEJJ4x`5&|3c~cZ;JC||wrCPD zn<7qPP%uUZINXZ!pfiX&7HXdjCNw{Hrl&I;<{ItqBcEiew|?y!0y8-3$D+1(Q0Q)g zON^#>%KT|!lDnuppCL!Ad3p@#Df7T20j!@H?*lQskQ#;zWvTJT!^_MG zolNb}qcQ$lxGRL^@P~5q1VbJe#96xV+I+Z*-CFdxS&CEI`L<$Z{lh{~Sg6YKy}%I%O3dj3%t0D~=r$CURy~ z3ChLkXVd#U3y3fGr$@-%M}B5ZW3?of@!9y`bjZ`J$jS4@o+T)C3eQgwWY|RxJ7Wzx zdtf+t4ro8~TeFP?ZesUVqZ6BQn0`BzetvbS;z`9v)Y;y`%a%v_F0xS})>$64nFV89ce!^voRj-exI07oJZ?4H~x zNJo2D7sUVnru0d;8iN6E${gUxAAFesv@*oiz;a84tLE`jHxanWNEh*%Kt=)DuPdM9 zfCAzjxrkE-4^=RN<7%@g5V$7?&KvA^?%^(VW7m7}2s;anryW)k{{j!<-QyX)EA+J_ zTUh=?`t7x@>k;8;sGJY3ZKALqPcb5%#bOXR!7Xs>Rk*5kX$T=}4Zq|K5!K4xzb=~| z?I1P;1Os5&*H7gj0Qnj)Sd$1@`}-f7^v)cu!8!(kVXD8?wPRC*)5!tjV|zV|X6R$} z%?2BbU$Fp6@yhkZuUt3ntnvYEw~M#e!B4;$3x1&6CAbVGAH&84&#%{?+ks~Ub7n$6pfDgmjKT<(bRA-qV7Z5(>l6=mM`(M7zBiXqqkX^n;v^f87@2k ze}6Wf4fJezwIXFDP)^KaBdU`GdY5Ss9M#*sZSpc|(8-_glz+aff397($Jj%GP`TIp zf;3i0asr&1L`_Ps7>j&-ZJZEffBBCVN>YU(0P~0bSsW88t@&`+M0L#Kb}CW^2p>aD z>`>RVc?pL?wT=h^DVQ!C+DKYYC3eFD#Zv*y*joI>C;Gp{7XM6U_S>UheWL&CeDt}wa?%?9 ztta}w!G=$W2D2}J^NId%^2^`nO548wtta}wh40V7>xX~lpFH}=;g3J|$RmgU`;UIc zKK<>_`KLGkn1A~1r~K2u@yGqs+bjO*b8G(T{FZzdPycPt zKAj)_{YO9Z$k|7~@NA2z4OKM9P9DuZ>b(6Y|H31Wz$4yr8=W?{8uVQ{%1WpYPy4 z0)JNB!KTiWV$2QfVr3Y8W~b@0@e}9T3YB2&vIb;%X(<%59C$nU)#^1K93Ji6z#mV# zxrg+2`{;!R{BPza`Dfn5=bw?5iBc=@J0>Uol^!WVw$$lt)b^d7Hc~8E8g%IRF)hOS zhwF2ChVzQ3WJ4nn%RwBf5sVACCmlGR@bG}h=@=QJTx!Wbh2Vg^g`cV$G8&2U2u2vJ zh<0HI5vN$O+kh=XwOO!>gsC6nWHj6wt&gzS?OeRImSfoxcagrCl&|Ap=!F}PYBv3U z?7drWWJ!`H)?M9_Mx~zF!3sMo4TQy+VAnF3Nk%8Ly1IL)j>hKHt!p~TDr99}2CSUO zU__9N%wPm3E}3K(N>2jxvQI+)5<$?Deu1FBAm~BR573LC2i?BU%=~tapSUoyE>p!o zA{lXxyScf!xw)CSxj9W(J$Wyyig?M>+&Q00l2W;UPl~{(bzMhe+=C0-RDNYT8l17a zvcY+Jy4N3e&*U&Z?%CjmrP@(KK+88mLgSdU$I?SO89@0GQ#$rHbl^E)5*BXbsP89s zL&@M(DDg=2MBA%y1C0%AcjE?~l`$y=1vj8@RwE==ZhL2^$WL$sfRvg^S*;(u(A`TT zaRu5Ke8p5+xJ)GCEc5MHbR1Lf;FdAwAwt9qCxm#FKz3NeLQ!KpSUTW*YBP+fq?1G< zLSo4B7EW0L6tp=k^msTB+(d$IZ`Le+MWY*ht0nlzA>gm}j9UvjYg7R-E_)%yBfQ`_ z6tV?)NwS1>NWx}#k8>$?RY5*f#;Sk=j0k>w5!bRFKMJ=QC^N(}PRf`S80?*Ro|h2 z_Y*McomB9kI@lJ_>>u3_Gj4RlI+Nn`)RK#Vqg(11u-pC7x@ z^Bqdp4eJ|j;&T&n$Z*6XWJ$=j0Nn1wGePGG9R{kdb!{ca`(`8d!i|`loK9~L4#|!P zA0`7lxE|Eebvcv@_zM5|5!O3$(nZWiwTKj8G!$e7?%qb~%c6UV1z3WyxCC)of(mI| zud_gYVCQ9sl;#o(Lp+f07o!wf4wg0EZp&t-2>R!%n%qdp)D6L+U8 zm_r6aYqWeO-2CPq1mp=aEyB6Uus1)@TgJPHbbxBj17FwN9zX!s5UK}VQXE8}$Yf7g z3I`|CF80fN&vDe&11Y1O8=(25H=9P(2w4k-F1o?(_qjYoL(exA6OqkmvLVsW-C~U* z$VRu>1gWrgQ9N&BmJk+14lXhA7-WiOADO#G5H=msw0HppDL9rOInWnI2h={f*CJfl z1D_E(kL0lPMPEs6kw4HTP+VdRkajO7$PVI4_giqv26^B3o$OT=+{7Epb$VFnZF3>B zR$f&X>&D#(T50Ka+ZcZXOEFR%(tR={P>Z+C5GBgRv__v;s!kXnV0Fh5aSdTTuB!NPvZ-uHKKPI z=1qm-U>UlzL6e=`Xf%Hd%}p-=g8KD>Ns-c_qD-*nTz%c$L+(p@??g5z9U)Qe-l_zp zWaL#yb8|=P#F%`f1)UUd_whJ&pk|m7*8FVD)PZt2x1xltNNlgb1}>39(b$RE8g*eY z4VgKuTvvWO%^1dy+lp1?C?giSeeN1SJFauOy4~hF&#_vpFj>ZvS_iLs^F4Qa0hEqk zX+KhmtI@)7RiSkAZEA22PLS#v!TgLqs^tAEvF5}46iv7-Gt;h_Jw86>zR|rF{yo{n z_jl}j=`I=HG5x|?D2M>;Rw32icGaMHcxvGOEG&5H0dNv3y!}IGzd2{L6A(afIDTMv z3yi|Na)0RDcRvyCAq72Dd8hT>jteqjqk=)i!rg-P03p4&CRbeN$UvmJdVf3)VhG0`3@Xe`hbnTJS>rnpeW6d{JtugUnbBq*tC!W>E%D zQv{Y{v%gUPX@p_HW9Nx*yWy5zIT5MQ8B3m3`ygY#IZS&*%Ph4_vlZ^r*cJ=+ib;ARH zAo>O1PY19T{wS`D5MCz5yp>+(6OdBk3vCw~iv=ed1S!pbHEyJYZ8rIb=8n-B8AUB{ zUaQWDRjluJY54`RZtQp5>5&~f`%m4?I-Ky_Pmr39U~CL+H5M#jQk6zF8=PKM3_znA zkenjcxfFD1y+&9mIw5WdHJYE;3NDBd3e#2aK>L!0${;|Kv{6S-RczEUWt#5>>T=2_~d<#c~nxnSk z!QTFpIB3yNY;)nHwDfPw#}3kl7)qgW5k&8f$fGF3+5PBybigOiY9wG8I!;0eO^>Z7 z%HAp;q;N~lZy}TrX(h~f<31G@6b4DwMo*T^wvSMyi|r9iJp?Nvfi$O}Q^R4EXCpAF zlS}9xL^k#zhGY0(=9;a3#&f9t{!_;1i(~GBdkdI9=9b_d3XZnH^Fg0?1a2KQr539L zC|=kh^FC3A}!QDiDHyUHOOOsO&>R2vn?LQdi1z#v7WP^1P~c6@zjFu`CFCLJ@#F z3|=cS4h<#fOp7rcSpr#zDy;9j$VRP|geEqcTn`OoHO3hE0EDPd0>damG6*tBKx*6i z;2VCfIY6$TJYG;Y9Eq>Rin%D~RdjKrmt{^Iv2Ysjtfp>hD6~BX4SXBzrf3mPI0PVJ z>ORKg6LN6}i`y9S1i=X`jHO6vVOFlC-1mXRfj8(ya2{&GbZ`Wp-UyB_>=JNEg$cy5MKrHXs0->}^OG2fZVwYHUb$A#_3cHQ1=q_7X;c>e= zJ#wnfV3h-9`sfJw9U88l3Bp}UYwcfYU#naLE%Vzdfym#E^{B0hLy-5gNUW{iJ!VhJh^O(1wA2y#kHQNa#hoFP3%qj@No`EjIj1LHl85f=5`YSUj z?X+-0PG_K;1|s?(LvS^F=4WN-7-*T-Z>PemderbCZtZb`-sbP;Ux*|XLVf;4qlMmJ z*=(XW&tiug+o^mSoVoyjma!*m3m@0GzwvN@7y_bQP2RxchQ`|Gm9?3{VK@k;YLF(_ zcnq?E<7B)fBZZ_!Y{F4dPTc!JDh+l?dJvRIs}A{#oGIHa2+GBhVOVzmWUR^ouzarj?@x7n5Pe;d1v7VlO=0-#Im*G#bml~7}62RF1nu^f7p z!LR`rV#}B$V+^mg(n3ZOgr@7C;N3VQ4tas=#^ONJ9^;5Dqh{*3 zzyL&*s)PB7tpCf0Q?7Z2qXRMmeOWOySh|cTI8?KAVBijqT5sINExMVJvQ9`JF;>e) z8UT+RZ`OemVjHmKd;@5Q8b>bFp_jjkVKRnt9533S!a*`D*3)6HuH7o5Tc=iwm!PU-3 ztbtQu<^U}C)if;rf?4fc?S6#>1Z8g7^ufLlj}CD+8>gR~_8jeYF(#j{Xe~+F)wNU= zM-F5#043Q9lD-vjv=bB2rI>Q;0~>+t5c3 zPP zA~2DABO1sK5G0g~H^AXC#B`3@`-43mn}7{$-y;EyfFGU!q>cc^Zq~(7K)oB?4Y$Yi zq}%WCAwwJfE3}L(5}P-iKpXb22#md$o@oL%-$+7dA;AX_7dAp<%L#xG%j=pH>Wo?Npf z3yNh^q~YkuOP+>_u+IzW`5Y`gQaLAi9=f&p-r(d+N4m#b& zu|$e?ExeUj#YC@#vOZRECriOwZs0(C4BL|7a-L37pP!nc0t3lbhG)dIY=TLpY;^%# zEm@Ez!ECSP>sb)eqQE2!hi*WKPgrW+)2&Hg3cMAJBn%%*$LL^cXdXH~ zG_3H9)_}51)pO8#KDeGWcl5+O;Z@CGavV#M`|7|5DrSIU*XmUa&=1J{=l~s{!SR>r zD$0}wql>7fvY{v7*ad=&$*i4CDdj*K?Pz;S&$ghf;J~=dK6r5S6u-PNzc|5gma6MB z0%{&N9>Id^8Yjs_H}|OpaK%7xrAN{+L@Xn$T~!dgrAAic4OQ9-V&^r1fgL&)gq>fG z?k9>9Aib78S2yzCV%L+jpPU93d|zj zTq!Kf;@Xf%fn~BH=zuIr%YwNZU;-?WFUQYH>YRGHDBOJgawcI}6w?xw`*t57y2DKt znwdk!mP-l+Dwgy*)59g3FsDKc4g)`UtMK7?xffkgpl@;JB~12+Xy`_Z89K)OCOun0 zR>cBFr?59KrCB%Kvrr=$6Jj*X+^7}&C1dry0UU+6RMt2vz=7Q4@iNisqutpkWaUs(k%N-{J&mzt-lRbt# z2ol1bU6EVX%7@7WDAxFBk;5cQEh$_rd?TG$V7s#ca)+{4V{oU1ysgNu3ad)7gur6W zB1jePOB_lv_-xBJjogP#Cvjd zA5Fq^VkUROUu2UdwDcs4zK{S&3MW-xpY-`iV(Z{xgnZ$Shv_+v+Hf3DJV6RZq6pH8 zPgEZed^ngUho}aX<&aEf>!(N}IObpAUU+P)a1EAZ3X%cd)UX!KH#h_Q zWz8NMLE)k+|X;-Zy3!!Bo zoOlQ1M=dcYVIpfxRK4g$78Ky_G>u;6HUQ3gcXp@aYi03QH&e{ixmJHw_EF5gC* zQes=rU|Q6_1CEd|K-4Vv%mQEm^qxQ(vndE*3z8cgh+e~40TO0K0C`;mIjdrb^lExg zwk`%es-L?Bn_$xDUck!5q0{g^kVsw?&8%p_DdrxM(XRxeyS?=0QR(!!biQtVW{jpo zB)tLZJ-%^TQD2oS-6&CcC}1OF)O(%)jvAI9llQ`Yzq9^1ktFN+*XOIy%{ES`ILa)t zs4eO=c3yDSAW z0?eTk&C}QpSLPj0sGCT0qU6h=pOwmdu9;;@JZPLK-E6z0MH&)-vbITKSUA78dA1n( z4$&1vofLzHqB01*eT?yuhf%CK9)~?8jj1OeEu)>}7qN8sCRKw@14SnYm`aS3rkHDd zHvY(;m(={6a<8$NA)1#}aXnG`y5Yns){)Ruc#=Y7b;h=QU`H)Ay zn&vp2!ixR%U_`;BuVEhHWI-Pn@QAI)(>i!5H%+YLk{~sZ|BTUZ^rd@de25<|2*GYb zarU!>C4qv>mWUjvqtjgn1ZiYF0KRA`N*R}Zsod|t_6`VN2^6-2k$)fQ#I>2l?u#f` z1?W7`qfX4yO{bQ$CRyMd3k4*O7v2T_Vkc>0ID7ZHhg@&JMe=%Wr+9&zo^UuFF(3$< z8T3A7cAL0wXqu&&u*ao+WBWF!FeF6h)y`w`^#p!`7}HrzpZkL+;`GCMW36(MdO~iI z2ofX;R2I`2q9Y;Ic@DrAv1-RJXy5upi9~SNC$D@x8o&T4DkF^{+qgp`0rnO}iwId& zKu{cAiV%flvH@d*TfRv${MeY%6CuE*y5!pD2W*KQ6en}&kOBt{~0dmMYNf?>nI_xunaVtIBCJrldB2SY3_luOf+)CXxNf6 zEGHmxL>!jrrwbsfFj3(Qw-{LW6*=Onl2m;Lw#BW^3E!%eKteqxjYI0@7j~$VQ>27L zW~MxlczQ<6x*=i~ssN={YT+~o1dxCefs+|fx8=8|@(ef*?|d;hL$A@I<- zY7q`EB?hBE9|v9vU=bP$RwcQhFR(kZodUEy2SB?dC-RR+*N?iM56Df}nn4dRNT#J@ z?v{pK={gp7-@Hvqd9E&7caXDkf5X>v2ZJ1GWsoNFJmT^-EbX|3`F_2=x%AEk@uGuE zap^+YHM8U@0E@zTFhWwX86B3~K%z?<&8=>;A_dCV%wS>&#y z0KBjz1Tg@Y2vp7mf&%HTl$aD9GOmBFk{klT(MtN6AWfhjMAabmTy(klpvaPEa{Gv) zFhvevkvW`I@5&7p?<07<2cN2_&DQIW#(E`*hPy)(M``%3&nJlDCT5nE)yRpw38W2_ zPRSOk?nKEw?2@*K>k2Ty_ZQkHT-F71?fl@N_`^Rw>+pchXP*t`UHN_&-*JUj=kq`O zm(bOg+V)k8$9 z%yd-PMWTnK{7;|aat53S#I$SDpiY`qa+*K7Gn^ z_{j_`&{UWeZ+bEWPvfE=oYLj>5lF(e<3(SZNdW3DwqvhBY~(?Lc%m~_gXAef{J{lf zMZ}qs4P<=a0v#eEp(i;k1TDSCOg!W23!rn?rxKRnrvn*ksDh||>s2dbsq!LA8H(c=lTR*)Qn zk!Zm!@vQ2QV+Uo!5htg))8E+*lc7KP2DU}Eqn1DN%{T$vp`<6irSAl$C%-G3B^uJ; z+|*sYnM#OCCi9%)!FY~=vpD9L#GCI+Cs|(v3%O^|iT82blu_Ck6tBhCe&3o{?06?6GogK>d|gB>Mh4DwxiMvfOJ zD#QY-^S98Hl-8>mvEh>NyvciYy#{skQ>3#scPy3_AUFn*@C{c=Kn=FpYu9^S;%J^m zI`Tl1=I_Rl`MrRz!gasdq|8we2-1QBzs>~OKd_sXisJ2q?b+mXzHJE-s7}g0*EJ<1 zIt`UKx~Yi*%#SQDXDXmDTK9I?I$;$}tS{PS2u?ioJ$WWP0z|Q&2)!$YY@*!*C%t7S zFkB*+;h6)SWWE->DPT=FkEqAYF?S5H=22FA5Ih@&K|tzXJdN@Rh0*me>v>f- z01jQrYh^0 zd^L+!O2mnjME|g@xXpIJENf(;H|HsmSQEj_2=>$r@gAR#nCu(p$0d`7@Qt*~Gh#>G zBN0is$XdLM{z5J1jRU3prLfR0f_&0We#*;Y!DoZMsRF#bm67?fX1FkX!33JPiX<{B z2^PG=_PliMklcwh7A}o$lRv`UH4ffUfdCD}tE8>n-4Bqfr)YFBlgNLOeOS100Po1( z39$6wsAk%ydSqUyd2><-Ng-cr}(+rQ^dAtK{=qNJ4xoA{z z)z%GqgzYLB-Pj>K_YrEPDTaW#(2gUejjV}_O6drdKsa}LDrhm%FvE$U_Jb|-5Qpjg zoxVIX@AFX<2?X+4n(UZBlvNzM5L7J#S&5*AJd-3dWJ6zk^B8K;3K9_a^~9tjDkvzu zVt|mdWzc5DfroNH37jwC2$)UqHpl&P@T!B)YHoD~Nuc_C{zc25vV$5Fot7pPw4}FZ zZ@bnY%$stnwrD@`QTh5-Q$O=h)F4y zju@3$5M-Y~xC^Ieq%c6mWxPXEe0jKS&O@vc;N6n(t3pXgLQWxAs7B)1A9%@RH$oyW zI97fJnu!6;iG<|ZiOa9)yc9qYB=wg$Qu4a3x-d?qLaMV=WHd<=NG@gBJ%Tu6)^ifnuY;6XzLC6Sq zKTb=sbaiOsil&uHj0e>SMmF)5ZGPlxF`oCD6UG53tzPDIs))W3$Amt<>mhL=L`p--k+ur3 zx9^+X<43J3H_5aizw^>%n#3RiOkVd4j$e?JcXjAbPquV{tgAz7DxhveA)1kR_cAIj z8Cb`6DxS{=N+&kU4|Z76o=dj8#?Qn=3f~D=+80+F@S3G71UWDo0`a5M)Pcps|HPe z&z>W@T3G4#pmANQ_ZWHz*qA98c%MNQBH4X7wjdie;XYMnaBrec;H3SEUL=honJJI@ z3xfD7HZKt5JzX5{7?e&jp5X{esVeOyNmV?q%Ozku zXRWDbjeE(9`(HXIZLP;kz)lqBAn1jk;6WZuy2x3MaaRVzRLLDzBtHg9;#<>x#rh)) zl|O;f_?A;T;|h6Uk)3Fci^Dmsp7VTzpbpSI>m7?&DQ1n?C5N6Ca%H9;Nhh_YCO(-_c8fJ zsyO2$vj&rS0ulW2Th}kAuNfCu$!PF<=fhDS3#5w}UMlij;bdXWkF~X=ima~(+0Kjr z$JBCco76O>6P4!>4RIr+86qkCh(L=b6R&2>gzqI!4VO;u-pkx*?zOsyKetYc42hQA|)U2?1SQ?KpYI&tixUEx@)ID2 zhaKEvDE?9kX?pwocpTb#2j&)+Ghf=)Xn5oG8fw1u5wCEhDjCg_N=LD6W*ot~5T-z= z_|@GgbM#@?o&N^OSwSJlroq1O=bX{;N@%X|_asYqSk+0Tn=R^kL_+4a2DC#)n{+ny zLnXN0kB2v+9-zFC5c0y&7o;Ka!W?if^bnt`k*-guZ;fH4w+aCQdsQ_Y9b7axyWkcR z^IK!5B*G1o?yY{Ix8V>-_R~0(Y=};0)hopexXdIni)8bet^_69HZYuBZ)^(dFvg~4 z!UD3B<*m(M{`T#%r6~jMY-`W6ls$a2%KHf7ejVx*nq9iaa4>{0$Fe?{;%xa^Y4RS9N0TX#@{ykfqQ;i5bp$=VarW*k<|xSi8MF*_&*~ z2BAK^+Pm70l&GqNlhO7*X;KAwRs|zYeL3wY%LuO^D*iaUY~Deua-@?Cfp#&6wqp;w zbp#5kS2&=ZNE}S6Y*<0%G`CsV!Eniq0M$S;KLTzN9kuW8R^1y9+sMIRDeHr*u5r!y zxHoGbZ-c85MYD}8{L4ypNB3(OK%(hB}OSI|t1I4Z3glxC|`wjbib z!x1y29zqw+5P&tqfiQHU(g!Um3EA5SAE_-d8=hTs0Zh=ozoZfRi5PRPOOJ>64JfL*nW2vxQEN_ zc$t9udU;3~Lc=6f4Dn$5Utl$?4H3KSzJ|asnIVWG9hdQ?M0Jr<+>BPAAH2#2?@~|2Sce3t zRCd%iPhnp``<6mxR?K;gM|k@5;nSxw2(lOylOE4EFpVdW*C^koPs`lR=q>ct9!~(D znQ3X@2_*Dl2z?3(5xCgmIm#*~(#fY!k7b{2ztyrC@#N`K(U+yROgGDs=(-z)?rGBj zoYZ;xG?D{4UkTEP1r90K!U#rl8)XFywPLFi1qf#9My-j|iGttqiMo`yF>gahH`F(X zFca$p)R&r$6^Q|!{c{W|Bxk60LYMK_2%@_g96)lui&-+icSdAfAbTEfMWZ7$x^-Nl zZsb@yShw!Lu9Y~NoOJ(wMJ)!HI-RbbTNE1p@qLqr84 zrF3tCua#*~iv$(}0;^}@EOnY6>0>Q#^fF_l#*iJ;GNCm1R zlCF(zxRLJQeM~!v8uTc99+W5Kzj!$qo*=gm0uHwq;~{m5ZKR5x(g8EwGfv{6MXZO4 zD&>WT6-ATUdOVegcDV=*bC;Bx@s1O}S_7jNoIpJ5f=Q!`G$$Y;Ru4?lQM=a_xy2&Q zF7?3^9AkhQ`dGb;N(sGlr!xYLV}`|cRhgh8efZb+40X@icerhqb~wxVicnc&(C zWEd|MM#{;-i=p0t_zI1J3_@9Im1qy!gPzcjWX@3BOR_aGg%B4B#j!1=)QY4t)rh1I z%OM8pIL>h(P54fxD@;b^*EJ1BoO#;FJ1OH(d!G2n2G*gDIf``&i5GM` zNQfRZZZMAIYzw{_oqOJW0-uB1Z;|7Xj=pZcCCa$KWpgiGH|OI1(+qGCZzO3#C@uta z+=k^(fNbv}@va|CU58BQ2;5ufuT9gO#J7|GHc!q}5N4q3pPUHsIE z5{PxgR8VqM-Z8A3%*vR4q4jp3&3h#M99(hfXAcL(FTqas0LO-K=F5sb=ADd-OA4Ik z-|PfdQH-Tf!mDne*PaOp31{bv)6>zQ#Qw@n78vMQ;kX$O%`tlme;fQV)yMl!usJ6{ zl-S{a4l`?V?N7RKeBgQfi8=9b8Wxjvc!KrT2yQbr}vC3kd_OK`~_6R50_2mY}3a$j={q2%XXvKI{>icx5$@m6wZ}eT(mU zXi}w30uueBYzr04BWk11np`qPyrsRM&H|V#pt01fA}+Nq0>(ggx^q*=Y}BCZdrx7$ zk-%IJ!0Qn8Fnkdmbi&|AMm%LjUV#8!ZH z0cQ#w!tMQ5v~9pn${BMS6c{P~Nhm2Vr6S(SU;mm-IX|@=gfi+Stdjic<`)m8&?6tyNazKawldh)jRck4fJ6Tg-DtW7;sG2gEErZ zTk(?+ORHUvBz1xNzCogG#GLhpm)9*ZGP|SJS@+_i+uU#cq$@kNNd?~+Xq>5Z-&LYK z&b;?Pp$#W+m(wp197aG#t8N={g*0v3FfR6_M>{`(nmzj`f7)Wbz25^_gG;k*dE)slZ;<)lW+Kx-9K`;lD_kncJ+CU)EV;3lZQ6fb&c1duT91K0) zS)cV!B11@z7p~Kom=18I95hd8kG4T3-J`dedo*P)o#48TgIEf}3A5G?_@)jG&b%9k zTS@I5PDxJMU)=sPSV#BNgRS{q3U5rciygg4>AenB5F8NuH@c6LxBW|gt)Fn zFKgTb6E|SO6UO8vgcWZMOoQDc_ss~bwzzk$kfkC=$GuQ~H$HV~Z5$sQ?G6uycaMmv z_TganU{_#9UmOS6-RF2lyeX`0EtpN@JA#{Dr&hSUD0vWbWKRgX#Ox6BBua& z5b{(~^wHHO%>~Ec7CYjV249EaAyzN6T3ePKvYv2%8@HLiX?ZChPT+-`HucWGu%f&x zSu444$c;k~Uohaf1%JuY{ajCUm(1@_Nb;B&@;UUKKewXxM~b*;&+tvc!-%*HXqeZt z)@!)=Met zN>!T$*Vs$8TQ2_Qn_!bpXN-7=PDhSpbrAcC<0Kt3=yYr%$Ddp|AN#;1?qErnia=nm zz^t9q*w^DBb~NeYV@KBge4Tnb>ucP?zR3_JdmB!9Sb?q86XYdY%q$#=O7-- zd#zu%qPs;5;ceo;P1`Jx`vL@^Uk2poF%ZDMM~^78ed#D=(D*_*!8(dQ9Ah%70<5MX z+F$X&JN*37s!b>klH_Uq=AXX!Q}f^d3uOD&dvVm<`qQ(|{{9Ew`^~@n&Hex8PyhZe zT}ELDNlBGzZ-4rmr+E9X>}{Gc*NU9{W{x61ic<&Mn-{us=1D};Nidi{^8G9^4~1KP|8aG;`@h>we-^K7OnK}zJEAl z>A%XSO1Dyr?;rlREcLIY6xLO4mW-iDTSj#&_NVV3{&y_)pI}|5lE$k@?A3q&{lov4 zul|K*aA-LJJ3zYf+-u<}_m>tWpmp}T!;eW=L ze<5d(3f1s5ct1DY` zy&oL@7i{idRt;q<@o#>3_y?Bw%Z{o$+nLAAIk7&;E}G?%Q9y=f3^o z(0%(KKX%{#{&)6m@$7#<y@!xrOo%;cG|g z)Pv%~qu&-E%5pJ6F4hy|?{n{p7jL()^@@ax%rI(q5+V=ArF-;jHW}|0FS}FbB7@R_ z{O&+&em)wWxFWDeh;j5}JV1EY^!XKYSBLuu5N!Yxa4owNJMuI zGbzq4pVz$CO& zMN=P}a`V*7$zp_5(UxHqJ2YT;nHvl;9iAbY46&pz)Zix-d&752HET6(u^D$Ey(t|z z!dvtamhQb)=^zpx!-yX2{X(z_1}D3Nm&d*yO?)XQ1k3R?G*>J7GK^a%+qQM}$|i3*t-6f*uDcn2ChJi6Z(-=YkI*@~}>zZb8A9 z&{^XiDrY(MF^satXmBbHg%d2NlZ%ErrZ^?Ip3rT3lpF%p$FNAX;z7|k8DWv7OJd5< z??(K@V8)N2N{1p}sGW<}B+nQ7D5+r}o&v%7v~z{|C10-XOJ+hQ1>@89Nkw{Xr81U4 zq)X{x@8c4(l%k`1g&ji5)fNWvz%iOdIF**r|3NO|!f7LeC&yat zfsH{@p0#vICytk3trqQwYp&z6j5N7>&c<-NO}@#cAiBtb17fX$5ur^ch_QBjvJTo; zYoaZ3!N%-30nEXbV0QV!t+nzb@XU-a#Pta!mXx+kd%^@BXlduIJdO=0#RDcy+`=k6 z-o{~lhSW+a4!o~Rc7=qXM6_*o%Y zB^oxEC@br6X});WI9;TTFlhu@;B~;aDg7&?1n{IHaX3>^UwC2W7}|dA93LELJ)1Ye z2_CKL6kdvw_2$dKD!x8zDGtg%o&c4y$Ue>)h)_%^!*NkLP#PJP7PaGYEi9887ll@( z!8P`4@*^X{#gB~r@*{JdjEtg{9hZ8Pq|%pxQE61_F{qA8S~eOL85Rs1?10|6aBg>W zdERY8;q*!uMKbm(xJv=e*gR!H$NJDETjqu}%1uTKgu$V-q;CN6;AZpMJWh=u6SnS? zz%1i7H}B5GKZZ)}X+97=IWWS#Zln6s) ze$&EMGpb;xzz^<&?WC|Nmx0d5tS%W_0N1q*JwerTxEJ;QYPp`GDIjPa;;`t&Ku;^4 z4$nky(_e@axW)+1a2Ty)w?t^dBYlnAZ(nv8gu&G}ejz3&AHE#+=jR9yyQdX&adw)P zv@Z;V5>bQhkyXM*63l5}K&Y72xXbs=z)vs@F?`A41RDLK!c!B%;vwyP!iV4r1tQmT zaNH%^Huu9=5CH~q{{}TGGdFS7%c6@bC!Comu#_SKYDHXxUbhUQBD4ViFSz=Q;rvGs zm_Xu)e~>;`bgBQMjxcAXhDH0)UBG1FQb;!dsf-{E*cmQyNUAE(%y3%BLpEKvEvUqi zpWjb>kcI+!*qjC(!r{FOS zezU=&xeVvm@Q(;|g`G|=)83^_M}jl`S+-}`3ih}>bZn|nghf#qPKIn%u@chSs&m@7 zQ69RseH#zt=>%Rp9Ndh?LO9)(&Ndfg`mxq07n8UhJ3*=N%CiJep_pf3M%N&J#9KdL znF8d6-spkTb2`oBx)**|=^(yH2u(~HXo1?M+bITTL*|fU5$kIL#O?e&8gzLIm#L2+ z@iin91;rESp$nn-3jqAXmO56B%RTd!T_{ObRJBeo*bGXRyorJGK@G@MceR?d8nrJM zL&Qvt&pM}EUlNef3+ajM62~QoDIeA}{21UEIlv+&*(rjebnc<6aeRj7FQim#%K#v* z*gs?)yNF0}K`K|g_V1xyC0!D=xJ*Az`~V0$j8+Bh!T)g4#XngcL_5|Mg;m@qRHd00 zH;3#(9zTx~tA)9hjtAd`DjQ=0Z0UiUNy z8Mc)tUVso|6gq00K|uUq_;T``)-Uk4UYi7Z>fpwB2ac&{N+_d^Vfqffd!?@(ude?R84y zZr95WE>;trA`fuWVW3$ZE1*H>lOFugQX$cWr)7o`)fP3@<_=R6LAK8j*^l6lm!)3( z*S{z3DLJSpI7m zvK$)K5qeF-cT>8P$-$Xo-I3Glt-B~06NCID@GW}gw6^q-$O0-r+Hr=rFbaJZl_J06 zI2`;o?S{#fjAV?beKKd`7pWKtMx*$^)War4uCRR|^RE2j+Px5b;3v*4^x2b&XGh$yH5L;ks6m0>O5M7pwx%B#!9YL^EdLC zl*RBB0M)r3qSV5l@=6L^5P%z0CP0h1-FnZdt0-<|s63og2i07sl*ucgrYpk|ko%F7 zPV5sla5@0oajR@DOT25J5gs(gbrMykZo(`^5O>h#kZIV-YBGsH@aIR6`7hLo16pzpgdW@noJ@gX^ zK{zY;2|l7>rUFF z>}hk0O!l?0ht2Ps>})$MK?22tbrRi0R;tdYNO4 z$_O`;DR&P&moGT9Rw}!t;h30wAuO|X0;eW6C>VdIk(wR7Bl@}tmTt+@4@5Vjf}_75 zz>AzxES|eaXcHJdq6BGh9hjjwerxumfu!d=RjwiiH6``78Zh_;qyH6n#27GYv(ntM z29gQHuG8>93|kk$I#f{F+t{u@M}j%YAJ^WN@x@Q+qL?NnQza#tFxg6&L*#r}4pY$V zRUGw4@9Pf+=kdy+vsWBPIqp^?3M8xOd8_z=_kjr zKLh-DI}Enj1BmrKpF{E?pU2!yV&LHo{ruJl=OByVZ_^jGUf9O6AGz4afb9>4rN%qi znXK5jV;oDndJ59q7#vNECyu;dcCZ0HYk&Slwm$jJ+H&QBef|3>4>nGV^TCLJT%0UT zJkfr+N8=uvmiFlY_5?FeQ3uw0Eo{@2mYG_0d}nRaX2SA>WU(?a5vj{a^|8zeMc#mj zT^Dd&&w>wI_E5Pbjsbl8JQz`jh9G^MVpAjL0sj#80AbH7I^gh?+bEy-MYqzncY zBKmdTOjT13!V*0)HMu^Zk<1#Au?H5AUF#atI1D3NNe=!$n4Tdu0k4*$W`c4&K20G6`2j+C~ zxPGvhiX9U-#k=MaGz@bbhR&#qOQ#pyLnIISdJ2!1r+N&cm=D|nWTEZa|B!4TW(YW; z7C4{5%!+}tbbm|QF}~sQtQ_PkK;zR@-@1kHRGFFjvw74GT-Ua`yNI$5fC z&oZ1pILZStG{hLM3yUjMa2jD4zKOmp?0X7X>Kzd{WGrOm0{0L%Jxz=2J&D5^4RO{> z$q4bi0!jqrx3b7pfvDCl8bOEp0*0jCcLV(*p!GqNq&adB8RrW`iJby(BQ6)iPw3!d zSyjo2s)K4@Vl<$?tia;lJ9#vC@fTC5yXjX&g0O3G7~r5`zax=mD-hVPL0}y^h$}v+W##W066s^-3wIgc zWtW2E3TSXQgBN*rlxsBhhhdT793|5g1jS3nT^ZjQkV}SnBR`^F+vPBo%edzm4F<_+ zFhY*PSGO+vl3r9tJ9U&vCRj^PO|G@~Y+sEfO-i{PH9m?byR%UO4)I$xW$wKby^SWR z+BP0noj%pwIyR}yAGQMdOnDeUBJibY*S3v27Eie}-f!evvXE|Ry4_3nR2Zs6sC3l* zzGCcY;~2GUJc70r{3`NZ;8?CBw#SdXaNLi8Fo&9_lxCRmOkeS1YVHgVNT-Iz9eX}b z@Vg6dUj#jMhgIPC>E^4z#x(I%!NqsU3NVF_^b`N3?Nm!@l`_pD4gz6~YeedMz>2aK z^mEgfbx+EG>B#RyODRd8J}Na3z2(A`mdBG^ao4yn?H-h{!3;$av+H$HrvF5IKK3{A zyh(?-r-)0QdQ9PhD`9=>7#%MMs{U${J-n9ufs%JD)R&o~8JObHqYhB=GZU8k@O2cp z7>6smA}Q9#n!A<_ELy|91kN`V{*tVas0 zst1up#2X15ysvV$#C_>$?0~z!z6XhOGvDFh@XUg%_LGg&fx=bq`Ped6LgZT{+W92@ zB$70K!SCi;$5Nd5QX@}ZxrSrxb}B8yT2QVKv@ZnOpN;7=Xxl-yEMZvRsfxg~tSot|Jz(c=$T!g%ODORN zUdg}B(~za6jURvh*?jWFkBbIU(`LEo8GP{B9Mi<@Kd96Ax%ycPBd?6$Z1s2Sawb4C~ajq+^U`8o6s@b*#!_gTT@hPnO?=wvn`G`brxKsY<7o02ODv@vl4 zVOG+x<1#>)iL-0H!*OU${ZKD}9E}19_1i=skWOI-!c7Ub8qzxD>PIsFCjYdCccYY> z1rhNqb1j4GT}{sz<{u6w zvoJzoD=0ieny1eE90}M<&L!;UoTd=u!>BdQc+}EL+HB1+(;8CtL9FL zM5jZdfp&567C9fqguzGo0NJ?U3<_Igq>-NJ3>{XFtZi12n4kE|hrMvKT~++?k0Jos zeQ`oMd`)}fgyl!W`H*ot>2qvMt&Ev2A>wm)A$O6C?)hZY$4-~KL7qE-+=|!jz$m<% za6+fm3C?E`JG>%l8b1*47T<-0xSvE2ur(&&2KFbC1S>`a+y@kDz43aUA{7S@u_d5K z(gGmiR|VvUn>~HZt7t>?f)oq2N*s;)wc8A2_7sii$hzjLadS^%5|HGfCC3nu;i1Jr zSn&7-QQ}7@2HL}%B!eTXp?ijFe@|+n#J5{fAasR9hSIwb&- zDGK!J_x<91A%d~<;{k-pDWUn!iY0DdUsU;|5o_O6{Z^Z-?R$L-&`RMBo?C zzB5G}8{tPBh<2X|f}m1a9!VOOW!k#ovp5G9pE5xPo|ba-^Zdx555bDJuo0NcFp8tF z%ow1!#=1V+DGn@q3qkUeV&a`J9Q+{QwJ6gXac3w3mue((A5Reau9nBK`YKxKGi!V{ zWGz6IlbuF=Pw4cuxRAAo3{0h1Hmc3RSaL!wopNBKSaj7g69FqVSUerI2*4V{Mo1eC z9V^^y_*gSR8b|62M8#HU$%4xVlqHr9DhudvwHuubM}+sKkwp;q{X9lXN0{)Ij51%R zBh4pYC*AkILv&9VY$KxIjL{)KHCuwT6?xylT#?MnSQ#tqnrKqg+A}PpiGvWil5%pi zjF9~xY=Q!}hNwYdl{CIqR=$L_ijDBI5y@HMW@Kkgl`o2E+Iha^XQkMPh>ZMN!#bOB z37xee91!5*-Io8WxKzaf#-pUKZDe-mS6YY5%}GiKOs}hUS9Zv&y>rd3q&5q#NpV-S zhPz#p{JWI$ED)%_<@Sqnao{vnT}UOl7`Iix4iU34(zT!oe#(=v7BY!_Cd5H*Y`hV& zD)?&}P&WuTX4ezF6*;1(40-aA-?IPj1t!&6q}GuMth(z?^>U`}mBtf5bCiPRJ?Q;? zSWI%l!KJVW)F(o&zNKBYjhH8Ld`9@EX}L2!TG?8fo^a!8mfCUSdfe$+zY-jHmYCAz zXJjAv3B9M2kM17L;h1!GODTI}^Ff=^|HXn}@>87Aiw3qTYos+A3n*MRA_z*x#=S3@ z6MV1wmn%@Z?kg0a0_F<69TG6H06#L7-TR-G4&O-uV?WJSl8{XR;J@P%! z$CYx;lu!MWmyi0cq<`j%%1~%bK)%3Ifmbu#bk4R=vc*WTNVEkag}oa{<7O=enJP%{q@_~%C2dMQd)ec zMOQ^fq)n33*1_@;s(hTN(yB!1g$WV`Ii*b!vK}?kZ0a$RvQ$-zLv}DM59(kAK3-MJ zhto@um(lg;r9@xxXjAEBI_x1TYMu>u$p*6IV_&8XIxv6y88q7;`_qEf6AQu1^ucEx zTqo?LG~^OA=ANanLoaJ0aWUWaj4a&5z1B@)bY#zDHDTp`c3CSpB5-yowI&s<_ znjBD1vgXb#va4Qu&YoFRVyrsZ$Wq)sikfyO98<}_g8D&+OG$7|dxtK(>MW!+qemRo z`}^sdXCafSdP1-6G^7=^EiCb?m-@KY$t8cP7={GDmrvQPNMdw>bG6811XG4bIYTO= za9Y_?82LF8r!rbx;65CUo92d1Hk%QnW|J&N9+KNLT9VC3$>I`W+MWYk`0k9=Mi$f! ztS33HBdkeJ-V4`Tw#{y1iDnWp%R5i z-8^}T(CVhALX%!>bSTtnQb74FS0#YAgR@Cb%$9ctI@3|ngPlGAJRIT2^stl(D~@?a zXh}|05t{*yY=@*Gt2|!rC};#p_(J8lqK{B;9+iivZ;Isga$bFOc1~T(mJWrc9aiHI z6ssH#wQ_pG?G+A(M%{qPS2-FQy-w3w(Tb(8@{%t)8ye&Gl^+iEoPde-ojmXo@4x{w%~jNq{1WX4m3&lW)!P$it-K44 z#Nj9Jn$dTB8;Jz>(EZJx6=J?FKV4l(_t($-R1nlxxIJ-J>#~v4Wn_8_XQGeg_QaXv zwB&D=i@rH0&Qj6squH2_#&VkEG_}ZPg1p4|MxrFu_oVf%OjXLNduH}T;9y03;LRXOdN}?HbGs0Z;gJIklsPCE$tq6|hr;y!N9JGPqwdUj)5Q@mRBg1e7EI zvs;arreO~da1A1^cf%!v_kh4hE|C{OBe#O?HcVFGk{mZj|i8~^4mXn2V?l5ORAkAT^e6E<081w zJ_=PMjOv}jae3JTLe9nUWW47t@BEuaWYvmTiqnMa*^f+0aW=*ekoIy-t~`tJPM3bh zZ-V2~;u+9>Mm)xi3d0MlVjH;rB^nm1roKH)Z#$L1X=rA}-wL9Yo&BuvI0fM?`}kWPHC4I*~qG5z%Zq zkN&CFo#84u9)F<|v-);vRN0E-4l=3Q$YjDWq0if2yw(3PvV4;$3C&W1Se#>(B;qi+ z*J216@?K_uhSiW{(PUoUwV|_oS=^XbK(zKY!@iK%`vtzjKC_#S9I3UKnDkhjFPP=} zw3WdY(bhBi0T?X7x_ac*?ZvTHZ6xsn*|IY!Z%G|DRwFms2`7R#*bQg3WNpgF5{G0h zqNYS1WCB<#7*#7e`7Gh6Org*E{H%!4(L&*WUyqOS@j4+^Cn*g7JH$lInAb&9ZWT9= zr`#%T7Ey_MuM|_c7a2Z|a5A4|B-%P2={#n!T=1oe@=c64k6dExDL*U2%{^_Z_QCp;+JqQOsj89r--uvs zPZ%tLqM&_w0lL&T#S4q96tm&{n%}?b_}r-J&Es>^DX5&s|Mlt`TzoPdcSjv<0{4F6 za%3cN?Ve5WRIUkIKfc${G^e4A(Yo=yN!8`?y;igw-)oOKJf`FG)&$oR>8)NX3M);z z3`>Fo%BxNbH7yH3$eG}4F}%8QsZWR?Jnlm=U#pduH}uaqZ?R8H;faG z*~#p`C2_(jM};`yh^01(6V5dL^~4FUIm^MgYo@aK06qto$RA`a&!b{u0i-5A=*E|T zQk9%47u-~vFQ#KPXg9gjCZ?^6LtXPun`ks&C4AYynD}}1@Z|`tn}#p@)i4Nm|7{&9 zzeX7sA{}A-IzyyWqN=Ag7b0!tgp*$7{+y^Axe)2NnUyip%Fyo8rL<~oe7y-JNiZHG zBSYzK;aTgP%DOk~_^?Y%_uC-q+pB86#aGpcy3VUyx9)$Q~8X zg&i+=ZBf)q;-u5@DF;|9Hh#llKSYQ4bxw?5DHr*`OK)$ZsBfdFap~_>>RzK>bQ?5% z8#LW+tPGG1Ta)rF??$O|mx~v;y{5z4AoAt*nhtDa*D;Y_yBy873K*ElUHAFD(s1R5 zOTGj@hg@+l$+sOi`CH}H+8BY2gR@sa3fpm|@azOZ{BX0UCfa62Gjw(5!@$e!@b_z> zaFwW4U%hL5(*~tGxFRAuwAF^?TDH2__UKNwYLLZ-N%5tjW%2DR8@nQdBy25P-R*f+PVPu$TJegkOLj$sCU1IM^V6B>4>S|m3!9FXpC)5As#@@#S2DYN+oI^p z)25W-g>?Pc-G3XU@nPmnq@0o+hViUrGp~u8=jEzL3Fhb5$?55yn_{}Dp!+L?8#V2U zWcO}vhy$`-J>xcqgB=78UR+Kj`I+nmBNrNZOP&1$M^%)m(e&+%SL67qC@3jclffRI;hZZ7Dz*SyhM{ytbTXbq+ zt9XwY+CUD@Nh~8r-6Ni23#tq*DVt-b57M)Losd+R#+Ped3}-Wl?+!De<++FyR{Q4a z_^KW9OeIxo&Om6r>*MPU>tQq_6nU;E%iwPCufD8P8J?>|{H!7F!{l?gQ8c=R{VFKW z?lu34E)MpLCS|@L;=#GHu09#zpx?Puryk@RkXhQzxRARzjKY9mX}{TkYPtrB?TXg_rOJ_;6{iW=) z@(_rMAemzR@}#fy7zpunAIOu6Dr9R~RdVQ>wf?!eGUV#vIT2^HDyoesfgpsAt7+6% z(%5y6f1NNh8dv0mFXKl;YE%UZ3zA-e;j37)3_p3rVo6qatyZ7ieckt~v%Nb=(n~%5 zk{1K6;D%zVN;r3vaQl2P9h5FbVQEAk z`8{;u2elM^8o1oSBvul7N260C=X0U_tjoL=1}2^ zO_P*`wufl&D)DZL}B~Z zUmW7ONM~YnGEUf_@|wl!uI{LN9truq8o?LIkGynOsV@Il3#1d!v3BeBL=2P-E7gdsOatP?Fx`88#Ky!WgCZCAPQ1v@`B8nDSN3Mn$4{*ua^m*syaDLwD zEv7F9{m!6&Hn3}`u?8t4cFoZLP=CS-)-U5pf6$?~JpL^*q4EHiNndk~?rys9hJN=BWZiRabB?;b=a#^r zRDunl#AtYSKF6hg*H&sYITK7~ad;zJGmwpc7)7nZob#`ggzdC|;L&+;F&s0;t@hYG zgYMy}pwDCwvZdXdY8~-V0Jxo3j{#*~sm<+`$+k@n?2k=eir2f{*!$IPaSneQ*rPu` z2jrjHZ)h`Tc(8A4ht!dRGIDRb?ioW(yZzx}79mDsKQ#PPqlG@TEYB!y!iC*XzwQar z$?K}q;6rP?v_I{#`9ig4MN+F=8zXIRY@~bV4OFMwb zmDi!G{w2a%>>b^`#_u!)Wt~OO#P?y(!RkXC=u^H7<-3bHIQ0@tc~;K-CN`zLN7^3T zzJ0AlBs^NdhG@8Lx+2l{a4ztJ#kfbe7Co-|1OD|)$eq0r2)9&Rt9J8E4JzVQY zvHv^VVli3F;wv(`(*g64^<^WF-8sFMb3{^o8#`#z32xMqlY0WKe*QZ;Y z4CdWE+_-i*!k(FI@{A`h0jWDL>|n;}Vu}MwQ-RXMmfGY3!lSQ<`TZg&GtY4ZtR>=y41r@axf z+`K;;4KHT{1wwzLWj2UnoMiM9Ut&~F)~4EP^`e3x#NO{2idnZyaa zCW1E2hn5Qq=}u$_hsg6%bPMMu<+U3p3;5y3F#%<;2v}3pHF+c2u215KB|`7HYa@G@ z6y^oykMrw`@UmCiV_pf~EC7G-i^)*$ADLrg`2-b;0k~zVsmJ=o$#u~?=M~`KsIi-N zR~`U(_q;pf^)t;65lKd&&?s#eZ53R^XGq95KlcET9B4mvwT<^NXdku+;dt@nxFLMp zNWEj@`=QK>OqrY|oooDl>!-d4Btz8pY@Nnu$8qZ(l=B2N?&d%3c36dr1}>BLYjUti zK+rI1K?V>@tW@a!9&e+&QzWaG$AHBEApl;!k#pMZ4P>eTE~PFn1e~6os0z{2AKhmE zxDim&C7}`J^kJJ-!W$;py33Jb%>=Pr^GT0cBacBDR!O(wQX6f#v$QA^BuCP!JS{P! z=!cb(^0ZVEBhp+TPt^{m5T|-Nu54DvmhV~!mTYSAz!faQj}~k4&s`=#!(uz;uN`m% z@8!TB@<&3QAWeX5_>q)}^bzUNb~NA=Yuo8O1l{12L_`7#Z;QgQ4N=k;)MH+eGI3x6 z`v7WGOZp3}FfC-unG0cKcDaznyHO=r%pncx#f>1Z%Mkv(I`+VTEoEhU5|YK;k-&OOe#I~sfW(m2(e19HWVRAFD`OYh}N zPx6nivY2cYjk|ll$~1}>zudc9dXb@S;7PDkW3N%cUbs_lN=FHqi+3>o^NA`}q$xjx zQI@rA(8*7~1fJE=#Ukj<3Sxj#$#R>qEGj6b5H?@4i>2SeWmYYxO8wb!%-&34XCj(2zboJh}*wc9sMt#w6j5#DZcDh$*^0hWWhuk zEe7vX>uNSAZ40t&@zxB9UFW1qNO+^$x|6tT3F*1rAn=D z&uUri+c#~sOo!>q&>g<21umIix@lg`V7_vNtBhEb(VUYuYkgEjQN{S^O(s)18OHl9 zJ)G;&uw~p2eLz#eH7@yATWH^nzax@3}3`!*2Z98II|Q<1Ng@ znja@O8}EMn@Z(2x0r(Xotm3W^Eymr*835f*tTI-s(*<@R(u900UOPckbW8#zYQV%!biR zd08)*4gH*GwpXJ|+*^AAm+cXAO!%<^^#WQ8xOtN8shca=v2pXI zB#RYn&79GfHS@+WUM8%!ic}KAyHu6M+JF6j4c=tItjN{JrM|QD8eFMBH{wZFDRJa7 zy;zSVK=_o`le_G)C$yuSgjYl0!MD|l>`BauuL(?>IECI;;X8tsGlr8 z#CW9u)Nb(>!LLg{-HZ>t(92X?p)V96C?uyb1d&(~hQ@G_rm%(h23{T1fowkqBL=P% zYn4x7rjoe)ykP804;%h91zWB_t2ep4jw)^~smeOEg|!LJPzR;98SFn_PDa=738c4$eT(swH+ zvMUt$&ONb-4Fs5SfyX*CbWE$oPTlHAsZ)27*#b=gD|6otj~fX7P3g=htA+pN7#$m{}`zDbr@n3WMRi4-^9%Z`}@rpn%jMoZ|2T$brQ))-R_(82h;X9Y7f6UQo0tcHYp)R5uoxq_VB;U ziu4WEA|82PW#_!U!MWWxiB`VVTHNivNklGw{bnc%6l%BoCZ(bI5{D;a0kO3&$4~a1 z_YcJ5x>`it?wiE)vhQD#nEFcR!L1$@4eaW9aJz33k;{F(od*_={m(RH`v&&J?Y@a) z{^;+wVIF+v^`bY!ks0oj95*C=a^p#y*GUpXgp&-ZVa?2|z0qWbT!fO2xXI+9IPHV~ zXQfmT3UU#&VF%okIf`2jZ5GbG+_Dy-;04w2p}9?a+6-nrd*EEjcl z&t{23eoM_bV9di&tRrW5 zDf23h_6_?WDF|h(EsTBK6x|m1AyFt+9emmO2@;7E_I%$x2RuBl0KF8-3yfXX-wn-_ z2_5+uJt{(%@QcK;b0;{?mL<;&$@fE=WoB7kO{{qCqx11k89xsEF*%62pdB-_yF0rF zHf}Y16@$_No*l=}D)fqopre+Q_H0suB3u&)Q=0k^iV5PyuZsIALy~Kd98+@B3kyew z73=z4Y$<|}X9wXBrQ^Q}tP;j6YGV|F98Y8v8_=tZQHB#`l=2bZ&#%bCZhlp&vq->? zG+k8$e3vbvh~(e-ORaE5^LgnSf_x3-tnLV>I?u)zgYmrG(EL(0=RwXV)8QW{NZ219bIbD8K2PETD(6MaZ!06tsH=vsRlKWbAd%f@B!@DKmjm91Ay;`L-iJQyl&7P7k}6m)(<5bXfqqGUmZ-_D~bU zx2+b_$&rrDK+G`A;ajC$nY^auQpL<;zX|}-EnPI_T9`m-EQlAl-^D$M@2|y7l?&u` zLgL~O+?#>m@z(_|NSJ`y0I#kb%K&+f5eN%<& z*aIYWgA#_jTS_-Wg?CtcBz>RWYR6lBnmek!x|?-TLNosDv`#3^W>~|aV&T%9QqGtF zl=-7;ak+Q@9aI+$CGb`(nRb}R>7FKdzxQ?)^U^A(EuT)i7lVA3wsJz9lat9+$F9Xq zdmGq;G}MH2?ZV2puD}L+;m2^C^zvLpG{(u5xQ>foV?rjyoyP7;U!lORugj*wFIJ9! zfd$K#LOLd4Mn=iowjq}UG(ea=OFE8`%nksF<0=rhJ+Q;i-?^g{xa+Uk33u?Iz_fNLj0BdWVkbw%+LjOHQuT+J5IPe7!{KOZ4>}=z59hDM9X?#KPOj z_*8(iJCy|u%OX}CVKSseoerUBOFGSVBPi5q_V_Xl=F{tREs=}II=r_RbdfclH{Dcm zAwHdpYf)dR)|yHpNmKD%z#u(qfAVtN*hytQtMXH+PI;!FT=m5z?xwh#JWR$!0XdyV zYgG!QeI~I*5s=bN`Cs~b9Cf4kWxEJ(c8Y&nLO$B? zP8$JUoDE+L#<(9jL0J%lqKqa6E!<1hokqG8J1pZZUAPk4uR1uy&R}Si&lz_BW zA?oahAX|bG2EQ6BpMeAaQ@C?c2nG2b2;`~N!ebp5^Rvz;u&$ABNDDiRq$}d4l`*`x zBlVP&q4nY?m<~yOX*nuzhaQX=GbuoCG?mA$Tm}hrA{R6+AR|QPheon!A-mKehvV7r z!KA~pUjt85K((Cdo=T_*z=xCeX}Lr=_g5ncgqsH5!frkOHI)%p}pvzP4>ODO~x zP?DRB*UoYJGbfmM8&n#c4yUtutECpzG8u7vaDdEZL3n$cMP#=Cizv_^3Q4=uYZ6(e z_d)Uby@SuUWnyg~G>>+7_QcZMEw*K4N4jL#o$;Fp9)y>gyW2Evw-3xKS8UVX+&+-| zaF{UM3eo5+J^kVf56%%akvb6$%Osc<<1jf%Q4hs8$T^s8l-Mt8jTKoY+m=>N8mUUk zr4W)nm)st#Sc7x-YBkR43aQ9;4ovCBvpSq>Ae3-U94fUqlWA7r%raRzYvncQY!JM> z=kKJN%x=9Z4=t_d>S3SOarXqd!W!wXsNKlb6Igk9>EPEP$C*cm1DRG6a8yQ)=dfaDSG<<3YV8Fx@Ix+HK5CtWu6vU`8O6Y-_d` ztV;09y7sjSBvFErWmteUFxl3#vnk9p79_Pq0vOucSq8$@nw3S)Rm)b`pm?=K4oZ!U zE^5Lm>s+LE$u1}Hk)uCjo9i3?uR30{YM}FF{1F6~+2||`DV+8r(@_eJrKUUqRcR?! zGzWeSqrNgcb!c!rU(uo`w)|9;9lvZ+bxlx`5!E=I(sNObq`ZGY)qN}rYEaSHAl6gn zJ5+05ZWEAA0_x{!K^B(xoPK0!`GLjSH^CBB{NsAOPBtly)@kATJK&dZ9dhkw7m_Mf zEZL%}6XuOe%9k-_={(jIINQ7%Hl$RpuL(qL*s|M!tjJG_r1JvkQkC#pDpV!EtX6FqaWTz~57aQcTkJoH{U4|dLtHsSycShZx`(kItZMD0 zx3$D6m;+g>KtdMgWu;uIb*>rM0@#P5P}-5>@a2Mv5_*^XlMte#^6hDAB`=!>vctWK z?Y*&G;;DFUl^I{_)S*=2&%jfBS8i{3eR zEM}Cjw#|5zurs*y9Ko)*|FiiaG$&5=M&y?aEb($OeLjO~jr#!{paNInq*sZv_=hb5 z0b?FF1aFw&2)#=ht@0-;ZWXyU?zeuL)D2CL)@d6_LG(j@|;L7GVw!sbW$ zx;B8!Ue^VWiMUipKQK&3S>Z#lA-s!{SLJ5d2FRBV`&a9RkZl@rChLA1OL-mvW8HT$ zS8}jND}^QtRTV8t$n(j|PIoZ}$6O+cbTIB+V~6H!Rvj>cSUPAduwvk%B6WkuB8Ct4 z5zYje+EHX-Ka#S|q$BB`<%!8!n~x}KZ91x~BND9LI2qyUxte%G7F#jGEV9-pv!L6{ z(oHN0j+1FN8w_Y&ey&bgDzBTw(b+wc0+d{M)KaDU;XKW$K9*;#wf9HaCh z*dxD4kf}Aa0bv~$!A9@5m1{ie|J|Z9wH^sfB2j{=k3394Q(P$}m|8A{DTRgD@UrT- z$s^qwEBEw#(Cy3CaQnWka(c-&32b znwr>XG&H6YcMv(GWoqg6qD%p~?}!`D^C2P&po^Xi=G|8D7~7II#VKwuC&7$;xGg6a z8dJiedY2J4`JC+xEn$L?1ldY#lobz z!QfBG7G8}!7eHuOm1={iNEy_khwzTsUI3{$2|VE?3F=Ucs5L1hs4e5+>9E%w&jnhj zPICH9aEChjg7WhPj=(DQTxrz7K02mmAlvcoZc&x#jAFc-k! zBoiWm1))zEZZkjti$dJ=KpPhcQ)-oPz7L8KgEY7+_M=9nGYKKezcr9qM50Xia>LtH-(4#PuPp#%_5xE0u6FYs^PT`;ue?*0x)h#kcF{Td~|Bt@tAzjd5&;GVpbpq zqi?|mvRtB>`QmaUB)|g7h!;*v8T84?Gn^z@1A`CZielk%54Hy`HXO)$7y$t9Nz8db zfoq1t!4J!)5)5-{!7z&M%q`t04K7#%t0Rsm=wjVE9io>Asv;l<+2JQKJ?uLLBkUmY z2O(SoQG(jKNb6J!Sc1nkR0BlMk;C|ToDR2$3k56FXnn9w?N|X@c6U<=2&RuZBB~1T z-)IIt;B-|!a|)TB)Kq`*=`}ffIv8p6j|fI>M;sL*Qx_MWCK6#tuLy96RUgkXIE;(+ ziC|`Mi(trPf(pc_CtknWv^SrsED{Q=>Xh`ww`7EL5)ciCV4F3#^1UQ7Cl$vcdduRL z9E{^8o^rlnm~S|tdEmRC!i#}D2jQUFH6B>u!#KekV z%L>iJlkRN5^+rsDR`Cy$1vZ(-9ywX1;3tFr@f6II0irB#iy67Ahf5xDjiru1fW(Z0agZpa>=3+tFU-b=PRmv>LBn1O zVJ|ur4hW`1z$7T-BwHb75!N*vGjVX8n!Xh73b0s{vFb%&gQmX}EUbW}$IoSd7o?m% z2a{o;#(JiB1~UNw>jdkz8W54(d3S=FUC9V!3Yn#@+b~$jqO;}r1?-NzTDOXttHDOp z%z>>?lMvNzT8?c@O#w^`q?Vcv&su7JJblz(gO-AwEsz+rEN8>qDv^>EbS$L41t%_> z9kf{k5Dg)PRq#^80Q5*Y`{8S*UZ4^kB1yI9=@44KD1#;yWm0RLEp?rEasz0w~ky9KrZR&e$>+s%-75n$1VF7h^`$G6Lu*t?zh5FeSF#N4d*5gWwaHm z6+Bai5g{blkS6N#=r}*>l8*i?AQtyiMpf`K9w}Mxn?sbz7en+`J79qWyVu#NlCt^7 z&f*Z0n>HFP5Dtu(Z#1o5PGKcs*$L4wOm*NjdRd|p>mSY2vhi!z@6QKfwNUGXR_TX4 zI%z4hii9`f)EW8)I3$iiF=-4M!#6k|6*DzPC5lRJ-B!2B?4K5c z!5^Xa1pM{IxIet$!O@?F4pfQ#cu4bffTL71XY6vz#!StlUC)-`8%)mbm;(s|7o&mX zI5>u-^bGFS-K7JH3pqm=9P0m=dLaPNRBTK8u92=IrmfhyId&nM6kH~JOFEgZs0kQ#t1%iE4 z0%U<;^O^(*76_08$opa+f;{JC^AhCpk{}Ox2@(YPzVFoa|Nm|_=O)Q!TOM}T<RXybL!L@&sn6r(Ix@;en3>cxxQ(mg*nubV1s}e;iX?3%#V-HAY3C%!xT$1tSYOZ z;T@cwfYy2_Gi@oEvjI>Y#{cnDk{sPDlmZim_%N4wr+9xdPlV&3KSd7dDtHxD&t5AEn5jVXeb>=INIQl?n}T&C5$qdB#saxMt2(VE|m3?0T&v$DhKke z6bR#qoP%K>Z^!qKtk$|!Q-Q<+?h65fFjM)cCnb_02dAhs?uaO0=LSKFhY5(z(1|Nj z`CagT@C5|wLA}${(*`Z&KZ7;Cuj_`ms6(BqTXI}CSZ=u65f3xoVz#&kNr}7%Q882@ z;+WNeyMgI?Y+i7AO^RH{GDv4r9lE_%(;dr;mZ=1JZ6~?3Lk$;q4NU}`lX3ilD;c&i zoZooPACHVFt|j`iE`}QV%vPkz_2M<|OFdj{8%#NLTTW}ZR{V&HIhy6P1hDiW>kTma z*hsV+_m9Us_L&mdVeyl}F*av+;KC^$9X_(PnQTZs6ZK0x*s!e>L#U<#|7lu*Jz&mt z<ld|=uA)d$ZkzBl4&JJ_`(@_brj^djLyZH_MeNz6DB!!~VF3N-Y12oe`Wt9CWf zUuWdyMU}x4S|pjoHA0mWq<~imAm#EP6wBnkKxvGf=*UYoLhxy1o-Z zN@)}caKIXja5OQ|#<~Emt&+&^#rzOb2G{MVoq&_g@D_{(uvnB$6ck>-=4gYk^+L5J z2m1&q(*bXm&IU(kYJ?J%H=Gam&kaEXMNt=iJma6Z*vc#azMMGwwg3m%JZIBy z1*oiTgCP1<*(wEh&6K{qv*)ND?m8I=AjcRof>eqd!xs2qTs`hD;!w6&GA5!n_PS`J zt1^4*3dL8seiUJen8EM5DQL$3u-#0p;-8%Oe5%y}i0D*REtnJv-9=aHycO1pw?Hb6 z)ZCCB_op9H?mz~NZMgnR6(>~ju(rS=gZtG7JoX+85v>ViZU!WepE&N^$@KHh&3lr$ z?`>|*112oGR{Sn6%-|V8Mj12Tx|K-&X52ID z1@6{M0?fsdKp5~qP8tgnhWJ+Pt*x!?yw^rFx{uLn+$dSM-)UVr_6> zVV=?`t`t#xXa7?gwAoHjVFJkxf6QGe7$v(A%d4fX5~_U~kl$tT0^2z-doS%=38yJs ztT?iu{2Z9#)o_docgD#~sDTD2gZdY1bxAD*&pL$ey5)DAb(=087(Isk%Wx+d4={2Q zCrD+hQYBU;o1nI*)$MlchOMRwt0kYLmLJi*y}kAIb~vn?_~WZ^BjYMHrdbiheX%lC ztGJd0@J)>t8HTH^kO(WMB;R(#FRUBfYmccGM*&v}mZ3smPV)0`eb@Xr-K;c2=2o1~Nn5z8a z0bNbBZBH5CZ_&skYqIyiAjq;(pd8l2d*44V>+^LKV@p>zwW z4CS2tJ#vP{3wq@x#IY&29~ss%jy@L9@H%Hvh(<}np%1m)**NbWLxVNAEt7=ytG0&Bd%YtY=)8MLW5mMuidIPz`NPn{!+Fz5ovzJN@VEMQh++A z)kO>Dq1!#$Gu;T)hUy;1Qy#6p`Mq`M3lKC1?*hmc)oK(CT&yYyp!FT8ZTgYhtG2ZU z(?W1-g+S@mG)@WRlws~ZPPSW|w*YCNFu|ZZ=dpUl6Ir?1!o^lb=6wC2O=``h9^u#c z<%s`lfaV$-jrLuH$wvVENo#1)N`{=~MOl@k6fW`3dwaPEyKxr7~V0DH5~Q zI62gss|*dL6JymDE=5E>?M${veg zj}!~whL1zNvkvnz)Xb?>uqJ57^MmJufCrtr1v`$|XB#ds=pw|56HUdc%wfDLWWw^q zfjVvTNy9m`2H304Ku_=lADqa3{Xafv&mDZqPHc=@@gfz zFntq2&TPJbM`ClXs2v2{Yh<*JG-*m!SQY^NI8fmh0>OnJ92gfi(md|%CJmGMX$Y$A zw~Za^g_6p}V0A%$M6#4mCrjkVn@5#=ge7A>OaMfCTFR%#&(tHJAEg2&B%~OI+ghcP zLLZrcrX9=wj>R5mbRO8yYw7g-(nlDMKrXWtdhQp;$pUP^xi@zIx$zXL5K0mU^!cBsYAdn zGIF2_<~ZL!jbrI|1cYcp^pr7dgkq=p^CP*qn(kw2w-61}&FywM6$m0RG>k`bxGlL# zh9K?(nhH~x`Xy`Vb($=%;>`#}x(0XeZaSn{EtwZ(1~1i4{xibJFC}KbVj+=oaF6Wd zKa*m_G0)Vi45hSEg;Gz|(L60ysK2J@IahjZHw<;g06W>Q6s|+tX;FO_-OpGs6G1xJ zuUN>7tNx7EDJR6Diw+cqsH>MoDu`9X)*B!1Qm5m-9v zNpzlSB=6L_X1wzz?_k4hIQdZTe!)w@{jf{d^7w}@B;d%Bq%VBqOJA;;3c zV(yx+ZNA<#(#mQny|%)5VTG}U$Evn4u5E#UYFmIONo|GK(C69;%&6-F0eMO<`6kuL~3f*zwVUGpSPur;Fmrne#CWWz?Q!TM+kH$-E-H*HVL+L@k2qb>Z~F7(IE>!qM}i?G)d&qkt(p5sKwV3;)Mp+|veYFw$a z`LJ{OT^`u-X%YCE87VdE>hEdCAg>71?#H76=8;GmAsNi1E*Z?FE}4T8ce4b@>vhSm z)tBb*)Bxe+)+X1M=99)XrTOA_P4a0y?9D}`Ynyy+QR&(yU)#J|hso7S=abm!en6{k z_SlgT*Xh8q6nI@t&dLr8p4hs!xIm17D!v7G&}_Rm@-cEpL40BHz0%4jIu%qZl*LjF z0R+<<9OykgU5tf$#}saRKo)jfu+ssQ5cR9is@EV6KC&9(3Hu{H7>lYQE;9U7$5!bN zUCv_B8l*6qNq%JzGk_02qOpmGAJzz?rW+XBB)`&)RYp{DzqZYDM>H0#K?Nh4GFlxGi5l!+d-N1E&LC_up%8}~bL*JpMIE+@v?5CM_P1uU5SAz^K> zifmFm^E@sLVYb1qzO#c7FA$$f3?92PQiYpM1|$<>a2wb^4~8zN zb*E2LPgm6(r4b}6*OcvaV(`>L9MUAZUa&(YY0%=H7fn(_kgMa<$dN&5oIs7ER!$6j zD9I=}Om=$0iCj?y1}nX;a1_0kbze8uEcV z)vLI-?VvCiA0}-dif3NG1E4qF+N(7xix1-&{Q@3=O3|uDf8WwXxBfCP^nj3E!KYSybQ%$j2`T(Yz&( z8n?{ceb5$s$m5lmH?x?h;N-XsSA0y>Bb}hvcM3?@^8vgp5G>~b`LM)W@9!+PQx_gB z^^MWSYWM0=ol{iCE;xq9Do-(FnLmw7T!(7Fj+exn{*e)9q{E-!Qwv>oj?yBz@dYeH z5GHmmdMF}CPRLBn%>jA!B)*a9Hda0HKfa(?nvLibW|B#bItE7&{HJhOc#s_(Ok^0r zU|;bfrtkiLy97zRGi5+wk3d?~cB@!YM?Yd_{stYUVcrdR1f8i0ykkXBc=3Jn3P0Z5SU$ktZXACbtkc08Uf= z!?Xp3NW>+?`?$~VN$e^MdB3)&68>v8C1HcS%zdhLGh%~v6MwjC94Ov{8t$T1OnZ32 zcBCg-ttIc}Wvf8$XC_60uC&zz4PE_i!)~$2#ahcDo7dY43~8n+Df6ozqK1S>vuG(R38eivTKig*6h$+D9c_$fvl{|*ty1%K`a_+&NG zva<+Y=G~GC`!2r@BZFfp%y3+1z$Ef(K29mHxP=HccPs_7lv{9{+Z1B%Cd-l_`Jpyw zI7&iFGSQpFUG0s+i$TM6d00kI5C&f&v=;ts& z%-vXe(U2^MNY2g|X^Er%xV8USU`JJcb%ZL7iV-}PW^KpAkYEf+cKY{jyotxIdX`Z! z0Oxeaq8t$wdo0L_ofxwK4gm^uIYBOLkKk8_Tf?`PLbi2N=@Zcm46%}1?ULtwD==_B z0yRv0DW+ATA|!t5nE2ksxwipZ@Y<`|2<)|9qV)jymu!c{FEGh@6ZIrY(2M7Vxwt~E z`Ffi?A%?^SK2c20l~0M&Lfme%B90}M?v7KnEU`9y)jL9Ps8W~&CMcVc5eSAk7r58Y zWgC|w2Ej3dO+JSXSbDNFL)%^X5A9}|Kq~vqKHA9PVj!@!P#{FzpVMv{ui|~nU+a*% zn40>KtZphT*k}vkb&Gom-_1EWBWdFdgnR6KClS}-ZjC2;%KQEI-VPHY62TD9i|>5L zPiK~i7Kg~+Y>0@Kepn8VGxh|3KD z-TZni5$N6J@dJk)X63X`bcQ1YW0Ba=JJu*hyq!f!P-=4Fo7KkmatCYM( zW#h@!!+sPl9$?IOK-&}pk%k^*NLI5;cF=5S>L=(Nfahd$Ky5Fr8Bjkw+0IozL|HST zeAe@zruM_SLVxNZ5ov9YH8?-skZOJ&Wg>ax-c+HmCluytI+8_r$wE;sKq_aUnh-fg zXrX0;?~i3{6^b~-Qulk;JB%}zcs@PZNHqw>0eZ(fhsi#f>oc!84y^+S#RWS%q-xH{ zH$6BDJVVxN@oHPcghxZ|12qZufnmbv*L`qEfauMRPk>PJSbG}gCeg3PhQS|jwizY( zC8rv5F4f@&B1`B(_4s22xj49Mjb6HGl1X3z4!2V8LN+T_#lBY7d34(kQX88qUS=QS z{pWQC+s@z+)_3$wg@#a3Y-8CaP^z~STXn;|2*UOS@Yvp40wu>Io;YGR<7n~?jp20E zAMsfZ&OSz1;vn2?ZCxNer-%hpy}~4OWC5-_iiBj-%-zkmFUv)Dv{xx(=t#h<4>goW z7b-^-A`?JJKI00ww#fK=;z<^vN89$s15ttt$fKrIo+Hq0G%9hQB97}Z{*=yz(TF9f zC!Rv9=AtYZ1{#V2M7~Fq%SqZ1zE3@JP@II?I6le1S-uToq)T^BQ1a(1_)eWqZtPbn zm&ej+r!Fy8`D}*dvB)^3h%w8f$VhmTc-p~2{Pe@%l%fcAO23mCpaZ3%rqV(MC-j$- zJj|dSXG4%L8wJlfY=~lo=)&THcaA-_rBpi=eWt!Rahlmu)2hqx=SDdlVui23t7Zi`k3g z%5t|G9|uQ(uCK87pcFyCKX&Ou9l?&5M-U^ZJLAdlBl>$E;kxSK2(Q%5It_)SDM4e5 zA3QIa7Q;LAP$rbhg+aHVMG^62Dyg!7z$QsjFMS0?0v{&Z)c+rKiaDuqGC1K6J;f=V z=#BMs!Xs3i>ew-Oq9omk!YoI-mI|0b(FK+DPDVvygj~G=HTI_YWA|)f!q+#BEkW=z zX?%P3?b3uWJ&*!S;4Rx4eG=$wtNrSF6;>@})J{2Ds38w?L$1MQA&C%B9M4=tVcydi zzRfGsZ}ULPpuKS(Ik7N8*9?;%$IjW-olTKrCd4hrgN^IAV zNXeh?yNrdX2h#DnOuJ|?WS=>7t~-jBBwDVsd*cTP?@SfEa(vk^rU@2mQ!1h)QIZZF z#|D=3s_T}burpNWle;Sy!_RN-la9)<4@@pUCmO0 zuG68*S7YC zzcu6=+sHs`iKQ^Z!UyuS1l9V7bHT^`<%iB-gsQqkQ;cvIZrbK6zjmN^Ix#$mi0JBg z!ribpc7kSRbHwB1YdlEd^XoK`>)l>^7IFm)Ok{Kw@eCecBgXsigMb4a;Lhx-%h1OV}vNnOMhcd zde*v_T+Sqy;Gr0(pr8uNO+5O4Xj~aFYjJE!Z>What=?3bQzuQ_4E(#)gnA>!j815Y zd|ofXnGf&EOT~&`UO1Z+QyhWt4&@1)o^j7^K5{EE#vTS`EWTlf{W9f0kT19u;k+>U z5Q`s&DX=tKILSqX#p||dTWvzRHyF$rfs8HU3w1;WE^hA2@r&5yi@>_A@VjZZqj<0s zZ22OaU!{viQ%hMA#!|4^XbRt@qe-Y!09?ccn~L@vM_|!d3OmPtF=@3N_44u_&ue+G z>80z!JsHhfH|AIdGwv#2IApollYdP2>;t^3&7J5i?2%^>5XSd^+@I~=DQv%W8;)t* zoUQ}2y=aCOU6l*8X^LfoD!FngEpE3X;rs}iv*GN_s)|~o4Ehil5rS=WZZT^cDxKmN zcl4Er*js*B+`wi~c`1#e7gl0c&7~D5epMSEG3|J_Vj!DO-SdQX;{deqp$0Vp3MJg5WNE2)>_6zYAF z^d?^55Fwi@@Y3syK6LP1GxfY@O23X?XJSL?!bv?bMHF&@z&l8I=8v}X!DxOwnCM2m zEaBM`VCa^9jYV|A~^r|v-boAmTxG9htJW8$U%ft zkuDzNlY~$C)xjt0MVWKN#3OQie=u<_ku?txhP?&RIYuLtlntofEmCC@2e|a+L!x$) zV-%!-;2`xI;LF&!GWG6OLGK%V8cU*IaJI^|-;u_-OVv8AUAi>VH@4ykYhIGjoqv8^ z8kdp6LUOqDW8~1JpOuytE7UHpr!k&lqPP+UVx7)!(R*;(>mS@jApRB~%2bGVd!Dn? z{u{62eVOrWHa_mOue}Ui+xP^DrsY|aD~pAZ1hXAa+cb5x2d5|S;DMjdBtDdC6`%%< zUNnhmCu%?!IYnCi+;ZT{!d<3?E#b?Ik5+PplxtYx{#f>MEScsK|G~gQlQgrKuF|42cbJZ#+>zGWDN8I_eR)l?SP&R?$ODee#y1dpo&5~M9tNL z*6IbOfa8;Ls&o>WmQHbRIGyAE!bd*ZHW$eK{@Iis1pOlVU-n@DJi{}CW}08(ap|FB zwPSrk7jj?`wqb(I-tU6wr+NF;ue2uPLjBdR+AyWdfWFSN}s;h?m{qK zCI`nSJ|L|CBB-l93XO*lWkNO*px4>>KHgC1A07gyv{bu5pgSGWP5pvQwrer%7=qk} z0k!t~^C`@8@UlY?y`lwAxOFwbLY!$=pFibdSs>1>@(_`cJHY+n><(2&!(%{k6##6w zKg5L)Lqn+|7!;V|acEb6s>*_bx3fn>RO;i!$Iy>6svd&3Sz>-f+1dO6o{{gflY`m) zF>vSI_-1kR6Wj8xOt>`=%iQn3W!|D3J_w za?+ol=XMKCA2u{|z2z$qmmasy1E|&$i@Y^jciu`}buT?`p@X&ce(7-wwr8Hbk-N>0 z#Rtgp4&mkiZa`n`%+Q*6Lc`qX__^M*6_XLf#19Od0jnJ5MRFOu`mzGWz8MO0Gt1eO zSQ7XcSU_Y$D8-{*KwW|c8%FGf=4o?BJch8MXFb&KXXT96&GiT3kJESsAZ-RNIY$SD zx_WDXu?ad0a7xE+X|lN0pAN`}C9b!NpO5F{+5tIo@1lPI$NAzzc)B+Ol;+O<{$$$z z@ex?-4WK+2wBU#D_Xaot5}*$l3%(v9itW#*6b1I-h=QlmZ30R&hk01+r+fJl#-(F& zotwAT(&yYU`Fh+9Z&K)?pr5cPJCZD29r>2}6FPWd$J5S*f%jK&gpW#8ZK{{*Mom>2XXL}2Obij6hBW>e(xQPI$(~; z$$ft#gnE}>RPfHTt)y&XWbxT(Z-I|&QX=t@t@G_oTHw9^_;ZOTZ!F{=oOnDwyudGL z|Efe7v&z2UPs#T;3&YDbhwzPYC=jX<8_{8Jc4sn}ay+(dOR`I{>B#cwSO$=yR1Q4= zil)Ao2}G4Bxd)?yv%+a7mv$2nfR4Ev|M~^u@zP24(8+#3M8rL zN-pLB01Ni5m}V#^7;~cSZtv`^!?~8ga6a&_(XeXH8Z%%qm_Ly8j?XONKWoKXIJ!8s zoIBJV_op9nyFiA$NI^9cE&${31wGLbxOf2o$6NJd~@@jSns{f z&FBuurq_z!Mcv{)?iWsRlSBrzBZ1d@Hnf9T9QdKn#$RxXAcRn7j#v zm?`bpdE$b(BP!JLVT$pXr zH?6Gdt`qozWq&W1Ueh{4FDj7AL$n^M=Hsbl5{>*?DB?^)SMLRZEG&f}n3DCo1fb$a z?K{c8EBixZ{uU2CcG1WS&CQ(A2n(#m_SV)`O;lW{H4z*pL))X(xRGn9i+5UA4!&Pp zIau#pX9O)_8I|Gk13!HSHTV8#SRy2=~fAGE8* zmlBbM{t_vr8(5{UoMH>N+3hBSlZ;z+#8$pg020b&LmusNUd_oXldrgtP}k`z#w*FN zuX5n!uLvtNbjFzFohD%o)7T*qt3*FCAsVYWo;nv2M@Z=DjEO~oo zFoO1rN8aNBO%-CWQ?9{9Jl3j<&&C~Ge3o=DI;)P6@x?`qfcqoExtAF%)3eE9!DW!FTsIif%4qaB+A8e|pMaz|Ccw)hxpp-Rg#_ z-6Qh>Kccc-ogrZU@XezO+Z=-SWN>nX5Rt7$!FacL?(h7Lh}OzYOSpZM_Ns%nCeypK zV?&(vXAO6f>Cb1-d^!XBS%!B!7k1}7hb~+Lq1NZ-K3MD;`XwcnQY2ldH!gg+8L_ow zUGh6mHF`M+PKeQFg}KW`5;J7s36=ffWPc7>3@h#ooTha!7@X*7rng;a^X$M7s!b{8 za+%gw%1Oyt%^rlgrbTOk?=FcSW1LcsO-vvJzkLmF=FfZ{CWOeu~RmO7h74M?nE zT!0?JPBeA}a~YKwzJa8gu?Tf48t70qjc94QHr2koHpYN~dC=8kj0bfq7}WhP=&p=l>5F5}e1?8^%-mls?jU3`8o zxX?Z$dhbOy>}p!t#1xVjCFE{N7FeGcA~$n3vpt;SL!# zEQ<~u997(IxT<$|opblgCV+m%yt~)F3_0X2sLg4Agd3!DT&V;Cg>HB6h1{qd3AHv`7Is6MV2y{CuPMg?aR{bni6zewKVcwI9w92E*o$ z=|ErL;V)>Kp_zcBH5{GbT`Wi%oE9XtZoUNe%_9vXe7djeW|+A#K1P@qoZZkPDy9)j z81_l3-sqSk!zzshvbsvOCWIwOeenCk-p4b((DgtDgb#lIZf_t=I<1C2E5lw=> zX1Gd-T#90X3+KTw=D@B8lx-x~x@-%`<4iBck;s`WnLOhY;)A)wJiZCO$D9j2tXd_wbK{@HyW z)=YGmC?eL1w_!yDBEw_YS+p)WA*{j=l?$9*sRxFm+cCpd1~Q^Ki9~ys#Ni{y=7(=) zi*wV7n9I$Ud-v{MUXJa05(WHN#fMg70sm37)V$QTiT%C=|AMj7be93URxO6ph{5|7 ziMWatLB$clx0d?_zXRBFF;JzK|5$+^H_<=<-#oF@RdOT~z`BYF>1YCbvoW8B6yZQi z3q3!Wp(`txG;VOC@oX^enK-4cWzXrKiN^&|64yHPl9h zI=Q>+kp0Bi)h(Mk@U9+lcfCN0n3ShEs-S{Vk+yH<#=e6NJdDZ-yfU3!9}Y!o#li}~ z`~YVtkXH=lMZgcWg4__)t|Poi3iNWqFB#|9t}!-G!=Vez;^zr2vXW`s+OvT;_fcnG zn13;4^;%|MNRK_+&SJYDhQ>ebTj{W`#J{vQFQ`|9;9yH3V7o~HEPEO{Z8%xOX|n&$ zs81=_q(8JH#_eA1$;rk)JVp?X(*TN*ti);1G1Sa_kqfV(+?gFt24_@m`oFiJ@cfVo zkbL;(77Ty<%d0zwgN89wf?)VwfcYW54i0X(puDZvgyRM&pTPSh8brtXF2V!c(X;xMbgR8&Ii>H$r4w8!$(l(+Re5_DF4B6MH`%xw zbzB`st|bpE)OQ)qwGpeJb$z37UdNJU@`Ec1G5-3zls{)v9Ye!f`FXc{g&6>*G zh*2Du9t9#l$`dy$Z()QZs%pv#(;GAv^k?t*2A7~4HhCs4I4I9rs6FQ^-!Lnm)REOV z=uhu}of(@DN}3>KVeiJMOj}80sddVdc-wS#c0zoc7JJ!6Adi*1J96SPnCGufg|y0< zId)`-yFmux!2)b+$YgLN2@3o{ex^lTlA#k+@ZMvmxUPvge+@r6CTHhhVg%{OWXVc@ zbW~2y!{z0;H=Jr`h-@nvz;rJ?t(lZl&IkwDXpHCeTfIU4ff=d2qm@%J_s8s4PKfiC;W5Viu zDv?ZqO@2!fDfvtOc9G_|&GI8Nab#68QwLvdD`Nkad>2%(>SK}{^?d!hMyhpLx~>(W zquE*jZ>c9sscjr!@N9#y4`XC2a}n^>Jg~~mND9XyY%9^<~Uf z7|kEzrEpj4@(pi$cl`1VZ#a+PzH{JTPa^)OtzSL&9oiwkPQ3=Sp+r-eWkWZBK%8Dp zP|D>w2e~eki|79h9(7m=4|9m4NKuhQM>FGj8U$77eTL(7N=%c-$-_PLt@`osl)MJ6 z(_0)?71T!4(Z4Y##HP_*JeA|OSiq|CDdU-$(!xZCsytbC8hkn^dFeFfa$~pCbpDbc zC$?0IjZHg<$lw%D&4|Zm^CfR>yJqnHOgzhN#DIH}GCMx@*S2#HpxTpmXQ@R!5tHi8 zHT_ZJMAkm6`>?N5Uq*DC;t0IbJLJnAspf%+=GLIir3xfJ zE7eXLISV}xQF+;O(ogU;>F*``60zauQ;QmC&DVKWKg#G~F5K3Gx4s5Yl%7Op?OWty z+>iS;>Ce>AYBO|Z6nFRB!Wr^v{h+r$y=N9FT^_OV34sRfXY{U4w%4F7Nz$Y@)`72_ z7|ygw#=-D#IGc7}-uSXJA;C8LGvb6$Y9UGw6^C|bkA~oW0d#SD?8wE!P~YA%KNu+d z2YtLVMCyZc9z)co;XWxGALKER+yOINcIZD0ooK)=un6`OA2ZFMG1o`Z7K4Kdi^${o_(Jg%$c}a*i5aEoH-wZ0g z;XXSQ-bD_Ck7jr}SRpzT4U8NmRK3U>#*tEdk5--UH~hQIaZoIjgNw9rMz1w{^-B+f zJ?XGo>Pc7w7wye^AXj?XtWkUt^pG&EoECq`mp^EvyL=ZyMuJOiAn6 zhaM3~QGhg};%_C_HCsS3#prf}ez&K8dp;O^gpgQHR`hmc<+?P;4{?rYw4_Ea$`3KG zH$Vt6xB^025lnAoF(SI?TadYC!b=n*{#7nn4ImF`@N-I02ZQ65K|@)UFZAmZzr)*B48 zg2inR@L)2-&SGIrFgUml3NO$=CssjoYr%(mC^KzYcPzdnY$^^dpB(2RW%%xUAWsBG zDSG>N2Kyh{ZEARtM(+^Uz>1KS7c=ENH_HGjx8i+;`r&O(XWC60l$>s2I-2KRybpwnz3S}Wv&*lCGd9AbztZTr!>?Z}2}U=8;s z>6uGET|+65pp|x&5Rlrk7t|HII_S^(p*n?=7W{7LVMDJ|$W$K;5e>@cN2DOgI@GQC;2ZAN|p?C&@ zgHS@3STnsrHN39KyXB(z+LU~!gv zkcPp2r#yV{0)XpB1q564WhInMi<1+zCfDYGK-+=!u`L{+8+`_K{()jTPaStbAOfs| zZN&Q!9J;|{+IqKJr|Uc3|LxQb0q?|`BPFVAwas5*EqFd|n_NQEG+a|r#B}TNk|i|k z-Bt_FkZo>bokeKcnR>U^;mYA!@-(%r8i;JRpvFcacv}D`|I5XYt_jk$rI6504WtrE zrbWk%Ud#orY(g}^JqRe;Fl&ov)?dbWzw>^jlfJX*-_aOCkqdEOOb3I5&i8C_TEhzT zhDJ|L+HV4nw;1=WWf%o+)-jI(ngcW;>s}IEb%M6rFTZs0Nvf}vOcV=TXtEYVbQ4ws zaml2C20qPMyH+=Cz-j5cku-4in$jskwj%<$A_Y!0<)Q`j2_(>I^61z;Ik-*f!76#V z-)JDLdfd$6+si=a$Nk9-d~3yn$UXom3_kdwlVs5N{_*~h#c#k9&jdwV*(5vR&3=_ITI9s7so~y;2hryz zcp%|$+WEMdD);!fNOK2alU~lc&aN!_G*5dBeB9hYmFAiI-hTOkU*;!AGn|_30T9Bd zpHAki!3kD66~u56f{sL7_gXhQh_D#RE6h?mr1>@tPMdKh6EcfbwqS;FpKfpj`xmDL z!~i5Zn22NvzVuSM71+o%cbY#N^sz4|<=mLcdWn3xPG|Xz>1g^PW}fSSv(Uh)`r{_e zYbgDb!NIioAO-gT+rnDN|C`jJQ0pcOA7|_OgD~2w_Z&<0{N9ExLVGYC9cG;cLQZ>YY|H*k;@d3PiJ_X%#uMakwQQ?$@BzzNlJvYoQAkexo*9CsQLFI z4j-&qCxaFu#LWU{Nygrx!U?XYIx8#aa55&<>w7xuToU|feRi7kPQ|R7aTmV6^>|+6 zc|?w^Pa4y7Kpl#Bse&kq>^n^nM2fGQ0XIxM1jfmA1D3FTcHJ}4{2d|YV5ve(fi`E> zLbPOGF7im5GIty2yBh`myB_5R-sn6U@R&#ql@dw`s4%LX}u$EQmbTg)b%-ek<7544y(CbkEwqV>6}mecI~$0M6Md-dFeW!*T;sIvSsK_6Wdjy& zyta8Y&t#6zyt?_iWrljJs(J`qnP#CD|BG3%>n=#E||i?3}2RTyPYR zscX?^B8RnIH;`HGWT<+&d75{UIlgMh93h^NiRKu0o2try!)R@#x+Xt<7tq+&GTON~Z6?!|I7W zyk~%2^eM!6Me1w}ZQ=0vFiqSagQHYMPPazSYGHY(hMI6@OmlAOB)_Je_iAU4yR9CMtbz zYvUEv`R>-n%RdDhtCV*9zb7=LOg^8G~%<xDpn$A5=; z-1zS@-s}Oo({;n2sJ+P_diQ$Mh=Z+zl^I7QxA%r4k@o2z?6VRnt3#JBPd%jq*#ko6?VVKLjf`0CPy{8gH+l{ zwFhpLWo(oSqEM->zS!J?T{5ujPIuD$_6NWJ@s)!I->wsw)j&MiWP{Frn@e5?U6Kwe zDW0)K6%9@XHU{MiiPB|ztC>}go1WPT;0qA#1TM0x38a3-e1JB(IG}+J{3QQeN#NKa zrDSX@&9wn^hr1rNf1Rd$+w{626vohw79VsNrL2QEW$&4fW~wDi$*T1I&hP+=>K^7n zGRU;kCGnF!!y?d^Yc;mT5-9&OS|g|+V`}6!rjGvylNX-R=aUDYwEpPD9!we_+sUK{ zU;EqRPwxKmZ$0kmKqqpu~IFr6L`UGCL)+sOT5@Azyoo{tV(>h``_t!9+VwX_ z$Mxy;=d6tNDY3WsK7H`~?jI6}>r-ykDfj80J-_?R3$ah7!X=B2$MS{UU$KtsQ>9Mc zr&}-V{uxWVKINrdpZ@;yR_2v+;@!6S=CU4$Y40D6VdmEE5)^Tm=AoJZm- zyZ?#Vzb&X0-Ha>sU%s;2|0+tE1u?uLUiBe#TUeJE*5_iA8yNkp*c+}nh(0%rqyMOh$ zXP&wH+kOA-Up?^O{_-FAZ-4Q}{@dQa^xyvEU;A%=`tSX>xBtR_`=9^OfBRqm&42sm zfA`;h`9J)(=Ku5GcAkIE;qnJB_;2@L^xyu@H~hDM{!RC7ez&pr>@%}Z=JQ+a{|{5` BQL_L5 diff --git a/docs/_build/.doctrees/index.doctree b/docs/_build/.doctrees/index.doctree index 79dd26cdac05358a24a11f9712faf28edce7fd34..fc4d5cb51137ab9559d8d51f2314e827d43e7772 100644 GIT binary patch literal 2197135 zcmeEv37i~9d9P&2k~Q)n`H(Tjp?&VGygR$A!oln0wf`jkee6C@sbB|2q6bKfRK>9g!ljI=&G*i zu0CehD;x8}+Mez@zwfJmef8B>Up;vGW2Y@!zKs6YJEuKctu;=T+)Aauf%#%@P0KyeZgyK`Z@#w-DazGaz0&d;^GERUY)ap$)!QXe!0K{y zCX~N=dhhoR)}~wTOs(TNvUs;sYc`x2x83nt&e2-k8*$1l&+T{>XKJp%n>BiWw^lyZ z?zpXvgT!~?+wJ9!<7{;%w(ZzDv15FjvuS+O=2GGAX4fgZ4acpxvmK{Xt+iQ^4w^Ds z_c~sE&gnFrIrPD)*N)X1(<9DQx8u}0PP^Ld)+>(Naq1r0QYbeY9kHapIJ zoo2by^1S<;O0DIUJGJ9pX}-Gp$b5B8Z{f+QdZ{iYn7D17mrn&Gv1i*9&1jux{YaX z>_oG5Y^)6N9h;r&RGW=S_S}&oHx@ii9^ayVjG^@QSgld5=(v^~&lPl8^A@ z)naw{*43;-XV6$^b{iF~*}O;9WgtBl^8Rme6;(I%PG__O{~;o+8t3|%wMMz#t#~w` z8MDuraZgsf*-mx-*3%#<7@kDb-kMz)XUNyy0lH7un^W@-_f}PFl?qVh;oe!Il;Fh~ zjqc2p*YYa!w=U}y81>uDMtu%x3jimr0rXSWQhhOzV|R6kkzozUa-&JR-Z`S@qbFMK z?5x+CcTI9WKTJ-L-wVj!yW#}r`)H>*8i?6wdsIp;LphWw*wnjHq$fEE()Y`WtMhXs z8nD9P=hYmVl~9h$7rk@$G%B^S*LK`S#p$?H#0Z90>mxrY5xYN|h&8k(tz#m#cB)$k z+D_JM7*2BbP)%IZTSH$aF$>ISpL^%*05a^jZ`x}xfx1tk>l&bsi)mxFs->>Jp7mu} z@61^b{cKE6o<#2c1Z#S$Y7I7^wTAG#>w9O&y5?2y-xlBdVs9m@q_?8osX*TG?U^9gLC9RZ2gSkh`$;dYbK`1rt2&@A5{L1t#+Lyl=z!TiThciW(SG-63lz6I6%(# zmTzP;^((b8$lw&?YONd>3#3#YtahEf?wm6*K}z%HO*_W7LTR43c8Qec^-sHQ@hPOb z!5@W$LQf8q1C#yL%d1zAe35pmPoB>XX%y!IL}~gS#q>QYrtd(1AW7=U6#4}3O6AW~ z7S=&Q!b}1+zD(NFa!8m(cUW_9&n*XT+`H%CO;Tmh-UM@{e+zmV4+HvyNBxC9>hBJ6 zFkS39XoiBO?f2bM>r}f_PRpBZI@eV@o!Rz|v9W3PvIMeR^3)@zE@1!Y8v?d-Bj%c|4#e? zC7`Q_30>(by{j`2f-_61>b>WJ{r3flN7WG~m`C&7Vr7>+0YyVbr#;Mk(tD_YZ-)LjW zVN_LdJ8s+Sw4I`8N2S&-H;;R*xnVx6nohTk)m#;;Q%9ECY{4Wj)opj2qfM9sU@n0E z$&`#WxZge924cV_NDhp^Ucmz-UkBtcV%P*Z4T zg^VAh%epPcZ97;()ah@d*%&1idB(%?s|;HQfP?BoS4j~g{g_6*gY`N(iq#F2Nm>pN z5vh(A3?mNuL?(|~qucDZ>vN;W-Fg=lYHTSvH`d!t6v-BLAa1w8x`iiXW>mhv>(*KQr8D@SS$dldjK{TwC{&Iu#jgHl3qYXO5c3%uWuf7?55~#^-f`z9 zm_@73O^xHV7RF7HETO|CN6tf)X06n0O^;2CmnOzHZyRfG*$l036p2R1$G2>r7@g}| zBE0vMZ?c&0*Y{2=QByV5;cbQh`S;+3l!xBN^n4KDmMM#p<98d)h}S>WO#dF_(bN#? ziLQg1imN`wUxoqjR+c`#B1(^Sk^iQkX{7XpjRya+f7jk!dv;(@$l@7LBVs>hmt216}#JQv7++250&bW;cXLrfD!}DQjXdbVX@e^|xW+O2TV;;g(c65$@ zi+LTE>1G-8Eat^F<}jyDmJ^yf#eAxbEJrE@sG?lMv{yM^a<+~*p6hnEY~Owj4Y7&s z+7NRq$6ZXY?NXcck+L`APO~9L6DstRv8`hh6Js)W-)Q^i?>7nrgZC3p;ht*%@GF6M z^R+`50Jcg1$Rs5a3v%XGu<#p3R(z|xB|odmstAvic-MBp&clL zNypU+8rak}KD@)(Ep&7?ylISKLj&`t2hEjf)OB}y8oH|(`7N)mhP~T`oxj;)?~o*E z{O@ly%O3Re#&n?0ZoUSSEp{#Bw2UeDPK@~$?G{4y1+?7Q0`_2O0{wdr8dtB^U}i33 z;=l98J+x0bK60>$nYx4NeixQH6?cRTG25XDP=fu~2!mEY>G&j$6|mcN`6Q0N^kHmP zwQFqawc97jdOXRr=+bQEs0lHLwm(D7{M3|ib!f#iR3s{D$oExHMAx0e$af7PUv}x0 z(3dy6!oGhnnimgA3j6*Mc{J>!9;U^*5N`rmtQO0dzY7DItoU5dc1a0Ys zWY!?-1B?Ks?Sicp45-r;oD;C9K?5S?gjW4WX*-w};LvoKB10&)&+E1rf?;(J(+Zh0 z7#gZyHqZZF?1SZ=v8&w)v@hcylcm=9pCC5 zb-gW{He(OWofzM??V5=#6PvbG#-~PaoN9MkZn;ycc4q2*khbm_BJ~kTB319BPeJj~ zU}Y_=gz>O)L@HE^B4`qQ7P%G$Qs)_+jmHiJQWqeP22w*i^5`Q&IA74=lkm`N? zfIz65>R!Wj?tscwgH{9U22>hY@|?SBb>9O(>~&j6;e{4*FCw2Ej%Ck-2?G#>q2A@| zx0W{zTkWW{TLPfCH8fD;ssI#j*=K!u!`*gP?@Re@H>N^;HSv8||X_cz}s9S^|dvrmr>YxuIs7;<5? ze9u1I#5Z)Hb%?RN!@04+mQyX-vZ!GXqv5vZoEO2BlQufA*RU_J<-lsgHas?M zbBfoZnd8@P-3;?*U=np}vt+92FyvsC8nBuhNHO#$N?XS_Z5`h_-Z%9BH6{UfT zd$B3eZFw+|%*=Ef7|Pt>x*w~HSu)Tb_xNVtj$kmJIB}xXV42tsKlU8oYMDQN>rY#N~m6MG%KFh zN~j(osZc^iJxeQ8B?#5aS^D^j(g@WT#5^N5$kjwNf>kQ)?roY0Xs^B9l|BJ{ubxdM z&@TCYINzvlV!D~ZjNw*%?BLS@1-Knxw;D@cp=q*hewG!Eh+Z8V?X+CxKFH2-w^d`l zv@qA@S}jjtwY;TIl>hK)*F`C@Ps5(60rmdW1B&EaZXSSU~jEi5|%UnmuG{cTw zsDU9jk!h!DD>R@z@BlG3#HL~XIpNN6i#hi}X~G0V!+;%@IqBeN2GDy{nAhu0o7;S_ zJr{-XBhED=&Niq{fz>*sKV#>)fr4k++mWPC{6GFw?MX0Ay!{mIfi@|9$`ID@q{J38 zu-3+NO^)akDb)!1oKb1~OrWNm-=eXhrW|T_+9_ufhSn!o`uK{{OgX8E;+(hRjF<&8GfzGg^$c&H7N{$~ueXfDbj zmm!B5djDuNB7Q`uq4&=;cGS?Lexx0GTQKyVVCmy4N-^{fod?VQuDyGXH5%G{MvP?^ z2dT_KgWID!Hy$LnOAN3VNIyvzx}l4`)XwNW4_hTu@KF>-1w6rAfGym>O>%Fy1J6Yi z7>r{0nu`67@b2%X33z?dt}d(&w6sAk6r}A1$87#GFt~#(4rpc>!&``eZo{6bw@P#j zvORWu+mOHqEs~ zdM{GF#J`D?C^*Nu18uoBs^2(zVw?oV(bb^Y{HPH*;VtW}!?}_!JmGLqx;{w;8tu@8 z=u%u4dMjD_-nx4ay=>xvmu-4L{$=MH_M%;(I(yTLb6R`Hwrh7>M?2lHBhSDLaQ!@U zFzjs*@eFV-zodPh@2%H=B{> zv&SU7>nF*nez;Iz38Vo*Iqs8ZytXf;JPY+I>bwrVXKSm3r(nk>NS~Z;wqTf;VVnKJ zbfId7V#!<_N87No!`~ie__jP>(W%07SRACF7DjjikTnJF`Ykw1!kcQ8cuhV{vWKC~ zxRTzP7Viw-Gg6&7JmQo}r6Zse|H2ontm$A8Gy5y;m~R2{l_@!ROW#d6Y{?@Sw2@#E zHq;LN9P}MD?;!Q$li3M3HFZ+1{ad*%q!k4>lyCbOjE|MV% zrGs>l-A(EhpqN%90Hy5wdnapjmJAi7Jb=c!85}jkRH}q+gpQ%j)J~$o zePYLFxJh|Pj@!#`;z#C0V?s7`?HpdHlLF-SGSj}Aphh_Qsd-A90jS0LWD|jt;?-^J za9&_(QN;uB`8S+sqvL+eB81f=JLZ_ad^iV-!-T46HnY-%5`5Dp*Mw#hl_v!fWA$7p zsKc4`NrE&jtb^lzA!>G-bE50qgNJ+uCk3klgx8Bz8Fa0I4h+)rT~8_BLA3bsPrfpt zs5`U)qp58|Ri)#z)2(KAw(k?23`RJrdPWr&p>pacY88rEQ=r93oolr)rK zN2sizqvw0%KjL$wv~ zk5Jm!z(_?z2sv$bj^bF&je;J10bBgXDgOrlG5oOwdSL6-{;)0nPavNjlY;69M{aq& zirn&WZw=UjQPYJG??dFPxgBixW_}+ch{W`i)~|@_@?@@}*rD&YFoNLN{Iiunn2R5c z4U}AGL;UKRI)v>o|CcDoFstj0tS;*s-tSTJ4gSL{ss9H2F-D*YCNQ3LNhS>+*)uBB z$L~`6V&%|WmV*FKI!8axNSA@iRv!AVqYiKIU&BiEUynawh7|2gx;FwhLd#(tqe36@ zpw#mQsEtX7|4yxg{`9H1^#02OMbHa5OPsbfVWHAHaeQv(NvZ z^e<2;wtGv3OaI8IkQ$dLxlVhlOfy_M7vvJS^!Kc;R3ql=EU8`O-*Kv1aU}kox(!q~ zdlj)Kb}*d^ID0u-Xd9=b1&Y~>ON~_~2gTWg5y%&^)af`I`e5ShVd#S}VBLEpLJN$- z*HB@WS|aduFEP0fUqc0I_>F?-QF32Zn`Zoz5QPYsC*@Gyu6q85h5}24X0FFBT)AzN%%PG-k`MFe8kY8 z;-{=Kof@9smmqj?@ci@0mm8i3r^8a=_ zZ{Eq0+QEBNv$iH}3bacSjx**`0Q)CK*RB0n5`g_;R{Aa~z&6r>me`Dt8xaX$YNY1C zNwC>(Ui6-n`Xj*bdn70v3`eYBXmmy!X3I|x53{hWr3SwLN)U)R;9HC8a|2(tJ}(u> zeV362Aa^?32hwOyU$Q~mCB!Wbao zLJL!_d^z0~6}n!Z4mxaJ6$v22^WXE?N+$6^;sK#_gIBBHTJzY zL89WYuY!EJv2OqZEENzQV04NCLi&;o2#-?^4urR}V#D*60W?zAyNxBa1L5-rbWf6S zIdC}&R39>9=dmQrp3i9PfzO=nvDwz8qBTDq5mcC^Jy5FZ99O!J^+66k({ zCA9MRK~ekCi{78M#_o*tr1-_;Z-X=X_R%;uBang|#z ztO{UsA`wQ-{%MGMCY2Mr<(C>!&pgLunr`` z0>4N(IJhon1zX`mg6n^Ozkus?20^XVSrTyFo|S7>nHY4VC#4-Se&>W=`>G6@OSLpNFhG*qpIoSs$6QX{9EAPRBF*+jnF$eE?bO9h!n7-6CzlfGqx z%vVtk4w?6`f~}w+A@eSl)UJ=daG{Q&Nd0r+3RL>$V+O&jyE|U*a{F59)FG{wZr2J(!e7f)rmhQCxLMxic*mH zj|P#fJzf$>{QIn&SX4-SUph!kduTBMr_vUa1fp+0MOz&KyBDkuVD~1gMw*s38XjLr zWe>j0KM%#^S>|7ge7W&>frznGKz$CQSu{}7H=Qlk0nC>En<)ne>N8ovR@jn2y@n-C z0P4X{4+lWK07WUFzQrJtwZ}^W)Vs5C!pi4Cm-DYl2YJG`rtd6w0x-vAO9J8(OVp|e zply&qas76y6=>u7ssZb)RX9^Cy7dGJic@r7ihQ|&HD~9S3P`JrM$te@-?9N|k8*Gz z^;p4HSdlUdwI{6|5n%W^5*iMMB`X;AbxT9R-?B(-*hHe2Nhd-Ur#wWWM0S$wnB-7%=1}NJ7iv#98gN)Vw$81{09Kc2&c{ zmszDVwbpndL4@M8#)ptEHxB0Q{Zc_;n-K|6*ms(TzGMT!w^I%dgtM$zE38N$oMB1r zK=_iy4SXj-bg`>Z0Q^CNxK>In2>}08Rt_#I08d4Loh?M64!E{-Hh_(Cf47yDzRm~$ z{Q?OD2T;u++*X|in15uIrqqD>2MH{X1I+)6e7ONLZEu$fAb*DuB?=(vOE!S~XUf3= z^0!#A)?qIJ^0O?d9Uw2-#qWmX@jCTjoD$nCDHJTNL_lu6OV;)+2`nu~3vG)Vh)I}k ziwa9o0o6o+&b|CHGcD+2=mQ5Hiu%byoFmK+`+RTKfIp!^bp#51xcn1%Z)Ly-CHV9xsp)q!#Eg z!XihYf|0@mqyCT(dn5EOffPnrX=;lAqt_7oIT#`MGwvOjL5SK?bQRjrc&$}xQlruj zC9pOQmEMeexlt*(pGyT#uVCZ=JgrsmG^|mbzGnlZAEO)`kY2_Lw+?R!NGDlRJ0MMD z4)iVYDMwBPS06J-VC~P6z|}{y(s@zgDk?a(7~NVV^?q$heKbLe2S)6Ns$KC=r3#Bc zDfKZ@Tlx!PI0vYU`v6Mi)kevets;^doBmG%ALFp;Z;>xIHd(v4RIv2Nj1qvQbqbbv zIDU=llqefE{U_z%*z`xN2J2Xs*z|`isU4e&N-pe|1V~6qpFttfIfZbCt*u`YBsvo< zOu1&`R9#dgx*-A|jEfm`bTB>vg&4DnRTYl^`2&_1p$=U`Oyy{EkwP1zEt=GCvkF0K ztl5&lsW_~80rKU>8cPS43Teg}9jfcAtJFB7ciDjDAm!k|GRg|H4owLx8(C62uv~Fa zs>tl-mgtK^B&eiItU5Yvbky4FB>|L5R%$LPpwuIVzq)tDa#4#8GpRB}fzPogvGxd{ zdLs!72dXgzRH=HS!PlFuB9|JzdI@q72Vd_*zTEJYx!X$xYOiP134U+^=zqN;46#(VHluy z*qn0__rBr`~K# z^BdjFdyD-kUdBrz%Ft<5y}Wt_Re3K@E-z>fsE5mrRik@rf(zJN+I>45b{Q1|8-1O&Av$>kDBVkf z!$Iksp#A)EVhxdAVim6tBB7nJ*Pz{#AZT%jR7E}=k*JRFHE0jB&nIxN@chHZ9TQsi1l;m`Vr?k*#KN7?v}kBPLRYIy8e2MDoAh< z96X(0c&GUHV*xjUZU&v-D&G?9`hQ<+henHo41eEYg2gWRGW>>rR`&&vNtL&wQMV8 zeROMSQ)!~KY4a%Zl(v_=>1p+Gj9;sby8?0jAXad6BPRmo8&JUSDd$(9LmtlL?5k87 zxSCZb;5sv(q-XyJMc&T@z2-a$legGg3&9(mZF#J+-dR*PV>A2h>6Dk`{56xD{;$%T zVSYLN8rFKV>8C3sB|+l9R3pEX(8x2Wk-UXxQ2FtV`y*@P&Si~*13g`O>$U2*zFH^n zm4P3Haa&?&po#Gy2X0WBUecPNB+jE{oU$~^Cr#RzY1j9(H;P8zw$iA#ywN{SzR8L4 zkN9KLKqO=TfhYeuOYVOIe}WnEEE*himngfGh4sn*RzdDwc_6LX1^$GrYswLQSV~`W0#KyHH>RD?6%hcm^kX_dk!FRIr4E5H`rH0bWhSB*0j8%9k(^@b>@4|nuNZDJ7KjcfusI>?{p-qRp$La zLEALti}VDSvqLqPgR|D-Z_aidwJS39Ep;RlEi0k}*M`34F?~ zuIim}v|Fz;=wa=lM!b_~HY5neE^~c5y}?3UoiSe*UtRiPAT z&!`5$tE?ibPh2E=bluh|I_opaze4l|ln*Y$J@okUWy{!9>D1bei!0Z=ZMV(>88v}N za}IO)JJD<%V<*4sB$1=-vWt7&wF|@xG!?bIPP^nBtfCwy5p<`0$E`KmPTNCKC>0Z8 zwOL__Jg41pp$oMtLM7(k3T~xBx5|5MR{Ut)ou0;(?|rR8R%$N+TdOvO6i}rPPaK(a zPE@^?S8(g?CaxuKb@0n+cc(^=yRDkr=%9x!k9Dq#Iw~dSHeSBlc20Qpx`V$=7H5Dh zZo_MK+l9WWiAygQlbB70NRlP!|3+%0-ag3JJ-C6~( z;8EM%+1dIWX>Lf?_5woji35||XP+J{($N3S#?Zo5=jR@6Hal2Qc#{A%uo1M;AfdOC z7#z$b6IxmCG|EyleQ!mrGJ&}R7^ja`37hnJ^L%eLG-n1|)!PZP-a*A}@TrBpGa!x4 z`f;x^f9rCLoAtdnpK2ne(ZQst|2Vo3Ov5V=Ll^`4ZPoI9#7e(S{q*yHnrH*!ZJGB! zNSRH#`5(etL9yozG5{17o1Ihhn8{s%#r~V9Wy80w057AUuUFuMs_M3PNV4d!RMo#t z1!c0$iK+|XsvnfRkki{k@mD*7z^BqE)JKF)`b(&7S z*6`ex(`*$Q&4&0<@n$`kDjH?j9!3}-5u()^U4U7A4nPQHs)8&*tUA6cTP)OOX6xPz zreThz_uZ!^dc76=#>D&XAZXs;OVWFb()>Wbn_ zv)!rB4Lj92tbKxYw9}l0`ciu-w_Pz!F;I#8GtR)()8p%oLYL(F zELYYE>RV0dvCu>DjFllNQJ6(whywC!XRQhagA~0T`3sXEGe{ANvbX1@?75)qtpiXt z9-#cIu}bns@DGi_S7JdcCU}A>O}AKsC3ttLRnv{|z0>zG>x4iQ@k@30SeEYkHA=1O zR4v&6+*{K-y*A@chqUIAQpsU2ckFOx%C*UMx$4aT_R6J=1;=rAoTybg)g8{J@$uP? zkckT)fGPeWXv}?DGfRvWKTAE|ThVRRU=c8ig&Cm?0mR~lj4~*zw}v%fY_Ib9x(9mhimhHjbO4SpK%U}^Z!d?bC(i~Qy zt!|mNM960D0xCM(cpkt;fh`@UV0@tkXUl^byB#P=u7fD_K~e`tL1wEPX%*S7HcvEY zVMlGaxi*aoN`-@XZon?o=5_VuKZV-JQXl*~D@lQ;CQ9 z1@q}}sc<8GAkf8no++&@>=bb_Q^Qa;XbZA=XdGLnQ`5;zKt*7U*J&4aKpv|*?z@-% zz_ReN{SVy7DI_}|MHs;;%yFEi1-29y)aW#^kyru8I!5nw!ZK^FG9#9c@`8zK9WwQIEjp%wcxnV9;)FjITACvRk_DbA!s{6uRk z-Jh*Zbs>a*A!L&vL?I$y%L@ymRCGLPIpk0@H3vkX9gx~_uV7tf1JFuh?%;^&9IbmN zYg6?(pzF*OLudk=g4>vLjsbj$tkx1aKDIIO>MMAHc*x=YZhF~>X z{uAB;$#h`H(x%O(7bt@Sx9)MbR(COH5z-~C5CaH2H1rHn)%4e~5>*?IzhR8WMP8u) zu2G#G)5QXv+DMq*TVArXJoT`=JZ@N?gaqxo{oqYIoV~mDFng6I_RRD|HhWTVpmJdP z$7twcO9A$7w=HxqZf`F@FZ1C1RTXm1R&`vPA}g3yYM0sZZ-zn3JL!@MYsA^_wstjJ zt>SP2x*B#6*@WL{wq{(chB0(RL#DjW3D0XdqZ4d!O_ZD$Hc!w_#fVco>dZB}G?uug zgetl6a(@@Q2(_ckR4;Z0co+-V+G-`Q#1$VA*`j&00INe2V;uct#ynbvLFFMWYJ}A= z)<_{-I~W7XlMipp`r_@9SSt%!k$K>%(SdJv@F7$gYs|%AI6xrpWy)`;nMIx z&3S*FWt=j9PO+pM4h=5fM>&C&xNtyjjI^bepubYJe=AGv@r%j{fCiLOxi6z@E`R%? zl5?Qjn5OYoa`r*tE*~3l_LiJmv8uo#bB4yz9VO@Hx_ffQZHzd(X&b<=)Edp>wem<| zH`X2yWh@-XSP?Oq4!%B_^teH#A*7O+7y%?TjTgN6Q#$;x` zC@#|C8gr^w*NL!vLb3r*iu!BL&R_-fS5xW@{tEojb)4SUzh5ZKXh>_Yk3I!^tg-z< zgYEu3m=1%nyET{eN%_i|Tgl{ejmE|64a|*%EIaL%fLaBc?Ur0lF-xLV7 zQY`!rz+NA0$M!I4TFZ2hW@Mkmj zZ|TpLc~9GlTu!|WtaQ{8X{8HxCjHZpCg9G;0?{k%uC>c#P9US5?Wq8 zz^DQ_ua}{E&^ss$VX)He&;(Wtj(|odPMj#YUAM*{=oKeM>3IzQZ5rP+J~rEGmOT%s zIo%%HdhPbf85mW2WRI@VI*U)ObFM{Y}U{3FSnJg2` zgzm6l77q6i9Ck)W9p>%@!#J&4g0%=UW$+9cr7z132#o(=+HYQa-TM;iXY%4a-ZbQ z{se1we9|7duvVHhW6k$Yo1Ke1@Iz*ndH3X(7{!xn>s?qM93gM9xP* z&i5p6meP?U!n;^HtDS+f(IX_Gwq1Sp@CXo1_(i?gO z@hsN=OfX668R-(MZk>HjxGDB-37}bvOg6t59ccV7qAyV=3uAz09m@9q6nU)p5)d|o zFMV{4z?X0!f(${VQ9oc z!o$k(&*bT28VVQGxRf>PuN0L(nWqJxSVSs+IyaRus|g~9=C?29>7k%8wi-=DyQFuL2zdnMH1cP7sk{yUHcNokp$U&NPpCZqB)w+KSX%Y6Wvu@) zJoVNy%7(~By1h6-DRu{62qC&mw4poYKY)y3M(bxLU%I=-cZ+e34`vUD1!c)+zyN1$-*IE;Vs`~Wk2W8n_tOM$ERyZ}v5tiK`PT2z1n{bU%8eG0B4$o(Rad#57zD>2@} zWDU%p(op$_}W87;aH349o2fKxZ zjwf3Ub0J?Tzl(CQKp5KZ)r}^c)er}Vj@tW=0V|nI2n+hc%s#^~{!YT9IL*v+N%YJk zN?3?lXLV3k-;DEdVlba^f>dhc{4c?N$xk&$kff!YZ9WzhA_3{ex;XhC!S|fA%~^c5 zk=^T`X>NyneN@z+IMX~FG1G{m5BocsRT;Xw%j;3=H5=%2CPGX41PMKf6v|HtU5gv9=j z2T$+A(;`ka8)q3txhK=iH9rtN*T^CkVzN0y71lS~+yu&q*+wN($Z`vP9&~ZDD=0)x zH%D~w@vq1CoYT$Oe7Xrb*gxOg1);q`G$3)lc_3oGk!43uINFMaPdM&Lns5rU{7AfI zj$z3o=a?mKh2s880>)*WSMCPU4=bWC_`K4}(l9x%G$~U6W?ANyAEKOD=9Sl_Zr_tP zue>I8n~ZtoUNG}PWY)*5WnLjNn{aIceRy7>3hJVDNtK9sMG9A@c}2p25(40mIj=m1 zhQuyw_`E_%_`LE7dSdemds^gqWkj4ZVuvLorwusz3%3{8&u~gzULvNM*h;F9g_v6k zdU1WT%NK~NG;m-D&=M+y`6Eg&==|~rK_PN}DeGe7|2DqooL|=Q`9*7c{|xgIi0|); zCM3=hyvm z{P(gnOd|aMqfEIF{+x3&BK-N3Ay#m8ynFHxetqgT83;cGW}b!2`lzuWJdxQ1PQAx8 zM8XJ96?`|4maxsj%qb9F3RfnCm%~sA0g%8%_{-4K1cav~9N}L`PYmJN(;_4M<@?es z8MM1xbztAO5O}^ErS!r0B#0nj9N!gsxb!}D5TrCl9SI7N=v~w0&_9IlInjGHNAGCxiZFgxI5KVplbB!6CMnrC}0c zAEr$45UU(C)b7BKQkH1#+3?|bZ|W8e0;;Ui5P=s^GPvbxD;7G?j9c2~FkrQ2fToG|}|KXh;H@QWB1)U!*67rtE34(e&T|XnJr# z&=jTgq3J&m>$p<9{Gf)W|48o#Mbp0v3h8~|6pR#KLg3*^7SCpq+-xUjq3gD4ClNrN zqB<(Y!2fIXV=&Y|7=ijeM$X>|3MHa`@t_ui2Y&rH1P(7cc6uBW0eQjWxK*(&g1umg zlRkr*9af!ZW4eI@`etJtU0ESAqbmzOJ3Ko}!{qF6A!Ul69ahp7vblM@k@7@O4?Mjh z)>!H`4KhFQT9YS;k<_g*CWr=DS43uA;4Kpb5!J+9Lof_=n<_Y8v@WRtjEw!TNF`fKs9qxRb1>TpXMX3VDi6XKs>z>j~LyH;hQba zkVSGOBXp@n_!}lC^+K`e(SW*9OB3r=7H>jU8?+dAA^b2)9&SGT=>l1e=t19SbRzUl z_2Yy2`||RKvxq)~KB4`=Z`Jl+&)@b>EmYfGC}57|0jRj z|9J4WUl0jqtS7~AS8$#&40|jQ`qckHb?#gFJNHklbN&|1i?SDUAIkFcZTg>o1B&Ro zO-5XZ!fUCj3sF`Qn9Hv5AF4a&*ekl-tSI3w6kd6FuGf{4$nl??T-=4CVBdd)*gzLF z`BNG>le~|$L!T+GIq5yeHoMM8Ux1?8$iY)}&Tpg5$%~i%J5ShwRpq+tUjv?LrYlYg zcIQS{2xsCV=EhyvEn>k)c^FZ4x)EE?2w_!i@>9^{CnaYRiWG$tWDJ={nHCY)xfY-# zC5HM>%zD0xwG|Z0XT z@dLpiC>j9)4(}Ur@P9VXyC<)nIKocW-NfUk!B3ql-((&ZZXbw6AWu|Lgn)|Q<&oat zEMI9&@>K-l{^EXxjx&UCF5VF5bTND$Pw8yJUZh?q4nLTQcH%VN%aJJ}HUPcWO;Dyo zclgxU*icg;+4@5NdivcL27nVQ-1pO* z!?M5hsQUP`dHN{WVYttSYV_kaVLp|o!e2%voBFO3)&BqzXE^&z4b4f^xPy;h%G1X| zi265qD*WnGi>Uvdr;jO!imQ#u?m$2(hlut@jg)gP2!l=h5GNhzlQ@e4v(}l&v{-_> z9%bhf+~sg_5f=R;8Ws%Y>7k&oanh0AhLAbpq+>*y0}C`sJ@Mc>XqtNB!N>JTuV#fx z1&%OhvJfD12}6XmJqiJGoTal&*6^?mj0aAU`Tnap7x9GnC671-UmD-a55nJpTZ$>< z3%eVQskWr-o~YJv03f6Sv#>)#KgQ(VX%=7#6m|EHBkGsr+eJ@YX!FziAOEJfEM!ai`}$kf)DnC@e2+<>OgOvGG<(^C$AO ztD%BYyVH^gu9qp^po%ZJ5Lt{sg0?H-iClAVrq#je?d z`;3B8iRTg4sQ9FVs3lVB>KL<&}$DVp@nbk0k;X!VT*+nk9T%SRkCUGw#g5@P|Tcm^KP8 zM$<%Es*qn{HPjq!4vp~g@#nhH(V>!qJEL$HGz*pot0OzcT&dK(0xqRLCa&6YhMqr! z4#TYIvP)uyDBr;^fKR$i2L;B9eYB@BS`m*5-?;!~RHZ zgj1Kg&4OUN<+(DhY@=H!80lz_0`#Ce)L8o~P2{Ey;A%IzqZa4+i9RH26pyuqYn9L$ zG@3OO?Q;>ywb3EcfG4%~NCDlYl5{5sN>62yq%wNb21uPHYa^iSaon=adMSd2dbn1n z#j2%(I2(=Xn1*T?bNlxigV?HBXZ`h`WL z?jL8MF2pW0>-9-p#H`n!=Fml$Q!-5$6x(M6VR#YY=Tw+5U@${S;Ok*9TZ~x)rDNVe z;nZVU5qrK4wUU)C)f|Gn&qrc?9>J?omY>Zf^y~T5iG`d`REr0kR8&E@ktup+K@vfc zr`7bL5Xu}n$!g!56M!PD_Sws$Fm>%@ldg<-L_4;rJXtsRlPqcS7W3)@9XOYa7*YeLK2<#yYM3C(_w;BF4G9`LKN>7p$t ztxzX$#uH->(WB|ARHkPMqXMGquZjo~zi}fgZsSHdPo2(wYwP%lOnn@q)EoS(jZA>< z>sTQ3ynRqKH;cB55d{Y?qA@n30`W#fJ0#vLuo$i7V&t%(RMLj8zf)a1WKb=YINeE^ z(up#QN$_R?2FOn@n5P_tELKO@*1`<#JO*uhmp++LF*6xe*8`4!vdfVGGi9k!zi!eZ@h%kT5`C}D#SqjJa z-C$3Pe0F0SoloF*W=#f{*23bE;_$|3{Nas=0vF=+#=P<`ji><^pVyfo3D*L_puo;# z#2nQSPH45pPQ+RjZWcQc(47KK;R?gKoj1GnHjEhB?)XmH0w2*F&vtT;v&d5)7sgOk zDju=l)!_Lr>nKlo?&G^bA-xZts>c{3IEizNeFr~qlk5_3mn#V20~hB-v_zx}dH$ar zPA7S9zE&(h|5@R=Iz0DU&ylP{R(Nivah1Q!UW?6Dp4XDrRes!FQC3%ZUU@tq8?N$a za*BLIKRmR^M;-RqJN!K~rSA~JHz`W%2LC4B+BE#T%U+9(f4r8o{PXM;W#u2Qd?5aD zb%;L`j>5kzsUpi;@M>914=57;|siQOkQGL(#D*bRE_LAGx=?-_!i>KN=j;9?S(^7%Rs2K&Iw0EYlL0;+I~=`$$ddaqTujI&S__~og# z5N0%gx9DZ)2;>X)P%NDp_+@ZEoo*^}J1~=Y&S7Wb$fOFnvk*lop8Q-^p7VaV*MhYll?-LR?4l+-=|DNVpdpybFzEF z=AkH0KMxz5Wf!75;aO` zio4SeGc{PuV&c_Has#1#`L892B&DMhdw<2!#h=(av?|t1m>syt7yXL zbrGZA@h(=f`YWZFe`OU_<8Aczxmb+>25qiBKV6xpP$lfTS8eYR16`ynvFnJ!zP6iWBmXu)fgL(QW2%i#6 zg8h31CKH-2Kb5BilZ!~@N(L&MVA3ah5nvLLW^3r!bn3CDK*TIF8AL8gpkQhcIV61= zoZ?ioS=V$E<`ux8{$CUhBxH7q{qAmDQ) z%1#C!PMVb9^SnHL6vVfJPpX({x80=rS8`06kS)QD-UySP6K9fRh_$wr)V7cMT14)j-wSHoO_;3vo9O*PN_Tb|m#y@(Y4Zhi{K%`@j*5*EjJ(IC+lQj~_m=LE}$us?0zdnM6Mp0-?q zOpE2caT&_aCDE~S&9*#U6y!GM8hRT7l8Ct`B8|V8c#91@j<|>o1I$&dH5-yVA^m*9 zI0{cl_VOqm$ybscR%9Rv@{CJ)6#I8r(gle}(#j+nA|6STG9@|j1@TA@op#!?WjrKF zy1OiLM*Jug$WkS)zerb8R6z1bXV_Aqu%s7q6bj^8o3?W!o8m78iE`16^#LvwZrAL2 zP=<~ohzvs4HOSMqG6^sANg~$>BA0tD4+p*B=u1vOvtFwVRjO7;ltULEkcpf7s_|E# z^lCw58K<~0e4B^U7jtAI*Ww0S1Q#V$Q;aF!@Z`*k9BzoeZVZir;0 z258!>_M4elCS>k6c;C&q{q*`tm$^SPDz$RX7cv)g03HztE9Ye3fs%H!yQ#(ODu~&y zG7?%F8!cw9-ndat9s>%Q+&fXrTdY>o-{_Cw&y0o2dh06a*bO6h8`b2njUkh#OT*vZNj@Ll`apo_Dl-ZsSHx*GV&A zpzd&WAPN(fSl%@zUitPX-#&6JxN8`uu(n+kEC{3!S9{R%=`s0jKR(fa?Wqi^8)yrWC z8Nola?0#if>3g-nY?~E^veB`T2a~Z#uEJ?)n`spu-+VG%y@Fp9CeP$$3Wz3;2nQ?e zh=6G9V2~vs8hz&h(cT26@PKISX^{h>m1bM;W1U2Jb$GF+34?ZdbQrWyF$)p=Y!g2z z9xAuUkE2e~3A+AhWs#xD&I%PE0mOK#hSN`3u_9#{viAjr^xk_ah9NUZ(jR>65-Xh< z5sgdb*J?S~_wZHPeV?)K5qhUM@Tq`!nQxc>1hU#t#t519KUwl{u(O4ZNAkz{d-K0} z^U}n~`fGbFw)hsj7A?MoH6F>g>=k8=ZNV##2j)nIB_|iLEz~gdKSu3d?AR9PMIcs8 zL<`llzK9n815I6sh!)R&E}M;IL<>#<7G2@Jf{BR{Encvn=7zS@4(>pNQy{E_^zLY@ zIpg3e6}S(QQF8CDJ>-SVC;;o?G%f?_RA*GIi-jmkVZ>GFo32XQH5iJ5@sz+}#+}PW z-@u($LMM?XFn%$0@=ikP%d?-Cg@!UHz&6S>B!<%h1O+&zO&dHS0J9c{PxbONL9h#G z-5nQu{Ecbnm^arh6o#bDW(d#9Oh~`9Rn3r?wnAY8LUWMV;}5-4GWX(4^b)?T2aqXZ zDMYVz`87i!hqu42cd8sSin0y`xj|cH&5BQ|Z}Vpj7%+pf^-a;s=y%`c*a2ZerzZR8 z60v95mu5|m_KevrPR#~l;kG;TkIsjO4Fcq!Z={*5b-WoZVee2Tq1)(aQimV9*x_ft z+@T385xPHAOtvHT=5Dv#~WS$1@(aW&B4e(N)zIa%mPXzI-(qw4P$Ee3-S~o`vEO ze2Di_?L3^Rv({|)Z>n~$Lt~W?gj@dkye%iXe>QK+&+3;#WmfjTteUgd%R-TZ(k6CNv!?pl z@wh#?aAtzJjirkZl+oM00B+imCp|JmUwp2UVTj7ZV;3V+#2iVl_2F)xBNLpiw-|+4 zfk4iZ6RctJN%dLMe-Ql15cuU9l$|_Fa?*sgf!Ncix8>=hApYRaa7Xgge$OIOcrrhQ z1J=V+|$w>dK1O|}SLMjMHdV6`~v9>39=8(2>TDGOMm2XW^s<4&Im8w+8tWEaC z6~Ew*y{E-nut!Ta%b_~)ziw8*ydZQO9GnM3&18~HB}i79X)?B_4j ztx^3=mO3`S1cdwI!LwfZu8I3Zm^+|&c4ww))7@sbJ&A~vaJ-jyj%b<(yEY`!5PxB8 zU%BER`(5GQe;Fe=JT<2@&VM&3k0$1wY$x^thsqO3awin6kYS3VGXHbl>A zQLI|umsCn|!!KWp!^jfEdb&%$4}*J5KKuO%%DKX0!nD+_t$1F>+SH*NpQ-a{M1 zzMP(6|6;Gj#xP!s&M@0065q2|l$Bw;@{9~iPA)Gb2-GuwEwy{GH*Lj*1aVqdZ&k}X zT4|Q&tGAPJ&^;4P+Tbf4vTytL+i3qnY~NmW8PpxrC@&;nwBQ#K2nr=`-(Ix8fBTkQ z6(~-4tnXP;DEQihmgwu}u+C?~2$7$+r2b(*A2JHF0*Exe{}5|fd{W)`o^^}*btqdm zzL)5C-xf6|O-keYyYuu>5Pxvv`-k(?{vl+tEvR)0`|m{J4BHzYLGqjwjx)Z0E>9oR zP}nfDi-nl+R)ON5`rFPD?T-C%oa>Rd?2Niu*2-)HRs_PiVA)T(+|^&HCQcZ| z+M6h1MU+?*SFQXQ{mk`^J*71sB@pgHt<5d``Hqu6*Ur7v7(A;(xbQKR@!H95Jj{WcE?7HBUd)u= zycLb!N8$O^6C=*1Xh08H+QlFUy;Gy$7cz;M7zIDa2-Y_W==CCug5NTVjTdcg6nvI7 zF+S-aqu{qucJe6TL`tc?|7D&&3N~0L&s2e=zL}@?e_BKee>*>giV{j@m3AEi}SSOS;(|l>iZ=qJC`)as_&cgbWxDnP~Yio2vQ;@jfgZm_YMT9 zid$yc$&<;?Bn*qxlgab+Ku8OqX2DRvIHMWpjc`Nz9uj^OMe}w zNXH|X(sLUgNVN&lIKrnV(g!$Ve^ZD`#1|zoAIu~%La5)*`rjwi^g6vzuVm*yL>u`J z)vQk&Ma4^}HW&R0YgT;HK?M2NPLkC}n0$mfrUzkSQ#^ z_VUQfv7BtUkzS5u)KBTHLm9|b#XhBbfk zTo8{RZd$%it8izY3U_26s$WFn4Bk4_(40gaaRQ>^Q4#fEo<0sjR4-43Q%^0TzC2GK zQxLVcM);^)9o!JAy-`ekL!SB{SwtGY31#OJTz~iiH8%BFp+AwQi-N?)-U+=8L34y* zE+Wmfc_$*pC$rRe-JdIf8~lG`vx^no+1cc8vvd~sC|9Yo{XQkZrcm_F4Z*F(F+1+g z)rA-jD&50GZegf~Xt4B$nb<3)-rr>s+-H!c*CGDeCWBt;U6!vI#afvnr`*3{O^i>f zPq|rVhp(gT2>=V zDL7In(!VHA9|h^Huw-7_E2P1Ety*$8PfHFhBDIg?rFN|UL_1Fx133@jU!Ryq;9o?V z>jxbFid|;m$+)*6fmdPNvzJF3c>j{DTF4DNTK}iq!21i9G}&OWTA1PFunK-F68%gj zc8iO(K0uk0Ocm;U(6qjp=8TTwLQ35#NC(B7myPc@TpS;9Mkj_xoZ@CYY{EmSR5~)^ zOzb#}fARbPT`wiWU*bZi8V;Djjwp(k$RD~KX&o-=;6Yp2R^G-SivF4UYYl9EEfYaR z(Em>wnV>G+%dUS(-P0!?{K=rFcuwl6VxU>IT_))?z$egHn}veruXpf(@Wki^mdUkT zCY{dQY!JpE^iFl{Zw;!(PgvAsA)8;LOzCA)3omL+72qNNs2cR&sT(xF3@U0(o?2cKYMrlG90k6Y(a$p?Sk<>IN>=YwC1;nMi!}GmT zk?tI z9m0&)G=h5q!wwScn7G9~;#slG5DH{`0)-{FLL&7wKzJOdbdRM zATqsNd&GQIL+o>Q0@&it{CawRe$ifwji0<0jh_jQFMnmPDl12M^%*&uoLo4*sF}pS zo7%nDjxRr8pS)wdUsNmmykBlas~5uir7#S*h7u*bUpO(C-^Fgh&qVK+>-iF=jaVn# z&0Nz>Wc(AjV|ewt<02G_Gu3RuSEB(h3_6MzIKm8Cj2c=S(5HA^Lx%J7OHJ*p|@}?wY!A&86+u>M1u zA|%4AT=>9zv3k*w`Rc{^?-Km?T>N+Gk@?LC^*xT6ZHYTTP$IG=8 zp32XSSzpK^7Q#RIwPJ9~GK+1m?v-Jx;Spm+Kvhz+C*5|tJ2Oi@Vltj8+l{R?cET7W zHfDF?uqkb5HF3!|SIhgaKO1q5R$7xY*f?lbb`CXgymcrt5bK(NR&rv}-YD_A(<*)` zweueg3hBM;lw5#G{)iPQo7n#RH7eTr448T|A0_KLFV8@%!`4(dQ;Xpj|7kr3xDh#cZkyjy3c zl-%q8p!oM*dxvcr=v!%E~`p`9S>RelUc^Q9N5MkXo`T z_^mkfC3}}_9Qs0f4t>>Li;Y9P7L7y8c~@Zvz?168H|{Vpt4X<_}-kcrQ zR-y*a88V6Fkb0q5bc4NTw&8PKdKT@o*J5K4uSH`~!jkx2dsSIk#j78PRSRvE>e_o~ zW7+-bS@vpsEjE_%S~Qkftx|8XSCo}uyz+q1D z&##Z$Yq9Z**P`)j6<^)RZpojjOP{q@mX&9`0U3FgoLtzQ)Edbz(;U0lcBgZUrD=?z zNj0m_&~zJ`xe$h?Z;<#XLlf^kv$*UN%0{B0>B<+>j^pZCI7L)y?3h&@wwH=G>*1e9 z*>lK!P~AeCGPM$(UkeDc(W$@8W%T`y=vT<1b>*HJTmtRMazF28?*9?&fZEYSPtfpUbD`~r*;Va=fORL$)L^z z|EE!|{{i~vgS7R_Vs^iSo;LW@2LD5NzI8eGM?_Z?qsY{U`FUvq zB~miGX4z}gA*4u;R(Sk0nGMLT*XJP4troKu4Hsrdp(b^`HtanJIjtocj*M1Ta&D}* zn@+LeoggFRmeS_o0^h4`JNz`%luI$KDIj%yw(3sSz2jaTuG%PEHo&=g_kmH-1X!g6 z%fa!dQ_qIH>KAM5L{;QBU!|AzqAbDEql2K(?li)t7i|`MQ zNK@RMc9f)1@(v22+M0I|2db6;40$IFT}xWK}| zHoSxF7*3MAB=>>k|2pkiuUtDihl}6~+8&DIPT{f!zR6f}4pwoq0=uo+t=C?P37BSM zJ`u9R;9@7Kz+N4$jrb#|@rbiiRmm@R@J_m<9F6e2Ea5mM8yX$GeyC8xH|$5DaJPfq z%u0>V-mDPkXsbEn)SOP!@g01|DGg`bndxF*)H{jY(Nf{XXj+A*r9NUm6sOmRnxjn| zP-o@i&vm1tLnUVqX6*`Bbg?x=dIdYYUSNmU%h*4~79`HFqr>fv=VC@biUN@DAf0F* z8h!rt_@pphmNXqJ8dE8?7SJfG4%~NCDmLlToCn zG6{|ty-8`Rvt(_j>K@1Pg7uOMV$G`*fR z34wDTT_V7_Kh2?wfOb(%@3D|Z&h8`dmH){HP6`#jXA^)TtwPefN9@}<#Tv~_K}_&*9uFM)!c2F@!QmRZ(P^4co)+yTOavWZKFt_( z&TS&3XDL2yb1)6qHm+^6IY?mG8>a zf`f}l<-0Rb*<8@{$zH^q8Ifk^-hsxPBBoh(GN_!JK*`jga)5z~d(s4z2@Wdm$q=ZN zf@lYIw>6EU-cTJe6S#GTHg0!vrq-~4iFIH5jhQ4$*hL;;bO1lY$|1d85HR_1qo8<% zAcPZO@*dWx_@sk?$xoo{WH8}mNeL#O$kRtb_>^E0H~=Ux(LDivCr=B0YZ0mZdl{%~ zf=Qq3MSw{}nyq_tjWq=#W|_$#^11{HrUsEi(kX&RhtPBr9vy;gthcj`0>TM$2gMqD zX0{8xB-r&LO9a{TY3VAr4bNSTPy~fcU|vX(r!e^ymW`RH5e7Ki_SL*vFtfft(B|H#1&kF2OC+Z3fmo7Nk{PFx0j=K`+_ww{H4TaU^NBXt!##<%LU(VBxKVL*z z|7BiU$A(`Gq&Bwf=xqo{B4&?>G&d~_penAJbtKOw_b0F{wUYV<s{z_5t@=}xXbh?HmU68PHe{L`^ z9+_!o5uv;Olrkkb>;-4g51n?}vSm*~jQfHXUspu+O^T*}QxKYtAL);Ed@U6U!BUdn zsGg^2Y35Rz2-FI<;={{^bc& zIMUy@RJdKU-LWRNv22Fh3c0dR!iRm5@{M4{?ZF$!C8u8UESdFMWhhOxy4OZTVb4J( zt^idZl>XErQk3$?>eV)GWKyzmqf^`%z5>AMy9{9?>tNm>)J)k51l0cy$umOW7yVF3 z!ZksIhQ840b8jTW<4Bedzl2wDCK#1O>ZDbpqc zbI;UiCC9-Tl6=}I@G}XK7zIZe3;V3D^!iC31ur)$wF;IT1wjW6#gBpJC>2qA+2J^_>9vdrzx=8Kd?bgJ*K! zuGKiH3D%Eg5`8gt-^~Q7Z|u_R__2FMlGa4BBU^h}g5HF*S|@(NsMsp%a{LCJcrY+c3q5n?CDJwm+p&wtge>DQ;`Xl&?uCl89zroV5GCFDSFq@ZoQr=)ERtOvGSX#b-dDSd8S+|sk7g_jD?7G_BylBQz+P3 zL6J*>k^V}J%X7!WXcr!2DZ`ze9Td`g_o*80O!B?|vgYrDcxS@_gEGfEyAoMbM*O+f zUW+Z(1+PVmbzzNnc9XrLtZ^=QR+6Cav0P)U#)7~W;Z$6WrH(#>XV&e_3MdwZ6?i`8>@>P2kS$V^&9f&sz z74Pi7>^-xw=)37zw06R#?D#eo@me$%CB!?s$X-=eR`KcwV%0*&JKJRMp^arFWKF44 z++eT8#xh=u#xiTXvwil8vNDWUJ`lqeINsT`y@NJ>mDBU9Yp=z|FJ6nrFB#xWcrwYK zN@01my|S!4;|<8jv*hF=-kDk?`3|AoV#hmMXD&};0-mXM^#wdzgLW=Nz_SmK{J?l2 zBJ1<+vw&P{1@0#XJiF>t%A7&hya?f5Dq zh?$@++jEQxdgdgh*On2#VNfz{)U)3;@+nhRBW`pH3md1l&HIx}=8rU&jhrM35?WA%!r$)QS)&dA|25)~xuXy3=yjsApHBY~5-3 z=OGsTQO`JG!cNQ9sAn(8(@#NutK+iO(sxImTK8w5u75oeXNY=sCz7Y7u6Y2jPwFCk zTO-osiF#%hlQhF^@Xtyh8qI_h^{l|sDK9&5X-%M7JQMZonW$&*-+U(OnQ%~Dh^S|e zV9e>$Rs6(3t1NLK^tF7Tnt?6owO-Z$Q{VqEin2HBlYHm;M_IGtlj>7nR&ahV%1#F7 zfH0w`XMJ>u0O$TR&qO`5MstK4*fUYjw198lzfsT3p_8nTygC6W(kdjUVAQiOWdcrt z=U-s-=yO-2*Xi-x67}rwje_DKnkE^6=3i%xicdNSntuajC!;whOL!p@8})3(<}k71 z8?NsYIN#F*cz(kLF_HdpSymk?({KFZjY=TLj>_vb{M4Ex4o|$DPgUId#3Z@2; zQ!nb-r!z^E0Fz&4^ymWZj7yXN6?{^KrD^A>eRdHk+|5tnxUe)ooTrazC~U+x6TA1uTeSfF(LC*Vd=Y8=?!2^) z4M+0}dAcY_ZG@wtw;>>jm^~uWEO^v2vySB1q?Ew2)U(OkQbj$Z)4q!y^UNvA$V>7* z#_&yQdaN@s4)j-Q5PZd8YdlVCbIqSKiuS3w^g1LWRy?$XKl@jsAbX?4Jo8P~sQ9FV z%rpOnvXkc-PL`DO%voE*#ENe?5nl9B5Z+4HRP)RaBQ6_VG-^N5u5_MP!Pw2heLBTA!3iXrDJKwd*<}Dpk;d1&f4c z_T7%G6bVguJX0jJk1%>#Th6=!f0omIDI=l%9g(|V(lSLt`=?AS6EgP?yzi!?6}^7a zWp4R3;YzKXlQCq14h#|r&FpS!F{4OmUuPt=Ha1$!PMN4<+S!^@rcFjnrPPtohB66} z7zLLjQv~wT>nD8_Y&R;k3YHuNK?k0UNN6TmQjZpjg!WuUYHO#WN6XVHVwg7Ko>u)b zMs3DOXp@;lUyR+uOrZKKTl6}9>@H#?wEK;Ut)ec+Z_tTTJQA8o)zm|uBB9;IIAx`W zHuU3*?vI3~DSaOhnv2cqMXPm+g!caAnOm;HX=$5j6&~MwG7i3iFWBXoyiAeMVU409$f2pOL5T@v}dBnnuF7-%0?hs>!-ZLjW?5qf-*-2}grUm$N@FE3t;yNGv= z2W!ur6C=(nqI)+wZINciJvoW!g_ZW?>|Fn=lj4=UJ8&nvE@cE!!-Gq|cG68iBU%{r zoqW|l%&eD1|BGNz5WRVIKo~3|fQG?uWzqb7D>9`Fm-gF1A-x|tRl}u$oAW$G!Qbd4 z`st?(hXsQ}QM%5HXuU}HExng#hto+*xA|I$#n%FkW{$7+1hS@#h4O8CEw&-fcR<;*}G)p&8yP$=23esHs0`BblwDx)uH%m@3mKvl{dWFfp~MKt`9}Q z-D;6QqFnG>f!qJG_sYhekELhNZ`y0Iv4_{9vBx?&eaT)?RwnVv2V&CtJ~cIpQ)lX_ zB)h^d70>?3-bowJ{ysg={>xsAjc2@;v^-n8Z9x?ZUipIYjISe-cy=<1XD79|M_1T8 zY2%rLtSOaYRasfZs~?C}3mt6ojrJbeSoTPImi?%`78}cWEgH+L!6rXouP7_Sc;y2zY=MJK z{<^(`Hhz67J-`0YUW<)iycUgLGPB9TWm$Q~8<3G_$;m~qNo8X4|AMRr ziydt8tdJcrCeoy8R9~dY&!UkF5ovPOc1)x&y^2VayzeXw;%^G$Nn)hQ%lD=aGnp!_ z5}|X^I(=Hc)-a> z`aYeaGYZIkI(12n`5R+}EFwN23pgoQPXQ+t>lZoT z6LBE1j!Y45F!WkSe*1yMm6ck#^Z(iV5;)1K>h2jB2B=}!1_p46Pf)wM>F((nKyhRS zaS(&7vdF+NcE9ef?y8#VsaNs<{S3u4i%4C}i-MRsc>+$F-K1H# z_0>uW(MWJ8;N%>ucPQXw8;P*}j^}%`l@_~X_vog}n`<==1)Mw-aIy`r37!#sIRZ|8 zA9GGOSILHhHe15*3E4gYv%K2yLJ6$;kgb69< z2wh^7bF|K(fRl#;PQoLqU1@hP;}hcS;?*89ns3FMz5jm$PMT9EeL?b_6h+~>AUOyF zPHx&9*1^fzP}Aq*XcV)Rp<;J^ZV5Q~BBLWaQbL5D zoP1vCht2gvE@c;Lak$X0FGaGofi7SKPyV596d0tqfB+qVbsdFkC#VmEG z*j+nWPi;3EUD?qR`e~e@m0YzS{d5-kPS;PIFk$^iiKy-tG^lCHY&N{OqkP8oVkw5+tfZoO4%cUsV-3HmGS z?kSX5xKPpT&6$K+th4T9WQ(k`sMuYTSvGAC7#$@mCvBZ|KSL_HYCn4HLG+!j$2eIs z=&{e`8K)qAem(Z5d7yrEfYkk32I`u6EFyC;dMu{S^@E#{YHpcu)Ai9EDOAp-kM?HQ zM>h;gAEo*?uRbrVLz3sSwz4`5jbc_-RJ<(u=*dP$cBI6*>QshQa@BtH(NocPx<2A$ z$)JzU$}>(u{QUap!aPtf7$9{o%0OLHA4Oy?Mjyr0N!3UBXQa|cCfsy=^z-G?M+aXL zf_<5!PAq)(FsX|ye5lx6(O8oZyvgV)S$}9tpF0^^$yNJNHE%)R>8gekCah`_&#NEI zGe$vrtD4E2gy2(oF!{s)sr~5;)HYR5L<(b6PfVS@lMtAFrmK}s3I&~)Ilr7q2>vOP z)Ctw|_l#x{)kDSZswX80!4X@+oh54&P5B&#MuYN8I}&}TD<4i8N9FU>JYy8Zw<;f} z;LziFpr1KF3Qy#xa8hvSi}H-og~CR<0dcZnl&a;^%{a5WF*!ga}*nb~XtjwuXvBB4X8t zmLvqfWprfaoxDf=5JM`tYCntIkD~8%JHyH1XlK5ZXN-dIR=PUbnMd+K|K%*PAS_L!T-ln#wuYxhvY2Wsr=Jgy-m8F6E{RUGHBZVjL_u!D)=+6k zk;K@Vm^#0hBm^cR=>};jg|Ff5jlDlgLNJr=GbqC!(rYQl@P}8hs>_mu;F?ULA(9Zh zgc_wi>PqA|00tRyqCxwm9$Jr2tJUBWkTlO$H#8^S5ol-m$}avK&_mU z;hTd2^pk|Z9ImsNO+d`o7 z_<+xXe>H$w1xwC?U;u+nLh#m=D^{+c|Luo`USBoo<2-FPqVcyF&8?%0pEggZsQud1 zdqR!Nn7$da5j^Sq@Wiu9NmWeZ^=K5ce4^syNj$)81fvFE`yj*;Dj38;o{hkys`J!8 z3se6@#wja3w5gxmbu=4+w)!gxJ!-qiqHQ~6BbZLtMRGe%d)!Rh@nrPr+~^jbjX(x$ zk+J^mjc%r_0PCwVG*z(Wj>$&AqDEM<5zy~E8^O!L6rPQMeHw5!0+vjmIWyVrkbl2J zPJ%O%a}osIEJtR7cdLkGLBF~36Cf#p$c;z&3EKYd(qyGmYWeJmgG@O95G?Be@(pYn z^_0i)Y-J&ow_stqQWq^Z#^xYcOF0Mvgk=mEqf{Mk-eJ{Ej`;{)6LiwM?_kYGppk^d zvI}J;xHBBDUr^i(1TTtZ-id+nRRod^#jhV&=7IYH-et}_a4(uV2A%z|9f~c`B8Q>{ zTC_go_^cgJ)*y=`EZpv*t#*q#j|A`jhqE4N6Mflo?J z{2x0M8~->ISN{FP4k#=CIPkvs7i1pbPaBKXP^OO~g*K2>3%)Dbt$BWU-5Fl)RBaqO z5=|Xv*lBhsHV$zp8ix?mUR;ZXqT3JIL1g6(2fGZs=_B*N^X)^j@#Z{t-dt{nV&e^m zlFpkO?I5!9hJ)>kHz&ugbcAgS&7tFrno{^8Zk!|VKMZ9#i1+LyrOV~ljOJ5grI*|}HU7;3MH)bwqa`t$RpS?|hiNWUlpe6#ou?M`I@M;?d{QR7u)3<^B1_G`5uHbk38e8A<+ zvh<~9)QnXSQRjAx3hZ6SB^W+DV4r`HNvTz=h-}nQ)2L@>gIjL3Su_lgll*+ zixoZDS!|Yg&?f%ZQ=yv*h-lJXX!5vC{&b_;VNKfO-ZhAEfEzccHn}8GfUhb}P_?14v8_Xe3VuT` zhhki_z*+SYmQsj2GtI(j*@L}u`n5_g?;)BW zI*Z;yx83o|joK^=YU49b6=oY~U2h=5c(YmZTa=rHI8A}Vcw8_9o9!TO7nTr^6yWDi zv!K%u5QHVKv_}h-InHxklu)1gB>1EOh`FL=n|uxqje6&xIPr)`cRB(rXu4Mpi*Jx)Jb2E9G{{nTo)w0 zuDCd30gOhy+0vZft#vkg8`*l~GOQOUs2aBZP~|=XLpE6UuW|3%c4@9#W04^j(4aDg zIOa{yFPHpTuh}XIYttStTt+qu_HVvb^5Jgb-BfBd;$uRlU*XMU(y2n#Pcl+Pd`YR; zUDaD6sqHm7O4iu8M9`l$m2v}vO&r~dGg7j8xlQ~G* z8}eZCx&c!A&J5HxwN69|W3*08o%8#hk7`bty{GG+i&ALms(-c*tz5A}I^=l8xmp8f zYB&n3A=qO&#r+7@s(2)SDQG8#D7cM<{;!bk0t;0lT^~U$4wnX8igLHejXQ zr5c^*1vj(7xgYh;lK{}ko(gMSDg?-g)@`qW)8Pf20MGKc{<}*^6(9rq<8-mrXp6Jq z%I;EKwMQVhE>0G^ZJ8jTJ=4Ik-b`bm*+rae;8h?MIa$F!$`Cz1U+PRQG-gY+N$%E- z)5pmfWQ;Dg@Tn+sMOQ;7fXa7CXiin2*!z2#W{XgnpJN=3s7xw$SD7in-Tu<(ELjuk z%NK@Na@Bs6<|F7kU1@UCgq5cCy6YeFj8ibct~kTbH@%L8-o0O`7a z`RRIBo-sPoHOcMvJ$Yc>H$b{Ru>5rWOr9}vx`yrN;aJDXDZxG~`TWXq!AP_i59fzq zclNJ zEjwfONHKN(`U$-sP{L#mJ$(cB>6A5{>jtjZ3Hj(}%@+x7>}r!05xSrtJmVC^x6;-yR^9AI(5zQ~5;v8u}w_4k<_Q0ejrsMqW+#vjnbaFs8>dF z+7qJw5(wk?zvIJW3{S*x{!g#Pa4jGnCrOvDiBmLxUqm6(fRBvG4f7hURNH@T&O{9n zh3wfzBTT&;y+?1m%RNzYB+aUQoJzn=&~|~OxL0QZS=)Y?xO_K{P(@r`W`SIDRjJc$ z!Cf5B3j$W?Wol@?K~*Qgd>J)z7fdY=vtcs8L;j;eXty&$eOOWfHQkoB7;~&dVR6nH z>GdSPiFld#ZIw0|=S)7@%M|BKJ|+!#858G>y&ST{IiufsoU`|1U_8zl`!wJ`-hWA~+N+M1=J?>fh{uvIdIaz>}?*5%cY9oFXC44LIi8u`jZz6Kh1V0-8GV z?FO6_m656l)v=X`fQy~Ga1 z#wQL%=Mx!oY0AiNV57DTnzRGT$|nxIFFpma`6l9c6vW~aEDF9W4(+uM$;P3MJBMCl zhhpOphoW(4B_ApsHVfeWh2N7|6J4UZ1xfU)| zJbQ(GkT#y}cjws~?NDqy<4|0AcCQ^!R-SR-%f>T)Qk2HCy>UF-tF5v=VIQQ8XCHOv z*&o=U*m%aFxbp1J?SQiKj05kBXQyg2Xs>>h7stAFF_k3;V}DbV?{WLcZH#=(oss`( zhhk$ShvLe}BQLgE?yQXD!24q4ar6L3J9&-c-zusj8OFaT4te$=**NqRG<95zjN75u zIK-i794e@DW;rOmNDb{gJJ77$;)wLct<+=jIQE?!dzLPTp75)p!nJlP*ckj0cLvYc zq1YJAp@bM5TocGq7SzpwW+q;42bz_^9Fe{ld@6WlJ9iG9ZLN!`EC(F>n_}u6_L19| z`Wknp-ff3sV=9NDF?AK)?a0ybFKRds*a2l_BnO_6k?GY%2x4_VRQ)qL5g&92;^U0l z!-Vj|3av=^;ZFh0nWDZBuN4*qLI#=~!lafLz@f112Or>6KSLm47$(1xa_5C9O4?i3NSv;c?G zws$pRM76z5V`r07Dq=4bnCLcZ;NSvcF*Ifof2xfq!qe_nXdjK1rL4*_Y)PH`zRMjwv4D=pta`sjc{pFxmo};xp?8Qmz-0Ds6 zPGY)5A4m25=(qa2^yh>4Q@(=vG0`VJuN;7Oz- zt6w!sPf8p@`N??s^HltM8vZ?f=Mv#+GT{Y`3H?c*!o?h5vZ(M>?nD9m1K#c-ZK-+mt zrj4%b8b*Yqn`CGuSJnOIvWDHBMc=yD+&3V<(XiV@0Z7Q_H3{iipWW=sGfoaAg}USm zCE3q!Clu3rd7!?Yjm?d^)jg=3A?)_Ap}H$|>B4eYQ?3!Ii}5^)0J~Tn2>Ug&?QDWN9!C4 zyL~9^Huk3WYy*$pb~hfuY<={$dkRS@2T}^Ak4_lQE%hs9r%mS``Hx&e}q-=XJ?V^ zqe1Un+JXK5z}(p#UhsX1r#x^#p2Ti2Qmd5r?io@0TJHV!AiGTYPCzOjyQ)C z54*IdUM!6W)xL7u#sVDB$(6snAYXok;=GwY6v8dWELOZa?vk*HNLJRQ*M+%RgGMns zEh=_5H#k+4nKPu((Tfy{&oH{RqbN+z(;14%Rr@hL&qCknrY9g$$n->L6k~c~>U{OW zfLJWtVWYL+?TZy$^Htr!D7cEZ=1|jB#Zf7YbygK$rsG7fxKCYcj(S7kv&a2RXV58T z+|gt914DiU$NLJ7)gs+srWfR|84g^-M=sXO=N*}5l$i9_F~Vb?8(w2lvHPT7qmf(A z`cRn?ji%9Y@?6$doC^%e=OJYZV zP!zu>4>oTbAjRLAf#T)?OhhhY6m3i$^UlJovdniDpUp&aaa?ZVgrT1s(ITmLLXrCb zv)k}cbKVF1=`szF-wf!NUfI>8l5}&Z>1OAe6ft);I~Rl#!%)y*wvsH$prPKxFf%)e zNh#P=Hcr@sw;#!GLH;!pCxp`fCpPSe(x+l~rEdvjb@Zj-j*>OErsP+nk?l2qKT3WL z`c7B!oGf9Lo2cZUo@b1L@Kz;%loTGR+*N@R^-X!8Zx|qj&(2R_9Bv8u4zEF8oM((K z6jmW}f@ev3k)raBJQ!>rAeDFKrE>M*<1i&flt%qVqn&4ng2=|@2$hD^M~rQbsdHMg zN>rRM+oh}aA2S_i)jUqOA-$a`)lqxL_6zSGq{CyS%n|7xBw3c_3Is8v!l^A^4o9OwEnkj8-?`*CQSJXqo*@b%8)~0QL+T?& z?Z?#VJ8hELXSzwaJ7prculD6jdy%tblw}Dq7yNjK&e#0WFvPKHUp>Z`8bE^4F8^Mf ziE%>lU&LfHqWGye#5t>iO3CIiX>{f^X>MeQC0Ff7`TOWQebR8!I4b`=dB!M+Z>6o$ z^^)~+nW3@%b$OuQK0pfJk)Ogz%Kta=jM0U{YlGFA9xTErRVLsgdGPqn0n++od1;+! z0=}GQh=SCH382!DB8f2pF?H6(DMrNuvqids-|WYvg)R#kuX31%-9k!KU5r&8mo%LeL_Hcd0r4IQ%Dvr4|i-wQd}(_iAIB3za4|V z(@ha4lcOm*JluPSG}s3W8#`_qyAyJ zY}Eb0-h3S?^S8>?qjpHeqCv8ADlK#5g5TOjt^}+fJU$|OQh^bHNo&+SiZUq-5;IZM z1w38wN{I-?g5JkjAT9ho6KmsABla<-us^ZCDQe%9X(|Zo^F}rmBG!kB-K~!``|E>7 zS5Efky$r47s{L$zK7hW{?F}c4qrLgvJYy83x7r)0tw2gQur_OQ#fhs^TRx2 zbfK`?YH6SqDmUJ;)A$+J*9;1i@a3>uY&)JTj$i>b5g zKq_IyTN9IXbJa^>tn-%YH7f4OY-J(&GKJm}iL3IMOf7+5CS9RW+Fb9z=Z@N%NqU48 z+Kfgq&XrUg5+AFswA{U1ZFJ-$(pNI1lB@P(gRVv2={AUy#nA@s$}>hmcq?6h63M*@)zZEn}m7aQU9z5PXKw7^qFRc@8&}Z`uQIOiOK~x%2 zA~7~7rp~~VftfJVt<7^%SmKGQ7nIGurOICYv*cz$EX$A*-&vv9IU#}VpIOd=*W(gI7j<$hE#IZer(E$D_v|# zK$g(SLxd_ZlO(3jrI*F5LUN0X(r_lI^tth93Sph+#=UAK)?CcD5EGAD!V~3sak@>% z2$zZHGB`fCc&Ur8p}H7b?o010m7HKUoyDsk9M| zVwPuAtoLPqYH68DFE%=|BPFKNix^VLRr{Grm!j|V85Esg|)d%)81t?P1_HMX$l-RbvntsBNO0L?EY5I5coo<>qSsYE%+Lwfhm5ewMUW`!? z-bz;|)ATEOpg$Rn26Z3pq3@g&PBKl;&ND_A3L8c!%{09z4;~i|kk%LHrFEidn#?mq zL2AP^QE5nt#F(a-Iz0wcnyUOjd+KL8f@o zj6y?Wfk3gGI~Dvm857R7?QWF|-3?X^cn7{^COyy8e2_ePdSWH?fR z%vN7UB93Rh#p=WJG>SPUr(#_PSMOe{A#-{< zaU_#w)dEv*0b(~Y%38<3o-1F^ zIdJ>%E0*>z70XBT_Kb`uEs{YL`_&|-B)*l{5tYPa!{|vyYno4^;5#z0RLJDpIYrC} zMpS&jW%3~dsFj~pA(O!XF5)uTH)qt!!X$#TNN$Bl-o*%O9YVZFmPbaUmFZI;Q!I@s zgI^``M`iFB9Um!yM@bYl`TJTX_6hm>6Go=U=9Y>Nxcq(30BU8Pl)qpA&rO!UG)5?q zGso>La_2+jzQSl}#X4T(UN|x$79C9D)VhP)UB`uoDNl!A9V<_3G++QbtI1&D);rixGZv61$5Kv;)(H`+ zYGVKVOcEx<{yfIwh!UmZWU*g8!uTk$T1DS9M6NO#TLnmpdVt7oF6x=&Bl^my5cA52 zJ*!FFb*MRG4&HgrT!1-qE+eRQ$l9Dq?z(#BN*ra5;t!oE+^Vvv(4zHPVQy^qRMhMa z)V(TQwaX(0+P7yqVn{}xj*o6R7DA*_zesg#Z*=o9tdUH`6&xd6ZX#CXAt0~3s2S?^+^g##B(`K&iWm{IP4WW73>NZ zDxK1Jb7oDYyHs9%d1uL|QN5Z*B}Sx~!Rp&0qbgS4sg?Ea zF>3Nj+3pPE7s9&{_EmYVgyWz|~6>UROV`Y8T{B&~c#`58p>uj2>M z{Gp(e-bXf+8w;fkRex7w8ko+PHu!a)9QXXQHk9hS+Z&pTXFYdAtul=dNGeu8Yy7zz z+7OAcra!aGpD(pH1X3_|&iJPBjpLin8bh1$=Z=@==hcrJxCk{DH_tX^+7Lw?^3dT_ zoQS1~5K991m`>!*FM{2I+dtM3SsOw`)CeV_bPD70zXJxvtqrTTl#{=YrjChXzhQ@B zOF7A*=qV@lxEZV17bUdcvjfVSa*_j2R?t$~|DH?x=Q%|}d^$0z5aO7%HdKw(z#_yb zRpb1reVjJ7{Rc<#Z0L8X(t9hnNQn5PpcJkV<{)Rl9y3v?0~ZJj|1D5I}X0>{(evS;@pmQ>x;jrFM z$kVJ)jpS*5A5dS8Jk5VY;)JEO$kWUz!gBn+U#tdT7VLSN&%7!&PcwF9V_J$`kG5sp zUkhuHOl_3L_>oo6^vx;8#PTWsQf?3!{T~x!#d)bZSiAmeN};@nJNa4-x8QOM?D2Fv zJnF8uMc(D()5Lh;s?q|k=$YdkGXAt03tpq!X?8naaIC6l#U3C8#mE25%E#(|P>bP9 z4#)OS5oW+yZr5IGTd5k-Ruyg;1!^=TRLdo_sOm4v?FDj6cHpCN7Bh`sctbt|jbe`Y zsaQYjw7)e=iN?9b=*)T$C>`E6GsKds>K>6m!&i$ba$6n)*`bh7HE1*|YXf5ype`pZypNNTJqG8B1JY}7+#YV!Wj=-7^= zczgAIhGcTpekSkZ=sR6eaxyuZqLnWV6E7KYVuTo@V1$*{8#N8jlh zkQ2ty-u$mTV-%#f+8d|GV84|I`iBNc;g9C0aMIT2OL@lVLSePZaf-(INFF@CIY3(f zRbE;rZhiha&kzNv4TDCdAvF?X(5TK^x2=Fj6aHsZ{so2QG|^7CTe~m_+ltNEZas0r zaz6FCFguf#xwaWP4UJ;X;;1+z8djxgd6~S)=*W(g*cfbJNF`V8#~7WBzSE5nCyS#o zdU2jH3c_3I>ST;|?r?Al3+WfMG<@}Pt!epJS*_1zE)QW6z zs5m4JR^4Z@Dc?3avLhvI%C{I&$yNKYDc?cg={6-GOXvt9LY0_F5>sbTVL44u>2u=? zDTEEr4SRp|6#vQTClb<6o-R^NcXad4^;O*Y{YX}IS)SsbzCA3*$udQALfrX2jT)uh z`39Hx+y4ctbM|04=~?`Ne1b1v_4_O{{pr00P|EweLP0z~dxAf?-xa)TPkeH}ap!=Z z+Mh=v9DQ8s@YMc-OfyEjh}w!qF*_3~)~!hRA>fk|p4x*b($VnL_$T%ocWU=aR~ta= zQ(Qb_4iFx|(|U8%b~Q>*>xDPWdT7+mjFQ$duzSeoaEhy^^^Ne`^;D7TS3__X1zND$ zCN@MRF4L3xy_r}kWUtF9VO|kZ@xW#84g-jlZ}Qb%fbjA^p*IKZEPAIv^j^*gX&pkm z=uPQQ)^iD7ip4Nx?E^&isH{0Zo&Rtqwh1|Vh><6Voj3!o0yWiMliYRmsl2ubJxeH)v`ZU$ zDnF4viRBRh?W;2#0VJbOyY*Z6X@T?~mk-hHjl@%V`5GeF=EpphXD+Rlr}FeWe=6Sv zQ}|PP_G!RRQ&v)m|Rdy&g-f$>7Z}?EL_g}eD8_1L$L{{E# zuzm67NX&;!4Qy*~W)MxBaY@FgyG)_^3A3k18GX6#J=___XS^30) z_r<5dg!}oPeVjJ7eaD?`|7?e1V;hH}v(2_F{J9-aR1b|^OHaVQ$|V9V$T-Lz_F+d*Vy8wcAL+fGnXv&8N{PBZFR@D}CB!i7qu zTxK7nZK_@D&aEAGC^l|!C>po;rb{r)+<{f>fU@$8179|t@#C2^o&`%rooD*G@s;*L z+IV)0JI~%^hhpOyhvLe!ci91D~Opp9QYaOc;5*`e6@ z#i3~YTFno2<*?*eHKe0%v|8n?JmUytc(l(_QSE6US3(^x<< zFQn~kS8&0#D3X3nmu5Yr?%Yw>xN~xpvd6Vb9TgjYrX})Rk^9;b$}g5BVgVy5ypylb6I#t zvr}^GNZgW39)=iq0cToCq)BTd{&Yn1up3lwdeQT}&Ys3tyHjd{?2VbyY`0a~ECp>D zdQt=JMvba{opRSd>&B!NL-aJ*E8ucXcJijo~?n0j+SKA21@<#GDh-O>Xy|GiN z&6f7vNG&1M`>x!-zqtKn)ydBAl!&%hE)~RuGZNrkxosonflx=I9!2RZEih5{{I)kW z#jkuPk;o4COihh@n1clhRBm98RCi!l3*4GP$Ud41xT&T&*uea%bih_jE`N8UGTT#wUo(Yieysz_o58IE9kfX;VQWb(EYOS|{(#gqv`r3UE6{ zpJiIF5!6EDI$e;i#$KhJQ^b;a#LXK>0NPTD> zemT=%?g2EY+<+t11E+>GoJ}GmZ&>JcnPwN)0{7Q4Nw-c4=Fax&fH1OU9p`j;2Q0 ze+&j4=jdVT4lzF;XB35|Tg}I-^+!MHUYE|CS_e)&#`?|2sboOCqiBiHS!|ZDeMGv| z>B_5lt5{F8RB zSkazN=0xvEBsHn~3#Fy<6}{CU?{ulPbb0THnm=8t;lt{BV-NOTORtx%FsGtJMah#j z`i7RPA7Zt8x6MNk;^i^<_Vs6P+Hsg48U_(@8HOS(h6oLYH` zvwbhttCwGK%?mfPeSN$z%wqc2u@R+3Jocd7n%}|}(r;tSLyHc+%Pk;pPpLlNDPt>3 zI$kXQXpL?3+HKPgm2D&T`m~ZC^{(_=+aN5(;ey=HVi#O*v=*=`zX^L{ku!R_)Y(%i z)x9z72Cz`yh<$Ej4;(~W*b>Zni;XUAgCUM^RE5Ozz4Xhw$md*{TO@qMe!Mg{2Wf4i z(RgVbey%`~7hyDo@?x`r628}FUG0V?!v+EM3Bm%Bdjk)E@M?|5F3<0<4nkcQ#C$`m z;HZS}FF>wqf~-bDfDiHD7s&%Pxh~D3H1w6zQxYau?=g7{RENlTbG6dm$~1+SZ_uSR z#FNF9_v?$^E~rp8mE@MyuaQ;_7E9(7@@M@f$#4}gbx zC^u^CtTlv-I_Ki+Cb>Ii*QDqhQ$fCYK<{kAgz&p%6?VgcD-f@=x5-{|(5&Q$ll|Q5wHIOT7RJ5nN;ur2 z@}WiV72AJUe7aFl^G%>ELNpHQ|r!_+J$Dx-_^!fhUe7Oe5o_ZuUaMp?SS+Z zQ&WK%8xM%iX(9(xZ**utZ8Fa|lJi3p=R9RkIRq?qx@MBR4cs`x)$yOO$!)C3n9A{H z8(1B53Rs~w_OLr3tW7ZR3Tdx)yVP#e?$bn7lB47A5{G}SMy*tU;DS=6d0N&~ZsJ@D z2xn6mBmo(#j1u`;fE(7sAu*sGQ)9FZC_Re_eq z3!DYE&go+G^Bf>ZNw0Qj2{D6P7##Qep>t2cGe|Ot1mI;*(|2BTFwJ63XWe9|zwp`K zI!QX3;9|Z@1-phelcG@T@Rde~c6}<2qX-M8PY**-HKkA^$c0P+b|!(|kx0e(OD|QB4k#eF{ ztorRtIGI%b+7nK*J5%_{78@W5eoBIs(13iUFZ!?1tc})bL^krt>tAQW&6L-B4{C$A z{M7n~zNpptMc7;$5ke{(Hv)1sC#?NS@E*)>6G1`n2P1FQO|~4K6ySd z6H2B$Ujk=@sO)qC{h!K-!viWK(HGpGxVc1pmjTk*i3`G@IO z9o6@v-|7eG&j<0Rd<7k--c6s@R|$veL->5j%INmgM9`Ve=Z5GU_V+pJh5SS@aQRUM zY7XC+IK=Xk;X(gY{CgVyJ$)y;;z;!Rc^<}ebZ;#V_i0ZOx#ieCvueePty{O!qP@}T zkjqYUu|NeZNuW9pV7bp_Ew+V@s}((W37YV;Q`ShpQk~O@&?IwEX|t^bwr0&{T>qWM zBHQO+GsyA9ac*~}({1^+Nxln}-C*y8UQoZy`eEZ5Z{a+)u`rJ9-)!+Y!|aDMJi!d^ zAk(HcUX!-R!o`eEzhq7FC)rh6#6E0}4iiw*SNyr4o2eB- zAdGE9wTba_hj)$^yqN!OWEBz8AgDO%=?%|GYPg9t++;MQjy3_}*u?m=hj;F0xDf|O zy-7+t36hV)^+YnFsG~jVU9)B5#KeT8{e^TCxX{JM6uWXGY+sSi6Gj92wt1Uo3#Z+P z0f~m=?Xur24Ht^kt7xbqq3SNHf-6uYl2AZo~}i_x*#Y>boYFbJm| z6cVG@#CcJtRoS~mbiZRrmJB6uJ|qm-_(wWWWlmkNU6mH?Vz_X|8Q#^wsZ}R%pn^oR zx}Yxkw@aV1L+a*`x*0#DZsaxMA$1c{P?0bB)eT=qVGUNpGRpLOV7?Bt99r`Ab(HjM zsM5+yT|_G~e8}EbwNp z39ZW&BMjFBoJsh1Xv%ZWJ-1K@I@!oN*<^IGF|CtlPdwWZ+}US8M+3Jh7Tl&(a2wC% z;DFesRYt3-tz+@L@4P-MYe5#*OlJsX^EZ6O@^h0 zTA9Bt)5`qqz(9%6OCeaVMti(1c~C=*(?EOZ@Jy#sO0*qot0CNzWeEBuGU5L=hQHc! z#qCGlN28WQwQicKZ;lY?6`VjJftU+;7nv1Brx}q>P?`;Pu`xkQ`YW-C)KE14WEPrN z!(wv-X!$Wt6|2}>vW&ElgIm@<6*<0?g&evFUJqJ)kMnwuY*|E*h|NXN-m1sd?0yGa_R(O2=S9~7fbz7f-ikvr&*-WobV+e`i?mCn-Z zdq?6cbLXz!gmYL{9bWmkz+0+bi@x>DJI{eHclDEp_qT3QYA%SZRo#lG_s+;!} zD>xp-Q6IKLtT72UJIUS8|9a#O!`*!gT69~_pKf%8gSznUuGH~3kogzmycwse2|pC9e1Q% zsLam7u?Y`;cfsYE`JN7)KZN6RIEnep&vb~|!3n62uFl_zpLA3^j({?zm3!f=c z(_FM@1oRqPy2Sd^^njX3Lr!w^v|*0(TptPQQ=g=c7`;LM;H5+vfs(~2xggTr1hgdy z7?Bj9aBE?Ji!*!2Q|*XtgrEOF-=Nd4P&?H!X*@=cBT&=}ED@Yel|Q-5Z5M zDh~11s=_R$;dhOW?Dk5ShR-sjlB@P(8h#Ibr<(>&7Dvqtn|a;m@FE!>Jd`pLSbbGg1E_gky17%=E2}NG#b}EP(;H57!~W z06oow_NVqZh7!58WP~yv)vw)!Uo6~R$Pto-GHZJ*dP3ZZQ6$-eSk6Yu71>^ziSxp8 zT*ZVtVmYWd#CofSTSY{Yi!%O2p|#8C%4yb@8CuCz`>`Dh=sSJRal$y-j#uRwqaeMN zvQD;RDG&5F50Jud%TM7X+woAIF}hIr*kD@`%1B}sD|!BG9!!2`fYkncUTP=WkZC5svGth{ z6Dz`XXf&wx*s16{-8OL2INFBsJYy8Zx6;S)hs611dZh}k?{_5as$ zss7g>=nLMUiS)V2Crr$%ir+(sT@#NfNOy|bJ|Vc1K!_4*Lf70)Ts)Hx7Q5l+tqLga z)^W=Yj|cKjh&35&L#RpJY?LY@K9q^&Vq5Vblj?}^pyCkEtqRU^AoT^KBfCWthU0S# zspP8tY$|>qeWx1^P8LVQ@kpLA3c_3I>SQ>6ln44_1ElcZ=cjOz;W%t2ERM;dp&dxM zP*|A=-ObG?Ra0zT9z2dmqd_f$PDbCkq&d-WoSA2cg4BlLpwf^Mi7^~8b*`1iQp>Ag z6&FpI>DK1GDbvMyqwzhi(pC1nWP@W|Y3Rhznuo0qed{9nD_#`O_!QcVg}*EWM(IL+ zGsj+fZ)6d?uG}`M#rWs`b#N`4r>1x@tit~nd>+uOMNjGxOBdPc#VOfFyj2$dZi%O4 zxzYh%mq`?bLA#pGwunKa;*cy_6|cph)r^juR8fT?m0YzSgH}i1=_-Je#nGU>I?osd z;jMIaGH7qj1N|)nr10DGQ#i?>eJIZuT_~(yr-*|Fy+|p+&*j13(*vaP@8+d)qAB}k zo*@b%8>Wm(L+T^Ol*QEfXq+iK$hEf;5pzK4cJj&;`Ea(AuUA{2=3=sqbljA|EM8A{ zJ}^(rPdRR5RuBf(Wn-pi*Gx^5df04Obds%rcBc0~jF1s4M#Uj9v}#+66+0ypQesRcaZ%YysyzErH@qzO0OC&iG&$eOGe$vpD_xyT&f|HY|6qU={&9W^Cz+hXOJQ+L77gtr(1pT=aY-{d zC*{H81T-4d0%|?_&Lz!>CTBFy5Cy3XlS8E;B@$zDV(O%toctty2*JUWy(13 zau6n|S@wDOx!j%ycrv-CT!F(HJ$97w^XS?s$hW{=fEMujoImM|y=w}kpBKU(DpLg8 zo=Gl*b-9L#e#E*^aY!(%S}?^)VZrFkNjFp(V#!teu`mtvojxZyX&f!g?Rmy1h;OB> zlZAO(9_V)skivK8r*M*m`OQ3IbfK`aFiuVipU;EGX9h^?FXW|lqJ{a(JVO+uHY^O4 zh7?JRg^8*2!WdVs912w_M-xW6HF-%2%bcyropZCTNs;Qj2*-k0XXqiSG+iFzj%<|u zO=LUa4RMph?~jl#i=q?Abk8s+FDTWkKHkez#(uRiQ^pO@e1SP)dKV&&b_3bq7QL$w zYbKQC+z2XDP#8*Y2E9m8@$k7YHU+Ae_XFeO5@Fnh7bf zfjJqC2DRjS68cUzFPton=4B$!7zN?2bagT>7vzDyb$}G!mY>2&=H>c4V|1bL34srs zoa0iCV}4OmUCo2f`~YcQ%S-b_GxN$kLlh)8%nX%=lu3-4iK(+=kcw9E(uACDe14kA z_}Kfq72$_Ara$?t-i@<+Z$x)w(W-DY?pYcKg`$rJ~-4W6Y+lWC=0pXB7j{>ig^CE>% z!1E_W62gx&BAXgI54MtSgNW-|W;|9a5iBeG*(%=T0tE#5QR@M0SPK;1XQ&RR$svG; zPvxBJ;6^ubLdM}h{Zv@$b51|djAczs81@x)o+-516)3i`ZANeka`6m8?2lr{ja;{I zj%o8upva{?1E-rx4biJ8(hwT)UA85lU#~JU!dO0noa`fMf-=&Nq;NwJ2x#@2B+p0g zTq;&4PEm0Zdq)QdNy~8rLr{w_`B#~y&j$34nf@>u#YFj|VqKSpGs>TyP7;ZwnP?$0 z%d`Rf*Z^u@S&D4(!2q@lBT&v=Ud{=tp<#~Qss{B)oo@g=zs~4s#hk^0`x>YF?NTxI z{E-o*GBSu=+`NjPKc=LuosX5YW5b9@MrsO8qt%JjhjX+|A#=x}QH;z{vEJ7Kk-29W zK&_ms3YiNAFu`Rm0}qt7Gl%OeW<7}68b(4ZvhiZ}s*w?CJo*%}{077j#NI)Jlc95u z(P<^;!BLWY+AMf+CLt2D;3CGt$d;Ij5BMy&(Ew@{EIA8;0c=m61v!KS@w{lAK@rL{ z5}Rako-KD`w!DCm+B&HC+48?fMzpn#%Y?ylhc5@>biyxqy%Q`ldQYfv8MF2{gJ*K$ zuF*KD3Dzq!iN2V-w=jW<%v~x@p1aRTTQ!mFNNi6}S#+YVHi#tyuvOIM{0#!oCiAnB2YMILcbvRFBVbDP{@~Ml@agr0;ad@9o6Vo~)msRzz_5Bd%H={?#9BXP z|5CAh8gddE`3ZYRVy{P$ikD~$^=35esf1|FTDM&s_K@rid#42i7#Zgo(^&R3aX3D_ z)H@^g_i#5$<<*xXr4M2KYQkDztSyDBZ;N1EtiDq#+kOtDiGdDxT?_}0XL(phBQbYH zu?Up41@An>$;B3=%#%;%x8ODlUone2rG+M*Qq~Ybxzw6$b!(+9LkoTt&q+Fq2%k*z z9ASeylX&*nsC6k8@Rn;@T}1OmK?ynG{Q3FPEKd!$g(VE&K#xm?_C(^&1*7duxNVcf@6>MvYRXRDNRBn8oUM(RcMx z{0RxN%-ZyI`~a5!L(oa@z76HZLTN+Q-_@7~CiA5Ye%%LEXZ^D_ld0xW#u0S-WUIl4h&u#&w?nyf>ptH#i6!+NHz{N+&T0LI}{s-I24UTD<|ai!Y4J5 zH`+mD-X9~AcE)jxJTY2Xjx_EkHSU}3JJuR9y>utTx2kwekgctj`! zr1+)=bhjN;Rz`C0eKGPxbwDv&SxDRu7_ps%ku*xxI6q<^r;TwRa%bG> zJmcrJX*^4P279G_kT#xO>dv#5*`e5Y#-X_KtY!z4m1i7yUpzZin`e9V1NAu8t&6EF z^-1h+%Ff+xAGwW@uW)DNU3MroMsg^wjJ(edC@Uj5@V*#%LgfAq~YhHhys^8oyTaTOTQp@~axsH|@Z(@{A*pk!R`Ezt0b))tymw1)V<7 z6>N1{JG4)`;5?f07xRS0y;CO_8nd{|({7LW1<_LP2vn=gF7?*M+%PWnR^wM(AT5=z zpc@3ApY1Eu%$wor4{_7w(_L$^+D7GS2Y*60W7WMV=^ba>LoKl!%Pf0xbsx3+8Ho@e zzJrJ{Bq(snN}TOKF7DDmjs2)8?-w{Vie=@ya^+RsdK=;IF57l7-Spw=YoSDG<#0dA z5&(*`kVea|mm2tehI??&1}~xDu3ex;@C2rdV&M#YLT~vyRw8=zF55axzbmJ^jyuXj zzZ@5ejB~5S*x=HsxOC%X$mY?Q72fjGHy z`3<-18Kch|@Nd(^ril&BR$~U)adErZ-f+%yo(pI5N`12F!Mmu#4SKS9M3N{mTrd8ih!u`AS=Y#meXVu;GX?>M& zs6K?xm#pMYubT@RqzHyL;7V2sfA0m$L@SVLIl5BvyeW}D5r+&?HQiQasd_fr(A>Ws zBNTK=@jhYB)u#}s;Y(JbiITKxb*)CGBPhvaaOW?+DP&*dj4Yv7LC+d2XeoigQM!O{ zZ($TjpsFdNh@#=HF!bD?zZubHfq11*V6PP5DNtL)`wqM_@$0h`!xM^$zTwaaNj7=D zOuQ|jM9c_BP1&tU$+dhu4(T)sOcjoX5UG3gtfGUY-z@ULT(^ewJIOk7v>!fMC&E=PGr!)0}#*kBf=vnu^;X&G8AO*?uu( zcH_9`ZIhF9j627`h0H6qeXO&Pt&5(>F%k}M_Aa7CkN!*<&)HfPf4WvGY{rYX^5&`P z)Tk$^>-pXYd_hVrc%O}shm+7=O+4YMLnVqPH|~L=LuUGYg&V04D9wE@*uQ_W^Rls` zxBX?+$n&Q4>lh9v4Z)$4XBW)9CA#H%f zOJt^=?aq`as0&^PVqsZtW9%%tGtWr9yHT0d5|%NSEof*w??-+bzuv*q8cqnY7A-=* zo!=)(HAVL-gXPtSblZ7!Kzu2PE2~=LHyDkTwu_OM>Ib>)B#3OSvo^#~t=kArck4J6 z6ze5YM@eDOI=MF!ZsP4ufZMtlsnR-+U>Ks>h`apB5uBbbs~Y$ZXBwMH_f6S_UV|MO z`a2HS7F#DoriUD%aJCfFM(gkknFezYph4LLjH({M>8BK>Nd#vbvMxbU_8!{=EeX}* zwRd6Scc2~-V5(i>tTNV8O4;zm(8y)*F0EtRzeta7`CVT!2|YcXj2htY8i4J(Pv{rImg&A{x$#4T7a3?s z<*bt`M;bbCPL6Ah#!junf5|iep+tfKT(R78p(d9(Qs>F_q|oH5p0-m{Ot0MjvdZMX z&e)A`5!~|IJH5qH8nVSPbUj+??{{k*0E5-X<%QW$=XX1e8H&PGLjZ<` zOhyjHc2eBPw0ZYbP(1VwEM!2}N(0JhAVubAzUD-k*3mPKj*^*3Cl|tS5_G14K1_!5 zmx;b4vTwa|B{mfJA3g9{Uo}bTtSQb&63dUACCspV4THqS>|Mc%A_66w z6c!pdTxomLu-~&Dd^thQlmx!r1(Y$PTG{9GHp7MnGlM{ChE>wY&^{4+vLrFycSdO zLtY`qzoRl*9mNW0=a#Xtty5FX*vXY6inmTo;WQf2e29rStst96`49Q=iaZCVBP(yN z)mV_{ER`ub5e|+DJj7u{3t2$xpDD5UQCC2>{h~2qf=~>L$@+Mtq|BVigg!(=O#)w? zM}TgV0(1o9h1MPY5?UsN*89hXxh64OO~l@+KLmN3(T!cK#VS9*YAlmDIAbr5l`6p= zWo1Qc{9s==uOea8db1N!qEc0;=qFsi(-$g7$*JIs&M_Ka1B_M?SG6v_nja}=-Let7 z^QXQ>~;+ONr#-^r*<7AGG73h_+ zd2yeniz0ewp9D#o@Bkwdr*ck;!$(f%!&qTz^CKeMTWzzqRA=izu2G$#Klb-#e@tO8Ze7%mPM`Yg1 zqsK*Wy42ZID%IsO1B(!nXtfHVP5TVCQ}y{m2bVx>g)6sctg5~#U`u;!0lGC@u_Kz{ zG%lvFEvsPlTIAQ<1?`%9IHFd*{e&K_i{fHzG&F+HvG_@wkQZeVWTCiTfJSVg9aUWP zle^-ILsKZOFq+$qZmlyyo~{IFKCcgf)@T(OTNdS2%`^g`yn+!N!RAP2ToSa`&3)mr zlbyf~YBF2K=&U)P1I@V=V_b&i(l-rNvUhARG$-k{qWnb&Ec-0cAU2#sPjzVAFMKichVqIB+8k{MiADnmMBp*r| zXQ8F~e5cHUV>Ky9$LsZc7KdA2uNaKTj0l50bh&{+LbLlVPhWyk0=liDmU z{^_cESnD{c2ZGJkdy&ay$LiQH<0M}3@rl>>h1u5`!=7kTp^l|ZLMKl^!x`{`glX4% zToG%=uhSlDu2$MxndX7prz>>`D)Yzl>xXV98%7&oR)ST{hQ+Q}p5noe*hUl978-|nQI{h1e{ReE`i%G=FP6SUql6emdi3p zX|yu4ClFOB?_|rRKtj=zWI<%1-O29YQD$YKyTD#JL2hgQV&J`n)8ff}a9r67?=9>Z z=qtX^$toErYTT~O*DG+Z_sM5JNH-XCz_J^nE!oAHN&an0Ts70>-RlmP5o;oHxgjE9 zN7leUN~4Vw!ZmcfE(oS|_)?=oyUdA2Az{H}?l7bgQo1yPT =T8;#wDlv)+Qq{|Z zlS#$HFbfn%Oq85;$t4N8WcyEOWjcq;*BX+#VEN`z07ZHv)P#wGfuc2{K2m;hADYg% z!!N=46P6AxCJU9DL@Sgc(Hnom?iUdZG)ffB?rwm1xXSh%`Ex<;u(?qkqqD_`Hc@PZfd zg)r6y+Ci&$PlP2fDzrxnbCnj61teK0Eg+K}Ef6~7#l+to(Fcj8P<3@SN`P9vcPx6=+pJ#16ehfI`O5cT9{H#>dBz5NM~^8n87u$B4TlOL!bO zJ#(PGSpN)fW*UgJ3~#kq@X~m%3Ez7RK@OW>=lSrE(T!criTOaVnVJLFNQ(Lvz~vv; z=lUAgGhAkYGtwI~&ljn|#xl(_4WU2lYxrMz;>=f#CiWR~oH4T{3)X1!UF+=8z6kt6 zrV#qp8_E=!V{l zw((_EVq>jOO^x!myezB%3>`h&UGzrSVGaf;hlBTU3nia9GzPbxybd#!CGT?epiEMk z_Q-RzY4K(opc$P-;TZvp_qcZ{o)L2uFOpPxw5n*(1~?kDj>mq-VDS??0cT)BiHWn= z3^Cf0wdT|paTkP-C769RJ$u|F#Y35s4rQGS-kRWrB=|0?BYHevy-cgEk9_f`y!oZy zzI^dFPEQQu(WelDptCmuLp>rfRcC5Y#cc|Z5ApQpvE3Uj@bv8vlor+x^pIN)wAt7L zmXggE<7K^w6%Kjw)=EBJ{o#E!lie0vOL0K4AiYazkM$?lJfY^EraAx1(466g%abj$ zRI21t66Uc60U|`w z?mwnRLHIW;$g1~5khG*{79sM~Q4J2)jp|(Ct`ywRv*;R>6z(zM0`cFSkdJ1Of-2PV1Z+gp;64e0u}2XJ>@rrd0G9u zj_N8JxMUdrqR?8=40oj@H;z@G<7oYip_N>d zdVTLme5IRK9t)6F7vT%5hXJALBY^X|>L+j%Q9T0h)vKSRPYO#;*U?BGs6%LEbC=PnTRj<-Gf;OF)m^EJ-RR0;O*uxS?u6bE zEWNh9PSJUqDQ=md($w7g>i7WO=)N%Ax886|cCzgIKx~Rg+QvAw&BZ;~+Y<9Tk&n(U`O}EHNS8miOLLa~11N`8) z4JW82A4iV-)RWXS7cCkA-TpB|>D&onTIwAl4IOggLJY%=$SCU55gw@{MsFO-QX~Wn zxb2m3;Uz}N1raYC$R&mZjMre^W5OLqfQvJG(L86u@I`-6v)Rw21%>I`$+RGJQ20un zikHds?KZkfwr3PbL72WaLo2yzKgxM8`c7BQ0bxSQIYO5h{0Ep9iRvjoiCfdG{o0IkY_=m32*r zqA}KFMJ`G|yHJ-w_Pqn8yLR7nW-G?fIB2Op4;E*9A%M0&-JY zfQ^7B87xz<9WIKina$qBFk6~jhNVN`8b;S@Fl*#JCicbQ{Y#JqQRwgByBhO{GU-R5 zw%^Z&9Z}mVN z;e(`a`=j#WYm~Y8t#P5A?eRNa4HlQ#eWO|7M;sx=>i@_#ow)UZkk}`8*hWW`I=w zLS8B-s{OyrGekjTL+w*(NPWbp{g^uET$W2+DlVCQrkjM9q_D`CP!RZKS9tUBa@WPVa~T7~Qok+F*#UZh^YUd*uPvvS+d{eS`Y9_?Q zDb>knG^mB*lhAj%<>RCYTR!sh3AQ}^iyG%do^c8WSm}Fgcb8jM0VKYeSkz65A+Mw65mCV}5|Nu4SOLx#5Y-`xtW-t+RbKRQ@6DjrT(O z8!MAe=_dH6%VdIkUxdktdU|`seJa5`F1hHoDDWP{_c|=u(0*o$ucFYsZRhmuv7@6}i_A#c;o&D-l+)hcK zb-H7tw@N6|6*v{s+YA@Is+eQqnr@@sks|r7+r-}ez}|c?ju@gJ_F78!nPB0&#M1$?Wz+?>Xz((Sk62 z$_e9WZ)$nQC`fO$H|ii#Zq23eYFqRDd7$4kKnmZQpTbEelW)y4Mi&aJofl1DDa1yp zlI92U;Bo%|Y5ibcS|^@QelE`t1*whmNh%Ggkr;y(Q)kzKRKkk4CMN0T>f98@x|*x) zo3X`>KE|*Ztc#HNL|Ck=9AA|RM>aT0gkF^vQeTzQRxFhKksR_^AIP_O5uT>e%t7`a z@}}b{#g)q(Eh0jXL%s0hP}~A!ejF<9^bkNZ^f)x^zj0!eoN{u<{iLMeM~2KM8zJqW z^ZQH?B4(6|L-KD`_Et0cbE7LeT4LMwQ-)S@)qc$A%8rW}<%DrGqo<%tom|O?Ym0e7 zdMjm}%xEzW^k<^cptcet`6--aMxUQ&j4l*DHdsnC%_OIqS*)hnOY&fH`2eYXbzW*G z8q!LhAqrv}hLlS6nE_1`d0G%t=XD2*ZO~S$CYs^Ql-5^(ugpYH@e0s{2hzE`2ONl< zQsQr7mA=;aUWzVvU2F7SgD4}Du*~+hvWoJ&G8Ha#yxPN zB>#PCLVo!?Di__FlGA;cLQ)m*sauCpW)Uz-v#~dkYeT3>C1R8+BEBz^Jcu3d{b&^P zWQ>YKGt6pGES@-@F*fy(bliWYMa4Ee37g=*US0%rc~stM+5iD(E|11#q%B8nj#Uj8PEYN>?X?_NF}0 z?;Ie7-;$rgNe1n~JY#gBuE!&hx@2J3h|ZO~w) z=*%`qk4?_5NRyGcS))B%>Spa29b;+T!i9>mKQqKB*)q^NQdqYCWWH51Tg;(?rD~sj{k2i)s3- z(UFynGWN#rFr<>J_Ot2wJo-*IO`I%_rs*4b#wZAHrK^)^`hFhh-y0x>e~_QTNv7$4 z@{G}i!Wm7|aeKnkB3VSWQ^aG?Xiy8S6VP`qX-+gvLwSZMNNt!VDh(--7}FF}$JI0~ zliF3L$;2hyG~JgnjhuH)pVamsdqoKQW!yY%$1Na&ZEdIhkTCOn8&zOgr`VgplxRiV(_VR0;UPFvU+OF8&6bG)(Bz(ezUBTv8#Dr0CNcya*)?&iSMn_JQzQmA9uG)_Y ztD^7pNzcjRXu@vGGe$vpD_xyT*qie}|Fr>9_^$jEPBLNd&of3B3THH7zmo@#PY#gQ zpUF$>L=*Psd4?!RZJ01B4JnZr6BbkFHpku7;PkT6sU~{qR_)RhZaZ7G{d2ReN#sf_ zH;~*M4im9Y7Wms3{%B!a16N=?mk4hbJb)+5^@38p>LWl_W$afQGiCT<%zMm9%exQ} zqAA1IV&N(T`9;inf*5O?3JN1>lJp`)wf`{~pRCEXbH4v#go{`rDh>&eRbw6wLP^}% zXNAY1ce*9wWO1}aXXY8BAiR~XPL}ArJkXyzKnicoPvIm> zbWNTyx={GI!1;pDX(`2#awXBFJh)5`klyoo>78he_U9R*Ah%(Ss5GQVVysb2oy(S2 ztt#%Bu+mM-zcUSK)mz$Gp1r?Y5#{-B(xX9F@8+@0DeQcA+S+CHRlMp~Sk?46`A1$= z>U3N6wiNW>yCTsiGjU%;$p1JsN{f&m1i;_E=CBnjc=YI^-)bRdGOo+oWxrYSc3h4u zmT+I>8G_H;xRXCyFSYSlkkYk@{A{c-+(PhN9ZA)Y*puY|qnOo*CQNSv;ptLpA%=d3 zxxS1Sw0!HH8_XBBk^hP!@KfrsR%I{YNPADOO?~3W8JUr>RhnlGF!Oq9Fo0|#$uVo0 zA7FD#1g%Me(JnQS+zqZhDnv7nxl^K?6pUo_JAc_9ebrwm__!jTr#$47Koz06(G^7{ zVVztmLi+@DJW&VBB18i~W&*_H@#`H%aTS7qp0O6f@3N6j3|(`EMX})0cw0DAK(QP| zLhrRlMi|FOM!e!kn#7DOkH~PO0-3FTjYJ%=1dG*)Q&fhE-q8VSa!wt=P}TgdznN)9 zZ9wnP6Mun5G0w77tSi*85BKTm#F1DcI=X%0X#@Cy0o1AutHS#`7{H5$Stx!u#P>Ic zHH1tmSaoFi4rr!RkgK6Qe98Tw?4L5qTF1aN`d2vzloak68NqB6lRASa_Nz%uNjz#X zRuYd5qbC`yX+DjDYpIWCl@BiuU0xo(+_u`L-GY$G0vg50Bo*s@9T1s(ngP_xPbrhZ z050M(**9mD*))mZERyemNUmmtwGJU(B+DZs(#rHHkSUhNl)>|f{84RqjE;|#z@sFJ zn*3duiG4!;E?{Je>{hAxfXm-Y4WL%$N%;!~@Z4niOJjr*Idk03BKKa1+!jVlE7tKM z_rj48vFKnDr`8?Z?q2P-@G#|RH<2?cPir(_Qk;$y;5BL5mx&odn)WgZM5Kv|lcnjH z5pBQ{qk<~akh;_8$VzJ|ApufjTtZyQsieZh-&raifK+rCO{|#4OT`@{Bf%>HXF6g?MxWM+xA4=5)wI~w7MJ!$ zHy?xA>#L8?%SP1|WqhPnX}DpLrxaVwPs^7|<)LNT-!9t@Rlh(V<1qXND9}4%riT1T zaR}1S9Kllp1lgxJ1g|C_5d?cDcPiLnE>t?DvF6OeOojhl@?}=M-uj@zIIFPPWB)-7 zK`fH5k@9-1{uz_XMeK~O$HM+ha|b>l3wlr6ywI54Jf(WBu|B6ZdzW6h4c^U6GZf3g zd3NuVga)i)D8Y7h6r>RE2aY!ZXi8?Bs%cUco^i$UZ}5D6tDB2sz%@*L;-W~AI)ZL& zv#7V4WeA*EDqj)0@;(>sRCd7L;RGWtz1<$aRbP5N%Mf@u%MN&X`J=t)xQGXDEDtf- zzYOC4EQS`;@=*avm42ch^`TqEwY&k{oe{KP5GIkc@^*-m zHk*1!iiB=Ubl&l1H0+(u`Ro;$Y?DvB$*SR{-YI6;xRj37mv@$Y;=-#*sCE4K{v#M)$UowqkiY#TVoXlbx!kCS`?Tps`~R``CU9~VW&U_V2qB#i zh+sICm&@r1b0r}_0t3W=TqZ<_I)HKLndzDCH#6O1A4!ILRaCGM!9h@WRTL4$)m`0P z{_A?J$FAVMt!+~4=9#g_bnIw?#fuXy)s-CLnuBxY= z!X>o9fo{%^{zG~XYp*~5v_^3cl8$w;NpxM%w3GF+d=Bbyt&po-UZ!3Dqy z`J|wV5NSn{a)4klfyZ=E3xj0B_@o-WBGkxaVgGS-QPAl?2zx&YfiQv>R)~7l(rKmB zsroy4^?qF=S<3 z--do*5!$6Ny0b7*toH|0?Ooruwr@?}+I78X)3>3oI5DAq?B^<>Z+d3qSapJt?tPmuofKck~{um}hV(imljQMv^ ze{6JL(?@rh95{FaLy}+BIA&wU@ogH%6H(*%s$(4A*T->2A`uW0@FTtD(x4^#)&IHU zN6b*Gt|s|@=Oq3AMVDjfMf-fX(Lu=ungoaNF$`9O7Eu^bhXwPt|Mh+;}y*+EWs=}dZk(L8wVS0 zEUo+&U;RnWo=U}P3S&e=WSo(ur-;Sd!mZ@_-Qkc&@UsB8Pzv9}H!eWpgI>-ji&W^;X9=)5+qGHIsU^l>f>!Sr^tj0+k z4yKUQI(TvwDbK3A>#Xr44(V_P1;sF4ZC1vLH3Be}LoQGpbW-qWuXtE=RGuE<+=}0b zFO{d+C_4-eu*9QZK!} zj;wlZj7ew9g=V8VN^xJrc}UC)=9Ik29z$+t$iCdBF&vbRf{DS|TZ_#aG9FwGey!nz z7`c4BZM7^C9jsf|mn$_I)Af!0{nJ#dh*S#`^}Y%^A?_U= z?Pmw7{ZzfbRH&EwH=I>GXW*QH^+>=_JZtSbymww$GjQ&?XRkSH&DwLv21a@}jlerA zj5hj8jVYczmR#IFdb*)SGaToHc-OxUWR|+9wPXGf2>i`66eXw^h9+ySB6LAz)&hJo z>u*9EQsCDDFVNbAFV|{9NVtDCf$F~UP&Bbh({gmT^{VZcAdfR8oDz|f_=NZfh|eWM z+b+5K@-3Ha-M;CC9=Lmyzb+u6t{^lGicr9d*yCOa&yv?DW&wRL6<&i-u}(&cBo^aP zz`czov~XYUrO?--4ZJCb7=&_V7uG7?IOJjk>lFkhi2Px@t9Z-NMP9Ad=7BN(x@cAH`yo&$}gM+3Fs7eL!JM;q1J z#$2x#tbhVbo~5Z0#*wU3S#C_lzxm~w!g}F$xn@@5^{OL2B8|a;cy|kv!m}Kd0}eA} z|7k{urU=pU4#(r}Hx1pwJ(j=%`ZXFcU&78U9EFrdR-~)|Ql`<^wMry4b`!7#KUAnE zYNe^C+oj@{PN)juxXD;PZp?Y!Cbo;jGU`DYs0T|(Rgv=0u`VB|uM4F>okh3Yd^xEH z zN#gEpBh?!c0BCUlcg0s_M`W)JO;`&7d`YnJK~lRJ`ma`<D^t$0NxW*5OD2@tHQ;j#IwWs71xU)8UZhy#>mf`<`+!6|Q_h|R zlK&&4h+EDso2#kHsmxu63K2g@g9u$l2n*k1Sa9P`$OuPR8W|w~Urqo($jBGtt6F6w zdPw|0`Rql^^JfRjLOqb8)$FCxtdCi}s5XJxhzv#zoRw^cOi5o}#3>g-ZaeeXnE=*t z2!ZspfrCGVWj1>!x>lURrVnkdFi&Q@i3s&#A6zxcWj~CA)aDe6?yhh2D9(mnYNVUL zlBu3nV^(~7%*{}}X?9zrvvZ6=Ji~7sdjFCI3%2jB_VQ;^EAU@{R~4MZ(hjqm+>*avCJ5G;-Qz2-my4 z@*#0_z&fX%cwxE17ElGO^VnGtf1f}(S+t&;sL`IDx3f~+Jy{%^z~XBJYMz0oDR|?x z>XbM1^78OajWb#Ix4`4d4ZYkSZuAj| z$w`}&i!l)XyM-IZi>V_poTith$+ zjEU>s+S$Z4*fl(8zUSP03r}(AAbQL5;T>uFy3fn%)E*0`_Ea>+DYCv1I`p|i7c5Ba zcy;wEJEa>@(y(D83lkBq)&sk)*{H6$aJah8-^ngVnWv zI9JIXtFFD}RDtvfJO^51xE(4`d@lNlC$#SR080sgCUvC1Bnf(JbE3LBaG;nC(!ybe zj>8rBgPM)j>E!#h>1A+XN)CAjX*TJwtObwY7!?~2^a^x}tp_xE;`TSCYZZ@fn;8To z7(zL`4)z|XBaFG@p5mvW>lHTq08ewY`9Pia&T*&l(+a4g`D5p1^~X+tKXz8TKh|0r zSX$1b!Pc>V8G+)b%33A0-+4vWp?Da|3)oQH`}F3KFtrjBh&yq8WS{yBi9H2wLCoXX z#cb$8U9^^h@!`y?5!Hx#gprI ziyja7l5b3jJ>X6@vE+RB1!%?4jZ}!OQEiS*ao~-mj`NheI~`}>kUB*RHH|ycOhZ3E zI~CJ;C1Vb^T#EBE&PUOQRqbcY#Ca4& zEA}C>0f#^c+{E!RovRlnJX{%@oWzk9j+Jnf!#iWa0uJ?3px9{(1f+H%wIEpE9{X{h?f+Y^dWAzUdCNKI`gE^bWIQ& zB&?GYc=@$an)1Xoy@Ge~woRAP?TrF&up6P+)!p9pjb4NzpjRBZ?%>jk@5sTo$2-$o zBko=`kOY&WS1xCJiK}r;yE;$@{Lq-6)w0`xlQR_9qs1wC7XvT`g(Gna6%uFShN=*+ z(K1Z|$Ak}npWnu+g#QjOL=v$N@v|?mW7SUJ7E?P>ffBFh+>#C(65UN1@(CG%(&HsEz|-VH$6$H}b(u3QakY z9&dC0QoNu*A+asqVdLRzma4JWZy<;#``cRbfur zt9-P#xhRBNti9)zht%};9tX`W|AZ{&a!rncWw%+V6!w3mQP?57xDhJ#Kbf9%+Qp%z zVBdorJ9k>|>Cdq^$T`Rqb88Bp-b_IX>HdWaaCnM;C`Bz^$hbAdN?La%&q3owXdIVO zL@Y45220~glHU7qynpBmSMopNtH!vJtyhsspB|o=td0~WX;F!%b#Q}r6mAzzw4yyU z^5IxQlE8o~Z>Ki*niwsuxMj@kSf6D*7wV`myYt$2BBotK2O)^zQ90ChAFnZ?x+Z1l#BcmK$>*uc=#BLZJ z-iEb(jx%FkdmUpTjm$j1fTg4=4wWi_{EIXK8PdVehsZq6aBfg`+JOP6^A2Vzf)|m+o-SKm_u$%7PNX==?vrTl)IM)`#-?WIspzhpYcX=#W42wZlMvEa(WZOuud z?n@0K#}LO@I5jv(J7x%NY~q=qV-;6(59zqhO6VlxKlMz97}E+wnJ&loUp;d zR-EdPzMU>$*OVF2>=Kkvn#%8oQ|0g{y`O)#5L{GgFNlkX|FJj8w_l-OLG9Z``71f##L(Z z+zs3D8Y|+NA|!72@WvLj0~VRM;DhIfCui#Agg1DK#%Kg@&(BywQodY=EalrQR1EZ) zGz=7y>}??NCmG$`l07u9vxkJv9{`1@uckqiE@>|Umi{50yQQRYgr<=+BE!cL01%S) z|HW60leF7MYQ@6N;VPs8JKFR(26kaJk&9XEkr`w?V4r#lvNeV^6V_4kK@GN23s!M; z4_5=|sPh^YK95Bjt_CGD(>L3PnbgkA!4N}|`E2Weq=-iRs#tLG?I|`MLb7@dm}DW^ z$K5a<-;3CREIc;S@0H@}Ln8Yjn7mFlp0 z#Ke~Lnk4rigS<#eUmR`X%q5UZ$m6`&O+1-mA5&mN=6FOQ89g=vzLe6)-xZ5pnuf(f za{6L0!R7>Vdd+;H14213eJk_~r9qD_fiD4WUYuM4IU3VQAR+&v1OS93JwLu`oCN*= zFDwohhS`O)VR)Lz5aLsY5#51JU`^|IG#sHsw2&3{IEZ@0Yn$vDQNDAEl`*#6IS7yT zXlVgWF*)LhR~{B3+$eHUZ5|&77oFV4z{xE36Vd2MYM1sdDkQ$JZ=D7aA)Rx4RBS%d9cDaHKP}uFv(OtH^wzX%+P1?VzW#s;gdDW@ zuogW~zzY9`!f*&+wN|JUt4$tL!cM^=4zNPqPElhT*nsGkPN@=g-F}jmO#lAYoYKae zb(SgcWNqImmh?{N97iG5d}IhCQX#jME9v{&G}0GR!#f}!f6bWQt%iT3(S+U44MfTCvpsO~X>ULVp?f>6`INR4R1NdTA6oG3;j(01yiOQ}I<}6nd-KoW@J> zMdZ*N8=J)c3bmb%Km(S2CRntFHj}WE#8s|{LZFSQEnBV*9AnbA;xs>*{(OaXY>+j} z5q|8*&@AD&LOSah+bE>svj3=9?TFvYzR7e0m|-c}$89pbY~C>fWih`%6vCdH24T8v z61Glc*h;ja#1WfDHVMFC2>=M$JS4tqoNPWSjvn;rAH680kz!s}xILVqOZJRTHnC=9 zV7#k0ynMPw$vSD5`06zSFMk>T%Jz|^rv<+)&;r;|PA1L|>#&(Kq!*-|40t}=dhVtY z(f~*3kb?9Xp;E=dSEXU$kjF9#CcBbxj@x5-vt|D297%mn!YiI5Mu4{17sEs39I>sF zPZg1FNJAuD&k%)n#LKqy0XQ+!=otcVSpon;&s-c|HAc@2ePiK*1>@yC$i_H1OwViA zhj}dC@Hmp!O%8LPon^11#okNl3LD<}ro|lH;F8Gzdc-$l3!E3qYgJfo@k;#ehI}uk zGTm3MjEC=E&=ohHCJ+7zZZ0%R)#gNrw$CvLN^!tl7IX-gg&lceeb<=jgJweFNVZ00 zV-|XiW%Wf;$r?885KLM3>hz{Kj*!cA8cjQST>lj&@wzSI981MfJS$uXQ9s9!-}#7d*^h8$B+w(95s{j!i_LABAaRETd>Uj+jvPs`tnY;Q{EN z@SISDWiXwDw=BM#f&=yg`djh0SE;}6X`hVpAxqYkP|T%!o4CGGtoK46WzBY4g6g}Q z=`*MG8+sJ%dXNn#i@B!@8{(SAL7EA}@pPb>66bfN5og^`8iy>ugUNED^%xiXG=35( zi@Op45Ps5Y;;Y8^Nv+>6G#gboMYTG=c52y(psN_hE_cix$tLtTR-7(Y#)_3ub`?YT zGPGF&hXa00qkJPy8{xT7P#v5AmWrT#BRts}>_L4Bwta&n6F@t$l`_Y}4_T{a+F+$c zGRhR2{$m<84XwF$f|0(&xWj36TCM#KUs!4FUxQKv`EDA5=z4>w@$Gn7mFp``xHNi$ z0DLh40HHTNA73>_Zwy_waKQqE;}xeyaFvVVX@^DRxE2}|cUZOt&c2d6e9{8&kqyg16Z~QYgM}J@0uRYbC@;x$wT#p!bjYq>-|~XwhuPA5}v(GQ|6ohnjH{k$|xty{YaIQlfk(TTid z&irYt9f{0}1OSA!%f(lXv39LrA>^|#T@$vAe-RtZ+NI?rekQYcssrqAZ--IZwC!rS zaVSm`X?ILNj_C1<%(JvETt5W#m0&*O5nQ|0sO#m~0mN0d`UAY#q0|Y7{ut z*GECtO`dAz5*eq~|1S{)6{Y&6s1$XlI|+J>=KBaa#u#Ez6S5^s1R|vI2)--9dTAQL z3iLiSpWS}_4~qfaM;cS;iPZP6lO8`LV z=@-UVwd(2UA^Bwe{j(RryDFVgx=p-KU+TV+o|9CMv085P=KcFlUa+A1_hu( z^mBEw(X3UFU2(F>wnJDZa(Z-Ra(Z-Xw4CqWn472-rc2&N9Ng4!&;zAgFBPVXUVdwj zhkwO$iD$0qhW=%_t(%h#io&J`B6}!(MXgvz6e1O|)doVgD_B&F7MgWr=|ToB{@PNh zOpiih9EfZ|cI-V#0bWwa+mKky;3Zk!4g;jTRk;0#j`8CtpBycHCfM606P`#aIf~?s zeYxpKfY*m+NI^56X9GCh%Mcg|g9&p;r=A**dZ`1FR8^w$wlty>(!@7|g&trWYth89 z9Mzgg%qvJ*+X0{0@VS`5mM9b76jnac0akVcD<9%mspD-`DL}1Qk&vT_uc!w4m#GF? zqqko9=!7DOS#q^5m;=;fJFC-f)P%p1X2QCv--C&NiIF9dOU@}6tyiH*9d0+qb33KTAT z)8I11>16l189IF@r?Z|@7w7%E7_{=;6I z5ndqe#S5hK#aq1l2fO>U_r~u|!xFkGx()nrS8`RvStpJ76T^}CQ}7kMbwdTbUdh7l z^5hsjG=N(kw2!H21f0n6pS&fMvk?b;OrQ}E$`pqBnL;U<3J8|r{J?QFKl!5&(ol<+ zVcCpr(zst7 zue7wa3O$GK)}iIGHD}EhN++V# zbMW8E`0tb*v#rIo;&^#%mi@kNmexq0rB0A~hYfDLJ}az6wD9 zoB>tC4iA^cC!U7m%;M}lwA>>WQ*!BUDcl6P-B#+_TI${kVZLLT+8-z##%ORX?Y12c zbcRv81lwYWey-2%n9ck5qG797-+6_@UM$~9P6*I%scs`pRNtlQ8( zSsuX$fUK zaJkdMd=~ozjo~x2zPSypdH-!%*--9~1q(QKw8nV~ix@7{@r=tfd(wSyE5hN$o@Kc* zI1p@K4zB6(rbiK1k3=wo1APPQd%UQp%c&|w(-WHTGBkCf2iFg>0C`?w1lX$|WRSfo z5gFEbfw=Es$tyg_gVNiw8On0@j6I868Ds$wJv`l1C}EYTjUydneEd;q*)S?IgJ^8t z4knaX?%tWhVnO>HnmOO|2BH{pTM7@t|&{Vl};xi`zn5bkR2Ly^7Ik1?`!B9`fr$!gW_Y!_ojI5 znJPZqoAH07u|wY^uC>N1npmXQXYa%;OS1v+Xop1Vo~JlQj^!9J=(m)e(~-@y(QJwMRn8~) zuBNozJtY@~w(;>Kq0opMii<)VibkP@e5&LF4`@sNlw&-cevb9-$hgoMI$PNO>PV5Vt1q)L|SrkupN<;z2+FKuxu1u zrmex`q>M5}r@VW5E;^l#rU{*kv)xc!bmCBSI@wLv#cmL3>BPZyM5m*|OJ5tQ_1c7XJjD(~B;AZM zMX|TJr|6>C1Ia1&J~tE>#W)m=VvE@ckDQkHrY7{b8&q1Faqu0{?0DNFAZ#<;M!REd zwdHK>KdQ-p**$p|HNTjgn*ZX4;-V&pqEXYSLZ5O2N=r))ydzqklD_PxB;c5D+k^YU5^SM*4s$A!mK0-7%o<1tGegu zBHPa7WV^);#YHv_MI&3p=I86(Akq?ygYAf5$3?|b*a&yDrLv@+^*2Srhut%Gk?@_# zN%&zm6c-6O6pe&V$@`QWP+CHA;2jZig>XPc=!=bf@_j;9MbgbIR0R8`dxkE8eJwe` zzVC+OA{d9F5iCOH{>u#_EvY!zj!1Q8il`(T9iNx1y`*r`>WcO&UYFSc%AsjO2k0a> z6c_C|6pi*yVO{M8l$HZH@Qyg($WW-6jmkMyM^aKRQq3o6pcI)u}NQWgGfsl4mKrW z;;TQ&!^~8OtG|jOAy}aHh!%zy7yrH#R||04WTM!ZZ5=;6RUN~-d|E`g2pU&c5LUJY zc+a*DLmvn!pDkTQA%O)RtfxlCqY2fN{NLdM0lVao_v@(aH}J=ZgAd8}f*ho{#aG1bpJ{}*<5G{vM?Q+QNl1xa z6^|d{9-rP-uFAvUjYi1)H{Ps_5&)iq96?$80WB&6jhlQhH<1;Mj-;tfK$cMM`Y_bAS#J zG^J?;4nPZC+(6aXfNc@X`O-TDn@rF2Vyq?why~sPm>~apbmL-8P2sgje~wkB3gybI zzZvaXOGu&4Oc!TciwH(*8NL_yOiz|a%Z=GP+0VO?eP{Mg|IYwztN%FtEqz$mc4A&c zgL?$-$1tolY*^3?hX*KC@<>1GQ&$`jzVbxf_M^MLpar9D5vsDYi&Lj^I(vDp0P*Tg zm=|zcO0j1jpJt!rj_?&JH9m2zEAIYL>&3jQJZbQ8T-w4dBNn~}g*{AqTHHLshQL^v z=~}XP#Ys_IFBZqdM`WoRsp5{+%wX>td5`5GsE2@c*Is}AX^rBZ#zwD;O}6WT9`F3I zVtsVDUY;1P<7QTIqZd^1x-Pf?SI=K)a9&LLV>ETCa!EOHYvT`D zb#n&KYS$rRqQ+c~FsezJ4V9`n{ayAseSr@$$yJVjazk+~mpBw{x#YZT^Y3mzX%|f# zc(e^mK(=RF)x3>zM}=!j;f`iZbWf;|7$LHXL|Iv^hd^ zkUZ;!sii>;NhGaAQEJjXH5a8y$tiWC8;Xlk9EwJ%MZIFeFjnldn#}9mVA9fwgHB1O z`08Tg$m$!+<;Ia%#K_zg{zK4u+QNyJTVkh34Tbw$Y7YKRG)lKqB*3zrqS9e}n}|RY zJh4s0eKNKYF@;}f)nwf!%4>Ott`}+)e6q|n3$)@^3fL4lkmAdw0x1SO5 zaWNqf(LX|4q%GdcZt#kI1MyAa;R|W-;Fr-e)=m-@wxT{y?YpmBj9n46pSXc?&s<$3 zM(Aa`9+El6%JtDIl;Vs?970LiX~9@4kAOeQmEfV&4th{?`+AzWvE4Z_o5Qp@8Wa21 zOOVp6;9XOgn7}hj)gJE(WGTT6yqA_I{bIex+ft~ZM$x;nR&3NqOH=f+$rY5-#KRWr zMDe`b)x}^-l!OMEfC))*E43jJWh5i!?~_(XATGODisHhgEJbn2K zw;&i2nftIiM-0k-%H?UheyV&UI{%+Bt3jn$hj*6K)^jb?as0s5hcRDrxPa?9dPRiv6C-N6#-(3wLCuK{7q zV|4;oKw=j>8dUTuO(qRUNyyvQ*--|z$!g+_vxdhA;i>27)=HMOTo~gam4;P~S-j|0YR} z$`chlJ2=+oU0ZG9ml+QMx-{rUC4RHS?_CuJ`h!Pc*A9pdFR^FhV>iGn)05ghnQeSpgd$AS!!-HbBDZ!ZXS z>=X+B6MT@H*&w5<>IX6Wl*e-L!p>#b(tuSL=idHh=-dA$;Jl8V$@qT;1H{f{*rJ6b z^B!<~fTo4rE-Yb#-y_}SuJhCZ#n6iOVWv`RJ=-zWT|oQl7{U{IC~069s~4?dTE8$h zXmLvAJkk&A9$_S*Q#V&@cq9=2LZ*=sm=62lL5QWD%oV7|2(Ys!qz9%r09rP(Jitca z08)Jxa`c=MS@%A!>{wudfXdts%1BJghCzfE91W^(Gp2TVWo$dnysX+Jv@0z%N~ly3 z?N*>x*96g02x9m`tK7)x5!NbHtoP;CDyJtQl2kXzDywO|DKr%Kw1ggdBb!!qRb3DH z*Q2uS060Pq-H+<=dMH4wp@-V=YSBZMI;)u;O2pinLJN0f9M-qI8?+#Rc0st|21&4! zTuiKidps4P#36oojIeKe_L&SSrV9@%UIFfo;kcv6U997HLJ&J`9dw8neeM7khH#JPDpa-p(~r%xB7#PHZedx#Y_Z@GMD1xuoGqvUPHfT1q87RwW*k!r0jM$A|> zfUch^68$AS-G1h$v3p1m~LUt7=u?dO1%t&O7zkPjH zzSWLU>tTshCBWnrViBHd8~zbHc%QhB}I7OU;nHh7BsZY9}20dh{L7!5l5V zvDI-%PY{wv9~Ij@lx2@A zysA2q7U9F4MRBv|FL)FM7E{{u7e>gf_4x~<273ZRL}Ro)f6+GP*x2s(@a=Z3*F1La zhsEg@fBpdh8CXx!!4}S=>sZ!}mWCT8EbHWJ5@>+Ku^K!3st>LeuSOJ@$2hn~zC?ip z-LS#pO5!#yvqDU#0OYSyB z#k6|~-#pk9bh7u}JP>qG7_F_5aF&Ng8zIT}?SEut1|e@o1uxTv$$s~ZXyCS=;aM4F zitH~7C}s;ecSbi4p=pZf=IyMyIS-Z;Q4<`?T&z_vpSE%}r$+WUO?N)0m2I*wC}@yq zxn7G^z?{rNHKA7a3B8VE{jBBc2si3>xk(T!b##E_H~v5jYerP|=w?{82Zcw4sU| zc(knyg=^dRa3#r;p`2|rTVd9cR0|g?y8WelqOJhbk0+9Hm_4H6*R{A~m^RxF_eL)6bIA>CiX0EUYt)JBOmv zX^o;2KB}oa%MBzgojBl*=oGv=Vhz;}-Wd@qf#AEE(wXilxv0~HrU?V;H@Km=q=-Y& zs1uR%=2AC^w6x)1=YTdHygPD(drB_ayev6wDsCt)+HffGw7J<0A}wt=*p6tkTzC9! z>P@{eB4kGuDB-!^Juer5?oCdhce|mu2*jai1X_f3j#Ss|vzp8wyTPO-5(nK8k&X(l z$83aJrd5(NGs@Hq|HeH-7rFi_Ik~>!hT+PIQAwOCAn7C3)hji#tPV zZ^6HY{55v3c^>Z!wN|!m`a~p~Q6p=+LUcYxn*9n9ivZ-eh@KBp(b zoLBoTBLD7_)yhxo?iGzaq9`7Q6)ze;X5@Affn7g{6^(BFxWUVhPgV;&fbAM~P>Ilf98{L7lVeuy zHqRvlYnz2?mYY(skl^b<#zJiYKvbNZuNSjvNncQWQv-WRs52*8Wi;tEY+%tFc8YQlG?;t0X2cd|LRu__fOXH|y^epjfYXx<~cAXM->*r1}TcEY9)qwjb&4bWn+ zX&Y87Y-*`6 zpK-6rW6|^`))4%93L06~Zd5!c{JJsJk$X@=p`ODA6Z(AIeKZU78|D$i#q1c43jVz*%N&znI2Q!}21ojOk-~B-%LwkAM=ZY~ zE0!Zee;>{=MScgVgEp?8MR*8xd;db$={kbt@NUYj-h{(`r)h@1gNCPER zd!M(ZiDdD(_c%!j_t_=#;wzfC8bXQV3(euFvdI1(x^T$Vd|{7VR|Ve{KE52nb+p>l z)czM4O4{5MDmLimR8I~+`g@^{+=CKo{|Ppz=&GHl{qLjic(u>bl2GmcHp?6Z;+=R^ zTHc}dSKMckN}>%n$#H2B{~+x&(&LA>sRgQ+q4j+28XbkcGom_5|35Ecvd%dsLA6r$ z!7;jCq@?VeEF(B;9GGa(<@Yy~8zO~%IEUus&AjBV!#;&&bj|O%G2M zkic#a&w3}$hA81eC%?-wM}c@JUK5#tBZ|htrDaq556lD-Ia<7MA-FfsZm_mb?{cl&}*?pE+VGAe4$oDs&3@V zua^qbMK51bsYSN)mD^R7VsEM1@QRgDyc#(sV^n2Q{=OVC_%`c>Ni?h@%~u@>zxXSY zh1v{D_l2yy4ZIUtM@yvbgP8Z*L(dyNLRI68e`PEKpt!8M7BNzAD18(pi zCg!0hI{krT)rErAG7YeF^zpm{pKo8rm%NJ%JXn$#j1=AwThWVUnBv)Z9cI;}8=r4i=eQV~Y*)Ialyhr`pU zIGU%HuhtMD2L|QC9?6CJ(gyXjP)ANu_<~!4L7l_7B|VxI`-Eqbn0-zH`+SpO$2n#@ z`@C&6P{egHV;rWAInV5KeH`M!)_yG9Pb*Q;}C_)T^p}dxh!M^7lC01d4Bo?dZK&*~pICkQ|E>*La3>e7E&z-!#J1oV+K5{5rhYyn1N0P16{@t;vBTbK+#?MXTqoVd+>)= zM7No~!`p=Ea&0+KGrAG?V7#G_3nW@~q*@?F51;l%ZpC$03_x9V4c}AQufzB~^I78+bN`{EfIPY#=D&+RJp!Wm?+!jaj8Avc2=8Ae*i<}+ z*p*_0^1)4vkUzs|8R7NFec4*fo;k4%kbdR^{75iB_Q^KDK6>D@ZGf#~gO?|I`NeJV zzgd*Qt?$*+WTkbg$E$=CHF&g?1rBAaVLPdMA(-nUPZb};gZqj#_IQB~7 zTJh=-URR=bk>~(IiIL99{7t03_M%~W>!^FSby1df`ol-FZAoVpt~rkU*rc=H)uu!{ zAY+4PAptDC_BKo$IJg!2Cdf3ag>emb;aSwlnMQfEs|Rl}?kVCe6PAHCs5)F{PpZ@h z*AF1!EZPo_Ojbwn2uo$6Q4&3lRx9K5a^$E4K?Rg@771rJ^w3t%c+kxn>V}oH_fsp5 z&WuhLX-BF&hCt)`;0y2vLk`l$4-RxQ&5-vWf>saI)Y|LMKdpfTBpbahM#!!Udc5=L zx!PeGaDBQkTHNRbRlKeXE`UZP{|W*lG`Hf-qu*>wh5wiiYGIH}9iLRA6GM$mP2)d~ zF4|IIz8{6)Xo45Ed%En&Y?SZh)sGAywZ79|s!kRAeR{SQTXPe|eozy*9V@KsFIINd z`=@8tZRp2&8a^~i)ylfQ4gE+sTw$m*HszJ~zl5>+ zU&bH9U6Ew`beN2OKlR6EX(VD^wpl4CId-E=jp%}y5q+CR^hDH%zUml}k?Z*D&rqEr zRLYNlhd`w)5pxy48L4=k53+1`(!!Y^c^jI-t|dvmJK~1oO322cX!*VlIV(t?M;{ei zO}l}l&Gy9sM>`o(LZ0IM_(F~igDNXbV`d}H(x8eI8m&al?N0aHTxr?v-~&rSrU%?m zTx8-6$hSZB&u^UWUYH`pVQR^7OdUzpZBN-#BR#DEdtz6A^hkLdz z(p{UJbUWQpT%_YrG}1XmZN?2KE%7+;j)-?8En~HHuZ?awRY#IcFH+RH&pkaCwce1N zTJLm2aZ!syNlL8`x&fu776;xDwU!eldQjvr2h>FX!4RRah628RxHuuC_lzJdJ zrQYX;;-VCXqETvL;OgU(qR``R5NRpI!KS28e07ng{>WfStnCD6O;bNeZ{0U1^{su& zR=uT&?UB#67UQ(CJT~iJgh6S?nsgXi;D`2VxZ!hjKZiyMa@U`gW&3{Czmeb{#*^FA z@MugTxqUyOu$v{fUrrx!K#?G3$14RZNgxZ1Es ziiE_|7Z*5|Qll=RwdWvj{$+IL6uLYqpJDd~y|ZK<7OF+JB=`&S*E9+Z+yD_5u!d`u z33*2TsP@!A%Xw(km1_DT3(IL}WC>NJVm+!vMgG{{3U^$CJU`Ttxr-a7iMXVz%NzybJHG}wo(1}73Jm)%LS6b&hxJIZuYM0W_ezO%Y%D|)#fDJrlRnL`n=1>*@*EJIeMb` zQ7V`UZXm*Y8|%wmvS)e{tP0abQFcuXrOa;fv8vJwn=04oNezCB&z`egJIxo-pjwHd z?>~l^DB2>>Izm{qFLBa^ZzEB$!H`bPy9fl83W0rAgZe?JBln<$Mf)BbRCHC{qNUXX z|AD^a^({wBLW{QGttPUf2Tq6=a}u(zHjT?~E9Zy4c^HWsXTO zyh8YpLib1}4i_ta-k4=1=gcFv&(DhONV|4*mMIEkhwK`a8fwI1*V^k09RqVAGw~_| z@Wky8&OCAZTYB){9`XMh<@ewRSu!I(>|vjtA;v-RVHj)i#{7#hN;Ro5Z@t^tQHU_+ zh)WLQthq(sj(BW#eLuV(LCKY2Fkwz%C27Y%#Oi82^yIpe9uZfK5$Fe~G^LfPZC$eKW%9wsN%N&zn_~;-bj*@+8QLVozar<7D zF+DMlc>jJ@yhobV-)5PjKzqonQmLU(EN0bGXC}Q0hRu~~oJ?&F-!(;yBBqK_sw-nw zY^q~L>F~JX4cG1%GAA}%=V?QC=K>Y)16*93#sM()8tqTM83CWdo)~3n*4=M2DHg4c zwYAw9Xk^)Kq+)~mPPG@4$Mb?vXYPTCwaa;IV9`}OF)0_J?|75KQIpW5yd=vU1@fJ^ zO=MCgvOpi3M+}#rsB+?HjINiZz87dLtXeL?Dfvrq}y8?%h!?s>%YeOWObX+$2) zGDU&tkP)F$LycIBh^5XlT`4Nuhik^G^;2UIpIEKGT#Mrl9VG>4L>oQCNb_}w%Ap`P z_UK?K^0d^R!C3<-J)C8FnL^B0LuiiHnwsYSGQ&;VLV}77k~y`L#xo-$0Qh53SPU}U=}I?J1@&9&Yee04`#)5q}IPC%M=BoLt39o4HaV1`j$EaskNpe zP`JBz)9`mOnkKPn_$=vUEdV##JgAeW=hJ0>kKguZF$b)DZ?u6hj)8Klwrq~gtg#}J zMj~k=1u*cK7&>$sEwEIUbZ%6@!O&=x9ZXTiNJQ=w^>d>&Rs+;_2}UeG+R7CfZcD{P zVn^#HCMRu%h>8s^aw<%RA({;?}_2l#76n^bb&^M zn?{}9}xGbOU7XpF8P-nENG zsv?eq!ZdhRd0&VKImh%FWdp8;6&sS|G#icsrWb`eQjBODlvp!uWrK>Y+KD;727SkyV~&=D z=D3_?jso#cye2ZoH)espdmb@-b9M|zndAGi%rOauLxxw#SEy8p*t@fg-S{E zb)-4|i!4(Vs1BK9Dm9dd#T;AeylbxXGY*jg4NWIVbekZljy8{}+Vr$yiSPvC&EEPL zen@Qgu4MN{ks{80^t3@lOYE-pA|)K`lV&ZEUba|6x_|4EP~F`Ya-j;;{J$R}aK)%j5&w;O{g>Xz=Y-bB^y|D)lMwW@6dO=<>9DFXnBr#yNR&q zffMq@90l^7xJ_hv&d37&R5Y5e9my{Aoe{%PmS-@_9Ft&JZ9Zzb1vl% z^tP;+j-?*j&X?y*^!$n? z?tP<&ln1V}slY5+^}d+~Lg;?8P~qafRCE*i{|$^a+w?yb8-#P}D90w?dqW*1(u)tX zK}A>XMEAcBeaCAij+TVF|C3qfC=l<&Ya-qM0sCc^QT$>aG5zbTn2yx_E8k(teY6Z}Zj3;5NcU5zp+YRW-%`i3pGIkVQV}HF zJYM_1K86~Jwf~N8jN^762slh(BtJ2c{}FTRsmMkbTpr6Nmj5Mcw@AJJ-d2?HtuK#uT~gA7M7{vRJAr^UBFpVi3z#4{G!b3uOew` zJF5}q^%o4sZA&>SHYCGo1`Z`;%7aY)MGfo7cbZ)(RWuCU)vIV49zpz?@aIf#I(1p1Oc<@fAa7xG zETY&9d|`1{5f49)tG9rx<|ARI!}p{jvM?79p^;@ZM#Tn|ol4EI8vAIdBPW98iOAz@ zP|;O8F%};~-|@zRqa~rS_)3;J3dB3{n#fpuCkym{n@0?P4}E9EaFnt5b(T3M!7z4H z#tV1|9=DIAq0ozzLRtQhDG<@jscnfZMWgw0dRCzCOjwRI5~pXGqCj%UNKmPvJ}gGU zQs-!!LR2&ew}@BjZ^t-X1TYsI?*4AW0_KGH3=8r}Qp%$jvnKLi#ork{EJ3fg@~Sd* zpiJr4;d_CjNKiH`um29KID~w+m(P;WRDa|Q3nIMFHimZuhdS-5FJhSO?+YsYw0?a6 zJR}#5820p9?Bj~(ZdT8+MfH_OI7$=m6^@OIHx3ctB9k#1Z@V2ENhSWkY2@!p!go7W zP~K1U=371J_{L**M_Xvg>|WkCo+Mk$>akyZNcO?LtMkFC*e%)$GO=v_hJmXBHT+Lx zAO1(P3_sdBO45kj-%9@cJ7|nd7475P->uUUXu4T@a&R@Dw&dVbnBV*+2WLskd4BNk z64ekkCh~)G+_Fs5(}d=z{NP%8@G&htI8rtvik{LyBPCOz!SgaLKtRy@WlA zAbar&a*^^*vowiSEOcww{-nLsiZ@+FmP71=@)az2cJBaF^6*oE1nC+%J#0cfo;YkGvmFpV%Ys?33*cb>`Q|5#zn~ z4*kBOVXAS3GRPl3x1Qg1bL;u(19kd-zdhi5KNB^{yuY&|b)w#z^#8WQ1uRclJ-_24 z*-0*{9W|5$p9(q9SB<79CiMQE8+6h-$OTXohW~ej@c%e1=hE}r5THG^=eHhBQ+R%B zSas9$Te#ig_=!T8B79O@_M+?~-O~9;7eR(BV-1QiTJ~9ux14>v#Vq4B?Uq zN%IG2jQfS3cSa(e7UAis8MS$O$64f3w1WDtEMbdco2B6ph6XE`Y zh!z$lS_r6K5nE-0xK6Sj9TpmeVY=Wfehv-^2M4S!)p1dDlO9!c1!X$ED0tm2C)i(Z^ z)lJuJ5#-G>=Af7yBC4Xs`|IrE{qN4ldu)Vi5ELSg&d0ZXrc3o(0(_dv`-gu;HDMU&A0SZpIQbiuJUbM$D`UcJ#HhP zdBsXZ?3sm%WS6<;=z3@J;^ZWIi5rTGWE_e{GWHIym{sUa-Z3|rv;^azJ0jRTzsY-x zd%`a2%_OJZ>)lXX)ZNy4OEp9+*>BoV0M86|OwU^4*+oVmMaR{DN1xm_3?4Fp5 zP9IE8r%$<|xah>8=yW3gPip-`*%vjPzjp&lOD7JzBRZ`x9aS5lmIhViw6qd6x9_{> z<|5U1l9TGc+)!Mk;!t!_=_$ate5vUyde~`_(~^n_|6AnG?iZV9rzcq_N9>)c3AOE=eFhWU zYkOzI#FJ|8j3bxroqbNM8^E#dSCrRmE7p)CY|8$Au1wLQKcp)aVTP7U!|ZhOukPSt ze(W{n1ARTt$XXI;16gl=xq2LXXwjkt3tn1olvsKlBSq{5-Wm@%;7Hqh1%AJ_H(2pg zO1WuHf66JRy{wz-4gSfo6}7h!ZxUh8sCTlwvzYVn4_QWD#*@ws^?29zc-PVEfVJxG zI(tf^I#Q<;KXmfW-Y6WcPBy11^;{0CT-hVVgoDrOtka=u(E%PXY?Q~#c#xTcMumE* zfP8s*94Pd3W1#J8P4p&Tl@8LR;~BJiadMmmd$qUdW&ke^HoxSHiK?F|@oFRBlZfzH z2leGy8fE4$#$y6x~bA!DS}Ifac&-fS3@jIuAsJvc20WK+jN zA+_Bc^rW=kt!cHNKSM3}i`qBhBjo??la>7QcbW74eOg)TDvR89BC{O1{)0MLBKdQ}@<5=UZ z^EyDL9C=55sHuK9%~V-9kcQ+BF(kVWh~7)2k@Sf6`^Xo$w~dM|PDO(`H`)w9GUadM zL&py4m($=T#DmK)=P&Zn8$5VKV3){nNn(ad6?y(8)er=fC4QnWha zJ>VLgncGjnLVk6K+m8e`m!drspTX?|X&o!cY3UoPiJX{fB0^?p^a*9AxL1fPF|n7R zDfIQEL7y(OE5HQZj0qCSEa#UrGD}=$liADVrfIx;9OD|>1WN6%IyPLdNQ1PH@H`9C zdI7_mDLl`0yZVwr;;Jdi4y78T5DXewLcxg3L@4kVS4|DLoMyl}D-ue_8A=neBFBCj zRwMv6R@}l^G2z-Oc3ov-NAqA!pwui>2z+fC1cuo1*_h(17!FOgJSl2rN9#q&lExjIm{!1$u{z z^A5AG<@80lxo&Jvv?eIn{)3{}XVXwDBnKw|r=Ma(Gv(kpQF6d`IHVxN)KWwIN~$3W zNuY5hl!RCB4;1AJ4RIa&IF(dRi<9|I2=Pf%N&PU?PKmU?DQzk#8bf3Psqg@u3PD#l z$ANSI4L!R;k7(U3mgt^J^aAB$__J|AEd8UnO+|(+MmJr-nAFY)~R2D3@ zU0AM+m3NiLnuSSfiZ@W$?sNe=wY4%!aFxfNd0{g66&t&F0UG+ZQLZ$rO}~nc$C?>1B zDTx>R+?>WXe>b|{-o#{S$DO&Qd>${RAKA_|Yru!cW1(kipfQcK{llm}Bx}NAji{Iu7>d^sfHognP4Ym z=W{zkJeDrmJ5ZDST$)Mhg3$#;f0`jWkzjC|q!A3F>_#LxhyV+WT(3To<^3Lv<&HMMFVe2}&{6tPVce&>_C&5*7a#c-@ZZ0mUZQdNp z!=$>;ix?ttZ>&*h4o?;K4C3NhupneVS#Oc8FcB%WRJd5l?+KuD^dcnTjj>fhC#|0y zC^yCw!EE=$x)KsmxN=4=riDYS)XWeh3Zb>}Ns(_&fcex{xq8vmwVx8YRMX9>n^(CO zUTYgEFQk!PtBv&X>?6IT^N}8Q9g`V>ZsX3@!s}QmjrTfjyoK!J-N8|H7T)QVDzUY2 zFn}_sL8-c-xT2&v6fH{Hc|qhBH=wk!(j2&HUi5?Y1kAHE&}=rUED^s-tOef{@4wkS zC088#eaR{Gup5etLL7=lp@=y454%C6r40w$5pCw~Qpn%B=jI~PUneKhH{DQNMB-31 zB00tA`))vKNyUMuBvpKMapgdnWj{~j-Y>2koDl8#L|imb(`dVBuoBbSYZnbxJPL!U zE*fx@vWWDf1y^7<)_u{SOI|ck-UEdfv#n&?^@7Cpl~z0fql|XwbR8`(6&#o@8zbDY z0$CuOag|`*Aqy64#?eO|S@McnZipZ}zJL<}jfV8jd=N5Ur-wvvP*N&Sj^#!tk#`R# zEA)g&T|9eV2&#JIuD3_c(K$qpezIihrHc&oQ*eJlTQ~L5Lt@&n@VGsD3#G@)BMg6f zrms?{^iV`T|JY4eA9$d?|BV-F>7{>=6a+M z!>LOzYg zTMB#1Q_U$aXluOb(ySN9yhasIyzInDSrda|nGiv|@>Bsdq|vicjg`m8G3H8x;Im^f zVBxwRb{bYH?4ow)fStFolQXYgzOiTtz5nTf#zfLxJMbp1G;nWP4eaNs1;5zPjgQbq z?dQXxiw!qLiseuzBAG}Wg}-i`c`gy-kqi)gS9p1T8obDDS%I46*g(60qsBOUSYhfU z2|Zk_2C*&GAjGCDLB_TkjRmxEUWh2nJNo4u_W~q^wn7@Tv29*KIEqexIm26`ZC*~} zXb)GrT%mEsd7LoD<%)MCvKez=FFLXn<{@6N$Q6fD!FNT7+tLssBt%Dn7B_KJ8A9Yb zof9K*RZ)YxJJsNXaM6eo3fIg&BbOAqeK-Pz=C`Lovo4GjcK$ZT0EvW=^GX_FBn~@| z0dThxXD-~>xvPp3b|LMH06=rv+s&kL%05&);KHb$eqm65n}(Z18tr(n!(TIgGf!*v zm?vi#)HhQB7aEHox-{0oFsS5#i2F-~msIf2urR3m7cPJb#6NTvyUPD@8g|z$$I)o~ zA575Pmc!K6)av`Jm1RL=XzJF}I^bmK`=AigMsf;^Mk;JE+GAm1IAv{tB|?w2l`FsC z*i^$1%8X#Ul$jPkl|5cWj6Hh?YLfXhlhj$5LcGslh<3BE2=d@Gar-7B$U~##AqfBo z=Z6c18-N%KH*xN&?PK|D0(liK(;CG+ct*0TFj8;S3Zsp#3wpfs>88an9@7}EPZvgUBO<8fbzN`)LZR^TQy!59 zhs#D zVU!Xkj_a)y+}F>jofI4{j2sO`TV>^HRDKh*M_cjX00xi7Qv?jRNim;xILM7Oulyl$!jF7`Aj$OmIXj!lS3o3+;M)e;)D+}+-}dPDOW*bw`ow%&_9@!86(jEa6_66y zr1A2e;@EJbR4dlWCz+=w-*(K2mm4)!m#;fSdm9IeyBm$5WKQq-VMQL*p?v;L``sF9 zev*sDr1Rshq-47f5~4f5rjRCdfmR2d9OMjKT(-rfKTEs^rxDlc3ub%{_>zDEHc!^+ z3vNQw6u#gft8V&&%fhoVeZsb%;TsxdiXC@kpU1UX=3$x^-IRrVM8)F%`7}l*`}^8Q z%qLYX5dofRQf;2%>6qkR^Aul2qzgPnfneq_brG%;yu!Br;!Cz&eaYrc+b_A;6DM&9 z4V%EdCdB_Cl>p+)5IP2XT&hlvl`9h-1r7$DQpVPbZSN7oOzt5)k6LgKsTIu8RK7Yl z5_ZIOGl>#-NC79BY#i?)Jpzz?_wT**iFruulfy&eBktTodMTMN@zmGcZu`A(P8=dJ zG?)Lwr6v9~w2Q*>DW@%Bwldu`Tc+VpT6?2RvE`=(XW7{@p>h9M&`Ikj2a3-Z@Id=! z&fdCU_VobmsV(|HqG<|?{v}r3wCHIrnEfRCNPpP*NYh_1Tk@F8<#qZ>i_jE{_aqn0 zp6!O>x*5ZvB)u7Pnj28sn=u@?X;5@aB>f`sn(#E|?9uL8PS(2ip;C=I(;oE8KH)5oszpk#2KCaS@3_(TL={V0O0~P+C%P;3-KJ zU;W8t&|Ry1Wt08CC+)jmtVWKF@OB~=A8HP5i;u@Kr@glL_!DAAwfNxpWQ&hK7lzHc zU7OeTYfrjFTx7A_SPB*y?n;`|=43=&6^q^01JNyG^!d2J6zF4IBKshAC!P0yWJ+=E zzL+QPi?Qu=abYYMdtof{*&6cjz3XvzX$S63nRg}FMW>E#E6}?oi7t#hZSQZD_7?r* z3Tp2GRFeLWX(iqNduqY&D}4zc!T9Zg*rEGMx4Jm7BQ8wDfnt->xU!T}Lz3v%ixh%> zkOo0ALRsJ_2Q&Fyjw2(yFMLBuM977U)gXS6Y7ip0k04`%hQc|MIyx$&VVW>ui5$;Qpsq9AprZcUz3(v#lg% z^vZ|A3w%~;h6yg@g|KS)q{w$(fceyc5a*z&Ya1zamc5QuH%Gce@T_IL#!nb^@Li4l zn(Sl0s`IgTd=9@e`|u|?E|Ww`%($Vrj(9l~?T9zx9R9U#5NQv0Iat$h>j!gIzKX9d z4tJHR@z>J0_lv{b?zY3-C`BJ}+^c5QcHDacX1Ujndp`(Z+Ho((Fgs3sj$jh&aj)i; zk3GLoN0v#-FX`bwBy}WLh-Wlxl#tmG|5mCEuS`#SO~K$H$D`)~f5yF?970i>lX%_= z@6ptdeV>vwR=nwIyx5~N(yIXR4H`Wk~Qf2{TX&v8*~ zCq3in3QEqO5~6CC^Mp?E4}wk(ato}6ap`*ldk2zT`c6r7o5QSK1vi~$?FYD^ZFj^M zebBY`amKp-FNmAMdHyx4ZaUAwWpH!MK`}-gx+8vK_VFHzrX7xVF%wRUtFQe)SmxD~ zFs;iz>i*70J$E6US7x8brEDIFBBQT$Lvi{09E#@eJ3~4r+&d=bLjtyEaQH$a63JThZ3=7Qxj@ivps3~Ab|A98k?L%T&f1`6@LgGf0ViD&uILrY{eJ3?giz7T|8G!aZ(048RkW2GaG>!7 zv(~>7A`!Poy&=dTCB>ee->EmM?CBlE^UX{b=|v%W{Aap|Ka?cF$cfNF4~i$RaPp)s z`qDG`B~6g;CSNKVC-h7tYT%hzSeM?y6`qOGghhP>{zFH>87TlL_f1CV6Z1{jCx>ss z$K1JZ@{;Kq-Xt3?SH`Pz8%}X$$L@(5nRCzh#|MIkqT?c&lX9Hyq^Rb3>-KI=RglYK zy+{ey%}(J;sPOj$owN>2;u)K^hX|6CqMp!}9*S7;EA07q5hC}C75^$bw?(Y+)fC#+ z_%%#vZ&`c)ApldxU7(ZMyry8$IGcCzHd3E3Y4j8xBGqvwTNtS}8|=-vQ9S!yrn16h zyV0Y-B)lnyNVd8Zxw+{~3F{w^S-f`q5@%xH>*Q*tK?#2%hVrR}rU6h2d(Ar<#m@oc?gxzvOOJpg8nj z1e4i0G@&{9R?tc7sRO|mP>5x!-!LYd=$b2TfVXFPN=i&du5jpFibv}IE1(AFN>h6{ zPyhZCO zex2|dbXX zvw$6n8Qifq0*YBP_OmU%v@du0I08sVXGRf+j2y@1v1VbCg`s05jaXBBsd~dKY80uD zjXEsb)krZ{*i|S`7PP?ggUA8_;*q5U^VGD0>7PO^crqu&uKsN+)Om2}Fp4P2`>(c? z-Kmwea@*QAu=FA|%Cpmq(tjObAOv9@HR=+^BH z9`f>LO0;gTx7VBZWK_b_c~l#GYaw4w<46^s6rNs`3QzClc-n$S?5zC|FR%4Q#k$Ha zz0t&s|4Ds7;Y3s-rYKyjhB_YV-dyB|EQ0?DKGab*)aa_MrM2StSaqsUuFSR$nVy+# zEki+Z&-7$@wA`4zv$X_Y=@4<&zj6731+03bP=k({^-Jj6|0dwP&i}JT_;@6Jf1EyD z^k!yYOZR}O0%R@hcHs)qw%!xBze#_3tqq?mTZQ@O9fj~P{Afpwo8VRc6*1VRdanjf zE@kyxl5_2TBstg0WdSyN6n5T@Iq2LT&10CgFC^!!eBvuxrsPnu-q##U&PPJsyN4qpRwYNGOv#~Qy{|czoc|4V?;fgc5p`j!7__Q$jBx>qQF7e~@JaZ=FXhzauM_{cjuz*~U7Y)`=XJ!oP`I|M7Cz6I8m-tuo1+!{si|U!$Z!1w!2gwEqN17 z?7|@31B@Aau64`i%UMh<(nP@AiN{;VnxjYv;Z-ZSkS)XR;tTLf8B56ofc9~Fc+N~( z)1Dj$3(HCXi8D^j8p)S1?qLdx{c|?V=&GGq?EgXE@fMpSDxt+*@evb!(E}$^ zh&c*UI5E96U?YiUtwiDY~?kcc{uW$DDNs(kUB<0%ZeN_ zb>>*GgUhkvXt_>t(DIT`V~|b+``Mj)nZDatHisiT+!QDo`T% z@hs3kI*%CsWL6AEF7dvWWr_iJ8>_`O=C)WKOPx<7(JN4HeO)wK&s=K?_yawMB!z-o+clUQ2j@K@Z-xBp7<%11op;=UqtknS2kuRn7{3F@K0SQYf(3VyjNDH-TIkw}$kWm#Zhv)_X@5w1 z^ux8n?zz1Kw`I=mz|q*|;vU?HEl`+Ed{2)z)8pMJu21b5rf?(iWk&yUqyEJ-OVL;2 zmg_i{O2{l!!u$b{|NpV~C2*2e)!huUmox0lun0ay=$f&oX8{Zh3_8q&eTD%B?H&fY zYr3nu>rHi4TUE_W4~v?FFJj7t*zOu7iAF_8G>OI-g8_{i7f``n;}XR!8qD{_#3g?J zbC-9Qci(;QRaXx%$nQtbtM~45?m6e4d+*t4U7e6(u+Af|S1`NT)SO zzuGyZUz|Opi}+L&=r$sK<{e;f3El%5y#Lubyg%ir%91~R-rxFWXXuLx;k{&y3OUl> zQQoK!-g)wBmVtSmqDe&;T^8~0k~s3Gl59o)kbH4F&qP(Y0%xJnv;DpJD8zfoN};X( zj`C87cRo7`X-k!pLi~F~A@NgD=z9NSr56`bi)uR@{yl9I9v4xIMxrL;gwS5Z z0wRWI#;>GbEgCT>3XcvXA8ZKjj z$9jzn<*S@V@dUlW&RioErtcl7{k29J zXvsx&MRneoz`bZ&S4kg3zhg0h5poR6X$&_G%c-Nxv+__~q0Vk8c|(H*mnq1%rQnUq zQFPyBtehvh@7(FGa;;m3bSI$DIW3vqw4o4O`(_Th9c4tX^|ofowePc<^MfY54F8&e zmRwZl+VEBs&JmCIcPO6DwGna*u8rZw!L^Pu9dfPRQaabZAq8*Qx%NO;xz?>o{C7aB zb6PUJHLm>u8zPjFW^e?(*4vsT*B<_UvpGL#f@^=1g8kWW?E(Ol&b1M846cpg#=*6Y zG97ZQ-BLQ&elG=YnYs2OTr(5Y6sd*pHdN$j42hvkz-0Z%G~|L;zUI} zdo1abdP553vQKKRJwF5|b()pnwp=qtOzIaiyvNo@dOZh|`VCgI$upIfaIsFlmVuaD zbT*UvO=vrPQb$NKCUp!)j!Eq(^Msw$_E^#<^{pwC%RZ^O!Q~K~)MGd2;>hD?2CeKuDQh$emm|S!=lluE;JAG0|NHQjM3`dSh?I`nvoz(VN(kJ!5 zq);yNr2cJ8P209ssvXoRe`n6sr0h~euy#c*OwO|z3BM%--( z>=<)91h%8hp%YVM4=!DTuSnq)Q-b^3qnMhD(-kt(JDiL>8NI{LWJS9YQ*(DNb`vo* z@1ja+_NXU)OwE0{P%C0;{?V$0o$BK;rp5--KNBcU;)58N&li~1Y7tXI?A7I&V8qXe z1;%)%wiiFJD3H7~6Ubsle2*$+pApF+G7L6rp#%>kS5SceZ)U(}v8V7rlD^aU1tY8% zq0D6X^Yn6(R|xUBc*V=9GNwkl1LTUSk-kI`A2?!an1#&~Q$yc*OwIZa;ECNU#h&Ik zre>gt+}fm49i^MTx*JrpebzxW25{YosxfYTH(D=7NO0ahxZEf#)%4a|H61V=jssX+Qd8h>WpN91o3I8qtUmzzi6%KN^7;)<+0d?TsQ^DZ+T}keBOG)wj%9 zQ40eZiwmz%#R_3R!T7lF3O!K|Q8S6>b_-Rbh`EJs#;6XOTj(DW^09^sw@{8z<{!9) zkelT~i_) z==DlPulNN4>E|TEScNudqSAf znfd*iGV<OYvNcCLVKg=@S$9E5GueApprucNU!xZ+VAi3 z6pbWu`8VDvAU|g{?47{UqW1s;GP$U}bFGH|ejS-!U)42u+4ADTXD7F3C~m z(}xzvD&pE>^&TtOq2_%ll+_NvBr!4`YW_4stGDt*0a8fH1;q=pyewC)gpmMq9BLi` z3~kS$hQ9Md%?W=m4>j!RU>s^lEU^gq$K#YyEJYJ_}ssNoo8o8;Am+$@Kh z=V8&tW$zRQ!gqC)T7>c-BMKzCnV?0N7w`>WFjB{!u2ydabnDxAu&>e@FT^ffi_SrF z)x2W$17f6dr86bellthS*cg#d^PrdCr?_HHk4~@1Llb#)YEz{iAr?}PPW?|o9@=Pt zL9y9tuv61EIuhZI4cwP;)Ao7|SN`=(_w@Gc$NvZDU-pBZruokUJ+~CLVcS4wBg*u> zF}Sogf}p=vy}@0Lxj(Zy4xwQ>^~9qF3zruA&kF{En}c1ej@DYWRLMQPP=^X8ybI5@e!Vm4O#yy^QS@6uazhFv-y%r9odn549!QMi{}MTI7|P7kzxl0b<`g?z zrTL{t1$fH~xHs?HB&s6GfT3kr#OJl7sQjt=`#pbuzHC9fKXYYpO|2huY*ra~=G1i+ z7y1P?6E!y2gA6sML>pgu3k1!HkT_N{YqmoaxA(T!4B|vEg)RKrXacN_i{iCn+Rd~V zA}>y5WF{N}%x=Yj0xzaGSdB^<6bH|YK=DX>eiQNdqVOh+oPnch3HbD2=fPe<#?*{B zCt~i9=@WsOjYhf3%tS0dc68A9lu&H**P=hU)+Ccvth0xLIAxgrs|eHDUgb?Ltl}gn zFM_1|sv7mFvGJga(_pEAP+8dUN{wk;s)38Ag60cw%N7op#VfD4W)+k$WB9@DxS*`f zC7!>W^g6YAZOwslqb{4-fwr1BPU^(OPaH>Z+VISW>D&D#;FK>naL^XIy z7)72iT&{#gd*Svvwp&sTieIYF2lMn9R?sr`7P2pFV6@Tz?ZwAkL!>$oq^G;okcDcrQJ*Nt%0tX}D}D{&SF<@aLHhzy zJ@C8D*zjoEwM6!;tt{WLh8VtE$ItPy8v{m(ujK~lTBF~y8uiM7@Gg!wf`n-tmPj0E zE&9P+8evO}oZP3TlMPz(CP6F@asn;YrWMw*6R+2%@Yep|j9^m`> z-Q~$_V_PGfw;fcY$-v$-dkpzX!j$JgMbiBx;- zMR45MQ*O*`Z!fHt_LQr5SX8U;Ym_EuZkL~SK*A?> zt)r#fWF8_UDWY|On4M0bkTp#8Paj?D36+V~kb~Br;-!o7a4H??B`+OmAkE~ZlXo}9 z>$|Jv(N?iB*pKU`1_yRGDr4iVRft<{vAgZmZH?OBZGLYnSevvqLSnhitHg=6P|eF%=4qj(spPY{<> z=vHbZ69cOV?KCYhvVTn?jasA%-!NaBzbAVjmD6%%!dSFUYE~!7la98^uLlG`AwkBL zoaGWHP_#DJXwAl8f1SQO&IkS^jPqJrwHM`r=CynQjG#HzK@+X<7)-{JeWXP_3EyHt zPOYIo&IP4drXwg%%fc6G!rD-07XHT>yzWTp*F~SezsiLX5ifE#Rq7Gv(Nx1$`+TV# zpnHfmH^!!D4mE>G?A+L8xn!Kh!GUgu=c+>8C6`gtx?k2*DbOU8J!rK4Xs(e7BhWvg z5}O|j*;PPVbM!^uw4m2@xyPcI!)`8(IaY-K$UyVYauI?=^zkYCNFay{uHKcQRiWlr z+kAf14`-(zzH$sf8}eqeL8MQDrlDLLP7mJ@+6k%OLyptdczpzVdV39?#WLicff za%|kG`sA~~&7}HH>Z8a^oJdVM+DnO{Mh9`Fq*OT@8orf@Kyr;=;&;VpOFm@st;s+c z{hby>jkLe`1Xl+q(PYNq)pV?bPC_32JCu3Qz`c6jVK8apKhnM}Y%gRLSP@hIsC|Io z5Wf_Wo)+QPr7#YC+Q*YoHHUZ8N><#|&>lWA>Ht~31-$gAfc>4$fjx8fz%G#!#sRYV zjn;*zumbn)*DSViz~?f1U?Q>6vyXRq7F9CTRozBGbZD^dvVv zgROhw@@(d{wiDVC<+Q+ky2PP5G*Viotc>^O8lKq2e-M?}F5b)yORtSBycMZ#rgTY3 zm-CR-n7Oag4SFP>M7o^MGQg6H&c>bV3us$+=emV{Gj}es-T{d5SKwS3p~i6Miebj# z&gCd`yqn5u3fXm%*Fu7i5-t2)3Wlg0<=g&SR?fqct4Bt0&w7nVo;mb6BG!wvdSXjw zuw~-zXW2iROq5JaqPt+oC8*?JNP3-}A?IT>3{-4v*t5d()2)X5KnZ3%l>wDpRAeh)uZid#a)Jy|UUA;P~E9EG4LQ)ZJ#(pdpRz&uu`>jfl z1Dlu{wBsQvGTCkWIgfS%9|kl&#Rf?Sq3LlAazF@%>L zWnLwDrjtijdsGoI{ zWNJ8aqLTii&Xx2!0Nqg2pY7Cj>Agrr{Z4j`RBwQo6Q`d3#6(2N4ZEj=nxa>Fr)Wl9 z{pC?3?Jplvx_X^3E^YlWLR+s9OYEM7vVL|t`q2olxpnk=P}R4TNky>m5WayGH+A&$ zcCxXURt51Aavx8Mjc)B6(gU-HbUrRzbHEzC2DI#1!TXxd;r-(-z>7)kf>*vKclh+x^IKqOUrha%m!T6Y15T2eYRTFFo3i_B0;UbJ?&TI$|5lyf&6N$7q z=9tF$5<+5@nDghyYzUKUxJr~4{4i8;l!*7nx9!A&9X3%sePf(&ewxt>u-wD z%I!_^29XYtWN|p8*B8bCUynFIvpEcHCYNKlhqduwZpEHyl!&=x*}Yef*~qL){f&?IghpDgq_OR zaZQQ*R3T?-W36$q1J-RD;g632XK)81W8b(Jz33d1OgWldg8RleXtv6jUh8e8q)kXR zZM@KG$PbiI7vIc)N-nB%UU&%#=P+%&7{${$FG7pKc`>XwIL}dLxk*wbwC%F#95<4J znamt_7Pk3{=eEjAmXS=fg*y`~NK?YS`6t z?WPTbUh8dj%#fe78u9}r81mx`sN|xvVaQLT?R18W&|)xT3@Z+Xbd>4IN^ixgb}Q+u z`j;s<%gn0h9@_Ydp}NGsn$&;Y6MtpuWA@LuNMQD)|%{vti>C(RMl;N2oH` zIEE<)8#~IJo{a+(((E?UnfRBvnAqPQ+2f8*Z%-=0Y1^Ao3I1#Bp5Q3=2S~MPIsJsU zYwy~T{VmxZw>uYK32VpzRZ82TD|_5gljM?zV1ga|lqXAZ~1Lrud~qL7juHjuck`b zseH_6wO(q`ZOSacGo6z8Zq{D9K?C7)pm2Y8W&md)vt+mFV(XoZS^#tbjYnfb`rwoC zsIpWIUybj6t6nkzW-~sm>#So;XY#i*TqFamF*$KeE++T(F70?yTOk!){z}4*Cv|}l z13T<^>?Gl_Nc#(ig266M2bZ;uUk=Y`BXks| zm5z~)eKBob3)Kgb`}~)p$Qcnbb6e@2fvUd6R~lP{mF`ql+_cg~2Llu4=rtg=&I=cG z4)4ZJ;7yiwa(Kd)q_{FXgF=FE^ZLIhEUB#t&_Mp!}^ z%wkA7nHzc#8ym|`6j=qlWzUW#13ewWR zhEpQ5j63&(a28iNBk-amk`EQEq!V)Wn1hxTabK91xZ$l-gU6;QM9i_Z=2dy1l%8>~ zq)I(P=ybtaa}`@6JU7g<6c7QDUkvmjrwS4jH|qPE%%Rh`LIxj(>(!}=8rQ8@A?Yd0 z(mlB_Ayn({LM4Y`hhF=R3}zS$UuV};D|?Z1g)9B_SBj4-awvoxWzJ*w<8X$d#2~r2LZQ-bIeF2=a>0BX{~`sC zRE`Wmf6mHz3_%A|*ZE5TqcdVM8_=pKnEK~@1h#sfUh8eyXMB^XEv=^DYwN9|$5Hp2 zjr#!=y3XaO8No^P{8W|M@FJnc!qU*di7hef2*ws`iZGBU^&K{}ijPD4s9$7)i#n1>R zSiE|*p#hz5DnP?r;0p!ls8tC^n$x)gGz~yCAMG~$tU!vclfq!o2;GfNLd6t%2y*+P} z>c)4I6U-^G=77wu!4h)JzCT7%6A z?8II$#qvDgP6x-CsN3WvECXL1>kxe|DlIq4$-!A~6)tQ3f%U`3u-?s? zw*NiEd`jETvBwn6KN8DqYU-(TWLU@My(Q@95Fc`B4e9Nnj;74C(awvKnom{h*m~4( z4G=aYkttxK*#HXw$=ZZs*bjLb)@3O;K!(I?FWipTMU^a$A6C$$Q7hF*;-B@0OJN?#BmiysGz1bv(rV6x> z!~h5hDK)1jCR=r6B`Z~NPkH$TQxz1TOsTDUVe_S1SR|3UM1fzbpxv9mc1X>>;F2;T zPv|Z_0&Jv=9X(R!mkV?Q<^)`+#&Jbv1E3=@H$EZLaV^-fW!siZ;mBL#wy5E$Dz0l_ zBOD$qRVT+wdQPYDqkoH+NeeG(etjzM{0cuwHMp@xF`>g)ldi=oK(q>~$^}b*rGWfq z9w4RS;_FnYN30xOu+?k`l}kBptt{_n(+W3om0M~$fhCoio{K`u7?ZFq|7ETrN_{md zIgBtrx7zaSt39ckj`}E2nE5gUshdV6-zh;?ZWb1 zxOCI;GCf&ot=QGZfAWThcEF@U{J#uh^W1E&ZDeA3l#lE-xj`Ra#LNrP3edhx%J^ax ziR4)hm@DwW0v)h;2iFy$CRnq6Rc}x{6Av5k(AU>@JuTlYT!KpX6o?j_%p0A_gjFN@ ztp#e4|xRw^gT@0+`qB<*wr=xHV zGs_@~r?YZ|7=x8#cyX|@qs%#Jtnlp@z1__U3XgWP>Abx;1&K5VGV%7E;zZ5FaId%_ z8yke;NO`n0Rc&ny)~({V5|{Q@CZ;BE6W;_v%}Qf**9P`06Qyao7Fg~yCQ5tDfx2}Y zq0h|Mg55)07^#eoVq1c}4C=Ez2W;@WdIRiqf^lq&*lweV#Vf!cifC(A4wT(fM(P3N zl##y`PG^82oz0UOj`s9o%Dj@HH8y4FwceJ0%6Me|JFSNNKndCZb_P^((b-IxyU=#} zgyCp0EwYFAMpstSqeA>YbuvbQc+0q9_PB&!-wv04L3Q;)_5Qg|dVgRJG5k>H7)DAy zF;Y{4|FDxWX2EblO?uh0{z_r_mz_ZH-*brNUw4Y-@JmNxZj0F1RT>)~`_JZ_Po94y zKg3iONQQP;Z;IX;;={4BILb_Kd(1?xqO=WH`qK2W6f$RCnuHOyNpU}n9j#4&hS;R% z5Q+^(lxkXQRJ8a?$xo`k_i1=}A|R(MbQ546WXZxI_RT z)g!r#^in|^sV*EwdUn+C80qOdH`4zLF$BANo;}U6k$wl+m7C*JqodU_T|6G$c-Fan z{&#cR=Ux4G!!&<6v{hT=#W}7{w1}Qwu7Jdybu4YpU~Q^e9i+tn9;5sTNyw9OF}Z-6 zb>9KKb@673nT)3Re~lVxf9X&##k+{*vcj)o&b2J;Cxw7w5$j4+&@Uov=Z*^cFI4rZ z+APEA&scHOARmSQn9c*yYaB4GsGws$=3_Ch1HlofI!k!9D;Z3PwGV(fc8k&K&Y?bI z_E4{I%K^bgh9ALEc2PO~;~&(tzp(SsUBE_X-h7|nS+K+3i_cEYd&zF6zQNyBUOP4K zK6%UFoG9tVg`HZ-%kWW}%#Vqknr8(2Y6X1EMEw;EX3k91w-Mhd6E#O1Gi`p2 zaF`_^t?z2Ky5hD*na~jN>q6K=A*Z$<><-dbvP} zZijAfp?ha#K-!u;>=q=J`4KJxE$o6S!??b-2AeV2Y-KqZlwk)Jud_3? z6^17G+Ip*4d%e}TA5fv->SKT=7u8ui{2$OIht>2^#E89J622>+I~jh!0dAk>pRsz_(bfZ zQl+%LnsVzoQYMuXCmo?UFaj!5bIN@&7oZ}f^7B?DOxR^Cq*6knc*QR2r!6hs52A6O zK8WU|h@2#Zb(yv~A}9aX!a}laAdm%(e@T_H(^$7PSTl*u5?LR`si z(I~mr+KlBqDM;j52H|<1xz6cW#uq2sq$I z8TK^CMw#b`jA}tKk0~XXY}Da*-I`uC(>^Ot#XixU&*akn*c08X5Dk*)`d;&tcy7`+ zYVX=dO66Qs4{jXA@J_wV+1H(aTC2PtZfrdg_dOT%2Ir5Io5N&G8*EONhRYj+s8rB% z!3Edzl>h=_iL9jAr-v*V5#FVDI4|;w!jlr?<5ne8u!QeN6S4TQci|=EIrZn8u~NXtq=63~#3Ph&7c+44;R0bEVCVGdQh- z;?f!p4AT}4h;cfjk5nK_`?*`{wP6@S5VIo05XFXY%Lr2%3Y5yomJ0mwC(HO#8-{Bp z&NA{uF#CoSkzV5^lBMUtV%HP)GcvG|zbYEJIiIX*p$OHNh(aR{T8^I#>A|%^YTB3e zrouaq!WwfoI^|2wJ@mx<0N7LVk|SU?SckgP8zy1r+s*%FdDC^7&krpUY6HCUy=$x?$NNwGMd zo1=K2(PeyvWTVsKEyC1=Wu?(#arNrG`w)@Rlu`f20<%FaFl?-ORu@4&H5ncTt@Lwx zrlsZURwZ*Pc$XIHPZwu4Pg+aMXQQ6lpMMPZ8YZ{&O-^qdsSh_>4T`fMl}u#}0Z_idaIy1>|ac#H2EvzGU|lt5gpSwY4d5uuxR>InBR(~UHx#C z@SPqN;48dN$K?@!(km(9lX&uJX8ErX}VUTSWQR>a{gk>Pj^V{I2q7 zVin;%>vj}FUh8E@onbI`+FKo}Vx3X)YJm;IsD3|oDy@n|E`&8n%{{`W#~byjvGJe< zf;CmFK6cI&nm!{Cj2xk{E-XBAu$%ky(4+KHyoxK z+^IkjI}DdAJwkioc9tbYnCQeW)n_A5pJ4?pW5tzy;aDLcSYq(l$9C2^g*PJ4!}!Lb z{$Mu+-vjdU4|0HQ zRQ60EK~-NsE+V*TvV{azZ~}>{7evpycZ^qVxM|J$TXqju8pFF$@TQAy8KRyjevc;& z=nd?`tN_|mS`j%QZLxikg}LzEI@*tS4qfh-mKzw+8hwe?X!43j!uu{x4uXW4ba5lu zK|rkrt{(@d*myOFAaQZLlSW!6ZT0ht|5 zC~XSSj4Mw}RvMJL!>kcC4jC_n_avp;yRlr5^S!UY@u}=nfAly4j=@&Mw)dP)fzn9% zaf>%hS#hLfG=W>mW{ZWq(i(cuYABO@px&8$*eaN8R#elVv4@qJLzjU=Kf<8$58x)S zu3BWMmRx#_^=2~*%*H);#K+|c#9q^t)Wn{+sg=@GAFlIjVD+$Z`RDFl6OPlvyfpgeD-`WDb!FeR686Jway*R4Vy=?k%3WW1Ui*{_WtaU(T_4V5gU4L{)o!75bet}ilyZFbTTgWh`HJ1&R0R_u| zR{8g51Ds)# zy|7x^Q?AZz$E*52EL1bMOB>1w7`YNjrx|F`)c<2sO`0^;)nIhS;Og4Qm13INC^5I7 z1FnorL0!y_p-?zucG49@1)6v+#V=VAB4zJE>re60-FY}w-!h+JAkE~ZlXo}9>$|Jv z(N?iB2npU89N68!rna?8v52=!MEMWSE#+4kgU~2{BUieXgP|ckJaSV{345Dqgyr=N z4F%Vt<|P-h|yd~)17O!4(?jBVF(#pVIzRW09&I`JdEG~50O}*tY|oY zlCGBvWeCe9vVTpeeA*&a_y(-5^4#1$*#oJR<|`A%qIL4H)k*TCBkk<#0Rd1*kTLDc za)}elVZ26bHU|6abWQSn;7`IhuccLcBo{QV<+|bsnqwU_(Hf7zWN5dg#!6C8!natw z&>H%mTu=&)b_C^VS@=RtSR3lh!v9$YuRFpr(|!E)oU<~}54JX$nN|V0@>AwQ?&l)m z1%4b=f)_Y*a7c>ERGQTDrEdYHlG@xD!>$lXwPC7-E(lv9Na#96dQ)aX?yv+;xe=r& z-5E(-EA^D=kU*1A_Mp+aH`mBS1Wyr_*!+kkpQ11Njt9N2%RLr_ce}YX=2#J)&Or0i zM+6oSeSD5ZBoKa|=kqx_L#rb7k30)>$yaSR<%W?$dJxH4;h;dij;VQdOy366|15y& zaJ)VOAGWJFA_=fQ*SH zefd8Ts$E`c-c&WemonGoo?Ey%-O7raP#-=r$_8VCEZ+iNdQ{ByC!GWPhS>wVM9v)t z$mTa%LZZS7{P%SZ{(CzCKY0<5q!BJF6Xl+nc!wr{%%BN?L_&E3t4g(>`S9#W6*+?M>zVx_!y}H zo@p0lH^SJ36;*zomnz|ZQ4Q`?rGRxD3A&l7;D;S9n~|g(s4iw_GjP4IXrv^cC*m|J7onuBiHc6!QdIF#0~~#>Q#DeoC>TcS2KmS z9uDgWe?8A?%#U{w*nbWKEV-y2DVsOx$|kg}hspjMn2{%4AwObLS-t{C)d)34V1EoV zj=+9Lnd9A5R#V8Xle}gUd=!!Wv=j_cIkLY!m6cNl;uuS=9vM~Fr8rbX&=!&MkQ9Yt z$7ir*;x4I)j&&wVCMK;_f+6c1TKjqldabwR&j;kmmH!f}AwN)p8E<1iB^TA1G2DT| zInt!O6vfk-F+z*Mj4`Y@n9)(@)D$8suCyzsb7eIJRhhYRo!q$UvT{pwoR0P&aBv;# z4c7IY>*7td`xV+E^+FBuUVyCgRx+J6KK&pYC!GwCPhYh~ul2V4e3~LSAF>+r115O& zvkb80qO;-EFQDyoUX4&=@M;V*4qkPXd8(J>$%s$q)W1tXl*y_7_9*+wiRtahbP2Sn z$f(F#$cm{6^Q( z6EkyG>AQZS*i(nw8`&kOx^>Esn;|2G%2QXbPU=cUZk>=+M4PdFxv(Nqt*o{xK@MzU zsa853qT*z`Z9nJHPM`;&LeVmne%ewX1UfvTP6;?nkr@Iz$14~(Ir1*;;Pn5 zttML*Y%vUa#mXrPgqgvdg)of+kSr!-&}bzx6tN`hta>4)6n-D5ukXXmIg?TS|K6yP z_P-zU>VKVBE(5?Z!T_KVQ0%zP)cUL#`(i57Q?wVKj&Pk@|NjY8^(}u=$t?8$A7#Z& z{r|k34v57|tQB}tto7Z_A^q0uA)Sxe*!}~v7fOr4&0T;aTHNi{I z3f|)%@J(H>CFp2W&CLnPYm;OgVVzLoAp8j7^s%%~^kfvf3HAv!l$d?uZVYX%?Gxt_ zos@loW0PsF|57k(YGC~HWA=$CvpmHm=_+ngTro?9<^oqpvsw&fYG3HZ^Yx%u{bDbx zyQ~>cx^;+g#a4kQXsXpwb7(Vj#6~>xzWN$CJ;LWkBWho8DOX!MbX}CZ9;qhi4)s#4 zu)a4yYTC)^z8V5rn1^r+0R++)4)SU4J5n6+yu2I{UQ0DrUA_S4K!v6`wxoo4pp=?~ zF{;!fMCaq$l5$(F;R(g{i&4p8Nuk&JM$|ru=CY)`!D`Ih)mrjGrbvD*11!0yeum9! zNqH06){m`Q=r>DWuUk?g)EElE7-k#_K}VTXONw15d3`4hAL&nSO~H`V1m48Tc`PX> z>{N!7Yxrfu)pBjDHO_WGrng`C<72=X;)+mxfB8A|qH|0#*UzGpS$2TG`-zr%n^E~;~0_?IZ0!))?>6i?^82rUNZ#jxVwJV%-3CP|ghw#%k- z+$U2olbPer!f`2+5aa)Z^7A1J|)YZ*|B&lO#j18I z>8!dU1!tLA^?V%j0)Fu#aU*<)n#?NDKd>txjen~$S|Rg5qk+rcQJ^_qn#BDGVDR2m z(ga`_o;?@eRdR8MkfCKZQf&B4lODa!&a&419AZXUZxuamwHi<6O`2PRjc;OrCKsIz z8@~u`r?YW{DuaznnRrhM#!M#mw@0?V{ps>sD%fe;n^D0&!isjq z)^~p{z7n>+4^ySI9lAPz9VKr%*un2~lati2(;ZKDlL4HC%#z)vi>;#o4%?J0pz&x-NFRJM9%EY?DG9WC ztF3x-Gd`{BtYb`P^5qN{$pC9iP8^eq$-TWx8==%zyX8TV7`;md!X2|S5XRx^hIR0{aW!?kBjYmekrG0`Tho)} zO~~_6cA5xRxbeuO5+-WWXSE{S=$*A0jf0J-k@gP{RpVfsRxZonN%~#fCjEro!?X~x z;_QoMAygk|E#bcu)m|1MJhz4Lc2xB(=+e+5EQGhQ;--Z#I&7FQN3Q{~WygA3=kVS+ zdw7p<62eG5y)-H!r;heU;r&CMkK+Rzk!LN_yx0>itp23G7hhU!-ivl&^#T$da!mY( z8qSyf9p$~Qns=VO;5k_iW008@S-GBYFimvr0{v-0Ib;apuHC*Y7bb+R^CDDosORamE}HB!zGC)ZdJmT`gE?NvZy3@1_!ZiI!f%&ZA&0hqjfEaR$buzS zQ>E-Ip+_WIG2f(TZH@En)5qR)hAIc_2!#daTC(Tf|VWc8lM1l^jpFHq0V9d!0cgP z8qGdI14DtnSbSyQ2z>clf&Xyl;D46mGK=#3JN{mL%5&a}raYgwP7Vi8Y9NpLyU43H z=iMf+l^OWzScf=tQE9nRP7cm`s|H$l$S3W*;YW*56^i666g$D+i;rTw7mZ>I*-9V> zCVr^_o#F2)FXedmIVqQ3To^pmG7-LsIPS4Dcswh|lAU1pP{WDYJ#NGB9CnXa&pQnF z7T`ZznEEvQ|Mcr;!u_zHwew#?swITmMx3b(ARM(!&;EyEUZ)yB&XEC8oA;I~d&@n| z;L;i{9>e8>*uVwRR*rJ}PgU!b$AR?lxExtB=0>vt7CM!+3B}C=UT(HRAeiywNx9u% zw0)kym2N}nKj-kn4!el%h9rXq?s`nWAd;*emQAI=?zE6ML(;7+X}3&LBU7~saSS)e z6nJWTdY^W`9o@fya=5%Gx_c6)npU0Vw6`GRjR$+CgVN+=by{9I;l5wazN(`yP*;G^ zHIK;V99ekS=1v-c#FmC&xUtlzl=dLwM94CmG|Ch`#;r(AtUP6QY1fVAH84r9p=&aR z8}(+B940F;zthyIGz+EX^u%PVj;!wN^3C!KrYa~viKCH1dh?}QSoEU0{S{Z*lo~KZ z$qQc#3^rVSa|zv9LYHn*y^%5wSGaQnxiBVM6}l669BwrYfG*Ny!v(vrW6QQJmlh|h zQ_WQf7pQUb<}mJb;x`IT4iA>9ljEfT;7pa}RQ@dwX}3E5mWOikkdo!&d1ZMxMm4yl zQ3*GPr7>Lvn>myG&3S;7ir8tY)FZYqT`)9m2vv{|GRT+rGeHDnc)5kCDFhIvFM0Iv z2ny+p{f;A)?@jpYj{qzYa;6^;Uz=-;(%OPb4in<5thW5t7Ej38T~<~17Ljka|i+8Fo_KK}ig5M!`%3@;8=c9c0MjTOHA zqPM$QLE+JEHl4S>mV(60ynUz8?Jzmq%eGYPw$|cEd9*ZDZEXzJtzsO%t+c-~F@>9P z5sMjAOJj5+Ec}cn5Y)CuZO$f2d$Fk|A0)b1J#s+8t-AF_VWdJg%+mG`^>IH>jV__X zRdm=K2IHk0sSYY*7e{|6*;%u4Ky1#esLn_uC8tbWL$&r{lg*PEjt-DQ_CE`i9I~HY zXP+`2*}v6l$Pbj5Fq;`r$wg-~VJ<@3=@W*d#S{#O_Xbid(4%7J-JOh4Al@sAme78m zm{azvUZ~zDI_W)}Lk!nD$1pOm3jQ`DH*f1?j9D;TP?KKvtiMuNeoZG3ylM`y{JKuD z9DeCY%x$rET&1z`J)I0uAQ^TFy(xNYh!4lg;wUry*oj<4X&bKerKy-g=FCfza3N@t zD+gmodl3+dH_56|s#pd6S1imY3sG$m_yQY%YbQ%zbV8;hRv#%> zp%x-tj0-&r*(Zq{@k^oRH`Z7(q2`woHKstK*E(MOXCvJg!{K{z+!xHo{D6ry@@Q1@ z+4E+zMy^2H>1$+!8e{6mFyol|jxx&(;wqxqMbjDZzjHC5zddp=dujT{Q@WUtvLK_2 z$&DFWy%i^Z03h`vxm--7H6YSmI9yEFQN!b6Lf^TINtqbp&yK<$_B6*XCfAeKLvws; zbhKI?)U#Q3$-Ct0*?E_^AnS%>$yISHm8&Zw$dYMuaVsj*RS(vts?|Zd2gc)4azYYv zrQA#|pl0Q*UWt{_k>o(sNc+c!sw0VufG!`BReI#5m#AXl>q;Qzt0M~Jb|<+5Rej5k zW%hp=D{i`zL=l&!>r3<+`w=S;^X|^!edp}q)$-n&5NjW355>r*?W;f9In@6&d#G2q zWrJWN!wcppyQmZi@efKAe7*D0eVL6elb6Mh{Jr?REO;;3y)6F6-&I~O3*LS5Hp4kl z(u)f(3nfFtHo^T^dRd&2ZT(7cuuvn3Iao|#WDW<5uKHC3UxYkUeia;<%=W%d@I$I! zMV~mG1yTOmdIPzy*fs`=y)oF#VHU;(vg`sTX@YI%t)`}4FJRUWA>MNX^PqULt+R}P zs|1>K=ZW?oGS7)BQtM^$cW}BU^c5}wfn^lwnmz1NK9)cj#aq~gRfcgvd#yTcMw_yL zSHTwIns%%jj~jRtd!3h;y~2%DgBx`f(j7+KZr%lWWgaM{Rrd<2)FVV@7p%IEi}2Af z7bb-Me-xD*`hR+@ix$6rLyr{|nnnGUVyPEe&3Yx43?IFjftXxW*L38y1iu(<>za-t z{f=3JBP1D`ju?&{nhr;qE`^WUEhldoNc~8$GQ%l&lxoT$R_<{UKKgzDqcdVM8)*8> zzvd&b?ZEU}Z_CfrIm1UkWi{>xR4DO2!2nGzsegWw3S(Qx4X4 zl*t`FYPXTj#DA57vCK?-Av>l8MI?hmR$XTBeIB{SF@GHMB3D>);qfS!?8wCH) zWy~{7LZT317xmMY7Vo`i+&9rkT!`3aLRgn+nC+gHB>1(jdgpP9S zI6Joap3ET4LR`si(XL|@4#N}M z$#@J;^qm`?zJ-Bt!xMX&W5d%GB9UiM?ASsSOg8H9&2LSwnrUzDxRpKuh|jFl{_3G< zG>HbzG?}k?it>5pPO8Q5joQ2R@uto(stxy+VtA)s^6cx*Kdn{X5BI(vNur($dV}*v z%FSUiG7dH;OT*=jK~yT}x!?k*7^x))l_j#0rr7@_m{Z??g?H&4&WpUo@T5fl{4bl8 zOgRv~A5E03;HU6ic!@QD`t!|lsY-q;FaGlgye9*zJgnn>vCasfUi4eh;RG)oGMX?I zio=!E9x<&Ft>L4fz#J>ClV$+z2Sk!Y4jEI0{$IfoPF=QkBiD1c)N8}A29+amMsY~o zJjAq_0>3hfs)9&{$uj;(?Y2B-%)TK-vGrbxS#yTe-Qj=Ia96RB_le4Bdnj>(twazqT+_Ak@hza#f95MC|kWB(HOXW zgh>@~EHm5~=Iv*1P2;+F2_cRrMU&|Wow;2Xrcl)<2IMj-a!9{`6*pZMo}%%W7>Qv? zU&y{oz7oF_@ON|${L45rSuzv6#ovq1X3l%jZRTt$MFZl$)PU~xca_&>&bwC&sV(lD z6iP2HZ02evhLZ$0P_B(+<63<+93+Eab8Vx( zXR6s6L{Jpvu$XBtL=%;fnf6J^Vl2Tq8)~9XPuB)f+K5rXO$JFep5gx&$QE zGDvGiz^_LH)QI(CvT;*n6RoLb1o(}V5l&A@2O#hz6+t2z=mRq7FIP8XaGPTemq;agKh8W(24 zx>Si%mvt(9-unQ82>sD_Q|oe#N4O63qLRaPfL`mk@mpDSKLG)m{z@^%R;yY6ln~~r z%?!lkqPo5}uj{}?Xj@nIehqvWcO8h3WSFO7IC7Y$9A%an^i{aAi>6JQ72&EB#L(oT zNbxgRIgc;E&)7~^kJ7mY=glfzF-Dh_?kTtSm64Z!9h2(o&kIVU$Yr7=J5QW~^@A1{ zv4-%JG(1R_SyS2d-n2`A=Ug2LiK_J`Jp~8KjXHbVC{I?Qyc?k)1Pt6t6kOD?Lb9gPh3dPfBRfHO2R>d&mm{pE4 z-#YX;R*4FG{OO`%DuvpnsPMN(R_fEz+mmK3S}}Ens(lWm$@2R=Na{#dv@2HXFQ6%X zf+aIL^)D=#pQlP`i@UN?pCNX$2=wHKpM90qcwldFr(~{k%X{?SDg$K2;1MSXi|Q!CmHs99HdPzS;p#97&b3 z^Mt63)jRWi{**IWpd|dKSK=_$YNQMm`rAN~; z#USJx-i5=}QnNYZuwIN2Sbs`(jPVFS_T&Qa-d7W^3+?^vEEnr9-m!H{P-JjX%9Kd4 z))!Z-^^HxA48zoZMrxrxYBg?oU~p?Expd3J?@&X=X2Z>6krsqgV&KJ~lD=+bGDqKTRWcVluQ{6f^UX)8 zr4{DrTcV!Y?|TdlAjB|zlhYeV>cdT#%xYuIhFKW{$&kZ7iNyr>FjevWx>@5H>5M0} zJXwk=YW_)tE|-C$7(M_f!Uyrkn7I{S~;M0QZ1o#gH!@E;p z_!hzN?Iai;^1xu2hSukvObn$~9`%(8t%$OQedd^WSxF_=CxwywycqH3l>SFlg>F2H z<>ohQFh{b{pP#@(L=sQ&`sio@2zY0Ulw>PZ#l)Mnxpev^R=W zKlhLAH{i~gqs`Aa%l;<^EDNa?e$5oRmi+XQiuaP0RLA-|%1bKV`K(9d~Cq`%Za1(;=&B+l+B%*Ay;QJ zL(<|G86U%Yz~=2mutZ`loEg884qGLdL5+38-g1WfQ7MCw@#(4S;!JpeI$IRpgnt+; z1c2~a;;R)iOC1pNIMuG$&-RT-K{-<4S<|q2wA_*c9;As}%@>!Zn$1e7Mh;HHEDZHXu8m81 z0;Y^<4p;V8T5GDv&|NDKZ$OV+-v?cEJwRTX{gpik>}^h#hbyDg!QOJCR<3duvU798 zep*FxUnsaIpbjsv6yC`4i1wyhbxOL=QiYSAxg0^xF9_o7#~}xN70M7f0Y@(ZVPSZ> zHD0fYWZ|Shr(F$eqfyy2B~p?@sRY$IY_QWZDS7F}5>(?zblw}FRDh6lf@=~N64fVQ zjhEx621lnve(bSwt=s@^27!pdCNfvDTr)IVnnh%OT@~ybuMCePi{*_pkqWz4_thp3 zz)*~omRe3&H;fcsr4nUoi7=ae1(tD>Hv=$HpI}A0O=N_x5DJ@Y%q-_kbPy9-Gpq*X zgTh1F;&#BAz2WOMx03b(;x@TwnYTf!_j^`7wToyksEn*XXNE~!efEd%M9cJX!@8O9 zE)t|ne!q^MR)hpc_-;I3K94MP{h!566u)Kj*|9mY+S+V>*kjA)YSpm$E_oAzHI})? zP7}v*tGSZEVW|5mEZkm)^OEFO@k{mjrbM1~sii91M?v-l#hHL$xgq%Hfl&{}q{SuT zj+LHP0g4BJ_=Ir5r3!p`*a`C_MT839js9Ra-M$bE1UCn}hUj()a)%KgcMVY^Vo5?H zbWy};qdrlPm510OC4LRy7kQ(|%Pr{6l`_xvNW4zfYlKNLaNuT}oRte{)Sri<2GHdqD}ECX8Q zU(O1aFdpaNQjUc5SEH+&<4-Q=f-o###4Z=qcNcsDjtx?#hrLO~Mo z;CIY130xfe^}`Np?or~wo>lF|II)t>9jDf|jAY;5UWi>Sq~~_Ls_$!*CTDJ!3a1l* zQMKe8YoJ?mcKkBG$q2^*b*2#8YcT^Qp12gJ{Vd=5Bx=&`Kd-X$a8E2)1b zD`6hzgUf_xt=rfL-Y{RAR8P?;B7t8lXrwjroLsQK9zB4wBG|WfgVq`}u^|~mInv^a zXjpa|0j9(5MrCZg zrOB}@MI*^m0cz$@@|dJuwb?)W9 z9g3LX^1k50(%wp=e&fbqTe*a*L`cR%>=j6U({m)%%jDpwE49EMk~f;Yh4EHvvbk~X z+EQbG<;K2xV{C0{Pjl_MbJm^Nch>rK>-oxF443GTLJc7uf^~(&8*?FMG55iGEh_1! zx%SNC5e;m-v=mM~CeUee_?;G#!(BN2$~&3bPfH=Eq+4n^#qRI1I!s=RnOOjwI1~Og z5fv-*0ARzEBba?ge@nmc3{>H4p~OBr&qWHYHaM^(FGwwhZS2s)f50E6+gd-v{@E~7 z*3N(Ph}$Cl0repF&e3tu;r^fQ8kqSaxrZ~Okq{>w1V2ZWdW0Fi3*P@K*>|M)42tk* zz>P-2`k^i~+71tAey7n6?E0Ao+tSR&G{-`T8oomp7B1VkkRGm2it+v<7siDD^N$&; zVWOI8ujsYDH}(5J&j(86OkvLosDQ1PeS1wzUAvt zyhHpZT}*UwCu7Wl-{sN8L^OFNmaVr6*ZrNqaV;uk<>kD%-qk6t6R#(l>|}@n)z-qm`PLgC6)wVu|q0(F}7YosLN8FsaT%6p=5Cy8O<$~TCBE_*>ILbUNMUrYKLA!Qn zXe*yOG$h@XY^ggG**Q)~Dx!6BRxX?feWnc?B<{REtx@}X`ug_jlu1kLAO)YMu5X*9 z2O?dVx4AJkMcy&ZU=lV}GQC30UdIo1|0<6rU^pTiV%c&oSf)=ShN@nu*)xy}jbgdF z7L}MvJ9b+%eX-bUeg45H@a*=|334@q%_{^ng818`5WnxFZ(w9l4;_nB^a(P=?|}@h z-pVymQX$Z#h?H$U_or1U*&QLOw9YigJ*nlba%pGS?fKlj88Jn_-U zb(@&DO*)xwY_Ds@Pb|}k%?g;F*75HUkLF87xO*dQ@pzLo95=il%TptDc3&q9HKIkk#&(khGC?7K#`Da zt#0Ba_$LQj;1u30L<=5OCWBmGuwA-hgE5dQn>xDgeakFHN5S`uD~$)m=}q$Rcse^rXffD1h7|`pJIbuf%@&HNc5~^R{<0M0nVjx# zkMtuO)7z8!5n2#3>PODV(5ldn$Td*vN4y}1BBhAj6i4fmBk2j_98b~{`p$ET{DPiX zMs)V%$|=G$8r{h$vL&`fOHGOH(A%7oS8qe|iS~ot(AI1)k5;nj;>akR$wo#7TXp3U z(%iJOF;#YIXO50xLN1$*FKW^p`z=#?nUW-IjRubt`9}s?UTY^$9|^@(fno)UB*=^O_i!5u1N>tZ2k) z@h@t87j{0r3pl_=CW3jJWUqKqz3lM!;>$z8d(jg&&}@^vEMPxWM>qI8%A2@>cb+V; zog_>zE;LALhK5fkxDUPtX@y(NCFqS5yfM8|0r1a_-sm>8O#3~dH{yt53WjBZ)~R}< z^Oe#ewuepD7O{v9b;6%rBZ@=s5KznAfGOKuI-)~KdNabkJR+QO%I{w|55cIBe$T0j zVYJc?(ZR^5N-!=peg$3tY8#m{-3akf*}D6JYbg=MSh+Q*e7*<8T|0#+Zl98(aeF2O z$H?`(88Dp^yUMCWsR9s&itqIaama51FsPIY&T)`RiP!h2lzxj4uC2oiRFmhec_&Z! z7OKHRuNB)lbWz>BCH-&mKq-|`@1aUPVj<{)GV02a(V$qVaShZ~avTGXLJ2jB2jbJU zx;ly&QnI#NDeE-gC+?aa$b|uMl>a0uIdoI>I>%8SLzbI^`Sh%q=ijV`ypmUHroP31 zN-nA&<@0K$zK6E;qx{S0cT6)Cp~X1L$FSl!$~($z=>{h#l-fNcZ++<0PDyA#o`O$# zy8kFE=h0)`7TeVZ#Xa?U)#-4_4roln_55-81yE9Srt>#d{`8UrwsKRX2@`D@Fnt<@ z5I4&pV6`>Xs3GLbIV(Eci9hw*CZ8ws9BqfhoH+rN9CL#e5z zUb7i-MtfHUYTl#`?d|~f=dUD;by5=J4`G z;-ojx8|S9suN^hge((uv%uAq$%cyruoJI`kmK*g# zR*Zcy?RnYo{-+^d;V4*_j! zm{4KHCaw*PXDLTspz*b|!j`*UFS$zSNjT8mE}W1I|0E=pb6HmqyAXeT7S*+og2fDnmDsJ5u-R zX}zUwL}V+caxzdWdmbbz7Zyg?hFfy?1#LSc%Xl&fP99y6SGtsE8DKZ z$U26QhVnSsA6c?=clY@0N*2!Y;zfz8jD%Ji6BmFNq`p|w1Qa6xU!+2dBa!^;VeKSm zdE^LRPjPA!lhb`Q{HQbwQVAgE#Ba$(8GxMJ;vg3#y?%_yr3BEryaFg(OEtKORZZDB zHnDEa1Eo}QZKg^+Vma-CiS-P=P!vZYQMjFTCuOe2a?!%Xt_<^waGf@yl>O;ouHgw= z&~>Qfum#a;eMRxRLZ@6|+p-$-E>F^i`T_=6a#3A^jMNKI~bT+M_=OLsX7}^si;*JXX;Yb}FO)HOw&u(z-S#bJ7|a z#=;*T1I`c^lj`;LiZ_Cep%wjJGX7 zBH3xJS*ha+lu8T9k1DwLMBGkJz9;1p4CiHc+=%B;`EvlPGf^@@HHQ38HbU&n%}^(L zt+&-NLoWNS*^nP7!H`Q)$)`P-4MQG*w$m9hLW{wWF|0Tk(ov=-E4>w~+O4Fs>VI^L zRnN!KKPX1_1b7EEnNLXnz^(xMUS#SWt-v)TD!|PXNai)syUMwWGhKodSEgQJOD^sZ zGW0o&J7O$Lud}o4@(6w!Ak&7RMeD7iN59p0CN{p70h(NNHf+2LZKtzwgerrLW0-QV zv7^lC**HKU&2A%|iO)~Lm?>}l?U5P!>hwt=EsC`5&1fjOfEDeE8T!q+_)3_e-$0ep zcIc5ZpncRNcHm@z7CIX_Ne$~Vk_u5VWmsN7KQ$HLdvif5Y|8gom1v4Fn{ot-;ugEC zpSol(z6-7UmI+$sguR$h)@ADEuor*XLPN4hAdm%>zd)6;Q~4NnzJl|e(ls!tR6UXFYa&Pa_)+@CYxoo{sp&T)=!`91A5*}MGedo5`-vRl!t(QH` zv90$Kcd$bzhTcs%488I2if&kWdm{5hynVjOOE&GUa3ex)mXbazv9iNE?J^p5uZS9H zfBFe*)QzLxWzj9LZ7CxOm)@pLbRql9zF3xA^?~F&|D^~q7U3|rC3hHAeT%F#$cgyO zK~~&^IywNDFh{Qev1M<3VdwDP)Cs)Ff=~`m*c%lyhBpw52jAX!vS&gkL?kMpW5&jd zF^IV_HolGMpp1E$<4-OoWG= zbYa-OC&IR}54JD+-RNRr+*eDc7c#Qhw@j0XjlQY7iSYtg9`Aq!OWtoB(W9G9Dk^?B zFBQXksRp;RsG-lXo#mlCP|E%NXQ@(;5F=f%vs}f5zR=vPsaE!unc8Ng)G7&O4Ks`4 zN~(e00IHl?(4f1c$zEFD(=0b`WH*cBPG>}N)~iz!HLevY8rpEVvq`R(*cA@x|aXk zRl@8&k*O=4K&g3W*YlH{RF{8_o_y;G;ZdkA36EVSc@EX(=PZYc76RI@{p9-tvZ9ljS4Ofg6+K%ecsj_ z`n<%ByP?)QH_`$mc2f*{#Z42)liw;$4NjEyZ(8S!;W)*MD7l?ZDW$~WnV@p=a*D~|{m>Iw?UzU%m-g>?C&^rjzkH!F}+Rw9iNv z&k4F(1$#_ayBcGe8(r;(&@$~fMfNz3G^Rc56?9Jx4A~$9L#p+$D0^5yTBvGeyj~w+ zfg%_0fG#nnIqamW;>=G72<5IOZ6nrm$Sx<0VE-HuOjGxM?xG4JC`fY~u=PkPc7g0GycNfQ+aVQQ=G5449GI#hzs=?LYiWMB{?{vLD=DVkVoCip$9ryuN>Jjp}3)=4u zp>nUi6rn`>8IPA5*x4%H23IM?r_?IE;|O)bdHCy(04(9`t?!{0{{Zh{v&tl8q_g*Y zRC4IG>9yXL?Vw}owLQ+>CtD49MW0mnoxp%fE~=lI^J=nBLEE~z@1r1cT$3H4#ZdRf zu;NhnIm+~8CAOMWb}PyI3R2{ew&t)DoKZPa`28B=1;LZG)|W|%8^87f!D|!2b;WhP z!J74}dV}Jbc-Vl4zP`TeVUVe{N|jorHYSgBF78zuXu-mc4fQp-ct+^5uVmwgv^90v z^g25ud+);-x0*`kPuiylH}Nt9E4ir7%HcW`&Y`&uQ9PZMBg7c29K(x)l^tcyk@sOF zu>vCB+^nE@+io_Ux35S+VrJgHQyhnw9CqdxT(^o@B)66JS0<(=0_*`0C0QDyU_Jy^ zPL!q*!x`-sCQ5s8M-k#6u==I4XXC_OSHFqKDJnr5Y zr&~E_$AA>K><{wJ26SDZd&;CA;@$!b>1>|NaKxKp%Dj=GH8y4Fwcb|8vj1 zGDLx7E7c&qHN=NwWpR|5e(Xf9qO=WH`qK2el*yENX%hCXCIvwVO`g8%Z%6q7<-SQM zGc*O*Wx0qb7J-WxpJEY+U9e1FbV8;hV+(7`J3X@PK~G^P^FWKo-c}zeSH*$dg`S11 zhSUp+Uy87GYb;(E<@&f+qQ=}((rXGY+nDlv!pFHzL}r4?7GgLhxT`*GcEZ@e~Z1)6(A_xj+1Zotly{ zPJ&<9!bxk8(J=bG46WXZqdx$UiV}Ia_kt|1o|2l;NQvPvjIuL_$1qCYxncBS;tXaO zWlwW#7`=?_ea-Qy(a~yo*2(Oilfx$J>a!c>&`TnHyQ>E+&Y_p94|_!-R&_nqCYE^B zX&pTw30qPkCKrh2Tlf|2@U?aoIdz4*N&ieQVHM(t`kM2@7x-g5~_d0(s zKD#gPMYH=ZWb#jrP5e>=s`$IgYyailC$F>4iIQGi*ngFn41Yxu^WfWmPw}ot38r5K zcFgqqT?}JxOuw%rc2lNbjxT0Od_*iZsixmPaaxk`<@^FFzPo_pO{L0ZZk=2U2a%As znqtN`d7065IoKh%S~42FUSI-72jxk-7T=_DnTchdr~KH&fl42TEzs{0FMkBLq$t44RLNaGtN^!i3Oz zd;yglW>0#p?|}VBdp&kXXl3+Qilu&PHEV9HEny%nM?YpDCKuHY`FV|?kD_h;kpDXR z9m};AA;~!8$8h90>Gj?I7`juYmZTV&NB0f-gXplb@1HZ&-&JUVk;M*8z$wg8|ovi1X@B(kS~AMw{rn10@A)=Rlov~+4_ zkY*vSWVh)O>m-1aLQ1w@TbW)?lAQ3Di{xI0lQC%W442E)A~g{aIUS}Jwv+LgTIf4B zwOoaPaZ?L>nqyPTxgu{#P|Ri~2__qLI7PRnSIxBhvQ_C5UHA+s?SFiN+6$twF(uw> zo}zqp#~0E5xfs4td)HpZ6mL-_R^U#(z}eTGe_E@&zqK*wk(lnepf@;wq}&`PQ`lg0 zvNT-Y7(}Ilo(nFJ_pTk?ULq@Ll6Nl{O5Zevcj+C@;~obPB6w0ud(*09%CzwPXrg2v zUf+e6klWOsZ)Qs6>05d6v8bm*gb5zj(YsiuHIN+rR;YeSgaB9kTSn8H!eaP`)E=>; zl6YYW@8(27YjHF!a3V^FgTd5*BVvS3RjsBOeD0QdZ5Z|pL{kVULvb10z`?YE0+}*C zqyk6!NxGN=_na~1t=#I*z9B`PJH6zw<^Wc)o^Y5EfQ|f5qLG^u$f_od_7YKO#6iXJ zlOa#Ix<}3Pvffm9=TTTZ{tlh;wd4cz#LV{WDS0gsFdIxm-RX@JZAH}efv-xD626%p zO>Sdwh9`XkXZMA})l#!L;{cLAb0GgY0+KzsfV>y}AaY3#Z`0-%7qa6kZ<#5Mp9pX* zklTxq54uq)H)lu^-+_wl^GO1?>W$&?pvZuuSf12{Y>?H!nzue<(Y~mg__D`FqXlb( zsmn%h)EW-&;?CB=(F!gFfDiGe?YQ%$H(0%T?>@wnG^LM#v8-%R%L*HGo;5|#P|b*c z6-*sbB+G*Gh*im)58efZ`qQPEO=W9A`D)Zt`(uysu7a~o-{kbhk@|2GoQMDkN?KMK zLrfXs{QGnXHVE(WRNNV5AN4Ezn#8e6Rk+0n7x7`^{*may4R)$08#iL z{unb{668L7po3i0Ncc;7WLqU;m0YTglt(vdZxl3zpP;rjaZDb{xKcWyc|^zT(^Kb| zIAI(994ixQiL!>#{+M`KNhQ}Og@M3}0k8ANQ&ANQa2CUTpT8HM;hy)R8SWR5bdrPP zKh$u}_ji=nY|lGa+nyvrA<_Yyz%gP_5qZYB7!_nQ&~>;d=p7YinSZ5wAke=*t%F7;DDRc>$TwG(p0lq z!G&(vO4D_Eh)kkXimp7GeZeINR^qqPjZIGT%~53naY?uahOWV?*CK=aV+wQ3kYr$s@ZA5*HUuBRC)7cGIef-eAvEE5N1L2;(bE zvRfS|r&@Z~@;1mo-V})|wVl^72K&Y1HhCbR4Y?i)>xL2WfdE>@ z2OjXls_dV;ht4W)`j76wU=lw++K$$kt`;D zsXp&dWHWnXNc>bm%it&37gR6;f@Ow?op+E#Y+ta|mGT<$fmFeec#sE`T7e7Vopmm! zHzEXieB)4mu$vN>1Ovg%!LFfRNR$QyuK2iXh(xc*bAv|e5Q-#R3$pSMTMopp0sLw< zr;rw9j4c5?j|$%$L*)F?!4NqaQK1Q#&svnvDww`()zbviXYvXrfP+1(|%1 zzFTMT<0VZDf=Y&8ZqQk4^hb%qa54T}obd@>=0UVXGK|(@450>?OC#2jpv~K*RsQv? zz*(8Vu387#pz9xspzGHvANfDO)lb;a^m%x44&){&ImRI!RTOrao4KgS;6k|WV2GO*9LFuza`kcyD%WX z57^%aZV9M>R-qTK&e+|=U6i{?l3@dP)Am~^=Lp`7O_Xlfu&PjyL_GK%b4&sk=YmYl zJxVy(v#Pxq>ONA<&WvB#mTpJe+Y76uJ>}}mcD$5nWmtQ^{o2=0Ek% zgykAJxJ-!Fx{ZzC4fC~GwM-{T1ihq^)=W7U^sh%BV6F)It=*uu22E^G23d}@_(G0r zv0xOfp?$fAC4_P`tY=E1csWi9MjPzRf^mg0Q%%A6j7WrCear4Dv|2?PW`GH?yHOb% zZ)u_|OVLR9yaK41L*a9hF(gg+GPMHS8mM#xg`|5JW=?YV zw|Rh+K4|ZyNCxar)UdXm26qdy(?+Td(c)q0_Sm|j&vDGIr^^Vi~ z*kvyfj_a;ZimVUj!kBQg{}d`Qxo`R<(`$VX>Gw;X50psR$DS2X-?bX@FGj*6`P&Sr zJR zK$3t`O#U+~=ZU1cP#Rb%+0o|4*c92Ano#(|LQz)%@hOBE6Fs{_}inH ziu=<^EuFAw1L5<`AtCzvM*vGJ!oSSW>aD!!9avd(yw1|&tKVnMS(U-@+4jc4U5~Bt z`Ut$iwq-O0D{rtq4={00u^1*&J;g32g)Fn+`g$sIvlASO50r8HM%<_*oyZI?os+$= zbH5#L8O7zFw5E>9y%{}uJ{C37{>~xd=;b4tD+LWD5rzFQnUHLiE}A)9mg$vP0W&p9 z{5zzd`BG8x+Yu359%5dPq;I4ME~y<8?mAy##m%9(w)nLBHwTnd3d3@JQiJX$__8m zSDoXK`Bi*GkUZ5J=c0?twQ_@{{3ZP+_XUWZSy?3QWT_(59h$#RfxCOkZFIMqQ_S0o zG3v{xDPt|e2J?}5l1NcT=T!nbx^cJtfTAhs&fU~ZaNY>Ez}=)-h}KA|Oj@zNV7v5F zfv*Vk=)@`f!ih?AFHANCTuL$8N5u!Je55)dpOU^{bG2CyN+ToUt_#_eba}z+I&WZ% zoO}i+8>*!y-zh`N9dhGRTz+0&E)O?Sja8Q~z@}6&!Q5)+uFM0Z)XrT&m3oAH?}B!& zS6}vnc!q!enWZ8ZoMYXsY;FOBlFfXn=o01{vN&svqLM?sMz3{A=2x$I6ZyZ;YRW4V zr2^+F=!S?^z`w{@Tsw!;)S)h}!uOjjUq^m=BXAu+vK_G|(NkGVGR-5Xs z>U34AtJZefKTZoy36u{Gs~3yPSK@x%ZxX?pba{-?{>*Kz~ORY$0L{m;VS}9G6r_ofBjr zf0N>hc6OV1v4pPuksm0b&-^q4D!!`D&edsD&Y;hH z0M(P(IYf)W&JnCQ*x6BMS!T9SoNjlQ%<1n=K%U9z{{BeYvNgFsscoSHA*HruO^RNH zwnd(S(woZ*vUC8HQgV1cMLY)!oO3)b@5EW$1Msw;;TLmLWWQVVwur zM6^_?R^zomtGmzwNhxtAbU#mbT*hSoh0-X}kCaN7g?goHtyg;?m|kA)ZJsJcvOVedB2P$x-IAKh!|C`UlGD8^;Ha-`t%fOs+2UQEJInFDJP7mp%4}+(?nVD3EQ*K;9CJ)Nu~ZO0Q44jE(pb>WV!FeStBF(h#4PWWdZ4>b z6wCgdfLe+Y=I-y(I33jcJEP=#LP{!IstxnVi6B%T#;cmN3tCVbg))dt@yqmD$`y(| zyaJR!PTR~d(QRum_!IH~q)Y*!31)dngwyB=y{sq}0)KTSm8KK{S^?8gvFJ1GxdHA2 z_zr(8F+2c+f~vDq~ zQnmFEHR=^d#SEynt|^VG^s1Lr3TH4oEE7lZgZOl*;8dpEB8HT#?N;$REevAis-I=T zfKUwl4;nc%T~w^g&k2fwO1&+`2bPCbG0%dZn;m(#VyWkvi$*>%Pge|N)pH$zzIDaG zyD`(Ko-0I)p%{o@#i1B*)LA_foS;x@j}R{$kq&^gV*kyE>_t7Z%=j{4Zf*=9DUXu*V^v3#06)k(OG ziSSF6wsTeFl+~Y+i9N-dxsb6Z-D_a_rszV&>DSC$!kb(){14UDdaElh>Ex<;4g)K` zs=jKfPekPm>a^#gdh)8_h%t>JW6dvXdFCik?=`1z%&9eFJ7`F z>`#RgIwCC74z|U=FgemcIT4ci2&)l}%jGO2b0)wQ6WaaxnTDjE`GCN;TN5Qj+-9Q0 z3^PrJxXtHUsPf}iFwb&ol%9ExXF1|Xv}%nNC(6NQsCZ?#R_incrH(XfYrL=~HLP8T z8s>yH>IG+BPl#6Zf{i!i- z1-oNVswqUC9N&&9&E}Ki`9vG_G9Ms4K_ zeS^Uo77~JmXM}4ghBMx4C#5ZRP6%P7`!VQ_E|un@ZFZy#6pV3LSsFwg=NC4i6c-qb3JM6&%yFk3R@M{vjG z*R4K?s@;JFDDg-c@id+=>a6get?MT;W-I1!-Q49WHtCs96KiF=| z0;N=$m8em#IB;j+!S-x^auitJD)v^jo?^mcrM0o#DkA~=E){6^!Y{b*)@e%eFi*;? z;*B99!M-Td^u){3&1mF!jiq9r7Q=jT(NlCmw6;@nz1r%`6sWB8O1>>kGr;1j>dKI; zFS2)`Z(SL33H=@MJP1)^yvRl{<4~46>YU)FvRXoRn|P@ZLJWIj-JO6Tsz-qdcCmUM z&x4cKD-(k2`5A)z8rx)OvZ~I6)gK-U&fp%;#;xQF7)9rpc*>CwCb;jj95nk~lZy4e za@zuY+v>;mq^8Pmm}g;y~X0XSK3qkK?ONocmh*q$x<#t=q|f`T0GazC;ZA}qIiO8 z40$3NIkrP8o)LyzYIWoXN-$(U11i31Hw?KPeJ3+yh!%q(BUo`Tq@zx6T6!y1wR=fs z)#DOymYP-fW&Z2YOxz*%&|x-Hs4-025Gqd3vR0;RvB6uViXOYI&f|HL)|O!7T@29p zs@<^h9`v2e#v!T!;LfH&cH^b}m?<_RLZwUmlpz?31QF zv$Bs?$2^qs#P zZvqbZ%Q5>k%P+^*yIm)`^c=l1-?MSlg<~e(j8&4!!I;T1>y-G1;uGD?*p7om824ET zR4wm{O!-9I2s`O~<6wFsb`hPueHpn6dlZfMPH(=j&SRe)FM-+zItzF;MVUVfk(&8k z_@!v-JCNn`p70%g5vy)O&7LMn8aH2t!(u>ey5@$z zQ5=gcs8r;GOUM0Dt$~NcDDuqn9=|M}*1^C3F!VndqF=cj-Lc(r*BI~IZh`_DkFvc1fnZc4>=5s}TB#VP*CiYx~k`-4s7OxkSh z!>w|22TLi4ynpaAZPX^m>pXXt6=o{oC_47ne6gomhEm0TBpNw1npEt&I+zbU z{A^|OmNJcAq*$ug>ejncNX5`u48-`V`XwvtQ%@iI)^8tQ1Y<;>dO{=_ilGRO9Eu@F zoeR6+3WZ9$=lFvbM+18hT9|-Gsz(n(hqHQ~2cdnb^Be*&IwQuj0iA$C=ee2Bz}9(E zvEG+`*EgBk(rzZ{Jlj_1en5rJ^92mh_^LWpbl~l9_lz0>(@x_V-6R&w0uHNv#+i8YvY9KV?;CMCbWI0H`x0P!ICA0_VX}P`T0O5kcIN|Ggc#9T~1-jPbW}nAGF)~ zNluE;PhuqBy^HWD6rqI2876rKMd&Xrl%yj4&!|y)((ASvQCF0R>a*uJX}PhBt;?nQ zbRW#~0Zsxb+0l1cay?0M!e1tmdl^ou1*JGFWix*x;ZP!PZy`AyYC(1=c+`UQovQ^` z0S8-U-XM0Y zLbYF{@j!loc5!lOytr%CGN*sZX?Wz$JopWT;r17%S?g?AVqM#;GZ8e&nCb0y9SS;vrfL(te!^)ewEyDqv=8@`FpUru&h5ASl-tk6rPG7EARuJb6fGeQ*Re5bxH;=dT?>C z60rrpI7IFp08wYYct)VbDj2!R=VfcgsaWsJ&&b|9BCoKz@`EMx;D5@%im$4(a`k#t z&Y%bXb5u`e->T z;xe9~dTnu6Wqfixpq%7Et+z@3dfe={f5 z9+fi+?U~$wN77A*$d8cCW0cK=BnEh{vVV}!j|D1qFBy5QlS@Yat#JA=U`S{4c!txK z%s(=;LO?MM=&4xm%fDnid;eFhj{HE01@jOCD!ytr3+CU^ck+VaXfdD6VnZwbIL{mf z;w`PTIiiZBD5$Oq6xk1X#3WTb+KB7|!;j7)h7ScmIWZg;TJhvOb4-Kbo-ns{sBzGX z6qft)KyWr1`4m^(@bNi$u^byz@zOj~6iBv$DpIMjeK<}QN1dttx8*8I+i)cxO&>~F zOsS71@p{&x*Gi%5)204SipYrLnTROlrV8Uz90HMC*YrgvWHK^FSzq2wD4h&?8oQYX zny>g;dTXxsoq%27Jx_U&4UT@}k(WQPwsuH~*%S>HTLmKKX9IvbFs^NKErSJT8_1DA@EK?Wz zHOsH7e?l*Vt+C0`QI_I*TfKrvLKKUo%ZJsg@;$7&Aeo6b)wQN#-Zcz2xn!;v{am5g zFM`mjY+kEa&{^jb>&bD5lzU`+1+@Z?`JK7dnOjcEhth$eG$GbLkcMP(CF5QR*hKuYC z*N7=bVfqle-*h*kpnQUirI2bf(w8FT16fH~{XDhckD_X_jz`g%OyspU3zX6V`i^}k}I_M)6=wtmi8 zB0jCxzVtA?M3AbFRMjV zPiE~9RR(KEFy&xvN1e`OuRY)V^TYo$i$biYfw<&vFeyZ=yT~}#Ozs&1DM&^ zP1fac8$OXb-#HWRT7L=fbry^#Jqdn-o&SQ(Il|6VtoP;D;m+q1mDdXSr`ntEv%2$x zCbYQsGSK3ycEiAbi@uW?I7E)Yz!BUy7}!x~S!Nbc__Mo9=H=THkZ1C;zdzFS{v>&W zmzrJ@fKqCD|ASRcwqr~2xbu@tEGE3=engFuWHse2ca#+&Oehkv1qhq>dvj^UGdL|% z;UhQ4YJ>&5NDmOEsa));e%jLE{rhBIk+da*%`j~<Tbxu) zgyeKQ+%QST^Ke7o`NK^c6XOpz?AI(m+*~eVs|1D2FD=1DvjHRP_Eg_==Yq_w2gSg? zXPM3y4wi?9aI#Dr_?OyC!PtDdJ{GF4)yg`@DBWGylGVCLuXWz$i_UD9cePgry^<8Y z7xxDjmCCIVN|`m(nkbHxR|a9Np!ed7WlFnaI)}?f+AjS{FrO}9RqxXWoWo5Vu;JjB z5(ECyYGm$z)%(#!(Ncp|-;P2ocpA^Qilr*{ZeIP*!jTSE*7&lH?*%&Xf%Wijh5P$L zjJV#5Qa<%5v{v6v{SlL@ov->5l+B{j*TwB5V+b8Ehlr^YUnVB&)B$T6#!FT=>LYkL zfoq4@qR0=0Kcz6OqQI+kR;j?Me}XcYP)eLOZbI_P(0xaWQlIcr%32?!Ca%7e(SptV zqv6cW#bq^0-&i4s?w0&p#mI}6~6+N_jY)3jCpA2jTow|ecG?e%(4V33hlk@pB3 z8Lyx=PRb=IstxkKqemlyAK}x&IV7GWFXmkpF!-uvgDd)_3Vo685ynaC}uSer<1|XlJ9j9bQ$d29O)ac2pj1)Jm;Y@G)4jWcyBd z$+V=MgK>7PP-hoIV3vbRFoRlJhyFpbksxiFQ>({nWG*c4sYT=IJEYAn)~WS-v3SRN zJ0ISU0u5)u!HKDrrN&4L>vja<@C6Bmi$w}F^~Yq z!vx3PI5-~iz+prL-Mt?dsn8i1HY^JSJmQ;Sm~a@rNwTuv3R|na*z)Ehd405eB~`JZtPZ*yqVQ17MwQGC?nqiEEdbDo?SeyNE}`-jL%IX-Mx zlsnaP%(^JJNUtyFXcnsJ{;hwyKDxavJ>5R!AH_#EK8i-SBTYd=PS7q^Q~b1l@T?T& z0Ch#tVJ@w{E2@Q9|id+8U+^!fly8>{98@x_x|Cs z(u{-970nig!fUYHMXd$mdpIfix0=*Rhs-gwB$nvtqttO|n(~BuihmRzrT8csr4Abq zlZ6(6{Z^BCs(+ZQ6yig7MWK^ot`sh6o#3o1X&3WVP5x^CTM za?Vrb2MZTLvO53I3b!}<% zwzrhu_NF`Y(6myTt}eyq?aqs>po^G@{s#B06xzZwLrCK9ozvADG2yZK)!q0HgGSQ} zK8a42KBgUeL|pNldclIG7`zgS!BVBoQuhVplWoK?hvtTK8!X;64>igy5*ziPUWUzK zt34nEZD|J4XomKOGuNSF$$#>)q@_t?_N0I8S_MYLe-P7#XuV;o_KbgB=aIRXk%F56Lx7ewbhOKweZ z0$NC)jj;GFWF;cDK{%q}#$=mD>=Dt0n$(UWY>3E5;n+|Y2E$0wT|tKIHq2SUN)%^+ z)Gh?@B=pVA+7tm*ZB*)Q0F9)Q?J1rdnba@ASQ$32m|w_|)J}8*8(QcbgX;%_D-b5{ zMtE6L>g>w~d#-JaPaq-XwPRDQ!Qi^`j=|vSa=SekTyQ~uuwvP{%a<(=3M-Z^dpZJu z04Ku;nj|uA7o~2HFN1a?%=#TLfGNFpm@k|`&x%V0%-T|;NpYv|XBRf41X4*Y)h z9A2KFV(h7P8O675ZCoTcXV*TXk9EIghd*?QUm#bqRmZL|?6&!!a0*8)-BQ*H`dVWx}c%sHertd@jLq|O4oFVu06 zPLEyFkw%y6I`eA9;c{(y9f}$|o5hLgmrF(c$-tK)OFE0VvRlh;E)ZQ*nc)|+H(WC#Pz@1Jgg#BP8Z;kkg#AU2D9tt2u6&O_tH1^iT1La*8hI zlCwUZ?MfEwX+v!93K1*2;9<3|+tW-f%A6dxo!pA;L}KTL0AVdCnB0y^c_+`9R+Kll zpf%pWEr>2E;%E?JAex3Ry4V z_-K!*J6@}gUuzJmc3W9(GBC=(1ytQ2)rFTXowO5-<3=msAt!mV2(P*}dkXGnUroTzCiz22w7?6P1!=mZY zHY0XY3`~Ra>zTw`t44ka}Ok!ZV6*Cqrm>W>SvV2({ zZhSEsv90GO3Gx1*w6>-QAYD$$go3-Q#;JDS5CuPfEb^J!No>rg-btPmvy*h5&cjib zu_Kgl7{6c=x*;xiuQ-e5>+m&K%aOBySuWyzqiuTC%;x?7|GIx75srO{z2>p`t z6k}3V&XU40Nr|8r{TmJ#A3fr7vT?=g{;Pd)5hE?>b=?7d(?|>#*ZNp{4h8`uaB70EUs)V9!{)J+X4>QW&$!AqK~5&A|yUPiyIp^Uqz{q38i7hd++}5c~X`f;9cLgO?w*)9ITQ164PH z7v!?+fFHAPt`sw~HdFh{_bhPY&pY<6HQB68SHDl}48_t$K#o0*X5=&Ow6pkiHWHB)u%4vvrw8Sda~Mj=rn4m3uEs9O(U{0wOym+KauCB`QvMFwSP7NEtW*CHBi zeLtRY$gcp?TZR9>WIdPYX|_TT$9y3Q;B>%~i|UiNw_{myw3yMJ=Mt~VU5o#r_M+?Z%u^uWa`7}r)qO!7zMms`#=Ri}eyi(H zIYU^6GOFjpZ*2VT-FfDi2Dd6)w7>GBR^0=XjzCxv$f?PjlPo)RgM-@e26_%&(1SPfp{-oQyr>L&olbD zvxwmf@?$veP`xJ49MfP}WxxoXVe}%kxNgV;!PZ&C@^D@(#~!G=@=Q@6**Z|E)Yv{8 z2dbmao!$d=zirWq3v8H^54@kT{nfkcr91FG5IVyIh25b;ac>I`Or>J8gm-fI7YDtQ zh#(K6O8jP_f%hm~0E=5z2!%+|MPJYJ#-LWGt9e6tEb}{bv&r&5p+8t=K(z{^Of?)7 zwmrDSg;0@R7+r|*!vv)AnY?P8aGD>FIN7ukh3+?J;z)6#-OUyq6p7|FoQe&W^zXb9 z#qyGRcvzso`=HgOm&!7Z-}@PO@m0II&U^@cC!cK`K`GC+2lLEPkid)K#Rlt2G+U(# z*L(B8@y%Jp^>=dP`Y^0hIbZf$&GNT-W|;=tM}!-L99b(-<1d_RE|PdQB@t3cYloxJ zY)Na2(f15<^qG0)m57kHKM zI^{1Sg$DCJDc1U7=`&iKthIwxl+2aMLQ2?_ZAgA;!Kw&y4H+Wg#iB-$knlR+f_MYp zmQge&%Q|K}+e4`>#b?BWVdg{Rt}z%~&c|Ab+Rm4U6t1$3>)$#B*45;|3-3UDQq3`75fuqF|c;c>_AI&pIfp{-oQ*B`XnrHMc%p!&# z%8%jxP|6|AiP{~0kY|o*Ff5hfY>mrf*ep~~Jdy{BU(X_@AI*#D*bDt}^UQT0zXmmF zP9WMki>TDtLL6t2qt56)+G7=2Z6K15oib=BvWgGcs|9IAJbCBgY#z6&vi~-3dJ> z%zCS%R4n@(22_02ZcdozqVMDrCPa%Nz(ug)STv407pX;)gHaTL?XHuT!ubh^OuZCd zYgjuM;Qy-hP=S(9%|JF>DqBA_!8|^U9++1zm(I8q2&|sT5QKTW_A)E*q4pTe`g+M^ zyT|O831-C|#R?p$YQiS8VCtjH;6P#pnS~0kugJusV&S}up*A9#QE`Ta14PPm?J)YS zfV$i2D1J3)d;RMfQ1Ml}SvYS*-^mMyqs0=<;sl2e0Vw3*512(eY~slh-YJxs(R;Aps{%FQr)8qE zI6+pR5fi;4nak;mMeAjm=c1sqyGtg=QU;orTeU|ne}9yn_ABa4tMlg>kb z%wdM(=-^7y%yaIsB+cvyE|~d@wPedyeqfcJ8GDuSwWLWY7Z< z;dPo-H=z#GEt@ch#emq#!u)sn;eB@=c;mM|IXw}@Oz~v(4uX*dU*5M-%sNl7KDR#FJnagwj$~a zHJ=Wd6y_z4vX^URozz}Fk7U8S^z!*NHR=^Bw|g(2&N{a1!X=(8at6rrohcN_B_7HR zveMaEf%p4{{$L|%6`PHnc#VR=PGh)LZth^3MHb3p1U@n2b?$0vX+X3c-?g!yxWE)K zz3eA#OOHh(hq9204RO_bH`lYn3dM|Gq*ll|R=0i-h3!Itff!#^*MMYoj~PJUx&~w~ zxFYHv6C%k_9Y%2ExV|~+oS&N|6dvtv^B8sCuxsi@!R552 zB7jSaG5Us$n*xLfLO_Gj3M|z)%cDYTtO#Xc0pVZz5%1wjiu%Vig3zM3f@SO-cLTeP zE@!_tI&W+q@n8f1>zo?TCv^0Pd)g46rEPyk#d=?UH?WKuWp`Pf`vDcaKgj@%ud4HY z^%7Lh;JS1psweY)h$@5kBbajVzN5~Xnd1_*80>M97sHkWteT6#-yhwDk4WxM-i7Jd zNqHCkC99h34VxlU=RW{Iow4H?iWZ6RgZ;nMDCvX@!$K$e86giGx9{1urmsgVjjDZpV*Yg@v|7lXG%vHd<|Do z5C&(M*cnoH{>H*bDx&|28l@+??yhNx2qdB~S7(i`MtjB-AP9Z&p>u5aKO`~ zv0ttXWK26XGa1OPCcRS_ZMZxnlG^1}#$B3G85bRSCUkLq+GRaDLXs-(L^n$0>rC8d zwbgC%F20nCxaWqQbiVXQuZW8hVIS(@UJzn3vmS07O?~^8R8$E)T!mHdRuA{`{P5nE z2j2KSPEJqg;S@_&#|Xy#p@%!oyR>7}a0>8<8tyrm$ZV2=+FKF6V{nF zo>_>mg#PSyYLs-oDgD_}p+D2(aXQjCQFu=Teh+PAv#8bHnrRwBt@b9X5%f9(Os$q0 zP_t(_!inW!uJfbMh0!$0~VT6vB+nsQF<21sBQapYLL3v;#}G` z_W}M*MjtO;*b(_3$@L`334fVL?qxWsZIfcNyhQjL32mFaJB8$QXxrG~;nB9ycdl(a zu?N52bTl%*ivKkmo{jm; zmO}M|=$qtFVb{n}#}se{LH$I##w(;kwHWa?Md}ptb7+lF))NYQ5HWj{R{{~o2^+#p zb*GlfKZ}`2nJ7t&>pjSiAV%Jgh2&KUx;h`bq5|&}6L6`8)R0gsK!&DRt zKa`b)t6!oPJP)KI_3TEh|F0}SN=?IesZp=kvu8k)zM`r;;wibvF2=Q#S*fkK6>OxG zsM5$s*C6?BrcteUh!#V27{Q7|b?B(mo0iyWQQ5u3%NnEL(!YhT@RdNq4)R0Vu8KGW{AH=H^UNP8QSk_O0g!+TRQ}JU3ehdx{ zZY3{)cCk{YV2Gjz7xyZmTClJ~$i5~M&j`Kvvl-9ekTzoFC$0UC)7rWO2 zLpqzsGaO0OV#&Okp*6B(s95hS_ul_*t0O;9V(QXAHxi_8TP&z!Wl z1Rwul7O^}R0OjK2*zgNa$TLNOWGnmvl^WZJ<79Evnc9C_uA;OJSMt#`oj~T)N0WFH zYmu!#lRzvlwG{3MS7aihI0P<3BX$9Z#8#j$Iw6yh@eJ0NcX^~cr%&T*nF2F(XCmlY zcFX4%cNco*u}@NT6MrefZnx&*g;Ac5+azjCk&=pay!g*Y{c#a1!8YB$#p=utnAltP zFu>xgc5_C)2z@8-Eg@W~gI}d5M?>9(Wt5&uCZt0rSvLI0q+_^^Hb>O`LFwt?w53yL-om8ZK#Bs=_(dx z+xc*Mava{|mKa|_Ew~?m)cVe5?l38zOaC+Mr1RxJ`sY#?rCcwieauLf1r<8Oh%1jQeo zjCuYQTR+m=Z9`(A%1Dti@>1l+(8s3heiYNb#>=$U+YNKDIcU#TM$0<|K5#P)UnVx( zgpAKu&`W)zK2RQ?Xit$kwXvhz+(|ZdNKFtUIwHAp1FGEcdAMh!h9HLl&uU0H4T`~V ztueAa%zQ{x?iZg+4fI@Zw2|(hOd(~;&=F0P@p@Muso)DS0I zMd^)0D5c4aHz*&K3gi^jE9J3m!<451(1x`uH?XV@@YrefFl>rfaKglZWPZW~bxN=b z-87EKA3dh1pqU-L)mo<2cP!S#xP>8oDmTdE=`ava>)>5h2d0E=t@G-A=pDCE8da!h zD72B*U0QgmIy|~9-bcHFXQ9T0nV}+n4Y7njv<|-16;x-YSOwZ(>2P=>)}RKhPSfvp z1?{rTt5BU9Ht6wU2Pr-f8Lj#^1S>baP+P3S^rDdL-;p|w*kMQdZYeg;3onmDs8O#F zie|v};(+jCd{QP%2nFpE(8yt-LB;xA-LHjA?Zx<1t6TpDCG?TY7>Myzb$w)3dyVtZ zx2}(z1_wv&H9{mA`p5{59QsH{of-0Cw0llkoe2J$fJdpmJf77%K)e{Y0~nnV^z@OR7x50Pj%dX&g#w&nqc5h zGtlCzcEi9ApzmY`4v}Lpa0E9F26oh0mYD?<{_O6OdHLN5$TNA_-ygjv9h2Ojd`}_) zDCK+7qc{>_3ZEGHHN_M1F-Msk8_zey{X$kdk{Tt+YT-4$bJPSDHa&9-^$TP8Le=oN zMd|>mr6SqQr9U;P{p?JD3ZL6EtVUR{i6^*Z=M(Js+zj|9{PNZVDU%`h{gVe=#C5KJkv7XQ9L-y>DnDpXE@lX&pgA+obdXN5+dEVxW&TN-= zwO0nc66?Je_XihI0IMNr(uZ0T#gX#LAgmSiUVQOZega@)I9xW;cKUaL!E_<2dY?Yv zoIuJ;_@%b*`>jUiTCU!YE{eA1;q55IK2GELR;qmPxtmwNFC6KhVg@5!$pW3?AXE6a zLip!GG`O64Q<@GaTvk6z{SjNLeX#l#l+Dt!Qpe_PI<1A{AqRy$OWZ4F>2y3)FBP3j z5X55yud#4Q6MGMNr19rjrkWQBWez~l)K~DHARZO?8`mUEm)@oqd!nZOa zu$k`-XKpSftC=)Gl8C|? zhuL5p8cy$=Xe&&m9{D}iJl+fe=ac?`pC-pKIIHWBJgGB}y%|kAfTYhH$eyDmknEQW z$dBBKL1reF>(j9tx2DF2g93lff`dWQ;YQVQ2==F`M@f{Ze)RZbb6_~*OTC(SaEyq) z3iToCvbAbmqh9VeURGC`i7VO1A@(X)E7!NR$5t)xCl8}hyG$lAlSWa-X|zI}Mhr(; zjv_&DwS3M5bu*ts=U9!*#p6APXgq!Uv$@zhhfWVi>U?DX3MEA1!HKDrrN#&nb&@|A zDQqg+;3NBW6HVgA04QI&xHy6mi6(s8tAbFS|*&7GRLmo)Jhi}sBud`|P zmLiwtOk1%<`f#FxVY{?IRFD)5|5lhOc`@U)cDn&hab~BnRBHN1@mVVIQ8Y`XxwOy8 z8Sy{VbZ+qvl+{j&53Z!8xa~rOM%ltKVwfSGs++o48?uXLW|m;#&uJE_>E7j^?jOLM z5sCa~oSX0Du%@BjTm7T>sK-aqsCT4!BuP5j#cGOw?;kuXML9rSQS=zPav7(ni;hQG zwd71Ay{?K=@pg2%SPJzf5(#=F8lo{s_eco}h&TwNH#o*u44 zO?Jwg^>Kir?oHOpt)-#VxHKwuE)`F?GERiilFBjc|i_ za&d$`W$&o)RuAA_!W0%uM-T*cTcZhk*BT2%5?Z^?L|2LtcX}Dox~(&V*Ms0z!)VtQ zGdE0IcO81jAqk{{6($*VjyLe~y{%j?H;F(}Ycz!n$wi7p&@<8)rz;mTc`eqVSps!o zMhXrXKy$=BV(;Y?wP*OuD2@fDIR}`G2j@bufzO! zNG_xvcl5;qH;E4L=#Oj&lLRP-nL4K%WTOTkEA@#rRLRLI?3n@1ipc?s;ypDmpBCV3jP~f;i3kpXt1N{O#$rO1)?}q!9Igqg zUVVjyp?+F}Jy)PI&hd7oKG~RTsV`)2%SOiiaC^Nj60no;C-pQ=L8V~2-mK6FJrpje zRYq_uVh`S6Eekuv^+JV8eWW&7A{6n4?I~mql&w`*stu3x;Nv{F-*`}+3@^=kGE{G) z7Tl=SwYhfAxU_~aZ!9Vc&cIr`GJv$1vVj%2J{Y=Q99h9c;l{pz|73roU|0Xt zO(@(_Yi#S;GTJPT?B<05O84x>cl>wDNQoRf3RA2w*wSCx6_jw2-PqG3r@K$a;`qXh z{}JeF4V$+zT^8yrfMi<7X*@l4O-CAtt?SII6^F~U>2)Y->}(b%re7{KlP3djis;9g zNR1}1Nwy(MZT0g)L|>vtz2XKi16JQ36k5gjcu%CE;~}5cF*8GwZnz}DLN+m3 zg3H0d^<$06S_xqy1H^i&LELInYNi^+@1q|i>maZ-3me5#=1{Kmso!9ODRabBaiEsv8GRrFhO4Kdat71p6{wyQ!*Ow-uFNyXG#Fl7 zDvuT+7OV_(b-h)pD7`Tc9M46gwA`E(*PHX=IyM^A3-U}+pxTNCMWx0j;xO}d)OpqZ z-;MX)a+kgzD+aK^jn{EuJ7ac&KVTcIciUrek-o?3dHgzFr@zny1zc9)0Lw1yxY`y% zJ~kgN`0=)$ZhdsP+3w6_nS$%)U_h5q@gB)@$@h-ZHFAhWFYaZ@F^qq^tV-K_^=9!{EzjdHdsj;y*4m3xd zYL5MP?=7#uh?uVBmh z0d*M*!N9G(n3|KlTZfSdBIlO#iWGUW7DrB`T;b@-OuQjZoy!^fM@}6oHkiY^J9@56 zTdj^#t;tOcsQ9YgoH|43J9$lVw4^+BCiBcuAl{4DRHx2M^NjxDS;X+4=Erc{sq@!) z=9mV9Iu(}Z8GUdT zG5pm07>+v?*5sLE8Vu`4fLLOBky>1v@<8ysS;X>|yjYGs6`FabD3ENO3RG%rAC6PO zQRm4qr-HUwDvH?clTU#kvc1l`1EsqtTqIpM$R+&J=C(;Z&Egeu0>&tK8-axf^iw>c zj4*>BJDD~0(t5m8I`@0i5)ZqvDo_*t>rC_!`};+*}f7n1Ocvoc1@oa$*Fh|rVX(nS)j%2~Sv`V^x8uf}jU`Ijzwwrk<7%ONWhrM#Qy&1R{VnG{^YHg4vmzz;;pP|vh8h(_{e26y2nb#)$8?V963Ayx(DFbib9ErXiyH zJ`>sxeZxQ~F@IAw3Vt#D2MA9xAMEeba@F$#+<6Y_zZC3u_nHP+893udh1e=xk^&1`~ETPr1NhFgSyW} zESJJ>|73~#_Ym8z*hXG`;FrNF{Bl)D7#2;>2bjb)?`I9qbKRo2dmb;pIw8Ebzz#f%8Vhv6vO}y4ka-JX4zNq35)7mpb;PC+xz>142!xcN zWNW*Is?6S)Wm5}~=qXr*f2)JR^~LcC1d(B_OU>fWItwL1VKJKJi5lV*6)a z(sL#}^S(0^Duk}{?P%ms;8U?K)%$gwsTKGix4Jbi3&wVK=bS^3-4Xx8jxE%k|HNR8 zZ=>r1vTE}G8GY;O&Kmt4(d38NGSr5v1KD)zn)P5J~k& zmH%c|?*LKdKLTKMmW<~EI^+d=|1Y0`t;(ljy)Qp|XH?}MeX`lPA5g*Di_yp@^6R`^ z{WpN0L6v_j`cCHU5LE_mM=<5!ZAYEVs(ibTWG4OvBdr&?>6myelL>-C%Cu6AW@TH2 zqNf#9f~mgHENr#CXt;;VMU%g;yO$-EpQ$Kd4%ZXCSqsB__SJxRurxIv-P?m3ymFG;|oxlQ}~ zqsOXyl2?pWPm_d{Qa%0Wtm=$BR^5|{+r(qlUsIzbVNN|(9c?9>k_*;&jY`Zm_5Mtd ziub7ZT8*%H7wg%k1~tuxUDr=tI@I5V-hC$sor>bUiBLAf)XnhT^mPjj@f!t!EU5f7 zYLuSJ8Q+_JmKvlk_Ab|ZlUvOEA4VT9UYH#B-^ukP$q9d%NbY4g`Q9Y2d70juq_!m_ zr{leeNjRSOCi>3bo1StCez8O#?AI*6H$6k5^5dv{TQr8kuX_o9=_g^Q~B^K^AGJE(}LH z*cifaPY5$j36VAYTM1fQLQJ@xw^F`HDs)yiQ-8#oYD=u1hqBpHRCgi_PUoO7pyt3Z zMd zayq5RJ=MXW{K)xp`o)eM_ACC#5ilF9W4k61ZG|C*4B`zqd1&uQ!vc>D6rX#FqOx%y z|0)EM{c-_0gSn@!y#@g_Yvt8z(k7p3u=+zV-j^n0LwW>d9F%@LjD+@s5}xSEnLS(8 zF4K7U8fEIa!vq$~A<%Mi^PW5P6O!#zclI_Is$(8X7NdTXjXT)i3-4_S@OHRwIlXgqx%wHJeRroAg1 zsq>TlDC8vZTBg)iNu5bv6XqgD&Z|{k*)geS`NH01FKQ3}Vn`nML7OT^mZEX>3)CNz z0gWU7aD@`?gQyA=EZ<0gB~_LzCoD#mtopv)0bE{yJqiTz*~s`YkA0T37Jn%`{lbeU zuT{!V&=j&pnygEQKEafgtu4Z5x4}oz>^8hPvyS!;l+|j353c0Axcy0(H~o-f#K@U- zZ1h}kk!i6}O_IwhRb=b)&(oKtIl59`+kK!X6A0;i>p6MSbE7|zqU6JiL$IQQ$vQmx@-WBC~lzinP*gW=G(nIZ)MzjRu!|(Wq%1Smqd{<;!q~A(h1X~~~NLqz|D>6OmpOueHze!J~ zg{S70HTWnRnY^;bDgJ@75{VDq6_FNdmqizijtIX?DrqH(PAmKq^U-M#O;ZXNm-t8V zEhj#TMyEN;%45_4JPr-bP4Vfu81n}-M1jwx~+E= z*b(d9x1&)CrRYW7++xjycm$@V9OV~CrXqX?zL2)wsT|d#OI*fpm*k18DWhPcr=s&P z^U+{KFm%&Uuras^7JNJhPBCDIR%qrs6J050zQxPTma3DP{yr9UB#hX51gZ>^;Fqkf zA*=`NFB{0)7SOF2+Q#xI$XuLk!F*>M|Iltuw#Nny>S~GSV9eVp!-f~R(sqs^(i8mB zH!!=+job)$pjAdFGQ<-p37%lqos@UYWQ_v@7{y$-XJxMHE2#xH?scO3&p5hAkYW%C zagaZt6jUdX5r?c{VUxXHrhAWHWh^^gPoX@xZLmMMw%A z2!1ZpjD->2r_jh@Jx#^>Q?cK?^hh((g@n*9Rvh%O)xD`*vrYzSl=lq=YJ64QuqCVU z^taKsZj^Tu{mqQ0#R1LICvjw1QD1}2a=wS+r<&t$^UP6@!xwC(I&>^d%DEnS&N^+t zg->$}>fQVk>qol^R>K!v@$< zXR&#_DD2yH2Th%@Oc^^qsttLc|!x?h(8=7~N54M-mh5z2$E>6Y(GT zw@W5sJ!p&F1}b?)y(WPKsaMpSjYqklK)lYuH&&@)^#9Jp z=wkhSk6}5o{-`*^`qMKia&4;u>yXpTuHqM!CW1YhK>Tjj-=P2~dHr$3m~!o0Vw-TE zVSlK3o}6c%0{#BojTki?mHnYc?aMRj*=XcDth&MOIk~YLo44-LJabHg*;KhAuFEs} zHM5A}_4zRzmn)*0XO3wwY^7I~TUeOQj%^%@n|J4dW7jO=dQVm!5&$0&+S0-*occS95FWyJ2%hc& z$;Hcf$U}7N%6J*+#kchh_N*CYxrw0#BWa=Du!IHKsZ&_6ZB@ilvx^l$K9Y$Mg}Cq` zw$>uz0u>va=s(bW;=)5#SE2N_uLRl7ORzJk7!#RZO-4C2BM^UPDA-;Z6NxbSG6 zQGYv&*!@Fp?8b@NklNjt;^N1Z!!iVO0znx!L99b`7l z$&$qf5;nBdlEtdf6em8X;WD20_G+B=HPR%6O`ONLX38U$o>rpfd`Bj>5Qq2ejPoOh zHx(Ov;XPhFc?<8gI!d+izJ&o5U$vW~`|apEdF$h7F^}%p!{wjy%uyiTi`P_#%Y%7F ze_$3d{H6RDjyqhwpJ$F~FszakhIVFpky>28%>%*z&LWn7mlw;i$I7v%n`=IP{b@3i zK(ckLP^qzfIF1!Zo#R{^qN0J_B6(BqBoM&d)cyTYT$PU`zv##?3}hnVbATfpiqv@b zrReo$o*GYDg@kT=-KEAWjf|B?why(&8cnjX8JZ}z#}eadCzuw74w))p-o|e10K@(U z9l%DNJ|h@Pj56@3^g445P!OT~`jI+n*ATAc!g;gRE;ie(A&T}VO3L+;@i$)OhASmx zIT@-qN@eLcTBLGp4Xo6R&n*fe#p0LZ#oZwrxx7}r9*{fH)OY!o?#seGu*IsI z(a+~>bV14s3DS)kq<7?p^!6Embdw8GUPzE`(jdJrKcsK%9@0hnCM?*)@QGa@DzI;W zJ^Wj7#mDo{;3I4Xsr+Ie^pE26f#9QPJ`i4Cm2dh7%IXQh2alJ8QZW9}_Sxtn)IzP2 zB$iR82=;6L41G>3zerE8`GG02n$mC8M=(B0T7n(#A1Euq_~2a;>_}5|agpnYu! zR-#BX;Gdh1RDEcg(!c0J|0q6E@ln!}YK?!OtfbT~eisU`JUMCD|h7ig?5R z+4_k0{Pe_|@Q>mn9v>ww@ox4Hl$CgV@UDn=q$&Kn$ac7_BI%_H6ro=2pP7$PccdrO zTl}N=2*pRy2$kRz`#%3rSxLo*?}}8XdhTT|x}D&xFNqlQRZ;YFegya^`l<93{hEIi zA4T~n=_&eO{-Lr`ln>t>MLm~kCq<}ik|4MFG(8rS<&=qeiZmAw~9*J=cR)nd_@OlH6?DozwECr?WIuBqFF9@plJ zH#TVV8I6A^FldA`xJqV^VyVkU$?%iAcopDL($CC7nQJ^Aqk@Z81Z8>r;WiT@Opcg?F`qVdRM0PDZ!GQ^6*<#!(q^xRv1t2TvV& z-45vGGiWz<7MrD3*a<=rr~nT^FFn(RO?&aYS**8E0am-@OD6%@@chcq?w~yo1OdXm zR`zgE$VVt(pV$|CtF9d zd_p;TfCeaN_da=5oBFCZ0A;ONE|!o94^NlC7jobsUV{KTjHR&QB?mGM_TKUug9>|Z zxod{#u=kcbvJwJ=TcprC3BPL8Kv{ZvsD-xZ4ButavC+zfMu8+;3$63@6@$T_uwW;| z1kBtV+370Cc*r9$AXZ9!gatbRcZ)ZbU?*yl5jvR)^px~H$3ApIyLLoh!IrcM5j|+N z4HN&h#|B0#P4v(z7n^XC!@||qDJ?|Aav2$EG)vT`4G&d)sOBW)W#p>@-_eT*#HnC(L#X{%ByH<9X+QHZ_YfB;MJGC*`< z8*Xc&JW?60jDTgD+gp7-l=pDFxSbMd?kHAjMI^{%J8HP=1d|g)VaZ|O1+jrsG#G4K z<3%__po5+w*+@Kyd(O9vBpkvmI#UcM+C7VTp=&vjx`A92oY15!5A?YWr0%0 zh`E3o^@?l548(}JbVGos>^SnlB<)Gc&dOZjuNFnh+jfLfyVm*fhniMxRHTlawNyU95O$yVbqp812w*? zZep7?NX$6;)=g~x`^oq_5+o)>mf_4E!Ii^u&{5}{ENq}qXZI9;FD6St%Dr`M0^X!W z;aXPD6Vu_+jkCedcWdmd8<@Na;OHzEPk6eF3U+=2pM#xvkc#!b5@H@@W#{{??){*O z@H~IVK#i}evvc(pRL&5d=Yy!8%+4XQ40ev-%E8W#Iyu?d?kSm_UzdQl^z6K8HrV-x z8awM&NdE({bry^#yvEKyU~`37XgV%YvEJ7Vv-6>6n%(f~f+yQgG!{$2v!QnT~>q(oY%)RO{&{0S*r5HAvL}H!c{T$ozG^qC=34ZfylOaF zQo0R|=9!~FyjOxuW4cMl=sWrJ3K3(-d=b1jmZPK2p8d;XiWoL*$!qZI36w~^1|i9XUSdIE z_c{cb>koR{(1iBlzX%507=xtOyT@LWhQig-w{k@*J>gVFCTqnegu>?b09yJD&V^;z z)C(cdC{u`9c9yvS;#pB!O#Nu&5Co|>{bHKOP$O59_)7uyOsg|LU}8C4#sG`2+Rbu$ z7Wz(JP8>BUg~6?P<|vTw-Kgesev`uAdo}cj>2_b& zpU)h-`bOujt~uYxh#(IgI!8^)9sQ9!a}>z$Zbx7A6q8i(DATZe1RD7~Uc15Wk?4Ddv3pjYIi|s` zv3pB_N#Etw{&QX)7*@<8o}Zop&-RWUS>KKw-BIU~gdIJ3dsFzdyHDQFKbf#4nEScE zKZ@^hRkHqA#`mD-?UeC7p2n&szsD~ShMZE62>(_nx-k>W{V5L`vXdGmy~Mww@7C!( z(}l5lon_1xZeSoV>`I{oU|GyzhelB-S)KAOJiZIdu|jp(NrxN~c5?WVB~)d}5;>W< z^rv<<-JWSCOVKyz^9rjGn0O$7(N%g-6)Nq%{MA7Svf7caU!2l}QPiG*{T&kv#{j;e->*Bx>qb46Y zpJWszFs;Dd^uZ_XpouW^S6F}8Y7>w3Zl)%NO*^+_uKonWK|HV;R}+h5;%e{c)tmWR zkp_w~rjftVO|Y8BT9nrDA;+$>0W0u#{`ovt*mPMpgsI+hG;Ht54xsu*`gQ!-`1Pjn z*PHR{2mVRoiNK~HKN+mhI2nTYTppr5a}b|P(A0NcTd_f~?)XCtN`lp2 zkzmy;@XK7`&K4|^=ns%>-vyx;XTxE6NuIQ8XaM`C%5- zE&ym)fdp&jMT67?JeYfMRwQbj&f-T4yCPr=D{4gn6t9* ziZMH#tL^$LVwO@`if2u6GpUYI3oe|0DMXPb<6cBpCz^5#4*77(CZCe4;pJa%2NTUk zl`M4OqSBZsH*vSZufnx((XRz7mMy!WFPwIFov7)3C-3y;LL0B97r(wW8B#I~WXN!_ znhgtFIQPhqj{sgSL;j9_F&UEmikBe;K_IYp`C`E2NXDRCj%0$vfh|Yc&^|6l*4b;1 zN@qc$Tog;}97&WT&oVZ6yO#pvk9Yynt}hk0On{7hR7>{6!VCzI$A+Ceb_K`?j=A_? zJgCfLM07}w`UgYLuYI8RY2IE@Zy-c`W@)hxO??^$DI1A&2v12_U5HYOBdTW+j0dnN z6(O8E%AA@}M3h>D8SZmY>UtuG5~VnnnJ9G>Av}#JRnkN$j)jp%d33ae5L!%ZC^q5y zlPElKQHybA0RIO>cPR)-404&0G4{=1YH17!ETk8;j-(b`)Y=lFP!qM@xrTcHk02Bq zx$9(2F+Hi^YXzs{B619s z276ez90W}wSE~k65s{~HF&HT#wo+vTPQoPj7Oty|j8TL$$adFHR4C^Y33n?L;!}dX z_m=4c18haY@w_A?aneb`T}oO$19UorVVmNpwI(MfC}CEqKNy~*uxhOazdf+fG%(K! z&Nye_;xl@fd0c<6a|~F=i-kd&vEmN$>K<+&>>PT(7`?-9?hLTS8KI>8as|NNTV4m8 z@4e;q8Gt|=fPprt0b!%uK}{Gm_!IEpuR%@qy*n?S50At1^3@2RH(aJGNr||&yrWo~ z#4<4Be!-(2YiKFhI1E+S$ zk9+7ByMM4>p8E&irMka=Y#~_{@eW&)&Dk(ldd|$LuLY34+Xg?9tBEr9fFWbc*~gf< zIEC$n8rr0cZImf){J&mqOlhL@{;-qI?;evTN+I=`2x*AZvt^(3V2Ja~QuXK2G=o(A zX;$6TB4GRz-z3JN?<)}(ypLCRe6rXmRkCIlqeVTuutlDip zxOs@^r;l|db1_fX_DN6kPswMWv;s|2zCT>$2MAtDmAJeL!88k9QrKF%J%EB9UA2doZzmeoLMro>aGFj$C$2ejnjE%`N#<=`&M8 zh-t3yqxi%mH-%!ow~mqsZu9b_zSM>K|1p2&Gg7@spv?%W{!B@hW#qmjL*vu!IgBlg zyN4@OKD!7l56ZQcBH#@5rbs=VmDJTcs09zCt|mOoQDE=Q0;ROVdJ8q`6&uwIM1k$N zqrh(H-`Ky2-Hj_>fZbCD7~{EVxY!X?ZObQ`tRslH-o#C{*DBc4UuI;Dv039;n(V@vtvJT zl%j$SRJ?q^_x}^CA5I_v)q4q)7awHxJh5qCxH%|nWI<{66BdX?&2`n8vsvDt@k?Rp zs3qo7h-W}L*~PM2h(?ZOMaAitmAHE0rNv0)e3sRTA0QFh;K>Z2_^SHiss0e;%MiZy zZ1kPHctVsIizk8+$Kr9++5d~j1}b^+9G*ae)QjiOH*Ix>!aZP?QZ+8B?&eIaE7sEU z7~ae?ut09E&4xTfk zRU9t|_y?H}f>z~5aUHQv$RFnIX4Ix*juiL=Eje-}e*WD!zv`bFr8_xmZUqxdzX zEw_JWK*d+>X1RR^eJ3wBjuungKD0lOk_!D)i2qieISRyEE-B`Ssp9?qG|%Y&Gm9Ah zd43GX#rr+t9Fra6SwrKZG#KtFl}C${wf4$@yK-V7=tYXgPsjtoNoeGI2k3^6pNPJ5 z@o{XV-xYbLD3ENOOH^uXAC7a$QDoFtlX*1x`=ek*?@zw&Np~*N z!lZQPdLyfv?7kNUCz2o-tu@$a7DsAjiX2p`@Z@|$dM(qkd^`?ppJ~j7BOj{{ogQ?hv&dg%K77Vu zzfkQ*>^!>b!5mb&2)e@@o#y2}dB;eorFOlZepA>oH=L9fM)Si?9%mJicXTM+5L|Ac zCphWNh*z*od8(|`3=%Vk7vdDdFGb5Ihh)fXbaWb;`UD5dZsZhJ-Gp?3U| z{;goYAV2Kqbq{;jHZRY~5B^$?%QRL=L;g{GHZOdXWSf_9{}5SiUih%_B7u{ylB)}w z7q#zHPbRnzD4UnF({24RRxoO65i6KOFx7o-1v8C7>GmK(^l)@D(~83c$2i??HQ$HQ zW#sfQg8b~r``c2d4+VD<2VZ8zYqlQFBxf;VfM`$mXT;?tT9S=ZiAJkcK^o!Enr7b&rnaxU1rnqXY#yTyvz+Ro)PlQ;ygtOBx0wum zA`uSRIplhC$t0VN-;W`=?EC@x#mvUpuXx#6K-|6A_y%G66clDet|cdB_$Iff`ldT; zXQao$&|rA}y7qLD*#0FHnM#EFq{yGWonJrZOsPYxq!WFQ4)?#XA$z~SM~@GA-sX$W zY?pUIh1x60*n4q*a8aq;8X0O;whgr=iX-KfL0Bv3z4+p-Tu_1_aky-xNkRWAR+C(c z)%)}T=Y(o_{8H=pYgQw3Ay)547e#9oSKrQgg2waRs^t-PH?RIcIMQRDg}$s4W`WKn zBqPed6_I`%qRu7Xro5{t{8#^n`XgpmyJz)NDBIVEYbUx?w4;_o$&T933Irq_wU>ma zrd%K7L4{*ynLH-*Euijr1P7{oZz6a%p?cH0c%~1 z=Uh%QbIHI|Ow7p;SNhtJPOc-y>s@p;n)Hewu z=y)ocru32=@Q>o7BOgVhqjx{N&_7UC%JIRwqTE7F`g2k2i1524mR6$ZwBA24ADymE zPp4u3C_XyzQ8YTm?1~fqA+l1451Wxf$<>8sU&+hWXVF%4Kxy`miCk7s! z6Cl3xkV9a9fdA=6fu@2^7nLwU(jGjv?^%qfcZ(HoIK2j|VL#4;e1=}G6xDNdvd$uQ zg)~d9sL1qQ@805|PW3(1g1f3JFlX6S^ofYJ64Q>Mvu?hU)*KZ{6hY4fJ=!RW(GG;ieP8mBSp` zQD^_V>DWNUAO3vHKC$|>1QJj^a#j5*tLJf5?QA^2o$c;^kMf1vsJ%lCEHxKKJUh}k zE*4oI8aWmj70==#yVUC5532BmyO@C*UsYdZ)gDyN;L^Gp)sq)lh%94~MR4UnG6G)JLk!?D_7g?M~>n>nGUl{T1s4cQKLmS@2Oovk{*87^_ldNNP?*~;Z zvX?VZ;vpR}rY+9~j4Sbma6<@WR zHSjg`oxBD(T1=nJSTE3@I}C3#662zt@T_o~OoyN2N05BmlAlbJ9SCx`H*cMppsU`>cv z%y#cjel@CRB8=GBtBm&|8#@&nl<{sri}Wc=O}kmBX!K&M>r@-jEey=~s@*J++t7FN zM#K?iZoIKu{cH2gQINum=_4c$^-45rB?`yy$TR-iW)a8loOv97BF`Mt;P?cIV`H64 ze8+rMxc_ncsERcID(9dRqc&Qt!|O^Z7O?FyG;n z`>*}TE2IFsSh2yP<>n3=zju+mC3fS((a53Yq2lzrvF;NMa&Zr71=y3V&isH0QTs^@ zu=uLo?7wHC@8tbAM2*3p5zILF(@`g$KkdrN{5dZHH70-h`=j6v4<#!|rL#A^Tj-X} zwnY(fmdMrnPps;U1a}zC#6ZHYe}oz(J+Y|Z4o^c|2Dr=OUtfp^9-9-!%@YHt858nh zF$?*?J5zxljtB?PuEx7F%}j)U*l9Jw7CPt+{}6>*El#^LKf6#kh&G1zT^@)BL^ued z!3?uYhHwyXwD1(anGnc=ZQekQ(zDG`>nABl79zp2U9ZItZA+p8fg<%31@2D`W*2*2 z6oBLn@O_MWUaYZT5${f}CmDjUn~5R3>?ngp$hThUoa1jKtofyJLP%`GWrJDs^S1&| zun2lf;I{lfz{I#MKl>GL%P(x#y9*Za{1$Sgl#1=*C?Yt_MwXQ8XU3S{0MlpD-}(Jx z&VJp(O*;3tCx=EtM)N|*3(njyi;c?iUSXB04QcKQQ}{D?fRw%ohlHIxPTQ!1!Vw|C z7&T0Tefy(f%xitb(V~?o8lD=WKeNlhNoeXj-z}^0<5E@^Hh79Js>c$H2b2xoiSFeU zV~D4w5;4U4EsleIZisg&Q38^T@TTYJWj0%n0vx)|ISuhNJG`SVpBx{bidt<&$`zxn zB_cBCWf!BljI@47z;GY+t3+cTyU~oqku9fzBRk|B^Q=$yQ7>Ugeq@*F7jwU3zv7SV zDu*~CA6S!oFO2K=eVG#S{<(t z3?9-ajobJgRwMKL^}3DIcs94`Y%2F|;WqxVaHP)X_oD!&v(Vtg)XGw0q}6Ux&PvL# zk(T*Peq!g!$8}%uCFy&TB2tznis<)-SaofQh3XdoRrQPb$5{E2G#|qU+_DvEs&A$K z*nAA%_Jtb1OMs0s1=0HxAbOY}+8YPaLmr3>x67xbT6GLoDP2d5|K%Svs~ZLf#5}ZI+lcTw z{RGF(kH9B=w@&YwE{x6V94CPS?_@`jGc12f|>J`Fx+3 zxRZaX@s9G3=kvqi<7LEAa&;jlJD30PB8A|w`Rqa9B*OM7aO<>OJDIAejYF>7p6;v| zLde0%TDi3}+ya;C(HVHm$EEr3nypAN#5b-&0|c1)FX_s{2Y4 zR2LsN-9Rzl1ksUcuYt7bqs_*6k8FGcV*~NmM*Kx#<4D*fY6mPhD?hWKTRB{gtesKY zttnRDq2uQSIgA0LJb@M)plhABtWHgt-`W+b_i?-tB<%6_aESx0M?aWHgxHdx&Do?i zzO5^8PKu#`Hb6S)HrxaL)h$LOzhmkySV3KreB;%!~Qa=erK)N-;xiC;2Pq1Z6&qlM# zMx)BcJv}{=Ff-E`pD|$mDA3s&j_3Z)0$dL3c=VVayQVY0J~=*IZceZ3%&QfL%QgI% zUvKPe7AK}(F0WH3W9DjKS!kd|(|mn$vPD|}4h*?<;Jl#pI*0?QQs#&VS1gkb+b;Yk zM$bsG9*D#|gTd;_CdFc|O$CiQ{wb#ug>40M!n*uKLh@t*J=#H^j~BoN_L@CE=)k5H&z)L3p5Uv@!Js94L1Ma zQd{=1EJUMsZDFGn{h-iu=()Zdo_){>E2ZB9Jq{}+D%N$+em5DIhbj!nbz&AOFi*+^ zrm$H$9*umeZ2kQ{tFz}R=v#lXzX)^Z&YpBZquu{@FnNe5!)7UhCx^|Fqs~A!4pGRn z`${^sPOLt{2pqrd)BMOs^VggaZj)*TaSK*vJQqo|16lE0+T1otF@Lc^LdYXo5c_H) zz)D7;2pWu_hNU(2(t2Dfoc=AQ9)m{6jr_clH+> zC|yFaUaUSu6VD?y|>#LEty*<__B?cRgYd;tRQ1o3z-L*R3 zJ*ZUv@hD)b^Tc40=VMz~4cd?fBCapw_=eG6e^44lBtcMps8-$~ACU~*{7JF&;HgSu zzpGXI25S>AS7S;mjMs*pJhrH9JWCwspc*^>tw)G?tRDMfX2#Gy(00wMDN4ORM6y$9 z?NcJZH({fdw-}*le|x+1=Tld77PBW@aU=FU*wy9%7CKY%qrd!4QrBAu;fAOw5%40RjX_ zAR#shM>qrgkO2Aos_MI6zkbKeNR~|gN1lDJUw3s?b#--JEuI3r_)`J+6aWhkyJ9Xxe}5CZC1jNEQVzj{-Qt|`sIpYA+4l8WDs{= z=X$5H{X)h6T4lTf#+a^XXji3nTIm{|sZ!`5`E)e443lGDE{I+8`ba{3*#;U+WpW_c zJ9Dd3dpR){eI&L)G<#Yoj@{_x*pwQ~rLvRu_YPuxRVS0{Zm(mw4x^EdXwfAV<`#+N z%qq-{@TpI%h<%c)Fx#oQslv?J=1>RtLtr-erI>1Oen?xLLpm4MjRRKs7@(!!3f@=d zhqv7YcwvdV;1!P%Ui_`#eP@1n-<}6vb6e53F~K-o!BT=CydGiPe+t$!QVH7_6-!Mc zqGCN8rqx>&>kCLB6(P*0QORdtbiNVTIFJ`Z}mU`ez&Qap&EF%$kmQFz-Ydw-VdaB;RjiH zA^bjm!D1W~nj9{nLKl5P|C5be$>x}T^D>pXOIe^C!wR!JMI$mcY@(mSlNZi zgP(jN29OiZWx^xXf)ttOPl1mdJ{^3lA9MUZorKKuL8~*bq!2}(RuEwEO*`@8tc1RG zFV5G1#!)YhM2+FaiD1UzIdHT&&P`>tgzRtPcVzU!UMA%xyD;h!0)FxVGuG{KN82;!OFy%Azsi6^;U=*EW;wgt)A9ubK8EAIlJ$$V9 z<>x+6d9fL*BR^2wf4G}~if^iOUU)Gy&QQnlHfWyAc@ixK=S8sM;59{6WDzdb7d`vF*; ziQ);WG30w_hM)8&p_YF3@OoKFk}QP4u*8J z=}${<#j18M$*lUW1e~R2)eGTZ78Ht&MiC;0#-R>=t4V@#`;MIfx*JFK+C;)>GEO)xH>7>UcsCDZ5Z6@yEGW5S`rV*CK$LU%22njzyn~912{b2yW z;mQ4p002~bQw9M1ikc?t=?nOoRdAR5TcPN>Onk*_g>1!-k~DM`n{t$>F0;i`JO;u` zu$fAbnTLOB2AW-&Amt@vCajNeiBZ&v1Vy33ZtJHm>Vsp@yKjBrQsfn35M^DaZib35 zueQ+OmmZwT_uxnAseB9-f`OC-bxLO1ti5#u4I-to9!w2j2Qo_xn=H28M$`g8=iz)b zCd3y$84sT_vCTERcBFF*P|Os#;2Bsd34yI<;wg*{!!*Hor`=LFw#1$n_gcyQMdzDq+GO>V?z;K1llH$IeD1m^ zRb0NhK2m9kQcUuj-mdxdn%-DpM(PFb4eT#PpFpBEvybi+_|&&S3s(#G(ValeO{nGJ z!Gu{p28gXQ#rgT+Jv$G)@$yhik9(37kA}x1jQh`%w9NJ-IT*~Hd#mOUaU&f9bLy=d z>1HI4aw9P$lH=h}#Ag~e(pgL;Hxq4lmB5c+X5^06OXCo_QGw&GbRp&XR;{Cu!zlJq zQ_krgNSGrf;67O-8If>8l2G#>^q{Eh1J=fP4gCoR{t*mqcdVW8{nSGnfgE33~YA*KGyrPZ3-q+TUJzV`n8@adh}gj zcJ2q1+g2CAM?Te3XYKII0DcCa)ne#7nYAUV4Azcd%E8)>Hkoa!b|1-1{1YOr7r7b} z`};%N>Kl{$6V^A}G*TKS{*an>#kP7?CcffUw=40Zr2S3VR{Oz7iYb4fP)ACJM0ChP zxaxQsA)mxu(H&EED+L;ChSo5$tx)Ur(p;uj_lA8x(Z`Dyip97u zxt$<6;x7})y$mPJl0r=u$0`3u+$<^1iISWSvm|X693zpAF+5X|dXQ}fbB3(MDUJBKZ z+Cm6dJy1${b0FZiAFf;FOsqK7%R1uVk+` zC5bFnp2eJyo|?8${t&i$_@$^cZ>^6?-m;U2z^A_bTo^XF-S)R6;7z;j0?wKac#T&8 zwftMbeoB7WPv{)>MRGN98W_bLQ`|gyc7E_z5%{4|wsOuof&&S>P9yNe{!x5IE7>So z#m_mbh0Ff4uP=w=fRWQ5zb&}U>}o0z zGy8X7YP~hH??Dz+W_E^4veAB*%j_q0LhOsYYrN;A?`dOb_XgR&GPj4c(pXF=NfiFUEQ4DneKwf zr>XL=g2Y-LSJ~^{HIU{|9|+*ckA*!NCCp_Ru1!~~!()|ZYu#l~__O5HbhCc)#5_yjmd@6JqTJVwqN>rvCgU zKh(eK9O|WRsleID&`FQ7n+jnNeW7^h*k|TGARGywrmRbUx_=a(mdZxawAA?|7RB87 zUur@t{X=EdR@w08cB^mi&V`cPoNKE}dWMf8o9#bs_33GLt(df8HH(O%`fiw2Zxz++ zkPDTf%Fsw^)_eKFbt93kB)eGRA(=k z8AX9SdG=N!-7rTGxYm`MWy57a77^buI8wx-ick(*%OZuuVXSV8nZ%+UL+zB-PzuM#3-P0VE}jmSSdX`6!UT7V-wz)-Vm+wMXF}|tpJ<1yE@euT_JH&6szaz085=n+b zJc1*KL)_7(OR*ky&+*$c6Sqsl`x5Yo?J(Bkb=2+&66^6}07hrTcs9WOk~8%W*bMAg z4}7fmw-*N z!rA#8_{brn@o{=~7Nz|;AB#VgY~E~j7tfWr(l`S@mq3ee+6e=1fxeR&SR%(@;0SIU z4D4vLDl-cx{Mp?l^YWSm5CQ?;$;JZ%xV02{3tz*GX^64TWXLx5Ld21B)2yCuS6d&UMLXh zpOf1Ok|X{yk=)C0A`nTO;W7mx2?K>Bry~%FG#O7I6251So#WTRFLLbAuXx7}cVu*y zA9;nyyC~%Hzywo`I$Rvnnt`hG>vHul!~yWRY})^DaJeMpl+%R~9jn{)r z4xgiL9TsHCa`Es&@sVaUUk%KtD_mikyN55ZJ~G$6_wHdF&$p_DnU>!@JSayxxLL%w z7hr+T0nazQA+6&RLBiCVSmW1N{EL2@T{jM;kJ|SaSP>_(=({Z(71w6 z*l8oyY>&_0P_K=Gf2AY^7hdMV94_p-ERlxB3K{A*oYEOd_$xZ^NKtFTOD)Spgl6P$ zInje=J|<^wE;H*h5riNR1)VsEiZ{UWAOs~1j2ouI2abZfQ}2X9*>3fG{6)JJ{fghM zILw`gAv_1~Ri!(qx)68ptekt60KvCw@%=e5(BLdXyo;WV$bx1IZXGSc1*Nx^)@^G{ zyMqZ9NyG>y)t)GByO%SJP;pGQNhupgA7p#8Ab=}A;1oSRz$OYmc6B8r;Ljv} zT>{)2@A+={)OTzWTPTnBe2|)V8WQlC{P2FFb9j%6A%)>qKU`}h7KrgoEs<~MpUpQJ zI@5%F{@6c?&za6f(VXe?P%4O7u|L#we&Zh~t1F!it~3Gr+Hfa>B{%1;bR}8BcOcyR z&y{|hQ!dB&&K1~f!K(R&_rNrIswjoaE`lYm^dg2g(hgq5N$=E)bl-VD^PQWu6r$<* z(rKQ$y<)>5fKoq8m>Z9!uaLL=Al_PtI%jf>0Ck?Pl}ct85_Yq8^oA^`7Z$2#<465` z6?Va6yg7Y!fF6|wxH%IVxGQ2OeB^LN;A5Se{hl@5H|%v6H?3~Hi$u62rU=CNrn-$U ztGjp_`qo_%EAa1#yI3O0a7jdPp<<*v4e3DEeaI$wt` zg~l0t#g9VsWWJWDGWa@zDF+kGT6@!JzHmYRuQsA^xKOa57*{<| zqo0#!^ff)i@Ok+$92CS%O@`c*XO3wwe1x&I#o*Rch3lL1z;QzlaeYf(T!-H{Qe6$P zTw~_ld8Wuw4N0DQSNPNrBaVH;(dL>S$W}!{d%)yP=4T`%y@E^Al>Gf+5XaTY{Ryux zo=J2sghQDVH+!$6rdhK7u`w6`x52P_dTXho2QN=HstmRNqF2TQ!gQK>T)@6*9zp{K!I& zcQuF;^$+l)^emAv=3~yYP3aO3QU~gSE9S#}B>dlGQqsBW*U9Y!$q|2rccw#>A#KOF2X9MY&7ma?!d(mv;qD%g92w%KLutWGD z{xsdU48j4p-M2k|v|4O7XB}=ne9Zt{F9D=qE&v~SE$pBD-09U>P|5|DH=j2R`5t3I zfndY4zt>SW!P`R=%229?Lt=!e1CQnbJf=&Vp1Zq7`OG}mpe*B}vi#fn{f zij9e;Nc}Z}HP)zL4Vq(?NDWRgC1`hAOFvbZ#)$QiDKETX8aSSBAqp1&57W3#j?{j1 zKY9xVmkdqKtR1V5Hd_t4Xc9dAm5D}i5{fSk>Hhv-tT~Wi!L>3f`&J6sH`|`y zD2-RfX2U-O^tj91DEMq8CA=CwO5p*0hJ?i@hiAiEVbbNp!rS0K1P>kxct{u%Yvf$p z$_bh1`doMUpinnP>$R~8H*)IeVCgZKPCN?7vWa@5G76%3n^TM>l_=U z(fTCZ@Q7C(gG$<09I5Xv1*=!BS~a)^{t23NWcwWa`%)gqh(NaN2}9g&sX zgx7gFk)lc0r&`Pw-lqwa_B=$N*kIl|59V#m}Shc0zGSE zDH(T`fajz9rVHT)#UR$C;2RrDAH))u-@$$m< zXYROt=knl;b-|jT7TgGT!Ut1@TbBpyC;bf%_72S44i9gv)+hRI9B&jyZ(|PwczVZe z@E-nq;Y$KDOd~lp_JF&Qo9AH%GLwB!5a68 zp@3Emyl7V7TI(6n7%>hz2dBX;YCkxP^{I*Jms{iy-=lN%B00K1`kb2f@vE(m4QQA9KC7dwqOg$eyDQ1p*T6xsEmQUXKTI?F4W-yb%Xo&4aMUNnb5ERdIaQumNBJr zw!CovPg>0Gi2#b?vTtQUufAU#FVU=)MR*SMCKbUp(6LxP4GyNK-!vPp!dIFeI0q>u zH683tC=yaFbi_y|d-wVvh!>O4lY;YE#oKb}$XLmh02iF$}XQwt_0;HMQ{UR7DE_ zKScFS7WY;rVee)UI&eQ4EZ8%H)kDF?@qpQ|1wgP1Rcauq&?rAL6Oh{0-wZ|@^(H89 zBgDcMflnh_=vU`Gb92Z8_soaB*|R3DO@Z;`mKQKw>t9g zdpttt=>$}KQ{Cm3H3V}x^sPte91dK^LNL)9gF5&m`d3ByCa#ULpI{4HOB8~_hN1J>0zc7CMuKP4`tmtn;tF~wRsKXBP zOT)txh>z_s5PBiC^94c+gFjxXw7xMh4TcFi<~OnAAK1wtRulq1;UTwxL2~Zc#@g66 z@VoI-P54e-Cp0|>U;$GP)P(=aB4NBt#$yW)iT)^?i-X$u#^Q)ondhRQv%5V;CoTL{HYI@mi47TAh4w2OG`fFnk> zy5z#WA)^7fi3-99u1MvJkRQ_RE>0k#0S0RR?Qb3U-f-W{$-kT!K5?$_ImdTZpvq+f z!L|V~`A^2*Uw&dNF9==F(?TuMB^%5&Z?bjD6zM+M$&-T2hU@;AD82Xz!SD!cmE$s% z@_vRyt;{F?^nH@c68_mUpm_LL)34SR~T9+Tv3p$5%E-V%Y ztnx8HOTQJo*XD=!>Mp>$cji_Xyy7v!i@z1TllkGTNn9i=hn z_13qSC5zUWd}alI#G5}4=F??wKDqIkL;p2M7Uj@q$RpqI0>oq7z3`f8eTJtpqqBEv zm?V*-!XjN{fA?(gUos_4f9G%iG^l7isYp^ z6v-$AJ}r_h&@fTYI@1sa(J{1&Ga_Quhz(roMvh?mxYvpkzr>lz&50@1s?W<#+W&Zv zXwOknxN6U^6mrsi3FTG@q;|)QshMamKr}@zpZT7|XJ%dMJMd`+UFzG^+|;GyEi)#} z@^N&>|6P7~f0GAZQ+(;-(%SJAV}}2NFz%ln|Fncf9<$vm;3M1pXJ9hD+wPxniLu=? z%+c2Kx17+4@q4@!NmGX5ue^Ma%30Gt7+L~RVwF)DR+75Cl3c3+O5F(L-3)OLJ-B5P z(PxO`1nAS-;w6`5LB8uh<{T76Wx0zkz^$7MsVaX z5Ifpj=qg~6nk|&rvAd4ni6`tG7~?T zfH9Ma{r#cGV_R~6!sCJ4MoN#zv#Duv1j+(t43Oa`@^7`y7hY;IZ9KE!0^s@O^YNpk z9ZrQjodi|}^uwuS2k^30ApDTW+ZMtsDdneTf|#e2pJ;sq%KZs+TYw8Dg&q4dKfy7J zd?^g%JD4CAc@{ZhvC9O{kVSrpg^^T*UymQ9Cw#^%@*Sx`>OgS0vdG>0^0h=CFJ3_3 zUK(DL+)j`j@t29@UWOyDCZs+?jtcxAKqB;FVde0D&6BmoVMo%{kxou~gD0IF-!sEm z8)nE1XY?!HaK=qXojG9Fb1PZkzd|5tBNO%J!QFapMk|>tfqvNL)@%{i^NU#yp5|Qr z>_K22lJiXGNhZKt1*$Z#3_Qd(gZM#D$3KV(lO=)(KqS>mh zyoJxyX+hE)MxEF4=h*JNBSoffdC8>PAz||5ws|uVf@c1Ya^~iuvOW`T8-Xa;eH_%p zII%RB0{j97W&6)B@fSI6=vVyy6Ec_$=5d6j2{=VcFTg457bvbHI9W7ed`S}w3}ryh zxl8~_zg$3ev82gGyqNU$S8h#P)C5A~z$e)l-cyANBJH!hJEYcjNR1Tr8f7nT@_f}@ zVWKtMY>f@Wp`lUP%Zr?p_Tv3N!@D34s#=0s+%7(?zKBx;>f++D_r7?&= zuZ&h&GvIFB1KHK}JrJ!07aFWy1zEQB5y;Q2jL)p2Tfz5b?Ua*%4>Ipv%dC&gW#-+x za6DaD+Wca5-l9LJ8LMBtqT$U#dzfiYno` z*dM89#!ie`CL3V+!h#pz>W>sWmnOiIs+x)u9wQ{HxgQp<%TIYs6b|0ZsMB$T(M({_ zda96kgBOY3h_LJ7Q_v8MY9w>ki4ozK8l~bN#aD}jjgq!_%O3wgS&O%@!OfjgR|SN~ z;X!X(8Agmyy|eSkc^6@ivO5x(j=oTcf2AKEzM?E`HkmZ!eY1ZQA9>j*8hM|VVjC1Q zPt{f-<2`;bvoZ$*y(8vWVs7UyvLCKB5%V^lsrh}%KR+L_|2jRfzv3UoM{G8VM(jgZ zuM%^@pK2Z?_?Pg!TB_Q$ionm4 zrm146nwOz;&4t@O4zi;W*>HAoB4|bst<*}z zMzBXviRFN^T4zwO3Qi`=`x>PQEXN?~XBAbYvs%42cq^RTMK@cZuO=kz=`_Y1KB!{_ zJygb~i`C{(-=!6J0JlIu>@^j!#=;f@L1hSPKQK7pFG%?d&|Xl340mce17+1}n5eGi zFx|vhY=i-L3lsREwP7ywX{{kqnMac6Vf5 zcH!;#1uIOY*wrj>l2A73?kr=9vPohrumf@k`t()Op4wJte9WuHY!7Y(Bh^%}Be*@- zdCNdBUTFZw@RvKO_6}z)%u9s=3RpX?Pkej})iB|I?SQ|UQ0|B_1%Sx|sG|slfM|OL zIk!-ZtSN!_SyMEN@Ej+GF<=xr$`J#%uY!4;4drJ!7&G%Vnhj|9>K>Z#xk2o)Y->)ci@(RQle`T&u2xRuHc zmWpb@b_a3_Q<3`crE6ox&}SBg2SVw9fK~DEoGW}MK1;Nb=Zh2TXoFZL51)Kvqg=nS zS{iQ^8pGSc;V``8#s+Gy%N1*S+enT(62R*r#~o)(LgTpISWXn_eakJ)%0vy~FF|P< z1%Hc3JMX{cmSAfOYKPWZ{msD@trgMKHL<5{8@yzA=ir)K9I0c-VOVaigvA<4V?34< zw>B}pCd^K^NENczacfkJAkJd_OeK z5cvKXXr2?paRs~nInNx^VAv|nB^I2#XphQxsRj3wJaGIFKJrC8>)f0b*FVdP>)3)_ zhix?FK>R913ngE$9Mx9AE_`Z;6h{_=qs@7F1*)Qx-D}dWw={fy0+H}YhRHd%Q@i-& zob4|KE1>O04GQ8un+E6@qb+S4Neswgdki<-@ottSezgp$B^7JT5CRn@OS?-@J(7%m zBURXtYEZGbjK%tmaG<_uI1pI@#i;g4X<5LE8pDw)?koj$u>&ZwFNX#TBity9IKbO# z0VcTBp;fF9qzr3heWYlm0LuA;y~hFy&Rfig-7Ht8pb|e+&4d(E+Hj{qGls1f3i{LS zK~1h7n{~>fu57;Oqc0Rct;w_~_(nSfA2~K!d~B==?-pj=1pfDg@9daL)%ox4tjzH{L@ zR=}T?XNr=)jqLFVdpiWYqs=x|D7lNPUJ=nAGFj$*En%gkmU$nMQFB3Iq+YLTB9Fq( znAC&v#$dMx_Y7_%V9jSHefDW=7!6cc5T*R#>M*#6gT+&59ZIi!nQ4Se z+K&~s-;@WEH}nwOZ^?`8SjqVpd8R1&+>o3RHg`x)N1NFvq~uUcV1t}2dABEUKx)Z* zeu_Ht5HyF$XzZp%_ybdOoa&+(a*KXX(Yxkedn^+>aIyE#G+*d(J{7&ty2CeyKPfPEm;g-D|#7I8^p{efd&~Uhib3=!Hj76krHD zD{pYEyX<9RO;Cti#8630-_%kvRfYNIq)vC^>rtK1%Ozf2X_MXzyAANE z?~r7rpFNA3cUmWOI6u5MPz9oiABf8(5n^~y%>plga>dPHl;K4U1f$`iX&hT zdRBCPYgRgkZ^18EWV}LzBf_cB#So_tWr0$Zk^2CC)Xzmx7ebt_?s}nAmw6(gPU;sk zVS?-DpM#GazEpf{DCge8bLya_f3v#viVhJ2@fd*^-&8kIWDQ#SF7&ONC|-eoQ=L>j zXh|Z;IMYUOM6aXX=b)Qde7@`vK)1iy;CuzNyaI;r{?#GDM4=1$`&8wnUY| z+7V1SSliJibD31Tk7Oo3E&*dE6Z`wagZrb&i$WaSanne7aDN{)P2S~XSyXOrmVc{V zcy}hg;vu|E{3vOEQ)N=|LKrNQ3c9ha96}sXX&j>N;eKp+Jzb;HcK%`!T~4ps;U_~oz=&)F(YL)E#x>!4B`rJs+&0dlxl8D-Vt zoVOL7>cy@&H72xDGW6I@rov<{sFb$JBV{M;?;m8g$yhqNt}2PbXy@&p4n`927Kz<1chCXSIt^R%}ulA0u7nP1M+6h`&Pt`>4@lVuO$mj0#6nm3@6d%RdC>q5QDmuN} zKU7xAvEegPF1a~(45-~9JRRZQZ;pXN+C4hPKcFTO@elOD#Cqx<_%aNDsy?p<%@9fU z=*65D68!_`^9wtI^}C9Ync3eAHr6nfij_5z3K~}an6B0_y9DkS10gS+2W!m^F!4Bb z7iuy73x`+e!=}dJ@+~}>bP6KrHzi4xi(&g>h#|kM(t@-dQMrh86Ok^TGI{4s|Bw_UlRl;lq|ZkRNP$}ge=@a%n}-fGRDn8Fc4J0Ziy9>AXUEDoSB?z z)uFI4q#(@%rRPmopaF)OwCa89H*N?pZkcYD#Y`k#kx5mIVC7?)tZ)QGI2@9M`dbsxLBPk7h!&I zx2@pH-{Zx`i&|^p&2@<5n6{vX2G z&-arqcz4!>6wXgqfk8l8X)i4+h$}6%)N%rrREB+5kX87togO_#-| zhT-33&W^U}PfKjYul7jsdJr0_(du{{K^%`WY=`-=$FP~bWcdqb@0cx==a&y7UQ$Nf z=LjKRz`RXj)+>1eCvN1y4FxbH46a^25ERaWA8X*p(9qCLdZH-r!NtAms3uI+ys?Jn zvV}tLq=c_#jLpl=B*Di9$-EB8c{pXE>9ao+P42L|@`J@aGq)00@lADB4ljkq89X!3 zhvvzwED>X{as)39R(7;GKZz9{zv~@tR#14fyG`cpVgeFV^Y#P$;7xMaSv7>`S8Xcp ztxQf&QvP*NElvyt+sdG@OcrOb(xOl`CX2gDL30|D0Wjr?XIMdc0xT5Bp&lQHf>xl+ z!1ttdK;@*JP{0wgt;?Vpk-E`@>Wl&W1BuZA-sj+6GRfwG4*`aBHjigG)bF|Me?OrW zgq)dtg^%^Va?Ad|wL0hM~nuBp8r+&xgWK#mtZ8nIlKM zR}?K2C2fQ_QV-PVKhHDzPkV^rU*^YfT=sL{RVF*evj(y@=b|(i?vtq+(sHFgQdmAY z4+JN`M?M2+CwzP=^qq^3V^cKF$}>fdWJ^iHr-t}&>@1EpGy6~EDoWdMC2vjdO;}8+ zw`SeQ2O8%E3?2E0rcwrR#<6QzZ=KhF}b-eiZN8JGq zNTwNSG`r90%nulsZm%Q2;+u9NTiytLC(9Oz8bhg!V8+2!jy8)8;wqxqO_Le$js(P* ztI^*dM)e$-yt;*7AB_bm{rbP5rt##%ee6z_jw9?N!j9<$S={s{jJ48s;qdFzQN!cc z$M?*y{~yQ@bRQl4>akz{dh|Ru%hTiI)e_urrb=~o?9#t7uS?$rO*g#xo43eIt|&vr zHI9}xG{8)fP<@q5t;4nHYIS%F&Z{0j{t0o|6oN9ofm()hx0v$IWZabA``-Z*+{I}SZG$<BFB3lcm|1Fw4gPG5uEDwkAKkL!HArpUnOah_x4pW!6kV{ha(zU)DL)OWh)Y zvyl;caFpGY8o`vJFVyTt^3U#Onw@#~PRs>yQ~ptWu5C6-de`=y{-LtEw%PFUd$V() zBsb@-Z6!LxqY>`?=GuN*iVZ8qtF7h`@oN7Xc7~pMwf_WJP+1P<+s>y z890kYt^dK1BDsUXBn!nR!QqUz=R)a8tgDG`UeOMG&|tmgl;ri=K^S(WFGbCdXQgKN z2!6p_q-wGb7il*$;J%s#O5r2@d;F-M3#KmkNS_cHa6iq232sRFA$;WUq~hcB)`HX- zaPzJHkmWv>^_p2_?!fc30qkr6JN|! zqC#zYa-`ItfPw2sNy1EYV*@6&X}Tu1Tj?-$dOZ_PTrUOibry^#J?eg(onK6Ij<7R6 z*8B2XbPr<_6$dBrr`qn{WOe5UjoWnJK%m7p?Sz5f0(~blutbi*z!BUy7}(KfRc01Y z__Mo9=H(Y8AkXAwe}8EAeLPvf3%f5WKq>9MU!bPRQEe$)J&$K%F`l~jZTu)nS5pf0 zkyEg+(H+GPJ=~mNWNkuyFKo3!UiUK(|J2M+zsdwC&)fWk^${%C#gw-xAW^(xH}%sN zH}9W8=RPF}#RX5#M1*yjwi(hhpL&fcmEvUsg3M`rGJcev#=3XP3P%8>N4!;Mr3R@3 zaV3ULmRKtRoCH#mzBZ8DPLLe&mx<(Fh7)caafZv}#u3&DNlu3whcp?F8wcMrH_kXr zjJa{>SCSjYKP{d>DlR()2-y|L4hZRPn)y^ZaJHnMOTq_^I^+<#PK5#3lmOB%7l4nv z79wA}lRvut8hIV=hK)gil{SRfTd$Kyg`RKNxO}#KZtBKh2ojg?ZrB+09nrkt(r7ui z#Da56^$rW7$fC&QeBf~HBDpm;T==wBX>V(7&`-1Mzi1%15bn1cMfcipbE-I6S{ukF zLH|V;L1-~vn2rK~(M^flHV{eIl)`uGL(P#vQt(TCG;4ii3bODa=%T1|28y#kg@+)l zaXjC06qePuvgR+9BelPP0t2P`uhwa(}83Zgz7FMkIQ;qjc z|9HNAqz2a+C(g;Nq}a6Yub<1`v0?LsBcDl|uH( zS&z<#|kz;Bg?a{qmhxj0&C;FV~Q(n#e-iUYy++jmg=?YHkFhtg<$64P47 zh5~d-VR8T)18%j()W`Zb-91g$k%DZ(RLByf0Muvji;e7N(s9hfRJ9zZu*3-@4Jd)p zgln?<@S1FvXrQ?vTj1m>!1Z#NnJ~t0fWaAx@gQRd|HJ^IKFE!%!yiq&mu(zZzFRl| zgv*MfqopaR9kPrkLlmc`8uj96xsTl~$M2olPU)aK*yS@d$meXpm8)<=Yq2&4cc8s=%0VB@JYM&J6TT%Vv1L*yMB-X39Pr3O3anr8-=Whah9dC?7M}Q*Z2I(hBk^ z`T*Y}m72QRbs5A(jY6bDX&H^X3@@=`5^Wi+2A;Co6j&XtSEnay%|1ZE&SxrO!%8Ad zje;|Az>$9{psm#>E3nQKZTfVIN^N?f;6hCsIM3qv(73etI48dfW$uXW!Ht;N8te#e z4|ZyuKFjLVDf)Nu*g4aLbig6mYxM6MtC%ykcSCZCtn{;gMP# z_z*XXeY-r=mSZo5c+HdV??T`&fTN<=26WlqPT1{uEPX;N1>p5r78WWX0>EPo03D9} zWUH{A*v#S9A1NSrWdTyy4a@jZKUc)#{P@Z?e4#KopnW*zwgub)<*gALU}u3e*lnPN zJH0*TSqcs^>VcZsU72RaeLlCtM<~~#2@d#1H)cSaRhj3aptHM6;$FDzfk5+1XKso{ z`uGeXcvKL#J*4QBhnI^rBMncT-S%(;h8q__<(z?Nn{3hBYVX{z(Xf`OJ0G^BK1mrJ zP;9jmsHh=M;bXtn7&DO39s7|F3uK8&G&w?H7NH;miQ*{@{-0^kmbQV?T$!Y3XJM8! zj6EmD_8`<7PYbo^K54CCb1|h1PXD;<16KJM zprzjm-ov+G-vTH0PdSL1;Kq$aQ3XSYQFB9^dt?055Y5--f>^1(ANa zT*IWf^@og1;D+w7yzq9^PLy$cm|N2llMoHfO<%!Ejos9N8XJYkr^B+PALh{PqT?8e zh-m&FZb4Nwr)Ia*jXR;%#l2RHI_qWBlserjWhd=_Ke$}MqRRg;J)PItqkdaF3ixzZov((tly>jR;WnMPMi`JFt3ERxNOsL?N-wWU)vizFKEBILF zZ-2CZ>Wr*wtZu!_Mx?D=MIgpE)x&7BW@K%HzV#T|Mff+}NycMK%J+a`FOg(K{YP-* zFrPcxT-Xs?C=q0L9lr-L5wtWsHvy5@4$EJjMeRKNzAsaRl?guxhOAJM$2GEfZ&PB2$&}JluHz- z!75ZXK^B&@=rD}d5dP$~!74j=4EKP()$FNg#*ZFGWiw67<$g`=iINFl1LWuo9?w|X zV)-&*6jW(*3&6*EU;f3CdJFiW)vX^yzD&MPAjUWCWSRUJ`c7UZ5=q7~iQvewOdM_Q z+|LZA7{&%JdHsDcffVNY^Y@2oWUG?<6L}}7wx#s%o)U~=)$!TA+J~G$7H#rT* z^Q~-QALYqupOqsWdq%*++zun&iyCW6q+=kSk{^d-Jy2}Hq;<)CW$WDqONET-gvk%P#Rj8BF^ z*`9R@{vuB@{fghSILw`UlCNr_CmF1zxCX{R;<`^ca|3`n>(ov8Lp!~JW$ z6i!Ljm!i;>61grB?hQb@0zUOg1F?(p(7sDjHs=9dit6D8gmM2lB~OZ9Eipk{3U-E6 zZ95x)x%6~93mb@MwRth*kq93`Jf_J%ecHwvWSYW_f472(5&S`;<eIMw?hZa%zU#!qG%d*71Vj$J{p1C$7G12Ah{NM<-k~iJ7*LcUgoxqMEyeKBn8) zVFAF)O0$Vsq!&BbP5f{~BgePczl~>V ztv+mZ>|LwEG5S#gGQO#94a({meFXZ}t>U-h-x0^CM3Z3^k6_7R6?e4xyMv2k6>;sk zsyzyo^XOqkN@})GOX!HH;%}I%LWsgM0PTF^Js}PN&EQqQ=33n- zQ(P9xZ{;!8Q!|4wC$sz(F0=b!Z17(^9lG&p;98`dE_TB;@LhWWluf}<;Mw+E9K+?q zhXOUV*_VZX38QT$IlH<1!FK%okY@Lk`-xVs1@Hm_54OM)Vo|T;5jNIQqBzsBbjmBC z`%~o?G~(+zjvZgk_=B-W(^*^0WGS#npAkpxA)~YCsa-*z_S9Z6dMr#dic{r*fc`@< z-B8VfV!5`i+YE(727+>B3@YeA4h9r*fLbz5{+N{c;jNp7u{uMwIJItD1JnNCkCA$_ z(wbSfN}T)+vu{_ck&Q~y@yVyDMz+iP$XqmDgD;Nf+mFOil^cAAYle z{nXqvNA)RDn z=otSfzJh*i6z$%kdAR3_xv)PJqXhnevff(629H;eQmobEoXUZVLPyyx#U!II)Pyha zPuN$w@SODYyWBsDkA7^FwDh~yKTuZsvB5i|pHqu-($8)w=@)sS=vVVk*hjxGJ^gO? zkK&^r8%3udYO!K!^XLyXotOIu%1S>rct`X*TvNAQR9ht9i#cge)WqKApO}wMZ%I$5 z5BNv%(TRi9F&TA}fX1uo)?o+?>0nocdzk`lqKm>Yth_zAAV6O4y6F zGd)@Yc)3#rl5Kbjcfv<0JWlb)dZW52f`H@l&00X0!;<`b77*^);ubrs@qS zQ3>THtIawjqm5Rl$+g3@54b^>8!;r0Jc%)&*1#bi5J zP@4ccLM(4^!?`yN6N^dPRM47k)nScS>8hz>t*=rWgi;AW^h&MOfC}MIMOW+)c)`Ib zzV0=};uLFQ;eGnSa2^68G^{!2YTrHG`c9od+w&@8YtB<158<&0-vvF>%kyW$cVj_t zsz-h={#qI$9N~N5_jBiv3-_FS(^nL;Cl;^0pjjR(TJoiTgh4U0%5&c}rSTFJe;h5z zy7c-ZHTp%d=y6!!mC1;PT7nAz5+J_WBwsS2rbl~%dW7Ec4g z`mxuXl6Sv?S(b#`C5)tYLq zUAYoMokyWQ5HxBI)u4~cRC8!_bS15UmDqY^x!5ePJpb(T&ncG9I{&=l1?R6GJMa9n z#?L?R+_OvPtU7=7Ijcvc*qphKGYqHwM&kGARytRRMx%n}{9w2NfW$AY6Hew(*tLL-j`dkcI-s)U&#jgNJbsJMpmVYo$vkLddbt21RIO#mA6 zRxOziTZ8%O&-14Lf&h>VhJq7XOWDmL0cof`Fs0;*ypsB#sghN9^H&Kx}xMC4q zJ!o(*DUYAaFcNP4fI7?Qp_TV%A{@7f+)KO(Mp)A#f{zW#`A+5SCFZ1svS2?}GOP)>H8aY86R7b` zJ7M1Ak`$s3CE?f#QF|I7qzrsn)*L{KoHIe;F z0xG^~Ck*^r=sTH#C0Yyyj$p;Xz>YRcEFvrH*o~99aZdtjQgh?oc4mcBEMH*<&Otm1 z3qy%0-xvi4caqmyr3T&}&m5MOCS0;z1NMLjDp-;br&$cDaIrT8+(CE>7UocKRiRPd zIhx?XnLqkM;q$YZxQ#D?PZLTbO8_6IUjnv<&VjWbD^R~}bsx{|+QRr2fg0bmlZEjZ z^qssgB(jW!5y6#XVK~~1r(`db@}01k!nzGa@`C$B0?Jb_xXbK}m!L3GuUBaoxSkhG zhhR}^B`c_J4S1e3ixdksIk$+T?5>3{j=oT+SbDR`-|<|949M5YG4PQ?3&O|g*UCJc zw*Zm-p};!R>dFrm*LVs9R(#V=*2N(7oxCn2VvKbW!HZ*EINF?`iZGSNi__H>RQg}eY&fOer7EgC@)IXdYZ*semTFJboJTUT z3+LjSY1$EqkB`%H@m!dvU}E~MfZAhq6wjENY;O@z@l8A7;Th;VnTHu#j4+XS`|&+_ z=ExE6HGwS@tRs-C9w-dIHP7g8>LG^zI6sDif|#jkIs9;*Ii|sIpIVY)Wc`uC^55ox z;L|SG z-ydE_@w#NAz9?Fc!IcRSsG{=L3sdxZCkqJ|VWpz-R)?3gu4mfP_8nV?F|Vg-7S}bi zAI&;C>NeJMW$MU~?}H(0sAwUc$lMak=bpBKQVA|)b*1bP3Zi_DQP252#W$Hd)P#6iFT)O{pAK*aN=)m$asyR~ z6*o^oISlXs!li7$??cDGZtw#N9Z zgg`UbmLqZUz+XK?&7z`aw9agbD=<@BO*E4QwIU~AH-6O5S7lsIfGRON4=bIK<`fzi z5iMM?0^g{ch*(2K_dm)69KVX__E7rtm8Tx$GcA)I;24ZBHAlhZdcTrBi~ zEK?K2dLMq2o>=FNLVj=!Y>((!Z{oRAY?bTL!(cp@s)Q_Q2> zo|j3vRbzESyX93nwc`=puymOBe7<4`4mtp3pg2%IOu zDS)>E@2Nms=4DVKr6lbBh7!GG#R@fyQl&+01=!NGu-ICrS#yOtv_1l*?sB@@vkMba z%x;h3RXs>sngF;Gv?`%3A>mSLOIxXFSJn2{S_t&6W5H{$#*fnTn&u;n>fpA|@J~|% z)QLjPM%A_BXT!Kr?f4z=G=Yvp@3$ql6ZA&pWumv2+k|#3#FCK5{*SnJEVe62ONVy+ zVF1^s9pihZ9sdjdBJG%d^;$a~ue652`P{;SCR4-p@m^}j_E_D}j>k+r#~z|ENp;x< zxSe_!GN_?23{H5MU&X#|^{Q3;$w;+63bnIp6Rq+(C>#S-1jeXFyVHPtls%Nxup=*& z2>cZgS9ge*aw4S(`4_U215Lw@V20_#MrrR$x@zSbqaspZHUe zZAsBbHgEakKKRrp`h-QC*YQ4#nwx+h&M-o}%WP~$4f4oqn1b<4&Et&x^H|pTJdU!L z9jB5po5gw~v82q0YCad`pU+x`=rm=iuk?@NE4Ru<(aNpP1!*H@MZeW#cKV0OT5^>Q z9lwF4V7z097KT)Gk&Mw*YbGWbeW7OC^v~8;DYu@UbT9Ca;v*d!MI+su)nZ=oOHJe+ z{}5Tp#)j>PY>VW^<)YR+d@E+c{!o*7r++d&s=PftRsPaHijOL66pbq0I`5zK50sTQ zZ19Y1#ZMt^b=4}x@s!=A@Y{;hBEY!9pPtO7fLi0 ztphtx6GBPrO(?I+HdL&YiV}`g-+-%w!C0fX2O_%BF?tEy%y$`HHY_bd9rmIY+ONEv z>GF3TV1}Ov7eSHRIS@MYOFnVEpke#B7Yj1*0?Nhdb*td^$dXQt8=y?sFkJIUiLC>{ zwwtI3CDfFK@cD^}(wKIeq#j@oCO$<+`2v)wMiDQl1gAJe_pRQ4EMF6Y`MTmhgtl;PX z1Ux`Z&{6XoOtBKs2t-6FfV}CkKHvhVzJ=^EUV(eOMtNojTtLd17OQ@#`YCx4jWvc9qI+A>u#g2vVOe_ye$>ym(Kst^hKhz4^9@7hsBJLz zk>X?>((8c{Dr1t%`059~8?6?boCB<6OmWcU(cI!sMWGFuCeK5;p9LQ|5)$ySZhG(* zuxWep*S1?7nKle-eTrIR*Ah_iO*^nchC88e-3Iv!*kYnKNQo9B9U+1hM}(@Q&6*qx zpvY=>7_TCN(nE&P3lq?X?XZf(1=P+{MPjvPOMpZKkb0DXu)Z-djW+^daq}jYkq2SN zS_+SZk%?xQ7dZDC&(vIB2@vUQ7taEy;BgjivuW6cBk-}_m!E~_;q2r=hyGAt{fX6; zA1t0z^Tz~Md{do?!%1kIp{C=5&^(!mC1MOFj^M??#Ev#6`>3u^Wq+B>tuIT!Q)+Hq zi>i|_)KVG^aqH&k$q^`854)_bTG8bKsKGng)-)q=zBM1JX@3hQp)*@N*)_)f2F)A{ zaAw{DKGys4Gp;9%=0B~D{6KNG{RsgT-?S69{RQ-$%(fCO2HQrk;$T}xo2REDzapgF zMKb^XLjuB5^Y1mpznWz%J{4>=O9i_aT@V5DLD0<$^zoqNb0=R%?QER4qc0R%3Zo`Z z#`A~9-%p2+9J&QQ?h1devpVtv#rbMG4`JOxww0nrHUdYR)02gzqKN%{@-A?C0y$Fe0?$E7+m@ZXB< zpq4~%4P38MpWNDlvJf&`c(_rU5RPa=8TT6Wzha>_UP@|G{);s8h!%s74KjJ9kw=U9 zzSWT*C@$syoq&pO+KH6^59m8t$}_Z>GB>ui^C4p}e1do}rMEa~>X@PVTaIfM)!ER^l_$cGflM!)t& zC|j%EDprS?8NSz{Z2DN;2xWV3G?YyrqA&*T$Z>Q>4v6~`>kYV{Q(ose3^%K->*t}u z{R8SMHpEC1?_q-*{V1SqAi%zcA>^;t#M)K-;bgJ7i;A)Fzbg~9dZRRq-i}sfyiy#g zR3X@S9Yrb&Rm4cDrkFS#W+6PIFVtFnzgM=TjEQ@X?BqaaiR4ce{ zk%W-mn(=kkOHeGeCyEh1BWcJY3QU#B8)f$i_|&JmSiw$@P;)cNZjoFft{IpwaR%y% zn!&g8&)}P#&)|eOQNRgi#Mvz|8&eaQmi<`G?N|Bd_6vsYG_iK`OQv>U@qjNhh>fC! z1}&1ZP|Qwyq9%5%f5@ysLJW*}1tA41o&-MTu?l*QBa+)i%Hy2P#hhc_s`(H2=kJU8 zD!``@d6R~)YyG462+Ky%291Ee-t0(*eGc!cZYwVtdwJecSN}*rbgr<+9KIR&`W!wNcB4Z+ww&&*fwn!Xf`n z9`?aI1%{-cK7w`2DK=+Y1n zOtv0^ILhf#vu~zSs#3LvVo;l&oWfXbjM#>tA9jy)p+15E)I8LB+km?GBG|kfL&GUQ z9*$`A&Ctgj6*=VGtfdaTX5%#_C)b_D-)4; z%-a-vv9$Ls!xt*OVq8N1_Q<5HRGU zR~+t1pcj1&`G)oGUaJxou@IalyT67x>FX<=w{f@NYxQA<2s_LVAM1Vj*XmPT7!t6$ zUn(Mh%^J!NHebD8A+Y0{>Z><=Gc?W+zxoYmp1gV`;*8ZB!JA|CI@)aQ1t%#K+ao5g zqmL%wH}yLDzG;EPz zx0c3+g>Q%&%EtkIGSG)xAvPbaS0Rz1)MyUN7V^UZ`ck$Slr5-_p+0~HSE&vq!oq^e z@niTygU`8eZ4)%#Y3;{~P)AId%PyY5wI#d=K5}fg_&EI%_GC#cvpVtv#TV#l1XO&} zP8R6Xq3`4c%FtrQxXeS=6M~8Tp^(2e&pbKuy>Tw~Ju!j}OzzSGLY|ukk}Gp z4z3qNBu4nqArc*JJ_`%*@w@Kj>-_P%?sJO-Xd+jxSlgnpd|`?O_(U%Is9=DPyDl0O zkJ%GVmc)l8kTta={;+n!RZeubcH_L_Lq+#p%kyf$bfUZFO?wHYjnzPP0pp5Nb4aja zPYlU)eqnl5k>wsrT}McMr(}(B1@V;?^H!1Jg_#x@SC#H0N&tJC84>t6y_|JxLmY1R zO9l4pt)b$@D{c>563-IY@l89C#P>np$M&XmNl(T0DPXO5gSUMZX^+VJCfMt``6 z7=AQAhT~$&zmaE-X)t_*ym|x|xY%Z`r;3|@kOz+M_7K-U%!}*T$nrU5Q#Qn}LT$lv zR9o99J~hOQV;gm}sqJG~t;lNwlf2d4mO$IoTitiicBEp$)E)=v@o+QYD4xZ^M#fI^ zDfc=VVMg{nNVKnjDhauz=stkXh64Qv*C&ht#(+Z*245R1HpaG&7ORl;hn9e51+51` zlfS9lN>)I+53i4VCZ>uQDF-(%HmTe~6GGoatpzI!+xD*uMbkuwrf3dk;!nO0E{BgC z=M8*pFsN4=pCU{K28K9Egy`@$Qml5dHFT>?^SyCN1J=azW9Wb>xvOd^E}mWot`Xk%gfGlLz$?ZM9F)I^lDYL@HMRk&&xD&D|Aunh)aCQ!#oeAowuxmvwN zR>Ps-(!EpFBG}r&AP9p^11J@^zZjhM*c1UpTcPPRa~?RgP$<5BwI_;X->|qbetSWM zk8h}7C8|XZmiXAFo*AaY z>Rt`2@LP@ftUP00*h8$Y&x_S?6;6d+$Y-GS`aDxiht^v)w8C$N)`>i0j=@L0V%7@u zor_sx(fa&6Q%r-_dAR3^1;YMNh`lGzsO=si_ElX+?1Ooxm=dvyVF9rQ$3B#2)DQI# zu^;I=V!xPYis=vwx|!lw{6lftv zp@__bk9s9%7eU`?<*e<$LyQ<|sN;a;X!FT~;v}GGYELowF!uKe+H>l|*vsAV{Xqe0 zDOKszbyW=`1E;2{6^K6sqofMDz!(JxRG6lBaB!Nzb5R41O_UG|K01seEVlYElmVig z#@Od@fT|6uWLYp!vKVOR(I_szfNMQ*uN7)9%Cubgp=m8Gm&l432h8mz_u* zZ`3k;7#KhorKV6zS8e&{_~)s)S)^czxdiwmjl}*%vWZZ&wI_;Cf0Tb7-)DfO$@>1ae-vN#A{#}^Ui4;t zFWlu@c45}sMK*Z+mY0H5N3r_JN;$&DtwwUIe(>p6d#$` zC>og-NpURsPd!l+Tjw7#E5R5T9TDv4$mZdq*kZkvn4$SlP4YVbBz@GoCO!4W{G<4& z$41ep=UrqC|3F!3#s=?*W<4vdaJPS|KFa-Jddl7BAH_#GHcDE`J?I}OE9KbW9Z{}( zr4>HzpPP?VA4^ZFFZf6Ck&2CymQ>&J50sTuZ19YvN^Z`x@Rgz(eh#<#eU^oPTEekm z)}4m0;I&VP;fDbJuBPG7t-}5b=gc=8j%nc>Ka__5ms~5#nTG$oR4MWhCdV{E@Zyga zr<>rwkEG;J)$!UR@a=;ktW|E*rzgt%BlvoE5xo8*)l$=)sDDMbpb(pA_c~M?@KT^b z{AtX#2=D~{gW$+TnexXV114nf_ork5L8R2}6%7hmXh7NiPscAC5Ktw(dMAc_P6Khm4B4& zKaxOIVfG)UcAjkiA4^M9P~g#yW0eLJ0s%uT=nrP1CVAXc*ddnb75WH-9`gJ(k+ICX z0i6Wy->ajWjv^kZbLUrmrE0SzTEZ2dLgSe#w#qC40P^^nnAHqdTj5=en2`+SN6>o* z$;v|afdm|0BLuo&vxAA$AS%;+ftzMovP0xQ0$E)&AnK;sNG1pW@1C(8ten3U0t-^nvaj(V>XbYVYd zQlS~C2a52&%rp9b!bd(caVHr5uiO}(PitCCmj9(@x_HuL%XkJs7U#T_2G5z(z)#Hs z$w}~0uW)`E^qrQg?J$zaYIp2(jy4}pDQF?7n{hEu{(j;JTg6%S^pZEYKTB9ZX*am- zbLSj#2(#itJijzz4+QKhvl`p#*=))~9TFk>58XM`IV8FiKgp%I?jIn_}2wKtRfFE+dscaJzXs_iL znZnL@$@0O1b~NAkQ2*8NB=75_1sru<^Pihf)Do)%MWM3vc3C7*1co*bF}%FP00cnHoQ0yY}8MQ5yQ|%m$F*< z6D806q8NJM;#Yp0Rvas8+mlb;8#g78I_=)r{-Hj9?IvLgeZvh0gCzOpxz5@#hx#so zt9h}!eS-=*LP|H>O|mw)ZPnTv3Wdr*FxVwLMwDGZncHf;*m7=wrpuRagXTj;r=Mq9m3%Y&36UzY8RFygo1ym-vipUnU8L~~Oj04^~4&nmqIxyu}ScB>ialN4ql^!q~mbVZ|r#!XQ zxim8ubhs$fI^fH5Evk@bm>)348j{P4F}oy9LZZ3DfZ0E=(h$qIb{`c7V<3^gfFkPqdVBS*gX1nJ2S z|C>BxeyWFf{cK*m#-`l%zLZyyKUdwj$G^Ri%Z_ zg=!v}cse1^n8(3Ky;7r3g1&P}fmm)`m1l}+(CSSPe|DZx*Yyyw7k3@8+w)8@C1MrB z+6m(2JfoI+h}f{}h`lS%6w@KrlOX=eJfps%hlqW3*Ae^9JX1`ASdkGfTnap2Txsqf z&NK2~^bolp&466nwuu-q^iaon$kFCtOAxoGn0y+0QGz~Vp2qzBVbK!~^q&}^S|!-Y?4mG*)?yq`_A|Du85LI^<`9d1@8hMQBxQ7958+XVd= zT?9$ZkeXTm8FLu>MAJ@}0c~|b6TVv?Y>q7K55JVCU15D>s?p&?&_&S>KmAjTb6*^vnm<*J)c)%OE7jFO=~m?SUH~KVztm)|^-ji{ID0jG>N_h5miiH6sZG?}g!&ln zT+8?ZcQ+o$8rQ`3;^vQlm)D_PPE zudC3UZO?C%#w%mcHc{ZmBp)e=?TtP>5isA?Z6KM&yOUa6v7ufp1n+a*6!OPOSlV3tUppn{&E&1hdfK>i}+DL-x9lUC+0TBQw95$ z%FP1-{C@~O7@jQdJ#+PPUhfy~z1)i~Pl$WKh;#Nage)}S1w;w5H%{+n!Z!QkOvvEA zk{`fFj%*ZstgDXxSo0<3)CJA#$BJ%;KF{plR5Go_A!3GqN1(Tz~%6fPr=fW8XgagGX(V` zpgEB`AP*;a@r`1f4SD9+2~xM^8Sv@@3#q&E%rOO0+l!>|6Cy!-qKJBXp7CdTh~qn< z?_7)y6;ds zPlnlL`f*IF+<1K%B0NF20}YNM)*GePG+Z^yTL*>y!NH6AF#?eGRZ-sSow{~m9_qLx zH6JPzd^{83_@??X;!RK_&705gu|YYXnCImcIe2!h#ecB6ir*FSD8Q3$zD!`nH|<2$ ze;xWxUNRCfMu1QRFAk1&v^hJ87a+X$@w;Ag5&TDE2t``E%Vh5UNCE;)?)LYG2IzlH zUM<1^jY_M}wuWSW5pX&5`gv-atYt6YWgLWTmVYZ0ozyTnHlBBIe6C*~j~^xJ*LO>! z=f!mP3I+#*XlO9T1>aU!1!2Lfm#+=#gY|&`V}LOv_%`+f{}syes^gUjpuK3t3hH>p z3NgR=^tYx=tjsjKmC!q2_e|>}SmhVN#hb552R#OZ67=i`{yU^WWOwdoAr!a;0LQ1l zAzkiee1UZ7G7BBfSSV=COvzYAnyybVx_J4QF>O=LY^(r3RGe*6+pXE1Jr?B z$sZ8f@E>99>b6N`R>>S$5orQLoI{XeE^5V zTy_HIX}JUBScN2AID2c^xpXog>RVrJ!X?kly+v8Q;#)`S0O~(M1_hJwgd#Rnrg1v>SYeAt>15a;*u3hCm;JuZ}>B*p4glo`My&fpb0*+$wM%EC( znPFDFuyPr;Y^eisomT#>Q1C?nROjq?9>e{auaeKP+1VCse6087UnO&4;zC)a-wLRI zvpVtv#qHOR5m50>^)(W{2O4MaRel$mC$ABP7SjPd4{0l=$^KCD{B53ja^zbkENfI> z`tT7glT7g_Ly~js_Q6NKBTOgQJrep(i(QcPh6IZ6oI?UR+MKsZt))z>OcBrSHCcH4 zO#+9S!o%MmItZqd`xDkaR1SRR45T!75EQ9tR~!V_Wa2dLAh-%YO44JLgJ3;VgTX-% zHo&QQl z8+gT#cHe#mLifNe0F7@^BUfWRhOq(S@^1*aI>-yM#qZN+yT1i?maZvkTudXV*#7@QV_(=vR-OUC+Xl6;b}U znZeD)>U}{@*4Z+Qe#i`?ABuXOn^VUZs{c=w@50>FJnHuj!5DpHVMhBjU{z+Mgpa z=5jN6{WF)rr#?wynf@=P<|fp0fq5J-%f|pQ{Z{afJn+VgG%-Eys!*&Ku16U6 z+1))Sd)8=7>WqRl;-pvsuy@r-@lwP(XvF;99)=q-3=bfh(pdS|h`Vvb0@3Oe)*()@ zQOC>_CK;&^FfT6;+>_^1#cZ=2La|kuGRd+!lG*+MmpVk3S1G#m)?ojxEa(*m`*+|+ z{d|pe!C=3P?}-JUn8L6o9btjtVZ;2Lf^XP`%3&fVnml{F*M%@RvacQ zN1J0^^i?RbzlazAXm&ztz{3gn!FFid{wTHc*tVYvdtrnP@mc(Z8J>Oe=-npM#1jyO zGiSgf;3EeE;^VF`;2Bm&exSGw^=SlDd{dnP!=C__Ggzn#(04KeO0*aZ7{Q8z0Ud3Q z<_xG&RkpT9q}jy{yk&ce8bk~rn@@NLwzE7s9nnRtjBwaWNW(x#!T zqZbH8qlqEZo9LeOdZP*15r&o#V8IQ(Q$S<^P}FG^Jz~WQ*`KnE@~ds2Tg^IpSEk8v z>*(#)N3b8QX4cUxfGZ}n`|~pm%D@?bz;_Zr5yLH_NQo{pjbZ)tTSOnUP!%s#5M<6g zZ^w_)GmqMUEoT!RW^i*>nEqI5a5@ljY|vyW_hF)p7bCRc{Y7#+L2SfaCSrS8O&E}b zek!zb|3^GpS{ybcAsq%J+B`f4Bz(^dNI!*%F#{6)>ahW7Jz7%gQ?1Hmu{sPKl*fd0 zZUz&QHdHr^NaN81sy0HQSZ$RWH7G)~yEF_H1;#2^LZC?zn*+gQrB<1&+*)D5UuI7S-?w5+3FZ0jdN6wd|C+F+^ zqxi_lMoCZ3Kk*Nhm7Hw&jO0vi&W+V-e+ri(-22Q}eX3U%h%r|yXd~w8-+?05Rde;{ zk-3z)nqh~`qH{Qb6NA!E6Xt5Zj|Rmt2s&!v#T)_XE9{I2hk?X)YPEdB%Umu)^Z~DS z5YGQW;#@05b^O*+DY$03Hc<*Tm!=yVw`>j8tXi{L;x+cY!sqw0;xqg%ezE+ybK$hB zfa-BT`){&9DNd{ZjUV;%W!(k)c+IV0k)@Ju_nn@CLT_X`zZUPQq6!iaq>4Iy6|NeF zvJre8R9bZLaJ^BQ)Pe__rRw<5R&PLVoEFE=`f;xnxtH$s>Gam}5ysGC;3J1I6d$KI zh8_V6USUaWj@DBJ=$TgM=HbHzlp9D31ZaFy-FA@GLO%$7>!yRR0(V6%^b%Eufi!|C zhk?}5=8~?kk;17xMEoX+wo)`_9hrboY=bLRgpL$2g!u{MnFD@GMzY?9E2+n6avVV zzyfMG;?SAt$@G_*>9M;f$$%UlAnGV6BZwk`E{K9CUU=aF3hS|+=!yp_>K}Jy)m{It zySmE1>K)%ZzIT4z9Wwm&C(!f0chsw@SM^?1y?PkTP8(&NHOBjg=)2pawWKk=0eGyd zzdV}2Gi|W8YMWsdV)$llya~bYn=k=d6&{Bg-CTwt>9eTX@I75*)n=vS2~$2?X4Je( zPWU3W=xh~=0)hH|K#;sv>^zDpmpLK&C|30-J1my_a(lt%P<-*&ME5RBtml~~&#o>B{<_Ke8 z>IuX4jRK45kiDQ$rzG9}(6?WQWQb8#T@EjXRcEO4Vku!*OFSc}t&iegAb*ZpAnyLq z2|mx?A9r!#aVyZp^+!^*El%)@qBxKFG1p-u-^oxo!OuAx_LY6-p$FV;(7>mO%L&{2Nd>o580m*FY=BDob|1*e?CXLM_XI=R!gi7m>zA{45z+ym`UO_};8H=@1g9=7fd{oF zc0#l=H9Bg+nE_wp#Eh40cGXBKX!e6`GBJJp&?)+t@*Mzw;8MnQ5w(<^qw{D8ZjFqJ zhTyjBY?&IOA;|gF5ew0w5@8yz9dQw3sxQPeOo?6rf;b4s&|4emgZDK+u|kx@VBc_M^Qxu2$7UfBRfwF} zTpbvP5D|fxdZjTw?2M4u+cYdcbDBSj#rr%Uye!C6sT3G1kz}1rJ~+K%CCsSHU)?#Y zom8aiP`yUOS1F!T)Z0Ju7f>twPeH=tGVDjkKO7BBU7}A54mg5TR{@_d@im#43VrS~ zOhG9V^Ej{gJkD-?9y`lRl2J&BQ<=*v@TDaR#2hvipTkCq+>j853HK;2pEw;w@`=v` z3B+eaev8Sx&OJ=5Kb#J2*N6ekwve7r`}~s9M8O3CtvM=!>Izid=0=q(7UGt0y5H*_ z#YJ~IibQu$Xv=5aL&egb4j)N-e{~iMA@onW9O2$(u@Hy(^}i(`LV%nLh&T|Y(AI#6 zUqFX=9%c9UD2j-4{$NIBZ$LzH4&AXeh+8TdtTvnAqRMtD;-?fUj|ET!gl4 z51O3?EI0GM{2-M)YQjcf@@%iM{@`=s`U?-8*DL`QpNhu_npj;&i@o7S{yZb<|$qX zjSLYQSS+7PbkmXQ%bW=_<$9a^7C@b(b>tK={J!K12~hT`vVA5t8slW>TQ*(%2G}$o zjgg^6vG3=wVzBQU>MSq700M)0hjyimJ}fki9_~RO*2CC~1*D!M_F|cIw2;zqo><>F zj*)l`@MtwqQo_Y8T9ezS6~@0xll(Fz;It|@Pg~f7TZWeZC z&b&_R$_*BCQcV)D>{VqZPG1ICU@ z3g*@``S~y@4G!1JkX8kQ=4uc^2fSMuEQ1wiWdesS`rzUDTWX6N5I!_OOhNEtw7&vU z7*sxpW+NYq<0fNbQ6T33Fw92gIy?O(4t|iJ01oD=n-z=YzT6x_=K> zZon81|9}8yui6R^{{;H>^Dsq?s&1^oI)5lKM}~Z7u+Ci0NgTbRKwx;*D^+sY(T1dF z7@h%*Tn3<4FgyqPE{I{<=FS%X2jhA8-){h*U|Bjv572)F5Nq5@(u)~ zUQG~f|6m|n5L>zN{UU5{fXhQ=!VP=)>v3*C)JAcGQ^4@>32xrwW@L9GmP~?MzB5W2 z!Y9b7m>aq(viUB(eRp`n8^6==i8EnhG<<^m+E(Ec%~}&;1uBDsVD;S=;S=(B?FgUv zmf3wG4}-5nz?m2=)wR*SfpW7Jo5zGoDGiGF^sW~R8Ybx zdXn&!!z!kmTaOVS=b}T=!8eqXbMXu z&@YBBf{QN87$7=AWD7KPX#ve?-yqf12oc=1M@Gq^Sp(jQg8c-779?%olNTBKu#ZmRUBB-+OJGqc#;VMEOr*(w!nGRP`w5$0| zOaXE(T;(E|LR-UC4!8nT4xGnWxC%uPiJ4f>DC!MYS#}N!d7yh^41|!?YZgs`u@WP- zfeQ1u0J9ZnDLC%=0J(j)CLbWsj`D_~?q|t?j zXZvgxq|(?lTq)NfOhF+>;r4qQ_D7+Orze0$hM$fV5YY zjX|+ND3?OtvH|E&{5zMl8}UKVq}Z@?STfkK4RuzxgKq>%^%3m4mrB}w(~CX$#CjN& zasi$7)jU_?&>X^tLZl6A#~JYMgHMVrCJ-Mio6@8ZleSa+$!(^RHB8gnfPDQf6xTP-tXO%UB#PZ=8X2E48lN zU@-}EGy%(AwH5w99{To67>XEmy<3Bj&Mh)WhWgeeOn;HlFX<2|g|6T_%{KMiHwgpuFzQ`OyFuZFPP)TG0=VHBBEVCI`sY}Doq!K^>t%KN} z2>=!1XKPU90Y#?BkgaWgu~ZQx2GwM!lWs$)EJ&*Z;@4w0c<36e$JXl({-o3oIc>`u zhAZ@L6#FA7kBtpi>0J_f5e{v}-E3>z-J6_DBlt1NZTIL{F9rv68+XaO>mzd3&wmgY zIwguTn2tFS8X5M>Sgf#yTM}|~a4_d)1p>SawJw9!=F13p_NuMunv0=t|JuwDq?{Xb z_%SRUL!DDsJ6Q!13NmJaOo9r#z!%0a_(e(xqz~d>7AJU68oVs73G?I8ot}ArCnb%8 zr#mq~hV0)UM=cyQD+!u-`m#~**)4`1JZ7?;oN@geo;7j?+;DactuC1PEm6$O*4mp0 z=5zZwEDm35&OqlowXW<7N78@qC1BaBwz9_Vg1-H0j3P$c&)IexpDQv)hI*$I)3+7O z2BsGaCirF%NWR`dY=65bwynF3CyPum<8wu1=GfdIG7WW3Zi|c%MAL`x3(PloD5eTb zcYhep{!+j7j>o#9Z!R#_^(0cYE#d5kzDgBHcF}-Rghf0*7aRH9h{6G~`COWkioTsF ziS-g3%**w9c>?!NjiK^bB}q!cGkC$mg}n>Ax*!>PrGXEj!P{Tp$zXx;$tsp29S;1^ z3ripfyDfT<=g0h^t5m;CNn9VEJZaG)3uKEHC8b4v;1(^US|yumdK_W~GBTCaK>Y(9 zBXPyFp9L0a1Ms3KVzF@jRnW+=>%(GM6Qyt8MSAb+c_FjskRRs9lr)KRwSnCncN0Jb z>nNLqB4+eCxYr|uPjFBDUeM*S1TW6fiGS}XioeXiH@R|AQI1@svr8RufeE~1G{EolqQU(zF?!K} z{Oa&UgBLU5-nXS*-8j^2;ikdyk%=0W0o!ra;574917#dj5IJH%zEwa~L@8C?sNBbh zCoWGdU&X%WTWk?Dr5wh6o}e zrIqx4mP#PB4PON9p3Kl59a{ejXzG%CJZhA^%=lAMT@9_zhmO@?tx;H*wMl5s=`Pxe{~iWEEaJ3 zIFezTMFlSi5RH~Bb^_*HSnwk-hqi_Vp9I82Wz52YDUL|w=~o!ndc%TWcn%8-9m0oA zM`ByJwv~$nn)_qW%+JM_V54rf8vnlxue~A)ZOm4BDKs*iP_bA(p?cy5!^3ND&^lJt ziME7z+~D;DNPAV;avB?6`!?uXww#`Uf9Jw$Gc+k@;2f3=rZz*JHiy^hBiNM~p6T## zw#9=_tcRz?CaEW^Ho5TH?K-aQYXH5>!*>2bO~uy3BXr7oEC?3MeYw|zGp_AtT32qc zSX|pr2w3*2@(M`rg31w*vrj;E{|cap(R>HCm+=0($Q&8!oxX#h$k}GCBHud33;-5=WVU*YeMo04!7 z5NJwTPpbNNEjyiC!O%6D0tSea{Vnz@Yoqv$+40ZBM!x+@X55~%TByn4SjkM&CWCi> z)U24nyDz2@(M1s;&oh}rB~ulG#RQ5OX)vf2s`)L zB<_C7ki!Z;Qvi?503^Rm03M8kbnB+R$t9U{XK{adyip!rObu%d_0Pp+$b~%7s5YjE zT@VlElS{Lvy|gLwF*Q~~m_K&KZFExGL)K3X9lCxB_k4?n_8po@CHhbau58~3c83?} z5duqj!Q^Qx!H&1`5-}z*>oqP}nVb(&A6~w!SK+ogDTFr{@X4-$D#;B6iK5_HT;}D0 z2sY|v5E^rGKTFS~V)_n{6dZ{348SugTu?T<>ySv|>@2KyILwaWTU9)zq1&icV$RqE z8YflK;s)nt7!#J>Y0!;p=}GAx6b1HDXg9f2y)xLG7^_T8&crcH2f!_GXMgJTL>8_k zHjcGJA2G}eiFMsjHzCq30M^L_EI`4sc-)I!GWH_lNacOa@-wsq#yv4>K|pyI@Qc_G z&p!z-tdOO$lA9BiGBI*J>&N8w(MJZ)IvMWW5(HrKyn4Q13uXt|@A9eA&;h_42f{zF zK!zBzPwoVlV30efFc{@6&~WmwHJB-(0RheUW&?S_p}G;Qq19%km#}bS;nd`QI*0Yr zR(Y4Izzm&HdSec{Qu5KFqD)~GfoRxRa@*V|c+mtSh>HlGRdkW-6xy?D8+al;5;T11x??k(KNkV9%@FySpt5EM(@%ZsmnCI zAG#>Zgv6!!0Vo7c!0~i>Em!64q}yoqw`3zt-ngwCyo7j--m!_51GRp5WdmQL!F(MW zqh(A*d{z(1Xxk%Km!r|}MWFQ~*}tgkxB%X zzVF0R>U#a`JJ8gnpEyaG6Z{*bx;lf|gi8(3OCNB((`o|h-xi1Z-&%)y-z>wlZz@lLQ_ysAyZUADb zOMz;My1S~I5fd@zWmWhTr4li>G56eDBpePW;T7&tTqLBUNF;Pd)l9kviX{~tyd_f2 zm-dN9I%VH8I*AfNr#svebJ6Mca5{a|J&KD?bQFnBGnVoR!7nk9FS>__r4Su9l0yFK zEbd9{Yo%SAkqc0C8%H_`jRL}%@+bQAQtW$9dKvtO42|Ql7$&+aC6O?1W}6Xj4AWua zkea})JJ^eBmJ9I~XGm4SG=Fe1jeIb{!#pN0+>b3p~sX?zk!VYe`fk!aHj@P*MjRru`1OzfZ=j8u~RmZ^LsK5 zZ6s?KBIkA0SSBcVDz;2aEaVIiiB%e4v|$&ukVE04!oSJjaCxKglCE?LWK@z$1d*0S z5s8J%EQUsg@G&fwZGFP{O7(*pMxvycV<0MJ0?1Rfj@4t5#_l|{V>JQNURAcG#)glb z27Sverr&`aqv2zyxls6C2f8Xllj35^VaX8MVW{(!XAidu!s_$1??|XZ+c#b0p(@tH zAhvE&&k@AdAbSpYf>%yz%a%Wp4yS_Vu52xjj17a;l-25`QOVR|+ItoWQ9icvRdOI|K^#*~)c!vx2$YgDs}VX@p- z2bbPYwV~W#v!(ZA0=B(sD@*U^(6@i-QN*cR1ZxJxKNXoHBTeg(rgLAX64Q=0WDJJk z+0e*kMQ;VeUC?(y4BPU6Bt_;Jg5h1VtYh-EFs)Q9!evF^=Rnsp`FtEAiiZ)5X~sdx32C=Vj6GIh7OYQuOrj2 zS8YYgPeR{*DNhj@s7K#ZWR8qfPD%vb*!XCX(LdZl41c^hhHZNEYenW5f?-W#vQ?>- z3U2;!5jY;}Ag&)TifgML{l7(~$WX26Q7l!&jzNza>im@J(PyiA5d5Ui-mlU}JRSY>peGTLA1f`p=taZtIZm)0GZT#&pnxe%YxAtqW- z+6}PM*2aeik_{DNz(u8;ol&tGLfr*wc(m4}N7dw%tz*OR{0=Bz9BdpwsX{a@Bwxg; z+$W*hdyN`e@@O+LAe9J`CD*D0nA>t6-|3I^zGNQ6g7dGc1@8vGUPjPI}>=HW0w3Dczt=1F)!*MUN0$%*K}zW z_>D$n&*+id=$ng7F$}F+CA7kCf!1q^jQN@lqV?LgqxIGzQw&4vr4m}EJ<59Cu5Tq%XBc8(b0#SW9h3>IV7#hoR1wo)t#{K~sH- z{?ph29x)Vr8e5fxX(pJQ(dhD9O8tFjRW?`Pd^4D2P0Yuc>@#QLd7?zj`RXV>W@g4$ z5kAhD8L?PlBlngY=E*^uiN6I<@6b95l9x9TpzKv!Im+Auefy6x6fJ>AnU55iBSX9s zuR%t`hl-5;g$`o)%f&HlGaCM=$Q(m3+?6@svZ!RaNbvDfMIiXs4r2MYMX_u(7tVTv zy5{ZcPukirBx_m-OBL~9&_aefdzl2Hpn=}PFVwH_5I_~`?*1?b&-46VIG&{i<2GG4 zB@u_Op*fm&59sv@T9t>Y@*CDI-p5@AKD55U@nLr572>rZ_q}={m)(*0_qOgGYshtBt>+RvYJ=%>G0YhP(JI66hA|{O=0VO4b`Q5%9`73| zZ)Jb=k2m{jgM+KOp{Nf+MEh#>K31cUjPO5Ktb4 ztGeuwKJ*T*qE81B&8KBo-c?5iHPz_Fg12AlTzrA~l+VpNnY?5Byl$(J(v&gz`t6jy z|1MvCoiFhqp}%?uHTM}dSW1~7{76PK)2(6WJ=7{Rbsg}u>wpzfUA>38pJn+N=H#pj z^Rs>zbG^FwTwm4tTz8fwf?r*+%CC&^}^Vf%|x+{sPf4unA z?`wVP3xj2~0S}Rl0VxqJ1cv^(IEKE`I)?VhsVD;`ER|r!hA(1fzbZbnpBI^#eM`oL z8@rJwR9`xPFt(J5Jm5y&v@lm(6+MV zEJycsUa|Hh#5t~9uK@Qq>=a@9+O?(H97LAZ@g3d^EEY ztGiCBTWvPF*v6QI$g#fJZ9$fEM?6nO-2B7vrd1vN@67ZBbUvef6Ot@Jhikl%-Xp*E zG%uSv5mo@jj0vf6uh!VfSn1vL#U>n)xat=Kpi>$w4AOO%WRR|t8o#I|NKX@xwn$8| zDD~;sWhx$r@kOQQ;~ePSNWt-jyOHh8cK`Ayys_-D7h$7rCh^;FIr3G~wjRP=tKb_&5B%9ItXT zA*=-gSjf}xY=veo$_*rB?Vq!H&Fa&Q_Fv`Xz?}X{nV|Iq!{Xa!>;Q4T@IP)Sa4#5U z3?7HphS(M?mZiG;u11$Y8($!Dk%0BhTDNWxS(M8g35fQpvS~Q>665vIw`>~T3;!lL z@a0R48IlygOAbc{iZqac)Dak$R2`hM&o+ z#H2J_g*(NtobZ{XjqnPu(Opt6k8Z4#)-I%8lk>(Z{nbIxjJ0eDVGuaI^*#z0hGA)D z>Q@A?WzlDFH43z311?9wQ%tNKMvn6r9tTJVAPJyDZ&C>IDaTIM@Ev?T{yEQRU+Eah77?lJOdiJtUs+_cn#gE&P%3vsa3JvLlqiUuKM9blsP0C-$lD3Jq)RkVU(H)5#Md`48OSeZIV{>{nf zVWKV}7`!&EhU(4M2~BypWzD{0^}ow>r(bk3<55|vcCm> z?ug_o>ydw4Aq*R!BRzt81#&x&Pi>Mpn_!j0Di4;t7mP5YK?U_ zgOP=~;^69)IkupC`Bo8Vz^kweSf|ytz}+Uu=LT7=$dxHL(?Wj`sF0ND#pMl^jnz>! z9Z`cW3s=G;EbmH%%W1%~LZEWtIV>QS< zgvsuRBGu09J27fyN|ygE*y)_8<-wHfSwsTllq?o2>%*xG_Azo02i5Xb0AA4s3ld!$ z2;lart%$CT(6?W7QPc%0;>(N7krBs<`}q>fa*Qiw0?%(Q0>c|Si0A9ukLNp!%rOMd znb;B$`ErrK^8H01_*e(A{HX{m>*ukY95Cp~e4TYwP%o{hh$pUkdp_LliK}kzNwyC) z0q|wYQ39(?szS^j`VLSRg7S* znUd0mS`8lS;n`uOlteTZmn@B!4MD6j>_}l{GIIqvb$#dxF9|EkiwXTAA{44^Ny=p7Fzkh(f{X9+)6S(`^SY(b2 z_0HX2kQruckj0+09e6x;J z^=Em{9=v82#O!Z@qCaRvu*+54X0Q;Z-(w?R2$Oj4ZwN1zKoVsz%QTY3i<5Kdv)qQz z!tx*n_F;4(u^y4k|5VFS(-3OJt}HJT$*U*j(&JiEc~X0~MT?~27cJtec)nCBd7u`>W%*Det$&ED-sO1GIQBi`*^qT$s| z491*2*eIMij})O_7}LX(4-(TMOFBq%OI74(S;|G4eg?7^>`hSfv0xDdPcFJa{=&|ig}DEk2Q2RVlNf*p!AHr4DSGwxFE+%#rT~*1iS?% zMqer>zf2DSlk11XMJ$?PP%3vet#^j;48{wxIV91mMN)A7tBf`?md;G4Szi`_HjaH(Tbm zn+Iaseih+ivSU{xzB5k8SKN`em8}uI8L+7`(Gd4S(07}KEmL2v^bQ1gQKiKK?oj$7 zlW{xWwP+CqOYG$5&;n@_|36XKVVn3rYK>rZUPd0j$gS{HSopfxl z@jKmMSMk?-cZZ-_@~gue?Bj4-wy`o=sl!9lXu^Q}9z;h4?YEb@_S>dj+p+z=OWKN= z#wcCTldS7WF68-0AlRjf8Ai5?bS3-S@XZy!y@FWcuLc%r`N(iZ*2(0Dw&Np%iNdC2 zCa>S#$gX5DnQ;N3uadhYz3n~`;(vj(5x6;{Omw1>w?R{vpykJ?ry#`&*wo%as;h}g zW~?)SdY%NTdt=8CSqveTUaKs{sV8S4^B!YQIOOSRV5sW?^yPO3m^67iqqE7 z)D&>x1#Zra$#A-;N-*+sqNVE z-Kd$f$iiES3-B?z|AYVO|JnuAD--azUmiwE^4xD-B>~o6wFTQ>`mfNp zZ1WqzzjN7JGIS|1wK;4V!lw*%mc_G!K%m~AZ#C|le%*sTT($Vr`&URk7k6LKLGHHM z4-R>&%8_<1z-#g#@$N^u=c7lcc=dgM2g6HawPQa=k5$$ z3U}wQW#Dc@otC&;@6XTO`+Kk#&fOPwkh`CfOimX{o0>F=VHkH0k|~2GRIlb^aYwoP z3T*&8%i>aG+FWI83&O8hH-Xv=Yk1F<;#~bh;@D)S$^aghi%iEMm>4q@h56DGAlYKmjofz-m zM-YepMU5&d?I?KSF@DS8av&zYcx-c|Sv!!uvUF8F=4N z=g49_B9N%}>F57@Js1q;|7nq^WyTFE7uz`pnT)N7zY-MXRsNHV0f~Fcz&w=c;0bJ zWn4RhNXMBFJj+>G7@FlGf#to5K(ISB>eRM!ALu)jn?VpL2dbPLFzCsAoxdk)0S935 zoLMw|$q=N-k{o^vvcyoQwL~p?hyE3@+JnB}6|ub~YPm6rnHaCXm0%;s z>sTDl>&`?icWYhQ8CTZW1T1^iR(Sk_(6^t*DPjV5e-9OzBSXD&_ZMV_d9=vr-|irW zzh4}~HZ#mqMdlcSVLc-Ylh%5%klBAN0?D5{i0!9~V%utn*$1A}kypQc9ZE}2dD$5{~R8O4Im1;Fo-@)*vjd!#&kJYz4zJyH_PE> zWb%X4;EJhW0MiB2d#5E=D7R4ekXe$jF<}Vxo}Q%=XdlBD!7wv#bTN$c+S=1Z1gjh- zUt!^Qk=UixzmV$crPaN&h^vNJo`%WU>%siYAH@_8EI!5kps8z56fnizby;JWp1BT8 zE&oAG>xkmhTGINoda}fb0Rq!7<@ol1j<`kwRc97Q)r(t4)uA-0BxnJfwlLr)un{07 zpr*h?e{oFowT_9zrxXo{2x|j)@K+RQxU4uDwiH2wee=mB2)nQ;RB!rc)WRLVuz9d^ zM`gLLDWJ?<*Zc)Q-InW`wp_=FNV9y znv~{_qRCU}oxChOwm?h4Tpx5Ym#iVtZUnc;rr$1$(BT7Yp2`)^qhFG}tW+DQ4EM6l z85}6G?Jr&!({Dp&m@nL3;QzC+_)kBBE$A&iF{uvU;`>$%lsp;LKVzeACK}psi*Ha~ z4`c_Hlt#x##wO@X03=*~t@s;PP-Cb(R!K^5pRdxB3|B@=>)_F8;@pP49KPbtk|)>T zgO*!O37$9XN|`0y@I?^!H&JL~KC368k>QdQ7R!ev_Z7hT5@Lv+0-d9j2_Sd4N$uFa zM@9+9;+OtPfV5YYEjy8EztSB6AlXdwei$o%^)Ew{;-$@D$zYH-)LGpQz7Z(ZN3d&D zDpdDPf9b&|*2BwyKPUAZmjQ>hLkhg9fp2BhHl%PfL_D<-v{=qFE|&9F>1ha+r6T2y z5vM=kzFfIL*D+BX$d<_pXk=I>SRAoTB;;hvL@pCRuF*QS^S-o9&LBYAtIEqH-3Ka1 z+#x(0s{5A-MN^=ow^C$|j1Zb3SsgLR(Yv|G=nZJ(I`p=J;jIxE1`byQQH~D{g2+(k zM4uq?uSvnOdjEbgw9JFeU@^2_G9-Wqf_<$fd(Iw1yC>XPBZf_qNC18|8tlDDck=l% zc?Jn%sI#iIl_%I$@7ph3?(|?XSh`#jX3wMVi+Nua8>`gOmqN~Y)zQt6(xj5$9-uE9 z1)s2GXG4@j?7?M z)|DG9c8XX*z_M3uMR*+xefxzMMT{oAY*AWg7nvhNy;FGU;aJ`%txJkPvc7}Z-cS_V z)+nv5MW&eXxw03_vAID~8tR-ZJ*QP%Mu?TG58)S>2YM(LEHLkOSoOnRVLW{lk_>=g zL}M5eg^=F9e;BrGAP<}4buguj)Zleeu&#_I>3D-acwX5$2Io%L)RDyXJzdxwUEWZU zKYP^=^*7+3*hyu;C{+)1z|TdgvyPy`KSuEtlb^Q{LgY4oSllN0`6;a{yHJ!if1e;= z*{il9KR*L~`{gG^j3z&Ax5&O-WR48=PWc&hynLd_=s)cshJRTc!!`}|=OS|q!Em&O znt!vpH0(?&@$+10)TzV#F3@)&ezt0;1x2RFkgZt@uv8Hw1`TDXlWs$)EF`E7h+mJr z%d?7t_1JpdC!3V|%frKENLxv><*+}<8`@P+JMd_5ZM-=)-b8OeH&a~Qy~)Xy!7@C$ zm_T03?$NPc407r=YM$No5xKg_e-IctJBl-yjyaPse@@3>vBDZ|NyyQ`!JL~F2=E59 zE`!!)nSf`n+KR3jgueZ2GeeNFxy#|luyhP{PF?L}6}ZI6m<3*&SJ(x{(Uv43;>((^al}&tTcv8;F(jxnRIsSPl+I{EOt%0X&5P^!NMgab7{hNAZf2Q+f0< z_gzOtFY{=Mj1LUa%fyZ1h+f9;GWwn{*ki>;ag(6%MEY6*0NX9N~oMX^9)dS)_)@Wxi1bguNS zw)CVP4ICkf6$h%2JFyO?iDbCEk-pt0ze~xq#vYUH=t``Mqh6KA3&}&mdw0#x#{b>R@EP$8^wCsUcy8hwu0nF(Qf38}Z(R2F% zMsUO#u^f?}jxA_Bm_T>2c(8!WmM@Qik4J)CgpInH0JBAciLKiig7nGa#mR~FdU*ng zEYVzgT@!=5kj^rV;m^gFR_Zl=q*LC#-*wRVS!l*g7214qN? z`53vop_ID)lx$vD>@q0;yUr$Pk*4>s*2Yd3d3xys&@4Qri4PkyGcbjUg%L2b8Ed8b zKi(FzO8fSNhc+MEb%!0UO+PUceg+c@&S^NK#s&iyD)ab{={t}4(wdVfGv}Quk9LON zl))oNq*$PIrt?eVyMSDQ(ilZslr(mZ&JW*wqrmr_?ndkhTE5-RB(34_P1d{P@QvT; z;d>Pjm>#~#FW=!i2*NkNmNQLyAO6I{lG?D8UUUseq}jxAIaQH&*y-)~9xi^S0G^Qn zNPd|BJP`-!rbi!XgS-35m3nnESf9x#mBvbbK+b;!*eegntf(e-43v4qZPrxf5=);hplS^;4zvEzofC1!q-9 zA?9uk+(RK(fx);={JYiBM7KjMoSMv)^=i%YRtXL%$60z~4&GAwPN{5ilh!ARW*)?+ zhkEEO81-Vb8n(0Qye8a;F4qUn10#5)URnrk%8gBZ&55xJyIT#>J{xL{YI9=MQhvwz zc6t2e7ahN#S=riLnRF9ebf3_Z96wNL^!GKY8~Yk#<^IabB&(8ipKtZbj6+A2cQrb1IN=BfLxVd=emtnAIV0V zeE0TdU(wirSympB@wbQ0quCkH@I~PF&DpH!I#%&pO1}wXq~C&nDZ+xI?m-=O>6@@W zVx>_o%kP$(0dNU0Nv>Q#c8dqHpCe>X*dTk<0ojxAjf;uN3vtnOW=YYdpx&aMmkme0 zs`tXRkANSkL}2D4PRuy(f!_;FU8KC6dlq#Rr66Vw4}aM|lx+krO3HKp}_{I?B-7GOn4mwl-SfqtHLZ zK>x=*(AoMxlY2GB$Hr>)W?y5ZTyMT&yw(K0^mBIdTjJvSE#mqJspM29TIliZ`YNJvMKNa$RM=eP%oB^4dK zB~s0oc3eg}W#2P8i4sAls(WHCI#t5yw8cG&i%xVDiB2u4jV}! ze|2`@U+fU2ZO#Ts^U$X_?Prd8^~zwgTnG2z)Z_tZ`X7gMA$Xx76UoNQj4rdHIdCo}>(7sl2hG7gw77y-B&zg=fTibpy16 z)AL0u*7t#DYq(KMAnK^Lh0-6dpjSp<+fyE`)W*paHu1OHV6XU|?SEd99D7(}y7XpA zEKJTq3}o_eh1BjFT03$4nw(V~SbppjS;;cfrtgQI@#7K8rqa7n8W6egcKih!Rp>9h z2Y#P9gIK;x!FU%7NS}+4ExHkfEui$vI1B27GxF%`Plffqu`&uQGt5~PIdil&${1JS zF5p@wCxqK_xZDJW1}9a$is6owvssp&jIqnZV9H3wS)BfA!m+2&M**oZDw8nV5kvy< zzqT@i2k|=r@P9qf5nWMR-tEUEHH&K($809(m$L(1VWx! z&qm<2o)IF9@b<%C4J80Nq8Z7BcF05#B)X`BZtN%0qYKv#H6fx^>8y5kEiJ@Z?^2Hy zp$m9tt)04nk63D1!0AtLq2`t^LLo2T87mzi2CvJVC6a;Ge&x$0_PA{kCj@;xGbyb; zWntGMi`-92Yv^aA_)khF8oxHi8~qiy@Vuc))+f|D4~O7=m{kmPM#iFI)Bf7|v`;!3mpa{PVq#a$QBqNTk@ChPhxYc5`PIRvNB8u$rnTqtT>pw)m+U0oar9qOIp z1ZMSVKuKeRQ2)BZnA`~t@uT3mgM<9!9LP_#p;Dh(J2@L}?^K52$DGmHmU?+?>h;_N zzdztc@XCG);smd(n-AQ08iZ~V>ceh&lN=|846_mfu7_4$LeRJT^5kMT`vGDu!Mi^g zBbIC#sseuj?{ukx8on>>U4CS50$K<@*K6Y&hj?cfkmmR~LH3*=fra>J)*?9IE$V_% zkr(kFXbT;|J=kI3R@l&Om=Jxy*#th5kVOt8>-UJGf$vBAD@nE4H3TdU)sO`s`2ed3 z0N??FKp;vlyo7G>aie&!6DiWR>gyUWr}xO)=lwWj$XgQnI9u(e;Z^GRQLSS;Z-6vO z@1|R8god2ljw(hVX?*v@=4F`VQ<-sr)cF6j1pIyoyn#KW0dmm2T}JzC!blvlnZQ+2 z)Blcw?IsPehj`di8Yl;&!Wte7cHOF;DB{RJUs@c|5Usm}V{XPesqsNAL6lIM+Lxv@ zQcH;IZ3)a>6u}S;(}eT_8=UZ>KxplC zQIoKq^$&$JvdZUkoDL0Z;$z@AdCKs*mNtVHXN~NVe$>L=Y zf&y}UArvkrh0El^%e$}>^g2Q$YJI$dE@omkSOxaViAFEjejs~)t-sP}lu*&}p?Z?@ zS1nt*6b5KiDg&!lEMJ&)MEv>y%Gg-%$wK{FpR332}+jZ#oZGS9fuKPYcJj{A}B0%Rae2B zFkXN0@}4AJ#pcDjTP@pT6GvZ_lCz&R+`#MTFjN0PN(s!7{z@Lmo@CRiWy-`)WTs*^ z05!-d9U&?ql&IutcAjEHFf?zNo9pwl4Udyq*ySSA9=*`6-!qrz%bGDcX9D|aUo>d z-^B$SqW&%}OyVLtS`Wg$ML$}nTVMyGgcI>|bBZ<=VPz0U=oPSUQCuTk=T^w2N7zyD zZIfIiHcrj`^meT+LvATJ ziq}R)#z(9DB)GZJlN{BP9CPH-<-N&JvpKeM$&!IuwYOH^xMbPV-epUVIA+NxbUe~H z7OGGqN-3Qy13zO0M;iPRxVk0^S35zEK&)3oBgKRCzG;FPf&w%*T(f-uED>T#BSd;3 zSc)>%JJd^bPThc-g8H{;gW3JX0;cBV>24L4Y_>GY+Hi~;9zW8~e<^gp0)`HtB~aUI@2Q^cALT?gweLz8mH zEQcjSmLo%*uRMFWRS;I6rx1I(%YjPDebeuHsEYN_G5sx4PdKJ?f}uj<^jPRW&1;TX z%f`@7=qzl255r7m5F@M zMJpA!esd8x-q=B0Utbj0)@+w|7MUVLwU+G?OBIn~P-ccYy^&H>kVo&#uQ3u2ZGtt% zzvG5Q$|PTs-nC%1eB7An@AF7nM7^Rz^$EONMsizb$>z!S5(1s87*}4y#5zsrwl~4J z(+Z7<=;>lZ<1=Ss=w7vd5}D3IE*k9mZ1qyI3GGeJ2Ol|h4TDS1c7T&2X*3~u&wz1H zso$4kx=Sw>)cTIb9(H*zX|Hb(g5`FXSgf#`Q?4H5A`X|e?n+`BPijNEr@=JbFUd6Q zRa=q2{|bHkH5^4`poV+8$Q&7|oRkm>jj@X;5E$P5HkG(`v>~G~4DSMsI;G+EguV-6 z*rwr1MdlcS;r%iVrwRbh=GN~5|Hl@A?Whjo|G1*~w`#qAC^AKceogCPsUnIDTF+4D z?c1%a7mT2T?bokg^T@ei{rbPzz0Ra`8Sd43lJ1G_p6;#i&!zZZ@(2E!pnqQ4eK|Rj zt$|DssCn_k1@`7qIJlHSiP5V$5E9luBpF;-Y~esHbO=i`7p~FReQ+xgdFE zav?q}NlY(bi-y}oL$&c?i1vcOMHmQFV{-Z+*-L^$8>(Sp7la6n)|z--13sUUMTp^G z;{Zw(?utNY7gj|;(UPOuag6F#y4K1~IM@S8dLbD{FOOnuc0`;YYd5E4u~^}3r)Zx| z$i&4A`%CcBTeZ%Dg!**^FniTj)aDfQ?HB44HGyjL14ZV@knhCpOyGTvS@K)p^)p4r z{A365`an^_wFJi-_=3nelP;Lun|?9WQY-EA8I&Z8R~p#4clQ) z>!X06sXj&jX>7A+KN5TzTb1Q%NlFm&YxIgOr6$a?Dw`ow130X+Cg$Tz_L(#BJW(R% z{6rKVv*XO;gpYH_87x-V$i3x;d2-NZ;%@=epR|sGHZlK~0A;V*%2DQjpl|;shN30# zD6`vpRAku!mo{n)@lL!7gP+3!m=qcPU})5-ZQ^0jcR>u>EP%(zb9~#(9Uw>u{s);& z+lFdLRzhCGTA5@yisT}}(5K6wghFs?2hn|IQFL1ke&r%l%mj&|j&gFuppFc6_A*IE zK?A*oU%LOuBT-c8?(PqtnfhmcGzHHkkAYd9P`30nGy?Kd0li*9tMZVvERAeyX>X4d zS6UV(r7Rg$FNwuy=vi$cF+_8yHUJ557x}7+yE6GyxVbraQ{k@AuIY&0OVUjoaruTs zpAgMdN|jWk^RoGJy(N_hM*FC9B?P|N^P#Mh$@g#PIb{VtP4D&`V8t;*@xRN-Kj%xe z$#*r)Y3?)ZL6kBnBKfPcgneT9 zrC&t2JN|mq0ahVpc|l4*n9Jk$0f4x89zT-6kEZf_{(E5|fCreR@}rm_3FYo##DseZ zmqX4l9vn{N{z@Xrz~sTFR^c%rnqw}Pw~roNU=4d}i8ZkdAd-(5&aE6t(KoH6C&6tm zo1=2A;hTU*xWSR|P!x(%`Un)$wC7efLOQ+%1QD{F9}v%iE;D`^wl>&RDNEit;uym# zASBEhYfA3~f%gm|u;G3S&zo@ZIYU*FI-!eQ|G)U01{Oeoc0Oa@$u-Qg){nWHpi^hI zzKLgSV$y;0MH*YFnH+Y`W(+9c0(%xBMC#%+tqUh-@|+DgE(sl-P2$p}?m{5~8b}Z| zWQZ*v4iTFZi7clCsc}@eDDP-K_u_@;rEL*3WiAl;{|? z>jvECL$=TKg$O-ORw&kJXK!`9!HO_L$Tq*#@j7hO%@kJ~Zgsp$+LXz$+aw&|sVWeudiFr=D)ob2u^_;0<*up}h3ORd;5*1ivGB zNg!Q^!6yRtO>gyJoSOvRN$NQ+M2zs)o2=$uaS38gd24lKe1zsb#v4d_NDTc9Uoe-K zyjUSnh6Ks56NqwUDLZj6zRdm>`1wzmh0N=APQzUyTQ|R@Q`fI6VX@qod)*L&Fau08 z4)64jYDaFM*h-lNja)}Md8MS^1W+R`K+J=_{VRo{MU@WL3lN7CnIl7d>&D@wMMhuT zK@2Z1j$xZ|__QK(48gE=)q(M_Rw|a*1x4U^X$NtAQBho5EyJ%UGDU`J%~6S^iV!g< z7DJtr+8{v%$@BsITH`lFBsv8Zxkg8|hPyvBB){F?A2%f9UNF#*{MvwCnIX9ss>*b5 zf}FBv@VLz&+nO34nIodt@eCe*r?1T2k9_)Ge0h%iGQBcKOvUV#xwJJ?_X{)AZ{LPm zt=WM4BV)#g=ruErFnX^DH+qX9+F|}aUjs>)YsEMvoK)Y2;adNu;mYX7=Flq0uSIfV z(a2!(87@a-gf3>x;!nOQ=JCA@IO1nh<2SLSzU34VfhO~>XPr!bblRBA1r1Eb^CgjV zVf#GAq`qgq4^~YvNbjy!OZ=dzgJawS#nOfj-V$x-l91$~i9|cgLX(q9EfggC2lpIZBwG_svOf1H zE|SqvB$CYpHNa;@ev8SBxQB@)7#%v2VE*dN(<8J-`Z&s&j(d6*1n6Un&qu(T^Z7gi zu(!qMGllFVd_EK>#4qs`CWgH}pAs?Y1N)P0(qafZL#IRo?So)5?@7RM&;xm^`ZM=W zcmu&?w>gQ^~fZ+aJY_^I|=sD-Y)u!4=GEgtW%Sd>en7)()##6pBT~!1w zKNO40^j>U1P2mEx&YHp>iUE?F!oPrxy4lKZ-4wp=MG!=$Zmv#5UajUNm z`{{1DQHLqY`^s=Bt-n^USKuikSP1MM-ATCHPUv=QR%}GR&|5puR1VZ9&U6KX<;OItb4?XY+(y>zLu0co3m5!O8Q+vd@=}X*A~N zH<`?ElK&vs_VFl=VCKmmLL-A&AB*J^ZDI4|AGD6tounq0_}%K?6QJx>W%FdLA^(ri zw``ug1^><&@+n$W^W+qWh_9w1-yGf^h|F~}OZZn}0o#zfUAWiI!+Q9xDBVs$RtLyY z$ZPi1M>le7m*PHip1?1US`JJzO_1dP%&6uO!{WARrnhPx1RlFn_%D!76=a1~*;StAc9l3#GyYgcRQ1+^=Ncj_>Z@-k!(4y?ba#%5Nt)b3A zPO=LE>P`Lpns^YU@~gW)^yGfqzuV!STr_0_dU78K=#_bLx%Gx$337tWJ-OTxm|0c~ zo?NmQaCma@JN4wg2^oZVa>=g_dvcG!XL87sF)>$`ytkXk>pReGJ3O|lbPF*D8O){- z;_-0jc&F;i{;952NTdajUfeNw!QiVaF z3-&!(CzJ2n-d(U6N{Ge(N%8GHn z>)@=p7e7v_tB~%IV~18BCZy3$Pqo0nDLQ+`8^^E%wyqZkz*613kq1yGL=6 zjE*9aY!=EkJ}3Hzn9kwufnrHT2ahC`zdCa`3K^Mx3|Xw>4#)j0>crw?6!7JojPC+? z+u~$ggG?lxj1&*V(e-Y&>by?I!_KY1+ce-+M7IMx8&NOAV>s-^8~RdO=3We`Dwyd4 zCo^dVd~(HX8mT&h_A?jruUMpDK6 z$>q_Bt{PCJp5=h-O7i?@u#5+Fni;0-= z+S*vTTF*%O{%r&;7(eMg3$38VAQqf86w6uZMr=Xdtb%9;H*2Yl56QeT21@Q{oxn!j zOrW*yXPsP76=!%zF$!-~!4V!;cSSH3(|?Lp*0R^SDQZsaq<#Z5GMv=0Sl%cX_7vWu zb)@dNH9^DuXYVIK*{jMY^;l2gz0kLOQhy2lo%0lCXi-k;Ijk5?>V`V|TZt={jo!?z zY4P;^1~^q;??DnjrN4>PbNCS6#>E!o$mLr^@ap3g8~D;-p8T^wXkpF^$VCgH4rCt} zpXL5~tpSl4!^0@p8j#esxusGW74i)ItLWeFf(Our_=CH*RQ!SHsSU&JT$5fasn48< zjX5(~i2{MiU&4H4*0r+{DrdF~enyd`yCtw#?#sOl=4I&PdpM~?0Qf&zr)~h5@#?<_ zfcC2Ll1RS@l_T7^e}U@$B|%XX=%U!;{VL+@fFlvu92pUuM#1?KUvexfWdhHK6@lRp zXyiI|wu0y9LEoWx*4?!^PBe%fL!Gg0zH9~lb#VM5?I#{44;E?T*$FYhsQ+POsySjv zA_nxA4MEl(5NWWtV+~bd1W|o-=O*@n%|>N-Fae1M;ZBu$7fL?5Z_`AUbTVZ!ODYk# zx*&>Inb3L(;nkck6^p}#)-1#iUrF>20oJJ2RnRitM8L9FZDk3KLEru*L=h7xs;((A zM}~T*s0#9?-c)4tsSaZJ=HeK(T|@j(kvWE7SX?-i4JTTu;N~wBf#ZP=;`+g&xVBzH z{6Uc^GE{5MR4i4*h(Y5R>b$sJ!c@>rAH}ao&h-#YRV42I(1Y~`zhdGZEIcFzdayQ= zs{T{$PRt6#rF8bUK+&EbP>E%izPR7ImS)P^4IBB+v*O*;gTeEI&lR4?>`<%e%ggkY zd#?PJ?k5r@P42X45wuyfhyy+oeMbW5?kJ#_K+iym1zICee+MQ{Ty=vDEHRwk(oJ?e zVkIz^Ycq(re7nG9o5?<(l09iojAce)rA$n1t%j5!@}G%~!pT2-aJW`x$!s;f2Q*+` z1xWqDAhoa`;KTa21bu!|l2i4?{(79`h`%V3I~guzzG`j)i}F=-gK|brgRhz#3LU;` z{7!wQWS%-}7^%ddGa#j~AcF4=H3JzUrskqqrQObQH<)8RV<}vwOf;2Pg%? zE|UXjmiembN@onH1Q%qd{fy_N5}_^ky4$tboxbYbplP75`cU^ME|SqvB$7FO)l1w1 z#gd8+9!V;Hb>^!UGBSMtS?rneRW~fYY5`x)SA8eI+ZJE-OOc5{MY1HQ6c5CYdKX)D zUSIVhhp)OZ-oP}O)eY6*YI7oUaKLWPsV>48I*Z0WYVC@Wc zo`PTWVV}1!DGv@-;JI~t95C}ICTSOOXoCwoY0-t<1_(j^UJWL)e(zbH5rpEDNvj3{%U-pWRkRiQ_Dd^@7*%#y?*qTN$Q&8!ozg1EgZ=Iz zqu^9%`}2mDs;j>6@lZ+9mMrli{jeq!Twp1DKb=RN(W07 zF=9|UhB{}o;=$JBsUV#`kYAl#=%JgcPTc*W6Z;0gdg87vJRb(Swyq>q+v3E2&IeU` z*#$7lYUae=4;%T8vcie|{BnQ8;KWu9DE!2lcV;&fXSVFFSrP?2b7sFlYXq8bfytSz zgD2QZ@4?Lm=+rL3n651%;+8qJ5w~q-1I2;OH^8!^TTJbx8ghcz;XG^<&JK}I?M=ZT zwXj7nIkn9P{EdV@PP~w__JF@0CpqFTisVj)<4$dE4U2MWbIWr^PJ>gM92Ff-ZTwE1 z+PA{Qs8gH#>abJ$XmaruBIqIFCC;(k<4vJ0b=?l<_6f$Da}0EdYb|gSd%gl9^>8a? zVv*kuWRZ2W%FKaY?vG}jOx`^$Ze&yJnmpZydNFQtbGPxL^EWbFMti}(3QYq&kw12i z;_^h&Q6x`fkn{N8+ylmXBq+y%kzT)@I8 z)>!DFbDd15xp;_Ed75b&LW{H6EEUJ{-!Da%Hw?qQM)eAJkSp1JjazV6IhMQ9ORxoX zB@3c;*p)mU10_Fy*RfGI6Mk)QB|pnY$As37(8wUPusB?3IemEtYF)X(V!pin30U^3tt_E~ zp>O{ZqKF9;RYw$=BSXDYR0a9+PA)R~i5gj|R$t!LMW)D5t!W%ARm6xv;~466;5Mp0ieHgD9i>Rz{h=f8HU9p%IUjfDf#&=g zsoEAt-sd%9*`+V)59Y}GEH?5TB!nYxiR(71NT|gv1$LL7{eJ4BQPW^9y>DraVC%Hl z2n>BFH^3O23Yr}~6X3jmtcbi!w!nyYs4NXBT^557foJIC3*X#6! zpTL({4(ynS{>0a3GA67+=9n==~61nmH`-+_bF2jZkixo+!Z3}QO zzgC*w;adHUOfT)*6CSaB4DL!_n|@*@{4}5HvMJ5zks!>?NYf4acmFb(M^I;mBSOecq^@#?S3A*x)vRGe#VbckM`;WFAG zItfh!9iq3oM{#-A=qQqREyy8yk9)vaFB=8IF8efx=(Q9x3e7Tys6y5vw`srZo|`N4 z^A{;#As3*(>mJ2LGCGPxGN(iI=k9@GNks>bB$dB9bBGGjlfDk&ekL8Fwi~qq#+*ZR z3}9}HLv-$au=a&Rl;VOo;p&W>UWaJR^;l+Yh-o5p&fWm4yk&H5jHa9OGrLv02b-nh z{Cr>R1=TE7Ge2394AEU}xKQhMCNcuwz0Kfls{?dFEQh6sVGHU26@=@s1N7(^D7oEY z1vctt!tU=5P!cXE9p283!YT75tc6B~qb(N8a!NnOt2Xw)`-~g4PMyM!J3t2rfcC1g zB_P%TT7|ylqw?Y;en9iTZ*G?=3eb)HEFs1A;OM+e&$;s8C>1eTia1zt4!pa$jz_<@AC6MC-~87W0Arkbq^c+R7^WDfI1MMHDfr?669! zKNguIL%ma41^Gbdd_*Od9c@T>hT)mes8e!kF7#ax!!{r2bBoL|1jCU&&?QCS=;crh2xrpWt@dJk?kK$qurFs4iN zqLgMXPsDAT*&xE@`GAHTw_;)J@M&xm&JJyId44At)E2f5PM4?o(DMyKK;SAhUj!B_ zf>GNA=q}G+YxV7vXkmIem#1e+ipw)MBTW_P-~G$vYXo)nnM%t9c`j<1I7jC$Pj1DD za(QxFX|@CmE>CjobGSV5J9T*;_EGpn9^oawI_&a1Cc6bW5_<`Barh-r=(`=aKrggj zD?;EMUe8S=$+38#7vDwcqt|sB_WZ{?%eWy|-(ZcZg~B|29FR?3-YOFZx4SayGOlVqZOoqKLBcj;>=U?J|(x4B1gk&KQak<95XeXo0< zSW?l!TO!o~JfBxiIGU)ox2ZNKp!uVam7jG_-bKq#hSTz^?onK{q@#q=@(1pLVrfYS zkEEr)I&*ys6_cKhaChAGeUM9OTP_0&AalO&#R z{Q}cv;E~Ee6`orgP+w=u(n&|P5ld$N$6VVB?FJn2eowaz1VQ~=HciF-J!NtyuiDjP&%9ov^c-?AfPC;U6-*rq57bQNtWGDk)P%}At<7~$By zwg?PYLnD{fQpR)IfXWe$?KeR6P&}h)Oit9B<3xjx!BFR!bZqP3*!OGbVL+4dNgm{5 zJ#=ipkkoTHwlC*f^-XO`)XSACzLU+BYf|Np&35tZlH{drex>OyxK*+6Ra2Kwm4;@E z1VQd2-{)awvcRz~c-+S^;q@7c4&C~S#d2S6;pOyhKdN=*28;P#zfHihS8Zh}eINSv zFC~f?Re)H%+fNmlBSXDYWCeM*|5{}9KX(wrPZ!6q&AYwN$5n>3vj#FZI%oT{^~MQRvA5Sp^DCB5dKOBs zV!4bf7TIFdqK+XimNUyd#2RP%g}-h-0u?q_%+Hvc%}y*P+5A!9F^ysprfdeuI>@>D zuvp;|r$}@vn=7@hg2cot30U^3ttgvULErx6Nf8sMY;GztM}~SQW`mT?T}4K}qk|a! zKyeJ)l+724%rOMRk;>-VMd0{G2XXz~qPVsyn}01bMTTlk*!a1}SS>b2lpOSCwn5YS`Fsc<=BhZ4+Q*ubyAQZf% zcj4v*JQOd3L0ub9L@A6mpnvx-lM#YC`%I-}f;<D})ez$B17~-gimC+GLh2Lo$)t6vmG>(e=>Tn#@3KA;>Vl^(2{=%>r zDiqgkcq0A+qbnAH-sF5EzF7FwT#gbR79a|Q3iye0bq0n_J(hJcdDpZEno=4LPwDTOoHOOO6~z;15GFpc6lB^vn(A(%kf<&y65JK30f6Sva{Wz zxJX7vkx1r@?^^F3D3(-o@Rmrm4dc5uyC?6WWj&mhuXT^&q9q+Al$LLG4-`vFI(Q^4 z{nc4~m(YdjZ%~|fJicpx+or-2+a&r==@a1>;*T@(={!07vklaPlV zqT;lejXA1~P`h7t@|P9^L1Me6(=Lag{XsTGC9dm+7DA_z%<;UbBVk=Pbp*DyMs+4C1q%L`Dbk5~P=E#VkSxeOsBLWKFTm*(ULZeWj6N~5TBk+u3 zT@EPBaiT%!80tKe0fjm^evx*%2l*)aFrd&Y(xz=d;g_R$mI<#f613%n7Z!&LFK3L$ z54EoBatO~fOn?6i0n1*s6_NF0=-V%{C}LCrVij5cS!9k3^-hr$6yq`TQ!26SXp=C! z12pQCu$m2h7sRkF#^b;ua}2?7WQ<2o5jYlh5ZAp$aczz9IJw9a8LBnSgQbcXF=!q` zoel;R>ZAD;%jZ0zC|I#Ps{#tgqL_p!n_;pJa>@pa6)tg#M5nU3TI(uE6uz2(Wv|+b zvUwf!?H7d5W^oXj$xa!dAP_NLoghvZ2qMP9FKMo z*N+v&wN=^tuE-P_sx@VUrHU9aC>uka_68K{1Nikz)k7~;zqtFufWrUs+je*m85$x3 zqhp>RRofC!xbV{|o$P`ax2r6m@NjJ8vzZFJR7V2}Pl%cT3n*NvH3BUd8&Ifs;pPPl zC_EYlb#3wy!7QK<5!_~8hzKaGXxItji4E8&oF`@v4%f=e%B<-@AO`y?tg4p=gVe(Q zfDh~6B5Wq~apHxTb{qbBoaBhVD3UuFjt9qa-wSslxEsB4=N)zcM&*vnjGTtxIAWP} z1jpfb8XWgQm>3O?BfmNv9CtiMf^DePnvG_?Jl0nmj0=)m78E2W_ur0Sxfh%K+VUW! z!ST`lX0fZVv;^ zWbLhTdSIyBgIOn&AD#}Oax%iFXfVT*GA5tTQST&zDKKs>Z%IC?@p0-mkbR;+(Bmf= zDx;(29)qSXt)oR=eUDUEqvdwt;1ixR%)w9rCZd&!+5EBiZ2qJ0Y~D6=hZ#HI|G4{X za%Xw%FtRDHE6wE<$VVhiRv;#`%V%6m#ToxM51IzX{~hQa#T9@=N09=MW`d~TGa|pm zWEQ%Ii48xZL)&$Zk@x)7S@@BVFX^MmQ5_FIN_=A45{4uI&4nR70D!k84Cx%?B@u>1 z5klf&KF?O0H^tPMCytE`S1XMq6NHO5SLzMWI&dR)Fga(a+LN5qfPYn*{k=)Emf#yd zTr?!r(XQrDwUP7>mmBQPEUcKe_9^)EVke(!u@NMUX*y~kLcR;wRDpa~N{KC~^S|Uj z19qKLu9rtDO`s%S^m38F=__Jz%1?r$*r=PWzcxhAoRINT2{v%m(TyaI=B4G~>VROi z!Fp{(UyGFQm=ssSYlJ>!p>v`@Onx$I^2~yIEi^I&+hDQ0d2;9fm_z5uX~X{%pxv%@ zr|!ixUgs{mTM20Ps`4o*Hst2L(6@XBDTdgZMSj_AE8v>TS zs?5UaC!lgfpv>=~x}SwJ#3(GB!;6814RsE3l3w6SZ|djT?|2Xu%(W%Hy-iBQIzwdd zYB*q42P&g*B^bg2EA`FgVSe*h6|=lCX9Ck^`T3t!dCE>*i9Zj8Mg}p9#o_!Z+nWsb zrIlJ|Zon9a9!&tVS8atukB7ef9Gam<;m{mr3><2xv$v7df;06de$ITZ2SF-ly8ABHj%3Som7Mc^~xxAVpjE6Vk6&PN?6rZ~CLm zw)~)%@sPo6OZ23}Y>VHi+4d2b7&Y6HUmZ5vE=Mb6?2YE`AY*NN?lT{1I{O2_a2#%y z$9t00XndVRr^Qtw|5L1^p8=L-C8jEqKtt<~vrZ=OoDPOoq)7fo^1KX{1YIT7205cj zN>$q_D+D_O{1Qn0Q-+UdYv~`LX@s@(cci)s=}h1U1FTswKudlLcz1ii#RN_h;(Tb@ zBD^zF1GKCVF`G)5?Jf@Kf+CRGg(Wu~GFzZn0_ks&`W?3g?rW9@77L&NFJ}S#7XY^{ z7Qi)#U||8IXdot}#}FeS7ZIN$Cz-E9r1AtS4Cv(t(_-7B4;_Ni(#r2yXhsRX1SjBhpwPd?*&- z=|*fpFX)NMblAlB$`~lQiE#oOb+cvN1{33gs^NkjQcGkQHXU%&o9_ZR;P#%bZElL1 z6tlV90F4Z1S}c~g18$p(LR)~`Xm}R^%3f98%EuZFKL~xx8}ygp-#MdU zh8E>Ko5PCXJZq@4e|Aq#r>h1iTSn^;=7n1~(6Z z=9$f;s^1K_6Wb({Qxj|kvcCn2u8ra)X8yYx8~OG*!u+=*o}yuKrAq$IIg1v_**CG0 z0P9^*V6jlyn`0Ug4S6H9aGgnUQL{K#oO7GW6Je$OLd?|ocJu*k6iz1D?~pgY=Hgtx z7YtGhqQw;FYTl21o6yHD-*DyPrsx~~dYt5lzbKMBia=@?MSNn+94R;|U4k%n+#LBFvpJIR$>f}RWpJR@ zKQ(kVs@^gU@)scHOp^Np$Zau6Zbl>vlO#n2v7bE$v9e7~lCNeXat)zM3e6%yOp?<} z77(;vnW1$^>=f6@wndQY)sgX$q`aX~8y;^~)TcwKow5qKtH8dPl>6(oMgt$V>;e-+ z!)%R!9qnQ0oZpAO<@5R#_;=32nW05FujjC0 zIIkP(gjhKBW_BIMH}jwJAPMVX6yzsJJ%@#}?S`YBzo0UYosg(?7$eSwMg~U2;1YFiL*UeQaRDx z9~zE6>gQ~JOhuU-cuajasoEC9Q6-9(nBiyxHu9+tu^lL2IJz_nEM_>`9Mgzc5gO3K zb$Y->%?w94=Qfik!f^Din5l6s{|;;vPNqo1(MN(oYC*J^3`b@)cQ2ujUB2PUMZ?kE z{(79`h`%V3JLLg49PynYKNh$fu?y1t^pcU&U^pT|+hI7u@6>SgE0`EH9FbogHXI#E zOe;0;-^AIC7KPc3u;X@^jh<&b&=Rn-I5A_$-Mnmm+;Sw9h~vcH0O_*&S6MaCaP;S_ zlgal_3&RnmPTp?RzSz5czUacMGnQ=+XzCLG+{VI;N4t>fs_`fbvQy&(vtl@`YA*7{ z#o=ApI=nH)u2YIbdSVes?UIlaf*HHSDoA%m7&~t4I>0I$Ea7(o!kn$^kFbQ>V(Z$3 zI2N`piV0$r`4f{8-V3+~@bJ6g>gXm2=?76-?XSY!uq;f>QA3EfElx%;S-Pf`@FF;E zvN^)RPV8)7EZd<5s`W~LGs%bHm6Ne@y;Duf@wJ}PY%jEt>ymmfqK`(5+}VH zTTnBWn01HESnr5|l5cQt!baUp25g6BtdB=cidhftgGL7H0T#>Khr(v8uV@{q`w(rh zax>P$1Soq|d5a%w#`+rcEn5#7_;=2Xm7ztk9^|lMupSudgqX4PW_Inwj~4fOkc9Qn zjCD7u=P+Y!gFw9*531~BCoQTN#+rYnfa`&JSlkxY+&2m+X4u*b8o4%cGHa%f1E>*( zt^J{IKWk=aQCKsF6$5J;>cj`?>7Do)_0NQkPLhW)YTNCtYoa)SvE}K617N4UBV_ax zyAmvJ3tN`8j+}_&67%H*D0|gb*s>q`_OoS%7KJTySTV4rp-zy!Rd46##8W+3Qbne_ zKeV^r<>zc}-NDU6pmk@8RBemB_0A|>V)oYeVk6%^N9;;xla0I~R&O4}>fs(=JeJL> zibeC8DEOG+_5PSf#0vK@XyFptsC1a&6(`?jIz<>>ACH+D-=(&4@w{<8;jyE5;T-};!Ped!Y9t$LkjgP>4%KVp z8;5XvuwlH3TZF6#7kfsbi@js8@XG+vv zE;j0BvSvH9#UCCuDP~zZ3>q11@mMTx3k%!gS85$Omp8X89Zi6;SCvnFv9|c*p>O%f z_e)^Eye&RMi(*;IVZ~rsGSmsN#p})NT9BVM5Ah%g>!B_FAX3j^i(lZsG*88d_QtX! z0-z3K%Isq&B`Pe&ilY=z-N=c>a$kj6@pW29ZlIX${j~%rdsUeg)3c#+gzf$HP~Fdp z8Cn!p%wfgAiiSG-8ZXKBN;YM^k)IJac~BJ0h;6sEe-0p%S;tOBi48wZrjxU^W3k*< zVK)4Z){z@1#)jV{K-sId!iJAR-+ngC(4w$m4l4#WG}H;Qwd?KtoOr(nOTnCYEPZf3 zfeqJiwb8^ZB9N%HL6Qu?eg0}cWORozx+{iCo6GfTdBbqUm~c3qjgLgKoDK48^z*)~ zvXq^?5_`^uMh1nA#cg5FgSC#_Kr!}w4gtzuwH5X}1p4-~Cq;|;z~C&TAGd?iKg34$ z$RhJ($k#5NtE28La||C{Efi3kS_F#K9mMu&5!eP9sR)A{4;qAlq0VzXD@tHXZ|s){ zJ9Ierzw)NC0;1tyAGAD{lnt}72`(AX@0ppibL2|YJyBVr^B$gEkfe0T1WPk zkCKZCiR%bZ_NuK2i7DvYFC-{h)aB|F6913AFM*T1sO|?AShl%AKv3a_sME8|HoJ>} z3@nNuim(g98W(Ug+dI=U)4e_2V|ULk3$CJK)YwLiqXCRYqQNto5EYFY?|8&3Bqkn- zF?c5W_l##e{@+)}uZ~~+>i4T(cjGRBkKlCu>Uj0utM{tjd-du~Mdm4xKRhAvo+41Z zYlPT-UjVjkA(7xghmdg88TSeaV}&VsVfT|QFLq{N&6F4Z{>WQ@V)l+ix&+C*kkci2 z5UV;AZ~cCMZ;FKU8F==PHFS@Hxd`5q!B+Rr^8Rr3=keaJ$>hX`kOE@?x$ye zjo45BC~{CYV6YBPNWLbQgI@MM4A1;SU2YyZ0J-Gd`E?G{=NRw%jY1{dZUy@FotPz zfizvh$cYK3s^Y1}>j}n@J5?X-TWu-cR0U+hoB9#}Jrr;1_Xy3<{kKtCr7?jF=EM7A z!b=`+YNUHp8S|&OPqQm3$?;1uy3`$}<%wM{%$p(hxpT$Vl9HoEZabnW@b>tjn zS#_@KO+=MS1@A~uZg9%jw6#Pwyr|ux96a!m))#6~uM%x)BVA8#o=V{H<}^b1DBW_J zX~W2eQ-5i?z0~TlTTNZKUb|i0?TTwp^v)PF5JvT0x7M7EU9LgU-gDC(zawZBYpwd2 zPboQAt8oam;J#Z$uo3%i9})tk+y|dTjp9`dN#D3N@$lpPP4XFA@eriXXEx-7=Z^}S zl(6zV5{(?DU@F%47KJ?(ms=fqMUAxbT*`n-ud1H}LVdTJ(6?^o`6+}%(svu9#V}4L zu;Q>gIO^o_-P+C4l`WYMC{lP`29l^A`EDz$o`(;I?lQX>BkIhPPDoOYf)Q`xVA`Hr zD%Sfd%!s#G9r=M0=Ej#Zpwg@AjM%86a)9UdHdN1M#276GBPOuoU_?iqTrM-aT{b7~ z$-t7yiT?h`;B|U-fAVZiGCAkj`UF;WC8M^`#irZWgJxG;Eqi5g|84`uMWM4ohz z^e?(dfAb|`@9fs9)AQ^F0>?guZzX7-B7Fsh(d@9*t7YfPa(0L;(){>83Yw=dpMB42 z1mo?a>1CA6Nm$z#eG+PaVfXImCX$oi0X)7_8IedB=ZHi@=B5DS+=(AAz*Wanqx@X; z;A*E+-A$SfT&E2pDi|511`t5hKlut z>zM1I8b-83AyCi`o|#!PnUNJ?CsE%By$V7~BtmyWC?%?=ZA|!`u-x2rpqEZF=6&ptkw8)f^p<#Pv>0{n_=8p#ucmy>*osr z`%tW(|3%nV)=!QTW|(^sp(l^^b6tk@Gvbm{-zthAxdJVfr1^<}PpTuYW@Pr!ed5ZZ z%^I+}?T-!ek78J)lAxr9H*4gT26x|U>!Y@c3wUKtJ;Vrp!o2>Png@)Og?O^ zpcdSi>LlwEFKk6HHg|Tjoj<>y+8B?zy=rTw%d*Uq4ZFsz*UZ{YW^FQnYj$t?sh-Fj zW|wN}#}u9VN`s?EY)5`X2$a$ga2hol6FOoqyaRM$(4>U!r>Chf>ET8tA~0xJ&louf`3JF?v@efI*@ z%e+W!X4UD%d?W;KFs@&bo#Ib=p^%VBr!XD~7?{|~_NoqUOE z!n90O8#03hn3f;<$pVaa3N^~lXcOyaBGXQ6SeFr*z@sSqrsks)y=XjhPVQ+8AW-`b z5VGa#nE=hP|Dj@ih1+Te3~bnZ6*q3QTBgf}LFQ@<9x}^`NTW;fSx)cOvov(2J;`kG zu$J*eI^i_&Kx-{XJa|W!W_5W4ly(e%BVksT#+i8OJIv~Ai{de>(|2xGzYP=PW_9-0 zh|TKfs!-YBEMAp>AYpbH;owcZy1~S+zJP3yizOcKO)_fPT-Rf z9hsw?>ADU#W-3F4tx_dT{>Hn`a@x+{7I)JB%Y7$Sn9(X}HD4*P%TPDKtDK*VkrHe; z|9dp`Z6Bn4Ss2bg#HtrJoZnL%(yt5wQdiQb{dpm@ApTO^`pe>w{2gt$K$!T| z3TS+gU>v!L{~=xpkrLXhpiCI|-vp?KV%(4Z0lW*@CqkP!Hkdj2ErNKN&nldmY223y zqv8Zbaa?Snwu-?f0KL8~^Xh13;NRy29;3y$m?w6o>O}Y<-L&sc%Ed#BLPMdM{g@|~ zQWW!qN0(%HG}43>3y&@~70ZmDwDw26dvPj?E6)q%%ElzM;O2fs>Ji(#uLyxs8Z9oT zMq@%~?u9n*M$n{$sc{yK9A`c%)`g3G=F4qre1_GLS4v5n_l*pw^s4%4G1TUL6Z+N< ziDmkoc!MHFi*bBPV8vl-bkxaX^R}C%t8-{9X7irTKoZp>oA)+W@7}a|zY`Dv8Ac^4bkGx=8v-^`y3fiURv_f9Wst&~q_M9Mw5?-*Is8QC2Qk{9O<&G%W zg2?~1Q64OH~S)3qOWXCNxj2jk*OP?49RNk;vF%TLD-V!u>;Rjo` z8iB2^Vt%mPGqcV>?wP5hi9Mj7?Z`LwQh?}_ucRM@Z;WU;WVQ?NjlJK(rC+59_Ioci z%FlkozIO4?xnUkajd`zKxVQeFW0Xv2dMfs5dNeQ`QHt;W+iICkoIxgP44$pH<5?Q2 z#GYjK68SX4R{E5*B|`ibv_!n4OaG9x83g%|51mO~6LPJL!#7=@>r@x&y;^0VJyUCTE0(DhnK^s&?V0iAerDB*=yn*_D;{ov zA^SGoadEnYR>n~9>lE>CwVWn_ZG9n{yqD7rbavcH|MmNV8z{vAbQq6*d&uJwt#rz-x7DaY$cY z1k!X7FIh%-t<-{TJb_>wx!3B16d9J{uTt)ZS@Rug zG$v%lUg)e@^%=fmbFCI>BR>d@9L^dl)^|jOZR8KJI`S@I>8v@40hL}=Kh%UeYfeGm z`dQ{4*N#Gz+gx*d?|tdmYgqPSqgSF!0N*pQ0#z6wjkcUT?y zff8(ZCj%L6@*7y8a-!x$|F8z!*gU_(cpTwX)FT{b7)mVu?*oOthe4Zj=234%Sp z&E}Y3PbwY?d+zsHv!isL)1>6DGY~%rdmaFQve}cPCBSR=z#{V$$RD29aJ&cDuV48}Aig149lj zlE%373d*3i@^ilZSWe&6inx>hyY>m+l!FScrwtyeIjd4AGpGye$j%U>ebzz-d9NzVV!yDql+Eg6UCk_tj34VV0v3?=(=tNz)f*oJf(w!|n!R>5< zjYl4)u1faz-ylcDUuu+|f0W0di>l=+X`G2d>}L5W^DmdC!Tv!^n8{(pFE!M&{X<=0 z57j@myR^92?)0X*3)N2VX-jw#pu7A6+H^0+!>21t=laO5F5G)c<~5EZxJT~ZE9ccG zDgHhMaKhjB8))~T`1{^Se5L$-95KujwV$AE=KZv@q`$9OZ|#VXAPX-!%+#V?q!963 z13hxjy@1#m;B&RPyIU8Jx8lH9u(jgBcX)ZwVsvZ|$M$KB$4GN$Od4gi-}31F_uEfW zg6EgmRqxG%7Ogcm)H-+-6Y0$AcxHp>L6jm#A(EEiQ4M;jgF6gM{8rlbT5nga)`}*P zAY^`WTYVd&s`%BwFFesvos*xRii8#0Dy41PsPWX!YEz^)*|rV$)mpu3y(N5-?M|oG zU2Nk`-_{&n_W*FyZKP1EPuJPI9^f3=2{F(Vn*=(cOluo2dK@19Z7$)}-)P&mUUzQF zKNubo(FfyA@vboIj6F!wtubt{ohso3Qx!?T!IW1F8IhWF{)ok{jkg@GiS$)5%B9TR zzpgd@l-1aK6l%N~JwvL}h|HsR5F?}3T|QVE+hSN6TH~(_1j`|kiL@U5;2b7U!`Mwi zbRhlGy7<9BKpjviX?-QYxow3;sbd}dE}=ToVot5o1OCysd$*)j<5rBQQ*eFwiqgi; zHz9rPnG;f9v`!x|(1eaotZuDqKfEWT$N>rSu?{Jrb^eHf;J(NpL_ukzbeKKU^gRu2 zm7v2KA0|fUK@v(Ej5tW*;vkd>Q{sixXiV(5_QD{Esh~*-pUZV<iSi zIWJs-iwvmrs=A3TG)Q6zed|7#zXtmygCt_K7+!z`RvcacN1Z%D5_Yq!b#r`UO9ql? zeNm9alUcocH%Q{m7*l7TbW+leU9jToIiU8XK`Pe!D(s#9fYp&7D8Y*FV?d=>)mgFe zd{hnylK2p+XR~6A7K0TNSaGnTqfT~^gxx5c5nq>qqTGx)^dO0!0WzI+(#fc?;g8vL z5?*L3*83{VhKJs5cH{?2u;C$SR8!iI;V?`$@V(PFS+0xJ$SbkxZeBw@G9=ENTi zixYbZt5{Ut-flN1qV{4BhyQ9bD$mqrt4qz^WW=rH<8;mNDf75NQtQye@}dX%b|>wl zyHRZcRs(cC$J4FEmUea-k8StLjW=jd4E7yHIFat&@kQ;z9vj4CLjGRBcr3yARGgpj z4`mj&2t#Y`?JxBzKGu+ixz4 z?Zy|5#QB`xA~OX12a8NmAlr(ep;AMTICO=h&W6E+s-l+NceXw`FN0L(&c@##h1gt` zt)HYfpAMTjz4;fgszV8}`Cp4f=~9rLvQ$QQZsc5SwtK?vZe7DaV)bg(y}E~AQiYnRKI)%LhV;)?gzX$= zHG;n6j~xy$5yhi+?|z=5TlcE~k8fv4gc3nPM5rP2R6tPBITqsl*cQC?NNSXyw@NcH zH*x80X;ctPucGjNd2Zka*lrkOXKy>6kWE<@BlNiJdXfVOok1Mn}#e9j1;<+zi5;|?T4NizNL zS%omq#F&+=_)x7U_T9V$p7;!@XOt=Wye&p;a0Jks(bT7RtO$qKv+8C9(2*AViMbl_ zDJ4~hOLRzZtw>GfW5uWPVGdiKh?LL!NAX3Z@KLmglmltW$w~1aYC2!@4-^`Y!Us>6 z<~gW!FGLmn%0KDfB5)}Y@AD%RVjJ}H{4^~6vri~Bd^F^vXf(`-Dte%Qs8A~M;RC6d zU0p;KDLLD?g9tJ5s3K?50Fs{W7c3Qgi6EjE1Kyzo5j`3NqaCwIa?SC;B2`{0cr!DI z=u{bTkqpk@uhhgT19H?<0^u?*D_QP#796xsq-x>Hl41A>Vuo->s?*}1UDR%Md!40e z#9vkU@$h;&D2m6-H?0YCYOWoQGPx_40B(up< zcutaN6b8m(y>7r!v?S6IkU4i(b+-!s+Uwy|oOEp{CpE627TiUzh%{mseJcb?X^PlE zjmCud8iI@duQVp&9svH}(VAv`2X@QSBC9zANT-i8U%*E8#5d#B`dq7y;IL{7(Pk8{ zR*5z)b$i5w#L3l#nqcQ@SKEU-8=MK<`rH(-cpA{nVyC^c zK2w_!abKnn!Pxr=8=q08SmOmjNEd#C=c17#gn)|my}#38_VWGrL$DwIiQ{ySBnN_q zWw}90lq;xTZH;7}GAz+3Z@<5iL7iSzKj(+W7`z63>*xE&)9*yqY>u~_ZiTyw%u!Ir zGJ=>RDldXy4OO5p{P7~Ae-w>;Cj=eCjlV(V0N42^QN19B)7%PQEi%VE7(P69E9e`3 zt5o6ohehD{9vY1b*FP?b>r|)0s?VFEA$=9nUQD>a1*$El0+kw4#^F?O)LHu7NM}W5 z8>aMKI#9sOe9z7xG1a4ZpJ%dqo_L?%SLf%b%tDi=NS)bAYreWzi^`j@v5Ft^JAK`_ zj20xbJZ?Pn=ppG|z1yo#%cy2?iZ|TY`jK6T8NEoM<*Xpi5DI7=8aWgY6&tMKm4hXP z38`}QA_d|Tt!{HM@8cPW=~V}jg_oo6Y*`p1$#Cx_aO7A%jye}<%cn4(D3sbGWG{wF z20n8yhJ8KK<5@x6C>G2fhP_0j2NmaEFy2UyS6E%8bG|0wU&g>nuR6#gxdnY^FA|Oz zbAyx`>G9Sga}=oeiXycG^K8l9Uu5+6ju68iERNx{E!n>onPVOd+aVnS&vvnrP~R>B z$u~xb?f)){?bJ=#e*a>w{`7UIEm?tVYg0z0h9Gfh6-S++MS9qMXX}$2GDv0W6Mugc z>GAaJ&6@PdlFcHgPj;SF9ZICfWDvE5H~t)Ilx1E~wz~+%Jqq#ITqg^MeoKv8;-t00 zct~O8>eXnbLN`{Bg-|WTD}vw_F&mdzjiC8XW{)SNL#9Tw8~ce*AsJ7=aK6JBtsfDR zK^Pq}@dH9Kc3ODxFL}WPU22q{2_DXGaAufn`Jur!5rIxen9Vg#cwuhf2iP|x#?RhE zJdcqyvALpRLnc~V05n(?o3OQM-fp!^r_mtO)P@e3p%M97bcT2B#WOSxOZEh_CBe;% z7t%?lNdj6{L6X2bx(v;c=K7$}9O>$cSGglJhuP~qp*i$jr0>DRMEV~3Ys8^Bla!c7 z892fsbk4|?v`6(mj6j{Wm)BdhYKK4LgR2EBFOV9d+}*u^XDK@M8)}|(JV%(bmIe&F zSShuY|7uDjlSOj|=B$W2>A!VfNWG)5>PonCl#OYIMKfZ>U8iiu-;`8Gk`Q{4BErcr z{(_@#PC`?7qVt5TO!!Cfg*)(3@`pQ2`iBY)ci_XP%Q-7(<#>h@laqDlkE||}sKmfF zj-x+E9`10mf2F5HJ*Y*Nhn74^W;!BeLQBxOcDtd64|;6&%!dvb2V z-3j4lWXFiZA3~a_MY9l-&9!KBdefPWlBDc=vWcO-5u;uUhxo^J&;?PhfUPU zrQDD?Ezq(OU0$8rur{hA0HaAU4>-#8N~pwgu}}^ci?1grv?AKbo>+>eo7FDQ)Iu3l zY70o2RBhGTOWl%qgGq|W`{2wJ(>^_vX&X0E3m$Tz7-7UA7cU8cQifc-h#Db6pTkQ^ z=~nFmD)yZzO+&WVVE?yP zSLte$6oqif-o?O5ud1I&Lt`l3i@x=vXq|p1Vklz77zeckUL5vEN1eCsV{EA8i#?h2 zJrh@o$2VS`K{}$cuu;(p&v`QaLsoSt2Fm|IS2}N}a~XjuY*Rm^M)`%&3$sbdLQ*cst|x^E;V+2fUWSwAEx9!cGH>k{OBQwTGe;|P%zDgQgn4e> zx*ikb<}LQuh|ODPw_x7twWr_|2{Ub-9`Afo9zU(9o_%Jm{+sr8OOHMecBX%YmhYDD zN6U>@YGwU3)&WLCMY+@7H9;vNCvd2}ehPm$(_xqNLHTVsy+|$eKL)p?Yqgwqw?B$I z*$1idEgkbmC(z48rgh(K1!}Q!)6NzbL-Db{6`J1|W5{JBX!tG?{RNu()R?p)iOklw zv+Aama0S@J1+Oe7c|ZPn`{#?mZi;H%;3G*R z418*tG+sk6j@-a^Qo0;TG43f46UM#g1LUC?_kK%AR>nP!3T9z?Az>x$9aPQe^ynwl znv1xIFuT-Zxf;kq)PotP+pP9#GLunnSG%)=eX+g$vB7WPeiYLk`bD1{)tQ1Hc*Yuk z$XI~Q`w-FCx6BD+;x!A2CT#y=J~ElG%n!Go{lY^rB;PNbMt`yA&)Hw;`vn0pd~c2C zYBEz;R8H8lT%JF1>+<}A@b5$L?kJyk8m5+uKa4Ux_Ak z67!MCgxTu%9T<|U-*?hqO#QOIJnEN2oCtlveNqqqHt%ev%TG|_jYesD-ZRzYa6Zp`s>a=tyjAq z89v7tR>m%vh|Zs>b*HE3Ms9bpI$fKL;wsVD1s7lo1`%F{pcYhCE9Tz>)5q9&vp&@R zaWYB#r5b(RYGkgL#$D(lkq_fdC`1e@jc0S9&T>*%zlK-;LOfFcw!O{3qqstZ?R;2A z-O&lAlshWN7lqni#1nR@d>8;RM&on%kFiiC);?rot?_f}kEyuN>(G^S;DupGD^l>R z{F0O(Zg~Ea;JGIao`3ehV{D*W_wKrK?a)@mAUL*Z)<>))twdq#Azo~G?K>x;X~2f< zI9A=iCJ-nha1&c4dObpRLyBm@j2~gbIKKc_(K0EzUV_f ziWYt7O_+77f1uFVLq52KsVRuklS#49cU3+aZ%YwS9Q=9EoI|!*??w?4f zilt_)tF8u|!2=hU`v;+3eP+3_3IuT57ZfN7`@%nAzgXP9Fn@64M$Cu}tr-{iCX^kr zKQH#TnSr}ywH?)hHFZOP6{wlNfnuPuybPqvRm_G3?e5*D5QgIQVp2xFve#YMY_@l? zyiADDWzW=!O$m3DR9m~F?v5q`6(wSZS8L|r_-OlitW2ztaJ7GHYE zRknnP#<}Rqi#A?#DMEdlT{vN?I}p-4%^p5P?(BM()j-%0UKb<-baw}}pw|e|FLFfT z{7f}si_pFStYV{!L)oZt5w+l9w2EAgFxu>pwbGSUGDq}kovxITdXWNhO9+rMaP7&| zXiNyKAtWyQdVI)2ZZa4@qW1PiZMw&TZ8uBHPNXXF&z0!XUbH}|$>ys&kqZxuS?%HO z(e@>r5mfC8=djZ5dacP`z^q2CrG>@aJZl%rX~vU+w728d?@r{0K@PuYGo>5u)T`Se zO`}cYj4fpXwIXsvbZV8k75n=v$8-TSvcH zOfKm_65TI`=_y8&5tEz1k|QS9QRfr)9d1>Gwda|>x8dsW_(n5>s#K4XKh;@1Px7a& zhV4S+e`4tjnQRa#2Pp?%4UzHU@--ebBB#DE!D69ym|`LMz`7$XLu~C_k(Sv*tV*j? z;pPLFfxep3IT>@7PshENPuqSvj*9iZ{40~Edt$hd3sWyrAb#HJ)(@hHmA{*Tm|j(1 zmyK7Ua{j>1#=oL^_PUIbWUR{sjvVXKQRmTva*9Hy-Fxk0@%}J!db0gEH`#dkH*4967K@;~uoAY@AQ@o#Q3AB2~M- zy0F-UTTaxf@VgScZG}h0TveOH6~!*PM8FZs&0N1_L|2>L81#jlQ!N zQH(fa5hd{ESVWFGSC4|P6pHN;vlrKsGVq&waedS4B8uBs0xeod0sPmk?K?W$Mw;{}yr?1MOM{argH9BRgKpwSKG3=WOLF&xU zk89#HaU?s11+kqw1Z*7}7KG2id`quFR3cqFmE^9+7_f464@TB%XXfhZYLf!x(L=XR z+ayYl%)ZobU}i98?JZH)7#z3Kg+&nuZK{eS4l~X(wCxKN`ysnn(dfi~H)UkHv?0MH zt`3m zb!rmXTZ&9kpxRQFRBDJFhq83kxn-}F>xvOfQz135P4NXU` z zdVL13Dnl&dOAdowTwRTGlJmyumGPwyJPqHQZ_nUz$|;F^0IF669VIWQB%sZ_pmL4b zWtm5bP2r?N_h%5a1FLwgi8zZIZlACSvaYymB3>yJzdE(vQl~XVhgnZj*A)zEerbUH zt$6L_-o=pfTIfsTPWrFjd+&U3+OeAz#!ZGxhlYH%H?Xde9-Zi&)iQ5qrc}aq#qmWE z?=3OjT~|H4mlxiEraqA^@27~U=b+zVx+rmxZKbFnsTKcLMEZq)R=&XG zpX4Xf%KtFcthx2`zO&3n$xEc;`~!s&i4Q&yk&aGCco(G()oMv<8D)xM75@}{6kCm^ zhyu>Dtj_n3;#*dH6pdmTFJnK^KU65q`0#-=%dRd$%9W;Uyq1>E$gi>=VQw^1vd1W} z65-{2fLT1eoW+&%2=k{A_h2(99>nI;XW`F(B!oz2g!%E8AP_ncP|j@$(3NSQ74z@$ z@`@D)$)d;i{{0L?;SFM9Mg;lKp3pwJI{<%E(&8=#{o@vlaKYZ9KECG|jWXb4uupF3AzW+`yBFGM}H^wtE}P6ph&P z-7El@Z-n9jCRj+jsJlhfjZn9a1iNY@Z1_3&aN=fpH{wzc!;+h%iO}{AC5#rfB{0O1 z76P=3D1D0)8n>;`o(_JH2USwOo{)k}ZIESa5L0hi?AEvy5a5(VkTKuM@ou7M{re~J z02lcr^uC?f9Rq=VS`H5J&EYMFYlK)8^O6L7|J_>ScLhQEX7sEh__Q4SsSTFEwiD7V z+hRz!XpKKP5TuuJNQbjJlsL3!l&;3efI!JNUP#m6w;+_raomC^5Ahnrw}Vh8^7np& z8jT4hJA`WxFH9WcVCLqjE~=f~EWYOA_$QgVnIHJZwUgJC*G@!h){Rd@n5+mfARMo?Im0!6Q?)Wr4_)A%Hdab7=u}nZjN)Ju%SD?C=OWhRo~9qmQcdG z`&;1F;oYTT!x-kZ`IZ#+5iDU@OLAS<94s z?w~|&|F_xuj;P$k)6lf8;DV{m;p&vr--J|xbG7oOaqf1yda*WLpT*{bg<$Y7(Wp&P za4f7s*w=9Pjc#amab;;XqIcD?ohdEit%=$UZocuiC(HmjYF))c0&=U=b$YXs8dfaG zl{qCaJZrpS$HoM&9zkgZVh<>)n6muZEF?Ea@aFaIRe-s(;-$sa2 z0<@5fNcAZGw8#`4LMU~B75{09@^s-z78bDw5=66HmQ-qJ1;-A=QKxY)DpR!{Z9uZO zAeUw^4jp9ZdSm7m1mTuTc(dpF^xziSEAWlR#_IL;g{1{fp{-ob8QV4ij3YEA%@$dP%j}6?)_;^N2x#5gP~Au1uT3l02~6^G@|(c=?2iFv=7vzGP7)UCh!ZLa2#< zVc1BVEveX`uveUU-;4Xc)s-JCvA6jy11r7iAd2FL=sR0caKz+P6f5sB(UlIkwto|- z_hL4eqIh7D(T_u;QJo=ALf-{3oTez&7MWun46DN;Td2u1BrjIW?7||DTrfgxUsM#^ zsjA|dB2yH|wp0a`8iK^3DjaoA$r6={9(L<&4e(DH!o}18{{ASM@~7EmQ5j81Zi}4J zl=rZz*?yLlS1~md=bDOtD-^vfh@Qg3@)By4)vSGDP3`3j)V}4S%s`4%lC=7X(=N^Kf1eI18Q_ z%`%cZW_z_SX4~v@7~$J5*P^P--pjVr>f1x`RazXmG%4qAj*=^otml3HwR!;nwoAeY_GR?R=f@C@SEKFL3dFE*5qqQ!=KL$0U%1BFJ0^1;(ZuoZHB9>>W4(;sm-HfAR!1_Ygr zfcYcLdhx2Yiq)#U-al1eRBw;NnJ23E5B#I}D91<1OSxtLK%tc5gAYWx!wp&OqS>KZ z4M{MgOi}AE{nPVN>y7!T^&bByK5Fq%G-~a?PEHAbsfm2TKSU^<_^<=fX;rL5T{McF zC+W_Vd;C-K(dH}pY4ZdBC_dWoQL<_C8~+fYwBf@JM4Q9(U5$%8hsX+&*;Ikzxf8zb z+n{(aJspdtIhEAI{iFB@#7EHxv;vzrIV1MBn#`I0VM2+-haQMX$MB7%zS(q<>Tsi) zoSjvw=6Sh)p1xJ}g#1Li)<24mXnYinXx^R0ynmojvhl%(K{ow7;3C^m_OU@yF8M(b z?^*uY`iQqDKk;7dAH_#JK8i-X6m|6~{}7>MG(bF*TSFfq22!_%I40PYmxl}emU(Na{5bLOfgV^bpFmiLNKTpJP_Bji z4b&R>oR_t%Kx%fgXrDS5GmL*)%+a`Hw9C3KZRp@Z^%n6OJ@$lpY)pRz!HPqRZlU>$u;8TS2(YqO2vju*9VsOptT;5&+t^_dhIR zo0o@cDburVP)ndW4 zdmZiBk`Y19()P&?+<{=puyJvSNq$gbDGI{1@cBO&jU1t2RIFPDZFhj_3qMSYCy#wk zW}yP}EURn(8W1r6>lv8oRdugI=pB!9(6{bK_!QPj@{R{blsWIz?0lPw%u$eH@ECxp zBBMVw0K<(ZqH;i_eihXVVmK`ZU{{ej=D~1au-Nm9!0}u(^7$WiZVtuu9~Q-RY6QS* zicC?U+KK?6QbVjbA^;q9wvAi{EAeCxpQTriZ=9GxO&LOPJget>&{ zMcRy4r@K;=guFJxw`dLHRi$9d_NOfNNSF6?Ob{CE;~cGaHhwBLSj{U}52PE4a`VQ2 zD3~+@NCie z(TqiqTQp8<2SRa6BhGTTj@`)Kh!+awNv+Q9fY5pqk#`GuF~X2$PX9pzeFS2Li}s}3T%wxI9q z#l_KLimuencB{x71>(J8OJ&WBJz{#1S{TnP0>RTqh~;MmVA&R73Ep#vFh`xo4q*W* zjM@Wai<-#{bmkT{SDBZ=Y%!C#{YhlE6-;-N^Cf3P}A7ZaMg{x}0Fz3Lzm<6rc_~A&D z|0x2&4@ZdQp9WyrmM96{b4V0NowGI;T5C#(*nMUTk+)@FFs~5Va^(K|?I#`FQF*r6 zhEW`nLE6b!0Su3^aDmsD?P9L3&$a5abr{7FkK1Ia)NzYcxh?28M$e*Aehhvtq=Z~D zg9R=WmEuuF>n?vKnmyb^$t=)kXLp>=BC1Yz+Fd+6jZ`#q^_{hrYR{kR74JvW_wF=a z8bSV=g+)B>7UFl+kB#sb+V`${CYf^E3F?bN8lic@-Ukb3tSe^L+6DOAq46yX7gNVY%qVH@` z$Wdd8Lhre7OObgB0(iyY5$1Z3h_;Ir#_L5OnH?dUQ>7Mdp|X+lT4WM&jBm zRG9wbB2c_|gqU6qz_hJ^606>!fE;zcd|#Hviq!VZv(@CoGU%LFP4;_6WDz^qOTESq z^-g=hOr}4KCp|j)xU*&SrG$GU?Z&kuyOD()CiYMtQ$GUSjZUr+5ZDf@y zlzk#-bqJO8QHHg|&YX(#t0d1^|0`BU={iQ+nSYr9m0ooab@WyAovn^IS_0J3Pm9b` zAm6KwykTG~zipB!9c3DJ4@9F;nJHJH@4VQx1!98d90Ji%=gD$MKHT-F)|EYGwkY~g z2LI+3MPIO^^*03q}y*$PMqJt`iG(7W2|DA%&Qk^z-obr7NVWb~cAEIC?Cp_jTN+)-qX z0`Xpfr&}`x1L#F+T|T`C1iMFw?)vML;>JolQ6>8G{UxKh9uHxTqHNw)Hitf4TW%&aa z68_E1i7FnqNB8q2B?9;?;Pvg#Xe%cY0T7{w%##6$0Df&DHeGiS$bvV2NsaRJrWONX zX$_Fkj)^$tzf1+54$uI~RE(OfPLBXI8FXZq{145pC+SVd3!=A|+vFvG8F(9X$zMjl z$Fy`@@@Elwo=g7ponP{Q9B{xd`Ln<7jZ6OIho543t%i5WU-jv`rZhd4v zC->kh<9F*sOc#t(?`xwIfBN#sa~3uU|XT*sp(Z zr#3s&o?f26f>c=bF!p|jf-rII=*fV1DA$f&Nl3$x;;|x*33dr)3nAqZ^DCU!j^@>_ z?x7;>5(_v&cz>tL)6UB)15tzT$G{kQs;ZUvdI5k`7wK9S6JVD-obPTITOCB-b+Ur@vS#8TMDYmT7Q^q0$ER_ z&FNYBWVBAby5>!LdHNG$9{H5bLu_TE;n%Hgj*dIBVvt13zDn=Uagb2x>}Q`0z}s294^ZX+tD4WH}qOp&WNaG64 zBPR{b6LUqV=6Mu`wu?U{P2u=RLWV=d)MB+$U62XOrk8qC?b+E4W8@M*I{T@12hUTpJo#hJ zbH>UTa{d%W{9AF=RbH;jDd{)Go%H{FFV?s*HkgppC4B#JLm>jwtX9&ngL%)6vx)u% z`%w8)(WV}wHCSoX(A2lqty4;sRX5L5ha3DTre@^HIz-lxI|@~xCh@G|li0(d%99)G z#r{#e=_}YMTKWpF)A?2Yfr67*u)$5ys^7uRL8qf^LE$3Rp;{$LEu%~k?4AA@`tpt3 z$!3%5iQHUN;Bqg6tGR{WrCfY#+rbBp&ZkvC{0pWAXSg3v`aH zIw4IIUrl=XN*Bz+y0ee$cNn_Q5tB0#$ee?_cs$sg<4^DlHqNt4t?3@(#3_P?1)J|c zikMD|Kgt;6xo~@h^h-mL-gpAF;CWM=llmp%5Bau>V)2pA2G3UV$DqXY5G=1hWR6Pw zwGeT=nzyAeMH$(zzkCT~-~vE=b0E9R5`lwoeHmLVAJOF3k}$S-HL#bnvAF{lAO?#ad4(%324(6|Gon#3^}pgg_}>$@A1` zOlXuLq~y6wESNI5Q@k&(`2V7&BT<(s`PzNLRfIQxa zs3!SS(drL^upoljo{dJ1OC?mS+e-Y&ay${due3Vy8eQa7_*)oI=~Z?AduVE$SD|m+ z`+he4z6)>HH&%U#>Dl=ggLOGt%wRU}g_5@ynWsR$6`Ejf~P;<|Hv^X$w(pGU>6Ywkz6PpMymUSI{D=H;cdV z$_1+&vCW)pK-REmq1xS1L9P|lrX+Ukd3M(Qt~wH);D#>_Mi4=`fH#esaERueqbmsF zw1oKE8eVfJ16mC?-b$hv&6@39P7$Td7lKDsfkN`HfC^o-q%U*Y^a?TcbB;edBMKGk zefh=Ip&DkTnm5W6kVk*l?AQ;axCeIx8jWfJ9gDuR7Z692DL_(VaL0?xQ4qo_vU0uZ zHCbfzb4G~a^8+w!i>L%2Iz*JC&NF_u3tE%03E)=skL=ZZ&Ds<~7-|UjpRO&xY*{{d z-(R&&2!m~M9XU)Y+kz0T`e~3jY7g2WeP#h z4Z^(;vd=;z$6k<%^9xxmW~*Fpx!4OjWb zvGvzWKjlOu?Y?8`Pu-EZhiw&~(5BsAYd2nEU07_Ag^KO#*j}&4j49h|xPnD~_DZxF zwiR)cnv&ufqwSin;}X`~61IV@UX7W$koaNaMVGS3Fc^4{K!LL7(Jj^`x{L}b$M%^R z7zq~m=#_|F`(hR{jOYejzv4Af;^X4FmoTo0OKR-A%wIOIwqS$;m&c4*>$=M zrmecz1s{e+quK=@jlQ$RHAhrVaXnUKj)D|kalI;LBZ+3MMB(^RMaDmCggBlYK8~*} zGRHhPK2GA;5P%ZjDPI-tt3}}Y{So4RIso^!vP{SUhq6r8+0uog8AMs!bJH!ca=PcH zTcrpdw!*+L$)FvKx7R2Q1t39{tvD1H+C<6TW&Aj3m*MY^?lJDpJ{-wAL}WG3d55UR zs%GC~47f9PN6>;5cg9{zjj{~=D)Rk-SJk@g2K#KMy&&%&;*iF5y=`H_Dok&nX#Aes zfDdq*@j#NTH17h0KDA9dSGr&L_Uw9+R|xSzyyE3ldEZQWm1JnOzmbT?l%DdK4;=T+ zm`U4n6M(++c+Br%Vmuy`{gob%X$J+&KWOW+X#d$@HCcHwK3C1aUIJP>I83*(+Dyr)USWvtEuabFYg+|Fn#4xOC>e4V;= znV4_&{PFWE_(pfW4CnQ$V5&G>TBPO=rpcVVh+$=9Y4vyi<}ON#UF*5aa0ZK1uhhRnqrxTVEj zdkW_Xg7K1Svs;tV|F`SU9k0Lc{L^~1>wA;Y7(@Tq1ryQvGqo-r2CL6abr-ACwaF;1 z5{+GO0kjoULpXYIEv@9(4vXU(Z`Oy}KYqagf2l@YtC6V_8h4?KseR1qe&@JIK3RTTE0ALGO&q{@xYV${ax z@E>C@CK3A~8?lY&QGYCW)ws;QDqc;}aG{kbXkL*4&3_U!_oPAd&mL%uiyR-LwRay_ z(R?MEH!=>Sx$&)9>^T2Gp)})z4@9%0?9GUa zWQS^%B*ly}MX-v0hCYI=MpNt&^DMIS{iFB@#z)CZuqXNl3MCjHd?11yVeS=O2EE@d?XCsY7H9NhnpI==5p-#C&x6 zM1DGb**}VpPJEQSbowvG! z-^JK9%G*X-7GrLZr)!OIkR^#j+#h1sYuRO7x<-uHP!SwoB3l*wz1?V64Z)-Mf1Kg! zRfJShAS%*7(XFR$rBu37UO(!V*2Mpmhy>9jzva88S>I7BMfj(VdrZ2gAlk4Yl6!_p zR)cEcZPiUn3yZrGcZA#90q;)c)$T^PFf1YJ($!&VN&j4NRs1KOH`Cs@WtXq2kw69B zN5GS0yXM>78v1E2)!031dcH*)IPOVYQqBaxIYEi?u^dyBb(xcn+#}IO++Hx}9YYm3 ze>GPg6s*maU2|oVj5{xzqfXULd{Y=1uAQ(5UH%#b`6l%?aZj74>hM3Y_uoKM_4ZqG zuG?|hjY57^hw&8S-Zl}TX6x7EB0J+zgUi%S58V9V4_!?1m&{rFIP9F5o3j@T>EbO- zfX_mW@nGEo0;p**aI%Bt8yw1t(?u5PMYm;iq2xpnIK2H2n!?2#4-I z=4QI=0dT7Qh^yx}Xf%?MCn|vK5&2}Bq)6WC3f+hN(06pR(9IIr9Y`(4FFOEJI0%12 z1!Ri*bqDOXUsB9EC6MsPa`{tSyb94e9I={5q&g=f#fA{4sne15GDT@DW272!&ojUH z9FFK5p4ikxCgbUH!;oQK=h{O;SXoGphT!I7z|ALeZtgx^ZC?5%w%=ge0=dTYBDIcA z4;s9KF~o?7A|x2FjFOTdb7l44>*Tw55v6jRuKg1G6EM}_3n#~-aZ&go-U&$>oa(BD zsA)cN1WiwBfe#l2k%ns&$rmM1>CtKA(UKy)dLO_v{Lyb2ctNxY%+`N_S|1R4$Qqyc)oe{>ep} zPwEdY@rNVrGbH^f8K{(!;51h~x<7%i`#NsuS+bxL!d4C)(c*+pifSbbwj2*exS!DC z2;ME(gq}b8ehkq8G+xaHhLi++P6(^&67X<{wVN29=8}M%r9&hjZI-wM^tbAB5qoZa zSojvq->WH&36|seqSU2vzroJUx>?6_;2!>A`#>6A$|(LrQTA^_C~FBJIyt_L&)3+f zK1^*?(R~0)UZjbO+HP;@&@_lZ_(AVCU*B#G~`z(CJFnTf5)?@3f zDh!&;AfR$9va9nf!6J-UyqI6Wry%K0eLF7C!;A-$TZeT*Iq!DXXO{5ptGr8(fc9!E zRiiR2$dpS!d>u!h?0SE%-dbueby+8X3X-;+)Y_DVFaD2E!J8yah?R3i~`9Dmlo*x-+GHrrq-OTfB?8b zg7gpaof@7yY<8(b#OL{Y#wpJPWdz;XuA|%S^(s)r>WO|tvQ#8Ug&d~aC_uv1ON-bL zvhkpPuUcx&)uI}#r_D-q^>qEhnVnI2{n~Zsj#o-r$R5avxN+@dbX^&54zC@bh|25e|F=#=>!@(O__3aToGE^sNk1ORe(YhL zY(|$mYP)Go2opAPvGK9%Hy}fXBr9i9yyLzIxavDmcZm{IaIRuK$quxoL-{Q5z5%W~ zuZAtS<+V$QthMng&MNj4q&M_h2>ja=>7}uFlNhbD46- zEzttxYlGNqoDy$P=PXAdrJjqhVyk!?E7~#S+k1tdR&&qFyNvK zOK`h+oSYN5S`Obtx*PzOwzu0&Cu;az7dD}%aKTK3;(bM}HgW;Bn!6(@k%XL@h{$om z1Ph6gR;@lazr9WO#aKsDnlZ_OwaZ@C09SOQIk0pq+P+&R6r=@hF(DSN>9U)QIBA{W zOJ^RZ>_*{Pk)`B+R0sD81MXtVT)0qgfdzyn;yR2p240!L0+b%R@*=V%f{QUlV1Q1d zY?bzEd@$XgSzfc|g4nS*p6d4G)#Rae3{$n^dq67wR0%FGVZt5G-lPTBUCem^y=$41 z*_4tTPknGGwdoRLbD(>*#cl-ODd^mUcay{nUz{-aA(t7ih4eZ=2IqC=fyD<vTdRXQfSuaT2P-@lC*>`>_tfO-KB*j9lz262=XCxvq?L_ zi20r&kZl}6D9B6c0M7!DC_>Gco0^0zBrv2c<0qiK+Jr)xfycKA0-zM=WpI%noyf)@rxbv}$u)9LNmSh{w>` z7ahrTTG3jbB#f<)xD$a&#FouFadM+nFKz$fC2LNO$}Vl~A+b$dv1#uFRx zm2#y>^d)2iZi23#(V3WXu$`GGA!?6RN(@jTRQQ&Zvj>Cl;+R{a`F4}1-X&qH2V=wv zludxh)Iod;>8I-AB3}udOEvcD)Uc87LX)vT7TT7~wwp-U+vQA&ZH=jLoiQ?~m4aoe zZlOSNJ1x0OyKMhV5cAD2EA;lq(3R+gdSIAxf*gw%)y@yJMJ3ft0=)ndVaV$iCZb9F zZ!0@DEfBx(-4}hVFb~;vYqyRMVQvh=)GJ9izO`lZy}VBPgTHvdR(pMhHYT(6-L%Cf zewLG$>k9kedZkw3Cm7lyLn%Y+an`F)ALa3J&W^&wrWl3|xsd`^-2BD#5a(NnQ-ili zC>{>kMJuDQxP)ZANF<#VRCTD(C zo={3#bW-Drd(lgLK9Z{?E}$lf>NnOWqdH^mx?*ky<0f!5`-8~Clxae0ZKkk3rX(Rw zqgoXwD8Z=-o)q%Wls1Nt2JFUHKDfO})(=o}hISn{Zm@~g_8YO7g#?Z0#7+8P20ShD z8;cwQ6WG9YNo^o>j}1ri!LcP|TS~D>WJpWwG1si~ft#R9Yq7#iXngG^dK2qc)48-+ zwAL|1piv=>W%NoCNWIL>I1nT-xiQwkpTsP`j@BvP@aUU6Hc@S_5!G=1qZx9ME>IwrFw6-(oXV?< zNrY=w1f2EA@W5+UB6;elYCOs}tfY@fr_Qt&rm*4a)wtfGwo|dmfiTZXwl~|;NSI9o z!j7=S+#yzk(JBI$sT1ie(Mptq;D8?mgw0tloIiru{5Q-;&@fy$dSH=A_M{i7!H)_W zT)1OsM4vmR+<5x$Yk^On7}!d$*#f0m2OJS#p=amT!L9S0jw+<`zBaR?`}d(4DJFk- z2$SnBxD&9vPDNv1vJ8sqxe@Fx76igssnyA>Rc6rLmb(z(p>MY!%CI+pUhq+wN@2|cc!bn|YAn`a0v9;V?fqiq=m3bOj;b?LfFz0{HK7&&gVR42>wj&k*X-Wq5^bN5THUy5Oh8zp?vmRo`*$nKU25(R&6g} zYJ^qYPZI7*-W%kMT8L923sF~O4}!RODiasEVoA7U35nkzd2}utz`ULJJ}hm`M=N&f zCG9|j^Ox-?mS=Y|jZTyXc71P#F^FyM$y!f`D|&*Aj~U?hmW{Q&Xd#!kV|^1$?rv$& zG

0MTX((20-Z^FX#0yBj=D%az>fr*gYW}Yw5T#@YHV3Q-+T7KIQYmpaF%hqET|{ zsyBh5@8@1UqGqq>UZ}JCsb9%3Mh*BsCt$b%xQBlnL3cl_<*mZ3ty7$&Q@qjdya~8Im2B z8#03Y;Ytc}#S0_j2r8W{=>Z_s%`p6K1 zT8oLEZ&=G{YA&WzGO#K&RAxN|=3|4v6ibL;%ejPZ-fIYrwYhfyqmX}f2=etsPYiM; zV~|{Wi}O;*qNf2|i~cJ{qypA?t}tck1eHOVc8IbTuL}TPFMBHMc?QO{4b(G(fEH4K zAk8TS-negZ07S)mB*Z$(h;Pjc+LhAqdH0^1UUmTu6K90*#MaBYGVBO<#>e#sW?m9P zSY5)b2P?jav0^R>!?`v@!Vs@JB+Qndz~E&EBSFqkoDkwca$XRKWA)?wRMdW4Cl(nb zxX1{)7+{5m#{*GU`7Z?wbRppCfi45MgS3o`02FdAe6x;-uUwY^F4QBaSzmDmFho)~ zF95h?Z!+Vn5WmR}N&>$%gy$^@d_K7HO^oeL3A`qV|D-4mY^A2~-k>Q6c}#HUlgC@$ zjzt!;?)_^7kztf&FTOCdcdrrHmy6Nwo|~4l1LY9CTv*1@0P)4AA<8(Idx9=J?M3u6 zK-V?%r$d&wu9?q7DxmmVUviI>_a#)}R-!G)APbWG=F_SZ42~D=!%;&fr=zhq>5=n1xDxe8mmbbYBc?2zu>yfv*0{Rz0K#M&GLF(IcWJV4cm z%@HK;JNkcso7~oEGkM=*zy*h+y)(C>3T5kW9vOac1|Ci4isK#{f*@T55_V2u*vX{= zIU++;APrFB=-1Q3^xyAf)*R}@B-0>j#4Ee9REUf7&nY-3DQV7gwKuIKscKd;K|Lmf z87!H3G01g3Czmh1UH^G|6B)3;_8NH9ntW0S8T2)I5ooZ9(ID5F7q!WJ$7vDhu8f4P{3(&~B*kPRJ`s+`FK&iy>Nyib+>|(Uan~ zLs-<36tuhA!MN0svsmfXEe{4$-OnAku;9)aAzu(42v0Z~%j6FC*;S+|xSK-QR+p@g z2hZ+dJey0ha`q09th6Y&Wc9ZaiTPIMhlL+x{Jolq`3M$neDJptu;je=)PD^#33;+* z3?oyP3#ZJt99=I%uag#4)n{aDbT;v7jM z`Oc9_H1}`XD@cXiTYn^gKpmQiMc~q#Aa|gdxkHwcip1Z#W$_Ck1keQyk^J+FqUh+*A=Cz#)bZi)n)d*$aSz6pVu+^b^5xAr#Ri-qqlRW6&68HY0_=qMxUoYus4h{`T71Mk`v^49nTZ z()0ZNCg9RxVnbLdBPwD2NnTj*ZRXNoI<+bx)Up=u?}1>eIl;V^p2HF|hr%`s)q;L> z2tYdfJO$94&!EYrFgf5M3X`Tg#;0r8At$^97!&-Z^Oi;Uhvn%&lDq7!406+W*o5dr z-Wq~ai^y9r>udO|y+mHAPZ0Ete=E|qLcq{TdktXN!C=TmS`KaqX=#$2wEkA&pmSOd zSj@B##5+Q^C0{u+_Fw(GKwvYllk(eXy9zG@*qQ&tCIs7^(A|W8m=vjLarP-0bCFDa znyVgoSlEu%oQZsbgh+h0l6WP4nXrFm%%XJ~00S2172=a&SXPOX7!<*568Knm6W$g$p%*uO^!j zEXz3t5U_Cl9M*{b96N{7t{i4*nUQpWY@}(KNL@nrSjX5>vO2#h z*>cuTLyo0pxWP7%WgXgQg&SNwDl|Z}j-+peo=ZZ|qpwfG%|#41xz;B~V+bG804_e< z!+0T?sdi{tYKg@u0i-iSt&2NX#SlrJ)JhbpXF^bIN#toDV;kqhV%C{X(BQ&4LnHdE zGurN9_FhCkR>i$FoTA=yLJ+7g6e8VCjC8pc3a4_&LZJa%3*{TJ&~zkIzHcRiv<^E* zm@}8F(k@oSy*-4u*3z5<`d`K9YkGwAOrIh!QZG`2zb$BRu{3GKoJ;dQluT0K@jf&o z#ReY;VFO*j%z^>m#~3h|fZ@CvB4CKaT>|EzT<>X5rA?M_h!lA&Su%5%x;!S?Os-JZ zCxxM}gkZ>8rFG2VOAJX4V}qv0j&w}`3MWyn!1{g&SUTYvfa$yW3CF0*ACVy($ceis|2yiA!i3XMAz-8sDrXs{xCyPYPFehv3TMx(;UZ8HO&C>tw*4I3dWNYS6C+ z4Jx>eM#{-;M>$ajTqHjzpnezvl+HC>py7KA4Y|06V=RPg2+t0#*|JK;q}jPLm3T9=80=d&1|bIC+bk`S3l14NvV#);xFDI6CcEQ-jH2m3me zEbOnOaQb^8IJGn`Nsp`eti30V)A9;TFj}s<3jDbc@O75h4cKQG?73KiPcwui2sxZ3 z{H?@!<01KB;R4&=t9jlaSR5+5{|cs&wEJ+@({Nxk<6}ZmgRpu9((d~2q!kEh{_xuga1X);9_G*BlvHlTX^vC69GbCDtSKYGJX3^}w`lB@)vsC~ST=1e=a!_H902 zFOkPVQ~7nsRCLC82I%%nHjiA4!KWO;7$lE4WB6MMjq*47Vc}BF->a!n z2o{${IfaR7`HE-q1y7f_IhePR{3d@YlC1ef@e|H70q8i|*8y2-M+x2W$38eA|ijhK^xcl|CYftBDHpRy_Bc-griC#WU$ z_aP|OmlP5A!;HAOmK5iMkR?R}xR%t%*^)|ol6pwbQPX}M$v!dtML+EL(*XIM{Uu7gU*Q;kY@}r>P#0sS`a<0%f?`!nLs@|tyR-Ciqm!L}C z{C2t|cplhhKQzwyWC`c65J^CM>5>F5V3L5|Q%4dD`yF@fp^8D?aA&Wz7ka;)M{UN? z$t7$TD*~JvLI7*&{t;005Jm%Y>E>3oX9Nu{7BY>Pb0IhGJ$gt?--^@2wEF#3%@aDo^8Fuhfs@rz!1G;E zeSU1y{P-rEn4f#-e*29-YkALddH$gJgPE=K1p0B}*5&yJ;opbg-&64Ksau!(D{HM@ zr(WwWZ(S}oUW$hO3lcA>M&(|8u2Ws8_i7c|S4}N;+S9czr6{OejNg~wTP<3^gC^~n z@#X%RIcis|L6+wa-qc&J(xdM;0|+1?F{@W3W>s#yQY-6!G=|0Qy}V^2x@ID}b|UIk zm!_aOC!*T*kc`)EAWPf?E{1e>Xn(Tkdhwghx3_z-CVqEny`@fTYPwmgwrVp|*YCbz z!zI;b7oE(sr>5s?(>uEC$@U4jEEn24@m9jlTBliEl%>;4J$gQ2!`S-k1uSC|cr>@O zz1^+%c5hfaE;c`(*JpNQ0$VFVKE$xvoGv?b1wKE#k9qsL%rPf^S48)0G_?haNXVh9dyJsx!KJ(l&n)U7Y1ANdr zvvTekm{D!bVs&~)b*|PuBj$=VXI0i$)>YP@xdv@2=T>TSbL!(6HiIqho}6h<^JGjc zYhgAk+T>s6%i>!)O5e2au!P`<|EGh${}xu-__3o9jDgRJ6!vU}H2~fws6+e8lIPCWf4*Q{+)Z4<9)m6ti{?xeV$twX=3g#VaQ{HkGIA9DLk)D2f1oSu zf%?aGmlhY>o!%5eY&yNCEwy{l-Y>wSonMXzPv3FmSh1^Ob?Bncf%G+=4Ev!bbEbbX zK2dW9nqu#ghc*}bNAb~ykCK-*SNI1Cr41i^Ale*32v_?P7l9c0SQSYntwfP(-aj`V zsb=z%YNvk`AF22#c}aD%f1prO@xccpmAQ3vk}9qelS-8+QoYJQHy^2P%}=T~`$zGS zijR_)RPXi=6iO;S_&}t3VA`(UMYLm*l_m9DpA;GI_Rrf##?Ry@<5&Ho_{hjd(a3lZ zJKD(EiC=0$-}4U@N=QEZK!iNPJcPN(w<@k8=cSdXxvl(_SO5EnwE|6ZYO>?}qxgu$ zN70CN;O5Sf+GVgGYC5O+2MQ$>AABHEJ-~H7b`k7ItD+=ZqFl}PeE)2H#CueJ;yuwn zijR1Fl)S{-;vXoKczp1IhNYJEdH%%^)&zFe6(7~PpfD8NAb~$kD}4) zP|bEDCuWqX$-T%wY$)Y8C<9UMP|eolqS&hVyPTRz1=^Gk7|4r zjcWU^l@r2WY9b%<4-rZsK5QU`va5fS+gFr5uJLj@1v6{!cI`BqW$j&sdlbEDXRg*; z?mu*Dp*^$I)Gc$i@ol+(5E|5Hmis4OEbY7r<68e<)Pad^dHxEr998)tSb@roPHK*g zX8`mn8KTRLE-E*A_>W;+m`zjS4loI1T)rz^##UZmt_>DRt} zvW4Ep^DzciMBRgxF2?VtuYzpoM1s$Cju}+2@#lU}+IDZ9H1DCb|UA zm{;*+;$p2eQ)^9=i>lgP!UMRMmbaXD&C{){Q;*%Gb6 z*>-0kx~`1UbraE=W_1qD=-2xASEW+fT8XTupyBkH!#m#5HKlo^-S4%j`zl_GM(GW; zPP-yJP)vTbn!6+Rj4bM3R9)&;n~$5F#iKOcXu4VLcKPZpH{PHjsd4pR1C`tjWLWzj z9z>AWbAp_TMoZgaZap9>Yioy!^~i_$mzX4IykCQ;e}qW_$v1Yf;+=D??oG#p%{za` zK|Py+nqIX}I&P-DP_4I?`v)xUUhW@?g4*?q&H8k`xBP`i|3aD7`YsjMDxmNdnP=zRXHUl-isxAr|n@~AG6g&^rvqeFSEJG9|aODsMjym^A zQDDzATNE@hsG46CTzelE1utK*ACfoVAKC|4+k@|FGC_A-zZclm*Kzvl(PYBA7)cV_ z11i@08nR6IoYlP_R3Q^S%|K1BI*3fT8+~WXgcwt92t^f6)S&ZF6Q(lqzQ%;biokEf`{C8G<2!D~Dik)VWUz278{_f?>Z5s^%69eGyU>m2tzASr0Z=udgpG zEwCHvbZoCgo9AJ(TYza0M|pN!$Ekjyx&!xN$f(ep$ML?_g*~r|h#WE-AjTZW_zog$ zsePBM0b7{$?%Jr@Y)13dozx1=DSVcP(nsC;4K>$!Uj=fB73>J?x;kiGi2eQ*41)>X zPR03`u;(Joywy?q3M9EA7Hf?Gm0op_#o9pM*^4zsi?LV}SaB>?N1Ypgm%OBoAOmJBnx!@9=I@ksDB8`XPcP{Vr`6J)z<(QgXC?$l?nB-vV{M7g|E1hCH` zhMR12^o2T^C8K90?x@7W!&y&eV+=wPV1jJ@7^8MQtdCARUEdoo_h&(iL#)_WGNL3_ zEEVTpv3llmAyM=q#WZiXx=mk{+WP%#24Z^ELDug((RcRxi(kMxPsyTkD z$Q%V3ye82@B$LZ=Re>7)-;0d?r4eHIKZ;`*=3~K4rX~3&Mdp|X!-pHfLk@10DqJ7@ zTXT`5v#7?+E6~Vyhi?#WJ_LOi;^xK|j#Lf+-4K0pktqsPBg$Rxib@TU;!t;vI`7;^ zrMF@eds5k&@|KMCm|Ii+Dvt1t$~SWTGq!tdV(fbSdjtJH`$2#0=09&3+ava?-5t1* z6~U`tn~W}PA-7ev*Y2>LXtZm-K0U9T$g~w@IxqH(m2}@&bWQa1=-P3)IVFc0JlyT2 z<_vR^L6z5Ln3jz7BfCOXf>xxARiqg!(c|E9ffEJ_mIhk_DD`SHYPVQb0<_wikxvT% zvgT6Ftw6QtWg%L$5=F8n2C=qmsIYPAFIdrssyvP*uq4fq0t@vA^^$SJD{QL;f`lX?x z^#?_!mfd5d4-EY4G3|XBnGqoMvuSba30{~DV@tP_I9#~|GIT5QE7Kk-C zwp?V?hojM`w#uuAj@ZW(nPNV~VsoZAmVPLXy|T!t8%K!PtA>u)`65%ygV=*13b5go zsFgnza<4Bk^3n*AdqV(nu@N=SUxX23AL=-NIqH05BX;Qf{82#B)ShDYY3!m5`JVSQ zwq+e0>|_|^4=!rKd&3bU$&fG! z962ORvd)$huq^Ipey8(5Q}j0CvgOtrGT0=q-0D9wc}X=YBjr}p>33n*Jh|gV%SOe! zKnOBRb%RjpYbKCEXV*MDn$cn#s~?$QqZx!-lc5O~qH3pB;&=6CoE}Wq?O3tWT%VLs z_}`!vCxpV!7%CG&fr|4Bg#!s?Qeg2P3aq2{H@iw--P+0Ha5Ng#2KgBDoh=ABVsaXG z%0=cVQ12DD$`K-1KouwqpIc<~vqy;G^NM3Q%`@_(B6G}x;Ui+th;fVCE>_syUIdb< z5n_9$D7I65BR3S8qCmE_H>XlVkT^7_qt4@pC14fZ>`}7S%>OXi=#^LbqV2cFm+3v) zg|4C}l*?kR!!Fizt1aX`i+JWV@($Eni%UJOY~1@unPyFjW#{$%JAw!;RK}k(UQVbC zDmEzX6>MIW@gA!yF9~EY%)1y^=~V~WJH8KnXR8d3n4Bu(pNh;;px%pFr6D{jdM*j8R0*EL4=@)-I*V!>pb{F5Y6Em6`Yy!HsS4xa zMW!fFZ7B>YHN=QRVL0lXp(%`9LQ~Pl?k!s}{8`3A$bJ5}!AjZ@svdZA&0)=MV_$oQ z2;WB36>Jo{S!@@QYeu{3xHi2d!hO$coJWsDt`H$X66FecPYR;E&>$Nbb0;(i6&s}Y z$~mtFnYFsgwdST7Sm{*<(IE5aJA2J>#N^Z<&nPlSfqE}yb7_zl7a6@jLJYsOIEK?S z$m@&DF%O0Wiq#f{2Q%ajYX{k z`(;GAH`^36M$BP`2a1G*tGH&WSv#yC+Ep|mR|NEt%_ z^Q0IoWyY3?60)OHINr6D(i)0>Cwj*Zz4WFQ>ah0G;4Da<2kX)Bq8w?}Db^nU5!q~L zCQ;mMB0_=;)QP(}JyP5jbJ-FQxEYW(t36~Li58LD7Qh2V^X(?cfE}OMQi?&RmKJ+$ z%H@t_&N8l7_GLCa>nw{6o9*cx5likH%7&&8i{;Y#Opa(0OfOiD77R%#3Jx%@5|dz64LJKQa+b&((jGMBD~ zNg2%Ulu>S)daJb9skf%aFR=Hv@U0HL!E!$wkZ#h8z zc{CNI^1dt=&OUpHd~4lboLy?tEkzbE4y`s9ZHFDUy#UF}Vn-+y5^)>FlQ)s%ti`e+ z>561{3|NYlgF{(>@*e8LZ!h*KBVb3lVFV9`Y>)PFraQ-0MuY5$?q@pw4ovE{B_RXt za|vngOK6|S_F32lHETPuH&i<`uD@p}TiXJ=aDh!CEo^m`DaljN80{}>E#8y155=wv zn@77#zT=uHb(e5?gy|yEX-ovD%!Khqu}eEN-1q=EO!;A5?xH&*C0yAw!O@RaV#BMh zRg+jkkUas5SH_)o%s79pFs#JC)!F=4mXRRc>PJR-VYmD_JDw-(mQ-vQ9K6=G z!}R00^v;=u3e2Ndm|gq96xYI!K%-Il4vt0N*>+5hsGN4p@gj2+r0`;TRcz{zXx2&; zjwg$Zf6fSTeE#rpd{vP-=EJeragHe*$0Z8K(?!PLHbNZNhL7VLi_9?(jvpY^lD^-U z=yrcpnC};X>IEaj{2vv?eCoxI*A0t>Ke`XB-LLy8=oWo<5w~V=~aoVyNfdP z8DQwops{b`Bi$$ekWsI3I#xjAY-F^h7SBWuX0d8$kdLv(Dy{OCXQ1-^9REA#`1zx^ zJX@m#gl6nsfY7|(!7w+0Jj-|BU^Qw7gQlLoQ*<@2jTf5NY1+6Eddpm%no@hwDN3n{ zrwkf@td(tfE%+tf53q*J(&Qd3<_Ngo{7sgXVVJ+ULTlWjk*LFGQdi#LW z)7nEFe4x4K^PjQ*1W+iBy8wK80NP^<^#%<*`EW+M4nBVn-m(!(c* zAVuF;J_;B)iDATxM;17JLPot*JxqfBe)4uCQ}s=J)Hy*OR1@;>ln2r3s<-TeizJ)#c3zb?GupOd>V{DD?QEGCYy@yFxNt zAufG*nyKxagprzY%&e;vqh?>SbmWsmn6+W*$j5^TpTvZ90UcSGjcgscgJz&~WbuBL zj$8;qimoFs1V-u%BiTA~Hltpuj-)}RSz}E{o{A-W|N6?azM%T{9b~z5n1{oM84RFl zv_B}i9v&OBs$WeBjmCwEzpAOxNCdewS|h2^R4l`qC@h%a{&kgSU6svq+yhNr6npF@ zrLuakSpmvQP{qu>bu!C{IYUrh`6TbUj=av#MXQ2pz=5g}_&HsnF87Hf!4S@%g*#b|D5v z_V(T|cP=E^`Od}Ps?QD1(gQm`X1{5l_N?tsSX`|a`h1CYHX!tPd%H`ia_E67XBM}$ zJju@G2vbI$eLNX2n>a&>SH+*@V)*~;y$PJ0MVUWNOfn&p5C})OL|@M78D@r=a2g15 z1TYW+LXB6#50Uh5zz9_z6xuIr7sp6j`;>w4^Z;*I-rcmJ}w z-tOw^|NGSO*74R`@6p|X;O=J))AiQz)bl*`RMm5pR-%Y^T_(;F?!;Hg^?5z3CRzt4auqDZ-t_RdrZW~%TNj_c|IS1Ej8+^-1$Gu zE0_F8UZoAoLD4QxugAezJoAPO-@$c*S6_4O_CXeJ&T}sh4F&W854lyF<*714#94KA zbYbtn6(-AbgZ;9?Zi->#uin&ayAVCZtM^XS>WCtmM|?aB$G=*|;PMD~iri`Lo~OuN zJXptKeGn}#GMw`M#7T+U8ft*1x=>p{fMh+GEH@^QH5D(&U5H<$n~HM?pxl7OL>q(a z3L}HT&}jd5#M-l;ql3W+eg)UcU-&o}uv+W;w+Fk+B?@~-=&w1=-ohz^L3K>PfY?_A zIx)O7*nc)sJktE`Vb-W{-N@kR;QGP!+mTja^AwV^5~asPLf0|Tj8c7J?z4?rfQVis z-{XrX@X&pL0qt(WJieKV}1Q-E3uS%PHmi= z6QD^xQx_TCBaw?#Y@8LWBQY8*1;(`L-eR?gCt*9&WrJp!mGMqxidn4;_XcflFW)0` z(}vD4Ln9r1WP&&X>JMVs-@WUdiI5u@f5a1$PAuYZMe8w>2=R_yc?LfR{o)Vi8y@~f zPhZV8wA<;_bi&NiP&{n40V`Ct;(*ucnJYDCYLknlnWMHZ&O9FfJ9_(KkpvFdAiD<)Qz=fI_WNxdY|qnQ`XOTNev6hok!=@jq>- z)(RZQ>g7^narLph@AQpvy7Jn&74_;yJof#lK08QJ4^cokWypSNhMuT)PKcs~YKzgkU zQeH@qUaLX6DL+?_L>h`Ciz5PlaM&=Tu$@`a*cwJnR4?*R599lHya z1}ayY_{TWZRc=B_>+ldR`-Ht%xtZGC{Zm{AZlS-H?TbwsW51g4)F+U0$r3D??-8DG zV#ZO1S6VnC(Zi{HklXdyMmm_N|u2IM}D`k>iq|keO7W7Ju{xQ@j zoPZw`i*hPD{3SA_uQU4&LWvnyav2pM^%u zqrjQ#OEQxrJGRj^;f7L^(@#9_vE)LEs3 z$*`xl_~Q|+Q8HgYAp!AJ?>VS<8mp(W>qJbp%VA=>Iw-JI>68zi%o7ckS)Z(*$Q3Sf zj8Bkiuh>9_{a|z9>NBr-`n520UPJlAsTIx*NRl`Q1L@9U9jY}liuNM^BWj}{XdqWT znR~fW5+&s#Jv&Jm%x@ZoWfkHI##u_GZuZy9`h)g|0#IO2WiQ0wPe4_z!DKtlMrKj< zl$)7lVGbzM@_4Ctj#A&Up_(NQ7mT$-s73}_l&=qeA+h=Pz_lq=u6&PLE4p&!Cl>YN zr8OPV#BTI&oD^$YrU0d4gOj{cag9kRDLd?9wFmvl>fR5kNYVHQ25NlOc4Xy}m1$&U zh%95(MR4UYJAmpB+C}`oqS*jk!47h z2(BEG#Zl+aShCpINR})oCD1;TWV!bLB#T?JJfuk$-FWfLOv_cAS#D({!-d>Dvrust zCCi;w_wnL_grJZtf5AYFuiB1exeI+KOO_B>hGdE0${|@Cb^eSci;azB$#Qc7?NdvZ zUfhPn>y-a@C30PfTGBisjtBCmIu?8()8Z9!=5vgI5jjJ}U6eCFw7QQM9-5r_9s@PL zYCCe~N9a3Q&Vg*7J}zsG;&;> zs5rggkpZYuCPv~>hpg`Wpos&`00S+)YCD4FB=nsuXgG3Awftk^6xJ8ynWI3zSLKx| z)a|KxM!&L)7`{3`hGR`FdFGe~!|G*U-Lu0gRSWI5Ja9a{i@1JfUR=jo3hv4?MS*I| zQb47KC~@q|jyexKdS$()p0p=kd6nj|&{}rg==L$G;$AYUwR^XPR3#-V=fUL8TrG6} zg37(*Gx2u%=dbY(ciXs|{z9f+qp!+4PPZQ(ou zPHy(>8B4O@C{s_bZt8)R=jp+<{mj%N^9wX)=uI$s!;(NNO;ThUp4h4)290{6!d{qi zV5DKM+YSd8z&?#v#l*W`3(Xo18i;RKCjvTgm`4-mi9mA&6uYffqD0i!44NhoL7oM^ z!sr#bgix`ufW5obG9r-VS^h(T_5WF2DYms;^67{o&H?|%z>2Th&N<*A^qqVT;D|BK z0kN;$JZ6=Nt$4V#DGJPc5xW#jFY(I$R%ksi&zSq8k&iLjLF>WjyR&E=$TP)sXuVlO zEB;n!-H>O@)4Pb)vpSB}EAmV+4O*9xXqN2Ce<;L`=NWaZi-?`J?9I#SubrEd5X%``$dGzN?FfeSgOh`}sUmOoP}ShyonT zBx>bPh1>`7jQou*BKJEPkc;Dzp@t-k7^fx2b;nWX(~pV+tD>nr#bn*$7ZZ+osc#EE znuIGZPq)G29f#=kTy`rsuUswGce8vPny)T}Z8li;4LteF-Ff*90Z-gd)XU@0B0_bD zbA7#+vS{oqPcGo>F0TTVltU>F3tU4ezlvww!~7b(_$>2lYzRig3&-K-upj>R?p}Dt3fz#xzwETHfvX#4C+6i3N_(=Xyi~6QnA78-V-cxjns>~88sw?dXZwD6Rd9i zAc||ku?)ocs_mR-3+OxfJR2g(5C{<*IRt{E&ObbQcvTVBo@cUD=uM!iDHZ(vQJSKY zlfAoSBt1n6B&a!LGLFZm==B*ql3oT!$T)Q`$Q2PuFGE_wzy(JnJ#*RiMAFlD9!bB8 zxS2)Lv%iue=~F>CiNG8#2`bN{KPgVhY*^sV`pYL~i;adW)c-jI77O*iBLtBBiE8&XWHKSKMDj{P_+`ijQ!Gk`P2@gF7O;;&aycs_gY z&IrQ)6vCfmY)b2hc(|m%^;J>p^mQPBF4s+|TBv*pqgK9*e~cI|8H@Ny3dvemd3D%H z>)uCxV17tA7GY=PHdqmU<6#5gZ-ubG3FqpHi%*%!Kp_lDSP+0gV&nrj*u@Hrv;{L# zzK2(2pUkLS{R_^n@~4{0r@T|~hWLLRO?@gQ$si)c|HG`h3HWNA$;Hf!1O+QZ1M%C*oBr z?*f|Kaj6QXNL=cjXw-qY)R`V0lu9s=T2}<6@>R@YBJUDJObkjrT4XW|iZBweJb$xA z<~=aAP-Sie{OpgVo1&aD-7B)U$2I#E$5>Ru(Y8IDg7b9Ba?7CIPsdUh6M%D~ez zsZpPh?3X}Jwi$SOj(pU5bkh*KSg{)}-2vfnLdlHCJ7uCahg^uIC^OY-b3(elO$*Tt zw*%?PA+{04N7rPUy0|?)1&tiHM=I7&8Gir#edRo*ysFiud2q4VTpE~eWZ=bD z)o+ejBTnbhw|;Xxo_#4WY1RS}*s#Igu~D-6B`^VE4co|}LfX>ffbM~>}XPQ`j({&nHW zF#chyBR^0=kMcnVRD4x^HB_FB${FH>KZ@%9)xc3=m|9!0E?57OXMO_dUQJahm#crx zGx`tF$ah3;2fIJchut`Lt3TwKUmEOMj#Xk&S*2=e?YG8U4)Lr>OG|KZFB)|V&-DnYIS^`=?OGjwg)OT1czhOaMYRHBXU&{)CM7Ww|RZSsxfyPe}AL}+>+d%)B@76 z%~oaE=LnIk{0vq#`J5RhCzsoaIPz=u#<5IHA(E9}PmPjJm@56v@pAhNkd^#g?`@+{ zG4f@vM!sxOU**Q$R~Bj0Xl9y*$b&s^HNsWraV!aTJdBFB?8bgxATPB!4Cj*+BveFh zRYGuwdBI4@(&7eLiHl(L@L_mX88alK|e%5LkPnmWmX$+onhDP4u z$ONtJ!~UMUcJ5`EjGwNyc8C!(tsU>^GB2^b@=H^Izmc$}NL@_0E~2&yez4tF>Repr z3Of37bH$SV@fWkFu)n%&t~i6V(c`nVi5tiG-6g%2uCEOh=#u1>4zMxG$O=-ng7k1Km@7`g>(0OB#8xah1#sM~2q(UY7L2W+$AsX5+ za41|>3e;cJz;OWENCxS>3(g_pI&P!^)>5UJwhiqAgmol`+7rEV@LD#`L{r}(!BU!^ z&Z?W1jis0qn~e!`SPY2S-wNkf<%jpm_TgPd3)BIyDhI^;hXT2lALJYJfE+LHB}If? z!pVAj#4d3n=H<3aD3~I4iM43dLAwOOKzp&UOYp_Vbmj-)3(3etyTtj@E>W9DcqROw zn3xHK`i!C~8s+IKl3XGE6mn%zI0G_iB9mx|el|;urg(b?T+@-h6x02sn1eh7m~!5_ ztTEfh-YLl$!Co5@OeLYb`gaJY-9#BP=MZ9IQf8q+@utOjq9w;eQ8;E}e&mfZ-50ANtG_woP%i@u#g*v&`A^N6S zEYGrF9143H?%lSl#tsSOlLv;{iLaD3jXz68!f9il&T@T-9j+pS8V$f6yDBxbcd}Tn zv>H;aQD2Rjg{i4o9*e^^9KBD)wS6qsSA_{t(@G5~V=;>Cf(8E2kn;9h66QKY74Jk+ zxN(_DV$!nsIe@uuZrEVpaX) zqlg2v%hkKA)txp(?tZJCk_wgcvxdkK3|e5^)uUK%X&4l*4C^e4pPgY+bfnl6KlTnr zRTA5#Y5X=$nmt&fEAJ#~_FqD;ytpJ_Yn)59QWK~c9tYUjQM<_JfJtqmVb(P;TGJDa@jOM@M>=2)H{4Crh1J36p;&3G4DQofE zsC+s!_H9vT?11MMdPyd35e$71;}#rBOcg5?r)TK>_@WgPl;YPaRrJ_lb?(KpWb5q= z(D z48Ozb$Pbh-UEj-qim%!ZOTH6*`&lwXiNTT)j5t`*QRhGhVHI}l2Fd*QvINwa{O9kF z?7%-y7Rb`}M~9V^_KWYbsvWTd|2z`|37g+fsZr9oO4)&r2^Gd<2)@jr-jS=(Faqy4 zFc3CWR^XLknRbQiS!=GRc;2S9Da^o+u^M5O9>L7OZU_}y*$w?{KqlZnC9{=e1Hx^G z*}yRO`c1$?7Eb(#6zniSjncD&@+XVhKiM~h>GM*9(}v7yu|fSp>udnxJDieSAVQy+ zTu&03u$GC?UN)2VN_lscs!D$&VXu@r+K`A2dnG%XcO_gV%rA%+J9E`VEM!W5V&GPhUw*|T`3#+FpY((9J?X^q2}~H@0`5m&3B=xPku^cnh4zbYgXMfZ>|j2 zhXZcwBY@XR)C~SH{|x@V{TUn>UDkp&MgZDsy&9{4>6nFTMnB3wqwjMhrwK*-xqlR2 zC>kF{3q@PbwzY>(O1C~G5X$t zMjbTz5)5>n7Dit#qL>Zwd4h)UI$FoyqOF>k1R)itcKZ3gB(>2XFD+gS?Y zD#8L-E#VC*j_jbh3u%qXiUg}VtnRytbz~}rv7HKf$BPp;QVB95lPwX^U*jz2plCaT z{3fEedHgN3ETG)OGPdG_b8J3HB7fzH)PkFX6f(PPa~h1V`6z#dfTV*2F;-Y{f%4->UalNIW;8_~#N#-L*T`07`uCD>P< zV|8Ypg)L_fspWkp11!F(em%`s(1D1E=kfQqlGb7U0+@<3uy(vX<0z{mKTv|Tk6=K>S8a#2ACJEMtj$qkTFPSsN>9x* zKY?^hTWXG&DxmbjJfolAMeIH)A9mvcN^i(BzckogV=i8Kd9{nx;;Q9=WVVZ#ep((( z$A*+XFVFM@qOF)9Dm6rhV-IlDIbVp*2XDU{*GBSCgZRV`5}@>pycrWksG^rWLh`P$ zB!O7wuHo;GEQRCAyO6XT(2+l-8Y<@%&g506cAq(whuhmlpOIOwQ&HD z!}`wvYXC|D8JT%-RdPK^Zo*wAa(kIgng^vWBa?YhYV$%;I?RLY#^5y%QVnh%yZ~6> z=0WyXx6OmK`eYfdx?}UjCekochS-jn2cz9~!aVqtXty$`k%2x&FMqHEjf2SZJGT)| z#f@fZej}b<-&Mli*KBOO5buhSa;8)tuQkfe-5W=`YdpNcyAD$t53db7*&8&kQ6f2w zhpuYEcnwj5dsi3Zs=->Mv?MJeP6QAXo0?Vk~h9?MU$Cv%Qn{S{H9aQ=j;? zj6Aon>ZWyZe`|G#nHh#T?(EDEC2s(Fk)q!{`KNLhhb@g!?q2^WKBF8TMKj7R)88fI zKh$*Y_YaiSB*zDj->ynj1v(t~9lK7=2^i=;)S?R=wZ;MW=v~!w^N-M+fa#C7}npn+0F(0LF zOi!s>{iFCO#YfR7wPZw22!E-GyvRR9RtoW9Gg2tIy72#Sp0W0b|3?jbfZP8=!4&cT zcnTVI(Eo#AAO(f+|Cpt1sh{~DTt$DT3Hl$FLH~{2bK|vHME67I!;WHPzY~XK_=1p= zNL9u6XKkj~>!V)wvbKMUcHC>PBa9Fq64NytLB4qb1?n@++D^P24aI5U>apfvFg%RF zR{V8h0f(re(f$G2y89`59I?O*^=5fuw$#tO zOei)V|C=gKz9`V0_Ub!irgJ-!t)!3S@DO9vr04o#0vw0F_4@94qG4=>Q-6ZTD?3?N*2C$ zkCu|XgFUK=Kah9gE1+<7PW-J`l#qLZ;f9i_T zPAr|l;Ea^@m`C-FyG5S7^`4oE;3)gzy*{a8JZPu7J>l@=7nYc;Vc zC}%=aVbgH=s2GO=@$8*6_Zbc@y1LC^7_O94;${*+>U*1Q|RX z!H{D^{jDJO7eLwd;z3A092` zy8*4vZSl0$IQJcFiZGIz*$}8$@5|4*9*@J%SRMI+61@6J22_02c6jyg(YK#hIZDj^ zCe|(MyLsj(knY{#Qn_XQG|%Wi=^}RjD<5{_+_HKOHQ6wpC5WX3_oTsYZ|Ig49*y-P zB{UAr1Hr*)yC9&p6Lk$Tkcp?YKRPnFn82hdwE3cDeT+zlSTHu z3Cx{ZWM4$r)_9pc%4PN@h^`9Aey2 z=a>|dP?5v#AX%<&OQ1z+xn38xOMbz0hFLH}AeZk~@yFH4DY#y0B5|WKF|g#TQ2aGW z{M%w5@fUcRox4>zw}8-ODlVhpZ-u0u!%RxV3sUVo{}?oKXjiD%psH7BEu)*Lyo2%| z3alfouKZw$GudGbtoW+!Yz0T5Z~s=nk&<#NI62S!1lqk=O|=zl$}{@8UBvE%`LG+e z6Z3$Fr2oJ}W;HYy!XN0Gs zm_0`FuJNZ%?HU_HUyArE!3f_nwv=|3Sa#pAiE{(cd@;lppp~dOzsJITya?4cfxkf` z$0k6<1|7ZP%5xj|tksbpD6s{6iUAd0wVf^CbLiW@1#pz4+ycIrXMO_dUYw@d0)Ccf z^oP2L-Jj>fZrm2I;&77<<5_}OT5wMq?5d-G=pdvQsYP{I9taLWqi!j6jzHg;`8QVd zkK~!2K(HnHsnie|4$<$ZbC632D*W3mk_GwO6WH54{`>o*n7Q6$HIWRbAtPvPCII1+Atdlb&>qpU!)%u!Xzwi+w)`?$u-}`gQF`{N z6!>szFxxm?L;>)N>iZexyclC<^Yq`8y&-*6gNO9}6jS3NeeADphx9#dp;&E}XG>$qKGngHzG%0d2|}3nhmGRf8J*{S#ev(vFc`&U5_yvBe-rEeNx&=`k_$1 zDL>Tba4^!u30>hI#TVVcN717jPLp$4a+)@g9sVJ*MmO+b<0Zb6B+1o9bc2&e_egZZ zVL+2RxwFHR==Mz5{;3dn!}oCo@e}xH5bUjU38LDmF9`)$3@d`eL_V;+T`)OS5zI6efH+8bbQgx@w-Fr~j|45U+;^|DHUGVBEG;;7N z6{qJ_kD~oJt0O;9LRES+11i3%&Zm`!fc*@fz9*n>Kc8}xn5!|?d-AM2^Akw-uK!eu z_Dl1OesLGEds#m0#wprMdFGb}yGpAbo>lcCb&A-T2ZBZyF?>@V496PG| zok|Un;Sl7GI{VvVPvPFKoh-5UO+dUUvHks#lKsBq9Y89$=!BC}!Sx1KwIfRQ&sj*1 zmzgBgR{?uq=ue+m#GoZSI~A->-eK;@pbKC2SaWHn z;*urQC_R_x=T&QC12G~A><&*2QX8AS9M-?z9|BMk$jFX^2PW5(q_$gL z@iJ+<<%K;Yr9<1zj!<50H`Ukw@`T`$tB?!zRW z#^&oaI5;*)wZOaTgjV~h0xGVhD#j@15)b3i(x0Nw>|Qoxsn8D`sJ@7o0U|Gw0h(xuJe{Z)n?EP zC)$RdTVboxp#GwI?ya5WppI$EU+A5_S5y96H1$bSOD+2>R^8N;uhv%-o0F;JkABAv zV-_k(zA^t)Uf2Fq)<(pEppl{f@8Pwi)?EHnllV~nNqm4KIE@Y9bN*3$HUK_~W&`L| z0#Hs%FH%$cx_{8DRsjx3{C1jx{Z^7E36s|@S}mima!UM%n#|AqlksJu`bl~^{jYx% zAD#Fp8lAk!4_6)K+cPRzX~PF^i#GdP8>ovyE5kaHOj?Pe)p7pG`DhiOY0CV2>;0qn zXvIg-XqAxP?HvD5S*gW`Z;M(T%I|iKe_}pLJtaM*rv0P%D8)z7C>4|6ZNWc8RtoW9 zGg2tIy0CycPcM7K0=g6O&20fyFhwk&*P~GfEuaJg-QR@;l%L<2q3s4CeG@I9r%DTG zsmxxw;ino({RQX5purL%(aQ}ir-#aX1+ zVvlzO^#x`Prz~34kRu*_6I0Ckfvn70xsO`#gl+QD`b2+FES{}n?gpH^M!pg3zSmz z{55LSC$7VLksrV>Gfh_5R)2;@4%;df>zWvUW*S|u>d>R^`#7^RQ>|l3dFcnR9F2T; zbY10|)eoQ-ee3$xH(|D>A3%r}!w(>W6^HrAQ75|}fZa*_frzX{r00K#(b0=pmL2Rr zIKA(XY9{V`qiszW>xzw_Fg05%Hd*4NtJppub`9(};eIk0tRFza(77T#M~jU}ZaGfx z08<4bV)D#FC1lRY#5jVZ&ti-NZHt*}iHb9DG@G}SrOWv*1=v%p&b)Y+9DM}?EWWDF z(Uqf6IfKW*RjBUg=nyRiM@O*Y;Alsk^*NY9VbAU`nY*8mfI307`yKCa?Q@|64 z&a4DVCBz+GuCz`~gMq3+=cK;ypwuVWKYA{*l8Z^znP7hTQ{ktD+3Kts&oXrS7i|B0 zhN1}DQ?cHcUyv`2fBEqZR!4rIgpIFSbCjfXlKI;_^Akw7Y>DQG zshng!pJ(*H?;>`;kPo|YPBIVXnO_?09u%e+Q|nTSZRa<&%zl{%rvK_9&VQW;=do@x zs~&Hz{PYr^?JXMTbNUJR$&FBbBQUhg7y zcjd!w+UKEOH%rAy(&X}cHOfdS=)6N~ra~ctwGzd<4_Xw77pvMe;(H8Dk!u7M8`SlRFmGnF z-&$Sy!4l_^Uoo)atG2T-{5SgcZwwqMDL01w0~1y8Kx^kNfp#xeQ*8`Ep3#p&qqMrV zteS~q(02~(#%&B|y5|4^R!38Z^*no9QnW1i7J*G269Q$Fm*$^IYZnO_?0 zs<5hrlxDxm1HsR`h~eMl!Emh1UwyQ>&g0jdc61R4wq!n)8Y06X^Br{(QkvNTSRXY-GbzvqNifF6zsZo;2Te+`1p7|>v&WbDe zN|UAwg1odC@m2c{3{Wc-S;f<%s7?C1On{4+s;jI<*t#CeVyfaGQ{&l9{j?_=>oyGL zJ0{bj5V2H*&<@i+LoC&^EUfs~vEYH*s8M z$~{_HYbGA?csldO#$W&+wQ8;0C^baX7zNnYcfvccT&p^Y#>j_lW8X}%K8a{EydgWu zDs?xv+P{KX^+Slc$Wz9X{UGe*(Li}4#O&}`DoYcpr-qW~zYHRQf5U|-B=F6{&MHStR!VC6ABKJ$j6Ek{$|nZk+%TEeQEP%qi$fLIg) zTKuITJvu+6N3{>>DotVt{F^am{5$&u$a}<31^yHAgMTW=T$&iOi~OVbqAd6*T9k!1 zcIhepfwIP0@WJEH5-E6TZA6T_=(Jj|C8=c=DwHblCG~=VBrP&Mp z17)QdAG|G^9i~%5-)CKY2-}Fz$N1v~zr_Yc5qxk55DMCwAB^Jr{o2B8Ps12>2N5e96fyd;>?lw-%dV z=FQ((1+q6%u88!;{BwF;`*Ug|GsuVX1O5Sy-88rB&-q939U}QCX%CTK_Yaiy5XlEO zcQAbev2NF#-;%4#Oa>va+M?Vehsd26*?ovqf+BK=ydI4@c!(qzv_m8pOFWZ-z)RvG z@=5X#No$&=Y8Nh)0e8QzRcChx#qrug6MF0F5N&~|fPnS|#9xu$dHqq5*t#(5t>jbQL34(s2G;=IquG+E)hHuAlPXfdK< zBUo`buQ=*tkMp)WiQg`OF=mAxO+Xjbqe$3cR?m~~9rqJ)x#4FYminCqdT(L31ad`} zqEtF`yiI$wA$kH59MPEw?dQNYRj@)B(vx<5^$56MIT8K zcVEGzbasm;y~eu##4v%ggqezfiuJzytgDCDc_Z$AY<24gQ84n47>Myz+hOE?N8f%% z<_JpZT>Hm7^AjYnoRiEEQ#se}f4oVwc$5(X2<)y#Bi|jh9qg_}-#M@w=Um&DXMSn0 zYsJ&l~dKIo8GY@;uWMXtrEzsnif74tejWlQZJZ?kRa6_&2Qo$?G%CSorMTV>QD5 zxY2wgIO|lD^sxK(a}_!D-VJDcBATSRaOx#eb(pI%IQ4$kLYsdB65RDEYLuS4)|rn5 zGy5963%J$U+CxFMxax`?-%bs58(U#49RBU`8;qP@G_ot#SCi{W4k2`B;t(%?O2=QR zM#<**D->rT^&O7C>|)|Izflctep_<_{$l1g_E)_5P1vj2GrgVCtQV(h>#Mc;TyZwN z(d`6}(M{{H6Xv!7141s5L%SMmCo_om-Z(NmGBVm-BU>NnqMrgxeokp*J2vd3_0C7W zce9Rpmw9cqS%DkY%t9rhP79~rhDlA~uW~B&7d5Fp*2f_oGpB9wPR46adlH)Z_Cd?M zv58eT&1r3zo+k4HzJo)O#`IM8kK!{u@ln#6o^JOKl-2aa2an$?QqX3VCXfWX8Lqd> z*>}Ft;~v3(sa5hS|Ac)0Wp}2h&s+VY_~^q&(de_B$=+~6{Fj>0eg2`cQiuld+UiOG_@C=~IZ5&iEMT~=wL!%BF2MGo`g$oa}Q;Blii7KE!(|DMjybT^>4Wt&E zgRQSR4;vtfW6ERQXu^jKK`Af_(oqAhG4<(k6^|cCIiijbGs zUbq7@W8c4q#L%+I9;Iiv9_Hz-HwH*+jqK-h{9uH8L_#fv%->{1X64t^f~VkC0Cw3L z+1tn2G8M_CHF5J!I@y~rAQe5T0?o6gZ_D!wCG zJ&!f=bavp-(@kGlY6fuDz+=<%HK-s+ZU^UYx{zdca|Zqz%yUC(u?)jx!cnFUSac?f zCpK+5f?=zC0=6ZGiuJw{7}lRu`gvAoe!zr<;W-Sj_^LX?RxU&342H-Tpt_%7L$nwS z8^MZ$VI6f&NJ(?VZ#eL{IGZ)9&CO77pox}&rHH6vsz)6|3! z^7&RHY=r&H2$>3Kbp)~d@v{n@neV{JK6yYQOc)#q{~czP3grjjl<(1g~eFkh@AZn7~}EtRKd#%uM)*hH-~HAM-6Hja*rj0^?~4dnePS9gxV zHKm5HJCXkfu@>XCM!C6rBPx`uBm!Ec zkyM&Yj4~y7j|=DBhP_lFuW~H)7qyo@wL6R@OkYOe;$d+^vC3vRpuaA5tN02Eg&Vvm z^jc|8LsQ@3!LkIdXVpzBZ4Y0V0uzQ2FeYix75U-a$^l4YoZaCc#b^BEqiDvzWh8ne zBl8~${Z;=!SxtX@@c3;s1xXH!%19S^mZF-R6#HAv>3RM+`RudLPEVpc{iFCu#7EIc zw8q>M(JBTAMsDjN4pQEr`_lMqxfjYN6}~(^K|$({X=A> z5FfTJ3LWG)Tew!%8na%=j8?H?#-IDA>Z93zrl;AT{G<42#z)a;=FPXW-+=E#RLM#? zK6pmTC07^T5YEHH9`S}a0rYTtLnxRc-Vm$MsDs`R1OurEgg3;o#3I}qVh#P7#v5Xj z43#e8AU@Ho)rX1;__s6-m&HbTXUWdFQ?Hk1i%ph-rdr!sqzs?RJ)$$6sg?CaFDp9y zB`W(V6r3d*8(DQOzN%iFpNAo_Sg$Q0VGx~lt9Wp|R=<&F6`HSM+T#chp92!;zEU5W zLME8%B#OAVNNwJnbSJx1Q@=Ft)R#i7DrU;D)BLJ1-H z8%hYy^-(26iiARSK+Kg84f>0DG_$|rl@Nl%+D|BS)-JjwVildoK)yUSH}f@Qy&b9Hbym!fWN#)L-;Ee~6Q1#8J$+jrZ`H?2~!-*1zDUEq|)H zyvI8i@4fnO&@{un`d(JuyjL%y)!+bIl>=!0LxKDc`9c0n`yj6nOV zgu9+4r!Na;rC;iC)TmF$^$z%@p26jNP+;MyEQECv`C{{EReJw&rZ`^;3KRnhLqV}# zE{@NZ8vRaJKe-2p^Q-)+nCZMsQx?vCXQPqBJC%wJp9afTX*%vCc&A=vb>`)A>C&=| z0Ty3XH+5$9PQ3n6@M^xMdl6Qad%_KRS};pyS1lifSj?j(LYfb?Uw)-w~(MfE6G z&Kazp$2+x;wsw^u=Un;)KU5(QPr@OdXBHFZ8N(aZyZyfuBkL>`Pg;`bf<0fv!L@x+ zsaWsJ@44qmi1TKvBR^2W+v*JrsQ9WnYgT4aIfEbSTTtE4njuOI){J1p!J3XbhsV=b z2^PCuGB-Xy0Yj;|@l0`Q(?#f2>|&Wuh=xZyAw|RAYPR17>^g77(^=!wZ?FmD>}Y1c zp<=zSI6l2|pM93>L;pt!dzZHo(O#7b?k1UsznXwBlZXBNk=xv<$^A)h7&?cf^oBW_Rqcq|+^K^mv&QoZF~0DD zT2GCVj!epJZfikoBzPC8IcX;K;7dL6@EsIqYt?C{kCEpj!=vs%B=#@{QBHMh%nzDh z-Nl*aF8t~)v>IXgpKB)f$TKCyvv&V}9wUFd^8u0XYEOg{{&qyT4)a(Bf4iqys7u9b zRce%;*Y-CPd~kh*ErCI^NIgY?=cWd;4e=QTz%NUm#VF^+7&{W)mRwIV17S83Gk951 zy5Gsmp1j@q8wt&~yts#ij%vR7nab;aN2e~X`Tko>jcdNyU-6o6TUSx2T=3H+`?S=P zdPC$cJ0#v{C|9Q=zo!z`8}>@e)kYy1QN9;3rKRk3d2IkeStBn*;uctDW!~6`2gCrR@6&V^gQ2U zYblN4I+^b()~kyzsC)pUwGLM^vdFi{FN`zqZ8>L6gnQ{sA0ycN0rck>(2zFkVu+xG z4pr6BJU=j07qSc*B8Z1O`WIX0W#s+gC<=GeC;qqn`?13+guf-_NliLpiv47oq}pOgvxs|sN76L_f&4d ze;8y0j&SVaoWl%6$6$Cm{6MhZikkA2DUZ2IlW?-M+v%b^C{9e&>XWoFlg>I=K)6Lv zuhp7Cv(#vYX1iQ%)xx<=!00~5>PJzz3I90=CPu!ehvd@|<4noKIK^sEYzDKXVxt)p z8@uP`o3&7>5y5Tzh2mZZvxcA)IMvXNE^RULUt)n)3-ez{T zwoATlQ>Yjws)W7e{!BO$MymIrk;8^c#ri!?-LSbdGi|8L2xW5P=06mJeZlI=d+e7M z)PG=L#aGoY$5}0?Uqs)!mg*MzZCFr4q!=3i2u>Ute@C6CZ_36-58nP3&PMzX{Oe;Q zM{R?R6di2P{8w|*$i6#)2($|djVvv-luEeQu&N!=`u7Z*TpG_W1gg;bFQrE5rNT(K zNAC_0E5EJ2PzuUZ!Bfw@B6Poom04AC>h;$Q45%7Pr{AjzwR`fBnPw&Q`G;DKaQN)w z`ut>o6_41xB=g9@7}s|y)p&#u-(eofptV2GLQpDRc_KAR&nwHuYqeP}2Q8lykb{3z zxV|biK)SH2{1D5>rTJruL3U7O)tktVSZXecQT^iXN=6tjLYPwi^5l9_9uVR((b~&t zQYkNw8}jh#ZzPoR@>Cwu(V>)QNcAe^sRmcdzYtU7N_qB|ODWG39(_XD(O!b>izkcI zW6jzaJDaqt-8n0~j-|W!K<%#v?}T1wt==JCy`6sK=yTo#vg#)ub2+5c=e$1br1ij~ zOP`|?&gI;`+N>aQc^idF^u0GkQybbFh3m?DsK2Q8W+{ee(%979sA5BN6Ba{Ov%eL* zpYy`&)!KX-O?~^LrM3CHl+}gS#)*T6QET&lfbZ7YC`cn(n^&Vz*R?hT8J$Ih)`oKo zyY{~ZUs7pp&VEv9mcrAdsgu++xXmL+Ml;xS?nMDCDf2T_NVg$%ZxmSz!Yh8e-6*#F zZvna74o#8e(&aq5g%Ts@ZxlJZ`-99Ls>v z%B85B{$|4f&4JLtAVetsR1C8_&-~g!=nL}<_`JObp>N1DzZ3{RYU zUEL6ttC7MR^*VHKeq2P()L`mw%INh?x${;s=!|{04z<}sgX(v~R z5=}_%H)3*%e|kbSxzcKc`_&VeYBC9Uhi+T_ar^F#BXsR-R&^ z%#UZG*dC=u>Dfp#+E@nyQdZI(MkD;@)Bx#cq>Nj-7}YN$FG!{#6BXwr*OSUhLR=4ugtAgzMngI}l$Gq9Rc4+dK{j^bIJ(mWE^l&TZE$4H;h*mzwZcO&S7 z@lX56vvh8}ZfIoq)WHD%;4^s`i1eKsuM_2`qg=Qaj7`;xOaVd98V=&6q?^WOi_+CXF{;TtGgZVwFbZU*<}9eTljp35y!#X}p#whFPzFD3vBz4p2nH$Uh%B z+T1(A_xh2>6rd@!xi1epY5muuOPia_sxBSxF=?7{&2O5j>LB>$5YcVugB7(ZZ=(L9 z`rz+B%9kIz4izkAH|8wL4Q)5>_Cl{<-10x(xEN73@- zE#cF{nFW6-mioGXh^(3N_^|O?xTVH_FUN(EFlQ;`zLOGLLP~7WCh#-=1bmqbf5Jyk zLy7|<^L0_^0K2{e+>I`?VU zMbcGTRY^>vOwIEp{(1Vy_`>vLe2sq;9~t>58X0@lNng%QFH%!`yMNHEB;O$PWW3*>39Aq`RMbj^z`Xj?>%Ms=)*_R=!4^nJR9o=nS=d9WTg!s zwk_Hm7I&d{kqWOeg|~k>Kch^MY{)-TAIbXBH09alO#di8lJQYAlC9R&8FF@Jp_<-i z|G-%Z$$@E$kZU9Q7Y_xQmPXD|P>`3YDUSQ6=%e5b=_xqxAH_#OK8i-cRtY+`e^rx^tAgc|0q7%@liC|iGv8K z2j%4SA~m)5`3KEPMGi`$ZmL|7&HNf)A~bc0 z!Nr#ya|JTi*X9tID)sdZgcB=^TrdH{PjNO3Um7nqkhrW?6>lg^%oNFfRI0;FRGv@| zNIdz$+h5b+p4IBS%*)P}GbPIn^5YX%#G>r2fd`}4#A{|%`4mgdmtt-*=G z^^JwOv0JXbp-d&$!@cX)>*2RLUo5b;{kQf`&?ojGmISJj}uw^vSe501!jhfv8` zAfhpDS{Ze&ZLL7sooaCo?}A;{>ZvZwjhE_+Tah24I9{5?A3fFDF1U{`zCaoh4g(J1 z1RxMhuW%>?tMK%z{|9#GT{9&-hq7Zw1xSXG7lFm_58kn3ICv736C;2z;JDr_mm1_n zya8^&GaGhDdh9?p(o%0-$_yBfcU6O_dTow1W#=4_0(rnnkO|1Hi%k~p!-!Hw$g}8b zzSt{B#X4gRrI6w8P6m^#+i;Y|!USC9XAl$(LL-tM;%LW?EjxDf@)+#e#Kb~9pm2G> zyKAP5$~$)0%Ap;6Fi~7X-=*3DL|t{V7n3g6kpOD06u|V2G9ZFOz$Uh1$8{q?tsaaH z4-5Up_8mLmQ9V=YW!mHN1YVVCHstga_wf-`PrW;KMAXRClfVo3+-`w+Xj)3t?FGED zzT$01Gi@Mdv;c+qAqeW+9?k=r)#Vx1TCV7M&su9E+#(mxeg+q59X{9UFrL?G{}SoW z2ny!=eRwQ4YC}X|e#d^AAUVM1TM6>Ml9RQr?#=}5Ut=7sun^ia+gK7B5dQfb7+pMa zM!jl5Y2CfOtvPLAi-4p-=9Q_z5Sfy}R?FEMma|x*n=?O>33!`*j)<2FsewD#B|#*t zJ_Yj^+XDRzhW8voD)qz;af&lJv$YXXr*-^;wx)KFLu6{5M|j0p&XWB#;VMDawtKC+ zUu1&SUeX6xdqA(&a|BR>sexWi^m6OsjvW$Kud#61DZV?Wem-!?%*Pn<2@xO-Y_8IF z90}S|Y(Ls8*JT1G34eO%LT zRb^Ut8!~~H7K>u@X^flOG(?uhdScg?@cEn%wq%0RM&c6P%i6|Y{G}f}OgA%mX5BaL z%(?|<)@|5_>ZRsFy^5=+7B9()gU@vpheG+)xw*+B=22bge!d(2V(En*1;8CjgLNL@sTMykMy8O^5&s2NYn=Tq%}w? zK}e7>L3n;Ah@m*!o^fi z7mw^Mw4Zaz#`E5}TU@+1QO6tFLtL(p<8AFy3F_Bfl(J-M3ff|vXT99nf=)-eM(Ns} zi!$+nV9xUyA3%F)GA9*xggLLbI`Se_rhvGH0To|WXU@uTsGK2V!40VHXU-5M26IL* z;$TikozoO^W+J;{U%S&}_B|&7eRM~pr~DGx_qFPr!UN<2B!F-5ysTUB2MJPnE5jwK zF0!070vSd}WqsiVuaBK9aO&WxdP(OFlc=~z(IHBFpc6m4wsG48PDZX&zb?Vuir&Y? zN{N0@7=8utr89dxCR)T^_vsRm5ia9dZyA(IK{Ttfr`91Dd=X zTL~mdy&NaB<;Yc_j`cV-TPwn9#!PJ7XoouhE)@&VhTzO^nAXT57g__ELCv|S9O_lE zsvKVwroNwvf5o!;HbYiqSy6F^mesGUuHx4Ut#+}je$K#(uiDPC`VIQ_FRKtK#aO}!dmjvg9i5!~U5BC~wTO3 z6k<+1&1Bnn2GVwxJ~U!?M)OEU#T{A#=U83&!4gYgBLgeGYCB8dJoN2f0wGe2B@n@h zV+lCwJjuTVGO&jtwLMJo8aOTip{dtE#3>^vu(ch)n;W_Cx3koA7m9oYbY`O+VGA9@ zZX|6v{6C2EZR=cu;;Xi^B3^>N{VRf_#mF0nOWbvGiu9+N-<$KyPaxh(Ok<5W z!jB9@9{j0Byf4p)@9iQ+@6U(PxKwrjlxKcvFd7s1^u0XeeY=bJ{6QXkR{9T7nGLsV z?DCsD(-Y{lGO1CiAs8H+f}_q^ZAnPQ_;%OH8^L@6l~Qj6n}s8tQaW8)ys135Fh>q} z_LV?6=3z(RdqL=-=e!1lVTD4_hriX_k2&2$eY|Yc&O47oBgc7%iVZS)<&Z}|db-t- zA1HC!IfVfgU$q_C{si>xm+c`+jMGj8BM!!P)Hx$J6DY#k-6k{jkqHP)&D8(S%!WK+ zlH-KW&G}Mg)EEvfD3j3(F0H+{sO(CEK_8yd9$%Q9?ZcmV)r;J+`)(!0!9t@{9}-%q z(&Qld!t#4Fneck?{MVew)hqmO>*bqad#kX*-RvmUK#B6s1q8#>!$==B1=C;?PPyCq zHwZTiva0d>_Aq@a6e%CnI5I>bMZz|jx5>x@Y{Z7jyM~4kO@dZ4vAH-~RTz~bXDcdB zzxKRZtY=$Y#V;xCWOX|OE52$wtM3l)nlR0`{B6|p#2>yzBP z&Awo%C(8)uUT8%8n(NYz0{&2@1t8Yt2N-4|>ynB)v@XA7brrwZv~~Ff23CC4cGl%r z(6@hGhDb5iWdtXVb?K;cMH=SFv@Z4Ak3C@WT6kXqYE!R;8~Iw`A<>b=05_HDWU&r^ zztYY!bB^ou(l8^c#o90nmCWcl!(`}q)*>zxi{mk9rtx&liB5m&5` zUJyaF6g%G)$7?&Kp+xi7A`^>qbMS^hUy+Hm1jlb>tQFY~s5m{xd#*^+R!8wntZfF9 z45;|3?eKdUef#-6M2W%g5sWza-BIV1T%=cG%d{Z?Z?Ab0T?+7OV<{oXeoV&2eBc=ExXkAFF9!AKjhvJYT5^3HuUlCjs0`gSOMIFbqT5k5_QnS>VV5y53!n{+`SSr5j%87`H zs|?~F+OBR>L3G5oD+LC9KGW2Up6u>P21xE+v?XNPz2dY=JCx(q3+8Lfu9SC#~;1 zx}JJ4N$GmlVU1mdKjB~(D~$hBh^#iAYfu=ke1ZClKG$%NgY6i@SWg^?6BO-~72}Nq z?E`Lmk%QKcywmW$b?|*O^@(Gd#pfZc4oKy1v+Cx<46DT}c5F3?X&KP35EbMa34bd> z{67B-e#=2h^G3kR4d(W5F0hI(ryU<9ZBDyG{R3sqX~zeT-+-J%O0F()+By06Va#dw zB@on|(@sGe$!T{V8g)IV9YIDX1o8ATU+pZF+5PxJ2g}5qb{BY_Ue>Y)gx(~$KJw>p z`LnTPamUlQawT=BH?sTa`i`HwRNXa-GwD^ru-bL#PM4);U z3s__IWs(1*o(i( zfQqlGuaC-`P&q@C>vvJzzdkrhOlR(8L|3^%^B)TFzsxg7fq1X$rZ@fdvNKH*#iNVJ zEik(TjeIwQb}-w6zSCe9mmNd$M0m|1c^q|4*PJ&qtu944yVqo)@$m%CG=+x0KQiac zCif>5Vss!#sSvxGRqcp5XLBYl6Xu)?sZr9|MG4Sz`C%CEMaMkZ&C*(pGWRq*+=`^B zEIx;#q(_3%Y@;M4rfth${i+wEm$ToRW9SW;CMUGe*IJFh&KsF6Avf@fA??2X3`82$ zs{oB}LDSm5o9jM_DjjB^3~xr?VWG`0t^^}JiyEb8Bt&b~i@Pa~t1(lYF9n6INHrWP z22UInT0wg=0|nQZEj1o_b!xcVke!k7{c`k`jFJG`jDw_N-=#vQD;QXC&o)E{$tU{B1Yr45~uLdM2z6DV0)y#mup zDXnPfXOdRl(WU)I-ub0A-rq>rf21BLltd2u4?Bf=?LSn5+ke)cg}>f(08DD^uP)nv zu2N4cjPcycV2fHVP*lfclrASgagZhiwq)Ngj)m=^(<{;zwXia;U$;x$^7cpKd z*ClA`+e|D2%0;ZYY2{k7jm^b`SQOG}X`6Ohn$8dDMEj8Puo^D81pWLK}4 zao}zF!M}xLE{!qn#r{!z#yCDoT4UTj{(-U@3bCH-RWueN&hH5n(Ue1mEttPXRHp$h6qlxoS`Y<}0oC!hbb~I6t zMjTC!Mx(Afnh<29junn3{0PrH5snqYJJHeP+$-3l6fmUo*TY17fqY025#01Jn&&me z(8;6&Jt<-G1~0=}MsVg}@@I6VWE6g#z!01fl-=XzbIBb7;UUH8X+&F+J;P2lW@h0- zg>rRbc3~1RC6uYGHqVp6*6^kx;xOf527QHTlF4p~^c;99a{(#sMM8V^YUaZUg5sZd zXXT&DyQl?!+0lvGnQcIi#0Mb>FZfLsn?>>-fW2MA2rTYX3$x6&B$g2+1D&qd7U-eA z`T`zQp&&6r_xbE$(hHD^dIEVwCuWNcg~&ZOphDZn@}jK=`e-NGuHRe@=4$jBA(F6^ zXN9jq36IQx^XMrAdQ*m^4@cE3OZZZpoGdrX;6ENEHCLM~sn=UYPCfDqktdPv4x-TW zg}mrlX`sh^FLd1TUa0$h(Cgt8HG?RzTQ0vf-$S8$VknL+%=ZBxs~azbiiNt$K&g^} zS09I99=L63-=t)H_5z&||Q7YFcUwL2_bL!8wo#Lh)o$2%+()oQ<>i z%MkhdP#mWab8BM6T5*0=A zyu|}c>gdm$WMpsp5m3pFLt~)O2yvc;MN@bjV1lOJnT*q5UTk%jYS9x6Y|$@g=tvD6 zp2C##rz4+0oa7j2%{6rC{qYe_J5zq8RWb)U?(qrvT2={2@oIZ1IpIj?MZrj$#QLPcg}eF=6qE z#E;#XiB7^D_~mHiaG0lJ-J)!}u~^QsK8N|YTV44jf^b`XD+4ROs_vhZ)nWb}=v()G zc`c3{ro()Q6vO)^f)j_^s-w>LqYm?loNBtk_u}WRk6cbw^30xnk~~{ic}W7DrF-p* zSUrzV{-N7c@~SJ@BYpwpB6Y2!%0maL#LK$D_dyJzGkrY!kycMEpzm?WY}Y(0*8B1= zAdf%&Z>)~|K#Aq^O9oVYRekwXK90&6{ONy(>i*>uqQqD}5sWyNkE70NgPMxh?5fGU z_U#0uq~^6R^6VQtaZKdlC+1i>C{%UOLKTqywum=)H{kiFFy}3Nizcgm{VZriq$kp! z;SDp-;GBU-EB4;y>@3cB?99i9zpk=K!@zoY;ER4y{BoW(h#z3Fj-JQ> zj<4FzI@*N3{p*OM%i3yvaVgj4nWG?zH!fv4V`_06xo}Gl+zW;` z-@1Qxp82K0>%Lr}U!0ZWsse@G#XO_Gyo=a4$B=JOEV1 zfdnZJW=mwG3}3Zm3G(J^fP_I*4DZ~*LUl;N=Q^@m4s$|C$LXM!oMSR!{Qj+-P5ze= z5&CvhI8m{|(B6HL2a5~v?8xzTnZOb!kb}_3=kwam3FI*J?LUEpNHI?G5u7*{xuecc zVlKiu53`#t*~IsD9#-_aVbc7_0O-!yyAy{M_L~!zk zzD8}TiI4~;VX(0IlHN@g8b}LzU_`}L;Ih(75fm6niiLg}kh%y8FdcJI(a-c5QWOOh zc8>vUgOoDD=&-?j9ePPDHHvekfPyrfGQy$n6)Vy4MbYQdOv_T-`Zu#>8IcxLoL*Wi z#eC&Kg#E368n-&~i!dQ8#u!lXRojsjljz$oD>zCr+*WSRGe?2={8IQuc}9JH7cu+d zl$Zsx8B#dHYYr*wsPnN{DU1hIXyLMFR{I;fWgkmqQ6qzfZ3@wAyqmxn-YN8?@Mk>O; zhCM_<4fxTkH(q&zGZ{psZW6=`N()Uoz@bw)L>Rp`K!-TipmzebYEx5ADe7{G7Gl)( zNs;4|nHH9iqaR}wiO5kZPA^9j9<=<1)mglNq~oBFrC()$#aC@dmVOI;`(@*bFRtZ@tmgJ zQF_tHp+BYK^sB{VYdF^G$PbiQDFFj2zG^!w<#_b%Unv|V=BXoAk9TIC`3a)9hZCx@pjc@p}isj>!#55_ea^4o}X;ulgV+&K_z9n zi6*Psk?cx;Z(%%MY?9a)zBHevMoGRjD$3w_%f< zmPL^p0*MWH3LS0~?8WOCRVek!xX6#!YO`#|+gyd(pxA_-Pu~35P%}8xZY^$wR*zHx zQ_wy(@dyUr6Me5=Ts$y9?b#~^3R>|5MmBJ{PzZ5Q`5~b!`c%QbazrUamJtA&D*VTp z=pzzD{RoX5+cFjFtIK@sV)cMFWeHBND${`aoz;<_X~dHSAyB7^hc7ZBR4r?J9{y#h zIY*9QMSh>*#tSh^y7(QA!!YS$>mqtpf^#5a5Mn~k8hN--amHciIXPpsKAa@Sz7hhB z7)Me2tk0nwfkqAvp<=x+lS6t2*qkLW%jlN|$VpaXFOKCy79k*~aIVOROT`p6=&6}v z6il&>p~DNX#uV{gN1v$>Zn?yH-xRCHr#+|rg_5d$EtyN@zCpq`)4mZ8K8g5e@KkLw zI44t@A{j*(?hTGKMa;R!o2H0r@H9nDkcFoyVt;ixP0?m3e>;_!=*+B%iL|jhk&0+S z>#u-VGYXm-tCq^sGvl>-V{D>Unwr9c727tBj*K8=?JIJ;JgLz1S;wQf3=^LD)&_TaT`6LmDf%@(ZmpzVnPiMwyba zuL*I~Mh+o`=*m6RUo?l%Q@g{kY~Qk;#yBi)C|23b%HyvKm0^4Zg~IoGQRvM!^iDMO z?HyKzn76a)X11XozTgEWjPyM*Ifp)IQHlH|^P_JKbI{;%Sq&4E!N?4r|BRFkt~f2+y;$v-(?5{loar`3Mv zn`cDx)Z~5bgpZ=pYK^(+$a&etYKlkt2hU1B4p3V9Imxz4+b3Q0S{Z(qv(rk{#7^-~ z%tyNsG)q&Ci#cHZ$ z|5SZ6E2XE|F8?S#n(-UXqu z<4$=KwR*iY3#}aG3aQq1G6S;IzO8L_rZcq)@AtB;6-CWbzdWkX_l&ad7dU~6CsZ`G zF21T>oQDqpoGB@_2zfi=O4!_0tKY~8H(vua$Kj*N5^&(0Q6HMZ>%rAY6qT#Huld-6&cR336fh%0f^;2-5jJv`lJL|%I zZZN29xUNtDFN_XS8lchsK^7}Y|7FEUFpT2${e!)vG{Aq!>2AAly`#J|u3%Mk*9e16 zwRqKD3OGe~jo>U9uo}b!tm3g6R3zO)5oukjH<#))?x@#`{>b+ZT8d)5T&zwYD81OM zmv0IRr0$0=FBBQ2dIMGlO0|QWF=g1pgKaY&?3*5WO?8-dVTT)c|q^v+A z-;Gqav}X;9U5&nVOZ)pUS2HL!M2g{)62XbXgcz-J^?EF%7)Lbtn&ns}XoXe6{L~)B zt3>g&jnnv(oYZmulrgoJ(U{WxC!G01OHAbXtKVX)Vt&L<{}}U%$s-)EoG(q3r^+RG z_m;{KCiMWdgyxfshGv`L-gB#X(}UHM=|k$=cMS(1L{dWHkc=AAPChIoa=7cFOI%2vv)K}l_`^|gddcJQE56F=$jc5=?rdW~#aGqkPUZ2aoFSU{8dUeo z9gdQe9zL}^^AkvK-^1tjJfq)=MroybR_s12A9mwBeD2OOzckoAH1zN>MS)Zb#C}%- z@!mYJy`_t||LZ)skM;WbM4ssh)LULZRB8wl$CmA=^UqN!{^0F*OF0fVagyY$MA@}a z+Bs>CzNI{;(e$K9c_q4HAA7>d`{|hpyhHmgJtvvCpN{g>70%t1^yy*`&6(8VKP_s< zi*eFgh;8UU*xVx95EUDo;}w}6N7E%2m>v0n5{{;SOh9-$+t5+~Xk^hv%7} zK)M&F%CFSpXgZK*^gcA|);2Vl54&;O(0O_0mj=7arBpX+S*1#5T$u-s%e#o@r{uwN z?3Qz5p6LlRTU!p58iK>I@B68$cu|e zp0J7Y3ZdDj#G2Mh6tmrxi5fzVzk)GaM2=IjK@P9X@yPLaSRJL3fMfJx# z5d6N27~bc?9Q+$A!PlWTeVxazIXe4^W0pX$CBdmw?+P+yIeP?Gvqd}V9OM#$3jcPC zWI_J21mvd{8tmg#$cX+YziOvR#m-u~dZisEQQm!@-rzfqrfQ z>8TKvNpI2O)%P(ZM=$OUpQ1H0I@-o=u>sh{3SsAEqNr3Vp^-zKeYVw?U!9$h0_rNO zvsA3MjR6*4wVj>d8uabo326SX#eN(fxc$#uymhfKv%D1>I#$awKR$vVuc>x|+w+Wm zE1O?;u=_0ZoddgZJHg#~=9dP$>g-O7SgMn(QnkG9%>&0!O?oVA&PgYrsHMJT)LctJp$zX&z^9W_cam@6NLud(>Atf6MT^vp_Wj2qHJH~ComIc0TZ8KasDc#xzq z9FTFDC9t7qUg~g`Xi%Cf_`i(rW;=1Pc@ulcq?hG`Y>?{=e?EtGAUAK}rw;?sWNEAn zTM*@^8iNs>KN{}~Tsu>Skp%@kii;f)HYLPaaTye%uyV*nz<7>GwIirq);Od?(a3QU zpklo*GY%<3q}rg>k)P*8q*@5n3F#u$v=gTdxPRGFXqs?cITS1SAchPth)jWd07qJA z5N*AAV8F$|EKH5^Dv1b2{3RHavUxl_OdRsrUIcWZGIFSPBs(k)+j2KQ*hLJDNv_Dm zlp>~cD<`_04vvcBS4z(SBfkX9P5?J)HTJTejMxhSxkIduhncO^9&Fm?2PYl!_hB;wBz z6Sr8JIdc0VIXboa!#2ZVn+?c{M2?a4vY6JWIP-WkI(qveQEgym-ON(H7-tG_N4yU^ z+llff$GuhxGb6H~HM9ZUZP=j(o1d*UoA49au_3rz{2AumZm>06P*=Cs;jztGRpZ%| z%EyTDcx=~!(E&Bt^ml?oCDF|VQJDEl?#IrhRob{ye;(~x zE9#{wN~*WmS_%v;x|}z573A7LLD)S6YSAE8QEEC zEOIxpnfJC_s31bVbf%9H@WWV!A7nFucIjXzRh0Chin=6LtSA{v!_&-3==#2}1sm-n zxclF+N^La4&*@N71RM@53-*+~v{oRf6YjZ<#qEoQ%K1NCvQO&>ple~agvVgY)Aiz9 zxmg;PJhj+5oPQj0e4FXn+FUHs(ti%dHy~@hVowD_N=S$2cW;=iO@M$bXY7<~GFV(o zu(-m*MCEXToAdXP+vMZ}*(F|EoVXEb&xSQd|4oQ|S1hB&*351E5sL|pVC}Hb%Ynnz zdcql0gjI_CrN0}6eljeP=mTpxh|#~;IxfmnjPZmH_)_QRi zI=b*pf!RxgK^6b9&}5_z!7H`%W5xP(W8*Ei!i9KpQinx-Xq09V&``oxbc06ZZww#d zU1M`-TgIE6q8XOi7~XT5EElKgCC`o9a9`xtvO?ukI)n!~P$7?B&TmS99R4IzfLNlp z@+FK@`7-`7gsu!R{3Jer5e^AEY5mnBaOJw#f&~D7O-JI|2$>}c9bXgz3*p>dOS(|` zAtCU=I0SyxMqs6n`iq7q-~8~g96tn@F}*88aQMD&MD9&zQn8`YP$qe<;A8nji2hI3#JplPCS7_(JgbC}~6R>i&VU zhT!qR;}0S!XtSRoNnP~mRW&4)^dd#87x^dW3zvLedRo28KZ=i5d=!mVkGbVmIVJj2 zP35irL9)_`58M`=4vpF3TogOlRaZ{b{ZUQ*@BCBuQSl?`srW_zC_XCkQPNQHJN`kk zQjrhb78MVSo=02+Jix9di5LB#2={CMY<-0Ld3wSv-RwKWc(ViWQ8dEEM3}Gj50RB@ zeAu?gR!DnfbP@B|6pbZ)Q`J=@AMj(!NAeTU6qkuKyW<)DQG9EakD`%$86B+UZ21p0 zoeTW~WhFcxJR{+gtBU}2br9Fik$D5uj~wIIuZGffoJ412(iSbYmP21so?NU9V3}%) z6}rzCS6jD&NDTS`Xp|xb-K8q2+)TaqRBpk4*x)px2s7^^X@grjt|SN2pJ~F(-yj2& zXG*gar%W%ClEs3aZlT#Cl8RkR*$@8AOCwmAXVIV{1hh6@!F`Sea#9O!Wiy)5-OzXd z8Lyo46O5>as~?LdrBGFCqvYKlXuy;G#z`*&5`lff|#GK5NZu@lPtfk zvnxI41$nO*yrj~CuFcd$VfT4iv0HgAwdlWOIhKYK^tD%%p0-dX6LF(dM7p+W$aan| z3XnVV0tDkwGi>~19_M0%nah>-P*vie@isz} z2er@8Gg1f#4T?>O3OsQDT7|WTxi4Pt?s92%l2n+8UtgG;->u%T5_xTFC-)$O}Jv+mDVNxoXDI{)zK;Z#Lbd!F&fEy5|8 zNk5uEQL0B#Zy#dyJP$TMmGn&UVdTo^_QEps;8dAC5k=*L!BlyAp?x%h0RRT6?j%VB(pTj$2~!?T1E=#Ye^I7oR6g`vj{aKTyJP`&b54d{uq1RelQk zxGa6l5XerNta=lA`BHPSQb6DS#l}%$ikDb#+OzY_PawVhxQfg2jJ~Cd*nM(7?8bT1 zPUo3l8thtrv%&&sl`83SQyw@Lx`^kS^WZtwoAzaSrYF#BdDBv^0ukpC`I-mey@b#8izFJh0?hb z=$dlDy?T+t&qpkR#7k9eSNI@95$>zz6QWdX5Z5cgylI2JVs+&QOY93@WMIWtZD(Kj z7xeAl7eb^Mhp-4v91QQMb43@}L=oK{FnLkjmw?*Ti{fHS^}$T$vC9LM`Ax^MFr0kv zwlatn;Qpx4vhO7(|HgBYwicG5k>i9!#T{A;M_FC@!4hlX2nJSs)ppjxP0S39ol09gH8-jBYM6ESq0YpD2bZyJTW#W2pIm1|FBcS5+%Otc+t2zOB`L25&&)GFfpqWYnkv}tFY=83(k^0mF&}p0t_N?=Gru(0 z)nlyX=}L>lR*UMxc_8>;7cu82n3~=?Mf|7XvCaM22H;aMXE1e!;1zWcQoA zQ(T%rqSQM@D}|Akzf0x}*kgOuq z3T_5&r?L!-HIS;VLi?XAlE+JI?YQ-OhWW^jL&XOBc%>tMVM;)4KR0#o7PBiqSYppv zi$*?gwRZNLb?Do_=WwK?+;jea_TB`}uA)pE?<6E49g+ZHRgudg-GQXD0Rqx&k+5Ym zfCd$t)7`iG-kaO^ws%R=gvhRft!&Ne%HrtEd^#@Ur~~efBQ9);3ywOV0t&eAI^*}& zc4|3Q@2OL#@BE$buRqDJZ=E{z*84nF&s(QXovNiF{&Cn*RJ~$Oe~9%HI*9JcVd%PI z&iNt!`JgK&pVXxcMyl*wBO&z|>LAXg5S*Qn=XD|OahQ$BLsB*AutXk9o|jIG;!46y z6X`+d_f!f|c~ag`;N_7Iy+4}%#zTAHI_QkC2J2{XLIn8ZuK0AM+K;H%N;eeJVUHi2GC)(}A`hs7OoBZ3}9JU^SH3TEn0)67L ztkk^qx^%fKm1F!7+r`Hqv!O02Ow#wNGt=`4#tD3x7)RTi`219?jS*iW;x}Ew7P^VG zW-*(V&rj)_M)dPjl7oGIdLp2}K0l>@**-s|UorLYFPMVA-=iO29Yw!;flv3wOCDcc z9c1~`NER>+pIdFYX(pU50n6wHSe59%WSvTtuaV;)TfxGW0rEb)$$!Jk@PTND{Lw65 z9DkPuD`#k4ezjVzZH4nDtM$ep6jF@_i`D*~^=r<8^C#&x80IB%?#wcFo!+{=Jlra& zWyLFUcp@zY4mROGVNWgixC?GAvOACKgAcy8jg@Ny#oTf(v5jn!#eS|Nm&u<4 zt@6;;X8(%5qv3drv1puM@7X+jT6>@YwWVbcV@et9CoO|k!z_bcmu1jQ6s#3}t2qD> z*-5yi*1lAXh6iY_RZzL1c4HfSzSf9_%WYCWdRzyfI51L&cUJ`Xm5_^AX6UjzkA+X- zs^g`oUsjG{&#sa?D7q|7D+wN7;Z*=^OvbB3pNj=c^s_j!hkdQspa=~#TN70{T68#S zmWsmw6D^hnPEi2aiXU1O1B0!mpoJ2uhl}HI{7kVnG(q-3Y4)#$9rLICySwvIb@n_y z^ks1&lkfPe{qBx-VA~m>-LjX9;fRyUtdOWuWB!9FcvR@6^R)D8F8L5R|w_v41Lep#09H33!B=*p^c__aTY<8k|L=Z!F|K1 z8uX{CgVpe>qx&k+pl`3XD7gYz+=Q#1$r#`paSX*q#E%>uulT5x9cO7H$R(~e{ z9=C!q$*d?$&Zg5B!ae>=I`mQ8R8}sT`CMGSkWM?8T*ebERzfYe2#*)ru1WtN!u`hx z{fa-K-@~n7gfc4%q1`@my>%Dby!0ZHz6XjK%o`Yi6=! z?gZRbjJad|nL87=f-%Re_%io$+)!5LnDJc9EufkwW|?iA?JjZ%wq%0jsg65_@wC;S zr(L)ej3;Krm!~)3hO+X+jOXHMv1R(-#?~SupCB!fF1fo0cNXLBUH;sC2)BZ9$E+ya z&4PCy!ZG@{bmr5znXJq))47;isJ^2qthABVEwc!>)FkQMw{h<M7g`MisN7 zQnie`3}cU3b5JF+C{)Es(z}J5g2x=)aI5E-;{~`Cj4EbD zr3&7t37=+>zoj!r;%2f^#Z2d;N`JL!rAlTIZgne3(z`XdcUZ4F*`KPH;Z`uJm=%>O zc)ucinnnJW&J5sYvQouN=b~z{<*l=oFPTsH)~zH-7kA(;Vtlpy`FcHW1>=iZQTWGg+x(rt?w-L5NW$bi7x8!w0;GEDBX|lBDVh+&he_@A*^pbKD9> z6|3_W!HH*O{?Rm^lgst8MRRSxCCq)KLqsZx?8Rr|jzc$BdiZuJ~xya=~~ zQN^sNRJlXfYTQg#s+j3qRI$*-dX*;OCSNp8(R?vqN|NMj9quC5wa)bC>y@|_j4x(I z;Y&s;E`>5dx>dprW@V05A{TRPUPG)%v-Pogv_p{`f-)sVx^_A48phZzf5xuEtze8X zD+*&UAY3h6qJK+g-j18e$`do4i>Ey)3(8VK8&&g_Ou{oQO?vn*xQ7^BAM&T`^SBj^ zE@nlc3!UnH1UHnGFlIa#VSCXDCUqsJjj@G#EbiKVtS&K7971Z765bhCiFi81y9xYcv$(T7{X7-Lox z#y|{L3AgCq(wP%+Gg&!frt@)@Six-LY@wb@cxNU{N6*I{#aMfpKWjs{6^u1zMPY5` zO4-lgPwC2QaU)qdV}|o_mRPKA<7|)dVkh#!>wSfF)IpdGmaH* z!C%smzr#&r<&2rl#o4_0YXTcrv*}gg3jZbD`4sLB#>>6_ynGe6g7LzvD7?_8V=<|r zKPi6)HavxYHPipZDkR8@LsWLuN(caCh;!rEpIsNVk578_dcjt3)m? z_oM+&`8L!>;d~{Na8FB<9{v~ZAx7LE{E3@?UhwFISy6~XHS<8+P*%d2@mz%MO+HQ5 zKi#!awm{1!NHbC;ZL4rUG1~gzR?iX1DYzA^zcDMmv~9o*Wu=W7&qdn{@vp0G6dvHZ zMX>44Ac-Btk-&%@@+Y>9TfvBBRup1q)6dO?kNlT(=t|sFR%)5~jMS!Q=f_c5zq#)0 zaa1GlX`1~wDp{Gtaa8Nzrs+72iWn!G((vP`hTtbZj%ow>)8{y<{ns>#5jolg4sa>9 zw$~e5>7K4^e;{~A?z}FW$Vbp7Vw_Pz51Ib!-#mbxx%46Kn0n^Ymeugp{&^)h1A`oc z(JEJ~WJlb=Vk_z^oCkXv3J~EcY{Cg!a10kl8uc-{Cj{L*mwr{4 z55t z48*R%W{=y;trG0?NK5M$r4@!6^=5OKERNNMmPH@rq1Yxrz6@&KWTiCAqqXu#c_^y2 z03We620^*r7=|6NV6({Bz*q!%TkT;ur9=fE?uD&CnswlX?(hI-U(-FZ=m|sPh2cg7 zrC=qHDjgL3# zwPf+uba{KwLa$ETvxns#WvtWxe zDQT7?(9-wC>)sTRQ|Md82HT&Nd?uzO$x41JOC`k)Wsj1ZdiZuJ({KXX2dUQ5(~ii- z{q;s+uwDnTBRl&ntCqLIkw)V5G1&CKI1<5T=O=(N*NRK%HnyjOsDa>sB$M0OLt6nl z{I)VZ2!NHYm8x8=*T{)x!2-k znULmNrT+|WvYZn@lC|9@jeXzrOJQA-)m3y|c)_Dd{l_Ob-bQQn>LB2@`DlzCv%SO^$m5wTA?9+A}?SolI@A{oqqV z#ai_ym;)`>V3<@JlBYWn*Up4jpYC>xJ03`)<~@@$BIoGg?Juh{Zm zA=dxcL3IBThOR5N?E4D6`MR3~=?c8{_@HYc zdmLsXwvbd!a4fOKl4o^@xJs2VOH2W%q4xZjtk|VSVP3uR5?V2L);yYiIh2j} zh8Py@VL5?{rLkJ_EHe3((3rW?8{$w3F5V5X6>qId-wLG+W;Vd9F4;t3Km-FLa;hQh z;L1lw$}=z@F2O*FtRt$Cx5L}Zwc+}9YtvSCbmfg(Ns&Sppbez4{qwzaOGeqJ98^`4p)u|agW1n3|C01 zCLERsV99gFbjhbw9@9#CKq zEeHj+UX!>)naJj0;zHV%6JdfRYiy&EhJ=Z2MnPU3y-6$O&YCAo?0~ZI4#pty3=?k& z@sER!V(Jwp-Wg*3Z5>4S&Mv%g*)1ked8k2a*0#2-40# z@t+~?aiEPrK~gp8umlQAo_*~SDH$;DNtgXsroitl`z5-7Qx|1K_Tx>|-P&J(Ri_1g znJugivquDr@i-#bu1U!DxIm}Et*B&_#UsM*aFgXN8cEh@Mb!(52!|L2;g#YuRWGEK za%asG5e|d0@rb}6@r($^hxo@qM=|w^2xo^_Kcj=_t_wrg6%htQ{PRI~v5W|D|Bbtu z?V9Xn&5$~ccM$V-2iD;Cdn#(#V8i9B9A`z(<-{N=7~NJK-qZoVE}nXpC5+!$0Uh_3Q%_DR_u&8 z$A-AaVKyQTN!4V;5^*efuKa6|VyRkY4bvmp2U0qfcO+}mNERQ#lOdX&%f6VQ3ro|2 z8jWSK5&MIXdFl@jMP{-@Z7@?a;*USCp}iy#j!3fBj!>~wV~>cK6bBZeWEHm?#d--! zi&oK{HBUI2fU@z9%mDHXN7se;$0{<^@>4zKeeR-7I#ipK%Y>+tp$Av@}?R$1C_izt$v%;1h8E4LO<88;qL8v1pv` zo&am(FQ~T*@WFUD{R}-C9)?fPx5C25p7`#b6NZKw&Av_WNLO3~RV)^JVg0=L$Q_m$ zj92Te0{zAm)?PwE@B!*Ltga^yfaTc$MB5-4R83T$=|s zS*8a`vevLs_3oDZ$B%1DlC0vPMzMGm`GEUiT19u(Jn`{xC>xKD3?R?=ctVJOoB|YK zulRUQi1jl&i0=9@bY1arD8xS>bTh`sR!BWw+d-VSh2ZRrkCP$pahQ$xNK!Q!vBbw@ zo-NBExJ*l=c;d3#c06&}?e=H^7blVz|3@MQn2uuxslqfw4JooFpy{K6IVo+^cT_Oh z4>7O49X>m(75QZ8NVOi>KSf);g1t{$Co)?jU*h0O9sm>R(*KVcjm{l8lsNd$6oSNa zB1zU7FsjnCskb5o@?WxIUo{HDE5@VWmuSV@S@T4{2cc{{`Y~8Mqu-B0{Nuo*xOzpu z--cNKRR_`ieHgl~=(q6IdQ)^a3DT^2>+wN%e*8LYb-dNSmL^;9!69{c0o>H7iONHu z?946L8Tnou;vR?Ch?# zmSTeuY_c;H!RqR2eLHNpGgxoe?B9i{XWfd~HEC5jJzyvkJ$wRifVRGbu#;qsA5?%+ zgnfrmm{-?q(~7yX<`MRbp=`WcFjzc={rcFyn`d{y*bM&1wm)>&UeO@V01B{|!rvKJ zBZKvKbP(pd!(etP{KrH5^Fddt`7(9@HFO6pO-jv|LhA7E9mM!6As9Oq{)rIxIK+m+ zlT=MXEDCSQQvij>B~p@M-kz@euTEjYTld$~(?ZF4$xTf65!r_w71LxtJ~vy+ew-vx zSa_ihG%h+^_PgOG%e)pz)<{EDDMj`VGYZ2i#z$lYS}}LlJhJ~HC>xi328*Zcza+#z z4m^shm)frjv3^zu(cKV+u1oEQL;UkW7dBYsyB@}3uO`Wk)efmaqk{-<4?)xImHa#UclDU zW!TNQ0lRQn=Wn`Y*ZS6(3$gy|4x;;qFmzoizvwl3Q*<{8<%!7$ z-92KJS5DN{6J_Trgw*07xT#a~HitslncJ{a>5mI>kArL|JxSH1!=m(-JO|KGy-gD( z3Fd9-3jd*$cJ8h4r_ZblBa4tpPIL6y*33! z=H3$yy7Ei5zD#SkyJc_HA*8e`l`foaj?jOU@b!q*c7wJvW-6Tk}=B>vET`BA- zQ}c&})Zm41Q>P|u4ui5Yw_m5$A0Of#2iVYhlB&suMe8kjtXi+>qEtEa_H?cPa7tVE z*7`Gu%x9RIr)qDThO()=EIU?tB}w{U%)}O-x`}9GOsG6b*62djC`IKjHVX6Vr`u`8 z+*$Le{3TE}-b)xPo+^K1h<_Y-6jv{mzdOYGyE=&OyTj0Rsr8oh>K2 z3o|#)srikK&BHwb6Z5p(Sly*5WmV;#kq)a{8I>{o9&nRozJ?@g6rn1FOw7N?C=?I*9c|2-Z%0zb?c*4z;20Bvlg+i@sa(q)f`2cce@EycF=grTths znr3_C!y*~$OV<^BtC_6RC`IyGU$f4OixN#vNs*21UIRk67Aji)QR;7Eq)w7GI#Au2 z1rCa;(Z6M-9x@8TE5)_^tF%(?ta-Hj5hxqiat4W~mOmZh9|s-9)Jx0%5Muqe9Yps} zVd%QFe6K;h8M>PUY0|v)_@Ju}$XAP|t0&4fd}v554u+dLH6L?0l%2T^J5~II5cfF9 zhKiF^O*SklZpqWF=%0k$%$P3T|D4jYy~Vps6*nR~^|i27k@95m&9IMO9d?gsZKpd* zl!}E?u{_!;(bKlr=diGw1ss({&s?NOE|O8dRqy93)q)IsMGw5*ZsS*!9 zMiEIoL6BsPT2#Acf%~F*^lw?IhmC^pO7VE`0IifeYo2)UH7Fa82MiJ|9yoi`k3-yx zG1m@rOh9hwO_n^ztqE;$k|eX(^p5nA6o$Mz(wTHKk`8sClqcJLhxJD8Zg5J6*$Zy6 z44_Ezv~-vwje_t>@eb2NE9K6br^76TvhfbXAo1%kr-ir|W3F|W1mujgW#iqH5dq+6y(oc=r59Q9Oh+#=i%suEqbUG-_o8+5tjB?odaZ>&?yuyJ`)fr` z7}mv~+|WYoGrtRU1EQgu$+Erwd!`1(`_|_u9*Oo&lKtB|@-+V+MnUeTtF-cO(@MFs z=4s{MgR=2f&LGi((d5jf1wjD$Q-c2M5dS#n=!n=$LuMCsn%s~n=+1J-u%nkA})E`{wPlX(>WS_%G>SBNG!`ziYIi zCG?vlYgC|Glk$}F2BR=9mAQ&m%$+rlhF=3^<0`{o@zn5lhWN*UM{)Ji@DGGoe_sdD z{ZJUXE)D-;h<`rlDjLpShd?jT(qz~Ac1Rt*(Ls#A6N0f*!+#Ot9*5Y_aFVJCheg9J zd3KL=Pl9e{OV{hIDTsUP^;vY)1RFqSADxq%3&_ZPkx{x(^hCPE;-C>7R<|yafg0EL z1K}piL=j2WC_*&|8Jn*%3c@SJpFo$>O1ZP<(e3@y`ccMZ?p^=2wN(;qne*{Q3}#ox1+E5cfF5hOU!TO*AaJZpm|i zIyTpIQEHocTe{Bgm%@Oz&aWfy#|HF?l0vU*iS@B;h_1Rs*Ipn}zu00x$i4NNgyo9{ z;%>=QB>(dinZ$6OBx~%U@`OnKca4JZN^!}5j8@8>HIL+fAIiohpF!d&`M(MAkAse4 z>LvMeMs=FpkP*r`y0hS>PEE(`4rK?R>yrEzhWO`$uKXPSSkb%GB-yE!htyzc2N7Nw zg0NHY&j@jk18fLBN!297BKVd(n&4~dC`mAHOBejlq$r5D;Gao8Y3G8E59}>sPd|r8 z#D0-cxM+%rbO}W>6JdN@U#IOcA@U?yV+<7}MC9LS6yzmCSJO(lv*r=`YoTmhh8QHC zBLA)s|2XIr;=Mgn3Uh! zY~-sL3gjD|@<@4ze18LHt-|uTXcUfD-BxUDZTyK}aehMx&dyly_7L|t%tkCAshW6LVu2;kY15#dQgloM=}}|<6t29Z#@c2H zP8^L_*7Oe6>ug=yD@sN9*0Mo9rXgA4#Wzj4qdEODlT2^fm*OnYiWZ7%q)HI(H<)nC zsS*4(;I*9c7AxJxe_tp^i;`XgcTB3PdB+ZhiFJn)a)R={(OWMK|UUW&r z%e%C+U**a3@Of{d3Ae$LZ^-&6&59OTxsqjl#G};Lv8*40tg58o}8#4($I?PA8Y}jbC;g>` zX0g>ChiQS)X8+DzOAFEPuy8~qipTiRsf902`W3GhvR;#Yw}FpOhPP=YSB==HXN;9UaW0vE+3y*ef;uj zc@X|+mFl(CeaA0v0wK#_P2tuE4&YoK`?BnqzEyoI`&O-92KV$G-&Y(Rl^2&2JPCn) z;}a(g*N0#;K{EG2_8duYY_dt(bLCMLzy%sRLiCMP3EH<~e{E;;_EsJzpgrLN?dv9J zm2Z*qXsw=7Yju2ZE1@3rR-RK!>z1X_%avbYS7DH@-XMMd8R~oGFHmTt_E6GHehG=t zOrC*TvA2MtRXxkHKSi_aPRxrt3wKd-VmESCu*ZJLiqEYGRkM+XR(uxR3Qgu{kVm0Q zlQa5-A^1yL*%!BR3KWrmXEl>uW~Fp zacI4^U2lPE5*;p00XNLJuJS649^5R@)XTMa3fiHVuo|^wAd0>Y;5gm<`WJkFGzP^i@S?4H|EdWrMMN0IcCL& zxi{lRvNFdEXJjrt`;$y8We8TH$)F-wX#=Twjp9fPMjpl1)a3IA*my|^#&Nuznw$+e z%fnNZ?|?o}&Ve5gey2(siO@$($z)}i)JiWZpMjeqGK%Z1G$C`P1^;M6i^>j2ncO=W z#iuG4lhWr@c9Q#uabocf;(ibJ`J5S`WS@g8WK;=)y$f;*HD&(ymfj>1CZ}G}i0HB1 zrDBzw-Yo{RWD<>x2gsY1II-E+eQvSUEVRezredpP~|F1+BHhrWcQ|+a3Ps$k_7SVSwO73kv-BqOm2!>JQ&V zN~f%L@d$T(a8q)pEx@UcwKSn{lyjy59UG%d)` zVLtjZUD>blH1!6By>u0L{UheJyCb}uJUzI#rI+vG*Op-_fn@G0oHYVxtB@!6k@6_n z&ZZ1g(l9Yy1EDW$FV}|a+pSa2=!43MnOYQY^vBT_m3Xy6lKmS!vPb>PjDk?SMKj+( zE9K6rHuK7XkU2v$KNqs&&747EOenj)aW04W$3aJh#OqD_#Ua+W!%e;-k`>)c!q9b1 z*WVc8pAWhj-?ZNyQjd3a5a)M?;Ov~Nzc<7^4zuy5ouq2QVTlHoJbf9pQ3}6VSi0~Z zlfnxL5MIJRAg3kZU1NEuMaMp;Hb&cHFuTm&BSIFsxQdVe)klK@8_Tn?K0FJ-a7i2F zTO)uv?;(ajvKq<|=qZB;x0;gi1&;C$K!&8p{up6G^-)BriyeR#){#>~2m$5|r3@S0(_KL-|1KJB*tkO1`G>#AP>i&_79;X&i5b*FtsQ3f09% z`9$RS5&}Z)G`GU}tQ8jMTmu(pEls+1zk#b;)ku|jYy1Ma$-gzusSj4*hziysjKK@= zC@#xNeb2j6IixnWi_7g}lpYiom?+(^^3C*of^h<0CdSeBR^f|A#QdjN-GJZ37mbK% z_n1w~q7nLtk1iS^IoP6+y~f}#x@d&{)!{`W$It};W5wYz{jOpFmWhm)Jl2l%B;Ql8 z)dogU)3AhO%M~-bx~$b4k6NVxsjN%kg##qe4Ls6zYrJ8j@hS){XO){$)S32WTdaqTO1xOvQ@`RdSFQlthtPrDU1B; z*PLGHC0ArVS}r{;h8v%OKWB8LUuo08F8)_=0up4A4 zG!w-QjyB_Nvr}}qKh%NvyoCN$P(5wCYAAcvQnn9Eyv<_&O7h)~{tamVu_PD&Vn~!t z_UlqA%eDxhwIL-?Z1rseXvr``536w+!;BvSF1Xk;ScUaBfQxaJJ6tV~mRh5Y;zZAM zuRl5xy16<6*X7Z3{m~I|A(QX@t6hJTP=w?%qp{ z94RlcC}|5soUXqK&ff$F1pa?SaA@;4ma;7}8X(Q1uV=GnfgxfdU3Q?2Xa_02AOf-TBnR+L3K z=+d_C?i;p#>NbC>{sFgwQN^tIQuQ(1 zP*$p#@my5RSBAYdp60OYf+X=%GW0O+62{P1{Tcc`ZUtkAS@C7)IowcIhM4hO4DA67 z#Lpr&isteRf}{AiBxz0!8&;xPJ`-;BTfl9=&aBrR-ekBBy! z=EYeAQA&!W>Ls{uSbuu4KUHVpRxqlV67C=qmpd{rxzhe zwO*6-j^lV>^j7`peI0HEqnBAx=zX4hW<&UlWs$B=;+4wU6j()bHH9PSuuxSW3zGFE%OLU)gZka{+ zr6x)5CUEaCvfBP+y#cp^k;SYiWX)Q}U4~#r|CY|&jGM_y6*HZeD)r@#gDR0lp(;+2 z-n}394x{QH{HeMRw}Mf{tf*AMn<(MaEb_N>=1aJltW+`6`KZ$0yIHA{S%h2NN|N;M z2e@|_Rp0lg>KC{bj4EbDr3zj(3ZLL`*P|7x{(_syN)k$zSE5$FWIo|rw~{3J zI$%6_ys;15>N(yx0=I(k#jGfN?Ji#83ddxEbn9r`U{>Z>C2}#hr~2NyAmpJ}fA_&6 z6&WYStH;zN>EC+XKdhUbxg*gJ4DS*c>C^HD{gtl}jf zR;px{m?|YnHpGwO-eFXI*q^F@!>wRcF)J!n?f~{R+)P%gnCVeLDu3r;!QweFb zqWNOJlqAX5v$%^GUr+n<^+((a#uu}q@Fn9F?_V-Oy0!aj(YTzIIaY~W%&`d$v1H2D z$L7%vMREwrloaXOA-HQ8V+X;lo8ac>Bw5#L{`q2*<74KS5cR{+Xz$6s^C;9 zDblwA+&7G*SNW4PhFif%VpbHA(4ogp+)!4knDJax&7)_2lP?i$ETxTxYjfeF-eiw{Nj3E0fq_^$@se zI<{CP#>uDpe2dlN$cF+;=mwdGkv~1QSlx0Bd@Q)8QH)?~NOBTOv9-P4*vd9n-Bxb4 zqiXqLzFP$SW_f!w0Y}-5K-TzUN!VL8s!lY^u>b0LCD>h$Y_QiVSF2=$y}@ED>MNXA zg3b7N$#50U?|{#RhYKT(`WSqNTw8W=u~9GZQv%5Ts~25ld_8v2MSTU>#Si)<++2fg zv0>}VMmZX+7MtXI*hWNJGyR+vcDsP>E{kKZjdoNk*4s@u+mRnwL(ZEao4K;NngX3> zYm!fPN1-liE?!|U$3BDRHk;kBw+43`?ih;N&8S*{Z>wRugF-K?&|N}{Cz(hf;rEiC zbf3*a)DnBoc5g4YO0XTzj`A3kz%xTZuyZ7!z|7NBI=X-iO}TGv6E-bumAchab>g~D z5XkF|Vc02`P&C-ASKENqSOh2VwAygSj>ZJp76cCKsdvNPAmppo7C1!?DJ0xR~>)s^WFG97Ov?P{B)UW`{A>m}hdac>bHya^4nODnDBGd@B@NLw` zfiI{FxfzgwN|tN1&21~Q^M3}Q2)@k-#M0~k+M1*?s{R*45i57hQg%gIY-zkgVv#Q! zKWP-Ie`IZLRC7C6gl#BDO~{r>Tb`WJ)%CX?LVF%Llj{HF9wH;N*$&-Nl5DF)_ILi@ z^yNK`Vjt$c0>-|{ZJyINXi~Ry=8s!yl7#ZRnR*}J80Rr^QxE?L{~R(t&$r978T9gP z^-SZ(_96|8H2w&6t-M#+i#qwSwU|{fBCw)=zt02~-|q0&aFb$B_%Zfh#C zZ9E8COP*B$S}8@wEHFJJT${p;cSx9Edz=({;j~FO$^z6L63Fot z^f)3iiNf~TObHch)tg}ct6U>*Foxu@7-U*!0_MVCs*6qn+GB;-Vuc3^@lzsoVkV|} zlsFDk~t~i4zY4@o(wW zQwEf7Jyf0+en9<7JS~u9jTTgUX45zz)Smy675lSM7+x_x6!`1OdTk(YpW-G810r%ZwtZMIb8Wrhkagc zUy%__VnSNfO~oNDW3ih;TIo zVdu!@iV*ia0IrY`0e{fdhAuaT7`(27c%~0sn7f+pI`RDb5cfEq#?XbNYN1XWy08(8 zCC@(Ah%Otnc}x0;or(-idNB`HP2w^StuJ1*9;)7Q%*V;FwC6LVRKhn84Pg>P=vh(LyJSK?+G_`YB01f zlpTPsYcOw~SF^A|;f)G|os~OVjaY z{2?U$@X`F(k-WUFH^%5_m3;76=r8Q-+0klC0v*MzLOD z=tf#ach)>%_Esnx4+IP#&oKMG5dSy@D8gQ0_LCvj@9iMEpAJLU6=uH?;-3$?MnL6# z%t)23_^FV3{IG*K|2PC^XPEsh3O!h;}Q_r?9^o~^Pk^Sqe)hpta z1V#5lX5vU8-Z>NL(*L6_)*GEWa*$^o9tV5iCd-mDlB_jgRHbKAZ$${?zhuQuF$%*g z#^0^?(~7yX=81l%LD_ipW3YHezbzsDao|y0y`o<^#QI1F(cKz`t}FUo9^#)5y7S|; z1FPdrhP5==f^Q6|!*w0Rcq#;AXXN{b5cfF5M&u)@ns8VmpCwN>yloX~C}B4oq^xA7q_Q=3B(EI6*#x5E}WgY|aJ{;8CD2AP;glvb6O{@*Y# zb&H}R?2k|+5)U{eS>p#4pcG+$#wZN07#H@ZX~o=G^9cKMP&O{?3>HsepS4p5%Ux*# zJok?SkK*bj?E8dR-wST))a>DYP<8;iE@599;-3$?QpA_B^8le2XlYVm`a|k)LI*KE zIRs;;u%92|9*5Wvc9Nzc{xySB^ z+QTkpX=)!IV<^==PLe2Go{2L)jNe6@WJ2vpvPK%JN-1i8i&2=D8s0=J=FXZ&?Qes! zaXn(Nc&h#TL;T~wqqush{ii~#-`7EOKNE(oOYOfI;-3$?ux%q>0vwCInj|~c(;+qZ zQ3nzJNeIGDt?#--@9XY9rwmp&z=qb7R82N4T5ri?)p|`AB^l=J=~{nr3KQO1e}+7z z6w`V*LQNUllS3!qr3GwwT82$S8?Yk5`ocmz0ad8HG^dQ|mu6y%t9&oqWSOiX$r@d# z8l|ZGsYYR5&FCarF?ZHHD!&HG##Nrd;;Hf%g!spSM{)I1`AUfO(GH?p4MW$Z@>hiT z=Y#GZvC1n)8|sNtTy6@f#q}LT`Q{Lmol5_YA?|UI4W%cknsiu{-je44I;yv6q9nn* zEnVSXl)`|w!k;eBHAdFOZyr9aJ<#Z3BEP0yg}31F%A36Yrfb3M`YuZr)7|z%l)q^J z>()jRjk&&mjRKGu#gk->BvglxrSH!g1>u$A^BF&;m2zjzqwPP1vTq>yij;T@JWSV=YXf8%6*^tR z-?ZxMqO(lSQwy=sOQXs_{)$XAaiM=5ZG{P;C&?O5s3@fjj4m^shm)L(g#QG;Xi0)^@&~=IZw?h2$L08Vr#4ladBq=XH4ynPD z9Ypw<5QLrbKI3(IUw8L8Wvs#hHsqb8YO-OGcS|06ObYuF%JI@tl40JSuJt=pn8>2_ zFiW1Q^?YjHruEts6q%Lj)pxds7qP;EqV;i-L}6Jb&bZbuftxIoHY8ai4b`L+tv}5u z%&Re-Oe^Njnn&wj3T5M3&tUP?`d5bd$AL$2_0sySA=XPBM0YFDFv zrsk(YYH&jb5xyk^VW-yrpAh#rz=qb7R82N4T5ri?)p|`ArOKJNr)&KYDNJ~4{TW2& z2gtk}L1&3222MKV@pU(vUky>F#aisZGvW}O!oC7PU) zA{$#@CN{X19|<>E=3_{*MhB`pv%o=7HTt)#)Ec88uO@N|t&}@!9xXo|%Eq;vLE@?9 zuL|*xgN|bArRCKS>*WrjTMI+irR7(J_~(PJIv`&yny#KG+wjdHwYaf^DBl`_vQx$1 z7vdfV*-&wks>y~$#VvWd75$U2n;Fx^yC(&6Z}Bcu#f`|uN^nHEdj&k%kA*4tX4rPA zPL6HgPB)T(!^=x>hAiy9M9!UJ`!K;a73@&+Mi~xZr`ulG&z7C9SQl+mOOqIV+W_3H znIr;p&3}}_lo-F0WQ{yjpHgOLergnkSB%fjJVPty&YDN}e-35iy3b(o)crY^>tMMn ztqgrQ@F=ccy1##j^?l%`PR-672xSML>(c$@A^!QGYwYI0r)P{**}YB)sYibYaXu{s zXQ%RS32~3ZY$!iT)x^W1{FXe&1?#3H$t*TKPCSyLGv09mmcYYK2c=>(Jb;h%SMkL+ z;xr+$rjl*J2XP`A?kjAHnsDGO>;^J=?M8)E%a9Ypu@Vd%P|#bY7<`JgL5lU)@r&(YFkw|XX|4o`OwSLi+6 z-RqR$4u{x?6eLv>4NIi3(c*!#H@!Nd}#J{B`{WRQGqH~fe_;*gPk@&1D z^&;JUPwA#za8sw|ZDvE+csFH4061DNN?>E@MV36%(TmJt(|gflv@M}nm#%_ykAB*u zqnfLiTs}pP6_{O`L+6LyBz{k>t44#x>cB|7*1{k6SMtaGwIU}B>%<8~?3hIR%YA^vgD(GjtihU^Hj-tHi}7l)zidYZpJ#6KT&<&*nL%hNoh$!>LLNFCnML5%MX z!Pxoy@$nG%IK)OEAgP*YSOS41&kImxlth@fri=aR6c)UPOe>@6cqzi({;lj|PwyMY zqoH!kzGwSvT8a>I{!9AzBLhCS{*eIz*YC%viwXTE$r=@?)}%b;{Lv^3uNZ%S_d8lK zch)=_{%0r~*Kh`lr-tu+l@6A>(#lAT1CQeBrQwH#STDd$of-$e2+9sX*QMbv3GvSd zT}8v$>k#M#TAJ)y>q6>qRtGWO5Q4E&!-qrM;}9DfPEs}DuxPj?&+f7ANzlz~>3aRW z6wUC~>$B*p2{wSvJ~}5iVoYOLwSAH{z=XDwWQ`(JgOIWLyN!ap zbnh-&DR0SgOFo0dQ}Rn8{&CPzOuZz3BEOqtZ0#yD_PcWdX)M)mi5DsRpkLM|B^juRSp{yH&u=!e=gb39@KB_tsL5#*)_TQ zNV`T4-JL3y4!UrvbTIsP$c0mtJNNABqB$yek-z?tw9>odzwUv*t|2mb^L#LOL}?ay z|B*AmPR|Bvs&X}?i?`nVE%^TAmH2^B{PW>I#nj~7Vy)FE7n@ULC$Ssg#>rF3`L+Xa zh;EriUf98AtT@mtl1u~i)LS?X7arIOWA))Sd?%pxU8dqwxg#^}qmFV#kg39|zSY zn~Bo1U;3A=BtONeEd49{V3Z{H@9&4b$Cno57SR1-zgifdHHM1~ZbI%83gwX!M4E{rwxSPeMSrsI^HfjbFERR8fgx=nER?-!DVyPq7jX2ige3Zc zPN|8UL8g~U#rSLkHGeFi+JcYzqQ)>|fS|V(sybMWhPD#S^{d>GYI(HO8f_FOdc^4R zb4s(DTx@CXVkl?5CN=i+Xw2xXJP39w55Yg0LX-|G9ZovRXW;^LluyTnO#buoQhltr zyb^7#4>sB`HeMdpqM(cNx3|-5SA> zLCa%bmL1c#s&8fAs@2Qjp1$Mzild|Q;&Rd3`^G0u7_JY&_9tXWPQH>%2!cn~ClXnC zRK=7YvyJNo?0yKN?(~cj?XSf^F{#ueOK;_Ig7y=n(Y#g@=(@ynSFe6wDY{>^xU7>n6@JnG+n<@ax)K8oP9 zYMjlBv(T&Hk&+_)I56Cgec@J6*P~%@Dn^BqGx~)!_)A*p!L6JEMI>6oYBuO)R!TR= zCUzs^CSisBkcN)I4Q(_HO)hT24v+OlYoG~VZMI(9uD4*!N=Ct@DQJq!xIV^KTdhY^ zoUaVFT^UqGOw^l(UNEqI{t~ zWnrUsUYtb`s-#HY4#j=LXnY~u>N(z7fm^|7WL6X!(echnxS_06G2^+YT116f&L-Ko z>Xvx~S!$AG>lL_r7+dH1vsJ{cU~DlfzHBvdLs{8k#&fZ?S7NHq#@8Yvmmn>XE}5Ie zUB#Gtqd#+Z;8rl^m=%S&8OI5?;4kUOdvOz4Ib&vXakfyMi!HEI1A6rbb~vp=OxFsh z)FkQMXK?Q@nm*xA(}TDbj3#D9p=s7K?lOci`nPoEySSOGR58B1scM;?3)&6|da4Q&J%!sz=Lj4ozHp=&mbEo8{zzobJ?;-<0^#?0p;42FW@2sZMr+SaGo z_`;-1+@ya_~QAvnXFVX)A^{P(@XJ!1}jxE zOWd=RB-s#;#=XO+S^>9ujxSEbtzbQiSy8ESk1saiX0lSnOy{DCjW1}IiPxG~`J#gf znlI){Ns@e(aThVZivE0U$E{#|F)IpRayY^JmrRguU5y*e${ediF6I`{?jjZh**H_q zNZ_6+Dblrf;I3he-QmyJ|G}+bj4>+;V=!uu4-lk(OK1KSH+;V{{Wy?iT%9I&%STCM##mbUx1XFIZu%sf{yp=P%LE z^qZB&*}xseSgZN7b{TF3V~tr+SewZ`hgn|or{wG{xRI=!F~hkyn-{MYwsDoR)z5oy zcQ9t|_GjiJxD|{UW<_BJdFuKcZYC=?%ycep_ND_3ZSl5^q{Mz5yhkO{Wjp*2+*gda zZ}}7V6Wj_$9J8Vj=j>9y$BksAjTz2G+g^$F^;Xu5Tr>{|#v(IavIc6ReRrcT)JB(W zE`VD-2OJ0ERxs9>6@|4K@psVhmvm$qZXzpZ%xo^sUSNFUpnU*gqi-ME4T3}aMd|-q z+<&b5o#s#EdAJpfNM=PLaxVWCM0gngmQD@g=CYE?s*sD+)bCb&h}C9DOk&wZiNQ`B z1B}@1{={B`TfvBBRup3A!%{o(8IK@WOOwvsikr48NInXP z*fMZg8MfYDdQrI-Zi>hUh`p62WUjQ}AMLBA$__}G+&lRJ(NyJPQu>_API4bHPAuL* z-0$H&pECoNfqw$7kPjk3{&zu6u@s&8-&>Mf0qQo(`xa@Y1TFAzJKib&UW%OjZ{k5f@|Fs{P(MIwG?k+TvOW`A5y^&O|N+k7G zu2Iq^yEnm}6Jy0zvC$MFq9#dLzn2Bp${X4D#@`_~#ci65V{TWB^NxI(UgzGDd(Z2# zPkzY?gc_rWOHA~TWvCzBWNWPoK(n9>_68L_#){4qC@|hnQGZePN z5s9T1d?;IO7ae;sS*#1tQoh^yLnie2P8`31n=E@Vk!1BF?h?9VL^s`ugQ6qqswPQ- z7rt39Rv)7p{YGq*Js)nuKAKYZ+GIp4sturCo zukuSuI0`)78~$gkVYvIrImX9zi9T{F-N8obB1^RnK}JVdPe^=$Cmvi4yULTp+Dy%h z_kh!A^CFWmuos9#mLzwe2fWHC79~RTfGxC&?yPDLs2m2FGxUH9Av@j!Vt}+Bkif^% z11x!t%F-&_Y^1mIlT$Dw{ehf;klM~KioZ52^j6DF`@!aNGp2Qrg~SE8s~pi|Z^@1b zeTB0|3T#&dw*AtEC1iZmh9eNIryMFDH1cMzq)1q91Si!->TV+7uGoC(EfkqVgD1&q zS-9lyMxYR4&wj{iy~ijDuNL2W=^k1wch)?O{O_S`ypc0dJhxu@REU2Zb~KQBZN2nR zi1n{_5Zy<@&~X&d#lu_Iiun-`zcrXb1149A;zd zC6cO1hb0zR@~jHbN+~jCf$1UPO)1=XhlC0CVRNCk)gFiad_e6XfgEN?&OVQJfUwsG zD{zu}%D#PT)tlhSx?CgEhC{_TSdin>C)jf_efYM=3h`Yv4;133M5;d%(|lNTJlte? zFd)eq)u^5woC1&tAgTGJGnxJ03`)<~QVH>olZA5O6ba#cJ>xwNmh4|-#ZpPShPe?uP>>$p67lN}hw%ixu9*5b8EhJSF97}AmfILug|7~-89co>L(OQ)VTpmgh@^0e?n z>Q~}vfh23RpxQH=#sQ)B{FkiQe;I}072`vZKhlc1v*ywCzd+fzrpK^o55);oEREHY zXOYRTgvQLB-Vh&8!Nt2Fw&Ksu3%#&cS;}B$13c!+CJF;0ve99kZpg<+NAa+R?hHtV zOXLkfslL5N-Vkgr*M{rctxa3`+Fd*h$5m5iY>vK8Z<6k&p)~ImaFb=2Lz4ZQ_bh-% zG;aF0{FKDIQS@VRB-$L1V=wOg|hK@b1*MV|Znt;yz=E^eE32 zw}u#;>L8w^qM4P#iRb%6+~ar}gCCNrg+9yR$C76sYlN2#+Po!wB=fD5DCj+sxqvRR z7lRMBEjluiN$k|eMlc)5QU_58HiEHO6Ma2p55LDUvB>B6zd;*mVgy5yH5$=qi;Q4? zW)$QV;h&|Ia%asmg82oMjrSY|iRTDr?hQIn?n)~o7!Ep$sn-bRfDr5Z!cCnT!8{Mj z4nWs6f>{ybpAWk7;g@V9DLR;uD&^Non^#g z$+M3&qRR$t-jY6I`C3ZU^B%E$jLyB#O-lKS%w=TNa?0#|yedywbgXr?B?hd&R~7M~dYkYue*prM*Abfy@`A_wkA z6D&zq@h3*HUW0|FXcgUA^9+Wbg|hK*%>dFm<>btz1>q<8Q~EdaMjbYHrIo=DrvOFR zYcRAp#QL6aQ>O+)`$E|P=(+|&M}_$3gRUI*sE1D&sgmUrL+WvS2XQ_r1ZQVxIWNRL z4zm$jNUA0yme69!bLC%y6idF%8m33G2T~-s~ z6oyxfzbx&i6?13Jqxh#m*|_2}SUeSfONf6Qcof$Z#lLxO*NiUmKXTgdewA`aHAXrJ z^VTq!UDAJfh<`pX&yU{Z@*L4u%sSu2vvi}bu?s13>*(a%*f>>nV zlBXNqrwLh}%)O<3gFLeXQ}tylV^voc{4|FmSV~&0Z!b1rAm6UpKY~%u z01-1q(yB5|@eKo0w>l~c{|H4QF`_5Q8b7EKr6~L}MqzlxxWYe8E9TCcN8z7?vT=oH zuy`u`tSKEVcclsN+&>OHiff9(GhyE+#QI)vQ>W&K_Jgtm&~*v>(h&cA(3K*-EZ&4y zOOp!IA5w=CI*9SfAs9P_{rnL3IK+mqlT=MOEW&QdQvhMdl~Iym-kvV^52k2|x7@F% zTldp*e=xa6)E*A5O;h{$7$K?lags#g@=ToZ@%%2@Bok^+k~Pv$RZ3C&Ta3cI)bJ)+ zF?ZHHYJVG)jq4GE#Z&FyAL1Ve9>vv5?LQS_{k{&O`vDm9g zvSU3RQiC6L5aFMMAnerouAB9~?(TESV1)y0Xgx{QWW%EMmONIi*K|>mVcwpu^%tiw z;jQ&&$b-W$t%ox*l(9Y8#1vi{H@3ouU$83}ymPkB->4^$36+=TlrjC%Ol)zL?}eKz zvo<7IqYG7|6qP^KD9o!FokT0<&YDN%*Ff30$}?CzRsMny|2Xg{u3jo%39&xfL3FEO z=(<$?iV**N(A^_edFAXHJyD9wO(C_ozJn;=9D=e_>HjgrJr1&=^dwc24vW%T@*F@% z^)^kEB$&6QEBuR681Pp3)8)B>$jax6?e8a+(p*VL=^##l677^yedY9G74%aX;s zcej!xz5k{GtXmsNH0JvLH3~pt6i<>hl29E&7B@d@6oglb&u9FYR?3|$V3wt`q$A`m=JoBtnq}3Qp!O7R--U4F`S|m zb7##X_P0aXxEwK9JjMQ>Lj2>vqqusB{ij2$f1-ovel`qUm)L(R#6KT&<=jmC(p628 z^77-58a&xSgr5mP*eUNbZq@s`yU!_O6%Mc=?<7@|4U4>6^1$Y<>NkECU6f>)x2J3U z&J-rHXuUWe7t?w^HE;7tn}Q;zBYymPs3utdWLlQi|4} zW)$Ytm`tcxwGCL;T~wqqur${nilcr4FJy7KW}%>#q#)&j(#8 z>?u?8Qz13Dp@RtD5`wT(>;F%PdmLax>q)968y2m%`L9z55+iz&tkH$4QHshx zXB384j8EVEgjUR*HIK^w49dn;p26a&^0RN#!E#qx84_{eQCz)Le!mdwi{YkDP2U^< zWe1?^Qu)3R|9sHZXW{u z)I>>wd0V=|Kb)c>-U`2l&XyD11%-EQ(b==Hv3WRTVxE>8tGhI%%-39*i6O4;m(m89 zPLAw7hG6Z~_nEirJ>K2>lpzX-+R%5B zs)>h1-z|AkCgsgL(xv^96!5*J{a8AhX8VA{A{p!U4J-Q8c^Z<}`kHlKT$E^XN{Vc3 zeVN$cT7D$lWSNg4$r>G~?#u!QMb+rvvQle|g1nl@DYR1Vta-HjbSN9wat4W~mcJ^* zKMp#Ish5^lL#&rOh;A(mU6+<$72=-{y6S*Do{iBHWgEUZq!u@J5anA#PL`$F8~ zAR8)9QZ?DIsJJCh_XZdN7nuG@*v*XT;@y*ixwm+isp3Xt>zo!g%`Q)k+YB4)z&-`V z*7hRopaaML6iRSZC~U1mP84FB`M~Z5B%PcqM~{^wqkgO2&sVGqS=G`cM&C97cWWkz zz+Cemr7$JN?<83x57noX*_odjh2a(Bvop`oin+7q(fyx8*|_dASUh!q&K){f?n)~| z9}YZDBUN^PmO^*|gr09%yoPZ_puuod47!42LBmGr;zk_r6 zIY49wHMYqb#EEFQudpde58VJ#dYHv!uS)wgeoT0hN?2F@7!tV`rq8^;W&7 zyL+87+~E)#k%FXZqG5>?mOTCWq*F3wmYp6hcBRnd9WFKvwHw=t!vl?IxZH*r{}p|! z_sDT4vh#4G$SG)7^xDD<(Zh}@!%-9$uet1k~L~k?V1Jdi|Wz8 zWu;zf6y(+1PNkJ{XU!82)^4TZ?fb$ZcS*5lO&nN zrgx;?6o$Mz(wTIxr4DtVlqcIaW+IPwn5(Ggi2)Qzo|X>tcB3G7FHrRP4q7R9);t~N zolrL3VHhNS9p)n;?!}mE9VP*}rNdbAOh<8Ihg5}lJ&!M}5Q zjl^fYO)t{j_mpnh1vhnS-exwGjdxQ<1c0OUq69XUUS!EL9lgjbHoX@;M%xmKb?GYD zJML$bbX0TolFO&ao9AlbTe7D_Y*QTDBib@r41_4-bu25dq@8}@L zcZXo?eE#@&h?<$s4_|-%v;mNesu~9-b1F9QFXi&VQ>Fd_OYk; zjpNZ!xiw*(pPfxh5kk&?N&kLiz~|OKG9cjk{Wx_oq2DA~qXN~Ml&73O8inB%@V(!zgXONYG7{s!qqur$_+cT|3vg4X#(^(_vIEd{Y4}S* z{PRIq(Qww?pciOqvTLmisl!Pz^%H z=I=HN^3uJ#Xrx+Tv6>eyVFm5)kw`ea4K^}?tlyzo(IP8XvaH|oDD`zL>lYxa ziY{LMC411SeB$-urphDa&m|k$gZhoVmBZdVvukqqk#=o}yqTLSmJYgbs&p{?cgTfP zl{@$B>Y_O+caguk-U-@ycl_5q@YglO^PA^`xg$!m!26G!0d{&eP*atwAzi$`;O{f` zCoeY+gyNqM|0$*>=N4e>Z!V6ne|G!dQK{ z4TpNP%A<{FtlTR0k&7)jV|K~Zb;e> zDru8L$=VG^t!MgC1Sw&wEjiPgt1ua*blk5;K( zTitj3@+R=L45lo%Mx({%^4OPU$Mmi0TiLg2^)k4p@A$sr=%~E7T=3gBK5@cueF(l) zCIw!Y0 z(Sw@>n(Ep3>6SSJcxsY#?oGIJSR;FbKUcToRxqxZ6@{yrJ9i0}$e+@c_uxjd^27}1 z;%R?JII=Oek1elo)P7OA{%PEGjK%x>S$qJug0aY~_^|jNxRI9Hyk-*mE9QXkvtf|sQ z600K?jAUilut$1P*%NMx$XLF&(uB;F7W|`)9xFQ_WpeN2Ky9jWF)4jcWhc3h7$+9* zAnx~YpU;^A!Dw%|LI$lcgxduuvK5p(5s#W)v%%gj#UUPSoAc+_9$C4cfJ zPnYAKCmyB>GE;r90uQBqg|k|Pv39dnC`H@g!5exEJe0$iU@?4BqW ztHb08Eh^O7W8)L#Tf=CAJg+rN(RdM70S`9GxjkgUp;Mg$+wc@9P%J zgsX5bbk62h`mhIPo6zrgDYS&kmF~v+5Myk=Mbt#PU{KCJxRZ=8L%}gZmIrKW* zWSK)J$?D^F37zkquh1bHl9nbb`9`B){V~+&l46PD)wGiCtm>TlYVz?XTO;LB^66N)3Ei^3y#@ghcATgU*SA}{A^KGQX{e~$Vcd-sTodcj?qlBVH8~Sr zB1kw%vRW42`H=nK9yJQWE5+BMJwhwx&Z>5{%G)7xhR*g)$c}e528rhjtmi`fr^_(`&V<44xF9gwL~ ze1Nwv+|;Ro)$^ciyy-JYJRc8Mg!sonM}w=^4Jl zBMab0(w{lR0yr{fZLTvjCnfm;xXmG&JbYCW>`Skk7$xUg~ z>+%)T1^ngCvSo#}?FLMPH?)^Z5Fl%?3u~dit=OnW<>5k`PEA9;ZgyjzF|>@|QHdbA zVt@IDYqI;uBiU_79x42u!xEH7(T6j+y&TF1GQVov1mW>K`iwi>UP*dPlX#1}7ApBA zs3aC7Ns#ADE(wj(+~Vf57FVD%-h6PPrAgO*Z=i{fOL)us4Y|p`<;`I)Vpuyc;wrEw zF3UT+ z*@_p`F`Je}wseXYU1Upgutm0~019l8E&Z#*i)>#^S3 z?ULj>eYW^AQP?yrx7{*lW>=S^sqVXx}}^0K1If5V%KfoO;PLB7-E zzvxFdVviK|c~5`O`ZZ_uz}yzR@ubD5S?QkIYC`-vlqb@SQ3s&dBFlO-)Q_B#TpWgF zul>tblAmytCi}UvZ^hCA`I8;D*1w_;vdg3F`^8b*aEwD^xY*z(=r^I%2RO+ARvg1O zqyuczaJ3Hc_OSh{z=*axAJ|#7lzny@f6LUr5^|AK-1s+6wESaX)iT+Rpr2N>T&oou zwB`fN)#Jmi|klG0znk{&B8#RUpDBuL7tH=-WuErMiR5)OVZ15Ls>~;#&eN$ zp!0Fa#u(d`K!11=>{+i#CM&q>7?UIZOzyy~U`#SA3X`+xQ=xE=|B?>99ygVhOJ+V7 zmkaghR~v!z;w-{1B}Mx7PTV()thf4;^*-DRMi#T8kcAF3?!^sdrHUEPMb#qO?c~&g zjjL{%N06l^Nw&U@yN9v$kUv{b;8rlUm=#~PevTW;$`&)8i!CN?`n->gv4xbeIGyR()YzCW8 ze-ZX=l!S)&T2CzIG@cD8$@h2Gp=*wCNol{n!Dj@ zViwy89`zh)tiq*W7GqKri_r@qxmxtIROY3)n5;HqqVw5|MV%kww>`lQ9-Ga~Tbx8c z(;rqE=SjGtnAJA;TkQ?F6wGQ&iej}n@@5_KQQEAI3(0CTCODtX5?icnHd|`sqIqBm zAdxOry%<*&v)UW|t#&ys1+yBHqF8Nq9Do--Nky*5MP#)Z6PwFsi{d?SHe01!wev|_ z9n3Bt_qWT#xD?DTOp0O`x_BWtP+!RSCN3tcZJ6j>w%NtGDbZ%DWoB;Cv64T?2KifD zY0QGZ_P5~ExD?ESOp0Q`ZN$b*p`J{TYAwEbM#mtm61i--jJ_~Yc9GglxLC;~)YHC~ICP+YI4&q_=VQWi8Ei#zldsKW+iKZ_(Tr4Sw%6i% zVrDzV-)zIU6wGW)im%xwa6wtk#)RiG+wR6rYtp0Qeb_bwZf|=)*wOx@H0QtJ`eWw2 z)Zd)f;ZiVjGAW8V7xFFXLc{pGRO%L7Tvns9D&#V1>h^gb!_qzXLT%Hq>_>^g{Wu1g zVej!b>|?kT%&<&~V%WvXX#%08mL`?^0WLPHfmu~D8aO>Wj~Qy+G+%7Y&>C!dw8spU zl}W@5JqaF~iI|~8I5`B!V}=gH*O65;rsJ#0N1vFX^`pisWfH@%42NDwWI=iaDx$l} zyE-Lv)#Ct_(r2%E}K8A5j) zOe6QPs2)dG*(qjrqXHXrM`Pp7%~cxKhLx_Bs{Gn)kocT~wemovF#tygJ9ud_&}Z-J z2>#bDPr%8%t!BE;eFvzI6^i6 zK}Tu4or$eSyyApo#JTC4m7u8NvtCAHi+Yg!8%0pZ$s>G7?lt3u;12UfHL$Ju0Tza zknDJi-YVR#lz3e}AXotpSq20oS!-da%j%FQ#8p(1WEJ-{ip8tQ2L>ftMR(Rbj%p2* zjXSCsAT7XN0v}5cwB$J~Z~Kr?nx&_AfTbxodUt>`<71*xsSfQoWo*6yvXFr>JXIyp z@oD7kmJ)hA*!gwcm14Ra=w0i7qlI-6J z<`F1F^JiaVwYC^Vxmz>oo4nz-X|>#0^ECWPC>wA13>1At>>Q!JEkr*KJ4!8HBeeH~ zNPlO6=-v>9u4{yLcZhyI=w=+DJrYunhYG~`iy=5WM`%9^QIErHjL=A`MjaOaV9B#C zfGZ`*m<6W0gws=O!@J3`$Sma&U-#+*qhBynM^?A<~a65Zx2P z&~^Eife`(C(9P&u+9CBgt3aGLhv4k=EmI-tahMI?LQ*xtvG^8Cp8Z3}RkDm(V!Cr# zkYXHf=kfyZB_!Ae_bzmzeKPqTyBX_@Ar860-9Y?ZDs{I3rJD~GKkzZCS7Nq6k~OoS z+%up00m1hCo2=NEjl%GXaZdjNt(ZG&9!~!%l#O$G42w2VPM~6Gtd=}WP5Vk{%-rb> z@%9v4yc=RWjxgbK%TzB}0g9U_42WQ01a~-+GWh67nFI6T5_wDOas8AM*g{N(+24&+-n?d3^TM>Fv&Z8kXJBKT84pEQ8Yz$XO zszw|Z4`9i2%uLaz^c<#?bkFhhOnHtI=ssUPxRl$6(BMpLW5Y)MJpn!DVjb;RLsW6+ zVEs+v@)5&AZkkox#I5j<#Z8c8&DtoXA#UOUqaeIe+)aFrR?3|a zvJxIDYWKj-P~s`eA?k6U4M#yzHR`Z93QL|H>=Y?2U_O&h`!}aFbngkn-IVre zC^Y`6*k?1_5#pL@`J%at-8fB;9t=&A7s%t4I=noFsRR)LSJe)-N8n%h2X?4cM<+%* zhT%up>Pc^{Zf=n=+?7d38McGc?egqCZ2HQYmSpuXYJfKGSkxp5`0FyY3H}c5RNCYd zvucv8H42pb*o$b2v6xz`NwSJfqgXF~sM9LCv*z(GXF=I`uVesudY69*(T|$|McB)` zTooeyiUQHSCJbGdceyP@KOb~6PC`BxQjgCTi1Ym+I6HmIcS6+TFdM#wq-r!`@hz4- zZ+9jd$LQZCyT>BhIlh}8X@7xm`|$?(90Lc%W&yB?2dw?34BNR z5bVK)D;+E2jdGpr4q0XOO=cKM?w`zL3FZ6`>kY!q>dKsFHaujR^N?h%aiI*VIwavn z>1HYBwqzA|HHyWn$j7id(JH#L=J8RxL)o~GVgPyisC6OwaTA~jd-#>_YQ_jwa*!!6 z-QzqnQy%9e8c@z_hattHnLTeY9Hctg2_YV)iV!mk9pLdhp}(AOv?23>{Aw@x2g5 zIsPcTUM}J{A<}=H0p_ge{w@q%my1~N5xqsa+XiXfyczkRo6$w=6jG1v;i00I$aaCU zGq+-=i`XwjJr1+sB1o#nAr=>5$@3ylf|R^(7Lv~UA4qBU-ZPCJ7!0fHRZ(fE-YnZU zneV@ry(QToE-18;d?M62A9g3wrT(X9vKe2(dJS!oi6tzOtQieurukG`v3kY7$%>5` zg?aVaQCcx~R+aj*a?&`IjrSD>iznm1B}6|CJc_Fq<6j*j{mKH-y*3P87vtX^qMr}C zi{sZK`^RC!wKUm+?+dBJJq2R?KnTW8w*QY1^*F=^+mlp{I4o>$$+R0Y>I)x??im#6nN>m+8giuy3l~+ya-B_ctdR_8s5q4GCgVMM_n+L@l^Y z$J9-V%7}grJY*TslVr_4C;_Dq`))>Ic*Xc&Y-d_Ach)?_z6X?z6FY;&li2qU(T@X< z;_5~0uLzNTM1kn84@1{Q?5_{e&j(#e;%nj<+gh4rn9-0r)C$D78G^Bs*e?!Ik3(z_ zJ4w}u!$RzqJP{B(&WzF+=Huyf|LjcB{R#3`6pZc>wx1XqOJn=^k`>AJags#gb^~ZP zQz~r#A$Z8b_9R&|8p=v3Z2yo^7+x{X_V?3@xwGbB`-h=yob4Gbo^1d95dAptD6U>? z|JxAhPZo&o@59h_vHil^^`_`<5~Nx4*5iY2M?8#=$zDy89c$;18tecM6}4ouE0mqN z{W`gRZHRgtV1w&Pszw_YuD9f|a=pfj(irCB>0EzHN?Z3H+8-nDP{Oz#ZY5I2_9PrQ zY*QNF#9r*eE+^})`v2=z%CB*{X41ct| zbqzVN@an-MC;G-a8Oa~jtT)F;%VQDQyHh9OnC<*7OBT!B_AA~N-k}5Q=0;@{KNlXd zjN(bMW+aq{kn;(<8wKH&;$yH~Xr@FK$0NMEa2h zqI*mjx-M=%BSb$RbeG56Zr(Cz`9%^;Bcwi?3dDOX1aBwH|8t0X9BzZFCM0pFY852W|XvGet?(b5{B1uocQ)ZW`1gy_<6_TI|q%6)=-z^u$AeEtBflsju4K7Rzt#`&B< z;>qVf2+@y&j$-P?=f4Y){#1eJ{vixq7oTtQQN0ZcujSHtb~a?hy4j$Oem(RE;()EN;ouq41xC-OQLy-nXW-Y;W?eQt~d7 zJ@jpC0j9Uvs4xb9HJloQEs>S>mI@pXBOC2UD%D{)H%20Lv14Sgk&>j7c#Sk%BXGWb z1fSuW(lavIj<3`UK{w+T$_GN~@wozVekcTIC-Z+dL_H3(!Tcmu zBM%GnTk^atm^Y=LFpEw16Q`zF$lFiAYCCMIj4v^cO0JRqI=-V)#9t!IH{=?Q<`(c1 z<-xA#q;d;F^hQna9nEMx1ZSLt^9Ri>Czaa+BRt5Xb#7qZgv=)hX0k+Un~&*+a6 zOPB`_Syp{WvSxIY*^pVn9!5cUrT92+S6V4|);!)~FDM)L77P+kZ*f3~ejIcZQ!j6^ zK1BLa1)_Uw7`iTR@rDrne9)CUa^xM|TAJ)u&5%0O3&i-W5R9Fk;$K44;}9F3f~0Ds zVeu4}JU#iSQ(DR_JKbH(PBD|WyEsX^KRqg~?OMl|_9w z4#7y3aD3D-hnr6ofAA5CNMZ&-k~Pz!+=X1D{;*LHUMcPm9;B6WXU*dez5r$8{(wQE z`2%Nf`eBHAG3Htz$OPn;-ek%1vZF#Ik~{TA z?rv~OhuH=mvJ9X|@{Dwty^VtKO7RY}C#{q_Yn~3X50s5}7zT-7hdC%jy%=+?!z3WL zbQnvXndmTPvFROVeu{;>JIsmVcE6}3F8rhMeuHU%xRp{(y;!ey;nlNdac?ubr0gTA zWHKIKqbgI)H33r#`AazQsv-U^IcYpxR>GT+D)@I!uaWq_7)84K9^nq&O)sKQxU=Tz zrk6n3csFH+0C2Qkl)%Q)i!6C&q8FLPruU*ZqyXsMi#E_Wk$ppO-xU60ubWTz*NdDm ztP@cxBU*@k<##(>fN1DuvTX04&D5ZH-})rQBhlVTvVVI=X7gV+3UW7HrIkNQE9K6b zrqcnv1 zXgb;7mD19^$-cW>9~&uSZ~wZx*zEnpvGPE*J!xH^oli>NP!TGyF8(M z=(;%ko)GO48*BibeRNJ9#zy8#jnW09C(gGi`jL?{O#WAjx;L3pM34D>~`QtqsIczs_e8|QTfi6^fg5uzUl9mUj(*IykX{lo&% z-57?hi`Q!*`uU)%aCq9-{G5T!q-UMHy(duX+#4?rWJ7dSCA#+lS%hKNdguZK-CKW?u-s!H?xswI z@;^n9Net&nvSvM$o)F4^+$adI6sP>hXr@FUo&9 zMEYL~MEBV+bX}Cc!`*r_bT=^!FBs?k!>Hx=8-s5dD16RT-VX8&;EKr+O@;245)<;jf1v>?HYL zhN#B@Hb|bNYLsCic}pIRl2&^XViT5H?QyuY z!g_GBbFkbRsSNUi@h8*#@QPKI0dHI3a*NTi=6JbLX->3|^YY8&Q+-sjZ~@65BvLzk zLN|h&LzRL4a(KwHwnLINgQ9%3fWaavDZa|8z1S!YuNoh)b<(Q2v*z&xtD$V%6EI*r zJ;9M7`f=z{WW7AW$sy8DDiGaM!q9bjf=wa%`Jk(uljogRG-1mxvNfL@QlH5J@jgEU zZ>L|F4pEQ8ZTJO}s?mtWFIe)tI0Ji1vzP^?dy4H+Y~t-H&Y(9NmFsAU@ zIO{vyZ8eFa*&3-5n|lpIxLH;44WFj)B<2SsSu-liVDktTqJHd)tkyS-qVQ^Qzwk9$ zEqB&De&JhCHtrWv-IC|H)b{bjg;$Xl^2CK#ua2I$@O|z!B0)9fr1yhQ zq#&yI1H8NoMs}>d;=9;ywKkE?no`t=7(EMopPLlX_!t*0v^dz>*nvKRdAea3X{`epnUmD&yD(~CX{ zZRy7N(@pT{5~BGPi$UCrM&^R{cOCW$OqO_xUIk1U`wlby(yU7+~g z;7<`XwXo8Fk!YngO?JFq1`kfH9jiCneeLRKrBxxnlva@i=xDS#H~|CKb`@?68m+b~ zT_jr@#;~iVr(Tdur9UgBOph$+ZBLg;wJ##o=2a%O7uCKpQSDOgS|#nY!{B}yvvPyw zc6kVDROund)mKNY^5#lkLw+Bs4)>L}R$BaL_)1n;_%}GM-Z#;xw#BbRX|@*A(+N~M zJYJdX8!fjsRR;Uup3|{96tliuZxJygaNWdcrQCoOrHV)-b&+?b_H=ixg^Zi3V*taz zrdA*Qd23I1GI5e5>TB{n-S9Bw@E&0H^1vpj58Z9UiZvE?dJcp_D|I-~4^<^{T9tMW z6i^>{bF6#9MH9{tGjF6{%hcwu7kQN!^85& z{Y2yK8k;Eg30-fjHS4t|bUz}{J>i1x zaTB`Q38Xw)v!5$9JFN@)%>VBrw9k9?5#B|fQc#@QPKS_Z`JUrCW>A4JVw zdlrf;s{~E@$sZsQ`pKE_C^Wp6fRhpIJ~g{XNP|yO$~Z3Na3~@nWq;+03+%XAoA3ze^*{ z{S-D*KzZ+3e&4QhbfH7cMBPk(lsYM%qpv%-YPfD9$1brKCtxy$sh4>rXF% zM?GECdRz)-DkjC(R2y+YSxv=+=Q7o{+C0N%sScS#m`Y8Owi?Bi!)#Ucx79hg6wFpk ziejrdot;7@@=>aC2`(h7otWTUcG|@`0kqj{r6sq})cTuL{RUih%!=>wx8iNM6wHcD ziekn2bRI0!gnco#id}TV^S2; z&4m>up%?uul_}w3vYL&F&SkchmX$A?-Igcv2^B5BNQIBU6~;PVkH7U!#HC=?V^S3B z&5lE{!Y8T78Muh7mSbXP)^e~s>1DY|r{yLUg*W30W0o8Dx7f#b$)|O!K}liDArlX-)IPx;_p(azvJSv z+KE*mmz@^HZ(po7!cRi)@R{JT#&USnbF8rsE(Nm@lcLxN8EbUoVzSzXiOyx4<%!o} zHX9{&J#*qqq|0XbN?cW}Z>{&Y+iAEI%x+AIVz=4xc?0+)6&b=sWVIO+o6BY^lJ6^R zMq6fP6Qq&+L27#et}SM^bNtQruecPGaTXk30;v%w|jfu@=wq@okWt-6! zE1877v@~g|kKr0(rn=4FRQKUhFjFxpimB$27wJMP_C>1mC@v_g!I{Z6j)@w4H*y!&MOmqy+y5~dD5YP?czSLnqDF)h$t?>JD8ZuQmX)nz^(us6n!aReA>rJ~u?nL$nw?W{?Kmh~ z-E;a3^rG5bb7#%!B^>ZJ;5i17=UId^L-gZDKr!|@i*Qzm^hO4BYp;jQ8PIJ(b{}+M zo3pl~H_`qqJ9;g7?sy({c-c2hg`_t(cc3!&v}0}G6w{G>7eNy)(R>J0j z)keL9uVCLF_v1rVvd6Vaw~_KRpwyv=Z7$`RfQ89hq6Qqv0yp0nY;Li0U0e}CB-U+4 zH-kbdKe@R9AP|vsZel1bpPB<_T_o%zSuG3aI^?F(&lm;amE!y9KS?X)&Z=@-*4}py zl#Ta328k!PeIrCa4tjoW`&o$e9~X%3FT&7uowIr-L_Z&NGv08t^d7xCxSJ;FTD%o6 zfrq?Tj=LB{Pc zR)$M32IveD^0hiZ9_-O4`Fot$y(z;8F0B!AqGLXKg%z&!Xt(dufAHL6?SLM<8f+GHr`hmT%I21!Vvwq zK~TKCM$?ytNdLD2(Y-tjU6;rCK!|=m=w|ddpA4zTT?OL&=@6Wq9_MQz>T#G2k3&*5 zQn7d(OPYyXEJ9=%dx4 zs8QJ>W;8Ha;T|XUMXMw3!MM{QS;>a)&f;yvBm>BQe9g+F7M)XmGvOy;i? zx`fXm$y)P3IdG|gmhd=c4 z5lj5BIK|0+Ad_kN1m(T7@+iv@&F(Mr0r=9!e- z3uWU@f_mwFP7GrXE4_1>7tFr4B~qU|n0@g!NZ3`#%9n~kbb zkXL6IqLp%I%|q#%plrM|Fi1Qp{f!~|anMmry(slT?i~EOc(kv(iR{5`XiFbUHsF1$=Kh zzu0odG%EEsn|15hogUI;FDPC!Qh_%RYt?1j$kFI4tv*1 zo#g*JS4GWnmP|Iqbd(@4X}jFH$~x+|o^a*f!TOuT^I5}6Zkkn=js8XWVN=xPcI6u7GEG*4i6PIYT6OX#vKI%#nVx&4$+Upj-u-2D0)JqA6y{1 zhlQc*aulb8=;wp(cJbRs?FhD+EZgx=NKFO`M0z9yX{Wn5KSVtawBasDszx3bcVWr1 zF&no+AV$Kj5Qx#_SNMf6EcvBNSt&6^ru&=!q2!1Xmfu1V1fo{r+-3GOr!)#W;gR1KS_+jJKz37=>6CB|uc?nR7L*}!kf)B^Z4<9)P&C;SIV)|vpybg2Kh z$0!OlhgduMG_969Yo3Y5=b&ude=txy{l~XL^y9FjsCxO2UxY~iX@TheDhyqh|Cn{Z z-VohQLRqu%LDzH?ymy(&vU@ELsmXTmP*LNcl~8u(cI@;Yt3uS{KpXypq-x}0@gJ5v zU5fwkVN7Wnv#@l}aAQgj@ScerLOhiWx8ZY>@CM-iE!DyHh?VrsKpk728$>0zbQmN4m^sh7x7;n zBK_YBME8m?bX~-MYlwb6=*rckZq@;z7iejcS3Vt5hffrU@n=IYc2fT1A?k664az5} z8gW=C-;$?8;X(@FM>ZbMEc7MMECG8bX^30YKVS5=*qjt;z(0!lI&E&AvG8*5aDVF z!cKa>AVfV5utD!6Rig|Gy<76^ig2SegZW@O-T$R9x}S8@{kj>Ud%xIVw`MXOAJe~| zw#)?GlVr_yC^aE;f3Hyx?t?hpe}-1doi)#R{yr!hr+Ws8C*6NLL_ZEXim4af|1w1S z&k98M*J0?o=zjKtdNXu431uP22VKeS>%=Q8HA(W!ijW#Cg@=k7u51rwXKuevx_@zq zdK_Sb?n$af85X*?^TBkwzbU1a`;YGRxPWf1?_SG~v%zXT-SMjI_GA~-*tZ0k zu>-~8jV@PNyg4$g8W4&`P!r63=&VG ze{+a_9CQ>@FQT6gk$zc$=w2Cyu8ZhD7^0sKy2>I=93@OklT`nikUD&_K#cDR!PrUl z-w08ULu^nzN!3WhLiLtByRXNXQ5wR0G@a~EOtFGD*+18Al%M^OjqMe~^oaz}Qo>bozq8|qx#ng-H4-1igNP*}c5r(dd z>R%J0pAWin03V0(RFfpXjD*ynQXs;$5QLpXe_@Dv9AJa!NvcK}7NWQ0@wrjnd@P;h z|2k77e*nAQms}%n-T6tcjAUbZ@~VN|BxzlkPl+!5!AzFm1NEC}LrbtXN!Cn(G7Yka z|8qt`xJ%*e{aIQmch)=u_4}c0oV^(&p6vad5dAplD5hTQ{i_h^KQ9p7C&SQnvG<(M z>&?*JB$O2yA9Up&8ruEDs*IT|S$t(kO_sq!MU6ssfU+~UV<(I68=@Wu+F)^#s!@l9 z#VvUjtK=tfH*=;F_j^;CxA*9LFB&MGZkF(&S*^D1^PLlDH&f_ZQqTO#)rX7__S+x_zxp zBGtm3vDUVn4BO7v3X?xbxNgkUka!D!H$^Pb!b!4!3rD7qcN+z{o2=qS?xdA+XU)^P zKM7^yt(!sOIS6?)L_ZEX${JpSkROFe|9*k!{x}R>*C6CCA^Q2CE9Z;xVxgKOJ5|TS zdPi_KN~QfSgolb6d@O;oGq+#o;Nt}$>T!UL!3RmzD8oYkmOKZA6Q{J2S#G+gxGtp= z=$-;E?*a(8`%mfN6>C??$mkROXpyxyv#iTKNYd4TjBcyTO7=OA6K9O6?YgdrF1mNZX z5P9b@&`fw8YZpVh5%GPe^QKE9yPPp?)_Q7Tr2&E3;U08y!@*_n;M6MONc-BY;nFJN zo+Ea(0-VbqhPd|CcBPB_-iGk)tKi~=WGelcJU%_Lptn6;CKbJiRFqee)VFi$y8T9) zqm}(?!AHwAbbrB zRX3G~E6Pm|YYymI*VWy%ZvQp#OxHnOmEqz2;%dd$Ky-~w9t`(Bz?uaKJWt~cnEEI+ zUj-JcU73KfRJ&G5n>sQ^s$Okuf-q^Pt&U#1I(l6Xi`WdIJNvdOpC^^iTiF*8WAlEs z*p+eZW2o712F4TC-(-({6G}X#+E+nN?NRtgYj5Ia`}^PrFw^;QA3!6_1qrcSt z==cHJ2hS#TeLt!zdiVK_@F?bQMYDO50rGB|U9a`*(=0XSiBMbkBx`z4cuhYw12uiE zt)?uI)bzDVO}`ah)34{R=>oaVfO22Dyi@5l=}WQyuQDt^{u@`xtL~Zc26v& zN0IV0E(N>ih)GfJIU)=yq|BpVWJ6i}h(09JyKgP)Jx5Hqd*I;F%sV92+srbb{w&nt z-=sb-#Pz|hp^D&9@KiqLS%*u(%)_Mkn&)s_P*(FW;rY$O9In$m@g7lX9`(-H*W&tM z<~haRJj1vY%sfnruX!eLL0Qeigy%BPV%k02_F2Gw7yUu@QU zg_smy3*CYX%4#7dJfnruv-5l0QJ_aHYKsW+eu&g%5Cg4LO8fuP@LQ<*s z#iQk|ef2Vg=#M|H>gqVEIXVVm{0B)S9dZ{}JW-&FpJYxJi5X=C0e31S4n}YOYDj+bPeH;Ae5~k{E2*`YY6m{dkult znM{E5ts|_1HTsFMzQIZZChn7c(5}a;TcgrIz1*Tp_i^KmXSuMT(3wo_vXz4^F0j6z zK7D`CRxsRsL1N7IHQ;Wh7N4;55as+E+gIFzg@{UD9qvQxS=-fpz-qQbxsN5cn`4l= zmZVmOD~-WEdh}dmWJyDOGha{l+SSmJ2R1=>hY*N;Wb1R!f$Vig-|%>K5c)9Gga+IZ zQj}-K3c~g3oN(RghwRg?Y=v7wIw{_1RDGF;Cz7dsuhP$YQCQLComax6m@^Xnj4$u3 zr`h%8o$Yj{TpTu* zXX1Rv@^8WgWgW{i;rckh#*K*0mZ;v$X0iBk4gPXG{w}R`Ev^+d;d+N=E!0RKz@=bD zVp4pKbQdlttC5)STt?c#I>@kDYnho-bhG3S(teNP3S;*BlE3}Fk4wSq$E2wCBZDlV z+C2J2s`Df+D69RL@LcxWUbTuC4cg4N)W|4QOr%R~=YLTjj~PQN%y_fmQP1VVmADkl zcub0JytS(F;EPmeZ(LAT<1yj6jJG^7Xt!BziJD88O;40c9*irA+3Y}nn;nZw!EDB) z=r(hAxKnXKS#8FI=d#%fZVhE-WHZ`QBb%^WB3+uUiR+4)Zj-<1&cmf(rejhR)6MCQ zci)hYQkA#jLb95T3C?A<<%x-})oMnr*lK3FRP`oYRm^Jd@weI?xD?E4Op0Q)+3~3x z_#_p%7Z;J$W=w1@n{7{Du^THBHnVM~XB1X5lclcT!F9!q_6>id{T!Eq8I4I%j5c43 zgUr84h5n3-%4$3&K9}*9v++g>O=dn)zulLD$0Qx_sOOkucU%f)IVMH1oRcJ9j0?$X zGbT8r&C;{;w=dQOkz(Jz91MeP``Z^;nZ(~mh#}BSmh>+7nSSv=9U(DM?=2C23WcPPQU0^n2|R=-es9SmSwa zS5gw(>(S1lu1tW{$QzO8)fz2*Z}VEN;zYmFh)!BRF;3$S>c-`-)S3{OuwJeX!iA>f z%^EQ=Yi(UdQ|SiGGvDNw>ty8yPv>f1|e7bTKPwM&$= zsg9G%q=C09<1H}`P?KaOFUV5K+FRHz-E+x9oqXN;c;Zg3R)mi%petDy>UA!ST&yQ3 z=H0WG9!#M}qFp*&%Pq zv(jc*H`Z>K%$RM*+T|(ukbD<`7XME3A+7JscvYRizGuG@9O?awW?uYYH zbhTZ%aCy88`>RX6tH@3R=M~G!syuJTN{WQ#XHa>y3A&pDanrmxKfyFMn=?sP%NjwO z^E`5Mrr-|tMON!?Mp1aR_@V6oq1AF{RU35ee#kuK-=Lp{?CA}f0poclYUP)8xZD*d z&~qI*^eD1kXQEyhB7JXo2z$kp2jLe%*?|bV&P5#(qN5MO8Sl(IA*3F!ED-AxL$P+A zkg9~J$f1T;psN(GNK!Q#vGBho&$E z6El37H1QJp7-%YfQ^-9?{9WR9Sth%4|M9Q1X(xt5Bv~^&%5qB$w1g{3q|3^_&k*3n zxHr3)VmVUZ`u8jIP_$ansuH~OXq`v?j zDr#Y@6Uq)m*yUP!LUi;&SWaQcaT(!Tj8xgpdPC}Qe1TY>6pFRexeSG<$e}iz3rW?8 z#Nu2md5%_{OE|GgtC=#=JX7hF|&$Wv#dNNs< z`-+3$ALri{${goedA7#1h6Hl*Njx?E>W_Lc%-={Do5nl zgmq?Mo{Hde12b7R%3l~TyBU-Cbk6ucp>QN-2P9cD8Oluai0Wdl&c4WMJ#7?)SBoz= z{gqbBoiz{VKMQ52b3Oyclk<0YOoz)|ab-Bgp+}MR;`|qdNZ$t@Dr&*01Z4*z?Be`G zLv-{(Sl)-Bo!l{#WqUp`q$V2*MEg~tXgj%oI7CGbw!!@*RU;A$_gnJpic_?q79-91nl!f==k&L^oFfmk@-lE?QpQ}fYu;-5;fgiic;dE^p; ze@)-HD=r}*2a&MYWduxq3BjaCspqrfP2%j;35|6=(N69e=l;yN zkg2<$FY)!vw!q`wODMliV+&8`QNTgJ}F%3jLV)WXRvRx*hmpruJ|E)Un{ZLE4eVb!n4rC>1$m=q-@ z0Sk1`$0laf`;Xv)vc@G~!rji#!(bhfL~W*;Pk$Ch;@_ls9>(>-f_*&TZ=P@BQZVx{ zDZb|U2`(tBd6@8A=2^+6t(sr6*=ezoPgqM!lQw%AR}!^shb|P0ze}Zd!Np~@9IHYu%k7;y_^{b=sqvIhIgu_^Ux%xX*|Q5C^$go`I4%XV zCzGPsb9rJMCe*b2A{Fh$tB}>ktXjEjyqjVzG58asN1JtbcI6lPyE8}_hH)4$dk^^A zdjgk&*_%mG>^~8FL?xheiAK$}5q23`Ytx`Ir4o z{sUYJW^yJ)G5I_)cNN;QFH)VSa6wrO&xB_*e0p{sR!h!#YvW|dLt~*A8dhuSg+6N< z)Aqnyvbu@DTc<%dF_INya!hqKrS=@(*aqa6#>CLF@yjFdOCt7^(^i1OAy(XO;) z?yk+{`b4GGFBrDlJtGQPP?Zn}Z{dg#3% zG{R0Rf?zu3#$ZQtjQj>CSm9Y%WNd9B50h|TEr@l+OM!gkM}Er=6CDk~Qlxboh_Wuj zhXqQCZ2u=^G7^6QxB(urZ1*F{YG1;`@GK^l;dl$K*V1GqD@MU+Clvu}`e`NIS=ASU zS))u1L)q#J!QILCM3ku*CN0WH0wv2^4ojX#{`a(2X;@QFw_hc%S}uiGD95E(RlJf} zPxB$Mv7T1e|DqD@u#^-wz|uZBO%Cy`NL0lZoG6D_b1dd!S9ElhZo?umvm!WH-e@+~ zG%C>Vjs6aIhxD$Z!5wK_#tw2d@}&Cm;PmS1sCGuw6Twwl(Uxkx4$f?>Isn&Ykv^}; z1Rm&UR|yAH$mPngWngtg?%!G!ZH6zk)zMmzbKFowY6Q3cKxsYET5|hWRE_rTiE4yh z_*eMW!7_AP8ADtB6z??^l$62uI{{s_r@MO@@$;NDu4X1NgLjc+wJe-9=2NHzU+{0T zLET{#hF6Sl8v6*Xm^-V=6t%MOPf{;!l zSEiWUn?|b2Y6^K}2crz=#*|4;4tjO_hn@E>f{Sq`+yPLb&D_!@e6t2XMACjz=g?HU~1R2qD*%w)@ zXN;ooYVnTyH(D)s);t||);D}QZVZgpaTB;$I<6(pi8I||B)q1y^d9m=3bx)oWLW7T zqDj;B$$VXPE7bi+fIAu>r;%gWJX zUTGACSBv+UV`#P9S@ZOm4N!KvtBZlrdQ1WrOOLVSc||~vNj4m5YEwjdH|a_N)VrJf z6McCWm0B>(Yz*_EC|u*nCV~)fmFys~Hu99$qi@XAPWV{uJgQcL@JX_N^IgDn5tJ{! zO1Q5yigUM1(zAFIzMNLgoi$Grz6#1tZ^AJ+S`$uSV`;*cJS#Vl%Q_7!ONh)T(p%)& zDfoD|$U~LaxmvqCs#&K)6mltWB^sbn@CTzBSuUZ`w&=B_)~2ex4Hi=jMT|1V_;RMU z!JF+PRQE))CCM|`Y@aZSbGJpM+5Ui5&7Cz*v;7H_o!)F?aI|Kdz{b*SEqPw#*$8Ay zHVa8_$q%JK=G~HO<_k6V&il3Oyw!0HxYZg~0ALkvbfVs_jzKhRvR(yi>-5UucvX>I zuM5+5U}%_vTU&kdeH?H4$sZ(KyL?k`v+kBd8X0f@JHSJhQ3px(Z~w^7{4S#)yi%O7 z_obC`XU)^{*FxFpEuX>Sxif!#h>jfi{5$hs6C!?>xnY%B=h)$4w2t3O`*0Jy91 z$}3@iz%aR+y%q0sFGW5v`Xb3%^Fdh>Jrn#LqbR&u-2Z%&R?D3=kN^2kC_CN%Fkn3W z&+kKY$Uy1_79&-5vVBA9 zQG$oC{qcEP^O{hsonGju5EVJph8H5K8jV=IkR{J6W`upE(M%EP4(T%~y+e0MczNU$ z*-_~$v*HvP*-hbjifliRQqO0n$ixN`af%GBa_wB$@&mONTYKWo9ld77O6=X*0(LTN zx}t8rsa?MeHV%<@Z?zl9r%Omny)piD6MVXa5YiQkK^R=#2LkD7uuis*sdh1>8<%wL zM6QhA<&5c(-QaHz_}dHq_C8~JY9V=B3x0W;TuX5oJUDeod62AbKuFl26K>u9C)~K0 znK;|_a>qU}p$WO%iJx1e10A{y({djhTNHyJ7W9-9**|VTd%WjSv3JFVOx^K3Iw}@h zk8bnR4vFoCz|F^YPbqD5YEhh@|Ee8cnn!*WW?)~W1wIjjm-+D3o$#pVUi{DFQn3A= zOp3bSlk8rI)uCUcI^VzrW!>+|gu5xrIIeU%LqxO9GPA$fOte_ZBvjMVq=vu2HN-aP z{)$!4=X}}UaVeO=m=x7u>iEXopxg0n-BIg9$XZr|G2s~vmY$t&(3MP6yNv+!57?l) zCr-?ct+}$IiLJR;L&axkYi>8#j`&f&HJ3p`ca2`ln@{T2+#Qaf&XVtT;&Ig3x+qKy z9ly%X(1W%f)lrji6S)ZX`RO4js0VXpi{6U+>MWp&t+*$WhdOz;aBanXs~A;Hol1NX zeNSW!W=2?@hug36t0k3=IITdIx0<`(OMI_mz0GwI3~&IjNj%fdNH z*5(}O1bZ&L?-W!|Kg(8qu2GQAiAJjy)9OiDDR)+Ns+V;K>-kW&I;}p4d{69PWw3ZI zTwD>NBL^PE)obD6eIe3sgonH*)0aW!3_JgBhU|d|yB01!8=|8R!g7g19f=vKvNeA- zq#j>_hl;}bu~4j?3l~2RQISJ!EL@OOjYKR97nVF->$CBsG>=)BdoaXY=#I5BQ*1+q z1Xr=iKk*9Y%-!TK9++l>N2z>CK{&!pOA2C05<4l&k^=3t$dUs2oh>Qs{T=v3mlWuy zv?T=;RI%u>;0wa^{7P|44e5Qr^9Sm%E!4K=L4IZx?20Q$KiMjH=P|@(&&Zm`i`giZ z?f;HSw0^`bC)Y9{hRO%RU+cKYY-62iS*&ViAJ^E>gj~oLF60V@U8_IQY4B1Ki8{k2kTBhWS@3r zYa2ogQL}X(x;i>!u+ka;*~5KQ--Dw#OVoMjp|J8rE@6f7Id6!POpbw8r?OY=R#nvO zNDO%3lYHnz;~{+vQ@aa_D4V2l3nap_9g&CeiqR_x(ETca zD=j@oKx+L>f;Om)xHXHYLCJ{+DfXx?>-a1+5jn!&VRLVQA^ZLC#t3=$~ujw z)agg0PEWY%^f*!{bv5m@dB6q#zx#KyT@FV4rrEvJNP65Ro(LTrK1p-E1vM8Mr|BYi z6dTTocJ?H*>4h}A9;ay`r*BJrwV$BY@poDG_k`E|y8LzD4lesvJPuW%q+`A)&LVn^ zk|OoEJ6w;CF;IP0{~p4nV5@&jin{uzP7=)MQjg<;vabFy;qJkfM>AWZ4hC$7ifPyp75yWdyloa6wF3UiejU=Yq+w&aP+fO=1^QrRtquFxh%9O9ywe4 z5dT%$hmErpXY(3dCCol2``f32OTp~Jq$u{89bZxlpQLSCxQMK_VPbRHW_#OI#%8AE zt=3{IvRQ(n?-Z^tX1KTb8}1rh3T8MaMKRo5<$huMSsL$VTufHuG0`(;JTc?6882~d zEVo@EU26L|TwBa^pYb={S8*wr>6jG7bo12vJJ}bh&i8OZS&hep=Q7^%#KM5ha{9%L z+-!QHRPw)YB{7@*!QW={{u3PnU^Zh?beqZR@xW&AMXIv`7nIdzOn5Gvt>89O)=_Lm zTWVyZdB9UA(xtBZ;<{p{>x4%=had;xQZUmoDT?Xl@JS@-MLtSZj=_awH5(J0%WNHT zam{9~1?*>GCGk~ibSAD5W}Mgi8>fLw!HmPCD8`u!>xe=h`dKP-E-ogkd6?*Y=8@~2 zR`al*g*prPSEy0qIDa8)t8J>+k-DbzP^uZ^o$j@*QS#8F|=CaxL`c-l4 z9f8ek=H+gDgkdI2U7y8u#ft-QY0>lcE@HzIM$P|0WgM4HuQwcuagQ<1JBN z<=Bk2D9#{ynUW$kdkL-?W~#ODsOOmCNL&imznB!oRC78zg+}C~ROKXGNLC{;!MTjI zo&JW+X(lb|6g3k|k-AlJ-7qs%{LQolmx7szNm0y%UJ`IIE-0(1nDAVtTFzD|QU>i{ zQ1X&h^FZlO<;u}23vmkN62ts&* zh?BqzWWi1c%8jVM($U;p8LyYCEEM5Da}+|NRa?zQye+t3)t{2Gl z>J}Y5s2CF7W35q;{#wuknIHaLLo4OZnrD~tIw)J+L;DLbDBGpX>2&06uw^KQMGI_` zK*h4{(voMT&9Jg7n@_m?o!DEsLkd15-$kIs3YrgzSo;FLT|&0O6WBX8*j)xY?}2u$ zo8{xJ6TBJ5-=$I`AX;reZetP;#v9`xtFIZ(l_aZW1vkd?jDqk=@y2*It&}^f+8Ap` zL*@({x-Wq2>5ValMQe-+R4k3rl4p6+!qRGH{`96;PC>`JDV`Z`ZHY?tYO9@c;$s73 zQJFHLTQ!yAALHf5aHRyX(BS|G1YWjZY_IH|;Z0ddk+6IWlvEp_yD=z@`8J9SSpugWKoY8Md8)r&G{i(EqB&D&H0N^c6xJWz<8bj`B8|D9Qynx zK>iRS{kH`o{HJh)T_->~zOOe(chew^o3|n#gpIQvyn`93vNi7(QjeYCA#BTFp4Pkv zlpWNXohLx{4^fdrZJYohsTz$~*x!<8T>x)N6PX33yN3^@^aXGCa53L;2e$!FkjQy3 zNFJ&;%k5T*pIBcVo*0Kv_poz6st!es$`&zu1;4=KOe$VuurgGJNoO=RN#?2~D|xa5 z^C9upJ~0^L4=J4Am&xvYFmyU?+6n(bk~PDlEVtA^OSqCmx-@dz5a7iJXVJ>Kv*ziC zo1yIVe#qeR^eR&!I&y=cczc~Id}oOCYYIg8-Qftkyvm&+I{F}N_>VNN@=!=U?k^DQ zheNS;dX?{osK}uc;jEa8x3&6X%}Axk)W z83o~$;seCpX{Fp*^EiaPq3m>rz+mxo2rmuMkpqw7>g5oQ4Uv9yfe61c9ATG3I5R{? zAA}e4G26k>ns{%umL|K`Ss`_36o_*x6lbS1xFkeH4zuA5NUBC47H43|v(iR~(gx-e z>5M)%#Q@%n{&Iexz|H8K&`%i~^CNVAAR#97!~umn4Gi6cs1W+?RN=(PpCoJcK#2z- z^e-3%;g#Zq{&`v{ch)?F{v{|oozNL9o`n8Hh>je16jv`o|6_>s-xY}PpTiM$5&GgE z>dn#JG)U9tt;h#q8DBf*b2Uj)$?hRF*aaRcYQ<O8hu#k z+>&RdjSQs?%qP<6{KF~D+?&qNGtU=ACAuVJT@iv41UyvKczJ;ABOohCBhB&Z*$``? zTo;Q%G?D??=s-3tz@3Tk4h*6=ki2X?2ren1Qd`#dVnIit&dg+DzBu%H+KLk{f+TA; zMyYH*g-a|6@o&~a$y57E&F;U)37UpbklC(5?``H)&XP$1Hegd**96+Z}3kppeG3X-bPh{aV{ z@*KNgGUtXJHHE;iNw(4Kt5GC$j)*g`bFR()m4nJVtg%s=QToOkz`K%+6 zF2P&;Bi)W}T2^Ks3*jNlauP|_+5}2}DXt|l3d1YL$Bui@in+7qaV;-^veR7)gT~Xf zyevdV4nB&lmuopLMEd#y5k5W~VV7$uhv?{ouzbg$o*Xt(Wj7lSsYkOwtlObjJDtm= zAu4jH4d+5qH6pP%7fYU_Rp$~;tkP5;M8|QvSPn5WQ+_0aUkQJwL2Zb&%Um?j_TR@2~#i@MJC=9O{cPbClin+7q zaVlSiveTUkgT~XT{5V8M4nB&lms9yui1gnVi12@fBkXc2OPhgyp-AIHrJ_BzflHkQzK#Aj)3|McL^gei))62ifotBvqpii-)k}*?GN- zA*CVA$I=P^btzWxCj6sVgc@uP(cQ(Ue(M@a@YP1UG7jf2*>O&|8N)gw5TR~3#fz^} z=OsVZ;dC>jG7H!S9zrO7VV3aP_bfjCcu;_T%2 zw}z<5VK(@kq-rE$;de`(UEH)NEnz;FPVnLGUD1BM}S1Tk`DUrbTH9^SN|_zb&P?dlUTedO)_Q)Zc8@ty`FA zv@%BZuNkR87?p7vkp+hEQ8^;FzF0@{X23Q+qBoNz7X6t_#@B4#KwD*k_(`&6GnAa> z5!FSXVP9mmwircub=WqomOE=6+Mk57(>n_T#*_Bn7NR4E9!1uR_TLjC{hb9Od_y?G zF5164L`NTlw~KcpX+Z_eWZ9k{38~3L1)}}MP_&)o|DzBUIoJmIlT?jJEaY#=vy+P` zr5((t(y9OS6eD<3|Gp4kh26~MzT>pBlQBM}#ZpZT1T>|@cI2$Cq(}|7{i%+fn+}zc z{33YBvQ$HoH9MfRgWO*F0;3?jQhfZi7p;^#YaTj(A(Wj?=L{B4IzQN{;}x@K!F5yc z-^gwd$7v7v+YA2oK4V%LY;p^r0DJNJ@y==>(vK|=>J!4DcJcZ^h>ku8%b~lBK&qw5 ze%21D!&wF5yg3wSC!#;T7X7{}8R1J8K@6|00x~&hiWz zPnQ2th>je56k9KH|3irM-xi4QpTZG#k$cC_^d{+U8jAb$L0E3SQLmpfQe|u2EuPvK43T~f)vp+Y z-wkC4BJ6SzcZTTbgRmUy%Ug}KG->6BLh5jTfjB=LinG%_d_P1*4zuANNNSpUu;ket zWl3oa^U-wTKP|-)I`QM>T>!y%m!^llt6c^30a-~GOT$s%lbE()!i>i*7I3b z5l4HZlSQDfT@3doizw186#U3e=Rr95U106OScjNeSZP3b_DX9S;>Fi4g9oQxszr8R z1%ddg!{cQLc2wyiuQ15erc1roI~s*|6wSd^(^IQca(1aDPme6VYbNAZ-m90lPrd2?zFGP7{VBB_ zcF1bcpY_YU&0k@Rr6x&x9}}C3b!6S%=#}b6!K2vh!?^4EFq&PzQhhtUn{Ykr#lhIDHJ|1XcH-Zp zg&x6G!YuTlzlFYqOTjF}q$n0z$i1mhDgG{%`YA3htDRUCa@nba&Z(*Aw;GB5EHs+W zzDa$a!S%t6^jCi)E%^mDDyU&bVp0?%p}e;%E-0&cnDAWY+1@r7vl(iskx`f|kuHt5 zKdvoiy#3%&&%5%Dz@=cuV^UP(k)f#2Y##k0)j1Itl+}1lcrN30$T73cWDD5OLLc!} zYBYjtgc)ei-$0vjDVTwn6vaSuVR|6+p`WEP7vW;Enum$bWu7JKG{$BiZa*^55lX2^ zQnz>Fx?zU8+TT#O;!-d}F)50nX2*B&!Y8T7CvXv2jl{&}GSZ@Wc4@QFeEO>}4*w?A z`5LYcW|yz{+vSJ26wEG6ieeY!66@dKVzSzXiOy)7^z8h?LOBPo9ZJRst9rp*6nbId z)Gp4Yk!kxqhO&-{dkj0F&Ux-Jq_-!ss|3TpOPCpdg%3g&$~qyivFHl zPe8xWyZ8>wf~UBPZ-4So+*rs^>uTk73}4~Qa2MYj_}o4}X8BCdmf(s!Ra!cXubiLzYc^Bw1~| z_&cT!+G8jZ!iA_wvWi1Sv1p$VM=Azr72R3YH+fTY#wMpT+^#kPWvlO*_8{NynmcP2 zB_5y~devVHl6JdV0wc@YYfGM^W}=-)NKFZD&qB1h6ka8~G6hePk6aCS49$mJ4R}tx zrpNoj8qyb1c0noHSBD#P8&qSU646EWk!F3cMecNkzR^!F@M)FdjzM<$Yq_N~d+Rv{ zWkpeJc8zPOjLqH!dZ}&O-Liy zqg8ZgRr^Wp9LSuZpWF%A)B6bn$@7i(7ejR9X2`!O>boJ*zXK0pOXYbG{(d;Zt~cI) z3enLAVPpFf?`%e@Y|Zn3rFRl{6D1vvx8^zUP*GSfgtCKLv-7R@9w91nsExPYBvqpn zi(9eeIcBDaRocyzlI~jGkP>guwe*;(z*^ z6Akb^d~U3rq0ruZ@V2g{NyLuJ)C{<5IhwZg#P%tYthED_^w@aI!?nD@DAubpo=&Ui z&YFk#&V;hlJ0k9F)!?lo9jZ!SG#ggX;#kB;|s-#G>{B);sWQw`Goytq;i&Equ z9oxjiw%Tr}HY(sN;N7d$DWtq~{gZ*Tn>v*_#_y=22}eMZHLIZ%g&e3`^lQB!yi$A| zwg4U~Y84?;WBe2Oh=Mi~84vNZ+qOgkKVlu#5U%8KR>P!pq|G(Z>7# zR!tMASel?E&klAA%f@IvlinDwN zGV4jbD0kB(Lnb~tc{;_0d0P1#s8D( z*flyiB1A_YgyqCk-8*HZ%1-v`kb0b0Al4g0v38D2Y9T6esEu(6N!4h?;uI`-_E%!J zc$28Kky&E8%lJtO-FUl9YCk^=6165r`yJuEU{e@#9w*QX)puvj<0d`? zWv9Cd2B4>#xIaWkZX(nIUT)&?5b2K6J=X|I;0kV zEfDEvLy>kmi5;HO8N%HMl~ElB+HeviRU;dVld$AjD9BRcZstlS{Aq8U=Z^jFV}l z+*$Jw`DsvgI*~J2Jc+y!q9X?$#np?*F9?x-Zh;8DF&tqRk-sBEM<0acg&Oe=Z#7AF zuA4(@@ZJJZz9kf8CyC!1q9O;`AaRna(T9b^EqRt`Tqwaev!*lo!70dlGkG`NGLJ=F z7uRZ>I9490wkNF|p0e@&Ndqo7^AY#Snfn)1#l&EpBx}&443iRKefDqk!tjdm)tYBg zu+PKZbD=`%?9HI@Wba)xH(nlz zzw(Oo?P? zSDCJ;hfQkNFN59fWczRJ2J-24(%No}KiveME+M|;3UbWmMI&bMDat8D^bq~ixS*`(6q#_HC{$uFf`@#EBH|v_iR}EGqHLSBZ?K-(>S&3({5B?6w{8lb4QkKCf7W!nlU3SoB%Lqq9IM&Ke#`9_r-H|9CYMz62dD-p@u6&*Jeu{dO`Wkl5$9FA&kX++gVw58e@bX?Vl zvgYeD>B^^=r@}*)#X*v+HbMM26td-|X%vLEWw9BcPAlcks!lJn9uzza%2ubBtI7Ao zK|uzK=k)R|Av$v4^G`3Y4v~H(JmfvSya+O9IAV4!WDi8xHNCt&L`NTlcR&JNQH=j`UO7 z#1REmOl=SUjxc>~fP5sQNd3W5?Pv&^IyHZwUT(E)Gh6aAtKi;o1?eYS1@Altgv`{; zw$h#$>ubTS4sd%ij}aP`Xg!I0PR?N=?5TTZtCy3U+0vSm>A9$VYQ)nA*l<}dxYWBE zb{CHKk>Q1iaSCG#8j+NZH0XZWz7{NDSNiIep?1&Ou5KRYl&7|vW01HO0+`k-!p6laM#4?Pru*}_b{1Vd`xjwBZx42?!5pW3ae zsM&G!Zulf0I?{MZAA;2Gf+EUhpTC8yuk2VO^2|1_W);({_ps~-#*&`PgLl1+@o22~ zt3a+yc87SK*7}P9^2h>8ciPm(MOuRoDuT z{YP2HN=hBQ!tY93D|OTsQa=3r>bB~K{d)XS07A%%0LjQzM64i51RM8-}Ti{V_ zFeRGDldO5PXm-7(+vz;XmC@?GD9%EEh59QgQjg2S^>`brn9n-Z^|%ylor+2EU8nj8 zE-33d6%(#|eH$Yprdp!9Fq@$k@(jXE@poyYhjFd2kY^A08|j<46wF9Wim#D=f(y!O zBqltUk+!#uENsSFW@Z#tOa36u_cX3AX1>4pn{V;&_0fXi_%ZV_DT?{#!hlI=Mn6ks zcEQDDH69Z^bH)<`K%4QFs>XwiLc>J5)OH=NEoQndc+_(l|8QIiW;!NCG2J{e{1uw9 zFH)UeTu@fyG2yw4w>&XUw^?q9noB6BCrTxUaV0UE4fxw^0+)i>j7iaL)~(tMzDRZ6 zj0?(YGbTKj%~o)0D3c+Z(Uuz7gxwP9QrGKnT`|*L|lbP?udpWKsX0ez0TkJSo3T81TMX{KZBwvFI$!aquIHS$d zv-52Q)-{kq!yng%Vfb&4b1W;9*hJ6`59QfJFtUIJIVQr%8v(w9;8gfJvWmX?-k*Gg z1z+g=c#z|-9W`Dlx8pqo&7p{|VbOKhXsq0*)LUI0N09~esNIa{vM}Fj5Ho4NWu#=nci>jwxOSac6K(RlT`|K1;rKC_lk1#zSO1xmxb8S6X!08wwgMx64Ct z4;Z|_K4GHXu8zU`Y_(3UXrSDHfS(=Y3gmjZI!KSe4>U)|prlr_5w8sXZ&Xc^=_P2# zRF^>5YpCb+{ta$l{vHIDfN3NCXRabN;zDCZzbgxrV*kdq4qbS zK@#scV%O34t|EJmCR&w2M#`m{+J4pLZr+To3*htrs5e1(b0EHuH|N>#kfk}3WdG(o zk3b>XGy5W~wX0DSUM+s6WhYuKcUHAQ*PZ~YW!Mt4JCvQ?pcycpn~v6n=*XeZzv<|x z5b1{(i15+j2)i~NogSj255gHY9o0kXQ7sVbMkvpaOyUj3`n|&4k@j-aV;y*~TW_Xn4mKtaY zSCUAVm3`00X7w<>^(v7osCK2#UAYNy*=YNdI+#2>&h| zVV74~@F%^Qx|;@R^1K!KAe_;w>=aUu?cpJ8_eGx8ybF{a)S8`MWxo&=In;(%A*mX< zSiFiQPwxz~tRy2-Sh~mgKuSOHo{*fUz6mBf39+N|@GhK1x>`S8W{XhZphlYG)w9VJ zN_F9L=(a?%h((s9VCQ88wje^mke9g|h@?oR+5`J1_YZKFll(yZ{Ez2UwTJu1;Fy%!4m{FJ)LyXdjxwGc!nd4A)de3Cgc>0;Qgy_h@N3r$tGgpU5 zzp_AtuMJ1ok>@>pN%UT{|OT_@*KEOL$%)5|cJ)KKpgA?~H ziF66xfEAEw2yJ(Fb8Ug;Dq68L6_HjfT{tRv^~RP^_KK z<>C+(In;)8A*mXXSe%O`&(SkOtkP`ZxW;=(}V+VMssCBVjq3od6>~tz?LsaBY8%~9!YD8jjDwaIQsZJ#ytxC(8a?%~k zEh$~Zd&+XGu|?D!5%@s98V0LhO*MvxaM}Y`m7ml#YPuvlr zqYuI|C~&+*T1}EXbALz;?ky1I2SZVIdWioFQIUgecnFfJ(TBxDSn}+=-o=p85awg) zgnvqk6}$=mc=B4JZ+N^qScmH+TgXLG^sGeUrYI8ZDJn;#0PD=aJTAiL24=FvV&Q-5 zFuNI3nH|i9hb*%LlB}5wWhV44sNIdC@M`f<-7d6R?yPw@e@`eoo%0zmo}B-Z5FI)6 zD6(Fhe{_iSBMU_Mm~ez$oPS1$jy?!)7vEH=9ceO?WjAYt)MQhEXpe=W?d1M{4pEVV zZE!zH)riEx{gymCDYrpsL@DiHK9x@Wvr>%UP5m46gGuh8e)rnsSYI5ez{dNT&otd( z!0cvDh5J8D@kosJNwQ`#l%bH({^yN?@Jey!e}GoXoiz{hKLTZ^Ge3jHllgxTq9X?$ z#np@Xe-|SCsR9xHLpZ`N=HKRj^ycVp8l-9SR^)@Q5<`Bi*!!oYNv_!?qz*g6Lq)9! z?FMBBwPYvfcZaCRVKz9Qq-q3W;e1P;-PQ4af+eLf%tzCS|JIZiuM|_#5xkuXh#;%slra@K~%I|AUxV`@V5v2 z?FD~(pD{hPu+o5t#Ff@GgiWhm1`kdhX`Bi~Bf9IS!6Fuy9^&7<)Di~F7N)Mt5SEOG zm(VUX9^Mr`f=cn(#nn70GlZxc7LoD>n)T**55KLPhpVGu;z{Q5O%?d9t5bZYG4&uK z9=$dOqT{Vw4M#8QaN4pm*hi#5b$Zr{0C!p_vZV>_*%7fsx@_-nMti1by!i{_LZXuLmw*Evf7DNA(x#x=uDCN5v!5t&qAa5?3>hQcU&LLNIS!$p0PzTSDh>21TqDdtC-@tv50`=&h)GclG*`LG zmVTDXjN)Rlnum$bWu7I>JZ!XOGmv^kDmRjvBz5~|TsO>6Z}K%SemjL9oq2DR&}%3RefS%U%9;mB&*9pR=pQUZS zg^S5*8zwrJZB`^_B{m~1GqVW=lRrppe}`*}neIt{(>;Sr!A!@bD5jeoFY~}BsmPMQ z&giItiOp!X^z1x{lAOoYE+d1hf56>LFZ7vQJMLP^F zI_}TLEYOO$Kd&MWb@Hw;195+T63^8mx_rcgYSB1A8>_<*2&)PQ6=fz7bL+TvG&%uM zSVqVVU~Pz-1vg2ISNkX0uu&k+-L<(~pQyAtCaabDV6`y}y8#*#qhpg%d3?M)N%n=c zM#^JwuT-ix^f_e5}`7$z;aQ355);<_cz zBma9^t2C^sr`wA%_T8~Il44bokA!5Z(0oWprr#Szr-v?|&RUuvtPwIC;s1Vu{giPq8}ebs31 zo~TCngnxx^9V|n)l_N4N2!0yyRQtBOUlBjfdE#zn1oNadNmk3kgPzT&wh;`$zsV-_ zm{AyBG5&V(E3{(ntSUFuu7=DR;zWHNvZr%H42{MO31lqXV9E3C|Fw-)+Syb)oht53 zF|s#Ryp*oQx^IW%>zZt*$OhO;7|{o;T`px+cbmWIUBlf(m2Nf<9M-DtX%<MEtB!#GM;L{v||34!E%)grsUzV)09sJd0H_l-Qd& z)2V!R3h>@k{zCeOhEh430#;y-*J{JetOZAS*p5CsZ{sg|K578u<~@bCKSH%iY~Lfv z8rUemAiVvsQ4n4!&f5>tO1ZP<;q5O#+3CC;!=eq15~x_3pe4@^8?6?WjnRB2y)k|; z1tIUocr<%E5|v;oLe3)8tNnbdO4OPh?Qhnt;s4BYbxTX|(PCu8VXxSJK^h%U%u-VcRV7wCo+B?DUq+0Q4M@ ztPatUn+RnLuMtU4i1dRCMEJ09gk2+&Q$lp~L0CpoQeM{TiLxyZh16o8K%_@Pk#>$m z&JR(M18s~%NUBCQ7B^tYvrv$w#NEu5PW=Bv`48n9zqO~A%GcuVqX#^A1*sP=2K|;yM&OkHKHAO_luwd1E1-mfoG`e@C~tb$uy_*r zw?cH}z@xZ&5&17dr2n))gnt!|u#3oNJ*_uKchgXY13n1L!^81r4mC-V$?}jIYzGe& zH6U3DWe2rmCyB2LQIUgekT^-z=)*$dmOM)|E|lP#S<{*P#+3H$J%sP3duOmPMBQC% zw0S~)yrkIgBWkmt<(D%!Xb%uSLt=uw7Ai5gTh3iIlB!?a@Vta;eG4rQme zdIpUrd%r0}M-D!UtrvS=9wPnU3q<&eaD-j#eQSu0J_svk!C1G0-k_yP3i)(M9X?SY z&Yum%*~#CJhp5P5Hu#&QY9wOeZ%dwSVh)tRo7vL2yEg@OZ|<&{o95hOaefN;xCUH~ z2JeO8weP67JB{pOfc;hUezkaG$Z8hyx;+ASD>NGwE9ob<=JDZs@&^gmtY>uO-84!@ zI@}ffog$WS1teLsB1%`tAby8TmEx;0E8wA`20uGN+39Y8!Q$x#)`aNDfk$!mas!8k zNPl^O2p=Afu*(gc8ls~Q!g9nOZy!~YWak*Q{8HZFgC~P6ba_)XjCZ>zB=%MSri|Kt4T4n&*x2r<>r@CB*Gq z0Y{Q)%h<6-PXc$ct;4l^XPgfy57uBuCfr&Sbh^3Q|8z4KGZW{US2?y`3r!lZy^|g; zvz|3x6ss&=jwmUzH+&!M)Sl;y|06DB>W=5p`Qq4C$&D91v6HJP7ZUQ~jw;UIg_0S6w?q(z7Z0u7M z5nVZzb3}H2dP26++LOc#|A5mId*WT#ac)9ZG;wa?8&L5XIydn$upMDser|$6LO1z; zi=g9kL-h_vP+H|%Rry^$@pReotLzM~KwFP$Nir`Z=O><@>_S03f-76}$%)ry0acuw zIF&rq$-9N?&5Zn4gEQ8sO4(v{C>Yw(a|$0JGBhNS4s3)wmIW}_fCKat+YXS5g6O1ZPD3!7OF z99#@#t25fe$@j#80|txdjP|+^9XaqQu3j_R4~0m-1s?KVGq?&eXV|v=5y&2huxm#9 zV2F-B2+P3dq??LyijgWg`kNv3_&PjP6xQDk#o9Tq{Y{999BN};OHwrwvCL~NdAinT z<4I{AvoQDAiMh}nYr`qFA*6H_no$OI6pL_~Om}&AUh9t3*vP?c{ zr$r{8?NsuSj4t&DOIKX*rdjkqc76E#fqJ>s zvQ3l8?c%Ja2gEg{pKLX~^B9meGt=Z3ZyARZjeP^H&19Mkj(M~>H~}6!IsJu@U%Mw$ zyW;1Q^Iuv`7*xhpO^xeSk4r1TSR@|>XP^o3NlczNSRMX9?Oh9aRMoXk$O94xAt*ti*s%&3AP+#H1w_l!QY0!W zRS<{C%t>ZW=8?_=0`*nVn&@e*pF?|VrM7Boi&oS=v9wxf!BW)rsugX$t$1tIdrNOy zd#(10_y6~K&dJP~Ig^BIzwh#W{5iAFey+9lUTeSB38#{a=IT@EeHK@0$_Y7Is1KMq z-}`>LT`^s)%)q=(gnzqnqWZc}@09)ZP+ew&3Q{TX5sxTTpKs9W>r#IW(&^ zTJ?~n(W!^ z+#Vb0SQgGjrQK}F#9L&f*C2z}Ln_IpF-I`WKOmr0u5`x7of>AhOJu%2yF^?NJg z2~3T-!Y=s(AwgNLvim&=esn15XEbe#Ow3G7*A>o zToHvmEiEk`#H!sKPK7+W-yu(DIw3rpz;i)53MWOK@NS~H8E3icO-ozU#b->y;c45L zrEf6yjSdv5|B-9|#caWmYroL!v4+TcNLEYqKx=D`T$}NT*u&HwQ~sWDD}VCSOfh{` z1(pF!Cd=1gVJ>?(k*^;RqQc@zRs|;(9S;<%3R8rqL`aKghY18g} zJ4e@M*V*gfTIV6P^LvxI#vk zClTKi7EZR*+_Q4Eyp6}`Ln|oz15zvi|2eg*>Bg%=9NM%x(@I*FpK|V66`0>wjBv7i zZNrg%67yY9I>){hgRLt~&JJ;^Rl?|kp#L<5;3QX7({`^WAd%Ce!(eu=CLwR@-pY^B zUa@=C&Y}7i^beIV**jO2lpMX4>JPJxvrB2CMt;ZLt9qNP>J=CeZq{W!!SjyQ?`1HERl*IuFg zb0XDzZj}E=D68yU51U>S*PY)I@f_@db;f$L>3F4`r%zy>Y9~oJKj3VEG4(S@rjt8& z$4xAY*_zB-LQH}jb|nzn!INi%ykibC0^Qlni@{kE;izI94xaqcmXRa%^@As`i%R8> zYE|8C2fIHZZ)a6vkR;1p%K(bx=p#AeoI6xuwOaQ- zbawz|Ei58?dPTO#<`*9{SGQk1NR-2VWpMH0Un?9s3QFk4l{LuZ+mzW~n*009mhB~74;a<3bc7yPQl{yFh@i{> zJ;31NJ3=K%p?3lGhsmuQY+2=(X!cJ{_^%Vy${%$w!ha+3b{2k>DA|*^ypxI@rL<2Y zyQ6k3YEtn)DW%^xjMROwH0tJ?RO~OMeZ^4MHhm~Gsd%oGdOS0Xbbh`RI_I5K{Hc`Y zX=JudDj1qIbmY(xIpWMIVXQO<8GD9>RYJG`Z;Dn4-#3?yHTT=aEDbK!9qXGmO{;1@ zC3~bmxN{4wrGylLLq|*`SOgBHBoWJ^Va)9e z@dW^}a;U};1GZQGde-`^*%*C1&%IwhxiXu}`G;zY)in``a#&pq&XO3%VNo@)1dWX< z3PVf{GG$_xEnDX*YKo^tR55?l!6=?N$lF=*s01of@qDC|_Gv6|q;OG+=dw~tUptJ{ zU0)h?^C_N>m(spssOwVkTvtjxt{Fx;UtbEH^D3U(OKF})W}D(+Xx1>2L-FK@v+cbw z6q}=#y@rJ~*@*?1U9=`ki^1R65Otx=E>bth#4xPRck~0%1C^T4Wkw;nC;#@-KALrA z4>qZ`-^Tm=1Gq&U?G=O@F!y0_mK-?_mPMEuA-)n4vQ-0k2)B2^djXswXaBZ$sBkvNZn@=6Ruax!`LtU5ZsHK#8 z%os*Gx0OQYyy|FqDb3T!Y*R-J%^F5>sG}Tl&KlHMYL1BZtPAUrM+=NKMeC7v^-Q4f zLM4`n+tbkwd~AqI#Nn=3xHBB^$5I|G77ys~dIl#vLN|y-Ve#>w{PPt3oS~)|^q*$) zKkkZ=+G1E#$msxuz~C%SIu2J3{-r);%c!V9YMZE3{-}dd0e#5Zd5|(llC=&zfFe0$ zJ4c+e2Pp_9d+nJQmTtKK8MCF^IY0W%`R~G;iu%<>9!s*{zq9Q>>Q@(!6p`!In6O(; zV(E9-9ILEf4Af6U8mFWNUJO(>)<$)vV*!53FV~eop5joi1U^Rr5}tF!Q=uz?W*ysm6)Y7X3u2`Jh*U*Agdh$dF{pG$TQ)o?wCSQ76U^Glf6&exx{cLxy~v5o*L; zKXKnL6z8x0oC6w;2PJ8MIw*o*C4j zjMB5RY$KFcJ2k=^`m%y;-(W@=32Z@qvIT?<%b;P$P!&hh$~-BYHGqvq>B>lC%R`rg6jk^~fhsUQ{CF7g-z*|NcT3+Ol?`D+2Qp6# z=p4d%>D(NeN#bU6$OtkyWCVdjdR7(=oiQXFnuT0S;m{)295R|<<4<`%g!Krdm$g zXZ4>r(z)tCdIPMyIRIMw3RJ+#8^&K>MEsn*F?E7I$m>J5JhL1ZlbZo7>>5i~)rU>1 zR#hs)!87J&#BBmyyUL4^*q=`g?30(`^{R4fF7`Tr!SQq=0N)f|R-#-P8%QS-I8g4> z!rPTGdI+pnDbucuf}bU7qhv;Dz+H%RDjZ3+b|!ELLW*JBtX?Y)J!EdnXd`l4yHbO3 zSW5U)@dVQI^R_r9;g9y<$7r<}F70>YXRY=#orvI9T`C^%b@&6_e4EV3N<~?jGQKk& zPsQT6I&Z#NRj$+}r9cWF_4W0_;ErYxGM2}0dwhX-G>Y~lk>6xBM2biv1UJ@GA)jyz z01b%Zv;_1NAOglDq@H*p<%>w0q)2Af2&FdUj~G9zlm@9c3_{_nROzH1sY|CluE*WKt?Tsx9c@KNiST$d>4tnbMWxuc`R>rXn zNf0Uo5=GFaj8YfDUVqx(1(yc#AbyXKVj1OxgcOJ;fTiu1U|(~*42v;P&bw&`^})9 zq?8WEeZ5i2(>STOC!Umi)|5g@0x937a5AjQXT2{NPSPquL$q3s)O$n7tBgTo@C~w< z_((J|t<$3Ucr-4VfeqKlClrG3!qUP7hnZUtEFYclZ#I5HL>t(pAUUxv2x26RPh4kK zk84uK_DDTG5Jf^qgq?;$#xSG<{)>I=8OlkaRH`SrpsfwT$=04NsZc!D8c%e!Wt0hw zDJp=NzLXRNds1M>D1^66opmPYIX2N5uw~B>Gy7?J_VklXk?ocetzjwEDat^fZwsZO z5foMf>rwUlkXbcKnF5)N`i$;rG{BdHOMNNRuZ&A>!AYrJUntxair_!ww=xo^=#NR_ zODieg$J6N7Nf7D;@mu}ri^KzdjkHq&AzZKsfbnX71C<2{`JI+@4~iIz+NHuN&|e(~ z`XN2>KseS38PErY@f<3W=?+`GaFoIuiTl;wh;tqok{~mf+XvBwx1b6k3HQbNl?egF z>h?)de>mdv2ZISo3>bY%19K+J;jy|?9n<=i3MsZJ12ak)r4A?PzYs;(PhoV9lux~d zCIqJem4axcFr*?6T)0SPuF5FmvqHrQ8wMk{PW^{hDW46=^UAm53Ya`@Cg6$Lfa&uA z%dP-S+yQv@PQZVB74Tp!-BQ($D3cUi2V}~Jm~zBN0iJHa2ExN}_{>ns=ZFZ`{e~fg z`;G#h2jJZqcqczsR$k^;%0I~GX;4Xcp2z3Y*NNvdMfxZ2C@+)8>;OdWE-#bPLc@oH zqKPBf5cSy`>JEjJ@g$FJiqbA$06z-yYQkn}&J@A36)=VHALet!z@+2>g5n&5)0x{_4d@e< z?-Ld87nSZ8748?6?GqL46P4@}73>$4>k}307nSN073vq2=@%7&uh)}VbSTs;F9OX% zF_nnR3?jz(B#3wsse2pY4#GVoq7bSd@JR@XAaR93;$?jD(7EhX!b61b63%V_EG7J$ z@C(AF;{h88zbCv-NS*-bCA={a@D}0DQvml6-taJtaOzaRG{Ryp;9SCa(*YL}7P1;b z@@r<{X)NI^hKY`_e;%HGPFTb+(JwxE4xT%!Af!Y3Fey3Cb)68+{XKC$ztqIVjlb0a|_Ji84nsDXL1C5hqLhXZp-3_Pa2 zRHfZrHRip_td(Mv^I$L!`IB_!he0FNLK^^!inL;&>v0P(s0FD9PO;ACKA}0;Z-kWQ zxAS!iRJT2Ef{AI52^tF{@o zsXXr!!bX-GSf@sLH*&yzS7s#dCmbVGUJnpGyp(hY61kvjsS?+6BaX`7)BfJ#Zx08^$oyQ!s$B!GYH=!>>*70 zCcr~DLU@(%<^zCt2#H;QUc$447YKKM8}N0);@yB11n(n&7Q&1l0NM!e?g3Q(5U}D= zz$!xZUchL=Yx@942`}si{FboxXMoEIhX}tUbRGh96TbN*;9)}amw*J}hNl5H5z@Z` zY$g2pFyKwXWzPeyAoTtka1}w}m?{*;9zF@JA;#IybHu&#w}5*HwJ!nc2{*nBPzdL~ z0yvK_<5fT#;rFitUMKkf27B%_Q&rFTepp%U=L<2s_^Z>>|i- z0^)?#Zvoa2M*R<>{jxKVT!_^l5!~gjp?sxrDc81Ip$At|Qz?*nTG9i-Zr)1uQ3&eF#uRczHhH zHNt%h01pzHphn~t!Yzah;ld9C))Hn>d(sY2_2@x9RbnbC*Afm84iWBH4!DcZumaFX zXj%nmCe*G5)Dzx5AMh?=+ZsS0;gO2~j}dOZ81PxbPu2ns5}H2-m`xD+dkU5PI)abT zN=;7NMAhl%@o9z+&_<};2&g9CA*G8DqCgw;0z)(~#I1)vbNd=_vu;pOdsR|(~} z1F8w3F9M>3!?Z|*snxgxPr}|3R?2m>S9ab7*hTn0f6@?>58MMdMA&gJ;4Z?~b^`7r zJn&7xw+KBC0@8#z-vWG)@XU7s&l7(52w*Saxjlg25Kej&Fop29#{h2==IsM4Bz$&1 zU_0UF$N7`6^B`asVfGV%d4yw60V;k0xaDa;hH&gx40{gHcNp*)!Wqv4<`bSK9409L z2Dp`Q+RFeh;gZ(?>j_U0o+Ye&9nek?cHBrBc*_aVa{C?d&_tS2Cqs`h!T{~2RE3jR z56tvoHARjfH5@5_<#_p%<8%$P={OAMBrF3=3>RSXqnQcVoiz6rY%$?ePPjN=!>RM3 zTszqOF2dDs1GW)4e-!SjxAYUC1{y0B#~&aw1?I z;n>N5ib;UW-v{s$UN{x-JHq9sF^q7^G{9+u(bEA9gl#hbeFR}<|CCmDMGL@*QH)R& zqnqTPnMxvQO!bgdQwg`X z0`4RzvjDdezB3>22;tPT0MiK9F9GxuIGd5_SW@h4ITD;(Uquo8w&O)`eJ{;{rg{{e zY`PCk^o4OBL8~Va&RY$*knrO$U_as1C}0}l2cH5wMi_S|U;^QSy8)LF<~;&fNa%eW za5bUwAfSe@{$Bwb314^)@Fl|8&jXecn*IQ2Cj9s)U_W6tJfF(*2wVRSxQ0NN^)g-B z%k(@WoLb7;vCtAE7)Hh7 zfn1^f5UU4rmHI<0AIKxc53j1!tm_AL_)Mc%gyUM4SVpMh@}b^Dbw$M*qQ=7l9oC`v z)pld4N<=-;7HGt-vF7NN#mrYsdWA77EJ0!72s?smR#Iy8s)?M(XH`PX-MBtI!Cs*D zrc9~D3TPmn=K3Z!2jS@@qAn|8#eL*bE&MjDCddat-&Ln2Z^*2{s$P#jf%QRcI>~~) z@_5ir-xnP)tDJaA4C|rDSqj2)3>IfqY8sQryzk99VjB6ona{QF%u{~N_NUza5LW;Q>k7)^9){;I~~(EbCi+y9dxZ2u%n`#*4{ zSX^=JH+dOaJj0K;Zt!o1u)!WngU>9Y!Gr4L8c_z7huKr!aZR|lizQsnf#THcF5{AL z=PbkCUJR!n<1vh-xGh}bC_CtUOah)X%B|9xfD}b3t(*irZBPUpl++BZ6 z*?>Q~fvnW8kuVdFC3W)av>y;|P`wYyT~M8cmO^zog@k5juu^=gh2m#_Esy3NhAwb7 zo8pS%Uq%W$#q&tDHf-g2Yf%3otN^I*{klt;w^5(zb$PF`P=C6}_xQ;BA=lLZ zSq|zCkZXjd5|C?)y|0M^-^GI}&@?KHnO5RxkQ2)vM z1}E=Kugm*L3-zB8`5qs6KLss!H`+`_3j1g?K&}hQd$T)=v(O=?xOHaw>HG7H?-qZ= zLohQt*EO-131a6rJ`6J=&s02c&=j#T77<&6aBW40QLv&j8ay31GaUx~*5R56K0$u7lV4q-M5mKCU zmN&_?&jbg|b;(oyLWblZ+%Smk*Ic*yZqaI+*e*`tXi-NRXEAkK7}F8m9G;N-tzjg5 z8#%fVTUKC*#g^WR^;O}#)VGN35Dc16xhDJ}LHHuXEzh87?Wb!k4IcluJmO|)@O!AA zzV4cEe<+r4Is56ly#2Ho!VQ6>RMon*Wkw)HQOi$xB&FgVb3|`5CB^(C$fXNv%F5>S zYA!8(ooP&irK@UJc6xBT!x!)D^ekHBX)+=-EvWV2UyEnX3@r)V!Qz}bZxrHV!$^ax z(48K96#-u=fJgVPaE#X=5GVpt_~?Pi0O#Z3_ub=dGNLqjLOAmdzfd^(o}`;uX23J- zaV(j@U3_Oafh9yUgA|UxPjB^H9KxAM+&#eY|CEFrQz4Y?#m5(TxSSthh{fSjD%q`j zA)L;SV2CQLUb<5F?9^%=j|H(CkNq&LRh?$k~~Wh;NdJ^DXT4 z@ZN?iSP(@1h^8YcL3{Q13q(_u2wPuMb8ewy=^^S%YB9Rh=jczMfdd^xa)TDb!z4Rr z+>EXN&x)ZO^GsEz=|Ziytf2Z4!!=zON}K5A!!le`K7#!AOB9C&g48?o{b8z5Aw+s# zY!c&DOwG-r;xKU2hqNtQb>HgX2c2$c+~T5k2Uw#DxD-$iuFzD&GDiz`DE>Zz9|X6qdgYixX4&*XWM%e3i9K-0t(?8rIy&LZ4<<`B>d*MwU-D8hX(FX5)xYVuDb zdwyHR^G~oLCSoh_ib0WZeqIuuSji6jPeZsXT@!B0pa{1lFX00JT!j0)YrvJ_M~=ImjdRE4$A4`F(EQFVdm0|T$#e!w^$F~3miBiG(BF#VBh zceGkOh&=3?V7m$sOq_8x?-Z8nrxhw!wy!wfJgb1)``X>YeHI;|JKNCwZ@@>9q>MLQ o30M!*Dx-~Hafy30W|EO~ke9~0aNbs_4bt0z<`{sQJKfRxzf?Nwc>n+a literal 2245147 zcmeFa3!EHBbuKPhl4Xtjl8t4IF*NwGv(oPDu4LKPV%ga817Rc!S;n$udDT19+L_ku z%rXy23wAIM116Ij64ty!NVp+^05?Eh{7Fch@Fod2Bm|NhLSh~XNk~X?Z$cn}|99%q zRbA6v{g_>?Y|Ia9d%Ej+&Z)0XojP^u!8MPZyJF=E`d{yy_FT2rI8kydl}5ATwHJD4 zRGQ`Ptk>u)ykTMZO|aomnm_t2I?x!LHrwFb)YoK~~h zaSnHyr>blJT=M#4M2Yp>|l>pT*^7LvJW5 z^9p2NOcB>bH0o98jgcsw#OYq+_@!zu!Ep)4wSI3Zi zgeR{StHZagWgR+$#zM2(sA$dRJ*ut%>A8^ie~YWAy0N#0(GL8Fh_q^)>u1&)<$AZ` z(ST;mK4aEBQSs(F)rH$mgQQ@15>b2Wc4C|%UwaaCpQ$&e7as1NUaeIsK$VAkXNgjR z7iToOv(sM7t1R5MqE}$lZ#NtDd891>oU{hePgzU#MMRF9szZzn>p+$pOxpF%5j`J0 z-g4*Wyw-wilJoj7IYE9eAb;<&gP^Ms0?{blz3HLIkzs@h^KFo+S9w19~ge3hZg`}T{X7p^$pv14!62Cer@vBhc%N4&d2C5GQ z0w?%4+XOoRrhg}dGB-% zkPE$)o7hbKGHnbpIK{YHFUQ3qDV6)HU1zsD?@UaP(!6!c%JRy@7jN}R2j54!CdLzik`;9fIi_-f1!{1 zHw8JEF7|XZLqXH_!?)Ht)$X*@^5&Y(wbf2%u01(6Hp5<)pttJEexNmtU3YkjwURV) znoM~oHC4dBi)y8%+J@eGtqO%^{=uMKNt$(UHCvm63u0i^ZPgZf#k8%af$!f<)o%3f z#2-)sx{8?4m9Em;oPiLWSyEN+t>=`3jxyKObWib`Q5mnriXrHNf0SB-#?|rH--&;2 zTN$)59@L1#QkQs!#%Z0y2d+JB#fo5AH*{#pF@s%&* z94rx!x-(wM+0}8}dcAqPO=`1u&xb+d1U>4t*xdR=-TC-hpc5;#gO(8-} zqnQ;levmHfwj8(ZU*y#}H&7;N zIY30DI$AJ{IOr3ZJZg<@v)iuEj~;XDT~w&CrR3aDZ#PjSTiAiP-3IFxo{*VQ`Ndtg zUhB*|bM+=_LU)<<#A|o!)UCZ_Spkd4`a>U%G>Ml)x;YmsE-ZRkTj>S*dAwRHR~_`J z+N_YphWIck(CA4y;x?!!XCW+Er1KAw`LhYf`Q-0Aa&}rG$d>gfT4|KN1`68DAzEqE5}OC zwh_m3-R_m!w_oKHp%`u-E;({8b1TPOAV|B^CcrIwv+hi(*_wf^jTvvowvA0pjLF=6 zD~|8{s8K*@BO7`jeH`~(Q;yzf3=#hxypR&#+m=g81d`{?t;X*=jK;<5-AcoGC-P|O z7xhoqy-kH(S8XoE!2fBMKE5JKkM*GclR?u+*$o*>4ou=3la9>_8fe^Y86Tc>ZW2le z8{Ra=V6knv4G&W@QyJ>+%nT-HG4fkpT@8D;3qxkJ#oi%F()i!oYL-1HAdQ(|zTSFO zr|Q5gEA(iZi|@pkZ_#!L=5|2K4J}{~bT23vyU@6Ly#_m48OV0$4ZCO~W_)CSvxR0i zN1)0yuop8zE6wdA&JC1cFD(6Sdb4GmBMel0x9ipzqTnxm7@Je=8rydD_9-%tO))j0 zG*>xdLd=2fPf{~KH6>gfSoI_oiHaKX{dO>d`LZyKd{+_jWtUzFeR;Dh?E8e#ym&}b z*!L;q(Xfwtm=^mk2c~_5rH`*D4fbt787~l1t+>b5FfAi@nL=L)GKL0ftrt=njM zg;kEZIAco=1L|}I=QvCT(12)XiIz1-XupeA7|?W>B10&)$LqEjf?@fBwIi+97#ge%)xy{pHs9^d92alI?I zY=x2EofyC7nyV(RoY-v<(508YG=0I2WjU%Nu)j^Nu=t1_;Dyc8mxRB zyw%qnVOTjN6{;l>G>JY-T#Ev!e>6H9j~xo6{t02souBt z352@2?loNJ4yar;Xf-3w^P$qfRN>rJtNR`RVz=8u3NN&fdp7z!)_u4Kn~JZte-xxGDgJo35JE@9Bf2Yx7l_ku#!CH(Uv&Vr=H_% z9e0Wo6Hp;1CbmvYY*V0BX>tW?V!Sjle%02oZKZMOS=+W=Q!tUI_qRVHJrB_2lTVBe zYXGwzcGh@+d6op2SfP+0ks_rU=;s@i#*aTW&@Vt9ZJ<-T(+>1u4D_`ueSAe}2Kx7J z#ps15P@fO4#3ru6Fxtt-<{qy@&PAc241Iywm-mz9`VMBfo^);@i}U`f2fJ_wR@S<6 zL%ZFbWzH_lXuX#veD>jHZnB2jAqMlLb3=ozr&?r`t-(s$a9i`v^Wm&Urd(K4_XNfq zm~EIzcgrUne!>Qm^2y`KZ+Gx(EgDI7u2V;a4`b7D6#bM z6{UfTd-u4VZp(v(WOlaOz)CWFCv{P^)wgJoiSm~djPmEnvv z*1mG$%B!v(g=J)PVtitJ+vwK5@py0vD+>gEICUkOINfbyZAu^_sB;3Z89mN0L7A|INp1Pl9RUO{ZuNv`OjB zhOmYwCAOG>xi+3_azv*{sYb{EkO(G4u|c5A)>C z-Mfx98rpnDjAa%Fsmwux+oij2?I*`F46qxeCzuP}5a+VmozXoW_DZJVg(Zv%c!IeA zd$@rk*zRrzzF8Xd+gXXSB|kmTNBr~eE*}*4taofK%OL1m`njgJodz=jD|MfGzNMY zZ6H7lZBmMwgq*C|6z=?!(VTcVP`L9Q0uF^c)T6Yxa}{vsF_u2QqFCIC_t^C}V}SKm zj)smPkbjGG(uV8qbETV)I3jqn@mu;Dn=UhOZNI&`7arI9@ZbL1POILjAN8x=^>FpT z!_~VVuHJLoit53KtM?++ef~36F%ktQ^(N7lbLpMwOpo8jSw|es3!2RjQ;@sOir%^K zobSRF4o5-jQ)Hmg+`>hd;=0gV&C>VIz4yRNCmwj|mIvft=DB?Z+7+s^H?uV7Q75mt zdh%M@>V_S87G{9!7MLqhZ=*P|jg!YE?eju!gZ68R9URd5eBdqXR;(!Ce}VgaX|6mA zCqTB@RV2s2BjibpL)e%-rrjVa|?s8>x(FIZXA!6Ih%SK2Y(1LP}H za$%LuoAB6@PUf_cU=lXe4&Aq#F{xeZe>FvZ<0aArpi7VjQ9LMGNos^>BXkAgcD&Pg zQoZm#C!e#@UbnRqe~YMsB!(=VP#>f_8m$pXn3784zV-0-;)U*GuJ+-g`8ya|qiay! z^3pfHL5r8V!_8eu4Vam$luNhny=iAaEc#)mk*e}mY#Fs{2tvT7BRUYzR3iv(hkQ?T za-?agV7sCa9bmwV(S}r8@q>U$-7Mugl)csS=-Ol~aJsbD z65-2TFSsM9`Yw_o3KoKNk=;$|6`+__Bmk$KyGr}C9|Fa0se31CbXo=#q&#B7x)~g% z!Bnb*ZG;Zm%+^kz!F^)KXSgYO42avyZ{~-BL}NlWbnT>3sFMQZb~DqynxIBF`l)$J zn*pfB`eYMyhJGm`2Eu7`^AxFPeiZcR3rXR(DE~&kfj@oADQzvq)~o%2 zDf}NpKK;}^)e(+O@mdv|;^E#pumz*03nAWv*go@Nx|{#-zhOuujp;l^R0vVaaLEV5%VZZY8Ux8 zpQ=_IiGQbV0~OBx&|s*QJH*hFjDB7vRY}hEa-M; zR^C}9V^DN^YXrLKw#4-Ie;uImmB8`xUfM^9#K@mGrP>;Sx-TQ)<67-=l~$XN7#dW( z+$z(l)!zpa1TSud{^Q7(8=eQJ!*b#HJR=uye627EYaF3(*}(f}CzzpeA)WETp;%aMjC+J z8nzFl(Vo6!gSdaE930|4&x*A|gM_$0U`g!|chTOsEjS5hmJ|xQ3Twh$vbJwopldB! zXj?%+Ou}?qQs{bZI_R)@RV3h;EvpUGUbf6Fi-5Zc5-tvR+pTbC>$5igwpxWXHTI1q zNK_p5?LfZV*f#(HmJ0|sGde{9A$`dPgtt=;4unNktQBbFfWDk1wFBYx1G*%7Y~Z)g$SkEASLcK+qsv(&G8M^er3E{SxKiK=*Q1uyycDp!+eF)DCn9 zmdYQfRzCJw%zlt0_>@%#s9{&6C`k2pIhu2@r?T zi9{GR`==r5H>`q~8d3iyL0aMv^`DV1H=^d~_;P{kR~UVw!Ii#c1J{+O2jKb_353^{ zg|FE_5DRm~t`CxwfR>n$iv#a>7qQ)lk|bICay(X{gL>^+y2c zwIn1QKsQ+dG*qpIoYz^UEH!dYCWt~Day}3FawBJ!9xoSUUd0F#4Vm;!AK}*FLF$u# z59Q$c=vG#+RpXNS=r~Jihs@_K)-e>Re=c5uO5bc41he*jS@g}LS-E26`Jj8>t<;dD z9}P+dB|UW#ET-I^0Y2%aW^F?RG(JMY!lBW=Rbf=Ef#aL3@|GGL-;f{_ap3rK$d?-& zv-Nqo;PEFJX`;*ZHmU|fu%6eNDi zAd#Hw8bQW=$lT_R!6|@KaoIk*uB}Rk*1}MhR5Hr z3VUii{>KD~jKkyaAzyAhUL;~H7f}Blqggai)3dJIkE_%yHS0fcW?_wJHK=ZzX}^ zK)cNfv~hjafOVHuI8y`b%?T0|2dsA>Uv6N{+4VHz>eGW@%2huHZE=lo05F~Ks$*O>I-XMatN6Vto9?ME;D<214)WnAGO2EI^d>jI!PwC7rTbm+4a32X22f?eXAQ;0#GE>^5nr;@tk zEi9=W2=80kz;_Zvm%17Sz^^ihYo*k(XrC|7%0a7q47wzrjsQDbh(aB3ZRunYSg;7?T+9JT{5V4=@KM4Medk1C_qP7%Wg*G&%tWuL2 zl@2DbHV&0)$d?hwJuAib1wa6sD63b$$&QuBEsOKJzC ziOhk%B|hcIso?4-4H8)Uvn-lYFDspw6t1FzV~f$PMN;qAmefZRq(P9Rvmq=(NSxwmjzIEWTmE+SA(v^>Jh_V-MeDBs6~gFR2ibc=jchS zJp!m^NLaX9G^T(mRc|!-s#!%YwW{PL$VHs0)JDGC@RhmS%LQsKqfQvq=v_8Ydx&yy zP`i&6XoUv}Y6n?TJE%QHftr#Z31ZP76==QL=!msd%K}=DWTn=Ug4UJ@*a)tG(w1TJ zT@>_8WG*8DKz@f9#{uL#1t79o4I>`4ayT_c{B{Bx;xOWK$d?-od!wrpUd;?h`0x%cY$^ZuTyU}X84V6=Do%K zb9fn7N0g!4->a8aFQY2A@#OM?W&~5<)Wc=Rs?oi5!JuAn<;Be5m(Rp~%g;K*E`HvG ztD0AFL97(zJN+TlruT}H*gMqj6Gj7}Z_O54_h100mj z3EIyuC)N<@YD$%E(S>%#UW2w3#pGFZ-GF>LB2gXTYtSBMpO52S;f05dJBIqYCE$pW z{Q#tIjI|2JmbH?cYFyDbz2l1AlEYPvsbeT@B*?)kxSQRFy@tZvpU^I$OS%MmE#1La z^V$oC7K**o+ql6Hce?dBx1A!p)(y9sYIb#YJM!>C+&ypA)Aw{1T$1HO)IPnLd)UR+ zxU_q9#cTIp)Lq1vv+2uJyEfBsJKdIkLt<~leuMRhbIfZ^H`}$&{El&H!CcWhhZX2H z8qE&7vQnc=Z_B}JFYVy&=1FIW^>gUD5$9Uj09+>Smc2F5tU!bsZ7=D7-0&H1ekfA zyc<;1`{}-G&E1AeciOsJ$Gpa|_SoF~*6m~U+B6`E!#?2AKg~k zQkp1TIf^W$?Imw!MtvLOw`$|6K-@lv1sq+-i8%QN67XxvaRd5oE15W-$=O$_G;lSm zPQY``jFO)H9~60iCg?TiQJB2N-g*e$=v>QVmG#b|x*40h)GO`$geQ%CgZH^*$0XcI9|b!?;$%CH5Ks6h~a#w>@>tt#`d}ZN2l`-MP7D zt25P}MfCg^cbgr|wGWeKun@E$ey)!c#^mI`L%i7NE0ot@2`!qd)*2^DnE6V_YTofO zys8#@=g7w?Tw-4h5k5(USl9B7blldA*IDR2bqXpIu7%ZR1&;g+y){Tyt1S2*MB}s- zAx&bFoFA&a9G_K3{W>x+UANd<1^HO$6$k}!ORZP#gtfrl>AVH#k}*f134GSBp58m- zNVi^R*u&dXK-|vq6ws^FUhwy!IqdbT7kca12bGeV+a~f31vCYv=jaVaur_G{BRbHn zGyNa&qXTPXbXwca+s_}BjD$V*VM^Z{R51y(j0tkPP=nM!ST%3F0Eh|^7V6&=I zYdbEkXYaP%ItzN#1ai$g%sudUvvri660ei!j<(A#?ts@W8!ynL)%H5=lC!^xa+v5i z#8tP}Xgh5WMWIwooz-TACGwnh$A#Y1stEO&e=E3^3f(~OwOR3_b$4b4*TeU<3R$VW z1c9yEG*UqAJ~(k`$~j*3T3*4ex0|@ayw$-kr`??%J?6G*Zli-9wmjCkF6yY1oEPx& z-L`YwtJfX;WuiC>6mlD0v)eB8RZV0PjjTAwYn>|Zz+AnH4`^1nP1_Dlm7F^~P^;<{ zI$fZ24UJ>8oaxpozz>hw?#|8C=Sj^&vbGlxicc|^4nO(CV39UY)QypaYthd;(rk9H z`0%EHeqbYLqai|XH8D7tb0)O1ju~YsUA4EWR++#ob1_yU+G0TBD}CO&&|3>No1s?q zc7m)96}Qo+7WU47G&bwUyvhR8vN!Zzf2xU?MhBCoeivN`ChXM*A&de2wrTl(!b-m_ z{q*x6BHDm>S1$Okq0A=T{MX{GpxAQ;82}23&CaO_&*ZLvV*e<$Z1}cSG0@j5@Ih5| z+mn(k`YToSFH%9VI;SpJM%9II)elNu$l2{7`J(s1O6>@f`3@marPir68$e9`B0dM& z5FuE_o$CPcI!&iuYj|$UX|@WDW<&g_cyk`i8jUjS6eA3f2+?YdF2Jll4K$BpU~ltzp)zr{_k)J7;3Fwp2;nr6#W57;v?YJQUyX|28bDx~|h zpuJ+a!}?oQ!|Jl)Y_r{|&ksA*d90Fx6}QuzgZff?3Ab}GMKMr`{I64)-1?d>ze0*{ z2F;1GnplwH9Q5U}#p&}Ep4*px{bc$_{UUi^&L1mijnB&*~zUp<_5>&tc zJ8!?wMZf=Zar%8}73vpIklD&+-S$xe$=WPB?2*xy;T#_hiq+?x6|g#0cGcsjP|iGa z!UpvCTx7OcB4`>(A>G#=fiB7QS+1-T)VG?@W1)xQ8B0h~qA-iVWCi5c&Sez}1}S=z z`3sXEGe{ANvYYc#_B>E_XaLH_1C+lRt0aE}{}5+hhV`t_EeNW#Wz{;Y)w|QJnr^V~ zt=Yru7y?nmFV)>!vvk+LnNq7dRZBJk_ty2+)Mnk8kk&j>Dmm=sjm zie1=;sd{2@87yK)*vmjin#U@%)h*NZ2^rX3Kt+dJ+5^}qu%+WPtTeRXYji=J5tC?5GX5)MijYsjwf<4H%Hxyso~Sd~piHPXow>LMX4Q z-R%^VnnHQ`a?>R(@F*#YL_m5OQXsXicB(FvOSj=ndj*CF=n5%&s7bB+rS>@QbfHDI zoU+%VH9QivyR(=xn^?|cD)BJCU_Ko#6>gvp1iDzyGo`hKT_sLtY8c7}Z9z5*NOnGoFoIK<<2X$VY$-0N(P?7Su>y{D zoZ>VTUIvIQ)IZ%kL5yq&o(%KLg-HjTIY|Pe=~_pPk&p3vhBrHh^+>I)FMQ9B5Hbn5 z8~UV3tDtLCU{$C5HXmEmDpKYSOaShll;w=FtWiILy{k#YL#&OEeaYJO+JMlCeK-?S zUlV3(uXgfAmYU*BO2kjJ#`^hb+Ef=p_~$`32|^Si^0mCMFiJ(ola@mcMbq;@1llX9 z9rFs-Wi|kg_<6R*C4Cy1x) z1!N~1D!d4S)w;e&A7%(vqvb#0Es#tHb}Vh$YOb8B@Ma~2_8(h4zvzym{1 z5>-uq9V=0_@%VGbcwFKI`g@G(?3gYV=+s8S^xn#nrRAxI<)v}M@&qJk&+Yqfo^*Ea z+{Nrwn%Fbb6WQ!Z!GX$w=^vw^i!BA%yWO_X!MMG>0KLqEqgYkQIa}3nZHla5TB%)T z$G-&zE$@U&Cae)>uiM($Y_*ER1?XznYh)9CquH8uu^PtE5e=F4I>$Y);fzkO!8K8G zp4U81I~5~N?T9nq?9y1`ni8ty%FBzp*hQ!vVWxVqGr&V$z}8kPc_ps+h$tA%BL!F; zni%8gCo|^JG7KsYX;CArhFNzW>R1Qw;TYFE>OeyyNC*{OKk+!XG<1{VThL59 zeEac^a;@atP&rm|wv9NR>vpf)zWpkvxMh4|`*5M!>CCk!$Hv^sG1_=*m)fwB;{j{t zQnNKPMsqKQ=h(KfiHR|pnJeY23telW+z>}i>H!@NGYm|DU|5g0ab)4Sc z{islw(U8_)AATJ6SY!LY8Ep6O!E_jm-EFy~Ps&%$+)5_DZ!|7mZ(#l=WZCimn?w>; zm%GsqNGSEs<~M05?^^<)R*HrHYS?;%?bsehjVoPsi~fW7Mw^P;U|FhFu44aQ&HmlK z&|8g-TzsHE_(Fg134gX?|Cat-x!`GAkzb+S239(1iL}xMJCpujAx*%YUk^mDa8s>a zCUYub6GH^$4ZyG}?32*)>H$U-$kDwF)q~zaVF-hjZignYVsHdBI)40k$?du|20=e| ze3YKY@ZXm4E#qTzt!CNtfSNPyv29mxpPGd+2Cg@-y_8@m6WHW`UGK`uZBl6Pqy*ry zvq6%y25Vn{l7mbkQ2MpUC7l969~!q#VAUN&ZN=oG}v)1 zNsht}>Ujq2xEdpt%btcEZx3U~HXS?OB(UQejt%4d&jkOo#exk~Qy(^9vM(H|dG*Sa z;pi*e`=AT3&zdeExAcRY%%S8B3jx9uuq@%u!%BD4UMXrHNlk5{Z-r8C^j-QBxY^N| z4H`1ttjzZ{v>NY=Ao>`X(|cbf%LFr_J1p>p!(9o7ozYQ;xqHDdPOFw+Ey7G0JOfV( zm24L0ejHj0wP>l-abV@7Oa-?C|MuxFS+0X>N@9gJPb^?6qSJu&c^(V078Xoc_Oz>j zK&Mz}PD2AcCIEOpoUO^viy7^8rudhcrnrd0=I0es>o4o z3ad{vS0kG4SS>bkB3-Q?%EY@@a^AfRf55N}z0;hc1{U;M2W%DbL2zhA?_Am7D6{c; zW>6AtpQ6#BcS_{mZd4UNz)9rZ%A5Tr*6jGCJ@R#}G-<|K=$$q@qd6=rp_|dJ7xpRZ%uXuYR@rw^ z>oojXVb$d}C+5#;t*W#WJ>Au)?1!;N0E+)AkSBnD<3NKLkH%ZYv@asBKKSE@8I4E* zB!A5LVFC%g*2^-1#DAOK(94KtvHoX*Nm9>9msoY{?~SI|yCs0;Z&|nElj=a@e-MeI zP9eqs%|9Z!|7-ZiiZ20SL-^81*9d%xNVAE%NVAPtX{(G8Zf!O&3tD0`^V#QwWhS2b zB!9xpY_<_o+KFWwgG%VkW+emQA0qvgk(kWukeT4a)G0)DTI0!T8j1MzS z>P0N2=hR_>hKKn0h%>>0i}AHf7)-Q7MN%6HD$-0=rS7u2|vHS4bwmEW4D1#enHD!)B9 zl`*RcB8TR;59R5hpt0c#Om9Qz5iwOpqegEz=XsApR6jdT)wS@8L)b?VcD8u&gk_C}!< z)A2rX&T@)M!RDvZxuZp}Y)5p1XGJC{X{9XmMLOtfa#Yx!2ls6M1KMYQ z)wv)rciIl6R0DPmrHD0v7XAMZ#rYq_Kar=`#rg1+K_Suw^m)1?um4|=Eq?aWe*qS? z{%-seD$jo*y=JE-Y1PY)PWt=t)Z4%)8zP&3r%Wu5zK6;1ng#zZO7T>*iu5pX*i!5y zJ`V!-12OQr)BfE^85Rotc;!oOs_~s=ocV)^1hLg;otKVJ9xOr;8J!p&af(~^-*gFC`pB5|F_oC?=N6^x43B~>C|UJ93ldF#yNAHZyqgCOO&wi$ch!%|HS_m zVG>&_3#E}2p1|Hh!oVl6Ae9e=9P|$zEY>h(b=>aoA!i31IGb>xCjsPh z725@Xgw$rcvyrZ9?2xwSmaE*uUd>>&2Ak*h?u?kjPN5bl;rX?I?-{4G7lIidQp{NN zDeW^^8YZW-Pg14;N3%?6e@;2GOlg0Wx_u{aO8Y;l+hj~>cY>K;LS}u)Tc$K3vpG{3 z2N?NMC13?r@cW{5NtK8xO$wKUweZAbRwt%32@gsL0At~tMgJeskk~2Be-K|;6947& zblwL1^NQfAYhiss75)nOh%2=?K^ps(b3dxGA5&Y!OR(C)(5v`G9ogY7;nxF%x)I2 zf-1N}v@WR`_liA_fA=_F1@BjR)vJLDNT z*WiGHaMyv|52x$pMQNI8u%rrEj0vfr7uPo>eS|nng9t_mEuli2k5Ym`C#ByA3Xzl2 zeY!~bAHw&XlhV0-QqtNUF)is`lM~Y)q0at^={`vPuZq?tPE0$riAh@*$+%gy1{ndF zZx#7L1ok={zVYVTfz@unQWUGc7*ILm#Bdm${(|cCqE8Ip%F-}7F?^FU1!$CIV)#$W znPp=5LF)FMyourasoP{s4AWrde;~6yz$_C3k=evs`@}#Md`+}2sS+_UNa4yfG00)4 zgaDvnP7G(BmpCy{5jI^CM`YtD3mzh|(C#u(sR1>atc%(|dkz?Ud$VwxcphKYzOXo=P( zRU*Jw%8?YpFoc@b2@{bVABx`?yy2Wh|7~bUf>usRIQTwFPYit7)5!$i{R4pS{zU;_ zl+p*jUnVxv*nq3Yehqy8g5D1bzJC@JBEi?!#l`<)d>;&a_eX&*^+|&7xAEK$zCHx_ zPekJq!MC_y3l4+>2RNM$_da&49e7Oc`8WqwY>Ox~AY}Rs3Z(x{v__7P)F53)SH7dV zvgjba_I#Tlm;+awV_8j^;z4>f?N^&S)fZBpXq4vZ6|tV4x=n+?G_N%or!Pv~8Uv>r zVBH1Ctd9u`P7_g0_%rDrww_Q0D@E&)DiJs>MM=tG7;Vk!1WwDLq*#t|9?n_xH=!X3 zI88}7PVc2BhSTinB;xed2Hl#$Cw-|ta zFIPaLD=5z4lqt0w;bZHFMm5Dek`dX$?b43AcyRHVqUubsfHXWZ*p5BTh9~Zm32koo zHbz&)NAiZ)&uZY-gfL3!3Zq=g{ckTQr1zdv?wqM5SIR7CjhHH_Covy_w^FWVOMJakaw$6@P4cn!z`i?p-*Uk@LRS0SMs<0eT&t0_e5;l#iyX{_^sOh>HKZ~_~327 zAQH@2Pm19?UU29#40|jQ`qckHb?&e8ckVA)=lruY_sw3+^)CNpujL{X(RVq{ncPo| z*HTsYyR0TKmtEsORCoT%UQyAkDB)@sUU_)l*ENR7@t>SrTvkmPLz(vlDyC!r-g(hE|PB8iR~s9g_XxoWydUQO6(ovZ#_GZ;bo0lXN&y~?i#~=Te2m^uuQ!k5aDEdS z-%%Dky6L#(aXnST5b&^lbplEFV(PD8-<0}6vhyjQ4e0p8Wx{)0K0+z zT9mC@4G5@9@*k?7KbxnYf&qr}f4J5)EDVRNR{T=+{z{&D-;YeT zrGQRf|7}Q|;js6IkUSrKPje2+ZqlRbU&#%o~Ob;L#Cx7Ds5Qh zBx>C8+3)1(;~+#`c|jOf;)gdWJ8#7a8qA(QczhA{sd@UCf~dGmn+!uV?Z_dby-_1& zI8XgoAk$I_?q-yoPjFXa*F)@l9MZ7hhCDqK6gJMw(%aBH7ja%TBF(-&SRQys=#8N1Y zZ{y(HXJXg$G#SBb?2RHaU{06QFCibU!>A*+!PgU~xA z@{LRaAv7PKi9E~+;REmVIwTSHnVFGDO6eN@OEv73Mq#P&?m^bD_@sl(%nzaLo4V{wg0PhTw6>n`dw<@&eKIfYGZ1lw;>>jm|7yz+`Kq|s<>v> zkvyBsB(N;?Y%;=a>^O6SFg0wcyjz|Fqz(HD!ne*d`v=baMa}`j^3Dz2fi=6PTeC0P z7$$Q(ZjwqVu>S&Nidgm1>k!MV_@o?}HXx2J;_xV%myCk!jS_n9X4a_qq=Vr8ILc1O z{eUc?@Faayi4f$7G#A@=tw?3&Ocu}c66lmsJn2YSAfEgH5WmhYt$12DTf9t?AjH#U zJ?v9W==GwA=Sz%&;$@D;j1bS`tWohv2NBQvQFgL;24o3|XCGA}#4{qz#k(!MR^n;q zOcu}k66lmxJP(|W=$qyi7*udL=1{CR<^n*GVYR~ruubuJBL3t{gEQHa+?Y(E19%(} z5lw_g{G=N;3Yu$y<4!lb-2N;t83$x{aG5r)^x)xVnd=1)FGAr3aOGoxy*gMM@d@$i z5IAc$Rf&rU(AeP05S4J8k`0ZHUN^*U#HEWP*~Mut?iy<0#sVx6s1UwOQKMPHr-cQA zf;;2REX=4Vw1#P;@FFx#q@@b^MQB6K(dN(yFCTxd9UUDiIkxXce4~(=fyJ~2N^6jtU_L8B|>#xHn_?87t?a&qM)JT*tk09it zNh1!z?9$aHHSvN4;>BfjAQcY9v-?Gmk@X!nqf>sJ0S$y9r|wR(2rsyzjIK(Mx1L1O zujReC3!1h0V(OqjQXAparEarO>TY?yjEn#1E)zyN+VBBA=q5ha{z?wXx$%JD;y|F81&Q;^@P zl3DlC|2a>s|G0$I{g({Xh1i8=y*{annDzS89JmN`N~Q^eqCSlvm@{HOoeC2M3}y%{ zeH{#DOEGJpbj%wloO&!PV$av2RWnzhIrNYlG4XbppCC#vEdh(}lZC&k{xj+|h7)#8m^EHnHM1ZIYI+HSD)G zQQelQkGm-KM*n6b6QKKA77jme9~8~aqU~ZtA?9yHV{98c#2XPalX$bpVzi!%k;CGa zNgKZYPIawiP%V`>H7QeiaWe0<=yT`b3a07o00#E?G`uEta|h7BWVOjE*eeNua86!_TD+cNtuQo&9!X5!BdKNmY`r(t&E9Op+rAwi3)>*ss=~KH) zfFJ5ndpcr3MQ&Yx8V?)w~Paf>B zXA;MTq;sjl*p+6>aJ&;bMelU(%NCAk$-{rqcYbE*DNn@{J2S+dPU4xNYv{}ezff)} zxX~GgoD_$KM&l0+MHILgr-l}kBXC3w#kN;x_A%U<1v?2l3lwuiNO&sN8aohNSa^@@ zz-j&RNLGH_QI);_5peL6p)B_dtu%+lH6bdvYxYsK=L z0&ZnKzw}&Wg?n$BBO3ecwb+hm@LJLy(Ku|cDC-doUU@t^8%H#*FZ6 zHNrk%?~;u}?@iC4-?Ge5c-nb`ra3@UT$QtK` zbwl`T_Ac3Y^VRgc`4@XFHs0`BblwF1rlHHXe`v2FD{pwU1M%kUuwD~2c+QYXG}0~do4D8@me%~ozB-mvRm?}>e4&xm1X4_Z$L(# zB_|h0b=8W=e-7dJk{{K*#JZ-9IjgH$*>_g=GPHUz&gy;wT=Usk-9N-ra8@^VUEY+74_lo^#NdI5eeVNi9ZEiX~sq$`b!; zl!G7BjqK`Y#a15oc%pzaWjOo5RgB%j+op{&oL?=IQK;*|RjDYw>~UbV+-z}QtYH}w z9SPh)(dN8BSeKBY9ftlA&c-TR-(l zU4%PXM4IAFX@{8_EM_tBIxD%%kPpMt5{M>UYc6Ez;!igoI6c;*njKEbzLg3s-mk4m~PxGX&ul0loTv(s<_0`;*e{_9)&7qU5ki0$tDAFn< zy?gipS=^oqzts`Av>tK0^$w0>_aByp1t>Twiz781*njBk%}cyia}?kBd6_OOMts3; zJ5Jk>3x?rmPJ!oNW%Phf84jgDuhZkXvoWn1Yfj$#?ygQp}%~rv=YICYxW|AXL5-Wv8XG zxuEHjy@)w8BF&D_q21Be-1P2xU*eg0%a(2^UN}M*V zyR8|z!34)OU)+VSJqt|8LQz}5#JbmgAd^H1Fxk%}st-))^`d~utWi*^f#$PD#U~v^ z%$q1XSe6PiKcjd@z|h9#u(n=??^1d~45ivW{|G}}T) z%u|mw1tMmd$sqE=1PZ1Gkpt3E!YNKSn{`b$VXg)YN^WP-=m{stnH1XqvvXbOCBYUI z9h4?}J{%KRi1CM+BuaqEXBa*Dz=U3>2b0xA0XcW_AF5f88AZio zgg$SxX2mBR1Wvw=vXkM26DB2`d@oNQ1?jDDa(1AbgdAAR*NWQfpB`phJP9>wpMgwE zrK6mMveQ!Agq1!ijDVGhG~4oxJ4HmZ%w$;kWP-e=h83X7<1oJ5jhUoQK+knd>iVFE zUZ;m15m8RSVqbi@yNtq84Tt@#Vev@^0iU~3cJgrGq)7=r%{+Y+#J7S^s`zpb=BfRG zC8Y2x@>4i2zTBJh^f3*EjYx7rijB7lm)?`79q(R3TK{rhTF1thdo)iM1*wfKJ9--e zl8D(OBF&=5mow`~o=u*Uz_Qe{$s3isAzX7ht;kTN;`|cRSa))N7CJJ{&#R3%G$?tV;bciU&pa(p9|hs9bWJtSY|c}A5t)`su^r7%;kbEb zXP!Q$q3}7uG9v7x+xK2c^!_|;dEpY$`$c)_9Xr?5^K?;=+n8(UZ3svr=9-8!{!-#C zHt;y&B90C)SFzS?Nb-dA%><+hPe}IiD0a(Jl1;fX=mvSlnMbNk&nywUWd%#RD6w1K zok=uA?3Q;?rX(l6Aa=`v(@tBlf`@NOcZ*8S=qQB(S*pavE9q*A3f>;+3|lG`mh~!_ zLV;Xs({^rTOZ;^-Q7*c%KES2I?V3Fg%Fq!6+(DSX26_5crr?A=MdTVmly|S?;q*8h zeaQ)E&TEySO4aI!2i;guGh#p& z{pTa%g1jE6w=QUqREGM(0(~OW@DX8weh--<{5|Ql4y}IYEUhumP9}+LWpZ#E1(9De zDz)o#ZL|oe7Ia|8@FImXGW%{vR-8YO&hD3^IUi&6w6>hxdGJwA_lE)oyPGyC$k?Tek2;`;LCw&y$VpM7sEIA5-4jhOd1v!KS8g#_%GbUM5 zkCq{fmJvp3Yp0?|%cnMN(sZ3P0|x32R|ldnVVU)v0Q!4RsD2rv_8fy}a^SAlIH}EG z^-Q8K#%`4fRG(#wUdNB!%aXJvk{#LFXD29~NUL??$Bc@tqAtg8(1|z1kKg5!ST#|a zR82kfhcWakj8j&6XhT1~Xn*rc*!D*74=uZ27FPOxLuf8Gs~2UXVxyGJOV#u}9TnkRE zQ;16sm)10a)-H_>v=%C6F~X~D;YYVaJ5RwtX9h)hP=Qc*vrDXWW<)Idp%a(&zLGg?-U3AEg)Xz zxMTl}tTxCof^z)>OCIjWVn;k#|IF|V7zSQzkeao~nlebuMfO^35j1!$S_BPi#FHU= zMOmX~@XF&+I+9_@$wl-GH4Oc~C!t#M=o#lnKvqo54Ar*2m>GY9wk}4@j6L9$&thi0 z2v0%G3Kw9+8&ONA!&#?`-?=*E2^s!<73>omu8o?(+;kmgpVPNj`Z$Gt2yi7 z78`gYl8tls&Ryix%$fmXr`h|k??J>5CccGd56arV7BM*8DX9#2%P~PzT?7U zpfTed_2%1!!jQB84dGcC9qE_0Mj8_HUML7bXc7}11EF_HZF3G>{$Qz$a5w@Nr&&2~O6k znEm86$%Qi#y^5ua54+L3X%U>hBhQUw2oQN!7GaTYb$2i!=`%jkYkknz=g0&X?z&N! z6$s=kSz`^0PpZ$7{%?Xm8N$dkP4j@ zweJ0S`k02ohO@Sq3XQjFD*srXc6@XRY5lu-X&viU_h)&!C`fI%)zRA!kVGhz5oylv zzam`se=~C=BmLe42FS^fBfY&m@_&1I^2{ME@3d@7X?dSbQL3=K%ay8B$gEBF#bqbb z_Mldg5terbrWVUPedm_T}mbj+ev88KzWYPd==g>2!Dfar(P%y zz91le=B1-b)Re+SI3=z{)Ab)u5L6Nd-y#JT1e6^shq9TV~t z5V}R^o$Af~`FnGM(>TqoBd@d9V%zWFwdngDbn!J`m*ZYO_Cs~&&Gw42?sxFYDe#c&mjXk`UwCwpqdqr80SZLmR^` zMAnpBz{B=hYz*VI=nS)6dU3VAqO1(#m1ksFa&oZ+tkg4qCrR{@Zvl%76yo%*-svsx zNTpd`sNPPd!pSqyrj5R8W#4A-2wJ@uo5A;iYkV{K2%dt?;8-4M#?c7uG2ErIBvl|FO)T5%4*hC3- zK6>3d+c*eKcWSGxbg_qym_F=juHHqU|67oRj{nr%4z`i_aiCfQ8L?W!N$UdL&n;JE zEdDx=3Pk#09qv|bI&951QoTyRoMozAG5&$9jQ8)S9Q+~%MbM?)DgUV~jg&j(|AR6O zN!X%kV6dI?Q^CCdzD$G=Tj0NhOc7h)^jcrO4`kkd)F>=$3o!6Qn)g4(8Wx{aH}7ZN z1pj@Mt(*4=wfi^0IcZXw_x~bK9|iFTH}C&Lp4$HonQW_cox=W~A#sKcly4(>P724F z_g7sS7Rh+gpvhmvUr0k?!;mjlcg9-{C z{gi8H{grCstWj*L5$dxh#wQ&Fg_mC(ODXR*19yN_G5yW|9^m(C=h@?-OWxy#xaN5u@06Db=Q&UuR8>PdbP| ze-vdW3v@uFkU;m*C_QNW3mQhmQ9Pag#vtdnP|z*nU_wQpWR3XkWfaGd&nOP)Ta zp|Dca^}QzJtr~E5I(Cmlo``Vh)ao(KXWh18)w8bwHUM4HU%kXc5u1TQ2|EVVjxRbXT~0BmF4JsGri0^2bw@D*PzrK1L=#O1VX+_821kD49*w;zvo}xgX{3 z%kjkgDB06V^rO5|903&PN?CA#6h4&0(QynS3R?{S$=kU9WJKvjHi?HFCu@yzy<737 za2W~R95yAowu4{lA)HA*uwEVR?42J`vNVN7ep3VJ2so#sRv150`awhEO#C}%;=>7S-{2tDTG(L|Xwbx>E@Zq&+4nAu__qd2(szaZ# zSC!SphgTmzk46e-a&qC~qmak%P`j7h#pj|}D36Ktpjz1H-g5{oUJUo1@1Pu?#d`QI zo&xutNaUBUJr~FJBka~AsR~VJiU^!0?!(r7UZ>k?v>l4n1MdnuZ-a}YT z?3NwnKU6>KdHN|BU^UXMVOvnLTJcNO`#_$0Uy^~oeiex`H~_s2$@9_oH0Pk~COxV? zK9Z-8DQN5OIuDZ0PqwYxqgD9sJQcnRnQV&%U1+lsl^U9ps3U>M((TKNsK1@3kAo2P zkMdObxyKh#zmcbpDTvxzCwz%E2RF}ZZxmDiJx~4rwuChPF3Qd&xc<%y)Y#Nx(4IXM zo}J=n3C)BnNNntJ(c92O7hyn+NON`GXvMpjdDW4k(mNz%G{B}->;KGtXc6%2N^IwgR+wc3@1!@ z4RBhVm&=Fq^ih!B3QOj7&_Wu_*GdRJo~I>`E+Mr)nU~tJelCBRr;CA{hw!gY%p>qG zBF%LJj(^22v+!ixdszan!nkKIk2YE-l2r@2(Mr~olpC#=u%yZ6pS8lKDVKi1Z$+Yw z#V{1bg971)xUlVf%9LdIQ3w8J^nFfebQBkz>Lyk?(C55#eDYv%e8d@@7#?woTk)_3 z52aG+(13>le#`1i7Fg;MwQu?OEB^c2rYJyi@etG3G|sk@hg{h%2Cn7kZ`0@1?jBZT=s?@`?_hPYU7xr2)19y$!F3PYU3p?3w@nU&u zJPWw-Gd_WWlV62Q>g$2~(T~ILl8g_Ou zJ_7f(H;P-I3kaRr>E%<%YMXiuzk=Uq$(O|GhC` zU<*Jrf~ykCKMT7nNg`uy_I?3mkl?!! zX(@cALs9ddxsETR+K79@j~r+^kBo%_2O6(lcU*+Uai*J1c-J)GH$%rV1J9*Fi%~=N zl~xHioDs;0$$y`aEp+=qkvSA6=!%OLQRezSG1BAF@Pmw(QnCabA46h?iQ9+%rBwAd=>K^dSbro z>?z$UMo^p->iab1SuBMwd|;tiz39+F^p>_#(2VRBQg$UW-kw;k9UL4UaA>_C?H4v;WUtQC6jfS00b1hMM}v zoFXC4T@X3Mqj-0&nNo7E|AXS+*_*5j0GnD`K-QG}d%C?A8~=DMY5BLwUQt&5@yZ9{ zA9uVVERN#YT7lG(Rl#q?p`G?F**J84dJetNUW<)GycUf^D|uI8Y`~N1$dtW`ti0jX zE&^}d6Faz@R55Hj;kazg9Kg1w5Y zyy4Xj#GA9j+Dg>mIYTCq98xb7i{5YVnT+H0|~h}WXAC}G|G8GBV(S;ea# zh*gVi`g+XXLmSKfDm}}-W3R==GG2?uGOOw92lk4xGK^O~5W_a~>G@H^tDsWJ0j9rF zL+rxMxpj#1ku{|bak;$~8^3rh8oy5Gs~g!Z`BQaitG%+UJmU?>$g||+!nmc@NdEsO z{dLKWTjv;S(->=(YFD2%>mz9AVpy~80iU=vYZ_01HA`EMO7qnQqs?J^m82W2ARiS= z0Ep$?R(sXuH`b2fx@7ooRBG&aT^%NziZ|!spGMhp$kS2XoSZVX5<%Z8g1R|_Ja}Mz zdK@f}LEahBt&m;p@?EpIduW#3NKN6fIc1rvDC{1db8zC&lnkK;wepz>$u-4h-k_r2 z)p*)lO$AF72q{D_H}a|dOaDSRk}%oTdEh^Ua{X7+Kd-?*JhFU;o;Lc_2LH8qrd>fa z|1@+(@!4!){IC~%_D@jT_-VRGYJOH4Qi+tzI$HMHbQ&qr_ZGfMO=diD>-Bj^bF0P7 zOv8n_QRr7)uMI;Hf|zTGh9l$Om7E*u?WR*~c*n_fSN04ySSyE*s$7a?`$1(FB;Y1j|9PCsLOb>)#S9WTwT^U_D)!s#w3o2Pxm5 zrIpg3?!A<0NX|zz#}5`beOK5p#cvs>L#-@4BlE!X<{-J`JvRcA`dr;D^TW-NR*|9~ zIxcD2x1`r>xKeGYXvmYfPwFB(nIqB^Z%RAN6t~P` zl4iJ#{-dCSjc5dibmR2LSi1P*O9xJ0wPJ+{0318mv5Y8RR)6xP#TuM-VVN7AWc!X& zz#eO<@FFy=!qZY8v8#%x1w+lzCIS<%^6}@| z(b1ujvkS9!h3mQ4QzE^B1uZDBpao^@!eS#6u?x`QcE@uuqaQ&5$hV&&84QhHe;q#Q zP3;hMh%+c*9-$6IlSZ6rP_TBysficRK5Dr3q>0@+xJi?mP0S<-NEInh6!!Zn#fHZaOdVI*aLJQq7V7r@|YXc18OvDDB9;vx6vvh4R}&(j}*||J{d)NDwE)d z(VLW}I!o4es_rqYE?6(QAlAG}0cc6pQbC-JMs;F^ADZ_1HwMJS*Z)C{=Ib({po|^B zP>^(AoQP3nO&VnlF!kMG6qO2`_p)ZiCmjTw??lC?}$&=tzfG zqbxr|JNk7!bz(6QPqlbJ*i!{zbry|%NFpfmgaW{L*hyAMu1)}ov2giWuj<6X*d0MoWFcEZs`7~qDiO^Ae<0#*S@rh6Q@~lt@;e-7| z0qntVMU2;>Yx?pd9t}yW6?pz?30q-2r`LK}c06AN5=i37yXLbrDlgQYCBFUnweoI!_Bev4m9qYz8Wu z3z|OJiJFAA7EWi(t+JVFq{2{74!OtvNH zAYif)Wha9PCre5&8OhT}LHLwl5_k?MFwtEIcI0WndS z#+m{Vv&>`=`R-zY$N}k1!Q)tHx(SbCK{nRg*+v231o@F-jXgWpglAP@+6F#MG!>C}MOnNt6JSIVMqkU_!6cgNZdh#luEXso><*tXc6%2Z56xN7>16 z!U>ZSPJS*=9|h^HaAF3c5bQT!DJ z$*?k;K*7|y2~b7b>^o9#x>)uE`+e$~ExPTTU$b>bZKhE>QiD+uo9KL#5X+w9)mpjA zOkBamim;J&s<7RWMUL713Nv1Zn@J-F)_uJut6-wHmdF4-E& zQ~PDev{c&SaDEEMg&(>;Pao4zSY4+@<5^0v@m5Lm-aPHty@a&hmzUPD!H24Ox+q9( zY}wIUeOv%(*07K)nngV#&CQDgsETW59m%uFV+jD1dN%n9<&)?X+nrYAR5C<~rmI7I zI@!rRT4?8pA8i_O%3V0QG&;~=X-|sz9bx{!baJED@Leo_YopI=maEfVYo@@IUxfF; zosq{p1W?}x4+Bw90=rSZwM@#a*Rtkj`*Ua`ulm>^W7z+`G4o7dF(WE{#Y0R;zy&VGYOI#(+s^0fl0(P z6OrcNQUa~wrCD?Gx@SabZk{tGe*kT7xJ8i{^lW?~|L5l<|;twa?qHuE%M2`msh;@7|6$-&p zvdAtX$Wyd5b16*(YK2?z;blWQ#S!gHH8hL@S;qL`15{7fNQ)p&iJcqS!Y_%4>K>I7 zbscr2zi+8AS?47U~XWS@cy`xNCH!HV01H;_wCz2sRk=e5dEnrd~gjo8PY zgG^ijsy=AOba+U<=+!oDVp6hclT+N3MB`0tyCQG6Y^H1l0_x9@JR@FJ(GLYrTo*J* z&K!L=fYmb%9}zCGhD;H@o%CAAQonPS3W3pkb}~t1E8&^df}>OrNxSa`5p50dV@9R+ zxuA^}0e^xH>=*G?u+96U&6my_5IdbgH7)Ctc=#&8XDMIbX_W_MGI*%c78w=)u28yhWVuS5{m#Syan6Nn**y;G)52Iiir(@Ktm zGbH)6QSg5<36U5DUt%omTN2ajlRgT*ZB%L%EIA5-4jhOd1v!KSUR)Hyh5XVq5}Ra6 zJz9n^TK1Y~4Jt$3;p#vXCM>hQ6F`6O3DqxS)ShGTOb*=j8YeZu zI)6Mo-mFsMi?MqSGDT=j^g4d*UY4Xak?hFUK085gLRzg8mm3w^J0WJVpc8M1AHT~d zv1+0;shWD|4`b-BXPmOqLmT?>Mf;l(uG$~LKeX(ASy<`2Pr#>bCxx<6$nS&6SR_~B zw6x8%3Xg9-E!gkj3wC+_E>q-ZdAL}uv?C%vvr|Bpm}&H#$4v9V6&^ESb}lsRhJ8<90-#Ef6E*J6v9!E4bX zW>}-9{kpxPtkE)fs>-@8|Fm^Va8hYtsbt z{ffO78~=DMY5DgL_KLFdk5@hr{|1hlwt6D0LWVUL-^QU8$eMD5ooBDb#vxvd#-W&~ zX^y>$ti0jXE&^``h?=(D-X$Avwx#FIt@c`Myy3Ozya{}tLqS6Bv{#XpH@w<`c(Yhh z(;D`k*;wSKXVLxkT5K%hwP-9#h?@2~dsSIk#j78PRf`=p?OpaB+F16p=~?zcdo4DW z@me&NS)-=?j=iF+4C9p##IQwRFy zwO5vvXS@L!d6t}9L`_qRB>$&K|5@^=Y3G{j)0nVns$qR$(_VsxE=Jh2i?_gTz%Bu} z6i-3eG<``br4IHo20+&FGYFKMX5>hGNb_ zr#%jq$)Ipi^b00aWrM!L2!9z89Ro=>DuV*;t4NL^B+{GM1LiwJhbuICV}r|4;l^-CN* zt&ydbGJ4uk$}}YBC0dO>p`xcfoQWpF_4y%Wir6cn*E-hQLk?J@r@g}{N}*PSK*@8$ zZ)44hPpUgVXN{irPL!=XKhtF0A3co|ChYudjh^-!dHN~HZ*_pS8VNt0r`As(lWjLh zr>_5DB+d{$?XyUpmb!2+2nFcrle!2W*@!fGqNka~B+YOe{Z}Lqjb=iMp7t`9?#bwB zPexB;cLzC7Mo(M%=xIO1nA4}L_=$tIn#I)jeLhf4M?ZS4mo>oD_mr*SqU_C*Au^C@ zsla(7%1#F7fG{C&?xRZtIQOS{GJ2XdDkR*=o{XNR1&;gCjhon(dNy9~dqn375% zIR&Gq-IfVB1)kr^fV0nKm0qXEb4&EJ!$v_?%FBh!A=aq)q=Ts1(FJjJ&NV90s)6BAyLFJ|d zN~T@q^iG}VX}_CEq6C=y7NbKSn9%D*0h2Ep1;rx-X{=J|&n09s~+Z^yq0n$kT%FFCmpzT$!HACYbceUIds#q!~DRnptKth>7yXM6;8}BX<~oJe66V6&eM{)C8TyY1GP<9>65|;Scyn8 zaP%~@%w$+8B~UOmtUNxWr@c3m)CoQ2-Hc{^dJMfz4?PLd(|*S&EFMubUFNq~!{U<; z0zQwT>}2raq)7=rU&_-*L3}ItqzZ5IcX?|6#u8Ha@AFeQF1*c(ZDEm&7Y$8{(oool zlP1vJc&osDL!Ne=jZ8~rv^^hX=aS~wur|Yax+q9(Y}wJ<5RgR79ua94J$jm1NAhg) zu7u%{dNz4us_1ESYIw zh2!R#U(VCVG!#BZg;8UJU9Q#o-m78uTY1{@ktL+}$MVuUcCPu;JY5vzHs%_78v>Gu zxh5iwzjPtgoFX>xcw9_Gga}~!5KzBJ^4uTiDn&%K(M-cf#0J@fOcAC?daXn2Nr|X-y-}%s{EN6C zK?fEsqMF%vJF-$lHR1705!J3>^t85|ZNgv5>Asv1)uxEt{gRd`qFN;r%Y@9iyzi!? z6}>*`GIz|V)XF&-ODgEVAQ9Ef?xq$qil}yokd`_G)fO13t(}S#& zLiNiSwHYI-{b?rA7i0H-GlA+GyYxDK>@HzMwQm{~TSZ-t-=Gtxctkams;P%QMO6C( z#wja3w4ongbbmxOP3e24AivGxPpfr`sP^>a2FX=8Ep0Qc!sDAy3uX~fO`gfi6j4o{ zI#w&~h=^+JWRNAI8hz&x)iz&^r&pYdf7sJWjHp(m5MhXoRvdPUk>S$Bts}z=y-Om$ zmqY=J5lihi)v0f4QroM0WyCX|Vh1F4@LTE4JL|=3al!G9@n9jkV`9XaL&)$(r!CUV zx+kU(60y>rnw#%`bwa$77ZUDZcd(2g6nSuy*bcg0Xhe&xzJr?phM6g|=zl;D2DLUI z4AvBY#^ARyZ{7s9>-ZQRmMO!oJvS(%_tsN1>>8N4AR--vVy?aCal>K3;83)$^CMa> z(*1!h2xo`WNwc^4T8YKMfTNk?wB3cQDWgc$?6ufpbnsfV7#-Fln8)oEWsT3lE02eE zBTm~LoFXC4EpeQ-*V{X6i?Pz=k9@AFq5M{tX9u;~Lx4>)Uw4 zYteZVcv*+yv~9Fkk(D>R+JSg;rmhb~O;u|}0y#$ozt!Y4X781aJ)4m=<>a)(UW<)A zycUf;*2(EMdqr89#48_&NgMjq)F@7!si%_c3cpl5tJphf2p(o>6~kuf@hFUW>-4grJpwZ?7sVt9bPTv1+k{R<7D^o&0Sq`(b*P zZLrs3V;QeSW0^H*>af6>q=xzsdL<7uf@hMUW>*r8KqJ< zk;U(jPnSrTcSVUG4uA+8z+uhSMFbJaq;sCOPfY2}u-M71M zPgPBIRZ+{#G~>ubQBj+yp*612B*w&NOcXVVF($_6iW+@ceEM8N;=aVFiFt|7{J+1m z+;i@^_nv$1t*&w8KYXC6I(3%cc7DIJ{Lb%}muDP+oIJ~}E`nC7Bc|F-v^pPn(8~3Z zgTR!Cl?tj@#LA}w%9V&%xer{bv51u~#HTP~Wq6b)!&ROTfj1hfQc?_O-CM=h1_F8e zaVlivUPrL;kd=w_eKf^)6ngs6gp!)_f1WC22@wWa$V$O_3R$UGKj4s+f0GAF>FxR{ zYBVIR5?T63RmjTkQ_2@`#2Vhve&8oJd;gFSZqv}*UT{u^bde!k@ zeAGjx%~oZ5b+k4*vBTSXIAkT34d&FzUXV;?C<@mF$sriB@*TMpr_krW&*%};=Tz*j z&n+P2uA;RC{s$RQ=~esD<{w7i+1i|wCAyJG4O#hxA~*`dTQ@N(q+CYG%I_3` z;F|-a^7nF3+1${?WG}&HCe&H6kdfaBQhV#qQe4nrP^M7+s|+ z9c{7m`wXn~s{QDvKSbZz`iT=Js-LWo!Rt>8cA)o4D%gR-ng3%WB8#HQGT3F-_>*RHFWh`iKf87A;gX zD?KBsebV)Sw$56EMhWXIDt6aomQC9^Mn`s_#5(IN22^_0e)QNA(08^T<7CO9$DURM zPeJ_RdhE&~qh3Bh>Rz3Lx~3kB$y|aSOQ>`E;AW(nTjsdg`snBkDi_j6d-Lm~I|ikX zGM%FD%_W>-WwnoyEw-|v;uX6^cwV?t&ccaa_FN!EP|&X zesO*D!6Kvn`2eZ=S2?I_>Z6#5Hg$Q(CYAMMScva>!q^wJpoG?&x~ zMe`#@kC>vNVs}NuGZ%<;nVH65?bc{l>H0%cHEYmlP_7~C(08_~;e?5*n$+{^CltX^ zklw0h%zOoc#%8ga5u1uYvSEPKK0gPwP1O^V!UWZmP^a%S2459 zNu5wV0h79z>Y-wH)svCN;Q2;pPReH=11!C2KkJ+W=sR2aaMCy`pVt(@Q4rs%e4N5d z|9+9t-#S1Fzr8qx)51&tRS_IrC~PDw5Zc`+Rm%NyMd0|%0BQZVMQNQHTKd~XP!yy# z+&HN;qDT^~M?#$yPh((?k!?+8GFaxkNPRS>F?j67QMRV*X6h~ow=#V=r;_I!nYKs zaGIT|6~WPk!m)G(!qUXbm95!V1eU!6r1$=!^iH)k4;DdDklU~|R2oqv3AQGo&Mzm8 zfeA>qL0X@|*Qi0V_eW_AzMTDtK?YEy*HVrF6hFbLu1Fe#&lvnnSJGr;L>hyKsZrL$ zt}sgc;WP$^(-;I@e&1O+AbmCDyJ{6wzB)3({FFyVyz+?OZu`vBq;n9`7<`N5IUZcz zA&tTJb4?!+koP-il(0slVqLW!lr#pvFb1{Hf04!@L}10z7?`-*H7lht5U*f2K*@fC z(bEb!dnxt^r@N9ke`JILiZ1vxL34=R<(+O7jeMr3s7d1}0UVr~Y}E`Y&gkveHAF`srQA z^BHKXzpsiFtnC(^w(XS9;7i#nMY$cPJ#Mb;cslsBbG`#^>Ht6nY>{g>d!tFjp+X}W znM!TB6Y?3buo0Gg2J}16XYgHch37M1pAKR^1D1}UH9Li6GMxP#vKpM5p4A}iW+ieP z{Ei9{7WP{x!vWG7h*W!&;h^L14yLNzpp9Jt-sH-p1sHRHOA(#|8F* z@`h>TgQsg`BX_}LI7K3y8*uJ|8|(<%_;(G5)+Kkr4*MuJ{_#;<`M1kHP+tD=!TaK0 zn7e?#b1c^)xk8Q+d2FPj4ZkZDd!HR88;1_KbLcnhqu4maN6|QhsQBWJED|68E%qVu z@`ew)0=(%XcftGZDA{=PK6l=H+&+qpH++bShvXdlJKC_akDsH3q0ml(0n3Ykmn!{lWWAG$9lJtn?WNMhCc zNHvL_QL6BqwBu=G+AZ!(o41c*V;UbtW14kM*tHLomu-CTm0+8`nM-2ZiJWb!n&e#k z2gSSx?AY3v_fmJ}y}>?;jd^?&jd>}{jknu}$jdf9Y)-aiR~Hf2)fTvR5?PIbM_fNS z;dmk??z)047I*zWv2$OExa*$-uWBsr`WNsijJs|eJILtkrzF50jlnKyh?B0Li^GM? z80_1w^>^;X{p*d}kOET13uoaZ_|+^0o2c_DGNc9WX#ILU3^gI|W=~pLk-pTN{JK?? zlVZ64YMi5hJzo*1;r=+h(q0~OBC^E-_KNooZZogWm6F$%HcsOmD9|z&5jO5NuylpOfFouf{Vdxe&kzIYSak$78j@OtRz#1gh}mc7qKWWmJ`;@+ z92TfpzwYTHZ0LDLSJ87(lU2f}d4hqJURC#L&Kog%Gy2wjnn};bBW82LM17jAu~)7w zf~O$A)vwvQBHK}9)H`xew{|5e=ZKg+h3c-<#VunbC~HjW65L-C>J*8XZFZBsJdw9s zr)3b0>QTh($Fh2dBW53tn0+{6_Q8sny^J}ho2zugLAS-i^u3Z#R5M~W73+QVVfx-~ zbY%xin7+3$u+ppQrZ2B@eh2!_R?Z<|BFZ^NmjvY;uX8wJ_Th-xha+ZJ8@oDe2ZzXI zy#?&7{h1B|h>vT5`pv16y&!oYLs7UcNS1oy=8c6z8ujLadB0chZt*s<(3ICz8!SW{ zoU#Mj^-}~Sa>pL`p4$oLdv%Id=`El^bqrC_Tb^GD{5h}H4k*YaIcAKPuIqKW-b{c% z=>hz@+ul7vyO|iFExhv+muBI2wLkrOE}be={g)Z3Voq&T?5^r9aoPUO=qO!#ll>8j z{>Kcc^s4w>65ZpZ1}9m+ElR9(z%?8N;jQ}{J=m?_yI!PNe|8ZF9*0IY z=e2&Q?4fU0Dw}(qnCvB((}X&c1DlSD&gQV$s_2UuqU@}S4xKpL&&?%lLeD&h30q9h zQ1OcBnVQj&(;VE%fJ(30&kU%e@9Y`C$>OMIUQh%_LHL!?GY=Ml;FSZU@~d-D+0-*J z*-Owf33d98vu*a7twgTRprEr7sTy7oUU{b3tZNIKEBtzg$KAfI5_BtAkzh?jjl9sE z)MINI1eC?X2FL6@gwe)vyB3@_HA;5O*FxB|Sh-TT59bm%p=&m<~mTTt2-Oj`Rc6Sn8gMx*d5d< zb8~nx%R*!O9`Bu}6hM4`El74y3V{)=J6^Me?OgR9>_pkM?(P7I2V|N6&!25KJ9K=D z9b0vG&`|C9yITb0mgxpMvrXJf&NdfXJ$kTPZInnwPF3+A+avA_x>F0yxu8D9{lc*y zoSH@c>7b2IWtn-p7D+RpoS(#;Q3Z;)(nOV}^}4HG1W&;LtKwWmk}TbG_!q_Y{Y6H-XMohbw;$@xdm)~r z7_`%%R~Nz4g}Q5)I_k)A3Z$T({-i@j-0O1)yUCU70ZdwJ}dcbt<)H)(((M_BiQecG1EeI#y%^oUQuMs zB{Uk;ta}yuE;Q?E+fISfLI^0@ChpLb+3y!YQA|3+cZf zn}4w_CKX4d)4Bz++%$gM=*Y?Ze}e&)UbUa?<#*9{wo>3^i7IsK_VS1;q6A9^UR&k} z;#+BJ^`<`gay5<>NOy&|aVnUtgUT4e6R(L+Dd1a27t%^RKA-~S5 z=nLjEpcI#f1PZ99L-8ziv%Pj3?i}8%-=0HIiF&oWSPBVs8F#0^d0Nxk$d21?+%~mQ zKfk*I4iwFHbtg5AytydhSkG_o#Qg-0QQVKuqaT@ro$D9Y#k^%HR$LRC?8Zl-?Bj&YqT>EK#MGy29)g!BG(2s_=AQ z3LyY`kz)Oei$L(g0aE$?98@-yUrhEAlwU%fhmw@vAwKmL2Tg>sHS47r?2Bqvdw&#> z`J`+|5E%lBUgJ21fck%Up@G*r(^@iO5#Y8KXk|;s+!S+Xa$hl6?`t+7@TDdhGJ(VZ`MX z7RYs6AieHlD+pPkmnqbad3MxTrW-B-SqSDTYUD1MT8?bPWPpeKM+MMX&H(jcNyVty zw)AvBlfg$8gYJ~G{v7^%U^KAzI6z3{~B}Hfec}5 z0J{+^w5Dd8^?G$KXiv3!b<|k!YuIOW7kQ2OIvlj8;NsM*_sCIu>n-hGkQfPXZOB!r z#IzEnF)9!{eZ3!5VU7{-=E6>v-gwAHz+=K0kA63K7NqU4bTRo$lrAPdm$ZZ%*{wVG39wBP7YLo zQv2VrBWB~%H{AL3Gy5nuKJig>K9Mn(ri`2jHfnpK)mPfASnl{?eDJ>b6vj=QNa9iW zMoO?K{H{23wjCuKht5P(M@=|tAH~KYK8nVnBRQ&csxzVSW{Z7@ymN>Ty8^uFBW~i& zc9d+qxxt+`zI_xMZ}=!WZ^Ee)iD}ui50RHQeAvEtGnkNW_uKKbG3-8fhP}o z6pdllWyM?V1Lb8KAG|NNonl_nuw71)>Wg1wINWf2(2lT;fA4qa->2-O*!agsapm6^ z?E~fIA0NCg{+-PCrjb2v68Dae)|2+wELLXh$97b0ocp0W=Z?6_YX5DVxNjc1eYJgeD9vGI(L;>xqV_JQ*9j1S%y&ra87&|dv0 zFNt+0CsdXkO#DqvzE{~Xw=wbocSgS1K8lTzd=ytkzSBNXUPki4`(oq?^tMSmc}?Qq zDykzH#=j^Ieaw!MjYA)H=g{BVN3n5;kD_s?q|TWoQhJd>?GgK+dAY>_>5E&L$Kpxs zJ0Cy!PtCYZg9Agu&r8fyA<;ZVogvahiS5ybR`m^u^%Q z!7JOjbL4F6W-T8@W9llp+mYDuFAAM&?E~dy zBp*B{BeScE@X+dhsJ5Gq1P2}-`UKAEkzE zw*5xX>>*%+-|P7G(p(h}h1nxxdTz`jNpFVyL|HIgF%L~o<7GG8<*N&=dawYu)sA;F;&yesO=IV?RLhm1 z#Kfmn2Ll%nAEP;km|z_|+n!-hyuIz4cTA0Y`Uv6Gv*^5}bxzO7_Xyqx^{#0&Y-ca<3 zBUZZ~pRa){3Yf8mb6guO24#dDCrfrn-b3&t(6ME+nxuc3ibCaact7-b{C5uid%})o zg4JZgvltWllRgEDiD0^o0xYC3YOf;bhp$-`nU(_%h5qGS6cdhPU!+Du(t^^8IQ0PD4GwMarWu?k)F}Vgt)XWX) zl__v2i+pn#k09zJI1R#MVClHv?W=9sSFVnFV{pG4-h!w%ja^gZT|4UGdGLPz*Xy)` z+3Nfv+@?z`;3|UMAPy;lt~PsJ)}%A;-NM#DjcT`w_d53kBHT^eZ&kcK)o#VZ!iW~A zrJYo?y*gSO#fUq+t!hYa5QDuwEu=;f+*DSaplU;7V;2uGON3rvmJkET_vWhYV3w9V z1h+TeZZ3FLTK?2L{ETI^H-Sj1h!Pa+MGTbj(yahZ)Fm8w2-%_LSQ8F>tbhFP8DnEZ z2myqEKy!0IrrCgJB34`r)w#KPP+IWYyW~Tmp-YAkpa*fy5S|s}9HMr&RDuRRU2-vg z0vaKxY=uZbqK8GV(G(z!dNZJ4bslljIE)BmRK)@kUWK3+%ce`QhZt<*-nGxf@#qt#JPT|%4fIQ-egSvWGntC5qg(yY&g zA(1ftTobJc0l(D>{5FM7BKnBnv=A-AfPgka^MW+sNwqUt0=i7hbWBj6`s6;H=#Szt z)wyVS6$&H=rUFYYh}B@OMB5$=OC2Rg0;ZeGax@UqiRQ3U^TmHqT5utk78Ith%CsPK z&{1AlQ$kd{LZ*D0Hh{ zd*r}tq1hfe@VZevCV4I1lUyu6KLcOz*-gu#?IozJYdRE-vGz>c(YH&e@0HYe3gSN1 zp6aNSru$GuP~=gi0F??er%v{QWIjVt(Ef~avt%tumcAGDN#JV{7**Jb)D_9ZmhEM{ z2N>HpJnEIt!-q}yfYr#3QE%gx?f6S86LvDjpK_I?rN(Ptm_cr}J3J7dKU?v(T_xhH zUrJH@+AL;Zcpy`P73m=L7ozTwJ?ZpXLAw*MI^q~kJP*?zjIs3$)xL4t#u8lD=?y?- zLB1c0#NIQVFN8mhS*&>V{#<%pn49-8cE!vM6}y`o94fN-@?ed$i+Yg)@o$W7)9ncz zDTrOyrx=LoRr@hLpF`i-rY9s)#Pq~ylwf)i>U=tBDV->|=G(kOQE(M+O;od0#X}j4 zbygLhq~k=dyieVSVl^H;YTeIt2AyIi9X(?8f8=a`>(}ZS}nDj@YQNr;G6}wORbsD+ltdEo_(KyrS*bbza_NOr*)2sF~?axBr z+0&krDSGUY8Z=;25gY|0tOqS8nvyJu9sfa5d|MG{o;g5@U!H^F<^fDhE)x`OLLKwY z!mP5wcNRNykz5>?n=k?O3u9U&^G+ysA7FMHMYZ64z~Txa$ZrPpORxNDQc1drYPQ+= z#Y&l-OQXqpD3CLjr**7UW!j#JVPuDP|f-Mbi2=~eqt^6x|6*-D<1#Zk$BstAsP@Kz;%tP~!p+*N@R^)DA0 z{fh&n@K=jd7>8RzzN6<{KP`fz3x!pno$x)AUZkkJ`nu?ZNEc2`j*mhk*PEfd$79E! z??Q51d+!NAMZ|j4Z!{iX1Vuq)<8p*bBkCi;HYe0MBV8pbPMGboRr_yd2)px+VuuJR zAcB&~*{P}ajY74H_+-p$0^9y^Pi9yX;li-vz`;4J0=ZWBy{Uz2BXPUW)xIBkgooc1 zJ+8{dHlg+}XObD);8SsgZ&vkWQTulp9XU;x?F^{&s{N?_Y4n{vT{u}B)&A}xI10jB z>8iB6n5L>gvHc}QM!#=>6n<%O3a6?4Hy6Rtg~Ce5hfgK-B1PqQ6@lQL1ElgpMX8*s z_CHYsML}dk?Nez)eI%&;ggSkvvNHS3HVMzlV3D&)xKuvT7kOkxS>_gV!H);*+%Uw0 z87HcJ^@?9=06C0y`S(+U+UbgumLx*)|A-+TQ~XpM;ha@LWn@@cdwsMsJ7D5qXAK$+ zYOS;meP=6wP8vt$|AZnq3gTO7t8~3&yg8Z;qYq(I7jb>gU#-Me195ngB#+v3pXLM7rQ%@vA(=k#m5aH zR{n?#Jnr2b@SDPxkDEePaV|hi$vRx1ZfMjOwWmGoHkr+nxan^!BH^6O6TLFvL;Dw7AtChr3fVdXMoiH z+R9V=--_VqLhWOO(vV~hzbpE#xgk1D(nVA|ggP3H2DPv{7Ja))GbVlHqC7U|6D&nS zod^2Wr|`~^+Jk(I=us4kbgfFou6k85$AmT8M!hye@|`y!zYFNiXO%Liu3SB8hg2+# zB)fvpvUzexRM8I}ACWy#KBE+#QWzv=qNoday5M@82*pC@Cs`mZh&~f*<5DB>6{oO2 ziN7goZ_PCog!Q?IO@)~Cp<;LIW6j8WlhKva484JYm0qXlD@=1*r`iM5PfWl3;@p z>I^)km^o&)wfV;kh2(5)=DD@eas-vD4gP%bx)n?#mbAYq6#nwTT+$$RHm_g;AG0Y` z91#br?z7mGKQKCS(zn0IfJ(30k4^a>=sR2Eg=C4GJjAGyFi8^XT)U#;qBNX2RQB9h z${?)s+<22(iM1AsEyTp57MwuHcQSaodb>E?relQb#B&)OA6zwGvMkVO-PUX1Eh*mh z(i_~wo6%?(OL0~ZEmV~KS}v&-Q|U{LxUs23#VazEerj}-K0maj%fB+9(yR6}mHr)l zXHO+g7RTk;anFeoD;;nRM?rY2igH?>J-*23XQI)dmS^Xn?}8LgTb^w$f};zCjfI$) zVMeK%VpkM_W7_~}ePvNvr!LR#DuSXQwXr;-(ufjCusjKM7UGs?kZM6h~Y5GKw(LXvs3O`(&!fB@I>qT&Mp|D|uvP{#z z7J=i31Elp&iqbmOG_AcUI`h+Kp|;Kvq&7?wl}40Ef@w;q<7%2#NbM@qWWthdnqHW} zT4&Srr`oPbMh9O}3$=&h)lAZUNSJxPjVjSGH`_+BxHc*0+*BOCEzluN+)pJ2D3@2T zdTS8{U2{U*oJ;tG3EPN93GdCQI3j&kRckR}R~sEU&4_0+pwg@MW5TXQ-`OUNlf}`5 z%@n~=5Z+2xCll5wGJ0!(6z&zLaGD8wc@Z34D4f%Ty|D-!uNxq(f2%01Q%%@=i=Ze- zZJ01BjVO@>6P8ftfaC6J(i@asR#wdfFWah(XK*`e)$ILIg81)dhYpnanJGr8V}9n( zv#KkSApVC2m($fYt$9Q^)$dWGtZ=GfFzw0GQAZrX!rgggzuiWFJ)CKFDsa&CwqHN$ z;a~9(@TnVjFh8oBf=;jAr7Z9~o;Ht$H;RDC2xP}1GqYFV6yOk{=MX0m2czAf-D<B@U92D{YIA&T)7OB%U>z#+Uha?HqNg& z6#S0zKr~2Zxe`XrT-QF!%fTF~vaA!zcZ zbu|N3TgR=ZmQSf1Efb>KC)8Ew9crS4MhWXUD%Sg|b=PaaJTaR%5=sQnvd=pWfpd&O z?Fe)Lk&eK#hvEPEpx5^l)&Mf8VAr}@TpZ{A$G(i@%SislF^#t(oQtep-vXL%SJ}{nu7_P z3PH%tuH(AH6sLC*HRIw`Qe#PBTEhp|MCqYioDib)#|-_LC{b~`C>=MVp(_DO4!QUd zqa!P!rFeuujdAgCC8iPy6MkorcqT;R9gHScNRvh4Wg{cu5>YNAnRL)flFP-xT}pm{hATRM+wy``lbQ$bEC0U zfTXC0fb8a?o=ZOBFN{hFFO2M44mD>?uV{bHh9BU-A zaH%5%|IV z7@lf08&edYh$nTLn)ADUdDts=tJohdRJ*}=Yj$C_I?e(ci!4*a%S-1a{yuK)cDb_V z`tGt%SnVLJ1V-AHv(}7ZRjzflvZdD<3DXk6mq9YNPT*nxsHd(k@XUbaD3@i*8B`R* zeXScTw5H@6?J1g_Th*DtC`H*dpV)0>59yfRDcAl;hxYLq^uSUAN-m?8QUP~BUUdBz zozLakpJVLW2k<8%b(M1~Pa>MX6F-3Fw}zc8y=z0Ixe#oq`Ma7kfOKcD!EgBF!RMd1 zA!zLGY-lZ>chQD=bp{`hU9555_(dB!5Q(vtKfBA{8FV&;QZTl8eAD>G@$<*fWc;G> zVCPQt+XgN{t;H>K%~|s5!)Xs4QYA@PmIU!Ef*;a}-2G*+TX6ehIw0#KfQTBARF+Qh zT<#7T#HV_c%Qail$^|raOj>!beH2^LNe@V@xR0@T}#YZ5C{!jI4<9F{ZXS2bNue6G!6T6O7hXzHj-&$f?ZV=5m- zW2zSCMJfQjNTD`rA2ct6IUs#8_+VvqzTA$vZKhu8&eWUjqu7|rN70yS&Fbvi2g=Jx zK6p+>W>*(koz?2GRv`^D@T|_~IxP58GCeC;W0{_x1K3w0)ARk{U5#aWekDGInVvIN z^fLSNlO1r2W`veB$2$IIq2Mz!LO=DU#Ej6`_l;@Ud_CIuan~>?)?96rPI|3Xl=WpA zHY6-_^RMO>1mu6UKoyst>KO0#n<+WpB5wcdb=e>Y$1DJc!*24^wJg#a0JE1-_Og&+S{nb@HIzA2s7Y(x*x~`rE~!K zGio#>br%`<{_^Sm661b;J{SJN@A7ZaDB-@IiuIEPd+ywfxS!uMI*V>#4J{ypt$mvT zmR?o&z08|E_Xp@(_q`-t9nYT2N#p2yx$4#^!O{VzqZbieK@h)x-^){qjQ$ujvK`Ip z6s{eC$~iLVo`&iLDV*keIaUNm7YZxiOa0iwC{@bv;v#T79gPM>>t`0Fb*k^>twm52 zq&9pnsWhTU5_~Tc>SVOgnO?OYMfp1P zovkQ2nH){g9~Z$80 z4+DUDw?$1yy4t3NxG+O!p;5vvh>G3KkTn44W}_=RSYm&$iGh_~wI9RtH1wTqcsOAk z4bOE&a1^As8Xl+jXLl7Deft0@JYAf^X?vjEMR0VXu-ff71ps|X5jgG}Agy0ol-8+x zpf?vmQIOiOY*ZRiBMFu*q0TQU0H_H`wz)bZgR#!$>d_Mb^iu}Q({;FJg+9*c7~2d{ zaYTHqy3+Cn`s+qVcA$g}`U(Roy=p%;=n?dtZG$*j9Bt5l6v0st-bz;|8?<&Z%Bpm- z5!(fY*Pzj$&W6^Z?}8Lgvq4WNf};zCl?~GUP>fQw`Pozijtv8(_4!3FJ$IP}iAIVTi&erBvEdc25T+$$RHf<*GF`Gig5pl5UK8sCx zxzUl6#=D;Zm0qg3IJ*jl|46_8HA0_4SRp|=>L=1 zr{>ZtpDt2O-*@wBZ;HFxzmHX2kw^cZ%O!r|(f?l=0NBRN`;l9_5ewcZDzLQy=$l+%cd>{of@Cj=wu}c+~$dxh9Nwe)WAc zN;n>)V%>;DAN8M^@~9s~kEI`a1DAn8_vmek_GbO`VO9`T!4+qEb? z;up>^r$V8An^Dq=1G|R&2B)}s#NUj*lFt;meiZ~~QK$rKParnLB`(+F{ioz&rI5XI z(I`RosCeMAccC$em2Xn^LV#EPvA&74v*?`$(L09`(uzW|=uPX7;|mF1hQTmpZIZ|y zmo?`{`a5#5O~~0Dj6AW0G8GS8&YH#`RwhX~3jtn{NBJh6&Z2cXMC(>YJ1f-5qBW35 z`L7^q#>L0!QT}o+P6*L?6+=HJI#ir4IyoNYzs=~#N@yt_Ay9=M<(u$3i^Lfai3b=> ztdJ&)#G&@`UGwHW)IeLgNBN)5C1FDBKfzcW6MHI77yFDy`Cl~}TLnmpdI-ob|53h) zyz`tn6LaPxjG$JOwKL z;3oyrsb0Qvw>J`x^5sJawZ%_(l+XNGEsyf)cm62<+&l1zJ<4aF4&tNy5&mERuk9Tk z;GbiAK8-F`;<5dA_4g?RRtJ&vC?(5Oz1rB-5pU+{^OWD|^cGlfLs=}IJ8Yc@qa<#{ zTl|i{JD9=~atiu~1m;_>@avsm)YD&1Zp5g%-w(@Mt!)#4zyxw0M@bs2mr6Kk7DB=AH|h_Z?zAUmw$ZlzWBE`v?)nEJ4XB}SrvX)9QvRgB^!s{ z@6Mr5*+;Q)h>xOi=*S6)4n8SFzGxpJFK_s;E5I9n?^YfNq+E;WLe2|6OotPGS1A41 zj*^WxKXm8K5!-FXx@O}IA4TU)81v-FjT&!`w-1q*H+cymhPsw-&@onX|I!WS!7 zd>gW(YvbFwXzFOSHrq$B@r{q7@ohC*bV}63H-*qP`%roL$A|BWf04jKo0ItF6j z({auhv1*Ulhset|K5SoXJ4wao61)E-&8R2dTa=hZ3zbUwFFTSpZvD)iTWjwuyawT; zXx!qPF2OK!2X>l$pu9ZegRdCR`0-2@&%!06&NDrO;)ESZ8_!13)N%cBv3(TV4CAA? z^6XmsKzVt_2k(n#Cz|JHNi18ZRg$wTQl=(ZV8_tLFyEbF9s4LYhVfB!hS`=Ozh)mO zFT?oYeKG8$*zsl($4aV}WSCy0`1N`_f;N7=#+_e(U?0WCFFuOKuQmKoSE41qDwO`j zK3HC!aR74iEW5f0xuuSVYgf}AdEgm&o_XxJ=CH{5Y;7RLp$MDB^423h@|aAu?Dsl; z9nqOOvxwW&USwH?v_M*6sHWl_C_(*!RZtCoTNY63(7!zZ6TU0Zf}>aHa<+8AZEe5R z3ff5d)9f|oyc@TTAwG4pUF}vDy!l>ZmTrtFX_H4Rkp&^Si#Aup{&`+v*ZzxI@UT}3 zrP>vGuA|l0H<67?sv_}Cjak}ZTMHTtu3gS^7Rj-2<0&9m6QShWZ>a|2{9J?nsNNZo}m2sR$fjeA$3Wob{~&9tk*Ji5pI;DX<--V=CTK*zxdnfEIM zvEtq7d3Z;YQ*!H=v?*{YXIdaqx^)mEJEnNp)vGtN==olEPjjr(4O$?3b2gakwSz5E z&{m))h3Hd?BDyY$=-Qd({zZwqqYRklpmrbj(VJkKwUbb8PyNGvx(@y3y94x-tSb?@v} z>vO@rJECCv)kxNN=`5kY1 zn%@;qA?Y6AnVuf^Fb7K%OWlATY5BmgHn=s5pno(KaK%k?u!;Fq?SieCT>kE6b*`hD zvxw;pui6e%*-6ZizmKy#)T5J6JWMu0bsO0j)yg>K7;+Rb?Sy};F&}F8>l%M;D2#G4 z9$C{GUv4yxx(k>Z|0P`G(}>I~dVNH|wQgfDMKbPbQ$YfCtehNLC%5H-O*r3&upOt* zGOgDbXc2NfQIN|rA0^0Vrq|JitL8$&B=DyElV2MshtOG||AVk^M56S-k$ zs(~&M}cdW)^vLF^l|CP@n!NHJfBcdI|{YPS`T?xyHq0cJ~dNs&hFCI8cRDS z@2XDi>yF(CpMm|}omeHbJTm_Ky8FH7c}Z%f#McI+i9hPS4VQ#KoiylC_yP^ce;PFC z%%pQ-=@=wlY4{7la^;4lH6ZUy&|bcNX?5M73F`Q;rqSGkz1Q+fr4P-+MAUFvo}$q= zvd?%Y+Z`k>h2Sd27eUx)uoaJ7mhm-D_(Fto@Fr&~rtHWFqwMkZu0K1AO(9DZOg~`n zvVhItTpL@Lc4xGNXjISB@@rB%;zfR!DExa)@H?5341*&QACNa z<4T+%C};68q`t{JPOX{0X>^j#9gLR??%794Z>0$F3J5YcEOEidjYHRd$1=K`K@Py?w%lM zcw^WNV4=Pd``qRpc$T)YC7AaXn?2eFLmc7Z3W?`?>AQPKK3$z(BzVMrJeZ${w06*F zJQ#`%QYP2Zx8yNU10v(i*Mq&)863tyf6ib+ z&GE&q-&pi^L4~rZB)6=7owRDWSTd)OKj*hdzPn8(e6l%Z5%9`baY0p6y7m&3H61=7 z!+kK!rc4!EaON$J#$or19$9?kf4`-I10;5oMUC|ZMer8!#No)f{__6tjd%)n~*!(igQ!MdGar? z!GVZC1wuQ|w*#CwVvUHyM63cxdO7pU_|c!^Cod$R@rotVxM}+WL)0O*urkyD4hPkR z-U2(7E6rhDv8WD{{N5CuCGFim?Ulh2e8rdPX)g2BxKrKPsLtcW6gv+L5A#rI*4bHW z1QvD9#n(-8cg*fr(Kn`od@O<9*@TI}g*ioV@tFmhG#KPKSg&Jfd4gWT*gXsml`var z;>6aY^;Mf$OfjJ)uEMIY3l7|Xc){KldjdkUk^@fmbFbG~gt=Q7_ihVtxJAn|7+~0I zyz{_n%Y(h%$;PVA5-DM^s*TxtZ!YMRT7kc-gRczE>FJ$8cZ%P%OoiG32{5LoLo+rW z5}ngTBGYJg384;|XB^4-5sGu3vNs@NEOokOlDq@hIK$QPpRmattjU2i zRRgmd%vKuJyL+TDuR`Mz<+>&L7poLNxf3hnh6nAdVDR>4+CXv8+In?w6w;W2dSkqafhWd-1?VT)1M-yDk zcd204(PmN;EH*$A{InD+p$+o9zUaSBvo>0%G1(|4ufLuPHd9{TbVwV#m8aHQ`l43% zmtk{lM2M)9lax9U)>(?U^7&`Z)Jm~Dl#3juVmWHmvjJC3or&DVLL+yTiz6LP?aP%9Yvk9OxoiB{gIqL6o?B)DKF?9J+1!@i-KNa25 zD-16Y1`S&MCj=;yAZA+wHae`V`-V%5JcCLNBP_Vf`??#@jfLZ7z&s`!`p9+A#a!Tu(5AJIHjX zjn|^>v2ZclQ|(q{P4Xw%6)a*OHcy8MsOc;J5<2Up-7a>9%>~*ZiCYOw9bBVhZyn5u ze%Q`aZpUy{f%_+Kd%4VSDn>o>A{-vY(F2Zq@&EDh@g1xo>u-t`caRry-^3Pbh1dyW z8&Pdy{KDZKqa`olpN*^{Vj+YTM?Jma=Cp>JSi?<5L+WS~MjV?MzhHRBeg+$HaMYWk z#FZfVI9yL8Bg#71quwoBH%?4UNZMaUM}Z4HY)r8$HzNO)={#XHq;H3}X|-|MjWCjE zINquFtzfuRrXEMV^LPdNWuDG^086ViP9t1FUs)4gg${M5Agb(S5Y^PVJ_$aTbd-{F z9Bak8+ZuLEtkF8y8u`XYkoN-sVHS5j{JnNt^RSEYr?7%rWAu6J{IYSj%Ls36g- zE~rb6@zUq)u(~;{ZpII*8+na*SlvVvRP0M}b;H+DSc9F7Wt8dnznQ2j za2Bn+)GApyIo!P>R z3tE>eMi{OMIFs=2(3G1mys%UXJK4xO*<^IGF{_gcCN6Ls?)>wgrVY0#akx#H!)?5f z4+p?DrDKQH!uc0n#Qk1sA3aC8ya}h?+QVAe(lbLM#3<=TMYe4y*FL9rdPZuea+6`H zp;qQwNIo>*5Btjevw%Q}(5(=x3(y`>kz3I|6*=z7Lk?X8ZwD>*Fj_c?ASYWM5hP;UMKGo*%T8L7 znB%A+Q#F@4wB(W!!B`DN^VjB~c`d5B?gCYookVcuXd#iiW(Dc1oj$!i4>@!Z+yPp= z&0PdJ+46`W5u1ykz12s~VQO}R11w{NY^Y|RiviRzU~M}N&5TDj*||7M*f$Hm3dtzF zNQvD)(9q5XQ)J}$TMn;ymPrP)7Xz|#zyMl#cgHO1Rnbs;JQD?7e$(0cus1g5T^7*o zJiR*_#R(72fbd?59#PTeTMu5zkS*8l)4*9WBld}C3udvR$&Yf;L}c#yJ{l!l`BJe? z--a@iyf=y?pZpjwYa>rj!w|_lD|o{yZq9n zWAK%^bJuRhIV`IVuY6qKE!U1g-+JyIdgNPs<B%nk8m zUlg8a7r|4I-%edyT$>F=Mjg#T-P)O`oP)X>QQeigbTmG!Y0sF{C1gfQs8e>HW{O*8 zH&&$xMSW`RJ8Y&{rI$Ss`6i!H;iC{!ZA`9#sF@0Y>kh6nFqi1I1W!odT0>{K-oDzF zedQ{SM{(4L?GS5B!p%-{_w&CVxx;XG-;x#<*YjtZJ>j4(yt}InJPu_3#W-)q=`znc zM2FHIoQLpkwo_t7+pD9sQH;0)8_RG=!+%*-oSO2!AGbW@BM-$# zo$yP5Djjs!$c31kyC(Q~Eu2I<-Er(y>s3*gd1o>|xS{4)b7++JkN-VmY-|WVNXp-i zJJK#x=jPzpga^O7;PT9TPlqlU!tptr#C+ywIz;W@1k^xRmt2gWbWpqG`%XZjheh(U zg4-ED8ueyCLHJo$MFBZb!<`gw#ObLI^Hf4ZhWog8Ew$Gf(7@FIp-WzGaHd9wXeC{+ z6Y19u?(TtR@TS7^h|2cbXmylRm(b>q3}zQ+nWkIhq$8g`?vusgpKGEuAwW;t;j}J% zrbtb5(IO1!HMVq#^=Ie-HIas#dQ9LH_WiL23nr zk_3!MilK08VGNgK_D-bQG1~}D5&uEW=J{M&P?)|MrUlV+)Z2-QSIG43GrF=W51FWQ zF9R#Rs&4x7D(C&^J6k!2go!BU7+n&SbG**v8PIl@g>vVh(jGbRHmEfEdq}9XM-II9 zkpmB2{K$dV4MMM>cW5?rP8iF9*ym?pRFu1EIkde5m32*rqA}KFM2_dnP8c#vo zr`l5;;TcS_?n4zpkw=vRR4UAzI@t@7sSHIyE7|+7aLHPbECuWa5jFxI?66Fsw?-N7 zpZs3EyTzLrW=oUnuyl}~=*)7%tkI$OIBY^!cv#;Pw3~F@%oRQ&stD^ZTsxwBoG@6j z*xZEQ6ZSFyA~*`dTlX_gIj(kz1i5T~;6TUd?F;1HfO<>}2TS>Nq-YZob7Smvj z-M%9iYlUgJok?%ZG*EGbw^kKqF%4~_Bd1B-WI&}??Z-59(RcQg;$(3&4KFK#qaeJM zu1==m4Mj$O?EoqKrs5P%GY#)4f};zCl^qBJF6%`~*?go31b;n1Du1jfl~YZ_my4h% zh-{b!DvhX*1k;dEXY+N1)TQE**=M#%xHW@C&L*L2ByI4@GtFi_ar?kBA8`9{8zKzQ z(@bc8YL8k2+W;wiWpN6p*^ax4;OIi(WhU+@)O%TBAXI@O!FvoQr0Z49GW;>4LTpb##Sw;D_19{Kw=@mn zn*!_;MrU@wgl+gJ11!C2Kepjv^qp-RIB6Vh!`F-8D2Q*Rt&?r|*CM0;aDWv4NpT9N z*@m^VQISj+4H9o5MJ^OxAKC^zYk^U!r1{JuaGZulgF1LR3w;-o=2XkDsR)XK)P`lC z(ug8SunY-xv}ZIaT2e8@Y@V(9|1d-HomKyf5%dLb&_v$d^b;oLRmJZi#IA|Q6r?*v zZJ!X{NgzZCHKA+n7A~I22aDbC^HwDk_ZqlmhsOhXCnTDT^%2mdZZ=945%0>yajp^S-zrYwG{f=UA~?EGSeXdj&CMuPQ|zNf;P~(WY5nn{v`#e~Unzp3AhlsQs5GKP z5)4N|o#)D9sg+f*ii_r$+1BQ^3>G?Dn}6aeU8UViH#o+XhE5EvdDQyQw;rOu;zjYS zPod3N_{&mglrG~pbL^$}Mi#;A#%)ttjDPN52iLNl)D$m8@z*J9AlHafBcCDyQyV?d=> z?Z=>b=sVk>ak4lXv>LbCFCDeH+$&?-9+FOZ;iBPtkJSsyzobBXG z)z+uAm~JB-H)Sx3x6_>u%oFodPTH82gn@P0nCWRbGxMvy*ASg_E1+4icQHc7wq;Zt z5ksrCwOFxF8Xehz5?1VE45;*~{aCS2q3>)f#>wJn#s0Afj)L%3x;k009~T+@Uj|6w zpBATZniVSrQE^Nc4H9i3MJ^OJHekY#8Kp{5J+25Gr=!uJ&hs9Rz6(insx3RO2#SK# zhApGgh!RP#WeIg|PqJm<{diw0R&mlCH{0aAGh@mWGC6x!!sOgBD3g_*?&la!Oi(c~-@!BG(2N>?Y7^QI!B zzkYxeesggOr}RxAgw=9l-8*x=c`3f6r?sx4wXifNP@{p zsFP`OimO; z086jhkA-;x`p&j6oHULW=4nN66vVgE*2%(LS!DFf2T0+oi&Hqw!b}&z(S^dw!ZZB-Hed2 z4Ga}WB*Ur(j|Sl+Z0xfF>S3cJJ5a*Be4GK5UbP?d@@e#)ZC*H89L>ukMQ{{^x6;+g zy!@od=sy}Dh5xNMh11N-x}8yROcxCjZ6QT26h0~Rfs=Dw%5lOkN~+H)0?!#}G^n$) zv(a}UsZKRB=NCayklZjcR2oqx31%jt&h|knTE$CqfM;VhRYJBYd-HX@$|CAl3 zsMbZCF;t~^XuTP0m$fNg^|P#Mb^y0yZVC`OzY(S(2)`>5HFC*<2;H`e8V%L#q1#?A zL$^&Hb<`0@u;4jf*$4r@{rXW4|BC0VPu;kKITUX5dmVUNuqJS;2#}g0K=#Ng%UeMq zl<-oC5&*Nbs0iuCqyCJSO4vV&0O*b*UEV;=621K)>7=pNT$iQUi+~agw$$4mVau$RLOs3C*0z!g#UbN1j2xS_HO|m%8mIp9fep+<4 ze0*d?TkE(?7%X@Aav(`3{F2u@;UZ({QH7T=YfmtECMWJXjgy*Sou5ne#oV1hql8rx z6{pYLCuOagNOmN&Ps~_!qOOL-6~@3$^EX7|!Swn2%ad4TC{3z5Pkjp3Jjys_rH5uH z)4Q%c^++6jjN%V%yYE%O&1unhuh7}HV;5>h!GfQct&8L?oVK>PcH!yZ(|Oe$e8Vmy zu~&w!uMA(G)&C^VTe$fSDcN$Tjr@ht;mSOs*BX9Uy&UM-ZfXZk1obFhbnVyZ)62n? z+6%%@FT|&p*6w3}UqpWi+y+8!v&nR7?G6G$fLpr@<#IbOA}F7>f4N*a0|^R^WQ9w| zVB<$&i+4qrkvh zZ)x`s+7|@@62$pCcLsAjPux~^&oGKJ3+<(*0Ed?;mudn=)oU$As?j6Q*4~67F`W2C zol0!w#}UI!W0q@wq!DvzeV7A}xGZ(5QK~e|TdnG|T>EqMUHbt3M1)$VaC#?x0L$MJ zcCz%A4VC6Xu%YJfYR&+Xoxujb;e)Dk{&^dM#_rCB*5Y{=ZKzjg@S$62HqINrXhR1Q zIM(uKclkSm&W2Fv#x{>{8s9j6{ur8!Uo;-<+^K%szy-FoxCI$E>9s2IK+>U6l0ZkL zYPm8@2}o-n(ug+cK>`m;8yD_0X%oWsF^z6ZCnpe1)cdqv&&Vy0i8#3ijn^L6bd1Xe~PBy?|LXssVkR`+$tvmKB-YYX&>bbbP*fnIBpgAD3w=- zL#!h2eK`vMq6Yfk_JPXgKp-qqnIci_R0na}yDSG?!|vl2>-~Au#JD;=g_+F?-%w_Z2aS+xbp9~Dnv`OX@)rF zvT^7MXzDn_&a;nV;}9Q3F>iSYvqJVMocvn_Jy^Q?ZX?;|(80=S>(mF_J%gw|$7b zyy3(4#hdk!C1KLsQ2~&|If3{Wh0Z(d z1LfrtAG|Lt``fu(`J*H+|AlR77N70zNiZ+}Q zJN`wXbBcYSyo}_7_s7VzopBN)9}}-EF-`hO;XQ80+s4KbG<96AJi|VUjg5R1jg6}# z@gT)Fh0xXZq4F}458oFfAEOQ^=Bf*+`vD`+lQ5D-sls#Cj;D=rQ|^qr+dhhoaeNew zan_yOz4n3fvW*YE5^U4Ynv!N-p-?BUwPR~z-m*LM-ew=g#ymcX#yl)Pg+xXcqVKg2 zk(X_J*uL0ylA3MeI53H8xt{cY#*U~JAqjp&r4mO_s!kuR)+DEbRjE~~Vv$O33<>eV4yf2=euFbQ(`hj{9>rPIn zEcHp^Z_3U+&5pT^k>{bQ;{xS!`zSU>@=;tFd9!_>yo}_7_r=JQV)q|O9Mm6f2t%M3 zDSp-M2-^5nap%`P_EBv7;-hH%TElOBq&&*63Z?t)gXQHJ2OuZUvaA2qI(AI2?u=>= z(J?N+m3g{$YM*t(xt6jS^Yq0_r%x?3=Wv;)T_5o)qUEL4s8*d@UOGA9ig9^q4SvNH z(sJbnxQxae=4=)qQ9U|vYNJHEXyh)sjL#5n~#`1=O zle1h=t}r*=)N6DQP4BvGSJ7P|ZqF71%2J0LPL@wloTfC}ej{k&_gU@`J{LZ$g7I z_kM;P)EnOR%{!*Hlq%hBYs-cWd-m)Z_j`VIyxHEl;rV;U=<^2rw`pS2#D-S8Ig4Do zxF79o*!;AM;JRLIOtpM?hL5-A=D7xiBi>_^M$r!0|Hhztt*1%W(kg;S>ZKz$YwbR7 zv{M%+wcFs6!Df=qv)YSjO1zQ&yaa#vtnAXKQ)>i6?S6cw`&)7z+)~m;ia~e>?sTQ> zFFk98XoX={qAMlN-%ce^%%g);Rj*xLu6-A6XzJe%3(&^iM@G%t3iDcuSM``#c#|}L{R7@`i4^{mO+OeLExndrFBMdYs!^PIG zsY$n4Vw!L?0!YK7M;cwE5NB}==6iJ{^GR2cqa^`5d!XQzdo2pKLlF?JL;CIJZp!jj zg|BVEwS9t!-&KU9~IUb?_l6T(S};?bb1Ty0S5oyedKkAZmRAQ5Z<;(S3d+G{g!T^(|zU5>iyhLeqUnr@iP zs~ZRgO*c$l2%$PG8j$=VqM;_d$=dYQouOpbMwE20mzB zx#MG*h1_5C;Es`Sc#C%hrH%9vVr94AuKF|eptJ?==PFyKYty5iq^{?CBXA}O+HhYR zAs;EBy;{(P4I~v4P43(SMTb21`$~6GA5fb6p0$7fRQIm2vNw5GZK^vw?d^eLVcJCG zC&T-{8@Fj;nnzhOaQQYLz)nwdXS6BkFMu~aJ?@dV3AK=hAn_7;uIGBQ0fmUcTSKfX z8y(=zVny@(*1Mb4IW7GebNYgYMz8>6yYU-cJk;TY5KGZA^xGwUl2lW47a1(C-LKou zwIT7PARbxM8eeKOR@yE>UTQDlwv$F=Yn}BGhHBl$VCw2Hl@#kGP{&GP&^oy}7i{7s zPzc+}2~wqX9)mDKwGnsulNdZPTUNE06tiC82t}&Mr*+F4QB!RdoW+Dq}6B zlnq}Dja&!!)CP_X7U?N3Ukt%aRPM`*?(l)foqXM(xdZJq(cwff#!E)ssiUCg2}B$s%R; z^gb}x#OM`<7)77BKFNhfQdFOqO;2s$-!ulcD?y=X2wJ8DpW?yF(CXT$y8 z^Y6qeqV;^X9N5>z_vby|)2K9B3iWbWDwhy^1(8-mj)1j>7;qmOasP0sB>8bDfWoN_ zdi^z|pfi&$yi3R6NU?zx8;%v1*6;}4%hxZhuKP1V9Us;-ntR%QYx$+pQTJg`UG0z0 ziLgXlJb#Wo@7Dt$X^Sl6`Qr;LY?Il_Sgrv1dP+V=q?J@D@s%`NTl)37Tp`ll(W1>t z{_JeChrKae?`c&!+gwMN zq@c5cI5$li-+i7i!}2)|(%9n+f`p zID#U~kqgmtDC^YL3G>u6!t9S85b}*TCCm$OqR6+LUbELlP!=-m>SO~N0(B5_rR^_b z6U+_+NjG0bNxb=ECCn4LGC_Go(@0HpjF>xD*=Y415Ypr z6;-BdLx80sjfGn|&FH{NX{khMRHj5HauY)F*aY2Ki;YKld_W#~%UdxOjpWw^{@bgg zwNWg5c5EFRyLft<**LjiMDfKF(>RSrY#?GHPAkaNQ8q<>yduwm>B!2PZ#Ng@IZJh# zPK3jw0uNCg(Lxr`vS(VXdDIoqfnPR6Oc2UZF*!9EC@C|KVL~6Fp(cS_iU`mJQh-)7 zUTEFXFOd`I$TI)n};JHM+5jwOHJTP>tmh2WRNzu~IeMnjBfx8sF6y z%&SNkwchN6l%UiUDEbLkt1nQFl~chPoZ~dUh7heHu4-Mppg2&@x@9AD%O;GI^#=Yv z)Y}lkBW}a+485Y1&-3(IH6c|`nbywom)dA`6u&%UY;1aZI7#N{Sb?57oA>rvx+tc1 z_Q@eh6CPw>l2p!Pli-ol`9!5~IH;Nsyfq|x(rZ%Vu2kBqw=j;v{I0=@67<*lqn{%B zCbAm|!PGfrfT@1cy8RQQTf6=ddy^2%rxg?i4S*P45j`rWe~KphL@wxs_6(snHIW-A zDVpg26bHq5(w~pX{6>tk0+ar$hFmwtnpkfnO?vi=#%J0u@%1{E9@u_HF(3@)ayEvsVn zTISc>CGDDfIHp#<@~B4FMR74U8X7_9Sp1|-$e-sDWT6rMgGptg;-a726;~3NLUBdG zJiZa_)=6=NU_QMMf!1gh!!3{U@^WDylvjwsYBoo5!;+%CHuVL|4tDT1sL5=>(OGjo z4Vv?(E2B9-Z>W;JV|$@FNw<~dFG671FPfmy5eAF&0-d+gnv-t^!>enY29PJuEH2pL z#@EA5Qd1vYKQ${c-5S%F{~(bOO5)Lhri-Rzm?mpV{G>_aWUfggH03R5#EvA^aGBBi zqo3S0WfGW5@U(7gMz>CyG6YlCl)4DH2(Si347WU*@_D&15SlW?Af_qZU`f%Gzup%t z&rQ^n{Z3vBot-u0GoT@F1a3vwmgxhuAa?7E zqu7VaFrY%!PEV`oz2clq9fjWALo>KfVqF zu{)q4niTDt?v&Ums=7cQ^=5F?N^4H>qd0d9Rc*rkJ98QvFOg#_y5q-f{ji zukY~};ZDhJDwK+5j_u7hTrich^PlfQkx}3Q~h(J8z=QZV>2xl zn_PCNj*l`RD(2Wd?={IfB2qPhY4)J`5bFVC`7(}w%LF`SbQAsCqsIZ}^2 zY(nlV)>ov7^|v7-2!x0yEc0z7lzwWUs50e*$9k5)9XiIi+c8Y(S7FW%5d3XPzg0UtdtD45*HnIQ=-J&$wNFiKD z$LoS%T8GCO9ol71ED8wd6buxt5p_)Y#eHNt;|@Q7^Cv7FTuc_K z_lQ;~McO$2hR2_6H}Q~$G{H_RPaBagMOqrK*CDS6)F~n79Fz`xp+u$@s!wVvOwuxr zgs1daHK|#1Sf|Z*t+UtmMc~VsLg-s>C{twO=4^^? zOfy9^)o)2$Xo_tTlo;2p?52!P=kc8#fmGN%8uoXyl_uV$GOyY;z1NnzGr4#bFH706 z1i1_ad+Edk77L1&^a`nKY!SWABD{YW#!I)6lNt)~+yQQ7UfV~dHk^&xP~jM>%2u;D z4}qCvj9NgLpJ)H@zL9?0S+cmmGCgc1|yuo+^sC2P&8FTySeA4@R% zW_tFxNs5OuCtb>67rr&Y3rX-@R!8`GzIvHaTOax2PdV{RcYXQdZ=9YOCWB8g3PERY z1crJ%)B^by7@2Im3?Cq|#*)++$^t*3Fmuf^Ze7Nv$_K zK`-f3p-McSP7_S$gxh7qXEiWC_T3lXQhXU;Kk&mp}U4H4(G5AV1tvr?> zt1iMH*8U8A*WQP5?ytQ9M-eQhVC|Lk>D}u<3t{u^T;dSW}KMsXJ+DHA~iQuTyrOW{O+pP+4m3 z)Y|Jah(>}#k5+z@)l<(@Otmq&2BKyv0IoZ@&cIwEA01q(;8+7&{RMAdZOguLb<`Wf zeIh~`vBo6aqaLmc_Vd492Pa(c9U`}MO|y9Z3@$`i6XtY)10K9e?N$*e=pLLb&@l?X zx?#se;-O_pJrBW%JG`xGNVbT=ahgx(XE-Op%lry^xHdu6hVc4thy^yH=bG%CNImys zo$&X4RXUKV$wy2R-a-$zFYwstbjM4#0yOS%#9bxWYGVjK)I+1ZfBX;cd4^a-I(hHS zkCGOub8`snge+jYa1g{CL540F0>U`t^O@7f5VgYrNCRD6axs1a8X>6c!iR{99v0bY z6$6Q%uHg8sDqy7d`Z$8p-TXmThC2?nsJ+gB1|mulx^!wu2R(qLfupbLcz~OpMEbSq zq6#ZZ@hkU@B~PPYU7Tf_ZjqC&(yUX2K7PN4@x$XboS+6ijvV=^C#h*JT7&`J z{xLx5+zDY?8eJj{9dhDA4CuyW6!qx{kJJ&PHx6ZSu|?H7UIiCk0!uE4c;P@UF(hET z2J;@HhC3B}$I*ATat;X-QO+^CBq-;2oyjwx?Jf)D&OxO;a^P)HY4rDyP-#dr{>Xs` zFGia2LFhH~4$X$n31c}B`}_=yO1aIwtCV+7s+L3BOHf(YbSN5Q?U}ZtZ~h1=n>xSHAG zO$@W8$#qydgsx$9tp>A3-eY249NoW!X%vP24!t@sT1Z3L+a@Pb!V5kA&4tLY*_xRifgA*)ChP-1i%{U|_ozLxsMeSQNwjSS((mGvjYOD1U8YQgO zsW`$nt9r7i{d0|u>_7>%?=hg#tM;SzpNzh<)jlVSquPIZ5gY~Kt#nmdUQAO}pr*mK zMMl4BfE2#IIEB;H{#+3pT_~({e3-LMFH%(Q6@j2VKq~JkO663w|3DEG1(6N4Po)v{ zk)ZYy>TJHQkh)Y{GW*On3CCox$kilFJ{_Lm(xcrg&)1tc@gaXA<`<3wM=HPxms(~Z z6*61>->kpw5YFIq1hf+eVcp6?c>a{+U(R-}rEpm3O3wBgZm#62F&OZxmpz8lq~*@(U~1EVfjAA086jhkLCLu`p&j|oHS9( zM}9uxmWO{)cz&}8o`L~Z`mUn6BgxCZs8N4bWYnJykh=f3AL`EQ)WsKt=LwytNT!Ph ziMNm<7wWFz8cEVuepMrTMMi!+8rfcq_anbgMBl~aH+92)VG$f%sJlL*=OvMiQbp^l ziokKj0BLXb;C0`k>H$4++RHyDuVRr}H2zlpxHwKpeI zboG&{z28{`N5KdyosW;onk2PZtf>8$MIiaW0IB_B_s2YpTZ7@PA6_A#N(1O4h#-1SM#O*fYG@(V?}0;ghn>EfbS6?05jvu)I3 z24|dY)b9d%^ZAumo@q9bAyHnLzy~Op_mO&Wi$`9@{9N|73V+1~1H#=}L_h59neKtY zf}x3r7-Y++3v77dvmu`ZC0ZbD|DI%lPELSZihts7irQy)qZT7wTWkB>GtnsFl$VO# zt{BKfSm{;!u{WF1cecIZgmJVt*A&4~klt!<)UmES=#avz z?F8>EGWzWUr0`wEDV%oB+bx2l3x(CrizcuXVxv?^^NWhW@qz);`XxnaoqF2)rXnZ` zQX8keR2oqu2?i~p&aQ*0gcWa1NV3h;IzA|g+1z35Y0+^OV# zYAbF?5sozS)Hdo3^O!g}<>XHKNlC#c4Vg_hLYf)&OKGN=u}X7NOVxx{jU;3(zQG$4kYL8D=#o7Qd!97#%s8k=HVy z(yR7ksNaOXv&{%6i=&}_PZ1mi;jMIaGSnX_GWuT+kis7;PT@2|{pBJ!x=>i{Y-zHF zQ!F&!tW-_09~6P(y91>4zZ9i)s+nHBJ38~zXQ8(46QnlGG?hk_NP?M8sPkOu-L$d_ zR&miBGuztSo54b7Yx7TBr7s{TG>a<+Kccip4~A!~P7JMi)cVl39#Zx;x_E#{k;(9w zv5R=_;+=$d89(7=W@;n5O1yE~)JE+PmNu~TvT!Fg#Wq*{R6^`dibvKK7HkyB)n_Y| z19RiVsC@2-`^scfcA|;5oNDnO6rVQc5=CLq#?UCipiyx|7OjfcV$iNII&zvH+Za&k zRr@h$SEBE1gT~3?XwdE|f}cX0}*8MK!a!O?}nx>v3^B-e}7 z-XyLq44C z40miTS0g$U7al3nMFoF4UGnMrg|3oE=b`t%eJWqjxH3=xmDX%1deA8 zkk*$MrFE)(+g=1kL2ARkQE5bpB-povIty|8Hb}Lr6sQSHwrTo@3`JGQG+7=t<~B`} z2gNk)O)^b-a=w@35-MSuUdZN6%rsGPM5?SR)MA?6XmsSHwqM79O0U|FY5Fbnovk=I zSsYE%dyC*G2ydmUlWF>Bk(qohH0YGh!ROKO$l{eP16dgU1gd~Sh7vifeh9)Jl{r@SPn1t0yAS96~5uuAx*seI$5tFaFMnv@i)bRO}T_mn6Pm) zN;o&9;)wKFRjtK@J=^HWX+~VefJ(30j|sa9eP^36P8LTKHdO>iL3k@&olID($mk0L zq;R`9h0{#f{Y7wep>R$U_PQc)yk>y3enU}Or<$;L7eP^w+Av{M8c`w%CM==O0mt3d z;PkT6sU~>YR_&=7+;+BV`{(D{Q^-77X(ClT93~Qsdjg<|Eu#b?nOKYz4j;J3Z#4;i;Qrw%@h?!gvhEfj|QP6Z0xfF>c>V$cA&&L-@h=R(yR7kiGGT{vn>%P zi=!nfEk=oz4!E}d6oj|Z)yWb)uE^-8qtT$w`5uqH3sN}E5}j8BM;8j85ISG*IW46) zR<0!avLditIzW0~QIy`P*67Y6C<<~L)`&_YiX_1rCDgfYW!0+Uo;g;wY59DHGK!iO zdw=&LX7+M+Z0%Z?M~0^${=FG%m$fNg^#H4yops=tn}Tky-RMX`55FrCy(Sm;MZSRt zsZmzGfiRuGWa+3Qj^MGl%YM6!2-LVP>s0(!;BCJiIYHsR$nz~fb>j~HY(41Uu^=VC z6WQ)qW4MLjxjItRAx$dFs74XM5u2Ib1j5rLXd@#*m$|--m$dBlp4*t0caTkt@)=Mf zw{~?e!AN^guS0#}$61-*vK{PX4lq0QL~9tbg_O~(W$^)9V*ZnI-aP5RS|*# zAk71U8~O16A%aIE1C*k#wUL_*U2}fLq2R)JAewfetisAKbw)-Q!$(HE@<^7zjI4~r zaG*kwt-XsR9Dy0jwX084={}a$hM>tQwVHvdxm~|6*MzzXy+chrghmNR1XQf+)2Ivg z6SIjUp+u;8`@GW-__#5seSssKze5C`J{pSPlK3rRM_dw*kAf!|ttmc@g5S@@ zQX!My;S@2$5mWI&m&sokgIf7n6EYbha0QpizB!|;rbz^6k$fve@*9k>Ruqy&vNAFv zjZB{cnPF&589e)*L>W9zhet}_u@Xd0{?4WLPpKST8M?kQe7$WeLVG45e;yho=tL^k z`#LB(akDX~m3dPBLIf^Km%l7VD3LSqb{4tcgUFr5XlaEyS>!Go8R2UVCU7dv1~RWBvfGDIOtGgIqjZiK#>)iodf+JP47vj?u)5X}n0heEs^+ zM3iPElMb>Zxm+ArQ!=#LI)@r+5$o}USjtJ!I;M-NnuNVNlY|Mee3AU-eOjb<@so&8k)^Gz z?Dj?@t56#m=*qHD@Im_6f92vRW<{O=Xc<2$pYzM7B1rye`0w=HbHQC}K|RXe7Tisr zegLinFA6{1gHQJc``Ojv0cXUiQBPw!SNZuDKXK z&rD|&%i$?^XI(-AR?$de9;|#m#>q1wtc?QD^x$f$rpcQ*7mMY$@SKUuW@ZP0tH}wH z1CfSy1-h}#ug)@-g>ihYe6?}?unz512FA`3f)STOaBrzmo4c1~VcfwoFzzUSu+u#* z;=z68K1TbSF)@}hw4kt$3Q4Lo7yYOY-734~4e0KOumyuKioBpVL!2Z(MgG2Zcgz*b zCu3?o5&vn^tg~Ds&6}fRkN^!kXK+4yMJDIu=^kZO|6FHXv}{O9$Fd!*xe{?V6oOy`FRCf^s^v4wPp0a#y!s^}q|O5y z%Jpe~Lr}W4K8A2EQ~rihtwf|NZQ0=0_B1!l%x*bh?QX0Rt zH03upgj^jwcWCp_rlE5N(PZfSA%AL0{kDN?grS+);feY~GX{YEF~2CX`r%;X_L#-s-GC9i2Y-yUL{jVxQHli<)E`Ih13G%kBXx^HCG;ivCG%GcwCHQ5s zB>bKIN-R+&Y7igKKZp-=8n1?FBv*&d;;j-IJ}D^w(+=fibkW85Row35P|6P|5F0}f z8#NGrZ3j_|g6JIAY|qTp8?DhMLP@r6YuB+B%#qz!o`bw`u*u71th}XH{|hdjO3CUf z;{uJ6Y3nRyd=@F3J139Aq@dfAE}c5pS&DjJ=b$9UMhUK?zLy0%sTF|^o=cyWyg+u9Tu1NxSi_QX4MZxM{cdEWc64O<@~1VcUkhr+C-W zx;x-qG2}hFGF2X={OO3~)-@`+UMsa*^>OkwBD4_<79*1bW9f{$M>AB|Hi6r@aZmtc z+2OYvcx8V%2HU``B(4g*YZ`U@NZCTX>t>OvcN%DI-nbbr?6+(gDwJETndb0@4Kq~B z$MgQF=1>it(9p-nH?Uj04OD$YxzsFgIR6~~X&axm@mxIm_s`k91sTgrn>LTbre^`XfWBXF;B1o(HrXk!I%?*!qI$KNlQ}Hl){Y09~NW ziC%OoGja^RAMO(y=a6b@Q%+)wV5zk@y3r;(1-I6R@*WM0Un*n=%nw)W&gN^BI_9y+ zSePE4 z%uAG2Aj)}YY}=KQ4j2TrVA}~&QY%d=?vh$l8g|N;;`zpQZMfih+t|4ci)@DlRwWLh z<)0R0o$A6c!_vw_+EQo9Eib;DmR!VQK!#5W8pQYzJan4kGsiFZqE^(IjbM0y@hb*j z)3I4&Vk4(av{-R|cNWeEUj;11#?@fs4UGB0BN`H7*AfbFCpf?~!8Z3mf>gw;Wg#Z> zHxd(K4Jdi5!!-I1(O(kXx-J9{cd_bu4gfyK0bHA2m0ed|9T~9Zi}$?npn+!X#n69^ zdX?)x{)_L`+pU>4{3QMAY(GRB)S=J2l|*3pz623JQ>% zYkH9qjW@+`xzDNv=eiL z6D-RdApoy)03hbbTzb{mIg*T0z%F->Uc$^~cDXCm11VZUstq=0#uQk{& zpsR8e;^7RL0U4$3jlu34inRjcgzPIX6 zOyNLd3~HW%ry+Qgjrz1Va&u+$`K_~A_jkbJDvaD5jJAeIJ`o0sM3S`sOdW?#V--Y; zq+>bS?z3RU0yv$VQ7v}Z)x>D%=*h#)TxFUT9M9_;eELOw`2TPO9Be!~Afy8?Y%%C~ zh(i~R2D3CmN(GJvP^Ny_6oCEM+UwJ!bYqxQlR@HuE`0hR$By#l;n)Y~jo>|vl2d&v zlKAra@<`LbxB_~Kjs|<}D18(yHckV3L8cvk1zc!E#+pE5uf~{&m7lfQiw7MgCNFX% z^V(_putFJR@JVR+KM_{dl^{V(i5;~%Q6wTnx=a@pBQM0HWP%$zJA}9V~>o!*~wYrmr!JDFO5K)?!G{>-| z;~<)1ZCm$VH1X8(w{bYMs&-QPQx{MHWj$x>^s{b#0C6n-7Dl@4^FYYys~;&lu-rNJ6I01$FLhz;P`y>lg?<}^Z}I|fVvt|5E6&p zx{Rp49tf#SEyS|xSfd2C)(o&;3ZpmDY< zVQM7?kapwx;6b$+oGk^uf|%E{OBw1yU36AJ@L>L63TYxRkcIA%i=xvCboc}1td zUMW;2D}H0{HFNTcz0+W)cyj+9qsK$JR#f3MV zP_4Jz{n;b~m(&?rs9|i+G7SCx%)@Z5V8Y>af5zn~`Lc?xDa|`(lD@MX0EqiDKHD`5 z>z{C%^0;-KbdjL1f{%9VS}25(-+|+#1J&Z|tei5eui7C1Gau@1HcQ&RidhZw(^vXn zbnY{XIRSRvUr~=wcj~cgkA*a+6jSt z{N&tkF38C_Tz?;@FTco`cls*(;O@NBs2EO&EYpY%f;HC^iz_D_VB4dJaZ9)JP)x|u z2uBfIu~69C>Gm{#ssd{h*F{7A5Ih@j2?WPYTrbnTdTGkT6Rm0$S6aAM!c`9Mj5!O) zp1Ln6~W|i5^*YN{I02sap1ePM- zhq91QH<<@OyFX>Lb26DZneDU3G?|GxZ*%}4Oy<|6S7k0|4@3s6xn=%_$y;fkoQ23} zz-Ax(hMN^UZlgO-a!uDJVv8ngbqX0+Tjgm_yn8Eomt3>$S@a^R#2f5|D|UUacVlZ1 zt_bKASFXGH?8SEk!`tVb?QIh8(OL*bN!}}$v$MqYxTaknssny$%gXk?~b6E<@5=?BZ>F**< z?Q$YQF%mo$%MTt-!eCfP4WXnuI#8=x*B1>E>HlO{+XpE8l)3a{be=R-%}G{tGjlzefzMjbO{UXrFdYcwSHAf=#tZ3;GoH~FEPGIlC0NO#|@ebkuODc%aNx|)ag|Bi;reaUzq zJgg)0?&L%qNp?cVT(kMNQr(HJm}VsGlgkgAV*d}d>@zC`BQ(7eu>46&f`KcziZ;7 zTPT!5`l~DoNjD|Wg*N(9y7?weNv^oEn3AOKKH>mCn35k%ubN^?cJ3ifJ~KL1t&f$e zw5ddn8@!+$huMW2tz-+0Y&aH>B(&k^B%GOR>{?7$Me=eC7N3#NSb}BStuzazbGM1< z!NN1LiCk@9B{z7_RyJSky6Dr7ev(70J<3O+Sbl95mh1YF_guSC-ZaqB7VAYf zf^a%TnzUOHu+uO+MxU-XDZ+q`628=CW118ZP=$`irg8X>Nc4#F#EdoS2|f}ED#a$5 zuEP(3IU5)~bNg)?FYpmjj-K`NyaH)f*vL^`R6FQ2GsbnmDHhSl%<>CGN~+>WshW`Y zWSNi=9sCSTnLF7$u$?f5P~f^ zzy)cMS!i&tSZ}Z(DFlMSq8GN+CN7EjY9q|#I#Lx-Y86BXLkM^*L#&a)hhis~_fM&) zXjrhjBmkBOQ1BEE-|aqnG!Wfu-|0?Vb=EL6(xp)ATT zveI4(_4HY$bF3@v$e%#U9v3W_vM^f=3ko+o5Up~| zhppx72*bkzCJVLoCmeUV$EHvaG)kb~L8snA(=M_GKhYv+a!IzV=hXsnqrG~ri6V^ zM$pdGNu!~-8B z{H@M5D~>OCd;=RH+Y5tBWR|beA@$00K}U}nx^Ms# zq28EjCG~)0kTm*fU`tB@=3}om#kyYkGJZKv$jDG52|F((p9MZJB;SJescS z%sikNnVBcVA|$71!mmmMzXHxVhsBG`)#pG+9%h`k&(+BTNFB`F0|ibI@!MI5sLx}f z;5XCfj-1Dw*jeT=0rsV^2iS?W;6DwjLTo2LT&g9u{ zAAI34#Rn+6$IgJ1AdF=Z1YN^E4^l9iuGOTC!v!Xbh9xn(!U2HLu$QG*P0_F;OBOF$ z1dWQrM|#8D@~3Bnd1DrOTeo_fx;1UrRc z_bFkwU6m5%#Zt+(A(AUzv(n!LY7g0W7{9njDfB`%toz5>K$1`N>}K+ zAWv^)^5kSPbJ5G9&`DrB4giEge_49f6ouYtw`Y(k-bW10iHR!yS8Cj9aWr7jXTnWu z*NnGU$F9bT6+P?kT&@d)_D{k}M^yh7{xM8lvT;Zo;hGvd!t;#2$aRb0#O9}rz`~1=O$6>`|0yR8e5#OS>`4I_$vnh zVs3shy=vOre7CrI(7k{3qKu0av$CS?VGLcmZ@k*Zo|S>|u08+enFa;xq*LN+H*LK6 zCjOP3BTGvQc3Y?gaH8xso!_CuX2y_SkZ~}O`Dp9;8%jh2tkxlgQ8OZ?N`%+FD8I#0 zf{-1D_Gt%JzaKOHY=)#hCSeuNlORA_91Qf}IY(k^l~cu}ViqRpdWJZ37UPhU4ZxY1 zMb8j`wGIG;o>`S%HAT;i{O#gJizX}k5RI`qO6j$mqudv7bP~bqs-xUyXVL3uvv)l` zVMCs8+RV`lE*T79KzuWfz>6~cIAcrU2Ap-nhAj;*&dbQEc6WiR~4IJ9RnX>6MDW^ED zkSlZ>O(%I=|COr9ZVNxhvOkW*;^fPMpJ28$>X0wOgo6bR3^0Gz;Y2(dE?F)}%n*k? z9ES~CUQT+&02;A*VVR0W1_j z_d&SZ9_)4c5aP}aTn2!4;wWXF(T}WFD>Y>0ie!{2F?~Z8F^#M`6$sL6nRHlJolfVF zqZf8shZa(bA%B#GA-dimZoDUbu1dYZ8J9(G5P&%c077rvpI$XZZ;U(}<_g^L{OK_~ z%K%chEyQ2!{4Q0uE*6%zfg=_`y}?YQt~S?y@b{EY(uvD$qjy=uy8*ZDPE zK1(wVv9|Fq;(%FuwCrMMvK3Etfb;F0Sd_M1bFDl$6t{_VI;LMo40!&&aes!rL1s4= z+<~KlxTown@;IFzMc*CMn#F#=x~O%wg|E8`3*74KSkUSwZ#4@}i&N*Pl0Z;Vs$cR- zQE$3k$YV4=NW?L4NF_~VEmD)5$0WwE71}FTs2%pH;q7 zEDG)PMKf9dpI<(veB@bFJTMH)@EkSZ%Z85Eg)(l8#ho z#;3)fRbSQ-a6= z3SZIioA5%UBDULr%XST$it$pri6~u&z{RsIl`E7K5_rI~1<|qhxdObjiQJIb%pj92 zZwCY^ZWUfXqGS9x&IdH!eEm* zqEpXEC%x1GE>+dk8HdE>^~1XzA~eb*HpXsGm8i~?v#cO!Z4Yu1N6)1Uwj`POrl|7# z9;ng=RrYeKT!3_XasqWyr-Z~Ny`n<&-b{!N10R8%Py}g<=tc8DdK_o<+Kn3U>$414 zSM_@^@Ygc7IH`Kh!DPJ(Z5m0nNPKT`zUzv!Q_H5N;xtAU6%{A#nx>ROrWYydek==h zBfI#$82^X(_!nO8Kc5LvA@_uxquf7ZUf2N1@4X|%o&S?%(7NpJ18e>_V~vySb1r6) zed2wK0Wge)&MjHi%Q%wfSu2l{K&7m!0!7Q8Wuaw6(rMlM2_LOh(z{FoiBMF-cUM%1 zF4>=DffkZZ*f~o2mKv-+N8l+H&nnY)LhtGsZLO$0le~{b4*Pm;6{%B>$(53+fN&emFC5qNn?G_PjkLH4+h!b-Hodb8v2*qKIQ*nM#s8>gX)_B; zBD3^GAX?pFmbMNCtr!7{unn)7Z|Isp?~hQgyrQ!b3L5EWaq>|apL@-mR8_$MPIf4# zBrsaMUhCqOkuKEw);Y2=vFV(-Qu&E!bt?Wl4ga0Kd#X&P)`hMWHZhI7EkGojLlvycDi?#R2c8^3%%}aYrVJ67q zwsPN&a{mrY=9^cl^MUd*#)EZq+IBL?871v<9E-vGxjDCct{4Pp*csGM-muD7aHcVh z+x{Vb8aKpKg?rOJT&xjjwR1*7jUm;~TzT1!)?A4Qvl}2VM1^zbEgQ=9X@5gdy0t!r zCR6?f1pA^`gQYDS{Mw%8hMCzd=WnQ1#_$0kYg>lS-#{Vg2WLv-x0c|4z9B?l@Z6!z zLz{-q8AOwz^N0MYDfQb1f&R?wFk;|xn}wMy@#8bFXH>0sQMDMfw6c-H5sMaa;%JSF zIdm#uS!IKbzUHzd&Gnl-pYN_yMh_Ya+bxOxvgwv{tyE^ z+EgT7m8gvy9Roj}Q(87m3d|rHn~#HuBr#9#OthHKKGk${Y!;1`UzsR~b!rg5@k^?$ z8+iocV(_RATL38OvyEojmr#hA_I+j%1glr6b+@y4s|1Qq3d+yyP)YqpWxrO_Hi9@j?ewl??H9Yj{%aIo{ho6^3mo054`+Gp|x-xY73V;_=@H{0ELGirxo z;|+(R^M((Vc(X|x$g~|qR^D*1J@IC>VHL*l=O|f2GDsCD4!y)aFdK(nKCO*zedAcg(}jr?u##71p<>oq_A%O+bvl|l+8JBy zP;AWNP&8&O!H!>!ihWjt*=7fmbz*VQJuz%u!pTG&-;Rr^D+e0;n;Q5o`@n5ne4aZO z%XTO>E^;VtT-;*^la-4cbWdDl(@sA|ien#}VX~6sn^~wBcAtHWHio^zonddXL$NW8 zLvdr+`|Mz{GK_=niD5^xsl;Px&?#RWzu4*}P68#nj55Wo&)ElP60mIc&WBnLBTnztn0<*m%pKXuLg= zj-}-w`4=^u6YPMpa+d?|iMuDppP$Du^_Z@za+oo{s4)-O$82NadNg&kVJ@^ov9XXt zab@8Zc0gHK$bt97!ehi_qZhjT#v+b;xE%GXm1%Y%BKc;NDUOZXhiK#2s5{4QvqQ0Q zj6=~lwv^rQ$YF_ZYCw0|L1pC`2j3IVPL9g~!Vc5pcz1kUZ8_TbAJyPrXCJ(cn{)2m ze9#WX#!U`IWL6dPwb z6pgdi$@(Napsal5zGtXyaUJhhk$JhoZ49 z;qdc1JBX|d<6wJY*hxvg6mg6@E~c{NUhHp*g;o2=Z7eLiv+#C16dMaU6pe+}nfEd~ zpsbAKz=V_3qR`?MWI zR#tJaJ+bQS3|>ibe0+*qd&yzf>WcS&V<(x7_up{m{Xf{D*m%#OXuP*h*8i{r$|?aI zcux{=bi~yxj>`pAM{-gxQrud3Z*HSzIhs1Ijwjop*to@^xN@t{4k#;8Q+VzM6aj zhqt2#&p}CNZRpo7T<_!^DB`S`PwK79$iYAe=FQgxQ{T>!RidX_}KvU^&C`hRu zqrLjtcFp76(sMz2|AXu>C3=TP?}1pzJ}M+93Pkd&rg~ZDT^;y=UBwals!NB zf{<=-=ONKJ?Um{XSf?>lV{v;-2_y3-?;J5R3o+(TI_6AKylXAQ>pLW9chjdw=+leB zPxs){y}^F=_r>&=WKCg8|O1A+232sn3L4JPO#o7HB^B1d^C z6PGxQ|1HG$M{P714t`8w?Js;DDgGLbj! z`tpe&4fD(`7csWc_E`CBbB-0u8)ZS~v|%Wv;agPS4HgvVmSOMOYcAe?@#TEAD&HSA zSeMX%RScR-)PxR}yc}cY?+`R)!vSb6kxQvsqAPK+{1zcUGqZ!h)#L`rLjy1&3yaZ> zO=vYe+99<(QJ*eVYIDKSXxCXzdU|%opX)3k7@d{)?(dtaR>mu>xqI2qdlA%U?%v=& zK-&@APk+lF)Rm|h7xCb}av!5Tg`NH{$Ol+(Oy{VOq-v(pkNVJ+L_}XwQMVh=-LJzI z41y0O+S_}qGdQ2UB3F$_rW2I~Ji=1qImCxKB&8$z@=D<+UW=u@YwA3gcU2_aK8d$r zc)i5j;-Jb$NrQ_QO*m+ns4y)|%cx%!#ZBLz5FZizZmf={TeDjSH_7)gw?kKiqPzLV z3(su%`&z?Z9~*4nMFZZ26Ml1iv{{)NZQ{X~KkS87yuOPr!izS@FTHvcsz9;s84;-s z_UoV)d(xJ}C)McLkwy`(`TNmDmwWy_r0(#1n~8U_fJhJdSzi6Z5K`xX1M~t;NJjDt zxQOU*YwC?U*^Y_IUby1M{G!OZI~;7>+lpfFZomlMgFnXFBPsTVD8+)Cs6URL@xW@C zlzOhztx|VZoYyAb-Q zhO*NRBrB6R;EYU4uP)A`;w^*uJdYBa7#R{Hn8v))HcqtN5(iKUm#zb-r=d}{11JHO z9YB?r@zW;)9kA1<7lB6%lb7(rCia<75ob#`p(dGYu#(TGkJwAbo-Gx%NJlq{Z4ck| zOyVF28-qp(8w><-4Fk7MA&Dd9uHeyUaCB53r?h($9t*^YgP}%!x`5!Uh*ITKmD4`&q~kT#BAG zSUA3VfZF$8xfGjqbq0Ap1-rS{Cpj2o=OI!yCMwPGI<)1ih*UyR;Atz_sEk28Dzz{( zYY#oBvArY9*w~4l7|k+mjK;veb17n|mAvapQ&Y(6R3GrJKv)!vz`MRu4gBVSx4qOr z4d1)6;kTOOrZ@o+3VaLvt_pZQ$UOd~`@5YoL>9B2*b%U(ihRZ` zmQ0MQm0E}-hGbxVvk-PXBx2IfR{ZJ&P4W`Wl$qIRsM;br4A&eaJ{}0?UenvrKg6Pe z3WJb9O_!RtQiQ=O&7;ax4S5bHhP)f^OOephe;J9Lcq4WIN!~uW0!FPt27JyRl)L23B2MvkVWj#J`x+2tiB^00B!`T3_MN0+B-$bkX5Lb5089_j0W{31?U=U#iCxaTg7(=_fHn9`8 zVX@jIa#}4kN~BaV?aE9OR%n%Hu?Y+F(bOtb?5hL%8)0HauRy$F z^H#Rw@z^D~ZgNo|Y=2*AdZvmSc2R2xk?gQP;y3C;SFtbG`cn-Gh+eN1`#m}sD^coI z)S^9)_=Wc_G+VP=Z&xSCRKo0*dmZMTMYDYr62mm+fLHMc3S>M9rHk%G+Ew1aKpCfP z$eA}a;63Y_OD+!U6rP1-O3g~Cb`6i$F0cf8Y@h=q3Kws`{MH(_M3q+A+W~~3E_e8q zsq$F8(G(anQH|JQ-Pc7zfp-6(`2L(JxlI4q}N{ErIlKaYS) zR(zVR_DP0za@AgRfB941QIQBp)SHx*B_1icq+! zvCbe}33^3ja9}&bYcc=p(>PB@A=5rJ=pHDDDI|jMXJXAC>!sq)GD*Ccs6SzY>zb%k z>^@NuDXAsrCHt(VVd3}8j*{n=HVv1fk?WQztEsXIeWy>ukSxYD?4nA{G>oZpS{kPn zxuUJprSnJgC7sU-Z$z1hVx3_w!f-V%PWY20BzPP4;BLl5_j$|#jk1&M@vAt5L?md0 z&c@%Np;)=q?pEa?KnP7Um$qdR79qh~nXq(8Fcr^>1V1m*k&^^p$B;^{+RH*Rg1*xw zn3E+ijyjGQ2%YulqY}GXo-qo-hYquGhbu=(A(HAr6)5O;=7Ii#1*GuZ`6-NpC?VnI z?(wyG#^^%fmD=Q#pp7y`=XdA9;hhUe=lABNbMT>~F}t~MqM@NblV^y6%!psBpN~J{7e1877^Xr(A3WqrB?3 z9D3cwtIF$d`AVQi|8ACVgZo!tGo|I*FuZYN^KBS4SkejMr_q&fqYLL$ukUyA<94mr zB2Ml{#qAbPI01hQ>?i4B3-{4YZ0p9$qpdQwbuxbi8sKuQ!S24ATQ`e56(wddZrvnv zUmzqn)?ksump;mH#^`4A0Fr&-o^O<`+0-w7uZ;${F3`Nl4JTlhQb7`ePd2?sDVAej zX-*Y$-E+*cuqN!}fMr<_Y(xFua7j zeuiablqt6Nha8J@Mz?xBpM|D23qRuZd^)Rcj)R3^)Fw{MSYoSSJYD5#OxyC0X>0Fe zI;Lyx3l17ATBX-w6)+~VPz~sY`~!L}r@D(9_mmxq&4ZCc(L5Nf(aPI)Kv}&QIq>AQ z(m@W7q4{Je=Qy6NF>6V#MT-^RUTGhw&GYo-?tFWr9g2-_9E!%bBQ}STuIZy1%6siV zvhs`r?ulnCBzd@c#__8_L0)+c$t%4`4el@PgR}AJFWmX`bvqOrpEwkqPn#5<@KFur zJ9Z#h`NRSD#HTRRi6xr`UN(xIKuo5SU)qOciH>-5RKTf@=ye4Aq zr~;)A#_Z#=G3aJ@2F=)^*cim2Xbf6{eU8)y?6Vro3+-UCGKqukiAigt`>{Ait<);X zkr`!bgs-)a(8jLUxU=h>b|^M>aVQ$Q$kGd6tMD&sIDcjbl$Bu|cux#l5pI{`IJJ!b zDw!m|ssVl3J|G)^zTnQE|7(Y0;}3_T@h9;u(ZAS%WaSM9oRK%_)x}#Pb+8b4WDfA> z&I|aKsB=u$kxxQw8--fe)1nnXHUHBh=KsfE7ae^+t_z;K3V+t&Q%64K=CN(W=}s8i zrVDX1wvD78P7hZK%PRi;QSi`d>SRP*3>c}gOBC`(IHK}!DeMk({+=eqCcNG;zfk2| zpYLv!&Ugw~rXNC^Cu{nn1iC)`Du|9pPX{Uya8Ji)M?i+oz~~@9k95h3aKoTYXIF6^-Rf@+LB^fyMTJhd)!#^s`lN;>w)W&!-`SuYQ!1Z{9pUQ``HV!IqsLx5 z8|Rk7&^5}Gyv$}Av$%S0qfw0iITh=Z*6x39ah`Z(q$9gT3V-ugFr<>J>Q~QM{mt)3 z-}==vttc!)kl}A0lEt`B>!M1`eOgSNCs#hv=Y|srG1s@_O$k-Nv}rEdwAAV@|tk@!P6)%$X+pgMm0W*=xpL4OnBx?hkn_J~NF`U*zZHR^_0#2ZWeRni<#VHXDWf#^)!Nfp z@%)zV=3~V)dW9ndHCn6&d~+s=5Gr^V8#C_tOt&H`b{AEPsnLvdlq`ERe}tIMFr<>J z_9CWj^qnrIAz2JD?V?JIn8wsODUt1pdC_L+(t3Rgk({OVY;`52Bvq~&{Hltaha2q# zLDlcCgple*YK-sABnv`7A7sPq5>P6h7Xkf?NJq(1rwQn%7*feqdlAsjqVIG84as5% zXctvt1T?13x+HEZ-bGub%jeruXyh!P+nD1KOj`1Ak98m3$i0WREq}>d}f|83J&z{KYUIe=$jUh!cWal;UxdztMZJ|g~Eln6C(2LY8 z+noo4T??LOE zVaIOaT$-%o#S0O+Qb`>@@`u|N#GQ0FY6&rlBsway<{gFsVR^m&8`p+0r$yIw%`yWH!>1v;o z#Zm45Rh}^l!dvO8UWtfRUlk~}eXpclhpn%@{G}i!b-=77w~$KqViF% zF(*W_aBAkuQZ!m9^QC~kbIEa{+V}DdQ4l$z_NmlRA2Dh_rp~$f)TQE5w9oV<;q@sK z!P)G;T>2V`1HO36e`qte{jWoip~@tp2i3;K^Fc%t@>t-pSo2@`B}q*n!D)_*S7l%>s^oR3OI&mTR zQl23SLPr(?DmBzd%t8=T=M<}cRLqDrP1pCArf|Yp-`}ZuB-&N}#&c73K4RVRz>X|F z-puH938C-y@pyUSZiqrf)(glh#zPUut`devq|g>dnWEe;B8*Aavt-YRwc+X*m$nojYmq=G`l$u9ycx^t#8Ro>%`S!Po5zPQb$$`Dm4^I z%xV!+XNP6A$fH>m`=Y?o*OwnN6=_vkZbwWn;C|G}CrmO3iE<3O_?qXkAi@-K3%d!t zX|7hrnDb1vDgq!6d6)1YChE;IMd(8KLc~5T?I~4w1Vbj*krOEC$t~6u`Bf3?ZJ7i? zEGd7;WW8%ip<+W4tZL74{`ApEM^?_r^QR9nq>`)lvi0~l`c7X?I9VK*ldt9(qaeJM zu1?FzBYB{IYXK?zz5EnTT26kMXN)csHbRt0i!EGYjKn1?9x$gwvUqAIP|MJ0p$wyy z=sTArCoUzY=NY0Pb7U!@QbU2nEG02@b}ooERXQ>XGJQdLL&{7sH!Sx4DBMXk-K$N8 zJ0V|Y$8aYjtZKUR_3~@|R=ZIP1Dc256^U-lBm~0kdW0IKxm|}@K1N=Oi*4aC?G;On z27-Je(tfjCn(@72O$8;{$#-s7*Zje9z2*6}ab%*LkUpw1oc~Y(v47jmQWXuG2oTmp zs4$+nvecMmfx-~aw}srJO|+y61PuNuqb&0(g0z$-5!8f&X(Aff6oB~XaiTIgIXX2u zi3l!jMDS$YT!J#cK^1U=)Y|L&$lZw?2o#0WA8)rRdwdqHOlCVkP~$qHdD6-*W9qTo zHU$cKPKQX-xOb`}(_h5^;T}JXJkra7q{9& zX$aaRJe2k`xMH1pP|#Va0hWe7(#EnBLE5S7?V05DazMZ=+>1srE|*lSYptNQT0`ix zl)+0RPqorWL%kCLXJ1m9z(q&>Dg7)?dMdTm)Q%3%uB|AWf_NB!28KuAl7)YG`MWGAx{pXf-O#pe`=&wCkltT@Mu z&l}c*L|hj$!C~r{%gjO7#}OIq9P+qERO~99wo>|zlH}H8?+2M=PfUn^WGwI6TT*fI zgjl|wGgxA?lzr7u`Awv`RixxJ2vK<{p9TkCa@4en(!+ULor-DoT}ERo4dSQO_3PKi z+7fJz!JObTEU!JG7WXIqeymzPIT5^M{0Xt>X@cNU&xvX5qwfQSOrDBHF$+Hx>wTFE z|I+nD5Q!K&?NIF79BFFhg_Oq-jq|uX=Ag5}Ad0-R0G$Q_I++o~inJy`$z2C$!=?`g z@P~Fpcbc|CRm@r2R+yU6i?~X%i(Sy6zf_n5kEV!FK?FCnY7lohh z!KZtJ{p|0H=`TU9A?hEKS&_l9F9W(VZ70x`$vnH!W!X2DvUDkN*wW7&+x;Q7>{A-H zzrGiUcVXLE7iO~<{rYGfKiD>wSx~QHWcFuI@lxY+r_ebyt zq)m8`OV{ikZ=fcLdazi23x8g_Y-V;4<1{%*awPJ7ycXTq=BJjG);NECC)#zeFPmgZ zSvpGyM%)|6y+{ikn7$5sC8t^Wp47j6g1T&>^f7lDFczqXL1PP)2Fy@O; z;z~6CAtIW=ejU`}Fg`mzsYXAHG%}5b;C^&biY|}$pb!F0@S+QhUR4IToaNOY2_bd9 zx1n60_BRBS2^VK}Q~m}p6SSQuZQ0=0_B1!l%x*b<11{R|p;fNewhW!W0WpmIK@jBD z(v;ua5DM+!xkHbDKuQXf;qCc;p1px*9Il4g@RD|jrRH|jh% zH$*$8irMq%F2?1(~H#5-e(7zm5Usa zp162)#3+p8-b$^G9G_992KYJq0ByYcj63hXVTWSl9fzXv4na!8_c!db8q6bhFj=|9 zLHEWjX74JCJ(gQqose64nHu1)>;trM>u2uVTK+nlJ!Or}%%SMq!Zt+?Y6*Q-gE_$t zCM&l%=$^QBJW)Nm4T@vg(UFRBgk9xov_tmM+E}+9O&zU}3++&B6OBXBSZ7_{uCN2j z$~+FdC*~bZn^`?^g8>vY;2lyXVZgrC^j~6C>oovVx2EX#6GLRe8>(aE0Z|r zo|v?j@jxCp;iM>zQJj;ak{p^@sK)pe`xtEud)S>}-?T%qF^oge877B~qp2nISqEZ-6rCr~Ljpr$@G&)q`U?GH+JB$##u7hjQ<7^3@}k^j3^d zg4b-1m%UQ6&@8tnClT8jJ8Tv8fgK zt=g;?%BYHI$L?C;g)hw0A@6GVvp1L<1iu$Y6$I7*LMX1ZyvYXA%Ol7%O6mSN6sE`U z2$kS}F{|JQ4^xZ&E0-985ff@Z{jo>k8X31ceD9$bDI~w01<61>`S>O^3Y8BTF}+3F ze>UAkMV?#Al<(eF?;IJqg=*2e3ZBjWx>l)$HzVT7)@Y+PB`?qSYsm>Z*2}D4Wg5PC zIQcU)ig6^QV%^(Bc?8AfCAU1BT=ROfBl7|_qA}&e$(3ki_2F58wQr(6jkhp!S%dDc zMc?{!Gqx(-zeFuZaMd|6;AC-pIN6tHjDqmJKb$--5A<_0P&hafmE&BYn5Pt5?3pK3 zi$c-0=7M2V&qv|KVY+vGQuF$nJR@|WuMEz@=B3<4n1u?9QXVXBMk7~A&PwO;ymU@{ zI60eVh=S0Ohm%xlD3F+klQDJ9xGr5UDwae$NVep;Id)?3A57g@l@N0i{&%hx!`DB; zWi9ld8+i&mgu}~gJZ@_>Vj^`xuIL_E#OW0g8{xP1eD2)UH`_PRw-5i_PXA|L=+i9! zdVAj;h3#+$BjW};1$aeW4&!#b)T%eQ&9t{%fn6kD4|0b%yvUpIXZ#xT@IrF-QnTIg z3zrv1F7R&fUf}KOXOUrq$%B`Q^>!6zlP_$cA@A}@hB4BfqbC|41&^uW%_6L~iJ`)! z`(~<8x>&l%`>qXCD(vkat17Lq=}ME5aPW73@loEjTYljss+B1IzB7|NiWTjxY|7zC z&W!C&#fCsyHSZEIR4N4aSt0d_NJmy-k}KLr8B)nr4Oi5R`u0=kJ6+#$vN*12-^epY zL3k@&ok9V8KM(Xr7LdaKn4iK)p#Xl9XN)csUL$Nsp?jndM~js_uX=+yF_MLp_UbZH z5*jVky0!*==aT2db?wP{hA4;~S=Xr4P$MzxT6dk1fbYdW!c(on|3VoUE8j_GwJ zR#LN2(f686lRzw{SFw5CwU|<|F$=6p-?Etck&c{{&lp20xoR(q=@j}-S3aC9j*ICX zdB!LRZ>6i#V*1KF&|k5D6uv({g_9Q32lI^4g~G>$F?7`2mn&-QZ)&=IG!IT6T0pvg zJTKi7m({Q48KNM2WLc$BL!rbht1)$Ev#VgNxl)bOQd_`xO%bDrsbZAs%9s_K>R53) zidXu=b$JS#ofodRXsFwxhl)f3*xwmz9o8me9iojN%9=C&IO0m<1f2GPVPZLUV2P4K zX{=eVwsB&~W4qwyh3a+hJmbTQYDmk;l;DE;n}}E>>wL0J#hUdCM%}J8i;4{qv+CBA z@S3p(P*KJ=3~)!`nttQ&XduHS zMlVx@c`%b`h$ZH2O!~W)7%Dbo!>R@?w`QM=bY$g%Jd^ntLn^syFWaI|qwnQw5uuMnrpnyuGuJJCj5|m{T6If>;lyF+D9DDb(JeNJSUS7iG^r8ndcl-eAH9Tej9+Z?XRs5rS&%>6zJ~8oAa|Bx?%fO}-_4q4#bd^Sgyt3OSwd zsM4hx0H8YrKEh@Y4xty<8x)heS=a8=&|jf4jVRaCa3n^TjF*x06Z)G@u_o(9N>{A; zLsR+{&!h3Gh`C}pE}&72HzgGtGs(JaSgy;?jC5p2N*p_S45{R*y)4IPq3`tNn3KhE zIldsz7zN?2bah&eugU}c@&%;uj{Fo(T8=03jM0U{k%d>xuSltyV(mP5G!~H7d-Kvd zaXJ3IJVO+ujx5JiYABJIyHZe4m>i9~b&>3h-T zDe~aF>|Mzo$RZM+{UYsr;rp?-K8VP7Sf8}j65)0I2Cl?nS0439UCawrpvM342$Pew zwzlegn314s6G+8|z*x0o%7xcoMLM%1CRUy=F~pLq_OkMP4SlDtJe)L+E6+dW8KWS+ zm9|bR&oA;o|LFo!_*eNUoV4;B{bo}nlSPBXTS$=$h1KDs7DT};RFllhgT<+6WHYaO zk>xYccP?2@TzAgPGekk?$ht$Nh8l@kcVg;1X{TL7Dt1I0r|bL=rbxZB&cB-Je0k55 zcsGUE4z|0ga9NDi`)0fgq5I83MT?0{d=tBlTbO8e>3=FV7-!W{mP5eVNJmbyb`L`; zxoR)-<@xA4eZFwAIO_gai+NN8KNL`ME6svp+aJGe@q=O{x(X}lZqkH=IPphcM3P0 zwf~2i_GcGD;yNjD1yILb38$NCY{qqy7rAaKWWR3m9Il(XBlC!Lruzp)`J>-rGB;UQ zYkQ5AXcTk8Ma71oSaqUht$A{!BRf*ULOh)zm0Y!#wdN`4JAJL;WN}<;F3dAVL3k@& zoz|M|d7xjhfE2zuKZTRl8b8k%T__wm%St=p+LH&5CK@f&PGcYX&Lz!>tIaF(3{j9e zvf5Cop+sUz5OG zYPmrA0;6%)R*s5|nPFW9jwE8ri%kASq4nKJS4!04&=L#mw;5W=ReM=rzmLAtRT3wR z;{yAuJYy83w^G(=fi1k%WL7fS$gUC;UXDh#$<+&mSE28m6i!-T&&V@I7YfUF%3|V6 zDUKE^dESx-lZ^{V?Q`=|J8_A6i#V)5ZT&_B3<6#i&_3MVZVU&%8@ z7YgGvWwO++B9~YgT~sep3gz2*F!<&IQu&d*R8CwZex7HDg2<6Yf=Uhb5wl3d)HyCr zAu1k3Tcj)XnG^G?u(Cgni^ty{zl@T&!*3cfa zB90^6+Nkua7*&1<#eT1tCvdBt%nchNq@kNYw#1QMyBbPBvpb8TqEF}7kNtdk$#m)8 zfiRS*86?lUSmm5c>Z`~eXb*T3lOmHN{99yXNh5*XxQ@L0OiPiHiyf*?swuZS{_~okA5c) z`pJukf6T^{5Z=bbYhRNY*B5Og)5t{~`7#{d^L2s#UK&f}ne1i%6o z2mR0Ssk2fW(Of4{yS|i%O7EPdRZrCQ{VbEah^8*N2Mgty#7Jb;j*X_S1yi5Uf~h0I zHQe+mYBoZ9lv?!B$M_jOgD=vS;tPgf%8>5tgU%7bp(aP zK`Y-PV^$m(U~0yFUJyarUgqi)2}Dex+k{D7^dS*pQ^vROwE%&x>SO$2o8OC0pUpsTx z{Mwm1qE<`uw}+dhX;Q|`);uRs|LDC*YjYzp{A_l# zHGdj*(mC9PpxfG9Ev!w>%lWi3kAAytpJ25!SE6YKJ99a!ZrYiPcgC2Rq7cgxJ}D{d z%a7@qy<@rrb0`Mauo&2~&kEnC=g0SgJoq|Wm1?F1%LvCq!>UX+s&u86U{|Ukb=j3a zf?hdbcBKz`a=UUGpCWdpMVCs;vd>Mk8@8q7AuOYx2pxJ@+m>yTX&Bh?t5KY7`C}p* zw=El@u}!bhMX|6gCBb1^N;YJ-EjuJMcauf=d-RFfmh6+GZOPH^-L{+{Yan!;T(Bd| z8|KBdjKkArS#rIQevbEt(HR&As90(=O0xqVfc}9V8%A6{mGi-%7 zv^ezBTwL{vI1Aj0=Q8J_!&0j>N)Ncj&*3HL){U`N+(}7%lSW)}1+`i|Xq`2VHr(67 zPCCCiObq!r@t6}!s&Qbr?_kMHthLCHiLqyvsvls{h;K?tJ{>YR^Qq*=(bT3@<|?Yg41E%s!n$)|*+x4Q8_PHpjb$vMvKUn)x$;GJFj*PK zLHES41x~Jfy?wwo?p^23J>L$+#yt*2^fGroz1|MR#wQL%=M&j~QvDvuzNq26+YTrzpE&TI__W3}RO1-6BCH~Z zrIo0$ebzoU8>>F;&Z@84q1af(q3EpAL!9yXrH1n@JD{wr;=p@i)jVao{<(c%Ha`7_ zJD-kxr_}_o@rgsx_>_?8`dB-NtQ_KCGjb@sy0`^ayQ<(rWQH9Y=XFnZ*(fI**QpV8 z9oM}HBRpWob>~A2_;KAfe2N^`CGVQ$Y28y?NKiBm>m&oQ!+EnXsbdf8^t9TWuJIcP zv^E`|QCWt$(Nil+Wt*d=(qfle=Sa*s+T(kEaP=}lHE?xkRPC!qmMmGc==w^l%pw#S zQFbr#HhBo6M+=Hq;!l(Z!&3#i<)7i~r?7lls^!99_)mdt+Pz^Uslu_;V6}3qU-0k` zExx>r$L$*#@NO9Jc2T;>MtyIS-yQCd7MK~8_^GuPJEnaPARb1gQGA!3Ds)7 zgaC(i=5>Lznlc+SC2=^PBW91OB6^eIOooYqvHejz6NY%&JAKikc76yvlX_)u+JTo908k;0`s^4p&D^ z4N2bUMT*FGW&%D87y_ce0W^L@8*4NzaOZ*^h$%7esSh>O`?Cy{IXr1Z{yj!yyR*}G zh&7TQ$)+XUT|L~z#ej3s5YFMa1;9=D$H}4PkoE&vXcLjal^FATIrfGOt`65FTDT-L zBc+NxpUQ-SkVJy(D2Zn|5l*7%SX-h0l`QD%(naL^A|s!Zba6^&kuCxdFaW0N`=jpF zK97Bn#Wv`M=xP_l$#dMHyf}=C`$_TYU$gKkBJD?mn*YqHX-NCVtcI18wCoMlKz@~J zAY#rC_KtJLKOoGNlsG`p6!{7df)bhB6vT?K212kLjcu1{q~^tnz~v>&oFyrXo3oe8 zbJ=wBIK?!Mn^5Wq*K(#?%tExtZAZgVUXP=r0Nii`9GslUM z7R*u5FRhwF_*q#H)|U?==_QP$PRj?Ueil(A0CA$Yor$93-YRup6(^47-JKw*S*Qr; zXCYujEKk4?ON@r5Se}x!v!nf@6iRy~gyoP z?`9-*5=&0~EMiFj;>7YJOf0i((0kmR_ZYygpl`~}ePeg5I>Ev29~8&lmW5-HdGG|# z^bZ-+%z1EX(mY@%9C9M0)KVz^NhTD7J9weWQ5Z*N! z*Ta!^YDx#E;vsjYbT5QMVhpY*f>wo~tDBP`xqptH9St%r0u8f!AKiM2_RK`>wF?L*7sZCV&uyA736lrAG>2wJvwT%jk5mv;Rd8t~J zzv5sQDZ!zCTa{Y7-sWf3s4`JO?>N51xowlBt5H?LzW7P_CjPr@pnk<^cIbj>IdK)I zxL0)tqA3)vWr=l~^31+aWD7;LzL(;lvCr)p9P{_1`<-nJmJZaJS<1)pT>6onT(c&u z1)aeo1KwD@U7Mil)Qc#C#xyb?7zcvd1-#JcT8Yw=i{1qRaowIoRQXdNufJsz!c^t@ zDWHI@7b)OtG65G#njqSgbkVqw>3p$gG3{AI=Sw{KBKV5XhwtIX%+TcW{ummOlJYaN zNV&e?oQnB%8XBi9IHr=PR;RF5F*g&2g6~}5sPE!*9k)G9W709|)1#JE%*zD=@H7Vi!g6sG&+!b)=X@@mCndp^YAU&cV%GjF%!&v(Ev$Dja+(Y4 z(GjCT;?q^G(0FwwG=w-4Y)5fEuP4G|>yp0%HORMT8Kgcj`atNnFhV;`49=4*6N5N; zhXVj(V%PzQNy-f`dsTCi5-z`T*uMx|{LlNV}=U$O7f`W%@k z>^dV%)Z!6VYKB}Ag;3%6q}X@#yKU^V2O2yhu3+&x%m9#c^f1_*L>I{H|obWgn8wZ+^y|Loc#Jv2ln)(KwXgH-En!L{{E# zus!i+{vM&c$38Y2liumhq>tL6*qFqjXiTzBqlfH(va*T;&&aCu>f(umT9$)lg!iHG z#Ni3arcc7d1~rbZhYkM@%j1AOZ1^FF7_j(uKgFlW!-lAdC7&~#l001V5rbqA_6Ehw^oUdd$4ernt-(56SRsxQ`mCEqD2?uTBV5? zgT5BpB6Phk;kH3zVarGE7U_M~q&zRUgeh056NT|Aq88%ThBCY~XZ-QXwy5lI&Pcea%>5&Be6uynnwqZk*=S@Sa(kxt7sy6)ruLu|anc1OQsWw2~{`_M< zJ*(i404%R6UF^<@$}wv8Lgz*VUBiveAWVY(-2)VC z5tmXZ5)`0pIjGAnxWbDpTqF4V*yRpdv94Mb+?7>JQ@D5%wnh52)ArK7%5;0$3)>ng zciK(l#%|S-f#+7-!nJ`Eiz5l3i#;v*tU2v3OFcG3;t+gB|f@5ns|QVv>fSW zN;*wPVg4KUsmldEQUJp5iY`yiLKk`DD@d~n%G%?kG43_im^w*9j}|K=Hb;?oVDTc{ zWJH49l|G}k|K8X2}&m(z++UtQ(O9QaixG=vT#*ft%e`DW$!MG?5? z??4T*@Lu5S>XEC9Fu9K}M`PO+s{UY*@x*SD2nP~jlF%CT53H4ajtHBFPYgQ%;mpEU zHha}>Tpo1CMOspsoLS_dH>5`%g=cqWxfC4X&McSFC+5t;J{>@3ma+I#*!gv8xqe=p zTDs4QZO$#7UmYgS9dTrFOCqA@7fgu1qrZ=5)bq#byO3UVj3R3PXmh4Cj+YlAmjma3HUmIahHI5Q#K+^P-t^r-a9=nHcx(LYG2g~pV zfFrv#)U=M~1KV3Y^UESUl@ZkE*XDPoq`^_VnH*1M9zG*KioVWO-gz9yL{dMM`g;&KUY zPg8hq58pOC!H4e@+@i43mFv}sN^Qy`r?}7{$(`uw!BpG zZKGG26n=m>ec+2O^9F2A!_GvI1(=*QPg82lF>jOS!+zwt$Ex6;9 z8gOtU0;0&%85wc*mY6bME9+=6rKSC#7bz@Xp9RZc0x&SOUQ3Poq~^qO6SOtpB4q1b z5v0p6HVZUPK9enz%&l{b0%i;jde19W+bm)Rb4JCMpapkL1a+o)*{(Iq?a9e1+#jX0 zBWGhV*stNyS*liFEK%Z{8v2Jb4gDTI^gl(T_87W5!YgX0RaC5>T<~S|9efyYUKZSkpyvVU_27Q`bj)i(5Nww2gIt8fS=?`< z4S3;w@2=PAr+r=YJEpTSvj`~qMY~J33-~_o#NY!d#G`uqF~s+=dKOt8*7XcIDocsJ zjCN0IO&K6}<>?Z#w=*>o zFiu*Tu1T=HzdIr6?@sS8XmQO$>p}EvBXXD$jPj~;tZIrz1^#o)6dO6Y~>8qwbZ_6~y%h5NO zHyvq&1?vi?bLVFqiV0CbcDZ^vPz!*XZCaCZ5^_b%nrFFM$qC@Gbx!J2y-W@5brBj` zrl1tqJb6iS z5T2eRS+wm#vIR-F&7DK{*rC`s#Gz;$N{D3fDm#d*yy0Mb;?4X;vUsn3Y&Ir6=+2~% z*`e5&#Gzk`bJgv%i{h_1__AH(K2 zV3$Mx1_}l&jK$CJDRMbvSXS~b=;VZfnpZ!PGuU$chp?eyy;Jn7pHnUskL6>cB7`>s z_Dah9`!B0V>$?Mf=-78y8hBvOuLYsN9wVLR2k@-T8e%{On$SX0crqjfa~={gDGI4E zDH5}8jv$?;cO$|h>_&J7^Eoz)rO?wmXiB^2^d|jL8zQ27p!g@ZVh0YOn&@jkVB0Ii zO!QzSwcs~D9sMWC~?5Jn#Fk7*i1$MT8Am>Z3z%e0M0o%L6^Jn&07!~#mt-LubCDE` zTLH#xV{|jmJtFf#rZD3?PBy{l7+Aal(j?lh#hye)%9S$M}ip+OsA+tUiS3>|^$OOP?GICkTG8sw2p2Psy zTZ!j^eATm86|Zf@Y^RV2nxWXeUK-gAMv8}BNQ8p8$_w+)&`qVtan4Lt3fmU(o>sFZ)Q61qTpoC%xT23XN^IQe%Cy0ugQ%Ik$?z2UcosZKqlVO={+pT1pj`tg6t_wPJVJ$>Z{Y*&h3_?SxnsGkz5# zJ_`XWHQ$CU=7m_{@JX?6Ur71P@7Y>tYFo!57vwXnx{2v>A+s^~8b1N+@VmnO{`|Oi zddI!z%l&ufNB*JGFm><;-~0gT@v|0h00?vPU!6?vufW7Ad zKO;Uu0dEo8RpbRmBF_f00#hXV8oeHAR>rF8A=`lgru5@)1QDb`ZQT*D?dlEG0y6>> z{AEZ%Ycm;BK@uExxMV|iJN(!`k#_iT^oiNw?30@v9&q$~kEt+0CX#r`X1q9`Uo-rM zc`?J|@U&Uro!=ZL=65_{+$`_Ws0xbfObggG0Pg`D;6_vN4T!WCqqTOmI*MH9t*tCk zMr^E!lai!P+T_U<)SMs0#7RDxa5TsJ!%hx&VPTQCjDS|>ml}=IEDLCrk?C=!x)$cj zG}pBsVElH)zq%ykP-e6J8EBfpY`>6IH_i4i(3OdESPYCK@vm;mkMBtD_-fCMO^mf4 zh{|jZYn!81eynGD$9n!eR6F^{@iI1!z-6cLdOH-`PJ=_yb{bX>)py$gW!-OZ;OQF( z@k$_WLY&y}TkS?Is^-OvH?m5ujaHS~z555H)jw+=vCYN!)9wuXsvU}rfgFm)z@==R zlVcO#)PTNa2bGnD9DGI=rdJnRMztIU7ZBcu#+I=wNL-wWlCWD;BkI~Mo{142u-)R3 ze=2v2tMDnZTTC{0UvH#q!f5~~ybn^>Y3A`x?1w7T-J2o`RxHm-l2ewijZ#>y zCfz@%h2>JKJUi}xwuPN^{_}9zENhI6y?z+Z&s|{#8G(O8w*%844~uCF0f?G0epASl z%v+ujG_~od$cge!R^8n4X!|h}W9^5yjan-|)-%0h9q!0XoWtVojanx^zAx(?-^Dwb zteDt}Lg0!|YNo#~Ss<`XP3g zXu2qmd=tJ+!uK1uhln3H$W9c!$wqw|cY>AivX2`=7R^+WT18*SO(TCKS@9x*%U=@@ir4-q@@MAG66J zo#zED3Z-;h9~>MkU<9V`Is!X-D(WK}Al_^;vmX`N{|Bp;TYaA3y3{K1GN9Nhd-P5X zPdJf_-fPtN;?5QM&Ff=L%1ciduPg=jc)i-5t~CpVeY3aA9w{9-^4E)G;5VRy30%g4 zh#)5ijS9_jX~y@8wB_grN;}aQZ5STc@$}hMzc$q>7YeAN{dfryfY+J;U#eDGINGn^ z9*2hqB(Rfy31@qLGbZi!#~!WBmg~i%cK~W_yT!T~#GGIpzI!^TvztIIsIu-yJCR4O zXXx{OXY8C8R*CUg#j=0flZ8*xo4iJi`ma0+m^V1)S-i>jX96j_$q5cls0cC$WqoLR zLM&nAg!3C&hN=rE5&5f( z$WFq^`H@992|%3zFyFuo$Jq-bPPRgv99j-Zew>9i5gDZCnLp&%8#1^$G-Jrlk<5&g zD)#&?6AD5S39h3gp5;V1iKb(1h5pfh223(Npb?sh$hQiOZO3`q0~${0EYd{);-u?D zX-=A^WSrzA99Ruz8FNHx=qXq~8@BmEa|wh+GJ$Gk&k$5P3~%r5b~A4L|FV=`M_2k@jHU_JscH4m?Q5 z2bp}E>cH8w{ahyCLOBpbn{qJE$2wnp>^$M;I!uM5e+<2Me=NV?|GO+wuCE{KFu(qq z%`f}N zIyyRzjl1a_%|jo^$Ux=bme&2s2$ng2v`c zrDlJT2ThhFdK$+3Q$A*6gR_teWU2h+Pu1!C_vF|UghB#QPd*8x#c`e22`(kLmui*2 zb?0lO7WvklukFL_4X@EPiF~JN6TH$q!AIp8sLq6h+QU&f9IFxkdGZ-38U3nzSO<|~ZNq*NS#kp7K z0!DByL6DJi4>ZsOKd*YBfEdgJgw9o`0Ub9pbohxbtce_RdAN%3eQt&h46gEbAYkDu z9)D4j!wHsmWan_X;Fd?|{9TDSN9i&Ib)_RQf1KkC5XR#iUrA3a&XGN3i*pnaecjzq zag)gZ9~8TdMhqq!^~rLhHQhVYzPj7S2BK>T7Orc}l*rt(g`#_p4d4G-sY2S{e+mTd zMR>?|sO>1-0Up&|v}L9k?$$FzgtuILdaJyvwF0{(aY=a3C4IrgBjx5W9furhPL_tt zD}tz0&~piWmz5-~(<^P^D;1JxvL{VXz5|S}8wta^btvZrQaIyDiNW_-l}woy-iIbi zmQygii*pb4$8HcjP>w)rw#a9BYy5lTdCO!!|YLvmD{ zl91zpNPUoomfn@@3I2avFEh zf}-sI6W~gPZBBn{;u33^@$6vtguN4!^R`XlLy zX?pgQP1A>b0NtNxxOox=v(`|hHd>$EbMDu6t?(6OzEceCA3X(hzK)7)YX5j$?W^j@ zok4pmD?3y{6_E2%f2Af`A9z()&gP8CC_;--BTqfr#gCTH7bF=!?v9z__z74XorJ%W z@pmfzPQ%~n<7beR7Llb2d*KQ~aJu%(No-*oI4u1E#bwgvSHbkqP+10FTy4I``E}vc%wuIEvftTwuUp8D6 zA;0k}9*3t|L-o1`v*^frG&yO z*BnNklfFE36DtYhgx|c4?5%Z{i@(IK44)PC-W(y`wIB1IPkAG%`t0FSXNm(i53u6q z*}gn?JpNthkp6A=kmkSR@hhFf`(=)*EGK{d)8C8l&c)0_IH%`It}EZ5BV0-UfwUDDndcBQ0Qs?UVIedy=W9lNCUaV-$h>9@NT=J%~1{&BSe*P zmTr+KClyTeTS=%@{=xY&uska}m2U9&;-eDpMWfQenqHLyGv2Ae4f(sxOF0foPRgYh z7rP#%q{BCmGLOY6P)8&%GGY9^3QW1G4iy&r9)S?RnH9OYV4#jh$RO zm>D=FL9pL>iICKgPlJc3^wZ-DnbARW%b&Hr+@QUVe{&Pv`Ixo1;_g>@x!c-(kV){V zxA+6SULmjq2S^mvwDB|q5qj?pr1N`piVz1!E5jve(v1!^Hnsa83$FVhaa=Jvq)6#L z)RuNgSn=5r!7|Pc;-p`_QP@_;DMDGL8BiS=i(zEyWYySb8Ja<0%2SsE1stesl!vE> ztK}h_?W>GTm8vY+D>iC4{f8g*V2I}*sf`(BCU`7ip|qn^sg|_#u75xl2#}5}H80P<|i}l;H^az+`%eD)mVHL~FDu zt#d8|$M5WY{tOxV7D$=+Li2^1hwYskgQ9umX>ZWqkJGe+eVcIpl{r?(KE&kcEl9-E z=nML>sqWp@FwU!R=ibeK%UHm zKS0~zd(qE}!m42`BU|LR3|+jj!M2=yN==TcR*1)JBE)z+gUM8hKODt=OHU7;`?5q zM;OGo^N98yy$96pKY8U0Qe!=XtEW=og8{`Cq2J# z4l(@4IWTO?p%~{m?q{W2N{B5 za)@5fk{tSy)l{-@(bfr{XJ924?M4nghPKn?5JyZ7IrPI$#wpO>ogDgYCq4haImGbq zb70t(Lov>C$RS6WJt~Ln{?p~q`%|!;Sq?oQ9G5{6KKs6)&Tfx^Z@xHE9xY8(5kb4O zm+jQnmUdMprY3@x+*t)1=ysWj(lnh*q+CuEEjLlxUJjZ_HiTUmE}((CxPlOXa+CIT z$XO)PI?>LIB}#&aZWGxms=;_^2amFAA^;%3KUlKEF0(tjQP|kQEfP>mxfT6ZtEltd zZ%Ulxxldw3NUx=++I6YbE18X)sP=3vB$ZR0hL^|8`*U&+D?~U94)5on%@`g z(JO>p;nzlIrS(>b=oP@AWyvaI13+!=fPU6y~D-k2@J-77Q2Eq?bMG zuN0Q=?*xL^%psQlv{NjH?>P)}8&QO|-gtK>Llj81w&e8I5FZW|iSOTqZ%>= zGHn8zVLd>52-peO-DqVfuCYq329qy0@(b=qZo-1m8_Rnbj7=dp4cDhZnK9kAcGVgd z{f!iWP z!WA$~Xi{gB?}GY?g6eQ}DzAkhpyKFMl?}Q+LAO)}6VT@s(yI)LCZJ@sH7Id2+;yd9 ztFIuj+C!S1E|x>(;qeHQ_-)<|R}4-4obHbPhBYaY^_!-j|Ap~ZYQt|&Utfu{73XT0U24-^6ZZ!5U(RRAV=7`Fuu@CuxiN0jOi4or;rQfE`acns=F0whD%zf99G~CG7_;E`7>Q#;07`r(d{wx=vJ<#g%^~iu&VhSd zXUF7#L(#^|Y-~c&bfYYAdOivOWk=`dL}8$pxT-^UPaLJ8ASAHT6^G(Nn<(k4jK@<% zthvhYxA#0a4jxH&FoZ4cTO-$~9mj3OV1z@w=(}0bbYJcwk%m`J+vvAK(MxhoRN=*a zF;z15B$=uP3k0Lp=^s!!ZobqC~7cW^7HMV4l z9M?h7J8i@GhFl|CgI++d*ISh!3I>>)D?8K*w{~NGb|HV%Ytg+=`;ej(>_Rk{Wp+83 zvkN289-|f*R?+mKnM( zmQ1qSbdCNvBNYHW!17Jg2j2n{RTi?;8%=F+Kes9+qrRKL$$qnrE}gf(%&?FQt;XBL zD7kps+k3c)OHCOWBTqv3D~ZE4GFngZ?K~T@BKO044%?8Qo*%Y3^I<%(!#3;!vZsb9N8gtev&PHU!&j9JpEQ3OZ#2-_;i&k^OFQ=w{at1*3=`)B2Cy z>WA~}%^^BErLZ(#DrtEMsIJd*a}s1cgR>%Pr2Uhp&>0-g5{`2?=XO9!MyR57$YmFM zYaPeoFCl>E?b2lLvm+YhK8|w(s`^yBbsT3cD{etL?ShoQBuJ+1+8V7uyfiEXY80^}Qs-k-d+dnR7)T$otH$bhvW`fZ>tK0I>cqrFxpBpq zBn}4qOd)Dgk4jyY>8KPg0K?IiR&|=#bie>0y zhpnEHt9($sB`~EQxN3iSpFC|PHN`$UI>r6>8Xg&XYZo9^2kJIYiP!3XRfaehZ%uQZq&E^};OWf+RSk$rEj zk%}<3ccPLbjE!FF)(zW2Yr2aU^07&%2 zZQTq?3NL;zDMF5MY$k>qhwIQ$=IlIFSE#dFN?se0AB!9gZ%@G+m7@bNZ(-#;2VgFo zo>i`O8#U&C$mFzSdee$YaP99n==Kp7dOeF=dt5HiM6korsN}N=>0BFr0|4hZ>~#X# zPUqSPIR@9paO2=wN0|<})@~`CYk$p1>ZN{0uH8MWT(Nam9lm#11-5|H(Xmr+v!{zA;;j_7;YR~>nPJ9*V-+mbL~|rc*`tnKgLaU zf_2%Q!fdIa?np!s9&Y_*A@A(!Uj)|C7KgdmcjJ6N-FV!p>?l{^3*k{El)}1E*@mDz z9E(QqUxN-tvt!Ur+?2y&0b7;YRDB9fH?WaHX(ZG`7(a`_r%*xpIjTp!6_)YuvVv-r zEdZ?eK529mD;D`vDY)0=;#V=1Ud8Ypn@aRL`&7z&UC=wMW|QX$=_sKH-pW8sF51nM zdMDaWpHdN$j42hvkz-0Z%DnB##fgf)?6IUz>Q|&tF8ieB=G=X7Qm2`%zmsdmh)Mk| zhWFT{rq^>Ysef%Xn>l#TXP~NPXn4UVp0#FlEc72ujgP=Uu8Ax2T^G1)eOYsqTNjD zHE271Qb$NKCUp!)j!Eq(^Q4{B_E^#<_1P(uGbgpbJqqo8Fntp$V>QV{Xh)6NhAa`< zJHv|3N@#C87k`Tw&3ma*nl*E8hxR^@Yh)s{_fM@#SUYqc+G{uFXBV=xy$;>`Y&|3f zMQAV4V3yg%2;&voE90G71AoH8Q?jfhkOkZPBUQ@IHl2s|emygET}WbAXs_Gq`xQni zu#z3xOCNkX3sq!@twQ~OS(TDe-_77;zv-%mk1n0JA7fZZhF0TkVw5D_e&ziAaAXGm z(UlHV$B>C$Fl3CcbQR@_@s)07#lVgjUuJ&w#Q4&89^-q~hw;Q>eA&|;jPV_8Ql`jK zt29dY9n5Z!@4Bvod=21cBg*#-J)pp7y%-_E8N9pLC@fu3)>}0#p9O;IbJ=9{jN!W% zMUAw7`V1>4OE_1w^W(duobWPSVrY)NmC|sfsK!%-}veULM}gj>Jb&DGD^oR93NcTfiXI zn<iAdTPoVkn3JWu6Q2Y^!=5d^H!{v^;e1{59A?UPz8CBfnZGwITmo*GRlNhYPI0#nZgmw zLR5MH2PmiD`v|cp%VatTvMV9CL~}b;reqSjHwyVB@UhaQw8&_Jbv>GtR#%hlf)LspMTduS(LorT z-i1mIgA={h6}~^BotRk*GR_}&|Mc=$5g|gbdi6lnSzRB7y-JhXVaU@a-NvTh~ zAj|v5q#{%T%&}eiCV*&rwoCM#Zi9PMWw1XWf8`6Z|UzWBV|n5rflQEuvJF`42sQGgYC!G@@sH#z9_hTUA=}ob9$zG z`g(TZZ#Vs){h+65{&RQF9fh@6gV3&v66mc6*5E4J;S%nL=b>{vK2Jr}p<&ujsSAMu zaUoD)O>yHz!C>&*U{kN$a?uSH*t^xIsw0#Ekl-zkU{g36aM-9NdWqzOY)T=!(#SyJ z3S8KMD?E^KkUB$dLqq~r>ChAvW!ppS;Kcq75q-3Oa~?j>^o-oPQ44IjrJenLAQ!d7 z*6mMG$+2~#*ZShazjfOmRFmr&_N-?0LsmoHSuM9}?`A+H7wu-N_I|XjZ`DY8$G2(` zT8yn)3@eVUTD;80qru{Fenvj7Y05{2zg^=0yXEibgM2eBA9k^)eT3H)o7hF?sHht_V z&!#UExL<#j6a(RYuf`)=GnzGv;pwjfxC_|rYcpkCPltCN4)EwRhxVY4N@&?r8npLO z=RJItr`d%M-(X}tYp#%zC;mb4*J5<7%d=$J0=^-O?|2b|Z9vyDDEI=byUan)TwiLe zsy7-zk)ev|1Zi*_&@WqO_jor4kQ8#H zd7QE5Dq`y-*hLX&sYRghZoR8{Q8sftsY(}El}xIJ_o0cB&X6P%?!rrumHP9^1nHWZ z=EeJ>p4uPYdu~U;5(AUdD@N+WP`b2;Aj5D5K2rR_H-4|z@q1>b7UV?BSX$9(ZG=77 zp12r32w1{5;~ztOND|zS51^PLL3kat$A|HDe3X~BwHHNmfTs+Pek)LJNde_y0_B5A zpuEioieYCsP);3&G}Fvrek+>yE6-Q?80k?#ew!Ea(3g&40#)H0G0YhY`OKCyl|NN~ z&-3@^OR~ZHGxdZ%4<%*AwbvB}o;i74#f2fm%?KC8E`c3Cj&46Z0Yc{_{GE)yQ}KtG z7`A*A_vN+whp=6k!utN4Xbzkcm&WIasW;PJfOHa-k(qD{fOcCb6nrrYMGq=vuuz;4 zf#MPP{O-T;h2aK_oPop55pP8w?B_i*;dA6Cl6*~KUIdrnyVyte(qk6m!U>pINBWq%Y%s&3Xe)#ZqHBsFsliK4{*CocGw57O%hVre2tC#_*$A!S<38&zE>|Sh5Dy z>b3seLeqs-cM#NRM5nZ3yKq}VyXkOL|KSDKlW&}l^@XE!SK3TA? z4*#wck>Z!?^D}w+46i`T8Y^HX3J4Cw{#!YzCpXkN=~m!sp79l1HwK$0%Z*8Hkl5N6 zj8+<;z4*9kD_I-_>FH(za$S;@2R4HJeitv}z!W1;1&44Ug7j2g;r` zrSmmwh~bNM{2U{@F<_MVT5N!>HTrFTpFHh_WmZP2Ar>2t) zTJriqXa_lg4$`I-mN}o?qD|q|8-ufgl|is6*u1UWDh+K6&JH%0C!3XOy*70F#yf(| zn+t~3*0$dAT zuHs=~t-iBSnw+^;uBRTw$dz0<#6XKCV#cN@VkCgtkfH-xgI%&>*+f~$3Q3AcFA%d+ z)^W%h<}jd-E`35}A|0~F`cu5LIuEDPeqZv^VFuDnUOH)WW4yk(imR84jiHTwL1Soe zbE7gg-s)8>;w=+V{>Hhb{E@~WG|KOwTW*METes@h)vxT4cii`E-5T7~ni?tBT0PDF zC9NfNMx6&b(aM6+Tu9Rm{i}yI^)KHF6FOENSchOEI*JF}TTNV2p*!Lx&<-r&Z2mA6 zBm37R(uhT>u(`iBe^2s2DyQXf31iVZsal;RPdZvDHvj=pNRTm=vsmH;_St5?)@%&+ zmaZQ62mU0C^IBT9KgtD7lPkaonxh;v(Hf7zWT@=JEb2-47721{4c(UuN};ABC{NGA z7iz-VP-hnYM;pBE$ZR!>L5gqBg%NS4=Pgtz+IG=C+>zKyt^Y2Th6B3f;j+fq6wM)A z=!BIUySj?5jKanNFPY=E8R#Lne4?4RJ(<=9TIb0gG+O^du8|4f(MM2;&5zg>=JZ83 zx1!gjxyPcI!)`8(IgSlK#6a`Ua&b(I=;N~ll0XnAXdcYas_+iTErndRh20sCuOGva z6e*;KhU+!hAj-Aj^usB_ZXvCIaB{ZB>mx8Kug+p)kktkfx{n*1W8+RWHlGJ>CcAi2 zA4TRFMTWM~KFW_WI#ez1koIW9`gdF+klY%W_+2sD!oN59)?}cJF<0}WM%s@(xoyQs zBw=v~5M+kM^C$L4ntz+c-r_-i@=KUtv5t&On# zs<{;&O)zpNz#g{!wogqFSqUe76!0;_@Nc16X4f#xEyBz;+ytgVcCzPoJSi_pJ5eIa zfVI<725N?_Ns3@a_Ir#clV$lbakm!i6s78Pt1`@FJXdaTks_iE;(`UW>E_DedUVu zjHq*lU6i&`vBHV~FV9PW@c&Q^ZqHS~I`#v_S=lq4T|iFD;7LwMo93`GO-Ca_Xa5{_wRBIPwWc*7M0kpz)ZPFuk{(_ zk0@Kf2E)`Btp)fm#T}1Xjd`c1j4Jyg11z~{H&JDeqisE^j07!@DkDE3$%vO>5=E#n zqRL{JaYU6l${gdSvODuTGD`6JEBEJMl04ESkd%VP;||$VD#v>LeYD2v6C=}zLP4Yt$&n3bVHF(+xpIOLs)>O zCgBoiy5-sQ#C)7p`mS#tw$-N)2LT~O)vXPMTnrhP;y!K3lBBLwOxE#9MYI|FPr0xn z@@oB~RS9xnCA%`W;~^?C*=_qdkJ4=YJ)rSfOh`Hi`zeugmO0NzsU^72c&CQ;Qwwd$ zQi?zp9QY%ul$`@RPqVe)W2Wp*hOP@4>PoZaUVqL5IBX?kr`e(pJ{<#QlQAyN z&CTFszv)VXk1n0Jf0v!NiBWR#wzqegT}y6HrE$SuN!*|-Eh>s{9VZ9aLeXIy5%0 zTW9(L9O-fTGfqfEl-!7TN~mc%=AEV)eHz12BkjlcC7*^)7pGU_Na5Ach$VIfv*OhF zqX@6Lof^AQ)u*DRv@ zpk>br-nVxS?_bXXyqMH3c;#z?m!1{8AMYIAzwZRzWThh+N4Q+n)DNc!#=YZmaeE?+ z>FbWhSK!B-F1KPhbLMpUAsP>v)8!X<(wr_Hp)K7mr>E->_JtQ9Uk_^1{6>scuB4KeptSWynBP9G zy}$s!iWoq15p2DT;=U21*V3d{O>@ff50r9)`ZTK4BjqjB zyenqx3E?7Ik!yIu()kQja#-Z)wQm<{-hh~5>Ac=*%*!3p(s>;NEV-z@OV67l?gq52 zZ(>O;#9c%YY79$f3^NW(r=v`&i^#5%yeQ!E^Vsm*6bw;0auF?MtfY9>rxWN?(LtbdE`;99e$^_ua)ov+eBkT5rqmp!E2I z?zbB910`(iuVFwX7u7j096{k6{-8fa@pR6M&|+|23@Z-KbCg+Zl2i$8yKFkg-I;=! z%p7+f_7IBaR#y;MOULDqVYY?)+bT#g!;e_7K=yJ8nk^w8i)YvI1puovQ8Ga_hWrd0 zA+`jjB&lO#j18I z>8$$66r5#d)r+w=6t^7_H^TSaWbTfQgPQ_!Wwa`z74mynX=TCSeeU~<*=AEnP;29P z%EwJMOD4I-vL~XFLxa=n>@2&0!O!G9m|y%-_&?Wb%nz7g+ocS!W zWzNhtpA^#UHqu4HaVZ!xMS{OQatZgRix}ycqfJCc=fw%E=&ZPeAIQa5!Xfu(R4Hx0 zqg=v=Pf}1Q&d03hCJU!K7sp(vm~!17KtDB$+e5h^6>i#hS(U(viuFCCvjrTqqp4TP1)jZxsk*zk9-L1#E@gmnxNuSk} z+~A#(86BM$#ALLKe7OqiqBfY{oK-PJj~&+7!@f%6wHV8sIRM{`#zW=+d?%hX2VjyUk={Q#-W?r?jZYx+%#|bu7LRL*GFe=I zCvn#t&XmWJdPR;LZy7biJ|Oy(s?@91nFDSgmTI8ELlF%$@7oPmG+Py9bAs2cM2<9f z$`lbUuTrhxMM>oBDpMSEnXw z+-zeVi%HRT|C0+7!Wr^ksN^u@(QDtf#56Q<_07gDIa7b7Sn7~Zn9X{{g>=dtgi1bD ztZ#7gI^_;U+xpIiM0MOL7a_?oI>m70FgiKPT*U6V>X0iGD(#k&bvc=s$hh!RMrtq0 znd|OHoF$SE9PUZ$^y*w3BbfS9#xYo5nGO|tot>#uX4|0Em=~{-m2YN%B^T9MIXn%8 zb9nh~LGg4}=BP2Juh%+#TPNcb1nAs4{en(3AS>-6{2MU1pxk_ygf+Ifr>ofYf!Bf0oW*eyRsmC{xV z$~xU6jnnbvHMF~xxS$vsXOI>xSz_3%_cu+}U&{r)Fj+rtRRVjS$xYU204i-`x8Y|6 z(l%d4ufEBsS@{URv&;%POxgSYlc^Pwr89vnSYkh_l$|B?SS3p+f*LX7_3@cO>Ox`2 zZqs$f(Eulflx%@HH`Xm=9wsK2)j`YZ!q9pw;xE-EcH%E`f5Zxt@T=^v;s zE#KF&Q|!n7UVIeey=W9$z@)w$nE0gz^c#Oyc`3)c&q=xT;=(bbR6^Jwxc81@=FChg zIl(`ph7j}5+=3y^nSbW=N3l?2{+YA!r1@u3l)7}&^kf>e>8+78!i?S`*bKJkK}}@I zbYE&ad4W7gb=me349hr?wWfw^J>XBEjNH-sjxKYUs@AcucH}B+ z6KYzV3nV44U|bpT_Wd;q$hcIX1vd1EWE&5ex8HtOR*`fvD68x+b*-XEdhDU-9j zk2DCGGk~9`Vm_im6LPpb5L{O-?I`!-2GoAK++(;=Z#F6DtpY1D(I1DfO3mqs$yOb? z6HC?VbWpx+s)7QPAi7mAT()KvJG!Utj^TI7XxGKCby#yCxVnt9UUYLQ0X9;`wgESV zlnZoS@C3r`#;55Xl2QZr5#SRNyw`&DtJbbsgV6aJcO?!_RdGuV8{zO!sX94c(o@fk zAMppgOj>wR)9doQ(<{7;YH(+pVnTqA7kY_r`xWPGQL>F{Ta*|d>tOx(IV*X;Fcn65&g@0 z`-0-Rcvy~yfq{W7q`h0XGMcVu5iK~GH`@4#DBb9{8vKU=qRxEDj6h~h!N?EuaoLVD zdabwRXXFED$WoB-9}285T21-E5{EiI$G}Q1s;6<cnu7oCvl$awo~A>(9b zLC|v@uO;VTzzqv7^ekYXi%;e**@&`6RR;l zU_wX!kO7ulv>P4yGqjzqBO}xpi^>>g99-onbBIA)MKrr;Is<+&1u^Dq^tVSrK_lr4 zPZ<_Kwt|dd0qZlgx(PW%G#g#6umEYFRi+C^SOD8=c)|kcI}Z!E^iz0x!QuFaJ?+7; zfc50bZjMilj#kSQ>vu7&ApmApL6)rofMtB+eFac?KfS~XOg zs#b^SvJy`i!0}1QlR`4NfSQ7XpuH~ZOqr9>`Ty*wk@i3D1I~XJt(<=UUKT0Mj)tWW zP-rwWFDI+bzL>86l<3~c2-~?s0IH~(BLrZa6*ofwq9bA^%+YHsG^~?jFYX-PySs;1 zyGF)@So=VWBe*4|%Gz4%4V^>%`tG4V)-4AF8yS%chucNv^pAf~)BgRPkM2EebYYfQ zhL8Ju@p;C1FWEigU-EaA*E7z$PhLM*F%5j8q!$;SaV0OqF@k&Vc*c#hd`_9?&RVLV zk2%HHV>EN-6#q3E=T7ncKW#Y0ll7eRhd(`46&pEAB~h?GyHW5}sw;dzY}bM)RVk7w z2&}^LH&#Phq~Q{-MP+xCM-K43)zlO|7)VIg+?L~o9dF#Hbu(ynpumXk?{2T6YrW;c z#r|#VQaF~<6_E%nEU+rWxE;I(-!%D#WjQ#mVe=K#QyD~Or7cCl6Z29qJb`L(zp5In z!>>A<_s9+8fl@kF&!$Q}Qo3Qy(WPVc32}&VO)g9bx78J>4ASM^ptqpm-v0Kr$ZfzjZ9rwmYNHVMqF&sIp4URIibcoSz zIa#}t(Sba)m#5%S8YiB`%6UArd-4$Ds{oA7h{9yXLpQ%%}Id8EV z^8+RfXAd&Kl8frB95zunhd1_ZD4x#B95tq^$9stJA37PQAb{7w#Ix!Nabc&}`%)*p zejb&4+sAIO`&bU_V!vhxiWuKH1cjqa?n8`r8|fn9WhofTED|nf`_rJv)4(zp_RX|o zWdTN%13y~Mu#mc`nq0g@PHU&aXBQ3&`9S4fR{m6) zF0h*OgC@ko$qcmQqTMj?)6sUic!-c=FmMbv4hD9VS(=*#6#ney(s}uS6y%w_>~D{3 z?-!@f4QYF)(5G8&yhM`9|Tm?ZafcNU?1c79Qi^ZECj2 z-MIi2M{jpnl^|3PVMlKzB#Kw;qJG-aQmBc>eVT&Ag-8}j2%BZv<~U*dfQ5x**+3u* z8vhwp%1&e5LuhGivOL-z!-q11)P=Z`-KI;dcQN{S@xoTW??^8vNly67MRG60$rHA6 zN1V%*Cha?loDNqSTPS*5Y4n}D(!Ph0aaS69+JmmNXNg>iK{1a5ESPN65jx+R?wx6$ zm#5-@=+5UTYk&Mn?hJ~?*t-rEjQYXq)(3GECTwZ%+J{LiV^j};IK^vYq<#&0c96pXSAXk14^|eftnUTni}?zFo)j zBAw`Fo z8r! z7#z~24Cs<=h#XnX0jsV-XBoHhdR=`Ck*^*A=c(3?Bq!;hXV~G5IBt z?kAOTY^aD7zM9(O9&hI5&MS=I1tScmy zMaq%)F!0Q&uB#SVT!c}$nc|{D6!!Ttef+pPW{Tq{Ks{NiitV3U?06=&Ka`(n3inB# z6U~lu;*;$hbF$5}7c|PFm64h7LBQ^gmr!8F;w2iWlwq-Ub_7xS^q&cD0s_Vth8yrd z1{GhU{SUfgKku0dpCdnMi!wQ_FxgrtN&?%tC@X5KvS;xr$4^+}loiX)QRRofnU9^j z+i?`URyXDv9pW#S$Q^Op z6hbJPK@r)Zd$CX-!w- z7Iq^7f&-19n@2X(IfYjs70CFCts8^Ql%OFP44xZo+S(V4RvOJ#6*n7}OT*(hbji7h z5=KNk$5TCQD;FfsL57g*K%@@EMK>zjrjRLZAfWIbI-H42Y6#$osux7ho7az5ZoR#K z*&UmQD~;jJD0usocWkAe=!_>%EYTO(g;@c#r|d3rK$;%zu`n0DSV#LY&Y{c2)M5i8 zTBGM!je6x*_##dYf`ob8a8KkOK&=L@9|tGfcr}P1adC{3Mp`GAb%m3|ZDMOJ`@uiL z27jvr`Jf17t+AWB0&@}Lez2UHnl^OF>nNeiX?9>%MEs4 zE}}eX85&!K_65yyd4)vzEVQI1@GJ8Wix~)oHa*-NX!339?YCWx+wQNcO!WoV)W`8u zqMQVDXD}_ZuEPnF>EJoAtRY`gsYW>t$|eq06q@CU3gHBqlQ50tDv%~U#KL$5%Rt=R zDsLkWrfMSeIS^bkP*@8s&ay!@(8rCqnYb@lwsghvlW!Y!`BI-maBiM>nq@%{JSC(Me z0{Q!bwPfQOgjUML!-cECll?kRS{!^;X$m_H%!=XqB$9q{K4l6@CKJ1?RvReX#KXVA zs^={&p4UsyrTbIJ-U>fL84K_Yo(#?1s8o$Xfjz3wHhR?6B)g z)|EzENN5K}Z8R#_<*vncrhy)gpI~u!>kI{R6^Te>x%IM9EM(xZ z8G%h@=QyQ9M5-Yq93nkG$d0Sj>N}Bdu{kv%x6W!e%->)=WbdYtZ~^HUd!yygTz8|W z@{3NXa&i)it`)23O>FlrOima%<))5af(tniatv|aP+jlo&L$^iGH zZQfRHm4-G3X9t_hlg&yM_ZZy1@s42g=E9&^WY8!wct=6(c8_S!PGfw;fcbKuv$-vq zpzTF)CDyROpBcZtEd#07wHH)N+sf6Mb$C_Z2}Lz?uXL|Gijgakbh?2SZPPV2)uc&d zUH?aW3~sKCA~2?z2NQD(HsH$06wJkJ8w!InW+z=fSD=aKGW?PgAu{&vvHlbiU!Hurv zVCz=>Wb4YF64o};I8xcOb!%`_YYO2vt)6E8lGYN_IK*f!r0ItK)kB;5mv2Q@U-$^% zF~HJj6b~cVz(XWfD03e6pJeOhLKzmB17-i3P-$7D3Y*Zbkr(zP52R9>AD1u|t&`_k zog_~>$d<4H2!KL@jLG=L5+{`Ax?gKH2761lB<~OWNf_s~v}!NS1x=INiX&)_a?nI; zJO-1YZKTCYQcuFSNW9P*dP6QKh31K%JUt6vs0nLBomu#wZScC|NNxIw0zEIWJfsO< zo6KIUfc$VSjEI=?4^pKb8T|l;a-FDEmeh-7*a4**yR0#WRUz`O!&3`e5SB!c&~-Zh zPuVMZG!p{sMv%sKLnLvn^kinN0!>2MgGTEw<{FteA^TZWV)G-Gpp3rgD<1T^H1}8( z-tFennB&;+Qw%i!EEmTZh(5lkBN7Nhhcbci{tT^d;zi|NKzanb3}o9(DTAbt9zsH2 zgf38sWNNx4GwQ(%P77c<9IuZc!0m<{aSCP|0||h|1K(m8Nez5kVFU&x^;BdB?D~R{ zQM!n!Hab)-?~t)^Mx4=ciJWefy9GHRs#{e3TPEs0Drp3R7{ zI?6#izF08ht+dmQW(<_}0Wv0*3#dOrwaXM0`XZouQPmgXE7#m20_sdw+=P1m$S50( z39@_(cA;16~JezFpfq!H0(YQBYM5R5zo zaqmQ%wa?5X(-LmAQ6q^3q%FqC<|H7EN20Nqw7bwp$j%MC1W#=%LbIJHKV>qXo=jsm zFSn5t!z%AEB3_p0w##HjAE_{zUf>E7!QU{)LF_QAuO6!uyG0dzJ_{|W3Gxa7zg!ZS z%EMt7f6A!`5c$4{$lA8`>6f$YKUn-md()r=SCWV(g3mLuHJo7=Wj7Pqg%wf$JTFng z2dD;*+)}_g_8qgC%IBdxP|Cxu@1{yUQsyOWJd!=sA_Q0MOwMA;T2K8;dk!ss0sAgC z`{CVK2S>a36gB<%T*DK)k58i#+kKchfa$fd^{@`^nh8Gi6TXfUz2C7K^G;crmFM3X zV97=G!@qg6@_ZL<>nDFn5c8}&6vj+;(U)NoMW``y6~r*($W`DdbBvqHY6{tPk`*(z z+a4P}nt~xJM>nE8!pbQxbc`jJjEt&#dmMHsn54);N!CcQtTfm%aVd7n7fmKgCMN9; z1w)>QN)Cpk*V!4;b7{l5RzrTEMBA;09-c(C$VUkiW)F8uL zEFt)Gl#P?NAGp{-wMDP9^J$9Ue4f=++Zo2o=s28ms+Lo`i5d#9kF%f{GjUACPOZUjI1zE zTe2jnD|K@0_@pA*jQvV3tcdI}U$!bi4y%w9;$*vRKj%@pnJ)kupOuBAgRs*Q zIcJ&ka-^Ht?@Ok1OqNmvvf#kq60Wmz;9(o4=(Z{HqgCsrR+Fm*I~N}awtyAXIN_Mg z&~+h0Ww)=Kw;zIF@L#$-JpypCB@s`gr#OW^_>>I>xlkZMRXW?MluUzeMk)KvI=XZw zKa^o18Cs3WiDPmxxwm(jU`Os#rRBk2N#p>K<`%`kjs!bw#pp?}L*IGYf?I(Ep0tq4vB$_a^x zWRePV)>A@FlJG?v|5ik8by;=2+ad(5H8+HYgM8Yhdp6A3oJ<%l& zbdF5-7LW~)`FymH#X_3@XE0Oy!o`rU2Q{e<0h;x-uy>)zG9NtkG#;4ZAb}?AC)B2W z>t!r%9>>pj*835oiV!J{rUStmZUA;z4e6c;;`;>qcO8qOcFfbJH~ zd&tm52*SDVNHN4oc^M)+k!ti_dw_waIrd4NlLtz<`oyxw7QuAmRwZdFz5A2mC&}nSthj+_en*lF-)s5 z%s5P|jxwn}DZ5VcLV|3iWQkgpf*~qLKB-GtIgd~3_zlV>brZioyjre}wZ_>}%M8v8 zA3qYDA#VNE7qYKLFFMC0Q;v)Wg8N>1m?ZdRrYcgg(ogpK%7z`Q1ii05?WqPvGTd}I$N;<3lOA5|1v+AC_AZOq) zlg*MzuCeSARB~u=dYzqRQ!dC^Wi{ppOt9^x46x*)-LUNyXgi&4Icm(c3b*SEkzpJ8 zZ|P*5f&kvA9q$D>)lPb?%prDbIj{>^X$XZF-#LVWqfG7#a_lzJMM6&s#!QjmZ;yP? zE7L`c^aRo-BBPU}mld5AAM`tO@s;oZzMU$i?RV66_HcQr$ohUGn9lGY}e1Bd2b>2WOR1DJS1)wm?bCg`tF>(akyr~!+UAm z(jM=qs9$zJQbH1h*7Rg~B{JTWoo?P^-FRdo3bQupvr-Qu-YJ~X!MinTr2V~p)WI7k zmD9U>Vlw@NNy+r`vf}KE<>gf$NU`u=ifXq<2+!^1-HEC`?Jk{l!pqxa#Z50Sb2QRE z!h|_`4TvpY<2|fwR>7%v(lr`R_!Za;4>6^f909 zQ%s40F29cGqB(3ITq`rrv(#rI>9w8k%t{^3lbsC&tD~!-3Tu(9ehMyJ_-f(MugUbM z@c$yopXTD%-N9u4rcY5eqXJ%(Wd3?99g>u9Pac33cP@V1+RXLtzJ;D;I&+2+`R zd|DnTeNI{L~UE=AN@69uC5NS&UiL_zj zH(a4mX}6rbTA@V{S>hV)u* z%QlpmOr7F>`7^6AKVZWBaz6tsxv0*{;V25{aAUs##nV}tqsAPm*ZuNPC*u?Z=-mDC zNGH9143&Hv$ZoLvPdTuQU8W%@VtnTi6pk{v-7j_<=_26;DHt_Uok~M@>C>oA`J5fQKhuif^xs~z>h*{*N|T=cF|HSJxDP$yfTZH zEHRui`6McZu}KF9i9uOi#?tT`p!KU_hDq*bHSeWpyy&6S=`wr2Sd$rl`h*s za^hhmr!P0~G)oSQ=XB@5NCa;-{20%P8-Nn~D~5e!!J({}xH_yfH8fG$wQ?z)*v7qc z!$>zfRH_WGyb{TZ-R_N(y~vikpp;TdzP=e;qc2U($(GUC@y4i;_D}awXGbDEoj#8x z*@?_3Ry4f{^FsF4^d*Rww8jfH%lJnl+~@XtdL1AzdU`*#WQd2~bDB z74tpbIqYBR9`=Kx*(YdVxIY$&uk0IvFMliWf7&_tKjgT~;`;cVzZakDgZHAjKIScz z!@-jp$RS_#34t)L(}Q=LtOGOf)lm*{=%UhMqnsR^^;Qk^O#eWA2{lhcRha9tQ0!cP zFFuO#UNnj=V46SniGgwo@O^vv%m2Q5E){Jx+%2c(EMNy4>DY$E1&VUtW1MKW#)+W@n+2x%! zu3VN+&2$khx|WWjeme9f3_~xH7xsa7Vcx zfeZa~tN1*?kGZ9pGmr=yBdrm_^JWW#q|R492M5D zTDxjZak4tq?8SMV8h20+;|@H21MB4QP^mgOUJ3xtR9VjCKk$%t3+^9yC?^joQU0R5 zqCC8ZYH(+<5^fG>ak||%^UWLg=K)e$e_unDdgM}x7N1jEQd*HrG{<4%<)J!dhZ{G_ zyO9A$d45?f6w zyOrc6J~?X0>i&)toJohyTUj}ekM|m>7K>FR$Y#+D*WrP9mFfLkiZGV-FN3Bj;)=@t z<#-qv7}!Ef#a5}pF0>RaxVTqYAp{FMtP=D8#bmx@Mj%&$VC3KNaoL_?m_V8Y_J3&NsPP zLE+JEHl4SB&1mao0~WuK%G(bJ8xoVleQZfpr(0QzBjwT3RJFAtSlY`ter;)2Wnv09 ziQ_PIP%Vwo4cZ75n?O9zHnljLC~e20n!?DC1f&(kkl_~cdZRE>p&Pkr`G@)}zz0D< zxVjUI!(hC$gX*9%R&n$XpTGN6)+b~9nhXghtvaI~0#67%~4DHiBaG4t)6j8P!o@&}qd9!Tqb zVouqwdZBu6chdX4bBN)Wc8*~rlNS7Kvg2QNGR78cbmXI^%RxP>Og zk1%$$m4L9jNmh-rUMuK-Wnn&9h-&Mm|7HV#5{O;GM_+V8rX%C$vxSV4nbAd0f4{aq zQm(=*M79_gdKR!x5;@|RLd_{(Gslt%H7BByV{b&Sb-eiZMtT4Ukj#$mY7_5Vt1&-d zVo|x20hU~}8y$H*+D_Mz5o(M@WehV8u5y$)#2~IBnq4%V0gp>Tj5!dH8m%S^ktQkogAhiX&R>JZ&; z<%wfCJ_)%}h$a_MQ}j>48@ensWm3lImDfg%w12RVMz6T&=L}rwWd|x)4(&c}uTLVX z(1NpacK1CI1#-u*{0*x53>;Rh!CP5zGlnHPq-)08M6aQ znWa<5cFV~t6Ed=pNBW)=JW6BCU96nPBfTe29e)+T=!}@m2AU1^F+Kv@kw&lew){+; za_aaeR%3p^grV?<46x*)IxC0oL*X3W=bxc?IxBP3n654FspCceY9cKecp`upryzjW zq2^8cdVD9n9)n80t#3EjJrQkZ#V+=mhMU|@GZO0DX|Uw^|`o2XuN9~mw-m5Ta#XA z7Y+;gK;=GM{#2T7#A+_nv?(#rl8bi3z@un8oq;3d7z`Z4je~(5WtQe<0fj%ixpZE> zIt6(qFZLK78a6a1A#1P{4J`KoyNLH)Y8~Mddx%m|1yKrg}9R4rc10}GWvM&!dAck zm0nJgobZ>6$sHx0f^5r*#7E1==O@n-MbFJ z(i8}pGh!D2h&dx7YzW^&IE_-oXH8<9o@gjwxl3tONm)*{1e=$xs@I0$|0_r0kB*^n zhafX73xdc)bQK(AnJnWU>1U98lh(kxm-7!-f zKLIlBB>bI>zfw%hJAOTejjDo*-ZL^bO-~zrN?6)D1-mD-ST_4LN}9UdX5srj2oS`nGJSD&SFZ60f7$a; z$q^w!uXO?Icc$y%Al?X(S6j{cr-X1f&oB^^i|U5xyb&U=MccX+nzU;?LL@?x;Wvxn z$l*70lsUwpubMP=(X>f(Z1~(1#L(oTMDx?EoG0Yt=WOAu9{{@v+t;eRhSAiO0x5uJkTGcT!aqc*^c=6Yv$&q^gcMXjZ~npa3IxHwcezsV0XDu zXKx$j$to;~Bcu`-Jbi^`Wuk(#Iuyr8;CS0Xt{{{`>smX7W&Nxrah|-iqh1+l2J1@e z+!t!6>>oZ0H0pCAnIoC)ksm4gB*(q&kEYjpTmJc_`*0jSn{Qi<`2iEN>fab($wl>9 z6}}aPa|Ek=2gTE8RfHO2R>d&mm{pE4|F-XQtP&OW_|rwjCsL?wiVA;waKo!!Sh9qdQ}+Td?S$Z2=7k*Y_OgYVOgyoTDrM)1*itC&bJvR~yzkBoTo;nLt@oWSp?5HHdC|nY z@6Ggbk^=~xxj4Yff71Id_YBfj?5`wT57N}3sO#{)GtKAmzSDQ^cz7E|#vKprDVyWL zHYPdtN77T$`mB^_;j8J<@|jUh;VD@#TrD-5GY&V&!vy2=$zk%r2wL`(2JL;XqFEr^ z1l_qvmR+@e^{SxAV5IbkUhl@(F@4FH z$!q>KtCBgFyh<}GY>aOzh3vBJUyN9r2QvLQAN$4Md)&QQi|b&fFgV|{xN2;#QFXB z0L`m#9{!Zt;{z}}`Umi#adQFxp@8^(3J?zy5Fbne;%z=43@_BO+|!96)w(9&xP(?j zS;G}{WW21Tlk1a0$uZwDXPGr&d>*bNP!;x|EKZ`+{k`~{M7$TxN#woXcbUJVye=Z% zd9rqu{3)Dxi#bLNcjKX^1a%Sbps0wXnf6AJ>Kgype5AUP1D1tU8~wfbNX2`}N~%$R zM|nxbJMW5A2>s>CO%TaI*L<~ep+`lQ=lRFsL)h({EXGV;sDXgJjQpwk`xAeEJ~rU} z<-}2XapCcFOXrIYQJ#df_>zMf<TIUH02M1E zGvPeo#(nHt0cS5k!%sphWbkL67QvCER%gPSFxc^h;RgJV!NOgb4+ARp^PZXTIr0yaXu{l@PvWH(sQV!?Ufo%_amD=o_G83E z2GEFNr5MeE;#KQ=VeFL&-I;B=6i6BtG#au4`8cc1?9=i@cQd$U`Ie!9;Hvd>D>asa zNcWEGsQ3lK&Ed-SN~^z$obj~+xiVpXri+AOuSRmDU6pM(_T8K;4_8K~gYD%;tz6|C zWM_+q+qH^x)3A$AAd_iPWrc7ob#td<6v8 zB(CDBPr!#S$4?E8PKk`|W93@80o)7$5kpPnQe_E`2+_?VauN3iJI5=-kpLEV6jTU>O*Uqhcq!VY z31b`PYk80Gkf!%OV@=+0N|W^M1Blz?a%SFgt=?l+J+qt3HkG`QYkd1H77a!c~NPYz#KjeIUVL@Z4b2R=V$mqG-g& zOey zi}giR55dc#EDn?`qqP`AsR8Ce5pzk<=55j{pWPKW$0abV)|k?wvRSF(y4l+|-VtoxTo{z!2kq~JcLY>GtI&s6XKhAEMX;H|`>^u7ecc^&y9C~i zO_Xk3-diY0BJTN)IVORNF_5XbO^FA4R<#$wwo3;2nepq}@?`$H_5!SGAwAdORefip zG&ysxv_(A%j4G9Ll!0#TB+gg(-CEcVs6B;PUW*wh@x-M#t!MetAG?&=$j-_Le7}f4 z;fs7)QKk9LrKPl01J4)XbseImsB3CV3hgoZENY07NoI8Z->EKy$o4RYjy69UCn7 z%f0(R;d<0)?5rTNuF@hYAio47Q_LCGn5xkoE0IxaZ*;A=(#9bsikQ4u+WE+JWHm()LQDzGFqOwp_yHHYDRA_6j7w={b_>Wr~Z`O+(-h$s5hS z!g#AS*<5kXIi<#~%8r40W9*#Lw&poYFIal+z(#(T^4O5O__C*9(_JyaT3TF!?_St?eGHA8IfhBpGwitesc6EoN z6K305HpBk6e5S1J|GrM#7TFJ|2WeG^wu6pS1L+ZknXfkN&5TAuoQx}^NIn5E#vG*;#bF`TG{Sq(BYIHJ2fp{xw(d==N;4+EZ=(ob}U7hrO zXAb;^H5ASflKw&z?-0L9S7qJb$r!WXcX4!87ENA>W$UfN^;02-lp?g1F4vvMhAUI(Lgna8&k9z~ zbEc;n1<}yS$YG`z8d!_Ui|({r7?p}x9Tnt$Q0?Mt^3+Mc`Fid)zmYp%>kX&E&|-Fk zp3vSX6#dkqN3wV&g(}p;5BcbA^+2x;+Iqzp?u?XZk#kIcr9fQpA7-(1qbBOD~PH~;6F6x~OQJ~sV7xdN;DGqhvD06CxB-M6;cJ0uxRz7X( z)+DLBHS%*DpHxKa=Eb>iBJ7zqY*>)b8_*iHzo+ZB?=i{km7v-5+e#UnNLM&s)))G@I3mpjwdGV;X1F7Us$Qts^R`@Q6zb~DsKjx;THVAC5lVwVbmXJE z<0@-?;ZMCO2`{6=1;Ioa@meD|%5r&X*d#m3GT`Ype#|8{=G0>@ms5CwuahDV#zKn6 z-Q{MVBh*TscrlI}oa6*T5*U@Y*xTb2NwSh@o2tOggfdxrc5&l=S>oJ7^?af&C;hU&KDfaiknHoT*fF` z5}5-^DurRWKB>W--TB~pIvHHDbd4YMsd-Q$9&^TXxh)$#`>Ol}Rc{rzF#KPi zRTLyQuA6oVq0hl8#G5w@kuIgmUQ_MKBR}x zwr&*7+xH94o8_|+!R+xvg;(TXQT!EH7OX97VuZHavlr#b#Xb! zyrhg%*CB$COavrBV`o*UqH&hSoiEC@QWUK0`lOKZLx8R`VKO^tHt+B9@!B?TdabwR zXK0U0bl!iO4f%l*?EE_hRB}74!_DabQ9-QOOWUS6Kwo;1CXLP!bakfxVE%FwDXy~u@-G`)C1mU&I&npo*4M;aE! zI-WEv^qnU*xskYr<$q^SX^BmkYsn>!oX zba7-9L2Dx;L#?_BJ!!7o(3mPatw2Y_Fd=oQ+r1Jfqs3<|YNY+hlicDX(eJeL zoR~}#vEVY&F3cYpWv@*$h(n-w>0ILEqqO^nM( z4{$`RXvAvqFKT?R>wJ8#;s6`T5az9vz2Zsr@}R#LUn&INi=I1zW}EEg0QN(5^pL-! zytyNI=gHDrnx2Fij*~FGxUf{I85&L#+{DMy%iKQo zA9#}XDTn-&R;lCNV=`?~65&`aj1caVuBa($@#z;UOGa#AoNR$&Cs35xpu0vCr~gPm zEteR{OHaO^=-Icl0Oo*~nz*H19A{X&dukWK^Y5mqx?_F91`JOblwt{V}E*9%yX&LkXP_ZYu8E!RB}<>JdoGgbvfGB%>$$+?Zi{qfUtzNG><3rg# zk6F#0GmbC@O8w6K2&Nl>UXs98QI#}dq7?(CPooe{!9FZ*x2v?Av!cTV{Vt4H=ksKq z1CC@EX^W%DHmT8Ty)C~|~4r_1%Y#KGaF???xrx9<>_`zrS+~CxwoFrjs#d!LSMv)pwWHTgA=a z=md_h%^|M;ty5elhK~MECqopdwn9hgtszDnO2$#<`q>t;ihg!)=?dqz6yli*$KM{A zs8306PnxJ{Nte+?U0_Ai*Px4TEVrf_wdi1Q^jo25+4oGMB}-w_BVzSAK$X%~pX%O# z3rQ(52R+5EUSC5pIj$4SBYl<8xS^F!a$kw-)5N*$VrX0?uozbf$o5oD&V!qr~K`VFOmtUO?jF>xu(3gcX^|PGT$-0=c4;PbI-9P|gf5EgaxvT=*@q1* z?vdOzz1!*9JRuP?atr7wp_JhK@0;SytE)4C98Q<#k#QPv#bC4F76krd-kd`=r7Fxwyw5IWUM z`}bMyC-cCZ`8#_)%#Vr0qmbi9e8w@;o`Y z#X&AgZN8VtrR2|>^2(p^jZ}ksrqz_4W6$)%d7zZG!S_+69;vReO6>CJ#aUcW6h|RZ zxO;j7XklVkhWRbYPS;w>`uEGZh9}(4pGPH!+nHYL3dJ@}nXaXj`;EVEHD+#> z5)NAYCj%_GsBQwv>w5kn+SY9)w5o`^o+H#4uICtL99{uOnPc2kR#V8Xlf0%Rn?0FT zKa+wXDo3e?KFP{?oXN*;P_Ys>v3MRx>)M#iJZ$8V3m-ocoWT!*8+)3k|G?y!WXh54 zM{wUMsN~>2dYzs7SfGOd$qIUShSiWCDB-?6mjRVrROh_#_dsqA_w5B}JDu|)v>2Qh z!-|9R9Ay@pBvl+|mrdumlTt8~nd8pG7F6-vYNWKSH7j*obW>>|#Z?8j+hB#T4S@<2 zvQsX>=~H$e;qh!*CvwqVFl2>|5X)m zM%(EO8KK2s$QV`}4CyG-la=1d_)llm(G;9zX4Q*fS_q1f(*{9RO%_VCad1l?;JwGQRd8S^GPAiZX;bJyekD`rbzI&N3jr}NMCE7e zGWxjQ!-~#IEX2h>G(|x2RHRueVj(W1N@@EY6$^3rB=$2D1|bY!QsfyS4oJjB#Z+{| z0rXSTuQ%j^R0KAxwJL!V7qh^I2o%LFc3D4lX?1-KTKBmG2xTH@flxNf)XfpJu**V2 zCMr)+rR-EblI>Oz0jexFOqe-C7Fb!0xPOuvz%DdGTkJv8mBPJ@S|o;PJQ|$z!KX1% z1yMP|aHZAz3#(o-0lFEV)^*k~rZf3H3>V1&YfMfYlZ(l{y-PQ}wEg6A(@X2TVqk}x zo^8xLZhHF8-Sm%PWZX^9p7x-d{%ZH}n@)W6D|7hh;|G3b!$IE@`IF-9^YwGGSN>Qx zBIJT8>9dmWKk?4NjQ;o^M2)mR_2l)($Fc8p#uwO*g^`4da?_oyZ3rwUJda3A+9@pj zktsw?+2VD=&qr0C#+ANQaccEs>;&FqsVIjhT*ZnR z!`~8L=5iI!j)(Xp&x}quYOA1*xre`lQOu2dcr^$SGWYOxc#`hnB%vXF!zX)2XF7%@ z{;?|jt`HHaj^U%ZW0*Ohkvx>H22$5Hxj!mtw!zDkmcg7ZR@w*U6_9;{K!fhfZC`Um zbk#R*kR~@7IYjMi-^p-D-_&j4c!5jE*TdT=ZycBY##wDr5pgyNd%gZsqP(C64E zwlfcua*x=eNOX3Fm0+`)uL4$5{ zC*O8`TeIBQ0pD4@hFjKgSh-%Enh+-hiiYPx1~n&Xu9xS+gfPCn6qOtf40`R`N|?qW zu8P^X<%&mtrC92(tY%H+YRLs@J^o7uVscS^QZ}}o2!(Ta=6;Fd>8#9AV@_YMMfs2)n@CFr zo(LeuDG1QHMfv1TdOZ=9eCzLSuzM=n&Wc?u(hWfo<2#3-aFoeyQMTJi7YUE2@S`ab z{OyrN`Gx82Nt+|7;Ed*&+gQ-kAeT4fSF`6eAn1z~0;JkB!7bC{X` z%tDD@kO|V?PnEKhUXLTPgdZp%zA9|LJ2OaKh%VV}y7YPnqmLIaY$5U1^m3Bqguh%Q z_cEL`y2{N(E~Bg5`6_ZcjIK=QdW^30of}=hgOPEgD|_05M%U}f);LigDOZP(#i-1# z5E~k9R9fW*HW8iJURUR^y(V@%8z$HbBa=pAH^s0|T&sgiL0YA$p^4J2l}nvRrB3!D zO72urN~ziUdr(|oKAICHqlxy{Q6udyK6y>FiPUjgYL9V}%w@El7qYje@l(8{RaK~Y zt&aVPj~re@?UAVJ(^=AzDGarTvf`$pb`ihYiHAg(@EV^0b@W@Y(m?01FXZT)IhfRyU3fil6RY| z!km1SUR)T|mFNf;6Wn{jpe`>S@#vofySf5CW>^0uMB?1o)$awGLS|S0KX{UM^%Q|G z&Fg1m&_%s7w7hK|%od4~C|DH#uaNSoR`%uc_*Jz&7Ueb!$beX_jMwWU?3m0|>tP0t z8GSpcsyP3(Ue32Ham+%$&#EiX>s109hN1ooS5|ONiEQox(|6J&FC;&mZQ4<4R7%^b zqo^TSW8BEbFg6LwTjCI{arB*J` z#kmuRRT`h3EH?lIE)c*cW;9;EYVE2uh&!&)(gKk#2)1td9sIHIDvD0r{akKuW*G2dGky6#rPmbm_NP z9;zVrH8`-hi}84=frYc;ZE%$`SxXDX-G}bCU+?p0?m*I)1!411fF+Jp=u5PJ&NW71 zy!|37IXn{dT3>zpjklg76+f^VGMDj|2J0PP!`YgNV># zm=@q2!7M06s!rMR>& z=wH^`7ZlIM!*V!<(JWWHoZp!I-YShJS+jg_*y#2HkBxdIA2gGiR$zf;m)1|%4m%O&Lt1>Y)5nv5~v&f|}Ix>sn z%M+z(oRp4M3lpX7xRec{8qofwR)B+a%qN9MYR`u?8+1 z8mDWBXvKj1+w31C#SZA|Rri!h-y_z6A)U>W8BUur+ZkH1Krv4*(QCb}j%EMdRzrTE z#DsZ111h;_HxuR_w4FX-I9g1n-Tb~lE->g(G4ty?8KXeFWwSPWJdhTkbjD5gt6r$y z-_}X*e?5m7en;mRPRfS*kDZJ$3x*3L<vS#d2aE z)E{>;M1f?>|4MHS@!`-cjxy7GPvj~}+i<0;rtuUqXI4$Zx7MV?F>K0P;Yd;PQn_vt zwhT=co%k~o^T|R~Qv%1L5?eRLE~}?6Iw8}MaTIII+bxTENnL}U%y#C1mi1sQd0@nb z-G!b7tcH}8;+G=qv#harVU$bCizI4H{YbBMy!iE_?xb`$B{x`&`2iC;@&*Q2a?x&d z6XAhs^t zOd*re?fP)kNc%HSUbm}@L{5)uuR0r(LN}qgjH~)OJv#H{2+7>XV^YfNk^MZX=J3dV zniV%ave6kC(;FMT#;(#jI`gB>;r(9s@M_7BOo+7)fH{^WbivPk^TCVddHnRyvvEs%qptM$?e=pJ=M6o ztjiz7Jm$u_yc3uWnRR&_Ptv*^zokjT^6CC9*RUx|EI{!38^Ns-ZOVh<940dwFdMP} zCRBPVl{Rxu<@!A^nyl3niBEY++_I=JTk_$!2LnZu0uY87dBbIh(wAXeD@IDpu4`n> zqa>8Lg2N2=qLh;YY2^qrJc@noRs2!GCJU>l0)wceJWsI_wr3EDi~OOf(%KQ$Zk4@@Y+mZFkR z#MVhUdic z7lToB(Vc@)ILc&>@Uq)TW(hxI3&l&iOaY$A5-vtmQo9lqd0tCqlD?6>p+I#*oMG~2 zyC#K~$O!GUBqtnpr!rBA*zqP9l>kSkmYiOvXATSbMCG|o{#5MYPOCXDjO9-EVm7q+ zqP?((m!R!r_7DNbAmA?8I0)ELW>sbqQ1G*xOQz*&0`Sc3&EFpB(%+uEHl!|{#L1Mp z^gm)nlRX7fn9n|wiNr+6+Wk~1N%B?EipN^{?}R2NTl%|iXBw!8QT)192@7_Kp8ig= zBicp%xFu2OAvEsWhe?(YVTlB=S;lRKu*8KwGr3YcZ=fLy9M7jp>2a)E{Hz_D1Rp!! z-KnXE)C0Sc-6nIalQEnGR5I!J#N=`kDEAVa3`>+J;!LJ7sn${GbeP7Npy)A; z(RXed+k}~M(-?a?h^DdgM3SJOn9i&fOf~9oWN%IP&vXXURT&gr_zYj2zx&;^??hAU z-vnhv9U&#sy?T5hiO|KcrM>GcVM@fP5-YG@FYv5w>z>xC?1L{+p9FN@1p~pla-}&+ zmdoMhRB5!bHi$|EeHUCH@9{jobF{3aap7^$mM%brcjz6?i~P~>q_+7ftCGpz!n@H# z$yN*8j+fx!)SqvaN?rFfFJ6v%`rW62E5QW9_v+wXq~jV~JNm6aeP;v!m;EiJrBp#N zyo1_fCIH3$!kh7OPW0&(Nrz0c{zmjBHS5ugg(5wC6F$Oym*$5X=vQv*d9`xRjLgU-T;N>=A zt{7{rkUBlwNi~2d%=~T9%)Qk@abc(g6dIA>vsYY^Yupq=sOUooZ#xbf&WF(}-+%s= zo|tO}drG(ehzWr4DMA}R70l=~{5c(ea9XIQtdaYmF5hM zE=0x7I^yB2dSi4vD6)Z409WEpILvBb(_Edh=wQ@M_rA$yquslfyzvY~tw9waZV?|I ztKz;DIF7I1gzK~hg5}G1??n(%Q#yqh8`B!KF|kQ!*_8x7)mr(sAomC(X||*vSe49` z;@y&{KOdD^ThiB~o;sgAv|R&~$bnkBWU_{}&@RzaLB|_ee4`7c9A>pIc z9yf3s8|`9kt~{nqd!vR^_-|C#R*p$TDK}g9a6YEP_Kd_;CQj^z3(v_hwM1FNPveB{ zvJy|OPYMKq7X)5Ul&7F7Hs>_H8iW2`e7+jI7tL4WDB@3Ya{Pyy&N_cbSv@s)=kXhw zq)d@y;z=AL1{QJc0B58EZ3eiGRJRe(qngJJ{(1NS_B=iagFF^$Lx9{Vf2#gQ{rx=z zYVMNoAK=T8_m>ey$;E{?i+gpQzr;RT#qZgR8pa$NZ;_)`i&yDu7zpM}qa*JI-23&YL$hmD9!*mq-W?B`uG z;Z5?BCRIx|3Fi5b;J{9)x~PfOw-5`Z@XK|LUJ3`cJ!R4iPvsuMWnh?S1 z9#aIXQC?J6QryAdxrkrm*MaVun&zTYbrPX!xPOc8AFS6RSBXP92DLa|>s=g{fXjSi z4ktkYMDuC^0Np2M=)Z8EEu)cYQxO6(Em))w6feKFU(0>L2%{8{MghqZ8kGr#cW#3M zIhkHG+t%zD9;6Ho=tu@biu+_G0Sy*5$K_yVb}iJ5NDL_%qPu9z=pAvzqq|GEyf(T{ zw=mYIPX<%fDM70=9NJ&mp!Lgj*(JOPrkh5(1_WSEt0o45k#;K>#fliI6sFj1x>N0z z-nG1iH;^~<4m<8uMF@0%uy?$Q(?t`(omf?c?aK#iQ~Lvw*7e|M_ZSf|ib2bWQG|uc zh|nfM3{c_CV3?>+V@2HQ)YL>314U|!Zka-u|FDHr4hrhE9q~`CMHsfVJ)mQ7Jn(~Rt-u-a<~rxoYY~(_ zzINwOu$@xb1Y3ezgRMIUz)>2wNmzW`x|5i;NPL7w>R^h*Tnn=DPPQG0Ut932*=!?G z&MvkE@XR_~ZU)Qw!-K(cQi4KbFb`UoPs^CTX4TUe)0tTr6OBP*Oq~KU3kWp%M*32n zz)zAmF%T*VeyM?HtR-G0epgY006@+p1OmO;5u) zIfh)d4$_ToXlFFKA+7Rp|ATcOt8mb_A>tA?uokezqBWOpEL+rAwrG{l>}f0~I+v>A zhxX7?^Wdc#U&JBhfgKtTo*D|C5v&h_vEiZO*8bq^V0&e%S)HiYhHn`<5NzLG*do7g zvA=IQ5KsZF!T?@9V|x>K0BMVjXko2}Qej0le&t}0HSKcIl%z8cK-WX zyGeZ5%v;CLZej&WIB_0M0_g5aqlS3u5lFIotL4@>?#&P>&-R1)^9FbBltTN?os|Cs zVkcFV&h^cJDg~`Zsn(=yFsKJ>PP zi3Y0>e5ILZnpQQP1JD?W{tT-{>?lu;pQE-=uCf+NXz-)sY-mWDIa z^-ujXX1PL6E)}4)Zo6jCoUg5_B|1u?(Mv38&5UIleFJ@fxT4WtG8@>|M$#rMUW!wU(H?ec#<n3BeP8sH0#Be%Fu$)#38oK3wwQKlm-j@v6n>yzxf zJy^H~%%HKi+N=cC7V!c3B`CL<0j1H#?b(y+TC79SwW5yym4z1dqsvnaP&%S{lARg# z9EUPKM9YMz2Kk{ZgOu)We?^u0q{W5|2W>6=pfJ4NX8Fr_!W&fdYGk<#iZF^H|CZ2K z7Nbl&WHI0wxUR)cPaBG@KIu~LI31l`rW64w*Cz$BFJ*$5aDo0DDlxuqx zN6ZIEB=2L-YEa*|8uD*OA~xc?Y*6ttMpmGit zGd3bNk=AeX%uxW|^0G90TqLMW!Z!M?;CtN9O+>{5jW&B3dxA=t zofE!sX|#%Y=9mV)OO3@Vp=`ZXus$!(IR0P`VSRpHSjQ&QdS0F>3Q$|2F7(!5A&y7^ zN15drxTivm-B6OigZwxco^K5hC!kBt?q}sZd&I@k_DbomE^6#*lZmMbg+DA*P)6b8 zQ5RW71Ma)Sj2G9!hIL(K*Jg6+ac%>qNf+k`^+HYiKqhnvmOsrX5-oP6&7vTjTXIT*at)ntyUX&ojAr<}6_$TyPZWhhL*Ha(}yn?}F2LdMbVsb9srHMVFV( zKVnw1?xn-sbC{#f8NYzs&0OL8@zl{=5j$QMCX>zdrJA>SUAV*)_SjDd!b)`cx$N>v zt~3Vnc!&fW;M3A9L>ndZT(KgXl72OKUFQw#B2S{>sfKE)$;EN7(!*|E zipVd_O61{ls7C*lM;Sygw<^HRSq3RpfX|~!eR30lFyEsJa6p$Wg6@kY_-B>@Ur>&f z{n(T18uM0*}j)#zgIz?PtCG#Y@&-ApoAa}nyiy{6R}IGOr@0m-x#`1gz@A+M{7aQALjG5^K#H@ zy)8dMdz8{&vKsOaN+?Y~&juA=R43=~jVPQ!Y5HXpPbTLGECxAuLB&DNjxwtdOO~ zcOK8_ohVE$E;L|j$%Y$g+=om9cB+R5#^}A&*t_&zYcQ9&)O+2F_PO5cgLpFZUJf=Z zwOuTEv}IM0e8tppNnAkaIET;@mn=dLYg?xjBGjlE(nH}gPR$nc9#qvoT12-I#zEsK-&4B5@SbiR6F+l_bz9XbebdP~S z{Z(+zgVbNVzDND_dw_7wB37hYOrOoVn8F9B29NqtWarSE&1NF(?_?RJRGfX2D)q^| zr+3BKHRUmNXYeI-EjfrC&Xr?$AUa(sD3z(sh#)0tyA{YzCy7`=?a@pS5Nd~?qmo09 zMz3{&JVEVHt+k{)!Y&t9#B<#LGaK@9VyQ)2ib_7YQCB-;)uNq%wso}w?V#OSvfC$wpI~7Lk&HkuiD8$kqs+auF-;35`i$k%D1>c9zKO(B)s}Nr zd!+jQaq+dfuZZ(&D)=nS4Z| z;@=RalcZ0TkMTU(6q(_lyl$_dTXFcFSSb%w$GWw&6qLiR-;x`qk+yp2^5s!`Dp}Iv z=$*E)Ez2}Hk-+){s}i=$)hvN^rhzLWwA=F&4OtqG#Rz=dnlK@hA@zPW!*an?3@-R|rTwAsWrn;{CxGwb&dyq0@x5hL_)7*Hs8Rm9muuU6fikX>u`xhLPX;GgU<}`1> zHzn+ZJ3QZ$m;9BCF5(fWEqPi$nU=h_cbVl}syn3O(O*fVY?V4zwVWL$QYNr_Or-Q( zWSPaxM3z~4I*2CH8%eKM5_y}l-vAtMD!np~sWfINvu-kt>8HrR zoz%4twAHZIG>-Of5qvY-QvU^2ebS6&hY8CA-VJ1YAbi$H$%oRF(y3^pJz0cfeS?IX2dyR-yc`C8*EK-F7FqarKirV4_|s zSIUEhjnJ^yTY6SaLVu)mmmvdGMOvt|D9RW<^1hQfq8o@5k%0`y6kdV6o~tS1a&l^Vu!bMiWe{o@JC$)%X&s)F*dzh&w$-h&+RD z97T3J8nf|jHm|v4-=*U54lN;#6pDpyrb|TrvrN+y7P+^hlEaEkuk|yLt?4o?Rr*D6 zklpQz-#%hBW*)Gt?Mm9@{)P=KzNoHI%4*5}-)LJ`y^z4sZOM*6V_34gAcF}r?W`uE zI?9~n#!lS}}lrF~lhgs2?lq^|t)f$NVP5kSrgHg}*i%@()UcZp=p| z->F8YyzmPcY6ffY(P%rF@*=Ppl-C6n2jw}+EHzQ8D9$dMOmY9t(B%bUI*L07r&L9A zmmt|$t%)rArHN{5dLXFct{;9)F7p7Ylpu3g+>u6}bM5*}xEBO@9>YBjou-2Vy`B|< zyv}OK3rooguVI6VFWL)1ZbsY51Q~(FAjmGLI0({FrY|kN6{*^-B$MhNB)}{+b3B-L z*1s$hbqJEZlg+e?Wa)K!l1;d?{%uxc@w7pm%vKqh=3 z2xPO2-3&eu&$Ymi3d@&LrSw=nfgS1KP^vUH+_+;)=DPbF2S5F*9!UXHN&w>VLgEny1I;=;!7$`FBSZ&4#^S z-Rn9SGg;sEU=B~!r4_0K{XLWY?Ki=h;(!BrCsFBV$4(LN zZ(7H-!-HwX)jrV1z*^B5=T{@3X13`+h^oHbS(;`=eDvp8adXs>iP;=;^co|!EYCmA zKi(ha8E-rXmD3ZJXGNXi=V*+F%<_!8IaK;hSD<1{M6jAbm)ZG4n9y9BolpENxIZ&H zKLt;Q**T84NSpJSNwYN#&Jr~cElcf;TXZkW6lR!qb! z;>JEXWgyr}q0^1}UVcw(eWY1w>|u9+;-XH(RM#iklQpiw zu~N1r>~bTSAR&}`H=~lnEJv^P6>T5COr;aww%NR;xTL>QB(>LS*2^fQdauQX7++LB z>|{02O`~o7ltZk!+dvlq$xuLb!N{S2a+Ep07phR8v|Enf!%5vliiT|oaHMi%#v5Yg zJZ8Lusi}S+2BQ;VJQ>gtQV{jK`3!913cc3b@)LE!YP-*B%s()pss1<{SbR~Pl*0}R zXR!Ev62+5AnS;h$zFtlBH}cF=ARxb{`akmY`a@Lm$?Cm8_a_;k3xVEX6kT-ZU=)rr znKjjR8_6u;o&<=QEWzI%X{v8XZcpkmX$wxN=DCO!ofS>>nj_{JEFgX<5<3x^>XlR} zNm@{v>QkX|rtm)!+WB>{aM^4@#;cAxmDY=vFE@17^G%iY<(Y;oRMs1;N+8Kon9ABY zD7CBD_53KOUFAabYq!UTz1lgmkz6Z|rv+)Hp$nJW($nUuNmD6G)wQ0B5d*Q3m(?_8Pt zA`bJ^2DROW6aMdf6@T$va~vZV^k$uW$Zs#}!?4uw7Hbg#*$(~TX@Y^ZiGFx4Ni zeHFt2aitONT4|Nq!;__b>sL7=x=!=LP#$6uN-4Ja1rUQSS(@jXbOJm z(k;Uruki_^j(#iJ`c3|^|G(bHzBpP(0tZGu&qd;^TrkmZHT-4sd`rU{rFH_ULN${n zcjsCDUVOPbc`sV-&Uvfkbnv7mvPO0B+8Y2^`ft2{lT908*7Tjc|M-2+Nnpvvg~nbn zmGGNHNQX>gZ(QW!*}q~G_i7$piu+GuUUR9q-vY#kOmSbrlcBgz*dV0-zCY~-);~ky za`PBaR$qiK2-%+^)TN0VTO;GfChEJQl#T%@Bqyrl^?I3w^O*OVOJdJcRjrPyS{;r> zVY%Kj6TstVj{^e71b7Tfz=M}n5nx41{eW$fCzNxyCWsp+U@iM9uu^!red%LN6O{l!@HzLw-AEWV71LC)$ZBUic ziAxoU5ew4%3^<~Q1<~cYKhHErp&fn)DmhFZ^jeqU{n}wqEXYT#hRnl&#R{d7La~ zLF28goX4PXh2*&1_b4H@bu!piTs07^SlvGm6rYKQHF!Yq>JHfIYOPYWR;}%lJljRR zN~jkk>=5#QiXrO67f%QzAP7SK37?m3=AhSlTYf_JUa)lZk!Dl=VF@G00#vf4Vx8)B zQVzd}!DcXW6wr1uDMx@YNVy9x4pMfMIagk=6h{gOjCGTOqHVj`WZM1_!>t$I>1g}y z;)urhurmqls(xmyzPhxpI@z8K;GBRU>e4QX^+nwEB#hT1l}K8cEbYdncW@5D?q6yJ zh$v;g3@lE(pf1xxeI_@+;=L8OlOWmrI9>BZ5(9$A*`^6w6^v57P)q4Rp5FJ*A%tI;AHs22VPBhPj%grVC|AZx?TOafAkuN@uN0KunP&v= zm_sPvlNZXd`C$J(&lClaEdwvTHQ0w^XK|F7K6ETsVcH&7^44^20-95cUBY8-UVn5NSN|I9y&pq|;} z`*u|IDKIRH+*?_3)8rck_n2djUPJh>Vt)QE|9Jnl_wi~;QOyx+A4p(gT7Jza`jz~n z{!;IwUdHVqHa`$#WLT=uxhdn1MFV01!^Cj$&$+HCLVGq4R%^jdGrPt*xVpYK?W`3EKxY~N%9i!Z8^a(E94 zXRz8ng5t@f%t2$CguJ0?zsNIBfdH=|iswxe?7~i>wiq`u>!^wc8KGT3cOfeIj+DJX z_ZYOD7P^q13`WsKcMeA3D3duf&2A%^CES-lkEvP0#q7))6nUagX6n9?eASpIk|EA8 z=g4+V3NMjy+i9UrI2d1;iAuzdw~kQ>aAaDi>9tOAe&(={PgI@(}uuGro`{?PA!{-gS;w8px<7E45!Q^{j2{p4O`DgFjQB#6;f(1Hrm-r8!F0 z)8Xb+X|%F7h)M;07hE9kR6V|Pw5+6Y>~lefy08`Ap?5fsJF1Wvt!MPS(5hsv`S5Nu zQLi3g#+Be8;d^y>FVc|@s7Jq*ICet>5tpGarHxjB zHQY??FLXdc1NDD;RM%$RalAVJ0_RT0QBMfXP0J!GVtmuHRM8&YU}z8JjRlguS$ zEhbXdhpVUt5Qmx9qM3WEh2nNs2`Dro!DlbYB3Iujj#1Hv5Z-ni@&ddRz4FcMW%R^0 zGxn5jGZPa4dsKusek!=tY4~$G{+zLcg$Ig3KlC&34`3IAev}?9lBJr(@X`N44xt63 z6QyQz#xY|0%t!pXXvFL(X~cKG4n6kq1sC3|tys>?$4@?hORG=8n62@579kM2QLQv* zXmlYecAmB2>W#Z=wV=pGNg-z5jdXOfiqhC`m!~K;$lLDTVA=Q?@WdPvH>8j^RYd3O zR}HQikT#CtTBW*ce5BrJu74I@YG$kTebQ1$Yore;32=d0lcEUL_u*-G6R-Bx8@mx= zw|)igDqFsM_g+LsHKjX?vD2+lI~{{lmTgYpU#+e8iRBStFwGwKH&!KcWqJ2F>d!~j z)*konsHe_H51sVG32ks{dTqHr+62)e%7+3ptGf^wiDVmtIvX4&6gLM&9Z7ZEV*M6v zd34T7Q(yAabcGdOKN|tgy%pYrk%aHUUj{3X(0?;NfOjhBhYwJDd=kd4yiiV%hvdnh zY9L=r7|2IxARmnz$i2RS82N%n=6*E_wSwW3v`BO-z8Q`t^YKmMk3B1>{HGTx-c$%b zLRH8{X;LBl#@~z2orL$Ixs%KXr;8>-&uTJD7IEQ1@(_z1WX*!WyN=)ZB$0|V8~@7T zVPNHnlHFVJ z3{Pqz7x}x$iaFkGPnbK^vu(OCxI`~6=V-oE)7|Qyt`BcFrpMd3zZW0gcrO~>o?r?N za)S12HN`#t&a+~a52z=M9^WPFxbV0*DkbNry;0M9rGI)p4E|wy48GOhiw}dm7Y&1p zgn%cf75!F|dbhv3tT^LC=m}>9C5*a|wMcx9<|KcsIo;=xcGaz6B^rt%$sCt1Q-@1##$_O#Y|^_67aQg)%40p zo?qF09$3lG12dfks9G)0gx`SJ;`S6(!{eg6npgNvR7#;*@cs(XOzA)U3 zf7ocamgyW|js3i9CcH_0(v(W_Ab{h+Jwm*MJhP<>ctuUC^jv6_%GDOTZ8Ml`x7x@o zQ?1eQmnA#rnNhh{VZDZIHt-v4wpK{lO&Z_pjmU>^_8L^=dY+eDEzJva3H_ZvkphQ* zAZD$*dk)=rh#Fs(~lzNWI;n9t$EFQG@DHLJpBADe4;v zrC?+l_sHW;`xZP>K}nRBfR5}m;5KxXjfrU*R9MFai5N7lfo)Cm>&)rs9*kGuwu<>h z1WENoGjM~2Rw}rDFt`kP{PrU#lP-5dY%u0)v9MBUkG3_f*ea_ei1-PYLECTXw?h5Dz!=jmqG+=z-43$Zd6Cw z1P4BP_PW-lL<-YWbqubF!2%3A(+S3^jb^LB5<6kQ+n%{&n9mSL(iPfVnn>VKZLzdc z%zqakjgs*I!=>E>w^D(!n^bGUajU#+1p2?U55#`Ru#u89ljtwZa)7#2& z%!(N{E+-Ii-*v^g!^@T`(WSFsQypwf0$BV~eTK0>cJvuuik7uq0tN;#f~ER~(K!~Y zoLJ^AB%!N;{mS0E-m7u!%Q6mq?oZIh1Igoo9opQ7Hx`G^-*W5L{@@wwgYCrLr;7Xg z13c0*e(W2Vz7;RFBT-&qJNBK?TlmWWZx7sp@A!B7Xt_=mr`gM3`#^bLP{xk3zfh3# zn)7}*oG{b70H)@MS_w9iI*Xu^u3`V28Na3@9sD+R7EF{zDibrC@T$JIQJR{0nbewn z2Jlj7Jk9{7CbFHj5%~zaHVYfS38fUa-;fvEPc#N-V*9}Mz14CBxrc7qctGNv5D$D$ zHLF2!cYknpz_Gmgz%82(1lu7{4BygPzxu$5}TM z(&S_*7;D#9cJjf1=aNz~$T%gZ#Q&vaSK-+tx$7#)HTHR+8HkQ{?+o^iS4YPo!->3= ztj|KTx}QlXEP3UMQJ9-36sZo;FQ}AIyf_XNt|%k96-2*!tu)b3nW!iU)f9<@Y?r7N zWG6%#2L?bPLtEKDTecq9$s(I*dVG{j{F28Nmh6hY;Se)LDcO;iv)LYD?kCMi0O~B{ zFw?fb4_j*_e5uaXm*~)yeCQ~GwbsPPtR~|525pls;mn=-W&7ifIYpW_O#e(5OUUn( z)10?ktNdV3bKE|cB%_VeKgFlWDY}SD&iX{gl`PWJy7*pCfLPlD4J*EGPcyXy^Q1U- z@*=Pk37wq*f<7tb+@5M>FTW(OBoAysbFz-Z51mh<{Io%_G|?Kbw|9*P)fR}kK)FO$ zl*%QXB9U^gU8C&BI2!G%lo7;OD`Wd;jjN+wv!9=4kkA%KoM;fR*5ll%4vy-aOJ_}r zah$|KR*Z*62|h#e5MyjepNGa8!AP~#94O!z7fjUm;x{`e!D$9|f5yVVE?Fzp$*Fpy zRf4oaM={;F!On-6?qEOyUV-J@BQ_&ADLST3`Ke68tvNxP6;8o2LooFQJ}1Pr5{}um z6@}>I^V{f{4#SKDizWj~Se8dD_G$ZcpKZ6G+fZ&9l zK=9MYBb_NuVnaSPCwXcNC+R$!C#|f2Bb2cjKfeu?5En|Cqt&VDLF~w_YH4C{^vX*% zH!75Cdvtecmr7inyS|##@+=ggA99{l8A7v1Tmdatn>0btYOOxEe{G;Eb2jQ;ft!gzflFV^qQ;@bDit;f4euu5FBM$M zm2}{EkoWYKuI9?(jY?TOSlCz#u5HvuE0r>uWuh0c!8NO)y4zTTAXsBcWvH0ZkN^~d z(}RnUtQ=VcfN`|Ys!V`2GOtBq*VoHixtfE8@m6bU?aGz#f0SJePEIrir$9W-m3z)T zXJv!tz53kJ;CO3tf*%Qs;rBEEb)eM{5rc+)ssQ~YJ8HJtd<1~YWE8`YU`gvc3Zk1ZHE zcpS~h=MHG;z4}pwF9@|ggu_@7k!FzAUP-#hhFj^ArWpJtt*J|HY|6MnDpgQZJ-RebNPw+=qI~#6NTvU=P&}O9LH%=d!Gf?tIXLYj{TJP3_4M zNUhG(xa$ng(m7Lc?F^1&3mMMf8^<6~BU?062jCO{uUJU?I9xYjjhLKji%YYiS%4Og z8As6D<^fo5$Q2#aTaQ1>H*<-eW-A17%om~nb_ZBmRGUm!Q5tFD#$^~@_^Dn>!A2rd zk5AuQGvQXm`M!}Y0B|rf&X->6E8QRG>&Zg>0jr_-HA)00Le$^K1{Gga51GrF%i^!m zwjM9X?9F%27dB{G@2|wNAxfJ5bQlsD_QOOrNt5a}R z2rok0IUyXE<@>Zeb4&x_B`V9ea^E#yDo79J8O7Oi24HPcnD4l_#zzq~aJ!c3e4u^HYR2^Rw zHX4~0gb-S4Y|VEGE%e%05#Ei}BecB4YA6-Uzk>}bzGyEj|7B=9ndNh^nBqh1ruxTu z<|qK~g{#^_J)7$L^Yni2976a5`5_#)seUTY9MeEp-IEbTRp_tO;`--2BlzkZLiy`? zp&YxR{#TwU3Lsk>D!nz>hhsx^lzFXpLp@|HT2X;L=Hv};cLE8d-taygMO6gFTcSwQ zz9tMznfC$pP?HK zc1sl6gJ%X*tMJ8C-9cenz_~3N73qc1gy=t*gsrR!d%QH0hsF-41%wFBroB<%KJ6Hj zjN*3$IxmPF?G#jEHgNM8POlA;^mASbVyRj?I(ngox5jGHKRj_DU&)3SU$mFK?Hsh7 zyti=xrQF-D$TLTQ0xyJ@8l)@1Y`s;m-j-(^Lvsl09l2pWAL~@kmp!XlHuKCf4YU_W zj6wFSy;1$&k*EI`%^{TU$_?dMY3(g}=9mV?3pvM?0G2-$bnng6^Iyy%bl*4o(EUW7 zIi`VbDp~led3yiy976b^3=qa4%t(SrP%(BahY;l`vsdl$kKFbKmXhL;+unE(_IX9< z_NbD@q-6;>NG&GaE#eosMWk3~K_{h&0eJebJMx0{bmc3Pg_N)<>yZ4?gjW&d8gfK} z#bSbz=fFDOgm{CHmN8T&&pPHjTc8Ut#b+c6VeUf|r7;*>BJbl{vD#^QND*|obcu=l zc!5C^eHNpVL-e871|fMjX3t^%OsgUPpoGA4IvZ4c(Ov|ev(R?3z{9~}2|RH}&9!;v zC;;z;YbpkIWuD%jJBJXyIzNO5A}NRVV#OUs^UN^~grzc^t#P>xn=jQUT6sqC{5gd5 zp1hEbJGi_$@u_rvzD#}Or&=)EWxG*nPpOLN zkqO}lS2PddW@-&_4mV#axPI6ofOvkc?MHvjK-;BUrq>2BdHLpi08%by_N)f=IjbT6 zpu~Rk88)c+qP^@#UqIW*`w<6=wI9WC%YVr;M*(;*TvP2w|C6WppUxqKe~}-;aXbDK zmYU=kPZ~tpf{M~W_++JQlh!I)(|wYfW4|j3KRwUbo`Om~BU>*Neg@jkMd7i#)U)$U zQGnmtrRc4}SRA{Qqf9kB`^CvhW576HF&2!sI-=QYgcE3NSYg&4NAgDXmkG-%^+vT$ z<{Y6bnlEbXY9o3IA%atg(nsh4{A;o4;QWJ^Jk*=H@xl?9+<%?t88e9q_`Q0eCOn!6 z&qA3y%t#q6c3tXBUo2d&$~+e}I=i`KbZlos^D+y~lHSaM8ToRl9%5x-FGmbt`vmQB2|E(-A0L`8mA_AU~17 zLu914$dCAOR@@wQbos0~=IAwer*$Xo!}-Vi%{=3cXMJ*dBAJt-$?#(|MxLYe;3jkG zJk`IxXWWUN)X=*UJ-rK4nbky3Ji`;q^|a^-kj7X>@niASkttg{v0Ox61xjIqI7`MY zpQ3RMs6+-fsdo$7Nz4;NgXjUkOk~AVxpfa z^+|>Rv8T6)iOwd*%n@Ep-VG}#ikKM#D7+Xt6Y_Z23rCY+Xdu`^`Jo#1z0mB#`Jq12 ztTgtpcr=z4U=;BMlQkZ;XDL>+jf5muzI!O@yF3#Zgdn^Dl^m*ldaYBkKe#}@BU9*m z^jB(#+pT833q&4?x3D3`7uAoQSwjtOM%((alh_@wceJW>JygZyR63i0~6|>cd~)S7u9J!d_D?i2>W<9iYL=L2aTyj z^xmua@jUYs2=FQrz4vN9n5Wk-pi*iDRz~RlQwHdQdmEgji|!np#8GDB?5#P)TI_z3 zS<4?KK-FX|{`N>=u{OCqsj#3;Jf*_o8LVh>oMwvq3Qs=PWE1hrl~|65&^(bUCCMA= zmYpXdO9!dZF6GLNNQ#y0(YUy9(emXeu9EuB$1lw=I*@6+;@ZNZRS7h^j9pvUJt9Rs zb|pWuX&r`UX)RN+THVPXixh!y+d~o zNy^h@ZjeaLT-;~H_x>8#)CEU#5u{X|zCUWD^Wg8g>a-gN2UBzUKm^Imn$!DH)wdr> z)uPax{v#{itLF5(`N#Y1JmZaLcyf9|bE-%({0AE2A<>+k=3Uz{ic>Z6F2(7)F_XDc zoGv~NY@I1ikH?czoW`*bsW&~{J4aJ(Dlq}+>0UuNiE7h}rP>tzM6x91)TFylkvkmr zStzCSgyk$-d2sD@SBa$Lk3Fd67 z)F&AMxMYtS)8}y=Q5ucu03xX8Mrpb+6C{Mv^iouEC{5|LPRoAvk**>2Dot;;nl*(B zYl%pu={7dR_@erWAgj`JC)(DJ1H|gOm8KDp3{^)Lj2x;CN15|oO4GDdp}39Ra{NX} zN((xlUYr0&soZ!DE9cRhuIoi_D$L48tfNOK`Z^3oC&YL%pyRb5>R0m_*g8>qt+(YT z>I9wWyRF9j0~0#Yd)UC@i|V8tHc>c(PV`^Is&Qp#zSwQ?!Bz7Y7oy(|FlC+@oohyaDQ_t+_xCV+6g(8J~ zj8+D&gy?E@L0Y>%VQMWD{CXZ>RJCK|9BtneY^`G;t&~SQoTIQ-;3{JTi%Oy3-AKQ1!Xtl zm+ES@zpJcw0rT$TcW&oGNiHrF{EAtI_Ys*L5(U4m{C09Yw{Nr>dzXs;Ud&~#RQyB0 zZ^%^qJMpAc{P7!{RPvvZv;`a9(Gnjx2E0#jfJ8O_bEKMoY6asW%%!f&OIpCV`|6lT z$KP{1YB`L1mxHCfgaq7o81LFZWkrAk>f`9}J9I0utzU-ZAavDE1^3xb2U`*1y{FRH z+o)28&^Xx&iOq3oE_uT9u(|@fK{ZhK1(kx4iTdd7DC;PNiOTDQ%5}6{qiYNi>J1m< z3KA5G%X#V2BDiiczf8C*Gsoqv!g*8lhU)~8uT(ZXtlezZpv6T>`-a1vjAVIARPlB{y+v}A(qx@-!70E0pjNGn?;4>TDHv^3 zy1J8PRDs2ySzyp)x8`t2tdO)%kf26cVimrbVekEq#}yW|{c*3gO3iznj*0M7jV@f9 z59DbLywGaE6y2?5F0YlNUYQ+b0iyz~xwPX6_3?yS1F!07JjZBMs5P2yR79^*I+%|i zS_ALsX;e>3u?n=#(vDWc>3##JAM9zgt1_=bwQ1NxkC$gi*@{gg+(TpKx85oiJI8S+ zU(N&{p%?ukRqB({7Rj$Y-PF-}OjuEWoCy-b;PgXOa#&I6wXOv48=O*GQRhF=Y}U`9 zgz4!BRPvotbUMv%tY-1<9X&O5Rl)BI-RH2J*bqHQDlYgEg7H- z!ZR2}7u`7+g`-SnE2`Z_GD|oo0b@OkP%07VN(c{&}H#M zdT3bukq?MUsmQ0J=%;oDIz7`sh0Xs|s}dIM5@z$4BT=+s7xm+oO!`kkOG#$iEErWosG< zqSj=v;ES$&2K&xG{w`akqY3tJg6bkMtJM>P$s?);<7YA4e~d~8(s|albx&(m_O;dq zeG=$>7YqdJC^BIf9vH*8gnP8IHi$|EeHUD?BU0HOEh}kU{~pkqE>MMc=pD|B4jgz= zto;2}C39VeccY1tt;f6_FTvBPKi{gAHo9qE{7<8v4i{Ru609LK@{ujlF^&y1`mF%| zi3kiX?}3!w9txJ>ebgQ^U@E2Q}APiAbKe zdv8b~^IzzQ;sq%Qu*#3l+6Ll zBbrCz<})hVD%OUn$>#b^^;%`XFng~zvs<%|!^~znQK{`}jjzZ3&qyjZX1|k}PNgrL zv7@a~I~s#gmhDU+UoEWDf$7Y9S)WzOTvpz_jQaDDw6&L=8uirq`$H<%5QYb*rq`D1 zqe$#cw}z4ar@E_AnuHB~P-lX}!~~mz$OpAN`GSrl%6>`@_ z&~tBr_h2mHyYQF63?vHPOk2pZP@y0^pW5ToFn8ll@0)@G*ku*121ZLPKDNVP)`^= zo(^utKI+2bu~sQL)2{bws-N*s)rZYbrpM+({$708wN7JKi=`vGRvcw)A+ITO?Xgk&4MOL)&ZhJzT z%85^muxRczM=I4gJt~BpSAt>Yfwz!BuhthRJn9%7D|qGRPKLOyrZ8`V)%piBUfqw;JtrHHiU zB~o3300=N&<-_631JpfVOx*BF-go2?MO|uP` zXq0UhN+b1lOZq#L2QnyvjQW#O)fM$k9?ZB_x?F8kMq3lp($vo`lOC@W+E9r#CZ_3U zSVu@b23>1bThoKVW=x0CAFi&3>I|)v#N{Q9whAxhDJU-(pPs5?3{8x) zK332f4b22^g^L5$5`Hw>)fU~_#S`%A3k-hQjVgU=4i+v$VQlfOYOP&wH`Nz*g(XcG zXGgj&jH`brg*CM_S>0DDBj|uPQ=moKtl;t&RpDwXA!-$?wb6-onLxxVw&NGj?=fF&Y9pd zEG(c3Hlp|#?vLWvQs38D9utS5;=*HsE`CD$?+8;b) zeXt!{RxnlE-yiTt_8Twu4NTvPm)j@my9(RK8l}-&_{#uq58Q(9_;>qgnPPH^)9hui zeW1KAC}StvUnt1w9+bW~yfEXB0$j}z^C+c@LY+lWxz?~7&x~Kwk=|&VIty??WMyJz z6JFK#HcC@7FO!O(&j4-;=}$C)+I>?*vcpp9iz2?91@qEv>5EjUPaY2F+Q#xpe}<0P{|b>V728B4)9z#J^y5WSdrGGc>1QpjtmDtC7?sb$o z8~|M84MeXE0`x|!crL1b zpVg2Ti*grx4;xf`QGFN7y6*oHZ71_s4wjU=*!_9tC;;z;YpPxBp*+2RWey?ywfqo{ z+r|Df&m7Z0IQAlHA+E%JS3BFhCz(qno@_Na?Kg7>|M?hDE((v`*-ptbMFDej>?fs@|dmzbM)oT*)N?Y0;*aW|qv{jWX!*l#uY&AcKUCh#GaGx-y zvthRFD4T?_^O5@4c~^c{rlH=?|uMOhxa!1eEX{*&xsx^5N z8&rJJUUr@BXghgLaZkI&dxd&hV1r| zw}=Z8(35(LxXyNS$-764)axx+@Jdt8J)zraMr;b*9~4;r(?Uf&S0$lH>h$W`KQj6=RJR{gVhfv;<7s|1_LOstE1(2;>f!-SI!?7zk z%A66iD`?D8VZ^SVybJsr<8@vRlaUyhZg0VB$zV9^!rgGov-|Ehd9Nc!I@EGYWW~)9#Ozs7&?))HdlIVpWLxKW zQ%Kb6n7dko} za2HPIOKW>*6d;Y1rVtelj}LfEQ+)VHX{0&<&sI3pHk*-4*?9i$3=?E>hiWBV<6TL* zM-iRTDG~Hx%xys%R|$B)p{U#GsW^*XPvtCtmtIdLs?;Z03;0-%UQdsSG^H=h1PLKm z--1dGZ92U+glg~kK6RSX8LL@yf3#MKwCKKy4Kco`u3OLQm-ITct!q(;bMiE$6eL1R z^_3vz2uMcqwk{Ys4u_61vy`UPZaIEyYRF3RRZC1|X3UM&glztY2(Frl0 z3^07D4Ez+If$f+;ul2V4ZeR(b-osX7{(%XF;J4Vo;*08}9KH*MGdO^K7sZoFnS;hu z2=dIN;@DxQDg9-hc?tx0nFhb#QTEDiepK6O;Zze<@gO6#3+OIFC7(#z3v`#D?X=K^ zoNX|QF1m9t3P+jDX-e%jl3Bth66n!n3I6s-b_Gq`|Ck@IBxdXlX7ALJ^ zkr|TUJ|=NDl+|*ME)&#s#WN8q_SdrvnMkoedoEXzKogi>|5+9DVG(~ zLe5Sut83#f)=6{Oqpm_#n%7Iy1Y1jmEz`$|=ub*@SgVd9#JM(#P@3L#uUG0i3s)za z_BG+oK&Nsx{=O?AvBVcpyUmY)dtKl(mrP0p?Y~BibpG#QprCc(%Bi9~G?zZke~J%f zUJdSV84ojYtRHEmic@HCA7#aR)!?3*f4nE7s&7Y5G2R8pN1f-=$7kjr^~&ByJ=d2$ zUYUP(m$TWKSx#aueca;j#h2rR_oAhPNx1ZJm%pp5X<>Nx@td)e@RExQ(}Cib;r}Dn zd1y=rhECnd^V|th)abj62j9hP=FE8T3ZR%94_=2S&3F*M&q?zE#V1GR1J_hd1A;^f z1jK(K{G>4;3`&i@e)FT~%E)-hvRg!kfUMQj&iyto#p_(1j>x3WKdkp=;Ofl+B1RPZ zA75K(AjW?Z`AA9uPxryEMP%tu7&6udxJnPnFR)Lb5W?H*HDoLimnZU6AxJbrwvDM|{Sw<ED;T*n-~aiVP-98P*Ms?>QWz}OFW!CjX7HWOkO~=b6d}mk|ekB2rRF3Q}53+KP5xYzOX(lDc z(*co;pz5cil7p)0b$Y5!SZ)_sjrj*AECc7WfyEcqX*pbo!Wrx?7ovDFEpyOhu)Ext zXPyE9`Ry*d^7L9pCEr1^7wA?qK-adrbkUuIQ#i_Gw!7GEB(sDw6CjqFC0xw}t03+5 zaP>xYSC#S-7S%;@{gFqGGlWAs;sd_omtu!+%S14OPrQjuAI+J8|RCAfd6FaR7VLV)HRl?$3s^1znsAb=^%lffPmZF7d-M53#K!kCSKsL+R&0rin z#{z>Nb^^<*sZx3@XEY9OOg*F?c$dpK=oZ>9O-3a%4qlvGPNJOPmkH%wf|JHUc~;J3 z9F!U>g-(ZYkO`0;;~;(K#=%=LGj1GYPY2OB_#AnSQZb83FS?TnQ5ffBsW=#2m=$mO z>wNNe+`JXdG2QKP$4b3vRPUf%ANM-YoGxXhx<2l0Rwa|~d9U1|{(P%fYWv0Yaj%Yg zI*jNc*9~%i6+yy%eNL)7YZN%c4^Vr|8lw1P*ul%WGAeYsC_H503HPH<&BD-iiQK2~ zopyY2iJTlaRl)eq>2T_VSx((P1Y0%5jUj#w4jp{~+V?y7gZ9GpT9mBiv&vin}k5(Bs~%Q(bnaa2)ni zd)#-yh#Edx0fpaor(USRoSQJ1RHB1>FvfLvwS&t8T%o!JH3ae5xVmQn`z*07eknk0 z@&d~1?sWyK!i1UT`n2u-UVN@Pycf+?$9wr*=Vw?flR z{#p6ZbbWd>Rs6m9(8PPu(Bzdhn*NTmB8hk26OxY6j*BiFEsnlRENO2Po;v=C`SA48 z^muxczZV~#crO~B=B<(w!jqcFJ^n7TVu*K}5ktwvh1<6Kw2?RC%cbdVs!TW~sv9iV zV#jhjY^!m1Icy(=N-1=!>v}oJnm1e0Fu9KPtH6CoKjqDq^sFgW`|(q#78lZEoKn@e z*^(bU={iD9RRzCFmE4QpE;tkn-#Q#@32ueg<*w?U3hoRH*oGE4*$2%uq#E#(?Egy9sBZUHn6<(Qb_o z20C(ar;@xu68_iC3f!)7>EYgSWNNE4P?B72w{XAh70n7#2_kP#S&#&C$fXMuP0Dy| z3`Wt`53|x%_-|B$`(r!7{c;X&ghJBIR&7eP7`Ab>6*(|tp=_=KAd^)jIEr0lEE!{= zSQ*?kI1pT0YHX-C8vXos&&d+poY5v-tVp--wQE(}DM~q)fEX;?Yd2gCy);jyr!poz zmWHH2|BJk!UuaOe!xcW+<0tj4YfH}X9WgB4BR%04Q>8ws<0A>Yw_DfFV{0hjp74a` z=6DHLj&9pD5a9npG(CIu4(1=fL9S|O;-v@C9mxFH|DqYXWoJPr;f&aqX~x3k?`f#y za1Ex{x-r`C@Sflryv}OOJnh-25DtImv4O=G)tzRty18F~wsnU;wkfk)&%|!bvI}w0 zWN;0>Av1ekzoQx88$J((Gq_%lqj)~}9vN(t)1*f=#~0+8 zV+z=Y8&5zQR<5z1w@K^pm3cbsppwsDPAA%|K&64^1Zvz>eecXO$6kQ?H+eez>)$P) zem>6}QvkKIINC4d64BnMmGbR8{eNQ)Vf--K&PBN4hLhCV+@Y<_pXZsP0I`(=iryL< zox^|IQD&*RSu5zi&UXaBy(PK(Ko4HvWLW4-6JAnrKxTHALX;sURMdgkd-U z)N!Z%E(ohsKiF1`T42YKfncm%8|_C^tOZ7#cBr1;+V`|GO(ewc`gBqjlFR9+M02*NWG%|)UbXAMYb6PTUeyt(KjTSe&gOoT4h-);uwu3#a0onigy7tM0Dwi?zQR#Wkdir9i!e=lOgiZ9yB`nwBl zC$B#an67g}Bf2jcsT}b`&GRjJ<|)AM=Wax(5qD!hRIm5u>Gdz>5W4Tn4c*wgs6UZs zj%gs9>gJrU=IQ;*a|q#w@K`m@91CbcK&MF3LalBI z3$jtCuwXj{iKS-0RtVXUi4cXj@ElZfi0ky)phW+M<`Wl&tfo?}j~m#q;*0hoE^I~H z$>IVBOa^gbD$hIx`2EoJi3=~v)9VZ75W2VLhHk95@WwoIOas|e;=*6#>HW{=5W?@t z58*g*;UDtMF%5(>iVI)PGmbCLA*{cW7uK=j!oTO4q5!oeF3?+pNjt;^N14~=6c^-f zHAh>Z+Q{rNCrcLV5=bDmWU)T-d5XW`brrt_{3`7B6QoIqsyMfC&1XvN;MyBC=abJe zaT&k$krXL5?f!7tbxO16D)+L5Y)oKO0nh(O$OhLA0H`b#t(oTX*c{ za!H;!3c!2enrd^oAy4nu%^`$u$`9eV&1Evr9MeEpUD+Br^y#nE;(9@z5!^C|P`)iM zlw-G**X5a_0J62M&|8CjIJOl>nJ2m!qQZe)Bblimmw*71sr%cboH$QTw&=(d8su=| zi!~%3EG`ONn4;CK{Gw3l-XtTMd%P&LJUU((-96kKuQ$kJX?UvC8c)nspWwn7#lET} z_FH=Kw~X2wbPTpTzP1ZOiI=!?k+3B13e`)doUzD`gpdOSxH5pf=1s{}=|E@*|&ceG2M;5?#8- z;+5q`>-8}D7~XQV7>xaKi+JCtwAzgt>xH)?gM5vM$0s@=&0Q&+-_#oYS8L^)n|R6u z{NIZj8Ja)uh$9|nv9~TVl<~MmEaCikmkJ%-iA`DSt^L-J*^3S!`P$WiYhM8KZ6Zy2B`v&Z}9ix3pU}sXu&4l zprBEIM_EHoc<1qwPzrK7&fXhch&o0qB#~vjQwY1&KSN)1(7yBtd%3?CAHsMqX%Y4Y ze@9sn#yjr`VNWnc7Zf9ao_4^{W3N7euF_u@kp?$N75tjXZ~J%$m6}FMc$Fm@b0Nuk;gml33*R2 zg?|^?j+R9vzSIkas8jtj^C9YFR81Lu-0$zjhbZ2QhNy(-<7fN3%8Dx9eNU)5)pIU$ z;q4@6d5OfBuL`5r`T^j>=vC=4db7V5A4YjE=`lLt?2dlge=k0q@?JEYdQT2t^>>sNqrCH;FxrIzuC{U^^LQJX(ZSmBMWOH~{yF=9~4 zUD+ePjTs)C>=7(aM7Vhg;{JAl972|)w~nWd$}QM&YTD%$fKT;J-Ms!!A`bSehY5#i z5>Kp&uK$BY2to6$y%l&L%Jc#}!$eFvfjm{!a^LG+9acm!C6@TTg@Bvwn1ui+ZV3Rw zsY6|3afQ5*ja>&gM!uvxYOIJLl>z2y%5oRLz7?!nAFLV-E|J+I5N3wV1_haPVy$G? zv)QCV|6N(pAKpndc zQ6tC|p)zm;ePsEIs`kNRTB!B(M@_T;So?Yl;uGGZ1t^t*R^J)x zThvyqj!{lDDy1@RmxMJG@WQ>4NT?x(9VNRMy5q5ogGX+AgMo!dZhPY_;o*_nUXv9O z=-fhu-bnOS!v@}^$A?;IGkF&pW%_U}w9Yrz3th*)m`Ml-SP5eT;fXQa=2T_0I#wM8$uxF1`wNud zXtK1MqAK^4suL7o$vA4nb%OR3VOUZaXhAS=O4kFnHCaM@1sW)n$nA0(m*^5nAmCyk z7_aZ8_=^bHze6KdhY0APs_v@(S z@Xw{!hJ&5gkMt;C_{UGJrcB=hOX8NXxc|w96<<{M(9N2|=fBam?x9QPB7Rk^p2LR& z#`Mrd`0bb;i;Ev>T`Vb@Ad4S7x#kH^WC4CJbQf~ck%F=Osd_#wPtQ+AC7)l14&m@< z6wZ*v=X4ZL3t@5q>DR#6MR^X_PDh!uvn(nFI=iKK#Ra)?(#3WUB~Yex`TPni=SjM8 z(U!Sj4p;q+Vh*|o(B@1uBACOqj7ESV^HxuKJxk1C+-fS-qN%W9#TV^`bVIbAOu8H} z8JNRudFCm=-y3syRi2(-F^3R-O$G?t%%O|&9L&K{CMR>STS{gQS0}(NJ#*MP7tG<~ z8gtN{?mm@?Mg()XkIl7n+D+{QE9Fuhec>RErf06&_#I;=HMuklR4NeB{PSQCs1Z;=I~eY z>{+bVlClZiK*?y4x)+DoI;8_>wi=XAmQ*O?r6zOKXGyr||wo|wbuSq-IHHJjL=;*0jem##H3bZyc>pPPJQ=VWm|qj@0WDOg(m!NH&k%h$WCDZEUPEmMlh* z@v%v&^|3)TIt(rF@V)`;KHBf;0oabp=DYm^L8C%CV4k+pxlbM6HCm~QaePtm{eeX) z@w}geE3tQdmw~uz@1oZR*?D>FQ3OjlM*c$$>sMA&{$U9{)i2qw;*0jOd;JD&C+}Vn zU<_?h7hD|6(NX5Wp`|f}40~+JYw$Y>m`J?_A<0D{ra|$RO)LpiUkf&mzJZ{x)M(Vl zA?fuUu-BwvTCprE+@wOr+UjU~qSSy;*w`Jw9yjD%SVlmO5CV;N3Q*5nZZ3d$Qq&gH zN>p+vx9N5I#k7EdMy@9DOAYL~R%8BwiRE-D8(4hNUY64pXghg1anPg`26yI}qX52_ zQ7z>3CV?w|D(F5xPtUbEgl=>8q5HBtb4&x>W3*K)L2SHJaDG#sF}!{b;rx~iaJCfz zUF+MiDLBeptZfQ;nVf>C-9a*EA4mXaYR(=;!F0Xyb=^?z;ObkPTwROYlj($_0cnPw zFJ&S*As&5>!Kh0-qSv#=(Z6ps7SE<>s}UUiyKG?bMSJ1s|BAMgIXVYTN{;@UJaZJl z?~S7$d$x(Hc#vt(U4lw;rE)wTZO<}v`|`{&4Rj6eEd?f>%PanKZk{nbYYySOHUpe( zj^4Gt9UR?J=E4Myp3L49JniO_`T1uOSc1vV{q0e5pa+vJ&oVg>IkKco4)ph|XtL+c zBH^(u1&Qdl0?~m?Bv6F|7MT1SfS{5OQKj@$vXpyW394WN zD%uy30X^JrNe%7usfX6Xb}o8N-f}*}FiOL;vi{QtpR|K2B1T9}?R!?8c&PU>HPLO_ zxg}He{R{^2gVm^-NF)CL!qo>>P^s?{{_V=CiHvyq`40=Z74SHu8%KCWpQIGlC zhIdt3loV`?jD4e(IY`~Md3I8_nd6*|tZl2J04TFD=X4-SaEBl8Pb6b=O5{|-bcD{D}%fMw~<~8slddk#z+dbH~)B>98^oen4{ZJ z=dF)=S+5Cwclvwr#pv>0v>07)VEk+R9c7Ks<(F*W^CMTg5 z{Z@SIJ^m^AqNwjlkD-tFd+}k2_o88FUX+j*Pii8c@^_IHH@w@7xJfQ9qNf$34=7V0C51h8QZy7UvO3Z}KaA}DtNNW9r zv^3$;r(K2~W}38fT~|5o%Xg<4a}&_z+wQ6LEV_i_Z5 z77+F;g|KZnAIKeLd?D>x$vPC{L@d>J`pH?L=)@I1LC`{xj9)sQD)mWT0ExmCzoc|2 z+9qY`bm`DZ24Rgc_NN|@et^svnLk7I6q3hpm6CpKRz3S=y=YL^qrp{chD0%KeDHTcz&#q zIL_QjhsiB;nB8PK2dBubvv-QLN9#LF4juJ4%pUDRDUw5M0=G#_g?_fNL)xG&%EL6V z9_M-bM0e*rbGZAXVySzv40=9WH={;=k9@J7ow>u8=(uDD2lKev{XP4k;}sDuG9S2K zj;bkBH@(H*i|^3Ed(jRZ+K$`3!~TW8qpU{{-g*3fV;u|cVi1X!1Z8n?^ib;{ypzWL z*gATg=H)Xn2M{%-t^>#|Jz*nVZJdCh)MBrIg3w30@q1!aCL9;{UfI5NWxO*3sFFrrboz5TuQuSeUDj zhosgDrW*B-Jc|)pQ=h6daCpO0@meGinF!XbT6JE3H0|CRQPcZL-sv3$3Q*IF=Ng)n zDhUQssw5*@elBwP-y@|i9F$V(B6?y{Dtk&Nr3&nj@NqLNAm)K={Nw{O#qm>i%#5Fk zKd0f(>G*TTj+xFPV24u2%_7_`5*@Os z{=qO$Xdj><5x*4n&W!+{SspzHRekylDSdr{%)HCORVj-LVNFp)xRS>BSQgg0Q0Gpw zsixE=teuQ09&};tW^~GhwJ|((32R-matmvAF;iHRxB~$^nb4R7p z_ip5|(W50elOf0%vxN9cL1z5o^mRymh#xE9fJV?n=yU_}UZXI<1wIj8CS<-Szmpkb zhA1?IW0!DsTY0d+QidUM90j4(al;$MV3&f?67tJcM-e_vl6CRA>gYISd4%+M{Zy5% z(j)P4jRJhiVLx))%wuEN3Wc}kMIi~SP89A_^7xs+)0qs~luNSNo|>Y22+IS(NSjhi zHtYO+!qRiWaV=hTBSzwNX1Hs;LKpjRG12yBNJrwUgQb+1dw0;3vM?~S7Ad532 zS^i~e0FT`E7Qpgosl9c9(k^UmY+j#QF;tr@9)KjA>NCIp%@pglD~_rxZ&Mq z#7%N>aWq%#KK#G5q#s*H^Ala$XN>to&7|u@{xQt#pr6QJ3Nqj)^1Jb*pU92vTOP!h zxu$BKza@eoNdALhzu-$-G}lt@2vpP#l&8u#r7{xu*O-EmvcHoM79AM8Wt4dF1}|Of z`fXvlczg>G;+X$h0X5^kic2L{R#C*5ymo|+Y##Pvj~5))SANd zpJ&B%_)e<9Z>dldp5qkTAI&mK>7w>ws?;ZW9qsGArP%JcQ)~|nY#G?f4&9V`8x}dJ za3+Io{5p~q@J;C7K_`65iw7-DAds>+WZIH6RT-k@eSqp}ejFADFVPDu?1i0FS z6GSn*Lvsy`&DQDqBcTbs*3AZXsGAuS?#O+`_$6{#1+m#5_G8 zk4nDNg%08Hw*XOwY~9Pyc3KF->|x|z>Y_YHV78;oovML=SC=h9yT&go~o78RKNkQq#OtdPP)a8s;K`Ca|aC)7d zNr|&C(VL#ee5ch&s%5)_4Jf{7FN4J!3@i@vH`o&`pDtYl-l7NEL zi|3EF?r>(te#|VTFfPgV>obwASWB;Aa5E)}4JSb<#$8_L?a&tMpXTqNYq3(l=@+Y4 zqWG}YRQx*BcG?fJdB+#+WyyX7Z6_~T0r@v;vK$5C$KU_)#XR%mz4+xdDMG|b6c6X= z`CD@c;qPXEuq{z^QJ#Y-I?5b+rf3f;nJM0#fP&Oa@$JIdI*3gOzN()I99LU+6KYph zX_h>eaFsL^INcz3BV9-|3Bz8K4pD`2b!-gBCU`gE#6!25QTo-buxU?BAfxymepyzt zG+7Do7p^=Cn$`W{sBFm`Q5dNp?C7_WKc2MOWJB=`fp~}DnJ1!>B`tKE1 zL;gXDqr-AGsQ9A2Ftn9uJDH(zu$YIH*!16*=9!}ay!UvND*gA3d3wKo4k0|0AHs3z zziWBsm!eF>4ff&K zmmFoL4;{-@n6}52yfq!4fM#=R^0!C1%RZfac$RUPq#?AuEG*@ADB>_b$ciS%-A1{} z+(M?R${`!>4sDX$2k zA~hL7be55yA?SMP8gq@OB7y={N>2m}#wO~e7T2~|J0;K{zA9*+nR-Y)ND#8yWFg|I z7)}Bz*)4geCYO^aC-`MTxtHK%-Y#hck*=ZsN+RxBTJ;n<9dXx8yXuK(q3_(^>jun> z`+KpcbpBq#v#GaemKt+fs+TJh!z#{dv{7y0!sL2w4#HaCOAPPeNpvtsMiXi3940o` z9IQ7=qZ1WMBv!8SD|(0ZQf9=)WZbZQ{$N8(AE%Mn9%!WtbXjlOz2ksi3BA8_aK>++-HTDxxARyoQZHb|&5?B4aE{KNkMhh>@^YWMkj@ws>LUXtCr9`tvS)xC>%8!sL>=_Ws$i}M-Qnw(=rm*ryXHO9boffxYorTUF&#Ker!a|DoO8wn zWjdY0G@r2Y#S~pMI#Fsi1N>=EPVw6pN!i*OuR^KXL>B8-P$m88B(_`x3IzcIxkeim z#8d1t0PC7W9DK@znu#exat%E$}77KTY zg#idI6qS99o=%HGUY7tzBN7evNg_D{JwTsaUO$7LSbPS1N+++2;rAY&F(ljqgW{~n z(v*AvIR{$P{WG1bXQjnK>6$;ja8qlhM0nW2!%tnM0aPL)P0YlEm%(09QFNNqqZ zL3lY@R?;M|^Q~nW-l2CmFJP5PTnn^H8>~vE=pEjTCQ8W1*WI${>-R6=s8{H+-7Py{-cOr7$4q~IUkMC~y-MM*i~YP>wy8+xaE zt?=!A0)x^0xg(&6jXa!00b);0BCft@M%ZA^p~=O?O>0~9h0$&+*Aj&|V*713xHqW4 z0}CC6I#*X`Fx{?PPrWy!Fx?V^mpUzTIqItmlV@A&GpPm-cYb~}b8j`dwMsx~;Io&r z*jg30aU`+-L-fiw*A6|g&6Pc+++6ttdf!~PG}<+$jG6=8*QVLoUF8UUYA&H1Ow6-) zRkX{=DqPPNrpv(V%?qvHHeC}Qmf*wb>Ek|ue5))TC26F)oQi2wbr&;|KHzP z?pf}+=Pqw1fuMeXH}{@<&hPwwzwcBqtN}=i$nTg_mJk#lKhwA@cx9ODvOckfBd8Pj5K@{ z%}C>|Xt?l+zO!JM*Hps?S6Yc()++<^bZtgE(?2C&mgMR96#88j3N7=G;-e5BMWawc zmgE}$5P50ChwX|sCpdN@A*zfjOoxkha_foyRy)s){>k~MbVGJ3jrvFNQHhVDQRxV6 z`;`+jo~g+-{KMv@90#Q<${nGp3oeQ+ir&kqX;0L|UgV#ck801$PPJG1NAXdOkD^g6 zVQsz9KSW*%@nLgPD80EbQ7Z*2d^c?j4=)q-aWPFc!5Xcm5wk|W8q+$^hu83{-~oPI z{U(0t$5o{&OT+UCu}PXXW=R(uU|%ElZl{e|Pdr|_soY>mk9FpJMZD==p{pLos%K5fxrAsK@Ae*|c+lw71=JxcS5AD0VzB2@kqeB=m~r^mVv$Dg0# z&Hh<#b>%lciD3Dq46Nj)dZ=5@8%DyF=v$9-Bk3H^C+3JTgXO*1KkJLkQ=s1p12jiX z&HmY5WaO(uD^<>_cU}n0QNnY?|%oif-#T*@Wb}>EH`|3huz254| z50(&Ff6l;4ZmNr{ybJ1$=sSHuam1Ly!z;2rT4bIA{oRSIuNE2kOS6dK2XkQ97FjXQ zbBHWQn}aX1Y@pIb)(cZekX>YLf0&D`q$KY77n))wdBJNUYYskgXj$}lhD6q>R#$$o zgveUVz)Eh~jmUZ|`c4;F95FdW)`}wY6zK0xWL;ile7*0xj{#ubaX2GzYx^WWlH@kO4k&D3J8npo~`l9jQ-Q`r*un z3e1bGuKi#NQGX!=Gr4IuqW%)}oi6G*qB4s5>x;}$kiv`UMUsblC7QJ-3dh4m#vhtR z9FNXCj&CV4$1FHLN#fX8rxM=@Zx!xeR0OW)&m!($oCEi^Iv|dcD6ZYOPlI$ zp;R3!HPK{3vClS$gF^FJLyh!jW`?edty~V9zMG#8aG2V|&De@T=!H-5!Q2*zxvP&> zSsx{%zMIL(akI`YowrY8SV)Fe<85M;T)gcaU6#_20RS?L+y9YB&69B|if{qtz0TC_VT`7&HH*sy!XsJ~iLw$?cxHxI^%%l$(VES?hI=_3g zh0$B6$(E>hW)zcUeBKwag7dbhqm0H<9kre+nRKUDCS}Z!*cWy32hy?(IwMVDQA99C z4KtU(erd!RTQ9MxXipRk?~Bl%I~(F&eCktMtbq2HWo#}2I~8AqFC`csUV)wJz7=!H zxUYLvbBRTF-h#Ou@aWD@V$hJ)8u$W!>Cv6mT9+Z7rzD7zCHrar7Kw_IOwed=CyHfA zR6OR2_T=PrJUlS=Truoli>~E?P(lhjb zf-$)o@Xz#%B@wb;+0=lLgO4P_Oq$DrGo*4EE}@@n*_dDUh1Z`6s?TSY81_5T9_clQ z_}3A{>{lAZcfXu6R%b+UdGe-GV;ycU-GEx4K_9O+L06gh3U#4C4qbRUG>LCeH{gQI zjR&;B;>rh`6{`;*W|o@3xKit{kKMtF8+H)~JJiBGt!tR=hn~V-d+xcr_LLgqO}QN# ziS#Q~B0WPuo-BGnUA1nGxmYrWm_?Qp`jf4X%vIw}p{MbDJS%qxkwSk&G*aiw2T#M( zIcQ*Ndi7|1q}giFow;-oPgdSD*@ z3|Olq*ke6kiuQ)4b*$Z9Vj%uPp<$C34c;u&Yw>BuOuVQ2NAYC~@lmvFp&li-* z>z{`Yd3SIi3^rN7CB4L*{8NqhGXHqK1TsEeP8_8-7pk~h09+EgIdI}+LiedCkk zb2|Px1OJ?P^L}QMYGI!%xAu2d4x#E}yIO88i=^N(y#NKTy17gj#rr$+8|AUe=>G6h z;K;3GDxHkO>48;EY5pws#F^dnsr=4!RlDY={!(K;lxNKFO7yI; z0*-?Mg2Q3pS01maEp<+@)wpnEV)f3!U243}G_p~2w1U`KhXS*hYAee2-u!Hyk0+sr20j3(P|@9B|* znVHV`i~;jiKxcC}ncX^vb)5yZ_T+H6v43M{ezi1QuHwgnT76HWG`0T) zQhWU(X0GJQ5e8Z`5%alrlSBYE3@JLWU(h{BD4wbAHWKB%*p)|2T=;j4o{>^55H~0d z1nb%jDwJKF4(c`htE4ueTgr{Pp@v|qB4LE^v&v+9QdSd-cB0-MU1x!`gEXY1ZWIKS zWck7)X+96_d!=VaYBdbzS!>KhDYlcN4YE5DmeYejdY~?X?NBN|+WhoK3dm|6Af+$A zLLc=?GXR}JyUSPJq%jCHj!|eMMKjX#ULLr(b)qsd5ojDNi`Su~9U|4irMB*4-P9F7 zhKm5l_zQ)e=jB3=2w{H?K5|4l(qo^)-;DS}P@}?tTqov31?H=*u9GDa9YaK<<0~1M z$xZbLg1iaJuR-5>^Z+{&-91+vlSumC1tyOWWu(u>@Z^XDbF^8Sk3$sl?7q@=t;ONK z6wJ~5DC_lh*3Oglda1NXP;AuN#(0|wB||_$$s=75ahf$a3o{J)f-Ca64zQREB&O#%H zzdwrGyCuCp8Hh!a&}ZHz1d6!5u?)R#$3>l*@Rw)qu)FAwLAuMLR4Y}daZ3|jU;-OT zxi*p>2Z9qVNnqwl(XH75c9x0yXlhaBr0)k30E#dzj2UA6 z4YA{)9w#`c#C|&;{e%wM;mR_Sb@K*IQZj5z)#-V$+?<_6i76v#&dxAv zvwWJQ6V!v#iDVhVY7We;8R8UmUwbX*sUw*?j>9hzK90Tsrvrnpi7@E>Oa=f+ zgyYOB$zUse=>b3=z?eLo=7aQ$1pu*MY2h?X2kI5zcV9((yRqBjB8FOJtOC=|jOc^c zWpxCKh##Z%$p9u`1dHINz1Bpj*0Z8NfGcrodY}e}9g7~I8+|l)+UyUcSYdZwRtVel z1rOU$XmWVD`exA0^};+*N;lW@=%ZdKQL){0>E=3z=_x@U%j#s+ILMA4G+T%YZ^ASi zu=h^8eu`1&^|_`eEc*B3BZr%c9vkL-Zljps!MEF=pIcqN_R~XKLfE386sW35SG?pAEltJiHU!By6ai|Bg{~j!C8* zxkCi^{epvL*ZHEydS7YNvT4WQt!NfpQ0ZPPjKXN+84Bxd8dC*qW#cW_ugL zWZ3psE@5XYi&#d>pYJ(WtjR@t!H^d-+C%9#3(wKx8DYp9td6|6ls@|F7*NSgyJ5&J z=sTSuBeWO{8N-T$Asuacv(j6!s@+REt6rFbv&_QrQk?#RzEY!6LJ-s#E}UpJnV=lp zwml#ZY72%lFlyAGIZ>J_2Yq1h{w2;`JUVg4kCrdU#T|lWpUY+%V_ABfon_}U_?f&% zPvS3y|JPWZCG#Q)cOggbV}K<$?S^e%i@wv@mZQepExd)K-&bUwf&g9(X&&*7L@)nC zVfS-IM*Z|GV)qLVdBV8msI|XB=NbvVZ5hAZh-wkDi z2puA9XMuG$p2LL!Kr&VIw?fg8mzg3Uc`4GWl_h%UqqOsmigQ0!7IoU> zso8}1BWk9StLD+4noaG@T#$-NO{ZHQffJ8nm6{?@6e{ete(I8TeHwcAX@P_?QHW^~ zYwGPXFLiSiV!GNwLnbO;NgrjW^6~6Qhny8f1ry>)*=bqR%U}oGC%YJ3^#0tM-cQJWe$&DCA zGna=%G;`|B&Qqx&dDj+q!N%d43IA)%(;FX#E7{3T*TrsZ$qg{+wb}$e?p>%E-K`&v zI_do2kaM@jiQ@FN_OR0eqZHo;OmC%jn6RSK{HKg>MySp0WBnU^>f5bl=#xkc|0-*4 zLLHsUOqip`5dW4Z@E675{b><+lZB(4o`~#HJQ{w5U_6MPz_VckY znAGgL0Z)7q_5|hzd>npRZoni-BYl8RNT0JA)+LDqwetglr&4pl&*%ETnf1M^3>T1@ z9zIepk0G?D0!u~Y{44aWlA})mN_0iZt3R-8@JEfL1O?9&*fG3**Ix$o>}T+hlMm1=UKeTx!^PesbHJg`O3q&(BNga3y`g{dx)! zv+UPtjn)$t=NxZcDmtQm=FfUr{g1s3y>b` ztK2^7nPxSv60mto&eR_%mfB-=>lGf-l-Ob*CO6d&R(Z43rqQ>4q9TDGcLqjCGK^g@ z965|#jy9Kc!xajZcF)QB0hzYQsBu#Y9;qF<3$QsieUW(z z0u;B3|GdbkKgCDBb3ixP{ns4Wg>W_mMU3wpg2K@zw^iKkBV8mskb*H&B>4LytN7E> z`;&H4+JZBhl-9DQGh!8A`D9ZBBrio0C&DVej6O=!7L--I7v^os=EXrERt+eokoSex zoU8&YI)}3h4wS8Yu4yWNN-pq)seGOF5!mx=ZYoa$Q0+E$AAVM#-R8*{)wdW4zruu0 z_?=-^$YDaSS?I~c61(W5>@1H-olK;x9Mn*= zTrH2VLbD@{3QB+=yk-XM%Kj4nNp@+L+LH*D&%E6E=^2xpW$Rk}!E45iXh$W!w*{0;kXlnm*)XAfa4dMymCpjtUGQQ6V z*;CVqEgq6q8fu=)A4dqzZE*hqKK1SG(jqMk?*G7=n+Es81#3FsHC_Sg=x@bgzb_8^ z|8@`iqG&Y<8W`nWGhB;%@><^l@n&hAfKOqrG78tuS;OEU0LK%w4C9yOA4%CIq?_ct%os4eC6aPDVSGUd0jIY_E0uR(^3o4d5`5@g zfmWCqxnsi53*H9?$Hm7!Sx)CP5qcpJj!q;QY#ly53H}aZo;!|39k6H9FO~$)er3~? z1^C@3!EYm-r#aCc8>^Ow^u)v&P?R?o55RCi{d)-65*ew+V8yV{Gv364_4B{`85cr?s zv->rhT_y#2;pJX6+@~P(Q8Wd4J`;;_ZsIRBp~e28@+!)F_;k%z9KiTONpCI`WhFhs zHxVHYqM{s&rf~{Cw~nl)5z~=hifPTRj=Tm0=Q{G0_+{zH$@`#GkI%`pT^of2B&nd+ z?H9|(sTu2q1O|8<5$cWd0RDik7!W89bft*ZevU$j@_we)!3OU-aHy+~ru`d~yGG#0 zh#y*a6{sTPf|d@Ks4^_>G|=+KQ7V8+bW`mB*$&Yq2r3e^RCTszq%TF!9eL>)-b7#U z7$G&;S&k8!$^)hJ`c2YDy;1^_(WSc**AI&rp%>-Cgb1g29zJr!2+?ER%+=ua7l$xU@XS>70-KS$rXlZ*s4 z%bZ97dn27{DbU$eXP6q=u1V!3x0Et??*T5{8F7v~dBklwNu?awtVJ&K7=lf^L_LzC}g2zROY0ZPk2H_R zmEcQV`3ke#Tff2j$dm!zd+TXD-wKz`C~JyvHd?~n z*SD0{Y-zOJQ6!5Z#7K_So+#FPhu|JJ>t&QHZ;3kTeDl!S)+PR(fgz9614C@0h~wLg z#DaV_!mmsCdjnlRg-?CQFS-2+7x%|l^KN57zE>RHzv~{}V-rYW#8VuhHIfU&c&3)f zuZz#--#I$7gc;Af($vdLVIKOTDEKH^6vaG}3UXHb4>g_R{R8EVq2PlnCBnX-+R0$) z%|#4_k}Tmzi3|rZhT)6MfVxmohe{E`tF!W-k~rOVvWAbD=@_McVkt5eYz# z^`p7pX{x*Zy^#QaVs&foEY=#4Zp9Zd5R;qg2FJXS0C%Hr-9JK7Djo?CA<6KM(9?Ss zJZ8>g=zj*X9FCG0LXYcQgzXNI_l z@ts3TINIcn2eA7{7YQFv;m6D(;n~_rCg>Zk*Q@VDb)Xnp=3dcUG+eXK3!z=-Lr_{TZ>~j=#w)w8S*7X=9mS; zM;S|74sJbFxc>7ZaQxXU;`%R&;yQfKG3xrHB^on-sK^urs;zy4o*H7rv2Qrq+%OBW zRgushFnyDGVha7tO~&6J1?p7OH!bPer=y^R17t zC-TBnsQ@b0vitC}0>$+lhEaVQAK_QT^$>n%m=$uw^(?p0W4(qu^v*qZ*Pc>iyeTvFjqse6Dm;hHF;8rc zpq>)JuK}ral_OJN&KsIZ@1A4^95Cz0H2coYek)=EL)rcdJw{mvQ$<~L|w6iu>6#j68LYEu2 zFMI&dgm1#Xj3q7Ua396IEDjYN!Vgh@+#_a$6D?HJz`V@| z%qQ?N!s=r8dSY1YGab!G>P)!p)LXK7<{MPeB%g5f*45K;4yps`1Y9kM}KbXvsc}e2MckA1^14(whs1wtM+r za->=@+*LPm^6mTkCQiM1zpW}Tjj)9+socUwNrfugxX^rAB)gWy<=-+X|Mqw0H_Bs` z(f#3Tr>b22|Fplb&;;B=Vw?Bg8+<3iF8G-qf zoJEm)y31Y^b8hi6r^S}cX?=+7xS-kfV(xlo{@@XC=RK`iZU*ZnDl6%753)s5sic5P zB{eF;ZK4>v=Yif#!hT(cHM&us3~pL=^AIfAJ*Cl*EY@1|OHToYfaR&i5uqdZcd#O2AObgxLG+*2B^?=A-`mM>qvbS3^3G}&$5 zO){lVp%v8#V0^J;AfSQ*%}I0vYdUX+Y7e(yXjsb$l%91P){`y zn*$KU!g+@Y+q{~CYk_o5U)yZ9CyA$P<)ye5Szh(cu0n|fR7xua;Bym+YwtD|fD02= zaA)b3iAqy0%trYc?FtHLu+`WcsZ31|z|qt~d6d$~uF`lp0yyVaY634SI)NTz0^wCh zseQLIe`6iXPp$^>mm2f_JY$AeqGxR^7#{?UkJ2SyXYm#YtnqTK+<+j!?t`G+Qc#J2 zNP4ZHdPg3pbY44JgAN<$mu}WDvEwOygO_Z(ZTphooHfD9pcd=^_XSgZw=4*GB;#u}xOTlvEPPj9~!@A2OqBct^e9#6A}Jv|b^vpWdK5a#$%AgDR4 z#Fx$Cox^dCtd%CAf?wB>$;BHx^Q)!da&`YkJgV<$l&1E-KH>m0o(8eJlNPEGsxZ>^7$kwk+0d7PtZL?*$XkYz^NXns%^yXP+9KH9{I*6lxc zHHkR`T30rNndSBg1{0W4rRRq77#N{8qC|`SNUh{K>wQNgeWxXAB+8e?Sj^wkncz8> zSDF*`DcqSgumS(?53a&JcEjbycz>{Y;K~7}Rb5@LR^jgN4>k>K9SHhXT)gUnCBYSy zCd-uRG5iQ?5mqqWtTYi(Fj1~IrrGzKu=Jr&l@TwneoL?kvLD6L*OexR8 z@kNSY2Xrh=oPi_jnK$nb+w@A)1HVg@igrQjO=>!kTIh&aO?L|RAb1(l8@Dq=yQcm~ z&HU0lGncNxi|M0YX=x)nM0eGzJ|HYuK_5!8IOBB40JMa~>1=FIVwuu0hRzW6D!bRN zQk!bG__;LLJW+2~M=3g|)C#J|TWitTsYhcD}*3h>e*mE7$4iAVW zI}PdJcVWG7v}6qId2W$83dDCG*z@utqrWT%hQmA1I7fu$E6}_khLZw&-d<#mSum_Z zcy!CK^;B{5$BV%65q#wH-s{|)7uTOGitEI{p1&J36_m zK33DNKiJX_i~nSQuy^_v8E|2EwogrD1*z(JTBtR;*(*UZCcR%5b#kavIewMa@o{>I z1A^fz)@llx{#)$@gnXlUGU1s1TXzo@cw0Sc;8+G-sIg? zGLG=$tJNQt2*&Ob(~J7?J7=ZK)`SdoHG!C)e?2BN!+w75;AgJ>Z=v^)x%$74UmX>j z)bYq}nX3MT^!b{3>ykK7ORgn4WhfCeEz;J>mpnDZBpn%H$Tdp|Q!TipD!MQ}$B2p-z^3I+p? z2l=4Dhkyg0IU!L?@FxOoQk(Ot+stD4RQdu70yzIsgmdp_GWb=J2qrg4I9okUzZ&cJ z7?Vf8!r3fhb=j}9=vSt<^@be$?n@JGB4s5icTgS@MZQw&6nT`^D+?&CaR_`GD;Eao z7h#=eEX4R2TEQZxCb!s)9JvCLUMsdd6|~ilZ6<$Z)ZtEwI_Z4t(9qQ5l#sEmMpPy* z9>5fBhH@(sQ%k@$)gbK!f{|{&neIydir%oc>^Yma-=z_{22RrtAW5&xHzMpnWqwayb3y zvA)gwoqm~X;{27>t*JfO!4|>=_z4DLa#P)DlGg?J8T73?s7QXrU4Rjij3O5?967Aq zjy9LNO5tQ?3ng{zu9G)8>411+3L>Qg;xAY`p92Ecf`F@5=jxQ@cI>rg zXMVs0FCT@EeCn3Y%i*^GZVqSb@#s69mpN)oclJD@qC5leKNO$!6`7|XfY+rx&v!k} z#YINFa2Bz9Ne=8n<258jjPD$h!qFyoIUKu>bdm5YwotsR%Y2etB>4LyC)oYz{YfVn zZNj#d!QKIc6YRyTX?jr7;oN`|MI=RkD{g*fF1`|J>9^8HY5IbyRB#$BL*$xO=`XNh zRS=OXLa_V7JjDrKmJ4E0oZv3&BXHy?>~0YkObR>pXMTcHJ%SDf@(DB&%Ay_tVR42D zo}(VYhb)YEd0r}t@28Kl6Fz4>g0E!;sf%sFRgb`}<$Q_J$BP%(85f72Pj4qlPWa13 zaxcTldIa)tAk3>BJd0yr-+NnMxKs!TQKt=iZV9G@fr2OCOymS#U};QspS=>ZTpLowsC?g= zq+e{`V!yKOTOpqSd~=HF98r!EXqg}mpk>;){be7IZcVPGLxIK|;#(q!*{?K+XRwye zWuid))@wIst)_!Aop4AuhW1oZx~6l!cbnDP4ycjhUc&rUb)KcV>l<$kHCv-YIDIrK zdqs7f@?N@WY-ks9?5bsC3a#nI@dO#JEYlk1n*gOs%g8|3RUSolLuI7Wnuf1^4-)t5 zdk_hT`%hLZM+SF&7`fk-vFSBem8#7HTD0e7Vin0Hm}v*R&-%z*fZiRD#oLiNB>Z9l5}Vq#e0@y=5T3V%JGE~x$le+>fS{&mGDti3Ex5eap#^9 z=twC{>#%;Y;w8NLBL&dMQUJWki;V^C>tHPUOtLO-p6Oy2<6N( zwN=PC+Ye@5=HQ@r#T-YQ8@h|^M`%styp3mSewX>@=Ogy&?8Ls-KZ=jod=!n?hpkvH z=R`l%RJQvE$xA9ea95-{#?rN1v|1Fkk+agCsL3_`lk?H3o}Es2_($>4iI1YuX+Bdg z<)p-4YC?DUhssMWK73cyQrS~<`s_0|sl-}s5BTTdL)l+&!WdhzEY2nl!17OpxA*zS z^DzP+FDH)Dn~NB4w^~%RR@;hfwc0eDSCwn~1h!Onxi$r3EY#|S_$Y%h#&5mV!7(bf z5lGzp@&nK>q(5cFHu|lZTcnOlP8z&PG`Hx%QfF-~SH>q=$RY#)tqR;&beb(!?J8Mt zCuM1>nC&NCX48*Sm;u>L4z+_5sPH3!1HEF#;F+kwhC@dT*Qg61ora?*VAH6#$0ven zrB*IAf<2N*y!ZgGv4=`&IJGS4X;2xqW>Xe!E2#>5wR&yoEjZT8ZZ@H>CbC6!5>xUh z3aFun%4i#>`hlJ+5jsz|mLMvh6kI(@9wsd-qk@g}N55hN^nZ=uA2)}tRx zS)^+FP6^ta?b^pny8`EADpKX3fHpuj=mr&ZgWAVW>I%B~jQ(18*zYamodBgt6n8h32jp49*GG1PDdlF&1kaic2!VrW;)|D2Fw+pb2bXc3AsY`_oTEjM9k~>{zJBYwJQw-SEGm+ zOy4MPTF2%^m42uqWH3>mG|b~HQw`Dsg?wlSL}^iMom(c#Y&+F&DWQxuw2L-aR?Q9D z9pn@xsrArH*TziI>O6E3Lg^6!tK#8X^Q;i&FcZW&&LEb_!;jt3n5gflmd9FsjiEt! zBZju^Xpr){M6sr~O~i38m|c!L$(V%Z+}urdY>D1GcQz~IHN?z9X&QkurX-3k^zPgl zY;K`wZLQVYTzYQn+;~!>+|#x!y<%wl(v>?MNrl8=ROhfvRYJ<6BL0@PHaWf~%ogulmBWCw|SP=X2%lJmRjAC}Uvo`LF`o z9@d~wUbEDIjxo~Gwvp6m9lpm1)1Bz%tkkd0LYb~ojT=Hx+O)j8jIyQ7=r>%&hEzkT z>iN^{tE1(?JJ}I3Q@M_vPQYD?GP>?;q?GDkQ_{SJ% z$xZbQHm^wfEA*W%{yB2Y4HoHY4Lx@af2etWyU08R3A`AdN8Bj!%l}ZL{rIACW(#sj2^B31X3vebQB%&?OBykW60$s>C@P&$WCq9LquJV) zPeR{?)ni zxNk>_V{QDVD=4o|5h`?Yp^~#{3QA{>76`kZP@MMo}rBd<~wfE=bt7<(V!xRyh8$a*5Lve9#5flz>0)Kt$JFGQmqMzISD@z zDjnAF3&A;)xO1WcXF(I87I=xv??|B5#+hPd-5Q|<0}7d`JyH1nb}o(*67w4j2vh{-537u;Z?D;aQYjso>w znR#?1GmS_}`?13I$weSJ5g*N#YJ4jCE`;qw$+@h^6eB)2Bxj7x9g@@0X8*%dawsOS zK~9&vf0MG_GE3fzGF)(gpgGD^<5zs*4@%o{s*7ecF8MuW@0y|Drd;eG#NJlM@#t|r zE3Kh*M{f+tcU-4G;c^4_JQNx1uF}b{g@NUj9-7kc?~iJ_{71T#Q`UPR_nI$Hjs%ye z>GBU5dfm=1Hjo}gnMV?KS3u!u?i#461!57mNTHIH+o|Pis;dpI$(#!(*cGuRtTw;Q zyBvv%)y9)RV>qa5x4mZJ4igI8igC;kj1 zQzp`#CnXv=fU{II_LC7_T{)HBDD<3&$BL@(kN|d+KG!#(0C?M|z5EzVP*)2~d1%G>vMh*4 zhr|OpjufadVluD4631Dpn}#dm`8B?-(8yRwB_80Cca|&BbDbH_DbJU)(6b`*ALS); zcshN-!|oL#9N|-a={4~5TR6o*Uw@>aT$u+-SrBa*ebg)E9CW=dzjZ$#86`qoe6B)fUxT#<&x zBBCNB83*PVjvOZ_N1IE!D4eUE&Fr3&_jx+6Qo*~cQt&9xwd+{Bhe_SsR{M<38*y)Qpgr>wSjSe^L+6Q1L@GQg6X>Z}~@LE{{uXYWGubXMl5F->{i zy1Ab#GEYGOuQ|_KH}_jbM*Rjp%51vJiQT`;fn8`)hMq zF;gV?`y(66lhgZ?HWu1~Gul}CS<`f#A*z!r6o%+;r7fJk#S{U_OOeEhh_*hBK1$OT zqA0iy-ReYjbD`ARnl?hd%40~7sKDkYt$cZk=&sBKz9^zQV0{GkJeyhiQUO$Wv-|L~ z0_`^EVN~B@B>aksx`f{uW`!ITb+=jQ$;1*j(nr}@B4C*f3lbb=~Su$mrw6 z3sW%0)7wds6aI3M+{GFn-7&LBfJEl^UAT)z1Wop@|0FepneE!qU)mO z>dI(SeqYo{=f{VZO*xT_vV5OmT0S>BZN<6TC@(fAWKYd|zr;h*KGxnD82}0Cn`Y;<Z{GP5}#(QoOgwP6d%R-C>q65igexJA1W{9`0zO? zm)=}Bbkyz;ex6qT!E@;JW!r8{>A@l3pfnTOyCuO&nw*#J= zb^4~4M-mN(sdp3ovUqte5?99rYj>59z1!Oi*4HTBj#s{lltHQv)2`Mj0||E$V?&8t zK&#CTC^E;{sM~rvA~e-C>lHxX$DtSTFC5@#jThgB&%|W&7UGC zqja{A6@h7#TkQr?uMxP}(}avhRjX^urQPMFNYq|RiDV-vgWX&T!$bwvXDX_NY6_+1 z^yE~lj>6c;QkxFS&uCZBfTEFF^`5os*98>X&aS1VWHnK=OBEI26^5F;wg`gZc}V9d zmE1-ZqH+)AjZ<{z#5C17;>EJc4HR*x1)J7wShpV0qBR~_I?}G992n({PmK(fs#6ms z%nui1OQ!q-UTnOmmG+9fD=oa2zTi$e#e@zgUAnzZcgT5tbZ^ZAq_n!di9YI;TNfz< z-PJf)8M2HIcEcZH7R!6tvO?%_xuup9SW>xXq=il|QxG=4h&mpqhiM-SK9_5b!cp;8 z_{iaXqsRK;(C?`5c~80T5?$W+rGtsN^Yv#obvkHzKgzfCk5@PaerHc7Q>7l z!-~Ut zV6#}dVo86{cRqfs#E*f2ft&SQV$p+(d)28>n#e_C?R0X&jVALYGXj}#1tTAWj~t9l zkFzuKJesmRRPa9(P5P{^{9p-x+u01P5mkaKU)NXznVoXf4(S|6SH`}S7eF;$yTfZJvGFKV`p)+nLc0RF*=k}wS%_+S(*k_N^rl$u z4ZYC`nU0LPtS|4dEMX>92R)sc5Q4t3YQ4l&&<#{fIN+8A7kcKiS5kEoe<{K)v*zN3 zQL2>ZNz|D8BR$sf;y)Ydj(4mCHY1H@S6H3-0TX-VS_W8h({A?2tI&7)9vPv=P%2}X zaV&jDn6L?22&RLOV(G8SZvCwN1KUbpj%EomRg6;B{- zwaRwkh$moY4Np7)z31@+_Yg<0n-1Bp0~k-Rl|0_fiT2o7wT$cXRB6|)LkX@e8cN`T zW+tKtHg1Y8Ok*icu5q+9vwm)$M73UKcO9y=tJR@V99})~1E(ZmQ%cR`25L>d9n7E$ zKT`;0j2d`z)Jf-|Ln~^)MK))^z!Da(-yiIqz9og0Vz)Em1+>Uu(+97;z`0KRrKtCr z2=TdN2R?~UbHomOlr=YF2j*h3Y&Is$(PKc&ek*vtTO8hRcMtD;<^ym*ti2#C^JWU_ z|11vmzjY7wVz)>TY-EHy9BVgajWDJ73pKl=27MC18w9ZkpJsHaKh{5r&!x^s$?j5L z;vXunOPvp&tXo*Y5PYGeHy18-B|5{85Stx5m%5!Y=oEeKOP|yvV&3%EV^Xu~P2U7+ zhs>Kkh+n2RJ$VC^j`Xv$Y|~5j)A>qV)-9<7ZSsvmE?^04J5p7H7fI(@LHhx5whN}n zVcIS;Kd8Vj%!Eo0Vs&byld_ZdGqt97dY6FZrD6G$kCuHKWV=})M|YHW)?EeHw7h&` z>2QfTpJ4z-^;5XF>8@wgLZw2lCPkju*jNxO)g9b+x@HXk;C0Zk9GCjZ=1+mNB-Sb zx2D!_$p>l4ezUfc*thLs|QBZrm3(PoCSCheY+cYZQf zkZ1Sa6g*0!#(vh$Nu+unn!d08Gz9lF_{f$uM|xEV?G1hAw`e%zWhv`as+zJHnTH7V8Y<`I|f*CQ=OH= z&!ce;FYaLgD4mr#YD}k;H*4~gBJ&gk@H(cvS(8hOjCu|}@*OR^!R~oEu#2tO5EL=K za|jAYo7`EGb|2{?;fE>wm{}xT&h^W_T6=Q1++fn+My7F6EeJ!MVLE8LCY6`S+3oaL zryP)X=He0|9Ck1+0gX&+JUz}X92W42%5$##Qz=hvtGnbiPjX9$hXw;JxoI~Hya#=! zi-!m~1_Q@%<6vM%o8`G#K;h5sE}fURr6AAbWq*HUvwunY+K@JTQYSOo>~CjH(<2fy zxamHWi^W6+@cZebG|g9K03S1jg-xzRae@@qA0yKj<@>1BxzTN2^XN~_H}$n#fQnq- zFIgX9!5+zSeI+D{SL~*K+L9{td35gEDQHcKlwLyE4AVA8O7E{NEF{YY0$I@bKj@?E zG}b+f){YIN$2^TkY&QjEGDuyBD>-bs#5x?{q>z$nzw^@DNs<%(a*^E2a5AM=o``d~ z;H0TXk<;OVV~V231xN3>3+^%?fxFcPuXOqI;@1v`>woWxvv(z5C^eXP%h^riiHadizvD!MgQJ z_IEDK+!*#YdF%GN^>HU4n-@}MqPeA3np~`R*e9#2%4FbM^rDn2Z@TpHt@7U1>Y$g+ zviGw7;8I*{H$r~Wq2^R+q`W$angqRh1daERXy7zdf_M}J({-ruPJO63(XBA} zr9P@!ADQwbyc=DVbS@!5_Z&Qg7^m@U{?eOD6Ztf6zB3xB^Ob|=F4Wm%AXnu|<4c{y z(lhvK9o^?<=Rc{&=J`Ys@Qw(rE@xn0_yC{^--Le|i(S&@KASe-KI)JABi^o0=ty(Q zJafT(sDQdF1*i`ZP#;bL>TN!tjD&4fyO>sm>8CW`^@T>#?qNz_qMr)#*LxukeIBd( z@hNPXhHq}cu06;M;d$0rv+_?h-n;$d`BGc?c*#41q_M~Y|5FB@xxQV?Rk*0sa@AR) zXc^CyR8XRgtHqW@>tb02$um=B{0q1I4$(2SxlCVU`#bX+<*~}>{_rJ$-0gx=K*n59 zH{qiUE~q6DJOgof1`K$@&2aZjEZ}8238s)apuSJP=+8giA8thp_M60{a2?471&Mhx zT9JfKbsatZs%m*}g|3-HUIl{7aTnVNrDlv)*qv`xSp5|4*b$#atF!ElO08XQqc#QI z!Z2RPhovgJfo`(07pZlWl@z&}W_uXL=06fMm%C^(8v=98HFXH?5#WG_A`Z|Tg{QA& zx2Th=sk{_++H$Q)H~Uosq#A6Ch?UYx;rds3aUK2#eZf6P3c&Cx{l4h=8|zr2a;p-5 zsWA_`$<#f(^bN1%w?@mcpsxxD7UyXn8k(Wp22#a;8b1f&Pasw3qFU6hC{R#wcW)E^Aq2CF&R58k$& zdG$u>la$FcIuMX&kn%zJ7`W@6vR&(A>_&QaNin1rWxtk@^--UuFV^$B?8hkamJDy) zWjI9zbdV>aL`gFkt@ofqTw_VOC7LU^1y5riE}f)glu>an6m=uVLy{K#Nnv6=NQbTC zk0#yLIF>9M0O47sk&*HgD$|@L@?T0*Q;m9QWTJ=PI4N$U8e|#3+xV4KHKg!1a1k@^ zZN|mS!FEWK8s*HCD;N_ORUzSby1%C#HKSVxC)-ublz%o5Y^XQNbzGTAAXAdC7&F*Y zZ|vg23Mn)_!1pk&Y$4>bd7Oplw-Lm%l+R-0o<&z%a)EXhTMZ&hxhb(aQm?irYt0^@ zVEZMC*jPynQzP)`_B&FJCA78rWCiO?(WXbIXryW{lw7DO3ddR;A3k4SE+;wpRW6^S z3^vv}J;mzOzl_AS<^%~j5eIi+z5HQGWLXlp`%W$j+v?nglv#?12kN_TU0O*LONH->DPH(>=50KK_xRyTZ zl{z{dKpepo%A|a$v`3IxIpGc#+5w}xWY$6JMCS7r=;ux+k$KF*8Am-({IM<9%!I4x zY50f*N5pbk=#6gaz^Kb}&qYCJcbCS!i^CfjXnyG|EZ9UJpOu783gQl!%QEyTG76OH z#1B4Qmi)Vkg33!!Ij0fwlrKhK?Van^8>TdM6U?T}XDp)w7D4X>DsH7y_&Asq>KVQT?fKLWG7H?D#nCxbA9N#58}tX{FL$K$ONJ;olRX*=1t%#)`i) zMWk6as<*P{Ce(Abu(_BJi-&*~zZ6$}xj3Ys?;g^*SU3(?qsM@j{Z{b)usFQmp8&K}jIpImg(bB#$SFJ97lh0j_N8b=sOep_4a<6*@f7yDKK%$?SQ^owP=vR`RV zYo<2#hMZ=kO?7vb;vnfp$}m49OnIq!u7=*IuNApv8frfL<9N$H;Xh z*TYZ?Rs5WKWzyYdqEJH8YsIzC@N#WNjdC*Tr1Qf=%1O->|2To9@7ho&PtvnmBdR$y zO4ib$^Q44tKR-fqZjJIzeCmrhl8S-wdhTP*O^q@NcsF&*=rQSOq#7ySdTnudU)?>t zi%c4rP+KnnyY@uQ-~+{H@SY+wNEZH*Ktgj`w@6`oye@i^7L3~wt!5F^ z)+R8k+11v*hY>>Ni~cA4vbD7&$thJe=tP!%ATB0MJx$UHyM0I`%i_^KStdi8@#v8v zllWe-@Grzz*?q{59uW>w{7jMJCX^jna>xGL5hpfZUWUBW@vN*pV>z@GYJl3hOrS%O z=$30mhq*WB(21p)`Z4rTuUz5@X6k(w(4H))8+d*bS1^`VQKOorJ&>dnsZUISCZ`DM z^-+o7Mtu+5kno(;hnwZbZsBtzZ!q^Ea#pl*qf+*r&Om3>j7Uxa+y8wObfyE@Vc+wvQ(a%BqJ3fh9gHR zgrm)+U9pAYe7o!9O^%-i7l$XOAd=eMiRqrm+Ijf>KxX~z0x&u!Ci4LuCRIC6?ea>$f$3?M?Q7D8|=O%2X?Vr8ImH#cMeJ6Xp=kZ&+a2#B#fqDEVD>> zMRY6>>A-3mRLQ@rGVMfZs!Uf#^T&H8DkBpx0U^+)G7PiQo{2IG>fr@!o7h>(S|A}s z_Q=?S)xmN*&X9K0o)!G5Y$i^MM&U#4P$EwB+7rct-_ON^LiGGS!zehw+)(LpcF~i0 zL;X*y+hoZ?(oqPZe`g>jH|=Jb{1^I87eWz|jAatTkz<)S+C1|hGnir+8@TlK_w5u? znCs8qA7v^Ym)@UDZ6YPuwr*NBWEl(aJ7`6)N2Y4+88Q`DKiymh$y`VbE3(*D(MM_e zx(X{f36^(?C}F2N*xuPS^-`lY@)Zw1_gu79;rDa#mu6|XE*G#OTk)yZM-T-kuxv#O z9K|;F7k)BR(&E(^!?)29?nKB3;ckY>oFi#*w}p&MDO9Ns6J7>v)06b(Dn3lkT`sexz*{-vV#y8eXQ1$M0JonR39J@krzOR=G57 zi;TywMyJi~zC2bsoS@9R00!-~Wsd<8uFGbk!;BhQFfznBzc6$ndLpIIDK| zj+^yEW{F=k6t~1jm=LD-um_DuZxEScavIP!{#szj8ULWA4m}y+xh!8I5_WW}8xkmR zjT?)J5X6uPDY3jUX$e}f;*o9 zh;RQBdwpuWfazy4y6=l->chHKM#Zof3rovoLU{@N2op=}XzUGm=>Q2I1{>Jtre3l{GG>oYbN&S*vTa1+6J z5S`Jd8G4mTG`A000nf3j?S&U(GPAlDhR?zXeCK-}e%U@~YpqJx^W&1|XnLF_F|a>e zLUhUEaen;z8nUHvQ|T?ReZuWGGEpAc#rDKV+C<*xOl=ka-X&m==d#od?$DPZpiD@MA1UnrMIP)+d)EE*QLkLp5F!3Fsh>nV60pq)PU8@Xyv)bE85ey< zn<`7FXR=Z>K^|}msj#Ra99<7rYVokna?~yn5HiL~zxH}v7<5IRba)(R7WU0AJ>U#WEI&S+1|Knw)*`!QpG4vSS zh?i)qSMoneihnQ{9fYm^z4*xC{HDjc%IJ3!9zkdn_?GH`@k}wxSFMh{OI2Fyzr=t{ zZmL_U^18ntMBlo#p2TI`{T-pnu-3=0M+vJ-X{>)uhF(SDo)nUD>+pgsgQVr2rv#Y8r1t{=(eaq{ z=siE;oVXLe*b#^Q%67!DbqWWDCAhN83BZ-bPi#brGg)#SvNH+BJE$VrSrN4CR~oc> z9WsU7&Lxq=UaFsgmy(B|xfGeyvb2ih^?s&05$!vdM%_5d#jH*)!@!0?KN>rpJFys5 z#aLyri9TqWyC4?Nvjd=(%LkoRt5HE`^-eYZNU7Z{Rfo!`Au-Zw?pz(LV-JEW*#m41 z$mVQTxVOJg$7|&H zS%r=kU;|@ApSS?s_*8vO3)Tg4xDMZS4oB@EiZ$QgnM-51VmeTnskZ+G;awPQBa^@z zC;qaNJU^ z7N702x7@@5!@T&64aYYc!+tbhy?|g9e<^gl*NYCX-RNET)VG<)H6rXrZ)43(%U6#Q zMh?*Jw}4-Nq$cr|;*GIls_a$w`q|6t~jLs z-94lW_@2bT?K87;=4@t93Es^byeE}Rb-)t#zN(MM;Zx`WMm5VhYobxsXrnydKZ>uG zB_Bn*eQh4?x^fi$hhmf!{(M)ZrlQ1pA2f5JZc-I|?#FZPe(qaPnd zryuFDa%%I~A8I=H`3K5NKR$R@^gBXRxLs6R6up;o(w?Y^y~jT>AD!Nrolc+fkK&^f zA4Q|noaJ&t_@yTDpnr(G6yn3?q)>Wu;RSOmj73ZTp6Mw4YpVIG((nD)jJ0Du83R^R z(cQ(Nf{82WYBJ$2e3Zetm3*={3i}cWAq(O7KhP|sKV@NG`b{8-a1E*B1G-7Pq2s+X zT%%8m*Ep5y{{gq!$m@4tzmHr|o)(Io<_`Px2mS0vRtuD~djy{JfY!%|X&MDI{(A$` z73!lr<$%heig06IpH&w7MAkyBUR$b{Pv+(^VK3_$F1PlS%e9~nWmM_XH0D6jOPDSR zWJOe?iDoLKlCqnZ1j8uWI$o}o8_d@@iU*~UU88kCP#O*42tqyI)B!$%qa3`=T5Z;msW?(?Gmj8gOmIcGuy8~y@+iiDS^~%CT>{~8^aZbS z>}0H8UR$Y^OQ0H@Wft!U7OOWH%|KwfC=}Fh?yBO8nyeOF?y2%FsP1e)38?ip{D90- zrRd1%jC#6Y#mY#9N-ZiD?uq)|+Ng|Aw0fH;0gg&ABlW0tlgbX4c9$wuGJJ{Rr4fWZ zjElg{l{QX-=$=u4|aEP;rh{{7)Nag?c<&8aI!3W_q)!Xydxw9Vx*FF#yw z;L_MBaxT=yK}SR*2RB`K^AKaP$Z!?3+O0a)c$HnwR;u+>YD(Ds*U>)N;#)Vt5k4QkDOMElUr=oNiemP}lrG>hrc*IjvGk8JC}tKo@42CjV%&5W zL6jh=KT@M_N<@!ibXn?L3LFK?anKdMry2dq(kwOL)Q31~ zwj)u&j8Ih6UpbrDR@hTV9Ka+Vt4$|B)DVOPGTiyrr#^*Cq+CVjA0$+dEuQ*=wWGUB zga`U`W4VoeEm&V0t2ZXO_}J8_6KoVouz9-KDo^6FftAZwuILZWe`3!>t2NbJy=)nx zwMS5@3XPfrHS|%LY7UHyEMse68MR(EQEE;syXc7*T~I2Yf6=Pa#TTs@U3JmydwS6@sX}< z44&}^qNEXp(**1KQ;&S^)uiB*#Xlj66GTNdIycWMpG$_GEuGA2qJqIK4Pkbnea`Ib&{x{2VMlntc8$LYvPMmXMXyMH1E$bz>=HlaSC|@ z$G(id^}sP^p12#q3(Q7A=X|Q0!ck++)O*A94~ooF5Wrh&;z*qrCH>8ZN&x+;2o(R8 z1KZ(0ps_0ogawH(3lJkt3)gj(Tl>Rbqj@oG9~RssXG=fT9FH6^*)y3<k`9JVYwNm?qUKGc-cDVL8^6V10e9?I}Khch^WDAwvxwt+isCqN=Xgtz zDGC%@1qtb?VVrQ}ZaLblEMSFEJCfa@vbEWEJ+dEAnX9*_oT;fD6)b%VYv(Cgdi`L~ zSH*=EEE};sg$R9SRJzu96x`HT=?|7dQ^D1y0|Ns$v%-V8qLut*IkEUuKsN@H|AR+9LYe<}>0SY+hm@X>5(EQ`^1Rt$sn zjC{`+=Q(7Cqs=9rMfT9XH~1HsLZ#hvy6|`~g;O&NkL$K&6CPoIu-qXzcz{ES=(zU% zN_6P4g_!bkO4&5*j-183)-3Tj=tBe&JG*Q_&@LTk*gMy8#K`y)ZV7i1;1kEpg`K>_ zXf+BUu^b;c+}`v!yO5ZR*+})7{Z{y1Z*}AcN;oL5Vn8J~?M6gA6@90RhzKo)?i|C4 zgMl4wj<$%buwyq)=fX9>4`mv@(|q(DZWIC)yjgcaMU_C(EjZ7y~ZT)c*{ON@)@ zads}Ai+M^WX1^6sH(DKK;^EBm<<8p72IcC9dk6My)Wc`uC@&iR6c>OG5`OQVK9KPom zW#?X^MfrWA$P@*VEk6Z4HN=NQ*gM*saIHfiDjL{dqzm=cDFiSz7Jq+qwbKLX&QN&) z3`O?)YH-n(J%sC4(d+&Uy^3m)GN(aSi|q1#`n6nJ8r-&dh>}X1W_@`xDc`K{rY@qt zFv?pT@O>~~4HYjD7n@sZ1^F}9u{^dbdBsC}1XPTs?XoX43T_<}gM&wl#-1y_JAT6C zW^-f8SU>*gsFTh|9!W*kY^=(nYeu=S!vwA;PNpk{PeqAUtK6!r&?5>;C}e~I;ibE> z>NyHZbWZoO%zk&R2?cJf*2E%!-+iqKma!3TK}u}63LS>5+{Bact7BDy>%`bpmQGJy z3nXwvp$ds}$etqz{aFfCT)U2yOP6;;qWBZyF>r};c@oDmq{rj>$Y88dpNxtmuxnf=AFdq4962!bh5i?$Jy)V7udWO3LcjUpW z%yQdCAN9(mj&0GE<)-cqoJWN{nd}aYn*tY}doI0ER|WEhitNwG1)R7ma5B$FEF>z# z7rrAltu%4-AI&_Y7H}hLnogt~H~;O=Gc`%9m(WMqiM4736)$Qq4^x;^lMb`8N(vJI z6%;(EmXSW*5;B4dj8SpWwR0;V6OJ-E)b!IgWuA?GKFpa_XAiF*6-glT%Iu=>4@*Q_bb@Xr|* zlV_u?DPquEYsx#iyjoGpPPt|HKN6Qs$=y?}7e^g-hI>yPc6!e%oBs#>Vs+True8eM zOkwU7C55}YTJdtO6^oJ)D2rU=B(N&iNkEM?6Gwr-rPrw;+-Ct{6IRWn4IutPt-vEI z=CU?HqOmsGwt?t!IUMprQMZUR`U8jUYV6B3}mnjO*)-mD6 zJgAkL=Vtn-SBe1a@&04NCMAXFrturt9hc33N}&doF_cMSo|kw9B*Bt!%%E6cV^0M+ z1y`X)T3PyDj5Ej4=bo#EQ6~>sTnRg+rlIc2HEVJH7`HxxTKE)pSNRM~Nb$NoidVg1 zr<_s1mGP8Agv+RrZDLJl^px{b3xVEcEP3rN`Y1cEan~&KzQwh8+i&~E%mC>+dftNy zA63`DX@iKLPhN+oDRgA?er;#pJ*&L}il1s{bsOED?@%gOch|Y3<#d`lJzPjvu6s<1%Tu2)^EB0GWW~+agytUc+ z(8;@52F5#{(ZZ05E|PJ&YR%*X<1f@~r~I?^mDI0hC*3psqxeY2N6|<(XN8;>eyNFc z{6pj=8y~hSvMq`>E*G`t(OWqa{)d{(>;04QQRV*ZRC%|56dzUiC>m9~7s7nfKTuxU z@WFG^CcU}vPOEJ_JdEHzXy&NcHtlv#D|ln(sGmVYnNf4pPk<0^j`}5j#m!MMkQ2;N zc02QWZ;5soD}F9?ELa1!!9OmqzvKlR^_vvdz?RfR%y7MlBK~}%ri$z&Ihjfw2sJYp zZIt#P5rTZxSK!*l&dZJ6<vlV`YR3=nH;P zgOk1P*h17BYu8vtQUKP(O$Q(huWH_p5EK+1A2E;DEP4fvAR)>D>WYl^fD2IRlh|df zf}2D~L_QQQM;A;>SBvnwbm8S@xl+5qRLFs9Ml^mHK%x+RQc*nJ}1MyQNNTqagO_->?HY6=dp62j&A zRYdK}KNW?p$TfKpvj1d!}a#H00Stp+8riqo^Zi2q`KU&UVQxK<-At z!Y}62unQ~EW4$jw3(uq3Mdv5>hXU&jR#$$oMC$VE7+A?obtVpLXq-KyCVT+R)0sFz zjKRb)yf~QH(dMx}sw-64U#4^G3sdlvnOj$r>Ll&IEM1Cm>&EuvFmA@dE^Dh+>;@xJ z;GJx1TBiixnh({qzl%xe%$7`cjd8!tW{z`$nV&+B^}hU!>q(dTcdH{mP=am$l>wF9 zv>Uel75YwR+XyWN+s3fsU|UCMjxF;3|ER{I4K?Q zSw-fU1;Z-$FETOfj}(^gE&{=eXA#RUEsEvDbifCSOi>`&N(ZE;hWK!71dcXmrVC3& z5&Qe}UEr(~a%A2Gt|3FdCHZBpcd#a)i_*F9-%RaLfhD*BcevFjH@8qsCCUmPYShN1 zf7?*Ty?%nPTc}NzlA4r%kj*@%#n5AeOkQc^(PIAD>c|h2kn;b;fJ$!KjgY$mqx5BcBJn8w{U_z6)VEyx~2={ktqsfTf&~68dAg|>>X{+ z${-vSN$d{NrTte@#EU8I{ryoY_^R|XgbbG>Yh}i8xyNVdbvw@*mj>Eg;d0WOri`bK za5-k#kjBcgZtx5D9g7rIde6h?-!rJ-*-QQQ<6l1Aea%$ceL4< zHNmv($7*iBDL%Jfadc;i=UY%SRRxO&eBnoY6fOK{Q6vlH?6fCpVki2C%o~Wr!ARB? zGO*%la5#@v$c-G6+%8g{$ z{(z+V4g06+qukT8Q*O#XijQ)9l&q9{rhlNkl;eYU zMY*F*jmSl`MNtz;FYSpU)xG|?`AGG$?4)|Ve-t07_$XOP^=|(_c}c|w?}}89^C_z? z!Yy`xAgP%2T9Ne2ejNBn`uXf6{X73CK9cfLG?LC|n!B8#_)AUbC;p-G5|t01lc?#< zMMSPr_`{ErW^zy?at#IE9g(ZxjYZ@>0QhG#BKMd&&fu(I)XDhej>t7Y_C)0B?aYW= ziFQ~%-Yj%OcSLUZnKSGt-SCUrqt10QueC&hdK8Pv!t|J3oPzck46SJ8m%@}gYbk~VmY3G0}xR^-aYqa5k+Y_qV({VA9N&-0ED6C$T2djv&>J6VrUo3el!F2(H%TI`ZAVSC~Bugry z*%uhi^a0MuFu!=SW_ZTCGN9xZOhixv2F3Vl~_4X3un`TxCTkNlUbE6KOpUoKBi%jO@M!~UeJzSR+>$^rH~ID zj3H><8O)(sLxh7zd!mRmor_2!uC9%b9N`=ESeHQl@T4O&a!5upo+%*z#Om0;qJ$Id zMGVN~rn(y{XHtB4H~QAyP_!k+Lq#Jr8R1GXEIAw(jy7L7bhuR!)}E(V{;>$wMhaD> zf2Gdac_LW%M7B0uw1Xt@QUmEcC@+aZ=}JOe1t)rWFUuQ8dN^-2P_5L^dWbb1xR(8K zLwOu|7)=;g;2$8*J8m#xFM1l$8{WHntwylOh2XRVein1m*HZdp&>`+2_ ztoP+#t0%fJBw=;GR7C!cHIyH0v3kG7z)o(euio%=Xq+QP_Pc1FzIr3X8LKyjH^=IA zwAnlxoTN}}kC?uWKAwW#%rG5zS9>dM~fLpgW{NtKnf=QheH07ip*0W-y2Kgz1V3}kx@6y zB6e@+2D@WAcJYV8?nIG!X2Gt!Y*{QW`KKCry2!}8XA#4<=D;xgW5xy(Th)#Y#?j`B z5N8kVdxemi5AA!UTfm}8BnPFWl#QborjW%akr0iGS$sU>f>u%1o@n~Mc0>wUGw*93 z(Ch^&(!s4OIxpW*@t98&nNYAp>G2b$@rfn+)u0H%Ql*qewoOq_9Lel7$hFiG&lZg| zN4bwW_o)Pbomf!`ZxtEdnQMUw#q+I<5@2sLhlL(z-?iMjrGVT0Qi1&$YpCSSiZ)xZ zuYHPvo!qpWeeHATJAGf{h%@)K#Q4zf7MY_UjdxGW6d(GFBBTFo7BT$G;uucK0$A`2 zlVOutL*t?>7(Obx6o?kMR9dX3iknX^0>_E?$QQ%X4L6^Pz6)`4VlKe4B2yHowzg4v zYKR%fHtJ|oJHWD9k=F($eXDy@$~wxt)%}1haVl_6?Qtk*fE!px$g%;8Be#oW-0Pw+ zKxQpPX@m+Cb7TXPF9w|r1p0xvN19fQ0SAz{P#Y~ZMmLX?s>stMyGpY{HT;66cvHEB z*;Lt0l|91EGZmSqS%Hiu;uB?c3@dNm4uX)UHxnJ2ihENo{uKM*R<;CV`yf3w7}P6` zA14hk28IMlr0DQBQmi&*4V_7%O|oeuH|<7}G|+dtB;kn6xGz4x$Q%W!yp+haFTS$K z=r5l|4BuBA!%6$%yNb*)3x=&7P^?Ppsp95O6@la9vxw_Y7sYkrzW8@VrYKNt?Thr( z5Ic^2(b47=a$kJd$#umDHrVMq=#~^N$h?F8HVW7Z`flaNwchF8{@%U#=N9@e`-6T> z^FMFty`8xrH^9|Ldn=vkRtM`5bTC2z_55tNXQDDPq4^3?f{I*%qvfe`ja3fnnJkxB z-Kh0_gO>!`g4=@aOIQ*G9*ki5E{D6t0<0%ZVD z7rZYq%YG}oUQuMswX=xVs|w?FPQRQZeyJJmC^ExrSlz2(6~EP(lSRf1XA!IQqF4=| zPE+AmWg2LGZjmWwL+dRXTJc+<^`0VQz7!wL)`|OG^j$~@B%<|gMW&bqt@CKllM96Z zp%DAgBBOq277_dL8At3licB#hVim&zu?ENfsK}@f%_3rdJmZM{U6CnfLo9SN#j*5< z;@G2_rgD+I$!kWy9(*)gqTm?xJ+q?V>>^Xlg4hKR1<-dTYUQ5_xfc`}dF3o3cU2DL z+WtGjh@pl$4p@#hpFSi`0*a>g6w?o5zn`hY*bCiB7(pMZUsc(u>$)1nSx!w=D~RTV zQBsAlP{aqqKHBUZ4o=f_E^6S|#Ily*qob(IQmcmoLl84I%0I^esRG{Zp21InF8 zqogDdq4gxaR;aBeESGy0J!Z~h=zsBhv9;6F1Y0*Tb0j@B*w(AzYxfi#*Rk&^6OiZN_B($`!$1?#2(#NQuPtEi?& zmC0%q6zH9?TE$?7Ubpk`aTVomXT;c7#nX}ympjQ!6BT#vs8+#Z3_aB<=smAi@i)Y7 ztXc*8bpWeXtb+?=XiuXuKGEu;T*XBh?^lftHWT$K?u^%~FeelR-_sROqZQ`=k)v%bX9<`NK-G-@&| zike6TTzjJU^t9shSd34Rr;{aNzt2C4FY%O*q9vYs6ZS9k50p3Ulng7QyArtAFk^5q9VH9MJZ_K)Ht6CXt*)1pWmNBpOrsEO_J51E%>9E`3A zc3f=pa8c|?y_KAy`A|*rPX8o*)Z3SxdN1{l;-elPMWdc~k-gSGP+pqx!Mmc_tX0MM zpns}9%Dp!`<8!!#_}7%JIRwqTI|?#rTDPZaz}|G&`w&>mS8ODn3e9 zQuVaG3PxU1@xgPFD!sWVpr91h@V`lCJ#YmS&PX{o>~~jCPypNK#qc3aU`8t_tNQvURBqb!3sn;Os5B7CRSv42I0z^S(}Ad{Qw#{ayf8vYV} z>&AcDd*h`VA~YGs{}`4W#(zhfL$XwZJx{OvW2GAQr%+Wo7hb~Jc}g|>JThSgeImGW zw9-Ho7g%_qKA1V&%)zIk9I14(R7Vi$DAMI*y1D2EDhV!Vtdm!e1z57qonQ5otIe`( zi7Q~G!ZTHBO*GXtph!u_-Dh-}C#934b__WSk!dbfALRRp0x#%-&khr*Aqdoc!=Gld z6U$F~q88szfJuE-C$A{lqlAR`AxFQRr$>+VzWfrxYbW@f)s-JCArt{MQv3_1am)@AZZ8i=qh0IsD^A=9vY%GHG8L zwp*+!h!$YAx5&utS;X)yIWTO;01-z1KYL#SCs$D>o|uG?4upgo5qW?xonbOeLO2Xe zGz0TcUR~c&UsZiqDYDaWZZOn&&~w{@h(0BS?N0H=tn)qQJ7#SIySe~OU z0*-0DSYZ2Cd1mst6U_oe0ZK290HBnb$&Y% z`u62%efLYOd&BN$sPm&$=>ixwJevqslHXXwFw~KytdzS($aA+Sh8~#sjT`%lV?k{l z`1HN;o|FaUyEitTl;M{i?k4VvxZ$9OE89GKwH>p&a4x)rjSooFNN!Vz$A{N{mIT-I zEZI~nR=R=(_0sr!d?E<2IlrsByL)q2uyDyH@}mI%-bGU*4i5{Bf3SV1Tq_3^nrs!~ z6k#LW)YIL)dcnfYB-RkR43_o=J;C-$eW(E0RoRQpvCSY@-AzY~yMTnx!_`vVxB;q` zdA1Fzg@R72GObFs8LlL&GO-zAvHxc1d~Lb&#S8Zkk9Du&lg++`QMa7oD zi$Pcz>U_`4u*n6Uk!c^_eK%!V@}mI%-qTDg*iQ#LT}-SBP?T7n zSe#*bq85^$ov7+dknLWrEBl(0PZMNX_NvV+&ksW1>B}=ljIulvcrh$bL!A{ZViSQ? zeUS9U@Y)oVdM}1&g8Q|+IZ`Nptc`~B0OXZF=`Q*6Obdan&z}&gCDtbv`>)TG;Ql{p zo!OV2v_k(tCT6eN%nJPr^qsy!DQY}#kO%Kj5oVvb1S3Pf^9Jb%?mr>Vm;p3u*DdBm z=sOo)t?|-lv+r2 zdUGBSebDNR?!Pn7sJFKfv2SiUVn3V*L{G#DhSj6{Kc8pR2iu6)FSH!7|CR?tKg2qs z`=87+>Mz=e*k83AvC}5nbROX0{M@9#g8jwG{g6B(&xJ` z+=mQxo^H|oI*94Fu^*)zpVix#yFZLHes#LFkVhJ$pQ2}^@lKCkS){RW($qc29g)V| zA6vLh8X}E}s|B~zm1QT?aQECPQ;4$*jWixWP9~AYgs)iwdzP8 zyrVTX1W(@-{X&N^e`~$c&lJt`CmT!r+I1U7ZAH-W*{XlNVU!|)u#4MX`_SU5zFEI> zws@wjaq6bCPpFr7fO5Qpg4(gPD>xgxyZZa0%GSPUtke(b{^B}8$I_*cv;o42iy(0J zqfMlv>Ml)$hS$l1O^u&qfL}uHzCvrH-T=c}p^K8tTzC(>77Af;;drhU!^0gXX!VJB zq{f5$RCuz1(331?|B|k(D(JA`GJ%7hNiYr=-jv_^ir98O%Gxtzg4{R%sxI!48!O=1<$5zE7$4)kuX?*rvza%CiZ7)|AAGRzXP#?j|SApM{;$a z({?xv`+1sdQb4F98R$T$@R90i3pt8RVhe7{Bx{f!|l=8TSTg8Qz znf@scj2^fRR~`&k3zpb-wRBDSaGn7_2#wl>RGer|q;|zOF?_E{FwP@+U~C4d|CVRK z@9kSi{cRo?J&@X%6>lYciAW`asMD@dMYmmqN*2~B(5PLEI|KU8#kkgYCyveoB15tE z?gW-98=XOMYN%6ORr1`&1!44V?6(nAI=&LlQRk*`K37gIBlR4SiYw%+r<8E?@*(hT zg@ZC2hl#I#ty~|6_olh)Xt86#f~6hk`$$eHJpbHvkkgRAe6L+#nIyH{YR}I^ICex? zPIwbeJnU=k3GaKlY(0BThi4mi?MkVlK;Algg#c8|% zj>V7fe%(^|kHipyyY(*9x%-7F2voV--5;vnm!_{4u6oBSfJ>2xlCh6w?(8I0)9)-Z zSvC+Zo8!L)ir$uq&Dd?_E^L%`Te&%2j^~hzY_MQKkaUVhkLYWPJ>U?%aQ>2@x}e$> zp!YL6LtjIG;J^9REzp{+13CAIk*YO6VPE_93kitn#JsUhM1q zW{+;LWcKt2{<~Y6k>0tRg;3yr0H)*G29Yo7lrNAjEoPzFl!b!~Xbsgwy;dQ8Kc zT@2xr87ut&8~L-6@6=j%;)~%IvDT4ad)it@juzBhhbp-} zWUbRiZH2Y&^rU7}8>L8OW~>t;nSc4As-1Sar9ff%sN`j*TcI^lSCi9DhvT`{3RliE zJKd6aq~#7!Ay+rWxM{*pClDNN#QqF+xuiNgBLmBa9Zd_ps8z9=G??AbQMxvwa^{FuFhn|F|ZWd+)P%1pKjv61to6E z55X(wlzc35Z*Y&|vdGaoD)tNoc%)n2PJx*V&<_wNv z%KFY8o(8CIsXgv1&|ygIao>VpW_z4IYll5ftE$@LxB!9E@)?YUQtff)IqY!;GaRZT z$Q&S*K&>>Pm_*>{*`nUW%KjmPgCD}wo$l#jsncjmwkaUt_XP>tYpMH9798^n%dfFf z2j8<`6KK*>*C2b86kcq;BSX|My(F`k;VxoGh6rM~9!sIallHwBF^c*uffs}N%uwgW8CeN*6;ePis60S* zVP_>nZH1MDEYqiE-(pd{hB}WKDTKg!*Fn8!k$Mg#^QG(z6%;F@VA`&c2Ys2*dq-tt zd?XkyZB4xN8-Ixt93W&E^3N4fin=*In6ZOq{I@{C2AHVK*>)a7-3U`MUq+$RmCRTy z_vKzC(*SUOf+WAiq(-%l+>>H!h0|51b77nwCi$)fLQ&-`WekBz?`CD4NzsUp~ zQ{n$gYXt1vOH}x|CodRM@7v8lxSRbFX5+~~NR<{dkfN<;JCsr;Ks)j!>ds=9^2o@H zkq*N~{*1)#PvB)nT!tWBhUSt+RU!JOhDT58(Iuw4z5D(T+uG2~ZM~O&CNT zfyuYjAW{U1g~TAz1HTdm5ltX)Q^+w6pj0CW$2RQvUqQrMpR$sIk{0pjqWGGVvQ1XO z=dxDCkfnb5P!)N%fnMW)AM-R7?0cq@eNE<#eO-w><=DRTk{>d)$TCsDm$B zkZ4UBHjXC(Hz-EsI#IZ;EtA+HT55m3LlWR7IX#pKG^R)$fJO#$0~WjPWva4o8UVs~ zZ}MAk^DeC;RTyjB%!7$`l1bUC%J;gg#)g+d-}1Q{B~H@V5TivoS0}JyQ1uz=9Acuc zK#|_UzMr6a4z(tw6#QU4v;ka6>N#ux&xOr3!G>67XF|uu`%xH9W*R#IQAffU@IE?6 zU6YT+a$ou#&6@!q(K>QZifQt{NG4^kDl=gCTBw{slm8W{p3Zu%oh{yFb(-Z%XfvYmreBdtN@zCskXbMLuY^%8Yi#K*nauzXPyQ z+NL42$j|5Jj0nBKSCt1UrFyj%L7<0n$Ote|3MM{**l6&(0E!y5#|L(H#{CHmGJEX_ zx|NRi&&vcH(;^32BiN4?QY~_pi3=vw`*Sl5%D`h_2Cl0GQi7QtkPiLa{VlFV{vPlhn3yAEccas9>Ini1?m%1tXQw%1C8rnPzF~3TVh3 zAOV8zATK#$BT_RsDH^VWG|cf+a-v*_!uJ80<&%%PIy|*p_r#qvKDp0nxg_Fn|Lh0l zJWA)ch+>2on#1(bj=oua#S{5(bA3){+h;-U&&QO?tX=yIG=;mUkDv0tx<_&ODbrDW z{gi*~9w@7yG9BD5qPd2RIg>v?G4im?EpyZ*Y$D?Ryb33qC=i7DqZ_jC!I+6eXkVsT zsQ!me%ZE_=z09@xLl>dwC=#JkQal~%9x5xT=e+VbY9iaArs|x8=8uA$3*6AV z$T=UHdak>(+@rY2Nk{P~=SufbS;P!_b_NVZETvvNe6>iWP%lnNvIzUV} zp$vaJOuwbd@G+ocNR;6_;8#K!o;W#hb@;LFQ_lQJyb(nxkUC0v%6-!wjH&7XusguHycG z#M*K>STjDlwH&N2kJnaSx;9wUvuI(AR_k|x&RepgGki6+n19hUWm0WU0`~SSv*gN@ zw_>B1Z&CV=OIa<3_9IvD-8`(G{#|q^K1a>RHlhn9Pim8gWr=eBGJMXAq}u>@VZ0~| z!z-DPV}mV&N}as+U9FWzBsb2eJUrOF*6A8;I~p==g6*>)_op)|Mx2%Xjp_w8ok5{(sB>;h7NuB9`VjVW z4C=N~{rK?|gkn83!F+_&b4a3x`P~Cv8D3EWZ{V(A9XJWYyTbj|;o-_axfYQ`wH@qv zVWyAZ;)iU#0lfH38^xVPPnA%FMJNML>>1YL+n!Rc>EA1laJAI{5u;9TD~5-Z)XZy4&lY1N(*pYVieEGmio#)p1WM5v&ZKK1ndXh900y!WF)lTyW; zgO1h=>UdVhLo>@mhheyE=Mq2r;*TY8FIdZsmdbu%R@pGIW&S8o_RUP}&GwP65v&1o zslNMI?7xpVbJhJHttLa=N3ojT;U~aA(8xoEAHz3hk z%wHM&8-_F_dhuBq8~O9uv4lG?c6k{12LBsxI#>{q15i;{S^znj2}BTLm-lR&5VCyO zbU8agNCy+u1GDjiYYW0A2)eWcUZ*v&6QUW==%_g%1HMMUj3HMu2uUS)-n~cQVZ&wv zXi$!!_aGId20<GB6I#Ndhso zax^~d^vyZcG%UYLn?H&LJo`FTKC8mk(@SS&+)3lJ`;?cC8FPk^w2NCwMY_wY;bDBm z;w@2)YLmafZpr@?Bs@OGerC^`=R#AL9Ms%Wo=vK&6Q3>dH33YWed05Kpp*$XmgI-y z^yc9>KwgrJLW+mf{=5QTTB1O}uqHnYt0{7QoNKOfkK*#iprc6M7}G!kafrxo0nDg- zn5>={bZGnb=)r9B>9xBrT~eATc!Ec3jtZ~30#!G-QRVW&xz?ZVx4B1g(VdPW(LKef z>h12KveKRopONK7RJF3rw~3V60jPkE%*(nCiv? zu+WZ;3-7AEVJd=C{v#`=gulQR)Z<8?y3HO(f6X#Wt_l4UHtOJV5l(wedK{fY&wJou zRId@gqUA%?s65K9H$iEn3hYD`r2HMs2;Ge8Ly%vwf4CH}wOkApn+ZSGGAjxHQ;_J$ zS5Q&nwV1hm{ZMFRu&-mWODUz=oTmY#{8&JKi%BieI&w-FZWZYyld@NpwOU!dgie9J zWi<)P`=pmpj26WzlE8|=Dq^U!CXkF4~yl# zbe*xv!p=OpJGHLd(_*H*?POZ^sxlLY=RoBQj#w{->gh}zBSvB31YQhGY^Zazi|T@c zddqZfy)p$)-rRZ-zkUYA!QpBNvJs)g;? zX@Vc4{bi8Cu;qhjHuAB!%`zqy1p@y202-O=?DUs7`27S0aPL=*(^xF`<>ufS1ZXaX z*q_B!)=l_l-0f$Yt=$Opp*$Sag%SuGTpJ~GcN4ueK6OQZL!IZQNJv2ry>YtCe@_b6d&~Sy9ttbTrHNbn@lqx< zWa1XhZ)zA8Y}^C9lwNFm@Tx1Ycts|Pv$M~7!qkbK1B(@sJEfb`t?5NtS6(ZAluXNB zwVAaRLEq_XEk=xT_DSHyuoMh+7G&caK~uf2^p$a03g*<6;qDKemu9E0H11r2_h3&u z?jK0imN+kcEE9h*=cNy0qqHl#a9%nTPloh}2a0ie#G{@hq2hmZWM`+Trtn5GcO>Zj z6L-$&_{i8qoKc&e z9W;3d0#dIgh&Js8Ramw~Y$e7|7h!)-r!wJ&zoggW+<>Uf#0^dX!(BDFdXFof+>Ka9 zU#|ETls33(kZUp5bd_a&bhvx&lquxeOkFij2O?5e4f5-$aMh?+>)@AA9vlP}@Sbqh zkjHC+$f&lij`j_d>Luc+!4j#E0+vk$Ro>_cUK-)~RoF>waJ+_| zpnar*;=0ill(ufImA68E7U&#RqrGQy1u5v4N~25RfzDcKG{QHXm>j1wiTc3Rob(7T zGtk(PrX{xI$YAmNhWVqA6qh(9g{LdXMR6zls4IwyIfE<6z567aD5*r|B^aIXi0Zjv zsRWyi;fvs+!I%Lud!uZDrml@&a}cfn}ev}_oKgfeB`yrGIN#+_O_Tz9f&haUCjZyYj zbCw!0=Y(s_3V@-dt})YZgp)OKjX3~**JL=m19O2gYS9hHW2Q4Vd=bQ5lL>81L%tds85~@&SYEtt+v;oyF=QhJ z*`bt)Np96Tc1i_qAsZl*v{#k&UI}mjT1N zgh_CoLBbg7^ftHh#46JJPM0nRreM-ry1dt+SftJ~LfS~Klq6FFb*5a2PnSSy4=LCI zGB*%kc9us!g1cS~D?nyCOeRaJs^Jn{1#FHM9jM4GL(nbDWLF=rjh4;X=Z<#FpUW<1 z9YKYgGO;u}JH3Js0vJkl-^Ah!vJ66bhWTu%M~;}*U0PRm0fi!#$+A1iwCq)zk!5d% zzSCtHMU1B``&b?r8S0ytWnauQ`a^BR@R#yq*ygV0cdKyh&sN=VHBB@biD? znaQu(i0$9z#kSRfbN^SWtKYs3r6tRdtsQ=`R1qYGt;tX)+=EhCkXD~a`absZ6uNrv zW1DsVfuPtAIh;#dhRZY#i~SLl#>R##G;W0k-J#03gB^`Kx`T6Rv;Zb`?id~GM&E-D z<0*NrJ|buR;P-n$*C#yipN5(9W>rr7B_`(#ex)+dM}IX z{mg{)q-Q?gNooDyEnM`!A?G*9A`BPJa)2tHzIYUT$c~{0ubJ#5XIwug#f_Z)Je*y9 zs|#k{or#&*T6;0UeBwNZ#r|u}=~R82)|GwXNSniJ$+YZMn^|LTfWFh$7)6YBp0k}c z-k%3XhI*$I(~lKQ2c{PbCirxonLN-&Y(JP6+t$;@ck+N3^SL526Krk}nT9&&wnRn< zqUl4V3(ScWim3wA-5z^<9@YhoAdOmT}Z07#C3k|&8k4Miw2Y;%ys@iY?Nk3 z6t45z*3j%)^fgjRtQX;8UaHkf6L@xthDu}QASepU;D-70yXO}QkgmQQ;cJ5MfF4*f zm=k``%aYi`g&%rhDIVdpMKALFnm=TJ=A&^=XQyRmot;6kGktQM^XaY+A$K}n2xZ_MLGbSl8IO>G@uI_8BTpzEbl~N{lF(A&=lMX-XMTJ-rX(Pi zX#=}CE`nLXI*Nf%#EcGudp&~p1h>>50$mmfUYw(oHyKW(_b8_Ljj?E9!>C(3yM%Xt-_P1f?IwU{0pV+OI4~J z$AEDen6Me9tyR@pjKZz8u83-*ACB zzCjtsk=;uELQ5qO<%TbUcHfE7p4p%Oo6yuH4Y{i-d-U{c zq`K(=XzMOEHR(xYY3NTrLt={>Lm>=GXDH z*r3 zRJ7Xi}En()f=Npxq2tCWYF*#>a^IaS0BN?OY%Emn1WBNhnLi?q@Kg8cdvG* z`!vj6=3zVk;BA$yhx;kWx(f;x%YC`mgVUYvQLQWYw3rLZH^{W?Rpk{B-U*d6IP88K zs;932iWtpgVS6I+$viMJ)H_WUUJko|$us)@g+{I$L^BxvTLuinB}tJn3C=Uf7(<nQG|LSTC;nTUSC+j> z6%O`gih_oj50+x1wDU@=Q*T%m zL|Kcen;`|yL>ACEmA7Fde=7SJ5r|eo-+zEH_vZ!(N$dS;?>RRi-lUP!w~<#88p3qx zQ{iF};Rn|a3r%Ja>zD-IJG3_Th1U#tY}gF2O#=&_G))iCrlY}6YI6S`fsBrt0WkF; zWDmHeL2#o4);IPDSY*%)P)*H9tf?C$ke=8RAcYry9IQbfgr=FD~T- zksyDe zBbLvL>&L{lVK9A>Bfi7*h2N>^YvHTm*UK@-7x|UN^yM|(k*m1e4sXSuMAfRcEQUYc z0ymNwB#dFwkbMk4)7dVKXG?yi&9)my?9kPvjZ6ugvBak6{65(3FIZh0A*tz;lBtdr>R)YstIKI`*wm9@w zs(IOOYy$PKDw**RSA#KOQT_vT<64wbo(^Tx?t^xXnYHp@ePXOU*_ei7m@c{7Asxcx zO+-qrCVHIJLmx80g~YmLsDlvcO)#xhWLkiNh1qd04l&q^j3ad&XxgozQ()W+;}&Ep zZw7u5hyK~;U@Q<>HcPn5R4Ef9UlaFZvYqK8gVO>T?k&;`Kx29(7^*p2P-Y!EV%KDG z=qO;0qv0P|AVZAV8#5uk2)T1Iws0T63X@Po;46+#Z;*#LDqBJ0Td9}32@6N_CmToT z9M(-+CGFAzGZdn*nwVWNtV?B$QQ8%WEFVNwGb|XKl9XBx@(Pk7mRwKux9we9hgDUo z4Xg!k?sBa-AKI6qtNW1SSOaj=-BOJz^@-jdZoS?qPhrufvrnj(cR+sp4uXXaNVRwN zKsoB~iz-|DqOnqcc}Wmg2|AW81(c$z6drG>d=xajOQUIcojlakfU^Yr5{>TG8mY@P zycN1A$%MqEc`XzIC*XLlO_1B(`sVYf5<=U-!(t$!{ZbgikM_1 zQv4w1C90BI0F&X1fbXDN)csKtPA;m+i*ha#e$0Gy1{l)@rC|WT;m?aMMXM_M8&!K&dz~Meh^?@<(@!R z>e5LyMcp~-al}N-S#cE(qEsSan{dPCBH_3{32$(Z;vyj(MIxcoIq5d{Kv_ve2XBg0 zv!#=wkxudVm`>(JW9JA&BBW+yuV(qPd1LiE64b7ITC7#Q^>|2O*Upgy~@C3_+{9= zrJFAv%9p@!a3~jZ(bXK`ZP3WWD=c}b57%Pf`-SV^KV;~TxPtu=Xhi13Rd|j=TYC@>3(%aEL4H@!|>_K)53u)iu3_cyHCGs$i(UIvGm4;gF<} zd+{X&F#0D3kD>s$VcGC-bvq;jtm5;jp!1oaH(DA*#8VN$SCTKJRD(M?c`Fqnfe7v z!3PK2>N-*y_#m8(Eoh=jfpmjQTe@vnc3)!}G`UDjGRQJXZaX{%8^x;*55MCHw>w8< z7ZXupDgG?JRw>E%NJRfSeuE|<$mH6`a`SZuE9=1sCYl*4ZKH{4N_Dt-ZyB!xE5%)Q zQzj}*RLa8xgoy&lDNKa66{}l7tGSIRF{5BzSInVNuzEgnUZKh|aKUrHC8B>JH+)EF z6M;sD1;`?T6q;E|7S)eN zN$tm`sFaCGUaEDh-k>yg=l*l6$RzDmWkqXN|G72Lw``dro5-!8>m@r0RkI!*#%NM3 zQwb~?d|M24zV!6rRzX-DPWxd6af;@x#VJ(9dg#TskkoT{@kQh`0?#bV$%NVRC(>aB zY~1A?rIE2=P^q$7-P9|as#Ci!CNA1*%JA$6>=@NiOjQhxN&&4^fY(Ua7rKEN*J+A! z2{#xo0BpVv{~b$>oAmiuzA&qGa^;m2I_M?u&(YeTuG&HVk|NTzMCDzDhE z43$l$5Mn7IXFXD#okzpBK=t$$8zW9xu?f5xR;;1U+IDb|K(Rhz`r3I}3VyxU&Knbo zF!MSxCVs;Z8=ChG5`L4{pYfC@^{Cn$iA`k`!oZ=fSWw*<8;(6OYX>IV8HetSOU$61 zWBZNai$L(V0A2EOu`{N$^u9rG45vmln;RC(eYJ7v{f9P`d)jR2Jwc{zuiDJgdlLFi zUwRaA>Jh=3xpL}jRCL-Wj-=u4!~{k+=Dl2P56(0CLD0yhU~dM)heF>uF>K4f(wPTF z#{5oa<^$twZ*t(BRw@?ZS$XDhW*c$cn-|yC>?>>YfEddeWv5Dr8N*IxsI#sul2{N? zA2NNb`f7?i^4+S|cS1zEs_GY86?l?}>wY3DyOhf+xn;$fr^saxd{Qc?<{=7;I$Q+1 z19|T+@YAC*V7IECCr8Jqg2&AuVkY^@PI6`J4%Q8o3$RP#9w?<~MvX>Phs3A@-LMzd zNq$tC8kMEilCo;S{)p*P3R3bqqCTO~hR`n}$+&y!CK0xE>cxWEFU`cy?8tfzS+a?J z6N~-#&FAnVtAc1oS$=eNR}x@MYD0VNF|Q$D*sC@p%S~Rw}spi9GZ8X&Z6JDz9Bjnri-?LAHth(swAJz9fnZCSC~$F8j_;^g z4QE||ZFsa=r&rbByd7i1@az$6zBt%8Or-*@wvhA^t8$x!s_!-K(2}v6i2nq{K^_qO5DSMh!Lj&<;Mkr#qb_J8Vi&a>u@~e4(Fd{nfhd3jFGnr^Qy_PJo{=wW zBXT!pKrSeV6on^ZL^+2VE^3B44?Qie0)nPGi0QYn6H?^6_id~<_TUUK{iV_5*F)`n z7niq{;eIn1#7)fCnfNnj;#s0Zz_PqNhLR{KhZ@+Rh<8p`|5RV0>J>$wPz z31Na_baMtrwDK^#9Std^xs!9mf^_Sp@xGDL4)$07c)hPWIM~|(MSb8R+E=ahu^Js+ zL3w1XKGDYl=|KSsI2rA)g9lsh+58tEpfn0`yzFsAv<~*tCmYGmr{%Anqa%Z=YV=~k z+gCXkpJ&GEE8M1HxJ5lT;j|CT6%o|)m=$|{+axsKhQkr^Sx!Y0S_4)15z@y5E%MyehfX@Jci~a zwkQK8ER_Ia!xsVBf8~el$vlwRk7Qi9v0y#1^@XE2$L4aqdj#t>4l^E3ELq*f^b+xV zm&0`P$M4a=Jrcrq*llpLB_Vvrz^?{R8qv@X9Xx;g5k>&ijO`qkaQ5B6NS_+)clZi$ zUrt2$QOySMm+iA)vJ+wY^6kNS5g|c+`_5?x5P3WUPl@sSBJqzaNfvjsfhTw8u7FtB zl^6}Mp~G<#&cKE3mHJSy1fB;QT5{FIRl(NEHh2(h%LHko#RAgYQLOHIscxkn71-&T z_}Q_(S;!&F>LcD3BfbK|@E}C<3CaF zJBUxeUemK=Q?aKjSg;UMO%+e=3VPtb-QC@ryMl#FHo?E)_b!YFse^9}c)=7<0R=M8kNY(^@Dj1C}o1yH)O&hQzTytjSPM*l&Yf;Yz!+h-gSlZTkN?8VO6j>Mi5v94`s1P zd-OWzuW}BM4nP1%Z3!nA!|SB5?Z&}LcsRqGJ_#Cp3os?GCp$Nzf|0GwZ&36mVz9Kn z+-q|>qMJ{W{voFIA6i%LX|eVA1eun-s=OY<`=D}$@Wv;hdir{#h*8ZvG$l2Yka~XV zsjtt1eg-E)zuVNqnV4gE|F}S4`QSXG9|VnDTB2sKd?@st56jj_w$3~-dSRHS6o@e# z7YGcWm1p!b+lb-b{1~|D&ww|z5vMrOTr$FHsC;`K5GhU-QEwgKgZT%*JLi0f z95}4JU&Hqq!Q;DMCnsw))Tuuu2Nkh0^(mzv^}d?2nR_4gMwpu3?mZ)-4_B3TR7S=} zsJ00czvvML^fP=xZHjy^bA`vxWHaCbEdE>I=ZBd%gdM}aM^+hdfEo&q#R`i!4+_M; zhDjRD*XB1`NA{Byo(A(3d3kYd-DfuC z0g<6v+h?#;5h8|t#!%;+7D!M*GJSybUE|v+(#Ln#SbqnEwKJnA1i_iTJUSNb5H26Q z3JZn1pt>ER%pkKKr9vJBeZrsn7Se9d4DHC}9LY_H%jzHNSJbw}TZZV!8%LAhio@22kVk6`t zf#qN4nZc87#PWY(u*d}0p@#ZK^ zt3_LdfFAnx*e(R`>7+T!1^7J1`-c$9TGE(9Gl1j0_dT|Ecd1DSW>B z#|2_~OSCTC(_>fEGsyJpRh!uv&xXF!C3cJ;MYof{k3p6g>MUB3onZt9^$ycl#B)>7 z=e;5>l^n~0;+AR^-c;f`bSXI$^@=7-F)Ad@&D->BWWon~#r-U;5$u^)64O=tAQcqU2X`|iCPF_Grt4C(Bc<6B z@<{0xGi8P+pEkQSz_d+y)|StJ;s?C?dCVAI!Vz1nHn3<|s_=8K>7)l?^Vw1Xq9 zCS=V_tI0V!e>I!?4D(1=cO&*{HjhydE5-0?Ht{5Lyqb;Q={wX90c7;mZ1OAZ9cmKb z%HE-FGBCFb-i+$&ua*ZRubAB9Y%#fUH?0WAJ(vZI#GOK{2=2jJ?CY%fJKvS060vk1 zb1ogvh}ZAOoiyIEcSgKQ$e=Mv%KNI%Vkoq}u&jkS33$UN5%l(lInC9HZi#RbGfPA` zeG6vVk_e|~y%E+UiEt{wFA?D+@fQznGVvQM;@FTzQb53HLmG2e(q8CR$Qfn zmHrBObqn2x>0>9%Oh->|upi}YE!NAy0J6M+Ib}16irObu1W@202AL8NHUARsj?L_y zgSF}iKgcN0&TuJ{p@qQeaapk%2H1kewTOx5i))E*F7}(uX<6pSZ!(LpQ3sb0usNF| zTEtCeH(_CNiBUreVn&A--ic$oa$2MjCs&szA`x$d=Iq!no|?C%M@qo3EUgu=5Yy+v zj5nM@XD6MOxZLbV3#5C^g_*F!?lmj4MzA=qA@`c62zbGa`pleX9`gFra)8D2(t}Ll zc}zQnR87B$XSnpdNJF|)dT~A;#YX;oEZKYE}lQ7?g$`%DJaY~>1642=&R&sN=SUmA`6<9&L9F*jfnDrJDbK6N*W*qa_wKz{4-?povG^$ zQ~l1z#8l-#@2PjXIMJE?=daCAbw9eslk;uJUtrthe~Kk^Wd4aC3Qe2D@j=36l1M27 z1jZ@=N}^oA)RP~kuI6D|{ahX>OvX+ZRudfYQ%1KozasGii*< zr5e0fgdrLj#zAj{G%u5MLjAVJB$?6}J*G8wt5R4RBOH;qcxFsv(&Rja52aOEw%UCSm@^y>9>gqTH z)0@O}VSfpdoUL`{UUbZ<^Z8_A_Nq;26T_v@x2#3Ptu(1cq^MCLbtX8uEDxNF0Ghg0 z9d$p-LY(pWp8~^!c}DKffZ^~TpmK&3GDA?^7sIfW71!_t?-{%R4Rsb~Ut9u#dVguM z?eOrp6zri4ybiYd=aPCZS+Svwvcjh3c{9vPUf=e0hK64zEAF76=rQ z%snwCEAAx|vsaa6MOIG!F!Y_y$rLr}s&&eWFXe%g5uiC)@q;`gf47Yo{$U0T>#`!j zdj?rysMD0J(ECf56|Yahp1-Wv*hX3LSxF_lQ95wXd$YQ}?dwdE6$e5i!?^;BTP7<` z)H-udjLC}Q$;9kcn~@bA(0975ps2|pD|++5$q3M#tXQ3Al&s$bpCiMIw-6K6nc9YA<^4K`3-$LS+@PcrEX*`1efbR)B6%uiG z6Zt~YkdiR)BdS~^PFb(W#7^wg@iKxCAf}r62aEkBi8BG?8?~ zMvlA*`c9W46fqg($cOU4$fBzVstNep#P z%eUeL67@dQrO8WDFz78!_KD15f6ByUOuqb{peP|C%OwMU^hrgeDz%U}T7QN){2p%8Ur2KrD+h^NfC48!@~jKZb1~t(WG3 z(Fem?4l#yityJK;lxH4Swh`C;d2wwGXr0IdB15&N%ED4bh!{2sL!H)U7Sjhv-!*_y^=+YVO%K_c>ZagIsAJY@%;1F^k*G6prF)y~QikLZXRad`# z9ZE}1nWSoZ zJhMkU{so!n$uf(bhmF!)Getc9zLZ&Pb0&PS2>cCNBiJ+dTxKzSa5qz8X0d;S>AG&5 zxN=!$F{E^hnKDC={dF2%-NJ@3=gY8>KXdMp%wl(V1JcCl#Tt-rcBQ?IkQP`~&n$)? z6uGP&L!gOw0xz*Qen9KhPRnLc;61VQQy#@n`f7SD!J{1y5-Y`!uz)xiI}#S)cbc%^ae#~_EFi!3V8Vju%K`LbwKB``;+3wT+b3Ot=(82c z3chTJ_!1)&@sZ3LJaUft3HmUPW*2$9gyt(C1uTmJw&{b+G^LR^jR8D@65#{PeR3yJ zAH2%aCr0QcNpia&iA{aHHrh8hUc-deqykU=$*YvMZmpHKlJuQWZ?wPnY@Pr;7%7)V zm-0Y}dm(n5hha1hHVq1ZkPIq_$wobb$L@Q1jQ#{2gETn2(V#!LqH?vq@hq&t`= zvm{|-!VqdexTO+oH-;~QVGe$qx?QP~*qL%*4m5Qggm};^%Z^YW)z$0>hsJ(+kyxGv z;OzAPKJ!NbVrPC3Pih{-xw@<|fM>1)pd~*Du+GU3*3#y|>WVWIdk9Pe$l2QiI1U3Xf@L2> zc7U7({GOt2)LIlU$t1Avo!x*8pJHGtc?8b5EPgi;L+QI2IpLNPpQ$k_d8o`Yf@+A* z-Cm&o>siqsehpjDP;miNn?uEanq`(eRQ%tuQ3sbdaHMN8RD4ig4&+!D6i3HL#wO@H zKO|CPwfLK4q#r7cm4hM#jhDNE;qqv4{rvgV695i~^-^V&J&jO>4_cZ~C2qrT)MaJ| z!xur^zhy!jGw}Th8X4ljuvlKF?%2`U5@N{a2OF7ECMJ2vKdBu%1ps&UnhT9wXLMOx zlre*4co_68D}qo=Cu7cIG$|(S1eOfe3qzgdt>7DhQhfybHjS1GRQ~>f5Z#G-;z#;F zlsR6(Z}v37!jRDF4{J9ccrgoK!m4fwAt*^aq~*0()*2Vf+Fm`QuCi35%xB_C3EY<` z7wEbu69=+oaz5ce=vWPQ!r~0eL_$uyOyn{#$*Z)EowVZ1WHXthy{f!S!Xi}8kT_rq zR8L(~vn)*z zrLRfBvU>mNV(8oyY;r?usu$A>awXyt5a#CR#oWdbh`W@0oZZ$3#-laM!9>@RPoBPRIl=pSNQ-`2Xaiw!hh zu;9vXl4;qiHX~ua3w@_c7>XEmy<5Ydew7DChWh3u%-`~i{^vGgc*@)TF|13N1m_tf zjG<0%b1P4;063^!3oxH$%tDH8jwWdtPO98|2L@2Y3ePi$}o+ z>LoeEo?|nLp_Af9PW>g90lw7*+D`+Pkp+%@>7$fj!fPQkGTbS!SnkVxr*JwAUZ{2D zo)!~c=aXsKt2QINE{49-g%?GPCcJDeZCmod$WZSTUb^pEs!LmBoXKrdroaQ@@V}v> zHct*64gVYi{~Qbd9JhH=+B3%5i1zWkXt(;d-E4$41;m))l|xyA-wh(uQ0H9f)y(|D zLM&l@h;+%>okB5h$@yM~&A{)m<&~q5=mI1pYQ>mLgx84rhvDqT%-0cU$>0%k2)Gyx z!ttn1s+M<*!37jfcjPgat^zhkgE~~?uUqy*{Vn(>+Q7>LM)7*IWBy#GI_n53d^{6h zF+uuaLWsmE5Q|$RNWY?WWtWc9ivALrmc42-g7j<9ce)^@h|vUTSHNk42SS1RpXGs( zq24J-z3!R+n`iXjwh_aB$d6&$R(0SzRED&(hQvia7|y&^JvYxxj)q3d(4%D`4f8#7AvgbmV_J~e46{m1!8*JwJyD+M4e2}UbUIMW&-+7Uz;(4 zl*3&DKZd1asIy|ZlT{$}lQGNVyYEog1->wb!7tM8rVo<7EH{ z?n;hEI#1`<$4J%m_=XIwj$FfDPbW`1ifcSw<@%KumYuzU zSULadJ@F=%gJUM?i{z^wJcX90N7CzYUO~iX;uR;Saz|-y#O4kN?ndkhX6{uX_`u*O zO$;gyM``>{9i^wg6Mm7G-N>&!=qSAqJ#*ns)CXzJYn2^d4$>#N9Hd2Gt#FJ!Lh|Af zJ)2)-o}+@oHy*uMETUro>++7K?kS#5#Ye@RG~TiIIu#4t8J&rrmGOaQ0d#mW!ry*( zuEUIsU~%IT(@VH<9SYNJi5u5B&{0U-xGscW!i`I3H}1Y= zrWz!UUHi`Z0RmkT6G-xYxNc4PMdP4TB2S{kFJx{hgMJ^fOD!8kl~Zj3bx=&+ZmM*J zUG>uVX7ac&AtEGXjh_!Dk5Yi93dnVJK+X>pyh(%sJ|K36l3px5y%^W#otHEh(ur63$nOipIvFnFOLeXw9b zu&h=qO(2manoDm`qu&_PS*9`kxnO6xR^^w(3y+ZEZ02-!iUGuv(gjf{-4kA!30@Y| zdcD>N&a2DFv(in0BA7()-+3A%u1nX#j9j`Jl&>sq6^Z3}fUJ_LExl~qr=iX%5IKL{ zi;evG>%<pc0D0p$z}MdlP6&;ecmS`Iqe*xbE)1bzVMd8->8u|yiOi! zYHXo}U!u{iS|e5Hhqpo(C7Gr1jCU;*0%PEKE~&x;(*A3bckN~B8;uLN;^s{< z{^sdC8sGj5Uj%;N8ADCiv5Mbfcn^#bz8n6f2o8?AJ9X5B@4)`35=e>rKPUkMunAll z66IoQA5NLt{W!G;Y*Tx`YibX|M;^G)*oe!fJ&TGi1~nplRy-W}s>Zl$9|1v9i9pSl zoTzcew0{Aby0&FbS{Bp(SyEkvVBQGEsL7&-!TA*#tp~`pNCkjKEffI#BtJlp(HS0i zfJD-%y?j9UB}Vx#_b5j}7YSi<02G2Sp`#4l7IV$?)z#55ABFxQ2KuXeprSrd*>$1@EpxLo0dxMFBbJR8*SiM+)efYchX~ZN< zoNRe8GzFE34;7#19>qmPI*LTax%wW-flPi7U@me`AS-q0q?)4c9Cc$i5pz~tg@Y)S z2-q%i!}dK`;fW>kWh!dV_b1^7_b4tB(orN5Iv3(r_dr=mMF($+RI{Zsmyu5K_n1zi zM9^us8!#80UhGe&SGz}X(TR>C(P?TA2MB%%K;GmYA}fXHuo)?oUY#W`5NAaBpmUbA z^`u=pX4T4r^->KCl#`94&@M0z?@XT(pWRL&n`SiGm;v=F1C!xLVJB(q2Y(Dy`zMDk z!Q<@`x+96XBurZ`g+}>JTSNPW>tF~nbV%%4j{uFxpVv=@m-A0J6=tpChd$VKq8fvi=wKs&fv zZ(6*$4-8_%Q8fVfr|Nb}ehi8)kHCqjG+M5X6A-TE4;jKS@}Ks8xFiwxBaP?6aYcYwJ2KY@SMjd}09^yR08{zjw zpwj{@7QOK<){hR0U39Yb6F!DeP}7}}M{imI%YAEk6j)}Mvnq1tXmyk^uEJfwwMb2L2oF5u^B z?bHQ)YL8_BhyRNUHL-kg7V`3)y2LR>?{#^AL^9a4yZa>ecxxvo1bs?2C@w#5excJM z_k-dp`q?P{gW@vd*JwQIFGC3SmI_&)P-`s?!TT_8G0+(qi;B(N{8CO2U&Wy~DMjO8 zRd(R~X`9#(AFe1`U)zO^38hwyQbfD@2C}%SP)3&@Y%>$Tfd0{$1gUQ6% zI&3!!*u0tx7+;ka#)ARIoASbV5{J>omGZib*I463uVxfE^L%RyT)ZPME)D@)yfqUp z>~b|c8A4veF8CL&<(I0%kSju^(j2+ET7fu5QeLFrxA>{Mc`_y1iB!o4ko@dLIGY z2wpitL7XtfuAdFucmX(k66(Wg`fAy|3>jt#IC~E*xr(4~(XQYMxcdQOuEHQBbS(?E z4^@D_fOiV2poZ@~-HT4^4qz98&$a6K)*;^62GSfq2gsfi#2*pgJnMuDUS|PDMP9^z zpe=L+0lCA#t#F{*G9mhay9s5PqEn36)ac?{wW~G z=R@HlQn*kq+*QC%&>#s8thMnnTAzvDpcnL&6Hzzle&CUUYJWM3in!77p}K-~y$gGK zV1TGx9_U@XXnx!gG5Nz(#>TqOg??9{TMcorp;h373m-35eS(AoPA|@dbP-qYhMc&} z)gNRMpJA^&-PrrK_f*?ft1oTNBYajNp=NS_byZbU&d6$Yyhf| zQ#wLaf}c^*)oiVzL@+du%*}Q9Y{Mfk^9yN20`~1GI54#&AlqKg>5I?oIb+fD&pe}` zkI&UCxE?t1W&G;xE!Yb-LB&%~KlAx#EM9yX9rTQaXZG|g!ruY=-{ykWT1O)3h1Vv% zEI#%0(|Q&!#NVf$xd?vtoGyCNVd1z;bhB{LX{Rn)+_PAj3=>Vyh>K^$g^+2_hzqzx zJtHnm;v&9UzXZ-L`qes|4<``CO@-f^pMyFUp=A(P=*4huQA{I+HDwYi2`37EY?6z_ z!Ku-jgVPx>fgj1YoO>?p4%Up1f*G}32h(VGP+Zir@U;0$f|Ubs@Tm-vdv!nE=;0Nn z^7hgMHGGYbO}ko)K%I?IPnRI+x)=7Gdgdvk(D6w0e5gW|D8=w+ z^5my3=17BI0#|os!qrdd?~8uHQQ*ED_>;8X>}spef>Jl*VzX zMCa7?s41xb5p7Vr&VzWojMplY;m45ppaIzc^Mi$p^LF`kYqz2^p$TOlagid{wb*jr z0RAlT%!I}8ztQs64eAYIL|-&nmdtREAv?xK9qgJbD`TsiAtE(BaIkPGKGQ}L4|BB2 zMFM}{^~N7!jO8f#7B=eO?n;0>Q&_6qf|f|@{dd`=t3|E zVYN(A7%J)HB}Z(gI+scWk$#(rNG#FPuL)a&q)=1HW3elSQB86;8!5x`>vKj@%ETmR zzDMoYz7mm>SdP@`(8y)Nlw%?@hJ1#zpl>-ejd+~hI*oau;i|p`)?17wB{VI8B}2L; zL!B=@eYjN+R)BF$CFSAalZ5r03_uLizo0A{o7NM8p-kNLSX2Pbw2pbzYZKzF z2PpwEde6h74iNe7odufoPxn-HWvW31Y;mfE0z)sz#QJP~o<&$cu|Bcbe|;9%)1!bA zzC7h3F~xOSw@%{l)%g!(iuS7V>I|O)mHi`@!+(V8>8q0>NtH>MZIclMe+n3f^T5c+ z;7&KkB|jfmWa1Q~@5(d!PH5yS|FUBErTH;zOT2ko9vFQveBc1hRJbINLtwO0f$O{T z%;W8C#PvOSacxbz`RP0$GE{46H?dR^DTd9=P^UYi6cyyrJ4@d&&P<^V?kwoal)7X5 z3J)w&Zu_G2(gxGzTwbhp|+aZG0}7ZHoCt?VR+(C%Oz*vPSK7+iWt1dJ3xREL~D1I9C@ z9!kYTrCuzk^-GOC?D8HDZfy5@f)FgRdttG{YEHTO92ar8taVosVEkPh+6@LffBuDl zVXxZE4mb6^K06#mq~{KI1av8**FJG16@!tH%1H^ap)qz51p>pxJfoiojoP)tb>_#g zZHIed9vFQvd_=s%sRDqrx%Ioi|3BoJ+v+yre{Ej;TX(%m9uOJ&wOtQO<+TE`Y6i(A zC7l=zb#C8lWxZeoecI{!>rYeUocI3vmpJ4zC|-kSwXUFJqNA&02mG@W|4aVBUla7t zogKT#m24HHiNKu~Z(N{n9)*ib2{thrngcFj{X>$%h4~f^l*h`WpqcJ37nrYpu(G)R ztYAa%;$R~_bxBk&po@lRqM_>eFnD``<01?MTVt?tkensKpbgcqumCPXqt!ZwYryC8 zVh=GKY#gRifmji6?ZT=!QPkw9dK}|+D@D9A(J7S(lHHbxvDqg38nSj1n=BS9ob43t zGYFZum|=g3iM>bb%xg<|7nzv7YBSsB`=Iaiiy=jg=eGH|JTNlkJ8?S=c%NgI{1$k9 zG|!mdXd_;~ofog+l{Mfu>e)NBOOl>X<^jZhBk_&_4uXFUm9O z1#Lv^s+J?RKM#nWh!qSAh*dZ?$}{R%8xcF+a>U-82Sh)_!r@GCEdC)l_Rc(`-rh#U zzPaUy{cs)-eGt1Jhypn9a@6ua1#&;1XXFRlh}!FxUuWXaoQY?N5&`p{ zGVw9H&itP6apF3I#R?m_kK6z!pV~D1Ehcr)`_+!T4o(L^qjnu)=0V@-hZu?$&#O#F z9vB(oop==rKZgeJ%siu?)12Jq56F#2E^a+HwQxRwNQ)*`t`@Np^646bY= zmizN!*{bK8$O9rnvbGChsUkiMyO5#IAtr$+XrQ-97wW$w(#~$f(nnv2+W*i z@<-6rb%5Y*;w<^;4@h-2`RM^Hl{?9x%m7vLp3YYN$%GRGz&>`zw_W%G7WP>5`g^Ss-vxdz@uTP-(=|kIbLB4 zdx&v5xE*hR#ADpUoG0oL8A6U(QGthyXrj7A?mv3_0f~@OORTU}PL?!e%i70eF`)KB z2BH!g@pV8WM1cg{orPkQ2BorXdrf&Or1XoxHR_QN>3Dl1rEHpAx4JhUby1Yp$bXAP+%zpuDCS90&wz9X8k+2in-eQG5-^E>dg2z z@st53U0ScuxJu0iaX<_)pnyyN>4*@iivg_*RVZtW$@4zoxFqkx4C31^b>}-Hpn)`_ zNS@KQre-uRL0Z@BJQE+@Xq{5{4LB3W!5chogQPvQWKBa1#qk*+LY@at=ccorkR&>W z?Hdhhf-vjXCY(J@cqrCrdm}^cwj#{n_RS+h-j0nr_$~+x)?{SJ%cK*Y?Eg(%3eK(c zL;M-KgQH#xGQ5sp3V=;<s27uqYh+Kf|Fks~`$Wp2t!7c$& zZvz1)GYT$UzH0eOqmoQHL^5@WQYJ|K*-Thuin32ZBeFKt&w$i8Z%SqrS2N;{!lCZk@Q`NYo+ll=&6-{t4FU)E6tC; zTr2IIa>!ob<0=DjG&Q`yM`W+#1wQ;v-?V!a8TIA(&K>!c_NEp!(cuI}2N%J^TzoiskQuPEaM35;s_Q!>(p z9r_ey{lUpTST#k}Jy);BNtgT}=r-+xs&H26=6odT??ga)JrXs~J&H^DO-GTG-%}TI zxZsxn=B&$)>?Jz@Z|)1u!?chsjDXI&?;YrB`P*B(ZCRf5Hu<{Whc%JT_#DHAzf1VNLoe zOui-7qz?l1s5R*m@XKILGVbNvu5_XYaH@rgV;v5;KSu)4=YQQ6rXsN*zyc!&u?65M zhc=K1)sdj0?+U<9(FLit`eS30e*?kB4?5XcQ}2`KrS{ch2Ws^gu!;rh*=ryet2z=4 z)JpJ{6UIN&w|ziW%a^{Zia_Ppv!XKm8n&Q{cQLj0D&BvZWs+R+{_ohRgNqK_JIBF` zN41R(?N8wPUF7OY9%W7 z;RwAQU}mfgjF*O^4x)-Qk4t0z$S?&qE~q01FdfziNeWL=z@zGapxj>~)&u;5PM@TG z!c_2>@~JWiuT;lyLUwq}NlomPP#7TaJO`9)V5ValO$W(SEK}1YKM1z{TPBWR%FsVS zBZD#&ixoYFQ)%Z=h8}XC+L3zZ*2EHzMV||eT+TAGGBm5%;4tW0R)*rXku)1nw5ZC^ z8Q?fwi<8Q*zXbZb@<7Va@5Jsw+B)LGEKx4z(wk>4OEO?REJEcBD(DwL^?X>j=JB~K z4~#zeKEf<6;&=_~cY*)GJag-ZM!sC175_sS@DHYH#aNb*1qPjFvd;P$us5_)s6W2@ zj##Y2Zz9+q-+jAjOM%ZV749%hEZ(8-tO8!}g^nisxgRyIuY{A%ABcQ*N=@P~{6AEV z+mobSh<9+lH^ZxEU=bfKGGBAZHZP2MYq1_agi4Q7kcR@YD)O3rwb89you(M;oLBre zXIc(yXS#zd2Vh3kyp6>z*_l41b>ze`-%~H}O#6_! zF6=ytrf_C;o&t^9wdKr!zH_m&)lPSG9uOI_wLJ|>6)9ra(+qWv_YjVPBzgzw(*E@+ z%+Kv`snULttj;4+pZG$pChvRUWhA~=VOm-=lo;&)f$fWF5o00NYLf`4jB1VgH5=&skz_o@t&vBAn5KwQL&aW>_ zL6pj`?*7nj{G0UC4!0YlD#O!m{Fq0t%x=uJH<|3lToEWVD+aqUxiC5G#`vAujo*(P zLhQ!m*B-PRpNg;ikQZ;VgkGgaX_3c+pxaj1hkJF6EuS)|P{F^9_?!23l(s}8B}g^} zSr+?;#|O%NmELvmbQ3?hDu&>htOvfu#(#^2@i0(CmPV>%@HF^-F7Bjp_g-%BjWI&a z3rg(O^L!9Za9LEtm!?)osTzF63h~M*dxk$2<0^BY)%T&P>qw&+Grvu$t23RKU?c{Q zVuIeE*W!#L3Iyl;Z+<|2Luck=+?@7d7k@hAt>`F{rEGt`cw(^P0s+=M_kdY#W^@wv z?ZJa)bJUe?BG|0B3I|Op5wLZ-VRIQbPlBeN_UJR+qqvNlbQFnX(^0l@nCKq@oE7eY zvXY7po{?1P)tPxy$jI$=5lf($c z9~lWMm`A!aI#H+sL27X>%=+YLW9Z#jsZxt6`tCh6TTrRe0~_jA^UYW=RwFB8g*RghYP=OhGZ=4+EqqYttyyNt zt+#K+Mjc!-;!e|)^|of)hfKz1&RS&+-1R7Y$H{4y_Q4U1DRlA_y3PWBZK`B zi{%sdP~Q9hH?)q_qq`<&xLWM1WK#C3^8G)n{qdX7w|xIc8K1O2#%NLQ{|T%Z?*E25 zM_P$1mW|%bzGZXE#79z)#P9z1k$R3uquaRHf?UD;tO>pX7$yW?BIX}(F$gV80s=XC zLDYfl&iQi+)0F$Cs_ZzdoIGkv262`Q9RJJiclM7_2aCOu0uiQba9(`4FTr z0+9x1JJwJYM&K$)Pj2EISdYrXg8@i1aH1;L3Ml#LxlI#U(iNAOF>(LRu8^iQ-A!=K8JVOuEWqj_NT!LSILlr=C~so>_H<(bD%+KB5X^5WWRqWw!A z5E-hq9S2JlF=E(p40X%NU1zb!pVF7;xCfpJW_)ef$NG#wlhhKIJcr=+}0f&8DP7lj53Pe~WKPEKT$GHlgD;#9Yco;n*!bIfL+`nW3 zhpE>ef<^|LAQsC<@!Y2IA8H+`XL?QGaOL{<$)xO6<;!$d)A)~|Z}}#T!ar#mkI|yo zrxI8(XbTN>4vtOZg05n%=nd?8K6VOc2?cwUod4wtkM&+9Va887LwQ9Qwk2BBl9^Hdte_35OGv;$L+ z?=8}HaHBYEt8F%lkJZZCD%J7G!!GW=3g488U76f^1;H3FiyFC%#r|^3X&1js>&h;I zP@FPpbtjpYy=pVk>aEasy0oH*QDuiUcKKs@U}UIwN-HnB_!skx{!kk+{H6RDw%Nsh zoCii93~Lr}wj*ezVo&(*JoETf8*%;Hytua7#rOY&y7uj>P+G7I)!L?mrHU9aY&wQI z7dB%T*W{@nojy?dcJlHRx~bcVyFWCIKahUn<_0soA9@LKwOS+C2~RMY$o1(7w$giWvjJYb zE`>2&Mh{$8%v6rJZ7~}tW^sN1md)n^w3leeaZ3Wm4%c8Ke|E@dDu12#l$tmqm`vs7 z3;r#HK2E%lyLKbJ9w#~CFB8d~49897TpO0jRL&L8f}93ZIk_u3Oy&5Un#vyr$f&8D z{Mv)2@-s+~893>KQ%yE=c~@$3ajEN8n9P?NgZ$Xk!F4uA)c9;=iqvkdl!+DpV<3^d zVXK_&X*>V7xRb_v_J!ziid>`p{J2z%n~diz49fm}jLXcn_1{8MPy6Qde|C}G8I(;& zk?fmZCh3FS17@{z(n;6_p=Of)HN}jQ6+AXc)AS2YlQhi^07r$`BrPWdIN1%G%Ou?a zO+88WeD^3WlQbPgBAL@9eZG63tfZoYXCzg6b!L(lq9^U#&bi zQ0<=_x&#k(OW<)&IRA-BCd|^`fl0T-EIkTT3yE2J8~ieurIihUo2HL(Z9a;5nqwEh z`5q$L$2`5*VV})S_vax1CA|~s7ZSMk7T*H7=%+}8Y za+kIYLoB8mcJ5`Uc88t|=6Y3D<_a6wf*Ps?(b{aNep{AVazpi9*rJ&&o5C0Pe@YlBy>38Nuy47TOpFgYu zM22&1>%me*o*1?sL!CB+((0q6?M1O1n`Ad*LarP+E}A&Mg|*VM<(1d7I_{v@@J7lO0^n&^e7rCjll~L ztGihGT>T0KM4CY=OW|v0d(W_mvjiVD{Wx(ZOoyDarelgTX`c8&k&N1T0AVBWOKsL@ zZS0)g6l`?Z46v!*W*(4DT`fU1v?rhnR~`({A%7G?)^7}NnFc@27uA?tQ@f-YCLq#w zIsJS3fC)pp8zsy zK_ zOIO3&GvSmOUnZfE!T5s3E|q|4l<>3|zhCQAJ$-1hk6Vo2LndgiDytW=T8uvceajbd z+>eqLV~QdbVr#(G!+Bt2M9|bO>WCRE#^22|hi^e6Z;SEgpmGL_@%N#+FP=f!q*#m- zoM=$n8|plj7Gr%n_9G(d?NRCaniS-7{r;;-J%`13Ukopu^C?x<*w;F$qL|z&KqG_P z!eW29}UOHvG08c63hA~}7M8qw#6d`U~%mx`u!_z*kE?+Np zn1YS`*`Ybp@R8m#Y~sXVG7X!rIETV?jHY4ypa?>3*EgAlyR|lU>^B8l(lnd`n`#>N zfJ`wBpSvfZN|=UIKvGP@35c{!P5++0;O7yxu+vXk@VI(1EqLeX+%(MfQJGA`T&fX5wFn*_|;g+sbi zC%1T|8sGHkqfuLtJze(!GHysrC5R%mP$=Es;9R?&rsLPeoiyINuLK_x+8VNVpWO^S z+8mgCZ;a>6X65%lQ%@V^C*7mCY?O2q$wujAR(`}iU{+ftorGP8YG&oTDQ3)OWx4{L zfyr0%B^C!JUoB~#f9i(K6`1^EIx(O0=D%@|;vyLxMIxEgto(QPKv_ve2XBg0NAaw2 z3E^m>+M%Y}oPg$!LRKF68TG`c?*2{}fkUCG=khzrJ&KE#bQE7&E_M%;m6mkyjI>Oz z&Rhh<78AY`d9eL10?%>n+Lq+!VwMRXfmg$qE8b_|_rv{w?v=(W4*d4^ zOwQK@z%fC=J3F)TPB?)rs0)A~Nt;~&UY%u@TxWMPHtOKg5qFzsTmYnl*t;{~l$p}r z35^VbIic~pXUrq6Zz+rG+&F+&mzknKwWWEe)DR;M&Eu$ZadDdIIH9Wc_V#GS zisjG(;sq;~>!o7RjZi)680sn!#(uh$D)mbzX*F?Bt4*Q8=9);>R%sY&#cjzF(cA8i z3Xk_$l+72_nzH#MLnXE+rYn((4KDGDM6a^>p4F8fETL?^!@$a~+KaOJ0s1ahHXJd5 z%I1${<|t6_#cYtW+2dm-vGUPIgclgz4UOh&XFPzuOJX=r*(7D=7=qzQWwW9T9K-X7 z>l4f3I#=18UuKE|)t0iMQbUY5l#Qd#WAl|wuyj>&(H@{!zkIwv`k4B~-ya2=y|VZq zB%_ST8Wb3Ga0{#2mteDJM3Gzso83r_iVRmO*lckXu3P;v1GoKC9=D9w4E9*Egj%cT z40feIH7n7}q9z~$&gQH}(1OPrSxNFBRJ>((;pYVw7mq=Ga+gH3h&Uqz_n8+WBF;W) zVaKmk1W$a38in&jZxLr-4Ti9X?Sd=f%xzKoA|n@=$WBH=9}FpIseClaBqRBm)g~YN zJqM4S~&$%r`1%*fJc_V?li|9Qq1`7_lPJguIn z1@9eQMx06aM^wa_bReq5?1(sH22)SO8GYvwXDdN?9&yHgZNrGOlUP(0v_;%o7K35Y zW~7BC7Ov^eRf&x2_hdQCKlcWc%Ns3}OVi=RLORY>8eOey_DZLdmw>)zh>VbV4_TB8 zG}}X>LnKu&dEB=9ENyP{6 ziB#J#67J{z$@^&eKsYV`>>tHPOFl{{E%*4isc20p*NCMhA3Tzl#nnY5oYIAjDj{h8 zBjFCs+g0R5!6^tcQE(Rk;=V+|9S@QPwl zac_zs^BniKF$PK*_clU}7E4)(J!+3}Z$~0Hq~7cfl8N#B=2-1o-T5Z1iiWo>XS01n z)NDl1##S_P1Z_~U&-7#Zmv#aC@=V5ls}sPBtd2}oXNeE#<9R*l4)}R1cqFG&+60%aBVOWu_=lZD}4VHN=QR^Em3vW5}gFTCrkz zQ~~jV70ZJv2JuTJwUO3`C)}{GNp!zfKc8@f~Uu&J(+hPqwPU%53RD5*7Tbva0?r7^EJw zmmIeEJo+m}A1_{*Y4;b!^(4s&e^Dg&GMo&$lfIXzpgZZeROEC7-7(XoC+Lp8^Ps!M zpTw`H?}z8u*spCEbay&Mm~Cvex}9#jIz7@Fj|;wA5fpr<_ur2oyz^XsW_^&#_)K%O zTW>Xo68USS+TPR|N=94F@sY{e<};QLpDJEcY`j$u@Y~Nuh;;L0Kd80$7|>5w9wk@#mFlaG+7_Y%PsaJPqS$v&EKcjh+;LRFyXaYc&C=qS9) z(A1}btcb3QS#>iCZ*K`c<2lD192GDTt5nUVRemmAuF(tM3J;W z&Ee+qb9e?vaY#7fZT?Yw@l1RaEuLu?NC-J2_FGNnPX92m(M){kd}ZZix#H>~nn{V3 z#u|cq{-c?aBJrFP)ubTJL^YiP$omr2bRRluu&AalbkoC&re#JsNn~SN zdn)1mxQSf~qns{0YkGRJUh5>Oa9y^!*6u)&;ZE{+a>+z}D7mDA|J1sp!%4T5(0f!; z+9dVnKzE|vNk%8D9dTU~{N?HskWM=Oy%#@uf*b>&8n^>66 z6RMN-F~w=)?bejN$~oH!1z|+*C=D&{$EyN0`GHUQwon#7$xw!cXyl0Hp<;bI<_~39 z$mc0(BmY#O9c6XrWp(KhJc5CiUsXSZ#YXfTjlT607>TlML{Eww!?~Wpjl;#^s52PO z0Sa+;KlwU~j7DSt*rfn#(zvt}tLF*yIZ3iH+k+*QvHBwWpzcvqUDWMck@0&CLh$`6+C zGt?Pa`BilmZk&Y55pg(8R4-=X6fp)1XYk@+VMm=KyrfsSvYQrj?Ii_>3g+61+&L!| zX5L}4cNLDT^|4wLcd`+6SZi;tPCA1m)wWxTS=pNwH*+UI)p;tPx*C7JhRqLq2{Y(| ziuJzy{HdF>9OkR{S)KU-6CC<(23UU8UO4mv=)0IhQ`8t7n!${NLmhPva*|qcrro5N zGhbPNAd@rw{gJW$FVHl;(=joPFwoM*B+y#-Q&zRuSRY}a{Yw-(2?On)sZr5hN*V2k zE}x#RwU583wWZc(h9zs2(w1GSA+ciZC4x0|R6#G=;yvKg=7O6S#xDk_cvb8JK-s>` zzFeHN-k?$F-x@lM51^nQEH7y3T?6-pV&hqfSrgwN3 zG#t>1Lc(lA!|VskL;Bt_kmd_PNeE#+RZF1pbb@jI&8G*u1wxL|RKb@qnqC8V`(iZx z0Xk|hqv=oa%V9K?;zycFo%dNu2+xtW>%dC{y&};GZ8Jrf4Ka{DRDT3vv^vwlL7r!D z@0sz#da~T#qDbsSMbz^MB*R?*tskSVN*!S6atMO-h)gmZFivvP#9i{ks_w>bWJk z%Ie6=57MUk7zR{+RsFahYg0W3ee0Wkl5|;{YKj))xSzp_~z6=;BMhClQQk z?N6=;3_3gIla};`V9hNYaN8P1#d=@%Q9GD5Uto3Q2TE9?p38vBud1_VV;w3-*h*i7 z>cy;?qQzj%3|1Vh>8NvDAh{Kz+MN_LYPSGo!HjxrL$PVPr1-8NO-$h8%tq%vY(#{_ z)HkD_0%STX<&#xo%a60^K=_(QQYzN_D$SPPwmR|yCD`&C45<97y|CqX(RVRhrf4zP zGJ_QdTRQ3-mQP;AiFUhUPW?~kmc4=?UdT1jd15NPt*hgB`MlI||{$n5Y1 zeoX&XC`#@#nKGY2h{1(*^hjz{w9iqS&7J8qj>Xk5^207%vP91gOO+H@kBkCK1S+qH zX~Z<-Fk1MI;xuPr#HKm-nLH6j>~%3ylVrM_8ikWdcgqAs8BYa+)PrboMH##IV|7L! zFZ(i*j~CaIBq#huk=!c}q!CsgVdQz!-$)o?<*`_i(_w^Vn+cB*mcDZ%>>ZdHH^Q=C z+t3JmGPhQaOjWOqi!WXpXo#hr`w>}e2ek}qfa7rNw#5#pN>b+PMM}QC9|X|%0w&)E z+GO9Ib~1bS4q=n!v~k#FcO{H6j8#lSXN*bqizzyyO|qXuQ=cA?mcV<-UUhKe)2zA$ zX@rUMf%1_4s0^g}B1TS3m^c+jH9kc!&cBJ%nJ8|w#yDkmVY@ay)*79gxR@02O74$R zFlNl0ZwJhMF>~(oS;$9b<~$g`9A-{^RZCN+^ATG<71P`)Q43Cbhv0<5cu=1$Qyg4; zRg~m;7$%f2d93IYX{#f1BVjFPX+51{K;>7}H|(+2 z(>D6nZ2=@ev)0oTEru;1gB6D@z)>f}dTKYzSBZ4QC+q3u1xTWLWIer<)$>?S`)-ta zBSzGjC!dg{HU%TTj)Q3%rKni%t285i$m+-slrT!Yp8=I$RcFM;Gf_FhR{9ZCFJ{CP zEe0cIu;O4uN1Y&}l-;hF6JJ|^C6g2V{gF}X;^O|~5tw9h;1T#VR<$oisRf@inKGY2 zh{1(X>i;l)q54qUff7ckgQLI_MyUg08Zp7MFIxBxBQ$4Wl%hHJnLH6jsZ(R7CdqU% zH7e5bicFD4sWrhM^&nbYMk%+NyP%kqjO6DP*OMeC{6&%6D-WbmO70A!j8gLOqR8nm zN-?SJF-p;QZj^c&X2y+D?AJClN?#o45mgxRF1<9?W=j&+6uF|gCPHfM<7 zqI7=JDy5aEv&HQofW8+n#crTc>LqC>vv1rHj8dF94x3c}Vg>I>Q4(#KdJCHRbb++r z2*cFfth#BKN`nH;xW=>?Cs)fC|C#de-rGC8F|mR_C=cm(%RrhhOC=$MAx*7<#v2L7 z`8T8;mMa``!UYwG89Ukw0dimLXuE$NBAwaM_QfxU9Zi!%(u{U^?nF#0n#3zMv@aHH zP-sOvOa={3)|=Phq6P$WeYB1ne`$1^r-l-ghhQ@Kg3>y4GaK5DB?^JkgTxdK6WV#Y zg=?(du8npbhO=riU2S*kqcfA$cES*?M-%FygpcdFzifEnaj~>%Jc3$q1DTrjJR8VX z#y}~z&ZkhL#ZsU^FKlN9vdg0;CF~N9MmO6HP%{{2C{JmRDMV<6iG z;f1dS3_3gIla@}`f;C^o0k=(NRIK+^nl;~Jb>s(1n9SbEfXc6`vu5L|s2pK3dmpM7 zvu27GgEcc)aj>SNPJDQw-AOT{-d=#RU`Fk`CHEJAOlPHhvTAJkQ#KuJ+s*JoD%Sfd z&6W%P)$GU*lwiyME5LCtY`F^nDrUfyAf?30_{d8v8sKsP87khb{h3Hsf5Rkf49 zDhfVf(!C<45mS|G(ZY9(r`0V?x-|Jd(<#EF`_!1J$$jbd)F^^paoJ2?91KzqGGi5e}I!VC&@JG1=X7d0tiUi~B*IV}HFtnWKZ+p+%L>d4%{TB}=H{=dzD z%CD-QF=H+N-$&p20h45L*7BdC#js;#u;Q>|IqHO1{_SS@YL?7XWcmMi0g|K{>z`RY zkLCZE;=}@6j8qyo>4}s*!3zg}(PW=|Qj*a{u;Kw|KyD$BrvR9`n4MsGvdAlC<O8DKJ}GS3 zjf>^$T?LF7EML!~vuQ~YOYf}It{t768LK(BrCw{<1yLL#MDDqaLoyRaa#yYGy^t}SviE7~D)9d!o1BG-^tO8VOU6ieS#1z0nsufIQvTlsLY0YN&) z$@CTI9KV}Y?MvLsAEJ0m#I5|68WmaTRNTrga7lBQi;)*=_a#g4LB*`FYKnM!e%TcL z`C^#1HzHzX_n1b^#Iq|}__ik0xrkVyY4@2z5fLlHF;kQF)TPuYoKlgO5LX3*)PtsU zMXb0DijOWPB_sLi#q}h~34c)}_lg7=u_A5oQ4uTBzof|Nh*)9PF;Bz_ediG?n=vyU zvBG|B!-$nfQK&`(o|X7V3YGr_k5u@UK0Z|S>!71+iSbOPnlt(GEP)WMygB1EE z*OYXD0Vubooy@*@2M9osD0D`i^d(EyT`5AMV@>`MO?^5+df`Q^$*Wm)Gu9*~cH<-E zA^kuZNb_ZsoR|nNP(0Om6~Q?F;RVjrQYo*v^JFO~GjRpa0@QtpEBFyQYOwo#KgTae zT!Fc^WkA8hTmc1gI%Xt+L@+juw-ByFA_)>bl7Mxa6FN{_QAwlUiP5EUGNqB_O=PhG zJDj`$j(?rvSj(LCdXEF2p8ur40G1i+s_sxSJUoo&YUu3%%Hg(tfb7>vt4VpZ5Fb#V zswLgwWK9bxx4IKlf?y9$A_QvFeZsL84BW8M42-sBnq78(u!FFJPDc+pzy(8krjZ%P zlX|yPn;cKW4WgjE|HixiM$jtG+T|-gJ?G%8#?I7&$1Ny=&2!wsAu&+OefB}rXt9)% zP#)V^+`X-Ou9S{jIM?dPD`}*cZWRM6zp8%Hh>cr#9QxL6awO}s zaSJJ03{!FjD-OGcqfSWNg54}%f0KEF;ue+`AW51rDy*I-ZlUk);-_Lnoq6&JNe6Gi zh}Us2?TcVktoK!#5np6=AL-k@tOwnR6Vg@S?Ms(B( zau?g}iaBvh0hUZo^!G;wwMP{9C(rIAlLOE0`?IQjF{phVUFl4j&mhF$!l3q5YE+~? zltJxWxrIdH&SaJTBvitlDX&#WC)f)mj(rN>O3*$++ItT$j+5zZVy?cc^`is zHBVuld%$W0KTfnP1b zRr^t+aIQL{+HP035^6gW)#+MN5nJ12X|h7xxv?cI=(ihdr7=b&7}Oplq#U+bNFEDt z*e1q)mz6%~3)M9@h6rtLXIgFY7x!&1*=fN}^iNNdS+l@t$Oe1(*7&YGV+M+ZzNtukX8Y;q8;{Mw$Jd` zf9X57|K5t3ar-a(wGHjR?8c(hC^$QJ+x5sN62fjQT0`{18a(K;=g6t#8im>2lMGb+ zF(&6XrP^NSU5|k#;ycn#c8EKQ8B95H*Y(9x{J|72(U#)(qN#5KAq}d+Qv6OV^jMoB0z}wctwHvIN`Ec-)xHz+Y&96EL#MG=o>GuB4!5W z9pN&XMIGkX0x=ef$zltt&TsGQtDU)%IF5PqYkH2FfOU4u8p`GQcj^pi=`5RZr;ue@s~$UO4vUik46qdJQeGL)IPzQ zVWXaxiR)HJUWqIX@#74r{HprFFxC)%4f@v4gQP>VhWHdM#(6M<6^H%PQ76O@Z#T=| z9+6p-r4B4W64j%(H7;cJwxuEdwHQ%no_s>maab_ot2mgpA)bo$zDhIVyRDA=KnX+q zI~Y*;Rdq&eJQbBA4Ds(p^?~i3ZP+&$A_oR682+H%;P`x%Tx=N=MkvHQl)?X|DDBf!)u&!4zqY7Rm>oHh05Z zWn#C9g=B84G`d>Z>~Z-n2m+s+4@lSN%#paaF;f|pZj~z0@?Gzu3-mdBGwo#dpLUqA zbVe$Nw_$gIU52_I9&r9$ij-)F!>`cPCoH60UN{_n&Z?JpIPCRxlRr)M=}myR2b%T@ zsVh_80$vDZk6(&gk1Y>rQU=m|$tp=8Tq9})H2#z5KL4(fBfTObCp(`4GvgHbD!}fG zQ{)05y1}C8FU2oM6ul*jq&ws&?}SW8h{Q2Y5MLv7hd4q`EOdm(%zSAoxHJm8R9nTi zPxP{_BPMzW6r&);6=Ir(8{}VfH;6m=A&+N^jk{;IcAmjc5zG^dKOkfAk&dxkEPlDE zST2vOXC&!v!>K5ytj98CV}e?6*N7tZJo^W3h=EcXc&?*Hi=`xng4)jf122o3lrYQA zp^?KsK*hfEaM{c6~{PZYwkDi{=r#FO9%183P72 zV?bs_J4CCaPIz87yK%96trVcjl&}8&$p3n4vAmY&WxETAtFa{O)vhJ9V`>V&znTW181pBz3PejLT7bOK&U&RDRe+ zDG(Y5{#VrOg$MROtwvz$OPL2YcxKj#(mgYE(6a~hvmI?%9{`9xs~%}v;guy?_L=P> zys`&>(^TsD3YI_?>~|nF3TMAQ-I!V$3~CR10oRQw_pxa)z+t;2+y6=*eETG@YsUY2 zmenSo3_Z;)dr_)jZl?b=U}lC3RIQ*Zw#odA!HYL^DFqFsXiu_uu^-DgA)jR0VyBf8 zwb;F*OV6aVB}I8ArP)_4WQS*xo%1}NN&3z`lh4DIV6UkpkPQ5_{6xTPk zt5fxEZFs6RR-5b$TPAVj$?i_H#s=qR3#$%`Zu@Z|%6UHHG@$M>-6rvEX0 z)1qO#z?Bw5jj-Q}5x!O)-Y@qKZ%it$UzUgTXMKP)!e6@ZTc$EMrM%a(yEB?b^FY45 zmnGu5C~h!M=}GwI@RX+FQu;^_ z%bA4f9hDfxPW}$Ts&Ii^xmPCWM7ynYjP4zEyXjJIXi#0Xuuu0gq2*X$SHX5984e_$ zDkf<7JulP!p4M3vuPGpn*s^73B9GWqy*bliiNnlFNE*gpCL2)RO&QIzwyDGz^FQ=`RF=s?14XRg8Pq9!FgGMmxJVe+P8-%-vq z279g!J4+#; z@n1NgwsVk*^}b3w2fuA~NatD0dWSx96YHYX<8aX5)759Y=kFz@R10~q-7zR{+)n3@J zg1(E{Fhz^Oh8e6l*w9fY$VY9rE9S&K3$PT-iQC3Uy*`Q)gp|CJ%@Jo{(?UtbePPch zTOH-|9IY9_o=pZ+e$`&svxB~i*^{Hi+?IHK)Xy$6Pl5dMKI+@cjQY}f#O^D5!EU~f z`W6b7T}`!hd{NOe1#4 zI2bK_raYRqaOcvr`%Iw-ckW|irY0$M1~m$&ROIV7mj{E?gL-tme&asUKAzFX%fXD~ zYl`bhk`w--NbVI0(y1q{Kv7OTX{}V`bU5|c`OM?gqwn0QcME35oqFuoHgxKp&HP?0 zQl;K%j=-xoJuxy??N;Nwe5V#U1i2C0F-||+eiu27&5przKVZGd9+Vtu*6N!kHn!TG zGtR9}c52S6iihT5N!mH{D=1s#Ye8gv&up%ZK>y*Z(oSaIyCe7y9Yk#|nd{Ikxr|$xx9@$2^$U5GE zB61L+$lZ&ika+cpo|58j-vNG;bz`l&rB-VuE0KU{V&#VV21ZozR|9|H4XNrT`T1%% zeKrgaY}i1JM>ba{Mf#`>8*s<9*{#-_!n53Jw`-m0R&$J=oubP4jue&k(K>s03XCH= zA^sU*lRzhw$#V6oa}xACQ|k;T8#Z)1n@0SD;iW5mFy1t&H(6)w#jH+^VS{ao2`88; zXUPhzCl~h_k(wgdXmM-fmc3O(#O$IJ+~HxO=$nj>ejmU!+S`M9FQ;{ z=#Uax=bz{a?o|dMN=h50!t9ymZ=Yya_8eFyssug{by3=2ogx@j;r)a5|*t$WUB zTbd1ZNzr0>A2L{Rcpn^fLPA~aW<~4f;Km;q<-GW0p)SAW6n>^WbnygPdZ=RmLtV~~ zqPk$ka~Rb#PFyPP3oAa!>d1>a>BPN?0hM1>XT`>Gs2maMvH{hLSusV6!HOBII9Sn9 zr#RHbZdA;Ok1aqE33`gTDrCgIhq~Mb$aL1pCnLFR1RK7PO((;KRIK+^S|Z+Ub>s(1 zNW{AsQ2AARVZ%40?_xGg(PFS+1}hFWbkqq7b+OwObK>&~uoTRR-HZV)scdYuCWn&N zbQfp;>SR(GtBqG@Cc7&WZjfhjf>%u7LQ$=qbXz!~F~hxlTblOKouoDeqX9bK#8Wh- zMtyeWlx_Da4I`Y;Veb>Ki8#KfUD)@dcuX+u|#tfs`8A)0NCFrM`nY7W#$-y;eE^{El0PD6}HbS1IgL*i0$*s zV!QFKeQ`eLmkJF5KT>9j0@+sV4wV{$#Gxx3br&P6agJJ1EUDO!>aZrwCCkf)E4LBmr$dkbFm8Td7SdzQ~rsw>!VDg;sGEe^k;eU zM}=*7v^Cjkld@DccW&gIo@{l6+1*MuvConvs(Y1fVn7vYqWY~-vlZb&Z?YOeU-H*@ zdzgsgQM-3PPtlEsHvk@=@Fp!If{}<&edei%V5EPu5a(Bng15d*jly|rU@YY(F1;;{ z3S#M16yARp3|tS}4P)$LrT7y@E-#u`Y|;;l>q!nEbVhN2m;YpJk~G^z#U@FgoT9EH zHi;dmJ+VpjoyR5}`F;F)`hGj@)L_51VQdmhH~F3M?*e}M#F+=ruX=VilrhSK9Y*X)kQRu zlCzDo3GVriW^yK!Ao=M|D4_t%1TQTEz3tc;uq(29_$yU?0!vidB1jjz? zyv<}|Et%=m#(4U9oKcyjmx6w>G^5xu7C?3#4!8p%RRtM|w^X;Ph_dY-PQ^(78_P(I z|DhJ#@vn$9&yN57e&E}KTI?=w#OzIt7E3vZjZTk_|F>&Q#Qh5VnYv|@^=q*0mUdpv z#Xy^bLFQptT}A90=hgbAW*s4C)h1%tC<<;kSv}L~5)%?9SEp)%ovR&fYd<`24r1xx zqUh8&jUW>WOf4dcPVD`Y3Dk%G0^LlvTbt`+wJ{M*W_l)!O{B0K8fA(#mPR36cq100 zks~mHiuFT;-wn4fc_TFB$_-YgTmkzSYXGl6ls<|x7_j+Ob)!LSz`|qEw{9#TRg?`_ z;OGkUQCwMOj)EYTMa3LZxg-Qfr~-xIMw!t!MPRsbIVwl^;U`hOB!=^R6i+WR#}Ewf zo%$&B1A|qnaQ)&kaJ&GGe5W~`n`3c(TUlJ^dMMspW{LvUmWP5$4dLSOP&n$${B4A? zqOuKB{w|+97GyO(wt&RavvD-5=gE`vBz68yDlE=`+V ztl^b|0}2yT<>*BU#GhN;`au*P@t-mf^Q-oAmxUQTvBF^0`*=|q;_DQEm^h9=uetQ43Cz_aNd?|YneHQVAzfi z5qP$Xm4tdu8AxuPM{LiQ#dhwd>>tZaQ6Sselu@Z6NE}+lQKxTVBX-}#`s9cLQknY1 z-yemIJgithNe3^PDgqt61FULa!bZMhktkp4lHL%m{clpEBCCoD8%bc(qj-_Ebuw(| zSKhb*P8unUw?}qgvINak9LO$Y7*q@K*HLhb0FYl;jo?sw7<+FdA2Kzf-Plij+Nu8x z!}$(lgi#USK^W~b@gw3p4*j9IPJ@`>A=D_G2_C_(gBDn7`JutK41rF&vE~{BEDMIY zhwXwKws^-d2yoa|%6>$IJ{U64Qu#DD{+fqkwN+M|e0uaWx9lS#ZUa?1H#3+sU}lR_ z8@xujE4Rt)w4o!YX9fh9ondP`o}qEX%difiz zG+@=N~-sM#4jzs zsNSqq+x$TC0#eUtLHf&yW10_@Y4g zDB)2czwr+h8wJ9L&zE0TEYH6(oaAo>WOWe*qPVy5d4hZXqd*?!U+Ou*APUY*FvxoV zcVB`*4*L=0H46qg8owODAhsltF(HY6N@i$?L^F2&?-QH?9=;M9$h^N>(V`iaq@f`Q zHQ=Wqask6B454XcCP`yNVw$MMIEabs+t7SIq9ZOY_wR@@512nr%oBTYbpZX+rL`x| z)X8B!UdIb#^q?3t=f)Z`uGEH;vzja|%~s9TepP*_F@!*p^~t9CW;BD_9qAR)G%-XX ziVXpouHmsIb@ID6WI7SF98U1?z!}SvI-*o2DKG>F-|he^u{1c8{>EahA&NgqR zlF`X(hbPIQrdDIDW(w#q^tZmOA?1b@Rb(5K5X-j=_l0rdL)3Ky8 zGdh9V)$Tx(b0WBNdK#i;IJvx28=sj(Y)KQ3%eGjY$uttNA;tu}E+6AdAK*d6RIS|x z7ZWEpk=;p-!rXspTzU;DmP9a>H1e4KK-uiNG=SEm8vr0q{G0=)OqU;#)eA1 z*ptcMigBHIaN~&uq|+>Vw88^Vzvr^5eKF_09bM_XozGoK9xcWy#E z3AE!TH1=y7n$S*e!i3gsjliE2XFgk+Zi8~(Bpy~h`%GuEcW>v`Bz+o#Yp^$M;ckv~ zhHZ4Uve{+UVMfD5rQO;xM438=aK62E1V5Y!&0q#=9z-`c#@UREb>X>sfWv z5V;H3#09S`CV1($g7=2<@NVrL-rWUjJ76|G0q*o~1^aE~VSiy6*z=WyB#p2ks%6r+ znqZuN8{$Lr1xb$mP{Ek7AD#`E`(i)*AUbL=`{Bp&%V9s%MU}K29+5v4({3nH3+vT+ zgyp;|Wtu_j(T}T5PU9xX_)L?f;2`T$7bc?4WVKt9397nVTJ3At7d!4EwI%l4k7DA_ z3ee@IqG%tqxN$DE083%spHAoPZPpO(Jc%akMI`d=I{ zSJ+-efKTf2Nt!?wrkg`_t>*o2uy~v-^ zPPY5Kh=v5A3yi(U-UezJ>a2apu2jRJBvmk^Dp?b$2IQ2$ULr0-)?yT2c`05=kYU{~T6 zbGmvHzQe}vX|i0kkBG*;Wk|M2q1q*ypxPz!;#K=rBI?s9qtJEqi>Y?@D^Rs_@S)oC zmy-ta)9#Y!X}pepvZZ9UtTc{z6S!+P=GU96=_qU5NO00;4)M(?#OzlQ#1}jdBQECa zqsNWNahJ65m=@npR=5X}-l~wkA7S(uoSQw|E*n-Yvl|Ttp~gMM)`aU+cNKamZoG{f z(eQG$@ruVt9WQqv%N+j1tuyu4bP7B7?+(!gwK4iWLKQ_?BJ3t;%Y730rKi=sd1A&)PgiKDSoL&Z?qbjo8-m|&_yPn$}><1u|wne_*kC! zw({z)Oh=l1`F3WdQcNM^n_j7-ZvPBZ%DtQ8i$d*((+Rum9F@i!F-GHV{Kr_d5^Jxp zvDWwy^~aUzTXpaTbnu0JODj?UeYOCg4-h~f%me5xK7fqPT65d3EZ1&uQ3`@%OK5$> zTGC1sx_;nAmv?jcT{QJ+B}rsqr}`$VZf*|uHe`}x7LE#-iB+m*^QZE&`F-!R*-ICx zj>%-dV=iW)n#%tFVG24+X8CeJ?Tw~A5@tVJA2_Dtu7fFMKd5O9mY>!mdY{$-S*6A% zW`$_(ZB%15i0jN!HK()6&*=;{r=UR1i~Xbc0yX(4TA-#k<=T4xK(S$(d~kC=r*Gf_ z#KeJ)eTR!~`o!;!9n2%0x2&dEg{iFEk#7EKSv|zcM5PqqNe9AvWEQR>6krXPfF5DMt zGpldQPRj)3PUKo^7qx5S-D(@x59VeMql3lFWUZsFQ5?^sG3RD?L%sUgT;ual!fsoJ zf+b_icqtl{w`EK$Y^=qM*w78;qxd~&#QuENT;mG)iO#DX+8i!Uae>pp%f)`fX_V08 zlq+hlss*R&1_UcGHN1ghu0MO3OP9IA&al0oQGnq;ia8na$gewVa{qz&rrO+^bgr31TxK(2cpXmGBHWm=i%sGE5>Xc~ic{*k0mOLXgo`g-|FOq`n~@(8 zj9KmC2G_PE#p@iey=CWqnwNub0^~n5s*=aM%b}-k`x&qv=T+6M@11y z1RbA*MvkCkD%R~j{-EPMHF8KsGRhQ?tF4aBbC$*KG6eYo24sF!Jzg$01o>k0t%o2p zb@T$fAU`$G!>x+2_B`{qJzN_e+*naSRjNm?xec>= z9>K8QFl&h9U@XNYlMNybB_(LA;Ua*z*pH{PD9%9GXR%P*OtFxBVBL|HA+~m|NXsH3 zR;5*{aPv&eKwnMyoQyfk^k7fp)3(!tQL)~ae`WGqUVd_N+#M`ZI{UD0WM=xa{ z=2z9%Wn&{MhsUutUWw|(>oP@>u`V+>a;!^7ok#b|DGHr-@5QU(sRg(UUJdJXvsfP% z12${<3&Av}iFIHWDx`b~Q`A{EpK-Kh@Og$8*n`Y$4pgl7)u(0f6RTT4h+-N1kb#(A zwU=e^0QxRo1}Tz^Wst#4!;L z>v_ejkyb30><5LyBY$c#c|MD23+6C1a_s1+IDEkz=Ue^{9ubkbUXt) zziKaw=p^)Ayogf78H*@`H^(A!)VXXv_)4MJ9FGl zo2pIM@E^LBNqR`EG?i+c?Z_@};&9Zg)sXQ!sgLUh0y_39>%f+JcLJt>nGUQ7)yYk* zHvXQXWcW2<)sdG*>rFsVokUuWv4k~}b^_dDW+A0vyEiWy=%cL>-zHY|v`gZY+T3K>px?KB{FJ;s2;mvv!e zt+vN58?8=K>^^$v)M=YUxwF}q`gP0<#;m;q)HMdjC46B~#6g>?B4@>z^9*gf3B`WM zE><-9_o!tfwyPp+A<%5P~3b@88{w0kGMXsEUt4i46iRUMS*HdSyHJXb{xvmQRijbtz1`(V1r$( zLBC!g(}FeV8EI5QQmHq)>ad~d$mRS|ql;>rYm?-VNt-xzlNJ>r7Jycw=KSm^&JY^u znT+`}8i|Sx*6_-~T`*6nc-U_R)T^zIf@JS27*P3Ddy#&3pzmVo$I%j~U*1z@jso#s zyaw&xKUHS*Ps}5RKT{sVdHUshW#$-y;ek|>q#-+ck>cZDm4Vj|XWrfF&jo_q1munET1FLv#5^)waTuouIWgT%5MZ8=o{%Y5{GwtRG9cDeL zad%-*^9u#+x8k)YdKW|B?bIivoy@*!yS)&?Nyl$p7?&K*?;G;j-oU!ex__p3R?EC3 zno|ke6~`AvyeFr4cil_z-fNgbQ{TbM3RteQ>gK(Mhd4P@;J`>BvY%a3Zlbau)a0IB zesa&`(1v6NeyM*HUpOouMGJ@Z2Asd%KTvE?EFU~yk_XUlFI|+l$hNzvAgPu9t%&py z|Ezp5%O40Q(&zl6_=vco(Ji)M`m;8D)xMzx7YiN3s73 zr`Up@n;Ro@kJa!|jE|yGtl-)8ef>kl(u@xuNwebWBHCPO%Ekl{f~%u>j5eR$$J}Y; zB*;;4Wg^cX4>-$5p7W4%7JPm(2-RT0=V#*AtbW;XmhDR9&H4RIkj>lj5^dN|UM5(% zFfje#a}hwDi9_c$2*X;kev&1|-U0SOz~Cw|FC*~$k5{xQ-!Eb<+N~Lc z%x>7QnkAg34b%wI|4#ALdQET1+)*0-{_VZMJ#2N+_J@S^TIQ8z)|I?@oU{j=d7;lqjB z>YaoOOAJfil}SXzw<)dm@Z4>C?6hDf`iHDfbTNBh3lrKMm&+}VXmk*~Dx<1r5BK0q z%I8CJu&NER-WtS|q88gV+JFEwCCFGL%E4~xX#M*qagd9S5_;dxt<@9Q#{{s7Zw|NY ztr22T%2X2Y1zWYoPm6-|X7sEh_?Q4j)dtI8+X?Bq4JoASw8k&)3DOHWr2SbYN-Wwl z%2$JAfWUhJjkPolev3lM9>*<;N*}LL+!KX5k?#1d)M&9((pXSEUZc1*a}0!;oafP~ zwzsnQoU_wE$yCn#$k#7lc~xckP_k^r;80RI5kF4AkKy6r^+U;ul~>`v_V4Ka9bwNIAzjQ`q1gUla#?E(*887XN89a>U9}v0+T}+KdMj_T+-mixh}I zu)6gNQ4v}5?+nEJs=8%9_U^+E(YJ1yr`-@wzfLy;X{FHJhZIRh+(!mS4uhkkPCb~n z?!WP_l(+CZp0^a@Z8(ag!@-Sv3$QNDnE%4+dG02>&E9|{l}WriPU{LToZ2Q_y>j}i zkR5STt+Hm2yR9ypu8r2mu?t}#96Zc4X;Bm%3(FApIozG2yPq9gc^XgFw3@ix&>5J< z(;T%i+??Z2b(jHm)Vhjy7v!F)v2~?uw04!4+Yk+)s-JCu?Ckiu=1WPx&GY;%1n{t)DZQ#1N^@H07U;mjT|(rp<^BU zIY*twHr$%1^=Jc9yrDawfN_F1bO?T(!GlrP=7$>5&Wmr`R#&gBPt8nmgCE`QmK!r} zSU@lAGrnLmD0Xj}=asf^Fb9n}H)W{{L~H=kzZI5_{-sIM{0)q@1v?Ur99u9dHrT_v zN$`XxoosdF2TE+fPGmskSM6m3_9*mSyzDtzj8!?CyERx-W{v{!Uc3f{CykUD{pxwd zaJ4*!^R@gbXow;txk4?9=T!y5kc?`;P~H>NlaME4VKHmsU8fU zt56X}nL@?qEUM&-SxrrRnqdQ*2=iJt6&n=xiZkzHg+H*m@`EL@ndOQYQpBP`0)X&NxnAiWp;ej(3$yV&~qSzKFctW539!B#4Azk z?Hygd?kSz`GQQs5NIbhCI4wsZP|YV`r>@ z4UAjT=;!q4NOf|0qI$;i;S>04SCosRGcs0}&tAY-HZt0p+E{P$+>2+dkgs1D4;SoX zf|qW~tYWonPXg`rm2NJDz-tG~(@tjJxcy!`uy7zkK8+g)*QIn5zGQK`BQ2gkaxzj` zR~F_uu>Zo8Y|*zC&O=j#;)DeDU+Evk7lF)2(ISw&f&H8O1I5N4^TG4wu@%_Aieu!H z$l9DnA0Fu78$oB|TE;$Ry>!)D#cI{w=%1=DcKj(E&JfBy&p(Qfa(t9f%DvJ*P%P#6 z;5|`pZ$nnQXtt+TLlVp=Q`CC5e|kP@-4jl&kNZdQQHzhFQER~pIVJp36Zw*Vh*&!D zVSA#}qEv~xXp}mI@|{FK^H0e~o1cW!=D+=;_-MmNDW=WBU;7k!BbGLN*q&&!m%giU zk!KHCK{A^vP&{{(e_lQU9ge1fN@|&Z6d!^3C>nuw!6r`5i2YWRIn6&zERp!oJrU^u zzOmFdn=VrAZB&!9vr5%G*ZSw_Bibe5MBC^e#YZ$gibgc=&SKg>P%PQ_;Qb(*ejad< zZ9n_iASsvqposTu|7?B4duBNCUg{skM?5}?M!Xz#^?Lshv1H@JMv|?#y10<0&QOiV zlD3%t3u%Yto@#UMrYR6Jchi;vS@}O)*8p)+pom z7VBCUzZKD*X^voL0Q)K4mB7ujYB#+-K`*1sP&(A^n%NBTvWn{xoH~#pzWdm)1tL`Uu|CtRLNC2CyU=&otf4fi*e+= zG=hMII4v0Vz?Cn!$j?Jph<-+c^D9J(y7PR6X#d~%cDeS1g-d21YP492RoW8Hz+)j# z=@Sdt>EK55?~3PA!>iJBxv&x$mm1s`8dOx=MdJQLdg*}T8f4O6jj`cl&;sTZ!=rq_ zxU|4BP09}3(Q?_F3gSeR{h*}MP!z7k6^05LIpXK2ST{4;E)z3gzaNI zC;wDtjv*M1j8FV<88|*LkGTG5SzPA^o%~ywDGF3uK_^sd2x&*qiKEVjdDm!4JlVq+ z?NSbIJfeV_GHT`Fte!{fe=ybh%n8JA4JWuk$W(i>Y*`X~x6{5iJivFWTj|lIEh5;F zU2l{_(pwwXbdt_QYi1HVTK>2IBI9L1y?)b?_6EEPRf~2yEcmU- z9{Jjoyyjv*@E49&J5Z8}4Oa7OEV^Qx>Phy8Vu^#Jz!Lj`1JP){b_PJj z5{08BP@)`KW{v{!{gEhxWgs{Xjpl31xikXHwnWMBoO69FskNqrh}~zg5cyF7 zpN0yNb^9W_oQyq4D&vzaxELTAWM_hXT;R}WyO_)Bo0|3UI$R700iR@VDd6I= zdYX-nWArW}CAi_|LQ1VCQ_$cJ+dw+1Xx-t@#Iu*%C>ss>Y;R5T(InN;cB_Mz=aEZl zQ+;!-soL}Ry2S(X^u05Rr-qP#YHAuUd*fZX=78~>+b~5xvLrYo{7^}cLyqD_xf&iv z!kdn4`(&k}QsEfFTC55b88<|&1tA8nW@{lM2B|n)4DQD0B=>#dF9q0))me}zY%{>} ztM(!ax1jH0QOHqaib9x%^UsCPEi+F+0IxXoTH#+^X4F^ABX;lT1-toH`1h2VX9#u| zaw#L(SN^H^_fus?{=__D_%o$3oO?LXwLSCVO~;i5bPnBg%yx|sI%X!3y990`5&Nm;%+y9Ysf<%L zN&d7fb^y{`qEg#w`wDC_c&h>YnrY&p=58An)11^PR@9!*?N+Hm+2Y@u43)1O=|~|I z{4r?ca064Z!JJ+NZArKvPE|=$<{;o&0uIw?3MNv|K;b2kp4Ld9}$7t)2NGjsg zl29bCX4>sqvx^X{_89J|P1d_x2U5Xxc5S>0`z{k@E10?Wl2s#m03Caj6>nT`qNd3u ztJJw_0B0(0zTvdMlRPuXbYATwE0B^`1bpRYipqw%%Gehh3tBYPE2CC`5PC0T^vRrR zsJJge?;fk8d`U)bOiRn-6|Z2h>l3Z z9Hnm%FSJPmzL7s;pCwDw@G6VOfGX6a{Yg>S5VvMw0t)d~tXfNXA=SI8nvp z_UL||q*MpX0I$#fOoSGhJc!VJ=E;am9#>h24dTsp)F_-ccU2K3mev3n`A3E8>0p3* zP^MzkVs$#nh~q^H%iK~gt|#eD$cv)4m)m4&3mFt1mD)mH%uuv+q_$uoq@L6k^qr@+ zxDzwusV&&AZJpYJLL5d|mb(6>worZgQd?~Ai5T=*46Z>)e&I`&+-JaM)8*5rZ) z!=w3XrYNM%XG2q~UrA9BonPV$XzEi|R`P|<1y&b#?G%j~pCuT#{arha|7I7qYvW_B z(Yc9>Nd>Rmi@j~6K+N2=dnZ8d%U!!ap`!-7Yq#K!&bxLRlzDgUR2B2Coy03P9`7L( zA2+d!^RAtC8|>jCBO410!=;vXmA~&HFUlkhzS9Gng;Z7RdJ$%qzpkxIL+onPy9HMO z`h}vgj~j_@A~lnoEcBN|fvs69{DO%`e#w8f7fa2=eue3;1_z&{>XWo|B;ume zAvfSjwZqoWO&pGYkHo)6;oqaz&&}=*+fBP(>&)TJwMGLCXHO=lakq`Vccc(r~o?%uxB2^rG}Q)5TkYD`0~TaWE)Q9&xQOu6Ft)4UuXsL4)AJDJ^~$S@zO?C~is zqE*>yH1!D&OO;&^SY4`)YjtQ97**K#2`euL@o5eNrdG9ZFXF$&8SndU3fKGXmz#5Zx(>a505;uFr5+RBnJ@*BoONwcBmPl*MB}4qL_5f(#pDd#AJufH{D8y~l>-+^)Z*%5 z|E{!S52Bl!j?AzZ4So^YXp98V@zWtT>W$xS49f{npACv{% zv^q%?VuyQ=5c*E5Q$;g7EfJlH2gp?L{g!%nA{noDDV&}~&Zp+5m?nxZU+3jZ$A*1J z*)IXxuN8AM(mS1kyPf><0!N?VHtf5{XPTp3+&iEcB6fM<8YFOPH!U=mZm)3u&RCo` z-a##RRwL)6{)`ArzH6hq9Y{8X1SrnN8-9ZZ%cui@}`LX z6f%&33nl4Il;SQ22pnAhkat()^R)b$8^#t7DKik!HU7s8t3Z5bqB>nmDr<+5HG>0! z5NbdN_)-A>|BM2~S|2ORTDuwRWu6me{aXx_GSK78)M&9(NVIF~En(J$V!>3vo%%&9 z$*e5?`TXWs?OOU;N7VBuRt~Wwd(k@;$(7Ea4E8WmS;*6oi0hJnDq8(23JW5f@8@Xb zh+(E;-J9S~W#x%s-tA9jM}A9;2<;1@f)n3~N*pdQvFaFP$G>X4Ihw>^2^X$`OgIR-k%m?B-ukIFoHcXX>Dxa0TcBEBa_8zYFm=E^-VA@;(};G^~UiV z&mOVL3ELUVSJ}xlnM_qX*9;>Q5^7Vz&H>tzu^w=&)YXP7BJs5o5c z@2O!{$|s{tal-4Yj=dC?G2O3aK;~D~l|bwQx(j_5iz$vKQyk~UbbqMK90eh~3Lq%o z-sj7Ve&0M|_zMvjwnbEi4;>=PQRk_D+XbyH$_#LeX7}yZyOXsMM8VW>ePpyY_u@Gz zy=E6}5W--CTt^Q3)^DRI{A;Rxa3ccmd>Mpao@`EL|)Jqsx`Bi(7rpKf2Vrj||6DUp3DKkfb`rf7K z6UvN!**s!+T?B@0X`10YhctE6Iit6gr&f{Ocd>NYzW|e=(q-M9NP!~vS(WP-pKz`8 z6%QrS_P$vC)SbyUupQ##TD0kFZpDk-Q`3`V=40DAw#Dl*i`2#%Zt_v!!*H^ec7y!> zA7!dEM%yw`$6dZnGmv4;ZjIRsk&R{bs`FVGAgpA_YCT-D!q!W7|s%jI1Yo z^x=fv9%N=ljOYejzbQC0z{ka{L1Cd3cO9A00ePXS*TPl?OCBIs*RY3>os*!&9MF)` z*3qnya)p3o+3SD`Zp4K70x}q_H86*hi>jUO&_Ie{q;J9SxW_m}_ZcN7@%J>czSNQZ z-YKS24Jbr(`nO`N=SHnkA)cSjcq_B@rQ&e$yqC^PQfHfm3e11By3Uuuq(y|dehmXN zziKby`gQ2LSX^^N1&Zqrl$oO-g;!iJO4&%FSu0UE{%o1?KRu5){(S#&{KGPH48ie3 zB#sRMDDj>1RpI`3W#IbtJmUTj5xBRNWkwD-lx4Qgx(*agFUsQn8()?xr~7YwxfH?u zRu~v28#smWwi~6P03@i26^G(Nn<&M*jAs?Fpt;NN_ea-Ze^_k1l2_5l^%w`wXA%VojrX)7_p$_)w#vIgUo^A?<%9ZX@v z%H(XaysMJbEW@8=sVE^Zn-q1%HY3I(QjI%74{?@hx-ViWGdCy(PFL-eL>Jj$76)s(-v&d zxAt%WYj)S^YP~%-do-{yGg&(g94y>1!xlTu&C-bzb+BIYs!S|g)19jlt=7|p1|8Db zJGN0!wgvX^^wyQQ^+=h@;0&T;cRuuVvr2Pe9lKUmja;kLlK~?XFA~GxRS$b0|4|tk%J^g!N4$o$2amZDo>H zNfw`ZChkz+9z_M>MW{^0QvYYMRO2Rns0HbZANZvjE&N|o`j|qw@d9*FwYahI48FK& zJm0=Z#*J^~)&HD=H~XgTT^6WyF~>J8jaTZpd}yu^N#%jBio*WkUhG#IZ^WpLyYU}m zV1_Jn2-rL zeU)spEBiwMenok}FXNDeT-2!fNAbn{^HH>zfA7tjj(?!on0`KZ{)R4qHv3D3l4?5_ zjrP)ONm`kOie|I^N&1-WmT;Qg?jOZRGd@Zv&EDuAD3)e?@SbS4pS>M%k!(+`lBAeX zrU>>i{|tQu`*1kHzTh9lM=(B0D8at#A1Ib!eDIzKwvV}6bdhUOT165|D^aBSgMV&5 zQvD{JRJ;DgyJ_>0ijNXXsssE3#gd8--W#b%y^f?Cc_*pTDk-T{i6Yff|J;0}T8ySR zdxfa3Q~jg(NX179CDnQUfnrI;2k(hgdlS~vGnR`|d&nA+P^v)DX@h@aJ~~|;PN$}S z6d#@VD4}$EihrP3I`P4KqSL|d!>@~AdmB|H)vQuQy4(D7^^xv{;iS9MKZ=iZd=!mz zd&r}|oSQ08)4In$U@Qqa5IvFbAx=Ami-P;vHRVLJAJl~J^H11E$4`dS@f-e8e01ca zXms@M@_*tVD3*SF@Sf|1_CMh?+x!1Y??m`0p)@<( zKTs^q_~1R!47NeP#m_~;hvqku1oc%>(mhv{1#b~KqS&>=x!H%4)ft|Z&he>T z@p!glRUU`A+1=2fJ~r1_ierN2;v#2@$mOVjvYnod-^2DAaF5>Oyr%*-CU(J;V>uPglcX-(()6OgAs3Ua~-xS`3 zTOcfQmOu7Eu0g#`+SA&RI-F1Ju|&{RJ(QT8>qgu?qflJcVLHXMw>3nl@%pv6rO#N< z;4*db0v9oO9P>(Cc5Bu+f285y#JilmU_%!V&jNfF0*u!krx4goyw1svFkfP48RGjz zZAs0Z-?#N7#d;rmRI1@QUe#cGr@nw0PAuNhd`t&HLOu)ggmnDAMj{#Zq2juBW0Fha zTl}SP^~xArv2=YeqZWe~?hF84&H*SC#VdB+X{W4=bczq*N#(+$ylfP5u|F~~L>@XP zBiFo;g}Kv_^$O)+Dj=i|aL+Sb_Vq{Z^-tz$@{X}=rC|sluT$)v7*=lZW#16od;qxl zEu5QAyFqO%W(U|_fa!F(g!Ce{jy@VS_)3f+Mnt3r!QfoSg`1q&4>|cRT|~JYr>m~a z<^oLB`@#uWG%gAs>79_I!O^Z-2u0=-MML0GNg! zd3y&_t)~ZKh^FhMJwUM^Gm4p^DYn}G9;tmv-28(aolQQ&b_h~b5KDZKvxITpI2ktz zTx_{mN_S|1TrQDyyc)oe{@FzuCiQ!l`2CUg1(N=#0#r&#aEz-ST}nVKdmY!_ELpJd zuRi;e%_F8PARVzY+B-$Hk_GDy1|$5P(DJl8U=w;`|G#61PLJtoHZY_l;2|-rs!PDV z!KVi?J`Iw9oTXzVAT0zg0sXB$!A0!n!=*9bg86$jr7^+srmQrcZLmYHZjPJ|hcrm}#PT|e%`bOA2VS|Ic ztj#*1Y8GzA}^>T6up{C)uaOJE?v+UUkA}AyEEUdH)mQi9o7k|jMdRQ(mSn8 zmc!770x}cxDrsNb6ug3emkrccSmv|{bIg|;^zxS>8~a>Ddb0sVWAq2REE01z8D>~w zt6^AlJM^8d<6|z|NIfai5VCIMZ>)1w~whu%7`HK%`oL8U~Th#OJ}TY!$yoS z^j1P~gdK@R1~5Uw3TLK~Xn^%}!V;0EA*oEYfM;A;8m)I~lUpgjCoGs_wdq=OEKNQj zGd#ebF*8L^GuNAZGPTL^VGsbfFOX9~KJLTwaE;HjiTFGh&LAakpj@S!TXl51v0ep= zSUu5?NaKpst+0L4O%5R8vYBaY2-$d0zn9K5H`S6FOrMj($z`MUv&J?jl@pe)ICXG% zKnt}4Iq6MC)~#kOLb zB`c`#1o6iS^v8+fj}z&Slh_|Ouuj&Z%WG;|X-x?GGxD18vFq0%?Sv#NXVP}9GYz=v zn^AX$vOaLGVm-+Yw53ByB497ZMFn=%1w+}h8cxpV2_ujLZK4H-$T;iEK_oI|ySt`= zk&B`OXxZgb4ZR#N7@wk_cBx=26-Xc*s7_9m9L1C*85JU~~Oo0i}80sBa2k7iAmd1|>ueGOd@G4^i4 zpbir{GG!2u4r4x0IL^%Sl%Rv0Hq*GeSR2zl41}Q?n%3Hw7m(3Ot^&(|TZV^+*E9DL zTl#_985(0P{8^J#q^jexG=%|IR9NcWwS(kYzZ){&HEOtN6@vL{2p6`f=g zSh|^P+$xjv(So*^5DVAzx2;S#X`SFpPaLQ0YT*`J=Q!bxHDS@=&`NQ?=uA zKq_+m3;{8eHnGjwo3!AHvpEl-cP*zgn^KnJmHSAWE-^L-x?7v>ByfC!&XaIWl9=I( z6XrhT1>?1lvj)iEybiwAfxjkSIdUn2(u+EhI3c zE#oJky*denG6r|;BnW^~pqIf#PILwpO;V^0E#ZYRmT(o7$A$iUkZ1?D{tW zJwv+|J-{|2X=lw=b6K;tiHif7I~!Nmb@oL^GDlUioM+x*D!}QIqkqpp5cLkv%0v_3*}Sm=#d+2MUUViG!oXdpBiC16sb8_@0VdmRUfCM z`2-E)K0-L=2R;#J6bb;@lBy~8snbQ~FrE{Duarwf_ADVAaEJ4RF`bDivDt~45~B9v z;Q>;&xhc=XcotnIPtyVOHqvkD)8m z3-!P-%+BSeuAMbGL$m39%sE_ z>Z39^$k|bt*c8LCAy-qhiJQNe9^!lpacb}uiChvsWCqxR@EN&%z?4WSD<;*T;ZV@5 z|G%*`u-S_}HM`Kxc@GOkFO_zgK-VGn*AX1FlCyNT5Bofjwwlq)1+3#2@2xf$&*6`u3&Nde+V164yg^q-Lc_FJ~+07Y)dIN zi419(J?63%K5#R1X-*F_6Iz9f8+V^_8EdMS_KenYh9op9le9O;C7{qp4WGte>qv-*bQs)T{ER3{q7g3XCZbq1j5F{$7Phm#CH0W+xSI8%JI zqvgu?J^CJx5k}i`BsClZX@*>~3lxZz468yHhx6)m7U7yP0Y^TvKk%Bvi9CE%H6G>r zR#Ho(TE|*bBiMI!Yg~O%+mY1rK$vGG8z)<%$U#j6!p3mG6^62iz-3xR`b@ME}2 z!CDo@-mQBt;ym&#C0O}G>oWE>;u{^?)g>-13XAk&VoTu34 zo{aW%xT06R_?QviZ`oMeiVy-;U= zr}fwzn_9mID8X#iqU}M!hu#pVnF%!i;ZbC^gqwSp2>KDy*^s z_~lUmif zg*O&cbDflr!<6>Lk};UB72``$B)HU9MG^GVF$A?16TO7+2}VnSk5 z76qnQLIhjj61r)-AvD(J_5qAS{(roR&3n3NG3jr?Ko6X!R#BcV4lE9CR;dyK4 zbvn56Ovd)+&TCl||4C6C*-A~}lBg*Nc}#GJ$>VkJ!Xisq_wQ>2A!3v=FTFsseXkK1 zn#`jKFT=QeWETvZAbJoK-V>MHD-zHn)zgis3$QI6{MND zG>g&9Bm-TV`Nv3&r>VJ!OI!8A+ZS@TMPgQ5fwQhHiF-Eb^*pA#i!W+9hnBmg#Vo{? z9W^Lc*uJEd1*+G}S>BsJg%`6T=At5_dCa_=iYnK=-@zBM^b1$jUM^!bd%cLIF(Sn$ z$6dnml3~~xWozal7rPL%P^s^Kh*{g#4&*|tzU$fYHg_P$(b6csASt&Vq16@8&y50F z>^TTh-=3o|G;y}=tG#I@$yKwOrQ)kG%wWmPvq7#ea&mcB%gx&p8L+^%8+g>3{BaB! z^fkE(G`OG9AZSf;a>cAkBC=ymu3L+>GE#RK; zgrl)c_VA!xMVf*;D28oy$$B1mc7HVXJ%vlTe?^QLXYUxvN{fO^R(~szsP7fwQl1}V z{Jolq`Und4t>KK-@_EeXE z5a%Vyv|4-w1wl`;a{fa;-&%4Wdk(yW7WD}LfbN47hWghX8+mh zR(o$5W7KW}R&XPuhn_9w{6bqLYPc6Bdo{@wH$DQ zmmWaV^cfxiO+GS*xV}s_m@@NliMu^D7Lek_C{r@#IWa753AXiM!e?qTntmqiUO1RRa%6L1wx!p&|^EH82Kg6#k(NWnBHLO&7Q9YYaa;#~$_xQp|GkxO9O z&(qE|Zme&Adu?r_6|HNAjTmfjl$e;;Qm>lpJg-O%>AfK+TFlUFn1XwKi zOXn?%@W+O9Ajw_vRtC9gJZwUABL6xDrxuadVb;Ikv-T2scYT7OZ~C_)?asSI*a~#g zUI`ff8ctdcZVYK@lAN^uR^p)Z-T+w4{1C)DLbhdJJu~)Sv+o6g&A?8|cc<+tybNGx z0u-ANYpJ~Uj6z!d_u@npajefLb z_H!iqA~9b=H`v2UycX&Pv!R9N^Ljw@RY3EqJTzC9N`;?6}WM3N`95{2sj zjzP7>iK9Tq?>Hxxv(7BsHDbr#5Y`zQ(Py2}mcaNnL_b!=wi-@R?~oV->I;QPcMuu} z`l&dTV-^Yx;94j@PKBl;x$=W6E2MSU*~gr@T$OgQBJLw&h-)p)O+fz&Mqkq-q^JB8 zfsuNV8hlmM;9_agh=EJ2)O4xK1G3HJ3Uz%_7;490$Xca!%%RDUzV)*PNrOe^^6#> zbiy?N(~aSTAs1kn*;0Sh(2m_i7qa2o{(0J&(yeI%TrUT1HgI+K3l580D;;@7_k=lD1Z< zBIMw1F{eWFF2*#b_XxDNvoh$>0dn6qxOk0k*0R-rMb{^VtMM3I zS#qz9*=%I!GEZAF;7)Ly{8J6ujT%&N8;ummZTmS<23%x6D4?Dh1C-7+9iZXq3=KhC z!!Z`aHH2pe*R0!5#-!QFDD=#2v`MtT(_T?+m*^Rt{yfOzNW~EJ7*7s}d^14cfu4bn z@VFMo(QI|uNYIfag>yhn#V~iqFpRZyt_4Y7!+6GV1S;PA-kyUoMbzF2T9TM90??Da zHu?=7l=v^MsL=nx9?-uT=znh>`nB!%*1s(pA+i335GYiCE(X=QXe2y;hT%C#G;)%} zh(;RVU7V1{!Q#9ej!VxMJ&2Pde0@t!_E%D<{aFlZ9YW+MeDdCN$C60#3AT%Aq9*e{ zF_Y2xWGl${-)ts9e8MLk!zUzfIiL7jiL=N(;jnNi?(fw+ix4ahbw2wNrlz#Ja@PBC zU_0YuMu~&WdIi$_`rla#5#9nQelN}?(D%=PD*4{=Me)bdh2@VpHvnsk(Z2K%=hUdd z#io-+^ldteRW-#y+Eh?#+9H_?*Ca`DJCJDiS5g#sd=wJQL+16Mz-mqbuec%etPZe* zF;lL<+86_tE;yb7m_`^(L4t#WAG26#(iiYa8w%#J4yvTeg`PGnx3CV)>sBH$zkxy%4NI zV+69wa0!%wjbfWA7CSO#LOP2*9msnq8VAO?a6HGb7*WT?Vz)9DvmX9EJGD5gEM8HM z{>nhdxCejpS$3_-vTHS#JuL?17R%lQq@2RAZnA8!75@CF!36`;h=B~ea zlxZR0`R9_HpqA7VV^FLwDI)F_jJQEkoAW`;lA-}zOX|~XN#(s;-KRIJX}^v{={>wx zUHn$HYd!J=0h!6k^_lls(ev6EdRpuC7GS)~NNTQE&u-*dQNxK9N@E1B&^PaB^u(&( zpXP7Qu+1D}n;=QRIV?sJ5MR0^!Lykpphwq{;KF|FU3#0j0}>G^-`eF>c1RdqjsB#x_mYwJ?$)}pmqw|~{P zwzi5&)naRHD^=@KTebav&s~0Z`Q6|BE$>YvNIxac@4ma8<(_-)Ip?11uPQE3ypp}| z>aS{^&}lBu{a?HTjb}GHlm3=sK6i-f)xjOrp&c-L-gM+4hYUS?>Gq{kbyamWbFQCA zA1Ccusy+(;JqG_h7XO{HXQ_L5rQUAVDy^kGOQkSG!|sK#=T?JKyEfY_&)3?OG199h z7MhKzN{iALjBUmDHvCoz=JD7`V|r+*duE2(W7Z%`)zv%NOJz#^vU6a8by<_ z^TsN(v+B1EHh(QFZk}#T@jOi|p6OK2x~&g0-R+twFQl37)@C|ce5N<`KGVa6=y1%}_zAO)z7;>*T72&NdY}7| zn&f5kFPTidn*Yvz!u;i@n*J+`Pyc0X`r%P))&AIBu|*Drztkvi_K$KBx`-{BwJ5}* z;iFVvEw|wAO4?=QDEvbW^dA2}C3~Rm@vY9nLZjK9K-^8U{q#Y^pT2>l9g1C^beGmRDAH>NM)*yPEtix zB2uXmMXGT>Y(7$rqA66LEE4aD{!x6S;-h3G)pq|tc}c|w?}=28Ow#IIL_02CSyIpS zlOp4cA8sERC$p2W?H|QQMm~y0##QWSBcT&t3ZUoshssMxK73DvTxTA_T;y95RgrLM zB?`8?{jm9n^_uL&dZ&LBAF=o-8nIUHY<85E!9El?ANCKFmsEW4o=A0q>wN4Y*wI!+ zNw!$Ig7%AkXnn-{LU!VP!#|3Tczl$s#QUCqpuEK6gZD(d;~i!U7wrxg^(4)rZ$+zB z16~cmN2?WRnsIYG-am?uR(uqVR!3^K8wr?Erhq%eKWtvg@u~Dgxg#}OlZ#?&qTeNG zT8RQ|vmY=Y)y~OIwafjZ_^8H5(Wtg!qXY_^>%ClwSSMxP3+0Yh3=-83f`{I=9xg$A|hrS3^vrJ*-wUhA$# z9T@4Bs@IU|XfrdY}sT)fmPE-Wi5 zIk66U!#UXg#R6!s{f+BlY#;7*lvT8{?!dKW@({Hv&6bqGdXW;wZ^?t*a2jJ^c5k9a z(K024prZ{g1mYd`T7AA*pv8H9b5~HJGFYR7Y+I9X7x9uJp3FM-lD%XQaROrmLYiy;p@z~+a04>3pMsq&6v4qm`kzjPL zJd0-ZwJG`<8ynj*7Fcgi!-F&%;IZi&2CB&K-)>O%Wjsrb(pxLd#+YztG4WBKTMXEH zwWxndxzj4oT{<&^*KbJyO+|n>Cv!OVfcDJt-oT^O0L?ay>YrR zU#``cx`!?-E_IJYLFJZ(x!P2%y>w^yaD0*{kncXMy4Xs?FQM=7gBa&U;a!J`T_}7x z{Y85e*=Fwor*gzta1xtEaIy~t=f4$!Q=s3A-PLWz*m7L?sYd>Jk&%Cv1H<8WP&o&N ze~Ic@F$~sQG34XCW4o*H3dySif1STLP)i;mjmx~`6=CgFsMIn$G=RAF#o*cxrBIdX zQApzZS-q-9u-@?NCs?okuoA4gr*qShrZ7wvOQeYk!8(RU4#7&reG;tOtgigi5`y&- zHm&5Ux?s(_>@P>(>C2uYCWm0XsR*0`{k;j+Mv;-{mJ!2G&w*iEu*NvgAy^%C9+HC9 zhBIBTo{>V;?1FXoub*K3geF+^z>K%&T3+YfaIZETlC3bv+t6^j9kGlbGFLb>*Ly z5VIp}TFF&=5wqjyJ6+6j#N-gOmlc6ipuaaUyQ|2^PhLh0@6Lf?Tg=8d&mm?Vbsmyp z)`l}(%pRXY)y!hHE5ccW5^nc1W9#EbX#i($o!Va2gn9d(}ZtK=oMVcIiGUtTXtp+n~7_0JSD8kCqHa&)eCGw!N1 z7FcH2xu7&%nJL3hu{od^{^FT#G}j*sn06#8xa7XJ4`UixNVj=tYWYeqeQ*yePHx z`v99_a@Ahe?|-82^!3Y;WU4cVjznG#`cuJp#8D>dk|(agD9GSdWsZ3`V={k6zHZymf{=&P-paT_*3KviXPa77)d)64BflWC&C{%UQiszPo^ z6=i!~6iP6lhY|!g1h)mdhoo{!@dtt~Mx9lqiI(fr^2ry>Y_3yrZ=l-E5g}T%5=F8Xm!*s0`H5x3>t~AMHN2^b%l0DlWkl0U?kfUfHniTNp%s5Cw0^J1nE$$r zX#J1Aqjlvvb9pB(GfmyghSpm(wBm1t))R`1c`O<&my)+0eHW4fiQGC;1jH<8T}hjs zlmh%iA@+hIqn@{nh`q4yh}~HP#Eghl3=6~>96McP)bcVScBb!$y{!m{*$@lmOmQrI zD30wG8THO(MC{A@j@Y*q0Wk|=S3?v);gzVBp9;AjC^GWOb*kEbKaI@rw5o9mhUxi0ASZHANBMWyh zjUaw9G{HhtZdL~PJ?Uwu2h)|AK&&*^Pf92}A=io%Lg7p_as+x%adx4wl29fE7XMJw zy4vb0d39^Y$Sc^ilB@P22zH?FbV0xolhLptQ^!uD?$naSPDi0wBQ#de}^V36v(!GBUEY#635Qz zsB>Ar1gxT)JxcmEvoVEenYWoeQ6dx1?m}rmVw=lCrOECgw#s$noD6u@O7afW>I*Lyhzb;m%JA`M;2#SpU7&KZgJL{?FyC8;>wv2O& zz?cQY%5ARa@v%yk;JKp6Jhm+(uCFSJ>%T7@-ztv5-V58ducApiyh=n#@w+Tgo+K)d*z&W2YHLtRVL~BCN{0)s=e$WZ$sbd z@{J=V;|_995f}yPy_n6kgM7Zo=>KmSG5nXsF`Tr6e7gvYSukwv6=IoLrD~D=xX3(y zxQw{|X;EA!?jUQAHP?RfD%8{=fof|9p;AMPICc<6oo(6<(u-VGWU~iJ-&kIdLbI$J z%dVFr!G%cZhWIEg3))C9sFK+a(#tf6xkp}m`R7EVIT2N0*83>?{lrWM3H2+tlNDU{ zy=6hMc3`PV#j40HVp+A zcjo3QxSc_%c92u2#T1DKpe_fKbLINY_@!PsKjeENKRC5S6GZXkX=Gd`&@%Ukpa9z zLBV&s#|B0z)}6>3J*m~6n6JUMOM|nJcpjQZ!;5k}U_p`f_(x>=B1nR$*+_uwL8udT zb4H+;D`Kh+5V#XFoh!GIk||g~7I91-D5^H*KnCb{LV*;6PIMO94SF>Li<-S{F?JAf z-C5^YTsPO4x;bE3)AMqjDWM|aHn@3UK!`l~&d89sQN-->X)F1lTEu6aYoW83Ma&tW ztz_xjh#?ZZPpb;$>_Qk=kOUyD!#ZMZ`MoaoxC>uYxF=R=AvYETC|&cC0+rnlqqJPL z`oKc7R-dXNu2xm>y0gHHkgD7wJ{Gd%ECS<=^HT@g@Vr^n`52jebaY^{_)#D zB=OiS!`n#5 zV>%L4n7PV6=ygiF;+yd_rJS0kX{(K=SAjsbaI86@4XQs+HsIwUkED1LUATw9tR zXmxPSgY7i5W3d&lGOk8SUW>FV+|9sr*w%(+xSwu!4B&F5IUW5FB$QQk0h*)`!U5_K zFcm0>1M`hm8!8+wP$NVD3NF9-fq7`tS1K@j!4)%rBFYD+YoTn%RN5`iGAYcSmVO(- zH6V7_G29<*<6>#GvA=>lpM*JRwz&BMNl4g;8bn(%<{Y7k;HK?58k}QZ?cSAnylA-( z+dW5sy4>xwI7V5g#PKct$MMUG zz?cokLZ2K|IF3pbj^9*d{5LEkj(?~BIR0=E7_;E`1i3Bg+Pp-!`$vWO|5s#IpI%1H zf37Iz6Ysu!s|bh!@s^dBN)1u&u=2+0yhP?P?vB_>iO;MlDY!AM5wej-Rqnszb(^&) z$Ddg9O&0oOp2=F zAT%S_0EFhl&Vktxq&$B+4pz(U9MHC>!J?~qW3Bkrqy8uvoyn0|%&PyeahohF{V;Cx4K4hlM!N1viFA`{)nlw0^rj1^r=>$( zoQFxnzs4*S$6W|My^w7P;kUHu$p?Xw_uvb9;VpX?-bE1bUAVV?)jqsC4^s4f_*`J* zDGVciU6fu7xIU#`;yz4+T+143`|y=m%?~fSzAifKsSkOq#x}*+%Iu?`PTLz>MOWB) z5%c@^#&43OlH$o<^)F&V?R>Vn%zFIju!EAlX_wMSkCCVVMpr~G?lVK%b&$afF~YL6`5ui7KunFlHQ z9(fTk^1BQp>3if`QtBn{ku=DgSYvIEJOxYm;q{eeePQc6c#!4V!#o_`Pv5_`qy2f& z^>A^-s{U}Xt=_^X;b8i^p+juysuG!?oq8sv*zcz9i9Syv_V9QR0bFN!>No8@Np zXtM$~D?t@&hx%3?=CgLFYr!7(F;SWG6gQfSL+mZ-r!-~0CFSf$?Lj}w1Gc^gT?v?f z%wSI6gMOG&FL4i|LH>g^es~Yc7hx;d|KU9-OE|K&2OWESLI1&35v%$)7O@9$apA9O z?m;AETzk+-huTI+b@xGBjzDPB!;wt~D6(moM=A{?$~bFmlh$OJqMHoU=PBln=-?K) zcb;a}#NHYCkp*X2o9Ko-tH;_zcZ0vrKzn$T1_l+)`#N=XUY=5k^0p1 z7Q`S=Hd>V3hTfENCSKdf^Wt2Mcx9xwk;P;OEPTMu_rfQ-uHLfzlr zv#?40AtG2)Hi@u}Oa-X=CRWwkWjMjBzJXN@_u@;2^U9c^idNP={JIMA71UdjQ=@N% zqHA-}aGH<5of-{>Lr36$hOVMhR7V?@PenULy%~zLc$p1Jxq}-=cHOXh&j`CT&eJ82 zjt2At-d?M>Ycn<6^JdkV>cXCGD^1ttM}}mDMY_AlAF63K_Tw56uRbuP)F5Z}9mws^NT_h#t{RvHpI~^LBO}*3T;9_Jmn69;^kmwYT zzHP%-<(Be1E>3RVjATMvf*VU4M}pDup*^@U&pyXTf{pkJcFQmPI1;d0n}+rTi?s?} zUdI(*6V8FsStCJxLQDd8Tyf=zA*RLtXA9j-T38%ojY>Ce92pIspAbwV_w^jrXbuGI)|a~BEo_zmSKRqGAASx$rKL7gj4R4mmEhKGG*8y=Q?^=Mx; zO&6}@Vzw(V7p#l2)d(lC=Yye`baslP>-{*vkyptMbmXY1Doyd>OUaX}2=ayW+%a@RUnq(MZGcMUm zHtm|MA8pP3PUgw?pd`y-)Ai&xGD>2iD@nR*^Q0dP4Zu=#(PTiOMr-(Ct6?&AdI3-$ zyC9U1Wdvkv(nYow?Q%Rsclz`7b--##F4u|e}dWxVp40jf38 zF0H}#-v#RrMujfR6 zJr{r789tBw`+WMBPC@k}F)|IgKD^_9@tB)1H-$H$+|=c(C*BUT^GSP_s*l2dkHLSB z#eb*lS?V4RHMv=1JE5$Xatn5jRg=S-_ z!V)%(ZN(O|jb1PgI9NkV-Lo>(9 zC^cX^$g8uMxzUuudoV)y5&UB?N%e8n#}k6yjURxZE22)iA31n()Wk@$gmWL(O89Xd zt6Rk}peK3>a(zbccoplI{Stm5;Rn)vcr`__=?K}}sB2Ozycb=S^_4|*`aB9jr@d(E z6KImGpXSw{#;S+LtXJ%E%vcm+w)jiU^tR$Ny`>K`y}>n8UPv>&L7VAP@tMB74>R5E znkg@&neNtR`mW+L{k`62x>grfj!DOV$NbGg#U7t34$8-S2Ss~Emwch-6108<5L$_X z;J)Gz+}k?@>(~xRwjZ`9FmjYEIHD@-SAs*8C^&vx9F89_IKrc#d&r%>yJCwR4S%Uo z4qfltYQmGyMNDw5>OO6-YyVkbFY_G&IGgmW4u3@Q>o75FaHg zg)a3El$Sz$@SGG%ul{Fz8&uj&cq1(ot|XkVal9}NC+fCqkQ23CZq8QPOWji^ke9B5 zH^nzZ%IOBSCY36?)Ln%Jwdtkq$y=pT8&_7kt5IpXF||~^hPL?4e5I(#+AiO4D<)qi zy}J}%jmqJ6{9|Z!;ge9(Jt>-(tzs{Q*HgPQezD?^a3}pW2Qr3FroYSO*|rpR;0-B39DQ4s9`a? z^o4$mO)^7UFhz=C#h1eGzZV(zyJ+M)#Oe4A zzl_Q`@cRI&7sD@^Pz9K#HTAF)P1a0i3=;h!^d$>!nK@JpY1v~>C^F`;XtZ2-U5~yC z;uS_*iC4p(J5mJ340sLiJr27sHyo|lsj2T*pHn>KomH|IekdO z7L^(j*%ABUsB@%}!(*P_l66;-ffUI1yD3tF>QM%Wx3GFDH&raoVHMocyMhvXBmmB> zHhJ_~>;(x589cLf`32m?OsAS-t!DyNbXm(C@|WYR>)=zw%RI_)m+Be9tms_|I}+7_4W=uo&k# zWSFDQ_kV2!18#kjU{K_@v5_vP7gK1TOHSYLu$*?w>8n4ij3&rm(v_EIplOu1Wtke-sJRnk&(xi5yNNZz_2Z+ zW1Q!Z(~dg7#&X)mM!KASpr3Mj_rr49EvG-B$!Xo|S=7`B5rEVXTHq)Y9;Pgz}=rS{Q~+IoyyP~r&_ocGTuhKPG|w~=)i z25K3M%b$I1jRjk4E$R-2X?h)tCpU(l65p_D%M1j}jy)iT6-|T2)KsU*uJP3u$;Qns z+GK%d7uP7-w-xn3Lt}seR@hmf$8)16BE-XE<$aABuGdZ0%9zba(5m2pGrVMs=Zopx zTM8Q{b2nbsydJSkbCr37Q_~#BoubMoOrn_^Q-uG)(zucGgCLBo+_itbsJ6TlRBDJ4 z$G+^S^R%Y)Z>1_=Tr3G z3+SI0;vXK0*rvbMhvpo@7on7{SCD?C`%KJg_EjZ)Fwz3Zw|ylh>C+UmY75<;Mz?K( z(lZ7Z2S)~P!GE{X|FRGIYmtB6I(R#CdT$pSEj=#0IkHLb^4UHPXaf{X$-t>mh`=mDpp?{qzYBgW7J65rT6zX*r| z^IpUr2Bw#IWq&KQUR7kw%a;+Y+xw2zsUjd|L+h;?TJg6+YpckZ3(JVsPT$e`k|H2x zLF-Bq&5~XDheGV#MMiz?G9vbkeMjv3i-4FBv5H}VSc79fS!C3YFC$_<-FL)(y$Fce z5DOJTaV&i(j{Wx{qkeZ85&J;j5qsF9%xyk-!zGnL?9EvayBeYZYMDf>{8Y$2zR1YO zppj3x>_sbh1p3aZ71(A-!ib?QIgUGyI-hz-D6ER6Hi+rA#lurpOXkzUx2JI-gy;6+ zm-t8LYByKdso>&Tz1&=6$-lH4Bb1AP^Qo9;k&mq!800HzFwC2k> zf0qr^ukNEk1h-sj&P$|M=2~syXt0f~wwRfaiVbG>YOqLb2HY}g$QkNIig_liZZnCZ zr?Dv}SM5b0l+ky(K!}iJL}$iujj9R!z;7TP;^+n?I#FvdlIg zi)PFIN}KKLY4HAJw%LH2z!T-E8A@maG0!gq!@HD_+6I|yPD%W6O!O5`Tf-)tD{akV zd%q? z<^&fnFxr;P%rL8YMfQ`Kg+l)YTfO{Lu>8Uci#Mgs&(PGTu1gLPDQ$kts+$vEt8=-4 z%t**{xTqjGI{H=+obYHL`+6Zb22C^OXE@bAiZ4F{A0=ykhK>G#^5$pYgPVd{7x7La zrB@gE8Qe^KAo4SW-vv9l^DwAM#qu!x6&m#+4?}e|Pr^WR2w4(_n?N--r5A`)3u~l2 zH}WdTl@5XVMYJWUo0?bQ6p?f}D8t3TQWDRVS?s|~r_O>9_{jmQJ3~#iY^J?@rn3m? zW0Xzd;F9Y=aan-qOr22bWA22-Jh+s(6ZTP~K`H!64)vBh;Wzmv5R}HZj&H$eI4F(64q9fELLowq zapa8Q#&P6y)Hx#${T15mo{~2NE*$X4aSG1lq3*@3Uh<{q?p3)FfXyTNaiZ_*>;uLc$k~lwJIVlL@bNwTVe1Y z0jJK($=n3YNN?>waOBw6kf~Vj%fBu>Z=w9u>c~GSVGsThn^baDeKmw1L**PvFMfvV z{?))yV)$vhiSb(N9%CXZdD4V*0iQs+*UXhEUhA<%Mt?LK`IP8huzL#nE`Z&nSgj`% zfiDYot*9)qsH{@8v@S0)k4u*k&sP?~b7Gv<-Xh=$G+S|6RB8wg$EM+^Gkrkhsv@X8 zh4kI#Ybi3x+->~*kqPmI>HSF)BB^b*q0ZJL#Iq_bRyAGEjGj@E+lkQlHD~4Pb1{X; z&h;8-1a7Cv?K8mpDHnMU8>P^A*kdgo_7L^eBOXV{A`Oi9<^n@J*zpHeBb;=8 zgT2;~JV(V_c4I#;P>9>_VK|>ermaIfu|o*%GcOoVMhJc|$`oi{w(#QL?F3JJi5g|+ ziN|o?8AaUlhjXNMc1AEhB2r=7>Imo)%eeOMndjQWh9`&h?|J{ih=xhpsmSODLt0uY z0l{TItFYoX%r?n1=n1a)vkLKZLj;$Z!zKe%M`}dX7VC)z1U6&vjFdAT7l;99ZG!gi z=@Q_d7>6X2Qj-9*oN`G3@96UJ0cp69J`aB*;ZTwWCAGR84kf0aA0aJAE+-Au;7*$B zK!5I1Vt*Y#C(XHJJe!Zgkd=F9#S-oMUXVNE=c72eqHx8lj;Fw~oSPxJdmu+&agw zJ#~bhVB;(zObkY{e=UQl>Cw@CaBZ|N_X6SdhIG-?r}$W|f)}ysra$K}z{H?2=NuJd z#_Vr}^xrE!-?#NX-<7mN9TQgNq$jXSYRVrkKIM-VnR2r9mlP4+7&q@75O2(F0L<-; zQIm>!VcwEt=%NmtI06e z&Os{nL9ZV~^ipZ0cl``kk+)LL>v>$yF$vRY(Oup00#d%0r>b;Gczbyo4}_LBZ5%&y zD7f*`r;i1tb10u>wKi29sLi9|KJuN=6(IIz6J71ScBWFB;jK2FJ;ZZg)*JOvRBg_o za~gy3Lkstm2BvUtm|C&4mw3LcQg7kzFjxlJGx^n`TgWiYZxwCpG$||*H<#Mw+8n#c zL|4Yf26pamFolBR8NpBc@GE8Nzlufz-J!g|WKG>;Hu@n6ms|rY(tI-Qo)8xx44@f%|nsIA>uv3IlVo`nmA;baN zsqE0lnkUYz*9!-%c1kFOkIj3%kmjIWD%>@W^_GP}@4w@9I*a17KTL{_6r1AX;9yiG zux*+q@AzccgfBi^LDU?&ik^LQNx<$Tmui(ZP%$cvqv|bH!fA` z12L3B)v1YW?6?J~qiU^zD#u$2{R{{=C(kTpK){*QXiy#-po;ex5bz{!yR!r4nMaua z#Bw%^*VSk%#Ov2QO1&`&NB=$+X2N!$DPj-t?sq9PA_P*-BTveO37NqHjU4d-+pWHA z!=vdX)Z@^FAyqF@EHz_wt0bd?rKHzzicK-Os&4Mf8zWFf-?}A?sk26m0AYe(=hhRS z$MEBD_c-dD-wQ`5G}=9<2{BwIPr;$|;#|g|O@21y0vtO7&gUfJppx)3>3A1jzVV*; z2)y&&h3CNf+n9`QB~E4mG7}1he!ZlZX`7{Dy)QpQr>wO1Tb=nQCY;}Y$R?ItRcGVy z8K|7Yx&J{__p>oai@9vQ*~LF!1V({;%bIVEN<1TXw3X~barS*hM*S)p`K&3uVD=js zF$*o&2qKE{n?pc2>YSEs9Vvv_eWZ(m*Q8)8vnXIkq@aX1r&##gQ|T1P%Wz`A3Cp?M zz2=_d19OokFBWaVAB{$i9gK>zFZja%h2%;0x59AA>c~GSvDi;zlS;1I3rh~8Z~tPC zP-3uT3?mMfbksS{L0E+yyFohttxZ9V$$$R-D4<|#IzLM%GO2wTT}T^Q)xHE2%;#bt z;XDqhQJRLT0t!xz?DP~-aE-%GCRd{oO>orkaMVzR6Re5Kw8QXoazP>D37%;+f|NX& z#S^$^sMyMG=w}0pC3psg@@)bnF+?l@;kM6gV8jjhV+r1A;Url|(3Ax`yqy|lX9pFS zXl=zH0Q*g0`eT`=(}T?7gZhQmJ&Y<|Y~YZ&KKyWcJxOT7S}sC+*-W~Or4>NheEp4t z%UBw_6%idSW2W_aUB*;{yNrJb*tpA>{dE9c#+&CFu-ML4DY|!JrZxxTZ+55gNV3y7 z-fchJ#!rZMTcT6gNHEoDFCbdKfdFL&3jb(r8AOZ0<@F^GoMI{`Cf8^5C9jS;>AwF# z?@NwT!Rbvt&Q*`!4s`vb#Mns@GJ5bRD~yJZr2ZTp<;P{<9i~WH_Xbx|JNAR=uT|v` z&HO_FwZRLN*TZ}Un)CY551_xPn)5E+bS|E;jTR&p*T8V<-vf>b2(mMpl#n-i< zjdAmFtzL~)061o$f@q>RL^pCIXL+M~-am@(4kRB%y92q32{Z|p_)-8p!#`BsTabMC zNFMnOCz4m;cpw+B!s7m~Xyh=!QE_$yT#Cj0&{NIMyplpXj{c8LEV-(Fpv~(z zT8Rni=UFC?4aZT07Q+Y^!-~TQ=csdfMuMx=Wp|Ri#gf5|4%XjEL6c`pzIJJcBF@Y6?LfY;)FBp-~z@ z?9<|OVF+CFAR+kLEL4bk0l?PTF_|@piv(*whv5nvy6N(yV!bcF%hTflx!dZHu&rn}6aDl+;fmJz$3DTdvoyUh0$ zfiDYo*O`k~9&qhqwYVNAGLwH>MofRd2&NNnGp~A_x!#l4p0)!CL|fi#Dm6rhV-IlD zxkQN0`|o%y4vQ2W2=R#z5}@=&k))|2RME>GA$`|)RtmAqUBllW`4+#Gt`bRK1F8HO zeGOk=Rr}&wd}1z|3un>=)F|zAqI`>wW`_^B6}PeDJ|coy0S{jmJD%ZHJYsm5YAA=I zZP(nHYu3V-c&*h4``t;*m*||9;v&19pX#ItZ^uYJ+bJy{;YuV__L=HAT#3)HP~u_~6O= zPzGwPVzSRgqr>ovBo6yqfw996#=S^@T(;ao;pcf)n^tA8=9Ta8W}NC;C?O`C~s=KKgthJAFRmAH_!>K8i-4RZRVnAc-#p z(BJuo%1b9cd{1;bQd87iR9X}LE`icY6kred0rOGnU$ax{=l)TAl;Wdklv=S-0))R5 zAZt$ZssVW^#D~pEq4eq^V#KXv9gv8T2cX2bBSzGuVi6->LZd!LjL;lH7BTV!P%Wg- zC}Je8;hGU6QYnQ==%^W9Q&@^4KQw zj9rL?*CQK8@HflYKpnwTh6kKlbk$sD3h2~pPsgQZTb#5` zUPUc-DVOTH*0!R?y1!AFYoz-nLYqMmM;Y;@v zxefHOM+NxqqJSTsv>@JbT?Hva=-U0};Nr31T4ZA9X<@D$3$E+bXDciR$vD_?djly# z+VrYft&X^=d7kdSjpfjyq$A}Pl4ndcIta=_ni2V|F$5Wf+K625=)by%(5vez`>=FI zf^*L-ojrs#GdjL$Y+$-k+dRH;Y|;lqMNE>i70qzy*B!vy%gCEgZt7o8%oP_}AnDTEq~%3XL4$ zF;uKu4*f9%`lWww9)NdQ-I@kTYtxp&GVf$lOs=Xs6!M01y$5~k-UOyB8R1+Jf{b99 z7=9d%Qb(Qq;aqkn$@(w(ILV9k@)UGQU+7C&J5TmkDLBi_*k?oaOn&=f(-03_#HEFP2Q#?wu1OQyBP zxg%)gkj7M;opU|GikDg)`6nfK^SgHL&#N3IW_(p*MAx1o@Cl?_PHuC= zOc7o6BBS5DjM!Z$hTWuyt``)6FAH`DqKK|YHP(xi(0EOe87wU$hF@0%!-TagNJk?c*v&JPFTr&2>?IK;T4&Z!wBp(2Of zLAqT3yA)ZHS*|yQqmv&noi{X?*O1Hir&f_nlgyQkpjl}n-=^{~u$;Lt{Iy8@+hQMA zH(D|X%ee(a{#9`pjlLC}N=IiAcNnnoiKZEXounzki4>Rj3% z;i)KQkCDD>JS&A=4VUtR(+RGMjIr{bsDUOniTfj|4;1fvq;xyA1&?qwc z+%jVK>BX>{v<1Ad2z*(vt5p9enn*8Fi|VySX7K7|#PI8jU^r3q|6vjE1cEKmPo;*) zaGVAlb&hulL4|+2MYpY$o>7%b-Nd*TlVEm9CFfTyos}qRqe}lyMMC~pDZ_N z`xY0j{)HN)`IA*N&$VQii@TaBGfcg* zU%Zeb92UkEy;FvVy~C)xdynzf)1m_ZFBfjarM{nAjc`Odi(Tr=3!`FVyGuXYk*D-$ zn1s(}L$nn4{fL%*X1g5s{Z1b;*L^1TdmJ^&&VEO?C3i7i;+eWj_8AIvTE!}A3~+wt z+4Z1Q$YK3@#S<_UrfS&_kJ1l@*!~ z>*m@$th#y6aJ2!AalLRQ{iIB=^r3M6wc@k>GM`44D}~?nkK()E!AH^Wcbp?(S#gdA z$WQ%43%?|2XJz~eJq87|pv#S#pQO5)tdsqGM(v4t&?-;17f_=?xj8`Y_82LB zpwe9K&IPP6-#!J69Ohdp*7?ysDVfI2l+f*l)tQ&MWx&H6n^W}JLiCiM;X_zAJgoXq4ub(zsGTW0 zxj+)$fu~!IaDaF`^A4oVR&kr%g`Yb}Kd56+-!dnOAiM#D@;-A%4sXC4EbRD&nBbDv zQKRf!qU)>H#s*@fi3y@7Yt56k#d#H_fXlYdO?uT8hBBf-tc zVNsdeGB{iAVAyhfaD-iY6v_XZl~!#U){q0A@9&qOp}uLGk|Co#{lBA5y6W{P2>T~{4e6-@DXtYYnl6S9vsJztT z!}mn3K4r=Kp&u|Gr5?ymssHnj;-eHFMWa+gmb{}zeQHIRmqL8loD@p0F1)C2_2qzg zQP+VKZZE2uRLqO|V<@M6^rF%nLgqz1A5;tJQ+iR4;QEQ_Ih86N%mqIcYI3UQ^la%l zt<>1%HQp~}O;fp~=)DYreNm(~wTTqq!flTMkr zz6e|+cgKv#2Nq0L+WRZWSx3cx=Dtd#fFa8j(GT79~)eIC_SD+#xlnbH1o_-#t$^8 z(V#pq<0N^I#1FhQ7qG%7dnXz>;s>Z$x7GN4vbsIiVSjy#)tPDdv4p(zYrTn0EV-&~ zs?8fe@HX_V+iBVMYQzsjXffgkVpwswog8)Y#}C+@Bx_83TU;N$AO&608}(dP&l5jz zCEq8wF)=93%r(kwmU8N;Y#$K226miiKN$%&4I|a+e3{+=#zrK!9A{L4X(JK08O=f^ zWWI*U>Rg!24dnh19Q|bup&eyF#d=>U9L?aCvUC;yQWN{W)tP@{!c+S_HnHTYI!A{e zM&%rl20uh~KSxJsF*rJg6$eK<>TD{&3<`U8hw0q?r4-a<=I(~jeM+r%)0xjf*^GFg z%=MPmG!m#9q$dqViqfE9|F~XcrDc=0HNpJyQ{m_IF_Tr3Sw>^~Q_;vF$f-Cx+k2kd zJm2cbKPkcT=dwv9SM7!6x1eu7%X5^Np)QHRHP;t`Paxg$L7F3G3a*(hGJ1I#u{%=? zyGg+{w-tde3wDo>lC!CGDaE$)H?_=OT4YWyUPheXRRrgW;Wocp1U!LqE8K=k4I$## zB^-4wiwjRYyD8NJ?IBKi)}$h?LzqHT(aatted~B^3c)gO9lP1JS1r}7bN`^{koeBA zl`<)_HieSVdX4;lV-X}-!fHFjUouRuFT;0ZKadjyplV#KjW zIO-J4&usUUz7KpZMYLqz2j-=@4N>-#`^>owXldbC^6}aXa>9wg8+zBGGdB&RugDVz zYdeDQ+m-S(S#tTg8f9b@be^F#U!oAfT8ZM_+j0?CoStuCyc^pjsMw&cSA=c4EGcn{lm+M-H#T-Zqml^w?*K~ zf?YfLn^;+Pv07f=E;5sEEhDD?xd^5cw}zh=0Z$;>+8U_T5FU=L!BOYJ9wnzDmEC#z zZqZ4hQ|8^`SC$NJaHEOzWZ9`55gvy|4kHp38wB*qDbEe93#^X(lM-s{d2CY2ReO>B z7ou;!?B^)SDEoI7flnaai_=W9zfxrM$z{auY%%O6$^P4mz?TKP>N-|RGPsu&nZZkz z5yLMpg5gA&|Mnu_2?Sd*pGpmp;gI=`Iw{HE>=x;QJV-&lDaif((Jiez(mfIKJ_h-b zGv3FTV^#ZdOY2(};*;ej$$fGE<{zk0n#)^-uRNB;E8u<>H}F-a%@726Xff_(9Wgvi zt<;Syo`Xeg(m%;Had8*xhgKsTTprEtVkON?jb}IY)1K~N{Ral~*-r?e;tm!ew9mB9 zaR=+ssFKTjt59@ zZjA(pSF1N_tx8MWF{4Ym&3%XztTpP6q6vy;+cH=!H>Yto4KMLdvr5aG&Fz`sTU{YB zWn#wLXSYV39OQ(*3Q{06E~K55NM-3x_0&+({iP9xdPwo6&>VKDKgYGT?R{lE24cy) z0=9~czY1pdt%Y5aHg6K1|ze5&bxsrdB&nqw}@jkJICkK((N!AH^VWO#2necwM& z-kTYG@MOgz11}vLljANrt<`HuYMF(KW=CxDNn!8eSc#?(T3Kke-am?uW_*;aG<&>% zpu9BWgZD(UN9xqjH(D3z3<9&tl75a~6cM-hq4r&dIxjmBukw%LBO)I~BjReVY)I(j zrvm8)|6q9u$tTbgA=gBDk&ALG=~oF3|4_g*{lNI>Q_oJHJN%>g=)*_R=;IZPFY^zS zmo|LxoU}==F0QP(RhI*DW$i9(Anq$`YErQ)Yi%^@kt2I7#&??d5nf_7zoq0ubY zD~%4GUc)7;x$^96Wg14{g-U(8QlF|-L`FQQ9m~+OTBv{S1l@iM_Yp>*4g)!V zCK?+T%TC{V>9yBgddWpQFWov8Jhe7A$D<798~a$0K`_(7`B@}R0(4oct0{l6=#*C) zQ%+t_WJKEqVr%3F+>$A5t4fJq{qWi@{)IU4*~cJV#&_wj=R|*Hvt01G~#MI*c6VkFsc5%1P#vEULQ{nUR}yjzib zJ^BH60cR=UOq8r(c~9^w&h+Vy8Bg%PjQIB;$j2UGI${`iK6Y0 z(|F*l0!bVzS5&&NI82*+hpC5DBu^2Rym;P&KKT9{MxL!Y+|q5`hdcX0c=1~n89 zK$f9|a@Q&3LH{~bg5>SMLb3_mp>7_$TO?@rRsk(&x4cQ}KavNn(&PTe)M!xdm}J=M z#4_nu?~v)@uF} z|Bl7n@K^F4m&_kP-@50S2_oZ?d4v|@N^T4*j>s8Do&1-~?M{;S77CJ~ z0EoX%K^N7dB=uil^*oo%ahefFA+9K~eD&;>`PJ-9L2>X>lFDe3=V|LBt}cmiU5^^| zxU)=dOQt#wXOYrL$Wy={459nPCE|gn8YM ziuJzyLRY`r=e_RtJgZy(6a^zcn@usfYA=lZ0`%=?WR9SWk-cvy0-qp(6&YoYm?^UN z-9<+K{bj`Ndy8Q=DYEy|Mc~VVUF%|>U}39N$(t`1na7uw5zqG)!E<7K?|&2lPoUX~ z@1;^hj5y@IqfWu=es)jk`#?2?DCR!k?~mes{~}%Wk5Ks3V}^(I?p2`hTD@2cU)hoiVi7QWp4ABZ;}-L2=e(dO>0$Tn=PFXD&%tbb zHb)|rh$tpf^_i=3L=;b3Xv@T1Wone2yVjd;JTuoEq8Yet*j7_Ox7bt9iR~;Av?M$`w2<&3}rC9l_J=faP^SQVs5a{Byv@9gys=Yz|1_vFpwGcvibvo@s2V zH=6V1x$JJo(>-oSt;2pe9EXh=@?9qKEW&wI#Rd8;8^<71rT!dF#Yg*Cq;C$zL(Vbf zwF!;aq4*0-+_$+~4xXQ}>ZU`n2j|-(i%S542EQ#gK3GGNg4PXSwAM!mS##c)ftr2n2kLo?3j2=M~=)AfGtW&d+lN z3P+8US_+r%%8SeJ52yvteXb_B%%0ef=b5Fnf&3{o8kA}VZF~oZC-&>PfEE6%ub`2` zpGC#KQ>kgPPD%Iu1FJJrWwO?t^u#{ECYD@PKhfs(#QrDx){n7F<{6&Y2rY(BD~1(^ zjnh#lzbDr2BzYSnvn3gh{w@VwRF6Edf5Yl|Jh4w;dWoLr`}#^dK%5F*2VZEw{y<_o zxMb@#64~u4LRDDMinQPvPT3TVr}PAq$&!gp)&RkVAfe&|)xb3@Z+Xb<{aMBgxfvV0V(vu&1P;D>K7BnEbMB z0Ht$bGB;=(y}&Sm&DZqHQnB8bZSXWjaAv>komRL0DGJ_x0h?lS)n0h}CFtAF+Z;hA zyoqU8f2Rn1f&`Z7)f_RCU-plRjQ-wb#O?=*VK>Py`?(_UWx=lHflc$ve!a*%?p;Pa z|3eWxC;DZ7R0KSMX3H;2rG^-BYypls1^u#iPwD%>dRr}(X9X;11NU~I=Jwo_phpAE8nMCX6DKDpd}b%`?ZBz8L7M|Vkf5k z>GdS_36;61@8vz|fs|H|TpmbiXH%4Qcp%y7!s~&g8r%cg*txh(Yt%<2dWoCvlGi@2) zxN+l1&}kvzQmwvk0wFpL{JIZ`mvH4|veBxw7q_57tzK)_AmaIzlmn2D>GNPjT~RSt za7H)lXQNIIIx5FAFdeCpRC-yAG9`q+7Qx+vk5wTr{3`Y5@UcE+c{oeB%Z%%uk4zeh zRW>hC`s-rrO0J-A_yaEvy`J6gp{Y-ku)K%gWz|j3?rOd=1ttu~VM4a1BhK?J81H;n zqG?8l?t1?yK8GP6MRORgB-tZ5nSUtsKi)r3UUwlMJb5F|K$7F)LefQ^!%$5E#r{?> zZSlk8^XZ4o>EA21*7>e*>` zhkq0w?f57f?Gj#if0=)XycFWY_C%rM9m<7kWvw&oMa*awD`tF$A5|e(H{(P?L&9P<#T7`WQh$a|l@k z#ScNXkUnJu#Zj6bX9iG6H4DawPoV*+zo`KfTjkC2G8FcycB463?%?0bEW#mMwS5&k zy-~ASnJc$hwx4=qUzt*{s)&mIbfy;Ie|b69a`jS(MfgdAnEnNB3W_e)& z&c|}I(Lrt|!ezbE-rs26%o8{*GywJ_Zqv^L33RS$j?N&@PJJ3hJiw%}U;^FGE*0pj zHv7~u59o)1`cBZZCSwxD@~qX>l#eeuGrStr)J3edY`<*wXVi zo#E=Z#EXctKdRMy zeT0%8Yyb+c;dRuX!v^pOC(j7|%{aoZ<~7+*=7C-R1;=ywseq|@f$<)0D`=YIFkWWW z&BORgS`LnBt8z@5f2b)xyZDrE?|sULi?!>Rweb@s9(}91zpnV)UtMJG$yB_zu(ETRj4hDMI)LMqmM6aHANlyKN%&o?{sGPw+gU57@# zO-=W$<_(8E9)0URRVHeTaM%bfMs#5eD~`|-N1goPuy!ZOy9Y&!kZb=ZjE-K+vT)e{ zRmj5)Q2KcmH=+I*;jdn8;fh>bAlUO##s%2I%}_xq&d#2m z>_azM9eEKbS@T9VspP6UYlf$za*n{)y{PVI%?Kq1YsN6*U`0iuJyF z5~IIwb>^R#2xNT+n^Cg=-bb$5n2phjbX*XtByLQ%!F6Ow7W@X-It{x%w%1E ze-xhg{dB=Bqi#t3uuVjk3K)vCDPLz*`x2h_{akD%!t=gIjnXtF6`r@FB=!$HcGaFX z6Q@Y6UT!f7DtAzxYt(0%*+!~IM&#acNSizkuds8tApZKN3G^Oy~pRYKitDb%wrBLHh@hnKKJ{$X<>C~r~4{51Vebk;M+J(A!4`H@h zp0BklW7J$mGNSor9&fGs!z&xIeYyHrv_ECf5^bEr)%DfGIQv#hFtxr1Jbs3m(YI9H zC=0q9H_tbwH}6&Bwi}Bmsm!(ZZVq-f$ODFtV75|6?r69KV{5&8a&iycZrD0Zy{Z!a zHmwtGdp_PVsJ5csOf})Wl+0oBX{q{Vek5JJusDi20*OGNhKR64MDR$fe30VqpCWZylbes0iC}(YQe_)AZ##&)Bb#!nEnaCO=qrhKCWFS^*WGZ$4sCebe5#?Rp9DP*~Ly{-`@2Lg% zq)WExgF&^z z;@y_m1D{Uk=f=E~X5th=A%8=~0{`u0fsBsQpG2K>zxhyFZBDk}-b&*c+vDPNmb7vG zq_BU)7E@T8+fv4~RSNsz;nbhQovOVaYdRtIAB=cl?FZ7^`LncY;=kdYxYu=hGMf6V z%+fjcX)ejvXRI!Kd2VDB_2r#A!8fGVhG=bWh-8pY&M$RWK~<C62;29e?-&iW)zSijY&>;ALxyF9^4pAvI99$_I(Ve+)BwPp2MofMw=tSV<_8+dThJ4EEbrS6+c5om_XbX(d+-m=(;HK8$N1P ziHmaUV*k3~VO2x91_o52X5D!p7gWM6@UK=QXsUzUEs#E8#Upkv={)isjO$ZjH69_v z_nAj>82?YWumGd7PSFPs#&ATrOIBIZYbHrMe-_4*o{MC@z(9MMsBGoMF{# z6sH>8DE>6S#*O0auQa3htLacM$j>#!t%=M$bmeq;cB0*wV2VnwhM^0hb6mC)6U^>v z@P3$tj@3KF+s3mG9#c>UBu?H~GMa*(9(B_F>O;yDq|?nASHIS*A@Y?Qg-Q-SFG7>c z@|w}`qi`KQm-=%Ueh$O^1oO7Ml7bt!40eWyb2l z;NwQZuh8K00?glS@KIBZ8GPo@XxR-uG&64S`7HfKpVHv7PUln8)FW97x^W#XNJ6BV zdM>=YGDr96q)(D;JFo#D`A0k0deLP8d>#u`Dx@=%I&F$<43S}=*KQR1{-v0?+>^XY zGkH25>e36;{G6iZ@&<WwsEk{O=a(gV;-htU`vO*jy4>*Qt!XqyKD;LPZ zEb${Wa+oEkSl^fZW{H%*@U>4gJM%6CX_#1pMm`Cy>*{$86YJ2ouBkK8WEdtmS}fxW z5jirxun)D^Pb&hWK)!W^F-Kj+*h&s7zSOwq6dCu-9JmcnLFMe{pzvH&&yQO&iiwa6 z(>}JN2z(jv8eVZ6yb@etTCqbj3QQCk@M&n2m09y5lqOmLp(7EiQc79HF#C$Y*9$^l zSY*KG9XtsA?IQ4HKxlVOw1>#0p_M3tzPHHu?^;Iuz7KupX4u4(v7apho zP0e9fcGNk$*ygP$WcTT{rZ5B057@5k-zSAZm~@tm2B7;`)xH>nf0BzT!XW&g)F``p z^+chXlQlTWwC{29NcG7GA3t(rpYOON(jsFYO4_rwC6F)aN6V@ zu7xpeGIqb|>~k1q;@gfiTQSk3&+L=KRy=N@%#UZmMq|_{I~!>}GfU9|fovbzw#*aK z_0ODJx){|jBQH*;Arlo(Os^+x#e}$AwDxkEv=z%Eojm6H8wp#nJk={YI&8&E^Yq$^ zsRp+dF9J4hD`tNkKwI%%5tm#+G+{yvX0I0H>+)KV)2Gx2yYjBXRvdCj`bec6TQ-dZ zS8o}|i%gXT|7=$BM`;jMg-E!mT#<8Q98 zDZGw`_oFH7gjt>t{j`4+UwTD8ik4n+1qTlr4E|C)^(Frhc@r!0VUss>%Zu_}jte7I z(qRz%PD)%IQQ~S1fbaPM@FlwZE+0J$CH}`hijNX}6rB>TB+QOq6zEU!gYKj1b=j#p?H|QQRX&PF)gv|CQG#fc zDd3v^Ve`_JPo*ciu6OIYE`lDZRgK`(%M_e1@x$pO;tR7A@pb-Dd_?4U1@-Q5) zBxLMw158V^-@EE-~J-R4%xcF6q6MZX?e&PqoN1q>Nr_W&*dsPe{efTIE zeW1HY#aP#3j`a_bmo|LZo@n#Pq~pAcRCvxSI{Qobj50;CVLzlklAVsG85Ngv{iFCu z#z)aewpKT0Na)N$1>QFQz6rA^u z;-erRMWf&*I~PA^iR{h@!*yj0{9>4}O*3(80Xri*$5s!jx+R;0lD3qN>1 z%6&RJ<-Xz{#YZ_libgr_%M}0YA1E)i_~1QJYfWTmcF}1i{VFNMKNM~L*AI-3Hvf~I zHft{_tcLJWveM>c|3GYAi(fPBdEf5Mi2G z$nJz+4ho0#DMN%GpKg3N1Bay%9HFK!K|h%Shp##HI=pkxn8yWUIa~|3!j(5Kn1a)& zJQrOp1d>&pGGbCjczrq@bi0Aa;k1^*G=I> zJJ=FDt5Yd`69h5rLb`M9!qI!8A571rHU0v_YPga^s zJCGBkJXx8;AFJz){fOsZx>LF!J_j5km_Q(y-f>X~R;i12{SRE$`>Pc^sIzx(2qeQl zjQin;*xtK$EV!J?i4njUxJl5iRaz9~yBUGm)y;b)J@z6cZDpV-MF#xN`|H6>voX(_ zG9?M5KnAr6L;_MQV~0jSH!hpw=DO%=p*$c+#X4gRrHtV(oCedZ+h~+lX9{;0s<_(@ zLL(spq|x5JSMS|Bz^~Fbrlva0fU+K7zWb{+RNlMSwk+-CgNfn>`mQuOkaYFw0RUZV zB6Ze$C4ko)Wk3X<0RwFB-WxXtjb<=DHYSW8d-m={jC-{*!0gVoDZES6Zb|SI_wf-` zPXl}R#w^g(lfVo3+-?ClG;=2E4q(2rzT$01Gi@N|?f`|k1_f8mYR&_izvgypEr)u> zxbCqrZjp=UD1(c%4xevzn9S=GjU^Jr(JWXr{z-}4s0|UD^NWts1j#Wr-^wW;Avsy= z>NUA$`$CL^6&B6*{2rEsHVHpG$Hf@T84W}CdFA{DRGHS@d1896KI9OnUid#5ChFf0v!YY% zLaj-2zlQA6cu;Kra-zQYg{ykP<_bM*+eT!v=>W`3*FUB5dPI`)dNnY(6B|;q((W|t zID%?7S-BplpJd8yXj?puQVnU8a7q}m5-B+{BSE8->M>yrD&rLLap689W#wv4*4j-< z(p0K9>O63BNL{yu(!8%WU6~%hX{sD7EFue69j)h}vd`hgrCPg+BQrW`&UWUZEwcRY zOgc~+9olE-J9F*Y!W?pa(e>Pc8Jwvb&9Q(W=2|tya5ig`9r`)0nR68|!cDCX@L9VS zX_%yiw-zc>wHX}IxjwGc!O>h;)wp}gVi%JO&nkj{$)y|fl1`h}&DOO1YfZ=mf`#dx zhYJ?aI`qSN#NNG}S>)VT(x=w^_MYbR#s@VIYGB5&WQfjnhCUu`h^x6au61))E^G-& z8By<8wsGsrKPhB*C)ez3-ddlq64icYPcgIDJT^gWcE3-n zTiSZ&>2*^QXb@qeDl61ja0LmgR)r4G&a8t2YD0-+9y>gvCmDnuovFDrZdW1Mg#2X5 zEg`Z=4g$}PT$hl>Lu7@x2C}fZA6O4qrC>5LOH#thG7jiSI25$X^9yqob{M9lm1MgL z>I-AF`iv55uXxY_uCd~uSbSuP&PRDrBzg111SD#Me8L(elOUv-F+q4qKZv0?+lDwZ zXFt;5>}5^>`ORD?6IZhCqeg==1f8NGdV5jtu{+e$WILGgkJe@Ma-LvuBWYveh3@~! z1&~OK@KebH=52H;)^Aw&(;|2tBwKf>*^!?y#UoEgqLJ@fpME7RZ%Tw?(6@dejk#is zln4<@j9iT|j5zMpI_jL@q^epgc9XQVvOfF~qnH@Bh%aLOjXjCax1F5a7J;yLzF zF4rgVOnapQJM4Z+CNnbwvoZ8pFL!of+>rrRx|wHNE>89ok`bL5oRgX(_fj8I}QXAC0_=5*9KM=@tEvMctrJ56WbC#Il} z&WQAsUMl;(QRylCl3jrG|1F+p_iFq>f>fT$aENM(1T?KcUd5xb!RUZD$TSOR9X$0i z8Qu+PzO0L?=(s?KP_Ai|XDaO)?;l#0Y9Ccpo zWwHD3cr9m_`|o%iu^GN24x%DbV*AHxiYoR*)0g8*Qb>|{IZkQIk=sHY>v3kTQHJ}B z`P#Vm4rc%yDmt)+K<77nY~-4Y+=9%r=3G<`JF8e#j$ag}zLAT6#j^SuLso2AQE{J^ z)sL*MlGh5YcCoB}z^0X4wU=e}6ZGw0RuNK+WfjATV_7-sTqc)QubiSNZI6<^Ccct_ z&&+G$Ce5Rpc{RWAfk!Kf{PP)?gJC=u3&AK;h#B5yvTZU0X*SCblcGg-?K2tu51yGctxLvU-Q*>Jxt zANSfyP0NlI(QGLDaxtFR5}FK8u`Pj$v#*C$3?ow25?_jXFR?mHW^-**coCaea@Af| z#7oh)e?@S#mxw-$jvOw~QG5P%(@q z<-Yqu5%{uTG~xQxKNK17Ys-kwZx+F4c*!GFs>D4SyZodGcmkbPYBnl01cPH!aMZb= zCkd$--|jknBWR>hDf32fg@~wAMyKuNTWa&2d5Xldj|3`04?6?=T=eai?GZ{0 zZ6}5i2V*hChQAy2yG(D1oCUz&_sW5K00a(W@Qb>JB) zL(@nwh!@r;J9Be`_!Ez`QGE8`?PNIUv?|R}VTGzpk5Eu7KR1&LZvd~k&5Jb3A`rJ( zyA{5-kQFX6RjP#&6{d?BjLnWA1=S2(gKb3T?i|`I!Ys(E#?RYh^i!!!Ii)6%WeS<8 zcFNpOMv7+RhN(PjXb90H=zK0V7rIrAQ7NWdQE~RQ=e1%z$LcD1NoktZv)HtftM;<` zo`=5ut1m)|vHD^-ajZT^oo~pqhL2HUypqYpV7nS2W0qi7`6*ZypARyoRWiZ`K3zu4 zq>wqYjCdMf66_kUCL?xGz(GKz@V?e@CkJbNn!C5zFIej7GQznR8uy0Hb!p!v{*zn_ zK&;CTGR(x*B^CE+UH+BTRq|rf*5&8fw34g#vM#@fzWwVmLW;32V>ofFOGlmSvM@)k zb*Z0z>;co)!XKreHuGAznXd(Yu{yRG5T;U}E;kYHSJ_u%!Eyaw8s@!hu{O*?B{NoC zZZdQ-YY`WU#jyg7910^9_i1sQY<1a)( z-yL<%DnxoE#_TTBdHBi{zsjoi<;{Zs%EewHvhl~%C@r#4 zJ#GCVZj|fq)7E@d<0|o-9mul-5jb>Ql2QV$Ap|4i&ILscv!7tefN6v-Ht&@8ESM1y z1{89i&Q$Chsk*AVnpD72H42jJ-Y`7OAR8VIO2c&RWVl}scXQuI zgu(FGD}ZnsJv1I}SQAY^I!nYO-D(M}r|c z(O|*0-e)wZ27gB5Z9oHmMuYuz0H4vgn(Z(2=rVg6vDYUvF3kI6hBGq zH)1!Umm%3R64HP0h9kAa4IA@LT}qJr4b^J?Q?XVg`yCinR?mIq|?*I0G)rH8fRkvz7X1X#xG4;K~WB8k2gCH|*41V80d z%JS&I5m%bZfVsj#Uk*b)O4dAi>-_`e&6CFmPu`B4L`ttN^5nT0_*a-G@2@~ncb+^o z)mWaq51`Sq=gFg)g)C3rR!}&kPnjq07*qI|Iq{@mzzX^h+K@tu3wk%KRa=fc??oDP z_fpSe+FI6uC<+C~PX3~Cx!Ei)lDm#xGnQ+vPra!Xd!?7ftwbS|Tj8O~0Z$F-kEjRxg51-akj9nmi1`Jlh1mW$?E4Z*zuOTgfHV3O=9Fts%HSEilD z*pz+q)?7#wCfI#wOG{q0=(1@gSJjQMd2gn^ z0)6X7SSI|8o2d~}3?pm|Ck`X5qt0zxfgB_lp*$xLZzRb$C*&}^3?#CV!%SnakrHwC z)RK2pd4z4H5P|B^6~YBpPZ{^P^jAp|yVnYpiFw&5+-e6Bw}@x#qtHZTOqgLmu%uS> z;9eB8h!73FHnBh`dc(OoB0Y>0PUw}kVyIZ}%fCWA zZnyiaj{K7nZsxDDNhMd+*GKp^RL*fZ_8X|~UmqMLW(@dBqH81r*oQ*=kBh)45burn z^yc1Pb(Kk?WONa^1!fOLBi|9C7t9`xzO!H!+-pdl7_T`bkE6~Lw3yFat4k5i?loO# zd_09SO`+lMkGw$h>HSGN8Yu)B?Pxc!s(tYSU73r^gcs;CYLuqCDDC+ot_$Pc>V&7m zSvIV37S)C~W07=~UF)IC)fI%SFvv`o^&D?aKd2sn=pBX5}+tn|y(B>Ccf{~s}jj}TmE_u;$3VKMZ zT3)CGr5#9B9GMW$7#H?Kdou$CSFx5FYuufAx;=EoxpP|2p^}_=JOII5@BZUn0!zNI=%v}Ol8D%aBuv{|NJGyj!Ny~-wKKL66 z=a)2QDS7H}elca*>-?e`-1$|y8h<_K7&sK!UkA|n^;GrP!~{<_Js}d-_38(^BCj(k zaVGt6iQSRdyY!Cj6wk7^#53!)IbLD6c1y51yNxJpI69*v zF1Ru7{>Bw|2ls7soN*tW|2ehXT3*$;b?f$XnZJHC_N!Y}r_T3Vbxz&7Ri{V`_dnqz zuBN3>ByuSliOcw;M`|a3DwQ5i3(HF+Z$Kd;4{^`WTr?ikomFb;dZe^Ij@FtQjhmn- ze3cBbpxbFF6p>ttMkHK^y;SLN2-xh0D{aw2L+J5LJyDzEy2%N4-CMV&rDt_0o zBej`93?W0cF;<@$ha)){=&d=;W9c^GZb~@DDknftR~ls+KiNWb6S#4725tlp_W`KO zNB@{jP~GPvdAm>T!&rjfkm-cBauL8I@nHKj>ZS3dli)52*ms~I0y_^TX6o!4n;1nH zOLelxVN+WT~C8Z-eVAkb*!GW6_9^8feN-S#KN}B*CU^HW}`IK z#9JL9hE26D_H2~ljvnZFc#{NP$%Dp+Lse(-a+2}!YNrbQj~_CdYL1uHCAjeA2BE|K zF>?0OTOkUbZ^y#3+;^s=!QX7ww2I z{jk1ph#M_!ack)g^Ci{1G9}+_Qvz2xbo1Oc#foapT4goMT*|iQ2=b;=)P-$i+)q%e zRY>cZdE3;Z3bp6Y=C-LWl;Uoi+LQ||aobeN-oxbmMn?Az=29C7vL|*gif+%M#SY7il*^6z-*ejuhX~cIc8NCH0ZGn zY|t-da0Iswt`wE}Q6db#g6Qtdo7u}VpDyLi=f`0_>7{OhKhu@2Z+5rv}41j zD_HM@{U4<#48w*zc4ZsCf*$uPsTy_+@v9lqDv}b9;f-S*Lo&d8n%{#7BU{{q2^HwK zV2UAZ++-z>*om)1T?g*ol#3^^E&6p($Z>E0ll9Ng_C^?M(=c^#-~(1wv_%lxckgG- z@@LieY~?*T@FA#M-#^3FbBu!nDJaJNnJ!Em+jkv#zTSOsAhV~M#{v4_=e2*jJyqE= zTl*|~c1Z2j89d8v#;;`gh_eZYUZi4wUC8c0EMX{D*Ep&@c#w))t$!r`EeO#&y}$e6 zW>YbMe#u*ApDVy*y)JqH5$6iloM%=nO+Jn&49OnuSgu3bBlR{z) zpDsik!^e?lrNO4^Yj)P`zV_dYDH1<+4koj&eUb++;c<7+^h+zw?#*HwY}bpWx}**V z(aIAETw%NwZqG_X2E&G=@kak3J3J$zJL$I=r-6H5o&j&h?7Gl;9p-p!&d0@HUb_N< z_^<;3>=I_!5WHRwaSZJen}Y|sKbn<}E^QiI2Rlu6xNn4zvu*E=gwu0%OEFeXVcinm zY0ZtWm>fP<$Oy%kTUC*4%d;XoS+o3Ei;R{lpl*7!a8N9V$~Hg?@a^5u?HC;e^yDd= z?~mMad0+H_Cm_bE7o6q7YUfOS|9Q}wFAYc6G{uQYLv zJlFrxXA_ESyLs7Dv?pdT9r`-3b1{5n(3ghDZ~*LeY|~blor$>{ep_H)W|L|IKMule zrn9A8Gi5CQsZV4=_FVm0%<`THg&a!?m~3=taxTKd56Br1TVGHeYo}FJ&@g){YnDH2ky+klP&Ylx zOF=Q-iMlXx401=FA9|J)^ghhi3~+bBpL-uxwA)Bz+mn+sI1jZab6=FBDqUwT4ZyA+ z+-!k;(-ZVm7#4X9rL<*hf4e!+ffFgr!oa}hLwXj!b%C|On{L#x7I^LJ!vicJNt%U0 z6o^%n2H+z+Hx+|yWk{N$QjNV4Lfh735E7%pHrqAQhi0jrOqEM`M#gC)94qHyBs!ib zes0S(EQPhWl~L67PKe3j)?x|hD<>lCZ`G(*S{3;Xfaa24&Kl*Ys$|iIgY%!0O>lsRIjc3Ea??z)mH0BZ``O_4${Q7eOJ%tP7LF?P$i$s)t*Z z(G3%?H;1r>`LhDv@K0xF-CkBDvlBF$n%;%o9?JOldVSf*#6x@jqPL8D_NY& z;VgQTz5ZOT?f{_d~MI!0Ne{8@{Plu4+Y z9w{6WbJpQq$GbL0KLI*9<50_X!c?jR)u&$&BmLGMqI-KBy1sS1SHrF&seF8lXUDaTcD9Kl8X${L!QR9v$qgnvcHEcTgP;kjoBA} zX$`sBDokQ5Z&XPeaxCu^Ik8lo!ftwSr`QCYVkd)xY_QfT{8e|~mm)SeW6wK6;6v>w zLjQtc`VP%*kn|g9jC1)7fAi7AU&ilCk*C9Qg^ZHNF_mv{gp6YQq{xs_n1hFm`e)FM zhm2x>{Q*Npoe3+!3l${lq`X0*G}#Lg7HUkZZvc+);aRkiM!7m!8Ev-OBV*0-#01=& za?$XnV~&A<+^{S(++S_%9;r4OO?bK+7TR~0Tcgc(wKF>m8JIs!>LdIU+n-qEr%#Dd zCOfV(59s`7WPBIKR^r08)SkD_q*2sN)GBa zzAk!}KsKoq`&;R>jn;{Z12P;=(Rs8KiXtvWqiD71Y@}XxvQqI1T6kXCc!LVjwnFod zF20th&!u)+ic)Mhtr*2!E1bIxfCSbH(>1BNvo2{R)399t_FZB;7u*;LFN~c%&DJi?+jJAi z9EI(iEb0l&Mp_#t;Ku95I3!gY)A%``#n@3)E@YL8(7ubP38{n7+Hx$xBj702dwlfw zk$GAv7uk=*LjCf!2xG?m>r1t*mk$g;U)Z!BV=rwQT+a^Z z;{UT`2n7wvn+MnT;gSOUKkm=FLhRDRU_h=D!cbj1J>jbz67IuOzEEAebh11pT=JX} zhMSTgBd$y&5KE`=^m41o_w@BaeYi~z)-aM*HEE1NB!HyTs_rcfKx?Y7?H86g%B?nh zkihsx5U8gLpUz7cRmyPbd%Mz{sgJ{U7PZq4br^tC(X~N#gn6I_Ya#A~U;dXr@jcd` zL3QpEb9Ec>N&Yw}{)|tX%V9YO2H^$TiX5)j}q0dZA|_1J-Hmd zIivSrKD>KvBg;peZ~i5?Dz@d=xs}Fz5#`59FPtuqRVS)t*a%#%f-z~8AeUGd#cjl9 znW4UI4Y*K-<&!a6T6~)u%zxncDp(w}Q5&?04?BlC)OR{mHeMc`nVf_}59{HSYjcD> z>1Q!uWZV*2={PRK!dK7gSOuPgQn0;lyg3CQNvrTfZp4Gbu*oPKcy(?EA{G&D1{`&3 z;UBm7$v{}18#ws(HziEg>!K|Wu?6{Ft0KBlV%yw{Sfl(|b-Pm=gUmUOaK99?({_hL z61W-Ytuguu(2H*d`e2Oo_dy|Q5wZxn55%GC+YI!T82v)fJv7}6WSRoGbl`oi4C0St z+V+DUV*isE?7bU=mOj$$@ zmZH9TLF&R;bEsR|bCjk>qKdWXs{7aqXZzFZGWt%iKi$ORg*d$_F18CF8W~AsQ?8C9 z+|ULns(#o_Yd!6_KQ@iVI0VW%CkT!>~<3F`3q8lYtB|s-J4YK2h$4EZ}3iaxB;z+1F0$raS-xQ-?2)cdg>qPo#RZmib>Xeuk zJh6uepBjU(*MeUbqn-fRvf!9%m<)#ncjQ^?GJ*yAe;?DYH|Rb9bw{A<^8{as z(JusDHFw8BESHn4R5iSQ9Mg^;^bqHt#Nh1p2TLz8jkv#WXww-1v*iykHOn73@|;}A zf-0iys@(BNso^GP|em}2Q+dQ~bX9jM8X%Cg~<1&kN1A*3)7HpPiV?-?2 z{xUktJaOsFQ`zk?eOR*8#+@_#&LUQUblzeYKYSn>FOO8=TM&k_8i9}CgWOD9FP%bV z8M@^G^+jy%BzfYjG@u{&;-Pmkj%4x5QwVF9BI4agmog8vU73qsab)RoDCAhz!(@Fh zM;~gNwko0xj5ySmHtKOg~ zhgeMZkCbKW82z$gdLypc_9e$o|T6T2M83p!S)QVHdzadS-7!r#Z{+k7?sy8`z&4 z#JP1iJ~v;k9C^h&?s}RVOv?+BZccKhg6pEky#ml zy@~$>ZtiH?gC8Rk<~D4F>b72`giY6*oepdoxoT_aeDP-*`Mk{r^niMgn>*ZFoMkmG zuBk2F$vr&0fFIN?P%~8fVn)~>EPH@CItD5)vNll_xM5-~8MXKxp2zlVeZPYRunKyKTv$MROaKLMdHC-aAOk?fDwpQ&#y$ zClpBJZIymT;C;}$|A!4U!0lisE6NmMMjbiT6=lcLaH?#Cs(+o9VA9?N3jtTIPzwQk z&R01UR|O6SltuTHwao1Y=RaYuZhIc15q$o)`z)F}0^pjdm*F~|>SQaKs&>jlvQN#= z9nK$aa6GFl+tHa%&<NR z+~sL=xcfDZ;aU&Dn`kKtx*JI7$YZ(Bgrbzgwa%VpSpT1Z}=xZpxO9qRFMF2)Xa z<&}!MA1c-Nz0{m-n)7thR4js`U`#_s+(EPyibXCZgvAmqBrl6xa3K~C>Yk9e2t2^f zCduo5polw>)|MK6$AuGj1}%jmj!V&q^PCNTDlH-}ZCq?2+6F@Bj4m=C6Hr+48ny%C17eS$b)8nqyo7#m~`?A_a z@PABrjU5nw2k^vx$^+tSyC(GJG4WmKPWhYc#lo|KpSV<;naR&k>ec(@@`Q1vT*rgP zc%LhNa=>d^P#heEVlT1m2fxy#U7DF@$2r9r&gN(h-u~E0Of11alNrVEP13kF8t#VY z(;blwUKH7JP&{jDdDV0Q;Lo6?YK*;y9Al1Uh(DwEOjsznPpD_C;;iGJRQbC-d;jNM zK`sJ_uB0M>9yph$hywQ$dBLrH97_zIz0}wA11~6FJyXR`yzO!V!PpvUuX8+64f%3x zL-sQo(&JO_KgrWddFuT~Sg2pVyyJYc(5d&iZ>6u-@QofnZ*!}`K6k6tKb46;hHDTy z{7`xYZ;XQDoTa1#mI7`w0It&9Lwqk?-)yy9AID`!IDbAfH9f1Ys}dn>o1+jRK?Jub zK|EV_932j3LYP{1l)O(~y9ePD64-gy-i3RwQ7pS*hS$Q3RB5UTkrzOe+{OnV{oPx$ z(^g7<>|8qNyNr4tundMg>A4IFIX=Z>vc8h7K00vwZ*Esxq0u3mXr!tB{wS+r^QFaZ zq}ZzcaMnnFR{i@y-V^6XLEZWmGUhUk6Xz*J#)kKH`{l-KvOglo)JP z)+m2geX!Mzh0LyxbL`t4o0PKb9azLKcVJo!+3CT?Au-L1cQ@>fG5QJ6i=T_QD@OVq zP>5QjErRadap?MX!@e;_zYuh-eXnA-xs|G{%X?zlabFK{zCQ+M?{3)7$EYV@wsyl} zs$n=BKFN`1D5q^y)Yz3}8~*b%cnLQAlWMVB+p@W>H90edL6O-NfRF`W%jL_a{z56D z2l3ZR_}C1SH0S%I(-Y{c>Z14RNeZ9Emz#w6t*Yh~e$OC+4@Blw#+Yo7OIk28?9ZXO znkD?g!BD7Img{h+oAwJSD8?kL3lm3&cjURC2i-)GZVSvF6u(`lL2;I~^1;5Zdxr;P z=5IQVf#K};?k^Hz1h^k6Sa#&`s1024=yQzh-}P$vgsmW`hS-f*0{A2;5YK z{rl|AAN&KxjZ>=t>-mBuySoP75S)Xc`^%0P0NoE1TrbYm%XsI%Ysn%APX_;~y^ulI zH3~2}d=wDpr{8Q<Is0YHv~*IOoqcrIP#nrZ$TAHcD>myh{aWe*&?!?&=WG)GMx}zAD-C$9eft0)=_YZ(&0C^;TP1v6JFnESr_EQ_U|pG z{N@&$Do$+w77Jy4>{Xv_E)%;oHf$)JKGOo1i2-x9T_P;3B1A7~LeQ#u0vCnOurH;M zv5%J=vQ|3MT_^IL?W{w!-Nb$C*70KN*2(Xa%Xosem2~YDW)G$H76&xfScTvv?Wquc z^3H`E`al-NfhF&!|{lxkZoIB5<<-+Me33h#T% z_{IR<5iC~=^vTDnQRf9Ws=)jsl}pb-&dz3%ePDfZc0Ork5WZZDll@JeBbEDmtL^sR|b0#MaI`7sH(qu(xi6H;Mg=yI1OB0Fh@GE&+{Dx2DBgtO% zqg{P^dbA7n)3ChaX}#Lm1$Ru=o2^l(q@IkH>%;x$Za)+5oMgc*>_>Q+%m)6P72Q)E z?^N`<(tSE2k<|j%m584ZDGSbrLD4cVdBPB!8QVQoZH$!1CqaP?aJR*741L9aZoBUqsEuQyZFn-F+NDEra>Of&y9sDP&gEhmhgFjbwuuKfBV}`Z} z01}K3+|gTKDJSD2EZ1ge+}KQOH=KZLCF9i@Y#+OX15g~9Xu=mQ1b!3bLdhImUh;T2 zRac*`B*Ut4414|*OE7eKno$$H%fbf&2sb90#9opmOYCGFMy79+TMVI*c4xK@*NKiN z?MitZU}DvBFDfg*0Q=CRI2e471*;UP9xqSBr84El*epgjX%C+caqt)X=-$0B-t}3g z=|2LG?%kbMGWXIy)uVfC{5tRb>{Fv$&UN%8<p-nto8t=h2obQKKGNuhdh4uE+|S($F0+V?_k-@ zlbUNR&n+}F&TICmJgFtnl9VbB#;fvK-nNjFWZ$8sP^VM46#aCH9!HPgf~eH_Z(2~^ z(0cx z7ouu~Hsf{iw2VKOB*~wOp;Ks;sH0v_2xsVgS_;JwmlDd*m9(I|3~}Lw7+MJoq^}_^ ziuMy3BuD9QMbaKxD~hCcI7v6rQYezRlu(lHqy^4recN^1V-gad)w{){$HC=X|D^{C8S) zipj5rGx-x*3dJOsqA|IYtzSs>#4n}L?`TnZx#Z#tarsEL?qGA7uCzD_brg{ruXR0B z`X4e9JsCL&iUv+b9!pE12<1{VLi_qnEMQ`OQD$KQbL(~2`wlub6j{K=2kJACzqLBob4}jNVZgh;_07g z#VDTM63){HXeks=TuLZU|3(YS%M%w~h^MuV^?w&zYpi^dw61i;-4AGGDek@#&fTwQ zDHL~HipJd%`1m0eV}C1UmR&_U>AcKw(S?{>WqhP@an`4DNUiiFrQD-vk(iEhH~bTyP_T76oQ((V>oJBq5C!l}BO zmO@d*rRY?_#}%p568u{!^Y^rvyi{?~g{WHV_~z{7OXZWg^=U~;#rM!EQhdELoUf15 zQYgN-6pgR_<#%$am`YG;eTf#BmpR^uLd6P-#V2Rlb0$kx)@c6x7v{798)SwI;ONFWiYOwwWFxIG@Pnk zv=oXeE=8xx@3&@YF?p%tq6<;Q{T3S^!-oB~hZb{EEMLl(mZbQ)gI1B^>jmL_y^NMZ z@x`TRd?`02Y=%luYQ2dTn3p-;h(gTq6%Dx=%{9iBvjK%UBxPEPQte-9)hNb35YE`= zXekt9T#CjR%m%kemDt}(nQzi!^76z*7vkvv#)7s>&_&e>EtAyDNK+dA53M0Z*RR6q z>Kl!oWN;}OUF0I~VYHyUgmK}82s@B1E$N#$U5u?Zb4k+dWX0PiT2YF(4Nx?2&hbQA z3N_5Q6pgpVo6}ci{8OoNE-fT4XIyYG&boHlx;R^92p3)6gFwSDGGOmQ+O>cg`$v438C;- zT1Z|Bx!^(+!URG;C*`7Ud74EMrllyFUP0cx z7ozH*?jvk2x>gz4BxP2rqV0>co)m4L3#aY7v=oXqE=8wJ4_;wk-tlumgEhsNxTzDbE4#HE( z=BZs5Wvh&Ak~Aw-(YBY?lcKE?PTS426pA)3C6u;#T2NlvxbQ->J(50H?V|87UlGZs zKZ7FnjWiMzv9Ap$_C8t)MJ$)15xbO~G?zMxUrM2m(4z8E%f;uUHaokx%gTM+y0>>( zy#bC>y6>`5t?9bU>JBKh5O-Oj@EW_z>X*P%4S&kJtX8Un?&c*{@*p|{zL|&o7!Lsa z_od_|R)=nHl@q)X2JU?+clI<}yI3e#9!&^N33#8Yj`TaSBUx9Q;Jwj*4$%bw!`}$K z^qZP?Zh=Gn7ggZq47@y}Q?1uAj_zo=lMIzEf&hpTLwE`iJ0V2Jcxj^5oMJH}Sjb&= z=z6HM12@w^oXOv6hZsjtR^1J5?7Q;uphpPm%6q4uvUo7)t;H2 zu2-Q(Xi+jf-D*y^sxW{`SQsFJM#8P#2=MMI3@O~@0aeK1^q21Qm+lkQeU!CbS*Bj- z9M-nB0!s{@y~HqSj*HW>gXs00pWsFJopOr@bH!6+T9RsHDNiG1D7{Bup?(=o1z$aj z-JA9nW^36UNf_?G*(!}Tn_%oP^3R5Pbr)QOB=0PPs{+as34}=B3YNK19%M0ZPXnU{ z1_w+s7UyqvB^dC#tL*v!Ub|7N_O#i+d(g&f$rwcb0c+iN?o7Lb_5VW2tHHl8mq6$26UyX zwmdziEqij{T`NQ89JgLQ1G4AG+k5NP9WnZaU>y`$`0rw*zYGdd0dMr)oEP1{k3-iN zS@^yf{X)=HF@*KlHCC$X#UGDp$47dI^Cx3)_C^-|R*ZTAW-GEVrW)qj5n0%gr}anh zYl>dGLH-p0j4zBaT#wD*R>mRT#PShWCSIvLZE1kb0w9Rut}^rW=kiOG(K%O=X}DN% z$NCcdx0B33n8>|HZyJQDeWR098#on!*?kA51xW{9U#esLZAeVkUmCFQq298RW02_aaqcvSrh$Pix|LusGD{# zDL}@BL0$Mb#*HJ-_J!yp3Qk)>_CQ#kfo1SOxGD{~RT{uo@QiuzIgkaXtx&3(z>UA` zHc@y{K68Rime-eHbz-tS0M`J+8}LlKJno#wYEiw!CUPxB!Sb|Ry-W;*oeUXx8!>N= z!{qRRurER(hXDVfnsv2RmA^;h_!OPL!J6gITBP&0p>DeKb5P7#rFU+1ON@R3cGA2A z&8=P>BmM3kqWh9KbbWKHe~i&D1YK(uB?gw2s(SGUV%l+k4{`ob49?!U)t6(`6EItI zD@-*^hr>rW@@$TCj7+VtYQAFMf}7gp>Enwa9B(~0m~c{`kDv)P&ytP zqoV+y#P$$(pOaww9;=p}7Spm*dWilRQRsWU^c6Asg&-f~r5iEQcl8k6={R(KUi#)3 z{X)>S{Bf3-zB{HJ^F74*o*10HUi!^3>Is-FFO8{&>2`Q&N1iP)Zc14hyT)ucy(oj6 zU^o3}u#k9KRrqPPba5g6P93)M-75_QE4p6#TPgKr3rfE?(md)Hm|k7)U6^dpLR$R{ zkNQ)qGP+^HqyCsR%%8Q0NBtSpO?%W77Gv3=3l&Fab>vxN^Q$jD7-i(qsfpSIRNcM|+6wWE{G_>B_Y+`h}pIbGq_^n0DOSL!57q z!Pz@qc~y*h0%mKvf~kh#aCiVmo--E8d@9RhOUd>er3}J?J;%9h3%nVr+3!PG9BRHD z<0A8`3)?~FbP4>-m?=S8VCOT1%cm`d{AN~j6Q5+zbj^Y=*E#eX8p>En{aYzC^!s}x66QGlr26=@0Vx+&L zhv>dL4qcx|_)Ls`A?U7E9w8mS=`eFWQ^V|AF>U(y9%BBT7|gxC;eTS(6OdcJ0aFbl z;_wZQJV(2HgU^I2UhJB(J;v?~Qi46kJJ^c?yVFB#*9zIRy$yFW;aZd0>@~!Qr4{8DM$wW}>tC2;fyi?>S^T*hL1x>-$5 z52W8lBG#$&Bn9|D&7{|FueCRj$3h{;LKP+(U4^ubeAgGlSPoh}Ni}iUs+Mk|m@#i< zP4s6i;(eY7b<^I50~F|eo*JW{pnya;$oovhNFVDVx|KL|ectDpG5Up|n{(OfwwQLz z^$_R3j=|aMab6vxo`Bi%IGAdf5r@Zd|jqe!#r7f*HI2{ zb|F7|#J1>WIW^|XQX%daA^UnI;fm~Jh1zE0!ZH+I$8e&pjBwkFh%?7VoNMT_K#ayYSC9m9j^NozLa>-(u`Msy)qfjZUBPO;l3 z*KspRvo+P1${H?R)4#WWYwCv5GctqgOZ~I<12_qAEjvcvF8ApN;>VgZ^>O~TG+Kt& zD+qPaXrmxFOfOF3*2#)ej!#M?f5gbceo#ync^Oa3q zZYSK2N>IJwnYsG4SRQ;j8@65k5tEIMOJk&#+zZ-+I z*FXL)Mm+(uUM4*W3dKI2&cLSUOQ}ChkLhTaMx1)6S8Zou04jhEU-E zyV8~ZgLSjh`8|jBp7>W#$gymR$wmhzt@Ki+t#pCnmulD(tjg$yiMOYdSi}5Ti+H~$ zLEW_X55Tb>V74a4E^e2zSQnl)6g+ZnSh`lB;254Pw#)GffJ0lzWd zuqid>A~@S<0^y3r64+f`Z|;H6MWfA`hWmt_eygxtT~kuE!(N}YF!dWn&9MJJhD6s3 z4kjD?kOnBjuz%mGjBc1P?B8Jx^Jgt$*nbFh(}tbH5@^`>nKHrhHyVK#`U&7kT!Rez zK{3+TK%rhO`yC8*N1*F7?CWCm3qe;IadqFdk)|xnNil6Wp@$d`$6)L=>=(wUCm^;A zJEj_j!(rGRc}if|Y0Id{u#0D#`%h%pl3;UxuDUp!GWUeFhme$6);_(OTv_`xNuh9E zF3!Yq)-|k4c3FE&Hb^6_Qiipkw<-&=hJVc(=FeKh+P@I$rtJ}jCD7WxAx1v|Jc($CQsi_tFxU5HRC!bb9Iv0)JCNortyC#D78>>wh1k zo&eag^_Xgy4Tr6Fi!8f94dCt8)!4HI+T zlUc+3S&LZtZBRFDYR{oM0{RHqNu0dA55+l9bLv(9#==!Yu^)dQ|pt~})^4h)S zW}+Hge;w0`7xWP2J7ZAxTKd<3Tmf0s4NpS6f>{}I$p+jb5~plx5=G=cIr8bKHO z3D8MQgKYcS80iNQQ>cw$Tskw%rGUv1|F7cs*Mrc8wCd5zdA3z zwC=#|R`S?muElvKL3T#IUeA*h3fJeNNi5eqgZ08LLyyS@Poz=Gn8@E{RTg9n?_dq{ zXDwpv?}oZ*bHrf@H1=V^-xDMKz8<1`e;m3#WB>UW{X)=HYcuIbS3OA$ ztnbFO;9EUJ`1>&kd(Hd*#;7L%w#+-G8fL>`-W_?^1z4nARAku2vu*us1`~N~J*<*v z+Iq1x@3QsA5)`hzcSVSY`0`wWX6w@=g~HL(CeVI6sZHwpp^#(I29piaNSl;l>z`y* zMmJ1Me1}=X{8@|G`ct58+SYSe0&V@y82tqBB(6cWz8WKaqKD}2ibL0D>z@^)UkJL& zuxBjI-x1S-+j@xbd*dlsv-YlKD3_I2b*ENdOH%rO-h$X~AvG)iX$C>pj2@E>x=3r3VdZ~l zRYo^VSo!aW)CyXXV$&=of;nxe71#HkgTOa1F<_Vrvgkeqs#DUQ7Sf81)3mmZis3!*n<-y(7$u#06|_)le6kzfnIovoIm-KCc1&ud*U9P@Y?5~XdXd{!=o#CpxOtOIsg zcT6@YBCQayF#kfUq9Dt6Cu@{HYZ1%-BB-0TJsgri%l@Vq{RHSFra_kdy)n|?)kAdO z7l*FTvVS2)zYuiSsD*hpBIU^HN>`@kdogYKb`P=sK@8Sj`@X1Uj(Gp*)21i_YRkT3 zs$o1F_T7;uV^Q8Nk!{+ao&kQaX+NILrg><5*d*gT5q-?i7XH1Jc`3~6{LH#Mtx9$| zEk$*<^|{y(wtN5zIo4w^*`R~8J4--8*);aIYScEXqM$DF1lA~j)*`liJJe0vat=wL zEx$BIKLI+4X^<_i#Yms*A-eTAbbYq`h8X=q(A6j8TV&TY6ICC+Go}@{_Ymc~Vo>&4 z@z=+wCqTBWIHnqA!(qi8dHOW_r(m};W*hIn%D_C>cvqRlO)x-Thx(+du4cag!uK^H zXhdfZ3nWn~mn!AzWT(QeE90kNA&3RsHO4NjWOr8Ltlw$xS7_2@-!#$`MqjW1_uEYL zz{2K#hQZV|f5&8lJkma8tj_$%s*G-!SiSf@YnVT45xf5%P&aM&IV^#8f8VwVmcP;3 z)JFhM;u>W49~LA1ASl$U)tN(~?g(^!c7H>Rej(`QjPdY({;Wm3#XV3rZO=F)f!^ZHG5QJ6Nlb&h#r-kT z-`zuW-yesr&s#hgqhAQR>X_{2bbF4GriRt`W7_bY9%B5%7>vE1VxNvV(*2`Oo9+mR zEl+`|hS6|%3P+ydVy06uW!IhUF0RR-DcD_{KQ`0aT^=84CF9i@Sn)q*XtUUF59vt< zZ#RaQ1is%s+9Rwogh+>Ar7Ac!y``vj z!HX9y68jzY8PL8le?1p@V!(WvXexR~+Za<-ebQC zViUp#XV6T1pBb}C|Jc)p>F*g7{;WlY=@MuVJxn`Ma*x%g0ZtuF`Uty_ZH!DjD7-iaz-3vLw3hV zZ}$-0y>aOJ-sWErqhAQR>dk$V<82<&)Uf*7m^QqmhZw&+24nC0$J=An6A)XD08^CL#=}JO<{o6Fe-`>xgPR6Pocg*&stQKj=#V@7b zH!b-5_76>^u-{*2Dt66RFxjAjv^5!TIlrUAS`5BG&UeNo%s)nXmma25hf^U$w^^^8Vqc%}@l^mVw7q!+JOjyd%$H z`Xt>jkjlu}#j*|lb26w1Hu&e@hq4iK#iTUg+iQJ1pR4OCu}v6+&0p&fAnm^MnS$lS zT;vJce;gEYtjl1s!5(R+2;0BIswk*Ooy{8M&sxOxpAU7@wx2^1X!|E(^b??ymZXl6ha}L*AGp^9 z%HL>hS|mUxF%2^EkB*W4C@9pcg`3Ah-4W>ejQrLZ{X)>yExPzftS6~Kb#_b(p4>x( z&y7LYYvjjb)Dr+(MjlfQli@J(jy#5uH>{!}!7i3<L4u9^)%9d@1U5A%v*K2A z=gCQR@a8b*dB9F+7L^cdf!cx?~crSKVE1?P*mzc(-a}dMJS#UMI@~$E+`P zl9>?*banKmL1yW#AXv-OR!Bdfr6`;jE?ao22D7BQaM~)gIXj|>%UkX}IjfASrNy;U z6$o2%kt$rm@leRI@`K3+tEB1L7nPRn<3Cih&aTBn)X8E%gaR^U=x@m`yf@17E z>%zp*(;az+a&`oToLyOVuilaYTX3%)WnC|s=|Jb4E;q)@a4Zboe_>j~I(SKL>f8z^ z#_H`dU*WtEx_P_Qu1+@CY^c#G85L9^)DTAXPfFP3ooC7p^NE$6%b!8Pc5|){C&s}I z47skU5hgFtIJnoU%HO#)oBJZxEPvJ_G%0lbJK<9wG-dt@S*Z3} z{B!W^eP%|@k^{9eG-7W5iJ8V2zKG73E04HhzVaye-%(f0*RDSRJ{)3>+OzPlM?W3@ zx*`4R+3?pbwHw*LH{rhsLt_QVeq3b<$p7^vAhdr+WpKyLXzfZ!ms{g2%h;OAp}0@} za1eDQ{7(}*w_mx@X@TXR$7s(rC^$DXU2k^KmtaHN1B3YCtTfdepMk4-JJrcnGF9!A zStfjS9-N;+V!Pmd|WCb6XiSoOZ3XucI%byA#y%b1Lh>)Nq0b| zD;TJ~2ISOU3;!5wR~}P&EW&XwJODTzpH?#WvW=DIRC!}9+0`6v&A^Jp#-x#qH5=o} zmW}1c?)Jv%*)1n-tXD_jk4~l8*fMnD#x@YL0d^YhO5h@&jj1jhjvLxMv}x$r4Nzq0 z#G&%!q0`06+U*2PF z(B6rl-RA@CjW%etGqFD2to!w5ofzFsmx_n5yUnl=4@R%GVx* zN)vsEVn6v9Btk!V8Wg3Li)FX^5YN7oWjB>ro{kowqM^jT_*Bxzf2fAF!E4dNoQYv?)BKAeAAf@mhO3*wlXuuXUx3&#|pqs7E zNE?DXbgrIhcED_+A+F2=H(a=B@^u;mxLIYGFBd<3Du+}{Pg2UgkyeiCWUme9>ONWu z#TA#LakcoGYo$u~r&8r3w2-_!alwUnTI=vDF18M^^GOA}A1HMnqSd9C`&u}2Kc%Hm z%yB6p%>AAgl9xFyI45)2+26~JrSieLJ2^?SSXoo4<*o9B*zh%XN zA!l`bzIF}(G`9?XfCrwhoQIZvD>r4THQYlgHENroP=fQgf!aBcxppr6V@xh;Pl1%V zgSs90JlmL7SysCU%c1bvQ}M6$*T7%+^XB>5C0KTi;m!vJ=dopN#Hl|82Tb0vPz2{b zFy*`yib=D}aT=)HDih}BFKH$0+V4uaj<#7x+lO4?k zkXVzu5(+uirZHLXuoZIksE>WFWJshOYDtR2Jyx~mOM^8IVZu!Le75#s)XRz-B9#4fG(u}1l`>fO9H2bptp^9LY1-OV{9)-v?^ zk{r%>T3P}1l^Fd5=%gVD`ab{T80kNNLey(_5p;hNhpumtf9W&KZs_k4*ri492|+jK z_xVF&+OZZ2^$O?1pzhqg*t^6(6r-Mi+4??@sfOWjcmqeCp`5l+4M4lHY{UPWjQ$^N z_(#<81$?2bj&<1FXIpD>W(t;}`PWCt!nS0I>A(JFP~ua0KGla;CYUZ6b9|=<(AP)g z6i78gGfbD|;#5q5E@oY}>$4;#8>Et!YhQ#yT1);z(bcr73L4RM)+~S4A{OgvsGA;1 zDJaIYrwbEDM|b2oYXQ55Le&rDD#Y^^~UXCqCicCv+QP;WdD3x)T_WzEqV+;G8rgf)2q9_3@zsHX%ss(`6Y<xIx6I)H>`ls9mK^GERP2{S(V$-qJguUaFTTL(r-)eFr z=*G92u)qF*TTPB*-x;RL<5hMvV+1yrOjiPSob-2p+u)lNtg04Ze-fA03vN(1;rg779zJI1*!3lLsU&~i zf5G@EGb1f%A*%zWVI90ud42pa`^{Q{M~~WCExdrLg=J#6!8K_@ZGIz<(1$6I-n}rq z8JcH=zJ|Itujesc(vXeAoABt5d5m=Uc+4dZ9m%>e_LtUJ9%X>F25Vs0nvn-s&9Gb# zdw5#ooF4=iRO}zE!>%2`#d<0fu2&~3oyk^twtt~_ExiF&ni}M$YQ|5-9-73Q@ zOK&U=>;KjUxHVP>WO>Y8aLz0+VeCp*Bk29)2qO2xy$6a?Q+8|5)jL^sb3fd{F0U<= zH@3!c4Vdd;?p+#)u5_i@m*O@1Ja1~qhPm(2QmCywT#B}phukpt3tCX#?L1t#f65y` z-fDAl<)UqQnne<(r6{V_Jd<*WWG7q!MPYA12vv`urBGCHDWOyyO$*9P6&GHJsukM2 z*TvH^{#=qIe=3GfrB$N##XTvUp$lj!6hmA}C_`7#g7PxNg%@IIB`}b_jJPP;Ph^lB zrN0$Pv$R$eNi*RjJ%^S;k;J8hl5`g>C@)D|cp;Kjw~cp17fs94ERrZKMN#!8S~rTS z*M(E{E?Npj6_*l9)kkSTd8y*U3sE)1CT78}?=C8NC^@qVNviXiqW7CL9u&P_52yD( zX(<%FT#82T5&oqOsWX*Dss6uoqw;nI-q1o_;c;x*X!1DR-?cL1>;jIW5{|X5X9|bI zu8W@291KMR=QNL_rBGdfOVPT(K^{!t1;X`6sd_Bkh`f~Zh83cG4IBMxkI*NRlg{F0S^MIV4jmLGg40 ztr*4AGsAhhot8rJ#HEDt^f$DiygYH?g?KvHwKVObYmJprveuQZ$a_1jEk)j2!^!&) zErlYFOVP>0g?XvjzU+rm=QFgRyyS7=g~(fFd_i!r)~9kvwe%#V+>dDGD6YO2&ed;d zDHK;+ipJIA4V$D&_@`23|LaLFotGyrxDZdP%}+ZXqU6^fsTB~FCMoTXqP3%ldIS^= zoP%tnrBFn1DH>5r;5(GmiT$mV8K%YLrHYF#MwR*1%}JHYBGu~Cl9YBA)7nu~T@X&y zI4y;uic8U{f)9;SC%7i|SZ!3bXfb)I;-U*twbt=L)XA61Cw1%7k`!OJ(kfDXJtv&6 zduS;XUtEgD*Z%Sou2f7VD79Wq3(U(LZ$u&H)>vPyovf)mQaSFqaN5|`I_CYfdK7E# z3TN$;v=oXpE=6N)U;I)pmEu1XTVJ6CbP~ zimd+(Cu_;G$Qb}d7MG%tMR>0RX)$@J;-ZUD#onpX-5yS=RF;$~ElG96b+mRARgZ(B zffJ1rXeks`T#8PW-+P@-i^)qB7hQ-d?!DOf7&ff(rJR-6o~aU)TG!A5^D@U9QHVLdv>|s(xyIOXHlQ$vq)baus?F1? zQHeh`CaIZ`rZoHr ztszC%hr;Rl0xgB2i%ZeyBG(MRO$*9P7#CiMumihx8M+u-ZRV1s*~yBx-_wdxy!|Ge zx0SH1)xQC-M)Ag_XuK`noK6q%Po>Hcw2-`)HnD;%t?XOHyW~DmAyzYEq1C zgrb2{k8QLRiZL!lV+@SpW~mnYTPbrMEhaB#Ty!zcx^~mLII}N87e3lfR*F_=MJd+C z!&%!+OQBffQZ&{UtIMhJPo>I@w2-`)J@|;;ice9YI=Gx>EI}w5k+q_k^?d zdRhv_8keH6woiI>75t?X`4?J5Ue37KLY%=+(RaGL2-9x55L9U?O1Dqbx=|#3GMuDu z&{8OpxD<^fa_aFPw4l6Hap8riTF$Nx_bqQ^Tr9rdvq{%av9kn<2D+<<(NZXOxD<^Y zVo~EUw3xiyaM6XhIfzZsjZ-16q11Idu(W+vam{3$OzTP!cS1OEXVFq9;E-iBm-6C84Jhh$Z)=?cj@4}}&YBr6K9v5>5PbtC+R zKV?YPLtKXx&B(0s=pdYIe<75_`){80-l@9~+b*l9`2IdE%|lB(5RAu&q~JWt}s->Z+j^422sI zb{j%owyMc!z1+s5v#kVsKRbB~Q8FM*W_b$2bSI5+bEXY9Ns8-n@OB%F0n68RN^DuK zji-Ajp)GnY(O?kAPfQD$?LLUfA=HKvW64ZAsh8jwHiSti4ZvRBK~_CxLdPS@;!hTz zvy^mX$lAU=)lLP%`0TAtK@B1^R0I(x0R=9erLsvRWN52!w`~Y^*s1jCcle}jpGC-< zt#JsjixiEvoAnvMYAS*IemXO7qmRJ^h7*CSftq~~Qv~}~2b97q5s}+ux-{NOAh_aa z87>5Zm?I6=_BMuXgl4x{O*{>)X9+e=!aa)3M!Qc0DZxnT^(xc|ErQ6ut>!fF1#Q8? zfDAOU+F*Tdca`5ZGy+wK@Fd`SZ~s&4lG-f%Xc(FL%4w~=M2n`f*3o&TNhZ!fZm}vg z&tuyGZdxD_2069_!>{iA&OVD4{bhu(k%u>6{a+p-%9Gpu(C<|-9216x{m zA8A}`H)D)ZQ#9duQjSai{EGu(JZ6X6m z860kmGFj|37m@?SRpktk<IKP*#KrB8w%*fLK>HHq^ z9fSBLHq$PT%cy^b<=28B2%E2^C|H)=WOh=27tuQWVkqRW_Lv;r;rB%- zs-l}EI{9I&S^lg=I{71@Zn~3mPy%D5Z;8=Qz-|TWGbIMaNIx}3`nDdTdwLwYz8L9G zi_tFx-JCJfr()Vs>mkm~7@WN^(r=1UPrz)&NXJyebU1v0BhTgtTd9nUU17FM_}_(c z39~#HN@)OYvxFNkz}iCs-g?0UgC{V$l)b0*`S)VXG$mw{925T0(=tNL)?8%w!`;Wwd^M`E&EXq(f`jV z^zr%<(e=%nO!m9k?5h4QgWX>At`Ovdy!2r)(jNwesDNoj`t}h}cmBSOx9CW8jSF>- ziP0|v-JD)}TTDBi&_kTJ$KdSs(wD}lCt$X`G^QG++u@}hdA7v3DP?8s8nfN>>oQDC z@SEGC!9wD(3E`*NWhNKm@6=&C-@VefS)$*kzm-xqfV?f-o1&7*S=#_oMn3^MX)=PQD{G!( z(&UFsLw6+<>eY1RK&U$cUEg%2KSsY0baPHuPKas8aXrL&YYfib>B{*r>Is;w=?bPA zhQr|j9C^-IDD$bzp)Dobb9^+z>;!ub*x=LHW!)Lz_aXiWeS>WBb56SPWi)B=`1;Nn zkTZ6na2U>K3ae-2>HxxZ>}CDC%XMI~(E~^`N4So^wkirTZZBYs@@FmLI_`wJY2(Hr z33MH=jnPklPGTD5I^G#0{p~$O_g!)5`dr7SWAqC__hGQrE}5x!wwCmPD_^%gPt{QS zW=y-j(L>z7y|B3dHb%b?+*y1jz5!5zttTmjS3cJ?Kz?JOO^TL7p0a5P_BigI5IDMY1O{ zGa2S0cp`Ht+puAV*d-=1U9orh1ZGFN>o;QpnedA?OqkRf^=Ym`50kqOLgP&aLeI3$4+n7@zFPk>Hh8Z?3V=NRd4?IF7Fh(p&m zf%#;Nej(_pcV7$)EeDvDs?5*VW7_eR9^(A(3ybqFWAqEbxev{mHDS?`6vF$%c@f>< z_y@l>VOa`=dNpC`gSvCu3GalZ6r)}Mz%`r*i1%A##&S%IzzsdbGkeCu)ivy{7tb?d z)Dw7GGZswMdmi}0rR*|UZT{!TbFkB+s}5}!$)2%X4Gp1sbMTDi9c<}^MTi$$TQ}6J zyUH1RI@0Zp>gLIzb|slEm)g_ivFgMu9@lD>>u{kaEa#&LI1e!n=Z(~%qnW9`Nq7jS zdvNcEan+-?@SngDE-c0WXWuPf$Q295fkv zON{h4^$^{+#-Zz*41FX=?Y3om_2~`}8xYW6hcRIQMd+WpImdpt#XSL2!Om9Ds#irO~8a#*?vlSQhr%U)r33 zL%@wbJVRSb#>e5@>@L_$*`Jo~-#RwdY7dKY>J5*4p4q4UjtM8~!p$B5g&bQlG1(X&q!Z{< z{HJbKOHxhTVpU5wQEZ<(hBeWjwTPQN4(g`eEC(pi&7K{jpP+z5ILOUDEk^pKJw*4) zICOn(wiBaY2)dR-6=TdwRlWG8n0DOIL!6%zgR|GozBEQX0kh?1G1V|54maDKXXi$6 zE(_u*9=iTTdmp;~9=ErEhqK)e{~#U%M5jIjo3H?0Lv>FZ(Ck^kp&5NMbXG7oY`t5S z1}5sw#C^PN%Q5K&g0lZ5v+MFEF*v)@mHr>GI-TEhXnycR41%uLO-wdAFlnWiGHs;` z6u(r%zGhWMH%xfHFSCaEvlj7w-+;Pl@5f;Y^nSmH(N6$R;u_@r_Pf=j$`2XRF3{Z< z3Q;RNMbKRibw{A<^L~$t(Jutu73r3NEoo3^BTe<-V`AE{p@$f6j=|XL`JNo3o`Bf$ ze3)t&4u|J+lB%!u=AuWu;7qgL*Jao-+2DsXKpBSp7OS!#({nRxm_KU~ z({n4-O`9GLOQ2zYd5nGncoNqj!~Tyk(%;-ebl(<-uFtT4G)BJ=bd?cT7ZDn1%EEj( zrVS7F5aX}LVC*&Q{}rR2fY>tZm}(dfhhcZ*DS=_9Eu$jCE}m`fr!trbHuvYM8yzWg zPgr}10+(g&(>o)TwNH~23XhsIf%aQUZ5n?h6ml$QVX{FQX_Ydp{jpYMbi>3%a}#Tr zKWh~JpTYC;mptV0IMn3^OiEEIxzamEZWj#c9Bo1AlwV#R6F9cl(dntDQrnk=O zNoru-9Mghl_YmRd#vtsq^?wtio&eag^_Xgy4Tr6FPlG3*29%`+T0#5`GAiW5HPk1L04O_BfLceZST6rZ-o6~>Pg4k~%H7oxBgP?0p zkI4pIq&3R0@?W^mkKB$0NA*!uoFtD+$5^BmSFf7T+l zeGclTtq+GJ(6+xKMn3^MiD{5+e`}2Nf9N5){}hL=&$fRoM!yhr4@_;laosMA1IH6( zV7?O5o-g(g@2|z+?X~j%9iyIr+p_YQY8ViQm3QP>>oST8f4fAsfp27hA8g=Zxu)6} z!EIEq3CsVfReWhR_eJMfoM#eJL$8Et6Zz5$Ol911y>YcSd1i8M+X6Zzw; z%IJoPspe+ZFn`t}#{Th8H*M@WEP=-U+!*}?@FcE5#{S9}>6iBq-K*lz^%?u!G5Up| ztJY@HkFI)>GB3}GX~B&>MEI5%guUkdZ)4OG09)oAQw_7>Fz=2$?3x*V63X+@QjuX7 z&$ji4XE2e+*25}!rmYuC^DbL&EJ5L_%z$|{0DOp*5;R+%CMgs?W&!QDlbWsnR|Z7a zq#lzE(ny<>Ve7wPRYo^V*!r)shWWD=vGor@-L$ReumsxrU&ZJrfG2Scvh~YvGpX`J zhO`TGmqDRkE!wPrx+Bo_+4`em^b0{(8TO2&`OPsc*w{makBvdtYwOR7QBMGD*?LSh z%!b3(JMuVfy_a>GL*~8tGZJwuO%t{ zcjsbDEZwwNXY8`_m~7BRTB8grf2&nlkR5t1YnVT45i9?EsGGJ!9F{;U|93I^3E)Xw zgRK19Vx+&Nhv@!u9J)R$|M3|8LeMo=;l)=kGf@q$ug0|EOFcyS>oF*ME&b19)Ds|E zmL5|L)8Vl6jy#8XZK5Ku|H#G&i6?0aJL3qf~{T9{`eQjV;ybY)te8`GAXdWiM& zVzBnw_m{<}C!n_MJEj`O!(rbYc`_E|?Go9h{fG?kgH8MKY&Ok<#KR^Tr)588Xbb<| z%Dfcjb$(`Do>nEhoR*?G+s7>k{kBlEHfi!hhLj6*_k%*cT8mi;bw{A< zv*nMD(JusDeL}uPc3m@3_2DfstvIHKC?6Mtve$~A9iyHA*|Or8YM2d&6?f$6)9jyu z-OiY8yg!s-H-e3Km08>b11rH5@BUA!7>|Wp@CzX9QWLMe-@^h)z~%21xP%v?FX6>q zJPs3tsoqk-Lz%mumsxuSH|ckfG2ScvituOBmEzHi0<3t(Dm8a`~9C=QN zHlT_vyV`7rF`dCsu)~18@DNU~QclK4=qdkZu?t7uCWMHMS(SNB3# zAiSC9bhxx}b{kfGe$pAMh|3?HFA1y77D&HgCo8lbeTPYu-|T9y3y*|Cj-?+=Hb^H; z9PzsFc&j41QDQ=SENhfMYZ13`BGgU04Gu}5+c+;qKLI+4X^`8vDn|MhJw$gj4qczy z*c+o?2)gRL?B;Zzj*+H@)h#h?xVeWI-x`Cl*HgSaMm+(s~GbmhpdX|MhSoLb=D|<)*}AkTTnOc z4>%--Kk$yG-^8ewVs2b(*af*`G&%B|usycNDU$4Jvj@@x84Lvvq$jg?^BxVLj91*p z-D!4me}~fs%%h=@V*-WA3o>9%vMQn*B?in1tWo}~MFz|;)J+c<4oTR6xiCh(6mw(1 zbV2SIFpfM6F<|U!vj@zhG8hUTFy{@3uUMsl<}{1eT4xuyMVo={y+ySPUJS3lu(1@} z!af7q$L8yDktY_bu3?&+TU7TGI!LFH{#G_=E?!obH^U}`56+;O_{*&-{bLVphZv@R z!=UhIEiz314(g_dDJKFs9n?7O!p1R*9C;RE6xr2gkD|R900xhubLz=xxjr({Y;@?? z{Y~O^|8$uXrgieFB7RMxdkJ{8DL{5~J6ZMj2Xl2OF}6O-@aXFAm>k~UiMRP5TNU}c zuGY(cz#8SxTBMi%1nQ=HIfuk>M*evEOXp3X{EgQ16QGkb;vgGxNR0HgP^ecQ{|7XTi!|iom(uUqxtI|4 z`#RRqy6iV58&r_CCgUyVMOI}&HtsIgFn`t}HvGj~NJ+3@$p zNPkZc(fvRix;`8J#TflU(A8`>{~Q9Nz(`X=>jyDy_-+p|{!t9ZUK_snE_1Z|N1Zka z5fEE898(R$;jrP3Jo~41Pl0Y{%eL3g$Ur>UUZ2UfPw)wJ{@FPere@}AtlFhT?@Cu# z4CP`-*!Fc$$gxm_$p%HF4I<{|+pUU%y3LbVqx@Nm*!9z(ZrZMMNCNHpHsa9r+4UP^^b0{(v*B5D^Sff&a7Pa@zB>kEuU&s*jCulM%dTUpVKf|e z-I3=oeQs{pMP=LUV%c`SKZAi_JAV#-9~&_jN=gI1z1GL`DY~u_+k3&vyBA^BIs`~_ z?|i0U`J#om-(;dw7AF6544JO!JSH3Lk>-go`Tt>6L^nz-I{uI~%Ad7}$^R+TO`CiU zNubGJ_CgaVf1|aTkN};;G|1#18YBH+DAcRvn8Ts&2y}fWe`Ab(A?T`e@yE;2r6;LD z^`w{<4EGS>Q(_SI8vLCx>Ir}?gO90($#58aM;^oA8`e>gU>D0a_@BUuIc z0^8i+%D(~jf6hZSYESlg;scksAh$Y(d$b#DXGJmzH}CB(xAwHE9lUn0F+G&P<$sgq zfn(N}I?2ok#6UTE(;(}QR(zD@X)9!J)lw8rH|Anfc!29!XYKL;m~7BVTC1fD8`(JV zOEv5stFj;~`9jt(f7T*i;9jVkwo@FIKrir?82tqBB(6bT;QcYu-`hiUKNyFu&kKAh zM!yhrtv%RTJF|Zn(~j@;5a%Dq;OzAUOYSyDynp0rQyBrXZ*yjB*fy&nG@JbRy+QM2Sg?QW=fZvTmy2D^TDzFc_(?7est{O_nM=4;m zQF|8tbtZJI+70Pn&xXHlsolu_y$SzC7#b@;_Twr`0JUFV0z&(DR0emYbkJGWoC(P>r7?RktZR)d0b+wj)g5x82n%G@x-wV5i9 zw9A-jgx!S;m*m3RTWP8}J_E<2I#o!Vs&>jlSPq@^;QZW{?o{@es&>AzY)5B4LB*~> z#e`C*pH!^brPx5NqowT}S-fabX7i_$PK8Bg<8u_4N3)DC2 z5j+36+fOSEu$OoC1oO3%-DTDWT@E{=CKA|Df)S9!FCiN~0h)~=Mp0aQc*7?ADer0- z-ZTVLCKc6x7$TCdFR8%L!!n93Ox9ZC<(3ekqK86#Sc8f>$7^KEtSt7CRwE|1wHjF_ zhS)Jf&?@$mpW4$kNsna=Zw5ieu2`sh^LoDAo9^Zq-ULbPYn|2-wVcczW5dMK0~3Ed zpxS|>eo1SbGl1yrf~Jnvld)Zhx%pHmQm;-{I+LyPY`>gpzC`PGb88*lUC!&A&y>L( zB^}5>?KL2$_FDMIuojiaR33{1(7rka ziknK)T@TdWiD=*FL;H<3+O=t{k2n5)t?@gD(GLB^%s@ai%_wlI^cOP|VrIk(?E_k; znp$*P)j;8|dbIru6&Uc>V4zuHR~N8X;&kI9r}(VNXFLEk)_^_IN$s%7I@6Q&l-F zoZDwuN`t?Yln>ET4u>kbdc#US1?EyJccmis#fg)Y!ha}1pP>Z}*n;NPwjuCiv(*`C z!x_%b)iccwOj>aoT$zWi$c38|ZoStAbj20g49~^WGX7jDB!4QEenhK8jim2|GxQr; z3dInY63Wp2FOsh`E?-&8%Mce{h@q9hKsxPqQM8}PAUR5ZE0T_)wW3IR1Qdn0tB_%| zk(NS{#HECiG)xQ1OA;4eh@_!>Z$mB``8PZB1xZrse5UBVn8t&m_kwVG$7v}Py!@P-!Z3Xfy&c_xp;{ar7*&Mx36D&bh`dZuu=mBxYU0?!HW z0{75Ts4l>zXkFkS4<;}ba6MA0zM5`CUdnmH3Q@k=T(fXdyFASz3Dr`RZuir=Q8d0Q zoW@VmQYad^6pco5zVj7YP+qFI@Iq9rVTM{QC%L%lQ+Xs=dXi%6=d^khTmKo(){=Y3 zDG9|EmlDd>fwZ8!Y;oa**gCLlt;RmG)ZYUPisdJb$d8bub`z+L~$t^QA=Q1 zU+TpER?7SXEhaBjTy!z2%nuk&s#F%KmVUpn((WU)b`(_~3a9D|v=oXeE=8wGyG0fP za2%_Rs&CU`@>0b`7ouvd3HE=8k>oVcGy z3(89m7hZ^-HP$y-7e{;+!MagOe(iMRvhHElE-JX<9pqs!xVf^$l7IMHQE#Q{|sr{0A*2FI8N0 zA*%S~f{!Z0$qtwwMEN!6EMLkOn_TcD#n*oKl5U^kYY7w$^jZ(2rBHlvDH>mDE+K4& zN>FM&h8CEYIo^mu%&lU>MeYT1jWO-g1fiLhqEtJXR*hopgmA{rqNPxbaVZ*OFlA3~ z6l8xZWp>hH^76z*7vkvv#*?;5%SDwD?Oc#$q$v%rrZuGKnhK}uI$8=v7nh>ZMNSK! zPYcRR7#CiMFup>l@1b)sX2%&8q}j=ew^z}MQoOw)oVT~pQYhZI6pgpVD)uY>sZ@DC zEhH~zTyQbYx;8nwII}{53d*chrRJAuH7Ulv5YE{5X(<$AT#CjR3nnVmVt*@Teo2eT z%NZA4j5G5jD{M1$ab`yVljF=RtaZ)~wh34>?68}`3 zt*3?L<%|n1#M$z6o3M+kjF3O4(dtm+Xk<=BpLyV}dbkz@^PU}h$w>zA;=h9Lr;m6L;_Ttp=?3HM zgNwd{T?HhE?uSbMZ_)ZwM1CWj$e+ibm`T*kmV9@JMovG^N~ewAj1^ z^QPn^I6M1$`IdTh@JBz2a+0>uJL~-4@>Y4Gle8wwo%y*VNBEgO?F>+Q&S!pZDden< z&)3?p0eNm2{D5OW^Of`PJiu1I16;L+?-*8U)GmcW2_8NisGS3uYv;m0#)+odQy^vT zpzhN{^R)}H_GPt;upA1nJr(~N1D@E=o9AnnVA)4!9{d}e$Hul1y8aX|*gSr@*isE0 z^HQiuZeZuo4ODKG33JzMZG?=F@HAB}@$-=-c0Q6FNE+(9s8Vg0;J@uo zwO%j5fl0V@E*UCa1Xs>=73pvDOC;ciA#qL+t`-`d?NbL5)8Kj6_NomJU4KtNE7U-# zk^@EGe2<&-pI7Ps^F5meePlvt3w`8rI43N-1n(oYtGbc~YGo~LuJ3#ZTQODclv{0S zfAl1U>NE48S{vs_maoA=X_rO=JEI8~Cg6Ir%>$L2%ml5UR~@HvL?{n9FS)DCBGI4A z4$9(@zjh^=E|&&&tP=q_)|b*h2jSFfqmxt{csdZL8>KyP-D0H!$7|~|WluOKhja;A z#$lg(a-k=JdE5ns91;95Sw9C}A%jlzv0xqy9oberNfG=et6K92qBU$}METdVCi=7L zVLj#+PtVTJtpEdE-aB2dLZI9ETjusdGe0|B=GK&D7goRa4^X!r)`J<=+m|d_v;)WO zZP52qfQ*RpUHCZS6*%&owlMuh0cy)oUdKM{&h5}4wL3D<#C$h`-nX%Q#5g(II+52k zMz*maINA_dZwv^WSWzRP>)4)r=e6W&FCE{3HtW6C-)BHe8PMz@t|+YIKsXVFEGFx9 zEzk(~tyL}EL=oQXSFDNttojJ3eE>4&7y-Y7?DPmo0WwBF7e0;=;K*}yo?hW+BfFn} zJp;4getuPYM6onbueRNnq^o#N=Rg+p3s9<>uq$*ij>1ss%!v|@rNARN?HI)A(G1+8 z=)5RVI|V7ay_TY2+59(VC-rv`t-}vNA&1GwCIjNUX7qo07CbfiJio2Fx=PxTPpRvfy%=uOX!(JutuoY9-^iD}0R zdx-PBF*tjpH@ziBJpr>7y$Mqd)8X(1jy#(qY^5?Xc7@q4;phx*f?dKaKMh?P=*&z* z6d6%%8Q0 zpZIU6oAwhN7Sm7ci#Rh-$mvpeGJGH?m*h@JG*e`x@M#brzjcff*y>Y^~U z#6Xix77$U)Gt&toi_C}v$#W-(9W)lZ_rgnmNLCyxXdXBu2i2zmqk}pS8%W=)F)k?K(Il zfv)3oG5QJ6Nlb%W$9H0+f3t_^elHGPpX>O2jD8{LK1|#YzqOeYnkK&U&SSNm}9kI^p#cNP(Y+d&Dop7j5*_bza96=m9Z?je(q3qc@q zYebz6COw&iaFfBsKp+r8gdhP7L(fdlba#5Xhwh#v1IvnXQDAm;*KtuUBHphccSK!T z1r$VgbzN^LBJS$?-&IjT#oPYhx}Cb5s`u2Xp0l5P-|{nKcXge5>wTW8=dDwxPL)LX zn2;K*&k*6`LJ)Qa>#ZT~c>r8J>dnwH*#^}!yOsNji$VrZBg?hnJzbw$$WL;UkWSKj=RT|7kxGg77ebiGIK4(_I@ zj9BKwMOlql7D3qot=NV0OG5nf!I^HeVT@Sl`Z+3vN`ze(QiC-aBD_8XVP}LrJ;Xf^ zfSn_j3qlNT&k)b#5esuy(_JT?%@FrEp2moUq-vqgGGejh+1DD;rDT|wB#&5bO3-ER z5zGB_?uG6V%h$H9ChNZwX78i*jmql_Y>jwptTb2|o*;|Co243@FSQHKaHp%nD?{xv zOxwdB*!ZY2IzHMp0zbk_6J+s6v$0#Aa-_`s7vaSUa(OFPhNF_;@c=wEpp~^w>8Lx` z@}aq!BmsX{swTmQKR3`89~=IVWUWo0p_(ljrx=S!q9(~I-enZ)6-GWmtLVswW3?QvjPCB0id?~~~P63Lr*I?+oA=ba0A-Ye7q3a6L&xZKtgRUI*sAqo|sj?N% zeXrg*+)Yy%49$XzvKkD{hq6<*VrOVMIK({;vk_WIswN|r&|=AR#h-%|OTNt-CP%XC z6FQZ5B-=_it@K*H&T=a2*IT*aW@8i{K#!4!&;xMFVPn)9VG?%6+?1+4@VIg^ZSJwS zLXx!xfvO(5RQ*DuD6d|40j-uhYbUYfA}Aa0g$xwWSh6d`KMp&Js#h#|Q;78|Geq~A zFmzq98glvJTBB%RjlOP8^k|r!qiWUm*bxf6LB`Uh|IZpgyVa5m zZ@At+Lm`OiJxSI`LzQVR^;X0 zC+WQ`wGfD(lLZlf?1cd^Rn z4q7pH)=q}<_d?mYurpXZh5hjm|2Xg{u3p0ay%6i)$q?P|hoS2d_UA(U^FddNxI7d{ zOOpyS@BMmra5qb3N@zA*l-1B=FDN^83w8?oAtCN@hz(&UshV(Dgx!)S2f~gkqa?$; zJX!AFkXeGnp{CN7NpU3r(B_EC~V;j~noakbw_n`BJwNwP*7s!9oJ z-)|J=)mL6eE9TDHiP{&TY`m{9SUlB!cZh!+cobJJwSRMn^{X;O_u4RYU26aC5dVD8 z?TUu+(Qfx@lI&P_gw)`+3=zI71YxJvKN{j52iVYhlB&suMe8kjtXi+>q9nt-JXz~E zBrxHv^{2=a+c2$%^GTGkJ=s7Oo)tHD!uwvZtr|RPwocoqN52V`m*$i){c{GyZiQ4P zYkol?h^ahD*62djC_&}BKA;zdSBy{A%!iAz8WAmmvT>DXuz0HcOG5nPz@xZ&sruWMZcYPSTE|ot$#6KT&7ey+soExMkN^yBzNG;CG5akO)PvZ3@ORg(^j z(p&NzKu7g9O_U^27xB6A}5AqVMlc#StIH-$a{WOy5beMiQz+$eQMRjDk?8#eB`3v{LS@ zos8h`gR*gLXOMVm`mPqE(<;vWYd#nnsfuL-e!b%y9(7ly7&>~9V6 z&j(#OHxoT{RgFa%H*q8DjU{Ms;3`|NgL~d$iFs#cI%`vY4b}8 zL`>^RvPK%JNeNoN@I!iGc*Xdn&0cU(Rzsn^p=@0187!V!e|U(09C#F0FRec^#CmUr z=pGe@u1o7Thxq4%t`zo!sreltH8?**g!@Afc53~2h&?rPwf^T+;!x4?o47fJ47mHryb?aH7gO_8?QPRgHkFrUMKTGjlxjC#q`Zxv|{e8os8)3hq7^%XRvsx{8vK!L+L^Qa%;s4`Arteo+(_M} zDP_K9b1H_ox}QoLU`*XfvPKcALde8?(J08PS6oOd<<8oPvJXPpc&}iPcq;ouh<_Y( z6jLu{zc$4Bn=(XqG7MdpvcD(9KOc0L$ccH{BSp`OrAukKE2J);$Pnv$La=t~`HSNBx`h_x-%Ob6jh_2Wu+E0*|4a%B~RBD7y;*){z=%)jLG8t3>7m}V*F-aDpYZcWXGH~ zHq9=N-8&2R(}C>?O6}bx*f$ZajQ;4Ic$17b%bw-HX^n}FSe8oRd^+k<6( znx8dREY@ov!iAYE(K;g)=R9I;qD?v$F-WpTI;w2QUBZA-kXJwJr zyJmy?qI&eRtkm8g(+k2Y#b=GW;G(R?T}z;BJRUGew0Pj`O)m>^FTz|qr!EG$r8imf z9J3*`#YvLPVv{@4FQ%&_ol3V@%BTY++}XY+6?uFBbp~ylu?|C$r=`OT8wGiFm_b@8 zch*h@P-Q3^?=TD!zYg` zW~%DN8a<9QSO(%timGSbFe5s3C9gbV{zxkFc!&7_^;}<>I-mO>f=2XRYSMk-wql)= zRKdSM)Wa#dr z5LogYges#X!n`zD?Ef%bV&7Y=jg^bo)4$#VyL&%#tTa=&X_ra{5QFt%LQ`LvT2rlLfA5SrVBE(V701B{|nEzLZ^`E4L zIR&~u3q#i>=5ub-+oZc~C<9&}bQLjY{SLZ=mL~hyi$dzK4_uVhaAbcdJ9P_oiuvjg z_c+9cn3GgZK`df!$+K4^fD&{wTe5I}Frig@kJ2~M%jM9a) z$I>Mh=cQtZi~KpX0mek0Bx@9*8iWke>qbFdJ##0mlsjuo;8Q5i7?h3o3I>U%u3sJE z9|s-9)JxZ|53xR#A-eAjL)WG2w}<%WgRY|CNrUtUL+bFE3^D#(2*yrb|5k{59AZP) zNvb9q7G1aGIY1qxYq}`4&AcpG=g&%Dz+2}xlLuw&AYYFunWNZPU3G~r!k}@&F7?YT z287&Of0MAxxm`!xEt$%^%nZ0_d>|(IBw1q*l_x~w9!>Byb(AESmn94SA5#fFUf%1=`&B1z#&6AtqPAg2 z6Ucfg&59OT?Ppo{c$9iR%Q_5MRdn(4x5ESmRON!}#YNRI@^R(qGsg$?EA!RQL&=kS z4Ug9c$uqjCQu*K=Q{_Y9-(fqZs+TXFF@xr)zJYvtlr+9KMxU;LPuEnhq<^m>e+dlr zg<$*T<=J5W`E$W&_m=X?E#m{#3n6{w8>TLs%9rPs=h0QL`;#v#z|?{8Pcb_=zf^BG zE3lm-*(s(97f!Ant2NsFutQE8_WmWGTltl_e5IZnZ48aWQ6KHfNV7OvX_pG*$2J@| zyK-vsrSVkyvsTVjdES=xRFPDD2dO%*Ht|4Iy%DQ=zS>sOCI{oS8!EPo!%!tSJGTyh z`^d8WRk>EFJwDbCvr4VLOD|iMD-OXTPU(~Up;fBEYXGophZF-B^{rV+bt+%INwvG& z;-Jto>u<78J#BPXJ=*509|Ako55pg=L6i?Kzmy<#Bm4kJJsA};`M#cVW3<#$E$(a# zG{@^BrJiEFIM}EU71#BY>bqJ!V-xF+?Wt7;;6uCIsIMy=+tUKRR>MT*&LV8x*%SG) zdVOJSp|^14YPh6uY@swVB7f@<^cKb@jvHzW!VApgaAESEL#zeZxTam8dYcO3vKV;+ zLd!1_z+XhZvj%Pg_y7U$Q!W5MZUR_+hLp#u_n=z6t<&9-ctd(bHL@TwLVvA3j{FFN zMJ2lgWd0|F+SmZ8ehZ2$s=b`Fqc1@sw4>Q@DK_&Zn%%=J`+oyepeVWrQ7_~EX)eqm zzY1E}7g_N`!z+Fut$1~B&|9HxlQa8-A^0S%tj4XZfFfe>EMhv&td!p#nV6%Vw#&Xq zL$AaQY+zQ4Ov!ZY{>(a}FOXQ<;WehixmM3PoBcAqm#3LJH``YpfN9{jK z*RR1{$5_0|pT+BOD;SH+iVutL$Bm?Aks0oY#eL#~2OEJ)&1{0a_z#k}f55%Ph8dXhA&V|RGm7%HXuOP-w&Vw&7$eJpjNrLrpEE>t$usAQ>sD2wRDw5HBzPcGQ zSI>Yy+W4{h8c3PkCq7nV4_(Xis@uqQ#CY`_@@cO-;1l_J^;Gp-a_#ciXf3~Tiqx(} zud`!zy3CP9#j;dTz5w505IBYUB(laWh2Tiz4Q7e2h-N zvLxnJI5x z)r%}?B_(aLYiraNg!HOO634^S;8-1E69zeQQPdsCaCuxY&h_GQ(FH`GxJpk@`pCaU zcL=#W`N&&5UD3Nu+gG2Nzjp-$}CCamwgS@j`_T(U7z>S;@1Fg3%r+)&g&(m2_uSXX7VljZI9YcmR72 zl&#LjQ@MZZ>=`q*5J`9o^s)#dZ7pyNAN*4Yr6L|3!{t-D}2gAY2V4IEuPi&5ikHVvy7CplYvXJL6;zmim8RBlnCbl?;Bu`UcxZWtr-M|(3oubupXYHgfyc5dC z`$7bY))!)!So(q`&nxu4fVTGyD|p10_2tz;scokld}M;*koI~47UVuhhXgl@yTi40pdSMxW1CAmGQ>^7)31B z_(`&V<40D;{m>}L-JX@E{}ip1J8LIR|KFi(yy-JYJZ}$vAL1Ve9SyEtw+D;v(rI!- zrl7k3F3RfmU@?>(fUfKI;H4q{`JgM8!9@>F)Fj!d)`!$!ZH5RR9fGj)#^8()_c*}D zjR8s3B*PLLEP0L%7f#8NS#ENq_(Foj=#c_1k1U<*O}^(4OXtX(wYfmecuXLc&K*p% zCQq`@KMPh|HR~-g7>~Y7h~AWnX+FJvCAlbRdR;zYI*&iwS-m>9al8rB;7#qB5(LOP zY~-42>?$>D#mZ1_oK8(czAkoQ!5CUbkEleDJZ*pZfNQerh$Gl#M;syip2rfDd9IsM zxxER>2QuGbTm<29Tkh%0-!|=DNqS6^c#FFhD*1M(BqrlT@%ds+LgO^IxP`36<>;%V zd~l+rN!LDapos@5-trzK7x}lmdF(+9YX?SL1@^?xvQppju2ctujmRz@62DIAL1BUC zhWk~&nw(ECPT)($INIK-e0i>T7ATgC;urDdx#Ib>WYe-dm(KB`%X3K%wmf&?-SCMn z&!wOK2bbp_O`poQE2E`;ct8g$cl%*E?pWDljqb|$S^&0gGgjC%EY#gTZ`O<%j;hiM zlP8Kb{ve(&*@eBc`^l4w7XJ>9E&7Xlp=&PmF2RIo5)+)oRsQqjcae3%SUtaQsy%TK-Y6-kEG~&_^p;sn<(QTJ!!^d!knA>mDk$%B3N|io(d^6|V!? z6ukn(klG0zT5WiaTWk*XQ@{yGJ6nC-12tGqOz_r!WfykWDkJ6gNV7E2J>AQxUkY7M z9pmYm<++?X7Zo!3;Xl{q)Rt~(SyR2Ay_1R2i0fw=h1Nw-*cKD#t6rg_*+y&(R#=l{Rd^JyE*>x;+d(k4KE(U-m}Kfqv#f0M0r6WU7ACGRK0rPv_VSXO-^ z&92vai4m)~XWGK|E}2JkJ~c_YQVe%x2dkUUBKQVw1zXw4tSBox(M9l=;fB(#?_|c^ zqdE_^7V85E8(9mYEP^W~MN;+mxNq1Z+`sdu>V3Esj4Ecum#RB)LusjE#yg^Fp)$s^ z@idS9E=UqzB|~4rUBVdpff^@&{@a4Q&-%!D?}*FA`VFj&zy(nj;g^yk zeXHWWVPp;aleGu8f|13nC}g1njjM4(X{lnyJECd{?RIi*!NygW%p=HBlO$WW;O=2; z-RRHO$8jqdTg-|tTc5%WrDcm5?}#lXZTiHIjj_d)u_&Kl%}kceeI0idWA2~*nR^u4EsM?0*?3!G?rvtT{#~&l9nfCxFenx>+{+UqQumj7Tio)s+j4{sL~%fSgDd(gj-!olJxFFxOW&;@AIeXUfc>s6|DKeO!L-b=N_50rmwaSrBWy1HS-8Z%Nq_daFL*$)7%uf3P~>nc7){KILKAw+Rlp6U zrH2{sh@QQ*r>HiD7DPD&OG=7l>J;2HtV3<^XX+f>3dR((qA&%b7mX_DXX(r!ZYC{H z%ydUQEu}0dkGE}9X~$lR1w6`y%E0L_aSt)N_W09vEp7#)i&;_VLOa$wa6@ScW5zoo zjNN0Ys}F39nJ3S3(#&MpGVj10#d!O;KX0GKtzf({D++J3b#{>0vdTfvBBRup0vD(?~qaWcD~i9eaU>bTaB)V z)pYi)MrCbcTa6wF7fr`jqr`ZXZZ-NX;HgT!imgTuu)oBh?>D*@E+8)!z*}eslaD_8 zjn+0aOGUB)Vi8`FA=?ttSEh1w5qhC(8`=MW?26W|)M{jdgn?4KSjcUIO$=kXyIb^a z87K*MQlo30wrOfG5!oV7%Z<_W^x@z5N2*Kf!&3 zAwzsK(B#*Y)r~*-tcsc>vHVpUEX7`+&yb6{#XB%$Sku{Fp#M!e0nN^CV59WhShKOKLbt?WrE8@s zzc%V*Z_lA>aj;Y$gf|VlcxiHz&@HQS@V|C(9A4zxlY2$3cO|J}5jx5Eo=UA!Y)-JQ zMs_3_s*JX}^4b-zfY;#o#jk)%A&d>ehNX0`p7A{=o^-}3;+^X&l?_$JyCIys*qb7Y zAHYW3MjsG66n4Qymc6J*vihzWzC+94MtRpVQro7nWd5ch>CP_$sXtWATvZ`E>(gDkTgtZG%_1D`mWS>3;TCng zRT{E(1LeI{J|b39BrH9j(i^V3*(jah6>yPdR7{fnJHZ?Rg=qfli>%g3Mp1aRc*8%D zR?D5WlZL+$%ElW$14SR3I!9=)3-OP`j!KKy2yHaPdNo6I8)4|WMrc=s_~(Oe$`RV% zht%V38RGno5S*POwA(`5<1iZ|G?J=Ghb2B(@~jQeN+~jCfyp5upTLcGNSI*nujle` z7%3<`s68Z*vl!^fD0|5EtMoXdgix_jy$EJAD|Pa4XHcH;K+bz1XSl%BB%ScI#|rWK zJP#D&t3>KM20d<#RieZsh{pZk~OMPJ)27b5@CXWlNI~9Q5aq^9w+{bR?MBX zlQ{7UC>xIx3>H03z+}mAbT7}oNFV2aS_jNsaRNT~k%Nz7yPv(y39wy1%bFb!QnMGq zMOoeHzZl9+kG?ZXuL<$b2YIh3ePW396EZ}1Lm0ZQD1Bate?I7@jMCMRdW>X zQ<+WRg8=fl+v5;0WkV4$tq@gBc>?jfRIP|N?_X22V$GW*`!{doIItz3(F=07S7jiz z2rkNMxUvk&#+x>SL?0|Vhb!G7{&CPz$?zJk91~)FeTL{B7ly8DxUx0GKOb~c4p)jH z^|&xYoCia2b`Do2Lfqpp8^aZnstJcB0$B2#GF|d1BZp}vIdc4pY9Xpn^nl33r!QyF zCD!_;UhWt|H^pL0M7HTqT<9A{*3pi2YcL)htiMTI-k*wW9wu(3Z8;VuNV3K@DrrcV zc)%zKB|+S8-$yIu&f3Wc=+jU(9wrzho?+r^A^vgDQB1wU#1BKPKb0Z6{~m^}D@^=8 z#6KT&7e~vuw4LkBWZAhE{e#{i+>KKi?ks?dvKsCzhO$$)V`rdvX^49qXd_UNR82Z8 zfx?pKMRtjl44Bs>%l^9(8oKul!~InD=@xYSp}Wtrz!Sw`-|~@tft~wJ-})GyAdljk zr5Zejhg%6^0uBrwYM0?J{DHN8mC^Cht`YbV*38ng!yCKh=K0D^M-kT5(l-^@spRzG zKP|}`VbqQBcwkYJB;Z?9wFw?iHq#~_izg&mYZR#Vu}At8V=;fKCdn$6jAFfdoP?5tzqc8qRR(D{PRIKXBU!ZVW=J$+ zuXV%%8H;JKnv5KQ*(~m+>&)OC55Bg37*;dG!J4IJy;vjbY*t!hlezsTk56W@g!1=B zgK(=l8J6)F^&5(2EJl%Jt#P3Wss=mPq4Y7VyhUmUB3|&`@dQFIbKIo>5Q3E0M=+6-6p%9#%G3t^K z_c+W(j3TL;j96lnCC_W37&UDID>cZpmmG1Pr5cH9mEV-vR=Ss;*IG@M6CSmQ#hR_$ zaI-NAPg};w6PJNTyWJSI#*Ksx13!?8T^=RgLmO`_N|0oYUR1--b(xxIq3>44E@Gl|$aoAB*y&}WEg;@VVhUoq%3|&`b_(O<)KIo>540}JQ zcL;aWRA$Dy;G(R?H%p-G)UDVV8D19R9*5b83?x;P4ohUP91SE9*%4l2SQr4J+`wvA8p6drT?!<#TnQ8GiZ~H={-r- zNJEurF7;MSTJdkPV#7vZUVUYdR?MBX6U8q>*?3=Juy`u|UxoO`fk$!mQvA1sSf9)g z-MhvsD$_l`rAWktog{1gpaPU2?92X9FAT33pX6B#7iBdFS`KC7 z!p>mv6!w)N{&C<@T)l+-xDe|{XNd0cVd%Pq{j3oGe9)C5F3(EQ(xk!+hScGr3^6W+ zVC)q3OGDh_5F5fyQZ?bQ2)iXu4ul<7MoETwd9vI;M@0^m9l!aSGvrYXJ zl**LNLbxca(aKUNJ9YbYYW>SY+~WWnT2E3n*|2E6C686>HC>csn3pGO{ks#|y7$oj z6nSbDruA?Rlrpv_8?eLbq~=ccJQo%>S*LB(6S0KKOLNMY{;X7Nah2af8)Ho6NwP*4 zszwPaKVlT-)k}tG#oSptQTYm#jrS4;i>J!JKEyu`Jc_HA%D*+l`d?>=?%#!>>r(j- zh4|-#?xINLm9yIPL@6$x45`Jv8KV5D5R{!t|J4xpILL<5lT=MQEJ|<5a{wLH+cZ&< zU|yE2@TVs*;H~f{%X99K_Y}?=di8jJvzv+hhDNQ?94(IJ$da8J*#O(F@3Leu-EBWq z?~ewsZf#WNY@Vk8#PppcYb2pMguIrp&*$}m@JjLdnk8^iRwJN&p=?~+86=+Ceng0W z9CQ>@FKvHii1lMKM7J*tU6;0>9pax4y2~PMH_vsn{2~QrD5O5c4DlWg!P}|we;MK) zhuctjlBx-aMddAdmfJ*8;%{D&Ebzak`i82G-*nAU^dvv_T0N|BJ zWgA}dklq>G4O5wwSp*klH6~dGWv6b#P8IJCagT#+s5nX0WW%E3mONdG{z=%)jLG7C zYeLKR9-UXHc(e0cu?d(hje3bG_*w9>7_5XWwRe}`tuWY+ELSd7M&NZZveg-Tdkof3 zl610$lJ0j&4lc3keTsu&&rZc1*ZebS(~N08N!G|i^(kSFrfd}E)n`hyV(zS+=zbN- z#`_F|#Z&h$5Alx!kK*d3`+pl^{ckcv_ibV5x^(};A^!QGn{o-|10nUeFGHL^9fGq{ z`M(z89*5abev+z*hei1<~Imt zvPA1o22pOcRc3vDM*)jP43eyojw%~+m$3X{y&$|&eAZ_vT$I%a>qSsD9xWIop3&kJ zA^vgDQB1v}#qlB5kIfL>6T;ASMT>1A{`sIQSLDc3(X}+$tx6$v7|0Ogkr0fXk>aut z_c+8xq#&u9XjmeJB~M>x(kYoT%T5j#zoF`fYLefa&{pll`dofZVJ)B9A8+m|w#m-O zaFf8M_JbpWakM=T2u7-eLAgWS@aEP0OE5ZdBo%Q1^h?nv)RV90yibt-+E zBcl$KaA!N~5xtSS8=NwL`V;j$)?rBUv~-yLQ&ox&p!S7}vKm0GfU@xp!yxhNFg+pe zMVM^PBoy~N6$o^qCunT{%*UNAB zH;SAvtP`74=4c`Incu~_0nyOSWZB;DPSv1z-}(f_Bi7zYvVVI=?&cpg3UW7H5+Qjj ze}q=bowbuz{v{|IZ{-XUEf`HYcOd>jh<_Y(bVTf>A-@c<{__mceKrhT*WG;A7xZT6 zZW2oC@j+MKx%XOLri3)vtqu&S!vSznR>P@-q3qNx*m?i4F2p?!u@MMJswNtiKw!yp z5UPxl2=mfpvHy5NOZOK0-ePU6T*RLK^%mIO`>QHVX6Vg%{I`xwCen;k%%0yazB?JT-hW#6J!^imR7~-yCB7 zh78fYB@A7chTjw7pAWie#JClLu~XNt32~1@Z0I^k)kMRh>y|tR zsAF?Y7p1nDmnG}`>;wk9b$&B>KGv^Kl(-jO9L0v{s!Me31u_Z4PV>+W2)VcZCSke9 zK-?{visauxk%yKV}q!SBgvi7igv2Sv!&Z$DwRo@);zalK*swe;jla zQ!mN?RfzRxGDP>eFmzp#zwlAL8M>PUY0|v)_@FD_fImv~E;UJZs)IsmumUd1YBJ^! zC_7F2efx|VGiQ+hE}P1i=Q@@D$Phm{(uVSrR82c9%5TY|DZeI@k`42+WaYmtp|N`_ z|Ec6{POkj;2;ZXm^i5Di^_Lihi#8ccmrz`kiZDLFe;sX@F|{Yj8e^z3A!)!_al9{kOo)FRdK6i&NU$ly`o;{=Jv|IvS0pHg_~(PJ^1?jt zyrKzPevz%Y8B(7{hIqF_@OH+9YeU@Qa2s)fq-ru^i3^rIN2E|sNsC!fa-^7(z=?OH z*g;P=D%SeR991iqAF2$t>7uri;6tTRFE%IW@!(|Bly>gYd}UQ`b-Ose^0-|0KyAF# zy((8I6fPt0+t8&sIbK|j7H55!ySHXhG+QH8Vso!Sgj-dW*l;I>Cw6~8k~LCM1)D># z5cOkUWVOCz6oprd$AvG_YPqv^5*NMJFMkJVAx~fa z&Q-amFaLnMjYv>UJIVdv_5?)ret?(v`tp9&nGfJI9;A)67sC?G{i@G=l4M1TtoF04 zKc!jSypvMTXIYN9wl)lCS58g7B%VrtR!W&F&)d?T zDw1mNAl2qoCbbvUZp5mcueO!6?XQCAC$n-x#ddKRYED`Nn|;LcV*{drGcZ#;2=BmAR?6gYlJ}96#R2^@%`w3`$+nVF0l~hdg)teMp zCzo5;6QXPVP0Gc3Xr*dj(K}ea`XR7W{V@E|+Iso$@=HlWxDkGUhR_=oGWnjKa$~gA zQ!Van3^d2TN27 zON?eI;ESb8=uV2fX1&&g?g0Ybr(Do|+=Q;Wft1Ip_MlR=?FHyG|JzAur}yk6ypKGh zpg6f$hmdD^T+Ol|$|BfTQY7!^qr6wY1w|HBg(e;4OOOa1<+X4r$ot+9a)i83&g>J` z;FGjc#;vS?B4Sn+u~5dWl;0kim_w9RSYcnJp3EnSau!2Gr%De2R;r>b!mR}|Mf&y@+&7G>>sZBnsJa=qf>Fh+ z_)_&z+)!GonDLIN+FOgxHm3FxIRsHMLGttv?ij|?gZ?~y4Yz{v#H{%8^b~F=El3Q5MjHKuMNt*vSHXx~DBrz+#B)teXl$IoByd#np>!Vp4 zO$(wdf+!_LQdPix!>Bp}F7*si$KzHos+bjDs!qcVrKO4)?})0swHpl^Q(ZELph``W zTn*yRVO;h5b9FIp1>=fYQMj7b-7Q=qAEhg=$Bm@ri5c#QrxngSKpSVvExCoK*59P- z@4#KhSe)`_@dLOOj74TeVR0_K5f<+8Z_=T=aZ_ozWac~Ka=GP}-NxeHT0Y^Rkt!Yi zGVUnG+@t=?J%L-nm}6G_nfnQDDlK!&d`HafLvF0}c@-OR^cGEK6U>>(lDb)6M#l;m zb${}wZYgdBqmEfosGAK_O2RMtSvqqFZYC{l%ydVzEw@a4*?3zP%O_m4{30Db8h03D zZyj9fIY>Dfw}P?9tSIcwjCN>+PtuXIaT95oV`it9IhddHVs668+=SwA4R;u0uI$g; zCAbxgIc6o9xi{k`(lW=)cEsGW*d(%zH}gGwzL3dGmQD0l+)<3NoBbKP9k+rp#;hoe z&64j%laJDs&)`PVa>fjI#M$23EWeGfxip99Tl|}J=^MC97&~9{XXoE=D;PV>io(u( z{zyZ(6n&RY{Sr5qmM2z)j(A!SJ$|urgufuY@GHS%jrnk?XS7;@TfsPDRuqnqu|_v; zCM`G2bVuAQi#-psaTHqv&4n+PE}P+B;I3kQ>v(_Ow%}GU-k24Ix0%sv2=GZd@;cl^ zTF#i+jyT&V{=m{k+EO!{5RLc`(%W&|Ta31g{b{=bw}R2etf;g_1N)h3xcXb%L|WRI z*^X#iYCco8k+x9DB>2+OBvl{5J;bQ`fIn6D<5n=Lm=%SpIpj&Y@QQtr?mU7UN=q0s zo|3TS?4Md?tCkc^rH2C~L!>h)XxBtKgy{S-X<2ZidX&GvJT5q@em5NSWLx z{`h{XdNwJ2UUeI}ju@|=Lq0tVJkhULPgTz)*Df<2;pbOQk-D`AQr!_e@QAViWso%w z5R=b?3&mqnhE%?Mok*BGZbP$FY?tWK3FPr&4jz*5y-{0jSg!#4WRJmW?pg~DR)7;0 z$c!&6;vh?IqCFuxDMGf%-=S^Nc-UONw%q-KS%(31{DwORbX))nxCHu)j_O6Rq5Ol z)HkCw2Cz;PX2tlH>hhfex^Q$`xzftP|Hv^N+r)aUoV>I#P=%F3h1{lgu3Ti22=IUc)xA!7lklHF2$Kb7o#sIWg*!34ysj9aVW@;yA5MX8bsJ<(f$mPo?t?BYkJeTK$J(D|C9oyWoiD%+FZ+h+kPQ3g zVpY;KuZ5<0cmj1K-<6OrNAn?a+KyKJxDPLtXCrMPdIf6)c^DtAkmaxqy5f|lfus)S z*g9062~?OoPpZSKToC2!Lyg^bt&1umgv7ca>D}Ovs!wihAVU|fbvH2-mQBurcVr~& zBv~yB*E-~=(|e49@JexQyOUPRomJJgw7u^>C>!s63=&Um`*MhX9Q4k$?a2`9Ph^Ph zQ(@@3-p~4Vh<`rlraU5P{y*#8!QC`T*W#^s4qW8DJ44DCvH;3X-HM&>WgQyg9*5Zo zQY2Lq4oi@-}6OxpjmQcO7o)>VxohfEe<^ zAiXqP9Iv&HqfvqH;lu6%$$@(0#f0dxD0q-@JB*d#6pcZ80}1(BU0@HE^OO92xv>di zupkWQx2%FUz{JvibuV*x*@Rb9gcX?}VLUxm+u%{<6x#G-?{|@8t#P0VxJ z`9)UvBEyJRU)@0~?9SRr#2J9H@xIF7@{BlpLj2=|pm=+YrmqRHeszZEUKfV0E8^T5 z;-3$?DI?CEA@#UDL!9pp!Pyyc9t&}g!)!zxlB$V{CE{4}Y~PrH(!zU`E0s~SX*M|o zos__!cL=%)w4H4q)ELmv7CpAiAq-k$bvgloTM-SaQ7nISo2!81S2HJT-dxCYP^OT5Y1x z@Zxbov_6Nto=&nx&sD4;S9y;|JS>UKDZ`b=Qc=rq^&X)uHx_nDvc@eM8s-p}qku%e zNLIdY6osNKCSSfwtL4tx$qn5Pplm$oGEh=0n-3Td-5k4-RpULu|-7N!3KdBIlMo%WXm^@i(tXmhlYCdM+`t6gtP5r*Yp|R$ z-%b9%du6WCWXWWqR#zT2*=-lQS6c6%tnX*@=wSU#;<+gm;XF*7OxtrTOps)aaa7Xg z5agnJD*8oM>q4U_uWoh$t(H4$CxPN3C>!r)3>42mu`9$s4m*mfSD<)Pi1jNoME9C7 zbX|esmJt7Z&|Mro5!W^lFq36F{zOPkKAs`ccZMMC3>RMvagPISgbR|YiH9XzSn_O3 zr>(H5C{b6~RMga0_=PAe`K6%DIhiJtCpJG z;Olx(c(wS0uz7G%R>QP~P&OVv7$~0c7oB}ayz zQrSbL$nRmy@g!2o&0>6x$KDLuzq>NjE?Y(4+-4?fmzo_VEZ&leI4=7)(smh>eUhv( zhYD1}k=b_}g`sGRhcS21in+6Pa^r9>l#L5NgT+($9}n@51CQeBCH&tDvHqP5(fxiH zx-Q{=F2p|{bmeSPFYAEN3$!$;EA#$U?+)%}smw6VhKsTqy6gpIr*6Sc$v-5-Jr1!U z`6N{n4vXYl@^mR$C}B4Id656%*K!0;=4=MLis=aJR>1^1TJy+UQBByJxsU_H? zoy;v+<=wIs6<2u6FA|c|Qc=Z4ej{y(F_9<98dsiPl4YZ;vWYc#nemS-yCB7stnP+HVj>tz`r}hKOc1EIeO7PX=;+}RCk2b;I<4A zzAFS_r@TKJ;vNUskav=*NrpwdfmxYH(hL2wxb2uv6~aA?|U24Y?<& znq*ky-jc^p?#&C6<^E?>*igCgo2=Qa?`rAR`rbAC6-$_{r)!6mb+hbzCHs;fbLUGj zd86A^CU4%IiZnj1zlpZVn9!4CjWtx15TU=vCs}g28pN8 ze>ucI4mygdm(V{MV*QB>(S0fmU6;`RI>bL8bd^b(XpcKBO-lXzZ|Ysa-7J-fn>lb% zRzsBqPMfr>7!~OZ_RdO~$02Bx|gpvV=(eMMgnh9c2ftlsjuDQa=D? z;~j-T;wkleLj2>PqnLV0{WT%hug(zN>%!1=N&T%M{`sIQ2k_A*v}%&eAr_etZ;vNUs5PFiTNrpw}EqM-5g>yO@#C*cu=)X4LbE}^+BlAn@W=y?FvPK1}G{|dN3%{iogjY(uV-6Q(HO$!? z%Er~3LE@?2hllvbK}Rw5Qtu-}toLS!?onary3~7fh<`rl$~82!`-xc@Gg%7Aj*yz1 zpCQuyAxJw_d_2TG4z!`-Bvq3Ri;7$FEL6o$;%??l7Ve)@MMHJQZz|?cddvY|E<-n) zJ+U@chJ9$^0Om@2!YFs%Ceb8W!x@#6goQBo8ik?oiTRYfXvN%F zI~io(4`t&r9l@e)D;h(^()uiU78}&c254qZZh$u=z~Vh}sG7$CxbF}7WZ``Lnh?m0W-~-<=MW-dkv4*2g&aHQ~H4zmoJ4=F36s< z)i;n&caqlm#^}=(@adZBmGtjbt%gk7^$w&4xBGwy^#td++0@2<59E0z1_Y z!ym2bl@Bk!l(2Lo`~WO{F)HNGou$*Ek5z9|vD-^fB5sCdf<)RXt;~aJWsV7L7PRvD>LY4lb7^7pm+Iq=AE1HoY|`0Zpw3pYW!lj+o^gLTlSt6QtN!%-C2j?y zhgtEZ=UUuQT6&oA&go$h*GW&bV3g9M9)J8^+#igdTm0#{1Gj?F!>sty^I6fdF*%5f5cbWfxd;igfaAWe};a9TfrD&R(u(H7B`fZA!a-!L&@3sk%V%z zsE&iOJ(BQyFw(FeNhoV$-n&&l2NzApk%Yu}l^#j>k|*F3`6`Yi>=L6-{VYN;K7_IL z!;qWYvB9|YJSC*^gXQE=gkRkX_gHW|+u5hU)&;PC0nBh#>SN>Zp`IIVG)EyRzvYP0 z;-3Cm5zd*2KCUcuZD@>+!C4eTWa}Mrpj>n}L1#t5=_p+kRoSzYPBrV8DK+^MD7*zkA_ zjCJj*w8o1y*lV1cCHHa_a+?b^0XL#Mn6LjI_3Y`(-{$8UY>JV_IjKc?XcX$?jXsJs zPL3mIH&!1aZ31o|pn1HEUyO}q$(|sd%NV75o z9U5vvx9bsBlxxMD!zJoXfxVaf<@HRjSQlpBHbj4n{UQZ+R*+U6cU$$nEbF4Fr=^{r4u(da$ZE7*-Ev1hh> zHLDoFPq6IgM3yE$_-8l^Wou(oe0pKJ=81Mi5ZGrxyyl4{j@5Be9-9HtrepTCI|B^| z+Kv53*&?n?sHE34jlGiEG|lZVunx>`VYJzynOkV8J~PA<$!x$DrKjD1;)>3*{5@QX z#U|0y_>9os(d_z+&|+OHxii`<2HhK-$|?O7>aV28_Hk#pAGfiJ`OIoOh+Dx%{mhE* zsQ)Xtp|qoZW;}Tqk5IKp4P!Qlp=WX0r74Ww@^xX@|k3p2L!LxD|{vWZ)Y3vgr z**>Sa8g9$%&uL_BV$W%|!bQ{ZoQ4>$(&seq1D>knD}PQyKa*+n7MT$2j%Kf50{$$> z<$OMqFUtosH*KIteZ#p1bdnktl<{e6wkCb7STEID@GyqXUBi~k;FNB9_ zlRxiDO7Z(J+L6?$TwsknGkIZ6+(Nth0QYcwKxso;H;y;yPKG+S{Fz$=wmPg8D?@N> zFM0Gv7-o&FV6>Dj(S)LBY|~$`+Uar?UU%pCDQ0P5m3w_mv zzI3%^d~^U#Ls7Q3VIJhGS1LBDoAv=gVzcAglQf2$kbGBy7vH1#kk)rmG|$dXFSQ=nLl)MFx3<{4(fN1f zSn*~N7HQ|VtRzbjoCk?3^YpwKD=89|bx-O|(A^xsU2%d!4_stv&Lr8tIishVo@x|@ zSBt-4buz7%JFD8Dt4ksCq<@1x4YDUUXat!9r#yx8hLCz(pCQ&ag<|b|=jzT77dh1MP;{jd6-lZlBNqL)D1m1ty1wRSEofhli{9v%Op%mfV2c!^mW~)+n~&EtbX@S+)g-=j5ZKpJbev z=7YZJ8WL>`G#NcabU##l(jd#NzDoS~4uvi@93sgY@u$9zo`iCLtVUU!p~=9neL$TXH5zrUHF_1^LOGIccoSyYOhhy;ru z_|}WfB7OCkXuEPs9*hOXVIeqOib^IN$<*Uuu?D@PgnNiq%$>E9Nd734og8NvG5(|MoW64>|`rKYOx<& zl+~E&Kqxz?Ejy!3Z-|Q=Xd}vyR82-KQO1(z)Q!`nt&%v?OmckrXhQ$+jxU#}@dcKp z;o)V?`gnYS#}}~Z0&XLn(S;Q28C+tE+<0t>rAzR3q-qj8w46sqR^lfb7$=&w6vk@#PzhZl`F(Za_$~Mlq^q z$fBJu8U^8%;&I|(S}AwdPU6I4PhV6b?`iKjw*OGeWElagl>;LMjKa*3|FC2O+FjorCo zj=Y~@y)!UhKjHTVX0mLQ7p7v2-yNJ!8)Z!KNwP*6s!Vf;>*8LWeUa5_8AW;Z)-hTw zch*ice;mqA?kfx!PtCtB#77Q2imaFB-xOl~of#thu5g51ntykQk3I;?^GdW=q|9X5 zo*xdW$>%ae`wO9HJGK9NAue*T4eckXnvhtu-;!s4mrzO`%&U^6|J(!;yruuo?}XU} zKh$A%E2lErp9>dRW`;M}_#v zfk$!mQvOpyte=!2!kfYob}4^t!9Yp2Tc(Uq1awPq}&4x<_3+ziFpsrhdXagoDp zXg*2R1jM5GmOQ?v&6<}c3;(PHCUoJ)%Oi(Gd?)!e8F5Gid94fE9gfH`KP2K2k5bQP zFN=v6`ljj3g;yKz^pT?%JU2GX!3%Na#t>|Uc(msg<_m=Jtr271C7y-wlx?Rs(@;Ko zMRgT_myv8=DmG1|D-N_R6X~IoeckkQyY5xFR=u@zs6=o2;Ek_V-=*Dyqs6gq*t77I zW@)0;eVLYJs8Spu%h>x_Uh-q92CvWw2C7DVpQU-ixTj343tUrCYeAcB|S zhSF{T!Hm0up9f)GQbZN1-ac!_%o*fA@vbr)6GFC*6>RZulBW}J$FNO0j`QbfGj0Xr ziCOXG>3rN!TArBkj(A$mme*+kP9ZGfX`zx&u%)F*&RV#W7-tQC&fb7q!8l`96wc=J z$Sxd5 z24uob%P-Q=hwv(-<(O5gBaRPL*b<{aF^sgadw?sy@ZX(5!tgyD28{1-`}6&uxD||V zW<}w9)}@yT2gyh2%JaC9w2U&t9WlC3eC%%{GJYs5kNoi;q__M0d+?xUFn{7VXz7uSDt;94V}?Zt$o49NY>< zIkTcrK8M`I3UApL>CPZ-C@t~KcuL}vv-6G2NC4BW#8&d z);G4**;k?doosbR_qC~RgMDzS*8+uAy4%^`!6(Pw`jfGVi8oDE&n4UFyxhk@{ZtzP zKFr4b3*o_as*Sp9+KW#d8j3bb6WdnNw+o}atFSDx#omCnSYz)Yx?|W2dZGj{zMgvw z;Ud$mvu;m=tk^p1W8|W4(H}`j>ul?+e~V^LU=s?Mtjn<-^XOJu+r&Ava>G0RGwfE> zh9l!)BcpP07dwTh*oN)-2FBZ^mdst)RjiGdT3r*BQf-KAtyav{$4AE|a>Zt|I6>Y> zYL$y)rCh!-&?+@|70GTGa1;|g<%RBz)XKp&NX7b4m)I$z2G_!bW@{(8m~7P6f?djZ zDUgr+$PZ9rreUj%;)r$0i82SoM;=OwZ2pg>B8e|Fc?2%9JZvP%+Oq=mq1Zx&4iQeY zG+D{-8wKl=Jw_iDi^RT5E9uUvK735OKiChTZ1v$IQOas;f3OH9ZGV^;N|q-omOPLC z-_u$pv8JEy&`loeTnpm$`2<$Q_} z+v~7PAlodnkUP0Tmwb_3Y;y1td%aO#T`xhuH~KrA1G8l%-IbGWsM$qM#-30gR9sM5 zm84dtTG5Ep^-kX*aRKuYFCH`l*rlIun*v>964HTWo{RIsjkYc z0Xv(9bEHOamJ^iLms>*)cFR?AhxO&EL|yn-_}0ZT^jZ}|n`sr#P!*Jv@%{ck(tEnQ zmyu^;Ts4-%MHbZ{$^NP_mqIP{f`5|@YL!tKUNOE*VI{4YJFBV`)n}n$rPz3_0A(jD zMFfqe6ftBhN@2l?Az4P2CQ$AzBNb)BhCCjGQ3iBlsw8KM-LK#fMZVW4 z-Gi5$K}Xh%)>{Ss5E7ozDm|8bYzz;t7V|}1duW?C-Z+a*`tfcXOP5#;rs^TQ>-JN) zVk=8YvVYf|Ly!?Ymwl1d+G7;u?u|rIc*h;5)pBR;q~l%!WhZys2pFy7#&EH8TuYua zr@O^Scui}`J>+!>*n0Pn5v7NSCQYY6JL@WaB)B!|aEK^-IByMU?%7h_QQR3McDJW$ zn!Lw+l)@M5F(i4Kddx#cQSNS_^q7C7)pBR;q{lo0WheKT2pFx$#Bj0n7)zd$0(wlm z;Yg}Y6Up7=LkWO-caxXV=X1Gy3vM&(BYY?dPgdEDAZ(ROR;ySWdBPLe-=}IPy!rly zx)p1_B-y|D&SSm^$roQG+)IC~7w2x5N)z52F7kf$Cgo^tA1FJy2}j^)O*n>)r3qW| zEZDc`t;rlbdY>j@E2r z*jSpaCC|$}8-Z-eW+BNf`7aV6^VZg?`OJ=Pr*D0~YYlt1Yf~K#EQc8Yn1vf1ueB>= zV_Py`1(VzK0O@E}ksX!{x9y%RU_l=|1A`;SornKH{wjvA8*GW&?ENA2cu$5{e=rnlXB7HOh>IL*BMOmJO-3wH$dc!zX;EKEnrR|AARV2+m>!Vu z^2i%&pGkfMD&ANlt0_F+So^R?sr-#Kv4BLpv4&Q;x*b*pDJy&A;*ObS&GPKw+C26e z+Eht>uwT7=DXdK*(>c{QkWaIJ0-xR(eYyfZT~oc1{=JI)C4-teIg}9=6M=R58d^77 zHdVb4(#5)Xei+;Smrdo%D|Sqk4}^aQ!@on}-(fqZCg+n!w-BVKc1-1~Rk(2S_~HVUmygI=xc^?$XFo0*Q6>R#zsl_fkOXLRuw=IE%0&dIdg@2f3{KoGNgN{Z|(2LVfJ zpVfn~=R0Z#M1@S=@xpmWEh3MtD%9RiI}m}J5A+^U+UVqhC_n#IduwVA`Bl)szDNev zMc}1=>#GMY^;}YXB5nm+U&^eg>r2T}hR7ZIMY?k)ZYb^gQfAz(U&ebSq7tSKcFYCASK@}! z62^?DBrG{QUl1&nrg{Xa_y5F#;6rd_b}R*!HH|F=UJf;%rlr6ig`%o-DeztJ$+Z+% zQGT%qm>p6q4k3oOqRG+5@ZzorH!G(|eCCHH3#cJXzlfmjv;6l(C(^R`k}AG2Jez!l z*-yu>viX0C+YuueJuayO05Uiu#{|DXBM)GDzr-}t<-Y%%22-)z_sis>ZqeIFxUnqv zm1kwYmV`R`EXq20Pl5$MKA^%69#s~{@zVofqMoR6oviNLU8xT>c3UUy(Wv_GseI+r zBR_zPEYl+-Ssf!KoT3ZQRE46?CZA=a{+&?}+Ni}6n%~e$xwER1BWYL3{sGEXCr5~g z#8=5OSUe|3mj8b`Sni4wf#J)9IPjfMj=VI)`eAU9_w(u{kU7Qb!k0t#K!jbBBgcpM z=!3AF22lriMyhPhXN1(_G`J`$tj`R^+BrE=3UQG`ZA^}kR82%IlOvWqg^lTSQqp4< z<{o3Q2)bYO$pob#9k$K3#350^oE$KMve;!0#k7BD9`pJH^WDQTNkM5UAtdI1M*DLK-UpMTMM847G z_S#lTibb)N(Ix6+#o7ywKfGPq(}vBIC~e&*tjZlfRB8=^?U8=!?{T>(ORoEb6JV-s zK1{E{z@0ZrDKifn5?Q@cH8nFjRu(?Vi@t1Jqz@9RZ-pX?rkq>>i7;3u_AuoU69N+~ z`#(mOCU5z(otk2uNNkgIlM3K+OV1IbOY3hEW9Ei^~3N-o5mIR-Du)h z{Q)VD-EeC=V=Yp9ov53hC@b|$LZu!cmHL#cQXj`ErB2{&p95;}zXH(9R#_N(Rn6Q& zS5%HQf#OvTH3>m)IUMXfV)d=>TW(4a7%r)pP<&! zcUkvC!t4Ix&g;Gyj)_-d4s{`~W4<8DBD#%|BKf=?kE+jv<4L#`Y{HRQQ70VL z8whhJt+Q}LX(t?+aeV}(#tx5Wwn!Zg*og8tr+z2y6*en8;!n~9ZUrNWS@9+5O}L@7 zBr)S1k<=weX;zB(&!Q*I7vE(+dN=M9M$t|F6y1hf!6;%@6pCi8jt+b!AEhgw#*L(< zhZ*jOo(0js+0G6dR!esHcj?l<;x1wAeASFFa++;G~+i=B_lxr?PsZ(oIbi}krz`croXZUv)`Sy8B)qaIYszDRd2zzwA(j~VZX zyk)U@0ULAr36z{RJyAN@#+}4C8}sMvjkpzzGiF8SOr8S>oWU3A&RcOqX*pxYJK}5~ z&Y3ceVk2#dk&Who80zcj zqeo76TIpdw3wP%6uhOICKMfvbEP+csM;V9VRxo;)6_p;C*%ki4C_@#!9^6b?dYI{s z=vfwW$41(MD1+!_N{aOCPTVt$s@wdjdJwmQQN^q%RL$z{79Nq0(v`2^M$(eR40lA* zV*LS|lO}D;D@qefk-q&H_YI@zhyFA@hg-pDVpbHI(9;lR{|t@BX{lnyJECeCo1sV; zv;(2!8LP-8+M$^&c{>Pq6yxmxxYTplaRhD!wW_V^fIv>WZX zx(!}|jV>X_Awe1Bdn;ck6kwOsTCK60UQNa&UF3yX*aDR=Ehewb@~u|M){D{7j92u+ z?uciI4IFrZY!}wSVm&ud>T2vNHEYER+aqzXF$#ONRa%XDw3Ikw*Pg!o1OM}`N&VT0 zc3Sm07hA>E{lZx00ByI-Jp+l%bk+0aX%G~vo-ZR8bqnbsGHzM*e7SgsgT11bNA@y3 zWDDKUguZOPWqfo1_A7-B0gr##Cc}JSaV0FS6J=I6?E~vwVATywy=YJ5Z%pM6U)g*; zTx40)liRcPkWZRM3je_(AJw`JXtA0O5E9K7G$;#$Cplo&BEfrO||1S|*(pTOB zZ7_mG+i)j_ie;&$CC_pjv9c$dSGYqV>&g37rxNfX`K|;n{+8xLTHj0fG78xS&tQ+= zVBHz4)(6$KF0hZ5RPbgPeV0!C7)+}T$W10xR%|o-LsnmyQiLVWvMiFUmX)x~zEY32 zs-z857W4z?OMuM$ z$xZR81a!Qc;ziMtmt4M9X|)sH64?w{RHe+(MV!hjBh6xcq?Cs}+To=U*bsWi+K`o1 zHM}V+DH4`-Ki3Tk)jHb6HeMP`A?;bBz*Ki=WtD!vjAPDCCj zJNm&OdAQanwp$5tVq;}wya`+I!)dkJ85@Lwxi>*DFS!9Af>|86td2IKr+Ny(7d&AB2r)oD`$$ zA@$gqA=YD|SUY3%)gdl&sErs+QZ=cz#Ar*NEz=ycWJfiPCCBe?CTP8P{63zqx^{2h zySkUX|G&Ah8z#XfR>MR@3%02qt=P9tkCt(ZIf(eO?mJUa$tT2aqpdX-c1g0vB^nlx z39&C21$l*{hiIkTSvv^`k3!kW0fE7yhg@es_FV><1TRHMBVp$_{GD&S20R;v$FH2nHlo z6A()9EiNYL zBw6DF6&^&;n?^xiU9mwc<<8oPptqsyE9FmWi9og5|@G@fB%eTa`7d=y)+FtIVj`i2Y< zJ~bR+SD3gk#77^57e(WK;&&^2M^|zaLaxPTw_lUVNv#GXQ2;>B0# z^W6rVZe>)I{S(yf*j)fg)~G=hDB&*PQKK-tVqD!Hp%rsy?L^(b1Z5|yJA=kk-G30` zBL^SF)=S-g8DjnC86x~_IKnP=O8ULVWZ=Sc-Y!NU^j+OOvwlNJt$%pCQg)48_?g z@K1)g$YC}Fo}_9bVi9;to)vCcluVe{B@6ua1RA^r{&aokyIg*t(WqIMFwt${nAD$J zF2SBOO}f1e4B>Od964RbI+8bc#^WP;Gg)HM^=lnxw`eLO`+0DYWzL2qYn-9tG>5n@ z`V9Lbt97VR6kaVpB0Gpy%bm3o**^@*PL_QJjHm1$9pWR09!1tm_D>D5esYEgpB9d= zOZG1c@zDq2#nEacZTChqS+?hkLuyjb5bahd+D`GmCd5S!wjur`RTC16_*?Sq?-EMM zgLzf5^v_Np!CU%Y0lU?(6VTkJ%yxG(#iz2Eud3TBO)8sca#dGSq=)wy*tz9U5%fE# zld+LJN!EBkWrv;_%d2LbAN!b55MC)R=UyjuVTwQ^*`$KB0JyHX#?)yE1&w#5@1n8|lBgDoSS!k)Yl@9R?0!l!7q z)0P(#c9N{|f(p=Ft#bUE>=G9ng?V+$I<1&HYbWB~g0hpl1cSy?+^-4ok%Nz7>m}|t zgjl~mLxgV%N7yCqcZT@rgRoq4qn_<&q{`O(`H*@%m?72=hhps%_$NYK7@h$TE&@*IS!q$I<%X-e}}@q!*)zf z&M(#5%}S{?wPPw@t-^(qM{B#|uY}zUD~T~okS7=9)~2AInw}elM-z>ql~a?e z5^@&QlBde^wzQ{;#N{3A5bc;BjhG+#YFkO0yjiV>R(f9U-oFZVRvhVXmz$+l9~u6w z$_+N^!+dN1D5chD_H_@`ii115SFvEse`@b;^tUQQr6FF#w&pk#FkzOl(idrovTc9M=sJ2F%vZh6oBw)L$mGX*%8k)d zPqnzSG0+@`y@z{>^&)^VR9x3ns_$y`j7_XNwx?DZfDb@veO=+$o)+-FdJJGGj+9zG z5y7k17uFVf3rDVoOA5ypN+Tokx1Ok(j7=Oj)EI0*1B2UPy5JaXNg9Jw<&~$;guUw@ zR0)6M|9M*Z?Ynl=dzY*h{aHUL-TW19#nmLq_s=7$QlD4$mu&YhVJmwKK%^CH{|cJ2(bqMSQ}o)>gDZYb^9 zGt9UGxU1g3dRt#qA)a{M^oWa^j$jj*SNW~Jh3Wt#8Vf& zr>2qLN)r89cr=%Nlm2`F_Xi{CJ^m!!ja$J;VpbHAP~H0+ZYV81%y>ui>}wm0*@#+V zWE7Oe(j|FM;ND{7ebb-3pWs$7@|YEsJTep&p3R|Oq&vUC4W%WI8SjX^E;(klQ8thL zEc_8)rAJGD7d)z11ebb_Dh|P|U<5HM3PH2s_CWYUKTBs;;bzj(!%TNX&m#3U#zqk5 zkKE@7r_?0r+sU|ZSWi09pQy8OD;QDCibB-P=&WP-BpoT@Ceo6`%yvZ5g6Qtj#?V~) zt00GelkQxCyMytv%b%Aw<5nc$IYbWhM7*uO>%aAAf&tpul|VK*dT;ZG>nX;b~DJvN}C-R@5(w&?WNl$@fM@4=Hc&pN*A|HlNlZ(_^PEG1FA#Y-5 zNKPK8X3{1J@++sv1QI`7QeX=+ZC@oYzq~vfRR6sHzr8O3ldG!M&75>+PDsK`AxKxG z(-{x~2?0VN5JJLWmB z2%-W(aNs^cCPfh5zxHtUKBvyvXQ)&j-0$W4dgatU`|ROgYp=D(wa2+ zcEqhw;FPx`K1&~U$aYBGg63{VJWI{}h#e%ULVj(Q-Ill_jj68HxGtS3sHb{>9 z?iw)iSnKeJvt(PyiGtLfgTI;LT4uWS7Gt>)dUjdk>s&O>m)cV-E+}pKDSLuYw1rvJ z76P_ZX|>Py71^GuVox@~X6$pNLZ(8O?4oUSvn!P&ZkV-8 zsCD#?i6n%goh)TS*s!mPf}^$*hLW?L@F2z1lq*>yvt&CtlNHfFs$==Q1Cb-NlQg0S zw-XLh$mR3(aq1}8VAMvTmd`iG$^CqM6jl>i5fQ#1KEi&>=U2z6V;F>8d#OZYbA>8t zzBNucZf+sg-;Im4?-KfhajGbwb}gY(s6(ZAm=%vWM{O&`s`%#4CD^nq31AwTAi4)Q z(6p@AmNViRmt1-vn@Bn@aPLgao2hrgC=)F9lKtr})rzn^Vxa9fhv8U85wh+GQ;5Ck z;+?-Trh$wwEq`U8HJBC(cF2KI>GA$n2-DL3t}|J45yj4|(fFuUif!fN zBXQ~|*kD9Clxf*7PVRGBi17aL5%x1J%j48B48krW5@cG=j8l%&T8Q;oak2I_E!8+x z6i~ZN3xzsViic_Oh_hHTEiu)qQjzZTgN@2xn0_?ssc=SRK3jD)9LD22g807OWAnu< zYy}o_J&i)Z3hvdBm?jLtl}s)h3;_i@xMoyQhC_L`yAm=&Dn}K!u|oMrZDv$)C(;g9 z{T!B%s{dzk>L`FW;u=cz|1M7M&$JNX=i(#mr~2QDQ^zm}PqNQgyEYRvzEJ99^go@A z!(ULT$0fQmBk)nHx-)G^JC;oQ8h}0GR8au#G5{3nP$eD)z$4CBT^TCu-7$kz`Q-tk z9(sJRH`|TDR5_b_UFDokWpBOpws}*>@<><7VoI}bzhpX6)Z4y)E7TgSfZEkBp-??3 z=$Vm;t(z`MXv;PparV>vzl2tzibw7ggH6U40~i$AWE{!&UnP?L=_(zdz%dMQvLsR2 z*x&8rA`CmsxbaxQ4y1T?aO74xVF%<-RqMkeu}!G|L-3KuGBE`^_-0g6JNi{tE{6F> zP{lvRm1QWYTg8g+AGH}XaT?MNHWM7ckY=J3r;dU}Mh=8B6Px1XeohM!{@3^j`)C#65AUD1deu2?}*68xJGl5ofeimI`-w ztYF2zFaY$>ihsV^cRu00_5D9CY%_-EOM?AE-N1SmErKrGnM-5i#F9oQQ&?$~<5@|Cb{nFI4y-6RrjoPQec7jjATVU;9n2#6qd@Z?S^;M{P!p--5J* z)i{SHq#FNeoH`2djo5}#<4?xP{fQPL{8W5|{j~RA;?yw=!kSkX-t5pC9AQd@ydS3w z@3s)D;S}JVYVAx)_UWor*&)D78HHq7FE~g@*IX zB;STQihFGt%<5b0txc2A;i7G-*17bwn#Ap2?WfP;X^V9pqvsPPkto7J1mpU2i#c%F zHcn{fRnqISz4^Xm6#p|FwtEt9Pc>a4(QV;+W)H`iBw5-bHm9@G0IG`Ew*?u~U#w;mLgp($)*|0OWM93OLU`N-$vr zN`z~evyW3h0VRt?26jjd%C=S(vr4esp6^r>dQRjat&>0h$?(!i#t)Sy0*b#?D7N$v z35!X<|)n##VUm5{n>*I(V;q2OSM30HE z-*7b@r;cF|R{IG;`K~U;m15x%AWgr@=xIg-{oVu`{r$^Q+b$*$&?uAR%`pBL_ zx>E5PHq&cf+F#hEWluq+eft#TxUGiG*=lVdRl%(kxb#{0I87v3naOZB4v^ut)qmLR zOs8?!%u0@)rd|3#kFEFeo~$$BeHZXtgwez&UWhTFCZgi<#8=e5RVCcq*t@-0Zz*E-vJ7-om$tUE+mnI`Tbh zQzAEV=z4(6Mf+Bc?a$U-W6nF{;JvEZ4b=sS4u*EeA)SeXGucWHoX7U@GA>BiQ4$@8 z90CWtmwtB+_ne@L8I?nQl>j zCdDDga2t8_m+YKAz`c5>h)Hj(^y6qRwh>9wOsMbV~0R6Ul& zug9UhVBN5nZ#_2}Pi&3LR z1PPq|Tfw)%Tq~2)wrY4Lea@VViAg+{uuK{>XB3r5JoBcQw1ZdQ!i!mx+z}<$8eb^( z-DIw>iG4SOXW!lCTukiaxoGSgjxLj|8GBZhdC;6qROa!lw;l6j7to7&6LsbxqO4&< zxT@_|b8Stm`(1d}y=us^rX>L}eS#xGA>n;5FLy zVx0Syc(IAt9jxkluDPxzww)86Z5NqyF|m#3qOonHEA$FpyWd6OF^ zCA>H{(G|;Xa_(?d)jP~pHSzAY@VvX%oQsKfJQt03Ll2PE!jr1VSw6?TF|%h{9uQ8K<;)eP5nmAV zg6Kw_rp*j+FQK~A<;Rzlv+1h6^?>~2@)>J3E1MWd7qf**SNjs0YEM*42{vh*5DU?z zZY$eU?Mkf5WfQ%%Vh_82nQqV$X^^SIEnJ1tdiE{-Y}a1lj^r6h}gt zbT!?JTh6fXy`omA<_EA2u9vBj=t&phfwY}2crK*#8FnVWr_?`ylq#j7J#Y9wv1&@u zE-*G)eR>2E@&VuWA=oPxN!SE2WO%-)A!N9v+dhtqf~4H`aV&k*A?IOfxZ<(xW0TW6 zZ!+iau6Os9?8F)Km$I_f-<>Tx8i(j+=&lc~WmB+Xz^9)blcH9n`iQL^z4*vuYX=4E z%O5%876ikAvd_2@a?aAb#8qzX_!KLYf7E8Sc5Fi0`o;sMT$yueQn=J+=#-NUi^EMy z11cVC)gE!CdNEeDX!jTXCXu)3=~hnwJ`|5Udahyd4AQs8o|H}`3vhZK;3oQ5MA5~Q z?NfqJ6nmpmIgKj~lPhP^R;5}co8dY+Y3cG?*Ji?n7;7O4mOD^*T?GBb0o9e~BX8q1 zo?IV>T_P$i3f9vyi}MJALiTd`50%uzuB6Px61(*uV8!x}stdGr2_i?>N%J#A4;E++ zOvt@TFT|;%fZnJmLhV(0BTnvr#Yd)Pon{bzD?Y-0dzHqGbPA-uXpnFVDGGyd#Jx(p z#VNrTybnQ9$k5t3;s=HR7TFJ>txZp*NMnaVHpT9&QO}3!%-! z`C@Sl7ZBH|JC1I9Z=sZ~Rs!tAQnrzqosm!Ed*Lo?y&O5fF7&X0M@F+6!o^@>U?Uqi zh)ml}HpE`06Bfk&t#C_6;=AY$t!AQ)teC1D-^Vj0!d}Rv}{(5YL zhjrTc(xa;5opI_I2Hj9L`hhsP|Fne&KNKHfKO6mAoH~X<|y5r3rAeaEvRlP-1%&E0}-OW-R%!NITe)b7-8F z+}F-@$El+L--vA}J5!01`#=j3uEj^#&(3^4P94J_tUR1)8;YEPs*zn8rxcgB5b3YR zMcUWOd@oKF1<)=lL!k~e;$dYx;vBurbgN>VJDXtp(iOn9(DvnQ-M(N;m)X3`5gycZ z46u}g#c`8$p=3iEmxi5W!nQPoEAXCk@zGx`Q^!M?mftY^8U~3J?2rkg`U@~EZ@LmQ z7fehLy~YaWAGI0N@;9U%Y+5)pAx+Ep(N4hp3$FG01o%d5Lz$M{?x*iz2-{D_F9~BywXCf--wH~uTg0q<81x@ ztx)SB38-C0g+d*Q#KWj~#95{rmFCo{;+#95V8e1=0NX+vmZM#JasB;0A0TGK#EE4Z zgwVI9*{v8GfDeeoVPPxg;UkZ^Eedw9*r?A8n|7AF5(*`DN3%ltM{UMVtU%hqc7nqa z(oXcmsiOeih-)Z2QH_)PCtHZ{y7&nD*@=3bI)*`5d3v_@qU%9Q&s-I!1Xr{W<*&s> z+1Enc9;b=|WS51YP>1^Pun-<`c3kSGAr&Lsp9L%Y*#TS#t?-xAvP7z{oX-?+d1%FO z4H!F=(r^zLdE82*6O@4G$iRIrM~n^J!3vA#T`>D=OtR@hLn#p+6 z*ITZn%*7HDPOr0K`A2O==l>mP2kU$eOh}zSq0I@Gf5Elxlz`rdY$%<-N1WVu#Ye50 zaM}}T$3)mq=g*H*$1n&_uuqt7dj|oRS>bLbQ*Gi?*-sUlXT_0&JJ=r%;C? z@zDJqab{?DeK{1R;)DCEVAcQY0HqRI^&jgz0p{P;pF5|quP@K1nELyX50BL&aZKp` z%}gj8bUy_WUNt#RrY24U@DfH`u@pCe4^n%Co$;nf!6{AOI7eRclWc4w>iZ-H7D zM!@XS`4s9ueu02I$!0s}I}1*woM*#wGtPknx}D&OZWsLRhQB@Vx994?`si#CUZJy< zL3pUMEPPl$+;zm#=$YSnwl2Z%8i1?8`5qqEygUMSxiV{XJ=jpYK-YtphRG;t9|Y|b zj?svW*|ot%zYu853;*};D~TuC(f}JaC9}B zNl`8+&Z0Tem!QMx+r)<2^8>aK?WG>3YEzG2o6WpQ(+!4BFRRBNKx<@M%b&WCxjZF)@heqA_T=c2O~VR+Tx*oJ~~r@T{9+ z&p6H=-rMqGkbVKKV3HoB>bAyQHxr}I49}>dITsV7crF^FhT5Lv@T4m8X>%4)nZ&bg zib-vDC)kTa0T*3fYOaonFJB7Jmut+qnE1kT(f9(tne(K=X3vT@x0v%32>xSCXJa|$SdC8nbRJQSKBeE?x zy6{$|#&OnK>K$y4JGS-?GrIP)p%m$q-dTD{Ku_iChWE`HSY|m02ZnXgnRE1oqRJEZ$OH#lhXAfoT4g(&e~5s67+X=@oi^4Q2m z!Fp3NyXzTCFbZ}^i|7bbh3s}EY;2>_?MjLj(m$%c)D`uju?*7Im%2zV@{7iFZ&Wr+ z4sTQqD0$4^d&GJ0e~z>&#=7h2Z>YKQoo+1+;Hq3~Si<5Nd}zI*&8;Pptidv+a4aUR z>6|qDV3CVMhbzOb#F2UEf-<|`FM%V|s)geskCii-Yen1@l*_i$D!@j4BK(YeXTn;Y zSd^%yYq$omP)KC51NojRQ!aWgNVL70r&gb(bp$MbcP3`xqnU|y_+fP><{%&2br+?! zC^3gQRm>;$T$Hd#pNOCM)y^Z#_0$m&<{Ym8o_gE%Z&$SDBJ{++b0)amvQV&|mRV1X zWW13YLi|!9bc-u7bHT(0sBg1^`A5}tgS8%!BRKZD714urgAI*CH#8vQp&LBnJoP_T zXceE`)ecq_mjp05w5piTCVTyF0TolHd^5_i*shphA9yyofQjRmP-eYp_=~94%(k+M zHtaN^U_C8!Gc(-t`Hm|gbD=~N`#UR?f7E80*guhWa1-OOgxqN|b-WWS|AG_nqK*Ri z=69Ox9Vhoa@sVj|su_g$LE149_SO`QB_1h^cZu1k7TLSE*uT zR>3JDzG=`~Z=2VWz7z>-(LMSC6Q>5fO~DSZjrzr)x36_26iTOE!wTgewHd8)J<<-= zDmE;Ru2BOj9wO)wXWA-H4l7}Fe-kW>7X%;_S{RSy3owZ!h9Y#_p^)zuyI~TQjs4xF zf~UVmEHUw(#tOD^##375TAJ_D+HWI?hLG2%S;ZUVm4d^|>yCbvl|6j_2#RU1xw7;Z zSIt_#!iw)7wHe8N18E0KHU}_dkEDHq6ITC%YjqSXGHQ%adtY~nllzYNs8v0Z-H>)n zg#CIX`^Bka7=)FxCT%^~8K`9Wh&ZKK+(M+6#zoqswm;1OrE zRF(>NcdTH=|73sy39b0&tCe^E(+$Eu1}`{s%Im4>^%Z&JBK_t_Ob{ynJSJxiDxZQK zTrese!y$&NTnU9za#yfI`A2O=k$(+o2dfzlOGrh2dz?B7;ElM3Qsno=$^9oSMEHUD z2>U7W-^Hn87=+dNWP87e9;B4XD{)Hj-z`M>uW?cKRpO&3I@`Q|`_uX(0%VsGr%;Fb z@KE9&amG1xp#t9>HCU6M8-RRhO+J@x&oOyAn%l*D>&FeGd-Bzdo;o~W8_#}`kQbVJ zHa_xLqoZI4^hOO6;F#!WS7M<=;z(97|ESGq?_-d5u=eKAgw)<^;?z-qZ^Sl~_Wop? z+>0$lxDp>>KkdCGP94J_tQ|Mw%?|w-N0?F}SHvm9Wi7<{%D6cD>hIg)R8hd}(%%&7 zP$C}s+at~xTL&uO-O++|cV__Vp>?67wO22XUpXk0fzEE)e&V{_c8YLqvOu?@iVhx>m3U+YOsICm1 z_}5(tnF}S>PF`h&@{ih#8F&+E2b%#7OGq;?c9Ih;|AK419|61(*HC6)*EqTFgpXP^ z8?!soj)}0J8TfddI)*`5_1Ntls(O%WTt~(!!Qm}L`KY)k`x=4OajGalb{PQ*b*K*y zBj6F|p!iBuamt-;u+{igfVy#74Rd;QNcphf6)Aa0nYJ{BJfz$iBGuFRA!WIXQyx+_ z7TG!#x5{dpY1IzPq3)6;`F@vC{N(XqR^I_@ZJIP>2zzgxOHbF3eEzHb^jSP@vCd=k ze4?ZZi#P(!#6;W>+QD}!Tg{!RJ~*ARussuZPQ^M+JvaPmYLU&hI7dCxXCt(%NfCQJ z*_qCfet6C^+pO|9$=qgx%g}Qk&~?2`I?ou7 zpid>{{D*@32^*=%CyO7$rye+}q={#_r}e>~l^-m9*iU#&=QjZFEj!`edkMc1~k=Jo%l|(6oj; zp~0^Sm)C%cd!6ARKq{u0gQUsDwdE3On3LOuv;>~bn6{XuCHBLLJBjQuxzAhG$o4^X z^sa`#gpe7hGa4UKtp!Z?5_N6$>5PR@FqNk>4y2DdWNRbs<#9UW^U_sH{bbUd{`)3Z zVrVQpc;#_TB}LYDHp8~p%GiTl!SRRE`XX({UY{>!O6xsG(?%tIe5AUHQS-6*$YTPP zf^}Jpy{j_oO2{bGa>rpeE0lj!ebgNFP(vTm*2i?DL>dn@a9Bc)nm-e#jsp1RN6i<- z$-Rz`LXVoyM&t-v!@q>+F%k9~HD4E}j$sg1{@baU%I=RVRH^8@;*{fdeAFtee-IaI z-?8)0<5W>V?HW5%s6&Z(jGaB=bS;ghCl!0#iTQWQxCNbVEeqfc^$4nbC`wkrJ&e?c zjTBXQ;o3h$s$zgE4Pm4KuI!O0Bjqu`Wv$jQz@_(mfZIL=Pi%n8o}vtJjR?!}_zOd& z99W}<;gR)VonI#T#quM23h7G4YdB8#&hygFuuIFHf=c`LDZ^mQx5;q)W9!Q}Mw#lV ztfS#LEOmb=Q-euw9A?9n*{+SDUH12l<7`&UeR9L?q6YdaE7++ealmsR2lrt(#hIf1 z1s%OChz_psKL%fT?3Hv?27l9QQ|t4YYEDF80rv4v5tzyM<*SuN`^%yFm70sV`c#h^ zN)77yPBqjy;GwP=oTff$U5|XM8$cWrGjd?`6`E|BZgtv;)UW&i4&QC|42mI}!-rd& z_L_Td(?S$bhuU@Y8hD4C=TJadhfsPR69?&*ix86xm(#P6ELZl%IT@k7z=DqWrBFG^ zh>B%$8*u_YH5p?mV?X6Gwt_`>&7;`u%%kLO&X*{?7NTmm=<|4SY=SeM|%o#=H9M8Nd&W({BQ!jRn;x8qeQp@*+yhcaCEVb;oS>eh$UM&lbRdF_6GSnoo*{=`P`s&3i7XywR`_gk5ICEj?v9bp_c75!ryVCI?7?uI(Yels% z3$Et$?_63c;|L$k%V*O)IR-4v&8HJ(x^bzJ=r}oDX3mWgd3f|zzbyK-iX5B3Wf5(m zW3P_|UlP@gaFUcy%$hYTfmrS9^VM8JdPGX}*2>K13VbTm`r$sQ7k*cSk9ErT4AmQF zWl7m1b+{R~hw`iK#isj%%D;8fmsJh6Zo0fPp@ #8DF&sMluerojY@-J<#^@w+Rk z_*r+-7c-X+cQDyH1JijTHqvej(4BF%~(qzd^+ltRk&rU&Vx z4mma_^Y5|Vw8>fKq`~RWt-S3gEAZt7A6k&4?oz41-F3|>zW0Uvp+c2TfC9c5na8pVN;f*^k?A$Zr7oO5=|r6}c^*W0XU{!yD*^Lh_y z>nk$M9({56kRdBcQ(uJk!GUqEca0#)k+tMMR2`@7;DpS-;AC{gZdd`oam{O@OIBq8 z8p2gs_K8!Lz3`D~B1p&EnvBR1R=|>o9v$ytoi^I^sOon}oce{qI@GS*aEA;&3F>fQUyM@rZNOwvr2f-UJK&?E!d(7W}icQ4@E5nWFA5 z^NF+~jo$GFY68N0E%~)C77*GPo) z>p=>ZG1HtP>n}dkffC|B0v~zwUnw}e__s4xlMD&jxzdAF5qEPXYc8VbCPdzAq)+`GIT>&W3LY-k_9*c3m5<%izw7G z@D-oqpiKo8ZP#KsUF^#y;nf-QBXA+>efhMu1SRc&T?|ckuZkpPq9Gj5kZG_36db-G zj36jv6W~7-xALx}{3V*&rx5;LRxJOh%?STmq-_>{4vKRS=R2r4H%|Qo>_+PvYEW@; zoZK&JA-aR{(DfTsd@D}B3CaT7*|EtC6a*cse1EOKy$>&oiEeg-KxsXCBE>9=rCAuYn!)ZSU^9n24pZ1k z>paK&tg4LE=iY1T@4L9{ud20P*Eac)Tw}s;6VXuI-DJw-W0s0y64=ASxjNd2Ss4%At42da9I#i2uuyR06h%|G>h><_x+2Md@h zJ*G_57wOy{_+ro1Fz?--nr)WN{Q%0Kt|UZ{w?bIg|7NxN#0A)nyI@UU77J^c?1nXb zGQ{3_Y5kT`qZ4tqwo*Zt%Ic}0$@MWZDQ!*RMY~9z$L4ZZ*Rcki8LW>6orUr^g@r0M zh>C4RDn|RSb{0Fd*(><2J{rl=j?cmRaLT}I_t5%uxj48vcbirP%KD;Q2Ltk_D8jP= zMWFcb1Y*a3CPaMNGw>ARDPdX(mYpxLl^nwUYHtor+_8Z}c97zb9Rv=^q%;oAphUFu zu1+yahUCx=NF@%3_QZG5IAm8r=g@sXa&kZsbPiGc@gd>|acDemLzQg0+>>i)L5q=t zs|DFXia&PH37vqBT{iHgywQACb@OxBnnJeIWOVT8r^<+RqI9#9D&a z%Nxw0{F=T4gG;q?58PWMsSrc!6MAapGIp1zMEJ`3I2nSjY<6&EeGD8xku|Ce)+gia zM6H@HRJwZ0*b$K}LT`>bneBiWykt;ljoB;fZP3Hna=Kb7<9oV=7kehs{R8+hmS;or z{A=;EUHq(-3-~p@TIxx4r+e1Y+sdGo#kSP?l-^RQS}ftPy?V2JXnlMo+f&8e!>JAE zefJL{WCHEQ9Z2<*`ukCz3eww!hhz&`7J@VG)m)0X6@UdqcH#r_Gr$7Im9qn-ay3=R zuFDn%mk+DA=h6lH=g9ix?1nsm!sS`Dii|X}J~ET-uJs|k38cgU6k?RK>3)Q?Rm<4> zOywTjT%V9H4%DhCY=tImijygAwQBFI17~4C0T%(zm#J*ITq>t>u-JucnYf0!_28__ z#8R#5Ol2fXWw5@R>y0Z3>uPFA6L`9+4D#z;oiAJ;*C$aODgY`6hzh9FV10Z63;(rr zADkeRGWb0#TO6!UEoXa5bdr+T{u2oAZ z6;vOFlREYB8C)ryvZW5dvVc4Uu8bR_iFFfM2+%E7i2W*Pppva+N~sO~Bu|sF8wN_1 zY)b!dvL|1j{1aw>_7^jWYG}O zPeUf-D5M*1mQ&O+>O1DD)q%=_*|QN`=^EHr&6SE>rE=fw!TL0c$qIm&scN<#?5Tns zV-P;;qjNqEJSUWUdtAv=h)RARnLN33CXrp6EqCR!)n1kd+WhQXwZDMO+R%ICo+1X9 zkE!nlne0#5&C{+xsshjd*}*OKNtKP*Hnky@%lG99_=Eh8D3nO_$5n74Of~h%8rpRQ zKuu-8`Oj3L)RPv_?$(pTX^S2(p0_uk%pj!eWNHJ*VggE6%~ydx*8^K1J*A#}u@^ER z6~h!#6_r}ID_*{zgtt&i^VWz>A5ck<84UC@Xu=y&gj^Qq%eK^~^&r;TRJK2zFQn3$ zOgYOG#^(BDN|{&=$J)JIr){YZ&lcAWq8n8o!_^7eFGLajr#u=*HN{V@F~OOPLP4~u zP^m}*r!Ojl=M2`TI6~QW8wy5hz4Ax0K6EZ5FKMmA2{P;4eL)VN2l9=BK;AkFbXBwNS%LHhCw^yRmY0eNyQ$kYNzZUA03>O<$T2v2TB$fy@U zzWpZ1uR-u`KfJS!A2W1Fx;}J1J+D2QJs&{N2XwRNkF)Pzx^CzYYwznpHs3sSNVdi- zd_KdfIGQTLpOd+@xm$$UtOA=^;Wx8_Z()Vr!V0{F6?QW#=w?>P&8&c1Sm8Faf^A`i+RO^Hg%xHC zD+s*M?nGJVa-G&9V3sR#5Rb4yEYcGLv6Ij(5UCN_L?AMux{RKfkT8g!9gm+3;sk;H z?nIEG@OW!oOyn{mADIl&LF6_fcM>^#3dm7JenI3(B5S6CWQpv(Bgjl5PwWoz6p_w7 zLFN)!{ZWu^BHv1ae22*QXM+5Q$P6k5ll-&i;OSq8>_}m(AuODar^ATsL}9F5{NqqO zy-y@{6i9~1$@G@Bf)iHJPa^xB4ssxoo#`!WPG8C4>1raUP#9}6r_vK^H>c4PH6AW{ z!#;(lLx~(gLRn6I{K^Bs+LOlW>%fbs>@a zh&)1sweWvXgP(uFkRg{2EF8lASqI~n)pjAs1R|{Yf04AoGen*vvI}vI>B(K`i7CrN zzk#PCiTs7g8$_!;xsb^IKLA-kLc_- z#>)E1-#{K9GVg7W`9vOk2jo#Acf1F3H<9~>K&d}WCUWCMkna$=X)?%dM83KM$p0cTeHzFvM4sOX;m#fBK6%t zE+#T!50Ew@&+ZNKdmR>^zXQMCR@XGM~tmM7~bs z>;pkI5gBz5$XFsfF9b;td63AXMD92QwUE?k2)I6~|nNr%Q=kLFAM{kTZ$=@^X-;i9B=#$YVrayBg$gM0WTl z$WBE5_33*;Fhx7`hLCy@((1ab+HV}1;B9Fh6=fgDU^?E@eKM85M7$n8YF^a#km z6M6DckY|W|?s1UM6Zy(7L9Qn9%O^peCi2y%L9QY4<==o@MP$}h7 z%VaN5eLZs!QlVSI|Si0C52ZL87~W zB}=u&;EKuI(ZRq{y~*~&$i7Ln{|AvNW6-gkLF9;OAj^pCJ^>1o4JIDl1wWr4(!D!K zACW!iEsZj)p?iXiBJ#vuAWsn)oC$I{kvH}Qd7DUeF38zL{yq=npF|$tALLg=?l}tqj+UJ?UBn{|WZt zXoWxb?C-k_-%FknMuMlW5>jsxDI5awNg`Vg1G$jM_m+WtpU8p7f-E9(--#d(6QMzk zMII^H0+$hQS^*1%_r==@Z@HpofK*12s7c?OXbG!O9qTkA7q14njL5vRLFN+~JO|`* zBBxyjau$)NZvpuokzKwAk|5IgFvwgYKYkkI0V2mg19B3PU%UYFB$26q0@;zs5C05u z50S_I4)RMP{X@WoGLh%uK-GGQ$f|ab(}<8qeTzKqTjZ~XIm5IzqU+3-<7)Ns`Vv{31?*xMNf{4L-f36t>>qYjGPa#-;;6KFN-u9W)a5Y zPDwTuM>AS%GGRPTBFZZAc@;f`$HO!oW~1ned3(Z&Mcu&_Xvc2TQ%qWH{L6;EtpCb7 zf2@DQIuT@Jv-LJvG?wxdM>5o z2)_h#3f9fQX8B%~^9N7F+}=RCj9Ef4sHBXO)?0WlSMVCfmNQN&VpbF>XESgngDF~$ zragr8eXmA}r|lGVqWVAv0`jE5<^8k zY-Lff8a@_n*9gJF!!g6SHo;~aX%tR*9E}u5`Kw&L%5B40iQ=eoidGsx^*f(RE=dF$YrARRX`cwd*-+n_xnRlU2-%ELK z)6gHw(%nAt{+-C^-{gUQgIo*T8^UeGe-sUI%5)neuJ=?Q+>VGp9U1W_JrMVi=#cXM zhiK?i0f7G4o12q&`d-TWXieV7v2?eOybs$YsEz zvHe2KU{Vy{8O#>+=e`^ngi9F+&K`7g_U&4v7(v@o0U&)}es5^BF^sD}N8ii#K2npu z%UQY}?Ol_;576NJp2!UR5o2HoDfS$k(*Y5Fet>g8&BNdJJ~6}txE6@*Zz9+FX;y2O z*e9nj?2b zEh3HohT)4)b3r~zQ*WmyYZbnB*f4K#(<=M{YNv_F!0i?mIL~%^f^Rzw1Kc){l!cKi zd|=oL`$)=H+Hw9?Y$ctoBt_kvbLxV&Aw%YE5MEtVy){hxWY1||)|;cW4m*Ky z;s%Fas#&C1%^~k3?jNBe6?6|tv6SdfSJp~LoHOYf7*>Q8OO`RWwW8#uVg{Q}u>OnL zdCHn!#lY*<$rgqA;T`7p^VCk3#A%)E^zi9j0u-P|HK)r>u&a3>QBC#d+2*4}IzgL^ z=thScyUSdJ!<}vpj^0363ig+%hy1iN(bd(3c=C5*Uk!U3^IDacVHHY_qb`_NO<)Zi zWu?m|a-{;6bMw6bx4(oNP(|jc+5pZO!Q~t-Vp+7RT+4R3*q-RX%M{+)To=ESr*_KlYC_8`lEhqlF5+WA@?`RgfbzLZLx#tt0GTLGjUMd$LX=Yr967?y2|h9eC&cCe_chG~vjn1=Z{ zl7q(yZA{@Ygmm=jYuFc8ZE9D+!o!+&58eZp0e4~^_y<|?@Vd=5rJZ0UQjDG2BILU?>A*=wS~iP?#5 z)M#&u4BRbE0e6rua9{gy0r#`Wz&+FyaEJQ>_m>dB?SDjVpa36zRhV*&+4I<$jov<8 z7n`8t*$WaMX*_WL5qmq(K|x<{-E?K+_ggnz)us8(`D0|jUJL+??dex1X@|<)IU|;> zTzZ_^n**N}VjAQpY8u4DGgr1g#de^fZy>LawS$@Kg0UD$7HS!CmC%R%<@NRq`S=j- LFvxP(y1V`_)s>uK diff --git a/docs/_build/_images/math/0f43f6fc8c8fa5c1bcbe7ac1e6cb52ba65f14e0a.png b/docs/_build/_images/math/0f43f6fc8c8fa5c1bcbe7ac1e6cb52ba65f14e0a.png deleted file mode 100644 index c8e8333c05c21664939d622dd82b959b4698a25f..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 518 zcmeAS@N?(olHy`uVBq!ia0vp^z92RWGmw<4|Mwn983g!*xc>kDAIKyg=-*vX4OGov z666=m&^=e;yhn*q!ta-NKkr}vp?6v`P>Qp_BeIx*f$sRaAEb$PZ}SDwtt z#+i#>RQy`E;N`JEMSaKp<*)d!-2LHkZ*xG^(Wwg``_-J<-6oKcZ0x-Hn$V9)*~fnG zG}8KM@;@uJNCa$D7k%G#_QzCN4pDN{fh~95xZq@J?&J-yHt-RJ+o}nM?5Ma zGg{kreLvZDvGTd#S-s!qx4N!PKfR#mtL8m}C;LR^1xMe$lNcovVd!-&?Tk#L+iKO4 Y`pQM2SJr*+$^%8Er>mdKI;Vst0QN`K2mk;8 diff --git a/docs/_build/_images/math/23021f5b161b8c919e79247f310dde9b4ed3bb31.png b/docs/_build/_images/math/23021f5b161b8c919e79247f310dde9b4ed3bb31.png deleted file mode 100644 index 89570fb29db5a78f68c1ce44e67e261c85f70faf..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 648 zcmeAS@N?(olHy`uVBq!ia0vp^VL&X-!VDynYnJi?DT4r?5ZC|z{{xxC1O2-Ts)4Hc zOM?7@86@t`_4u8z{$;n(`I683pT1K)1eD?|@Q5sCVBk9f!i-b3`J@>b7$1AOIEHAP zKN@W7ArmO@uPp!lw{Oq)sES3&tPu!OVcFD~+M?rRbx}0u$f4XTZj-ZxL#BuX2Jh%x z(EGqNGvtHIhJANAZJa6V)fTv_vknRq=`2bn8I6R;gNN z0;|>RFo)%*^a|f)x^*vQokCRJwwFaa3;?$elEIBdYyu6f8D`PJx2SSEQ7as8yrv3 zux>X`ek*cCqhwa9`J}pMUwt@!e{y&6VZEJZC@Ohr-GW^c`V!(6FzbbHNm(iKEWz!T zrDUeDLdZG2_M5Kps~^OkdU|+G`;WeT(gq*Tt4{rBYb(E#?dPd-<;TY#r%Ep05>j%| z-P-?TPSf3>3vIHsVn4QA{dZaBUdadbcS~EpE#|)UMNTN@M2Fn1^($}agz|^{+p;P+ zSv6mOa`}8ag|yO5y;peqvfllA&>Otnu_XJyjGq}qHkTQ*&7WCA57Pgg&ebxsLQ E03t;TIsgCw diff --git a/docs/_build/_images/math/3ebd02270eed8e22d1d33fcc8b606dfb6a2cf77b.png b/docs/_build/_images/math/3ebd02270eed8e22d1d33fcc8b606dfb6a2cf77b.png deleted file mode 100644 index cccadc7d982df31e6c8bd087847fd4b4074bca63..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 382 zcmeAS@N?(olHy`uVBq!ia0vp^+CVJG!VDz0P4ch+QU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*Gt4dVFuL1){^k1L2@?B1ckkW*6DY-5;1OBOz`%C|gc+x5^GO2*Z+f~ohDcma zPGDd>w>_cj;1_;ou8gLDJKO=S3s+fi2e|B%cgW~t5lKA9EimgoquvpX6sDl18k5Qz z6Q>7SximB?_AF#t(dGVJ`mkwRB-c9q$70S#?2NKR7kl66B+c-e-JM)6ghi4pM z;)&r=S9?<9k+8x3Kq5oQ1^N654ouA7Ri9?FFUw7s;475)!1{oJC!-ESd7T7v*az0t i8Yjwh5{~ATka8y$UP49B!j1`pUXO@geCxC7 zmjw9*GkBEjm-ub;`DMb~_2;|q?y1Wb1WIuhctjR6Fz_7#VaBQ2e9{aI%sQSfjv*e$ z--h~nganHGd-nY7nd-;Ia#J5F%_-CpZxhs0n(!#`f42uWi}=CGW}f!R_R{8tJ32I$ zxIbI9;NaYEhfS1R)qJK1M1JVfTpYp^!+B|jm2S>O%kQ@C=?lUhuRDEa=XdMpzwQ>F z`}>S*&25e2|3CIGw2Nd9%2(Qd=8eN5itYFjK3J@&k@AvC7s zOvC%-y>DCGCqB^&=3S}uZ-U~oJ6!8Dcy`bF6g}tPd!^5vpJtVP5IUT?5C;x;2UIv1hDh z=9ZqD-12q1LG1y79T(SoMjgnRVshr zcYH=cN0Oi0{zdpg_>HN;(H-1^!qWgT6s^UYxEeG!=wk`Czf0FCx^ysUR zHq)5H7VCSz4SuYYQC6*7@??&+&r44Cb-hI@b9r8VySnM4nqWt===KW#15O5+o)(j~ z=p9;Hs$6m+=hMBAzfn%T!M|-d)mLmt61)AE&2F>uYTJ@7_PZ?OXV1>wv3O;NerWo8IYYrc zR}Fr2Ww2Yst2V7t<(;};$ZVd@-P1o~ZH!(z*#ukF{k}O{^T586mvaAhR8;wiC-led p`t$l|u!j4!NBm3wv!{tP+CNzLYUkX2nrxt4>FMg{vd$@?2>|RXx&HtF diff --git a/docs/_build/_images/math/bbfebfb6602ca200cd0a1683a6c69ec20fde14b9.png b/docs/_build/_images/math/bbfebfb6602ca200cd0a1683a6c69ec20fde14b9.png deleted file mode 100644 index db5045c42629728f6bbb1f22d9aac8a72121d74c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 295 zcmeAS@N?(olHy`uVBq!ia0vp^l0eME!VDx+?{HTDDT4r?5ZC|z{{xxC1O2-Ts)4Hc zOM?7@86@t`_4u8z{$;n(`I683pT1K)1eD?|@Q5sCVBk9f!i-b3`J{n@O`a}}Asp9} z6B0xc9GHCAPT173r_9qfQs29HQsd2I-3OmD9=22n7j7vtkmE?a!Sm#A(u0tM8|RLF zYE*1#Y}9RNEM;<*VE)avj-SV2QsQ5x1uXeY0i4XoStRS((pp*S81tH$dG_$Jt>F=3 u75*XVvRO!?B1de)UdvBG4WE7eRGAs16{K&ZzZ9_t`PI|a&t;ucLK6T_C{m;V diff --git a/docs/_build/_images/math/dbfee27df47b7ba9492d8ee1eb592578a399e6ee.png b/docs/_build/_images/math/dbfee27df47b7ba9492d8ee1eb592578a399e6ee.png deleted file mode 100644 index 57f3f1bfc4ef39aed495268fe9069ce4c743706e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 977 zcmeAS@N?(olHy`uVBq!ia0vp^dx2P-g&9b$sSEA~QU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*GkBEjm-ub;`DMb~_2;|q?y1Wb1WIuhctjR6Fz_7#VaBQ2e9{aI%sQSfjv*e$ z--h~nganHGd-nY7nd-;Ia#J5F%_-CpZxhs0n(!#`f42uWi}=CGW}f!R_R{8tJ32I$ zxIbI9;NaYEhfS1R)qJK1M1JVfTpYp^!+B|jm2S>O%kQ@C=?lUhuRDEa=XdMpzwQ>F z`}>S*&25e2|3CIGw2Nd9%2(Qd=8eN5itYFjK3J@&k@AvC7s zOvC%-y>DCGCqB^&=3S}uZ-U~oJ6!8Dcy`bF6g}tPd!^5vpJtVP5IUT?5C;x;2UIv1hDh z=9ZqD-12q1LG1y79T(SoMjgnRVshr zcYH=cN0Oi0{zdpg_>HN;(H-1^!qWgT6s^UYxEeG!=wk`Czf0FCx^ysUR zHq)5H7VCSz4SuYYQC6*7@??&+&r44Cb-hI@b9r8VySnM4nqWt===KW#15O5+o)(j~ z=p9;Hs$6m+=hMBAzfn%T!M|-d)mLmt61)AE&2F>uYTJ@7_PZ?OXV1>wv3O;NerWo8IYYrc zR}Fr2Ww2Yst2V7t<(;};$ZVd@-P1o~ZH!(z*#ukF{k}O{^T586mvaAhR8;wiC-led p`t$l|u!j4!NBm3wv!{tP+CNzLYUkX2nrxt4>FMg{vd$@?2>|RXx&HtF diff --git a/docs/_build/_images/math/eb82f9af24f0851d6d6c721d6fca48286566647e.png b/docs/_build/_images/math/eb82f9af24f0851d6d6c721d6fca48286566647e.png deleted file mode 100644 index d3a54f8330f96735e9a797ffaa49c690f2dbb71c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 383 zcmeAS@N?(olHy`uVBq!ia0vp^#z4%^!VDyLo4+~_qznRlLR|m<{|{sm5A^RYs0OO$ zFA4GsW{|i$*W-7>`j_2C=Sx2CfBH`K5KxMjzVcj%rT67kKhO&f}vGJ~up+*)>Ov<86YCz@ZJ2v9H9LmoptM zGn>ZGqnKfo!^pEnSmKbx4fBFphsjCz4{WGo4B*aZ3NY4sFhk+-`2%Yv9MC_ITX4bV z`PDg0Y~KzG-#GWwC*eVd5lNAQm(-6foQ^nR0r-`x;^4Mj4QdWow_0O$no;B m13?FJ4t;pG#WC%dAsa)_3X@!)>n}cn!qC&z&t;ucLK6V_8jCFe diff --git a/docs/_build/_images/math/efd96ac57b370ce811ab9d31f0c7f2b1efa18711.png b/docs/_build/_images/math/efd96ac57b370ce811ab9d31f0c7f2b1efa18711.png deleted file mode 100644 index b0958eeb2b747d95e1bae9a47023bf5bf3235bc1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 403 zcmeAS@N?(olHy`uVBq!ia0vp^)*vt<74`dP#^zSaH2CC*S z3GxeOkhnY7<9EXPm)%C^OFr*^`cCx_P>Qp_BeIx*f$susV>yz9c5l^rUU0QNyhuNr_9=T9Pwz z_ej*p8O&kk?#^%a_^qGtf!)emxTVZMjwA5~kKpqwEWtmy9ke9s3=6aja?+E39uQzM zotC?s!Noj)HJX9>HA|ZT+c(}A`GjwuYZ!%I%SxQ%W@weXrq7V|)R#eu>FVBm#uJ&G zJnoVb7HTJc7#nD-eBdsSmT9=LmgnOQ7Pf3Qwm5d?Ft*Mn&ObbhA{PWC30!NOwUB{J zOl~%7PJZ7Wkq0%CgE_x_7n{M&C+~lN=X9%v4a3UcMkg4VPl + + + - @@ -72,9 +74,9 @@

Source code for abc

diff --git a/docs/_build/_modules/tigramite/causal_effects.html b/docs/_build/_modules/tigramite/causal_effects.html index 1b695d3f..7840b799 100644 --- a/docs/_build/_modules/tigramite/causal_effects.html +++ b/docs/_build/_modules/tigramite/causal_effects.html @@ -9,8 +9,10 @@ + + + - @@ -2516,46 +2518,94 @@

Source code for tigramite.causal_effects

     from sklearn.preprocessing import StandardScaler
 
 
-    def lin_f(x): return x
-    coeff = .5
+    # def lin_f(x): return x
+    # coeff = .5
  
-    links_coeffs = {0: [((0, -1), 0.5, lin_f)],
-             1: [((1, -1), 0.5, lin_f), ((0, -1), 0.5, lin_f)],
-             2: [((2, -1), 0.5, lin_f), ((1, 0), 0.5, lin_f)]
-             }
-    T = 1000
-    data, nonstat = toys.structural_causal_process(
-        links_coeffs, T=T, noises=None, seed=7)
-    dataframe = pp.DataFrame(data)
-
-    graph = CausalEffects.get_graph_from_dict(links_coeffs)
-
-    X = [(0, -2)]
-    Y = [(2, 0)]
-
-    # Initialize class as `stationary_dag`
-    causal_effects = CausalEffects(graph, graph_type='stationary_dag', 
+    # links_coeffs = {0: [((0, -1), 0.5, lin_f)],
+    #          1: [((1, -1), 0.5, lin_f), ((0, -1), 0.5, lin_f)],
+    #          2: [((2, -1), 0.5, lin_f), ((1, 0), 0.5, lin_f)]
+    #          }
+    # T = 1000
+    # data, nonstat = toys.structural_causal_process(
+    #     links_coeffs, T=T, noises=None, seed=7)
+    # dataframe = pp.DataFrame(data)
+
+    # graph = CausalEffects.get_graph_from_dict(links_coeffs)
+
+    original_graph = np.array([[['', ''],
+        ['-->', ''],
+        ['-->', ''],
+        ['', '']],
+
+       [['<--', ''],
+        ['', '-->'],
+        ['-->', ''],
+        ['-->', '']],
+
+       [['<--', ''],
+        ['<--', ''],
+        ['', '-->'],
+        ['-->', '']],
+
+       [['', ''],
+        ['<--', ''],
+        ['<--', ''],
+        ['', '-->']]], dtype='<U3')
+    graph = np.copy(original_graph)
+
+    # Add T <-> Reco and T 
+    graph[2,3,0] = '+->' ; graph[3,2,0] = '<-+'
+    graph[1,3,1] = '<->' #; graph[2,1,0] = '<--'
+
+    added = np.zeros((4, 4, 1), dtype='<U3')
+    added[:] = ""
+    graph = np.append(graph, added , axis=2)
+
+
+    X = [(1, 0)]
+    Y = [(3, 0)]
+
+    # # Initialize class as `stationary_dag`
+    causal_effects = CausalEffects(graph, graph_type='stationary_admg', 
                                 X=X, Y=Y, S=None, 
                                 hidden_variables=None, 
                                 verbosity=0)
 
-    causal_effects.fit_wright_effect(dataframe=dataframe, 
-                            # links_coeffs = links_coeffs,
-                            # mediation = [(1, 0), (1, -1), (1, -2)]
-                            )
-
-    intervention_data = 1.*np.ones((1, 1))
-    y1 = causal_effects.predict_wright_effect( 
-            intervention_data=intervention_data,
-            )
-
-    intervention_data = 0.*np.ones((1, 1))
-    y2 = causal_effects.predict_wright_effect( 
-            intervention_data=intervention_data,
-            )
-
-    beta = (y1 - y2)
-    print("Causal effect is %.5f" %(beta))
+    print(causal_effects.get_optimal_set())
+
+    tp.plot_time_series_graph(
+        graph = graph,
+        save_name='Example_graph_in.pdf',
+        # special_nodes=special_nodes,
+        # var_names=var_names,
+        figsize=(6, 4),
+        )
+
+    tp.plot_time_series_graph(
+        graph = causal_effects.graph,
+        save_name='Example_graph_out.pdf',
+        # special_nodes=special_nodes,
+        # var_names=var_names,
+        figsize=(6, 4),
+        )
+
+    # causal_effects.fit_wright_effect(dataframe=dataframe, 
+    #                         # links_coeffs = links_coeffs,
+    #                         # mediation = [(1, 0), (1, -1), (1, -2)]
+    #                         )
+
+    # intervention_data = 1.*np.ones((1, 1))
+    # y1 = causal_effects.predict_wright_effect( 
+    #         intervention_data=intervention_data,
+    #         )
+
+    # intervention_data = 0.*np.ones((1, 1))
+    # y2 = causal_effects.predict_wright_effect( 
+    #         intervention_data=intervention_data,
+    #         )
+
+    # beta = (y1 - y2)
+    # print("Causal effect is %.5f" %(beta))
 
     # tp.plot_time_series_graph(
     #     graph = causal_effects.graph,
@@ -2722,8 +2772,8 @@ 

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/data_processing.html b/docs/_build/_modules/tigramite/data_processing.html index ab48e1d7..fe5e4e3f 100644 --- a/docs/_build/_modules/tigramite/data_processing.html +++ b/docs/_build/_modules/tigramite/data_processing.html @@ -9,8 +9,10 @@ + + + - @@ -50,7 +52,7 @@

Source code for tigramite.data_processing

 
 
[docs]class DataFrame(): """Data object containing single or multiple time series arrays and optional - mask. + mask, as well as variable definitions. Parameters ---------- @@ -169,7 +171,7 @@

Source code for tigramite.data_processing

             1D numpy array holding all specified reference_points, less those
             smaller than 0 and larger than self.largest_time_step-1
         If reference_points is None:
-            Is np.array(range(self.largest_time_step))
+            Is np.array(self.largest_time_step)
     self.time_offsets : dictionary
         If time_offsets is not None:
             Is time_offsets
@@ -332,6 +334,11 @@ 

Source code for tigramite.data_processing

         if self.vector_vars is None:
             self.vector_vars = dict(zip(range(self.Ndata), [[(i, 0)] 
                                 for i in range(self.Ndata)]))
+            self.has_vector_data = False
+        else:
+            self.has_vector_data = True
+
+
         # TODO: check vector_vars!
         self.N = len(self.vector_vars)
 
@@ -530,7 +537,7 @@ 

Source code for tigramite.data_processing

         if reference_points is None:
             # If no reference point is specified, use as many reference points
             # as possible
-            self.reference_points = np.array(range(self.largest_time_step))
+            self.reference_points = np.arange(self.largest_time_step)
 
         elif isinstance(reference_points, int):
             # If a single reference point is specified as an int, convert it to
@@ -677,7 +684,7 @@ 

Source code for tigramite.data_processing

         array, xyz [,XYZ], data_type : Tuple of data array of shape (dim, n_samples),
             xyz identifier array of shape (dim,) identifying which row in array
             corresponds to X, Y, and Z, and the type mask that indicates which samples
-            are continuous or discrete. For example:: X = [(0, -1)],
+            are continuous or discrete. For example: X = [(0, -1)],
             Y = [(1, 0)], Z = [(1, -1), (0, -2)] yields an array of shape
             (4, n_samples) and xyz is xyz = numpy.array([0,1,2,2]). If
             return_cleaned_xyz is True, also outputs the cleaned XYZ lists.
@@ -1631,8 +1638,8 @@ 

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/cmiknn.html b/docs/_build/_modules/tigramite/independence_tests/cmiknn.html index 8fc38410..dce8d776 100644 --- a/docs/_build/_modules/tigramite/independence_tests/cmiknn.html +++ b/docs/_build/_modules/tigramite/independence_tests/cmiknn.html @@ -9,8 +9,10 @@ + + + - @@ -114,6 +116,9 @@

Source code for tigramite.independence_tests.cmiknn

Number of workers to use for parallel processing. If -1 is given all processors are used. Default: -1. + model_selection_folds : int + Number of folds in cross-validation used in model selection. + significance : str, optional (default: 'shuffle_test') Type of significance test to use. For CMIknn only 'fixed_thres' and 'shuffle_test' are available. @@ -134,6 +139,7 @@

Source code for tigramite.independence_tests.cmiknn

significance='shuffle_test', transform='ranks', workers=-1, + model_selection_folds=3, **kwargs): # Set the member variables self.knn = knn @@ -144,6 +150,7 @@

Source code for tigramite.independence_tests.cmiknn

self.residual_based = False self.recycle_residuals = False self.workers = workers + self.model_selection_folds = model_selection_folds # Call the parent constructor CondIndTest.__init__(self, significance=significance, **kwargs) # Print some information about construction @@ -202,7 +209,7 @@

Source code for tigramite.independence_tests.cmiknn

# array /= array.std(axis=1).reshape(dim, 1) # FIXME: If the time series is constant, return nan rather than # raising Exception - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # raise ValueError("nans after standardizing, " # "possibly constant array!") @@ -421,7 +428,7 @@

Source code for tigramite.independence_tests.cmiknn

# array /= array.std(axis=1).reshape(dim, 1) # FIXME: If the time series is constant, return nan rather than # raising Exception - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # if np.isnan(array).sum() != 0: # raise ValueError("nans after standardizing, " @@ -483,8 +490,80 @@

Source code for tigramite.independence_tests.cmiknn

restricted_permutation[sample_index] = use used = np.append(used, use) - return restricted_permutation
+ return restricted_permutation + +
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0): + """Returns a cross-validation-based score for nearest-neighbor estimates. + + Fits a nearest-neighbor model of the parents to variable j and returns + the score. The lower, the better the fit. Here used to determine + optimal hyperparameters in PCMCI(pc_alpha or fixed thres). + + Parameters + ---------- + j : int + Index of target variable in data array. + + parents : list + List of form [(0, -1), (3, -2), ...] containing parents. + + tau_max : int, optional (default: 0) + Maximum time lag. This may be used to make sure that estimates for + different lags in X, Z, all have the same sample size. + + Returns: + score : float + Model score. + """ + + import sklearn + from sklearn.neighbors import KNeighborsRegressor + from sklearn.model_selection import cross_val_score + + Y = [(j, 0)] + X = [(j, 0)] # dummy variable here + Z = parents + array, xyz, _ = self.dataframe.construct_array(X=X, Y=Y, Z=Z, + tau_max=tau_max, + mask_type=self.mask_type, + return_cleaned_xyz=False, + do_checks=True, + verbosity=self.verbosity) + dim, T = array.shape + + # Standardize + array = array.astype(np.float64) + array -= array.mean(axis=1).reshape(dim, 1) + std = array.std(axis=1) + for i in range(dim): + if std[i] != 0.: + array[i] /= std[i] + if np.any(std == 0.) and self.verbosity > 0: + warnings.warn("Possibly constant array!") + # raise ValueError("nans after standardizing, " + # "possibly constant array!") + + predictor_indices = list(np.where(xyz==2)[0]) + predictor_array = array[predictor_indices, :].T + # Target is only first entry of Y, ie [y] + target_array = array[np.where(xyz==1)[0][0], :] + + if predictor_array.size == 0: + # Regressing on ones if empty parents + predictor_array = np.ones(T).reshape(T, 1) + + if self.knn < 1: + knn_here = max(1, int(self.knn*T)) + else: + knn_here = max(1, int(self.knn)) + knn_model = KNeighborsRegressor(n_neighbors=knn_here) + + scores = cross_val_score(estimator=knn_model, + X=predictor_array, y=target_array, cv=self.model_selection_folds, n_jobs=self.workers) + + # print(scores) + return -scores.mean()
if __name__ == '__main__': @@ -495,8 +574,8 @@

Source code for tigramite.independence_tests.cmiknn

random_state = np.random.default_rng(seed=42) cmi = CMIknn(mask_type=None, - significance='shuffle_test', - fixed_thres=None, + significance='fixed_thres', + fixed_thres=0.01, sig_samples=1000, sig_blocklength=1, transform='none', @@ -506,15 +585,28 @@

Source code for tigramite.independence_tests.cmiknn

T = 1000 dimz = 1 - # Continuous data - z = random_state.standard_normal((T, dimz)) - x = (0.8*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) - y = (0.8*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) + # # Continuous data + # z = random_state.standard_normal((T, dimz)) + # x = (1.*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) + # y = (1.*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) # print('X _|_ Y') # print(cmi.run_test_raw(x, y, z=None)) - print('X _|_ Y | Z') - print(cmi.run_test_raw(x, y, z=z)) + # print('X _|_ Y | Z') + # print(cmi.run_test_raw(x, y, z=z)) + + # Continuous data + z = random_state.standard_normal((T, dimz)) + x = random_state.standard_normal(T).reshape(T, 1) + y = (0.*z[:,0] + 1.*x[:,0] + random_state.standard_normal(T)).reshape(T, 1) + + data = np.hstack((x, y, z)) + print (data.shape) + dataframe = DataFrame(data=data) + cmi.set_dataframe(dataframe) + print(cmi.get_model_selection_criterion(j=1, parents=[], tau_max=0, folds=5)) + print(cmi.get_model_selection_criterion(j=1, parents=[(0, 0)], tau_max=0, folds=5)) + print(cmi.get_model_selection_criterion(j=1, parents=[(0, 0), (2, 0)], tau_max=0, folds=5))
@@ -569,8 +661,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/cmisymb.html b/docs/_build/_modules/tigramite/independence_tests/cmisymb.html index 4fa07b11..07a3d4fc 100644 --- a/docs/_build/_modules/tigramite/independence_tests/cmisymb.html +++ b/docs/_build/_modules/tigramite/independence_tests/cmisymb.html @@ -9,8 +9,10 @@ + + + - @@ -368,8 +370,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/gpdc.html b/docs/_build/_modules/tigramite/independence_tests/gpdc.html index 1d87821d..7c24f23e 100644 --- a/docs/_build/_modules/tigramite/independence_tests/gpdc.html +++ b/docs/_build/_modules/tigramite/independence_tests/gpdc.html @@ -9,8 +9,10 @@ + + + - @@ -244,7 +246,7 @@

Source code for tigramite.independence_tests.gpdc

for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -743,8 +745,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/gpdc_torch.html b/docs/_build/_modules/tigramite/independence_tests/gpdc_torch.html index fd219826..dbcd744c 100644 --- a/docs/_build/_modules/tigramite/independence_tests/gpdc_torch.html +++ b/docs/_build/_modules/tigramite/independence_tests/gpdc_torch.html @@ -9,8 +9,10 @@ + + + - @@ -251,7 +253,7 @@

Source code for tigramite.independence_tests.gpdc_torch

for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).any(): @@ -899,8 +901,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/gsquared.html b/docs/_build/_modules/tigramite/independence_tests/gsquared.html index 3b702b6c..10f89b76 100644 --- a/docs/_build/_modules/tigramite/independence_tests/gsquared.html +++ b/docs/_build/_modules/tigramite/independence_tests/gsquared.html @@ -9,8 +9,10 @@ + + + - @@ -273,8 +275,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/independence_tests_base.html b/docs/_build/_modules/tigramite/independence_tests/independence_tests_base.html index 47fb21c1..4e1a0582 100644 --- a/docs/_build/_modules/tigramite/independence_tests/independence_tests_base.html +++ b/docs/_build/_modules/tigramite/independence_tests/independence_tests_base.html @@ -9,8 +9,10 @@ + + + - @@ -69,8 +71,7 @@

Source code for tigramite.independence_tests.independence_tests_base

'fixed_thres' and 'shuffle_test' are available. fixed_thres : float, optional (default: 0.1) - If significance is 'fixed_thres', this specifies the threshold for the - absolute value of the dependence measure. + Deprecated. sig_samples : int, optional (default: 500) Number of samples for shuffle significance test. @@ -120,7 +121,7 @@

Source code for tigramite.independence_tests.independence_tests_base

seed=42, mask_type=None, significance='analytic', - fixed_thres=0.1, + fixed_thres=None, sig_samples=500, sig_blocklength=None, confidence=None, @@ -136,9 +137,11 @@

Source code for tigramite.independence_tests.independence_tests_base

self.significance = significance self.sig_samples = sig_samples self.sig_blocklength = sig_blocklength - self.fixed_thres = fixed_thres + if fixed_thres is not None: + raise ValueError("fixed_thres is replaced by providing alpha_or_thres in run_test") self.verbosity = verbosity self.cached_ci_results = {} + self.ci_results = {} # If we recycle residuals, then set up a residual cache self.recycle_residuals = recycle_residuals if self.recycle_residuals: @@ -190,9 +193,9 @@

Source code for tigramite.independence_tests.independence_tests_base

if self.significance == 'shuffle_test': info_str += "\nsig_samples = %s" % self.sig_samples info_str += "\nsig_blocklength = %s" % self.sig_blocklength - # Check if we are using a fixed threshold - elif self.significance == 'fixed_thres': - info_str += "\nfixed_thres = %s" % self.fixed_thres + # # Check if we are using a fixed threshold + # elif self.significance == 'fixed_thres': + # info_str += "\nfixed_thres = %s" % self.fixed_thres # Check if we have a confidence type if self.confidence: info_str += "\nconfidence = %s" % self.confidence @@ -355,7 +358,7 @@

Source code for tigramite.independence_tests.independence_tests_base

return combined_hash -
[docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): +
[docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None): """Perform conditional independence test. Calls the dependence measure and signficicance test functions. The child @@ -369,11 +372,9 @@

Source code for tigramite.independence_tests.independence_tests_base

X, Y, Z : list of tuples X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag. - tau_max : int, optional (default: 0) Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size. - cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} How many samples to cutoff at the beginning. The default is '2xtau_max', which guarantees that MCI tests are all conducted on @@ -381,11 +382,16 @@

Source code for tigramite.independence_tests.independence_tests_base

which uses the maximum of tau_max and the conditions, which is useful to compare multiple models on the same sample. Last, 'max_lag' uses as much samples as possible. + alpha_or_thres : float (optional) + Significance level (if significance='analytic' or 'shuffle_test') or + threshold (if significance='fixed_thres'). If given, run_test returns + the test decision dependent=True/False. Returns ------- - val, pval : Tuple of floats - The test statistic value and the p-value. + val, pval, [dependent] : Tuple of floats and bool + The test statistic value and the p-value. If alpha_or_thres is + given, run_test also returns the test decision dependent=True/False. """ # Get the array to test on @@ -394,12 +400,14 @@

Source code for tigramite.independence_tests.independence_tests_base

# Record the dimensions dim, T = array.shape + # Ensure it is a valid array if np.any(np.isnan(array)): raise ValueError("nans in the array!") combined_hash = self._get_array_hash(array, xyz, XYZ) + # Get test statistic value and p-value [cached if possible] if combined_hash in self.cached_ci_results.keys(): cached = True val, pval = self.cached_ci_results[combined_hash] @@ -407,17 +415,39 @@

Source code for tigramite.independence_tests.independence_tests_base

cached = False # Get the dependence measure, reycling residuals if need be val = self._get_dependence_measure_recycle(X, Y, Z, xyz, array, data_type) - # Get the p-value - pval = self.get_significance(val, array, xyz, T, dim) + # Get the p-value (None if significance = 'fixed_thres') + pval = self._get_p_value(val=val, array=array, xyz=xyz, T=T, dim=dim) self.cached_ci_results[combined_hash] = (val, pval) + # Make test decision + if self.significance == 'fixed_thres': + if alpha_or_thres is None: + raise ValueError("significance == 'fixed_thres' requires setting alpha_or_thres") + if self.two_sided: + dependent = np.abs(val) >= np.abs(alpha_or_thres) + else: + dependent = val >= alpha_or_thres + pval = 0. if dependent else 1. + else: + if alpha_or_thres is None: + dependent = None + else: + dependent = pval <= alpha_or_thres + + self.ci_results[(tuple(X), tuple(Y),tuple(Z))] = (val, pval, dependent) + + # Return the calculated value(s) if self.verbosity > 1: - self._print_cond_ind_results(val=val, pval=pval, cached=cached, + self._print_cond_ind_results(val=val, pval=pval, cached=cached, dependent=dependent, conf=None) - # Return the value and the pvalue - return val, pval
-
[docs] def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None): + if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent
+ + +
[docs] def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None, alpha_or_thres=None): """Perform conditional independence test directly on input arrays x, y, z. Calls the dependence measure and signficicance test functions. The child @@ -434,11 +464,16 @@

Source code for tigramite.independence_tests.independence_tests_base

are continuous or discrete: 0s for continuous variables and 1s for discrete variables + alpha_or_thres : float (optional) + Significance level (if significance='analytic' or 'shuffle_test') or + threshold (if significance='fixed_thres'). If given, run_test returns + the test decision dependent=True/False. + Returns ------- - val, pval : Tuple of floats - - The test statistic value and the p-value. + val, pval, [dependent] : Tuple of floats and bool + The test statistic value and the p-value. If alpha_or_thres is + given, run_test also returns the test decision dependent=True/False. """ if np.ndim(x) != 2 or np.ndim(y) != 2: @@ -496,13 +531,30 @@

Source code for tigramite.independence_tests.independence_tests_base

# Get the p-value if has_data_type: - pval = self.get_significance(val=val, array=array, xyz=xyz, + pval = self._get_p_value(val=val, array=array, xyz=xyz, T=T, dim=dim, data_type=data_type) else: - pval = self.get_significance(val=val, array=array, xyz=xyz, - T=T, dim=dim) + pval = self._get_p_value(val=val, array=array, xyz=xyz, + T=T, dim=dim) + + # Make test decision + if self.significance == 'fixed_thres': + if self.two_sided: + dependent = np.abs(val) >= np.abs(alpha_or_thres) + else: + dependent = val >= alpha_or_thres + pval = 0. if dependent else 1. + else: + if alpha_or_thres is None: + dependent = None + else: + dependent = pval <= alpha_or_thres + # Return the value and the pvalue - return val, pval
+ if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent
def _get_dependence_measure_recycle(self, X, Y, Z, xyz, array, data_type=None): """Get the dependence_measure, optionally recycling residuals @@ -587,12 +639,12 @@

Source code for tigramite.independence_tests.independence_tests_base

# Return these residuals return x_resid -
[docs] def get_significance(self, val, array, xyz, T, dim, + def _get_p_value(self, val, array, xyz, T, dim, data_type=None, sig_override=None): """ Returns the p-value from whichever significance function is specified - for this test. If an override is used, then it will call a different + for this test. If an override is used, then it will call a different function then specified by self.significance Parameters @@ -639,13 +691,26 @@

Source code for tigramite.independence_tests.independence_tests_base

value=val) # Check if we are using the fixed_thres significance elif use_sig == 'fixed_thres': - pval = self.get_fixed_thres_significance( - value=val, - fixed_thres=self.fixed_thres) + # Determined outside then + pval = None + # if self.two_sided: + # dependent = np.abs(val) >= np.abs(alpha_or_thres) + # else: + # dependent = val >= alpha_or_thres + # pval = 0. if dependent else 1. + # # pval = self.get_fixed_thres_significance( + # # value=val, + # # fixed_thres=self.fixed_thres) else: raise ValueError("%s not known." % self.significance) - # Return the calculated value - return pval
+ + # # Return the calculated value(s) + # if alpha_or_thres is not None: + # if use_sig != 'fixed_thres': + # dependent = pval <= alpha_or_thres + # return pval, dependent + # else: + return pval
[docs] def get_measure(self, X, Y, Z=None, tau_max=0, data_type=None): @@ -758,7 +823,7 @@

Source code for tigramite.independence_tests.independence_tests_base

# Return the confidence interval return (conf_lower, conf_upper)
- def _print_cond_ind_results(self, val, pval=None, cached=None, conf=None): + def _print_cond_ind_results(self, val, pval=None, cached=None, dependent=None, conf=None): """Print results from conditional independence test. Parameters @@ -769,12 +834,17 @@

Source code for tigramite.independence_tests.independence_tests_base

pval : float, optional (default: None) p-value + dependent : bool + Test decision. + conf : tuple of floats, optional (default: None) Confidence bounds. """ printstr = " val = % .3f" % (val) if pval is not None: printstr += " | pval = %.5f" % (pval) + if dependent is not None: + printstr += " | dependent = %s" % (dependent) if conf is not None: printstr += " | conf bounds = (%.3f, %.3f)" % ( conf[0], conf[1]) @@ -967,7 +1037,7 @@

Source code for tigramite.independence_tests.independence_tests_base

ydata=hilbert, ) phi = popt[1] - # Formula of Peifer (2005) assuming non-overlapping blocks + # Formula assuming non-overlapping blocks l_opt = (4. * T * (phi / (1. - phi) + phi**2 / (1. - phi)**2)**2 / (1. + 2. * phi / (1. - phi))**2)**(1. / 3.) block_len = max(block_len, int(l_opt)) @@ -1067,31 +1137,15 @@

Source code for tigramite.independence_tests.independence_tests_base

return null_dist
[docs] def get_fixed_thres_significance(self, value, fixed_thres): - """Returns signficance for thresholding test. - - Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 else. - - Parameters - ---------- - value : number - Value of test statistic for unshuffled estimate. - - fixed_thres : number - Fixed threshold, is made positive. - - Returns - ------- - pval : bool - Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 - else. - + """DEPRECATED Returns signficance for thresholding test. """ - if np.abs(value) < np.abs(fixed_thres): - pval = 1. - else: - pval = 0. + raise ValueError("fixed_thres is replaced by alpha_or_thres in run_test.")
+ # if np.abs(value) < np.abs(fixed_thres): + # pval = 1. + # else: + # pval = 0. - return pval + # return pval def _trafo2uniform(self, x): """Transforms input array to uniform marginals. @@ -1175,8 +1229,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12 diff --git a/docs/_build/_modules/tigramite/independence_tests/oracle_conditional_independence.html b/docs/_build/_modules/tigramite/independence_tests/oracle_conditional_independence.html index 703a759f..bb511c49 100644 --- a/docs/_build/_modules/tigramite/independence_tests/oracle_conditional_independence.html +++ b/docs/_build/_modules/tigramite/independence_tests/oracle_conditional_independence.html @@ -9,8 +9,10 @@ + + + - @@ -1081,7 +1083,7 @@

Source code for tigramite.independence_tests.oracle_conditional_independence return any_path_observed -
[docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', +
[docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None, verbosity=0): """Perform oracle conditional independence test. @@ -1096,6 +1098,8 @@

Source code for tigramite.independence_tests.oracle_conditional_independence Not used here. cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} Not used here. + alpha_or_thres : float + Not used here. Returns ------- @@ -1120,15 +1124,20 @@

Source code for tigramite.independence_tests.oracle_conditional_independence if self.dsepsets[str((X, Y, Z))]: val = 0. pval = 1. + dependent = False else: val = 1. pval = 0. + dependent = True if verbosity > 1: self._print_cond_ind_results(val=val, pval=pval, cached=False, conf=None) # Return the value and the pvalue - return val, pval

+ if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent
[docs] def get_measure(self, X, Y, Z=None, tau_max=0): """Returns dependence measure. @@ -1650,8 +1659,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/parcorr.html b/docs/_build/_modules/tigramite/independence_tests/parcorr.html index 5ed4ec16..030bb8bc 100644 --- a/docs/_build/_modules/tigramite/independence_tests/parcorr.html +++ b/docs/_build/_modules/tigramite/independence_tests/parcorr.html @@ -9,8 +9,10 @@ + + + - @@ -128,7 +130,7 @@

Source code for tigramite.independence_tests.parcorr

for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -340,6 +342,7 @@

Source code for tigramite.independence_tests.parcorr

score = T * np.log(rss) + 2. * p + (2.*p**2 + 2.*p)/(T - p - 1) else: score = T * np.log(rss) + 2. * p + return score
@@ -395,8 +398,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12 diff --git a/docs/_build/_modules/tigramite/independence_tests/parcorr_mult.html b/docs/_build/_modules/tigramite/independence_tests/parcorr_mult.html index 390a8fcd..2206ba02 100644 --- a/docs/_build/_modules/tigramite/independence_tests/parcorr_mult.html +++ b/docs/_build/_modules/tigramite/independence_tests/parcorr_mult.html @@ -9,8 +9,10 @@ + + + - @@ -133,7 +135,7 @@

Source code for tigramite.independence_tests.parcorr_mult

for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -222,7 +224,7 @@

Source code for tigramite.independence_tests.parcorr_mult

for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -460,8 +462,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/parcorr_wls.html b/docs/_build/_modules/tigramite/independence_tests/parcorr_wls.html index e8d607d7..bfeb64da 100644 --- a/docs/_build/_modules/tigramite/independence_tests/parcorr_wls.html +++ b/docs/_build/_modules/tigramite/independence_tests/parcorr_wls.html @@ -9,8 +9,10 @@ + + + - @@ -356,7 +358,7 @@

Source code for tigramite.independence_tests.parcorr_wls

for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") x_vals_sum = np.sum(array) x_vals_has_nan = np.isnan(x_vals_sum) @@ -499,8 +501,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/regressionCI.html b/docs/_build/_modules/tigramite/independence_tests/regressionCI.html index 6708cb05..228502c3 100644 --- a/docs/_build/_modules/tigramite/independence_tests/regressionCI.html +++ b/docs/_build/_modules/tigramite/independence_tests/regressionCI.html @@ -9,8 +9,10 @@ + + + - @@ -453,8 +455,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/independence_tests/robust_parcorr.html b/docs/_build/_modules/tigramite/independence_tests/robust_parcorr.html index b051d63c..432b3e3d 100644 --- a/docs/_build/_modules/tigramite/independence_tests/robust_parcorr.html +++ b/docs/_build/_modules/tigramite/independence_tests/robust_parcorr.html @@ -9,8 +9,10 @@ + + + - @@ -198,7 +200,7 @@

Source code for tigramite.independence_tests.robust_parcorr

for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -482,8 +484,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/lpcmci.html b/docs/_build/_modules/tigramite/lpcmci.html index 986199b3..f78d771c 100644 --- a/docs/_build/_modules/tigramite/lpcmci.html +++ b/docs/_build/_modules/tigramite/lpcmci.html @@ -9,8 +9,10 @@ + + + - @@ -39,9 +41,11 @@

Source code for tigramite.lpcmci

 
[docs]class LPCMCI(PCMCIbase): """ LPCMCI is an algorithm for causal discovery in large-scale times series that allows for latent confounders and learns lag-specific causal relationships. The algorithm is introduced and explained in: + [1] Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. Advances in Neural Information Processing Systems, 2020, 33. https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html + NOTE: This method is still EXPERIMENTAL since the default settings of hyperparameters are still being fine-tuned. We actually invite feedback on which work best in applications and numerical experiments. The main function, which applies the algorithm, is 'run_lpcmci'. @@ -371,6 +375,8 @@

Source code for tigramite.lpcmci

         self.remember_only_parents = remember_only_parents
         self.no_apr = no_apr
 
+        if isinstance(pc_alpha, (list, tuple, np.ndarray)):
+                raise ValueError("pc_alpha must be single float in LPCMCI.")
         if pc_alpha < 0. or pc_alpha > 1:
             raise ValueError("Choose 0 <= pc_alpha <= 1")
             
@@ -858,7 +864,8 @@ 

Source code for tigramite.lpcmci

                             Z = Z.union(S_default_YX)
 
                             # Test conditional independence of X and Y given Z
-                            val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                            val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
+                                tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                             if self.verbosity >= 2:
                                 print("ANC(Y):    %s _|_ %s  |  S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" %
@@ -869,7 +876,7 @@ 

Source code for tigramite.lpcmci

                             self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
 
                             # Check whether test result was significant
-                            if pval > self.pc_alpha:
+                            if not dependent: #pval > self.pc_alpha:
 
                                 # Mark the edge from X to Y for removal and save sepset
                                 to_remove[Y[0]][X] = True
@@ -897,7 +904,8 @@ 

Source code for tigramite.lpcmci

                             Z = Z.union(S_default_XY)
 
                             # Test conditional independence of X and Y given Z
-                            val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                            val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
+                                tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                             if self.verbosity >= 2:
                                 print("ANC(X):    %s _|_ %s  |  S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" %
@@ -908,7 +916,7 @@ 

Source code for tigramite.lpcmci

                             self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
 
                             # Check whether test result was significant
-                            if pval > self.pc_alpha:
+                            if not dependent: # pval > self.pc_alpha:
 
                                 # Mark the edge from X to Y for removal and save sepset
                                 to_remove[Y[0]][X] = True
@@ -1184,7 +1192,9 @@ 

Source code for tigramite.lpcmci

                         Z = Z.union(S_default_YX)
 
                         # Test conditional independence of X and Y given Z
-                        val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                        # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                        val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
+                            tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                         if self.verbosity >= 2:
                             print("Non-ANC(Y):    %s _|_ %s  |  S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" %
@@ -1195,7 +1205,7 @@ 

Source code for tigramite.lpcmci

                         self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
 
                         # Check whether test result was significant
-                        if pval > self.pc_alpha:
+                        if not dependent: # pval > self.pc_alpha:
 
                             # Mark the edge from X to Y for removal and save sepset
                             to_remove[Y[0]][X] = True
@@ -1227,7 +1237,9 @@ 

Source code for tigramite.lpcmci

                             Z = Z.union(S_default_XY)
 
                             # Test conditional independence of X and Y given Z
-                            val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                            # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                            val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
+                                tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                             if self.verbosity >= 2:
                                 print("Non-ANC(X):    %s _|_ %s  |  S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" %
@@ -1238,7 +1250,7 @@ 

Source code for tigramite.lpcmci

                             self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
 
                             # Check whether test result was significant
-                            if pval > self.pc_alpha:
+                            if not dependent: # pval > self.pc_alpha:
 
                                 # Mark the edge from X to Y for removal and save sepset
                                 to_remove[Y[0]][X] = True
@@ -1906,7 +1918,9 @@ 

Source code for tigramite.lpcmci

                 Z_A = [node for node in Z if node != A]
 
                 # Run the conditional independence test
-                val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, tau_max = self.tau_max)
+                # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, tau_max = self.tau_max)
+                val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, 
+                    tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                 if self.verbosity >= 2:
                     print("MakeMin:    %s _|_ %s  |  Z_A = %s: val = %.2f / pval = % .4f" %
@@ -1917,7 +1931,7 @@ 

Source code for tigramite.lpcmci

                 self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_A))
 
                 # Check whether the test result was significant
-                if pval > self.pc_alpha:
+                if not dependent: # pval > self.pc_alpha:
                     new_sepsets.append(frozenset(Z_A))
                     val_values.append(val)
 
@@ -2002,7 +2016,9 @@ 

Source code for tigramite.lpcmci

                 Z = Z.union(Z_add)
 
                 # Test conditional independence of X and Y given Z
-                val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
+                    tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                 if self.verbosity >= 2:
                     print("BnotinSepSetAC(A):    %s _|_ %s  |  Z_add = %s, Z = %s: val = %.2f / pval = % .4f" %
@@ -2013,7 +2029,7 @@ 

Source code for tigramite.lpcmci

                 self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
 
                 # Check whether test result was significant
-                if pval > self.pc_alpha:
+                if not dependent: # pval > self.pc_alpha:
                     all_sepsets.add(frozenset(Z))
 
         # Test for independence given all subsets of non-future adjacencies of C
@@ -2031,7 +2047,9 @@ 

Source code for tigramite.lpcmci

                 Z = Z.union(Z_add)
 
                 # Test conditional independence of X and Y given Z
-                val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
+                    tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                 if self.verbosity >= 2:
                     # print("BnotinSepSetAC(C):    %s _|_ %s  |  Z = %s: val = %.2f / pval = % .4f" %
@@ -2044,7 +2062,7 @@ 

Source code for tigramite.lpcmci

                 self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
 
                 # Check whether test result was significant
-                if pval > self.pc_alpha:
+                if not dependent: # pval > self.pc_alpha:
                     all_sepsets.add(frozenset(Z))
 
         # Append the already known sepset
@@ -2128,8 +2146,10 @@ 

Source code for tigramite.lpcmci

                     Z = Z.union(Z_add)
 
                     # Test conditional independence of X and Y given Z
-                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
-
+                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
+                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
+                    
                     if self.verbosity >= 2:
                         # print("BinSepSetAC(A):    %s _|_ %s  |  Z = %s: val = %.2f / pval = % .4f" %
                         #     (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval))
@@ -2141,7 +2161,7 @@ 

Source code for tigramite.lpcmci

                     self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
 
                     # Check whether test result was significant
-                    if pval > self.pc_alpha:
+                    if not dependent: # pval > self.pc_alpha:
                         all_sepsets.add(frozenset(Z))
 
             # Test for independence given all subsets of non-future adjacencies of C
@@ -2159,8 +2179,10 @@ 

Source code for tigramite.lpcmci

                     Z = Z.union(Z_add)
 
                     # Test conditional independence of X and Y given Z
-                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
-
+                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
+                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
+                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
+                    
                     if self.verbosity >= 2:
                         # print("BinSepSetAC(C):     %s _|_ %s  |  Z = %s: val = %.2f / pval = % .4f" %
                         #     (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval))
@@ -2172,7 +2194,7 @@ 

Source code for tigramite.lpcmci

                     self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
 
                     # Check whether test result was significant
-                    if pval > self.pc_alpha:
+                    if not dependent: # pval > self.pc_alpha:
                         all_sepsets.add(frozenset(Z))
 
             # Append the already known sepset
@@ -2794,7 +2816,9 @@ 

Source code for tigramite.lpcmci

                     Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max}
 
                     # Test conditional independence of X and Y given Z
-                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
+                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
+                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), 
+                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                     if self.verbosity >= 2:
                         # print("ER00a(part1):    %s _|_ %s  |  Z_test = %s: val = %.2f / pval = % .4f" %
@@ -2807,7 +2831,7 @@ 

Source code for tigramite.lpcmci

                     self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test))
 
                     # Check whether test result was significant
-                    if pval > self.pc_alpha:
+                    if not dependent: # pval > self.pc_alpha:
 
                         # Mark the edge from X to Y for removal and save sepset
                         remove_AB = True
@@ -2851,7 +2875,9 @@ 

Source code for tigramite.lpcmci

                     Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max}
 
                     # Test conditional independence of X and Y given Z
-                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
+                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
+                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), 
+                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                     if self.verbosity >= 2:
                         # print("ER00a(part2):    %s _|_ %s  |  Z_test = %s: val = %.2f / pval = % .4f" %
@@ -2864,7 +2890,7 @@ 

Source code for tigramite.lpcmci

                     self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test))
 
                     # Check whether test result was significant
-                    if pval > self.pc_alpha:
+                    if not dependent: # pval > self.pc_alpha:
                         
                         # Mark the edge from X to Y for removal and save sepset
                         remove_CB = True
@@ -2959,7 +2985,9 @@ 

Source code for tigramite.lpcmci

                     Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max}
 
                     # Test conditional independence of X and Y given Z
-                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
+                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
+                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), 
+                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
 
                     if self.verbosity >= 2:
                         # print("ER00b:    %s _|_ %s  |  Z_test = %s: val = %.2f / pval = % .4f" %
@@ -2972,7 +3000,7 @@ 

Source code for tigramite.lpcmci

                     self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test))
 
                     # Check whether test result was significant
-                    if pval > self.pc_alpha:
+                    if not dependent: # pval > self.pc_alpha:
 
                         # Mark the edge from X to Y for removal and save sepset
                         remove_AB = True
@@ -3582,7 +3610,7 @@ 

Source code for tigramite.lpcmci

 
 if __name__ == '__main__':
 
-    from tigramite.independence_tests import ParCorr
+    from tigramite.independence_tests.parcorr import ParCorr
     import tigramite.data_processing as pp
     from tigramite.toymodels import structural_causal_processes as toys
     import tigramite.plotting as tp
@@ -3609,18 +3637,18 @@ 

Source code for tigramite.lpcmci

     # Data must be array of shape (time, variables)
     print(data.shape)
     dataframe = pp.DataFrame(data)
-    cond_ind_test = ParCorr()
+    cond_ind_test = ParCorr(significance='fixed_thres')
     lpcmci = LPCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)
-    # results = pcmci.run_lpcmci(tau_max=2, pc_alpha=0.01)
+    results = lpcmci.run_lpcmci(tau_max=2, pc_alpha=0.01)
 
     # # For a proper causal interpretation of the graph see the paper!
     # print(results['graph'])
     # tp.plot_graph(graph=results['graph'], val_matrix=results['val_matrix'])
     # plt.show()
 
-    results = lpcmci.run_sliding_window_of(
-        window_step=499, window_length=500,
-        method='run_lpcmci', method_args={'tau_max':1})
+    # results = lpcmci.run_sliding_window_of(
+    #     window_step=499, window_length=500,
+    #     method='run_lpcmci', method_args={'tau_max':1})
 
@@ -3675,8 +3703,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/models.html b/docs/_build/_modules/tigramite/models.html index 8d3fbdb8..63bc8646 100644 --- a/docs/_build/_modules/tigramite/models.html +++ b/docs/_build/_modules/tigramite/models.html @@ -9,8 +9,10 @@ + + + - @@ -869,9 +871,7 @@

Source code for tigramite.models

         psi = np.zeros((self.tau_max + 1, self.N, self.N))
 
         psi[0] = np.linalg.pinv(np.identity(self.N) - phi[0])
-
         for tau in range(1, self.tau_max + 1):
-            # psi[tau] = np.matmul(psi[0], np.matmul(phi[tau], psi[0]))
             for s in range(1, tau + 1):
                 psi[tau] += np.matmul(psi[0], np.matmul(phi[s], psi[tau - s]) ) 
 
@@ -1601,6 +1601,7 @@ 

Source code for tigramite.models

             mask = {0: np.zeros(dataframe.values[0].shape, dtype='bool')}
         # Get the dataframe shape
         T = dataframe.T[0]
+
         # Have the default dataframe be the training data frame
         train_mask = deepcopy(mask)
         train_mask[0][[t for t in range(T) if t not in train_indices]] = True
@@ -1688,6 +1689,14 @@ 

Source code for tigramite.models

             Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...}
             containing estimated predictors.
         """
+
+        if selected_links is not None:
+            link_assumptions = {}
+            for j in selected_links.keys():
+                link_assumptions[j] = {(i, -tau):"-?>" for i in range(self.N) for tau in range(1, tau_max+1)}
+        else:
+            link_assumptions = None
+
         # Ensure an independence model is given
         if self.cond_ind_test is None:
             raise ValueError("No cond_ind_test given!")
@@ -1695,7 +1704,7 @@ 

Source code for tigramite.models

         self.selected_variables = range(self.N)
         if selected_targets is not None:
             self.selected_variables = selected_targets
-        predictors = self.run_pc_stable(selected_links=selected_links,
+        predictors = self.run_pc_stable(link_assumptions=link_assumptions,
                                         tau_min=steps_ahead,
                                         tau_max=tau_max,
                                         save_iterations=False,
@@ -2078,8 +2087,8 @@ 

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/pcmci.html b/docs/_build/_modules/tigramite/pcmci.html index 93e61480..6a562a71 100644 --- a/docs/_build/_modules/tigramite/pcmci.html +++ b/docs/_build/_modules/tigramite/pcmci.html @@ -9,8 +9,10 @@ + + + - @@ -446,12 +448,13 @@

Source code for tigramite.pcmci

                     if link_assumptions_j[parent] == '-->':
                         val = 1.
                         pval = 0.
+                        dependent = True
                     else:
-                        val, pval = self.cond_ind_test.run_test(X=[parent],
+                        val, pval, dependent = self.cond_ind_test.run_test(X=[parent],
                                                     Y=[(j, 0)],
                                                     Z=Z,
                                                     tau_max=tau_max,
-                                                    # verbosity=self.verbosity
+                                                    alpha_or_thres=pc_alpha,
                                                     )
                     # Print some information if needed
                     if self.verbosity > 1:
@@ -473,7 +476,7 @@ 

Source code for tigramite.pcmci

                         a_iter[comb_index]['val'] = val
                         a_iter[comb_index]['pval'] = pval
                     # Delete link later and break while-loop if non-significant
-                    if pval > pc_alpha:
+                    if not dependent: #pval > pc_alpha:
                         nonsig_parents.append((j, parent))
                         nonsig = True
                         break
@@ -1108,15 +1111,14 @@ 

Source code for tigramite.pcmci

 
             if val_only is False:
                 # Run the independence tests and record the results
-                if ((i, -tau) in _int_link_assumptions[j] 
-                     and _int_link_assumptions[j][(i, -tau)] in ['-->', 'o-o']):
+                if ((i, -abs(tau)) in _int_link_assumptions[j] 
+                     and _int_link_assumptions[j][(i, -abs(tau))] in ['-->', 'o-o']):
                     val = 1. 
                     pval = 0.
                 else:
-                    val, pval = self.cond_ind_test.run_test(X, Y, Z=Z,
+                    val, pval, _ = self.cond_ind_test.run_test(X, Y, Z=Z,
                                                         tau_max=tau_max,
-                                                        # verbosity=
-                                                        # self.verbosity
+                                                        alpha_or_thres=alpha_level,
                                                         )
                 val_matrix[i, j, abs(tau)] = val
                 p_matrix[i, j, abs(tau)] = pval
@@ -1139,13 +1141,21 @@ 

Source code for tigramite.pcmci

 
         # Correct the p_matrix if there is a fdr_method
         if fdr_method != 'none':
+            if self.cond_ind_test.significance == 'fixed_thres':
+                raise ValueError("FDR-correction not compatible with significance == 'fixed_thres'")
             p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, 
                                                   tau_max=tau_max, 
                                                   link_assumptions=_int_link_assumptions,
                                                   fdr_method=fdr_method)
 
-        # Threshold p_matrix to get graph
-        final_graph = p_matrix <= alpha_level
+        # Threshold p_matrix to get graph (or val_matrix for significance == 'fixed_thres')
+        if self.cond_ind_test.significance == 'fixed_thres':
+            if self.cond_ind_test.two_sided:
+                final_graph = np.abs(val_matrix) >= np.abs(alpha_level)
+            else:
+                final_graph = val_matrix >= alpha_level
+        else:
+            final_graph = p_matrix <= alpha_level
 
         # Convert to string graph representation
         graph = self.convert_to_string_graph(final_graph)
@@ -2159,7 +2169,7 @@ 

Source code for tigramite.pcmci

             Estimated matrix of test statistic values regarding adjacencies.
         p_matrix : array of shape [N, N, tau_max+1]
             Estimated matrix of p-values regarding adjacencies.
-        sepset : dictionary
+        sepsets : dictionary
             Separating sets. See paper for details.
         ambiguous_triples : list
             List of ambiguous triples, only relevant for 'majority' and
@@ -2187,31 +2197,31 @@ 

Source code for tigramite.pcmci

                         max_conds_px_lagged=max_conds_px_lagged,
                         fdr_method=fdr_method)
 
-        # else:
-        #     raise ValueError("pc_alpha=None not supported in PCMCIplus, choose"
-        #                      " 0 < pc_alpha < 1 (e.g., 0.01)")
-
-        if pc_alpha < 0. or pc_alpha > 1:
+        elif pc_alpha < 0. or pc_alpha > 1:
             raise ValueError("Choose 0 <= pc_alpha <= 1")
 
         # Check the limits on tau
         self._check_tau_limits(tau_min, tau_max)
-        # Set the selected links
-        # _int_sel_links = self._set_sel_links(selected_links, tau_min, tau_max)
+        # Set the link assumption
         _int_link_assumptions = self._set_link_assumptions(link_assumptions, tau_min, tau_max)
 
-        # Step 1: Get a superset of lagged parents from run_pc_stable
-        lagged_parents = self.run_pc_stable(link_assumptions=link_assumptions,
-                                            tau_min=tau_min,
-                                            tau_max=tau_max,
-                                            pc_alpha=pc_alpha,
-                                            max_conds_dim=max_conds_dim,
-                                            max_combinations=max_combinations)
 
+        #
+        # Phase 1: Get a superset of lagged parents from run_pc_stable
+        #
+        lagged_parents = self.run_pc_stable(link_assumptions=link_assumptions,
+                            tau_min=tau_min,
+                            tau_max=tau_max,
+                            pc_alpha=pc_alpha,
+                            max_conds_dim=max_conds_dim,
+                            max_combinations=max_combinations)
+        # Extract p- and val-matrix
         p_matrix = self.p_matrix
         val_matrix = self.val_matrix
 
-        # Step 2+3+4: PC algorithm with contemp. conditions and MCI tests
+        #
+        # Phase 2: PC algorithm with contemp. conditions and MCI tests
+        #
         if self.verbosity > 0:
             print("\n##\n## Step 2: PC algorithm with contemp. conditions "
                   "and MCI tests\n##"
@@ -2232,6 +2242,180 @@ 

Source code for tigramite.pcmci

                   + "\nfdr_method = %s" % fdr_method
                   )
 
+        skeleton_results = self._pcmciplus_mci_skeleton_phase(
+                            lagged_parents=lagged_parents, 
+                            link_assumptions=_int_link_assumptions, 
+                            pc_alpha=pc_alpha,
+                            tau_min=tau_min, 
+                            tau_max=tau_max, 
+                            max_conds_dim=max_conds_dim, 
+                            max_combinations=max_combinations, 
+                            max_conds_py=max_conds_py,
+                            max_conds_px=max_conds_px, 
+                            max_conds_px_lagged=max_conds_px_lagged, 
+                            reset_lagged_links=reset_lagged_links, 
+                            fdr_method=fdr_method,
+                            p_matrix=p_matrix, 
+                            val_matrix=val_matrix,
+                            )
+
+        #
+        # Phase 3: Collider orientations (with MCI tests for default majority collider rule)
+        #
+        colliders_step_results = self._pcmciplus_collider_phase(
+                            skeleton_graph=skeleton_results['graph'], 
+                            sepsets=skeleton_results['sepsets'], 
+                            lagged_parents=lagged_parents, 
+                            pc_alpha=pc_alpha, 
+                            tau_min=tau_min, 
+                            tau_max=tau_max, 
+                            max_conds_py=max_conds_py, 
+                            max_conds_px=max_conds_px, 
+                            max_conds_px_lagged=max_conds_px_lagged,
+                            conflict_resolution=conflict_resolution, 
+                            contemp_collider_rule=contemp_collider_rule)
+        
+        #
+        # Phase 4: Meek rule orientations
+        #
+        final_graph = self._pcmciplus_rule_orientation_phase(
+                            collider_graph=colliders_step_results['graph'],
+                            ambiguous_triples=colliders_step_results['ambiguous_triples'], 
+                            conflict_resolution=conflict_resolution)
+
+        # Store the parents in the pcmci member
+        self.all_lagged_parents = lagged_parents
+
+        return_dict = {
+            'graph': final_graph,
+            'p_matrix': skeleton_results['p_matrix'],
+            'val_matrix': skeleton_results['val_matrix'],
+            'sepsets': colliders_step_results['sepsets'],
+            'ambiguous_triples': colliders_step_results['ambiguous_triples'],
+            }
+
+        # No confidence interval estimation here
+        return_dict['conf_matrix'] = None
+
+        # Print the results
+        if self.verbosity > 0:
+            self.print_results(return_dict, alpha_level=pc_alpha)
+        
+        # Return the dictionary
+        self.results = return_dict
+        
+        return return_dict
+ + + # # Set the maximum condition dimension for Y and X + # max_conds_py = self._set_max_condition_dim(max_conds_py, + # tau_min, tau_max) + # max_conds_px = self._set_max_condition_dim(max_conds_px, + # tau_min, tau_max) + + # if reset_lagged_links: + # # Run PCalg on full graph, ignoring that some lagged links + # # were determined as non-significant in PC1 step + # links_for_pc = deepcopy(_int_link_assumptions) + # else: + # # Run PCalg only on lagged parents found with PC1 + # # plus all contemporaneous links + # links_for_pc = {} #deepcopy(lagged_parents) + # for j in range(self.N): + # links_for_pc[j] = {} + # for parent in lagged_parents[j]: + # if _int_link_assumptions[j][parent] in ['-?>', '-->']: + # links_for_pc[j][parent] = _int_link_assumptions[j][parent] + + # # Add contemporaneous links + # for link in _int_link_assumptions[j]: + # i, tau = link + # link_type = _int_link_assumptions[j][link] + # if abs(tau) == 0: + # links_for_pc[j][(i, 0)] = link_type + + # results = self.run_pcalg( + # link_assumptions=links_for_pc, + # pc_alpha=pc_alpha, + # tau_min=tau_min, + # tau_max=tau_max, + # max_conds_dim=max_conds_dim, + # max_combinations=max_combinations, + # lagged_parents=lagged_parents, + # max_conds_py=max_conds_py, + # max_conds_px=max_conds_px, + # max_conds_px_lagged=max_conds_px_lagged, + # mode='contemp_conds', + # contemp_collider_rule=contemp_collider_rule, + # conflict_resolution=conflict_resolution) + + # graph = results['graph'] + + # # Update p_matrix and val_matrix with values from links_for_pc + # for j in range(self.N): + # for link in links_for_pc[j]: + # i, tau = link + # if links_for_pc[j][link] not in ['<--', '<?-']: + # p_matrix[i, j, abs(tau)] = results['p_matrix'][i, j, abs(tau)] + # val_matrix[i, j, abs(tau)] = results['val_matrix'][i, j, + # abs(tau)] + + # # Update p_matrix and val_matrix for indices of symmetrical links + # p_matrix[:, :, 0] = results['p_matrix'][:, :, 0] + # val_matrix[:, :, 0] = results['val_matrix'][:, :, 0] + + # ambiguous = results['ambiguous_triples'] + + # conf_matrix = None + # TODO: implement confidence estimation, but how? + # if self.cond_ind_test.confidence is not False: + # conf_matrix = results['conf_matrix'] + + # # Correct the p_matrix if there is a fdr_method + # if fdr_method != 'none': + # p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, + # tau_max=tau_max, + # link_assumptions=_int_link_assumptions, + # fdr_method=fdr_method) + + # # Store the parents in the pcmci member + # self.all_lagged_parents = lagged_parents + + # # p_matrix=results['p_matrix'] + # # val_matrix=results['val_matrix'] + + # Cache the resulting values in the return dictionary + # return_dict = {'graph': graph, + # 'val_matrix': val_matrix, + # 'p_matrix': p_matrix, + # 'ambiguous_triples': ambiguous, + # 'conf_matrix': conf_matrix} + + # # Print the results + # if self.verbosity > 0: + # self.print_results(return_dict, alpha_level=pc_alpha) + # # Return the dictionary + # self.results = return_dict + # return return_dict + + def _pcmciplus_mci_skeleton_phase(self, + lagged_parents, + link_assumptions, + pc_alpha, + tau_min, + tau_max, + max_conds_dim, + max_combinations, + max_conds_py, + max_conds_px, + max_conds_px_lagged, + reset_lagged_links, + fdr_method, + p_matrix, + val_matrix, + ): + """MCI Skeleton phase.""" + # Set the maximum condition dimension for Y and X max_conds_py = self._set_max_condition_dim(max_conds_py, tau_min, tau_max) @@ -2241,7 +2425,7 @@

Source code for tigramite.pcmci

         if reset_lagged_links:
             # Run PCalg on full graph, ignoring that some lagged links
             # were determined as non-significant in PC1 step
-            links_for_pc = deepcopy(_int_link_assumptions)
+            links_for_pc = deepcopy(link_assumptions)
         else:
             # Run PCalg only on lagged parents found with PC1 
             # plus all contemporaneous links
@@ -2249,75 +2433,120 @@ 

Source code for tigramite.pcmci

             for j in range(self.N):
                 links_for_pc[j] = {}
                 for parent in lagged_parents[j]:
-                    if _int_link_assumptions[j][parent] in ['-?>', '-->']:
-                        links_for_pc[j][parent] = _int_link_assumptions[j][parent]
+                    if link_assumptions[j][parent] in ['-?>', '-->']:
+                        links_for_pc[j][parent] = link_assumptions[j][parent]
 
                 # Add contemporaneous links
-                for link in _int_link_assumptions[j]:
+                for link in link_assumptions[j]:
                     i, tau = link
-                    link_type = _int_link_assumptions[j][link]
+                    link_type = link_assumptions[j][link]
                     if abs(tau) == 0:
                         links_for_pc[j][(i, 0)] = link_type
 
-        results = self.run_pcalg(
-            link_assumptions=links_for_pc,
+
+        if max_conds_dim is None:
+            max_conds_dim = self.N
+
+        if max_combinations is None:
+            max_combinations = np.inf
+
+        initial_graph = self._dict_to_graph(links_for_pc, tau_max=tau_max)
+
+        skeleton_results = self._pcalg_skeleton(
+            initial_graph=initial_graph,
+            lagged_parents=lagged_parents,
+            mode='contemp_conds',
             pc_alpha=pc_alpha,
             tau_min=tau_min,
             tau_max=tau_max,
             max_conds_dim=max_conds_dim,
             max_combinations=max_combinations,
-            lagged_parents=lagged_parents,
             max_conds_py=max_conds_py,
             max_conds_px=max_conds_px,
             max_conds_px_lagged=max_conds_px_lagged,
-            mode='contemp_conds',
-            contemp_collider_rule=contemp_collider_rule,
-            conflict_resolution=conflict_resolution)
+            )
 
-        graph = results['graph']
+        # Symmetrize p_matrix and val_matrix coming from skeleton
+        symmetrized_results = self.symmetrize_p_and_val_matrix(
+                            p_matrix=skeleton_results['p_matrix'], 
+                            val_matrix=skeleton_results['val_matrix'], 
+                            link_assumptions=links_for_pc,
+                            conf_matrix=None)
 
-        # Update p_matrix and val_matrix with values from links_for_pc
+        # Update p_matrix and val_matrix with values from skeleton phase
+        # Contemporaneous entries (not filled in run_pc_stable lagged phase)
+        p_matrix[:, :, 0] = symmetrized_results['p_matrix'][:, :, 0]
+        val_matrix[:, :, 0] = symmetrized_results['val_matrix'][:, :, 0]
+
+        # Update all entries computed in the MCI step 
+        # (these are in links_for_pc); values for entries
+        # that were removed in the lagged-condition phase are kept from before
         for j in range(self.N):
             for link in links_for_pc[j]:
                 i, tau = link
                 if links_for_pc[j][link] not in ['<--', '<?-']:
-                    p_matrix[i, j, abs(tau)] = results['p_matrix'][i, j, abs(tau)]
-                    val_matrix[i, j, abs(tau)] = results['val_matrix'][i, j, 
-                                                                       abs(tau)]
-
-        # Update p_matrix and val_matrix for indices of symmetrical links
-        p_matrix[:, :, 0] = results['p_matrix'][:, :, 0]
-        val_matrix[:, :, 0] = results['val_matrix'][:, :, 0]
-
-        ambiguous = results['ambiguous_triples']
+                    p_matrix[i, j, abs(tau)] = symmetrized_results['p_matrix'][i, j, abs(tau)]
+                    val_matrix[i, j, abs(tau)] = symmetrized_results['val_matrix'][i, j, 
+                                                                 abs(tau)]
 
-        conf_matrix = None
-        # TODO: implement confidence estimation, but how?
-        # if self.cond_ind_test.confidence is not False:
-        #     conf_matrix = results['conf_matrix']
-
-        # Correct the p_matrix if there is a fdr_method
+        # Optionally correct the p_matrix
         if fdr_method != 'none':
             p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, 
                                                   tau_max=tau_max, 
-                                                  link_assumptions=_int_link_assumptions,
+                                                  link_assumptions=link_assumptions,
                                                   fdr_method=fdr_method)
 
-        # Store the parents in the pcmci member
-        self.all_lagged_parents = lagged_parents
+        # Update matrices
+        skeleton_results['p_matrix'] = p_matrix
+        skeleton_results['val_matrix'] = val_matrix
+
+        return skeleton_results
+
+
+    def _pcmciplus_collider_phase(self, skeleton_graph, sepsets, lagged_parents,
+        pc_alpha, tau_min, tau_max, max_conds_py, max_conds_px, max_conds_px_lagged,
+        conflict_resolution, contemp_collider_rule):
+        """MCI collider phase."""    
+
+        # Set the maximum condition dimension for Y and X
+        max_conds_py = self._set_max_condition_dim(max_conds_py,
+                                                   tau_min, tau_max)
+        max_conds_px = self._set_max_condition_dim(max_conds_px,
+                                                   tau_min, tau_max)
+
+        # Now change assumed links marks
+        skeleton_graph[skeleton_graph=='o?o'] = 'o-o'
+        skeleton_graph[skeleton_graph=='-?>'] = '-->'
+        skeleton_graph[skeleton_graph=='<?-'] = '<--'
+
+        colliders_step_results = self._pcalg_colliders(
+            graph=skeleton_graph,
+            sepsets=sepsets,
+            lagged_parents=lagged_parents,
+            mode='contemp_conds',
+            pc_alpha=pc_alpha,
+            tau_max=tau_max,
+            max_conds_py=max_conds_py,
+            max_conds_px=max_conds_px,
+            max_conds_px_lagged=max_conds_px_lagged,
+            conflict_resolution=conflict_resolution,
+            contemp_collider_rule=contemp_collider_rule,
+            )
+
+        return colliders_step_results
+
+    def _pcmciplus_rule_orientation_phase(self, collider_graph,
+         ambiguous_triples, conflict_resolution):
+        """MCI rule orientation phase."""  
+
+        final_graph = self._pcalg_rules_timeseries(
+            graph=collider_graph,
+            ambiguous_triples=ambiguous_triples,
+            conflict_resolution=conflict_resolution,
+            )
+
+        return final_graph
 
-        # Cache the resulting values in the return dictionary
-        return_dict = {'graph': graph,
-                       'val_matrix': val_matrix,
-                       'p_matrix': p_matrix,
-                       'ambiguous_triples': ambiguous,
-                       'conf_matrix': conf_matrix}
-        # Print the results
-        if self.verbosity > 0:
-            self.print_results(return_dict, alpha_level=pc_alpha)
-        # Return the dictionary
-        self.results = return_dict
-        return return_dict
[docs] def run_pcalg(self, selected_links=None, @@ -2405,7 +2634,7 @@

Source code for tigramite.pcmci

             Estimated matrix of test statistic values regarding adjacencies.
         p_matrix : array of shape [N, N, tau_max+1]
             Estimated matrix of p-values regarding adjacencies.
-        sepset : dictionary
+        sepsets : dictionary
             Separating sets. See paper for details.
         ambiguous_triples : list
             List of ambiguous triples, only relevant for 'majority' and
@@ -2458,16 +2687,16 @@ 

Source code for tigramite.pcmci

         )
 
         skeleton_graph = skeleton_results['graph']
-        sepset = skeleton_results['sepset']
+        sepsets = skeleton_results['sepsets']
 
-        # Now change assumed links mark
+        # Now change assumed links marks
         skeleton_graph[skeleton_graph=='o?o'] = 'o-o'
         skeleton_graph[skeleton_graph=='-?>'] = '-->'
         skeleton_graph[skeleton_graph=='<?-'] = '<--'
 
         colliders_step_results = self._pcalg_colliders(
             graph=skeleton_graph,
-            sepset=sepset,
+            sepsets=sepsets,
             lagged_parents=lagged_parents,
             mode=mode,
             pc_alpha=pc_alpha,
@@ -2502,7 +2731,7 @@ 

Source code for tigramite.pcmci

             'graph': graph_str,
             'p_matrix': symmetrized_results['p_matrix'],
             'val_matrix': symmetrized_results['val_matrix'],
-            'sepset': colliders_step_results['sepset'],
+            'sepsets': colliders_step_results['sepsets'],
             'ambiguous_triples': colliders_step_results['ambiguous_triples'],
         }
 
@@ -2550,7 +2779,7 @@ 

Source code for tigramite.pcmci

             Estimated matrix of test statistic values regarding adjacencies.
         p_matrix : array of shape [N, N, 1]
             Estimated matrix of p-values regarding adjacencies.
-        sepset : dictionary
+        sepsets : dictionary
             Separating sets. See paper for details.
         ambiguous_triples : list
             List of ambiguous triples, only relevant for 'majority' and
@@ -2563,16 +2792,13 @@ 

Source code for tigramite.pcmci

                   conflict_resolution=conflict_resolution)
 
         # Remove tau-dimension
-        # results['graph'] = results['graph'].squeeze()
-        # results['val_matrix'] = results['val_matrix'].squeeze()
-        # results['p_matrix'] = results['p_matrix'].squeeze()
-        old_sepsets = results['sepset'].copy()
-        results['sepset'] = {}
-        for old_sepset in old_sepsets:
-           new_sepset = (old_sepset[0][0], old_sepset[1])
-           conds = [cond[0] for cond in old_sepsets[old_sepset]]
+        old_sepsets = results['sepsets'].copy()
+        results['sepsets'] = {}
+        for old_sepsets in old_sepsets:
+           new_sepsets = (old_sepsets[0][0], old_sepsets[1])
+           conds = [cond[0] for cond in old_sepsets[old_sepsets]]
 
-           results['sepset'][new_sepset] = conds
+           results['sepsets'][new_sepsets] = conds
 
         ambiguous_triples = results['ambiguous_triples'].copy()
         results['ambiguous_triples'] = []
@@ -2586,7 +2812,7 @@ 

Source code for tigramite.pcmci

 
 
     def _run_pcalg_test(self, graph, i, abstau, j, S, lagged_parents, max_conds_py,
-                        max_conds_px, max_conds_px_lagged, tau_max):
+                        max_conds_px, max_conds_px_lagged, tau_max, alpha_or_thres=None):
         """MCI conditional independence tests within PCMCIplus or PC algorithm.
 
         Parameters
@@ -2612,15 +2838,16 @@ 

Source code for tigramite.pcmci

             tests. If None is passed, this number is equal to max_conds_px.
         tau_max : int
             Maximum time lag.
+        alpha_or_thres : float
+            Significance level (if significance='analytic' or 'shuffle_test') or
+            threshold (if significance='fixed_thres'). If given, run_test returns
+            the test decision dependent=True/False.
 
         Returns
         -------
-        val : float
-            Test statistic value.
-        pval : float
-            Test statistic p-value.
-        Z : list
-            List of conditions.
+        val, pval, Z, [dependent] : Tuple of floats, list, and bool
+            The test statistic value and the p-value and list of conditions. If alpha_or_thres is
+            given, run_test also returns the test decision dependent=True/False.             
         """
 
         # Perform independence test adding lagged parents
@@ -2650,13 +2877,15 @@ 

Source code for tigramite.pcmci

         if graph[i,j,abstau] != "" and graph[i,j,abstau][1] == '-':
             val = 1. 
             pval = 0.
+            dependent = True
         else:
-            val, pval = self.cond_ind_test.run_test(X=[(i, -abstau)], Y=[(j, 0)],
+            val, pval, dependent = self.cond_ind_test.run_test(X=[(i, -abstau)], Y=[(j, 0)],
                                                 Z=Z, tau_max=tau_max,
+                                                alpha_or_thres=alpha_or_thres,
                                                 # verbosity=self.verbosity
                                                 )
 
-        return val, pval, Z
+        return val, pval, Z, dependent
 
     def _print_triple_info(self, triple, index, n_triples):
         """Print info about the current triple being tested.
@@ -2768,7 +2997,7 @@ 

Source code for tigramite.pcmci

             Estimated matrix of test statistic values regarding adjacencies.
         p_matrix : array of shape [N, N, tau_max+1]
             Estimated matrix of p-values regarding adjacencies.
-        sepset : dictionary
+        sepsets : dictionary
             Separating sets. See paper for details.
         """
         N = self.N
@@ -2791,23 +3020,25 @@ 

Source code for tigramite.pcmci

             adjt = self._get_adj_time_series(graph)
 
         val_matrix = np.zeros((N, N, tau_max + 1))
+        
         val_min = dict()
         for j in range(self.N):
             val_min[j] = {(p[0], -p[1]): np.inf
                           for p in zip(*np.where(graph[:, j, :] != ""))}
 
         # Initialize p-values. Set to 1 if there's no link in the initial graph
-        pvalues = np.zeros((N, N, tau_max + 1))
-        pvalues[graph == ""] = 1.
+        p_matrix = np.zeros((N, N, tau_max + 1))
+        p_matrix[graph == ""] = 1.
+
         pval_max = dict()
         for j in range(self.N):
             pval_max[j] = {(p[0], -p[1]): 0.
                            for p in zip(*np.where(graph[:, j, :] != ""))}
 
-        # TODO: Remove sepset alltogether?
+        # TODO: Remove sepsets alltogether?
         # Intialize sepsets that store the conditions that make i and j
         # independent
-        sepset = self._get_sepset(tau_min, tau_max)
+        sepsets = self._get_sepsets(tau_min, tau_max)
 
         if self.verbosity > 1:
             print("\n--------------------------")
@@ -2857,9 +3088,11 @@ 

Source code for tigramite.pcmci

                             break
 
                         # Run MCI test
-                        val, pval, Z = self._run_pcalg_test(graph,
-                            i, abstau, j, S, lagged_parents, max_conds_py,
-                            max_conds_px, max_conds_px_lagged, tau_max)
+                        val, pval, Z, dependent = self._run_pcalg_test(graph=graph,
+                            i=i, abstau=abstau, j=j, S=S, lagged_parents=lagged_parents, 
+                            max_conds_py=max_conds_py,
+                            max_conds_px=max_conds_px, max_conds_px_lagged=max_conds_px_lagged,
+                            tau_max=tau_max, alpha_or_thres=pc_alpha)
 
                         # Store minimum test statistic value for sorting adjt
                         # (only internally used)
@@ -2872,8 +3105,8 @@ 

Source code for tigramite.pcmci

                                                             (i, -abstau)))
 
                         # Store max. p-value and corresponding value to return
-                        if pval >= pvalues[i, j, abstau]:
-                            pvalues[i, j, abstau] = pval
+                        if pval >= p_matrix[i, j, abstau]:
+                            p_matrix[i, j, abstau] = pval
                             val_matrix[i, j, abstau] = val
 
                         if self.verbosity > 1:
@@ -2881,16 +3114,18 @@ 

Source code for tigramite.pcmci

                                                   val=val)
 
                         # If conditional independence is found, remove link
-                        # from graph and store sepset
-                        if pval > pc_alpha:
+                        # from graph and store sepsets
+                        if not dependent: # pval > pc_alpha:
                             nonsig = True
                             if abstau == 0:
                                 graph[i, j, 0] = graph[j, i, 0] = ""
-                                sepset[((i, 0), j)] = sepset[
+                                sepsets[((i, 0), j)] = sepsets[
                                     ((j, 0), i)] = list(S)
+                                # Also store p-value in other contemp. entry
+                                p_matrix[j, i, 0] = p_matrix[i, j, 0]
                             else:
                                 graph[i, j, abstau] = ""
-                                sepset[((i, -abstau), j)] = list(S)
+                                sepsets[((i, -abstau), j)] = list(S)
                             break
 
                     # Print the results if needed
@@ -2929,13 +3164,13 @@ 

Source code for tigramite.pcmci

                     " reached." % max_conds_dim)
 
         return {'graph': graph,
-                'sepset': sepset,
-                'p_matrix': pvalues,
+                'sepsets': sepsets,
+                'p_matrix': p_matrix,
                 'val_matrix': val_matrix,
                 }
 
-    def _get_sepset(self, tau_min, tau_max):
-        """Returns initial sepset.
+    def _get_sepsets(self, tau_min, tau_max):
+        """Returns initial sepsets.
 
         Parameters
         ----------
@@ -2946,15 +3181,15 @@ 

Source code for tigramite.pcmci

 
         Returns
         -------
-        sepset : dict
-            Initialized sepset.
+        sepsets : dict
+            Initialized sepsets.
         """
-        sepset = dict([(((i, -tau), j), [])
+        sepsets = dict([(((i, -tau), j), [])
                        for tau in range(tau_min, tau_max + 1)
                        for i in range(self.N)
                        for j in range(self.N)])
 
-        return sepset
+        return sepsets
 
     def _find_unshielded_triples(self, graph):
         """Find unshielded triples i_tau o-(>) k_t o-o j_t with i_tau -/- j_t.
@@ -2998,7 +3233,7 @@ 

Source code for tigramite.pcmci

 
     def _pcalg_colliders(self,
                         graph,
-                        sepset,
+                        sepsets,
                         lagged_parents,
                         mode,
                         pc_alpha,
@@ -3016,7 +3251,7 @@ 

Source code for tigramite.pcmci

         ----------
         graph : array of shape (N, N, tau_max+1)
             Current graph.
-        sepset : dictionary
+        sepsets : dictionary
             Separating sets. See paper for details.
         lagged_parents : dictionary
             Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing
@@ -3052,7 +3287,7 @@ 

Source code for tigramite.pcmci

         -------
         graph : array of shape [N, N, tau_max+1]
             Resulting causal graph, see description above for interpretation.
-        sepset : dictionary
+        sepsets : dictionary
             Separating sets. See paper for details.
         ambiguous_triples : list
             List of ambiguous triples, only relevant for 'majority' and
@@ -3079,11 +3314,11 @@ 

Source code for tigramite.pcmci

 
         if contemp_collider_rule is None or contemp_collider_rule == 'none':
             # Standard collider orientation rule of PC algorithm
-            # If k_t not in sepset(i_tau, j_t), then orient
+            # If k_t not in sepsets(i_tau, j_t), then orient
             # as i_tau --> k_t <-- j_t
             for itaukj in triples:
                 (i, tau), k, j = itaukj
-                if (k, 0) not in sepset[((i, tau), j)]:
+                if (k, 0) not in sepsets[((i, tau), j)]:
                     v_structures.append(itaukj)
         else:
             # Apply 'majority' or 'conservative' rule to orient colliders          
@@ -3142,15 +3377,17 @@ 

Source code for tigramite.pcmci

                 # Test which neighbor subsets separate i and j
                 neighbor_sepsets = []
                 for iss, S in enumerate(neighbor_subsets):
-                    val, pval, Z = self._run_pcalg_test(graph,
-                        i, abs(tau), j, S, lagged_parents, max_conds_py,
-                        max_conds_px, max_conds_px_lagged, tau_max)
+                    val, pval, Z, dependent = self._run_pcalg_test(graph=graph,
+                            i=i, abstau=abs(tau), j=j, S=S, lagged_parents=lagged_parents, 
+                            max_conds_py=max_conds_py,
+                            max_conds_px=max_conds_px, max_conds_px_lagged=max_conds_px_lagged,
+                            tau_max=tau_max, alpha_or_thres=pc_alpha)
 
                     if self.verbosity > 1:
                         self._print_cond_info(Z=S, comb_index=iss, pval=pval,
                                               val=val)
 
-                    if pval > pc_alpha:
+                    if not dependent: #pval > pc_alpha:
                         neighbor_sepsets += [S]
 
                 if len(neighbor_sepsets) > 0:
@@ -3178,12 +3415,12 @@ 

Source code for tigramite.pcmci

                                     "    Fraction of separating subsets "
                                     "containing (%s 0) is = 0 --> collider "
                                     "found" % self.var_names[k])
-                            # Also delete (k, 0) from sepset (if present)
-                            if (k, 0) in sepset[((i, tau), j)]:
-                                sepset[((i, tau), j)].remove((k, 0))
+                            # Also delete (k, 0) from sepsets (if present)
+                            if (k, 0) in sepsets[((i, tau), j)]:
+                                sepsets[((i, tau), j)].remove((k, 0))
                             if tau == 0:
-                                if (k, 0) in sepset[((j, tau), i)]:
-                                    sepset[((j, tau), i)].remove((k, 0))
+                                if (k, 0) in sepsets[((j, tau), i)]:
+                                    sepsets[((j, tau), i)].remove((k, 0))
                         elif fraction == 1:
                             # If (k, 0) is in all of the neighbor_sepsets,
                             # leave unoriented
@@ -3192,12 +3429,12 @@ 

Source code for tigramite.pcmci

                                     "    Fraction of separating subsets "
                                     "containing (%s 0) is = 1 --> "
                                     "non-collider found" % self.var_names[k])
-                            # Also add (k, 0) to sepset (if not present)
-                            if (k, 0) not in sepset[((i, tau), j)]:
-                                sepset[((i, tau), j)].append((k, 0))
+                            # Also add (k, 0) to sepsets (if not present)
+                            if (k, 0) not in sepsets[((i, tau), j)]:
+                                sepsets[((i, tau), j)].append((k, 0))
                             if tau == 0:
-                                if (k, 0) not in sepset[((j, tau), i)]:
-                                    sepset[((j, tau), i)].append((k, 0))
+                                if (k, 0) not in sepsets[((j, tau), i)]:
+                                    sepsets[((j, tau), i)].append((k, 0))
                         else:
                             if self.verbosity > 1:
                                 print(
@@ -3230,12 +3467,12 @@ 

Source code for tigramite.pcmci

                                     "    Fraction of separating subsets "
                                     "containing (%s 0) is < 0.5 "
                                     "--> collider found" % self.var_names[k])
-                            # Also delete (k, 0) from sepset (if present)
-                            if (k, 0) in sepset[((i, tau), j)]:
-                                sepset[((i, tau), j)].remove((k, 0))
+                            # Also delete (k, 0) from sepsets (if present)
+                            if (k, 0) in sepsets[((i, tau), j)]:
+                                sepsets[((i, tau), j)].remove((k, 0))
                             if tau == 0:
-                                if (k, 0) in sepset[((j, tau), i)]:
-                                    sepset[((j, tau), i)].remove((k, 0))
+                                if (k, 0) in sepsets[((j, tau), i)]:
+                                    sepsets[((j, tau), i)].remove((k, 0))
                         elif fraction > 0.5:
                             if self.verbosity > 1:
                                 print(
@@ -3243,12 +3480,12 @@ 

Source code for tigramite.pcmci

                                     "containing (%s 0) is > 0.5 "
                                     "--> non-collider found" %
                                     self.var_names[k])
-                            # Also add (k, 0) to sepset (if not present)
-                            if (k, 0) not in sepset[((i, tau), j)]:
-                                sepset[((i, tau), j)].append((k, 0))
+                            # Also add (k, 0) to sepsets (if not present)
+                            if (k, 0) not in sepsets[((i, tau), j)]:
+                                sepsets[((i, tau), j)].append((k, 0))
                             if tau == 0:
-                                if (k, 0) not in sepset[((j, tau), i)]:
-                                    sepset[((j, tau), i)].append((k, 0))
+                                if (k, 0) not in sepsets[((j, tau), i)]:
+                                    sepsets[((j, tau), i)].append((k, 0))
 
         if self.verbosity > 1 and len(v_structures) > 0:
             print("\nOrienting links among colliders:")
@@ -3319,7 +3556,7 @@ 

Source code for tigramite.pcmci

             self._print_parents(all_parents=adjt, val_min=None, pval_max=None)
 
         return {'graph': graph,
-                'sepset': sepset,
+                'sepsets': sepsets,
                 'ambiguous_triples': ambiguous_triples,
                 }
 
@@ -3689,9 +3926,9 @@ 

Source code for tigramite.pcmci

                 parents = []
                 for i, tau in zip(*np.where(dag[:,j,:] == "-->")):
                     parents.append((i, -tau))
-                score[iscore] += \
-                    self.cond_ind_test.get_model_selection_criterion(
+                score_j = self.cond_ind_test.get_model_selection_criterion(
                         j, parents, tau_max)
+                score[iscore] += score_j
             score[iscore] /= float(self.N)
 
         # Record the optimal alpha value
@@ -3715,6 +3952,8 @@ 

Source code for tigramite.pcmci

 
 if __name__ == '__main__':
     from tigramite.independence_tests.parcorr import ParCorr
+    from tigramite.independence_tests.cmiknn import CMIknn
+
     import tigramite.data_processing as pp
     from tigramite.toymodels import structural_causal_processes as toys
     import tigramite.plotting as tp
@@ -3727,54 +3966,62 @@ 

Source code for tigramite.pcmci

     def lin_f(x): return x
     def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.))
 
-    T = 20000
+    T = 1000
     data = random_state.standard_normal((T, 4))
     # Simple sun
-    data[:,3] = np.sin(np.arange(T)*20/np.pi) + 0.1*random_state.standard_normal((T))
+    data[:,3] = random_state.standard_normal((T)) # np.sin(np.arange(T)*20/np.pi) + 0.1*random_state.standard_normal((T))
     c = 0.8
     for t in range(1, T):
         data[t, 0] += 0.4*data[t-1, 0] + 0.4*data[t-1, 1] + c*data[t-1,3]
-        data[t, 1] += 0.5*data[t-1, 1] + c*data[t-1,3]
-        data[t, 2] += 0.6*data[t-1, 2] + 0.3*data[t-2, 1] + c*data[t-1,3]
+        data[t, 1] += 0.5*data[t-1, 1] + c*data[t,3]
+        data[t, 2] += 0.6*data[t-1, 2] + 0.3*data[t-2, 1] #+ c*data[t-1,3]
     dataframe = pp.DataFrame(data, var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun'])
     # tp.plot_timeseries(dataframe); plt.show()
 
-    parcorr = ParCorr()
+    ci_test = CMIknn(significance="fixed_thres", verbosity=3)   #
+    # ci_test = ParCorr() #significance="fixed_thres")   #
     # dataframe_nosun = pp.DataFrame(data[:,[0,1,2]], var_names=[r'$X^0$', r'$X^1$', r'$X^2$'])
     # pcmci_parcorr = PCMCI(
     #     dataframe=dataframe_nosun, 
     #     cond_ind_test=parcorr,
     #     verbosity=0)
-    tau_max = 2
+    tau_max = 1  #2
     # results = pcmci_parcorr.run_pcmci(tau_max=tau_max, pc_alpha=0.2, alpha_level = 0.01)
     # Remove parents of variable 3
     # Only estimate parents of variables 0, 1, 2
-    link_assumptions = {}
-    for j in range(4):
-        if j in [0, 1, 2]:
-            # Directed lagged links
-            link_assumptions[j] = {(var, -lag): '-?>' for var in [0, 1, 2]
-                             for lag in range(1, tau_max + 1)}
-            # Unoriented contemporaneous links
-            link_assumptions[j].update({(var, 0): 'o?o' for var in [0, 1, 2] if var != j})
-            # Directed lagged and contemporaneous links from the sun (3)
-            link_assumptions[j].update({(var, -lag): '-?>' for var in [3]
-                             for lag in range(0, tau_max + 1)})
-        else:
-            link_assumptions[j] = {}
-
-    print(link_assumptions)
+    link_assumptions = None #{}
+    # for j in range(4):
+    #     if j in [0, 1, 2]:
+    #         # Directed lagged links
+    #         link_assumptions[j] = {(var, -lag): '-?>' for var in [0, 1, 2]
+    #                          for lag in range(1, tau_max + 1)}
+    #         # Unoriented contemporaneous links
+    #         link_assumptions[j].update({(var, 0): 'o?o' for var in [0, 1, 2] if var != j})
+    #         # Directed lagged and contemporaneous links from the sun (3)
+    #         link_assumptions[j].update({(var, -lag): '-?>' for var in [3]
+    #                          for lag in range(0, tau_max + 1)})
+    #     else:
+    #         link_assumptions[j] = {}
+
+    # for j in link_assumptions:
+    #     print(link_assumptions[j])
     pcmci_parcorr = PCMCI(
         dataframe=dataframe, 
-        cond_ind_test=parcorr,
-        verbosity=2)
-    results = pcmci_parcorr.run_pcmciplus(tau_max=tau_max, pc_alpha=0.01, 
-                                      # link_assumptions=link_assumptions
-                                      ) #, alpha_level = 0.01)
+        cond_ind_test=ci_test,
+        verbosity=1)
+    results = pcmci_parcorr.run_pcmciplus(tau_max=tau_max, 
+                    pc_alpha=[0.001, 0.01, 0.05, 0.8], 
+                    reset_lagged_links=False,
+                    link_assumptions=link_assumptions
+                    ) #, alpha_level = 0.01)
     print(results['graph'].shape)
-    print(results['graph'][:,3,:])
+    # print(results['graph'][:,3,:])
+    print(np.round(results['p_matrix'][:,:,0], 2))
+    print(np.round(results['val_matrix'][:,:,0], 2))
+    print(results['graph'][:,:,0])
+
     # Plot time series graph
-    # tp.plot_time_series_graph(
+    # tp.plot_graph(
     #     val_matrix=results['val_matrix'],
     #     graph=results['graph'],
     #     var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun'],
@@ -3880,8 +4127,8 @@ 

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/plotting.html b/docs/_build/_modules/tigramite/plotting.html index 1d1acc26..e7527d0a 100644 --- a/docs/_build/_modules/tigramite/plotting.html +++ b/docs/_build/_modules/tigramite/plotting.html @@ -9,8 +9,10 @@ + + + - @@ -4725,8 +4727,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/rpcmci.html b/docs/_build/_modules/tigramite/rpcmci.html index d298a605..5c943291 100644 --- a/docs/_build/_modules/tigramite/rpcmci.html +++ b/docs/_build/_modules/tigramite/rpcmci.html @@ -9,8 +9,10 @@ + + + - @@ -32,7 +34,7 @@

Source code for tigramite.rpcmci

 """Tigramite causal discovery for time series."""
 
-# Authors: Elena Saggioro, Matthias Bruhns, Jakob Runge <jakob@jakob-runge.com>
+# Authors: Elena Saggioro, Sagar Simha, Matthias Bruhns, Jakob Runge <jakob@jakob-runge.com>
 #
 # License: GNU General Public License v3.0
 
@@ -111,7 +113,11 @@ 

Source code for tigramite.rpcmci

 
         if dataframe.analysis_mode != 'single':
             raise ValueError("Only single time series data allowed for RPCMCI.")
+   
+        if dataframe.has_vector_data:
+            raise ValueError("Only scalar data allowed for RPCMCI.")
         
+               
         # Masking is not available in RPCMCI, but missing values can be specified
         dataframe.mask = {0:np.zeros(dataframe.values[0].shape, dtype='bool')}
         self.missing_flag = dataframe.missing_flag
@@ -547,8 +553,8 @@ 

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_modules/tigramite/toymodels/structural_causal_processes.html b/docs/_build/_modules/tigramite/toymodels/structural_causal_processes.html index 8ecaa4a2..76b23dc3 100644 --- a/docs/_build/_modules/tigramite/toymodels/structural_causal_processes.html +++ b/docs/_build/_modules/tigramite/toymodels/structural_causal_processes.html @@ -9,8 +9,10 @@ + + + - @@ -1233,8 +1235,8 @@

Quick search

©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
diff --git a/docs/_build/_sources/index.rst.txt b/docs/_build/_sources/index.rst.txt index af04214a..6ed3fa3a 100644 --- a/docs/_build/_sources/index.rst.txt +++ b/docs/_build/_sources/index.rst.txt @@ -31,6 +31,7 @@ TIGRAMITE Tigramite is a causal time series analysis python package. It allows to efficiently estimate causal graphs from high-dimensional time series datasets (causal discovery) and to use these graphs for robust forecasting and the estimation and prediction of direct, total, and mediated effects. Causal discovery is based on linear as well as non-parametric conditional independence tests applicable to discrete or continuously-valued time series. Also includes functions for high-quality plots of the results. Please cite the following papers depending on which method you use: +- Overview: Runge, J., Gerhardus, A., Varando, G. et al. Causal inference for time series. Nat Rev Earth Environ (2023). https://doi.org/10.1038/s43017-023-00431-y - PCMCI: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019). https://advances.sciencemag.org/content/5/11/eaau4996 @@ -40,7 +41,6 @@ Tigramite is a causal time series analysis python package. It allows to efficien - RPCMCI: Elena Saggioro, Jana de Wiljes, Marlene Kretschmer, Jakob Runge; Reconstructing regime-dependent causal relationships from observational time series. Chaos 1 November 2020; 30 (11): 113115. https://doi.org/10.1063/5.0020538 - - Generally: J. Runge (2018): Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310. https://aip.scitation.org/doi/10.1063/1.5025050 - Nature Communications Perspective paper: https://www.nature.com/articles/s41467-019-10105-3 diff --git a/docs/_build/_static/ajax-loader.gif b/docs/_build/_static/ajax-loader.gif new file mode 100644 index 0000000000000000000000000000000000000000..61faf8cab23993bd3e1560bff0668bd628642330 GIT binary patch literal 673 zcmZ?wbhEHb6krfw_{6~Q|Nno%(3)e{?)x>&1u}A`t?OF7Z|1gRivOgXi&7IyQd1Pl zGfOfQ60;I3a`F>X^fL3(@);C=vM_KlFfb_o=k{|A33hf2a5d61U}gjg=>Rd%XaNQW zW@Cw{|b%Y*pl8F?4B9 zlo4Fz*0kZGJabY|>}Okf0}CCg{u4`zEPY^pV?j2@h+|igy0+Kz6p;@SpM4s6)XEMg z#3Y4GX>Hjlml5ftdH$4x0JGdn8~MX(U~_^d!Hi)=HU{V%g+mi8#UGbE-*ao8f#h+S z2a0-5+vc7MU$e-NhmBjLIC1v|)9+Im8x1yacJ7{^tLX(ZhYi^rpmXm0`@ku9b53aN zEXH@Y3JaztblgpxbJt{AtE1ad1Ca>{v$rwwvK(>{m~Gf_=-Ro7Fk{#;i~+{{>QtvI yb2P8Zac~?~=sRA>$6{!(^3;ZP0TPFR(G_-UDU(8Jl0?(IXu$~#4A!880|o%~Al1tN literal 0 HcmV?d00001 diff --git a/docs/_build/_static/alabaster.css b/docs/_build/_static/alabaster.css index 0eddaeb0..bc420a48 100644 --- a/docs/_build/_static/alabaster.css +++ b/docs/_build/_static/alabaster.css @@ -1,17 +1,33 @@ + + + + + + + + + + + + + + + + + @import url("basic.css"); /* -- page layout ----------------------------------------------------------- */ body { - font-family: Georgia, serif; + font-family: 'goudy old style', 'minion pro', 'bell mt', Georgia, 'Hiragino Mincho Pro', serif; font-size: 17px; - background-color: #fff; + background-color: white; color: #000; margin: 0; padding: 0; } - div.document { width: 940px; margin: 30px auto 0 auto; @@ -28,8 +44,6 @@ div.bodywrapper { div.sphinxsidebar { width: 220px; - font-size: 14px; - line-height: 1.5; } hr { @@ -37,7 +51,7 @@ hr { } div.body { - background-color: #fff; + background-color: #ffffff; color: #3E4349; padding: 0 30px 0 30px; } @@ -58,11 +72,6 @@ div.footer a { color: #888; } -p.caption { - font-family: inherit; - font-size: inherit; -} - div.relations { display: none; @@ -79,6 +88,11 @@ div.sphinxsidebar a:hover { border-bottom: 1px solid #999; } +div.sphinxsidebar { + font-size: 14px; + line-height: 1.5; +} + div.sphinxsidebarwrapper { padding: 18px 10px; } @@ -107,7 +121,7 @@ div.sphinxsidebarwrapper p.blurb { div.sphinxsidebar h3, div.sphinxsidebar h4 { - font-family: Georgia, serif; + font-family: 'Garamond', 'Georgia', serif; color: #444; font-size: 24px; font-weight: normal; @@ -151,7 +165,7 @@ div.sphinxsidebar ul li.toctree-l2 > a { div.sphinxsidebar input { border: 1px solid #CCC; - font-family: Georgia, serif; + font-family: 'goudy old style', 'minion pro', 'bell mt', Georgia, 'Hiragino Mincho Pro', serif; font-size: 1em; } @@ -166,19 +180,6 @@ div.sphinxsidebar hr { width: 50%; } -div.sphinxsidebar .badge { - border-bottom: none; -} - -div.sphinxsidebar .badge:hover { - border-bottom: none; -} - -/* To address an issue with donation coming after search */ -div.sphinxsidebar h3.donation { - margin-top: 10px; -} - /* -- body styles ----------------------------------------------------------- */ a { @@ -197,7 +198,7 @@ div.body h3, div.body h4, div.body h5, div.body h6 { - font-family: Georgia, serif; + font-family: 'Garamond', 'Georgia', serif; font-weight: normal; margin: 30px 0px 10px 0px; padding: 0; @@ -228,17 +229,21 @@ div.body p, div.body dd, div.body li { div.admonition { margin: 20px 0px; padding: 10px 30px; - background-color: #EEE; - border: 1px solid #CCC; + background-color: #FCC; + border: 1px solid #FAA; } -div.admonition tt.xref, div.admonition code.xref, div.admonition a tt { - background-color: #FBFBFB; +div.admonition tt.xref, div.admonition a tt { border-bottom: 1px solid #fafafa; } +dd div.admonition { + margin-left: -60px; + padding-left: 60px; +} + div.admonition p.admonition-title { - font-family: Georgia, serif; + font-family: 'Garamond', 'Georgia', serif; font-weight: normal; font-size: 24px; margin: 0 0 10px 0; @@ -251,71 +256,25 @@ div.admonition p.last { } div.highlight { - background-color: #fff; + background-color: white; } dt:target, .highlight { background: #FAF3E8; } -div.warning { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.danger { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.error { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.caution { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.attention { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.important { - background-color: #EEE; - border: 1px solid #CCC; -} - div.note { background-color: #EEE; border: 1px solid #CCC; } -div.tip { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.hint { - background-color: #EEE; - border: 1px solid #CCC; -} - div.seealso { background-color: #EEE; border: 1px solid #CCC; } div.topic { - background-color: #EEE; + background-color: #eee; } p.admonition-title { @@ -327,7 +286,7 @@ p.admonition-title:after { } pre, tt, code { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; + font-family: 'Consolas', 'Menlo', 'Deja Vu Sans Mono', 'Bitstream Vera Sans Mono', monospace; font-size: 0.9em; } @@ -350,16 +309,16 @@ tt.descname, code.descname { } img.screenshot { - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; + -moz-box-shadow: 2px 2px 4px #eee; + -webkit-box-shadow: 2px 2px 4px #eee; + box-shadow: 2px 2px 4px #eee; } table.docutils { border: 1px solid #888; - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; + -moz-box-shadow: 2px 2px 4px #eee; + -webkit-box-shadow: 2px 2px 4px #eee; + box-shadow: 2px 2px 4px #eee; } table.docutils td, table.docutils th { @@ -399,18 +358,8 @@ table.field-list p { margin-bottom: 0.8em; } -/* Cloned from - * https://github.com/sphinx-doc/sphinx/commit/ef60dbfce09286b20b7385333d63a60321784e68 - */ -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - table.footnote td.label { - width: .1px; + width: 0px; padding: 0.3em 0 0.3em 0.5em; } @@ -433,7 +382,6 @@ blockquote { } ul, ol { - /* Matches the 30px from the narrow-screen "li > ul" selector below */ margin: 10px 0 10px 30px; padding: 0; } @@ -445,15 +393,16 @@ pre { line-height: 1.3em; } -div.viewcode-block:target { - background: #ffd; -} - dl pre, blockquote pre, li pre { margin-left: 0; padding-left: 30px; } +dl dl pre { + margin-left: -90px; + padding-left: 90px; +} + tt, code { background-color: #ecf0f3; color: #222; @@ -462,7 +411,7 @@ tt, code { tt.xref, code.xref, a tt { background-color: #FBFBFB; - border-bottom: 1px solid #fff; + border-bottom: 1px solid white; } a.reference { @@ -470,11 +419,6 @@ a.reference { border-bottom: 1px dotted #004B6B; } -/* Don't put an underline on images */ -a.image-reference, a.image-reference:hover { - border-bottom: none; -} - a.reference:hover { border-bottom: 1px solid #6D4100; } @@ -524,11 +468,6 @@ a:hover tt, a:hover code { margin-left: 0; } - li > ul { - /* Matches the 30px from the "ul, ol" selector above */ - margin-left: 30px; - } - .document { width: auto; } @@ -564,7 +503,7 @@ a:hover tt, a:hover code { div.documentwrapper { float: none; - background: #fff; + background: white; } div.sphinxsidebar { @@ -579,7 +518,7 @@ a:hover tt, a:hover code { div.sphinxsidebar h3, div.sphinxsidebar h4, div.sphinxsidebar p, div.sphinxsidebar h3 a { - color: #fff; + color: white; } div.sphinxsidebar a { @@ -651,51 +590,4 @@ table.docutils.citation, table.docutils.citation td, table.docutils.citation th -moz-box-shadow: none; -webkit-box-shadow: none; box-shadow: none; -} - - -/* relbar */ - -.related { - line-height: 30px; - width: 100%; - font-size: 0.9rem; -} - -.related.top { - border-bottom: 1px solid #EEE; - margin-bottom: 20px; -} - -.related.bottom { - border-top: 1px solid #EEE; -} - -.related ul { - padding: 0; - margin: 0; - list-style: none; -} - -.related li { - display: inline; -} - -nav#rellinks { - float: right; -} - -nav#rellinks li+li:before { - content: "|"; -} - -nav#breadcrumbs li+li:before { - content: "\00BB"; -} - -/* Hide certain items when printing */ -@media print { - div.related { - display: none; - } } \ No newline at end of file diff --git a/docs/_build/_static/basic.css b/docs/_build/_static/basic.css index 08896771..dc88b5a2 100644 --- a/docs/_build/_static/basic.css +++ b/docs/_build/_static/basic.css @@ -4,7 +4,7 @@ * * Sphinx stylesheet -- basic theme. * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :copyright: Copyright 2007-2017 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ @@ -15,12 +15,6 @@ div.clearer { clear: both; } -div.section::after { - display: block; - content: ''; - clear: left; -} - /* -- relbar ---------------------------------------------------------------- */ div.related { @@ -87,26 +81,10 @@ div.sphinxsidebar input { font-size: 1em; } -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; + width: 170px; } -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - img { border: 0; max-width: 100%; @@ -130,7 +108,7 @@ ul.search li a { font-weight: bold; } -ul.search li p.context { +ul.search li div.context { color: #888; margin: 2px 0 0 30px; text-align: left; @@ -221,11 +199,6 @@ table.modindextable td { /* -- general body styles --------------------------------------------------- */ -div.body { - min-width: 360px; - max-width: 800px; -} - div.body p, div.body dd, div.body li, div.body blockquote { -moz-hyphens: auto; -ms-hyphens: auto; @@ -267,25 +240,19 @@ p.rubric { font-weight: bold; } -img.align-left, figure.align-left, .figure.align-left, object.align-left { +img.align-left, .figure.align-left, object.align-left { clear: left; float: left; margin-right: 1em; } -img.align-right, figure.align-right, .figure.align-right, object.align-right { +img.align-right, .figure.align-right, object.align-right { clear: right; float: right; margin-left: 1em; } -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { +img.align-center, .figure.align-center, object.align-center { display: block; margin-left: auto; margin-right: auto; @@ -299,45 +266,30 @@ img.align-default, figure.align-default, .figure.align-default { text-align: center; } -.align-default { - text-align: center; -} - .align-right { text-align: right; } /* -- sidebars -------------------------------------------------------------- */ -div.sidebar, -aside.sidebar { +div.sidebar { margin: 0 0 0.5em 1em; border: 1px solid #ddb; - padding: 7px; + padding: 7px 7px 0 7px; background-color: #ffe; width: 40%; float: right; - clear: right; - overflow-x: auto; } p.sidebar-title { font-weight: bold; } -nav.contents, -aside.topic, - -div.admonition, div.topic, blockquote { - clear: left; -} /* -- topics ---------------------------------------------------------------- */ -nav.contents, -aside.topic, div.topic { border: 1px solid #ccc; - padding: 7px; + padding: 7px 7px 0 7px; margin: 10px 0 10px 0; } @@ -359,6 +311,10 @@ div.admonition dt { font-weight: bold; } +div.admonition dl { + margin-bottom: 0; +} + p.admonition-title { margin: 0px 10px 5px 0px; font-weight: bold; @@ -369,50 +325,13 @@ div.body p.centered { margin-top: 25px; } -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -nav.contents > :last-child, -aside.topic > :last-child, - -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -nav.contents::after, -aside.topic::after, - -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - /* -- tables ---------------------------------------------------------------- */ table.docutils { - margin-top: 10px; - margin-bottom: 10px; border: 0; border-collapse: collapse; } -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - table caption span.caption-number { font-style: italic; } @@ -428,6 +347,10 @@ table.docutils td, table.docutils th { border-bottom: 1px solid #aaa; } +table.footnote td, table.footnote th { + border: 0 !important; +} + th { text-align: left; padding-right: 5px; @@ -442,34 +365,22 @@ table.citation td { border-bottom: none; } -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - /* -- figures --------------------------------------------------------------- */ -div.figure, figure { +div.figure { margin: 0.5em; padding: 0.5em; } -div.figure p.caption, figcaption { +div.figure p.caption { padding: 0.3em; } -div.figure p.caption span.caption-number, -figcaption span.caption-number { +div.figure p.caption span.caption-number { font-style: italic; } -div.figure p.caption span.caption-text, -figcaption span.caption-text { +div.figure p.caption span.caption-text { } /* -- field list styles ----------------------------------------------------- */ @@ -487,81 +398,6 @@ table.field-list td, table.field-list th { margin: 0; } -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - /* -- other body styles ----------------------------------------------------- */ ol.arabic { @@ -584,106 +420,11 @@ ol.upperroman { list-style: upper-roman; } -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -/* Docutils 0.17 and older (footnotes & citations) */ -dl.footnote > dt, -dl.citation > dt { - float: left; - margin-right: 0.5em; -} - -dl.footnote > dd, -dl.citation > dd { - margin-bottom: 0em; -} - -dl.footnote > dd:after, -dl.citation > dd:after { - content: ""; - clear: both; -} - -/* Docutils 0.18+ (footnotes & citations) */ -aside.footnote > span, -div.citation > span { - float: left; -} -aside.footnote > span:last-of-type, -div.citation > span:last-of-type { - padding-right: 0.5em; -} -aside.footnote > p { - margin-left: 2em; -} -div.citation > p { - margin-left: 4em; -} -aside.footnote > p:last-of-type, -div.citation > p:last-of-type { - margin-bottom: 0em; -} -aside.footnote > p:last-of-type:after, -div.citation > p:last-of-type:after { - content: ""; - clear: both; -} - -/* Footnotes & citations ends */ - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dt:after { - content: ":"; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - dl { margin-bottom: 15px; } -dd > :first-child { +dd p { margin-top: 0px; } @@ -697,24 +438,23 @@ dd { margin-left: 30px; } -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { +dt:target, .highlighted { background-color: #fbe54e; } -rect.highlighted { - fill: #fbe54e; -} - dl.glossary dt { font-weight: bold; font-size: 1.1em; } +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + .versionmodified { font-style: italic; } @@ -753,13 +493,6 @@ dl.glossary dt { font-style: oblique; } -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - abbr, acronym { border-bottom: dotted 1px; cursor: help; @@ -772,69 +505,29 @@ pre { overflow-y: hidden; /* fixes display issues on Chrome browsers */ } -pre, div[class*="highlight-"] { - clear: both; -} - span.pre { -moz-hyphens: none; -ms-hyphens: none; -webkit-hyphens: none; hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; } td.linenos pre { + padding: 5px 0px; border: 0; background-color: transparent; color: #aaa; } table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; + margin-left: 0.5em; } table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; + padding: 0 0.5em 0 0.5em; } div.code-block-caption { - margin-top: 1em; padding: 2px 5px; font-size: small; } @@ -843,14 +536,8 @@ div.code-block-caption code { background-color: transparent; } -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ +div.code-block-caption + div > div.highlight > pre { + margin-top: 0; } div.code-block-caption span.caption-number { @@ -862,7 +549,21 @@ div.code-block-caption span.caption-text { } div.literal-block-wrapper { - margin: 1em 0; + padding: 1em 1em 0; +} + +div.literal-block-wrapper div.highlight { + margin: 0; +} + +code.descname { + background-color: transparent; + font-weight: bold; + font-size: 1.2em; +} + +code.descclassname { + background-color: transparent; } code.xref, a code { @@ -903,7 +604,8 @@ span.eqno { } span.eqno a.headerlink { - position: absolute; + position: relative; + left: 0px; z-index: 1; } diff --git a/docs/_build/_static/comment-bright.png b/docs/_build/_static/comment-bright.png new file mode 100644 index 0000000000000000000000000000000000000000..15e27edb12ac25701ac0ac21b97b52bb4e45415e GIT binary patch literal 756 zcmVgfIX78 z$8Pzv({A~p%??+>KickCb#0FM1rYN=mBmQ&Nwp<#JXUhU;{|)}%&s>suq6lXw*~s{ zvHx}3C%<;wE5CH!BR{p5@ml9ws}y)=QN-kL2?#`S5d*6j zk`h<}j1>tD$b?4D^N9w}-k)bxXxFg>+#kme^xx#qg6FI-%iv2U{0h(Y)cs%5a|m%Pn_K3X_bDJ>EH#(Fb73Z zfUt2Q3B>N+ot3qb*DqbTZpFIn4a!#_R-}{?-~Hs=xSS6p&$sZ-k1zDdtqU`Y@`#qL z&zv-~)Q#JCU(dI)Hf;$CEnK=6CK50}q7~wdbI->?E07bJ0R;!GSQTs5Am`#;*WHjvHRvY?&$Lm-vq1a_BzocI^ULXV!lbMd%|^B#fY;XX)n<&R^L z=84u1e_3ziq;Hz-*k5~zwY3*oDKt0;bM@M@@89;@m*4RFgvvM_4;5LB!@OB@^WbVT zjl{t;a8_>od-~P4 m{5|DvB&z#xT;*OnJqG}gk~_7HcNkCr0000W zanA~u9RIXo;n7c96&U)YLgs-FGlx~*_c{Jgvesu1E5(8YEf&5wF=YFPcRe@1=MJmi zag(L*xc2r0(slpcN!vC5CUju;vHJkHc*&70_n2OZsK%O~A=!+YIw z7zLLl7~Z+~RgWOQ=MI6$#0pvpu$Q43 zP@36QAmu6!_9NPM?o<1_!+stoVRRZbW9#SPe!n;#A_6m8f}|xN1;H{`0RoXQ2LM47 zt(g;iZ6|pCb@h2xk&(}S3=EVBUO0e90m2Lp5CB<(SPIaB;n4))3JB87Or#XPOPcum z?<^(g+m9}VNn4Y&B`g8h{t_$+RB1%HKRY6fjtd-<7&EsU;vs0GM(Lmbhi%Gwcfs0FTF}T zL{_M6Go&E0Eg8FuB*(Yn+Z*RVTBE@10eIOb3El^MhO`GabDll(V0&FlJi2k^;q8af zkENdk2}x2)_KVp`5OAwXZM;dG0?M-S)xE1IKDi6BY@5%Or?#aZ9$gcX)dPZ&wA1a< z$rFXHPn|TBf`e?>Are8sKtKrKcjF$i^lp!zkL?C|y^vlHr1HXeVJd;1I~g&Ob-q)& z(fn7s-KI}G{wnKzg_U5G(V%bX6uk zIa+<@>rdmZYd!9Y=C0cuchrbIjuRB_Wq{-RXlic?flu1*_ux}x%(HDH&nT`k^xCeC ziHi1!ChH*sQ6|UqJpTTzX$aw8e(UfcS^f;6yBWd+(1-70zU(rtxtqR%j z-lsH|CKQJXqD{+F7V0OTv8@{~(wp(`oIP^ZykMWgR>&|RsklFMCnOo&Bd{le} zV5F6424Qzl;o2G%oVvmHgRDP9!=rK8fy^!yV8y*4p=??uIRrrr0?>O!(z*g5AvL2!4z0{sq%vhG*Po}`a<6%kTK5TNhtC8}rXNu&h^QH4A&Sk~Autm*s~45(H7+0bi^MraaRVzr05hQ3iK?j` zR#U@^i0WhkIHTg29u~|ypU?sXCQEQgXfObPW;+0YAF;|5XyaMAEM0sQ@4-xCZe=0e z7r$ofiAxn@O5#RodD8rh5D@nKQ;?lcf@tg4o+Wp44aMl~c47azN_(im0N)7OqdPBC zGw;353_o$DqGRDhuhU$Eaj!@m000000NkvXXu0mjfjZ7Z_ literal 0 HcmV?d00001 diff --git a/docs/_build/_static/contents.png b/docs/_build/_static/contents.png new file mode 100644 index 0000000000000000000000000000000000000000..6c59aa1f9c8c3b754b258b8ab4f6b95971c99109 GIT binary patch literal 107 zcmeAS@N?(olHy`uVBq!ia0vp^j6kfx!2~2XTwzxLQbwLGjv*C{Q@c%>8XN?UO#1VG zcLb|!+10i0Jzf{Gv>fyFaQYL)bKk!I{mJd!3^2Uu$-u=wds-dX_E&EV { - if (document.readyState !== "loading") { - callback(); - } else { - document.addEventListener("DOMContentLoaded", callback); - } +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + +/** + * make the code below compatible with browsers without + * an installed firebug like debugger +if (!window.console || !console.firebug) { + var names = ["log", "debug", "info", "warn", "error", "assert", "dir", + "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", + "profile", "profileEnd"]; + window.console = {}; + for (var i = 0; i < names.length; ++i) + window.console[names[i]] = function() {}; +} + */ + +/** + * small helper function to urldecode strings + */ +jQuery.urldecode = function(x) { + return decodeURIComponent(x).replace(/\+/g, ' '); }; /** - * highlight a given string on a node by wrapping it in - * span elements with the given class name. + * small helper function to urlencode strings */ -const _highlight = (node, addItems, text, className) => { - if (node.nodeType === Node.TEXT_NODE) { - const val = node.nodeValue; - const parent = node.parentNode; - const pos = val.toLowerCase().indexOf(text); - if ( - pos >= 0 && - !parent.classList.contains(className) && - !parent.classList.contains("nohighlight") - ) { - let span; +jQuery.urlencode = encodeURIComponent; - const closestNode = parent.closest("body, svg, foreignObject"); - const isInSVG = closestNode && closestNode.matches("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.classList.add(className); - } +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s == 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - parent.insertBefore( - span, - parent.insertBefore( +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node) { + if (node.nodeType == 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && !jQuery(node.parentNode).hasClass(className)) { + var span = document.createElement("span"); + span.className = className; + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( document.createTextNode(val.substr(pos + text.length)), - node.nextSibling - ) - ); - node.nodeValue = val.substr(0, pos); - - if (isInSVG) { - const rect = document.createElementNS( - "http://www.w3.org/2000/svg", - "rect" - ); - const bbox = parent.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute("class", className); - addItems.push({ parent: parent, target: rect }); + node.nextSibling)); + node.nodeValue = val.substr(0, pos); } } - } else if (node.matches && !node.matches("button, select, textarea")) { - node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this); + }); + } } + return this.each(function() { + highlight(this); + }); }; -const _highlightText = (thisNode, text, className) => { - let addItems = []; - _highlight(thisNode, addItems, text, className); - addItems.forEach((obj) => - obj.parent.insertAdjacentElement("beforebegin", obj.target) - ); -}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} /** * Small JavaScript module for the documentation. */ -const Documentation = { - init: () => { - Documentation.highlightSearchWords(); - Documentation.initDomainIndexTable(); - Documentation.initOnKeyListeners(); +var Documentation = { + + init : function() { + this.fixFirefoxAnchorBug(); + this.highlightSearchWords(); + this.initIndexTable(); + }, /** * i18n support */ - TRANSLATIONS: {}, - PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), - LOCALE: "unknown", + TRANSLATIONS : {}, + PLURAL_EXPR : function(n) { return n == 1 ? 0 : 1; }, + LOCALE : 'unknown', // gettext and ngettext don't access this so that the functions // can safely bound to a different name (_ = Documentation.gettext) - gettext: (string) => { - const translated = Documentation.TRANSLATIONS[string]; - switch (typeof translated) { - case "undefined": - return string; // no translation - case "string": - return translated; // translation exists - default: - return translated[0]; // (singular, plural) translation tuple exists - } + gettext : function(string) { + var translated = Documentation.TRANSLATIONS[string]; + if (typeof translated == 'undefined') + return string; + return (typeof translated == 'string') ? translated : translated[0]; }, - ngettext: (singular, plural, n) => { - const translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated !== "undefined") - return translated[Documentation.PLURAL_EXPR(n)]; - return n === 1 ? singular : plural; + ngettext : function(singular, plural, n) { + var translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated == 'undefined') + return (n == 1) ? singular : plural; + return translated[Documentation.PLURALEXPR(n)]; }, - addTranslations: (catalog) => { - Object.assign(Documentation.TRANSLATIONS, catalog.messages); - Documentation.PLURAL_EXPR = new Function( - "n", - `return (${catalog.plural_expr})` - ); - Documentation.LOCALE = catalog.locale; + addTranslations : function(catalog) { + for (var key in catalog.messages) + this.TRANSLATIONS[key] = catalog.messages[key]; + this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); + this.LOCALE = catalog.locale; }, /** - * highlight the search words provided in the url in the text + * add context elements like header anchor links */ - highlightSearchWords: () => { - const highlight = - new URLSearchParams(window.location.search).get("highlight") || ""; - const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); - if (terms.length === 0) return; // nothing to do - - // There should never be more than one element matching "div.body" - const divBody = document.querySelectorAll("div.body"); - const body = divBody.length ? divBody[0] : document.querySelector("body"); - window.setTimeout(() => { - terms.forEach((term) => _highlightText(body, term, "highlighted")); - }, 10); - - const searchBox = document.getElementById("searchbox"); - if (searchBox === null) return; - searchBox.appendChild( - document - .createRange() - .createContextualFragment( - '" - ) - ); + addContextElements : function() { + $('div[id] > :header:first').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this headline')). + appendTo(this); + }); + $('dt[id]').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this definition')). + appendTo(this); + }); }, /** - * helper function to hide the search marks again + * workaround a firefox stupidity + * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 */ - hideSearchWords: () => { - document - .querySelectorAll("#searchbox .highlight-link") - .forEach((el) => el.remove()); - document - .querySelectorAll("span.highlighted") - .forEach((el) => el.classList.remove("highlighted")); - const url = new URL(window.location); - url.searchParams.delete("highlight"); - window.history.replaceState({}, "", url); + fixFirefoxAnchorBug : function() { + if (document.location.hash) + window.setTimeout(function() { + document.location.href += ''; + }, 10); }, /** - * helper function to focus on search bar + * highlight the search words provided in the url in the text */ - focusSearchBar: () => { - document.querySelectorAll("input[name=q]")[0]?.focus(); + highlightSearchWords : function() { + var params = $.getQueryParameters(); + var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; + if (terms.length) { + var body = $('div.body'); + if (!body.length) { + body = $('body'); + } + window.setTimeout(function() { + $.each(terms, function() { + body.highlightText(this.toLowerCase(), 'highlighted'); + }); + }, 10); + $('') + .appendTo($('#searchbox')); + } }, /** - * Initialise the domain index toggle buttons + * init the domain index toggle buttons */ - initDomainIndexTable: () => { - const toggler = (el) => { - const idNumber = el.id.substr(7); - const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); - if (el.src.substr(-9) === "minus.png") { - el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; - toggledRows.forEach((el) => (el.style.display = "none")); - } else { - el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; - toggledRows.forEach((el) => (el.style.display = "")); - } - }; - - const togglerElements = document.querySelectorAll("img.toggler"); - togglerElements.forEach((el) => - el.addEventListener("click", (event) => toggler(event.currentTarget)) - ); - togglerElements.forEach((el) => (el.style.display = "")); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + initIndexTable : function() { + var togglers = $('img.toggler').click(function() { + var src = $(this).attr('src'); + var idnum = $(this).attr('id').substr(7); + $('tr.cg-' + idnum).toggle(); + if (src.substr(-9) == 'minus.png') + $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); + else + $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); + }).css('display', ''); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { + togglers.click(); + } }, - initOnKeyListeners: () => { - // only install a listener if it is really needed - if ( - !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS - ) - return; + /** + * helper function to hide the search marks again + */ + hideSearchWords : function() { + $('#searchbox .highlight-link').fadeOut(300); + $('span.highlighted').removeClass('highlighted'); + }, - const blacklistedElements = new Set([ - "TEXTAREA", - "INPUT", - "SELECT", - "BUTTON", - ]); - document.addEventListener("keydown", (event) => { - if (blacklistedElements.has(document.activeElement.tagName)) return; // bail for input elements - if (event.altKey || event.ctrlKey || event.metaKey) return; // bail with special keys + /** + * make the url absolute + */ + makeURL : function(relativeURL) { + return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; + }, - if (!event.shiftKey) { - switch (event.key) { - case "ArrowLeft": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + /** + * get the current relative url + */ + getCurrentURL : function() { + var path = document.location.pathname; + var parts = path.split(/\//); + $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { + if (this == '..') + parts.pop(); + }); + var url = parts.join('/'); + return path.substring(url.lastIndexOf('/') + 1, path.length - 1); + }, - const prevLink = document.querySelector('link[rel="prev"]'); - if (prevLink && prevLink.href) { - window.location.href = prevLink.href; - event.preventDefault(); + initOnKeyListeners: function() { + $(document).keyup(function(event) { + var activeElementType = document.activeElement.tagName; + // don't navigate when in search box or textarea + if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT') { + switch (event.keyCode) { + case 37: // left + var prevHref = $('link[rel="prev"]').prop('href'); + if (prevHref) { + window.location.href = prevHref; + return false; } - break; - case "ArrowRight": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const nextLink = document.querySelector('link[rel="next"]'); - if (nextLink && nextLink.href) { - window.location.href = nextLink.href; - event.preventDefault(); + case 39: // right + var nextHref = $('link[rel="next"]').prop('href'); + if (nextHref) { + window.location.href = nextHref; + return false; } - break; - case "Escape": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.hideSearchWords(); - event.preventDefault(); } } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case "/": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.focusSearchBar(); - event.preventDefault(); - } }); - }, + } }; // quick alias for translations -const _ = Documentation.gettext; +_ = Documentation.gettext; -_ready(Documentation.init); +$(document).ready(function() { + Documentation.init(); +}); \ No newline at end of file diff --git a/docs/_build/_static/documentation_options.js b/docs/_build/_static/documentation_options.js index b5bf05a2..8a5f4b08 100644 --- a/docs/_build/_static/documentation_options.js +++ b/docs/_build/_static/documentation_options.js @@ -1,14 +1,9 @@ var DOCUMENTATION_OPTIONS = { - URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '5.2', - LANGUAGE: 'en', + URL_ROOT: '', + VERSION: '4.0', + LANGUAGE: 'None', COLLAPSE_INDEX: false, - BUILDER: 'html', FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', HAS_SOURCE: true, - SOURCELINK_SUFFIX: '.txt', - NAVIGATION_WITH_KEYS: false, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: false, + SOURCELINK_SUFFIX: '.txt' }; \ No newline at end of file diff --git a/docs/_build/_static/down-pressed.png b/docs/_build/_static/down-pressed.png new file mode 100644 index 0000000000000000000000000000000000000000..5756c8cad8854722893dc70b9eb4bb0400343a39 GIT binary patch literal 222 zcmeAS@N?(olHy`uVBq!ia0vp^0wB!61|;P_|4#%`OFdm2Ln;`PZ^+1>KjR?B@S0W7 z%OS_REiHONoJ6{+Ks@6k3590|7k9F+ddB6!zw3#&!aw#S`x}3V3&=A(a#84O-&F7T z^k3tZB;&iR9siw0|F|E|DAL<8r-F4!1H-;1{e*~yAKZN5f0|Ei6yUmR#Is)EM(Po_ zi`qJR6|P<~+)N+kSDgL7AjdIC_!O7Q?eGb+L+qOjm{~LLinM4NHn7U%HcK%uoMYO5 VJ~8zD2B3o(JYD@<);T3K0RV0%P>BEl literal 0 HcmV?d00001 diff --git a/docs/_build/_static/down.png b/docs/_build/_static/down.png new file mode 100644 index 0000000000000000000000000000000000000000..1b3bdad2ceffae91cee61b32f3295f9bbe646e48 GIT binary patch literal 202 zcmeAS@N?(olHy`uVBq!ia0vp^0wB!60wlNoGJgf6CVIL!hEy=F?b*7pIY7kW{q%Rg zx!yQ<9v8bmJwa`TQk7YSw}WVQ()mRdQ;TC;* literal 0 HcmV?d00001 diff --git a/docs/_build/_static/jquery-3.1.0.js b/docs/_build/_static/jquery-3.1.0.js new file mode 100644 index 00000000..f2fc2747 --- /dev/null +++ b/docs/_build/_static/jquery-3.1.0.js @@ -0,0 +1,10074 @@ +/*eslint-disable no-unused-vars*/ +/*! + * jQuery JavaScript Library v3.1.0 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright jQuery Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2016-07-07T21:44Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var document = window.document; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var concat = arr.concat; + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + + + + function DOMEval( code, doc ) { + doc = doc || document; + + var script = doc.createElement( "script" ); + + script.text = code; + doc.head.appendChild( script ).parentNode.removeChild( script ); + } +/* global Symbol */ +// Defining this global in .eslintrc would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.1.0", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }, + + // Support: Android <=4.0 only + // Make sure we trim BOM and NBSP + rtrim = /^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g, + + // Matches dashed string for camelizing + rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g, + + // Used by jQuery.camelCase as callback to replace() + fcamelCase = function( all, letter ) { + return letter.toUpperCase(); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + return num != null ? + + // Return just the one element from the set + ( num < 0 ? this[ num + this.length ] : this[ num ] ) : + + // Return all the elements in a clean array + slice.call( this ); + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !jQuery.isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + src = target[ name ]; + copy = options[ name ]; + + // Prevent never-ending loop + if ( target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = jQuery.isArray( copy ) ) ) ) { + + if ( copyIsArray ) { + copyIsArray = false; + clone = src && jQuery.isArray( src ) ? src : []; + + } else { + clone = src && jQuery.isPlainObject( src ) ? src : {}; + } + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isFunction: function( obj ) { + return jQuery.type( obj ) === "function"; + }, + + isArray: Array.isArray, + + isWindow: function( obj ) { + return obj != null && obj === obj.window; + }, + + isNumeric: function( obj ) { + + // As of jQuery 3.0, isNumeric is limited to + // strings and numbers (primitives or objects) + // that can be coerced to finite numbers (gh-2662) + var type = jQuery.type( obj ); + return ( type === "number" || type === "string" ) && + + // parseFloat NaNs numeric-cast false positives ("") + // ...but misinterprets leading-number strings, particularly hex literals ("0x...") + // subtraction forces infinities to NaN + !isNaN( obj - parseFloat( obj ) ); + }, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + + /* eslint-disable no-unused-vars */ + // See https://github.com/eslint/eslint/issues/6125 + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + type: function( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; + }, + + // Evaluates a script in a global context + globalEval: function( code ) { + DOMEval( code ); + }, + + // Convert dashed to camelCase; used by the css and data modules + // Support: IE <=9 - 11, Edge 12 - 13 + // Microsoft forgot to hump their vendor prefix (#9572) + camelCase: function( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); + }, + + nodeName: function( elem, name ) { + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // Support: Android <=4.0 only + trim: function( text ) { + return text == null ? + "" : + ( text + "" ).replace( rtrim, "" ); + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return concat.apply( [], ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // Bind a function to a context, optionally partially applying any + // arguments. + proxy: function( fn, context ) { + var tmp, args, proxy; + + if ( typeof context === "string" ) { + tmp = fn[ context ]; + context = fn; + fn = tmp; + } + + // Quick check to determine if target is callable, in the spec + // this throws a TypeError, but we will just return undefined. + if ( !jQuery.isFunction( fn ) ) { + return undefined; + } + + // Simulated bind + args = slice.call( arguments, 2 ); + proxy = function() { + return fn.apply( context || this, args.concat( slice.call( arguments ) ) ); + }; + + // Set the guid of unique handler to the same of original handler, so it can be removed + proxy.guid = fn.guid = fn.guid || jQuery.guid++; + + return proxy; + }, + + now: Date.now, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), +function( i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); +} ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = jQuery.type( obj ); + + if ( type === "function" || jQuery.isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.0 + * https://sizzlejs.com/ + * + * Copyright jQuery Foundation and other contributors + * Released under the MIT license + * http://jquery.org/license + * + * Date: 2016-01-04 + */ +(function( window ) { + +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ({}).hasOwnProperty, + arr = [], + pop = arr.pop, + push_native = arr.push, + push = arr.push, + slice = arr.slice, + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[i] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier + identifier = "(?:\\\\.|[\\w-]|[^\0-\\xa0])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + // "Attribute values must be CSS identifiers [capture 5] or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + whitespace + + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + "*" ), + + rattributeQuotes = new RegExp( "=" + whitespace + "*([^\\]'\"]*?)" + whitespace + "*\\]", "g" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + whitespace + + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + whitespace + + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + + whitespace + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\([\\da-f]{1,6}" + whitespace + "?|(" + whitespace + ")|.)", "ig" ), + funescape = function( _, escaped, escapedWhitespace ) { + var high = "0x" + escaped - 0x10000; + // NaN means non-codepoint + // Support: Firefox<24 + // Workaround erroneous numeric interpretation of +"0x" + return high !== high || escapedWhitespace ? + escaped : + high < 0 ? + // BMP codepoint + String.fromCharCode( high + 0x10000 ) : + // Supplemental Plane codepoint (surrogate pair) + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\x80-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + disabledAncestor = addCombinator( + function( elem ) { + return elem.disabled === true; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + (arr = slice.call( preferredDoc.childNodes )), + preferredDoc.childNodes + ); + // Support: Android<4.0 + // Detect silently failing push.apply + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + push_native.apply( target, slice.call(els) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + // Can't trust NodeList.length + while ( (target[j++] = els[i++]) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + + if ( ( context ? context.ownerDocument || context : preferredDoc ) !== document ) { + setDocument( context ); + } + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && (match = rquickExpr.exec( selector )) ) { + + // ID selector + if ( (m = match[1]) ) { + + // Document context + if ( nodeType === 9 ) { + if ( (elem = context.getElementById( m )) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && (elem = newContext.getElementById( m )) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[2] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( (m = match[3]) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !compilerCache[ selector + " " ] && + (!rbuggyQSA || !rbuggyQSA.test( selector )) ) { + + if ( nodeType !== 1 ) { + newContext = context; + newSelector = selector; + + // qSA looks outside Element context, which is not what we want + // Thanks to Andrew Dupont for this workaround technique + // Support: IE <=8 + // Exclude object elements + } else if ( context.nodeName.toLowerCase() !== "object" ) { + + // Capture the context ID, setting it first if necessary + if ( (nid = context.getAttribute( "id" )) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", (nid = expando) ); + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[i] = "#" + nid + " " + toSelector( groups[i] ); + } + newSelector = groups.join( "," ); + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + } + + if ( newSelector ) { + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return (cache[ key + " " ] = value); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement("fieldset"); + + try { + return !!fn( el ); + } catch (e) { + return false; + } finally { + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split("|"), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[i] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( (cur = cur.nextSibling) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return (name === "input" || name === "button") && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + // Known :disabled false positives: + // IE: *[disabled]:not(button, input, select, textarea, optgroup, option, menuitem, fieldset) + // not IE: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Check form elements and option elements for explicit disabling + return "label" in elem && elem.disabled === disabled || + "form" in elem && elem.disabled === disabled || + + // Check non-disabled form elements for fieldset[disabled] ancestors + "form" in elem && elem.disabled === false && ( + // Support: IE6-11+ + // Ancestry is covered for us + elem.isDisabled === disabled || + + // Otherwise, assume any non-
diff --git a/docs/_build/html/.buildinfo b/docs/_build/html/.buildinfo deleted file mode 100644 index 8f04c1fb..00000000 --- a/docs/_build/html/.buildinfo +++ /dev/null @@ -1,4 +0,0 @@ -# Sphinx build info version 1 -# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 921d6c7e445f291d7dc8f19863452108 -tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/_build/html/.nojekyll b/docs/_build/html/.nojekyll deleted file mode 100644 index e69de29b..00000000 diff --git a/docs/_build/html/_images/math/04effbe50a9c1421627153afe77c1c013193dd90.png b/docs/_build/html/_images/math/04effbe50a9c1421627153afe77c1c013193dd90.png deleted file mode 100644 index b4849f04db19e0fbec413fbba59a89b1c546aa92..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1187 zcmeAS@N?(olHy`uVBq!ia0vp^KY&<|g&9bGpK%f-VG!UG;`;ype;|{1pnrEkHBdEw zNswPKgT(sZ=S$`q-SzmqKcV|&hE&jUpcH3;M`SSr1K$x4W}K?cC(XdX{Ljr=+uSIN7)6Jg~>MA?ckZSt9_^6289O!(^Qut?9}_CSk&cJjp`KqCyV8x&HB1zs-J=kW~fy|1FF8k)?IW;o14<>KVT+ zXKNbsc58n9yCPHZs9{@2`o(Hrt(=hbqj!r>Z;TW&tiW&latS7oPRj@ObbQexLw}o@hx8yeW^9!cN zXj^@Xkld=d)|Gd{>$C%#rJt})vFx+SS2VBr&=5W`TRQLs-|{J1zttHp{d_mKLeI+5 zx1{R8!k4qz_e^K_E}%MRqvqbS6|R$0impA#zV-9VDpP1aMu%s-@2I!Ju)xxy{S3d-62 zOkNZ(>Jai$5zeHP@FaT_uF}WyI##UITLO> zYkdO$hfQmm)N)z=GnFf>njSPER97n`ub@k8=|SeYNl&HXRE5i?ESMR@wdquSK&fVA z*x{$k_tcm^&Nu6y?f8&Z+~jgn>Xt@ zi;SeaegD0(PVS<}j^A$l&(aPDvfD_-Gu^E+E_GDl+g#hszDbj#H?#Tah^?EUtPc1HHCaUQ0rmXO;$@zL>`u+v8 zWR7|%1#({0?e>&B6%)Dt!S1At#7J2gg~Qh~d2@EQEb-6LRQ@Wm)lbXe&#%=fIpIf^ zM|9^ff9)=NqgGogdwC&O?+-i8$+^>4{hoPrO3xI(_u@(!Hzw|#`lZ((bLWZuaduu2 x+r;loV!M6yop#L4P?7X&ud=6k|5$49pRd-3C;a8TxJ*zvvd$@?2>>RQ0Pz3- diff --git a/docs/_build/html/_images/math/12404a5b5e25ce89d718023e0444f48e6c472c3b.png b/docs/_build/html/_images/math/12404a5b5e25ce89d718023e0444f48e6c472c3b.png deleted file mode 100644 index 2ebefc0e78889be43c74746960f1757b0b41b8d4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 377 zcmeAS@N?(olHy`uVBq!ia0vp^c0er1!VDzKMVY1mDT4r?5ZC|z{{xxC1O2-Ts)4Hc zOM?7@89dg%ylYe<(S1JQ_vg9$r*yR>0i`$#JR*x382FBWFymBhK53xf6;Bt(5RLQ6 z2?uy@+?D*mw9mq%(TH8-9qTu?ke?>ZI?D{S>H}MiA_Je4e$%x5$++a^KBI)G>5R9Q zu`TJY6G@o*eE)$18zwY5s=UokXE>~?sv2ujS;@%O_LQebe&@d8+@s6>+cAqfGca#v zyk6cmH{d6;LQ$tT(+u;Ojhrc`Sr+W!b*a19$H2z6j+5v7fjwuvwmAqz+8?>;V7MW1 zzl4b6J@-xWYUi02S=t#iH2Vv^sq^_e$KbeFt+qp%*_paL))fp&e-s#A{rkZx@vxs~ d#vk=Y4Th8UM&BZJrO$yv&(qblCa+B_xaCrMfyHB1En|%JR*x382FBWFymBhK4}I9#u85##}JM4 z$q5Whip*>_2TX05x;2ESJQGQKAaY=BC6|Eyk!%~88wVqEf+ge{GQK60{mnHv$jrkt z?Ki*imG_1o>rxC@I!$Wr@(Sg(PG4tGxu>6Ckd$B`ke=Yr@Tp>*mBF603d`bWHf(HR z6Qq7~@(4GCh%h@dOnCJ7 z245I5|Fh?pABfq;=yNZQp@{9m-8&9e^`UqFG6%fmP6(3IID4E+;b}i!*1?yO*iR1jVkWtDnm{r-UW|5?Z$J diff --git a/docs/_build/html/_images/math/1a2da53015c9d2f2c52257723f812bf512b6818e.png b/docs/_build/html/_images/math/1a2da53015c9d2f2c52257723f812bf512b6818e.png deleted file mode 100644 index 1738b5c5094257c2f28b3c04f10b3e8452d4fabb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 246 zcmeAS@N?(olHy`uVBq!ia0vp^d?3ui3?$#C89V|~1_3@HuK)l42QrBV`ga#p16A{v z1o;Is?EhWj(LFceuF-jk&+A_*gx7Ebr8o;bB8!1m9RXp+soH$fK*2yy7sn8e>&XcT zA!&sP3{4xlOazV^G%7YUE@V70gXfvi25W~5Z#J{G2zIt-Yd-j0J1Z_>Ry<$xL7GX! tiI2Vw7kmV|4l;W=`=oeOa4x*fBf;=JnU_2Ck+}=V>7K5BF6*2UngC@6L5TnW diff --git a/docs/_build/html/_images/math/1b5e577d6216dca3af7d87aa122a0b9b360d6cb3.png b/docs/_build/html/_images/math/1b5e577d6216dca3af7d87aa122a0b9b360d6cb3.png deleted file mode 100644 index 9e24ec8dc8d603cac114eca39d9abf512f597fa8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 241 zcmeAS@N?(olHy`uVBq!ia0vp^oIuRO!VDyxin=BMDT4r?5ZC|z{{xxC1O2-Ts)4Hc zOM?7@89Yk%OZ>h&H(~wx&qm!Z?HJai0;M<$JR*x382FBWFymBhK53w!kEe@c2*>s0 zgpjlZqlAJa(FE;;j0x!pq6rBzjw+l#a9~68!k)&)r`*m~6aF?nSDvt^@-y>bOU@sT>t<74`dPv4p?no0949X z666=mFn9m&_1&M(m%KERxa%RTbjTbi!&%@FSqxNg1cVu?A+G=b{|7RO1P81(F90g# zD+%%oW+>@4I=_DIO9_w9`+wj4EHBpvl;JG!h%5#wI0C|qQ?>b|fr7D~E{-7_*OL<% z7!}!K8cs5v3W#7#H4t}@T*IX>DKK!xYR)4CNd-^C*e>O;@(3kV+Oe*1+RdhsEXT~u zKI35OfdxEbP0 Hl+XkK328y| diff --git a/docs/_build/html/_images/math/25bc6fbe0a632d2f173d16ac6bc4f11d108e7fe6.png b/docs/_build/html/_images/math/25bc6fbe0a632d2f173d16ac6bc4f11d108e7fe6.png deleted file mode 100644 index 206a28d6fb2ddaac1d2654ffe3ed2806523beaed..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 252 zcmeAS@N?(olHy`uVBq!ia0vp^{2-;V+hCf|mLk&6wn-D9qNz>fk2f%*tHM5a7(2Q`CA3GbH zJ^M5EHBJtyWjsBM(hgEPCH#Cm7z}slYsOnMEMY9y;#<$P<5MBf8U{~SKbLh*2~7a) CN;wSx diff --git a/docs/_build/html/_images/math/26b09a13f97c2e89eb7687980b95a54839775fc8.png b/docs/_build/html/_images/math/26b09a13f97c2e89eb7687980b95a54839775fc8.png deleted file mode 100644 index 9e632a182527e418b29c5456045675a510f5841c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 541 zcmeAS@N?(olHy`uVBq!ia0vp^$v`a3!VDzK%-5v@DT4r?5ZC|z{{xxC1O2-Ts)4Hc zOM?7@89eSvB>Y}~{$=;vlF$2%7JWDlvWK(4BeIx*f$s^j+qI>k`G#kV>yD$Y zuDWmKA3S=XaQ52KgIYVbR$PB_=}FU~e2X7-??3l_ujQOl$^B63XG@Gx)72F|YmP>x zu-p!ud8>1~2gj%VSoI+$Eq3nEv2p}PjgS0=yNl! z?PHPFj>CadU+K=8$Gj`On(MyG3tzAD@^xhhufqGA16&gLh`-I{kgsEom?3zOGYyjn*rcil;&M zpU!tR)+{*l^@H$*Z8a*9Vq#J|7M>6-{imPHG|N@*CIkPUe@uE@ef>+ew>-Tnd;Zv^ zPSbno5n`V>%7X4+`cY@I`u}P(gM+tSxeIT~s_Cj;N&0YjbA|4^_^$@iG1}}W%5+N? xUn^=3|B}8<>%5eR-cE5-}nE!+=>hpRz-AYgld%F6$taD0e0sy8%+h70y diff --git a/docs/_build/html/_images/math/2882aa5d9b56c4f42679de5f902a74d8ae88a624.png b/docs/_build/html/_images/math/2882aa5d9b56c4f42679de5f902a74d8ae88a624.png deleted file mode 100644 index afc3228789068ccbde0f7d6087cfe25f7c0c651e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 314 zcmeAS@N?(olHy`uVBq!ia0vp^+8{OyGmt#g)^!6&83g!*xc>kDAIKyg=-*vX4OGov z666=mVD$3${t}P73F|*gobR67Ul8H~l;SM#h%9Dc;5!1sj8nDwq=AA{JzX3_BrYc> z9AKz5mo{LPydfeXBDm+S0b4c0Vd0h!V&)pn_Kgc?HZ}(S|6k86Q2v~=qhKF{^FKB= zu||g#M)#r&uIe*P@=Pdbn0dIch}p$7psjHsL!RAha|Olu2L$-1Je$D~UdytiYk#An zgvUmf183GXTYO+TEUj=x+hHrf$SMDB9NIUAPR2e6w%EF*nC_5p$Nn;+! N`<||TF6*2UngBpfT$lg= diff --git a/docs/_build/html/_images/math/2bf7d59fe2ecd30074d48feb7da561ea838ea61f.png b/docs/_build/html/_images/math/2bf7d59fe2ecd30074d48feb7da561ea838ea61f.png deleted file mode 100644 index 04f56c4bce7f84ef1d5f8aa4884a1f7ff1d20a54..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 267 zcmeAS@N?(olHy`uVBq!ia0vp^vOvtw!VDx|Exx%1Na+Ungt-3y{~yRC5*)DFya1?_ zuO!GXn89QH%ezJ;65Zz$et(|(@ai-HpbTe$M`STj!4VKW$<+Mb6Mw<&;$U6_)e7o diff --git a/docs/_build/html/_images/math/2bf86ca220f43e569c6c7aefaf32742919222e6e.png b/docs/_build/html/_images/math/2bf86ca220f43e569c6c7aefaf32742919222e6e.png deleted file mode 100644 index 2d601e90acec1a6ab0e29de603ac6e4a486023d0..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 295 zcmeAS@N?(olHy`uVBq!ia0vp^3P8-w!3-od&(|9RDdPa25ZC|z{{xvMfsYM7JU|Ts zB|(0{3`Q@1?=SJVo3Q?Kx5V7@ivu5A`398ZEbxddW?X?_wfUrhf_0uQjv*44 zTPGY8VpimEWhg)7>4Cc%-)&?_{>?7( uqi3$u%VYEE3;NBb7zLMHRhyr6A}4;EHFHgm))zjIUp-y@T-G@yGywo>m0=M8 diff --git a/docs/_build/html/_images/math/2f5aa019312e1bbc969deab8dca8b00f76025404.png b/docs/_build/html/_images/math/2f5aa019312e1bbc969deab8dca8b00f76025404.png deleted file mode 100644 index b2f688172c656610a9d7c6e7263fa110bd63843f..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 228 zcmeAS@N?(olHy`uVBq!ia0vp^+(691!VDzuib?DSQU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*GnCBj-fy&C;`htX9(NPY`s0 zgoKc?R0byVHZC@1wr89?F_)wzEO;a=rbjd6!j8!S2M)}t d*!U%ok>U0Vu21XKcmqKW^>p=fS?83{1OSp6H=zIk diff --git a/docs/_build/html/_images/math/42858b59a7270363c15ca14b0d5fc56d33af1f8a.png b/docs/_build/html/_images/math/42858b59a7270363c15ca14b0d5fc56d33af1f8a.png deleted file mode 100644 index a66a68869962d0b2632d8f67c1ebbaed64bde2c2..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1784 zcmV4oV6QUso%_%8zMEnI000SaNLh0L01m_e01m_fl`9S#000J4NklcV>1rn@y48LtC?`^->BMAKKKaFcs|uk)*Vw_#%Uf4*X*ZW-fjSg?0}^eYK*DWZ(gpsTbb-SO*Qbpp zacy|H@x0|1J8}A~Z>}bN+}#&=U*LU#_h6|x$rhOD+g6?$fra`X)av#6&1n?4$A&#q zBT%oG*y~4^uS}o5oP!J3jH&6OUDtUy)9FulKvj($o&2HN64e&@5cJ4pb*{_kz}qah zNp9785NtVVXB7RE+c@Btj8#rN$TCpqK9kISO$aFEf_SH z@!AMf;O78?w&6xHBD9DyNAP!hvyO3iEc`|Vc874>BJ>iwY}?~X(uULIdl6ScOY$sY zQ}zVpk?b zFUFTNYhP600hZ^_sDw@iJv(?e&W%&8X}UM~9dEni1QJxyA!Du9L?GF}{z*2N%0pp0lyV=zIPgS@-Gfdd}tomylsykYj^ap<6pg6Z_#=?BOHL1g7eh zu)ya!G;f*Tz;P?IWS4Cu#uwAf(adJmwZH^o3*}j9NPn{EJo?!t-~t~dw<5XC`VZ}I zGEwB6t#Fc}_GVTf`)D(P@MS25scGJ@Vdu*Y9JgW^5@DBZG{zSv>s)EYYSpz!1zOm) zN9p^n#+-M!%mt=S(7KT3;PMdmw67^@>dyJJVF)&}0KyGp$h_+H8Rv+jt2dZG~Q8 zw>rJ{`M`Y1G)Uird(&qLq3E)BC0)O<$LX(#lnL|ih zrKl@Z)Ct?kKrZ!s9X3%^*3CN}Sf!={+iPKgY0uUD z1};S==(eg#uduW3M16k%o|o+V5?Ka^4Jhmvt^sWg7I$65HxHIiIn`o6^eX#Kl1P2$io9gs z(`0Dwz>vBkTm#ymeyvbFhyDvnizju{Z%C-L9TsSuANXS6A-4V*CzOTW3*n68e0a}k z#r{UN%6&&fUb648;3e;_=+(X~(DXyNRd%Lo z!4rCfUSc8Goy*CX^{_RK$^kJ;4sahU1AjJT3mY!hWYQdViXK+}`9SE|4baeFX<(&dP8 zD;VQJQ{_c%RhU3S&5bf`XvHq~M%{_^-4$2B4bTt>u}2D-mS07>B`4aDIv#AD7K(^i z+R=yjv~qKLHTkJ%USbTX+n9iMOUINPfMf&OR7sr4G&{Jvm%q2YyLX-9f6a@Yv_?Gr zPS<3z4z~OK;7CT;tz-!t3{Jov5H=%O0@p&q?RvuXnG?y@*LLvE`yd@8YOf_#D?68qz*!glIH@f-lWkAU!A;Xv ag#Q62yYI`R;1NFn0000 diff --git a/docs/_build/html/_images/math/5406eadc281dbd20de843b0034c8497320dae5cb.png b/docs/_build/html/_images/math/5406eadc281dbd20de843b0034c8497320dae5cb.png deleted file mode 100644 index 76f5792c475708af8e6e63b07a3f0aee09b452ea..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 260 zcmeAS@N?(olHy`uVBq!ia0vp^f zmjw9*GjxCceSW`$(cQTTFFi`upL;0M43y$5@Q5sCVBk9f!i-b3`J{n@@t!V@Asp9} z6BwGi{S{4^f3r+u7Z5woc8qO>0`q-l32jZrW1kugE%-$Y3=CfV|9@sfS0WR0b9R+F z^Y8!v`6U`|g*%5B$S3SzOcXUXIN})LplQ59hxs(?imAoV9V8fH9YxohDJ`4~w2Hyg L)z4*}Q$iB}kiJBA diff --git a/docs/_build/html/_images/math/5a939c5280da7202ca4531f175a7780ad5e1f80a.png b/docs/_build/html/_images/math/5a939c5280da7202ca4531f175a7780ad5e1f80a.png deleted file mode 100644 index 4ebda0d92b92f8e602000e38312134dc57116a67..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 228 zcmeAS@N?(olHy`uVBq!ia0vp^+(691!VDzuib?DSQU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*GnCBjmN@TWl<@oR=l$znw)t*z21;=jctjR6Fz_7#VaBQ2e9}Ncdrud~5RU7~ z2_a=>z6l8{PM9Rb95|qmaQ1-6fddB$rZt8#dYnyopr4SC@c)3q@q-5r{AqZoW6aDv enbCP22Q$N8R*oA#MGcRE9O~)n=d#Wzp$Pz8={^Sl diff --git a/docs/_build/html/_images/math/5aa339d4daf45a810dda332e3c80a0698e526e04.png b/docs/_build/html/_images/math/5aa339d4daf45a810dda332e3c80a0698e526e04.png deleted file mode 100644 index 31d96d61b4ae97050b997ab7dd121c78bdea0ff9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 196 zcmeAS@N?(olHy`uVBq!ia0vp^Y(UJz!VDxgS6-9_QYryHA+G=b{|7ShgX3y;sX!In zB|(0{3<;l&JWBRU{9fO!l=@p3D9l;l5n0T@z;^_M8K-LVNdpD-JzX3_IIbrrB!na+ zB#0$6FitaIYYXCIXJgD(NS6}WZeXxMi^HJ6FXF%fqpb`Ko?BTpenkIb1v$ji)z4*} HQ$iB}J8Uc! diff --git a/docs/_build/html/_images/math/5d71aa22c129c9a9fefccd42a37ecfff31311645.png b/docs/_build/html/_images/math/5d71aa22c129c9a9fefccd42a37ecfff31311645.png deleted file mode 100644 index 8b44ed885a7af8cdcc5dbb0ec32b87ed3560b640..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 496 zcmeAS@N?(olHy`uVBq!ia0vp^=0GgQ!VDy*u}VGzQU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*GnC9V>fSGr@O%CFyPrK?esL8q1WIuhctjR6Fz_7#VaBQ2e9{aIjNYCujv*T7 z*9IAS9}W=sCzUOfJE@JYsd+-w5z}TpE~$k(IN7Yc#mog`WmO(MkTMr+(esK`aek@x zLzt=0N%#XlM_`8Q!QD$L1q#1Bcvo9~zwrI(r;PQ{y#LcSsV0173!6Dd_1~+@t9#yU zu+Ek#es!hDTfvxpON@y*78H2uE{ak)jZhrCDZKqj)#F)GQV)n?G39I z5Be;bb#2ky;wc{5Pe0wUwtDfHG0M$v`58%*rFo4XwtnYpQaqX6qzgrttuDfwushzP>%Zs^DPJOS+ z<_)2ZHTT#&Eo8eVC5hGBF0?MMvt`}QkT*ruex6f&SeE)j-w! zB|(0{4BdBse?IS#ATigdWdHh?FHDUl0i`$#JR*x382FBWFymBhK4}I9#uQH%#}JM4 zr9svn%#H%JABEnF3+09ccqAq(Ycy>$6DvEYHm&K#sm2>iPKsrzsw5=7RJ`SCd%-D3 z#AU-I=MT(LH@vuxI;m=56XH+$x8H{QINTjkM}1OZ8p-fg#wz2Btz*yK#U zwKOX?d;Q6R>mFZzH>8Fz|FGw|-{ZnJHBfLv{Z+%sdp2k?+?;W3-UXkS^kVj&4_SeS z{oR{AL!8BCSN>LeWa@jB{}KCJF3wYvtL}?drpqut&tBA1#m)UmW$|IjB~nuY8Q!)0 zSM6NgP?4G*TuB%lRm|(k3AbsE6r0asPI{F?3JhF z++Pco-UU3mre-=-_`}mPE7|tAmQ471BKr3d)dl6RrpcH$Y0sAaw`8qnNr2n3_t)EB ziCzskRK6|CT=)O!i0eN@cO97NcILI^lq*YPXSz08b%xA*-H;PjBKX#Wc~^g9y?_26 bQIQ|amu4nJ@ErkR#;MwT(hLlY5}q!OAsXkC z6B0uHDINHAb0VYqgMUw#eBnQn^!wa_8x7Hl%;5~olNDzi{n6RT+3(b5#Mbs(SivWq zjdhI|i{celwsY$PCjLxhiU>W|X4oa1z-M?oPnUg4S`6>^JLPY*DrFW}$sKU%`^T2q zvLRAG*Fl4~aYxp4hLBmt2PBtlWOx;*u5j`aBirAE!#B=IMkrp|%JW&@z`(${XXfz& z=EP@a29^I9n583T1vWOmXJmf9k2@e!b%#^jhUqu|8yWa8drxO*tur!Ma?oa%z}feQ zxOnEAcD!V4=btd+yLRKk$&J3Ao|=t~sZ23X4GnJY&piE`)gjZupyATYHxbTf7|tct xFchkvXEe*6f&SeE)j-w! zB|(0{3=->qpD&qfbl2na{)FzA8B#&Zfl{0W9+AZi417mGm~pB$pELslBaf$xV~EE2 zJ_#X?fa8gJgSOj2)@cLYV}LnS@g0z z+X}6BtpbAQ7}9-0xf51R;+8nDZawQRrdZMYKqlCa+B_xaCrMfyHB1En|%JR*x382FBWFymBhK4}I9#u85##}JM4 z$q5Whip*>_2TX05x;2ESJQGQKAaY=BC6|Eyk!%~88wVqEf+ge{GQK60{mnHv$jrkt z?Ki*imG_1o>rxC@I!$Wr@(Sg(PG4tGxu>6Ckd$B`ke=Yr@Tp>*mBF603d`bWHf(HR z6Qq7~@(4GCh%h@dOnCJ7 z245I5|Fh?pABfq;=yNZQp@{9m-8&9e^`UqFG6%fmP6(3IID4E+;b}i!*1?yO*iR1jVkWtDnm{r-UW|5?Z$J diff --git a/docs/_build/html/_images/math/789735c1db036ea36cd0aa25a3af4b2528ed3abe.png b/docs/_build/html/_images/math/789735c1db036ea36cd0aa25a3af4b2528ed3abe.png deleted file mode 100644 index 81850f5e6dc372971210cb1cb6019990679ebb4d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 501 zcmeAS@N?(olHy`uVBq!ia0vp^o6f&SeE)j-w! zB|(0{3?6g4_e&(4|NZ%8$z7xMTtaS_fKr?V9+AZi417mGm~pB$pELslV}PfNV~EE2 zmh(1jtInfb6T+q(^6 z+qn1qlfL2KymVU{%ageLGal+X* z{0>RS0blqznRlLR|m<{|{sm5A^RYs0OO$ zFA4GsW{_C_`+Uhbn3OzS978;g zznyC9@j5`}sQ;y9rnTF|SPBK3^|YESIzLQXE<49WLCfMR=et(*rjCF)ti~Nyw!8N_ z3hZZhJoD&5ifq^97Yp>b{MWjMh~x|1R{4H!+1AbMMYreOIsEp2-Cu@klrK z*SGb3-!MV4eL0iAz@#bSL5gKeyd5ewn-4L&+?vgD&QzgK>+Z#g!tYw0qBBoeDy%px zzV+;eb7|pii`V>A_p@T&{o!2OE{oPRQgi?Q$}OP+VPpwe{l8Um7RV zlvf?Lu1P(9*Z5QfQ<=eB=lQSBctykq)xdB*@rv->73YmwkF&;w)d??tTF}_ex@PXQqpWgb7Zz3*BtB9<6fPo` z!=L-%0n^S?%qC)= zmjw9*Gf1reeZFL_(Or+v`xClfW=I7s2TE}kctjR6Fz_7#VaBQ2e9{aI%%447977@w zznu~7ArdHY{Qu@%eT%IvIbAufZgZMqyQ3v#QqW7gE8V=VWtAu1IcJL`4D($M`l*2zg7sV-{qq9FCT?@N;#?9a>@94ydAG6k^E2nxD0}PwJZSOQGX39k z`};Bb?#mre+oiU_)y;8HBe$3v$7-)RJy4LgstTTbW8;_9CpA3p-&+J}&A-z3j@83t zat6ZeB!v-Wf+txsM$xkIf%Y1c+U*TQoP1)d*m zQfX=DOrG~co@1lgXE*ho!TTEzf7$Du)UtJ^zFv=eL8VrQ+%I0Q1(vy&D}UTvOa1LT0dh| zaqQzIY5a4x$wlleG`{s(CB!Q z6hEVC@{#n=mt}J&xrr4oG_1-w_on+$#F@CAJ&RWbRW&8m^RZN>TkM;8bGMssaG1*n zi`6PVZ?=bDn&390aO2A!t&T}%`;@2Z#e}Yz62x%v>I&0)RcDJ1E?Csnn2>hrN5fJf zW`V7RR*jne%`Z30PdIz|-hAJWi#7yyGImI9Dh>8p$Z_j(x|~XM{6>50r1YSpvmG8p zD?Bh|JR%;vcXdZ{yH}V|-^3i%mYHuj>^xKFuyt@gxD>ACzm!uZs53Nh{W_r^%X$;0 zW;A^0S>@XK=?Uj#_07RTs_W$bs6D84k$2P%WH@-W$2H(o$dYYu3%_VdL@nlcE~QYj ze_@}+gU@SIrkr7zINy7VpwB!XhK)XFmM`gjko@wm6L*8g{mIj_jg{q0H9s>L%Kwk_ z;omOec0%{FIrn0fMOtwyPFpXQ<%#)xRc-Cdj0EPN0)IBm+!hlbx`Qvo`&vt&kJg%u z@7v@ZpIIMf54QiH!+F@5%T4}w^T`<>XB5-l_d64^x_(I6L3Zj>HF;XzI5&OI-f}W??MJ=syv<6;o+!#Erf_Xr n{>${Poe}q`nXxk0Z2zzZMj3?_p8R+aRJeG$`njxgN@xNA!s!5} diff --git a/docs/_build/html/_images/math/7daf0d4815e763eb90f0d5f1dc406f668c1e21db.png b/docs/_build/html/_images/math/7daf0d4815e763eb90f0d5f1dc406f668c1e21db.png deleted file mode 100644 index 863ea67d38cc9a3f6117646a8e5c0e541e274843..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 243 zcmeAS@N?(olHy`uVBq!ia0vp^d>}RpGmy;wt<74`dP#^zSaH2CC*S z3GxeOFxvn7Zo>KQ5)X;F>p#CNnc6)cD8*Ue5m^kh?g$7oPSxg<1`7Ilx;Tb#Tu&DG zwdTNq1@BKCm~j5UfdIZEA9;D^@H))8*_dcLA?d--qXi5u#dXgk85T*t6K&FL`^+ft sOQ$8Nf@NvFgT}S^gs#_b=5so5F=Pn~?B5=-cn8Scp00i_>zopr0C#&wLI3~& diff --git a/docs/_build/html/_images/math/88da5b28f5e08d9d8ed693d334e710f4adadbcfd.png b/docs/_build/html/_images/math/88da5b28f5e08d9d8ed693d334e710f4adadbcfd.png deleted file mode 100644 index ca68873674eeb90041cedab9dd10404422f7cd3a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 801 zcmeAS@N?(olHy`uVBq!ia0vp^tw1cy!VDyRPG1fLQU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*Gt6DT|89wqME7Tp-!Bu+TTcn^2TE}kctjR6Fz_7#VaBQ2e9{aIOf{Y^jv*GO zdnfs32nUL^p7$}HoboB0HPGDDi#aV+bJvOmyc)X#trl^MdnxZ)m2vFFxz^2>!dhHd zTtj5U7g;wah>A;g!y;%BD$XjnW!jC1`d2$A&kRu!kUulq`1{@OdyT)_Ex2uQ z&2X2Vz~28lEx*IQ%Q0;FeC1=L_|ezW4VnvnR7frE*YULc(Y(98T#5ZlP5u67>V4iN zFRP3be0Bt^XFO&5sO*|yhV$k>B4*MY0O!6cfL%&>h17|d%Nwz zrMuqDT__)EIo0i!|Ek#rKK+izRoPcedX{h^UhnC{*1j5sE!JD|J}m!s%4^diwzy== z^-d`_45UINkLB?ExH@Cv%;z`%9#}i|3YTy0Y3S+n7X6B2DVLsqz0SXZ{bJ0470%69Opg_xipz+Q z__gK4>g5lOok9aOXFl2{rn#73bAL|a=7iptNvj?>eE%f0`0eioM)L%o%Da6h_e@*s z_gFUQjS#QH=Ab^wiJ!f|d;7^%6T|1me#;VLmRPx*Idn)T?7)eL0JiA` z%d2jN$!y&w`0(HTlC3<)PB=?!{cO{>mn(h0mF}?<51vKsEd98gc8!k37DT4r?5ZC|z{{xxC1O2-Ts)4Hc zOM?7@8RmAEeD*L(cqy^|?(g&aSDxA{0+iw`@Q5sCVBk9f!i-b3`J{n@rJgR1Asp9} z6BwA&SlLnztl&x2m}T&yNpjswA06QaliTcUZ9E(L*x1@!9cC4KhBG#+dsv%KsF=c# z@`1&n^nClwaHixFha|)kdlvKX==+&4p8a{?fQ@5AV`J?nR)us%X6Aa?3leF}Y;0<( i3ykb$%)Gp{Uz~JfX=d#Wzp$Pz*cTDa8 diff --git a/docs/_build/html/_images/math/914b2d4b6659b86d3153d5510839dfb254dfc8a3.png b/docs/_build/html/_images/math/914b2d4b6659b86d3153d5510839dfb254dfc8a3.png deleted file mode 100644 index 58e51d7d2f95d5dbbb58dc582a8935f47de9c758..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 192 zcmeAS@N?(olHy`uVBq!ia0vp^AT|dJGmtd8QrrrpR04cLT>t<74`kv8$JOjofhxF5 zg8YIRj9&iUU*d5$Vg2VaSH>kkVa@`N$YKTtz9S&aI8~cZ8Yrmk>Eal|aXmTV%Dug} z8yZ~|CNwrGHXdwbWZ`mPInE+*QiwrmCac2|5dmg~DX}bxPb^n&06D_b)z4*}Q$iB} DW8^L2 diff --git a/docs/_build/html/_images/math/93468ec117fc04c2589757eb61fc11c15d27bc1b.png b/docs/_build/html/_images/math/93468ec117fc04c2589757eb61fc11c15d27bc1b.png deleted file mode 100644 index cc80933e0736fcc765232350b6a6b805e00a6054..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 2020 zcmV|9E8($Cv?b=AF3EE@gt5fmJgE~$3H4|mHmu+LP4`-jaFa`$Z)yh&GQW;V3 zv$x6{JX;wk)%o`}U#D*y$#Hl|u7SP@+T2>&omp(gPEpnwgU=u#!>QD^lp-ueEoo>j zAeAk59aKOV=6H9(>bm;@P<@%xw-nkwmvQ6zDf9-Nf8+U&U0kvH3e@;_7uVbA?L8b` z8c|&rX>(XE>26KG6)ukY%y@8DivmFv9^CxyQy?D4YiDf}s+R$E9!j|>4i~nlP_rF^ zC^5k83fyG2u0;O^NsW!F5I*XHj9YeFaM5(h4=;_Vu_{)bKFC(z4OKHzk2Q^;Q<3?J$Vv-&VhRw|0ggNR?U(Ge9bz)tI%w-z3cmyO)Y zoxz<~*;qp55V@{5pYXtCVtJ;r!|D75zGPv9Ea=Ib*<_88X(cfmaTeI)ERuO>vW?Ug zKfE-eBD!O;{M~t#dmJhqA7Q+ke0FiwQaQMYacrvK{9q@Hcq8$?jQ^t8i!akSQ;?Xz zi$oVcmj6J@H-mQ@DN)b5@iKNyEYPUVaYqLAa;G#ZwxZlC*}{>^mVOPw_4hvEHKqIj z8S(^YW7HgFBkz$4MzS)zbdnOjL|oGNvST^26~^DWDjYZtPaDy%UUuOn^dGD@qfjrH zdMxvBXEZuDS&-@^TXhshGo}YTGK}Q6Nr*{o0SZkG^%nZ`BIY3qy>q5B-Kvg zs(DK0@e&Pko<#||11mk;8I5W~fOOiz(@L!j&G0-dnT1NU<{GZ#MWXU-$RdU{bhj4l zB?&Cbsa%Ubsw^Gfl%8?p{1uihzl=aGaekOGLd!kdc>bb z17m2DDA~f(O0$eU=ej3n!@SR;e2tVIHaG&;f0BLTW2VaaSr8F8z++B`eEYpt_yK*h zMx_g7TzDB-@coDtwcL5Um?=S{Md2z^X@#eia28&J`({PrdG$D%+FrEOh`x(^n zF*KrU#tVkZ(bso$w;Q;iVb1MJ~^s^c>7FDzG{Yj0D#8 zvZss#9{3~XkPG=)Z?^Y%)I+6E>P+mM;)9oFl-OIIJ64&{k_vr6Tc<%Z8gH@(&51}` zJ=tG!L$(a}(w)V7U=`k4)QMv$piobam>(`!?C(PU zSzGWeW*wdm4VHskhWiY?W#A67wLmuv>d6uFInBoYJn~nVNh%y8TZ@E|iV4(Php&|V zdE~D!OUvc)*{t@N=5BV$01P9a$-Y3x(^8XL6&!b1Y25~t600003<7*YT>t<74`dP#^zSaH2CC*S z3GxeO*#G(b`j;iYC5+~Fd)!SZ*85`zl;SM#h%9Dc;5!1sj8nDwq=AB=o-U3d9M_W* z68@w-`ZTq%QM0jeX;WjO81vzO%sf2O5*7Ol8xDM7RhZ-~c;+E5L$DLC!lc!c8hJhT z)*m=<^uU3ivl}0ZFgx#NX6{#GK3psKu!5D1f%&EYm;aQG-5}?Cy85}Sb4q9e0LxZH A-v9sr diff --git a/docs/_build/html/_images/math/9630132210b904754c9ab272b61cb527d12263ca.png b/docs/_build/html/_images/math/9630132210b904754c9ab272b61cb527d12263ca.png deleted file mode 100644 index fe54e2443da8b474e7b56eb8a5b043315ef6f4e7..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 225 zcmeAS@N?(olHy`uVBq!ia0vp^oFFy}Gmz}mi!=pNS^+*GuK)l42QrBP&w@R>fa-Wl zg8YIRJnl*){9b?lW%t~Y&x}&PZv!Pb3p^r=85sDEfH31!Z9ZwBpo^!AV+hCfbP0l+XkK+g&!t diff --git a/docs/_build/html/_images/math/9c353382eebb42a8a9dec3a426d346d4842bd39d.png b/docs/_build/html/_images/math/9c353382eebb42a8a9dec3a426d346d4842bd39d.png deleted file mode 100644 index 48701060ad787f0dd980daee25c7f00b5e134ebb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 441 zcmeAS@N?(olHy`uVBq!ia0vp^F+eQ9!VDxcqgiW!ltF+`i0l9V|A9>6f&SeE)j-w! zB|(0{3?;wMum8N?Xs$$e!pplJTOP1%14?lgctjR6Fz_7#VaBQ2e9{aIj3S;cjv*T7 zlM_P9I7>ZC6C9XyK5FKDm)OAkjH%6l?HHTL#?w4JlUWQxigv`NB+NK^;OE4~TIQ}J z`fO}&tUOQO@q89H@Gvs?m-0Z*LG1bOa|aIm<9Du8QHdX$#TNhkF49rZ zwBh?b)~0BMYgH4ba!asCddV;7*sQ}avHjxPEv!lMY;CM_F0OdAI$>cCms3OHO1@7w znM4xv7}*vunD1JCqu$uyM8luSZCd|wz8_;@*pCkq3`MH=d#Wzp$Pykotl&Y diff --git a/docs/_build/html/_images/math/a7b17d1c3442224393b5a845ae344dbe542593d7.png b/docs/_build/html/_images/math/a7b17d1c3442224393b5a845ae344dbe542593d7.png deleted file mode 100644 index 842408f630203a46afdecfae44df1075fd6152e2..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 292 zcmeAS@N?(olHy`uVBq!ia0vp^3P3E(!VDytcL^N?A+G=b{|7RO1P81(F90g# zD+%%oX4rqeJ7Mm6kC#SwOMXjOw|h1NWjG5wB8!0vfX4G3VVtVXCk+&A_H=O!k+_^J zV3gp%bS8_3i$|k@Q{#Zp9HxgGwm7qBNm!^g{Fw9bydu+T$p}^juLVr!B_sG0xHs%i zNvQAEIlv@R(YdUN)wSWXC9`>#SerV}9gQ|4owS5d2f+_aRz1PuDj!&s4#>_ubf9iV uW25;?SE~pHo*ffy+G7)#^BA`X1hX(yuT>PC)v*ucMg~t;KbLh*2~7Z0JWlff diff --git a/docs/_build/html/_images/math/ab9afdaf786ce53318d75d81f050af8560822fcd.png b/docs/_build/html/_images/math/ab9afdaf786ce53318d75d81f050af8560822fcd.png deleted file mode 100644 index 1b9018cf794fd7b667ba90ee4c67a6e821ca246d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 252 zcmeAS@N?(olHy`uVBq!ia0vp^0zk~i!VDy@FgET4QU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*GbEJkH|mz~xchnT`IqZ|uU~#K4k*Q0;1O92wCV^5Gfvg!lLiWgd%8G=a9mGL z5HJ!nO=e&!Ywc?2RA3W#u61Hyc4nTia~2~PpQDD`w0s_Ji6m|brO4$Qtv0B|CVU8; z7@D4t9M-Vvabbhej|402gr3lVs)K?Wi@h5e8Q!w-Rjdu%_W)=GgQu&X%Q~loCIG%8 BKxO~{ diff --git a/docs/_build/html/_images/math/aebf5e0fc00c3cf8bdbef4581708d03703b5dca7.png b/docs/_build/html/_images/math/aebf5e0fc00c3cf8bdbef4581708d03703b5dca7.png deleted file mode 100644 index afe52dd8697cd2813287304b807cc092d5734edf..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 288 zcmeAS@N?(olHy`uVBq!ia0vp^0zfRr!VDy>TNwR;ltF+`i0l9V|A9>6f&SeE)j-w! zB|(0{4Bc}j&U+Xo{4TlsdH?#CALiX?1xj%ictjR6Fz_7#VaBQ2e9}O{YEKu(5RU7~ z2@MUbJUbe47+TV{>|sbW`0Uf*^-ji|kEZ7tdz=cJLz(TFkV1}O-A*~@FpMS1 zk~vdOS>-g*G8)a0EO(1?$UU#;A9$`GzSsBlz22Ye`hGvZT&YNx%kna6G5`QT-rmmI z4FC`u66Lz$`$bV@iq|XJ^pQ>|o88@AQTqQcJx*D)h*l)Jxm*FLKK(!tDYm(!ABsW zh=bxrCKUzhk7Htq^8@PDrYriFN_AUgf9OsJZL zv1;`Jf0l+)r$9Q2(cui=vUr<_wS@ezZPbl`G_(EOYTMN+_6QBF2ufnge|G99qanZ_9cNk4_JS=_i{MKRX%@nO&ET>TKUFm75`;ljSbHYkQRD zy_N3NzOxkXsdXwTxUWX;-yLq!`!Ozm}eQsFhD*4R{g90 z*r?j7la0I7FX;uIQmlYQU&hessowu4)Mn$%WLU>6d+rq4qe`oHLtWYZvwDq zf%)Q$?&(?k+039uxh^JIE3eW#^E>9ZR5T`UIU(fF7uSkLP^Z}@TxEv!`f;>f&EY7Q zT;#75c+SfDjP!K$R3A>Hb97@QF_jC}XfaRbe(LB3w7{>;-P88P(_@3#aTeJ)%yNV& ziGNh#EbS(@=!_Rb-sWlRl9eOvwZS&r-gmOVur1yX@$0Fxd9jX^LEil4ndf1kxqDdd zOf&wEqz&3Gc>G=%Cu{%XkU37HpLP>;uA?$lVgI6+%@S1WUjV_>!JQr=#^SP}S)?Bo zKXszQ>u55XP?w+BMi;s0ZR?=f2##~4NMJusg0S4vAqn}Q*MWtbx!25#t9y$Y43y|& zHbQKlGf@>33Qt~SF;>=7oJ7y+-hck zO8sdNl3EdUML;PO^LCrtkupdOmmaejvrZlznV7Z-h`%#L_%P47-J|XK6LEKR&^^$E zDa=}x^Kf$>3^TSsP_X?p7j6)=!EYOL1qYX;e;xRtI_hkPWVXiAez+?W-QKkdNRENUxDk1{&rg zw&ZU#4(gvXz8x1pSFoDA-|z((Zk~Q)KD}?_N?s~+<4#7i!&_RM#p}*HN)h~#EGx|u z^Is<}JxySFHQ-oCVL=*}TQbRH`>52I)SK&#bU>H=gVvwr#?YnLez*GZCBr@sD&tx+ zyTcZa#yR9W+_)YSEcWFdS|jGNKaiykvYL}R^r@UqWfsDo74AC5xo(6@Qt4Amj3EvqVoH`_YmXKG z+|XswPgmi)*vlzSi8xD$WzV=sUFU$Ce){4fFx%Io!cw@f^eAyN;{GECZ1I)d2X_2d z&&$%gKP`%iTmy=q8lSa$tbfRt{cj3tXjCLFzK_G8JfXpeCZmjp3nDD)s*WL?1|wIM zv&SUP5QxK;=8u7DDy*vm*cxNDk3V@8UBgEq=HuDy^Vu5Gqwxj^(oOQ}4pLB?-=E^4+ZfYh$9gfp0TuQVi rt4%Z&<$YW46JUTAtLTSTm&)$G>yo7xefg02y-(WS#>KiG;S>K49vsj* diff --git a/docs/_build/html/_images/math/b6c245d487949782a89cab9ee83504a62fdc2337.png b/docs/_build/html/_images/math/b6c245d487949782a89cab9ee83504a62fdc2337.png deleted file mode 100644 index 256a838f4c04567a714bc17bf8a28e2991251d39..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 247 zcmeAS@N?(olHy`uVBq!ia0vp^JU}eS!VDy(g##u6Dct~{5ZC|z{{xvsf&*5Y7XX#= zl?3?(Gn7bld+h&h^f_Vf`tx_S*#2Jy%5WBVL>2=T906g*soH$fK*2Ci7sn8e>&XcW zOpF2t53nqh5IrDb%seMaFf|~>D?Q*zfk4uWloMr?wUgG!umvirWWcyA8NpTi4nJ@ErkR#;MwT(m=sAo-U3d5|@(` zLQINM92gW6MHxA|ulhL3dMa6Tu4FjWH6ceJZNslq0n!X%*DRVZ?g(l)Xx*^Tkz2)} z|1m>^B>QD1wzfKEHi3L?4~OaOSt8~E%IlfDnFG%93+#_))Vjzok~CL<$EcJ!Lh%9% zTk(PflMeHjj1wL(O27NX=&`3HA;E(Ak?29$lUWzWfX49iX`+)F#q334}sr>mdKI;Vst01TjCeE zmjw9*Gjz|DIPYPU@Vn&h=l$znewcTo6)447;1OBOz`%C|gc+x5^GO2*Gdx`!LpZJ{ zCp0v$^6Y5HVQ5L)vWFqj;ImJI*GE+Y11+g87J~u_ zJFW3)(;;Jp#d8}MCkO@z-)3*C>4@Z)cyfS8jgc*WhU?n^sTEy}%ea_kh&ZS)Sl<)0 TFZ}Fd3-XbttDnm{r-UW|S3*hj diff --git a/docs/_build/html/_images/math/c0d0f97cd9bb4e6571e2689163f9f2989b304f55.png b/docs/_build/html/_images/math/c0d0f97cd9bb4e6571e2689163f9f2989b304f55.png deleted file mode 100644 index d2e4515199b0c9d298b0c301cb9261e1667f09b3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 232 zcmeAS@N?(olHy`uVBq!ia0vp^JV4CN!VDyL#uerODT4r?5ZC|z{{xxC1O2-Ts)4Hc zOM?7@8TS7!@#vnLaM$R(#OIgmB~KUV0;M<$JR*x382FBWFymBhK53w!v!{z=2*>s0 zgoKc^!i0nbj@2H_lX!$Bm?V4}zoZDXH{NCRi8R` zmjw9*Gpv7U)a@aWu>bDwx#vqh^D3{~4V2<6@Q5sCVBk9f!i-b3`J@>b7(G2*978nD z*9O{pGdl{@p1kL-C;st*y+F?mjVD=wHXqrac-qqVYJZyTes@FUKMBVMA{#4pwCe{?|6 zWA~hGfs+lYV_2Rvi8zaSw6>@wEb4BP+FXBjgQHqXH}io{0xMSDi|sT2QuuGxi|(Ml z$V^dLHpx8M-^EgD)%EM1ll}gNxIYJe>Eut|!##16$&D>%-|AYPXutC5 yzlhTn;b~6`EIt+e=Dd07MB10Bu1-d|Q~xjp__?fMEiA1BMVY6opUXO@geCy0Ex$6%{9V=U=X0v>>SjD8pIc5m^jWa0G-Ir)u*_0|mW2T^vI=t|uo5 z7zvstCnO|ZG*qEQp_@GVAg0hoinh&zKC~ia#cUOKYpBIONXybys#YEE-`vbhZYC+{PL%x~ zawq5BbLN|K&OP@BfJ22wh-5D0par7#{RFmc{{f2#^;!n&Hv5jfn|>7z70~x(pHAUJw{zGQ-E4sq}c#OcK)Qv4g%ORwK;^ufRBJYTPuF6VS)C zK*DyfzzCDg`gv28s5f+FVV*sFC4gjvxG6Rdu-fq%F&%Nu^*-`Dxea?NE+~4AY}U`4 zsvK&AB<%bvfMjz{aO;b6=XLRHPBsINLYi4?GJ(n?(%I<@VH&w~DLsGMw zO)t4RtewHmzUy2Wj$14+#59pR3j#HR1EP=w(}pmR)!3;AVY}ia9V7WRY-GHNO6Ed4 zB;liGYt052Wa|SBZg-uH8_US==Xe6DyS-nj7vLK%qa^hl3^LwC;pu7btM~60^9~u-djcFmtWqfknMw`Q8 z)3`XnUYM*j7LaHe26*YAo}94a^K2z{t4P~}Jqeq{MQDOM_%v;90U;ZllTs3T(Cng9 zi{~Uv;KJ~xhvXzEIYPvv0`ikBNS+gmCpnj=ny{&hUqI%6^Vd9pv!K^_>6~SwS0+h_ zd@AF?B)ig0%8vzX4zFW%-w?8S3DvrVJRJT#6F=eID#0G;O1^*5LozWna-5V$pGpgo z&ox_Z`bG`yhfB!F8h{fIT?EDSn7Xymrhwp1lY*3x8*mc4;>;om0N@X09lDN{m6S$9DjsmnIO>)sq$1%O!LtU_P zpKZuf@xtzqY!cLgKpR_8Df$BWLdF$ftid$u*6QCb)hdnAT&V|cQ5}_+gGP08yTaA+ z7)leIbQ%s?!t|R)-QT)KPYHI}+DM=mm`Y;RnSepB@tR%=I?B_m-OY zckCBPhldOzY$(6HOs{{QU(r)Zz2~Hkz58M2l?OU@9uYBHQuR^E55K7NeOKw zv}qoFZBehl=h#@I3P=jeG8R-?M};Wp5=u0sdZcMI_S5!_krfJH^K z2Y6UJ)u1}%@&@+iv`gGI?J#l>_}5;ZUKV%17*%`5TVJQ7W#)h$V-!Yn*8 zQLv?0j|>&jRun@^vIURIBXP+iG>=^D%m3?to@eIwKJU!$oli4U=;d)rRY_L~005}E zxjK6T0CHj(Hs7^V7X9v)`pBLiz1)3Wwzjrp@c%ccurfnd4Z?YQ_yG3NmR{h5WY={I z0&h07hL51iQi}1e0f_(rkiG44x4}R?06>0^n={fkN+b-pQlN2RUzRi@IU z^Y8xUP=Ti|ZAVp*M$(7b=t0#Gg@z}He7zvH02Hl$DW)e7-d^+csQA(|6=mPyW+jy0 zA>aiK=^=sH_z)wrWNszoihR&74gU4`0&5h=u{D1jd;zboMgSU(N0rp?wks4~64W*h zdVV1UBAnaKq(`0Br9=67*UFIxnowrNVOu$#v1_els_k$nC$%7zvOH*o<|R**`s)n( zuwfWaEj2N|ux?hBRWUz(35Xtk`q>IO|FvXtBj?2u^G+-ykMULc)ot~2YvCFPh>LH3C#u%W zpr&FfT8HofQp?{To(Rki8w14`LtvCBbg+V;!}6Sw{yoS|ptq@lG<{>5p7^s!f`)_y z9AbWZl88fIMuP?RDY5c6K@$wFC)ee#T)8>dmCGwCtWf9Gs)0PT!Pf4#e{)82f-ZnE6H=(+F_mjK3#v4qW29c9wlrMsqYR5hF(sVcAtPe{}4X9 zxR7AsFu6{AX!-MBsa|W%wcmoBN?Yak*m9_SAB^_C8|=#(;fR3up&^@J6CgIqlyz}&G6lp^1SLroB+Rw;do;<}=z%61+D zjd@8kcUb)3jsGi3NA(zVqM3f8>)B;SU(V(ex82xC(!Ymrp^llY^(aok=kR%KCaVI45iF6}}O7^h0rgwyQ07&A_!`Dfj#*PDKqF zHEs4KK`ixSiJ9&}RisZB|A8iCHIa_j!GTML*a9t+>L7l6P>*4lV%87zeTXhPQ%Ywdunuu??16o;87}Jk`B)8vhG=H?v2vyc5p>e)Ys+fNqoYY9hIPEkLoMtNn z{Z>Ue^E*M72w%mrq80z$Ekctivw0*a`a1uxWIb!w7Yfc1w=T|3grqFzG`RJD46~Xr z$|!};Qe}$(g0()-^~OV2T=*6B_eMv?;n_~GmV$P*HR2+EyqOUj3V+FYl`v)5{KCoJ zCgl8^Uk7<-Yl_1ab;x!ZownsL^&_IA&l}UKm1$>JA5kM~MB)UES;sTrYqEVyi^FcK zA%4+`91%O##?Ql;OSFaG%dH$Z?jRX0V%cxg8Q@@FzGZ)`{`N=D|G{mI zBi6;Zg`?l)w&8>(!NhEq6k$!nscRDSzKmF+qp`CG&9qE(t0M2bY2&;2ntQ-qdGLDK o1bLa8Z?i&f%k^#*N@Vali1%W8Ec*^|X8ZQKxp+7?I)z^S54G>DQUCw| diff --git a/docs/_build/html/_images/math/d4ac9b60213cb2ffe02c6d5dacac8796221c73ac.png b/docs/_build/html/_images/math/d4ac9b60213cb2ffe02c6d5dacac8796221c73ac.png deleted file mode 100644 index a82ddba3894a7633e017c166f41d0c1caf6eac2c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 962 zcmeAS@N?(olHy`uVBq!ia0y~yV3Y^4#aWnv9X(zlpa!KB%!&dIm1}EuvB~p-qWjbZg5Lg{eYUtBPKz zxa5`gooNn`{gQOCkXy;dBU-lQgwysLXPoy|zJGgWcID&XE9|e&+1a0YZ*BbkJcIS+ zxEZ&_qq7cQyellf&;5&(?&RXohX!rJle(?H|^j#s2SsDIeGSbtv?|zB?zox(R!@es1$9Fy7Jl(s9!+N37 zQ+>((l;shkR0 zVE#yV5l3&O{e)|LGO6Le&m6RzbM|Re!>0a?C+gZ*vY(zf^=1S66UQT7ryO_|`pq~u zQ_JDA;$EgZg6k(HZeeT}6q_WhZ5;PT^|1Zkc-ao69`433_FE$_Z|V8X7hmK7zSv5@^@X_jo}0G}bZ?3GeLQT%c>L|H{6G)CHD`A9W_`KB#j@x` zoCve(v3Z-C{jXQ6{|xc`ZSjt8hnlB{Urx{dxZ5rYUGJit6oh&I-;k(s-4!Oe`{m;& zmER|w-7q2M!Lf_(xnFZ+G#WA%R2hk#-|+DVOU940+t&#A%}x}2>r%(;S`_Ci3zF7; zQryjVg=Ocr5Ya6q#T=U*6}hg>5{$h0G)k=Z>8%a%`T+tL9X6|+aov_-r?gnHyE-s^ z&E%F%n{L}WgiQ&}w^}2t(UGwrslC#)o8_j>CHv(1`52>@o;+Ra!V0B; zNo$WNGrqYd%6j+gmYfrnQ(I@;`)s?E>xvrtrlxM4Hl`Z}sf>3g$*j-$@i{>Iv+ld4 zuhy=JiL$@Y$n!UAgNu#4VuHn_$5WrT3j151+Wv#V%k}Shi?jPaE1h%iT=J$O_0o5F X`^)T-J^y!DgR-HgtDnm{r-UW|NQ0+K diff --git a/docs/_build/html/_images/math/d8ee85ac4d75924cdf4b18f5fb3b46550932fc26.png b/docs/_build/html/_images/math/d8ee85ac4d75924cdf4b18f5fb3b46550932fc26.png deleted file mode 100644 index f6cece395f56bb714d6572aa4f551e0364aeb049..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 224 zcmeAS@N?(olHy`uVBq!ia0vp^JRmj;Gmy+@pHv8>v;urWT>t<74`dPpo&|e$0oC!A z1o;Isc&vYU*Qi9I`+UOh&sS0^J^&>+3p^r=85sDEfH31!Z9ZwBptGloV+hCf=*sev}wm1kRv@^{an^LB{Ts5)$=_1 diff --git a/docs/_build/html/_images/math/db3d34854a6f48587cf5b9a41df90ad1c5e332d6.png b/docs/_build/html/_images/math/db3d34854a6f48587cf5b9a41df90ad1c5e332d6.png deleted file mode 100644 index 059cdfd152c87b30b4c710b48846abecbec28b51..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1383 zcmV-t1(^DYP)^do#1Yna}TcK)2;)|Iu)-zaJA% z8$fRv`XF|t59&PhNaOSyex*RJ*MRvtt5Nd~Qp51nCTmgD=t!EdR{*`t8k|P5(t)R4 zwaHizwSDaVY6ZxbQk8nQMJBxIXJJ3U{{OUHZ7V&uIjWRv`JW@Su$g9?;^7qgmkn`I zRw|TZ#&qmbq$yK}HCyi43yW!d$)-OjD;*`*1M5&Ld5vR1NlDQ2A`8Y@g zMjrcRWQbHQ^pjz4*D7+aJvh)*m5!53uMsni&hBJ`dAPhz8e5S&LyoU`C@iS!^aA%Y z-rc$ke5kHCQ|b%3&jfk6s*dSFdOJsNXMr0$*q;!=nymB{TXuN|eY9N1{)-hwX*=z* zo7TpG_YWWai%imK%1Zj&DPV3fbpuh0(L#j}*)LgF^-QDsTZ&NrrV=$Xrh@)~rWS07 zQH-T16~C>+egw`X(#dKs#Ua(~gDK1(>a66Pk^NRQ)^Ux+Qa(4zM!AL}5R6Ky>Etrm z53}zkF<2lNx21pU~u1NB?K2kO25Vp>YhdngRS8Pek#id z&bX3Nt^{ro>b41S4DPEEXOt1#>#|}0$%b7V+QKbD zVDL0T2*#Tc&zw#bVhrXXT!3JUhncu8uuF{!7=tmngY|DCI2YNv+@fm+3k2hb^+GVJ z8~oTPf)IDFlaN*E@zzJlUT|tx)9*+O33boBGLfgq)pK7NCH29rZWl?qTpl3T^(-vN zzZ^;~A4V5Rx_s2Fku&5)78dMBLE5}#y(*IQ?n-`^oYOPx>-WNxrt=*ElU}|8CFf%T zI*)|~tH=)oUa+?2i6lK3XMcxuJ!iI%Z%|0tE!Z4B&gW~(Qm_z|7_g6RCATM-lJz(H zVPgvU78RrA(Oce$J--Rq{q!3XJK#`V`}c_&cm%Wue;@~%nG=~jQz9;T!tXm6KJ^LM zdHPMWW79wLzW|sIpT>NHXXe%_j3qzuf5z{7FdRcvMfwfAg;Pw4{O!Auy_gvkOV9Gm z{9i(C7L5Ui5w}hh?0))t8CxTgpl^EFlFeP)B;+J|A z+CMWqEck|arnQp>7(KopS;{7+VCU&K)RSWO+vN6&$HM|+d^7C($(oJ7B%CcKp62N{ zdX*64_*s9h?XbX*A7`V1G)up&b_5wyL?=V}twKGvSo)oMqX diff --git a/docs/_build/html/_images/math/e3fc28292267f066fee7718c64f4bbfece521f24.png b/docs/_build/html/_images/math/e3fc28292267f066fee7718c64f4bbfece521f24.png deleted file mode 100644 index cdc6e6b8a4e2e7a55594f94bd41e30a1307af7a5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 215 zcmeAS@N?(olHy`uVBq!ia0vp^oIotV!VDzM(mV=)luCe4i0l9V|A9>W;JBJyDo_P? zNswPKgVAq^l7#)|yFah56MVP{D9l;l5n0T@z;^_M8K-LVNdpC)JY5_^IIbrrBqRtV zF)#|VnFvf`P>EpmYEWT6EHZ)PbDF?OBSx1^jVY2AvJOkOGIsQ^yk5nWr0kfgaPpqo cfddQ-jKOSCr#Mc&2Aam;>FVdQ&MBb@0JCBk diff --git a/docs/_build/html/_images/math/e676f7877e03a3707387149ce203c5e79ed8f9a9.png b/docs/_build/html/_images/math/e676f7877e03a3707387149ce203c5e79ed8f9a9.png deleted file mode 100644 index 6de537a356fb7c1b80db76d416b860fac25592de..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 955 zcmeAS@N?(olHy`uVBq!ia0vp^*ML}@g&9b;R<7XzQU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*Gf1reeZFL_(Or+v`xClfW=I7s2TE}kctjR6Fz_7#VaBQ2e9{aI%wnD{jv*e$ z*M|9KTyc=7%`7+foV;dXfS}{y{L53IcWHayOz>T*rj{|onyL_}1Ztxw&0wQaVM z!J^}9AKrca*kkQut;$Xfbs;DsNmjFvsY<{cq%^D zguea7J7;oN(WFnjrBj^hwq8G7;2`5>d-@&sj-ZxpJtoYvj86niZ>?yV6&l{)$gjF` zg+l3ue5tY{6`T^zXI2YOHajC~c+6#5uj6vd>y~dUU(SqgJehQ9dKcHF6Q0rr%O35q z=-Ip|Yq@8!++Ul&;^#LcTx6Q*$QAL~fp3x-^-D{25c17{jC2>6$zR!|=EPC+C)Carw9!gsA>z7vP-;Qgq4ff}?$4v3?VtXmn zB>MOEY9_Vyx<3nMN;lrz~5@6b6K&h3eK+#kvTXR2FHy!l~Ru^d@X|lwQo7IO~}g3Jh}P8iCYaHW^t-VpYtudl3^m;ocCq|xYPR~LxT#%kkAuAqiacf4ZdcYfU9)DcSghMh39S>;mn>Q= zn0RLOPwvAHy7tfLEC_zNWa@`idwtxMvMOi)zTS~{_0;!QRg1KL&hV&bc&2tY_`1O< QLs0(nboFyt=akR{09sM2iU0rr diff --git a/docs/_build/html/_images/math/ed38fa24f1c94891bd312012aab3f6673be3eb83.png b/docs/_build/html/_images/math/ed38fa24f1c94891bd312012aab3f6673be3eb83.png deleted file mode 100644 index 210ad4d30737a01a86ed31e6992f13aecd898b6f..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 254 zcmeAS@N?(olHy`uVBq!ia0vp^0w6XEGms3L`dJ)E83g!*xc>kDAIKyg=-*vX4OGov z666=mAhG`U`I5OtcRfDuPw0M`Ar-V7D8*Ue5n0T@z;^_M8K-LVNdpBVJzX3_IIbrr zB!v7^I`He}#Ky+Px7N(b%oEZQ{v0`Qgn{iG50}8PKL(5(&8KCYj0@`9jr#tzU6{jo zPQXp~@E`7kWD$uUat#uyJUn~s8^83N7nXST*DHa6VKIkL3X@dhSD+;fp00i_>zopr E07#fd;s5{u diff --git a/docs/_build/html/_images/math/f08158476cb55e03cc8643afc1e10a56da446a3a.png b/docs/_build/html/_images/math/f08158476cb55e03cc8643afc1e10a56da446a3a.png deleted file mode 100644 index a9628fd6616742f5a68780a21814d6bbd06ca8c0..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 262 zcmeAS@N?(olHy`uVBq!ia0vp^d_XM7!VDzkpEaxjQU(D&A+G=b{|7RO2l{sxR0CD> zmjw9*Gf3RsZ#1`i{pa5$2_ENP?)Urk2q?u_;1O92wC)H9Gfvg!lLiVVdb&7%H7YYy^?r>mdK II;Vst017xq%>V!Z diff --git a/docs/_build/html/_images/math/f852990c4a225a95d2c694a9f1351f54bac3ba86.png b/docs/_build/html/_images/math/f852990c4a225a95d2c694a9f1351f54bac3ba86.png deleted file mode 100644 index 44da6bbe71c33bb2473e0fe13e10cae2767c8dff..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 256 zcmeAS@N?(olHy`uVBq!ia0vp^JRmj;Gmy+@pHv8>3<7*YT>t<74`dP#^zSaH2CC*S z3GxeOnEUegc?plZM*F)Qp_BeIx*f$s&20|N;ogMz;a2^k3q5B|v=U|{;Z_JD}{-$(_?0|$QZZ){9u zWIp_lmFJT~<3EYZm~z`&rDCiFc_rC%B32~Sr)mvv4F FO#qE}MqdB` diff --git a/docs/_build/html/_images/math/fff7b4153a6590df59f8ed526be56220045b7f3b.png b/docs/_build/html/_images/math/fff7b4153a6590df59f8ed526be56220045b7f3b.png deleted file mode 100644 index a73135d413c30c81ff84e667d8450ebd9b26c038..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 259 zcmeAS@N?(olHy`uVBq!ia0vp^d?3ui3?$#C89V|~1_3@HuK)l42QrBV`ga#p16A{v z1o;Isbl?5`a&E$T38NB^{h!yz*GyssN^ur=L>2?BIs(FsQ?>b|fr4?KE{-7_*OLAK7;rMYtmffa z=+O08`uHqXhgq+uTYF4tjBRA(`N6DU5@0PM(-gonFF}YQ>VdF`)ZV)nK>qM_^>bP0 Hl+XkKMV(0@ diff --git a/docs/_build/html/_images/mci_schematic.png b/docs/_build/html/_images/mci_schematic.png deleted file mode 100644 index 8d0d4a0181c099d44325dbe90755f5fc269296bb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 61004 zcmaI;bzD{J_XP@Xk&sSl0g(o2kuGUzlu$}q=|({55-9T^>cN?)9e0Tz0_vapZ69W+mj!2Rx!}o5{MMouZ4^y80+#RkT5(a zS9#bqK#z}ck1cmW@|CmCeYT2(D?@7jzQl8!F4&qnUyLv{;(Dw^o;j7H^5y0= zj|#2ua5m1@fv@2%)pE7Vh+%n<#aS56yrKEw-gTPb@Nmi;B4VwlYA;74|MwzBzSnA!Wf8Y;K!dLg4?ZEd~1wV3Whz^PY4cH%kia5FS4tX=$*pEW5c)B*e37?eu=M zaH%hW7`VK=y#Ba6bwtd}%moDnO=0v;!_(90iVP|+b8~YG-o9<7F!AO4wHF|bk~%-^ zb^f8HI8(b)(n4jOdLgnkFgscl2Q}?d|`u&e@8XD;Qjs`NS=fcC~ zqAxE-gtM80CGJo8Nu3?EOJ&v9Uy+xW7d~FCaBjci`KG$stA9AnnHe@tHcG7HQpWodr+^onr#q*qe%!)Gg@}h)A;r{XHhLFQ} zcwitJN*cC5TI3hy$pVj`^3xK_u9sJdE=^B22gR!79!v)jzIT`q^*z~YXP2UZ4b4bZ zla`Z9dZEO0&`kK$pZ;VT>tVgaaETGhAB)ZlwYRqyu8SzUZ;D*eIp}ZuSm-Y;yN*b zYgzqBm+(QM+Ub1kw#z0yd0s?Ci>+5Xk6kw?M@MaTa+WesN11ge-!MO$>`4>5aAHgB z7pRck{CF`fj5WiTgx>Fj@6n@2BL{MF73hlE$PF_GK3nK|6@#lya0P#~!kTd2<*^IX z0<0>^KQuIy&(9H-EVgT*!<1!aCX8M|Pmh8O2P55QT|`LyU%bhRSR1XtqK?9}s(Ad( zTp`=}n@xL((I;NNGhenu6_o$f1{O*#yU$ss7cBC{*o7t@zr)*hqvaSWLiV43R@!cT zA=NN-a*B=8_!nPn>fpJ|w`N;mbIj3R+{(9YopWA=-+lYqnI#{ILh&@7@cZ}GvPqpT zYqZyUw1nc1e6*)YfAYrwKF`o|!kvZ?%Q$jB;F810R)N|gS@SOW; zTN+|0S-ZOZVL-hFF=Vhfv#yud=M>Ds!9>hDJl?V5(tpoz z_^H{nDaEk?d)g#%KJwYK&E@=z*@agop?5f1F(?fEZ3L6YxoHW^7djKYcDipqsJz#H zavDW*Gb=Y2BU97n+a&@B-K3EsBuIRZD{!i%K>p`%)I>u4-#`Pw9uGDX`9Xpg^7H>M z6I{{C>SH^3Dn%3c@BMMYb`!Oi{Z3a*X52(aDgTR4+nnT)&2w7}bTKUpE@d)s?Z1Ii z&(V=*c1sxbrnEE$AA%h6!EAnT!9N>Q87C8STW=~V;_+|&d%@;cs~Ml~pHb`0Lthk< zSx_UDwiJ*IM!`4#W)mxQ*qi7pV&5kw@KL-e-NG}$qztdRAX#koDbgbmI}@(2OroJm zzyi^nzjQeAikJry9Z;G&IzdQ`B8fofeuX>s(f*bobqK8L=MdZnLMd0{ltv(B;c5R3 z=N|Hm#I(XrD8#8lw#g$gBFV2)lLl8$IQVXNuwKFpLZRY2f+3`2zJDJZrSzXA9>HVX zyMO;d#psKGFzvTro?YhD)Y9Ucu|*3&Au(fje?P|fH518?A3sdbP7c36sM=3K-lpde1z>|c_F?O`8v5-Ep zwbe2(zz&i9|16$^I_mSXTULHPmV|^vhZdo!+kAF;If+#T6*%a<4N^SJzVY$rLqkJ+ z8&~5ykYM)g84iR%T}+h(_V(A|6Ek%S zE6&c+($Z`k9mBd7sC_QPE13#XYiVl-zIZ_b*;a-n-Z}rj^nOhqb{XJ@uOxk)F^@PM zA(%ir1~cl-;3F+9t$^RZe?N>#zO=A^+&4NJ0V&E$JbjBoFaq7Xo(_@;FD2ghmA&uF zZnXAS{~EmP7c)LNMq;^aE%=`=bIzL?j0>`}BhM7F!`tUBg|%D?kwyN*45Fl>Qa+=& zgwAp*=2An;5|0g;kd2cw$hfq3WgiC}ZE0;SWMDaXV3}5cdDTfJm*ieCIYcrz0C&J& zaYE4G(0(g;NN@W=Q{CYs6NwVji+Sgl!t01T^gZ7`J_XZ;!`uNasF~sO%;sy1W;wIE zOb#|S|2`YlGizQ-IUk+NG3|VUg6J{r7XefS1Y9`qZQ#Q_jQFC!5-;=ij%=>BOtJ2* z>^^BgFK^zU;HjyjLS+Q_lpY8WSwe7VS@U2$r=g{_Ad<}@lub}!PEfIQag)jJdjszl zO(PIZa~Rs+Zkuz)BP7%qF(ASTfrIi(>{8Hc09gp~vEYY81^~|k#EaFq$Z#@CO9{DO zagLgcjY?gsF-&(!j!!4ply%-^dl~W>;5J zDr6JGb9vWGt|S3|Tlz|V34MC!@P!WLgu~5~r{@PW)qYl0g#`uDYHIkUH~(G)Hgjox zUBSmk?CAKo9fKt#B&6f2S9}M0ltPOFz|B;2ZigzGix)3~jY7<)byb6G&&JKIU}SWK zgOjs{EdzZ2O2p?G-h21%eedt*XBmsT!y&J%tXv*W>r)JIg+8#E;ppfHf=|@h*%{wT z;T?|4zgJd}oVz;)_pqcy6e0J0d>rr7grt?a(}M?B5nnSh>OO3glVjolPXq^8T3Tvq zYLeb|t}!I27{!AFJTVjr0~K1Ho;Uxjj>gl9AR(Zjz<<;(w8O&eB1H0~$KrH?H*aPa z7IKQzW@*2D@3mzHapZjfVpn#=1Yu>ai|THko~-nR@7{d|=YKP>JOWWua0NDb4)QYq zD%BDr_UqSMAy9TxU4YwFS_QufRkK(TiS4h~kg9PWj-Q9wc5(Ov< z{;Z8{0hj`S_@=IowpZ$0TwP-Cju3V3!e?BbFSmK>g8@;dKKU~$e0DJRfIn&4!b*P;aHWU zA`?k~A$R-l!9p!f&89S^tk&`t!9^tLK^OvPihKe@#m@@F5dfd36Li$6_7A#mPCbv; zkff@wuNU5^+j;LeCHZ4$sJxl&Iyi~Fz5SfRoI}k5x%lq)Th&`_G+R(_JwWOv0F7^id%|;+#mND)UvI9l;DxbBBM366j{GK}NQZwx)dI1$l z!IM64p|gH}G7_-0x?qN4;oxjeyn6Cx4U$M#hD$XjX;1!CH7+!Bne|HS)2`R=8}~ga zF^?9p>R%2-3JzF&Y}CQ=)Ooa8ijcG7voEE7r?y&Yg~pE;E`Q6AqKAheSZ_FXu$!!V zJoF*A&*lqMIjHAWXe(=L3m1ego#H=A_xi!>X^J&=Joq+e%^RqSsCA*M(rgxOf7|Nom2@e_qT47X# z99oiU=;`r3>&2UVJmemqCOR^bSnj2!d(C3kfpMS|@;8{Huh$#L{Qmu@&+klbOAOL| z$hJ?((P-~eV36o)SnvoTxtiGd8p3^PoeM5AD<y_i&dqD zHQGPghvXnFO+MK-LNx(oeDA&YXnjOHz3}X4xRHfkY#~9%YGO+c9VOlw(HkJwBO1>EOGhy9aj69gwLPnNm&ZBKOM2VUh!nO zXPl2(XS7aFGXP1m{%J$9XK=CRnaw>QANqd$Ku779nPJc{U8GgMnw)*}g>3l(EE}^= zVEKcN7tA``-aPE=&6UH(xR5v2*ByKzw2#!dvN|*zS|O#K6zp94Hw{*2;ay>37dv-1 zw>P=D%(ffnP`ZoEiTr`cSvBd+>EHJ`({`w6hM>Cw?k@byP+oA5FIB0Hk4DS^Qg`2T zm0fjeJj@@%!?-w))Flt+i|Wszl!|ce5n){rN=!^VXytjz_p1zwIm0J=gI?=3i<=Pj zXZ+3<{hXk1a}9g8o2RYRyFZ{Im4=5`{s78`d&NT8!^Ti0E-f!NLoF6wwez)x?Znb)zw>=R9dfeVBr(0UiBC6+T|-;VI)2wYlbA~AW(a8~g>p`% z*{b4!g$26*rpTnFrDgSYC#U?@;ozeiC5>m^<6d)70MHLkH~eCzPS-uh%NPN<^f$aU zZ18Vk!M=yx8rhm9+ z#dh=lz^W~%UyjJjV?hsU{t%ep`>cKLphM$n;F!ZFe4s8wgzSHQL4_=GWEDZJ&@tx) zrr}zvK!e=u%4ezj6$`YYm#w|LUW?rgZhtwFe*-W(Qfu!|`tTsZPaH~rO*XRe2ys1P z%P8RKdKWJ??Xf{cX`>RcENu2^^VnC?caCO?h|JB+-JRL5q@Z9LZs=A;Tf|{r|HeMN zbby)u_!pHp5;o?d#a=(s5AN??m1p|3ay{k&ATYs@i&z9G)Vp`@s)E_i_=8Oxo77xW6RJmiN44(!?0DqELsEEO`xRDgEJ8YT-sEKs z)kO}*Oi?khcqu(Sy$TurFCjZ}uEAXkXsEu0vzwH7D1So90~AEUww$q=35OGidrD8k z3QKCAiQTnmCr4>b-tlmEpFu)Na}d_n_gjR3$sZj5S<`87INV;Kvc}K;2Ipy|7lsG- zFS~VQNFA>Vr23s5LVyprOhLg~>H`=r9EC7dKuZA}JAeo)#dZH9-u3I(orGzt=U?33 zJ{kpdhVV0~ZvD!_dp~qC?{Kt>H$FM`C^BiJgKALo?Hw-wCl$#JFY^|^KiOK!jzK6{ z#2tV-e7?6bym-1}KUpUt60($RTS9yy`e_1i?YAr9Eh@Kf_f1S(?{vK!M})Xd=D;#w zc&A|_&zU6a^ybY?UVvxDey8rVp5xATOc#VFB5k6T##2LNulnv4ngABXXgC@y1&&Z+ zBSS5JAoJ~8Z0j_4a^Q#|sjwl&iQKW4o?h5oj1*ml-MUIY^P;BK1zJy9&AY9qxBjsqzwlzPfVcO*If?R> z+`Tm9!}pFe!CoCZlu`~P(@IE=Dn`*@393} zCOqjkPj<}dbqWK-HqaZkFK<0DeuZ1TKyJF&Qx?OSn0-N24S%1VIPU9TUJaXq;35DN zKf@xp0WykTs{v!~OhcWv;#5M`Qn33MF6;a?FopvlR}07@?af>B~ZtGpLAJ8LE=BxDBcFc3(V=6xR^gd&AEB_1O!L5#>N_C%F} zI~>3vuBHzE-T4bk>vZR@TltHnsGz{!^X3y5Ppx}T-(aZC{pwb(cIH2N0V?SvqiG5* zN}3#|2AwAo`)kBDrlu&U^0*KnkI;eFu3gh<$ji&agaq9zPhk{1pe}|_5)q8AtV2yj z6)?6I+CC@4K=j(hCqga|iYX{1$tWmpaW7sMf%xC~dTJxAck%Y5k^&>~m$@xx2{{Z5 z44`ntm+2x{Y7eY5Dfxh2TyTLZ(d2uSITMKtFhmeQpc-dLRDp_2Q&$%=O5xf`6zfsZ zQ>pzG;=IB_+(trfqqKC?y zQl;XJy*M4*NKo(MEugM}<RohpYYjv87KwgEz_ zzGeLufbh_e?uU;b8KHbT-H3Vq94d&5fadL1MZPTVKu&n5z+H{-D!+f5W%phMLqxhs zWwyg5R3eI#zB}DsfUQP1U3U$wDn^MSTV2kKfggY@{jH<&wG0k+|KMNL;Z z1aPtH-TvFovk|PbKsFF132Cl!k*Lb{-;>Q$5^7J85j{D!LjyN9QzwLMwv zmyM&9(st;Y@MkY}u9P;?iFvG=&h=i6Sbir!{Dzjg;Dc(ypEMbqg(K6ch9~gi$c318 z0nSEXpNf22w6%aJ^PY)irtbc&g z8p&d9ZEXe=Hfb)M>C5~@CXQgRo<$} z&Neq(E2!}wt>1PE+T3cVXWeSAkx>py6ff6ymIys4?E5OBQt z0-y=vofS{JW0jZ!0p?3*_chrFW)&2$)r($xn7UHS%5fqb1idC+Vc~FKt=133KYWs7 z3{cO%O=pc0!dSSmv)#pm;OfVxC5-?dkbWe8t9LpiTHwcSaU{x?4rdn>!1G;QF(})9 z!i^gu3w$*YfmX4yH5E_*&L<=@-+tL-Csd(jBMX0*myx*up@6@%-wZ3X{W5z3RCgHi#rEd!JYKWT7fA9cGQG zT*hnjL@|a6kf~#KQ#lhd;kslo!=0 z3e%Fe*2Y2;9+O?b_u}IMQ{Hg+3)GUbnVL*7m7hOsHdEy_f zn;8(!?i>QXs*q&tU4miJni>gA!WKyZ3i@-$2Vk zCD-MfQhMyL-)1vbmcfTJAitdRBlWWioFL>wlODFNpSm0PaI!&9b`B0eK%?%P(=rg2 zAj=l%mj&+VJ-m0}wwb(O5S<|K#f7|w}eFHB2`|xmBLxbekg>AlTkK>Iv zJvSz=C(o@QaZ8xCqG4#%F2Mm)s&R_2aVmqh`?jH&PSmfc=g-4`9Y;TZ&a0HUdVWo1 zzNVzOIHb?UBK!O6NbgzMj01zErM67hhJh{a znff|>oVRn6A3r)uataub5$$uh;+yjf8Kuf$F>a;h_4QDxpoa_zPoP~1T`)NKlkgzD zld8L3)>#V&muqfr7BO;j{5YB7?&%q0@JjE_9Uwmg`Hpo}kKOb51^AVcZrKUZKy3>; z4RS91*qwbEYHE@Mj$Ru<@T`~`&3tM}9u5u?c@0lNYBg>%v6DRGrHv%XSCPY3#|r1) zAFO>*_RM;)X3ER z13C>Y^)En~1J6o04J?X^q$h;fStK(c&A_{NZ~StHW?aV8BX%V8BHRZM-U!2^TcjV5 zd;8V1Jbm+z{P(*nQ@*x@Ra!Hes=vC!VHq>em9VrRl%&c_9R-;$ORU7^j|!IuHwQu396aJXEILN9BEE$l7V!2S(}SC{@Hu|0tMhI1rdV(hA?G#>2SEWe zkPvpbV-cFVz;LBvo4_Wc$9E*)J)(QEt7YiY!8{(J*e~T(Lkp$>?X=a1oFaqwrWfY- z_By5#8ShUu@3vILC}b-e$CCtfWI~fee(!OjO77B-S={^S?e9(Vn*{hZhTQLnpDxhe z7i$;rB&abgv3QvR@vqJ|6!;h{g>1eWg$2+ADMD5OnzhY-1vvF?$ET!_!1WuSN?c61 z77QJxKeE5~jx3xQKVo>{gak^&i6o3{kVIJATNCfYKc9(N$O=4lgQzrbom_y`kduQx z)7j}9a4Z*aa%XJwMz;JSpppJbjYpN#Eb$Nf-QB|Om0LvEM3;t!Vgmh~F@UqvWL1%y z_JmW*lS?a2a!{!dQVH0gTAM6ikH2Xw|7{?nmw*^Wh{2J704T+2|H&f7a#$ysmuY@laA9NF6TAtLrXzrtSVtWCAi8&D093`I z`=f498pPshqoxlRGw3ODPJl^lyYE;Z0%)=h&|;u^HEa?>rp28+fm&I=^3i1=OA&e! z)dcNy=K-~wmV3vLb1c5I&gYpZNym14T&@!$g$n)gy%hnHkbPB__-U0H(KL0zkaupP zNc-*aHc>>x(1jct%4$Pyt#RH+`>W@14)18B6IBw$Kk`r91QP3SsSN~ho!=Dn5mv^R z8SzbVaB<@Ul=D_Zo-15~8hGdI$&W|w3X5i#?1Ir_YwFz9?>b!xCz5a2Y8n|uLA{M? zQlx(p49#-ro}o~G1yRsH_--TU1vmjc=E$b<-pSd1W5!{SF1O<8)t#xuqwc260OeZT zV0`G&2a-iscc*r64^c<4j222vL_TnKE@KN!fXb_+k>o&RzIS>V6C}I{PI+N=yTQ z74TP}C?w%BuA{ts`Le-s@xaR7K z$iP!Q9mv<%2#^^X=*>4957hvDAoS7H*`KPKIXM-^I0V9#l@SAz9M)j?bz#m2q?m@C&}>GbGQ3|w;4(Q-?uX}b;H zztb&r1`26m&1YzMcrKL20Rf+#ohnHC655c8(68;`KTJ~1t0S){DJn{hU!b7OnQsEX z23)oLfVy4h&b2c~Acl;6L9_eYunW@Swl z{FbM3i5u}IW?DkssSr5s+`YRXj{8bIziUiHvshQ)pqsSv9)6no&1=~o5SkM>!Ebe` z83^v~8?;TbeXcO~++7Y>>BZb%FM!HcOB03M;r~V44oYFLn?BzXP~Gt!xeAGV4@%>AF!Z8FW`+-9_*j$#CQ+z3Z4su!kwG%z!M*st!w=CBE6L?0xtgEkm5r zX1>%Zw!6E#z)=H8vV9*J5w;#4+`>!081bkJT>s9^^YbnG zbG~(HznKt2j1p-_#T#^s*2% z3{^wd^6`XA*LAOhnXn{2hv@WnaCeYN1Vd6ujsC%rr~>*a(;m-RKBbOknN7ghI6V12*)%J{QofGM=8ELxm!oWH^F?g5Q?H@wi1Qn82ff9~n7togQ)dE6y>0q`S0tH2)21 zm2gmw%>pGL@N_qu{=vp%{lF*X7hPqbj66A6lu~^BSj6))Er_e29X#Vw^J0-Q(!!dB3<^#ROXUtj<5j7LKbxT3r~1-C2Xc-qnL8JL~TNCy&vpp`m|^eni@agi=O z$VZ8rY#e_;YcmKse=%Z?(b$+lpeP1GkStI-w{G2XxuObm2N1kJfBt-NEocB_S%}&Q z7BV$AJm&P>kyiRG}h^lS%4l;L%Q>bM3V>)6Qj`@)JhF|#f~!o*)q1| z4-=%IO$(3l7 z2f^-whgalHOiUCKmo53Jo<&AN*nXLa7Qm!V5O(pRgaoOio{^EnLy}8C`ThKP52OH} zH}=he!~(q{RQ!PLp&tylsr{A=R7tQx|Hw2vj~FKqmWVuZvC;T51MEC&8aA+J&Im*W zbR06g(u!z)i|<#>f?&kv;llu+!FVZy)$?zGwxLLu^X2vXp@<9t!uTTo94)9$;@j`N zlm1v+>)pQ-t;z!ZDk|72Sjm~4Ltb(5=cc^EzYJO8J3z;lsr?p_i`N@Vv94tBDiO=X zGQLa+i{!4o1os*vzJ2K>k4dyXSLlluFD%H*hmC#kL8()8*BSlxuKuS92RX(#XNv7R z5+RsD7vKOX4fqCZEIe_usnh55yf0A}P+LO2;@MS9#{M;T92V-2UGAwycA~COIM}0# z`M$+__WW^J^C<@j7#i#;aBHt!YTtrN#L#)tl-Cq=u=>ENBP3jpFA!eldCM9sd@h{9 zD!Bl&NsP9cFxi>jF))LQ7_tVUf*&e1i2*pm?5F~LKVO7d>@W_7TBB_CgqQ_{c#3Ky z?F({1-eD9gYqOC7KvN@6gsvF0-XN!U&@pneNo@BzKB%D$^RzA)cR(jhDdmY%vf{dH zeNR-3^+>TPEk#k*r<@SByW5o@ml^b@F_oHZOiMS47F!t>!il03;#o(M-eJdfx(^$L zA#BWudCV0(t+Vnj?%SB`O-l(pkZVHY;^O858{d*|za9MjyuwbIiA237=~{Ei*qQ=7 z29yD+q7&5&t<~mOm=xEkck~}Ve0xwnP(1+}@aQK+?}>=CUc}ch4W698%@I&hbiI$D zlVsp|@}3l7uYJ9S$)43HqWX2e^)OD6t{E&O0_1^pP=L)nyO0KbC1|EV;fwMIK?}6m zfmm@>?3txe&L2n`lHISZ6;*G~!oHHOfAz6>jThf6KNV9LdJ{9Cv@;!z)~`|&iRvHp zjnO?hnjD{Aq@C1h^uFQw2M;H#r9(ZzO+k%dgJH(ZBUy!wOoh%?R#A;0U;FKAZmAey z^N=l&B9)NfmRG4a< z(jtP1j9Ri;A3Fece;*qYbHLZhd4rm?>}pHb$kNh(x-Z6dUej}Z(Cn}dgN;z~Qr%9^ z!D7P}{`xKz!Y6|K7*T4?p)i!{_0un*Aez0m?xh3%$(r^JD*MXgRPC>@eYo1&i5&$% zwo({-T?O(M8o}H}>V3DpI+$NQKTHd`VjTt^ad!3;Ay^T<4uow3J-w1z9P%)>AT(n4 z(Sl=7xmN%*2eV;D)pyld$tQex-g&Ocmc8CSsj9p%buJ0@%3Oxn9G+<_&iVnBwzf9^ z8haKb%T2S#$)CVk^R5_z;;$@EFI{)|m_o`H#+dM?(_?tpv^a&o?r;JbzfW2ZclWHF!#fb8Y9 z`u*GDosgr#LY^9_)I&iuD}mVF$#pMUryBpfyuOU~saBNV$+adwEP+mF(*jR2_dD&9 zW#v8jyKG5cx`6(2sItD3pwANj09qS{o=Mhrr(7yz*Tj5J+f@%I_Zz~Hn*;EOh-uJ^ zZ&V-5MwUHj37y~Q72m-NA|n={j#^5}p$pNB_^c&IYV^8TmlO2IQkKrGC8baBlY7)D zrB2;W;^_!^`{vBFG*RPzQWq1%L7)qkOEn?R(w|9+Eny6B<-3TMLL)mMKt5^WmK)26 znm(vI_6qb#Aw#gSvAvFSa|hM8&x0cBl(hm8#C5eQFTm-hb3>k?T_RHzD;_Pl{${c$sn z1Y5kF_F_o;MSGv))x*HV#HNj>Sl?3G)6!TW)^B-z2YF{+d}s& zx&#;`^V27>wc)#W?l?)_RC@@i1_*RHaXJb&XP%>ZQo*_-j+}EtVICFjLkF zUP}MpkEXwn2Eb;T{`^_Dva)hZQBm=p#2DyuLB(eEl9{CF(&f;VdQ&o+U}buG`iDhFR$JYIL4eRvXE(iNQ@xsxRA+1S?+my9 z`Qrg9?)+2Ot$W6L%CX>{(4By7`C!uZ%^6So7rNFU)|+e5&<03V^b z)lZOYkd~x9AuUQvfW+In0#34L&hmZwQAv3qH#V&p)y}I_|6%`oX^B!t{0>Lr_PBiD z!Rb>74G9L=K>2`d2+E%JC`uYUOpkf!@@A6hZH<@!HispLmEU=%pw9+$xv7S{ zY;j7jSJGJK_q>5T)HWX3^OoQu?|Oa11AtdlR1}z}6(((RLM+)b6kRZrL;vbqiv>Rn ze#jIK^7mn>sVuDqc4+HC{(!}TPF?ng4+;34(3$H8fc*XE&t#W?I`#aZRx@Sw#doEp ziV!?EH#g^TlOL*+zVOP-$+76Sa{>T^SY_|EsB3~1+OQD-5m=uzWMu_LDaVtP_b7wP zALgcjvf8FGt)YecveSgdd_pud4%jKaYWyIDMlKXGAX5JPmPAk;Yz5-3j)M-M!UZ+P zi)5mPpfc^Yx}9WzTnY+rh3q(d1uA0xPYh+zC2!vN#w%PkG4Orfkwkcg2Z#YRVaKWYcK*zN}t zJg8uO(SJ23Oe`*0r*yaiRH+DP7N!N5!|q6Xog7zjn(dnGig1!D3sk`Za|}qwH_wgY zD=9Xdb^M*|z1;HBKbP%Hw-0JYfqaBUu@l(&fR>r2@82~$*Me1bn2{A=$;6%Swh{h%)s{)Mv$L|Y&;|zw z?YLATW8Ga1r{o3(2L^&lN=iQTZy-{uSc1zZ^?tZZ@kWNCB*wAbMNwW?&cVdSHBpx;{ zE{hzhUe8>L`ggbUIB)xxdY%CHSHet-knH|ov#|e=|#s)zPAVisa9V`!uY;bt? zDwtkTba%he`v6&>l;D47U;Pkn47C{mmJ!ng@~f5X!cSuJu94w1J5;r7>}%9U$uY`+ z^TQD6zfVo6mQHt(`T9d9uOv?uWUJ7^%oTTZK4MTq+WRdtN;RSCnVJAaZ{-h^HG@h< zOUOAud_h*2HWd73^qB2c7g)Inzv4p>^MGVu8p^TGHQ~L`yjwPlR}`0#GhV{95@_-@ zYNQ)rCI|F|cDy8ZAh{Dtxo+vLZq=Bn3e5p{L(9sZdM&=K&UaPxW}xoComcAsGs}&B z!PrjVlpVSRnH{1DoKTce1(GNzmu+=4djd`U(>y_^!^RriQ?`KiSmjmh4Kx@^LF_v4 z)7*`hU4BF$)%U5kvMvj$|h~Pc>1MnVc5L%$+IznF$ z$vzeL0RX}${xv(u37vUBjKc6x&Uh&9JiC$XJ70)z;Hof)@fu&@A#{ykkWa7E9;rl4 zOnUo7I+dUb2Ni&}$0U^6ue+`OeYV|{oC~su;J6bGu+Awb!Pj540Njs4`6BCwz25;~G2F&o7l zwMt_6fJ|y@L;9gYl*nVVkY{EYQh~$*P)etHq-_ctscgTVtspg|yYwnH&{kt11|P#` z6@l!R$mhTNMa~E9k~g)r$x-qTiC;AQH06C$Ru;GC&St$>3Jqxx;PBt3{ky8*@W|jG z9$wCPG_tTj>cEU3h|%L6S~#W>mdluPYCVBu0g9%^D~Z2WNIfxt2n99{glvoXb5Q75 z>ijjxps9@vHyUoiT*RV)6$U5(7PaW8lh;0UXRw~?q~EPH3K~nGNfB>DCPGw6wIh;n z)!0d8%UjqXu@~!-3uhP6--oaW%rSIz?07que%e%x5#xlgG-g^nbAz^M0*x#OpDS!2 z$H4-lRp($?Yin1+if#72;?TiIAu73ML5P9b%_0T{tXWt~+%}qtzWyZ$*Ye*I_EHqn z)UhI4Kf_5Cw%6i$i4bcfs+DelNit}Bzy{uiVL(ts>R1_Yu(KoXO7U9zUa*B8f08O_ zVyDaGsf=h+Qc^(8t?i%(gI++z(V73<-C!=XdHC2nK0e0@1~2sklKPpM#As1>^zxb@u3%&P$N5^lzQE0;?G`oYH5_V(zf z?p2ipc7d#7rT=LGuF6YaC~-z~cp}YUZW}2|Rt8zBmy{bcjg6y0u}^nDLFlT^rCe=x zY8sjcg4F++fAF1-1#ySYgji}c+O%vpY~==Egf;Kqj|8v}@m1|B8Fc-y3kN$H-yjP* z1{50Psv7C^a_+y5iQ!NswxDM5}ZYh`yL@ek6!Um?q9;v0K zt3Y6O2?m4K3(g7nKe;N-R8~8?!ZU>*=GQ<8fC=@z%O@bXA(FV_T>YO%z!YJE#5gK{ zTGI-=99qf1cseq&7Y64jSZ@efa=`o=a0H7xYJX!o;^Ron|9jI&NJtNco91WE`I@9# z7y@P~n`s&pXF4%40s0@68Z|8~Vpx~aPikNhLh(A6kkAqh%>d;fGVa)XRqW*jAxb<* zuBnnrfiNfxx}whuF1h0+{|n$MDWFqB!htKr%1y-FsepgPX`GUB=(!F%o(KKJ@1vth zE;M-oxo+47V_)J-k_oQb3V<3MlAeKi7&vWrFmM_$#|>VJhHSkmv;zN4rLj(gx>kcz z{?>7tf5p%2X3rv~hqx;qAP~4IVW(*naG%K7KU=~}V0XdA@Z4BGGg>D^{AWIU?0~dE zLDL>*0=qHW3iTmWXFx_i`0JcWK(@Vinvso8*HoZ5eEa*(`&TLaFs2LJ@v>YJBY#RW z56S@qW#qko*|h+l38RvByolfM;AyfM$(BzeXY}>;1x!v(CX6K{CIYV;I^f7=4_W~T zUhEf5VJ;WE9Ag`{B-}=53uZorY1u2L|0S_MF7Xh0@gU1U6&LSt?f)3z0u$=jPgVFR zm`=w|3e|zpPgp191Yq-oQt+QP`t{rEX9V&i%s&j#l@6!4h>`QKfGfyVXd(-Ebfk@7 z+$dm|gvha3EPlVyej5xnppg9lfD%~Ks)tW!rK{=#HL%cdtE*QBoV?=lRWGr>$sbsT z+hTaN!>_vhudo44E=1vZy1!3B4jl*px$FaOFv9_f5$a{YV=Orb)`&e(Q&&s+_d~ZS z48botI+gdXL#+c7k2FY#ChjJe#aaG;Ya|56{U7s(5C#JyFsZdRXZvop9EJ1);Hfd2 z{;eLdwo=T16PpoGwh%jjmxOzI8Bfw?kh^qyW6;3U!rkVIsyZn>~;cNal~>0gV#u z9-i~R&j)aWpuVn!WH%b}{%qAtZ;N&QMfBN>gpV*<3qtx_@dn`=iGQC|R`!>3mjyp0 zd@^$K@@6I8tCt(P{-rB;|I7ck8crBXeEAajW{q}=zqhCMKTmJU8Dk^EfqqcT025m= z&DXb&RsiNh#|yfV&moLs{{y!=*{<`i{(ho1q%>q_aMK=E-h-Wi5>$xNat-qZ?rU}( zAb%n0!PxsYjZh6OBsTB*bbN)sdmj(Yrw<=K`?_+5|Ero=~IFZhd$C22S;FZLET+BKBHy53)BU&!ljbExe z=H``m7SVd4;%rfx!~D<6i@zA&zu)DK zHn6aTYCOHZd9;$9%~rAh=E9#fn$wN9`Tm?GDDE0`;Z+t*rRlDpq6rcI2QrjE*#UWT zRsZT=3s4rM1~x^Y&Uhnd3~m-+#%CMB^5(p`X_@ITDfGOhy)^eaGq+%}{QU^vKIi~m_v;VKqCY1`RYJ`{>I0h!o0DDz%a-CFZj}-j zM~qk?Zc@#6!P`H_6csgDa5U##rVr)<%wsTAR22Lu1RDKzk9{|rmuiz+_Wm$>!xu3e z_Qm)s^RspQ^Fi$*^Q+0>&>FI}we3WU`X;V~*sRst=4KgyKyo@3FZx&Zpf_e{BWhGe zxjB%5Mtb?B*rCPruatnFKS%fL9jY&k)LuR)J*TE9DuB2RQsB>jCN}stbBmB!;s1g9 z>V^npx4X5WHw*Jm>^_W<|8Q}!{a5A z4x5)VwW4pb%mVS%#fgP~vrYGi1;7{^p9Yo3THsbi@3hF#(!BY%_i{-@vxE|8774S7V&&kY-d_&W4p)ixMAbz z{YUOAlu?4zQG!8)sxlzevL>P7XtPS=Qb)6+Wo@%kzM#zZOeF;0wmjk{kxr&6`H*Fx zJ>Cy1G~wH*Fe05E?=Y@w4;6-O-1ah`PBm=!oD*%_uKF?Y+oAHvSMqMj_HOQamEY;H z#Nz&F>AT-7zkd0jAJ7N1(_P#>dLed)WA$uuL#C^o_iQ)cve((Lj!l>yn$zay=JN+6 z_`vNrt^K@_qy6?>3uH)|%EB=%R&_oE!$GJ?=hw{JJKOA(}sT!di|DHA>5=3D66AM8~5 z(TwtMU})A(e7CcI;O3UV?<&^`JeFhDqIC_? zY&=Zi+Rs`Ufl+(^>64Ge)OeDBHAA9ytAxytz^7NyW!$cm>92lO%7L$F`SFA7$}VfG z3^QY~MKgwtf%+spCil%`Nw1{X^U+cC^=fm! zSx@y+MfKv)4hO(&pP!zP?>iO~IuIMuAI5I@_N(@9zpla$?Vp4Yh z7-0JTWC}BAv(e;)(dlq|CckduNt2Goni$8#=Zw?Qr={PpBsHal4I7Npy&sV^ZsHOb z3?BD5X%${~d?z9s7s23vTB8P=c&j!vH4XURw>tTzY=>8f(Y0tqXRrg8sNs7a{@Di= z9bMb}Jd+69m3f}C*-d*5@e45BJ+bfxb<8YWHC`TNoo*0nY?7X|b7*leRQ0Fg7Gweb zq~{HWSy!Q(_wv;%TTwRX*a-*-%)cS}w>8wQX2eihIMLsU=YZLP2X=ON1Ytqk`dEh@ z8U%#48A)$ftKE_fxx*?eZ@lM<9LSG9$d>vkx%=AhL=l&Tg@u=&U)F@Xj|fUaT+;?Y2zf;o&j8e+=x3)9)YbK7drgY91}_*FGDbePI- zk4#ATj-^bE8*RY+#0-3W4ou32t$*5TWBXX;H`$lbwbtuRbtQM>rEs#HP~_g8JJTaP z^x29AKn>iKGO_WpA5uUQ`f0ru*Sa_T?^k%;cc{StFu_y5OCq`VR%52&c)bPWE7H`P zPgG%MBvVtmOg|X1*c}dgn`t9Z{u~{NmXF#Ew!`2FaLzKu{3$_8TwFc}ALpVA0Db^T z2>zm!Kk(J6LKYjp@gv|WfVkjXZlXqmmB03n%PK4HR+e_yh_6;3_|E6-R_H(gf!qcW zCssW_u6I$3jSRl_Z%H&T_(DSrBh7OX*hZx8& zKxW$rQUhfDUChK9BCLG2XL4R?7e1*dxlLSmy5`s}bnOs z;2L!lW1JF0nz~+53!rCUzK|9Xb<|zLV<+L~P$eZ-jsv%wub!5r9U;ja-{Eg*05W3> z{-k#?fEQuyA#qtf35|9}!0n3*y_)|1yPg4mt<&&eX?VXy!UP@hY8&-u`o z4vtYf@+~hzHj%p=i9m(G@%d~HR;9k)$hB9SBk^@|a$wfL&oR0Cy$UZaXZDY6pRp#a zo5v~1IT->OPZ=6uT$&%Ltd7&C!l8EfQYF_5=1#W|{R*NmN92q*$&6TQBbAuY{>~9; z>o^zw*!*U}4@4u>z(Bp2Qeu)v%IjnK`1rstZkY5wsx-5+dp@L|LH8T{fvan%GVdML zE6`xT0pBkId34n7j}n$81n1`glB|??P-6`WQpPX>YwhVt0p|d!gQ1xl6|SILq2}Y` zlaWch0F-jm%AT2{V`<);_YYerpx}Uw5>8X^Y>ER@M1$|#0haCAKCCo0rUM&UAd+E* zU>XQ}b$xw^R#kUn#m?Ryk;^Z;F{Y`TS840q!iKv6T)oS@dlf(qG-YmdSyD5@*Iqq- zOa)#B3GDwN>bv8)Y}>fCC@YDQS&|)+6(KVuAuD?)L?lVb2t`&_M#;>GLK^l+LMqwW zq^v^7&ilQ(-{*aw&-MIs-`)Lwzw0`$^E{64I+z<+JntFszauuJX)$l>w9Jn)ot^uj ziElPNp7IHCMu+eVoL=c)j(OGlGlN?E6m%QLRX!UA;a4(?U9VlE$6u13o~}cxtU>N# zoU8O^Vovm|2Kli_<8qHZB(qQ*wAPOwBMWpMm%5amrn5^uM`r~5FnG)brG<$a zADw3^d0p|?7dq_gKYXA(8#QC)`lc_+-Y7rAfFJ9k2I?qx_qab#x8T&ZxOube@-4yW zM)S*;^V9B0;&5%{K!;6m&$BOIRZ#6dIZI*^$vV8cIMwh=_LAGSxJGNdiV`>f@aGIK z@E`&~N=k}lr3|it$qnE`lTUTJGkeu#SM>LNFv&`K69Rqh98wPW>Hy2&LR({ue z-@bh~twTLd`lQ_o)>oR`o}-hS-y=671h~A${P`uDd}Y`(lx0$8-v2<<%g*gvx2;J> z)2qI?jngKW)pI9anoal`5gMbhe~bZUP;3&Zt?L{tf$j_BI#yU6w#5my`Y#~e*&052 z`@&&h$fNCoWUVO#l38f&T)v7La1j=$x^tIeRsupM7Nj zT6T;|g0h9!iq`_-z0&tXCK%lC_xBCn zBYRV-6?RK=tgpT7b;{!&Y@FYJYi|E*1cLCgszKH)gyVKjaPzmI|Mp|8C(-(&l?B6H zYmN}N?%ze+5e;o|D(zZKv#40`4YS-j->Wh&U@I}Pc>mV2u*fe$aSgjaqN8wW^2Ykt zxf&k|uoDTf7Vc^Nq{mH%(@s^OqAunmBes2@6}2~d$jOSB{uH`NNjPxy4TkCP2I`x6$8rQ4DPDTZ@$XzAHZ36L-M$e_3E#rnHTF^mM`=9C z5zK6+UOm5ZGVz)&j@^c0?vp-MDakPc;PH`!Ry{g*Do3Z*Q4IXyE;Yxn&qv1uzh$`X zM5H;Pb2oNNFVGM=5yI$BLUIymG0S*b`inC-G@x_YzjyCm!mphq>3F9}hpz%Js|sf{ zuoyV!{p-Hm+tXR#Ip7&a&AVs1AV3Ckv=cn|LW}#D+)7WT84Xg*T@9}P=??!P+@FvY z*EouGv1E_$s{?e7&Emelar`eUENonO!|--v7pKzYfI2IDv7H5X3!6A)GQ-XjJl-E~ z4$QL>-%q}+3)E5G7eC}E{@r7 zM30i#$4@1@wYeR(F1`TISL#V_X0dHTG1B1v>Krw!MB@3R=&rtDc1Jni^8Gf|2A$Y2`+i1tuxQtd8MZzdD7%Qn4nIbJS~b} z8D4K$Be?NJaQNon8msSy;Q+kYz4T*#n+xYQ>4@mTWDPD;Xt)zwQz4Y0g%AQ9bv+`3 zbQfLBmTULVzCRrCqW{Xt<;@Crqx8~E9QMo&qU|*ON5>@AZ$iX@`iSblNWRc?#QbUi z>8;OfV;ShN3Ool34b-nRMXPok;yQxLghs`jBSlb(t}K(oRg-WJbI@X2kpI?eEgXA- zzyCW84#}p@#phN}vA*v=4>;1^|1ts~va9x;zoSTM+?Py8;sKS>?h`!3wT!Ixyu2KBtIVWiNFY9x4Nq`ocT)oa>rZZ&sKBGyoNYod^bw0wae2 ziSDT6m@PmsW*Xp~;mtUW+*0TGSg*^@&Z8AG-h$ZFh-z%~tg~lZ)U%a|bGH~%(2Gut zxSs$F{4^>uLc`ta@Z4itu2ny8`X@UfZNPVLymHu3jej3PZ4PFNjl5kthAIcuT54)) zL2m=;+&vC18xouyuMsmrWI%1{K6lLrzK%NYrT$>(>WTDE?9dT1tK2fPe!D;Km^#1g zvpq_sJvNEu1WyG;ozR1%<2y$V2*l@274ay})bO<=wAjiqmi4OTk-E4m$+E+VTYsW* zx_M^lddE%Xw*zLb+N8H3v^2N^B`9P!|2}DOtzxhaw$X62rT4(G6S;2Bd*AU=jyxd4{n-wt&TON@tp4gJX)^PwKffb3mm^T#&y_&p z1M`XW#>!humjpj8`v=!XUXE630Ad$myxepwC*#ifmPp6%&dJ-cTnL&oIA3HsVvTVF zIbV*GH-HBKXkDaq>6~yodw_<^&oEyg^uFHe1r(a&ZY0!-^*4rhjab8a?oa1fAxDk_ zt;DdOUIRE2B84;VKcoKqehDCIGjp_O)ibBbTldv6MaS+psvh!uG`QX}NS93a=#$T% zVj>;X^KUWu$Vx_1^chp`2bX(rCg-H){KR(VkW5!$x;s`)G&1RmIH^eD!_Ob;&X`?S z7`-H&z?SA6!+TA%?A<+OD}4!`#g7^6Un2l;bS7v#ahSY`tPhjoh>68jzjf9|)dL5K zXq05hYvf&Lf}$(Njyk7Ov}H0m9$mK3!KY2oAy8(TvC&MJL&}RrCq#rbz4MVcjby(E zFYR3*;^P#*gu<*nrm)Xr&%a*&t=YchOMI`*k1TlcdK{g;9^+Bs-*>%UM(n*q7+y|L zyB3y~X&+Qq%Bt3+%7>|(ABVOD4tB`J0RH*>ihYz&`nF9-J~}%*NY?sy+s5mtcZNuy zJ500Ftv%A3!S-O%*)l)dIhe8;YR@zBZ90kgEAbiGE#_8(4rj-yyqM5Nt?%chF? zn$RZ|tc5#-O6^(sZ?&GwM7+);uip^UPH5x6hxq=3?fl&sdEDl3DW20*)JF_MO`pjg zYxwqfzEOzMOUCT9%oBCasXW@xrbHNyZSkA2aMjEzxacK0uSrWvs+qY5Q!TYUIj8Wf zDfu{(h5nL>FgKwA+9u`0(+g zrH>CQb@1q0PtoN|3lCu<&^)1$gah+(UgmWPW|s3Ag$Dc_4*gr;F25_qUF{=QKjG&7 z?YJ3?W=vN5&$&=Fh2!-p*8Kcr{m#FFawSI+M6`gWL& zr>x4&hrE>qJEz6tcGcrzVx3V`1{}0nB1MC{844MI8C*6q!#j!&9rZF!0F+h>HVcRJ z@=AV|tRg1zPyQBIpey`5l zZCYEN`7GwS-PtW9obdE8lMu<%{Co=shdc*cdm66ME9cIgd)1A z?BMtkgq494JIchGA?U-xoWQ_4{r1i))QNw zc;#H!@>JDd2a+|~NJPQ}&oYFM&i2pv#0zx#I#>U6(*ZdKd<-CqM0nlr-@*l^73ATg zrSiX`?2fWWjVm_q^V@jZvb^lk;R^vn&AWG`2635!84>S)%;SZwef}}Jub60Oj@;gM z57CNk6DM675T$8lYa65}i$c=*UpUZG-&J(Hgmn-scPy(=)Lac4>;6M>CX!Z`up85uwiqkOhG&PZ9v3z_a4P!~C>qUd~R&#gveQKG% z-(NeQ(^_hj6~8wO^V3%3qq(w^YZd=e~8MvMqEm&m$rs9RxPlx zQ8iimCcZN*3e}vh3ub0BA#a!zH#nkI0gR%+-E}}RpvD)p2i_DbG9!fDF$C4Dub)Jl zVKTerx+ai3YVhqaM!}=d({lkSBro{$(pv2RiUwd+Xd4~%dt%-WAG@Fq=XRH7FUA*eoDFU8CDJtcm%S#V< zF3e3b?9@SDP43%@>{?w@p#LBzw3xN#!6^YKhq(d0f9KD>@2)4%m>CEk;2zJL@`S1x zCf^`0ncYz;I(o{m=m&0a(vjnjBBY}8h%P_vT}0Ie`uRT8c4IFM_L7MR3!}mg4$g6S z9pE^0T3BKH&HkgW6Kh`CPqh$O&;vicS#~ZP$}jox|I-5a;_dYq@*^9X^O!BTUO@rO zIyg_}PuH!Dt{q%ENQfw~$Y^16+g$YR2`gvtr_AnuX&ExfvinAaIAOa<`=E@);DX|}*saUrM_ z9W}b;9!EVPUKr3&fIjxPu5;ivD0o~DyB?$=X)dw}cNgHwolOYQ?J|*xzI0>Pp4OAF zqjWtp+y96Cjj?H=mnQ!{$boRB|7-dWp{a;&JecwcVEHK+fRJzi2=QOSZR;cXohab( zyC}BM1FZG)J*%mx+T#%(fr-SOc+joBD zWJvwUAqDLxZMveIv1&(9%p+h0WTrtJjzx#}g(3Bp-TnQ6J&sw^YDqaF`i>415?5_E zH{sO^lpf>e8XK}0Y_dy3&D~-f&|<5=zi(S}5ww(7%69)yb9~vf=QBWn%z7o%!O-X= z3JqAmi~;<=sp)ELyfMYL$>Ip?znMA zt6pIys~R+0+CG8D9%o{~K*||?_nX|g2j`zq54z8>Uuj@ba&&eM7=5jDq6iSg9oWO%-u=}S{*ZcYEn)JzdUf%qE*4)fbO6fI zaELX+%Ee_55t}IUr!Zm*36cB>d=!Z11NE$2T}`^VYudW8cS=U)A} z6aDumR_kPAM$D(0dk6Gx6?=0=|CdFSYWQ1Bn@6haD78@QEwK*Bx$DgjoZ$Hx93pu0 z0bwo%(mYH@DBm$UeFYcaWdSO>@zfjy8kWh@904eA^L zD~PgP)%0W_`Iid{cZ}5U#a_|+css;AQx3)R^ynEvtp z0mDQ+3?w?nr=p)Eo$WGRIhkCw?A1*^MCJ`94R4rx&+KRfI* zr`0I1io3hJvw8UXsqkaibSAI!Dy3>hW^X;gqj*?|avScY&p?iv(wL%IF^Gaf{l{+G ze(3=d_)LaW2P_WH*mp%e{4k#4`VSAUF@LQ6F8z6L^X9`wlIG^>X?~zU$TU3>@#GQj zrgOy2N`b*#^WIJcIlq) zp%1P*^uAe4I6;Q?E~0&qCc8_Sqp?|UxbMVJ@1Q`{&zViu2M^JORoCq{Lvt80d|Fmm zM@U$SUiU@mjxgJ*o+|#<^^wqE){988Iwmbm6=wra-jo2#$p?6mvuynLZfKx-glf!W zJ|Vk3R6?L+^&#~mX~nfY^f~5bHpali5Q&X`>h;R^qzQi-mdr=4yI3KTgJJB^dNTGw z9Dp=CMNTG|qBrcJuP{B=6RW-M0}k^|dDa{IN==iZlAm5$-FtcJMPhn z!QQ>qo2zEkOaq#(qf^heA$U-Jkji(%Pe`zea{cKyzN8kMeOW;-=SWL%P}WyII)SyT5+*uQJSCBmt8b9MnL|74hxdUtG5Z6dV9)VI`uhlXjTh zvmqyw(g30w4P+8ZDdkL)Cl(>q&SF}Q;@XV4^4J# z9O9Oh?a}i3DY`tkz)5E)*`myTLV^S7kVoq6(e~@=~NW09|XcgwUV{Q_$|E?kf3rprfJ+jB@Y80vJ$UA@s}@sgITvyGlVxr?RhHuhe24+;jR^b?dC?6WclxqJzdZEhUXijT0*2G z&%L$m5u7L;rN&9%mzuh5x5vh{p@>a}oq^O+cBpE7M%AdolT5U5%(~k|vWx<1#dMRP zTY2IG9*0Gb@1?3Cn`Ml8tq*1?DJeblv<5lgcNb>J0I|zV=Kc^6ZE`N1$f~^7y*v=B zT(E2RAj#!I1JdgrgM;f-v$B61hU-i-{eM)hRsS6kOw-I12h(M4Z=bs+6Wv_0nE-b! z!nhwr++s!`SgBco0YCYL`<_jFyV>`Jq7X4JF(fO<;Go%QjvdS*=L&ED90Q-T&b6P# zO2#&=;C*kchMI!2>B}?4vd6Us{^NTY^YNwLuDJ(9tKr$>fuJC$E^<^TK2K_5`qF^k za!KE3$7+{pfW@VpX&F`FT|c@igQBW7Z@$fX5_K#|>trMqSgtjb$$oi$Qb$J;KEAOH zuFR7QnhMn9GvhGM;B*ENa;Qw(c|to?6C+B32WQx_r^%a(x&>n2IFZ;}bAEM^`C>T5 zAESEdP>kw?fN;Wx>UKUZRLlAKqN17~k=*I(>T2GJ1p+NES#uH9B3+E+wE%X(DNuQD z-t1E44Qw-8-s-0R?9bAO$ETaV5nkKvF>5s%Q5{!D7t%161d`J=ZPf0PBwr~1~{E2SRO$kblE+y?FMTf`)^ zF+FdzX5_x1gTE+W4;>0A%7H7}+`#x?9tI4*Xasb4fA%`YK=uozt8hy2QV`R@u!hv0 zzUivnyzw*f9^OOSbf0_>4*~Q80UkOjyu;AnOFk?pn@K}um!KYZ;)Ggek+Y`|7B(zM zFrL?qiId>r^3aH?gFJ~X~#~#zkAmXYCO{6MUr0NXSvjShyS?S zCvtHGCex*58drFh*tdhfKpX%L{H0i7bub*amvZq6-*XrJRq}Q#fg{k;>n90VG zp(!$c~B&eZB)>+;r9546|pdwu7qQB0cg4eP4|W^SaNi z^EQe0C5Bh-ty!=k`pUq-Ae*m^BTD5;9hLZJTP2bDfdN*uFH@fUqAl0=*(YZ>|qX*9)t<9-}pW~@M z7o^yn3t`{Ge)Z~|b^coJrm=$*fd`v@1U4k9XZ@Nw@Y#M#bdJptlZN?NI>x{YZkk<;9CnKHQleqkX8t zp{HDkGpd2&<&D2Vo{#PF!4=aStv43}Q7^7D$Q)Xa{owX=NQeE;o}FqHmmGc56c-tz z^6$rwopJkMiwOhz#=4$_atPP}CT^VHmzq)1AwgEm$KNdWA_DymNM%q!ubz0$_BmZw z`e6nT3>`IE8<~`I?_Wd?tB9Z@_3iyxFnJGLA-+aYNq0n(C&4U|0U1F;}0V;(T~@i7dRLw{YNEG zLA{f{k)!htghWMk-Hp%?g01X#dh*{Hq<9kx9bK*8smH&j)p)SVLAxub7fu!NF*gu^ z)QI=RkI6hqf!gRtc5cVrCAA&0k-E2H%lH`MXr7i7yl?zTxxP+UH8|KV^X?+2WPboo z;^!}4>dna@a}RE<)uOv`&)>YcaLkH}_O6h)c-O1q0#BAEt3BI@{D$ss2K0YWt4o9{ zoMd$#*M#Q?m9V^fCeyujs0B(cBA<_qv6K5BvT7&yB2rJ}RD9gHTfm-#Pd^+A_*^w5 z1Jp8W$H%#usZXE3Frpo(FmUXb;>5+0zbDXRGu;)SIhv-Ynp$sphzuK%|F{4i!jLs8 zFEl{ldS7j~1;W-a>en?zU&IFr*s6y<<&%B~!!OAL-CKrUQ++PqgBZm&tpvwsU1z3p zo0pDZlL)Q z5SMS17MXI8g*q63`;LawoY5seH+}#BsTc@Zf``xE{MW&JJ6{>@=*wbBy_Sl$!UvYU zWDNDCYio%8mdfVt4dRE%s0P*usm7ZrCxIKdbe7t6xBRQ4=(MU;Uuc=gB5vf;G&!Lm&CeG2>@ED1Mr)RLMq4LoAC59a0RVwYVZ>Xfu78dBLjgt& zmEN3HW3j@6#-Pb52BazECYVJxD%RQDjf0pa_g4zEE^dC{s_)2bw5nvnkX4IJS72fQ zMY!p5rONPjLlI#VXM&vgvzKd22H0BJlsTGXd2Swb9&Db!_FTBh>t{z|uZsm^OsV8l6PudP8wIJyPSOk^} zaGL)VM<99L7ceJ3H->mxPxPy_h=@*?15JR1Vw|mh`29v|1oN}7PvcU7h}7*Eady9r zVb6{tUo>bLw~w1M>kmI~KL+ATcZt7goi;xs@tY8v3J0FV&XJ2rY5h*JF(x_jsBthb ztY|vKFu#B?D#LEcoDoGwG0)*5x1BjXjs?86MAssmFz&zmxs`G5mG>^jbv?1zUgl&1 z<>fZ6DmJ6W(mnnGANq|l8b|3{IY5^{-f=->8EKLu_F?+qikGQJxP0nkJMmWS!@|*x zIuDJuMDp{`UG)g8`%+Zr$ug=218(ahr5A9Xo*K&~Zmv20 zu01a@(%eQ33akKys^r6c!bcD@nA6oZ;Re*8Jwl#Ym_5BUJJRG*`<;7=?0^w`QK&)< zM{!2y+P#$l`tVUkUMWJ8gULI99kREzc(5}0c1?oYC>aZ%V1%6o_yFG6kbf`jOa?IgQ7As#YP9b!Jm{qP*fsBpz|x?i;OVQUb)9pCa;5AiHWN^QY|**0JlO+jMC`?~(9%B~R>M&Y4Swk z_=)*s#k)QM{=lH3qG5aNOGSK&x;zem$(KCOWNH&wY46W{MSO<&aRR@5&pV7PK@0}I zim2|Ufhn;ALT8{P@1f7@P_qf%rh#)q@)j`@qLU029?yEU44%7QL5@9@pLWiR)M*o# zBG9&g2rS}zp+^=CAO<-8zw=x^_45LaHbC2$aZPudS!g&!xqR|E>_PNe_|P@D;GtiW zdWR~HvQD#Sm;_Zro~;%ZD8XQG;8V1h)yX?P(&i&bOD9a_k<@jK2lg{dYfOv<-xocb ziSyU5h;N(Q>#jsDw4A_i5?ST(kigoU7rU*K-ugL^jV9M-JVSdT_3q%mnjA__J(_FT zUB?7k3L>-Xh6t_ZN6N#QXYgsX+Bq@i>e@eLTggGhp_;2-!xurK=DM;||6i zyELsL3wE^gHo;yqaZ)qtu7aa?nEGCeU2)Ir9DAG`*ED?VRm( zLZ>T(R5*B>3uePz4%-BCOn%;kGEMjBHFwE}|IQBk6FhFqv<;bhCQCSwS`_p#&Mv(* z<}8adM;R@3F!qN_uMOEo7CrM=e=Twk>oCesF0D;{EciBmqh?m;pC%QmxFSC9QxykF zJ%RCnQ?aoL2IVm^O}U7ZHimMAgSW`J(ABTrej%?z zKCdIrMqfKe$K(@i?^uSoI5vAmgKr)oTYMcXCEM2uO;Qhbr%Am>%|GVNFYM!Q2CKXi zpIY`s3MX`~h5}!+Gj$w`EA#0z>TR|cb@PNCUogkZi0krW!+lCQI;>@f!0BOJ3Fg2Y zVhqD8b$@f(8K0`VhZH4YQC)>d87(DgjZ5-#@lMpUAT9-&oV_8gvj|W6ACmI4>f{OWy$?5 zP8hatfBbc$ow49L?GakM;;?7o%F$61Vn-;S$)`_0=Ap2}1@Vo%d!Thu+11Os&7Z@< z!yhdVI>%;jGjm5ZgOAO;XjRgqQ4%u>js1JMyY;ufkmmMqC1!T6hm3Y!>+0JM<_|NP z?Ci30{`<_e^GEjtMGN!->%+DuKZBxFxA{O`#ijv2r?oz;dp7!|x7}^VC$HU$I6PUs zTWCy)MMb!bFfobpQBG=wAAYZTzyK9}52q?ki{=@YCni*W4F?L8sdD>OMH}K%&bAVj zd87%%b^d!UppAti&)NALgFHHVd|?ZFn{mktK5gV$WcNS(VucE!F^yW zAuA&~vw#B+Pcq&8b1ETbU-gqRo=|y_Ge@r_Yq0*wkKD|l4f&{<=k=VPoihIvcsfL1 zS{6b&jAh5vSO6uR#m*cYpAf;kw`a=M^J)7#Fjc-9_?-ft;}Qky7ccGF!Seg(u17CiUk|7fO^28mDR6LW{an!| zJ@)?xgg2SHzDeF!yGt|g?hR|}jJz`^&m1Yfp#`dH@P)P5GfHK@_)eH+?f;x?T>%;9 zvYokM*AXFna?A5quk?>;x98X8g!65x2Cp}scX<6sFHic|o*+H^oZGYoitJkel<(X= zi4D8Oc6iaV@YO3WYkkx=Hu{E&g4W}cW3SVw%dN$1^fiKj7ro4-rG@W+g}<4cOqS;( zO&HXkxf)xXUrA~lk3j)@N%N@mw@U)bQ{$b#Ym@;`-~h(EWOz2M?EW#dQP|8-RBUeu zF5+uQ?-F)fyke|H#;Eeu6Nh$(YdM^~*vU&(wvmW_WD5YBK+JN+KaucW6~R>I)B6MM z?qJ`!!mK~{IXNX|rZMbw0&R%)3&Z?KlhpC+qo7H#p7cJPM1cyZ?9alF(1uZL8Yt_3 zO@~|=`lp&jw}k_1-nN(Uc2({pwJ&Mv0?HePeKVn>(;%a0$Hvpw{Q zp{)!hK~swgcM;|7hX5ER`9!tMNim=0Y3#rIi}>hb^LGJ~NIwo_le zqvjM1W{eIHmeAxJW0?I?2lknm?0s2AQNhvCQHQyR3*Z>0=2j*Oe)(|7jJ%~jdvLA- zGc4*Qo$@+D=H})q*ZaWQYLYrEsEpE2GX$ktl#Ajv8W= zCqn3@O)|Fl3-dH|KVAM_W13%gL=s!zGszuZ9v-h}NDpEsycZshjhc}sm7tuJ)4O|m zQr|F$j&}}wa)tem`35XV_75h5@dy_kdEoQP3~fo)GswE~ewdmUtfxZ!zOU^~ol)Or zhgv(;)vzo7(|`IvK!M5JPbW8Ea3sb>hM#;2GVbon^+;kU5=nJ_hj7gG|7ihU4X7R0 zz7quXXuiQ#SWARtWo2n5rfsQLwCx1mSu`L=;!WSfgF=9F_#owU z6h$Re6Hggp-(b#OUe-K7$vKP-W5ah2&X_>q1x|A|{Cau%(G(jb8e9p1_l_|&&c5+r zM=xt~XzTbPGs*n{F-e}z#QP3kPTNG2r+#jZHVYyA|5xtG!#1a&LMB=UV*)Q@IPG2Q zp-l7LYPRz>`HLZv*kXhzk3aW|w@)y~>x#J8wV zm@9ocQ6_EK|qN&mfHA&L%#a+7Td$XlVkp{<>K4}iVD3-?Z^uQet_Di{|aG_EouwY zo7hZ@(mz41h1+}^=PO1lsFpM@4YE?n76I4-v%*i zLLb!DG|_qrn3j8dn-?@G-A)1vk^K}WI)0dns7M%?m=2Q#+P#19R4nI0dTV5Wwm){v zIw9OAW&-;|_3(M-WOQRS2G?6yY=L~j!LHi+S!+byq6TB-b|>6p{8TC?_&;gUV7&HP z5r%UlDKWj3PcBxCnw$i2M6Q~XzHBOnpXRV(sDMuQeCE%gL@BTe)uQ~yZ#{a|Is?Z$N`H< zS*^*=rPl#PhL+@oZ{p5!A<6)clLB{w+EFKhgaBSq!MCB=X$ZXIPaDFxh+cQ(5Lf2L zY(fk|sNvZefiZ4xOj+gT#*CGXP3HFn!@nzV8eG2l37RY17R-%(q7k*7x0TjP`&n1C zzvjc>^8aZ>h=SCpFj3jY0b9a6VL2aTZ!4OfJP;3>1N*HK~OvNB!;gNPzhZcEely)4Zg zzsC%*L`Zy3v);&S7!Is&m4wR6jDB%pb&sOig4#8h728kki zf~lz-h4mHYU}(@lwa^1)?+E>@3N)+baR|8iz%Oal|76uk4!KW7f%uHhnL{=L)9u+^ z@@}3Fb$jcO@n++H_oK+i{p33!u7w|q5GC5%lLLX?FJN2^QH8Jf&qbWwA@5EDGev?e zlm!i=mqJV5|NdR{_=+nc>Z2@FMPBR?#9^4cLzp`{u~$xnaYr-6eomGQSr_lE{deZJ zzJCN7RNa{ZoiRXffKoYsIU$F_fev-wm2>i3c%OB{8lZ7QXK6^s)hNCYo(#^WpeX1XdO+x2xeR+ z<=lH9oa=IoYGwnkLyNUA`XH=wKvwcIYT~~v_?z|m>+BxxIThSgf#pC+68wz<0q4U- zb&GflbFiG+Lj~!jE|HCW$vgw*9(<}t9n-+6ydb+qKj%UN$bu)>OCIR)iHjarTFuB2 zTTtiU7d?8j7Bx3E@nqRstkKcYR7;}BWC7bU{Clh!O{J5XQw$nA+z?XvNAj{a0dpzmp+_yzjEc^^$Awxse3fZe>B!x@h?c$noKiM50%e9oZ)wP zYzEH-ywpvs4dN|qUOstY&9J(ntk~(z4c%1In$P#Gt(DtS?lnd~iETRTwNTd96AMz+ zT*zQfCaFdFrcM$D*Z_*b1z-|T?!ezHkX;1b!Vg9S9!rP}?A!xW9+>V5vfx(e;!!xu zTMtweI~X#0Ylz;F9;k0b!#2d*1zA9`CH3b9f%s{Wf33Sy;G)fIBTq~xt04fG~-jgaJ!v@&WMcdy>BwNwt=%WL;Bvh1{W%&Q?S#)TKZ$&&*FhX z#L9<@G6Axy>9VwcH((|>Yxj6JX@I}F8RUF7UhsgAgr2v?TvO#H#=?B~^vTN7(qB&< z@;N$q-p7PTA3vnZgDeIvfBG3F@EM7{0%^GIUJGj+u}J{jdS0-pw0*2V()9wu{*N0O6PNa~K$U=?g(tG(8BnGrN zjip+bFa_6T0ufo!s({1#z$uFy%s-t?pASN!HuaYF5qd}n=$oZcLE&#+vt+*}TgxZz z!raw99TPo$6bK}Ik@Pc3$;lZBTcuA4C(wE7gX5cxe#b-~kp1InFP@zTo6@VB=)hn} z439Orv{-FaDVRkI1}-)A-CK*Koc>#pGhDEIfCFH)e+<>iYj)x9K#41a5&Uz`|J3`=PGvaH@ho2 z!(vtmmq}0Rv3u}$#Zyfyr31B;vBjaIlyc6y+~li7BEgR zxy55F>-fcw=1xx3a3fQ(d3n)Vi4j*|nN> z=hqeO$(GxFK5IX1zSI!|8v)@9MOCsS(6OT1LwT$vl%=TUrU|TD;RWy#d z0oJd2a|T|L4aX*ZOp%R1t%54;@9Xd@@Ht6t^qLEatoz*gB@gjDk`#y|7pnU@@3W{# zn3$NLW+2#bDMO$3uW94%n>$P)ydxByD2+gLWu)F+Sg-CywZ?z+s4k1PG47)2`HB1A z1NZ25T`s$+jVXdS_=uSV!}-qM4lNC=j*oA_oHhru+(Bk)h)4@B_s~5eZZ_UlU`vFi z@zS;#*X5uNmH0@mx<_CLmqRy!0n>Rv6qtv=n zyOg7}NfpNv0jxv*0&}qIubs_B(00+^tGxQ-<8V_fA9w|jiCJ;7Kz&OI|@fmOT?-X|2cga*}vx2WtDdI0aSJv z^blv0l&CHU*~&m{z!V=`?g(oi`HBd=2Y6it&3%WC^lT7f00}(cBMSvFe@r^>pXIvb zkd~JmLm&&#mX^7E|Bz66CTn2+(b7(;g_HQPdz;>UZF%=DX!aFSXY`%B;GtTCr>JG+*(Zi_JN9|&?Zk_-kXFzd9YnR4(xutOK>c=yH3d2$2TtF$Z!xCPS1tNMJg1)g+}vcp0uIZ9LWl0^2_onj#{A z)QGMrhk~Q{_xnwKy6r^7L}y>(#F$w^w5WnWynag)Y7|$^JHK4D;r1pWLAiWQHrSac zE9jjZt_wEF9lnmeSHHlx2GS0EygptQtPMyeuJL{2H+%g>l*4=)@9B6iB)Sk4Rseq{BZadD3>nanFt*3%kpE z=zj`fLde9#CE^(L@K`oTFwWQOz0$~j?6Jc$6KTR_Z(Dr9uG8Udt3>yynK=(h)}O<% zmDnJEArAkg_}pHuGXn8@zx1_y)Bq?(*a2Bq6%T-Rg2T1Lh~$)JTkF)K+p)U}(4hcD z)Qx_3_iupUp>Glesng_eyzxw#9J=#TiUubz*bj8WkL#MaPLd~vRF zsbV+M0IH*&EizTjF?sx5`GI?;ea*mBYFD8Aa%+Uob`oOUa4QWo%+iLz&BAk6+2^;! z<+pF;PQPv)@Q05qP*YEt_K{-d;J~ysiNA(ox(&-tQ~eD#JB) z#%xvlf}rXVpD`#3op1K`hI{1`7Sw+qd+eAWMoYcm6Bxjx59IZdLPtwjnqDNXCOeAp zIlgUC5&5F5t^-z>9Fw4g?pcBhvwxxlc!=IU5eY}U7p-T$=#Ow^M*0_0E)gJVYtalgp- zTLz^79uquw%PM?dAu7B8I_8dXwBb)>rc1lb$r!XCQq2dAD!#{yAkh`%54S+dJD zyAft_Oj0rghI~JP_r5TVhS-UGy}ymEJN_>`2VvX`NZeq7^1xdC&la@L;0@@zVmj=V zB$%BhIK~a(Apk{>)EhRVVI*s=PK}VI6U@{MVehOizg_?4lHO`?ysWlr zcgVg)8SG@(CUVAya4W(4Qfy;eQT^N!B7p+%aQdK^2m)P37AD%-Lq9)pXtpdgx3t_^ z{fR8(H~XQmFYi~;Bcm&Wo=oD}q)v+~YdppB`_sO##E$EA7{-z>2gs7h{B<$cT-36U z-K%l-Y>nnfJ&H=?s6g~$uy??=Jy4IA9H+0stN~wQ@*9|CuSI=n`&a#sUrN>*YfRfLd_Zub^sF{&0>J148M! zPC28eI-kyC*xnoC6Hi7}wX(9JaC}!{!gdpKwhc&egDKwzw5k*u+`D^s7h|Q^L5Hb~ zE`4aXYis>!s#}4}dat_GFU|dKuD-Rr`&3}YHGN^x9T2xyfB0aYUx8s{-ZNw2|6i@-yZ2qg?PT; zLB%ZpYNE*D4h`3Sku9FnF(`8KB<8kiExswgvn|EsQjFT-fLF}gLF(Xu)nBA`mtzZ_ zDRYH&8Jhi5s!eJ7{=hS~5&n5=>3X&Err77(X_rqQOYoiX+0VdH^XdPB{nLpLALi%9 z-`+i0$d7oDfp){ZAC4VUi#X>wh6$5&FyRFRs`LN!`y|UmbAxF45lm-70a?qraPiik zi_71*WbZ=WhH48w-=z;1dH00^70>Nnhqz~wQ4`}20>fTwi+$&YfMICooBm%R5vg`s z&M+uyA8Ui}>6omn*^)(5*Uhz!zgcO6<%!|VW4V%3zMY-s1^HhVJEr+5eY{t^DnlmE z0U|{s4^OYhPtl>5y}tI|os3kUC&=HbY|rMjw0X7dSq166u*FSA>=Ca$7wzlUmbE)< zO(CK;l}06>EaRQH`V;gUB^U_k(y!s45f8;p&gXjuKn$59Td-duAmB9*C`% z@V`s(os5@;Mu#T0{>r@?ngFdn+7?yg_vfP1Yj((mb1R?nTi&)!E-riM{x;qriQ^wS zZ(i5Ml;O&2x*LDT`-*bQV2fC+&|T7#PPzL1)b&N}Yg0d$DnG6HRDCMGmzkLvq@izL z<0Eygy6m2!_+|6_mqmL*E8M>!Bw;TGwB=HzbWONr?hPJoh{*fCh=%!^J!J%LjnHE%!39LKx&Qnc=)LwQ^~sad z+J&V>MgHlhBgEVc6%xf?B2@1Po6*>)gQcbX?>SxmeRG+DHsU+!9#SKn&A05AcF?Ik zifs;N6zku(s>x(u&&?rHkk#w?M&NUUs!Y035aPuAs-<83-NhGoBgvGbm-zw^o7VKx zFqTPJXlA$tsqFb{x9j<>O`qxR!t_b2+S&_eD}ZR8a?^Tw!DPu6x)==CvBG3+iJvdp zIGWW_ZcBJAKj$x-uwKLV*ZR2_V{}yCVPN7rj4H^i39+@#CR5nPd^V>#- zU^wm8suvHth&;B|7WOpX7LvG|s&$7WPWnR#g9+B=D6h*8vcshb6D)KhLp>K$bd_GJ z=O290l6>anyp%#JjepJ1%X2@vHJ_cdw;@NVIz3Qf^m4GmMEv36)|*~l$pt~oM)&VM zOE|Fi@AM~)XUlz;p3u*g4PJV@AoIhHuDgVSJ0iW+zDwrs;L8s$A;Or)n$Ov;kEcdlZVJQI_ZLd6%cEgrivb7(EoqG{?Vn!4zje)H_mE+n?y{^?CF9HMeJR zzZyf29^gL=o~yyMvT&0!cVya#l&|qjdm!`L?dJ$1=yoidH2l#XjT ziW!~XPX64zlsz^ZkcEWnHx&iHtlR8Lb36CCs2>gbb(W4(zW+BK9g_2Ai&HizQ?QtH z=hlmRp4w>_H;m>q8@jBCSBW;i-B?@FZ=ubO2a6ML>X~!sA}jk(s>;OrXS1f_c~O{Y zfPsF)FWNME^%^a~r!+=$HBVU@b?a_!U%^Yr_sT~{jwy{wvN{L7M!Sbwyli2x;7i_hvA??(3_6?Y1 zVWwiue@=GehUXLzDAm&L%L#Nmh|mqxN?IZc6k_t8QZt7a^B z17qW-s}F#2=h9FI%HRJa4us)!1gmZ!_pj~a=Xm$jhI_)DBoN=*8Gc;~XwqzAS9#XL zT$uR49l!v4%>Mq42iY6EHdAF*_(}SqMyTX1qW8P`^o*|dVUhOZsgw15F5ZA2n(*0YWAv}YA zkKixfzgOuWdj_-~O~ilRVyJ&{OheQO0tRVl;MuVIpp9`adwAlM=mQ*uyp)E8F8W7L zX_EtI(@2)k(jS^wy*Y(*oML@se^vExT`(N_JV1(ZP#|?cd$4(+;-(8meV4;1{mn3n zJ@XB_(u0^-$ys7#g7?{zgEmAJ+8E+&`{t z1E?N}&{lp?A{)`R7#DQXFh^qb0K-Ps{`Z#3@M9ezVPRe}f@j)pg2Bc!E(Eed^+W+{ zr^cKHoj6qlMo@&IuEVbd$eW6rn|_^Rbnf-YyEviBjD0n=mMgQvb=@TnT|t2^FjIc` zpkDVR0E-O<4qWbKEErbY?!$40#e1{_4d0A=|hFNDXM1i~` z!Z3nv{b9M@=ZE26+b}qi)#=UHzVZ?JXG5pbRiaoy423B}#*uAz{mvP|3OZ~;JXi<+ zl8da^)(j>Jn+3`!kv8PqQ9lV3ototJ-_@zPFlVoA(CHBq%!I_m^cI);FqSy&(r=Vi z)E%3lMn>VE~X_pu}jRXfM1C(S^24^=dBQEO|!?gz0FP}Rn zqOLGz?4|C!5jP#?6F`fCIQU}{65aP*IYs-1jE-gbmYDp($=<;%Yq@FGozV@(W8{6* zVfuabXjZ_M-+#)Mj|TM8rCneyF`=cGoJZ%l<$P?7xm`~;?Yl0#WK*o?jZV<-ZPE*D zpGA=kE=(&uTDg7@kE<2q@Q~Qt=)b)~1(AXqWk08;99DByP-j&~4-F{~&(?7;b@~kk~yNJuUx95vGejy#uLm`__8HE$ageN+An`F|YW7F2^y5 zSrE|NvHX@xMr&1JV=m&>J+$1O);HlY9{$to9NcJKi(%t}yqYA4hjxCat8W75SIO|P zLs#EAijCrL*6S;|tDK%Da2d1Qj`CO_Wru3h)WUzj(eL^5=e{T&kb8mm-|$Ox5*(9* zn}3%uxYT(fEhpA0S5NqAUegGsI@gV9*IO0}w3feku^mkX)+K<`jtZe}ax6E5vw)gL z+3+j7-Ws=p#RyYLj~;!~H@Q4H)w}!#RoL`E|6$3>+boL-2?u)aIY7D(-2en%Qbpy@ zHM#FN6=7S8bEL-j*2~VWjI3lQo1_x5vp1or(2(&zF3;!xef^%-{d%6B-0u6juJ=06<2;Vz z3={1AUWD~O?=;}n4dKLSm%c+iih89PCO)GfhaJ(2(Dw6#cc1hD#?r4hka8< zQ4t+up4%IM^9ISmYj^NKEajNXN>p&De*MZ1Y#lm%sWizV9saKJnk=VtJ19SSGf))y z52eU`x%9cz<;q!dx)BFuTid_A2jxGR2v=LuJTBWJ&Q;1v3B?z&D~5!GM9}aOQJ$fQ zgv9gSQeQq7MiOCml1G*}DXk7)AZ1dJy+#{5 zKAB3GB#8N{{;x$lOq>YEKeUe?NITg*;XLxQQK$hHTw#O{-5Y{dK+Gas+u=t(bCSLz zl*Z4wk6oZhWVI?;sP(qCRu;Rd*$m^Ehyy1D8zWv*17bowQ0u@frh-piaejUq?M-&5 z%^XMHghVjun>N)Y2^VAWN3cqDiK;B&c*Jg?B-&rXnh{$u=6XC!TcwZ#d>sY@$J6bT z`Pef@VB}E1o4k)(^P<1zKR#=xPOVE?F&?Y%1Me3eG4}aZgs@iFXd$6{ILvs()bQkQ z^k{E5e|`Ca!S&Up|HNT+jmB%vzA!I%)8EgsHtDdY;MASm^&+L-)GEwS=?Eaqgsx!n z>n%NLkh3GG6!kk!ScYI8KsWYU%OxI zYTWu?Y2V~~kP7*`Gw6tK#T7YTxIP7|t{^Bj=>()cf7pPYj{mnNNR7QCQDQ9Dc zvVq-T{S~{QN<#Hb!=^aA=oEBe*nL6`zl@KYH@YWHO-+rsm-TgJU%q_#^xll2SzRNe z+kM~SD*DmfMBL3R^&x7MIBL*{sd!1xvfyiy_L?1V5u%w+l3GtgFAOd(7JW!zBDz_7 z_Vo?kUT8U4#nIg^trSIdd2d$nn~5b(V}u6>ZWO(KN6a8VcLZqF`&vxXN@}o)`ZWyb zGEyaGVb-G&`+R7|M@9_E260``wOu4PjeJD}UZpnu)PNiK996fF>zUunVjst%c8)DAp1|8lg9CC@l}0 zc3se(u|Ni+YFKgrSvN29fN^Boxtrg}Q{8RkRMXp&!xpvUm4XFcA)Z$;vqNhaeKUc3 z?+X`cQy(I+F5agPD_6@MY9be^W|OWUQcFuq!}Jvz#_5P?yT5BPxP#{xi$3#^$dR)k zXg~j)NpYIxyqel5anZbp8? z?C`Jq#T(Z7rDMfF+z{2^1%wMe9QGwX`b)3CYTT>lTC1ib#Y7Vv>(Bl4oT*5FW-@9) z6-LIrv98CH+f>NQtr{=*Cm<3Brvt$v*l}*_53h=5 z26xlIM7w25KS7>jdlAcyf6L1kFV7o7J-MNn6+Usokhkxbr?i{CB14$G^zxTyp`It! zVU!(+%3Y`SSM`)gJExkh3??QfPm-H|$LZT!{R{ZsWL>7ev}_}=4IRV&vxR}l5JC+b6gzD9ysUeoQ}SxLxlZbY72j-m-%gbsw<}N+r~{ep15v2|Us)i6 zU~WytDHMd9TICr=vW!=)1D#J|qV+Aii9ag_$Q`;y<5NEPGySJ`e@>TQ$?G(qRTnsl zrw)`g(f7`-_hrv#OkD{U_;hUFE===!!Ivym#)7ac1A?9h&^||7|9BI!appI922Fp$ zp>?3+{4lZ1tl2iSs15ng`oI01^gPOYxhKNTUbdBIU&~~-@RRAMH{(aV5?EAnFk)(Q z5`26W|9a~pZQp??jUjf}N4|r{AOMpCLTVS8nkdx8TGAa;$n9 zs5fq=mBjxcor6K<^z?M`Dl;E_m>tbW zt^YrE%o5AuZOY5JkmS@mF(`T>hcMF_u%G(O9?ib!C&h>7_@$P_{r#7?K1uPVi8am$hXuYP2fCoE|`UU8_}%;=|bpig;h|rRw!-0 z1sVeX9s$TwkFCzzz^R_@&%(*|g*G#f0k?Qwd5R44ih=CL3C(_&aaqkI@(NzK-En`jS1TQ9Y6^h+!(}3o*KdYK>MJ7)m*B9xuZz^iIbtUZ5sXVeRe>& zDg)7LhIs0?TCcv@CEl;D`4#hJPvxI_q2eSTrF0>#*w5yTfhpcp-kMu3=leCZnh4uA z{<;t`rPA>p9HHfZd<}7JlUm6}5Th&I&vrkSUyYv;n zdEY0Vpo3^c)smJO}P` zgBNWJzy5yIY8ZSMe4*8h|G~M?*E%~U8I@t!CE8zi_2>iT+LW&8H*ekqBpWSQr6(z1 z65hfgsF}P{wKiKds+H@lg@i|_s{D}VjiP9w(3oZVsM@Nf1G(#$W}QrOeidp2rFhfd zgNPMYR7aW?kowbyrJA2HnD;M>l7HQC65llZ=f{}VKVh%}KwvuLwO><^eRkJVu(;{W zG6oIJpk+s@CVxjDH4aJ^u|ztjw(jjQM>`28PiD61LxjiMicy_q#cu!c%cAgR}<=7EQ%XjfO6XGoq|!)}O& zYJ^7g}}neMJJ+zAt6f#RO-<(P~NghoBp1CNts|2qA*$xO~7H(k9z@n(Am)* z*uQ^JQ!$AeX3O}1)VvNw$uP{`I~Nj#_dJiX)JYL%zEz{H$1mo69!={*-{m5e%@q1g zv1N0ze{NNkai_(rS^4kU;NcLAyc<4qrRfv76T2Kd&z#j}2DEw*codl*toBClh%`S> z;C3kKb3(>HhWKpT%gL(s;aht~GqYZ3HrYU?%Pa%8FPk~WT|0MjTgtwe^0M_fGVNRn zeH85v@6Ph}3V?^aF`aE+xXr(kn^~1*yu|~o<$2l3OmBS%vuAGD-OY{X#n+5U*)zGh zR9t;YS1OEh+2ule$*$tSke?5!^?jnf_v?~3XV2p6pC9<>*fa@ON{?~xSoYMqKOZht z`u90hv7!b;#9wlEPY}j#F>(|y;~pe)MQMiXWwa~z9igUSsWnA+AoLxuvpK@!dp*l# zJJK^Pjf`zbhBJRHftITE)s>PGUK#~SK@R9v$|mq2`O`=oxW=1H%Y3Yg?Zg(vMC9o5~~br@|lor#0c);2rUr3WFL zBYf91QzCy&5)@@H&rd_)+7Clvf*P{gdvdk?B#bfzI%7{FBF0V@>QeSR9(i+VX=&!& z9$PW_c}6SIeJIYOB&FnD+Q`s`#VT-~>epZ2XrahN_~cQY2${hq@wK(Q)4Cp-Wdv^7 zEvTm3OXXfIdw%(daX6AxqK8Bt=9+vwBRYcNv%q4|7576Ed8d^>KjJEyK_}H>E(BWE z+RhE~k;jk%-}KB(^jFsxag3`((a0vZqSzvLq5biiYs0?APn$E&0C{@#HNO!^)Q^!p z*BPfCU-xUuMOy>H&0BBT)6Gq5@7YJ;XuByVpb`6OOd!Q`&z?PI>uak-YBDq*?|Wnj zmAkh0=d(JKb92wfnki>rQOxar2GLHd_%HO-O)H#7zJ8gw4S3%Z_jua zc&B^TPMPPXaBGS6S!WEj6Mg2=lgXqx>s$-aJs^f$d|YF~y;=o!g^vaZwMT@755E2q z2ZlVtFgC5`Za`jzcQSCFZe_oL0N`kg3mhkkE(c_QPxO_`-!mfW5L)6fXP;?k=-Y5U z-t17^Eb0Cgz{Z)*>$TD_#VuYL#ANVA!}zzlSCTqAWSRj+5anjpBsPVpwlpFgKCu3$ z;m68C%NQcl)C&P%a&JMY{Bw!JffuEd`^vxBIb{8*Jp9OWGr_wfk`e52TGGFeCsLyj z{O{Mdx>=*&$9>lp9$%_2!bbDC!bcp;K*Vpn?sq$8A~`q_^n>83y2k^XK;}Src2WC4 zd;7D@Zs>%gnk;9HzTg_axV}!1O_Y>jAy3#oAHEouM*Y2W`zj zE$BXW*G`N+@cM+yJ6LG=eZO^J*q>7HsY>S%R?o)1uT3y>ZHj+S82Rvi!^p*o5l-?HiLvGl>U>neGS z%=`Aq$~<=H6^x2JkgOp4H1dn8a(G;lep3<%&OqA+qDTBuFHjyNib^jG%Px8y-<}ku>t)&KPh2z>L)*tqmnAZ*UjgHRT-kRd5hhBDhHr;|OQts!pX{ex? zByL#uhxpO!89kak8-h*yWw+Xuq6eR$5u`J-_w{8VjQ<5o$D?2SoqvXdh=8wavAy*C zu+a^T5wpM&`!jWYZA#$!P(6e3oiL%wS9ZB!RBEw`hc3FMRFs$V>lt0FED#`%w>}Vd zE&S#4{j99e!ZQ?g#8Q;>g<}?W&bfvyCF20>)QiR$r(632tUa(7m6_Rr!(-JZmmcjy za}`rO!=kWkJ@=Q&0xCHkwst{CJ03jve!In{sJCsj6?A=+@+6!_1Naq){wm-DXEsXr zepmrJSIZ&etE0prI!KU+);91I1B}d!_r@DgRnolgmG*Gc zP+Hku#-g6+<1D*1qT1dy|5{G0K$mrlJ1RmTP9ZTnG!zT%GcdVJhLRU0twl^ee~{Ij zxgZL|)0;PMQWR`|`rsN&dtksHy#kCj0GK4OQ>_*ygpYQYx9i*e0NS4^X64{flhiWR zIy7WVT~p>U{}xgL049fc)`19q`Swj7e#iQYM5~G5W@F&Snb*VB(p^;8-Yvle?o(f% z{>Wsp$GnmBzpn*E!-g;+fJo8frxB2>3=FNZ5*G5$We&!$2S)BjIUrPzTZL^uI(#da zU4_CLp0fb7vBgI73qmXhd{nD~rYAyb05LD1@#M{~_QFIG{uJ^apFr3LFo^RD8SqO0 zPoEfRSmMf!a%UJW70I54;>lX}bUnQnf~glY5!N;$d1p$j*>!Z(mskCOyTfrsRpn#m zWno5C8CnMhDmc&9Ti5CEY=2wy_I|?onXVT;dx8EU^VB?TThK!kIhW>JfRy4W5Z#Ec z36#*TWS~oZXaF%Rtlri(BLx0;k?E0Alq@-NbU4GtmY;iz`Qqs4cxF0LJq=Un77{#Y zsRX3Hkf)1aL&=<8&5)P+>I!=qEL(uS_&3fYrFwhxf*vSq1~`uwar<)YQ1Amkg|dtJ zZ7Jfn_vZffrbM4<1Vh&roF#GBo!+6EGF>wQoQr?OC_?{wwQt)C1DK008adswt!Up_ zSt*0B0P2H(r?gLJA|C7}bgmFdPrHgeEOQ!t^R|U2b>7R~{>9Ad8D#YKcj&_858Zp; zCQX00f%BLeRwE-L? zlre1Iv;WOj27?=yDrU4YoBN(BvIRitj_*_|CQ>own|?$KDNeF&BWVZu4;B2cXvAKq zXP2?5&$=j%{>itae>2_ErJ(-_rj}e*yHS+%8S>uS0k@2D(PTU8c@TJr0s_wi@;YDG z(o~hJA+gPdboE zdGPw&L3~jExP!P?>X5e2s4(T1mSWCA)?`hkUiVdxlZe%;`$Ipj^`HXQjnSO(@r$s1vdm{ z1kvT^o+in^_wLw7k?`J}*F8U#s=BU@>CT;$Ba(lE@;{vk%7zs3bid~_{pfZPaB~|c z->1uLJ*TSWH`nj7iPPL6RChP!;cd!voU%OD>`{^Rwq~ma+AVJfv_X8K<)q~aDBNEA zhCeu3j-Ab_0LCY8-@OZ-5fDubkM?*Chmb&StCY3M9@F@hO~(TLDK_gcIymnb7O(PR zGXAT)etgrXTi5>G5UwIw}4%CVwAT(xIQJK>Fg;V1L-vD4;A6 zuaQC}D@NEE(}%@cr%l|ypH+GhESz75N^L|)}BSiHz!E>1wT~x6R7PQo{G5+=(B> zB~0pr?&{nmkN&)0=hMmb>}c;Rhe+KmHKc1%?#_lziwcyo3>}yE+xU>fIQCB_l@2f?Bqse14ac52)y8PsAWqr<9Zyu zqrr)B*$f0AMI^GUX8=}&BaSiU|InxgT-f@|!$)O{Ln15B6(1I>SJTMWwmBny{HbK2 zL5$+SE$nT)^r5o79u?%o^mtNM#*9*vEm!P)%K-nl#~$jH2L@3QBR?2b0;61a{j7FQ6^t&nwqen{CAuWHZ{U1HfnU`I1@?1K-f$X z3w^?w#@Uyt^qi=*nm)anr&H`!`wSrA?|;zZ_b>|4;1G-s@{iLmrZ7``k;iqXMB#11 zfW1&ijJN#vFWl&70?S^Y+SLwzWarM8RQ5McZ@C?G)1`TnV5JVzsN5;*Mpw4`7Z{B- zZ&$CK{-UeAaDTvlsQ3x&dm!V+<}<1!EKkAqO$F2J3tv?J(~G&?@moUbMxJNMH9}d5 zN@sO%-Y=w8IE06|L$11}moYUx#nmQ{pWc0DONPqncL!k2j)Pk3K%eq+BN2Z6z&ve1 z<>D}5OJ=7aW=0ZNtY%k5Kn1{{bvDctopVqi&!$@DyK^K%{PTZiI;;Xbn&ehh^46tf z@i8=o+F1eu==OHyjJO}1+Trv4(|zg?zd(_7X`=^Q;Bi~Y#523LoeAW=T#)`cqo~d> ziy@UM-5Dlug;!lASn}^cD0v%XqfZ~tD7^V_(MC6|k##d78nIyN(ndwyH0;re`Um+* zTQu@@&6c$fU#S^+JMC)U`^sS6)O3EZ!r2dQiKdvEiW%CQ~pM$#>>eEBb#h?8G6{{=}Q#FqdI3gRC8G8a9*H;6otnjNx2rZ zSFboS)W%=bZR2INdDGvk=!3QkXu!a^{OY0$%~r>$h+O2*B9{#*G&JYFTEg5znH&?R zZ!Zt1hS6%D{JHb=a>}cDQ<&U7&)SLdC?BV($v*~{bC805{@iz(6#qL$J;pVHd+$-l zfJ)BNqmCcscld-5pFyo5;N;F1rkasBptJzkmo8Z@;<)Wo$&09;NfwGgWK0**XI*H^ z`GJme_KeBI&PiKQvLNCy6rU;*?CHt>|G5C4&KwC~b!6*F3R7JodThzPpP9)VPd2~C zD%PNM1>$nvw+S7|DJvJ%9M2|mPqPqr!gXm|L=4-@0Ib=3`G;!hS2;uz2Rg5F7z-(< z3>wk~2qvBhfrHS_M(sx*+~_B29y(hLi*js<+xYrd)tDB@favZOwojWElu^is^mFc+ z?J2ThfW%P9Z+kR&2j}R<^KI$e3%q!{b(2$kUF5APeJ}f#4%qA7lH7q4%3SJ}er^LY zVH}Bx16th5E|Mn^SL5@qY+Ba`^1CvK!FRB7yVd?Pepdd06`=n&ZC9 z32yMtk zzD9Ay2{3UfYWU*0c^q7Y7>a>2B2C%24Dg5+RM~MzQL*1v|9Oy~wtc#AJoyc=Qlq__ zs6gF$KC6!m99~^Rr(#2>Ygm;elI~?)e7SNF7K}C$EDCVBSQY^Y)WediNz8^gwRFyP z)(N(kwN?)qQ8?0?(hOIqJE|p%u#TO$zE!O6v%jS#&lQ2sL29-UBpHQRWtNh=%Xn#qXkS!ZKAb3Gv^pvnKu%$>})_*Y| z|8)HHs|P9?jR(RNP;SbU>1uDUOR^6Pr7l&a!vQKk>dq0D^Hg2Y^>iP;?WJ@eyZJEr zn97Tt51lpIzDSFJq`{k6S|dw*B&!ccyvSwd=lote#z6vfrcwi7k0H76eMWak`9s~e zac(+(V^MqYv&rC4L)l8`_%F%6*po< z%m{dWZdR26csV$3McKD6A&P@-QE11Q>P-H9D2+9k&GsEBjDw@(k;-w3N&d%;DUVbr z0{yQ($n3FIz(5RLB_8BRczG*x>B}v0lm+H_th7#<9#2w$ zpz3pg16m#ot z@t;jpebbi57Zi?M8Vu$S;?|vyNST!P6_A3r&d$dz4W~Qbl%9K6z4z@UDO(xPm^B!r zLrsY3WVNs9UHH`oW-kFTzSuA0u9l_W(i>e4#n@+lA}{)yEp?(m_I~4sZ)p?nsJSBNpk&}8tJ&vN95uiIr+!96{$Fz*e!jpWtMfJO!5RbrD<%J=GGd7{eF z8r&bD=FkV*>d;=@f4(xEf(HY4(O>p`AA7T|)Yjz`Ei0ow( zm)$|YMRCV7EYi!Q&&pD9I`^EX3{wb=e#;PfJV{L}o%>_81{cV6KRnB4%#!B*`v^dg zI{lH%Z1M6oW#bCmn~Hu>3ZIqzOQ08~d6{>Ye*NNoZ2;>Ltvf=cav=x3CF75|w`9bY z0cEKRlfy+!cQ6O^+biPUUMkv_^pkTwiSxT@X+G-udbO~lLwQX*A<0cd#BocRRkKCk ztx_pswP{jwPS`6Vj{3RpdQEbXLCkjrjsx&)D;z28T;2RJN?jazP~Q8YiS$bU5Pz2B zlnX~4^^Tns_8>x&wi?hq5y(Z$XR#!kS1?mMj5nFNyBE(`$?+|3MFl#LJE}21_E-B) zxSh$JCkDFxURC0Qn{~V5CgEo^)VgsIkr7wCymSkVpFTagPp^>o_QoRAT*|Xtq>PzT z1VGet)ae8B02VF__QdCXS|V>8M2asZ;2nhkAM>hlZf?RqZH48k`$Oxu!?-Ts=VOPnr;TuN9S$I`TrpQ)GfSwZ0aA!`&OHv;KNf(;t8M8i~ zy35;k@1>e`1Mm&BabhbGvbs_uPd%jh<#vi6Q0S`}S_C%cwnXgq4svN0Sw9~nCf-Zg z8N?(ZXFEsTCk!^)RN7WHTAq}4FoRvsSku7t;|ot{`*gNdU(ZLD9hRfdA+Kb!zEYvf zv|GgSoh2a)DMjl)G2hMSh<%RtE!qGIq^d&WL`BCiL5%!CeR6JA1BXsnYcA`YKaZ}&vOEqU zOcE(kr7GFo@6nQN#PK`(USbJr@DZuOZbb;lF~giSYFR>>Ph~%VT_T95N{cZTWyt|d z5=k}v{RW+-Dsb0yzE4D>!3n?|uvAHh@*FH8>0y0)4b2Ex|D3XN(E!8X5n2XE=Fvhe~mn4ig(`acSvCOaw8X6ps;ymrk)563DDaiRs)Qj^f#n=%u)v@X%<} zy^5)YB;Kt-027v?$>$XPxp`=BcpAL!HWMagTzqAD!h<8#Eak`t5l0Z>#@*ZTa|hS> zg&11`@E!_Mcs9aA5oPWh!gS5imspmH`W)km`u??GH^1P% z$fja#(p6CyJ-qq+c}ugD!`7+CRXfvNa-^Hk;%#cdiRvAk4>G>+L`jjI#e8hGRM?3| zd1N<4&mDa*{%0c>Z>Hvi(uYOHwjKl>D!+gF7O^F?VW%Xr&q#c&c4?6W47oJ+dUg^V zo-kL#Xr-8#?Ji;>Wa&K}M@>=cnKC)phm_>@SQs&Oy~Z)`9&r5l@@(MGV*2)|Cf@5c z2f}B*3#}gwHeT-y-@f0Zs@h#cbDNq7CiAgdODSJ{*pkrn?dR&urD~r+ zvVM;P4N;6uAFKC19Eh^1V4VD9@X~u-flAys7iV`cD>kfCwgX_t;0gsrYTb(%*3M#hv=f z&uS%&T5sz1%sLK}sCKT6EL8nt{XT0 zFtlXVzV;DCov|N|o4Iz~gE=s0DMvj@p|~NwUP^qxmBtTB(qV#!7S7F6VymSR@rLI7 zML*l3&FD~;Q}qZTP={Lv7I8&|H#)D{OkACi{-yITgqDpgUHblo-5Q#MxgE_tyZR@% zoR3OL=@&g#N1M;9SA!XXF&C39iFWh8-)xL8EV|HQmA6xuIv@I=Vw++=-ZXV{DTr?B zA=zi!53gD;)tLy#7&r-*J3doL(@JP%@GcXYoJb&nl}NcUMx||EgYyhDl7<@ zp0-|vd(`amKgea0%lh}<4JzwrRpX77#S8Y^XyXGbJGfJ#Jo;aS43yFnTG1D%~) z@4bH$c21e|HR`T_6tJzC3W{uqv{-~_dE~6HO&Pc}9eXvIVB-j33-6>?ky(VCC`I;= zx_epbgBv0bb|Q+iVuL*q2$B#diGPdT5mcA_LS^EGM5lKm*`}p%uNwQ;!~?<{tI6Wh zh;EsJ#!J~>^;JghS=82-^WS{12DKo|FBbrQbv5bm@NU$cOuW39faSd~5`>3vP~E27 zZc4bxvgshAhHb_zW+^ZTZcI!}w5{emYIlT(7RPUm)CI%Y}*{Hed_t1w(YaX%#n z35hLJgzyPebFep{Mtug@9pMb1)0y9&+FrXLsQ_zOPMEPjf5`_@JYh!sIRMl&JOx-m z3W1tvwRH%D6sQMw^!vWm)N?a~0=&`km67Yx!FzLy3f4qXt2IS-fFOn%uuH(JO zj~>C-?zDr05Ta@Q*Md8kBx*lfTW*Wk2T35J5`{z5J->z)Ap}5_iW=x)J+bsoV9Eoh zQD()tO#R;6x$h(&42)q(k5I++%EP#>q(-!`C2HzDD0F*S%Zot_FikDW^n}|>bze@#x&j%`^vb{9h;vwsz-d!gX zaZzUxS;Bi}^U;n2x#&R)m=(g<6RrqznQ$)#UK6n}Ly+;0uUeT9@Y>zCYQ}(tC;zP1 z<&d>%C2+0eriQ-1rJx5Vcb|K|x*4qkl8u#km?W&3FF~3^Al~0R5D0^R3_VL*vt{XC zGAjpS-%?RZWg(7xtR(0Yq3Mt7V&ztc0`Vrsy2q~pc723a4o;Re0`eR@h=E3ZXD&RJ z1^Ba895`44E;q{XbA}F2z4BRI4(Un$rPzI#K<=e7M7ud_?DaO{K(f!nU%3JY3Zo^x zex^Lxm1U(#;b%N9Y6OF$- z$~djBy2jTL>$lyqps0eI2gpep&*oHv=MYbfK{ICom(!UBXFM|9LRfnfR=|<0Y0}sfBsA}zEaS`8^IJG7iT@kjdIa0>yuRE!!Vp6 z=mTlN&ijMvG&0%fYQF^}eO0UKL69fz#-%YSJNcJ}<+!WjB4kcWxns+-xzJco$^4dtn$&k% z#ke-Uaxrz+=4~WGmL!h8=cF4%W6-W{`;tER%_P5O*-?s21YULy?`6^HjatfMF2)c5 z)9Xenae@2X+`2K?Trs=QMOfEk3X&kM!-w^GBO!g$|E!l40?IW|HxN=Ve!7k3z=%1A z%s*3LUVbj~5E@#fCt_IgEznjXqcvx>(PZ|sh4&vpdlN3z^t_o0x zR8Kf7{SvwGU*zrHj;ew6j1P!+n83Brg8}HrCL+E6?zou%yBx2zJ{I6~u= zv-}yd*J}hnoM8Qb2N^Ef;p1^!2IvjAKNXr>mXN|))5=(K3z~3rF6NU9F<_FIO&aJ; zWs>@T1Th(hbW#{?a*R%Gw&C1|Lu`!ISugO@fx`dD{uG{Wr3QU6c4#vq(AOh)n2KCI zh5H5+6oB)(D@I?5N4Fp-Qw7nk+k^= zGXw9>AEHJ`=l|?pN3z@(UF%C_)7F&BcqddowO2*sh$`#Q&skU~=f6rmhShsiK6Ep9 z4ylosHcYd0_nC$FlO^<=De2K^u`I~kt@CY*6aSqeg*SPcZ+nTiQ%v&@f{;7B@Oa&K zdW_&2XDXJC+-643&@x(mlkC-4gp`g9n@A^@=F@WY%T~_6aFLs~IB8jc4$2_GsC*ot zbwPJk{Bjz<-H?)x>0nQ6Vy7ZMNJWm`TJiSZm*O-4fYq1BT@}^KujKlGEILm4M0#2p zpc<8Q&m~4HI1?#RPo#o~k@s7PbM!Nc=92~9Z}o^0jjNxOi*EYqsJ0Oz%wd-MKrnH& ze48K#3?#(7pu_zhx?XiC^&mKFDBKT)p$l8(j$H?fFQ6VXGZ>50FqAu<%Km5VC}))7 zL3FHi7u#XtTQ_RichBg-K;iJ$;-szF-ye3ZmvotF`n70Rd1PIV!6vIecSOBy^U=pG z94xyp@r!1LKU;d-_tnhr{8EdZn;HNFPO~ti5J38|L154{%!0fZUL=%y8tCW@hi7ax z^~f?NN+sb6;&+ba-4o^vFT$3AQdUH!%u~f_M>VN$qF)EfO2+%$R{l7x%z0GRRbKl? zA`!dUhDR27^&Ugl#6cP3{9AD)$&J4G_-uAsg<9%BN6JIr?s?iBWzjdb-}s{z6-^%v zMLwZgLltMbsKK;N(i{qF;#d^jhm%p0DQWm<3G1d$??+#)h~};=p65w5+6+fV4iC0Y zMMO;-66>7^N38bh`nA2*dMY4}#wSiKA+~;Z>6RI{*04XEj14nOt;n5ref`Wf7iDn4 zsugG7<@U#d*NC>jmto^U>>Bz*%h~|geJ4d8*I@4F_IB$u%9IXp8C||~bYBwLcjwkz ztv1HBl$7+_L|R^;k<~zqcHel@6gey zxLukGzl>)>qAiI$ zG(*pCQ!5cF$Np48<5X0#--m^Wm}2#@Kh{dueGz@QO>)L( zQIdXZcK5_>96|(<*RtJ;dEkq&w-q(2RH2E!MS3}=-sXy{*!&?fp_pPxQcHgxXkMnH z;K7cyz0rH6q(dB8%=70{&&R)OYn}vo1G1Ic>Zf!(3k0#|-Elm_pV5k&ZX8(sauyqk z=l7cJoV$8Ca_a3%#<22GU6sK3j1ALs1eVEQT4Ws`hdLr|yQF5ybB3^bO+9{Xn@5)t z288SuJ5R=YNk7UQQ?@e8Y0rM~H(s7Zn)jWOa$0B-za$zm0O1Q^)glz3oKY++!nl)4 z#_;Z{X@SF{GVf^`wLSG~`YqkuKYTc%6wjpXKv;3;+(*lWw6KrbK>=~be2-g7YGPmZ zPJdr+vHNwT>dM#@)Q7|l=kWI$2n4D1rYFW!lt6z+MD-)B-5gS4km}kZh2gcB%SEi8B*3DF{HhK(c(*4yuCM-%mpQyBSV*=z=!{m2cw&=ShvJLYtIG6w^~w6j?&a2) zRD;cd+$F=6ow`-~+5wOGL4m*QMqgdNz0*F*wdj3K>Ar2fcmIeZH#_%5ok-!2d0w`u zA3=DGrw`NLyC1>dwp*J(<~{P8A(ruhG!ZWO`QuZFcLfrI>CaMvcO~Aku(yhd5hF%0uf|W5kDI%;^H9 z4l7_; z|AQn$qB4fZAHofDi<_WSO|Z+uRb_Swiic)GHu84r~oyJfum&sY}8=D;vgn*I?fa#6NMp_2_2Mek~&ePSK!@JCus~WZ^)Gn{%Ia zJx+jvyBvNc%jPyf*whts@hb=ggcFR#>gH?LuDSlQ&Xee=@G1E^;STi@A?0^@(*eUA zG+%r7`##^T-Im}H5#|pND$4u_IX?`^4H?4Y@Cu*bag~!W)v~tNnDGP^$kc53fMy&AMsY6!g?8nYXq&KT>w=UE<&wfVKVdF8u?et#$EjD29K z_}%{))5v7s9nDx&{?Y_^yF`v2mA&*(%=l%*-MiweDIejbk(CwZaB91-u<$2W8Y&nX zfTn(%#e)&2qw3HfqGI^Yh!)>6HFjWKV*m9Or?0(5lu+4Ss%IZHocF#|Kkft3G@oG7 zLq%YVH6U>$7?llmcQ-uwv>Uy3#k8ISjz)mg`@=kj+mpLz z!I6KFmSl|x7j!uH#bfD;)2G&8&q7wx?@S3f*j&~6+Ah_`v9U2vg!P8Ye?I4#c|vpJ zInv9BW)_I~(^M<*OkKlg4}zNl3oFhtLPXO)GI#2~sL@=g;YeZ=;Tc8Cz@?NBB)ms6ZYIn~B!MUnsN{d9aaR8|H$Yi6)I!-mg0mYliC}s~_ap%1I|m0f zSJ#+TmlRpryZB!CMn^x)hKK{}_A=hZI&drhbm0$b*KN4#d9M~9$FHA{lusVZt*Kh= ztLj`?My5{K<}~0~+h)?V<7?~L1NHiYKk1D=x(}6pvOWSsJW%g@dV1`FbZ~F*iuh!G zKL+|^yuiZ4`3`k@kLK};$S_dQEriMr&eTDB2cZLa=MX@nE~DRT-afm8vkX-%0TDX3 znd)g*;tqDTSYT5Wjn8WdVNW$Hg}W!b8~2!+n2-op6~m&DO9oEzN+~28PGef0q+3u( zL7fo^O?Y8p0J>tluFD3wnr8@2a@8MFwKA8tPs<@}IQjsk%Tr)Dh$X^D1zz(^0YXvpE=;(zH*E;6`%#{cJ51kQV^n7O`-E*ffa-RlvK$E_n-Z??dN zs3IXI6r0dY?XUXV@6a;GdMsn(59c7M5rrihg0{wMK98lOE7+F~404%XbajRAWslW>@xlP%4 z>QyTf_K*4wK7#BG$LgFOjV`#RP=u?xkT@PT67=QBebNgbMPALlo>e|TdGiun1&QuE zq~W*B4sV*ohYWsPBakUx<(jVahcYYQ>j-S>M}B<8&b!h-$%P92^Lj|R3_3<@b@1ER z%}sw(Vd)mi7TH}sB9HvM$EM!C{ZmN|IuUDLjk-DMwmG4X_}_ulEWL2fh^o!GS!$2x z%8w5%13p6Pbt0$tjxSX68JBWpe)xNLoh0}=c%F|ffU0forTW82G0UWTqNL&6HH!O5 zTE7-x6&${~etvuN$;b0Nc+*Bbu|iRI{!iIU66`^$pPu>PQ~BUyLhy3cy2qH=ffbV_ z8D?BfK;eO}N^B|Nd3`rquI)zGb>5TLzcPLgy+rCZqAZ^fIOX6lc8ymv~f> z&&;K6wR0V}yD6m?skVY;wsCz{Qs=maYqk@x{im#ycMEq!ZaiLR!8Z1HZ7+VAC;=AB zrIX1lJSZBx8z!V}PqX}H%lFt^60BW%*J+4vUoaVyW@Cj1olQFLQ>yRx9+T45&=S?= z@x4~^I}w}z{U*DTRR24eN_L}y=6Xox0K8nvcjNoXHTL7uh(EAxRIl(K{292_e}9E) zAn_9_)WB&^3C54fAN=3nr!FB2Fxv8eKXg4(WD{SY!~fItf4>mb<{fY^##XE`?DWP5 zDBcqOs38j~8tGRG-tw0WsSvU9k3QH!La+-s)rgU}JS#M5-9$PM;zU3;kPfHCFRh_X zSrDP)l_cc>Zv~=EtVpLb$H`W!q>SY$^LT12TR`OQE6&dOGt=Iv;s`U2qgoE|{V#U( z)b;bJn&r6ewwml0FVHz5Or|nFzcx&cc(gywz~m&pi}bmFI!Y}PcNf)0i>|C0mAI${ ze=1o;VkcF$sP5z*`b<2hD0XI?@$_L^Nxc-!Y2vc zfkFJeoKHMp_EaA7!#pUI5SC~Hd$RDI?L0!;xdN#2B@Iri+-aOZJ^~99_Ps{`H(GjO zbtBwKj|isI#^aA_Tc*tHj8nS+cAF6KH!w2?fY{qkBdeJ7^053i_&VZ8a3=6NLfjKd z$*A3L24c1;+rpXB#Dic}MA)0HJ$t*w!_6)BgFo&_Jw-GY(HyB7uH`C~xOKAD zX;(t@2#_02GI*ga-EHjjMl7=A88_3Q{`X=UXM=Ym43H34XBRZf!XZHDe=8=j`W`Kl zQ>j7f*b4lfeqaLq@9}#BaodzVkqW)h|1(OB5Uruv9Es4i6LXY!w|Yt;eUjRxVunvD6D=3q&*X8x?5PtF(O0>ec_X?a3LZwZV6|Pq^MBfDU*4(5 zPmhS<`{uo}!Q`&Ltv8`sMVP(94U6<7D~ocyszU1GWyagdq-BFAH)SpCf diff --git a/docs/_build/html/_modules/abc.html b/docs/_build/html/_modules/abc.html deleted file mode 100644 index 40278c42..00000000 --- a/docs/_build/html/_modules/abc.html +++ /dev/null @@ -1,248 +0,0 @@ - - - - - - - - abc — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for abc

-# Copyright 2007 Google, Inc. All Rights Reserved.
-# Licensed to PSF under a Contributor Agreement.
-
-"""Abstract Base Classes (ABCs) according to PEP 3119."""
-
-
-def abstractmethod(funcobj):
-    """A decorator indicating abstract methods.
-
-    Requires that the metaclass is ABCMeta or derived from it.  A
-    class that has a metaclass derived from ABCMeta cannot be
-    instantiated unless all of its abstract methods are overridden.
-    The abstract methods can be called using any of the normal
-    'super' call mechanisms.  abstractmethod() may be used to declare
-    abstract methods for properties and descriptors.
-
-    Usage:
-
-        class C(metaclass=ABCMeta):
-            @abstractmethod
-            def my_abstract_method(self, ...):
-                ...
-    """
-    funcobj.__isabstractmethod__ = True
-    return funcobj
-
-
-class abstractclassmethod(classmethod):
-    """A decorator indicating abstract classmethods.
-
-    Deprecated, use 'classmethod' with 'abstractmethod' instead:
-
-        class C(ABC):
-            @classmethod
-            @abstractmethod
-            def my_abstract_classmethod(cls, ...):
-                ...
-
-    """
-
-    __isabstractmethod__ = True
-
-    def __init__(self, callable):
-        callable.__isabstractmethod__ = True
-        super().__init__(callable)
-
-
-class abstractstaticmethod(staticmethod):
-    """A decorator indicating abstract staticmethods.
-
-    Deprecated, use 'staticmethod' with 'abstractmethod' instead:
-
-        class C(ABC):
-            @staticmethod
-            @abstractmethod
-            def my_abstract_staticmethod(...):
-                ...
-
-    """
-
-    __isabstractmethod__ = True
-
-    def __init__(self, callable):
-        callable.__isabstractmethod__ = True
-        super().__init__(callable)
-
-
-class abstractproperty(property):
-    """A decorator indicating abstract properties.
-
-    Deprecated, use 'property' with 'abstractmethod' instead:
-
-        class C(ABC):
-            @property
-            @abstractmethod
-            def my_abstract_property(self):
-                ...
-
-    """
-
-    __isabstractmethod__ = True
-
-
-try:
-    from _abc import (get_cache_token, _abc_init, _abc_register,
-                      _abc_instancecheck, _abc_subclasscheck, _get_dump,
-                      _reset_registry, _reset_caches)
-except ImportError:
-    from _py_abc import ABCMeta, get_cache_token
-    ABCMeta.__module__ = 'abc'
-else:
-    class ABCMeta(type):
-        """Metaclass for defining Abstract Base Classes (ABCs).
-
-        Use this metaclass to create an ABC.  An ABC can be subclassed
-        directly, and then acts as a mix-in class.  You can also register
-        unrelated concrete classes (even built-in classes) and unrelated
-        ABCs as 'virtual subclasses' -- these and their descendants will
-        be considered subclasses of the registering ABC by the built-in
-        issubclass() function, but the registering ABC won't show up in
-        their MRO (Method Resolution Order) nor will method
-        implementations defined by the registering ABC be callable (not
-        even via super()).
-        """
-        def __new__(mcls, name, bases, namespace, **kwargs):
-            cls = super().__new__(mcls, name, bases, namespace, **kwargs)
-            _abc_init(cls)
-            return cls
-
-        def register(cls, subclass):
-            """Register a virtual subclass of an ABC.
-
-            Returns the subclass, to allow usage as a class decorator.
-            """
-            return _abc_register(cls, subclass)
-
-        def __instancecheck__(cls, instance):
-            """Override for isinstance(instance, cls)."""
-            return _abc_instancecheck(cls, instance)
-
-        def __subclasscheck__(cls, subclass):
-            """Override for issubclass(subclass, cls)."""
-            return _abc_subclasscheck(cls, subclass)
-
-        def _dump_registry(cls, file=None):
-            """Debug helper to print the ABC registry."""
-            print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
-            print(f"Inv. counter: {get_cache_token()}", file=file)
-            (_abc_registry, _abc_cache, _abc_negative_cache,
-             _abc_negative_cache_version) = _get_dump(cls)
-            print(f"_abc_registry: {_abc_registry!r}", file=file)
-            print(f"_abc_cache: {_abc_cache!r}", file=file)
-            print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file)
-            print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}",
-                  file=file)
-
-        def _abc_registry_clear(cls):
-            """Clear the registry (for debugging or testing)."""
-            _reset_registry(cls)
-
-        def _abc_caches_clear(cls):
-            """Clear the caches (for debugging or testing)."""
-            _reset_caches(cls)
-
-
-class ABC(metaclass=ABCMeta):
-    """Helper class that provides a standard way to create an ABC using
-    inheritance.
-    """
-    __slots__ = ()
-
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/index.html b/docs/_build/html/_modules/index.html deleted file mode 100644 index 104a1a54..00000000 --- a/docs/_build/html/_modules/index.html +++ /dev/null @@ -1,114 +0,0 @@ - - - - - - - - Overview: module code — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/causal_effects.html b/docs/_build/html/_modules/tigramite/causal_effects.html deleted file mode 100644 index d1224f12..00000000 --- a/docs/_build/html/_modules/tigramite/causal_effects.html +++ /dev/null @@ -1,2705 +0,0 @@ - - - - - - - - tigramite.causal_effects — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.causal_effects

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-import numpy as np
-import math
-import itertools
-from copy import deepcopy
-from collections import defaultdict
-from tigramite.models import Models
-import struct
-
-
[docs]class CausalEffects(): - r"""Causal effect estimation. - - Methods for the estimation of linear or non-parametric causal effects - between (potentially multivariate) X and Y (potentially conditional - on S) by (generalized) backdoor adjustment. Various graph types are - supported, also including hidden variables. - - Linear and non-parametric estimators are based on sklearn. For the - linear case without hidden variables also an efficient estimation - based on Wright's path coefficients is available. This estimator - also allows to estimate mediation effects. - - See the corresponding paper [6]_ and tigramite tutorial for an - in-depth introduction. - - References - ---------- - - .. [6] J. Runge, Necessary and sufficient graphical conditions for - optimal adjustment sets in causal graphical models with - hidden variables, Advances in Neural Information Processing - Systems, 2021, 34 - https://proceedings.neurips.cc/paper/2021/hash/8485ae387a981d783f8764e508151cd9-Abstract.html - - - Parameters - ---------- - graph : array of either shape [N, N], [N, N, tau_max+1], or [N, N, tau_max+1, tau_max+1] - Different graph types are supported, see tutorial. - X : list of tuples - List of tuples [(i, -tau), ...] containing cause variables. - Y : list of tuples - List of tuples [(j, 0), ...] containing effect variables. - S : list of tuples - List of tuples [(i, -tau), ...] containing conditioned variables. - graph_type : str - Type of graph. - hidden_variables : list of tuples - Hidden variables in format [(i, -tau), ...]. The internal graph is - constructed by a latent projection. - check_SM_overlap : bool - Whether to check whether S overlaps with M. - verbosity : int, optional (default: 0) - Level of verbosity. - """ - - def __init__(self, - graph, - graph_type, - X, - Y, - S=None, - hidden_variables=None, - check_SM_overlap=True, - verbosity=0): - - self.verbosity = verbosity - self.N = graph.shape[0] - - if S is None: - S = [] - - self.listX = list(X) - self.listY = list(Y) - self.listS = list(S) - - self.X = set(X) - self.Y = set(Y) - self.S = set(S) - - # - # Checks regarding graph type - # - supported_graphs = ['dag', - 'admg', - 'tsg_dag', - 'tsg_admg', - 'stationary_dag', - 'stationary_admg', - - # 'mag', - # 'tsg_mag', - # 'stationary_mag', - # 'pag', - # 'tsg_pag', - # 'stationary_pag', - ] - if graph_type not in supported_graphs: - raise ValueError("Only graph types %s supported!" %supported_graphs) - - # TODO?: check that masking aligns with hidden samples in variables - if hidden_variables is None: - hidden_variables = [] - - self.hidden_variables = set(hidden_variables) - if len(self.hidden_variables.intersection(self.X.union(self.Y).union(self.S))) > 0: - raise ValueError("XYS overlaps with hidden_variables!") - - # Only needed for later extension to MAG/PAGs - if 'pag' in graph_type: - self.possible = True - self.definite_status = True - else: - self.possible = False - self.definite_status = False - - # Not needed for now... - # self.ignore_time_bounds = False - - # Construct internal graph from input graph depending on graph type - # and hidden variables - self._construct_graph(graph=graph, graph_type=graph_type, - hidden_variables=hidden_variables) - - # print(self.graph.shape) - self._check_graph(self.graph) - - self._check_XYS() - - self.ancX = self._get_ancestors(X) - self.ancY = self._get_ancestors(Y) - self.ancS = self._get_ancestors(S) - - # If X is not in anc(Y), then no causal link exists - if self.ancY.intersection(set(X)) == set(): - self.no_causal_path = True - if self.verbosity > 0: - print("No causal path from X to Y exists.") - else: - self.no_causal_path = False - - # Get mediators - mediators = self.get_mediators(start=self.X, end=self.Y) - - M = set(mediators) - self.M = M - - self.listM = list(self.M) - - for varlag in self.X.union(self.Y).union(self.S): - if abs(varlag[1]) > self.tau_max: - raise ValueError("X, Y, S must have time lags inside graph.") - - if len(self.X.intersection(self.Y)) > 0: - raise ValueError("Overlap between X and Y.") - - if len(self.S.intersection(self.Y.union(self.X))) > 0: - raise ValueError("Conditions S overlap with X or Y.") - - # # TODO: need to prove that this is sufficient for non-identifiability! - # if len(self.X.intersection(self._get_descendants(self.M))) > 0: - # raise ValueError("Not identifiable: Overlap between X and des(M)") - - if check_SM_overlap and len(self.S.intersection(self.M)) > 0: - raise ValueError("Conditions S overlap with mediators M.") - - self.desX = self._get_descendants(self.X) - self.desY = self._get_descendants(self.Y) - self.desM = self._get_descendants(self.M) - self.descendants = self.desY.union(self.desM) - - # Define forb as X and descendants of YM - self.forbidden_nodes = self.descendants.union(self.X) #.union(S) - - # Define valid ancestors - self.vancs = self.ancX.union(self.ancY).union(self.ancS) - self.forbidden_nodes - - if self.verbosity > 0: - if len(self.S.intersection(self.desX)) > 0: - print("Warning: Potentially outside assumptions: Conditions S overlap with des(X)") - - # Here only check if S overlaps with des(Y), leave the option that S - # contains variables in des(M) to the user - if len(self.S.intersection(self.desY)) > 0: - raise ValueError("Not identifiable: Conditions S overlap with des(Y).") - - if self.verbosity > 0: - print("\n##\n## Initializing CausalEffects class\n##" - "\n\nInput:") - print("\ngraph_type = %s" % graph_type - + "\nX = %s" % self.listX - + "\nY = %s" % self.listY - + "\nS = %s" % self.listS - + "\nM = %s" % self.listM - ) - if len(self.hidden_variables) > 0: - print("\nhidden_variables = %s" % self.hidden_variables - ) - print("\n\n") - if self.no_causal_path: - print("No causal path from X to Y exists!") - - - def _construct_graph(self, graph, graph_type, hidden_variables): - """Construct internal graph object based on input graph and hidden variables. - - Uses the latent projection operation. - """ - - - if graph_type in ['dag', 'admg']: - if graph.ndim != 2: - raise ValueError("graph_type in ['dag', 'admg'] assumes graph.shape=(N, N).") - # Convert to shape [N, N, 1, 1] with dummy dimension - # to process as tsg_dag or tsg_admg with potential hidden variables - self.graph = np.expand_dims(graph, axis=(2, 3)) - - # tau_max needed in _get_latent_projection_graph - self.tau_max = 0 - - if len(hidden_variables) > 0: - self.graph = self._get_latent_projection_graph() # stationary=False) - self.graph_type = "tsg_admg" - else: - # graph = self.graph - self.graph_type = 'tsg_' + graph_type - - elif graph_type in ['tsg_dag', 'tsg_admg']: - if graph.ndim != 4: - raise ValueError("tsg-graph_type assumes graph.shape=(N, N, tau_max+1, tau_max+1).") - - # Then tau_max is implicitely derived from - # the dimensions - self.graph = graph - self.tau_max = graph.shape[2] - 1 - - if len(hidden_variables) > 0: - self.graph = self._get_latent_projection_graph() #, stationary=False) - self.graph_type = "tsg_admg" - else: - self.graph_type = graph_type - - elif graph_type in ['stationary_dag', 'stationary_admg']: - # Currently only stationary_dag without hidden variables is supported - if graph.ndim != 3: - raise ValueError("stationary graph_type assumes graph.shape=(N, N, tau_max+1).") - - # # TODO: remove if theory for stationary ADMGs is clear - # if graph_type == 'stationary_dag' and len(hidden_variables) > 0: - # raise ValueError("Hidden variables currently not supported for " - # "stationary_dag.") - - # For a stationary DAG without hidden variables it's sufficient to consider - # a tau_max that includes the parents of X, Y, M, and S. A conservative - # estimate thereof is simply the lag-dimension of the stationary DAG plus - # the maximum lag of XYS. - statgraph_tau_max = graph.shape[2] - 1 - maxlag_XYS = 0 - for varlag in self.X.union(self.Y).union(self.S): - maxlag_XYS = max(maxlag_XYS, abs(varlag[1])) - - self.tau_max = maxlag_XYS + statgraph_tau_max - - stat_graph = deepcopy(graph) - - ######################################### - # Use this tau_max and construct ADMG by assuming paths of - # maximal lag 10*tau_max... TO BE REVISED! - self.graph = graph - self.graph = self._get_latent_projection_graph(stationary=True) - self.graph_type = "tsg_admg" - ######################################### - - # Also create stationary graph extended to tau_max - self.stationary_graph = np.zeros((self.N, self.N, self.tau_max + 1), dtype='<U3') - self.stationary_graph[:, :, :stat_graph.shape[2]] = stat_graph - - # allowed_edges = ["-->", "<--"] - - # # Construct tsg_graph - # graph = np.zeros((self.N, self.N, self.tau_max + 1, self.tau_max + 1), dtype='<U3') - # graph[:] = "" - # for (i, j) in itertools.product(range(self.N), range(self.N)): - # for jt, tauj in enumerate(range(0, self.tau_max + 1)): - # for it, taui in enumerate(range(tauj, self.tau_max + 1)): - # tau = abs(taui - tauj) - # if tau == 0 and j == i: - # continue - # if tau > statgraph_tau_max: - # continue - - # # if tau == 0: - # # if stat_graph[i, j, tau] == '-->': - # # graph[i, j, taui, tauj] = "-->" - # # graph[j, i, tauj, taui] = "<--" - - # # # elif stat_graph[i, j, tau] == '<--': - # # # graph[i, j, taui, tauj] = "<--" - # # # graph[j, i, tauj, taui] = "-->" - # # else: - # if stat_graph[i, j, tau] == '-->': - # graph[i, j, taui, tauj] = "-->" - # graph[j, i, tauj, taui] = "<--" - # elif stat_graph[i, j, tau] == '<--': - # pass - # elif stat_graph[i, j, tau] == '': - # pass - # else: - # edge = stat_graph[i, j, tau] - # raise ValueError("Invalid graph edge %s. " %(edge) + - # "For graph_type = %s only %s are allowed." %(graph_type, str(allowed_edges))) - - # # elif stat_graph[i, j, tau] == '<--': - # # graph[i, j, taui, tauj] = "<--" - # # graph[j, i, tauj, taui] = "-->" - - # self.graph_type = 'tsg_dag' - # self.graph = graph - - - # return (graph, graph_type, self.tau_max, hidden_variables) - - # max_lag = self._get_maximum_possible_lag(XYZ=list(X.union(Y).union(S)), graph=graph) - - # stat_mediators = self._get_mediators_stationary_graph(start=X, end=Y, max_lag=max_lag) - # self.tau_max = self._get_maximum_possible_lag(XYZ=list(X.union(Y).union(S).union(stat_mediators)), graph=graph) - # self.tau_max = graph_taumax - # for varlag in X.union(Y).union(S): - # self.tau_max = max(self.tau_max, abs(varlag[1])) - - # if verbosity > 0: - # print("Setting tau_max = ", self.tau_max) - - # if tau_max is None: - # self.tau_max = graph_taumax - # for varlag in X.union(Y).union(S): - # self.tau_max = max(self.tau_max, abs(varlag[1])) - - # if verbosity > 0: - # print("Setting tau_max = ", self.tau_max) - # else: - # self.tau_max = graph_taumax - # # Repeat hidden variable pattern - # # if larger tau_max is given - # if self.tau_max > graph_taumax: - # for lag in range(graph_taumax + 1, self.tau_max + 1): - # for j in range(self.N): - # if (j, -(lag % (graph_taumax+1))) in self.hidden_variables: - # self.hidden_variables.add((j, -lag)) - # print(self.hidden_variables) - - # self.graph = self._get_latent_projection_graph(self.graph, stationary=True) - # self.graph_type = "tsg_admg" - # else: - - def _check_XYS(self): - """Check whether XYS are sober. - """ - - XYS = self.X.union(self.Y).union(self.S) - for xys in XYS: - var, lag = xys - if var < 0 or var >= self.N: - raise ValueError("XYS vars must be in [0...N]") - if lag < -self.tau_max or lag > 0: - raise ValueError("XYS lags must be in [-taumax...0]") - - -
[docs] def check_XYS_paths(self): - """Check whether one can remove nodes from X and Y with no proper causal paths. - - Returns - ------- - X, Y : cleaned lists of X and Y with irrelevant nodes removed. - """ - - # TODO: Also check S... - oldX = self.X.copy() - oldY = self.Y.copy() - - # anc_Y = self._get_ancestors(self.Y) - # anc_S = self._get_ancestors(self.S) - - # Remove first from X those nodes with no causal path to Y or S - X = set([x for x in self.X if x in self.ancY.union(self.ancS)]) - - # Remove from Y those nodes with no causal path from X - # des_X = self._get_descendants(X) - - Y = set([y for y in self.Y if y in self.desX]) - - # Also require that all x in X have proper path to Y or S, - # that is, the first link goes out of x - # and into path nodes - mediators_S = self.get_mediators(start=self.X, end=self.S) - path_nodes = list(self.M.union(Y).union(mediators_S)) - X = X.intersection(self._get_all_parents(path_nodes)) - - if set(oldX) != set(X) and self.verbosity > 0: - print("Consider pruning X = %s to X = %s " %(oldX, X) + - "since only these have causal path to Y") - - if set(oldY) != set(Y) and self.verbosity > 0: - print("Consider pruning Y = %s to Y = %s " %(oldY, Y) + - "since only these have causal path from X") - - return (list(X), list(Y))
- - - def _check_graph(self, graph): - """Checks that graph contains no invalid entries/structure. - - Assumes graph.shape = (N, N, tau_max+1, tau_max+1) - """ - - allowed_edges = ["-->", "<--"] - if 'admg' in self.graph_type: - allowed_edges += ["<->", "<-+", "+->"] - elif 'mag' in self.graph_type: - allowed_edges += ["<->"] - elif 'pag' in self.graph_type: - allowed_edges += ["<->", "o-o", "o->", "<-o"] # "o--", - # "--o", - # "x-o", - # "o-x", - # "x--", - # "--x", - # "x->", - # "<-x", - # "x-x", - # ] - - graph_dict = defaultdict(list) - for i, j, taui, tauj in zip(*np.where(graph)): - edge = graph[i, j, taui, tauj] - # print((i, -taui), edge, (j, -tauj), graph[j, i, tauj, taui]) - if edge != self._reverse_link(graph[j, i, tauj, taui]): - raise ValueError( - "graph needs to have consistent edges (eg" - " graph[i,j,taui,tauj]='-->' requires graph[j,i,tauj,taui]='<--')" - ) - - if edge not in allowed_edges: - raise ValueError("Invalid graph edge %s. " %(edge) + - "For graph_type = %s only %s are allowed." %(self.graph_type, str(allowed_edges))) - - if edge == "-->" or edge == "+->": - # Map to (i,-taui, j, tauj) graph - indexi = i * (self.tau_max + 1) + taui - indexj = j * (self.tau_max + 1) + tauj - - graph_dict[indexj].append(indexi) - - # Check for cycles - if self._check_cyclic(graph_dict): - raise ValueError("graph is cyclic.") - - # if MAG: check for almost cycles - # if PAG??? - - def _check_cyclic(self, graph_dict): - """Return True if the graph_dict has a cycle. - - graph_dict must be represented as a dictionary mapping vertices to - iterables of neighbouring vertices. For example: - - >>> cyclic({1: (2,), 2: (3,), 3: (1,)}) - True - >>> cyclic({1: (2,), 2: (3,), 3: (4,)}) - False - """ - - path = set() - visited = set() - - def visit(vertex): - if vertex in visited: - return False - visited.add(vertex) - path.add(vertex) - for neighbour in graph_dict.get(vertex, ()): - if neighbour in path or visit(neighbour): - return True - path.remove(vertex) - return False - - return any(visit(v) for v in graph_dict) - -
[docs] def get_mediators(self, start, end): - """Returns mediator variables on proper causal paths. - - Parameters - ---------- - start : set - Set of start nodes. - end : set - Set of end nodes. - - Returns - ------- - mediators : set - Mediators on causal paths from start to end. - """ - - des_X = self._get_descendants(start) - - mediators = set() - - # Walk along proper causal paths backwards from Y to X - # potential_mediators = set() - for y in end: - j, tau = y - this_level = [y] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - for parent in self._get_parents(varlag): - i, tau = parent - # print(varlag, parent, des_X) - if (parent in des_X - and parent not in mediators - # and parent not in potential_mediators - and parent not in start - and parent not in end - and (-self.tau_max <= tau <= 0)): # or self.ignore_time_bounds)): - mediators = mediators.union(set([parent])) - next_level.append(parent) - - this_level = next_level - - return mediators
- - def _get_mediators_stationary_graph(self, start, end, max_lag): - """Returns mediator variables on proper causal paths - from X to Y in a stationary graph.""" - - des_X = self._get_descendants_stationary_graph(start, max_lag) - - mediators = set() - - # Walk along proper causal paths backwards from Y to X - potential_mediators = set() - for y in end: - j, tau = y - this_level = [y] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - for _, parent in self._get_adjacents_stationary_graph(graph=self.graph, - node=varlag, patterns=["<*-", "<*+"], max_lag=max_lag, exclude=None): - i, tau = parent - if (parent in des_X - and parent not in mediators - # and parent not in potential_mediators - and parent not in start - and parent not in end - # and (-self.tau_max <= tau <= 0 or self.ignore_time_bounds) - ): - mediators = mediators.union(set([parent])) - next_level.append(parent) - - this_level = next_level - - return mediators - - def _reverse_link(self, link): - """Reverse a given link, taking care to replace > with < and vice versa.""" - - if link == "": - return "" - - if link[2] == ">": - left_mark = "<" - else: - left_mark = link[2] - - if link[0] == "<": - right_mark = ">" - else: - right_mark = link[0] - - return left_mark + link[1] + right_mark - - def _match_link(self, pattern, link): - """Matches pattern including wildcards with link. - - In an ADMG we have edge types ["-->", "<--", "<->", "+->", "<-+"]. - Here +-> corresponds to having both "-->" and "<->". - - In a MAG we have edge types ["-->", "<--", "<->", "---"]. - """ - - if pattern == '' or link == '': - return True if pattern == link else False - else: - left_mark, middle_mark, right_mark = pattern - if left_mark != '*': - # if link[0] != '+': - if link[0] != left_mark: return False - - if right_mark != '*': - # if link[2] != '+': - if link[2] != right_mark: return False - - if middle_mark != '*' and link[1] != middle_mark: return False - - return True - - def _find_adj(self, node, patterns, exclude=None, return_link=False): - """Find adjacencies of node that match given patterns.""" - - graph = self.graph - - if exclude is None: - exclude = [] - # exclude = self.hidden_variables - # else: - # exclude = set(exclude).union(self.hidden_variables) - - # Setup - i, lag_i = node - lag_i = abs(lag_i) - - if exclude is None: exclude = [] - if type(patterns) == str: - patterns = [patterns] - - # Init - adj = [] - # Find adjacencies going forward/contemp - for k, lag_ik in zip(*np.where(graph[i,:,lag_i,:])): - # print((k, lag_ik), graph[i,k,lag_i,lag_ik]) - # matches = [self._match_link(patt, graph[i,k,lag_i,lag_ik]) for patt in patterns] - # if np.any(matches): - for patt in patterns: - if self._match_link(patt, graph[i,k,lag_i,lag_ik]): - match = (k, -lag_ik) - if match not in exclude: - if return_link: - adj.append((graph[i,k,lag_i,lag_ik], match)) - else: - adj.append(match) - break - - - # Find adjacencies going backward/contemp - for k, lag_ki in zip(*np.where(graph[:,i,:,lag_i])): - # print((k, lag_ki), graph[k,i,lag_ki,lag_i]) - # matches = [self._match_link(self._reverse_link(patt), graph[k,i,lag_ki,lag_i]) for patt in patterns] - # if np.any(matches): - for patt in patterns: - if self._match_link(self._reverse_link(patt), graph[k,i,lag_ki,lag_i]): - match = (k, -lag_ki) - if match not in exclude: - if return_link: - adj.append((self._reverse_link(graph[k,i,lag_ki,lag_i]), match)) - else: - adj.append(match) - break - - adj = list(set(adj)) - return adj - - def _is_match(self, nodei, nodej, pattern_ij): - """Check whether the link between X and Y agrees with pattern.""" - - graph = self.graph - - (i, lag_i) = nodei - (j, lag_j) = nodej - tauij = lag_j - lag_i - if abs(tauij) >= graph.shape[2]: - return False - return ((tauij >= 0 and self._match_link(pattern_ij, graph[i, j, tauij])) or - (tauij < 0 and self._match_link(self._reverse_link(pattern_ij), graph[j, i, abs(tauij)]))) - - def _get_children(self, varlag): - """Returns set of children (varlag --> ...) for (lagged) varlag.""" - if self.possible: - patterns=['-*>', 'o*o', 'o*>'] - else: - patterns=['-*>', '+*>'] - return self._find_adj(node=varlag, patterns=patterns) - - def _get_parents(self, varlag): - """Returns set of parents (varlag <-- ...) for (lagged) varlag.""" - if self.possible: - patterns=['<*-', 'o*o', '<*o'] - else: - patterns=['<*-', '<*+'] - return self._find_adj(node=varlag, patterns=patterns) - - def _get_spouses(self, varlag): - """Returns set of spouses (varlag <-> ...) for (lagged) varlag.""" - return self._find_adj(node=varlag, patterns=['<*>', '+*>', '<*+']) - - def _get_neighbors(self, varlag): - """Returns set of neighbors (varlag --- ...) for (lagged) varlag.""" - return self._find_adj(node=varlag, patterns=['-*-']) - - def _get_ancestors(self, W): - """Get ancestors of nodes in W up to time tau_max. - - Includes the nodes themselves. - """ - - ancestors = set(W) - - for w in W: - j, tau = w - this_level = [w] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - - for par in self._get_parents(varlag): - i, tau = par - if par not in ancestors and -self.tau_max <= tau <= 0: - ancestors = ancestors.union(set([par])) - next_level.append(par) - - this_level = next_level - - return ancestors - - def _get_all_parents(self, W): - """Get parents of nodes in W up to time tau_max. - - Includes the nodes themselves. - """ - - parents = set(W) - - for w in W: - j, tau = w - for par in self._get_parents(w): - i, tau = par - if par not in parents and -self.tau_max <= tau <= 0: - parents = parents.union(set([par])) - - return parents - - def _get_all_spouses(self, W): - """Get spouses of nodes in W up to time tau_max. - - Includes the nodes themselves. - """ - - spouses = set(W) - - for w in W: - j, tau = w - for spouse in self._get_spouses(w): - i, tau = spouse - if spouse not in spouses and -self.tau_max <= tau <= 0: - spouses = spouses.union(set([spouse])) - - return spouses - - def _get_descendants_stationary_graph(self, W, max_lag): - """Get descendants of nodes in W up to time t in stationary graph. - - Includes the nodes themselves. - """ - - descendants = set(W) - - for w in W: - j, tau = w - this_level = [w] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - for _, child in self._get_adjacents_stationary_graph(graph=self.graph, - node=varlag, patterns=["-*>", "-*+"], max_lag=max_lag, exclude=None): - i, tau = child - if (child not in descendants - # and (-self.tau_max <= tau <= 0 or self.ignore_time_bounds) - ): - descendants = descendants.union(set([child])) - next_level.append(child) - - this_level = next_level - - return descendants - - def _get_descendants(self, W): - """Get descendants of nodes in W up to time t. - - Includes the nodes themselves. - """ - - descendants = set(W) - - for w in W: - j, tau = w - this_level = [w] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - for child in self._get_children(varlag): - i, tau = child - if (child not in descendants - and (-self.tau_max <= tau <= 0)): # or self.ignore_time_bounds)): - descendants = descendants.union(set([child])) - next_level.append(child) - - this_level = next_level - - return descendants - - def _get_collider_path_nodes(self, W, descendants): - """Get non-descendant collider path nodes and their parents of nodes in W up to time t. - - """ - - collider_path_nodes = set([]) - # print("descendants ", descendants) - for w in W: - # print(w) - j, tau = w - this_level = [w] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - # print("\t", varlag, self._get_spouses(varlag)) - for spouse in self._get_spouses(varlag): - # print("\t\t", spouse) - i, tau = spouse - if (spouse not in collider_path_nodes - and spouse not in descendants - and (-self.tau_max <= tau <= 0)): # or self.ignore_time_bounds)): - collider_path_nodes = collider_path_nodes.union(set([spouse])) - next_level.append(spouse) - - this_level = next_level - - # Add parents - for w in collider_path_nodes: - for par in self._get_parents(w): - if (par not in collider_path_nodes - and par not in descendants - and (-self.tau_max <= tau <= 0)): # or self.ignore_time_bounds)): - collider_path_nodes = collider_path_nodes.union(set([par])) - - return collider_path_nodes - - def _get_adjacents_stationary_graph(self, graph, node, patterns, - max_lag=0, exclude=None): - """Find adjacencies of node matching patterns in a stationary graph.""" - - # graph = self.graph - - # Setup - i, lag_i = node - if exclude is None: exclude = [] - if type(patterns) == str: - patterns = [patterns] - - # Init - adj = [] - - # Find adjacencies going forward/contemp - for k, lag_ik in zip(*np.where(graph[i,:,:])): - matches = [self._match_link(patt, graph[i, k, lag_ik]) for patt in patterns] - if np.any(matches): - match = (k, lag_i + lag_ik) - if (k, lag_i + lag_ik) not in exclude and (-max_lag <= lag_i + lag_ik <= 0): # or self.ignore_time_bounds): - adj.append((graph[i, k, lag_ik], match)) - - # Find adjacencies going backward/contemp - for k, lag_ki in zip(*np.where(graph[:,i,:])): - matches = [self._match_link(self._reverse_link(patt), graph[k, i, lag_ki]) for patt in patterns] - if np.any(matches): - match = (k, lag_i - lag_ki) - if (k, lag_i - lag_ki) not in exclude and (-max_lag <= lag_i - lag_ki <= 0): # or self.ignore_time_bounds): - adj.append((self._reverse_link(graph[k, i, lag_ki]), match)) - - adj = list(set(adj)) - return adj - - def _get_canonical_dag_from_graph(self, graph): - """Constructs canonical DAG as links_coeffs dictionary from graph. - - For every <-> link further latent variables are added. - This corresponds to a canonical DAG (Richardson Spirtes 2002). - - Can be used to evaluate d-separation. - """ - - N, N, tau_maxplusone = graph.shape - tau_max = tau_maxplusone - 1 - - links = {j: [] for j in range(N)} - - # Add further latent variables to accommodate <-> links - latent_index = N - for i, j, tau in zip(*np.where(graph)): - - edge_type = graph[i, j, tau] - - # Consider contemporaneous links only once - if tau == 0 and j > i: - continue - - if edge_type == "-->": - links[j].append((i, -tau)) - elif edge_type == "<--": - links[i].append((j, -tau)) - elif edge_type == "<->": - links[latent_index] = [] - links[i].append((latent_index, 0)) - links[j].append((latent_index, -tau)) - latent_index += 1 - # elif edge_type == "---": - # links[latent_index] = [] - # selection_vars.append(latent_index) - # links[latent_index].append((i, -tau)) - # links[latent_index].append((j, 0)) - # latent_index += 1 - elif edge_type == "+->": - links[j].append((i, -tau)) - links[latent_index] = [] - links[i].append((latent_index, 0)) - links[j].append((latent_index, -tau)) - latent_index += 1 - elif edge_type == "<-+": - links[i].append((j, -tau)) - links[latent_index] = [] - links[i].append((latent_index, 0)) - links[j].append((latent_index, -tau)) - latent_index += 1 - - return links - - - def _get_maximum_possible_lag(self, XYZ, graph): - """Construct maximum relevant time lag for d-separation in stationary graph. - - TO BE REVISED! - - """ - - def _repeating(link, seen_path): - """Returns True if a link or its time-shifted version is already - included in seen_links.""" - i, taui = link[0] - j, tauj = link[1] - - for index, seen_link in enumerate(seen_path[:-1]): - seen_i, seen_taui = seen_link - seen_j, seen_tauj = seen_path[index + 1] - - if (i == seen_i and j == seen_j - and abs(tauj-taui) == abs(seen_tauj-seen_taui)): - return True - - return False - - # TODO: does this work with PAGs? - # if self.possible: - # patterns=['<*-', '<*o', 'o*o'] - # else: - # patterns=['<*-'] - - canonical_dag_links = self._get_canonical_dag_from_graph(graph) - - max_lag = 0 - for node in XYZ: - j, tau = node # tau <= 0 - max_lag = max(max_lag, abs(tau)) - - causal_path = [] - queue = [(node, causal_path)] - - while queue: - varlag, causal_path = queue.pop() - causal_path = [varlag] + causal_path - - var, lag = varlag - for partmp in canonical_dag_links[var]: - i, tautmp = partmp - # Get shifted lag since canonical_dag_links is at t=0 - tau = tautmp + lag - par = (i, tau) - - if (par not in causal_path): - - if len(causal_path) == 1: - queue.append((par, causal_path)) - continue - - if (len(causal_path) > 1) and not _repeating((par, varlag), causal_path): - - max_lag = max(max_lag, abs(tau)) - queue.append((par, causal_path)) - - return max_lag - - def _get_latent_projection_graph(self, stationary=False): - """For DAGs/ADMGs uses the Latent projection operation (Pearl 2009). - - Assumes a normal or stationary graph with potentially unobserved nodes. - Also allows particular time steps to be unobserved. By stationarity - that pattern of unobserved nodes is repeated into -infinity. - - Latent projection operation for latents = nodes before t-tau_max or due to <->: - (i) auxADMG contains (i, -taui) --> (j, -tauj) iff there is a directed path - (i, -taui) --> ... --> (j, -tauj) on which - every non-endpoint vertex is in hidden variables (= not in observed_vars) - here iff (i, -|taui-tauj|) --> j in graph - (ii) auxADMG contains (i, -taui) <-> (j, -tauj) iff there exists a path of the - form (i, -taui) <-- ... --> (j, -tauj) on - which every non-endpoint vertex is non-collider AND in L (=not in observed_vars) - here iff (i, -|taui-tauj|) <-> j OR there is path - (i, -taui) <-- nodes before t-tau_max --> (j, -tauj) - """ - - # graph = self.graph - - # if self.hidden_variables is None: - # hidden_variables_here = [] - # else: - hidden_variables_here = self.hidden_variables - - aux_graph = np.zeros((self.N, self.N, self.tau_max + 1, self.tau_max + 1), dtype='<U3') - aux_graph[:] = "" - for (i, j) in itertools.product(range(self.N), range(self.N)): - for jt, tauj in enumerate(range(0, self.tau_max + 1)): - for it, taui in enumerate(range(0, self.tau_max + 1)): - tau = abs(taui - tauj) - if tau == 0 and j == i: - continue - if (i, -taui) in hidden_variables_here or (j, -tauj) in hidden_variables_here: - continue - # print("\n") - # print((i, -taui), (j, -tauj)) - - cond_i_xy = ( - # tau <= graph_taumax - # and (graph[i, j, tau] == '-->' or graph[i, j, tau] == '+->') - # ) - # and - self._check_path( #graph=graph, - start=[(i, -taui)], - end=[(j, -tauj)], - conditions=None, - starts_with=['-*>', '+*>'], - ends_with=['-*>', '+*>'], - path_type='causal', - hidden_by_taumax=False, - hidden_variables=hidden_variables_here, - stationary_graph=stationary, - )) - cond_i_yx = ( - # tau <= graph_taumax - # and (graph[i, j, tau] == '<--' or graph[i, j, tau] == '<-+') - # ) - # and - self._check_path( #graph=graph, - start=[(j, -tauj)], - end=[(i, -taui)], - conditions=None, - starts_with=['-*>', '+*>'], - ends_with=['-*>', '+*>'], - path_type='causal', - hidden_by_taumax=False, - hidden_variables=hidden_variables_here, - stationary_graph=stationary, - )) - if stationary: - hidden_by_taumax_here = True - else: - hidden_by_taumax_here = False - - cond_ii = ( - # tau <= graph_taumax - # and - ( - # graph[i, j, tau] == '<->' - # or graph[i, j, tau] == '+->' or graph[i, j, tau] == '<-+')) - self._check_path( #graph=graph, - start=[(i, -taui)], - end=[(j, -tauj)], - conditions=None, - starts_with=['<**', '+**'], - ends_with=['**>', '**+'], - path_type='any', - hidden_by_taumax=hidden_by_taumax_here, - hidden_variables=hidden_variables_here, - stationary_graph=stationary, - ))) - - if cond_i_xy and not cond_i_yx and not cond_ii: - aux_graph[i, j, taui, tauj] = "-->" #graph[i, j, tau] - # if tau == 0: - aux_graph[j, i, tauj, taui] = "<--" # graph[j, i, tau] - elif not cond_i_xy and cond_i_yx and not cond_ii: - aux_graph[i, j, taui, tauj] = "<--" #graph[i, j, tau] - # if tau == 0: - aux_graph[j, i, tauj, taui] = "-->" # graph[j, i, tau] - elif not cond_i_xy and not cond_i_yx and cond_ii: - aux_graph[i, j, taui, tauj] = '<->' - # if tau == 0: - aux_graph[j, i, tauj, taui] = '<->' - elif cond_i_xy and not cond_i_yx and cond_ii: - aux_graph[i, j, taui, tauj] = '+->' - # if tau == 0: - aux_graph[j, i, tauj, taui] = '<-+' - elif not cond_i_xy and cond_i_yx and cond_ii: - aux_graph[i, j, taui, tauj] = '<-+' - # if tau == 0: - aux_graph[j, i, tauj, taui] = '+->' - elif cond_i_xy and cond_i_yx: - raise ValueError("Cycle between %s and %s!" %(str(i, -taui), str(j, -tauj))) - # print(aux_graph[i, j, taui, tauj]) - - # print((i, -taui), (j, -tauj), cond_i_xy, cond_i_yx, cond_ii, aux_graph[i, j, taui, tauj], aux_graph[j, i, tauj, taui]) - - return aux_graph - - def _check_path(self, - # graph, - start, end, - conditions=None, - starts_with=None, - ends_with=None, - path_type='any', - # causal_children=None, - stationary_graph=False, - hidden_by_taumax=False, - hidden_variables=None, - ): - """Check whether an open/active path between start and end given conditions exists. - - Also allows to restrict start and end patterns and to consider causal/non-causal paths - - hidden_by_taumax and hidden_variables are relevant for the latent projection operation. - """ - - - if conditions is None: - conditions = set([]) - # if conditioned_variables is None: - # S = [] - - start = set(start) - end = set(end) - conditions = set(conditions) - - # Get maximal possible time lag of a connecting path - # See Thm. XXXX - TO BE REVISED! - XYZ = start.union(end).union(conditions) - if stationary_graph: - max_lag = 10*self.tau_max # TO BE REVISED! self._get_maximum_possible_lag(XYZ, self.graph) - causal_children = list(self._get_mediators_stationary_graph(start, end, max_lag).union(end)) - else: - max_lag = None - causal_children = list(self.get_mediators(start, end).union(end)) - - # if hidden_variables is None: - # hidden_variables = set([]) - - if hidden_by_taumax: - if hidden_variables is None: - hidden_variables = set([]) - hidden_variables = hidden_variables.union([(k, -tauk) for k in range(self.N) - for tauk in range(self.tau_max+1, max_lag + 1)]) - - # print("causal_children ", causal_children) - - if starts_with is None: - starts_with = ['***'] - elif type(starts_with) == str: - starts_with = [starts_with] - - if ends_with is None: - ends_with = ['***'] - elif type(ends_with) == str: - ends_with = [ends_with] - # - # Breadth-first search to find connection - # - # print("\nstart, starts_with, ends_with, end ", start, starts_with, ends_with, end) - # print("hidden_variables ", hidden_variables) - start_from = set() - for x in start: - if stationary_graph: - link_neighbors = self._get_adjacents_stationary_graph(graph=self.graph, node=x, patterns=starts_with, - max_lag=max_lag, exclude=list(start)) - else: - link_neighbors = self._find_adj(node=x, patterns=starts_with, exclude=list(start), return_link=True) - - for link_neighbor in link_neighbors: - link, neighbor = link_neighbor - - # if before_taumax and neighbor[1] >= -self.tau_max: - # continue - - if (hidden_variables is not None and neighbor not in end - and neighbor not in hidden_variables): - continue - - if path_type == 'non_causal': - if (neighbor in causal_children and self._match_link('-*>', link) - and not self._match_link('+*>', link)): - continue - elif path_type == 'causal': - if (neighbor not in causal_children): # or self._match_link('<**', link)): - continue - start_from.add((x, link, neighbor)) - - # print("start, end, start_from ", start, end, start_from) - - visited = set() - for (varlag_i, link_ik, varlag_k) in start_from: - visited.add((link_ik, varlag_k)) - - # Traversing through motifs i *-* k *-* j - while start_from: - - # print("Continue ", start_from) - # for (link_ik, varlag_k) in start_from: - removables = [] - for (varlag_i, link_ik, varlag_k) in start_from: - - # print("varlag_k in end ", varlag_k in end, link_ik) - if varlag_k in end: - if np.any([self._match_link(patt, link_ik) for patt in ends_with]): - # print("Connected ", varlag_i, link_ik, varlag_k) - return True - else: - removables.append((varlag_i, link_ik, varlag_k)) - - for removable in removables: - start_from.remove(removable) - if len(start_from)==0: - return False - - # Get any neighbor from starting nodes - # link_ik, varlag_k = start_from.pop() - varlag_i, link_ik, varlag_k = start_from.pop() - - # print("Get k = ", link_ik, varlag_k) - # print("start_from ", start_from) - # print("visited ", visited) - - if stationary_graph: - link_neighbors = self._get_adjacents_stationary_graph(graph=self.graph, node=varlag_k, patterns='***', - max_lag=max_lag, exclude=list(start)) - else: - link_neighbors = self._find_adj(node=varlag_k, patterns='***', exclude=list(start), return_link=True) - - # print("link_neighbors ", link_neighbors) - for link_neighbor in link_neighbors: - link_kj, varlag_j = link_neighbor - # print("Walk ", link_ik, varlag_k, link_kj, varlag_j) - - # print ("visited ", (link_kj, varlag_j), visited) - if (link_kj, varlag_j) in visited: - # if (varlag_i, link_kj, varlag_j) in visited: - # print("in visited") - continue - # print("Not in visited") - - if path_type == 'causal': - if not (self._match_link('-*>', link_kj) or self._match_link('+*>', link_kj)): - continue - - # If motif i *-* k *-* j is open, - # then add link_kj, varlag_j to visited and start_from - left_mark = link_ik[2] - right_mark = link_kj[0] - # print(left_mark, right_mark) - - if self.definite_status: - # Exclude paths that are not definite_status implying that any of the following - # motifs occurs: - # i *-> k o-* j - if (left_mark == '>' and right_mark == 'o'): - continue - # i *-o k <-* j - if (left_mark == 'o' and right_mark == '<'): - continue - # i *-o k o-* j and i and j are adjacent - if (left_mark == 'o' and right_mark == 'o' - and self._is_match(varlag_i, varlag_j, "***")): - continue - - # If k is in conditions and motif is *-o k o-*, then motif is blocked since - # i and j are non-adjacent due to the check above - if varlag_k in conditions and (left_mark == 'o' and right_mark == 'o'): - # print("Motif closed ", link_ik, varlag_k, link_kj, varlag_j ) - continue # [('>', '<'), ('>', '+'), ('+', '<'), ('+', '+')] - - # If k is in conditions and left or right mark is tail '-', then motif is blocked - if varlag_k in conditions and (left_mark == '-' or right_mark == '-'): - # print("Motif closed ", link_ik, varlag_k, link_kj, varlag_j ) - continue # [('>', '<'), ('>', '+'), ('+', '<'), ('+', '+')] - - # If k is not in conditions and left and right mark are heads '><', then motif is blocked - if varlag_k not in conditions and (left_mark == '>' and right_mark == '<'): - # print("Motif closed ", link_ik, varlag_k, link_kj, varlag_j ) - continue # [('>', '<'), ('>', '+'), ('+', '<'), ('+', '+')] - - # if (before_taumax and varlag_j not in end - # and varlag_j[1] >= -self.tau_max): - # # print("before_taumax ", varlag_j) - # continue - - if (hidden_variables is not None and varlag_j not in end - and varlag_j not in hidden_variables): - continue - - # Motif is open - # print("Motif open ", link_ik, varlag_k, link_kj, varlag_j ) - # start_from.add((link_kj, varlag_j)) - visited.add((link_kj, varlag_j)) - start_from.add((varlag_k, link_kj, varlag_j)) - # visited.add((varlag_k, link_kj, varlag_j)) - - - # print("Separated") - return False - -
[docs] def get_optimal_set(self, - alternative_conditions=None, - minimize=False, - return_separate_sets=False, - ): - """Returns optimal adjustment set. - - See Runge NeurIPS 2021. - - Parameters - ---------- - alternative_conditions : set of tuples - Used only internally in optimality theorem. If None, self.S is used. - minimize : {False, True, 'colliders_only'} - Minimize optimal set. If True, minimize such that no subset - can be removed without making it invalid. If 'colliders_only', - only colliders are minimized. - return_separate_sets : bool - Whether to return tuple of parents, colliders, collider_parents, and S. - - Returns - ------- - Oset_S : False or list or tuple of lists - Returns optimal adjustment set if a valid set exists, otherwise False. - """ - - - # Needed for optimality theorem where Osets for alternative S are tested - if alternative_conditions is None: - S = self.S.copy() - vancs = self.vancs.copy() - else: - S = alternative_conditions - newancS = self._get_ancestors(S) - vancs = self.ancX.union(self.ancY).union(newancS) - self.forbidden_nodes - - # vancs = self._get_ancestors(list(self.X.union(self.Y).union(S))) - self.forbidden_nodes - - # descendants = self._get_descendants(self.Y.union(self.M)) - - # Sufficient condition for non-identifiability - if len(self.X.intersection(self.descendants)) > 0: - return False # raise ValueError("Not identifiable: Overlap between X and des(M)") - - ## - ## Construct O-set - ## - - # Start with parents - parents = self._get_all_parents(self.Y.union(self.M)) # set([]) - - # Remove forbidden nodes - parents = parents - self.forbidden_nodes - - # Construct valid collider path nodes - colliders = set([]) - for w in self.Y.union(self.M): - j, tau = w - this_level = [w] - non_suitable_nodes = [] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - suitable_spouses = set(self._get_spouses(varlag)) - set(non_suitable_nodes) - for spouse in suitable_spouses: - i, tau = spouse - if spouse in self.X: - return False - - if (# Node not already in set - spouse not in colliders #.union(parents) - # not forbidden - and spouse not in self.forbidden_nodes - # in time bounds - and (-self.tau_max <= tau <= 0) # or self.ignore_time_bounds) - and (spouse in vancs - or not self._check_path(#graph=self.graph, - start=self.X, end=[spouse], - conditions=list(parents.union(vancs)) + list(S), - )) - ): - colliders = colliders.union(set([spouse])) - next_level.append(spouse) - else: - if spouse not in colliders: - non_suitable_nodes.append(spouse) - - - this_level = set(next_level) - set(non_suitable_nodes) - - # Add parents and raise Error if not identifiable - collider_parents = self._get_all_parents(colliders) - if len(self.X.intersection(collider_parents)) > 0: - return False - - colliders_and_their_parents = colliders.union(collider_parents) - - # Add valid collider path nodes and their parents - Oset = parents.union(colliders_and_their_parents) - - - if minimize: - removable = [] - # First remove all those that have no path from X - sorted_Oset = Oset - if minimize == 'colliders_only': - sorted_Oset = [node for node in sorted_Oset if node not in parents] - - for node in sorted_Oset: - if (not self._check_path(#graph=self.graph, - start=self.X, end=[node], - conditions=list(Oset - set([node])) + list(S))): - removable.append(node) - - Oset = Oset - set(removable) - if minimize == 'colliders_only': - sorted_Oset = [node for node in Oset if node not in parents] - - removable = [] - # Next remove all those with no direct connection to Y - for node in sorted_Oset: - if (not self._check_path(#graph=self.graph, - start=[node], end=self.Y, - conditions=list(Oset - set([node])) + list(S) + list(self.X), - ends_with=['**>', '**+'])): - removable.append(node) - - Oset = Oset - set(removable) - - Oset_S = Oset.union(S) - - if return_separate_sets: - return parents, colliders, collider_parents, S - else: - return list(Oset_S)
- - - def _get_collider_paths_optimality(self, source_nodes, target_nodes, - condition, - inside_set=None, - start_with_tail_or_head=False, - ): - """Returns relevant collider paths to check optimality. - - Iterates over collider paths within O-set via depth-first search - - """ - - for w in source_nodes: - # Only used to return *all* collider paths - # (needed in optimality theorem) - - coll_path = [] - - queue = [(w, coll_path)] - - non_valid_subsets = [] - - while queue: - - varlag, coll_path = queue.pop() - - coll_path = coll_path + [varlag] - - suitable_nodes = set(self._get_spouses(varlag)) - - if start_with_tail_or_head and coll_path == [w]: - children = set(self._get_children(varlag)) - suitable_nodes = suitable_nodes.union(children) - - for node in suitable_nodes: - i, tau = node - if ((-self.tau_max <= tau <= 0) # or self.ignore_time_bounds) - and node not in coll_path): - - if condition == 'II' and node not in target_nodes and node not in self.vancs: - continue - - if node in inside_set: - if condition == 'I': - non_valid = False - for pathset in non_valid_subsets[::-1]: - if set(pathset).issubset(set(coll_path + [node])): - non_valid = True - break - if non_valid is False: - queue.append((node, coll_path)) - else: - continue - elif condition == 'II': - queue.append((node, coll_path)) - - if node in target_nodes: - # yield coll_path - # collider_paths[node].append(coll_path) - if condition == 'I': - # Construct OπiN - Sprime = self.S.union(coll_path) - OpiN = self.get_optimal_set(alternative_conditions=Sprime) - if OpiN is False: - queue = [(q_node, q_path) for (q_node, q_path) in queue if set(coll_path).issubset(set(q_path + [q_node])) is False] - non_valid_subsets.append(coll_path) - else: - return False - - elif condition == 'II': - return True - # yield coll_path - - if condition == 'I': - return True - elif condition == 'II': - return False - # return collider_paths - - -
[docs] def check_optimality(self): - """Check whether optimal adjustment set exists according to Thm. 3 in Runge NeurIPS 2021. - - Returns - ------- - optimality : bool - Returns True if an optimal adjustment set exists, otherwise False. - """ - - # Cond. 0: Exactly one valid adjustment set exists - cond_0 = (self._get_all_valid_adjustment_sets(check_one_set_exists=True)) - - # - # Cond. I - # - parents, colliders, collider_parents, _ = self.get_optimal_set(return_separate_sets=True) - Oset = parents.union(colliders).union(collider_parents) - n_nodes = self._get_all_spouses(self.Y.union(self.M).union(colliders)) - self.forbidden_nodes - Oset - self.S - self.Y - self.M - colliders - - if (len(n_nodes) == 0): - # # (1) There are no spouses N ∈ sp(YMC) \ (forbOS) - cond_I = True - else: - - # (2) For all N ∈ N and all its collider paths i it holds that - # OπiN does not block all non-causal paths from X to Y - # cond_I = True - cond_I = self._get_collider_paths_optimality( - source_nodes=list(n_nodes), target_nodes=list(self.Y.union(self.M)), - condition='I', - inside_set=Oset.union(self.S), start_with_tail_or_head=False, - ) - - # - # Cond. II - # - e_nodes = Oset.difference(parents) - cond_II = True - for E in e_nodes: - Oset_minusE = Oset.difference(set([E])) - if self._check_path(#graph=self.graph, - start=list(self.X), end=[E], - conditions=list(self.S) + list(Oset_minusE)): - - cond_II = self._get_collider_paths_optimality( - target_nodes=self.Y.union(self.M), - source_nodes=list(set([E])), - condition='II', - inside_set=list(Oset.union(self.S)), - start_with_tail_or_head = True) - - if cond_II is False: - if self.verbosity > 1: - print("Non-optimal due to E = ", E) - break - - optimality = (cond_0 or (cond_I and cond_II)) - if self.verbosity > 0: - print("Optimality = %s with cond_0 = %s, cond_I = %s, cond_II = %s" - % (optimality, cond_0, cond_I, cond_II)) - return optimality
- - def _check_validity(self, Z): - """Checks whether Z is a valid adjustment set.""" - - # causal_children = list(self.M.union(self.Y)) - backdoor_path = self._check_path(#graph=self.graph, - start=list(self.X), end=list(self.Y), - conditions=list(Z), - # causal_children=causal_children, - path_type = 'non_causal') - - if backdoor_path: - return False - else: - return True - - def _get_adjust_set(self, - minimize=False, - ): - """Returns Adjust-set. - - See van der Zander, B.; Liśkiewicz, M. & Textor, J. - Separators and adjustment sets in causal graphs: Complete - criteria and an algorithmic framework - Artificial Intelligence, Elsevier, 2019, 270, 1-40 - - """ - - vancs = self.vancs.copy() - - if minimize: - # Get removable nodes by computing minimal valid set from Z - if minimize == 'keep_parentsYM': - minimize_nodes = vancs - self._get_all_parents(list(self.Y.union(self.M))) - - else: - minimize_nodes = vancs - - # Zprime2 = Zprime - # First remove all nodes that have no unique path to X given Oset - for node in minimize_nodes: - # path = self.oracle.check_shortest_path(X=X, Y=[node], - # Z=list(vancs - set([node])), - # max_lag=None, - # starts_with=None, #'arrowhead', - # forbidden_nodes=None, #list(Zprime - set([node])), - # return_path=False) - path = self._check_path(#graph=self.graph, - start=self.X, end=[node], - conditions=list(vancs - set([node])), - ) - - if path is False: - vancs = vancs - set([node]) - - if minimize == 'keep_parentsYM': - minimize_nodes = vancs - self._get_all_parents(list(self.Y.union(self.M))) - else: - minimize_nodes = vancs - - # print(Zprime2) - # Next remove all nodes that have no unique path to Y given Oset_min - # Z = Zprime2 - for node in minimize_nodes: - - path = self._check_path(#graph=self.graph, - start=[node], end=self.Y, - conditions=list(vancs - set([node])) + list(self.X), - ) - - if path is False: - vancs = vancs - set([node]) - - if self._check_validity(list(vancs)) is False: - return False - else: - return list(vancs) - - - def _get_all_valid_adjustment_sets(self, - check_one_set_exists=False, yield_index=None): - """Constructs all valid adjustment sets or just checks whether one exists. - - See van der Zander, B.; Liśkiewicz, M. & Textor, J. - Separators and adjustment sets in causal graphs: Complete - criteria and an algorithmic framework - Artificial Intelligence, Elsevier, 2019, 270, 1-40 - - """ - - cond_set = set(self.S) - all_vars = [(i, -tau) for i in range(self.N) - for tau in range(0, self.tau_max + 1)] - - all_vars_set = set(all_vars) - self.forbidden_nodes - - - def find_sep(I, R): - Rprime = R - self.X - self.Y - # TODO: anteriors and NOT ancestors where - # anteriors include --- links in causal paths - # print(I) - XYI = list(self.X.union(self.Y).union(I)) - # print(XYI) - ancs = self._get_ancestors(list(XYI)) - Z = ancs.intersection(Rprime) - if self._check_validity(Z) is False: - return False - else: - return Z - - - def list_sep(I, R): - # print(find_sep(X, Y, I, R)) - if find_sep(I, R) is not False: - # print(I,R) - if I == R: - # print('--->', I) - yield I - else: - # Pick arbitrary node from R-I - RminusI = list(R - I) - # print(R, I, RminusI) - v = RminusI[0] - # print("here ", X, Y, I.union(set([v])), R) - yield from list_sep(I.union(set([v])), R) - yield from list_sep(I, R - set([v])) - - # print("all ", X, Y, cond_set, all_vars_set) - all_sets = [] - I = cond_set - R = all_vars_set - for index, valid_set in enumerate(list_sep(I, R)): - # print(valid_set) - all_sets.append(list(valid_set)) - if check_one_set_exists and index > 0: - break - - if yield_index is not None and index == yield_index: - return valid_set - - if yield_index is not None: - return None - - if check_one_set_exists: - if len(all_sets) == 1: - return True - else: - return False - - return all_sets - - - def _get_causal_paths(self, source_nodes, target_nodes, - mediators=None, - mediated_through=None, - proper_paths=True, - ): - """Returns causal paths via depth-first search. - - Allows to restrict paths through mediated_through. - - """ - - source_nodes = set(source_nodes) - target_nodes = set(target_nodes) - - if mediators is None: - mediators = set() - else: - mediators = set(mediators) - - if mediated_through is None: - mediated_through = [] - mediated_through = set(mediated_through) - - if proper_paths: - inside_set = mediators.union(target_nodes) - source_nodes - else: - inside_set = mediators.union(target_nodes).union(source_nodes) - - all_causal_paths = {} - for w in source_nodes: - all_causal_paths[w] = {} - for z in target_nodes: - all_causal_paths[w][z] = [] - - for w in source_nodes: - - causal_path = [] - queue = [(w, causal_path)] - - while queue: - - varlag, causal_path = queue.pop() - causal_path = causal_path + [varlag] - suitable_nodes = set(self._get_children(varlag) - ).intersection(inside_set) - for node in suitable_nodes: - i, tau = node - if ((-self.tau_max <= tau <= 0) # or self.ignore_time_bounds) - and node not in causal_path): - - queue.append((node, causal_path)) - - if node in target_nodes: - if len(mediated_through) > 0 and len(set(causal_path).intersection(mediated_through)) == 0: - continue - else: - all_causal_paths[w][node].append(causal_path + [node]) - - return all_causal_paths - -
[docs] def fit_total_effect(self, - dataframe, - estimator, - adjustment_set='optimal', - conditional_estimator=None, - data_transform=None, - mask_type=None, - ignore_identifiability=False, - ): - """Returns a fitted model for the total causal effect of X on Y - conditional on S. - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - estimator : sklearn model object - For example, sklearn.linear_model.LinearRegression() for a linear - regression model. - adjustment_set : str or list of tuples - If 'optimal' the Oset is used, if 'minimized_optimal' the minimized Oset, - and if 'colliders_minimized_optimal', the colliders-minimized Oset. - If a list of tuples is passed, this set is used. - conditional_estimator : sklearn model object, optional (default: None) - Used to fit conditional causal effects in nested regression. - If None, the same model as for estimator is used. - data_transform : sklearn preprocessing object, optional (default: None) - Used to transform data prior to fitting. For example, - sklearn.preprocessing.StandardScaler for simple standardization. The - fitted parameters are stored. - mask_type : {None, 'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence - measure I(X; Y | Z) the samples should be masked. If None, the mask - is not used. Explained in tutorial on masking and missing values. - ignore_identifiability : bool - Only applies to adjustment sets supplied by user. Ignores if that - set leads to a non-identifiable effect. - """ - - if self.no_causal_path: - if self.verbosity > 0: - print("No causal path from X to Y exists.") - return self - - self.dataframe = dataframe - self.conditional_estimator = conditional_estimator - - if self.N != self.dataframe.N: - raise ValueError("Dataset dimensions inconsistent with number of variables in graph.") - - - if adjustment_set == 'optimal': - # Check optimality and use either optimal or colliders_only set - adjustment_set = self.get_optimal_set() - elif adjustment_set == 'colliders_minimized_optimal': - adjustment_set = self.get_optimal_set(minimize='colliders_only') - elif adjustment_set == 'minimized_optimal': - adjustment_set = self.get_optimal_set(minimize=True) - else: - if ignore_identifiability is False and self._check_validity(adjustment_set) is False: - raise ValueError("Chosen adjustment_set is not valid.") - - if adjustment_set is False: - raise ValueError("Causal effect not identifiable via adjustment.") - - self.adjustment_set = adjustment_set - - # Fit model of Y on X and Z (and conditions) - # Build the model - self.model = Models( - dataframe=dataframe, - model=estimator, - conditional_model=conditional_estimator, - data_transform=data_transform, - mask_type=mask_type, - verbosity=self.verbosity) - - self.model.get_general_fitted_model( - Y=self.listY, X=self.listX, Z=list(self.adjustment_set), - conditions=self.listS, - tau_max=self.tau_max, - cut_off='tau_max', - return_data=False) - - return self
- -
[docs] def predict_total_effect(self, - intervention_data, - conditions_data=None, - pred_params=None, - return_further_pred_results=False, - aggregation_func=np.mean, - transform_interventions_and_prediction=False, - ): - """Predict effect of intervention with fitted model. - - Uses the model.predict() function of the sklearn model. - - Parameters - ---------- - intervention_data : numpy array - Numpy array of shape (time, len(X)) that contains the do(X) values. - conditions_data : data object, optional - Numpy array of shape (time, len(S)) that contains the S=s values. - pred_params : dict, optional - Optional parameters passed on to sklearn prediction function. - return_further_pred_results : bool, optional (default: False) - In case the predictor class returns more than just the expected value, - the entire results can be returned. - aggregation_func : callable - Callable applied to output of 'predict'. Default is 'np.mean'. - transform_interventions_and_prediction : bool (default: False) - Whether to perform the inverse data_transform on prediction results. - - Returns - ------- - Results from prediction: an array of shape (time, len(Y)). - If estimate_confidence = True, then a tuple is returned. - """ - - if intervention_data.shape[1] != len(self.listX): - raise ValueError("intervention_data.shape[1] must be len(X).") - - if conditions_data is not None and len(self.listS) > 0: - if conditions_data.shape[1] != len(self.listS): - raise ValueError("conditions_data.shape[1] must be len(S).") - if conditions_data.shape[0] != intervention_data.shape[0]: - raise ValueError("conditions_data.shape[0] must match intervention_data.shape[0].") - elif conditions_data is not None and len(self.listS) == 0: - raise ValueError("conditions_data specified, but S=None or empty.") - elif conditions_data is None and len(self.listS) > 0: - raise ValueError("S specified, but conditions_data is None.") - - - if self.no_causal_path: - if self.verbosity > 0: - print("No causal path from X to Y exists.") - return np.zeros((len(intervention_data), len(self.listY))) - - effect = self.model.get_general_prediction( - intervention_data=intervention_data, - conditions_data=conditions_data, - pred_params=pred_params, - return_further_pred_results=return_further_pred_results, - transform_interventions_and_prediction=transform_interventions_and_prediction, - aggregation_func=aggregation_func,) - - return effect
- -
[docs] def fit_wright_effect(self, - dataframe, - mediation=None, - method='parents', - links_coeffs=None, - data_transform=None, - mask_type=None, - ): - """Returns a fitted model for the total or mediated causal effect of X on Y - potentially through mediator variables. - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - mediation : None, 'direct', or list of tuples - If None, total effect is estimated, if 'direct' then only the direct effect is estimated, - else only those causal paths are considerd that pass at least through one of these mediator nodes. - method : {'parents', 'links_coeffs', 'optimal'} - Method to use for estimating Wright's path coefficients. If 'optimal', - the Oset is used, if 'links_coeffs', the coefficients in links_coeffs are used, - if 'parents', the parents are used (only valid for DAGs). - links_coeffs : dict - Only used if method = 'links_coeffs'. - Dictionary of format: {0:[((i, -tau), coeff),...], 1:[...], - ...} for all variables where i must be in [0..N-1] and tau >= 0 with - number of variables N. coeff must be a float. - data_transform : None - Not implemented for Wright estimator. Complicated for missing samples. - mask_type : {None, 'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence - measure I(X; Y | Z) the samples should be masked. If None, the mask - is not used. Explained in tutorial on masking and missing values. - """ - - if self.no_causal_path: - if self.verbosity > 0: - print("No causal path from X to Y exists.") - return self - - if data_transform is not None: - raise ValueError("data_transform not implemented for Wright estimator." - " You can preprocess data yourself beforehand.") - - import sklearn.linear_model - - self.dataframe = dataframe - estimator = sklearn.linear_model.LinearRegression() - - # Fit model of Y on X and Z (and conditions) - # Build the model - self.model = Models( - dataframe=dataframe, - model=estimator, - data_transform=None, #data_transform, - mask_type=mask_type, - verbosity=self.verbosity) - - mediators = self.M # self.get_mediators(start=self.X, end=self.Y) - - if mediation == 'direct': - causal_paths = {} - for w in self.X: - causal_paths[w] = {} - for z in self.Y: - if w in self._get_parents(z): - causal_paths[w][z] = [[w, z]] - else: - causal_paths[w][z] = [] - else: - causal_paths = self._get_causal_paths(source_nodes=self.X, - target_nodes=self.Y, mediators=mediators, - mediated_through=mediation, proper_paths=True) - - if method == 'links_coeffs': - coeffs = {} - max_lag = 0 - for medy in [med for med in mediators] + [y for y in self.listY]: - coeffs[medy] = {} - j, tauj = medy - for ipar, par_coeff in enumerate(links_coeffs[medy[0]]): - par, coeff, _ = par_coeff - i, taui = par - taui_shifted = taui + tauj - max_lag = max(abs(par[1]), max_lag) - coeffs[medy][(i, taui_shifted)] = coeff #self.fit_results[j][(j, 0)]['model'].coef_[ipar] - - self.model.tau_max = max_lag - # print(coeffs) - - elif method == 'optimal': - # all_parents = {} - coeffs = {} - for medy in [med for med in mediators] + [y for y in self.listY]: - coeffs[medy] = {} - mediator_parents = self._get_all_parents([medy]).intersection(mediators.union(self.X).union(self.Y)) - set([medy]) - all_parents = self._get_all_parents([medy]) - set([medy]) - for par in mediator_parents: - Sprime = set(all_parents) - set([par, medy]) - causal_effects = CausalEffects(graph=self.graph, - X=[par], Y=[medy], S=Sprime, - graph_type=self.graph_type, - check_SM_overlap=False, - ) - oset = causal_effects.get_optimal_set() - # print(medy, par, list(set(all_parents)), oset) - if oset is False: - raise ValueError("Not identifiable via Wright's method.") - fit_res = self.model.get_general_fitted_model( - Y=[medy], X=[par], Z=oset, - tau_max=self.tau_max, - cut_off='tau_max', - return_data=False) - coeffs[medy][par] = fit_res[medy]['model'].coef_[0] - - elif method == 'parents': - coeffs = {} - for medy in [med for med in mediators] + [y for y in self.listY]: - coeffs[medy] = {} - # mediator_parents = self._get_all_parents([medy]).intersection(mediators.union(self.X)) - set([medy]) - all_parents = self._get_all_parents([medy]) - set([medy]) - if 'dag' not in self.graph_type: - spouses = self._get_all_spouses([medy]) - set([medy]) - if len(spouses) != 0: - raise ValueError("method == 'parents' only possible for " - "causal paths without adjacent bi-directed links!") - - # print(j, all_parents[j]) - # if len(all_parents[j]) > 0: - # print(medy, list(all_parents)) - fit_res = self.model.get_general_fitted_model( - Y=[medy], X=list(all_parents), Z=[], - conditions=None, - tau_max=self.tau_max, - cut_off='tau_max', - return_data=False) - - for ipar, par in enumerate(list(all_parents)): - # print(par, fit_res[medy]['model'].coef_[ipar]) - coeffs[medy][par] = fit_res[medy]['model'].coef_[ipar] - - else: - raise ValueError("method must be 'optimal', 'links_coeffs', or 'parents'.") - - # Effect is sum over products over all path coefficients - # from x in X to y in Y - effect = {} - for (x, y) in itertools.product(self.listX, self.listY): - effect[(x, y)] = 0. - for causal_path in causal_paths[x][y]: - effect_here = 1. - # print(x, y, causal_path) - for index, node in enumerate(causal_path[:-1]): - i, taui = node - j, tauj = causal_path[index + 1] - # tau_ij = abs(tauj - taui) - # print((j, tauj), (i, taui)) - effect_here *= coeffs[(j, tauj)][(i, taui)] - - effect[(x, y)] += effect_here - - # Make fitted coefficients available as attribute - self.coeffs = coeffs - - # Modify and overwrite variables in self.model - self.model.Y = self.listY - self.model.X = self.listX - self.model.Z = [] - self.model.conditions = [] - self.model.cut_off = 'tau_max' # 'max_lag_or_tau_max' - - class dummy_fit_class(): - def __init__(self, y_here, listX_here, effect_here): - dim = len(listX_here) - self.coeff_array = np.array([effect_here[(x, y_here)] for x in listX_here]).reshape(dim, 1) - def predict(self, X): - return np.dot(X, self.coeff_array).squeeze() - - fit_results = {} - for y in self.listY: - fit_results[y] = {} - fit_results[y]['model'] = dummy_fit_class(y, self.listX, effect) - fit_results[y]['data_transform'] = deepcopy(data_transform) - - # self.effect = effect - self.model.fit_results = fit_results - return self
- -
[docs] def predict_wright_effect(self, - intervention_data, - pred_params=None, - ): - """Predict linear effect of intervention with fitted Wright-model. - - Parameters - ---------- - intervention_data : numpy array - Numpy array of shape (time, len(X)) that contains the do(X) values. - pred_params : dict, optional - Optional parameters passed on to sklearn prediction function. - - Returns - ------- - Results from prediction: an array of shape (time, len(Y)). - """ - if intervention_data.shape[1] != len(self.X): - raise ValueError("intervention_data.shape[1] must be len(X).") - - if self.no_causal_path: - if self.verbosity > 0: - print("No causal path from X to Y exists.") - return np.zeros((len(intervention_data), len(self.Y))) - - intervention_T, lenX = intervention_data.shape - - lenY = len(self.listY) - - predicted_array = np.zeros((intervention_T, lenY)) - pred_dict = {} - for iy, y in enumerate(self.listY): - # Print message - if self.verbosity > 1: - print("\n## Predicting target %s" % str(y)) - if pred_params is not None: - for key in list(pred_params): - print("%s = %s" % (key, pred_params[key])) - # Default value for pred_params - if pred_params is None: - pred_params = {} - # Check this is a valid target - if y not in self.model.fit_results: - raise ValueError("y = %s not yet fitted" % str(y)) - - # data_transform is too complicated for Wright estimator - # Transform the data if needed - # fitted_data_transform = self.model.fit_results[y]['fitted_data_transform'] - # if fitted_data_transform is not None: - # intervention_data = fitted_data_transform['X'].transform(X=intervention_data) - - # Now iterate through interventions (and potentially S) - for index, dox_vals in enumerate(intervention_data): - # Construct XZS-array - intervention_array = dox_vals.reshape(1, lenX) - predictor_array = intervention_array - - predicted_vals = self.model.fit_results[y]['model'].predict( - X=predictor_array, **pred_params) - predicted_array[index, iy] = predicted_vals.mean() - - # data_transform is too complicated for Wright estimator - # if fitted_data_transform is not None: - # rescaled = fitted_data_transform['Y'].inverse_transform(X=predicted_array[index, iy].reshape(-1, 1)) - # predicted_array[index, iy] = rescaled.squeeze() - - return predicted_array
- - -
[docs] def fit_bootstrap_of(self, method, method_args, - boot_samples=100, - boot_blocklength=1, - seed=None): - """Runs chosen method on bootstrap samples drawn from DataFrame. - - Bootstraps for tau=0 are drawn from [max_lag, ..., T] and all lagged - variables constructed in DataFrame.construct_array are consistently - shifted with respect to this bootsrap sample to ensure that lagged - relations in the bootstrap sample are preserved. - - This function fits the models, predict_bootstrap_of can then be used - to get confidence intervals for the effect of interventions. - - Parameters - ---------- - method : str - Chosen method among valid functions in this class. - method_args : dict - Arguments passed to method. - boot_samples : int - Number of bootstrap samples to draw. - boot_blocklength : int, optional (default: 1) - Block length for block-bootstrap. - seed : int, optional(default = None) - Seed for RandomState (default_rng) - """ - - # if dataframe.analysis_mode != 'single': - # raise ValueError("CausalEffects class currently only supports single " - # "datasets.") - - valid_methods = ['fit_total_effect', - 'fit_wright_effect', - ] - - if method not in valid_methods: - raise ValueError("method must be one of %s" % str(valid_methods)) - - # First call the method on the original dataframe - # to make available adjustment set etc - getattr(self, method)(**method_args) - - self.original_model = deepcopy(self.model) - - if self.verbosity > 0: - print("\n##\n## Running Bootstrap of %s " % method + - "\n##\n" + - "\nboot_samples = %s \n" % boot_samples + - "\nboot_blocklength = %s \n" % boot_blocklength - ) - - method_args_bootstrap = deepcopy(method_args) - self.bootstrap_results = {} - - for b in range(boot_samples): - # # Replace dataframe in method args by bootstrapped dataframe - # method_args_bootstrap['dataframe'].bootstrap = boot_draw - if seed is None: - random_state = np.random.default_rng(None) - else: - random_state = np.random.default_rng(seed+b) - - method_args_bootstrap['dataframe'].bootstrap = {'boot_blocklength':boot_blocklength, - 'random_state':random_state} - - # Call method and save fitted model - getattr(self, method)(**method_args_bootstrap) - self.bootstrap_results[b] = deepcopy(self.model) - - # Reset model - self.model = self.original_model - - return self
- - -
[docs] def predict_bootstrap_of(self, method, method_args, - conf_lev=0.9, - return_individual_bootstrap_results=False): - """Predicts with fitted bootstraps. - - To be used after fitting with fit_bootstrap_of. Only uses the - expected values of the predict function, not potential other output. - - Parameters - ---------- - method : str - Chosen method among valid functions in this class. - method_args : dict - Arguments passed to method. - conf_lev : float, optional (default: 0.9) - Two-sided confidence interval. - return_individual_bootstrap_results : bool - Returns the individual bootstrap predictions. - - Returns - ------- - confidence_intervals : numpy array of - """ - - valid_methods = ['predict_total_effect', - 'predict_wright_effect', - ] - - if method not in valid_methods: - raise ValueError("method must be one of %s" % str(valid_methods)) - - - lenY = len(self.listY) - intervention_T, lenX = method_args['intervention_data'].shape - boot_samples = len(self.bootstrap_results) - bootstrap_predicted_array = np.zeros((boot_samples, intervention_T, lenY)) - - for b in self.bootstrap_results.keys(): - self.model = self.bootstrap_results[b] - boot_effect = getattr(self, method)(**method_args) - - if isinstance(boot_effect, tuple): - bootstrap_predicted_array[b] = boot_effect[0] - else: - bootstrap_predicted_array[b] = boot_effect - - # Reset model - self.model = self.original_model - - # Confidence intervals for val_matrix; interval is two-sided - c_int = (1. - (1. - conf_lev)/2.) - confidence_interval = np.percentile( - bootstrap_predicted_array, axis=0, - q = [100*(1. - c_int), 100*c_int])[:,:,0] - - if return_individual_bootstrap_results: - return bootstrap_predicted_array, confidence_interval - - return confidence_interval
- - -
[docs] @staticmethod - def get_graph_from_dict(links, tau_max=None): - """Helper function to convert dictionary of links to graph array format. - - Parameters - --------- - links : dict - Dictionary of form {0:[((0, -1), coeff, func), ...], 1:[...], ...}. - Also format {0:[(0, -1), ...], 1:[...], ...} is allowed. - tau_max : int or None - Maximum lag. If None, the maximum lag in links is used. - - Returns - ------- - graph : array of shape (N, N, tau_max+1) - Matrix format of graph with 1 for true links and 0 else. - """ - - def _get_minmax_lag(links): - """Helper function to retrieve tau_min and tau_max from links. - """ - - N = len(links) - - # Get maximum time lag - min_lag = np.inf - max_lag = 0 - for j in range(N): - for link_props in links[j]: - if len(link_props) > 2: - var, lag = link_props[0] - coeff = link_props[1] - # func = link_props[2] - if coeff != 0.: - min_lag = min(min_lag, abs(lag)) - max_lag = max(max_lag, abs(lag)) - else: - var, lag = link_props - min_lag = min(min_lag, abs(lag)) - max_lag = max(max_lag, abs(lag)) - - return min_lag, max_lag - - N = len(links) - - # Get maximum time lag - min_lag, max_lag = _get_minmax_lag(links) - - # Set maximum lag - if tau_max is None: - tau_max = max_lag - else: - if max_lag > tau_max: - raise ValueError("tau_max is smaller than maximum lag = %d " - "found in links, use tau_max=None or larger " - "value" % max_lag) - - graph = np.zeros((N, N, tau_max + 1), dtype='<U3') - for j in links.keys(): - for link_props in links[j]: - if len(link_props) > 2: - var, lag = link_props[0] - coeff = link_props[1] - if coeff != 0.: - graph[var, j, abs(lag)] = "-->" - if lag == 0: - graph[j, var, 0] = "<--" - else: - var, lag = link_props - graph[var, j, abs(lag)] = "-->" - if lag == 0: - graph[j, var, 0] = "<--" - - return graph
- -if __name__ == '__main__': - - # Consider some toy data - import tigramite - import tigramite.toymodels.structural_causal_processes as toys - import tigramite.data_processing as pp - import tigramite.plotting as tp - from matplotlib import pyplot as plt - import sys - - import sklearn - from sklearn.linear_model import LinearRegression, LogisticRegression - from sklearn.preprocessing import StandardScaler - - - def lin_f(x): return x - coeff = .5 - - links_coeffs = {0: [((0, -1), 0.5, lin_f)], - 1: [((1, -1), 0.5, lin_f), ((0, -1), 0.5, lin_f)], - 2: [((2, -1), 0.5, lin_f), ((1, 0), 0.5, lin_f)] - } - T = 1000 - data, nonstat = toys.structural_causal_process( - links_coeffs, T=T, noises=None, seed=7) - dataframe = pp.DataFrame(data) - - graph = CausalEffects.get_graph_from_dict(links_coeffs) - - X = [(0, -2)] - Y = [(2, 0)] - - # Initialize class as `stationary_dag` - causal_effects = CausalEffects(graph, graph_type='stationary_dag', - X=X, Y=Y, S=None, - hidden_variables=None, - verbosity=0) - - causal_effects.fit_wright_effect(dataframe=dataframe, - # links_coeffs = links_coeffs, - # mediation = [(1, 0), (1, -1), (1, -2)] - ) - - intervention_data = 1.*np.ones((1, 1)) - y1 = causal_effects.predict_wright_effect( - intervention_data=intervention_data, - ) - - intervention_data = 0.*np.ones((1, 1)) - y2 = causal_effects.predict_wright_effect( - intervention_data=intervention_data, - ) - - beta = (y1 - y2) - print("Causal effect is %.5f" %(beta)) - - # tp.plot_time_series_graph( - # graph = causal_effects.graph, - # save_name='Example_graph.pdf', - # # special_nodes=special_nodes, - # var_names=var_names, - # figsize=(8, 4), - # ) - - # T = 100 - # def lin_f(x): return x - # auto_coeff = 0.3 - # coeff = 2. - # links = { - # 0: [((0, -1), auto_coeff, lin_f)], - # 1: [((1, -1), auto_coeff, lin_f), ((0, -1), coeff, lin_f)], - # # 2: [((2, -1), auto_coeff, lin_f), ((1, 0), coeff, lin_f)], - # } - # data, nonstat = toys.structural_causal_process(links, T=T, - # noises=None, seed=7) - - # # Create some missing values - # data[-10:,:] = 999. - # var_names = range(2) - # dataframe = pp.DataFrame(data, var_names=var_names, - # missing_flag=999.) - - - # # Construct expert knowledge graph from links here - # # links = {0: [(0, -1)], - # # 1: [(1, -1), (0, -1)], - # # 2: [(2, -1), (1, 0),], - # # } - # # Use staticmethod to get graph - # graph = CausalEffects.get_graph_from_dict(links, tau_max=None) - - # # We are interested in lagged total effect of X on Y - # X = [(0, -1)] - # Y = [(1, 0)] - - # # Initialize class as `stationary_dag` - # causal_effects = CausalEffects(graph, graph_type='stationary_dag', - # X=X, Y=Y, S=None, - # hidden_variables=None, - # verbosity=0) - - # # print(data) - # # Optimal adjustment set (is used by default) - # # print(causal_effects.get_optimal_set()) - - # # # Fit causal effect model from observational data - # causal_effects.fit_total_effect( - # dataframe=dataframe, - # # mask_type='y', - # estimator=LinearRegression(), - # ) - - - # # # Fit causal effect model from observational data - # causal_effects.fit_bootstrap_of( - # method='fit_total_effect', - # method_args={'dataframe':dataframe, - # # mask_type='y', - # 'estimator':LinearRegression() - # }, - # seed=4 - # ) - - - # # Predict effect of interventions do(X=0.), ..., do(X=1.) in one go - # dox_vals = np.array([1.]) #np.linspace(0., 1., 1) - # intervention_data = dox_vals.reshape(len(dox_vals), len(X)) - # pred_Y = causal_effects.predict_total_effect( - # intervention_data=intervention_data) - # print(pred_Y) - - - - - # # Predict effect of interventions do(X=0.), ..., do(X=1.) in one go - # dox_vals = np.array([1.]) #np.linspace(0., 1., 1) - # intervention_data = dox_vals.reshape(len(dox_vals), len(X)) - # conf = causal_effects.predict_bootstrap_of( - # method='predict_total_effect', - # method_args={'intervention_data':intervention_data}) - # print(conf) - - - - # # # Predict effect of interventions do(X=0.), ..., do(X=1.) in one go - # # dox_vals = np.array([1.]) #np.linspace(0., 1., 1) - # # intervention_data = dox_vals.reshape(len(dox_vals), len(X)) - # # pred_Y = causal_effects.predict_total_effect( - # # intervention_data=intervention_data) - # # print(pred_Y) - - - - # # Fit causal effect model from observational data - # causal_effects.fit_wright_effect( - # dataframe=dataframe, - # # mask_type='y', - # # estimator=LinearRegression(), - # # data_transform=StandardScaler(), - # ) - - # # # Predict effect of interventions do(X=0.), ..., do(X=1.) in one go - # dox_vals = np.linspace(0., 1., 5) - # intervention_data = dox_vals.reshape(len(dox_vals), len(X)) - # pred_Y = causal_effects.predict_wright_effect( - # intervention_data=intervention_data) - # print(pred_Y) -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/data_processing.html b/docs/_build/html/_modules/tigramite/data_processing.html deleted file mode 100644 index e80751ac..00000000 --- a/docs/_build/html/_modules/tigramite/data_processing.html +++ /dev/null @@ -1,1643 +0,0 @@ - - - - - - - - tigramite.data_processing — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.data_processing

-"""Tigramite data processing functions."""
-
-# Authors: Jakob Runge <jakob@jakob-runge.com>
-#          Andreas Gerhardus <andreas.gerhardus@dlr.de>
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-from collections import defaultdict, OrderedDict
-import sys
-import warnings
-from copy import deepcopy
-import math
-import numpy as np
-import scipy.sparse
-import scipy.sparse.linalg
-from scipy import stats
-from numba import jit
-
-
[docs]class DataFrame(): - """Data object containing single or multiple time series arrays and optional - mask. - - Parameters - ---------- - data : array-like - if analysis_mode == 'single': - 1) Numpy array of shape (observations T, variables N) - OR - 2) Dictionary with a single entry whose value is a numpy array of - shape (observations T, variables N) - if analysis_mode == 'multiple': - 1) Numpy array of shape (multiple datasets M, observations T, - variables N) - OR - 2) Dictionary whose values are numpy arrays of shape - (observations T_i, variables N), where the number of observations - T_i may vary across the multiple datasets but the number of variables - N is fixed. - mask : array-like, optional (default: None) - Optional mask array, must be of same format and shape as data. - type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - missing_flag : number, optional (default: None) - Flag for missing values in dataframe. Dismisses all time slices of - samples where missing values occur in any variable. For - remove_missing_upto_maxlag=True also flags samples for all lags up to - 2*tau_max (more precisely, this depends on the cut_off argument in - self.construct_array(), see further below). This avoids biases, see - section on masking in Supplement of [1]_. - vector_vars : dict - Dictionary of vector variables of the form, - Eg. {0: [(0, 0), (1, 0)], 1: [(2, 0)], 2: [(3, 0)], 3: [(4, 0)]} - The keys are the new vectorized variables and respective tuple values - are the individual components of the vector variables. In the method of - construct_array(), the individual components are parsed from vector_vars - and added (accounting for lags) to the list that creates X, Y and Z for - conditional independence test. - var_names : list of strings, optional (default: range(N)) - Names of variables, must match the number of variables. If None is - passed, variables are enumerated as [0, 1, ...] - datatime : array-like, optional (default: None) - Timelabel array. If None, range(T) is used. - remove_missing_upto_maxlag : bool, optional (default: False) - Whether to remove not only missing samples, but also all neighboring - samples up to max_lag (as given by cut_off in construct_array). - analysis_mode : string, optional (default: 'single') - Must be 'single' or 'multiple'. - Determines whether data contains a single (potentially multivariate) - time series (--> 'single') or multiple time series (--> 'multiple'). - reference_points : None, int, or list (or 1D array) of integers, - optional (default:None) - Determines the time steps --- relative to the shared time axis as - defined by the optional time_offset argument (see below) --- that are - used to create samples for conditional independence testing. - Set to [0, 1, ..., T_max-1] if None is passed, where T_max is - self.largest_time_step, see below. - All values smaller than 0 and bigger than T_max-1 will be ignored. - At least one value must be in [0, 1, ..., T_max-1]. - time_offsets : None or dict, optional (default: None) - if analysis_mode == 'single': - Must be None. - Shared time axis defined by the time indices of the single time series - if analysis_mode == 'multiple' and data is numpy array: - Must be None. - All datasets are assumed to be already aligned in time with - respect to a shared time axis, which is the time axis of data - if analysis_mode == 'multiple' and data is dictionary: - Must be dictionary of the form {key(m): time_offset(m), ...} whose - set of keys agrees with the set of keys of data and whose values are - non-negative integers, at least one of which is 0. The value - time_offset(m) defines the time offset of dataset m with - respect to a shared time axis. - - Attributes - ---------- - self._initialized_from : string - Specifies the data format in which data was given at instantiation. - Possible values: '2d numpy array', '3d numpy array', 'dict'. - self.values : dictionary - Dictionary holding the observations given by data internally mapped to a - dictionary representation as follows: - If analysis_mode == 'single': - If self._initialized_from == '2d numpy array': - Is {0: data} - If self._initialized_from == 'dict': - Is data - If analysis_mode == 'multiple': - If self._initialized_from == '3d numpy array': - Is {m: data[m, :, :] for m in range(data.shape[0])} - If self._initialized_from == 'dict': - Is data - self.datasets: list - List of the keys identifiying the multiple datasets, i.e., - list(self.values.keys()) - self.mask : dictionary - Mask internally mapped to a dictionary representation in the same way as - data is mapped to self.values - self.type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - self.missing_flag: - Is missing_flag - self.var_names: - If var_names is not None: - Is var_names - If var_names is None: - Is {i: i for i in range(self.N)} - self.datatime : dictionary - Time axis for each of the multiple datasets. - self.analysis_mode : string - Is analysis_mode - self.reference_points: array-like - If reference_points is not None: - 1D numpy array holding all specified reference_points, less those - smaller than 0 and larger than self.largest_time_step-1 - If reference_points is None: - Is np.array(range(self.largest_time_step)) - self.time_offsets : dictionary - If time_offsets is not None: - Is time_offsets - If time_offsets is None: - Is {key: 0 for key in self.values.keys()} - self.M : int - Number of datasets - self.N : int - Number of variables (constant across datasets) - self.T : dictionary - Dictionary {key(m): T(m), ...}, where T(m) is the time length of - datasets m and key(m) its identifier as in self.values - self.largest_time_step : int - max_{0 <= m <= M} [ T(m) + time_offset(m)], i.e., the largest (latest) - time step relative to the shared time axis for which at least one - observation exists in the dataset. - self.bootstrap : dictionary - Whether to use bootstrap. Must be a dictionary with keys random_state, - boot_samples, and boot_blocklength. - """ - - def __init__(self, data, mask=None, missing_flag=None, vector_vars=None, var_names=None, - type_mask=None, datatime=None, analysis_mode ='single', reference_points=None, - time_offsets=None, remove_missing_upto_maxlag=False): - - # Check that a valid analysis mode, specified by the argument - # 'analysis_mode', has been chosen - if analysis_mode in ['single', 'multiple']: - self.analysis_mode = analysis_mode - else: - raise ValueError("'analysis_mode' is '{}', must be 'single' or "\ - "'multiple'.".format(analysis_mode)) - - # Check for correct type and format of 'data', internally cast to the - # analysis mode 'multiple' case in dictionary representation - if self.analysis_mode == 'single': - # In this case the 'time_offset' functionality must not be used - if time_offsets is not None: - raise ValueError("'time_offsets' must be None in analysis "\ - "mode'single'.") - - # 'data' must be either - # - np.ndarray of shape (T, N) - # - np.ndarray of shape (1, T, N) - # - a dictionary with one element whose value is a np.ndarray of - # shape (T, N) - - if isinstance(data, np.ndarray): - _data_shape = data.shape - if len(_data_shape) == 2: - self.values = {0: np.copy(data)} - self._initialized_from = "2d numpy array" - elif len(_data_shape) == 3 and _data_shape[0] == 1: - self.values = {0: np.copy(data[0, :, :])} - self._initialized_from = "3d numpy array" - else: - raise TypeError("In analysis mode 'single', 'data' given "\ - "as np.ndarray. 'data' is of shape {}, must be of "\ - "shape (T, N) or (1, T, N).".format(_data_shape)) - - elif isinstance(data, dict): - if len(data) == 1: - _data = next(iter(data.values())) - if isinstance(_data, np.ndarray): - if len(_data.shape) == 2: - self.values = data.copy() - self._initialized_from = "dict" - else: - raise TypeError("In analysis mode 'single', "\ - "'data'given as dictionary. The single value "\ - "is a np.ndarray of shape {}, must be of "\ - "shape (T, N).".format(_data.shape)) - else: - raise TypeError("In analysis mode 'single', 'data' "\ - "given as dictionary. The single value is of type "\ - "{}, must be np.ndarray.".format(type(_data))) - - else: - raise ValueError("In analysis mode 'single', 'data' given "\ - "as dictionary. There are {} entries in 'data', there "\ - "must be exactly one entry.".format(len(data))) - - else: - raise TypeError("In analysis mode 'single'. 'data' is of type "\ - "{}, must be np.ndarray or dict.".format(type(data))) - - elif self.analysis_mode == 'multiple': - # 'data' must either be a - # - np.ndarray of shape (M, T, N) - # - dict whose values of are np.ndarray of shape (T_i, N), where T_i - # may vary across the values - - if isinstance(data, np.ndarray): - _data_shape = data.shape - if len(_data_shape) == 3: - self.values = {i: np.copy(data[i, :, :]) for i in range(_data_shape[0])} - self._initialized_from = "3d numpy array" - else: - raise TypeError("In analysis mode 'multiple', 'data' "\ - "given as np.ndarray. 'data' is of shape {}, must be "\ - "of shape (M, T, N).".format(_data_shape)) - - # In this case the 'time_offset' functionality must not be used - if time_offsets is not None: - raise ValueError("In analysis mode 'multiple'. Since "\ - "'data' is given as np.ndarray, 'time_offsets' must "\ - "be None.") - - elif isinstance(data, dict): - _N_list = set() - for dataset_key, dataset_data in data.items(): - if isinstance(dataset_data, np.ndarray): - _dataset_data_shape = dataset_data.shape - if len(_dataset_data_shape) == 2: - _N_list.add(_dataset_data_shape[1]) - else: - raise TypeError("In analysis mode 'multiple', "\ - "'data' given as dictionary. 'data'[{}] is of "\ - "shape {}, must be of shape (T_i, N).".format( - dataset_key, _dataset_data_shape)) - - else: - raise TypeError("In analysis mode 'multiple', 'data' "\ - "given as dictionary. 'data'[{}] is of type {}, "\ - "must be np.ndarray.".format(dataset_key, - type(dataset_data))) - - if len(_N_list) == 1: - self.values = data.copy() - self._initialized_from = "dict" - else: - raise ValueError("In analysis mode 'multiple', 'data' "\ - "given as dictionary. All entries must be np.ndarrays "\ - "of shape (T_i, N), where T_i may vary across the "\ - "entries while N must not vary. In the given 'data' N "\ - "varies.") - - else: - raise TypeError("In analysis mode 'multiple'. 'data' is of "\ - "type {}, must be np.ndarray or dict.".format(type(data))) - - # Store the keys of the datasets in a separated attribute - self.datasets = list(self.values.keys()) - - # Save the data format and check for NaNs: - self.M = len(self.values) # (Number of datasets) - - self.T = dict() # (Time lengths of the individual datasets) - for dataset_key, dataset_data in self.values.items(): - if np.isnan(dataset_data).sum() != 0: - raise ValueError("NaNs in the data.") - - _dataset_data_shape = dataset_data.shape - self.T[dataset_key] = _dataset_data_shape[0] - self.Ndata = _dataset_data_shape[1] # (Number of variables) - # N does not vary across the datasets - - # Setup dictionary of variables for vector mode - self.vector_vars = vector_vars - if self.vector_vars is None: - self.vector_vars = dict(zip(range(self.Ndata), [[(i, 0)] - for i in range(self.Ndata)])) - # TODO: check vector_vars! - self.N = len(self.vector_vars) - - # Warnings - if self.analysis_mode == 'single' and self.N > next(iter(self.T.values())): - warnings.warn("In analysis mode 'single', 'data'.shape = ({}, {});"\ - " is it of shape (observations, variables)?".format(self.T[0], - self.N)) - - if self.analysis_mode == 'multiple' and self.M == 1: - warnings.warn("In analysis mode 'multiple'. There is just a "\ - "single dataset, is this as intended?'") - - - # Save the variable names. If unspecified, use the default - if var_names is None: - self.var_names = {i: i for i in range(self.N)} - else: - self.var_names = var_names - - self.mask = None - if mask is not None: - self.mask = self._check_mask(mask = mask) - - self.type_mask = None - if type_mask is not None: - self.type_mask = self._check_mask(mask = type_mask, check_type_mask=True) - - # Check and prepare the time offsets - self._check_and_set_time_offsets(time_offsets) - self.time_offsets_is_none = time_offsets is None - - # Set the default datatime if unspecified - if datatime is None: - self.datatime = {m: np.arange(self.time_offsets[m], - self.time_offsets[m] + self.T[m]) for m in self.values.keys()} - else: - if not isinstance(datatime, dict): - self.datatime = {0: datatime} - else: - self.datatime = datatime - - # Save the largest/smallest relevant time step - self.largest_time_step = np.add(np.asarray(list(self.T.values())), np.asarray(list(self.time_offsets.values()))).max() - self.smallest_time_step = np.add(np.asarray(list(self.T.values())), np.asarray(list(self.time_offsets.values()))).min() - - # Check and prepare the reference points - self._check_and_set_reference_points(reference_points) - self.reference_points_is_none = reference_points is None - - # Save the 'missing_flag' value - self.missing_flag = missing_flag - if self.missing_flag is not None: - for dataset_key in self.values: - self.values[dataset_key][self.values[dataset_key] == self.missing_flag] = np.nan - self.remove_missing_upto_maxlag = remove_missing_upto_maxlag - - # If PCMCI.run_bootstrap_of is called, then the - # bootstrap random draw can be set here - self.bootstrap = None - - - def _check_mask(self, mask, check_type_mask=False): - """Checks that the mask is: - * The same shape as the data - * Is an numpy ndarray (or subtype) - * Does not contain any NaN entries - - """ - # Check that there is a mask if required - _use_mask = mask - - # If we have a mask, check it - if _use_mask is not None: - # Check data type and generic format of 'mask', map to multiple datasets mode - # dictionary representation - if isinstance(_use_mask, np.ndarray): - if len(_use_mask.shape) == 2: - _use_mask_dict = {0: _use_mask} - elif len(_use_mask.shape) == 3: - if _use_mask.shape[0] == self.M: - _use_mask_dict = {i: _use_mask[i, :, :] for i in range(self.M)} - else: - raise ValueError("Shape mismatch: {} datasets "\ - " in 'data' but {} in 'mask', must be "\ - "identical.".format(self.M, _use_mask.shape[0])) - - else: - raise TypeError("'data' given as 3d np.ndarray. "\ - "'mask' is np.ndarray of shape {}, must be of "\ - "shape (M, T, N).".format(_use_mask.shape)) - - elif isinstance(_use_mask, dict): - if len(_use_mask) == self.M: - for dataset_key in self.values.keys(): - if _use_mask.get(dataset_key) is None: - raise ValueError("'data' has key {} (type {}) "\ - "but 'mask' does not, keys must be "\ - "identical.".format(dataset_key, - type(dataset_key))) - - _use_mask_dict = _use_mask - - else: - raise ValueError("Shape mismatch: {} datasets "\ - "in 'data' but {} in 'mask', must be "\ - "identical.".format(self.M, len(_use_mask))) - else: - raise TypeError("'mask' is of type "\ - "{}, must be dict or array.".format(type(_use_mask))) - - # Check for consistency with shape of 'self.values' and for NaNs - for dataset_key, dataset_data in self.values.items(): - _use_mask_dict_data = _use_mask_dict[dataset_key] - if _use_mask_dict_data.shape == dataset_data.shape: - if np.sum(np.isnan(_use_mask_dict_data)) != 0: - raise ValueError("NaNs in the data mask") - if check_type_mask: - if not set(np.unique(_use_mask_dict_data)).issubset(set([0, 1])): - raise ValueError("Type mask contains other values than 0 and 1") - else: - if self.analysis_mode == 'single': - raise ValueError("Shape mismatch: 'data' is of shape "\ - "{}, 'mask' is of shape {}. Must be "\ - "identical.".format(dataset_data.shape, - _use_mask_dict_data.shape)) - elif self.analysis_mode == 'multiple': - raise ValueError("Shape mismatch: dataset {} "\ - "is of shape {} in 'data' and of shape {} in "\ - "'mask'. Must be identical.".format(dataset_key, - dataset_data.shape, - _use_mask_dict_data.shape)) - - # Return the mask in dictionary format - return _use_mask_dict - - def _check_and_set_time_offsets(self, time_offsets): - """Check the argument 'time_offsets' for consistency and bring into - canonical format""" - - if time_offsets is not None: - - assert self.analysis_mode == 'multiple' - assert self._initialized_from == 'dict' - - # Check data type and generic format of 'time_offsets', map to - # dictionary representation - if isinstance(time_offsets, dict): - if len(time_offsets) == self.M: - for dataset_key in self.values.keys(): - if time_offsets.get(dataset_key) is None: - raise ValueError("'data' has key {} (type {}) but "\ - "'time_offsets' does not, keys must be "\ - "identical.".format(dataset_key, - type(dataset_key))) - - self.time_offsets = time_offsets - - else: - raise ValueError("Shape mismatch: {} datasets in "\ - "'data' but {} in 'time_offsets', must be "\ - "identical.".format(self.M, len(time_offsets))) - - else: - raise TypeError("'time_offsets' is of type {}, must be "\ - "dict.".format(type(time_offsets))) - - # All time offsets must be non-negative integers, at least one of - # which is zero - found_zero_time_offset = False - for time_offset in self.time_offsets.values(): - if np.issubdtype(type(time_offset), np.integer): - if time_offset >= 0: - if time_offset == 0: - found_zero_time_offset = True - else: - raise ValueError("A dataset has time offset "\ - "{}, must be non-negative.".format(time_offset)) - - else: - raise TypeError("There is a time offset of type {}, must "\ - "be int.".format(type(time_offset))) - - if not found_zero_time_offset: - raise ValueError("At least one time offset must be 0.") - - else: - # If no time offsets are specified, all of them are zero - self.time_offsets = {dataset_key: 0 for dataset_key in self.values.keys()} - - def _check_and_set_reference_points(self, reference_points): - """Check the argument 'reference_point' for consistency and bring into - canonical format""" - - # Check type of 'reference_points' and its elements - if reference_points is None: - # If no reference point is specified, use as many reference points - # as possible - self.reference_points = np.array(range(self.largest_time_step)) - - elif isinstance(reference_points, int): - # If a single reference point is specified as an int, convert it to - # a single element numpy array - self.reference_points = np.array([reference_points]) - - elif isinstance(reference_points, np.ndarray): - # Check that all reference points are ints - for ref_point in reference_points: - if not np.issubdtype(type(ref_point), np.integer): - raise TypeError("All reference points must be integers.") - - self.reference_points = reference_points - - elif isinstance(reference_points, list): - # Check that all reference points are ints - for ref_point in reference_points: - if not isinstance(ref_point, int): - raise TypeError("All reference points must be integers.") - - # If given as a list, cast to numpy array - self.reference_points = np.asarray(reference_points) - - else: - raise TypeError("Unsupported data type of 'reference_points': Is "\ - "{}, must be None or int or a list or np.ndarray of "\ - "ints.".format(type(reference_points))) - - # Remove negative reference points - if np.sum(self.reference_points < 0) > 0: - warnings.warn("Some reference points were negative. These are "\ - "removed.") - self.reference_points = self.reference_points[self.reference_points >= 0] - - # Remove reference points that are larger than the largest time step - if np.sum(self.reference_points >= self.largest_time_step) > 0: - warnings.warn("Some reference points were larger than the largest "\ - "relevant time step, which here is {}. These are "\ - "removed.".format(self.largest_time_step - 1)) - self.reference_points = self.reference_points[self.reference_points < self.largest_time_step] - - # Raise an error if no valid reference points was specified - if len(self.reference_points) == 0: - raise ValueError("No valid reference point.") - - -
[docs] def construct_array(self, X, Y, Z, tau_max, - extraZ=None, - mask=None, - mask_type=None, - type_mask=None, - return_cleaned_xyz=False, - do_checks=True, - remove_overlaps=True, - cut_off='2xtau_max', - verbosity=0): - """Constructs array from variables X, Y, Z from data. - Data is of shape (T, N) if analysis_mode == 'single', where T is the - time series length and N the number of variables, and of (n_ens, T, N) - if analysis_mode == 'multiple'. - - Parameters - ---------- - X, Y, Z, extraZ : list of tuples - For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of - the form [(var1, -lag), (var2, -lag), ...]. At least one varlag in Y - has to be at lag zero. extraZ is only used in CausalEffects class. - tau_max : int - Maximum time lag. This may be used to make sure that estimates for - different lags in X and Z all have the same sample size. - mask : array-like, optional (default: None) - Optional mask array, must be of same shape as data. If it is set, - then it overrides the self.mask assigned to the dataframe. If it is - None, then the self.mask is used, if it exists. - mask_type : {None, 'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence - measure I(X; Y | Z) the samples should be masked. If None, the mask - is not used. Explained in tutorial on masking and missing values. - type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - If it is set, then it overrides the self.type_mask assigned to the dataframe. - return_cleaned_xyz : bool, optional (default: False) - Whether to return cleaned X,Y,Z, where possible duplicates are - removed. - do_checks : bool, optional (default: True) - Whether to perform sanity checks on input X,Y,Z - remove_overlaps : bool, optional (default: True) - Whether to remove variables from Z/extraZ if they overlap with X or Y. - cut_off : {'2xtau_max', 'tau_max', 'max_lag', 'max_lag_or_tau_max', - 2xtau_max_future} - If cut_off == '2xtau_max': - - 2*tau_max samples are cut off at the beginning of the time - series ('beginning' here refers to the temporally first time - steps). This guarantees that (as long as no mask is used) all - MCI tests are conducted on the same samples, independent of X, - Y, and Z. - - If at time step t_missing a data value is missing, then the - time steps t_missing, ..., t_missing + 2*tau_max are cut out. - The latter part only holds if remove_missing_upto_maxlag=True. - If cut_off == 'max_lag': - - max_lag(X, Y, Z) samples are cut off at the beginning of the - time series, where max_lag(X, Y, Z) is the maximum lag of all - nodes in X, Y, and Z. These are all samples that can in - principle be used. - - If at time step t_missing a data value is missing, then the - time steps t_missing, ..., t_missing + max_lag(X, Y, Z) are cut - out. - The latter part only holds if remove_missing_upto_maxlag=True. - If cut_off == 'max_lag_or_tau_max': - - max(max_lag(X, Y, Z), tau_max) are cut off at the beginning. - This may be useful for modeling by comparing multiple models on - the same samples. - - If at time step t_missing a data value is missing, then the - time steps - t_missing, ..., t_missing + max(max_lag(X, Y, Z), tau_max) - are cut out. - The latter part only holds if remove_missing_upto_maxlag=True. - If cut_off == 'tau_max': - - tau_max samples are cut off at the beginning. - This may be useful for modeling by comparing multiple models on - the same samples. - - If at time step t_missing a data value is missing, then the - time steps - t_missing, ..., t_missing + max(max_lag(X, Y, Z), tau_max) - are cut out. - The latter part only holds if remove_missing_upto_maxlag=True. - If cut_off == '2xtau_max_future': - First, the relevant time steps are determined as for cut_off == - 'max_lag'. Then, the temporally latest time steps are removed - such that the same number of time steps remains as there would - be for cut_off == '2xtau_max'. This may be useful when one is - mostly interested in the temporally first time steps and would - like all MCI tests to be performed on the same *number* of - samples. Note, however, that while the *number* of samples is - the same for all MCI tests, the samples themselves may be - different. - verbosity : int, optional (default: 0) - Level of verbosity. - - Returns - ------- - array, xyz [,XYZ], type_mask : Tuple of data array of shape (dim, n_samples), - xyz identifier array of shape (dim,) identifying which row in array - corresponds to X, Y, and Z, and the type mask that indicates which samples - are continuous or discrete. For example:: X = [(0, -1)], - Y = [(1, 0)], Z = [(1, -1), (0, -2)] yields an array of shape - (4, n_samples) and xyz is xyz = numpy.array([0,1,2,2]). If - return_cleaned_xyz is True, also outputs the cleaned XYZ lists. - """ - - # # This version does not yet work with bootstrap - # try: - # assert self.bootstrap is None - # except AssertionError: - # print("This version does not yet work with bootstrap.") - # raise - - if extraZ is None: - extraZ = [] - - # If vector-valued variables exist, add them - def vectorize(varlag): - vectorized_var = [] - for (var, lag) in varlag: - for (vector_var, vector_lag) in self.vector_vars[var]: - vectorized_var.append((vector_var, vector_lag + lag)) - return vectorized_var - - X = vectorize(X) - Y = vectorize(Y) - Z = vectorize(Z) - extraZ = vectorize(extraZ) - - - # Remove duplicates in X, Y, Z, extraZ - X = list(OrderedDict.fromkeys(X)) - Y = list(OrderedDict.fromkeys(Y)) - Z = list(OrderedDict.fromkeys(Z)) - extraZ = list(OrderedDict.fromkeys(extraZ)) - - if remove_overlaps: - # If a node in Z occurs already in X or Y, remove it from Z - Z = [node for node in Z if (node not in X) and (node not in Y)] - extraZ = [node for node in extraZ if (node not in X) and (node not in Y) and (node not in Z)] - - XYZ = X + Y + Z + extraZ - dim = len(XYZ) - - # Check that all lags are non-positive and indices are in [0,N-1] - if do_checks: - self._check_nodes(Y, XYZ, self.Ndata, dim) - - # Use the mask, override if needed - _mask = mask - if _mask is None: - _mask = self.mask - else: - _mask = self._check_mask(mask = _mask) - - _type_mask = type_mask - if _type_mask is None: - _type_mask = self.type_mask - else: - _type_mask = self._check_mask(mask = _type_mask, check_type_mask=True) - - # Figure out what cut off we will be using - if cut_off == '2xtau_max': - max_lag = 2*tau_max - elif cut_off == 'max_lag': - max_lag = abs(np.array(XYZ)[:, 1].min()) - elif cut_off == 'tau_max': - max_lag = tau_max - elif cut_off == 'max_lag_or_tau_max': - max_lag = max(abs(np.array(XYZ)[:, 1].min()), tau_max) - elif cut_off == '2xtau_max_future': - ## TODO: CHECK THIS - max_lag = abs(np.array(XYZ)[:, 1].min()) - else: - raise ValueError("max_lag must be in {'2xtau_max', 'tau_max', 'max_lag', "\ - "'max_lag_or_tau_max', '2xtau_max_future'}") - - # Setup XYZ identifier - index_code = {'x' : 0, - 'y' : 1, - 'z' : 2, - 'e' : 3} - xyz = np.array([index_code[name] - for var, name in zip([X, Y, Z, extraZ], ['x', 'y', 'z', 'e']) - for _ in var]) - - # Run through all datasets and fill a dictionary holding the - # samples taken from the individual datasets - samples_datasets = dict() - type_masks = dict() - self.use_indices_dataset_dict = dict() - - for dataset_key, dataset_data in self.values.items(): - - # Apply time offset to the reference points - ref_points_here = self.reference_points - self.time_offsets[dataset_key] - - # Remove reference points that are out of bounds or are to be - # excluded given the choice of 'cut_off' - ref_points_here = ref_points_here[ref_points_here >= max_lag] - ref_points_here = ref_points_here[ref_points_here < self.T[dataset_key]] - - # Keep track of which reference points would have remained for - # max_lag == 2*tau_max - if cut_off == '2xtau_max_future': - ref_points_here_2_tau_max = self.reference_points - self.time_offsets[dataset_key] - ref_points_here_2_tau_max = ref_points_here_2_tau_max[ref_points_here_2_tau_max >= 2*tau_max] - ref_points_here_2_tau_max = ref_points_here_2_tau_max[ref_points_here_2_tau_max < self.T[dataset_key]] - - # Sort the valid reference points (not needed, but might be useful - # for detailed debugging) - ref_points_here = np.sort(ref_points_here) - - # For cut_off == '2xtau_max_future' reduce the samples size the - # number of samples that would have been obtained for cut_off == - # '2xtau_max', removing the temporally latest ones - if cut_off == '2xtau_max_future': - n_to_cut_off = len(ref_points_here) - len(ref_points_here_2_tau_max) - assert n_to_cut_off >= 0 - if n_to_cut_off > 0: - ref_points_here = np.sort(ref_points_here) - ref_points_here = ref_points_here[:-n_to_cut_off] - - # If no valid reference points are left, continue with the next dataset - if len(ref_points_here) == 0: - continue - - if self.bootstrap is not None: - - boot_blocklength = self.bootstrap['boot_blocklength'] - - if boot_blocklength == 'cube_root': - boot_blocklength = max(1, int(len(ref_points_here)**(1/3))) - # elif boot_blocklength == 'from_autocorrelation': - # boot_blocklength = \ - # get_block_length(overlapping_residuals.T, xyz=np.zeros(N), mode='confidence') - elif type(boot_blocklength) is int and boot_blocklength > 0: - pass - else: - raise ValueError("boot_blocklength must be integer > 0, 'cube_root', or 'from_autocorrelation'") - - # Chooses THE SAME random seed for every dataset, maybe that's what we want... - # If the reference points are all the same, this will give the same bootstrap - # draw. However, if they are NOT the same, they will differ. - # TODO: Decide whether bootstrap draws should be the same for each dataset and - # how to achieve that if the reference points differ... - # random_state = self.bootstrap['random_state'] - random_state = deepcopy(self.bootstrap['random_state']) - - # Determine the number of blocks total, rounding up for non-integer - # amounts - n_blks = int(math.ceil(float(len(ref_points_here))/boot_blocklength)) - - if n_blks < 10: - raise ValueError("Only %d block(s) for block-sampling," %n_blks + - "choose smaller boot_blocklength!") - - # Get the starting indices for the blocks - blk_strt = random_state.choice(np.arange(len(ref_points_here) - boot_blocklength), size=n_blks, replace=True) - # Get the empty array of block resampled values - boot_draw = np.zeros(n_blks*boot_blocklength, dtype='int') - # Fill the array of block resamples - for i in range(boot_blocklength): - boot_draw[i::boot_blocklength] = ref_points_here[blk_strt + i] - # Cut to proper length - ref_points_here = boot_draw[:len(ref_points_here)] - - # Construct the data array holding the samples taken from the - # current dataset - samples_datasets[dataset_key] = np.zeros((dim, len(ref_points_here)), dtype = dataset_data.dtype) - for i, (var, lag) in enumerate(XYZ): - samples_datasets[dataset_key][i, :] = dataset_data[ref_points_here + lag, var] - - # Build the mask array corresponding to this dataset - if _mask is not None: - mask_dataset = np.zeros((dim, len(ref_points_here)), dtype = 'bool') - for i, (var, lag) in enumerate(XYZ): - mask_dataset[i, :] = _mask[dataset_key][ref_points_here + lag, var] - - # Take care of masking - use_indices_dataset = np.ones(len(ref_points_here), dtype = 'int') - - # Build the type mask array corresponding to this dataset - if _type_mask is not None: - type_mask_dataset = np.zeros((dim, len(ref_points_here)), dtype = 'bool') - for i, (var, lag) in enumerate(XYZ): - type_mask_dataset[i, :] = _type_mask[dataset_key][ref_points_here + lag, var] - type_masks[dataset_key] = type_mask_dataset - - # Remove all values that have missing value flag, and optionally as well the time - # slices that occur up to max_lag after - if self.missing_flag is not None: - missing_anywhere = np.array(np.where(np.any(np.isnan(samples_datasets[dataset_key]), axis=0))[0]) - - if self.remove_missing_upto_maxlag: - idx_to_remove = set(idx + tau for idx in missing_anywhere for tau in range(max_lag + 1)) - else: - idx_to_remove = set(idx for idx in missing_anywhere) - - use_indices_dataset[np.array(list(idx_to_remove), dtype='int')] = 0 - - if _mask is not None: - # Remove samples with mask == 1 conditional on which mask_type - # is used - - # Iterate over defined mapping from letter index to number index, - # i.e. 'x' -> 0, 'y' -> 1, 'z'-> 2, 'e'-> 3 - for idx, cde in index_code.items(): - # Check if the letter index is in the mask type - if (mask_type is not None) and (idx in mask_type): - # If so, check if any of the data that correspond to the - # letter index is masked by taking the product along the - # node-data to return a time slice selection, where 0 - # means the time slice will not be used - slice_select = np.prod(mask_dataset[xyz == cde, :] == False, axis=0) - use_indices_dataset *= slice_select - - # Accordingly update the data array - samples_datasets[dataset_key] = samples_datasets[dataset_key][:, use_indices_dataset == 1] - - ## end for dataset_key, dataset_data in self.values.items() - - # Save used indices as attribute - if len(ref_points_here) > 0: - self.use_indices_dataset_dict[dataset_key] = ref_points_here[use_indices_dataset==1] - else: - self.use_indices_dataset_dict[dataset_key] = [] - - # Concatenate the arrays of all datasets - array = np.concatenate(tuple(samples_datasets.values()), axis = 1) - if _type_mask is not None: - type_array = np.concatenate(tuple(type_masks.values()), axis = 1) - else: - type_array = None - - # print(np.where(np.isnan(array))) - # print(array.shape) - - # Check whether there is any valid sample - if array.shape[1] == 0: - raise ValueError("No valid samples") - - # Print information about the constructed array - if verbosity > 2: - self.print_array_info(array, X, Y, Z, self.missing_flag, mask_type, type_array, extraZ) - - # Return the array and xyz and optionally (X, Y, Z) - if return_cleaned_xyz: - return array, xyz, (X, Y, Z), type_array - - return array, xyz, type_array
- - def _check_nodes(self, Y, XYZ, N, dim): - """ - Checks that: - * The requests XYZ nodes have the correct shape - * All lags are non-positive - * All indices are less than N - * One of the Y nodes has zero lag - - Parameters - ---------- - Y : list of tuples - Of the form [(var, -tau)], where var specifies the variable - index and tau the time lag. - XYZ : list of tuples - List of nodes chosen for current independence test - N : int - Total number of listed nodes - dim : int - Number of nodes excluding repeated nodes - """ - if np.array(XYZ).shape != (dim, 2): - raise ValueError("X, Y, Z must be lists of tuples in format" - " [(var, -lag),...], eg., [(2, -2), (1, 0), ...]") - if np.any(np.array(XYZ)[:, 1] > 0): - raise ValueError("nodes are %s, " % str(XYZ) + - "but all lags must be non-positive") - if (np.any(np.array(XYZ)[:, 0] >= N) - or np.any(np.array(XYZ)[:, 0] < 0)): - raise ValueError("var indices %s," % str(np.array(XYZ)[:, 0]) + - " but must be in [0, %d]" % (N - 1)) - # if np.all(np.array(Y)[:, 1] != 0): - # raise ValueError("Y-nodes are %s, " % str(Y) + - # "but one of the Y-nodes must have zero lag") - -
[docs] def print_array_info(self, array, X, Y, Z, missing_flag, mask_type, type_mask=None, extraZ=None): - """ - Print info about the constructed array - - Parameters - ---------- - array : Data array of shape (dim, T) - Data array. - X, Y, Z, extraZ : list of tuples - For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], - where var specifies the variable index. X typically is of the form - [(varX, -tau)] with tau denoting the time lag and Z can be - multivariate [(var1, -lag), (var2, -lag), ...] . - missing_flag : number, optional (default: None) - Flag for missing values. Dismisses all time slices of samples where - missing values occur in any variable and also flags samples for all - lags up to 2*tau_max. This avoids biases, see section on masking in - Supplement of [1]_. - mask_type : {'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence - measure I(X; Y | Z) the samples should be masked. If None, the mask - is not used. Explained in tutorial on masking and missing values. - type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - """ - if extraZ is None: - extraZ = [] - indt = " " * 12 - print(indt + "Constructed array of shape %s from"%str(array.shape) + - "\n" + indt + "X = %s" % str(X) + - "\n" + indt + "Y = %s" % str(Y) + - "\n" + indt + "Z = %s" % str(Z)) - if extraZ is not None: - print(indt + "extraZ = %s" % str(extraZ)) - if self.mask is not None and mask_type is not None: - print(indt+"with masked samples in %s removed" % mask_type) - if self.type_mask is not None: - print(indt+"with %s % discrete values" % np.sum(type_mask)/type_mask.size) - if self.missing_flag is not None: - print(indt+"with missing values = %s removed" % self.missing_flag)
- - -
[docs]def get_acf(series, max_lag=None): - """Returns autocorrelation function. - - Parameters - ---------- - series : 1D-array - data series to compute autocorrelation from - - max_lag : int, optional (default: None) - maximum lag for autocorrelation function. If None is passed, 10% of - the data series length are used. - - Returns - ------- - autocorr : array of shape (max_lag + 1,) - Autocorrelation function. - """ - # Set the default max lag - if max_lag is None: - max_lag = int(max(5, 0.1*len(series))) - # Initialize the result - autocorr = np.ones(max_lag + 1) - # Iterate over possible lags - for lag in range(1, max_lag + 1): - # Set the values - y1_vals = series[lag:] - y2_vals = series[:len(series) - lag] - # Calculate the autocorrelation - autocorr[lag] = np.corrcoef(y1_vals, y2_vals, ddof=0)[0, 1] - return autocorr
- -
[docs]def get_block_length(array, xyz, mode): - """Returns optimal block length for significance and confidence tests. - - Determine block length using approach in Mader (2013) [Eq. (6)] which - improves the method of Pfeifer (2005) with non-overlapping blocks In - case of multidimensional X, the max is used. Further details in [1]_. - Two modes are available. For mode='significance', only the indices - corresponding to X are shuffled in array. For mode='confidence' all - variables are jointly shuffled. If the autocorrelation curve fit fails, - a block length of 5% of T is used. The block length is limited to a - maximum of 10% of T. - - Mader et al., Journal of Neuroscience Methods, - Volume 219, Issue 2, 15 October 2013, Pages 285-291 - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - mode : str - Which mode to use. - - Returns - ------- - block_len : int - Optimal block length. - """ - # Inject a dependency on siganal, optimize - from scipy import signal, optimize - # Get the shape of the array - dim, T = array.shape - # Initiailize the indices - indices = range(dim) - if mode == 'significance': - indices = np.where(xyz == 0)[0] - - # Maximum lag for autocov estimation - max_lag = int(0.1*T) - # Define the function to optimize against - def func(x_vals, a_const, decay): - return a_const * decay**x_vals - - # Calculate the block length - block_len = 1 - for i in indices: - # Get decay rate of envelope of autocorrelation functions - # via hilbert trafo - autocov = get_acf(series=array[i], max_lag=max_lag) - autocov[0] = 1. - hilbert = np.abs(signal.hilbert(autocov)) - # Try to fit the curve - try: - popt, _ = optimize.curve_fit( - f=func, - xdata=np.arange(0, max_lag+1), - ydata=hilbert, - ) - phi = popt[1] - # Formula of Pfeifer (2005) assuming non-overlapping blocks - l_opt = (4. * T * (phi / (1. - phi) + phi**2 / (1. - phi)**2)**2 - / (1. + 2. * phi / (1. - phi))**2)**(1. / 3.) - block_len = max(block_len, int(l_opt)) - except RuntimeError: - warnings.warn("Error - curve_fit failed for estimating block_shuffle length, using" - " block_len = %d" % (int(.05 * T))) - # block_len = max(int(.05 * T), block_len) - # Limit block length to a maximum of 10% of T - block_len = min(block_len, int(0.1 * T)) - return block_len
- - -
[docs]def lowhighpass_filter(data, cutperiod, pass_periods='low'): - """Butterworth low- or high pass filter. - - This function applies a linear filter twice, once forward and once - backwards. The combined filter has linear phase. - - Parameters - ---------- - data : array - Data array of shape (time, variables). - cutperiod : int - Period of cutoff. - pass_periods : str, optional (default: 'low') - Either 'low' or 'high' to act as a low- or high-pass filter - - Returns - ------- - data : array - Filtered data array. - """ - try: - from scipy.signal import butter, filtfilt - except: - print('Could not import scipy.signal for butterworth filtering!') - - fs = 1. - order = 3 - ws = 1. / cutperiod / (0.5 * fs) - b, a = butter(order, ws, pass_periods) - if np.ndim(data) == 1: - data = filtfilt(b, a, data) - else: - for i in range(data.shape[1]): - data[:, i] = filtfilt(b, a, data[:, i]) - - return data
- - -
[docs]def smooth(data, smooth_width, kernel='gaussian', - mask=None, residuals=False, verbosity=0): - """Returns either smoothed time series or its residuals. - - the difference between the original and the smoothed time series - (=residuals) of a kernel smoothing with gaussian (smoothing kernel width = - twice the sigma!) or heaviside window, equivalent to a running mean. - - Assumes data of shape (T, N) or (T,) - :rtype: array - :returns: smoothed/residual data - - Parameters - ---------- - data : array - Data array of shape (time, variables). - smooth_width : float - Window width of smoothing, 2*sigma for a gaussian. - kernel : str, optional (default: 'gaussian') - Smoothing kernel, 'gaussian' or 'heaviside' for a running mean. - mask : bool array, optional (default: None) - Data mask where True labels masked samples. - residuals : bool, optional (default: False) - True if residuals should be returned instead of smoothed data. - verbosity : int, optional (default: 0) - Level of verbosity. - - Returns - ------- - data : array-like - Smoothed/residual data. - """ - - if verbosity > 0: - print("%s %s smoothing with " % ({True: "Take residuals of a ", - False: ""}[residuals], kernel) + - "window width %.2f (=2*sigma for a gaussian!)" % (smooth_width)) - - totaltime = len(data) - if kernel == 'gaussian': - window = np.exp(-(np.arange(totaltime).reshape((1, totaltime)) - - np.arange(totaltime).reshape((totaltime, 1)) - ) ** 2 / ((2. * smooth_width / 2.) ** 2)) - elif kernel == 'heaviside': - import scipy.linalg - wtmp = np.zeros(totaltime) - wtmp[:int(np.ceil(smooth_width / 2.))] = 1 - window = scipy.linalg.toeplitz(wtmp) - - if mask is None: - if np.ndim(data) == 1: - smoothed_data = (data * window).sum(axis=1) / window.sum(axis=1) - else: - smoothed_data = np.zeros(data.shape) - for i in range(data.shape[1]): - smoothed_data[:, i] = ( - data[:, i] * window).sum(axis=1) / window.sum(axis=1) - else: - if np.ndim(data) == 1: - smoothed_data = ((data * window * (mask==False)).sum(axis=1) / - (window * (mask==False)).sum(axis=1)) - else: - smoothed_data = np.zeros(data.shape) - for i in range(data.shape[1]): - smoothed_data[:, i] = (( - data[:, i] * window * (mask==False)[:, i]).sum(axis=1) / - (window * (mask==False)[:, i]).sum(axis=1)) - - if residuals: - return data - smoothed_data - else: - return smoothed_data
- - -
[docs]def weighted_avg_and_std(values, axis, weights): - """Returns the weighted average and standard deviation. - - Parameters - --------- - values : array - Data array of shape (time, variables). - axis : int - Axis to average/std about - weights : array - Weight array of shape (time, variables). - - Returns - ------- - (average, std) : tuple of arrays - Tuple of weighted average and standard deviation along axis. - """ - - values[np.isnan(values)] = 0. - average = np.ma.average(values, axis=axis, weights=weights) - - variance = np.sum(weights * (values - np.expand_dims(average, axis) - ) ** 2, axis=axis) / weights.sum(axis=axis) - - return (average, np.sqrt(variance))
- - -
[docs]def time_bin_with_mask(data, time_bin_length, mask=None): - """Returns time binned data where only about non-masked values is averaged. - - Parameters - ---------- - data : array - Data array of shape (time, variables). - time_bin_length : int - Length of time bin. - mask : bool array, optional (default: None) - Data mask where True labels masked samples. - - Returns - ------- - (bindata, T) : tuple of array and int - Tuple of time-binned data array and new length of array. - """ - - T = len(data) - - time_bin_length = int(time_bin_length) - - if mask is None: - sample_selector = np.ones(data.shape) - else: - # Invert mask - sample_selector = (mask == False) - - if np.ndim(data) == 1.: - data.shape = (T, 1) - if mask is not None: - mask.shape = (T, 1) - else: - sample_selector = np.ones(data.shape) - - bindata = np.zeros( - (T // time_bin_length,) + data.shape[1:], dtype="float32") - for index, i in enumerate(range(0, T - time_bin_length + 1, - time_bin_length)): - # print weighted_avg_and_std(fulldata[i:i+time_bin_length], axis=0, - # weights=sample_selector[i:i+time_bin_length])[0] - bindata[index] = weighted_avg_and_std(data[i:i + time_bin_length], - axis=0, - weights=sample_selector[i:i + - time_bin_length])[0] - - T, grid_size = bindata.shape - - return (bindata.squeeze(), T)
- -
[docs]def trafo2normal(data, mask=None, thres=0.001): - """Transforms input data to standard normal marginals. - - Assumes data.shape = (T, dim) - - Parameters - ---------- - data : array - Data array of shape (time, variables). - thres : float - Set outer points in CDF to this value. - mask : bool array, optional (default: None) - Data mask where True labels masked samples. - - Returns - ------- - normal_data : array-like - data with standard normal marginals. - """ - - def trafo(xi): - xisorted = np.sort(xi) - yi = np.linspace(1. / len(xi), 1, len(xi)) - return np.interp(xi, xisorted, yi) - - normal_data = np.copy(data) - - if np.ndim(data) == 1: - if mask is None: - nonmasked = np.where(np.isnan(data) == False)[0] - else: - nonmasked = np.where((mask==0)*(np.isnan(data) == False)) - - u = trafo(data[nonmasked]) - u[u==0.] = thres - u[u==1.] = 1. - thres - normal_data[nonmasked] = stats.norm.ppf(u) - else: - for i in range(data.shape[1]): - if mask is None: - nonmasked = np.where(np.isnan(data[:,i]) == False)[0] - else: - nonmasked = np.where((mask[:, i]==0)*(np.isnan(data[:, i]) == False)) - # nonmasked = np.where(mask[:, i]==0) - # print(data[:, i].shape, nonmasked.shape) - uniform = trafo(data[:, i][nonmasked]) - - # print(data[-3:, i][nonmasked]) - - uniform[uniform==0.] = thres - uniform[uniform==1.] = 1. - thres - normal_data[:, i][nonmasked] = stats.norm.ppf(uniform) - - return normal_data
- -@jit -def _get_patterns(array, array_mask, patt, patt_mask, weights, dim, step, fac, N, T): - v = np.zeros(dim, dtype='float') - - start = step * (dim - 1) - for n in range(0, N): - for t in range(start, T): - mask = 1 - ave = 0. - for k in range(0, dim): - tau = k * step - v[k] = array[t - tau, n] - ave += v[k] - mask *= array_mask[t - tau, n] - ave /= dim - var = 0. - for k in range(0, dim): - var += (v[k] - ave) ** 2 - var /= dim - weights[t - start, n] = var - if (v[0] < v[1]): - p = 1 - else: - p = 0 - for i in range(2, dim): - for j in range(0, i): - if (v[j] < v[i]): - p += fac[i] - patt[t - start, n] = p - patt_mask[t - start, n] = mask - - return patt, patt_mask, weights - -
[docs]def ordinal_patt_array(array, array_mask=None, dim=2, step=1, - weights=False, verbosity=0): - """Returns symbolified array of ordinal patterns. - - Each data vector (X_t, ..., X_t+(dim-1)*step) is converted to its rank - vector. E.g., (0.2, -.6, 1.2) --> (1,0,2) which is then assigned to a - unique integer (see Article). There are faculty(dim) possible rank vectors. - - Note that the symb_array is step*(dim-1) shorter than the original array! - - Reference: B. Pompe and J. Runge (2011). Momentary information transfer as - a coupling measure of time series. Phys. Rev. E, 83(5), 1-12. - doi:10.1103/PhysRevE.83.051122 - - Parameters - ---------- - array : array-like - Data array of shape (time, variables). - array_mask : bool array - Data mask where True labels masked samples. - dim : int, optional (default: 2) - Pattern dimension - step : int, optional (default: 1) - Delay of pattern embedding vector. - weights : bool, optional (default: False) - Whether to return array of variances of embedding vectors as weights. - verbosity : int, optional (default: 0) - Level of verbosity. - - Returns - ------- - patt, patt_mask [, patt_time] : tuple of arrays - Tuple of converted pattern array and new length - """ - from scipy.misc import factorial - - array = array.astype('float64') - - if array_mask is not None: - assert array_mask.dtype == 'int32' - else: - array_mask = np.zeros(array.shape, dtype='int32') - - - if np.ndim(array) == 1: - T = len(array) - array = array.reshape(T, 1) - array_mask = array_mask.reshape(T, 1) - - # Add noise to destroy ties... - array += (1E-6 * array.std(axis=0) - * random_state.random((array.shape[0], array.shape[1])).astype('float64')) - - patt_time = int(array.shape[0] - step * (dim - 1)) - T, N = array.shape - - if dim <= 1 or patt_time <= 0: - raise ValueError("Dim mist be > 1 and length of delay vector smaller " - "array length.") - - patt = np.zeros((patt_time, N), dtype='int32') - weights_array = np.zeros((patt_time, N), dtype='float64') - - patt_mask = np.zeros((patt_time, N), dtype='int32') - - # Precompute factorial for c-code... patterns of dimension - # larger than 10 are not supported - fac = factorial(np.arange(10)).astype('int32') - - # _get_patterns assumes mask=0 to be a masked value - array_mask = (array_mask == False).astype('int32') - - (patt, patt_mask, weights_array) = _get_patterns(array, array_mask, patt, patt_mask, weights_array, dim, step, fac, N, T) - - weights_array = np.asarray(weights_array) - patt = np.asarray(patt) - # Transform back to mask=1 implying a masked value - patt_mask = np.asarray(patt_mask) == False - - if weights: - return patt, patt_mask, patt_time, weights_array - else: - return patt, patt_mask, patt_time
- - -
[docs]def quantile_bin_array(data, bins=6): - """Returns symbolified array with equal-quantile binning. - - Parameters - ---------- - data : array - Data array of shape (time, variables). - bins : int, optional (default: 6) - Number of bins. - - Returns - ------- - symb_array : array - Converted data of integer type. - """ - T, N = data.shape - - # get the bin quantile steps - bin_edge = int(np.ceil(T / float(bins))) - - symb_array = np.zeros((T, N), dtype='int32') - - # get the lower edges of the bins for every time series - edges = np.sort(data, axis=0)[::bin_edge, :].T - bins = edges.shape[1] - - # This gives the symbolic time series - symb_array = (data.reshape(T, N, 1) >= edges.reshape(1, N, bins)).sum( - axis=2) - 1 - - return symb_array.astype('int32')
- - -
[docs]def var_process(parents_neighbors_coeffs, T=1000, use='inv_inno_cov', - verbosity=0, initial_values=None): - """Returns a vector-autoregressive process with correlated innovations. - - Wrapper around var_network with possibly more user-friendly input options. - - DEPRECATED. Will be removed in future. - """ - print("data generating models are now in toymodels folder: " - "from tigramite.toymodels import structural_causal_processes as toys.") - return None
- -
[docs]def structural_causal_process(links, T, noises=None, - intervention=None, intervention_type='hard', - seed=None): - """Returns a structural causal process with contemporaneous and lagged - dependencies. - - DEPRECATED. Will be removed in future. - """ - print("data generating models are now in toymodels folder: " - "from tigramite.toymodels import structural_causal_processes as toys.") - return None
- - -if __name__ == '__main__': - - from tigramite.toymodels.structural_causal_processes import structural_causal_process - ## Generate some time series from a structural causal process - def lin_f(x): return x - def nonlin_f(x): return (x + 5. * x**2 * np.exp(-x**2 / 20.)) - - links = {0: [((0, -1), 0.9, lin_f)], - 1: [((1, -1), 0.8, lin_f), ((0, -1), 0.3, nonlin_f)], - 2: [((2, -1), 0.7, lin_f), ((1, 0), -0.2, lin_f)], - } - - random_state_1 = np.random.default_rng(seed=1) - random_state_2 = np.random.default_rng(seed=2) - random_state_3 = np.random.default_rng(seed=3) - - noises = [random_state_1.standard_normal, random_state_2.standard_normal, random_state_3.standard_normal] - - ens = 3 - data_ens = {} - for i in range(ens): - data, nonstat = structural_causal_process(links, - T=100, noises=noises) - data[10, 1] == 999. - data_ens[i] = data - # print(data.shape) - - frame = DataFrame(data_ens, missing_flag=999., - analysis_mode = 'multiple') - - print(frame.T) - - X=[(0, 0)] - Y=[(0, 0)] - Z=[(0, -3)] - tau_max=5 - frame.construct_array(X, Y, Z, tau_max, - extraZ=None, - mask=None, - mask_type=None, - return_cleaned_xyz=False, - do_checks=True, - cut_off='2xtau_max', - verbosity=4) -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/cmiknn.html b/docs/_build/html/_modules/tigramite/independence_tests/cmiknn.html deleted file mode 100644 index 68c29513..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/cmiknn.html +++ /dev/null @@ -1,580 +0,0 @@ - - - - - - - - tigramite.independence_tests.cmiknn — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.cmiknn

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-from scipy import special, spatial
-import numpy as np
-from .independence_tests_base import CondIndTest
-from numba import jit
-import warnings
-
-
[docs]class CMIknn(CondIndTest): - r"""Conditional mutual information test based on nearest-neighbor estimator. - - Conditional mutual information is the most general dependency measure coming - from an information-theoretic framework. It makes no assumptions about the - parametric form of the dependencies by directly estimating the underlying - joint density. The test here is based on the estimator in S. Frenzel and B. - Pompe, Phys. Rev. Lett. 99, 204101 (2007), combined with a shuffle test to - generate the distribution under the null hypothesis of independence first - used in [3]_. The knn-estimator is suitable only for variables taking a - continuous range of values. For discrete variables use the CMIsymb class. - - Notes - ----- - CMI is given by - - .. math:: I(X;Y|Z) &= \int p(z) \iint p(x,y|z) \log - \frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)} \,dx dy dz - - Its knn-estimator is given by - - .. math:: \widehat{I}(X;Y|Z) &= \psi (k) + \frac{1}{T} \sum_{t=1}^T - \left[ \psi(k_{Z,t}) - \psi(k_{XZ,t}) - \psi(k_{YZ,t}) \right] - - where :math:`\psi` is the Digamma function. This estimator has as a - parameter the number of nearest-neighbors :math:`k` which determines the - size of hyper-cubes around each (high-dimensional) sample point. Then - :math:`k_{Z,},k_{XZ},k_{YZ}` are the numbers of neighbors in the respective - subspaces. - - :math:`k` can be viewed as a density smoothing parameter (although it is - data-adaptive unlike fixed-bandwidth estimators). For large :math:`k`, the - underlying dependencies are more smoothed and CMI has a larger bias, - but lower variance, which is more important for significance testing. Note - that the estimated CMI values can be slightly negative while CMI is a non- - negative quantity. - - This method requires the scipy.spatial.cKDTree package. - - References - ---------- - - .. [3] J. Runge (2018): Conditional Independence Testing Based on a - Nearest-Neighbor Estimator of Conditional Mutual Information. - In Proceedings of the 21st International Conference on Artificial - Intelligence and Statistics. - http://proceedings.mlr.press/v84/runge18a.html - - Parameters - ---------- - knn : int or float, optional (default: 0.2) - Number of nearest-neighbors which determines the size of hyper-cubes - around each (high-dimensional) sample point. If smaller than 1, this is - computed as a fraction of T, hence knn=knn*T. For knn larger or equal to - 1, this is the absolute number. - - shuffle_neighbors : int, optional (default: 5) - Number of nearest-neighbors within Z for the shuffle surrogates which - determines the size of hyper-cubes around each (high-dimensional) sample - point. - - transform : {'ranks', 'standardize', 'uniform', False}, optional - (default: 'ranks') - Whether to transform the array beforehand by standardizing - or transforming to uniform marginals. - - workers : int (optional, default = -1) - Number of workers to use for parallel processing. If -1 is given - all processors are used. Default: -1. - - significance : str, optional (default: 'shuffle_test') - Type of significance test to use. For CMIknn only 'fixed_thres' and - 'shuffle_test' are available. - - **kwargs : - Arguments passed on to parent class CondIndTest. - """ - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - knn=0.2, - shuffle_neighbors=5, - significance='shuffle_test', - transform='ranks', - workers=-1, - **kwargs): - # Set the member variables - self.knn = knn - self.shuffle_neighbors = shuffle_neighbors - self.transform = transform - self._measure = 'cmi_knn' - self.two_sided = False - self.residual_based = False - self.recycle_residuals = False - self.workers = workers - # Call the parent constructor - CondIndTest.__init__(self, significance=significance, **kwargs) - # Print some information about construction - if self.verbosity > 0: - if self.knn < 1: - print("knn/T = %s" % self.knn) - else: - print("knn = %s" % self.knn) - print("shuffle_neighbors = %d\n" % self.shuffle_neighbors) - - @jit(forceobj=True) - def _get_nearest_neighbors(self, array, xyz, knn): - """Returns nearest neighbors according to Frenzel and Pompe (2007). - - Retrieves the distances eps to the k-th nearest neighbors for every - sample in joint space XYZ and returns the numbers of nearest neighbors - within eps in subspaces Z, XZ, YZ. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - knn : int or float - Number of nearest-neighbors which determines the size of hyper-cubes - around each (high-dimensional) sample point. If smaller than 1, this - is computed as a fraction of T, hence knn=knn*T. For knn larger or - equal to 1, this is the absolute number. - - Returns - ------- - k_xz, k_yz, k_z : tuple of arrays of shape (T,) - Nearest neighbors in subspaces. - """ - - array = array.astype(np.float64) - xyz = xyz.astype(np.int32) - - dim, T = array.shape - - # Add noise to destroy ties... - array += (1E-6 * array.std(axis=1).reshape(dim, 1) - * self.random_state.random((array.shape[0], array.shape[1]))) - - if self.transform == 'standardize': - # Standardize - array = array.astype(np.float64) - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - # array /= array.std(axis=1).reshape(dim, 1) - # FIXME: If the time series is constant, return nan rather than - # raising Exception - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - # raise ValueError("nans after standardizing, " - # "possibly constant array!") - elif self.transform == 'uniform': - array = self._trafo2uniform(array) - elif self.transform == 'ranks': - array = array.argsort(axis=1).argsort(axis=1).astype(np.float64) - - array = array.T - tree_xyz = spatial.cKDTree(array) - epsarray = tree_xyz.query(array, k=[knn+1], p=np.inf, - eps=0., workers=self.workers)[0][:, 0].astype(np.float64) - - # To search neighbors < eps - epsarray = np.multiply(epsarray, 0.99999) - - # Subsample indices - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - z_indices = np.where(xyz == 2)[0] - - # Find nearest neighbors in subspaces - xz = array[:, np.concatenate((x_indices, z_indices))] - tree_xz = spatial.cKDTree(xz) - k_xz = tree_xz.query_ball_point(xz, r=epsarray, eps=0., p=np.inf, workers=self.workers, return_length=True) - - yz = array[:, np.concatenate((y_indices, z_indices))] - tree_yz = spatial.cKDTree(yz) - k_yz = tree_yz.query_ball_point(yz, r=epsarray, eps=0., p=np.inf, workers=self.workers, return_length=True) - - if len(z_indices) > 0: - z = array[:, z_indices] - tree_z = spatial.cKDTree(z) - k_z = tree_z.query_ball_point(z, r=epsarray, eps=0., p=np.inf, workers=self.workers, return_length=True) - else: - # Number of neighbors is T when z is empty. - k_z = np.full(T, T, dtype=np.float64) - - return k_xz, k_yz, k_z - -
[docs] def get_dependence_measure(self, array, xyz): - """Returns CMI estimate as described in Frenzel and Pompe PRL (2007). - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - - dim, T = array.shape - - if self.knn < 1: - knn_here = max(1, int(self.knn*T)) - else: - knn_here = max(1, int(self.knn)) - - - k_xz, k_yz, k_z = self._get_nearest_neighbors(array=array, - xyz=xyz, - knn=knn_here) - - val = special.digamma(knn_here) - (special.digamma(k_xz) + - special.digamma(k_yz) - - special.digamma(k_z)).mean() - - return val
- - -
[docs] def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False): - """Returns p-value for nearest-neighbor shuffle significance test. - - For non-empty Z, overwrites get_shuffle_significance from the parent - class which is a block shuffle test, which does not preserve - dependencies of X and Y with Z. Here the parameter shuffle_neighbors is - used to permute only those values :math:`x_i` and :math:`x_j` for which - :math:`z_j` is among the nearest niehgbors of :math:`z_i`. If Z is - empty, the block-shuffle test is used. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for unshuffled estimate. - - Returns - ------- - pval : float - p-value - """ - dim, T = array.shape - - # Skip shuffle test if value is above threshold - # if value > self.minimum threshold: - # if return_null_dist: - # return 0., None - # else: - # return 0. - - # max_neighbors = max(1, int(max_neighbor_ratio*T)) - x_indices = np.where(xyz == 0)[0] - z_indices = np.where(xyz == 2)[0] - - if len(z_indices) > 0 and self.shuffle_neighbors < T: - if self.verbosity > 2: - print(" nearest-neighbor shuffle significance " - "test with n = %d and %d surrogates" % ( - self.shuffle_neighbors, self.sig_samples)) - - # Get nearest neighbors around each sample point in Z - z_array = np.fastCopyAndTranspose(array[z_indices, :]) - tree_xyz = spatial.cKDTree(z_array) - neighbors = tree_xyz.query(z_array, - k=self.shuffle_neighbors, - p=np.inf, - eps=0.)[1].astype(np.int32) - - null_dist = np.zeros(self.sig_samples) - for sam in range(self.sig_samples): - - # Generate random order in which to go through indices loop in - # next step - order = self.random_state.permutation(T).astype(np.int32) - - # Shuffle neighbor indices for each sample index - for i in range(len(neighbors)): - self.random_state.shuffle(neighbors[i]) - # neighbors = self.random_state.permuted(neighbors, axis=1) - - # Select a series of neighbor indices that contains as few as - # possible duplicates - restricted_permutation = self.get_restricted_permutation( - T=T, - shuffle_neighbors=self.shuffle_neighbors, - neighbors=neighbors, - order=order) - - array_shuffled = np.copy(array) - for i in x_indices: - array_shuffled[i] = array[i, restricted_permutation] - - null_dist[sam] = self.get_dependence_measure(array_shuffled, - xyz) - - else: - null_dist = \ - self._get_shuffle_dist(array, xyz, - self.get_dependence_measure, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - verbosity=self.verbosity) - - pval = (null_dist >= value).mean() - - if return_null_dist: - # Sort - null_dist.sort() - return pval, null_dist - return pval
- - -
[docs] def get_conditional_entropy(self, array, xyz): - """Returns the nearest-neighbor conditional entropy estimate of H(X|Y). - - Parameters - ---------- - array : array-like - data array with X, Y in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). Here only uses 0 for X and - 1 for Y. - - Returns - ------- - val : float - Entropy estimate. - """ - - - dim, T = array.shape - - if self.knn < 1: - knn_here = max(1, int(self.knn*T)) - else: - knn_here = max(1, int(self.knn)) - - - array = array.astype(np.float64) - - # Add noise to destroy ties... - array += (1E-6 * array.std(axis=1).reshape(dim, 1) - * self.random_state.random((array.shape[0], array.shape[1]))) - - if self.transform == 'standardize': - # Standardize - array = array.astype(np.float64) - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - # array /= array.std(axis=1).reshape(dim, 1) - # FIXME: If the time series is constant, return nan rather than - # raising Exception - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - # if np.isnan(array).sum() != 0: - # raise ValueError("nans after standardizing, " - # "possibly constant array!") - elif self.transform == 'uniform': - array = self._trafo2uniform(array) - elif self.transform == 'ranks': - array = array.argsort(axis=1).argsort(axis=1).astype(np.float64) - - # Compute conditional entropy as H(X|Y) = H(X) - I(X;Y) - - # First compute H(X) - # Use cKDTree to get distances eps to the k-th nearest neighbors for - # every sample in joint space X with maximum norm - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - - dim_x = int(np.where(xyz == 0)[0][-1] + 1) - if 1 in xyz: - dim_y = int(np.where(xyz == 1)[0][-1] + 1 - dim_x) - else: - dim_y = 0 - - - x_array = np.fastCopyAndTranspose(array[x_indices, :]) - tree_xyz = spatial.cKDTree(x_array) - epsarray = tree_xyz.query(x_array, k=[knn_here+1], p=np.inf, - eps=0., workers=self.workers)[0][:, 0].astype(np.float64) - - h_x = - special.digamma(knn_here) + special.digamma(T) + dim_x * np.log(2.*epsarray).mean() - - # Then compute MI(X;Y) - if dim_y > 0: - xyz_here = np.array([index for index in xyz if index == 0 or index == 1]) - array_xy = array[list(x_indices) + list(y_indices), :] - i_xy = self.get_dependence_measure(array_xy, xyz_here) - else: - i_xy = 0. - - h_x_y = h_x - i_xy - - return h_x_y
- - - @jit(forceobj=True) - def get_restricted_permutation(self, T, shuffle_neighbors, neighbors, order): - - restricted_permutation = np.zeros(T, dtype=np.int32) - used = np.array([], dtype=np.int32) - - for sample_index in order: - m = 0 - use = neighbors[sample_index, m] - - while ((use in used) and (m < shuffle_neighbors - 1)): - m += 1 - use = neighbors[sample_index, m] - - restricted_permutation[sample_index] = use - used = np.append(used, use) - - return restricted_permutation
- - -if __name__ == '__main__': - - import tigramite - from tigramite.data_processing import DataFrame - import tigramite.data_processing as pp - import numpy as np - - random_state = np.random.default_rng(seed=42) - cmi = CMIknn(mask_type=None, - significance='shuffle_test', - fixed_thres=None, - sig_samples=1000, - sig_blocklength=1, - transform='none', - knn=0.1, - verbosity=0) - - T = 1000 - dimz = 1 - - # Continuous data - z = random_state.standard_normal((T, dimz)) - x = (0.8*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) - y = (0.8*z[:,0] + random_state.standard_normal).reshape(T, 1) - - print('X _|_ Y') - print(cmi.run_test_raw(x, y, z=None)) - print('X _|_ Y | Z') - print(cmi.run_test_raw(x, y, z=z)) -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/cmiknnmixed.html b/docs/_build/html/_modules/tigramite/independence_tests/cmiknnmixed.html deleted file mode 100644 index ab67cc88..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/cmiknnmixed.html +++ /dev/null @@ -1,1597 +0,0 @@ - - - - - - - - tigramite.independence_tests.cmiknnmixed — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.cmiknnmixed

-"""Tigramite causal discovery for time series."""
-
-# Author: Oana Popescu, Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-from scipy import special, spatial
-from sklearn.neighbors import BallTree, NearestNeighbors
-from sklearn import metrics
-from sklearn.preprocessing import OneHotEncoder, MinMaxScaler
-from sklearn.utils.extmath import cartesian
-import numpy as np
-import math
-from .independence_tests_base import CondIndTest
-from numba import jit
-import warnings
-
-# profiling
-import cProfile, pstats, io
-from pstats import SortKey
-
-
-
[docs]class CMIknnMixed(CondIndTest): - r"""Conditional mutual information test based on nearest-neighbor estimator. - - Conditional mutual information is the most general dependency measure coming - from an information-theoretic framework. It makes no assumptions about the - parametric form of the dependencies by directly estimating the underlying - joint density. The test here is based on the estimator in S. Frenzel and B. - Pompe, Phys. Rev. Lett. 99, 204101 (2007), combined with a shuffle test to - generate the distribution under the null hypothesis of independence first - used in the reference below. The knn-estimator is suitable only for variables taking a - continuous range of values. For discrete variables use the CMIsymb class. - - Notes - ----- - CMI is given by - - .. math:: I(X;Y|Z) &= \int p(z) \iint p(x,y|z) \log - \frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)} \,dx dy dz - - Its knn-estimator is given by - - .. math:: \widehat{I}(X;Y|Z) &= \psi (k) + \frac{1}{T} \sum_{t=1}^T - \left[ \psi(k_{Z,t}) - \psi(k_{XZ,t}) - \psi(k_{YZ,t}) \right] - - where :math:`\psi` is the Digamma function. This estimator has as a - parameter the number of nearest-neighbors :math:`k` which determines the - size of hyper-cubes around each (high-dimensional) sample point. Then - :math:`k_{Z,},k_{XZ},k_{YZ}` are the numbers of neighbors in the respective - subspaces. - - :math:`k` can be viewed as a density smoothing parameter (although it is - data-adaptive unlike fixed-bandwidth estimators). For large :math:`k`, the - underlying dependencies are more smoothed and CMI has a larger bias, - but lower variance, which is more important for significance testing. Note - that the estimated CMI values can be slightly negative while CMI is a non- - negative quantity. - - For the case of mixed variables, the distance metric changes from the L-inf - norm to ... - - This method requires the scikit-learn package. - - References - ---------- - - J. Runge (2018): Conditional Independence Testing Based on a - Nearest-Neighbor Estimator of Conditional Mutual Information. - In Proceedings of the 21st International Conference on Artificial - Intelligence and Statistics. - http://proceedings.mlr.press/v84/runge18a.html - - Parameters - ---------- - knn : int or float, optional (default: 0.2) - Number of nearest-neighbors which determines the size of hyper-cubes - around each (high-dimensional) sample point. If smaller than 1, this is - computed as a fraction of T, hence knn=knn*T. For knn larger or equal to - 1, this is the absolute number. - - estimator : string, optional (default: 'MS') - The type of estimator to be used. Three options are available: - Mesner and Shalizi (2021): 'MS', Frenzel and Pompe (2007) with - infinite distance for points from different categories: 'FPinf', - and Zao et.al. (2022) where entropies are computed conditional on - the discrete dimensions of X,Y and Z. - - shuffle_neighbors : int, optional (default: 5) - Number of nearest-neighbors within Z for the shuffle surrogates which - determines the size of hyper-cubes around each (high-dimensional) sample - point. - - transform : {'ranks', 'standardize', 'uniform', False}, optional - (default: 'ranks') - Whether to transform the array beforehand by standardizing - or transforming to uniform marginals. - - workers : int (optional, default = -1) - Number of workers to use for parallel processing. If -1 is given - all processors are used. Default: -1. - - rho: list of float, optional (default: [np.inf]) - Hyperparameters used for weighting the discrete variable distances. - If not initialized, the distance will be set to np.inf, such that discrete - variables with different values will never be considered neighbors. - Otherwise the rho - ... - - significance : str, optional (default: 'shuffle_test') - Type of significance test to use. For CMIknn only 'fixed_thres' and - 'shuffle_test' are available. - - **kwargs : - Arguments passed on to parent class CondIndTest. - """ - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - knn=0.1, - estimator='MS', - use_local_knn=False, - shuffle_neighbors=5, - significance='shuffle_test', - transform='standardize', - scale_range=(0, 1), - perc=None, - workers=-1, - **kwargs): - # Set the member variables - self.knn = knn - self.estimator = estimator - self.use_local_knn = use_local_knn - self.shuffle_neighbors = shuffle_neighbors - self.transform = transform - if perc is None: - self.perc = self.knn - else: - self.perc = perc - self.scale_range = scale_range - self._measure = 'cmi_knn_mixed' - self.two_sided = False - self.residual_based = False - self.recycle_residuals = False - self.workers = workers - self.eps = 1e-5 - - # Call the parent constructor - CondIndTest.__init__(self, significance=significance, **kwargs) - # Print some information about construction - if self.verbosity > 0: - if self.knn < 1: - print("knn/T = %s" % self.knn) - else: - print("knn = %s" % self.knn) - print("shuffle_neighbors = %d\n" % self.shuffle_neighbors) - - def _standardize_array(self, array, dim): - """Standardizes a given array with dimensions dim. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - dim: int - number of dimensions of the data. - - Returns - ------- - array : array-like - The standardized array. - """ - array = array.astype(np.float64) - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - # array /= array.std(axis=1).reshape(dim, 1) - # FIXME: If the time series is constant, return nan rather than - # raising Exception - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - # raise ValueError("nans after standardizing, " - # "possibly constant array!") - return array - - def _scale_array(self, array, minmax=(0, 1)): - scaler = MinMaxScaler(minmax) - return scaler.fit_transform(array.T).T - - def _transform_mixed_data(self, array, type_mask=None, add_noise=False): - """Applies data transformations to the continuous dimensions of the given data. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - add_noise : bool (default False) - Defines whether to add small normal noise to the continuous data. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - array : array-like - The array with the continuous data transformed. - - """ - continuous_idxs = np.where(np.all(type_mask == 0, axis=1))[0] - cont_dim = len(continuous_idxs) - - if add_noise: - # Add noise to destroy ties - array[continuous_idxs] += (1E-6 * array[continuous_idxs].std(axis=1).reshape(cont_dim, 1) - * self.random_state.random((array[continuous_idxs].shape[0], array[continuous_idxs].shape[1]))) - - if self.transform == 'standardize': - array[continuous_idxs] = self._standardize_array(array[continuous_idxs], cont_dim) - elif self.transform == 'scale': - array[continuous_idxs] = self._scale_array(array[continuous_idxs], minmax=self.scale_range) - else: - warnings.warn('Unknown transform') - - return array - - - def _transform_to_one_hot_mixed(self, array, xyz, - type_mask, - zero_inf=False): - - discrete_idx_list = np.where(np.all(type_mask == 1, axis=0), 1, 0) - mixed_idx_list = np.where(np.any(type_mask == 1, axis=0), 1, 0) - - narray = np.copy(array) - nxyz = np.copy(xyz) - ntype_mask = np.copy(type_mask) - - appended_columns = 0 - for i in range(len(discrete_idx_list)): - # print(i) - if discrete_idx_list[i] == 1: - encoder = OneHotEncoder(handle_unknown='ignore') - i += appended_columns - data = narray[:, i] - xyz_val = nxyz[i] - encoder_df = encoder.fit_transform(data.reshape(-1, 1)).toarray() - if zero_inf: - encoder_df = np.where(encoder_df == 1, 9999999, 0) - - xyz_val = [nxyz[i]] * encoder_df.shape[-1] - narray = np.concatenate([narray[:, :i], encoder_df, narray[:, i+1:]], axis=-1) - - nxyz = np.concatenate([nxyz[:i], xyz_val, nxyz[i+1:]]) - ntype_mask = np.concatenate([ntype_mask[:, :i], - np.ones(encoder_df.shape), - ntype_mask[:, i+1:]], - axis=-1) - appended_columns += encoder_df.shape[-1] - 1 - - elif mixed_idx_list[i] == 1: - i += appended_columns - data = narray[:, i] - xyz_val = nxyz[i] - - # print(i, narray[:, i], ntype_mask[:, i]) - # find categories - categories = np.unique(narray[:, i] * ntype_mask[:, i]) - cont_vars = np.unique(narray[:, i] * (1 - ntype_mask[:, i])) - - encoder = OneHotEncoder(categories=[categories], handle_unknown='ignore') - xyz_val = nxyz[i] - encoder_df = encoder.fit_transform(data.reshape(-1, 1)).toarray() - if zero_inf: - encoder_df = np.where(encoder_df == 1, 9999999 + np.max(cont_vars), 0) - - xyz_val = [nxyz[i]] * (encoder_df.shape[-1] + 1) - cont_column = np.expand_dims(narray[:, i] * (1 - ntype_mask[:, i]), -1) - narray = np.concatenate([narray[:, :i], cont_column, encoder_df, narray[:, i+1:]], axis=-1) - - nxyz = np.concatenate([nxyz[:i], xyz_val, nxyz[i+1:]]) - ntype_mask = np.concatenate([ntype_mask[:, :i], - np.zeros(cont_column.shape), - np.ones(encoder_df.shape), - ntype_mask[:, i+1:]], - axis=-1) - appended_columns += encoder_df.shape[-1] - - ndiscrete_idx_list = np.where(np.any(ntype_mask == 1, axis=0), 1, 0) - - return narray, nxyz, ntype_mask, ndiscrete_idx_list - - - -
[docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): - """Perform conditional independence test. - - Calls the dependence measure and signficicance test functions. The child - classes must specify a function get_dependence_measure and either or - both functions get_analytic_significance and get_shuffle_significance. - If recycle_residuals is True, also _get_single_residuals must be - available. - - Parameters - ---------- - X, Y, Z : list of tuples - X,Y,Z are of the form [(var, -tau)], where var specifies the - variable index and tau the time lag. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} - How many samples to cutoff at the beginning. The default is - '2xtau_max', which guarantees that MCI tests are all conducted on - the same samples. For modeling, 'max_lag_or_tau_max' can be used, - which uses the maximum of tau_max and the conditions, which is - useful to compare multiple models on the same sample. Last, - 'max_lag' uses as much samples as possible. - - Returns - ------- - val, pval : Tuple of floats - The test statistic value and the p-value. - """ - # Get the array to test on - array, xyz, XYZ, type_mask = self._get_array(X, Y, Z, tau_max, cut_off) - X, Y, Z = XYZ - - # Record the dimensions - dim, T = array.shape - # Ensure it is a valid array - if np.any(np.isnan(array)): - raise ValueError("nans in the array!") - - combined_hash = self._get_array_hash(array, xyz, XYZ) - - if combined_hash in self.cached_ci_results.keys(): - cached = True - val, pval = self.cached_ci_results[combined_hash] - else: - cached = False - # Get the dependence measure, reycling residuals if need be - val, _ = self.get_dependence_measure(array, xyz, - type_mask=type_mask) - # Get the p-value - pval = self.get_significance(val, array, xyz, T, dim, - type_mask=type_mask) - - self.cached_ci_results[combined_hash] = (val, pval) - - if self.verbosity > 1: - self._print_cond_ind_results(val=val, pval=pval, cached=cached, - conf=None) - # Return the value and the pvalue - return val, pval
- -
[docs] def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None, val_only=False): - """Perform conditional independence test directly on input arrays x, y, z. - - Calls the dependence measure and signficicance test functions. The child - classes must specify a function get_dependence_measure and either or - both functions get_analytic_significance and get_shuffle_significance. - - Parameters - ---------- - x, y, z : arrays - x,y,z are of the form (samples, dimension). - - type_mask : array-like - data array of same shape as [x,y,z] which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val, pval : Tuple of floats - - The test statistic value and the p-value. - """ - - if np.ndim(x) != 2 or np.ndim(y) != 2: - raise ValueError("x,y must be arrays of shape (samples, dimension)" - " where dimension can be 1.") - - if z is not None and np.ndim(z) != 2: - raise ValueError("z must be array of shape (samples, dimension)" - " where dimension can be 1.") - - if x_type is None or y_type is None: - raise ValueError("x_type and y_type must be set.") - - if z is None: - # Get the array to test on - array = np.vstack((x.T, y.T)) - type_mask = np.vstack((x_type.T, y_type.T)) - - # xyz is the dimension indicator - xyz = np.array([0 for i in range(x.shape[1])] + - [1 for i in range(y.shape[1])]) - - else: - # Get the array to test on - array = np.vstack((x.T, y.T, z.T)) - type_mask = np.vstack((x_type.T, y_type.T, z_type.T)) - - # xyz is the dimension indicator - xyz = np.array([0 for i in range(x.shape[1])] + - [1 for i in range(y.shape[1])] + - [2 for i in range(z.shape[1])]) - - # Record the dimensions - dim, T = array.shape - # Ensure it is a valid array - if np.isnan(array).sum() != 0: - raise ValueError("nans in the array!") - # Get the dependence measure - val, _ = self.get_dependence_measure(array, xyz, type_mask=type_mask) - - if val_only: - return val - # Get the p-value - pval = self.get_significance(val, array, xyz, T, dim, type_mask=type_mask) - # Return the value and the pvalue - return val, pval
- -
[docs] def get_significance(self, val, array, xyz, T, dim, - type_mask=None, - sig_override=None): - """ - Returns the p-value from whichever significance function is specified - for this test. If an override is used, then it will call a different - function then specified by self.significance - - Parameters - ---------- - val : float - Test statistic value. - - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - T : int - Sample length - - dim : int - Dimensionality, ie, number of features. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - sig_override : string - Must be in 'analytic', 'shuffle_test', 'fixed_thres' - - Returns - ------- - pval : float or numpy.nan - P-value. - """ - # Defaults to the self.significance member value - use_sig = self.significance - if sig_override is not None: - use_sig = sig_override - # Check if we are using the analytic significance - if use_sig == 'analytic': - raise ValueError("Analytic significance not defined for CMIknnMixed!") - # Check if we are using the shuffle significance - elif use_sig == 'shuffle_test': - pval = self.get_shuffle_significance(array=array, - xyz=xyz, - value=val, - type_mask=type_mask) - # Check if we are using the fixed_thres significance - elif use_sig == 'fixed_thres': - pval = self.get_fixed_thres_significance( - value=val, - fixed_thres=self.fixed_thres) - else: - raise ValueError("%s not known." % self.significance) - # Return the calculated value - return pval
- - - def _compute_discrete_entropy(self, array, disc_values, discrete_idxs, num_samples): - current_array = array[np.sum(array[:, discrete_idxs] == disc_values, axis=-1) == len(discrete_idxs)] - - count, dim = current_array.shape - - if count == 0: - return 0. - - prob = float(count) / num_samples - # print(prob) - disc_entropy = prob * np.log(prob) - # print('d', disc_entropy) - return disc_entropy - - - def compute_discrete_entropy(self, array, disc_values, discrete_idxs, num_samples): - current_array = array[np.sum(array[:, discrete_idxs] == disc_values, axis=-1) == len(discrete_idxs)] - - count, dim = current_array.shape - - if count == 0: - return 0. - - prob = float(count) / num_samples - disc_entropy = prob * np.log(prob) - return disc_entropy - - @jit(forceobj=True) - def _get_nearest_neighbors_zeroinf_onehot(self, array, xyz, knn, - type_mask=None): - """Returns nearest neighbors according to Frenzel and Pompe (2007). - - Retrieves the distances eps to the k-th nearest neighbors for every - sample in joint space XYZ and returns the numbers of nearest neighbors - within eps in subspaces Z, XZ, YZ. Accepts points as neighbors only - if the points are not at infinite distance. - Two points have infinite distance when the values for the discrete - dimensions of the points do not match. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - knn : int or float - Number of nearest-neighbors which determines the size of hyper-cubes - around each (high-dimensional) sample point. If smaller than 1, this - is computed as a fraction of T, hence knn=knn*T. For knn larger or - equal to 1, this is the absolute number. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - Returns - ------- - k_xz, k_yz, k_z : tuple of arrays of shape (T,) - Nearest neighbors in subspaces. - """ - dim, T = array.shape - - array = array.astype(np.float64) - xyz = xyz.astype(np.int32) - - array = self._transform_mixed_data(array, type_mask) - - array = array.T - type_mask = type_mask.T - - array, xyz, type_mask, discrete_idx_list = self._transform_to_one_hot_mixed(array, - xyz, - type_mask, - zero_inf=True) - - # Subsample indices - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - z_indices = np.where(xyz == 2)[0] - xz_indices = np.concatenate([x_indices, z_indices]) - yz_indices = np.concatenate([y_indices, z_indices]) - - # Fit trees - tree_xyz = spatial.cKDTree(array) - neighbors = tree_xyz.query(array, k=knn+1, p=np.inf, - distance_upper_bound=9999999) - - n, k = neighbors[0].shape - - - epsarray = np.zeros(n) - for i in range(n): - if neighbors[0][i, knn] == np.inf: - replacement_idx = np.where(neighbors[0][i] != np.inf)[0][-1] - r = max(int(replacement_idx * self.perc), 1) - epsarray[i] = neighbors[0][i, r] - else: - epsarray[i] = neighbors[0][i, knn] - - - neighbors_radius_xyz = tree_xyz.query_ball_point(array, epsarray, p=np.inf) - - k_tilde = [len(neighbors_radius_xyz[i]) - 1 if len(neighbors_radius_xyz[i]) > 1 else len(neighbors_radius_xyz[i]) for i in range(len(neighbors_radius_xyz))] - - # compute entropies - xz = array[:, xz_indices] - tree_xz = spatial.cKDTree(xz) - k_xz = tree_xz.query_ball_point(xz, r=epsarray, p=np.inf, return_length=True) - - yz = array[:, yz_indices] - tree_yz = spatial.cKDTree(yz) - k_yz = tree_yz.query_ball_point(yz, r=epsarray, p=np.inf, return_length=True) - - if len(z_indices) > 0: - z = array[:, z_indices] - tree_z = spatial.cKDTree(z) - k_z = tree_z.query_ball_point(z, r=epsarray, p=np.inf, return_length=True) - else: - # Number of neighbors is T when z is empty. - k_z = np.full(T, T, dtype='float') - - k_xz = np.asarray([i - 1 if i > 1 else i for i in k_xz]) - k_yz = np.asarray([i - 1 if i > 1 else i for i in k_yz]) - k_z = np.asarray([i - 1 if i > 1 else i for i in k_z]) - - return k_tilde, k_xz, k_yz, k_z - -
[docs] def get_dependence_measure_zeroinf(self, array, xyz, - type_mask=None): - """Returns CMI estimate according to Frenzel and Pompe with an - altered distance metric: the 0-inf metric, which attributes - infinite distance to points where the values for the discrete dimensions - do not coincide. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - dim, T = array.shape - - # compute knn - if self.knn < 1: - knn = max(1, int(self.knn*T)) - else: - knn = max(1, self.knn) - - - knn_tilde, k_xz, k_yz, k_z = self._get_nearest_neighbors_zeroinf_onehot(array=array, - xyz=xyz, - knn=knn, - type_mask=type_mask) - non_zero = knn_tilde - k_xz - k_yz + k_z - - non_zero_count = np.count_nonzero(non_zero) / len(non_zero) - - val = (special.digamma(knn_tilde) - special.digamma(k_xz) - - special.digamma(k_yz) + - special.digamma(k_z)) - - val = val[np.isfinite(val)].mean() - - return val, non_zero_count
- - @jit(forceobj=True) - def _get_nearest_neighbors_MS_one_hot(self, array, xyz, - knn, type_mask=None): - """Returns nearest neighbors according to Messner and Shalizi (2021). - - Retrieves the distances eps to the k-th nearest neighbors for every - sample in joint space XYZ and returns the numbers of nearest neighbors - within eps in subspaces Z, XZ, YZ. Uses a custom-defined metric for - discrete variables. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - knn : int or float - Number of nearest-neighbors which determines the size of hyper-cubes - around each (high-dimensional) sample point. If smaller than 1, this - is computed as a fraction of T, hence knn=knn*T. For knn larger or - equal to 1, this is the absolute number. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - k_tilde, k_xz, k_yz, k_z : tuple of arrays of shape (T,) - Nearest neighbors in XYZ, XZ, YZ, and Z subspaces. - """ - - dim, T = array.shape - - array = array.astype(np.float64) - xyz = xyz.astype(np.int32) - - array = self._transform_mixed_data(array, type_mask) - - array = array.T - type_mask = type_mask.T - - discrete_idx_list = np.where(np.all(type_mask == 1, axis=0), 1, 0) - - array, xyz, type_mask, discrete_idx_list = self._transform_to_one_hot_mixed(array, - xyz, - type_mask) - - # Subsample indices - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - z_indices = np.where(xyz == 2)[0] - - xz_indices = np.concatenate([x_indices, z_indices]) - yz_indices = np.concatenate([y_indices, z_indices]) - - # Fit trees - tree_xyz = spatial.cKDTree(array) - neighbors = tree_xyz.query(array, k=knn+1, p=np.inf, workers=self.workers) - - - epsarray = neighbors[0][:, -1].astype(np.float64) - - neighbors_radius_xyz = tree_xyz.query_ball_point(array, epsarray, p=np.inf, - workers=self.workers) - - # search again for neighbors in the radius to find all of them - # in the discrete case k_tilde can be larger than the given knn - k_tilde = np.asarray([len(neighbors_radius_xyz[i]) - 1 if len(neighbors_radius_xyz[i]) > 1 else len(neighbors_radius_xyz[i]) for i in range(len(neighbors_radius_xyz))]) - - # compute entropies - xz = array[:, xz_indices] - tree_xz = spatial.cKDTree(xz) - k_xz = tree_xz.query_ball_point(xz, r=epsarray, p=np.inf, - workers=self.workers, return_length=True) - - yz = array[:, yz_indices] - tree_yz = spatial.cKDTree(yz) - k_yz = tree_yz.query_ball_point(yz, r=epsarray, p=np.inf, - workers=self.workers, return_length=True) - - if len(z_indices) > 0: - z = array[:, z_indices] - tree_z = spatial.cKDTree(z) - k_z = tree_z.query_ball_point(z, r=epsarray, p=np.inf, - workers=self.workers, return_length=True) - - else: - # Number of neighbors is T when z is empty. - k_z = np.full(T, T, dtype='float') - - k_xz = np.asarray([i - 1 if i > 1 else i for i in k_xz]) - k_yz = np.asarray([i - 1 if i > 1 else i for i in k_yz]) - k_z = np.asarray([i - 1 if i > 1 else i for i in k_z]) - - return k_tilde, k_xz, k_yz, k_z - - -
[docs] def get_dependence_measure_MS(self, array, xyz, - type_mask=None): - - """Returns CMI estimate as described in Messner and Shalizi (2021). - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - - dim, T = array.shape - - # compute knn - if self.knn < 1: - knn = max(1, int(self.knn*T)) - else: - knn = max(1, self.knn) - - - knn_tilde, k_xz, k_yz, k_z = self._get_nearest_neighbors_MS_one_hot(array=array, - xyz=xyz, - knn=knn, - type_mask=type_mask) - - non_zero = knn_tilde - k_xz - k_yz + k_z - - non_zero_count = np.count_nonzero(non_zero) / len(non_zero) - - val = (special.digamma(knn_tilde) - special.digamma(k_xz) - - special.digamma(k_yz) + - special.digamma(k_z)) - val = val[np.isfinite(val)].mean() - - return val, non_zero_count
- - @jit(forceobj=True) - def _compute_continuous_entropy(self, array, knn): - """Returns entropy estimate as described by Kozachenko and Leonenko (1987). - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - knn : int - number of nearest-neighbors to use. - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - T, dim = array.shape - if T == 1: - return 0. - - if knn < 1: - knn = max(np.rint(knn * T), 1) - - tree = spatial.cKDTree(array) - epsarray = tree.query(array, k=[knn+1], p=np.inf, - workers=self.workers, - eps=0.)[0][:, 0].astype(np.float64) - - epsarray = epsarray[epsarray != 0] - num_non_zero = len(epsarray) - - if num_non_zero == 0: - cmi_hat = 0. - else: - avg_dist = float(array.shape[-1]) / float(num_non_zero) * np.sum(np.log(2 * epsarray)) - cmi_hat = special.digamma(num_non_zero) - special.digamma(knn) + avg_dist - - return cmi_hat - - def _compute_entropies_for_discrete_entry(self, array, - discrete_values, - discrete_idxs, - continuous_idxs, - total_num_samples, - knn, - use_local_knn=False): - """Returns entropy estimates for a given array as described in ... add citation. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - discrete_values : tuple of dimension (len(discrete_idxs)) - values of discrete variables for which the entropy is computed - - discrete_idxs : array of ints - indices of the dimensions with discrete data - - continuous_idxs : array of ints - indices of the dimensions with continuous data - - total_num_samples : int - total number of samples - - knn : int or float - if int, number of nearest-neighbors to use - if float, percentage of the number of samples - - use_local_knn : bool (default False) - if True, the knn is computed as a percentage of the number of samples - for one realization of the discrete values in each subspace, - otherwise the same knn is used for all subspaces. - - Returns - ------- - val_continuous entropy, val_discrete_entropy : float, float - Tuple consisting of estimate for the entropy term for the continuous variables, - and the estimate for the entropy term for the discrete variables. - """ - - # select data for which the discrete values are the given ones - current_array = array[np.sum(array[:, discrete_idxs] == discrete_values, - axis=-1) == len(discrete_idxs)] - # if we do not have samples, we cannot estimate CMI - if np.size(current_array) == 0: - return 0., 0. - - T, dim = current_array.shape - - # if we have more samples than knns and samples are not purely discrete, we can - # compute CMI - if len(continuous_idxs) > 0 and T > knn: - val_continuous_entropy = self._compute_continuous_entropy(current_array[:, continuous_idxs], knn) - else: - val_continuous_entropy = 0. - - prob = float(T) / total_num_samples - - # multiply by probabilities of occurence - val_continuous_entropy *= prob - # compute entropy for that occurence - val_discrete_entropy = prob * np.log(prob) - - return val_continuous_entropy, val_discrete_entropy - -
[docs] def get_dependence_measure_conditional(self, array, xyz, - type_mask=None): - """Returns CMI estimate as described in .... - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - - dim, T = array.shape - - # compute knn - if self.knn < 1 and self.use_local_knn == False: - knn = max(1, int(self.knn*T)) - else: - knn = self.knn - - array = array.astype(np.float64) - xyz = xyz.astype(np.int32) - - array = self._transform_mixed_data(array, type_mask) - - array = array.T - type_mask = type_mask.T - - #TODO - - # continue working with discrete idx list - discrete_idx_list = np.where(np.any(type_mask == 1, axis=0), 1, 0) - - if np.sum(discrete_idx_list) == 0: - raise ValueError("Variables are continuous, cannot use CMIknnMixed conditional!") - -# if np.sum(discrete_idx_list) != np.sum(any_discrete_idx_list): -# raise ValueError("Variables contain mixtures, cannot use CMIknnMixed conditional!") - - # Subsample indices - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - z_indices = np.where(xyz == 2)[0] - xz_indices = np.concatenate([x_indices, z_indices]) - yz_indices = np.concatenate([y_indices, z_indices]) - - discrete_xz_indices = discrete_idx_list[xz_indices] - discrete_yz_indices = discrete_idx_list[yz_indices] - discrete_z_indices = discrete_idx_list[z_indices] - - discrete_xyz_idx = np.where(np.asarray(discrete_idx_list) == 1)[0] - discrete_xz_idx = np.where(np.asarray(discrete_xz_indices) == 1)[0] - discrete_yz_idx = np.where(np.asarray(discrete_yz_indices) == 1)[0] - discrete_z_idx = np.where(np.asarray(discrete_z_indices) == 1)[0] - - continuous_xyz_idx = np.where(np.asarray(discrete_idx_list) == 0)[0] - continuous_xz_idx = np.where(np.asarray(discrete_xz_indices) == 0)[0] - continuous_yz_idx = np.where(np.asarray(discrete_yz_indices) == 0)[0] - continuous_z_idx = np.where(np.asarray(discrete_z_indices) == 0)[0] - - # get the number of unique values for each category of the discrete variable - # add empty set for code not to break when accessing [0] - num_xz_classes = [np.unique(array[:, xz_indices][:, index]) for index in range(len(discrete_xz_indices)) if (discrete_xz_indices[index] == 1)] - num_yz_classes = [np.unique(array[:, yz_indices][:, index]) for index in range(len(discrete_yz_indices)) if (discrete_yz_indices[index] == 1)] - num_z_classes = [np.unique(array[:, z_indices][:, index]) for index in range(len(discrete_z_indices)) if (discrete_z_indices[index] == 1)] - num_xyz_classes = [np.unique(array[:, index]) for index in range(len(discrete_idx_list)) if (discrete_idx_list[index] == 1)] - - # print('num classes', num_xyz_classes, num_xz_classes, num_yz_classes, num_z_classes)siz - - xyz_cartesian_product = [] - xz_cartesian_product = [] - yz_cartesian_product = [] - z_cartesian_product = [] - - if len(num_xyz_classes) > 1: - xyz_cartesian_product = cartesian(num_xyz_classes) - elif len(num_xyz_classes) > 0: - xyz_cartesian_product = num_xyz_classes[0] - - - if len(num_xz_classes) > 1: - xz_cartesian_product = cartesian(num_xz_classes) - elif len(num_xz_classes) > 0: - xz_cartesian_product = num_xz_classes[0] - - if len(num_yz_classes) > 1: - yz_cartesian_product = cartesian(num_yz_classes) - elif len(num_yz_classes) > 0: - yz_cartesian_product = num_yz_classes[0] - - if len(num_z_classes) > 1: - z_cartesian_product = cartesian(num_z_classes) - elif len(num_z_classes) > 0: - z_cartesian_product = num_z_classes[0] - - # print('cartesian', xyz_cartesian_product) - # , xz_cartesian_product, yz_cartesian_product, z_cartesian_product) - - # compute entropies in XYZ subspace - if len(xyz_cartesian_product) > 0: - xyz_cmi = 0. - xyz_entropy = 0. - - for i, entry in enumerate(xyz_cartesian_product): - xyz_cont_entropy, xyz_disc_entropy = self._compute_entropies_for_discrete_entry(array, entry, - discrete_xyz_idx, - continuous_xyz_idx, - T, knn, - self.use_local_knn) - xyz_cmi += xyz_cont_entropy - xyz_entropy -= xyz_disc_entropy - else: - xyz_cmi = self._compute_continuous_entropy(array, knn) - xyz_entropy = 0. - - # print(xyz_cmi, xyz_entropy) - - # compute entropies in XZ subspace - if len(xz_cartesian_product) > 0: - xz_cmi = 0. - xz_entropy = 0. - - for i, entry in enumerate(xz_cartesian_product): - xz_cont_entropy, xz_disc_entropy = self._compute_entropies_for_discrete_entry(array[:, xz_indices], entry, - discrete_xz_idx, - continuous_xz_idx, - T, knn, - self.use_local_knn) - xz_cmi += xz_cont_entropy - xz_entropy -= xz_disc_entropy - else: - xz_cmi = self._compute_continuous_entropy(array[:, xz_indices], knn) - xz_entropy = 0. - - # compute entropies in Xy subspace - if len(yz_cartesian_product) > 0: - yz_cmi = 0. - yz_entropy = 0. - - for i, entry in enumerate(yz_cartesian_product): - yz_cont_entropy, yz_disc_entropy = self._compute_entropies_for_discrete_entry(array[:, yz_indices], entry, - discrete_yz_idx, - continuous_yz_idx, - T, knn, - self.use_local_knn) - yz_cmi += yz_cont_entropy - yz_entropy -= yz_disc_entropy - else: - yz_cmi = self._compute_continuous_entropy(array[:, yz_indices], knn) - yz_entropy = 0. - - - # compute entropies in Z subspace - if len(z_cartesian_product) > 0: - z_cmi = 0. - z_entropy = 0. - - for i, entry in enumerate(z_cartesian_product): - z_cont_entropy, z_disc_entropy = self._compute_entropies_for_discrete_entry(array[:, z_indices], - entry, - discrete_z_idx, - continuous_z_idx, - T, knn, - self.use_local_knn) - z_cmi += z_cont_entropy - z_entropy -= z_disc_entropy - else: - z_cmi = self._compute_continuous_entropy(array[:, z_indices], knn) - z_entropy = 0. - - # put it all together for the CMI estimation - val = xz_cmi + yz_cmi - xyz_cmi - z_cmi + xz_entropy + yz_entropy - xyz_entropy - z_entropy - - entropies = (xz_cmi, yz_cmi, xyz_cmi, z_cmi, xz_entropy, yz_entropy, xyz_entropy, z_entropy) - - return val, entropies
- -
[docs] def get_dependence_measure(self, array, xyz, - type_mask=None): - """Calls the appropriate function to estimate CMI. - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,) - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - # check that data is really mixed - if type_mask is None: - raise ValueError("Type mask cannot be none for CMIknnMixed!") - if np.sum(type_mask) > type_mask.size: - raise ValueError("Type mask contains other values than 0 and 1!") - - if self.estimator == 'MS': - return self.get_dependence_measure_MS(array, - xyz, - type_mask) - elif self.estimator == 'cond': - return self.get_dependence_measure_conditional(array, - xyz, - type_mask) - elif self.estimator == 'FPinf': - return self.get_dependence_measure_zeroinf(array, - xyz, - type_mask) - else: - raise ValueError('No such estimator available!')
- - @jit(forceobj=True) - def get_restricted_permutation(self, T, shuffle_neighbors, neighbors, order): - - restricted_permutation = np.zeros(T, dtype=np.int32) - used = np.array([], dtype=np.int32) - - for sample_index in order: - neighbors_to_use = neighbors[sample_index] - m = 0 - use = neighbors_to_use[m] - while ((use in used) and (m < shuffle_neighbors - 1)): - m += 1 - use = neighbors_to_use[m] - restricted_permutation[sample_index] = use - used = np.append(used, use) - - return restricted_permutation - - - @jit(forceobj=True) - def _generate_random_permutation(self, array, neighbors, x_indices, type_mask): - - T, dim = array.shape - # Generate random order in which to go through indices loop in - # next step - order = self.random_state.permutation(T).astype(np.int32) - - n = np.empty(neighbors.shape[0], dtype=object) - - for i in range(neighbors.shape[0]): - v = np.unique(neighbors[i]) - self.random_state.shuffle(v) - n[i] = v - - # Select a series of neighbor indices that contains as few as - # possible duplicates - restricted_permutation = self.get_restricted_permutation( - T=T, - shuffle_neighbors=self.shuffle_neighbors, - neighbors=n, - order=order) - - array_shuffled = np.copy(array) - type_mask_shuffled = np.copy(type_mask) - - for i in x_indices: - array_shuffled[:, i] = array[restricted_permutation, i] - type_mask_shuffled[:, i] = type_mask[restricted_permutation, i] - - return array_shuffled, type_mask_shuffled - -
[docs] @jit(forceobj=True) - def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False, - type_mask=None): - - """Returns p-value for nearest-neighbor shuffle significance test. - - For non-empty Z, overwrites get_shuffle_significance from the parent - class which is a block shuffle test, which does not preserve - dependencies of X and Y with Z. Here the parameter shuffle_neighbors is - used to permute only those values :math:`x_i` and :math:`x_j` for which - :math:`z_j` is among the nearest neighbors of :math:`z_i`. If Z is - empty, the block-shuffle test is used. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for unshuffled estimate. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - pval : float - p-value - """ - - dim, T = array.shape - z_indices = np.where(xyz == 2)[0] - - if len(z_indices) > 0 and self.shuffle_neighbors < T: - - array = array.T - type_mask = type_mask.T - - # discrete_idx_list = np.where(np.all(type_mask == 1, axis=0), 1, 0) - - array, xyz, type_mask, discrete_idx_list = self._transform_to_one_hot_mixed(array, xyz, type_mask, - zero_inf=True) - - # max_neighbors = max(1, int(max_neighbor_ratio*T)) - x_indices = np.where(xyz == 0)[0] - z_indices = np.where(xyz == 2)[0] - - if self.verbosity > 2: - print(" nearest-neighbor shuffle significance " - "test with n = %d and %d surrogates" % ( - self.shuffle_neighbors, self.sig_samples)) - # Get nearest neighbors around each sample point in Z - z_array = array[:, z_indices] - tree_xyz = spatial.cKDTree(z_array) - neighbors = tree_xyz.query(z_array, - k=self.shuffle_neighbors + 1, - p=np.inf, - workers=self.workers, - distance_upper_bound=9999999, - eps=0.) - - # remove all neighbors with distance infinite -> from another class - # for those that are discrete - valid_neighbors = np.ones(neighbors[1].shape) - # fill valid neighbors with point -> if infinite, the neighbor will - # be the point itself - valid_neighbors = np.multiply(valid_neighbors, np.expand_dims(np.arange(valid_neighbors.shape[0]), axis=-1)) - - valid_neighbors[neighbors[0] != np.inf] = neighbors[1][neighbors[0] != np.inf] - - null_dist = np.zeros(self.sig_samples) - - for sam in range(self.sig_samples): - array_shuffled, type_mask_shuffled = self._generate_random_permutation(array, - valid_neighbors, - x_indices, - type_mask) - null_dist[sam], _ = self.get_dependence_measure(array_shuffled.T, - xyz, - type_mask=type_mask_shuffled.T) - - else: - null_dist = \ - self._get_shuffle_dist(array, xyz, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - type_mask=type_mask, - verbosity=self.verbosity) - - pval = (null_dist >= value).mean() - - if return_null_dist: - # Sort - null_dist.sort() - return pval, null_dist - return pval
- - - - - - - def _get_shuffle_dist(self, array, xyz, - sig_samples, sig_blocklength=None, - type_mask=None, - verbosity=0): - """Returns shuffle distribution of test statistic. - - The rows in array corresponding to the X-variable are shuffled using - a block-shuffle approach. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - dependence_measure : object - Dependence measure function must be of form - dependence_measure(array, xyz) and return a numeric value - - sig_samples : int, optional (default: 100) - Number of samples for shuffle significance test. - - sig_blocklength : int, optional (default: None) - Block length for block-shuffle significance test. If None, the - block length is determined from the decay of the autocovariance as - explained in [1]_. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - verbosity : int, optional (default: 0) - Level of verbosity. - - Returns - ------- - null_dist : array of shape (sig_samples,) - Contains the sorted test statistic values estimated from the - shuffled arrays. - """ - dim, T = array.shape - - x_indices = np.where(xyz == 0)[0] - dim_x = len(x_indices) - - if sig_blocklength is None: - sig_blocklength = self._get_block_length(array, xyz, - mode='significance') - - n_blks = int(math.floor(float(T)/sig_blocklength)) - - # print 'n_blks ', n_blks - if verbosity > 2: - print(" Significance test with block-length = %d " - "..." % (sig_blocklength)) - - array_shuffled = np.copy(array) - type_mask_shuffled = np.copy(type_mask) - # block_starts = np.arange(0, T - sig_blocklength, sig_blocklength) - block_starts = np.arange(0, n_blks * sig_blocklength, sig_blocklength) - - - # Dividing the array up into n_blks of length sig_blocklength may - # leave a tail. This tail is later randomly inserted - tail = array[x_indices, n_blks*sig_blocklength:] - - null_dist = np.zeros(sig_samples) - for sam in range(sig_samples): - - blk_starts = self.random_state.permutation(block_starts)[:n_blks] - - x_shuffled = np.zeros((dim_x, n_blks*sig_blocklength), - dtype=array.dtype) - type_x_shuffled = np.zeros((dim_x, n_blks*sig_blocklength), - dtype=array.dtype) - - for i, index in enumerate(x_indices): - for blk in range(sig_blocklength): - x_shuffled[i, blk::sig_blocklength] = \ - array[index, blk_starts + blk] - - type_x_shuffled[i, blk::sig_blocklength] = \ - type_mask[index, blk_starts + blk] - - # Insert tail randomly somewhere - if tail.shape[1] > 0: - insert_tail_at = self.random_state.choice(block_starts) - x_shuffled = np.insert(x_shuffled, insert_tail_at, - tail.T, axis=1) - type_x_shuffled = np.insert(type_x_shuffled, insert_tail_at, - tail.T, axis=1) - - - for i, index in enumerate(x_indices): - array_shuffled[index] = x_shuffled[i] - type_mask_shuffled[index] = type_x_shuffled[i] - - null_dist[sam], _ = self.get_dependence_measure(array=array_shuffled, - xyz=xyz, - type_mask=type_mask_shuffled) - - return null_dist
- - -if __name__ == '__main__': - - import tigramite - from tigramite.data_processing import DataFrame - import tigramite.data_processing as pp - from tigramite.independence_tests import CMIknn - import numpy as np - - random_state_ = np.random.default_rng(seed=seed) - cmi = CMIknnMixed(mask_type=None, - significance='shuffle_test', - # estimator='cond', - use_local_knn=True, - fixed_thres=None, - sig_samples=500, - sig_blocklength=1, - transform='scale', - knn=0.1, - verbosity=0) - - # cmiknn = CMIknn(mask_type=None, - # significance='shuffle_test', - # # estimator='FPinf', - # # use_local_knn=True, - # fixed_thres=None, - # sig_samples=500, - # sig_blocklength=1, - # transform='none', - # knn=0.1, - # verbosity=0) - - - T = 1000 - dimz = 1 - - # Discrete data - z = random_state_.binomial(n=1, p=0.5, size=(T, dimz)).reshape(T, dimz) - x = np.empty(T).reshape(T, 1) - y = np.empty(T).reshape(T, 1) - for t in range(T): - val = z[t, 0].squeeze() - prob = 0.2 + val*0.6 - x[t] = random_state_.choice([0,1], p=[prob, 1.-prob]) - y[t] = random_state_.choice([0,1, 2], p=[prob, (1.-prob)/2., (1.-prob)/2.]) - - # Continuous data - z = random_state_.standard_normal((T, dimz)) - x = (0.5*z[:,0] + random_state_.standard_normal(T)).reshape(T, 1) - y = (0.5*z[:,0] + random_state_.standard_normal(T)).reshape(T, 1) - - z2 = random_state_.binomial(n=1, p=0.5, size=(T, dimz)).reshape(T, dimz) - zfull = np.concatenate((z, z2), axis=1) - - print('X _|_ Y') - print(cmi.run_test_raw(x, y, z=zfull, - x_type=np.zeros(T, dtype='bool'), - y_type=np.zeros(T, dtype='bool'), - z_type=np.concatenate((np.zeros((T, dimz), dtype='bool'), np.ones((T, dimz), dtype='bool')), axis=1), - # val_only=True) - )) - - # print(cmiknn.run_test_raw(x, y, z=None)) - # - # print('X _|_ Y | Z') - # print(cmi.run_test_raw(x, y, z=z, - # x_type=np.zeros(T, dtype='bool'), - # y_type=np.zeros(T, dtype='bool'), - # z_type=np.zeros(T, dtype='bool'))) - -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/cmisymb.html b/docs/_build/html/_modules/tigramite/independence_tests/cmisymb.html deleted file mode 100644 index 04d7ed0c..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/cmisymb.html +++ /dev/null @@ -1,368 +0,0 @@ - - - - - - - - tigramite.independence_tests.cmisymb — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.cmisymb

-"""Tigramite causal discovery for time series."""
-
-# Author: Sagar Nagaraj Simha, Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-import warnings
-import numpy as np
-from scipy.stats.contingency import crosstab
-from joblib import Parallel, delayed
-import multiprocessing
-from numba import jit
-
-from .independence_tests_base import CondIndTest
-
-
[docs]class CMIsymb(CondIndTest): - r"""Conditional mutual information test for discrete/categorical data. - - Conditional mutual information is the most general dependency measure - coming from an information-theoretic framework. It makes no assumptions - about the parametric form of the dependencies by directly estimating the - underlying joint density. The test here is based on directly estimating - the joint distribution assuming symbolic input, combined with a - local shuffle test to generate the distribution under the null hypothesis of - independence. This estimator is suitable only for discrete variables. - For continuous variables use the CMIknn class and for mixed-variable - datasets the CMIknnMixed class (including mixed-type variables). - - Allows for multi-dimensional X, Y. - - Notes - ----- - CMI and its estimator are given by - - .. math:: I(X;Y|Z) &= \sum p(z) \sum \sum p(x,y|z) \log - \frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)} \,dx dy dz - - Parameters - ---------- - n_symbs : int, optional (default: None) - Number of symbols in input data. Should be at least as large as the - maximum array entry + 1. If None, n_symbs is inferred by scipy's crosstab. - - significance : str, optional (default: 'shuffle_test') - Type of significance test to use. For CMIsymb only 'fixed_thres' and - 'shuffle_test' are available. - - sig_blocklength : int, optional (default: 1) - Block length for block-shuffle significance test. - - conf_blocklength : int, optional (default: 1) - Block length for block-bootstrap. - - **kwargs : - Arguments passed on to parent class CondIndTest. - """ - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - n_symbs=None, - significance='shuffle_test', - sig_blocklength=1, - conf_blocklength=1, - **kwargs): - # Setup the member variables - self._measure = 'cmi_symb' - self.two_sided = False - self.residual_based = False - self.recycle_residuals = False - self.n_symbs = n_symbs - # Call the parent constructor - CondIndTest.__init__(self, - significance=significance, - sig_blocklength=sig_blocklength, - conf_blocklength=conf_blocklength, - **kwargs) - - if self.verbosity > 0: - print("n_symbs = %s" % self.n_symbs) - print("") - - if self.conf_blocklength is None or self.sig_blocklength is None: - warnings.warn("Automatic block-length estimations from decay of " - "autocorrelation may not be correct for discrete " - "data") - -
[docs] def get_dependence_measure(self, array, xyz): - """Returns CMI estimate based on contingency table from scipy's crosstab - to approximate probability mass. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - - _, T = array.shape - - if self.n_symbs is None: - levels = None - else: - # Assuming same list of levels for (z, y, x). - levels = np.tile(np.arange(self.n_symbs), (len(xyz), 1)) - - # High-dimensional contingency table - _, hist = crosstab(*(np.asarray(np.split(array, len(xyz), axis=0)).reshape((-1, T))), levels=levels, - sparse=False) - - def _plogp_vector(T): - """Precalculation of p*log(p) needed for entropies.""" - gfunc = np.zeros(T + 1) - data = np.arange(1, T + 1, 1) - gfunc[1:] = data * np.log(data) - def plogp_func(time): - return gfunc[time] - return np.vectorize(plogp_func) - - # Dimensions are hist are (X, Y, Z^1, .... Z^dz) - # plogp = _plogp_vector(T) - # hxyz = (-(plogp(hist)).sum() + plogp(T)) / float(T) - # hxz = (-(plogp(hist.sum(axis=1))).sum() + plogp(T)) / float(T) - # hyz = (-(plogp(hist.sum(axis=0))).sum() + plogp(T)) / float(T) - # hz = (-(plogp(hist.sum(axis=0).sum(axis=0))).sum() + plogp(T)) / float(T) - - # Multivariate X, Y version - plogp = _plogp_vector(T) - hxyz = (-(plogp(hist)).sum() + plogp(T)) / float(T) - hxz = (-(plogp(hist.sum(axis=tuple(np.where(xyz==1)[0])))).sum() + plogp(T)) / float(T) - hyz = (-(plogp(hist.sum(axis=tuple(np.where(xyz==0)[0])))).sum() + plogp(T)) / float(T) - hz = (-(plogp(hist.sum(axis=tuple(np.where((xyz==0) | (xyz==1))[0])))).sum() + plogp(T)) / float(T) - val = hxz + hyz - hz - hxyz - - return val
- -
[docs] def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False): - """Returns p-value for shuffle significance test. - - Performes a local permutation test: x_i values are only permuted with - those x_j for which z_i = z_j. Samples are drawn without replacement - as much as possible. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for original (unshuffled) estimate. - - Returns - ------- - pval : float - p-value. - """ - - dim, T = array.shape - x_indices = np.where(xyz == 0)[0] - z_indices = np.where(xyz == 2)[0] - - if len(z_indices) > 0: - # Get neighbors around each sample point in z - z_array = array[z_indices, :].T - # Unique combinations of z in the data (z1, z2, z3 ...) - z_comb = np.unique(z_array, axis=0) - - # Create neighbor indices of length z_comb with default as -1. - neighbors = np.full((len(z_comb), T), -1) - # Neighborhood indices for each unique combination in z_comb. - for i in range(len(z_comb)): - neighbor_indices = np.where((z_array == z_comb[i]).all(axis=1))[0] - neighbors[i, :len(neighbor_indices)] = neighbor_indices - - num_cores = multiprocessing.cpu_count() - random_seeds = self.random_state.integers(np.iinfo(np.int32).max, size=self.sig_samples) - null_dist = Parallel(n_jobs=num_cores)( - delayed(self.parallelize_shuffles)(array, xyz, z_indices, x_indices, T, z_comb, neighbors, seed=seed) for seed in random_seeds) - null_dist = np.asarray(null_dist) - - else: - null_dist = \ - self._get_shuffle_dist(array, xyz, - self.get_dependence_measure, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - verbosity=self.verbosity) - - pval = (null_dist >= value).mean() - - if return_null_dist: - return pval, null_dist - return pval
- - @jit(forceobj=True) - def parallelize_shuffles(self, array, xyz, z_indices, x_indices, T, z_comb, neighbors, seed=None): - # Generate random order in which to go through samples. - # order = self.random_state.permutation(T).astype('int32') - rng = np.random.default_rng(seed) - order = rng.permutation(T).astype('int32') - - restricted_permutation = np.zeros(T, dtype='int32') - # A global list of used indices across time samples and combinations. - # Since there are no repetitive (z) indices across combinations, a global list can be used. - used = np.array([], dtype='int32') - for sample_index in order: - # Get the index of the z combination for sample_index in z_comb - z_choice_index = np.where((z_comb == array[z_indices, sample_index]).all(axis=1))[0][0] - neighbors_choices = neighbors[z_choice_index][neighbors[z_choice_index] > -1] - # Shuffle neighbors in-place to randomize the choice of indices - # self.random_state.shuffle(neighbors_choices) - rng.shuffle(neighbors_choices) - - # Permuting indices - m = 0 - use = neighbors_choices[m] - while ((use in used) and (m < len(neighbors_choices))): - m += 1 - use = neighbors_choices[m] - - restricted_permutation[sample_index] = use - used = np.append(used, use) - - array_shuffled = np.copy(array) - for i in x_indices: - array_shuffled[i] = array[i, restricted_permutation] - - return self.get_dependence_measure(array_shuffled, - xyz)
- - -if __name__ == '__main__': - - import tigramite - from tigramite.data_processing import DataFrame - import tigramite.data_processing as pp - import numpy as np - - seed = 42 - random_state = np.random.default_rng(seed=seed) - cmi = CMIsymb(sig_samples=100, seed=seed) - - T = 1000 - dimz = 10 - z = random_state.binomial(n=1, p=0.5, size=(T, dimz)).reshape(T, dimz) - x = np.empty(T).reshape(T, 1) - y = np.empty(T).reshape(T, 1) - for t in range(T): - val = z[t, 0].squeeze() - prob = 0.2+val*0.6 - x[t] = random_state.choice([0,1], p=[prob, 1.-prob]) - y[t] = random_state.choice([0,1, 2], p=[prob, (1.-prob)/2., (1.-prob)/2.]) - - print('start') - print(cmi.run_test_raw(x, y, z=None)) - print(cmi.run_test_raw(x, y, z=z)) -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/gpdc.html b/docs/_build/html/_modules/tigramite/independence_tests/gpdc.html deleted file mode 100644 index 2904277a..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/gpdc.html +++ /dev/null @@ -1,755 +0,0 @@ - - - - - - - - tigramite.independence_tests.gpdc — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.gpdc

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-import json, warnings, os, pathlib
-import numpy as np
-import dcor
-from sklearn import gaussian_process
-from .independence_tests_base import CondIndTest
-
-class GaussProcReg():
-    r"""Gaussian processes abstract base class.
-
-    GP is estimated with scikit-learn and allows to flexibly specify kernels and
-    hyperparameters or let them be optimized automatically. The kernel specifies
-    the covariance function of the GP. Parameters can be passed on to
-    ``GaussianProcessRegressor`` using the gp_params dictionary. If None is
-    passed, the kernel '1.0 * RBF(1.0) + WhiteKernel()' is used with alpha=0 as
-    default. Note that the kernel's hyperparameters are optimized during
-    fitting.
-
-    When the null distribution is not analytically available, but can be
-    precomputed with the function generate_and_save_nulldists(...) which saves
-    a \*.npz file containing the null distribution for different sample sizes.
-    This file can then be supplied as null_dist_filename.
-
-    Parameters
-    ----------
-    null_samples : int
-        Number of null samples to use
-
-    cond_ind_test : CondIndTest
-        Conditional independence test that this Gaussian Process Regressor will
-        calculate the null distribution for.  This is used to grab the
-        get_dependence_measure function.
-
-    gp_params : dictionary, optional (default: None)
-        Dictionary with parameters for ``GaussianProcessRegressor``.
-
-    null_dist_filename : str, otional (default: None)
-        Path to file containing null distribution.
-
-    verbosity : int, optional (default: 0)
-        Level of verbosity.
-    """
-    def __init__(self,
-                 null_samples,
-                 cond_ind_test,
-                 gp_params=None,
-                 null_dist_filename=None,
-                 verbosity=0):
-        # Set the dependence measure function
-        self.cond_ind_test = cond_ind_test
-        # Set member variables
-        self.gp_params = gp_params
-        self.verbosity = verbosity
-        # Set the null distribution defaults
-        self.null_samples = null_samples
-        self.null_dists = {}
-        self.null_dist_filename = null_dist_filename
-        # Check if we are loading a null distrubtion from a cached file
-        if self.null_dist_filename is not None:
-            self.null_dists, self.null_samples = \
-                    self._load_nulldist(self.null_dist_filename)
-
-    def _load_nulldist(self, filename):
-        r"""
-        Load a precomputed null distribution from a \*.npz file.  This
-        distribution can be calculated using generate_and_save_nulldists(...).
-
-        Parameters
-        ----------
-        filename : strng
-            Path to the \*.npz file
-
-        Returns
-        -------
-        null_dists, null_samples : dict, int
-            The null distirbution as a dictionary of distributions keyed by
-            sample size, the number of null samples in total.
-        """
-        null_dist_file = np.load(filename)
-        null_dists = dict(zip(null_dist_file['T'],
-                              null_dist_file['exact_dist']))
-        null_samples = len(null_dist_file['exact_dist'][0])
-        return null_dists, null_samples
-
-    def _generate_nulldist(self, df,
-                           add_to_null_dists=True):
-        """Generates null distribution for pairwise independence tests.
-
-        Generates the null distribution for sample size df. Assumes pairwise
-        samples transformed to uniform marginals. Uses get_dependence_measure
-        available in class and generates self.sig_samples random samples. Adds
-        the null distributions to self.null_dists.
-
-        Parameters
-        ----------
-        df : int
-            Degrees of freedom / sample size to generate null distribution for.
-        add_to_null_dists : bool, optional (default: True)
-            Whether to add the null dist to the dictionary of null dists or
-            just return it.
-
-        Returns
-        -------
-        null_dist : array of shape [df,]
-            Only returned,if add_to_null_dists is False.
-        """
-
-        if self.verbosity > 0:
-            print("Generating null distribution for df = %d. " % df)
-            if add_to_null_dists:
-                print("For faster computations, run function "
-                      "generate_and_save_nulldists(...) to "
-                      "precompute null distribution and load *.npz file with "
-                      "argument null_dist_filename")
-
-        xyz = np.array([0,1])
-
-        null_dist = np.zeros(self.null_samples)
-        for i in range(self.null_samples):
-            array = self.cond_ind_test.random_state.random((2, df))
-            null_dist[i] = self.cond_ind_test.get_dependence_measure(array, xyz)
-
-        null_dist.sort()
-        if add_to_null_dists:
-            self.null_dists[df] = null_dist
-        return null_dist
-
-    def _generate_and_save_nulldists(self, sample_sizes, null_dist_filename):
-        """Generates and saves null distribution for pairwise independence
-        tests.
-
-        Generates the null distribution for different sample sizes. Calls
-        generate_nulldist. Null dists are saved to disk as
-        self.null_dist_filename.npz. Also adds the null distributions to
-        self.null_dists.
-
-        Parameters
-        ----------
-        sample_sizes : list
-            List of sample sizes.
-
-        null_dist_filename : str
-            Name to save file containing null distributions.
-        """
-
-        self.null_dist_filename = null_dist_filename
-
-        null_dists = np.zeros((len(sample_sizes), self.null_samples))
-
-        for iT, T in enumerate(sample_sizes):
-            null_dists[iT] = self._generate_nulldist(T, add_to_null_dists=False)
-            self.null_dists[T] = null_dists[iT]
-
-        np.savez("%s" % null_dist_filename,
-                 exact_dist=null_dists,
-                 T=np.array(sample_sizes))
-
-    def _get_single_residuals(self, array, target_var,
-                              return_means=False,
-                              standardize=True,
-                              return_likelihood=False):
-        """Returns residuals of Gaussian process regression.
-
-        Performs a GP regression of the variable indexed by target_var on the
-        conditions Z. Here array is assumed to contain X and Y as the first two
-        rows with the remaining rows (if present) containing the conditions Z.
-        Optionally returns the estimated mean and the likelihood.
-
-        Parameters
-        ----------
-        array : array-like
-            data array with X, Y, Z in rows and observations in columns
-
-        target_var : {0, 1}
-            Variable to regress out conditions from.
-
-        standardize : bool, optional (default: True)
-            Whether to standardize the array beforehand.
-
-        return_means : bool, optional (default: False)
-            Whether to return the estimated regression line.
-
-        return_likelihood : bool, optional (default: False)
-            Whether to return the log_marginal_likelihood of the fitted GP
-
-        Returns
-        -------
-        resid [, mean, likelihood] : array-like
-            The residual of the regression and optionally the estimated mean
-            and/or the likelihood.
-        """
-        dim, T = array.shape
-
-        if self.gp_params is None:
-            self.gp_params = {}
-
-        if dim <= 2:
-            if return_likelihood:
-                return array[target_var, :], -np.inf
-            return array[target_var, :]
-
-        # Standardize
-        if standardize:
-            array -= array.mean(axis=1).reshape(dim, 1)
-            std = array.std(axis=1)
-            for i in range(dim):
-                if std[i] != 0.:
-                    array[i] /= std[i]
-            if np.any(std == 0.):
-                warnings.warn("Possibly constant array!")
-            # array /= array.std(axis=1).reshape(dim, 1)
-            # if np.isnan(array).sum() != 0:
-            #     raise ValueError("nans after standardizing, "
-            #                      "possibly constant array!")
-
-        target_series = array[target_var, :]
-        z = np.fastCopyAndTranspose(array[2:])
-        if np.ndim(z) == 1:
-            z = z.reshape(-1, 1)
-
-
-        # Overwrite default kernel and alpha values
-        params = self.gp_params.copy()
-        if 'kernel' not in list(self.gp_params):
-            kernel = gaussian_process.kernels.RBF() +\
-             gaussian_process.kernels.WhiteKernel()
-        else:
-            kernel = self.gp_params['kernel']
-            del params['kernel']
-
-        if 'alpha' not in list(self.gp_params):
-            alpha = 0.
-        else:
-            alpha = self.gp_params['alpha']
-            del params['alpha']
-
-        gp = gaussian_process.GaussianProcessRegressor(kernel=kernel,
-                                               alpha=alpha,
-                                               **params)
-
-        gp.fit(z, target_series.reshape(-1, 1))
-
-        if self.verbosity > 3:
-            print(kernel, alpha, gp.kernel_, gp.alpha)
-
-        if return_likelihood:
-            likelihood = gp.log_marginal_likelihood()
-
-        mean = gp.predict(z).squeeze()
-
-        resid = target_series - mean
-
-        if return_means and not return_likelihood:
-            return (resid, mean)
-        elif return_likelihood and not return_means:
-            return (resid, likelihood)
-        elif return_means and return_likelihood:
-            return resid, mean, likelihood
-        return resid
-
-    def _get_model_selection_criterion(self, j, parents, tau_max=0):
-        """Returns log marginal likelihood for GP regression.
-
-        Fits a GP model of the parents to variable j and returns the negative
-        log marginal likelihood as a model selection score. Is used to determine
-        optimal hyperparameters in PCMCI, in particular the pc_alpha value.
-
-        Parameters
-        ----------
-        j : int
-            Index of target variable in data array.
-
-        parents : list
-            List of form [(0, -1), (3, -2), ...] containing parents.
-
-        tau_max : int, optional (default: 0)
-            Maximum time lag. This may be used to make sure that estimates for
-            different lags in X, Z, all have the same sample size.
-
-        Returns:
-        score : float
-            Model score.
-        """
-
-        Y = [(j, 0)]
-        X = [(j, 0)]   # dummy variable here
-        Z = parents
-        array, xyz, _ = \
-                self.cond_ind_test.dataframe.construct_array(
-                    X=X, Y=Y, Z=Z,
-                    tau_max=tau_max,
-                    mask_type=self.cond_ind_test.mask_type,
-                    return_cleaned_xyz=False,
-                    do_checks=True,
-                    verbosity=self.verbosity)
-
-        dim, T = array.shape
-
-        _, logli = self._get_single_residuals(array,
-                                              target_var=1,
-                                              return_likelihood=True)
-
-        score = -logli
-        return score
-
-
[docs]class GPDC(CondIndTest): - r"""GPDC conditional independence test based on Gaussian processes and distance correlation. - - GPDC is based on a Gaussian process (GP) regression and a distance - correlation test on the residuals [2]_. GP is estimated with scikit-learn - and allows to flexibly specify kernels and hyperparameters or let them be - optimized automatically. The distance correlation test is implemented with - cython. Here the null distribution is not analytically available, but can be - precomputed with the function generate_and_save_nulldists(...) which saves a - \*.npz file containing the null distribution for different sample sizes. - This file can then be supplied as null_dist_filename. - - Notes - ----- - - GPDC is based on a Gaussian process (GP) regression and a distance - correlation test on the residuals. Distance correlation is described in - [2]_. To test :math:`X \perp Y | Z`, first :math:`Z` is regressed out from - :math:`X` and :math:`Y` assuming the model - - .. math:: X & = f_X(Z) + \epsilon_{X} \\ - Y & = f_Y(Z) + \epsilon_{Y} \\ - \epsilon_{X,Y} &\sim \mathcal{N}(0, \sigma^2) - - using GP regression. Here :math:`\sigma^2` and the kernel bandwidth are - optimzed using ``sklearn``. Then the residuals are transformed to uniform - marginals yielding :math:`r_X,r_Y` and their dependency is tested with - - .. math:: \mathcal{R}\left(r_X, r_Y\right) - - The null distribution of the distance correlation should be pre-computed. - Otherwise it is computed during runtime. - - References - ---------- - .. [2] Gabor J. Szekely, Maria L. Rizzo, and Nail K. Bakirov: Measuring and - testing dependence by correlation of distances, - https://arxiv.org/abs/0803.4101 - - Parameters - ---------- - null_dist_filename : str, otional (default: None) - Path to file containing null distribution. - - gp_params : dictionary, optional (default: None) - Dictionary with parameters for ``GaussianProcessRegressor``. - - **kwargs : - Arguments passed on to parent class GaussProcReg. - - """ - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - null_dist_filename=None, - gp_params=None, - **kwargs): - self._measure = 'gp_dc' - self.two_sided = False - self.residual_based = True - # Call the parent constructor - CondIndTest.__init__(self, **kwargs) - # Build the regressor - self.gauss_pr = GaussProcReg(self.sig_samples, - self, - gp_params=gp_params, - null_dist_filename=null_dist_filename, - verbosity=self.verbosity) - - if self.verbosity > 0: - print("null_dist_filename = %s" % self.gauss_pr.null_dist_filename) - if self.gauss_pr.gp_params is not None: - for key in list(self.gauss_pr.gp_params): - print("%s = %s" % (key, self.gauss_pr.gp_params[key])) - print("") - - def _load_nulldist(self, filename): - r""" - Load a precomputed null distribution from a \*.npz file. This - distribution can be calculated using generate_and_save_nulldists(...). - - Parameters - ---------- - filename : strng - Path to the \*.npz file - - Returns - ------- - null_dists, null_samples : dict, int - The null distirbution as a dictionary of distributions keyed by - sample size, the number of null samples in total. - """ - return self.gauss_pr._load_nulldist(filename) - -
[docs] def generate_nulldist(self, df, add_to_null_dists=True): - """Generates null distribution for pairwise independence tests. - - Generates the null distribution for sample size df. Assumes pairwise - samples transformed to uniform marginals. Uses get_dependence_measure - available in class and generates self.sig_samples random samples. Adds - the null distributions to self.gauss_pr.null_dists. - - Parameters - ---------- - df : int - Degrees of freedom / sample size to generate null distribution for. - - add_to_null_dists : bool, optional (default: True) - Whether to add the null dist to the dictionary of null dists or - just return it. - - Returns - ------- - null_dist : array of shape [df,] - Only returned,if add_to_null_dists is False. - """ - return self.gauss_pr._generate_nulldist(df, add_to_null_dists)
- -
[docs] def generate_and_save_nulldists(self, sample_sizes, null_dist_filename): - """Generates and saves null distribution for pairwise independence - tests. - - Generates the null distribution for different sample sizes. Calls - generate_nulldist. Null dists are saved to disk as - self.null_dist_filename.npz. Also adds the null distributions to - self.gauss_pr.null_dists. - - Parameters - ---------- - sample_sizes : list - List of sample sizes. - - null_dist_filename : str - Name to save file containing null distributions. - """ - self.gauss_pr._generate_and_save_nulldists(sample_sizes, - null_dist_filename)
- - def _get_single_residuals(self, array, target_var, - return_means=False, - standardize=True, - return_likelihood=False): - """Returns residuals of Gaussian process regression. - - Performs a GP regression of the variable indexed by target_var on the - conditions Z. Here array is assumed to contain X and Y as the first two - rows with the remaining rows (if present) containing the conditions Z. - Optionally returns the estimated mean and the likelihood. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - target_var : {0, 1} - Variable to regress out conditions from. - - standardize : bool, optional (default: True) - Whether to standardize the array beforehand. - - return_means : bool, optional (default: False) - Whether to return the estimated regression line. - - return_likelihood : bool, optional (default: False) - Whether to return the log_marginal_likelihood of the fitted GP - - Returns - ------- - resid [, mean, likelihood] : array-like - The residual of the regression and optionally the estimated mean - and/or the likelihood. - """ - return self.gauss_pr._get_single_residuals( - array, target_var, - return_means, - standardize, - return_likelihood) - -
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0): - """Returns log marginal likelihood for GP regression. - - Fits a GP model of the parents to variable j and returns the negative - log marginal likelihood as a model selection score. Is used to determine - optimal hyperparameters in PCMCI, in particular the pc_alpha value. - - Parameters - ---------- - j : int - Index of target variable in data array. - - parents : list - List of form [(0, -1), (3, -2), ...] containing parents. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - Returns: - score : float - Model score. - """ - return self.gauss_pr._get_model_selection_criterion(j, parents, tau_max)
- -
[docs] def get_dependence_measure(self, array, xyz): - """Return GPDC measure. - - Estimated as the distance correlation of the residuals of a GP - regression. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - val : float - GPDC test statistic. - """ - - x_vals = self._get_single_residuals(array, target_var=0) - y_vals = self._get_single_residuals(array, target_var=1) - val = self._get_dcorr(np.array([x_vals, y_vals])) - return val
- - - def _get_dcorr(self, array_resid): - """Return distance correlation coefficient. - - The variables are transformed to uniform marginals using the empirical - cumulative distribution function beforehand. Here the null distribution - is not analytically available, but can be precomputed with the function - generate_and_save_nulldists(...) which saves a \*.npz file containing - the null distribution for different sample sizes. This file can then be - supplied as null_dist_filename. - - Parameters - ---------- - array_resid : array-like - data array must be of shape (2, T) - - Returns - ------- - val : float - Distance correlation coefficient. - """ - # Remove ties before applying transformation to uniform marginals - # array_resid = self._remove_ties(array_resid, verbosity=4) - x_vals, y_vals = self._trafo2uniform(array_resid) - val = dcor.distance_correlation(x_vals, y_vals, method='AVL') - return val - -
[docs] def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False): - """Returns p-value for shuffle significance test. - - For residual-based test statistics only the residuals are shuffled. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for unshuffled estimate. - - Returns - ------- - pval : float - p-value - """ - - x_vals = self._get_single_residuals(array, target_var=0) - y_vals = self._get_single_residuals(array, target_var=1) - array_resid = np.array([x_vals, y_vals]) - xyz_resid = np.array([0, 1]) - - null_dist = self._get_shuffle_dist(array_resid, xyz_resid, - self.get_dependence_measure, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - verbosity=self.verbosity) - - pval = (null_dist >= value).mean() - - if return_null_dist: - return pval, null_dist - return pval
- -
[docs] def get_analytic_significance(self, value, T, dim, xyz): - """Returns p-value for the distance correlation coefficient. - - The null distribution for necessary degrees of freedom (df) is loaded. - If not available, the null distribution is generated with the function - generate_nulldist(). It is recommended to generate the nulldists for a - wide range of sample sizes beforehand with the function - generate_and_save_nulldists(...). The distance correlation coefficient - is one-sided. If the degrees of freedom are less than 1, numpy.nan is - returned. - - Parameters - ---------- - value : float - Test statistic value. - - T : int - Sample length - - dim : int - Dimensionality, ie, number of features. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - pval : float or numpy.nan - p-value. - """ - - # GP regression approximately doesn't cost degrees of freedom - df = T - - if df < 1: - pval = np.nan - else: - # idx_near = (np.abs(self.sample_sizes - df)).argmin() - if int(df) not in list(self.gauss_pr.null_dists): - # if np.abs(self.sample_sizes[idx_near] - df) / float(df) > 0.01: - if self.verbosity > 0: - print("Null distribution for GPDC not available " - "for deg. of freed. = %d." % df) - self.generate_nulldist(df) - null_dist_here = self.gauss_pr.null_dists[int(df)] - pval = np.mean(null_dist_here > np.abs(value)) - return pval
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/gpdc_torch.html b/docs/_build/html/_modules/tigramite/independence_tests/gpdc_torch.html deleted file mode 100644 index b2dd7f55..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/gpdc_torch.html +++ /dev/null @@ -1,911 +0,0 @@ - - - - - - - - tigramite.independence_tests.gpdc_torch — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.gpdc_torch

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-import json, warnings, os, pathlib
-import numpy as np
-import gc
-import dcor
-import torch
-import gpytorch
-from .LBFGS import FullBatchLBFGS
-from .independence_tests_base import CondIndTest
-
-class GaussProcRegTorch():
-    r"""Gaussian processes abstract base class.
-
-    GP is estimated with gpytorch. Note that the kernel's hyperparameters are
-    optimized during fitting.
-
-    When the null distribution is not analytically available, but can be
-    precomputed with the function generate_and_save_nulldists(...) which saves
-    a \*.npz file containing the null distribution for different sample sizes.
-    This file can then be supplied as null_dist_filename.
-
-    Parameters
-    ----------
-    null_samples : int
-        Number of null samples to use
-
-    cond_ind_test : CondIndTest
-        Conditional independence test that this Gaussian Proccess Regressor will
-        calculate the null distribution for.  This is used to grab the
-        get_dependence_measure function.
-
-    null_dist_filename : str, otional (default: None)
-        Path to file containing null distribution.
-
-    verbosity : int, optional (default: 0)
-        Level of verbosity.
-    """
-
-    def __init__(self,
-                 null_samples,
-                 cond_ind_test,
-                 null_dist_filename=None,
-                 checkpoint_size=None,
-                 verbosity=0):
-        # Set the dependence measure function
-        self.cond_ind_test = cond_ind_test
-        # Set member variables
-        self.verbosity = verbosity
-        # Set the null distribution defaults
-        self.null_samples = null_samples
-        self.null_dists = {}
-        self.null_dist_filename = null_dist_filename
-        # Check if we are loading a null distrubtion from a cached file
-        if self.null_dist_filename is not None:
-            self.null_dists, self.null_samples = \
-                self._load_nulldist(self.null_dist_filename)
-        # Size for batching
-        self.checkpoint_size = checkpoint_size
-
-    def _load_nulldist(self, filename):
-        r"""
-        Load a precomputed null distribution from a \*.npz file.  This
-        distribution can be calculated using generate_and_save_nulldists(...).
-
-        Parameters
-        ----------
-        filename : strng
-            Path to the \*.npz file
-
-        Returns
-        -------
-        null_dists, null_samples : dict, int
-            The null distirbution as a dictionary of distributions keyed by
-            sample size, the number of null samples in total.
-        """
-        null_dist_file = np.load(filename)
-        null_dists = dict(zip(null_dist_file['T'],
-                              null_dist_file['exact_dist']))
-        null_samples = len(null_dist_file['exact_dist'][0])
-        return null_dists, null_samples
-
-    def _generate_nulldist(self, df,
-                           add_to_null_dists=True):
-        """Generates null distribution for pairwise independence tests.
-
-        Generates the null distribution for sample size df. Assumes pairwise
-        samples transformed to uniform marginals. Uses get_dependence_measure
-        available in class and generates self.sig_samples random samples. Adds
-        the null distributions to self.null_dists.
-
-        Parameters
-        ----------
-        df : int
-            Degrees of freedom / sample size to generate null distribution for.
-        add_to_null_dists : bool, optional (default: True)
-            Whether to add the null dist to the dictionary of null dists or
-            just return it.
-
-        Returns
-        -------
-        null_dist : array of shape [df,]
-            Only returned,if add_to_null_dists is False.
-        """
-
-        if self.verbosity > 0:
-            print("Generating null distribution for df = %d. " % df)
-            if add_to_null_dists:
-                print("For faster computations, run function "
-                      "generate_and_save_nulldists(...) to "
-                      "precompute null distribution and load *.npz file with "
-                      "argument null_dist_filename")
-
-        xyz = np.array([0, 1])
-
-        null_dist = np.zeros(self.null_samples)
-        for i in range(self.null_samples):
-            array = self.cond_ind_test.random_state.random((2, df))
-            null_dist[i] = self.cond_ind_test.get_dependence_measure(
-                array, xyz)
-
-        null_dist.sort()
-        if add_to_null_dists:
-            self.null_dists[df] = null_dist
-        return null_dist
-
-    def _generate_and_save_nulldists(self, sample_sizes, null_dist_filename):
-        """Generates and saves null distribution for pairwise independence
-        tests.
-
-        Generates the null distribution for different sample sizes. Calls
-        generate_nulldist. Null dists are saved to disk as
-        self.null_dist_filename.npz. Also adds the null distributions to
-        self.null_dists.
-
-        Parameters
-        ----------
-        sample_sizes : list
-            List of sample sizes.
-
-        null_dist_filename : str
-            Name to save file containing null distributions.
-        """
-
-        self.null_dist_filename = null_dist_filename
-
-        null_dists = np.zeros((len(sample_sizes), self.null_samples))
-
-        for iT, T in enumerate(sample_sizes):
-            null_dists[iT] = self._generate_nulldist(
-                T, add_to_null_dists=False)
-            self.null_dists[T] = null_dists[iT]
-
-        np.savez("%s" % null_dist_filename,
-                 exact_dist=null_dists,
-                 T=np.array(sample_sizes))
-
-
-    def _get_single_residuals(self, array, target_var,
-                                    return_means=False,
-                                    standardize=True,
-                                    return_likelihood=False,
-                                    training_iter=50,
-                                    lr=0.1):
-        """Returns residuals of Gaussian process regression.
-
-        Performs a GP regression of the variable indexed by target_var on the
-        conditions Z. Here array is assumed to contain X and Y as the first two
-        rows with the remaining rows (if present) containing the conditions Z.
-        Optionally returns the estimated mean and the likelihood.
-
-        Parameters
-        ----------
-        array : array-like
-            data array with X, Y, Z in rows and observations in columns
-
-        target_var : {0, 1}
-            Variable to regress out conditions from.
-
-        standardize : bool, optional (default: True)
-            Whether to standardize the array beforehand.
-
-        return_means : bool, optional (default: False)
-            Whether to return the estimated regression line.
-
-        return_likelihood : bool, optional (default: False)
-            Whether to return the log_marginal_likelihood of the fitted GP.
-
-        training_iter : int, optional (default: 50)
-            Number of training iterations.
-
-        lr : float, optional (default: 0.1)
-            Learning rate (default: 0.1).
-
-        Returns
-        -------
-        resid [, mean, likelihood] : array-like
-            The residual of the regression and optionally the estimated mean
-            and/or the likelihood.
-        """
-
-        dim, T = array.shape
-
-        if dim <= 2:
-            if return_likelihood:
-                return array[target_var, :], -np.inf
-            return array[target_var, :]
-
-        # Implement using PyTorch
-        # Standardize
-        if standardize:
-            array -= array.mean(axis=1).reshape(dim, 1)
-            std = array.std(axis=1)
-            for i in range(dim):
-                if std[i] != 0.:
-                    array[i] /= std[i]
-            if np.any(std == 0.):
-                warnings.warn("Possibly constant array!")
-            # array /= array.std(axis=1).reshape(dim, 1)
-            # if np.isnan(array).any():
-            #     raise ValueError("Nans after standardizing, "
-            #                      "possibly constant array!")
-
-        target_series = array[target_var, :]
-        z = np.fastCopyAndTranspose(array[2:])
-        if np.ndim(z) == 1:
-            z = z.reshape(-1, 1)
-
-        train_x = torch.tensor(z).float()
-        train_y = torch.tensor(target_series).float()
-
-        device_type = 'cuda' if torch.cuda.is_available() else 'cpu'
-        output_device = torch.device(device_type)
-        train_x, train_y = train_x.to(output_device), train_y.to(output_device)
-
-        if device_type == 'cuda':
-            # If GPU is available, use MultiGPU with Kernel Partitioning
-            n_devices = torch.cuda.device_count()
-            class mExactGPModel(gpytorch.models.ExactGP):
-                def __init__(self, train_x, train_y, likelihood, n_devices):
-                    super(mExactGPModel, self).__init__(train_x, train_y, likelihood)
-                    self.mean_module = gpytorch.means.ConstantMean()
-                    base_covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
-
-                    self.covar_module = gpytorch.kernels.MultiDeviceKernel(
-                        base_covar_module, device_ids=range(n_devices),
-                        output_device=output_device
-                    )
-
-                def forward(self, x):
-                    mean_x = self.mean_module(x)
-                    covar_x = self.covar_module(x)
-                    return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
-
-            def mtrain(train_x,
-                      train_y,
-                      n_devices,
-                      output_device,
-                      checkpoint_size,
-                      preconditioner_size,
-                      n_training_iter,
-                      ):
-                likelihood = gpytorch.likelihoods.GaussianLikelihood().to(output_device)
-                model = mExactGPModel(train_x, train_y, likelihood, n_devices).to(output_device)
-                model.train()
-                likelihood.train()
-
-                optimizer = FullBatchLBFGS(model.parameters(), lr=lr)
-                # "Loss" for GPs - the marginal log likelihood
-                mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model)
-
-                with gpytorch.beta_features.checkpoint_kernel(checkpoint_size), \
-                        gpytorch.settings.max_preconditioner_size(preconditioner_size):
-
-                    def closure():
-                        optimizer.zero_grad()
-                        output = model(train_x)
-                        loss = -mll(output, train_y)
-                        return loss
-
-                    loss = closure()
-                    loss.backward()
-
-                    for i in range(n_training_iter):
-                        options = {'closure': closure, 'current_loss': loss, 'max_ls': 10}
-                        loss, _, _, _, _, _, _, fail = optimizer.step(options)
-
-                        '''print('Iter %d/%d - Loss: %.3f   lengthscale: %.3f   noise: %.3f' % (
-                            i + 1, n_training_iter, loss.item(),
-                            model.covar_module.module.base_kernel.lengthscale.item(),
-                            model.likelihood.noise.item()
-                        ))'''
-
-                        if fail:
-                            # print('Convergence reached!')
-                            break
-
-                return model, likelihood, mll
-
-            def find_best_gpu_setting(train_x,
-                                      train_y,
-                                      n_devices,
-                                      output_device,
-                                      preconditioner_size
-                                      ):
-                N = train_x.size(0)
-
-                # Find the optimum partition/checkpoint size by decreasing in powers of 2
-                # Start with no partitioning (size = 0)
-                settings = [0] + [int(n) for n in np.ceil(N / 2 ** np.arange(1, np.floor(np.log2(N))))]
-
-                for checkpoint_size in settings:
-                    print('Number of devices: {} -- Kernel partition size: {}'.format(n_devices, checkpoint_size))
-                    try:
-                        # Try a full forward and backward pass with this setting to check memory usage
-                        _, _, _ = mtrain(train_x, train_y,
-                                     n_devices=n_devices, output_device=output_device,
-                                     checkpoint_size=checkpoint_size,
-                                     preconditioner_size=preconditioner_size, n_training_iter=1)
-
-                        # when successful, break out of for-loop and jump to finally block
-                        break
-                    except RuntimeError as e:
-                        pass
-                    except AttributeError as e:
-                        pass
-                    finally:
-                        # handle CUDA OOM error
-                        gc.collect()
-                        torch.cuda.empty_cache()
-                return checkpoint_size
-
-            # Set a large enough preconditioner size to reduce the number of CG iterations run
-            preconditioner_size = 100
-            if self.checkpoint_size is None:
-                self.checkpoint_size = find_best_gpu_setting(train_x, train_y,
-                                                        n_devices=n_devices,
-                                                        output_device=output_device,
-                                                        preconditioner_size=preconditioner_size)
-
-            model, likelihood, mll = mtrain(train_x, train_y,
-                                      n_devices=n_devices, output_device=output_device,
-                                      checkpoint_size=self.checkpoint_size,
-                                      preconditioner_size=100,
-                                      n_training_iter=training_iter)
-
-            # Get into evaluation (predictive posterior) mode
-            model.eval()
-            likelihood.eval()
-
-            # Make predictions by feeding model through likelihood
-            with torch.no_grad(), gpytorch.settings.fast_pred_var(), gpytorch.beta_features.checkpoint_kernel(1000):
-                mean = model(train_x).loc.detach()
-                loglik = mll(model(train_x), train_y)*T
-
-            resid = (train_y - mean).detach().cpu().numpy()
-            mean = mean.detach().cpu().numpy()
-
-        else:
-            # If only CPU is available, we will use the simplest form of GP model, exact inference
-            class ExactGPModel(gpytorch.models.ExactGP):
-                def __init__(self, train_x, train_y, likelihood):
-                    super(ExactGPModel, self).__init__(
-                        train_x, train_y, likelihood)
-                    self.mean_module = gpytorch.means.ConstantMean()
-
-                    # We only use the RBF kernel here, the WhiteNoiseKernel is deprecated
-                    # and its featured integrated into the Likelihood-Module.
-                    self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
-
-                def forward(self, x):
-                    mean_x = self.mean_module(x)
-                    covar_x = self.covar_module(x)
-                    return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
-
-            # initialize likelihood and model
-            likelihood = gpytorch.likelihoods.GaussianLikelihood()
-            model = ExactGPModel(train_x, train_y, likelihood)
-
-            # Find optimal model hyperparameters
-            model.train()
-            likelihood.train()
-
-            # Use the adam optimizer
-            # Includes GaussianLikelihood parameters
-            optimizer = torch.optim.Adam(model.parameters(), lr=lr)
-
-            # "Loss" for GPs - the marginal log likelihood
-            mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model)
-
-            for i in range(training_iter):
-                # Zero gradients from previous iteration
-                optimizer.zero_grad()
-                # Output from model
-                output = model(train_x)
-
-                # Calc loss and backprop gradients
-                loss = -mll(output, train_y)
-                loss.backward()
-                optimizer.step()
-
-            # Get into evaluation (predictive posterior) mode
-            model.eval()
-            likelihood.eval()
-
-            # Make predictions by feeding model through likelihood
-            with torch.no_grad(), gpytorch.settings.fast_pred_var():
-                mean = model(train_x).loc.detach()
-                loglik = mll(model(train_x), train_y) * T
-
-            resid = (train_y - mean).detach().numpy()
-            mean = mean.detach().numpy()
-
-        if return_means and not return_likelihood:
-            return resid, mean
-        elif return_likelihood and not return_means:
-            return resid, loglik
-        elif return_means and return_likelihood:
-            return resid, mean, loglik
-        return resid
-
-    def _get_model_selection_criterion(self, j, parents, tau_max=0):
-        """Returns log marginal likelihood for GP regression.
-
-        Fits a GP model of the parents to variable j and returns the negative
-        log marginal likelihood as a model selection score. Is used to determine
-        optimal hyperparameters in PCMCI, in particular the pc_alpha value.
-
-        Parameters
-        ----------
-        j : int
-            Index of target variable in data array.
-
-        parents : list
-            List of form [(0, -1), (3, -2), ...] containing parents.
-
-        tau_max : int, optional (default: 0)
-            Maximum time lag. This may be used to make sure that estimates for
-            different lags in X, Z, all have the same sample size.
-
-        Returns:
-        score : float
-            Model score.
-        """
-
-        Y = [(j, 0)]
-        X = [(j, 0)]   # dummy variable here
-        Z = parents
-        array, xyz, _ = \
-            self.cond_ind_test.dataframe.construct_array(
-                X=X, Y=Y, Z=Z,
-                tau_max=tau_max,
-                mask_type=self.cond_ind_test.mask_type,
-                return_cleaned_xyz=False,
-                do_checks=True,
-                verbosity=self.verbosity)
-
-        dim, T = array.shape
-
-        _, logli = self._get_single_residuals(array,
-                                              target_var=1,
-                                              return_likelihood=True)
-
-        score = -logli
-        return score
-
-
-
[docs]class GPDCtorch(CondIndTest): - r"""GPDC conditional independence test based on Gaussian processes and distance correlation. Here with gpytorch implementation. - - GPDC is based on a Gaussian process (GP) regression and a distance - correlation test on the residuals [2]_. GP is estimated with gpytorch. - The distance correlation test is implemented with the dcor package available - from pip. Here the null distribution is not analytically available, but can be - precomputed with the function generate_and_save_nulldists(...) which saves a - \*.npz file containing the null distribution for different sample sizes. - This file can then be supplied as null_dist_filename. - - Notes - ----- - - GPDC is based on a Gaussian process (GP) regression and a distance - correlation test on the residuals. Distance correlation is described in - [2]_. To test :math:`X \perp Y | Z`, first :math:`Z` is regressed out from - :math:`X` and :math:`Y` assuming the model - - .. math:: X & = f_X(Z) + \epsilon_{X} \\ - Y & = f_Y(Z) + \epsilon_{Y} \\ - \epsilon_{X,Y} &\sim \mathcal{N}(0, \sigma^2) - - using GP regression. Here :math:`\sigma^2` and the kernel bandwidth are - optimzed using ``gpytorch``. Then the residuals are transformed to uniform - marginals yielding :math:`r_X,r_Y` and their dependency is tested with - - .. math:: \mathcal{R}\left(r_X, r_Y\right) - - The null distribution of the distance correlation should be pre-computed. - Otherwise it is computed during runtime. - - Parameters - ---------- - null_dist_filename : str, otional (default: None) - Path to file containing null distribution. - - **kwargs : - Arguments passed on to parent class GaussProcRegTorch. - - """ - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - null_dist_filename=None, - **kwargs): - self._measure = 'gp_dc' - self.two_sided = False - self.residual_based = True - # Call the parent constructor - CondIndTest.__init__(self, **kwargs) - # Build the regressor - self.gauss_pr = GaussProcRegTorch(self.sig_samples, - self, - null_dist_filename=null_dist_filename, - verbosity=self.verbosity) - - if self.verbosity > 0: - print("null_dist_filename = %s" % self.gauss_pr.null_dist_filename) - print("") - - def _load_nulldist(self, filename): - r""" - Load a precomputed null distribution from a \*.npz file. This - distribution can be calculated using generate_and_save_nulldists(...). - - Parameters - ---------- - filename : strng - Path to the \*.npz file - - Returns - ------- - null_dists, null_samples : dict, int - The null distirbution as a dictionary of distributions keyed by - sample size, the number of null samples in total. - """ - return self.gauss_pr._load_nulldist(filename) - -
[docs] def generate_nulldist(self, df, add_to_null_dists=True): - """Generates null distribution for pairwise independence tests. - - Generates the null distribution for sample size df. Assumes pairwise - samples transformed to uniform marginals. Uses get_dependence_measure - available in class and generates self.sig_samples random samples. Adds - the null distributions to self.gauss_pr.null_dists. - - Parameters - ---------- - df : int - Degrees of freedom / sample size to generate null distribution for. - - add_to_null_dists : bool, optional (default: True) - Whether to add the null dist to the dictionary of null dists or - just return it. - - Returns - ------- - null_dist : array of shape [df,] - Only returned,if add_to_null_dists is False. - """ - return self.gauss_pr._generate_nulldist(df, add_to_null_dists)
- -
[docs] def generate_and_save_nulldists(self, sample_sizes, null_dist_filename): - """Generates and saves null distribution for pairwise independence - tests. - - Generates the null distribution for different sample sizes. Calls - generate_nulldist. Null dists are saved to disk as - self.null_dist_filename.npz. Also adds the null distributions to - self.gauss_pr.null_dists. - - Parameters - ---------- - sample_sizes : list - List of sample sizes. - - null_dist_filename : str - Name to save file containing null distributions. - """ - self.gauss_pr._generate_and_save_nulldists(sample_sizes, - null_dist_filename)
- - - def _get_single_residuals(self, array, target_var, - return_means=False, - standardize=True, - return_likelihood=False, - training_iter=50, - lr=0.1): - """Returns residuals of Gaussian process regression. - - Performs a GP regression of the variable indexed by target_var on the - conditions Z. Here array is assumed to contain X and Y as the first two - rows with the remaining rows (if present) containing the conditions Z. - Optionally returns the estimated mean and the likelihood. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - target_var : {0, 1} - Variable to regress out conditions from. - - standardize : bool, optional (default: True) - Whether to standardize the array beforehand. - - return_means : bool, optional (default: False) - Whether to return the estimated regression line. - - return_likelihood : bool, optional (default: False) - Whether to return the log_marginal_likelihood of the fitted GP - - training_iter : int, optional (default: 50) - Number of training iterations. - - lr : float, optional (default: 0.1) - Learning rate (default: 0.1). - - Returns - ------- - resid [, mean, likelihood] : array-like - The residual of the regression and optionally the estimated mean - and/or the likelihood. - """ - return self.gauss_pr._get_single_residuals( - array, target_var, - return_means, - standardize, - return_likelihood, - training_iter, - lr) - -
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0): - """Returns log marginal likelihood for GP regression. - - Fits a GP model of the parents to variable j and returns the negative - log marginal likelihood as a model selection score. Is used to determine - optimal hyperparameters in PCMCI, in particular the pc_alpha value. - - Parameters - ---------- - j : int - Index of target variable in data array. - - parents : list - List of form [(0, -1), (3, -2), ...] containing parents. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - Returns: - score : float - Model score. - """ - return self.gauss_pr._get_model_selection_criterion(j, parents, tau_max)
- -
[docs] def get_dependence_measure(self, array, xyz): - """Return GPDC measure. - - Estimated as the distance correlation of the residuals of a GP - regression. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - val : float - GPDC test statistic. - """ - - x_vals = self._get_single_residuals(array, target_var=0) - y_vals = self._get_single_residuals(array, target_var=1) - val = self._get_dcorr(np.array([x_vals, y_vals])) - return val
- - def _get_dcorr(self, array_resid): - """Return distance correlation coefficient. - - The variables are transformed to uniform marginals using the empirical - cumulative distribution function beforehand. Here the null distribution - is not analytically available, but can be precomputed with the function - generate_and_save_nulldists(...) which saves a \*.npz file containing - the null distribution for different sample sizes. This file can then be - supplied as null_dist_filename. - - Parameters - ---------- - array_resid : array-like - data array must be of shape (2, T) - - Returns - ------- - val : float - Distance correlation coefficient. - """ - # Remove ties before applying transformation to uniform marginals - # array_resid = self._remove_ties(array_resid, verbosity=4) - x_vals, y_vals = self._trafo2uniform(array_resid) - val = dcor.distance_correlation(x_vals, y_vals, method='AVL') - return val - -
[docs] def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False): - """Returns p-value for shuffle significance test. - - For residual-based test statistics only the residuals are shuffled. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for unshuffled estimate. - - Returns - ------- - pval : float - p-value - """ - - x_vals = self._get_single_residuals(array, target_var=0) - y_vals = self._get_single_residuals(array, target_var=1) - array_resid = np.array([x_vals, y_vals]) - xyz_resid = np.array([0, 1]) - - null_dist = self._get_shuffle_dist(array_resid, xyz_resid, - self.get_dependence_measure, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - verbosity=self.verbosity) - - pval = (null_dist >= value).mean() - - if return_null_dist: - return pval, null_dist - return pval
- -
[docs] def get_analytic_significance(self, value, T, dim, xyz): - """Returns p-value for the distance correlation coefficient. - - The null distribution for necessary degrees of freedom (df) is loaded. - If not available, the null distribution is generated with the function - generate_nulldist(). It is recommended to generate the nulldists for a - wide range of sample sizes beforehand with the function - generate_and_save_nulldists(...). The distance correlation coefficient - is one-sided. If the degrees of freedom are less than 1, numpy.nan is - returned. - - Parameters - ---------- - value : float - Test statistic value. - - T : int - Sample length - - dim : int - Dimensionality, ie, number of features. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - pval : float or numpy.nan - p-value. - """ - - # GP regression approximately doesn't cost degrees of freedom - df = T - - if df < 1: - pval = np.nan - else: - # idx_near = (np.abs(self.sample_sizes - df)).argmin() - if int(df) not in list(self.gauss_pr.null_dists): - # if np.abs(self.sample_sizes[idx_near] - df) / float(df) > 0.01: - if self.verbosity > 0: - print("Null distribution for GPDC not available " - "for deg. of freed. = %d." % df) - self.generate_nulldist(df) - null_dist_here = self.gauss_pr.null_dists[int(df)] - pval = np.mean(null_dist_here > np.abs(value)) - return pval
- -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/gsquared.html b/docs/_build/html/_modules/tigramite/independence_tests/gsquared.html deleted file mode 100644 index 3b702b6c..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/gsquared.html +++ /dev/null @@ -1,285 +0,0 @@ - - - - - - - - tigramite.independence_tests.gsquared — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.gsquared

-"""Tigramite causal discovery for time series."""
-
-# Author: Sagar Nagaraj Simha, Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-from scipy import special, spatial
-import numpy as np
-
-from scipy.stats import chi2
-from scipy.special import xlogy
-from scipy.stats.contingency import crosstab
-from scipy.stats.contingency import expected_freq
-from scipy.stats.contingency import margins
-from .independence_tests_base import CondIndTest
-
-
[docs]class Gsquared(CondIndTest): - r"""G-squared conditional independence test for categorical data. - - Uses Chi2 as the null distribution and the method from [7]_ to - adjust the degrees of freedom. Valid only asymptotically, recommended are - above 1000-2000 samples (depends on data). For smaller sample sizes use the - CMIsymb class which includes a local permutation test. - - Assumes one-dimensional X, Y. - - This method requires the scipy.stats package. - - Notes - ----- - The general formula is - - .. math:: G(X;Y|Z) &= 2 n \sum p(z) \sum \sum p(x,y|z) \log - \frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)} - - where :math:`n` is the sample size. This is simply :math:`2 n CMI(X;Y|Z)`. - - References - ---------- - - .. [7] Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975) Discrete - Multivariate Analysis: Theory and Practice. MIT Press, Cambridge. - - Parameters - ---------- - n_symbs : int, optional (default: None) - Number of symbols in input data. Should be at least as large as the - maximum array entry + 1. If None, n_symbs is inferred by scipy's crosstab - - **kwargs : - Arguments passed on to parent class CondIndTest. - """ - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - n_symbs=None, - **kwargs): - - # Setup the member variables - self._measure = 'gsquared' - self.n_symbs = n_symbs - self.two_sided = False - self.residual_based = False - self.recycle_residuals = False - CondIndTest.__init__(self, **kwargs) - - if self.verbosity > 0: - print("n_symbs = %s" % self.n_symbs) - print("") - -
[docs] def get_dependence_measure(self, array, xyz): - """Returns Gsquared/G-test test statistic. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - val : float - G-squared estimate. - """ - _, T = array.shape - z_indices = np.where(xyz == 2)[0] - - # Flip 2D-array so that order is ([zn...z0, ym...y0, xk...x0], T). The - # contingency table is built in this order to ease creating subspaces - # of Z=z. - array_flip = np.flipud(array) - - # When n_symbs is given, levels=range(0, n_symbs). If data does not - # have a symbol in levels, then count=0 in the corresponding N-D - # position of contingency table. If levels does not contain a certain - # symbol that is present in the data, then the symbol from data is - # ignored. If None, then levels are inferred from data (default). - - if self.n_symbs is None: - levels = None - else: - levels = np.tile(np.arange(self.n_symbs), (len(xyz), 1)) - # Assuming same list of levels for (z, y, x). - - _, observed = crosstab(*(np.asarray(np.split(array_flip, len(xyz), axis=0)).reshape((-1, T))), levels=levels, - sparse=False) - - observed_shape = observed.shape - - gsquare = 0.0 - dof = 0 - - # The following loop is over the z-subspace to sum over the G-squared - # statistic and count empty entries to adjust the degrees of freedom. - - # TODO: Can be further optimized to operate entirely on observed array - # without 'for', to operate only within slice of z. sparse=True can - # also optimize further. - - # For each permutation of z = (zn ... z1, z0). Example - (0...1,0,1) - for zs in np.ndindex(observed_shape[:len(z_indices)]): - observedYX = observed[zs] - mY, mX = margins(observedYX) - - if(np.sum(mY)!=0): - expectedYX = expected_freq(observedYX) - gsquare += 2 * np.sum(xlogy(observedYX, observedYX) - - xlogy(observedYX, expectedYX)) - - # Check how many rows and columns are all-zeros. i.e. how may - # marginals are zero in expected-frq - nzero_rows = np.sum(~expectedYX.any(axis=1)) - nzero_cols = np.sum(~expectedYX.any(axis=0)) - - # Compute dof. Reduce by 1 dof for every marginal row & column= - # 0 and add to global degrees of freedom [adapted from - # Bishop, 1975]. - cardYX = observedYX.shape - dof += ((cardYX[0] - 1 - nzero_rows) * (cardYX[1] - 1 - nzero_cols)) - - # dof cannot be lesser than 1 - dof = max(dof, 1) - self._temp_dof = dof - return gsquare
- -
[docs] def get_analytic_significance(self, value, T, dim, xyz): - """Return the p_value of test statistic value 'value', according to a - chi-square distribution with 'dof' degrees of freedom.""" - - # Calculate the p_value - p_value = chi2.sf(value, self._temp_dof) - del self._temp_dof - - return p_value
- - -if __name__ == '__main__': - - import tigramite - from tigramite.data_processing import DataFrame - import tigramite.data_processing as pp - import numpy as np - - seed=42 - random_state = np.random.default_rng(seed=seed) - cmi = Gsquared() - - T = 1000 - dimz = 3 - z = random_state.binomial(n=1, p=0.5, size=(T, dimz)).reshape(T, dimz) - x = np.empty(T).reshape(T, 1) - y = np.empty(T).reshape(T, 1) - for t in range(T): - val = z[t, 0].squeeze() - prob = 0.2+val*0.6 - x[t] = random_state.choice([0,1], p=[prob, 1.-prob]) - y[t] = random_state.choice([0,1, 2], p=[prob, (1.-prob)/2., (1.-prob)/2.]) - - print('start') - print(cmi.run_test_raw(x, y, z=None)) - print(cmi.run_test_raw(x, y, z=z)) -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/independence_tests_base.html b/docs/_build/html/_modules/tigramite/independence_tests/independence_tests_base.html deleted file mode 100644 index 7626dc7c..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/independence_tests_base.html +++ /dev/null @@ -1,1187 +0,0 @@ - - - - - - - - tigramite.independence_tests.independence_tests_base — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.independence_tests_base

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-import warnings
-import math
-import abc
-import numpy as np
-import six
-from hashlib import sha1
-
-
-
[docs]@six.add_metaclass(abc.ABCMeta) -class CondIndTest(): - """Base class of conditional independence tests. - - Provides useful general functions for different independence tests such as - shuffle significance testing and bootstrap confidence estimation. Also - handles masked samples. Other test classes can inherit from this class. - - Parameters - ---------- - seed : int, optional(default = 42) - Seed for RandomState (default_rng) - - mask_type : str, optional (default = None) - Must be in {None, 'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence measure - I(X; Y | Z) the samples should be masked. If None, the mask is not used. - Explained in tutorial on masking and missing values. - - significance : str, optional (default: 'analytic') - Type of significance test to use. In this package 'analytic', - 'fixed_thres' and 'shuffle_test' are available. - - fixed_thres : float, optional (default: 0.1) - If significance is 'fixed_thres', this specifies the threshold for the - absolute value of the dependence measure. - - sig_samples : int, optional (default: 500) - Number of samples for shuffle significance test. - - sig_blocklength : int, optional (default: None) - Block length for block-shuffle significance test. If None, the - block length is determined from the decay of the autocovariance as - explained in [1]_. - - confidence : str, optional (default: None) - Specify type of confidence estimation. If False, numpy.nan is returned. - 'bootstrap' can be used with any test, for ParCorr also 'analytic' is - implemented. - - conf_lev : float, optional (default: 0.9) - Two-sided confidence interval. - - conf_samples : int, optional (default: 100) - Number of samples for bootstrap. - - conf_blocklength : int, optional (default: None) - Block length for block-bootstrap. If None, the block length is - determined from the decay of the autocovariance as explained in [1]_. - - recycle_residuals : bool, optional (default: False) - Specifies whether residuals should be stored. This may be faster, but - can cost considerable memory. - - verbosity : int, optional (default: 0) - Level of verbosity. - """ -
[docs] @abc.abstractmethod - def get_dependence_measure(self, array, xyz): - """ - Abstract function that all concrete classes must instantiate. - """ - pass
- - @abc.abstractproperty - def measure(self): - """ - Abstract property to store the type of independence test. - """ - pass - - def __init__(self, - seed=42, - mask_type=None, - significance='analytic', - fixed_thres=0.1, - sig_samples=500, - sig_blocklength=None, - confidence=None, - conf_lev=0.9, - conf_samples=100, - conf_blocklength=None, - recycle_residuals=False, - verbosity=0): - # Set the dataframe to None for now, will be reset during pcmci call - self.dataframe = None - # Set the options - self.random_state = np.random.default_rng(seed) - self.significance = significance - self.sig_samples = sig_samples - self.sig_blocklength = sig_blocklength - self.fixed_thres = fixed_thres - self.verbosity = verbosity - self.cached_ci_results = {} - # If we recycle residuals, then set up a residual cache - self.recycle_residuals = recycle_residuals - if self.recycle_residuals: - self.residuals = {} - # If we use a mask, we cannot recycle residuals - self.set_mask_type(mask_type) - - # Set the confidence type and details - self.confidence = confidence - self.conf_lev = conf_lev - self.conf_samples = conf_samples - self.conf_blocklength = conf_blocklength - - # Print information about the - if self.verbosity > 0: - self.print_info() - -
[docs] def set_mask_type(self, mask_type): - """ - Setter for mask type to ensure that this option does not clash with - recycle_residuals. - - Parameters - ---------- - mask_type : str - Must be in {None, 'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence measure - I(X; Y | Z) the samples should be masked. If None, the mask is not used. - Explained in tutorial on masking and missing values. - """ - # Set the mask type - self.mask_type = mask_type - # Check if this clashes with residual recycling - if self.mask_type is not None: - if self.recycle_residuals is True: - warnings.warn("Using a mask disables recycling residuals.") - self.recycle_residuals = False - # Check the mask type is keyed correctly - self._check_mask_type()
- -
[docs] def print_info(self): - """ - Print information about the conditional independence test parameters - """ - info_str = "\n# Initialize conditional independence test\n\nParameters:" - info_str += "\nindependence test = %s" % self.measure - info_str += "\nsignificance = %s" % self.significance - # Check if we are using a shuffle test - if self.significance == 'shuffle_test': - info_str += "\nsig_samples = %s" % self.sig_samples - info_str += "\nsig_blocklength = %s" % self.sig_blocklength - # Check if we are using a fixed threshold - elif self.significance == 'fixed_thres': - info_str += "\nfixed_thres = %s" % self.fixed_thres - # Check if we have a confidence type - if self.confidence: - info_str += "\nconfidence = %s" % self.confidence - info_str += "\nconf_lev = %s" % self.conf_lev - # Check if this confidence type is boostrapping - if self.confidence == 'bootstrap': - info_str += "\nconf_samples = %s" % self.conf_samples - info_str += "\nconf_blocklength = %s" %self.conf_blocklength - # Check if we use a non-trivial mask type - if self.mask_type is not None: - info_str += "\nmask_type = %s" % self.mask_type - # Check if we are recycling residuals or not - if self.recycle_residuals: - info_str += "\nrecycle_residuals = %s" % self.recycle_residuals - # Print the information string - print(info_str)
- - def _check_mask_type(self): - """ - mask_type : str, optional (default = None) - Must be in {None, 'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence measure - I(X; Y | Z) the samples should be masked. If None, the mask is not used. - Explained in tutorial on masking and missing values. - """ - if self.mask_type is not None: - mask_set = set(self.mask_type) - set(['x', 'y', 'z']) - if mask_set: - err_msg = "mask_type = %s," % self.mask_type + " but must be" +\ - " list containing 'x','y','z', or any combination" - raise ValueError(err_msg) - - -
[docs] def get_analytic_confidence(self, value, df, conf_lev): - """ - Base class assumption that this is not implemented. Concrete classes - should override when possible. - """ - raise NotImplementedError("Analytic confidence not"+\ - " implemented for %s" % self.measure)
- -
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0): - """ - Base class assumption that this is not implemented. Concrete classes - should override when possible. - """ - raise NotImplementedError("Model selection not"+\ - " implemented for %s" % self.measure)
- -
[docs] def get_analytic_significance(self, value, T, dim): - """ - Base class assumption that this is not implemented. Concrete classes - should override when possible. - """ - raise NotImplementedError("Analytic significance not"+\ - " implemented for %s" % self.measure)
- -
[docs] def get_shuffle_significance(self, array, xyz, value, - type_mask=None, - return_null_dist=False): - """ - Base class assumption that this is not implemented. Concrete classes - should override when possible. - """ - raise NotImplementedError("Shuffle significance not"+\ - " implemented for %s" % self.measure)
- - def _get_single_residuals(self, array, target_var, - standardize=True, return_means=False): - """ - Base class assumption that this is not implemented. Concrete classes - should override when possible. - """ - raise NotImplementedError("Residual calculation not"+\ - " implemented for %s" % self.measure) - -
[docs] def set_dataframe(self, dataframe): - """Initialize and check the dataframe. - - Parameters - ---------- - dataframe : data object - Set tigramite dataframe object. It must have the attributes - dataframe.values yielding a numpy array of shape (observations T, - variables N) and optionally a mask of the same shape and a missing - values flag. - - """ - self.dataframe = dataframe - if self.mask_type is not None: - if dataframe.mask is None: - raise ValueError("mask_type is not None, but no mask in dataframe.") - dataframe._check_mask(dataframe.mask)
- - def _keyfy(self, x, z): - """Helper function to make lists unique.""" - return (tuple(set(x)), tuple(set(z))) - - def _get_array(self, X, Y, Z, tau_max=0, cut_off='2xtau_max', - verbosity=0): - """Convencience wrapper around construct_array.""" - - if self.measure in ['par_corr', 'par_corr_wls', 'robust_par_corr', 'regressionCI', 'gsquared', 'gp_dc']: - if len(X) > 1 or len(Y) > 1: - raise ValueError("X and Y for %s must be univariate." % - self.measure) - # Call the wrapped function - return self.dataframe.construct_array(X=X, Y=Y, Z=Z, - tau_max=tau_max, - mask_type=self.mask_type, - return_cleaned_xyz=True, - do_checks=True, - remove_overlaps=True, - cut_off=cut_off, - verbosity=verbosity) - - def _get_array_hash(self, array, xyz, XYZ): - """Helper function to get hash of array. - - For a CI test X _|_ Y | Z the order of variables within X or Y or Z - does not matter and also the order X and Y can be swapped. - Hence, to compare hashes of the whole array, we order accordingly - to create a unique, order-independent hash. - - Parameters - ---------- - array : Data array of shape (dim, T) - Data array. - xyz : array - Identifier array of shape (dim,) identifying which row in array - corresponds to X, Y, and Z - XYZ : list of tuples - - Returns - ------- - combined_hash : str - Hash that identifies uniquely an array of XYZ - """ - - X, Y, Z = XYZ - - # First check whether CI result was already computed - # by checking whether hash of (xyz, array) already exists - # Individually sort X, Y, Z since for a CI test it does not matter - # how they are aranged - x_orderd = sorted(range(len(X)), key=X.__getitem__) - arr_x = array[xyz==0][x_orderd] - x_hash = sha1(np.ascontiguousarray(arr_x)).hexdigest() - - y_orderd = sorted(range(len(Y)), key=Y.__getitem__) - arr_y = array[xyz==1][y_orderd] - y_hash = sha1(np.ascontiguousarray(arr_y)).hexdigest() - - z_orderd = sorted(range(len(Z)), key=Z.__getitem__) - arr_z = array[xyz==2][z_orderd] - z_hash = sha1(np.ascontiguousarray(arr_z)).hexdigest() - - sorted_xy = sorted([x_hash, y_hash]) - combined_hash = (sorted_xy[0], sorted_xy[1], z_hash) - return combined_hash - - -
[docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): - """Perform conditional independence test. - - Calls the dependence measure and signficicance test functions. The child - classes must specify a function get_dependence_measure and either or - both functions get_analytic_significance and get_shuffle_significance. - If recycle_residuals is True, also _get_single_residuals must be - available. - - Parameters - ---------- - X, Y, Z : list of tuples - X,Y,Z are of the form [(var, -tau)], where var specifies the - variable index and tau the time lag. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} - How many samples to cutoff at the beginning. The default is - '2xtau_max', which guarantees that MCI tests are all conducted on - the same samples. For modeling, 'max_lag_or_tau_max' can be used, - which uses the maximum of tau_max and the conditions, which is - useful to compare multiple models on the same sample. Last, - 'max_lag' uses as much samples as possible. - - Returns - ------- - val, pval : Tuple of floats - The test statistic value and the p-value. - """ - - # Get the array to test on - array, xyz, XYZ, type_mask = self._get_array(X, Y, Z, tau_max, cut_off, self.verbosity) - X, Y, Z = XYZ - - # Record the dimensions - dim, T = array.shape - # Ensure it is a valid array - if np.any(np.isnan(array)): - raise ValueError("nans in the array!") - - combined_hash = self._get_array_hash(array, xyz, XYZ) - - if combined_hash in self.cached_ci_results.keys(): - cached = True - val, pval = self.cached_ci_results[combined_hash] - else: - cached = False - # Get the dependence measure, reycling residuals if need be - val = self._get_dependence_measure_recycle(X, Y, Z, xyz, array, type_mask) - # Get the p-value - pval = self.get_significance(val, array, xyz, T, dim) - self.cached_ci_results[combined_hash] = (val, pval) - - if self.verbosity > 1: - self._print_cond_ind_results(val=val, pval=pval, cached=cached, - conf=None) - # Return the value and the pvalue - return val, pval
- -
[docs] def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None): - """Perform conditional independence test directly on input arrays x, y, z. - - Calls the dependence measure and signficicance test functions. The child - classes must specify a function get_dependence_measure and either or - both functions get_analytic_significance and get_shuffle_significance. - - Parameters - ---------- - x, y, z : arrays - x,y,z are of the form (samples, dimension). - - x_type, y_type, z_type : array-like - data arrays of same shape as x, y and z respectively, which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val, pval : Tuple of floats - - The test statistic value and the p-value. - """ - - if np.ndim(x) != 2 or np.ndim(y) != 2: - raise ValueError("x,y must be arrays of shape (samples, dimension)" - " where dimension can be 1.") - - if z is not None and np.ndim(z) != 2: - raise ValueError("z must be array of shape (samples, dimension)" - " where dimension can be 1.") - - if x_type is not None or y_type is not None or z_type is not None: - has_type_mask = True - else: - has_type_mask = False - - if x_type is None and has_type_mask: - x_type = np.zeros(x.shape, dtype='int') - - if y_type is None and has_type_mask: - y_type = np.zeros(y.shape, dtype='int') - - if z is None: - # Get the array to test on - array = np.vstack((x.T, y.T)) - if has_type_mask: - type_mask = np.vstack((x_type.T, y_type.T)) - - # xyz is the dimension indicator - xyz = np.array([0 for i in range(x.shape[1])] + - [1 for i in range(y.shape[1])]) - - else: - # Get the array to test on - array = np.vstack((x.T, y.T, z.T)) - if z_type is None and has_type_mask: - z_type = np.zeros(z.shape, dtype='int') - - if has_type_mask: - type_mask = np.vstack((x_type.T, y_type.T, z_type.T)) - # xyz is the dimension indicator - xyz = np.array([0 for i in range(x.shape[1])] + - [1 for i in range(y.shape[1])] + - [2 for i in range(z.shape[1])]) - - # Record the dimensions - dim, T = array.shape - # Ensure it is a valid array - if np.isnan(array).sum() != 0: - raise ValueError("nans in the array!") - # Get the dependence measure - if has_type_mask: - val = self.get_dependence_measure(array, xyz, type_mask=type_mask) - else: - val = self.get_dependence_measure(array, xyz) - - # Get the p-value - if has_type_mask: - pval = self.get_significance(val=val, array=array, xyz=xyz, - T=T, dim=dim, type_mask=type_mask) - else: - pval = self.get_significance(val=val, array=array, xyz=xyz, - T=T, dim=dim) - # Return the value and the pvalue - return val, pval
- - def _get_dependence_measure_recycle(self, X, Y, Z, xyz, array, type_mask=None): - """Get the dependence_measure, optionally recycling residuals - - If self.recycle_residuals is True, also _get_single_residuals must be - available. - - Parameters - ---------- - X, Y, Z : list of tuples - X,Y,Z are of the form [(var, -tau)], where var specifies the - variable index and tau the time lag. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - array : array - Data array of shape (dim, T) - - type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - - Return - ------ - val : float - Test statistic - """ - # Check if we are recycling residuals - if self.recycle_residuals: - # Get or calculate the cached residuals - x_resid = self._get_cached_residuals(X, Z, array, 0) - y_resid = self._get_cached_residuals(Y, Z, array, 1) - # Make a new residual array - array_resid = np.array([x_resid, y_resid]) - xyz_resid = np.array([0, 1]) - # Return the dependence measure - # data type can only be continuous in this case - return self.get_dependence_measure(array_resid, xyz_resid) - - # If not, return the dependence measure on the array and xyz - if type_mask is not None: - return self.get_dependence_measure(array, xyz, - type_mask=type_mask) - else: - return self.get_dependence_measure(array, xyz) - - def _get_cached_residuals(self, x_nodes, z_nodes, array, target_var): - """ - Retrieve or calculate the cached residuals for the given node sets. - - Parameters - ---------- - x_nodes : list of tuples - List of nodes, X or Y normally. Used to key the residual cache - during lookup - - z_nodes : list of tuples - List of nodes, Z normally - - target_var : int - Key to differentiate X from Y. - x_nodes == X => 0, x_nodes == Y => 1 - - array : array - Data array of shape (dim, T) - - Returns - ------- - x_resid : array - Residuals calculated by _get_single_residual - """ - # Check if we have calculated these residuals - if self._keyfy(x_nodes, z_nodes) in list(self.residuals): - x_resid = self.residuals[self._keyfy(x_nodes, z_nodes)] - # If not, calculate the residuals - else: - x_resid = self._get_single_residuals(array, target_var=target_var) - if z_nodes: - self.residuals[self._keyfy(x_nodes, z_nodes)] = x_resid - # Return these residuals - return x_resid - -
[docs] def get_significance(self, val, array, xyz, T, dim, - type_mask=None, - sig_override=None): - """ - Returns the p-value from whichever significance function is specified - for this test. If an override is used, then it will call a different - function then specified by self.significance - - Parameters - ---------- - val : float - Test statistic value. - - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - T : int - Sample length - - dim : int - Dimensionality, ie, number of features. - - type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - - sig_override : string - Must be in 'analytic', 'shuffle_test', 'fixed_thres' - - Returns - ------- - pval : float or numpy.nan - P-value. - """ - # Defaults to the self.significance member value - use_sig = self.significance - if sig_override is not None: - use_sig = sig_override - # Check if we are using the analytic significance - if use_sig == 'analytic': - pval = self.get_analytic_significance(value=val, T=T, dim=dim, xyz=xyz) - # Check if we are using the shuffle significance - elif use_sig == 'shuffle_test': - pval = self.get_shuffle_significance(array=array, - xyz=xyz, - value=val) - # Check if we are using the fixed_thres significance - elif use_sig == 'fixed_thres': - pval = self.get_fixed_thres_significance( - value=val, - fixed_thres=self.fixed_thres) - else: - raise ValueError("%s not known." % self.significance) - # Return the calculated value - return pval
- -
[docs] def get_measure(self, X, Y, Z=None, tau_max=0, - type_mask=None): - """Estimate dependence measure. - - Calls the dependence measure function. The child classes must specify - a function get_dependence_measure. - - Parameters - ---------- - X, Y [, Z] : list of tuples - X,Y,Z are of the form [(var, -tau)], where var specifies the - variable index and tau the time lag. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - - - Returns - ------- - val : float - The test statistic value. - - """ - # Make the array - array, xyz, (X, Y, Z), _ = self._get_array(X, Y, Z, tau_max) - D, T = array.shape - # Check it is valid - if np.isnan(array).sum() != 0: - raise ValueError("nans in the array!") - # Return the dependence measure - return self._get_dependence_measure_recycle(X, Y, Z, xyz, array)
- -
[docs] def get_confidence(self, X, Y, Z=None, tau_max=0, - type_mask=None): - """Perform confidence interval estimation. - - Calls the dependence measure and confidence test functions. The child - classes can specify a function get_dependence_measure and - get_analytic_confidence or get_bootstrap_confidence. If confidence is - False, (numpy.nan, numpy.nan) is returned. - - Parameters - ---------- - X, Y, Z : list of tuples - X,Y,Z are of the form [(var, -tau)], where var specifies the - variable index and tau the time lag. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - - Returns - ------- - (conf_lower, conf_upper) : Tuple of floats - Upper and lower confidence bound of confidence interval. - """ - # Check if a confidence type has been defined - if self.confidence: - # Ensure the confidence level given makes sense - if self.conf_lev < .5 or self.conf_lev >= 1.: - raise ValueError("conf_lev = %.2f, " % self.conf_lev + - "but must be between 0.5 and 1") - half_conf = self.conf_samples * (1. - self.conf_lev)/2. - if self.confidence == 'bootstrap' and half_conf < 1.: - raise ValueError("conf_samples*(1.-conf_lev)/2 is %.2f" - % half_conf + ", must be >> 1") - - if self.confidence: - # Make and check the array - array, xyz, _, type_mask = self._get_array(X, Y, Z, tau_max, verbosity=0) - dim, T = array.shape - if np.isnan(array).sum() != 0: - raise ValueError("nans in the array!") - - # Check if we are using analytic confidence or bootstrapping it - if self.confidence == 'analytic': - val = self.get_dependence_measure(array, xyz) - (conf_lower, conf_upper) = \ - self.get_analytic_confidence(df=T-dim, - value=val, - conf_lev=self.conf_lev) - elif self.confidence == 'bootstrap': - # Overwrite analytic values - (conf_lower, conf_upper) = \ - self.get_bootstrap_confidence( - array, xyz, - conf_samples=self.conf_samples, - conf_blocklength=self.conf_blocklength, - conf_lev=self.conf_lev, verbosity=self.verbosity) - else: - raise ValueError("%s confidence estimation not implemented" - % self.confidence) - else: - return None - - # Cache the confidence interval - self.conf = (conf_lower, conf_upper) - # Return the confidence interval - return (conf_lower, conf_upper)
- - def _print_cond_ind_results(self, val, pval=None, cached=None, conf=None): - """Print results from conditional independence test. - - Parameters - ---------- - val : float - Test stastistic value. - - pval : float, optional (default: None) - p-value - - conf : tuple of floats, optional (default: None) - Confidence bounds. - """ - printstr = " val = % .3f" % (val) - if pval is not None: - printstr += " | pval = %.5f" % (pval) - if conf is not None: - printstr += " | conf bounds = (%.3f, %.3f)" % ( - conf[0], conf[1]) - if cached is not None: - printstr += " %s" % ({0:"", 1:"[cached]"}[cached]) - - print(printstr) - -
[docs] def get_bootstrap_confidence(self, array, xyz, dependence_measure=None, - conf_samples=100, conf_blocklength=None, - conf_lev=.95, - type_mask=None, - verbosity=0): - """Perform bootstrap confidence interval estimation. - - With conf_blocklength > 1 or None a block-bootstrap is performed. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - dependence_measure : function (default = self.get_dependence_measure) - Dependence measure function must be of form - dependence_measure(array, xyz) and return a numeric value - - conf_lev : float, optional (default: 0.9) - Two-sided confidence interval. - - conf_samples : int, optional (default: 100) - Number of samples for bootstrap. - - conf_blocklength : int, optional (default: None) - Block length for block-bootstrap. If None, the block length is - determined from the decay of the autocovariance as explained in - [1]_. - - type_mask : array-like - Binary data array of same shape as array which describes whether - individual samples in a variable (or all samples) are continuous - or discrete: 0s for continuous variables and 1s for discrete variables. - - verbosity : int, optional (default: 0) - Level of verbosity. - - Returns - ------- - (conf_lower, conf_upper) : Tuple of floats - Upper and lower confidence bound of confidence interval. - """ - - # Check if a dependence measure if provided or if to use default - if not dependence_measure: - dependence_measure = self.get_dependence_measure - - # confidence interval is two-sided - c_int = 1. - (1. - conf_lev)/2. - dim, T = array.shape - - # If not block length is given, determine the optimal block length. - # This has a maximum of 10% of the time sample length - if conf_blocklength is None: - conf_blocklength = \ - self._get_block_length(array, xyz, mode='confidence') - # Determine the number of blocks total, rounding up for non-integer - # amounts - n_blks = int(math.ceil(float(T)/conf_blocklength)) - - # Print some information - if verbosity > 2: - print(" block_bootstrap confidence intervals" - " with block-length = %d ..." % conf_blocklength) - - # Generate the block bootstrapped distribution - bootdist = np.zeros(conf_samples) - for smpl in range(conf_samples): - # Get the starting indices for the blocks - blk_strt = self.random_state.integers(0, T - conf_blocklength + 1, n_blks) - # Get the empty array of block resampled values - array_bootstrap = \ - np.zeros((dim, n_blks*conf_blocklength), dtype=array.dtype) - # Fill the array of block resamples - for i in range(conf_blocklength): - array_bootstrap[:, i::conf_blocklength] = array[:, blk_strt + i] - # Cut to proper length - array_bootstrap = array_bootstrap[:, :T] - - bootdist[smpl] = dependence_measure(array_bootstrap, xyz) - - # Sort and get quantile - bootdist.sort() - conf_lower = bootdist[int((1. - c_int) * conf_samples)] - conf_upper = bootdist[int(c_int * conf_samples)] - # Return the confidance limits as a tuple - return (conf_lower, conf_upper)
- - def _get_acf(self, series, max_lag=None): - """Returns autocorrelation function. - - Parameters - ---------- - series : 1D-array - data series to compute autocorrelation from - - max_lag : int, optional (default: None) - maximum lag for autocorrelation function. If None is passed, 10% of - the data series length are used. - - Returns - ------- - autocorr : array of shape (max_lag + 1,) - Autocorrelation function. - """ - # Set the default max lag - if max_lag is None: - max_lag = int(max(5, 0.1*len(series))) - # Initialize the result - autocorr = np.ones(max_lag + 1) - # Iterate over possible lags - for lag in range(1, max_lag + 1): - # Set the values - y1_vals = series[lag:] - y2_vals = series[:len(series) - lag] - # Calculate the autocorrelation - autocorr[lag] = np.corrcoef(y1_vals, y2_vals, ddof=0)[0, 1] - return autocorr - - def _get_block_length(self, array, xyz, mode): - """Returns optimal block length for significance and confidence tests. - - Determine block length using approach in Mader (2013) [Eq. (6)] which - improves the method of Peifer (2005) with non-overlapping blocks In - case of multidimensional X, the max is used. Further details in [1]_. - Two modes are available. For mode='significance', only the indices - corresponding to X are shuffled in array. For mode='confidence' all - variables are jointly shuffled. If the autocorrelation curve fit fails, - a block length of 5% of T is used. The block length is limited to a - maximum of 10% of T. - - Mader et al., Journal of Neuroscience Methods, - Volume 219, Issue 2, 15 October 2013, Pages 285-291 - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - mode : str - Which mode to use. - - Returns - ------- - block_len : int - Optimal block length. - """ - # Inject a dependency on siganal, optimize - from scipy import signal, optimize - # Get the shape of the array - dim, T = array.shape - # Initiailize the indices - indices = range(dim) - if mode == 'significance': - indices = np.where(xyz == 0)[0] - - # Maximum lag for autocov estimation - max_lag = int(0.1*T) - # Define the function to optimize against - def func(x_vals, a_const, decay): - return a_const * decay**x_vals - - # Calculate the block length - block_len = 1 - for i in indices: - # Get decay rate of envelope of autocorrelation functions - # via hilbert trafo - autocov = self._get_acf(series=array[i], max_lag=max_lag) - autocov[0] = 1. - hilbert = np.abs(signal.hilbert(autocov)) - # Try to fit the curve - try: - popt, _ = optimize.curve_fit( - f=func, - xdata=np.arange(0, max_lag+1), - ydata=hilbert, - ) - phi = popt[1] - # Formula of Peifer (2005) assuming non-overlapping blocks - l_opt = (4. * T * (phi / (1. - phi) + phi**2 / (1. - phi)**2)**2 - / (1. + 2. * phi / (1. - phi))**2)**(1. / 3.) - block_len = max(block_len, int(l_opt)) - except RuntimeError: - print("Error - curve_fit failed in block_shuffle, using" - " block_len = %d" % (int(.05 * T))) - # block_len = max(int(.05 * T), block_len) - # Limit block length to a maximum of 10% of T - block_len = min(block_len, int(0.1 * T)) - return block_len - - def _get_shuffle_dist(self, array, xyz, dependence_measure, - sig_samples, sig_blocklength=None, - verbosity=0): - """Returns shuffle distribution of test statistic. - - The rows in array corresponding to the X-variable are shuffled using - a block-shuffle approach. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - dependence_measure : object - Dependence measure function must be of form - dependence_measure(array, xyz) and return a numeric value - - sig_samples : int, optional (default: 100) - Number of samples for shuffle significance test. - - sig_blocklength : int, optional (default: None) - Block length for block-shuffle significance test. If None, the - block length is determined from the decay of the autocovariance as - explained in [1]_. - - verbosity : int, optional (default: 0) - Level of verbosity. - - Returns - ------- - null_dist : array of shape (sig_samples,) - Contains the sorted test statistic values estimated from the - shuffled arrays. - """ - - dim, T = array.shape - - x_indices = np.where(xyz == 0)[0] - dim_x = len(x_indices) - - if sig_blocklength is None: - sig_blocklength = self._get_block_length(array, xyz, - mode='significance') - - n_blks = int(math.floor(float(T)/sig_blocklength)) - # print 'n_blks ', n_blks - if verbosity > 2: - print(" Significance test with block-length = %d " - "..." % (sig_blocklength)) - - array_shuffled = np.copy(array) - block_starts = np.arange(0, T - sig_blocklength + 1, sig_blocklength) - - # Dividing the array up into n_blks of length sig_blocklength may - # leave a tail. This tail is later randomly inserted - tail = array[x_indices, n_blks*sig_blocklength:] - - null_dist = np.zeros(sig_samples) - for sam in range(sig_samples): - - blk_starts = self.random_state.permutation(block_starts)[:n_blks] - - x_shuffled = np.zeros((dim_x, n_blks*sig_blocklength), - dtype=array.dtype) - - for i, index in enumerate(x_indices): - for blk in range(sig_blocklength): - x_shuffled[i, blk::sig_blocklength] = \ - array[index, blk_starts + blk] - - # Insert tail randomly somewhere - if tail.shape[1] > 0: - insert_tail_at = self.random_state.choice(block_starts) - x_shuffled = np.insert(x_shuffled, insert_tail_at, - tail.T, axis=1) - - for i, index in enumerate(x_indices): - array_shuffled[index] = x_shuffled[i] - - null_dist[sam] = dependence_measure(array=array_shuffled, - xyz=xyz) - - return null_dist - -
[docs] def get_fixed_thres_significance(self, value, fixed_thres): - """Returns signficance for thresholding test. - - Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 else. - - Parameters - ---------- - value : number - Value of test statistic for unshuffled estimate. - - fixed_thres : number - Fixed threshold, is made positive. - - Returns - ------- - pval : bool - Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 - else. - - """ - if np.abs(value) < np.abs(fixed_thres): - pval = 1. - else: - pval = 0. - - return pval
- - def _trafo2uniform(self, x): - """Transforms input array to uniform marginals. - - Assumes x.shape = (dim, T) - - Parameters - ---------- - x : array-like - Input array. - - Returns - ------- - u : array-like - array with uniform marginals. - """ - - def trafo(xi): - xisorted = np.sort(xi) - yi = np.linspace(1. / len(xi), 1, len(xi)) - return np.interp(xi, xisorted, yi) - - if np.ndim(x) == 1: - u = trafo(x) - else: - u = np.empty(x.shape) - for i in range(x.shape[0]): - u[i] = trafo(x[i]) - return u
-
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/oracle_conditional_independence.html b/docs/_build/html/_modules/tigramite/independence_tests/oracle_conditional_independence.html deleted file mode 100644 index 703a759f..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/oracle_conditional_independence.html +++ /dev/null @@ -1,1662 +0,0 @@ - - - - - - - - tigramite.independence_tests.oracle_conditional_independence — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.oracle_conditional_independence

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-import numpy as np
-
-from collections import defaultdict, OrderedDict
-from itertools import combinations, permutations
-
-
-
[docs]class OracleCI: - r"""Oracle of conditional independence test X _|_ Y | Z given a graph. - - Class around link_coeff causal ground truth. X _|_ Y | Z is based on - assessing whether X and Y are d-separated given Z in the graph. - - Class can be used just like a Tigramite conditional independence class - (e.g., ParCorr). The main use is for unit testing of PCMCI methods. - - Parameters - ---------- - graph : array of shape [N, N, tau_max+1] - Causal graph. - links : dict - Dictionary of form {0:[(0, -1), ...], 1:[...], ...}. - Alternatively can also digest {0: [((0, -1), coeff, func)], ...}. - observed_vars : None or list, optional (default: None) - Subset of keys in links definining which variables are - observed. If None, then all variables are observed. - selection_vars : None or list, optional (default: None) - Subset of keys in links definining which variables are - selected (= always conditioned on at every time lag). - If None, then no variables are selected. - verbosity : int, optional (default: 0) - Level of verbosity. - """ - - # documentation - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - links=None, - observed_vars=None, - selection_vars=None, - graph=None, - graph_is_mag=False, - tau_max=None, - verbosity=0): - - self.tau_max = tau_max - self.graph_is_mag = graph_is_mag - - if links is None: - if graph is None: - raise ValueError("Either links or graph must be specified!") - else: - # Get canonical DAG from graph, potentially interpreted as MAG - # self.tau_max = graph.shape[2] - (links, - observed_vars, - selection_vars) = self.get_links_from_graph(graph) - # # TODO make checks and tau_max? - # self.graph = graph - - - self.verbosity = verbosity - self._measure = 'oracle_ci' - self.confidence = None - self.links = links - self.N = len(links) - # self.tau_max = self._get_minmax_lag(self.links) - - # Initialize already computed dsepsets of X, Y, Z - self.dsepsets = {} - - # Initialize observed vars - self.observed_vars = observed_vars - if self.observed_vars is None: - self.observed_vars = range(self.N) - else: - if not set(self.observed_vars).issubset(set(range(self.N))): - raise ValueError("observed_vars must be subset of range(N).") - if self.observed_vars != sorted(self.observed_vars): - raise ValueError("observed_vars must ordered.") - if len(self.observed_vars) != len(set(self.observed_vars)): - raise ValueError("observed_vars must not contain duplicates.") - - self.selection_vars = selection_vars - - if self.selection_vars is not None: - if not set(self.selection_vars).issubset(set(range(self.N))): - raise ValueError("selection_vars must be subset of range(N).") - if self.selection_vars != sorted(self.selection_vars): - raise ValueError("selection_vars must ordered.") - if len(self.selection_vars) != len(set(self.selection_vars)): - raise ValueError("selection_vars must not contain duplicates.") - else: - self.selection_vars = [] - - # ToDO: maybe allow to use user-tau_max, otherwise deduced from links - self.graph = self.get_graph_from_links(tau_max=tau_max) - -
[docs] def set_dataframe(self, dataframe): - """Dummy function.""" - pass
- - def _check_XYZ(self, X, Y, Z): - """Checks variables X, Y, Z. - - Parameters - ---------- - X, Y, Z : list of tuples - For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], - where var specifies the variable index. X typically is of the form - [(varX, -tau)] with tau denoting the time lag and Z can be - multivariate [(var1, -lag), (var2, -lag), ...] . - - Returns - ------- - X, Y, Z : tuple - Cleaned X, Y, Z. - """ - # Get the length in time and the number of nodes - N = self.N - - # Remove duplicates in X, Y, Z - X = list(OrderedDict.fromkeys(X)) - Y = list(OrderedDict.fromkeys(Y)) - Z = list(OrderedDict.fromkeys(Z)) - - # If a node in Z occurs already in X or Y, remove it from Z - Z = [node for node in Z if (node not in X) and (node not in Y)] - - # Check that all lags are non-positive and indices are in [0,N-1] - XYZ = X + Y + Z - dim = len(XYZ) - # Ensure that XYZ makes sense - if np.array(XYZ).shape != (dim, 2): - raise ValueError("X, Y, Z must be lists of tuples in format" - " [(var, -lag),...], eg., [(2, -2), (1, 0), ...]") - if np.any(np.array(XYZ)[:, 1] > 0): - raise ValueError("nodes are %s, " % str(XYZ) + - "but all lags must be non-positive") - if (np.any(np.array(XYZ)[:, 0] >= N) - or np.any(np.array(XYZ)[:, 0] < 0)): - raise ValueError("var indices %s," % str(np.array(XYZ)[:, 0]) + - " but must be in [0, %d]" % (N - 1)) - if np.all(np.array(Y)[:, 1] != 0): - raise ValueError("Y-nodes are %s, " % str(Y) + - "but one of the Y-nodes must have zero lag") - - return (X, Y, Z) - - def _get_lagged_parents(self, var_lag, exclude_contemp=False, - only_non_causal_paths=False, X=None, causal_children=None): - """Helper function to yield lagged parents for var_lag from - self.links_coeffs. - - Parameters - ---------- - var_lag : tuple - Tuple of variable and lag which is assumed <= 0. - exclude_contemp : bool - Whether contemporaneous links should be exluded. - - Yields - ------ - Next lagged parent. - """ - - var, lag = var_lag - - for link_props in self.links[var]: - if len(link_props) == 3: - i, tau = link_props[0] - coeff = link_props[1] - else: - i, tau = link_props - coeff = 1. - if coeff != 0.: - if not (exclude_contemp and lag == 0): - if only_non_causal_paths: - if not ((i, lag + tau) in X and var_lag in causal_children): - yield (i, lag + tau) - else: - yield (i, lag + tau) - - def _get_children(self): - """Helper function to get children from links. - - Note that for children the lag is positive. - - Returns - ------- - children : dict - Dictionary of form {0:[(0, 1), (3, 0), ...], 1:[], ...}. - """ - - N = len(self.links) - children = dict([(j, []) for j in range(N)]) - - for j in range(N): - for link_props in self.links[j]: - if len(link_props) == 3: - i, tau = link_props[0] - coeff = link_props[1] - else: - i, tau = link_props - coeff = 1. - if coeff != 0.: - children[i].append((j, abs(tau))) - - return children - - def _get_lagged_children(self, var_lag, children, exclude_contemp=False, - only_non_causal_paths=False, X=None, causal_children=None): - """Helper function to yield lagged children for var_lag from children. - - Parameters - ---------- - var_lag : tuple - Tuple of variable and lag which is assumed <= 0. - children : dict - Dictionary of form {0:[(0, 1), (3, 0), ...], 1:[], ...}. - exclude_contemp : bool - Whether contemporaneous links should be exluded. - - Yields - ------ - Next lagged child. - """ - - var, lag = var_lag - # lagged_parents = [] - - for child in children[var]: - k, tau = child - if not (exclude_contemp and tau == 0): - # lagged_parents.append((i, lag + tau)) - if only_non_causal_paths: - if not (var_lag in X and (k, lag + tau) in causal_children): - yield (k, lag + tau) - else: - yield (k, lag + tau) - - def _get_non_blocked_ancestors(self, Y, conds=None, mode='non_repeating', - max_lag=None): - """Helper function to return the non-blocked ancestors of variables Y. - - Returns a dictionary of ancestors for every y in Y. y is a tuple ( - var, lag) where lag <= 0. All ancestors with directed paths towards y - that are not blocked by conditions in conds are included. In mode - 'non_repeating' an ancestor X^i_{t-\tau_i} with link X^i_{t-\tau_i} - --> X^j_{ t-\tau_j} is only included if X^i_{t'-\tau_i} --> X^j_{ - t'-\tau_j} is not already part of the ancestors. The most lagged - ancestor for every variable X^i defines the maximum ancestral time - lag, which is also returned. In mode 'max_lag' ancestors are included - up to the maximum time lag max_lag. - - It's main use is to return the maximum ancestral time lag max_lag of - y in Y for every variable in self.links_coeffs. - - Parameters - ---------- - Y : list of tuples - Of the form [(var, -tau)], where var specifies the variable - index and tau the time lag. - conds : list of tuples - Of the form [(var, -tau)], where var specifies the variable - index and tau the time lag. - mode : {'non_repeating', 'max_lag'} - Whether repeating links should be excluded or ancestors should be - followed up to max_lag. - max_lag : int - Maximum time lag to include ancestors. - - Returns - ------- - ancestors : dict - Includes ancestors for every y in Y. - max_lag : int - Maximum time lag to include ancestors. - """ - - def _repeating(link, seen_links): - """Returns True if a link or its time-shifted version is already - included in seen_links.""" - i, taui = link[0] - j, tauj = link[1] - - for seen_link in seen_links: - seen_i, seen_taui = seen_link[0] - seen_j, seen_tauj = seen_link[1] - - if (i == seen_i and j == seen_j - and abs(tauj-taui) == abs(seen_tauj-seen_taui)): - return True - - return False - - if conds is None: - conds = [] - - conds = [z for z in conds if z not in Y] - - N = len(self.links) - - # Initialize max. ancestral time lag for every N - if mode == 'non_repeating': - max_lag = 0 - else: - if max_lag is None: - raise ValueError("max_lag must be set in mode = 'max_lag'") - - if self.selection_vars is not None: - for selection_var in self.selection_vars: - # print (selection_var, conds) - # print([(selection_var, -tau_sel) for tau_sel in range(0, max_lag + 1)]) - conds += [(selection_var, -tau_sel) for tau_sel in range(0, max_lag + 1)] - - ancestors = dict([(y, []) for y in Y]) - - for y in Y: - j, tau = y # tau <= 0 - if mode == 'non_repeating': - max_lag = max(max_lag, abs(tau)) - seen_links = [] - this_level = [y] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - for par in self._get_lagged_parents(varlag): - i, tau = par - if par not in conds and par not in ancestors[y]: - if ((mode == 'non_repeating' and - not _repeating((par, varlag), seen_links)) or - (mode == 'max_lag' and - abs(tau) <= abs(max_lag))): - ancestors[y].append(par) - if mode == 'non_repeating': - max_lag = max(max_lag, - abs(tau)) - next_level.append(par) - seen_links.append((par, varlag)) - - this_level = next_level - - return ancestors, max_lag - - def _get_maximum_possible_lag(self, XYZ): - """Helper function to return the maximum time lag of any confounding path. - - This is still based on a conjecture! - - The conjecture states that if and only if X and Y are d-connected given Z - in a stationary DAG, then there exists a confounding path with a maximal - time lag (i.e., the node on that path with maximal lag) given as follows: - For any node in XYZ consider all non-repeating causal paths from the past - to that node, where non-repeating means that a link X^i_{t-\tau_i} - --> X^j_{ t-\tau_j} is only traversed if X^i_{t'-\tau_i} --> X^j_{ - t'-\tau_j} is not already part of that path. The most lagged - ancestor for every variable node in XYZ defines the maximum ancestral time - lag, which is returned. - - Parameters - ---------- - XYZ : list of tuples - Of the form [(var, -tau)], where var specifies the variable - index and tau the time lag. - - Returns - ------- - max_lag : int - Maximum time lag of non-repeating causal path ancestors. - """ - - def _repeating(link, seen_path): - """Returns True if a link or its time-shifted version is already - included in seen_links.""" - i, taui = link[0] - j, tauj = link[1] - - for index, seen_link in enumerate(seen_path[:-1]): - seen_i, seen_taui = seen_link - seen_j, seen_tauj = seen_path[index + 1] - - if (i == seen_i and j == seen_j - and abs(tauj-taui) == abs(seen_tauj-seen_taui)): - return True - - return False - - N = len(self.links) - - # Initialize max. ancestral time lag for every N - max_lag = 0 - - # Not sure whether this is relevant! - # if self.selection_vars is not None: - # for selection_var in self.selection_vars: - # # print (selection_var, conds) - # # print([(selection_var, -tau_sel) for tau_sel in range(0, max_lag + 1)]) - # conds += [(selection_var, -tau_sel) for tau_sel in range(0, max_lag + 1)] - - # ancestors = dict([(y, []) for y in Y]) - - for y in XYZ: - j, tau = y # tau <= 0 - max_lag = max(max_lag, abs(tau)) - - causal_path = [] - queue = [(y, causal_path)] - - while queue: - varlag, causal_path = queue.pop() - causal_path = [varlag] + causal_path - - for node in self._get_lagged_parents(varlag): - i, tau = node - - if (node not in causal_path): - - if len(causal_path) == 1: - queue.append((node, causal_path)) - continue - - if (len(causal_path) > 1) and not _repeating((node, varlag), causal_path): - - max_lag = max(max_lag, abs(tau)) - queue.append((node, causal_path)) - - if self.verbosity > 0: - print("Max. non-repeated ancestral time lag: ", max_lag) - - return max_lag - - def _get_descendants(self, W, children, max_lag, ignore_time_bounds=False): - """Get descendants of nodes in W up to time t. - - Includes the nodes themselves. - """ - - descendants = set(W) - - for w in W: - j, tau = w - this_level = [w] - while len(this_level) > 0: - next_level = [] - for varlag in this_level: - for child in self._get_lagged_children(varlag, children): - i, tau = child - if (child not in descendants - and (-max_lag <= tau <= 0 or ignore_time_bounds)): - descendants = descendants.union(set([child])) - next_level.append(child) - - this_level = next_level - - return list(descendants) - - def _has_any_path(self, X, Y, conds, max_lag=None, - starts_with=None, ends_with=None, - directed=False, - forbidden_nodes=None, - only_non_causal_paths=False, - check_optimality_cond=False, - optimality_cond_des_YM=None, - optimality_cond_Y=None, - only_collider_paths_with_vancs=False, - XYS=None, - return_path=False): - """Returns True if X and Y are d-connected by any open path. - - Does breadth-first search from both X and Y and meets in the middle. - Paths are walked according to the d-separation rules where paths can - only traverse motifs <-- v <-- or <-- v --> or --> v --> or - --> [v] <-- where [.] indicates that v is conditioned on. - Furthermore, paths nodes (v, t) need to fulfill max_lag <= t <= 0 - and links cannot be traversed backwards. - - Parameters - ---------- - X, Y : lists of tuples - Of the form [(var, -tau)], where var specifies the variable - index and tau the time lag. - conds : list of tuples - Of the form [(var, -tau)], where var specifies the variable - index and tau the time lag. - max_lag : int - Maximum time lag. - starts_with : {None, 'tail', 'arrohead'} - Whether to only consider paths starting with particular mark at X. - ends_with : {None, 'tail', 'arrohead'} - Whether to only consider paths ending with particular mark at Y. - """ - if max_lag is None: - if conds is None: - conds = [] - max_lag = self._get_maximum_possible_lag(X+Y+conds) - - def _walk_to_parents(v, fringe, this_path, other_path): - """Helper function to update paths when walking to parents.""" - found_connection = False - for w in self._get_lagged_parents(v, - only_non_causal_paths=only_non_causal_paths, X=X, - causal_children=causal_children): - # Cannot walk into conditioned parents and - # cannot walk beyond t or max_lag - i, t = w - - if w == x and starts_with == 'arrowhead': - continue - - if w == y and ends_with == 'arrowhead': - continue - - if (w not in conds and w not in forbidden_nodes and - # (w, v) not in seen_links and - t <= 0 and abs(t) <= max_lag): - # if ((w, 'tail') not in this_path and - # (w, None) not in this_path): - if (w not in this_path or - ('tail' not in this_path[w] and None not in this_path[w])): - if self.verbosity > 1: - print("Walk parent: %s --> %s " %(v, w)) - fringe.append((w, 'tail')) - if w not in this_path: - this_path[w] = {'tail' : (v, 'arrowhead')} - else: - this_path[w]['tail'] = (v, 'arrowhead') - # seen_links.append((v, w)) - # Determine whether X and Y are connected - # (w, None) indicates the start or end node X/Y - # if ((w, 'tail') in other_path - # or (w, 'arrowhead') in other_path - # or (w, None) in other_path): - if w in other_path: - found_connection = (w, 'tail') - if self.verbosity > 1: - print("Found connection: ", found_connection) - break - return found_connection, fringe, this_path - - def _walk_to_children(v, fringe, this_path, other_path): - """Helper function to update paths when walking to children.""" - found_connection = False - for w in self._get_lagged_children(v, children, - only_non_causal_paths=only_non_causal_paths, X=X, - causal_children=causal_children): - # You can also walk into conditioned children, - # but cannot walk beyond t or max_lag - i, t = w - - if w == x and starts_with == 'tail': - continue - - if w == y and ends_with == 'tail': - continue - - if (w not in forbidden_nodes and - # (w, v) not in seen_links and - t <= 0 and abs(t) <= max_lag): - # if ((w, 'arrowhead') not in this_path and - # (w, None) not in this_path): - if (w not in this_path or - ('arrowhead' not in this_path[w] and None not in this_path[w])): - if self.verbosity > 1: - print("Walk child: %s --> %s " %(v, w)) - fringe.append((w, 'arrowhead')) - # this_path[(w, 'arrowhead')] = (v, 'tail') - if w not in this_path: - this_path[w] = {'arrowhead' : (v, 'tail')} - else: - this_path[w]['arrowhead'] = (v, 'tail') - # seen_links.append((v, w)) - # Determine whether X and Y are connected - # If the other_path contains w with a tail, then w must - # NOT be conditioned on. Alternatively, if the other_path - # contains w with an arrowhead, then w must be - # conditioned on. - # if (((w, 'tail') in other_path and w not in conds) - # or ((w, 'arrowhead') in other_path and w in conds) - # or (w, None) in other_path): - if w in other_path: - if (('tail' in other_path[w] and w not in conds) or - ('arrowhead' in other_path[w] and w in conds) or - (None in other_path[w])): - found_connection = (w, 'arrowhead') - if self.verbosity > 1: - print("Found connection: ", found_connection) - break - return found_connection, fringe, this_path - - def _walk_fringe(this_level, fringe, this_path, other_path): - """Helper function to walk each fringe, i.e., the path from X and Y, - respectively.""" - found_connection = False - - if starts_with == 'arrowhead': - if len(this_level) == 1 and this_level[0] == (x, None): - (found_connection, fringe, - this_path) = _walk_to_parents(x, fringe, - this_path, other_path) - return found_connection, fringe, this_path, other_path - - elif starts_with == 'tail': - if len(this_level) == 1 and this_level[0] == (x, None): - (found_connection, fringe, - this_path) = _walk_to_children(x, fringe, - this_path, other_path) - return found_connection, fringe, this_path, other_path - - if ends_with == 'arrowhead': - if len(this_level) == 1 and this_level[0] == (y, None): - (found_connection, fringe, - this_path) = _walk_to_parents(y, fringe, - this_path, other_path) - return found_connection, fringe, this_path, other_path - - elif ends_with == 'tail': - if len(this_level) == 1 and this_level[0] == (y, None): - (found_connection, fringe, - this_path) = _walk_to_children(y, fringe, - this_path, other_path) - return found_connection, fringe, this_path, other_path - - for v, mark in this_level: - if v in conds: - if (mark == 'arrowhead' or mark == None) and directed is False: - # Motif: --> [v] <-- - # If standing on a condition and coming from an - # arrowhead, you can only walk into parents - (found_connection, fringe, - this_path) = _walk_to_parents(v, fringe, - this_path, other_path) - if found_connection: break - else: - if only_collider_paths_with_vancs: - continue - - if (mark == 'tail' or mark == None): - # Motif: <-- v <-- or <-- v --> - # If NOT standing on a condition and coming from - # a tail mark, you can walk into parents or - # children - (found_connection, fringe, - this_path) = _walk_to_parents(v, fringe, - this_path, other_path) - if found_connection: break - - if not directed: - (found_connection, fringe, - this_path) = _walk_to_children(v, fringe, - this_path, other_path) - if found_connection: break - - elif mark == 'arrowhead': - # Motif: --> v --> - # If NOT standing on a condition and coming from - # an arrowhead mark, you can only walk into - # children - (found_connection, fringe, - this_path) = _walk_to_children(v, fringe, - this_path, other_path) - if found_connection: break - - if check_optimality_cond and v[0] in self.observed_vars: - # if v is not descendant of YM - # and v is not connected to Y given X OS\Cu - # print("v = ", v) - cond4a = v not in optimality_cond_des_YM - cond4b = not self._has_any_path(X=[v], Y=optimality_cond_Y, - conds=conds + X, - max_lag=None, - starts_with=None, - ends_with=None, - forbidden_nodes=None, #list(prelim_Oset), - return_path=False) - # print(cond4a, cond4b) - if cond4a and cond4b: - (found_connection, fringe, - this_path) = _walk_to_parents(v, fringe, - this_path, other_path) - # print(found_connection) - if found_connection: break - - if self.verbosity > 1: - print("Updated fringe: ", fringe) - return found_connection, fringe, this_path, other_path - - def backtrace_path(): - """Helper function to get path from start point, end point, - and connection found.""" - - path = [found_connection[0]] - node, mark = found_connection - - if 'tail' in pred[node]: - mark = 'tail' - else: - mark = 'arrowhead' - # print(found_connection) - while path[-1] != x: - # print(path, node, mark, pred[node]) - prev_node, prev_mark = pred[node][mark] - path.append(prev_node) - if prev_mark == 'arrowhead': - if prev_node not in conds: - # if pass_through_colliders: - # if 'tail' in pred[prev_node] and pred[prev_node]['tail'] != (node, mark): - # mark = 'tail' - # else: - # mark = 'arrowhead' - # else: - mark = 'tail' - elif prev_node in conds: - mark = 'arrowhead' - elif prev_mark == 'tail': - if 'tail' in pred[prev_node] and pred[prev_node]['tail'] != (node, mark): - mark = 'tail' - else: - mark = 'arrowhead' - node = prev_node - - path.reverse() - - node, mark = found_connection - if 'tail' in succ[node]: - mark = 'tail' - else: - mark = 'arrowhead' - - while path[-1] != y: - next_node, next_mark = succ[node][mark] - path.append(next_node) - if next_mark == 'arrowhead': - if next_node not in conds: - # if pass_through_colliders: - # if 'tail' in succ[next_node] and succ[next_node]['tail'] != (node, mark): - # mark = 'tail' - # else: - # mark = 'arrowhead' - # else: - mark = 'tail' - elif next_node in conds: - mark = 'arrowhead' - elif next_mark == 'tail': - if 'tail' in succ[next_node] and succ[next_node]['tail'] != (node, mark): - mark = 'tail' - else: - mark = 'arrowhead' - node = next_node - - return path - - - if conds is None: - conds = [] - - if forbidden_nodes is None: - forbidden_nodes = [] - - conds = [z for z in conds if z not in Y and z not in X] - # print(X, Y, conds) - - if self.selection_vars is not None: - for selection_var in self.selection_vars: - conds += [(selection_var, -tau_sel) for tau_sel in range(0, max_lag + 1)] - - - N = len(self.links) - children = self._get_children() - - if only_non_causal_paths: - anc_Y_dict = self._get_non_blocked_ancestors(Y=Y, conds=None, mode='max_lag', - max_lag=max_lag)[0] - # print(anc_Y_dict) - anc_Y = [] - for y in Y: - anc_Y += anc_Y_dict[y] - des_X = self._get_descendants(X, children=children, max_lag=max_lag) - mediators = set(anc_Y).intersection(set(des_X)) - set(Y) - set(X) - - causal_children = list(mediators) + Y - else: - causal_children = None - - if only_collider_paths_with_vancs: - vancs_dict = self._get_non_blocked_ancestors(Y=XYS, conds=None, mode='max_lag', - max_lag=max_lag)[0] - vancs = set() - for xys in XYS: - vancs = vancs.union(set(vancs_dict[xys])) - vancs = list(vancs) + XYS - conds = vancs - # else: - # vancs = None - - # Iterate through nodes in X and Y - for x in X: - for y in Y: - - # seen_links = [] - # predecessor and successors in search - # (x, None) where None indicates start/end nodes, later (v, - # 'tail') or (w, 'arrowhead') indicate how a link ends at a node - pred = {x : {None: None}} - succ = {y : {None: None}} - - # initialize fringes, start with forward from X - forward_fringe = [(x, None)] - reverse_fringe = [(y, None)] - - while forward_fringe and reverse_fringe: - if len(forward_fringe) <= len(reverse_fringe): - if self.verbosity > 1: - print("Walk from X since len(X_fringe)=%d " - "<= len(Y_fringe)=%d" % (len(forward_fringe), - len(reverse_fringe))) - this_level = forward_fringe - forward_fringe = [] - (found_connection, forward_fringe, pred, - succ) = _walk_fringe(this_level, forward_fringe, pred, - succ) - - # print(pred) - if found_connection: - if return_path: - backtraced_path = backtrace_path() - return [(self.observed_vars.index(node[0]), node[1]) - for node in backtraced_path - if node[0] in self.observed_vars] - else: - return True - else: - if self.verbosity > 1: - print("Walk from Y since len(X_fringe)=%d " - "> len(Y_fringe)=%d" % (len(forward_fringe), - len(reverse_fringe))) - this_level = reverse_fringe - reverse_fringe = [] - (found_connection, reverse_fringe, succ, - pred) = _walk_fringe(this_level, reverse_fringe, succ, - pred) - - if found_connection: - if return_path: - backtraced_path = backtrace_path() - return [(self.observed_vars.index(node[0]), node[1]) - for node in backtraced_path - if node[0] in self.observed_vars] - else: - return True - - if self.verbosity > 1: - print("X_fringe = %s \n" % str(forward_fringe) + - "Y_fringe = %s" % str(reverse_fringe)) - - return False - - def _is_dsep(self, X, Y, Z, max_lag=None): - """Returns whether X and Y are d-separated given Z in the graph. - - X, Y, Z are of the form (var, lag) for lag <= 0. D-separation is - based on: - - 1. Assessing the maximum time lag max_lag possible for any confounding - path (see _get_maximum_possible_lag(...)). - - 2. Using the time series graph truncated at max_lag we then test - d-separation between X and Y conditional on Z using breadth-first - search of non-blocked paths according to d-separation rules. - - Parameters - ---------- - X, Y, Z : list of tuples - List of variables chosen for current independence test. - max_lag : int, optional (default: None) - Used here to constrain the _is_dsep function to the graph - truncated at max_lag instead of identifying the max_lag from - ancestral search. - - Returns - ------- - dseparated : bool, or path - True if X and Y are d-separated given Z in the graph. - """ - - N = len(self.links) - - if self.verbosity > 0: - print("Testing X=%s d-sep Y=%s given Z=%s in TSG" %(X, Y, Z)) - - if Z is None: - Z = [] - - if max_lag is not None: - # max_lags = dict([(j, max_lag) for j in range(N)]) - if self.verbosity > 0: - print("Set max. time lag to: ", max_lag) - else: - max_lag = self._get_maximum_possible_lag(X+Y+Z) - - # Store overall max. lag - self.max_lag = max_lag - - # _has_any_path is the main function that searches open paths - any_path = self._has_any_path(X, Y, conds=Z, max_lag=max_lag) - - if any_path: - dseparated = False - else: - dseparated = True - - return dseparated - -
[docs] def check_shortest_path(self, X, Y, Z, - max_lag=None, # compute_ancestors=False, - starts_with=None, ends_with=None, - forbidden_nodes=None, - directed=False, - only_non_causal_paths=False, - check_optimality_cond=False, - optimality_cond_des_YM=None, - optimality_cond_Y=None, - return_path=False): - """Returns path between X and Y given Z in the graph. - - X, Y, Z are of the form (var, lag) for lag <= 0. D-separation is - based on: - - 1. Assessing maximum time lag max_lag of last ancestor of any X, Y, Z - with non-blocked (by Z), non-repeating directed path towards X, Y, Z - in the graph. 'non_repeating' means that an ancestor X^i_{ t-\tau_i} - with link X^i_{t-\tau_i} --> X^j_{ t-\tau_j} is only included if - X^i_{t'-\tau_i} --> X^j_{ t'-\tau_j} for t'!=t is not already part of - the ancestors. - - 2. Using the time series graph truncated at max_lag we then test - d-separation between X and Y conditional on Z using breadth-first - search of non-blocked paths according to d-separation rules including - selection variables. - - Optionally only considers paths starting/ending with specific marks) - and makes available the ancestors up to max_lag of X, Y, Z. This may take - a very long time, however. - - Parameters - ---------- - X, Y, Z : list of tuples - List of variables chosen for testing paths. - max_lag : int, optional (default: None) - Used here to constrain the has_path function to the graph - truncated at max_lag instead of identifying the max_lag from - ancestral search. - compute_ancestors : bool - Whether to also make available the ancestors for X, Y, Z as - self.anc_all_x, self.anc_all_y, and self.anc_all_z, respectively. - starts_with : {None, 'tail', 'arrohead'} - Whether to only consider paths starting with particular mark at X. - ends_with : {None, 'tail', 'arrohead'} - Whether to only consider paths ending with particular mark at Y. - - Returns - ------- - path : list or False - Returns path or False if no path exists. - """ - - N = len(self.links) - - # Translate from observed_vars index to full variable set index - X = [(self.observed_vars[x[0]], x[1]) for x in X] - Y = [(self.observed_vars[y[0]], y[1]) for y in Y] - Z = [(self.observed_vars[z[0]], z[1]) for z in Z] - - # print(X) - # print(Y) - # print(Z) - - if check_optimality_cond: - optimality_cond_des_YM = [(self.observed_vars[x[0]], x[1]) - for x in optimality_cond_des_YM] - optimality_cond_Y = [(self.observed_vars[x[0]], x[1]) - for x in optimality_cond_Y] - - # Get the array to test on - X, Y, Z = self._check_XYZ(X, Y, Z) - - if self.verbosity > 0: - print("Testing X=%s d-sep Y=%s given Z=%s in TSG" %(X, Y, Z)) - - if max_lag is not None: - # max_lags = dict([(j, max_lag) for j in range(N)]) - if self.verbosity > 0: - print("Set max. time lag to: ", max_lag) - else: - max_lag = self._get_maximum_possible_lag(X+Y+Z) - - # Store overall max. lag - self.max_lag = max_lag - - # _has_any_path is the main function that searches open paths - any_path = self._has_any_path(X, Y, conds=Z, max_lag=max_lag, - starts_with=starts_with, ends_with=ends_with, - return_path=return_path, - directed=directed, - only_non_causal_paths=only_non_causal_paths, - check_optimality_cond=check_optimality_cond, - optimality_cond_des_YM=optimality_cond_des_YM, - optimality_cond_Y=optimality_cond_Y, - forbidden_nodes=forbidden_nodes) - - if any_path: - if return_path: - any_path_observed = [(self.observed_vars.index(node[0]), node[1]) for node in any_path - if node[0] in self.observed_vars] - else: - any_path_observed = True - else: - any_path_observed = False - - if self.verbosity > 0: - print("_has_any_path = ", any_path) - print("_has_any_path_obs = ", any_path_observed) - - - # if compute_ancestors: - # if self.verbosity > 0: - # print("Compute ancestors.") - - # # Get ancestors up to maximum ancestral time lag incl. repeated - # # links - # self.anc_all_x, _ = self._get_non_blocked_ancestors(X, conds=Z, - # mode='max_lag', max_lag=max_lag) - # self.anc_all_y, _ = self._get_non_blocked_ancestors(Y, conds=Z, - # mode='max_lag', max_lag=max_lag) - # self.anc_all_z, _ = self._get_non_blocked_ancestors(Z, conds=Z, - # mode='max_lag', max_lag=max_lag) - - return any_path_observed
- -
[docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', - verbosity=0): - """Perform oracle conditional independence test. - - Calls the d-separation function. - - Parameters - ---------- - X, Y, Z : list of tuples - X,Y,Z are of the form [(var, -tau)], where var specifies the - variable index in the observed_vars and tau the time lag. - tau_max : int, optional (default: 0) - Not used here. - cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} - Not used here. - - Returns - ------- - val, pval : Tuple of floats - The test statistic value and the p-value. - """ - - if Z is None: - Z = [] - - # Translate from observed_vars index to full variable set index - X = [(self.observed_vars[x[0]], x[1]) for x in X] - Y = [(self.observed_vars[y[0]], y[1]) for y in Y] - Z = [(self.observed_vars[z[0]], z[1]) for z in Z] - - # Get the array to test on - X, Y, Z = self._check_XYZ(X, Y, Z) - - if not str((X, Y, Z)) in self.dsepsets: - self.dsepsets[str((X, Y, Z))] = self._is_dsep(X, Y, Z) - - if self.dsepsets[str((X, Y, Z))]: - val = 0. - pval = 1. - else: - val = 1. - pval = 0. - - if verbosity > 1: - self._print_cond_ind_results(val=val, pval=pval, cached=False, - conf=None) - # Return the value and the pvalue - return val, pval
- -
[docs] def get_measure(self, X, Y, Z=None, tau_max=0): - """Returns dependence measure. - - Returns 0 if X and Y are d-separated given Z in the graph and 1 else. - - Parameters - ---------- - X, Y [, Z] : list of tuples - X,Y,Z are of the form [(var, -tau)], where var specifies the - variable index in the observed_vars and tau the time lag. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - Returns - ------- - val : float - The test statistic value. - - """ - - # Translate from observed_vars index to full variable set index - X = [(self.observed_vars[x[0]], x[1]) for x in X] - Y = [(self.observed_vars[y[0]], y[1]) for y in Y] - Z = [(self.observed_vars[z[0]], z[1]) for z in Z] - - # Check XYZ - X, Y, Z = _check_XYZ(X, Y, Z) - - if not str((X, Y, Z)) in self.dsepsets: - self.dsepsets[str((X, Y, Z))] = self._is_dsep(X, Y, Z) - - if self.dsepsets[str((X, Y, Z))]: - return 0. - else: - return 1.
- - def _print_cond_ind_results(self, val, pval=None, cached=None, conf=None): - """Print results from conditional independence test. - - Parameters - ---------- - val : float - Test stastistic value. - pval : float, optional (default: None) - p-value - conf : tuple of floats, optional (default: None) - Confidence bounds. - """ - printstr = " val = %.3f" % (val) - if pval is not None: - printstr += " | pval = %.5f" % (pval) - if conf is not None: - printstr += " | conf bounds = (%.3f, %.3f)" % ( - conf[0], conf[1]) - if cached is not None: - printstr += " %s" % ({0:"", 1:"[cached]"}[cached]) - - print(printstr) - -
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0): - """ - Base class assumption that this is not implemented. Concrete classes - should override when possible. - """ - raise NotImplementedError("Model selection not"+\ - " implemented for %s" % self.measure)
- - def _reverse_patt(self, patt): - """Inverts a link pattern""" - - if patt == "": - return "" - - left_mark, middle_mark, right_mark = patt[0], patt[1], patt[2] - if left_mark == "<": - new_right_mark = ">" - else: - new_right_mark = left_mark - if right_mark == ">": - new_left_mark = "<" - else: - new_left_mark = right_mark - - return new_left_mark + middle_mark + new_right_mark - - - - - def _get_minmax_lag(self, links): - """Helper function to retrieve tau_min and tau_max from links - """ - - N = len(links) - - # Get maximum time lag - min_lag = np.inf - max_lag = 0 - for j in range(N): - for link_props in links[j]: - if len(link_props) == 3: - i, lag = link_props[0] - coeff = link_props[1] - else: - i, lag = link_props - coeff = 1. - # func = link_props[2] - if coeff != 0.: - min_lag = min(min_lag, abs(lag)) - max_lag = max(max_lag, abs(lag)) - return min_lag, max_lag - - - -
[docs] def get_confidence(self, X, Y, Z=None, tau_max=0): - """For compatibility with PCMCI. - - Returns - ------- - None - """ - return None
- -if __name__ == '__main__': - - import tigramite.plotting as tp - from matplotlib import pyplot as plt - def lin_f(x): return x - - # Define the stationary DAG - links = {0 : [(0, -3), (1, 0)], 1: [(2, -2)], 2: [(1, -2)]} - observed_vars = [0, 1, 2] - - oracle = OracleCI(links=links, - observed_vars=observed_vars, - graph_is_mag=True, - # selection_vars=selection_vars, - # verbosity=2 - ) - graph = oracle.graph - print(graph[:,:,0]) - - tp.plot_time_series_graph(graph=graph, var_names=None, figsize=(5, 5), - save_name="tsg.pdf") - - X = [(0, 0)] - Y = [(2, 0)] - Z = [] - # node = (3, 0) - # prelim_Oset = set([(3, 0)]) - # S = set([]) - # collider_path_nodes = set([]) - path = oracle._has_any_path(X=X, Y=Y, - conds=Z, - max_lag=8, - starts_with='arrowhead', - ends_with='arrowhead', - forbidden_nodes=None, - return_path=True) - print(path) - - print("-------------------------------") - print(oracle._get_maximum_possible_lag(X+Z)) #(X = X, Y = Y, Z = Z)) - - # cond_ind_test = OracleCI(graph=graph) - # links, observed_vars, selection_vars = cond_ind_test.get_links_from_graph(graph) - # print("{") - # for j in links.keys(): - # parents = repr([(p, 'coeff', 'lin_f') for p in links[j]]) - # print(f"{j: 1d}" ":" f"{parents:s},") - # print(repr(observed_vars)) - # cond_ind_test = OracleCI(graph=graph, verbosity=2) - - # X = [(0, 0)] - # Y = [(2, 0)] - # Z = [(7, 0), (3, 0), (6, 0), (5, 0), (4, 0)] #(1, -3), (1, -2), (0, -2), (0, -1), (0, -3)] - # #(j, -2) for j in range(N)] + [(j, 0) for j in range(N)] - - # # print(oracle._get_non_blocked_ancestors(Z, Z=None, mode='max_lag', - # # max_lag=2)) - # # cond_ind_test = OracleCI(links, observed_vars=observed_vars, verbosity=2) - - # print(cond_ind_test.get_shortest_path(X=X, Y=Y, Z=Z, - # max_lag=None, compute_ancestors=False, - # backdoor=True)) - - # anc_x=None #oracle.anc_all_x[X[0]] - # anc_y=None #oracle.anc_all_y[Y[0]] - # anc_xy=None # [] - # # # for z in Z: - # # # anc_xy += oracle.anc_all_z[z] - - # fig, ax = tp.plot_tsg(links, - # X=[(observed_vars[x[0]], x[1]) for x in X], - # Y=[(observed_vars[y[0]], y[1]) for y in Y], - # Z=[(observed_vars[z[0]], z[1]) for z in Z], - # anc_x=anc_x, anc_y=anc_y, - # anc_xy=anc_xy) - - # fig.savefig("/home/rung_ja/Downloads/tsg.pdf") -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/parcorr.html b/docs/_build/html/_modules/tigramite/independence_tests/parcorr.html deleted file mode 100644 index 5ed4ec16..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/parcorr.html +++ /dev/null @@ -1,407 +0,0 @@ - - - - - - - - tigramite.independence_tests.parcorr — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.parcorr

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-from scipy import stats
-import numpy as np
-import sys
-import warnings
-
-from .independence_tests_base import CondIndTest
-
-
[docs]class ParCorr(CondIndTest): - r"""Partial correlation test. - - Partial correlation is estimated through linear ordinary least squares (OLS) - regression and a test for non-zero linear Pearson correlation on the - residuals. - - Notes - ----- - To test :math:`X \perp Y | Z`, first :math:`Z` is regressed out from - :math:`X` and :math:`Y` assuming the model - - .. math:: X & = Z \beta_X + \epsilon_{X} \\ - Y & = Z \beta_Y + \epsilon_{Y} - - using OLS regression. Then the dependency of the residuals is tested with - the Pearson correlation test. - - .. math:: \rho\left(r_X, r_Y\right) - - For the ``significance='analytic'`` Student's-*t* distribution with - :math:`T-D_Z-2` degrees of freedom is implemented. - - Parameters - ---------- - **kwargs : - Arguments passed on to Parent class CondIndTest. - """ - # documentation - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, **kwargs): - self._measure = 'par_corr' - self.two_sided = True - self.residual_based = True - - CondIndTest.__init__(self, **kwargs) - - def _get_single_residuals(self, array, target_var, - standardize=True, - return_means=False): - """Returns residuals of linear multiple regression. - - Performs a OLS regression of the variable indexed by target_var on the - conditions Z. Here array is assumed to contain X and Y as the first two - rows with the remaining rows (if present) containing the conditions Z. - Optionally returns the estimated regression line. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - target_var : {0, 1} - Variable to regress out conditions from. - - standardize : bool, optional (default: True) - Whether to standardize the array beforehand. Must be used for - partial correlation. - - return_means : bool, optional (default: False) - Whether to return the estimated regression line. - - Returns - ------- - resid [, mean] : array-like - The residual of the regression and optionally the estimated line. - """ - - dim, T = array.shape - dim_z = dim - 2 - - # Standardize - if standardize: - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - # array /= array.std(axis=1).reshape(dim, 1) - # if np.isnan(array).sum() != 0: - # raise ValueError("nans after standardizing, " - # "possibly constant array!") - - y = array[target_var, :] - - if dim_z > 0: - z = np.fastCopyAndTranspose(array[2:, :]) - beta_hat = np.linalg.lstsq(z, y, rcond=None)[0] - mean = np.dot(z, beta_hat) - resid = y - mean - else: - resid = y - mean = None - - if return_means: - return (resid, mean) - return resid - -
[docs] def get_dependence_measure(self, array, xyz): - """Return partial correlation. - - Estimated as the Pearson correlation of the residuals of a linear - OLS regression. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - val : float - Partial correlation coefficient. - """ - - x_vals = self._get_single_residuals(array, target_var=0) - y_vals = self._get_single_residuals(array, target_var=1) - val, _ = stats.pearsonr(x_vals, y_vals) - return val
- -
[docs] def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False): - """Returns p-value for shuffle significance test. - - For residual-based test statistics only the residuals are shuffled. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for unshuffled estimate. - - Returns - ------- - pval : float - p-value - """ - - x_vals = self._get_single_residuals(array, target_var=0) - y_vals = self._get_single_residuals(array, target_var=1) - array_resid = np.array([x_vals, y_vals]) - xyz_resid = np.array([0, 1]) - - null_dist = self._get_shuffle_dist(array_resid, xyz_resid, - self.get_dependence_measure, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - verbosity=self.verbosity) - - pval = (null_dist >= np.abs(value)).mean() - - # Adjust p-value for two-sided measures - if pval < 1.: - pval *= 2. - - if return_null_dist: - return pval, null_dist - return pval
- -
[docs] def get_analytic_significance(self, value, T, dim, xyz): - """Returns analytic p-value from Student's t-test for the Pearson - correlation coefficient. - - Assumes two-sided correlation. If the degrees of freedom are less than - 1, numpy.nan is returned. - - Parameters - ---------- - value : float - Test statistic value. - - T : int - Sample length - - dim : int - Dimensionality, ie, number of features. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - pval : float or numpy.nan - P-value. - """ - # Get the number of degrees of freedom - deg_f = T - dim - - if deg_f < 1: - pval = np.nan - elif abs(abs(value) - 1.0) <= sys.float_info.min: - pval = 0.0 - else: - trafo_val = value * np.sqrt(deg_f/(1. - value*value)) - # Two sided significance level - pval = stats.t.sf(np.abs(trafo_val), deg_f) * 2 - - return pval
- -
[docs] def get_analytic_confidence(self, value, df, conf_lev): - """Returns analytic confidence interval for correlation coefficient. - - Based on Student's t-distribution. - - Parameters - ---------- - value : float - Test statistic value. - - df : int - degrees of freedom of the test - - conf_lev : float - Confidence interval, eg, 0.9 - - Returns - ------- - (conf_lower, conf_upper) : Tuple of floats - Upper and lower confidence bound of confidence interval. - """ - # Confidence interval is two-sided - c_int = (1. - (1. - conf_lev) / 2.) - - value_tdist = value * np.sqrt(df) / np.sqrt(1. - value**2) - conf_lower = (stats.t.ppf(q=1. - c_int, df=df, loc=value_tdist) - / np.sqrt(df + stats.t.ppf(q=1. - c_int, df=df, - loc=value_tdist)**2)) - conf_upper = (stats.t.ppf(q=c_int, df=df, loc=value_tdist) - / np.sqrt(df + stats.t.ppf(q=c_int, df=df, - loc=value_tdist)**2)) - return (conf_lower, conf_upper)
- - -
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0, corrected_aic=False): - """Returns Akaike's Information criterion modulo constants. - - Fits a linear model of the parents to variable j and returns the - score. Leave-one-out cross-validation is asymptotically equivalent to - AIC for ordinary linear regression models. Here used to determine - optimal hyperparameters in PCMCI, in particular the pc_alpha value. - - Parameters - ---------- - j : int - Index of target variable in data array. - - parents : list - List of form [(0, -1), (3, -2), ...] containing parents. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - Returns: - score : float - Model score. - """ - - Y = [(j, 0)] - X = [(j, 0)] # dummy variable here - Z = parents - array, xyz, _ = self.dataframe.construct_array(X=X, Y=Y, Z=Z, - tau_max=tau_max, - mask_type=self.mask_type, - return_cleaned_xyz=False, - do_checks=True, - verbosity=self.verbosity) - - dim, T = array.shape - - y = self._get_single_residuals(array, target_var=1, return_means=False) - # Get RSS - rss = (y**2).sum() - # Number of parameters - p = dim - 1 - # Get AIC - if corrected_aic: - score = T * np.log(rss) + 2. * p + (2.*p**2 + 2.*p)/(T - p - 1) - else: - score = T * np.log(rss) + 2. * p - return score
-
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/parcorr_mult.html b/docs/_build/html/_modules/tigramite/independence_tests/parcorr_mult.html deleted file mode 100644 index 390a8fcd..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/parcorr_mult.html +++ /dev/null @@ -1,472 +0,0 @@ - - - - - - - - tigramite.independence_tests.parcorr_mult — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.parcorr_mult

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-from scipy import stats
-import numpy as np
-import sys
-import warnings
-
-from .independence_tests_base import CondIndTest
-
-
[docs]class ParCorrMult(CondIndTest): - r"""Partial correlation test for multivariate X and Y. - - Multivariate partial correlation is estimated through ordinary least squares (OLS) - regression and some test for multivariate dependency among the residuals. - - Notes - ----- - To test :math:`X \perp Y | Z`, first :math:`Z` is regressed out from - :math:`X` and :math:`Y` assuming the model - - .. math:: X & = Z \beta_X + \epsilon_{X} \\ - Y & = Z \beta_Y + \epsilon_{Y} - - using OLS regression. Then different measures for the dependency among the residuals - can be used. Currently only a test for zero correlation on the maximum of the residuals' - correlation is performed. - - Parameters - ---------- - correlation_type : {'max_corr'} - Which dependency measure to use on residuals. - **kwargs : - Arguments passed on to Parent class CondIndTest. - """ - # documentation - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, correlation_type='max_corr', **kwargs): - self._measure = 'par_corr_mult' - self.two_sided = True - self.residual_based = True - - self.correlation_type = correlation_type - - if self.correlation_type not in ['max_corr']: - raise ValueError("correlation_type must be in ['max_corr'].") - - CondIndTest.__init__(self, **kwargs) - - def _get_single_residuals(self, array, xyz, target_var, - standardize=True, - return_means=False): - """Returns residuals of linear multiple regression. - - Performs a OLS regression of the variable indexed by target_var on the - conditions Z. Here array is assumed to contain X and Y as the first two - rows with the remaining rows (if present) containing the conditions Z. - Optionally returns the estimated regression line. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - target_var : {0, 1} - Variable to regress out conditions from. - - standardize : bool, optional (default: True) - Whether to standardize the array beforehand. Must be used for - partial correlation. - - return_means : bool, optional (default: False) - Whether to return the estimated regression line. - - Returns - ------- - resid [, mean] : array-like - The residual of the regression and optionally the estimated line. - """ - - dim, T = array.shape - dim_z = (xyz == 2).sum() - - # Standardize - if standardize: - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - # array /= array.std(axis=1).reshape(dim, 1) - # if np.isnan(array).sum() != 0: - # raise ValueError("nans after standardizing, " - # "possibly constant array!") - - y = np.fastCopyAndTranspose(array[np.where(xyz==target_var)[0], :]) - - if dim_z > 0: - z = np.fastCopyAndTranspose(array[np.where(xyz==2)[0], :]) - beta_hat = np.linalg.lstsq(z, y, rcond=None)[0] - mean = np.dot(z, beta_hat) - resid = y - mean - else: - resid = y - mean = None - - if return_means: - return (np.fastCopyAndTranspose(resid), np.fastCopyAndTranspose(mean)) - - return np.fastCopyAndTranspose(resid) - -
[docs] def get_dependence_measure(self, array, xyz): - """Return multivariate kernel correlation coefficient. - - Estimated as some dependency measure on the - residuals of a linear OLS regression. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - val : float - Partial correlation coefficient. - """ - - dim, T = array.shape - dim_x = (xyz==0).sum() - dim_y = (xyz==1).sum() - - x_vals = self._get_single_residuals(array, xyz, target_var=0) - y_vals = self._get_single_residuals(array, xyz, target_var=1) - - array_resid = np.vstack((x_vals.reshape(dim_x, T), y_vals.reshape(dim_y, T))) - xyz_resid = np.array([index_code for index_code in xyz if index_code != 2]) - - val = self.mult_corr(array_resid, xyz_resid) - - return val
- -
[docs] def mult_corr(self, array, xyz, standardize=True): - """Return multivariate dependency measure. - - Parameters - ---------- - array : array-like - data array with X, Y in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - standardize : bool, optional (default: True) - Whether to standardize the array beforehand. Must be used for - partial correlation. - - Returns - ------- - val : float - Multivariate dependency measure. - """ - - dim, n = array.shape - dim_x = (xyz==0).sum() - dim_y = (xyz==1).sum() - - # Standardize - if standardize: - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - # array /= array.std(axis=1).reshape(dim, 1) - # if np.isnan(array).sum() != 0: - # raise ValueError("nans after standardizing, " - # "possibly constant array!") - - x = array[np.where(xyz==0)[0]] - y = array[np.where(xyz==1)[0]] - - if self.correlation_type == 'max_corr': - # Get (positive or negative) absolute maximum correlation value - corr = np.corrcoef(x, y)[:len(x), len(x):].flatten() - val = corr[np.argmax(np.abs(corr))] - - # val = 0. - # for x_vals in x: - # for y_vals in y: - # val_here, _ = stats.pearsonr(x_vals, y_vals) - # val = max(val, np.abs(val_here)) - - # elif self.correlation_type == 'linear_hsci': - # # For linear kernel and standardized data (centered and divided by std) - # # biased V -statistic of HSIC reduces to sum of squared inner products - # # over all dimensions - # val = ((x.dot(y.T)/float(n))**2).sum() - else: - raise NotImplementedError("Currently only" - "correlation_type == 'max_corr' implemented.") - - return val
- -
[docs] def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False): - """Returns p-value for shuffle significance test. - - For residual-based test statistics only the residuals are shuffled. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for unshuffled estimate. - - Returns - ------- - pval : float - p-value - """ - - dim, T = array.shape - dim_x = (xyz==0).sum() - dim_y = (xyz==1).sum() - - x_vals = self._get_single_residuals(array, xyz, target_var=0) - y_vals = self._get_single_residuals(array, xyz, target_var=1) - - array_resid = np.vstack((x_vals.reshape(dim_x, T), y_vals.reshape(dim_y, T))) - xyz_resid = np.array([index_code for index_code in xyz if index_code != 2]) - - - null_dist = self._get_shuffle_dist(array_resid, xyz_resid, - self.get_dependence_measure, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - verbosity=self.verbosity) - - pval = (null_dist >= np.abs(value)).mean() - - # Adjust p-value for two-sided measures - if pval < 1.: - pval *= 2. - - # Adjust p-value for dimensions of x and y (conservative Bonferroni-correction) - # pval *= dim_x*dim_y - - if return_null_dist: - return pval, null_dist - return pval
- -
[docs] def get_analytic_significance(self, value, T, dim, xyz): - """Returns analytic p-value depending on correlation_type. - - Assumes two-sided correlation. If the degrees of freedom are less than - 1, numpy.nan is returned. - - Parameters - ---------- - value : float - Test statistic value. - - T : int - Sample length - - dim : int - Dimensionality, ie, number of features. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - pval : float or numpy.nan - P-value. - """ - # Get the number of degrees of freedom - deg_f = T - dim - - dim_x = (xyz==0).sum() - dim_y = (xyz==1).sum() - - if self.correlation_type == 'max_corr': - if deg_f < 1: - pval = np.nan - elif abs(abs(value) - 1.0) <= sys.float_info.min: - pval = 0.0 - else: - trafo_val = value * np.sqrt(deg_f/(1. - value*value)) - # Two sided significance level - pval = stats.t.sf(np.abs(trafo_val), deg_f) * 2 - else: - raise NotImplementedError("Currently only" - "correlation_type == 'max_corr' implemented.") - - # Adjust p-value for dimensions of x and y (conservative Bonferroni-correction) - pval *= dim_x*dim_y - - return pval
- -
[docs] def get_analytic_confidence(self, value, df, conf_lev): - """ - Base class assumption that this is not implemented. Concrete classes - should override when possible. - """ - raise NotImplementedError("Analytic confidence not"+\ - " implemented for %s" % self.measure)
- -
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0): - """ - Base class assumption that this is not implemented. Concrete classes - should override when possible. - """ - raise NotImplementedError("Model selection not"+\ - " implemented for %s" % self.measure)
- -if __name__ == '__main__': - - import tigramite - from tigramite.data_processing import DataFrame - # import numpy as np - import timeit - - seed=3 - random_state = np.random.default_rng(seed=seed) - cmi = ParCorrMult( - # significance = 'shuffle_test', - # sig_samples=1000, - ) - - rate = np.zeros(100) - for i in range(100): - print(i) - data = random_state.standard_normal((100, 6)) - data[:,2] += -0.5*data[:,0] - # data[:,1] += data[:,2] - dataframe = DataFrame(data) - - cmi.set_dataframe(dataframe) - - pval = cmi.run_test( - X=[(0,0)], #, (1,0)], - Y=[(2,0)], #, (3, 0)], - # Z=[(5,0)] - Z = [] - )[1] - - rate[i] = pval <= 0.1 - # print(cmi.run_test(X=[(0,0),(1,0)], Y=[(2,0), (3, 0)], Z=[(5,0)])) - print(rate.mean()) -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/parcorr_wls.html b/docs/_build/html/_modules/tigramite/independence_tests/parcorr_wls.html deleted file mode 100644 index e3656da9..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/parcorr_wls.html +++ /dev/null @@ -1,511 +0,0 @@ - - - - - - - - tigramite.independence_tests.parcorr_wls — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.parcorr_wls

-from __future__ import print_function
-import numpy as np
-import warnings
-
-from tigramite.independence_tests.parcorr import ParCorr
-from tigramite.independence_tests.robust_parcorr import RobustParCorr
-from tigramite import data_processing as pp
-
-
-
[docs]class ParCorrWLS(ParCorr): - r"""Weighted partial correlation test. - - Partial correlation is estimated through linear weighted least squares (WLS) - regression and a test for non-zero linear Pearson correlation on the - residuals. - Either the variances, i.e. weights, are known, or they can be estimated using non-parametric regression - (using k nearest neighbour). - - Notes - ----- - To test :math:`X \perp Y | Z`, first :math:`Z` is regressed out from - :math:`X` and :math:`Y` assuming the model - - .. math:: X & = Z \beta_X + \epsilon_{X} \\ - Y & = Z \beta_Y + \epsilon_{Y} - - using WLS regression. Here, we do not assume homoskedasticity of the error terms. - Then the dependency of the residuals is tested with - the Pearson correlation test. - - .. math:: \rho\left(r_X, r_Y\right) - - For the ``significance='analytic'`` Student's-*t* distribution with - :math:`T-D_Z-2` degrees of freedom is implemented. - - Parameters - ---------- - gt_std_matrix: array-like, optional (default: None) - Standard deviations of the noise of shape (T, nb_nodes) - expert_knowledge: string or dict (default: time-dependent heteroskedasticity) - Either string "time-dependent heteroskedasticity" meaning that every variable only has time-dependent - heteroskedasticity, or string "homoskedasticity" where we assume homoskedasticity for all variables, or - dictionary containing expert knowledge about heteroskedastic relationships as list of tuples or strings. - window_size: int (default: 10) - Number of nearest neighbours that we are using for estimating the variance function. - robustify: bool (default: False) - Indicates whether the robust partial correlation test should be used, i.e. whether the data should be - transformed to normal marginals before testing - **kwargs : - Arguments passed on to Parent class ParCorr. - """ - - # documentation - - def __init__(self, gt_std_matrix=None, - expert_knowledge="time-dependent heteroskedasticity", - window_size=10, robustify=False, **kwargs): - - self.gt_std_matrix = gt_std_matrix - self.expert_knowledge = expert_knowledge - self.window_size = window_size - self.robustify = robustify - - self.stds = None - self.data = None - - ParCorr.__init__(self, - recycle_residuals=False, # Doesn't work with ParCorrWLS - **kwargs) - self._measure = 'par_corr_wls' - - def _get_stds(self, array, X, Y, Z, tau_max=0, cut_off='2xtau_max', - verbosity=0): - """Estimate standard deviations of X and Y, or use ground truth standard deviations depending on - user-supplied background knowledge.""" - - if self.gt_std_matrix is not None: - stds_dataframe = pp.DataFrame(self.gt_std_matrix, - datatime={0: np.arange(len(self.gt_std_matrix[:, 0]))}) - self.stds, _, _, _ = stds_dataframe.construct_array(X=X, Y=Y, Z=Z, - tau_max=tau_max, - mask_type=self.mask_type, - return_cleaned_xyz=True, - do_checks=True, - remove_overlaps=True, - cut_off=cut_off, - verbosity=verbosity) - else: - if self.expert_knowledge == "time-dependent heteroskedasticity": - self.expert_knowledge = {variable: ["time-dependent heteroskedasticity"] - for variable in range(self.dataframe.N)} - elif self.expert_knowledge == "homoskedasticity": - self.expert_knowledge = {} - if any([type(item) == tuple for item in self.expert_knowledge.items()]): - # if there is parent-dependent heteroskedasticity specified in the expert knowledge, - # prepare data for all nodes in the same way as X, Y and Z such that we can later obtain data - # for the heteroskedasticity-inducing parent - - nodes, _, XYZ, _ = self.dataframe.construct_array(X=X, Y=Y, Z=[(i, 0) for i in range(self.dataframe.N)], - tau_max=tau_max, - mask_type=self.mask_type, - return_cleaned_xyz=True, - do_checks=True, - remove_overlaps=True, - cut_off=cut_off, - verbosity=verbosity) - self.data = np.zeros((self.dataframe.N, nodes.shape[1])) - node_indices = [] - # print(XYZ) - for i in XYZ: - node_indices += i - for index, j in enumerate(node_indices): - if j[1] == 0: - # collect prepped array-data of all nodes at lag zero - self.data[j[0]] = nodes[index] - # estimate the weights based on expert knowledge on heteroskedastic relationships - stds = self._get_std_estimation(array, X, Y) - self.stds = stds - return stds - - def _get_array(self, X, Y, Z, tau_max=0, cut_off='2xtau_max', verbosity=0, return_cleaned_xyz=True): - """Convenience wrapper around construct_array. Simultaneously, construct self.stds which needs to correspond - to the variables in the array.""" - - if self.measure in ['par_corr_wls']: - if len(X) > 1 or len(Y) > 1: - raise ValueError("X and Y for %s must be univariate." % - self.measure) - - # Call the wrapped function - array, xyz, XYZ, type_mask = self.dataframe.construct_array(X=X, Y=Y, Z=Z, - tau_max=tau_max, - mask_type=self.mask_type, - return_cleaned_xyz=return_cleaned_xyz, - do_checks=True, - remove_overlaps=True, - cut_off=cut_off, - verbosity=verbosity) - array_copy = array.copy() - self._get_stds(array_copy, X, Y, Z, tau_max, cut_off, verbosity) - return array, xyz, XYZ, type_mask - - def _estimate_std_time(self, arr, target_var): - """ - Estimate the standard deviations of the error terms using the squared-residuals approach. First calculate - the absolute value of the residuals using OLS, then smooth them using a sliding window while keeping the time - order of the residuals. - In this way we can approximate variances that are time-dependent. - - Parameters - ---------- - arr: array - Data array of shape (dim, T) - target_var: {0, 1} - Variable to regress out conditions from. - - Returns - ------- - std_est: array - Standard deviation array of shape (T,) - - """ - dim, T = arr.shape - dim_z = dim - 2 - # Standardization not necessary for variance estimation - y = np.copy(arr[target_var, :]) - - if dim_z > 0: - z = np.fastCopyAndTranspose(arr[2:, :]) - beta_hat = np.linalg.lstsq(z, y, rcond=None)[0] - mean = np.dot(z, beta_hat) - resid = abs(y - mean) - else: - resid = abs(y) - - # average variance within window - std_est = np.concatenate( - (np.ones(self.window_size - 1), np.convolve(resid, np.ones(self.window_size), 'valid') / self.window_size)) - return std_est - - def _estimate_std_parent(self, arr, target_var, target_lag, H): - """ - Estimate the standard deviations of the error terms using a residual-based approach. - First calculate the absolute value of the residuals using OLS, then smooth them by averaging over the k ones - that are closest in H-value. In this way we are able to deal with parent-dependent heteroskedasticity. - - Parameters - ---------- - arr: array - Data array of shape (dim, T) - target_var: {0, 1} - Variable to obtain noise variance approximation for. - target_lag: -int - Lag of the variable to obtain noise variance approximation for. - H: of the form [(var, -tau)], where var specifies the variable index and tau the time lag - Variable to use for the sorting of the residuals, i.e. variable that the heteroskedasticity depends on. - - Returns - ------- - std_est: array - Standard deviation array of shape (T,) - - """ - dim, T = arr.shape - # print(dim, T) - dim_z = dim - 2 - y = np.copy(arr[target_var, :]) - - if dim_z > 0: - z = np.fastCopyAndTranspose(arr[2:, :]) - beta_hat = np.linalg.lstsq(z, y, rcond=None)[0] - mean = np.dot(z, beta_hat) - resid = abs(y - mean) - lag = H[1] + target_lag - - # order the residuals w.r.t. the heteroskedasticity-inducing parent corresponding to sample h - h = np.copy(self.data[H[0], np.abs(self.data.shape[1] - T): lag]) - # print(h.shape,H[0], np.abs(self.data.shape[1] - T)) - ordered_z_ind = np.argsort(h) - ordered_z_ind = ordered_z_ind * (ordered_z_ind > 0) - revert_argsort = np.argsort(ordered_z_ind) - - truncate_resid = resid[np.abs(lag):] - sorted_resid = truncate_resid[ordered_z_ind] - - # smooth the nearest neighbour residuals - variance_est_sorted = np.concatenate( - (np.ones(self.window_size - 1), - np.convolve(sorted_resid, np.ones(self.window_size), 'valid') / self.window_size,)) - std_est = variance_est_sorted[revert_argsort] - std_est = np.concatenate((std_est, np.ones(np.abs(lag)))) - std_est = np.roll(std_est, np.abs(lag)) - else: - resid = abs(y) - std_est = np.concatenate( - (np.ones(self.window_size - 1), - np.convolve(resid, np.ones(self.window_size), 'valid') / self.window_size)) - - return std_est - - def _get_std_estimation(self, array, X, Y): - """Use expert knowledge on the heteroskedastic relationships contained in self.expert_knowledge to estimate the - standard deviations of the error terms. - The expert knowledge can specify whether there is sampling index / time dependent heteroskedasticity, - heteroskedasticity with respect to a specified parent, or homoskedasticity. - - Parameters - ---------- - array : array - Data array of shape (dim, T) - - X, Y : list of tuples - X,Y are of the form [(var, -tau)], where var specifies the - variable index and tau the time lag. - - Return - ------ - stds: array-like - Array of standard deviations of error terms for X and Y of shape (2, T). - """ - dim, T = array.shape - stds = np.ones((2, T)) - for count, variable in enumerate([X[0], Y[0]]): - # Here we assume that it is known what the heteroskedasticity function depends on for every variable - if variable[0] in self.expert_knowledge: - hs_source = self.expert_knowledge[variable[0]][0] - if hs_source == "time-dependent heteroskedasticity": - stds[count] = self._estimate_std_time(array, count) - elif type(hs_source) is tuple: - stds[count] = self._estimate_std_parent(array, count, variable[1], - hs_source) - return stds - - def _get_single_residuals(self, array, target_var, - standardize=False, - return_means=False): - """Returns residuals of weighted linear multiple regression. - - Performs a WLS regression of the variable indexed by target_var on the - conditions Z. Here array is assumed to contain X and Y as the first two - rows with the remaining rows (if present) containing the conditions Z. - Optionally returns the estimated regression line. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns. - - target_var : {0, 1} - Variable to regress out conditions from. - - standardize : bool, optional (default: True) - Whether to standardize the array beforehand. Must be used for - partial correlation. - - return_means : bool, optional (default: False) - Whether to return the estimated regression line. - - Returns - ------- - resid [, mean] : array-like - The residual of the regression and optionally the estimated line. - """ - dim, T = array.shape - dim_z = dim - 2 - - x_vals_sum = np.sum(array) - x_vals_has_nan = np.isnan(x_vals_sum) - if x_vals_has_nan: - raise ValueError("array has nans") - - try: - stds = self.stds[target_var] - - except TypeError: - warnings.warn("No estimated or ground truth standard deviations supplied for weights. " - "Assume homoskedasticity, i.e. all weights are 1.") - stds = np.ones(T) - - # Standardize - if standardize: - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - x_vals_sum = np.sum(array) - x_vals_has_nan = np.isnan(x_vals_sum) - if x_vals_has_nan: - raise ValueError("array has nans") - y = np.copy(array[target_var, :]) - weights = np.diag(np.reciprocal(stds)) - - if dim_z > 0: - z = np.fastCopyAndTranspose(array[2:, :]) - # include weights in z and y - zw = np.dot(weights, z) - yw = np.dot(y, weights) - beta_hat = np.linalg.lstsq(zw, yw, rcond=None)[0] - mean = np.dot(z, beta_hat) - resid = np.dot(y - mean, weights) - resid_vals_sum = np.sum(resid) - resid_vals_has_nan = np.isnan(resid_vals_sum) - if resid_vals_has_nan: - raise ValueError("resid has nans") - else: - # resid = y - resid = np.dot(y, weights) - mean = None - - if return_means: - return resid, mean - return resid - -
[docs] def get_dependence_measure(self, array, xyz): - if self.robustify: - array = RobustParCorr.trafo2normal(self, array) - return ParCorr.get_dependence_measure(self, array, xyz)
- -
[docs] def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False): - if self.robustify: - array = RobustParCorr.trafo2normal(self, array) - return ParCorr.get_shuffle_significance(self, array, xyz, value, - return_null_dist=False)
- -
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0, corrected_aic=False): - """Returns Akaike's Information criterion modulo constants. - - Fits a linear model of the parents to variable j and returns the - score. Leave-one-out cross-validation is asymptotically equivalent to - AIC for ordinary linear regression models. Here used to determine - optimal hyperparameters in PCMCI, in particular the pc_alpha value. - - Parameters - ---------- - j : int - Index of target variable in data array. - - parents : list - List of form [(0, -1), (3, -2), ...] containing parents. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - Returns: - score : float - Model score. - """ - - Y = [(j, 0)] - X = [(j, 0)] # dummy variable here - Z = parents - array, xyz, _, _ = self._get_array(X, Y, Z, tau_max=tau_max, verbosity=self.verbosity, - return_cleaned_xyz=False) - dim, T = array.shape - - # Transform to normal marginals - if self.robustify: - array = RobustParCorr.trafo2normal(self, array) - - y = self._get_single_residuals(array, target_var=1, return_means=False) - # Get RSS - rss = (y**2).sum() - # Number of parameters - p = dim - 1 - # Get AIC - if corrected_aic: - score = T * np.log(rss) + 2. * p + (2.*p**2 + 2.*p)/(T - p - 1) - else: - score = T * np.log(rss) + 2. * p - return score
-
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/regressionCI.html b/docs/_build/html/_modules/tigramite/independence_tests/regressionCI.html deleted file mode 100644 index b087a0de..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/regressionCI.html +++ /dev/null @@ -1,465 +0,0 @@ - - - - - - - - tigramite.independence_tests.regressionCI — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.regressionCI

-"""Tigramite causal discovery for time series."""
-
-# Author: Tom Hochsprung <tom.hochsprung@dlr.de>, Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-import numpy as np
-
-from scipy.stats import chi2, normaltest
-from sklearn.linear_model import LinearRegression, LogisticRegression
-from sklearn import metrics
-
-from .independence_tests_base import CondIndTest
-# from numba import jit   # could make it even faster, also acticate @jit(forceobj=True)
-
-
-
[docs]class RegressionCI(CondIndTest): - r"""Flexible parametric conditional independence tests for continuous, categorical, or mixed data. - - Assumes one-dimensional X, Y. - - Notes - ----- - To test :math:`X \perp Y | Z`, the regressions Y|XZ vs Y|Z, or, depending - on certain criteria, X|YZ vs X|Z are compared. For that, the notion of - the deviance is employed. If the fits of the respective regressions do - not differ significantly (measured using the deviance), the null - hypotheses of conditional independence is "accepted". This approach - assumes that X and Y are univariate, and Z can be either empty, - univariate or multivariate. Moreover, this approach works for all - combinations of "discrete" and "continuous" X, Y and respective columns - of Z; depending on the case, linear regression or multinomial regression - is employed. - - Assumes one-dimensional X, Y. - - Parameters - ---------- - **kwargs : - Arguments passed on to parent class CondIndTest. - """ - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - **kwargs): - - # Setup the member variables - self._measure = 'regression_ci' - self.two_sided = False - self.residual_based = False - self.recycle_residuals = False - - CondIndTest.__init__(self, **kwargs) - -
[docs] def set_dataframe(self, dataframe): - """Initialize and check the dataframe. - - Parameters - ---------- - dataframe : data object - Set tigramite dataframe object. It must have the attributes - dataframe.values yielding a numpy array of shape (observations T, - variables N) and optionally a mask of the same shape and a missing - values flag. - - """ - self.dataframe = dataframe - - if self.mask_type is not None: - if dataframe.mask is None: - raise ValueError("mask_type is not None, but no mask in dataframe.") - dataframe._check_mask(dataframe.mask) - - if dataframe.type_mask is None: - raise ValueError("type_mask cannot be None for RegressionCI.") - dataframe._check_mask(dataframe.type_mask, check_type_mask=True)
- - # @jit(forceobj=True) -
[docs] def get_dependence_measure(self, array, xyz, type_mask): - """Returns test statistic. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - type_mask : array-like - array of same shape as array which describes whether samples - are continuous or discrete: 0s for continuous and - 1s for discrete - - Returns - ------- - val : float - test estimate. - """ - - def convert_to_one_hot(data, nb_classes): - """Convert an iterable of indices to one-hot encoded labels.""" - - targets = np.array(data).reshape(-1) - # categories need to be mapped to 0, 1, ... in this function - targets = targets - np.min(targets) - return np.eye(nb_classes)[targets] - - def do_componentwise_one_hot_encoding(X, var_type): - """A function that one-hot encodes all categorical components of X""" - - T, dim = X.shape - X_new = np.empty([T, 0]) - # componentwise dummy-encoding (if necessary, otherwise, keep component as usual): - for i in range(0, len(var_type)): - if var_type[i] == 1: - nb_classes = len(set(X[:, i])) - X_new = np.hstack((X_new, convert_to_one_hot(X[:, i].astype(int), nb_classes=nb_classes))) - elif var_type[i] == 0: - X_new = np.hstack((X_new, X[:, i].reshape((T, 1)))) - else: - raise ValueError("type_mask only allows entries in {0, 1}") - return X_new - - def calc_deviance_logistic(X, y, var_type): - """Calculates the deviance (i.e., 2 * log-likelihood) for a multinomial logistic regression - (with standard regression assumptions) - """ - - # 1-hot-encode all categorical columns - X = do_componentwise_one_hot_encoding(X, var_type=var_type) - y = np.ravel(y) - # do logistic regression - model = LogisticRegression(multi_class='multinomial', solver='lbfgs') - model.fit(X, y) - deviance = 2*metrics.log_loss(y, model.predict_proba(X), normalize=False) - # dofs: +2 for intercept (+1) (not too important, cancels out later anyway) - dof = model.n_features_in_ + 1 - return deviance, dof - - def calc_deviance_linear(X, y, var_type): - """Calculates the deviance (i.e., 2 * log-likelihood) for a linear regression - (with standard regression assumptions - """ - - n, p = X.shape # p is not important for later - # 1-hot-encode all categorical columns - X = do_componentwise_one_hot_encoding(X, var_type = var_type) - y = np.ravel(y) - # do linear regression - model = LinearRegression() - model.fit(X, y) - # predictions based on fitted model - preds = model.predict(X) - # residual sum of squares - rss = np.sum(np.power((preds - y), 2)) - # deviance (only the term with the rss-term is important, the rest cancels out later anyway) - # deviance is calculated as -2*log-likelihood - deviance = n * np.log(2 * np.pi) + n * np.log(rss / n) + n - # dofs: +2 for intercept (+1) (not too important, cancels out later anyway) - dof = model.n_features_in_ + 1 - return deviance, dof - - def entropy(series): - value, counts = np.unique(series, return_counts=True) - norm_counts = counts / counts.sum() - return -(norm_counts * np.log(norm_counts)).sum() - - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - z_indices = np.where(xyz == 2)[0] - - x = array[x_indices].T - y = array[y_indices].T - - x_type = type_mask[x_indices] - y_type = type_mask[y_indices] - - if len(z_indices) == 0: - z = np.ones((array.shape[1], 1)) - z_type = [0] - else: - z = array[z_indices].T - z_type = type_mask[z_indices] - z_type = z_type.max(axis=1) - - # check, whether within X and within Y all datapoints have the same datatype - if ((x_type.max() != x_type.min()) or (y_type.max() != y_type.min())): - raise ValueError("All samples regarding X or respectively Y must have the same datatype") - - x_type = x_type.max() - y_type = y_type.max() - - # if z was (originally) None, then just an intercept is fitted ... - # Now, different cases for X discrete/continuous and Y discrete/continuous - - # Case 1: X continuous, Y continuous - if (x_type == 0) and (y_type == 0): - # Use the more normal variable as dependent variable TODO: makes sense? - if normaltest(x)[0] >= normaltest(y)[0]: - dep_var = y - rest = np.hstack((x, z)) - rest_type = np.hstack((x_type, z_type)) - else: - dep_var = x - rest = np.hstack((y, z)) - rest_type = np.hstack((y_type, z_type)) - - # Fit Y | Z - dev1, dof1 = calc_deviance_linear(z, dep_var, var_type = z_type) - # Fit Y | ZX - dev2, dof2 = calc_deviance_linear(rest, dep_var, var_type=rest_type) - # print(dev1, dev2, np.abs(dev1 - dev2)) - - # Case 2: X discrete, Y continuous - elif (x_type == 1) and (y_type == 0): - xz = np.hstack((x, z)) - # Fit Y | Z - dev1, dof1 = calc_deviance_linear(z, y, var_type = z_type) - # Fit Y | XZ - dev2, dof2 = calc_deviance_linear(xz, y, var_type = np.hstack((x_type, z_type))) - - # Case 3: X continuous, Y discrete - elif (x_type == 0) and (y_type == 1): - yz = np.hstack((y, z)) - # Fit X | Z - dev1, dof1 = calc_deviance_linear(z, x, var_type = z_type) - # Fit X | YZ - dev2, dof2 = calc_deviance_linear(yz, x, var_type = np.hstack((y_type, z_type))) - - # Case 4: X discrete, Y discrete - elif (x_type == 1) and (y_type == 1): - # Use the variable with smaller entropy as dependent variable TODO: makes sense? - if entropy(x) >= entropy(y): - dep_var = y - rest = np.hstack((x, z)) - rest_type = np.hstack((x_type, z_type)) - else: - dep_var = x - rest = np.hstack((y, z)) - rest_type = np.hstack((y_type, z_type)) - # xz = np.hstack((x, z)) - # Fit Y | Z - dev1, dof1 = calc_deviance_logistic(z, dep_var, var_type = z_type) - # Fit Y | XZ - dev2, dof2 = calc_deviance_logistic(rest, dep_var, var_type=rest_type) - - # calculate the difference between the deviance for the smaller and for the larger model - # (i.e., the actual deviance) - stat = dev1 - dev2 - dof = dof2 - dof1 - - self._temp_dof = dof - return stat
- -
[docs] def get_analytic_significance(self, value, T, dim, xyz): - """Return the p_value of test statistic. - - According to a chi-square distribution with 'dof' degrees of freedom. - - """ - - # Calculate the p_value - p_value = chi2.sf(value, self._temp_dof) - del self._temp_dof - - return p_value
- - -if __name__ == '__main__': - - import tigramite - from tigramite.data_processing import DataFrame - import tigramite.data_processing as pp - import numpy as np - - seed=43 - random_state = np.random.default_rng(seed=seed) - ci = RegressionCI() - - T = 100 - - reals = 100 - rate = np.zeros(reals) - - x_example = "continuous" - y_example = "continuous" - dimz = 1 - # z_example = ["discrete", "continuous"] - z_example = ["continuous"] #, "discrete"] - # z_example = None - rate = np.zeros(reals) - for i in range(reals): - if (dimz > 0): - z = np.zeros((T, dimz)) - for k in range(0, len(z_example)): - if z_example[k] == "discrete": - z[:, k] = random_state.binomial(n=1, p=0.5, size=T) - else: - z[:, k] = random_state.uniform(low = 0, high = 1, size=T) - else: - z = None - x = np.empty(T).reshape(T, 1) - y = np.empty(T).reshape(T, 1) - for t in range(T): - if dimz > 0: - if z_example[0] == "discrete": - val = z[t, 0].squeeze() - prob = 0.2 + val * 0.6 - else: - prob = z[t, 0].squeeze() - else: - prob = 0.2 - if x_example == "discrete": - x[t] = random_state.choice([0, 1], p=[prob, 1. - prob]) - else: - x[t] = 0.1*random_state.random() # np.random.uniform(prob, 1) #np.random.normal(prob, 1) - if y_example == "discrete": - y[t] = random_state.choice([0, 1], p=[prob, (1. - prob)]) # + x[t] - else: - y[t] = random_state.normal(prob, 1) + 0.5*x[t] - - # # Continuous data - # z = np.random.randn(T, dimz) - # x = (0.5*z[:,0] + np.random.randn(T)).reshape(T, 1) - # y = (0.5*z[:,0] + np.random.randn(T)).reshape(T, 1) #+ 2*x - - if x_example == "discrete": - x_type = np.ones(T) - else: - x_type = np.zeros(T) - if y_example == "discrete": - y_type = np.ones(T) - else: - y_type = np.zeros(T) - if dimz > 0: - z_type = np.zeros((T, dimz)) - for j in range(0, len(z_example)): - if z_example[j] == "discrete": - z_type[:, j] = np.ones(T) - else: - z_type[:, j] = np.zeros(T) - else: - z_type = None - - val, pval = ci.run_test_raw(x, y, z=z, x_type=x_type, y_type=y_type, z_type=z_type) - rate[i] = pval - - # data = np.hstack((x, y, z)) - # type_mask = np.zeros(data.shape) - # type_mask[:, 0] = x_example == "discrete" - # type_mask[:, 1] = y_example == "discrete" - # type_mask[:, 2] = z_example == "discrete" - # type_mask = type_mask.astype('int') - # # print(type_mask) - # dataframe = pp.DataFrame(data=data, type_mask=type_mask) - # ci.set_dataframe(dataframe) - - # val, pval = ci.run_test(X=[(0, 0)], Y=[(1, 0)], Z=[(2, 0)]) - # rate[i] = pval - - print((rate <= 0.05).mean()) - - -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/independence_tests/robust_parcorr.html b/docs/_build/html/_modules/tigramite/independence_tests/robust_parcorr.html deleted file mode 100644 index e3251d81..00000000 --- a/docs/_build/html/_modules/tigramite/independence_tests/robust_parcorr.html +++ /dev/null @@ -1,494 +0,0 @@ - - - - - - - - tigramite.independence_tests.robust_parcorr — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.independence_tests.robust_parcorr

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-from scipy import stats
-import numpy as np
-import sys
-import warnings
-
-from .independence_tests_base import CondIndTest
-
-
[docs]class RobustParCorr(CondIndTest): - r"""Robust partial correlation test based on non-paranormal models. - - Partial correlation is estimated through transformation to standard - normal marginals, ordinary least squares (OLS) regression, and a test for - non-zero linear Pearson correlation on the residuals. - - Notes - ----- - To test :math:`X \perp Y | Z`, firstly, each marginal is transformed to be - standard normally distributed. For that, the transform - :math:`\Phi^{-1}\circ\hat{F}` is used. Here, :math:`\Phi^{-1}` is the - quantile function of a standard normal distribution and - :math:`\hat{F}` is the empirical distribution function for the respective - marginal. - - - This idea stems from the literature on nonparanormal models, see: - - - Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: - semiparametric estimation of high dimensional undirected graphs. J. - Mach. Learn. Res., 10:2295–2328, 2009. - - - Han Liu, Fang Han, Ming Yuan, John Lafferty, and Larry Wasserman. - High-dimensional semiparametric Gaussian copula graphical models. Ann. - Statist., 40(4):2293–2326, 2012a. - - - Naftali Harris, Mathias Drton. PC Algorithm for Nonparanormal Graphical - Models. Journal of Machine Learning Research, 14: 3365-3383, 2013. - - Afterwards (where Z, X, and Y are now assumed to be transformed to the - standard normal scale): - - :math:`Z` is regressed out from - :math:`X` and :math:`Y` assuming the model - - .. math:: X & = Z \beta_X + \epsilon_{X} \\ - Y & = Z \beta_Y + \epsilon_{Y} - - using OLS regression. Then the dependency of the residuals is tested with - the Pearson correlation test. - - .. math:: \rho\left(r_X, r_Y\right) - - For the ``significance='analytic'`` Student's-*t* distribution with - :math:`T-D_Z-2` degrees of freedom is implemented. - - Parameters - ---------- - **kwargs : - Arguments passed on to Parent class CondIndTest. - """ - # documentation - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, **kwargs): - self._measure = 'robust_par_corr' - self.two_sided = True - self.residual_based = True - - CondIndTest.__init__(self, **kwargs) - -
[docs] def trafo2normal(self, x, thres=0.00001): - """Transforms input array to standard normal marginals. - - For that, the code first transforms to uniform :math:`[0,1]` marginals - using the empirical distribution function, and then transforms to - normal marginals by applying the quantile function of a standard - normal. Assumes x.shape = (dim, T) - - Parameters - ---------- - x : array-like - Input array. - - thres : float - Small number between 0 and 1; after transformation to the uniform - scale, all values that are too close to zero are replaced by thres, - similarly, all values that are too close to one, are replaced by - 1-thres. This avoids NaNs. - - Returns - ------- - normal : array-like - array with normal marginals. - """ - - def trafo(xi): - xisorted = np.sort(xi) - yi = np.linspace(1. / len(xi), 1, len(xi)) - return np.interp(xi, xisorted, yi) - - if np.ndim(x) == 1: - u = trafo(x) - u[u==0.] = thres - u[u==1.] = 1. - thres - normal = stats.norm.ppf(u) - else: - normal = np.empty(x.shape) - for i in range(x.shape[0]): - uniform = trafo(x[i]) - - uniform[uniform==0.] = thres - uniform[uniform==1.] = 1. - thres - normal[i] = stats.norm.ppf(uniform) - - return normal
- - def _get_single_residuals(self, array, target_var, - standardize=True, - return_means=False): - """Returns residuals of linear multiple regression. - - Performs a OLS regression of the variable indexed by target_var on the - conditions Z. Here array is assumed to contain X and Y as the first two - rows with the remaining rows (if present) containing the conditions Z. - Optionally returns the estimated regression line. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - target_var : {0, 1} - Variable to regress out conditions from. - - standardize : bool, optional (default: True) - Whether to standardize the array beforehand. Must be used for - partial correlation. - - return_means : bool, optional (default: False) - Whether to return the estimated regression line. - - Returns - ------- - resid [, mean] : array-like - The residual of the regression and optionally the estimated line. - """ - - dim, T = array.shape - dim_z = dim - 2 - - # Standardize - if standardize: - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - # array /= array.std(axis=1).reshape(dim, 1) - # if np.isnan(array).sum() != 0: - # raise ValueError("nans after standardizing, " - # "possibly constant array!") - - y = array[target_var, :] - - if dim_z > 0: - z = np.fastCopyAndTranspose(array[2:, :]) - beta_hat = np.linalg.lstsq(z, y, rcond=None)[0] - mean = np.dot(z, beta_hat) - resid = y - mean - else: - resid = y - mean = None - - if return_means: - return (resid, mean) - return resid - -
[docs] def get_dependence_measure(self, array, xyz, type_mask=None): - """Return partial correlation. - - Marginals are firstly transformed to standard normal scale. Dependence - Measure is then estimated as the Pearson correlation of the residuals - of a linear OLS regression. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - val : float - Partial correlation coefficient. - """ - - # Transform to normal marginals - array = self.trafo2normal(array) - - x_vals = self._get_single_residuals(array, target_var=0) - y_vals = self._get_single_residuals(array, target_var=1) - - val, _ = stats.pearsonr(x_vals, y_vals) - return val
- -
[docs] def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False): - """Returns p-value for shuffle significance test. - - Firstly, each marginal is transformed to the standard normal scale. - For residual-based test statistics only the residuals are shuffled. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for unshuffled estimate. - - Returns - ------- - pval : float - p-value - """ - - # Transform to normal marginals - array = self.trafo2normal(array) - - x_vals = self._get_single_residuals(array, target_var=0) - y_vals = self._get_single_residuals(array, target_var=1) - array_resid = np.array([x_vals, y_vals]) - xyz_resid = np.array([0, 1]) - - null_dist = self._get_shuffle_dist(array_resid, xyz_resid, - self.get_dependence_measure, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - verbosity=self.verbosity) - - pval = (null_dist >= np.abs(value)).mean() - - # Adjust p-value for two-sided measures - if pval < 1.: - pval *= 2. - - if return_null_dist: - return pval, null_dist - return pval
- -
[docs] def get_analytic_significance(self, value, T, dim, xyz): - """Returns analytic p-value from Student's t-test for the Pearson - correlation coefficient. - - Assumes two-sided correlation. If the degrees of freedom are less than - 1, numpy.nan is returned. - - Parameters - ---------- - value : float - Test statistic value. - - T : int - Sample length - - dim : int - Dimensionality, ie, number of features. - - xyz : array of ints - XYZ identifier array of shape (dim,). - - Returns - ------- - pval : float or numpy.nan - P-value. - """ - # Get the number of degrees of freedom - deg_f = T - dim - - if deg_f < 1: - pval = np.nan - elif abs(abs(value) - 1.0) <= sys.float_info.min: - pval = 0.0 - else: - trafo_val = value * np.sqrt(deg_f/(1. - value*value)) - # Two sided significance level - pval = stats.t.sf(np.abs(trafo_val), deg_f) * 2 - - return pval
- -
[docs] def get_analytic_confidence(self, value, df, conf_lev): - """Returns analytic confidence interval for correlation coefficient. - - Based on Student's t-distribution. - - Parameters - ---------- - value : float - Test statistic value. - - df : int - degrees of freedom of the test - - conf_lev : float - Confidence interval, eg, 0.9 - - Returns - ------- - (conf_lower, conf_upper) : Tuple of floats - Upper and lower confidence bound of confidence interval. - """ - # Confidence interval is two-sided - c_int = (1. - (1. - conf_lev) / 2.) - - value_tdist = value * np.sqrt(df) / np.sqrt(1. - value**2) - conf_lower = (stats.t.ppf(q=1. - c_int, df=df, loc=value_tdist) - / np.sqrt(df + stats.t.ppf(q=1. - c_int, df=df, - loc=value_tdist)**2)) - conf_upper = (stats.t.ppf(q=c_int, df=df, loc=value_tdist) - / np.sqrt(df + stats.t.ppf(q=c_int, df=df, - loc=value_tdist)**2)) - return (conf_lower, conf_upper)
- - -
[docs] def get_model_selection_criterion(self, j, parents, tau_max=0, corrected_aic=False): - """Returns Akaike's Information criterion modulo constants. - - First of all, each marginal is transformed to the standard normal - scale. For this, each marginal is transformed to the uniform scale - using the empirical distribution function and then, transformed to - the standard normal scale by applying the quantile function of a - standard normal. Afterwards, fits a linear model of the parents to - variable j and returns the score. Leave-one-out cross-validation is - asymptotically equivalent to AIC for ordinary linear regression - models. Here used to determine optimal hyperparameters in - PCMCI(plus), in particular the pc_alpha value. - - Parameters - ---------- - j : int - Index of target variable in data array. - - parents : list - List of form [(0, -1), (3, -2), ...] containing parents. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - Returns: - score : float - Model score. - """ - - Y = [(j, 0)] - X = [(j, 0)] # dummy variable here - Z = parents - array, xyz, _ = self.dataframe.construct_array(X=X, Y=Y, Z=Z, - tau_max=tau_max, - mask_type=self.mask_type, - return_cleaned_xyz=False, - do_checks=True, - verbosity=self.verbosity) - - dim, T = array.shape - - # Transform to normal marginals - array = self.trafo2normal(array) - - y = self._get_single_residuals(array, target_var=1, return_means=False) - # Get RSS - rss = (y**2).sum() - # Number of parameters - p = dim - 1 - # Get AIC - if corrected_aic: - score = T * np.log(rss) + 2. * p + (2.*p**2 + 2.*p)/(T - p - 1) - else: - score = T * np.log(rss) + 2. * p - return score
-
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/lpcmci.html b/docs/_build/html/_modules/tigramite/lpcmci.html deleted file mode 100644 index 986199b3..00000000 --- a/docs/_build/html/_modules/tigramite/lpcmci.html +++ /dev/null @@ -1,3687 +0,0 @@ - - - - - - - - tigramite.lpcmci — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.lpcmci

-import numpy as np
-from itertools import product, combinations
-from copy import deepcopy
-
-from .pcmci_base import PCMCIbase
-
-
[docs]class LPCMCI(PCMCIbase): - """ LPCMCI is an algorithm for causal discovery in large-scale times series that allows for latent confounders and - learns lag-specific causal relationships. The algorithm is introduced and explained in: - [1] Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. - Advances in Neural Information Processing Systems, 2020, 33. - https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html - NOTE: This method is still EXPERIMENTAL since the default settings of hyperparameters are still being fine-tuned. - We actually invite feedback on which work best in applications and numerical experiments. - The main function, which applies the algorithm, is 'run_lpcmci'. - - Parameters passed to the constructor: - - dataframe: - Tigramite dataframe object that contains the the time series dataset \bold{X} - - cond_ind_test: - A conditional independence test object that specifies which conditional independence test CI is to be used - - verbosity: - Controls the verbose output self.run_lpcmci() and the function it calls. - - Parameters passed to self.run_lpcmci(): - Note: The default values are still being tuned and some parameters might be removed in the future. - - link_assumptions: dict or None - Two-level nested dictionary such that link_assumptions[j][(i, lag_i)], where 0 <= j, i <= N-1 (with N the number of component - time series) and -tau_max <= lag_i <= -tau_min, is a string which specifies background knowledge about the link from X^i_{t+lag_i} to - X^j_t. These are the possibilities for this string and the corresponding claim: - '-?>' : X^i_{t+lag_i} is an ancestor of X^j_t. - '-->' : X^i_{t+lag_i} is an ancestor of X^j_t, and there is a link between X^i_{t+lag_i} and X^j_t - '<?-' : Only allowed for lag_i = 0. X^j_t is an ancestor of X^i_t. - '<--' : Only allowed for lag_i = 0. X^j_t is an ancestor of X^i_t, and there is a link between X^i_t and X^j_t - '<?>' : Neither X^i_{t+lag_i} is an ancestor of X^j_t nor the other way around - '<->' : Neither X^i_{t+lag_i} is an ancestor of X^j_t nor the other way around, and there is a link between X^i_{t+lag_i} - and X^j_t - 'o?>' : X^j_t is not an ancestor of X^i_{t+lag_i} (for lag_i < 0 this background knowledge is (for the default settings of - self.run_lpcmci()) imposed automatically) - 'o->' : X^j_t is not an ancestor of X^i_{t+lag_i}, and there is a link between X^i_{t+lag_i} and X^j_t - '<?o' : Only allowed for lag_i = 0. X^i_t is not an ancestor of X^j_t - '<-o' : Only allowed for lag_i = 0. X^i_t is not an ancestor of X^j_t, and there is a link between X^i_t and X^j_t - 'o-o' : Only allowed for lag_i = 0. There is a link between X^i_t and X^j_t - 'o?o' : Only allowed for lag_i = 0. No claim is made - '' : There is no link between X^i_{t+lag_i} and X^j_t. - - Another way to specify the absent link is if the form of the link between (i, lag_i) and (j, 0) is not specified by the dictionary, that is, if either - link_assumptions[j] does not exist or link_assumptions[j] does exist but link_assumptions[j][(i, lag_i)] does - not exist, then the link between (i, lag_i) and (j, 0) is assumed to be absent. - - tau_min: - The assumed minimum time lag, i.e., links with a lag smaller than tau_min are assumed to be absent. - - tau_max: - The maximum considered time lag, i.e., the algorithm learns a DPAG on a time window [t-\taumax, t] with \tau_max + 1 time steps. - It is *not* assumed that in the underlying time series DAG there are no links with a lag larger than \tau_max. - - pc_alpha: - The significance level of conditional independence tests - - n_preliminary_iterations: - Determines the number of iterations in the preliminary phase of LPCMCI, corresponding to the 'k' in LPCMCI(k) in [1]. - - max_cond_px: - Consider a pair of variables (X^i_{t-\tau}, X^j_t) with \tau > 0. In Algorithm S2 in [1] (here this is - self._run_ancestral_removal_phase()), the algorithm does not test for conditional independence given subsets of - apds_t(X^i_{t-\tau}, X^j_t, C(G)) of cardinality higher than max_cond_px. In Algorithm S3 in [1] (here this is - self._run_non_ancestral_removal_phase()), the algorithm does not test for conditional independence given subsets of - napds_t(X^i_{t-\tau}, X^j_t, C(G)) of cardinality higher than max_cond_px. - - max_p_global: - Restricts all conditional independence tests to conditioning sets with cardinality smaller or equal to max_p_global - - max_p_non_ancestral: - Restricts all conditional independence tests in the second removal phase (here this is self._run_dsep_removal_phase()) to - conditioning sets with cardinality smaller or equal to max_p_global - - max_q_global: - For each ordered pair (X^i_{t-\tau}, X^j_t) of adjacent variables and for each cardinality of the conditioning sets test at most - max_q_global many conditioning sets (when summing over all tested cardinalities more than max_q_global tests may be made) - - max_pds_set: - In Algorithm S3 (here this is self._run_non_ancestral_removal_phase()), the algorithm tests for conditional independence given - subsets of the relevant napds_t sets. If for a given link the set napds_t(X^j_t, X^i_{t-\tau}, C(G)) has more than max_pds_set many - elements (or, if the link is also tested in the opposite directed, if napds_t(X^i_{t-\tau}, X^j_t, C(G)) has more than max_pds_set - elements), this link is not tested. - - prelim_with_collider_rules: - If True: As in pseudocode - If False: Line 22 of Algorithm S2 in [1] is replaced by line 18 of Algorithm S2 when Algorithm S2 is called from the preliminary - phase (not in the last application of Algorithm S2 directly before Algorithm S3 is applied) - - parents_of_lagged: - If True: As in pseudocode - If False: The default conditioning set is pa(X^j_t, C(G)) rather than pa({X^j_t, X^i_{t-\tau}, C(G)) for tau > 0 - - prelim_only: - If True, stop after the preliminary phase. Can be used for detailed performance analysis - - break_once_separated: - If True: As in pseudocode - If False: The break commands are removed from Algorithms S2 and S3 in in [1] - - no_non_ancestral_phase: - If True, do not execute Algorithm S3. Can be used for detailed performance analysis - - use_a_pds_t_for_majority: - If True: As in pseudocode - If False: The search for separating sets instructed by the majority rule is made given subsets adj(X^j_t, C(G)) rather than - subsets of apds_t(X^j_t, X^i_{t-\tau}, C(G)) - - orient_contemp: - If orient_contemp == 1: As in pseudocode of Algorithm S2 in [1] - If orient_contemp == 2: Also orient contemporaneous links in line 18 of Algorithm S2 - If orient_comtemp == 0: Also not orient contemporaneous links in line 22 of Algorithm S2 - - update_middle_marks: - If True: As in pseudoce of Algorithms S2 and S3 in [1] - If False: The MMR rule is not applied - - prelim_rules: - If prelim_rules == 1: As in pseudocode of Algorithm S2 in [1] - If prelim_rules == 0: Exclude rules R9^prime and R10^\prime from line 18 in Algorithm S2 - - fix_all_edges_before_final_orientation: - When one of max_p_global, max_p_non_ancestral, max_q_global or max_pds_set is not np.inf, the algorithm may terminate although not - all middle marks are empty. All orientation rules are nevertheless sound, since the rules always check for the appropriate middle - marks. If fix_all_edges_before_final_orientation is True, all middle marks are set to the empty middle mark by force, followed by - another application of the rules. - - auto_first: - If True: As in pseudcode of Algorithms S2 and S3 in [1] - If False: Autodependency links are not prioritized even before contemporaneous links - - remember_only_parents: - If True: As in pseudocode of Algorithm 1 - If False: If X^i_{t-\tau} has been marked as ancestor of X^j_t at any point of a preliminary iteration but the link between - X^i_{t-\tau} and X^j_t was removed later, the link is nevertheless initialized with a tail at X^i_{t-\tau} in the re-initialization - - no_apr: - If no_apr == 0: As in pseudcode of Algorithms S2 and S3 in [1] - If no_apr == 1: The APR is not applied by Algorithm S2, except in line 22 of its last call directly before the call of Algorithm S3 - If no_apr == 2: The APR is never applied - - Return value of self.run_lpcmci(): - graph : array of shape (N, N, tau_max+1) - Resulting DPAG, representing the learned causal relationships. - val_matrix : array of shape (N, N, tau_max+1) - Estimated matrix of test statistic values regarding adjacencies. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values regarding adjacencies. - - A note on middle marks: - For convenience (to have strings of the same lengths) we here internally denote the empty middle mark by '-'. For post-processing - purposes all middle marks are set to the empty middle mark (here '-'). - - A note on wildcards: - The middle mark wildcard \ast and the edge mark wildcard are here represented as *, the edge mark wildcard \star as + - """ - - def __init__(self, dataframe, cond_ind_test, verbosity = 0): - """Class constructor. Store: - i) data - ii) conditional independence test object - iii) some instance attributes""" - - # Init base class - PCMCIbase.__init__(self, dataframe=dataframe, - cond_ind_test=cond_ind_test, - verbosity=verbosity) - -
[docs] def run_lpcmci(self, - link_assumptions = None, - tau_min = 0, - tau_max = 1, - pc_alpha = 0.05, - n_preliminary_iterations = 1, - max_cond_px = 0, - max_p_global = np.inf, - max_p_non_ancestral = np.inf, - max_q_global = np.inf, - max_pds_set = np.inf, - prelim_with_collider_rules = True, - parents_of_lagged = True, - prelim_only = False, - break_once_separated = True, - no_non_ancestral_phase = False, - use_a_pds_t_for_majority = True, - orient_contemp = 1, - update_middle_marks = True, - prelim_rules = 1, - fix_all_edges_before_final_orientation = True, - auto_first = True, - remember_only_parents = True, - no_apr = 0): - """Run LPCMCI on the dataset and with the conditional independence test passed to the class constructor and with the - options passed to this function.""" - - ####################################################################################################################### - ####################################################################################################################### - # Step 0: Initializations - self._initialize(link_assumptions, tau_min, tau_max, pc_alpha, n_preliminary_iterations, max_cond_px, max_p_global, - max_p_non_ancestral, max_q_global, max_pds_set, prelim_with_collider_rules, parents_of_lagged, prelim_only, - break_once_separated, no_non_ancestral_phase, use_a_pds_t_for_majority, orient_contemp, update_middle_marks, - prelim_rules, fix_all_edges_before_final_orientation, auto_first, remember_only_parents, no_apr) - - ####################################################################################################################### - ####################################################################################################################### - # Step 1: Preliminary phases - for i in range(self.n_preliminary_iterations): - - # Verbose output - if self.verbosity >= 1: - print("\n=======================================================") - print("=======================================================") - print("Starting preliminary phase {:2}".format(i + 1)) - - # In the preliminary phases, auto-lag links are tested with first priority. Among the auto-lag links, different lags are - # not distinguished. All other links have lower priority, among which those which shorter lags have higher priority - self._run_ancestral_removal_phase(prelim = True) - - # Verbose output - if self.verbosity >= 1: - print("\nPreliminary phase {:2} complete".format(i + 1)) - print("\nGraph:\n--------------------------------") - self._print_graph_dict() - print("--------------------------------") - - # When the option self.prelim_only is chosen, do not re-initialize in the last iteration - if i == self.n_preliminary_iterations - 1 and self.prelim_only: - break - - # Remember ancestorships, re-initialize and re-apply the remembered ancestorships - def_ancs = self.def_ancs - - if self.remember_only_parents: - smaller_def_ancs = dict() - for j in range(self.N): - smaller_def_ancs[j] = {(i, lag_i) for (i, lag_i) in def_ancs[j] if self._get_link((i, lag_i), (j, 0)) != ""} - def_ancs = smaller_def_ancs - - self._initialize_run_memory() - self._apply_new_ancestral_information(None, def_ancs) - - ####################################################################################################################### - ####################################################################################################################### - # Step 2: Full ancestral phase - if not self.prelim_only: - - # Verbose output - if self.verbosity >= 1: - print("\n=======================================================") - print("=======================================================") - print("Starting final ancestral phase") - - # In the standard ancestral phase, links are prioritized in the same as in the preliminary phases - self._run_ancestral_removal_phase() - - # Verbose output - if self.verbosity >= 1: - print("\nFinal ancestral phase complete") - print("\nGraph:\n--------------------------------") - self._print_graph_dict() - print("--------------------------------") - - ####################################################################################################################### - ####################################################################################################################### - # Step 3: Non-ancestral phase - if (not self.prelim_only) and (not self.no_non_ancestral_phase): - - # Verbose output - if self.verbosity >= 1: - print("\n=======================================================") - print("=======================================================") - print("Starting non-ancestral phase") - - # In the non-ancestral phase, large lags are prioritized - self._run_non_ancestral_removal_phase() - - # Verbose output - if self.verbosity >= 1: - print("\nNon-ancestral phase complete") - print("\nGraph:\n--------------------------------") - self._print_graph_dict() - print("--------------------------------") - - if self.fix_all_edges_before_final_orientation: - - # Verbose output - if self.verbosity >= 1: - print("\n=======================================================") - print("=======================================================") - print("Final rule application phase") - print("\nSetting all middle marks to '-'") - - self._fix_all_edges() - self._run_orientation_phase(rule_list = self._rules_all, only_lagged = False) - - ####################################################################################################################### - ####################################################################################################################### - - # Verbose output - if self.verbosity >= 1: - print("\n=======================================================") - print("=======================================================") - print("\nLPCMCI has converged") - print("\nFinal graph:\n--------------------------------") - print("--------------------------------") - self._print_graph_dict() - print("--------------------------------") - print("--------------------------------\n") - - print("Max search set: {}".format(self.max_na_search_set_found)) - print("Max na-pds set: {}\n".format(self.max_na_pds_set_found)) - - # Post processing - self._fix_all_edges() - self.graph = self._dict2graph() - self.pval_max_matrix = self._dict_to_matrix(self.pval_max, self.tau_max, self.N, default = 0) - self.val_min_matrix = self._dict_to_matrix(self.pval_max_val, self.tau_max, self.N, default = 0) - self.cardinality_matrix = self._dict_to_matrix(self.pval_max_card, self.tau_max, self.N, default = 0) - - # Build and return the return dictionariy - return_dict = {"graph": self.graph, - "p_matrix": self.pval_max_matrix, - "val_matrix": self.val_min_matrix} - return return_dict
- - - def _initialize(self, link_assumptions, tau_min, tau_max, pc_alpha, n_preliminary_iterations, max_cond_px, max_p_global, - max_p_non_ancestral, max_q_global, max_pds_set, prelim_with_collider_rules, parents_of_lagged, prelim_only, - break_once_separated, no_non_ancestral_phase, use_a_pds_t_for_majority, orient_contemp, update_middle_marks, prelim_rules, - fix_all_edges_before_final_orientation, auto_first, remember_only_parents, no_apr): - """Function for - i) saving the arguments passed to self.run_lpcmci() as instance attributes - ii) initializing various memory variables for storing the current graph, sepsets etc. - """ - - # Save the arguments passed to self.run_lpcmci() - self.link_assumptions = link_assumptions - self.tau_min = tau_min - self.tau_max = tau_max - self.pc_alpha = pc_alpha - self.n_preliminary_iterations = n_preliminary_iterations - self.max_cond_px = max_cond_px - self.max_p_global = max_p_global - self.max_p_non_ancestral = max_p_non_ancestral - self.max_q_global = max_q_global - self.max_pds_set = max_pds_set - self.prelim_with_collider_rules = prelim_with_collider_rules - self.parents_of_lagged = parents_of_lagged - self.prelim_only = prelim_only - self.break_once_separated = break_once_separated - self.no_non_ancestral_phase = no_non_ancestral_phase - self.use_a_pds_t_for_majority = use_a_pds_t_for_majority - self.orient_contemp = orient_contemp - self.update_middle_marks = update_middle_marks - self.prelim_rules = prelim_rules - self.fix_all_edges_before_final_orientation = fix_all_edges_before_final_orientation - self.auto_first = auto_first - self.remember_only_parents = remember_only_parents - self.no_apr = no_apr - - if pc_alpha < 0. or pc_alpha > 1: - raise ValueError("Choose 0 <= pc_alpha <= 1") - - # Check that validity of tau_min and tau_max - self._check_tau_min_tau_max() - - # Check the validity of 'link_assumptions' - if self.link_assumptions is not None: - self._check_link_assumptions() - - # Rules to be executed at the end of a preliminary phase - self._rules_prelim_final= [["APR"], ["ER-08"], ["ER-02"], ["ER-01"], ["ER-09"], ["ER-10"]] - - # Rules to be executed within the while loop of a preliminary phase - self._rules_prelim = [["APR"], ["ER-08"], ["ER-02"], ["ER-01"]] if self.prelim_rules == 0 else self._rules_prelim_final - - # Full list of all rules - self._rules_all = [["APR"], ["ER-08"], ["ER-02"], ["ER-01"], ["ER-00-d"], ["ER-00-c"], ["ER-03"], ["R-04"], ["ER-09"], ["ER-10"], ["ER-00-b"], ["ER-00-a"]] - - # Initialize various memory variables for storing the current graph, sepsets etc. - self._initialize_run_memory() - - # Return - return True - - def _check_tau_min_tau_max(self): - """Check whether the choice of tau_min and tau_max is valid.""" - - if not 0 <= self.tau_min <= self.tau_max: - raise ValueError("tau_min = {}, ".format(self.tau_min) + \ - "tau_max = {}, ".format(self.tau_max) + \ - "but 0 <= tau_min <= tau_max required.") - - def _check_link_assumptions(self): - """Check the validity of user-specified 'link_assumptions'. - - The checks assert: - - Valid dictionary keys - - Valid edge types - - That no causal cycle is specified - - That no almost causal cycle is specified - - The checks do not assert that maximality is not violated.""" - - # Ancestorship matrices - ancs_mat_contemp = np.zeros((self.N, self.N), dtype = "int32") - ancs_mat = np.zeros((self.N*(self.tau_max + 1), - self.N*(self.tau_max + 1)), dtype = "int32") - - # Run through the outer dictionary - for j, links_j in self.link_assumptions.items(): - - # Check validity of keys of outer dictionary - if not 0 <= j <= self.N - 1: - raise ValueError("The argument 'link_assumption' must be a "\ - "dictionary whose keys are in {0, 1, ..., N-1}, where N "\ - "is the number of component time series. Here, "\ - f"N = {self.N}.") - - # Run through the inner dictionary - for (i, lag_i), link_ij in links_j.items(): - - # Check validity of keys of inner dictionary - if i == j and lag_i == 0: - raise ValueError(f"The dictionary 'link_assumptions[{j}] "\ - f"must not have the key ({j}, 0), because this refers "\ - "to a self-link.") - - if (not (0 <= i <= self.N - 1) - or not (-self.tau_max <= lag_i <= -self.tau_min)): - raise ValueError("All values of 'link_assumptions' must "\ - "be dictionaries whose keys are of the form (i, "\ - "lag_i), where i in {0, 1, ..., N-1} with N the "\ - "number of component time series and lag_i in "\ - "{-tau_max, ..., -tau_min} with tau_max the maximum "\ - "considered time lag and tau_min the minimum assumed "\ - f"time lag. Here, N = {self.N} and tau_max = "\ - f"{self.tau_max} and tau_min = {self.tau_min}.") - - # Check for validity of entries. At the same time mark the - # ancestorships in ancs_mat_contemp and ancs_mat - - if link_ij == "": - - # Check for symmetry of lag zero links - if lag_i == 0: - - if (self.link_assumptions.get(i) is None - or self.link_assumptions[i].get((j, 0)) is None - or self.link_assumptions[i][(j, 0)] != ""): - raise ValueError("The lag zero links specified by "\ - "'link_assumptions' must be symmetric: Because"\ - f"'link_assumptions'[{j}][({i}, {0})] = '', "\ - " there must also be "\ - f"'link_assumptions'[{i}][({j}, {0})] = ''.") - continue - - if len(link_ij) != 3: - if lag_i < 0: - raise ValueError("Invalid link: "\ - f"'link_assumptions'[{j}][({i}, {lag_i})] = "\ - f"{link_ij}. Allowed are: '-?>', '-->', '<?>', "\ - "'<->', 'o?>', 'o->'.") - else: - raise ValueError("Invalid link: "\ - f"'link_assumptions'[{j}][({i}, {lag_i})] = "\ - f"{link_ij}. Allowed are: '-?>', '-->', '<?>', "\ - "'<->', 'o?>', 'o->', '<?-', '<--', '<?o', '<--', "\ - "'o-o', 'o?o'.") - - if link_ij[0] == "-": - - if link_ij[2] != ">": - raise ValueError("Invalid link: "\ - f"'link_assumptions'[{j}][({i}, {lag_i})] = "\ - f"{link_ij}. The first character '-', which says "\ - f"that ({i}, {lag_i}) is an ancestor (cause) of "\ - f"({j}, 0). Hence, ({j}, 0) is a non-ancestor "\ - f"(non-cause) of ({i}, {lag_i}) and the third "\ - "character must be '>'.") - - # Mark the ancestorship - if lag_i == 0: - ancs_mat_contemp[i, j] = 1 - for Delta_t in range(0, self.tau_max + 1 - abs(lag_i)): - ancs_mat[self.N*(abs(lag_i) + Delta_t) + i, - self.N*Delta_t + j] = 1 - - elif link_ij[0] in ["<", "o"]: - - if lag_i < 0: - - if link_ij[2] != ">": - raise ValueError("Invalid link: "\ - f"'link_assumptions'[{j}][({i}, {lag_i})] = "\ - f"{link_ij}. Since {lag_i} < 0, ({j}, 0) "\ - f"cannot be an ancestor (cause) of "\ - f"({i}, {lag_i}). Hence, the third character "\ - f"must be '>'.") - - else: - - if link_ij[2] not in ["-", ">", "o"]: - raise ValueError("Invalid link: "\ - f"'link_assumptions'[{j}][({i}, {0})] = "\ - f"{link_ij}. The third character must be one "\ - "of the following: 1) '-', which says that "\ - f"({j}, 0) is an ancestor (cause) of "\ - f"({i}, {0}). 2) '>', which says that "\ - f"({j}, 0) is a non-ancestor (non-cause) of "\ - f"({i}, {0}). 3) 'o', which says that it is "\ - f"unknown whether or not ({j}, {0}) is an "\ - f"ancestor (cause) of ({i}, {0}).") - - if link_ij[2] == "-": - - if link_ij[0] != "<": - raise ValueError("Invalid link: "\ - f"'link_assumptions'[{j}][({i}, {0})] = "\ - f"{link_ij}. The third character is '-', "\ - f"which says that ({j}, {0}) is an "\ - f"ancestor (cause) of ({i}, 0). Hence, "\ - f"({i}, 0) is a non-ancestor (non-cause) "\ - f"of ({j}, {0}) and the first character "\ - "must be '<'.") - - # Mark the ancestorship - ancs_mat_contemp[j, i] = 1 - for Delta_t in range(0, self.tau_max + 1): - ancs_mat[self.N*Delta_t + j, - self.N*Delta_t + i] = 1 - - else: - raise ValueError(f"Invalid link: "\ - f"'link_assumptions'[{j}][({i}, {lag_i})] = "\ - f"{link_ij}. The first character must be one of the "\ - f"following: 1) '-', which says that ({i}, {lag_i}) "\ - f"is an ancestor (cause) of ({j}, 0). 2) '<', which "\ - f"says that ({i}, {lag_i}) is a non-ancestor "\ - f"(non-cause) of ({j}, 0). 3) 'o', which says that it"\ - f"is unknown whether or not ({i}, {lag_i}) is an "\ - f"ancestor (cause) of ({j}, {0}).") - - if link_ij[1] not in ["-", "?"]: - raise ValueError("Invalid link: "\ - f"'link_assumptions'[{j}][({i}, {lag_i})] = "\ - f"{link_ij}. The second character must be one of the "\ - "following: 1) '-', which says that the link "\ - f"({i}, {lag_i}) {link_ij} ({j}, 0) is definitely "\ - "part of the graph. 2) '?', which says that link "\ - "might be but does not need to be part of the graph.") - - # Check for symmetry of lag zero links - if lag_i == 0: - - if (self.link_assumptions.get(i) is None - or self.link_assumptions[i].get((j, 0)) is None - or self.link_assumptions[i][(j, 0)] != self._reverse_link(link_ij)): - raise ValueError(f"The lag zero links specified by "\ - "'link_assumptions' must be symmetric: Because "\ - f"'link_assumptions'[{j}][({i}, {0})] = "\ - f"'{link_ij}' there must also be "\ - f"'link_assumptions'[{i}][({j}, {0})] = "\ - f"'{self._reverse_link(link_ij)}'.") - - # Check for contemporaneous cycles - ancs_mat_contemp_to_N = np.linalg.matrix_power(ancs_mat_contemp, self.N) - if np.sum(ancs_mat_contemp_to_N) != 0: - raise ValueError("According to 'link_assumptions', there is a "\ - "contemporaneous causal cycle. Causal cycles are not allowed.") - - # Check for almost directed cycles - ancs_mat_summed = np.linalg.inv(np.eye(ancs_mat.shape[0], dtype = "int32") - ancs_mat) - for j, links_j in self.link_assumptions.items(): - for (i, lag_i), link_ij in links_j.items(): - if (link_ij != "" - and link_ij[0] == "<" - and ancs_mat_summed[self.N*abs(lag_i) + i, j] != 0): - raise ValueError(f"Inconsistency in 'link_assumptions': "\ - f"Since 'link_assumptions'[{j}][({i}, {lag_i})] "\ - f"= {link_ij}, variable ({i}, {lag_i}) is a "\ - f"non-ancestor (non-cause) of ({j}, 0). At the same "\ - "time, however, 'link_assumptions' specifies a "\ - f"directed path (causal path) from ({i}, {lag_i}) to "\ - f"({j}, 0).") - - # Replace absent entries by '' - for j in range(self.N): - if self.link_assumptions.get(j) is None: - self.link_assumptions[j] = {(i, -tau_i): "" - for (i, tau_i) in product(range(self.N), range(self.tau_min, self.tau_max+1)) - if (tau_i > 0 or i != j)} - else: - for (i, tau_i) in product(range(self.N), range(self.tau_min, self.tau_max+1)): - if (tau_i > 0 or i != j): - if self.link_assumptions[j].get((i, -tau_i)) is None: - self.link_assumptions[j][(i, -tau_i)] = "" - - def _initialize_run_memory(self): - """Function for initializing various memory variables for storing the current graph, sepsets etc.""" - - # Initialize the nested dictionary for storing the current graph. - # Syntax: self.graph_dict[j][(i, -tau)] gives the string representing the link from X^i_{t-tau} to X^j_t - self.graph_dict = {} - for j in range(self.N): - - self.graph_dict[j] = {(i, 0): "o?o" for i in range(self.N) if j != i} - - if self.max_cond_px == 0 and self.update_middle_marks: - self.graph_dict[j].update({(i, -tau): "oL>" for i in range(self.N) for tau in range(1, self.tau_max + 1)}) - else: - self.graph_dict[j].update({(i, -tau): "o?>" for i in range(self.N) for tau in range(1, self.tau_max + 1)}) - - # Initialize the nested dictionary for storing separating sets - # Syntax: self.sepsets[j][(i, -tau)] stores separating sets of X^i_{t-tau} to X^j_t. For tau = 0, i < j. - self.sepsets = {j: {(i, -tau): set() for i in range(self.N) for tau in range(self.tau_max + 1) if (tau > 0 or i < j)} for j in range(self.N)} - - # Initialize dictionaries for storing known ancestorships, non-ancestorships, and ambiguous ancestorships - # Syntax: self.def_ancs[j] contains the set of all known ancestors of X^j_t. Equivalently for the others - self.def_ancs = {j: set() for j in range(self.N)} - self.def_non_ancs = {j: set() for j in range(self.N)} - self.ambiguous_ancestorships = {j: set() for j in range(self.N)} - - # Initialize nested dictionaries for saving the maximal p-value among all conditional independence tests of a given - # pair of variables as well as the corresponding test statistic values and conditioning set cardinalities - # Syntax: As for self.sepsets - self.pval_max = {j: {(i, -tau): -np.inf for i in range(self.N) for tau in range(self.tau_max + 1) if (tau > 0 or i < j)} for j in range(self.N)} - self.pval_max_val = {j: {(i, -tau): np.inf for i in range(self.N) for tau in range(self.tau_max + 1) if (tau > 0 or i < j)} for j in range(self.N)} - self.pval_max_card = {j: {(i, -tau): -np.inf for i in range(self.N) for tau in range(self.tau_max + 1) if (tau > 0 or i < j)} for j in range(self.N)} - # Initialize a nested dictionary for caching na-pds-sets - # Syntax: self._na_pds_t[(i, t_i)][(j, t_j)] stores na_pds_t((i, t_i), (j, t_j)) - self._na_pds_t = {(j, -tau_j): {} for j in range(self.N) for tau_j in range(self.tau_max + 1)} - - # Initialize a variable for remembering the maximal cardinality among all calculated na-pds-sets, as well as the - # maximial cardinality of any search set in the non-ancestral phase - self.max_na_search_set_found = -1 - self.max_na_pds_set_found = -1 - - # Apply the restriction imposed by tau_min - self._apply_tau_min_restriction() - - # Apply the background knowledge given by background_knowledge - if self.link_assumptions is not None: - self._apply_link_assumptions() - - # Return - return True - - def _apply_tau_min_restriction(self): - """Apply the restrictions imposed by a non-zero tau_min: - - Remove all links of lag smaller than tau_min from self.graph_dict - - Set the corresponding entries in self.pval_max, self.pval_max_val, and self.pval_max_card to np.inf, -np.inf, np.inf - """ - - for (i, j, tau) in product(range(self.N), range(self.N), range(0, self.tau_min)): - if tau > 0 or j != i: - self.graph_dict[j][(i, -tau)] = "" - - if tau > 0 or i < j: - self.pval_max[j][(i, -tau)] = np.inf - self.pval_max_val[j][(i, -tau)] = -np.inf - self.pval_max_card[j][(i, -tau)] = np.inf - - def _apply_link_assumptions(self): - """Apply the background knowledge specified by 'link_assumptions': - - Write the specified edge types to self.graph_dict - - Set the corresponding entries in self.pval_max to np.inf, in self.pval_max_val to -np.inf, and in - - to self.pval_max_card to np.inf - """ - - for j, links_j in self.link_assumptions.items(): - for (i, lag_i), link in self.link_assumptions[j].items(): - - # Apply background knowledge - if link != "" and link[1] == "?" and lag_i < 0 and self.max_cond_px == 0 and self.update_middle_marks: - self.graph_dict[j][(i, lag_i)] = link[0] + "L" + link[2] - else: - self.graph_dict[j][(i, lag_i)] = link - - # If background knowledge amounts to absence of link, set the corresponding entries in - # self.pval_max to 2, in self.pval_max_val to -np.inf, and in self.pval_max_card to None to np.inf - if link == "" and (lag_i < 0 or i < j): - self.pval_max[j][(i, lag_i)] = np.inf - self.pval_max_val[j][(i, lag_i)] = -np.inf - self.pval_max_card[j][(i, lag_i)] = np.inf - - def _run_ancestral_removal_phase(self, prelim = False): - """Run an ancestral edge removal phase, this is Algorithm S2""" - - # Iterate until convergence - # p_pc is the cardinality of the non-default part of the conditioning sets. The full conditioning sets may have - # higher cardinality due to default conditioning on known parents - p_pc = 0 - while_broken = False - while True: - - ########################################################################################################## - ### Run the next removal iteration ####################################################################### - - # Force-quit while loop when p_pc exceeds the limit put by self.max_p_global - if p_pc > self.max_p_global: - while_broken = True - break - - # Verbose output - if self.verbosity >= 1: - if p_pc == 0: - print("\nStarting test phase\n") - print("p = {}".format(p_pc)) - - # Variables to memorize the occurence and absence of certain events in the below edge removal phase - has_converged = True - any_removal = False - - # Generate the prioritized link list - if self.auto_first: - - link_list = [product(range(self.N), range(-self.tau_max, 0))] - link_list = link_list + [product(range(self.N), range(self.N), range(-lag, -lag + 1)) for lag in range(0, self.tau_max + 1)] - - else: - - link_list = [product(range(self.N), range(self.N), range(-lag, -lag + 1)) for lag in range(0, self.tau_max + 1)] - - - # Run through all elements of link_list. Each element of link_list specifies ordered pairs of variables whose - # connecting edges are then subjected to conditional independence tests - for links in link_list: - - # Memory variables for storing edges that are marked for removal - to_remove = {j: {} for j in range(self.N)} - - # Iterate through all edges specified by links. Note that since the variables paris are ordered, (A, B) and (B, A) - # are seen as different pairs. - for pair in links: - - # Decode the elements of links into pairs of variables (X, Y) - if len(pair) == 2: - X = (pair[0], pair[1]) - Y = (pair[0], 0) - else: - X = (pair[0], pair[2]) - Y = (pair[1], 0) - - # Do not test auto-links twice - if self.auto_first and X[0] == Y[0]: - continue - - ###################################################################################################### - ### Exclusion of links ############################################################################### - - # Exclude the current link if ... - # ... X = Y - if X[1] == 0 and X[0] == Y[0]: - continue - # ... X > Y - if self._is_smaller(Y, X): - continue - - # Get the current link - link = self._get_link(X, Y) - - # Moreover exclude the current link if ... - # ... X and Y are not adjacent anymore - if link == "": - continue - # ... the link is definitely part of G - if link[1] == "-": - continue - - ###################################################################################################### - ### Determine which tests the link will be subjected to ########################################### - - # Depending on the middle mark on the link between X and Y as well as on some global options, we may not need - # to search for separating set among the potential parents of Y and/or X. - test_Y = True if link[1] not in ["R", "!"] else False - test_X = True if (link[1] not in ["L", "!"] and (X[1] == 0 or (self.max_cond_px > 0 and self.max_cond_px >= p_pc))) else False - - ###################################################################################################### - ### Preparation PC search set and default conditioning set ########################################### - - if test_Y: - S_default_YX, S_search_YX = self._get_default_and_search_sets(Y, X, "ancestral") - - if test_X: - S_default_XY, S_search_XY = self._get_default_and_search_sets(X, Y, "ancestral") - - ###################################################################################################### - ### Middle mark updates ############################################################################## - - any_middle_mark_update = False - - # Note: Updating the middle marks here, within the for-loop, does not spoil order independence. In fact, this - # update does not influence the flow of the for-loop at all - if test_Y: - if len(S_search_YX) < p_pc: - # Note that X is smaller than Y. If S_search_YX exists and has fewer than p elements, X and Y are not - # d-separated by S \subset Par(Y). Therefore, the middle mark on the edge between X and Y can be updated - # with 'R' - self._apply_middle_mark(X, Y, "R") - else: - # Since S_search_YX exists and has hat least p_pc elements, the link between X and Y will be subjected to - # conditional independenc tests. Therefore, the algorithm has not converged yet. - has_converged = False - - if test_X: - if len(S_search_XY) < p_pc: - # Note that X is smaller than Y. If S_search_XY exists and has fewer than p elements, X and Y are not - # d-separated by S \subset Par(X). Therefore, the middle mark on the edge between X and Y can be updated - # with 'L' - self._apply_middle_mark(X, Y, "L") - else: - # Since S_search_YX exists and has hat least p_pc elements, the link between X and Y will be subjected to - # conditional independenc tests. Therefore, the algorithm has not converged yet. - has_converged = False - - ###################################################################################################### - - ###################################################################################################### - ### Tests for conditional independence ############################################################### - - # If option self.break_once_separated is True, the below for-loops will be broken immediately once a separating set - # has been found. In conjunction with the modified majority rule employed for orienting links, order independence - # (with respect to the index 'i' on X^i_t) then requires that the tested conditioning sets are ordered in an order - # independent way. Here, the minimal effect size of previous conditional independence tests serve as an order - # independent order criterion. - if self.break_once_separated or not np.isinf(self.max_q_global): - if test_Y: - S_search_YX = self._sort_search_set(S_search_YX, Y) - if test_X: - S_search_XY = self._sort_search_set(S_search_XY, X) - - # Run through all cardinality p_pc subsets of S_search_YX - if test_Y: - - q_count = 0 - for S_pc in combinations(S_search_YX, p_pc): - - q_count = q_count + 1 - if q_count > self.max_q_global: - break - - # Build the full conditioning set - Z = set(S_pc) - Z = Z.union(S_default_YX) - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - - if self.verbosity >= 2: - print("ANC(Y): %s _|_ %s | S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in S_default_YX]), ' '.join([str(z) for z in S_pc]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) - - # Check whether test result was significant - if pval > self.pc_alpha: - - # Mark the edge from X to Y for removal and save sepset - to_remove[Y[0]][X] = True - self._save_sepset(X, Y, (frozenset(Z), "wm")) - - # Verbose output - if self.verbosity >= 1: - print("({},{:2}) {:11} {} given {} union {}".format(X[0], X[1], "independent", Y, S_pc, S_default_YX)) - - if self.break_once_separated: - break - - # Run through all cardinality p_pc subsets of S_search_XY - if test_X: - - q_count = 0 - for S_pc in combinations(S_search_XY, p_pc): - - q_count = q_count + 1 - if q_count > self.max_q_global: - break - - # Build the full conditioning set - Z = set(S_pc) - Z = Z.union(S_default_XY) - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - - if self.verbosity >= 2: - print("ANC(X): %s _|_ %s | S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in S_default_XY]), ' '.join([str(z) for z in S_pc]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) - - # Check whether test result was significant - if pval > self.pc_alpha: - - # Mark the edge from X to Y for removal and save sepset - to_remove[Y[0]][X] = True - self._save_sepset(X, Y, (frozenset(Z), "wm")) - - # Verbose output - if self.verbosity >= 1: - print("({},{:2}) {:11} {} given {} union {}".format(X[0], X[1], "independent", Y, S_pc, S_default_XY)) - - if self.break_once_separated: - break - - # for pair in links - - ########################################################################################################## - ### Remove edges marked for removal in to_remove ######################################################### - - # Run through all of the nested dictionary - for j in range(self.N): - for (i, lag_i) in to_remove[j].keys(): - - # Remember that at least one edge has been removed, remove the edge - any_removal = True - self._write_link((i, lag_i), (j, 0), "", verbosity = self.verbosity) - - # end for links in link_list - - # Verbose output - if self.verbosity >= 1: - print("\nTest phase complete") - - ############################################################################################################## - ### Orientations and next step ############################################################################### - - if any_removal: - # At least one edge was removed or at least one middle mark has been updated. Therefore: i) apply the restricted set of - # orientation rules, ii) restart the while loop at p_pc = 0, unless all edges have converged, then break the while loop - - only_lagged = False if self.orient_contemp == 2 else True - any_update = self._run_orientation_phase(rule_list = self._rules_prelim, only_lagged = only_lagged) - - # If the orientation phase made a non-trivial update, then restart the while loop. Else increase p_pc by one - if any_update: - if self.max_cond_px == 0 and self.update_middle_marks: - self._update_middle_marks() - p_pc = 0 - - else: - p_pc = p_pc + 1 - - else: - # The graph has not changed at all in this iteration of the while loop. Therefore, if all edges have converged, break the - # while loop. If at least one edge has not yet converged, increase p_pc by one. - - if has_converged: - break - else: - p_pc = p_pc + 1 - - # end while True - - ################################################################################################################## - ### Consistency test and middle mark update ###################################################################### - - # Run through the entire graph - for j in range(self.N): - for (i, lag_i) in self.graph_dict[j].keys(): - - X = (i, lag_i) - Y = (j, 0) - - if self._is_smaller(Y, X): - continue - - # Consider only those links that are still part G - link = self._get_link((i, lag_i), (j, 0)) - if len(link) > 0: - - # Consistency check - if not while_broken: - assert link[1] != "?" - assert link[1] != "L" - assert ((link[1] != "R") or (lag_i < 0 and (self.max_cond_px > 0 or not self.update_middle_marks)) - or (self.no_apr != 0)) - - - # Update all middle marks to '!' - if link[1] not in ["-", "!"]: - self._write_link((i, lag_i), (j, 0), link[0] + "!" + link[2]) - - - ################################################################################################################## - ### Final rule applications ###################################################################################### - - if not prelim or self.prelim_with_collider_rules: - - if not prelim: - self.no_apr = self.no_apr - 1 - - any_update = self._run_orientation_phase(rule_list = self._rules_all, only_lagged = False) - - if self.max_cond_px == 0 and self.update_middle_marks and any_update: - self._update_middle_marks() - - else: - - only_lagged = False if self.orient_contemp >= 1 else True - any_update = self._run_orientation_phase(rule_list = self._rules_prelim_final, only_lagged = only_lagged) - - if self.max_cond_px == 0 and self.update_middle_marks and any_update: - self._update_middle_marks() - - # Return - return True - - - def _run_non_ancestral_removal_phase(self): - """Run the non-ancestral edge removal phase, this is Algorithm S3""" - - # Update of middle marks - self._update_middle_marks() - - # This function initializeds self._graph_full_dict, a nested dictionary representing the graph including links that are - # forward in time. This will make the calculcation of na-pds-t sets easier. - self._initialize_full_graph() - - # Iterate until convergence. Here, p_pc is the cardinality of the non-default part of the conditioning sets. The full - # conditioning sets may have higher cardinality due to default conditioning on known parents - p_pc = 0 - while True: - - ########################################################################################################## - ### Run the next removal iteration ####################################################################### - - # Force-quit while loop when p_pc exceeds the limit put by self.max_p_global or self.max_p_non_ancestral - if p_pc > self.max_p_global or p_pc > self.max_p_non_ancestral: - break - - # Verbose output - if self.verbosity >= 1: - if p_pc == 0: - print("\nStarting test phase\n") - print("p = {}".format(p_pc)) - - # Variables to memorize the occurence and absence of certain events in the below edge removal phase - has_converged = True - any_removal = False - - # Generate the prioritized link list - if self.auto_first: - - link_list = [product(range(self.N), range(-self.tau_max, 0))] - link_list = link_list + [product(range(self.N), range(self.N), range(-lag, -lag + 1)) for lag in range(0, self.tau_max + 1)] - - else: - - link_list = [product(range(self.N), range(self.N), range(-lag, -lag + 1)) for lag in range(0, self.tau_max + 1)] - - - # Run through all elements of link_list. Each element of link_list specifies ordered pairs of variables whose connecting - # edges are then subjected to conditional independence tests - for links in link_list: - - # Memory variables for storing edges that are marked for removal - to_remove = {j: {} for j in range(self.N)} - - # Iterate through all edges specified by links. Note that since the variables paris are ordered, (A, B) and (B, A) are - # seen as different pairs. - for pair in links: - - if len(pair) == 2: - X = (pair[0], pair[1]) - Y = (pair[0], 0) - else: - X = (pair[0], pair[2]) - Y = (pair[1], 0) - - # Do not test auto-links twice - if self.auto_first and X[0] == Y[0]: - continue - - ###################################################################################################### - ### Exclusion of links ############################################################################### - - # Exclude the current link if ... - # ... X = Y - if X[1] == 0 and X[0] == Y[0]: - continue - # ... X > Y - if self._is_smaller(Y, X): - continue - - # Get the current link - link = self._get_link(X, Y) - - # Exclude the current link if ... - if link == "": - continue - # ... the link is definitely part of G - if link[1] == "-": - continue - - ###################################################################################################### - ### Determine which tests the link will be subjected to ############################################# - - # The algorithm always searches for separating sets in na-pds-t(Y, X). Depending on whether the X and Y are - # contemporaneous on some global options, the algorithm may also search for separating sets in na-pds-t(X, Y) - test_X = True if (X[1] == 0 or (self.max_cond_px > 0 and self.max_cond_px >= p_pc)) else False - - ###################################################################################################### - ### Preparation of default conditioning sets and PC search sets ###################################### - - # Verbose output - if self.verbosity >= 2: - print("_get_na_pds_t ") - - S_default_YX, S_search_YX = self._get_default_and_search_sets(Y, X, "non-ancestral") - - self.max_na_search_set_found = max(self.max_na_search_set_found, len(S_search_YX)) - - if test_X: - S_default_XY, S_search_XY = self._get_default_and_search_sets(X, Y, "non-ancestral") - - self.max_na_search_set_found = max(self.max_na_search_set_found, len(S_search_XY)) - - # If the search set exceeds the specified bounds, do not test this link - if len(S_search_YX) > self.max_pds_set or (test_X and len(S_search_XY) > self.max_pds_set): - continue - - ###################################################################################################### - - ###################################################################################################### - ### Middle mark updates ############################################################################## - - # Note: Updating the middle marks here, within the for-loop, does not spoil order independence. In fact, this - # update does not influence the flow of the for-loop at all - if len(S_search_YX) < p_pc or (test_X and len(S_search_XY) < p_pc): - # Mark the link from X to Y as converged, remember the fixation, then continue - self._write_link(X, Y, link[0] + "-" + link[2], verbosity = self.verbosity) - continue - - else: - has_converged = False - - - ###################################################################################################### - ### Tests for conditional independence ############################################################### - - # If option self.break_once_separated is True, the below for-loops will be broken immediately once a separating set - # has been found. In conjunction with the modified majority rule employed for orienting links, order independence - # (with respect to the index 'i' on X^i_t) then requires that the tested conditioning sets are ordered in an order - # independent way. Here, the minimal effect size of previous conditional independence tests serve as an order - # independent order criterion. - if self.break_once_separated or not np.isinf(self.max_q_global): - S_search_YX = self._sort_search_set(S_search_YX, Y) - if test_X: - S_search_XY = self._sort_search_set(S_search_XY, X) - - # Verbose output - if self.verbosity >= 2: - print("for S_pc in combinations(S_search_YX, p_pc)") - - # Run through all cardinality p_pc subsets of S_search_YX - q_count = 0 - for S_pc in combinations(S_search_YX, p_pc): - - q_count = q_count + 1 - if q_count > self.max_q_global: - break - - # Build the full conditioning set - Z = set(S_pc) - Z = Z.union(S_default_YX) - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - - if self.verbosity >= 2: - print("Non-ANC(Y): %s _|_ %s | S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in S_default_YX]), ' '.join([str(z) for z in S_pc]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) - - # Check whether test result was significant - if pval > self.pc_alpha: - - # Mark the edge from X to Y for removal and save sepset - to_remove[Y[0]][X] = True - self._save_sepset(X, Y, (frozenset(Z), "wm")) - - # Verbose output - if self.verbosity >= 1: - print("({},{:2}) {:11} {} given {} union {}".format(X[0], X[1], "independent", Y, S_pc, S_default_YX)) - - if self.break_once_separated: - break - - if test_X: - - # Verbose output - if self.verbosity >= 2: - print("for S_pc in combinations(S_search_XY, p_pc)") - - # Run through all cardinality p_pc subsets of S_search_XY - q_count = 0 - for S_pc in combinations(S_search_XY, p_pc): - - q_count = q_count + 1 - if q_count > self.max_q_global: - break - - # Build the full conditioning set - Z = set(S_pc) - Z = Z.union(S_default_XY) - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - - if self.verbosity >= 2: - print("Non-ANC(X): %s _|_ %s | S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in S_default_XY]), ' '.join([str(z) for z in S_pc]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) - - # Check whether test result was significant - if pval > self.pc_alpha: - - # Mark the edge from X to Y for removal and save sepset - to_remove[Y[0]][X] = True - self._save_sepset(X, Y, (frozenset(Z), "wm")) - - # Verbose output - if self.verbosity >= 1: - print("({},{:2}) {:11} {} given {} union {}".format(X[0], X[1], "independent", Y, S_pc, S_default_YX)) - - if self.break_once_separated: - break - - # end for links in link_list - - ########################################################################################################## - ### Remove edges marked for removal in to_remove ######################################################### - - # Check whether there is any removal at all - any_removal_this = False - - # Run through all of the nested dictionary - for j in range(self.N): - for (i, lag_i) in to_remove[j].keys(): - - # Remember that at least one edge has been removed, remove the edge - any_removal = True - any_removal_this = True - self._write_link((i, lag_i), (j, 0), "", verbosity = self.verbosity) - - # If any_removal_this = True, we need to recalculate full graph dict - if any_removal_this: - self._initialize_full_graph() - self._na_pds_t = {(j, -tau_j): {} for j in range(self.N) for tau_j in range(self.tau_max + 1)} - - - # end for links in link_list - - # Verbose output - if self.verbosity >= 1: - print("\nTest phase complete") - - ############################################################################################################## - ### Orientations and next step ############################################################################### - - if any_removal: - # At least one edge was removed or at least one middle mark has been updated. Therefore: i) apply the full set of - # orientation rules, ii) restart the while loop at p_pc = 0, unless all edges have converged, then break the while loop - - any_update = self._run_orientation_phase(rule_list = self._rules_all, only_lagged = False) - - if any_update: - self._initialize_full_graph() - self._na_pds_t = {(j, -tau_j): {} for j in range(self.N) for tau_j in range(self.tau_max + 1)} - p_pc = 0 - - else: - p_pc = p_pc + 1 - - else: - # The graph has not changed at all in this iteration of the while loop. Therefore, if all edges have converged, break - # the while loop. If at least one edge has not yet converged, increase p_pc by one. - - if has_converged: - break - else: - p_pc = p_pc + 1 - - # end while True - - ################################################################################################################## - ### Final rule applications ###################################################################################### - - self._run_orientation_phase(rule_list = self._rules_all, only_lagged = False) - - # Return - return True - - - def _run_orientation_phase(self, rule_list, only_lagged = False): - """Exhaustively apply the rules specified by rule_list, this is Algorithm S4""" - - # Verbose output - if self.verbosity >= 1: - print("\nStarting orientation phase") - print("with rule list: ", rule_list) - - # Remember whether this call to _run_orientation_phase has made any update to G - restarted_once = False - - # Run through all priority levels of rule_list - idx = 0 - while idx <= len(rule_list) - 1: - - # Some rule require self._graph_full_dict. Therefore, it is initialized once the while loop (re)-starts at the first - # prioprity level - if idx == 0: - self._initialize_full_graph() - - # Remember whether G will be updated with new useful information ('x' marks are considered not useful) - restart = False - - ########################################################################################################### - ### Rule application ###################################################################################### - - # Get the current rules - current_rules = rule_list[idx] - - # Prepare a list to remember marked orientations - to_orient = [] - - # Run through all current rules - for rule in current_rules: - - # Verbose output - if self.verbosity >= 1: - print("\n{}:".format(rule)) - - # Exhaustively apply the rule to the graph... - orientations = self._apply_rule(rule, only_lagged) - - # Verbose output - if self.verbosity >= 1: - for ((i, j, lag_i), new_link) in set(orientations): - print("{:10} ({},{:2}) {:3} ({},{:2}) ==> ({},{:2}) {:3} ({},{:2}) ".format("Marked:", i, lag_i, self._get_link((i, lag_i), (j, 0)), j, 0,i, lag_i, new_link, j, 0)) - if len(orientations) == 0: - print("Found nothing") - - # ... and stage the results for orientation and removal - to_orient.extend(orientations) - - ########################################################################################################### - ### Aggregation of marked orientations #################################################################### - - links_to_remove = set() - links_to_fix = set() - new_ancs = {j: set() for j in range(self.N)} - new_non_ancs = {j: set() for j in range(self.N)} - - # Run through all of the nested dictionary - for ((i, j, lag_i), new_link) in to_orient: - - # The old link - old_link = self._get_link((i, lag_i), (j, 0)) - - # Is the link marked for removal? - if new_link == "" and len(old_link) > 0: - links_to_remove.add((i, j, lag_i)) - continue - - # Assert that no preceeding variable is marked as an ancestor of later variable - assert not (lag_i > 0 and new_link[2] == "-") - - # Is the link marked for fixation? - if new_link[1] == "-" and old_link[1] != "-": - links_to_fix.add((i, j, lag_i)) - - # New ancestral relation of (i, lag_i) to (j, 0) - if new_link[0] == "-" and old_link[0] != "-": - new_ancs[j].add((i, lag_i)) - elif new_link[0] == "<" and old_link[0] != "<": - new_non_ancs[j].add((i, lag_i)) - - # New ancestral relation of (j, 0) to (i, lag_i == 0) - if lag_i == 0: - if new_link[2] == "-" and old_link[2] != "-": - new_ancs[i].add((j, 0)) - elif new_link[2] == ">" and old_link[2] != ">": - new_non_ancs[i].add((j, 0)) - - # Resolve conflicts about removal and fixation - ambiguous_links = links_to_fix.intersection(links_to_remove) - links_to_fix = links_to_fix.difference(ambiguous_links) - links_to_remove = links_to_remove.difference(ambiguous_links) - - ########################################################################################################### - ### Removals, update middle marks, update ancestral information ########################################### - - # Remove links - for (i, j, lag_i) in links_to_remove: - self._write_link((i, lag_i), (j, 0), "", verbosity = self.verbosity) - restart = True - - # Fix links - for (i, j, lag_i) in links_to_fix: - old_link = self._get_link((i, lag_i), (j, 0)) - new_link = old_link[0] + "-" + old_link[2] - self._write_link((i, lag_i), (j, 0), new_link, verbosity = self.verbosity) - restart = True - - # Mark links as ambiguous - for (i, j, lag_i) in ambiguous_links: - old_link = self._get_link((i, lag_i), (j, 0)) - new_link = old_link[0] + "x" + old_link[2] - self._write_link((i, lag_i), (j, 0), new_link, verbosity = self.verbosity) - - # Update ancestral information. The function called includes conflict resolution - restart = restart or self._apply_new_ancestral_information(new_non_ancs, new_ancs) - - ########################################################################################################### - ### Make separating sets of removed links weakly minimal ################################################## - - if len(links_to_remove) > 0: - - # Verbose output - if self.verbosity >= 1: - print("\nLinks were removed by rules\n") - - new_ancs = {j: set() for j in range(self.N)} - new_non_ancs = {j: set() for j in range(self.N)} - - # Run through all links that have been removed - for (i, j, lag_i) in links_to_remove: - - X = (i, lag_i) - Y = (j, 0) - - # Get ancestors of X and Y - ancs_XY = self._get_ancs([X, Y]).difference({X, Y}) - - # Read out all separating sets that were found in the rule phase, then consider only those of minimal - # cardinality - old_sepsets_all = {Z for (Z, _) in self._get_sepsets(X, Y)} - min_size = min({len(Z) for Z in old_sepsets_all}) - old_sepsets_smallest = {Z for Z in old_sepsets_all if len(Z) == min_size} - - # For all separating sets of minimal cardinality, find weakly minimal separating subsets - self._delete_sepsets(X, Y) - self._make_sepset_weakly_minimal(X, Y, old_sepsets_smallest, ancs_XY) - new_sepsets = self._get_sepsets(X, Y) - - # end for (i, j, lag_i) in links_to_remove - # end if len(links_to_remove) > 0 - - # If any useful new information was found, go back to idx = 0, else increase idx by 1 - if restart: - idx = 0 - restarted_once = True - else: - idx = idx + 1 - - # end while idx <= len(rule_list) - 1 - - # Verbose output - if self.verbosity >= 1: - print("\nOrientation phase complete") - - # No return value - return restarted_once - - ######################################################################################################################## - ######################################################################################################################## - ######################################################################################################################## - - def _get_default_and_search_sets(self, A, B, phase): - """Return the default conditioning set and PC search set""" - - if phase == "ancestral": - - # This is a-pds-t(A, B) - S_raw = self._get_a_pds_t(A, B) - - # Determine the default conditioning set - S_default = self._get_parents(A, B).difference({A, B}) - - # Determine the PC search set - S_search = S_raw.difference(S_default) - - - elif phase == "non-ancestral": - - # This is na-pds-t(A, B) - S_raw = self._get_na_pds_t(A, B) - - self.max_na_pds_set_found = max(self.max_na_pds_set_found, len(S_raw)) - - # Determine the default conditioning set - S_default = S_raw.intersection(self._get_ancs([A, B])) - S_default = S_default.union(self._get_parents(A, B)) - S_default = S_default.difference({A, B}) - - # Determine the PC search set - S_search = S_raw.difference(S_default) - - # Return - return S_default, S_search - - - def _apply_new_ancestral_information(self, new_non_ancs, new_ancs): - """Apply the new ancestorships and non-ancestorships specified by new_non_ancs and new_ancs to the current graph. Conflicts - are resolved by marking. Returns True if any circle mark was turned into a head or tail, else False.""" - - ####################################################################################################### - ### Preprocessing ##################################################################################### - - # Memory variables - add_to_def_non_ancs = {j: set() for j in range(self.N)} - add_to_def_ancs = {j: set() for j in range(self.N)} - add_to_ambiguous_ancestorships = {j: set() for j in range(self.N)} - put_head_or_tail = False - - # Default values - if new_non_ancs is None: - new_non_ancs = {j: set() for j in range(self.N)} - - if new_ancs is None: - new_ancs = {j: set() for j in range(self.N)} - - # Marking A as ancestor of B implies that B is marked as a non-ancestor of A. This is only non-trivial for A before B - for j in range(self.N): - for (i, lag_i) in new_ancs[j]: - if lag_i == 0: - new_non_ancs[i].add((j, 0)) - - ####################################################################################################### - ### Conflict resolution ############################################################################### - - # Iterate through new_non_ancs - for j in range(self.N): - for (i, lag_i) in new_non_ancs[j]: - # X = (i, lag_i), Y = (j, 0) - # X is marked as non-ancestor for Y - - # Conflict resolution - if (i, lag_i) in self.ambiguous_ancestorships[j]: - # There is a conflict, since it is already marked as ambiguous whether X is an ancestor of Y - if self.verbosity >= 1: - print("{:10} ({}, {:2}) marked as non-anc of {} but saved as ambiguous".format("Conflict:", i, lag_i, (j, 0))) - - elif (i, lag_i) in self.def_ancs[j]: - # There is a conflict, since X is already marked as ancestor of Y - add_to_ambiguous_ancestorships[j].add((i, lag_i)) - - if self.verbosity >= 1: - print("{:10} ({}, {:2}) marked as non-anc of {} but saved as anc".format("Conflict:", i, lag_i, (j, 0))) - - elif (i, lag_i) in new_ancs[j]: - # There is a conflict, since X is also marked as a new ancestor of Y - add_to_ambiguous_ancestorships[j].add((i, lag_i)) - - if self.verbosity >= 1: - print("{:10} ({}, {:2}) marked as both anc- and non-anc of {}".format("Conflict:", i, lag_i, (j, 0))) - - else: - # There is no conflict - add_to_def_non_ancs[j].add((i, lag_i)) - - # Iterate through new_ancs - for j in range(self.N): - for (i, lag_i) in new_ancs[j]: - # X = (i, lag_i), Y = (j, 0) - # X is marked as ancestor for Y - - # Conflict resolution - if (i, lag_i) in self.ambiguous_ancestorships[j]: - # There is a conflict, since it is already marked as ambiguous whether X is an ancestor of Y - if self.verbosity >= 1: - print("{:10} ({}, {:2}) marked as anc of {} but saved as ambiguous".format("Conflict:", i, lag_i, (j, 0))) - - elif lag_i == 0 and (j, 0) in self.ambiguous_ancestorships[i]: - # There is a conflict, since X and Y are contemporaneous and it is already marked ambiguous as whether Y is an - # ancestor of X - # Note: This is required here, because X being an ancestor of Y implies that Y is not an ancestor of X. This - # ambiguity cannot exist when X is before Y - if self.verbosity >= 1: - print("{:10} ({}, {:2}) marked as anc of {} but saved as ambiguous".format("Conflict:", i, lag_i, (j, 0))) - - elif (i, lag_i) in self.def_non_ancs[j]: - # There is a conflict, since X is already marked as non-ancestor of Y - add_to_ambiguous_ancestorships[j].add((i, lag_i)) - - if self.verbosity >= 1: - print("{:10} ({}, {:2}) marked as anc of {} but saved as non-anc".format("Conflict:", i, lag_i, (j, 0))) - - elif (i, lag_i) in new_non_ancs[j]: - # There is a conflict, since X is also marked as a new non-ancestor of Y - add_to_ambiguous_ancestorships[j].add((i, lag_i)) - - if self.verbosity >= 1: - print("{:10} ({}, {:2}) marked as both anc- and non-anc of {}".format("Conflict:", i, lag_i, (j, 0))) - - else: - # There is no conflict - add_to_def_ancs[j].add((i, lag_i)) - - ####################################################################################################### - - ####################################################################################################### - ### Apply the ambiguous information ################################################################### - - for j in range(self.N): - - for (i, lag_i) in add_to_ambiguous_ancestorships[j]: - - old_link = self._get_link((i, lag_i), (j, 0)) - if len(old_link) > 0 and old_link[0] != "x": - - new_link = "x" + old_link[1] + old_link[2] - self._write_link((i, lag_i), (j, 0), new_link, verbosity = self.verbosity) - - if self.verbosity >= 1: - if (i, lag_i) in self.def_ancs[j]: - print("{:10} Removing ({}, {:2}) as anc of {}".format("Update:", i, lag_i, (j, 0))) - if (i, lag_i) in self.def_non_ancs[j]: - print("{:10} Removing ({}, {:2}) as non-anc of {}".format("Update:", i, lag_i, (j, 0))) - - self.def_ancs[j].discard((i, lag_i)) - self.def_non_ancs[j].discard((i, lag_i)) - - if lag_i == 0: - - if self.verbosity >= 1 and (j, 0) in self.def_ancs[i]: - print("{:10} Removing {} as anc of {}".format("Update:", i, lag_i, (j, 0))) - - self.def_ancs[i].discard((j, 0)) - # Do we also need the following? - # self.def_non_ancs[i].discard((j, 0)) - - if self.verbosity >= 1 and (i, lag_i) not in self.ambiguous_ancestorships[j]: - print("{:10} Marking ancestorship of ({}, {:2}) to {} as ambiguous".format("Update:", i, lag_i, (j, 0))) - - self.ambiguous_ancestorships[j].add((i, lag_i)) - - ####################################################################################################### - ### Apply the unambiguous information ################################################################# - - for j in range(self.N): - - for (i, lag_i) in add_to_def_non_ancs[j]: - - old_link = self._get_link((i, lag_i), (j, 0)) - if len(old_link) > 0 and old_link[0] != "<": - new_link = "<" + old_link[1] + old_link[2] - self._write_link((i, lag_i), (j, 0), new_link, verbosity = self.verbosity) - put_head_or_tail = True - - if self.verbosity >= 1 and (i, lag_i) not in self.def_non_ancs[j]: - print("{:10} Marking ({}, {:2}) as non-anc of {}".format("Update:", i, lag_i, (j, 0))) - - self.def_non_ancs[j].add((i, lag_i)) - - - for (i, lag_i) in add_to_def_ancs[j]: - - old_link = self._get_link((i, lag_i), (j, 0)) - if len(old_link) > 0 and (old_link[0] != "-" or old_link[2] != ">"): - new_link = "-" + old_link[1] + ">" - self._write_link((i, lag_i), (j, 0), new_link, verbosity = self.verbosity) - put_head_or_tail = True - - if self.verbosity >= 1 and (i, lag_i) not in self.def_ancs[j]: - print("{:10} Marking ({}, {:2}) as anc of {}".format("Update:", i, lag_i, (j, 0))) - - self.def_ancs[j].add((i, lag_i)) - - if lag_i == 0: - - if self.verbosity >= 1 and (j, 0) not in self.def_non_ancs[i]: - print("{:10} Marking {} as non-anc of {}".format("Update:",(j, 0), (i, 0))) - - self.def_non_ancs[i].add((j, 0)) - - ####################################################################################################### - - return put_head_or_tail - - def _apply_rule(self, rule, only_lagged): - """Call the orientation-removal-rule specified by the string argument rule.""" - - if rule == "APR": - return self._apply_APR(only_lagged) - elif rule == "ER-00-a": - return self._apply_ER00a(only_lagged) - elif rule == "ER-00-b": - return self._apply_ER00b(only_lagged) - elif rule == "ER-00-c": - return self._apply_ER00c(only_lagged) - elif rule == "ER-00-d": - return self._apply_ER00d(only_lagged) - elif rule == "ER-01": - return self._apply_ER01(only_lagged) - elif rule == "ER-02": - return self._apply_ER02(only_lagged) - elif rule == "ER-03": - return self._apply_ER03(only_lagged) - elif rule == "R-04": - return self._apply_R04(only_lagged) - elif rule == "ER-08": - return self._apply_ER08(only_lagged) - elif rule == "ER-09": - return self._apply_ER09(only_lagged) - elif rule == "ER-10": - return self._apply_ER10(only_lagged) - - - def _get_na_pds_t(self, A, B): - """Return the set na_pds_t(A, B), with at least one of them at lag 0""" - - # Unpack A and B, then assert that at least one of them is at lag 0 - var_A, lag_A = A - var_B, lag_B = B - assert lag_A == 0 or lag_B == 0 - - # If na_pds_t(A, B) is in memory, return immediately - memo = self._na_pds_t[A].get(B) - if memo is not None: - return memo - - # Else, re-compute na_pds_t(A, B) it according to the current graph and cache it. - - # Re-compute na_pds_t_1(A, B) according to the current graph - na_pds_t_1 = {(var, lag + lag_A) - # W = (var, lag + lag_A) is in na_pds_t_1(A, B) if ... - for ((var, lag), link) in self.graph_dict[var_A].items() - # ... it is a non-future adjacency of A - if len(link) > 0 - # ... and is not B - and (var, lag + lag_A) != B - # ... and is not before t - tau_max - and (lag + lag_A) >= -self.tau_max - # ... and is not after both A and B - # ... (i.e. is not after time t) - and (lag + lag_A) <= 0 - # ... and is not a definite non-ancestor of A, - # which implies that it is not a definite descendant of A, - and link[0] != "<" - # ... and is not a definite descendant of B - # (i.e., B is not a definite ancestor of W) - and (var_B, lag_B - (lag + lag_A)) not in self.def_ancs[var] - } - - # Compute na_pds_t_2(A, B) - - # Find all potential C_1 nodes - C1_list = set() - for ((var, lag), link) in self.graph_full_dict[var_A].items(): - - node = (var, lag + lag_A) - - # node is added to C1_list if, in addition to being adjacent to A, ... - # ... it is not B - if (var, lag + lag_A) == B: - continue - - # ... it is not before t - tau_max - if (lag + lag_A) < -self.tau_max: - continue - - # ... it is not after B - if (lag + lag_A) > lag_B: - continue - - # ... it is not a definite ancestor of A - if link[0] == "-": - continue - - # ... it is not a definite descendant of A - if link[2] == "-": - continue - - # ... it is not a definite non-ancestor of B, - # which implies that it is not a definite descendant of B - if (var, (lag + lag_A) - lag_B) in self.def_non_ancs[var_B]: - continue - - # If all tests are passed, node is added to C1_list - C1_list.add(node) - - # end for ((var, lag), link) in self.graph_full_dict[var_A].items() - - # Breath first search to find (a superset of) na_pds_t_2(A, B) - - visited = set() - start_from = {(C1, A) for C1 in C1_list} - - while start_from: - - new_start_from = set() - new_do_not_visit = set() - - for (current_node, previous_node) in start_from: - - visited.add((current_node, previous_node)) - - for (var, lag) in self.graph_full_dict[current_node[0]]: - - next_node = (var, lag + current_node[1]) - - if next_node[1] < -self.tau_max: - continue - if next_node[1] > 0: - continue - if (next_node, current_node) in visited: - continue - if next_node == previous_node: - continue - if next_node == B: - continue - if next_node == A: - continue - - link_l = self._get_link(next_node, current_node) - link_r = self._get_link(previous_node, current_node) - - if link_l[2] == "-" or link_r[2] == "-": - continue - if self._get_link(next_node, previous_node) == "" and (link_l[2] == "o" or link_r[2] == "o"): - continue - if (var_A, lag_A - next_node[1]) in self.def_ancs[next_node[0]] or (var_B, lag_B - next_node[1]) in self.def_ancs[next_node[0]]: - continue - if ((next_node[1] - lag_A > 0) or (next_node[0], next_node[1] - lag_A) in self.def_non_ancs[var_A]) and ((next_node[1] - lag_B > 0) or (next_node[0], next_node[1] - lag_B) in self.def_non_ancs[var_B]): - continue - - new_start_from.add((next_node, current_node)) - - start_from = new_start_from - - # end while start_from - - na_pds_t_2 = {node for (node, _) in visited} - - self._na_pds_t[A][B] = na_pds_t_1.union(na_pds_t_2).difference({A, B}) - return self._na_pds_t[A][B] - - - def _make_sepset_weakly_minimal(self, X, Y, Z_list, ancs): - """ - X and Y are conditionally independent given Z in Z_list However, it is not yet clear whether any of these Z are minimal - separating set. - - This function finds weakly minimal separating subsets in an order independent way and writes them to the self.sepsets - dictionary. Only certainly weakly minimal separating subsets are retained. - """ - - # Assert that all Z in Z_list have the same cardinality - assert len({len(Z) for Z in Z_list}) == 1 - - # Base Case 1: - # Z in Z_list is weakly minimal if len(Z) <= 1 or Z \subset ancs - any_weakly_minimal = False - - for Z in Z_list: - - if len(Z) <=1 or Z.issubset(ancs): - self._save_sepset(X, Y, (frozenset(Z), "wm")) - any_weakly_minimal = True - - if any_weakly_minimal: - return None - - # If not Base Case 1, we need to search for separating subsets. We do this for all Z in Z_list, and build a set sepsets_next_call - # that contains all separating sets for the next recursive call - sepsets_next_call = set() - - for Z in Z_list: - - # Find all nodes A in Z that are not in ancs - removable = Z.difference(ancs) - - # Test for removal of all nodes in removable - new_sepsets = [] - val_values = [] - - for A in removable: - - Z_A = [node for node in Z if node != A] - - # Run the conditional independence test - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, tau_max = self.tau_max) - - if self.verbosity >= 2: - print("MakeMin: %s _|_ %s | Z_A = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in list(Z_A)]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_A)) - - # Check whether the test result was significant - if pval > self.pc_alpha: - new_sepsets.append(frozenset(Z_A)) - val_values.append(val) - - # If new_sepsets is empty, then Z is already weakly minimal - if len(new_sepsets) == 0: - self._save_sepset(X, Y, (frozenset(Z), "wm")) - any_weakly_minimal = True - - # If we did not yet find a weakly minimal separating set - if not any_weakly_minimal: - - # Sort all separating sets in new_sepets by their test statistic, then append those separating sets with maximal statistic - # to sepsets_next_call. This i) guarantees order independence while ii) continuing to test as few as possible separating sets - new_sepsets = [node for _, node in sorted(zip(val_values, new_sepsets), reverse = True)] - - i = -1 - while i <= len(val_values) - 2 and val_values[i + 1] == val_values[0]: - sepsets_next_call.add(new_sepsets[i]) - i = i + 1 - - assert i >= 0 - - # If we did not yet find a weakly minimal separating set, make a recursive call - if not any_weakly_minimal: - self._make_sepset_weakly_minimal(X, Y, sepsets_next_call, ancs) - else: - return None - - - def _B_not_in_SepSet_AC(self, A, B, C): - """Is B in less than half of the sets in SepSets(A, C)?""" - - # Treat A - B - C as the same triple as C - B - A - # Convention: A is before C or, if they are contemporaneous, the index of A is smaller than that of C - if C[1] < A[1] or (C[1] == A[1] and C[0] < A[0]): - return self._B_not_in_SepSet_AC(C, B, A) - - # Remember all separating sets that we will find - all_sepsets = set() - - # Get the non-future adjacencies of A and C - if not self.use_a_pds_t_for_majority: - adj_A = self._get_non_future_adj([A]).difference({A, C}) - adj_C = self._get_non_future_adj([C]).difference({A, C}) - else: - adj_A = self._get_a_pds_t(A, C).difference({A, C}) - adj_C = self._get_a_pds_t(C, A).difference({A, C}) - - Z_add = self._get_parents(A, C).difference({A, C}) - - search_A = adj_A.difference(Z_add) - search_C = adj_C.difference(Z_add) - - if not np.isinf(self.max_q_global): - search_A = self._sort_search_set(search_A, A) - search_C = self._sort_search_set(search_C, C) - - # Test for independence given all subsets of non-future adjacencies of A - if A[1] < C[1]: - max_p_A = min([len(search_A), self.max_cond_px, self.max_p_global]) + 1 - else: - max_p_A = min([len(search_A), self.max_p_global]) + 1 - - # Shift lags - search_A = [(var, lag - C[1]) for (var, lag) in search_A] - search_C = [(var, lag - C[1]) for (var, lag) in search_C] - Z_add = {(var, lag - C[1]) for (var, lag) in Z_add} - X = (A[0], A[1] - C[1]) - Y = (C[0], 0) - - for p in range(max_p_A): - - q_count = 0 - for Z_raw in combinations(search_A, p): - - q_count = q_count + 1 - if q_count > self.max_q_global: - break - - # Prepare the conditioning set - Z = {node for node in Z_raw if node != X and node != Y} - Z = Z.union(Z_add) - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - - if self.verbosity >= 2: - print("BnotinSepSetAC(A): %s _|_ %s | Z_add = %s, Z = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in Z_add]), ' '.join([str(z) for z in {node for node in Z_raw if node != X and node != Y}]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) - - # Check whether test result was significant - if pval > self.pc_alpha: - all_sepsets.add(frozenset(Z)) - - # Test for independence given all subsets of non-future adjacencies of C - for p in range(min(len(search_C), self.max_p_global) + 1): - - q_count = 0 - for Z_raw in combinations(search_C, p): - - q_count = q_count + 1 - if q_count > self.max_q_global: - break - - # Prepare the conditioning set - Z = {node for node in Z_raw if node != X and node != Y} - Z = Z.union(Z_add) - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - - if self.verbosity >= 2: - # print("BnotinSepSetAC(C): %s _|_ %s | Z = %s: val = %.2f / pval = % .4f" % - # (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval)) - print("BnotinSepSetAC(C): %s _|_ %s | Z_add = %s, Z = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in Z_add]), ' '.join([str(z) for z in {node for node in Z_raw if node != X and node != Y}]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) - - # Check whether test result was significant - if pval > self.pc_alpha: - all_sepsets.add(frozenset(Z)) - - # Append the already known sepset - all_sepsets = all_sepsets.union({Z for (Z, _) in self._get_sepsets(X, Y)}) - - # Count number of sepsets and number of sepsets that contain B - n_sepsets = len(all_sepsets) - n_sepsets_with_B = len([1 for Z in all_sepsets if (B[0], B[1] - C[1]) in Z]) - - return True if 2*n_sepsets_with_B < n_sepsets else False - - - def _B_in_SepSet_AC(self, A, B, C): - """Is B in more than half of the sets in SepSets(A, C)?""" - - # Treat A - B - C as the same triple as C - B - A - # Convention: A is before C or, if they are contemporaneous, the index of A is smaller than that of C - if C[1] < A[1] or (C[1] == A[1] and C[0] < A[0]): - return self._B_in_SepSet_AC(C, B, A) - - link_AB = self._get_link(A, B) - link_CB = self._get_link(C, B) - - if link_AB == "" or link_CB == "" or link_AB[1] != "-" or link_CB[1] != "-": - - # Vote is based on those sets that where found already - all_sepsets = {Z for (Z, _) in self._get_sepsets(A, C)} - - # Count number of sepsets and number of sepsets that contain B - n_sepsets = len(all_sepsets) - n_sepsets_with_B = len([1 for Z in all_sepsets if B in Z]) - - return True if 2*n_sepsets_with_B > n_sepsets else False - - else: - - # Remember all separating sets that we will find - all_sepsets = set() - - # Get the non-future adjacencies of A and C - if not self.use_a_pds_t_for_majority: - adj_A = self._get_non_future_adj([A]).difference({A, C}) - adj_C = self._get_non_future_adj([C]).difference({A, C}) - else: - adj_A = self._get_a_pds_t(A, C).difference({A, C}) - adj_C = self._get_a_pds_t(C, A).difference({A, C}) - - Z_add = self._get_parents(A, C).difference({A, C}) - - search_A = adj_A.difference(Z_add) - search_C = adj_C.difference(Z_add) - - if not np.isinf(self.max_q_global): - search_A = self._sort_search_set(search_A, A) - search_C = self._sort_search_set(search_C, C) - - # Test for independence given all subsets of non-future adjacencies of A - if A[1] < C[1]: - max_p_A = min([len(search_A), self.max_cond_px, self.max_p_global]) + 1 - else: - max_p_A = min([len(search_A), self.max_p_global]) + 1 - - # Shift lags - search_A = [(var, lag - C[1]) for (var, lag) in search_A] - search_C = [(var, lag - C[1]) for (var, lag) in search_C] - Z_add = {(var, lag - C[1]) for (var, lag) in Z_add} - X = (A[0], A[1] - C[1]) - Y = (C[0], 0) - - for p in range(max_p_A): - - q_count = 0 - for Z_raw in combinations(search_A, p): - - q_count = q_count + 1 - if q_count > self.max_q_global: - break - - # Prepare the conditioning set - Z = {node for node in Z_raw if node != X and node != Y} - Z = Z.union(Z_add) - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - - if self.verbosity >= 2: - # print("BinSepSetAC(A): %s _|_ %s | Z = %s: val = %.2f / pval = % .4f" % - # (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval)) - print("BinSepSetAC(A): %s _|_ %s | Z_add = %s, Z = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in Z_add]), ' '.join([str(z) for z in {node for node in Z_raw if node != X and node != Y}]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) - - # Check whether test result was significant - if pval > self.pc_alpha: - all_sepsets.add(frozenset(Z)) - - # Test for independence given all subsets of non-future adjacencies of C - for p in range(min(len(search_C), self.max_p_global) + 1): - - q_count = 0 - for Z_raw in combinations(search_C, p): - - q_count = q_count + 1 - if q_count > self.max_q_global: - break - - # Prepare the conditioning set - Z = {node for node in Z_raw if node != X and node != Y} - Z = Z.union(Z_add) - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max) - - if self.verbosity >= 2: - # print("BinSepSetAC(C): %s _|_ %s | Z = %s: val = %.2f / pval = % .4f" % - # (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval)) - print("BinSepSetAC(C): %s _|_ %s | Z_add = %s, Z = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in Z_add]), ' '.join([str(z) for z in {node for node in Z_raw if node != X and node != Y}]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic - # values and conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z)) - - # Check whether test result was significant - if pval > self.pc_alpha: - all_sepsets.add(frozenset(Z)) - - # Append the already known sepset - all_sepsets = all_sepsets.union({Z for (Z, _) in self._get_sepsets(X, Y)}) - - # Count number of sepsets and number of sepsets that contain B - n_sepsets = len(all_sepsets) - n_sepsets_with_B = len([1 for Z in all_sepsets if (B[0], B[1] - C[1]) in Z]) - - return True if 2*n_sepsets_with_B > n_sepsets else False - - - def _get_parents(self, A, B): - """Return all known parents of all nodes in node_list""" - - if self.parents_of_lagged or A[1] == B[1]: - - out = {(var, lag + A[1]) for ((var, lag), link) in self.graph_dict[A[0]].items() if len(link) > 0 and link[0] == "-" and lag + A[1] >= -self.tau_max} - return out.union({(var, lag + B[1]) for ((var, lag), link) in self.graph_dict[B[0]].items() if len(link) > 0 and link[0] == "-" and lag + B[1] >= -self.tau_max}) - - else: - if A[1] < B[1]: - return {(var, lag + B[1]) for ((var, lag), link) in self.graph_dict[B[0]].items() if len(link) > 0 and link[0] == "-" and lag + B[1] >= -self.tau_max} - else: - return {(var, lag + A[1]) for ((var, lag), link) in self.graph_dict[A[0]].items() if len(link) > 0 and link[0] == "-" and lag + A[1] >= -self.tau_max} - - - def _apply_middle_mark(self, X, Y, char): - """Update the middle mark on the link between X and Y with the character char""" - - # Get the old link - old_link = self._get_link(X, Y) - - # Determine the new link - if old_link[1] == "?": - new_link = old_link[0] + char + old_link[2] - elif (old_link[1] == "L" and char == "R") or (old_link[1] == "R" and char == "L"): - new_link = old_link[0] + "!" + old_link[2] - else: - assert False - - # Write the new link - self._write_link(X, Y, new_link, verbosity = self.verbosity) - - # Return - return True - - - def _update_middle_marks(self): - """Apply rule MMR""" - - if self.verbosity >= 1: - print("\nMiddle mark updates\n") - - # Run through all links - for j in range(self.N): - for ((i, lag_i), link) in self.graph_dict[j].items(): - - if link == "": - continue - - X = (i, lag_i) - Y = (j, 0) - - # Apply above rule for A = X and B = Y - link_XY = self._get_link(X, Y) - smaller_XY = self._is_smaller(X, Y) - - if link_XY[2] == ">": - - if link_XY[1] == "?": - if smaller_XY: - new_link = link_XY[0] + "L>" - else: - new_link = link_XY[0] + "R>" - - self._write_link(X, Y, new_link, verbosity = self.verbosity) - - elif (link_XY[1] == "R" and smaller_XY) or (link_XY[1] == "L" and not smaller_XY): - - new_link = link_XY[0] + "!>" - - self._write_link(X, Y, new_link, verbosity = self.verbosity) - - - # Apply above rule for A = Y and B = X - link_YX = self._get_link(Y, X) - smaller_YX = self._is_smaller(Y, X) - - if link_YX[2] == ">": - - if link_YX[1] == "?": - if smaller_YX: - new_link = link_YX[0] + "L>" - else: - new_link = link_YX[0] + "R>" - - self._write_link(Y, X, new_link, verbosity = self.verbosity) - - - elif (link_YX[1] == "R" and smaller_YX) or (link_YX[1] == "L" and not smaller_YX): - - new_link = link_YX[0] + "!>" - - self._write_link(Y, X, new_link, verbosity = self.verbosity) - - def _is_smaller(self, X, Y): - """ - A node X is said to be smaller than node Y if - i) X is before Y or - ii) X and Y are contemporaneous and the variable index of X is smaller than that of Y. - - Return True if X is smaller than Y, else return False - """ - - return (X[1] < Y [1]) or (X[1] == Y[1] and X[0] < Y[0]) - - - def _get_a_pds_t(self, A, B): - """Return the set a_pds_t(A, B)""" - - # Unpack A and assert that A is at lag 0 - var_A, lag_A = A - - # Compute a_pds_t(A, B) according to the current graph - return {(var, lag + lag_A) - # W = (var, lag) is in a_pds_t(A, B) if ... - for ((var, lag), link) in self.graph_dict[var_A].items() - # ... it is a non-future adjacency of A - if len(link) > 0 - # ... and it is not B - and (var, lag + lag_A) != B - # ... it is not before t - self.tau_max - and lag + lag_A >= -self.tau_max - # ... and it is not a definite non-ancestor of A - and link[0] != "<" - } - - - def _get_ancs(self, node_list): - """Return the currently known set of ancestors of all nodes in the list node_list. The nodes are not required to be at - lag 0""" - - # Build the output set - out = set() - - # Run through all nodes - for A in node_list: - # Unpack the node - (var_A, lag_A) = A - # Add the ancestors of node to out - out = out.union({(var, lag + lag_A) for (var, lag) in self.def_ancs[var_A] if lag + lag_A >= - self.tau_max}) - - # Return - return out - - - def _get_non_ancs(self, node_list): - """Return the currently known set of non-ancestors of all nodes in the list node_list. The nodes are not required to be - at lag 0""" - - # Build the output set - out = set() - - # Run through all nodes - for A in node_list: - # Unpack the node - (var_A, lag_A) = A - # Add the ancestors of node to out - out = out.union({(var, lag + lag_A) for (var, lag) in self.def_non_ancs[var_A] if lag + lag_A >= - self.tau_max}) - - # Return - return out - - - def _fix_all_edges(self): - """Remove all non-trivial orientations""" - - for j in range(self.N): - for (i, lag_i) in self.graph_dict[j].keys(): - - link = self._get_link((i, lag_i), (j, 0)) - if len(link) > 0: - new_link = link[0] + "-" + link[2] - self.graph_dict[j][(i, lag_i)] = new_link - - ######################################################################################################################## - ######################################################################################################################## - ######################################################################################################################## - - def _apply_APR(self, only_lagged): - """Return all orientations implied by orientation rule APR""" - - # Build the output list - out = [] - - if self.no_apr > 0: - return out - - # Get and run through all relevant graphical structures - for j in range(self.N): - for (i, lag_i) in self.graph_dict[j]: - - A = (i, lag_i) - B = (j, 0) - - if only_lagged and lag_i == 0: - continue - - # Get the link from A to B - link_AB = self._get_link(A, B) - - if self._match_link(pattern='-!>', link=link_AB) \ - or (self._match_link(pattern='-R>', link=link_AB) and self._is_smaller(A, B)) \ - or (self._match_link(pattern='-L>', link=link_AB) and self._is_smaller(B, A)): - - # Write the new link from A to B to the output list - out.append(self._get_pair_key_and_new_link(A, B, "-->")) - - # Return the output list - return out - - def _apply_ER01(self, only_lagged): - """Return all orientations implied by orientation rule R1^prime""" - - # Build the output list - out = [] - - # Find all graphical structures that the rule applies to - all_appropriate_triples = self._find_triples(pattern_ij='**>', pattern_jk='o*+', pattern_ik='') - - # Run through all appropriate graphical structures - for (A, B, C) in all_appropriate_triples: - - if only_lagged and B[1] == C[1]: - continue - - if self.verbosity >= 2: - print("ER01: ", (A, B, C)) - - # Check whether the rule applies - if self._B_in_SepSet_AC(A, B, C): - - if self.verbosity >= 2: - print(" --> in sepset ") - - # Prepare the new link from B to C and append it to the output list - link_BC = self._get_link(B, C) - new_link_BC = "-" + link_BC[1] + ">" - out.append(self._get_pair_key_and_new_link(B, C, new_link_BC)) - - # Return the output list - return out - - def _apply_ER02(self, only_lagged): - """Return all orientations implied by orientation rule R2^prime""" - - # Build the output list - out = [] - - # Find all graphical structures that the rule applies to - all_appropriate_triples = set(self._find_triples(pattern_ij='-*>', pattern_jk='**>', pattern_ik='+*o')) - all_appropriate_triples = all_appropriate_triples.union(set(self._find_triples(pattern_ij='**>', pattern_jk='-*>', pattern_ik='+*o'))) - - # Run through all appropriate graphical structures - for (A, B, C) in all_appropriate_triples: - - if only_lagged and A[1] == C[1]: - continue - - # The rule applies to all relevant graphical structures. Therefore, prepare the new link and append it to the output list - link_AC = self._get_link(A, C) - new_link_AC = link_AC[0] + link_AC[1] + ">" - out.append(self._get_pair_key_and_new_link(A, C, new_link_AC)) - - # print("Rule 2", A, self._get_link(A, B), B, self._get_link(B, C), C, self._get_link(A, C), new_link_AC) - - # Return the output list - return out - - - def _apply_ER03(self, only_lagged): - """Return all orientations implied by orientation rule R3^prime""" - - # Build the output list - out = [] - - # Find all graphical structures that the rule applies to - all_appropriate_quadruples = self._find_quadruples(pattern_ij='**>', pattern_jk='<**', pattern_ik='', - pattern_il='+*o', pattern_jl='o*+', pattern_kl='+*o') - - # Run through all appropriate graphical structures - for (A, B, C, D) in all_appropriate_quadruples: - - if only_lagged and B[1] == D[1]: - continue - - # Check whether the rule applies - if self._B_in_SepSet_AC(A, D, C): - - # Prepare the new link from D to B and append it to the output list - link_DB = self._get_link(D, B) - new_link_DB = link_DB[0] + link_DB[1] + ">" - out.append(self._get_pair_key_and_new_link(D, B, new_link_DB)) - - # Return the output list - return out - - - def _apply_R04(self, only_lagged): - """Return all orientations implied by orientation rule R4 (standard FCI rule)""" - - # Build the output list - out = [] - - # Find all relevant triangles W-V-Y - all_appropriate_triples = self._find_triples(pattern_ij='<-*', pattern_jk='o-+', pattern_ik='-->') - - # Run through all of these triangles - for triple in all_appropriate_triples: - - (W, V, Y) = triple - - if only_lagged and (V[1] == Y[1] and W[1] == V[1]): - continue - - # Get the current link from W to V, which we will need below - link_WV = self._get_link(W, V) - - # Find all discriminating paths for this triangle - # Note: To guarantee order independence, we check all discriminating paths. Alternatively, we could check the rule for all - # shortest such paths - discriminating_paths = self._get_R4_discriminating_paths(triple, max_length = np.inf) - - # Run through all discriminating paths - for path in discriminating_paths: - - # Get the end point node - X_1 = path[-1] - - # Check which of the two cases of the rule we are in, then append the appropriate new links to the output list - if self._B_in_SepSet_AC(X_1, V, Y): - # New link from V to Y - out.append(self._get_pair_key_and_new_link(V, Y, "-->")) - - elif link_WV != "<-x" and self._B_not_in_SepSet_AC(X_1, V, Y): - # New link from V to Y - out.append(self._get_pair_key_and_new_link(V, Y, "<->")) - - # If needed, also the new link from W to V - if link_WV != "<->": - out.append(self._get_pair_key_and_new_link(W, V, "<->")) - - # Return the output list - return out - - - def _apply_ER08(self, only_lagged): - """Return all orientations implied by orientation rule R8^prime""" - - # Build the output list - out = [] - - # Find all graphical structures that the rule applies to - all_appropriate_triples = self._find_triples(pattern_ij='-*>', pattern_jk='-*>', pattern_ik='o*+') - - # Run through all appropriate graphical structures - for (A, B, C) in all_appropriate_triples: - - if only_lagged and A[1] == C[1]: - continue - - # The rule applies to all relevant graphical structures. Therefore, prepare the new link and append it to the output list - link_AC = self._get_link(A, C) - new_link_AC = "-" + link_AC[1] + ">" - out.append(self._get_pair_key_and_new_link(A, C, new_link_AC)) - - #print("Rule 8:", A, self._get_link(A, B), B, self._get_link(B, C), C, link_AC, new_link_AC) - - # Return the output list - return out - - - def _apply_ER09(self, only_lagged): - """Return all orientations implied by orientation rule R9^prime""" - - # Build the output list - out = [] - - # Find unshielded triples B_1 o--*--o A o--*--> C or B_1 <--*--o A o--*--> C or B_1 <--*-- A o--*--> C - all_appropriate_triples = set(self._find_triples(pattern_ij='o*o', pattern_jk='o*>', pattern_ik='')) - all_appropriate_triples = all_appropriate_triples.union(set(self._find_triples(pattern_ij='<*o', pattern_jk='o*>', pattern_ik=''))) - all_appropriate_triples = all_appropriate_triples.union(set(self._find_triples(pattern_ij='<*-', pattern_jk='o*>', pattern_ik=''))) - - # Run through all these triples - for (B_1, A, C) in all_appropriate_triples: - - if only_lagged and A[1] == C[1]: - continue - - # Check whether A is in SepSet(B_1, C), else the rule does not apply - if not self._B_in_SepSet_AC(B_1, A, C): - continue - - # Although we do not yet know whether the rule applies, we here determine the new form of the link from A to C if the rule - # does apply - link_AC = self._get_link(A, C) - new_link_AC = "-" + link_AC[1] + ">" - pair_key, new_link = self._get_pair_key_and_new_link(A, C, new_link_AC) - - # For the search of uncovered potentially directed paths from B_1 to C, determine the initial pattern as dictated by the link - # from A to B_1 - first_link = self._get_link(A, B_1) - if self._match_link(pattern='o*o', link=first_link): - initial_allowed_patterns = ['-*>', 'o*>', 'o*o'] - elif self._match_link(pattern='o*>', link=first_link) or self._match_link(pattern='-*>', link=first_link): - initial_allowed_patterns = ['-*>'] - - # Return all uncovered potentially directed paths from B_1 to C - #uncovered_pd_paths = self._find_potentially_directed_paths(B_1, C, initial_allowed_patterns, return_if_any_path_found = False, - # uncovered=True, reduce_allowed_patterns=True, max_length = np.inf) - - # Find all uncovered potentially directed paths from B_1 to C - uncovered_pd_paths = self._get_potentially_directed_uncovered_paths(B_1, C, initial_allowed_patterns) - - # Run through all of these paths and check i) whether the node adjacent to B_1 is non-adjacent to A, ii) whether condition iv) of - # the rule antecedent is true. If there is any such path, then the link can be oriented - for upd_path in uncovered_pd_paths: - - # Is the node adjacent to B_1 non-adjacent to A (this implies that there are at least three nodes on the path, because else the - # node adjacent to B_1 is C) and is A not part of the path? - if len(upd_path) < 3 or A in upd_path or self._get_link(A, upd_path[1]) != "": - continue - - # If the link from A to B_1 is into B_1, condition iv) is true - if first_link[2] == ">": - # Mark the link from A to C for orientation, break the for loop to continue with the next triple - out.append((pair_key, new_link)) - break - - # If the link from A to B_1 is not in B_1, we need to check whether B_1 is in SepSet(A, X) where X is the node on upd_path next - # to B_1 - if not self._B_in_SepSet_AC(A, B_1, upd_path[1]): - # Continue with the next upd_path - continue - - # Now check whether rule iv) for all triples on upd_path - path_qualifies = True - for i in range(len(upd_path) - 2): - # We consider the unshielded triples upd_path[i] - upd_path[i+1] - upd_path[i+2] - - # If the link between upd_path[i] and upd_path[i+1] is into the latter, condition iv) is true - left_link = self._get_link(upd_path[i], upd_path[i+1]) - if left_link[2] == ">": - # The path qualifies, break the inner for loop - break - - # If not, then we need to continue with checking whether upd_path[i+1] in SepSet(upd_path[i+1], upd_path[i+2]) - if not self._B_in_SepSet_AC(upd_path[i], upd_path[i+1], upd_path[i+2]): - # The path does not qualifying, break the inner for loop - path_qualifies = False - break - - # The path qualifies, mark the edge from A to C for orientation and break the outer for loop to continue with the next triple - if path_qualifies: - out.append((pair_key, new_link)) - break - - # The path does not qualify, continue with the next upd_path - - # end for upd_path in uncovered_pd_paths - # end for (B_1, A, C) in all_appropriate_triples - - # Return the output list - return out - - - def _apply_ER10(self, only_lagged): - """Return all orientations implied by orientation rule R10^prime""" - - # Build the output list - out = [] - - # Find all triples A o--> C <-- P_C - all_appropriate_triples = set(self._find_triples(pattern_ij='o*>', pattern_jk='<*-', pattern_ik='')) - all_appropriate_triples = all_appropriate_triples.union(set(self._find_triples(pattern_ij='o*>', pattern_jk='<*-', pattern_ik='***'))) - - # Collect all triples for the given pair (A, C) - triple_sorting_dict = {} - for (A, C, P_C) in all_appropriate_triples: - if triple_sorting_dict.get((A, C)) is None: - triple_sorting_dict[(A, C)] = [P_C] - else: - triple_sorting_dict[(A, C)].append(P_C) - - - # Run through all (A, C) pairs - for (A, C) in triple_sorting_dict.keys(): - - if only_lagged and A[1] == C[1]: - continue - - # Find all uncovered potentially directed paths from A to C through any of the P_C nodes - relevant_paths = [] - for P_C in triple_sorting_dict[(A, C)]: - for upd_path in self._get_potentially_directed_uncovered_paths(A, P_C, ['-*>', 'o*>', 'o*o']): - - # Run through all of these paths and check i) whether the second to last element is not adjacent to C (this requires it to - # have a least three nodes, because else the second to last element would be A) and ii) whether the left edge of any 3-node - # sub-path is into the middle nor or, if not, whether the middle node is in the separating set of the two end-point nodes - # (of the 3-node) sub-path and iii) whether C is not element of the path. If path meets these conditions, add its second node - # (the adjacent to A) to the set second_nodes - - if len(upd_path) < 3 or C in upd_path or self._get_link(upd_path[-2], C) != "": - continue - - upd_path.append(C) - - path_qualifies = True - for i in range(len(upd_path) - 2): - # We consider the unshielded triples upd_path[i] - upd_path[i+1] - upd_path[i+2] - - # If the link between upd_path[i] and upd_path[i+1] is into the latter, the path qualifies - left_link = self._get_link(upd_path[i], upd_path[i+1]) - if left_link[2] == ">": - # The path qualifies, break the inner for loop - break - - # If not, then we need to continue with checking whether upd_path[i+1] in SepSet(upd_path[i+1], upd_path[i+2]) - if not self._B_in_SepSet_AC(upd_path[i], upd_path[i+1], upd_path[i+2]): - # The path does not qualify, break the inner for loop - path_qualifies = False - break - - # The path qualifies, add upd_path[i] to second_nodes and continue with the next upd_path - if path_qualifies: - relevant_paths.append(upd_path) - - # The path does not qualify, continue with the next upd_path - - # end for path in self._get_potentially_directed_uncovered_paths(A, P_C, ['-*>', 'o*>', 'o*o']) - # end for P_C in triple_sorting_dict[(A, C)] - - # Find all second nodes on the relevant paths - second_nodes = list({path[1] for path in relevant_paths}) - - # Check whether there is any pair of non-adjacent nodes in second_nodes, such that A is in their separating set. If yes, mark the link - # from A to C for orientation - for i, j in product(range(len(second_nodes)), range(len(second_nodes))): - - if i < j and self._get_link(second_nodes[i], second_nodes[j]) == "" and self._B_in_SepSet_AC(second_nodes[i], A, second_nodes[j]): - # Append new link and break the for loop - link_AC = self._get_link(A, C) - new_link_AC = "-" + link_AC[1] + ">" - out.append(self._get_pair_key_and_new_link(A, C, new_link_AC)) - break - - # end for (A, C) in triple_sorting_dict.keys() - - # Return the output list - return out - - - def _apply_ER00a(self, only_lagged): - """Return all orientations implied by orientation rule R0^prime a""" - - # Build the output list - out = [] - - # Find all graphical structures that the rule applies to - all_appropriate_triples = self._find_triples(pattern_ij='***', pattern_jk='***', pattern_ik='') - - # Run through all appropriate graphical structures - for (A, B, C) in all_appropriate_triples: - - # Unpack A, B, C - (i, lag_i) = A - (j, lag_j) = B - (k, lag_k) = C - - if only_lagged and (A[1] == B[1] or B[1] == C[1]): - continue - - # Get all weakly minimal separating sets in SepSet(A, C) - # Remark: The non weakly minimal separating sets may be larger, that's why we disfavor them - sepsets = self._get_sepsets(A, C) - sepsets = {Z for (Z, status) in sepsets if status == "wm"} - - ################################################################################### - ### Part 1) of the rule ########################################################### - - remove_AB = False - link_AB = self._get_link(A, B) - - # i) Middle mark must not be "x" or "-" - if link_AB[1] not in ['-', 'x']: - # Test A indep B given union(SepSet(A, C), intersection(def-anc(B), adj(B))) setminus{A, B} setminus{future of both A and B} - - # Conditioning on parents - Z_add = self._get_parents(A, B).difference({A, B}) - - # Shift the lags appropriately - if lag_i <= lag_j: - X = (i, lag_i - lag_j) # A shifted - Y = (j, 0) # B shifted - delta_lag = lag_j - - else: - X = (j, lag_j - lag_i) # B shifted - Y = (i, 0) # A shifted - delta_lag = lag_i - - # Run through all weakly minimal separating sets of A and C - for Z in sepsets: - - # Construct the conditioning set to test - Z_test = Z.union(Z_add).difference({A, B}) - Z_test = {(var, lag - delta_lag) for (var, lag) in Z_test if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} - Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) - - if self.verbosity >= 2: - # print("ER00a(part1): %s _|_ %s | Z_test = %s: val = %.2f / pval = % .4f" % - # (X, Y, ' '.join([str(z) for z in list(Z_test)]), val, pval)) - print("ER00a(part1): %s _|_ %s | Z_add = %s, Z = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in Z_add2]), ' '.join([str(z) for z in Z_test]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic values and - # conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test)) - - # Check whether test result was significant - if pval > self.pc_alpha: - - # Mark the edge from X to Y for removal and save sepset - remove_AB = True - self._save_sepset(X, Y, (frozenset(Z_test), "nwm")) - - if remove_AB: - - # Remember the edge for removal - pair_key, new_link = self._get_pair_key_and_new_link(A, B, "") - out.append((pair_key, new_link)) - - ################################################################################### - ### Part 2) of the rule ########################################################### - - remove_CB = False - link_CB = self._get_link(C, B) - - # i) Middle mark must not be "x" or "-" - if link_CB[1] not in ['-', 'x']: - # Test C indep B given union(SepSet(A, C), intersection(def-anc(B), adj(B))) setminus{A, B} setminus{future of both C and B} - - # Conditioning on parents - Z_add = self._get_parents(C, B).difference({C, B}) - - # Shift the lags appropriately - if lag_k <= lag_j: - X = (k, lag_k - lag_j) - Y = (j, 0) - delta_lag = lag_j - else: - X = (j, lag_j - lag_k) - Y = (k, 0) - delta_lag = lag_k - - # Run through all weakly minimal separating sets of A and C - for Z in sepsets: - - # Construct the conditioning set to test - Z_test = Z.union(Z_add).difference({C, B}) - Z_test = {(var, lag - delta_lag) for (var, lag) in Z_test if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} - Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) - - if self.verbosity >= 2: - # print("ER00a(part2): %s _|_ %s | Z_test = %s: val = %.2f / pval = % .4f" % - # (X, Y, ' '.join([str(z) for z in list(Z_test)]), val, pval)) - print("ER00a(part2): %s _|_ %s | Z_add = %s, Z = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in Z_add2]), ' '.join([str(z) for z in Z_test]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic values and - # conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test)) - - # Check whether test result was significant - if pval > self.pc_alpha: - - # Mark the edge from X to Y for removal and save sepset - remove_CB = True - self._save_sepset(X, Y, (frozenset(Z_test), "nwm")) - - if remove_CB: - - # Remember the edge for removal - pair_key, new_link = self._get_pair_key_and_new_link(C, B, "") - out.append((pair_key, new_link)) - - ################################################################################### - ### Part 3) of the rule ########################################################### - - if remove_AB or remove_CB or link_AB[2] in ["-", "x"] or link_CB[2] in ["-", "x"] or link_AB[1] == "x" or link_CB[1] == "x" or (link_AB[2] == ">" and link_CB[2] == ">"): - continue - - if self._B_not_in_SepSet_AC(A, B, C): - - # Prepare the new links and save them to the output - if link_AB[2] != ">": - new_link_AB = link_AB[0] + link_AB[1] + ">" - out.append(self._get_pair_key_and_new_link(A, B, new_link_AB)) - - new_link_CB = link_CB[0] + link_CB[1] + ">" - if link_CB[2] != ">": - out.append(self._get_pair_key_and_new_link(C, B, new_link_CB)) - - # end for (A, B, C) in all_appropriate_triples - - # Return the output list - return out - - - def _apply_ER00b(self, only_lagged): - """Return all orientations implied by orientation rule R0^prime b""" - - # Build the output list - out = [] - - # Find all graphical structures that the rule applies to - triples_1 = self._find_triples(pattern_ij='**>', pattern_jk='o!+', pattern_ik='') - triples_2 = [trip for trip in self._find_triples(pattern_ij='**>', pattern_jk='oR+', pattern_ik='') if self._is_smaller(trip[1], trip[2])] - triples_3 = [trip for trip in self._find_triples(pattern_ij='**>', pattern_jk='oL+', pattern_ik='') if self._is_smaller(trip[2], trip[1])] - all_appropriate_triples = set(triples_1).union(set(triples_2), set(triples_3)) - - # Run through all appropriate graphical structures - for (A, B, C) in all_appropriate_triples: - - # Unpack A, B, C - (i, lag_i) = A - (j, lag_j) = B - (k, lag_k) = C - - if only_lagged and A[1] == B[1]: - continue - - # Get all weakly minimal separating sets in SepSet(A, C) - # Remark: The non weakly minimal separating sets may be larger, that's why we disfavor them - sepsets = self._get_sepsets(A, C) - sepsets = {Z for (Z, status) in sepsets if status == "wm"} - - ################################################################################### - ### Part 1) of the rule ########################################################### - - remove_AB = False - link_AB = self._get_link(A, B) - - # i) Middle mark must not be "x" or "-" - if link_AB[1] not in ['-', 'x']: - # Test A indep B given union(SepSet(A, C), intersection(def-anc(B), adj(B))) setminus{A, B} setminus{future of both A and B} - - # Conditioning on parents - Z_add = self._get_parents(A, B).difference({A, B}) - - # Shift the lags appropriately - if lag_i <= lag_j: - X = (i, lag_i - lag_j) - Y = (j, 0) - delta_lag = lag_j - else: - X = (j, lag_j - lag_i) - Y = (i, 0) - delta_lag = lag_i - - # Run through all weakly minimal separating sets of A and C - for Z in sepsets: - - # Construct the conditioning set to test - Z_test = Z.union(Z_add).difference({A, B}) - Z_test = {(var, lag - delta_lag) for (var, lag) in Z_test if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} - Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max} - - # Test conditional independence of X and Y given Z - val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max) - - if self.verbosity >= 2: - # print("ER00b: %s _|_ %s | Z_test = %s: val = %.2f / pval = % .4f" % - # (X, Y, ' '.join([str(z) for z in list(Z_test)]), val, pval)) - print("ER00b: %s _|_ %s | Z_add = %s, Z = %s: val = %.2f / pval = % .4f" % - (X, Y, ' '.join([str(z) for z in Z_add2]), ' '.join([str(z) for z in Z_test]), val, pval)) - - # Accordingly update dictionaries that keep track of the maximal p-value and the corresponding test statistic values and - # conditioning set cardinalities - self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test)) - - # Check whether test result was significant - if pval > self.pc_alpha: - - # Mark the edge from X to Y for removal and save sepset - remove_AB = True - self._save_sepset(X, Y, (frozenset(Z_test), "nwm")) - - if remove_AB: - # Remember the edge for removal - pair_key, new_link = self._get_pair_key_and_new_link(A, B, "") - out.append((pair_key, new_link)) - - ################################################################################### - ### Part 2) of the rule ########################################################### - - if only_lagged and B[1] == C[1]: - continue - - if remove_AB or link_AB[1] == "x": - continue - - if self._B_not_in_SepSet_AC(A, B, C): - - # Prepare the new link and save it to the output - link_CB = self._get_link(C, B) - new_link_CB = link_CB[0] + link_CB[1] + ">" - out.append(self._get_pair_key_and_new_link(C, B, new_link_CB)) - - # end for (A, B, C) in all_appropriate_triples - - # Return the output list - return out - - - def _apply_ER00c(self, only_lagged): - """Return all orientations implied by orientation rule R0^prime c""" - - # Build the output list - out = [] - - # Find all graphical structures that the rule applies to - triples_1 = self._find_triples(pattern_ij='*-*', pattern_jk='o!+', pattern_ik='') - triples_2 = [trip for trip in self._find_triples(pattern_ij='*-*', pattern_jk='oR+', pattern_ik='') if self._is_smaller(trip[1], trip[2])] - triples_3 = [trip for trip in self._find_triples(pattern_ij='*-*', pattern_jk='oL+', pattern_ik='') - if self._is_smaller(trip[2], trip[1])] - all_appropriate_triples = set(triples_1).union(set(triples_2), set(triples_3)) - - # Run through all appropriate graphical structures - for (A, B, C) in all_appropriate_triples: - - if only_lagged and B[1] == C[1]: - continue - - # Check whether the rule applies - if self._B_not_in_SepSet_AC(A, B, C): - - # Prepare the new link and append it to the output - link_CB = self._get_link(C, B) - new_link_CB = link_CB[0] + link_CB[1] + ">" - out.append(self._get_pair_key_and_new_link(C, B, new_link_CB)) - - # end for (A, B, C) in all_appropriate_triples - - # Return the output list - return out - - - def _apply_ER00d(self, only_lagged): - """Return all orientations implied by orientation rule R0^prime d""" - - # Build the output list - out = [] - - # Find all graphical structures that the rule applies to - triples_1 = self._find_triples(pattern_ij='*-o', pattern_jk='o-*', pattern_ik='') - triples_2 = self._find_triples(pattern_ij='*->', pattern_jk='o-*', pattern_ik='') - all_appropriate_triples = set(triples_1).union(set(triples_2)) - - # Run through all appropriate graphical structures - for (A, B, C) in all_appropriate_triples: - - if only_lagged and (A[1] == B[1] and B[1] == C[1]): - continue - - # Check whether the rule applies - if self._B_not_in_SepSet_AC(A, B, C): - # Prepare the new links and append them to the output - - # From C to B - if not only_lagged or B[1] != C[1]: - link_CB = self._get_link(C, B) - new_link_CB = link_CB[0] + link_CB[1] + ">" - out.append(self._get_pair_key_and_new_link(C, B, new_link_CB)) - - # If needed, also fromA to B - link_AB = self._get_link(A, B) - if (not only_lagged or A[1] != B[1]) and link_AB[2] == "o": - new_link_AB = link_AB[0] + link_AB[1] + ">" - out.append(self._get_pair_key_and_new_link(A, B, new_link_AB)) - - # end for (A, B, C) in all_appropriate_triples - - # Return the output list - return out - - ######################################################################################################################## - ######################################################################################################################## - ######################################################################################################################## - - def _print_graph_dict(self): - """Print all links in graph_dict""" - - for j in range(self.N): - for ((i, lag_i), link) in self.graph_dict[j].items(): - if len(link) > 0 and (lag_i < 0 or i < j): - print("({},{:2}) {} {}".format(i, lag_i, link, (j, 0))) - - - def _get_link(self, A, B): - """Get the current link from node A to B""" - - (var_A, lag_A) = A - (var_B, lag_B) = B - - if abs(lag_A - lag_B) > self.tau_max: - return "" - elif lag_A <= lag_B: - return self.graph_dict[var_B][(var_A, lag_A - lag_B)] - else: - return self._reverse_link(self.graph_dict[var_A][(var_B, lag_B - lag_A)]) - - - def _get_non_future_adj(self, node_list): - """Return all non-future adjacencies of all nodes in node_list""" - - # Build the output starting from an empty set - out = set() - - # For each node W in node_list ... - for A in node_list: - # Unpack A - (var_A, lag_A) = A - # Add all (current) non-future adjacencies of A to the set out - out = out.union({(var, lag + lag_A) for ((var, lag), link) in self.graph_dict[var_A].items() if len(link) > 0 and lag + lag_A >= -self.tau_max}) - - # Return the desired set - return out - - def _update_pval_val_card_dicts(self, X, Y, pval, val, card): - """If 'pval' is larger than the current maximal p-value across all previous independence tests for X and Y (stored in self.pval_max) - then: Replace the current values stored in self.pval_max, self.pval_max_val, self.pval_max_card respectively by 'pval', 'val', and 'card'.""" - - if X[1] < 0 or X[0] < Y[0]: - if pval > self.pval_max[Y[0]][X]: - self.pval_max[Y[0]][X] = pval - self.pval_max_val[Y[0]][X] = val - self.pval_max_card[Y[0]][X] = card - else: - if pval > self.pval_max[X[0]][Y]: - self.pval_max[X[0]][Y] = pval - self.pval_max_val[X[0]][Y] = val - self.pval_max_card[X[0]][Y] = card - - def _save_sepset(self, X, Y, Z): - """Save Z as separating sets of X and Y. Y is assumed to be at lag 0""" - - # Unpack X and Y - (i, lag_i) = X - (j, lag_j) = Y - - assert lag_j == 0 - - # Save the sepset - if lag_i < 0 or i < j: - self.sepsets[j][X].add(Z) - else: - self.sepsets[i][Y].add(Z) - - def _reverse_link(self, link): - """Reverse a given link, taking care to replace > with < and vice versa""" - - if link == "": - return "" - - if link[2] == ">": - left_mark = "<" - else: - left_mark = link[2] - - if link[0] == "<": - right_mark = ">" - else: - right_mark = link[0] - - return left_mark + link[1] + right_mark - - - def _write_link(self, A, B, new_link, verbosity = 0): - """Write the information that the link from node A to node B takes the form of new_link into self.graph_dict. Neither is it assumed - that at least of the nodes is at lag 0, nor must A be before B. If A and B are contemporaneous, also the link from B to A is written - as the reverse of new_link""" - - # Unpack A and B - (var_A, lag_A) = A - (var_B, lag_B) = B - - # Write the link from A to B - if lag_A < lag_B: - - if verbosity >= 1: - print("{:10} ({},{:2}) {:3} ({},{:2}) ==> ({},{:2}) {:3} ({},{:2}) ".format("Writing:", var_A, lag_A - lag_B, self.graph_dict[var_B][(var_A, lag_A - lag_B)], var_B, 0, var_A, lag_A - lag_B, new_link, var_B, 0)) - #print("Replacing {:3} from ({},{:2}) to {} with {:3}".format(self.graph_dict[var_B][(var_A, lag_A - lag_B)], var_A, lag_A - lag_B, (var_B, 0), new_link)) - - self.graph_dict[var_B][(var_A, lag_A - lag_B)] = new_link - - - elif lag_A == lag_B: - - if verbosity >= 1: - print("{:10} ({},{:2}) {:3} ({},{:2}) ==> ({},{:2}) {:3} ({},{:2}) ".format("Writing:", var_A, lag_A - lag_B, self.graph_dict[var_B][(var_A, 0)], var_B, 0, var_A, 0, new_link, var_B, 0)) - #print("Replacing {:3} from ({},{:2}) to {} with {:3}".format(self.graph_dict[var_B][(var_A, 0)], var_A, 0, (var_B, 0), new_link)) - print("{:10} ({},{:2}) {:3} ({},{:2}) ==> ({},{:2}) {:3} ({},{:2}) ".format("Writing:", var_B, 0, self.graph_dict[var_A][(var_B, 0)], var_A, 0, var_B, 0, self._reverse_link(new_link), var_A, 0)) - #print("Replacing {:3} from ({},{:2}) to {} with {:3}".format(self.graph_dict[var_A][(var_B, 0)], var_B, 0, (var_A, 0), self._reverse_link(new_link))) - - self.graph_dict[var_B][(var_A, 0)] = new_link - self.graph_dict[var_A][(var_B, 0)] = self._reverse_link(new_link) - - else: - - if verbosity >= 1: - print("{:10} ({},{:2}) {:3} ({},{:2}) ==> ({},{:2}) {:3} ({},{:2}) ".format("Writing:", var_B, lag_B - lag_A, self.graph_dict[var_A][(var_B, lag_B - lag_A)], var_A, 0, var_B, lag_B - lag_A, self._reverse_link(new_link), var_A, 0)) - #print("Replacing {:3} from ({},{:2}) to {} with {:3}".format(self.graph_dict[var_A][(var_B, lag_B - lag_A)], var_B, lag_B - lag_A, (var_A, 0), self._reverse_link(new_link))) - - self.graph_dict[var_A][(var_B, lag_B - lag_A)] = self._reverse_link(new_link) - - - def _get_sepsets(self, A, B): - """For two non-adjacent nodes, get the their separating stored in self.sepsets.""" - - (var_A, lag_A) = A - (var_B, lag_B) = B - - def _shift(Z, lag_B): - return frozenset([(var, lag + lag_B) for (var, lag) in Z]) - - if lag_A < lag_B: - out = {(_shift(Z, lag_B), status) for (Z, status) in self.sepsets[var_B][(var_A, lag_A - lag_B)]} - elif lag_A > lag_B: - out = {(_shift(Z, lag_A), status) for (Z, status) in self.sepsets[var_A][(var_B, lag_B - lag_A)]} - else: - out = {(_shift(Z, lag_A), status) for (Z, status) in self.sepsets[max(var_A, var_B)][(min(var_A, var_B), 0)]} - - return out - - - def _initialize_full_graph(self): - """ - The function _get_na_pds_t() needs to know the future adjacencies of a given node, not only the non-future adjacencies that are - stored in self.graph_dict. To aid this, this function initializes the dictionary graph_full_dict: - - self.graph_full_dict[j][(i, -tau_i)] contains all adjacencies of (j, 0), in particular those for which tau_i < 0. - """ - - # Build from an empty nested dictionary - self.graph_full_dict = {j: {} for j in range(self.N)} - - # Run through the entire nested dictionary self.graph_dict - for j in range(self.N): - for ((var, lag), link) in self.graph_dict[j].items(): - - if link != "": - # Add non-future adjacencies - self.graph_full_dict[j][(var, lag)] = link - - # Add the future adjacencies - if lag < 0: - self.graph_full_dict[var][(j, -lag)] = self._reverse_link(link) - - # Return nothing - return None - - - def _get_pair_key_and_new_link(self, A, B, link_AB): - """The link from A to B takes the form link_AB. Bring this information into a form appropriate for the output of rule applications""" - - (var_A, lag_A) = A - (var_B, lag_B) = B - - if lag_A <= lag_B: - return ((var_A, var_B, lag_A - lag_B), link_AB) - elif lag_A > lag_B: - return ((var_B, var_A, lag_B - lag_A), self._reverse_link(link_AB)) - - - def _match_link(self, pattern, link): - """Matches pattern including wildcards with link.""" - - if pattern == '' or link == '': - return True if pattern == link else False - else: - left_mark, middle_mark, right_mark = pattern - if left_mark != '*': - if left_mark == '+': - if link[0] not in ['<', 'o']: return False - else: - if link[0] != left_mark: return False - - if right_mark != '*': - if right_mark == '+': - if link[2] not in ['>', 'o']: return False - else: - if link[2] != right_mark: return False - - if middle_mark != '*' and link[1] != middle_mark: return False - - return True - - - def _dict2graph(self): - """Convert self.graph_dict to graph array of shape (N, N, self.tau_max + 1).""" - - graph = np.zeros((self.N, self.N, self.tau_max + 1), dtype='U3') - for j in range(self.N): - for adj in self.graph_dict[j]: - (i, lag_i) = adj - graph[i, j, abs(lag_i)] = self.graph_dict[j][adj] - - return graph - - - def _find_adj(self, graph, node, patterns, exclude=None, ignore_time_bounds=True): - """Find adjacencies of node matching patterns.""" - - # Setup - i, lag_i = node - if exclude is None: exclude = [] - if type(patterns) == str: - patterns = [patterns] - - # Init - adj = [] - # Find adjacencies going forward/contemp - for k, lag_ik in zip(*np.where(graph[i,:,:])): - matches = [self._match_link(patt, graph[i, k, lag_ik]) for patt in patterns] - if np.any(matches): - match = (k, lag_i + lag_ik) - if match not in adj and (k, lag_i + lag_ik) not in exclude and (-self.tau_max <= lag_i + lag_ik <= 0 or ignore_time_bounds): - adj.append(match) - - # Find adjacencies going backward/contemp - for k, lag_ki in zip(*np.where(graph[:,i,:])): - matches = [self._match_link(self._reverse_link(patt), graph[k, i, lag_ki]) for patt in patterns] - if np.any(matches): - match = (k, lag_i - lag_ki) - if match not in adj and (k, lag_i - lag_ki) not in exclude and (-self.tau_max <= lag_i - lag_ki <= 0 or ignore_time_bounds): - adj.append(match) - - return adj - - - def _is_match(self, graph, X, Y, pattern_ij): - """Check whether the link between X and Y agrees with pattern_ij""" - - (i, lag_i) = X - (j, lag_j) = Y - tauij = lag_j - lag_i - if abs(tauij) >= graph.shape[2]: - return False - return ((tauij >= 0 and self._match_link(pattern_ij, graph[i, j, tauij])) or - (tauij < 0 and self._match_link(self._reverse_link(pattern_ij), graph[j, i, abs(tauij)]))) - - - def _find_triples(self, pattern_ij, pattern_jk, pattern_ik): - """Find triples (i, lag_i), (j, lag_j), (k, lag_k) that match patterns.""" - - # Graph as array makes it easier to search forward AND backward in time - graph = self._dict2graph() - - # print(graph[:,:,0]) - # print(graph[:,:,1]) - # print("matching ", pattern_ij, pattern_jk, pattern_ik) - - matched_triples = [] - - for i in range(self.N): - # Set lag_i = 0 without loss of generality, will be adjusted at end - lag_i = 0 - adjacencies_i = self._find_adj(graph, (i, lag_i), pattern_ij) - # print(i, adjacencies_i) - for (j, lag_j) in adjacencies_i: - - adjacencies_j = self._find_adj(graph, (j, lag_j), pattern_jk, - exclude=[(i, lag_i)]) - # print(j, adjacencies_j) - for (k, lag_k) in adjacencies_j: - if self._is_match(graph, (i, lag_i), (k, lag_k), pattern_ik): - # Now use stationarity and shift triple such that the right-most - # node (on a line t=..., -2, -1, 0, 1, 2, ...) is at lag 0 - righmost_lag = max(lag_i, lag_j, lag_k) - match = ((i, lag_i - righmost_lag), - (j, lag_j - righmost_lag), - (k, lag_k - righmost_lag)) - largest_lag = min(lag_i - righmost_lag, lag_j - righmost_lag, lag_k - righmost_lag) - if match not in matched_triples and \ - -self.tau_max <= largest_lag <= 0: - matched_triples.append(match) - - return matched_triples - - - def _find_quadruples(self, pattern_ij, pattern_jk, pattern_ik, - pattern_il, pattern_jl, pattern_kl): - """Find quadruples (i, lag_i), (j, lag_j), (k, lag_k), (l, lag_l) that match patterns.""" - - # We assume this later - assert pattern_il != '' - - # Graph as array makes it easier to search forward AND backward in time - graph = self._dict2graph() - - matched_quadruples = [] - - # First get triple ijk - ijk_triples = self._find_triples(pattern_ij, pattern_jk, pattern_ik) - - for triple in ijk_triples: - # Unpack triple - (i, lag_i), (j, lag_j), (k, lag_k) = triple - - # Search through adjacencies - adjacencies = set(self._find_adj(graph, (i, lag_i), pattern_il, - exclude=[(j, lag_j), (k, lag_k)])) - if pattern_jl != '': - adjacencies = adjacencies.intersection(set( - self._find_adj(graph, (j, lag_j), pattern_jl, - exclude=[(i, lag_i), (k, lag_k)]))) - else: - adjacencies = set([adj for adj in adjacencies - if self._is_match(graph, (j, lag_j), adj, '')]) - - if pattern_kl != '': - adjacencies = adjacencies.intersection(set( - self._find_adj(graph, (k, lag_k), pattern_kl, - exclude=[(i, lag_i), (j, lag_j)]))) - else: - adjacencies = set([adj for adj in adjacencies - if self._is_match(graph, (k, lag_k), adj, '')]) - - for adj in adjacencies: - (l, lag_l) = adj - - # Now use stationarity and shift quadruple such that the right-most - # node (on a line t=..., -2, -1, 0, 1, 2, ...) is at lag 0 - righmost_lag = max(lag_i, lag_j, lag_k, lag_l) - match = ((i, lag_i - righmost_lag), - (j, lag_j - righmost_lag), - (k, lag_k - righmost_lag), - (l, lag_l - righmost_lag), - ) - largest_lag = min(lag_i - righmost_lag, - lag_j - righmost_lag, - lag_k - righmost_lag, - lag_l - righmost_lag, - ) - if match not in matched_quadruples and \ - -self.tau_max <= largest_lag <= 0: - matched_quadruples.append(match) - - return matched_quadruples - - - def _get_R4_discriminating_paths(self, triple, max_length = np.inf): - """Find all discriminating paths starting from triple""" - - def _search(path_taken, max_length): - - # Get the last visited node and its link to Y - last_node = path_taken[-1] - link_to_Y = self._get_link(last_node, path_taken[0]) - - # Base Case: If the current path is a discriminating path, return it as single entry of a list - if len(path_taken) > 3 and link_to_Y == "": - return [path_taken] - - # If the current path is not a discriminating path, continue the path - paths = [] - - if self._get_link(last_node, path_taken[-2])[0] == "<" and link_to_Y == "-->" and len(path_taken) < max_length: - - # Search through all adjacencies of the last node - for (var, lag) in self.graph_full_dict[last_node[0]].keys(): - - # Build the next node and get its link to the previous - next_node = (var, lag + last_node[1]) - next_link = self._get_link(next_node, last_node) - - # Check whether this node can be visited - if next_node[1] <= 0 and next_node[1] >= -self.tau_max and next_node not in path_taken and self._match_link("*->", next_link): - - # Recursive call - paths.extend(_search(path_taken[:] + [next_node], max_length)) - - # Return the list of discriminating paths - return paths - - # Unpack the triple - (W, V, Y) = triple - - # Return all discriminating paths starting at this triple - return _search([Y, V, W], max_length) - - - def _get_potentially_directed_uncovered_paths(self, start_node, end_node, initial_allowed_patterns): - """Find all potentiall directed uncoverged paths from start_node to end_node whose first link takes one the forms specified by - initial_allowed_patters""" - - assert start_node != end_node - - # Function for recursive search of potentially directed uncovered paths - def _search(end_node, path_taken, allowed_patterns): - - # List for outputting potentially directed uncovered paths - paths = [] - - # The last visited note becomes the new start_node - start_node = path_taken[-1] - - # Base case: End node has been reached - if start_node == end_node: - paths.append(path_taken) - - # Recursive build case - else: - # Run through the adjacencies of start_node - #for next_node in self.graph_full_dict[start_node[0]]: - for (var, lag) in self.graph_full_dict[start_node[0]].keys(): - - next_node = (var, lag + start_node[1]) - - # Consider only nodes that ... - # ... are within the allowed time frame - if next_node[1] < -self.tau_max or next_node[1] > 0: - continue - # ... have not been visited yet - if next_node in path_taken: - continue - # ... are non-adjacent to the node before start_node - if len(path_taken) >= 2 and self._get_link(path_taken[-2], next_node) != "": - continue - # ... whose link with start_node matches one of the allowed patters - link = self._get_link(start_node, next_node) - if not any([self._match_link(pattern = pattern, link = link) for pattern in allowed_patterns]): - continue - - # Determine the allowed patters for the next recursive call - if self._match_link(pattern='o*o', link=link): - new_allowed_patters = ["o*o", "o*>", "-*>"] - elif self._match_link(pattern='o*>', link=link) or self._match_link(pattern='-*>', link=link): - new_allowed_patters = ["-*>"] - - # Determine the new path taken - new_path_taken = path_taken[:] + [next_node] - - # Recursive call - paths.extend(_search(end_node, new_path_taken, new_allowed_patters)) - - # Output list of potentially directed uncovered paths - return paths - - # end def _search(end_node, path_taken, allowed_patterns) - - # Output potentially directed uncovered paths - paths = _search(end_node, [start_node], initial_allowed_patterns) - return [path for path in paths if len(path) > 2] - - - def _sort_search_set(self, search_set, reference_node): - """Sort the nodes in search_set by their values in self.pval_max_val with respect to the reference_node. Nodes with higher absolute - values appear earlier""" - - sort_by_potential_minus_infs = [self._get_pval_max_val(node, reference_node) for node in search_set] - sort_by = [(np.abs(value) if value != -np.inf else 0) for value in sort_by_potential_minus_infs] - - return [x for _, x in sorted(zip(sort_by, search_set), reverse = True)] - - def _get_pval_max_val(self, X, Y): - """Return the test statistic value of that independence test for X and Y which, among all such tests, has the largest p-value.""" - - if X[1] < 0 or X[0] < Y[0]: - return self.pval_max_val[Y[0]][X] - else: - return self.pval_max_val[X[0]][Y] - - def _delete_sepsets(self, X, Y): - """Delete all separating sets of X and Y. Y is assumed to be at lag 0""" - - # Unpack X and Y - (i, lag_i) = X - (j, lag_j) = Y - - assert lag_j == 0 - - # Save the sepset - if lag_i < 0 or i < j: - self.sepsets[j][X] = set() - else: - self.sepsets[i][Y] = set()
- - -if __name__ == '__main__': - - from tigramite.independence_tests import ParCorr - import tigramite.data_processing as pp - from tigramite.toymodels import structural_causal_processes as toys - import tigramite.plotting as tp - from matplotlib import pyplot as plt - - # Example process to play around with - # Each key refers to a variable and the incoming links are supplied - # as a list of format [((var, -lag), coeff, function), ...] - def lin_f(x): return x - def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) - - links = {0: [((0, -1), 0.9, lin_f), ((3, -1), -0.6, lin_f)], - 1: [((1, -1), 0.9, lin_f), ((3, -1), 0.6, lin_f)], - 2: [((2, -1), 0.9, lin_f), ((1, -1), 0.6, lin_f)], - 3: [], - } - - full_data, nonstat = toys.structural_causal_process(links, - T=1000, seed=7) - - # We now remove variable 3 which plays the role of a hidden confounder - data = full_data[:, [0, 1, 2]] - - # Data must be array of shape (time, variables) - print(data.shape) - dataframe = pp.DataFrame(data) - cond_ind_test = ParCorr() - lpcmci = LPCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test) - # results = pcmci.run_lpcmci(tau_max=2, pc_alpha=0.01) - - # # For a proper causal interpretation of the graph see the paper! - # print(results['graph']) - # tp.plot_graph(graph=results['graph'], val_matrix=results['val_matrix']) - # plt.show() - - results = lpcmci.run_sliding_window_of( - window_step=499, window_length=500, - method='run_lpcmci', method_args={'tau_max':1}) -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/models.html b/docs/_build/html/_modules/tigramite/models.html deleted file mode 100644 index 56b6ac46..00000000 --- a/docs/_build/html/_modules/tigramite/models.html +++ /dev/null @@ -1,2050 +0,0 @@ - - - - - - - - tigramite.models — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.models

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-from copy import deepcopy
-import json, warnings, os, pathlib
-import numpy as np
-import sklearn
-import sklearn.linear_model
-import networkx
-from tigramite.data_processing import DataFrame
-from tigramite.pcmci import PCMCI
-
-
[docs]class Models(): - """Base class for time series models. - - Allows to fit any model from sklearn to the parents of a target variable. - Also takes care of missing values, masking and preprocessing. - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - model : sklearn model object - For example, sklearn.linear_model.LinearRegression() for a linear - regression model. - conditional_model : sklearn model object, optional (default: None) - Used to fit conditional causal effects in nested regression. - If None, model is used. - data_transform : sklearn preprocessing object, optional (default: None) - Used to transform data prior to fitting. For example, - sklearn.preprocessing.StandardScaler for simple standardization. The - fitted parameters are stored. Note that the inverse_transform is then - applied to the predicted data. - mask_type : {None, 'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence - measure I(X; Y | Z) the samples should be masked. If None, the mask - is not used. Explained in tutorial on masking and missing values. - verbosity : int, optional (default: 0) - Level of verbosity. - """ - - def __init__(self, - dataframe, - model, - conditional_model=None, - data_transform=sklearn.preprocessing.StandardScaler(), - mask_type=None, - verbosity=0): - # Set the mask type and dataframe object - self.mask_type = mask_type - self.dataframe = dataframe - # Get the number of nodes and length for this dataset - self.N = self.dataframe.N - self.T = self.dataframe.T - # Set the model to be used - self.model = model - if conditional_model is None: - self.conditional_model = model - else: - self.conditional_model = conditional_model - # Set the data_transform object and verbosity - self.data_transform = data_transform - self.verbosity = verbosity - # Initialize the object that will be set later - self.all_parents = None - self.selected_variables = None - self.tau_max = None - self.fit_results = None - - # @profile -
[docs] def get_general_fitted_model(self, - Y, X, Z=None, - conditions=None, - tau_max=None, - cut_off='max_lag_or_tau_max', - return_data=False): - """Fit time series model. - - For each variable in selected_variables, the sklearn model is fitted - with :math:`y` given by the target variable, and :math:`X` given by its - parents. The fitted model class is returned for later use. - - Parameters - ---------- - X, Y, Z : lists of tuples - List of variables for estimating model Y = f(X,Z) - conditions : list of tuples. - Conditions for estimating conditional causal effects. - tau_max : int, optional (default: None) - Maximum time lag. If None, the maximum lag in all_parents is used. - cut_off : {'max_lag_or_tau_max', '2xtau_max', 'max_lag'} - How many samples to cutoff at the beginning. The default is - 'max_lag_or_tau_max', which uses the maximum of tau_max and the - conditions. This is useful to compare multiple models on the same - sample. Other options are '2xtau_max', which guarantees that MCI - tests are all conducted on the same samples. Last, 'max_lag' uses - as much samples as possible. - return_data : bool, optional (default: False) - Whether to save the data array. - - Returns - ------- - fit_results : dictionary of sklearn model objects for each variable - Returns the sklearn model after fitting. Also returns the data - transformation parameters. - """ - - self.X = X - self.Y = Y - - if conditions is None: - conditions = [] - self.conditions = conditions - - if Z is not None: - Z = [z for z in Z if z not in conditions] - - self.Z = Z - - self.cut_off = cut_off - - # Find the maximal conditions lag - max_lag = 0 - for y in self.Y: - this_lag = np.abs(np.array(self.X + self.Z + self.conditions)[:, 1]).max() - max_lag = max(max_lag, this_lag) - # Set the default tau max and check if it should be overwritten - if tau_max is None: - self.tau_max = max_lag - else: - self.tau_max = tau_max - if self.tau_max < max_lag: - raise ValueError("tau_max = %d, but must be at least " - " max_lag = %d" - "" % (self.tau_max, max_lag)) - - # Initialize the fit results - fit_results = {} - for y in self.Y: - - # Construct array of shape (var, time) - array, xyz, _ = \ - self.dataframe.construct_array(X=self.X, Y=[y], - Z=self.conditions, - extraZ=self.Z, - tau_max=self.tau_max, - mask_type=self.mask_type, - cut_off=self.cut_off, - remove_overlaps=True, - verbosity=self.verbosity) - - # Transform the data if needed - self.fitted_data_transform = None - if self.data_transform is not None: - # Fit only X, Y, and S for later use in transforming input - X_transform = deepcopy(self.data_transform) - x_indices = list(np.where(xyz==0)[0]) - X_transform.fit(array[x_indices, :].T) - self.fitted_data_transform = {'X': X_transform} - Y_transform = deepcopy(self.data_transform) - y_indices = list(np.where(xyz==1)[0]) - Y_transform.fit(array[y_indices, :].T) - self.fitted_data_transform['Y'] = Y_transform - if len(self.conditions) > 0: - S_transform = deepcopy(self.data_transform) - s_indices = list(np.where(xyz==2)[0]) - S_transform.fit(array[s_indices, :].T) - self.fitted_data_transform['S'] = S_transform - - # Now transform whole array - all_transform = deepcopy(self.data_transform) - array = all_transform.fit_transform(X=array.T).T - - # Fit the model - # Copy and fit the model - a_model = deepcopy(self.model) - - predictor_indices = list(np.where(xyz==0)[0]) \ - + list(np.where(xyz==3)[0]) \ - + list(np.where(xyz==2)[0]) - predictor_array = array[predictor_indices, :].T - # Target is only first entry of Y, ie [y] - target_array = array[np.where(xyz==1)[0][0], :] - - a_model.fit(X=predictor_array, y=target_array) - - # Cache the results - fit_results[y] = {} - fit_results[y]['observation_array'] = array - fit_results[y]['xyz'] = xyz - fit_results[y]['model'] = a_model - # Cache the data transform - fit_results[y]['fitted_data_transform'] = self.fitted_data_transform - # # Cache the data if needed - # if return_data: - # fit_results[y]['data'] = array - - # Cache and return the fit results - self.fit_results = fit_results - return fit_results
- - # @profile -
[docs] def get_general_prediction(self, - intervention_data, - conditions_data=None, - pred_params=None, - transform_interventions_and_prediction=False, - return_further_pred_results=False, - aggregation_func=np.mean, - ): - r"""Predict effect of intervention with fitted model. - - Uses the model.predict() function of the sklearn model. - - Parameters - ---------- - intervention_data : numpy array - Numpy array of shape (time, len(X)) that contains the do(X) values. - conditions_data : data object, optional - Numpy array of shape (time, len(S)) that contains the S=s values. - pred_params : dict, optional - Optional parameters passed on to sklearn prediction function. - transform_interventions_and_prediction : bool (default: False) - Whether to perform the inverse data_transform on prediction results. - return_further_pred_results : bool, optional (default: False) - In case the predictor class returns more than just the expected value, - the entire results can be returned. - aggregation_func : callable - Callable applied to output of 'predict'. Default is 'np.mean'. - - Returns - ------- - Results from prediction. - """ - - intervention_T, lenX = intervention_data.shape - - if intervention_data.shape[1] != len(self.X): - raise ValueError("intervention_data.shape[1] must be len(X).") - - if conditions_data is not None: - if conditions_data.shape[1] != len(self.conditions): - raise ValueError("conditions_data.shape[1] must be len(S).") - if conditions_data.shape[0] != intervention_data.shape[0]: - raise ValueError("conditions_data.shape[0] must match intervention_data.shape[0].") - - lenS = len(self.conditions) - lenY = len(self.Y) - - # predicted_array = np.zeros((intervention_T, lenY)) - pred_dict = {} - for iy, y in enumerate(self.Y): - pred_dict[iy] = {} - # Print message - if self.verbosity > 1: - print("\n## Predicting target %s" % str(y)) - if pred_params is not None: - for key in list(pred_params): - print("%s = %s" % (key, pred_params[key])) - # Default value for pred_params - if pred_params is None: - pred_params = {} - # Check this is a valid target - if y not in self.fit_results: - raise ValueError("y = %s not yet fitted" % str(y)) - - # Transform the data if needed - fitted_data_transform = self.fit_results[y]['fitted_data_transform'] - if transform_interventions_and_prediction and fitted_data_transform is not None: - intervention_data = fitted_data_transform['X'].transform(X=intervention_data) - if self.conditions is not None and conditions_data is not None: - conditions_data = fitted_data_transform['S'].transform(X=conditions_data) - - # Extract observational Z from stored array - z_indices = list(np.where(self.fit_results[y]['xyz']==3)[0]) - z_array = self.fit_results[y]['observation_array'][z_indices, :].T - Tobs = len(self.fit_results[y]['observation_array'].T) - - if self.conditions is not None and conditions_data is not None: - s_indices = list(np.where(self.fit_results[y]['xyz']==2)[0]) - s_array = self.fit_results[y]['observation_array'][s_indices, :].T - - # Now iterate through interventions (and potentially S) - for index, dox_vals in enumerate(intervention_data): - # Construct XZS-array - intervention_array = dox_vals.reshape(1, lenX) * np.ones((Tobs, lenX)) - if self.conditions is not None and conditions_data is not None: - conditions_array = conditions_data[index].reshape(1, lenS) * np.ones((Tobs, lenS)) - predictor_array = np.hstack((intervention_array, z_array, conditions_array)) - else: - predictor_array = np.hstack((intervention_array, z_array)) - - predicted_vals = self.fit_results[y]['model'].predict( - X=predictor_array, **pred_params) - - # print(predicted_vals) - if self.conditions is not None and conditions_data is not None: - - a_conditional_model = deepcopy(self.conditional_model) - - if type(predicted_vals) is tuple: - predicted_vals_here = predicted_vals[0] - else: - predicted_vals_here = predicted_vals - - a_conditional_model.fit(X=s_array, y=predicted_vals_here) - self.fit_results[y]['conditional_model'] = a_conditional_model - - predicted_vals = a_conditional_model.predict( - X=conditions_array, **pred_params) - - if transform_interventions_and_prediction and fitted_data_transform is not None: - predicted_vals = fitted_data_transform['Y'].inverse_transform(X=predicted_vals.reshape(-1, 1)).squeeze() - - pred_dict[iy][index] = predicted_vals - - # Apply aggregation function - if type(predicted_vals) is tuple: - aggregated_pred = aggregation_func(predicted_vals[0]) - else: - aggregated_pred = aggregation_func(predicted_vals) - - if iy == 0 and index == 0: - predicted_array = np.empty((intervention_T, lenY,) + aggregated_pred.shape, - dtype=aggregated_pred.dtype) - - predicted_array[index, iy] = aggregated_pred - - # if fitted_data_transform is not None: - # rescaled = fitted_data_transform['Y'].inverse_transform(X=predicted_array[index, iy].reshape(-1, 1)) - # predicted_array[index, iy] = rescaled.squeeze() - - if return_further_pred_results: - return predicted_array, pred_dict - else: - return predicted_array
- - -
[docs] def fit_full_model(self, all_parents, - selected_variables=None, - tau_max=None, - cut_off='max_lag_or_tau_max', - return_data=False): - """Fit time series model. - - For each variable in selected_variables, the sklearn model is fitted - with :math:`y` given by the target variable, and :math:`X` given by its - parents. The fitted model class is returned for later use. - - Parameters - ---------- - all_parents : dictionary - Dictionary of form {0:[(0, -1), (3, 0), ...], 1:[], ...} containing - the parents estimated with PCMCI. - selected_variables : list of integers, optional (default: range(N)) - Specify to estimate parents only for selected variables. If None is - passed, parents are estimated for all variables. - tau_max : int, optional (default: None) - Maximum time lag. If None, the maximum lag in all_parents is used. - cut_off : {'max_lag_or_tau_max', '2xtau_max', 'max_lag'} - How many samples to cutoff at the beginning. The default is - 'max_lag_or_tau_max', which uses the maximum of tau_max and the - conditions. This is useful to compare multiple models on the same - sample. Other options are '2xtau_max', which guarantees that MCI - tests are all conducted on the same samples. Last, 'max_lag' uses - as much samples as possible. - return_data : bool, optional (default: False) - Whether to save the data array. - - Returns - ------- - fit_results : dictionary of sklearn model objects for each variable - Returns the sklearn model after fitting. Also returns the data - transformation parameters. - """ - # Initialize the fit by setting the instance's all_parents attribute - self.all_parents = all_parents - # Set the default selected variables to all variables and check if this - # should be overwritten - self.selected_variables = range(self.N) - if selected_variables is not None: - self.selected_variables = selected_variables - # Find the maximal parents lag - max_parents_lag = 0 - for j in self.selected_variables: - if all_parents[j]: - this_parent_lag = np.abs(np.array(all_parents[j])[:, 1]).max() - max_parents_lag = max(max_parents_lag, this_parent_lag) - # Set the default tau_max and check if it should be overwritten - self.tau_max = max_parents_lag - if tau_max is not None: - self.tau_max = tau_max - if self.tau_max < max_parents_lag: - raise ValueError("tau_max = %d, but must be at least " - " max_parents_lag = %d" - "" % (self.tau_max, max_parents_lag)) - # Initialize the fit results - fit_results = {} - for j in self.selected_variables: - Y = [(j, 0)] - X = [(j, 0)] # dummy - Z = self.all_parents[j] - array, xyz, _ = \ - self.dataframe.construct_array(X, Y, Z, - tau_max=self.tau_max, - mask_type=self.mask_type, - cut_off=cut_off, - remove_overlaps=True, - verbosity=self.verbosity) - # Get the dimensions out of the constructed array - dim, T = array.shape - dim_z = dim - 2 - # Transform the data if needed - if self.data_transform is not None: - array = self.data_transform.fit_transform(X=array.T).T - # Cache the results - fit_results[j] = {} - # Cache the data transform - fit_results[j]['data_transform'] = deepcopy(self.data_transform) - - if return_data: - # Cache the data if needed - fit_results[j]['data'] = array - fit_results[j]['used_indices'] = self.dataframe.use_indices_dataset_dict - # Fit the model if there are any parents for this variable to fit - if dim_z > 0: - # Copy and fit the model - a_model = deepcopy(self.model) - a_model.fit(X=array[2:].T, y=array[1]) - - fit_results[j]['model'] = a_model - - # Cache and return the fit results - self.fit_results = fit_results - return fit_results
- -
[docs] def get_coefs(self): - """Returns dictionary of coefficients for linear models. - - Only for models from sklearn.linear_model - - Returns - ------- - coeffs : dictionary - Dictionary of dictionaries for each variable with keys given by the - parents and the regression coefficients as values. - """ - coeffs = {} - for j in self.selected_variables: - coeffs[j] = {} - for ipar, par in enumerate(self.all_parents[j]): - coeffs[j][par] = self.fit_results[j]['model'].coef_[ipar] - return coeffs
- -
[docs] def get_val_matrix(self): - """Returns the coefficient array for different lags for linear model. - - Requires fit_model() before. An entry val_matrix[i,j,tau] gives the - coefficient of the link from i to j at lag tau, including tau=0. - - Returns - ------- - val_matrix : array-like, shape (N, N, tau_max + 1) - Array of coefficients for each time lag, including lag-zero. - """ - - coeffs = self.get_coefs() - val_matrix = np.zeros((self.N, self.N, self.tau_max + 1, )) - - for j in list(coeffs): - for par in list(coeffs[j]): - i, tau = par - val_matrix[i,j,abs(tau)] = coeffs[j][par] - - return val_matrix
- -
[docs]class LinearMediation(Models): - r"""Linear mediation analysis for time series models. - - Fits linear model to parents and provides functions to return measures such - as causal effect, mediated causal effect, average causal effect, etc. as - described in [4]_. Also allows for contemporaneous links. - - For general linear and nonlinear causal effect analysis including latent - variables and further functionality use the CausalEffects class. - - Notes - ----- - This class implements the following causal mediation measures introduced in - [4]_: - - * causal effect (CE) - * mediated causal effect (MCE) - * average causal effect (ACE) - * average causal susceptibility (ACS) - * average mediated causal effect (AMCE) - - Consider a simple model of a causal chain as given in the Example with - - .. math:: X_t &= \eta^X_t \\ - Y_t &= 0.5 X_{t-1} + \eta^Y_t \\ - Z_t &= 0.5 Y_{t-1} + \eta^Z_t - - Here the link coefficient of :math:`X_{t-2} \to Z_t` is zero while the - causal effect is 0.25. MCE through :math:`Y` is 0.25 implying that *all* - of the the CE is explained by :math:`Y`. ACE from :math:`X` is 0.37 since it - has CE 0.5 on :math:`Y` and 0.25 on :math:`Z`. - - Examples - -------- - >>> links_coeffs = {0: [], 1: [((0, -1), 0.5)], 2: [((1, -1), 0.5)]} - >>> data, true_parents = toys.var_process(links_coeffs, T=1000, seed=42) - >>> dataframe = pp.DataFrame(data) - >>> med = LinearMediation(dataframe=dataframe) - >>> med.fit_model(all_parents=true_parents, tau_max=3) - >>> print "Link coefficient (0, -2) --> 2: ", med.get_coeff( - i=0, tau=-2, j=2) - >>> print "Causal effect (0, -2) --> 2: ", med.get_ce(i=0, tau=-2, j=2) - >>> print "Mediated Causal effect (0, -2) --> 2 through 1: ", med.get_mce( - i=0, tau=-2, j=2, k=1) - >>> print "Average Causal Effect: ", med.get_all_ace() - >>> print "Average Causal Susceptibility: ", med.get_all_acs() - >>> print "Average Mediated Causal Effect: ", med.get_all_amce() - Link coefficient (0, -2) --> 2: 0.0 - Causal effect (0, -2) --> 2: 0.250648072987 - Mediated Causal effect (0, -2) --> 2 through 1: 0.250648072987 - Average Causal Effect: [ 0.36897445 0.25718002 0. ] - Average Causal Susceptibility: [ 0. 0.24365041 0.38250406] - Average Mediated Causal Effect: [ 0. 0.12532404 0. ] - - References - ---------- - .. [4] J. Runge et al. (2015): Identifying causal gateways and mediators in - complex spatio-temporal systems. - Nature Communications, 6, 8502. http://doi.org/10.1038/ncomms9502 - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - model_params : dictionary, optional (default: None) - Optional parameters passed on to sklearn model - data_transform : sklearn preprocessing object, optional (default: StandardScaler) - Used to transform data prior to fitting. For example, - sklearn.preprocessing.StandardScaler for simple standardization. The - fitted parameters are stored. - mask_type : {None, 'y','x','z','xy','xz','yz','xyz'} - Masking mode: Indicators for which variables in the dependence - measure I(X; Y | Z) the samples should be masked. If None, the mask - is not used. Explained in tutorial on masking and missing values. - verbosity : int, optional (default: 0) - Level of verbosity. - """ - - def __init__(self, - dataframe, - model_params=None, - data_transform=sklearn.preprocessing.StandardScaler(), - mask_type=None, - verbosity=0): - # Initialize the member variables to None - self.phi = None - self.psi = None - self.all_psi_k = None - self.dataframe = dataframe - self.mask_type = mask_type - self.data_transform = data_transform - if model_params is None: - self.model_params = {} - else: - self.model_params = model_params - - self.bootstrap_available = False - - # Build the model using the parameters - if model_params is None: - model_params = {} - this_model = sklearn.linear_model.LinearRegression(**model_params) - Models.__init__(self, - dataframe=dataframe, - model=this_model, - data_transform=data_transform, - mask_type=mask_type, - verbosity=verbosity) - -
[docs] def fit_model(self, all_parents, tau_max=None): - """Fit linear time series model. - - Fits a sklearn.linear_model.LinearRegression model to the parents of - each variable and computes the coefficient matrices :math:`\Phi` and - :math:`\Psi` as described in [4]_. Does accept contemporaneous links. - - Parameters - ---------- - all_parents : dictionary - Dictionary of form {0:[(0, -1), (3, 0), ...], 1:[], ...} containing - the parents estimated with PCMCI. - tau_max : int, optional (default: None) - Maximum time lag. If None, the maximum lag in all_parents is used. - """ - - # Fit the model using the base class - self.fit_results = self.fit_full_model(all_parents=all_parents, - selected_variables=None, - tau_max=tau_max) - # Cache the results in the member variables - coeffs = self.get_coefs() - self.phi = self._get_phi(coeffs) - self.psi = self._get_psi(self.phi) - self.all_psi_k = self._get_all_psi_k(self.phi) - - self.all_parents = all_parents - self.tau_max = tau_max
- -
[docs] def fit_model_bootstrap(self, - boot_blocklength=1, - seed=None, - boot_samples=100): - """Fits boostrap-versions of Phi, Psi, etc. - - Random draws are generated - - Parameters - ---------- - boot_blocklength : int, or in {'cube_root', 'from_autocorrelation'} - Block length for block-bootstrap, which only applies to - generate_noise_from='residuals'. If 'from_autocorrelation', the block - length is determined from the decay of the autocovariance and - if 'cube_root' it is the cube root of the time series length. - seed : int, optional(default = None) - Seed for RandomState (default_rng) - boot_samples : int - Number of bootstrap samples. - """ - - self.phi_boots = np.empty((boot_samples,) + self.phi.shape) - self.psi_boots = np.empty((boot_samples,) + self.psi.shape) - self.all_psi_k_boots = np.empty((boot_samples,) + self.all_psi_k.shape) - - if self.verbosity > 0: - print("\n##\n## Generating bootstrap samples of Phi, Psi, etc " + - "\n##\n" + - "\nboot_samples = %s \n" % boot_samples + - "\nboot_blocklength = %s \n" % boot_blocklength - ) - - - for b in range(boot_samples): - # # Replace dataframe in method args by bootstrapped dataframe - # method_args_bootstrap['dataframe'].bootstrap = boot_draw - if seed is None: - random_state = np.random.default_rng(None) - else: - random_state = np.random.default_rng(seed+b) - - dataframe_here = deepcopy(self.dataframe) - - dataframe_here.bootstrap = {'boot_blocklength':boot_blocklength, - 'random_state':random_state} - - model = Models(dataframe=dataframe_here, - model=sklearn.linear_model.LinearRegression(**self.model_params), - data_transform=self.data_transform, - mask_type=self.mask_type, - verbosity=0) - - model.fit_full_model(all_parents=self.all_parents, - tau_max=self.tau_max) - - # Cache the results in the member variables - coeffs = model.get_coefs() - phi = self._get_phi(coeffs) - self.phi_boots[b] = phi - self.psi_boots[b] = self._get_psi(phi) - self.all_psi_k_boots[b] = self._get_all_psi_k(phi) - - self.bootstrap_available = True - - return self
- -
[docs] def get_bootstrap_of(self, function, function_args, conf_lev=0.9): - """Applies bootstrap-versions of Phi, Psi, etc. to any function in - this class. - - Parameters - ---------- - function : string - Valid function from LinearMediation class - function_args : dict - Optional function arguments. - conf_lev : float - Confidence interval. - - Returns - ------- - Upper/Lower confidence interval of function. - """ - - valid_functions = [ - 'get_coeff', - 'get_ce', - 'get_ce_max', - 'get_joint_ce', - 'get_joint_ce_matrix', - 'get_mce', - 'get_conditional_mce', - 'get_joint_mce', - 'get_ace', - 'get_all_ace', - 'get_acs', - 'get_all_acs', - 'get_amce', - 'get_all_amce', - 'get_val_matrix', - ] - - if function not in valid_functions: - raise ValueError("function must be in %s" %valid_functions) - - realizations = self.phi_boots.shape[0] - - original_phi = deepcopy(self.phi) - original_psi = deepcopy(self.psi) - original_all_psi_k = deepcopy(self.all_psi_k) - - for r in range(realizations): - self.phi = self.phi_boots[r] - self.psi = self.psi_boots[r] - self.all_psi_k = self.all_psi_k_boots[r] - - boot_effect = getattr(self, function)(**function_args) - - if r == 0: - bootstrap_result = np.empty((realizations, ) + boot_effect.shape) - - bootstrap_result[r] = boot_effect - - # Confidence intervals for val_matrix; interval is two-sided - c_int = (1. - (1. - conf_lev)/2.) - confidence_interval = np.percentile( - bootstrap_result, axis=0, - q = [100*(1. - c_int), 100*c_int]) - - self.phi = original_phi - self.psi = original_psi - self.all_psi_k = original_all_psi_k - - return confidence_interval
- - - def _check_sanity(self, X, Y, k=None): - """Checks validity of some parameters.""" - - if len(X) != 1 or len(Y) != 1: - raise ValueError("X must be of form [(i, -tau)] and Y = [(j, 0)], " - "but are X = %s, Y=%s" % (X, Y)) - - i, tau = X[0] - - if abs(tau) > self.tau_max: - raise ValueError("X must be of form [(i, -tau)] with" - " tau <= tau_max") - - if k is not None and (k < 0 or k >= self.N): - raise ValueError("k must be in [0, N)") - - def _get_phi(self, coeffs): - """Returns the linear coefficient matrices for different lags. - - Parameters - ---------- - coeffs : dictionary - Dictionary of coefficients for each parent. - - Returns - ------- - phi : array-like, shape (tau_max + 1, N, N) - Matrices of coefficients for each time lag. - """ - - phi = np.zeros((self.tau_max + 1, self.N, self.N)) - # phi[0] = np.identity(self.N) - - # Also includes contemporaneous lags - for j in list(coeffs): - for par in list(coeffs[j]): - i, tau = par - phi[abs(tau), j, i] = coeffs[j][par] - - return phi - - def _get_psi(self, phi): - """Returns the linear causal effect matrices for different lags incl - lag zero. - - Parameters - ---------- - phi : array-like - Coefficient matrices at different lags. - - Returns - ------- - psi : array-like, shape (tau_max + 1, N, N) - Matrices of causal effects for each time lag incl contemporaneous links. - """ - - psi = np.zeros((self.tau_max + 1, self.N, self.N)) - - psi[0] = np.linalg.pinv(np.identity(self.N) - phi[0]) - - for tau in range(1, self.tau_max + 1): - # psi[tau] = np.matmul(psi[0], np.matmul(phi[tau], psi[0])) - for s in range(1, tau + 1): - psi[tau] += np.matmul(psi[0], np.matmul(phi[s], psi[tau - s]) ) - - # Lagged-only effects: - # psi = np.zeros((self.tau_max + 1, self.N, self.N)) - - # psi[0] = np.identity(self.N) - # for n in range(1, self.tau_max + 1): - # psi[n] = np.zeros((self.N, self.N)) - # for s in range(1, n + 1): - # psi[n] += np.dot(phi[s], psi[n - s]) - - return psi - - def _get_psi_k(self, phi, k): - """Returns the linear causal effect matrices excluding variable k. - - Essentially, this blocks all path through parents of variable k - at any lag. - - Parameters - ---------- - phi : array-like - Coefficient matrices at different lags. - k : int or list of ints - Variable indices to exclude causal effects through. - - Returns - ------- - psi_k : array-like, shape (tau_max + 1, N, N) - Matrices of causal effects excluding k. - """ - - psi_k = np.zeros((self.tau_max + 1, self.N, self.N)) - - phi_k = np.copy(phi) - if isinstance(k, int): - phi_k[:, k, :] = 0. - else: - for k_here in k: - phi_k[:, k_here, :] = 0. - - - psi_k[0] = np.linalg.pinv(np.identity(self.N) - phi_k[0]) - for tau in range(1, self.tau_max + 1): - # psi_k[tau] = np.matmul(psi_k[0], np.matmul(phi_k[tau], psi_k[0])) - for s in range(1, tau + 1): - psi_k[tau] += np.matmul(psi_k[0], np.matmul(phi_k[s], psi_k[tau - s])) - - - # psi_k[0] = np.identity(self.N) - # phi_k = np.copy(phi) - # phi_k[:, k, :] = 0. - # for n in range(1, self.tau_max + 1): - # psi_k[n] = np.zeros((self.N, self.N)) - # for s in range(1, n + 1): - # psi_k[n] += np.dot(phi_k[s], psi_k[n - s]) - - return psi_k - - def _get_all_psi_k(self, phi): - """Returns the linear causal effect matrices excluding variables. - - Parameters - ---------- - phi : array-like - Coefficient matrices at different lags. - - Returns - ------- - all_psi_k : array-like, shape (N, tau_max + 1, N, N) - Matrices of causal effects where for each row another variable is - excluded. - """ - - all_psi_k = np.zeros((self.N, self.tau_max + 1, self.N, self.N)) - - for k in range(self.N): - all_psi_k[k] = self._get_psi_k(phi, k) - - return all_psi_k - -
[docs] def get_coeff(self, i, tau, j): - """Returns link coefficient. - - This is the direct causal effect for a particular link (i, -tau) --> j. - - Parameters - ---------- - i : int - Index of cause variable. - tau : int - Lag of cause variable (incl lag zero). - j : int - Index of effect variable. - - Returns - ------- - coeff : float - """ - return self.phi[abs(tau), j, i]
- -
[docs] def get_ce(self, i, tau, j): - """Returns the causal effect. - - This is the causal effect for (i, -tau) -- --> j. - - Parameters - ---------- - i : int - Index of cause variable. - tau : int - Lag of cause variable (incl lag zero). - j : int - Index of effect variable. - - Returns - ------- - ce : float - """ - return self.psi[abs(tau), j, i]
- -
[docs] def get_ce_max(self, i, j): - """Returns the causal effect. - - This is the maximum absolute causal effect for i --> j across all - lags (incl lag zero). - - Parameters - ---------- - i : int - Index of cause variable. - j : int - Index of effect variable. - - Returns - ------- - ce : float - """ - argmax = np.abs(self.psi[:, j, i]).argmax() - return self.psi[:, j, i][argmax]
- -
[docs] def get_joint_ce(self, i, j): - """Returns the joint causal effect. - - This is the causal effect from all lags [t, ..., t-tau_max] - of i on j at time t. Note that the joint effect does not - count links passing through parents of i itself. - - Parameters - ---------- - i : int - Index of cause variable. - j : int - Index of effect variable. - - Returns - ------- - joint_ce : array of shape (tau_max + 1) - Causal effect from each lag [t, ..., t-tau_max] of i on j. - """ - joint_ce = self.all_psi_k[i, :, j, i] - return joint_ce
- -
[docs] def get_joint_ce_matrix(self, i, j): - """Returns the joint causal effect matrix of i on j. - - This is the causal effect from all lags [t, ..., t-tau_max] - of i on j at times [t, ..., t-tau_max]. Note that the joint effect does not - count links passing through parents of i itself. - - An entry (taui, tauj) stands for the effect of i at t-taui on j at t-tauj. - - Parameters - ---------- - i : int - Index of cause variable. - j : int - Index of effect variable. - - Returns - ------- - joint_ce_matrix : 2d array of shape (tau_max + 1, tau_max + 1) - Causal effect matrix from each lag of i on each lag of j. - """ - joint_ce_matrix = np.zeros((self.tau_max + 1, self.tau_max + 1)) - for tauj in range(self.tau_max + 1): - joint_ce_matrix[tauj:, tauj] = self.all_psi_k[i, tauj:, j, i][::-1] - - return joint_ce_matrix
- -
[docs] def get_mce(self, i, tau, j, k): - """Returns the mediated causal effect. - - This is the causal effect for i --> j minus the causal effect not going - through k. - - Parameters - ---------- - i : int - Index of cause variable. - tau : int - Lag of cause variable. - j : int - Index of effect variable. - k : int or list of ints - Indices of mediator variables. - - Returns - ------- - mce : float - """ - if isinstance(k, int): - effect_without_k = self.all_psi_k[k, abs(tau), j, i] - else: - effect_without_k = self._get_psi_k(self.phi, k=k)[abs(tau), j, i] - - mce = self.psi[abs(tau), j, i] - effect_without_k - return mce
- -
[docs] def get_conditional_mce(self, i, tau, j, k, notk): - """Returns the conditional mediated causal effect. - - This is the causal effect for i --> j for all paths going through k, but not through notk. - - Parameters - ---------- - i : int - Index of cause variable. - tau : int - Lag of cause variable. - j : int - Index of effect variable. - k : int or list of ints - Indices of mediator variables. - notk : int or list of ints - Indices of mediator variables to exclude. - - Returns - ------- - mce : float - """ - if isinstance(k, int): - k = set([k]) - else: - k = set(k) - if isinstance(notk, int): - notk = set([notk]) - else: - notk = set(notk) - - bothk = list(k.union(notk)) - notk = list(notk) - - effect_without_bothk = self._get_psi_k(self.phi, k=bothk)[abs(tau), j, i] - effect_without_notk = self._get_psi_k(self.phi, k=notk)[abs(tau), j, i] - - # mce = self.psi[abs(tau), j, i] - effect_without_k - mce = effect_without_notk - effect_without_bothk - - return mce
- - -
[docs] def get_joint_mce(self, i, j, k): - """Returns the joint causal effect mediated through k. - - This is the mediated causal effect from all lags [t, ..., t-tau_max] - of i on j at time t for paths through k. Note that the joint effect - does not count links passing through parents of i itself. - - Parameters - ---------- - i : int - Index of cause variable. - j : int - Index of effect variable. - k : int or list of ints - Indices of mediator variables. - - Returns - ------- - joint_mce : array of shape (tau_max + 1) - Mediated causal effect from each lag [t, ..., t-tau_max] of i on j through k. - """ - if isinstance(k, int): - k_here = [k] - - effect_without_k = self._get_psi_k(self.phi, k=[i] + k_here) - - joint_mce = self.all_psi_k[i, :, j, i] - effect_without_k[:, j, i] - return joint_mce
- -
[docs] def get_ace(self, i, lag_mode='absmax', exclude_i=True): - """Returns the average causal effect. - - This is the average causal effect (ACE) emanating from variable i to any - other variable. With lag_mode='absmax' this is based on the lag of - maximum CE for each pair. - - Parameters - ---------- - i : int - Index of cause variable. - lag_mode : {'absmax', 'all_lags'} - Lag mode. Either average across all lags between each pair or only - at the lag of maximum absolute causal effect. - exclude_i : bool, optional (default: True) - Whether to exclude causal effects on the variable itself at later - lags. - - Returns - ------- - ace :float - Average Causal Effect. - """ - - all_but_i = np.ones(self.N, dtype='bool') - if exclude_i: - all_but_i[i] = False - - if lag_mode == 'absmax': - return np.abs(self.psi[:, all_but_i, i]).max(axis=0).mean() - elif lag_mode == 'all_lags': - return np.abs(self.psi[:, all_but_i, i]).mean() - else: - raise ValueError("lag_mode = %s not implemented" % lag_mode)
- -
[docs] def get_all_ace(self, lag_mode='absmax', exclude_i=True): - """Returns the average causal effect for all variables. - - This is the average causal effect (ACE) emanating from variable i to any - other variable. With lag_mode='absmax' this is based on the lag of - maximum CE for each pair. - - Parameters - ---------- - lag_mode : {'absmax', 'all_lags'} - Lag mode. Either average across all lags between each pair or only - at the lag of maximum absolute causal effect. - exclude_i : bool, optional (default: True) - Whether to exclude causal effects on the variable itself at later - lags. - - Returns - ------- - ace : array of shape (N,) - Average Causal Effect for each variable. - """ - - ace = np.zeros(self.N) - for i in range(self.N): - ace[i] = self.get_ace(i, lag_mode=lag_mode, exclude_i=exclude_i) - - return ace
- -
[docs] def get_acs(self, j, lag_mode='absmax', exclude_j=True): - """Returns the average causal susceptibility. - - This is the Average Causal Susceptibility (ACS) affecting a variable j - from any other variable. With lag_mode='absmax' this is based on the lag - of maximum CE for each pair. - - Parameters - ---------- - j : int - Index of variable. - lag_mode : {'absmax', 'all_lags'} - Lag mode. Either average across all lags between each pair or only - at the lag of maximum absolute causal effect. - exclude_j : bool, optional (default: True) - Whether to exclude causal effects on the variable itself at previous - lags. - - Returns - ------- - acs : float - Average Causal Susceptibility. - """ - - all_but_j = np.ones(self.N, dtype='bool') - if exclude_j: - all_but_j[j] = False - - if lag_mode == 'absmax': - return np.abs(self.psi[:, j, all_but_j]).max(axis=0).mean() - elif lag_mode == 'all_lags': - return np.abs(self.psi[:, j, all_but_j]).mean() - else: - raise ValueError("lag_mode = %s not implemented" % lag_mode)
- -
[docs] def get_all_acs(self, lag_mode='absmax', exclude_j=True): - """Returns the average causal susceptibility. - - This is the Average Causal Susceptibility (ACS) for each variable from - any other variable. With lag_mode='absmax' this is based on the lag of - maximum CE for each pair. - - Parameters - ---------- - lag_mode : {'absmax', 'all_lags'} - Lag mode. Either average across all lags between each pair or only - at the lag of maximum absolute causal effect. - exclude_j : bool, optional (default: True) - Whether to exclude causal effects on the variable itself at previous - lags. - - Returns - ------- - acs : array of shape (N,) - Average Causal Susceptibility. - """ - - acs = np.zeros(self.N) - for j in range(self.N): - acs[j] = self.get_acs(j, lag_mode=lag_mode, exclude_j=exclude_j) - - return acs
- -
[docs] def get_amce(self, k, lag_mode='absmax', - exclude_k=True, exclude_self_effects=True): - """Returns the average mediated causal effect. - - This is the Average Mediated Causal Effect (AMCE) through a variable k - With lag_mode='absmax' this is based on the lag of maximum CE for each - pair. - - Parameters - ---------- - k : int - Index of variable. - lag_mode : {'absmax', 'all_lags'} - Lag mode. Either average across all lags between each pair or only - at the lag of maximum absolute causal effect. - exclude_k : bool, optional (default: True) - Whether to exclude causal effects through the variable itself at - previous lags. - exclude_self_effects : bool, optional (default: True) - Whether to exclude causal self effects of variables on themselves. - - Returns - ------- - amce : float - Average Mediated Causal Effect. - """ - - all_but_k = np.ones(self.N, dtype='bool') - if exclude_k: - all_but_k[k] = False - N_new = self.N - 1 - else: - N_new = self.N - - if exclude_self_effects: - weights = np.identity(N_new) == False - else: - weights = np.ones((N_new, N_new), dtype='bool') - - # if self.tau_max < 2: - # raise ValueError("Mediation only nonzero for tau_max >= 2") - - all_mce = self.psi[:, :, :] - self.all_psi_k[k, :, :, :] - # all_mce[:, range(self.N), range(self.N)] = 0. - - if lag_mode == 'absmax': - return np.average(np.abs(all_mce[:, all_but_k, :] - [:, :, all_but_k] - ).max(axis=0), weights=weights) - elif lag_mode == 'all_lags': - return np.abs(all_mce[:, all_but_k, :][:, :, all_but_k]).mean() - else: - raise ValueError("lag_mode = %s not implemented" % lag_mode)
- -
[docs] def get_all_amce(self, lag_mode='absmax', - exclude_k=True, exclude_self_effects=True): - """Returns the average mediated causal effect. - - This is the Average Mediated Causal Effect (AMCE) through all variables - With lag_mode='absmax' this is based on the lag of maximum CE for each - pair. - - Parameters - ---------- - lag_mode : {'absmax', 'all_lags'} - Lag mode. Either average across all lags between each pair or only - at the lag of maximum absolute causal effect. - exclude_k : bool, optional (default: True) - Whether to exclude causal effects through the variable itself at - previous lags. - exclude_self_effects : bool, optional (default: True) - Whether to exclude causal self effects of variables on themselves. - - Returns - ------- - amce : array of shape (N,) - Average Mediated Causal Effect. - """ - amce = np.zeros(self.N) - for k in range(self.N): - amce[k] = self.get_amce(k, - lag_mode=lag_mode, - exclude_k=exclude_k, - exclude_self_effects=exclude_self_effects) - - return amce
- - -
[docs] def get_val_matrix(self, symmetrize=False): - """Returns the matrix of linear coefficients. - - Requires fit_model() before. An entry val_matrix[i,j,tau] gives the - coefficient of the link from i to j at lag tau. Lag=0 is always set - to zero for LinearMediation, use Models class for contemporaneous - models. - - Parameters - ---------- - symmetrize : bool - If True, the lag-zero entries will be symmetrized such that - no zeros appear. Useful since other parts of tigramite - through an error for non-symmetric val_matrix, eg plotting. - - Returns - ------- - val_matrix : array - Matrix of linear coefficients, shape (N, N, tau_max + 1). - """ - val_matrix = np.copy(self.phi.transpose()) - N = val_matrix.shape[0] - - if symmetrize: - # Symmetrize since otherwise other parts of tigramite through an error - for i in range(N): - for j in range(N): - if val_matrix[i,j, 0] == 0.: - val_matrix[i,j, 0] = val_matrix[j,i, 0] - - return val_matrix
- -
[docs] def net_to_tsg(self, row, lag, max_lag): - """Helper function to translate from network to time series graph.""" - return row * max_lag + lag
- -
[docs] def tsg_to_net(self, node, max_lag): - """Helper function to translate from time series graph to network.""" - row = node // max_lag - lag = node % max_lag - return (row, -lag)
- -
[docs] def get_tsg(self, link_matrix, val_matrix=None, include_neighbors=False): - """Returns time series graph matrix. - - Constructs a matrix of shape (N*tau_max, N*tau_max) from link_matrix. - This matrix can be used for plotting the time series graph and analyzing - causal pathways. - - Parameters - ---------- - link_matrix : bool array-like, optional (default: None) - Matrix of significant links. Must be of same shape as val_matrix. - Either sig_thres or link_matrix has to be provided. - val_matrix : array_like - Matrix of shape (N, N, tau_max+1) containing test statistic values. - include_neighbors : bool, optional (default: False) - Whether to include causal paths emanating from neighbors of i - - Returns - ------- - tsg : array of shape (N*tau_max, N*tau_max) - Time series graph matrix. - """ - - N = len(link_matrix) - max_lag = link_matrix.shape[2] + 1 - - # Create TSG - tsg = np.zeros((N * max_lag, N * max_lag)) - for i, j, tau in np.column_stack(np.where(link_matrix)): - # if tau > 0 or include_neighbors: - for t in range(max_lag): - link_start = self.net_to_tsg(i, t - tau, max_lag) - link_end = self.net_to_tsg(j, t, max_lag) - if (0 <= link_start and - (link_start % max_lag) <= (link_end % max_lag)): - if val_matrix is not None: - tsg[link_start, link_end] = val_matrix[i, j, tau] - else: - tsg[link_start, link_end] = 1 - return tsg
- -
[docs] def get_mediation_graph_data(self, i, tau, j, include_neighbors=False): - r"""Returns link and node weights for mediation analysis. - - Returns array with non-zero entries for links that are on causal - paths between :math:`i` and :math:`j` at lag :math:`\tau`. - ``path_val_matrix`` contains the corresponding path coefficients and - ``path_node_array`` the MCE values. ``tsg_path_val_matrix`` contains the - corresponding values in the time series graph format. - - Parameters - ---------- - i : int - Index of cause variable. - tau : int - Lag of cause variable. - j : int - Index of effect variable. - include_neighbors : bool, optional (default: False) - Whether to include causal paths emanating from neighbors of i - - Returns - ------- - graph_data : dictionary - Dictionary of matrices for coloring mediation graph plots. - """ - - path_link_matrix = np.zeros((self.N, self.N, self.tau_max + 1)) - path_val_matrix = np.zeros((self.N, self.N, self.tau_max + 1)) - - # Get mediation of path variables - path_node_array = (self.psi.reshape(1, self.tau_max + 1, self.N, self.N) - - self.all_psi_k)[:, abs(tau), j, i] - - # Get involved links - val_matrix = self.phi.transpose() - link_matrix = val_matrix != 0. - - max_lag = link_matrix.shape[2] + 1 - - # include_neighbors = False because True would allow - # --> o -- motifs in networkx.all_simple_paths as paths, but - # these are blocked... - tsg = self.get_tsg(link_matrix, val_matrix=val_matrix, - include_neighbors=False) - - if include_neighbors: - # Add contemporaneous links only at source node - for m, n in zip(*np.where(link_matrix[:, :, 0])): - # print m,n - if m != n: - tsg[self.net_to_tsg(m, max_lag - tau - 1, max_lag), - self.net_to_tsg(n, max_lag - tau - 1, max_lag) - ] = val_matrix[m, n, 0] - - tsg_path_val_matrix = np.zeros(tsg.shape) - - graph = networkx.DiGraph(tsg) - pathways = [] - - for path in networkx.all_simple_paths(graph, - source=self.net_to_tsg(i, - max_lag - tau - 1, - max_lag), - target=self.net_to_tsg(j, - max_lag - 0 - 1, - max_lag)): - pathways.append([self.tsg_to_net(p, max_lag) for p in path]) - for ip, p in enumerate(path[1:]): - tsg_path_val_matrix[path[ip], p] = tsg[path[ip], p] - - k, tau_k = self.tsg_to_net(p, max_lag) - link_start = self.tsg_to_net(path[ip], max_lag) - link_end = self.tsg_to_net(p, max_lag) - delta_tau = abs(link_end[1] - link_start[1]) - path_val_matrix[link_start[0], - link_end[0], - delta_tau] = val_matrix[link_start[0], - link_end[0], - delta_tau] - - graph_data = {'path_node_array': path_node_array, - 'path_val_matrix': path_val_matrix, - 'tsg_path_val_matrix': tsg_path_val_matrix} - - return graph_data
- - -
[docs]class Prediction(Models, PCMCI): - r"""Prediction class for time series models. - - Allows to fit and predict from any sklearn model. The optimal predictors can - be estimated using PCMCI. Also takes care of missing values, masking and - preprocessing. - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - train_indices : array-like - Either boolean array or time indices marking the training data. - test_indices : array-like - Either boolean array or time indices marking the test data. - prediction_model : sklearn model object - For example, sklearn.linear_model.LinearRegression() for a linear - regression model. - cond_ind_test : Conditional independence test object, optional - Only needed if predictors are estimated with causal algorithm. - The class will be initialized with masking set to the training data. - data_transform : sklearn preprocessing object, optional (default: None) - Used to transform data prior to fitting. For example, - sklearn.preprocessing.StandardScaler for simple standardization. The - fitted parameters are stored. - verbosity : int, optional (default: 0) - Level of verbosity. - """ - - def __init__(self, - dataframe, - train_indices, - test_indices, - prediction_model, - cond_ind_test=None, - data_transform=None, - verbosity=0): - - if dataframe.analysis_mode != 'single': - raise ValueError("Prediction class currently only supports single " - "datasets.") - - # dataframe.values = {0: dataframe.values[0]} - - # Default value for the mask - if dataframe.mask is not None: - mask = {0: dataframe.mask[0]} - else: - mask = {0: np.zeros(dataframe.values[0].shape, dtype='bool')} - # Get the dataframe shape - T = dataframe.T[0] - # Have the default dataframe be the training data frame - train_mask = deepcopy(mask) - train_mask[0][[t for t in range(T) if t not in train_indices]] = True - self.dataframe = deepcopy(dataframe) - self.dataframe.mask = train_mask - self.dataframe._initialized_from = 'dict' - # = DataFrame(dataframe.values[0], - # mask=train_mask, - # missing_flag=dataframe.missing_flag) - # Initialize the models baseclass with the training dataframe - Models.__init__(self, - dataframe=self.dataframe, - model=prediction_model, - data_transform=data_transform, - mask_type='y', - verbosity=verbosity) - - # Build the testing dataframe as well - self.test_mask = deepcopy(mask) - self.test_mask[0][[t for t in range(T) if t not in test_indices]] = True - - self.train_indices = train_indices - self.test_indices = test_indices - - # Setup the PCMCI instance - if cond_ind_test is not None: - # Force the masking - cond_ind_test.set_mask_type('y') - cond_ind_test.verbosity = verbosity - PCMCI.__init__(self, - dataframe=self.dataframe, - cond_ind_test=cond_ind_test, - verbosity=verbosity) - - # Set the member variables - self.cond_ind_test = cond_ind_test - # Initialize member varialbes that are set outside - self.target_predictors = None - self.selected_targets = None - self.fitted_model = None - self.test_array = None - -
[docs] def get_predictors(self, - selected_targets=None, - selected_links=None, - steps_ahead=1, - tau_max=1, - pc_alpha=0.2, - max_conds_dim=None, - max_combinations=1): - """Estimate predictors using PC1 algorithm. - - Wrapper around PCMCI.run_pc_stable that estimates causal predictors. - The lead time can be specified by ``steps_ahead``. - - Parameters - ---------- - selected_targets : list of ints, optional (default: None) - List of variables to estimate predictors of. If None, predictors of - all variables are estimated. - selected_links : dict or None - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} - specifying whether only selected links should be tested. If None is - passed, all links are tested - steps_ahead : int, default: 1 - Minimum time lag to test. Useful for multi-step ahead predictions. - tau_max : int, default: 1 - Maximum time lag. Must be larger or equal to tau_min. - pc_alpha : float or list of floats, default: 0.2 - Significance level in algorithm. If a list or None is passed, the - pc_alpha level is optimized for every variable across the given - pc_alpha values using the score computed in - cond_ind_test.get_model_selection_criterion() - max_conds_dim : int or None - Maximum number of conditions to test. If None is passed, this number - is unrestricted. - max_combinations : int, default: 1 - Maximum number of combinations of conditions of current cardinality - to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm - a larger number, such as 10, can be used. - - Returns - ------- - predictors : dict - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} - containing estimated predictors. - """ - # Ensure an independence model is given - if self.cond_ind_test is None: - raise ValueError("No cond_ind_test given!") - # Set the selected variables - self.selected_variables = range(self.N) - if selected_targets is not None: - self.selected_variables = selected_targets - predictors = self.run_pc_stable(selected_links=selected_links, - tau_min=steps_ahead, - tau_max=tau_max, - save_iterations=False, - pc_alpha=pc_alpha, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations) - return predictors
- -
[docs] def fit(self, target_predictors, - selected_targets=None, tau_max=None, return_data=False): - r"""Fit time series model. - - Wrapper around ``Models.fit_full_model()``. To each variable in - ``selected_targets``, the sklearn model is fitted with :math:`y` given - by the target variable, and :math:`X` given by its predictors. The - fitted model class is returned for later use. - - Parameters - ---------- - target_predictors : dictionary - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing - the predictors estimated with PCMCI. - selected_targets : list of integers, optional (default: range(N)) - Specify to fit model only for selected targets. If None is - passed, models are estimated for all variables. - tau_max : int, optional (default: None) - Maximum time lag. If None, the maximum lag in target_predictors is - used. - return_data : bool, optional (default: False) - Whether to save the data array. - - Returns - ------- - self : instance of self - """ - - if tau_max is None: - # Find the maximal parents lag - max_parents_lag = 0 - for j in self.selected_targets: - if target_predictors[j]: - this_parent_lag = np.abs(np.array(target_predictors[j])[:, 1]).max() - max_parents_lag = max(max_parents_lag, this_parent_lag) - else: - max_parents_lag = tau_max - - if len(set(np.array(self.test_indices) - max_parents_lag) - .intersection(self.train_indices)) > 0: - warnings.warn("test_indices - maxlag(predictors) [or tau_max] " - "overlaps with train_indices: Choose test_indices " - "such that there is a gap of max_lag to train_indices!") - - self.target_predictors = target_predictors - - if selected_targets is None: - self.selected_targets = range(self.N) - else: - self.selected_targets = selected_targets - - for target in self.selected_targets: - if target not in list(self.target_predictors): - raise ValueError("No predictors given for target %s" % target) - - self.fitted_model = \ - self.fit_full_model(all_parents=self.target_predictors, - selected_variables=self.selected_targets, - tau_max=tau_max, - return_data=return_data) - return self
- -
[docs] def predict(self, target, - new_data=None, - pred_params=None, - cut_off='max_lag_or_tau_max'): - r"""Predict target variable with fitted model. - - Uses the model.predict() function of the sklearn model. - - If target is an int, the predicted time series is returned. If target - is a list of integers, then a list of predicted time series is returned. - If the list of integers equals range(N), then an array of shape (T, N) - of the predicted series is returned. - - Parameters - ---------- - target : int or list of integers - Index or indices of target variable(s). - new_data : data object, optional - New Tigramite dataframe object with optional new mask. Note that - the data will be cut off according to cut_off, see parameter - `cut_off` below. - pred_params : dict, optional - Optional parameters passed on to sklearn prediction function. - cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} - How many samples to cutoff at the beginning. The default is - '2xtau_max', which guarantees that MCI tests are all conducted on - the same samples. For modeling, 'max_lag_or_tau_max' can be used, - which uses the maximum of tau_max and the conditions, which is - useful to compare multiple models on the same sample. Last, - 'max_lag' uses as much samples as possible. - - Returns - ------- - Results from prediction. - """ - - if isinstance(target, int): - target_list = [target] - elif isinstance(target, list): - target_list = target - else: - raise ValueError("target must be either int or list of integers " - "indicating the index of the variables to " - "predict.") - - if target_list == range(self.N): - return_type = 'array' - elif len(target_list) == 1: - return_type = 'series' - else: - return_type = 'list' - - pred_list = [] - for target in target_list: - # Print message - if self.verbosity > 0: - print("\n##\n## Predicting target %s\n##" % target) - if pred_params is not None: - for key in list(pred_params): - print("%s = %s" % (key, pred_params[key])) - # Default value for pred_params - if pred_params is None: - pred_params = {} - # Check this is a valid target - if target not in self.selected_targets: - raise ValueError("Target %s not yet fitted" % target) - # Construct the array form of the data - Y = [(target, 0)] - X = [(target, 0)] # dummy - Z = self.target_predictors[target] - # Check if we've passed a new dataframe object - test_array = None - if new_data is not None: - # if new_data.mask is None: - # # if no mask is supplied, use the same mask as for the fitted array - # new_data_mask = self.test_mask - # else: - new_data_mask = new_data.mask - test_array, _, _ = new_data.construct_array(X, Y, Z, - tau_max=self.tau_max, - mask=new_data_mask, - mask_type=self.mask_type, - cut_off=cut_off, - remove_overlaps=True, - verbosity=self.verbosity) - # Otherwise use the default values - else: - test_array, _, _ = \ - self.dataframe.construct_array(X, Y, Z, - tau_max=self.tau_max, - mask=self.test_mask, - mask_type=self.mask_type, - cut_off=cut_off, - remove_overlaps=True, - verbosity=self.verbosity) - # Transform the data if needed - a_transform = self.fitted_model[target]['data_transform'] - if a_transform is not None: - test_array = a_transform.transform(X=test_array.T).T - # Cache the test array - self.test_array = test_array - # Run the predictor - pred_list.append(self.fitted_model[target]['model'].predict( - X=test_array[2:].T, **pred_params)) - - if return_type == 'series': - return pred_list[0] - elif return_type == 'list': - return pred_list - elif return_type == 'array': - return np.array(pred_list).transpose()
- -
[docs] def get_train_array(self, j): - """Returns training array.""" - return self.fitted_model[j]['data']
- -
[docs] def get_test_array(self): - """Returns test array.""" - return self.test_array
- -if __name__ == '__main__': - - import tigramite - import tigramite.data_processing as pp - from tigramite.toymodels import structural_causal_processes as toys - from tigramite.independence_tests import ParCorr - import tigramite.plotting as tp - - def lin_f(x): return x - - T = 1000 - - links = {0: [((0, -1), 0.9, lin_f)], - 1: [((1, -1), 0.9, lin_f), ((0, 0), -0.8, lin_f)], - 2: [((2, -1), 0.9, lin_f), ((0, 0), 0.9, lin_f), ((1, 0), 0.8, lin_f)], - 3: [((3, -1), 0.9, lin_f), ((1, 0), 0.8, lin_f), ((2, 0), -0.9, lin_f)] - } - # noises = [np.random.randn for j in links.keys()] - data, nonstat = toys.structural_causal_process(links, T=T, noises=None, seed=7) - - missing_flag = 999 - for i in range(0, 20): - data[i::100] = missing_flag - - parents = toys._get_true_parent_neighbor_dict(links) - dataframe = pp.DataFrame(data, missing_flag = missing_flag) - - med = LinearMediation(dataframe=dataframe, - data_transform=None) - med.fit_model(all_parents=parents, tau_max=10) - med.fit_model_bootstrap( - boot_blocklength='cube_root', - seed = 42, - ) - - # print(med.get_val_matrix()) - - print (med.get_ce(i=0, tau=0, j=3)) - print(med.get_bootstrap_of(function='get_ce', - function_args={'i':0, 'tau':0, 'j':3}, conf_lev=0.9)) - - print (med.get_coeff(i=0, tau=-2, j=1)) - - print (med.get_ce_max(i=0, j=2)) - print (med.get_ce(i=0, tau=0, j=3)) - print (med.get_mce(i=0, tau=0, k=[2], j=3)) - print (med.get_mce(i=0, tau=0, k=[1,2], j=3) - med.get_mce(i=0, tau=0, k=[1], j=3)) - print (med.get_conditional_mce(i=0, tau=0, k=[2], notk=[1], j=3)) - print (med.get_bootstrap_of('get_conditional_mce', {'i':0, 'tau':0, 'k':[2], 'notk':[1], 'j':3})) - - # print(med.get_joint_ce(i=0, j=2)) - # print(med.get_joint_mce(i=0, j=2, k=1)) - - # print(med.get_joint_ce_matrix(i=0, j=2)) - - # i=0; tau=4; j=2 - # graph_data = med.get_mediation_graph_data(i=i, tau=tau, j=j) - # tp.plot_mediation_time_series_graph( - # # var_names=var_names, - # path_node_array=graph_data['path_node_array'], - # tsg_path_val_matrix=graph_data['tsg_path_val_matrix'] - # ) - # tp.plot_mediation_graph( - # # var_names=var_names, - # path_val_matrix=graph_data['path_val_matrix'], - # path_node_array=graph_data['path_node_array'], - # ); - # plt.show() - - # print ("Average Causal Effect X=%.2f, Y=%.2f, Z=%.2f " % tuple(med.get_all_ace())) - # print ("Average Causal Susceptibility X=%.2f, Y=%.2f, Z=%.2f " % tuple(med.get_all_acs())) - # print ("Average Mediated Causal Effect X=%.2f, Y=%.2f, Z=%.2f " % tuple(med.get_all_amce())) - # med = Models(dataframe=dataframe, model=sklearn.linear_model.LinearRegression(), data_transform=None) - # # Fit the model - # med.get_fit(all_parents=true_parents, tau_max=3) - - # print(med.get_val_matrix()) - - # for j, i, tau, coeff in toys._iter_coeffs(links): - # print(i, j, tau, coeff, med.get_coeff(i=i, tau=tau, j=j)) - - # for causal_coeff in [med.get_ce(i=0, tau=-2, j=2), - # med.get_mce(i=0, tau=-2, j=2, k=1)]: - # print(causal_coeff) - - - # pred = Prediction(dataframe=dataframe, - # cond_ind_test=ParCorr(), #CMIknn ParCorr - # prediction_model = sklearn.linear_model.LinearRegression(), - # # prediction_model = sklearn.gaussian_process.GaussianProcessRegressor(), - # # prediction_model = sklearn.neighbors.KNeighborsRegressor(), - # data_transform=sklearn.preprocessing.StandardScaler(), - # train_indices= list(range(int(0.8*T))), - # test_indices= list(range(int(0.8*T), T)), - # verbosity=0 - # ) - - # # predictors = pred.get_predictors( - # # selected_targets=[2], - # # selected_links=None, - # # steps_ahead=1, - # # tau_max=1, - # # pc_alpha=0.2, - # # max_conds_dim=None, - # # max_combinations=1) - # predictors = {0: [(0, -1)], - # 1: [(1, -1), (0, -1)], - # 2: [(2, -1), (1, 0)]} - # pred.fit(target_predictors=predictors, - # selected_targets=None, tau_max=None, return_data=False) - - # res = pred.predict(target=2, - # new_data=None, - # pred_params=None, - # cut_off='max_lag_or_tau_max') - - # print(data[:,2]) - # print(res) - - -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/pcmci.html b/docs/_build/html/_modules/tigramite/pcmci.html deleted file mode 100644 index 4ec07f9b..00000000 --- a/docs/_build/html/_modules/tigramite/pcmci.html +++ /dev/null @@ -1,3934 +0,0 @@ - - - - - - - - tigramite.pcmci — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.pcmci

-"""Tigramite causal discovery for time series."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-from __future__ import print_function
-import warnings
-import itertools
-from collections import defaultdict
-from copy import deepcopy
-import numpy as np
-import scipy.stats
-
-from .pcmci_base import PCMCIbase
-
-def _create_nested_dictionary(depth=0, lowest_type=dict):
-    """Create a series of nested dictionaries to a maximum depth.  The first
-    depth - 1 nested dictionaries are defaultdicts, the last is a normal
-    dictionary.
-
-    Parameters
-    ----------
-    depth : int
-        Maximum depth argument.
-    lowest_type: callable (optional)
-        Type contained in leaves of tree.  Ex: list, dict, tuple, int, float ...
-    """
-    new_depth = depth - 1
-    if new_depth <= 0:
-        return defaultdict(lowest_type)
-    return defaultdict(lambda: _create_nested_dictionary(new_depth))
-
-
-def _nested_to_normal(nested_dict):
-    """Transforms the nested default dictionary into a standard dictionaries
-
-    Parameters
-    ----------
-    nested_dict : default dictionary of default dictionaries of ... etc.
-    """
-    if isinstance(nested_dict, defaultdict):
-        nested_dict = {k: _nested_to_normal(v) for k, v in nested_dict.items()}
-    return nested_dict
-
-
-
[docs]class PCMCI(PCMCIbase): - r"""PCMCI causal discovery for time series datasets. - - PCMCI is a causal discovery framework for large-scale time series - datasets. This class contains several methods. The standard PCMCI method - addresses time-lagged causal discovery and is described in [1]_ where - also further sub-variants are discussed. Lagged as well as contemporaneous - causal discovery is addressed with PCMCIplus and described in [5]_. See the - tutorials for guidance in applying these methods. - - PCMCI has: - - * different conditional independence tests adapted to linear or - nonlinear dependencies, and continuously-valued or discrete data ( - implemented in ``tigramite.independence_tests``) - * (mostly) hyperparameter optimization - * easy parallelization (separate script) - * handling of masked time series data - * false discovery control and confidence interval estimation - - - Notes - ----- - - .. image:: mci_schematic.* - :width: 200pt - - In the PCMCI framework, the dependency structure of a set of time series - variables is represented in a *time series graph* as shown in the Figure. - The nodes of a time series graph are defined as the variables at - different times and a link indicates a conditional dependency that can be - interpreted as a causal dependency under certain assumptions (see paper). - Assuming stationarity, the links are repeated in time. The parents - :math:`\mathcal{P}` of a variable are defined as the set of all nodes - with a link towards it (blue and red boxes in Figure). - - The different PCMCI methods estimate causal links by iterative - conditional independence testing. PCMCI can be flexibly combined with - any kind of conditional independence test statistic adapted to the kind - of data (continuous or discrete) and its assumed dependency types. - These are available in ``tigramite.independence_tests``. - - NOTE: MCI test statistic values define a particular measure of causal - strength depending on the test statistic used. For example, ParCorr() - results in normalized values between -1 and 1. However, if you are - interested in quantifying causal effects, i.e., the effect of - hypothetical interventions, you may better look at the causal effect - estimation functionality of Tigramite. - - References - ---------- - - .. [1] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, - Detecting and quantifying causal associations in large nonlinear time - series datasets. Sci. Adv. 5, eaau4996 (2019) - https://advances.sciencemag.org/content/5/11/eaau4996 - - .. [5] J. Runge, - Discovering contemporaneous and lagged causal relations in - autocorrelated nonlinear time series datasets - http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf - - Parameters - ---------- - dataframe : data object - This is the Tigramite dataframe object. Among others, it has the - attributes dataframe.values yielding a numpy array of shape ( - observations T, variables N) and optionally a mask of the same shape. - cond_ind_test : conditional independence test object - This can be ParCorr or other classes from - ``tigramite.independence_tests`` or an external test passed as a - callable. This test can be based on the class - tigramite.independence_tests.CondIndTest. - verbosity : int, optional (default: 0) - Verbose levels 0, 1, ... - - Attributes - ---------- - all_parents : dictionary - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing - the conditioning-parents estimated with PC algorithm. - val_min : dictionary - Dictionary of form val_min[j][(i, -tau)] = float - containing the minimum test statistic value for each link estimated in - the PC algorithm. - pval_max : dictionary - Dictionary of form pval_max[j][(i, -tau)] = float containing the maximum - p-value for each link estimated in the PC algorithm. - iterations : dictionary - Dictionary containing further information on algorithm steps. - N : int - Number of variables. - T : dict - Time series sample length of dataset(s). - """ - - def __init__(self, dataframe, - cond_ind_test, - verbosity=0): - - # Init base class - PCMCIbase.__init__(self, dataframe=dataframe, - cond_ind_test=cond_ind_test, - verbosity=verbosity) - - - def _iter_conditions(self, parent, conds_dim, all_parents): - """Yield next condition. - - Yields next condition from lexicographically ordered conditions. - - Parameters - ---------- - parent : tuple - Tuple of form (i, -tau). - conds_dim : int - Cardinality in current step. - all_parents : list - List of form [(0, -1), (3, -2), ...]. - - Yields - ------- - cond : list - List of form [(0, -1), (3, -2), ...] for the next condition. - """ - all_parents_excl_current = [p for p in all_parents if p != parent] - for cond in itertools.combinations(all_parents_excl_current, conds_dim): - yield list(cond) - - def _sort_parents(self, parents_vals): - """Sort current parents according to test statistic values. - - Sorting is from strongest to weakest absolute values. - - Parameters - --------- - parents_vals : dict - Dictionary of form {(0, -1):float, ...} containing the minimum test - statistic value of a link. - - Returns - ------- - parents : list - List of form [(0, -1), (3, -2), ...] containing sorted parents. - """ - if self.verbosity > 1: - print("\n Sorting parents in decreasing order with " - "\n weight(i-tau->j) = min_{iterations} |val_{ij}(tau)| ") - # Get the absolute value for all the test statistics - abs_values = {k: np.abs(parents_vals[k]) for k in list(parents_vals)} - return sorted(abs_values, key=abs_values.get, reverse=True) - - def _print_link_info(self, j, index_parent, parent, num_parents, - already_removed=False): - """Print info about the current link being tested. - - Parameters - ---------- - j : int - Index of current node being tested. - index_parent : int - Index of the current parent. - parent : tuple - Standard (i, tau) tuple of parent node id and time delay - num_parents : int - Total number of parents. - already_removed : bool - Whether parent was already removed. - """ - link_marker = {True:"o?o", False:"-?>"} - - abstau = abs(parent[1]) - if self.verbosity > 1: - print("\n Link (%s % d) %s %s (%d/%d):" % ( - self.var_names[parent[0]], parent[1], link_marker[abstau==0], - self.var_names[j], - index_parent + 1, num_parents)) - - if already_removed: - print(" Already removed.") - - def _print_cond_info(self, Z, comb_index, pval, val): - """Print info about the condition - - Parameters - ---------- - Z : list - The current condition being tested. - comb_index : int - Index of the combination yielding this condition. - pval : float - p-value from this condition. - val : float - value from this condition. - """ - var_name_z = "" - for i, tau in Z: - var_name_z += "(%s % .2s) " % (self.var_names[i], tau) - if len(Z) == 0: var_name_z = "()" - print(" Subset %d: %s gives pval = %.5f / val = % .3f" % - (comb_index, var_name_z, pval, val)) - - def _print_a_pc_result(self, nonsig, conds_dim, max_combinations): - """Print the results from the current iteration of conditions. - - Parameters - ---------- - nonsig : bool - Indicate non-significance. - conds_dim : int - Cardinality of the current step. - max_combinations : int - Maximum number of combinations of conditions of current cardinality - to test. - """ - # Start with an indent - print_str = " " - # Determine the body of the text - if nonsig: - print_str += "Non-significance detected." - elif conds_dim > max_combinations: - print_str += "Still subsets of dimension" + \ - " %d left," % (conds_dim) + \ - " but q_max = %d reached." % (max_combinations) - else: - print_str += "No conditions of dimension %d left." % (conds_dim) - # Print the message - print(print_str) - - def _print_converged_pc_single(self, converged, j, max_conds_dim): - """ - Print statement about the convergence of the pc_stable_single algorithm. - - Parameters - ---------- - convergence : bool - true if convergence was reached. - j : int - Variable index. - max_conds_dim : int - Maximum number of conditions to test. - """ - if converged: - print("\nAlgorithm converged for variable %s" % - self.var_names[j]) - else: - print( - "\nAlgorithm not yet converged, but max_conds_dim = %d" - " reached." % max_conds_dim) - - def _run_pc_stable_single(self, j, - link_assumptions_j=None, - tau_min=1, - tau_max=1, - save_iterations=False, - pc_alpha=0.2, - max_conds_dim=None, - max_combinations=1): - """Lagged PC algorithm for estimating lagged parents of single variable. - - Parameters - ---------- - j : int - Variable index. - link_assumptions_j : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, optional (default: 1) - Minimum time lag to test. Useful for variable selection in - multi-step ahead predictions. Must be greater zero. - tau_max : int, optional (default: 1) - Maximum time lag. Must be larger or equal to tau_min. - save_iterations : bool, optional (default: False) - Whether to save iteration step results such as conditions used. - pc_alpha : float or None, optional (default: 0.2) - Significance level in algorithm. If a list is given, pc_alpha is - optimized using model selection criteria provided in the - cond_ind_test class as get_model_selection_criterion(). If None, - a default list of values is used. - max_conds_dim : int, optional (default: None) - Maximum number of conditions to test. If None is passed, this number - is unrestricted. - max_combinations : int, optional (default: 1) - Maximum number of combinations of conditions of current cardinality - to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm - a larger number, such as 10, can be used. - - Returns - ------- - parents : list - List of estimated parents. - val_min : dict - Dictionary of form {(0, -1):float, ...} containing the minimum test - statistic value of a link. - pval_max : dict - Dictionary of form {(0, -1):float, ...} containing the maximum - p-value of a link across different conditions. - iterations : dict - Dictionary containing further information on algorithm steps. - """ - - if pc_alpha < 0. or pc_alpha > 1.: - raise ValueError("Choose 0 <= pc_alpha <= 1") - - # Initialize the dictionaries for the pval_max, val_min parents_values - # results - pval_max = dict() - val_min = dict() - parents_values = dict() - # Initialize the parents values from the selected links, copying to - # ensure this initial argument is unchanged. - parents = [] - for itau in link_assumptions_j: - link_type = link_assumptions_j[itau] - if itau != (j, 0) and link_type not in ['<--', '<?-']: - parents.append(itau) - - val_min = {(p[0], p[1]): None for p in parents} - pval_max = {(p[0], p[1]): None for p in parents} - - # Define a nested defaultdict of depth 4 to save all information about - # iterations - iterations = _create_nested_dictionary(4) - # Ensure tau_min is at least 1 - tau_min = max(1, tau_min) - - # Loop over all possible condition dimensions - max_conds_dim = self._set_max_condition_dim(max_conds_dim, - tau_min, tau_max) - # Iteration through increasing number of conditions, i.e. from - # [0, max_conds_dim] inclusive - converged = False - for conds_dim in range(max_conds_dim + 1): - # (Re)initialize the list of non-significant links - nonsig_parents = list() - # Check if the algorithm has converged - if len(parents) - 1 < conds_dim: - converged = True - break - # Print information about - if self.verbosity > 1: - print("\nTesting condition sets of dimension %d:" % conds_dim) - - # Iterate through all possible pairs (that have not converged yet) - for index_parent, parent in enumerate(parents): - # Print info about this link - if self.verbosity > 1: - self._print_link_info(j, index_parent, parent, len(parents)) - # Iterate through all possible combinations - nonsig = False - for comb_index, Z in \ - enumerate(self._iter_conditions(parent, conds_dim, - parents)): - # Break if we try too many combinations - if comb_index >= max_combinations: - break - # Perform independence test - if link_assumptions_j[parent] == '-->': - val = 1. - pval = 0. - else: - val, pval = self.cond_ind_test.run_test(X=[parent], - Y=[(j, 0)], - Z=Z, - tau_max=tau_max, - # verbosity=self.verbosity - ) - # Print some information if needed - if self.verbosity > 1: - self._print_cond_info(Z, comb_index, pval, val) - # Keep track of maximum p-value and minimum estimated value - # for each pair (across any condition) - parents_values[parent] = \ - min(np.abs(val), parents_values.get(parent, - float("inf"))) - - if pval_max[parent] is None or pval > pval_max[parent]: - pval_max[parent] = pval - val_min[parent] = val - - # Save the iteration if we need to - if save_iterations: - a_iter = iterations['iterations'][conds_dim][parent] - a_iter[comb_index]['conds'] = deepcopy(Z) - a_iter[comb_index]['val'] = val - a_iter[comb_index]['pval'] = pval - # Delete link later and break while-loop if non-significant - if pval > pc_alpha: - nonsig_parents.append((j, parent)) - nonsig = True - break - - # Print the results if needed - if self.verbosity > 1: - self._print_a_pc_result(nonsig, - conds_dim, max_combinations) - - # Remove non-significant links - for _, parent in nonsig_parents: - del parents_values[parent] - # Return the parents list sorted by the test metric so that the - # updated parents list is given to the next cond_dim loop - parents = self._sort_parents(parents_values) - # Print information about the change in possible parents - if self.verbosity > 1: - print("\nUpdating parents:") - self._print_parents_single(j, parents, parents_values, pval_max) - - # Print information about if convergence was reached - if self.verbosity > 1: - self._print_converged_pc_single(converged, j, max_conds_dim) - # Return the results - return {'parents': parents, - 'val_min': val_min, - 'pval_max': pval_max, - 'iterations': _nested_to_normal(iterations)} - - def _print_pc_params(self, link_assumptions, tau_min, tau_max, pc_alpha, - max_conds_dim, max_combinations): - """Print the setup of the current pc_stable run. - - Parameters - ---------- - link_assumptions : dict or None - Dictionary of form specifying which links should be tested. - tau_min : int, default: 1 - Minimum time lag to test. - tau_max : int, default: 1 - Maximum time lag to test. - pc_alpha : float or list of floats - Significance level in algorithm. - max_conds_dim : int - Maximum number of conditions to test. - max_combinations : int - Maximum number of combinations of conditions to test. - """ - print("\n##\n## Step 1: PC1 algorithm with lagged conditions\n##" - "\n\nParameters:") - if link_assumptions is not None: - print("link_assumptions = %s" % str(link_assumptions)) - print("independence test = %s" % self.cond_ind_test.measure - + "\ntau_min = %d" % tau_min - + "\ntau_max = %d" % tau_max - + "\npc_alpha = %s" % pc_alpha - + "\nmax_conds_dim = %s" % max_conds_dim - + "\nmax_combinations = %d" % max_combinations) - print("\n") - - def _print_pc_sel_results(self, pc_alpha, results, j, score, optimal_alpha): - """Print the results from the pc_alpha selection. - - Parameters - ---------- - pc_alpha : list - Tested significance levels in algorithm. - results : dict - Results from the tested pc_alphas. - score : array of floats - scores from each pc_alpha. - j : int - Index of current variable. - optimal_alpha : float - Optimal value of pc_alpha. - """ - print("\n# Condition selection results:") - for iscore, pc_alpha_here in enumerate(pc_alpha): - names_parents = "[ " - for pari in results[pc_alpha_here]['parents']: - names_parents += "(%s % d) " % ( - self.var_names[pari[0]], pari[1]) - names_parents += "]" - print(" pc_alpha=%s got score %.4f with parents %s" % - (pc_alpha_here, score[iscore], names_parents)) - print("\n==> optimal pc_alpha for variable %s is %s" % - (self.var_names[j], optimal_alpha)) - - def _check_tau_limits(self, tau_min, tau_max): - """Check the tau limits adhere to 0 <= tau_min <= tau_max. - - Parameters - ---------- - tau_min : float - Minimum tau value. - tau_max : float - Maximum tau value. - """ - if not 0 <= tau_min <= tau_max: - raise ValueError("tau_max = %d, " % (tau_max) + \ - "tau_min = %d, " % (tau_min) + \ - "but 0 <= tau_min <= tau_max") - - def _set_max_condition_dim(self, max_conds_dim, tau_min, tau_max): - """ - Set the maximum dimension of the conditions. Defaults to self.N*tau_max. - - Parameters - ---------- - max_conds_dim : int - Input maximum condition dimension. - tau_max : int - Maximum tau. - - Returns - ------- - max_conds_dim : int - Input maximum condition dimension or default. - """ - # Check if an input was given - if max_conds_dim is None: - max_conds_dim = self.N * (tau_max - tau_min + 1) - # Check this is a valid - if max_conds_dim < 0: - raise ValueError("maximum condition dimension must be >= 0") - return max_conds_dim - -
[docs] def run_pc_stable(self, - selected_links=None, - link_assumptions=None, - tau_min=1, - tau_max=1, - save_iterations=False, - pc_alpha=0.2, - max_conds_dim=None, - max_combinations=1): - """Lagged PC algorithm for estimating lagged parents of all variables. - - Parents are made available as self.all_parents - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, default: 1 - Minimum time lag to test. Useful for multi-step ahead predictions. - Must be greater zero. - tau_max : int, default: 1 - Maximum time lag. Must be larger or equal to tau_min. - save_iterations : bool, default: False - Whether to save iteration step results such as conditions used. - pc_alpha : float or list of floats, default: [0.05, 0.1, 0.2, ..., 0.5] - Significance level in algorithm. If a list or None is passed, the - pc_alpha level is optimized for every variable across the given - pc_alpha values using the score computed in - cond_ind_test.get_model_selection_criterion(). - max_conds_dim : int or None - Maximum number of conditions to test. If None is passed, this number - is unrestricted. - max_combinations : int, default: 1 - Maximum number of combinations of conditions of current cardinality - to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm - a larger number, such as 10, can be used. - - Returns - ------- - all_parents : dict - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} - containing estimated parents. - """ - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - # Create an internal copy of pc_alpha - _int_pc_alpha = deepcopy(pc_alpha) - # Check if we are selecting an optimal alpha value - select_optimal_alpha = True - # Set the default values for pc_alpha - if _int_pc_alpha is None: - _int_pc_alpha = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5] - elif not isinstance(_int_pc_alpha, (list, tuple, np.ndarray)): - _int_pc_alpha = [_int_pc_alpha] - select_optimal_alpha = False - # Check the limits on tau_min - self._check_tau_limits(tau_min, tau_max) - tau_min = max(1, tau_min) - # Check that the maximum combinations variable is correct - if max_combinations <= 0: - raise ValueError("max_combinations must be > 0") - # Implement defaultdict for all pval_max, val_max, and iterations - pval_max = defaultdict(dict) - val_min = defaultdict(dict) - iterations = defaultdict(dict) - - if self.verbosity > 0: - self._print_pc_params(link_assumptions, tau_min, tau_max, - _int_pc_alpha, max_conds_dim, - max_combinations) - - # Set the selected links - # _int_sel_links = self._set_sel_links(selected_links, tau_min, tau_max, - # remove_contemp=True) - _int_link_assumptions = self._set_link_assumptions(link_assumptions, - tau_min, tau_max, remove_contemp=True) - - # Initialize all parents - all_parents = dict() - # Set the maximum condition dimension - max_conds_dim = self._set_max_condition_dim(max_conds_dim, - tau_min, tau_max) - - # Loop through the selected variables - for j in range(self.N): - # Print the status of this variable - if self.verbosity > 1: - print("\n## Variable %s" % self.var_names[j]) - print("\nIterating through pc_alpha = %s:" % _int_pc_alpha) - # Initialize the scores for selecting the optimal alpha - score = np.zeros_like(_int_pc_alpha) - # Initialize the result - results = {} - for iscore, pc_alpha_here in enumerate(_int_pc_alpha): - # Print statement about the pc_alpha being tested - if self.verbosity > 1: - print("\n# pc_alpha = %s (%d/%d):" % (pc_alpha_here, - iscore + 1, - score.shape[0])) - # Get the results for this alpha value - results[pc_alpha_here] = \ - self._run_pc_stable_single(j, - link_assumptions_j=_int_link_assumptions[j], - tau_min=tau_min, - tau_max=tau_max, - save_iterations=save_iterations, - pc_alpha=pc_alpha_here, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations) - # Figure out the best score if there is more than one pc_alpha - # value - if select_optimal_alpha: - score[iscore] = \ - self.cond_ind_test.get_model_selection_criterion( - j, results[pc_alpha_here]['parents'], tau_max) - # Record the optimal alpha value - optimal_alpha = _int_pc_alpha[score.argmin()] - # Only print the selection results if there is more than one - # pc_alpha - if self.verbosity > 1 and select_optimal_alpha: - self._print_pc_sel_results(_int_pc_alpha, results, j, - score, optimal_alpha) - # Record the results for this variable - all_parents[j] = results[optimal_alpha]['parents'] - val_min[j] = results[optimal_alpha]['val_min'] - pval_max[j] = results[optimal_alpha]['pval_max'] - iterations[j] = results[optimal_alpha]['iterations'] - # Only save the optimal alpha if there is more than one pc_alpha - if select_optimal_alpha: - iterations[j]['optimal_pc_alpha'] = optimal_alpha - # Save the results in the current status of the algorithm - self.all_parents = all_parents - self.val_matrix = self._dict_to_matrix(val_min, tau_max, self.N, - default=0.) - self.p_matrix = self._dict_to_matrix(pval_max, tau_max, self.N, - default=1.) - self.iterations = iterations - self.val_min = val_min - self.pval_max = pval_max - # Print the results - if self.verbosity > 0: - print("\n## Resulting lagged parent (super)sets:") - self._print_parents(all_parents, val_min, pval_max) - # Return the parents - return all_parents
- - def _print_parents_single(self, j, parents, val_min, pval_max): - """Print current parents for variable j. - - Parameters - ---------- - j : int - Index of current variable. - parents : list - List of form [(0, -1), (3, -2), ...]. - val_min : dict - Dictionary of form {(0, -1):float, ...} containing the minimum test - statistic value of a link. - pval_max : dict - Dictionary of form {(0, -1):float, ...} containing the maximum - p-value of a link across different conditions. - """ - if len(parents) < 20 or hasattr(self, 'iterations'): - print("\n Variable %s has %d link(s):" % ( - self.var_names[j], len(parents))) - if (hasattr(self, 'iterations') - and 'optimal_pc_alpha' in list(self.iterations[j])): - print(" [pc_alpha = %s]" % ( - self.iterations[j]['optimal_pc_alpha'])) - if val_min is None or pval_max is None: - for p in parents: - print(" (%s % .d)" % ( - self.var_names[p[0]], p[1])) - else: - for p in parents: - print(" (%s % .d): max_pval = %.5f, min_val = % .3f" % ( - self.var_names[p[0]], p[1], pval_max[p], - val_min[p])) - else: - print("\n Variable %s has %d link(s):" % ( - self.var_names[j], len(parents))) - - def _print_parents(self, all_parents, val_min, pval_max): - """Print current parents. - - Parameters - ---------- - all_parents : dictionary - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing - the conditioning-parents estimated with PC algorithm. - val_min : dict - Dictionary of form {0:{(0, -1):float, ...}} containing the minimum - test statistic value of a link. - pval_max : dict - Dictionary of form {0:{(0, -1):float, ...}} containing the maximum - p-value of a link across different conditions. - """ - for j in [var for var in list(all_parents)]: - if val_min is None or pval_max is None: - self._print_parents_single(j, all_parents[j], - None, None) - else: - self._print_parents_single(j, all_parents[j], - val_min[j], pval_max[j]) - - def _mci_condition_to_string(self, conds): - """Convert the list of conditions into a string. - - Parameters - ---------- - conds : list - List of conditions. - """ - cond_string = "[ " - for k, tau_k in conds: - cond_string += "(%s % d) " % (self.var_names[k], tau_k) - cond_string += "]" - return cond_string - - def _print_mci_conditions(self, conds_y, conds_x_lagged, - j, i, tau, count, n_parents): - """Print information about the conditions for the MCI algorithm. - - Parameters - ---------- - conds_y : list - Conditions on node. - conds_x_lagged : list - Conditions on parent. - j : int - Current node. - i : int - Parent node. - tau : int - Parent time delay. - count : int - Index of current parent. - n_parents : int - Total number of parents. - """ - # Remove the current parent from the conditions - conds_y_no_i = [node for node in conds_y if node != (i, tau)] - # Get the condition string for parent - condy_str = self._mci_condition_to_string(conds_y_no_i) - # Get the condition string for node - condx_str = self._mci_condition_to_string(conds_x_lagged) - # Formate and print the information - link_marker = {True:"o?o", False:"-?>"} - indent = "\n " - print_str = indent + "link (%s % d) " % (self.var_names[i], tau) - print_str += "%s %s (%d/%d):" % (link_marker[tau==0], - self.var_names[j], count + 1, n_parents) - print_str += indent + "with conds_y = %s" % (condy_str) - print_str += indent + "with conds_x = %s" % (condx_str) - print(print_str) - - def _print_pcmciplus_conditions(self, lagged_parents, i, j, abstau, - max_conds_py, max_conds_px, - max_conds_px_lagged): - """Print information about the conditions for PCMCIplus. - - Parameters - ---------- - lagged_parents : dictionary of lists - Dictionary of lagged parents for each node. - j : int - Current node. - i : int - Parent node. - abstau : int - Parent time delay. - max_conds_py : int - Max number of parents for node j. - max_conds_px : int - Max number of parents for lagged node i. - max_conds_px_lagged : int - Maximum number of lagged conditions of X when X is lagged in MCI - tests. If None is passed, this number is equal to max_conds_px. - """ - conds_y = lagged_parents[j][:max_conds_py] - conds_y_no_i = [node for node in conds_y if node != (i, -abstau)] - if abstau == 0: - conds_x = lagged_parents[i][:max_conds_px] - else: - if max_conds_px_lagged is None: - conds_x = lagged_parents[i][:max_conds_px] - else: - conds_x = lagged_parents[i][:max_conds_px_lagged] - - # Shift the conditions for X by tau - conds_x_lagged = [(k, -abstau + k_tau) for k, k_tau in conds_x] - condy_str = self._mci_condition_to_string(conds_y_no_i) - condx_str = self._mci_condition_to_string(conds_x_lagged) - print_str = " with conds_y = %s" % (condy_str) - print_str += "\n with conds_x = %s" % (condx_str) - print(print_str) - - def _get_int_parents(self, parents): - """Get the input parents dictionary. - - Parameters - ---------- - parents : dict or None - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} - specifying the conditions for each variable. If None is - passed, no conditions are used. - - Returns - ------- - int_parents : defaultdict of lists - Internal copy of parents, respecting default options - """ - int_parents = deepcopy(parents) - if int_parents is None: - int_parents = defaultdict(list) - else: - int_parents = defaultdict(list, int_parents) - return int_parents - - def _iter_indep_conds(self, - parents, - _int_link_assumptions, - max_conds_py, - max_conds_px): - """Iterate through the conditions dictated by the arguments, yielding - the needed arguments for conditional independence functions. - - Parameters - ---------- - parents : dict - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} - specifying the conditions for each variable. - _int_link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - max_conds_py : int - Maximum number of conditions of Y to use. - max_conds_px : int - Maximum number of conditions of Z to use. - - Yields - ------ - i, j, tau, Z : list of tuples - (i, tau) is the parent node, (j, 0) is the current node, and Z is of - the form [(var, tau + tau')] and specifies the condition to test - """ - # Loop over the selected variables - for j in range(self.N): - # Get the conditions for node j - conds_y = parents[j][:max_conds_py] - # Create a parent list from links seperated in time and by node - # parent_list = [(i, tau) for i, tau in _int_link_assumptions[j] - # if (i, tau) != (j, 0)] - parent_list = [] - for itau in _int_link_assumptions[j]: - link_type = _int_link_assumptions[j][itau] - if itau != (j, 0) and link_type not in ['<--', '<?-']: - parent_list.append(itau) - # Iterate through parents (except those in conditions) - for cnt, (i, tau) in enumerate(parent_list): - # Get the conditions for node i - conds_x = parents[i][:max_conds_px] - # Shift the conditions for X by tau - conds_x_lagged = [(k, tau + k_tau) for k, k_tau in conds_x] - # Print information about the mci conditions if requested - if self.verbosity > 1: - self._print_mci_conditions(conds_y, conds_x_lagged, j, i, - tau, cnt, len(parent_list)) - # Construct lists of tuples for estimating - # I(X_t-tau; Y_t | Z^Y_t, Z^X_t-tau) - # with conditions for X shifted by tau - Z = [node for node in conds_y if node != (i, tau)] - # Remove overlapped nodes between conds_x_lagged and conds_y - Z += [node for node in conds_x_lagged if node not in Z] - # Yield these list - yield j, i, tau, Z - - def _run_mci_or_variants(self, - selected_links=None, - link_assumptions=None, - tau_min=0, - tau_max=1, - parents=None, - max_conds_py=None, - max_conds_px=None, - val_only=False, - alpha_level=0.05, - fdr_method='none'): - """Base function for MCI method and variants. - - Returns the matrices of test statistic values, (optionally corrected) - p-values, and (optionally) confidence intervals. Also (new in 4.3) - returns graph based on alpha_level (and optional FDR-correction). - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, default: 0 - Minimum time lag to test. Note that zero-lags are undirected. - tau_max : int, default: 1 - Maximum time lag. Must be larger or equal to tau_min. - parents : dict or None - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} - specifying the conditions for each variable. If None is - passed, no conditions are used. - max_conds_py : int or None - Maximum number of conditions of Y to use. If None is passed, this - number is unrestricted. - max_conds_px : int or None - Maximum number of conditions of Z to use. If None is passed, this - number is unrestricted. - val_only : bool, default: False - Option to only compute dependencies and not p-values. - alpha_level : float, optional (default: 0.05) - Significance level at which the p_matrix is thresholded to - get graph. - fdr_method : str, optional (default: 'none') - Correction method, currently implemented is Benjamini-Hochberg - False Discovery Rate method ('fdr_bh'). - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values, optionally adjusted if fdr_method is - not 'none'. - conf_matrix : array of shape [N, N, tau_max+1,2] - Estimated matrix of confidence intervals of test statistic values. - Only computed if set in cond_ind_test, where also the percentiles - are set. - """ - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - # Check the limits on tau - self._check_tau_limits(tau_min, tau_max) - # Set the selected links - # _int_sel_links = self._set_sel_links(selected_links, tau_min, tau_max) - _int_link_assumptions = self._set_link_assumptions(link_assumptions, tau_min, tau_max) - - # Set the maximum condition dimension for Y and X - max_conds_py = self._set_max_condition_dim(max_conds_py, - tau_min, tau_max) - max_conds_px = self._set_max_condition_dim(max_conds_px, - tau_min, tau_max) - # Get the parents that will be checked - _int_parents = self._get_int_parents(parents) - # Initialize the return values - val_matrix = np.zeros((self.N, self.N, tau_max + 1)) - p_matrix = np.ones((self.N, self.N, tau_max + 1)) - # Initialize the optional return of the confidance matrix - conf_matrix = None - if self.cond_ind_test.confidence is not None: - conf_matrix = np.zeros((self.N, self.N, tau_max + 1, 2)) - - # Get the conditions as implied by the input arguments - for j, i, tau, Z in self._iter_indep_conds(_int_parents, - _int_link_assumptions, - max_conds_py, - max_conds_px): - # Set X and Y (for clarity of code) - X = [(i, tau)] - Y = [(j, 0)] - - if val_only is False: - # Run the independence tests and record the results - if ((i, -tau) in _int_link_assumptions[j] - and _int_link_assumptions[j][(i, -tau)] in ['-->', 'o-o']): - val = 1. - pval = 0. - else: - val, pval = self.cond_ind_test.run_test(X, Y, Z=Z, - tau_max=tau_max, - # verbosity= - # self.verbosity - ) - val_matrix[i, j, abs(tau)] = val - p_matrix[i, j, abs(tau)] = pval - else: - val = self.cond_ind_test.get_measure(X, Y, Z=Z, tau_max=tau_max) - val_matrix[i, j, abs(tau)] = val - - # Get the confidence value, returns None if cond_ind_test.confidence - # is False - conf = self.cond_ind_test.get_confidence(X, Y, Z=Z, tau_max=tau_max) - # Record the value if the conditional independence requires it - if self.cond_ind_test.confidence: - conf_matrix[i, j, abs(tau)] = conf - - if val_only: - results = {'val_matrix':val_matrix, - 'conf_matrix':conf_matrix} - self.results = results - return results - - # Correct the p_matrix if there is a fdr_method - if fdr_method != 'none': - p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, - tau_max=tau_max, - link_assumptions=_int_link_assumptions, - fdr_method=fdr_method) - - # Threshold p_matrix to get graph - final_graph = p_matrix <= alpha_level - - # Convert to string graph representation - graph = self.convert_to_string_graph(final_graph) - - # Symmetrize p_matrix and val_matrix - symmetrized_results = self.symmetrize_p_and_val_matrix( - p_matrix=p_matrix, - val_matrix=val_matrix, - link_assumptions=_int_link_assumptions, - conf_matrix=conf_matrix) - - if self.verbosity > 0: - self.print_significant_links( - graph = graph, - p_matrix = symmetrized_results['p_matrix'], - val_matrix = symmetrized_results['val_matrix'], - conf_matrix = symmetrized_results['conf_matrix'], - alpha_level = alpha_level) - - # Return the values as a dictionary and store in class - results = { - 'graph': graph, - 'p_matrix': symmetrized_results['p_matrix'], - 'val_matrix': symmetrized_results['val_matrix'], - 'conf_matrix': symmetrized_results['conf_matrix'], - } - self.results = results - return results - -
[docs] def run_mci(self, - selected_links=None, - link_assumptions=None, - tau_min=0, - tau_max=1, - parents=None, - max_conds_py=None, - max_conds_px=None, - val_only=False, - alpha_level=0.05, - fdr_method='none'): - """MCI conditional independence tests. - - Implements the MCI test (Algorithm 2 in [1]_). - - Returns the matrices of test statistic values, (optionally corrected) - p-values, and (optionally) confidence intervals. Also (new in 4.3) - returns graph based on alpha_level (and optional FDR-correction). - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, default: 0 - Minimum time lag to test. Note that zero-lags are undirected. - tau_max : int, default: 1 - Maximum time lag. Must be larger or equal to tau_min. - parents : dict or None - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} - specifying the conditions for each variable. If None is - passed, no conditions are used. - max_conds_py : int or None - Maximum number of conditions of Y to use. If None is passed, this - number is unrestricted. - max_conds_px : int or None - Maximum number of conditions of Z to use. If None is passed, this - number is unrestricted. - val_only : bool, default: False - Option to only compute dependencies and not p-values. - alpha_level : float, optional (default: 0.05) - Significance level at which the p_matrix is thresholded to - get graph. - fdr_method : str, optional (default: 'none') - Correction method, currently implemented is Benjamini-Hochberg - False Discovery Rate method ('fdr_bh'). - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values, optionally adjusted if fdr_method is - not 'none'. - conf_matrix : array of shape [N, N, tau_max+1,2] - Estimated matrix of confidence intervals of test statistic values. - Only computed if set in cond_ind_test, where also the percentiles - are set. - """ - - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - - if self.verbosity > 0: - print("\n##\n## Step 2: MCI algorithm\n##" - "\n\nParameters:") - print("\nindependence test = %s" % self.cond_ind_test.measure - + "\ntau_min = %d" % tau_min - + "\ntau_max = %d" % tau_max - + "\nmax_conds_py = %s" % max_conds_py - + "\nmax_conds_px = %s" % max_conds_px) - - return self._run_mci_or_variants( - link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - parents=parents, - max_conds_py=max_conds_py, - max_conds_px=max_conds_px, - val_only=val_only, - alpha_level=alpha_level, - fdr_method=fdr_method)
- -
[docs] def get_lagged_dependencies(self, - selected_links=None, - link_assumptions=None, - tau_min=0, - tau_max=1, - val_only=False, - alpha_level=0.05, - fdr_method='none'): - """Unconditional lagged independence tests. - - Implements the unconditional lagged independence test (see [ 1]_). - - Returns the matrices of test statistic values, (optionally corrected) - p-values, and (optionally) confidence intervals. Also (new in 4.3) - returns graph based on alpha_level (and optional FDR-correction). - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, default: 0 - Minimum time lag to test. Note that zero-lags are undirected. - tau_max : int, default: 1 - Maximum time lag. Must be larger or equal to tau_min. - val_only : bool, default: False - Option to only compute dependencies and not p-values. - alpha_level : float, optional (default: 0.05) - Significance level at which the p_matrix is thresholded to - get graph. - fdr_method : str, optional (default: 'none') - Correction method, currently implemented is Benjamini-Hochberg - False Discovery Rate method ('fdr_bh'). - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values, optionally adjusted if fdr_method is - not 'none'. - conf_matrix : array of shape [N, N, tau_max+1,2] - Estimated matrix of confidence intervals of test statistic values. - Only computed if set in cond_ind_test, where also the percentiles - are set. - """ - - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - if self.verbosity > 0: - print("\n##\n## Estimating lagged dependencies \n##" - "\n\nParameters:") - print("\nindependence test = %s" % self.cond_ind_test.measure - + "\ntau_min = %d" % tau_min - + "\ntau_max = %d" % tau_max) - - return self._run_mci_or_variants( - link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - parents=None, - max_conds_py=0, - max_conds_px=0, - val_only=val_only, - alpha_level=alpha_level, - fdr_method=fdr_method)
- -
[docs] def run_fullci(self, - selected_links=None, - link_assumptions=None, - tau_min=0, - tau_max=1, - val_only=False, - alpha_level=0.05, - fdr_method='none'): - """FullCI conditional independence tests. - - Implements the FullCI test (see [1]_). - - Returns the matrices of test statistic values, (optionally corrected) - p-values, and (optionally) confidence intervals. Also (new in 4.3) - returns graph based on alpha_level (and optional FDR-correction). - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, default: 0 - Minimum time lag to test. Note that zero-lags are undirected. - tau_max : int, default: 1 - Maximum time lag. Must be larger or equal to tau_min. - val_only : bool, default: False - Option to only compute dependencies and not p-values. - alpha_level : float, optional (default: 0.05) - Significance level at which the p_matrix is thresholded to - get graph. - fdr_method : str, optional (default: 'none') - Correction method, currently implemented is Benjamini-Hochberg - False Discovery Rate method ('fdr_bh'). - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values, optionally adjusted if fdr_method is - not 'none'. - conf_matrix : array of shape [N, N, tau_max+1,2] - Estimated matrix of confidence intervals of test statistic values. - Only computed if set in cond_ind_test, where also the percentiles - are set. - """ - - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - - if self.verbosity > 0: - print("\n##\n## Running Tigramite FullCI algorithm\n##" - "\n\nParameters:") - print("\nindependence test = %s" % self.cond_ind_test.measure - + "\ntau_min = %d" % tau_min - + "\ntau_max = %d" % tau_max) - - full_past = dict([(j, [(i, -tau) - for i in range(self.N) - for tau in range(max(1, tau_min), tau_max + 1)]) - for j in range(self.N)]) - - return self._run_mci_or_variants( - link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - parents=full_past, - max_conds_py=None, - max_conds_px=0, - val_only=val_only, - alpha_level=alpha_level, - fdr_method=fdr_method)
- -
[docs] def run_bivci(self, - selected_links=None, - link_assumptions=None, - tau_min=0, - tau_max=1, - val_only=False, - alpha_level=0.05, - fdr_method='none'): - """BivCI conditional independence tests. - - Implements the BivCI test (see [1]_). - - Returns the matrices of test statistic values, (optionally corrected) - p-values, and (optionally) confidence intervals. Also (new in 4.3) - returns graph based on alpha_level (and optional FDR-correction). - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, default: 0 - Minimum time lag to test. Note that zero-lags are undirected. - tau_max : int, default: 1 - Maximum time lag. Must be larger or equal to tau_min. - val_only : bool, default: False - Option to only compute dependencies and not p-values. - alpha_level : float, optional (default: 0.05) - Significance level at which the p_matrix is thresholded to - get graph. - fdr_method : str, optional (default: 'fdr_bh') - Correction method, currently implemented is Benjamini-Hochberg - False Discovery Rate method. - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values, optionally adjusted if fdr_method is - not 'none'. - conf_matrix : array of shape [N, N, tau_max+1,2] - Estimated matrix of confidence intervals of test statistic values. - Only computed if set in cond_ind_test, where also the percentiles - are set. - """ - - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - if self.verbosity > 0: - print("\n##\n## Running Tigramite BivCI algorithm\n##" - "\n\nParameters:") - print("\nindependence test = %s" % self.cond_ind_test.measure - + "\ntau_min = %d" % tau_min - + "\ntau_max = %d" % tau_max) - - auto_past = dict([(j, [(j, -tau) - for tau in range(max(1, tau_min), tau_max + 1)]) - for j in range(self.N)]) - - return self._run_mci_or_variants( - link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - parents=auto_past, - max_conds_py=None, - max_conds_px=0, - val_only=val_only, - alpha_level=alpha_level, - fdr_method=fdr_method)
- -
[docs] def get_graph_from_pmatrix(self, p_matrix, alpha_level, - tau_min, tau_max, link_assumptions=None): - """Construct graph from thresholding the p_matrix at an alpha-level. - - Allows to take into account link_assumptions. - - Parameters - ---------- - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values, optionally adjusted if fdr_method is - not 'none'. - alpha_level : float, optional (default: 0.05) - Significance level at which the p_matrix is thresholded to - get graph. - tau_mix : int - Minimum time delay to test. - tau_max : int - Maximum time delay to test. - link_assumptions : dict or None - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - """ - - # _int_sel_links = self._set_sel_links(selected_links, tau_min, tau_max) - _int_link_assumptions = self._set_link_assumptions(link_assumptions, tau_min, tau_max) - - if link_assumptions != None: - # Create a mask for these values - mask = np.zeros((self.N, self.N, tau_max + 1), dtype='bool') - # for node1, links_ in _int_sel_links.items(): - # for node2, lag in links_: - # mask[node2, node1, abs(lag)] = True - for j, links_ in _int_link_assumptions.items(): - for i, lag in links_: - if _int_link_assumptions[j][(i, lag)] not in ["<--", "<?-"]: - mask[i, j, abs(lag)] = True - - else: - # Create a mask for these values - mask = np.ones((self.N, self.N, tau_max + 1), dtype='bool') - - # Set all p-values of absent links to 1. - p_matrix[mask==False] == 1. - - # Threshold p_matrix to get graph - graph_bool = p_matrix <= alpha_level - - # Convert to string graph representation - graph = self.convert_to_string_graph(graph_bool) - - # Return the graph - return graph
- -
[docs] def return_parents_dict(self, graph, - val_matrix, - include_lagzero_parents=False): - """Returns dictionary of parents sorted by val_matrix. - - If parents are unclear (edgemarks with 'o' or 'x', or middle mark '?'), - then no parent is returned. - - Parameters - ---------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - val_matrix : array-like - Matrix of test statistic values. Must be of shape (N, N, tau_max + - 1). - include_lagzero_parents : bool (default: False) - Whether the dictionary should also return parents at lag - zero. - - Returns - ------- - parents_dict : dict - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} - containing estimated parents. - """ - - # Initialize the return value - parents_dict = dict() - for j in range(self.N): - # Get the good links - if include_lagzero_parents: - good_links = np.argwhere(graph[:, j, :] == "-->") - # Build a dictionary from these links to their values - links = {(i, -tau): np.abs(val_matrix[i, j, abs(tau)]) - for i, tau in good_links} - else: - good_links = np.argwhere(graph[:, j, 1:] == "-->") - # Build a dictionary from these links to their values - links = {(i, -tau - 1): np.abs(val_matrix[i, j, abs(tau) + 1]) - for i, tau in good_links} - # Sort by value - parents_dict[j] = sorted(links, key=links.get, reverse=True) - - return parents_dict
- - - - - - -
[docs] def print_results(self, - return_dict, - alpha_level=0.05): - """Prints significant parents from output of MCI or PCMCI algorithms. - - Parameters - ---------- - return_dict : dict - Dictionary of return values, containing keys - * 'p_matrix' - * 'val_matrix' - * 'conf_matrix' - - alpha_level : float, optional (default: 0.05) - Significance level. - """ - # Check if conf_matrix is defined - conf_matrix = None - conf_key = 'conf_matrix' - if conf_key in return_dict: - conf_matrix = return_dict[conf_key] - # Wrap the already defined function - if 'graph' in return_dict: - graph = return_dict['graph'] - else: - graph = None - if 'ambiguous_triples' in return_dict: - ambiguous_triples = return_dict['ambiguous_triples'] - else: - ambiguous_triples = None - self.print_significant_links(return_dict['p_matrix'], - return_dict['val_matrix'], - conf_matrix=conf_matrix, - graph=graph, - ambiguous_triples=ambiguous_triples, - alpha_level=alpha_level)
- -
[docs] def run_pcmci(self, - selected_links=None, - link_assumptions=None, - tau_min=0, - tau_max=1, - save_iterations=False, - pc_alpha=0.05, - max_conds_dim=None, - max_combinations=1, - max_conds_py=None, - max_conds_px=None, - alpha_level=0.05, - fdr_method='none'): - """Runs PCMCI time-lagged causal discovery for time series. - - Wrapper around PC-algorithm function and MCI function. - - Notes - ----- - - The PCMCI causal discovery method is comprehensively described in [ - 1]_, where also analytical and numerical results are presented. Here - we briefly summarize the method. - - PCMCI estimates time-lagged causal links by a two-step procedure: - - 1. Condition-selection: For each variable :math:`j`, estimate a - *superset* of parents :math:`\\tilde{\mathcal{P}}(X^j_t)` with the - iterative PC1 algorithm, implemented as ``run_pc_stable``. The - condition-selection step reduces the dimensionality and avoids - conditioning on irrelevant variables. - - 2. *Momentary conditional independence* (MCI) - - .. math:: X^i_{t-\\tau} \perp X^j_{t} | \\tilde{\\mathcal{P}}( - X^j_t), \\tilde{\mathcal{P}}(X^i_{t-\\tau}) - - here implemented as ``run_mci``. This step estimates the p-values and - test statistic values for all links accounting for common drivers, - indirect links, and autocorrelation. - - NOTE: MCI test statistic values define a particular measure of causal - strength depending on the test statistic used. For example, ParCorr() - results in normalized values between -1 and 1. However, if you are - interested in quantifying causal effects, i.e., the effect of - hypothetical interventions, you may better look at the causal effect - estimation functionality of Tigramite. - - PCMCI can be flexibly combined with any kind of conditional - independence test statistic adapted to the kind of data (continuous - or discrete) and its assumed dependency types. These are available in - ``tigramite.independence_tests``. - - The main free parameters of PCMCI (in addition to free parameters of - the conditional independence test statistic) are the maximum time - delay :math:`\\tau_{\\max}` (``tau_max``) and the significance - threshold in the condition-selection step :math:`\\alpha` ( - ``pc_alpha``). The maximum time delay depends on the application and - should be chosen according to the maximum causal time lag expected in - the complex system. We recommend a rather large choice that includes - peaks in the ``get_lagged_dependencies`` function. :math:`\\alpha` - should not be seen as a significance test level in the - condition-selection step since the iterative hypothesis tests do not - allow for a precise assessment. :math:`\\alpha` rather takes the role - of a regularization parameter in model-selection techniques. If a - list of values is given or ``pc_alpha=None``, :math:`\\alpha` is - optimized using model selection criteria implemented in the respective - ``tigramite.independence_tests``. - - Further optional parameters are discussed in [1]_. - - Examples - -------- - >>> import numpy - >>> from tigramite.pcmci import PCMCI - >>> from tigramite.independence_tests import ParCorr - >>> import tigramite.data_processing as pp - >>> from tigramite.toymodels import structural_causal_processes as toys - >>> numpy.random.seed(7) - >>> # Example process to play around with - >>> # Each key refers to a variable and the incoming links are supplied - >>> # as a list of format [((driver, -lag), coeff), ...] - >>> links_coeffs = {0: [((0, -1), 0.8)], - 1: [((1, -1), 0.8), ((0, -1), 0.5)], - 2: [((2, -1), 0.8), ((1, -2), -0.6)]} - >>> data, _ = toys.var_process(links_coeffs, T=1000) - >>> # Data must be array of shape (time, variables) - >>> print (data.shape) - (1000, 3) - >>> dataframe = pp.DataFrame(data) - >>> cond_ind_test = ParCorr() - >>> pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test) - >>> results = pcmci.run_pcmci(tau_max=2, pc_alpha=None) - >>> pcmci.print_significant_links(p_matrix=results['p_matrix'], - val_matrix=results['val_matrix'], - alpha_level=0.05) - ## Significant parents at alpha = 0.05: - - Variable 0 has 1 link(s): - (0 -1): pval = 0.00000 | val = 0.588 - - Variable 1 has 2 link(s): - (1 -1): pval = 0.00000 | val = 0.606 - (0 -1): pval = 0.00000 | val = 0.447 - - Variable 2 has 2 link(s): - (2 -1): pval = 0.00000 | val = 0.618 - (1 -2): pval = 0.00000 | val = -0.499 - - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, optional (default: 0) - Minimum time lag to test. Note that zero-lags are undirected. - tau_max : int, optional (default: 1) - Maximum time lag. Must be larger or equal to tau_min. - save_iterations : bool, optional (default: False) - Whether to save iteration step results such as conditions used. - pc_alpha : float, optional (default: 0.05) - Significance level in algorithm. - max_conds_dim : int, optional (default: None) - Maximum number of conditions to test. If None is passed, this number - is unrestricted. - max_combinations : int, optional (default: 1) - Maximum number of combinations of conditions of current cardinality - to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm - a larger number, such as 10, can be used. - max_conds_py : int, optional (default: None) - Maximum number of conditions of Y to use. If None is passed, this - number is unrestricted. - max_conds_px : int, optional (default: None) - Maximum number of conditions of Z to use. If None is passed, this - number is unrestricted. - alpha_level : float, optional (default: 0.05) - Significance level at which the p_matrix is thresholded to - get graph. - fdr_method : str, optional (default: 'fdr_bh') - Correction method, currently implemented is Benjamini-Hochberg - False Discovery Rate method. - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values, optionally adjusted if fdr_method is - not 'none'. - conf_matrix : array of shape [N, N, tau_max+1,2] - Estimated matrix of confidence intervals of test statistic values. - Only computed if set in cond_ind_test, where also the percentiles - are set. - - """ - - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - - # Get the parents from run_pc_stable - all_parents = self.run_pc_stable(link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - save_iterations=save_iterations, - pc_alpha=pc_alpha, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations) - - # Get the results from run_mci, using the parents as the input - results = self.run_mci(link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - parents=all_parents, - max_conds_py=max_conds_py, - max_conds_px=max_conds_px, - alpha_level=alpha_level, - fdr_method=fdr_method) - - # Store the parents in the pcmci member - self.all_parents = all_parents - - # Print the information - # if self.verbosity > 0: - # self.print_results(results) - # Return the dictionary - self.results = results - return results
- -
[docs] def run_pcmciplus(self, - selected_links=None, - link_assumptions=None, - tau_min=0, - tau_max=1, - pc_alpha=0.01, - contemp_collider_rule='majority', - conflict_resolution=True, - reset_lagged_links=False, - max_conds_dim=None, - max_combinations=1, - max_conds_py=None, - max_conds_px=None, - max_conds_px_lagged=None, - fdr_method='none', - ): - """Runs PCMCIplus time-lagged and contemporaneous causal discovery for - time series. - - Method described in [5]_: - http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf - - Notes - ----- - - The PCMCIplus causal discovery method is described in [5]_, where - also analytical and numerical results are presented. In contrast to - PCMCI, PCMCIplus can identify the full, lagged and contemporaneous, - causal graph (up to the Markov equivalence class for contemporaneous - links) under the standard assumptions of Causal Sufficiency, - Faithfulness and the Markov condition. - - PCMCIplus estimates time-lagged and contemporaneous causal links by a - four-step procedure: - - 1. Condition-selection (same as for PCMCI): For each variable - :math:`j`, estimate a *superset* of lagged parents :math:`\\widehat{ - \\mathcal{B}}_t^-( X^j_t)` with the iterative PC1 algorithm, - implemented as ``run_pc_stable``. The condition-selection step - reduces the dimensionality and avoids conditioning on irrelevant - variables. - - 2. PC skeleton phase with contemporaneous conditions and *Momentary - conditional independence* (MCI) tests: Iterate through subsets - :math:`\\mathcal{S}` of contemporaneous adjacencies and conduct MCI - conditional independence tests: - - .. math:: X^i_{t-\\tau} ~\\perp~ X^j_{t} ~|~ \\mathcal{S}, - \\widehat{\\mathcal{B}}_t^-(X^j_t), - \\widehat{\\mathcal{B}}_{t-\\tau}^-(X^i_{t-{\\tau}}) - - here implemented as ``run_pcalg``. This step estimates the p-values and - test statistic values for all lagged and contemporaneous adjacencies - accounting for common drivers, indirect links, and autocorrelation. - - 3. PC collider orientation phase: Orient contemporaneous collider - motifs based on unshielded triples. Optionally apply conservative or - majority rule (also based on MCI tests). - - 4. PC rule orientation phase: Orient remaining contemporaneous - links based on PC rules. - - In contrast to PCMCI, the relevant output of PCMCIplus is the - array ``graph``. Its string entries are interpreted as follows: - - * ``graph[i,j,tau]=-->`` for :math:`\\tau>0` denotes a directed, lagged - causal link from :math:`i` to :math:`j` at lag :math:`\\tau` - - * ``graph[i,j,0]=-->`` (and ``graph[j,i,0]=<--``) denotes a directed, - contemporaneous causal link from :math:`i` to :math:`j` - - * ``graph[i,j,0]=o-o`` (and ``graph[j,i,0]=o-o``) denotes an unoriented, - contemporaneous adjacency between :math:`i` and :math:`j` indicating - that the collider and orientation rules could not be applied (Markov - equivalence) - - * ``graph[i,j,0]=x-x`` and (``graph[j,i,0]=x-x``) denotes a conflicting, - contemporaneous adjacency between :math:`i` and :math:`j` indicating - that the directionality is undecided due to conflicting orientation - rules - - Importantly, ``p_matrix`` and ``val_matrix`` for PCMCIplus quantify - the uncertainty and strength, respectively, only for the - adjacencies, but not for the directionality of contemporaneous links. - Note that lagged links are always oriented due to time order. - - PCMCIplus can be flexibly combined with any kind of conditional - independence test statistic adapted to the kind of data (continuous - or discrete) and its assumed dependency types. These are available in - ``tigramite.independence_tests``. - - The main free parameters of PCMCIplus (in addition to free parameters of - the conditional independence tests) are the maximum time delay - :math:`\\tau_{\\max}` (``tau_max``) and the significance threshold - :math:`\\alpha` ( ``pc_alpha``). - - If a list or None is passed for ``pc_alpha``, the significance level is - optimized for every graph across the given ``pc_alpha`` values using the - score computed in ``cond_ind_test.get_model_selection_criterion()``. - Since PCMCIplus outputs not a DAG, but an equivalence class of DAGs, - first one member of this class is computed and then the score is - computed as the average over all models fits for each variable in ``[0, - ..., N]`` for that member. The score is the same for all members of the - class. - - The maximum time delay depends on the application and should be chosen - according to the maximum causal time lag expected in the complex system. - We recommend a rather large choice that includes peaks in the - ``get_lagged_dependencies`` function. Another important parameter is - ``contemp_collider_rule``. Only if set to ``majority`` or - ``conservative'' and together with ``conflict_resolution=True``, - PCMCIplus is fully *order independent* meaning that the order of the N - variables in the dataframe does not matter. Last, the default option - ``reset_lagged_links=False`` restricts the detection of lagged causal - links in Step 2 to the significant adjacencies found in Step 1, given by - :math:`\\widehat{ \\mathcal{B}}_t^-( X^j_t)`. For - ``reset_lagged_links=True``, *all* lagged links are considered again, - which improves detection power for lagged links, but also leads to - larger runtimes. - - Further optional parameters are discussed in [5]_. - - Examples - -------- - >>> import numpy as np - >>> from tigramite.pcmci import PCMCI - >>> from tigramite.independence_tests import ParCorr - >>> import tigramite.data_processing as pp - >>> from tigramite.toymodels import structural_causal_processes as toys - >>> # Example process to play around with - >>> # Each key refers to a variable and the incoming links are supplied - >>> # as a list of format [((var, -lag), coeff, function), ...] - >>> def lin_f(x): return x - >>> links = {0: [((0, -1), 0.9, lin_f)], - 1: [((1, -1), 0.8, lin_f), ((0, -1), 0.8, lin_f)], - 2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)], - 3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)], - } - >>> data, nonstat = toys.structural_causal_process(links, - T=1000, seed=7) - >>> # Data must be array of shape (time, variables) - >>> print (data.shape) - (1000, 4) - >>> dataframe = pp.DataFrame(data) - >>> cond_ind_test = ParCorr() - >>> pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test) - >>> results = pcmci.run_pcmciplus(tau_min=0, tau_max=2, pc_alpha=0.01) - >>> pcmci.print_results(results, alpha_level=0.01) - ## Significant links at alpha = 0.01: - - Variable 0 has 1 link(s): - (0 -1): pval = 0.00000 | val = 0.676 - - Variable 1 has 2 link(s): - (1 -1): pval = 0.00000 | val = 0.602 - (0 -1): pval = 0.00000 | val = 0.599 - - Variable 2 has 2 link(s): - (1 0): pval = 0.00000 | val = 0.486 - (2 -1): pval = 0.00000 | val = 0.466 - - Variable 3 has 2 link(s): - (3 -1): pval = 0.00000 | val = 0.524 - (2 0): pval = 0.00000 | val = -0.449 - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - tau_min : int, optional (default: 0) - Minimum time lag to test. - tau_max : int, optional (default: 1) - Maximum time lag. Must be larger or equal to tau_min. - pc_alpha : float or list of floats, default: 0.01 - Significance level in algorithm. If a list or None is passed, the - pc_alpha level is optimized for every graph across the given - pc_alpha values ([0.001, 0.005, 0.01, 0.025, 0.05] for None) using - the score computed in cond_ind_test.get_model_selection_criterion(). - contemp_collider_rule : {'majority', 'conservative', 'none'} - Rule for collider phase to use. See the paper for details. Only - 'majority' and 'conservative' lead to an order-independent - algorithm. - conflict_resolution : bool, optional (default: True) - Whether to mark conflicts in orientation rules. Only for True - this leads to an order-independent algorithm. - reset_lagged_links : bool, optional (default: False) - Restricts the detection of lagged causal links in Step 2 to the - significant adjacencies found in the PC1 algorithm in Step 1. For - True, *all* lagged links are considered again, which improves - detection power for lagged links, but also leads to larger - runtimes. - max_conds_dim : int, optional (default: None) - Maximum number of conditions to test. If None is passed, this number - is unrestricted. - max_combinations : int, optional (default: 1) - Maximum number of combinations of conditions of current cardinality - to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm - a larger number, such as 10, can be used. - max_conds_py : int, optional (default: None) - Maximum number of lagged conditions of Y to use in MCI tests. If - None is passed, this number is unrestricted. - max_conds_px : int, optional (default: None) - Maximum number of lagged conditions of X to use in MCI tests. If - None is passed, this number is unrestricted. - max_conds_px_lagged : int, optional (default: None) - Maximum number of lagged conditions of X when X is lagged in MCI - tests. If None is passed, this number is equal to max_conds_px. - fdr_method : str, optional (default: 'none') - Correction method, default is Benjamini-Hochberg False Discovery - Rate method. - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Resulting causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values regarding adjacencies. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values regarding adjacencies. - sepset : dictionary - Separating sets. See paper for details. - ambiguous_triples : list - List of ambiguous triples, only relevant for 'majority' and - 'conservative' rules, see paper for details. - """ - - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - # Check if pc_alpha is chosen to optimze over a list - if pc_alpha is None or isinstance(pc_alpha, (list, tuple, np.ndarray)): - # Call optimizer wrapper around run_pcmciplus() - return self._optimize_pcmciplus_alpha( - link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - pc_alpha=pc_alpha, - contemp_collider_rule=contemp_collider_rule, - conflict_resolution=conflict_resolution, - reset_lagged_links=reset_lagged_links, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations, - max_conds_py=max_conds_py, - max_conds_px=max_conds_px, - max_conds_px_lagged=max_conds_px_lagged, - fdr_method=fdr_method) - - # else: - # raise ValueError("pc_alpha=None not supported in PCMCIplus, choose" - # " 0 < pc_alpha < 1 (e.g., 0.01)") - - if pc_alpha < 0. or pc_alpha > 1: - raise ValueError("Choose 0 <= pc_alpha <= 1") - - # Check the limits on tau - self._check_tau_limits(tau_min, tau_max) - # Set the selected links - # _int_sel_links = self._set_sel_links(selected_links, tau_min, tau_max) - _int_link_assumptions = self._set_link_assumptions(link_assumptions, tau_min, tau_max) - - # Step 1: Get a superset of lagged parents from run_pc_stable - lagged_parents = self.run_pc_stable(link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - pc_alpha=pc_alpha, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations) - - p_matrix = self.p_matrix - val_matrix = self.val_matrix - - # Step 2+3+4: PC algorithm with contemp. conditions and MCI tests - if self.verbosity > 0: - print("\n##\n## Step 2: PC algorithm with contemp. conditions " - "and MCI tests\n##" - "\n\nParameters:") - if link_assumptions is not None: - print("\nlink_assumptions = %s" % str(_int_link_assumptions)) - print("\nindependence test = %s" % self.cond_ind_test.measure - + "\ntau_min = %d" % tau_min - + "\ntau_max = %d" % tau_max - + "\npc_alpha = %s" % pc_alpha - + "\ncontemp_collider_rule = %s" % contemp_collider_rule - + "\nconflict_resolution = %s" % conflict_resolution - + "\nreset_lagged_links = %s" % reset_lagged_links - + "\nmax_conds_dim = %s" % max_conds_dim - + "\nmax_conds_py = %s" % max_conds_py - + "\nmax_conds_px = %s" % max_conds_px - + "\nmax_conds_px_lagged = %s" % max_conds_px_lagged - + "\nfdr_method = %s" % fdr_method - ) - - # Set the maximum condition dimension for Y and X - max_conds_py = self._set_max_condition_dim(max_conds_py, - tau_min, tau_max) - max_conds_px = self._set_max_condition_dim(max_conds_px, - tau_min, tau_max) - - if reset_lagged_links: - # Run PCalg on full graph, ignoring that some lagged links - # were determined as non-significant in PC1 step - links_for_pc = deepcopy(_int_link_assumptions) - else: - # Run PCalg only on lagged parents found with PC1 - # plus all contemporaneous links - links_for_pc = {} #deepcopy(lagged_parents) - for j in range(self.N): - links_for_pc[j] = {} - for parent in lagged_parents[j]: - if _int_link_assumptions[j][parent] in ['-?>', '-->']: - links_for_pc[j][parent] = _int_link_assumptions[j][parent] - - # Add contemporaneous links - for link in _int_link_assumptions[j]: - i, tau = link - link_type = _int_link_assumptions[j][link] - if abs(tau) == 0: - links_for_pc[j][(i, 0)] = link_type - - results = self.run_pcalg( - link_assumptions=links_for_pc, - pc_alpha=pc_alpha, - tau_min=tau_min, - tau_max=tau_max, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations, - lagged_parents=lagged_parents, - max_conds_py=max_conds_py, - max_conds_px=max_conds_px, - max_conds_px_lagged=max_conds_px_lagged, - mode='contemp_conds', - contemp_collider_rule=contemp_collider_rule, - conflict_resolution=conflict_resolution) - - graph = results['graph'] - - # Update p_matrix and val_matrix with values from links_for_pc - for j in range(self.N): - for link in links_for_pc[j]: - i, tau = link - if links_for_pc[j][link] not in ['<--', '<?-']: - p_matrix[i, j, abs(tau)] = results['p_matrix'][i, j, abs(tau)] - val_matrix[i, j, abs(tau)] = results['val_matrix'][i, j, - abs(tau)] - - # Update p_matrix and val_matrix for indices of symmetrical links - p_matrix[:, :, 0] = results['p_matrix'][:, :, 0] - val_matrix[:, :, 0] = results['val_matrix'][:, :, 0] - - ambiguous = results['ambiguous_triples'] - - conf_matrix = None - # TODO: implement confidence estimation, but how? - # if self.cond_ind_test.confidence is not False: - # conf_matrix = results['conf_matrix'] - - # Correct the p_matrix if there is a fdr_method - if fdr_method != 'none': - p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, - tau_max=tau_max, - link_assumptions=_int_link_assumptions, - fdr_method=fdr_method) - - # Store the parents in the pcmci member - self.all_lagged_parents = lagged_parents - - # Cache the resulting values in the return dictionary - return_dict = {'graph': graph, - 'val_matrix': val_matrix, - 'p_matrix': p_matrix, - 'ambiguous_triples': ambiguous, - 'conf_matrix': conf_matrix} - # Print the results - if self.verbosity > 0: - self.print_results(return_dict, alpha_level=pc_alpha) - # Return the dictionary - self.results = return_dict - return return_dict
- -
[docs] def run_pcalg(self, - selected_links=None, - link_assumptions=None, - pc_alpha=0.01, - tau_min=0, - tau_max=1, - max_conds_dim=None, - max_combinations=None, - lagged_parents=None, - max_conds_py=None, - max_conds_px=None, - max_conds_px_lagged=None, - mode='standard', - contemp_collider_rule='majority', - conflict_resolution=True): - - """Runs PC algorithm for time-lagged and contemporaneous causal - discovery for time series. - - For ``mode='contemp_conds'`` this implements Steps 2-4 of the - PCMCIplus method described in [5]_. For ``mode='standard'`` this - implements the standard PC algorithm adapted to time series. - - Parameters - ---------- - selected_links : dict or None - Deprecated, replaced by link_assumptions - link_assumptions : dict - Dictionary of form {j:{(i, -tau): link_type, ...}, ...} specifying - assumptions about links. This initializes the graph with entries - graph[i,j,tau] = link_type. For example, graph[i,j,0] = '-->' - implies that a directed link from i to j at lag 0 must exist. - Valid link types are 'o-o', '-->', '<--'. In addition, the middle - mark can be '?' instead of '-'. Then '-?>' implies that this link - may not exist, but if it exists, its orientation is '-->'. Link - assumptions need to be consistent, i.e., graph[i,j,0] = '-->' - requires graph[j,i,0] = '<--' and acyclicity must hold. If a link - does not appear in the dictionary, it is assumed absent. That is, - if link_assumptions is not None, then all links have to be specified - or the links are assumed absent. - lagged_parents : dictionary - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing - additional conditions for each CI test. As part of PCMCIplus - these are the superset of lagged parents estimated with the PC1 - algorithm. - mode : {'standard', 'contemp_conds'} - For ``mode='contemp_conds'`` this implements Steps 2-4 of the - PCMCIplus method. For ``mode='standard'`` this implements the - standard PC algorithm adapted to time series. - tau_min : int, optional (default: 0) - Minimum time lag to test. - tau_max : int, optional (default: 1) - Maximum time lag. Must be larger or equal to tau_min. - pc_alpha : float, optional (default: 0.01) - Significance level. - contemp_collider_rule : {'majority', 'conservative', 'none'} - Rule for collider phase to use. See the paper for details. Only - 'majority' and 'conservative' lead to an order-independent - algorithm. - conflict_resolution : bool, optional (default: True) - Whether to mark conflicts in orientation rules. Only for True - this leads to an order-independent algorithm. - max_conds_dim : int, optional (default: None) - Maximum number of conditions to test. If None is passed, this number - is unrestricted. - max_combinations : int - Maximum number of combinations of conditions of current cardinality - to test. - max_conds_py : int, optional (default: None) - Maximum number of lagged conditions of Y to use in MCI tests. If - None is passed, this number is unrestricted. - max_conds_px : int, optional (default: None) - Maximum number of lagged conditions of X to use in MCI tests. If - None is passed, this number is unrestricted. - max_conds_px_lagged : int, optional (default: None) - Maximum number of lagged conditions of X when X is lagged in MCI - tests. If None is passed, this number is equal to max_conds_px. - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Resulting causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values regarding adjacencies. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values regarding adjacencies. - sepset : dictionary - Separating sets. See paper for details. - ambiguous_triples : list - List of ambiguous triples, only relevant for 'majority' and - 'conservative' rules, see paper for details. - """ - # TODO: save_iterations - - if selected_links is not None: - raise ValueError("selected_links is DEPRECATED, use link_assumptions instead.") - - # Sanity checks - if pc_alpha is None: - raise ValueError("pc_alpha=None not supported in PC algorithm, " - "choose 0 < pc_alpha < 1 (e.g., 0.01)") - - if mode not in ['contemp_conds', 'standard']: - raise ValueError("mode must be either 'contemp_conds' or " - "'standard'") - - # Check the limits on tau - self._check_tau_limits(tau_min, tau_max) - # Set the selected links - # _int_sel_links = self._set_sel_links(selected_links, tau_min, tau_max) - _int_link_assumptions = self._set_link_assumptions(link_assumptions, tau_min, tau_max) - - if max_conds_dim is None: - if mode == 'standard': - max_conds_dim = self._set_max_condition_dim(max_conds_dim, - tau_min, tau_max) - elif mode == 'contemp_conds': - max_conds_dim = self.N - - if max_combinations is None: - max_combinations = np.inf - - initial_graph = self._dict_to_graph(_int_link_assumptions, tau_max=tau_max) - - skeleton_results = self._pcalg_skeleton( - initial_graph=initial_graph, - lagged_parents=lagged_parents, - mode=mode, - pc_alpha=pc_alpha, - tau_min=tau_min, - tau_max=tau_max, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations, - max_conds_py=max_conds_py, - max_conds_px=max_conds_px, - max_conds_px_lagged=max_conds_px_lagged, - ) - - skeleton_graph = skeleton_results['graph'] - sepset = skeleton_results['sepset'] - - # Now change assumed links mark - skeleton_graph[skeleton_graph=='o?o'] = 'o-o' - skeleton_graph[skeleton_graph=='-?>'] = '-->' - skeleton_graph[skeleton_graph=='<?-'] = '<--' - - colliders_step_results = self._pcalg_colliders( - graph=skeleton_graph, - sepset=sepset, - lagged_parents=lagged_parents, - mode=mode, - pc_alpha=pc_alpha, - tau_max=tau_max, - max_conds_py=max_conds_py, - max_conds_px=max_conds_px, - max_conds_px_lagged=max_conds_px_lagged, - conflict_resolution=conflict_resolution, - contemp_collider_rule=contemp_collider_rule, - ) - - collider_graph = colliders_step_results['graph'] - ambiguous_triples = colliders_step_results['ambiguous_triples'] - - final_graph = self._pcalg_rules_timeseries( - graph=collider_graph, - ambiguous_triples=ambiguous_triples, - conflict_resolution=conflict_resolution, - ) - - # Symmetrize p_matrix and val_matrix - symmetrized_results = self.symmetrize_p_and_val_matrix( - p_matrix=skeleton_results['p_matrix'], - val_matrix=skeleton_results['val_matrix'], - link_assumptions=_int_link_assumptions, - conf_matrix=None) - - # Convert numerical graph matrix to string - graph_str = final_graph # self.convert_to_string_graph(final_graph) - - pc_results = { - 'graph': graph_str, - 'p_matrix': symmetrized_results['p_matrix'], - 'val_matrix': symmetrized_results['val_matrix'], - 'sepset': colliders_step_results['sepset'], - 'ambiguous_triples': colliders_step_results['ambiguous_triples'], - } - - if self.verbosity > 1: - print("\n-----------------------------") - print("PCMCIplus algorithm finished.") - print("-----------------------------") - - self.pc_results = pc_results - return pc_results
- -
[docs] def run_pcalg_non_timeseries_data(self, pc_alpha=0.01, - max_conds_dim=None, max_combinations=None, - contemp_collider_rule='majority', - conflict_resolution=True): - - """Runs PC algorithm for non-time series data. - - Simply calls run_pcalg with tau_min = tau_max = 0. - Removes lags from output dictionaries. - - Parameters - ---------- - pc_alpha : float, optional (default: 0.01) - Significance level. - contemp_collider_rule : {'majority', 'conservative', 'none'} - Rule for collider phase to use. See the paper for details. Only - 'majority' and 'conservative' lead to an order-independent - algorithm. - conflict_resolution : bool, optional (default: True) - Whether to mark conflicts in orientation rules. Only for True - this leads to an order-independent algorithm. - max_conds_dim : int, optional (default: None) - Maximum number of conditions to test. If None is passed, this number - is unrestricted. - max_combinations : int - Maximum number of combinations of conditions of current cardinality - to test. - - Returns - ------- - graph : array of shape [N, N, 1] - Resulting causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, 1] - Estimated matrix of test statistic values regarding adjacencies. - p_matrix : array of shape [N, N, 1] - Estimated matrix of p-values regarding adjacencies. - sepset : dictionary - Separating sets. See paper for details. - ambiguous_triples : list - List of ambiguous triples, only relevant for 'majority' and - 'conservative' rules, see paper for details. - """ - - results = self.run_pcalg(pc_alpha=pc_alpha, tau_min=0, tau_max=0, - max_conds_dim=max_conds_dim, max_combinations=max_combinations, - mode='standard', contemp_collider_rule=contemp_collider_rule, - conflict_resolution=conflict_resolution) - - # Remove tau-dimension - # results['graph'] = results['graph'].squeeze() - # results['val_matrix'] = results['val_matrix'].squeeze() - # results['p_matrix'] = results['p_matrix'].squeeze() - old_sepsets = results['sepset'].copy() - results['sepset'] = {} - for old_sepset in old_sepsets: - new_sepset = (old_sepset[0][0], old_sepset[1]) - conds = [cond[0] for cond in old_sepsets[old_sepset]] - - results['sepset'][new_sepset] = conds - - ambiguous_triples = results['ambiguous_triples'].copy() - results['ambiguous_triples'] = [] - for triple in ambiguous_triples: - new_triple = (triple[0][0], triple[1], triple[2]) - - results['ambiguous_triples'].append(new_triple) - - self.pc_results = results - return results
- - - def _run_pcalg_test(self, graph, i, abstau, j, S, lagged_parents, max_conds_py, - max_conds_px, max_conds_px_lagged, tau_max): - """MCI conditional independence tests within PCMCIplus or PC algorithm. - - Parameters - ---------- - graph : array - ... - i : int - Variable index. - abstau : int - Time lag (absolute value). - j : int - Variable index. - S : list - List of contemporaneous conditions. - lagged_parents : dictionary of lists - Dictionary of lagged parents for each node. - max_conds_py : int - Max number of lagged parents for node j. - max_conds_px : int - Max number of lagged parents for lagged node i. - max_conds_px_lagged : int - Maximum number of lagged conditions of X when X is lagged in MCI - tests. If None is passed, this number is equal to max_conds_px. - tau_max : int - Maximum time lag. - - Returns - ------- - val : float - Test statistic value. - pval : float - Test statistic p-value. - Z : list - List of conditions. - """ - - # Perform independence test adding lagged parents - if lagged_parents is not None: - conds_y = lagged_parents[j][:max_conds_py] - # Get the conditions for node i - if abstau == 0: - conds_x = lagged_parents[i][:max_conds_px] - else: - if max_conds_px_lagged is None: - conds_x = lagged_parents[i][:max_conds_px] - else: - conds_x = lagged_parents[i][:max_conds_px_lagged] - - else: - conds_y = conds_x = [] - # Shift the conditions for X by tau - conds_x_lagged = [(k, -abstau + k_tau) for k, k_tau in conds_x] - - Z = [node for node in S] - Z += [node for node in conds_y if - node != (i, -abstau) and node not in Z] - # Remove overlapping nodes between conds_x_lagged and conds_y - Z += [node for node in conds_x_lagged if node not in Z] - - # If middle mark is '-', then set pval=0 - if graph[i,j,abstau] != "" and graph[i,j,abstau][1] == '-': - val = 1. - pval = 0. - else: - val, pval = self.cond_ind_test.run_test(X=[(i, -abstau)], Y=[(j, 0)], - Z=Z, tau_max=tau_max, - # verbosity=self.verbosity - ) - - return val, pval, Z - - def _print_triple_info(self, triple, index, n_triples): - """Print info about the current triple being tested. - - Parameters - ---------- - triple : tuple - Standard ((i, tau), k, j) tuple of nodes and time delays. - index : int - Index of triple. - n_triples : int - Total number of triples. - """ - (i, tau), k, j = triple - link_marker = {True:"o-o", False:"-->"} - - print("\n Triple (%s % d) %s %s o-o %s (%d/%d)" % ( - self.var_names[i], tau, link_marker[tau==0], self.var_names[k], - self.var_names[j], index + 1, n_triples)) - - - def _tests_remaining(self, i, j, abstau, graph, adjt, p): - """Helper function returning whether a certain pair still needs to be - tested.""" - return graph[i, j, abstau] != "" and len( - [a for a in adjt[j] if a != (i, -abstau)]) >= p - - def _any_tests_remaining(self, graph, adjt, tau_min, tau_max, p): - """Helper function returning whether any pair still needs to be - tested.""" - remaining_pairs = self._remaining_pairs(graph, adjt, tau_min, tau_max, - p) - - if len(remaining_pairs) > 0: - return True - else: - return False - - def _remaining_pairs(self, graph, adjt, tau_min, tau_max, p): - """Helper function returning the remaining pairs that still need to be - tested.""" - N = graph.shape[0] - pairs = [] - for (i, j) in itertools.product(range(N), range(N)): - for abstau in range(tau_min, tau_max + 1): - if (graph[i, j, abstau] != "" - and len( - [a for a in adjt[j] if a != (i, -abstau)]) >= p): - pairs.append((i, j, abstau)) - - return pairs - - def _pcalg_skeleton(self, - initial_graph, - lagged_parents, - mode, - pc_alpha, - tau_min, - tau_max, - max_conds_dim, - max_combinations, - max_conds_py, - max_conds_px, - max_conds_px_lagged, - ): - """Implements the skeleton discovery step of the PC algorithm for - time series. - - Parameters - ---------- - initial_graph : array of shape (N, N, tau_max+1) or None - Initial graph. - lagged_parents : dictionary - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing - additional conditions for each CI test. As part of PCMCIplus - these are the superset of lagged parents estimated with the PC1 - algorithm. - mode : {'standard', 'contemp_conds'} - For ``mode='contemp_conds'`` this implements Steps 2-4 of the - PCMCIplus method. For ``mode='standard'`` this implements the - standard PC algorithm adapted to time series. - tau_min : int, optional (default: 0) - Minimum time lag to test. - tau_max : int, optional (default: 1) - Maximum time lag. Must be larger or equal to tau_min. - pc_alpha : float, optional (default: 0.01) - Significance level. - max_conds_dim : int, optional (default: None) - Maximum number of conditions to test. If None is passed, this number - is unrestricted. - max_combinations : int - Maximum number of combinations of conditions of current cardinality - to test. - max_conds_py : int, optional (default: None) - Maximum number of lagged conditions of Y to use in MCI tests. If - None is passed, this number is unrestricted. - max_conds_px : int, optional (default: None) - Maximum number of lagged conditions of X to use in MCI tests. If - None is passed, this number is unrestricted. - max_conds_px_lagged : int, optional (default: None) - Maximum number of lagged conditions of X when X is lagged in MCI - tests. If None is passed, this number is equal to max_conds_px. - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Resulting causal graph, see description above for interpretation. - val_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of test statistic values regarding adjacencies. - p_matrix : array of shape [N, N, tau_max+1] - Estimated matrix of p-values regarding adjacencies. - sepset : dictionary - Separating sets. See paper for details. - """ - N = self.N - - # Form complete graph - if initial_graph is None: - graph = np.ones((N, N, tau_max + 1), dtype='<U3') - graph[:, :, 0] = "o?o" - graph[:, :, 1:] = "-?>" - else: - graph = initial_graph - - # Remove lag-zero self-loops - graph[range(N), range(N), 0] = "" - - # Define adjacencies for standard and contemp_conds mode - if mode == 'contemp_conds': - adjt = self._get_adj_time_series_contemp(graph) - elif mode == 'standard': - adjt = self._get_adj_time_series(graph) - - val_matrix = np.zeros((N, N, tau_max + 1)) - val_min = dict() - for j in range(self.N): - val_min[j] = {(p[0], -p[1]): np.inf - for p in zip(*np.where(graph[:, j, :] != ""))} - - # Initialize p-values. Set to 1 if there's no link in the initial graph - pvalues = np.zeros((N, N, tau_max + 1)) - pvalues[graph == ""] = 1. - pval_max = dict() - for j in range(self.N): - pval_max[j] = {(p[0], -p[1]): 0. - for p in zip(*np.where(graph[:, j, :] != ""))} - - # TODO: Remove sepset alltogether? - # Intialize sepsets that store the conditions that make i and j - # independent - sepset = self._get_sepset(tau_min, tau_max) - - if self.verbosity > 1: - print("\n--------------------------") - print("Skeleton discovery phase") - print("--------------------------") - - # Start with zero cardinality conditions - p = 0 - while (self._any_tests_remaining(graph, adjt, tau_min, tau_max, - p) and p <= max_conds_dim): - if self.verbosity > 1: - print( - "\nTesting contemporaneous condition sets of dimension " - "%d: " % p) - - remaining_pairs = self._remaining_pairs(graph, adjt, tau_min, - tau_max, p) - n_remaining = len(remaining_pairs) - for ir, (i, j, abstau) in enumerate(remaining_pairs): - # Check if link was not already removed (contemp links) - if graph[i, j, abstau] != "": - if self.verbosity > 1: - self._print_link_info(j=j, index_parent=ir, - parent=(i, -abstau), - num_parents=n_remaining) - - # Generate all subsets of conditions of cardinality p - conditions = list(itertools.combinations( - [(k, tauk) for (k, tauk) in adjt[j] - if not (k == i and tauk == -abstau)], p)) - - n_conditions = len(conditions) - if self.verbosity > 1: - print( - " Iterate through %d subset(s) of conditions: " - % n_conditions) - if lagged_parents is not None: - self._print_pcmciplus_conditions(lagged_parents, i, - j, abstau, - max_conds_py, - max_conds_px, - max_conds_px_lagged) - nonsig = False - # Iterate through condition sets - for q, S in enumerate(conditions): - if q > max_combinations: - break - - # Run MCI test - val, pval, Z = self._run_pcalg_test(graph, - i, abstau, j, S, lagged_parents, max_conds_py, - max_conds_px, max_conds_px_lagged, tau_max) - - # Store minimum test statistic value for sorting adjt - # (only internally used) - val_min[j][(i, -abstau)] = min(np.abs(val), - val_min[j].get( - (i, -abstau))) - # Store maximum p-value (only internally used) - pval_max[j][(i, -abstau)] = max(pval, - pval_max[j].get( - (i, -abstau))) - - # Store max. p-value and corresponding value to return - if pval >= pvalues[i, j, abstau]: - pvalues[i, j, abstau] = pval - val_matrix[i, j, abstau] = val - - if self.verbosity > 1: - self._print_cond_info(Z=S, comb_index=q, pval=pval, - val=val) - - # If conditional independence is found, remove link - # from graph and store sepset - if pval > pc_alpha: - nonsig = True - if abstau == 0: - graph[i, j, 0] = graph[j, i, 0] = "" - sepset[((i, 0), j)] = sepset[ - ((j, 0), i)] = list(S) - else: - graph[i, j, abstau] = "" - sepset[((i, -abstau), j)] = list(S) - break - - # Print the results if needed - if self.verbosity > 1: - self._print_a_pc_result(nonsig, - conds_dim=p, - max_combinations= - max_combinations) - else: - self._print_link_info(j=j, index_parent=ir, - parent=(i, -abstau), - num_parents=n_remaining, - already_removed=True) - - # Increase condition cardinality - p += 1 - - # Re-compute adj and sort by minimum absolute test statistic value - if mode == 'contemp_conds': - adjt = self._get_adj_time_series_contemp(graph, sort_by=val_min) - elif mode == 'standard': - adjt = self._get_adj_time_series(graph, sort_by=val_min) - - if self.verbosity > 1: - print("\nUpdated contemp. adjacencies:") - self._print_parents(all_parents=adjt, val_min=val_min, - pval_max=pval_max) - - if self.verbosity > 1: - if not (self._any_tests_remaining(graph, adjt, tau_min, tau_max, - p) and p <= max_conds_dim): - print("\nAlgorithm converged at p = %d." % (p - 1)) - else: - print( - "\nAlgorithm not yet converged, but max_conds_dim = %d" - " reached." % max_conds_dim) - - return {'graph': graph, - 'sepset': sepset, - 'p_matrix': pvalues, - 'val_matrix': val_matrix, - } - - def _get_sepset(self, tau_min, tau_max): - """Returns initial sepset. - - Parameters - ---------- - tau_min : int, optional (default: 0) - Minimum time lag to test. - tau_max : int, optional (default: 1) - Maximum time lag. Must be larger or equal to tau_min. - - Returns - ------- - sepset : dict - Initialized sepset. - """ - sepset = dict([(((i, -tau), j), []) - for tau in range(tau_min, tau_max + 1) - for i in range(self.N) - for j in range(self.N)]) - - return sepset - - def _find_unshielded_triples(self, graph): - """Find unshielded triples i_tau o-(>) k_t o-o j_t with i_tau -/- j_t. - - Excludes conflicting links. - - Parameters - ---------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - - Returns - ------- - triples : list - List of triples. - """ - - N = graph.shape[0] - adjt = self._get_adj_time_series(graph, include_conflicts=False) - - # Find unshielded triples - # Find triples i_tau o-(>) k_t o-o j_t with i_tau -/- j_t - triples = [] - for j in range(N): - for (k, tauk) in adjt[j]: - if tauk == 0 and graph[k,j,0] == "o-o": - for (i, taui) in adjt[k]: - if ((i, taui) != (j, 0) - and graph[i,j,abs(taui)] == "" - and (graph[i,k,abs(taui)] == "o-o" - or graph[i,k,abs(taui)] == "-->")): - # if not (k == j or ( - # taui == 0 and (i == k or i == j))): - # if ((taui == 0 and graph[i, j, 0] == "" and - # graph[j, i, 0] == "" and graph[j, k, 0] == "o-o") - # or (taui < 0 and graph[j, k, 0] == "o-o" - # and graph[i, j, abs(taui)] == "")): - triples.append(((i, taui), k, j)) - - return triples - - def _pcalg_colliders(self, - graph, - sepset, - lagged_parents, - mode, - pc_alpha, - tau_max, - max_conds_py, - max_conds_px, - max_conds_px_lagged, - contemp_collider_rule, - conflict_resolution, - ): - """Implements the collider orientation step of the PC algorithm for - time series. - - Parameters - ---------- - graph : array of shape (N, N, tau_max+1) - Current graph. - sepset : dictionary - Separating sets. See paper for details. - lagged_parents : dictionary - Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing - additional conditions for each CI test. As part of PCMCIplus - these are the superset of lagged parents estimated with the PC1 - algorithm. - mode : {'standard', 'contemp_conds'} - For ``mode='contemp_conds'`` this implements Steps 2-4 of the - PCMCIplus method. For ``mode='standard'`` this implements the - standard PC algorithm adapted to time series. - pc_alpha : float, optional (default: 0.01) - Significance level. - tau_max : int, optional (default: 1) - Maximum time lag. Must be larger or equal to tau_min. - max_conds_py : int, optional (default: None) - Maximum number of lagged conditions of Y to use in MCI tests. If - None is passed, this number is unrestricted. - max_conds_px : int, optional (default: None) - Maximum number of lagged conditions of X to use in MCI tests. If - None is passed, this number is unrestricted. - max_conds_px_lagged : int, optional (default: None) - Maximum number of lagged conditions of X when X is lagged in MCI - tests. If None is passed, this number is equal to max_conds_px. - contemp_collider_rule : {'majority', 'conservative', 'none'} - Rule for collider phase to use. See the paper for details. Only - 'majority' and 'conservative' lead to an order-independent - algorithm. - conflict_resolution : bool, optional (default: True) - Whether to mark conflicts in orientation rules. Only for True - this leads to an order-independent algorithm. - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Resulting causal graph, see description above for interpretation. - sepset : dictionary - Separating sets. See paper for details. - ambiguous_triples : list - List of ambiguous triples, only relevant for 'majority' and - 'conservative' rules, see paper for details. - """ - - if self.verbosity > 1: - print("\n----------------------------") - print("Collider orientation phase") - print("----------------------------") - print("\ncontemp_collider_rule = %s" % contemp_collider_rule) - print("conflict_resolution = %s\n" % conflict_resolution) - - # Check that no middle mark '?' exists - for (i, j, tau) in zip(*np.where(graph!='')): - if graph[i,j,tau][1] != '-': - raise ValueError("Middle mark '?' exists!") - - # Find unshielded triples - triples = self._find_unshielded_triples(graph) - - v_structures = [] - ambiguous_triples = [] - - if contemp_collider_rule is None or contemp_collider_rule == 'none': - # Standard collider orientation rule of PC algorithm - # If k_t not in sepset(i_tau, j_t), then orient - # as i_tau --> k_t <-- j_t - for itaukj in triples: - (i, tau), k, j = itaukj - if (k, 0) not in sepset[((i, tau), j)]: - v_structures.append(itaukj) - else: - # Apply 'majority' or 'conservative' rule to orient colliders - # Compute all (contemp) subsets of potential parents of i and all - # subsets of potential parents of j that make i and j independent - def subsets(s): - if len(s) == 0: return [] - subsets = [] - for cardinality in range(len(s) + 1): - subsets += list(itertools.combinations(s, cardinality)) - subsets = [list(sub) for sub in list(set(subsets))] - return subsets - - # We only consider contemporaneous adjacencies because only these - # can include the (contemp) k. Furthermore, next to adjacencies of j, - # we only need to check adjacencies of i for tau=0 - if mode == 'contemp_conds': - adjt = self._get_adj_time_series_contemp(graph) - elif mode == 'standard': - adjt = self._get_adj_time_series(graph) - - n_triples = len(triples) - for ir, itaukj in enumerate(triples): - (i, tau), k, j = itaukj - - if self.verbosity > 1: - self._print_triple_info(itaukj, ir, n_triples) - - neighbor_subsets_tmp = subsets( - [(l, taul) for (l, taul) in adjt[j] - if not (l == i and tau == taul)]) - if tau == 0: - # Furthermore, we only need to check contemp. adjacencies - # of i for tau=0 - neighbor_subsets_tmp += subsets( - [(l, taul) for (l, taul) in adjt[i] - if not (l == j and taul == 0)]) - - # Make unique - neighbor_subsets = [] - for subset in neighbor_subsets_tmp: - if subset not in neighbor_subsets: - neighbor_subsets.append(subset) - - n_neighbors = len(neighbor_subsets) - - if self.verbosity > 1: - print( - " Iterate through %d condition subset(s) of " - "neighbors: " % n_neighbors) - if lagged_parents is not None: - self._print_pcmciplus_conditions(lagged_parents, i, j, - abs(tau), max_conds_py, max_conds_px, - max_conds_px_lagged) - - # Test which neighbor subsets separate i and j - neighbor_sepsets = [] - for iss, S in enumerate(neighbor_subsets): - val, pval, Z = self._run_pcalg_test(graph, - i, abs(tau), j, S, lagged_parents, max_conds_py, - max_conds_px, max_conds_px_lagged, tau_max) - - if self.verbosity > 1: - self._print_cond_info(Z=S, comb_index=iss, pval=pval, - val=val) - - if pval > pc_alpha: - neighbor_sepsets += [S] - - if len(neighbor_sepsets) > 0: - fraction = np.sum( - [(k, 0) in S for S in neighbor_sepsets]) / float( - len(neighbor_sepsets)) - - if contemp_collider_rule == 'conservative': - # Triple is labeled as unambiguous if at least one - # separating set is found and either k is in ALL - # (fraction == 1) or NONE (fraction == 0) of them - if len(neighbor_sepsets) == 0: - if self.verbosity > 1: - print( - " No separating subsets --> ambiguous " - "triple found") - ambiguous_triples.append(itaukj) - else: - if fraction == 0: - # If (k, 0) is in none of the neighbor_sepsets, - # orient as collider - v_structures.append(itaukj) - if self.verbosity > 1: - print( - " Fraction of separating subsets " - "containing (%s 0) is = 0 --> collider " - "found" % self.var_names[k]) - # Also delete (k, 0) from sepset (if present) - if (k, 0) in sepset[((i, tau), j)]: - sepset[((i, tau), j)].remove((k, 0)) - if tau == 0: - if (k, 0) in sepset[((j, tau), i)]: - sepset[((j, tau), i)].remove((k, 0)) - elif fraction == 1: - # If (k, 0) is in all of the neighbor_sepsets, - # leave unoriented - if self.verbosity > 1: - print( - " Fraction of separating subsets " - "containing (%s 0) is = 1 --> " - "non-collider found" % self.var_names[k]) - # Also add (k, 0) to sepset (if not present) - if (k, 0) not in sepset[((i, tau), j)]: - sepset[((i, tau), j)].append((k, 0)) - if tau == 0: - if (k, 0) not in sepset[((j, tau), i)]: - sepset[((j, tau), i)].append((k, 0)) - else: - if self.verbosity > 1: - print( - " Fraction of separating subsets " - "containing (%s 0) is = between 0 and 1 " - "--> ambiguous triple found" % - self.var_names[k]) - ambiguous_triples.append(itaukj) - - elif contemp_collider_rule == 'majority': - - if len(neighbor_sepsets) == 0: - if self.verbosity > 1: - print( - " No separating subsets --> ambiguous " - "triple found") - ambiguous_triples.append(itaukj) - else: - if fraction == 0.5: - if self.verbosity > 1: - print( - " Fraction of separating subsets " - "containing (%s 0) is = 0.5 --> ambiguous " - "triple found" % self.var_names[k]) - ambiguous_triples.append(itaukj) - elif fraction < 0.5: - v_structures.append(itaukj) - if self.verbosity > 1: - print( - " Fraction of separating subsets " - "containing (%s 0) is < 0.5 " - "--> collider found" % self.var_names[k]) - # Also delete (k, 0) from sepset (if present) - if (k, 0) in sepset[((i, tau), j)]: - sepset[((i, tau), j)].remove((k, 0)) - if tau == 0: - if (k, 0) in sepset[((j, tau), i)]: - sepset[((j, tau), i)].remove((k, 0)) - elif fraction > 0.5: - if self.verbosity > 1: - print( - " Fraction of separating subsets " - "containing (%s 0) is > 0.5 " - "--> non-collider found" % - self.var_names[k]) - # Also add (k, 0) to sepset (if not present) - if (k, 0) not in sepset[((i, tau), j)]: - sepset[((i, tau), j)].append((k, 0)) - if tau == 0: - if (k, 0) not in sepset[((j, tau), i)]: - sepset[((j, tau), i)].append((k, 0)) - - if self.verbosity > 1 and len(v_structures) > 0: - print("\nOrienting links among colliders:") - - link_marker = {True:"o-o", False:"-->"} - - # Now go through list of v-structures and (optionally) detect conflicts - oriented_links = [] - for itaukj in v_structures: - (i, tau), k, j = itaukj - - if self.verbosity > 1: - print("\n Collider (%s % d) %s %s o-o %s:" % ( - self.var_names[i], tau, link_marker[ - tau==0], self.var_names[k], - self.var_names[j])) - - if (k, j) not in oriented_links and (j, k) not in oriented_links: - if self.verbosity > 1: - print(" Orient %s o-o %s as %s --> %s " % ( - self.var_names[j], self.var_names[k], self.var_names[j], - self.var_names[k])) - # graph[k, j, 0] = 0 - graph[k, j, 0] = "<--" #0 - graph[j, k, 0] = "-->" - - oriented_links.append((j, k)) - else: - if conflict_resolution is False and self.verbosity > 1: - print(" Already oriented") - - if conflict_resolution: - if (k, j) in oriented_links: - if self.verbosity > 1: - print( - " Conflict since %s <-- %s already " - "oriented: Mark link as `2` in graph" % ( - self.var_names[j], self.var_names[k])) - graph[j, k, 0] = graph[k, j, 0] = "x-x" #2 - - if tau == 0: - if (i, k) not in oriented_links and ( - k, i) not in oriented_links: - if self.verbosity > 1: - print(" Orient %s o-o %s as %s --> %s " % ( - self.var_names[i], self.var_names[k], - self.var_names[i], self.var_names[k])) - graph[k, i, 0] = "<--" #0 - graph[i, k, 0] = "-->" - - oriented_links.append((i, k)) - else: - if conflict_resolution is False and self.verbosity > 1: - print(" Already oriented") - - if conflict_resolution: - if (k, i) in oriented_links: - if self.verbosity > 1: - print( - " Conflict since %s <-- %s already " - "oriented: Mark link as `2` in graph" % ( - self.var_names[i], self.var_names[k])) - graph[i, k, 0] = graph[k, i, 0] = "x-x" #2 - - if self.verbosity > 1: - adjt = self._get_adj_time_series(graph) - print("\nUpdated adjacencies:") - self._print_parents(all_parents=adjt, val_min=None, pval_max=None) - - return {'graph': graph, - 'sepset': sepset, - 'ambiguous_triples': ambiguous_triples, - } - - def _find_triples_rule1(self, graph): - """Find triples i_tau --> k_t o-o j_t with i_tau -/- j_t. - - Excludes conflicting links. - - Parameters - ---------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - - Returns - ------- - triples : list - List of triples. - """ - adjt = self._get_adj_time_series(graph, include_conflicts=False) - - N = graph.shape[0] - triples = [] - for j in range(N): - for (k, tauk) in adjt[j]: - if tauk == 0 and graph[j, k, 0] == 'o-o': - for (i, taui) in adjt[k]: - if ((i, taui) != (j, 0) - and graph[i,j,abs(taui)] == "" - and (graph[i,k,abs(taui)] == "-->")): - triples.append(((i, taui), k, j)) - return triples - - def _find_triples_rule2(self, graph): - """Find triples i_t --> k_t --> j_t with i_t o-o j_t. - - Excludes conflicting links. - - Parameters - ---------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - - Returns - ------- - triples : list - List of triples. - """ - - adjtcont = self._get_adj_time_series_contemp(graph, - include_conflicts=False) - N = graph.shape[0] - - triples = [] - for j in range(N): - for (k, tauk) in adjtcont[j]: - if graph[k, j, 0] == '-->': - for (i, taui) in adjtcont[k]: - if graph[i, k, 0] == '-->' and (i, taui) != (j, 0): - if graph[i, j, 0] == 'o-o' and graph[j, i, 0] == 'o-o': - triples.append(((i, 0), k, j)) - return triples - - def _find_chains_rule3(self, graph): - """Find chains i_t o-o k_t --> j_t and i_t o-o l_t --> j_t with - i_t o-o j_t and k_t -/- l_t. - - Excludes conflicting links. - - Parameters - ---------- - graph : array of shape [N, N, tau_max+1] - Causal graph, see description above for interpretation. - - Returns - ------- - chains : list - List of chains. - """ - N = graph.shape[0] - adjtcont = self._get_adj_time_series_contemp(graph, - include_conflicts=False) - - chains = [] - for j in range(N): - for (i, _) in adjtcont[j]: - if graph[j, i, 0] == 'o-o': - for (k, _) in adjtcont[j]: - for (l, _) in adjtcont[j]: - if ((k != l) - and (k != i) - and (l != i) - and graph[k,j,0] == "-->" - and graph[l,j,0] == "-->" - and graph[k,i,0] == "o-o" - and graph[l,i,0] == "o-o" - and graph[k,l,0] == "" - ): - chains.append((((i, 0), k, j), - ((i, 0), l, j))) - - return chains - - def _pcalg_rules_timeseries(self, - graph, - ambiguous_triples, - conflict_resolution, - ): - """Implements the rule orientation step of the PC algorithm for - time series. - - Parameters - ---------- - graph : array of shape (N, N, tau_max+1) - Current graph. - ambiguous_triples : list - List of ambiguous triples, only relevant for 'majority' and - 'conservative' rules, see paper for details. - conflict_resolution : bool - Whether to mark conflicts in orientation rules. Only for True - this leads to an order-independent algorithm. - - Returns - ------- - graph : array of shape [N, N, tau_max+1] - Resulting causal graph, see description above for interpretation. - """ - N = graph.shape[0] - - def rule1(graph, oriented_links): - """Find (unambiguous) triples i_tau --> k_t o-o j_t with - i_tau -/- j_t and orient as i_tau --> k_t --> j_t. - """ - triples = self._find_triples_rule1(graph) - triples_left = False - - for itaukj in triples: - if itaukj not in ambiguous_triples: - triples_left = True - # Orient as i_tau --> k_t --> j_t - (i, tau), k, j = itaukj - if (j, k) not in oriented_links and ( - k, j) not in oriented_links: - if self.verbosity > 1: - print( - " R1: Found (%s % d) --> %s o-o %s, " - "orient as %s --> %s" % ( - self.var_names[i], tau, self.var_names[k], - self.var_names[j], - self.var_names[k], self.var_names[j])) - # graph[j, k, 0] = 0 - graph[k, j, 0] = '-->' - graph[j, k, 0] = '<--' # 0 - - oriented_links.append((k, j)) - - if conflict_resolution: - if (j, k) in oriented_links: - if self.verbosity > 1: - print( - " Conflict since %s <-- %s already" - " oriented: Mark link as `2` in graph" % ( - self.var_names[k], self.var_names[j])) - # graph[j, k, 0] = graph[k, j, 0] = 2 - graph[j, k, 0] = graph[k, j, 0] = 'x-x' - - return triples_left, graph, oriented_links - - def rule2(graph, oriented_links): - """Find (unambiguous) triples i_t --> k_t --> j_t with i_t o-o j_t - and orient as i_t --> j_t. - """ - - triples = self._find_triples_rule2(graph) - triples_left = False - - for itaukj in triples: - if itaukj not in ambiguous_triples: - # TODO: CHeck whether this is actually needed - # since ambiguous triples are always unshielded and here - # we look for triples where i and j are connected - triples_left = True - # Orient as i_t --> j_t - (i, tau), k, j = itaukj - if (j, i) not in oriented_links and ( - i, j) not in oriented_links: - if self.verbosity > 1: - print( - " R2: Found %s --> %s --> %s with %s " - "o-o %s, orient as %s --> %s" % ( - self.var_names[i], self.var_names[k], - self.var_names[j], - self.var_names[i], self.var_names[j], - self.var_names[i], self.var_names[j])) - graph[i, j, 0] = '-->' - graph[j, i, 0] = '<--' # 0 - - oriented_links.append((i, j)) - if conflict_resolution: - if (j, i) in oriented_links: - if self.verbosity > 1: - print( - " Conflict since %s <-- %s already " - "oriented: Mark link as `2` in graph" % ( - self.var_names[i], self.var_names[j])) - # graph[j, i, 0] = graph[i, j, 0] = 2 - graph[j, i, 0] = graph[i, j, 0] = 'x-x' - - return triples_left, graph, oriented_links - - def rule3(graph, oriented_links): - """Find (unambiguous) chains i_t o-o k_t --> j_t - and i_t o-o l_t --> j_t with i_t o-o j_t - and k_t -/- l_t: Orient as i_t --> j_t. - """ - # First find all chains i_t -- k_t --> j_t with i_t -- j_t - # and k_t -/- l_t - chains = self._find_chains_rule3(graph) - - chains_left = False - - for (itaukj, itaulj) in chains: - if (itaukj not in ambiguous_triples and - itaulj not in ambiguous_triples): - # TODO: CHeck whether this is actually needed - # since ambiguous triples are always unshielded and here - # we look for triples where i and j are connected - chains_left = True - # Orient as i_t --> j_t - (i, tau), k, j = itaukj - _ , l, _ = itaulj - - if (j, i) not in oriented_links and ( - i, j) not in oriented_links: - if self.verbosity > 1: - print( - " R3: Found %s o-o %s --> %s and %s o-o " - "%s --> %s with %s o-o %s and %s -/- %s, " - "orient as %s --> %s" % ( - self.var_names[i], self.var_names[k], - self.var_names[j], self.var_names[i], - self.var_names[l], self.var_names[j], - self.var_names[i], self.var_names[j], - self.var_names[k], self.var_names[l], - self.var_names[i], self.var_names[j])) - graph[i, j, 0] = '-->' - graph[j, i, 0] = '<--' # 0 - - oriented_links.append((i, j)) - if conflict_resolution: - if (j, i) in oriented_links: - if self.verbosity > 1: - print( - " Conflict since %s <-- %s already " - "oriented: Mark link as `2` in graph" % ( - self.var_names[i], self.var_names[j])) - graph[j, i, 0] = graph[i, j, 0] = 'x-x' - - return chains_left, graph, oriented_links - - if self.verbosity > 1: - print("\n") - print("----------------------------") - print("Rule orientation phase") - print("----------------------------") - - oriented_links = [] - graph_new = np.copy(graph) - any1 = any2 = any3 = True - while (any1 or any2 or any3): - if self.verbosity > 1: - print("\nTry rule(s) %s" % ( - np.where(np.array([0, any1, any2, any3])))) - any1, graph_new, oriented_links = rule1(graph_new, oriented_links) - any2, graph_new, oriented_links = rule2(graph_new, oriented_links) - any3, graph_new, oriented_links = rule3(graph_new, oriented_links) - - if self.verbosity > 1: - adjt = self._get_adj_time_series(graph_new) - print("\nUpdated adjacencies:") - self._print_parents(all_parents=adjt, val_min=None, pval_max=None) - - return graph_new - - def _optimize_pcmciplus_alpha(self, - link_assumptions, - tau_min, - tau_max, - pc_alpha, - contemp_collider_rule, - conflict_resolution, - reset_lagged_links, - max_conds_dim, - max_combinations, - max_conds_py, - max_conds_px, - max_conds_px_lagged, - fdr_method, - ): - """Optimizes pc_alpha in PCMCIplus. - - If a list or None is passed for ``pc_alpha``, the significance level is - optimized for every graph across the given ``pc_alpha`` values using the - score computed in ``cond_ind_test.get_model_selection_criterion()`` - - Parameters - ---------- - See those for run_pcmciplus() - - Returns - ------- - Results for run_pcmciplus() for the optimal pc_alpha. - """ - - if pc_alpha is None: - pc_alpha_list = [0.001, 0.005, 0.01, 0.025, 0.05] - else: - pc_alpha_list = pc_alpha - - if self.verbosity > 0: - print("\n##\n## Optimizing pc_alpha over " + - "pc_alpha_list = %s" % str(pc_alpha_list) + - "\n##") - - results = {} - score = np.zeros_like(pc_alpha_list) - for iscore, pc_alpha_here in enumerate(pc_alpha_list): - # Print statement about the pc_alpha being tested - if self.verbosity > 0: - print("\n## pc_alpha = %s (%d/%d):" % (pc_alpha_here, - iscore + 1, - score.shape[0])) - # Get the results for this alpha value - results[pc_alpha_here] = \ - self.run_pcmciplus(link_assumptions=link_assumptions, - tau_min=tau_min, - tau_max=tau_max, - pc_alpha=pc_alpha_here, - contemp_collider_rule=contemp_collider_rule, - conflict_resolution=conflict_resolution, - reset_lagged_links=reset_lagged_links, - max_conds_dim=max_conds_dim, - max_combinations=max_combinations, - max_conds_py=max_conds_py, - max_conds_px=max_conds_px, - max_conds_px_lagged=max_conds_px_lagged, - fdr_method=fdr_method) - - # Get one member of the Markov equivalence class of the result - # of PCMCIplus, which is a CPDAG - - # First create order that is based on some feature of the variables - # to avoid order-dependence of DAG, i.e., it should not matter - # in which order the variables appear in dataframe - # Here we use the sum of absolute val_matrix values incident at j - val_matrix = results[pc_alpha_here]['val_matrix'] - variable_order = np.argsort( - np.abs(val_matrix).sum(axis=(0,2)))[::-1] - - dag = self._get_dag_from_cpdag( - cpdag_graph=results[pc_alpha_here]['graph'], - variable_order=variable_order) - - - # Compute the best average score when the model selection - # is applied to all N variables - for j in range(self.N): - parents = [] - for i, tau in zip(*np.where(dag[:,j,:] == "-->")): - parents.append((i, -tau)) - score[iscore] += \ - self.cond_ind_test.get_model_selection_criterion( - j, parents, tau_max) - score[iscore] /= float(self.N) - - # Record the optimal alpha value - optimal_alpha = pc_alpha_list[score.argmin()] - - if self.verbosity > 0: - print("\n##"+ - "\n\n## Scores for individual pc_alpha values:\n") - for iscore, pc_alpha in enumerate(pc_alpha_list): - print(" pc_alpha = %7s yields score = %.5f" % (pc_alpha, - score[iscore])) - print("\n##\n## Results for optimal " + - "pc_alpha = %s\n##" % optimal_alpha) - self.print_results(results[optimal_alpha], alpha_level=optimal_alpha) - - optimal_results = results[optimal_alpha] - optimal_results['optimal_alpha'] = optimal_alpha - return optimal_results
- - - -if __name__ == '__main__': - from tigramite.independence_tests import ParCorr, CMIknn, ParCorrMult - import tigramite.data_processing as pp - from tigramite.toymodels import structural_causal_processes as toys - import tigramite.plotting as tp - from matplotlib import pyplot as plt - - random_state = np.random.default_rng(seed=43) - # Example process to play around with - # Each key refers to a variable and the incoming links are supplied - # as a list of format [((var, -lag), coeff, function), ...] - def lin_f(x): return x - def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) - - T = 2000 - data = random_state.standar_normal((T, 4)) - # Simple sun - data[:,3] = np.sin(np.arange(T)*20/np.pi) + 0.1*random_state.standar_normal((T)) - c = 0.8 - for t in range(1, T): - data[t, 0] += 0.4*data[t-1, 0] + 0.4*data[t-1, 1] + c*data[t-1,3] - data[t, 1] += 0.5*data[t-1, 1] + c*data[t-1,3] - data[t, 2] += 0.6*data[t-1, 2] + 0.3*data[t-2, 1] + c*data[t-1,3] - dataframe = pp.DataFrame(data, var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun']) - # tp.plot_timeseries(dataframe); plt.show() - - parcorr = ParCorr() - # dataframe_nosun = pp.DataFrame(data[:,[0,1,2]], var_names=[r'$X^0$', r'$X^1$', r'$X^2$']) - # pcmci_parcorr = PCMCI( - # dataframe=dataframe_nosun, - # cond_ind_test=parcorr, - # verbosity=0) - tau_max = 2 - # results = pcmci_parcorr.run_pcmci(tau_max=tau_max, pc_alpha=0.2, alpha_level = 0.01) - # Remove parents of variable 3 - # Only estimate parents of variables 0, 1, 2 - link_assumptions = {} - for j in range(4): - if j in [0, 1, 2]: - # Directed lagged links - link_assumptions[j] = {(var, -lag): '-?>' for var in [0, 1, 2] - for lag in range(1, tau_max + 1)} - # Unoriented contemporaneous links - link_assumptions[j].update({(var, 0): 'o?o' for var in [0, 1, 2] if var != j}) - # Directed lagged and contemporaneous links from the sun (3) - link_assumptions[j].update({(var, -lag): '-?>' for var in [3] - for lag in range(0, tau_max + 1)}) - else: - link_assumptions[j] = {} - - print(link_assumptions) - pcmci_parcorr = PCMCI( - dataframe=dataframe, - cond_ind_test=parcorr, - verbosity=2) - results = pcmci_parcorr.run_pcmciplus(tau_max=tau_max, pc_alpha=0.01, - link_assumptions=link_assumptions) #, alpha_level = 0.01) - print(results['graph'].shape) - print(results['graph'][:,3,:]) - # Plot time series graph - # tp.plot_time_series_graph( - # val_matrix=results['val_matrix'], - # graph=results['graph'], - # var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun'], - # link_colorbar_label='MCI', - # ); plt.show() - - # links_coeffs = {0: [((0, -1), 0.7, lin_f)], - # 1: [((1, -1), 0.7, lin_f), ((0, 0), 0.2, lin_f), ((2, -2), 0.2, lin_f)], - # 2: [((2, -1), 0.3, lin_f)], - # } - # T = 100 # time series length - # data, _ = toys.structural_causal_process(links_coeffs, T=T, seed=3) - # T, N = data.shape - - # # Initialize dataframe object - # dataframe = pp.DataFrame(data) - # pcmci = PCMCI( - # dataframe=dataframe, - # cond_ind_test=ParCorr(), - # verbosity=0) - - # multidata[0][40:100, :] = 999. - - # dataframe = pp.DataFrame(multidata, analysis_mode='multiple', - # missing_flag = 999., - # time_offsets = {0:50, 1:0} - # # reference_points=list(range(500, 1000)) - # ) - - # pcmci = PCMCI(dataframe=dataframe, - # cond_ind_test=ParCorr(verbosity=0), verbosity=0) - - # # results = pcmci.run_pcmciplus(tau_max=1) - - # results = pcmci.run_sliding_window_of( - # window_step=499, window_length=500, - # method='run_pcmciplus', method_args={'tau_max':1, - # 'link_assumptions':{ - # 0: {(0, -1): '-->'}, - # 1: {(1, -1): '-->', (0, -1): '-!>'}, - # } - # }) - - # # tp.plot_graph(results['graph']) - # print(multidata[0].shape, multidata[1].shape) - # print(results['window_results']['val_matrix']) - # print(results['window_results']['val_matrix'][0][0,1]) - # print(results['window_results']['val_matrix'][1][0,1]) - - # plt.show() - -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/plotting.html b/docs/_build/html/_modules/tigramite/plotting.html deleted file mode 100644 index 5e1b12f9..00000000 --- a/docs/_build/html/_modules/tigramite/plotting.html +++ /dev/null @@ -1,4639 +0,0 @@ - - - - - - - - tigramite.plotting — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.plotting

-"""Tigramite plotting package."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-
-import numpy as np
-import json, warnings, os, pathlib
-import matplotlib
-import networkx as nx
-from matplotlib.colors import ListedColormap
-import matplotlib.transforms as transforms
-from matplotlib import pyplot, ticker
-from matplotlib.ticker import FormatStrFormatter
-import matplotlib.patches as mpatches
-from matplotlib.collections import PatchCollection
-from mpl_toolkits.axes_grid1 import make_axes_locatable
-import sys
-from operator import sub
-import tigramite.data_processing as pp
-from copy import deepcopy
-import matplotlib.path as mpath
-import matplotlib.patheffects as PathEffects
-from mpl_toolkits.axisartist.axislines import Axes
-import csv
-# TODO: Add proper docstrings to internal functions...
-
-
-def _par_corr_trafo(cmi):
-    """Transformation of CMI to partial correlation scale."""
-
-    # Set negative values to small positive number
-    # (zero would be interpreted as non-significant in some functions)
-    if np.ndim(cmi) == 0:
-        if cmi < 0.0:
-            cmi = 1e-8
-    else:
-        cmi[cmi < 0.0] = 1e-8
-
-    return np.sqrt(1.0 - np.exp(-2.0 * cmi))
-
-
-def _par_corr_to_cmi(par_corr):
-    """Transformation of partial correlation to CMI scale."""
-
-    return -0.5 * np.log(1.0 - par_corr ** 2)
-
-
-def _myround(x, base=5, round_mode="updown"):
-    """Rounds x to a float with precision base."""
-
-    if round_mode == "updown":
-        return base * round(float(x) / base)
-    elif round_mode == "down":
-        return base * np.floor(float(x) / base)
-    elif round_mode == "up":
-        return base * np.ceil(float(x) / base)
-
-    return base * round(float(x) / base)
-
-
-def _make_nice_axes(ax, where=None, skip=1, color=None):
-    """Makes nice axes."""
-
-    if where is None:
-        where = ["left", "bottom"]
-    if color is None:
-        color = {"left": "black", "right": "black", "bottom": "black", "top": "black"}
-
-    if type(skip) == int:
-        skip_x = skip_y = skip
-    else:
-        skip_x = skip[0]
-        skip_y = skip[1]
-
-    for loc, spine in ax.spines.items():
-        if loc in where:
-            spine.set_position(("outward", 5))  # outward by 10 points
-            spine.set_color(color[loc])
-            if loc == "left" or loc == "right":
-                pyplot.setp(ax.get_yticklines(), color=color[loc])
-                pyplot.setp(ax.get_yticklabels(), color=color[loc])
-            if loc == "top" or loc == "bottom":
-                pyplot.setp(ax.get_xticklines(), color=color[loc])
-        elif loc in [
-            item for item in ["left", "bottom", "right", "top"] if item not in where
-        ]:
-            spine.set_color("none")  # don't draw spine
-        else:
-            raise ValueError("unknown spine location: %s" % loc)
-
-    # ax.xaxis.get_major_formatter().set_useOffset(False)
-
-    # turn off ticks where there is no spine
-    if "top" in where and "bottom" not in where:
-        ax.xaxis.set_ticks_position("top")
-        if skip_x > 1:
-            ax.set_xticks(ax.get_xticks()[::skip_x])
-    elif "bottom" in where:
-        ax.xaxis.set_ticks_position("bottom")
-        if skip_x > 1:
-            ax.set_xticks(ax.get_xticks()[::skip_x])
-    else:
-        ax.xaxis.set_ticks_position("none")
-        ax.xaxis.set_ticklabels([])
-    if "right" in where and "left" not in where:
-        ax.yaxis.set_ticks_position("right")
-        if skip_y > 1:
-            ax.set_yticks(ax.get_yticks()[::skip_y])
-    elif "left" in where:
-        ax.yaxis.set_ticks_position("left")
-        if skip_y > 1:
-            ax.set_yticks(ax.get_yticks()[::skip_y])
-    else:
-        ax.yaxis.set_ticks_position("none")
-        ax.yaxis.set_ticklabels([])
-
-    ax.patch.set_alpha(0.0)
-
-
-def _get_absmax(val_matrix):
-    """Get value at absolute maximum in lag function array.
-    For an (N, N, tau)-array this comutes the lag of the absolute maximum
-    along the tau-axis and stores the (positive or negative) value in
-    the (N,N)-array absmax."""
-
-    absmax_indices = np.abs(val_matrix).argmax(axis=2)
-    i, j = np.indices(val_matrix.shape[:2])
-
-    return val_matrix[i, j, absmax_indices]
-
-
-def _add_timeseries(
-    dataframe,
-    fig_axes,
-    grey_masked_samples=False,
-    show_meanline=False,
-    data_linewidth=1.0,
-    color="black",
-    alpha=1.,
-    grey_alpha=1.0,
-    selected_dataset=0,
-):
-    """Adds a time series plot to an axis.
-    Plot of dataseries is added to axis. Allows for proper visualization of
-    masked data.
-
-    Parameters
-    ----------
-    fig : figure instance
-        Figure instance.
-    axes : axis instance
-        Either gridded axis object or single axis instance.
-    grey_masked_samples : bool, optional (default: False)
-        Whether to mark masked samples by grey fills ('fill') or grey data
-        ('data').
-    show_meanline : bool
-        Show mean of data as horizontal line.
-    data_linewidth : float, optional (default: 1.)
-        Linewidth.
-    color : str, optional (default: black)
-        Line color.
-    alpha : float
-        Alpha opacity.
-    grey_alpha : float, optional (default: 1.)
-        Opacity of fill_between.
-    selected_dataset : int, optional (default: 0)
-        In case of multiple datasets in dataframe, plot this one.
-    """
-    fig, axes = fig_axes
-
-    # Read in all attributes from dataframe
-    data = dataframe.values[selected_dataset]
-    if dataframe.mask is not None:
-        mask = dataframe.mask[selected_dataset]
-    else:
-        mask = None
-
-    missing_flag = dataframe.missing_flag
-    time = dataframe.datatime[selected_dataset]
-    T = len(time)
-
-    for j in range(dataframe.N):
-        
-        ax = axes[j]
-        dataseries = data[:,j]
-
-        if missing_flag is not None:
-            dataseries_nomissing = np.ma.masked_where(
-                dataseries == missing_flag, dataseries
-            )
-        else:
-            dataseries_nomissing = np.ma.masked_where(
-                np.zeros(dataseries.shape), dataseries
-            )
-
-
-        if mask is not None:
-            maskseries = mask[:,j]
-
-            maskdata = np.ma.masked_where(maskseries, dataseries_nomissing)
-
-            if grey_masked_samples == "fill":
-                ax.fill_between(
-                    time,
-                    maskdata.min(),
-                    maskdata.max(),
-                    where=maskseries,
-                    color="grey",
-                    interpolate=True,
-                    linewidth=0.0,
-                    alpha=grey_alpha,
-                )
-            elif grey_masked_samples == "data":
-                ax.plot(
-                    time,
-                    dataseries_nomissing,
-                    color="grey",
-                    marker=".",
-                    markersize=data_linewidth,
-                    linewidth=data_linewidth,
-                    clip_on=False,
-                    alpha=grey_alpha,
-                )
-            if show_meanline:
-                ax.plot(time, maskdata.mean()*np.ones(T), lw=data_linewidth/2., color=color)
-
-            ax.plot(
-                time,
-                maskdata,
-                color=color,
-                linewidth=data_linewidth,
-                marker=".",
-                markersize=data_linewidth,
-                clip_on=False,
-                alpha=alpha,
-            )
-        else:
-            if show_meanline:
-                ax.plot(time, dataseries_nomissing.mean()*np.ones(T), lw=data_linewidth/2., color=color)
-
-            ax.plot(
-                time,
-                dataseries_nomissing,
-                color=color,
-                linewidth=data_linewidth,
-                clip_on=False,
-                alpha=alpha,
-                )
-
-
-
[docs]def plot_timeseries( - dataframe=None, - save_name=None, - fig_axes=None, - figsize=None, - var_units=None, - time_label="", - grey_masked_samples=False, - show_meanline=False, - data_linewidth=1.0, - skip_ticks_data_x=1, - skip_ticks_data_y=1, - label_fontsize=10, - color='black', - alpha=1., - tick_label_size=6, - selected_dataset=0, - adjust_plot=True, -): - """Create and save figure of stacked panels with time series. - - Parameters - ---------- - dataframe : data object, optional - This is the Tigramite dataframe object. It has the attributes - dataframe.values yielding a np array of shape (observations T, - variables N) and optionally a mask of the same shape. - save_name : str, optional (default: None) - Name of figure file to save figure. If None, figure is shown in window. - fig_axes : subplots instance, optional (default: None) - Figure and axes instance. If None they are created as - fig, axes = pyplot.subplots(N,...) - figsize : tuple of floats, optional (default: None) - Figure size if new figure is created. If None, default pyplot figsize - is used. - var_units : list of str, optional (default: None) - Units of variables. - time_label : str, optional (default: '') - Label of time axis. - grey_masked_samples : bool, optional (default: False) - Whether to mark masked samples by grey fills ('fill') or grey data - ('data'). - show_meanline : bool, optional (default: False) - Whether to plot a horizontal line at the mean. - data_linewidth : float, optional (default: 1.) - Linewidth. - skip_ticks_data_x : int, optional (default: 1) - Skip every other tickmark. - skip_ticks_data_y : int, optional (default: 2) - Skip every other tickmark. - label_fontsize : int, optional (default: 10) - Fontsize of variable labels. - tick_label_size : int, optional (default: 6) - Fontsize of tick labels. - color : str, optional (default: black) - Line color. - alpha : float - Alpha opacity. - selected_dataset : int, optional (default: 0) - In case of multiple datasets in dataframe, plot this one. - """ - - var_names = dataframe.var_names - time = dataframe.datatime[selected_dataset] - - N = dataframe.N - - if var_units is None: - var_units = ["" for i in range(N)] - - if fig_axes is None: - fig, axes = pyplot.subplots(N, sharex=True, figsize=figsize) - else: - fig, axes = fig_axes - - if adjust_plot: - for i in range(N): - - ax = axes[i] - - if (i == N - 1): - _make_nice_axes( - ax, where=["left", "bottom"], skip=(skip_ticks_data_x, skip_ticks_data_y) - ) - ax.set_xlabel(r"%s" % time_label, fontsize=label_fontsize) - else: - _make_nice_axes(ax, where=["left"], skip=(skip_ticks_data_x, skip_ticks_data_y)) - # ax.get_xaxis().get_major_formatter().set_useOffset(False) - - ax.xaxis.set_major_formatter(FormatStrFormatter("%.0f")) - ax.label_outer() - - ax.set_xlim(time[0], time[-1]) - - # trans = transforms.blended_transform_factory(fig.transFigure, ax.transAxes) - if var_units[i]: - ax.set_ylabel(r"%s [%s]" % (var_names[i], var_units[i]), fontsize=label_fontsize) - else: - ax.set_ylabel(r"%s" % (var_names[i]), fontsize=label_fontsize) - - ax.tick_params(axis='both', which='major', labelsize=tick_label_size) - # ax.tick_params(axis='both', which='minor', labelsize=tick_label_size) - - _add_timeseries( - dataframe=dataframe, - fig_axes = (fig, axes), - grey_masked_samples=grey_masked_samples, - show_meanline=show_meanline, - data_linewidth=data_linewidth, - color=color, - selected_dataset=selected_dataset, - alpha=alpha, - ) - - if adjust_plot: - fig.subplots_adjust(bottom=0.15, top=0.9, left=0.15, right=0.95, hspace=0.3) - pyplot.tight_layout() - - if save_name is not None: - fig.savefig(save_name) - - return fig, axes
- - -
[docs]def plot_lagfuncs(val_matrix, - name=None, - setup_args={}, - add_lagfunc_args={}): - """Wrapper helper function to plot lag functions. - Sets up the matrix object and plots the lagfunction, see parameters in - setup_matrix and add_lagfuncs. - - Parameters - ---------- - val_matrix : array_like - Matrix of shape (N, N, tau_max+1) containing test statistic values. - name : str, optional (default: None) - File name. If None, figure is shown in window. - setup_args : dict - Arguments for setting up the lag function matrix, see doc of - setup_matrix. - add_lagfunc_args : dict - Arguments for adding a lag function matrix, see doc of add_lagfuncs. - - Returns - ------- - matrix : object - Further lag functions can be overlaid using the - matrix.add_lagfuncs(val_matrix) function. - """ - - N, N, tau_max_plusone = val_matrix.shape - tau_max = tau_max_plusone - 1 - - matrix = setup_matrix(N=N, tau_max=tau_max, **setup_args) - matrix.add_lagfuncs(val_matrix=val_matrix, **add_lagfunc_args) - matrix.savefig(name=name) - - return matrix
- - -
[docs]class setup_matrix: - """Create matrix of lag function panels. - Class to setup figure object. The function add_lagfuncs(...) allows to plot - the val_matrix of shape (N, N, tau_max+1). Multiple lagfunctions can be - overlaid for comparison. - - Parameters - ---------- - N : int - Number of variables - tau_max : int - Maximum time lag. - var_names : list, optional (default: None) - List of variable names. If None, range(N) is used. - figsize : tuple of floats, optional (default: None) - Figure size if new figure is created. If None, default pyplot figsize - is used. - minimum : int, optional (default: -1) - Lower y-axis limit. - maximum : int, optional (default: 1) - Upper y-axis limit. - label_space_left : float, optional (default: 0.1) - Fraction of horizontal figure space to allocate left of plot for labels. - label_space_top : float, optional (default: 0.05) - Fraction of vertical figure space to allocate top of plot for labels. - legend_width : float, optional (default: 0.15) - Fraction of horizontal figure space to allocate right of plot for - legend. - tick_label_size : int, optional (default: 6) - Fontsize of tick labels. - x_base : float, optional (default: 1.) - x-tick intervals to show. - y_base : float, optional (default: .4) - y-tick intervals to show. - plot_gridlines : bool, optional (default: False) - Whether to show a grid. - lag_units : str, optional (default: '') - lag_array : array, optional (default: None) - Optional specification of lags overwriting np.arange(0, tau_max+1) - label_fontsize : int, optional (default: 10) - Fontsize of variable labels. - """ - - def __init__( - self, - N, - tau_max, - var_names=None, - figsize=None, - minimum=-1, - maximum=1, - label_space_left=0.1, - label_space_top=0.05, - legend_width=0.15, - legend_fontsize=10, - x_base=1.0, - y_base=0.5, - tick_label_size=6, - plot_gridlines=False, - lag_units="", - lag_array=None, - label_fontsize=10, - ): - - self.tau_max = tau_max - - self.labels = [] - self.lag_units = lag_units - # if lag_array is None: - # self.lag_array = np.arange(0, self.tau_max + 1) - # else: - self.lag_array = lag_array - if x_base is None: - self.x_base = 1 - else: - self.x_base = x_base - - self.legend_width = legend_width - self.legend_fontsize = legend_fontsize - - self.label_space_left = label_space_left - self.label_space_top = label_space_top - self.label_fontsize = label_fontsize - - self.fig = pyplot.figure(figsize=figsize) - - self.axes_dict = {} - - if var_names is None: - var_names = range(N) - - plot_index = 1 - for i in range(N): - for j in range(N): - self.axes_dict[(i, j)] = self.fig.add_subplot(N, N, plot_index) - # Plot process labels - if j == 0: - trans = transforms.blended_transform_factory( - self.fig.transFigure, self.axes_dict[(i, j)].transAxes - ) - self.axes_dict[(i, j)].text( - 0.01, - 0.5, - "%s" % str(var_names[i]), - fontsize=label_fontsize, - horizontalalignment="left", - verticalalignment="center", - transform=trans, - ) - if i == 0: - trans = transforms.blended_transform_factory( - self.axes_dict[(i, j)].transAxes, self.fig.transFigure - ) - self.axes_dict[(i, j)].text( - 0.5, - 0.99, - r"${\to}$ " + "%s" % str(var_names[j]), - fontsize=label_fontsize, - horizontalalignment="center", - verticalalignment="top", - transform=trans, - ) - - # Make nice axis - _make_nice_axes( - self.axes_dict[(i, j)], where=["left", "bottom"], skip=(1, 1) - ) - if x_base is not None: - self.axes_dict[(i, j)].xaxis.set_major_locator( - ticker.FixedLocator(np.arange(0, self.tau_max + 1, x_base)) - ) - if x_base / 2.0 % 1 == 0: - self.axes_dict[(i, j)].xaxis.set_minor_locator( - ticker.FixedLocator( - np.arange(0, self.tau_max + 1, x_base / 2.0) - ) - ) - if y_base is not None: - self.axes_dict[(i, j)].yaxis.set_major_locator( - ticker.FixedLocator( - np.arange( - _myround(minimum, y_base, "down"), - _myround(maximum, y_base, "up") + y_base, - y_base, - ) - ) - ) - self.axes_dict[(i, j)].yaxis.set_minor_locator( - ticker.FixedLocator( - np.arange( - _myround(minimum, y_base, "down"), - _myround(maximum, y_base, "up") + y_base, - y_base / 2.0, - ) - ) - ) - - self.axes_dict[(i, j)].set_ylim( - _myround(minimum, y_base, "down"), - _myround(maximum, y_base, "up"), - ) - if j != 0: - self.axes_dict[(i, j)].get_yaxis().set_ticklabels([]) - self.axes_dict[(i, j)].set_xlim(0, self.tau_max) - if plot_gridlines: - self.axes_dict[(i, j)].grid( - True, - which="major", - color="black", - linestyle="dotted", - dashes=(1, 1), - linewidth=0.05, - zorder=-5, - ) - self.axes_dict[(i, j)].tick_params(axis='both', which='major', labelsize=tick_label_size) - self.axes_dict[(i, j)].tick_params(axis='both', which='minor', labelsize=tick_label_size) - - plot_index += 1 - -
[docs] def add_lagfuncs( - self, - val_matrix, - sig_thres=None, - conf_matrix=None, - color="black", - label=None, - two_sided_thres=True, - marker=".", - markersize=5, - alpha=1.0, - ): - """Add lag function plot from val_matrix array. - - Parameters - ---------- - val_matrix : array_like - Matrix of shape (N, N, tau_max+1) containing test statistic values. - sig_thres : array-like, optional (default: None) - Matrix of significance thresholds. Must be of same shape as - val_matrix. - conf_matrix : array-like, optional (default: None) - Matrix of shape (, N, tau_max+1, 2) containing confidence bounds. - color : str, optional (default: 'black') - Line color. - label : str - Test statistic label. - two_sided_thres : bool, optional (default: True) - Whether to draw sig_thres for pos. and neg. values. - marker : matplotlib marker symbol, optional (default: '.') - Marker. - markersize : int, optional (default: 5) - Marker size. - alpha : float, optional (default: 1.) - Opacity. - """ - - if label is not None: - self.labels.append((label, color, marker, markersize, alpha)) - - for ij in list(self.axes_dict): - i = ij[0] - j = ij[1] - maskedres = np.copy(val_matrix[i, j, int(i == j) :]) - self.axes_dict[(i, j)].plot( - range(int(i == j), self.tau_max + 1), - maskedres, - linestyle="", - color=color, - marker=marker, - markersize=markersize, - alpha=alpha, - clip_on=False, - ) - if conf_matrix is not None: - maskedconfres = np.copy(conf_matrix[i, j, int(i == j) :]) - self.axes_dict[(i, j)].plot( - range(int(i == j), self.tau_max + 1), - maskedconfres[:, 0], - linestyle="", - color=color, - marker="_", - markersize=markersize - 2, - alpha=alpha, - clip_on=False, - ) - self.axes_dict[(i, j)].plot( - range(int(i == j), self.tau_max + 1), - maskedconfres[:, 1], - linestyle="", - color=color, - marker="_", - markersize=markersize - 2, - alpha=alpha, - clip_on=False, - ) - - self.axes_dict[(i, j)].plot( - range(int(i == j), self.tau_max + 1), - np.zeros(self.tau_max + 1 - int(i == j)), - color="black", - linestyle="dotted", - linewidth=0.1, - ) - - if sig_thres is not None: - maskedsigres = sig_thres[i, j, int(i == j) :] - - self.axes_dict[(i, j)].plot( - range(int(i == j), self.tau_max + 1), - maskedsigres, - color=color, - linestyle="solid", - linewidth=0.1, - alpha=alpha, - ) - if two_sided_thres: - self.axes_dict[(i, j)].plot( - range(int(i == j), self.tau_max + 1), - -sig_thres[i, j, int(i == j) :], - color=color, - linestyle="solid", - linewidth=0.1, - alpha=alpha, - )
- # pyplot.tight_layout() - -
[docs] def savefig(self, name=None): - """Save matrix figure. - - Parameters - ---------- - name : str, optional (default: None) - File name. If None, figure is shown in window. - """ - - # Trick to plot legend - if len(self.labels) > 0: - axlegend = self.fig.add_subplot(111, frameon=False) - axlegend.spines["left"].set_color("none") - axlegend.spines["right"].set_color("none") - axlegend.spines["bottom"].set_color("none") - axlegend.spines["top"].set_color("none") - axlegend.set_xticks([]) - axlegend.set_yticks([]) - - # self.labels.append((label, color, marker, markersize, alpha)) - for item in self.labels: - label = item[0] - color = item[1] - marker = item[2] - markersize = item[3] - alpha = item[4] - - axlegend.plot( - [], - [], - linestyle="", - color=color, - marker=marker, - markersize=markersize, - label=label, - alpha=alpha, - ) - axlegend.legend( - loc="upper left", - ncol=1, - bbox_to_anchor=(1.05, 0.0, 0.1, 1.0), - borderaxespad=0, - fontsize=self.legend_fontsize, - ).draw_frame(False) - - self.fig.subplots_adjust( - left=self.label_space_left, - right=1.0 - self.legend_width, - top=1.0 - self.label_space_top, - hspace=0.35, - wspace=0.35, - ) - pyplot.figtext( - 0.5, - 0.01, - r"lag $\tau$ [%s]" % self.lag_units, - horizontalalignment="center", - fontsize=self.label_fontsize, - ) - else: - self.fig.subplots_adjust( - left=self.label_space_left, - right=0.95, - top=1.0 - self.label_space_top, - hspace=0.35, - wspace=0.35, - ) - pyplot.figtext( - 0.55, - 0.01, - r"lag $\tau$ [%s]" % self.lag_units, - horizontalalignment="center", - fontsize=self.label_fontsize, - ) - - if self.lag_array is not None: - assert self.lag_array.shape == np.arange(self.tau_max + 1).shape - for ij in list(self.axes_dict): - i = ij[0] - j = ij[1] - self.axes_dict[(i, j)].set_xticklabels(self.lag_array[:: self.x_base]) - - if name is not None: - self.fig.savefig(name) - else: - pyplot.show()
- - - -
[docs]def plot_scatterplots(dataframe, - name=None, - setup_args={}, - add_scatterplot_args={}, - selected_dataset=0): - """Wrapper helper function to plot scatter plots. - Sets up the matrix object and plots the scatter plots, see parameters in - setup_scatter_matrix and add_scatterplot. - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - name : str, optional (default: None) - File name. If None, figure is shown in window. - setup_args : dict - Arguments for setting up the scatter plot matrix, see doc of - setup_scatter_matrix. - add_scatterplot_args : dict - Arguments for adding a scatter plot matrix. - selected_dataset : int, optional (default: 0) - In case of multiple datasets in dataframe, plot this one. - - Returns - ------- - matrix : object - Further scatter plot can be overlaid using the - matrix.add_scatterplot function. - """ - - N = dataframe.N - - matrix = setup_scatter_matrix(N=N, var_names=dataframe.var_names, **setup_args) - matrix.add_scatterplot(dataframe=dataframe, selected_dataset=selected_dataset, **add_scatterplot_args) - matrix.adjustfig(name=name) - - - return matrix
- - -
[docs]class setup_scatter_matrix: - """Create matrix of scatter plot panels. - Class to setup figure object. The function add_scatterplot allows to plot - scatterplots of variables in the dataframe. Multiple scatter plots can be - overlaid for comparison. - - Parameters - ---------- - N : int - Number of variables - var_names : list, optional (default: None) - List of variable names. If None, range(N) is used. - figsize : tuple of floats, optional (default: None) - Figure size if new figure is created. If None, default pyplot figsize - is used. - label_space_left : float, optional (default: 0.1) - Fraction of horizontal figure space to allocate left of plot for labels. - label_space_top : float, optional (default: 0.05) - Fraction of vertical figure space to allocate top of plot for labels. - legend_width : float, optional (default: 0.15) - Fraction of horizontal figure space to allocate right of plot for - legend. - tick_label_size : int, optional (default: 6) - Fontsize of tick labels. - plot_gridlines : bool, optional (default: False) - Whether to show a grid. - label_fontsize : int, optional (default: 10) - Fontsize of variable labels. - """ - - def __init__( - self, - N, - var_names=None, - figsize=None, - label_space_left=0.1, - label_space_top=0.05, - legend_width=0.15, - legend_fontsize=10, - plot_gridlines=False, - tick_label_size=6, - label_fontsize=10, - ): - - self.labels = [] - - self.legend_width = legend_width - self.legend_fontsize = legend_fontsize - - self.label_space_left = label_space_left - self.label_space_top = label_space_top - self.label_fontsize = label_fontsize - - self.fig = pyplot.figure(figsize=figsize) - - self.axes_dict = {} - - if var_names is None: - var_names = range(N) - - plot_index = 1 - for i in range(N): - for j in range(N): - self.axes_dict[(i, j)] = self.fig.add_subplot(N, N, plot_index, axes_class=Axes) - # Plot process labels - if j == 0: - trans = transforms.blended_transform_factory( - self.fig.transFigure, self.axes_dict[(i, j)].transAxes - ) - self.axes_dict[(i, j)].text( - 0.01, - 0.5, - "%s" % str(var_names[i]), - fontsize=label_fontsize, - horizontalalignment="left", - verticalalignment="center", - transform=trans, - ) - if i == 0: - trans = transforms.blended_transform_factory( - self.axes_dict[(i, j)].transAxes, self.fig.transFigure - ) - self.axes_dict[(i, j)].text( - 0.5, - 0.99, - r"${\to}$ " + "%s" % str(var_names[j]), - fontsize=label_fontsize, - horizontalalignment="center", - verticalalignment="top", - transform=trans, - ) - - self.axes_dict[(i, j)].axis["right"].set_visible(False) - self.axes_dict[(i, j)].axis["top"].set_visible(False) - - if j != 0: - self.axes_dict[(i, j)].get_yaxis().set_ticklabels([]) - if i != N - 1: - self.axes_dict[(i, j)].get_xaxis().set_ticklabels([]) - - if plot_gridlines: - self.axes_dict[(i, j)].grid( - True, - which="major", - color="black", - linestyle="dotted", - dashes=(1, 1), - linewidth=0.05, - zorder=-5, - ) - self.axes_dict[(i, j)].tick_params(axis='both', which='major', labelsize=tick_label_size) - - plot_index += 1 - -
[docs] def add_scatterplot( - self, - dataframe, - matrix_lags=None, - color="black", - label=None, - marker=".", - markersize=5, - alpha=.2, - selected_dataset=0, - ): - """Add scatter plot. - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - matrix_lags : array - Lags to use in scatter plots. Either None or of shape (N, N). Then the - entry matrix_lags[i, j] = tau will depict the scatter plot of - time series (i, -tau) vs (j, 0). If None, tau = 0 for i != j and for i = j - tau = 1. - color : str, optional (default: 'black') - Line color. - label : str - Test statistic label. - marker : matplotlib marker symbol, optional (default: '.') - Marker. - markersize : int, optional (default: 5) - Marker size. - alpha : float, optional (default: 1.) - Opacity. - selected_dataset : int, optional (default: 0) - In case of multiple datasets in dataframe, plot this one. - """ - - if matrix_lags is not None and np.any(matrix_lags < 0): - raise ValueError("matrix_lags must be non-negative!") - - data = dataframe.values[selected_dataset] - if dataframe.mask is not None: - mask = dataframe.mask[selected_dataset] - - T, dim = data.shape - - if label is not None: - self.labels.append((label, color, marker, markersize, alpha)) - - for ij in list(self.axes_dict): - i = ij[0] - j = ij[1] - if matrix_lags is None: - if i == j: - lag = 1 - else: - lag = 0 - else: - lag = matrix_lags[i,j] - x = np.copy(data[:T-lag, i]) - y = np.copy(data[lag:, j]) - if dataframe.mask is not None: - x[mask[:T-lag, i]==1] = np.nan - y[mask[lag:, j]==1] = np.nan - - # print(i, j, lag, x.shape, y.shape) - self.axes_dict[(i, j)].scatter( - x, y, - color=color, - marker=marker, - s=markersize, - alpha=alpha, - clip_on=False, - label=r"$\tau{=}%d$" %lag, - )
- # self.axes_dict[(i, j)].text(0., 1., r"$\tau{=}%d$" %lag, - # fontsize=self.legend_fontsize, - # ha='left', va='top', - # transform=self.axes_dict[(i, j)].transAxes) - - -
[docs] def adjustfig(self, name=None): - """Adjust matrix figure. - - Parameters - ---------- - name : str, optional (default: None) - File name. If None, figure is shown in window. - """ - - # Trick to plot legends - colors = [] - for item in self.labels: - colors.append(item[1]) - for ij in list(self.axes_dict): - i = ij[0] - j = ij[1] - - leg = self.axes_dict[(i, j)].legend( - # loc="upper left", - ncol=1, - # bbox_to_anchor=(1.05, 0.0, 0.1, 1.0), - # borderaxespad=0, - fontsize=self.legend_fontsize-2, - labelcolor=colors, - ).draw_frame(False) - - if len(self.labels) > 0: - axlegend = self.fig.add_subplot(111, frameon=False) - axlegend.spines["left"].set_color("none") - axlegend.spines["right"].set_color("none") - axlegend.spines["bottom"].set_color("none") - axlegend.spines["top"].set_color("none") - axlegend.set_xticks([]) - axlegend.set_yticks([]) - - # self.labels.append((label, color, marker, markersize, alpha)) - for item in self.labels: - label = item[0] - color = item[1] - marker = item[2] - markersize = item[3] - alpha = item[4] - - axlegend.plot( - [], - [], - linestyle="", - color=color, - marker=marker, - markersize=markersize, - label=label, - alpha=alpha, - ) - axlegend.legend( - loc="upper left", - ncol=1, - bbox_to_anchor=(1.05, 0.0, 0.1, 1.0), - borderaxespad=0, - fontsize=self.legend_fontsize, - ).draw_frame(False) - - self.fig.subplots_adjust( - bottom=0.05, - left=self.label_space_left, - right=1.0 - self.legend_width, - top=1.0 - self.label_space_top, - hspace=0.5, - wspace=0.35, - ) - - else: - self.fig.subplots_adjust( - left=self.label_space_left, - bottom=0.05, - right=0.95, - top=1.0 - self.label_space_top, - hspace=0.35, - wspace=0.35, - ) - - if name is not None: - self.fig.savefig(name) - else: - pyplot.show()
- - -
[docs]def plot_densityplots(dataframe, - name=None, - setup_args={}, - add_densityplot_args={}, - selected_dataset=0, - show_marginal_densities_on_diagonal=True): - """Wrapper helper function to plot density plots. - Sets up the matrix object and plots the density plots, see parameters in - setup_density_matrix and add_densityplot. - - The diagonal shows the marginal densities. - - Requires seaborn. - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - name : str, optional (default: None) - File name. If None, figure is shown in window. - setup_args : dict - Arguments for setting up the density plot matrix, see doc of - setup_density_matrix. - add_densityplot_args : dict - Arguments for adding a density plot matrix. - selected_dataset : int, optional (default: 0) - In case of multiple datasets in dataframe, plot this one. - show_marginal_densities_on_diagonal : bool, optional (default: True) - Flag to show marginal densities on the diagonal of the density plots - - Returns - ------- - matrix : object - Further density plots can be overlaid using the - matrix.add_densityplot function. - """ - - N = dataframe.N - - matrix = setup_density_matrix(N=N, var_names=dataframe.var_names, **setup_args) - matrix.add_densityplot(dataframe=dataframe, selected_dataset=selected_dataset, - show_marginal_densities_on_diagonal=show_marginal_densities_on_diagonal, **add_densityplot_args) - matrix.adjustfig(name=name) - - - return matrix
- - -
[docs]class setup_density_matrix: - """Create matrix of density plot panels. - Class to setup figure object. The function add_densityplot allows to plot - density plots of variables in the dataframe. - - Further density plots can be overlaid using the matrix.add_densityplot - function. - - Parameters - ---------- - N : int - Number of variables - var_names : list, optional (default: None) - List of variable names. If None, range(N) is used. - figsize : tuple of floats, optional (default: None) - Figure size if new figure is created. If None, default pyplot figsize - is used. - label_space_left : float, optional (default: 0.1) - Fraction of horizontal figure space to allocate left of plot for labels. - label_space_top : float, optional (default: 0.05) - Fraction of vertical figure space to allocate top of plot for labels. - legend_width : float, optional (default: 0.15) - Fraction of horizontal figure space to allocate right of plot for - legend. - tick_label_size : int, optional (default: 6) - Fontsize of tick labels. - plot_gridlines : bool, optional (default: False) - Whether to show a grid. - label_fontsize : int, optional (default: 10) - Fontsize of variable labels. - """ - - def __init__( - self, - N, - var_names=None, - figsize=None, - label_space_left=0.15, - label_space_top=0.05, - legend_width=0.15, - legend_fontsize=10, - tick_label_size=6, - plot_gridlines=False, - label_fontsize=10, - ): - - self.labels = [] - - self.legend_width = legend_width - self.legend_fontsize = legend_fontsize - - self.label_space_left = label_space_left - self.label_space_top = label_space_top - self.label_fontsize = label_fontsize - - self.fig = pyplot.figure(figsize=figsize) - - self.axes_dict = {} - - if var_names is None: - var_names = range(N) - - plot_index = 1 - for i in range(N): - for j in range(N): - self.axes_dict[(i, j)] = self.fig.add_subplot(N, N, plot_index) - # Plot process labels - if j == 0: - trans = transforms.blended_transform_factory( - self.fig.transFigure, self.axes_dict[(i, j)].transAxes - ) - self.axes_dict[(i, j)].text( - 0.01, - 0.5, - "%s" % str(var_names[i]), - fontsize=label_fontsize, - horizontalalignment="left", - verticalalignment="center", - transform=trans, - ) - if i == 0: - trans = transforms.blended_transform_factory( - self.axes_dict[(i, j)].transAxes, self.fig.transFigure - ) - self.axes_dict[(i, j)].text( - 0.5, - 0.99, - r"${\to}$ " + "%s" % str(var_names[j]), - fontsize=label_fontsize, - horizontalalignment="center", - verticalalignment="top", - transform=trans, - ) - - # _make_nice_axes(self.axes_dict[(i, j)], where=["bottom"], skip=(1, 1) ) - # self.axes_dict[(i, j)].axis["right"].set_visible(False) - # self.axes_dict[(i, j)].axis["top"].set_visible(False) - if i == j: - # self.axes_dict[(i, j)].axis["left"].set_visible(False) - _make_nice_axes(self.axes_dict[(i, j)], where=["bottom"], skip=(1, 1)) - else: - _make_nice_axes(self.axes_dict[(i, j)], where=["left", "bottom"], skip=(1, 1)) - # if j != 0: - # self.axes_dict[(i, j)].get_yaxis().set_ticklabels([]) - # if i != N - 1: - # self.axes_dict[(i, j)].get_xaxis().set_ticklabels([]) - - if plot_gridlines: - self.axes_dict[(i, j)].grid( - True, - which="major", - color="black", - linestyle="dotted", - dashes=(1, 1), - linewidth=0.05, - zorder=-5, - ) - self.axes_dict[(i, j)].tick_params(axis='both', which='major', labelsize=tick_label_size) - plot_index += 1 - -
[docs] def add_densityplot( - self, - dataframe, - matrix_lags=None, - label=None, - label_color='black', - snskdeplot_args = {'cmap':'Greys'}, - snskdeplot_diagonal_args = {}, - selected_dataset=0, - show_marginal_densities_on_diagonal=True - ): - """Add density function plot. - - Parameters - ---------- - dataframe : data object - Tigramite dataframe object. It must have the attributes dataframe.values - yielding a numpy array of shape (observations T, variables N) and - optionally a mask of the same shape and a missing values flag. - matrix_lags : array - Lags to use in scatter plots. Either None or non-neg array of shape (N, N). Then the - entry matrix_lags[i, j] = tau will depict the scatter plot of - time series (i, -tau) vs (j, 0). If None, tau = 0 for i != j and for i = j - tau = 1. - snskdeplot_args : dict - Optional parameters to pass to sns.kdeplot() for i != j for off-diagonal plots. - snskdeplot_diagonal_args : dict - Optional parameters to pass to sns.kdeplot() for i == j on diagonal. - label : string - Label of this plot. - label_color : string - Color of line created just for legend. - selected_dataset : int, optional (default: 0) - In case of multiple datasets in dataframe, plot this one. - show_marginal_densities_on_diagonal : bool, optional (default: True) - Flag to show marginal densities on the diagonal of the density plots - """ - - # Use seaborn for this one - import seaborn as sns - - # set seaborn style - sns.set_style("white") - - self.matrix_lags = matrix_lags - - if matrix_lags is not None and np.any(matrix_lags < 0): - raise ValueError("matrix_lags must be non-negative!") - - data = dataframe.values[selected_dataset] - if dataframe.mask is not None: - mask = dataframe.mask[selected_dataset] - - T, dim = data.shape - - # if label is not None: - self.labels.append((label, label_color)) - - for ij in list(self.axes_dict): - i = ij[0] - j = ij[1] - ax = self.axes_dict[(i, j)] - if (matrix_lags is None): - if i == j: - lag = 1 - else: - lag = 0 - else: - lag = matrix_lags[i,j] - x = np.copy(data[:T-lag, i]) - y = np.copy(data[lag:, j]) - # Data is set to NaN in dataframe init already - # if dataframe.missing_flag is not None: - # x[x==dataframe.missing_flag] = np.nan - # y[y==dataframe.missing_flag] = np.nan - if dataframe.mask is not None: - x[mask[:T-lag, i]==1] = np.nan - y[mask[lag:, j]==1] = np.nan - - if i == j and show_marginal_densities_on_diagonal: - sns.kdeplot(x, - color = label_color, - # label=r"$\tau{=}%d$" %lag, - **snskdeplot_diagonal_args, - ax = ax) - ax.set_ylabel("") - # ax.yaxis.set_ticks_position("none") - # ax.yaxis.set_ticklabels([]) - else: - sns.kdeplot(x=x, y=y, - #label=r"$\tau{=}%d$" %lag, - **snskdeplot_args, - # fill=True, - # alpha=0.3, - ax = ax)
- -
[docs] def adjustfig(self, name=None, show_labels=True): - """Adjust matrix figure. - - Parameters - ---------- - name : str, optional (default: None) - File name. If None, figure is shown in window. - """ - - # Trick to plot legends - # colors = [] - # for item in self.labels: - # colors.append(item[1]) - for ij in list(self.axes_dict): - i = ij[0] - j = ij[1] - if self.matrix_lags is None: - lag = 0 - else: - lag = self.matrix_lags[i,j] - if i != j: - colors = [] - for item in self.labels: - color = item[1] - colors.append(color) - if show_labels: - self.axes_dict[(i, j)].plot( - [], - [], - linestyle="", - color=color, - label=r"$\tau{=}%d$" %lag, - ) - # print('here') - leg = self.axes_dict[(i, j)].legend( - # loc="best", - ncol=1, - # bbox_to_anchor=(1.05, 0.0, 0.1, 1.0), - # borderaxespad=0, - fontsize=self.legend_fontsize-2, - labelcolor=colors, - ).draw_frame(False) - - # if i == j: - # # self.axes_dict[(i, j)].axis["left"].set_visible(False) - # _make_nice_axes(ax=self.axes_dict[(i, j)], where=["bottom"], skip=(1, 1)) - # else: - # _make_nice_axes(ax=self.axes_dict[(i, j)], where=["left", "bottom"], skip=(1, 1)) - - if show_labels and len(self.labels) > 1: - axlegend = self.fig.add_subplot(111, frameon=False) - axlegend.spines["left"].set_color("none") - axlegend.spines["right"].set_color("none") - axlegend.spines["bottom"].set_color("none") - axlegend.spines["top"].set_color("none") - axlegend.set_xticks([]) - axlegend.set_yticks([]) - - # self.labels.append((label, color, marker, markersize, alpha)) - for item in self.labels: - label = item[0] - color = item[1] - - axlegend.plot( - [], - [], - linestyle="-", - color=color, - label=label, - ) - axlegend.legend( - loc="upper left", - ncol=1, - bbox_to_anchor=(1.05, 0.0, 0.1, 1.0), - borderaxespad=0, - fontsize=self.legend_fontsize, - ).draw_frame(False) - - self.fig.subplots_adjust( - bottom=0.08, - left=self.label_space_left, - right=1.0 - self.legend_width, - top=1.0 - self.label_space_top, - hspace=0.5, - wspace=0.35, - ) - - else: - self.fig.subplots_adjust( - left=self.label_space_left, - bottom=0.08, - right=0.95, - top=1.0 - self.label_space_top, - hspace=0.35, - wspace=0.35, - ) - - if name is not None: - self.fig.savefig(name) - else: - pyplot.show()
- -def _draw_network_with_curved_edges( - fig, - ax, - G, - pos, - node_rings, - node_labels, - node_label_size=10, - node_alpha=1.0, - standard_size=100, - node_aspect=None, - standard_cmap="OrRd", - standard_color_links='black', - standard_color_nodes='lightgrey', - log_sizes=False, - cmap_links="YlOrRd", - # cmap_links_edges="YlOrRd", - links_vmin=0.0, - links_vmax=1.0, - links_edges_vmin=0.0, - links_edges_vmax=1.0, - links_ticks=0.2, - links_edges_ticks=0.2, - link_label_fontsize=8, - arrowstyle="->, head_width=0.4, head_length=1", - arrowhead_size=3.0, - curved_radius=0.2, - label_fontsize=4, - label_fraction=0.5, - link_colorbar_label="link", - tick_label_size=6, - # link_edge_colorbar_label='link_edge', - inner_edge_curved=False, - inner_edge_style="solid", - network_lower_bound=0.2, - network_left_bound=None, - show_colorbar=True, - special_nodes=None, - autodep_sig_lags=None, - show_autodependency_lags=False -): - """Function to draw a network from networkx graph instance. - Various attributes are used to specify the graph's properties. - This function is just a beta-template for now that can be further - customized. - """ - - from matplotlib.patches import FancyArrowPatch, Circle, Ellipse - - ax.spines["left"].set_color("none") - ax.spines["right"].set_color("none") - ax.spines["bottom"].set_color("none") - ax.spines["top"].set_color("none") - ax.set_xticks([]) - ax.set_yticks([]) - - N = len(G) - - # This fixes a positioning bug in matplotlib. - ax.scatter(0, 0, zorder=-10, alpha=0) - - def draw_edge( - ax, - u, - v, - d, - seen, - arrowstyle= "Simple, head_width=2, head_length=2, tail_width=1", - outer_edge=True, - ): - - # avoiding attribute error raised by changes in networkx - if hasattr(G, "node"): - # works with networkx 1.10 - n1 = G.node[u]["patch"] - n2 = G.node[v]["patch"] - else: - # works with networkx 2.4 - n1 = G.nodes[u]["patch"] - n2 = G.nodes[v]["patch"] - - # print("+++++++++++++++++++++++==cmap_links ", cmap_links) - if outer_edge: - rad = -1.0 * curved_radius - if cmap_links is not None: - facecolor = data_to_rgb_links.to_rgba(d["outer_edge_color"]) - else: - if d["outer_edge_color"] is not None: - facecolor = d["outer_edge_color"] - else: - facecolor = standard_color_links - - width = d["outer_edge_width"] - alpha = d["outer_edge_alpha"] - if (u, v) in seen: - rad = seen.get((u, v)) - rad = (rad + np.sign(rad) * 0.1) * -1.0 - arrowstyle = arrowstyle - # link_edge = d['outer_edge_edge'] - linestyle = 'solid' # d.get("outer_edge_style") - - if d.get("outer_edge_attribute", None) == "spurious": - facecolor = "grey" - - if d.get("outer_edge_type") in ["<-o", "<--", "<-x", "<-+"]: - n1, n2 = n2, n1 - - if d.get("outer_edge_type") in [ - "o-o", - "o--", - "--o", - "---", - "x-x", - "x--", - "--x", - "o-x", - "x-o", - # "+->", - # "<-+", - ]: - arrowstyle = "-" - # linewidth = width*factor - elif d.get("outer_edge_type") == "<->": - # arrowstyle = "<->, head_width=0.4, head_length=1" - arrowstyle = "Simple, head_width=2, head_length=2, tail_width=1" #%float(width/20.) - elif d.get("outer_edge_type") in ["o->", "-->", "<-o", "<--", "<-x", "x->", "+->", "<-+"]: - # arrowstyle = "->, head_width=0.4, head_length=1" - # arrowstyle = "->, head_width=0.4, head_length=1, width=10" - arrowstyle = "Simple, head_width=2, head_length=2, tail_width=1" #%float(width/20.) - else: - arrowstyle = "Simple, head_width=2, head_length=2, tail_width=1" #%float(width/20.) - # raise ValueError("edge type %s not valid." %d.get("outer_edge_type")) - else: - rad = -1.0 * inner_edge_curved * curved_radius - if cmap_links is not None: - facecolor = data_to_rgb_links.to_rgba(d["inner_edge_color"]) - else: - if d["inner_edge_color"] is not None: - facecolor = d["inner_edge_color"] - else: - # print("HERE") - facecolor = standard_color_links - - width = d["inner_edge_width"] - alpha = d["inner_edge_alpha"] - - if d.get("inner_edge_attribute", None) == "spurious": - facecolor = "grey" - # print(d.get("inner_edge_type")) - if d.get("inner_edge_type") in ["<-o", "<--", "<-x", "<-+"]: - n1, n2 = n2, n1 - - if d.get("inner_edge_type") in [ - "o-o", - "o--", - "--o", - "---", - "x-x", - "x--", - "--x", - "o-x", - "x-o", - ]: - arrowstyle = "-" - elif d.get("inner_edge_type") == "<->": - # arrowstyle = "<->, head_width=0.4, head_length=1" - arrowstyle = "Simple, head_width=2, head_length=2, tail_width=1" #%float(width/20.) - elif d.get("inner_edge_type") in ["o->", "-->", "<-o", "<--", "<-x", "x->", "+->", "<-+"]: - # arrowstyle = "->, head_width=0.4, head_length=1" - arrowstyle = "Simple, head_width=2, head_length=2, tail_width=1" #%float(width/20.) - else: - arrowstyle = "Simple, head_width=2, head_length=2, tail_width=1" #%float(width/20.) - - # raise ValueError("edge type %s not valid." %d.get("inner_edge_type")) - - linestyle = 'solid' #d.get("inner_edge_style") - - coor1 = n1.center - coor2 = n2.center - - marker_size = width ** 2 - figuresize = fig.get_size_inches() - - # print("COLOR ", facecolor) - # print(u, v, outer_edge, "outer ", d.get("outer_edge_type"), "inner ", d.get("inner_edge_type"), width, arrowstyle, linestyle) - - if ((outer_edge is True and d.get("outer_edge_type") == "<->") - or (outer_edge is False and d.get("inner_edge_type") == "<->")): - e_p = FancyArrowPatch( - coor1, - coor2, - arrowstyle=arrowstyle, - connectionstyle=f"arc3,rad={rad}", - mutation_scale=1*width, - lw=0., #width / 2., - aa=True, - alpha=alpha, - linestyle=linestyle, - color=facecolor, - clip_on=False, - patchA=n1, - patchB=n2, - shrinkA=7, - shrinkB=0, - zorder=-1, - capstyle="butt", - ) - ax.add_artist(e_p) - - e_p_back = FancyArrowPatch( - coor2, - coor1, - arrowstyle=arrowstyle, - connectionstyle=f"arc3,rad={-rad}", - mutation_scale=1*width, - lw=0., #width / 2., - aa=True, - alpha=alpha, - linestyle=linestyle, - color=facecolor, - clip_on=False, - patchA=n2, - patchB=n1, - shrinkA=7, - shrinkB=0, - zorder=-1, - capstyle="butt", - ) - ax.add_artist(e_p_back) - - else: - if arrowstyle == '-': - lw = 1*width - else: - lw = 0. - # e_p = FancyArrowPatch( - # coor1, - # coor2, - # arrowstyle=arrowstyle, - # connectionstyle=f"arc3,rad={rad}", - # mutation_scale=np.sqrt(width)*2*1.1, - # lw=lw*1.1, #width / 2., - # aa=True, - # alpha=alpha, - # linestyle=linestyle, - # color='white', - # clip_on=False, - # patchA=n1, - # patchB=n2, - # shrinkA=0, - # shrinkB=0, - # zorder=-1, - # capstyle="butt", - # ) - # ax.add_artist(e_p) - e_p = FancyArrowPatch( - coor1, - coor2, - arrowstyle=arrowstyle, - connectionstyle=f"arc3,rad={rad}", - mutation_scale=1*width, - lw=lw, #width / 2., - aa=True, - alpha=alpha, - linestyle=linestyle, - color=facecolor, - clip_on=False, - patchA=n1, - patchB=n2, - shrinkA=0, - shrinkB=0, - zorder=-1, - capstyle="butt", - ) - ax.add_artist(e_p) - - e_p_marker = FancyArrowPatch( - coor1, - coor2, - arrowstyle='-', - connectionstyle=f"arc3,rad={rad}", - mutation_scale=1*width, - lw=0., #width / 2., - aa=True, - alpha=0., - linestyle=linestyle, - color=facecolor, - clip_on=False, - patchA=n1, - patchB=n2, - shrinkA=0, - shrinkB=0, - zorder=-10, - capstyle="butt", - ) - ax.add_artist(e_p_marker) - - path = e_p_marker.get_path() - vertices = path.vertices.copy() - m, n = vertices.shape - - # print(vertices) - start = vertices[0] - end = vertices[-1] - - # This must be added to avoid rescaling of the plot, when no 'o' - # or 'x' is added to the graph. - ax.scatter(*start, zorder=-10, alpha=0) - - if outer_edge: - if d.get("outer_edge_type") in ["o->", "o--"]: - circle_marker_start = ax.scatter( - *start, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - elif d.get("outer_edge_type") == "<-o": - circle_marker_end = ax.scatter( - *start, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("outer_edge_type") == "--o": - circle_marker_end = ax.scatter( - *end, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("outer_edge_type") in ["x--", "x->"]: - circle_marker_start = ax.scatter( - *start, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - elif d.get("outer_edge_type") in ["+--", "+->"]: - circle_marker_start = ax.scatter( - *start, - marker="P", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - elif d.get("outer_edge_type") == "<-x": - circle_marker_end = ax.scatter( - *start, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("outer_edge_type") == "<-+": - circle_marker_end = ax.scatter( - *start, - marker="P", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("outer_edge_type") == "--x": - circle_marker_end = ax.scatter( - *end, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("outer_edge_type") == "o-o": - circle_marker_start = ax.scatter( - *start, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - circle_marker_end = ax.scatter( - *end, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("outer_edge_type") == "x-x": - circle_marker_start = ax.scatter( - *start, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - circle_marker_end = ax.scatter( - *end, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("outer_edge_type") == "o-x": - circle_marker_start = ax.scatter( - *start, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - circle_marker_end = ax.scatter( - *end, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("outer_edge_type") == "x-o": - circle_marker_start = ax.scatter( - *start, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - circle_marker_end = ax.scatter( - *end, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - - else: - if d.get("inner_edge_type") in ["o->", "o--"]: - circle_marker_start = ax.scatter( - *start, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - elif d.get("inner_edge_type") == "<-o": - circle_marker_end = ax.scatter( - *start, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("inner_edge_type") == "--o": - circle_marker_end = ax.scatter( - *end, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("inner_edge_type") in ["x--", "x->"]: - circle_marker_start = ax.scatter( - *start, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - elif d.get("inner_edge_type") in ["+--", "+->"]: - circle_marker_start = ax.scatter( - *start, - marker="P", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - elif d.get("inner_edge_type") == "<-x": - circle_marker_end = ax.scatter( - *start, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("inner_edge_type") == "<-+": - circle_marker_end = ax.scatter( - *start, - marker="P", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("inner_edge_type") == "--x": - circle_marker_end = ax.scatter( - *end, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("inner_edge_type") == "o-o": - circle_marker_start = ax.scatter( - *start, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - circle_marker_end = ax.scatter( - *end, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("inner_edge_type") == "x-x": - circle_marker_start = ax.scatter( - *start, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - circle_marker_end = ax.scatter( - *end, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("inner_edge_type") == "o-x": - circle_marker_start = ax.scatter( - *start, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - circle_marker_end = ax.scatter( - *end, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - elif d.get("inner_edge_type") == "x-o": - circle_marker_start = ax.scatter( - *start, - marker="X", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_start) - circle_marker_end = ax.scatter( - *end, - marker="o", - s=marker_size, - facecolor="w", - edgecolor=facecolor, - zorder=1, - ) - ax.add_collection(circle_marker_end) - - if d["label"] is not None and outer_edge: - # Attach labels of lags - trans = None # patch.get_transform() - path = e_p.get_path() - verts = path.to_polygons(trans)[0] - if len(verts) > 2: - label_vert = verts[1, :] - l = d["label"] - string = str(l) - txt = ax.text( - label_vert[0], - label_vert[1], - string, - fontsize=link_label_fontsize, - verticalalignment="center", - horizontalalignment="center", - color="w", - zorder=1, - ) - txt.set_path_effects( - [PathEffects.withStroke(linewidth=2, foreground="k")] - ) - - return rad - - # Collect all edge weights to get color scale - all_links_weights = [] - all_links_edge_weights = [] - for (u, v, d) in G.edges(data=True): - if u != v: - if d["outer_edge"] and d["outer_edge_color"] is not None: - all_links_weights.append(d["outer_edge_color"]) - if d["inner_edge"] and d["inner_edge_color"] is not None: - all_links_weights.append(d["inner_edge_color"]) - - if cmap_links is not None and len(all_links_weights) > 0: - if links_vmin is None: - links_vmin = np.array(all_links_weights).min() - if links_vmax is None: - links_vmax = np.array(all_links_weights).max() - data_to_rgb_links = pyplot.cm.ScalarMappable( - norm=None, cmap=pyplot.get_cmap(cmap_links) - ) - data_to_rgb_links.set_array(np.array(all_links_weights)) - data_to_rgb_links.set_clim(vmin=links_vmin, vmax=links_vmax) - # Create colorbars for links - - # setup colorbar axes. - if show_colorbar: - # cax_e = pyplot.axes( - # [ - # 0.55, - # ax.get_subplotspec().get_position(ax.figure).bounds[1] + 0.02, - # 0.4, - # 0.025 + (len(all_links_edge_weights) == 0) * 0.035, - # ], - # frameon=False, - # ) - bbox_ax = ax.get_position() - width = bbox_ax.xmax-bbox_ax.xmin - height = bbox_ax.ymax-bbox_ax.ymin - # print(bbox_ax.xmin, bbox_ax.xmax, bbox_ax.ymin, bbox_ax.ymax) - # cax_e = fig.add_axes( - # [ - # bbox_ax.xmax - width*0.45, - # bbox_ax.ymin-0.075*height+network_lower_bound-0.15, - # width*0.4, - # 0.075*height, #0.025 + (len(all_links_edge_weights) == 0) * 0.035, - # ], - # frameon=False, - # ) - cax_e = ax.inset_axes( - [ - 0.55, -0.07, 0.4, 0.07 - # bbox_ax.xmax - width*0.45, - # bbox_ax.ymin-0.075*height+network_lower_bound-0.15, - # width*0.4, - # 0.075*height, #0.025 + (len(all_links_edge_weights) == 0) * 0.035, - ], - frameon=False,) - # divider = make_axes_locatable(ax) - - # cax_e = divider.append_axes('bottom', size='5%', pad=0.05, frameon=False,) - - cb_e = pyplot.colorbar( - data_to_rgb_links, cax=cax_e, orientation="horizontal" - ) - # try: - ticks_here = np.arange( - _myround(links_vmin, links_ticks, "down"), - _myround(links_vmax, links_ticks, "up") + links_ticks, - links_ticks, - ) - cb_e.set_ticks(ticks_here[(links_vmin <= ticks_here) & (ticks_here <= links_vmax)]) - # except: - # print('no ticks given') - - cb_e.outline.clear() - cax_e.set_xlabel( - link_colorbar_label, labelpad=1, fontsize=label_fontsize, zorder=10 - ) - cax_e.tick_params(axis='both', which='major', labelsize=tick_label_size) - - ## - # Draw nodes - ## - node_sizes = np.zeros((len(node_rings), N)) - for ring in list(node_rings): # iterate through to get all node sizes - if node_rings[ring]["sizes"] is not None: - node_sizes[ring] = node_rings[ring]["sizes"] - - else: - node_sizes[ring] = standard_size - max_sizes = node_sizes.max(axis=1) - total_max_size = node_sizes.sum(axis=0).max() - node_sizes /= total_max_size - node_sizes *= standard_size - - def get_aspect(ax): - # Total figure size - figW, figH = ax.get_figure().get_size_inches() - # print(figW, figH) - # Axis size on figure - _, _, w, h = ax.get_position().bounds - # Ratio of display units - # print(w, h) - disp_ratio = (figH * h) / (figW * w) - # Ratio of data units - # Negative over negative because of the order of subtraction - data_ratio = sub(*ax.get_ylim()) / sub(*ax.get_xlim()) - # print(data_ratio, disp_ratio) - return disp_ratio / data_ratio - - if node_aspect is None: - node_aspect = get_aspect(ax) - - # start drawing the outer ring first... - for ring in list(node_rings)[::-1]: - # print ring - # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array - # or None, 'cmap':string, 'vmin':float or None, 'vmax':float or None}} - if node_rings[ring]["color_array"] is not None: - color_data = node_rings[ring]["color_array"] - if node_rings[ring]["vmin"] is not None: - vmin = node_rings[ring]["vmin"] - else: - vmin = node_rings[ring]["color_array"].min() - if node_rings[ring]["vmax"] is not None: - vmax = node_rings[ring]["vmax"] - else: - vmax = node_rings[ring]["color_array"].max() - if node_rings[ring]["cmap"] is not None: - cmap = node_rings[ring]["cmap"] - else: - cmap = standard_cmap - data_to_rgb = pyplot.cm.ScalarMappable( - norm=None, cmap=pyplot.get_cmap(cmap) - ) - data_to_rgb.set_array(color_data) - data_to_rgb.set_clim(vmin=vmin, vmax=vmax) - colors = [data_to_rgb.to_rgba(color_data[n]) for n in G] - - if node_rings[ring]["colorbar"]: - # Create colorbars for nodes - # cax_n = pyplot.axes([.8 + ring*0.11, - # ax.get_subplotspec().get_position(ax.figure).bounds[1]+0.05, 0.025, 0.35], frameon=False) # - # setup colorbar axes. - # setup colorbar axes. - bbox_ax = ax.get_position() - # print(bbox_ax.xmin, bbox_ax.xmax, bbox_ax.ymin, bbox_ax.ymax) - cax_n = ax.inset_axes( - [ - 0.05, -0.07, 0.4, 0.07 - # bbox_ax.xmin + width*0.05, - # bbox_ax.ymin-0.075*height+network_lower_bound-0.15, - # width*0.4, - # 0.075*height, #0.025 + (len(all_links_edge_weights) == 0) * 0.035, - ], - frameon=False, - ) - cb_n = pyplot.colorbar(data_to_rgb, cax=cax_n, orientation="horizontal") - # try: - ticks_here = np.arange( - _myround(vmin, node_rings[ring]["ticks"], "down"), - _myround(vmax, node_rings[ring]["ticks"], "up") - + node_rings[ring]["ticks"], - node_rings[ring]["ticks"], - ) - cb_n.set_ticks(ticks_here[(vmin <= ticks_here) & (ticks_here <= vmax)]) - # except: - # print ('no ticks given') - cb_n.outline.clear() - # cb_n.set_ticks() - cax_n.set_xlabel( - node_rings[ring]["label"], labelpad=1, fontsize=label_fontsize - ) - cax_n.tick_params(axis='both', which='major', labelsize=tick_label_size) - else: - colors = None - vmin = None - vmax = None - - for n in G: - if type(node_alpha) == dict: - alpha = node_alpha[n] - else: - alpha = 1.0 - - if special_nodes is not None: - if n in special_nodes: - color_here = special_nodes[n] - else: - color_here = 'grey' - else: - if colors is None: - color_here = standard_color_nodes - else: - color_here = colors[n] - - c = Ellipse( - pos[n], - width=node_sizes[: ring + 1].sum(axis=0)[n] * node_aspect, - height=node_sizes[: ring + 1].sum(axis=0)[n], - clip_on=False, - facecolor=color_here, - edgecolor=color_here, - zorder=-ring - 1 + 2, - ) - - # else: - # if special_nodes is not None and n in special_nodes: - # color_here = special_nodes[n] - # else: - # color_here = colors[n] - # c = Ellipse( - # pos[n], - # width=node_sizes[: ring + 1].sum(axis=0)[n] * node_aspect, - # height=node_sizes[: ring + 1].sum(axis=0)[n], - # clip_on=False, - # facecolor=colors[n], - # edgecolor=colors[n], - # zorder=-ring - 1, - # ) - - ax.add_patch(c) - - # avoiding attribute error raised by changes in networkx - if hasattr(G, "node"): - # works with networkx 1.10 - G.node[n]["patch"] = c - else: - # works with networkx 2.4 - G.nodes[n]["patch"] = c - - if ring == 0: - ax.text( - pos[n][0], - pos[n][1], - node_labels[n], - fontsize=node_label_size, - horizontalalignment="center", - verticalalignment="center", - alpha=1.0, - zorder=5. - ) - if show_autodependency_lags: - ax.text( - pos[n][0], - pos[n][1], - autodep_sig_lags[n], - fontsize=link_label_fontsize, - horizontalalignment="center", - verticalalignment="center", - color="black", - zorder=5. - ) - - # Draw edges - seen = {} - for (u, v, d) in G.edges(data=True): - if d.get("no_links"): - d["inner_edge_alpha"] = 1e-8 - d["outer_edge_alpha"] = 1e-8 - if u != v: - if d["outer_edge"]: - seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=True) - if d["inner_edge"]: - seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False) - - # if network_left_bound is not None: - # network_right_bound = 0.98 - # else: - # network_right_bound = None - # fig.subplots_adjust(bottom=network_lower_bound, left=network_left_bound, right=network_right_bound) #, right=0.97) - - -
[docs]def plot_graph( - graph, - val_matrix=None, - var_names=None, - fig_ax=None, - figsize=None, - save_name=None, - link_colorbar_label="MCI", - node_colorbar_label="auto-MCI", - link_width=None, - link_attribute=None, - node_pos=None, - arrow_linewidth=8.0, - vmin_edges=-1, - vmax_edges=1.0, - edge_ticks=0.4, - cmap_edges="RdBu_r", - vmin_nodes=-1, - vmax_nodes=1.0, - node_ticks=0.4, - cmap_nodes="RdBu_r", - node_size=0.3, - node_aspect=None, - arrowhead_size=20, - curved_radius=0.2, - label_fontsize=10, - tick_label_size=6, - alpha=1.0, - node_label_size=10, - link_label_fontsize=10, - lag_array=None, - network_lower_bound=0.2, - show_colorbar=True, - inner_edge_style="dashed", - link_matrix=None, - special_nodes=None, - show_autodependency_lags=False -): - """Creates a network plot. - - This is still in beta. The network is defined from links in graph. Nodes - denote variables, straight links contemporaneous dependencies and curved - arrows lagged dependencies. The node color denotes the maximal absolute - auto-dependency and the link color the value at the lag with maximal - absolute cross-dependency. The link label lists the lags with significant - dependency in order of absolute magnitude. The network can also be - plotted over a map drawn before on the same axis. Then the node positions - can be supplied in appropriate axis coordinates via node_pos. - - Parameters - ---------- - graph : string or bool array-like, optional (default: None) - Either string matrix providing graph or bool array providing only adjacencies - Must be of same shape as val_matrix. - val_matrix : array_like - Matrix of shape (N, N, tau_max+1) containing test statistic values. - var_names : list, optional (default: None) - List of variable names. If None, range(N) is used. - fig_ax : tuple of figure and axis object, optional (default: None) - Figure and axes instance. If None they are created. - figsize : tuple - Size of figure. - save_name : str, optional (default: None) - Name of figure file to save figure. If None, figure is shown in window. - link_colorbar_label : str, optional (default: 'MCI') - Test statistic label. - node_colorbar_label : str, optional (default: 'auto-MCI') - Test statistic label for auto-dependencies. - link_width : array-like, optional (default: None) - Array of val_matrix.shape specifying relative link width with maximum - given by arrow_linewidth. If None, all links have same width. - link_attribute : array-like, optional (default: None) - String array of val_matrix.shape specifying link attributes. - node_pos : dictionary, optional (default: None) - Dictionary of node positions in axis coordinates of form - node_pos = {'x':array of shape (N,), 'y':array of shape(N)}. These - coordinates could have been transformed before for basemap plots. - arrow_linewidth : float, optional (default: 30) - Linewidth. - vmin_edges : float, optional (default: -1) - Link colorbar scale lower bound. - vmax_edges : float, optional (default: 1) - Link colorbar scale upper bound. - edge_ticks : float, optional (default: 0.4) - Link tick mark interval. - cmap_edges : str, optional (default: 'RdBu_r') - Colormap for links. - vmin_nodes : float, optional (default: 0) - Node colorbar scale lower bound. - vmax_nodes : float, optional (default: 1) - Node colorbar scale upper bound. - node_ticks : float, optional (default: 0.4) - Node tick mark interval. - cmap_nodes : str, optional (default: 'OrRd') - Colormap for links. - node_size : int, optional (default: 0.3) - Node size. - node_aspect : float, optional (default: None) - Ratio between the heigth and width of the varible nodes. - arrowhead_size : int, optional (default: 20) - Size of link arrow head. Passed on to FancyArrowPatch object. - curved_radius, float, optional (default: 0.2) - Curvature of links. Passed on to FancyArrowPatch object. - label_fontsize : int, optional (default: 10) - Fontsize of colorbar labels. - alpha : float, optional (default: 1.) - Opacity. - node_label_size : int, optional (default: 10) - Fontsize of node labels. - link_label_fontsize : int, optional (default: 6) - Fontsize of link labels. - tick_label_size : int, optional (default: 6) - Fontsize of tick labels. - lag_array : array, optional (default: None) - Optional specification of lags overwriting np.arange(0, tau_max+1) - network_lower_bound : float, optional (default: 0.2) - Fraction of vertical space below graph plot. - show_colorbar : bool - Whether to show colorbars for links and nodes. - show_autodependency_lags : bool (default: False) - Shows significant autodependencies for a node. - """ - - if link_matrix is not None: - raise ValueError("link_matrix is deprecated and replaced by graph array" - " which is now returned by all methods.") - - if fig_ax is None: - fig = pyplot.figure(figsize=figsize) - ax = fig.add_subplot(111, frame_on=False) - else: - fig, ax = fig_ax - - graph = np.copy(graph.squeeze()) - - if graph.ndim == 4: - raise ValueError("Time series graph of shape (N,N,tau_max+1,tau_max+1) cannot be represented by plot_graph," - " use plot_time_series_graph instead.") - - if graph.ndim == 2: - # If a non-time series (N,N)-graph is given, insert a dummy dimension - graph = np.expand_dims(graph, axis = 2) - - if val_matrix is None: - no_coloring = True - cmap_edges = None - cmap_nodes = None - else: - no_coloring = False - - (graph, val_matrix, link_width, link_attribute) = _check_matrices( - graph, val_matrix, link_width, link_attribute) - - - N, N, dummy = graph.shape - tau_max = dummy - 1 - max_lag = tau_max + 1 - - if np.count_nonzero(graph != "") == np.count_nonzero( - np.diagonal(graph) != "" - ): - diagonal = True - else: - diagonal = False - - if np.count_nonzero(graph == "") == graph.size or diagonal: - graph[0, 1, 0] = "xxx" # Workaround, will not be plotted... - no_links = True - else: - no_links = False - - if var_names is None: - var_names = range(N) - - # Define graph links by absolute maximum (positive or negative like for - # partial correlation) - # val_matrix[np.abs(val_matrix) < sig_thres] = 0. - - # Only draw link in one direction among contemp - # Remove lower triangle - link_matrix_upper = np.copy(graph) - link_matrix_upper[:, :, 0] = np.triu(link_matrix_upper[:, :, 0]) - - # net = _get_absmax(link_matrix != "") - net = np.any(link_matrix_upper != "", axis=2) - G = nx.DiGraph(net) - - # This handels Graphs with no links. - # nx.draw(G, alpha=0, zorder=-10) - - node_color = list(np.zeros(N)) - - if show_autodependency_lags: - autodep_sig_lags = np.full(N, None, dtype='object') - else: - autodep_sig_lags = None - - # list of all strengths for color map - all_strengths = [] - # Add attributes, contemporaneous and lagged links are handled separately - for (u, v, dic) in G.edges(data=True): - dic["no_links"] = no_links - # average lagfunc for link u --> v ANDOR u -- v - if tau_max > 0: - # argmax of absolute maximum where a link exists! - links = np.where(link_matrix_upper[u, v, 1:] != "")[0] - if len(links) > 0: - argmax_links = np.abs(val_matrix[u, v][1:][links]).argmax() - argmax = links[argmax_links] + 1 - else: - argmax = 0 - else: - argmax = 0 - - if u != v: - # For contemp links masking or finite samples can lead to different - # values for u--v and v--u - # Here we use the maximum for the width and weight (=color) - # of the link - # Draw link if u--v OR v--u at lag 0 is nonzero - # dic['inner_edge'] = ((np.abs(val_matrix[u, v][0]) >= - # sig_thres[u, v][0]) or - # (np.abs(val_matrix[v, u][0]) >= - # sig_thres[v, u][0])) - dic["inner_edge"] = link_matrix_upper[u, v, 0] - dic["inner_edge_type"] = link_matrix_upper[u, v, 0] - dic["inner_edge_alpha"] = alpha - if no_coloring: - dic["inner_edge_color"] = None - else: - dic["inner_edge_color"] = val_matrix[u, v, 0] - # # value at argmax of average - # if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > .0001: - # print("Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" % ( - # u, v, val_matrix[u, v][0], v, u, val_matrix[v, u][0]) + - # " due to conditions, finite sample effects or " - # "masking, here edge color = " - # "larger (absolute) value.") - # dic['inner_edge_color'] = _get_absmax( - # np.array([[[val_matrix[u, v][0], - # val_matrix[v, u][0]]]])).squeeze() - - if link_width is None: - dic["inner_edge_width"] = arrow_linewidth - else: - dic["inner_edge_width"] = ( - link_width[u, v, 0] / link_width.max() * arrow_linewidth - ) - - if link_attribute is None: - dic["inner_edge_attribute"] = None - else: - dic["inner_edge_attribute"] = link_attribute[u, v, 0] - - # # fraction of nonzero values - dic["inner_edge_style"] = "solid" - # else: - # dic['inner_edge_style'] = link_style[ - # u, v, 0] - - all_strengths.append(dic["inner_edge_color"]) - - if tau_max > 0: - # True if ensemble mean at lags > 0 is nonzero - # dic['outer_edge'] = np.any( - # np.abs(val_matrix[u, v][1:]) >= sig_thres[u, v][1:]) - dic["outer_edge"] = np.any(link_matrix_upper[u, v, 1:] != "") - else: - dic["outer_edge"] = False - # print(u, v, dic["outer_edge"], argmax, link_matrix_upper[u, v, :]) - - dic["outer_edge_type"] = link_matrix_upper[u, v, argmax] - - dic["outer_edge_alpha"] = alpha - if link_width is None: - # fraction of nonzero values - dic["outer_edge_width"] = arrow_linewidth - else: - dic["outer_edge_width"] = ( - link_width[u, v, argmax] / link_width.max() * arrow_linewidth - ) - - if link_attribute is None: - # fraction of nonzero values - dic["outer_edge_attribute"] = None - else: - dic["outer_edge_attribute"] = link_attribute[u, v, argmax] - - # value at argmax of average - if no_coloring: - dic["outer_edge_color"] = None - else: - dic["outer_edge_color"] = val_matrix[u, v][argmax] - all_strengths.append(dic["outer_edge_color"]) - - # Sorted list of significant lags (only if robust wrt - # d['min_ensemble_frac']) - if tau_max > 0: - lags = np.abs(val_matrix[u, v][1:]).argsort()[::-1] + 1 - sig_lags = (np.where(link_matrix_upper[u, v, 1:] != "")[0] + 1).tolist() - else: - lags, sig_lags = [], [] - if lag_array is not None: - dic["label"] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1].replace(" ", "") - else: - dic["label"] = str([l for l in lags if l in sig_lags])[1:-1].replace(" ", "") - else: - # Node color is max of average autodependency - if no_coloring: - node_color[u] = None - else: - node_color[u] = val_matrix[u, v][argmax] - - if show_autodependency_lags: - autodep_sig_lags[u] = "\n\n\n" + ",".join(str(i) for i in (np.where(link_matrix_upper[u, v, 1:] != "")[0] + 1).tolist()) - # Lags upto tau_max - #autodep_lags = np.argsort(val_matrix[u, v][1:])[::-1] - #autodep_lags += 1 - #autodeplags[u] = "\n\n\n" + ",".join(str(i) for i in autodep_lags.tolist()) - - dic["inner_edge_attribute"] = None - dic["outer_edge_attribute"] = None - - # dic['outer_edge_edge'] = False - # dic['outer_edge_edgecolor'] = None - # dic['inner_edge_edge'] = False - # dic['inner_edge_edgecolor'] = None - - if special_nodes is not None: - special_nodes_draw = {} - for node in special_nodes: - i, tau = node - if tau >= -tau_max: - special_nodes_draw[i] = special_nodes[node] - special_nodes = special_nodes_draw - - - # If no links are present, set value to zero - if len(all_strengths) == 0: - all_strengths = [0.0] - - if node_pos is None: - pos = nx.circular_layout(deepcopy(G)) - else: - pos = {} - for i in range(N): - pos[i] = (node_pos["x"][i], node_pos["y"][i]) - - if cmap_nodes is None: - node_color = None - - node_rings = { - 0: { - "sizes": None, - "color_array": node_color, - "cmap": cmap_nodes, - "vmin": vmin_nodes, - "vmax": vmax_nodes, - "ticks": node_ticks, - "label": node_colorbar_label, - "colorbar": show_colorbar, - } - } - - _draw_network_with_curved_edges( - fig=fig, - ax=ax, - G=deepcopy(G), - pos=pos, - # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array - # or None, 'cmap':string, - node_rings=node_rings, - # 'vmin':float or None, 'vmax':float or None, 'label':string or None}} - node_labels=var_names, - node_label_size=node_label_size, - node_alpha=alpha, - standard_size=node_size, - node_aspect=node_aspect, - standard_cmap="OrRd", - standard_color_nodes="lightgrey", - standard_color_links="black", - log_sizes=False, - cmap_links=cmap_edges, - links_vmin=vmin_edges, - links_vmax=vmax_edges, - links_ticks=edge_ticks, - tick_label_size=tick_label_size, - # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1., - # links_edges_ticks=.2, link_edge_colorbar_label='link_edge', - arrowstyle="simple", - arrowhead_size=arrowhead_size, - curved_radius=curved_radius, - label_fontsize=label_fontsize, - link_label_fontsize=link_label_fontsize, - link_colorbar_label=link_colorbar_label, - network_lower_bound=network_lower_bound, - show_colorbar=show_colorbar, - # label_fraction=label_fraction, - special_nodes=special_nodes, - autodep_sig_lags=autodep_sig_lags, - show_autodependency_lags=show_autodependency_lags - ) - - if save_name is not None: - pyplot.savefig(save_name, dpi=300) - else: - return fig, ax
- - -def _reverse_patt(patt): - """Inverts a link pattern""" - - if patt == "": - return "" - - left_mark, middle_mark, right_mark = patt[0], patt[1], patt[2] - if left_mark == "<": - new_right_mark = ">" - else: - new_right_mark = left_mark - if right_mark == ">": - new_left_mark = "<" - else: - new_left_mark = right_mark - - return new_left_mark + middle_mark + new_right_mark - - # if patt in ['---', 'o--', '--o', 'o-o', '']: - # return patt[::-1] - # elif patt == '<->': - # return '<->' - # elif patt == 'o->': - # return '<-o' - # elif patt == '<-o': - # return 'o->' - # elif patt == '-->': - # return '<--' - # elif patt == '<--': - # return '-->' - - -def _check_matrices(graph, val_matrix, link_width, link_attribute): - - if graph.dtype != "<U3": - # Transform to new graph data type U3 - old_matrix = np.copy(graph) - graph = np.zeros(old_matrix.shape, dtype="<U3") - graph[:] = "" - for i, j, tau in zip(*np.where(old_matrix)): - if tau == 0: - if old_matrix[j, i, 0] == 0: - graph[i, j, 0] = "-->" - graph[j, i, 0] = "<--" - else: - graph[i, j, 0] = "o-o" - graph[j, i, 0] = "o-o" - else: - graph[i, j, tau] = "-->" - if graph.ndim == 4: - for i, j, taui, tauj in zip(*np.where(graph)): - if graph[i, j, taui, tauj] not in [ - "---", - "o--", - "--o", - "o-o", - "o->", - "<-o", - "-->", - "<--", - "<->", - "x-o", - "o-x", - "x--", - "--x", - "x->", - "<-x", - "x-x", - "<-+", - "+->", - ]: - raise ValueError("Invalid graph entry.") - if graph[i, j, taui, tauj] != _reverse_patt(graph[j, i, tauj, taui]): - raise ValueError( - "graph needs to have consistent entries: " - "graph[i, j, taui, tauj] == _reverse_patt(graph[j, i, tauj, taui])") - if ( - val_matrix is not None - and val_matrix[i, j, taui, tauj] != val_matrix[j, i, tauj, taui] - ): - raise ValueError( - "val_matrix needs to have consistent entries: " - "val_matrix[i, j, taui, tauj] == val_matrix[j, i, tauj, taui]") - if ( - link_width is not None - and link_width[i, j, taui, tauj] != link_width[j, i, tauj, taui] - ): - raise ValueError( - "link_width needs to have consistent entries: " - "link_width[i, j, taui, tauj] == link_width[j, i, tauj, taui]") - if ( - link_attribute is not None - and link_attribute[i, j, taui, tauj] != link_attribute[j, i, tauj, taui] - ): - raise ValueError( - "link_attribute needs to have consistent entries: " - "link_attribute[i, j, taui, tauj] == link_attribute[j, i, tauj, taui]") - else: - # print(graph[:,:,0]) - # Assert that graph has valid and consistent lag-zero entries - for i, j, tau in zip(*np.where(graph)): - if tau == 0: - if graph[i, j, 0] != _reverse_patt(graph[j, i, 0]): - raise ValueError( - "graph needs to have consistent lag-zero links, but " - " graph[%d,%d,0]=%s and graph[%d,%d,0]=%s)" %(i, j, graph[i, j, 0], j, i, graph[j, i, 0]) - ) - if ( - val_matrix is not None - and val_matrix[i, j, 0] != val_matrix[j, i, 0] - ): - raise ValueError("val_matrix needs to be symmetric for lag-zero") - if ( - link_width is not None - and link_width[i, j, 0] != link_width[j, i, 0] - ): - raise ValueError("link_width needs to be symmetric for lag-zero") - if ( - link_attribute is not None - and link_attribute[i, j, 0] != link_attribute[j, i, 0] - ): - raise ValueError( - "link_attribute needs to be symmetric for lag-zero" - ) - - if graph[i, j, tau] not in [ - "---", - "o--", - "--o", - "o-o", - "o->", - "<-o", - "-->", - "<--", - "<->", - "x-o", - "o-x", - "x--", - "--x", - "x->", - "<-x", - "x-x", - "<-+", - "+->", - ]: - raise ValueError("Invalid graph entry.") - - if val_matrix is None: - # if graph.ndim == 4: - # val_matrix = (graph != "").astype("int") - # else: - val_matrix = (graph != "").astype("int") - - if link_width is not None and not np.all(link_width >= 0.0): - raise ValueError("link_width must be non-negative") - - return graph, val_matrix, link_width, link_attribute - - -
[docs]def plot_time_series_graph( - graph, - val_matrix=None, - var_names=None, - fig_ax=None, - figsize=None, - link_colorbar_label="MCI", - save_name=None, - link_width=None, - link_attribute=None, - arrow_linewidth=4, - vmin_edges=-1, - vmax_edges=1.0, - edge_ticks=0.4, - cmap_edges="RdBu_r", - order=None, - node_size=0.1, - node_aspect=None, - arrowhead_size=20, - curved_radius=0.2, - label_fontsize=10, - tick_label_size=6, - alpha=1.0, - label_space_left=0.1, - label_space_top=0.0, - network_lower_bound=0.2, - inner_edge_style="dashed", - link_matrix=None, - special_nodes=None, - # aux_graph=None, - standard_color_links='black', - standard_color_nodes='lightgrey', -): - """Creates a time series graph. - This is still in beta. The time series graph's links are colored by - val_matrix. - - Parameters - ---------- - graph : string or bool array-like, optional (default: None) - Either string matrix providing graph or bool array providing only adjacencies - Either of shape (N, N, tau_max + 1) or as auxiliary graph of dims - (N, N, tau_max+1, tau_max+1) describing auxADMG. - val_matrix : array_like - Matrix of same shape as graph containing test statistic values. - var_names : list, optional (default: None) - List of variable names. If None, range(N) is used. - fig_ax : tuple of figure and axis object, optional (default: None) - Figure and axes instance. If None they are created. - figsize : tuple - Size of figure. - save_name : str, optional (default: None) - Name of figure file to save figure. If None, figure is shown in window. - link_colorbar_label : str, optional (default: 'MCI') - Test statistic label. - link_width : array-like, optional (default: None) - Array of val_matrix.shape specifying relative link width with maximum - given by arrow_linewidth. If None, all links have same width. - link_attribute : array-like, optional (default: None) - Array of graph.shape specifying specific in drawing the graph (for internal use). - order : list, optional (default: None) - order of variables from top to bottom. - arrow_linewidth : float, optional (default: 30) - Linewidth. - vmin_edges : float, optional (default: -1) - Link colorbar scale lower bound. - vmax_edges : float, optional (default: 1) - Link colorbar scale upper bound. - edge_ticks : float, optional (default: 0.4) - Link tick mark interval. - cmap_edges : str, optional (default: 'RdBu_r') - Colormap for links. - node_size : int, optional (default: 0.1) - Node size. - node_aspect : float, optional (default: None) - Ratio between the heigth and width of the varible nodes. - arrowhead_size : int, optional (default: 20) - Size of link arrow head. Passed on to FancyArrowPatch object. - curved_radius, float, optional (default: 0.2) - Curvature of links. Passed on to FancyArrowPatch object. - label_fontsize : int, optional (default: 10) - Fontsize of colorbar labels. - alpha : float, optional (default: 1.) - Opacity. - node_label_size : int, optional (default: 10) - Fontsize of node labels. - link_label_fontsize : int, optional (default: 6) - Fontsize of link labels. - tick_label_size : int, optional (default: 6) - Fontsize of tick labels. - label_space_left : float, optional (default: 0.1) - Fraction of horizontal figure space to allocate left of plot for labels. - label_space_top : float, optional (default: 0.) - Fraction of vertical figure space to allocate top of plot for labels. - network_lower_bound : float, optional (default: 0.2) - Fraction of vertical space below graph plot. - inner_edge_style : string, optional (default: 'dashed') - Style of inner_edge contemporaneous links. - special_nodes : dict - Dictionary of format {(i, -tau): 'blue', ...} to color special nodes. - """ - - if link_matrix is not None: - raise ValueError("link_matrix is deprecated and replaced by graph array" - " which is now returned by all methods.") - - if fig_ax is None: - fig = pyplot.figure(figsize=figsize) - ax = fig.add_subplot(111, frame_on=False) - else: - fig, ax = fig_ax - - if val_matrix is None: - no_coloring = True - cmap_edges = None - else: - no_coloring = False - - (graph, val_matrix, link_width, link_attribute) = _check_matrices( - graph, val_matrix, link_width, link_attribute - ) - - if graph.ndim == 4: - N, N, dummy, _ = graph.shape - tau_max = dummy - 1 - max_lag = tau_max + 1 - else: - N, N, dummy = graph.shape - tau_max = dummy - 1 - max_lag = tau_max + 1 - - if np.count_nonzero(graph == "") == graph.size: - if graph.ndim == 4: - graph[0, 1, 0, 0] = "---" - else: - graph[0, 1, 0] = "---" - no_links = True - else: - no_links = False - - if var_names is None: - var_names = range(N) - - if order is None: - order = range(N) - - if set(order) != set(range(N)): - raise ValueError("order must be a permutation of range(N)") - - def translate(row, lag): - return row * max_lag + lag - - # Define graph links by absolute maximum (positive or negative like for - # partial correlation) - tsg = np.zeros((N * max_lag, N * max_lag)) - tsg_val = np.zeros((N * max_lag, N * max_lag)) - tsg_width = np.zeros((N * max_lag, N * max_lag)) - tsg_style = np.zeros((N * max_lag, N * max_lag), dtype=graph.dtype) - if link_attribute is not None: - tsg_attr = np.zeros((N * max_lag, N * max_lag), dtype=link_attribute.dtype) - - if graph.ndim == 4: - # 4-dimensional graphs represent the finite-time window projection of stationary 3-d graphs - # They are internally created in some classes - # Only draw link in one direction - for i, j, taui, tauj in np.column_stack(np.where(graph)): - tau = taui - tauj - # if tau <= 0 and j <= i: - if translate(i, max_lag - 1 - taui) >= translate(j, max_lag-1-tauj): - continue - # print(max_lag, (i, -taui), (j, -tauj), aux_graph[i, j, taui, tauj]) - # print(translate(i, max_lag - 1 - taui), translate(j, max_lag-1-tauj)) - tsg[translate(i, max_lag - 1 - taui), translate(j, max_lag-1-tauj)] = 1.0 - tsg_val[translate(i, max_lag - 1 - taui), translate(j, max_lag-1-tauj)] = val_matrix[i, j, taui, tauj] - tsg_style[translate(i, max_lag - 1 - taui), translate(j, max_lag-1-tauj)] = graph[i, j, taui, tauj] - if link_width is not None: - tsg_width[translate(i, max_lag - 1 - taui), translate(j, max_lag-1-tauj)] = link_width[i, j, taui, tauj] / link_width.max() * arrow_linewidth - if link_attribute is not None: - tsg_attr[translate(i, max_lag - 1 - taui), translate(j, max_lag-1-tauj)] = link_attribute[i, j, taui, tauj] #'spurious' - # print(tsg_style) - # print(tsg_style[translate(i, max_lag - 1 - taui), translate(j, max_lag-1-tauj)] = graph[i, j, taui, tauj]) - # print(max_lag, (i, -taui), (j, -tauj), graph[i, j, taui, tauj], tsg_style[translate(i, max_lag - 1 - taui), translate(j, max_lag-1-tauj)]) - - - else: - # Only draw link in one direction - # Remove lower triangle - link_matrix_tsg = np.copy(graph) - link_matrix_tsg[:, :, 0] = np.triu(graph[:, :, 0]) - - for i, j, tau in np.column_stack(np.where(link_matrix_tsg)): - for t in range(max_lag): - if ( - 0 <= translate(i, t - tau) - and translate(i, t - tau) % max_lag <= translate(j, t) % max_lag - ): - - tsg[ - translate(i, t - tau), translate(j, t) - ] = 1.0 # val_matrix[i, j, tau] - tsg_val[translate(i, t - tau), translate(j, t)] = val_matrix[i, j, tau] - tsg_style[translate(i, t - tau), translate(j, t)] = graph[ - i, j, tau - ] - if link_width is not None: - tsg_width[translate(i, t - tau), translate(j, t)] = ( - link_width[i, j, tau] / link_width.max() * arrow_linewidth - ) - if link_attribute is not None: - tsg_attr[translate(i, t - tau), translate(j, t)] = link_attribute[ - i, j, tau - ] - - - G = nx.DiGraph(tsg) - - if special_nodes is not None: - special_nodes_tsg = {} - for node in special_nodes: - i, tau = node - if tau >= -tau_max: - special_nodes_tsg[translate(i, max_lag-1 + tau)] = special_nodes[node] - - special_nodes = special_nodes_tsg - - # node_color = np.zeros(N) - # list of all strengths for color map - all_strengths = [] - # Add attributes, contemporaneous and lagged links are handled separately - for (u, v, dic) in G.edges(data=True): - dic["no_links"] = no_links - if u != v: - # tau = np.abs((u - v) % max_lag) - # Determine neighbors in TSG - i = u // max_lag - taui = -(max_lag -1 - (u % max_lag)) - j = v // max_lag - tauj = -(max_lag -1 - (v % max_lag)) - - if np.abs(i-j) <= 1 and np.abs(tauj-taui) <= 1: - inout = 'inner' - dic["inner_edge"] = True - dic["outer_edge"] = False - else: - inout = 'outer' - dic["inner_edge"] = False - dic["outer_edge"] = True - - dic["%s_edge_type" % inout] = tsg_style[u, v] - - dic["%s_edge_alpha" % inout] = alpha - - if link_width is None: - # fraction of nonzero values - dic["%s_edge_width" % inout] = dic["%s_edge_width" % inout] = arrow_linewidth - else: - dic["%s_edge_width" % inout] = dic["%s_edge_width" % inout] = tsg_width[u, v] - - if link_attribute is None: - dic["%s_edge_attribute" % inout] = None - else: - dic["%s_edge_attribute" % inout] = tsg_attr[u, v] - - # value at argmax of average - if no_coloring: - dic["%s_edge_color" % inout] = None - else: - dic["%s_edge_color" % inout] = tsg_val[u, v] - - all_strengths.append(dic["%s_edge_color" % inout]) - dic["label"] = None - # print(u, v, dic) - - # If no links are present, set value to zero - if len(all_strengths) == 0: - all_strengths = [0.0] - - posarray = np.zeros((N * max_lag, 2)) - for i in range(N * max_lag): - posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)]) - - pos_tmp = {} - for i in range(N * max_lag): - # for n in range(N): - # for tau in range(max_lag): - # i = n*N + tau - pos_tmp[i] = np.array( - [ - ((i % max_lag) - posarray.min(axis=0)[0]) - / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]), - ((1.0 - i // max_lag) - posarray.min(axis=0)[1]) - / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]), - ] - ) - pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0 - - pos = {} - for n in range(N): - for tau in range(max_lag): - pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau] - - node_rings = { - 0: {"sizes": None, "color_array": None, "label": "", "colorbar": False,} - } - - node_labels = ["" for i in range(N * max_lag)] - - if graph.ndim == 4 and val_matrix is None: - show_colorbar = False - else: - show_colorbar = True - - _draw_network_with_curved_edges( - fig=fig, - ax=ax, - G=deepcopy(G), - pos=pos, - node_rings=node_rings, - node_labels=node_labels, - # node_label_size=node_label_size, - node_alpha=alpha, - standard_size=node_size, - node_aspect=node_aspect, - standard_cmap="OrRd", - standard_color_nodes=standard_color_nodes, - standard_color_links=standard_color_links, - log_sizes=False, - cmap_links=cmap_edges, - links_vmin=vmin_edges, - links_vmax=vmax_edges, - links_ticks=edge_ticks, - # link_label_fontsize=link_label_fontsize, - arrowstyle="simple", - arrowhead_size=arrowhead_size, - curved_radius=curved_radius, - label_fontsize=label_fontsize, - tick_label_size=tick_label_size, - label_fraction=0.5, - link_colorbar_label=link_colorbar_label, - inner_edge_curved=False, - network_lower_bound=network_lower_bound, - network_left_bound=label_space_left, - inner_edge_style=inner_edge_style, - special_nodes=special_nodes, - show_colorbar=show_colorbar, - ) - - for i in range(N): - trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) - # trans = transforms.blended_transform_factory(fig.transFigure, ax.transData) - ax.text( - 0., - pos[order[i] * max_lag][1], - f"{var_names[order[i]]}", - fontsize=label_fontsize, - horizontalalignment="right", - verticalalignment="center", - transform=trans, - ) - - for tau in np.arange(max_lag - 1, -1, -1): - trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) - # trans = transforms.blended_transform_factory(ax.transData, fig.transFigure) - if tau == max_lag - 1: - ax.text( - pos[tau][0], - 1.0, # - label_space_top, - r"$t$", - fontsize=int(label_fontsize * 0.8), - horizontalalignment="center", - verticalalignment="bottom", - transform=trans, - ) - else: - ax.text( - pos[tau][0], - 1.0, # - label_space_top, - r"$t-%s$" % str(max_lag - tau - 1), - fontsize=int(label_fontsize * 0.8), - horizontalalignment="center", - verticalalignment="bottom", - transform=trans, - ) - - # pyplot.tight_layout() - if save_name is not None: - pyplot.savefig(save_name, dpi=300) - else: - return fig, ax
- - -
[docs]def plot_mediation_time_series_graph( - path_node_array, - tsg_path_val_matrix, - var_names=None, - fig_ax=None, - figsize=None, - link_colorbar_label="link coeff. (edge color)", - node_colorbar_label="MCE (node color)", - save_name=None, - link_width=None, - arrow_linewidth=8, - vmin_edges=-1, - vmax_edges=1.0, - edge_ticks=0.4, - cmap_edges="RdBu_r", - order=None, - vmin_nodes=-1.0, - vmax_nodes=1.0, - node_ticks=0.4, - cmap_nodes="RdBu_r", - node_size=0.1, - node_aspect=None, - arrowhead_size=20, - curved_radius=0.2, - label_fontsize=12, - alpha=1.0, - node_label_size=12, - tick_label_size=6, - label_space_left=0.1, - label_space_top=0.0, - network_lower_bound=0.2, - standard_color_links='black', - standard_color_nodes='lightgrey', -): - """Creates a mediation time series graph plot. - This is still in beta. The time series graph's links are colored by - val_matrix. - - Parameters - ---------- - tsg_path_val_matrix : array_like - Matrix of shape (N*tau_max, N*tau_max) containing link weight values. - path_node_array: array_like - Array of shape (N,) containing node values. - var_names : list, optional (default: None) - List of variable names. If None, range(N) is used. - fig_ax : tuple of figure and axis object, optional (default: None) - Figure and axes instance. If None they are created. - figsize : tuple - Size of figure. - save_name : str, optional (default: None) - Name of figure file to save figure. If None, figure is shown in window. - link_colorbar_label : str, optional (default: 'link coeff. (edge color)') - Link colorbar label. - node_colorbar_label : str, optional (default: 'MCE (node color)') - Node colorbar label. - link_width : array-like, optional (default: None) - Array of val_matrix.shape specifying relative link width with maximum - given by arrow_linewidth. If None, all links have same width. - order : list, optional (default: None) - order of variables from top to bottom. - arrow_linewidth : float, optional (default: 30) - Linewidth. - vmin_edges : float, optional (default: -1) - Link colorbar scale lower bound. - vmax_edges : float, optional (default: 1) - Link colorbar scale upper bound. - edge_ticks : float, optional (default: 0.4) - Link tick mark interval. - cmap_edges : str, optional (default: 'RdBu_r') - Colormap for links. - vmin_nodes : float, optional (default: 0) - Node colorbar scale lower bound. - vmax_nodes : float, optional (default: 1) - Node colorbar scale upper bound. - node_ticks : float, optional (default: 0.4) - Node tick mark interval. - cmap_nodes : str, optional (default: 'OrRd') - Colormap for links. - node_size : int, optional (default: 0.1) - Node size. - node_aspect : float, optional (default: None) - Ratio between the heigth and width of the varible nodes. - arrowhead_size : int, optional (default: 20) - Size of link arrow head. Passed on to FancyArrowPatch object. - curved_radius, float, optional (default: 0.2) - Curvature of links. Passed on to FancyArrowPatch object. - label_fontsize : int, optional (default: 10) - Fontsize of colorbar labels. - alpha : float, optional (default: 1.) - Opacity. - node_label_size : int, optional (default: 10) - Fontsize of node labels. - link_label_fontsize : int, optional (default: 6) - Fontsize of link labels. - label_space_left : float, optional (default: 0.1) - Fraction of horizontal figure space to allocate left of plot for labels. - label_space_top : float, optional (default: 0.) - Fraction of vertical figure space to allocate top of plot for labels. - network_lower_bound : float, optional (default: 0.2) - Fraction of vertical space below graph plot. - """ - N = len(path_node_array) - Nmaxlag = tsg_path_val_matrix.shape[0] - max_lag = Nmaxlag // N - - if var_names is None: - var_names = range(N) - - if fig_ax is None: - fig = pyplot.figure(figsize=figsize) - ax = fig.add_subplot(111, frame_on=False) - else: - fig, ax = fig_ax - - if link_width is not None and not np.all(link_width >= 0.0): - raise ValueError("link_width must be non-negative") - - if order is None: - order = range(N) - - if set(order) != set(range(N)): - raise ValueError("order must be a permutation of range(N)") - - def translate(row, lag): - return row * max_lag + lag - - if np.count_nonzero(tsg_path_val_matrix) == np.count_nonzero( - np.diagonal(tsg_path_val_matrix) - ): - diagonal = True - else: - diagonal = False - - if np.count_nonzero(tsg_path_val_matrix) == tsg_path_val_matrix.size or diagonal: - tsg_path_val_matrix[0, 1] = 1 - no_links = True - else: - no_links = False - - # Define graph links by absolute maximum (positive or negative like for - # partial correlation) - tsg = tsg_path_val_matrix - tsg_attr = np.zeros((N * max_lag, N * max_lag)) - - G = nx.DiGraph(tsg) - - # node_color = np.zeros(N) - # list of all strengths for color map - all_strengths = [] - # Add attributes, contemporaneous and lagged links are handled separately - for (u, v, dic) in G.edges(data=True): - dic["no_links"] = no_links - dic["outer_edge_attribute"] = None - - if u != v: - - if u % max_lag == v % max_lag: - dic["inner_edge"] = True - dic["outer_edge"] = False - else: - dic["inner_edge"] = False - dic["outer_edge"] = True - - dic["inner_edge_alpha"] = alpha - dic["inner_edge_color"] = _get_absmax( - np.array([[[tsg[u, v], tsg[v, u]]]]) - ).squeeze() - dic["inner_edge_width"] = arrow_linewidth - all_strengths.append(dic["inner_edge_color"]) - - dic["outer_edge_alpha"] = alpha - - dic["outer_edge_width"] = arrow_linewidth - - # value at argmax of average - dic["outer_edge_color"] = tsg[u, v] - all_strengths.append(dic["outer_edge_color"]) - dic["label"] = None - - # dic['outer_edge_edge'] = False - # dic['outer_edge_edgecolor'] = None - # dic['inner_edge_edge'] = False - # dic['inner_edge_edgecolor'] = None - - # If no links are present, set value to zero - if len(all_strengths) == 0: - all_strengths = [0.0] - - posarray = np.zeros((N * max_lag, 2)) - for i in range(N * max_lag): - posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)]) - - pos_tmp = {} - for i in range(N * max_lag): - # for n in range(N): - # for tau in range(max_lag): - # i = n*N + tau - pos_tmp[i] = np.array( - [ - ((i % max_lag) - posarray.min(axis=0)[0]) - / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]), - ((1.0 - i // max_lag) - posarray.min(axis=0)[1]) - / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]), - ] - ) - pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0 - - pos = {} - for n in range(N): - for tau in range(max_lag): - pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau] - - node_color = np.zeros(N * max_lag) - for inet, n in enumerate(range(0, N * max_lag, max_lag)): - node_color[n : n + max_lag] = path_node_array[inet] - - # node_rings = {0: {'sizes': None, 'color_array': color_array, - # 'label': '', 'colorbar': False, - # } - # } - - node_rings = { - 0: { - "sizes": None, - "color_array": node_color, - "cmap": cmap_nodes, - "vmin": vmin_nodes, - "vmax": vmax_nodes, - "ticks": node_ticks, - "label": node_colorbar_label, - "colorbar": True, - } - } - - # ] for v in range(max_lag)] - node_labels = ["" for i in range(N * max_lag)] - - _draw_network_with_curved_edges( - fig=fig, - ax=ax, - G=deepcopy(G), - pos=pos, - # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array - # or None, 'cmap':string, - node_rings=node_rings, - # 'vmin':float or None, 'vmax':float or None, 'label':string or None}} - node_labels=node_labels, - node_label_size=node_label_size, - node_alpha=alpha, - standard_size=node_size, - node_aspect=node_aspect, - standard_cmap="OrRd", - standard_color_nodes=standard_color_nodes, - standard_color_links=standard_color_links, - log_sizes=False, - cmap_links=cmap_edges, - links_vmin=vmin_edges, - links_vmax=vmax_edges, - links_ticks=edge_ticks, - tick_label_size=tick_label_size, - # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1., - # links_edges_ticks=.2, link_edge_colorbar_label='link_edge', - arrowhead_size=arrowhead_size, - curved_radius=curved_radius, - label_fontsize=label_fontsize, - label_fraction=0.5, - link_colorbar_label=link_colorbar_label, - inner_edge_curved=True, - network_lower_bound=network_lower_bound - # inner_edge_style=inner_edge_style - ) - - for i in range(N): - trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) - # trans = transforms.blended_transform_factory(fig.transFigure, ax.transData) - ax.text( - label_space_left, - pos[order[i] * max_lag][1], - "%s" % str(var_names[order[i]]), - fontsize=label_fontsize, - horizontalalignment="right", - verticalalignment="center", - transform=trans, - ) - - for tau in np.arange(max_lag - 1, -1, -1): - trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) - # trans = transforms.blended_transform_factory(ax.transData, fig.transFigure) - if tau == max_lag - 1: - ax.text( - pos[tau][0], - 1.0 - label_space_top, - r"$t$", - fontsize=label_fontsize, - horizontalalignment="center", - verticalalignment="bottom", - transform=trans, - ) - else: - ax.text( - pos[tau][0], - 1.0 - label_space_top, - r"$t-%s$" % str(max_lag - tau - 1), - fontsize=label_fontsize, - horizontalalignment="center", - verticalalignment="bottom", - transform=trans, - ) - - # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9) - # savestring = os.path.expanduser(save_name) - if save_name is not None: - pyplot.savefig(save_name) - else: - pyplot.show()
- - -
[docs]def plot_mediation_graph( - path_val_matrix, - path_node_array=None, - var_names=None, - fig_ax=None, - figsize=None, - save_name=None, - link_colorbar_label="link coeff. (edge color)", - node_colorbar_label="MCE (node color)", - link_width=None, - node_pos=None, - arrow_linewidth=10.0, - vmin_edges=-1, - vmax_edges=1.0, - edge_ticks=0.4, - cmap_edges="RdBu_r", - vmin_nodes=-1.0, - vmax_nodes=1.0, - node_ticks=0.4, - cmap_nodes="RdBu_r", - node_size=0.3, - node_aspect=None, - arrowhead_size=20, - curved_radius=0.2, - label_fontsize=10, - tick_label_size=6, - lag_array=None, - alpha=1.0, - node_label_size=10, - link_label_fontsize=10, - network_lower_bound=0.2, - standard_color_links='black', - standard_color_nodes='lightgrey', -): - """Creates a network plot visualizing the pathways of a mediation analysis. - This is still in beta. The network is defined from non-zero entries in - ``path_val_matrix``. Nodes denote variables, straight links contemporaneous - dependencies and curved arrows lagged dependencies. The node color denotes - the mediated causal effect (MCE) and the link color the value at the lag - with maximal link coefficient. The link label lists the lags with - significant dependency in order of absolute magnitude. The network can also - be plotted over a map drawn before on the same axis. Then the node positions - can be supplied in appropriate axis coordinates via node_pos. - - Parameters - ---------- - path_val_matrix : array_like - Matrix of shape (N, N, tau_max+1) containing link weight values. - path_node_array: array_like - Array of shape (N,) containing node values. - var_names : list, optional (default: None) - List of variable names. If None, range(N) is used. - fig_ax : tuple of figure and axis object, optional (default: None) - Figure and axes instance. If None they are created. - figsize : tuple - Size of figure. - save_name : str, optional (default: None) - Name of figure file to save figure. If None, figure is shown in window. - link_colorbar_label : str, optional (default: 'link coeff. (edge color)') - Link colorbar label. - node_colorbar_label : str, optional (default: 'MCE (node color)') - Node colorbar label. - link_width : array-like, optional (default: None) - Array of val_matrix.shape specifying relative link width with maximum - given by arrow_linewidth. If None, all links have same width. - node_pos : dictionary, optional (default: None) - Dictionary of node positions in axis coordinates of form - node_pos = {'x':array of shape (N,), 'y':array of shape(N)}. These - coordinates could have been transformed before for basemap plots. - arrow_linewidth : float, optional (default: 30) - Linewidth. - vmin_edges : float, optional (default: -1) - Link colorbar scale lower bound. - vmax_edges : float, optional (default: 1) - Link colorbar scale upper bound. - edge_ticks : float, optional (default: 0.4) - Link tick mark interval. - cmap_edges : str, optional (default: 'RdBu_r') - Colormap for links. - vmin_nodes : float, optional (default: 0) - Node colorbar scale lower bound. - vmax_nodes : float, optional (default: 1) - Node colorbar scale upper bound. - node_ticks : float, optional (default: 0.4) - Node tick mark interval. - cmap_nodes : str, optional (default: 'OrRd') - Colormap for links. - node_size : int, optional (default: 0.3) - Node size. - node_aspect : float, optional (default: None) - Ratio between the heigth and width of the varible nodes. - arrowhead_size : int, optional (default: 20) - Size of link arrow head. Passed on to FancyArrowPatch object. - curved_radius, float, optional (default: 0.2) - Curvature of links. Passed on to FancyArrowPatch object. - label_fontsize : int, optional (default: 10) - Fontsize of colorbar labels. - alpha : float, optional (default: 1.) - Opacity. - node_label_size : int, optional (default: 10) - Fontsize of node labels. - link_label_fontsize : int, optional (default: 6) - Fontsize of link labels. - network_lower_bound : float, optional (default: 0.2) - Fraction of vertical space below graph plot. - lag_array : array, optional (default: None) - Optional specification of lags overwriting np.arange(0, tau_max+1) - """ - val_matrix = path_val_matrix - - if fig_ax is None: - fig = pyplot.figure(figsize=figsize) - ax = fig.add_subplot(111, frame_on=False) - else: - fig, ax = fig_ax - - if link_width is not None and not np.all(link_width >= 0.0): - raise ValueError("link_width must be non-negative") - - N, N, dummy = val_matrix.shape - tau_max = dummy - 1 - - if np.count_nonzero(val_matrix) == np.count_nonzero(np.diagonal(val_matrix)): - diagonal = True - else: - diagonal = False - - if np.count_nonzero(val_matrix) == val_matrix.size or diagonal: - val_matrix[0, 1, 0] = 1 - no_links = True - else: - no_links = False - - if var_names is None: - var_names = range(N) - - # Define graph links by absolute maximum (positive or negative like for - # partial correlation) - # val_matrix[np.abs(val_matrix) < sig_thres] = 0. - graph = val_matrix != 0.0 - net = _get_absmax(val_matrix) - G = nx.DiGraph(net) - - node_color = np.zeros(N) - # list of all strengths for color map - all_strengths = [] - # Add attributes, contemporaneous and lagged links are handled separately - for (u, v, dic) in G.edges(data=True): - dic["outer_edge_attribute"] = None - dic["no_links"] = no_links - # average lagfunc for link u --> v ANDOR u -- v - if tau_max > 0: - # argmax of absolute maximum - argmax = np.abs(val_matrix[u, v][1:]).argmax() + 1 - else: - argmax = 0 - if u != v: - # For contemp links masking or finite samples can lead to different - # values for u--v and v--u - # Here we use the maximum for the width and weight (=color) - # of the link - # Draw link if u--v OR v--u at lag 0 is nonzero - # dic['inner_edge'] = ((np.abs(val_matrix[u, v][0]) >= - # sig_thres[u, v][0]) or - # (np.abs(val_matrix[v, u][0]) >= - # sig_thres[v, u][0])) - dic["inner_edge"] = graph[u, v, 0] or graph[v, u, 0] - dic["inner_edge_alpha"] = alpha - # value at argmax of average - if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > 0.0001: - print( - "Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" - % (u, v, val_matrix[u, v][0], v, u, val_matrix[v, u][0]) - + " due to conditions, finite sample effects or " - "masking, here edge color = " - "larger (absolute) value." - ) - dic["inner_edge_color"] = _get_absmax( - np.array([[[val_matrix[u, v][0], val_matrix[v, u][0]]]]) - ).squeeze() - if link_width is None: - dic["inner_edge_width"] = arrow_linewidth - else: - dic["inner_edge_width"] = ( - link_width[u, v, 0] / link_width.max() * arrow_linewidth - ) - - all_strengths.append(dic["inner_edge_color"]) - - if tau_max > 0: - # True if ensemble mean at lags > 0 is nonzero - # dic['outer_edge'] = np.any( - # np.abs(val_matrix[u, v][1:]) >= sig_thres[u, v][1:]) - dic["outer_edge"] = np.any(graph[u, v, 1:]) - else: - dic["outer_edge"] = False - dic["outer_edge_alpha"] = alpha - if link_width is None: - # fraction of nonzero values - dic["outer_edge_width"] = arrow_linewidth - else: - dic["outer_edge_width"] = ( - link_width[u, v, argmax] / link_width.max() * arrow_linewidth - ) - - # value at argmax of average - dic["outer_edge_color"] = val_matrix[u, v][argmax] - all_strengths.append(dic["outer_edge_color"]) - - # Sorted list of significant lags (only if robust wrt - # d['min_ensemble_frac']) - if tau_max > 0: - lags = np.abs(val_matrix[u, v][1:]).argsort()[::-1] + 1 - sig_lags = (np.where(graph[u, v, 1:])[0] + 1).tolist() - else: - lags, sig_lags = [], [] - if lag_array is not None: - dic["label"] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1].replace(" ", "") - else: - dic["label"] = str([l for l in lags if l in sig_lags])[1:-1].replace(" ", "") - else: - # Node color is max of average autodependency - node_color[u] = val_matrix[u, v][argmax] - - # dic['outer_edge_edge'] = False - # dic['outer_edge_edgecolor'] = None - # dic['inner_edge_edge'] = False - # dic['inner_edge_edgecolor'] = None - - node_color = path_node_array - # print node_color - # If no links are present, set value to zero - if len(all_strengths) == 0: - all_strengths = [0.0] - - if node_pos is None: - pos = nx.circular_layout(deepcopy(G)) - # pos = nx.spring_layout(deepcopy(G)) - else: - pos = {} - for i in range(N): - pos[i] = (node_pos["x"][i], node_pos["y"][i]) - - node_rings = { - 0: { - "sizes": None, - "color_array": node_color, - "cmap": cmap_nodes, - "vmin": vmin_nodes, - "vmax": vmax_nodes, - "ticks": node_ticks, - "label": node_colorbar_label, - "colorbar": True, - } - } - - _draw_network_with_curved_edges( - fig=fig, - ax=ax, - G=deepcopy(G), - pos=pos, - # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array - # or None, 'cmap':string, - node_rings=node_rings, - # 'vmin':float or None, 'vmax':float or None, 'label':string or None}} - node_labels=var_names, - node_label_size=node_label_size, - node_alpha=alpha, - standard_size=node_size, - node_aspect=node_aspect, - standard_cmap="OrRd", - standard_color_nodes=standard_color_nodes, - standard_color_links=standard_color_links, - log_sizes=False, - cmap_links=cmap_edges, - links_vmin=vmin_edges, - links_vmax=vmax_edges, - links_ticks=edge_ticks, - tick_label_size=tick_label_size, - # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1., - # links_edges_ticks=.2, link_edge_colorbar_label='link_edge', - arrowhead_size=arrowhead_size, - curved_radius=curved_radius, - label_fontsize=label_fontsize, - link_label_fontsize=link_label_fontsize, - link_colorbar_label=link_colorbar_label, - network_lower_bound=network_lower_bound, - # label_fraction=label_fraction, - # inner_edge_style=inner_edge_style - ) - - # fig.subplots_adjust(left=0.1, right=.9, bottom=.25, top=.95) - # savestring = os.path.expanduser(save_name) - if save_name is not None: - pyplot.savefig(save_name) - else: - pyplot.show()
- - -# -# Functions to plot time series graphs from links including ancestors -# -
[docs]def plot_tsg(links, X, Y, Z=None, anc_x=None, anc_y=None, anc_xy=None): - """Plots TSG that is input in format (N*max_lag, N*max_lag). - Compared to the tigramite plotting function here links - X^i_{t-tau} --> X^j_t can be missing for different t'. Helpful to - visualize the conditioned TSG. - """ - - def varlag2node(var, lag): - """Translate from (var, lag) notation to node in TSG. - lag must be <= 0. - """ - return var * max_lag + lag - - def node2varlag(node): - """Translate from node in TSG to (var, -tau) notation. - Here tau is <= 0. - """ - var = node // max_lag - tau = node % (max_lag) - (max_lag - 1) - return var, tau - - def _get_minmax_lag(links): - """Helper function to retrieve tau_min and tau_max from links - """ - - N = len(links) - - # Get maximum time lag - min_lag = np.inf - max_lag = 0 - for j in range(N): - for link_props in links[j]: - var, lag = link_props[0] - coeff = link_props[1] - # func = link_props[2] - if coeff != 0.: - min_lag = min(min_lag, abs(lag)) - max_lag = max(max_lag, abs(lag)) - return min_lag, max_lag - - def _links_to_tsg(link_coeffs, max_lag=None): - """Transform link_coeffs to time series graph. - TSG is of shape (N*max_lag, N*max_lag). - """ - N = len(link_coeffs) - - # Get maximum lag - min_lag_links, max_lag_links = _get_minmax_lag(link_coeffs) - - # max_lag of TSG is max lag in links + 1 for the zero lag. - if max_lag is None: - max_lag = max_lag_links + 1 - - tsg = np.zeros((N * max_lag, N * max_lag)) - - for j in range(N): - for link_props in link_coeffs[j]: - i, lag = link_props[0] - tau = abs(lag) - coeff = link_props[1] - # func = link_props[2] - if coeff != 0.0: - for t in range(max_lag): - if ( - 0 <= varlag2node(i, t - tau) - and varlag2node(i, t - tau) % max_lag - <= varlag2node(j, t) % max_lag - ): - tsg[varlag2node(i, t - tau), varlag2node(j, t)] = 1.0 - - return tsg - - color_list = ["lightgrey", "grey", "black", "red", "blue", "orange"] - listcmap = ListedColormap(color_list) - - N = len(links) - - min_lag_links, max_lag_links = _get_minmax_lag(links) - max_lag = max_lag_links - - for anc in X + Y: - max_lag = max(max_lag, abs(anc[1])) - for anc in Y: - max_lag = max(max_lag, abs(anc[1])) - if Z is not None: - for anc in Z: - max_lag = max(max_lag, abs(anc[1])) - - if anc_x is not None: - for anc in anc_x: - max_lag = max(max_lag, abs(anc[1])) - if anc_y is not None: - for anc in anc_y: - max_lag = max(max_lag, abs(anc[1])) - if anc_xy is not None: - for anc in anc_xy: - max_lag = max(max_lag, abs(anc[1])) - - max_lag = max_lag + 1 - - tsg = _links_to_tsg(links, max_lag=max_lag) - - G = nx.DiGraph(tsg) - - figsize = (3, 3) - link_colorbar_label = "MCI" - arrow_linewidth = 8.0 - vmin_edges = -1 - vmax_edges = 1.0 - edge_ticks = 0.4 - cmap_edges = "RdBu_r" - order = None - node_size = .1 - arrowhead_size = 20 - curved_radius = 0.2 - label_fontsize = 10 - alpha = 1.0 - node_label_size = 10 - label_space_left = 0.1 - label_space_top = 0.0 - network_lower_bound = 0.2 - inner_edge_style = "dashed" - - node_color = np.ones(N * max_lag) # , dtype = 'object') - node_color[:] = 0 - - if anc_x is not None: - for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_x]: - node_color[n] = 3 - if anc_y is not None: - for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_y]: - node_color[n] = 4 - if anc_xy is not None: - for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_xy]: - node_color[n] = 5 - - for x in X: - node_color[varlag2node(x[0], max_lag - 1 + x[1])] = 2 - for y in Y: - node_color[varlag2node(y[0], max_lag - 1 + y[1])] = 2 - if Z is not None: - for z in Z: - node_color[varlag2node(z[0], max_lag - 1 + z[1])] = 1 - - fig = pyplot.figure(figsize=figsize) - ax = fig.add_subplot(111, frame_on=False) - var_names = range(N) - order = range(N) - - # list of all strengths for color map - all_strengths = [] - # Add attributes, contemporaneous and lagged links are handled separately - for (u, v, dic) in G.edges(data=True): - if u != v: - if tsg[u, v] and tsg[v, u]: - dic["inner_edge"] = True - dic["outer_edge"] = False - else: - dic["inner_edge"] = False - dic["outer_edge"] = True - - dic["inner_edge_alpha"] = alpha - dic["inner_edge_color"] = tsg[u, v] - - dic["inner_edge_width"] = arrow_linewidth - dic["inner_edge_attribute"] = dic["outer_edge_attribute"] = None - - all_strengths.append(dic["inner_edge_color"]) - dic["outer_edge_alpha"] = alpha - dic["outer_edge_width"] = dic["inner_edge_width"] = arrow_linewidth - - # value at argmax of average - dic["outer_edge_color"] = tsg[u, v] - - all_strengths.append(dic["outer_edge_color"]) - dic["label"] = None - - # If no links are present, set value to zero - if len(all_strengths) == 0: - all_strengths = [0.0] - - posarray = np.zeros((N * max_lag, 2)) - for i in range(N * max_lag): - posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)]) - - pos_tmp = {} - for i in range(N * max_lag): - pos_tmp[i] = np.array( - [ - ((i % max_lag) - posarray.min(axis=0)[0]) - / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]), - ((1.0 - i // max_lag) - posarray.min(axis=0)[1]) - / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]), - ] - ) - pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0 - - pos = {} - for n in range(N): - for tau in range(max_lag): - pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau] - - node_rings = { - 0: { - "sizes": None, - "color_array": node_color, - "label": "", - "colorbar": False, - "cmap": listcmap, - "vmin": 0, - "vmax": len(color_list), - } - } - - node_labels = ["" for i in range(N * max_lag)] - - _draw_network_with_curved_edges( - fig=fig, - ax=ax, - G=deepcopy(G), - pos=pos, - node_rings=node_rings, - node_labels=node_labels, - node_label_size=node_label_size, - node_alpha=alpha, - standard_size=node_size, - node_aspect=None, - standard_cmap="OrRd", - standard_color_links='black', - standard_color_nodes='lightgrey', - log_sizes=False, - cmap_links=cmap_edges, - links_vmin=vmin_edges, - links_vmax=vmax_edges, - links_ticks=edge_ticks, - arrowstyle="simple", - arrowhead_size=arrowhead_size, - curved_radius=curved_radius, - label_fontsize=label_fontsize, - label_fraction=0.5, - link_colorbar_label=link_colorbar_label, - inner_edge_curved=True, - network_lower_bound=network_lower_bound, - inner_edge_style=inner_edge_style, - ) - - for i in range(N): - trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) - ax.text( - label_space_left, - pos[order[i] * max_lag][1], - "%s" % str(var_names[order[i]]), - fontsize=label_fontsize, - horizontalalignment="right", - verticalalignment="center", - transform=trans, - ) - - for tau in np.arange(max_lag - 1, -1, -1): - trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) - if tau == max_lag - 1: - ax.text( - pos[tau][0], - 1.0 - label_space_top, - r"$t$", - fontsize=int(label_fontsize * 0.7), - horizontalalignment="center", - verticalalignment="bottom", - transform=trans, - ) - else: - ax.text( - pos[tau][0], - 1.0 - label_space_top, - r"$t-%s$" % str(max_lag - tau - 1), - fontsize=int(label_fontsize * 0.7), - horizontalalignment="center", - verticalalignment="bottom", - transform=trans, - ) - - return fig, ax
- -
[docs]def write_csv( - graph, - save_name, - val_matrix=None, - var_names=None, - link_width=None, - link_attribute=None, - digits=5, -): - """Writes all links in a graph to a csv file. - - Format is each link in a row as 'Variable i', 'Variable j', 'Time lag of i', 'Link type i --- j', - with optional further columns for entries in [val_matrix link_attribute, link_width]. - - Parameters - ---------- - graph : string or bool array-like, optional (default: None) - Either string matrix providing graph or bool array providing only adjacencies - Must be of same shape as val_matrix. - save_name : str - Name of figure file to save figure. If None, figure is shown in window. - val_matrix : array_like - Matrix of shape (N, N, tau_max+1) containing test statistic values. - var_names : list, optional (default: None) - List of variable names. If None, range(N) is used. - link_width : array-like, optional (default: None) - Array of val_matrix.shape specifying relative link width with maximum - given by arrow_linewidth. If None, all links have same width. - link_attribute : array-like, optional (default: None) - String array of val_matrix.shape specifying link attributes. - digits : int - Number of significant digits for writing link value and width. - """ - - graph = np.copy(graph.squeeze()) - - N = len(graph) - - if val_matrix is None: - val_matrix_exists = false - else: - val_matrix_exists = True - - if graph.ndim == 4: - raise ValueError("Time series graph of shape (N,N,tau_max+1,tau_max+1) cannot be represented by plot_graph," - " use plot_time_series_graph instead.") - - if graph.ndim == 2: - # If a non-time series (N,N)-graph is given, insert a dummy dimension - graph = np.expand_dims(graph, axis = 2) - - (graph, val_matrix, link_width, link_attribute) = _check_matrices( - graph, val_matrix, link_width, link_attribute) - - if var_names is None: - var_names = range(N) - - - header = ['Variable i', 'Variable j', 'Time lag of i', 'Link type i --- j'] - if val_matrix_exists: - header.append('Link value') - if link_attribute is not None: - header.append('Link attribute') - if link_width is not None: - header.append('Link width') - - - with open(save_name, 'w', encoding='UTF8', newline='') as f: - writer = csv.writer(f) - - # write the header - writer.writerow(header) - - # write the link data - for (i, j, tau) in zip(*np.where(graph!='')): - # Only consider contemporaneous links once - if tau > 0 or i <= j: - row = [var_names[i], var_names[i], f"{tau}", graph[i,j,tau]] - if val_matrix_exists: - row.append(f"{val_matrix[i,j,tau]:.{digits}}") - if link_attribute is not None: - row.append(link_attribute[i,j,tau]) - if link_width is not None: - row.append(f"{link_width[i,j,tau]:.{digits}}") - - writer.writerow(row)
- - -if __name__ == "__main__": - - import sys - matplotlib.rc('xtick', labelsize=6) - matplotlib.rc('ytick', labelsize=6) - - # Consider some toy data - import tigramite - import tigramite.toymodels.structural_causal_processes as toys - import tigramite.data_processing as pp - from tigramite.causal_effects import CausalEffects - - - # T = 1000 - def lin_f(x): return x - # auto_coeff = 0.3 - # coeff = 1. - # links = { - # 0: [((0, -1), auto_coeff, lin_f)], - # 1: [((1, -1), auto_coeff, lin_f), ((0, 0), coeff, lin_f)], - # 2: [((2, -1), auto_coeff, lin_f), ((1, 0), coeff, lin_f)], - # } - # data, nonstat = toys.structural_causal_process(links, T=T, - # noises=None, seed=7) - # dataframe = pp.DataFrame(data, var_names=range(len(links))) - - # links = { - # 0: [((0, -1), 1.5*auto_coeff, lin_f)], - # 1: [((1, -1), 1.5*auto_coeff, lin_f), ((0, 0), 1.5*coeff, lin_f)], - # 2: [((2, -1), 1.5*auto_coeff, lin_f), ((1, 0), 1.5*coeff, lin_f)], - # } - # data2, nonstat = toys.structural_causal_process(links, T=T, - # noises=None, seed=7) - # dataframe2 = pp.DataFrame(data2, var_names=range(len(links))) - # plot_densityplots(dataframe, name='test.pdf') - - # N = len(links) - - - # parcorr = ParCorr(significance='analytic') - # pcmci = PCMCI( - # dataframe=dataframe, - # cond_ind_test=parcorr, - # verbosity=1) - - - # correlations = pcmci.get_lagged_dependencies(tau_max=20, val_only=True)['val_matrix'] - # lag_func_matrix = plot_lagfuncs(val_matrix=correlations, setup_args={'label_space_left':0.05, - # 'x_base':5, 'y_base':.5}) - # plt.show() - - - # N = len(links) - # matrix = setup_density_matrix(N=N, var_names=dataframe.var_names) - # matrix.add_densityplot(dataframe=dataframe, - # # selected_dataset=0, - # **{ - # 'label':'Weak', - # 'label_color':'blue', - # "snskdeplot_args" : {'cmap':'Reds'}, - # }), #{'cmap':'Blues', 'alpha':0.3}}) - # matrix.add_densityplot(dataframe=dataframe2, selected_dataset=0, - # **{'label':'Strong', - # 'label_color':'red', - # "snskdeplot_args" : {'cmap':'Blues', 'alpha':0.3}}) - # matrix.adjustfig(name='test.pdf') - - # matrix = setup_scatter_matrix(N=dataframe.N, - # var_names=dataframe.var_names) - # matrix_lags = np.ones((3, 3)).astype('int') - # matrix.add_scatterplot(dataframe=dataframe, matrix_lags=matrix_lags, - # label='ones', alpha=0.4) - # matrix_lags = 2*np.ones((3, 3)).astype('int') - # matrix.add_scatterplot(dataframe=dataframe, matrix_lags=matrix_lags, - # label='twos', color='red', alpha=0.4) - - # matrix.savefig(name='scattertest.pdf') - - - # pyplot.show() - # sys.exit(0) - - - # val_matrix = np.zeros((4, 4, 3)) - - # Complete test case - graph = np.zeros((3,3,2), dtype='<U3') - val_matrix = np.random.rand(*graph.shape) - val_matrix[:,:,0] = 0.2 - graph[:] = "" - graph[0, 1, 0] = "<-+" - graph[1, 0, 0] = "+->" - graph[0, 0, 1] = "-->" - graph[1, 1, 1] = "-->" - - graph[0, 1, 1] = "+->" - graph[1, 0, 1] = "o-o" - - graph[1, 2, 0] = "<->" - graph[2, 1, 0] = "<->" - - graph[0, 2, 0] = "x-x" - graph[2, 0, 0] = "x-x" - nolinks = np.zeros(graph.shape) - # nolinks[range(4), range(4), 1] = 1 - - fig, axes = pyplot.subplots(nrows=1, ncols=1, figsize=(3, 2)) - label_space_left = 0.2 - label_space_top = 0. - network_lower_bound = 0. - show_colorbar=True - plot_graph(graph=graph, - # fig_ax = (fig, axes), - val_matrix=val_matrix, - # figsize=(5, 5), - var_names = ['Var %s' %i for i in range(len(graph))], - # arrow_linewidth=6, - # label_space_left = label_space_left, - # label_space_top = label_space_top, - # # network_lower_bound=network_lower_bound, - # save_name="tsg_test.pdf" - ) - - # axes[0,0].scatter(np.random.randn(100), np.random.randn(100)) - - # plot_graph(graph=graph, - # fig_ax = (fig, axes[0,0]), - # val_matrix=val_matrix, - # # figsize=(5, 5), - # var_names = ['Variable %s' %i for i in range(len(graph))], - # arrow_linewidth=6, - # label_space_left = label_space_left, - # label_space_top = label_space_top, - # network_lower_bound=network_lower_bound, - # # save_name="tsg_test.pdf" - # ) - # plot_graph(graph=graph, - # fig_ax = (fig, axes[0,1]), - # val_matrix=val_matrix, - # var_names = ['Var %s' %i for i in range(len(graph))], - # arrow_linewidth=6, - # label_space_left = label_space_left, - # label_space_top = label_space_top, - # network_lower_bound=network_lower_bound, - # ) - # plot_graph(graph=graph, - # fig_ax = (fig, axes[1,0]), - # val_matrix=val_matrix, - # var_names = ['Var %s' %i for i in range(len(graph))], - # arrow_linewidth=6, - # label_space_left = label_space_left, - # label_space_top = label_space_top, - # network_lower_bound=network_lower_bound, - # ) - # plot_graph(graph=graph, - # fig_ax = (fig, axes[1,1]), - # val_matrix=val_matrix, - # var_names = ['Var %s' %i for i in range(len(graph))], - # arrow_linewidth=6, - # label_space_left = label_space_left, - # label_space_top = label_space_top, - # network_lower_bound=network_lower_bound, - # ) - # pyplot.subplots_adjust(wspace=0.3, hspace=0.2) - pyplot.tight_layout() - pyplot.savefig("test.pdf") - - # def lin_f(x): return x - - # links_coeffs = {0: [((0, -1), 0.3, lin_f)], #, ((1, -1), 0.5, lin_f)], - # 1: [((1, -1), 0.3, lin_f), ((0, 0), 0.7, lin_f), ((2, -1), 0.5, lin_f)], - # 2: [], - # 3: [((3, -1), 0., lin_f), ((2, 0), 0.6, lin_f),] - # } - # graph = CausalEffects.get_graph_from_dict(links_coeffs, tau_max=None) - - # val_matrix = np.random.randn(*graph.shape) - # val_matrix[:,:,0] = 0. - # write_csv(graph=graph, - # val_matrix=val_matrix, - # var_names=['s %d' %i for i in range(graph.shape[0])], - # link_width=np.ones(graph.shape), - # link_attribute = np.ones(graph.shape, dtype='<U10'), - # save_name='test.cv') - - # # print(graph) - # X = [(0,-1)] - # Y = [(1,0)] - # causal_effects = CausalEffects(graph, graph_type='stationary_dag', X=X, Y=Y, S=None, - # hidden_variables=[(2, 0), (2, -1), (2, -2)], - # verbosity=0) - - # pyplot.show() -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tigramite/toymodels/structural_causal_processes.html b/docs/_build/html/_modules/tigramite/toymodels/structural_causal_processes.html deleted file mode 100644 index 8ecaa4a2..00000000 --- a/docs/_build/html/_modules/tigramite/toymodels/structural_causal_processes.html +++ /dev/null @@ -1,1245 +0,0 @@ - - - - - - - - tigramite.toymodels.structural_causal_processes — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for tigramite.toymodels.structural_causal_processes

-"""Tigramite toymodels."""
-
-# Author: Jakob Runge <jakob@jakob-runge.com>
-#
-# License: GNU General Public License v3.0
-from __future__ import print_function
-from collections import defaultdict, OrderedDict
-import sys
-import warnings
-import copy
-import math
-import numpy as np
-import scipy.sparse
-import scipy.sparse.linalg
-from numba import jit
-import itertools
-
-def _generate_noise(covar_matrix, time=1000, use_inverse=False):
-    """
-    Generate a multivariate normal distribution using correlated innovations.
-
-    Parameters
-    ----------
-    covar_matrix : array
-        Covariance matrix of the random variables
-    time : int
-        Sample size
-    use_inverse : bool, optional
-        Negate the off-diagonal elements and invert the covariance matrix
-        before use
-
-    return_eigenvectors
-    -------
-    noise : array
-        Random noise generated according to covar_matrix
-    """
-    # Pull out the number of nodes from the shape of the covar_matrix
-    n_nodes = covar_matrix.shape[0]
-    # Make a deep copy for use in the inverse case
-    this_covar = covar_matrix
-    # Take the negative inverse if needed
-    if use_inverse:
-        this_covar = copy.deepcopy(covar_matrix)
-        this_covar *= -1
-        this_covar[np.diag_indices_from(this_covar)] *= -1
-        this_covar = np.linalg.inv(this_covar)
-    # Return the noise distribution
-    return np.random.multivariate_normal(mean=np.zeros(n_nodes),
-                                            cov=this_covar,
-                                            size=time)
-
-def _check_stability(graph):
-    """
-    Raises an AssertionError if the input graph corresponds to a non-stationary
-    process.
-
-    Parameters
-    ----------
-    graph : array
-        Lagged connectivity matrices. Shape is (n_nodes, n_nodes, max_delay+1)
-    """
-    # Get the shape from the input graph
-    n_nodes, _, period = graph.shape
-    # Set the top section as the horizontally stacked matrix of
-    # shape (n_nodes, n_nodes * period)
-    stability_matrix = \
-        scipy.sparse.hstack([scipy.sparse.lil_matrix(graph[:, :, t_slice])
-                             for t_slice in range(period)])
-    # Extend an identity matrix of shape
-    # (n_nodes * (period - 1), n_nodes * (period - 1)) to shape
-    # (n_nodes * (period - 1), n_nodes * period) and stack the top section on
-    # top to make the stability matrix of shape
-    # (n_nodes * period, n_nodes * period)
-    stability_matrix = \
-        scipy.sparse.vstack([stability_matrix,
-                             scipy.sparse.eye(n_nodes * (period - 1),
-                                              n_nodes * period)])
-    # Check the number of dimensions to see if we can afford to use a dense
-    # matrix
-    n_eigs = stability_matrix.shape[0]
-    if n_eigs <= 25:
-        # If it is relatively low in dimensionality, use a dense array
-        stability_matrix = stability_matrix.todense()
-        eigen_values, _ = scipy.linalg.eig(stability_matrix)
-    else:
-        # If it is a large dimensionality, convert to a compressed row sorted
-        # matrix, as it may be easier for the linear algebra package
-        stability_matrix = stability_matrix.tocsr()
-        # Get the eigen values of the stability matrix
-        eigen_values = scipy.sparse.linalg.eigs(stability_matrix,
-                                                k=(n_eigs - 2),
-                                                return_eigenvectors=False)
-    # Ensure they all have less than one magnitude
-    assert np.all(np.abs(eigen_values) < 1.), \
-        "Values given by time lagged connectivity matrix corresponds to a "+\
-        " non-stationary process!"
-
-def _check_initial_values(initial_values, shape):
-    """
-    Raises a AssertionError if the input initial values:
-        * Are not a numpy array OR
-        * Do not have the shape (n_nodes, max_delay+1)
-
-    Parameters
-    ----------
-    graph : array
-        Lagged connectivity matrices. Shape is (n_nodes, n_nodes, max_delay+1)
-    """
-    # Ensure it is a numpy array
-    assert isinstance(initial_values, np.ndarray),\
-        "User must provide initial_values as a numpy.ndarray"
-    # Check the shape is correct
-    assert initial_values.shape == shape,\
-        "Initial values must be of shape (n_nodes, max_delay+1)"+\
-        "\n current shape : " + str(initial_values.shape)+\
-        "\n desired shape : " + str(shape)
-
-def _var_network(graph,
-                 add_noise=True,
-                 inno_cov=None,
-                 invert_inno=False,
-                 T=100,
-                 initial_values=None):
-    """
-    Returns a vector-autoregressive process with correlated innovations.
-
-    Useful for testing.
-
-    Example:
-        graph=numpy.array([[[0.2,0.,0.],[0.5,0.,0.]],
-                           [[0.,0.1,0. ],[0.3,0.,0.]]])
-
-        represents a process
-
-        X_1(t) = 0.2 X_1(t-1) + 0.5 X_2(t-1) + eps_1(t)
-        X_2(t) = 0.3 X_2(t-1) + 0.1 X_1(t-2) + eps_2(t)
-
-        with inv_inno_cov being the negative (except for diagonal) inverse
-        covariance matrix of (eps_1(t), eps_2(t)) OR inno_cov being
-        the covariance. Initial values can also be provided.
-
-
-    Parameters
-    ----------
-    graph : array
-        Lagged connectivity matrices. Shape is (n_nodes, n_nodes, max_delay+1)
-    add_noise : bool, optional (default: True)
-        Flag to add random noise or not
-    inno_cov : array, optional (default: None)
-        Covariance matrix of innovations.
-    invert_inno : bool, optional (defualt : False)
-        Flag to negate off-diagonal elements of inno_cov and invert it before
-        using it as the covariance matrix of innovations
-    T : int, optional (default: 100)
-        Sample size.
-
-    initial_values : array, optional (defult: None)
-        Initial values for each node. Shape is (n_nodes, max_delay+1), i.e. must
-        be of shape (graph.shape[1], graph.shape[2]).
-
-    Returns
-    -------
-    X : array
-        Array of realization.
-    """
-
-    n_nodes, _, period = graph.shape
-
-    time = T
-    # Test stability
-    _check_stability(graph)
-
-    # Generate the returned data
-    data = np.random.randn(n_nodes, time)
-    # Load the initial values
-    if initial_values is not None:
-        # Check the shape of the initial values
-        _check_initial_values(initial_values, data[:, :period].shape)
-        # Input the initial values
-        data[:, :period] = initial_values
-
-    # Check if we are adding noise
-    noise = None
-    if add_noise:
-        # Use inno_cov if it was provided
-        if inno_cov is not None:
-            noise = _generate_noise(inno_cov,
-                                    time=time,
-                                    use_inverse=invert_inno)
-        # Otherwise just use uncorrelated random noise
-        else:
-            noise = np.random.randn(time, n_nodes)
-
-    for a_time in range(period, time):
-        data_past = np.repeat(
-            data[:, a_time-period:a_time][:, ::-1].reshape(1, n_nodes, period),
-            n_nodes, axis=0)
-        data[:, a_time] = (data_past*graph).sum(axis=2).sum(axis=1)
-        if add_noise:
-            data[:, a_time] += noise[a_time]
-
-    return data.transpose()
-
-def _iter_coeffs(parents_neighbors_coeffs):
-    """
-    Iterator through the current parents_neighbors_coeffs structure.  Mainly to
-    save repeated code and make it easier to change this structure.
-
-    Parameters
-    ----------
-    parents_neighbors_coeffs : dict
-        Dictionary of format:
-        {..., j:[((var1, lag1), coef1), ((var2, lag2), coef2), ...], ...} for
-        all variables where vars must be in [0..N-1] and lags <= 0 with number
-        of variables N.
-
-    Yields
-    -------
-    (node_id, parent_id, time_lag, coeff) : tuple
-        Tuple defining the relationship between nodes across time
-    """
-    # Iterate through all defined nodes
-    for node_id in list(parents_neighbors_coeffs):
-        # Iterate over parent nodes and unpack node and coeff
-        for (parent_id, time_lag), coeff in parents_neighbors_coeffs[node_id]:
-            # Yield the entry
-            yield node_id, parent_id, time_lag, coeff
-
-def _check_parent_neighbor(parents_neighbors_coeffs):
-    """
-    Checks to insure input parent-neighbor connectivity input is sane.  This
-    means that:
-        * all time lags are non-positive
-        * all parent nodes are included as nodes themselves
-        * all node indexing is contiguous
-        * all node indexing starts from zero
-    Raises a ValueError if any one of these conditions are not met.
-
-    Parameters
-    ----------
-    parents_neighbors_coeffs : dict
-        Dictionary of format:
-        {..., j:[((var1, lag1), coef1), ((var2, lag2), coef2), ...], ...} for
-        all variables where vars must be in [0..N-1] and lags <= 0 with number
-        of variables N.
-    """
-    # Initialize some lists for checking later
-    all_nodes = set()
-    all_parents = set()
-    # Iterate through variables
-    for j in list(parents_neighbors_coeffs):
-        # Cache all node ids to ensure they are contiguous
-        all_nodes.add(j)
-    # Iterate through all nodes
-    for j, i, tau, _ in _iter_coeffs(parents_neighbors_coeffs):
-        # Check all time lags are equal to or less than zero
-        if tau > 0:
-            raise ValueError("Lag between parent {} and node {}".format(i, j)+\
-                             " is {} > 0, must be <= 0!".format(tau))
-        # Cache all parent ids to ensure they are mentioned as node ids
-        all_parents.add(i)
-    # Check that all nodes are contiguous from zero
-    all_nodes_list = sorted(list(all_nodes))
-    if all_nodes_list != list(range(len(all_nodes_list))):
-        raise ValueError("Node IDs in input dictionary must be contiguous"+\
-                         " and start from zero!\n"+\
-                         " Found IDs : [" +\
-                         ",".join(map(str, all_nodes_list))+ "]")
-    # Check that all parent nodes are mentioned as a node ID
-    if not all_parents.issubset(all_nodes):
-        missing_nodes = sorted(list(all_parents - all_nodes))
-        all_parents_list = sorted(list(all_parents))
-        raise ValueError("Parent IDs in input dictionary must also be in set"+\
-                         " of node IDs."+\
-                         "\n Parent IDs "+" ".join(map(str, all_parents_list))+\
-                         "\n Node IDs "+" ".join(map(str, all_nodes_list)) +\
-                         "\n Missing IDs " + " ".join(map(str, missing_nodes)))
-
-def _check_symmetric_relations(a_matrix):
-    """
-    Check if the argument matrix is symmetric.  Raise a value error with details
-    about the offending elements if it is not.  This is useful for checking the
-    instantaneously linked nodes have the same link strength.
-
-    Parameters
-    ----------
-    a_matrix : 2D numpy array
-        Relationships between nodes at tau = 0. Indexed such that first index is
-        node and second is parent, i.e. node j with parent i has strength
-        a_matrix[j,i]
-    """
-    # Check it is symmetric
-    if not np.allclose(a_matrix, a_matrix.T, rtol=1e-10, atol=1e-10):
-        # Store the disagreement elements
-        bad_elems = ~np.isclose(a_matrix, a_matrix.T, rtol=1e-10, atol=1e-10)
-        bad_idxs = np.argwhere(bad_elems)
-        error_message = ""
-        for node, parent in bad_idxs:
-            # Check that we haven't already printed about this pair
-            if bad_elems[node, parent]:
-                error_message += \
-                    "Parent {:d} of node {:d}".format(parent, node)+\
-                    " has coefficient {:f}.\n".format(a_matrix[node, parent])+\
-                    "Parent {:d} of node {:d}".format(node, parent)+\
-                    " has coefficient {:f}.\n".format(a_matrix[parent, node])
-            # Check if we already printed about this one
-            bad_elems[node, parent] = False
-            bad_elems[parent, node] = False
-        raise ValueError("Relationships between nodes at tau=0 are not"+\
-                         " symmetric!\n"+error_message)
-
-def _find_max_time_lag_and_node_id(parents_neighbors_coeffs):
-    """
-    Function to find the maximum time lag in the parent-neighbors-coefficients
-    object, as well as the largest node ID
-
-    Parameters
-    ----------
-    parents_neighbors_coeffs : dict
-        Dictionary of format:
-        {..., j:[((var1, lag1), coef1), ((var2, lag2), coef2), ...], ...} for
-        all variables where vars must be in [0..N-1] and lags <= 0 with number
-        of variables N.
-
-    Returns
-    -------
-    (max_time_lag, max_node_id) : tuple
-        Tuple of the maximum time lag and maximum node ID
-    """
-    # Default maximum lag and node ID
-    max_time_lag = 0
-    max_node_id = len(parents_neighbors_coeffs.keys()) - 1
-    # Iterate through the keys in parents_neighbors_coeffs
-    for j, _, tau, _ in _iter_coeffs(parents_neighbors_coeffs):
-        # Find max lag time
-        max_time_lag = max(max_time_lag, abs(tau))
-        # Find the max node ID
-        # max_node_id = max(max_node_id, j)
-    # Return these values
-    return max_time_lag, max_node_id
-
-def _get_true_parent_neighbor_dict(parents_neighbors_coeffs):
-    """
-    Function to return the dictionary of true parent neighbor causal
-    connections in time.
-
-    Parameters
-    ----------
-    parents_neighbors_coeffs : dict
-        Dictionary of format:
-        {..., j:[((var1, lag1), coef1), ((var2, lag2), coef2), ...], ...} for
-        all variables where vars must be in [0..N-1] and lags <= 0 with number
-        of variables N.
-
-    Returns
-    -------
-    true_parent_neighbor : dict
-        Dictionary of lists of tuples.  The dictionary is keyed by node ID, the
-        list stores the tuple values (parent_node_id, time_lag)
-    """
-    # Initialize the returned dictionary of lists
-    true_parents_neighbors = defaultdict(list)
-    for j in parents_neighbors_coeffs:
-        for link_props in parents_neighbors_coeffs[j]:
-            i, tau = link_props[0]
-            coeff = link_props[1]
-            # Add parent node id and lag if non-zero coeff
-            if coeff != 0.:
-                true_parents_neighbors[j].append((i, tau))
-    # Return the true relations
-    return true_parents_neighbors
-
-def _get_covariance_matrix(parents_neighbors_coeffs):
-    """
-    Determines the covariance matrix for correlated innovations
-
-    Parameters
-    ----------
-    parents_neighbors_coeffs : dict
-        Dictionary of format:
-        {..., j:[((var1, lag1), coef1), ((var2, lag2), coef2), ...], ...} for
-        all variables where vars must be in [0..N-1] and lags <= 0 with number
-        of variables N.
-
-    Returns
-    -------
-    covar_matrix : numpy array
-        Covariance matrix implied by the parents_neighbors_coeffs.  Used to
-        generate correlated innovations.
-    """
-    # Get the total number of nodes
-    _, max_node_id = \
-            _find_max_time_lag_and_node_id(parents_neighbors_coeffs)
-    n_nodes = max_node_id + 1
-    # Initialize the covariance matrix
-    covar_matrix = np.identity(n_nodes)
-    # Iterate through all the node connections
-    for j, i, tau, coeff in _iter_coeffs(parents_neighbors_coeffs):
-        # Add to covar_matrix if node connection is instantaneous
-        if tau == 0:
-            covar_matrix[j, i] = coeff
-    return covar_matrix
-
-def _get_lag_connect_matrix(parents_neighbors_coeffs):
-    """
-    Generates the lagged connectivity matrix from a parent-neighbor
-    connectivity dictionary.  Used to generate the input for _var_network
-
-    Parameters
-    ----------
-    parents_neighbors_coeffs : dict
-        Dictionary of format:
-        {..., j:[((var1, lag1), coef1), ((var2, lag2), coef2), ...], ...} for
-        all variables where vars must be in [0..N-1] and lags <= 0 with number
-        of variables N.
-
-    Returns
-    -------
-    connect_matrix : numpy array
-        Lagged connectivity matrix. Shape is (n_nodes, n_nodes, max_delay+1)
-    """
-    # Get the total number of nodes and time lag
-    max_time_lag, max_node_id = \
-            _find_max_time_lag_and_node_id(parents_neighbors_coeffs)
-    n_nodes = max_node_id + 1
-    n_times = max_time_lag + 1
-    # Initialize full time graph
-    connect_matrix = np.zeros((n_nodes, n_nodes, n_times))
-    for j, i, tau, coeff in _iter_coeffs(parents_neighbors_coeffs):
-        # If there is a non-zero time lag, add the connection to the matrix
-        if tau != 0:
-            connect_matrix[j, i, -(tau+1)] = coeff
-    # Return the connectivity matrix
-    return connect_matrix
-
-
[docs]def var_process(parents_neighbors_coeffs, T=1000, use='inv_inno_cov', - verbosity=0, initial_values=None): - """Returns a vector-autoregressive process with correlated innovations. - - Wrapper around var_network with possibly more user-friendly input options. - - Parameters - ---------- - parents_neighbors_coeffs : dict - Dictionary of format: {..., j:[((var1, lag1), coef1), ((var2, lag2), - coef2), ...], ...} for all variables where vars must be in [0..N-1] - and lags <= 0 with number of variables N. If lag=0, a nonzero value - in the covariance matrix (or its inverse) is implied. These should be - the same for (i, j) and (j, i). - use : str, optional (default: 'inv_inno_cov') - Specifier, either 'inno_cov' or 'inv_inno_cov'. - Any other specifier will result in non-correlated noise. - For debugging, 'no_noise' can also be specified, in which case random - noise will be disabled. - T : int, optional (default: 1000) - Sample size. - verbosity : int, optional (default: 0) - Level of verbosity. - initial_values : array, optional (default: None) - Initial values for each node. Shape must be (N, max_delay+1) - - Returns - ------- - data : array-like - Data generated from this process - true_parent_neighbor : dict - Dictionary of lists of tuples. The dictionary is keyed by node ID, the - list stores the tuple values (parent_node_id, time_lag) - """ - # Check the input parents_neighbors_coeffs dictionary for sanity - _check_parent_neighbor(parents_neighbors_coeffs) - # Generate the true parent neighbors graph - true_parents_neighbors = \ - _get_true_parent_neighbor_dict(parents_neighbors_coeffs) - # Generate the correlated innovations - innos = _get_covariance_matrix(parents_neighbors_coeffs) - # Generate the lagged connectivity matrix for _var_network - connect_matrix = _get_lag_connect_matrix(parents_neighbors_coeffs) - # Default values as per 'inno_cov' - add_noise = True - invert_inno = False - # Use the correlated innovations - if use == 'inno_cov': - if verbosity > 0: - print("\nInnovation Cov =\n%s" % str(innos)) - # Use the inverted correlated innovations - elif use == 'inv_inno_cov': - invert_inno = True - if verbosity > 0: - print("\nInverse Innovation Cov =\n%s" % str(innos)) - # Do not use any noise - elif use == 'no_noise': - add_noise = False - if verbosity > 0: - print("\nInverse Innovation Cov =\n%s" % str(innos)) - # Use decorrelated noise - else: - innos = None - # Ensure the innovation matrix is symmetric if it is used - if (innos is not None) and add_noise: - _check_symmetric_relations(innos) - # Generate the data using _var_network - data = _var_network(graph=connect_matrix, - add_noise=add_noise, - inno_cov=innos, - invert_inno=invert_inno, - T=T, - initial_values=initial_values) - # Return the data - return data, true_parents_neighbors
- -class _Graph(): - r"""Helper class to handle graph properties. - - Parameters - ---------- - vertices : list - List of nodes. - """ - def __init__(self,vertices): - self.graph = defaultdict(list) - self.V = vertices - - def addEdge(self,u,v): - """Adding edge to graph.""" - self.graph[u].append(v) - - def isCyclicUtil(self, v, visited, recStack): - """Utility function to return whether graph is cyclic.""" - # Mark current node as visited and - # adds to recursion stack - visited[v] = True - recStack[v] = True - - # Recur for all neighbours - # if any neighbour is visited and in - # recStack then graph is cyclic - for neighbour in self.graph[v]: - if visited[neighbour] == False: - if self.isCyclicUtil(neighbour, visited, recStack) == True: - return True - elif recStack[neighbour] == True: - return True - - # The node needs to be poped from - # recursion stack before function ends - recStack[v] = False - return False - - def isCyclic(self): - """Returns whether graph is cyclic.""" - visited = [False] * self.V - recStack = [False] * self.V - for node in range(self.V): - if visited[node] == False: - if self.isCyclicUtil(node,visited,recStack) == True: - return True - return False - - def topologicalSortUtil(self,v,visited,stack): - """A recursive function used by topologicalSort .""" - # Mark the current node as visited. - visited[v] = True - - # Recur for all the vertices adjacent to this vertex - for i in self.graph[v]: - if visited[i] == False: - self.topologicalSortUtil(i,visited,stack) - - # Push current vertex to stack which stores result - stack.insert(0,v) - - def topologicalSort(self): - """A sorting function. """ - # Mark all the vertices as not visited - visited = [False]*self.V - stack =[] - - # Call the recursive helper function to store Topological - # Sort starting from all vertices one by one - for i in range(self.V): - if visited[i] == False: - self.topologicalSortUtil(i, visited,stack) - - return stack - -
[docs]def structural_causal_process(links, T, noises=None, - intervention=None, intervention_type='hard', - transient_fraction=0.2, - seed=None): - """Returns a time series generated from a structural causal process. - - Allows lagged and contemporaneous dependencies and includes the option - to have intervened variables or particular samples. - - The interventional data is in particular useful for generating ground - truth for the CausalEffects class. - - In more detail, the method implements a generalized additive noise model process of the form - - .. math:: X^j_t = \\eta^j_t + \\sum_{X^i_{t-\\tau}\\in \\mathcal{P}(X^j_t)} - c^i_{\\tau} f^i_{\\tau}(X^i_{t-\\tau}) - - Links have the format ``{0:[((i, -tau), coeff, func),...], 1:[...], - ...}`` where ``func`` can be an arbitrary (nonlinear) function provided - as a python callable with one argument and coeff is the multiplication - factor. The noise distributions of :math:`\\eta^j` can be specified in - ``noises``. - - Through the parameters ``intervention`` and ``intervention_type`` the model - can also be generated with intervened variables. - - Parameters - ---------- - links : dict - Dictionary of format: {0:[((i, -tau), coeff, func),...], 1:[...], - ...} for all variables where i must be in [0..N-1] and tau >= 0 with - number of variables N. coeff must be a float and func a python - callable of one argument. - T : int - Sample size. - noises : list of callables or array, optional (default: 'np.random.randn') - Random distribution function that is called with noises[j](T). If an array, - it must be of shape ((transient_fraction + 1)*T, N). - intervention : dict - Dictionary of format: {1:np.array, ...} containing only keys of intervened - variables with the value being the array of length T with interventional values. - Set values to np.nan to leave specific time points of a variable un-intervened. - intervention_type : str or dict - Dictionary of format: {1:'hard', 3:'soft', ...} to specify whether intervention is - hard (set value) or soft (add value) for variable j. If str, all interventions have - the same type. - transient_fraction : float - Added percentage of T used as a transient. In total a realization of length - (transient_fraction + 1)*T will be generated, but then transient_fraction*T will be - cut off. - seed : int, optional (default: None) - Random seed. - - Returns - ------- - data : array-like - Data generated from this process, shape (T, N). - nonvalid : bool - Indicates whether data has NaNs or infinities. - - """ - random_state = np.random.RandomState(seed) - - N = len(links.keys()) - if noises is None: - noises = [random_state.randn for j in range(N)] - - if N != max(links.keys())+1: - raise ValueError("links keys must match N.") - - if isinstance(noises, np.ndarray): - if noises.shape != (T + int(math.floor(transient_fraction*T)), N): - raise ValueError("noises.shape must match ((transient_fraction + 1)*T, N).") - else: - if N != len(noises): - raise ValueError("noises keys must match N.") - - # Check parameters - max_lag = 0 - contemp_dag = _Graph(N) - for j in range(N): - for link_props in links[j]: - var, lag = link_props[0] - coeff = link_props[1] - func = link_props[2] - if lag == 0: contemp = True - if var not in range(N): - raise ValueError("var must be in 0..{}.".format(N-1)) - if 'float' not in str(type(coeff)): - raise ValueError("coeff must be float.") - if lag > 0 or type(lag) != int: - raise ValueError("lag must be non-positive int.") - max_lag = max(max_lag, abs(lag)) - - # Create contemp DAG - if var != j and lag == 0: - contemp_dag.addEdge(var, j) - - if contemp_dag.isCyclic() == 1: - raise ValueError("Contemporaneous links must not contain cycle.") - - causal_order = contemp_dag.topologicalSort() - - if intervention is not None: - if intervention_type is None: - intervention_type = {j:'hard' for j in intervention} - elif isinstance(intervention_type, str): - intervention_type = {j:intervention_type for j in intervention} - for j in intervention.keys(): - if len(intervention[j]) != T: - raise ValueError("intervention array for j=%s must be of length T = %d" %(j, T)) - if j not in intervention_type.keys(): - raise ValueError("intervention_type dictionary must contain entry for %s" %(j)) - - transient = int(math.floor(transient_fraction*T)) - - data = np.zeros((T+transient, N), dtype='float32') - for j in range(N): - if isinstance(noises, np.ndarray): - data[:, j] = noises[:, j] - else: - data[:, j] = noises[j](T+transient) - - for t in range(max_lag, T+transient): - for j in causal_order: - - if (intervention is not None and j in intervention and t >= transient - and np.isnan(intervention[j][t - transient]) == False): - if intervention_type[j] == 'hard': - data[t, j] = intervention[j][t - transient] - # Move to next j and skip link_props-loop from parents below - continue - else: - data[t, j] += intervention[j][t - transient] - - # This loop is only entered if intervention_type != 'hard' - for link_props in links[j]: - var, lag = link_props[0] - coeff = link_props[1] - func = link_props[2] - data[t, j] += coeff * func(data[t + lag, var]) - - data = data[transient:] - - nonvalid = (np.any(np.isnan(data)) or np.any(np.isinf(data))) - - return data, nonvalid
- -def _get_minmax_lag(links): - """Helper function to retrieve tau_min and tau_max from links. - """ - - N = len(links) - - # Get maximum time lag - min_lag = np.inf - max_lag = 0 - for j in range(N): - for link_props in links[j]: - if len(link_props) > 2: - var, lag = link_props[0] - coeff = link_props[1] - # func = link_props[2] - if not isinstance(coeff, float) or coeff != 0.: - min_lag = min(min_lag, abs(lag)) - max_lag = max(max_lag, abs(lag)) - else: - var, lag = link_props - min_lag = min(min_lag, abs(lag)) - max_lag = max(max_lag, abs(lag)) - - return min_lag, max_lag - -def _get_parents(links, exclude_contemp=False): - """Helper function to parents from links - """ - - N = len(links) - - # Get maximum time lag - parents = {} - for j in range(N): - parents[j] = [] - for link_props in links[j]: - var, lag = link_props[0] - coeff = link_props[1] - # func = link_props[2] - if coeff != 0.: - if not (exclude_contemp and lag == 0): - parents[j].append((var, lag)) - - return parents - -def _get_children(parents): - """Helper function to children from parents - """ - - N = len(parents) - children = dict([(j, []) for j in range(N)]) - - for j in range(N): - for par in parents[j]: - i, tau = par - children[i].append((j, abs(tau))) - - return children - - - - - -
[docs]def generate_structural_causal_process( - N=2, - L=1, - dependency_funcs=['linear'], - dependency_coeffs=[-0.5, 0.5], - auto_coeffs=[0.5, 0.7], - contemp_fraction=0., - max_lag=1, - noise_dists=['gaussian'], - noise_means=[0.], - noise_sigmas=[0.5, 2.], - noise_seed=None, - seed=None): - """"Randomly generates a structural causal process based on input characteristics. - - The process has the form - - .. math:: X^j_t = \\eta^j_t + a^j X^j_{t-1} + \\sum_{X^i_{t-\\tau}\\in pa(X^j_t)} - c^i_{\\tau} f^i_{\\tau}(X^i_{t-\\tau}) - - where ``j = 1, ..., N``. Here the properties of :math:`\\eta^j_t` are - randomly frawn from the noise parameters (see below), :math:`pa - (X^j_t)` are the causal parents drawn randomly such that in total ``L`` - links occur out of which ``contemp_fraction`` are contemporaneous and - their time lags are drawn from ``[0 or 1..max_lag]``, the - coefficients :math:`c^i_{\\tau}` are drawn from - ``dependency_coeffs``, :math:`a^j` are drawn from ``auto_coeffs``, - and :math:`f^i_{\\tau}` are drawn from ``dependency_funcs``. - - The returned dictionary links has the format - ``{0:[((i, -tau), coeff, func),...], 1:[...], ...}`` - where ``func`` can be an arbitrary (nonlinear) function provided - as a python callable with one argument and coeff is the multiplication - factor. The noise distributions of :math:`\\eta^j` are returned in - ``noises``, see specifics below. - - The process might be non-stationary. In case of asymptotically linear - dependency functions and no contemporaneous links this can be checked with - ``check_stationarity(...)``. Otherwise check by generating a large sample - and test for np.inf. - - Parameters - --------- - N : int - Number of variables. - L : int - Number of cross-links between two different variables. - dependency_funcs : list - List of callables or strings 'linear' or 'nonlinear' for a linear and a specific nonlinear function - that is asymptotically linear. - dependency_coeffs : list - List of floats from which the coupling coefficients are randomly drawn. - auto_coeffs : list - List of floats from which the lag-1 autodependencies are randomly drawn. - contemp_fraction : float [0., 1] - Fraction of the L links that are contemporaneous (lag zero). - max_lag : int - Maximum lag from which the time lags of links are drawn. - noise_dists : list - List of noise functions. Either in - {'gaussian', 'weibull', 'uniform'} or user-specified, in which case - it must be parametrized just by the size parameter. E.g. def beta - (T): return np.random.beta(a=1, b=0.5, T) - noise_means : list - Noise mean. Only used for noise in {'gaussian', 'weibull', 'uniform'}. - noise_sigmas : list - Noise standard deviation. Only used for noise in {'gaussian', 'weibull', 'uniform'}. - seed : int - Random seed to draw the above random functions from. - noise_seed : int - Random seed for noise function random generator. - - Returns - ------- - links : dict - Dictionary of form {0:[((0, -1), coeff, func), ...], 1:[...], ...}. - noises : list - List of N noise functions to call by noise(T) where T is the time series length. - """ - - # Init random states - random_state = np.random.RandomState(seed) - random_state_noise = np.random.RandomState(noise_seed) - - def linear(x): return x - def nonlinear(x): return (x + 5. * x**2 * np.exp(-x**2 / 20.)) - - if max_lag == 0: - contemp_fraction = 1. - - if contemp_fraction > 0.: - ordered_pairs = list(itertools.combinations(range(N), 2)) - max_poss_links = min(L, len(ordered_pairs)) - L_contemp = int(contemp_fraction*max_poss_links) - L_lagged = max_poss_links - L_contemp - else: - L_lagged = L - L_contemp = 0 - - # Random order - causal_order = list(random_state.permutation(N)) - - # Init link dict - links = dict([(i, []) for i in range(N)]) - - # Generate auto-dependencies at lag 1 - if max_lag > 0: - for i in causal_order: - a = random_state.choice(auto_coeffs) - if a != 0.: - links[i].append(((int(i), -1), float(a), linear)) - - # Non-cyclic contemp random pairs of links such that - # index of cause < index of effect - # Take up to (!) L_contemp links - ordered_pairs = list(itertools.combinations(range(N), 2)) - random_state.shuffle(ordered_pairs) - contemp_links = [(causal_order[pair[0]], causal_order[pair[1]]) - for pair in ordered_pairs[:L_contemp]] - - # Possibly cyclic lagged random pairs of links - # where we remove already chosen contemp links - # Take up to (!) L_contemp links - unordered_pairs = list(itertools.permutations(range(N), 2)) - unordered_pairs = list(set(unordered_pairs) - set(ordered_pairs[:L_contemp])) - random_state.shuffle(unordered_pairs) - lagged_links = [(causal_order[pair[0]], causal_order[pair[1]]) - for pair in unordered_pairs[:L_lagged]] - - chosen_links = lagged_links + contemp_links - - # Populate links - for (i, j) in chosen_links: - - # Choose lag - if (i, j) in contemp_links: - tau = 0 - else: - tau = int(random_state.randint(1, max_lag+1)) - - # Choose dependency - c = float(random_state.choice(dependency_coeffs)) - if c != 0: - func = random_state.choice(dependency_funcs) - if func == 'linear': - func = linear - elif func == 'nonlinear': - func = nonlinear - - links[j].append(((int(i), -tau), c, func)) - - # Now generate noise functions - # Either choose among pre-defined noise types or supply your own - class NoiseModel: - def __init__(self, mean=0., sigma=1.): - self.mean = mean - self.sigma = sigma - def gaussian(self, T): - # Get zero-mean unit variance gaussian distribution - return self.mean + self.sigma*random_state_noise.randn(T) - def weibull(self, T): - # Get zero-mean sigma variance weibull distribution - a = 2 - mean = scipy.special.gamma(1./a + 1) - variance = scipy.special.gamma(2./a + 1) - scipy.special.gamma(1./a + 1)**2 - return self.mean + self.sigma*(random_state_noise.weibull(a=a, size=T) - mean)/np.sqrt(variance) - def uniform(self, T): - # Get zero-mean sigma variance uniform distribution - mean = 0.5 - variance = 1./12. - return self.mean + self.sigma*(random_state_noise.uniform(size=T) - mean)/np.sqrt(variance) - - noises = [] - for j in links: - noise_dist = random_state.choice(noise_dists) - noise_mean = random_state.choice(noise_means) - noise_sigma = random_state.choice(noise_sigmas) - - if noise_dist in ['gaussian', 'weibull', 'uniform']: - noise = getattr(NoiseModel(mean = noise_mean, sigma = noise_sigma), noise_dist) - else: - noise = noise_dist - - noises.append(noise) - - return links, noises
- -
[docs]def check_stationarity(links): - """Returns stationarity according to a unit root test. - - Assumes an at least asymptotically linear vector autoregressive process - without contemporaneous links. - - Parameters - --------- - links : dict - Dictionary of form {0:[((0, -1), coeff, func), ...], 1:[...], ...}. - Also format {0:[(0, -1), ...], 1:[...], ...} is allowed. - - Returns - ------- - stationary : bool - True if VAR process is stationary. - """ - - N = len(links) - # Check parameters - max_lag = 0 - - for j in range(N): - for link_props in links[j]: - var, lag = link_props[0] - # coeff = link_props[1] - # coupling = link_props[2] - - max_lag = max(max_lag, abs(lag)) - - graph = np.zeros((N,N,max_lag)) - couplings = [] - - for j in range(N): - for link_props in links[j]: - var, lag = link_props[0] - coeff = link_props[1] - coupling = link_props[2] - if abs(lag) > 0: - graph[j,var,abs(lag)-1] = coeff - couplings.append(coupling) - - stabmat = np.zeros((N*max_lag,N*max_lag)) - index = 0 - - for i in range(0,N*max_lag,N): - stabmat[:N,i:i+N] = graph[:,:,index] - if index < max_lag-1: - stabmat[i+N:i+2*N,i:i+N] = np.identity(N) - index += 1 - - eig = np.linalg.eig(stabmat)[0] - - if np.all(np.abs(eig) < 1.): - stationary = True - else: - stationary = False - - return stationary
- # if len(eig) == 0: - # return stationary, 0. - # else: - # return stationary, np.abs(eig).max() - -class _Logger(object): - """Class to append print output to a string which can be saved""" - def __init__(self): - self.terminal = sys.stdout - self.log = "" # open("log.dat", "a") - - def write(self, message): - self.terminal.write(message) - self.log += message # .write(message) - - -if __name__ == '__main__': - - ## Generate some time series from a structural causal process - def lin_f(x): return x - def nonlin_f(x): return (x + 5. * x**2 * np.exp(-x**2 / 20.)) - - links, noises = generate_structural_causal_process() - - data, nonstat = structural_causal_process(links, - T=100, noises=noises) - print(data) - - # links = {0: [((0, -1), 0.9, lin_f)], - # 1: [((1, -1), 0.8, lin_f), ((0, -1), 0.3, nonlin_f)], - # 2: [((2, -1), 0.7, lin_f), ((1, 0), -0.2, lin_f)], - # } - # noises = [np.random.randn, np.random.randn, np.random.randn] - - # data, nonstat = structural_causal_process(links, - # T=100, noises=noises) - -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_sources/index.rst.txt b/docs/_build/html/_sources/index.rst.txt deleted file mode 100644 index 8227942e..00000000 --- a/docs/_build/html/_sources/index.rst.txt +++ /dev/null @@ -1,191 +0,0 @@ -.. Tigramite documentation master file, created by - sphinx-quickstart on Wed Oct 5 18:51:08 2023. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. - -Welcome to Tigramite's documentation! -===================================== - -.. toctree:: - :maxdepth: 2 - :caption: Contents: - - - -Indices and tables -================== - -* :ref:`genindex` -* :ref:`modindex` -* :ref:`search` - -.. Tigramite documentation master file, created by - sphinx-quickstart on Thu May 11 18:32:05 2017. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. - -TIGRAMITE -========= - -`Github repo `_ - -Tigramite is a causal time series analysis python package. It allows to efficiently estimate causal graphs from high-dimensional time series datasets (causal discovery) and to use these graphs for robust forecasting and the estimation and prediction of direct, total, and mediated effects. Causal discovery is based on linear as well as non-parametric conditional independence tests applicable to discrete or continuously-valued time series. Also includes functions for high-quality plots of the results. Please cite the following papers depending on which method you use: - - -- PCMCI: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019). https://advances.sciencemag.org/content/5/11/eaau4996 - -- PCMCI+: J. Runge (2020): Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, AUAI Press, 2020. http://auai.org/uai2020/proceedings/579_main_paper.pdf - -- LPCMCI: Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders Advances in Neural Information Processing Systems, 2020, 33. https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html - -- Generally: J. Runge (2018): Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310. https://aip.scitation.org/doi/10.1063/1.5025050 - -- Nature Communications Perspective paper: https://www.nature.com/articles/s41467-019-10105-3 - -- Causal effects: J. Runge, Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables, Advances in Neural Information Processing Systems, 2021, 34 - -- Mediation class: J. Runge et al. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. http://doi.org/10.1038/ncomms9502 - -- Mediation class: J. Runge (2015): Quantifying information transfer and mediation along causal pathways in complex systems. Phys. Rev. E, 92(6), 62829. http://doi.org/10.1103/PhysRevE.92.062829 - -- CMIknn: J. Runge (2018): Conditional Independence Testing Based on a Nearest-Neighbor Estimator of Conditional Mutual Information. In Proceedings of the 21st International Conference on Artificial Intelligence and Statistics. http://proceedings.mlr.press/v84/runge18a.html - - - -.. toctree:: - :maxdepth: 2 - :caption: Contents: - -.. autosummary:: - - tigramite.pcmci.PCMCI - tigramite.lpcmci.LPCMCI - tigramite.independence_tests.independence_tests_base.CondIndTest - tigramite.independence_tests.parcorr.ParCorr - tigramite.independence_tests.robust_parcorr.RobustParCorr - tigramite.independence_tests.gpdc.GPDC - tigramite.independence_tests.gpdc_torch.GPDCtorch - tigramite.independence_tests.cmiknn.CMIknn - tigramite.independence_tests.cmisymb.CMIsymb - tigramite.independence_tests.oracle_conditional_independence.OracleCI - tigramite.independence_tests.parcorr_mult.ParCorrMult - tigramite.independence_tests.gsquared.Gsquared - tigramite.independence_tests.parcorr_wls.ParCorrWLS - tigramite.independence_tests.regressionCI.RegressionCI - tigramite.causal_effects.CausalEffects - tigramite.models.Models - tigramite.models.LinearMediation - tigramite.models.Prediction - tigramite.data_processing - tigramite.toymodels.structural_causal_processes - tigramite.plotting - - -:mod:`tigramite.pcmci`: PCMCI -=========================================== - -.. autoclass:: tigramite.pcmci.PCMCI - :members: - - -:mod:`tigramite.lpcmci`: LPCMCI -=========================================== - -.. autoclass:: tigramite.lpcmci.LPCMCI - :members: - - -:mod:`tigramite.independence_tests`: Conditional independence tests -================================================================================= - -Base class: - -.. autoclass:: tigramite.independence_tests.independence_tests_base.CondIndTest - :members: - -Test statistics: - -.. autoclass:: tigramite.independence_tests.parcorr.ParCorr - :members: - -.. autoclass:: tigramite.independence_tests.robust_parcorr.RobustParCorr - :members: - -.. autoclass:: tigramite.independence_tests.gpdc.GPDC - :members: - -.. autoclass:: tigramite.independence_tests.gpdc_torch.GPDCtorch - :members: - -.. autoclass:: tigramite.independence_tests.cmiknn.CMIknn - :members: - -.. autoclass:: tigramite.independence_tests.cmisymb.CMIsymb - :members: - -.. autoclass:: tigramite.independence_tests.oracle_conditional_independence.OracleCI - :members: - -.. autoclass:: tigramite.independence_tests.parcorr_mult.ParCorrMult - :members: - -.. autoclass:: tigramite.independence_tests.gsquared.Gsquared - :members: - -.. autoclass:: tigramite.independence_tests.parcorr_wls.ParCorrWLS - :members: - -.. autoclass:: tigramite.independence_tests.regressionCI.RegressionCI - :members: - -:mod:`tigramite.causal_effects`: Causal Effect analysis -=========================================================== - -.. autoclass:: tigramite.causal_effects.CausalEffects - :members: - - -:mod:`tigramite.models`: Time series modeling, mediation, and prediction -======================================================================== - -Base class: - -.. autoclass:: tigramite.models.Models - :members: - -Derived classes: - -.. autoclass:: tigramite.models.LinearMediation - :members: - -.. autoclass:: tigramite.models.Prediction - :members: - - -:mod:`tigramite.data_processing`: Data processing functions -=========================================================== - -.. automodule:: tigramite.data_processing - :members: - - -:mod:`tigramite.toymodels`: Toy model generators -=========================================================== - -.. automodule:: tigramite.toymodels.structural_causal_processes - :members: - - -:mod:`tigramite.plotting`: Plotting functions -============================================= - -.. automodule:: tigramite.plotting - :members: - - -Indices and tables -================== - -* :ref:`genindex` -* :ref:`modindex` -* :ref:`search` diff --git a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js b/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js deleted file mode 100644 index 8549469d..00000000 --- a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js +++ /dev/null @@ -1,134 +0,0 @@ -/* - * _sphinx_javascript_frameworks_compat.js - * ~~~~~~~~~~ - * - * Compatability shim for jQuery and underscores.js. - * - * WILL BE REMOVED IN Sphinx 6.0 - * xref RemovedInSphinx60Warning - * - */ - -/** - * select a different prefix for underscore - */ -$u = _.noConflict(); - - -/** - * small helper function to urldecode strings - * - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL - */ -jQuery.urldecode = function(x) { - if (!x) { - return x - } - return decodeURIComponent(x.replace(/\+/g, ' ')); -}; - -/** - * small helper function to urlencode strings - */ -jQuery.urlencode = encodeURIComponent; - -/** - * This function returns the parsed url parameters of the - * current request. Multiple values per key are supported, - * it will always return arrays of strings for the value parts. - */ -jQuery.getQueryParameters = function(s) { - if (typeof s === 'undefined') - s = document.location.search; - var parts = s.substr(s.indexOf('?') + 1).split('&'); - var result = {}; - for (var i = 0; i < parts.length; i++) { - var tmp = parts[i].split('=', 2); - var key = jQuery.urldecode(tmp[0]); - var value = jQuery.urldecode(tmp[1]); - if (key in result) - result[key].push(value); - else - result[key] = [value]; - } - return result; -}; - -/** - * highlight a given string on a jquery object by wrapping it in - * span elements with the given class name. - */ -jQuery.fn.highlightText = function(text, className) { - function highlight(node, addItems) { - if (node.nodeType === 3) { - var val = node.nodeValue; - var pos = val.toLowerCase().indexOf(text); - if (pos >= 0 && - !jQuery(node.parentNode).hasClass(className) && - !jQuery(node.parentNode).hasClass("nohighlight")) { - var span; - var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.className = className; - } - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - node.parentNode.insertBefore(span, node.parentNode.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling)); - node.nodeValue = val.substr(0, pos); - if (isInSVG) { - var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); - var bbox = node.parentElement.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute('class', className); - addItems.push({ - "parent": node.parentNode, - "target": rect}); - } - } - } - else if (!jQuery(node).is("button, select, textarea")) { - jQuery.each(node.childNodes, function() { - highlight(this, addItems); - }); - } - } - var addItems = []; - var result = this.each(function() { - highlight(this, addItems); - }); - for (var i = 0; i < addItems.length; ++i) { - jQuery(addItems[i].parent).before(addItems[i].target); - } - return result; -}; - -/* - * backward compatibility for jQuery.browser - * This will be supported until firefox bug is fixed. - */ -if (!jQuery.browser) { - jQuery.uaMatch = function(ua) { - ua = ua.toLowerCase(); - - var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || - /(webkit)[ \/]([\w.]+)/.exec(ua) || - /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || - /(msie) ([\w.]+)/.exec(ua) || - ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || - []; - - return { - browser: match[ 1 ] || "", - version: match[ 2 ] || "0" - }; - }; - jQuery.browser = {}; - jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; -} diff --git a/docs/_build/html/_static/alabaster.css b/docs/_build/html/_static/alabaster.css deleted file mode 100644 index 0eddaeb0..00000000 --- a/docs/_build/html/_static/alabaster.css +++ /dev/null @@ -1,701 +0,0 @@ -@import url("basic.css"); - -/* -- page layout ----------------------------------------------------------- */ - -body { - font-family: Georgia, serif; - font-size: 17px; - background-color: #fff; - color: #000; - margin: 0; - padding: 0; -} - - -div.document { - width: 940px; - margin: 30px auto 0 auto; -} - -div.documentwrapper { - float: left; - width: 100%; -} - -div.bodywrapper { - margin: 0 0 0 220px; -} - -div.sphinxsidebar { - width: 220px; - font-size: 14px; - line-height: 1.5; -} - -hr { - border: 1px solid #B1B4B6; -} - -div.body { - background-color: #fff; - color: #3E4349; - padding: 0 30px 0 30px; -} - -div.body > .section { - text-align: left; -} - -div.footer { - width: 940px; - margin: 20px auto 30px auto; - font-size: 14px; - color: #888; - text-align: right; -} - -div.footer a { - color: #888; -} - -p.caption { - font-family: inherit; - font-size: inherit; -} - - -div.relations { - display: none; -} - - -div.sphinxsidebar a { - color: #444; - text-decoration: none; - border-bottom: 1px dotted #999; -} - -div.sphinxsidebar a:hover { - border-bottom: 1px solid #999; -} - -div.sphinxsidebarwrapper { - padding: 18px 10px; -} - -div.sphinxsidebarwrapper p.logo { - padding: 0; - margin: -10px 0 0 0px; - text-align: center; -} - -div.sphinxsidebarwrapper h1.logo { - margin-top: -10px; - text-align: center; - margin-bottom: 5px; - text-align: left; -} - -div.sphinxsidebarwrapper h1.logo-name { - margin-top: 0px; -} - -div.sphinxsidebarwrapper p.blurb { - margin-top: 0; - font-style: normal; -} - -div.sphinxsidebar h3, -div.sphinxsidebar h4 { - font-family: Georgia, serif; - color: #444; - font-size: 24px; - font-weight: normal; - margin: 0 0 5px 0; - padding: 0; -} - -div.sphinxsidebar h4 { - font-size: 20px; -} - -div.sphinxsidebar h3 a { - color: #444; -} - -div.sphinxsidebar p.logo a, -div.sphinxsidebar h3 a, -div.sphinxsidebar p.logo a:hover, -div.sphinxsidebar h3 a:hover { - border: none; -} - -div.sphinxsidebar p { - color: #555; - margin: 10px 0; -} - -div.sphinxsidebar ul { - margin: 10px 0; - padding: 0; - color: #000; -} - -div.sphinxsidebar ul li.toctree-l1 > a { - font-size: 120%; -} - -div.sphinxsidebar ul li.toctree-l2 > a { - font-size: 110%; -} - -div.sphinxsidebar input { - border: 1px solid #CCC; - font-family: Georgia, serif; - font-size: 1em; -} - -div.sphinxsidebar hr { - border: none; - height: 1px; - color: #AAA; - background: #AAA; - - text-align: left; - margin-left: 0; - width: 50%; -} - -div.sphinxsidebar .badge { - border-bottom: none; -} - -div.sphinxsidebar .badge:hover { - border-bottom: none; -} - -/* To address an issue with donation coming after search */ -div.sphinxsidebar h3.donation { - margin-top: 10px; -} - -/* -- body styles ----------------------------------------------------------- */ - -a { - color: #004B6B; - text-decoration: underline; -} - -a:hover { - color: #6D4100; - text-decoration: underline; -} - -div.body h1, -div.body h2, -div.body h3, -div.body h4, -div.body h5, -div.body h6 { - font-family: Georgia, serif; - font-weight: normal; - margin: 30px 0px 10px 0px; - padding: 0; -} - -div.body h1 { margin-top: 0; padding-top: 0; font-size: 240%; } -div.body h2 { font-size: 180%; } -div.body h3 { font-size: 150%; } -div.body h4 { font-size: 130%; } -div.body h5 { font-size: 100%; } -div.body h6 { font-size: 100%; } - -a.headerlink { - color: #DDD; - padding: 0 4px; - text-decoration: none; -} - -a.headerlink:hover { - color: #444; - background: #EAEAEA; -} - -div.body p, div.body dd, div.body li { - line-height: 1.4em; -} - -div.admonition { - margin: 20px 0px; - padding: 10px 30px; - background-color: #EEE; - border: 1px solid #CCC; -} - -div.admonition tt.xref, div.admonition code.xref, div.admonition a tt { - background-color: #FBFBFB; - border-bottom: 1px solid #fafafa; -} - -div.admonition p.admonition-title { - font-family: Georgia, serif; - font-weight: normal; - font-size: 24px; - margin: 0 0 10px 0; - padding: 0; - line-height: 1; -} - -div.admonition p.last { - margin-bottom: 0; -} - -div.highlight { - background-color: #fff; -} - -dt:target, .highlight { - background: #FAF3E8; -} - -div.warning { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.danger { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.error { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.caution { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.attention { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.important { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.note { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.tip { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.hint { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.seealso { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.topic { - background-color: #EEE; -} - -p.admonition-title { - display: inline; -} - -p.admonition-title:after { - content: ":"; -} - -pre, tt, code { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; - font-size: 0.9em; -} - -.hll { - background-color: #FFC; - margin: 0 -12px; - padding: 0 12px; - display: block; -} - -img.screenshot { -} - -tt.descname, tt.descclassname, code.descname, code.descclassname { - font-size: 0.95em; -} - -tt.descname, code.descname { - padding-right: 0.08em; -} - -img.screenshot { - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; -} - -table.docutils { - border: 1px solid #888; - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; -} - -table.docutils td, table.docutils th { - border: 1px solid #888; - padding: 0.25em 0.7em; -} - -table.field-list, table.footnote { - border: none; - -moz-box-shadow: none; - -webkit-box-shadow: none; - box-shadow: none; -} - -table.footnote { - margin: 15px 0; - width: 100%; - border: 1px solid #EEE; - background: #FDFDFD; - font-size: 0.9em; -} - -table.footnote + table.footnote { - margin-top: -15px; - border-top: none; -} - -table.field-list th { - padding: 0 0.8em 0 0; -} - -table.field-list td { - padding: 0; -} - -table.field-list p { - margin-bottom: 0.8em; -} - -/* Cloned from - * https://github.com/sphinx-doc/sphinx/commit/ef60dbfce09286b20b7385333d63a60321784e68 - */ -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -table.footnote td.label { - width: .1px; - padding: 0.3em 0 0.3em 0.5em; -} - -table.footnote td { - padding: 0.3em 0.5em; -} - -dl { - margin: 0; - padding: 0; -} - -dl dd { - margin-left: 30px; -} - -blockquote { - margin: 0 0 0 30px; - padding: 0; -} - -ul, ol { - /* Matches the 30px from the narrow-screen "li > ul" selector below */ - margin: 10px 0 10px 30px; - padding: 0; -} - -pre { - background: #EEE; - padding: 7px 30px; - margin: 15px 0px; - line-height: 1.3em; -} - -div.viewcode-block:target { - background: #ffd; -} - -dl pre, blockquote pre, li pre { - margin-left: 0; - padding-left: 30px; -} - -tt, code { - background-color: #ecf0f3; - color: #222; - /* padding: 1px 2px; */ -} - -tt.xref, code.xref, a tt { - background-color: #FBFBFB; - border-bottom: 1px solid #fff; -} - -a.reference { - text-decoration: none; - border-bottom: 1px dotted #004B6B; -} - -/* Don't put an underline on images */ -a.image-reference, a.image-reference:hover { - border-bottom: none; -} - -a.reference:hover { - border-bottom: 1px solid #6D4100; -} - -a.footnote-reference { - text-decoration: none; - font-size: 0.7em; - vertical-align: top; - border-bottom: 1px dotted #004B6B; -} - -a.footnote-reference:hover { - border-bottom: 1px solid #6D4100; -} - -a:hover tt, a:hover code { - background: #EEE; -} - - -@media screen and (max-width: 870px) { - - div.sphinxsidebar { - display: none; - } - - div.document { - width: 100%; - - } - - div.documentwrapper { - margin-left: 0; - margin-top: 0; - margin-right: 0; - margin-bottom: 0; - } - - div.bodywrapper { - margin-top: 0; - margin-right: 0; - margin-bottom: 0; - margin-left: 0; - } - - ul { - margin-left: 0; - } - - li > ul { - /* Matches the 30px from the "ul, ol" selector above */ - margin-left: 30px; - } - - .document { - width: auto; - } - - .footer { - width: auto; - } - - .bodywrapper { - margin: 0; - } - - .footer { - width: auto; - } - - .github { - display: none; - } - - - -} - - - -@media screen and (max-width: 875px) { - - body { - margin: 0; - padding: 20px 30px; - } - - div.documentwrapper { - float: none; - background: #fff; - } - - div.sphinxsidebar { - display: block; - float: none; - width: 102.5%; - margin: 50px -30px -20px -30px; - padding: 10px 20px; - background: #333; - color: #FFF; - } - - div.sphinxsidebar h3, div.sphinxsidebar h4, div.sphinxsidebar p, - div.sphinxsidebar h3 a { - color: #fff; - } - - div.sphinxsidebar a { - color: #AAA; - } - - div.sphinxsidebar p.logo { - display: none; - } - - div.document { - width: 100%; - margin: 0; - } - - div.footer { - display: none; - } - - div.bodywrapper { - margin: 0; - } - - div.body { - min-height: 0; - padding: 0; - } - - .rtd_doc_footer { - display: none; - } - - .document { - width: auto; - } - - .footer { - width: auto; - } - - .footer { - width: auto; - } - - .github { - display: none; - } -} - - -/* misc. */ - -.revsys-inline { - display: none!important; -} - -/* Make nested-list/multi-paragraph items look better in Releases changelog - * pages. Without this, docutils' magical list fuckery causes inconsistent - * formatting between different release sub-lists. - */ -div#changelog > div.section > ul > li > p:only-child { - margin-bottom: 0; -} - -/* Hide fugly table cell borders in ..bibliography:: directive output */ -table.docutils.citation, table.docutils.citation td, table.docutils.citation th { - border: none; - /* Below needed in some edge cases; if not applied, bottom shadows appear */ - -moz-box-shadow: none; - -webkit-box-shadow: none; - box-shadow: none; -} - - -/* relbar */ - -.related { - line-height: 30px; - width: 100%; - font-size: 0.9rem; -} - -.related.top { - border-bottom: 1px solid #EEE; - margin-bottom: 20px; -} - -.related.bottom { - border-top: 1px solid #EEE; -} - -.related ul { - padding: 0; - margin: 0; - list-style: none; -} - -.related li { - display: inline; -} - -nav#rellinks { - float: right; -} - -nav#rellinks li+li:before { - content: "|"; -} - -nav#breadcrumbs li+li:before { - content: "\00BB"; -} - -/* Hide certain items when printing */ -@media print { - div.related { - display: none; - } -} \ No newline at end of file diff --git a/docs/_build/html/_static/basic.css b/docs/_build/html/_static/basic.css deleted file mode 100644 index 08896771..00000000 --- a/docs/_build/html/_static/basic.css +++ /dev/null @@ -1,930 +0,0 @@ -/* - * basic.css - * ~~~~~~~~~ - * - * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/* -- main layout ----------------------------------------------------------- */ - -div.clearer { - clear: both; -} - -div.section::after { - display: block; - content: ''; - clear: left; -} - -/* -- relbar ---------------------------------------------------------------- */ - -div.related { - width: 100%; - font-size: 90%; -} - -div.related h3 { - display: none; -} - -div.related ul { - margin: 0; - padding: 0 0 0 10px; - list-style: none; -} - -div.related li { - display: inline; -} - -div.related li.right { - float: right; - margin-right: 5px; -} - -/* -- sidebar --------------------------------------------------------------- */ - -div.sphinxsidebarwrapper { - padding: 10px 5px 0 10px; -} - -div.sphinxsidebar { - float: left; - width: 230px; - margin-left: -100%; - font-size: 90%; - word-wrap: break-word; - overflow-wrap : break-word; -} - -div.sphinxsidebar ul { - list-style: none; -} - -div.sphinxsidebar ul ul, -div.sphinxsidebar ul.want-points { - margin-left: 20px; - list-style: square; -} - -div.sphinxsidebar ul ul { - margin-top: 0; - margin-bottom: 0; -} - -div.sphinxsidebar form { - margin-top: 10px; -} - -div.sphinxsidebar input { - border: 1px solid #98dbcc; - font-family: sans-serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - -div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; -} - -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - -img { - border: 0; - max-width: 100%; -} - -/* -- search page ----------------------------------------------------------- */ - -ul.search { - margin: 10px 0 0 20px; - padding: 0; -} - -ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; -} - -ul.search li a { - font-weight: bold; -} - -ul.search li p.context { - color: #888; - margin: 2px 0 0 30px; - text-align: left; -} - -ul.keywordmatches li.goodmatch a { - font-weight: bold; -} - -/* -- index page ------------------------------------------------------------ */ - -table.contentstable { - width: 90%; - margin-left: auto; - margin-right: auto; -} - -table.contentstable p.biglink { - line-height: 150%; -} - -a.biglink { - font-size: 1.3em; -} - -span.linkdescr { - font-style: italic; - padding-top: 5px; - font-size: 90%; -} - -/* -- general index --------------------------------------------------------- */ - -table.indextable { - width: 100%; -} - -table.indextable td { - text-align: left; - vertical-align: top; -} - -table.indextable ul { - margin-top: 0; - margin-bottom: 0; - list-style-type: none; -} - -table.indextable > tbody > tr > td > ul { - padding-left: 0em; -} - -table.indextable tr.pcap { - height: 10px; -} - -table.indextable tr.cap { - margin-top: 10px; - background-color: #f2f2f2; -} - -img.toggler { - margin-right: 3px; - margin-top: 3px; - cursor: pointer; -} - -div.modindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -div.genindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -/* -- domain module index --------------------------------------------------- */ - -table.modindextable td { - padding: 2px; - border-collapse: collapse; -} - -/* -- general body styles --------------------------------------------------- */ - -div.body { - min-width: 360px; - max-width: 800px; -} - -div.body p, div.body dd, div.body li, div.body blockquote { - -moz-hyphens: auto; - -ms-hyphens: auto; - -webkit-hyphens: auto; - hyphens: auto; -} - -a.headerlink { - visibility: hidden; -} - -h1:hover > a.headerlink, -h2:hover > a.headerlink, -h3:hover > a.headerlink, -h4:hover > a.headerlink, -h5:hover > a.headerlink, -h6:hover > a.headerlink, -dt:hover > a.headerlink, -caption:hover > a.headerlink, -p.caption:hover > a.headerlink, -div.code-block-caption:hover > a.headerlink { - visibility: visible; -} - -div.body p.caption { - text-align: inherit; -} - -div.body td { - text-align: left; -} - -.first { - margin-top: 0 !important; -} - -p.rubric { - margin-top: 30px; - font-weight: bold; -} - -img.align-left, figure.align-left, .figure.align-left, object.align-left { - clear: left; - float: left; - margin-right: 1em; -} - -img.align-right, figure.align-right, .figure.align-right, object.align-right { - clear: right; - float: right; - margin-left: 1em; -} - -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { - display: block; - margin-left: auto; - margin-right: auto; -} - -.align-left { - text-align: left; -} - -.align-center { - text-align: center; -} - -.align-default { - text-align: center; -} - -.align-right { - text-align: right; -} - -/* -- sidebars -------------------------------------------------------------- */ - -div.sidebar, -aside.sidebar { - margin: 0 0 0.5em 1em; - border: 1px solid #ddb; - padding: 7px; - background-color: #ffe; - width: 40%; - float: right; - clear: right; - overflow-x: auto; -} - -p.sidebar-title { - font-weight: bold; -} -nav.contents, -aside.topic, - -div.admonition, div.topic, blockquote { - clear: left; -} - -/* -- topics ---------------------------------------------------------------- */ -nav.contents, -aside.topic, - -div.topic { - border: 1px solid #ccc; - padding: 7px; - margin: 10px 0 10px 0; -} - -p.topic-title { - font-size: 1.1em; - font-weight: bold; - margin-top: 10px; -} - -/* -- admonitions ----------------------------------------------------------- */ - -div.admonition { - margin-top: 10px; - margin-bottom: 10px; - padding: 7px; -} - -div.admonition dt { - font-weight: bold; -} - -p.admonition-title { - margin: 0px 10px 5px 0px; - font-weight: bold; -} - -div.body p.centered { - text-align: center; - margin-top: 25px; -} - -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -nav.contents > :last-child, -aside.topic > :last-child, - -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -nav.contents::after, -aside.topic::after, - -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - -/* -- tables ---------------------------------------------------------------- */ - -table.docutils { - margin-top: 10px; - margin-bottom: 10px; - border: 0; - border-collapse: collapse; -} - -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - -table caption span.caption-number { - font-style: italic; -} - -table caption span.caption-text { -} - -table.docutils td, table.docutils th { - padding: 1px 8px 1px 5px; - border-top: 0; - border-left: 0; - border-right: 0; - border-bottom: 1px solid #aaa; -} - -th { - text-align: left; - padding-right: 5px; -} - -table.citation { - border-left: solid 1px gray; - margin-left: 1px; -} - -table.citation td { - border-bottom: none; -} - -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - -/* -- figures --------------------------------------------------------------- */ - -div.figure, figure { - margin: 0.5em; - padding: 0.5em; -} - -div.figure p.caption, figcaption { - padding: 0.3em; -} - -div.figure p.caption span.caption-number, -figcaption span.caption-number { - font-style: italic; -} - -div.figure p.caption span.caption-text, -figcaption span.caption-text { -} - -/* -- field list styles ----------------------------------------------------- */ - -table.field-list td, table.field-list th { - border: 0 !important; -} - -.field-list ul { - margin: 0; - padding-left: 1em; -} - -.field-list p { - margin: 0; -} - -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - -/* -- other body styles ----------------------------------------------------- */ - -ol.arabic { - list-style: decimal; -} - -ol.loweralpha { - list-style: lower-alpha; -} - -ol.upperalpha { - list-style: upper-alpha; -} - -ol.lowerroman { - list-style: lower-roman; -} - -ol.upperroman { - list-style: upper-roman; -} - -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -/* Docutils 0.17 and older (footnotes & citations) */ -dl.footnote > dt, -dl.citation > dt { - float: left; - margin-right: 0.5em; -} - -dl.footnote > dd, -dl.citation > dd { - margin-bottom: 0em; -} - -dl.footnote > dd:after, -dl.citation > dd:after { - content: ""; - clear: both; -} - -/* Docutils 0.18+ (footnotes & citations) */ -aside.footnote > span, -div.citation > span { - float: left; -} -aside.footnote > span:last-of-type, -div.citation > span:last-of-type { - padding-right: 0.5em; -} -aside.footnote > p { - margin-left: 2em; -} -div.citation > p { - margin-left: 4em; -} -aside.footnote > p:last-of-type, -div.citation > p:last-of-type { - margin-bottom: 0em; -} -aside.footnote > p:last-of-type:after, -div.citation > p:last-of-type:after { - content: ""; - clear: both; -} - -/* Footnotes & citations ends */ - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dt:after { - content: ":"; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - -dl { - margin-bottom: 15px; -} - -dd > :first-child { - margin-top: 0px; -} - -dd ul, dd table { - margin-bottom: 10px; -} - -dd { - margin-top: 3px; - margin-bottom: 10px; - margin-left: 30px; -} - -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { - background-color: #fbe54e; -} - -rect.highlighted { - fill: #fbe54e; -} - -dl.glossary dt { - font-weight: bold; - font-size: 1.1em; -} - -.versionmodified { - font-style: italic; -} - -.system-message { - background-color: #fda; - padding: 5px; - border: 3px solid red; -} - -.footnote:target { - background-color: #ffa; -} - -.line-block { - display: block; - margin-top: 1em; - margin-bottom: 1em; -} - -.line-block .line-block { - margin-top: 0; - margin-bottom: 0; - margin-left: 1.5em; -} - -.guilabel, .menuselection { - font-family: sans-serif; -} - -.accelerator { - text-decoration: underline; -} - -.classifier { - font-style: oblique; -} - -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - -abbr, acronym { - border-bottom: dotted 1px; - cursor: help; -} - -/* -- code displays --------------------------------------------------------- */ - -pre { - overflow: auto; - overflow-y: hidden; /* fixes display issues on Chrome browsers */ -} - -pre, div[class*="highlight-"] { - clear: both; -} - -span.pre { - -moz-hyphens: none; - -ms-hyphens: none; - -webkit-hyphens: none; - hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; -} - -td.linenos pre { - border: 0; - background-color: transparent; - color: #aaa; -} - -table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; -} - -table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; -} - -div.code-block-caption { - margin-top: 1em; - padding: 2px 5px; - font-size: small; -} - -div.code-block-caption code { - background-color: transparent; -} - -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ -} - -div.code-block-caption span.caption-number { - padding: 0.1em 0.3em; - font-style: italic; -} - -div.code-block-caption span.caption-text { -} - -div.literal-block-wrapper { - margin: 1em 0; -} - -code.xref, a code { - background-color: transparent; - font-weight: bold; -} - -h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { - background-color: transparent; -} - -.viewcode-link { - float: right; -} - -.viewcode-back { - float: right; - font-family: sans-serif; -} - -div.viewcode-block:target { - margin: -1px -10px; - padding: 0 10px; -} - -/* -- math display ---------------------------------------------------------- */ - -img.math { - vertical-align: middle; -} - -div.body div.math p { - text-align: center; -} - -span.eqno { - float: right; -} - -span.eqno a.headerlink { - position: absolute; - z-index: 1; -} - -div.math:hover a.headerlink { - visibility: visible; -} - -/* -- printout stylesheet --------------------------------------------------- */ - -@media print { - div.document, - div.documentwrapper, - div.bodywrapper { - margin: 0 !important; - width: 100%; - } - - div.sphinxsidebar, - div.related, - div.footer, - #top-link { - display: none; - } -} \ No newline at end of file diff --git a/docs/_build/html/_static/custom.css b/docs/_build/html/_static/custom.css deleted file mode 100644 index 2a924f1d..00000000 --- a/docs/_build/html/_static/custom.css +++ /dev/null @@ -1 +0,0 @@ -/* This file intentionally left blank. */ diff --git a/docs/_build/html/_static/doctools.js b/docs/_build/html/_static/doctools.js deleted file mode 100644 index c3db08d1..00000000 --- a/docs/_build/html/_static/doctools.js +++ /dev/null @@ -1,264 +0,0 @@ -/* - * doctools.js - * ~~~~~~~~~~~ - * - * Base JavaScript utilities for all Sphinx HTML documentation. - * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ -"use strict"; - -const _ready = (callback) => { - if (document.readyState !== "loading") { - callback(); - } else { - document.addEventListener("DOMContentLoaded", callback); - } -}; - -/** - * highlight a given string on a node by wrapping it in - * span elements with the given class name. - */ -const _highlight = (node, addItems, text, className) => { - if (node.nodeType === Node.TEXT_NODE) { - const val = node.nodeValue; - const parent = node.parentNode; - const pos = val.toLowerCase().indexOf(text); - if ( - pos >= 0 && - !parent.classList.contains(className) && - !parent.classList.contains("nohighlight") - ) { - let span; - - const closestNode = parent.closest("body, svg, foreignObject"); - const isInSVG = closestNode && closestNode.matches("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.classList.add(className); - } - - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - parent.insertBefore( - span, - parent.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling - ) - ); - node.nodeValue = val.substr(0, pos); - - if (isInSVG) { - const rect = document.createElementNS( - "http://www.w3.org/2000/svg", - "rect" - ); - const bbox = parent.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute("class", className); - addItems.push({ parent: parent, target: rect }); - } - } - } else if (node.matches && !node.matches("button, select, textarea")) { - node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); - } -}; -const _highlightText = (thisNode, text, className) => { - let addItems = []; - _highlight(thisNode, addItems, text, className); - addItems.forEach((obj) => - obj.parent.insertAdjacentElement("beforebegin", obj.target) - ); -}; - -/** - * Small JavaScript module for the documentation. - */ -const Documentation = { - init: () => { - Documentation.highlightSearchWords(); - Documentation.initDomainIndexTable(); - Documentation.initOnKeyListeners(); - }, - - /** - * i18n support - */ - TRANSLATIONS: {}, - PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), - LOCALE: "unknown", - - // gettext and ngettext don't access this so that the functions - // can safely bound to a different name (_ = Documentation.gettext) - gettext: (string) => { - const translated = Documentation.TRANSLATIONS[string]; - switch (typeof translated) { - case "undefined": - return string; // no translation - case "string": - return translated; // translation exists - default: - return translated[0]; // (singular, plural) translation tuple exists - } - }, - - ngettext: (singular, plural, n) => { - const translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated !== "undefined") - return translated[Documentation.PLURAL_EXPR(n)]; - return n === 1 ? singular : plural; - }, - - addTranslations: (catalog) => { - Object.assign(Documentation.TRANSLATIONS, catalog.messages); - Documentation.PLURAL_EXPR = new Function( - "n", - `return (${catalog.plural_expr})` - ); - Documentation.LOCALE = catalog.locale; - }, - - /** - * highlight the search words provided in the url in the text - */ - highlightSearchWords: () => { - const highlight = - new URLSearchParams(window.location.search).get("highlight") || ""; - const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); - if (terms.length === 0) return; // nothing to do - - // There should never be more than one element matching "div.body" - const divBody = document.querySelectorAll("div.body"); - const body = divBody.length ? divBody[0] : document.querySelector("body"); - window.setTimeout(() => { - terms.forEach((term) => _highlightText(body, term, "highlighted")); - }, 10); - - const searchBox = document.getElementById("searchbox"); - if (searchBox === null) return; - searchBox.appendChild( - document - .createRange() - .createContextualFragment( - '" - ) - ); - }, - - /** - * helper function to hide the search marks again - */ - hideSearchWords: () => { - document - .querySelectorAll("#searchbox .highlight-link") - .forEach((el) => el.remove()); - document - .querySelectorAll("span.highlighted") - .forEach((el) => el.classList.remove("highlighted")); - const url = new URL(window.location); - url.searchParams.delete("highlight"); - window.history.replaceState({}, "", url); - }, - - /** - * helper function to focus on search bar - */ - focusSearchBar: () => { - document.querySelectorAll("input[name=q]")[0]?.focus(); - }, - - /** - * Initialise the domain index toggle buttons - */ - initDomainIndexTable: () => { - const toggler = (el) => { - const idNumber = el.id.substr(7); - const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); - if (el.src.substr(-9) === "minus.png") { - el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; - toggledRows.forEach((el) => (el.style.display = "none")); - } else { - el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; - toggledRows.forEach((el) => (el.style.display = "")); - } - }; - - const togglerElements = document.querySelectorAll("img.toggler"); - togglerElements.forEach((el) => - el.addEventListener("click", (event) => toggler(event.currentTarget)) - ); - togglerElements.forEach((el) => (el.style.display = "")); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); - }, - - initOnKeyListeners: () => { - // only install a listener if it is really needed - if ( - !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS - ) - return; - - const blacklistedElements = new Set([ - "TEXTAREA", - "INPUT", - "SELECT", - "BUTTON", - ]); - document.addEventListener("keydown", (event) => { - if (blacklistedElements.has(document.activeElement.tagName)) return; // bail for input elements - if (event.altKey || event.ctrlKey || event.metaKey) return; // bail with special keys - - if (!event.shiftKey) { - switch (event.key) { - case "ArrowLeft": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const prevLink = document.querySelector('link[rel="prev"]'); - if (prevLink && prevLink.href) { - window.location.href = prevLink.href; - event.preventDefault(); - } - break; - case "ArrowRight": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const nextLink = document.querySelector('link[rel="next"]'); - if (nextLink && nextLink.href) { - window.location.href = nextLink.href; - event.preventDefault(); - } - break; - case "Escape": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.hideSearchWords(); - event.preventDefault(); - } - } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case "/": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.focusSearchBar(); - event.preventDefault(); - } - }); - }, -}; - -// quick alias for translations -const _ = Documentation.gettext; - -_ready(Documentation.init); diff --git a/docs/_build/html/_static/documentation_options.js b/docs/_build/html/_static/documentation_options.js deleted file mode 100644 index b5bf05a2..00000000 --- a/docs/_build/html/_static/documentation_options.js +++ /dev/null @@ -1,14 +0,0 @@ -var DOCUMENTATION_OPTIONS = { - URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '5.2', - LANGUAGE: 'en', - COLLAPSE_INDEX: false, - BUILDER: 'html', - FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', - HAS_SOURCE: true, - SOURCELINK_SUFFIX: '.txt', - NAVIGATION_WITH_KEYS: false, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: false, -}; \ No newline at end of file diff --git a/docs/_build/html/_static/file.png b/docs/_build/html/_static/file.png deleted file mode 100644 index a858a410e4faa62ce324d814e4b816fff83a6fb3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 286 zcmV+(0pb3MP)s`hMrGg#P~ix$^RISR_I47Y|r1 z_CyJOe}D1){SET-^Amu_i71Lt6eYfZjRyw@I6OQAIXXHDfiX^GbOlHe=Ae4>0m)d(f|Me07*qoM6N<$f}vM^LjV8( diff --git a/docs/_build/html/_static/jquery.js b/docs/_build/html/_static/jquery.js deleted file mode 100644 index c4c6022f..00000000 --- a/docs/_build/html/_static/jquery.js +++ /dev/null @@ -1,2 +0,0 @@ -/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ -!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 00 - var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 - var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 - var s_v = "^(" + C + ")?" + v; // vowel in stem - - this.stemWord = function (w) { - var stem; - var suffix; - var firstch; - var origword = w; - - if (w.length < 3) - return w; - - var re; - var re2; - var re3; - var re4; - - firstch = w.substr(0,1); - if (firstch == "y") - w = firstch.toUpperCase() + w.substr(1); - - // Step 1a - re = /^(.+?)(ss|i)es$/; - re2 = /^(.+?)([^s])s$/; - - if (re.test(w)) - w = w.replace(re,"$1$2"); - else if (re2.test(w)) - w = w.replace(re2,"$1$2"); - - // Step 1b - re = /^(.+?)eed$/; - re2 = /^(.+?)(ed|ing)$/; - if (re.test(w)) { - var fp = re.exec(w); - re = new RegExp(mgr0); - if (re.test(fp[1])) { - re = /.$/; - w = w.replace(re,""); - } - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1]; - re2 = new RegExp(s_v); - if (re2.test(stem)) { - w = stem; - re2 = /(at|bl|iz)$/; - re3 = new RegExp("([^aeiouylsz])\\1$"); - re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re2.test(w)) - w = w + "e"; - else if (re3.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - else if (re4.test(w)) - w = w + "e"; - } - } - - // Step 1c - re = /^(.+?)y$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(s_v); - if (re.test(stem)) - w = stem + "i"; - } - - // Step 2 - re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step2list[suffix]; - } - - // Step 3 - re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step3list[suffix]; - } - - // Step 4 - re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; - re2 = /^(.+?)(s|t)(ion)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - if (re.test(stem)) - w = stem; - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1] + fp[2]; - re2 = new RegExp(mgr1); - if (re2.test(stem)) - w = stem; - } - - // Step 5 - re = /^(.+?)e$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - re2 = new RegExp(meq1); - re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) - w = stem; - } - re = /ll$/; - re2 = new RegExp(mgr1); - if (re.test(w) && re2.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - - // and turn initial Y back to y - if (firstch == "y") - w = firstch.toLowerCase() + w.substr(1); - return w; - } -} - diff --git a/docs/_build/html/_static/minus.png b/docs/_build/html/_static/minus.png deleted file mode 100644 index d96755fdaf8bb2214971e0db9c1fd3077d7c419d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 90 zcmeAS@N?(olHy`uVBq!ia0vp^+#t*WBp7;*Yy1LIik>cxAr*|t7R?Mi>2?kWtu=nj kDsEF_5m^0CR;1wuP-*O&G^0G}KYk!hp00i_>zopr08q^qX#fBK diff --git a/docs/_build/html/_static/plus.png b/docs/_build/html/_static/plus.png deleted file mode 100644 index 7107cec93a979b9a5f64843235a16651d563ce2d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 90 zcmeAS@N?(olHy`uVBq!ia0vp^+#t*WBp7;*Yy1LIik>cxAr*|t7R?Mi>2?kWtu>-2 m3q%Vub%g%s<8sJhVPMczOq}xhg9DJoz~JfX=d#Wzp$Pyb1r*Kz diff --git a/docs/_build/html/_static/pygments.css b/docs/_build/html/_static/pygments.css deleted file mode 100644 index 87f8bd12..00000000 --- a/docs/_build/html/_static/pygments.css +++ /dev/null @@ -1,82 +0,0 @@ -pre { line-height: 125%; } -td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -.highlight .hll { background-color: #ffffcc } -.highlight { background: #f8f8f8; } -.highlight .c { color: #8f5902; font-style: italic } /* Comment */ -.highlight .err { color: #a40000; border: 1px solid #ef2929 } /* Error */ -.highlight .g { color: #000000 } /* Generic */ -.highlight .k { color: #004461; font-weight: bold } /* Keyword */ -.highlight .l { color: #000000 } /* Literal */ -.highlight .n { color: #000000 } /* Name */ -.highlight .o { color: #582800 } /* Operator */ -.highlight .x { color: #000000 } /* Other */ -.highlight .p { color: #000000; font-weight: bold } /* Punctuation */ -.highlight .ch { color: #8f5902; font-style: italic } /* Comment.Hashbang */ -.highlight .cm { color: #8f5902; font-style: italic } /* Comment.Multiline */ -.highlight .cp { color: #8f5902 } /* Comment.Preproc */ -.highlight .cpf { color: #8f5902; font-style: italic } /* Comment.PreprocFile */ -.highlight .c1 { color: #8f5902; font-style: italic } /* Comment.Single */ -.highlight .cs { color: #8f5902; font-style: italic } /* Comment.Special */ -.highlight .gd { color: #a40000 } /* Generic.Deleted */ -.highlight .ge { color: #000000; font-style: italic } /* Generic.Emph */ -.highlight .gr { color: #ef2929 } /* Generic.Error */ -.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ -.highlight .gi { color: #00A000 } /* Generic.Inserted */ -.highlight .go { color: #888888 } /* Generic.Output */ -.highlight .gp { color: #745334 } /* Generic.Prompt */ -.highlight .gs { color: #000000; font-weight: bold } /* Generic.Strong */ -.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ -.highlight .gt { color: #a40000; font-weight: bold } /* Generic.Traceback */ -.highlight .kc { color: #004461; font-weight: bold } /* Keyword.Constant */ -.highlight .kd { color: #004461; font-weight: bold } /* Keyword.Declaration */ -.highlight .kn { color: #004461; font-weight: bold } /* Keyword.Namespace */ -.highlight .kp { color: #004461; font-weight: bold } /* Keyword.Pseudo */ -.highlight .kr { color: #004461; font-weight: bold } /* Keyword.Reserved */ -.highlight .kt { color: #004461; font-weight: bold } /* Keyword.Type */ -.highlight .ld { color: #000000 } /* Literal.Date */ -.highlight .m { color: #990000 } /* Literal.Number */ -.highlight .s { color: #4e9a06 } /* Literal.String */ -.highlight .na { color: #c4a000 } /* Name.Attribute */ -.highlight .nb { color: #004461 } /* Name.Builtin */ -.highlight .nc { color: #000000 } /* Name.Class */ -.highlight .no { color: #000000 } /* Name.Constant */ -.highlight .nd { color: #888888 } /* Name.Decorator */ -.highlight .ni { color: #ce5c00 } /* Name.Entity */ -.highlight .ne { color: #cc0000; font-weight: bold } /* Name.Exception */ -.highlight .nf { color: #000000 } /* Name.Function */ -.highlight .nl { color: #f57900 } /* Name.Label */ -.highlight .nn { color: #000000 } /* Name.Namespace */ -.highlight .nx { color: #000000 } /* Name.Other */ -.highlight .py { color: #000000 } /* Name.Property */ -.highlight .nt { color: #004461; font-weight: bold } /* Name.Tag */ -.highlight .nv { color: #000000 } /* Name.Variable */ -.highlight .ow { color: #004461; font-weight: bold } /* Operator.Word */ -.highlight .w { color: #f8f8f8; text-decoration: underline } /* Text.Whitespace */ -.highlight .mb { color: #990000 } /* Literal.Number.Bin */ -.highlight .mf { color: #990000 } /* Literal.Number.Float */ -.highlight .mh { color: #990000 } /* Literal.Number.Hex */ -.highlight .mi { color: #990000 } /* Literal.Number.Integer */ -.highlight .mo { color: #990000 } /* Literal.Number.Oct */ -.highlight .sa { color: #4e9a06 } /* Literal.String.Affix */ -.highlight .sb { color: #4e9a06 } /* Literal.String.Backtick */ -.highlight .sc { color: #4e9a06 } /* Literal.String.Char */ -.highlight .dl { color: #4e9a06 } /* Literal.String.Delimiter */ -.highlight .sd { color: #8f5902; font-style: italic } /* Literal.String.Doc */ -.highlight .s2 { color: #4e9a06 } /* Literal.String.Double */ -.highlight .se { color: #4e9a06 } /* Literal.String.Escape */ -.highlight .sh { color: #4e9a06 } /* Literal.String.Heredoc */ -.highlight .si { color: #4e9a06 } /* Literal.String.Interpol */ -.highlight .sx { color: #4e9a06 } /* Literal.String.Other */ -.highlight .sr { color: #4e9a06 } /* Literal.String.Regex */ -.highlight .s1 { color: #4e9a06 } /* Literal.String.Single */ -.highlight .ss { color: #4e9a06 } /* Literal.String.Symbol */ -.highlight .bp { color: #3465a4 } /* Name.Builtin.Pseudo */ -.highlight .fm { color: #000000 } /* Name.Function.Magic */ -.highlight .vc { color: #000000 } /* Name.Variable.Class */ -.highlight .vg { color: #000000 } /* Name.Variable.Global */ -.highlight .vi { color: #000000 } /* Name.Variable.Instance */ -.highlight .vm { color: #000000 } /* Name.Variable.Magic */ -.highlight .il { color: #990000 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/_build/html/_static/searchtools.js b/docs/_build/html/_static/searchtools.js deleted file mode 100644 index ac4d5861..00000000 --- a/docs/_build/html/_static/searchtools.js +++ /dev/null @@ -1,531 +0,0 @@ -/* - * searchtools.js - * ~~~~~~~~~~~~~~~~ - * - * Sphinx JavaScript utilities for the full-text search. - * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ -"use strict"; - -/** - * Simple result scoring code. - */ -if (typeof Scorer === "undefined") { - var Scorer = { - // Implement the following function to further tweak the score for each result - // The function takes a result array [docname, title, anchor, descr, score, filename] - // and returns the new score. - /* - score: result => { - const [docname, title, anchor, descr, score, filename] = result - return score - }, - */ - - // query matches the full name of an object - objNameMatch: 11, - // or matches in the last dotted part of the object name - objPartialMatch: 6, - // Additive scores depending on the priority of the object - objPrio: { - 0: 15, // used to be importantResults - 1: 5, // used to be objectResults - 2: -5, // used to be unimportantResults - }, - // Used when the priority is not in the mapping. - objPrioDefault: 0, - - // query found in title - title: 15, - partialTitle: 7, - // query found in terms - term: 5, - partialTerm: 2, - }; -} - -const _removeChildren = (element) => { - while (element && element.lastChild) element.removeChild(element.lastChild); -}; - -/** - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping - */ -const _escapeRegExp = (string) => - string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string - -const _displayItem = (item, highlightTerms, searchTerms) => { - const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; - const docUrlRoot = DOCUMENTATION_OPTIONS.URL_ROOT; - const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; - const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; - const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; - - const [docName, title, anchor, descr] = item; - - let listItem = document.createElement("li"); - let requestUrl; - let linkUrl; - if (docBuilder === "dirhtml") { - // dirhtml builder - let dirname = docName + "/"; - if (dirname.match(/\/index\/$/)) - dirname = dirname.substring(0, dirname.length - 6); - else if (dirname === "index/") dirname = ""; - requestUrl = docUrlRoot + dirname; - linkUrl = requestUrl; - } else { - // normal html builders - requestUrl = docUrlRoot + docName + docFileSuffix; - linkUrl = docName + docLinkSuffix; - } - const params = new URLSearchParams(); - params.set("highlight", [...highlightTerms].join(" ")); - let linkEl = listItem.appendChild(document.createElement("a")); - linkEl.href = linkUrl + "?" + params.toString() + anchor; - linkEl.innerHTML = title; - if (descr) - listItem.appendChild(document.createElement("span")).innerText = - " (" + descr + ")"; - else if (showSearchSummary) - fetch(requestUrl) - .then((responseData) => responseData.text()) - .then((data) => { - if (data) - listItem.appendChild( - Search.makeSearchSummary(data, searchTerms, highlightTerms) - ); - }); - Search.output.appendChild(listItem); -}; -const _finishSearch = (resultCount) => { - Search.stopPulse(); - Search.title.innerText = _("Search Results"); - if (!resultCount) - Search.status.innerText = Documentation.gettext( - "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." - ); - else - Search.status.innerText = _( - `Search finished, found ${resultCount} page(s) matching the search query.` - ); -}; -const _displayNextItem = ( - results, - resultCount, - highlightTerms, - searchTerms -) => { - // results left, load the summary and display it - // this is intended to be dynamic (don't sub resultsCount) - if (results.length) { - _displayItem(results.pop(), highlightTerms, searchTerms); - setTimeout( - () => _displayNextItem(results, resultCount, highlightTerms, searchTerms), - 5 - ); - } - // search finished, update title and status message - else _finishSearch(resultCount); -}; - -/** - * Default splitQuery function. Can be overridden in ``sphinx.search`` with a - * custom function per language. - * - * The regular expression works by splitting the string on consecutive characters - * that are not Unicode letters, numbers, underscores, or emoji characters. - * This is the same as ``\W+`` in Python, preserving the surrogate pair area. - */ -if (typeof splitQuery === "undefined") { - var splitQuery = (query) => query - .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) - .filter(term => term) // remove remaining empty strings -} - -/** - * Search Module - */ -const Search = { - _index: null, - _queued_query: null, - _pulse_status: -1, - - htmlToText: (htmlString) => { - const htmlElement = document - .createRange() - .createContextualFragment(htmlString); - _removeChildren(htmlElement.querySelectorAll(".headerlink")); - const docContent = htmlElement.querySelector('[role="main"]'); - if (docContent !== undefined) return docContent.textContent; - console.warn( - "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." - ); - return ""; - }, - - init: () => { - const query = new URLSearchParams(window.location.search).get("q"); - document - .querySelectorAll('input[name="q"]') - .forEach((el) => (el.value = query)); - if (query) Search.performSearch(query); - }, - - loadIndex: (url) => - (document.body.appendChild(document.createElement("script")).src = url), - - setIndex: (index) => { - Search._index = index; - if (Search._queued_query !== null) { - const query = Search._queued_query; - Search._queued_query = null; - Search.query(query); - } - }, - - hasIndex: () => Search._index !== null, - - deferQuery: (query) => (Search._queued_query = query), - - stopPulse: () => (Search._pulse_status = -1), - - startPulse: () => { - if (Search._pulse_status >= 0) return; - - const pulse = () => { - Search._pulse_status = (Search._pulse_status + 1) % 4; - Search.dots.innerText = ".".repeat(Search._pulse_status); - if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); - }; - pulse(); - }, - - /** - * perform a search for something (or wait until index is loaded) - */ - performSearch: (query) => { - // create the required interface elements - const searchText = document.createElement("h2"); - searchText.textContent = _("Searching"); - const searchSummary = document.createElement("p"); - searchSummary.classList.add("search-summary"); - searchSummary.innerText = ""; - const searchList = document.createElement("ul"); - searchList.classList.add("search"); - - const out = document.getElementById("search-results"); - Search.title = out.appendChild(searchText); - Search.dots = Search.title.appendChild(document.createElement("span")); - Search.status = out.appendChild(searchSummary); - Search.output = out.appendChild(searchList); - - const searchProgress = document.getElementById("search-progress"); - // Some themes don't use the search progress node - if (searchProgress) { - searchProgress.innerText = _("Preparing search..."); - } - Search.startPulse(); - - // index already loaded, the browser was quick! - if (Search.hasIndex()) Search.query(query); - else Search.deferQuery(query); - }, - - /** - * execute search (requires search index to be loaded) - */ - query: (query) => { - // stem the search terms and add them to the correct list - const stemmer = new Stemmer(); - const searchTerms = new Set(); - const excludedTerms = new Set(); - const highlightTerms = new Set(); - const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); - splitQuery(query.trim()).forEach((queryTerm) => { - const queryTermLower = queryTerm.toLowerCase(); - - // maybe skip this "word" - // stopwords array is from language_data.js - if ( - stopwords.indexOf(queryTermLower) !== -1 || - queryTerm.match(/^\d+$/) - ) - return; - - // stem the word - let word = stemmer.stemWord(queryTermLower); - // select the correct list - if (word[0] === "-") excludedTerms.add(word.substr(1)); - else { - searchTerms.add(word); - highlightTerms.add(queryTermLower); - } - }); - - // console.debug("SEARCH: searching for:"); - // console.info("required: ", [...searchTerms]); - // console.info("excluded: ", [...excludedTerms]); - - // array of [docname, title, anchor, descr, score, filename] - let results = []; - _removeChildren(document.getElementById("search-progress")); - - // lookup as object - objectTerms.forEach((term) => - results.push(...Search.performObjectSearch(term, objectTerms)) - ); - - // lookup as search terms in fulltext - results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); - - // let the scorer override scores with a custom scoring function - if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); - - // now sort the results by score (in opposite order of appearance, since the - // display function below uses pop() to retrieve items) and then - // alphabetically - results.sort((a, b) => { - const leftScore = a[4]; - const rightScore = b[4]; - if (leftScore === rightScore) { - // same score: sort alphabetically - const leftTitle = a[1].toLowerCase(); - const rightTitle = b[1].toLowerCase(); - if (leftTitle === rightTitle) return 0; - return leftTitle > rightTitle ? -1 : 1; // inverted is intentional - } - return leftScore > rightScore ? 1 : -1; - }); - - // remove duplicate search results - // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept - let seen = new Set(); - results = results.reverse().reduce((acc, result) => { - let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); - if (!seen.has(resultStr)) { - acc.push(result); - seen.add(resultStr); - } - return acc; - }, []); - - results = results.reverse(); - - // for debugging - //Search.lastresults = results.slice(); // a copy - // console.info("search results:", Search.lastresults); - - // print the results - _displayNextItem(results, results.length, highlightTerms, searchTerms); - }, - - /** - * search for object names - */ - performObjectSearch: (object, objectTerms) => { - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const objects = Search._index.objects; - const objNames = Search._index.objnames; - const titles = Search._index.titles; - - const results = []; - - const objectSearchCallback = (prefix, match) => { - const name = match[4] - const fullname = (prefix ? prefix + "." : "") + name; - const fullnameLower = fullname.toLowerCase(); - if (fullnameLower.indexOf(object) < 0) return; - - let score = 0; - const parts = fullnameLower.split("."); - - // check for different match types: exact matches of full name or - // "last name" (i.e. last dotted part) - if (fullnameLower === object || parts.slice(-1)[0] === object) - score += Scorer.objNameMatch; - else if (parts.slice(-1)[0].indexOf(object) > -1) - score += Scorer.objPartialMatch; // matches in last name - - const objName = objNames[match[1]][2]; - const title = titles[match[0]]; - - // If more than one term searched for, we require other words to be - // found in the name/title/description - const otherTerms = new Set(objectTerms); - otherTerms.delete(object); - if (otherTerms.size > 0) { - const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); - if ( - [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) - ) - return; - } - - let anchor = match[3]; - if (anchor === "") anchor = fullname; - else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; - - const descr = objName + _(", in ") + title; - - // add custom score for some objects according to scorer - if (Scorer.objPrio.hasOwnProperty(match[2])) - score += Scorer.objPrio[match[2]]; - else score += Scorer.objPrioDefault; - - results.push([ - docNames[match[0]], - fullname, - "#" + anchor, - descr, - score, - filenames[match[0]], - ]); - }; - Object.keys(objects).forEach((prefix) => - objects[prefix].forEach((array) => - objectSearchCallback(prefix, array) - ) - ); - return results; - }, - - /** - * search for full-text terms in the index - */ - performTermsSearch: (searchTerms, excludedTerms) => { - // prepare search - const terms = Search._index.terms; - const titleTerms = Search._index.titleterms; - const docNames = Search._index.docnames; - const filenames = Search._index.filenames; - const titles = Search._index.titles; - - const scoreMap = new Map(); - const fileMap = new Map(); - - // perform the search on the required terms - searchTerms.forEach((word) => { - const files = []; - const arr = [ - { files: terms[word], score: Scorer.term }, - { files: titleTerms[word], score: Scorer.title }, - ]; - // add support for partial matches - if (word.length > 2) { - const escapedWord = _escapeRegExp(word); - Object.keys(terms).forEach((term) => { - if (term.match(escapedWord) && !terms[word]) - arr.push({ files: terms[term], score: Scorer.partialTerm }); - }); - Object.keys(titleTerms).forEach((term) => { - if (term.match(escapedWord) && !titleTerms[word]) - arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); - }); - } - - // no match but word was a required one - if (arr.every((record) => record.files === undefined)) return; - - // found search word in contents - arr.forEach((record) => { - if (record.files === undefined) return; - - let recordFiles = record.files; - if (recordFiles.length === undefined) recordFiles = [recordFiles]; - files.push(...recordFiles); - - // set score for the word in each file - recordFiles.forEach((file) => { - if (!scoreMap.has(file)) scoreMap.set(file, {}); - scoreMap.get(file)[word] = record.score; - }); - }); - - // create the mapping - files.forEach((file) => { - if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) - fileMap.get(file).push(word); - else fileMap.set(file, [word]); - }); - }); - - // now check if the files don't contain excluded terms - const results = []; - for (const [file, wordList] of fileMap) { - // check if all requirements are matched - - // as search terms with length < 3 are discarded - const filteredTermCount = [...searchTerms].filter( - (term) => term.length > 2 - ).length; - if ( - wordList.length !== searchTerms.size && - wordList.length !== filteredTermCount - ) - continue; - - // ensure that none of the excluded terms is in the search result - if ( - [...excludedTerms].some( - (term) => - terms[term] === file || - titleTerms[term] === file || - (terms[term] || []).includes(file) || - (titleTerms[term] || []).includes(file) - ) - ) - break; - - // select one (max) score for the file. - const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); - // add result to the result list - results.push([ - docNames[file], - titles[file], - "", - null, - score, - filenames[file], - ]); - } - return results; - }, - - /** - * helper function to return a node containing the - * search summary for a given text. keywords is a list - * of stemmed words, highlightWords is the list of normal, unstemmed - * words. the first one is used to find the occurrence, the - * latter for highlighting it. - */ - makeSearchSummary: (htmlText, keywords, highlightWords) => { - const text = Search.htmlToText(htmlText).toLowerCase(); - if (text === "") return null; - - const actualStartPosition = [...keywords] - .map((k) => text.indexOf(k.toLowerCase())) - .filter((i) => i > -1) - .slice(-1)[0]; - const startWithContext = Math.max(actualStartPosition - 120, 0); - - const top = startWithContext === 0 ? "" : "..."; - const tail = startWithContext + 240 < text.length ? "..." : ""; - - let summary = document.createElement("div"); - summary.classList.add("context"); - summary.innerText = top + text.substr(startWithContext, 240).trim() + tail; - - highlightWords.forEach((highlightWord) => - _highlightText(summary, highlightWord, "highlighted") - ); - - return summary; - }, -}; - -_ready(Search.init); diff --git a/docs/_build/html/_static/sphinx_highlight.js b/docs/_build/html/_static/sphinx_highlight.js deleted file mode 100644 index aae669d7..00000000 --- a/docs/_build/html/_static/sphinx_highlight.js +++ /dev/null @@ -1,144 +0,0 @@ -/* Highlighting utilities for Sphinx HTML documentation. */ -"use strict"; - -const SPHINX_HIGHLIGHT_ENABLED = true - -/** - * highlight a given string on a node by wrapping it in - * span elements with the given class name. - */ -const _highlight = (node, addItems, text, className) => { - if (node.nodeType === Node.TEXT_NODE) { - const val = node.nodeValue; - const parent = node.parentNode; - const pos = val.toLowerCase().indexOf(text); - if ( - pos >= 0 && - !parent.classList.contains(className) && - !parent.classList.contains("nohighlight") - ) { - let span; - - const closestNode = parent.closest("body, svg, foreignObject"); - const isInSVG = closestNode && closestNode.matches("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.classList.add(className); - } - - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - parent.insertBefore( - span, - parent.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling - ) - ); - node.nodeValue = val.substr(0, pos); - - if (isInSVG) { - const rect = document.createElementNS( - "http://www.w3.org/2000/svg", - "rect" - ); - const bbox = parent.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute("class", className); - addItems.push({ parent: parent, target: rect }); - } - } - } else if (node.matches && !node.matches("button, select, textarea")) { - node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); - } -}; -const _highlightText = (thisNode, text, className) => { - let addItems = []; - _highlight(thisNode, addItems, text, className); - addItems.forEach((obj) => - obj.parent.insertAdjacentElement("beforebegin", obj.target) - ); -}; - -/** - * Small JavaScript module for the documentation. - */ -const SphinxHighlight = { - - /** - * highlight the search words provided in localstorage in the text - */ - highlightSearchWords: () => { - if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight - - // get and clear terms from localstorage - const url = new URL(window.location); - const highlight = - localStorage.getItem("sphinx_highlight_terms") - || url.searchParams.get("highlight") - || ""; - localStorage.removeItem("sphinx_highlight_terms") - url.searchParams.delete("highlight"); - window.history.replaceState({}, "", url); - - // get individual terms from highlight string - const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); - if (terms.length === 0) return; // nothing to do - - // There should never be more than one element matching "div.body" - const divBody = document.querySelectorAll("div.body"); - const body = divBody.length ? divBody[0] : document.querySelector("body"); - window.setTimeout(() => { - terms.forEach((term) => _highlightText(body, term, "highlighted")); - }, 10); - - const searchBox = document.getElementById("searchbox"); - if (searchBox === null) return; - searchBox.appendChild( - document - .createRange() - .createContextualFragment( - '" - ) - ); - }, - - /** - * helper function to hide the search marks again - */ - hideSearchWords: () => { - document - .querySelectorAll("#searchbox .highlight-link") - .forEach((el) => el.remove()); - document - .querySelectorAll("span.highlighted") - .forEach((el) => el.classList.remove("highlighted")); - localStorage.removeItem("sphinx_highlight_terms") - }, - - initEscapeListener: () => { - // only install a listener if it is really needed - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; - - document.addEventListener("keydown", (event) => { - // bail for input elements - if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; - // bail with special keys - if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; - if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { - SphinxHighlight.hideSearchWords(); - event.preventDefault(); - } - }); - }, -}; - -_ready(SphinxHighlight.highlightSearchWords); -_ready(SphinxHighlight.initEscapeListener); diff --git a/docs/_build/html/_static/underscore-1.13.1.js b/docs/_build/html/_static/underscore-1.13.1.js deleted file mode 100644 index ffd77af9..00000000 --- a/docs/_build/html/_static/underscore-1.13.1.js +++ /dev/null @@ -1,2042 +0,0 @@ -(function (global, factory) { - typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : - typeof define === 'function' && define.amd ? define('underscore', factory) : - (global = typeof globalThis !== 'undefined' ? globalThis : global || self, (function () { - var current = global._; - var exports = global._ = factory(); - exports.noConflict = function () { global._ = current; return exports; }; - }())); -}(this, (function () { - // Underscore.js 1.13.1 - // https://underscorejs.org - // (c) 2009-2021 Jeremy Ashkenas, Julian Gonggrijp, and DocumentCloud and Investigative Reporters & Editors - // Underscore may be freely distributed under the MIT license. - - // Current version. - var VERSION = '1.13.1'; - - // Establish the root object, `window` (`self`) in the browser, `global` - // on the server, or `this` in some virtual machines. We use `self` - // instead of `window` for `WebWorker` support. - var root = typeof self == 'object' && self.self === self && self || - typeof global == 'object' && global.global === global && global || - Function('return this')() || - {}; - - // Save bytes in the minified (but not gzipped) version: - var ArrayProto = Array.prototype, ObjProto = Object.prototype; - var SymbolProto = typeof Symbol !== 'undefined' ? Symbol.prototype : null; - - // Create quick reference variables for speed access to core prototypes. - var push = ArrayProto.push, - slice = ArrayProto.slice, - toString = ObjProto.toString, - hasOwnProperty = ObjProto.hasOwnProperty; - - // Modern feature detection. - var supportsArrayBuffer = typeof ArrayBuffer !== 'undefined', - supportsDataView = typeof DataView !== 'undefined'; - - // All **ECMAScript 5+** native function implementations that we hope to use - // are declared here. - var nativeIsArray = Array.isArray, - nativeKeys = Object.keys, - nativeCreate = Object.create, - nativeIsView = supportsArrayBuffer && ArrayBuffer.isView; - - // Create references to these builtin functions because we override them. - var _isNaN = isNaN, - _isFinite = isFinite; - - // Keys in IE < 9 that won't be iterated by `for key in ...` and thus missed. - var hasEnumBug = !{toString: null}.propertyIsEnumerable('toString'); - var nonEnumerableProps = ['valueOf', 'isPrototypeOf', 'toString', - 'propertyIsEnumerable', 'hasOwnProperty', 'toLocaleString']; - - // The largest integer that can be represented exactly. - var MAX_ARRAY_INDEX = Math.pow(2, 53) - 1; - - // Some functions take a variable number of arguments, or a few expected - // arguments at the beginning and then a variable number of values to operate - // on. This helper accumulates all remaining arguments past the function’s - // argument length (or an explicit `startIndex`), into an array that becomes - // the last argument. Similar to ES6’s "rest parameter". - function restArguments(func, startIndex) { - startIndex = startIndex == null ? func.length - 1 : +startIndex; - return function() { - var length = Math.max(arguments.length - startIndex, 0), - rest = Array(length), - index = 0; - for (; index < length; index++) { - rest[index] = arguments[index + startIndex]; - } - switch (startIndex) { - case 0: return func.call(this, rest); - case 1: return func.call(this, arguments[0], rest); - case 2: return func.call(this, arguments[0], arguments[1], rest); - } - var args = Array(startIndex + 1); - for (index = 0; index < startIndex; index++) { - args[index] = arguments[index]; - } - args[startIndex] = rest; - return func.apply(this, args); - }; - } - - // Is a given variable an object? - function isObject(obj) { - var type = typeof obj; - return type === 'function' || type === 'object' && !!obj; - } - - // Is a given value equal to null? - function isNull(obj) { - return obj === null; - } - - // Is a given variable undefined? - function isUndefined(obj) { - return obj === void 0; - } - - // Is a given value a boolean? - function isBoolean(obj) { - return obj === true || obj === false || toString.call(obj) === '[object Boolean]'; - } - - // Is a given value a DOM element? - function isElement(obj) { - return !!(obj && obj.nodeType === 1); - } - - // Internal function for creating a `toString`-based type tester. - function tagTester(name) { - var tag = '[object ' + name + ']'; - return function(obj) { - return toString.call(obj) === tag; - }; - } - - var isString = tagTester('String'); - - var isNumber = tagTester('Number'); - - var isDate = tagTester('Date'); - - var isRegExp = tagTester('RegExp'); - - var isError = tagTester('Error'); - - var isSymbol = tagTester('Symbol'); - - var isArrayBuffer = tagTester('ArrayBuffer'); - - var isFunction = tagTester('Function'); - - // Optimize `isFunction` if appropriate. Work around some `typeof` bugs in old - // v8, IE 11 (#1621), Safari 8 (#1929), and PhantomJS (#2236). - var nodelist = root.document && root.document.childNodes; - if (typeof /./ != 'function' && typeof Int8Array != 'object' && typeof nodelist != 'function') { - isFunction = function(obj) { - return typeof obj == 'function' || false; - }; - } - - var isFunction$1 = isFunction; - - var hasObjectTag = tagTester('Object'); - - // In IE 10 - Edge 13, `DataView` has string tag `'[object Object]'`. - // In IE 11, the most common among them, this problem also applies to - // `Map`, `WeakMap` and `Set`. - var hasStringTagBug = ( - supportsDataView && hasObjectTag(new DataView(new ArrayBuffer(8))) - ), - isIE11 = (typeof Map !== 'undefined' && hasObjectTag(new Map)); - - var isDataView = tagTester('DataView'); - - // In IE 10 - Edge 13, we need a different heuristic - // to determine whether an object is a `DataView`. - function ie10IsDataView(obj) { - return obj != null && isFunction$1(obj.getInt8) && isArrayBuffer(obj.buffer); - } - - var isDataView$1 = (hasStringTagBug ? ie10IsDataView : isDataView); - - // Is a given value an array? - // Delegates to ECMA5's native `Array.isArray`. - var isArray = nativeIsArray || tagTester('Array'); - - // Internal function to check whether `key` is an own property name of `obj`. - function has$1(obj, key) { - return obj != null && hasOwnProperty.call(obj, key); - } - - var isArguments = tagTester('Arguments'); - - // Define a fallback version of the method in browsers (ahem, IE < 9), where - // there isn't any inspectable "Arguments" type. - (function() { - if (!isArguments(arguments)) { - isArguments = function(obj) { - return has$1(obj, 'callee'); - }; - } - }()); - - var isArguments$1 = isArguments; - - // Is a given object a finite number? - function isFinite$1(obj) { - return !isSymbol(obj) && _isFinite(obj) && !isNaN(parseFloat(obj)); - } - - // Is the given value `NaN`? - function isNaN$1(obj) { - return isNumber(obj) && _isNaN(obj); - } - - // Predicate-generating function. Often useful outside of Underscore. - function constant(value) { - return function() { - return value; - }; - } - - // Common internal logic for `isArrayLike` and `isBufferLike`. - function createSizePropertyCheck(getSizeProperty) { - return function(collection) { - var sizeProperty = getSizeProperty(collection); - return typeof sizeProperty == 'number' && sizeProperty >= 0 && sizeProperty <= MAX_ARRAY_INDEX; - } - } - - // Internal helper to generate a function to obtain property `key` from `obj`. - function shallowProperty(key) { - return function(obj) { - return obj == null ? void 0 : obj[key]; - }; - } - - // Internal helper to obtain the `byteLength` property of an object. - var getByteLength = shallowProperty('byteLength'); - - // Internal helper to determine whether we should spend extensive checks against - // `ArrayBuffer` et al. - var isBufferLike = createSizePropertyCheck(getByteLength); - - // Is a given value a typed array? - var typedArrayPattern = /\[object ((I|Ui)nt(8|16|32)|Float(32|64)|Uint8Clamped|Big(I|Ui)nt64)Array\]/; - function isTypedArray(obj) { - // `ArrayBuffer.isView` is the most future-proof, so use it when available. - // Otherwise, fall back on the above regular expression. - return nativeIsView ? (nativeIsView(obj) && !isDataView$1(obj)) : - isBufferLike(obj) && typedArrayPattern.test(toString.call(obj)); - } - - var isTypedArray$1 = supportsArrayBuffer ? isTypedArray : constant(false); - - // Internal helper to obtain the `length` property of an object. - var getLength = shallowProperty('length'); - - // Internal helper to create a simple lookup structure. - // `collectNonEnumProps` used to depend on `_.contains`, but this led to - // circular imports. `emulatedSet` is a one-off solution that only works for - // arrays of strings. - function emulatedSet(keys) { - var hash = {}; - for (var l = keys.length, i = 0; i < l; ++i) hash[keys[i]] = true; - return { - contains: function(key) { return hash[key]; }, - push: function(key) { - hash[key] = true; - return keys.push(key); - } - }; - } - - // Internal helper. Checks `keys` for the presence of keys in IE < 9 that won't - // be iterated by `for key in ...` and thus missed. Extends `keys` in place if - // needed. - function collectNonEnumProps(obj, keys) { - keys = emulatedSet(keys); - var nonEnumIdx = nonEnumerableProps.length; - var constructor = obj.constructor; - var proto = isFunction$1(constructor) && constructor.prototype || ObjProto; - - // Constructor is a special case. - var prop = 'constructor'; - if (has$1(obj, prop) && !keys.contains(prop)) keys.push(prop); - - while (nonEnumIdx--) { - prop = nonEnumerableProps[nonEnumIdx]; - if (prop in obj && obj[prop] !== proto[prop] && !keys.contains(prop)) { - keys.push(prop); - } - } - } - - // Retrieve the names of an object's own properties. - // Delegates to **ECMAScript 5**'s native `Object.keys`. - function keys(obj) { - if (!isObject(obj)) return []; - if (nativeKeys) return nativeKeys(obj); - var keys = []; - for (var key in obj) if (has$1(obj, key)) keys.push(key); - // Ahem, IE < 9. - if (hasEnumBug) collectNonEnumProps(obj, keys); - return keys; - } - - // Is a given array, string, or object empty? - // An "empty" object has no enumerable own-properties. - function isEmpty(obj) { - if (obj == null) return true; - // Skip the more expensive `toString`-based type checks if `obj` has no - // `.length`. - var length = getLength(obj); - if (typeof length == 'number' && ( - isArray(obj) || isString(obj) || isArguments$1(obj) - )) return length === 0; - return getLength(keys(obj)) === 0; - } - - // Returns whether an object has a given set of `key:value` pairs. - function isMatch(object, attrs) { - var _keys = keys(attrs), length = _keys.length; - if (object == null) return !length; - var obj = Object(object); - for (var i = 0; i < length; i++) { - var key = _keys[i]; - if (attrs[key] !== obj[key] || !(key in obj)) return false; - } - return true; - } - - // If Underscore is called as a function, it returns a wrapped object that can - // be used OO-style. This wrapper holds altered versions of all functions added - // through `_.mixin`. Wrapped objects may be chained. - function _$1(obj) { - if (obj instanceof _$1) return obj; - if (!(this instanceof _$1)) return new _$1(obj); - this._wrapped = obj; - } - - _$1.VERSION = VERSION; - - // Extracts the result from a wrapped and chained object. - _$1.prototype.value = function() { - return this._wrapped; - }; - - // Provide unwrapping proxies for some methods used in engine operations - // such as arithmetic and JSON stringification. - _$1.prototype.valueOf = _$1.prototype.toJSON = _$1.prototype.value; - - _$1.prototype.toString = function() { - return String(this._wrapped); - }; - - // Internal function to wrap or shallow-copy an ArrayBuffer, - // typed array or DataView to a new view, reusing the buffer. - function toBufferView(bufferSource) { - return new Uint8Array( - bufferSource.buffer || bufferSource, - bufferSource.byteOffset || 0, - getByteLength(bufferSource) - ); - } - - // We use this string twice, so give it a name for minification. - var tagDataView = '[object DataView]'; - - // Internal recursive comparison function for `_.isEqual`. - function eq(a, b, aStack, bStack) { - // Identical objects are equal. `0 === -0`, but they aren't identical. - // See the [Harmony `egal` proposal](https://wiki.ecmascript.org/doku.php?id=harmony:egal). - if (a === b) return a !== 0 || 1 / a === 1 / b; - // `null` or `undefined` only equal to itself (strict comparison). - if (a == null || b == null) return false; - // `NaN`s are equivalent, but non-reflexive. - if (a !== a) return b !== b; - // Exhaust primitive checks - var type = typeof a; - if (type !== 'function' && type !== 'object' && typeof b != 'object') return false; - return deepEq(a, b, aStack, bStack); - } - - // Internal recursive comparison function for `_.isEqual`. - function deepEq(a, b, aStack, bStack) { - // Unwrap any wrapped objects. - if (a instanceof _$1) a = a._wrapped; - if (b instanceof _$1) b = b._wrapped; - // Compare `[[Class]]` names. - var className = toString.call(a); - if (className !== toString.call(b)) return false; - // Work around a bug in IE 10 - Edge 13. - if (hasStringTagBug && className == '[object Object]' && isDataView$1(a)) { - if (!isDataView$1(b)) return false; - className = tagDataView; - } - switch (className) { - // These types are compared by value. - case '[object RegExp]': - // RegExps are coerced to strings for comparison (Note: '' + /a/i === '/a/i') - case '[object String]': - // Primitives and their corresponding object wrappers are equivalent; thus, `"5"` is - // equivalent to `new String("5")`. - return '' + a === '' + b; - case '[object Number]': - // `NaN`s are equivalent, but non-reflexive. - // Object(NaN) is equivalent to NaN. - if (+a !== +a) return +b !== +b; - // An `egal` comparison is performed for other numeric values. - return +a === 0 ? 1 / +a === 1 / b : +a === +b; - case '[object Date]': - case '[object Boolean]': - // Coerce dates and booleans to numeric primitive values. Dates are compared by their - // millisecond representations. Note that invalid dates with millisecond representations - // of `NaN` are not equivalent. - return +a === +b; - case '[object Symbol]': - return SymbolProto.valueOf.call(a) === SymbolProto.valueOf.call(b); - case '[object ArrayBuffer]': - case tagDataView: - // Coerce to typed array so we can fall through. - return deepEq(toBufferView(a), toBufferView(b), aStack, bStack); - } - - var areArrays = className === '[object Array]'; - if (!areArrays && isTypedArray$1(a)) { - var byteLength = getByteLength(a); - if (byteLength !== getByteLength(b)) return false; - if (a.buffer === b.buffer && a.byteOffset === b.byteOffset) return true; - areArrays = true; - } - if (!areArrays) { - if (typeof a != 'object' || typeof b != 'object') return false; - - // Objects with different constructors are not equivalent, but `Object`s or `Array`s - // from different frames are. - var aCtor = a.constructor, bCtor = b.constructor; - if (aCtor !== bCtor && !(isFunction$1(aCtor) && aCtor instanceof aCtor && - isFunction$1(bCtor) && bCtor instanceof bCtor) - && ('constructor' in a && 'constructor' in b)) { - return false; - } - } - // Assume equality for cyclic structures. The algorithm for detecting cyclic - // structures is adapted from ES 5.1 section 15.12.3, abstract operation `JO`. - - // Initializing stack of traversed objects. - // It's done here since we only need them for objects and arrays comparison. - aStack = aStack || []; - bStack = bStack || []; - var length = aStack.length; - while (length--) { - // Linear search. Performance is inversely proportional to the number of - // unique nested structures. - if (aStack[length] === a) return bStack[length] === b; - } - - // Add the first object to the stack of traversed objects. - aStack.push(a); - bStack.push(b); - - // Recursively compare objects and arrays. - if (areArrays) { - // Compare array lengths to determine if a deep comparison is necessary. - length = a.length; - if (length !== b.length) return false; - // Deep compare the contents, ignoring non-numeric properties. - while (length--) { - if (!eq(a[length], b[length], aStack, bStack)) return false; - } - } else { - // Deep compare objects. - var _keys = keys(a), key; - length = _keys.length; - // Ensure that both objects contain the same number of properties before comparing deep equality. - if (keys(b).length !== length) return false; - while (length--) { - // Deep compare each member - key = _keys[length]; - if (!(has$1(b, key) && eq(a[key], b[key], aStack, bStack))) return false; - } - } - // Remove the first object from the stack of traversed objects. - aStack.pop(); - bStack.pop(); - return true; - } - - // Perform a deep comparison to check if two objects are equal. - function isEqual(a, b) { - return eq(a, b); - } - - // Retrieve all the enumerable property names of an object. - function allKeys(obj) { - if (!isObject(obj)) return []; - var keys = []; - for (var key in obj) keys.push(key); - // Ahem, IE < 9. - if (hasEnumBug) collectNonEnumProps(obj, keys); - return keys; - } - - // Since the regular `Object.prototype.toString` type tests don't work for - // some types in IE 11, we use a fingerprinting heuristic instead, based - // on the methods. It's not great, but it's the best we got. - // The fingerprint method lists are defined below. - function ie11fingerprint(methods) { - var length = getLength(methods); - return function(obj) { - if (obj == null) return false; - // `Map`, `WeakMap` and `Set` have no enumerable keys. - var keys = allKeys(obj); - if (getLength(keys)) return false; - for (var i = 0; i < length; i++) { - if (!isFunction$1(obj[methods[i]])) return false; - } - // If we are testing against `WeakMap`, we need to ensure that - // `obj` doesn't have a `forEach` method in order to distinguish - // it from a regular `Map`. - return methods !== weakMapMethods || !isFunction$1(obj[forEachName]); - }; - } - - // In the interest of compact minification, we write - // each string in the fingerprints only once. - var forEachName = 'forEach', - hasName = 'has', - commonInit = ['clear', 'delete'], - mapTail = ['get', hasName, 'set']; - - // `Map`, `WeakMap` and `Set` each have slightly different - // combinations of the above sublists. - var mapMethods = commonInit.concat(forEachName, mapTail), - weakMapMethods = commonInit.concat(mapTail), - setMethods = ['add'].concat(commonInit, forEachName, hasName); - - var isMap = isIE11 ? ie11fingerprint(mapMethods) : tagTester('Map'); - - var isWeakMap = isIE11 ? ie11fingerprint(weakMapMethods) : tagTester('WeakMap'); - - var isSet = isIE11 ? ie11fingerprint(setMethods) : tagTester('Set'); - - var isWeakSet = tagTester('WeakSet'); - - // Retrieve the values of an object's properties. - function values(obj) { - var _keys = keys(obj); - var length = _keys.length; - var values = Array(length); - for (var i = 0; i < length; i++) { - values[i] = obj[_keys[i]]; - } - return values; - } - - // Convert an object into a list of `[key, value]` pairs. - // The opposite of `_.object` with one argument. - function pairs(obj) { - var _keys = keys(obj); - var length = _keys.length; - var pairs = Array(length); - for (var i = 0; i < length; i++) { - pairs[i] = [_keys[i], obj[_keys[i]]]; - } - return pairs; - } - - // Invert the keys and values of an object. The values must be serializable. - function invert(obj) { - var result = {}; - var _keys = keys(obj); - for (var i = 0, length = _keys.length; i < length; i++) { - result[obj[_keys[i]]] = _keys[i]; - } - return result; - } - - // Return a sorted list of the function names available on the object. - function functions(obj) { - var names = []; - for (var key in obj) { - if (isFunction$1(obj[key])) names.push(key); - } - return names.sort(); - } - - // An internal function for creating assigner functions. - function createAssigner(keysFunc, defaults) { - return function(obj) { - var length = arguments.length; - if (defaults) obj = Object(obj); - if (length < 2 || obj == null) return obj; - for (var index = 1; index < length; index++) { - var source = arguments[index], - keys = keysFunc(source), - l = keys.length; - for (var i = 0; i < l; i++) { - var key = keys[i]; - if (!defaults || obj[key] === void 0) obj[key] = source[key]; - } - } - return obj; - }; - } - - // Extend a given object with all the properties in passed-in object(s). - var extend = createAssigner(allKeys); - - // Assigns a given object with all the own properties in the passed-in - // object(s). - // (https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object/assign) - var extendOwn = createAssigner(keys); - - // Fill in a given object with default properties. - var defaults = createAssigner(allKeys, true); - - // Create a naked function reference for surrogate-prototype-swapping. - function ctor() { - return function(){}; - } - - // An internal function for creating a new object that inherits from another. - function baseCreate(prototype) { - if (!isObject(prototype)) return {}; - if (nativeCreate) return nativeCreate(prototype); - var Ctor = ctor(); - Ctor.prototype = prototype; - var result = new Ctor; - Ctor.prototype = null; - return result; - } - - // Creates an object that inherits from the given prototype object. - // If additional properties are provided then they will be added to the - // created object. - function create(prototype, props) { - var result = baseCreate(prototype); - if (props) extendOwn(result, props); - return result; - } - - // Create a (shallow-cloned) duplicate of an object. - function clone(obj) { - if (!isObject(obj)) return obj; - return isArray(obj) ? obj.slice() : extend({}, obj); - } - - // Invokes `interceptor` with the `obj` and then returns `obj`. - // The primary purpose of this method is to "tap into" a method chain, in - // order to perform operations on intermediate results within the chain. - function tap(obj, interceptor) { - interceptor(obj); - return obj; - } - - // Normalize a (deep) property `path` to array. - // Like `_.iteratee`, this function can be customized. - function toPath$1(path) { - return isArray(path) ? path : [path]; - } - _$1.toPath = toPath$1; - - // Internal wrapper for `_.toPath` to enable minification. - // Similar to `cb` for `_.iteratee`. - function toPath(path) { - return _$1.toPath(path); - } - - // Internal function to obtain a nested property in `obj` along `path`. - function deepGet(obj, path) { - var length = path.length; - for (var i = 0; i < length; i++) { - if (obj == null) return void 0; - obj = obj[path[i]]; - } - return length ? obj : void 0; - } - - // Get the value of the (deep) property on `path` from `object`. - // If any property in `path` does not exist or if the value is - // `undefined`, return `defaultValue` instead. - // The `path` is normalized through `_.toPath`. - function get(object, path, defaultValue) { - var value = deepGet(object, toPath(path)); - return isUndefined(value) ? defaultValue : value; - } - - // Shortcut function for checking if an object has a given property directly on - // itself (in other words, not on a prototype). Unlike the internal `has` - // function, this public version can also traverse nested properties. - function has(obj, path) { - path = toPath(path); - var length = path.length; - for (var i = 0; i < length; i++) { - var key = path[i]; - if (!has$1(obj, key)) return false; - obj = obj[key]; - } - return !!length; - } - - // Keep the identity function around for default iteratees. - function identity(value) { - return value; - } - - // Returns a predicate for checking whether an object has a given set of - // `key:value` pairs. - function matcher(attrs) { - attrs = extendOwn({}, attrs); - return function(obj) { - return isMatch(obj, attrs); - }; - } - - // Creates a function that, when passed an object, will traverse that object’s - // properties down the given `path`, specified as an array of keys or indices. - function property(path) { - path = toPath(path); - return function(obj) { - return deepGet(obj, path); - }; - } - - // Internal function that returns an efficient (for current engines) version - // of the passed-in callback, to be repeatedly applied in other Underscore - // functions. - function optimizeCb(func, context, argCount) { - if (context === void 0) return func; - switch (argCount == null ? 3 : argCount) { - case 1: return function(value) { - return func.call(context, value); - }; - // The 2-argument case is omitted because we’re not using it. - case 3: return function(value, index, collection) { - return func.call(context, value, index, collection); - }; - case 4: return function(accumulator, value, index, collection) { - return func.call(context, accumulator, value, index, collection); - }; - } - return function() { - return func.apply(context, arguments); - }; - } - - // An internal function to generate callbacks that can be applied to each - // element in a collection, returning the desired result — either `_.identity`, - // an arbitrary callback, a property matcher, or a property accessor. - function baseIteratee(value, context, argCount) { - if (value == null) return identity; - if (isFunction$1(value)) return optimizeCb(value, context, argCount); - if (isObject(value) && !isArray(value)) return matcher(value); - return property(value); - } - - // External wrapper for our callback generator. Users may customize - // `_.iteratee` if they want additional predicate/iteratee shorthand styles. - // This abstraction hides the internal-only `argCount` argument. - function iteratee(value, context) { - return baseIteratee(value, context, Infinity); - } - _$1.iteratee = iteratee; - - // The function we call internally to generate a callback. It invokes - // `_.iteratee` if overridden, otherwise `baseIteratee`. - function cb(value, context, argCount) { - if (_$1.iteratee !== iteratee) return _$1.iteratee(value, context); - return baseIteratee(value, context, argCount); - } - - // Returns the results of applying the `iteratee` to each element of `obj`. - // In contrast to `_.map` it returns an object. - function mapObject(obj, iteratee, context) { - iteratee = cb(iteratee, context); - var _keys = keys(obj), - length = _keys.length, - results = {}; - for (var index = 0; index < length; index++) { - var currentKey = _keys[index]; - results[currentKey] = iteratee(obj[currentKey], currentKey, obj); - } - return results; - } - - // Predicate-generating function. Often useful outside of Underscore. - function noop(){} - - // Generates a function for a given object that returns a given property. - function propertyOf(obj) { - if (obj == null) return noop; - return function(path) { - return get(obj, path); - }; - } - - // Run a function **n** times. - function times(n, iteratee, context) { - var accum = Array(Math.max(0, n)); - iteratee = optimizeCb(iteratee, context, 1); - for (var i = 0; i < n; i++) accum[i] = iteratee(i); - return accum; - } - - // Return a random integer between `min` and `max` (inclusive). - function random(min, max) { - if (max == null) { - max = min; - min = 0; - } - return min + Math.floor(Math.random() * (max - min + 1)); - } - - // A (possibly faster) way to get the current timestamp as an integer. - var now = Date.now || function() { - return new Date().getTime(); - }; - - // Internal helper to generate functions for escaping and unescaping strings - // to/from HTML interpolation. - function createEscaper(map) { - var escaper = function(match) { - return map[match]; - }; - // Regexes for identifying a key that needs to be escaped. - var source = '(?:' + keys(map).join('|') + ')'; - var testRegexp = RegExp(source); - var replaceRegexp = RegExp(source, 'g'); - return function(string) { - string = string == null ? '' : '' + string; - return testRegexp.test(string) ? string.replace(replaceRegexp, escaper) : string; - }; - } - - // Internal list of HTML entities for escaping. - var escapeMap = { - '&': '&', - '<': '<', - '>': '>', - '"': '"', - "'": ''', - '`': '`' - }; - - // Function for escaping strings to HTML interpolation. - var _escape = createEscaper(escapeMap); - - // Internal list of HTML entities for unescaping. - var unescapeMap = invert(escapeMap); - - // Function for unescaping strings from HTML interpolation. - var _unescape = createEscaper(unescapeMap); - - // By default, Underscore uses ERB-style template delimiters. Change the - // following template settings to use alternative delimiters. - var templateSettings = _$1.templateSettings = { - evaluate: /<%([\s\S]+?)%>/g, - interpolate: /<%=([\s\S]+?)%>/g, - escape: /<%-([\s\S]+?)%>/g - }; - - // When customizing `_.templateSettings`, if you don't want to define an - // interpolation, evaluation or escaping regex, we need one that is - // guaranteed not to match. - var noMatch = /(.)^/; - - // Certain characters need to be escaped so that they can be put into a - // string literal. - var escapes = { - "'": "'", - '\\': '\\', - '\r': 'r', - '\n': 'n', - '\u2028': 'u2028', - '\u2029': 'u2029' - }; - - var escapeRegExp = /\\|'|\r|\n|\u2028|\u2029/g; - - function escapeChar(match) { - return '\\' + escapes[match]; - } - - // In order to prevent third-party code injection through - // `_.templateSettings.variable`, we test it against the following regular - // expression. It is intentionally a bit more liberal than just matching valid - // identifiers, but still prevents possible loopholes through defaults or - // destructuring assignment. - var bareIdentifier = /^\s*(\w|\$)+\s*$/; - - // JavaScript micro-templating, similar to John Resig's implementation. - // Underscore templating handles arbitrary delimiters, preserves whitespace, - // and correctly escapes quotes within interpolated code. - // NB: `oldSettings` only exists for backwards compatibility. - function template(text, settings, oldSettings) { - if (!settings && oldSettings) settings = oldSettings; - settings = defaults({}, settings, _$1.templateSettings); - - // Combine delimiters into one regular expression via alternation. - var matcher = RegExp([ - (settings.escape || noMatch).source, - (settings.interpolate || noMatch).source, - (settings.evaluate || noMatch).source - ].join('|') + '|$', 'g'); - - // Compile the template source, escaping string literals appropriately. - var index = 0; - var source = "__p+='"; - text.replace(matcher, function(match, escape, interpolate, evaluate, offset) { - source += text.slice(index, offset).replace(escapeRegExp, escapeChar); - index = offset + match.length; - - if (escape) { - source += "'+\n((__t=(" + escape + "))==null?'':_.escape(__t))+\n'"; - } else if (interpolate) { - source += "'+\n((__t=(" + interpolate + "))==null?'':__t)+\n'"; - } else if (evaluate) { - source += "';\n" + evaluate + "\n__p+='"; - } - - // Adobe VMs need the match returned to produce the correct offset. - return match; - }); - source += "';\n"; - - var argument = settings.variable; - if (argument) { - // Insure against third-party code injection. (CVE-2021-23358) - if (!bareIdentifier.test(argument)) throw new Error( - 'variable is not a bare identifier: ' + argument - ); - } else { - // If a variable is not specified, place data values in local scope. - source = 'with(obj||{}){\n' + source + '}\n'; - argument = 'obj'; - } - - source = "var __t,__p='',__j=Array.prototype.join," + - "print=function(){__p+=__j.call(arguments,'');};\n" + - source + 'return __p;\n'; - - var render; - try { - render = new Function(argument, '_', source); - } catch (e) { - e.source = source; - throw e; - } - - var template = function(data) { - return render.call(this, data, _$1); - }; - - // Provide the compiled source as a convenience for precompilation. - template.source = 'function(' + argument + '){\n' + source + '}'; - - return template; - } - - // Traverses the children of `obj` along `path`. If a child is a function, it - // is invoked with its parent as context. Returns the value of the final - // child, or `fallback` if any child is undefined. - function result(obj, path, fallback) { - path = toPath(path); - var length = path.length; - if (!length) { - return isFunction$1(fallback) ? fallback.call(obj) : fallback; - } - for (var i = 0; i < length; i++) { - var prop = obj == null ? void 0 : obj[path[i]]; - if (prop === void 0) { - prop = fallback; - i = length; // Ensure we don't continue iterating. - } - obj = isFunction$1(prop) ? prop.call(obj) : prop; - } - return obj; - } - - // Generate a unique integer id (unique within the entire client session). - // Useful for temporary DOM ids. - var idCounter = 0; - function uniqueId(prefix) { - var id = ++idCounter + ''; - return prefix ? prefix + id : id; - } - - // Start chaining a wrapped Underscore object. - function chain(obj) { - var instance = _$1(obj); - instance._chain = true; - return instance; - } - - // Internal function to execute `sourceFunc` bound to `context` with optional - // `args`. Determines whether to execute a function as a constructor or as a - // normal function. - function executeBound(sourceFunc, boundFunc, context, callingContext, args) { - if (!(callingContext instanceof boundFunc)) return sourceFunc.apply(context, args); - var self = baseCreate(sourceFunc.prototype); - var result = sourceFunc.apply(self, args); - if (isObject(result)) return result; - return self; - } - - // Partially apply a function by creating a version that has had some of its - // arguments pre-filled, without changing its dynamic `this` context. `_` acts - // as a placeholder by default, allowing any combination of arguments to be - // pre-filled. Set `_.partial.placeholder` for a custom placeholder argument. - var partial = restArguments(function(func, boundArgs) { - var placeholder = partial.placeholder; - var bound = function() { - var position = 0, length = boundArgs.length; - var args = Array(length); - for (var i = 0; i < length; i++) { - args[i] = boundArgs[i] === placeholder ? arguments[position++] : boundArgs[i]; - } - while (position < arguments.length) args.push(arguments[position++]); - return executeBound(func, bound, this, this, args); - }; - return bound; - }); - - partial.placeholder = _$1; - - // Create a function bound to a given object (assigning `this`, and arguments, - // optionally). - var bind = restArguments(function(func, context, args) { - if (!isFunction$1(func)) throw new TypeError('Bind must be called on a function'); - var bound = restArguments(function(callArgs) { - return executeBound(func, bound, context, this, args.concat(callArgs)); - }); - return bound; - }); - - // Internal helper for collection methods to determine whether a collection - // should be iterated as an array or as an object. - // Related: https://people.mozilla.org/~jorendorff/es6-draft.html#sec-tolength - // Avoids a very nasty iOS 8 JIT bug on ARM-64. #2094 - var isArrayLike = createSizePropertyCheck(getLength); - - // Internal implementation of a recursive `flatten` function. - function flatten$1(input, depth, strict, output) { - output = output || []; - if (!depth && depth !== 0) { - depth = Infinity; - } else if (depth <= 0) { - return output.concat(input); - } - var idx = output.length; - for (var i = 0, length = getLength(input); i < length; i++) { - var value = input[i]; - if (isArrayLike(value) && (isArray(value) || isArguments$1(value))) { - // Flatten current level of array or arguments object. - if (depth > 1) { - flatten$1(value, depth - 1, strict, output); - idx = output.length; - } else { - var j = 0, len = value.length; - while (j < len) output[idx++] = value[j++]; - } - } else if (!strict) { - output[idx++] = value; - } - } - return output; - } - - // Bind a number of an object's methods to that object. Remaining arguments - // are the method names to be bound. Useful for ensuring that all callbacks - // defined on an object belong to it. - var bindAll = restArguments(function(obj, keys) { - keys = flatten$1(keys, false, false); - var index = keys.length; - if (index < 1) throw new Error('bindAll must be passed function names'); - while (index--) { - var key = keys[index]; - obj[key] = bind(obj[key], obj); - } - return obj; - }); - - // Memoize an expensive function by storing its results. - function memoize(func, hasher) { - var memoize = function(key) { - var cache = memoize.cache; - var address = '' + (hasher ? hasher.apply(this, arguments) : key); - if (!has$1(cache, address)) cache[address] = func.apply(this, arguments); - return cache[address]; - }; - memoize.cache = {}; - return memoize; - } - - // Delays a function for the given number of milliseconds, and then calls - // it with the arguments supplied. - var delay = restArguments(function(func, wait, args) { - return setTimeout(function() { - return func.apply(null, args); - }, wait); - }); - - // Defers a function, scheduling it to run after the current call stack has - // cleared. - var defer = partial(delay, _$1, 1); - - // Returns a function, that, when invoked, will only be triggered at most once - // during a given window of time. Normally, the throttled function will run - // as much as it can, without ever going more than once per `wait` duration; - // but if you'd like to disable the execution on the leading edge, pass - // `{leading: false}`. To disable execution on the trailing edge, ditto. - function throttle(func, wait, options) { - var timeout, context, args, result; - var previous = 0; - if (!options) options = {}; - - var later = function() { - previous = options.leading === false ? 0 : now(); - timeout = null; - result = func.apply(context, args); - if (!timeout) context = args = null; - }; - - var throttled = function() { - var _now = now(); - if (!previous && options.leading === false) previous = _now; - var remaining = wait - (_now - previous); - context = this; - args = arguments; - if (remaining <= 0 || remaining > wait) { - if (timeout) { - clearTimeout(timeout); - timeout = null; - } - previous = _now; - result = func.apply(context, args); - if (!timeout) context = args = null; - } else if (!timeout && options.trailing !== false) { - timeout = setTimeout(later, remaining); - } - return result; - }; - - throttled.cancel = function() { - clearTimeout(timeout); - previous = 0; - timeout = context = args = null; - }; - - return throttled; - } - - // When a sequence of calls of the returned function ends, the argument - // function is triggered. The end of a sequence is defined by the `wait` - // parameter. If `immediate` is passed, the argument function will be - // triggered at the beginning of the sequence instead of at the end. - function debounce(func, wait, immediate) { - var timeout, previous, args, result, context; - - var later = function() { - var passed = now() - previous; - if (wait > passed) { - timeout = setTimeout(later, wait - passed); - } else { - timeout = null; - if (!immediate) result = func.apply(context, args); - // This check is needed because `func` can recursively invoke `debounced`. - if (!timeout) args = context = null; - } - }; - - var debounced = restArguments(function(_args) { - context = this; - args = _args; - previous = now(); - if (!timeout) { - timeout = setTimeout(later, wait); - if (immediate) result = func.apply(context, args); - } - return result; - }); - - debounced.cancel = function() { - clearTimeout(timeout); - timeout = args = context = null; - }; - - return debounced; - } - - // Returns the first function passed as an argument to the second, - // allowing you to adjust arguments, run code before and after, and - // conditionally execute the original function. - function wrap(func, wrapper) { - return partial(wrapper, func); - } - - // Returns a negated version of the passed-in predicate. - function negate(predicate) { - return function() { - return !predicate.apply(this, arguments); - }; - } - - // Returns a function that is the composition of a list of functions, each - // consuming the return value of the function that follows. - function compose() { - var args = arguments; - var start = args.length - 1; - return function() { - var i = start; - var result = args[start].apply(this, arguments); - while (i--) result = args[i].call(this, result); - return result; - }; - } - - // Returns a function that will only be executed on and after the Nth call. - function after(times, func) { - return function() { - if (--times < 1) { - return func.apply(this, arguments); - } - }; - } - - // Returns a function that will only be executed up to (but not including) the - // Nth call. - function before(times, func) { - var memo; - return function() { - if (--times > 0) { - memo = func.apply(this, arguments); - } - if (times <= 1) func = null; - return memo; - }; - } - - // Returns a function that will be executed at most one time, no matter how - // often you call it. Useful for lazy initialization. - var once = partial(before, 2); - - // Returns the first key on an object that passes a truth test. - function findKey(obj, predicate, context) { - predicate = cb(predicate, context); - var _keys = keys(obj), key; - for (var i = 0, length = _keys.length; i < length; i++) { - key = _keys[i]; - if (predicate(obj[key], key, obj)) return key; - } - } - - // Internal function to generate `_.findIndex` and `_.findLastIndex`. - function createPredicateIndexFinder(dir) { - return function(array, predicate, context) { - predicate = cb(predicate, context); - var length = getLength(array); - var index = dir > 0 ? 0 : length - 1; - for (; index >= 0 && index < length; index += dir) { - if (predicate(array[index], index, array)) return index; - } - return -1; - }; - } - - // Returns the first index on an array-like that passes a truth test. - var findIndex = createPredicateIndexFinder(1); - - // Returns the last index on an array-like that passes a truth test. - var findLastIndex = createPredicateIndexFinder(-1); - - // Use a comparator function to figure out the smallest index at which - // an object should be inserted so as to maintain order. Uses binary search. - function sortedIndex(array, obj, iteratee, context) { - iteratee = cb(iteratee, context, 1); - var value = iteratee(obj); - var low = 0, high = getLength(array); - while (low < high) { - var mid = Math.floor((low + high) / 2); - if (iteratee(array[mid]) < value) low = mid + 1; else high = mid; - } - return low; - } - - // Internal function to generate the `_.indexOf` and `_.lastIndexOf` functions. - function createIndexFinder(dir, predicateFind, sortedIndex) { - return function(array, item, idx) { - var i = 0, length = getLength(array); - if (typeof idx == 'number') { - if (dir > 0) { - i = idx >= 0 ? idx : Math.max(idx + length, i); - } else { - length = idx >= 0 ? Math.min(idx + 1, length) : idx + length + 1; - } - } else if (sortedIndex && idx && length) { - idx = sortedIndex(array, item); - return array[idx] === item ? idx : -1; - } - if (item !== item) { - idx = predicateFind(slice.call(array, i, length), isNaN$1); - return idx >= 0 ? idx + i : -1; - } - for (idx = dir > 0 ? i : length - 1; idx >= 0 && idx < length; idx += dir) { - if (array[idx] === item) return idx; - } - return -1; - }; - } - - // Return the position of the first occurrence of an item in an array, - // or -1 if the item is not included in the array. - // If the array is large and already in sort order, pass `true` - // for **isSorted** to use binary search. - var indexOf = createIndexFinder(1, findIndex, sortedIndex); - - // Return the position of the last occurrence of an item in an array, - // or -1 if the item is not included in the array. - var lastIndexOf = createIndexFinder(-1, findLastIndex); - - // Return the first value which passes a truth test. - function find(obj, predicate, context) { - var keyFinder = isArrayLike(obj) ? findIndex : findKey; - var key = keyFinder(obj, predicate, context); - if (key !== void 0 && key !== -1) return obj[key]; - } - - // Convenience version of a common use case of `_.find`: getting the first - // object containing specific `key:value` pairs. - function findWhere(obj, attrs) { - return find(obj, matcher(attrs)); - } - - // The cornerstone for collection functions, an `each` - // implementation, aka `forEach`. - // Handles raw objects in addition to array-likes. Treats all - // sparse array-likes as if they were dense. - function each(obj, iteratee, context) { - iteratee = optimizeCb(iteratee, context); - var i, length; - if (isArrayLike(obj)) { - for (i = 0, length = obj.length; i < length; i++) { - iteratee(obj[i], i, obj); - } - } else { - var _keys = keys(obj); - for (i = 0, length = _keys.length; i < length; i++) { - iteratee(obj[_keys[i]], _keys[i], obj); - } - } - return obj; - } - - // Return the results of applying the iteratee to each element. - function map(obj, iteratee, context) { - iteratee = cb(iteratee, context); - var _keys = !isArrayLike(obj) && keys(obj), - length = (_keys || obj).length, - results = Array(length); - for (var index = 0; index < length; index++) { - var currentKey = _keys ? _keys[index] : index; - results[index] = iteratee(obj[currentKey], currentKey, obj); - } - return results; - } - - // Internal helper to create a reducing function, iterating left or right. - function createReduce(dir) { - // Wrap code that reassigns argument variables in a separate function than - // the one that accesses `arguments.length` to avoid a perf hit. (#1991) - var reducer = function(obj, iteratee, memo, initial) { - var _keys = !isArrayLike(obj) && keys(obj), - length = (_keys || obj).length, - index = dir > 0 ? 0 : length - 1; - if (!initial) { - memo = obj[_keys ? _keys[index] : index]; - index += dir; - } - for (; index >= 0 && index < length; index += dir) { - var currentKey = _keys ? _keys[index] : index; - memo = iteratee(memo, obj[currentKey], currentKey, obj); - } - return memo; - }; - - return function(obj, iteratee, memo, context) { - var initial = arguments.length >= 3; - return reducer(obj, optimizeCb(iteratee, context, 4), memo, initial); - }; - } - - // **Reduce** builds up a single result from a list of values, aka `inject`, - // or `foldl`. - var reduce = createReduce(1); - - // The right-associative version of reduce, also known as `foldr`. - var reduceRight = createReduce(-1); - - // Return all the elements that pass a truth test. - function filter(obj, predicate, context) { - var results = []; - predicate = cb(predicate, context); - each(obj, function(value, index, list) { - if (predicate(value, index, list)) results.push(value); - }); - return results; - } - - // Return all the elements for which a truth test fails. - function reject(obj, predicate, context) { - return filter(obj, negate(cb(predicate)), context); - } - - // Determine whether all of the elements pass a truth test. - function every(obj, predicate, context) { - predicate = cb(predicate, context); - var _keys = !isArrayLike(obj) && keys(obj), - length = (_keys || obj).length; - for (var index = 0; index < length; index++) { - var currentKey = _keys ? _keys[index] : index; - if (!predicate(obj[currentKey], currentKey, obj)) return false; - } - return true; - } - - // Determine if at least one element in the object passes a truth test. - function some(obj, predicate, context) { - predicate = cb(predicate, context); - var _keys = !isArrayLike(obj) && keys(obj), - length = (_keys || obj).length; - for (var index = 0; index < length; index++) { - var currentKey = _keys ? _keys[index] : index; - if (predicate(obj[currentKey], currentKey, obj)) return true; - } - return false; - } - - // Determine if the array or object contains a given item (using `===`). - function contains(obj, item, fromIndex, guard) { - if (!isArrayLike(obj)) obj = values(obj); - if (typeof fromIndex != 'number' || guard) fromIndex = 0; - return indexOf(obj, item, fromIndex) >= 0; - } - - // Invoke a method (with arguments) on every item in a collection. - var invoke = restArguments(function(obj, path, args) { - var contextPath, func; - if (isFunction$1(path)) { - func = path; - } else { - path = toPath(path); - contextPath = path.slice(0, -1); - path = path[path.length - 1]; - } - return map(obj, function(context) { - var method = func; - if (!method) { - if (contextPath && contextPath.length) { - context = deepGet(context, contextPath); - } - if (context == null) return void 0; - method = context[path]; - } - return method == null ? method : method.apply(context, args); - }); - }); - - // Convenience version of a common use case of `_.map`: fetching a property. - function pluck(obj, key) { - return map(obj, property(key)); - } - - // Convenience version of a common use case of `_.filter`: selecting only - // objects containing specific `key:value` pairs. - function where(obj, attrs) { - return filter(obj, matcher(attrs)); - } - - // Return the maximum element (or element-based computation). - function max(obj, iteratee, context) { - var result = -Infinity, lastComputed = -Infinity, - value, computed; - if (iteratee == null || typeof iteratee == 'number' && typeof obj[0] != 'object' && obj != null) { - obj = isArrayLike(obj) ? obj : values(obj); - for (var i = 0, length = obj.length; i < length; i++) { - value = obj[i]; - if (value != null && value > result) { - result = value; - } - } - } else { - iteratee = cb(iteratee, context); - each(obj, function(v, index, list) { - computed = iteratee(v, index, list); - if (computed > lastComputed || computed === -Infinity && result === -Infinity) { - result = v; - lastComputed = computed; - } - }); - } - return result; - } - - // Return the minimum element (or element-based computation). - function min(obj, iteratee, context) { - var result = Infinity, lastComputed = Infinity, - value, computed; - if (iteratee == null || typeof iteratee == 'number' && typeof obj[0] != 'object' && obj != null) { - obj = isArrayLike(obj) ? obj : values(obj); - for (var i = 0, length = obj.length; i < length; i++) { - value = obj[i]; - if (value != null && value < result) { - result = value; - } - } - } else { - iteratee = cb(iteratee, context); - each(obj, function(v, index, list) { - computed = iteratee(v, index, list); - if (computed < lastComputed || computed === Infinity && result === Infinity) { - result = v; - lastComputed = computed; - } - }); - } - return result; - } - - // Sample **n** random values from a collection using the modern version of the - // [Fisher-Yates shuffle](https://en.wikipedia.org/wiki/Fisher–Yates_shuffle). - // If **n** is not specified, returns a single random element. - // The internal `guard` argument allows it to work with `_.map`. - function sample(obj, n, guard) { - if (n == null || guard) { - if (!isArrayLike(obj)) obj = values(obj); - return obj[random(obj.length - 1)]; - } - var sample = isArrayLike(obj) ? clone(obj) : values(obj); - var length = getLength(sample); - n = Math.max(Math.min(n, length), 0); - var last = length - 1; - for (var index = 0; index < n; index++) { - var rand = random(index, last); - var temp = sample[index]; - sample[index] = sample[rand]; - sample[rand] = temp; - } - return sample.slice(0, n); - } - - // Shuffle a collection. - function shuffle(obj) { - return sample(obj, Infinity); - } - - // Sort the object's values by a criterion produced by an iteratee. - function sortBy(obj, iteratee, context) { - var index = 0; - iteratee = cb(iteratee, context); - return pluck(map(obj, function(value, key, list) { - return { - value: value, - index: index++, - criteria: iteratee(value, key, list) - }; - }).sort(function(left, right) { - var a = left.criteria; - var b = right.criteria; - if (a !== b) { - if (a > b || a === void 0) return 1; - if (a < b || b === void 0) return -1; - } - return left.index - right.index; - }), 'value'); - } - - // An internal function used for aggregate "group by" operations. - function group(behavior, partition) { - return function(obj, iteratee, context) { - var result = partition ? [[], []] : {}; - iteratee = cb(iteratee, context); - each(obj, function(value, index) { - var key = iteratee(value, index, obj); - behavior(result, value, key); - }); - return result; - }; - } - - // Groups the object's values by a criterion. Pass either a string attribute - // to group by, or a function that returns the criterion. - var groupBy = group(function(result, value, key) { - if (has$1(result, key)) result[key].push(value); else result[key] = [value]; - }); - - // Indexes the object's values by a criterion, similar to `_.groupBy`, but for - // when you know that your index values will be unique. - var indexBy = group(function(result, value, key) { - result[key] = value; - }); - - // Counts instances of an object that group by a certain criterion. Pass - // either a string attribute to count by, or a function that returns the - // criterion. - var countBy = group(function(result, value, key) { - if (has$1(result, key)) result[key]++; else result[key] = 1; - }); - - // Split a collection into two arrays: one whose elements all pass the given - // truth test, and one whose elements all do not pass the truth test. - var partition = group(function(result, value, pass) { - result[pass ? 0 : 1].push(value); - }, true); - - // Safely create a real, live array from anything iterable. - var reStrSymbol = /[^\ud800-\udfff]|[\ud800-\udbff][\udc00-\udfff]|[\ud800-\udfff]/g; - function toArray(obj) { - if (!obj) return []; - if (isArray(obj)) return slice.call(obj); - if (isString(obj)) { - // Keep surrogate pair characters together. - return obj.match(reStrSymbol); - } - if (isArrayLike(obj)) return map(obj, identity); - return values(obj); - } - - // Return the number of elements in a collection. - function size(obj) { - if (obj == null) return 0; - return isArrayLike(obj) ? obj.length : keys(obj).length; - } - - // Internal `_.pick` helper function to determine whether `key` is an enumerable - // property name of `obj`. - function keyInObj(value, key, obj) { - return key in obj; - } - - // Return a copy of the object only containing the allowed properties. - var pick = restArguments(function(obj, keys) { - var result = {}, iteratee = keys[0]; - if (obj == null) return result; - if (isFunction$1(iteratee)) { - if (keys.length > 1) iteratee = optimizeCb(iteratee, keys[1]); - keys = allKeys(obj); - } else { - iteratee = keyInObj; - keys = flatten$1(keys, false, false); - obj = Object(obj); - } - for (var i = 0, length = keys.length; i < length; i++) { - var key = keys[i]; - var value = obj[key]; - if (iteratee(value, key, obj)) result[key] = value; - } - return result; - }); - - // Return a copy of the object without the disallowed properties. - var omit = restArguments(function(obj, keys) { - var iteratee = keys[0], context; - if (isFunction$1(iteratee)) { - iteratee = negate(iteratee); - if (keys.length > 1) context = keys[1]; - } else { - keys = map(flatten$1(keys, false, false), String); - iteratee = function(value, key) { - return !contains(keys, key); - }; - } - return pick(obj, iteratee, context); - }); - - // Returns everything but the last entry of the array. Especially useful on - // the arguments object. Passing **n** will return all the values in - // the array, excluding the last N. - function initial(array, n, guard) { - return slice.call(array, 0, Math.max(0, array.length - (n == null || guard ? 1 : n))); - } - - // Get the first element of an array. Passing **n** will return the first N - // values in the array. The **guard** check allows it to work with `_.map`. - function first(array, n, guard) { - if (array == null || array.length < 1) return n == null || guard ? void 0 : []; - if (n == null || guard) return array[0]; - return initial(array, array.length - n); - } - - // Returns everything but the first entry of the `array`. Especially useful on - // the `arguments` object. Passing an **n** will return the rest N values in the - // `array`. - function rest(array, n, guard) { - return slice.call(array, n == null || guard ? 1 : n); - } - - // Get the last element of an array. Passing **n** will return the last N - // values in the array. - function last(array, n, guard) { - if (array == null || array.length < 1) return n == null || guard ? void 0 : []; - if (n == null || guard) return array[array.length - 1]; - return rest(array, Math.max(0, array.length - n)); - } - - // Trim out all falsy values from an array. - function compact(array) { - return filter(array, Boolean); - } - - // Flatten out an array, either recursively (by default), or up to `depth`. - // Passing `true` or `false` as `depth` means `1` or `Infinity`, respectively. - function flatten(array, depth) { - return flatten$1(array, depth, false); - } - - // Take the difference between one array and a number of other arrays. - // Only the elements present in just the first array will remain. - var difference = restArguments(function(array, rest) { - rest = flatten$1(rest, true, true); - return filter(array, function(value){ - return !contains(rest, value); - }); - }); - - // Return a version of the array that does not contain the specified value(s). - var without = restArguments(function(array, otherArrays) { - return difference(array, otherArrays); - }); - - // Produce a duplicate-free version of the array. If the array has already - // been sorted, you have the option of using a faster algorithm. - // The faster algorithm will not work with an iteratee if the iteratee - // is not a one-to-one function, so providing an iteratee will disable - // the faster algorithm. - function uniq(array, isSorted, iteratee, context) { - if (!isBoolean(isSorted)) { - context = iteratee; - iteratee = isSorted; - isSorted = false; - } - if (iteratee != null) iteratee = cb(iteratee, context); - var result = []; - var seen = []; - for (var i = 0, length = getLength(array); i < length; i++) { - var value = array[i], - computed = iteratee ? iteratee(value, i, array) : value; - if (isSorted && !iteratee) { - if (!i || seen !== computed) result.push(value); - seen = computed; - } else if (iteratee) { - if (!contains(seen, computed)) { - seen.push(computed); - result.push(value); - } - } else if (!contains(result, value)) { - result.push(value); - } - } - return result; - } - - // Produce an array that contains the union: each distinct element from all of - // the passed-in arrays. - var union = restArguments(function(arrays) { - return uniq(flatten$1(arrays, true, true)); - }); - - // Produce an array that contains every item shared between all the - // passed-in arrays. - function intersection(array) { - var result = []; - var argsLength = arguments.length; - for (var i = 0, length = getLength(array); i < length; i++) { - var item = array[i]; - if (contains(result, item)) continue; - var j; - for (j = 1; j < argsLength; j++) { - if (!contains(arguments[j], item)) break; - } - if (j === argsLength) result.push(item); - } - return result; - } - - // Complement of zip. Unzip accepts an array of arrays and groups - // each array's elements on shared indices. - function unzip(array) { - var length = array && max(array, getLength).length || 0; - var result = Array(length); - - for (var index = 0; index < length; index++) { - result[index] = pluck(array, index); - } - return result; - } - - // Zip together multiple lists into a single array -- elements that share - // an index go together. - var zip = restArguments(unzip); - - // Converts lists into objects. Pass either a single array of `[key, value]` - // pairs, or two parallel arrays of the same length -- one of keys, and one of - // the corresponding values. Passing by pairs is the reverse of `_.pairs`. - function object(list, values) { - var result = {}; - for (var i = 0, length = getLength(list); i < length; i++) { - if (values) { - result[list[i]] = values[i]; - } else { - result[list[i][0]] = list[i][1]; - } - } - return result; - } - - // Generate an integer Array containing an arithmetic progression. A port of - // the native Python `range()` function. See - // [the Python documentation](https://docs.python.org/library/functions.html#range). - function range(start, stop, step) { - if (stop == null) { - stop = start || 0; - start = 0; - } - if (!step) { - step = stop < start ? -1 : 1; - } - - var length = Math.max(Math.ceil((stop - start) / step), 0); - var range = Array(length); - - for (var idx = 0; idx < length; idx++, start += step) { - range[idx] = start; - } - - return range; - } - - // Chunk a single array into multiple arrays, each containing `count` or fewer - // items. - function chunk(array, count) { - if (count == null || count < 1) return []; - var result = []; - var i = 0, length = array.length; - while (i < length) { - result.push(slice.call(array, i, i += count)); - } - return result; - } - - // Helper function to continue chaining intermediate results. - function chainResult(instance, obj) { - return instance._chain ? _$1(obj).chain() : obj; - } - - // Add your own custom functions to the Underscore object. - function mixin(obj) { - each(functions(obj), function(name) { - var func = _$1[name] = obj[name]; - _$1.prototype[name] = function() { - var args = [this._wrapped]; - push.apply(args, arguments); - return chainResult(this, func.apply(_$1, args)); - }; - }); - return _$1; - } - - // Add all mutator `Array` functions to the wrapper. - each(['pop', 'push', 'reverse', 'shift', 'sort', 'splice', 'unshift'], function(name) { - var method = ArrayProto[name]; - _$1.prototype[name] = function() { - var obj = this._wrapped; - if (obj != null) { - method.apply(obj, arguments); - if ((name === 'shift' || name === 'splice') && obj.length === 0) { - delete obj[0]; - } - } - return chainResult(this, obj); - }; - }); - - // Add all accessor `Array` functions to the wrapper. - each(['concat', 'join', 'slice'], function(name) { - var method = ArrayProto[name]; - _$1.prototype[name] = function() { - var obj = this._wrapped; - if (obj != null) obj = method.apply(obj, arguments); - return chainResult(this, obj); - }; - }); - - // Named Exports - - var allExports = { - __proto__: null, - VERSION: VERSION, - restArguments: restArguments, - isObject: isObject, - isNull: isNull, - isUndefined: isUndefined, - isBoolean: isBoolean, - isElement: isElement, - isString: isString, - isNumber: isNumber, - isDate: isDate, - isRegExp: isRegExp, - isError: isError, - isSymbol: isSymbol, - isArrayBuffer: isArrayBuffer, - isDataView: isDataView$1, - isArray: isArray, - isFunction: isFunction$1, - isArguments: isArguments$1, - isFinite: isFinite$1, - isNaN: isNaN$1, - isTypedArray: isTypedArray$1, - isEmpty: isEmpty, - isMatch: isMatch, - isEqual: isEqual, - isMap: isMap, - isWeakMap: isWeakMap, - isSet: isSet, - isWeakSet: isWeakSet, - keys: keys, - allKeys: allKeys, - values: values, - pairs: pairs, - invert: invert, - functions: functions, - methods: functions, - extend: extend, - extendOwn: extendOwn, - assign: extendOwn, - defaults: defaults, - create: create, - clone: clone, - tap: tap, - get: get, - has: has, - mapObject: mapObject, - identity: identity, - constant: constant, - noop: noop, - toPath: toPath$1, - property: property, - propertyOf: propertyOf, - matcher: matcher, - matches: matcher, - times: times, - random: random, - now: now, - escape: _escape, - unescape: _unescape, - templateSettings: templateSettings, - template: template, - result: result, - uniqueId: uniqueId, - chain: chain, - iteratee: iteratee, - partial: partial, - bind: bind, - bindAll: bindAll, - memoize: memoize, - delay: delay, - defer: defer, - throttle: throttle, - debounce: debounce, - wrap: wrap, - negate: negate, - compose: compose, - after: after, - before: before, - once: once, - findKey: findKey, - findIndex: findIndex, - findLastIndex: findLastIndex, - sortedIndex: sortedIndex, - indexOf: indexOf, - lastIndexOf: lastIndexOf, - find: find, - detect: find, - findWhere: findWhere, - each: each, - forEach: each, - map: map, - collect: map, - reduce: reduce, - foldl: reduce, - inject: reduce, - reduceRight: reduceRight, - foldr: reduceRight, - filter: filter, - select: filter, - reject: reject, - every: every, - all: every, - some: some, - any: some, - contains: contains, - includes: contains, - include: contains, - invoke: invoke, - pluck: pluck, - where: where, - max: max, - min: min, - shuffle: shuffle, - sample: sample, - sortBy: sortBy, - groupBy: groupBy, - indexBy: indexBy, - countBy: countBy, - partition: partition, - toArray: toArray, - size: size, - pick: pick, - omit: omit, - first: first, - head: first, - take: first, - initial: initial, - last: last, - rest: rest, - tail: rest, - drop: rest, - compact: compact, - flatten: flatten, - without: without, - uniq: uniq, - unique: uniq, - union: union, - intersection: intersection, - difference: difference, - unzip: unzip, - transpose: unzip, - zip: zip, - object: object, - range: range, - chunk: chunk, - mixin: mixin, - 'default': _$1 - }; - - // Default Export - - // Add all of the Underscore functions to the wrapper object. - var _ = mixin(allExports); - // Legacy Node.js API. - _._ = _; - - return _; - -}))); -//# sourceMappingURL=underscore-umd.js.map diff --git a/docs/_build/html/_static/underscore.js b/docs/_build/html/_static/underscore.js deleted file mode 100644 index cf177d42..00000000 --- a/docs/_build/html/_static/underscore.js +++ /dev/null @@ -1,6 +0,0 @@ -!function(n,r){"object"==typeof exports&&"undefined"!=typeof module?module.exports=r():"function"==typeof define&&define.amd?define("underscore",r):(n="undefined"!=typeof globalThis?globalThis:n||self,function(){var t=n._,e=n._=r();e.noConflict=function(){return n._=t,e}}())}(this,(function(){ -// Underscore.js 1.13.1 -// https://underscorejs.org -// (c) 2009-2021 Jeremy Ashkenas, Julian Gonggrijp, and DocumentCloud and Investigative Reporters & Editors -// Underscore may be freely distributed under the MIT license. -var n="1.13.1",r="object"==typeof self&&self.self===self&&self||"object"==typeof global&&global.global===global&&global||Function("return this")()||{},t=Array.prototype,e=Object.prototype,u="undefined"!=typeof Symbol?Symbol.prototype:null,o=t.push,i=t.slice,a=e.toString,f=e.hasOwnProperty,c="undefined"!=typeof ArrayBuffer,l="undefined"!=typeof DataView,s=Array.isArray,p=Object.keys,v=Object.create,h=c&&ArrayBuffer.isView,y=isNaN,d=isFinite,g=!{toString:null}.propertyIsEnumerable("toString"),b=["valueOf","isPrototypeOf","toString","propertyIsEnumerable","hasOwnProperty","toLocaleString"],m=Math.pow(2,53)-1;function j(n,r){return r=null==r?n.length-1:+r,function(){for(var t=Math.max(arguments.length-r,0),e=Array(t),u=0;u=0&&t<=m}}function J(n){return function(r){return null==r?void 0:r[n]}}var G=J("byteLength"),H=K(G),Q=/\[object ((I|Ui)nt(8|16|32)|Float(32|64)|Uint8Clamped|Big(I|Ui)nt64)Array\]/;var X=c?function(n){return h?h(n)&&!q(n):H(n)&&Q.test(a.call(n))}:C(!1),Y=J("length");function Z(n,r){r=function(n){for(var r={},t=n.length,e=0;e":">",'"':""","'":"'","`":"`"},Cn=Ln($n),Kn=Ln(_n($n)),Jn=tn.templateSettings={evaluate:/<%([\s\S]+?)%>/g,interpolate:/<%=([\s\S]+?)%>/g,escape:/<%-([\s\S]+?)%>/g},Gn=/(.)^/,Hn={"'":"'","\\":"\\","\r":"r","\n":"n","\u2028":"u2028","\u2029":"u2029"},Qn=/\\|'|\r|\n|\u2028|\u2029/g;function Xn(n){return"\\"+Hn[n]}var Yn=/^\s*(\w|\$)+\s*$/;var Zn=0;function nr(n,r,t,e,u){if(!(e instanceof r))return n.apply(t,u);var o=Mn(n.prototype),i=n.apply(o,u);return _(i)?i:o}var rr=j((function(n,r){var t=rr.placeholder,e=function(){for(var u=0,o=r.length,i=Array(o),a=0;a1)ur(a,r-1,t,e),u=e.length;else for(var f=0,c=a.length;f0&&(t=r.apply(this,arguments)),n<=1&&(r=null),t}}var lr=rr(cr,2);function sr(n,r,t){r=qn(r,t);for(var e,u=nn(n),o=0,i=u.length;o0?0:u-1;o>=0&&o0?a=o>=0?o:Math.max(o+f,a):f=o>=0?Math.min(o+1,f):o+f+1;else if(t&&o&&f)return e[o=t(e,u)]===u?o:-1;if(u!=u)return(o=r(i.call(e,a,f),$))>=0?o+a:-1;for(o=n>0?a:f-1;o>=0&&o0?0:i-1;for(u||(e=r[o?o[a]:a],a+=n);a>=0&&a=3;return r(n,Fn(t,u,4),e,o)}}var Ar=wr(1),xr=wr(-1);function Sr(n,r,t){var e=[];return r=qn(r,t),jr(n,(function(n,t,u){r(n,t,u)&&e.push(n)})),e}function Or(n,r,t){r=qn(r,t);for(var e=!er(n)&&nn(n),u=(e||n).length,o=0;o=0}var Br=j((function(n,r,t){var e,u;return D(r)?u=r:(r=Nn(r),e=r.slice(0,-1),r=r[r.length-1]),_r(n,(function(n){var o=u;if(!o){if(e&&e.length&&(n=In(n,e)),null==n)return;o=n[r]}return null==o?o:o.apply(n,t)}))}));function Nr(n,r){return _r(n,Rn(r))}function Ir(n,r,t){var e,u,o=-1/0,i=-1/0;if(null==r||"number"==typeof r&&"object"!=typeof n[0]&&null!=n)for(var a=0,f=(n=er(n)?n:jn(n)).length;ao&&(o=e);else r=qn(r,t),jr(n,(function(n,t,e){((u=r(n,t,e))>i||u===-1/0&&o===-1/0)&&(o=n,i=u)}));return o}function Tr(n,r,t){if(null==r||t)return er(n)||(n=jn(n)),n[Wn(n.length-1)];var e=er(n)?En(n):jn(n),u=Y(e);r=Math.max(Math.min(r,u),0);for(var o=u-1,i=0;i1&&(e=Fn(e,r[1])),r=an(n)):(e=qr,r=ur(r,!1,!1),n=Object(n));for(var u=0,o=r.length;u1&&(t=r[1])):(r=_r(ur(r,!1,!1),String),e=function(n,t){return!Er(r,t)}),Ur(n,e,t)}));function zr(n,r,t){return i.call(n,0,Math.max(0,n.length-(null==r||t?1:r)))}function Lr(n,r,t){return null==n||n.length<1?null==r||t?void 0:[]:null==r||t?n[0]:zr(n,n.length-r)}function $r(n,r,t){return i.call(n,null==r||t?1:r)}var Cr=j((function(n,r){return r=ur(r,!0,!0),Sr(n,(function(n){return!Er(r,n)}))})),Kr=j((function(n,r){return Cr(n,r)}));function Jr(n,r,t,e){A(r)||(e=t,t=r,r=!1),null!=t&&(t=qn(t,e));for(var u=[],o=[],i=0,a=Y(n);ir?(e&&(clearTimeout(e),e=null),a=c,i=n.apply(u,o),e||(u=o=null)):e||!1===t.trailing||(e=setTimeout(f,l)),i};return c.cancel=function(){clearTimeout(e),a=0,e=u=o=null},c},debounce:function(n,r,t){var e,u,o,i,a,f=function(){var c=zn()-u;r>c?e=setTimeout(f,r-c):(e=null,t||(i=n.apply(a,o)),e||(o=a=null))},c=j((function(c){return a=this,o=c,u=zn(),e||(e=setTimeout(f,r),t&&(i=n.apply(a,o))),i}));return c.cancel=function(){clearTimeout(e),e=o=a=null},c},wrap:function(n,r){return rr(r,n)},negate:fr,compose:function(){var n=arguments,r=n.length-1;return function(){for(var t=r,e=n[r].apply(this,arguments);t--;)e=n[t].call(this,e);return e}},after:function(n,r){return function(){if(--n<1)return r.apply(this,arguments)}},before:cr,once:lr,findKey:sr,findIndex:vr,findLastIndex:hr,sortedIndex:yr,indexOf:gr,lastIndexOf:br,find:mr,detect:mr,findWhere:function(n,r){return mr(n,Dn(r))},each:jr,forEach:jr,map:_r,collect:_r,reduce:Ar,foldl:Ar,inject:Ar,reduceRight:xr,foldr:xr,filter:Sr,select:Sr,reject:function(n,r,t){return Sr(n,fr(qn(r)),t)},every:Or,all:Or,some:Mr,any:Mr,contains:Er,includes:Er,include:Er,invoke:Br,pluck:Nr,where:function(n,r){return Sr(n,Dn(r))},max:Ir,min:function(n,r,t){var e,u,o=1/0,i=1/0;if(null==r||"number"==typeof r&&"object"!=typeof n[0]&&null!=n)for(var a=0,f=(n=er(n)?n:jn(n)).length;ae||void 0===t)return 1;if(t - - - - - - Index — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- - -

Index

- -
- A - | C - | D - | F - | G - | I - | L - | M - | N - | O - | P - | Q - | R - | S - | T - | V - | W - -
-

A

- - - -
- -

C

- - - -
- -

D

- - - -
- -

F

- - - -
- -

G

- - - -
- -

I

- - -
- -

L

- - - -
- -

M

- - - -
- -

N

- - - -
- -

O

- - - -
- -

P

- - - -
- -

Q

- - -
- -

R

- - - -
- -

S

- - - -
- -

T

- - - -
- -

V

- - - -
- -

W

- - - -
- - - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/index.html b/docs/_build/html/index.html deleted file mode 100644 index a40a85e8..00000000 --- a/docs/_build/html/index.html +++ /dev/null @@ -1,5693 +0,0 @@ - - - - - - - - - Welcome to Tigramite’s documentation! — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
-
-
- - -
- -
-

Welcome to Tigramite’s documentation!

-
-
-
-
-

Indices and tables

- -
-
-

TIGRAMITE

-

Github repo

-

Tigramite is a causal time series analysis python package. It allows to efficiently estimate causal graphs from high-dimensional time series datasets (causal discovery) and to use these graphs for robust forecasting and the estimation and prediction of direct, total, and mediated effects. Causal discovery is based on linear as well as non-parametric conditional independence tests applicable to discrete or continuously-valued time series. Also includes functions for high-quality plots of the results. Please cite the following papers depending on which method you use:

- -
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

tigramite.pcmci.PCMCI(dataframe, cond_ind_test)

PCMCI causal discovery for time series datasets.

tigramite.lpcmci.LPCMCI(dataframe, cond_ind_test)

LPCMCI is an algorithm for causal discovery in large-scale times series that allows for latent confounders and learns lag-specific causal relationships.

tigramite.independence_tests.independence_tests_base.CondIndTest([...])

Base class of conditional independence tests.

tigramite.independence_tests.parcorr.ParCorr(...)

Partial correlation test.

tigramite.independence_tests.robust_parcorr.RobustParCorr(...)

Robust partial correlation test based on non-paranormal models.

tigramite.independence_tests.gpdc.GPDC([...])

GPDC conditional independence test based on Gaussian processes and distance correlation.

tigramite.independence_tests.gpdc_torch.GPDCtorch([...])

GPDC conditional independence test based on Gaussian processes and distance correlation.

tigramite.independence_tests.cmiknn.CMIknn([...])

Conditional mutual information test based on nearest-neighbor estimator.

tigramite.independence_tests.cmisymb.CMIsymb([...])

Conditional mutual information test for discrete/categorical data.

tigramite.independence_tests.oracle_conditional_independence.OracleCI([...])

Oracle of conditional independence test X _|_ Y | Z given a graph.

tigramite.independence_tests.parcorr_mult.ParCorrMult([...])

Partial correlation test for multivariate X and Y.

tigramite.independence_tests.gsquared.Gsquared([...])

G-squared conditional independence test for categorical data.

tigramite.independence_tests.parcorr_wls.ParCorrWLS([...])

Weighted partial correlation test.

tigramite.independence_tests.regressionCI.RegressionCI(...)

Flexible parametric conditional independence tests for continuous, categorical, or mixed data.

tigramite.causal_effects.CausalEffects(...)

Causal effect estimation.

tigramite.models.Models(dataframe, model[, ...])

Base class for time series models.

tigramite.models.LinearMediation(dataframe)

Linear mediation analysis for time series models.

tigramite.models.Prediction(dataframe, ...)

Prediction class for time series models.

tigramite.data_processing

Tigramite data processing functions.

tigramite.toymodels.structural_causal_processes

Tigramite toymodels.

tigramite.plotting

Tigramite plotting package.

-
-
-

tigramite.pcmci: PCMCI

-
-
-class tigramite.pcmci.PCMCI(dataframe, cond_ind_test, verbosity=0)[source]
-

PCMCI causal discovery for time series datasets.

-

PCMCI is a causal discovery framework for large-scale time series -datasets. This class contains several methods. The standard PCMCI method -addresses time-lagged causal discovery and is described in [1] where -also further sub-variants are discussed. Lagged as well as contemporaneous -causal discovery is addressed with PCMCIplus and described in [5]. See the -tutorials for guidance in applying these methods.

-

PCMCI has:

-
    -
  • different conditional independence tests adapted to linear or -nonlinear dependencies, and continuously-valued or discrete data ( -implemented in tigramite.independence_tests)

  • -
  • (mostly) hyperparameter optimization

  • -
  • easy parallelization (separate script)

  • -
  • handling of masked time series data

  • -
  • false discovery control and confidence interval estimation

  • -
-

Notes

-_images/mci_schematic.png -

In the PCMCI framework, the dependency structure of a set of time series -variables is represented in a time series graph as shown in the Figure. -The nodes of a time series graph are defined as the variables at -different times and a link indicates a conditional dependency that can be -interpreted as a causal dependency under certain assumptions (see paper). -Assuming stationarity, the links are repeated in time. The parents -\mathcal{P} of a variable are defined as the set of all nodes -with a link towards it (blue and red boxes in Figure).

-

The different PCMCI methods estimate causal links by iterative -conditional independence testing. PCMCI can be flexibly combined with -any kind of conditional independence test statistic adapted to the kind -of data (continuous or discrete) and its assumed dependency types. -These are available in tigramite.independence_tests.

-

NOTE: MCI test statistic values define a particular measure of causal -strength depending on the test statistic used. For example, ParCorr() -results in normalized values between -1 and 1. However, if you are -interested in quantifying causal effects, i.e., the effect of -hypothetical interventions, you may better look at the causal effect -estimation functionality of Tigramite.

-

References

- -
-
Parameters:
-
    -
  • dataframe (data object) – This is the Tigramite dataframe object. Among others, it has the -attributes dataframe.values yielding a numpy array of shape ( -observations T, variables N) and optionally a mask of the same shape.

  • -
  • cond_ind_test (conditional independence test object) – This can be ParCorr or other classes from -tigramite.independence_tests or an external test passed as a -callable. This test can be based on the class -tigramite.independence_tests.CondIndTest.

  • -
  • verbosity (int, optional (default: 0)) – Verbose levels 0, 1, …

  • -
-
-
-
-
-all_parents
-

Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} containing -the conditioning-parents estimated with PC algorithm.

-
-
Type:
-

dictionary

-
-
-
- -
-
-val_min
-

Dictionary of form val_min[j][(i, -tau)] = float -containing the minimum test statistic value for each link estimated in -the PC algorithm.

-
-
Type:
-

dictionary

-
-
-
- -
-
-pval_max
-

Dictionary of form pval_max[j][(i, -tau)] = float containing the maximum -p-value for each link estimated in the PC algorithm.

-
-
Type:
-

dictionary

-
-
-
- -
-
-iterations
-

Dictionary containing further information on algorithm steps.

-
-
Type:
-

dictionary

-
-
-
- -
-
-N
-

Number of variables.

-
-
Type:
-

int

-
-
-
- -
-
-T
-

Time series sample length of dataset(s).

-
-
Type:
-

dict

-
-
-
- -
-
-get_graph_from_pmatrix(p_matrix, alpha_level, tau_min, tau_max, link_assumptions=None)[source]
-

Construct graph from thresholding the p_matrix at an alpha-level.

-

Allows to take into account link_assumptions.

-
-
Parameters:
-
    -
  • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is -not ‘none’.

  • -
  • alpha_level (float, optional (default: 0.05)) – Significance level at which the p_matrix is thresholded to -get graph.

  • -
  • tau_mix (int) – Minimum time delay to test.

  • -
  • tau_max (int) – Maximum time delay to test.

  • -
  • link_assumptions (dict or None) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
-
-
Returns:
-

graph – Causal graph, see description above for interpretation.

-
-
Return type:
-

array of shape [N, N, tau_max+1]

-
-
-
- -
-
-get_lagged_dependencies(selected_links=None, link_assumptions=None, tau_min=0, tau_max=1, val_only=False, alpha_level=0.05, fdr_method='none')[source]
-

Unconditional lagged independence tests.

-

Implements the unconditional lagged independence test (see [ 1]_).

-

Returns the matrices of test statistic values, (optionally corrected) -p-values, and (optionally) confidence intervals. Also (new in 4.3) -returns graph based on alpha_level (and optional FDR-correction).

-
-
Parameters:
-
    -
  • selected_links (dict or None) – Deprecated, replaced by link_assumptions

  • -
  • link_assumptions (dict) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
  • tau_min (int, default: 0) – Minimum time lag to test. Note that zero-lags are undirected.

  • -
  • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • val_only (bool, default: False) – Option to only compute dependencies and not p-values.

  • -
  • alpha_level (float, optional (default: 0.05)) – Significance level at which the p_matrix is thresholded to -get graph.

  • -
  • fdr_method (str, optional (default: 'none')) – Correction method, currently implemented is Benjamini-Hochberg -False Discovery Rate method (‘fdr_bh’).

  • -
-
-
Returns:
-

    -
  • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

  • -
  • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values.

  • -
  • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is -not ‘none’.

  • -
  • conf_matrix (array of shape [N, N, tau_max+1,2]) – Estimated matrix of confidence intervals of test statistic values. -Only computed if set in cond_ind_test, where also the percentiles -are set.

  • -
-

-
-
-
- -
-
-print_results(return_dict, alpha_level=0.05)[source]
-

Prints significant parents from output of MCI or PCMCI algorithms.

-
-
Parameters:
-
    -
  • return_dict (dict) –

    -
    Dictionary of return values, containing keys
      -
    • ’p_matrix’

    • -
    • ’val_matrix’

    • -
    • ’conf_matrix’

    • -
    -
    -
    -

  • -
  • alpha_level (float, optional (default: 0.05)) – Significance level.

  • -
-
-
-
- -
- -

Prints significant links.

-

Used for output of PCMCI and PCMCIplus. For the latter also information -on ambiguous links and conflicts is returned.

-
-
Parameters:
-
    -
  • alpha_level (float, optional (default: 0.05)) – Significance level.

  • -
  • p_matrix (array-like) – Must be of shape (N, N, tau_max + 1).

  • -
  • val_matrix (array-like) – Must be of shape (N, N, tau_max + 1).

  • -
  • conf_matrix (array-like, optional (default: None)) – Matrix of confidence intervals of shape (N, N, tau_max+1, 2).

  • -
  • graph (array-like) – Must be of shape (N, N, tau_max + 1).

  • -
  • ambiguous_triples (list) – List of ambiguous triples.

  • -
-
-
-
- -
-
-return_parents_dict(graph, val_matrix, include_lagzero_parents=False)[source]
-

Returns dictionary of parents sorted by val_matrix.

-

If parents are unclear (edgemarks with ‘o’ or ‘x’, or middle mark ‘?’), -then no parent is returned.

-
-
Parameters:
-
    -
  • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

  • -
  • val_matrix (array-like) – Matrix of test statistic values. Must be of shape (N, N, tau_max + -1).

  • -
  • include_lagzero_parents (bool (default: False)) – Whether the dictionary should also return parents at lag -zero.

  • -
-
-
Returns:
-

parents_dict – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} -containing estimated parents.

-
-
Return type:
-

dict

-
-
-
- -
- -

Returns list of significant links as well as a boolean matrix.

-

DEPRECATED. Will be removed in future.

-
- -
-
-run_bivci(selected_links=None, link_assumptions=None, tau_min=0, tau_max=1, val_only=False, alpha_level=0.05, fdr_method='none')[source]
-

BivCI conditional independence tests.

-

Implements the BivCI test (see [1]).

-

Returns the matrices of test statistic values, (optionally corrected) -p-values, and (optionally) confidence intervals. Also (new in 4.3) -returns graph based on alpha_level (and optional FDR-correction).

-
-
Parameters:
-
    -
  • selected_links (dict or None) – Deprecated, replaced by link_assumptions

  • -
  • link_assumptions (dict) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
  • tau_min (int, default: 0) – Minimum time lag to test. Note that zero-lags are undirected.

  • -
  • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • val_only (bool, default: False) – Option to only compute dependencies and not p-values.

  • -
  • alpha_level (float, optional (default: 0.05)) – Significance level at which the p_matrix is thresholded to -get graph.

  • -
  • fdr_method (str, optional (default: 'fdr_bh')) – Correction method, currently implemented is Benjamini-Hochberg -False Discovery Rate method.

  • -
-
-
Returns:
-

    -
  • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

  • -
  • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values.

  • -
  • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is -not ‘none’.

  • -
  • conf_matrix (array of shape [N, N, tau_max+1,2]) – Estimated matrix of confidence intervals of test statistic values. -Only computed if set in cond_ind_test, where also the percentiles -are set.

  • -
-

-
-
-
- -
-
-run_fullci(selected_links=None, link_assumptions=None, tau_min=0, tau_max=1, val_only=False, alpha_level=0.05, fdr_method='none')[source]
-

FullCI conditional independence tests.

-

Implements the FullCI test (see [1]).

-

Returns the matrices of test statistic values, (optionally corrected) -p-values, and (optionally) confidence intervals. Also (new in 4.3) -returns graph based on alpha_level (and optional FDR-correction).

-
-
Parameters:
-
    -
  • selected_links (dict or None) – Deprecated, replaced by link_assumptions

  • -
  • link_assumptions (dict) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
  • tau_min (int, default: 0) – Minimum time lag to test. Note that zero-lags are undirected.

  • -
  • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • val_only (bool, default: False) – Option to only compute dependencies and not p-values.

  • -
  • alpha_level (float, optional (default: 0.05)) – Significance level at which the p_matrix is thresholded to -get graph.

  • -
  • fdr_method (str, optional (default: 'none')) – Correction method, currently implemented is Benjamini-Hochberg -False Discovery Rate method (‘fdr_bh’).

  • -
-
-
Returns:
-

    -
  • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

  • -
  • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values.

  • -
  • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is -not ‘none’.

  • -
  • conf_matrix (array of shape [N, N, tau_max+1,2]) – Estimated matrix of confidence intervals of test statistic values. -Only computed if set in cond_ind_test, where also the percentiles -are set.

  • -
-

-
-
-
- -
-
-run_mci(selected_links=None, link_assumptions=None, tau_min=0, tau_max=1, parents=None, max_conds_py=None, max_conds_px=None, val_only=False, alpha_level=0.05, fdr_method='none')[source]
-

MCI conditional independence tests.

-

Implements the MCI test (Algorithm 2 in [1]).

-

Returns the matrices of test statistic values, (optionally corrected) -p-values, and (optionally) confidence intervals. Also (new in 4.3) -returns graph based on alpha_level (and optional FDR-correction).

-
-
Parameters:
-
    -
  • selected_links (dict or None) – Deprecated, replaced by link_assumptions

  • -
  • link_assumptions (dict) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
  • tau_min (int, default: 0) – Minimum time lag to test. Note that zero-lags are undirected.

  • -
  • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • parents (dict or None) – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} -specifying the conditions for each variable. If None is -passed, no conditions are used.

  • -
  • max_conds_py (int or None) – Maximum number of conditions of Y to use. If None is passed, this -number is unrestricted.

  • -
  • max_conds_px (int or None) – Maximum number of conditions of Z to use. If None is passed, this -number is unrestricted.

  • -
  • val_only (bool, default: False) – Option to only compute dependencies and not p-values.

  • -
  • alpha_level (float, optional (default: 0.05)) – Significance level at which the p_matrix is thresholded to -get graph.

  • -
  • fdr_method (str, optional (default: 'none')) – Correction method, currently implemented is Benjamini-Hochberg -False Discovery Rate method (‘fdr_bh’).

  • -
-
-
Returns:
-

    -
  • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

  • -
  • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values.

  • -
  • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is -not ‘none’.

  • -
  • conf_matrix (array of shape [N, N, tau_max+1,2]) – Estimated matrix of confidence intervals of test statistic values. -Only computed if set in cond_ind_test, where also the percentiles -are set.

  • -
-

-
-
-
- -
-
-run_pc_stable(selected_links=None, link_assumptions=None, tau_min=1, tau_max=1, save_iterations=False, pc_alpha=0.2, max_conds_dim=None, max_combinations=1)[source]
-

Lagged PC algorithm for estimating lagged parents of all variables.

-

Parents are made available as self.all_parents

-
-
Parameters:
-
    -
  • selected_links (dict or None) – Deprecated, replaced by link_assumptions

  • -
  • link_assumptions (dict) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
  • tau_min (int, default: 1) – Minimum time lag to test. Useful for multi-step ahead predictions. -Must be greater zero.

  • -
  • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • save_iterations (bool, default: False) – Whether to save iteration step results such as conditions used.

  • -
  • pc_alpha (float or list of floats, default: [0.05, 0.1, 0.2, ..., 0.5]) – Significance level in algorithm. If a list or None is passed, the -pc_alpha level is optimized for every variable across the given -pc_alpha values using the score computed in -cond_ind_test.get_model_selection_criterion().

  • -
  • max_conds_dim (int or None) – Maximum number of conditions to test. If None is passed, this number -is unrestricted.

  • -
  • max_combinations (int, default: 1) – Maximum number of combinations of conditions of current cardinality -to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm -a larger number, such as 10, can be used.

  • -
-
-
Returns:
-

all_parents – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} -containing estimated parents.

-
-
Return type:
-

dict

-
-
-
- -
-
-run_pcalg(selected_links=None, link_assumptions=None, pc_alpha=0.01, tau_min=0, tau_max=1, max_conds_dim=None, max_combinations=None, lagged_parents=None, max_conds_py=None, max_conds_px=None, max_conds_px_lagged=None, mode='standard', contemp_collider_rule='majority', conflict_resolution=True)[source]
-

Runs PC algorithm for time-lagged and contemporaneous causal -discovery for time series.

-

For mode='contemp_conds' this implements Steps 2-4 of the -PCMCIplus method described in [5]. For mode='standard' this -implements the standard PC algorithm adapted to time series.

-
-
Parameters:
-
    -
  • selected_links (dict or None) – Deprecated, replaced by link_assumptions

  • -
  • link_assumptions (dict) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
  • lagged_parents (dictionary) – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} containing -additional conditions for each CI test. As part of PCMCIplus -these are the superset of lagged parents estimated with the PC1 -algorithm.

  • -
  • mode ({'standard', 'contemp_conds'}) – For mode='contemp_conds' this implements Steps 2-4 of the -PCMCIplus method. For mode='standard' this implements the -standard PC algorithm adapted to time series.

  • -
  • tau_min (int, optional (default: 0)) – Minimum time lag to test.

  • -
  • tau_max (int, optional (default: 1)) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • pc_alpha (float, optional (default: 0.01)) – Significance level.

  • -
  • contemp_collider_rule ({'majority', 'conservative', 'none'}) – Rule for collider phase to use. See the paper for details. Only -‘majority’ and ‘conservative’ lead to an order-independent -algorithm.

  • -
  • conflict_resolution (bool, optional (default: True)) – Whether to mark conflicts in orientation rules. Only for True -this leads to an order-independent algorithm.

  • -
  • max_conds_dim (int, optional (default: None)) – Maximum number of conditions to test. If None is passed, this number -is unrestricted.

  • -
  • max_combinations (int) – Maximum number of combinations of conditions of current cardinality -to test.

  • -
  • max_conds_py (int, optional (default: None)) – Maximum number of lagged conditions of Y to use in MCI tests. If -None is passed, this number is unrestricted.

  • -
  • max_conds_px (int, optional (default: None)) – Maximum number of lagged conditions of X to use in MCI tests. If -None is passed, this number is unrestricted.

  • -
  • max_conds_px_lagged (int, optional (default: None)) – Maximum number of lagged conditions of X when X is lagged in MCI -tests. If None is passed, this number is equal to max_conds_px.

  • -
-
-
Returns:
-

    -
  • graph (array of shape [N, N, tau_max+1]) – Resulting causal graph, see description above for interpretation.

  • -
  • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values regarding adjacencies.

  • -
  • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values regarding adjacencies.

  • -
  • sepset (dictionary) – Separating sets. See paper for details.

  • -
  • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and -‘conservative’ rules, see paper for details.

  • -
-

-
-
-
- -
-
-run_pcalg_non_timeseries_data(pc_alpha=0.01, max_conds_dim=None, max_combinations=None, contemp_collider_rule='majority', conflict_resolution=True)[source]
-

Runs PC algorithm for non-time series data.

-

Simply calls run_pcalg with tau_min = tau_max = 0. -Removes lags from output dictionaries.

-
-
Parameters:
-
    -
  • pc_alpha (float, optional (default: 0.01)) – Significance level.

  • -
  • contemp_collider_rule ({'majority', 'conservative', 'none'}) – Rule for collider phase to use. See the paper for details. Only -‘majority’ and ‘conservative’ lead to an order-independent -algorithm.

  • -
  • conflict_resolution (bool, optional (default: True)) – Whether to mark conflicts in orientation rules. Only for True -this leads to an order-independent algorithm.

  • -
  • max_conds_dim (int, optional (default: None)) – Maximum number of conditions to test. If None is passed, this number -is unrestricted.

  • -
  • max_combinations (int) – Maximum number of combinations of conditions of current cardinality -to test.

  • -
-
-
Returns:
-

    -
  • graph (array of shape [N, N, 1]) – Resulting causal graph, see description above for interpretation.

  • -
  • val_matrix (array of shape [N, N, 1]) – Estimated matrix of test statistic values regarding adjacencies.

  • -
  • p_matrix (array of shape [N, N, 1]) – Estimated matrix of p-values regarding adjacencies.

  • -
  • sepset (dictionary) – Separating sets. See paper for details.

  • -
  • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and -‘conservative’ rules, see paper for details.

  • -
-

-
-
-
- -
-
-run_pcmci(selected_links=None, link_assumptions=None, tau_min=0, tau_max=1, save_iterations=False, pc_alpha=0.05, max_conds_dim=None, max_combinations=1, max_conds_py=None, max_conds_px=None, alpha_level=0.05, fdr_method='none')[source]
-

Runs PCMCI time-lagged causal discovery for time series.

-

Wrapper around PC-algorithm function and MCI function.

-

Notes

-

The PCMCI causal discovery method is comprehensively described in [ -1]_, where also analytical and numerical results are presented. Here -we briefly summarize the method.

-

PCMCI estimates time-lagged causal links by a two-step procedure:

-
    -
  1. Condition-selection: For each variable j, estimate a -superset of parents \tilde{\mathcal{P}}(X^j_t) with the -iterative PC1 algorithm, implemented as run_pc_stable. The -condition-selection step reduces the dimensionality and avoids -conditioning on irrelevant variables.

  2. -
  3. Momentary conditional independence (MCI)

  4. -
-
-

X^i_{t-\tau} \perp X^j_{t} | \tilde{\mathcal{P}}(
-X^j_t), \tilde{\mathcal{P}}(X^i_{t-\tau})

-

here implemented as run_mci. This step estimates the p-values and -test statistic values for all links accounting for common drivers, -indirect links, and autocorrelation.

-

NOTE: MCI test statistic values define a particular measure of causal -strength depending on the test statistic used. For example, ParCorr() -results in normalized values between -1 and 1. However, if you are -interested in quantifying causal effects, i.e., the effect of -hypothetical interventions, you may better look at the causal effect -estimation functionality of Tigramite.

-

PCMCI can be flexibly combined with any kind of conditional -independence test statistic adapted to the kind of data (continuous -or discrete) and its assumed dependency types. These are available in -tigramite.independence_tests.

-

The main free parameters of PCMCI (in addition to free parameters of -the conditional independence test statistic) are the maximum time -delay \tau_{\max} (tau_max) and the significance -threshold in the condition-selection step \alpha ( -pc_alpha). The maximum time delay depends on the application and -should be chosen according to the maximum causal time lag expected in -the complex system. We recommend a rather large choice that includes -peaks in the get_lagged_dependencies function. \alpha -should not be seen as a significance test level in the -condition-selection step since the iterative hypothesis tests do not -allow for a precise assessment. \alpha rather takes the role -of a regularization parameter in model-selection techniques. If a -list of values is given or pc_alpha=None, \alpha is -optimized using model selection criteria implemented in the respective -tigramite.independence_tests.

-

Further optional parameters are discussed in [1].

-

Examples

-
>>> import numpy
->>> from tigramite.pcmci import PCMCI
->>> from tigramite.independence_tests import ParCorr
->>> import tigramite.data_processing as pp
->>> from tigramite.toymodels import structural_causal_processes as toys
->>> numpy.random.seed(7)
->>> # Example process to play around with
->>> # Each key refers to a variable and the incoming links are supplied
->>> # as a list of format [((driver, -lag), coeff), ...]
->>> links_coeffs = {0: [((0, -1), 0.8)],
-                    1: [((1, -1), 0.8), ((0, -1), 0.5)],
-                    2: [((2, -1), 0.8), ((1, -2), -0.6)]}
->>> data, _ = toys.var_process(links_coeffs, T=1000)
->>> # Data must be array of shape (time, variables)
->>> print (data.shape)
-(1000, 3)
->>> dataframe = pp.DataFrame(data)
->>> cond_ind_test = ParCorr()
->>> pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)
->>> results = pcmci.run_pcmci(tau_max=2, pc_alpha=None)
->>> pcmci.print_significant_links(p_matrix=results['p_matrix'],
-                                 val_matrix=results['val_matrix'],
-                                 alpha_level=0.05)
-## Significant parents at alpha = 0.05:
-
-
-
-
-
Variable 0 has 1 link(s):

(0 -1): pval = 0.00000 | val = 0.588

-
-
Variable 1 has 2 link(s):

(1 -1): pval = 0.00000 | val = 0.606 -(0 -1): pval = 0.00000 | val = 0.447

-
-
Variable 2 has 2 link(s):

(2 -1): pval = 0.00000 | val = 0.618 -(1 -2): pval = 0.00000 | val = -0.499

-
-
-
-
-
Parameters:
-
    -
  • selected_links (dict or None) – Deprecated, replaced by link_assumptions

  • -
  • link_assumptions (dict) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
  • tau_min (int, optional (default: 0)) – Minimum time lag to test. Note that zero-lags are undirected.

  • -
  • tau_max (int, optional (default: 1)) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • save_iterations (bool, optional (default: False)) – Whether to save iteration step results such as conditions used.

  • -
  • pc_alpha (float, optional (default: 0.05)) – Significance level in algorithm.

  • -
  • max_conds_dim (int, optional (default: None)) – Maximum number of conditions to test. If None is passed, this number -is unrestricted.

  • -
  • max_combinations (int, optional (default: 1)) – Maximum number of combinations of conditions of current cardinality -to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm -a larger number, such as 10, can be used.

  • -
  • max_conds_py (int, optional (default: None)) – Maximum number of conditions of Y to use. If None is passed, this -number is unrestricted.

  • -
  • max_conds_px (int, optional (default: None)) – Maximum number of conditions of Z to use. If None is passed, this -number is unrestricted.

  • -
  • alpha_level (float, optional (default: 0.05)) – Significance level at which the p_matrix is thresholded to -get graph.

  • -
  • fdr_method (str, optional (default: 'fdr_bh')) – Correction method, currently implemented is Benjamini-Hochberg -False Discovery Rate method.

  • -
-
-
Returns:
-

    -
  • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

  • -
  • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values.

  • -
  • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is -not ‘none’.

  • -
  • conf_matrix (array of shape [N, N, tau_max+1,2]) – Estimated matrix of confidence intervals of test statistic values. -Only computed if set in cond_ind_test, where also the percentiles -are set.

  • -
-

-
-
-
- -
-
-run_pcmciplus(selected_links=None, link_assumptions=None, tau_min=0, tau_max=1, pc_alpha=0.01, contemp_collider_rule='majority', conflict_resolution=True, reset_lagged_links=False, max_conds_dim=None, max_combinations=1, max_conds_py=None, max_conds_px=None, max_conds_px_lagged=None, fdr_method='none')[source]
-

Runs PCMCIplus time-lagged and contemporaneous causal discovery for -time series.

-

Method described in [5]: -http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf

-

Notes

-

The PCMCIplus causal discovery method is described in [5], where -also analytical and numerical results are presented. In contrast to -PCMCI, PCMCIplus can identify the full, lagged and contemporaneous, -causal graph (up to the Markov equivalence class for contemporaneous -links) under the standard assumptions of Causal Sufficiency, -Faithfulness and the Markov condition.

-

PCMCIplus estimates time-lagged and contemporaneous causal links by a -four-step procedure:

-

1. Condition-selection (same as for PCMCI): For each variable -j, estimate a superset of lagged parents \widehat{
-\mathcal{B}}_t^-( X^j_t) with the iterative PC1 algorithm, -implemented as run_pc_stable. The condition-selection step -reduces the dimensionality and avoids conditioning on irrelevant -variables.

-

2. PC skeleton phase with contemporaneous conditions and Momentary -conditional independence (MCI) tests: Iterate through subsets -\mathcal{S} of contemporaneous adjacencies and conduct MCI -conditional independence tests:

-
-

X^i_{t-\tau} ~\perp~ X^j_{t} ~|~ \mathcal{S},
-\widehat{\mathcal{B}}_t^-(X^j_t),
-\widehat{\mathcal{B}}_{t-\tau}^-(X^i_{t-{\tau}})

-

here implemented as run_pcalg. This step estimates the p-values and -test statistic values for all lagged and contemporaneous adjacencies -accounting for common drivers, indirect links, and autocorrelation.

-

3. PC collider orientation phase: Orient contemporaneous collider -motifs based on unshielded triples. Optionally apply conservative or -majority rule (also based on MCI tests).

-

4. PC rule orientation phase: Orient remaining contemporaneous -links based on PC rules.

-

In contrast to PCMCI, the relevant output of PCMCIplus is the -array graph. Its string entries are interpreted as follows:

-
    -
  • graph[i,j,tau]=--> for \tau>0 denotes a directed, lagged -causal link from i to j at lag \tau

  • -
  • graph[i,j,0]=--> (and graph[j,i,0]=<--) denotes a directed, -contemporaneous causal link from i to j

  • -
  • graph[i,j,0]=o-o (and graph[j,i,0]=o-o) denotes an unoriented, -contemporaneous adjacency between i and j indicating -that the collider and orientation rules could not be applied (Markov -equivalence)

  • -
  • graph[i,j,0]=x-x and (graph[j,i,0]=x-x) denotes a conflicting, -contemporaneous adjacency between i and j indicating -that the directionality is undecided due to conflicting orientation -rules

  • -
-

Importantly, p_matrix and val_matrix for PCMCIplus quantify -the uncertainty and strength, respectively, only for the -adjacencies, but not for the directionality of contemporaneous links. -Note that lagged links are always oriented due to time order.

-

PCMCIplus can be flexibly combined with any kind of conditional -independence test statistic adapted to the kind of data (continuous -or discrete) and its assumed dependency types. These are available in -tigramite.independence_tests.

-

The main free parameters of PCMCIplus (in addition to free parameters of -the conditional independence tests) are the maximum time delay -\tau_{\max} (tau_max) and the significance threshold -\alpha ( pc_alpha).

-

If a list or None is passed for pc_alpha, the significance level is -optimized for every graph across the given pc_alpha values using the -score computed in cond_ind_test.get_model_selection_criterion(). -Since PCMCIplus outputs not a DAG, but an equivalence class of DAGs, -first one member of this class is computed and then the score is -computed as the average over all models fits for each variable in [0, -..., N] for that member. The score is the same for all members of the -class.

-

The maximum time delay depends on the application and should be chosen -according to the maximum causal time lag expected in the complex system. -We recommend a rather large choice that includes peaks in the -get_lagged_dependencies function. Another important parameter is -contemp_collider_rule. Only if set to majority or -conservative'' and together with ``conflict_resolution=True, -PCMCIplus is fully order independent meaning that the order of the N -variables in the dataframe does not matter. Last, the default option -reset_lagged_links=False restricts the detection of lagged causal -links in Step 2 to the significant adjacencies found in Step 1, given by -\widehat{ \mathcal{B}}_t^-( X^j_t). For -reset_lagged_links=True, all lagged links are considered again, -which improves detection power for lagged links, but also leads to -larger runtimes.

-

Further optional parameters are discussed in [5].

-

Examples

-
>>> import numpy as np
->>> from tigramite.pcmci import PCMCI
->>> from tigramite.independence_tests import ParCorr
->>> import tigramite.data_processing as pp
->>> from tigramite.toymodels import structural_causal_processes as toys
->>> # Example process to play around with
->>> # Each key refers to a variable and the incoming links are supplied
->>> # as a list of format [((var, -lag), coeff, function), ...]
->>> def lin_f(x): return x
->>> links = {0: [((0, -1), 0.9, lin_f)],
-             1: [((1, -1), 0.8, lin_f), ((0, -1), 0.8, lin_f)],
-             2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)],
-             3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)],
-             }
->>> data, nonstat = toys.structural_causal_process(links,
-                    T=1000, seed=7)
->>> # Data must be array of shape (time, variables)
->>> print (data.shape)
-(1000, 4)
->>> dataframe = pp.DataFrame(data)
->>> cond_ind_test = ParCorr()
->>> pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)
->>> results = pcmci.run_pcmciplus(tau_min=0, tau_max=2, pc_alpha=0.01)
->>> pcmci.print_results(results, alpha_level=0.01)
-    ## Significant links at alpha = 0.01:
-
-
-
-
-
Variable 0 has 1 link(s):

(0 -1): pval = 0.00000 | val = 0.676

-
-
Variable 1 has 2 link(s):

(1 -1): pval = 0.00000 | val = 0.602 -(0 -1): pval = 0.00000 | val = 0.599

-
-
Variable 2 has 2 link(s):

(1 0): pval = 0.00000 | val = 0.486 -(2 -1): pval = 0.00000 | val = 0.466

-
-
Variable 3 has 2 link(s):

(3 -1): pval = 0.00000 | val = 0.524 -(2 0): pval = 0.00000 | val = -0.449

-
-
-
-
-
Parameters:
-
    -
  • selected_links (dict or None) – Deprecated, replaced by link_assumptions

  • -
  • link_assumptions (dict) – Dictionary of form {j:{(i, -tau): link_type, …}, …} specifying -assumptions about links. This initializes the graph with entries -graph[i,j,tau] = link_type. For example, graph[i,j,0] = ‘–>’ -implies that a directed link from i to j at lag 0 must exist. -Valid link types are ‘o-o’, ‘–>’, ‘<–’. In addition, the middle -mark can be ‘?’ instead of ‘-’. Then ‘-?>’ implies that this link -may not exist, but if it exists, its orientation is ‘–>’. Link -assumptions need to be consistent, i.e., graph[i,j,0] = ‘–>’ -requires graph[j,i,0] = ‘<–’ and acyclicity must hold. If a link -does not appear in the dictionary, it is assumed absent. That is, -if link_assumptions is not None, then all links have to be specified -or the links are assumed absent.

  • -
  • tau_min (int, optional (default: 0)) – Minimum time lag to test.

  • -
  • tau_max (int, optional (default: 1)) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • pc_alpha (float or list of floats, default: 0.01) – Significance level in algorithm. If a list or None is passed, the -pc_alpha level is optimized for every graph across the given -pc_alpha values ([0.001, 0.005, 0.01, 0.025, 0.05] for None) using -the score computed in cond_ind_test.get_model_selection_criterion().

  • -
  • contemp_collider_rule ({'majority', 'conservative', 'none'}) – Rule for collider phase to use. See the paper for details. Only -‘majority’ and ‘conservative’ lead to an order-independent -algorithm.

  • -
  • conflict_resolution (bool, optional (default: True)) – Whether to mark conflicts in orientation rules. Only for True -this leads to an order-independent algorithm.

  • -
  • reset_lagged_links (bool, optional (default: False)) – Restricts the detection of lagged causal links in Step 2 to the -significant adjacencies found in the PC1 algorithm in Step 1. For -True, all lagged links are considered again, which improves -detection power for lagged links, but also leads to larger -runtimes.

  • -
  • max_conds_dim (int, optional (default: None)) – Maximum number of conditions to test. If None is passed, this number -is unrestricted.

  • -
  • max_combinations (int, optional (default: 1)) – Maximum number of combinations of conditions of current cardinality -to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm -a larger number, such as 10, can be used.

  • -
  • max_conds_py (int, optional (default: None)) – Maximum number of lagged conditions of Y to use in MCI tests. If -None is passed, this number is unrestricted.

  • -
  • max_conds_px (int, optional (default: None)) – Maximum number of lagged conditions of X to use in MCI tests. If -None is passed, this number is unrestricted.

  • -
  • max_conds_px_lagged (int, optional (default: None)) – Maximum number of lagged conditions of X when X is lagged in MCI -tests. If None is passed, this number is equal to max_conds_px.

  • -
  • fdr_method (str, optional (default: 'none')) – Correction method, default is Benjamini-Hochberg False Discovery -Rate method.

  • -
-
-
Returns:
-

    -
  • graph (array of shape [N, N, tau_max+1]) – Resulting causal graph, see description above for interpretation.

  • -
  • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values regarding adjacencies.

  • -
  • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values regarding adjacencies.

  • -
  • sepset (dictionary) – Separating sets. See paper for details.

  • -
  • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and -‘conservative’ rules, see paper for details.

  • -
-

-
-
-
- -
- -
-
-

tigramite.lpcmci: LPCMCI

-
-
-class tigramite.lpcmci.LPCMCI(dataframe, cond_ind_test, verbosity=0)[source]
-

LPCMCI is an algorithm for causal discovery in large-scale times series that allows for latent confounders and -learns lag-specific causal relationships. The algorithm is introduced and explained in: -[1] Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. -Advances in Neural Information Processing Systems, 2020, 33. -https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html -NOTE: This method is still EXPERIMENTAL since the default settings of hyperparameters are still being fine-tuned. -We actually invite feedback on which work best in applications and numerical experiments. -The main function, which applies the algorithm, is ‘run_lpcmci’.

-

Parameters passed to the constructor: -- dataframe:

-
-

Tigramite dataframe object that contains the the time series dataset old{X}

-
-
    -
  • -
    cond_ind_test:

    A conditional independence test object that specifies which conditional independence test CI is to be used

    -
    -
    -
  • -
  • -
    verbosity:

    Controls the verbose output self.run_lpcmci() and the function it calls.

    -
    -
    -
  • -
-

Parameters passed to self.run_lpcmci(): -Note: The default values are still being tuned and some parameters might be removed in the future. -- link_assumptions: dict or None

-
-

Two-level nested dictionary such that link_assumptions[j][(i, lag_i)], where 0 <= j, i <= N-1 (with N the number of component -time series) and -tau_max <= lag_i <= -tau_min, is a string which specifies background knowledge about the link from X^i_{t+lag_i} to -X^j_t. These are the possibilities for this string and the corresponding claim:

-
-

‘-?>’ : X^i_{t+lag_i} is an ancestor of X^j_t. -‘–>’ : X^i_{t+lag_i} is an ancestor of X^j_t, and there is a link between X^i_{t+lag_i} and X^j_t -‘<?-’ : Only allowed for lag_i = 0. X^j_t is an ancestor of X^i_t. -‘<–’ : Only allowed for lag_i = 0. X^j_t is an ancestor of X^i_t, and there is a link between X^i_t and X^j_t -‘<?>’ : Neither X^i_{t+lag_i} is an ancestor of X^j_t nor the other way around -‘<->’ : Neither X^i_{t+lag_i} is an ancestor of X^j_t nor the other way around, and there is a link between X^i_{t+lag_i}

-
-

and X^j_t

-
-
-
‘o?>’X^j_t is not an ancestor of X^i_{t+lag_i} (for lag_i < 0 this background knowledge is (for the default settings of

self.run_lpcmci()) imposed automatically)

-
-
-

‘o->’ : X^j_t is not an ancestor of X^i_{t+lag_i}, and there is a link between X^i_{t+lag_i} and X^j_t -‘<?o’ : Only allowed for lag_i = 0. X^i_t is not an ancestor of X^j_t -‘<-o’ : Only allowed for lag_i = 0. X^i_t is not an ancestor of X^j_t, and there is a link between X^i_t and X^j_t -‘o-o’ : Only allowed for lag_i = 0. There is a link between X^i_t and X^j_t -‘o?o’ : Only allowed for lag_i = 0. No claim is made -‘’ : There is no link between X^i_{t+lag_i} and X^j_t.

-
-

Another way to specify the absent link is if the form of the link between (i, lag_i) and (j, 0) is not specified by the dictionary, that is, if either -link_assumptions[j] does not exist or link_assumptions[j] does exist but link_assumptions[j][(i, lag_i)] does -not exist, then the link between (i, lag_i) and (j, 0) is assumed to be absent.

-
-
    -
  • -
    tau_min:

    The assumed minimum time lag, i.e., links with a lag smaller than tau_min are assumed to be absent.

    -
    -
    -
  • -
  • -
    tau_max:

    The maximum considered time lag, i.e., the algorithm learns a DPAG on a time window [t- aumax, t] with au_max + 1 time steps. -It is not assumed that in the underlying time series DAG there are no links with a lag larger than au_max.

    -
    -
    -
  • -
  • -
    pc_alpha:

    The significance level of conditional independence tests

    -
    -
    -
  • -
  • -
    n_preliminary_iterations:

    Determines the number of iterations in the preliminary phase of LPCMCI, corresponding to the ‘k’ in LPCMCI(k) in [1].

    -
    -
    -
  • -
  • -
    max_cond_px:

    Consider a pair of variables (X^i_{t- au}, X^j_t) with au > 0. In Algorithm S2 in [1] (here this is -self._run_ancestral_removal_phase()), the algorithm does not test for conditional independence given subsets of -apds_t(X^i_{t- au}, X^j_t, C(G)) of cardinality higher than max_cond_px. In Algorithm S3 in [1] (here this is -self._run_non_ancestral_removal_phase()), the algorithm does not test for conditional independence given subsets of -napds_t(X^i_{t- au}, X^j_t, C(G)) of cardinality higher than max_cond_px.

    -
    -
    -
  • -
  • -
    max_p_global:

    Restricts all conditional independence tests to conditioning sets with cardinality smaller or equal to max_p_global

    -
    -
    -
  • -
  • -
    max_p_non_ancestral:

    Restricts all conditional independence tests in the second removal phase (here this is self._run_dsep_removal_phase()) to -conditioning sets with cardinality smaller or equal to max_p_global

    -
    -
    -
  • -
  • -
    max_q_global:

    For each ordered pair (X^i_{t- au}, X^j_t) of adjacent variables and for each cardinality of the conditioning sets test at most -max_q_global many conditioning sets (when summing over all tested cardinalities more than max_q_global tests may be made)

    -
    -
    -
  • -
  • -
    max_pds_set:

    In Algorithm S3 (here this is self._run_non_ancestral_removal_phase()), the algorithm tests for conditional independence given -subsets of the relevant napds_t sets. If for a given link the set napds_t(X^j_t, X^i_{t- au}, C(G)) has more than max_pds_set many -elements (or, if the link is also tested in the opposite directed, if napds_t(X^i_{t- au}, X^j_t, C(G)) has more than max_pds_set -elements), this link is not tested.

    -
    -
    -
  • -
  • -
    prelim_with_collider_rules:

    If True: As in pseudocode -If False: Line 22 of Algorithm S2 in [1] is replaced by line 18 of Algorithm S2 when Algorithm S2 is called from the preliminary -phase (not in the last application of Algorithm S2 directly before Algorithm S3 is applied)

    -
    -
    -
  • -
  • -
    parents_of_lagged:

    If True: As in pseudocode -If False: The default conditioning set is pa(X^j_t, C(G)) rather than pa({X^j_t, X^i_{t- au}, C(G)) for tau > 0

    -
    -
    -
  • -
  • -
    prelim_only:

    If True, stop after the preliminary phase. Can be used for detailed performance analysis

    -
    -
    -
  • -
  • -
    break_once_separated:

    If True: As in pseudocode -If False: The break commands are removed from Algorithms S2 and S3 in in [1]

    -
    -
    -
  • -
  • -
    no_non_ancestral_phase:

    If True, do not execute Algorithm S3. Can be used for detailed performance analysis

    -
    -
    -
  • -
  • -
    use_a_pds_t_for_majority:

    If True: As in pseudocode -If False: The search for separating sets instructed by the majority rule is made given subsets adj(X^j_t, C(G)) rather than -subsets of apds_t(X^j_t, X^i_{t- au}, C(G))

    -
    -
    -
  • -
  • -
    orient_contemp:

    If orient_contemp == 1: As in pseudocode of Algorithm S2 in [1] -If orient_contemp == 2: Also orient contemporaneous links in line 18 of Algorithm S2 -If orient_comtemp == 0: Also not orient contemporaneous links in line 22 of Algorithm S2

    -
    -
    -
  • -
  • -
    update_middle_marks:

    If True: As in pseudoce of Algorithms S2 and S3 in [1] -If False: The MMR rule is not applied

    -
    -
    -
  • -
  • -
    prelim_rules:

    If prelim_rules == 1: As in pseudocode of Algorithm S2 in [1] -If prelim_rules == 0: Exclude rules R9^prime and R10^prime from line 18 in Algorithm S2

    -
    -
    -
  • -
  • -
    fix_all_edges_before_final_orientation:

    When one of max_p_global, max_p_non_ancestral, max_q_global or max_pds_set is not np.inf, the algorithm may terminate although not -all middle marks are empty. All orientation rules are nevertheless sound, since the rules always check for the appropriate middle -marks. If fix_all_edges_before_final_orientation is True, all middle marks are set to the empty middle mark by force, followed by -another application of the rules.

    -
    -
    -
  • -
  • -
    auto_first:

    If True: As in pseudcode of Algorithms S2 and S3 in [1] -If False: Autodependency links are not prioritized even before contemporaneous links

    -
    -
    -
  • -
  • -
    remember_only_parents:

    If True: As in pseudocode of Algorithm 1 -If False: If X^i_{t- au} has been marked as ancestor of X^j_t at any point of a preliminary iteration but the link between -X^i_{t- au} and X^j_t was removed later, the link is nevertheless initialized with a tail at X^i_{t- au} in the re-initialization

    -
    -
    -
  • -
  • -
    no_apr:

    If no_apr == 0: As in pseudcode of Algorithms S2 and S3 in [1] -If no_apr == 1: The APR is not applied by Algorithm S2, except in line 22 of its last call directly before the call of Algorithm S3 -If no_apr == 2: The APR is never applied

    -
    -
    -
  • -
-
-
Return value of self.run_lpcmci():
-
grapharray of shape (N, N, tau_max+1)

Resulting DPAG, representing the learned causal relationships.

-
-
val_matrixarray of shape (N, N, tau_max+1)

Estimated matrix of test statistic values regarding adjacencies.

-
-
p_matrixarray of shape [N, N, tau_max+1]

Estimated matrix of p-values regarding adjacencies.

-
-
-
-
A note on middle marks:

For convenience (to have strings of the same lengths) we here internally denote the empty middle mark by ‘-’. For post-processing -purposes all middle marks are set to the empty middle mark (here ‘-‘).

-
-
A note on wildcards:

The middle mark wildcard st and the edge mark wildcard are here represented as *, the edge mark wildcard star as +

-
-
-
-
-run_lpcmci(link_assumptions=None, tau_min=0, tau_max=1, pc_alpha=0.05, n_preliminary_iterations=1, max_cond_px=0, max_p_global=inf, max_p_non_ancestral=inf, max_q_global=inf, max_pds_set=inf, prelim_with_collider_rules=True, parents_of_lagged=True, prelim_only=False, break_once_separated=True, no_non_ancestral_phase=False, use_a_pds_t_for_majority=True, orient_contemp=1, update_middle_marks=True, prelim_rules=1, fix_all_edges_before_final_orientation=True, auto_first=True, remember_only_parents=True, no_apr=0)[source]
-

Run LPCMCI on the dataset and with the conditional independence test passed to the class constructor and with the -options passed to this function.

-
- -
- -
-
-

tigramite.independence_tests: Conditional independence tests

-

Base class:

-
-
-class tigramite.independence_tests.independence_tests_base.CondIndTest(seed=42, mask_type=None, significance='analytic', fixed_thres=0.1, sig_samples=500, sig_blocklength=None, confidence=None, conf_lev=0.9, conf_samples=100, conf_blocklength=None, recycle_residuals=False, verbosity=0)[source]
-

Base class of conditional independence tests.

-

Provides useful general functions for different independence tests such as -shuffle significance testing and bootstrap confidence estimation. Also -handles masked samples. Other test classes can inherit from this class.

-
-
Parameters:
-
    -
  • seed (int, optional(default = 42)) – Seed for RandomState (default_rng)

  • -
  • mask_type (str, optional (default = None)) – Must be in {None, ‘y’,’x’,’z’,’xy’,’xz’,’yz’,’xyz’} -Masking mode: Indicators for which variables in the dependence measure -I(X; Y | Z) the samples should be masked. If None, the mask is not used. -Explained in tutorial on masking and missing values.

  • -
  • significance (str, optional (default: 'analytic')) – Type of significance test to use. In this package ‘analytic’, -‘fixed_thres’ and ‘shuffle_test’ are available.

  • -
  • fixed_thres (float, optional (default: 0.1)) – If significance is ‘fixed_thres’, this specifies the threshold for the -absolute value of the dependence measure.

  • -
  • sig_samples (int, optional (default: 500)) – Number of samples for shuffle significance test.

  • -
  • sig_blocklength (int, optional (default: None)) – Block length for block-shuffle significance test. If None, the -block length is determined from the decay of the autocovariance as -explained in [1].

  • -
  • confidence (str, optional (default: None)) – Specify type of confidence estimation. If False, numpy.nan is returned. -‘bootstrap’ can be used with any test, for ParCorr also ‘analytic’ is -implemented.

  • -
  • conf_lev (float, optional (default: 0.9)) – Two-sided confidence interval.

  • -
  • conf_samples (int, optional (default: 100)) – Number of samples for bootstrap.

  • -
  • conf_blocklength (int, optional (default: None)) – Block length for block-bootstrap. If None, the block length is -determined from the decay of the autocovariance as explained in [1].

  • -
  • recycle_residuals (bool, optional (default: False)) – Specifies whether residuals should be stored. This may be faster, but -can cost considerable memory.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
-
-
-get_analytic_confidence(value, df, conf_lev)[source]
-

Base class assumption that this is not implemented. Concrete classes -should override when possible.

-
- -
-
-get_analytic_significance(value, T, dim)[source]
-

Base class assumption that this is not implemented. Concrete classes -should override when possible.

-
- -
-
-get_bootstrap_confidence(array, xyz, dependence_measure=None, conf_samples=100, conf_blocklength=None, conf_lev=0.95, type_mask=None, verbosity=0)[source]
-

Perform bootstrap confidence interval estimation.

-
-

With conf_blocklength > 1 or None a block-bootstrap is performed.

-
-
arrayarray-like

data array with X, Y, Z in rows and observations in columns

-
-
xyzarray of ints

XYZ identifier array of shape (dim,).

-
-
dependence_measurefunction (default = self.get_dependence_measure)

Dependence measure function must be of form -dependence_measure(array, xyz) and return a numeric value

-
-
conf_levfloat, optional (default: 0.9)

Two-sided confidence interval.

-
-
conf_samplesint, optional (default: 100)

Number of samples for bootstrap.

-
-
conf_blocklengthint, optional (default: None)

Block length for block-bootstrap. If None, the block length is -determined from the decay of the autocovariance as explained in -[1].

-
-
-
-
-
type_maskarray-like
-

Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

-
-
-
verbosityint, optional (default: 0)

Level of verbosity.

-
-
-
-
(conf_lower, conf_upper)Tuple of floats

Upper and lower confidence bound of confidence interval.

-
-
-
-
-
- -
-
-get_confidence(X, Y, Z=None, tau_max=0, type_mask=None)[source]
-

Perform confidence interval estimation.

-
-

Calls the dependence measure and confidence test functions. The child -classes can specify a function get_dependence_measure and -get_analytic_confidence or get_bootstrap_confidence. If confidence is -False, (numpy.nan, numpy.nan) is returned.

-
-
X, Y, Zlist of tuples

X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index and tau the time lag.

-
-
tau_maxint, optional (default: 0)

Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

-
-
-
-
-
type_maskarray-like
-

Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

-
-
-
(conf_lower, conf_upper)Tuple of floats

Upper and lower confidence bound of confidence interval.

-
-
-
-
-
- -
-
-abstract get_dependence_measure(array, xyz)[source]
-

Abstract function that all concrete classes must instantiate.

-
- -
-
-get_fixed_thres_significance(value, fixed_thres)[source]
-

Returns signficance for thresholding test.

-

Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 else.

-
-
Parameters:
-
    -
  • value (number) – Value of test statistic for unshuffled estimate.

  • -
  • fixed_thres (number) – Fixed threshold, is made positive.

  • -
-
-
Returns:
-

pval – Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 -else.

-
-
Return type:
-

bool

-
-
-
- -
-
-get_measure(X, Y, Z=None, tau_max=0, type_mask=None)[source]
-

Estimate dependence measure.

-
-

Calls the dependence measure function. The child classes must specify -a function get_dependence_measure.

-
-
X, Y [, Z]list of tuples

X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index and tau the time lag.

-
-
tau_maxint, optional (default: 0)

Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

-
-
-
-
-
type_maskarray-like
-

Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

-
-
-
valfloat

The test statistic value.

-
-
-
-
-
- -
-
-get_model_selection_criterion(j, parents, tau_max=0)[source]
-

Base class assumption that this is not implemented. Concrete classes -should override when possible.

-
- -
-
-get_shuffle_significance(array, xyz, value, type_mask=None, return_null_dist=False)[source]
-

Base class assumption that this is not implemented. Concrete classes -should override when possible.

-
- -
-
-get_significance(val, array, xyz, T, dim, type_mask=None, sig_override=None)[source]
-
-

Returns the p-value from whichever significance function is specified -for this test. If an override is used, then it will call a different -function then specified by self.significance

-
-
valfloat

Test statistic value.

-
-
arrayarray-like

data array with X, Y, Z in rows and observations in columns

-
-
xyzarray of ints

XYZ identifier array of shape (dim,).

-
-
Tint

Sample length

-
-
dimint

Dimensionality, ie, number of features.

-
-
-
-
-
type_maskarray-like
-

Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

-
-
-
sig_overridestring

Must be in ‘analytic’, ‘shuffle_test’, ‘fixed_thres’

-
-
-
-
pvalfloat or numpy.nan

P-value.

-
-
-
-
-
- -
-
-abstract property measure
-

Abstract property to store the type of independence test.

-
- -
-
-print_info()[source]
-

Print information about the conditional independence test parameters

-
- -
-
-run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max')[source]
-

Perform conditional independence test.

-

Calls the dependence measure and signficicance test functions. The child -classes must specify a function get_dependence_measure and either or -both functions get_analytic_significance and get_shuffle_significance. -If recycle_residuals is True, also _get_single_residuals must be -available.

-
-
Parameters:
-
    -
  • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index and tau the time lag.

  • -
  • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index and tau the time lag.

  • -
  • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index and tau the time lag.

  • -
  • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

  • -
  • cut_off ({'2xtau_max', 'max_lag', 'max_lag_or_tau_max'}) – How many samples to cutoff at the beginning. The default is -‘2xtau_max’, which guarantees that MCI tests are all conducted on -the same samples. For modeling, ‘max_lag_or_tau_max’ can be used, -which uses the maximum of tau_max and the conditions, which is -useful to compare multiple models on the same sample. Last, -‘max_lag’ uses as much samples as possible.

  • -
-
-
Returns:
-

val, pval – The test statistic value and the p-value.

-
-
Return type:
-

Tuple of floats

-
-
-
- -
-
-run_test_raw(x, y, z=None, x_type=None, y_type=None, z_type=None)[source]
-

Perform conditional independence test directly on input arrays x, y, z.

-

Calls the dependence measure and signficicance test functions. The child -classes must specify a function get_dependence_measure and either or -both functions get_analytic_significance and get_shuffle_significance.

-
-
Parameters:
-
    -
  • x (arrays) – x,y,z are of the form (samples, dimension).

  • -
  • y (arrays) – x,y,z are of the form (samples, dimension).

  • -
  • z (arrays) – x,y,z are of the form (samples, dimension).

  • -
  • x_type (array-like) – data arrays of same shape as x, y and z respectively, which describes whether variables -are continuous or discrete: 0s for continuous variables and -1s for discrete variables

  • -
  • y_type (array-like) – data arrays of same shape as x, y and z respectively, which describes whether variables -are continuous or discrete: 0s for continuous variables and -1s for discrete variables

  • -
  • z_type (array-like) – data arrays of same shape as x, y and z respectively, which describes whether variables -are continuous or discrete: 0s for continuous variables and -1s for discrete variables

  • -
-
-
Returns:
-

val, pval – The test statistic value and the p-value.

-
-
Return type:
-

Tuple of floats

-
-
-
- -
-
-set_dataframe(dataframe)[source]
-

Initialize and check the dataframe.

-
-
Parameters:
-

dataframe (data object) – Set tigramite dataframe object. It must have the attributes -dataframe.values yielding a numpy array of shape (observations T, -variables N) and optionally a mask of the same shape and a missing -values flag.

-
-
-
- -
-
-set_mask_type(mask_type)[source]
-

Setter for mask type to ensure that this option does not clash with -recycle_residuals.

-
-
Parameters:
-

mask_type (str) – Must be in {None, ‘y’,’x’,’z’,’xy’,’xz’,’yz’,’xyz’} -Masking mode: Indicators for which variables in the dependence measure -I(X; Y | Z) the samples should be masked. If None, the mask is not used. -Explained in tutorial on masking and missing values.

-
-
-
- -
- -

Test statistics:

-
-
-class tigramite.independence_tests.parcorr.ParCorr(**kwargs)[source]
-

Partial correlation test.

-

Partial correlation is estimated through linear ordinary least squares (OLS) -regression and a test for non-zero linear Pearson correlation on the -residuals.

-

Notes

-

To test X \perp Y | Z, first Z is regressed out from -X and Y assuming the model

-
-

X & =  Z \beta_X + \epsilon_{X} \\
-Y & =  Z \beta_Y + \epsilon_{Y}

-

using OLS regression. Then the dependency of the residuals is tested with -the Pearson correlation test.

-
-

\rho\left(r_X, r_Y\right)

-

For the significance='analytic' Student’s-t distribution with -T-D_Z-2 degrees of freedom is implemented.

-
-
Parameters:
-

**kwargs – Arguments passed on to Parent class CondIndTest.

-
-
-
-
-get_analytic_confidence(value, df, conf_lev)[source]
-

Returns analytic confidence interval for correlation coefficient.

-

Based on Student’s t-distribution.

-
-
Parameters:
-
    -
  • value (float) – Test statistic value.

  • -
  • df (int) – degrees of freedom of the test

  • -
  • conf_lev (float) – Confidence interval, eg, 0.9

  • -
-
-
Returns:
-

(conf_lower, conf_upper) – Upper and lower confidence bound of confidence interval.

-
-
Return type:
-

Tuple of floats

-
-
-
- -
-
-get_analytic_significance(value, T, dim, xyz)[source]
-

Returns analytic p-value from Student’s t-test for the Pearson -correlation coefficient.

-

Assumes two-sided correlation. If the degrees of freedom are less than -1, numpy.nan is returned.

-
-
Parameters:
-
    -
  • value (float) – Test statistic value.

  • -
  • T (int) – Sample length

  • -
  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

pval – P-value.

-
-
Return type:
-

float or numpy.nan

-
-
-
- -
-
-get_dependence_measure(array, xyz)[source]
-

Return partial correlation.

-

Estimated as the Pearson correlation of the residuals of a linear -OLS regression.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – Partial correlation coefficient.

-
-
Return type:
-

float

-
-
-
- -
-
-get_model_selection_criterion(j, parents, tau_max=0, corrected_aic=False)[source]
-

Returns Akaike’s Information criterion modulo constants.

-

Fits a linear model of the parents to variable j and returns the -score. Leave-one-out cross-validation is asymptotically equivalent to -AIC for ordinary linear regression models. Here used to determine -optimal hyperparameters in PCMCI, in particular the pc_alpha value.

-
-
Parameters:
-
    -
  • j (int) – Index of target variable in data array.

  • -
  • parents (list) – List of form [(0, -1), (3, -2), …] containing parents.

  • -
  • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

  • -
  • Returns

  • -
  • score (float) – Model score.

  • -
-
-
-
- -
-
-get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
-

Returns p-value for shuffle significance test.

-

For residual-based test statistics only the residuals are shuffled.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • value (number) – Value of test statistic for unshuffled estimate.

  • -
-
-
Returns:
-

pval – p-value

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
- -
-
-class tigramite.independence_tests.robust_parcorr.RobustParCorr(**kwargs)[source]
-

Robust partial correlation test based on non-paranormal models.

-

Partial correlation is estimated through transformation to standard -normal marginals, ordinary least squares (OLS) regression, and a test for -non-zero linear Pearson correlation on the residuals.

-

Notes

-

To test X \perp Y | Z, firstly, each marginal is transformed to be -standard normally distributed. For that, the transform -\Phi^{-1}\circ\hat{F} is used. Here, \Phi^{-1} is the

-
-

quantile function of a standard normal distribution and -\hat{F} is the empirical distribution function for the respective -marginal.

-
-

This idea stems from the literature on nonparanormal models, see:

-
    -
  • Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: -semiparametric estimation of high dimensional undirected graphs. J. -Mach. Learn. Res., 10:2295–2328, 2009.

  • -
  • Han Liu, Fang Han, Ming Yuan, John Lafferty, and Larry Wasserman. -High-dimensional semiparametric Gaussian copula graphical models. Ann. -Statist., 40(4):2293–2326, 2012a.

  • -
  • Naftali Harris, Mathias Drton. PC Algorithm for Nonparanormal Graphical -Models. Journal of Machine Learning Research, 14: 3365-3383, 2013.

  • -
-

Afterwards (where Z, X, and Y are now assumed to be transformed to the -standard normal scale):

-

Z is regressed out from -X and Y assuming the model

-
-

X & =  Z \beta_X + \epsilon_{X} \\
-Y & =  Z \beta_Y + \epsilon_{Y}

-

using OLS regression. Then the dependency of the residuals is tested with -the Pearson correlation test.

-
-

\rho\left(r_X, r_Y\right)

-

For the significance='analytic' Student’s-t distribution with -T-D_Z-2 degrees of freedom is implemented.

-
-
Parameters:
-

**kwargs – Arguments passed on to Parent class CondIndTest.

-
-
-
-
-get_analytic_confidence(value, df, conf_lev)[source]
-

Returns analytic confidence interval for correlation coefficient.

-

Based on Student’s t-distribution.

-
-
Parameters:
-
    -
  • value (float) – Test statistic value.

  • -
  • df (int) – degrees of freedom of the test

  • -
  • conf_lev (float) – Confidence interval, eg, 0.9

  • -
-
-
Returns:
-

(conf_lower, conf_upper) – Upper and lower confidence bound of confidence interval.

-
-
Return type:
-

Tuple of floats

-
-
-
- -
-
-get_analytic_significance(value, T, dim, xyz)[source]
-

Returns analytic p-value from Student’s t-test for the Pearson -correlation coefficient.

-

Assumes two-sided correlation. If the degrees of freedom are less than -1, numpy.nan is returned.

-
-
Parameters:
-
    -
  • value (float) – Test statistic value.

  • -
  • T (int) – Sample length

  • -
  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

pval – P-value.

-
-
Return type:
-

float or numpy.nan

-
-
-
- -
-
-get_dependence_measure(array, xyz, type_mask=None)[source]
-

Return partial correlation.

-

Marginals are firstly transformed to standard normal scale. Dependence -Measure is then estimated as the Pearson correlation of the residuals -of a linear OLS regression.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – Partial correlation coefficient.

-
-
Return type:
-

float

-
-
-
- -
-
-get_model_selection_criterion(j, parents, tau_max=0, corrected_aic=False)[source]
-

Returns Akaike’s Information criterion modulo constants.

-

First of all, each marginal is transformed to the standard normal -scale. For this, each marginal is transformed to the uniform scale -using the empirical distribution function and then, transformed to -the standard normal scale by applying the quantile function of a -standard normal. Afterwards, fits a linear model of the parents to -variable j and returns the score. Leave-one-out cross-validation is -asymptotically equivalent to AIC for ordinary linear regression -models. Here used to determine optimal hyperparameters in -PCMCI(plus), in particular the pc_alpha value.

-
-
Parameters:
-
    -
  • j (int) – Index of target variable in data array.

  • -
  • parents (list) – List of form [(0, -1), (3, -2), …] containing parents.

  • -
  • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

  • -
  • Returns

  • -
  • score (float) – Model score.

  • -
-
-
-
- -
-
-get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
-

Returns p-value for shuffle significance test.

-

Firstly, each marginal is transformed to the standard normal scale. -For residual-based test statistics only the residuals are shuffled.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • value (number) – Value of test statistic for unshuffled estimate.

  • -
-
-
Returns:
-

pval – p-value

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
-
-trafo2normal(x, thres=1e-05)[source]
-

Transforms input array to standard normal marginals.

-

For that, the code first transforms to uniform [0,1] marginals -using the empirical distribution function, and then transforms to -normal marginals by applying the quantile function of a standard -normal. Assumes x.shape = (dim, T)

-
-
Parameters:
-
    -
  • x (array-like) – Input array.

  • -
  • thres (float) – Small number between 0 and 1; after transformation to the uniform -scale, all values that are too close to zero are replaced by thres, -similarly, all values that are too close to one, are replaced by -1-thres. This avoids NaNs.

  • -
-
-
Returns:
-

normal – array with normal marginals.

-
-
Return type:
-

array-like

-
-
-
- -
- -
-
-class tigramite.independence_tests.gpdc.GPDC(null_dist_filename=None, gp_params=None, **kwargs)[source]
-

GPDC conditional independence test based on Gaussian processes and distance correlation.

-

GPDC is based on a Gaussian process (GP) regression and a distance -correlation test on the residuals [2]. GP is estimated with scikit-learn -and allows to flexibly specify kernels and hyperparameters or let them be -optimized automatically. The distance correlation test is implemented with -cython. Here the null distribution is not analytically available, but can be -precomputed with the function generate_and_save_nulldists(…) which saves a -*.npz file containing the null distribution for different sample sizes. -This file can then be supplied as null_dist_filename.

-

Notes

-

GPDC is based on a Gaussian process (GP) regression and a distance -correlation test on the residuals. Distance correlation is described in -[2]. To test X \perp Y | Z, first Z is regressed out from -X and Y assuming the model

-
-

X & =  f_X(Z) + \epsilon_{X} \\
-Y & =  f_Y(Z) + \epsilon_{Y}  \\
-\epsilon_{X,Y} &\sim \mathcal{N}(0, \sigma^2)

-

using GP regression. Here \sigma^2 and the kernel bandwidth are -optimzed using sklearn. Then the residuals are transformed to uniform -marginals yielding r_X,r_Y and their dependency is tested with

-
-

\mathcal{R}\left(r_X, r_Y\right)

-

The null distribution of the distance correlation should be pre-computed. -Otherwise it is computed during runtime.

-

References

- -
-
Parameters:
-
    -
  • null_dist_filename (str, otional (default: None)) – Path to file containing null distribution.

  • -
  • gp_params (dictionary, optional (default: None)) – Dictionary with parameters for GaussianProcessRegressor.

  • -
  • **kwargs – Arguments passed on to parent class GaussProcReg.

  • -
-
-
-
-
-generate_and_save_nulldists(sample_sizes, null_dist_filename)[source]
-

Generates and saves null distribution for pairwise independence -tests.

-

Generates the null distribution for different sample sizes. Calls -generate_nulldist. Null dists are saved to disk as -self.null_dist_filename.npz. Also adds the null distributions to -self.gauss_pr.null_dists.

-
-
Parameters:
-
    -
  • sample_sizes (list) – List of sample sizes.

  • -
  • null_dist_filename (str) – Name to save file containing null distributions.

  • -
-
-
-
- -
-
-generate_nulldist(df, add_to_null_dists=True)[source]
-

Generates null distribution for pairwise independence tests.

-

Generates the null distribution for sample size df. Assumes pairwise -samples transformed to uniform marginals. Uses get_dependence_measure -available in class and generates self.sig_samples random samples. Adds -the null distributions to self.gauss_pr.null_dists.

-
-
Parameters:
-
    -
  • df (int) – Degrees of freedom / sample size to generate null distribution for.

  • -
  • add_to_null_dists (bool, optional (default: True)) – Whether to add the null dist to the dictionary of null dists or -just return it.

  • -
-
-
Returns:
-

null_dist – Only returned,if add_to_null_dists is False.

-
-
Return type:
-

array of shape [df,]

-
-
-
- -
-
-get_analytic_significance(value, T, dim, xyz)[source]
-

Returns p-value for the distance correlation coefficient.

-

The null distribution for necessary degrees of freedom (df) is loaded. -If not available, the null distribution is generated with the function -generate_nulldist(). It is recommended to generate the nulldists for a -wide range of sample sizes beforehand with the function -generate_and_save_nulldists(…). The distance correlation coefficient -is one-sided. If the degrees of freedom are less than 1, numpy.nan is -returned.

-
-
Parameters:
-
    -
  • value (float) – Test statistic value.

  • -
  • T (int) – Sample length

  • -
  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

pval – p-value.

-
-
Return type:
-

float or numpy.nan

-
-
-
- -
-
-get_dependence_measure(array, xyz)[source]
-

Return GPDC measure.

-

Estimated as the distance correlation of the residuals of a GP -regression.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – GPDC test statistic.

-
-
Return type:
-

float

-
-
-
- -
-
-get_model_selection_criterion(j, parents, tau_max=0)[source]
-

Returns log marginal likelihood for GP regression.

-

Fits a GP model of the parents to variable j and returns the negative -log marginal likelihood as a model selection score. Is used to determine -optimal hyperparameters in PCMCI, in particular the pc_alpha value.

-
-
Parameters:
-
    -
  • j (int) – Index of target variable in data array.

  • -
  • parents (list) – List of form [(0, -1), (3, -2), …] containing parents.

  • -
  • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

  • -
  • Returns

  • -
  • score (float) – Model score.

  • -
-
-
-
- -
-
-get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
-

Returns p-value for shuffle significance test.

-

For residual-based test statistics only the residuals are shuffled.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • value (number) – Value of test statistic for unshuffled estimate.

  • -
-
-
Returns:
-

pval – p-value

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
- -
-
-class tigramite.independence_tests.gpdc_torch.GPDCtorch(null_dist_filename=None, **kwargs)[source]
-

GPDC conditional independence test based on Gaussian processes and distance correlation. Here with gpytorch implementation.

-

GPDC is based on a Gaussian process (GP) regression and a distance -correlation test on the residuals [2]. GP is estimated with gpytorch. -The distance correlation test is implemented with the dcor package available -from pip. Here the null distribution is not analytically available, but can be -precomputed with the function generate_and_save_nulldists(…) which saves a -*.npz file containing the null distribution for different sample sizes. -This file can then be supplied as null_dist_filename.

-

Notes

-

GPDC is based on a Gaussian process (GP) regression and a distance -correlation test on the residuals. Distance correlation is described in -[2]. To test X \perp Y | Z, first Z is regressed out from -X and Y assuming the model

-
-

X & =  f_X(Z) + \epsilon_{X} \\
-Y & =  f_Y(Z) + \epsilon_{Y}  \\
-\epsilon_{X,Y} &\sim \mathcal{N}(0, \sigma^2)

-

using GP regression. Here \sigma^2 and the kernel bandwidth are -optimzed using gpytorch. Then the residuals are transformed to uniform -marginals yielding r_X,r_Y and their dependency is tested with

-
-

\mathcal{R}\left(r_X, r_Y\right)

-

The null distribution of the distance correlation should be pre-computed. -Otherwise it is computed during runtime.

-
-
Parameters:
-
    -
  • null_dist_filename (str, otional (default: None)) – Path to file containing null distribution.

  • -
  • **kwargs – Arguments passed on to parent class GaussProcRegTorch.

  • -
-
-
-
-
-generate_and_save_nulldists(sample_sizes, null_dist_filename)[source]
-

Generates and saves null distribution for pairwise independence -tests.

-

Generates the null distribution for different sample sizes. Calls -generate_nulldist. Null dists are saved to disk as -self.null_dist_filename.npz. Also adds the null distributions to -self.gauss_pr.null_dists.

-
-
Parameters:
-
    -
  • sample_sizes (list) – List of sample sizes.

  • -
  • null_dist_filename (str) – Name to save file containing null distributions.

  • -
-
-
-
- -
-
-generate_nulldist(df, add_to_null_dists=True)[source]
-

Generates null distribution for pairwise independence tests.

-

Generates the null distribution for sample size df. Assumes pairwise -samples transformed to uniform marginals. Uses get_dependence_measure -available in class and generates self.sig_samples random samples. Adds -the null distributions to self.gauss_pr.null_dists.

-
-
Parameters:
-
    -
  • df (int) – Degrees of freedom / sample size to generate null distribution for.

  • -
  • add_to_null_dists (bool, optional (default: True)) – Whether to add the null dist to the dictionary of null dists or -just return it.

  • -
-
-
Returns:
-

null_dist – Only returned,if add_to_null_dists is False.

-
-
Return type:
-

array of shape [df,]

-
-
-
- -
-
-get_analytic_significance(value, T, dim, xyz)[source]
-

Returns p-value for the distance correlation coefficient.

-

The null distribution for necessary degrees of freedom (df) is loaded. -If not available, the null distribution is generated with the function -generate_nulldist(). It is recommended to generate the nulldists for a -wide range of sample sizes beforehand with the function -generate_and_save_nulldists(…). The distance correlation coefficient -is one-sided. If the degrees of freedom are less than 1, numpy.nan is -returned.

-
-
Parameters:
-
    -
  • value (float) – Test statistic value.

  • -
  • T (int) – Sample length

  • -
  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

pval – p-value.

-
-
Return type:
-

float or numpy.nan

-
-
-
- -
-
-get_dependence_measure(array, xyz)[source]
-

Return GPDC measure.

-

Estimated as the distance correlation of the residuals of a GP -regression.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – GPDC test statistic.

-
-
Return type:
-

float

-
-
-
- -
-
-get_model_selection_criterion(j, parents, tau_max=0)[source]
-

Returns log marginal likelihood for GP regression.

-

Fits a GP model of the parents to variable j and returns the negative -log marginal likelihood as a model selection score. Is used to determine -optimal hyperparameters in PCMCI, in particular the pc_alpha value.

-
-
Parameters:
-
    -
  • j (int) – Index of target variable in data array.

  • -
  • parents (list) – List of form [(0, -1), (3, -2), …] containing parents.

  • -
  • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

  • -
  • Returns

  • -
  • score (float) – Model score.

  • -
-
-
-
- -
-
-get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
-

Returns p-value for shuffle significance test.

-

For residual-based test statistics only the residuals are shuffled.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • value (number) – Value of test statistic for unshuffled estimate.

  • -
-
-
Returns:
-

pval – p-value

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
- -
-
-class tigramite.independence_tests.cmiknn.CMIknn(knn=0.2, shuffle_neighbors=5, significance='shuffle_test', transform='ranks', workers=-1, **kwargs)[source]
-

Conditional mutual information test based on nearest-neighbor estimator.

-

Conditional mutual information is the most general dependency measure coming -from an information-theoretic framework. It makes no assumptions about the -parametric form of the dependencies by directly estimating the underlying -joint density. The test here is based on the estimator in S. Frenzel and B. -Pompe, Phys. Rev. Lett. 99, 204101 (2007), combined with a shuffle test to -generate the distribution under the null hypothesis of independence first -used in [3]. The knn-estimator is suitable only for variables taking a -continuous range of values. For discrete variables use the CMIsymb class.

-

Notes

-

CMI is given by

-
-

I(X;Y|Z) &= \int p(z)  \iint  p(x,y|z) \log
-\frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)} \,dx dy dz

-

Its knn-estimator is given by

-
-

\widehat{I}(X;Y|Z)  &=   \psi (k) + \frac{1}{T} \sum_{t=1}^T
-\left[ \psi(k_{Z,t}) - \psi(k_{XZ,t}) - \psi(k_{YZ,t}) \right]

-

where \psi is the Digamma function. This estimator has as a -parameter the number of nearest-neighbors k which determines the -size of hyper-cubes around each (high-dimensional) sample point. Then -k_{Z,},k_{XZ},k_{YZ} are the numbers of neighbors in the respective -subspaces.

-

k can be viewed as a density smoothing parameter (although it is -data-adaptive unlike fixed-bandwidth estimators). For large k, the -underlying dependencies are more smoothed and CMI has a larger bias, -but lower variance, which is more important for significance testing. Note -that the estimated CMI values can be slightly negative while CMI is a non- -negative quantity.

-

This method requires the scipy.spatial.cKDTree package.

-

References

- -
-
Parameters:
-
    -
  • knn (int or float, optional (default: 0.2)) – Number of nearest-neighbors which determines the size of hyper-cubes -around each (high-dimensional) sample point. If smaller than 1, this is -computed as a fraction of T, hence knn=knn*T. For knn larger or equal to -1, this is the absolute number.

  • -
  • shuffle_neighbors (int, optional (default: 5)) – Number of nearest-neighbors within Z for the shuffle surrogates which -determines the size of hyper-cubes around each (high-dimensional) sample -point.

  • -
  • transform ({'ranks', 'standardize', 'uniform', False}, optional) – (default: ‘ranks’) -Whether to transform the array beforehand by standardizing -or transforming to uniform marginals.

  • -
  • workers (int (optional, default = -1)) – Number of workers to use for parallel processing. If -1 is given -all processors are used. Default: -1.

  • -
  • significance (str, optional (default: 'shuffle_test')) – Type of significance test to use. For CMIknn only ‘fixed_thres’ and -‘shuffle_test’ are available.

  • -
  • **kwargs – Arguments passed on to parent class CondIndTest.

  • -
-
-
-
-
-get_conditional_entropy(array, xyz)[source]
-

Returns the nearest-neighbor conditional entropy estimate of H(X|Y).

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,). Here only uses 0 for X and -1 for Y.

  • -
-
-
Returns:
-

val – Entropy estimate.

-
-
Return type:
-

float

-
-
-
- -
-
-get_dependence_measure(array, xyz)[source]
-

Returns CMI estimate as described in Frenzel and Pompe PRL (2007).

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – Conditional mutual information estimate.

-
-
Return type:
-

float

-
-
-
- -
-
-get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
-

Returns p-value for nearest-neighbor shuffle significance test.

-

For non-empty Z, overwrites get_shuffle_significance from the parent -class which is a block shuffle test, which does not preserve -dependencies of X and Y with Z. Here the parameter shuffle_neighbors is -used to permute only those values x_i and x_j for which -z_j is among the nearest niehgbors of z_i. If Z is -empty, the block-shuffle test is used.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • value (number) – Value of test statistic for unshuffled estimate.

  • -
-
-
Returns:
-

pval – p-value

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
- -
-
-class tigramite.independence_tests.cmisymb.CMIsymb(n_symbs=None, significance='shuffle_test', sig_blocklength=1, conf_blocklength=1, **kwargs)[source]
-

Conditional mutual information test for discrete/categorical data.

-

Conditional mutual information is the most general dependency measure -coming from an information-theoretic framework. It makes no assumptions -about the parametric form of the dependencies by directly estimating the -underlying joint density. The test here is based on directly estimating -the joint distribution assuming symbolic input, combined with a -local shuffle test to generate the distribution under the null hypothesis of -independence. This estimator is suitable only for discrete variables. -For continuous variables use the CMIknn class and for mixed-variable -datasets the CMIknnMixed class (including mixed-type variables).

-

Allows for multi-dimensional X, Y.

-

Notes

-

CMI and its estimator are given by

-
-

I(X;Y|Z) &= \sum p(z)  \sum \sum  p(x,y|z) \log
-\frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)} \,dx dy dz

-
-
Parameters:
-
    -
  • n_symbs (int, optional (default: None)) – Number of symbols in input data. Should be at least as large as the -maximum array entry + 1. If None, n_symbs is inferred by scipy’s crosstab.

  • -
  • significance (str, optional (default: 'shuffle_test')) – Type of significance test to use. For CMIsymb only ‘fixed_thres’ and -‘shuffle_test’ are available.

  • -
  • sig_blocklength (int, optional (default: 1)) – Block length for block-shuffle significance test.

  • -
  • conf_blocklength (int, optional (default: 1)) – Block length for block-bootstrap.

  • -
  • **kwargs – Arguments passed on to parent class CondIndTest.

  • -
-
-
-
-
-get_dependence_measure(array, xyz)[source]
-

Returns CMI estimate based on contingency table from scipy’s crosstab -to approximate probability mass.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – Conditional mutual information estimate.

-
-
Return type:
-

float

-
-
-
- -
-
-get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
-

Returns p-value for shuffle significance test.

-

Performes a local permutation test: x_i values are only permuted with -those x_j for which z_i = z_j. Samples are drawn without replacement -as much as possible.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • value (number) – Value of test statistic for original (unshuffled) estimate.

  • -
-
-
Returns:
-

pval – p-value.

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
- -
-
-class tigramite.independence_tests.oracle_conditional_independence.OracleCI(links=None, observed_vars=None, selection_vars=None, graph=None, graph_is_mag=False, tau_max=None, verbosity=0)[source]
-

Oracle of conditional independence test X _|_ Y | Z given a graph.

-

Class around link_coeff causal ground truth. X _|_ Y | Z is based on -assessing whether X and Y are d-separated given Z in the graph.

-

Class can be used just like a Tigramite conditional independence class -(e.g., ParCorr). The main use is for unit testing of PCMCI methods.

-
-
Parameters:
-
    -
  • graph (array of shape [N, N, tau_max+1]) – Causal graph.

  • -
  • links (dict) – Dictionary of form {0:[(0, -1), …], 1:[…], …}. -Alternatively can also digest {0: [((0, -1), coeff, func)], …}.

  • -
  • observed_vars (None or list, optional (default: None)) – Subset of keys in links definining which variables are -observed. If None, then all variables are observed.

  • -
  • selection_vars (None or list, optional (default: None)) – Subset of keys in links definining which variables are -selected (= always conditioned on at every time lag). -If None, then no variables are selected.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
-
-
-check_shortest_path(X, Y, Z, max_lag=None, starts_with=None, ends_with=None, forbidden_nodes=None, directed=False, only_non_causal_paths=False, check_optimality_cond=False, optimality_cond_des_YM=None, optimality_cond_Y=None, return_path=False)[source]
-

Returns path between X and Y given Z in the graph.

-

X, Y, Z are of the form (var, lag) for lag <= 0. D-separation is -based on:

-

1. Assessing maximum time lag max_lag of last ancestor of any X, Y, Z -with non-blocked (by Z), non-repeating directed path towards X, Y, Z -in the graph. ‘non_repeating’ means that an ancestor X^i_{ t- au_i} -with link X^i_{t- au_i} –> X^j_{ t- au_j} is only included if -X^i_{t’- au_i} –> X^j_{ t’- au_j} for t’!=t is not already part of -the ancestors.

-

2. Using the time series graph truncated at max_lag we then test -d-separation between X and Y conditional on Z using breadth-first -search of non-blocked paths according to d-separation rules including -selection variables.

-

Optionally only considers paths starting/ending with specific marks) -and makes available the ancestors up to max_lag of X, Y, Z. This may take -a very long time, however.

-
-
Parameters:
-
    -
  • X (list of tuples) – List of variables chosen for testing paths.

  • -
  • Y (list of tuples) – List of variables chosen for testing paths.

  • -
  • Z (list of tuples) – List of variables chosen for testing paths.

  • -
  • max_lag (int, optional (default: None)) – Used here to constrain the has_path function to the graph -truncated at max_lag instead of identifying the max_lag from -ancestral search.

  • -
  • compute_ancestors (bool) – Whether to also make available the ancestors for X, Y, Z as -self.anc_all_x, self.anc_all_y, and self.anc_all_z, respectively.

  • -
  • starts_with ({None, 'tail', 'arrohead'}) – Whether to only consider paths starting with particular mark at X.

  • -
  • ends_with ({None, 'tail', 'arrohead'}) – Whether to only consider paths ending with particular mark at Y.

  • -
-
-
Returns:
-

path – Returns path or False if no path exists.

-
-
Return type:
-

list or False

-
-
-
- -
-
-get_confidence(X, Y, Z=None, tau_max=0)[source]
-

For compatibility with PCMCI.

-
-
Return type:
-

None

-
-
-
- -
- -

Constructs graph (DAG or MAG or ADMG) from links, observed_vars, -and selection_vars.

-

For ADMGs uses the Latent projection operation (Pearl 2009).

-
- -
- -

Constructs links_coeffs dictionary, observed_vars, -and selection_vars from graph array (MAG or DAG).

-

In the case of MAGs, for every <-> or — link further -latent and selection variables, respectively, are added. -This corresponds to a canonical DAG (Richardson Spirtes 2002).

-

For ADMGs “—” are not supported, but also links of type “+->” -exist, which corresponds to having both “–>” and “<->”.

-

Can be used to evaluate d-separation in MAG/DAGs.

-
- -
-
-get_measure(X, Y, Z=None, tau_max=0)[source]
-

Returns dependence measure.

-

Returns 0 if X and Y are d-separated given Z in the graph and 1 else.

-
-
Parameters:
-
    -
  • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index in the observed_vars and tau the time lag.

  • -
  • [ (Y) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index in the observed_vars and tau the time lag.

  • -
  • Z] (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index in the observed_vars and tau the time lag.

  • -
  • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

  • -
-
-
Returns:
-

val – The test statistic value.

-
-
Return type:
-

float

-
-
-
- -
-
-get_model_selection_criterion(j, parents, tau_max=0)[source]
-

Base class assumption that this is not implemented. Concrete classes -should override when possible.

-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
-
-run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max', verbosity=0)[source]
-

Perform oracle conditional independence test.

-

Calls the d-separation function.

-
-
Parameters:
-
    -
  • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index in the observed_vars and tau the time lag.

  • -
  • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index in the observed_vars and tau the time lag.

  • -
  • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the -variable index in the observed_vars and tau the time lag.

  • -
  • tau_max (int, optional (default: 0)) – Not used here.

  • -
  • cut_off ({'2xtau_max', 'max_lag', 'max_lag_or_tau_max'}) – Not used here.

  • -
-
-
Returns:
-

val, pval – The test statistic value and the p-value.

-
-
Return type:
-

Tuple of floats

-
-
-
- -
-
-set_dataframe(dataframe)[source]
-

Dummy function.

-
- -
- -
-
-class tigramite.independence_tests.parcorr_mult.ParCorrMult(correlation_type='max_corr', **kwargs)[source]
-

Partial correlation test for multivariate X and Y.

-

Multivariate partial correlation is estimated through ordinary least squares (OLS) -regression and some test for multivariate dependency among the residuals.

-

Notes

-

To test X \perp Y | Z, first Z is regressed out from -X and Y assuming the model

-
-

X & =  Z \beta_X + \epsilon_{X} \\
-Y & =  Z \beta_Y + \epsilon_{Y}

-

using OLS regression. Then different measures for the dependency among the residuals -can be used. Currently only a test for zero correlation on the maximum of the residuals’ -correlation is performed.

-
-
Parameters:
-
    -
  • correlation_type ({'max_corr'}) – Which dependency measure to use on residuals.

  • -
  • **kwargs – Arguments passed on to Parent class CondIndTest.

  • -
-
-
-
-
-get_analytic_confidence(value, df, conf_lev)[source]
-

Base class assumption that this is not implemented. Concrete classes -should override when possible.

-
- -
-
-get_analytic_significance(value, T, dim, xyz)[source]
-

Returns analytic p-value depending on correlation_type.

-

Assumes two-sided correlation. If the degrees of freedom are less than -1, numpy.nan is returned.

-
-
Parameters:
-
    -
  • value (float) – Test statistic value.

  • -
  • T (int) – Sample length

  • -
  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

pval – P-value.

-
-
Return type:
-

float or numpy.nan

-
-
-
- -
-
-get_dependence_measure(array, xyz)[source]
-

Return multivariate kernel correlation coefficient.

-

Estimated as some dependency measure on the -residuals of a linear OLS regression.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – Partial correlation coefficient.

-
-
Return type:
-

float

-
-
-
- -
-
-get_model_selection_criterion(j, parents, tau_max=0)[source]
-

Base class assumption that this is not implemented. Concrete classes -should override when possible.

-
- -
-
-get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
-

Returns p-value for shuffle significance test.

-

For residual-based test statistics only the residuals are shuffled.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • value (number) – Value of test statistic for unshuffled estimate.

  • -
-
-
Returns:
-

pval – p-value

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
-
-mult_corr(array, xyz, standardize=True)[source]
-

Return multivariate dependency measure.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • standardize (bool, optional (default: True)) – Whether to standardize the array beforehand. Must be used for -partial correlation.

  • -
-
-
Returns:
-

val – Multivariate dependency measure.

-
-
Return type:
-

float

-
-
-
- -
- -
-
-class tigramite.independence_tests.gsquared.Gsquared(n_symbs=None, **kwargs)[source]
-

G-squared conditional independence test for categorical data.

-

Uses Chi2 as the null distribution and the method from [7] to -adjust the degrees of freedom. Valid only asymptotically, recommended are -above 1000-2000 samples (depends on data). For smaller sample sizes use the -CMIsymb class which includes a local permutation test.

-

Assumes one-dimensional X, Y.

-

This method requires the scipy.stats package.

-

Notes

-

The general formula is

-
-

G(X;Y|Z) &= 2 n \sum p(z)  \sum \sum  p(x,y|z) \log
-\frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)}

-

where n is the sample size. This is simply 2 n CMI(X;Y|Z).

-

References

- -
-
Parameters:
-
    -
  • n_symbs (int, optional (default: None)) – Number of symbols in input data. Should be at least as large as the -maximum array entry + 1. If None, n_symbs is inferred by scipy’s crosstab

  • -
  • **kwargs – Arguments passed on to parent class CondIndTest.

  • -
-
-
-
-
-get_analytic_significance(value, T, dim, xyz)[source]
-

Return the p_value of test statistic value ‘value’, according to a -chi-square distribution with ‘dof’ degrees of freedom.

-
- -
-
-get_dependence_measure(array, xyz)[source]
-

Returns Gsquared/G-test test statistic.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – G-squared estimate.

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
- -
-
-class tigramite.independence_tests.parcorr_wls.ParCorrWLS(gt_std_matrix=None, expert_knowledge='time-dependent heteroskedasticity', window_size=10, robustify=False, **kwargs)[source]
-

Weighted partial correlation test.

-

Partial correlation is estimated through linear weighted least squares (WLS) -regression and a test for non-zero linear Pearson correlation on the -residuals. -Either the variances, i.e. weights, are known, or they can be estimated using non-parametric regression -(using k nearest neighbour).

-

Notes

-

To test X \perp Y | Z, first Z is regressed out from -X and Y assuming the model

-
-

X & =  Z \beta_X + \epsilon_{X} \\
-Y & =  Z \beta_Y + \epsilon_{Y}

-

using WLS regression. Here, we do not assume homoskedasticity of the error terms. -Then the dependency of the residuals is tested with -the Pearson correlation test.

-
-

\rho\left(r_X, r_Y\right)

-

For the significance='analytic' Student’s-t distribution with -T-D_Z-2 degrees of freedom is implemented.

-
-
Parameters:
-
    -
  • gt_std_matrix (array-like, optional (default: None)) – Standard deviations of the noise of shape (T, nb_nodes)

  • -
  • expert_knowledge (string or dict (default: time-dependent heteroskedasticity)) – Either string “time-dependent heteroskedasticity” meaning that every variable only has time-dependent -heteroskedasticity, or string “homoskedasticity” where we assume homoskedasticity for all variables, or -dictionary containing expert knowledge about heteroskedastic relationships as list of tuples or strings.

  • -
  • window_size (int (default: 10)) – Number of nearest neighbours that we are using for estimating the variance function.

  • -
  • robustify (bool (default: False)) – Indicates whether the robust partial correlation test should be used, i.e. whether the data should be -transformed to normal marginals before testing

  • -
  • **kwargs – Arguments passed on to Parent class ParCorr.

  • -
-
-
-
-
-get_dependence_measure(array, xyz)[source]
-

Return partial correlation.

-

Estimated as the Pearson correlation of the residuals of a linear -OLS regression.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
-
-
Returns:
-

val – Partial correlation coefficient.

-
-
Return type:
-

float

-
-
-
- -
-
-get_model_selection_criterion(j, parents, tau_max=0, corrected_aic=False)[source]
-

Returns Akaike’s Information criterion modulo constants.

-

Fits a linear model of the parents to variable j and returns the -score. Leave-one-out cross-validation is asymptotically equivalent to -AIC for ordinary linear regression models. Here used to determine -optimal hyperparameters in PCMCI, in particular the pc_alpha value.

-
-
Parameters:
-
    -
  • j (int) – Index of target variable in data array.

  • -
  • parents (list) – List of form [(0, -1), (3, -2), …] containing parents.

  • -
  • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for -different lags in X, Z, all have the same sample size.

  • -
  • Returns

  • -
  • score (float) – Model score.

  • -
-
-
-
- -
-
-get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
-

Returns p-value for shuffle significance test.

-

For residual-based test statistics only the residuals are shuffled.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • value (number) – Value of test statistic for unshuffled estimate.

  • -
-
-
Returns:
-

pval – p-value

-
-
Return type:
-

float

-
-
-
- -
- -
-
-class tigramite.independence_tests.regressionCI.RegressionCI(**kwargs)[source]
-

Flexible parametric conditional independence tests for continuous, categorical, or mixed data.

-

Assumes one-dimensional X, Y.

-

Notes

-

To test X \perp Y | Z, the regressions Y|XZ vs Y|Z, or, depending -on certain criteria, X|YZ vs X|Z are compared. For that, the notion of -the deviance is employed. If the fits of the respective regressions do -not differ significantly (measured using the deviance), the null -hypotheses of conditional independence is “accepted”. This approach -assumes that X and Y are univariate, and Z can be either empty, -univariate or multivariate. Moreover, this approach works for all -combinations of “discrete” and “continuous” X, Y and respective columns -of Z; depending on the case, linear regression or multinomial regression -is employed.

-

Assumes one-dimensional X, Y.

-
-
Parameters:
-

**kwargs – Arguments passed on to parent class CondIndTest.

-
-
-
-
-get_analytic_significance(value, T, dim, xyz)[source]
-

Return the p_value of test statistic.

-

According to a chi-square distribution with ‘dof’ degrees of freedom.

-
- -
-
-get_dependence_measure(array, xyz, type_mask)[source]
-

Returns test statistic.

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • type_mask (array-like) – array of same shape as array which describes whether samples -are continuous or discrete: 0s for continuous and -1s for discrete

  • -
-
-
Returns:
-

val – test estimate.

-
-
Return type:
-

float

-
-
-
- -
-
-property measure
-

Concrete property to return the measure of the independence test

-
- -
-
-set_dataframe(dataframe)[source]
-

Initialize and check the dataframe.

-
-
Parameters:
-

dataframe (data object) – Set tigramite dataframe object. It must have the attributes -dataframe.values yielding a numpy array of shape (observations T, -variables N) and optionally a mask of the same shape and a missing -values flag.

-
-
-
- -
- -
-
-

tigramite.causal_effects: Causal Effect analysis

-
-
-class tigramite.causal_effects.CausalEffects(graph, graph_type, X, Y, S=None, hidden_variables=None, check_SM_overlap=True, verbosity=0)[source]
-

Causal effect estimation.

-

Methods for the estimation of linear or non-parametric causal effects -between (potentially multivariate) X and Y (potentially conditional -on S) by (generalized) backdoor adjustment. Various graph types are -supported, also including hidden variables.

-

Linear and non-parametric estimators are based on sklearn. For the -linear case without hidden variables also an efficient estimation -based on Wright’s path coefficients is available. This estimator -also allows to estimate mediation effects.

-

See the corresponding paper [6] and tigramite tutorial for an -in-depth introduction.

-

References

- -
-
Parameters:
-
    -
  • graph (array of either shape [N, N], [N, N, tau_max+1], or [N, N, tau_max+1, tau_max+1]) – Different graph types are supported, see tutorial.

  • -
  • X (list of tuples) – List of tuples [(i, -tau), …] containing cause variables.

  • -
  • Y (list of tuples) – List of tuples [(j, 0), …] containing effect variables.

  • -
  • S (list of tuples) – List of tuples [(i, -tau), …] containing conditioned variables.

  • -
  • graph_type (str) – Type of graph.

  • -
  • hidden_variables (list of tuples) – Hidden variables in format [(i, -tau), …]. The internal graph is -constructed by a latent projection.

  • -
  • check_SM_overlap (bool) – Whether to check whether S overlaps with M.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
-
-
-check_XYS_paths()[source]
-

Check whether one can remove nodes from X and Y with no proper causal paths.

-
-
Returns:
-

X, Y

-
-
Return type:
-

cleaned lists of X and Y with irrelevant nodes removed.

-
-
-
- -
-
-check_optimality()[source]
-

Check whether optimal adjustment set exists according to Thm. 3 in Runge NeurIPS 2021.

-
-
Returns:
-

optimality – Returns True if an optimal adjustment set exists, otherwise False.

-
-
Return type:
-

bool

-
-
-
- -
-
-fit_bootstrap_of(method, method_args, boot_samples=100, boot_blocklength=1, seed=None)[source]
-

Runs chosen method on bootstrap samples drawn from DataFrame.

-

Bootstraps for tau=0 are drawn from [max_lag, …, T] and all lagged -variables constructed in DataFrame.construct_array are consistently -shifted with respect to this bootsrap sample to ensure that lagged -relations in the bootstrap sample are preserved.

-

This function fits the models, predict_bootstrap_of can then be used -to get confidence intervals for the effect of interventions.

-
-
Parameters:
-
    -
  • method (str) – Chosen method among valid functions in this class.

  • -
  • method_args (dict) – Arguments passed to method.

  • -
  • boot_samples (int) – Number of bootstrap samples to draw.

  • -
  • boot_blocklength (int, optional (default: 1)) – Block length for block-bootstrap.

  • -
  • seed (int, optional(default = None)) – Seed for RandomState (default_rng)

  • -
-
-
-
- -
-
-fit_total_effect(dataframe, estimator, adjustment_set='optimal', conditional_estimator=None, data_transform=None, mask_type=None, ignore_identifiability=False)[source]
-
-
Returns a fitted model for the total causal effect of X on Y

conditional on S.

-
-
-
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • estimator (sklearn model object) – For example, sklearn.linear_model.LinearRegression() for a linear -regression model.

  • -
  • adjustment_set (str or list of tuples) – If ‘optimal’ the Oset is used, if ‘minimized_optimal’ the minimized Oset, -and if ‘colliders_minimized_optimal’, the colliders-minimized Oset. -If a list of tuples is passed, this set is used.

  • -
  • conditional_estimator (sklearn model object, optional (default: None)) – Used to fit conditional causal effects in nested regression. -If None, the same model as for estimator is used.

  • -
  • data_transform (sklearn preprocessing object, optional (default: None)) – Used to transform data prior to fitting. For example, -sklearn.preprocessing.StandardScaler for simple standardization. The -fitted parameters are stored.

  • -
  • mask_type ({None, 'y','x','z','xy','xz','yz','xyz'}) – Masking mode: Indicators for which variables in the dependence -measure I(X; Y | Z) the samples should be masked. If None, the mask -is not used. Explained in tutorial on masking and missing values.

  • -
  • ignore_identifiability (bool) – Only applies to adjustment sets supplied by user. Ignores if that -set leads to a non-identifiable effect.

  • -
-
-
-
- -
-
-fit_wright_effect(dataframe, mediation=None, method='parents', links_coeffs=None, data_transform=None, mask_type=None)[source]
-
-
Returns a fitted model for the total or mediated causal effect of X on Y

potentially through mediator variables.

-
-
-
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • mediation (None, 'direct', or list of tuples) – If None, total effect is estimated, if ‘direct’ then only the direct effect is estimated, -else only those causal paths are considerd that pass at least through one of these mediator nodes.

  • -
  • method ({'parents', 'links_coeffs', 'optimal'}) – Method to use for estimating Wright’s path coefficients. If ‘optimal’, -the Oset is used, if ‘links_coeffs’, the coefficients in links_coeffs are used, -if ‘parents’, the parents are used (only valid for DAGs).

  • -
  • links_coeffs (dict) – Only used if method = ‘links_coeffs’. -Dictionary of format: {0:[((i, -tau), coeff),…], 1:[…], -…} for all variables where i must be in [0..N-1] and tau >= 0 with -number of variables N. coeff must be a float.

  • -
  • data_transform (None) – Not implemented for Wright estimator. Complicated for missing samples.

  • -
  • mask_type ({None, 'y','x','z','xy','xz','yz','xyz'}) – Masking mode: Indicators for which variables in the dependence -measure I(X; Y | Z) the samples should be masked. If None, the mask -is not used. Explained in tutorial on masking and missing values.

  • -
-
-
-
- -
-
-static get_graph_from_dict(links, tau_max=None)[source]
-

Helper function to convert dictionary of links to graph array format.

-
-
Parameters:
-
    -
  • links (dict) – Dictionary of form {0:[((0, -1), coeff, func), …], 1:[…], …}. -Also format {0:[(0, -1), …], 1:[…], …} is allowed.

  • -
  • tau_max (int or None) – Maximum lag. If None, the maximum lag in links is used.

  • -
-
-
Returns:
-

graph – Matrix format of graph with 1 for true links and 0 else.

-
-
Return type:
-

array of shape (N, N, tau_max+1)

-
-
-
- -
-
-get_mediators(start, end)[source]
-

Returns mediator variables on proper causal paths.

-
-
Parameters:
-
    -
  • start (set) – Set of start nodes.

  • -
  • end (set) – Set of end nodes.

  • -
-
-
Returns:
-

mediators – Mediators on causal paths from start to end.

-
-
Return type:
-

set

-
-
-
- -
-
-get_optimal_set(alternative_conditions=None, minimize=False, return_separate_sets=False)[source]
-

Returns optimal adjustment set.

-

See Runge NeurIPS 2021.

-
-
Parameters:
-
    -
  • alternative_conditions (set of tuples) – Used only internally in optimality theorem. If None, self.S is used.

  • -
  • minimize ({False, True, 'colliders_only'}) – Minimize optimal set. If True, minimize such that no subset -can be removed without making it invalid. If ‘colliders_only’, -only colliders are minimized.

  • -
  • return_separate_sets (bool) – Whether to return tuple of parents, colliders, collider_parents, and S.

  • -
-
-
Returns:
-

Oset_S – Returns optimal adjustment set if a valid set exists, otherwise False.

-
-
Return type:
-

False or list or tuple of lists

-
-
-
- -
-
-predict_bootstrap_of(method, method_args, conf_lev=0.9, return_individual_bootstrap_results=False)[source]
-

Predicts with fitted bootstraps.

-

To be used after fitting with fit_bootstrap_of. Only uses the -expected values of the predict function, not potential other output.

-
-
Parameters:
-
    -
  • method (str) – Chosen method among valid functions in this class.

  • -
  • method_args (dict) – Arguments passed to method.

  • -
  • conf_lev (float, optional (default: 0.9)) – Two-sided confidence interval.

  • -
  • return_individual_bootstrap_results (bool) – Returns the individual bootstrap predictions.

  • -
-
-
Returns:
-

confidence_intervals

-
-
Return type:
-

numpy array of

-
-
-
- -
-
-predict_total_effect(intervention_data, conditions_data=None, pred_params=None, return_further_pred_results=False, aggregation_func=<function mean>, transform_interventions_and_prediction=False)[source]
-

Predict effect of intervention with fitted model.

-

Uses the model.predict() function of the sklearn model.

-
-
Parameters:
-
    -
  • intervention_data (numpy array) – Numpy array of shape (time, len(X)) that contains the do(X) values.

  • -
  • conditions_data (data object, optional) – Numpy array of shape (time, len(S)) that contains the S=s values.

  • -
  • pred_params (dict, optional) – Optional parameters passed on to sklearn prediction function.

  • -
  • return_further_pred_results (bool, optional (default: False)) – In case the predictor class returns more than just the expected value, -the entire results can be returned.

  • -
  • aggregation_func (callable) – Callable applied to output of ‘predict’. Default is ‘np.mean’.

  • -
  • transform_interventions_and_prediction (bool (default: False)) – Whether to perform the inverse data_transform on prediction results.

  • -
-
-
Returns:
-

    -
  • Results from prediction (an array of shape (time, len(Y)).)

  • -
  • If estimate_confidence = True, then a tuple is returned.

  • -
-

-
-
-
- -
-
-predict_wright_effect(intervention_data, pred_params=None)[source]
-

Predict linear effect of intervention with fitted Wright-model.

-
-
Parameters:
-
    -
  • intervention_data (numpy array) – Numpy array of shape (time, len(X)) that contains the do(X) values.

  • -
  • pred_params (dict, optional) – Optional parameters passed on to sklearn prediction function.

  • -
-
-
Returns:
-

Results from prediction

-
-
Return type:
-

an array of shape (time, len(Y)).

-
-
-
- -
- -
-
-

tigramite.models: Time series modeling, mediation, and prediction

-

Base class:

-
-
-class tigramite.models.Models(dataframe, model, conditional_model=None, data_transform=StandardScaler(), mask_type=None, verbosity=0)[source]
-

Base class for time series models.

-

Allows to fit any model from sklearn to the parents of a target variable. -Also takes care of missing values, masking and preprocessing.

-
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • model (sklearn model object) – For example, sklearn.linear_model.LinearRegression() for a linear -regression model.

  • -
  • conditional_model (sklearn model object, optional (default: None)) – Used to fit conditional causal effects in nested regression. -If None, model is used.

  • -
  • data_transform (sklearn preprocessing object, optional (default: None)) – Used to transform data prior to fitting. For example, -sklearn.preprocessing.StandardScaler for simple standardization. The -fitted parameters are stored. Note that the inverse_transform is then -applied to the predicted data.

  • -
  • mask_type ({None, 'y','x','z','xy','xz','yz','xyz'}) – Masking mode: Indicators for which variables in the dependence -measure I(X; Y | Z) the samples should be masked. If None, the mask -is not used. Explained in tutorial on masking and missing values.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
-
-
-fit_full_model(all_parents, selected_variables=None, tau_max=None, cut_off='max_lag_or_tau_max', return_data=False)[source]
-

Fit time series model.

-

For each variable in selected_variables, the sklearn model is fitted -with y given by the target variable, and X given by its -parents. The fitted model class is returned for later use.

-
-
Parameters:
-
    -
  • all_parents (dictionary) – Dictionary of form {0:[(0, -1), (3, 0), …], 1:[], …} containing -the parents estimated with PCMCI.

  • -
  • selected_variables (list of integers, optional (default: range(N))) – Specify to estimate parents only for selected variables. If None is -passed, parents are estimated for all variables.

  • -
  • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in all_parents is used.

  • -
  • cut_off ({'max_lag_or_tau_max', '2xtau_max', 'max_lag'}) – How many samples to cutoff at the beginning. The default is -‘max_lag_or_tau_max’, which uses the maximum of tau_max and the -conditions. This is useful to compare multiple models on the same -sample. Other options are ‘2xtau_max’, which guarantees that MCI -tests are all conducted on the same samples. Last, ‘max_lag’ uses -as much samples as possible.

  • -
  • return_data (bool, optional (default: False)) – Whether to save the data array.

  • -
-
-
Returns:
-

fit_results – Returns the sklearn model after fitting. Also returns the data -transformation parameters.

-
-
Return type:
-

dictionary of sklearn model objects for each variable

-
-
-
- -
-
-get_coefs()[source]
-

Returns dictionary of coefficients for linear models.

-

Only for models from sklearn.linear_model

-
-
Returns:
-

coeffs – Dictionary of dictionaries for each variable with keys given by the -parents and the regression coefficients as values.

-
-
Return type:
-

dictionary

-
-
-
- -
-
-get_general_fitted_model(Y, X, Z=None, conditions=None, tau_max=None, cut_off='max_lag_or_tau_max', return_data=False)[source]
-

Fit time series model.

-

For each variable in selected_variables, the sklearn model is fitted -with y given by the target variable, and X given by its -parents. The fitted model class is returned for later use.

-
-
Parameters:
-
    -
  • X (lists of tuples) – List of variables for estimating model Y = f(X,Z)

  • -
  • Y (lists of tuples) – List of variables for estimating model Y = f(X,Z)

  • -
  • Z (lists of tuples) – List of variables for estimating model Y = f(X,Z)

  • -
  • conditions (list of tuples.) – Conditions for estimating conditional causal effects.

  • -
  • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in all_parents is used.

  • -
  • cut_off ({'max_lag_or_tau_max', '2xtau_max', 'max_lag'}) – How many samples to cutoff at the beginning. The default is -‘max_lag_or_tau_max’, which uses the maximum of tau_max and the -conditions. This is useful to compare multiple models on the same -sample. Other options are ‘2xtau_max’, which guarantees that MCI -tests are all conducted on the same samples. Last, ‘max_lag’ uses -as much samples as possible.

  • -
  • return_data (bool, optional (default: False)) – Whether to save the data array.

  • -
-
-
Returns:
-

fit_results – Returns the sklearn model after fitting. Also returns the data -transformation parameters.

-
-
Return type:
-

dictionary of sklearn model objects for each variable

-
-
-
- -
-
-get_general_prediction(intervention_data, conditions_data=None, pred_params=None, transform_interventions_and_prediction=False, return_further_pred_results=False, aggregation_func=<function mean>)[source]
-

Predict effect of intervention with fitted model.

-

Uses the model.predict() function of the sklearn model.

-
-
Parameters:
-
    -
  • intervention_data (numpy array) – Numpy array of shape (time, len(X)) that contains the do(X) values.

  • -
  • conditions_data (data object, optional) – Numpy array of shape (time, len(S)) that contains the S=s values.

  • -
  • pred_params (dict, optional) – Optional parameters passed on to sklearn prediction function.

  • -
  • transform_interventions_and_prediction (bool (default: False)) – Whether to perform the inverse data_transform on prediction results.

  • -
  • return_further_pred_results (bool, optional (default: False)) – In case the predictor class returns more than just the expected value, -the entire results can be returned.

  • -
  • aggregation_func (callable) – Callable applied to output of ‘predict’. Default is ‘np.mean’.

  • -
-
-
Return type:
-

Results from prediction.

-
-
-
- -
-
-get_val_matrix()[source]
-

Returns the coefficient array for different lags for linear model.

-

Requires fit_model() before. An entry val_matrix[i,j,tau] gives the -coefficient of the link from i to j at lag tau, including tau=0.

-
-
Returns:
-

val_matrix – Array of coefficients for each time lag, including lag-zero.

-
-
Return type:
-

array-like, shape (N, N, tau_max + 1)

-
-
-
- -
- -

Derived classes:

-
-
-class tigramite.models.LinearMediation(dataframe, model_params=None, data_transform=StandardScaler(), mask_type=None, verbosity=0)[source]
-

Linear mediation analysis for time series models.

-

Fits linear model to parents and provides functions to return measures such -as causal effect, mediated causal effect, average causal effect, etc. as -described in [4]. Also allows for contemporaneous links.

-

For general linear and nonlinear causal effect analysis including latent -variables and further functionality use the CausalEffects class.

-

Notes

-

This class implements the following causal mediation measures introduced in -[4]:

-
-
    -
  • causal effect (CE)

  • -
  • mediated causal effect (MCE)

  • -
  • average causal effect (ACE)

  • -
  • average causal susceptibility (ACS)

  • -
  • average mediated causal effect (AMCE)

  • -
-
-

Consider a simple model of a causal chain as given in the Example with

-
-

X_t &= \eta^X_t \\
-Y_t &= 0.5 X_{t-1} +  \eta^Y_t \\
-Z_t &= 0.5 Y_{t-1} +  \eta^Z_t

-

Here the link coefficient of X_{t-2} \to Z_t is zero while the -causal effect is 0.25. MCE through Y is 0.25 implying that all -of the the CE is explained by Y. ACE from X is 0.37 since it -has CE 0.5 on Y and 0.25 on Z.

-

Examples

-
>>> links_coeffs = {0: [], 1: [((0, -1), 0.5)], 2: [((1, -1), 0.5)]}
->>> data, true_parents = toys.var_process(links_coeffs, T=1000, seed=42)
->>> dataframe = pp.DataFrame(data)
->>> med = LinearMediation(dataframe=dataframe)
->>> med.fit_model(all_parents=true_parents, tau_max=3)
->>> print "Link coefficient (0, -2) --> 2: ", med.get_coeff(
-i=0, tau=-2, j=2)
->>> print "Causal effect (0, -2) --> 2: ", med.get_ce(i=0, tau=-2, j=2)
->>> print "Mediated Causal effect (0, -2) --> 2 through 1: ", med.get_mce(
-i=0, tau=-2, j=2, k=1)
->>> print "Average Causal Effect: ", med.get_all_ace()
->>> print "Average Causal Susceptibility: ", med.get_all_acs()
->>> print "Average Mediated Causal Effect: ", med.get_all_amce()
-Link coefficient (0, -2) --> 2:  0.0
-Causal effect (0, -2) --> 2:  0.250648072987
-Mediated Causal effect (0, -2) --> 2 through 1:  0.250648072987
-Average Causal Effect:  [ 0.36897445  0.25718002  0.        ]
-Average Causal Susceptibility:  [ 0.          0.24365041  0.38250406]
-Average Mediated Causal Effect:  [ 0.          0.12532404  0.        ]
-
-
-

References

- -
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • model_params (dictionary, optional (default: None)) – Optional parameters passed on to sklearn model

  • -
  • data_transform (sklearn preprocessing object, optional (default: StandardScaler)) – Used to transform data prior to fitting. For example, -sklearn.preprocessing.StandardScaler for simple standardization. The -fitted parameters are stored.

  • -
  • mask_type ({None, 'y','x','z','xy','xz','yz','xyz'}) – Masking mode: Indicators for which variables in the dependence -measure I(X; Y | Z) the samples should be masked. If None, the mask -is not used. Explained in tutorial on masking and missing values.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
-
-
-fit_model(all_parents, tau_max=None)[source]
-

Fit linear time series model.

-

Fits a sklearn.linear_model.LinearRegression model to the parents of -each variable and computes the coefficient matrices \Phi and -\Psi as described in [4]. Does accept contemporaneous links.

-
-
Parameters:
-
    -
  • all_parents (dictionary) – Dictionary of form {0:[(0, -1), (3, 0), …], 1:[], …} containing -the parents estimated with PCMCI.

  • -
  • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in all_parents is used.

  • -
-
-
-
- -
-
-fit_model_bootstrap(boot_blocklength=1, seed=None, boot_samples=100)[source]
-

Fits boostrap-versions of Phi, Psi, etc.

-

Random draws are generated

-
-
Parameters:
-
    -
  • boot_blocklength (int, or in {'cube_root', 'from_autocorrelation'}) – Block length for block-bootstrap, which only applies to -generate_noise_from=’residuals’. If ‘from_autocorrelation’, the block -length is determined from the decay of the autocovariance and -if ‘cube_root’ it is the cube root of the time series length.

  • -
  • seed (int, optional(default = None)) – Seed for RandomState (default_rng)

  • -
  • boot_samples (int) – Number of bootstrap samples.

  • -
-
-
-
- -
-
-get_ace(i, lag_mode='absmax', exclude_i=True)[source]
-

Returns the average causal effect.

-

This is the average causal effect (ACE) emanating from variable i to any -other variable. With lag_mode=’absmax’ this is based on the lag of -maximum CE for each pair.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • lag_mode ({'absmax', 'all_lags'}) – Lag mode. Either average across all lags between each pair or only -at the lag of maximum absolute causal effect.

  • -
  • exclude_i (bool, optional (default: True)) – Whether to exclude causal effects on the variable itself at later -lags.

  • -
-
-
Returns:
-

ace – Average Causal Effect.

-
-
Return type:
-

float

-
-
-
- -
-
-get_acs(j, lag_mode='absmax', exclude_j=True)[source]
-

Returns the average causal susceptibility.

-

This is the Average Causal Susceptibility (ACS) affecting a variable j -from any other variable. With lag_mode=’absmax’ this is based on the lag -of maximum CE for each pair.

-
-
Parameters:
-
    -
  • j (int) – Index of variable.

  • -
  • lag_mode ({'absmax', 'all_lags'}) – Lag mode. Either average across all lags between each pair or only -at the lag of maximum absolute causal effect.

  • -
  • exclude_j (bool, optional (default: True)) – Whether to exclude causal effects on the variable itself at previous -lags.

  • -
-
-
Returns:
-

acs – Average Causal Susceptibility.

-
-
Return type:
-

float

-
-
-
- -
-
-get_all_ace(lag_mode='absmax', exclude_i=True)[source]
-

Returns the average causal effect for all variables.

-

This is the average causal effect (ACE) emanating from variable i to any -other variable. With lag_mode=’absmax’ this is based on the lag of -maximum CE for each pair.

-
-
Parameters:
-
    -
  • lag_mode ({'absmax', 'all_lags'}) – Lag mode. Either average across all lags between each pair or only -at the lag of maximum absolute causal effect.

  • -
  • exclude_i (bool, optional (default: True)) – Whether to exclude causal effects on the variable itself at later -lags.

  • -
-
-
Returns:
-

ace – Average Causal Effect for each variable.

-
-
Return type:
-

array of shape (N,)

-
-
-
- -
-
-get_all_acs(lag_mode='absmax', exclude_j=True)[source]
-

Returns the average causal susceptibility.

-

This is the Average Causal Susceptibility (ACS) for each variable from -any other variable. With lag_mode=’absmax’ this is based on the lag of -maximum CE for each pair.

-
-
Parameters:
-
    -
  • lag_mode ({'absmax', 'all_lags'}) – Lag mode. Either average across all lags between each pair or only -at the lag of maximum absolute causal effect.

  • -
  • exclude_j (bool, optional (default: True)) – Whether to exclude causal effects on the variable itself at previous -lags.

  • -
-
-
Returns:
-

acs – Average Causal Susceptibility.

-
-
Return type:
-

array of shape (N,)

-
-
-
- -
-
-get_all_amce(lag_mode='absmax', exclude_k=True, exclude_self_effects=True)[source]
-

Returns the average mediated causal effect.

-

This is the Average Mediated Causal Effect (AMCE) through all variables -With lag_mode=’absmax’ this is based on the lag of maximum CE for each -pair.

-
-
Parameters:
-
    -
  • lag_mode ({'absmax', 'all_lags'}) – Lag mode. Either average across all lags between each pair or only -at the lag of maximum absolute causal effect.

  • -
  • exclude_k (bool, optional (default: True)) – Whether to exclude causal effects through the variable itself at -previous lags.

  • -
  • exclude_self_effects (bool, optional (default: True)) – Whether to exclude causal self effects of variables on themselves.

  • -
-
-
Returns:
-

amce – Average Mediated Causal Effect.

-
-
Return type:
-

array of shape (N,)

-
-
-
- -
-
-get_amce(k, lag_mode='absmax', exclude_k=True, exclude_self_effects=True)[source]
-

Returns the average mediated causal effect.

-

This is the Average Mediated Causal Effect (AMCE) through a variable k -With lag_mode=’absmax’ this is based on the lag of maximum CE for each -pair.

-
-
Parameters:
-
    -
  • k (int) – Index of variable.

  • -
  • lag_mode ({'absmax', 'all_lags'}) – Lag mode. Either average across all lags between each pair or only -at the lag of maximum absolute causal effect.

  • -
  • exclude_k (bool, optional (default: True)) – Whether to exclude causal effects through the variable itself at -previous lags.

  • -
  • exclude_self_effects (bool, optional (default: True)) – Whether to exclude causal self effects of variables on themselves.

  • -
-
-
Returns:
-

amce – Average Mediated Causal Effect.

-
-
Return type:
-

float

-
-
-
- -
-
-get_bootstrap_of(function, function_args, conf_lev=0.9)[source]
-

Applies bootstrap-versions of Phi, Psi, etc. to any function in -this class.

-
-
Parameters:
-
    -
  • function (string) – Valid function from LinearMediation class

  • -
  • function_args (dict) – Optional function arguments.

  • -
  • conf_lev (float) – Confidence interval.

  • -
-
-
Return type:
-

Upper/Lower confidence interval of function.

-
-
-
- -
-
-get_ce(i, tau, j)[source]
-

Returns the causal effect.

-

This is the causal effect for (i, -tau) – –> j.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • tau (int) – Lag of cause variable (incl lag zero).

  • -
  • j (int) – Index of effect variable.

  • -
-
-
Returns:
-

ce

-
-
Return type:
-

float

-
-
-
- -
-
-get_ce_max(i, j)[source]
-

Returns the causal effect.

-

This is the maximum absolute causal effect for i –> j across all -lags (incl lag zero).

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • j (int) – Index of effect variable.

  • -
-
-
Returns:
-

ce

-
-
Return type:
-

float

-
-
-
- -
-
-get_coeff(i, tau, j)[source]
-

Returns link coefficient.

-

This is the direct causal effect for a particular link (i, -tau) –> j.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • tau (int) – Lag of cause variable (incl lag zero).

  • -
  • j (int) – Index of effect variable.

  • -
-
-
Returns:
-

coeff

-
-
Return type:
-

float

-
-
-
- -
-
-get_conditional_mce(i, tau, j, k, notk)[source]
-

Returns the conditional mediated causal effect.

-

This is the causal effect for i –> j for all paths going through k, but not through notk.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • tau (int) – Lag of cause variable.

  • -
  • j (int) – Index of effect variable.

  • -
  • k (int or list of ints) – Indices of mediator variables.

  • -
  • notk (int or list of ints) – Indices of mediator variables to exclude.

  • -
-
-
Returns:
-

mce

-
-
Return type:
-

float

-
-
-
- -
-
-get_joint_ce(i, j)[source]
-

Returns the joint causal effect.

-

This is the causal effect from all lags [t, …, t-tau_max] -of i on j at time t. Note that the joint effect does not -count links passing through parents of i itself.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • j (int) – Index of effect variable.

  • -
-
-
Returns:
-

joint_ce – Causal effect from each lag [t, …, t-tau_max] of i on j.

-
-
Return type:
-

array of shape (tau_max + 1)

-
-
-
- -
-
-get_joint_ce_matrix(i, j)[source]
-

Returns the joint causal effect matrix of i on j.

-

This is the causal effect from all lags [t, …, t-tau_max] -of i on j at times [t, …, t-tau_max]. Note that the joint effect does not -count links passing through parents of i itself.

-

An entry (taui, tauj) stands for the effect of i at t-taui on j at t-tauj.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • j (int) – Index of effect variable.

  • -
-
-
Returns:
-

joint_ce_matrix – Causal effect matrix from each lag of i on each lag of j.

-
-
Return type:
-

2d array of shape (tau_max + 1, tau_max + 1)

-
-
-
- -
-
-get_joint_mce(i, j, k)[source]
-

Returns the joint causal effect mediated through k.

-

This is the mediated causal effect from all lags [t, …, t-tau_max] -of i on j at time t for paths through k. Note that the joint effect -does not count links passing through parents of i itself.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • j (int) – Index of effect variable.

  • -
  • k (int or list of ints) – Indices of mediator variables.

  • -
-
-
Returns:
-

joint_mce – Mediated causal effect from each lag [t, …, t-tau_max] of i on j through k.

-
-
Return type:
-

array of shape (tau_max + 1)

-
-
-
- -
-
-get_mce(i, tau, j, k)[source]
-

Returns the mediated causal effect.

-

This is the causal effect for i –> j minus the causal effect not going -through k.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • tau (int) – Lag of cause variable.

  • -
  • j (int) – Index of effect variable.

  • -
  • k (int or list of ints) – Indices of mediator variables.

  • -
-
-
Returns:
-

mce

-
-
Return type:
-

float

-
-
-
- -
-
-get_mediation_graph_data(i, tau, j, include_neighbors=False)[source]
-

Returns link and node weights for mediation analysis.

-

Returns array with non-zero entries for links that are on causal -paths between i and j at lag \tau. -path_val_matrix contains the corresponding path coefficients and -path_node_array the MCE values. tsg_path_val_matrix contains the -corresponding values in the time series graph format.

-
-
Parameters:
-
    -
  • i (int) – Index of cause variable.

  • -
  • tau (int) – Lag of cause variable.

  • -
  • j (int) – Index of effect variable.

  • -
  • include_neighbors (bool, optional (default: False)) – Whether to include causal paths emanating from neighbors of i

  • -
-
-
Returns:
-

graph_data – Dictionary of matrices for coloring mediation graph plots.

-
-
Return type:
-

dictionary

-
-
-
- -
-
-get_tsg(link_matrix, val_matrix=None, include_neighbors=False)[source]
-

Returns time series graph matrix.

-

Constructs a matrix of shape (N*tau_max, N*tau_max) from link_matrix. -This matrix can be used for plotting the time series graph and analyzing -causal pathways.

-
-
Parameters:
-
    -
  • link_matrix (bool array-like, optional (default: None)) – Matrix of significant links. Must be of same shape as val_matrix. -Either sig_thres or link_matrix has to be provided.

  • -
  • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

  • -
  • include_neighbors (bool, optional (default: False)) – Whether to include causal paths emanating from neighbors of i

  • -
-
-
Returns:
-

tsg – Time series graph matrix.

-
-
Return type:
-

array of shape (N*tau_max, N*tau_max)

-
-
-
- -
-
-get_val_matrix(symmetrize=False)[source]
-

Returns the matrix of linear coefficients.

-

Requires fit_model() before. An entry val_matrix[i,j,tau] gives the -coefficient of the link from i to j at lag tau. Lag=0 is always set -to zero for LinearMediation, use Models class for contemporaneous -models.

-
-
Parameters:
-

symmetrize (bool) – If True, the lag-zero entries will be symmetrized such that -no zeros appear. Useful since other parts of tigramite -through an error for non-symmetric val_matrix, eg plotting.

-
-
Returns:
-

val_matrix – Matrix of linear coefficients, shape (N, N, tau_max + 1).

-
-
Return type:
-

array

-
-
-
- -
-
-net_to_tsg(row, lag, max_lag)[source]
-

Helper function to translate from network to time series graph.

-
- -
-
-tsg_to_net(node, max_lag)[source]
-

Helper function to translate from time series graph to network.

-
- -
- -
-
-class tigramite.models.Prediction(dataframe, train_indices, test_indices, prediction_model, cond_ind_test=None, data_transform=None, verbosity=0)[source]
-

Prediction class for time series models.

-

Allows to fit and predict from any sklearn model. The optimal predictors can -be estimated using PCMCI. Also takes care of missing values, masking and -preprocessing.

-
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • train_indices (array-like) – Either boolean array or time indices marking the training data.

  • -
  • test_indices (array-like) – Either boolean array or time indices marking the test data.

  • -
  • prediction_model (sklearn model object) – For example, sklearn.linear_model.LinearRegression() for a linear -regression model.

  • -
  • cond_ind_test (Conditional independence test object, optional) – Only needed if predictors are estimated with causal algorithm. -The class will be initialized with masking set to the training data.

  • -
  • data_transform (sklearn preprocessing object, optional (default: None)) – Used to transform data prior to fitting. For example, -sklearn.preprocessing.StandardScaler for simple standardization. The -fitted parameters are stored.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
-
-
-fit(target_predictors, selected_targets=None, tau_max=None, return_data=False)[source]
-

Fit time series model.

-

Wrapper around Models.fit_full_model(). To each variable in -selected_targets, the sklearn model is fitted with y given -by the target variable, and X given by its predictors. The -fitted model class is returned for later use.

-
-
Parameters:
-
    -
  • target_predictors (dictionary) – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} containing -the predictors estimated with PCMCI.

  • -
  • selected_targets (list of integers, optional (default: range(N))) – Specify to fit model only for selected targets. If None is -passed, models are estimated for all variables.

  • -
  • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in target_predictors is -used.

  • -
  • return_data (bool, optional (default: False)) – Whether to save the data array.

  • -
-
-
Returns:
-

self

-
-
Return type:
-

instance of self

-
-
-
- -
-
-get_predictors(selected_targets=None, selected_links=None, steps_ahead=1, tau_max=1, pc_alpha=0.2, max_conds_dim=None, max_combinations=1)[source]
-

Estimate predictors using PC1 algorithm.

-

Wrapper around PCMCI.run_pc_stable that estimates causal predictors. -The lead time can be specified by steps_ahead.

-
-
Parameters:
-
    -
  • selected_targets (list of ints, optional (default: None)) – List of variables to estimate predictors of. If None, predictors of -all variables are estimated.

  • -
  • selected_links (dict or None) – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} -specifying whether only selected links should be tested. If None is -passed, all links are tested

  • -
  • steps_ahead (int, default: 1) – Minimum time lag to test. Useful for multi-step ahead predictions.

  • -
  • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

  • -
  • pc_alpha (float or list of floats, default: 0.2) – Significance level in algorithm. If a list or None is passed, the -pc_alpha level is optimized for every variable across the given -pc_alpha values using the score computed in -cond_ind_test.get_model_selection_criterion()

  • -
  • max_conds_dim (int or None) – Maximum number of conditions to test. If None is passed, this number -is unrestricted.

  • -
  • max_combinations (int, default: 1) – Maximum number of combinations of conditions of current cardinality -to test. Defaults to 1 for PC_1 algorithm. For original PC algorithm -a larger number, such as 10, can be used.

  • -
-
-
Returns:
-

predictors – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} -containing estimated predictors.

-
-
Return type:
-

dict

-
-
-
- -
-
-get_test_array()[source]
-

Returns test array.

-
- -
-
-get_train_array(j)[source]
-

Returns training array.

-
- -
-
-predict(target, new_data=None, pred_params=None, cut_off='max_lag_or_tau_max')[source]
-

Predict target variable with fitted model.

-

Uses the model.predict() function of the sklearn model.

-

If target is an int, the predicted time series is returned. If target -is a list of integers, then a list of predicted time series is returned. -If the list of integers equals range(N), then an array of shape (T, N) -of the predicted series is returned.

-
-
Parameters:
-
    -
  • target (int or list of integers) – Index or indices of target variable(s).

  • -
  • new_data (data object, optional) – New Tigramite dataframe object with optional new mask. Note that -the data will be cut off according to cut_off, see parameter -cut_off below.

  • -
  • pred_params (dict, optional) – Optional parameters passed on to sklearn prediction function.

  • -
  • cut_off ({'2xtau_max', 'max_lag', 'max_lag_or_tau_max'}) – How many samples to cutoff at the beginning. The default is -‘2xtau_max’, which guarantees that MCI tests are all conducted on -the same samples. For modeling, ‘max_lag_or_tau_max’ can be used, -which uses the maximum of tau_max and the conditions, which is -useful to compare multiple models on the same sample. Last, -‘max_lag’ uses as much samples as possible.

  • -
-
-
Return type:
-

Results from prediction.

-
-
-
- -
- -
-
-

tigramite.data_processing: Data processing functions

-

Tigramite data processing functions.

-
-
-class tigramite.data_processing.DataFrame(data, mask=None, missing_flag=None, vector_vars=None, var_names=None, type_mask=None, datatime=None, analysis_mode='single', reference_points=None, time_offsets=None, remove_missing_upto_maxlag=False)[source]
-
-
Data object containing single or multiple time series arrays and optional

mask.

-
-
dataarray-like
-
if analysis_mode == ‘single’:

1) Numpy array of shape (observations T, variables N) -OR -2) Dictionary with a single entry whose value is a numpy array of -shape (observations T, variables N)

-
-
if analysis_mode == ‘multiple’:

1) Numpy array of shape (multiple datasets M, observations T, -variables N) -OR -2) Dictionary whose values are numpy arrays of shape -(observations T_i, variables N), where the number of observations -T_i may vary across the multiple datasets but the number of variables -N is fixed.

-
-
-
-
maskarray-like, optional (default: None)

Optional mask array, must be of same format and shape as data.

-
-
-
-
type_maskarray-like
-

Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

-
-
-
missing_flagnumber, optional (default: None)

Flag for missing values in dataframe. Dismisses all time slices of -samples where missing values occur in any variable. For -remove_missing_upto_maxlag=True also flags samples for all lags up to -2*tau_max (more precisely, this depends on the cut_off argument in -self.construct_array(), see further below). This avoids biases, see -section on masking in Supplement of [1].

-
-
vector_varsdict

Dictionary of vector variables of the form, -Eg. {0: [(0, 0), (1, 0)], 1: [(2, 0)], 2: [(3, 0)], 3: [(4, 0)]} -The keys are the new vectorized variables and respective tuple values -are the individual components of the vector variables. In the method of -construct_array(), the individual components are parsed from vector_vars -and added (accounting for lags) to the list that creates X, Y and Z for -conditional independence test.

-
-
var_nameslist of strings, optional (default: range(N))

Names of variables, must match the number of variables. If None is -passed, variables are enumerated as [0, 1, …]

-
-
datatimearray-like, optional (default: None)

Timelabel array. If None, range(T) is used.

-
-
remove_missing_upto_maxlagbool, optional (default: False)

Whether to remove not only missing samples, but also all neighboring -samples up to max_lag (as given by cut_off in construct_array).

-
-
analysis_modestring, optional (default: ‘single’)

Must be ‘single’ or ‘multiple’. -Determines whether data contains a single (potentially multivariate) -time series (–> ‘single’) or multiple time series (–> ‘multiple’).

-
-
reference_pointsNone, int, or list (or 1D array) of integers,

optional (default:None) -Determines the time steps — relative to the shared time axis as -defined by the optional time_offset argument (see below) — that are -used to create samples for conditional independence testing. -Set to [0, 1, …, T_max-1] if None is passed, where T_max is -self.largest_time_step, see below. -All values smaller than 0 and bigger than T_max-1 will be ignored. -At least one value must be in [0, 1, …, T_max-1].

-
-
time_offsetsNone or dict, optional (default: None)
-
if analysis_mode == ‘single’:

Must be None. -Shared time axis defined by the time indices of the single time series

-
-
if analysis_mode == ‘multiple’ and data is numpy array:

Must be None. -All datasets are assumed to be already aligned in time with -respect to a shared time axis, which is the time axis of data

-
-
if analysis_mode == ‘multiple’ and data is dictionary:

Must be dictionary of the form {key(m): time_offset(m), …} whose -set of keys agrees with the set of keys of data and whose values are -non-negative integers, at least one of which is 0. The value -time_offset(m) defines the time offset of dataset m with -respect to a shared time axis.

-
-
-
-
-
-
self._initialized_fromstring

Specifies the data format in which data was given at instantiation. -Possible values: ‘2d numpy array’, ‘3d numpy array’, ‘dict’.

-
-
self.valuesdictionary

Dictionary holding the observations given by data internally mapped to a -dictionary representation as follows: -If analysis_mode == ‘single’:

-
-
-
If self._initialized_from == ‘2d numpy array’:

Is {0: data}

-
-
If self._initialized_from == ‘dict’:

Is data

-
-
-
-
-
If analysis_mode == ‘multiple’:
-
If self._initialized_from == ‘3d numpy array’:

Is {m: data[m, :, :] for m in range(data.shape[0])}

-
-
If self._initialized_from == ‘dict’:

Is data

-
-
-
-
-
-
self.datasets: list

List of the keys identifiying the multiple datasets, i.e., -list(self.values.keys())

-
-
self.maskdictionary

Mask internally mapped to a dictionary representation in the same way as -data is mapped to self.values

-
-
self.type_maskarray-like

Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

-
-
self.missing_flag:

Is missing_flag

-
-
self.var_names:
-
If var_names is not None:

Is var_names

-
-
If var_names is None:

Is {i: i for i in range(self.N)}

-
-
-
-
self.datatimedictionary

Time axis for each of the multiple datasets.

-
-
self.analysis_modestring

Is analysis_mode

-
-
self.reference_points: array-like
-
If reference_points is not None:

1D numpy array holding all specified reference_points, less those -smaller than 0 and larger than self.largest_time_step-1

-
-
If reference_points is None:

Is np.array(range(self.largest_time_step))

-
-
-
-
self.time_offsetsdictionary
-
If time_offsets is not None:

Is time_offsets

-
-
If time_offsets is None:

Is {key: 0 for key in self.values.keys()}

-
-
-
-
self.Mint

Number of datasets

-
-
self.Nint

Number of variables (constant across datasets)

-
-
self.Tdictionary

Dictionary {key(m): T(m), …}, where T(m) is the time length of -datasets m and key(m) its identifier as in self.values

-
-
self.largest_time_stepint

max_{0 <= m <= M} [ T(m) + time_offset(m)], i.e., the largest (latest) -time step relative to the shared time axis for which at least one -observation exists in the dataset.

-
-
self.bootstrapdictionary

Whether to use bootstrap. Must be a dictionary with keys random_state, -boot_samples, and boot_blocklength.

-
-
-
-
-
-
-construct_array(X, Y, Z, tau_max, extraZ=None, mask=None, mask_type=None, type_mask=None, return_cleaned_xyz=False, do_checks=True, remove_overlaps=True, cut_off='2xtau_max', verbosity=0)[source]
-

Constructs array from variables X, Y, Z from data. -Data is of shape (T, N) if analysis_mode == ‘single’, where T is the -time series length and N the number of variables, and of (n_ens, T, N) -if analysis_mode == ‘multiple’.

-
-
Parameters:
-
    -
  • X (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of -the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y -has to be at lag zero. extraZ is only used in CausalEffects class.

  • -
  • Y (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of -the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y -has to be at lag zero. extraZ is only used in CausalEffects class.

  • -
  • Z (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of -the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y -has to be at lag zero. extraZ is only used in CausalEffects class.

  • -
  • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of -the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y -has to be at lag zero. extraZ is only used in CausalEffects class.

  • -
  • tau_max (int) – Maximum time lag. This may be used to make sure that estimates for -different lags in X and Z all have the same sample size.

  • -
  • mask (array-like, optional (default: None)) – Optional mask array, must be of same shape as data. If it is set, -then it overrides the self.mask assigned to the dataframe. If it is -None, then the self.mask is used, if it exists.

  • -
  • mask_type ({None, 'y','x','z','xy','xz','yz','xyz'}) – Masking mode: Indicators for which variables in the dependence -measure I(X; Y | Z) the samples should be masked. If None, the mask -is not used. Explained in tutorial on masking and missing values.

  • -
  • type_mask (array-like) – Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables. -If it is set, then it overrides the self.type_mask assigned to the dataframe.

  • -
  • return_cleaned_xyz (bool, optional (default: False)) – Whether to return cleaned X,Y,Z, where possible duplicates are -removed.

  • -
  • do_checks (bool, optional (default: True)) – Whether to perform sanity checks on input X,Y,Z

  • -
  • remove_overlaps (bool, optional (default: True)) – Whether to remove variables from Z/extraZ if they overlap with X or Y.

  • -
  • cut_off ({'2xtau_max', 'tau_max', 'max_lag', 'max_lag_or_tau_max',) –

    2xtau_max_future} -If cut_off == ‘2xtau_max’:

    -
    -
      -
    • 2*tau_max samples are cut off at the beginning of the time

    • -
    -

    series (‘beginning’ here refers to the temporally first time -steps). This guarantees that (as long as no mask is used) all -MCI tests are conducted on the same samples, independent of X, -Y, and Z. -- If at time step t_missing a data value is missing, then the -time steps t_missing, …, t_missing + 2*tau_max are cut out. -The latter part only holds if remove_missing_upto_maxlag=True.

    -
    -
    -
    If cut_off == ‘max_lag’:
      -
    • max_lag(X, Y, Z) samples are cut off at the beginning of the

    • -
    -

    time series, where max_lag(X, Y, Z) is the maximum lag of all -nodes in X, Y, and Z. These are all samples that can in -principle be used. -- If at time step t_missing a data value is missing, then the -time steps t_missing, …, t_missing + max_lag(X, Y, Z) are cut -out. -The latter part only holds if remove_missing_upto_maxlag=True.

    -
    -
    If cut_off == ‘max_lag_or_tau_max’:
      -
    • max(max_lag(X, Y, Z), tau_max) are cut off at the beginning.

    • -
    -

    This may be useful for modeling by comparing multiple models on -the same samples. -- If at time step t_missing a data value is missing, then the -time steps -t_missing, …, t_missing + max(max_lag(X, Y, Z), tau_max) -are cut out. -The latter part only holds if remove_missing_upto_maxlag=True.

    -
    -
    If cut_off == ‘tau_max’:
      -
    • tau_max samples are cut off at the beginning.

    • -
    -

    This may be useful for modeling by comparing multiple models on -the same samples. -- If at time step t_missing a data value is missing, then the -time steps -t_missing, …, t_missing + max(max_lag(X, Y, Z), tau_max) -are cut out. -The latter part only holds if remove_missing_upto_maxlag=True.

    -
    -
    If cut_off == ‘2xtau_max_future’:

    First, the relevant time steps are determined as for cut_off == -‘max_lag’. Then, the temporally latest time steps are removed -such that the same number of time steps remains as there would -be for cut_off == ‘2xtau_max’. This may be useful when one is -mostly interested in the temporally first time steps and would -like all MCI tests to be performed on the same number of -samples. Note, however, that while the number of samples is -the same for all MCI tests, the samples themselves may be -different.

    -
    -
    -

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
Returns:
-

array, xyz [,XYZ], type_mask – xyz identifier array of shape (dim,) identifying which row in array -corresponds to X, Y, and Z, and the type mask that indicates which samples -are continuous or discrete. For example:: X = [(0, -1)], -Y = [(1, 0)], Z = [(1, -1), (0, -2)] yields an array of shape -(4, n_samples) and xyz is xyz = numpy.array([0,1,2,2]). If -return_cleaned_xyz is True, also outputs the cleaned XYZ lists.

-
-
Return type:
-

Tuple of data array of shape (dim, n_samples),

-
-
-
- -
-
-print_array_info(array, X, Y, Z, missing_flag, mask_type, type_mask=None, extraZ=None)[source]
-

Print info about the constructed array

-
-
Parameters:
-
    -
  • array (Data array of shape (dim, T)) – Data array.

  • -
  • X (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], -where var specifies the variable index. X typically is of the form -[(varX, -tau)] with tau denoting the time lag and Z can be -multivariate [(var1, -lag), (var2, -lag), …] .

  • -
  • Y (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], -where var specifies the variable index. X typically is of the form -[(varX, -tau)] with tau denoting the time lag and Z can be -multivariate [(var1, -lag), (var2, -lag), …] .

  • -
  • Z (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], -where var specifies the variable index. X typically is of the form -[(varX, -tau)] with tau denoting the time lag and Z can be -multivariate [(var1, -lag), (var2, -lag), …] .

  • -
  • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], -where var specifies the variable index. X typically is of the form -[(varX, -tau)] with tau denoting the time lag and Z can be -multivariate [(var1, -lag), (var2, -lag), …] .

  • -
  • missing_flag (number, optional (default: None)) – Flag for missing values. Dismisses all time slices of samples where -missing values occur in any variable and also flags samples for all -lags up to 2*tau_max. This avoids biases, see section on masking in -Supplement of [1].

  • -
  • mask_type ({'y','x','z','xy','xz','yz','xyz'}) – Masking mode: Indicators for which variables in the dependence -measure I(X; Y | Z) the samples should be masked. If None, the mask -is not used. Explained in tutorial on masking and missing values.

  • -
  • type_mask (array-like) – Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

  • -
-
-
-
- -
- -
-
-tigramite.data_processing.get_acf(series, max_lag=None)[source]
-

Returns autocorrelation function.

-
-
Parameters:
-
    -
  • series (1D-array) – data series to compute autocorrelation from

  • -
  • max_lag (int, optional (default: None)) – maximum lag for autocorrelation function. If None is passed, 10% of -the data series length are used.

  • -
-
-
Returns:
-

autocorr – Autocorrelation function.

-
-
Return type:
-

array of shape (max_lag + 1,)

-
-
-
- -
-
-tigramite.data_processing.get_block_length(array, xyz, mode)[source]
-

Returns optimal block length for significance and confidence tests.

-

Determine block length using approach in Mader (2013) [Eq. (6)] which -improves the method of Pfeifer (2005) with non-overlapping blocks In -case of multidimensional X, the max is used. Further details in [1]. -Two modes are available. For mode=’significance’, only the indices -corresponding to X are shuffled in array. For mode=’confidence’ all -variables are jointly shuffled. If the autocorrelation curve fit fails, -a block length of 5% of T is used. The block length is limited to a -maximum of 10% of T.

-

Mader et al., Journal of Neuroscience Methods, -Volume 219, Issue 2, 15 October 2013, Pages 285-291

-
-
Parameters:
-
    -
  • array (array-like) – data array with X, Y, Z in rows and observations in columns

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • -
  • mode (str) – Which mode to use.

  • -
-
-
Returns:
-

block_len – Optimal block length.

-
-
Return type:
-

int

-
-
-
- -
-
-tigramite.data_processing.lowhighpass_filter(data, cutperiod, pass_periods='low')[source]
-

Butterworth low- or high pass filter.

-

This function applies a linear filter twice, once forward and once -backwards. The combined filter has linear phase.

-
-
Parameters:
-
    -
  • data (array) – Data array of shape (time, variables).

  • -
  • cutperiod (int) – Period of cutoff.

  • -
  • pass_periods (str, optional (default: 'low')) – Either ‘low’ or ‘high’ to act as a low- or high-pass filter

  • -
-
-
Returns:
-

data – Filtered data array.

-
-
Return type:
-

array

-
-
-
- -
-
-tigramite.data_processing.ordinal_patt_array(array, array_mask=None, dim=2, step=1, weights=False, verbosity=0)[source]
-

Returns symbolified array of ordinal patterns.

-

Each data vector (X_t, …, X_t+(dim-1)*step) is converted to its rank -vector. E.g., (0.2, -.6, 1.2) –> (1,0,2) which is then assigned to a -unique integer (see Article). There are faculty(dim) possible rank vectors.

-

Note that the symb_array is step*(dim-1) shorter than the original array!

-

Reference: B. Pompe and J. Runge (2011). Momentary information transfer as -a coupling measure of time series. Phys. Rev. E, 83(5), 1-12. -doi:10.1103/PhysRevE.83.051122

-
-
Parameters:
-
    -
  • array (array-like) – Data array of shape (time, variables).

  • -
  • array_mask (bool array) – Data mask where True labels masked samples.

  • -
  • dim (int, optional (default: 2)) – Pattern dimension

  • -
  • step (int, optional (default: 1)) – Delay of pattern embedding vector.

  • -
  • weights (bool, optional (default: False)) – Whether to return array of variances of embedding vectors as weights.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
Returns:
-

patt, patt_mask [, patt_time] – Tuple of converted pattern array and new length

-
-
Return type:
-

tuple of arrays

-
-
-
- -
-
-tigramite.data_processing.quantile_bin_array(data, bins=6)[source]
-

Returns symbolified array with equal-quantile binning.

-
-
Parameters:
-
    -
  • data (array) – Data array of shape (time, variables).

  • -
  • bins (int, optional (default: 6)) – Number of bins.

  • -
-
-
Returns:
-

symb_array – Converted data of integer type.

-
-
Return type:
-

array

-
-
-
- -
-
-tigramite.data_processing.smooth(data, smooth_width, kernel='gaussian', mask=None, residuals=False, verbosity=0)[source]
-

Returns either smoothed time series or its residuals.

-

the difference between the original and the smoothed time series -(=residuals) of a kernel smoothing with gaussian (smoothing kernel width = -twice the sigma!) or heaviside window, equivalent to a running mean.

-

Assumes data of shape (T, N) or (T,) -:rtype: array -:returns: smoothed/residual data

-
-
Parameters:
-
    -
  • data (array) – Data array of shape (time, variables).

  • -
  • smooth_width (float) – Window width of smoothing, 2*sigma for a gaussian.

  • -
  • kernel (str, optional (default: 'gaussian')) – Smoothing kernel, ‘gaussian’ or ‘heaviside’ for a running mean.

  • -
  • mask (bool array, optional (default: None)) – Data mask where True labels masked samples.

  • -
  • residuals (bool, optional (default: False)) – True if residuals should be returned instead of smoothed data.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
-
-
Returns:
-

data – Smoothed/residual data.

-
-
Return type:
-

array-like

-
-
-
- -
-
-tigramite.data_processing.structural_causal_process(links, T, noises=None, intervention=None, intervention_type='hard', seed=None)[source]
-

Returns a structural causal process with contemporaneous and lagged -dependencies.

-

DEPRECATED. Will be removed in future.

-
- -
-
-tigramite.data_processing.time_bin_with_mask(data, time_bin_length, mask=None)[source]
-

Returns time binned data where only about non-masked values is averaged.

-
-
Parameters:
-
    -
  • data (array) – Data array of shape (time, variables).

  • -
  • time_bin_length (int) – Length of time bin.

  • -
  • mask (bool array, optional (default: None)) – Data mask where True labels masked samples.

  • -
-
-
Returns:
-

(bindata, T) – Tuple of time-binned data array and new length of array.

-
-
Return type:
-

tuple of array and int

-
-
-
- -
-
-tigramite.data_processing.trafo2normal(data, mask=None, thres=0.001)[source]
-

Transforms input data to standard normal marginals.

-

Assumes data.shape = (T, dim)

-
-
Parameters:
-
    -
  • data (array) – Data array of shape (time, variables).

  • -
  • thres (float) – Set outer points in CDF to this value.

  • -
  • mask (bool array, optional (default: None)) – Data mask where True labels masked samples.

  • -
-
-
Returns:
-

normal_data – data with standard normal marginals.

-
-
Return type:
-

array-like

-
-
-
- -
-
-tigramite.data_processing.var_process(parents_neighbors_coeffs, T=1000, use='inv_inno_cov', verbosity=0, initial_values=None)[source]
-

Returns a vector-autoregressive process with correlated innovations.

-

Wrapper around var_network with possibly more user-friendly input options.

-

DEPRECATED. Will be removed in future.

-
- -
-
-tigramite.data_processing.weighted_avg_and_std(values, axis, weights)[source]
-

Returns the weighted average and standard deviation.

-
-
Parameters:
-
    -
  • values (array) – Data array of shape (time, variables).

  • -
  • axis (int) – Axis to average/std about

  • -
  • weights (array) – Weight array of shape (time, variables).

  • -
-
-
Returns:
-

(average, std) – Tuple of weighted average and standard deviation along axis.

-
-
Return type:
-

tuple of arrays

-
-
-
- -
-
-

tigramite.toymodels: Toy model generators

-

Tigramite toymodels.

-
-
-tigramite.toymodels.structural_causal_processes.check_stationarity(links)[source]
-

Returns stationarity according to a unit root test.

-

Assumes an at least asymptotically linear vector autoregressive process -without contemporaneous links.

-
-
Parameters:
-

links (dict) – Dictionary of form {0:[((0, -1), coeff, func), …], 1:[…], …}. -Also format {0:[(0, -1), …], 1:[…], …} is allowed.

-
-
Returns:
-

stationary – True if VAR process is stationary.

-
-
Return type:
-

bool

-
-
-
- -
- -

Helper function to convert DAG graph to dictionary of parents.

-
-
Parameters:
-

dag (array of shape (N, N, tau_max+1)) – Matrix format of graph in string format. Must be DAG.

-
-
Returns:
-

parents – Dictionary of form {0:[(0, -1), …], 1:[…], …}.

-
-
Return type:
-

dict

-
-
-
- -
-
-tigramite.toymodels.structural_causal_processes.generate_structural_causal_process(N=2, L=1, dependency_funcs=['linear'], dependency_coeffs=[-0.5, 0.5], auto_coeffs=[0.5, 0.7], contemp_fraction=0.0, max_lag=1, noise_dists=['gaussian'], noise_means=[0.0], noise_sigmas=[0.5, 2.0], noise_seed=None, seed=None)[source]
-

“Randomly generates a structural causal process based on input characteristics.

-

The process has the form

-
-

X^j_t = \eta^j_t + a^j X^j_{t-1} + \sum_{X^i_{t-\tau}\in pa(X^j_t)}
-c^i_{\tau} f^i_{\tau}(X^i_{t-\tau})

-

where j = 1, ..., N. Here the properties of \eta^j_t are -randomly frawn from the noise parameters (see below), pa
-(X^j_t) are the causal parents drawn randomly such that in total L -links occur out of which contemp_fraction are contemporaneous and -their time lags are drawn from [0 or 1..max_lag], the -coefficients c^i_{\tau} are drawn from -dependency_coeffs, a^j are drawn from auto_coeffs, -and f^i_{\tau} are drawn from dependency_funcs.

-

The returned dictionary links has the format -{0:[((i, -tau), coeff, func),...], 1:[...], ...} -where func can be an arbitrary (nonlinear) function provided -as a python callable with one argument and coeff is the multiplication -factor. The noise distributions of \eta^j are returned in -noises, see specifics below.

-

The process might be non-stationary. In case of asymptotically linear -dependency functions and no contemporaneous links this can be checked with -check_stationarity(...). Otherwise check by generating a large sample -and test for np.inf.

-
-
Parameters:
-
    -
  • N (int) – Number of variables.

  • -
  • L (int) – Number of cross-links between two different variables.

  • -
  • dependency_funcs (list) – List of callables or strings ‘linear’ or ‘nonlinear’ for a linear and a specific nonlinear function -that is asymptotically linear.

  • -
  • dependency_coeffs (list) – List of floats from which the coupling coefficients are randomly drawn.

  • -
  • auto_coeffs (list) – List of floats from which the lag-1 autodependencies are randomly drawn.

  • -
  • contemp_fraction (float [0., 1]) – Fraction of the L links that are contemporaneous (lag zero).

  • -
  • max_lag (int) – Maximum lag from which the time lags of links are drawn.

  • -
  • noise_dists (list) – List of noise functions. Either in -{‘gaussian’, ‘weibull’, ‘uniform’} or user-specified, in which case -it must be parametrized just by the size parameter. E.g. def beta -(T): return np.random.beta(a=1, b=0.5, T)

  • -
  • noise_means (list) – Noise mean. Only used for noise in {‘gaussian’, ‘weibull’, ‘uniform’}.

  • -
  • noise_sigmas (list) – Noise standard deviation. Only used for noise in {‘gaussian’, ‘weibull’, ‘uniform’}.

  • -
  • seed (int) – Random seed to draw the above random functions from.

  • -
  • noise_seed (int) – Random seed for noise function random generator.

  • -
-
-
Returns:
-

    -
  • links (dict) – Dictionary of form {0:[((0, -1), coeff, func), …], 1:[…], …}.

  • -
  • noises (list) – List of N noise functions to call by noise(T) where T is the time series length.

  • -
-

-
-
-
- -
- -

Helper function to convert dictionary of links to graph array format.

-
-
Parameters:
-
    -
  • links (dict) – Dictionary of form {0:[((0, -1), coeff, func), …], 1:[…], …}. -Also format {0:[(0, -1), …], 1:[…], …} is allowed.

  • -
  • tau_max (int or None) – Maximum lag. If None, the maximum lag in links is used.

  • -
-
-
Returns:
-

graph – Matrix format of graph with 1 for true links and 0 else.

-
-
Return type:
-

array of shape (N, N, tau_max+1)

-
-
-
- -
-
-tigramite.toymodels.structural_causal_processes.structural_causal_process(links, T, noises=None, intervention=None, intervention_type='hard', transient_fraction=0.2, seed=None)[source]
-

Returns a time series generated from a structural causal process.

-

Allows lagged and contemporaneous dependencies and includes the option -to have intervened variables or particular samples.

-

The interventional data is in particular useful for generating ground -truth for the CausalEffects class.

-

In more detail, the method implements a generalized additive noise model process of the form

-
-

X^j_t = \eta^j_t + \sum_{X^i_{t-\tau}\in \mathcal{P}(X^j_t)}
-c^i_{\tau} f^i_{\tau}(X^i_{t-\tau})

-

Links have the format {0:[((i, -tau), coeff, func),...], 1:[...], -...} where func can be an arbitrary (nonlinear) function provided -as a python callable with one argument and coeff is the multiplication -factor. The noise distributions of \eta^j can be specified in -noises.

-

Through the parameters intervention and intervention_type the model -can also be generated with intervened variables.

-
-
Parameters:
-
    -
  • links (dict) – Dictionary of format: {0:[((i, -tau), coeff, func),…], 1:[…], -…} for all variables where i must be in [0..N-1] and tau >= 0 with -number of variables N. coeff must be a float and func a python -callable of one argument.

  • -
  • T (int) – Sample size.

  • -
  • noises (list of callables or array, optional (default: 'np.random.randn')) – Random distribution function that is called with noises[j](T). If an array, -it must be of shape ((transient_fraction + 1)*T, N).

  • -
  • intervention (dict) – Dictionary of format: {1:np.array, …} containing only keys of intervened -variables with the value being the array of length T with interventional values. -Set values to np.nan to leave specific time points of a variable un-intervened.

  • -
  • intervention_type (str or dict) – Dictionary of format: {1:’hard’, 3:’soft’, …} to specify whether intervention is -hard (set value) or soft (add value) for variable j. If str, all interventions have -the same type.

  • -
  • transient_fraction (float) – Added percentage of T used as a transient. In total a realization of length -(transient_fraction + 1)*T will be generated, but then transient_fraction*T will be -cut off.

  • -
  • seed (int, optional (default: None)) – Random seed.

  • -
-
-
Returns:
-

    -
  • data (array-like) – Data generated from this process, shape (T, N).

  • -
  • nonvalid (bool) – Indicates whether data has NaNs or infinities.

  • -
-

-
-
-
- -
-
-tigramite.toymodels.structural_causal_processes.var_process(parents_neighbors_coeffs, T=1000, use='inv_inno_cov', verbosity=0, initial_values=None)[source]
-

Returns a vector-autoregressive process with correlated innovations.

-

Wrapper around var_network with possibly more user-friendly input options.

-
-
Parameters:
-
    -
  • parents_neighbors_coeffs (dict) – Dictionary of format: {…, j:[((var1, lag1), coef1), ((var2, lag2), -coef2), …], …} for all variables where vars must be in [0..N-1] -and lags <= 0 with number of variables N. If lag=0, a nonzero value -in the covariance matrix (or its inverse) is implied. These should be -the same for (i, j) and (j, i).

  • -
  • use (str, optional (default: 'inv_inno_cov')) – Specifier, either ‘inno_cov’ or ‘inv_inno_cov’. -Any other specifier will result in non-correlated noise. -For debugging, ‘no_noise’ can also be specified, in which case random -noise will be disabled.

  • -
  • T (int, optional (default: 1000)) – Sample size.

  • -
  • verbosity (int, optional (default: 0)) – Level of verbosity.

  • -
  • initial_values (array, optional (default: None)) – Initial values for each node. Shape must be (N, max_delay+1)

  • -
-
-
Returns:
-

    -
  • data (array-like) – Data generated from this process

  • -
  • true_parent_neighbor (dict) – Dictionary of lists of tuples. The dictionary is keyed by node ID, the -list stores the tuple values (parent_node_id, time_lag)

  • -
-

-
-
-
- -
-
-

tigramite.plotting: Plotting functions

-

Tigramite plotting package.

-
-
-tigramite.plotting.plot_densityplots(dataframe, name=None, setup_args={}, add_densityplot_args={}, selected_dataset=0, show_marginal_densities_on_diagonal=True)[source]
-

Wrapper helper function to plot density plots. -Sets up the matrix object and plots the density plots, see parameters in -setup_density_matrix and add_densityplot.

-

The diagonal shows the marginal densities.

-

Requires seaborn.

-
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • name (str, optional (default: None)) – File name. If None, figure is shown in window.

  • -
  • setup_args (dict) – Arguments for setting up the density plot matrix, see doc of -setup_density_matrix.

  • -
  • add_densityplot_args (dict) – Arguments for adding a density plot matrix.

  • -
  • selected_dataset (int, optional (default: 0)) – In case of multiple datasets in dataframe, plot this one.

  • -
  • show_marginal_densities_on_diagonal (bool, optional (default: True)) – Flag to show marginal densities on the diagonal of the density plots

  • -
-
-
Returns:
-

matrix – Further density plots can be overlaid using the -matrix.add_densityplot function.

-
-
Return type:
-

object

-
-
-
- -
-
-tigramite.plotting.plot_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=8.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, node_label_size=10, link_label_fontsize=10, lag_array=None, network_lower_bound=0.2, show_colorbar=True, inner_edge_style='dashed', link_matrix=None, special_nodes=None, show_autodependency_lags=False)[source]
-

Creates a network plot.

-

This is still in beta. The network is defined from links in graph. Nodes -denote variables, straight links contemporaneous dependencies and curved -arrows lagged dependencies. The node color denotes the maximal absolute -auto-dependency and the link color the value at the lag with maximal -absolute cross-dependency. The link label lists the lags with significant -dependency in order of absolute magnitude. The network can also be -plotted over a map drawn before on the same axis. Then the node positions -can be supplied in appropriate axis coordinates via node_pos.

-
-
Parameters:
-
    -
  • graph (string or bool array-like, optional (default: None)) – Either string matrix providing graph or bool array providing only adjacencies -Must be of same shape as val_matrix.

  • -
  • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

  • -
  • figsize (tuple) – Size of figure.

  • -
  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

  • -
  • link_colorbar_label (str, optional (default: 'MCI')) – Test statistic label.

  • -
  • node_colorbar_label (str, optional (default: 'auto-MCI')) – Test statistic label for auto-dependencies.

  • -
  • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

  • -
  • link_attribute (array-like, optional (default: None)) – String array of val_matrix.shape specifying link attributes.

  • -
  • node_pos (dictionary, optional (default: None)) – Dictionary of node positions in axis coordinates of form -node_pos = {‘x’:array of shape (N,), ‘y’:array of shape(N)}. These -coordinates could have been transformed before for basemap plots.

  • -
  • arrow_linewidth (float, optional (default: 30)) – Linewidth.

  • -
  • vmin_edges (float, optional (default: -1)) – Link colorbar scale lower bound.

  • -
  • vmax_edges (float, optional (default: 1)) – Link colorbar scale upper bound.

  • -
  • edge_ticks (float, optional (default: 0.4)) – Link tick mark interval.

  • -
  • cmap_edges (str, optional (default: 'RdBu_r')) – Colormap for links.

  • -
  • vmin_nodes (float, optional (default: 0)) – Node colorbar scale lower bound.

  • -
  • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

  • -
  • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

  • -
  • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

  • -
  • node_size (int, optional (default: 0.3)) – Node size.

  • -
  • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

  • -
  • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

  • -
  • curved_radius (0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • float (0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • (default (optional) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

  • -
  • alpha (float, optional (default: 1.)) – Opacity.

  • -
  • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

  • -
  • link_label_fontsize (int, optional (default: 6)) – Fontsize of link labels.

  • -
  • tick_label_size (int, optional (default: 6)) – Fontsize of tick labels.

  • -
  • lag_array (array, optional (default: None)) – Optional specification of lags overwriting np.arange(0, tau_max+1)

  • -
  • network_lower_bound (float, optional (default: 0.2)) – Fraction of vertical space below graph plot.

  • -
  • show_colorbar (bool) – Whether to show colorbars for links and nodes.

  • -
  • show_autodependency_lags (bool (default: False)) – Shows significant autodependencies for a node.

  • -
-
-
-
- -
-
-tigramite.plotting.plot_lagfuncs(val_matrix, name=None, setup_args={}, add_lagfunc_args={})[source]
-

Wrapper helper function to plot lag functions. -Sets up the matrix object and plots the lagfunction, see parameters in -setup_matrix and add_lagfuncs.

-
-
Parameters:
-
    -
  • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

  • -
  • name (str, optional (default: None)) – File name. If None, figure is shown in window.

  • -
  • setup_args (dict) – Arguments for setting up the lag function matrix, see doc of -setup_matrix.

  • -
  • add_lagfunc_args (dict) – Arguments for adding a lag function matrix, see doc of add_lagfuncs.

  • -
-
-
Returns:
-

matrix – Further lag functions can be overlaid using the -matrix.add_lagfuncs(val_matrix) function.

-
-
Return type:
-

object

-
-
-
- -
-
-tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=10, network_lower_bound=0.2, standard_color_links='black', standard_color_nodes='lightgrey')[source]
-

Creates a network plot visualizing the pathways of a mediation analysis. -This is still in beta. The network is defined from non-zero entries in -path_val_matrix. Nodes denote variables, straight links contemporaneous -dependencies and curved arrows lagged dependencies. The node color denotes -the mediated causal effect (MCE) and the link color the value at the lag -with maximal link coefficient. The link label lists the lags with -significant dependency in order of absolute magnitude. The network can also -be plotted over a map drawn before on the same axis. Then the node positions -can be supplied in appropriate axis coordinates via node_pos.

-
-
Parameters:
-
    -
  • path_val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing link weight values.

  • -
  • path_node_array (array_like) – Array of shape (N,) containing node values.

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

  • -
  • figsize (tuple) – Size of figure.

  • -
  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

  • -
  • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

  • -
  • node_colorbar_label (str, optional (default: 'MCE (node color)')) – Node colorbar label.

  • -
  • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

  • -
  • node_pos (dictionary, optional (default: None)) – Dictionary of node positions in axis coordinates of form -node_pos = {‘x’:array of shape (N,), ‘y’:array of shape(N)}. These -coordinates could have been transformed before for basemap plots.

  • -
  • arrow_linewidth (float, optional (default: 30)) – Linewidth.

  • -
  • vmin_edges (float, optional (default: -1)) – Link colorbar scale lower bound.

  • -
  • vmax_edges (float, optional (default: 1)) – Link colorbar scale upper bound.

  • -
  • edge_ticks (float, optional (default: 0.4)) – Link tick mark interval.

  • -
  • cmap_edges (str, optional (default: 'RdBu_r')) – Colormap for links.

  • -
  • vmin_nodes (float, optional (default: 0)) – Node colorbar scale lower bound.

  • -
  • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

  • -
  • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

  • -
  • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

  • -
  • node_size (int, optional (default: 0.3)) – Node size.

  • -
  • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

  • -
  • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

  • -
  • curved_radius (0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • float (0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • (default (optional) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

  • -
  • alpha (float, optional (default: 1.)) – Opacity.

  • -
  • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

  • -
  • link_label_fontsize (int, optional (default: 6)) – Fontsize of link labels.

  • -
  • network_lower_bound (float, optional (default: 0.2)) – Fraction of vertical space below graph plot.

  • -
  • lag_array (array, optional (default: None)) – Optional specification of lags overwriting np.arange(0, tau_max+1)

  • -
-
-
-
- -
-
-tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=8, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, tick_label_size=6, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2, standard_color_links='black', standard_color_nodes='lightgrey')[source]
-

Creates a mediation time series graph plot. -This is still in beta. The time series graph’s links are colored by -val_matrix.

-
-
Parameters:
-
    -
  • tsg_path_val_matrix (array_like) – Matrix of shape (N*tau_max, N*tau_max) containing link weight values.

  • -
  • path_node_array (array_like) – Array of shape (N,) containing node values.

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

  • -
  • figsize (tuple) – Size of figure.

  • -
  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

  • -
  • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

  • -
  • node_colorbar_label (str, optional (default: 'MCE (node color)')) – Node colorbar label.

  • -
  • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

  • -
  • order (list, optional (default: None)) – order of variables from top to bottom.

  • -
  • arrow_linewidth (float, optional (default: 30)) – Linewidth.

  • -
  • vmin_edges (float, optional (default: -1)) – Link colorbar scale lower bound.

  • -
  • vmax_edges (float, optional (default: 1)) – Link colorbar scale upper bound.

  • -
  • edge_ticks (float, optional (default: 0.4)) – Link tick mark interval.

  • -
  • cmap_edges (str, optional (default: 'RdBu_r')) – Colormap for links.

  • -
  • vmin_nodes (float, optional (default: 0)) – Node colorbar scale lower bound.

  • -
  • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

  • -
  • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

  • -
  • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

  • -
  • node_size (int, optional (default: 0.1)) – Node size.

  • -
  • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

  • -
  • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

  • -
  • curved_radius (0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • float (0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • (default (optional) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

  • -
  • alpha (float, optional (default: 1.)) – Opacity.

  • -
  • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

  • -
  • link_label_fontsize (int, optional (default: 6)) – Fontsize of link labels.

  • -
  • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

  • -
  • label_space_top (float, optional (default: 0.)) – Fraction of vertical figure space to allocate top of plot for labels.

  • -
  • network_lower_bound (float, optional (default: 0.2)) – Fraction of vertical space below graph plot.

  • -
-
-
-
- -
-
-tigramite.plotting.plot_scatterplots(dataframe, name=None, setup_args={}, add_scatterplot_args={}, selected_dataset=0)[source]
-

Wrapper helper function to plot scatter plots. -Sets up the matrix object and plots the scatter plots, see parameters in -setup_scatter_matrix and add_scatterplot.

-
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • name (str, optional (default: None)) – File name. If None, figure is shown in window.

  • -
  • setup_args (dict) – Arguments for setting up the scatter plot matrix, see doc of -setup_scatter_matrix.

  • -
  • add_scatterplot_args (dict) – Arguments for adding a scatter plot matrix.

  • -
  • selected_dataset (int, optional (default: 0)) – In case of multiple datasets in dataframe, plot this one.

  • -
-
-
Returns:
-

matrix – Further scatter plot can be overlaid using the -matrix.add_scatterplot function.

-
-
Return type:
-

object

-
-
-
- -
-
-tigramite.plotting.plot_time_series_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=4, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2, inner_edge_style='dashed', link_matrix=None, special_nodes=None, standard_color_links='black', standard_color_nodes='lightgrey')[source]
-

Creates a time series graph. -This is still in beta. The time series graph’s links are colored by -val_matrix.

-
-
Parameters:
-
    -
  • graph (string or bool array-like, optional (default: None)) – Either string matrix providing graph or bool array providing only adjacencies -Either of shape (N, N, tau_max + 1) or as auxiliary graph of dims -(N, N, tau_max+1, tau_max+1) describing auxADMG.

  • -
  • val_matrix (array_like) – Matrix of same shape as graph containing test statistic values.

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

  • -
  • figsize (tuple) – Size of figure.

  • -
  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

  • -
  • link_colorbar_label (str, optional (default: 'MCI')) – Test statistic label.

  • -
  • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

  • -
  • link_attribute (array-like, optional (default: None)) – Array of graph.shape specifying specific in drawing the graph (for internal use).

  • -
  • order (list, optional (default: None)) – order of variables from top to bottom.

  • -
  • arrow_linewidth (float, optional (default: 30)) – Linewidth.

  • -
  • vmin_edges (float, optional (default: -1)) – Link colorbar scale lower bound.

  • -
  • vmax_edges (float, optional (default: 1)) – Link colorbar scale upper bound.

  • -
  • edge_ticks (float, optional (default: 0.4)) – Link tick mark interval.

  • -
  • cmap_edges (str, optional (default: 'RdBu_r')) – Colormap for links.

  • -
  • node_size (int, optional (default: 0.1)) – Node size.

  • -
  • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

  • -
  • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

  • -
  • curved_radius (0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • float (0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • (default (optional) – Curvature of links. Passed on to FancyArrowPatch object.

  • -
  • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

  • -
  • alpha (float, optional (default: 1.)) – Opacity.

  • -
  • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

  • -
  • link_label_fontsize (int, optional (default: 6)) – Fontsize of link labels.

  • -
  • tick_label_size (int, optional (default: 6)) – Fontsize of tick labels.

  • -
  • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

  • -
  • label_space_top (float, optional (default: 0.)) – Fraction of vertical figure space to allocate top of plot for labels.

  • -
  • network_lower_bound (float, optional (default: 0.2)) – Fraction of vertical space below graph plot.

  • -
  • inner_edge_style (string, optional (default: 'dashed')) – Style of inner_edge contemporaneous links.

  • -
  • special_nodes (dict) – Dictionary of format {(i, -tau): ‘blue’, …} to color special nodes.

  • -
-
-
-
- -
-
-tigramite.plotting.plot_timeseries(dataframe=None, save_name=None, fig_axes=None, figsize=None, var_units=None, time_label='', grey_masked_samples=False, show_meanline=False, data_linewidth=1.0, skip_ticks_data_x=1, skip_ticks_data_y=1, label_fontsize=10, color='black', alpha=1.0, tick_label_size=6, selected_dataset=0, adjust_plot=True)[source]
-

Create and save figure of stacked panels with time series.

-
-
Parameters:
-
    -
  • dataframe (data object, optional) – This is the Tigramite dataframe object. It has the attributes -dataframe.values yielding a np array of shape (observations T, -variables N) and optionally a mask of the same shape.

  • -
  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

  • -
  • fig_axes (subplots instance, optional (default: None)) – Figure and axes instance. If None they are created as -fig, axes = pyplot.subplots(N,…)

  • -
  • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize -is used.

  • -
  • var_units (list of str, optional (default: None)) – Units of variables.

  • -
  • time_label (str, optional (default: '')) – Label of time axis.

  • -
  • grey_masked_samples (bool, optional (default: False)) – Whether to mark masked samples by grey fills (‘fill’) or grey data -(‘data’).

  • -
  • show_meanline (bool, optional (default: False)) – Whether to plot a horizontal line at the mean.

  • -
  • data_linewidth (float, optional (default: 1.)) – Linewidth.

  • -
  • skip_ticks_data_x (int, optional (default: 1)) – Skip every other tickmark.

  • -
  • skip_ticks_data_y (int, optional (default: 2)) – Skip every other tickmark.

  • -
  • label_fontsize (int, optional (default: 10)) – Fontsize of variable labels.

  • -
  • tick_label_size (int, optional (default: 6)) – Fontsize of tick labels.

  • -
  • color (str, optional (default: black)) – Line color.

  • -
  • alpha (float) – Alpha opacity.

  • -
  • selected_dataset (int, optional (default: 0)) – In case of multiple datasets in dataframe, plot this one.

  • -
-
-
-
- -
-
-tigramite.plotting.plot_tsg(links, X, Y, Z=None, anc_x=None, anc_y=None, anc_xy=None)[source]
-

Plots TSG that is input in format (N*max_lag, N*max_lag). -Compared to the tigramite plotting function here links -X^i_{t-tau} –> X^j_t can be missing for different t’. Helpful to -visualize the conditioned TSG.

-
- -
-
-class tigramite.plotting.setup_density_matrix(N, var_names=None, figsize=None, label_space_left=0.15, label_space_top=0.05, legend_width=0.15, legend_fontsize=10, tick_label_size=6, plot_gridlines=False, label_fontsize=10)[source]
-

Create matrix of density plot panels. -Class to setup figure object. The function add_densityplot allows to plot -density plots of variables in the dataframe.

-

Further density plots can be overlaid using the matrix.add_densityplot -function.

-
-
Parameters:
-
    -
  • N (int) – Number of variables

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize -is used.

  • -
  • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

  • -
  • label_space_top (float, optional (default: 0.05)) – Fraction of vertical figure space to allocate top of plot for labels.

  • -
  • legend_width (float, optional (default: 0.15)) – Fraction of horizontal figure space to allocate right of plot for -legend.

  • -
  • tick_label_size (int, optional (default: 6)) – Fontsize of tick labels.

  • -
  • plot_gridlines (bool, optional (default: False)) – Whether to show a grid.

  • -
  • label_fontsize (int, optional (default: 10)) – Fontsize of variable labels.

  • -
-
-
-
-
-add_densityplot(dataframe, matrix_lags=None, label=None, label_color='black', snskdeplot_args={'cmap': 'Greys'}, snskdeplot_diagonal_args={}, selected_dataset=0, show_marginal_densities_on_diagonal=True)[source]
-

Add density function plot.

-
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • matrix_lags (array) – Lags to use in scatter plots. Either None or non-neg array of shape (N, N). Then the -entry matrix_lags[i, j] = tau will depict the scatter plot of -time series (i, -tau) vs (j, 0). If None, tau = 0 for i != j and for i = j -tau = 1.

  • -
  • snskdeplot_args (dict) – Optional parameters to pass to sns.kdeplot() for i != j for off-diagonal plots.

  • -
  • snskdeplot_diagonal_args (dict) – Optional parameters to pass to sns.kdeplot() for i == j on diagonal.

  • -
  • label (string) – Label of this plot.

  • -
  • label_color (string) – Color of line created just for legend.

  • -
  • selected_dataset (int, optional (default: 0)) – In case of multiple datasets in dataframe, plot this one.

  • -
  • show_marginal_densities_on_diagonal (bool, optional (default: True)) – Flag to show marginal densities on the diagonal of the density plots

  • -
-
-
-
- -
-
-adjustfig(name=None, show_labels=True)[source]
-

Adjust matrix figure.

-
-
Parameters:
-

name (str, optional (default: None)) – File name. If None, figure is shown in window.

-
-
-
- -
- -
-
-class tigramite.plotting.setup_matrix(N, tau_max, var_names=None, figsize=None, minimum=-1, maximum=1, label_space_left=0.1, label_space_top=0.05, legend_width=0.15, legend_fontsize=10, x_base=1.0, y_base=0.5, tick_label_size=6, plot_gridlines=False, lag_units='', lag_array=None, label_fontsize=10)[source]
-

Create matrix of lag function panels. -Class to setup figure object. The function add_lagfuncs(…) allows to plot -the val_matrix of shape (N, N, tau_max+1). Multiple lagfunctions can be -overlaid for comparison.

-
-
Parameters:
-
    -
  • N (int) – Number of variables

  • -
  • tau_max (int) – Maximum time lag.

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize -is used.

  • -
  • minimum (int, optional (default: -1)) – Lower y-axis limit.

  • -
  • maximum (int, optional (default: 1)) – Upper y-axis limit.

  • -
  • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

  • -
  • label_space_top (float, optional (default: 0.05)) – Fraction of vertical figure space to allocate top of plot for labels.

  • -
  • legend_width (float, optional (default: 0.15)) – Fraction of horizontal figure space to allocate right of plot for -legend.

  • -
  • tick_label_size (int, optional (default: 6)) – Fontsize of tick labels.

  • -
  • x_base (float, optional (default: 1.)) – x-tick intervals to show.

  • -
  • y_base (float, optional (default: .4)) – y-tick intervals to show.

  • -
  • plot_gridlines (bool, optional (default: False)) – Whether to show a grid.

  • -
  • lag_units (str, optional (default: '')) –

  • -
  • lag_array (array, optional (default: None)) – Optional specification of lags overwriting np.arange(0, tau_max+1)

  • -
  • label_fontsize (int, optional (default: 10)) – Fontsize of variable labels.

  • -
-
-
-
-
-add_lagfuncs(val_matrix, sig_thres=None, conf_matrix=None, color='black', label=None, two_sided_thres=True, marker='.', markersize=5, alpha=1.0)[source]
-

Add lag function plot from val_matrix array.

-
-
Parameters:
-
    -
  • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

  • -
  • sig_thres (array-like, optional (default: None)) – Matrix of significance thresholds. Must be of same shape as -val_matrix.

  • -
  • conf_matrix (array-like, optional (default: None)) – Matrix of shape (, N, tau_max+1, 2) containing confidence bounds.

  • -
  • color (str, optional (default: 'black')) – Line color.

  • -
  • label (str) – Test statistic label.

  • -
  • two_sided_thres (bool, optional (default: True)) – Whether to draw sig_thres for pos. and neg. values.

  • -
  • marker (matplotlib marker symbol, optional (default: '.')) – Marker.

  • -
  • markersize (int, optional (default: 5)) – Marker size.

  • -
  • alpha (float, optional (default: 1.)) – Opacity.

  • -
-
-
-
- -
-
-savefig(name=None)[source]
-

Save matrix figure.

-
-
Parameters:
-

name (str, optional (default: None)) – File name. If None, figure is shown in window.

-
-
-
- -
- -
-
-class tigramite.plotting.setup_scatter_matrix(N, var_names=None, figsize=None, label_space_left=0.1, label_space_top=0.05, legend_width=0.15, legend_fontsize=10, plot_gridlines=False, tick_label_size=6, label_fontsize=10)[source]
-

Create matrix of scatter plot panels. -Class to setup figure object. The function add_scatterplot allows to plot -scatterplots of variables in the dataframe. Multiple scatter plots can be -overlaid for comparison.

-
-
Parameters:
-
    -
  • N (int) – Number of variables

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize -is used.

  • -
  • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

  • -
  • label_space_top (float, optional (default: 0.05)) – Fraction of vertical figure space to allocate top of plot for labels.

  • -
  • legend_width (float, optional (default: 0.15)) – Fraction of horizontal figure space to allocate right of plot for -legend.

  • -
  • tick_label_size (int, optional (default: 6)) – Fontsize of tick labels.

  • -
  • plot_gridlines (bool, optional (default: False)) – Whether to show a grid.

  • -
  • label_fontsize (int, optional (default: 10)) – Fontsize of variable labels.

  • -
-
-
-
-
-add_scatterplot(dataframe, matrix_lags=None, color='black', label=None, marker='.', markersize=5, alpha=0.2, selected_dataset=0)[source]
-

Add scatter plot.

-
-
Parameters:
-
    -
  • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values -yielding a numpy array of shape (observations T, variables N) and -optionally a mask of the same shape and a missing values flag.

  • -
  • matrix_lags (array) – Lags to use in scatter plots. Either None or of shape (N, N). Then the -entry matrix_lags[i, j] = tau will depict the scatter plot of -time series (i, -tau) vs (j, 0). If None, tau = 0 for i != j and for i = j -tau = 1.

  • -
  • color (str, optional (default: 'black')) – Line color.

  • -
  • label (str) – Test statistic label.

  • -
  • marker (matplotlib marker symbol, optional (default: '.')) – Marker.

  • -
  • markersize (int, optional (default: 5)) – Marker size.

  • -
  • alpha (float, optional (default: 1.)) – Opacity.

  • -
  • selected_dataset (int, optional (default: 0)) – In case of multiple datasets in dataframe, plot this one.

  • -
-
-
-
- -
-
-adjustfig(name=None)[source]
-

Adjust matrix figure.

-
-
Parameters:
-

name (str, optional (default: None)) – File name. If None, figure is shown in window.

-
-
-
- -
- -
-
-tigramite.plotting.write_csv(graph, save_name, val_matrix=None, var_names=None, link_width=None, link_attribute=None, digits=5)[source]
-

Writes all links in a graph to a csv file.

-

Format is each link in a row as ‘Variable i’, ‘Variable j’, ‘Time lag of i’, ‘Link type i — j’, -with optional further columns for entries in [val_matrix link_attribute, link_width].

-
-
Parameters:
-
    -
  • graph (string or bool array-like, optional (default: None)) – Either string matrix providing graph or bool array providing only adjacencies -Must be of same shape as val_matrix.

  • -
  • save_name (str) – Name of figure file to save figure. If None, figure is shown in window.

  • -
  • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

  • -
  • link_attribute (array-like, optional (default: None)) – String array of val_matrix.shape specifying link attributes.

  • -
  • digits (int) – Number of significant digits for writing link value and width.

  • -
-
-
-
- -
-
-

Indices and tables

- -
- - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/objects.inv b/docs/_build/html/objects.inv deleted file mode 100644 index 1e59123e01c78571c642f80315cd342501f1accf..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1827 zcmV+;2i*80AX9K?X>NERX>N99Zgg*Qc_4OWa&u{KZXhxWBOp+6Z)#;@bUGkZX=id_ zZE1963L_v^WpZ8b#rNMXCQiPX<{x4c-p;N&2rl|5Wf2<)M>BgG(G0(v>DIDttZJ$+7kvM zK?*SlumEUVx4uSSuTRniNLrLcNg%M)MdIIn9~S$A1qfPRX4HmeDagB{j*db4yQR`{!N{7+G$d0)yhZm-=QOPbrTTE` zZ^i;bM(LD#;dVo6YM!EzG%eLHQfWw0u^7)(rz-TqT!LT)q0beevLMD5p;+!l!{A5e zj96yeP+RjSDYLtWd-w|q`b!`_P9XjZ?waEgp0rvufjJ-uee_7psA)Ar1UH+uEFlsM zuOu&dPT^rB_)%lQq7Bnf+RVl?+j{K)-G73?#xM(X>JdD4x9$<7cWl)ZdG_(~!(D8b zz5#%?l4)vL7oGH(5!nh+aAQrh!V~BNC<-PF9}ucr%X1t9?PDXl);=)QG|bhDg8AG> zat&hIWkDQ#RHxlR6=vMk$S0N#qzAQ>)Tq>cKmcv5jqD*ehh}dlt&!jZXAx_3?BIBpB zKm7f>``Cdr6u*D3Vm3;9JGs|2iz|gS#?0ayz3&iQKAG#Vda91qH{d#~sRPYCGW5|V zm_9ur2U8`d%U~v)RMt?PE3LCfs_)=GHjf;@pcmg~@lgi$DF(!%a|#|mBBoeSYpp|q z^vLQFN!5ElvV1kUY+FA)5X)QF@e} z#>Odwv|6`*TGI`0pZ#fKO>_lmT%^QJFXz}0V&@$E;ntMP z3Wz4JbDn*Ayn6^tfO`^thSXgN;NO%}3qF@YX{Q{;diIPFBsgg0Cogbw4xOB}?$t?nT2O~qbiT5xM{%_8h(@FS2 zqHH01%^z=igds9btZ=tWMi6L<+xwZ+kO8aTavoe_9V11$#p51vs4;d@&LEM5zS+Iv z!5=P6qxe@SGj_M1K+$x(<2nYWS0_xotK!1TzR~m9?@oeRu=l#PEL7@il$0wLpx9-y z+ix~o{@^W8GsjI2aRjX@2)ehLoHH{Y$jxSa`ij%1dr=HC=2qAU_D*~^(Xn&hi|qk* zG5;E+gl4wYasY}C=Khwh1&bA@qDl}Y5{eV| zO@)EEIWsdVlw-JrK7jK^v=Juv-pggU_X=h0+>fdTA%6gALmF?^4d{DCF(t-rD|ws@{9p3C7D^%_t8a?riiCooeW!38I z(9-|@`PZ!A(YA&n*E`)0H_-A4wq|=f-00vQI?wNTM|UrXJ#Hat<-W9G)O`}PC)i!< RWWIFwA8EyI{s*PtZC&0MeJTI| diff --git a/docs/_build/html/py-modindex.html b/docs/_build/html/py-modindex.html deleted file mode 100644 index 48e8ef6b..00000000 --- a/docs/_build/html/py-modindex.html +++ /dev/null @@ -1,129 +0,0 @@ - - - - - - - - Python Module Index — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - - - - -
-
-
- - -
- - -

Python Module Index

- -
- t -
- - - - - - - - - - - - - - - - -
 
- t
- tigramite -
    - tigramite.data_processing -
    - tigramite.plotting -
    - tigramite.toymodels.structural_causal_processes -
- - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/search.html b/docs/_build/html/search.html deleted file mode 100644 index 884d16ab..00000000 --- a/docs/_build/html/search.html +++ /dev/null @@ -1,118 +0,0 @@ - - - - - - - - Search — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Search

- - - - -

- Searching for multiple words only shows matches that contain - all words. -

- - -
- - - -
- - - -
- -
- - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/docs/_build/html/searchindex.js b/docs/_build/html/searchindex.js deleted file mode 100644 index ab308e34..00000000 --- a/docs/_build/html/searchindex.js +++ /dev/null @@ -1 +0,0 @@ -Search.setIndex({"docnames": ["index"], "filenames": ["index.rst"], "titles": ["Welcome to Tigramite\u2019s documentation!"], "terms": {"index": 0, "modul": 0, "search": 0, "page": 0, "github": 0, "repo": 0, "i": 0, "python": 0, "packag": 0, "It": 0, "allow": 0, "effici": 0, "estim": 0, "graph": 0, "from": 0, "high": 0, "dimension": 0, "dataset": 0, "discoveri": 0, "us": 0, "robust": 0, "forecast": 0, "direct": 0, "total": 0, "base": 0, "linear": 0, "well": 0, "non": 0, "parametr": 0, "applic": 0, "discret": 0, "continu": 0, "valu": 0, "also": 0, "includ": 0, "qualiti": 0, "result": 0, "pleas": 0, "cite": 0, "follow": 0, "paper": 0, "depend": 0, "which": 0, "method": 0, "you": 0, "j": 0, "rung": 0, "p": 0, "nowack": 0, "m": 0, "kretschmer": 0, "flaxman": 0, "d": 0, "sejdinov": 0, "detect": 0, "quantifi": 0, "associ": 0, "larg": 0, "nonlinear": 0, "sci": 0, "adv": 0, "5": 0, "eaau4996": 0, "2019": 0, "http": 0, "advanc": 0, "sciencemag": 0, "org": 0, "content": 0, "11": 0, "2020": 0, "discov": 0, "contemporan": 0, "lag": 0, "relat": 0, "autocorrel": 0, "proceed": 0, "36th": 0, "confer": 0, "uncertainti": 0, "artifici": 0, "intellig": 0, "uai": 0, "toronto": 0, "canada": 0, "auai": 0, "press": 0, "uai2020": 0, "579_main_pap": 0, "pdf": 0, "gerhardu": 0, "A": 0, "recal": 0, "latent": 0, "confound": 0, "neural": 0, "inform": 0, "system": 0, "33": 0, "neurip": 0, "cc": 0, "hash": 0, "94e70705efae423efda1088614128d0b": 0, "abstract": 0, "html": 0, "2018": 0, "network": 0, "reconstruct": 0, "theoret": 0, "assumpt": 0, "practic": 0, "chao": 0, "an": 0, "interdisciplinari": 0, "journal": 0, "scienc": 0, "28": 0, "7": 0, "075310": 0, "aip": 0, "scitat": 0, "doi": 0, "10": 0, "1063": 0, "1": 0, "5025050": 0, "natur": 0, "commun": 0, "perspect": 0, "www": 0, "com": 0, "articl": 0, "s41467": 0, "019": 0, "10105": 0, "3": 0, "necessari": 0, "suffici": 0, "graphic": 0, "optim": 0, "adjust": 0, "set": 0, "hidden": 0, "variabl": 0, "2021": 0, "34": 0, "class": 0, "et": 0, "al": 0, "2015": 0, "identifi": 0, "gatewai": 0, "complex": 0, "spatio": 0, "tempor": 0, "6": 0, "8502": 0, "1038": 0, "ncomms9502": 0, "transfer": 0, "along": 0, "pathwai": 0, "phy": 0, "rev": 0, "e": 0, "92": 0, "62829": 0, "1103": 0, "physrev": 0, "062829": 0, "cmiknn": 0, "nearest": 0, "neighbor": 0, "mutual": 0, "In": 0, "21st": 0, "intern": 0, "statist": 0, "mlr": 0, "v84": 0, "runge18a": 0, "datafram": 0, "cond_ind_test": 0, "verbos": 0, "0": 0, "sourc": 0, "framework": 0, "scale": 0, "thi": 0, "contain": 0, "sever": 0, "The": 0, "standard": 0, "address": 0, "describ": 0, "where": 0, "further": 0, "sub": 0, "variant": 0, "ar": 0, "discuss": 0, "pcmciplu": 0, "see": 0, "tutori": 0, "guidanc": 0, "appli": 0, "ha": 0, "differ": 0, "adapt": 0, "implement": 0, "mostli": 0, "hyperparamet": 0, "easi": 0, "parallel": 0, "separ": 0, "script": 0, "handl": 0, "mask": 0, "fals": 0, "control": 0, "confid": 0, "interv": 0, "note": 0, "structur": 0, "repres": 0, "shown": 0, "figur": 0, "node": 0, "defin": 0, "link": 0, "can": 0, "interpret": 0, "under": 0, "certain": 0, "assum": 0, "stationar": 0, "repeat": 0, "parent": 0, "mathcal": 0, "all": 0, "toward": 0, "blue": 0, "red": 0, "box": 0, "iter": 0, "flexibli": 0, "combin": 0, "ani": 0, "kind": 0, "its": 0, "type": 0, "These": 0, "avail": 0, "mci": 0, "particular": 0, "measur": 0, "strength": 0, "For": 0, "exampl": 0, "parcorr": 0, "normal": 0, "between": 0, "howev": 0, "interest": 0, "hypothet": 0, "intervent": 0, "mai": 0, "better": 0, "look": 0, "refer": 0, "w": 0, "paramet": 0, "object": 0, "among": 0, "other": 0, "attribut": 0, "yield": 0, "numpi": 0, "arrai": 0, "shape": 0, "observ": 0, "t": 0, "n": 0, "option": 0, "same": 0, "extern": 0, "pass": 0, "callabl": 0, "condindtest": 0, "int": 0, "default": 0, "level": 0, "all_par": 0, "dictionari": 0, "form": 0, "2": 0, "pc": 0, "algorithm": 0, "val_min": 0, "tau": 0, "float": 0, "minimum": 0, "each": 0, "pval_max": 0, "maximum": 0, "step": 0, "number": 0, "sampl": 0, "length": 0, "dict": 0, "get_graph_from_pmatrix": 0, "p_matrix": 0, "alpha_level": 0, "tau_min": 0, "tau_max": 0, "link_assumpt": 0, "none": 0, "construct": 0, "threshold": 0, "alpha": 0, "take": 0, "account": 0, "matrix": 0, "fdr_method": 0, "05": 0, "signific": 0, "get": 0, "tau_mix": 0, "delai": 0, "link_typ": 0, "specifi": 0, "about": 0, "initi": 0, "impli": 0, "valid": 0, "o": 0, "addit": 0, "middl": 0, "mark": 0, "instead": 0, "Then": 0, "adjac": 0, "must": 0, "exist": 0, "need": 0, "consist": 0, "requir": 0, "acycl": 0, "hold": 0, "If": 0, "doe": 0, "appear": 0, "absent": 0, "return": 0, "descript": 0, "abov": 0, "get_lagged_depend": 0, "selected_link": 0, "val_onli": 0, "uncondit": 0, "_": 0, "matric": 0, "correct": 0, "new": 0, "4": 0, "fdr": 0, "deprec": 0, "replac": 0, "zero": 0, "undirect": 0, "larger": 0, "equal": 0, "bool": 0, "onli": 0, "comput": 0, "str": 0, "current": 0, "benjamini": 0, "hochberg": 0, "rate": 0, "fdr_bh": 0, "val_matrix": 0, "conf_matrix": 0, "percentil": 0, "print_result": 0, "return_dict": 0, "print": 0, "output": 0, "kei": 0, "print_significant_link": 0, "ambiguous_tripl": 0, "latter": 0, "ambigu": 0, "conflict": 0, "like": 0, "list": 0, "tripl": 0, "return_parents_dict": 0, "include_lagzero_par": 0, "sort": 0, "unclear": 0, "x": 0, "whether": 0, "should": 0, "parents_dict": 0, "return_significant_link": 0, "pq_matrix": 0, "include_lagzero_link": 0, "boolean": 0, "Will": 0, "remov": 0, "futur": 0, "run_bivci": 0, "bivci": 0, "run_fullci": 0, "fullci": 0, "run_mci": 0, "max_conds_pi": 0, "max_conds_px": 0, "y": 0, "unrestrict": 0, "z": 0, "run_pc_stabl": 0, "save_iter": 0, "pc_alpha": 0, "max_conds_dim": 0, "max_combin": 0, "made": 0, "self": 0, "multi": 0, "ahead": 0, "greater": 0, "save": 0, "everi": 0, "across": 0, "given": 0, "score": 0, "get_model_selection_criterion": 0, "cardin": 0, "pc_1": 0, "origin": 0, "run_pcalg": 0, "01": 0, "lagged_par": 0, "max_conds_px_lag": 0, "mode": 0, "contemp_collider_rul": 0, "major": 0, "conflict_resolut": 0, "true": 0, "run": 0, "contemp_cond": 0, "ci": 0, "As": 0, "part": 0, "superset": 0, "pc1": 0, "conserv": 0, "rule": 0, "collid": 0, "phase": 0, "detail": 0, "lead": 0, "order": 0, "orient": 0, "when": 0, "regard": 0, "sepset": 0, "relev": 0, "run_pcalg_non_timeseries_data": 0, "simpli": 0, "call": 0, "ouput": [], "run_pcmci": 0, "wrapper": 0, "around": 0, "comprehens": 0, "analyt": 0, "numer": 0, "present": 0, "here": 0, "we": 0, "briefli": 0, "summar": 0, "two": 0, "procedur": 0, "select": 0, "tild": 0, "j_t": 0, "reduc": 0, "avoid": 0, "irrelev": 0, "momentari": 0, "i_": 0, "perp": 0, "j_": 0, "common": 0, "driver": 0, "indirect": 0, "main": 0, "free": 0, "tau_": 0, "max": 0, "chosen": 0, "accord": 0, "expect": 0, "recommend": 0, "rather": 0, "choic": 0, "peak": 0, "seen": 0, "sinc": 0, "hypothesi": 0, "do": 0, "precis": 0, "assess": 0, "role": 0, "regular": 0, "techniqu": 0, "criteria": 0, "respect": 0, "import": 0, "pp": 0, "structural_causal_process": 0, "random": 0, "seed": 0, "plai": 0, "incom": 0, "suppli": 0, "format": 0, "coeff": 0, "links_coeff": 0, "8": 0, "var_process": 0, "1000": 0, "pval": 0, "00000": 0, "val": 0, "588": 0, "606": 0, "447": 0, "618": 0, "499": 0, "run_pcmciplu": 0, "reset_lagged_link": 0, "contrast": 0, "full": 0, "up": 0, "markov": 0, "equival": 0, "faith": 0, "four": 0, "widehat": 0, "b": 0, "_t": 0, "skeleton": 0, "through": 0, "subset": 0, "conduct": 0, "motif": 0, "unshield": 0, "remain": 0, "Its": 0, "string": 0, "entri": 0, "denot": 0, "unori": 0, "could": 0, "direction": 0, "undecid": 0, "due": 0, "importantli": 0, "alwai": 0, "dag": 0, "first": 0, "one": 0, "member": 0, "averag": 0, "over": 0, "fit": 0, "anoth": 0, "togeth": 0, "fulli": 0, "mean": 0, "matter": 0, "last": 0, "restrict": 0, "found": 0, "consid": 0, "again": 0, "improv": 0, "power": 0, "runtim": 0, "np": 0, "var": 0, "def": 0, "lin_f": 0, "9": 0, "nonstat": 0, "676": 0, "602": 0, "599": 0, "486": 0, "466": 0, "524": 0, "449": 0, "001": 0, "005": 0, "025": 0, "learn": 0, "specif": 0, "relationship": 0, "introduc": 0, "explain": 0, "still": 0, "experiment": 0, "being": 0, "fine": 0, "tune": 0, "actual": 0, "invit": 0, "feedback": 0, "work": 0, "best": 0, "experi": 0, "run_lpcmci": 0, "constructor": 0, "bold": [], "some": 0, "might": 0, "potenti": 0, "smaller": 0, "than": 0, "dpag": 0, "window": 0, "taumax": [], "underli": 0, "n_preliminary_iter": 0, "determin": 0, "preliminari": 0, "correspond": 0, "k": 0, "max_cond_px": 0, "pair": 0, "s2": 0, "_run_ancestral_removal_phas": 0, "apds_t": 0, "c": 0, "g": 0, "higher": 0, "s3": 0, "_run_non_ancestral_removal_phas": 0, "napds_t": 0, "max_p_glob": 0, "max_p_non_ancestr": 0, "second": 0, "_run_dsep_removal_phas": 0, "max_q_glob": 0, "most": 0, "mani": 0, "sum": 0, "more": 0, "max_pds_set": 0, "element": 0, "opposit": 0, "prelim_with_collider_rul": 0, "pseudocod": 0, "line": 0, "22": 0, "18": 0, "directli": 0, "befor": 0, "parents_of_lag": 0, "pa": 0, "prelim_onli": 0, "stop": 0, "after": 0, "perform": 0, "break_once_separ": 0, "break": 0, "command": 0, "no_non_ancestral_phas": 0, "execut": 0, "use_a_pds_t_for_major": 0, "instruct": 0, "adj": 0, "orient_contemp": 0, "orient_comtemp": 0, "update_middle_mark": 0, "pseudoc": 0, "mmr": 0, "prelim_rul": 0, "exclud": 0, "r9": 0, "prime": 0, "r10": 0, "fix_all_edges_before_final_orient": 0, "inf": 0, "termin": 0, "although": 0, "empti": 0, "nevertheless": 0, "sound": 0, "check": 0, "appropri": 0, "forc": 0, "auto_first": 0, "pseudcod": 0, "autodepend": 0, "priorit": 0, "even": 0, "remember_only_par": 0, "been": 0, "ancestor": 0, "point": 0, "wa": 0, "later": 0, "tail": 0, "re": 0, "no_apr": 0, "apr": 0, "except": 0, "never": 0, "conveni": 0, "have": 0, "post": 0, "purpos": 0, "wildcard": 0, "ast": [], "edg": 0, "star": 0, "42": 0, "mask_typ": 0, "fixed_thr": 0, "sig_sampl": 0, "500": 0, "sig_blocklength": 0, "conf_lev": 0, "conf_sampl": 0, "100": 0, "conf_blocklength": 0, "recycle_residu": 0, "provid": 0, "shuffl": 0, "bootstrap": 0, "inherit": 0, "randomst": 0, "default_rng": 0, "xy": 0, "xz": 0, "yz": 0, "xyz": 0, "miss": 0, "shuffle_test": 0, "absolut": 0, "block": 0, "decai": 0, "autocovari": 0, "nan": 0, "side": 0, "residu": 0, "store": 0, "faster": 0, "cost": 0, "consider": 0, "memori": 0, "get_analytic_confid": 0, "df": 0, "concret": 0, "overrid": 0, "possibl": 0, "get_analytic_signific": 0, "dim": 0, "get_bootstrap_confid": 0, "dependence_measur": 0, "95": 0, "type_mask": 0, "With": 0, "row": 0, "column": 0, "get_dependence_measur": 0, "binari": 0, "individu": 0, "conf_low": 0, "conf_upp": 0, "tupl": 0, "upper": 0, "lower": 0, "bound": 0, "get_confid": 0, "child": 0, "make": 0, "sure": 0, "size": 0, "instanti": 0, "get_fixed_thres_signific": 0, "signfic": 0, "ab": 0, "els": 0, "unshuffl": 0, "fix": 0, "posit": 0, "get_measur": 0, "get_shuffle_signific": 0, "return_null_dist": 0, "get_signific": 0, "sig_overrid": 0, "whichev": 0, "ie": 0, "featur": 0, "properti": 0, "print_info": 0, "run_test": 0, "cut_off": 0, "2xtau_max": 0, "signficic": 0, "either": 0, "both": 0, "_get_single_residu": 0, "max_lag": 0, "max_lag_or_tau_max": 0, "how": 0, "cutoff": 0, "begin": 0, "guarante": 0, "compar": 0, "multipl": 0, "much": 0, "run_test_raw": 0, "x_type": 0, "y_type": 0, "z_type": 0, "input": 0, "dimens": 0, "set_datafram": 0, "flag": 0, "set_mask_typ": 0, "setter": 0, "ensur": 0, "clash": 0, "kwarg": 0, "partial": 0, "correl": 0, "ordinari": 0, "least": 0, "squar": 0, "ol": 0, "regress": 0, "pearson": 0, "To": 0, "out": 0, "beta_x": 0, "epsilon_": 0, "beta_i": 0, "rho": 0, "left": 0, "r_x": 0, "r_y": 0, "right": 0, "student": 0, "distribut": 0, "d_z": 0, "degre": 0, "freedom": 0, "argument": 0, "coeffici": 0, "eg": 0, "less": 0, "corrected_a": 0, "akaik": 0, "criterion": 0, "modulo": 0, "constant": 0, "leav": 0, "cross": 0, "asymptot": 0, "aic": 0, "target": 0, "robustparcorr": 0, "paranorm": 0, "transform": 0, "margin": 0, "firstli": 0, "phi": 0, "circ": 0, "hat": 0, "f": 0, "quantil": 0, "empir": 0, "idea": 0, "stem": 0, "literatur": 0, "nonparanorm": 0, "han": 0, "liu": 0, "john": 0, "lafferti": 0, "larri": 0, "wasserman": 0, "semiparametr": 0, "mach": 0, "2295": 0, "2328": 0, "2009": 0, "fang": 0, "ming": 0, "yuan": 0, "gaussian": 0, "copula": 0, "ann": 0, "40": 0, "2293": 0, "2326": 0, "2012a": 0, "naftali": 0, "harri": 0, "mathia": 0, "drton": 0, "machin": 0, "research": 0, "14": 0, "3365": 0, "3383": 0, "2013": 0, "afterward": 0, "now": 0, "uniform": 0, "plu": 0, "trafo2norm": 0, "thre": 0, "1e": 0, "code": 0, "small": 0, "too": 0, "close": 0, "similarli": 0, "gpdc": 0, "null_dist_filenam": 0, "gp_param": 0, "distanc": 0, "gp": 0, "scikit": 0, "kernel": 0, "let": 0, "them": 0, "automat": 0, "cython": 0, "null": 0, "precomput": 0, "generate_and_save_nulldist": 0, "npz": 0, "file": 0, "f_x": 0, "f_y": 0, "sim": 0, "sigma": 0, "bandwidth": 0, "optimz": 0, "sklearn": 0, "r": 0, "pre": 0, "otherwis": 0, "dure": 0, "gabor": 0, "szeke": 0, "maria": 0, "l": 0, "rizzo": 0, "nail": 0, "bakirov": 0, "arxiv": 0, "0803": 0, "4101": 0, "otion": 0, "path": 0, "gaussianprocessregressor": 0, "gaussprocreg": 0, "sample_s": 0, "pairwis": 0, "generate_nulldist": 0, "dist": 0, "disk": 0, "add": 0, "gauss_pr": 0, "null_dist": 0, "name": 0, "add_to_null_dist": 0, "just": 0, "load": 0, "nulldist": 0, "wide": 0, "rang": 0, "beforehand": 0, "log": 0, "likelihood": 0, "neg": 0, "gpdctorch": 0, "gpytorch": 0, "dcor": 0, "pip": 0, "gaussprocregtorch": 0, "knn": 0, "shuffle_neighbor": 0, "rank": 0, "worker": 0, "come": 0, "joint": 0, "densiti": 0, "frenzel": 0, "pomp": 0, "lett": 0, "99": 0, "204101": 0, "2007": 0, "suitabl": 0, "cmisymb": 0, "cmi": 0, "iint": 0, "frac": 0, "cdot": 0, "dx": 0, "dy": 0, "dz": 0, "psi": 0, "sum_": 0, "k_": 0, "digamma": 0, "hyper": 0, "cube": 0, "subspac": 0, "view": 0, "smooth": 0, "unlik": 0, "bia": 0, "varianc": 0, "slightli": 0, "while": 0, "quantiti": 0, "scipi": 0, "spatial": 0, "ckdtree": 0, "fraction": 0, "henc": 0, "within": 0, "surrog": 0, "processor": 0, "get_conditional_entropi": 0, "entropi": 0, "h": 0, "prl": 0, "overwrit": 0, "preserv": 0, "permut": 0, "those": 0, "x_i": 0, "x_j": 0, "z_j": 0, "niehgbor": 0, "z_i": 0, "n_symb": 0, "categor": 0, "symbol": 0, "local": 0, "mix": 0, "cmiknnmix": 0, "conting": 0, "crosstab": 0, "approxim": 0, "probabl": 0, "mass": 0, "drawn": 0, "without": 0, "oracleci": 0, "observed_var": 0, "selection_var": 0, "graph_is_mag": 0, "oracl": 0, "link_coeff": 0, "ground": 0, "truth": 0, "unit": 0, "altern": 0, "digest": 0, "func": 0, "definin": 0, "check_shortest_path": 0, "starts_with": 0, "ends_with": 0, "forbidden_nod": 0, "only_non_causal_path": 0, "check_optimality_cond": 0, "optimality_cond_des_ym": 0, "optimality_cond_i": 0, "return_path": 0, "non_rep": 0, "au_i": 0, "au_j": 0, "alreadi": 0, "truncat": 0, "breadth": 0, "start": 0, "end": 0, "veri": 0, "long": 0, "constrain": 0, "has_path": 0, "ancestr": 0, "compute_ancestor": 0, "anc_all_x": 0, "anc_all_i": 0, "anc_all_z": 0, "arrohead": 0, "compat": 0, "get_graph_from_link": 0, "mag": 0, "admg": 0, "project": 0, "oper": 0, "pearl": 0, "get_links_from_graph": 0, "case": 0, "ad": 0, "canon": 0, "richardson": 0, "spirt": 0, "2002": 0, "support": 0, "evalu": 0, "Not": 0, "dummi": 0, "parcorrmult": 0, "correlation_typ": 0, "max_corr": 0, "multivari": 0, "mult_corr": 0, "gsquar": 0, "chi2": 0, "2000": 0, "stat": 0, "formula": 0, "bishop": 0, "fienberg": 0, "holland": 0, "1975": 0, "theori": 0, "mit": 0, "cambridg": 0, "p_valu": 0, "chi": 0, "dof": 0, "use_local_knn": [], "scale_rang": [], "perc": [], "metric": [], "chang": [], "norm": [], "optin": [], "three": [], "mesner": [], "shalizi": [], "infinit": [], "categori": [], "fpinf": [], "zao": [], "2022": [], "weight": 0, "param": [], "get_dependence_measure_m": [], "messner": [], "get_dependence_measure_condit": [], "get_dependence_measure_zeroinf": [], "alter": [], "coincid": [], "causaleffect": 0, "graph_typ": 0, "hidden_vari": 0, "check_sm_overlap": 0, "backdoor": 0, "variou": 0, "wright": 0, "depth": 0, "introduct": 0, "8485ae387a981d783f8764e508151cd9": 0, "caus": 0, "overlap": 0, "check_xys_path": 0, "proper": 0, "clean": 0, "check_optim": 0, "thm": 0, "fit_bootstrap_of": 0, "method_arg": 0, "boot_sampl": 0, "boot_blocklength": 0, "construct_arrai": 0, "shift": 0, "bootsrap": 0, "predict_bootstrap_of": 0, "draw": 0, "fit_total_effect": 0, "adjustment_set": 0, "conditional_estim": 0, "data_transform": 0, "ignore_identifi": 0, "linear_model": 0, "linearregress": 0, "oset": 0, "minimized_optim": 0, "minim": 0, "colliders_minimized_optim": 0, "nest": 0, "preprocess": 0, "prior": 0, "standardscal": 0, "simpl": 0, "user": 0, "ignor": 0, "fit_wright_effect": 0, "considerd": 0, "complic": 0, "static": 0, "get_graph_from_dict": 0, "helper": 0, "convert": 0, "get_medi": 0, "get_optimal_set": 0, "alternative_condit": 0, "return_separate_set": 0, "theorem": 0, "colliders_onli": 0, "invalid": 0, "collider_par": 0, "oset_": 0, "return_individual_bootstrap_result": 0, "confidence_interv": 0, "predict_total_effect": 0, "intervention_data": 0, "conditions_data": 0, "pred_param": 0, "return_further_pred_result": 0, "aggregation_func": 0, "transform_interventions_and_predict": 0, "len": 0, "predictor": 0, "entir": 0, "invers": 0, "estimate_confid": 0, "predict_wright_effect": 0, "conditional_model": 0, "care": 0, "inverse_transform": 0, "get_coef": 0, "get_fit": [], "selected_vari": 0, "return_data": 0, "integ": 0, "fit_result": 0, "get_general_fitted_model": 0, "get_general_predict": 0, "get_val_matrix": 0, "fit_model": 0, "give": 0, "deriv": 0, "linearmedi": 0, "model_param": 0, "etc": 0, "ce": 0, "mce": 0, "ac": 0, "suscept": 0, "amc": 0, "chain": 0, "x_t": 0, "eta": 0, "y_t": 0, "x_": 0, "z_t": 0, "y_": 0, "25": 0, "37": 0, "true_par": 0, "med": 0, "get_coeff": 0, "get_c": 0, "get_mc": 0, "get_all_ac": 0, "get_all_amc": 0, "250648072987": 0, "36897445": 0, "25718002": 0, "24365041": 0, "38250406": 0, "12532404": 0, "accept": 0, "fit_model_bootstrap": 0, "boostrap": 0, "version": 0, "cube_root": 0, "from_autocorrel": 0, "generate_noise_from": 0, "root": 0, "get_ac": 0, "lag_mod": 0, "absmax": 0, "exclude_i": 0, "eman": 0, "all_lag": 0, "itself": 0, "exclude_j": 0, "affect": 0, "previou": 0, "exclude_k": 0, "exclude_self_effect": 0, "themselv": 0, "get_amc": 0, "get_bootstrap_of": 0, "function_arg": 0, "incl": 0, "get_ce_max": 0, "get_conditional_mc": 0, "notk": 0, "go": 0, "get_joint_c": 0, "count": 0, "joint_c": 0, "get_joint_ce_matrix": 0, "taui": 0, "tauj": 0, "stand": 0, "joint_ce_matrix": 0, "2d": 0, "get_joint_mc": 0, "joint_mc": 0, "minu": 0, "get_mediation_graph_data": 0, "include_neighbor": 0, "path_val_matrix": 0, "path_node_arrai": 0, "tsg_path_val_matrix": 0, "graph_data": 0, "color": 0, "get_tsg": 0, "link_matrix": 0, "analyz": 0, "sig_thr": 0, "array_lik": 0, "tsg": 0, "symmetr": 0, "error": 0, "net_to_tsg": 0, "translat": 0, "tsg_to_net": 0, "train_indic": 0, "test_indic": 0, "prediction_model": 0, "train": 0, "target_predictor": 0, "selected_target": 0, "instanc": 0, "get_predictor": 0, "steps_ahead": 0, "get_test_arrai": 0, "get_train_arrai": 0, "new_data": 0, "cut": 0, "off": 0, "below": 0, "missing_flag": 0, "vector_var": 0, "var_nam": 0, "datatim": 0, "analysis_mod": 0, "singl": 0, "reference_point": 0, "time_offset": 0, "remove_missing_upto_maxlag": 0, "OR": 0, "whose": 0, "t_i": 0, "vari": 0, "dismiss": 0, "slice": 0, "occur": 0, "bias": 0, "section": 0, "supplement": 0, "match": 0, "enumer": 0, "vector": 0, "compon": 0, "pars": 0, "timelabel": 0, "1d": 0, "rel": 0, "share": 0, "axi": 0, "creat": 0, "t_max": 0, "largest_time_step": 0, "bigger": 0, "At": 0, "align": 0, "agre": 0, "offset": 0, "_initialized_from": 0, "3d": 0, "map": 0, "represent": 0, "identifii": 0, "wai": 0, "max_": 0, "largest": 0, "latest": 0, "random_st": 0, "extraz": 0, "return_cleaned_xyz": 0, "do_check": 0, "remove_overlap": 0, "n_en": 0, "var1": 0, "var2": 0, "varlag": 0, "assign": 0, "duplic": 0, "saniti": 0, "thei": 0, "2xtau_max_futur": 0, "t_miss": 0, "principl": 0, "would": 0, "n_sampl": 0, "print_array_info": 0, "info": 0, "typic": 0, "varx": 0, "get_acf": 0, "autocorr": 0, "get_block_length": 0, "approach": 0, "mader": 0, "eq": 0, "pfeifer": 0, "2005": 0, "multidimension": 0, "jointli": 0, "curv": 0, "fail": 0, "limit": 0, "neurosci": 0, "volum": 0, "219": 0, "issu": 0, "15": 0, "octob": 0, "285": 0, "291": 0, "block_len": 0, "lowhighpass_filt": 0, "cutperiod": 0, "pass_period": 0, "low": 0, "butterworth": 0, "filter": 0, "twice": 0, "onc": 0, "forward": 0, "backward": 0, "period": 0, "act": 0, "ordinal_patt_arrai": 0, "array_mask": 0, "symbolifi": 0, "ordin": 0, "pattern": 0, "uniqu": 0, "There": 0, "faculti": 0, "symb_arrai": 0, "shorter": 0, "2011": 0, "coupl": 0, "83": 0, "12": 0, "051122": 0, "label": 0, "embed": 0, "patt": 0, "patt_mask": 0, "patt_tim": 0, "quantile_bin_arrai": 0, "bin": 0, "smooth_width": 0, "width": 0, "heavisid": 0, "rtype": 0, "nois": 0, "intervention_typ": 0, "hard": 0, "time_bin_with_mask": 0, "time_bin_length": 0, "bindata": 0, "outer": 0, "cdf": 0, "normal_data": 0, "parents_neighbors_coeff": 0, "inv_inno_cov": 0, "initial_valu": 0, "autoregress": 0, "innov": 0, "var_network": 0, "possibli": 0, "friendli": 0, "weighted_avg_and_std": 0, "deviat": 0, "std": 0, "check_stationar": 0, "stationari": 0, "dag_to_link": 0, "generate_structural_causal_process": 0, "dependency_func": 0, "dependency_coeff": 0, "auto_coeff": 0, "contemp_fract": 0, "noise_dist": 0, "noise_mean": 0, "noise_sigma": 0, "noise_se": 0, "randomli": 0, "characterist": 0, "frawn": 0, "arbitrari": 0, "factor": 0, "weibul": 0, "beta": 0, "links_to_graph": 0, "transient_fract": 0, "interven": 0, "randn": 0, "un": 0, "soft": 0, "percentag": 0, "transient": 0, "realiz": 0, "nonstationari": [], "infin": 0, "lag1": 0, "coef1": 0, "lag2": 0, "coef2": 0, "nonzero": 0, "covari": 0, "inno_cov": 0, "debug": 0, "no_nois": 0, "disabl": 0, "max_delai": 0, "true_parent_neighbor": 0, "id": 0, "parent_node_id": 0, "time_lag": 0, "plot_densityplot": 0, "setup_arg": 0, "add_densityplot_arg": 0, "selected_dataset": 0, "setup_density_matrix": 0, "add_densityplot": 0, "diagon": 0, "show": 0, "seaborn": 0, "doc": 0, "overlaid": 0, "plot_graph": 0, "fig_ax": 0, "figsiz": 0, "save_nam": 0, "link_colorbar_label": 0, "node_colorbar_label": 0, "auto": 0, "link_width": 0, "link_attribut": 0, "node_po": 0, "arrow_linewidth": 0, "vmin_edg": 0, "vmax_edg": 0, "edge_tick": 0, "cmap_edg": 0, "rdbu_r": 0, "vmin_nod": 0, "vmax_nod": 0, "node_tick": 0, "cmap_nod": 0, "orrd": 0, "node_s": 0, "node_aspect": 0, "arrowhead_s": 0, "20": 0, "curved_radiu": 0, "label_fonts": 0, "tick_label_s": 0, "node_label_s": 0, "link_label_fonts": 0, "lag_arrai": 0, "network_lower_bound": 0, "show_colorbar": 0, "inner_edge_styl": 0, "dash": 0, "special_nod": 0, "straight": 0, "arrow": 0, "maxim": 0, "magnitud": 0, "coordin": 0, "via": 0, "ax": 0, "basemap": 0, "30": 0, "linewidth": 0, "colorbar": 0, "tick": 0, "colormap": 0, "ratio": 0, "heigth": 0, "varibl": 0, "head": 0, "fancyarrowpatch": 0, "curvatur": 0, "fontsiz": 0, "opac": 0, "arang": 0, "vertic": 0, "space": 0, "plot_lagfunc": 0, "add_lagfunc_arg": 0, "lagfunct": 0, "setup_matrix": 0, "add_lagfunc": 0, "plot_mediation_graph": 0, "standard_color_link": 0, "black": 0, "standard_color_nod": 0, "lightgrei": 0, "visual": 0, "plot_mediation_time_series_graph": 0, "label_space_left": 0, "label_space_top": 0, "top": 0, "bottom": 0, "horizont": 0, "alloc": 0, "plot_scatterplot": 0, "add_scatterplot_arg": 0, "scatter": 0, "setup_scatter_matrix": 0, "add_scatterplot": 0, "plot_time_series_graph": 0, "auxiliari": 0, "auxadmg": 0, "style": 0, "inner_edg": 0, "special": 0, "plot_timeseri": 0, "var_unit": 0, "time_label": 0, "grey_masked_sampl": 0, "show_meanlin": 0, "data_linewidth": 0, "skip_ticks_data_x": 0, "skip_ticks_data_i": 0, "adjust_plot": 0, "stack": 0, "panel": 0, "subplot": 0, "fig": 0, "pyplot": 0, "grei": 0, "fill": 0, "skip": 0, "tickmark": 0, "plot_tsg": 0, "anc_x": 0, "anc_i": 0, "anc_xi": 0, "help": 0, "legend_width": 0, "legend_fonts": 0, "plot_gridlin": 0, "setup": 0, "legend": 0, "grid": 0, "matrix_lag": 0, "label_color": 0, "snskdeplot_arg": 0, "cmap": 0, "snskdeplot_diagonal_arg": 0, "depict": 0, "v": 0, "sn": 0, "kdeplot": 0, "adjustfig": 0, "show_label": 0, "x_base": 0, "y_base": 0, "lag_unit": 0, "comparison": 0, "two_sided_thr": 0, "marker": 0, "markers": 0, "po": 0, "matplotlib": 0, "savefig": 0, "scatterplot": 0, "That": 0, "edgemark": 0, "old": 0, "lag_i": 0, "background": 0, "knowledg": 0, "claim": 0, "i_t": 0, "neither": 0, "nor": 0, "impos": 0, "No": 0, "aumax": 0, "au_max": 0, "au": 0, "st": 0, "independence_tests_bas": 0, "robust_parcorr": 0, "gpdc_torch": 0, "infer": 0, "oracle_conditional_independ": 0, "parcorr_mult": 0, "parcorr_wl": 0, "parcorrwl": 0, "gt_std_matrix": 0, "expert_knowledg": 0, "heteroskedast": 0, "window_s": 0, "robustifi": 0, "wl": 0, "known": 0, "neighbour": 0, "homoskedast": 0, "term": 0, "nb_node": 0, "expert": 0, "regressionci": 0, "flexibl": 0, "notion": 0, "devianc": 0, "emploi": 0, "significantli": 0, "hypothes": 0, "univari": 0, "moreov": 0, "multinomi": 0, "fit_full_model": 0, "nonvalid": 0, "show_marginal_densities_on_diagon": 0, "show_autodependency_lag": 0, "write_csv": 0, "digit": 0, "write": 0, "csv": 0}, "objects": {"tigramite.causal_effects": [[0, 0, 1, "", "CausalEffects"]], "tigramite.causal_effects.CausalEffects": [[0, 1, 1, "", "check_XYS_paths"], [0, 1, 1, "", "check_optimality"], [0, 1, 1, "", "fit_bootstrap_of"], [0, 1, 1, "", "fit_total_effect"], [0, 1, 1, "", "fit_wright_effect"], [0, 1, 1, "", "get_graph_from_dict"], [0, 1, 1, "", "get_mediators"], [0, 1, 1, "", "get_optimal_set"], [0, 1, 1, "", "predict_bootstrap_of"], [0, 1, 1, "", "predict_total_effect"], [0, 1, 1, "", "predict_wright_effect"]], "tigramite": [[0, 2, 0, "-", "data_processing"], [0, 2, 0, "-", "plotting"]], "tigramite.data_processing": [[0, 0, 1, "", "DataFrame"], [0, 3, 1, "", "get_acf"], [0, 3, 1, "", "get_block_length"], [0, 3, 1, "", "lowhighpass_filter"], [0, 3, 1, "", "ordinal_patt_array"], [0, 3, 1, "", "quantile_bin_array"], [0, 3, 1, "", "smooth"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "time_bin_with_mask"], [0, 3, 1, "", "trafo2normal"], [0, 3, 1, "", "var_process"], [0, 3, 1, "", "weighted_avg_and_std"]], "tigramite.data_processing.DataFrame": [[0, 1, 1, "", "construct_array"], [0, 1, 1, "", "print_array_info"]], "tigramite.independence_tests.cmiknn": [[0, 0, 1, "", "CMIknn"]], "tigramite.independence_tests.cmiknn.CMIknn": [[0, 1, 1, "", "get_conditional_entropy"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.cmisymb": [[0, 0, 1, "", "CMIsymb"]], "tigramite.independence_tests.cmisymb.CMIsymb": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc": [[0, 0, 1, "", "GPDC"]], "tigramite.independence_tests.gpdc.GPDC": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc_torch": [[0, 0, 1, "", "GPDCtorch"]], "tigramite.independence_tests.gpdc_torch.GPDCtorch": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gsquared": [[0, 0, 1, "", "Gsquared"]], "tigramite.independence_tests.gsquared.Gsquared": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.independence_tests_base": [[0, 0, 1, "", "CondIndTest"]], "tigramite.independence_tests.independence_tests_base.CondIndTest": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_bootstrap_confidence"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_fixed_thres_significance"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 1, 1, "", "get_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "print_info"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "run_test_raw"], [0, 1, 1, "", "set_dataframe"], [0, 1, 1, "", "set_mask_type"]], "tigramite.independence_tests.oracle_conditional_independence": [[0, 0, 1, "", "OracleCI"]], "tigramite.independence_tests.oracle_conditional_independence.OracleCI": [[0, 1, 1, "", "check_shortest_path"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_graph_from_links"], [0, 1, 1, "", "get_links_from_graph"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.parcorr": [[0, 0, 1, "", "ParCorr"]], "tigramite.independence_tests.parcorr.ParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.parcorr_mult": [[0, 0, 1, "", "ParCorrMult"]], "tigramite.independence_tests.parcorr_mult.ParCorrMult": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "mult_corr"]], "tigramite.independence_tests.parcorr_wls": [[0, 0, 1, "", "ParCorrWLS"]], "tigramite.independence_tests.parcorr_wls.ParCorrWLS": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"]], "tigramite.independence_tests.regressionCI": [[0, 0, 1, "", "RegressionCI"]], "tigramite.independence_tests.regressionCI.RegressionCI": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.robust_parcorr": [[0, 0, 1, "", "RobustParCorr"]], "tigramite.independence_tests.robust_parcorr.RobustParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "trafo2normal"]], "tigramite.lpcmci": [[0, 0, 1, "", "LPCMCI"]], "tigramite.lpcmci.LPCMCI": [[0, 1, 1, "", "run_lpcmci"]], "tigramite.models": [[0, 0, 1, "", "LinearMediation"], [0, 0, 1, "", "Models"], [0, 0, 1, "", "Prediction"]], "tigramite.models.LinearMediation": [[0, 1, 1, "", "fit_model"], [0, 1, 1, "", "fit_model_bootstrap"], [0, 1, 1, "", "get_ace"], [0, 1, 1, "", "get_acs"], [0, 1, 1, "", "get_all_ace"], [0, 1, 1, "", "get_all_acs"], [0, 1, 1, "", "get_all_amce"], [0, 1, 1, "", "get_amce"], [0, 1, 1, "", "get_bootstrap_of"], [0, 1, 1, "", "get_ce"], [0, 1, 1, "", "get_ce_max"], [0, 1, 1, "", "get_coeff"], [0, 1, 1, "", "get_conditional_mce"], [0, 1, 1, "", "get_joint_ce"], [0, 1, 1, "", "get_joint_ce_matrix"], [0, 1, 1, "", "get_joint_mce"], [0, 1, 1, "", "get_mce"], [0, 1, 1, "", "get_mediation_graph_data"], [0, 1, 1, "", "get_tsg"], [0, 1, 1, "", "get_val_matrix"], [0, 1, 1, "", "net_to_tsg"], [0, 1, 1, "", "tsg_to_net"]], "tigramite.models.Models": [[0, 1, 1, "", "fit_full_model"], [0, 1, 1, "", "get_coefs"], [0, 1, 1, "", "get_general_fitted_model"], [0, 1, 1, "", "get_general_prediction"], [0, 1, 1, "", "get_val_matrix"]], "tigramite.models.Prediction": [[0, 1, 1, "", "fit"], [0, 1, 1, "", "get_predictors"], [0, 1, 1, "", "get_test_array"], [0, 1, 1, "", "get_train_array"], [0, 1, 1, "", "predict"]], "tigramite.pcmci": [[0, 0, 1, "", "PCMCI"]], "tigramite.pcmci.PCMCI": [[0, 5, 1, "", "N"], [0, 5, 1, "", "T"], [0, 5, 1, "", "all_parents"], [0, 1, 1, "", "get_graph_from_pmatrix"], [0, 1, 1, "", "get_lagged_dependencies"], [0, 5, 1, "", "iterations"], [0, 1, 1, "", "print_results"], [0, 1, 1, "", "print_significant_links"], [0, 5, 1, "", "pval_max"], [0, 1, 1, "", "return_parents_dict"], [0, 1, 1, "", "return_significant_links"], [0, 1, 1, "", "run_bivci"], [0, 1, 1, "", "run_fullci"], [0, 1, 1, "", "run_mci"], [0, 1, 1, "", "run_pc_stable"], [0, 1, 1, "", "run_pcalg"], [0, 1, 1, "", "run_pcalg_non_timeseries_data"], [0, 1, 1, "", "run_pcmci"], [0, 1, 1, "", "run_pcmciplus"], [0, 5, 1, "", "val_min"]], "tigramite.plotting": [[0, 3, 1, "", "plot_densityplots"], [0, 3, 1, "", "plot_graph"], [0, 3, 1, "", "plot_lagfuncs"], [0, 3, 1, "", "plot_mediation_graph"], [0, 3, 1, "", "plot_mediation_time_series_graph"], [0, 3, 1, "", "plot_scatterplots"], [0, 3, 1, "", "plot_time_series_graph"], [0, 3, 1, "", "plot_timeseries"], [0, 3, 1, "", "plot_tsg"], [0, 0, 1, "", "setup_density_matrix"], [0, 0, 1, "", "setup_matrix"], [0, 0, 1, "", "setup_scatter_matrix"], [0, 3, 1, "", "write_csv"]], "tigramite.plotting.setup_density_matrix": [[0, 1, 1, "", "add_densityplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.plotting.setup_matrix": [[0, 1, 1, "", "add_lagfuncs"], [0, 1, 1, "", "savefig"]], "tigramite.plotting.setup_scatter_matrix": [[0, 1, 1, "", "add_scatterplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.toymodels": [[0, 2, 0, "-", "structural_causal_processes"]], "tigramite.toymodels.structural_causal_processes": [[0, 3, 1, "", "check_stationarity"], [0, 3, 1, "", "dag_to_links"], [0, 3, 1, "", "generate_structural_causal_process"], [0, 3, 1, "", "links_to_graph"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "var_process"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:module", "3": "py:function", "4": "py:property", "5": "py:attribute"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "module", "Python module"], "3": ["py", "function", "Python function"], "4": ["py", "property", "Python property"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"welcom": 0, "tigramit": 0, "": 0, "document": 0, "indic": 0, "tabl": 0, "pcmci": 0, "lpcmci": 0, "independence_test": 0, "condit": 0, "independ": 0, "test": 0, "causal_effect": 0, "causal": 0, "effect": 0, "analysi": 0, "model": 0, "time": 0, "seri": 0, "mediat": 0, "predict": 0, "data_process": 0, "data": 0, "process": 0, "function": 0, "toymodel": 0, "toi": 0, "gener": 0, "plot": 0}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 57}, "alltitles": {"Welcome to Tigramite\u2019s documentation!": [[0, "welcome-to-tigramite-s-documentation"]], "Indices and tables": [[0, "indices-and-tables"], [0, "id36"]], "TIGRAMITE": [[0, "tigramite"]], "tigramite.pcmci: PCMCI": [[0, "tigramite-pcmci-pcmci"]], "tigramite.lpcmci: LPCMCI": [[0, "tigramite-lpcmci-lpcmci"]], "tigramite.independence_tests: Conditional independence tests": [[0, "tigramite-independence-tests-conditional-independence-tests"]], "tigramite.causal_effects: Causal Effect analysis": [[0, "tigramite-causal-effects-causal-effect-analysis"]], "tigramite.models: Time series modeling, mediation, and prediction": [[0, "tigramite-models-time-series-modeling-mediation-and-prediction"]], "tigramite.data_processing: Data processing functions": [[0, "module-tigramite.data_processing"]], "tigramite.toymodels: Toy model generators": [[0, "module-tigramite.toymodels.structural_causal_processes"]], "tigramite.plotting: Plotting functions": [[0, "module-tigramite.plotting"]]}, "indexentries": {"cmiknn (class in tigramite.independence_tests.cmiknn)": [[0, "tigramite.independence_tests.cmiknn.CMIknn"]], "cmisymb (class in tigramite.independence_tests.cmisymb)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb"]], "causaleffects (class in tigramite.causal_effects)": [[0, "tigramite.causal_effects.CausalEffects"]], "condindtest (class in tigramite.independence_tests.independence_tests_base)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest"]], "dataframe (class in tigramite.data_processing)": [[0, "tigramite.data_processing.DataFrame"]], "gpdc (class in tigramite.independence_tests.gpdc)": [[0, "tigramite.independence_tests.gpdc.GPDC"]], "gpdctorch (class in tigramite.independence_tests.gpdc_torch)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch"]], "gsquared (class in tigramite.independence_tests.gsquared)": [[0, "tigramite.independence_tests.gsquared.Gsquared"]], "lpcmci (class in tigramite.lpcmci)": [[0, "tigramite.lpcmci.LPCMCI"]], "linearmediation (class in tigramite.models)": [[0, "tigramite.models.LinearMediation"]], "models (class in tigramite.models)": [[0, "tigramite.models.Models"]], "n (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.N"]], "oracleci (class in tigramite.independence_tests.oracle_conditional_independence)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI"]], "pcmci (class in tigramite.pcmci)": [[0, "tigramite.pcmci.PCMCI"]], "parcorr (class in tigramite.independence_tests.parcorr)": [[0, "tigramite.independence_tests.parcorr.ParCorr"]], "parcorrmult (class in tigramite.independence_tests.parcorr_mult)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult"]], "parcorrwls (class in tigramite.independence_tests.parcorr_wls)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS"]], "prediction (class in tigramite.models)": [[0, "tigramite.models.Prediction"]], "regressionci (class in tigramite.independence_tests.regressionci)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI"]], "robustparcorr (class in tigramite.independence_tests.robust_parcorr)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr"]], "t (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.T"]], "add_densityplot() (tigramite.plotting.setup_density_matrix method)": [[0, "tigramite.plotting.setup_density_matrix.add_densityplot"]], "add_lagfuncs() (tigramite.plotting.setup_matrix method)": [[0, "tigramite.plotting.setup_matrix.add_lagfuncs"]], "add_scatterplot() (tigramite.plotting.setup_scatter_matrix method)": [[0, "tigramite.plotting.setup_scatter_matrix.add_scatterplot"]], "adjustfig() (tigramite.plotting.setup_density_matrix method)": [[0, "tigramite.plotting.setup_density_matrix.adjustfig"]], "adjustfig() (tigramite.plotting.setup_scatter_matrix method)": [[0, "tigramite.plotting.setup_scatter_matrix.adjustfig"]], "all_parents (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.all_parents"]], "check_xys_paths() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.check_XYS_paths"]], "check_optimality() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.check_optimality"]], "check_shortest_path() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.check_shortest_path"]], "check_stationarity() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.check_stationarity"]], "construct_array() (tigramite.data_processing.dataframe method)": [[0, "tigramite.data_processing.DataFrame.construct_array"]], "dag_to_links() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.dag_to_links"]], "fit() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.fit"]], "fit_bootstrap_of() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_bootstrap_of"]], "fit_full_model() (tigramite.models.models method)": [[0, "tigramite.models.Models.fit_full_model"]], "fit_model() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.fit_model"]], "fit_model_bootstrap() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.fit_model_bootstrap"]], "fit_total_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_total_effect"]], "fit_wright_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_wright_effect"]], "generate_and_save_nulldists() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.generate_and_save_nulldists"]], "generate_and_save_nulldists() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.generate_and_save_nulldists"]], "generate_nulldist() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.generate_nulldist"]], "generate_nulldist() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.generate_nulldist"]], "generate_structural_causal_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.generate_structural_causal_process"]], "get_ace() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ace"]], "get_acf() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.get_acf"]], "get_acs() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_acs"]], "get_all_ace() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_ace"]], "get_all_acs() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_acs"]], "get_all_amce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_amce"]], "get_amce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_amce"]], "get_analytic_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_analytic_confidence"]], "get_analytic_significance() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.gsquared.gsquared method)": [[0, "tigramite.independence_tests.gsquared.Gsquared.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_analytic_significance"]], "get_block_length() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.get_block_length"]], "get_bootstrap_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_bootstrap_confidence"]], "get_bootstrap_of() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_bootstrap_of"]], "get_ce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ce"]], "get_ce_max() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ce_max"]], "get_coeff() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_coeff"]], "get_coefs() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_coefs"]], "get_conditional_entropy() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_conditional_entropy"]], "get_conditional_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_conditional_mce"]], "get_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_confidence"]], "get_confidence() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_confidence"]], "get_dependence_measure() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.cmisymb.cmisymb method)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gsquared.gsquared method)": [[0, "tigramite.independence_tests.gsquared.Gsquared.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_dependence_measure"]], "get_fixed_thres_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_fixed_thres_significance"]], "get_general_fitted_model() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_general_fitted_model"]], "get_general_prediction() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_general_prediction"]], "get_graph_from_dict() (tigramite.causal_effects.causaleffects static method)": [[0, "tigramite.causal_effects.CausalEffects.get_graph_from_dict"]], "get_graph_from_links() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_graph_from_links"]], "get_graph_from_pmatrix() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.get_graph_from_pmatrix"]], "get_joint_ce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_ce"]], "get_joint_ce_matrix() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_ce_matrix"]], "get_joint_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_mce"]], "get_lagged_dependencies() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.get_lagged_dependencies"]], "get_links_from_graph() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_links_from_graph"]], "get_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_mce"]], "get_measure() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_measure"]], "get_measure() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_measure"]], "get_mediation_graph_data() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_mediation_graph_data"]], "get_mediators() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.get_mediators"]], "get_model_selection_criterion() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_model_selection_criterion"]], "get_optimal_set() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.get_optimal_set"]], "get_predictors() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_predictors"]], "get_shuffle_significance() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.cmisymb.cmisymb method)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_shuffle_significance"]], "get_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_significance"]], "get_test_array() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_test_array"]], "get_train_array() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_train_array"]], "get_tsg() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_tsg"]], "get_val_matrix() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_val_matrix"]], "get_val_matrix() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_val_matrix"]], "iterations (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.iterations"]], "links_to_graph() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.links_to_graph"]], "lowhighpass_filter() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.lowhighpass_filter"]], "measure (tigramite.independence_tests.cmiknn.cmiknn property)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.measure"]], "measure (tigramite.independence_tests.cmisymb.cmisymb property)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.measure"]], "measure (tigramite.independence_tests.gpdc.gpdc property)": [[0, "tigramite.independence_tests.gpdc.GPDC.measure"]], "measure (tigramite.independence_tests.gpdc_torch.gpdctorch property)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.measure"]], "measure (tigramite.independence_tests.gsquared.gsquared property)": [[0, "tigramite.independence_tests.gsquared.Gsquared.measure"]], "measure (tigramite.independence_tests.independence_tests_base.condindtest property)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.measure"]], "measure (tigramite.independence_tests.oracle_conditional_independence.oracleci property)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.measure"]], "measure (tigramite.independence_tests.parcorr.parcorr property)": [[0, "tigramite.independence_tests.parcorr.ParCorr.measure"]], "measure (tigramite.independence_tests.parcorr_mult.parcorrmult property)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.measure"]], "measure (tigramite.independence_tests.regressionci.regressionci property)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.measure"]], "measure (tigramite.independence_tests.robust_parcorr.robustparcorr property)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.measure"]], "module": [[0, "module-tigramite.data_processing"], [0, "module-tigramite.plotting"], [0, "module-tigramite.toymodels.structural_causal_processes"]], "mult_corr() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.mult_corr"]], "net_to_tsg() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.net_to_tsg"]], "ordinal_patt_array() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.ordinal_patt_array"]], "plot_densityplots() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_densityplots"]], "plot_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_graph"]], "plot_lagfuncs() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_lagfuncs"]], "plot_mediation_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_mediation_graph"]], "plot_mediation_time_series_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_mediation_time_series_graph"]], "plot_scatterplots() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_scatterplots"]], "plot_time_series_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_time_series_graph"]], "plot_timeseries() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_timeseries"]], "plot_tsg() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_tsg"]], "predict() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.predict"]], "predict_bootstrap_of() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_bootstrap_of"]], "predict_total_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_total_effect"]], "predict_wright_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_wright_effect"]], "print_array_info() (tigramite.data_processing.dataframe method)": [[0, "tigramite.data_processing.DataFrame.print_array_info"]], "print_info() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.print_info"]], "print_results() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.print_results"]], "print_significant_links() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.print_significant_links"]], "pval_max (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.pval_max"]], "quantile_bin_array() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.quantile_bin_array"]], "return_parents_dict() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.return_parents_dict"]], "return_significant_links() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.return_significant_links"]], "run_bivci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_bivci"]], "run_fullci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_fullci"]], "run_lpcmci() (tigramite.lpcmci.lpcmci method)": [[0, "tigramite.lpcmci.LPCMCI.run_lpcmci"]], "run_mci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_mci"]], "run_pc_stable() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pc_stable"]], "run_pcalg() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcalg"]], "run_pcalg_non_timeseries_data() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcalg_non_timeseries_data"]], "run_pcmci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcmci"]], "run_pcmciplus() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcmciplus"]], "run_test() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.run_test"]], "run_test() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.run_test"]], "run_test_raw() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.run_test_raw"]], "savefig() (tigramite.plotting.setup_matrix method)": [[0, "tigramite.plotting.setup_matrix.savefig"]], "set_dataframe() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.set_dataframe"]], "set_dataframe() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.set_dataframe"]], "set_dataframe() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.set_dataframe"]], "set_mask_type() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.set_mask_type"]], "setup_density_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_density_matrix"]], "setup_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_matrix"]], "setup_scatter_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_scatter_matrix"]], "smooth() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.smooth"]], "structural_causal_process() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.structural_causal_process"]], "structural_causal_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.structural_causal_process"]], "tigramite.data_processing": [[0, "module-tigramite.data_processing"]], "tigramite.plotting": [[0, "module-tigramite.plotting"]], "tigramite.toymodels.structural_causal_processes": [[0, "module-tigramite.toymodels.structural_causal_processes"]], "time_bin_with_mask() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.time_bin_with_mask"]], "trafo2normal() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.trafo2normal"]], "trafo2normal() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.trafo2normal"]], "tsg_to_net() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.tsg_to_net"]], "val_min (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.val_min"]], "var_process() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.var_process"]], "var_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.var_process"]], "weighted_avg_and_std() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.weighted_avg_and_std"]], "write_csv() (in module tigramite.plotting)": [[0, "tigramite.plotting.write_csv"]]}}) \ No newline at end of file diff --git a/docs/_build/index.html b/docs/_build/index.html index d23db7a6..38987cf5 100644 --- a/docs/_build/index.html +++ b/docs/_build/index.html @@ -4,14 +4,16 @@ - + Welcome to Tigramite’s documentation! — Tigramite 5.2 documentation + + + - @@ -48,6 +50,7 @@

TIGRAMITEGithub repo

Tigramite is a causal time series analysis python package. It allows to efficiently estimate causal graphs from high-dimensional time series datasets (causal discovery) and to use these graphs for robust forecasting and the estimation and prediction of direct, total, and mediated effects. Causal discovery is based on linear as well as non-parametric conditional independence tests applicable to discrete or continuously-valued time series. Also includes functions for high-quality plots of the results. Please cite the following papers depending on which method you use:

    +
  • Overview: Runge, J., Gerhardus, A., Varando, G. et al. Causal inference for time series. Nat Rev Earth Environ (2023). https://doi.org/10.1038/s43017-023-00431-y

  • PCMCI: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019). https://advances.sciencemag.org/content/5/11/eaau4996

  • PCMCI+: J. Runge (2020): Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, AUAI Press, 2020. http://auai.org/uai2020/proceedings/579_main_paper.pdf

  • LPCMCI: Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders Advances in Neural Information Processing Systems, 2020, 33. https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html

  • @@ -176,7 +179,6 @@

    hypothetical interventions, you may better look at the causal effect estimation functionality of Tigramite.

    References

    -
    Parameters:
      @@ -286,7 +287,7 @@

      Parameters:
        -
      • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is +

      • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is not ‘none’.

      • alpha_level (float, optional (default: 0.05)) – Significance level at which the p_matrix is thresholded to get graph.

      • @@ -414,7 +415,7 @@

        Parameters:
          -
        • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

        • +
        • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

        • val_matrix (array-like) – Matrix of test statistic values. Must be of shape (N, N, tau_max + 1).

        • include_lagzero_parents (bool (default: False)) – Whether the dictionary should also return parents at lag @@ -614,7 +615,7 @@

          Must be greater zero.

        • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

        • save_iterations (bool, default: False) – Whether to save iteration step results such as conditions used.

        • -
        • pc_alpha (float or list of floats, default: [0.05, 0.1, 0.2, ..., 0.5]) – Significance level in algorithm. If a list or None is passed, the +

        • pc_alpha (float or list of floats, default: [0.05, 0.1, 0.2, ..., 0.5]) – Significance level in algorithm. If a list or None is passed, the pc_alpha level is optimized for every variable across the given pc_alpha values using the score computed in cond_ind_test.get_model_selection_criterion().

        • @@ -691,7 +692,7 @@

        • graph (array of shape [N, N, tau_max+1]) – Resulting causal graph, see description above for interpretation.

        • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values regarding adjacencies.

        • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values regarding adjacencies.

        • -
        • sepset (dictionary) – Separating sets. See paper for details.

        • +
        • sepsets (dictionary) – Separating sets. See paper for details.

        • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and ‘conservative’ rules, see paper for details.

        @@ -726,7 +727,7 @@

      • graph (array of shape [N, N, 1]) – Resulting causal graph, see description above for interpretation.

      • val_matrix (array of shape [N, N, 1]) – Estimated matrix of test statistic values regarding adjacencies.

      • p_matrix (array of shape [N, N, 1]) – Estimated matrix of p-values regarding adjacencies.

      • -
      • sepset (dictionary) – Separating sets. See paper for details.

      • +
      • sepsets (dictionary) – Separating sets. See paper for details.

      • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and ‘conservative’ rules, see paper for details.

      @@ -981,7 +982,7 @@

      or the links are assumed absent.

    • tau_min (int, optional (default: 0)) – Minimum time lag to test.

    • tau_max (int, optional (default: 1)) – Maximum time lag. Must be larger or equal to tau_min.

    • -
    • pc_alpha (float or list of floats, default: 0.01) – Significance level in algorithm. If a list or None is passed, the +

    • pc_alpha (float or list of floats, default: 0.01) – Significance level in algorithm. If a list or None is passed, the pc_alpha level is optimized for every graph across the given pc_alpha values ([0.001, 0.005, 0.01, 0.025, 0.05] for None) using the score computed in cond_ind_test.get_model_selection_criterion().

    • @@ -1015,7 +1016,7 @@

    • graph (array of shape [N, N, tau_max+1]) – Resulting causal graph, see description above for interpretation.

    • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values regarding adjacencies.

    • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values regarding adjacencies.

    • -
    • sepset (dictionary) – Separating sets. See paper for details.

    • +
    • sepsets (dictionary) – Separating sets. See paper for details.

    • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and ‘conservative’ rules, see paper for details.

    @@ -1033,11 +1034,11 @@

    class tigramite.lpcmci.LPCMCI(dataframe, cond_ind_test, verbosity=0)[source]

    LPCMCI is an algorithm for causal discovery in large-scale times series that allows for latent confounders and -learns lag-specific causal relationships. The algorithm is introduced and explained in: -[1] Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. +learns lag-specific causal relationships. The algorithm is introduced and explained in:

    +

    [1] Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. Advances in Neural Information Processing Systems, 2020, 33. -https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html -NOTE: This method is still EXPERIMENTAL since the default settings of hyperparameters are still being fine-tuned. +https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html

    +

    NOTE: This method is still EXPERIMENTAL since the default settings of hyperparameters are still being fine-tuned. We actually invite feedback on which work best in applications and numerical experiments. The main function, which applies the algorithm, is ‘run_lpcmci’.

    Parameters passed to the constructor: @@ -1259,7 +1260,7 @@

    tigramite.rpcmci: RPCMCI

    -class tigramite.rpcmci.RPCMCI(dataframe, cond_ind_test=None, prediction_model=None, seed=None, verbosity=-1)[source]
    +class tigramite.rpcmci.RPCMCI(dataframe, cond_ind_test=None, prediction_model=None, seed=None, verbosity=- 1)[source]

    RPCMCI class for extracting causal regimes and the associated graphs from time series data.

    Notes

    @@ -1295,7 +1296,7 @@

    -run_rpcmci(num_regimes, max_transitions, switch_thres=0.05, num_iterations=20, max_anneal=10, tau_min=1, tau_max=1, pc_alpha=0.2, alpha_level=0.01, n_jobs=-1)[source]
    +run_rpcmci(num_regimes, max_transitions, switch_thres=0.05, num_iterations=20, max_anneal=10, tau_min=1, tau_max=1, pc_alpha=0.2, alpha_level=0.01, n_jobs=- 1)[source]
    Run RPCMCI method for extracting causal regimes and the associated graphs from

    time series data.

    @@ -1338,7 +1339,7 @@

    Base class:

    -class tigramite.independence_tests.independence_tests_base.CondIndTest(seed=42, mask_type=None, significance='analytic', fixed_thres=0.1, sig_samples=500, sig_blocklength=None, confidence=None, conf_lev=0.9, conf_samples=100, conf_blocklength=None, recycle_residuals=False, verbosity=0)[source]
    +class tigramite.independence_tests.independence_tests_base.CondIndTest(seed=42, mask_type=None, significance='analytic', fixed_thres=None, sig_samples=500, sig_blocklength=None, confidence=None, conf_lev=0.9, conf_samples=100, conf_blocklength=None, recycle_residuals=False, verbosity=0)[source]

    Base class of conditional independence tests.

    Provides useful general functions for different independence tests such as shuffle significance testing and bootstrap confidence estimation. Also @@ -1353,8 +1354,7 @@

    Explained in tutorial on masking and missing values.

  • significance (str, optional (default: 'analytic')) – Type of significance test to use. In this package ‘analytic’, ‘fixed_thres’ and ‘shuffle_test’ are available.

  • -
  • fixed_thres (float, optional (default: 0.1)) – If significance is ‘fixed_thres’, this specifies the threshold for the -absolute value of the dependence measure.

  • +
  • fixed_thres (float, optional (default: 0.1)) – Deprecated.

  • sig_samples (int, optional (default: 500)) – Number of samples for shuffle significance test.

  • sig_blocklength (int, optional (default: None)) – Block length for block-shuffle significance test. If None, the block length is determined from the decay of the autocovariance as @@ -1469,23 +1469,7 @@

    get_fixed_thres_significance(value, fixed_thres)[source]
    -

    Returns signficance for thresholding test.

    -

    Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 else.

    -
    -
    Parameters:
    -
      -
    • value (number) – Value of test statistic for unshuffled estimate.

    • -
    • fixed_thres (number) – Fixed threshold, is made positive.

    • -
    -
    -
    Returns:
    -

    pval – Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 -else.

    -
    -
    Return type:
    -

    bool

    -
    -
    +

    DEPRECATED Returns signficance for thresholding test.

    @@ -1532,44 +1516,6 @@

    should override when possible.

  • -
    -
    -get_significance(val, array, xyz, T, dim, data_type=None, sig_override=None)[source]
    -
    -

    Returns the p-value from whichever significance function is specified -for this test. If an override is used, then it will call a different -function then specified by self.significance

    -
    -
    valfloat

    Test statistic value.

    -
    -
    arrayarray-like

    data array with X, Y, Z in rows and observations in columns

    -
    -
    xyzarray of ints

    XYZ identifier array of shape (dim,).

    -
    -
    Tint

    Sample length

    -
    -
    dimint

    Dimensionality, ie, number of features.

    -
    -
    -
    -
    -
    data_typearray-like
    -

    Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

    -
    -
    -
    sig_overridestring

    Must be in ‘analytic’, ‘shuffle_test’, ‘fixed_thres’

    -
    -
    -
    -
    pvalfloat or numpy.nan

    P-value.

    -
    -
    -
    -
    -
    -
    abstract property measure
    @@ -1584,7 +1530,7 @@

    -run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max')[source]
    +run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None)[source]

    Perform conditional independence test.

    Calls the dependence measure and signficicance test functions. The child classes must specify a function get_dependence_measure and either or @@ -1594,11 +1540,11 @@

    Parameters:
      -
    • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

    • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag.

    • -
    • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

    • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag.

    • -
    • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

    • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag.

    • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size.

    • @@ -1608,20 +1554,24 @@

      which uses the maximum of tau_max and the conditions, which is useful to compare multiple models on the same sample. Last, ‘max_lag’ uses as much samples as possible.

      +
    • alpha_or_thres (float (optional)) – Significance level (if significance=’analytic’ or ‘shuffle_test’) or +threshold (if significance=’fixed_thres’). If given, run_test returns +the test decision dependent=True/False.

    Returns:
    -

    val, pval – The test statistic value and the p-value.

    +

    val, pval, [dependent] – The test statistic value and the p-value. If alpha_or_thres is +given, run_test also returns the test decision dependent=True/False.

    Return type:
    -

    Tuple of floats

    +

    Tuple of floats and bool

    -run_test_raw(x, y, z=None, x_type=None, y_type=None, z_type=None)[source]
    +run_test_raw(x, y, z=None, x_type=None, y_type=None, z_type=None, alpha_or_thres=None)[source]

    Perform conditional independence test directly on input arrays x, y, z.

    Calls the dependence measure and signficicance test functions. The child classes must specify a function get_dependence_measure and either or @@ -1641,13 +1591,17 @@

  • z_type (array-like) – data arrays of same shape as x, y and z respectively, which describes whether variables are continuous or discrete: 0s for continuous variables and 1s for discrete variables

  • +
  • alpha_or_thres (float (optional)) – Significance level (if significance=’analytic’ or ‘shuffle_test’) or +threshold (if significance=’fixed_thres’). If given, run_test returns +the test decision dependent=True/False.

Returns:
-

val, pval – The test statistic value and the p-value.

+

val, pval, [dependent] – The test statistic value and the p-value. If alpha_or_thres is +given, run_test also returns the test decision dependent=True/False.

Return type:
-

Tuple of floats

+

Tuple of floats and bool

@@ -1743,7 +1697,7 @@

  • value (float) – Test statistic value.

  • T (int) – Sample length

  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • +
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • Returns:
    @@ -1765,7 +1719,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -1808,7 +1762,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -1909,7 +1863,7 @@

  • value (float) – Test statistic value.

  • T (int) – Sample length

  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • +
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • Returns:
    @@ -1932,7 +1886,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -1981,7 +1935,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -2058,7 +2012,6 @@

    The null distribution of the distance correlation should be pre-computed. Otherwise it is computed during runtime.

    References

    -
    Parameters:
      @@ -2137,7 +2089,7 @@

    • value (float) – Test statistic value.

    • T (int) – Sample length

    • dim (int) – Dimensionality, ie, number of features.

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -2159,7 +2111,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -2201,7 +2153,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -2318,7 +2270,7 @@

  • value (float) – Test statistic value.

  • T (int) – Sample length

  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • +
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • Returns:
    @@ -2340,7 +2292,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -2382,7 +2334,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -2405,7 +2357,7 @@

    -class tigramite.independence_tests.cmiknn.CMIknn(knn=0.2, shuffle_neighbors=5, significance='shuffle_test', transform='ranks', workers=-1, **kwargs)[source]
    +class tigramite.independence_tests.cmiknn.CMIknn(knn=0.2, shuffle_neighbors=5, significance='shuffle_test', transform='ranks', workers=- 1, model_selection_folds=3, **kwargs)[source]

    Conditional mutual information test based on nearest-neighbor estimator.

    Conditional mutual information is the most general dependency measure coming from an information-theoretic framework. It makes no assumptions about the @@ -2437,7 +2389,6 @@

    negative quantity.

    This method requires the scipy.spatial.cKDTree package.

    References

    -
    Parameters:
      @@ -2462,6 +2412,7 @@

      or transforming to uniform marginals.

    • workers (int (optional, default = -1)) – Number of workers to use for parallel processing. If -1 is given all processors are used. Default: -1.

    • +
    • model_selection_folds (int) – Number of folds in cross-validation used in model selection.

    • significance (str, optional (default: 'shuffle_test')) – Type of significance test to use. For CMIknn only ‘fixed_thres’ and ‘shuffle_test’ are available.

    • **kwargs – Arguments passed on to parent class CondIndTest.

    • @@ -2476,7 +2427,7 @@

      Parameters:
      • array (array-like) – data array with X, Y in rows and observations in columns

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,). Here only uses 0 for X and +

      • xyz (array of ints) – XYZ identifier array of shape (dim,). Here only uses 0 for X and 1 for Y.

      @@ -2497,7 +2448,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      Returns:
      @@ -2509,6 +2460,27 @@

    +
    +
    +get_model_selection_criterion(j, parents, tau_max=0)[source]
    +

    Returns a cross-validation-based score for nearest-neighbor estimates.

    +

    Fits a nearest-neighbor model of the parents to variable j and returns +the score. The lower, the better the fit. Here used to determine +optimal hyperparameters in PCMCI(pc_alpha or fixed thres).

    +
    +
    Parameters:
    +
      +
    • j (int) – Index of target variable in data array.

    • +
    • parents (list) – List of form [(0, -1), (3, -2), …] containing parents.

    • +
    • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for +different lags in X, Z, all have the same sample size.

    • +
    • Returns

    • +
    • score (float) – Model score.

    • +
    +
    +
    +
    +
    get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
    @@ -2523,7 +2495,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -2585,7 +2557,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -2608,7 +2580,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns.

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for original (unshuffled) estimate.

    @@ -2640,7 +2612,7 @@

    Parameters:
      -
    • graph (array of shape [N, N, tau_max+1]) – Causal graph.

    • +
    • graph (array of shape [N, N, tau_max+1]) – Causal graph.

    • links (dict) – Dictionary of form {0:[(0, -1), …], 1:[…], …}. Alternatively can also digest {0: [((0, -1), coeff, func)], …}.

    • observed_vars (None or list, optional (default: None)) – Subset of keys in links definining which variables are @@ -2674,9 +2646,9 @@

      Parameters:
        -
      • X (list of tuples) – List of variables chosen for testing paths.

      • -
      • Y (list of tuples) – List of variables chosen for testing paths.

      • -
      • Z (list of tuples) – List of variables chosen for testing paths.

      • +
      • X (list of tuples) – List of variables chosen for testing paths.

      • +
      • Y (list of tuples) – List of variables chosen for testing paths.

      • +
      • Z (list of tuples) – List of variables chosen for testing paths.

      • max_lag (int, optional (default: None)) – Used here to constrain the has_path function to the graph truncated at max_lag instead of identifying the max_lag from ancestral search.

      • @@ -2735,11 +2707,11 @@

        Parameters:
          -
        • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

        • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

        • [ (Y) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

        • -
        • Z] (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

        • Z] (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

        • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size.

        • @@ -2769,20 +2741,21 @@

          -run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max', verbosity=0)[source]
          +run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None, verbosity=0)[source]

          Perform oracle conditional independence test.

          Calls the d-separation function.

          Parameters:
            -
          • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

          • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

          • -
          • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

          • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

          • -
          • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

          • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

          • tau_max (int, optional (default: 0)) – Not used here.

          • cut_off ({'2xtau_max', 'max_lag', 'max_lag_or_tau_max'}) – Not used here.

          • +
          • alpha_or_thres (float) – Not used here.

          Returns:
          @@ -2844,7 +2817,7 @@

        • value (float) – Test statistic value.

        • T (int) – Sample length

        • dim (int) – Dimensionality, ie, number of features.

        • -
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • +
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        Returns:
        @@ -2866,7 +2839,7 @@

        Parameters:
        • array (array-like) – data array with X, Y, Z in rows and observations in columns

        • -
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • +
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        Returns:
        @@ -2894,7 +2867,7 @@

        Parameters:
        • array (array-like) – data array with X, Y, Z in rows and observations in columns

        • -
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • +
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • value (number) – Value of test statistic for unshuffled estimate.

        @@ -2921,7 +2894,7 @@

        Parameters:
        • array (array-like) – data array with X, Y in rows and observations in columns

        • -
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • +
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • standardize (bool, optional (default: True)) – Whether to standardize the array beforehand. Must be used for partial correlation.

        @@ -2954,13 +2927,11 @@

        \frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)}"/>

    where n is the sample size. This is simply 2 n CMI(X;Y|Z).

    References

    -
    Parameters:
      @@ -2985,7 +2956,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns.

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      Returns:
      @@ -3051,7 +3022,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      Returns:
      @@ -3094,7 +3065,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • value (number) – Value of test statistic for unshuffled estimate.

      @@ -3146,7 +3117,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns.

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • data_type (array-like) – array of same shape as array which describes whether samples are continuous or discrete: 0s for continuous and 1s for discrete

      • @@ -3201,7 +3172,6 @@

        See the corresponding paper [6] and tigramite tutorial for an in-depth introduction.

        References

        -
        Parameters:
          -
        • graph (array of either shape [N, N], [N, N, tau_max+1], or [N, N, tau_max+1, tau_max+1]) – Different graph types are supported, see tutorial.

        • -
        • X (list of tuples) – List of tuples [(i, -tau), …] containing cause variables.

        • -
        • Y (list of tuples) – List of tuples [(j, 0), …] containing effect variables.

        • -
        • S (list of tuples) – List of tuples [(i, -tau), …] containing conditioned variables.

        • +
        • graph (array of either shape [N, N], [N, N, tau_max+1], or [N, N, tau_max+1, tau_max+1]) – Different graph types are supported, see tutorial.

        • +
        • X (list of tuples) – List of tuples [(i, -tau), …] containing cause variables.

        • +
        • Y (list of tuples) – List of tuples [(j, 0), …] containing effect variables.

        • +
        • S (list of tuples) – List of tuples [(i, -tau), …] containing conditioned variables.

        • graph_type (str) – Type of graph.

        • -
        • hidden_variables (list of tuples) – Hidden variables in format [(i, -tau), …]. The internal graph is +

        • hidden_variables (list of tuples) – Hidden variables in format [(i, -tau), …]. The internal graph is constructed by a latent projection.

        • check_SM_overlap (bool) – Whether to check whether S overlaps with M.

        • verbosity (int, optional (default: 0)) – Level of verbosity.

        • @@ -3292,7 +3261,7 @@

          optionally a mask of the same shape and a missing values flag.

        • estimator (sklearn model object) – For example, sklearn.linear_model.LinearRegression() for a linear regression model.

        • -
        • adjustment_set (str or list of tuples) – If ‘optimal’ the Oset is used, if ‘minimized_optimal’ the minimized Oset, +

        • adjustment_set (str or list of tuples) – If ‘optimal’ the Oset is used, if ‘minimized_optimal’ the minimized Oset, and if ‘colliders_minimized_optimal’, the colliders-minimized Oset. If a list of tuples is passed, this set is used.

        • conditional_estimator (sklearn model object, optional (default: None)) – Used to fit conditional causal effects in nested regression. @@ -3323,7 +3292,7 @@

        • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values yielding a numpy array of shape (observations T, variables N) and optionally a mask of the same shape and a missing values flag.

        • -
        • mediation (None, 'direct', or list of tuples) – If None, total effect is estimated, if ‘direct’ then only the direct effect is estimated, +

        • mediation (None, 'direct', or list of tuples) – If None, total effect is estimated, if ‘direct’ then only the direct effect is estimated, else only those causal paths are considerd that pass at least through one of these mediator nodes.

        • method ({'parents', 'links_coeffs', 'optimal'}) – Method to use for estimating Wright’s path coefficients. If ‘optimal’, the Oset is used, if ‘links_coeffs’, the coefficients in links_coeffs are used, @@ -3348,7 +3317,7 @@

          Parameters:
            -
          • graph (array of shape (N, N, tau_max+1)) – Matrix format of graph in string format.

          • +
          • graph (array of shape (N, N, tau_max+1)) – Matrix format of graph in string format.

          • parents_only (bool) – Whether to only return parents (’–>’ in graph)

          @@ -3410,7 +3379,7 @@

          Parameters:
            -
          • alternative_conditions (set of tuples) – Used only internally in optimality theorem. If None, self.S is used.

          • +
          • alternative_conditions (set of tuples) – Used only internally in optimality theorem. If None, self.S is used.

          • minimize ({False, True, 'colliders_only'}) – Minimize optimal set. If True, minimize such that no subset can be removed without making it invalid. If ‘colliders_only’, only colliders are minimized.

          • @@ -3542,7 +3511,7 @@

            • all_parents (dictionary) – Dictionary of form {0:[(0, -1), (3, 0), …], 1:[], …} containing the parents estimated with PCMCI.

            • -
            • selected_variables (list of integers, optional (default: range(N))) – Specify to estimate parents only for selected variables. If None is +

            • selected_variables (list of integers, optional (default: range(N))) – Specify to estimate parents only for selected variables. If None is passed, parents are estimated for all variables.

            • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in all_parents is used.

            • cut_off ({'max_lag_or_tau_max', '2xtau_max', 'max_lag'}) – How many samples to cutoff at the beginning. The default is @@ -3591,10 +3560,10 @@

              Parameters:
                -
              • X (lists of tuples) – List of variables for estimating model Y = f(X,Z)

              • -
              • Y (lists of tuples) – List of variables for estimating model Y = f(X,Z)

              • -
              • Z (lists of tuples) – List of variables for estimating model Y = f(X,Z)

              • -
              • conditions (list of tuples.) – Conditions for estimating conditional causal effects.

              • +
              • X (lists of tuples) – List of variables for estimating model Y = f(X,Z)

              • +
              • Y (lists of tuples) – List of variables for estimating model Y = f(X,Z)

              • +
              • Z (lists of tuples) – List of variables for estimating model Y = f(X,Z)

              • +
              • conditions (list of tuples.) – Conditions for estimating conditional causal effects.

              • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in all_parents is used.

              • cut_off ({'max_lag_or_tau_max', '2xtau_max', 'max_lag'}) – How many samples to cutoff at the beginning. The default is ‘max_lag_or_tau_max’, which uses the maximum of tau_max and the @@ -3711,7 +3680,6 @@

    References

    -
    Parameters:
      @@ -4025,8 +3992,8 @@

    • i (int) – Index of cause variable.

    • tau (int) – Lag of cause variable.

    • j (int) – Index of effect variable.

    • -
    • k (int or list of ints) – Indices of mediator variables.

    • -
    • notk (int or list of ints) – Indices of mediator variables to exclude.

    • +
    • k (int or list of ints) – Indices of mediator variables.

    • +
    • notk (int or list of ints) – Indices of mediator variables to exclude.

    Returns:
    @@ -4097,7 +4064,7 @@

    • i (int) – Index of cause variable.

    • j (int) – Index of effect variable.

    • -
    • k (int or list of ints) – Indices of mediator variables.

    • +
    • k (int or list of ints) – Indices of mediator variables.

    Returns:
    @@ -4121,7 +4088,7 @@

  • i (int) – Index of cause variable.

  • tau (int) – Lag of cause variable.

  • j (int) – Index of effect variable.

  • -
  • k (int or list of ints) – Indices of mediator variables.

  • +
  • k (int or list of ints) – Indices of mediator variables.

  • Returns:
    @@ -4261,7 +4228,7 @@

    • target_predictors (dictionary) – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} containing the predictors estimated with PCMCI.

    • -
    • selected_targets (list of integers, optional (default: range(N))) – Specify to fit model only for selected targets. If None is +

    • selected_targets (list of integers, optional (default: range(N))) – Specify to fit model only for selected targets. If None is passed, models are estimated for all variables.

    • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in target_predictors is used.

    • @@ -4286,14 +4253,14 @@

      Parameters:
        -
      • selected_targets (list of ints, optional (default: None)) – List of variables to estimate predictors of. If None, predictors of +

      • selected_targets (list of ints, optional (default: None)) – List of variables to estimate predictors of. If None, predictors of all variables are estimated.

      • selected_links (dict or None) – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} specifying whether only selected links should be tested. If None is passed, all links are tested

      • steps_ahead (int, default: 1) – Minimum time lag to test. Useful for multi-step ahead predictions.

      • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

      • -
      • pc_alpha (float or list of floats, default: 0.2) – Significance level in algorithm. If a list or None is passed, the +

      • pc_alpha (float or list of floats, default: 0.2) – Significance level in algorithm. If a list or None is passed, the pc_alpha level is optimized for every variable across the given pc_alpha values using the score computed in cond_ind_test.get_model_selection_criterion()

      • @@ -4338,7 +4305,7 @@

        Parameters:
          -
        • target (int or list of integers) – Index or indices of target variable(s).

        • +
        • target (int or list of integers) – Index or indices of target variable(s).

        • new_data (data object, optional) – New Tigramite dataframe object with optional new mask. Note that the data will be cut off according to cut_off, see parameter cut_off below.

        • @@ -4367,7 +4334,7 @@

          class tigramite.data_processing.DataFrame(data, mask=None, missing_flag=None, vector_vars=None, var_names=None, data_type=None, datatime=None, analysis_mode='single', reference_points=None, time_offsets=None, remove_missing_upto_maxlag=False)[source]
          -
          Data object containing single or multiple time series arrays and optional

          mask.

          +
          Data object containing single or multiple time series arrays and optional

          mask, as well as variable definitions.

          dataarray-like
          if analysis_mode == ‘single’:

          1) Numpy array of shape (observations T, variables N) @@ -4500,7 +4467,7 @@

          If reference_points is not None:

          1D numpy array holding all specified reference_points, less those smaller than 0 and larger than self.largest_time_step-1

          -
          If reference_points is None:

          Is np.array(range(self.largest_time_step))

          +
          If reference_points is None:

          Is np.array(self.largest_time_step)

          @@ -4538,16 +4505,16 @@

          Parameters:
            -
          • X (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of +

          • X (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class.

          • -
          • Y (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of +

          • Y (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class.

          • -
          • Z (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of +

          • Z (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class.

          • -
          • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of +

          • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class.

          • tau_max (int) – Maximum time lag. This may be used to make sure that estimates for @@ -4632,7 +4599,7 @@

            Returns:

            array, xyz [,XYZ], data_type – xyz identifier array of shape (dim,) identifying which row in array corresponds to X, Y, and Z, and the type mask that indicates which samples -are continuous or discrete. For example:: X = [(0, -1)], +are continuous or discrete. For example: X = [(0, -1)], Y = [(1, 0)], Z = [(1, -1), (0, -2)] yields an array of shape (4, n_samples) and xyz is xyz = numpy.array([0,1,2,2]). If return_cleaned_xyz is True, also outputs the cleaned XYZ lists.

            @@ -4650,20 +4617,20 @@

            Parameters:
              -
            • array (Data array of shape (dim, T)) – Data array.

            • -
            • X (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], +

            • array (Data array of shape (dim, T)) – Data array.

            • +
            • X (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), …] .

            • -
            • Y (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], +

            • Y (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), …] .

            • -
            • Z (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], +

            • Z (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), …] .

            • -
            • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], +

            • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), …] .

            • @@ -4723,7 +4690,7 @@

              Parameters:
              • array (array-like) – data array with X, Y, Z in rows and observations in columns

              • -
              • xyz (array of ints) – XYZ identifier array of shape (dim,).

              • +
              • xyz (array of ints) – XYZ identifier array of shape (dim,).

              • mode (str) – Which mode to use.

              @@ -4950,7 +4917,7 @@

              Helper function to convert DAG graph to dictionary of parents.

              Parameters:
              -

              dag (array of shape (N, N, tau_max+1)) – Matrix format of graph in string format. Must be DAG.

              +

              dag (array of shape (N, N, tau_max+1)) – Matrix format of graph in string format. Must be DAG.

              Returns:

              parents – Dictionary of form {0:[(0, -1), …], 1:[…], …}.

              @@ -4963,7 +4930,7 @@

              -tigramite.toymodels.structural_causal_processes.generate_structural_causal_process(N=2, L=1, dependency_funcs=['linear'], dependency_coeffs=[-0.5, 0.5], auto_coeffs=[0.5, 0.7], contemp_fraction=0.0, max_lag=1, noise_dists=['gaussian'], noise_means=[0.0], noise_sigmas=[0.5, 2.0], noise_seed=None, seed=None)[source]
              +tigramite.toymodels.structural_causal_processes.generate_structural_causal_process(N=2, L=1, dependency_funcs=['linear'], dependency_coeffs=[- 0.5, 0.5], auto_coeffs=[0.5, 0.7], contemp_fraction=0.0, max_lag=1, noise_dists=['gaussian'], noise_means=[0.0], noise_sigmas=[0.5, 2.0], noise_seed=None, seed=None)[source]

              “Randomly generates a structural causal process based on input characteristics.

              The process has the form

              @@ -5066,7 +5033,7 @@

              number of variables N. coeff must be a float and func a python callable of one argument.

            • T (int) – Sample size.

            • -
            • noises (list of callables or array, optional (default: 'np.random.randn')) – Random distribution function that is called with noises[j](T). If an array, +

            • noises (list of callables or array, optional (default: 'np.random.randn')) – Random distribution function that is called with noises[j](T). If an array, it must be of shape ((transient_fraction + 1)*T, N).

            • intervention (dict) – Dictionary of format: {1:np.array, …} containing only keys of intervened variables with the value being the array of length T with interventional values. @@ -5161,7 +5128,7 @@

              -tigramite.plotting.plot_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=8.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, node_label_size=10, link_label_fontsize=10, lag_array=None, show_colorbar=True, inner_edge_style='dashed', link_matrix=None, special_nodes=None, show_autodependency_lags=False)[source]
              +tigramite.plotting.plot_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=8.0, vmin_edges=- 1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=- 1, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, node_label_size=10, link_label_fontsize=10, lag_array=None, show_colorbar=True, inner_edge_style='dashed', link_matrix=None, special_nodes=None, show_autodependency_lags=False)[source]

              Creates a network plot.

              This is still in beta. The network is defined from links in graph. Nodes denote variables, straight links contemporaneous dependencies and curved @@ -5178,7 +5145,7 @@

              Must be of same shape as val_matrix.

            • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

            • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

            • -
            • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

            • +
            • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

            • figsize (tuple) – Size of figure.

            • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

            • link_colorbar_label (str, optional (default: 'MCI')) – Test statistic label.

            • @@ -5247,7 +5214,7 @@

              -tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=10, standard_color_links='black', standard_color_nodes='lightgrey')[source]
              +tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=- 1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=- 1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=10, standard_color_links='black', standard_color_nodes='lightgrey')[source]

              Creates a network plot visualizing the pathways of a mediation analysis. This is still in beta. The network is defined from non-zero entries in path_val_matrix. Nodes denote variables, straight links contemporaneous @@ -5263,7 +5230,7 @@

            • path_val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing link weight values.

            • path_node_array (array_like) – Array of shape (N,) containing node values.

            • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

            • -
            • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

            • +
            • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

            • figsize (tuple) – Size of figure.

            • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

            • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

            • @@ -5302,7 +5269,7 @@

              -tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=8, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, tick_label_size=6, standard_color_links='black', standard_color_nodes='lightgrey')[source]
              +tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=8, vmin_edges=- 1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=- 1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, tick_label_size=6, standard_color_links='black', standard_color_nodes='lightgrey')[source]

              Creates a mediation time series graph plot. This is still in beta. The time series graph’s links are colored by val_matrix.

              @@ -5312,7 +5279,7 @@

            • tsg_path_val_matrix (array_like) – Matrix of shape (N*tau_max, N*tau_max) containing link weight values.

            • path_node_array (array_like) – Array of shape (N,) containing node values.

            • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

            • -
            • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

            • +
            • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

            • figsize (tuple) – Size of figure.

            • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

            • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

            • @@ -5375,7 +5342,7 @@

              -tigramite.plotting.plot_time_series_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=4, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, inner_edge_style='dashed', link_matrix=None, special_nodes=None, standard_color_links='black', standard_color_nodes='lightgrey')[source]
              +tigramite.plotting.plot_time_series_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=4, vmin_edges=- 1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, inner_edge_style='dashed', link_matrix=None, special_nodes=None, standard_color_links='black', standard_color_nodes='lightgrey')[source]

              Creates a time series graph. This is still in beta. The time series graph’s links are colored by val_matrix.

              @@ -5387,7 +5354,7 @@

              (N, N, tau_max+1, tau_max+1) describing auxADMG.

            • val_matrix (array_like) – Matrix of same shape as graph containing test statistic values.

            • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

            • -
            • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

            • +
            • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

            • figsize (tuple) – Size of figure.

            • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

            • link_colorbar_label (str, optional (default: 'MCI')) – Test statistic label.

            • @@ -5431,9 +5398,9 @@

            • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

            • fig_axes (subplots instance, optional (default: None)) – Figure and axes instance. If None they are created as fig, axes = pyplot.subplots(N,…)

            • -
            • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize +

            • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize is used.

            • -
            • var_units (list of str, optional (default: None)) – Units of variables.

            • +
            • var_units (list of str, optional (default: None)) – Units of variables.

            • time_label (str, optional (default: '')) – Label of time axis.

            • grey_masked_samples (bool, optional (default: False)) – Whether to mark masked samples by grey fills (‘fill’) or grey data (‘data’).

            • @@ -5473,7 +5440,7 @@

              diff --git a/docs/_build/search.html b/docs/_build/search.html index 884d16ab..19da1a88 100644 --- a/docs/_build/search.html +++ b/docs/_build/search.html @@ -10,8 +10,10 @@ + + + - @@ -106,8 +108,8 @@

              Related Topics

              ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12

    diff --git a/docs/_build/searchindex.js b/docs/_build/searchindex.js index 94f85b4b..9315d236 100644 --- a/docs/_build/searchindex.js +++ b/docs/_build/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["index"], "filenames": ["index.rst"], "titles": ["Welcome to Tigramite\u2019s documentation!"], "terms": {"index": 0, "modul": 0, "search": 0, "page": 0, "github": 0, "repo": 0, "i": 0, "python": 0, "packag": 0, "It": 0, "allow": 0, "effici": 0, "estim": 0, "graph": 0, "from": 0, "high": 0, "dimension": 0, "dataset": 0, "discoveri": 0, "us": 0, "robust": 0, "forecast": 0, "direct": 0, "total": 0, "base": 0, "linear": 0, "well": 0, "non": 0, "parametr": 0, "applic": 0, "discret": 0, "continu": 0, "valu": 0, "also": 0, "includ": 0, "qualiti": 0, "result": 0, "pleas": 0, "cite": 0, "follow": 0, "paper": 0, "depend": 0, "which": 0, "method": 0, "you": 0, "j": 0, "rung": 0, "p": 0, "nowack": 0, "m": 0, "kretschmer": 0, "flaxman": 0, "d": 0, "sejdinov": 0, "detect": 0, "quantifi": 0, "associ": 0, "larg": 0, "nonlinear": 0, "sci": 0, "adv": 0, "5": 0, "eaau4996": 0, "2019": 0, "http": 0, "advanc": 0, "sciencemag": 0, "org": 0, "content": 0, "11": 0, "2020": 0, "discov": 0, "contemporan": 0, "lag": 0, "relat": 0, "autocorrel": 0, "proceed": 0, "36th": 0, "confer": 0, "uncertainti": 0, "artifici": 0, "intellig": 0, "uai": 0, "toronto": 0, "canada": 0, "auai": 0, "press": 0, "uai2020": 0, "579_main_pap": 0, "pdf": 0, "gerhardu": 0, "A": 0, "recal": 0, "latent": 0, "confound": 0, "neural": 0, "inform": 0, "system": 0, "33": 0, "neurip": 0, "cc": 0, "hash": 0, "94e70705efae423efda1088614128d0b": 0, "abstract": 0, "html": 0, "2018": 0, "network": 0, "reconstruct": 0, "theoret": 0, "assumpt": 0, "practic": 0, "chao": 0, "an": 0, "interdisciplinari": 0, "journal": 0, "scienc": 0, "28": 0, "7": 0, "075310": 0, "aip": 0, "scitat": 0, "doi": 0, "10": 0, "1063": 0, "1": 0, "5025050": 0, "natur": 0, "commun": 0, "perspect": 0, "www": 0, "com": 0, "articl": 0, "s41467": 0, "019": 0, "10105": 0, "3": 0, "necessari": 0, "suffici": 0, "graphic": 0, "optim": 0, "adjust": 0, "set": 0, "hidden": 0, "variabl": 0, "2021": 0, "34": 0, "class": 0, "et": 0, "al": 0, "2015": 0, "identifi": 0, "gatewai": 0, "complex": 0, "spatio": 0, "tempor": 0, "6": 0, "8502": 0, "1038": 0, "ncomms9502": 0, "transfer": 0, "along": 0, "pathwai": 0, "phy": 0, "rev": 0, "e": 0, "92": 0, "62829": 0, "1103": 0, "physrev": 0, "062829": 0, "cmiknn": 0, "nearest": 0, "neighbor": 0, "mutual": 0, "In": 0, "21st": 0, "intern": 0, "statist": 0, "mlr": 0, "v84": 0, "runge18a": 0, "datafram": 0, "cond_ind_test": 0, "verbos": 0, "0": 0, "sourc": 0, "framework": 0, "scale": 0, "thi": 0, "contain": 0, "sever": 0, "The": 0, "standard": 0, "address": 0, "describ": 0, "where": 0, "further": 0, "sub": 0, "variant": 0, "ar": 0, "discuss": 0, "pcmciplu": 0, "see": 0, "tutori": 0, "guidanc": 0, "appli": 0, "ha": 0, "differ": 0, "adapt": 0, "implement": 0, "mostli": 0, "hyperparamet": 0, "easi": 0, "parallel": 0, "separ": 0, "script": 0, "handl": 0, "mask": 0, "fals": 0, "control": 0, "confid": 0, "interv": 0, "note": 0, "structur": 0, "repres": 0, "shown": 0, "figur": 0, "node": 0, "defin": 0, "link": 0, "can": 0, "interpret": 0, "under": 0, "certain": 0, "assum": 0, "stationar": 0, "repeat": 0, "parent": 0, "mathcal": 0, "all": 0, "toward": 0, "blue": 0, "red": 0, "box": 0, "iter": 0, "flexibli": 0, "combin": 0, "ani": 0, "kind": 0, "its": 0, "type": 0, "These": 0, "avail": 0, "mci": 0, "particular": 0, "measur": 0, "strength": 0, "For": 0, "exampl": 0, "parcorr": 0, "normal": 0, "between": 0, "howev": 0, "interest": 0, "hypothet": 0, "intervent": 0, "mai": 0, "better": 0, "look": 0, "refer": 0, "w": 0, "paramet": 0, "object": 0, "among": 0, "other": 0, "attribut": 0, "yield": 0, "numpi": 0, "arrai": 0, "shape": 0, "observ": 0, "t": 0, "n": 0, "option": 0, "same": 0, "extern": 0, "pass": 0, "callabl": 0, "condindtest": 0, "int": 0, "default": 0, "level": 0, "all_par": 0, "dictionari": 0, "form": 0, "2": 0, "pc": 0, "algorithm": 0, "val_min": 0, "tau": 0, "float": 0, "minimum": 0, "each": 0, "pval_max": 0, "maximum": 0, "step": 0, "number": 0, "sampl": 0, "length": 0, "dict": 0, "get_graph_from_pmatrix": 0, "p_matrix": 0, "alpha_level": 0, "tau_min": 0, "tau_max": 0, "link_assumpt": 0, "none": 0, "construct": 0, "threshold": 0, "alpha": 0, "take": 0, "account": 0, "matrix": 0, "fdr_method": 0, "05": 0, "signific": 0, "get": 0, "tau_mix": 0, "delai": 0, "link_typ": 0, "specifi": 0, "about": 0, "initi": 0, "entri": 0, "impli": 0, "must": 0, "exist": 0, "valid": 0, "o": 0, "addit": 0, "middl": 0, "mark": 0, "instead": 0, "Then": 0, "orient": 0, "need": 0, "consist": 0, "requir": 0, "acycl": 0, "hold": 0, "If": 0, "doe": 0, "appear": 0, "absent": 0, "That": 0, "have": 0, "return": 0, "descript": 0, "abov": 0, "get_lagged_depend": 0, "selected_link": 0, "val_onli": 0, "uncondit": 0, "_": 0, "matric": 0, "correct": 0, "new": 0, "4": 0, "fdr": 0, "deprec": 0, "replac": 0, "zero": 0, "undirect": 0, "larger": 0, "equal": 0, "bool": 0, "onli": 0, "comput": 0, "str": 0, "current": 0, "benjamini": 0, "hochberg": 0, "rate": 0, "fdr_bh": 0, "val_matrix": 0, "conf_matrix": 0, "percentil": 0, "print_result": 0, "return_dict": 0, "print": 0, "output": 0, "kei": 0, "print_significant_link": 0, "ambiguous_tripl": 0, "latter": 0, "ambigu": 0, "conflict": 0, "like": 0, "list": 0, "tripl": 0, "return_parents_dict": 0, "include_lagzero_par": 0, "sort": 0, "unclear": 0, "edgemark": 0, "x": 0, "whether": 0, "should": 0, "parents_dict": 0, "return_significant_link": 0, "pq_matrix": 0, "include_lagzero_link": 0, "boolean": 0, "Will": 0, "remov": 0, "futur": 0, "run_bivci": 0, "bivci": 0, "run_fullci": 0, "fullci": 0, "run_mci": 0, "max_conds_pi": 0, "max_conds_px": 0, "y": 0, "unrestrict": 0, "z": 0, "run_pc_stabl": 0, "save_iter": 0, "pc_alpha": 0, "max_conds_dim": 0, "max_combin": 0, "made": 0, "self": 0, "multi": 0, "ahead": 0, "greater": 0, "save": 0, "everi": 0, "across": 0, "given": 0, "score": 0, "get_model_selection_criterion": 0, "cardin": 0, "pc_1": 0, "origin": 0, "run_pcalg": 0, "01": 0, "lagged_par": 0, "max_conds_px_lag": 0, "mode": 0, "contemp_collider_rul": 0, "major": 0, "conflict_resolut": 0, "true": 0, "run": 0, "contemp_cond": 0, "ci": 0, "As": 0, "part": 0, "superset": 0, "pc1": 0, "conserv": 0, "rule": 0, "collid": 0, "phase": 0, "detail": 0, "lead": 0, "order": 0, "when": 0, "regard": 0, "adjac": 0, "sepset": 0, "relev": 0, "run_pcalg_non_timeseries_data": 0, "simpli": 0, "call": 0, "run_pcmci": 0, "wrapper": 0, "around": 0, "comprehens": 0, "analyt": 0, "numer": 0, "present": 0, "here": 0, "we": 0, "briefli": 0, "summar": 0, "two": 0, "procedur": 0, "select": 0, "tild": 0, "j_t": 0, "reduc": 0, "avoid": 0, "irrelev": 0, "momentari": 0, "i_": 0, "perp": 0, "j_": 0, "common": 0, "driver": 0, "indirect": 0, "main": 0, "free": 0, "tau_": 0, "max": 0, "chosen": 0, "accord": 0, "expect": 0, "recommend": 0, "rather": 0, "choic": 0, "peak": 0, "seen": 0, "sinc": 0, "hypothesi": 0, "do": 0, "precis": 0, "assess": 0, "role": 0, "regular": 0, "techniqu": 0, "criteria": 0, "respect": 0, "import": 0, "pp": 0, "structural_causal_process": 0, "random": 0, "seed": 0, "plai": 0, "incom": 0, "suppli": 0, "format": 0, "coeff": 0, "links_coeff": 0, "8": 0, "var_process": 0, "1000": 0, "pval": 0, "00000": 0, "val": 0, "588": 0, "606": 0, "447": 0, "618": 0, "499": 0, "run_pcmciplu": 0, "reset_lagged_link": 0, "contrast": 0, "full": 0, "up": 0, "markov": 0, "equival": 0, "faith": 0, "four": 0, "widehat": 0, "b": 0, "_t": 0, "skeleton": 0, "through": 0, "subset": 0, "conduct": 0, "motif": 0, "unshield": 0, "remain": 0, "Its": 0, "string": 0, "denot": 0, "unori": 0, "could": 0, "direction": 0, "undecid": 0, "due": 0, "importantli": 0, "alwai": 0, "dag": 0, "first": 0, "one": 0, "member": 0, "averag": 0, "over": 0, "fit": 0, "anoth": 0, "togeth": 0, "fulli": 0, "mean": 0, "matter": 0, "last": 0, "restrict": 0, "found": 0, "consid": 0, "again": 0, "improv": 0, "power": 0, "runtim": 0, "np": 0, "var": 0, "def": 0, "lin_f": [], "9": 0, "nonstat": [], "676": [], "602": [], "599": [], "486": [], "466": [], "524": [], "449": [], "001": 0, "005": 0, "025": 0, "learn": 0, "specif": 0, "relationship": 0, "introduc": 0, "explain": 0, "still": 0, "experiment": 0, "being": 0, "fine": 0, "tune": 0, "actual": 0, "invit": 0, "feedback": 0, "work": 0, "best": 0, "experi": 0, "run_lpcmci": 0, "constructor": 0, "old": 0, "some": 0, "might": 0, "nest": 0, "lag_i": 0, "compon": 0, "background": 0, "knowledg": 0, "possibl": 0, "correspond": 0, "claim": 0, "ancestor": 0, "i_t": 0, "neither": 0, "nor": 0, "wai": 0, "impos": 0, "automat": 0, "There": 0, "No": 0, "either": 0, "smaller": 0, "than": 0, "dpag": 0, "window": 0, "aumax": 0, "au_max": 0, "underli": 0, "n_preliminary_iter": 0, "determin": 0, "preliminari": 0, "k": 0, "max_cond_px": 0, "pair": 0, "au": 0, "s2": 0, "_run_ancestral_removal_phas": 0, "apds_t": 0, "c": 0, "g": 0, "higher": 0, "s3": 0, "_run_non_ancestral_removal_phas": 0, "napds_t": 0, "max_p_glob": 0, "max_p_non_ancestr": 0, "second": 0, "_run_dsep_removal_phas": 0, "max_q_glob": 0, "most": 0, "mani": 0, "sum": 0, "more": 0, "max_pds_set": 0, "element": 0, "opposit": 0, "prelim_with_collider_rul": 0, "pseudocod": 0, "line": 0, "22": 0, "18": 0, "directli": 0, "befor": 0, "parents_of_lag": 0, "pa": 0, "prelim_onli": 0, "stop": 0, "after": 0, "perform": 0, "break_once_separ": 0, "break": 0, "command": 0, "no_non_ancestral_phas": 0, "execut": 0, "use_a_pds_t_for_major": 0, "instruct": 0, "adj": 0, "orient_contemp": 0, "orient_comtemp": 0, "update_middle_mark": 0, "pseudoc": 0, "mmr": 0, "prelim_rul": 0, "exclud": 0, "r9": 0, "prime": 0, "r10": 0, "fix_all_edges_before_final_orient": 0, "inf": 0, "termin": 0, "although": 0, "empti": 0, "nevertheless": 0, "sound": 0, "check": 0, "appropri": 0, "forc": 0, "auto_first": 0, "pseudcod": 0, "autodepend": 0, "priorit": 0, "even": 0, "remember_only_par": 0, "been": 0, "point": 0, "wa": 0, "later": 0, "tail": 0, "re": 0, "no_apr": 0, "apr": 0, "except": 0, "never": 0, "conveni": 0, "post": 0, "purpos": 0, "wildcard": 0, "st": 0, "edg": 0, "star": 0, "independence_tests_bas": 0, "42": 0, "mask_typ": 0, "fixed_thr": 0, "sig_sampl": 0, "500": 0, "sig_blocklength": 0, "conf_lev": 0, "conf_sampl": 0, "100": 0, "conf_blocklength": 0, "recycle_residu": 0, "provid": 0, "shuffl": 0, "bootstrap": 0, "inherit": 0, "randomst": 0, "default_rng": 0, "xy": 0, "xz": 0, "yz": 0, "xyz": 0, "miss": 0, "shuffle_test": 0, "absolut": 0, "block": 0, "decai": 0, "autocovari": 0, "nan": 0, "side": 0, "residu": 0, "store": 0, "faster": 0, "cost": 0, "consider": 0, "memori": 0, "get_analytic_confid": 0, "df": 0, "concret": 0, "overrid": 0, "get_analytic_signific": 0, "dim": 0, "get_bootstrap_confid": 0, "dependence_measur": 0, "95": 0, "type_mask": [], "With": 0, "row": 0, "column": 0, "get_dependence_measur": 0, "binari": 0, "individu": 0, "conf_low": 0, "conf_upp": 0, "tupl": 0, "upper": 0, "lower": 0, "bound": 0, "get_confid": 0, "child": 0, "make": 0, "sure": 0, "size": 0, "instanti": 0, "get_fixed_thres_signific": 0, "signfic": 0, "ab": 0, "els": 0, "unshuffl": 0, "fix": 0, "posit": 0, "get_measur": 0, "get_shuffle_signific": 0, "return_null_dist": 0, "get_signific": 0, "sig_overrid": 0, "whichev": 0, "ie": 0, "featur": 0, "properti": 0, "print_info": 0, "run_test": 0, "cut_off": 0, "2xtau_max": 0, "signficic": 0, "both": 0, "_get_single_residu": 0, "max_lag": 0, "max_lag_or_tau_max": 0, "how": 0, "cutoff": 0, "begin": 0, "guarante": 0, "compar": 0, "multipl": 0, "much": 0, "run_test_raw": 0, "x_type": 0, "y_type": 0, "z_type": 0, "input": 0, "dimens": 0, "set_datafram": 0, "flag": 0, "set_mask_typ": 0, "setter": 0, "ensur": 0, "clash": 0, "kwarg": 0, "partial": 0, "correl": 0, "ordinari": 0, "least": 0, "squar": 0, "ol": 0, "regress": 0, "pearson": 0, "To": 0, "out": 0, "beta_x": 0, "epsilon_": 0, "beta_i": 0, "rho": 0, "left": 0, "r_x": 0, "r_y": 0, "right": 0, "student": 0, "distribut": 0, "d_z": 0, "degre": 0, "freedom": 0, "argument": 0, "coeffici": 0, "eg": 0, "less": 0, "corrected_a": 0, "akaik": 0, "criterion": 0, "modulo": 0, "constant": 0, "leav": 0, "cross": 0, "asymptot": 0, "aic": 0, "target": 0, "robust_parcorr": 0, "robustparcorr": 0, "paranorm": 0, "transform": 0, "margin": 0, "firstli": 0, "phi": 0, "circ": 0, "hat": 0, "f": 0, "quantil": 0, "empir": 0, "idea": 0, "stem": 0, "literatur": 0, "nonparanorm": 0, "han": 0, "liu": 0, "john": 0, "lafferti": 0, "larri": 0, "wasserman": 0, "semiparametr": 0, "mach": 0, "2295": 0, "2328": 0, "2009": 0, "fang": 0, "ming": 0, "yuan": 0, "gaussian": 0, "copula": 0, "ann": 0, "40": 0, "2293": 0, "2326": 0, "2012a": 0, "naftali": 0, "harri": 0, "mathia": 0, "drton": 0, "machin": 0, "research": 0, "14": 0, "3365": 0, "3383": 0, "2013": 0, "afterward": 0, "now": 0, "uniform": 0, "plu": 0, "trafo2norm": 0, "thre": 0, "1e": 0, "code": 0, "small": 0, "too": 0, "close": 0, "similarli": 0, "gpdc": 0, "null_dist_filenam": 0, "gp_param": 0, "distanc": 0, "gp": 0, "scikit": 0, "kernel": 0, "let": 0, "them": 0, "cython": 0, "null": 0, "precomput": 0, "generate_and_save_nulldist": 0, "npz": 0, "file": 0, "f_x": 0, "f_y": 0, "sim": 0, "sigma": 0, "bandwidth": 0, "optimz": 0, "sklearn": 0, "r": 0, "pre": 0, "otherwis": 0, "dure": 0, "gabor": 0, "szeke": 0, "maria": 0, "l": 0, "rizzo": 0, "nail": 0, "bakirov": 0, "arxiv": 0, "0803": 0, "4101": 0, "otion": 0, "path": 0, "gaussianprocessregressor": 0, "gaussprocreg": 0, "sample_s": 0, "pairwis": 0, "generate_nulldist": 0, "dist": 0, "disk": 0, "add": 0, "gauss_pr": 0, "null_dist": 0, "name": 0, "add_to_null_dist": 0, "just": 0, "load": 0, "nulldist": 0, "wide": 0, "rang": 0, "beforehand": 0, "log": 0, "likelihood": 0, "neg": 0, "gpdc_torch": 0, "gpdctorch": 0, "gpytorch": 0, "dcor": 0, "pip": 0, "gaussprocregtorch": 0, "knn": 0, "shuffle_neighbor": 0, "rank": 0, "worker": 0, "come": 0, "joint": 0, "densiti": 0, "frenzel": 0, "pomp": 0, "lett": 0, "99": 0, "204101": 0, "2007": 0, "suitabl": 0, "cmisymb": 0, "cmi": 0, "iint": 0, "frac": 0, "cdot": 0, "dx": 0, "dy": 0, "dz": 0, "psi": 0, "sum_": 0, "k_": 0, "digamma": 0, "hyper": 0, "cube": 0, "subspac": 0, "view": 0, "smooth": 0, "unlik": 0, "bia": 0, "varianc": 0, "slightli": 0, "while": 0, "quantiti": 0, "scipi": 0, "spatial": 0, "ckdtree": 0, "fraction": 0, "henc": 0, "within": 0, "surrog": 0, "processor": 0, "get_conditional_entropi": 0, "entropi": 0, "h": 0, "prl": 0, "overwrit": 0, "preserv": 0, "permut": 0, "those": 0, "x_i": 0, "x_j": 0, "z_j": 0, "niehgbor": 0, "z_i": 0, "n_symb": 0, "categor": 0, "symbol": 0, "local": 0, "mix": 0, "cmiknnmix": 0, "infer": 0, "crosstab": 0, "conting": 0, "approxim": 0, "probabl": 0, "mass": 0, "drawn": 0, "without": 0, "oracle_conditional_independ": 0, "oracleci": 0, "observed_var": 0, "selection_var": 0, "graph_is_mag": 0, "oracl": 0, "link_coeff": 0, "ground": 0, "truth": 0, "unit": 0, "altern": 0, "digest": 0, "func": 0, "definin": 0, "check_shortest_path": 0, "starts_with": 0, "ends_with": 0, "forbidden_nod": 0, "only_non_causal_path": 0, "check_optimality_cond": 0, "optimality_cond_des_ym": 0, "optimality_cond_i": 0, "return_path": 0, "non_rep": 0, "au_i": 0, "au_j": 0, "alreadi": 0, "truncat": 0, "breadth": 0, "start": 0, "end": 0, "veri": 0, "long": 0, "constrain": 0, "has_path": 0, "ancestr": 0, "compute_ancestor": 0, "anc_all_x": 0, "anc_all_i": 0, "anc_all_z": 0, "arrohead": 0, "compat": 0, "get_graph_from_link": 0, "mag": 0, "admg": 0, "project": 0, "oper": 0, "pearl": 0, "get_links_from_graph": 0, "case": 0, "ad": 0, "canon": 0, "richardson": 0, "spirt": 0, "2002": 0, "support": 0, "evalu": 0, "Not": 0, "dummi": 0, "parcorr_mult": 0, "parcorrmult": 0, "correlation_typ": 0, "max_corr": 0, "multivari": 0, "mult_corr": 0, "gsquar": 0, "chi2": 0, "2000": 0, "stat": 0, "formula": 0, "bishop": 0, "fienberg": 0, "holland": 0, "1975": 0, "theori": 0, "mit": 0, "cambridg": 0, "p_valu": 0, "chi": 0, "dof": 0, "parcorr_wl": 0, "parcorrwl": 0, "gt_std_matrix": 0, "expert_knowledg": 0, "heteroskedast": 0, "window_s": 0, "robustifi": 0, "weight": 0, "wl": 0, "known": 0, "thei": 0, "neighbour": 0, "homoskedast": 0, "error": 0, "term": 0, "deviat": 0, "nois": 0, "nb_node": 0, "expert": 0, "regressionci": 0, "flexibl": 0, "v": 0, "notion": 0, "devianc": 0, "emploi": 0, "significantli": 0, "hypothes": 0, "accept": 0, "approach": 0, "univari": 0, "moreov": 0, "multinomi": 0, "causaleffect": 0, "graph_typ": 0, "hidden_vari": 0, "check_sm_overlap": 0, "potenti": 0, "backdoor": 0, "variou": 0, "wright": 0, "depth": 0, "introduct": 0, "8485ae387a981d783f8764e508151cd9": 0, "caus": 0, "overlap": 0, "check_xys_path": 0, "proper": 0, "clean": 0, "check_optim": 0, "thm": 0, "fit_bootstrap_of": 0, "method_arg": 0, "boot_sampl": 0, "boot_blocklength": 0, "construct_arrai": 0, "shift": 0, "bootsrap": 0, "predict_bootstrap_of": 0, "draw": 0, "fit_total_effect": 0, "adjustment_set": 0, "conditional_estim": 0, "data_transform": 0, "ignore_identifi": 0, "linear_model": 0, "linearregress": 0, "oset": 0, "minimized_optim": 0, "minim": 0, "colliders_minimized_optim": 0, "preprocess": 0, "prior": 0, "standardscal": 0, "simpl": 0, "user": 0, "ignor": 0, "fit_wright_effect": 0, "considerd": 0, "complic": 0, "static": 0, "get_graph_from_dict": 0, "helper": 0, "convert": 0, "get_medi": 0, "get_optimal_set": 0, "alternative_condit": 0, "return_separate_set": 0, "theorem": 0, "colliders_onli": 0, "invalid": 0, "collider_par": 0, "oset_": 0, "return_individual_bootstrap_result": 0, "confidence_interv": 0, "predict_total_effect": 0, "intervention_data": 0, "conditions_data": 0, "pred_param": 0, "return_further_pred_result": 0, "aggregation_func": 0, "transform_interventions_and_predict": 0, "len": 0, "predictor": 0, "entir": 0, "invers": 0, "estimate_confid": 0, "predict_wright_effect": 0, "conditional_model": 0, "care": 0, "inverse_transform": 0, "fit_full_model": 0, "selected_vari": 0, "return_data": 0, "integ": 0, "fit_result": 0, "get_coef": 0, "get_general_fitted_model": 0, "get_general_predict": 0, "get_val_matrix": 0, "fit_model": 0, "give": 0, "deriv": 0, "linearmedi": 0, "model_param": 0, "etc": 0, "ce": 0, "mce": 0, "ac": 0, "suscept": 0, "amc": 0, "chain": 0, "x_t": 0, "eta": 0, "y_t": 0, "x_": 0, "z_t": 0, "y_": 0, "25": 0, "37": 0, "true_par": 0, "med": 0, "get_coeff": 0, "get_c": 0, "get_mc": 0, "get_all_ac": 0, "get_all_amc": 0, "250648072987": 0, "36897445": 0, "25718002": 0, "24365041": 0, "38250406": 0, "12532404": 0, "fit_model_bootstrap": 0, "boostrap": 0, "version": 0, "cube_root": 0, "from_autocorrel": 0, "generate_noise_from": 0, "root": 0, "get_ac": 0, "lag_mod": 0, "absmax": 0, "exclude_i": 0, "eman": 0, "all_lag": 0, "itself": 0, "exclude_j": 0, "affect": 0, "previou": 0, "exclude_k": 0, "exclude_self_effect": 0, "themselv": 0, "get_amc": 0, "get_bootstrap_of": 0, "function_arg": 0, "incl": 0, "get_ce_max": 0, "get_conditional_mc": 0, "notk": 0, "go": 0, "get_joint_c": 0, "count": 0, "joint_c": 0, "get_joint_ce_matrix": 0, "taui": 0, "tauj": 0, "stand": 0, "joint_ce_matrix": 0, "2d": 0, "get_joint_mc": 0, "joint_mc": 0, "minu": 0, "get_mediation_graph_data": 0, "include_neighbor": 0, "path_val_matrix": 0, "path_node_arrai": 0, "tsg_path_val_matrix": 0, "graph_data": 0, "color": 0, "get_tsg": 0, "link_matrix": 0, "analyz": 0, "sig_thr": 0, "array_lik": 0, "tsg": 0, "symmetr": 0, "net_to_tsg": 0, "translat": 0, "tsg_to_net": 0, "train_indic": 0, "test_indic": 0, "prediction_model": 0, "train": 0, "target_predictor": 0, "selected_target": 0, "instanc": 0, "get_predictor": 0, "steps_ahead": 0, "get_test_arrai": 0, "get_train_arrai": 0, "new_data": 0, "cut": 0, "off": 0, "below": 0, "missing_flag": 0, "vector_var": 0, "var_nam": 0, "datatim": 0, "analysis_mod": 0, "singl": 0, "reference_point": 0, "time_offset": 0, "remove_missing_upto_maxlag": 0, "OR": 0, "whose": 0, "t_i": 0, "vari": 0, "dismiss": 0, "slice": 0, "occur": 0, "bias": 0, "section": 0, "supplement": 0, "vector": 0, "pars": 0, "creat": 0, "match": 0, "enumer": 0, "timelabel": 0, "1d": 0, "rel": 0, "share": 0, "axi": 0, "t_max": 0, "largest_time_step": 0, "bigger": 0, "At": 0, "align": 0, "agre": 0, "offset": 0, "_initialized_from": 0, "3d": 0, "map": 0, "represent": 0, "identifii": 0, "max_": 0, "largest": 0, "latest": 0, "random_st": 0, "extraz": 0, "return_cleaned_xyz": 0, "do_check": 0, "remove_overlap": 0, "n_en": 0, "var1": 0, "var2": 0, "varlag": 0, "assign": 0, "duplic": 0, "saniti": 0, "2xtau_max_futur": 0, "t_miss": 0, "principl": 0, "would": 0, "n_sampl": 0, "print_array_info": 0, "info": 0, "typic": 0, "varx": 0, "get_acf": 0, "autocorr": 0, "get_block_length": 0, "mader": 0, "eq": 0, "pfeifer": 0, "2005": 0, "multidimension": 0, "jointli": 0, "curv": 0, "fail": 0, "limit": 0, "neurosci": 0, "volum": 0, "219": 0, "issu": 0, "15": 0, "octob": 0, "285": 0, "291": 0, "block_len": 0, "lowhighpass_filt": 0, "cutperiod": 0, "pass_period": 0, "low": 0, "butterworth": 0, "filter": 0, "twice": 0, "onc": 0, "forward": 0, "backward": 0, "period": 0, "act": 0, "ordinal_patt_arrai": 0, "array_mask": 0, "symbolifi": 0, "ordin": 0, "pattern": 0, "uniqu": 0, "faculti": 0, "symb_arrai": 0, "shorter": 0, "2011": 0, "coupl": 0, "83": 0, "12": 0, "051122": 0, "label": 0, "embed": 0, "patt": 0, "patt_mask": 0, "patt_tim": 0, "quantile_bin_arrai": 0, "bin": 0, "smooth_width": 0, "width": 0, "heavisid": 0, "rtype": 0, "intervention_typ": 0, "hard": 0, "time_bin_with_mask": 0, "time_bin_length": 0, "bindata": 0, "outer": 0, "cdf": 0, "normal_data": 0, "parents_neighbors_coeff": 0, "inv_inno_cov": 0, "initial_valu": 0, "autoregress": 0, "innov": 0, "var_network": 0, "possibli": 0, "friendli": 0, "weighted_avg_and_std": 0, "std": 0, "check_stationar": 0, "stationari": 0, "dag_to_link": 0, "generate_structural_causal_process": 0, "dependency_func": 0, "dependency_coeff": 0, "auto_coeff": 0, "contemp_fract": 0, "noise_dist": 0, "noise_mean": 0, "noise_sigma": 0, "noise_se": 0, "randomli": 0, "characterist": 0, "frawn": 0, "arbitrari": 0, "factor": 0, "weibul": 0, "beta": 0, "links_to_graph": 0, "transient_fract": 0, "interven": 0, "randn": 0, "un": 0, "soft": 0, "percentag": 0, "transient": 0, "realiz": 0, "nonvalid": 0, "infin": 0, "lag1": 0, "coef1": 0, "lag2": 0, "coef2": 0, "nonzero": 0, "covari": 0, "inno_cov": 0, "debug": 0, "no_nois": 0, "disabl": 0, "max_delai": 0, "true_parent_neighbor": 0, "id": 0, "parent_node_id": 0, "time_lag": 0, "plot_densityplot": 0, "setup_arg": 0, "add_densityplot_arg": 0, "selected_dataset": 0, "show_marginal_densities_on_diagon": 0, "setup_density_matrix": 0, "add_densityplot": 0, "diagon": 0, "show": 0, "seaborn": 0, "doc": 0, "overlaid": 0, "plot_graph": 0, "fig_ax": 0, "figsiz": 0, "save_nam": 0, "link_colorbar_label": 0, "node_colorbar_label": 0, "auto": 0, "link_width": 0, "link_attribut": 0, "node_po": 0, "arrow_linewidth": 0, "vmin_edg": 0, "vmax_edg": 0, "edge_tick": 0, "cmap_edg": 0, "rdbu_r": 0, "vmin_nod": 0, "vmax_nod": 0, "node_tick": 0, "cmap_nod": 0, "node_s": 0, "node_aspect": 0, "arrowhead_s": 0, "20": 0, "curved_radiu": 0, "label_fonts": 0, "tick_label_s": 0, "node_label_s": 0, "link_label_fonts": 0, "lag_arrai": 0, "network_lower_bound": [], "show_colorbar": 0, "inner_edge_styl": 0, "dash": 0, "special_nod": 0, "show_autodependency_lag": 0, "straight": 0, "arrow": 0, "maxim": 0, "magnitud": 0, "coordin": 0, "via": 0, "ax": 0, "basemap": 0, "30": 0, "linewidth": 0, "colorbar": 0, "tick": 0, "colormap": 0, "orrd": 0, "ratio": 0, "heigth": 0, "varibl": 0, "head": 0, "fancyarrowpatch": 0, "curvatur": 0, "fontsiz": 0, "opac": 0, "arang": 0, "vertic": 0, "space": 0, "plot_lagfunc": 0, "add_lagfunc_arg": 0, "lagfunct": 0, "setup_matrix": 0, "add_lagfunc": 0, "plot_mediation_graph": 0, "standard_color_link": 0, "black": 0, "standard_color_nod": 0, "lightgrei": 0, "visual": 0, "plot_mediation_time_series_graph": 0, "label_space_left": 0, "label_space_top": 0, "top": 0, "bottom": 0, "horizont": 0, "alloc": 0, "plot_scatterplot": 0, "add_scatterplot_arg": 0, "scatter": 0, "setup_scatter_matrix": 0, "add_scatterplot": 0, "plot_time_series_graph": 0, "auxiliari": 0, "auxadmg": 0, "style": 0, "inner_edg": 0, "special": 0, "plot_timeseri": 0, "var_unit": 0, "time_label": 0, "grey_masked_sampl": 0, "show_meanlin": 0, "data_linewidth": 0, "skip_ticks_data_x": 0, "skip_ticks_data_i": 0, "adjust_plot": 0, "stack": 0, "panel": 0, "subplot": 0, "fig": 0, "pyplot": 0, "grei": 0, "fill": 0, "skip": 0, "tickmark": 0, "plot_tsg": 0, "anc_x": 0, "anc_i": 0, "anc_xi": 0, "help": 0, "legend_width": 0, "legend_fonts": 0, "plot_gridlin": 0, "setup": 0, "legend": 0, "grid": 0, "matrix_lag": 0, "label_color": 0, "snskdeplot_arg": 0, "cmap": 0, "snskdeplot_diagonal_arg": 0, "depict": 0, "sn": 0, "kdeplot": 0, "adjustfig": 0, "show_label": 0, "x_base": 0, "y_base": 0, "lag_unit": 0, "comparison": 0, "two_sided_thr": 0, "marker": 0, "markers": 0, "po": 0, "matplotlib": 0, "savefig": 0, "scatterplot": 0, "write_csv": 0, "digit": 0, "write": 0, "csv": 0, "elena": 0, "saggioro": 0, "jana": 0, "de": 0, "wilj": 0, "marlen": 0, "jakob": 0, "regim": 0, "novemb": 0, "113115": 0, "0020538": 0, "extract": 0, "persist": 0, "finit": 0, "nearestneighbor": 0, "anneal": 0, "run_rpcmci": 0, "num_regim": 0, "max_transit": 0, "switch_thr": 0, "num_iter": 0, "max_ann": 0, "n_job": 0, "transit": 0, "switch": 0, "cpu": 0, "joblib": 0, "paral": 0, "n_regim": 0, "One": 0, "hot": 0, "encod": 0, "causal_result": 0, "converg": 0, "diff_g_f": 0, "consecut": 0, "error_free_ann": 0, "get_dict_from_graph": 0, "parents_onli": 0, "empty_predictors_funct": 0, "ccr": 0, "platecarre": 0, "cartopi": 0, "sciadv": 0, "data_typ": 0}, "objects": {"tigramite.causal_effects": [[0, 0, 1, "", "CausalEffects"]], "tigramite.causal_effects.CausalEffects": [[0, 1, 1, "", "check_XYS_paths"], [0, 1, 1, "", "check_optimality"], [0, 1, 1, "", "fit_bootstrap_of"], [0, 1, 1, "", "fit_total_effect"], [0, 1, 1, "", "fit_wright_effect"], [0, 1, 1, "", "get_dict_from_graph"], [0, 1, 1, "", "get_graph_from_dict"], [0, 1, 1, "", "get_mediators"], [0, 1, 1, "", "get_optimal_set"], [0, 1, 1, "", "predict_bootstrap_of"], [0, 1, 1, "", "predict_total_effect"], [0, 1, 1, "", "predict_wright_effect"]], "tigramite": [[0, 2, 0, "-", "data_processing"], [0, 2, 0, "-", "plotting"]], "tigramite.data_processing": [[0, 0, 1, "", "DataFrame"], [0, 3, 1, "", "get_acf"], [0, 3, 1, "", "get_block_length"], [0, 3, 1, "", "lowhighpass_filter"], [0, 3, 1, "", "ordinal_patt_array"], [0, 3, 1, "", "quantile_bin_array"], [0, 3, 1, "", "smooth"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "time_bin_with_mask"], [0, 3, 1, "", "trafo2normal"], [0, 3, 1, "", "var_process"], [0, 3, 1, "", "weighted_avg_and_std"]], "tigramite.data_processing.DataFrame": [[0, 1, 1, "", "construct_array"], [0, 1, 1, "", "print_array_info"]], "tigramite.independence_tests.cmiknn": [[0, 0, 1, "", "CMIknn"]], "tigramite.independence_tests.cmiknn.CMIknn": [[0, 1, 1, "", "get_conditional_entropy"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.cmisymb": [[0, 0, 1, "", "CMIsymb"]], "tigramite.independence_tests.cmisymb.CMIsymb": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc": [[0, 0, 1, "", "GPDC"]], "tigramite.independence_tests.gpdc.GPDC": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc_torch": [[0, 0, 1, "", "GPDCtorch"]], "tigramite.independence_tests.gpdc_torch.GPDCtorch": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gsquared": [[0, 0, 1, "", "Gsquared"]], "tigramite.independence_tests.gsquared.Gsquared": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.independence_tests_base": [[0, 0, 1, "", "CondIndTest"]], "tigramite.independence_tests.independence_tests_base.CondIndTest": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_bootstrap_confidence"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_fixed_thres_significance"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 1, 1, "", "get_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "print_info"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "run_test_raw"], [0, 1, 1, "", "set_dataframe"], [0, 1, 1, "", "set_mask_type"]], "tigramite.independence_tests.oracle_conditional_independence": [[0, 0, 1, "", "OracleCI"]], "tigramite.independence_tests.oracle_conditional_independence.OracleCI": [[0, 1, 1, "", "check_shortest_path"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_graph_from_links"], [0, 1, 1, "", "get_links_from_graph"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.parcorr": [[0, 0, 1, "", "ParCorr"]], "tigramite.independence_tests.parcorr.ParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.parcorr_mult": [[0, 0, 1, "", "ParCorrMult"]], "tigramite.independence_tests.parcorr_mult.ParCorrMult": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "mult_corr"]], "tigramite.independence_tests.parcorr_wls": [[0, 0, 1, "", "ParCorrWLS"]], "tigramite.independence_tests.parcorr_wls.ParCorrWLS": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"]], "tigramite.independence_tests.regressionCI": [[0, 0, 1, "", "RegressionCI"]], "tigramite.independence_tests.regressionCI.RegressionCI": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.robust_parcorr": [[0, 0, 1, "", "RobustParCorr"]], "tigramite.independence_tests.robust_parcorr.RobustParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "trafo2normal"]], "tigramite.lpcmci": [[0, 0, 1, "", "LPCMCI"]], "tigramite.lpcmci.LPCMCI": [[0, 1, 1, "", "run_lpcmci"]], "tigramite.models": [[0, 0, 1, "", "LinearMediation"], [0, 0, 1, "", "Models"], [0, 0, 1, "", "Prediction"]], "tigramite.models.LinearMediation": [[0, 1, 1, "", "fit_model"], [0, 1, 1, "", "fit_model_bootstrap"], [0, 1, 1, "", "get_ace"], [0, 1, 1, "", "get_acs"], [0, 1, 1, "", "get_all_ace"], [0, 1, 1, "", "get_all_acs"], [0, 1, 1, "", "get_all_amce"], [0, 1, 1, "", "get_amce"], [0, 1, 1, "", "get_bootstrap_of"], [0, 1, 1, "", "get_ce"], [0, 1, 1, "", "get_ce_max"], [0, 1, 1, "", "get_coeff"], [0, 1, 1, "", "get_conditional_mce"], [0, 1, 1, "", "get_joint_ce"], [0, 1, 1, "", "get_joint_ce_matrix"], [0, 1, 1, "", "get_joint_mce"], [0, 1, 1, "", "get_mce"], [0, 1, 1, "", "get_mediation_graph_data"], [0, 1, 1, "", "get_tsg"], [0, 1, 1, "", "get_val_matrix"], [0, 1, 1, "", "net_to_tsg"], [0, 1, 1, "", "tsg_to_net"]], "tigramite.models.Models": [[0, 1, 1, "", "fit_full_model"], [0, 1, 1, "", "get_coefs"], [0, 1, 1, "", "get_general_fitted_model"], [0, 1, 1, "", "get_general_prediction"], [0, 1, 1, "", "get_val_matrix"]], "tigramite.models.Prediction": [[0, 1, 1, "", "fit"], [0, 1, 1, "", "get_predictors"], [0, 1, 1, "", "get_test_array"], [0, 1, 1, "", "get_train_array"], [0, 1, 1, "", "predict"]], "tigramite.pcmci": [[0, 0, 1, "", "PCMCI"]], "tigramite.pcmci.PCMCI": [[0, 5, 1, "", "N"], [0, 5, 1, "", "T"], [0, 5, 1, "", "all_parents"], [0, 1, 1, "", "get_graph_from_pmatrix"], [0, 1, 1, "", "get_lagged_dependencies"], [0, 5, 1, "", "iterations"], [0, 1, 1, "", "print_results"], [0, 1, 1, "", "print_significant_links"], [0, 5, 1, "", "pval_max"], [0, 1, 1, "", "return_parents_dict"], [0, 1, 1, "", "return_significant_links"], [0, 1, 1, "", "run_bivci"], [0, 1, 1, "", "run_fullci"], [0, 1, 1, "", "run_mci"], [0, 1, 1, "", "run_pc_stable"], [0, 1, 1, "", "run_pcalg"], [0, 1, 1, "", "run_pcalg_non_timeseries_data"], [0, 1, 1, "", "run_pcmci"], [0, 1, 1, "", "run_pcmciplus"], [0, 5, 1, "", "val_min"]], "tigramite.plotting": [[0, 3, 1, "", "plot_densityplots"], [0, 3, 1, "", "plot_graph"], [0, 3, 1, "", "plot_lagfuncs"], [0, 3, 1, "", "plot_mediation_graph"], [0, 3, 1, "", "plot_mediation_time_series_graph"], [0, 3, 1, "", "plot_scatterplots"], [0, 3, 1, "", "plot_time_series_graph"], [0, 3, 1, "", "plot_timeseries"], [0, 3, 1, "", "plot_tsg"], [0, 0, 1, "", "setup_density_matrix"], [0, 0, 1, "", "setup_matrix"], [0, 0, 1, "", "setup_scatter_matrix"], [0, 3, 1, "", "write_csv"]], "tigramite.plotting.setup_density_matrix": [[0, 1, 1, "", "add_densityplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.plotting.setup_matrix": [[0, 1, 1, "", "add_lagfuncs"], [0, 1, 1, "", "savefig"]], "tigramite.plotting.setup_scatter_matrix": [[0, 1, 1, "", "add_scatterplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.rpcmci": [[0, 0, 1, "", "RPCMCI"]], "tigramite.rpcmci.RPCMCI": [[0, 1, 1, "", "run_rpcmci"]], "tigramite.toymodels": [[0, 2, 0, "-", "structural_causal_processes"]], "tigramite.toymodels.structural_causal_processes": [[0, 3, 1, "", "check_stationarity"], [0, 3, 1, "", "dag_to_links"], [0, 3, 1, "", "generate_structural_causal_process"], [0, 3, 1, "", "links_to_graph"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "var_process"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:module", "3": "py:function", "4": "py:property", "5": "py:attribute"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "module", "Python module"], "3": ["py", "function", "Python function"], "4": ["py", "property", "Python property"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"welcom": 0, "tigramit": 0, "": 0, "document": 0, "indic": 0, "tabl": 0, "pcmci": 0, "lpcmci": 0, "independence_test": 0, "condit": 0, "independ": 0, "test": 0, "causal_effect": 0, "causal": 0, "effect": 0, "analysi": 0, "model": 0, "time": 0, "seri": 0, "mediat": 0, "predict": 0, "data_process": 0, "data": 0, "process": 0, "function": 0, "toymodel": 0, "toi": 0, "gener": 0, "plot": 0, "rpcmci": 0}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 57}, "alltitles": {"Welcome to Tigramite\u2019s documentation!": [[0, "welcome-to-tigramite-s-documentation"]], "Indices and tables": [[0, "indices-and-tables"], [0, "id35"]], "TIGRAMITE": [[0, "tigramite"]], "tigramite.pcmci: PCMCI": [[0, "tigramite-pcmci-pcmci"]], "tigramite.lpcmci: LPCMCI": [[0, "tigramite-lpcmci-lpcmci"]], "tigramite.rpcmci: RPCMCI": [[0, "tigramite-rpcmci-rpcmci"]], "tigramite.independence_tests: Conditional independence tests": [[0, "tigramite-independence-tests-conditional-independence-tests"]], "tigramite.causal_effects: Causal Effect analysis": [[0, "tigramite-causal-effects-causal-effect-analysis"]], "tigramite.models: Time series modeling, mediation, and prediction": [[0, "tigramite-models-time-series-modeling-mediation-and-prediction"]], "tigramite.data_processing: Data processing functions": [[0, "module-tigramite.data_processing"]], "tigramite.toymodels: Toy model generators": [[0, "module-tigramite.toymodels.structural_causal_processes"]], "tigramite.plotting: Plotting functions": [[0, "module-tigramite.plotting"]]}, "indexentries": {"cmiknn (class in tigramite.independence_tests.cmiknn)": [[0, "tigramite.independence_tests.cmiknn.CMIknn"]], "cmisymb (class in tigramite.independence_tests.cmisymb)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb"]], "causaleffects (class in tigramite.causal_effects)": [[0, "tigramite.causal_effects.CausalEffects"]], "condindtest (class in tigramite.independence_tests.independence_tests_base)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest"]], "dataframe (class in tigramite.data_processing)": [[0, "tigramite.data_processing.DataFrame"]], "gpdc (class in tigramite.independence_tests.gpdc)": [[0, "tigramite.independence_tests.gpdc.GPDC"]], "gpdctorch (class in tigramite.independence_tests.gpdc_torch)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch"]], "gsquared (class in tigramite.independence_tests.gsquared)": [[0, "tigramite.independence_tests.gsquared.Gsquared"]], "lpcmci (class in tigramite.lpcmci)": [[0, "tigramite.lpcmci.LPCMCI"]], "linearmediation (class in tigramite.models)": [[0, "tigramite.models.LinearMediation"]], "models (class in tigramite.models)": [[0, "tigramite.models.Models"]], "n (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.N"]], "oracleci (class in tigramite.independence_tests.oracle_conditional_independence)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI"]], "pcmci (class in tigramite.pcmci)": [[0, "tigramite.pcmci.PCMCI"]], "parcorr (class in tigramite.independence_tests.parcorr)": [[0, "tigramite.independence_tests.parcorr.ParCorr"]], "parcorrmult (class in tigramite.independence_tests.parcorr_mult)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult"]], "parcorrwls (class in tigramite.independence_tests.parcorr_wls)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS"]], "prediction (class in tigramite.models)": [[0, "tigramite.models.Prediction"]], "rpcmci (class in tigramite.rpcmci)": [[0, "tigramite.rpcmci.RPCMCI"]], "regressionci (class in tigramite.independence_tests.regressionci)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI"]], "robustparcorr (class in tigramite.independence_tests.robust_parcorr)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr"]], "t (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.T"]], "add_densityplot() (tigramite.plotting.setup_density_matrix method)": [[0, "tigramite.plotting.setup_density_matrix.add_densityplot"]], "add_lagfuncs() (tigramite.plotting.setup_matrix method)": [[0, "tigramite.plotting.setup_matrix.add_lagfuncs"]], "add_scatterplot() (tigramite.plotting.setup_scatter_matrix method)": [[0, "tigramite.plotting.setup_scatter_matrix.add_scatterplot"]], "adjustfig() (tigramite.plotting.setup_density_matrix method)": [[0, "tigramite.plotting.setup_density_matrix.adjustfig"]], "adjustfig() (tigramite.plotting.setup_scatter_matrix method)": [[0, "tigramite.plotting.setup_scatter_matrix.adjustfig"]], "all_parents (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.all_parents"]], "check_xys_paths() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.check_XYS_paths"]], "check_optimality() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.check_optimality"]], "check_shortest_path() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.check_shortest_path"]], "check_stationarity() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.check_stationarity"]], "construct_array() (tigramite.data_processing.dataframe method)": [[0, "tigramite.data_processing.DataFrame.construct_array"]], "dag_to_links() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.dag_to_links"]], "fit() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.fit"]], "fit_bootstrap_of() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_bootstrap_of"]], "fit_full_model() (tigramite.models.models method)": [[0, "tigramite.models.Models.fit_full_model"]], "fit_model() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.fit_model"]], "fit_model_bootstrap() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.fit_model_bootstrap"]], "fit_total_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_total_effect"]], "fit_wright_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_wright_effect"]], "generate_and_save_nulldists() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.generate_and_save_nulldists"]], "generate_and_save_nulldists() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.generate_and_save_nulldists"]], "generate_nulldist() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.generate_nulldist"]], "generate_nulldist() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.generate_nulldist"]], "generate_structural_causal_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.generate_structural_causal_process"]], "get_ace() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ace"]], "get_acf() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.get_acf"]], "get_acs() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_acs"]], "get_all_ace() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_ace"]], "get_all_acs() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_acs"]], "get_all_amce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_amce"]], "get_amce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_amce"]], "get_analytic_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_analytic_confidence"]], "get_analytic_significance() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.gsquared.gsquared method)": [[0, "tigramite.independence_tests.gsquared.Gsquared.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_analytic_significance"]], "get_block_length() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.get_block_length"]], "get_bootstrap_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_bootstrap_confidence"]], "get_bootstrap_of() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_bootstrap_of"]], "get_ce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ce"]], "get_ce_max() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ce_max"]], "get_coeff() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_coeff"]], "get_coefs() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_coefs"]], "get_conditional_entropy() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_conditional_entropy"]], "get_conditional_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_conditional_mce"]], "get_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_confidence"]], "get_confidence() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_confidence"]], "get_dependence_measure() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.cmisymb.cmisymb method)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gsquared.gsquared method)": [[0, "tigramite.independence_tests.gsquared.Gsquared.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_dependence_measure"]], "get_dict_from_graph() (tigramite.causal_effects.causaleffects static method)": [[0, "tigramite.causal_effects.CausalEffects.get_dict_from_graph"]], "get_fixed_thres_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_fixed_thres_significance"]], "get_general_fitted_model() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_general_fitted_model"]], "get_general_prediction() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_general_prediction"]], "get_graph_from_dict() (tigramite.causal_effects.causaleffects static method)": [[0, "tigramite.causal_effects.CausalEffects.get_graph_from_dict"]], "get_graph_from_links() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_graph_from_links"]], "get_graph_from_pmatrix() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.get_graph_from_pmatrix"]], "get_joint_ce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_ce"]], "get_joint_ce_matrix() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_ce_matrix"]], "get_joint_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_mce"]], "get_lagged_dependencies() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.get_lagged_dependencies"]], "get_links_from_graph() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_links_from_graph"]], "get_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_mce"]], "get_measure() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_measure"]], "get_measure() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_measure"]], "get_mediation_graph_data() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_mediation_graph_data"]], "get_mediators() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.get_mediators"]], "get_model_selection_criterion() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_model_selection_criterion"]], "get_optimal_set() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.get_optimal_set"]], "get_predictors() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_predictors"]], "get_shuffle_significance() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.cmisymb.cmisymb method)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_shuffle_significance"]], "get_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_significance"]], "get_test_array() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_test_array"]], "get_train_array() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_train_array"]], "get_tsg() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_tsg"]], "get_val_matrix() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_val_matrix"]], "get_val_matrix() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_val_matrix"]], "iterations (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.iterations"]], "links_to_graph() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.links_to_graph"]], "lowhighpass_filter() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.lowhighpass_filter"]], "measure (tigramite.independence_tests.cmiknn.cmiknn property)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.measure"]], "measure (tigramite.independence_tests.cmisymb.cmisymb property)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.measure"]], "measure (tigramite.independence_tests.gpdc.gpdc property)": [[0, "tigramite.independence_tests.gpdc.GPDC.measure"]], "measure (tigramite.independence_tests.gpdc_torch.gpdctorch property)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.measure"]], "measure (tigramite.independence_tests.gsquared.gsquared property)": [[0, "tigramite.independence_tests.gsquared.Gsquared.measure"]], "measure (tigramite.independence_tests.independence_tests_base.condindtest property)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.measure"]], "measure (tigramite.independence_tests.oracle_conditional_independence.oracleci property)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.measure"]], "measure (tigramite.independence_tests.parcorr.parcorr property)": [[0, "tigramite.independence_tests.parcorr.ParCorr.measure"]], "measure (tigramite.independence_tests.parcorr_mult.parcorrmult property)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.measure"]], "measure (tigramite.independence_tests.regressionci.regressionci property)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.measure"]], "measure (tigramite.independence_tests.robust_parcorr.robustparcorr property)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.measure"]], "module": [[0, "module-tigramite.data_processing"], [0, "module-tigramite.plotting"], [0, "module-tigramite.toymodels.structural_causal_processes"]], "mult_corr() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.mult_corr"]], "net_to_tsg() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.net_to_tsg"]], "ordinal_patt_array() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.ordinal_patt_array"]], "plot_densityplots() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_densityplots"]], "plot_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_graph"]], "plot_lagfuncs() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_lagfuncs"]], "plot_mediation_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_mediation_graph"]], "plot_mediation_time_series_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_mediation_time_series_graph"]], "plot_scatterplots() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_scatterplots"]], "plot_time_series_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_time_series_graph"]], "plot_timeseries() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_timeseries"]], "plot_tsg() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_tsg"]], "predict() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.predict"]], "predict_bootstrap_of() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_bootstrap_of"]], "predict_total_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_total_effect"]], "predict_wright_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_wright_effect"]], "print_array_info() (tigramite.data_processing.dataframe method)": [[0, "tigramite.data_processing.DataFrame.print_array_info"]], "print_info() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.print_info"]], "print_results() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.print_results"]], "print_significant_links() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.print_significant_links"]], "pval_max (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.pval_max"]], "quantile_bin_array() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.quantile_bin_array"]], "return_parents_dict() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.return_parents_dict"]], "return_significant_links() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.return_significant_links"]], "run_bivci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_bivci"]], "run_fullci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_fullci"]], "run_lpcmci() (tigramite.lpcmci.lpcmci method)": [[0, "tigramite.lpcmci.LPCMCI.run_lpcmci"]], "run_mci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_mci"]], "run_pc_stable() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pc_stable"]], "run_pcalg() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcalg"]], "run_pcalg_non_timeseries_data() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcalg_non_timeseries_data"]], "run_pcmci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcmci"]], "run_pcmciplus() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcmciplus"]], "run_rpcmci() (tigramite.rpcmci.rpcmci method)": [[0, "tigramite.rpcmci.RPCMCI.run_rpcmci"]], "run_test() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.run_test"]], "run_test() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.run_test"]], "run_test_raw() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.run_test_raw"]], "savefig() (tigramite.plotting.setup_matrix method)": [[0, "tigramite.plotting.setup_matrix.savefig"]], "set_dataframe() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.set_dataframe"]], "set_dataframe() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.set_dataframe"]], "set_dataframe() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.set_dataframe"]], "set_mask_type() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.set_mask_type"]], "setup_density_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_density_matrix"]], "setup_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_matrix"]], "setup_scatter_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_scatter_matrix"]], "smooth() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.smooth"]], "structural_causal_process() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.structural_causal_process"]], "structural_causal_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.structural_causal_process"]], "tigramite.data_processing": [[0, "module-tigramite.data_processing"]], "tigramite.plotting": [[0, "module-tigramite.plotting"]], "tigramite.toymodels.structural_causal_processes": [[0, "module-tigramite.toymodels.structural_causal_processes"]], "time_bin_with_mask() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.time_bin_with_mask"]], "trafo2normal() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.trafo2normal"]], "trafo2normal() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.trafo2normal"]], "tsg_to_net() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.tsg_to_net"]], "val_min (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.val_min"]], "var_process() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.var_process"]], "var_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.var_process"]], "weighted_avg_and_std() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.weighted_avg_and_std"]], "write_csv() (in module tigramite.plotting)": [[0, "tigramite.plotting.write_csv"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["index"], "filenames": ["index.rst"], "titles": ["Welcome to Tigramite\u2019s documentation!"], "terms": {"index": 0, "modul": 0, "search": 0, "page": 0, "github": 0, "repo": 0, "python": 0, "packag": 0, "It": 0, "allow": 0, "effici": 0, "estim": 0, "graph": 0, "from": 0, "high": 0, "dimension": 0, "dataset": 0, "discoveri": 0, "us": 0, "robust": 0, "forecast": 0, "direct": 0, "total": 0, "base": 0, "linear": 0, "well": 0, "non": 0, "parametr": 0, "applic": 0, "discret": 0, "continu": 0, "valu": 0, "also": 0, "includ": 0, "qualiti": 0, "result": 0, "pleas": 0, "cite": 0, "follow": 0, "paper": 0, "depend": 0, "which": 0, "method": 0, "you": 0, "overview": 0, "rung": 0, "j": 0, "gerhardu": 0, "A": 0, "varando": 0, "g": 0, "et": 0, "al": 0, "infer": 0, "nat": 0, "rev": 0, "earth": 0, "environ": 0, "2023": 0, "http": 0, "doi": 0, "org": 0, "10": 0, "1038": 0, "s43017": 0, "023": 0, "00431": 0, "y": 0, "p": 0, "nowack": 0, "m": 0, "kretschmer": 0, "flaxman": 0, "d": 0, "sejdinov": 0, "detect": 0, "quantifi": 0, "associ": 0, "larg": 0, "nonlinear": 0, "sci": 0, "adv": 0, "5": 0, "eaau4996": 0, "2019": 0, "advanc": 0, "sciencemag": 0, "content": 0, "11": 0, "2020": 0, "discov": 0, "contemporan": 0, "lag": 0, "relat": 0, "autocorrel": 0, "proceed": 0, "36th": 0, "confer": 0, "uncertainti": 0, "artifici": 0, "intellig": 0, "uai": 0, "toronto": 0, "canada": 0, "auai": 0, "press": 0, "uai2020": 0, "579_main_pap": 0, "pdf": 0, "recal": 0, "latent": 0, "confound": 0, "neural": 0, "inform": 0, "system": 0, "33": 0, "neurip": 0, "cc": 0, "hash": 0, "94e70705efae423efda1088614128d0b": 0, "abstract": 0, "html": 0, "elena": 0, "saggioro": 0, "jana": 0, "de": 0, "wilj": 0, "marlen": 0, "jakob": 0, "reconstruct": 0, "regim": 0, "relationship": 0, "observ": 0, "chao": 0, "1": 0, "novemb": 0, "30": 0, "113115": 0, "1063": 0, "0020538": 0, "2018": 0, "network": 0, "theoret": 0, "assumpt": 0, "practic": 0, "an": 0, "interdisciplinari": 0, "journal": 0, "scienc": 0, "28": 0, "7": 0, "075310": 0, "aip": 0, "scitat": 0, "5025050": 0, "natur": 0, "commun": 0, "perspect": 0, "www": 0, "com": 0, "articl": 0, "s41467": 0, "019": 0, "10105": 0, "3": 0, "necessari": 0, "suffici": 0, "graphic": 0, "optim": 0, "adjust": 0, "set": 0, "hidden": 0, "variabl": 0, "2021": 0, "34": 0, "class": 0, "2015": 0, "identifi": 0, "gatewai": 0, "complex": 0, "spatio": 0, "tempor": 0, "6": 0, "8502": 0, "ncomms9502": 0, "transfer": 0, "along": 0, "pathwai": 0, "phy": 0, "e": 0, "92": 0, "62829": 0, "1103": 0, "physrev": 0, "062829": 0, "cmiknn": 0, "nearest": 0, "neighbor": 0, "mutual": 0, "In": 0, "21st": 0, "intern": 0, "statist": 0, "mlr": 0, "v84": 0, "runge18a": 0, "datafram": 0, "cond_ind_test": 0, "verbos": 0, "0": 0, "sourc": 0, "framework": 0, "scale": 0, "thi": 0, "contain": 0, "sever": 0, "The": 0, "standard": 0, "address": 0, "describ": 0, "where": 0, "further": 0, "sub": 0, "variant": 0, "ar": 0, "discuss": 0, "pcmciplu": 0, "see": 0, "tutori": 0, "guidanc": 0, "appli": 0, "ha": 0, "differ": 0, "adapt": 0, "implement": 0, "mostli": 0, "hyperparamet": 0, "easi": 0, "parallel": 0, "separ": 0, "script": 0, "handl": 0, "mask": 0, "fals": 0, "control": 0, "confid": 0, "interv": 0, "note": 0, "structur": 0, "repres": 0, "shown": 0, "figur": 0, "node": 0, "defin": 0, "link": 0, "can": 0, "interpret": 0, "under": 0, "certain": 0, "assum": 0, "stationar": 0, "repeat": 0, "parent": 0, "mathcal": 0, "all": 0, "toward": 0, "blue": 0, "red": 0, "box": 0, "iter": 0, "flexibl": 0, "combin": 0, "ani": 0, "kind": 0, "its": 0, "type": 0, "These": 0, "avail": 0, "mci": 0, "particular": 0, "measur": 0, "strength": 0, "For": 0, "exampl": 0, "parcorr": 0, "normal": 0, "between": 0, "howev": 0, "interest": 0, "i": 0, "hypothet": 0, "intervent": 0, "mai": 0, "better": 0, "look": 0, "refer": 0, "w": 0, "paramet": 0, "object": 0, "among": 0, "other": 0, "attribut": 0, "yield": 0, "numpi": 0, "arrai": 0, "shape": 0, "t": 0, "n": 0, "option": 0, "same": 0, "extern": 0, "pass": 0, "callabl": 0, "condindtest": 0, "int": 0, "default": 0, "level": 0, "all_par": 0, "dictionari": 0, "form": 0, "2": 0, "pc": 0, "algorithm": 0, "val_min": 0, "tau": 0, "float": 0, "minimum": 0, "each": 0, "pval_max": 0, "maximum": 0, "step": 0, "number": 0, "sampl": 0, "length": 0, "dict": 0, "get_graph_from_pmatrix": 0, "p_matrix": 0, "alpha_level": 0, "tau_min": 0, "tau_max": 0, "link_assumpt": 0, "none": 0, "construct": 0, "threshold": 0, "alpha": 0, "take": 0, "account": 0, "matrix": 0, "fdr_method": 0, "05": 0, "signific": 0, "get": 0, "tau_mix": 0, "delai": 0, "link_typ": 0, "specifi": 0, "about": 0, "initi": 0, "entri": 0, "impli": 0, "must": 0, "exist": 0, "valid": 0, "o": 0, "addit": 0, "middl": 0, "mark": 0, "instead": 0, "Then": 0, "orient": 0, "need": 0, "consist": 0, "requir": 0, "acycl": 0, "hold": 0, "If": 0, "doe": 0, "appear": 0, "absent": 0, "That": 0, "have": 0, "return": 0, "descript": 0, "abov": 0, "get_lagged_depend": 0, "selected_link": 0, "val_onli": 0, "uncondit": 0, "_": 0, "matric": 0, "correct": 0, "new": 0, "4": 0, "fdr": 0, "deprec": 0, "replac": 0, "zero": 0, "undirect": 0, "larger": 0, "equal": 0, "bool": 0, "onli": 0, "comput": 0, "str": 0, "current": 0, "benjamini": 0, "hochberg": 0, "rate": 0, "fdr_bh": 0, "val_matrix": 0, "conf_matrix": 0, "percentil": 0, "print_result": 0, "return_dict": 0, "print": 0, "output": 0, "kei": 0, "print_significant_link": 0, "ambiguous_tripl": 0, "latter": 0, "ambigu": 0, "conflict": 0, "like": 0, "list": 0, "tripl": 0, "return_parents_dict": 0, "include_lagzero_par": 0, "sort": 0, "unclear": 0, "edgemark": 0, "x": 0, "whether": 0, "should": 0, "parents_dict": 0, "return_significant_link": 0, "pq_matrix": 0, "include_lagzero_link": 0, "boolean": 0, "Will": 0, "remov": 0, "futur": 0, "run_bivci": 0, "bivci": 0, "run_fullci": 0, "fullci": 0, "run_mci": 0, "max_conds_pi": 0, "max_conds_px": 0, "unrestrict": 0, "z": 0, "run_pc_stabl": 0, "save_iter": 0, "pc_alpha": 0, "max_conds_dim": 0, "max_combin": 0, "made": 0, "self": 0, "multi": 0, "ahead": 0, "greater": 0, "save": 0, "everi": 0, "across": 0, "given": 0, "score": 0, "get_model_selection_criterion": 0, "cardin": 0, "pc_1": 0, "origin": 0, "run_pcalg": 0, "01": 0, "lagged_par": 0, "max_conds_px_lag": 0, "mode": 0, "contemp_collider_rul": 0, "major": 0, "conflict_resolut": 0, "true": 0, "run": 0, "contemp_cond": 0, "ci": 0, "As": 0, "part": 0, "superset": 0, "pc1": 0, "conserv": 0, "rule": 0, "collid": 0, "phase": 0, "detail": 0, "lead": 0, "order": 0, "when": 0, "regard": 0, "adjac": 0, "sepset": 0, "relev": 0, "run_pcalg_non_timeseries_data": 0, "simpli": 0, "call": 0, "run_pcmci": 0, "wrapper": 0, "around": 0, "comprehens": 0, "analyt": 0, "numer": 0, "present": 0, "here": 0, "we": 0, "briefli": 0, "summar": 0, "two": 0, "procedur": 0, "select": 0, "tild": 0, "j_t": 0, "reduc": 0, "avoid": 0, "irrelev": 0, "momentari": 0, "i_": 0, "perp": 0, "j_": 0, "common": 0, "driver": 0, "indirect": 0, "main": 0, "free": 0, "tau_": 0, "max": 0, "chosen": 0, "accord": 0, "expect": 0, "recommend": 0, "rather": 0, "choic": 0, "peak": 0, "seen": 0, "sinc": 0, "hypothesi": 0, "do": 0, "precis": 0, "assess": 0, "role": 0, "regular": 0, "techniqu": 0, "criteria": 0, "respect": 0, "import": 0, "pp": 0, "structural_causal_process": 0, "random": 0, "seed": 0, "plai": 0, "incom": 0, "suppli": 0, "format": 0, "coeff": 0, "links_coeff": 0, "8": 0, "var_process": 0, "1000": 0, "pval": 0, "00000": 0, "val": 0, "588": 0, "606": 0, "447": 0, "618": 0, "499": 0, "run_pcmciplu": 0, "reset_lagged_link": 0, "contrast": 0, "full": 0, "up": 0, "markov": 0, "equival": 0, "faith": 0, "four": 0, "widehat": 0, "b": 0, "_t": 0, "skeleton": 0, "through": 0, "subset": 0, "conduct": 0, "motif": 0, "unshield": 0, "remain": 0, "Its": 0, "string": 0, "denot": 0, "unori": 0, "could": 0, "direction": 0, "undecid": 0, "due": 0, "importantli": 0, "alwai": 0, "dag": 0, "first": 0, "one": 0, "member": 0, "averag": 0, "over": 0, "fit": 0, "anoth": 0, "togeth": 0, "fulli": 0, "mean": 0, "matter": 0, "last": 0, "restrict": 0, "found": 0, "consid": 0, "again": 0, "improv": 0, "power": 0, "runtim": 0, "001": 0, "005": 0, "025": 0, "learn": 0, "specif": 0, "introduc": 0, "explain": 0, "still": 0, "experiment": 0, "being": 0, "fine": 0, "tune": 0, "actual": 0, "invit": 0, "feedback": 0, "work": 0, "best": 0, "experi": 0, "run_lpcmci": 0, "constructor": 0, "old": 0, "some": 0, "might": 0, "nest": 0, "lag_i": 0, "compon": 0, "background": 0, "knowledg": 0, "possibl": 0, "correspond": 0, "claim": 0, "ancestor": 0, "i_t": 0, "neither": 0, "nor": 0, "wai": 0, "impos": 0, "automat": 0, "There": 0, "No": 0, "either": 0, "smaller": 0, "than": 0, "dpag": 0, "window": 0, "aumax": 0, "au_max": 0, "underli": 0, "n_preliminary_iter": 0, "determin": 0, "preliminari": 0, "k": 0, "max_cond_px": 0, "pair": 0, "au": 0, "s2": 0, "_run_ancestral_removal_phas": 0, "apds_t": 0, "c": 0, "higher": 0, "s3": 0, "_run_non_ancestral_removal_phas": 0, "napds_t": 0, "max_p_glob": 0, "max_p_non_ancestr": 0, "second": 0, "_run_dsep_removal_phas": 0, "max_q_glob": 0, "most": 0, "mani": 0, "sum": 0, "more": 0, "max_pds_set": 0, "element": 0, "opposit": 0, "prelim_with_collider_rul": 0, "pseudocod": 0, "line": 0, "22": 0, "18": 0, "directli": 0, "befor": 0, "parents_of_lag": 0, "pa": 0, "prelim_onli": 0, "stop": 0, "after": 0, "perform": 0, "break_once_separ": 0, "break": 0, "command": 0, "no_non_ancestral_phas": 0, "execut": 0, "use_a_pds_t_for_major": 0, "instruct": 0, "adj": 0, "orient_contemp": 0, "orient_comtemp": 0, "update_middle_mark": 0, "pseudoc": 0, "mmr": 0, "prelim_rul": 0, "exclud": 0, "r9": 0, "prime": 0, "r10": 0, "fix_all_edges_before_final_orient": 0, "np": 0, "inf": 0, "termin": 0, "although": 0, "empti": 0, "nevertheless": 0, "sound": 0, "check": 0, "appropri": 0, "forc": 0, "auto_first": 0, "pseudcod": 0, "autodepend": 0, "priorit": 0, "even": 0, "remember_only_par": 0, "been": 0, "point": 0, "wa": 0, "later": 0, "tail": 0, "re": 0, "no_apr": 0, "apr": 0, "except": 0, "never": 0, "conveni": 0, "post": 0, "purpos": 0, "wildcard": 0, "st": 0, "edg": 0, "star": 0, "prediction_model": 0, "extract": 0, "persist": 0, "finit": 0, "within": 0, "ignor": 0, "missing_flag": 0, "miss": 0, "sklearn": 0, "linear_model": 0, "linearregress": 0, "regress": 0, "ie": 0, "eg": 0, "gpdc": 0, "gaussianprocessregressor": 0, "nearestneighbor": 0, "anneal": 0, "run_rpcmci": 0, "num_regim": 0, "max_transit": 0, "switch_thr": 0, "num_iter": 0, "20": 0, "max_ann": 0, "n_job": 0, "transit": 0, "singl": 0, "switch": 0, "cpu": 0, "joblib": 0, "paral": 0, "n_regim": 0, "One": 0, "hot": 0, "encod": 0, "causal_result": 0, "converg": 0, "diff_g_f": 0, "tupl": 0, "consecut": 0, "error_free_ann": 0, "without": 0, "error": 0, "independence_tests_bas": 0, "42": 0, "mask_typ": 0, "fixed_thr": 0, "sig_sampl": 0, "500": 0, "sig_blocklength": 0, "conf_lev": 0, "9": 0, "conf_sampl": 0, "100": 0, "conf_blocklength": 0, "recycle_residu": 0, "provid": 0, "shuffl": 0, "bootstrap": 0, "inherit": 0, "randomst": 0, "default_rng": 0, "xy": 0, "xz": 0, "yz": 0, "xyz": 0, "shuffle_test": 0, "block": 0, "decai": 0, "autocovari": 0, "nan": 0, "side": 0, "residu": 0, "store": 0, "faster": 0, "cost": 0, "consider": 0, "memori": 0, "get_analytic_confid": 0, "df": 0, "concret": 0, "overrid": 0, "get_analytic_signific": 0, "dim": 0, "get_bootstrap_confid": 0, "dependence_measur": 0, "95": 0, "data_typ": 0, "With": 0, "row": 0, "column": 0, "get_dependence_measur": 0, "binari": 0, "individu": 0, "0s": 0, "1s": 0, "conf_low": 0, "conf_upp": 0, "upper": 0, "lower": 0, "bound": 0, "get_confid": 0, "child": 0, "var": 0, "make": 0, "sure": 0, "size": 0, "instanti": 0, "get_fixed_thres_signific": 0, "signfic": 0, "get_measur": 0, "get_shuffle_signific": 0, "return_null_dist": 0, "properti": 0, "print_info": 0, "run_test": 0, "cut_off": 0, "2xtau_max": 0, "alpha_or_thr": 0, "signficic": 0, "both": 0, "_get_single_residu": 0, "max_lag": 0, "max_lag_or_tau_max": 0, "how": 0, "cutoff": 0, "begin": 0, "guarante": 0, "compar": 0, "multipl": 0, "much": 0, "decis": 0, "run_test_raw": 0, "x_type": 0, "y_type": 0, "z_type": 0, "input": 0, "dimens": 0, "set_datafram": 0, "flag": 0, "set_mask_typ": 0, "setter": 0, "ensur": 0, "clash": 0, "kwarg": 0, "partial": 0, "correl": 0, "ordinari": 0, "least": 0, "squar": 0, "ol": 0, "pearson": 0, "To": 0, "out": 0, "beta_x": 0, "epsilon_": 0, "beta_i": 0, "rho": 0, "left": 0, "r_x": 0, "r_y": 0, "right": 0, "student": 0, "distribut": 0, "d_z": 0, "degre": 0, "freedom": 0, "argument": 0, "coeffici": 0, "less": 0, "featur": 0, "corrected_a": 0, "akaik": 0, "criterion": 0, "modulo": 0, "constant": 0, "leav": 0, "cross": 0, "asymptot": 0, "aic": 0, "target": 0, "unshuffl": 0, "robust_parcorr": 0, "robustparcorr": 0, "paranorm": 0, "transform": 0, "margin": 0, "firstli": 0, "phi": 0, "circ": 0, "hat": 0, "f": 0, "quantil": 0, "empir": 0, "idea": 0, "stem": 0, "literatur": 0, "nonparanorm": 0, "han": 0, "liu": 0, "john": 0, "lafferti": 0, "larri": 0, "wasserman": 0, "semiparametr": 0, "mach": 0, "2295": 0, "2328": 0, "2009": 0, "fang": 0, "ming": 0, "yuan": 0, "gaussian": 0, "copula": 0, "ann": 0, "40": 0, "2293": 0, "2326": 0, "2012a": 0, "naftali": 0, "harri": 0, "mathia": 0, "drton": 0, "machin": 0, "research": 0, "14": 0, "3365": 0, "3383": 0, "2013": 0, "afterward": 0, "now": 0, "uniform": 0, "plu": 0, "trafo2norm": 0, "thre": 0, "1e": 0, "code": 0, "small": 0, "too": 0, "close": 0, "similarli": 0, "null_dist_filenam": 0, "gp_param": 0, "distanc": 0, "gp": 0, "scikit": 0, "kernel": 0, "let": 0, "them": 0, "cython": 0, "null": 0, "precomput": 0, "generate_and_save_nulldist": 0, "npz": 0, "file": 0, "f_x": 0, "f_y": 0, "sim": 0, "sigma": 0, "bandwidth": 0, "optimz": 0, "r": 0, "pre": 0, "otherwis": 0, "dure": 0, "gabor": 0, "szeke": 0, "maria": 0, "l": 0, "rizzo": 0, "nail": 0, "bakirov": 0, "arxiv": 0, "ab": 0, "0803": 0, "4101": 0, "otion": 0, "path": 0, "gaussprocreg": 0, "sample_s": 0, "pairwis": 0, "generate_nulldist": 0, "dist": 0, "disk": 0, "add": 0, "gauss_pr": 0, "null_dist": 0, "name": 0, "add_to_null_dist": 0, "just": 0, "load": 0, "nulldist": 0, "wide": 0, "rang": 0, "beforehand": 0, "log": 0, "likelihood": 0, "neg": 0, "Is": 0, "gpdc_torch": 0, "gpdctorch": 0, "gpytorch": 0, "dcor": 0, "pip": 0, "gaussprocregtorch": 0, "knn": 0, "shuffle_neighbor": 0, "rank": 0, "worker": 0, "model_selection_fold": 0, "come": 0, "joint": 0, "densiti": 0, "frenzel": 0, "pomp": 0, "lett": 0, "99": 0, "204101": 0, "2007": 0, "suitabl": 0, "cmisymb": 0, "cmi": 0, "iint": 0, "frac": 0, "cdot": 0, "dx": 0, "dy": 0, "dz": 0, "psi": 0, "sum_": 0, "k_": 0, "digamma": 0, "hyper": 0, "cube": 0, "subspac": 0, "view": 0, "smooth": 0, "unlik": 0, "fix": 0, "bia": 0, "varianc": 0, "slightli": 0, "while": 0, "quantiti": 0, "scipi": 0, "spatial": 0, "ckdtree": 0, "fraction": 0, "henc": 0, "absolut": 0, "surrog": 0, "processor": 0, "fold": 0, "get_conditional_entropi": 0, "entropi": 0, "h": 0, "prl": 0, "overwrit": 0, "preserv": 0, "permut": 0, "those": 0, "x_i": 0, "x_j": 0, "z_j": 0, "niehgbor": 0, "z_i": 0, "n_symb": 0, "categor": 0, "symbol": 0, "local": 0, "mix": 0, "cmiknnmix": 0, "crosstab": 0, "conting": 0, "approxim": 0, "probabl": 0, "mass": 0, "drawn": 0, "oracle_conditional_independ": 0, "oracleci": 0, "observed_var": 0, "selection_var": 0, "graph_is_mag": 0, "oracl": 0, "link_coeff": 0, "ground": 0, "truth": 0, "unit": 0, "altern": 0, "digest": 0, "func": 0, "definin": 0, "check_shortest_path": 0, "starts_with": 0, "ends_with": 0, "forbidden_nod": 0, "only_non_causal_path": 0, "check_optimality_cond": 0, "optimality_cond_des_ym": 0, "optimality_cond_i": 0, "return_path": 0, "non_rep": 0, "au_i": 0, "au_j": 0, "alreadi": 0, "truncat": 0, "breadth": 0, "start": 0, "end": 0, "veri": 0, "long": 0, "constrain": 0, "has_path": 0, "ancestr": 0, "compute_ancestor": 0, "anc_all_x": 0, "anc_all_i": 0, "anc_all_z": 0, "arrohead": 0, "compat": 0, "get_graph_from_link": 0, "mag": 0, "admg": 0, "project": 0, "oper": 0, "pearl": 0, "get_links_from_graph": 0, "case": 0, "ad": 0, "canon": 0, "richardson": 0, "spirt": 0, "2002": 0, "support": 0, "evalu": 0, "els": 0, "Not": 0, "dummi": 0, "parcorr_mult": 0, "parcorrmult": 0, "correlation_typ": 0, "max_corr": 0, "multivari": 0, "mult_corr": 0, "gsquar": 0, "chi2": 0, "2000": 0, "stat": 0, "formula": 0, "bishop": 0, "fienberg": 0, "holland": 0, "1975": 0, "theori": 0, "mit": 0, "cambridg": 0, "p_valu": 0, "chi": 0, "dof": 0, "parcorr_wl": 0, "parcorrwl": 0, "gt_std_matrix": 0, "expert_knowledg": 0, "heteroskedast": 0, "window_s": 0, "robustifi": 0, "weight": 0, "wl": 0, "known": 0, "thei": 0, "neighbour": 0, "homoskedast": 0, "term": 0, "deviat": 0, "nois": 0, "nb_node": 0, "expert": 0, "regressionci": 0, "vs": 0, "notion": 0, "devianc": 0, "emploi": 0, "significantli": 0, "hypothes": 0, "accept": 0, "approach": 0, "univari": 0, "moreov": 0, "multinomi": 0, "causaleffect": 0, "graph_typ": 0, "hidden_vari": 0, "check_sm_overlap": 0, "potenti": 0, "backdoor": 0, "variou": 0, "wright": 0, "depth": 0, "introduct": 0, "8485ae387a981d783f8764e508151cd9": 0, "caus": 0, "overlap": 0, "check_xys_path": 0, "proper": 0, "clean": 0, "check_optim": 0, "thm": 0, "fit_bootstrap_of": 0, "method_arg": 0, "boot_sampl": 0, "boot_blocklength": 0, "construct_arrai": 0, "shift": 0, "bootsrap": 0, "predict_bootstrap_of": 0, "draw": 0, "fit_total_effect": 0, "adjustment_set": 0, "conditional_estim": 0, "data_transform": 0, "ignore_identifi": 0, "oset": 0, "minimized_optim": 0, "minim": 0, "colliders_minimized_optim": 0, "preprocess": 0, "prior": 0, "standardscal": 0, "simpl": 0, "user": 0, "fit_wright_effect": 0, "considerd": 0, "complic": 0, "static": 0, "get_dict_from_graph": 0, "parents_onli": 0, "helper": 0, "convert": 0, "get_graph_from_dict": 0, "get_medi": 0, "get_optimal_set": 0, "alternative_condit": 0, "return_separate_set": 0, "theorem": 0, "colliders_onli": 0, "invalid": 0, "collider_par": 0, "oset_": 0, "return_individual_bootstrap_result": 0, "confidence_interv": 0, "predict_total_effect": 0, "intervention_data": 0, "conditions_data": 0, "pred_param": 0, "return_further_pred_result": 0, "aggregation_func": 0, "transform_interventions_and_predict": 0, "len": 0, "predictor": 0, "entir": 0, "invers": 0, "estimate_confid": 0, "predict_wright_effect": 0, "conditional_model": 0, "care": 0, "inverse_transform": 0, "fit_full_model": 0, "selected_vari": 0, "empty_predictors_funct": 0, "return_data": 0, "integ": 0, "fit_result": 0, "get_coef": 0, "get_general_fitted_model": 0, "get_general_predict": 0, "get_val_matrix": 0, "fit_model": 0, "give": 0, "deriv": 0, "linearmedi": 0, "model_param": 0, "etc": 0, "ce": 0, "mce": 0, "ac": 0, "suscept": 0, "amc": 0, "chain": 0, "x_t": 0, "eta": 0, "y_t": 0, "x_": 0, "z_t": 0, "y_": 0, "25": 0, "37": 0, "true_par": 0, "med": 0, "get_coeff": 0, "get_c": 0, "get_mc": 0, "get_all_ac": 0, "get_all_amc": 0, "250648072987": 0, "36897445": 0, "25718002": 0, "24365041": 0, "38250406": 0, "12532404": 0, "fit_model_bootstrap": 0, "boostrap": 0, "version": 0, "cube_root": 0, "from_autocorrel": 0, "generate_noise_from": 0, "root": 0, "get_ac": 0, "lag_mod": 0, "absmax": 0, "exclude_i": 0, "eman": 0, "all_lag": 0, "itself": 0, "exclude_j": 0, "affect": 0, "previou": 0, "exclude_k": 0, "exclude_self_effect": 0, "themselv": 0, "get_amc": 0, "get_bootstrap_of": 0, "function_arg": 0, "incl": 0, "get_ce_max": 0, "get_conditional_mc": 0, "notk": 0, "go": 0, "get_joint_c": 0, "count": 0, "joint_c": 0, "get_joint_ce_matrix": 0, "taui": 0, "tauj": 0, "stand": 0, "joint_ce_matrix": 0, "2d": 0, "get_joint_mc": 0, "joint_mc": 0, "minu": 0, "get_mediation_graph_data": 0, "include_neighbor": 0, "path_val_matrix": 0, "path_node_arrai": 0, "tsg_path_val_matrix": 0, "graph_data": 0, "color": 0, "get_tsg": 0, "link_matrix": 0, "analyz": 0, "sig_thr": 0, "array_lik": 0, "tsg": 0, "symmetr": 0, "net_to_tsg": 0, "translat": 0, "tsg_to_net": 0, "train_indic": 0, "test_indic": 0, "train": 0, "target_predictor": 0, "selected_target": 0, "instanc": 0, "get_predictor": 0, "steps_ahead": 0, "get_test_arrai": 0, "get_train_arrai": 0, "new_data": 0, "cut": 0, "off": 0, "below": 0, "vector_var": 0, "var_nam": 0, "datatim": 0, "analysis_mod": 0, "reference_point": 0, "time_offset": 0, "remove_missing_upto_maxlag": 0, "definit": 0, "OR": 0, "whose": 0, "t_i": 0, "vari": 0, "dismiss": 0, "slice": 0, "occur": 0, "bias": 0, "section": 0, "supplement": 0, "sciadv": 0, "vector": 0, "pars": 0, "creat": 0, "match": 0, "enumer": 0, "timelabel": 0, "1d": 0, "rel": 0, "share": 0, "axi": 0, "t_max": 0, "largest_time_step": 0, "bigger": 0, "At": 0, "align": 0, "agre": 0, "offset": 0, "_initialized_from": 0, "3d": 0, "map": 0, "represent": 0, "identifii": 0, "max_": 0, "largest": 0, "latest": 0, "random_st": 0, "extraz": 0, "return_cleaned_xyz": 0, "do_check": 0, "remove_overlap": 0, "n_en": 0, "var1": 0, "var2": 0, "varlag": 0, "assign": 0, "duplic": 0, "saniti": 0, "2xtau_max_futur": 0, "t_miss": 0, "principl": 0, "would": 0, "n_sampl": 0, "print_array_info": 0, "info": 0, "typic": 0, "varx": 0, "get_acf": 0, "autocorr": 0, "get_block_length": 0, "mader": 0, "eq": 0, "pfeifer": 0, "2005": 0, "multidimension": 0, "jointli": 0, "curv": 0, "fail": 0, "limit": 0, "neurosci": 0, "volum": 0, "219": 0, "issu": 0, "15": 0, "octob": 0, "285": 0, "291": 0, "block_len": 0, "lowhighpass_filt": 0, "cutperiod": 0, "pass_period": 0, "low": 0, "butterworth": 0, "filter": 0, "twice": 0, "onc": 0, "forward": 0, "backward": 0, "period": 0, "act": 0, "ordinal_patt_arrai": 0, "array_mask": 0, "symbolifi": 0, "ordin": 0, "pattern": 0, "uniqu": 0, "faculti": 0, "symb_arrai": 0, "shorter": 0, "2011": 0, "coupl": 0, "83": 0, "12": 0, "051122": 0, "label": 0, "embed": 0, "patt": 0, "patt_mask": 0, "patt_tim": 0, "quantile_bin_arrai": 0, "bin": 0, "smooth_width": 0, "width": 0, "heavisid": 0, "rtype": 0, "intervention_typ": 0, "hard": 0, "time_bin_with_mask": 0, "time_bin_length": 0, "bindata": 0, "outer": 0, "cdf": 0, "normal_data": 0, "parents_neighbors_coeff": 0, "inv_inno_cov": 0, "initial_valu": 0, "autoregress": 0, "innov": 0, "var_network": 0, "friendli": 0, "weighted_avg_and_std": 0, "std": 0, "check_stationar": 0, "stationari": 0, "dag_to_link": 0, "generate_structural_causal_process": 0, "dependency_func": 0, "dependency_coeff": 0, "auto_coeff": 0, "contemp_fract": 0, "noise_dist": 0, "noise_mean": 0, "noise_sigma": 0, "noise_se": 0, "randomli": 0, "characterist": 0, "frawn": 0, "arbitrari": 0, "factor": 0, "weibul": 0, "def": 0, "beta": 0, "links_to_graph": 0, "transient_fract": 0, "interven": 0, "randn": 0, "un": 0, "soft": 0, "percentag": 0, "transient": 0, "realiz": 0, "nonvalid": 0, "infin": 0, "lag1": 0, "coef1": 0, "lag2": 0, "coef2": 0, "nonzero": 0, "covari": 0, "inno_cov": 0, "debug": 0, "no_nois": 0, "disabl": 0, "max_delai": 0, "true_parent_neighbor": 0, "id": 0, "parent_node_id": 0, "time_lag": 0, "plot_densityplot": 0, "setup_arg": 0, "add_densityplot_arg": 0, "selected_dataset": 0, "show_marginal_densities_on_diagon": 0, "setup_density_matrix": 0, "add_densityplot": 0, "diagon": 0, "show": 0, "seaborn": 0, "doc": 0, "overlaid": 0, "plot_graph": 0, "fig_ax": 0, "figsiz": 0, "save_nam": 0, "link_colorbar_label": 0, "node_colorbar_label": 0, "auto": 0, "link_width": 0, "link_attribut": 0, "node_po": 0, "arrow_linewidth": 0, "vmin_edg": 0, "vmax_edg": 0, "edge_tick": 0, "cmap_edg": 0, "rdbu_r": 0, "vmin_nod": 0, "vmax_nod": 0, "node_tick": 0, "cmap_nod": 0, "node_s": 0, "node_aspect": 0, "arrowhead_s": 0, "curved_radiu": 0, "label_fonts": 0, "tick_label_s": 0, "node_label_s": 0, "link_label_fonts": 0, "lag_arrai": 0, "show_colorbar": 0, "inner_edge_styl": 0, "dash": 0, "special_nod": 0, "show_autodependency_lag": 0, "straight": 0, "arrow": 0, "maxim": 0, "magnitud": 0, "posit": 0, "coordin": 0, "via": 0, "ax": 0, "basemap": 0, "ccr": 0, "platecarre": 0, "cartopi": 0, "linewidth": 0, "colorbar": 0, "tick": 0, "colormap": 0, "orrd": 0, "ratio": 0, "heigth": 0, "varibl": 0, "head": 0, "fancyarrowpatch": 0, "curvatur": 0, "fontsiz": 0, "opac": 0, "arang": 0, "plot_lagfunc": 0, "add_lagfunc_arg": 0, "lagfunct": 0, "setup_matrix": 0, "add_lagfunc": 0, "plot_mediation_graph": 0, "standard_color_link": 0, "black": 0, "standard_color_nod": 0, "lightgrei": 0, "visual": 0, "plot_mediation_time_series_graph": 0, "top": 0, "bottom": 0, "plot_scatterplot": 0, "add_scatterplot_arg": 0, "scatter": 0, "setup_scatter_matrix": 0, "add_scatterplot": 0, "plot_time_series_graph": 0, "auxiliari": 0, "auxadmg": 0, "style": 0, "inner_edg": 0, "special": 0, "plot_timeseri": 0, "var_unit": 0, "time_label": 0, "grey_masked_sampl": 0, "show_meanlin": 0, "data_linewidth": 0, "skip_ticks_data_x": 0, "skip_ticks_data_i": 0, "adjust_plot": 0, "stack": 0, "panel": 0, "subplot": 0, "fig": 0, "pyplot": 0, "grei": 0, "fill": 0, "horizont": 0, "skip": 0, "tickmark": 0, "plot_tsg": 0, "anc_x": 0, "anc_i": 0, "anc_xi": 0, "help": 0, "label_space_left": 0, "label_space_top": 0, "legend_width": 0, "legend_fonts": 0, "plot_gridlin": 0, "setup": 0, "space": 0, "alloc": 0, "vertic": 0, "legend": 0, "grid": 0, "matrix_lag": 0, "label_color": 0, "snskdeplot_arg": 0, "cmap": 0, "snskdeplot_diagonal_arg": 0, "depict": 0, "sn": 0, "kdeplot": 0, "adjustfig": 0, "show_label": 0, "x_base": 0, "y_base": 0, "lag_unit": 0, "comparison": 0, "two_sided_thr": 0, "marker": 0, "markers": 0, "po": 0, "matplotlib": 0, "savefig": 0, "scatterplot": 0, "write_csv": 0, "digit": 0, "write": 0, "csv": 0}, "objects": {"tigramite.causal_effects": [[0, 0, 1, "", "CausalEffects"]], "tigramite.causal_effects.CausalEffects": [[0, 1, 1, "", "check_XYS_paths"], [0, 1, 1, "", "check_optimality"], [0, 1, 1, "", "fit_bootstrap_of"], [0, 1, 1, "", "fit_total_effect"], [0, 1, 1, "", "fit_wright_effect"], [0, 1, 1, "", "get_dict_from_graph"], [0, 1, 1, "", "get_graph_from_dict"], [0, 1, 1, "", "get_mediators"], [0, 1, 1, "", "get_optimal_set"], [0, 1, 1, "", "predict_bootstrap_of"], [0, 1, 1, "", "predict_total_effect"], [0, 1, 1, "", "predict_wright_effect"]], "tigramite": [[0, 2, 0, "-", "data_processing"], [0, 2, 0, "-", "plotting"]], "tigramite.data_processing": [[0, 0, 1, "", "DataFrame"], [0, 3, 1, "", "get_acf"], [0, 3, 1, "", "get_block_length"], [0, 3, 1, "", "lowhighpass_filter"], [0, 3, 1, "", "ordinal_patt_array"], [0, 3, 1, "", "quantile_bin_array"], [0, 3, 1, "", "smooth"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "time_bin_with_mask"], [0, 3, 1, "", "trafo2normal"], [0, 3, 1, "", "var_process"], [0, 3, 1, "", "weighted_avg_and_std"]], "tigramite.data_processing.DataFrame": [[0, 1, 1, "", "construct_array"], [0, 1, 1, "", "print_array_info"]], "tigramite.independence_tests.cmiknn": [[0, 0, 1, "", "CMIknn"]], "tigramite.independence_tests.cmiknn.CMIknn": [[0, 1, 1, "", "get_conditional_entropy"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.cmisymb": [[0, 0, 1, "", "CMIsymb"]], "tigramite.independence_tests.cmisymb.CMIsymb": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc": [[0, 0, 1, "", "GPDC"]], "tigramite.independence_tests.gpdc.GPDC": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc_torch": [[0, 0, 1, "", "GPDCtorch"]], "tigramite.independence_tests.gpdc_torch.GPDCtorch": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gsquared": [[0, 0, 1, "", "Gsquared"]], "tigramite.independence_tests.gsquared.Gsquared": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.independence_tests_base": [[0, 0, 1, "", "CondIndTest"]], "tigramite.independence_tests.independence_tests_base.CondIndTest": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_bootstrap_confidence"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_fixed_thres_significance"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "print_info"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "run_test_raw"], [0, 1, 1, "", "set_dataframe"], [0, 1, 1, "", "set_mask_type"]], "tigramite.independence_tests.oracle_conditional_independence": [[0, 0, 1, "", "OracleCI"]], "tigramite.independence_tests.oracle_conditional_independence.OracleCI": [[0, 1, 1, "", "check_shortest_path"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_graph_from_links"], [0, 1, 1, "", "get_links_from_graph"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.parcorr": [[0, 0, 1, "", "ParCorr"]], "tigramite.independence_tests.parcorr.ParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.parcorr_mult": [[0, 0, 1, "", "ParCorrMult"]], "tigramite.independence_tests.parcorr_mult.ParCorrMult": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "mult_corr"]], "tigramite.independence_tests.parcorr_wls": [[0, 0, 1, "", "ParCorrWLS"]], "tigramite.independence_tests.parcorr_wls.ParCorrWLS": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"]], "tigramite.independence_tests.regressionCI": [[0, 0, 1, "", "RegressionCI"]], "tigramite.independence_tests.regressionCI.RegressionCI": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.robust_parcorr": [[0, 0, 1, "", "RobustParCorr"]], "tigramite.independence_tests.robust_parcorr.RobustParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "trafo2normal"]], "tigramite.lpcmci": [[0, 0, 1, "", "LPCMCI"]], "tigramite.lpcmci.LPCMCI": [[0, 1, 1, "", "run_lpcmci"]], "tigramite.models": [[0, 0, 1, "", "LinearMediation"], [0, 0, 1, "", "Models"], [0, 0, 1, "", "Prediction"]], "tigramite.models.LinearMediation": [[0, 1, 1, "", "fit_model"], [0, 1, 1, "", "fit_model_bootstrap"], [0, 1, 1, "", "get_ace"], [0, 1, 1, "", "get_acs"], [0, 1, 1, "", "get_all_ace"], [0, 1, 1, "", "get_all_acs"], [0, 1, 1, "", "get_all_amce"], [0, 1, 1, "", "get_amce"], [0, 1, 1, "", "get_bootstrap_of"], [0, 1, 1, "", "get_ce"], [0, 1, 1, "", "get_ce_max"], [0, 1, 1, "", "get_coeff"], [0, 1, 1, "", "get_conditional_mce"], [0, 1, 1, "", "get_joint_ce"], [0, 1, 1, "", "get_joint_ce_matrix"], [0, 1, 1, "", "get_joint_mce"], [0, 1, 1, "", "get_mce"], [0, 1, 1, "", "get_mediation_graph_data"], [0, 1, 1, "", "get_tsg"], [0, 1, 1, "", "get_val_matrix"], [0, 1, 1, "", "net_to_tsg"], [0, 1, 1, "", "tsg_to_net"]], "tigramite.models.Models": [[0, 1, 1, "", "fit_full_model"], [0, 1, 1, "", "get_coefs"], [0, 1, 1, "", "get_general_fitted_model"], [0, 1, 1, "", "get_general_prediction"], [0, 1, 1, "", "get_val_matrix"]], "tigramite.models.Prediction": [[0, 1, 1, "", "fit"], [0, 1, 1, "", "get_predictors"], [0, 1, 1, "", "get_test_array"], [0, 1, 1, "", "get_train_array"], [0, 1, 1, "", "predict"]], "tigramite.pcmci": [[0, 0, 1, "", "PCMCI"]], "tigramite.pcmci.PCMCI": [[0, 5, 1, "", "N"], [0, 5, 1, "", "T"], [0, 5, 1, "", "all_parents"], [0, 1, 1, "", "get_graph_from_pmatrix"], [0, 1, 1, "", "get_lagged_dependencies"], [0, 5, 1, "", "iterations"], [0, 1, 1, "", "print_results"], [0, 1, 1, "", "print_significant_links"], [0, 5, 1, "", "pval_max"], [0, 1, 1, "", "return_parents_dict"], [0, 1, 1, "", "return_significant_links"], [0, 1, 1, "", "run_bivci"], [0, 1, 1, "", "run_fullci"], [0, 1, 1, "", "run_mci"], [0, 1, 1, "", "run_pc_stable"], [0, 1, 1, "", "run_pcalg"], [0, 1, 1, "", "run_pcalg_non_timeseries_data"], [0, 1, 1, "", "run_pcmci"], [0, 1, 1, "", "run_pcmciplus"], [0, 5, 1, "", "val_min"]], "tigramite.plotting": [[0, 3, 1, "", "plot_densityplots"], [0, 3, 1, "", "plot_graph"], [0, 3, 1, "", "plot_lagfuncs"], [0, 3, 1, "", "plot_mediation_graph"], [0, 3, 1, "", "plot_mediation_time_series_graph"], [0, 3, 1, "", "plot_scatterplots"], [0, 3, 1, "", "plot_time_series_graph"], [0, 3, 1, "", "plot_timeseries"], [0, 3, 1, "", "plot_tsg"], [0, 0, 1, "", "setup_density_matrix"], [0, 0, 1, "", "setup_matrix"], [0, 0, 1, "", "setup_scatter_matrix"], [0, 3, 1, "", "write_csv"]], "tigramite.plotting.setup_density_matrix": [[0, 1, 1, "", "add_densityplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.plotting.setup_matrix": [[0, 1, 1, "", "add_lagfuncs"], [0, 1, 1, "", "savefig"]], "tigramite.plotting.setup_scatter_matrix": [[0, 1, 1, "", "add_scatterplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.rpcmci": [[0, 0, 1, "", "RPCMCI"]], "tigramite.rpcmci.RPCMCI": [[0, 1, 1, "", "run_rpcmci"]], "tigramite.toymodels": [[0, 2, 0, "-", "structural_causal_processes"]], "tigramite.toymodels.structural_causal_processes": [[0, 3, 1, "", "check_stationarity"], [0, 3, 1, "", "dag_to_links"], [0, 3, 1, "", "generate_structural_causal_process"], [0, 3, 1, "", "links_to_graph"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "var_process"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:module", "3": "py:function", "4": "py:property", "5": "py:attribute"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "module", "Python module"], "3": ["py", "function", "Python function"], "4": ["py", "property", "Python property"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"welcom": 0, "tigramit": 0, "s": 0, "document": 0, "indic": 0, "tabl": 0, "pcmci": 0, "lpcmci": 0, "rpcmci": 0, "independence_test": 0, "condit": 0, "independ": 0, "test": 0, "causal_effect": 0, "causal": 0, "effect": 0, "analysi": 0, "model": 0, "time": 0, "seri": 0, "mediat": 0, "predict": 0, "data_process": 0, "data": 0, "process": 0, "function": 0, "toymodel": 0, "toi": 0, "gener": 0, "plot": 0}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 56}}) \ No newline at end of file diff --git a/docs/_modules/abc.html b/docs/_modules/abc.html index 40278c42..78f38697 100644 --- a/docs/_modules/abc.html +++ b/docs/_modules/abc.html @@ -39,7 +39,7 @@

    Source code for abc

     
     
     def abstractmethod(funcobj):
    -    """A decorator indicating abstract methods.
    +    """A decorator indicating abstract methods.
     
         Requires that the metaclass is ABCMeta or derived from it.  A
         class that has a metaclass derived from ABCMeta cannot be
    @@ -60,7 +60,7 @@ 

    Source code for abc

     
     
     class abstractclassmethod(classmethod):
    -    """A decorator indicating abstract classmethods.
    +    """A decorator indicating abstract classmethods.
     
         Deprecated, use 'classmethod' with 'abstractmethod' instead:
     
    @@ -74,13 +74,13 @@ 

    Source code for abc

     
         __isabstractmethod__ = True
     
    -    def __init__(self, callable):
    -        callable.__isabstractmethod__ = True
    -        super().__init__(callable)
    +    def __init__(self, callable):
    +        callable.__isabstractmethod__ = True
    +        super().__init__(callable)
     
     
     class abstractstaticmethod(staticmethod):
    -    """A decorator indicating abstract staticmethods.
    +    """A decorator indicating abstract staticmethods.
     
         Deprecated, use 'staticmethod' with 'abstractmethod' instead:
     
    @@ -94,13 +94,13 @@ 

    Source code for abc

     
         __isabstractmethod__ = True
     
    -    def __init__(self, callable):
    -        callable.__isabstractmethod__ = True
    -        super().__init__(callable)
    +    def __init__(self, callable):
    +        callable.__isabstractmethod__ = True
    +        super().__init__(callable)
     
     
     class abstractproperty(property):
    -    """A decorator indicating abstract properties.
    +    """A decorator indicating abstract properties.
     
         Deprecated, use 'property' with 'abstractmethod' instead:
     
    @@ -124,7 +124,7 @@ 

    Source code for abc

         ABCMeta.__module__ = 'abc'
     else:
         class ABCMeta(type):
    -        """Metaclass for defining Abstract Base Classes (ABCs).
    +        """Metaclass for defining Abstract Base Classes (ABCs).
     
             Use this metaclass to create an ABC.  An ABC can be subclassed
             directly, and then acts as a mix-in class.  You can also register
    @@ -142,22 +142,22 @@ 

    Source code for abc

                 return cls
     
             def register(cls, subclass):
    -            """Register a virtual subclass of an ABC.
    +            """Register a virtual subclass of an ABC.
     
                 Returns the subclass, to allow usage as a class decorator.
                 """
                 return _abc_register(cls, subclass)
     
             def __instancecheck__(cls, instance):
    -            """Override for isinstance(instance, cls)."""
    +            """Override for isinstance(instance, cls)."""
                 return _abc_instancecheck(cls, instance)
     
             def __subclasscheck__(cls, subclass):
    -            """Override for issubclass(subclass, cls)."""
    +            """Override for issubclass(subclass, cls)."""
                 return _abc_subclasscheck(cls, subclass)
     
             def _dump_registry(cls, file=None):
    -            """Debug helper to print the ABC registry."""
    +            """Debug helper to print the ABC registry."""
                 print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
                 print(f"Inv. counter: {get_cache_token()}", file=file)
                 (_abc_registry, _abc_cache, _abc_negative_cache,
    @@ -169,16 +169,16 @@ 

    Source code for abc

                       file=file)
     
             def _abc_registry_clear(cls):
    -            """Clear the registry (for debugging or testing)."""
    +            """Clear the registry (for debugging or testing)."""
                 _reset_registry(cls)
     
             def _abc_caches_clear(cls):
    -            """Clear the caches (for debugging or testing)."""
    +            """Clear the caches (for debugging or testing)."""
                 _reset_caches(cls)
     
     
     class ABC(metaclass=ABCMeta):
    -    """Helper class that provides a standard way to create an ABC using
    +    """Helper class that provides a standard way to create an ABC using
         inheritance.
         """
         __slots__ = ()
    @@ -233,7 +233,7 @@ 

    Quick search

    diff --git a/docs/_modules/tigramite/causal_effects.html b/docs/_modules/tigramite/causal_effects.html index d1224f12..7840b799 100644 --- a/docs/_modules/tigramite/causal_effects.html +++ b/docs/_modules/tigramite/causal_effects.html @@ -9,8 +9,10 @@ + + + - @@ -30,7 +32,7 @@

    Source code for tigramite.causal_effects

    -"""Tigramite causal discovery for time series."""
    +"""Tigramite causal inference for time series."""
     
     # Author: Jakob Runge <jakob@jakob-runge.com>
     #
    @@ -2396,6 +2398,35 @@ 

    Source code for tigramite.causal_effects

     
             return confidence_interval
    +
    [docs] @staticmethod + def get_dict_from_graph(graph, parents_only=False): + """Helper function to convert graph to dictionary of links. + + Parameters + --------- + graph : array of shape (N, N, tau_max+1) + Matrix format of graph in string format. + + parents_only : bool + Whether to only return parents ('-->' in graph) + + Returns + ------- + links : dict + Dictionary of form {0:{(0, -1): o-o, ...}, 1:{...}, ...}. + """ + N = graph.shape[0] + + links = dict([(j, {}) for j in range(N)]) + + if parents_only: + for (i, j, tau) in zip(*np.where(graph=='-->')): + links[j][(i, -tau)] = graph[i,j,tau] + else: + for (i, j, tau) in zip(*np.where(graph!='')): + links[j][(i, -tau)] = graph[i,j,tau] + + return links
    [docs] @staticmethod def get_graph_from_dict(links, tau_max=None): @@ -2487,46 +2518,94 @@

    Source code for tigramite.causal_effects

         from sklearn.preprocessing import StandardScaler
     
     
    -    def lin_f(x): return x
    -    coeff = .5
    +    # def lin_f(x): return x
    +    # coeff = .5
      
    -    links_coeffs = {0: [((0, -1), 0.5, lin_f)],
    -             1: [((1, -1), 0.5, lin_f), ((0, -1), 0.5, lin_f)],
    -             2: [((2, -1), 0.5, lin_f), ((1, 0), 0.5, lin_f)]
    -             }
    -    T = 1000
    -    data, nonstat = toys.structural_causal_process(
    -        links_coeffs, T=T, noises=None, seed=7)
    -    dataframe = pp.DataFrame(data)
    -
    -    graph = CausalEffects.get_graph_from_dict(links_coeffs)
    -
    -    X = [(0, -2)]
    -    Y = [(2, 0)]
    -
    -    # Initialize class as `stationary_dag`
    -    causal_effects = CausalEffects(graph, graph_type='stationary_dag', 
    +    # links_coeffs = {0: [((0, -1), 0.5, lin_f)],
    +    #          1: [((1, -1), 0.5, lin_f), ((0, -1), 0.5, lin_f)],
    +    #          2: [((2, -1), 0.5, lin_f), ((1, 0), 0.5, lin_f)]
    +    #          }
    +    # T = 1000
    +    # data, nonstat = toys.structural_causal_process(
    +    #     links_coeffs, T=T, noises=None, seed=7)
    +    # dataframe = pp.DataFrame(data)
    +
    +    # graph = CausalEffects.get_graph_from_dict(links_coeffs)
    +
    +    original_graph = np.array([[['', ''],
    +        ['-->', ''],
    +        ['-->', ''],
    +        ['', '']],
    +
    +       [['<--', ''],
    +        ['', '-->'],
    +        ['-->', ''],
    +        ['-->', '']],
    +
    +       [['<--', ''],
    +        ['<--', ''],
    +        ['', '-->'],
    +        ['-->', '']],
    +
    +       [['', ''],
    +        ['<--', ''],
    +        ['<--', ''],
    +        ['', '-->']]], dtype='<U3')
    +    graph = np.copy(original_graph)
    +
    +    # Add T <-> Reco and T 
    +    graph[2,3,0] = '+->' ; graph[3,2,0] = '<-+'
    +    graph[1,3,1] = '<->' #; graph[2,1,0] = '<--'
    +
    +    added = np.zeros((4, 4, 1), dtype='<U3')
    +    added[:] = ""
    +    graph = np.append(graph, added , axis=2)
    +
    +
    +    X = [(1, 0)]
    +    Y = [(3, 0)]
    +
    +    # # Initialize class as `stationary_dag`
    +    causal_effects = CausalEffects(graph, graph_type='stationary_admg', 
                                     X=X, Y=Y, S=None, 
                                     hidden_variables=None, 
                                     verbosity=0)
     
    -    causal_effects.fit_wright_effect(dataframe=dataframe, 
    -                            # links_coeffs = links_coeffs,
    -                            # mediation = [(1, 0), (1, -1), (1, -2)]
    -                            )
    -
    -    intervention_data = 1.*np.ones((1, 1))
    -    y1 = causal_effects.predict_wright_effect( 
    -            intervention_data=intervention_data,
    -            )
    -
    -    intervention_data = 0.*np.ones((1, 1))
    -    y2 = causal_effects.predict_wright_effect( 
    -            intervention_data=intervention_data,
    -            )
    -
    -    beta = (y1 - y2)
    -    print("Causal effect is %.5f" %(beta))
    +    print(causal_effects.get_optimal_set())
    +
    +    tp.plot_time_series_graph(
    +        graph = graph,
    +        save_name='Example_graph_in.pdf',
    +        # special_nodes=special_nodes,
    +        # var_names=var_names,
    +        figsize=(6, 4),
    +        )
    +
    +    tp.plot_time_series_graph(
    +        graph = causal_effects.graph,
    +        save_name='Example_graph_out.pdf',
    +        # special_nodes=special_nodes,
    +        # var_names=var_names,
    +        figsize=(6, 4),
    +        )
    +
    +    # causal_effects.fit_wright_effect(dataframe=dataframe, 
    +    #                         # links_coeffs = links_coeffs,
    +    #                         # mediation = [(1, 0), (1, -1), (1, -2)]
    +    #                         )
    +
    +    # intervention_data = 1.*np.ones((1, 1))
    +    # y1 = causal_effects.predict_wright_effect( 
    +    #         intervention_data=intervention_data,
    +    #         )
    +
    +    # intervention_data = 0.*np.ones((1, 1))
    +    # y2 = causal_effects.predict_wright_effect( 
    +    #         intervention_data=intervention_data,
    +    #         )
    +
    +    # beta = (y1 - y2)
    +    # print("Causal effect is %.5f" %(beta))
     
         # tp.plot_time_series_graph(
         #     graph = causal_effects.graph,
    @@ -2693,8 +2772,8 @@ 

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/data_processing.html b/docs/_modules/tigramite/data_processing.html index e80751ac..fe5e4e3f 100644 --- a/docs/_modules/tigramite/data_processing.html +++ b/docs/_modules/tigramite/data_processing.html @@ -9,8 +9,10 @@ + + + - @@ -50,7 +52,7 @@

    Source code for tigramite.data_processing

     
     
    [docs]class DataFrame(): """Data object containing single or multiple time series arrays and optional - mask. + mask, as well as variable definitions. Parameters ---------- @@ -70,7 +72,7 @@

    Source code for tigramite.data_processing

                 N is fixed. 
         mask : array-like, optional (default: None)
             Optional mask array, must be of same format and shape as data.
    -   type_mask : array-like
    +   data_type : array-like
             Binary data array of same shape as array which describes whether 
             individual samples in a variable (or all samples) are continuous 
             or discrete: 0s for continuous variables and 1s for discrete variables.
    @@ -80,7 +82,7 @@ 

    Source code for tigramite.data_processing

             remove_missing_upto_maxlag=True also flags samples for all lags up to
             2*tau_max (more precisely, this depends on the cut_off argument in
             self.construct_array(), see further below). This avoids biases, see
    -        section on masking in Supplement of [1]_.
    +        section on masking in Supplement of Runge et al. SciAdv (2019).
         vector_vars : dict
             Dictionary of vector variables of the form,
             Eg. {0: [(0, 0), (1, 0)], 1: [(2, 0)], 2: [(3, 0)], 3: [(4, 0)]}
    @@ -149,7 +151,7 @@ 

    Source code for tigramite.data_processing

         self.mask : dictionary
             Mask internally mapped to a dictionary representation in the same way as
             data is mapped to self.values
    -    self.type_mask : array-like
    +    self.data_type : array-like
             Binary data array of same shape as array which describes whether 
             individual samples in a variable (or all samples) are continuous 
             or discrete: 0s for continuous variables and 1s for discrete variables.
    @@ -169,7 +171,7 @@ 

    Source code for tigramite.data_processing

                 1D numpy array holding all specified reference_points, less those
                 smaller than 0 and larger than self.largest_time_step-1
             If reference_points is None:
    -            Is np.array(range(self.largest_time_step))
    +            Is np.array(self.largest_time_step)
         self.time_offsets : dictionary
             If time_offsets is not None:
                 Is time_offsets
    @@ -192,7 +194,7 @@ 

    Source code for tigramite.data_processing

         """
     
         def __init__(self, data, mask=None, missing_flag=None, vector_vars=None, var_names=None,
    -        type_mask=None, datatime=None, analysis_mode ='single', reference_points=None,
    +        data_type=None, datatime=None, analysis_mode ='single', reference_points=None,
             time_offsets=None, remove_missing_upto_maxlag=False):
     
             # Check that a valid analysis mode, specified by the argument
    @@ -332,6 +334,11 @@ 

    Source code for tigramite.data_processing

             if self.vector_vars is None:
                 self.vector_vars = dict(zip(range(self.Ndata), [[(i, 0)] 
                                     for i in range(self.Ndata)]))
    +            self.has_vector_data = False
    +        else:
    +            self.has_vector_data = True
    +
    +
             # TODO: check vector_vars!
             self.N = len(self.vector_vars)
     
    @@ -356,9 +363,9 @@ 

    Source code for tigramite.data_processing

             if mask is not None:
                 self.mask = self._check_mask(mask = mask)
                 
    -        self.type_mask = None
    -        if type_mask is not None:
    -            self.type_mask = self._check_mask(mask = type_mask, check_type_mask=True)
    +        self.data_type = None
    +        if data_type is not None:
    +            self.data_type = self._check_mask(mask = data_type, check_data_type=True)
     
             # Check and prepare the time offsets
             self._check_and_set_time_offsets(time_offsets)
    @@ -394,7 +401,7 @@ 

    Source code for tigramite.data_processing

             self.bootstrap = None
     
     
    -    def _check_mask(self, mask, check_type_mask=False):
    +    def _check_mask(self, mask, check_data_type=False):
             """Checks that the mask is:
                 * The same shape as the data
                 * Is an numpy ndarray (or subtype)
    @@ -449,7 +456,7 @@ 

    Source code for tigramite.data_processing

                     if _use_mask_dict_data.shape == dataset_data.shape:
                         if np.sum(np.isnan(_use_mask_dict_data)) != 0:
                             raise ValueError("NaNs in the data mask")
    -                    if check_type_mask:
    +                    if check_data_type:
                             if not set(np.unique(_use_mask_dict_data)).issubset(set([0, 1])):
                                 raise ValueError("Type mask contains other values than 0 and 1")
                     else:
    @@ -530,7 +537,7 @@ 

    Source code for tigramite.data_processing

             if reference_points is None:
                 # If no reference point is specified, use as many reference points
                 # as possible
    -            self.reference_points = np.array(range(self.largest_time_step))
    +            self.reference_points = np.arange(self.largest_time_step)
     
             elif isinstance(reference_points, int):
                 # If a single reference point is specified as an int, convert it to
    @@ -581,7 +588,7 @@ 

    Source code for tigramite.data_processing

                             extraZ=None,
                             mask=None,
                             mask_type=None,
    -                        type_mask=None,
    +                        data_type=None,
                             return_cleaned_xyz=False,
                             do_checks=True,
                             remove_overlaps=True,
    @@ -609,11 +616,11 @@ 

    Source code for tigramite.data_processing

                 Masking mode: Indicators for which variables in the dependence
                 measure I(X; Y | Z) the samples should be masked. If None, the mask
                 is not used. Explained in tutorial on masking and missing values.
    -        type_mask : array-like
    +        data_type : array-like
                 Binary data array of same shape as array which describes whether 
                 individual samples in a variable (or all samples) are continuous 
                 or discrete: 0s for continuous variables and 1s for discrete variables.
    -            If it is set, then it overrides the self.type_mask assigned to the dataframe.
    +            If it is set, then it overrides the self.data_type assigned to the dataframe.
             return_cleaned_xyz : bool, optional (default: False)
                 Whether to return cleaned X,Y,Z, where possible duplicates are
                 removed.
    @@ -674,10 +681,10 @@ 

    Source code for tigramite.data_processing

     
             Returns
             -------
    -        array, xyz [,XYZ], type_mask : Tuple of data array of shape (dim, n_samples),
    +        array, xyz [,XYZ], data_type : Tuple of data array of shape (dim, n_samples),
                 xyz identifier array of shape (dim,) identifying which row in array
                 corresponds to X, Y, and Z, and the type mask that indicates which samples
    -            are continuous or discrete. For example:: X = [(0, -1)],
    +            are continuous or discrete. For example: X = [(0, -1)],
                 Y = [(1, 0)], Z = [(1, -1), (0, -2)] yields an array of shape
                 (4, n_samples) and xyz is xyz = numpy.array([0,1,2,2]). If
                 return_cleaned_xyz is True, also outputs the cleaned XYZ lists.
    @@ -732,11 +739,11 @@ 

    Source code for tigramite.data_processing

             else:
                 _mask = self._check_mask(mask = _mask)
                 
    -        _type_mask = type_mask
    -        if _type_mask is None:
    -            _type_mask = self.type_mask
    +        _data_type = data_type
    +        if _data_type is None:
    +            _data_type = self.data_type
             else:
    -            _type_mask = self._check_mask(mask = _type_mask, check_type_mask=True)
    +            _data_type = self._check_mask(mask = _data_type, check_data_type=True)
     
             # Figure out what cut off we will be using
             if cut_off == '2xtau_max':
    @@ -766,7 +773,7 @@ 

    Source code for tigramite.data_processing

             # Run through all datasets and fill a dictionary holding the
             # samples taken from the individual datasets
             samples_datasets = dict()
    -        type_masks = dict()
    +        data_types = dict()
             self.use_indices_dataset_dict = dict()
     
             for dataset_key, dataset_data in self.values.items():
    @@ -860,11 +867,11 @@ 

    Source code for tigramite.data_processing

                 use_indices_dataset = np.ones(len(ref_points_here), dtype = 'int')
     
                 # Build the type mask array corresponding to this dataset
    -            if _type_mask is not None:
    -                type_mask_dataset = np.zeros((dim, len(ref_points_here)), dtype = 'bool')
    +            if _data_type is not None:
    +                data_type_dataset = np.zeros((dim, len(ref_points_here)), dtype = 'bool')
                     for i, (var, lag) in enumerate(XYZ):
    -                    type_mask_dataset[i, :] = _type_mask[dataset_key][ref_points_here + lag, var]
    -                type_masks[dataset_key] = type_mask_dataset
    +                    data_type_dataset[i, :] = _data_type[dataset_key][ref_points_here + lag, var]
    +                data_types[dataset_key] = data_type_dataset
                 
                 # Remove all values that have missing value flag, and optionally as well the time
                 # slices that occur up to max_lag after
    @@ -907,8 +914,8 @@ 

    Source code for tigramite.data_processing

     
             # Concatenate the arrays of all datasets
             array = np.concatenate(tuple(samples_datasets.values()), axis = 1)
    -        if _type_mask is not None:
    -            type_array = np.concatenate(tuple(type_masks.values()), axis = 1)
    +        if _data_type is not None:
    +            type_array = np.concatenate(tuple(data_types.values()), axis = 1)
             else:
                 type_array = None
             
    @@ -963,7 +970,7 @@ 

    Source code for tigramite.data_processing

             #     raise ValueError("Y-nodes are %s, " % str(Y) +
             #                      "but one of the Y-nodes must have zero lag")
     
    -
    [docs] def print_array_info(self, array, X, Y, Z, missing_flag, mask_type, type_mask=None, extraZ=None): +
    [docs] def print_array_info(self, array, X, Y, Z, missing_flag, mask_type, data_type=None, extraZ=None): """ Print info about the constructed array @@ -985,7 +992,7 @@

    Source code for tigramite.data_processing

                 Masking mode: Indicators for which variables in the dependence
                 measure I(X; Y | Z) the samples should be masked. If None, the mask
                 is not used. Explained in tutorial on masking and missing values.
    -        type_mask : array-like
    +        data_type : array-like
                 Binary data array of same shape as array which describes whether 
                 individual samples in a variable (or all samples) are continuous 
                 or discrete: 0s for continuous variables and 1s for discrete variables.
    @@ -1001,8 +1008,8 @@ 

    Source code for tigramite.data_processing

                 print(indt + "extraZ = %s" % str(extraZ))
             if self.mask is not None and mask_type is not None:
                 print(indt+"with masked samples in %s removed" % mask_type)
    -        if self.type_mask is not None:
    -            print(indt+"with %s % discrete values" % np.sum(type_mask)/type_mask.size)
    +        if self.data_type is not None:
    +            print(indt+"with %s % discrete values" % np.sum(data_type)/data_type.size)
             if self.missing_flag is not None:
                 print(indt+"with missing values = %s removed" % self.missing_flag)
    @@ -1631,8 +1638,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/cmiknn.html b/docs/_modules/tigramite/independence_tests/cmiknn.html index 68c29513..dce8d776 100644 --- a/docs/_modules/tigramite/independence_tests/cmiknn.html +++ b/docs/_modules/tigramite/independence_tests/cmiknn.html @@ -9,8 +9,10 @@ + + + - @@ -43,6 +45,7 @@

    Source code for tigramite.independence_tests.cmiknn

    from numba import jit import warnings +
    [docs]class CMIknn(CondIndTest): r"""Conditional mutual information test based on nearest-neighbor estimator. @@ -113,6 +116,9 @@

    Source code for tigramite.independence_tests.cmiknn

    Number of workers to use for parallel processing. If -1 is given all processors are used. Default: -1. + model_selection_folds : int + Number of folds in cross-validation used in model selection. + significance : str, optional (default: 'shuffle_test') Type of significance test to use. For CMIknn only 'fixed_thres' and 'shuffle_test' are available. @@ -133,6 +139,7 @@

    Source code for tigramite.independence_tests.cmiknn

    significance='shuffle_test', transform='ranks', workers=-1, + model_selection_folds=3, **kwargs): # Set the member variables self.knn = knn @@ -143,6 +150,7 @@

    Source code for tigramite.independence_tests.cmiknn

    self.residual_based = False self.recycle_residuals = False self.workers = workers + self.model_selection_folds = model_selection_folds # Call the parent constructor CondIndTest.__init__(self, significance=significance, **kwargs) # Print some information about construction @@ -201,7 +209,7 @@

    Source code for tigramite.independence_tests.cmiknn

    # array /= array.std(axis=1).reshape(dim, 1) # FIXME: If the time series is constant, return nan rather than # raising Exception - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # raise ValueError("nans after standardizing, " # "possibly constant array!") @@ -420,7 +428,7 @@

    Source code for tigramite.independence_tests.cmiknn

    # array /= array.std(axis=1).reshape(dim, 1) # FIXME: If the time series is constant, return nan rather than # raising Exception - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # if np.isnan(array).sum() != 0: # raise ValueError("nans after standardizing, " @@ -482,8 +490,80 @@

    Source code for tigramite.independence_tests.cmiknn

    restricted_permutation[sample_index] = use used = np.append(used, use) - return restricted_permutation
    + return restricted_permutation + +
    [docs] def get_model_selection_criterion(self, j, parents, tau_max=0): + """Returns a cross-validation-based score for nearest-neighbor estimates. + + Fits a nearest-neighbor model of the parents to variable j and returns + the score. The lower, the better the fit. Here used to determine + optimal hyperparameters in PCMCI(pc_alpha or fixed thres). + + Parameters + ---------- + j : int + Index of target variable in data array. + + parents : list + List of form [(0, -1), (3, -2), ...] containing parents. + + tau_max : int, optional (default: 0) + Maximum time lag. This may be used to make sure that estimates for + different lags in X, Z, all have the same sample size. + Returns: + score : float + Model score. + """ + + import sklearn + from sklearn.neighbors import KNeighborsRegressor + from sklearn.model_selection import cross_val_score + + Y = [(j, 0)] + X = [(j, 0)] # dummy variable here + Z = parents + array, xyz, _ = self.dataframe.construct_array(X=X, Y=Y, Z=Z, + tau_max=tau_max, + mask_type=self.mask_type, + return_cleaned_xyz=False, + do_checks=True, + verbosity=self.verbosity) + dim, T = array.shape + + # Standardize + array = array.astype(np.float64) + array -= array.mean(axis=1).reshape(dim, 1) + std = array.std(axis=1) + for i in range(dim): + if std[i] != 0.: + array[i] /= std[i] + if np.any(std == 0.) and self.verbosity > 0: + warnings.warn("Possibly constant array!") + # raise ValueError("nans after standardizing, " + # "possibly constant array!") + + predictor_indices = list(np.where(xyz==2)[0]) + predictor_array = array[predictor_indices, :].T + # Target is only first entry of Y, ie [y] + target_array = array[np.where(xyz==1)[0][0], :] + + if predictor_array.size == 0: + # Regressing on ones if empty parents + predictor_array = np.ones(T).reshape(T, 1) + + if self.knn < 1: + knn_here = max(1, int(self.knn*T)) + else: + knn_here = max(1, int(self.knn)) + + knn_model = KNeighborsRegressor(n_neighbors=knn_here) + + scores = cross_val_score(estimator=knn_model, + X=predictor_array, y=target_array, cv=self.model_selection_folds, n_jobs=self.workers) + + # print(scores) + return -scores.mean()
    if __name__ == '__main__': @@ -494,8 +574,8 @@

    Source code for tigramite.independence_tests.cmiknn

    random_state = np.random.default_rng(seed=42) cmi = CMIknn(mask_type=None, - significance='shuffle_test', - fixed_thres=None, + significance='fixed_thres', + fixed_thres=0.01, sig_samples=1000, sig_blocklength=1, transform='none', @@ -505,15 +585,28 @@

    Source code for tigramite.independence_tests.cmiknn

    T = 1000 dimz = 1 + # # Continuous data + # z = random_state.standard_normal((T, dimz)) + # x = (1.*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) + # y = (1.*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) + + # print('X _|_ Y') + # print(cmi.run_test_raw(x, y, z=None)) + # print('X _|_ Y | Z') + # print(cmi.run_test_raw(x, y, z=z)) + # Continuous data z = random_state.standard_normal((T, dimz)) - x = (0.8*z[:,0] + random_state.standard_normal(T)).reshape(T, 1) - y = (0.8*z[:,0] + random_state.standard_normal).reshape(T, 1) - - print('X _|_ Y') - print(cmi.run_test_raw(x, y, z=None)) - print('X _|_ Y | Z') - print(cmi.run_test_raw(x, y, z=z)) + x = random_state.standard_normal(T).reshape(T, 1) + y = (0.*z[:,0] + 1.*x[:,0] + random_state.standard_normal(T)).reshape(T, 1) + + data = np.hstack((x, y, z)) + print (data.shape) + dataframe = DataFrame(data=data) + cmi.set_dataframe(dataframe) + print(cmi.get_model_selection_criterion(j=1, parents=[], tau_max=0, folds=5)) + print(cmi.get_model_selection_criterion(j=1, parents=[(0, 0)], tau_max=0, folds=5)) + print(cmi.get_model_selection_criterion(j=1, parents=[(0, 0), (2, 0)], tau_max=0, folds=5))
    @@ -568,8 +661,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/cmiknnmixed.html b/docs/_modules/tigramite/independence_tests/cmiknnmixed.html deleted file mode 100644 index ab67cc88..00000000 --- a/docs/_modules/tigramite/independence_tests/cmiknnmixed.html +++ /dev/null @@ -1,1597 +0,0 @@ - - - - - - - - tigramite.independence_tests.cmiknnmixed — Tigramite 5.2 documentation - - - - - - - - - - - - - - - - -
    -
    -
    - - -
    - -

    Source code for tigramite.independence_tests.cmiknnmixed

    -"""Tigramite causal discovery for time series."""
    -
    -# Author: Oana Popescu, Jakob Runge <jakob@jakob-runge.com>
    -#
    -# License: GNU General Public License v3.0
    -
    -from __future__ import print_function
    -from scipy import special, spatial
    -from sklearn.neighbors import BallTree, NearestNeighbors
    -from sklearn import metrics
    -from sklearn.preprocessing import OneHotEncoder, MinMaxScaler
    -from sklearn.utils.extmath import cartesian
    -import numpy as np
    -import math
    -from .independence_tests_base import CondIndTest
    -from numba import jit
    -import warnings
    -
    -# profiling
    -import cProfile, pstats, io
    -from pstats import SortKey
    -
    -
    -
    [docs]class CMIknnMixed(CondIndTest): - r"""Conditional mutual information test based on nearest-neighbor estimator. - - Conditional mutual information is the most general dependency measure coming - from an information-theoretic framework. It makes no assumptions about the - parametric form of the dependencies by directly estimating the underlying - joint density. The test here is based on the estimator in S. Frenzel and B. - Pompe, Phys. Rev. Lett. 99, 204101 (2007), combined with a shuffle test to - generate the distribution under the null hypothesis of independence first - used in the reference below. The knn-estimator is suitable only for variables taking a - continuous range of values. For discrete variables use the CMIsymb class. - - Notes - ----- - CMI is given by - - .. math:: I(X;Y|Z) &= \int p(z) \iint p(x,y|z) \log - \frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)} \,dx dy dz - - Its knn-estimator is given by - - .. math:: \widehat{I}(X;Y|Z) &= \psi (k) + \frac{1}{T} \sum_{t=1}^T - \left[ \psi(k_{Z,t}) - \psi(k_{XZ,t}) - \psi(k_{YZ,t}) \right] - - where :math:`\psi` is the Digamma function. This estimator has as a - parameter the number of nearest-neighbors :math:`k` which determines the - size of hyper-cubes around each (high-dimensional) sample point. Then - :math:`k_{Z,},k_{XZ},k_{YZ}` are the numbers of neighbors in the respective - subspaces. - - :math:`k` can be viewed as a density smoothing parameter (although it is - data-adaptive unlike fixed-bandwidth estimators). For large :math:`k`, the - underlying dependencies are more smoothed and CMI has a larger bias, - but lower variance, which is more important for significance testing. Note - that the estimated CMI values can be slightly negative while CMI is a non- - negative quantity. - - For the case of mixed variables, the distance metric changes from the L-inf - norm to ... - - This method requires the scikit-learn package. - - References - ---------- - - J. Runge (2018): Conditional Independence Testing Based on a - Nearest-Neighbor Estimator of Conditional Mutual Information. - In Proceedings of the 21st International Conference on Artificial - Intelligence and Statistics. - http://proceedings.mlr.press/v84/runge18a.html - - Parameters - ---------- - knn : int or float, optional (default: 0.2) - Number of nearest-neighbors which determines the size of hyper-cubes - around each (high-dimensional) sample point. If smaller than 1, this is - computed as a fraction of T, hence knn=knn*T. For knn larger or equal to - 1, this is the absolute number. - - estimator : string, optional (default: 'MS') - The type of estimator to be used. Three options are available: - Mesner and Shalizi (2021): 'MS', Frenzel and Pompe (2007) with - infinite distance for points from different categories: 'FPinf', - and Zao et.al. (2022) where entropies are computed conditional on - the discrete dimensions of X,Y and Z. - - shuffle_neighbors : int, optional (default: 5) - Number of nearest-neighbors within Z for the shuffle surrogates which - determines the size of hyper-cubes around each (high-dimensional) sample - point. - - transform : {'ranks', 'standardize', 'uniform', False}, optional - (default: 'ranks') - Whether to transform the array beforehand by standardizing - or transforming to uniform marginals. - - workers : int (optional, default = -1) - Number of workers to use for parallel processing. If -1 is given - all processors are used. Default: -1. - - rho: list of float, optional (default: [np.inf]) - Hyperparameters used for weighting the discrete variable distances. - If not initialized, the distance will be set to np.inf, such that discrete - variables with different values will never be considered neighbors. - Otherwise the rho - ... - - significance : str, optional (default: 'shuffle_test') - Type of significance test to use. For CMIknn only 'fixed_thres' and - 'shuffle_test' are available. - - **kwargs : - Arguments passed on to parent class CondIndTest. - """ - @property - def measure(self): - """ - Concrete property to return the measure of the independence test - """ - return self._measure - - def __init__(self, - knn=0.1, - estimator='MS', - use_local_knn=False, - shuffle_neighbors=5, - significance='shuffle_test', - transform='standardize', - scale_range=(0, 1), - perc=None, - workers=-1, - **kwargs): - # Set the member variables - self.knn = knn - self.estimator = estimator - self.use_local_knn = use_local_knn - self.shuffle_neighbors = shuffle_neighbors - self.transform = transform - if perc is None: - self.perc = self.knn - else: - self.perc = perc - self.scale_range = scale_range - self._measure = 'cmi_knn_mixed' - self.two_sided = False - self.residual_based = False - self.recycle_residuals = False - self.workers = workers - self.eps = 1e-5 - - # Call the parent constructor - CondIndTest.__init__(self, significance=significance, **kwargs) - # Print some information about construction - if self.verbosity > 0: - if self.knn < 1: - print("knn/T = %s" % self.knn) - else: - print("knn = %s" % self.knn) - print("shuffle_neighbors = %d\n" % self.shuffle_neighbors) - - def _standardize_array(self, array, dim): - """Standardizes a given array with dimensions dim. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - dim: int - number of dimensions of the data. - - Returns - ------- - array : array-like - The standardized array. - """ - array = array.astype(np.float64) - array -= array.mean(axis=1).reshape(dim, 1) - std = array.std(axis=1) - for i in range(dim): - if std[i] != 0.: - array[i] /= std[i] - # array /= array.std(axis=1).reshape(dim, 1) - # FIXME: If the time series is constant, return nan rather than - # raising Exception - if np.any(std == 0.): - warnings.warn("Possibly constant array!") - # raise ValueError("nans after standardizing, " - # "possibly constant array!") - return array - - def _scale_array(self, array, minmax=(0, 1)): - scaler = MinMaxScaler(minmax) - return scaler.fit_transform(array.T).T - - def _transform_mixed_data(self, array, type_mask=None, add_noise=False): - """Applies data transformations to the continuous dimensions of the given data. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - add_noise : bool (default False) - Defines whether to add small normal noise to the continuous data. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - array : array-like - The array with the continuous data transformed. - - """ - continuous_idxs = np.where(np.all(type_mask == 0, axis=1))[0] - cont_dim = len(continuous_idxs) - - if add_noise: - # Add noise to destroy ties - array[continuous_idxs] += (1E-6 * array[continuous_idxs].std(axis=1).reshape(cont_dim, 1) - * self.random_state.random((array[continuous_idxs].shape[0], array[continuous_idxs].shape[1]))) - - if self.transform == 'standardize': - array[continuous_idxs] = self._standardize_array(array[continuous_idxs], cont_dim) - elif self.transform == 'scale': - array[continuous_idxs] = self._scale_array(array[continuous_idxs], minmax=self.scale_range) - else: - warnings.warn('Unknown transform') - - return array - - - def _transform_to_one_hot_mixed(self, array, xyz, - type_mask, - zero_inf=False): - - discrete_idx_list = np.where(np.all(type_mask == 1, axis=0), 1, 0) - mixed_idx_list = np.where(np.any(type_mask == 1, axis=0), 1, 0) - - narray = np.copy(array) - nxyz = np.copy(xyz) - ntype_mask = np.copy(type_mask) - - appended_columns = 0 - for i in range(len(discrete_idx_list)): - # print(i) - if discrete_idx_list[i] == 1: - encoder = OneHotEncoder(handle_unknown='ignore') - i += appended_columns - data = narray[:, i] - xyz_val = nxyz[i] - encoder_df = encoder.fit_transform(data.reshape(-1, 1)).toarray() - if zero_inf: - encoder_df = np.where(encoder_df == 1, 9999999, 0) - - xyz_val = [nxyz[i]] * encoder_df.shape[-1] - narray = np.concatenate([narray[:, :i], encoder_df, narray[:, i+1:]], axis=-1) - - nxyz = np.concatenate([nxyz[:i], xyz_val, nxyz[i+1:]]) - ntype_mask = np.concatenate([ntype_mask[:, :i], - np.ones(encoder_df.shape), - ntype_mask[:, i+1:]], - axis=-1) - appended_columns += encoder_df.shape[-1] - 1 - - elif mixed_idx_list[i] == 1: - i += appended_columns - data = narray[:, i] - xyz_val = nxyz[i] - - # print(i, narray[:, i], ntype_mask[:, i]) - # find categories - categories = np.unique(narray[:, i] * ntype_mask[:, i]) - cont_vars = np.unique(narray[:, i] * (1 - ntype_mask[:, i])) - - encoder = OneHotEncoder(categories=[categories], handle_unknown='ignore') - xyz_val = nxyz[i] - encoder_df = encoder.fit_transform(data.reshape(-1, 1)).toarray() - if zero_inf: - encoder_df = np.where(encoder_df == 1, 9999999 + np.max(cont_vars), 0) - - xyz_val = [nxyz[i]] * (encoder_df.shape[-1] + 1) - cont_column = np.expand_dims(narray[:, i] * (1 - ntype_mask[:, i]), -1) - narray = np.concatenate([narray[:, :i], cont_column, encoder_df, narray[:, i+1:]], axis=-1) - - nxyz = np.concatenate([nxyz[:i], xyz_val, nxyz[i+1:]]) - ntype_mask = np.concatenate([ntype_mask[:, :i], - np.zeros(cont_column.shape), - np.ones(encoder_df.shape), - ntype_mask[:, i+1:]], - axis=-1) - appended_columns += encoder_df.shape[-1] - - ndiscrete_idx_list = np.where(np.any(ntype_mask == 1, axis=0), 1, 0) - - return narray, nxyz, ntype_mask, ndiscrete_idx_list - - - -
    [docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): - """Perform conditional independence test. - - Calls the dependence measure and signficicance test functions. The child - classes must specify a function get_dependence_measure and either or - both functions get_analytic_significance and get_shuffle_significance. - If recycle_residuals is True, also _get_single_residuals must be - available. - - Parameters - ---------- - X, Y, Z : list of tuples - X,Y,Z are of the form [(var, -tau)], where var specifies the - variable index and tau the time lag. - - tau_max : int, optional (default: 0) - Maximum time lag. This may be used to make sure that estimates for - different lags in X, Z, all have the same sample size. - - cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} - How many samples to cutoff at the beginning. The default is - '2xtau_max', which guarantees that MCI tests are all conducted on - the same samples. For modeling, 'max_lag_or_tau_max' can be used, - which uses the maximum of tau_max and the conditions, which is - useful to compare multiple models on the same sample. Last, - 'max_lag' uses as much samples as possible. - - Returns - ------- - val, pval : Tuple of floats - The test statistic value and the p-value. - """ - # Get the array to test on - array, xyz, XYZ, type_mask = self._get_array(X, Y, Z, tau_max, cut_off) - X, Y, Z = XYZ - - # Record the dimensions - dim, T = array.shape - # Ensure it is a valid array - if np.any(np.isnan(array)): - raise ValueError("nans in the array!") - - combined_hash = self._get_array_hash(array, xyz, XYZ) - - if combined_hash in self.cached_ci_results.keys(): - cached = True - val, pval = self.cached_ci_results[combined_hash] - else: - cached = False - # Get the dependence measure, reycling residuals if need be - val, _ = self.get_dependence_measure(array, xyz, - type_mask=type_mask) - # Get the p-value - pval = self.get_significance(val, array, xyz, T, dim, - type_mask=type_mask) - - self.cached_ci_results[combined_hash] = (val, pval) - - if self.verbosity > 1: - self._print_cond_ind_results(val=val, pval=pval, cached=cached, - conf=None) - # Return the value and the pvalue - return val, pval
    - -
    [docs] def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None, val_only=False): - """Perform conditional independence test directly on input arrays x, y, z. - - Calls the dependence measure and signficicance test functions. The child - classes must specify a function get_dependence_measure and either or - both functions get_analytic_significance and get_shuffle_significance. - - Parameters - ---------- - x, y, z : arrays - x,y,z are of the form (samples, dimension). - - type_mask : array-like - data array of same shape as [x,y,z] which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val, pval : Tuple of floats - - The test statistic value and the p-value. - """ - - if np.ndim(x) != 2 or np.ndim(y) != 2: - raise ValueError("x,y must be arrays of shape (samples, dimension)" - " where dimension can be 1.") - - if z is not None and np.ndim(z) != 2: - raise ValueError("z must be array of shape (samples, dimension)" - " where dimension can be 1.") - - if x_type is None or y_type is None: - raise ValueError("x_type and y_type must be set.") - - if z is None: - # Get the array to test on - array = np.vstack((x.T, y.T)) - type_mask = np.vstack((x_type.T, y_type.T)) - - # xyz is the dimension indicator - xyz = np.array([0 for i in range(x.shape[1])] + - [1 for i in range(y.shape[1])]) - - else: - # Get the array to test on - array = np.vstack((x.T, y.T, z.T)) - type_mask = np.vstack((x_type.T, y_type.T, z_type.T)) - - # xyz is the dimension indicator - xyz = np.array([0 for i in range(x.shape[1])] + - [1 for i in range(y.shape[1])] + - [2 for i in range(z.shape[1])]) - - # Record the dimensions - dim, T = array.shape - # Ensure it is a valid array - if np.isnan(array).sum() != 0: - raise ValueError("nans in the array!") - # Get the dependence measure - val, _ = self.get_dependence_measure(array, xyz, type_mask=type_mask) - - if val_only: - return val - # Get the p-value - pval = self.get_significance(val, array, xyz, T, dim, type_mask=type_mask) - # Return the value and the pvalue - return val, pval
    - -
    [docs] def get_significance(self, val, array, xyz, T, dim, - type_mask=None, - sig_override=None): - """ - Returns the p-value from whichever significance function is specified - for this test. If an override is used, then it will call a different - function then specified by self.significance - - Parameters - ---------- - val : float - Test statistic value. - - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - T : int - Sample length - - dim : int - Dimensionality, ie, number of features. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - sig_override : string - Must be in 'analytic', 'shuffle_test', 'fixed_thres' - - Returns - ------- - pval : float or numpy.nan - P-value. - """ - # Defaults to the self.significance member value - use_sig = self.significance - if sig_override is not None: - use_sig = sig_override - # Check if we are using the analytic significance - if use_sig == 'analytic': - raise ValueError("Analytic significance not defined for CMIknnMixed!") - # Check if we are using the shuffle significance - elif use_sig == 'shuffle_test': - pval = self.get_shuffle_significance(array=array, - xyz=xyz, - value=val, - type_mask=type_mask) - # Check if we are using the fixed_thres significance - elif use_sig == 'fixed_thres': - pval = self.get_fixed_thres_significance( - value=val, - fixed_thres=self.fixed_thres) - else: - raise ValueError("%s not known." % self.significance) - # Return the calculated value - return pval
    - - - def _compute_discrete_entropy(self, array, disc_values, discrete_idxs, num_samples): - current_array = array[np.sum(array[:, discrete_idxs] == disc_values, axis=-1) == len(discrete_idxs)] - - count, dim = current_array.shape - - if count == 0: - return 0. - - prob = float(count) / num_samples - # print(prob) - disc_entropy = prob * np.log(prob) - # print('d', disc_entropy) - return disc_entropy - - - def compute_discrete_entropy(self, array, disc_values, discrete_idxs, num_samples): - current_array = array[np.sum(array[:, discrete_idxs] == disc_values, axis=-1) == len(discrete_idxs)] - - count, dim = current_array.shape - - if count == 0: - return 0. - - prob = float(count) / num_samples - disc_entropy = prob * np.log(prob) - return disc_entropy - - @jit(forceobj=True) - def _get_nearest_neighbors_zeroinf_onehot(self, array, xyz, knn, - type_mask=None): - """Returns nearest neighbors according to Frenzel and Pompe (2007). - - Retrieves the distances eps to the k-th nearest neighbors for every - sample in joint space XYZ and returns the numbers of nearest neighbors - within eps in subspaces Z, XZ, YZ. Accepts points as neighbors only - if the points are not at infinite distance. - Two points have infinite distance when the values for the discrete - dimensions of the points do not match. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - knn : int or float - Number of nearest-neighbors which determines the size of hyper-cubes - around each (high-dimensional) sample point. If smaller than 1, this - is computed as a fraction of T, hence knn=knn*T. For knn larger or - equal to 1, this is the absolute number. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - Returns - ------- - k_xz, k_yz, k_z : tuple of arrays of shape (T,) - Nearest neighbors in subspaces. - """ - dim, T = array.shape - - array = array.astype(np.float64) - xyz = xyz.astype(np.int32) - - array = self._transform_mixed_data(array, type_mask) - - array = array.T - type_mask = type_mask.T - - array, xyz, type_mask, discrete_idx_list = self._transform_to_one_hot_mixed(array, - xyz, - type_mask, - zero_inf=True) - - # Subsample indices - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - z_indices = np.where(xyz == 2)[0] - xz_indices = np.concatenate([x_indices, z_indices]) - yz_indices = np.concatenate([y_indices, z_indices]) - - # Fit trees - tree_xyz = spatial.cKDTree(array) - neighbors = tree_xyz.query(array, k=knn+1, p=np.inf, - distance_upper_bound=9999999) - - n, k = neighbors[0].shape - - - epsarray = np.zeros(n) - for i in range(n): - if neighbors[0][i, knn] == np.inf: - replacement_idx = np.where(neighbors[0][i] != np.inf)[0][-1] - r = max(int(replacement_idx * self.perc), 1) - epsarray[i] = neighbors[0][i, r] - else: - epsarray[i] = neighbors[0][i, knn] - - - neighbors_radius_xyz = tree_xyz.query_ball_point(array, epsarray, p=np.inf) - - k_tilde = [len(neighbors_radius_xyz[i]) - 1 if len(neighbors_radius_xyz[i]) > 1 else len(neighbors_radius_xyz[i]) for i in range(len(neighbors_radius_xyz))] - - # compute entropies - xz = array[:, xz_indices] - tree_xz = spatial.cKDTree(xz) - k_xz = tree_xz.query_ball_point(xz, r=epsarray, p=np.inf, return_length=True) - - yz = array[:, yz_indices] - tree_yz = spatial.cKDTree(yz) - k_yz = tree_yz.query_ball_point(yz, r=epsarray, p=np.inf, return_length=True) - - if len(z_indices) > 0: - z = array[:, z_indices] - tree_z = spatial.cKDTree(z) - k_z = tree_z.query_ball_point(z, r=epsarray, p=np.inf, return_length=True) - else: - # Number of neighbors is T when z is empty. - k_z = np.full(T, T, dtype='float') - - k_xz = np.asarray([i - 1 if i > 1 else i for i in k_xz]) - k_yz = np.asarray([i - 1 if i > 1 else i for i in k_yz]) - k_z = np.asarray([i - 1 if i > 1 else i for i in k_z]) - - return k_tilde, k_xz, k_yz, k_z - -
    [docs] def get_dependence_measure_zeroinf(self, array, xyz, - type_mask=None): - """Returns CMI estimate according to Frenzel and Pompe with an - altered distance metric: the 0-inf metric, which attributes - infinite distance to points where the values for the discrete dimensions - do not coincide. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - dim, T = array.shape - - # compute knn - if self.knn < 1: - knn = max(1, int(self.knn*T)) - else: - knn = max(1, self.knn) - - - knn_tilde, k_xz, k_yz, k_z = self._get_nearest_neighbors_zeroinf_onehot(array=array, - xyz=xyz, - knn=knn, - type_mask=type_mask) - non_zero = knn_tilde - k_xz - k_yz + k_z - - non_zero_count = np.count_nonzero(non_zero) / len(non_zero) - - val = (special.digamma(knn_tilde) - special.digamma(k_xz) - - special.digamma(k_yz) + - special.digamma(k_z)) - - val = val[np.isfinite(val)].mean() - - return val, non_zero_count
    - - @jit(forceobj=True) - def _get_nearest_neighbors_MS_one_hot(self, array, xyz, - knn, type_mask=None): - """Returns nearest neighbors according to Messner and Shalizi (2021). - - Retrieves the distances eps to the k-th nearest neighbors for every - sample in joint space XYZ and returns the numbers of nearest neighbors - within eps in subspaces Z, XZ, YZ. Uses a custom-defined metric for - discrete variables. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - knn : int or float - Number of nearest-neighbors which determines the size of hyper-cubes - around each (high-dimensional) sample point. If smaller than 1, this - is computed as a fraction of T, hence knn=knn*T. For knn larger or - equal to 1, this is the absolute number. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - k_tilde, k_xz, k_yz, k_z : tuple of arrays of shape (T,) - Nearest neighbors in XYZ, XZ, YZ, and Z subspaces. - """ - - dim, T = array.shape - - array = array.astype(np.float64) - xyz = xyz.astype(np.int32) - - array = self._transform_mixed_data(array, type_mask) - - array = array.T - type_mask = type_mask.T - - discrete_idx_list = np.where(np.all(type_mask == 1, axis=0), 1, 0) - - array, xyz, type_mask, discrete_idx_list = self._transform_to_one_hot_mixed(array, - xyz, - type_mask) - - # Subsample indices - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - z_indices = np.where(xyz == 2)[0] - - xz_indices = np.concatenate([x_indices, z_indices]) - yz_indices = np.concatenate([y_indices, z_indices]) - - # Fit trees - tree_xyz = spatial.cKDTree(array) - neighbors = tree_xyz.query(array, k=knn+1, p=np.inf, workers=self.workers) - - - epsarray = neighbors[0][:, -1].astype(np.float64) - - neighbors_radius_xyz = tree_xyz.query_ball_point(array, epsarray, p=np.inf, - workers=self.workers) - - # search again for neighbors in the radius to find all of them - # in the discrete case k_tilde can be larger than the given knn - k_tilde = np.asarray([len(neighbors_radius_xyz[i]) - 1 if len(neighbors_radius_xyz[i]) > 1 else len(neighbors_radius_xyz[i]) for i in range(len(neighbors_radius_xyz))]) - - # compute entropies - xz = array[:, xz_indices] - tree_xz = spatial.cKDTree(xz) - k_xz = tree_xz.query_ball_point(xz, r=epsarray, p=np.inf, - workers=self.workers, return_length=True) - - yz = array[:, yz_indices] - tree_yz = spatial.cKDTree(yz) - k_yz = tree_yz.query_ball_point(yz, r=epsarray, p=np.inf, - workers=self.workers, return_length=True) - - if len(z_indices) > 0: - z = array[:, z_indices] - tree_z = spatial.cKDTree(z) - k_z = tree_z.query_ball_point(z, r=epsarray, p=np.inf, - workers=self.workers, return_length=True) - - else: - # Number of neighbors is T when z is empty. - k_z = np.full(T, T, dtype='float') - - k_xz = np.asarray([i - 1 if i > 1 else i for i in k_xz]) - k_yz = np.asarray([i - 1 if i > 1 else i for i in k_yz]) - k_z = np.asarray([i - 1 if i > 1 else i for i in k_z]) - - return k_tilde, k_xz, k_yz, k_z - - -
    [docs] def get_dependence_measure_MS(self, array, xyz, - type_mask=None): - - """Returns CMI estimate as described in Messner and Shalizi (2021). - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - - dim, T = array.shape - - # compute knn - if self.knn < 1: - knn = max(1, int(self.knn*T)) - else: - knn = max(1, self.knn) - - - knn_tilde, k_xz, k_yz, k_z = self._get_nearest_neighbors_MS_one_hot(array=array, - xyz=xyz, - knn=knn, - type_mask=type_mask) - - non_zero = knn_tilde - k_xz - k_yz + k_z - - non_zero_count = np.count_nonzero(non_zero) / len(non_zero) - - val = (special.digamma(knn_tilde) - special.digamma(k_xz) - - special.digamma(k_yz) + - special.digamma(k_z)) - val = val[np.isfinite(val)].mean() - - return val, non_zero_count
    - - @jit(forceobj=True) - def _compute_continuous_entropy(self, array, knn): - """Returns entropy estimate as described by Kozachenko and Leonenko (1987). - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - knn : int - number of nearest-neighbors to use. - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - T, dim = array.shape - if T == 1: - return 0. - - if knn < 1: - knn = max(np.rint(knn * T), 1) - - tree = spatial.cKDTree(array) - epsarray = tree.query(array, k=[knn+1], p=np.inf, - workers=self.workers, - eps=0.)[0][:, 0].astype(np.float64) - - epsarray = epsarray[epsarray != 0] - num_non_zero = len(epsarray) - - if num_non_zero == 0: - cmi_hat = 0. - else: - avg_dist = float(array.shape[-1]) / float(num_non_zero) * np.sum(np.log(2 * epsarray)) - cmi_hat = special.digamma(num_non_zero) - special.digamma(knn) + avg_dist - - return cmi_hat - - def _compute_entropies_for_discrete_entry(self, array, - discrete_values, - discrete_idxs, - continuous_idxs, - total_num_samples, - knn, - use_local_knn=False): - """Returns entropy estimates for a given array as described in ... add citation. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - discrete_values : tuple of dimension (len(discrete_idxs)) - values of discrete variables for which the entropy is computed - - discrete_idxs : array of ints - indices of the dimensions with discrete data - - continuous_idxs : array of ints - indices of the dimensions with continuous data - - total_num_samples : int - total number of samples - - knn : int or float - if int, number of nearest-neighbors to use - if float, percentage of the number of samples - - use_local_knn : bool (default False) - if True, the knn is computed as a percentage of the number of samples - for one realization of the discrete values in each subspace, - otherwise the same knn is used for all subspaces. - - Returns - ------- - val_continuous entropy, val_discrete_entropy : float, float - Tuple consisting of estimate for the entropy term for the continuous variables, - and the estimate for the entropy term for the discrete variables. - """ - - # select data for which the discrete values are the given ones - current_array = array[np.sum(array[:, discrete_idxs] == discrete_values, - axis=-1) == len(discrete_idxs)] - # if we do not have samples, we cannot estimate CMI - if np.size(current_array) == 0: - return 0., 0. - - T, dim = current_array.shape - - # if we have more samples than knns and samples are not purely discrete, we can - # compute CMI - if len(continuous_idxs) > 0 and T > knn: - val_continuous_entropy = self._compute_continuous_entropy(current_array[:, continuous_idxs], knn) - else: - val_continuous_entropy = 0. - - prob = float(T) / total_num_samples - - # multiply by probabilities of occurence - val_continuous_entropy *= prob - # compute entropy for that occurence - val_discrete_entropy = prob * np.log(prob) - - return val_continuous_entropy, val_discrete_entropy - -
    [docs] def get_dependence_measure_conditional(self, array, xyz, - type_mask=None): - """Returns CMI estimate as described in .... - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - - dim, T = array.shape - - # compute knn - if self.knn < 1 and self.use_local_knn == False: - knn = max(1, int(self.knn*T)) - else: - knn = self.knn - - array = array.astype(np.float64) - xyz = xyz.astype(np.int32) - - array = self._transform_mixed_data(array, type_mask) - - array = array.T - type_mask = type_mask.T - - #TODO - - # continue working with discrete idx list - discrete_idx_list = np.where(np.any(type_mask == 1, axis=0), 1, 0) - - if np.sum(discrete_idx_list) == 0: - raise ValueError("Variables are continuous, cannot use CMIknnMixed conditional!") - -# if np.sum(discrete_idx_list) != np.sum(any_discrete_idx_list): -# raise ValueError("Variables contain mixtures, cannot use CMIknnMixed conditional!") - - # Subsample indices - x_indices = np.where(xyz == 0)[0] - y_indices = np.where(xyz == 1)[0] - z_indices = np.where(xyz == 2)[0] - xz_indices = np.concatenate([x_indices, z_indices]) - yz_indices = np.concatenate([y_indices, z_indices]) - - discrete_xz_indices = discrete_idx_list[xz_indices] - discrete_yz_indices = discrete_idx_list[yz_indices] - discrete_z_indices = discrete_idx_list[z_indices] - - discrete_xyz_idx = np.where(np.asarray(discrete_idx_list) == 1)[0] - discrete_xz_idx = np.where(np.asarray(discrete_xz_indices) == 1)[0] - discrete_yz_idx = np.where(np.asarray(discrete_yz_indices) == 1)[0] - discrete_z_idx = np.where(np.asarray(discrete_z_indices) == 1)[0] - - continuous_xyz_idx = np.where(np.asarray(discrete_idx_list) == 0)[0] - continuous_xz_idx = np.where(np.asarray(discrete_xz_indices) == 0)[0] - continuous_yz_idx = np.where(np.asarray(discrete_yz_indices) == 0)[0] - continuous_z_idx = np.where(np.asarray(discrete_z_indices) == 0)[0] - - # get the number of unique values for each category of the discrete variable - # add empty set for code not to break when accessing [0] - num_xz_classes = [np.unique(array[:, xz_indices][:, index]) for index in range(len(discrete_xz_indices)) if (discrete_xz_indices[index] == 1)] - num_yz_classes = [np.unique(array[:, yz_indices][:, index]) for index in range(len(discrete_yz_indices)) if (discrete_yz_indices[index] == 1)] - num_z_classes = [np.unique(array[:, z_indices][:, index]) for index in range(len(discrete_z_indices)) if (discrete_z_indices[index] == 1)] - num_xyz_classes = [np.unique(array[:, index]) for index in range(len(discrete_idx_list)) if (discrete_idx_list[index] == 1)] - - # print('num classes', num_xyz_classes, num_xz_classes, num_yz_classes, num_z_classes)siz - - xyz_cartesian_product = [] - xz_cartesian_product = [] - yz_cartesian_product = [] - z_cartesian_product = [] - - if len(num_xyz_classes) > 1: - xyz_cartesian_product = cartesian(num_xyz_classes) - elif len(num_xyz_classes) > 0: - xyz_cartesian_product = num_xyz_classes[0] - - - if len(num_xz_classes) > 1: - xz_cartesian_product = cartesian(num_xz_classes) - elif len(num_xz_classes) > 0: - xz_cartesian_product = num_xz_classes[0] - - if len(num_yz_classes) > 1: - yz_cartesian_product = cartesian(num_yz_classes) - elif len(num_yz_classes) > 0: - yz_cartesian_product = num_yz_classes[0] - - if len(num_z_classes) > 1: - z_cartesian_product = cartesian(num_z_classes) - elif len(num_z_classes) > 0: - z_cartesian_product = num_z_classes[0] - - # print('cartesian', xyz_cartesian_product) - # , xz_cartesian_product, yz_cartesian_product, z_cartesian_product) - - # compute entropies in XYZ subspace - if len(xyz_cartesian_product) > 0: - xyz_cmi = 0. - xyz_entropy = 0. - - for i, entry in enumerate(xyz_cartesian_product): - xyz_cont_entropy, xyz_disc_entropy = self._compute_entropies_for_discrete_entry(array, entry, - discrete_xyz_idx, - continuous_xyz_idx, - T, knn, - self.use_local_knn) - xyz_cmi += xyz_cont_entropy - xyz_entropy -= xyz_disc_entropy - else: - xyz_cmi = self._compute_continuous_entropy(array, knn) - xyz_entropy = 0. - - # print(xyz_cmi, xyz_entropy) - - # compute entropies in XZ subspace - if len(xz_cartesian_product) > 0: - xz_cmi = 0. - xz_entropy = 0. - - for i, entry in enumerate(xz_cartesian_product): - xz_cont_entropy, xz_disc_entropy = self._compute_entropies_for_discrete_entry(array[:, xz_indices], entry, - discrete_xz_idx, - continuous_xz_idx, - T, knn, - self.use_local_knn) - xz_cmi += xz_cont_entropy - xz_entropy -= xz_disc_entropy - else: - xz_cmi = self._compute_continuous_entropy(array[:, xz_indices], knn) - xz_entropy = 0. - - # compute entropies in Xy subspace - if len(yz_cartesian_product) > 0: - yz_cmi = 0. - yz_entropy = 0. - - for i, entry in enumerate(yz_cartesian_product): - yz_cont_entropy, yz_disc_entropy = self._compute_entropies_for_discrete_entry(array[:, yz_indices], entry, - discrete_yz_idx, - continuous_yz_idx, - T, knn, - self.use_local_knn) - yz_cmi += yz_cont_entropy - yz_entropy -= yz_disc_entropy - else: - yz_cmi = self._compute_continuous_entropy(array[:, yz_indices], knn) - yz_entropy = 0. - - - # compute entropies in Z subspace - if len(z_cartesian_product) > 0: - z_cmi = 0. - z_entropy = 0. - - for i, entry in enumerate(z_cartesian_product): - z_cont_entropy, z_disc_entropy = self._compute_entropies_for_discrete_entry(array[:, z_indices], - entry, - discrete_z_idx, - continuous_z_idx, - T, knn, - self.use_local_knn) - z_cmi += z_cont_entropy - z_entropy -= z_disc_entropy - else: - z_cmi = self._compute_continuous_entropy(array[:, z_indices], knn) - z_entropy = 0. - - # put it all together for the CMI estimation - val = xz_cmi + yz_cmi - xyz_cmi - z_cmi + xz_entropy + yz_entropy - xyz_entropy - z_entropy - - entropies = (xz_cmi, yz_cmi, xyz_cmi, z_cmi, xz_entropy, yz_entropy, xyz_entropy, z_entropy) - - return val, entropies
    - -
    [docs] def get_dependence_measure(self, array, xyz, - type_mask=None): - """Calls the appropriate function to estimate CMI. - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,) - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - val : float - Conditional mutual information estimate. - """ - # check that data is really mixed - if type_mask is None: - raise ValueError("Type mask cannot be none for CMIknnMixed!") - if np.sum(type_mask) > type_mask.size: - raise ValueError("Type mask contains other values than 0 and 1!") - - if self.estimator == 'MS': - return self.get_dependence_measure_MS(array, - xyz, - type_mask) - elif self.estimator == 'cond': - return self.get_dependence_measure_conditional(array, - xyz, - type_mask) - elif self.estimator == 'FPinf': - return self.get_dependence_measure_zeroinf(array, - xyz, - type_mask) - else: - raise ValueError('No such estimator available!')
    - - @jit(forceobj=True) - def get_restricted_permutation(self, T, shuffle_neighbors, neighbors, order): - - restricted_permutation = np.zeros(T, dtype=np.int32) - used = np.array([], dtype=np.int32) - - for sample_index in order: - neighbors_to_use = neighbors[sample_index] - m = 0 - use = neighbors_to_use[m] - while ((use in used) and (m < shuffle_neighbors - 1)): - m += 1 - use = neighbors_to_use[m] - restricted_permutation[sample_index] = use - used = np.append(used, use) - - return restricted_permutation - - - @jit(forceobj=True) - def _generate_random_permutation(self, array, neighbors, x_indices, type_mask): - - T, dim = array.shape - # Generate random order in which to go through indices loop in - # next step - order = self.random_state.permutation(T).astype(np.int32) - - n = np.empty(neighbors.shape[0], dtype=object) - - for i in range(neighbors.shape[0]): - v = np.unique(neighbors[i]) - self.random_state.shuffle(v) - n[i] = v - - # Select a series of neighbor indices that contains as few as - # possible duplicates - restricted_permutation = self.get_restricted_permutation( - T=T, - shuffle_neighbors=self.shuffle_neighbors, - neighbors=n, - order=order) - - array_shuffled = np.copy(array) - type_mask_shuffled = np.copy(type_mask) - - for i in x_indices: - array_shuffled[:, i] = array[restricted_permutation, i] - type_mask_shuffled[:, i] = type_mask[restricted_permutation, i] - - return array_shuffled, type_mask_shuffled - -
    [docs] @jit(forceobj=True) - def get_shuffle_significance(self, array, xyz, value, - return_null_dist=False, - type_mask=None): - - """Returns p-value for nearest-neighbor shuffle significance test. - - For non-empty Z, overwrites get_shuffle_significance from the parent - class which is a block shuffle test, which does not preserve - dependencies of X and Y with Z. Here the parameter shuffle_neighbors is - used to permute only those values :math:`x_i` and :math:`x_j` for which - :math:`z_j` is among the nearest neighbors of :math:`z_i`. If Z is - empty, the block-shuffle test is used. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - value : number - Value of test statistic for unshuffled estimate. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - Returns - ------- - pval : float - p-value - """ - - dim, T = array.shape - z_indices = np.where(xyz == 2)[0] - - if len(z_indices) > 0 and self.shuffle_neighbors < T: - - array = array.T - type_mask = type_mask.T - - # discrete_idx_list = np.where(np.all(type_mask == 1, axis=0), 1, 0) - - array, xyz, type_mask, discrete_idx_list = self._transform_to_one_hot_mixed(array, xyz, type_mask, - zero_inf=True) - - # max_neighbors = max(1, int(max_neighbor_ratio*T)) - x_indices = np.where(xyz == 0)[0] - z_indices = np.where(xyz == 2)[0] - - if self.verbosity > 2: - print(" nearest-neighbor shuffle significance " - "test with n = %d and %d surrogates" % ( - self.shuffle_neighbors, self.sig_samples)) - # Get nearest neighbors around each sample point in Z - z_array = array[:, z_indices] - tree_xyz = spatial.cKDTree(z_array) - neighbors = tree_xyz.query(z_array, - k=self.shuffle_neighbors + 1, - p=np.inf, - workers=self.workers, - distance_upper_bound=9999999, - eps=0.) - - # remove all neighbors with distance infinite -> from another class - # for those that are discrete - valid_neighbors = np.ones(neighbors[1].shape) - # fill valid neighbors with point -> if infinite, the neighbor will - # be the point itself - valid_neighbors = np.multiply(valid_neighbors, np.expand_dims(np.arange(valid_neighbors.shape[0]), axis=-1)) - - valid_neighbors[neighbors[0] != np.inf] = neighbors[1][neighbors[0] != np.inf] - - null_dist = np.zeros(self.sig_samples) - - for sam in range(self.sig_samples): - array_shuffled, type_mask_shuffled = self._generate_random_permutation(array, - valid_neighbors, - x_indices, - type_mask) - null_dist[sam], _ = self.get_dependence_measure(array_shuffled.T, - xyz, - type_mask=type_mask_shuffled.T) - - else: - null_dist = \ - self._get_shuffle_dist(array, xyz, - sig_samples=self.sig_samples, - sig_blocklength=self.sig_blocklength, - type_mask=type_mask, - verbosity=self.verbosity) - - pval = (null_dist >= value).mean() - - if return_null_dist: - # Sort - null_dist.sort() - return pval, null_dist - return pval
    - - - - - - - def _get_shuffle_dist(self, array, xyz, - sig_samples, sig_blocklength=None, - type_mask=None, - verbosity=0): - """Returns shuffle distribution of test statistic. - - The rows in array corresponding to the X-variable are shuffled using - a block-shuffle approach. - - Parameters - ---------- - array : array-like - data array with X, Y, Z in rows and observations in columns - - xyz : array of ints - XYZ identifier array of shape (dim,). - - dependence_measure : object - Dependence measure function must be of form - dependence_measure(array, xyz) and return a numeric value - - sig_samples : int, optional (default: 100) - Number of samples for shuffle significance test. - - sig_blocklength : int, optional (default: None) - Block length for block-shuffle significance test. If None, the - block length is determined from the decay of the autocovariance as - explained in [1]_. - - type_mask : array-like - data array of same shape as array which describes whether variables - are continuous or discrete: 0s for continuous variables and - 1s for discrete variables - - verbosity : int, optional (default: 0) - Level of verbosity. - - Returns - ------- - null_dist : array of shape (sig_samples,) - Contains the sorted test statistic values estimated from the - shuffled arrays. - """ - dim, T = array.shape - - x_indices = np.where(xyz == 0)[0] - dim_x = len(x_indices) - - if sig_blocklength is None: - sig_blocklength = self._get_block_length(array, xyz, - mode='significance') - - n_blks = int(math.floor(float(T)/sig_blocklength)) - - # print 'n_blks ', n_blks - if verbosity > 2: - print(" Significance test with block-length = %d " - "..." % (sig_blocklength)) - - array_shuffled = np.copy(array) - type_mask_shuffled = np.copy(type_mask) - # block_starts = np.arange(0, T - sig_blocklength, sig_blocklength) - block_starts = np.arange(0, n_blks * sig_blocklength, sig_blocklength) - - - # Dividing the array up into n_blks of length sig_blocklength may - # leave a tail. This tail is later randomly inserted - tail = array[x_indices, n_blks*sig_blocklength:] - - null_dist = np.zeros(sig_samples) - for sam in range(sig_samples): - - blk_starts = self.random_state.permutation(block_starts)[:n_blks] - - x_shuffled = np.zeros((dim_x, n_blks*sig_blocklength), - dtype=array.dtype) - type_x_shuffled = np.zeros((dim_x, n_blks*sig_blocklength), - dtype=array.dtype) - - for i, index in enumerate(x_indices): - for blk in range(sig_blocklength): - x_shuffled[i, blk::sig_blocklength] = \ - array[index, blk_starts + blk] - - type_x_shuffled[i, blk::sig_blocklength] = \ - type_mask[index, blk_starts + blk] - - # Insert tail randomly somewhere - if tail.shape[1] > 0: - insert_tail_at = self.random_state.choice(block_starts) - x_shuffled = np.insert(x_shuffled, insert_tail_at, - tail.T, axis=1) - type_x_shuffled = np.insert(type_x_shuffled, insert_tail_at, - tail.T, axis=1) - - - for i, index in enumerate(x_indices): - array_shuffled[index] = x_shuffled[i] - type_mask_shuffled[index] = type_x_shuffled[i] - - null_dist[sam], _ = self.get_dependence_measure(array=array_shuffled, - xyz=xyz, - type_mask=type_mask_shuffled) - - return null_dist
    - - -if __name__ == '__main__': - - import tigramite - from tigramite.data_processing import DataFrame - import tigramite.data_processing as pp - from tigramite.independence_tests import CMIknn - import numpy as np - - random_state_ = np.random.default_rng(seed=seed) - cmi = CMIknnMixed(mask_type=None, - significance='shuffle_test', - # estimator='cond', - use_local_knn=True, - fixed_thres=None, - sig_samples=500, - sig_blocklength=1, - transform='scale', - knn=0.1, - verbosity=0) - - # cmiknn = CMIknn(mask_type=None, - # significance='shuffle_test', - # # estimator='FPinf', - # # use_local_knn=True, - # fixed_thres=None, - # sig_samples=500, - # sig_blocklength=1, - # transform='none', - # knn=0.1, - # verbosity=0) - - - T = 1000 - dimz = 1 - - # Discrete data - z = random_state_.binomial(n=1, p=0.5, size=(T, dimz)).reshape(T, dimz) - x = np.empty(T).reshape(T, 1) - y = np.empty(T).reshape(T, 1) - for t in range(T): - val = z[t, 0].squeeze() - prob = 0.2 + val*0.6 - x[t] = random_state_.choice([0,1], p=[prob, 1.-prob]) - y[t] = random_state_.choice([0,1, 2], p=[prob, (1.-prob)/2., (1.-prob)/2.]) - - # Continuous data - z = random_state_.standard_normal((T, dimz)) - x = (0.5*z[:,0] + random_state_.standard_normal(T)).reshape(T, 1) - y = (0.5*z[:,0] + random_state_.standard_normal(T)).reshape(T, 1) - - z2 = random_state_.binomial(n=1, p=0.5, size=(T, dimz)).reshape(T, dimz) - zfull = np.concatenate((z, z2), axis=1) - - print('X _|_ Y') - print(cmi.run_test_raw(x, y, z=zfull, - x_type=np.zeros(T, dtype='bool'), - y_type=np.zeros(T, dtype='bool'), - z_type=np.concatenate((np.zeros((T, dimz), dtype='bool'), np.ones((T, dimz), dtype='bool')), axis=1), - # val_only=True) - )) - - # print(cmiknn.run_test_raw(x, y, z=None)) - # - # print('X _|_ Y | Z') - # print(cmi.run_test_raw(x, y, z=z, - # x_type=np.zeros(T, dtype='bool'), - # y_type=np.zeros(T, dtype='bool'), - # z_type=np.zeros(T, dtype='bool'))) - -
    - -
    - -
    -
    - -
    -
    - - - - - - - \ No newline at end of file diff --git a/docs/_modules/tigramite/independence_tests/cmisymb.html b/docs/_modules/tigramite/independence_tests/cmisymb.html index 04d7ed0c..07a3d4fc 100644 --- a/docs/_modules/tigramite/independence_tests/cmisymb.html +++ b/docs/_modules/tigramite/independence_tests/cmisymb.html @@ -9,8 +9,10 @@ + + + - @@ -40,8 +42,8 @@

    Source code for tigramite.independence_tests.cmisymb

    import warnings import numpy as np from scipy.stats.contingency import crosstab -from joblib import Parallel, delayed -import multiprocessing +# from joblib import Parallel, delayed +# import dask from numba import jit from .independence_tests_base import CondIndTest @@ -220,11 +222,16 @@

    Source code for tigramite.independence_tests.cmisymb

    neighbor_indices = np.where((z_array == z_comb[i]).all(axis=1))[0] neighbors[i, :len(neighbor_indices)] = neighbor_indices - num_cores = multiprocessing.cpu_count() random_seeds = self.random_state.integers(np.iinfo(np.int32).max, size=self.sig_samples) - null_dist = Parallel(n_jobs=num_cores)( - delayed(self.parallelize_shuffles)(array, xyz, z_indices, x_indices, T, z_comb, neighbors, seed=seed) for seed in random_seeds) - null_dist = np.asarray(null_dist) + # null_dist = Parallel(n_jobs=-1)( + # delayed(self.parallelize_shuffles)(array, xyz, z_indices, x_indices, T, z_comb, neighbors, seed=seed) for seed in random_seeds) + # dask_jobs = [dask.delayed(self.parallelize_shuffles)(array, xyz, z_indices, x_indices, T, z_comb, neighbors, seed=seed) for seed in random_seeds] + # null_dist = dask.compute(dask_jobs) + # null_dist = np.asarray(null_dist) + + null_dist = np.zeros(self.sig_samples) + for i, seed in enumerate(random_seeds): + null_dist[i] = self.parallelize_shuffles(array, xyz, z_indices, x_indices, T, z_comb, neighbors, seed=seed) else: null_dist = \ @@ -283,13 +290,15 @@

    Source code for tigramite.independence_tests.cmisymb

    from tigramite.data_processing import DataFrame import tigramite.data_processing as pp import numpy as np + # from dask.distributed import Client + # client = dask.distributed.Client(processes=True) seed = 42 random_state = np.random.default_rng(seed=seed) - cmi = CMIsymb(sig_samples=100, seed=seed) + cmi = CMIsymb(sig_samples=200, seed=seed) T = 1000 - dimz = 10 + dimz = 5 z = random_state.binomial(n=1, p=0.5, size=(T, dimz)).reshape(T, dimz) x = np.empty(T).reshape(T, 1) y = np.empty(T).reshape(T, 1) @@ -300,8 +309,13 @@

    Source code for tigramite.independence_tests.cmisymb

    y[t] = random_state.choice([0,1, 2], p=[prob, (1.-prob)/2., (1.-prob)/2.]) print('start') - print(cmi.run_test_raw(x, y, z=None)) + # print(client.dashboard_link) + # print(cmi.run_test_raw(x, y, z=None)) print(cmi.run_test_raw(x, y, z=z)) + + # client.close() + +
    @@ -356,8 +370,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/gpdc.html b/docs/_modules/tigramite/independence_tests/gpdc.html index 2904277a..7c24f23e 100644 --- a/docs/_modules/tigramite/independence_tests/gpdc.html +++ b/docs/_modules/tigramite/independence_tests/gpdc.html @@ -9,8 +9,10 @@ + + + - @@ -244,7 +246,7 @@

    Source code for tigramite.independence_tests.gpdc

    for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -576,12 +578,12 @@

    Source code for tigramite.independence_tests.gpdc

    def _get_dcorr(self, array_resid): - """Return distance correlation coefficient. + r"""Return distance correlation coefficient. The variables are transformed to uniform marginals using the empirical cumulative distribution function beforehand. Here the null distribution is not analytically available, but can be precomputed with the function - generate_and_save_nulldists(...) which saves a \*.npz file containing + generate_and_save_nulldists(...) which saves a *.npz file containing the null distribution for different sample sizes. This file can then be supplied as null_dist_filename. @@ -743,8 +745,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/gpdc_torch.html b/docs/_modules/tigramite/independence_tests/gpdc_torch.html index b2dd7f55..dbcd744c 100644 --- a/docs/_modules/tigramite/independence_tests/gpdc_torch.html +++ b/docs/_modules/tigramite/independence_tests/gpdc_torch.html @@ -9,8 +9,10 @@ + + + - @@ -251,7 +253,7 @@

    Source code for tigramite.independence_tests.gpdc_torch

    for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).any(): @@ -737,7 +739,7 @@

    Source code for tigramite.independence_tests.gpdc_torch

    The variables are transformed to uniform marginals using the empirical cumulative distribution function beforehand. Here the null distribution is not analytically available, but can be precomputed with the function - generate_and_save_nulldists(...) which saves a \*.npz file containing + generate_and_save_nulldists(...) which saves a *.npz file containing the null distribution for different sample sizes. This file can then be supplied as null_dist_filename. @@ -899,8 +901,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/gsquared.html b/docs/_modules/tigramite/independence_tests/gsquared.html index 3b702b6c..10f89b76 100644 --- a/docs/_modules/tigramite/independence_tests/gsquared.html +++ b/docs/_modules/tigramite/independence_tests/gsquared.html @@ -9,8 +9,10 @@ + + + - @@ -273,8 +275,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/independence_tests_base.html b/docs/_modules/tigramite/independence_tests/independence_tests_base.html index 7626dc7c..4e1a0582 100644 --- a/docs/_modules/tigramite/independence_tests/independence_tests_base.html +++ b/docs/_modules/tigramite/independence_tests/independence_tests_base.html @@ -9,8 +9,10 @@ + + + - @@ -69,8 +71,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    'fixed_thres' and 'shuffle_test' are available. fixed_thres : float, optional (default: 0.1) - If significance is 'fixed_thres', this specifies the threshold for the - absolute value of the dependence measure. + Deprecated. sig_samples : int, optional (default: 500) Number of samples for shuffle significance test. @@ -120,7 +121,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    seed=42, mask_type=None, significance='analytic', - fixed_thres=0.1, + fixed_thres=None, sig_samples=500, sig_blocklength=None, confidence=None, @@ -136,9 +137,11 @@

    Source code for tigramite.independence_tests.independence_tests_base

    self.significance = significance self.sig_samples = sig_samples self.sig_blocklength = sig_blocklength - self.fixed_thres = fixed_thres + if fixed_thres is not None: + raise ValueError("fixed_thres is replaced by providing alpha_or_thres in run_test") self.verbosity = verbosity self.cached_ci_results = {} + self.ci_results = {} # If we recycle residuals, then set up a residual cache self.recycle_residuals = recycle_residuals if self.recycle_residuals: @@ -190,9 +193,9 @@

    Source code for tigramite.independence_tests.independence_tests_base

    if self.significance == 'shuffle_test': info_str += "\nsig_samples = %s" % self.sig_samples info_str += "\nsig_blocklength = %s" % self.sig_blocklength - # Check if we are using a fixed threshold - elif self.significance == 'fixed_thres': - info_str += "\nfixed_thres = %s" % self.fixed_thres + # # Check if we are using a fixed threshold + # elif self.significance == 'fixed_thres': + # info_str += "\nfixed_thres = %s" % self.fixed_thres # Check if we have a confidence type if self.confidence: info_str += "\nconfidence = %s" % self.confidence @@ -251,7 +254,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    " implemented for %s" % self.measure)
    [docs] def get_shuffle_significance(self, array, xyz, value, - type_mask=None, + data_type=None, return_null_dist=False): """ Base class assumption that this is not implemented. Concrete classes @@ -355,7 +358,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    return combined_hash -
    [docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max'): +
    [docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None): """Perform conditional independence test. Calls the dependence measure and signficicance test functions. The child @@ -369,11 +372,9 @@

    Source code for tigramite.independence_tests.independence_tests_base

    X, Y, Z : list of tuples X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag. - tau_max : int, optional (default: 0) Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size. - cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} How many samples to cutoff at the beginning. The default is '2xtau_max', which guarantees that MCI tests are all conducted on @@ -381,43 +382,72 @@

    Source code for tigramite.independence_tests.independence_tests_base

    which uses the maximum of tau_max and the conditions, which is useful to compare multiple models on the same sample. Last, 'max_lag' uses as much samples as possible. + alpha_or_thres : float (optional) + Significance level (if significance='analytic' or 'shuffle_test') or + threshold (if significance='fixed_thres'). If given, run_test returns + the test decision dependent=True/False. Returns ------- - val, pval : Tuple of floats - The test statistic value and the p-value. + val, pval, [dependent] : Tuple of floats and bool + The test statistic value and the p-value. If alpha_or_thres is + given, run_test also returns the test decision dependent=True/False. """ # Get the array to test on - array, xyz, XYZ, type_mask = self._get_array(X, Y, Z, tau_max, cut_off, self.verbosity) + array, xyz, XYZ, data_type = self._get_array(X, Y, Z, tau_max, cut_off, self.verbosity) X, Y, Z = XYZ # Record the dimensions dim, T = array.shape + # Ensure it is a valid array if np.any(np.isnan(array)): raise ValueError("nans in the array!") combined_hash = self._get_array_hash(array, xyz, XYZ) + # Get test statistic value and p-value [cached if possible] if combined_hash in self.cached_ci_results.keys(): cached = True val, pval = self.cached_ci_results[combined_hash] else: cached = False # Get the dependence measure, reycling residuals if need be - val = self._get_dependence_measure_recycle(X, Y, Z, xyz, array, type_mask) - # Get the p-value - pval = self.get_significance(val, array, xyz, T, dim) + val = self._get_dependence_measure_recycle(X, Y, Z, xyz, array, data_type) + # Get the p-value (None if significance = 'fixed_thres') + pval = self._get_p_value(val=val, array=array, xyz=xyz, T=T, dim=dim) self.cached_ci_results[combined_hash] = (val, pval) + # Make test decision + if self.significance == 'fixed_thres': + if alpha_or_thres is None: + raise ValueError("significance == 'fixed_thres' requires setting alpha_or_thres") + if self.two_sided: + dependent = np.abs(val) >= np.abs(alpha_or_thres) + else: + dependent = val >= alpha_or_thres + pval = 0. if dependent else 1. + else: + if alpha_or_thres is None: + dependent = None + else: + dependent = pval <= alpha_or_thres + + self.ci_results[(tuple(X), tuple(Y),tuple(Z))] = (val, pval, dependent) + + # Return the calculated value(s) if self.verbosity > 1: - self._print_cond_ind_results(val=val, pval=pval, cached=cached, + self._print_cond_ind_results(val=val, pval=pval, cached=cached, dependent=dependent, conf=None) - # Return the value and the pvalue - return val, pval
    -
    [docs] def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None): + if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent
    + + +
    [docs] def run_test_raw(self, x, y, z=None, x_type=None, y_type=None, z_type=None, alpha_or_thres=None): """Perform conditional independence test directly on input arrays x, y, z. Calls the dependence measure and signficicance test functions. The child @@ -434,11 +464,16 @@

    Source code for tigramite.independence_tests.independence_tests_base

    are continuous or discrete: 0s for continuous variables and 1s for discrete variables + alpha_or_thres : float (optional) + Significance level (if significance='analytic' or 'shuffle_test') or + threshold (if significance='fixed_thres'). If given, run_test returns + the test decision dependent=True/False. + Returns ------- - val, pval : Tuple of floats - - The test statistic value and the p-value. + val, pval, [dependent] : Tuple of floats and bool + The test statistic value and the p-value. If alpha_or_thres is + given, run_test also returns the test decision dependent=True/False. """ if np.ndim(x) != 2 or np.ndim(y) != 2: @@ -450,21 +485,21 @@

    Source code for tigramite.independence_tests.independence_tests_base

    " where dimension can be 1.") if x_type is not None or y_type is not None or z_type is not None: - has_type_mask = True + has_data_type = True else: - has_type_mask = False + has_data_type = False - if x_type is None and has_type_mask: + if x_type is None and has_data_type: x_type = np.zeros(x.shape, dtype='int') - if y_type is None and has_type_mask: + if y_type is None and has_data_type: y_type = np.zeros(y.shape, dtype='int') if z is None: # Get the array to test on array = np.vstack((x.T, y.T)) - if has_type_mask: - type_mask = np.vstack((x_type.T, y_type.T)) + if has_data_type: + data_type = np.vstack((x_type.T, y_type.T)) # xyz is the dimension indicator xyz = np.array([0 for i in range(x.shape[1])] + @@ -473,11 +508,11 @@

    Source code for tigramite.independence_tests.independence_tests_base

    else: # Get the array to test on array = np.vstack((x.T, y.T, z.T)) - if z_type is None and has_type_mask: + if z_type is None and has_data_type: z_type = np.zeros(z.shape, dtype='int') - if has_type_mask: - type_mask = np.vstack((x_type.T, y_type.T, z_type.T)) + if has_data_type: + data_type = np.vstack((x_type.T, y_type.T, z_type.T)) # xyz is the dimension indicator xyz = np.array([0 for i in range(x.shape[1])] + [1 for i in range(y.shape[1])] + @@ -489,22 +524,39 @@

    Source code for tigramite.independence_tests.independence_tests_base

    if np.isnan(array).sum() != 0: raise ValueError("nans in the array!") # Get the dependence measure - if has_type_mask: - val = self.get_dependence_measure(array, xyz, type_mask=type_mask) + if has_data_type: + val = self.get_dependence_measure(array, xyz, data_type=data_type) else: val = self.get_dependence_measure(array, xyz) # Get the p-value - if has_type_mask: - pval = self.get_significance(val=val, array=array, xyz=xyz, - T=T, dim=dim, type_mask=type_mask) + if has_data_type: + pval = self._get_p_value(val=val, array=array, xyz=xyz, + T=T, dim=dim, data_type=data_type) + else: + pval = self._get_p_value(val=val, array=array, xyz=xyz, + T=T, dim=dim) + + # Make test decision + if self.significance == 'fixed_thres': + if self.two_sided: + dependent = np.abs(val) >= np.abs(alpha_or_thres) + else: + dependent = val >= alpha_or_thres + pval = 0. if dependent else 1. else: - pval = self.get_significance(val=val, array=array, xyz=xyz, - T=T, dim=dim) + if alpha_or_thres is None: + dependent = None + else: + dependent = pval <= alpha_or_thres + # Return the value and the pvalue - return val, pval
    + if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent
    - def _get_dependence_measure_recycle(self, X, Y, Z, xyz, array, type_mask=None): + def _get_dependence_measure_recycle(self, X, Y, Z, xyz, array, data_type=None): """Get the dependence_measure, optionally recycling residuals If self.recycle_residuals is True, also _get_single_residuals must be @@ -522,7 +574,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    array : array Data array of shape (dim, T) - type_mask : array-like + data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. @@ -545,9 +597,9 @@

    Source code for tigramite.independence_tests.independence_tests_base

    return self.get_dependence_measure(array_resid, xyz_resid) # If not, return the dependence measure on the array and xyz - if type_mask is not None: + if data_type is not None: return self.get_dependence_measure(array, xyz, - type_mask=type_mask) + data_type=data_type) else: return self.get_dependence_measure(array, xyz) @@ -587,12 +639,12 @@

    Source code for tigramite.independence_tests.independence_tests_base

    # Return these residuals return x_resid -
    [docs] def get_significance(self, val, array, xyz, T, dim, - type_mask=None, + def _get_p_value(self, val, array, xyz, T, dim, + data_type=None, sig_override=None): """ Returns the p-value from whichever significance function is specified - for this test. If an override is used, then it will call a different + for this test. If an override is used, then it will call a different function then specified by self.significance Parameters @@ -612,7 +664,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    dim : int Dimensionality, ie, number of features. - type_mask : array-like + data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. @@ -639,16 +691,29 @@

    Source code for tigramite.independence_tests.independence_tests_base

    value=val) # Check if we are using the fixed_thres significance elif use_sig == 'fixed_thres': - pval = self.get_fixed_thres_significance( - value=val, - fixed_thres=self.fixed_thres) + # Determined outside then + pval = None + # if self.two_sided: + # dependent = np.abs(val) >= np.abs(alpha_or_thres) + # else: + # dependent = val >= alpha_or_thres + # pval = 0. if dependent else 1. + # # pval = self.get_fixed_thres_significance( + # # value=val, + # # fixed_thres=self.fixed_thres) else: raise ValueError("%s not known." % self.significance) - # Return the calculated value - return pval
    + + # # Return the calculated value(s) + # if alpha_or_thres is not None: + # if use_sig != 'fixed_thres': + # dependent = pval <= alpha_or_thres + # return pval, dependent + # else: + return pval
    [docs] def get_measure(self, X, Y, Z=None, tau_max=0, - type_mask=None): + data_type=None): """Estimate dependence measure. Calls the dependence measure function. The child classes must specify @@ -664,7 +729,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size. - type_mask : array-like + data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. @@ -686,7 +751,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    return self._get_dependence_measure_recycle(X, Y, Z, xyz, array)
    [docs] def get_confidence(self, X, Y, Z=None, tau_max=0, - type_mask=None): + data_type=None): """Perform confidence interval estimation. Calls the dependence measure and confidence test functions. The child @@ -704,7 +769,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size. - type_mask : array-like + data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. @@ -727,7 +792,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    if self.confidence: # Make and check the array - array, xyz, _, type_mask = self._get_array(X, Y, Z, tau_max, verbosity=0) + array, xyz, _, data_type = self._get_array(X, Y, Z, tau_max, verbosity=0) dim, T = array.shape if np.isnan(array).sum() != 0: raise ValueError("nans in the array!") @@ -758,7 +823,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    # Return the confidence interval return (conf_lower, conf_upper)
    - def _print_cond_ind_results(self, val, pval=None, cached=None, conf=None): + def _print_cond_ind_results(self, val, pval=None, cached=None, dependent=None, conf=None): """Print results from conditional independence test. Parameters @@ -769,12 +834,17 @@

    Source code for tigramite.independence_tests.independence_tests_base

    pval : float, optional (default: None) p-value + dependent : bool + Test decision. + conf : tuple of floats, optional (default: None) Confidence bounds. """ printstr = " val = % .3f" % (val) if pval is not None: printstr += " | pval = %.5f" % (pval) + if dependent is not None: + printstr += " | dependent = %s" % (dependent) if conf is not None: printstr += " | conf bounds = (%.3f, %.3f)" % ( conf[0], conf[1]) @@ -786,7 +856,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    [docs] def get_bootstrap_confidence(self, array, xyz, dependence_measure=None, conf_samples=100, conf_blocklength=None, conf_lev=.95, - type_mask=None, + data_type=None, verbosity=0): """Perform bootstrap confidence interval estimation. @@ -815,7 +885,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    determined from the decay of the autocovariance as explained in [1]_. - type_mask : array-like + data_type : array-like Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. @@ -967,7 +1037,7 @@

    Source code for tigramite.independence_tests.independence_tests_base

    ydata=hilbert, ) phi = popt[1] - # Formula of Peifer (2005) assuming non-overlapping blocks + # Formula assuming non-overlapping blocks l_opt = (4. * T * (phi / (1. - phi) + phi**2 / (1. - phi)**2)**2 / (1. + 2. * phi / (1. - phi))**2)**(1. / 3.) block_len = max(block_len, int(l_opt)) @@ -1067,31 +1137,15 @@

    Source code for tigramite.independence_tests.independence_tests_base

    return null_dist
    [docs] def get_fixed_thres_significance(self, value, fixed_thres): - """Returns signficance for thresholding test. - - Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 else. - - Parameters - ---------- - value : number - Value of test statistic for unshuffled estimate. - - fixed_thres : number - Fixed threshold, is made positive. - - Returns - ------- - pval : bool - Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 - else. - + """DEPRECATED Returns signficance for thresholding test. """ - if np.abs(value) < np.abs(fixed_thres): - pval = 1. - else: - pval = 0. + raise ValueError("fixed_thres is replaced by alpha_or_thres in run_test.")
    + # if np.abs(value) < np.abs(fixed_thres): + # pval = 1. + # else: + # pval = 0. - return pval
    + # return pval def _trafo2uniform(self, x): """Transforms input array to uniform marginals. @@ -1175,8 +1229,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/oracle_conditional_independence.html b/docs/_modules/tigramite/independence_tests/oracle_conditional_independence.html index 703a759f..bb511c49 100644 --- a/docs/_modules/tigramite/independence_tests/oracle_conditional_independence.html +++ b/docs/_modules/tigramite/independence_tests/oracle_conditional_independence.html @@ -9,8 +9,10 @@ + + + - @@ -1081,7 +1083,7 @@

    Source code for tigramite.independence_tests.oracle_conditional_independence return any_path_observed

    -
    [docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', +
    [docs] def run_test(self, X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None, verbosity=0): """Perform oracle conditional independence test. @@ -1096,6 +1098,8 @@

    Source code for tigramite.independence_tests.oracle_conditional_independence Not used here. cut_off : {'2xtau_max', 'max_lag', 'max_lag_or_tau_max'} Not used here. + alpha_or_thres : float + Not used here. Returns ------- @@ -1120,15 +1124,20 @@

    Source code for tigramite.independence_tests.oracle_conditional_independence if self.dsepsets[str((X, Y, Z))]: val = 0. pval = 1. + dependent = False else: val = 1. pval = 0. + dependent = True if verbosity > 1: self._print_cond_ind_results(val=val, pval=pval, cached=False, conf=None) # Return the value and the pvalue - return val, pval

    + if alpha_or_thres is None: + return val, pval + else: + return val, pval, dependent
    [docs] def get_measure(self, X, Y, Z=None, tau_max=0): """Returns dependence measure. @@ -1650,8 +1659,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/parcorr.html b/docs/_modules/tigramite/independence_tests/parcorr.html index 5ed4ec16..030bb8bc 100644 --- a/docs/_modules/tigramite/independence_tests/parcorr.html +++ b/docs/_modules/tigramite/independence_tests/parcorr.html @@ -9,8 +9,10 @@ + + + - @@ -128,7 +130,7 @@

    Source code for tigramite.independence_tests.parcorr

    for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -340,6 +342,7 @@

    Source code for tigramite.independence_tests.parcorr

    score = T * np.log(rss) + 2. * p + (2.*p**2 + 2.*p)/(T - p - 1) else: score = T * np.log(rss) + 2. * p + return score
    @@ -395,8 +398,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/parcorr_mult.html b/docs/_modules/tigramite/independence_tests/parcorr_mult.html index 390a8fcd..2206ba02 100644 --- a/docs/_modules/tigramite/independence_tests/parcorr_mult.html +++ b/docs/_modules/tigramite/independence_tests/parcorr_mult.html @@ -9,8 +9,10 @@ + + + - @@ -133,7 +135,7 @@

    Source code for tigramite.independence_tests.parcorr_mult

    for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -222,7 +224,7 @@

    Source code for tigramite.independence_tests.parcorr_mult

    for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -460,8 +462,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/parcorr_wls.html b/docs/_modules/tigramite/independence_tests/parcorr_wls.html index e3656da9..bfeb64da 100644 --- a/docs/_modules/tigramite/independence_tests/parcorr_wls.html +++ b/docs/_modules/tigramite/independence_tests/parcorr_wls.html @@ -9,8 +9,10 @@ + + + - @@ -160,7 +162,7 @@

    Source code for tigramite.independence_tests.parcorr_wls

    self.measure) # Call the wrapped function - array, xyz, XYZ, type_mask = self.dataframe.construct_array(X=X, Y=Y, Z=Z, + array, xyz, XYZ, data_type = self.dataframe.construct_array(X=X, Y=Y, Z=Z, tau_max=tau_max, mask_type=self.mask_type, return_cleaned_xyz=return_cleaned_xyz, @@ -170,7 +172,7 @@

    Source code for tigramite.independence_tests.parcorr_wls

    verbosity=verbosity) array_copy = array.copy() self._get_stds(array_copy, X, Y, Z, tau_max, cut_off, verbosity) - return array, xyz, XYZ, type_mask + return array, xyz, XYZ, data_type def _estimate_std_time(self, arr, target_var): """ @@ -356,7 +358,7 @@

    Source code for tigramite.independence_tests.parcorr_wls

    for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") x_vals_sum = np.sum(array) x_vals_has_nan = np.isnan(x_vals_sum) @@ -499,8 +501,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/regressionCI.html b/docs/_modules/tigramite/independence_tests/regressionCI.html index b087a0de..228502c3 100644 --- a/docs/_modules/tigramite/independence_tests/regressionCI.html +++ b/docs/_modules/tigramite/independence_tests/regressionCI.html @@ -9,8 +9,10 @@ + + + - @@ -108,12 +110,12 @@

    Source code for tigramite.independence_tests.regressionCI

    raise ValueError("mask_type is not None, but no mask in dataframe.") dataframe._check_mask(dataframe.mask) - if dataframe.type_mask is None: - raise ValueError("type_mask cannot be None for RegressionCI.") - dataframe._check_mask(dataframe.type_mask, check_type_mask=True)
    + if dataframe.data_type is None: + raise ValueError("data_type cannot be None for RegressionCI.") + dataframe._check_mask(dataframe.data_type, check_data_type=True)
    # @jit(forceobj=True) -
    [docs] def get_dependence_measure(self, array, xyz, type_mask): +
    [docs] def get_dependence_measure(self, array, xyz, data_type): """Returns test statistic. Parameters @@ -124,7 +126,7 @@

    Source code for tigramite.independence_tests.regressionCI

    xyz : array of ints XYZ identifier array of shape (dim,). - type_mask : array-like + data_type : array-like array of same shape as array which describes whether samples are continuous or discrete: 0s for continuous and 1s for discrete @@ -156,7 +158,7 @@

    Source code for tigramite.independence_tests.regressionCI

    elif var_type[i] == 0: X_new = np.hstack((X_new, X[:, i].reshape((T, 1)))) else: - raise ValueError("type_mask only allows entries in {0, 1}") + raise ValueError("data_type only allows entries in {0, 1}") return X_new def calc_deviance_logistic(X, y, var_type): @@ -210,15 +212,15 @@

    Source code for tigramite.independence_tests.regressionCI

    x = array[x_indices].T y = array[y_indices].T - x_type = type_mask[x_indices] - y_type = type_mask[y_indices] + x_type = data_type[x_indices] + y_type = data_type[y_indices] if len(z_indices) == 0: z = np.ones((array.shape[1], 1)) z_type = [0] else: z = array[z_indices].T - z_type = type_mask[z_indices] + z_type = data_type[z_indices] z_type = z_type.max(axis=1) # check, whether within X and within Y all datapoints have the same datatype @@ -384,13 +386,13 @@

    Source code for tigramite.independence_tests.regressionCI

    rate[i] = pval # data = np.hstack((x, y, z)) - # type_mask = np.zeros(data.shape) - # type_mask[:, 0] = x_example == "discrete" - # type_mask[:, 1] = y_example == "discrete" - # type_mask[:, 2] = z_example == "discrete" - # type_mask = type_mask.astype('int') - # # print(type_mask) - # dataframe = pp.DataFrame(data=data, type_mask=type_mask) + # data_type = np.zeros(data.shape) + # data_type[:, 0] = x_example == "discrete" + # data_type[:, 1] = y_example == "discrete" + # data_type[:, 2] = z_example == "discrete" + # data_type = data_type.astype('int') + # # print(data_type) + # dataframe = pp.DataFrame(data=data, data_type=data_type) # ci.set_dataframe(dataframe) # val, pval = ci.run_test(X=[(0, 0)], Y=[(1, 0)], Z=[(2, 0)]) @@ -453,8 +455,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/independence_tests/robust_parcorr.html b/docs/_modules/tigramite/independence_tests/robust_parcorr.html index e3251d81..432b3e3d 100644 --- a/docs/_modules/tigramite/independence_tests/robust_parcorr.html +++ b/docs/_modules/tigramite/independence_tests/robust_parcorr.html @@ -9,8 +9,10 @@ + + + - @@ -198,7 +200,7 @@

    Source code for tigramite.independence_tests.robust_parcorr

    for i in range(dim): if std[i] != 0.: array[i] /= std[i] - if np.any(std == 0.): + if np.any(std == 0.) and self.verbosity > 0: warnings.warn("Possibly constant array!") # array /= array.std(axis=1).reshape(dim, 1) # if np.isnan(array).sum() != 0: @@ -220,7 +222,7 @@

    Source code for tigramite.independence_tests.robust_parcorr

    return (resid, mean) return resid -
    [docs] def get_dependence_measure(self, array, xyz, type_mask=None): +
    [docs] def get_dependence_measure(self, array, xyz, data_type=None): """Return partial correlation. Marginals are firstly transformed to standard normal scale. Dependence @@ -482,8 +484,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/lpcmci.html b/docs/_modules/tigramite/lpcmci.html index 986199b3..f78d771c 100644 --- a/docs/_modules/tigramite/lpcmci.html +++ b/docs/_modules/tigramite/lpcmci.html @@ -9,8 +9,10 @@ + + + - @@ -39,9 +41,11 @@

    Source code for tigramite.lpcmci

     
    [docs]class LPCMCI(PCMCIbase): """ LPCMCI is an algorithm for causal discovery in large-scale times series that allows for latent confounders and learns lag-specific causal relationships. The algorithm is introduced and explained in: + [1] Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. Advances in Neural Information Processing Systems, 2020, 33. https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html + NOTE: This method is still EXPERIMENTAL since the default settings of hyperparameters are still being fine-tuned. We actually invite feedback on which work best in applications and numerical experiments. The main function, which applies the algorithm, is 'run_lpcmci'. @@ -371,6 +375,8 @@

    Source code for tigramite.lpcmci

             self.remember_only_parents = remember_only_parents
             self.no_apr = no_apr
     
    +        if isinstance(pc_alpha, (list, tuple, np.ndarray)):
    +                raise ValueError("pc_alpha must be single float in LPCMCI.")
             if pc_alpha < 0. or pc_alpha > 1:
                 raise ValueError("Choose 0 <= pc_alpha <= 1")
                 
    @@ -858,7 +864,8 @@ 

    Source code for tigramite.lpcmci

                                 Z = Z.union(S_default_YX)
     
                                 # Test conditional independence of X and Y given Z
    -                            val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                            val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
    +                                tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                                 if self.verbosity >= 2:
                                     print("ANC(Y):    %s _|_ %s  |  S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" %
    @@ -869,7 +876,7 @@ 

    Source code for tigramite.lpcmci

                                 self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
     
                                 # Check whether test result was significant
    -                            if pval > self.pc_alpha:
    +                            if not dependent: #pval > self.pc_alpha:
     
                                     # Mark the edge from X to Y for removal and save sepset
                                     to_remove[Y[0]][X] = True
    @@ -897,7 +904,8 @@ 

    Source code for tigramite.lpcmci

                                 Z = Z.union(S_default_XY)
     
                                 # Test conditional independence of X and Y given Z
    -                            val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                            val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
    +                                tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                                 if self.verbosity >= 2:
                                     print("ANC(X):    %s _|_ %s  |  S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" %
    @@ -908,7 +916,7 @@ 

    Source code for tigramite.lpcmci

                                 self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
     
                                 # Check whether test result was significant
    -                            if pval > self.pc_alpha:
    +                            if not dependent: # pval > self.pc_alpha:
     
                                     # Mark the edge from X to Y for removal and save sepset
                                     to_remove[Y[0]][X] = True
    @@ -1184,7 +1192,9 @@ 

    Source code for tigramite.lpcmci

                             Z = Z.union(S_default_YX)
     
                             # Test conditional independence of X and Y given Z
    -                        val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                        # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                        val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
    +                            tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                             if self.verbosity >= 2:
                                 print("Non-ANC(Y):    %s _|_ %s  |  S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" %
    @@ -1195,7 +1205,7 @@ 

    Source code for tigramite.lpcmci

                             self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
     
                             # Check whether test result was significant
    -                        if pval > self.pc_alpha:
    +                        if not dependent: # pval > self.pc_alpha:
     
                                 # Mark the edge from X to Y for removal and save sepset
                                 to_remove[Y[0]][X] = True
    @@ -1227,7 +1237,9 @@ 

    Source code for tigramite.lpcmci

                                 Z = Z.union(S_default_XY)
     
                                 # Test conditional independence of X and Y given Z
    -                            val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                            # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                            val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
    +                                tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                                 if self.verbosity >= 2:
                                     print("Non-ANC(X):    %s _|_ %s  |  S_def = %s, S_pc = %s: val = %.2f / pval = % .4f" %
    @@ -1238,7 +1250,7 @@ 

    Source code for tigramite.lpcmci

                                 self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
     
                                 # Check whether test result was significant
    -                            if pval > self.pc_alpha:
    +                            if not dependent: # pval > self.pc_alpha:
     
                                     # Mark the edge from X to Y for removal and save sepset
                                     to_remove[Y[0]][X] = True
    @@ -1906,7 +1918,9 @@ 

    Source code for tigramite.lpcmci

                     Z_A = [node for node in Z if node != A]
     
                     # Run the conditional independence test
    -                val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, tau_max = self.tau_max)
    +                # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, tau_max = self.tau_max)
    +                val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = Z_A, 
    +                    tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                     if self.verbosity >= 2:
                         print("MakeMin:    %s _|_ %s  |  Z_A = %s: val = %.2f / pval = % .4f" %
    @@ -1917,7 +1931,7 @@ 

    Source code for tigramite.lpcmci

                     self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_A))
     
                     # Check whether the test result was significant
    -                if pval > self.pc_alpha:
    +                if not dependent: # pval > self.pc_alpha:
                         new_sepsets.append(frozenset(Z_A))
                         val_values.append(val)
     
    @@ -2002,7 +2016,9 @@ 

    Source code for tigramite.lpcmci

                     Z = Z.union(Z_add)
     
                     # Test conditional independence of X and Y given Z
    -                val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
    +                    tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                     if self.verbosity >= 2:
                         print("BnotinSepSetAC(A):    %s _|_ %s  |  Z_add = %s, Z = %s: val = %.2f / pval = % .4f" %
    @@ -2013,7 +2029,7 @@ 

    Source code for tigramite.lpcmci

                     self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
     
                     # Check whether test result was significant
    -                if pval > self.pc_alpha:
    +                if not dependent: # pval > self.pc_alpha:
                         all_sepsets.add(frozenset(Z))
     
             # Test for independence given all subsets of non-future adjacencies of C
    @@ -2031,7 +2047,9 @@ 

    Source code for tigramite.lpcmci

                     Z = Z.union(Z_add)
     
                     # Test conditional independence of X and Y given Z
    -                val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
    +                    tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                     if self.verbosity >= 2:
                         # print("BnotinSepSetAC(C):    %s _|_ %s  |  Z = %s: val = %.2f / pval = % .4f" %
    @@ -2044,7 +2062,7 @@ 

    Source code for tigramite.lpcmci

                     self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
     
                     # Check whether test result was significant
    -                if pval > self.pc_alpha:
    +                if not dependent: # pval > self.pc_alpha:
                         all_sepsets.add(frozenset(Z))
     
             # Append the already known sepset
    @@ -2128,8 +2146,10 @@ 

    Source code for tigramite.lpcmci

                         Z = Z.union(Z_add)
     
                         # Test conditional independence of X and Y given Z
    -                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    -
    +                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
    +                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
    +                    
                         if self.verbosity >= 2:
                             # print("BinSepSetAC(A):    %s _|_ %s  |  Z = %s: val = %.2f / pval = % .4f" %
                             #     (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval))
    @@ -2141,7 +2161,7 @@ 

    Source code for tigramite.lpcmci

                         self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
     
                         # Check whether test result was significant
    -                    if pval > self.pc_alpha:
    +                    if not dependent: # pval > self.pc_alpha:
                             all_sepsets.add(frozenset(Z))
     
                 # Test for independence given all subsets of non-future adjacencies of C
    @@ -2159,8 +2179,10 @@ 

    Source code for tigramite.lpcmci

                         Z = Z.union(Z_add)
     
                         # Test conditional independence of X and Y given Z
    -                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    -
    +                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), tau_max = self.tau_max)
    +                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z), 
    +                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
    +                    
                         if self.verbosity >= 2:
                             # print("BinSepSetAC(C):     %s _|_ %s  |  Z = %s: val = %.2f / pval = % .4f" %
                             #     (X, Y, ' '.join([str(z) for z in list(Z)]), val, pval))
    @@ -2172,7 +2194,7 @@ 

    Source code for tigramite.lpcmci

                         self._update_pval_val_card_dicts(X, Y, pval, val, len(Z))
     
                         # Check whether test result was significant
    -                    if pval > self.pc_alpha:
    +                    if not dependent: # pval > self.pc_alpha:
                             all_sepsets.add(frozenset(Z))
     
                 # Append the already known sepset
    @@ -2794,7 +2816,9 @@ 

    Source code for tigramite.lpcmci

                         Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max}
     
                         # Test conditional independence of X and Y given Z
    -                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
    +                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
    +                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), 
    +                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                         if self.verbosity >= 2:
                             # print("ER00a(part1):    %s _|_ %s  |  Z_test = %s: val = %.2f / pval = % .4f" %
    @@ -2807,7 +2831,7 @@ 

    Source code for tigramite.lpcmci

                         self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test))
     
                         # Check whether test result was significant
    -                    if pval > self.pc_alpha:
    +                    if not dependent: # pval > self.pc_alpha:
     
                             # Mark the edge from X to Y for removal and save sepset
                             remove_AB = True
    @@ -2851,7 +2875,9 @@ 

    Source code for tigramite.lpcmci

                         Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max}
     
                         # Test conditional independence of X and Y given Z
    -                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
    +                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
    +                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), 
    +                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                         if self.verbosity >= 2:
                             # print("ER00a(part2):    %s _|_ %s  |  Z_test = %s: val = %.2f / pval = % .4f" %
    @@ -2864,7 +2890,7 @@ 

    Source code for tigramite.lpcmci

                         self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test))
     
                         # Check whether test result was significant
    -                    if pval > self.pc_alpha:
    +                    if not dependent: # pval > self.pc_alpha:
                             
                             # Mark the edge from X to Y for removal and save sepset
                             remove_CB = True
    @@ -2959,7 +2985,9 @@ 

    Source code for tigramite.lpcmci

                         Z_add2 = {(var, lag - delta_lag) for (var, lag) in Z_add.difference({A, B}) if lag - delta_lag <= 0 and lag - delta_lag >= -self.tau_max}
     
                         # Test conditional independence of X and Y given Z
    -                    val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
    +                    # val, pval = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), tau_max = self.tau_max)
    +                    val, pval, dependent = self.cond_ind_test.run_test(X = [X], Y = [Y], Z = list(Z_test), 
    +                        tau_max = self.tau_max, alpha_or_thres=self.pc_alpha)
     
                         if self.verbosity >= 2:
                             # print("ER00b:    %s _|_ %s  |  Z_test = %s: val = %.2f / pval = % .4f" %
    @@ -2972,7 +3000,7 @@ 

    Source code for tigramite.lpcmci

                         self._update_pval_val_card_dicts(X, Y, pval, val, len(Z_test))
     
                         # Check whether test result was significant
    -                    if pval > self.pc_alpha:
    +                    if not dependent: # pval > self.pc_alpha:
     
                             # Mark the edge from X to Y for removal and save sepset
                             remove_AB = True
    @@ -3582,7 +3610,7 @@ 

    Source code for tigramite.lpcmci

     
     if __name__ == '__main__':
     
    -    from tigramite.independence_tests import ParCorr
    +    from tigramite.independence_tests.parcorr import ParCorr
         import tigramite.data_processing as pp
         from tigramite.toymodels import structural_causal_processes as toys
         import tigramite.plotting as tp
    @@ -3609,18 +3637,18 @@ 

    Source code for tigramite.lpcmci

         # Data must be array of shape (time, variables)
         print(data.shape)
         dataframe = pp.DataFrame(data)
    -    cond_ind_test = ParCorr()
    +    cond_ind_test = ParCorr(significance='fixed_thres')
         lpcmci = LPCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)
    -    # results = pcmci.run_lpcmci(tau_max=2, pc_alpha=0.01)
    +    results = lpcmci.run_lpcmci(tau_max=2, pc_alpha=0.01)
     
         # # For a proper causal interpretation of the graph see the paper!
         # print(results['graph'])
         # tp.plot_graph(graph=results['graph'], val_matrix=results['val_matrix'])
         # plt.show()
     
    -    results = lpcmci.run_sliding_window_of(
    -        window_step=499, window_length=500,
    -        method='run_lpcmci', method_args={'tau_max':1})
    +    # results = lpcmci.run_sliding_window_of(
    +    #     window_step=499, window_length=500,
    +    #     method='run_lpcmci', method_args={'tau_max':1})
     
    @@ -3675,8 +3703,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/models.html b/docs/_modules/tigramite/models.html index 56b6ac46..63bc8646 100644 --- a/docs/_modules/tigramite/models.html +++ b/docs/_modules/tigramite/models.html @@ -9,8 +9,10 @@ + + + - @@ -30,7 +32,7 @@

    Source code for tigramite.models

    -"""Tigramite causal discovery for time series."""
    +"""Tigramite causal inference for time series."""
     
     # Author: Jakob Runge <jakob@jakob-runge.com>
     #
    @@ -111,6 +113,7 @@ 

    Source code for tigramite.models

                     conditions=None,
                     tau_max=None,
                     cut_off='max_lag_or_tau_max',
    +                empty_predictors_function=np.mean,
                     return_data=False):
             """Fit time series model.
     
    @@ -133,6 +136,8 @@ 

    Source code for tigramite.models

                 sample. Other options are '2xtau_max', which guarantees that MCI
                 tests are all conducted on the same samples. Last, 'max_lag' uses
                 as much samples as possible.
    +        empty_predictors_function : function
    +            Function to apply to y if no predictors are given.
             return_data : bool, optional (default: False)
                 Whether to save the data array.
     
    @@ -220,6 +225,15 @@ 

    Source code for tigramite.models

                 # Target is only first entry of Y, ie [y]
                 target_array = array[np.where(xyz==1)[0][0], :]
     
    +            if predictor_array.size == 0:
    +                # Just fit default (eg, mean)
    +                class EmptyPredictorModel:
    +                    def fit(self, X, y):
    +                        self.result = empty_predictors_function(y)
    +                    def predict(self, X):
    +                        return self.result
    +                a_model = EmptyPredictorModel()
    +            
                 a_model.fit(X=predictor_array, y=target_array)
                 
                 # Cache the results
    @@ -378,6 +392,7 @@ 

    Source code for tigramite.models

                     selected_variables=None,
                     tau_max=None,
                     cut_off='max_lag_or_tau_max',
    +                empty_predictors_function=np.mean,
                     return_data=False):
             """Fit time series model.
     
    @@ -402,6 +417,8 @@ 

    Source code for tigramite.models

                 sample. Other options are '2xtau_max', which guarantees that MCI
                 tests are all conducted on the same samples. Last, 'max_lag' uses
                 as much samples as possible.
    +        empty_predictors_function : function
    +            Function to apply to y if no predictors are given.
             return_data : bool, optional (default: False)
                 Whether to save the data array.
     
    @@ -460,13 +477,22 @@ 

    Source code for tigramite.models

                     # Cache the data if needed
                     fit_results[j]['data'] = array
                     fit_results[j]['used_indices'] = self.dataframe.use_indices_dataset_dict
    -            # Fit the model if there are any parents for this variable to fit
    +            # Copy and fit the model if there are any parents for this variable to fit
    +            a_model = deepcopy(self.model)
                 if dim_z > 0:
    -                # Copy and fit the model
    -                a_model = deepcopy(self.model)
    +                a_model.fit(X=array[2:].T, y=array[1])
    +            else:
    +                # Just fit default (eg, mean)
    +                class EmptyPredictorModel:
    +                    def fit(self, X, y):
    +                        self.result = empty_predictors_function(y)
    +                    def predict(self, X):
    +                        return self.result
    +                a_model = EmptyPredictorModel()
    +                # a_model = empty_predictors_model(array[1])
                     a_model.fit(X=array[2:].T, y=array[1])
     
    -                fit_results[j]['model'] = a_model
    +            fit_results[j]['model'] = a_model
     
             # Cache and return the fit results
             self.fit_results = fit_results
    @@ -624,7 +650,7 @@ 

    Source code for tigramite.models

                             verbosity=verbosity)
     
     
    [docs] def fit_model(self, all_parents, tau_max=None): - """Fit linear time series model. + r"""Fit linear time series model. Fits a sklearn.linear_model.LinearRegression model to the parents of each variable and computes the coefficient matrices :math:`\Phi` and @@ -649,8 +675,8 @@

    Source code for tigramite.models

             self.psi = self._get_psi(self.phi)
             self.all_psi_k = self._get_all_psi_k(self.phi)
     
    -        self.all_parents = all_parents
    -        self.tau_max = tau_max
    + self.all_parents = all_parents
    + # self.tau_max = tau_max
    [docs] def fit_model_bootstrap(self, boot_blocklength=1, @@ -697,7 +723,6 @@

    Source code for tigramite.models

     
                 dataframe_here.bootstrap = {'boot_blocklength':boot_blocklength,
                                             'random_state':random_state}
    -
                 model = Models(dataframe=dataframe_here,
                                model=sklearn.linear_model.LinearRegression(**self.model_params),
                                data_transform=self.data_transform,
    @@ -706,7 +731,6 @@ 

    Source code for tigramite.models

     
                 model.fit_full_model(all_parents=self.all_parents,
                                tau_max=self.tau_max)
    -
                 # Cache the results in the member variables
                 coeffs = model.get_coefs()
                 phi = self._get_phi(coeffs)
    @@ -847,9 +871,7 @@ 

    Source code for tigramite.models

             psi = np.zeros((self.tau_max + 1, self.N, self.N))
     
             psi[0] = np.linalg.pinv(np.identity(self.N) - phi[0])
    -
             for tau in range(1, self.tau_max + 1):
    -            # psi[tau] = np.matmul(psi[0], np.matmul(phi[tau], psi[0]))
                 for s in range(1, tau + 1):
                     psi[tau] += np.matmul(psi[0], np.matmul(phi[s], psi[tau - s]) ) 
     
    @@ -1579,6 +1601,7 @@ 

    Source code for tigramite.models

                 mask = {0: np.zeros(dataframe.values[0].shape, dtype='bool')}
             # Get the dataframe shape
             T = dataframe.T[0]
    +
             # Have the default dataframe be the training data frame
             train_mask = deepcopy(mask)
             train_mask[0][[t for t in range(T) if t not in train_indices]] = True
    @@ -1666,6 +1689,14 @@ 

    Source code for tigramite.models

                 Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...}
                 containing estimated predictors.
             """
    +
    +        if selected_links is not None:
    +            link_assumptions = {}
    +            for j in selected_links.keys():
    +                link_assumptions[j] = {(i, -tau):"-?>" for i in range(self.N) for tau in range(1, tau_max+1)}
    +        else:
    +            link_assumptions = None
    +
             # Ensure an independence model is given
             if self.cond_ind_test is None:
                 raise ValueError("No cond_ind_test given!")
    @@ -1673,7 +1704,7 @@ 

    Source code for tigramite.models

             self.selected_variables = range(self.N)
             if selected_targets is not None:
                 self.selected_variables = selected_targets
    -        predictors = self.run_pc_stable(selected_links=selected_links,
    +        predictors = self.run_pc_stable(link_assumptions=link_assumptions,
                                             tau_min=steps_ahead,
                                             tau_max=tau_max,
                                             save_iterations=False,
    @@ -1710,6 +1741,11 @@ 

    Source code for tigramite.models

             self : instance of self
             """
     
    +        if selected_targets is None:
    +            self.selected_targets = range(self.N)
    +        else:
    +            self.selected_targets = selected_targets
    +
             if tau_max is None:
                 # Find the maximal parents lag
                 max_parents_lag = 0
    @@ -1722,17 +1758,13 @@ 

    Source code for tigramite.models

     
             if len(set(np.array(self.test_indices) - max_parents_lag)
                     .intersection(self.train_indices)) > 0:
    -            warnings.warn("test_indices - maxlag(predictors) [or tau_max] "
    +            if self.verbosity > 0:
    +                warnings.warn("test_indices - maxlag(predictors) [or tau_max] "
                     "overlaps with train_indices: Choose test_indices "
                     "such that there is a gap of max_lag to train_indices!")
     
             self.target_predictors = target_predictors
     
    -        if selected_targets is None:
    -            self.selected_targets = range(self.N)
    -        else:
    -            self.selected_targets = selected_targets
    -
             for target in self.selected_targets:
                 if target not in list(self.target_predictors):
                     raise ValueError("No predictors given for target %s" % target)
    @@ -1789,7 +1821,7 @@ 

    Source code for tigramite.models

                                  "indicating the index of the variables to "
                                  "predict.")
     
    -        if target_list == range(self.N):
    +        if target_list == list(range(self.N)):
                 return_type = 'array'
             elif len(target_list) == 1:
                 return_type = 'series'
    @@ -1797,6 +1829,7 @@ 

    Source code for tigramite.models

                 return_type = 'list'
     
             pred_list = []
    +        self.stored_test_array = {}
             for target in target_list:
                 # Print message
                 if self.verbosity > 0:
    @@ -1811,11 +1844,11 @@ 

    Source code for tigramite.models

                 if target not in self.selected_targets:
                     raise ValueError("Target %s not yet fitted" % target)
                 # Construct the array form of the data
    -            Y = [(target, 0)]
    +            Y = [(target, 0)]  # dummy
                 X = [(target, 0)]  # dummy
                 Z = self.target_predictors[target]
    +
                 # Check if we've passed a new dataframe object
    -            test_array = None
                 if new_data is not None:
                     # if new_data.mask is None:
                     #     # if no mask is supplied, use the same mask as for the fitted array
    @@ -1844,10 +1877,18 @@ 

    Source code for tigramite.models

                 if a_transform is not None:
                     test_array = a_transform.transform(X=test_array.T).T
                 # Cache the test array
    -            self.test_array = test_array
    +            self.stored_test_array[target] = test_array
                 # Run the predictor
    -            pred_list.append(self.fitted_model[target]['model'].predict(
    -                X=test_array[2:].T, **pred_params))
    +            predicted = self.fitted_model[target]['model'].predict(
    +                X=test_array[2:].T, **pred_params)
    +
    +            if test_array[2:].size == 0:
    +                # If there are no predictors, return the value of 
    +                # empty_predictors_function, which is np.mean 
    +                # and expand to the test array length
    +                predicted = predicted * np.ones(test_array.shape[1])
    +
    +            pred_list.append(predicted)
     
             if return_type == 'series':
                 return pred_list[0]
    @@ -1857,21 +1898,23 @@ 

    Source code for tigramite.models

                 return np.array(pred_list).transpose()
    [docs] def get_train_array(self, j): - """Returns training array.""" + """Returns training array for variable j.""" return self.fitted_model[j]['data']
    -
    [docs] def get_test_array(self): - """Returns test array.""" - return self.test_array
    +
    [docs] def get_test_array(self, j): + """Returns test array for variable j.""" + return self.stored_test_array[j]
    if __name__ == '__main__': import tigramite import tigramite.data_processing as pp from tigramite.toymodels import structural_causal_processes as toys - from tigramite.independence_tests import ParCorr + from tigramite.independence_tests.parcorr import ParCorr import tigramite.plotting as tp + from sklearn.linear_model import LinearRegression + def lin_f(x): return x T = 1000 @@ -1879,40 +1922,46 @@

    Source code for tigramite.models

         links = {0: [((0, -1), 0.9, lin_f)],
                  1: [((1, -1), 0.9, lin_f), ((0, 0), -0.8, lin_f)],
                  2: [((2, -1), 0.9, lin_f), ((0, 0), 0.9, lin_f),  ((1, 0), 0.8, lin_f)],
    -             3: [((3, -1), 0.9, lin_f), ((1, 0), 0.8, lin_f),  ((2, 0), -0.9, lin_f)]
    +             # 3: [((3, -1), 0.9, lin_f), ((1, 0), 0.8, lin_f),  ((2, 0), -0.9, lin_f)]
                  }
         # noises = [np.random.randn for j in links.keys()]
         data, nonstat = toys.structural_causal_process(links, T=T, noises=None, seed=7)
     
         missing_flag = 999
    -    for i in range(0, 20):
    -        data[i::100] = missing_flag
    +    # for i in range(0, 20):
    +    #     data[i::100] = missing_flag
     
         parents = toys._get_true_parent_neighbor_dict(links)
         dataframe = pp.DataFrame(data, missing_flag = missing_flag)
     
    +
    +    # model = LinearRegression()
    +    # model.fit(X=np.random.randn(10,2), y=np.random.randn(10))
    +    # model.predict(X=np.random.randn(10,2)[:,2:])
    +    # sys.exit(0)
    +
         med = LinearMediation(dataframe=dataframe, 
             data_transform=None)
    -    med.fit_model(all_parents=parents, tau_max=10)
    +    med.fit_model(all_parents=parents, tau_max=None)
         med.fit_model_bootstrap( 
                     boot_blocklength='cube_root',
                     seed = 42,
                     )
     
    -    # print(med.get_val_matrix())
    +    # # print(med.get_val_matrix())
     
    -    print (med.get_ce(i=0, tau=0,  j=3))
    -    print(med.get_bootstrap_of(function='get_ce', 
    -        function_args={'i':0, 'tau':0,   'j':3}, conf_lev=0.9))
    +    # print (med.get_ce(i=0, tau=0,  j=3))
    +    # print(med.get_bootstrap_of(function='get_ce', 
    +    #     function_args={'i':0, 'tau':0,   'j':3}, conf_lev=0.9))
     
    -    print (med.get_coeff(i=0, tau=-2, j=1))
    +    # print (med.get_coeff(i=0, tau=-2, j=1))
     
    -    print (med.get_ce_max(i=0, j=2))
    -    print (med.get_ce(i=0, tau=0, j=3))
    -    print (med.get_mce(i=0, tau=0, k=[2], j=3))
    -    print (med.get_mce(i=0, tau=0, k=[1,2], j=3) - med.get_mce(i=0, tau=0, k=[1], j=3))
    -    print (med.get_conditional_mce(i=0, tau=0, k=[2], notk=[1], j=3))
    -    print (med.get_bootstrap_of('get_conditional_mce', {'i':0, 'tau':0, 'k':[2], 'notk':[1], 'j':3}))
    +    # print (med.get_ce_max(i=0, j=2))
    +    # print (med.get_ce(i=0, tau=0, j=3))
    +    # print (med.get_mce(i=0, tau=0, k=[2], j=3))
    +    # print (med.get_mce(i=0, tau=0, k=[1,2], j=3) - med.get_mce(i=0, tau=0, k=[1], j=3))
    +    # print (med.get_conditional_mce(i=0, tau=0, k=[2], notk=[1], j=3))
    +    # print (med.get_bootstrap_of('get_conditional_mce', {'i':0, 'tau':0, 'k':[2], 'notk':[1], 'j':3}))
     
         # print(med.get_joint_ce(i=0, j=2))
         # print(med.get_joint_mce(i=0, j=2, k=1))
    @@ -1969,13 +2018,13 @@ 

    Source code for tigramite.models

         # #                        pc_alpha=0.2,
         # #                        max_conds_dim=None,
         # #                        max_combinations=1)
    -    # predictors = {0: [(0, -1)],
    +    # predictors = {0: [], # [(0, -1)],
         #              1: [(1, -1), (0, -1)],
         #              2: [(2, -1), (1, 0)]}
         # pred.fit(target_predictors=predictors,
         #         selected_targets=None, tau_max=None, return_data=False)
     
    -    # res = pred.predict(target=2,
    +    # res = pred.predict(target=0,
         #             new_data=None,
         #             pred_params=None,
         #             cut_off='max_lag_or_tau_max')
    @@ -2038,8 +2087,8 @@ 

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/pcmci.html b/docs/_modules/tigramite/pcmci.html index 4ec07f9b..6a562a71 100644 --- a/docs/_modules/tigramite/pcmci.html +++ b/docs/_modules/tigramite/pcmci.html @@ -9,8 +9,10 @@ + + + - @@ -446,12 +448,13 @@

    Source code for tigramite.pcmci

                         if link_assumptions_j[parent] == '-->':
                             val = 1.
                             pval = 0.
    +                        dependent = True
                         else:
    -                        val, pval = self.cond_ind_test.run_test(X=[parent],
    +                        val, pval, dependent = self.cond_ind_test.run_test(X=[parent],
                                                         Y=[(j, 0)],
                                                         Z=Z,
                                                         tau_max=tau_max,
    -                                                    # verbosity=self.verbosity
    +                                                    alpha_or_thres=pc_alpha,
                                                         )
                         # Print some information if needed
                         if self.verbosity > 1:
    @@ -473,7 +476,7 @@ 

    Source code for tigramite.pcmci

                             a_iter[comb_index]['val'] = val
                             a_iter[comb_index]['pval'] = pval
                         # Delete link later and break while-loop if non-significant
    -                    if pval > pc_alpha:
    +                    if not dependent: #pval > pc_alpha:
                             nonsig_parents.append((j, parent))
                             nonsig = True
                             break
    @@ -1108,15 +1111,14 @@ 

    Source code for tigramite.pcmci

     
                 if val_only is False:
                     # Run the independence tests and record the results
    -                if ((i, -tau) in _int_link_assumptions[j] 
    -                     and _int_link_assumptions[j][(i, -tau)] in ['-->', 'o-o']):
    +                if ((i, -abs(tau)) in _int_link_assumptions[j] 
    +                     and _int_link_assumptions[j][(i, -abs(tau))] in ['-->', 'o-o']):
                         val = 1. 
                         pval = 0.
                     else:
    -                    val, pval = self.cond_ind_test.run_test(X, Y, Z=Z,
    +                    val, pval, _ = self.cond_ind_test.run_test(X, Y, Z=Z,
                                                             tau_max=tau_max,
    -                                                        # verbosity=
    -                                                        # self.verbosity
    +                                                        alpha_or_thres=alpha_level,
                                                             )
                     val_matrix[i, j, abs(tau)] = val
                     p_matrix[i, j, abs(tau)] = pval
    @@ -1139,13 +1141,21 @@ 

    Source code for tigramite.pcmci

     
             # Correct the p_matrix if there is a fdr_method
             if fdr_method != 'none':
    +            if self.cond_ind_test.significance == 'fixed_thres':
    +                raise ValueError("FDR-correction not compatible with significance == 'fixed_thres'")
                 p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, 
                                                       tau_max=tau_max, 
                                                       link_assumptions=_int_link_assumptions,
                                                       fdr_method=fdr_method)
     
    -        # Threshold p_matrix to get graph
    -        final_graph = p_matrix <= alpha_level
    +        # Threshold p_matrix to get graph (or val_matrix for significance == 'fixed_thres')
    +        if self.cond_ind_test.significance == 'fixed_thres':
    +            if self.cond_ind_test.two_sided:
    +                final_graph = np.abs(val_matrix) >= np.abs(alpha_level)
    +            else:
    +                final_graph = val_matrix >= alpha_level
    +        else:
    +            final_graph = p_matrix <= alpha_level
     
             # Convert to string graph representation
             graph = self.convert_to_string_graph(final_graph)
    @@ -2006,8 +2016,8 @@ 

    Source code for tigramite.pcmci

             four-step procedure:
     
             1.  Condition-selection (same as for PCMCI): For each variable
    -        :math:`j`, estimate a *superset* of lagged parents :math:`\\widehat{
    -        \\mathcal{B}}_t^-( X^j_t)` with the iterative PC1 algorithm,
    +        :math:`j`, estimate a *superset* of lagged parents :math:`\widehat{
    +        \mathcal{B}}_t^-( X^j_t)` with the iterative PC1 algorithm,
             implemented as ``run_pc_stable``. The condition-selection step
             reduces the dimensionality and avoids conditioning on irrelevant
             variables.
    @@ -2092,49 +2102,6 @@ 

    Source code for tigramite.pcmci

     
             Further optional parameters are discussed in [5]_.
     
    -        Examples
    -        --------
    -        >>> import numpy as np
    -        >>> from tigramite.pcmci import PCMCI
    -        >>> from tigramite.independence_tests import ParCorr
    -        >>> import tigramite.data_processing as pp
    -        >>> from tigramite.toymodels import structural_causal_processes as toys
    -        >>> # Example process to play around with
    -        >>> # Each key refers to a variable and the incoming links are supplied
    -        >>> # as a list of format [((var, -lag), coeff, function), ...]
    -        >>> def lin_f(x): return x
    -        >>> links = {0: [((0, -1), 0.9, lin_f)],
    -                     1: [((1, -1), 0.8, lin_f), ((0, -1), 0.8, lin_f)],
    -                     2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)],
    -                     3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)],
    -                     }
    -        >>> data, nonstat = toys.structural_causal_process(links,
    -                            T=1000, seed=7)
    -        >>> # Data must be array of shape (time, variables)
    -        >>> print (data.shape)
    -        (1000, 4)
    -        >>> dataframe = pp.DataFrame(data)
    -        >>> cond_ind_test = ParCorr()
    -        >>> pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)
    -        >>> results = pcmci.run_pcmciplus(tau_min=0, tau_max=2, pc_alpha=0.01)
    -        >>> pcmci.print_results(results, alpha_level=0.01)
    -            ## Significant links at alpha = 0.01:
    -
    -            Variable 0 has 1 link(s):
    -                (0 -1): pval = 0.00000 | val =  0.676
    -
    -            Variable 1 has 2 link(s):
    -                (1 -1): pval = 0.00000 | val =  0.602
    -                (0 -1): pval = 0.00000 | val =  0.599
    -
    -            Variable 2 has 2 link(s):
    -                (1  0): pval = 0.00000 | val =  0.486
    -                (2 -1): pval = 0.00000 | val =  0.466
    -
    -            Variable 3 has 2 link(s):
    -                (3 -1): pval = 0.00000 | val =  0.524
    -                (2  0): pval = 0.00000 | val = -0.449 
    -
             Parameters
             ----------
             selected_links : dict or None
    @@ -2202,7 +2169,7 @@ 

    Source code for tigramite.pcmci

                 Estimated matrix of test statistic values regarding adjacencies.
             p_matrix : array of shape [N, N, tau_max+1]
                 Estimated matrix of p-values regarding adjacencies.
    -        sepset : dictionary
    +        sepsets : dictionary
                 Separating sets. See paper for details.
             ambiguous_triples : list
                 List of ambiguous triples, only relevant for 'majority' and
    @@ -2230,31 +2197,31 @@ 

    Source code for tigramite.pcmci

                             max_conds_px_lagged=max_conds_px_lagged,
                             fdr_method=fdr_method)
     
    -        # else:
    -        #     raise ValueError("pc_alpha=None not supported in PCMCIplus, choose"
    -        #                      " 0 < pc_alpha < 1 (e.g., 0.01)")
    -
    -        if pc_alpha < 0. or pc_alpha > 1:
    +        elif pc_alpha < 0. or pc_alpha > 1:
                 raise ValueError("Choose 0 <= pc_alpha <= 1")
     
             # Check the limits on tau
             self._check_tau_limits(tau_min, tau_max)
    -        # Set the selected links
    -        # _int_sel_links = self._set_sel_links(selected_links, tau_min, tau_max)
    +        # Set the link assumption
             _int_link_assumptions = self._set_link_assumptions(link_assumptions, tau_min, tau_max)
     
    -        # Step 1: Get a superset of lagged parents from run_pc_stable
    -        lagged_parents = self.run_pc_stable(link_assumptions=link_assumptions,
    -                                            tau_min=tau_min,
    -                                            tau_max=tau_max,
    -                                            pc_alpha=pc_alpha,
    -                                            max_conds_dim=max_conds_dim,
    -                                            max_combinations=max_combinations)
     
    +        #
    +        # Phase 1: Get a superset of lagged parents from run_pc_stable
    +        #
    +        lagged_parents = self.run_pc_stable(link_assumptions=link_assumptions,
    +                            tau_min=tau_min,
    +                            tau_max=tau_max,
    +                            pc_alpha=pc_alpha,
    +                            max_conds_dim=max_conds_dim,
    +                            max_combinations=max_combinations)
    +        # Extract p- and val-matrix
             p_matrix = self.p_matrix
             val_matrix = self.val_matrix
     
    -        # Step 2+3+4: PC algorithm with contemp. conditions and MCI tests
    +        #
    +        # Phase 2: PC algorithm with contemp. conditions and MCI tests
    +        #
             if self.verbosity > 0:
                 print("\n##\n## Step 2: PC algorithm with contemp. conditions "
                       "and MCI tests\n##"
    @@ -2275,6 +2242,180 @@ 

    Source code for tigramite.pcmci

                       + "\nfdr_method = %s" % fdr_method
                       )
     
    +        skeleton_results = self._pcmciplus_mci_skeleton_phase(
    +                            lagged_parents=lagged_parents, 
    +                            link_assumptions=_int_link_assumptions, 
    +                            pc_alpha=pc_alpha,
    +                            tau_min=tau_min, 
    +                            tau_max=tau_max, 
    +                            max_conds_dim=max_conds_dim, 
    +                            max_combinations=max_combinations, 
    +                            max_conds_py=max_conds_py,
    +                            max_conds_px=max_conds_px, 
    +                            max_conds_px_lagged=max_conds_px_lagged, 
    +                            reset_lagged_links=reset_lagged_links, 
    +                            fdr_method=fdr_method,
    +                            p_matrix=p_matrix, 
    +                            val_matrix=val_matrix,
    +                            )
    +
    +        #
    +        # Phase 3: Collider orientations (with MCI tests for default majority collider rule)
    +        #
    +        colliders_step_results = self._pcmciplus_collider_phase(
    +                            skeleton_graph=skeleton_results['graph'], 
    +                            sepsets=skeleton_results['sepsets'], 
    +                            lagged_parents=lagged_parents, 
    +                            pc_alpha=pc_alpha, 
    +                            tau_min=tau_min, 
    +                            tau_max=tau_max, 
    +                            max_conds_py=max_conds_py, 
    +                            max_conds_px=max_conds_px, 
    +                            max_conds_px_lagged=max_conds_px_lagged,
    +                            conflict_resolution=conflict_resolution, 
    +                            contemp_collider_rule=contemp_collider_rule)
    +        
    +        #
    +        # Phase 4: Meek rule orientations
    +        #
    +        final_graph = self._pcmciplus_rule_orientation_phase(
    +                            collider_graph=colliders_step_results['graph'],
    +                            ambiguous_triples=colliders_step_results['ambiguous_triples'], 
    +                            conflict_resolution=conflict_resolution)
    +
    +        # Store the parents in the pcmci member
    +        self.all_lagged_parents = lagged_parents
    +
    +        return_dict = {
    +            'graph': final_graph,
    +            'p_matrix': skeleton_results['p_matrix'],
    +            'val_matrix': skeleton_results['val_matrix'],
    +            'sepsets': colliders_step_results['sepsets'],
    +            'ambiguous_triples': colliders_step_results['ambiguous_triples'],
    +            }
    +
    +        # No confidence interval estimation here
    +        return_dict['conf_matrix'] = None
    +
    +        # Print the results
    +        if self.verbosity > 0:
    +            self.print_results(return_dict, alpha_level=pc_alpha)
    +        
    +        # Return the dictionary
    +        self.results = return_dict
    +        
    +        return return_dict
    + + + # # Set the maximum condition dimension for Y and X + # max_conds_py = self._set_max_condition_dim(max_conds_py, + # tau_min, tau_max) + # max_conds_px = self._set_max_condition_dim(max_conds_px, + # tau_min, tau_max) + + # if reset_lagged_links: + # # Run PCalg on full graph, ignoring that some lagged links + # # were determined as non-significant in PC1 step + # links_for_pc = deepcopy(_int_link_assumptions) + # else: + # # Run PCalg only on lagged parents found with PC1 + # # plus all contemporaneous links + # links_for_pc = {} #deepcopy(lagged_parents) + # for j in range(self.N): + # links_for_pc[j] = {} + # for parent in lagged_parents[j]: + # if _int_link_assumptions[j][parent] in ['-?>', '-->']: + # links_for_pc[j][parent] = _int_link_assumptions[j][parent] + + # # Add contemporaneous links + # for link in _int_link_assumptions[j]: + # i, tau = link + # link_type = _int_link_assumptions[j][link] + # if abs(tau) == 0: + # links_for_pc[j][(i, 0)] = link_type + + # results = self.run_pcalg( + # link_assumptions=links_for_pc, + # pc_alpha=pc_alpha, + # tau_min=tau_min, + # tau_max=tau_max, + # max_conds_dim=max_conds_dim, + # max_combinations=max_combinations, + # lagged_parents=lagged_parents, + # max_conds_py=max_conds_py, + # max_conds_px=max_conds_px, + # max_conds_px_lagged=max_conds_px_lagged, + # mode='contemp_conds', + # contemp_collider_rule=contemp_collider_rule, + # conflict_resolution=conflict_resolution) + + # graph = results['graph'] + + # # Update p_matrix and val_matrix with values from links_for_pc + # for j in range(self.N): + # for link in links_for_pc[j]: + # i, tau = link + # if links_for_pc[j][link] not in ['<--', '<?-']: + # p_matrix[i, j, abs(tau)] = results['p_matrix'][i, j, abs(tau)] + # val_matrix[i, j, abs(tau)] = results['val_matrix'][i, j, + # abs(tau)] + + # # Update p_matrix and val_matrix for indices of symmetrical links + # p_matrix[:, :, 0] = results['p_matrix'][:, :, 0] + # val_matrix[:, :, 0] = results['val_matrix'][:, :, 0] + + # ambiguous = results['ambiguous_triples'] + + # conf_matrix = None + # TODO: implement confidence estimation, but how? + # if self.cond_ind_test.confidence is not False: + # conf_matrix = results['conf_matrix'] + + # # Correct the p_matrix if there is a fdr_method + # if fdr_method != 'none': + # p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, + # tau_max=tau_max, + # link_assumptions=_int_link_assumptions, + # fdr_method=fdr_method) + + # # Store the parents in the pcmci member + # self.all_lagged_parents = lagged_parents + + # # p_matrix=results['p_matrix'] + # # val_matrix=results['val_matrix'] + + # Cache the resulting values in the return dictionary + # return_dict = {'graph': graph, + # 'val_matrix': val_matrix, + # 'p_matrix': p_matrix, + # 'ambiguous_triples': ambiguous, + # 'conf_matrix': conf_matrix} + + # # Print the results + # if self.verbosity > 0: + # self.print_results(return_dict, alpha_level=pc_alpha) + # # Return the dictionary + # self.results = return_dict + # return return_dict + + def _pcmciplus_mci_skeleton_phase(self, + lagged_parents, + link_assumptions, + pc_alpha, + tau_min, + tau_max, + max_conds_dim, + max_combinations, + max_conds_py, + max_conds_px, + max_conds_px_lagged, + reset_lagged_links, + fdr_method, + p_matrix, + val_matrix, + ): + """MCI Skeleton phase.""" + # Set the maximum condition dimension for Y and X max_conds_py = self._set_max_condition_dim(max_conds_py, tau_min, tau_max) @@ -2284,7 +2425,7 @@

    Source code for tigramite.pcmci

             if reset_lagged_links:
                 # Run PCalg on full graph, ignoring that some lagged links
                 # were determined as non-significant in PC1 step
    -            links_for_pc = deepcopy(_int_link_assumptions)
    +            links_for_pc = deepcopy(link_assumptions)
             else:
                 # Run PCalg only on lagged parents found with PC1 
                 # plus all contemporaneous links
    @@ -2292,75 +2433,120 @@ 

    Source code for tigramite.pcmci

                 for j in range(self.N):
                     links_for_pc[j] = {}
                     for parent in lagged_parents[j]:
    -                    if _int_link_assumptions[j][parent] in ['-?>', '-->']:
    -                        links_for_pc[j][parent] = _int_link_assumptions[j][parent]
    +                    if link_assumptions[j][parent] in ['-?>', '-->']:
    +                        links_for_pc[j][parent] = link_assumptions[j][parent]
     
                     # Add contemporaneous links
    -                for link in _int_link_assumptions[j]:
    +                for link in link_assumptions[j]:
                         i, tau = link
    -                    link_type = _int_link_assumptions[j][link]
    +                    link_type = link_assumptions[j][link]
                         if abs(tau) == 0:
                             links_for_pc[j][(i, 0)] = link_type
     
    -        results = self.run_pcalg(
    -            link_assumptions=links_for_pc,
    +
    +        if max_conds_dim is None:
    +            max_conds_dim = self.N
    +
    +        if max_combinations is None:
    +            max_combinations = np.inf
    +
    +        initial_graph = self._dict_to_graph(links_for_pc, tau_max=tau_max)
    +
    +        skeleton_results = self._pcalg_skeleton(
    +            initial_graph=initial_graph,
    +            lagged_parents=lagged_parents,
    +            mode='contemp_conds',
                 pc_alpha=pc_alpha,
                 tau_min=tau_min,
                 tau_max=tau_max,
                 max_conds_dim=max_conds_dim,
                 max_combinations=max_combinations,
    -            lagged_parents=lagged_parents,
                 max_conds_py=max_conds_py,
                 max_conds_px=max_conds_px,
                 max_conds_px_lagged=max_conds_px_lagged,
    -            mode='contemp_conds',
    -            contemp_collider_rule=contemp_collider_rule,
    -            conflict_resolution=conflict_resolution)
    +            )
    +
    +        # Symmetrize p_matrix and val_matrix coming from skeleton
    +        symmetrized_results = self.symmetrize_p_and_val_matrix(
    +                            p_matrix=skeleton_results['p_matrix'], 
    +                            val_matrix=skeleton_results['val_matrix'], 
    +                            link_assumptions=links_for_pc,
    +                            conf_matrix=None)
     
    -        graph = results['graph']
    +        # Update p_matrix and val_matrix with values from skeleton phase
    +        # Contemporaneous entries (not filled in run_pc_stable lagged phase)
    +        p_matrix[:, :, 0] = symmetrized_results['p_matrix'][:, :, 0]
    +        val_matrix[:, :, 0] = symmetrized_results['val_matrix'][:, :, 0]
     
    -        # Update p_matrix and val_matrix with values from links_for_pc
    +        # Update all entries computed in the MCI step 
    +        # (these are in links_for_pc); values for entries
    +        # that were removed in the lagged-condition phase are kept from before
             for j in range(self.N):
                 for link in links_for_pc[j]:
                     i, tau = link
                     if links_for_pc[j][link] not in ['<--', '<?-']:
    -                    p_matrix[i, j, abs(tau)] = results['p_matrix'][i, j, abs(tau)]
    -                    val_matrix[i, j, abs(tau)] = results['val_matrix'][i, j, 
    -                                                                       abs(tau)]
    +                    p_matrix[i, j, abs(tau)] = symmetrized_results['p_matrix'][i, j, abs(tau)]
    +                    val_matrix[i, j, abs(tau)] = symmetrized_results['val_matrix'][i, j, 
    +                                                                 abs(tau)]
     
    -        # Update p_matrix and val_matrix for indices of symmetrical links
    -        p_matrix[:, :, 0] = results['p_matrix'][:, :, 0]
    -        val_matrix[:, :, 0] = results['val_matrix'][:, :, 0]
    -
    -        ambiguous = results['ambiguous_triples']
    -
    -        conf_matrix = None
    -        # TODO: implement confidence estimation, but how?
    -        # if self.cond_ind_test.confidence is not False:
    -        #     conf_matrix = results['conf_matrix']
    -
    -        # Correct the p_matrix if there is a fdr_method
    +        # Optionally correct the p_matrix
             if fdr_method != 'none':
                 p_matrix = self.get_corrected_pvalues(p_matrix=p_matrix, tau_min=tau_min, 
                                                       tau_max=tau_max, 
    -                                                  link_assumptions=_int_link_assumptions,
    +                                                  link_assumptions=link_assumptions,
                                                       fdr_method=fdr_method)
     
    -        # Store the parents in the pcmci member
    -        self.all_lagged_parents = lagged_parents
    +        # Update matrices
    +        skeleton_results['p_matrix'] = p_matrix
    +        skeleton_results['val_matrix'] = val_matrix
    +
    +        return skeleton_results
    +
    +
    +    def _pcmciplus_collider_phase(self, skeleton_graph, sepsets, lagged_parents,
    +        pc_alpha, tau_min, tau_max, max_conds_py, max_conds_px, max_conds_px_lagged,
    +        conflict_resolution, contemp_collider_rule):
    +        """MCI collider phase."""    
    +
    +        # Set the maximum condition dimension for Y and X
    +        max_conds_py = self._set_max_condition_dim(max_conds_py,
    +                                                   tau_min, tau_max)
    +        max_conds_px = self._set_max_condition_dim(max_conds_px,
    +                                                   tau_min, tau_max)
    +
    +        # Now change assumed links marks
    +        skeleton_graph[skeleton_graph=='o?o'] = 'o-o'
    +        skeleton_graph[skeleton_graph=='-?>'] = '-->'
    +        skeleton_graph[skeleton_graph=='<?-'] = '<--'
    +
    +        colliders_step_results = self._pcalg_colliders(
    +            graph=skeleton_graph,
    +            sepsets=sepsets,
    +            lagged_parents=lagged_parents,
    +            mode='contemp_conds',
    +            pc_alpha=pc_alpha,
    +            tau_max=tau_max,
    +            max_conds_py=max_conds_py,
    +            max_conds_px=max_conds_px,
    +            max_conds_px_lagged=max_conds_px_lagged,
    +            conflict_resolution=conflict_resolution,
    +            contemp_collider_rule=contemp_collider_rule,
    +            )
    +
    +        return colliders_step_results
    +
    +    def _pcmciplus_rule_orientation_phase(self, collider_graph,
    +         ambiguous_triples, conflict_resolution):
    +        """MCI rule orientation phase."""  
    +
    +        final_graph = self._pcalg_rules_timeseries(
    +            graph=collider_graph,
    +            ambiguous_triples=ambiguous_triples,
    +            conflict_resolution=conflict_resolution,
    +            )
    +
    +        return final_graph
     
    -        # Cache the resulting values in the return dictionary
    -        return_dict = {'graph': graph,
    -                       'val_matrix': val_matrix,
    -                       'p_matrix': p_matrix,
    -                       'ambiguous_triples': ambiguous,
    -                       'conf_matrix': conf_matrix}
    -        # Print the results
    -        if self.verbosity > 0:
    -            self.print_results(return_dict, alpha_level=pc_alpha)
    -        # Return the dictionary
    -        self.results = return_dict
    -        return return_dict
    [docs] def run_pcalg(self, selected_links=None, @@ -2448,7 +2634,7 @@

    Source code for tigramite.pcmci

                 Estimated matrix of test statistic values regarding adjacencies.
             p_matrix : array of shape [N, N, tau_max+1]
                 Estimated matrix of p-values regarding adjacencies.
    -        sepset : dictionary
    +        sepsets : dictionary
                 Separating sets. See paper for details.
             ambiguous_triples : list
                 List of ambiguous triples, only relevant for 'majority' and
    @@ -2501,16 +2687,16 @@ 

    Source code for tigramite.pcmci

             )
     
             skeleton_graph = skeleton_results['graph']
    -        sepset = skeleton_results['sepset']
    +        sepsets = skeleton_results['sepsets']
     
    -        # Now change assumed links mark
    +        # Now change assumed links marks
             skeleton_graph[skeleton_graph=='o?o'] = 'o-o'
             skeleton_graph[skeleton_graph=='-?>'] = '-->'
             skeleton_graph[skeleton_graph=='<?-'] = '<--'
     
             colliders_step_results = self._pcalg_colliders(
                 graph=skeleton_graph,
    -            sepset=sepset,
    +            sepsets=sepsets,
                 lagged_parents=lagged_parents,
                 mode=mode,
                 pc_alpha=pc_alpha,
    @@ -2545,7 +2731,7 @@ 

    Source code for tigramite.pcmci

                 'graph': graph_str,
                 'p_matrix': symmetrized_results['p_matrix'],
                 'val_matrix': symmetrized_results['val_matrix'],
    -            'sepset': colliders_step_results['sepset'],
    +            'sepsets': colliders_step_results['sepsets'],
                 'ambiguous_triples': colliders_step_results['ambiguous_triples'],
             }
     
    @@ -2593,7 +2779,7 @@ 

    Source code for tigramite.pcmci

                 Estimated matrix of test statistic values regarding adjacencies.
             p_matrix : array of shape [N, N, 1]
                 Estimated matrix of p-values regarding adjacencies.
    -        sepset : dictionary
    +        sepsets : dictionary
                 Separating sets. See paper for details.
             ambiguous_triples : list
                 List of ambiguous triples, only relevant for 'majority' and
    @@ -2606,16 +2792,13 @@ 

    Source code for tigramite.pcmci

                       conflict_resolution=conflict_resolution)
     
             # Remove tau-dimension
    -        # results['graph'] = results['graph'].squeeze()
    -        # results['val_matrix'] = results['val_matrix'].squeeze()
    -        # results['p_matrix'] = results['p_matrix'].squeeze()
    -        old_sepsets = results['sepset'].copy()
    -        results['sepset'] = {}
    -        for old_sepset in old_sepsets:
    -           new_sepset = (old_sepset[0][0], old_sepset[1])
    -           conds = [cond[0] for cond in old_sepsets[old_sepset]]
    +        old_sepsets = results['sepsets'].copy()
    +        results['sepsets'] = {}
    +        for old_sepsets in old_sepsets:
    +           new_sepsets = (old_sepsets[0][0], old_sepsets[1])
    +           conds = [cond[0] for cond in old_sepsets[old_sepsets]]
     
    -           results['sepset'][new_sepset] = conds
    +           results['sepsets'][new_sepsets] = conds
     
             ambiguous_triples = results['ambiguous_triples'].copy()
             results['ambiguous_triples'] = []
    @@ -2629,7 +2812,7 @@ 

    Source code for tigramite.pcmci

     
     
         def _run_pcalg_test(self, graph, i, abstau, j, S, lagged_parents, max_conds_py,
    -                        max_conds_px, max_conds_px_lagged, tau_max):
    +                        max_conds_px, max_conds_px_lagged, tau_max, alpha_or_thres=None):
             """MCI conditional independence tests within PCMCIplus or PC algorithm.
     
             Parameters
    @@ -2655,15 +2838,16 @@ 

    Source code for tigramite.pcmci

                 tests. If None is passed, this number is equal to max_conds_px.
             tau_max : int
                 Maximum time lag.
    +        alpha_or_thres : float
    +            Significance level (if significance='analytic' or 'shuffle_test') or
    +            threshold (if significance='fixed_thres'). If given, run_test returns
    +            the test decision dependent=True/False.
     
             Returns
             -------
    -        val : float
    -            Test statistic value.
    -        pval : float
    -            Test statistic p-value.
    -        Z : list
    -            List of conditions.
    +        val, pval, Z, [dependent] : Tuple of floats, list, and bool
    +            The test statistic value and the p-value and list of conditions. If alpha_or_thres is
    +            given, run_test also returns the test decision dependent=True/False.             
             """
     
             # Perform independence test adding lagged parents
    @@ -2693,13 +2877,15 @@ 

    Source code for tigramite.pcmci

             if graph[i,j,abstau] != "" and graph[i,j,abstau][1] == '-':
                 val = 1. 
                 pval = 0.
    +            dependent = True
             else:
    -            val, pval = self.cond_ind_test.run_test(X=[(i, -abstau)], Y=[(j, 0)],
    +            val, pval, dependent = self.cond_ind_test.run_test(X=[(i, -abstau)], Y=[(j, 0)],
                                                     Z=Z, tau_max=tau_max,
    +                                                alpha_or_thres=alpha_or_thres,
                                                     # verbosity=self.verbosity
                                                     )
     
    -        return val, pval, Z
    +        return val, pval, Z, dependent
     
         def _print_triple_info(self, triple, index, n_triples):
             """Print info about the current triple being tested.
    @@ -2811,7 +2997,7 @@ 

    Source code for tigramite.pcmci

                 Estimated matrix of test statistic values regarding adjacencies.
             p_matrix : array of shape [N, N, tau_max+1]
                 Estimated matrix of p-values regarding adjacencies.
    -        sepset : dictionary
    +        sepsets : dictionary
                 Separating sets. See paper for details.
             """
             N = self.N
    @@ -2834,23 +3020,25 @@ 

    Source code for tigramite.pcmci

                 adjt = self._get_adj_time_series(graph)
     
             val_matrix = np.zeros((N, N, tau_max + 1))
    +        
             val_min = dict()
             for j in range(self.N):
                 val_min[j] = {(p[0], -p[1]): np.inf
                               for p in zip(*np.where(graph[:, j, :] != ""))}
     
             # Initialize p-values. Set to 1 if there's no link in the initial graph
    -        pvalues = np.zeros((N, N, tau_max + 1))
    -        pvalues[graph == ""] = 1.
    +        p_matrix = np.zeros((N, N, tau_max + 1))
    +        p_matrix[graph == ""] = 1.
    +
             pval_max = dict()
             for j in range(self.N):
                 pval_max[j] = {(p[0], -p[1]): 0.
                                for p in zip(*np.where(graph[:, j, :] != ""))}
     
    -        # TODO: Remove sepset alltogether?
    +        # TODO: Remove sepsets alltogether?
             # Intialize sepsets that store the conditions that make i and j
             # independent
    -        sepset = self._get_sepset(tau_min, tau_max)
    +        sepsets = self._get_sepsets(tau_min, tau_max)
     
             if self.verbosity > 1:
                 print("\n--------------------------")
    @@ -2900,9 +3088,11 @@ 

    Source code for tigramite.pcmci

                                 break
     
                             # Run MCI test
    -                        val, pval, Z = self._run_pcalg_test(graph,
    -                            i, abstau, j, S, lagged_parents, max_conds_py,
    -                            max_conds_px, max_conds_px_lagged, tau_max)
    +                        val, pval, Z, dependent = self._run_pcalg_test(graph=graph,
    +                            i=i, abstau=abstau, j=j, S=S, lagged_parents=lagged_parents, 
    +                            max_conds_py=max_conds_py,
    +                            max_conds_px=max_conds_px, max_conds_px_lagged=max_conds_px_lagged,
    +                            tau_max=tau_max, alpha_or_thres=pc_alpha)
     
                             # Store minimum test statistic value for sorting adjt
                             # (only internally used)
    @@ -2915,8 +3105,8 @@ 

    Source code for tigramite.pcmci

                                                                 (i, -abstau)))
     
                             # Store max. p-value and corresponding value to return
    -                        if pval >= pvalues[i, j, abstau]:
    -                            pvalues[i, j, abstau] = pval
    +                        if pval >= p_matrix[i, j, abstau]:
    +                            p_matrix[i, j, abstau] = pval
                                 val_matrix[i, j, abstau] = val
     
                             if self.verbosity > 1:
    @@ -2924,16 +3114,18 @@ 

    Source code for tigramite.pcmci

                                                       val=val)
     
                             # If conditional independence is found, remove link
    -                        # from graph and store sepset
    -                        if pval > pc_alpha:
    +                        # from graph and store sepsets
    +                        if not dependent: # pval > pc_alpha:
                                 nonsig = True
                                 if abstau == 0:
                                     graph[i, j, 0] = graph[j, i, 0] = ""
    -                                sepset[((i, 0), j)] = sepset[
    +                                sepsets[((i, 0), j)] = sepsets[
                                         ((j, 0), i)] = list(S)
    +                                # Also store p-value in other contemp. entry
    +                                p_matrix[j, i, 0] = p_matrix[i, j, 0]
                                 else:
                                     graph[i, j, abstau] = ""
    -                                sepset[((i, -abstau), j)] = list(S)
    +                                sepsets[((i, -abstau), j)] = list(S)
                                 break
     
                         # Print the results if needed
    @@ -2972,13 +3164,13 @@ 

    Source code for tigramite.pcmci

                         " reached." % max_conds_dim)
     
             return {'graph': graph,
    -                'sepset': sepset,
    -                'p_matrix': pvalues,
    +                'sepsets': sepsets,
    +                'p_matrix': p_matrix,
                     'val_matrix': val_matrix,
                     }
     
    -    def _get_sepset(self, tau_min, tau_max):
    -        """Returns initial sepset.
    +    def _get_sepsets(self, tau_min, tau_max):
    +        """Returns initial sepsets.
     
             Parameters
             ----------
    @@ -2989,15 +3181,15 @@ 

    Source code for tigramite.pcmci

     
             Returns
             -------
    -        sepset : dict
    -            Initialized sepset.
    +        sepsets : dict
    +            Initialized sepsets.
             """
    -        sepset = dict([(((i, -tau), j), [])
    +        sepsets = dict([(((i, -tau), j), [])
                            for tau in range(tau_min, tau_max + 1)
                            for i in range(self.N)
                            for j in range(self.N)])
     
    -        return sepset
    +        return sepsets
     
         def _find_unshielded_triples(self, graph):
             """Find unshielded triples i_tau o-(>) k_t o-o j_t with i_tau -/- j_t.
    @@ -3041,7 +3233,7 @@ 

    Source code for tigramite.pcmci

     
         def _pcalg_colliders(self,
                             graph,
    -                        sepset,
    +                        sepsets,
                             lagged_parents,
                             mode,
                             pc_alpha,
    @@ -3059,7 +3251,7 @@ 

    Source code for tigramite.pcmci

             ----------
             graph : array of shape (N, N, tau_max+1)
                 Current graph.
    -        sepset : dictionary
    +        sepsets : dictionary
                 Separating sets. See paper for details.
             lagged_parents : dictionary
                 Dictionary of form {0:[(0, -1), (3, -2), ...], 1:[], ...} containing
    @@ -3095,7 +3287,7 @@ 

    Source code for tigramite.pcmci

             -------
             graph : array of shape [N, N, tau_max+1]
                 Resulting causal graph, see description above for interpretation.
    -        sepset : dictionary
    +        sepsets : dictionary
                 Separating sets. See paper for details.
             ambiguous_triples : list
                 List of ambiguous triples, only relevant for 'majority' and
    @@ -3122,11 +3314,11 @@ 

    Source code for tigramite.pcmci

     
             if contemp_collider_rule is None or contemp_collider_rule == 'none':
                 # Standard collider orientation rule of PC algorithm
    -            # If k_t not in sepset(i_tau, j_t), then orient
    +            # If k_t not in sepsets(i_tau, j_t), then orient
                 # as i_tau --> k_t <-- j_t
                 for itaukj in triples:
                     (i, tau), k, j = itaukj
    -                if (k, 0) not in sepset[((i, tau), j)]:
    +                if (k, 0) not in sepsets[((i, tau), j)]:
                         v_structures.append(itaukj)
             else:
                 # Apply 'majority' or 'conservative' rule to orient colliders          
    @@ -3185,15 +3377,17 @@ 

    Source code for tigramite.pcmci

                     # Test which neighbor subsets separate i and j
                     neighbor_sepsets = []
                     for iss, S in enumerate(neighbor_subsets):
    -                    val, pval, Z = self._run_pcalg_test(graph,
    -                        i, abs(tau), j, S, lagged_parents, max_conds_py,
    -                        max_conds_px, max_conds_px_lagged, tau_max)
    +                    val, pval, Z, dependent = self._run_pcalg_test(graph=graph,
    +                            i=i, abstau=abs(tau), j=j, S=S, lagged_parents=lagged_parents, 
    +                            max_conds_py=max_conds_py,
    +                            max_conds_px=max_conds_px, max_conds_px_lagged=max_conds_px_lagged,
    +                            tau_max=tau_max, alpha_or_thres=pc_alpha)
     
                         if self.verbosity > 1:
                             self._print_cond_info(Z=S, comb_index=iss, pval=pval,
                                                   val=val)
     
    -                    if pval > pc_alpha:
    +                    if not dependent: #pval > pc_alpha:
                             neighbor_sepsets += [S]
     
                     if len(neighbor_sepsets) > 0:
    @@ -3221,12 +3415,12 @@ 

    Source code for tigramite.pcmci

                                         "    Fraction of separating subsets "
                                         "containing (%s 0) is = 0 --> collider "
                                         "found" % self.var_names[k])
    -                            # Also delete (k, 0) from sepset (if present)
    -                            if (k, 0) in sepset[((i, tau), j)]:
    -                                sepset[((i, tau), j)].remove((k, 0))
    +                            # Also delete (k, 0) from sepsets (if present)
    +                            if (k, 0) in sepsets[((i, tau), j)]:
    +                                sepsets[((i, tau), j)].remove((k, 0))
                                 if tau == 0:
    -                                if (k, 0) in sepset[((j, tau), i)]:
    -                                    sepset[((j, tau), i)].remove((k, 0))
    +                                if (k, 0) in sepsets[((j, tau), i)]:
    +                                    sepsets[((j, tau), i)].remove((k, 0))
                             elif fraction == 1:
                                 # If (k, 0) is in all of the neighbor_sepsets,
                                 # leave unoriented
    @@ -3235,12 +3429,12 @@ 

    Source code for tigramite.pcmci

                                         "    Fraction of separating subsets "
                                         "containing (%s 0) is = 1 --> "
                                         "non-collider found" % self.var_names[k])
    -                            # Also add (k, 0) to sepset (if not present)
    -                            if (k, 0) not in sepset[((i, tau), j)]:
    -                                sepset[((i, tau), j)].append((k, 0))
    +                            # Also add (k, 0) to sepsets (if not present)
    +                            if (k, 0) not in sepsets[((i, tau), j)]:
    +                                sepsets[((i, tau), j)].append((k, 0))
                                 if tau == 0:
    -                                if (k, 0) not in sepset[((j, tau), i)]:
    -                                    sepset[((j, tau), i)].append((k, 0))
    +                                if (k, 0) not in sepsets[((j, tau), i)]:
    +                                    sepsets[((j, tau), i)].append((k, 0))
                             else:
                                 if self.verbosity > 1:
                                     print(
    @@ -3273,12 +3467,12 @@ 

    Source code for tigramite.pcmci

                                         "    Fraction of separating subsets "
                                         "containing (%s 0) is < 0.5 "
                                         "--> collider found" % self.var_names[k])
    -                            # Also delete (k, 0) from sepset (if present)
    -                            if (k, 0) in sepset[((i, tau), j)]:
    -                                sepset[((i, tau), j)].remove((k, 0))
    +                            # Also delete (k, 0) from sepsets (if present)
    +                            if (k, 0) in sepsets[((i, tau), j)]:
    +                                sepsets[((i, tau), j)].remove((k, 0))
                                 if tau == 0:
    -                                if (k, 0) in sepset[((j, tau), i)]:
    -                                    sepset[((j, tau), i)].remove((k, 0))
    +                                if (k, 0) in sepsets[((j, tau), i)]:
    +                                    sepsets[((j, tau), i)].remove((k, 0))
                             elif fraction > 0.5:
                                 if self.verbosity > 1:
                                     print(
    @@ -3286,12 +3480,12 @@ 

    Source code for tigramite.pcmci

                                         "containing (%s 0) is > 0.5 "
                                         "--> non-collider found" %
                                         self.var_names[k])
    -                            # Also add (k, 0) to sepset (if not present)
    -                            if (k, 0) not in sepset[((i, tau), j)]:
    -                                sepset[((i, tau), j)].append((k, 0))
    +                            # Also add (k, 0) to sepsets (if not present)
    +                            if (k, 0) not in sepsets[((i, tau), j)]:
    +                                sepsets[((i, tau), j)].append((k, 0))
                                 if tau == 0:
    -                                if (k, 0) not in sepset[((j, tau), i)]:
    -                                    sepset[((j, tau), i)].append((k, 0))
    +                                if (k, 0) not in sepsets[((j, tau), i)]:
    +                                    sepsets[((j, tau), i)].append((k, 0))
     
             if self.verbosity > 1 and len(v_structures) > 0:
                 print("\nOrienting links among colliders:")
    @@ -3362,7 +3556,7 @@ 

    Source code for tigramite.pcmci

                 self._print_parents(all_parents=adjt, val_min=None, pval_max=None)
     
             return {'graph': graph,
    -                'sepset': sepset,
    +                'sepsets': sepsets,
                     'ambiguous_triples': ambiguous_triples,
                     }
     
    @@ -3732,9 +3926,9 @@ 

    Source code for tigramite.pcmci

                     parents = []
                     for i, tau in zip(*np.where(dag[:,j,:] == "-->")):
                         parents.append((i, -tau))
    -                score[iscore] += \
    -                    self.cond_ind_test.get_model_selection_criterion(
    +                score_j = self.cond_ind_test.get_model_selection_criterion(
                             j, parents, tau_max)
    +                score[iscore] += score_j
                 score[iscore] /= float(self.N)
     
             # Record the optimal alpha value
    @@ -3757,7 +3951,9 @@ 

    Source code for tigramite.pcmci

     
     
     if __name__ == '__main__':
    -    from tigramite.independence_tests import ParCorr, CMIknn, ParCorrMult
    +    from tigramite.independence_tests.parcorr import ParCorr
    +    from tigramite.independence_tests.cmiknn import CMIknn
    +
         import tigramite.data_processing as pp
         from tigramite.toymodels import structural_causal_processes as toys
         import tigramite.plotting as tp
    @@ -3770,53 +3966,62 @@ 

    Source code for tigramite.pcmci

         def lin_f(x): return x
         def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.))
     
    -    T = 2000
    -    data = random_state.standar_normal((T, 4))
    +    T = 1000
    +    data = random_state.standard_normal((T, 4))
         # Simple sun
    -    data[:,3] = np.sin(np.arange(T)*20/np.pi) + 0.1*random_state.standar_normal((T))
    +    data[:,3] = random_state.standard_normal((T)) # np.sin(np.arange(T)*20/np.pi) + 0.1*random_state.standard_normal((T))
         c = 0.8
         for t in range(1, T):
             data[t, 0] += 0.4*data[t-1, 0] + 0.4*data[t-1, 1] + c*data[t-1,3]
    -        data[t, 1] += 0.5*data[t-1, 1] + c*data[t-1,3]
    -        data[t, 2] += 0.6*data[t-1, 2] + 0.3*data[t-2, 1] + c*data[t-1,3]
    +        data[t, 1] += 0.5*data[t-1, 1] + c*data[t,3]
    +        data[t, 2] += 0.6*data[t-1, 2] + 0.3*data[t-2, 1] #+ c*data[t-1,3]
         dataframe = pp.DataFrame(data, var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun'])
         # tp.plot_timeseries(dataframe); plt.show()
     
    -    parcorr = ParCorr()
    +    ci_test = CMIknn(significance="fixed_thres", verbosity=3)   #
    +    # ci_test = ParCorr() #significance="fixed_thres")   #
         # dataframe_nosun = pp.DataFrame(data[:,[0,1,2]], var_names=[r'$X^0$', r'$X^1$', r'$X^2$'])
         # pcmci_parcorr = PCMCI(
         #     dataframe=dataframe_nosun, 
         #     cond_ind_test=parcorr,
         #     verbosity=0)
    -    tau_max = 2
    +    tau_max = 1  #2
         # results = pcmci_parcorr.run_pcmci(tau_max=tau_max, pc_alpha=0.2, alpha_level = 0.01)
         # Remove parents of variable 3
         # Only estimate parents of variables 0, 1, 2
    -    link_assumptions = {}
    -    for j in range(4):
    -        if j in [0, 1, 2]:
    -            # Directed lagged links
    -            link_assumptions[j] = {(var, -lag): '-?>' for var in [0, 1, 2]
    -                             for lag in range(1, tau_max + 1)}
    -            # Unoriented contemporaneous links
    -            link_assumptions[j].update({(var, 0): 'o?o' for var in [0, 1, 2] if var != j})
    -            # Directed lagged and contemporaneous links from the sun (3)
    -            link_assumptions[j].update({(var, -lag): '-?>' for var in [3]
    -                             for lag in range(0, tau_max + 1)})
    -        else:
    -            link_assumptions[j] = {}
    -
    -    print(link_assumptions)
    +    link_assumptions = None #{}
    +    # for j in range(4):
    +    #     if j in [0, 1, 2]:
    +    #         # Directed lagged links
    +    #         link_assumptions[j] = {(var, -lag): '-?>' for var in [0, 1, 2]
    +    #                          for lag in range(1, tau_max + 1)}
    +    #         # Unoriented contemporaneous links
    +    #         link_assumptions[j].update({(var, 0): 'o?o' for var in [0, 1, 2] if var != j})
    +    #         # Directed lagged and contemporaneous links from the sun (3)
    +    #         link_assumptions[j].update({(var, -lag): '-?>' for var in [3]
    +    #                          for lag in range(0, tau_max + 1)})
    +    #     else:
    +    #         link_assumptions[j] = {}
    +
    +    # for j in link_assumptions:
    +    #     print(link_assumptions[j])
         pcmci_parcorr = PCMCI(
             dataframe=dataframe, 
    -        cond_ind_test=parcorr,
    -        verbosity=2)
    -    results = pcmci_parcorr.run_pcmciplus(tau_max=tau_max, pc_alpha=0.01, 
    -                                      link_assumptions=link_assumptions) #, alpha_level = 0.01)
    +        cond_ind_test=ci_test,
    +        verbosity=1)
    +    results = pcmci_parcorr.run_pcmciplus(tau_max=tau_max, 
    +                    pc_alpha=[0.001, 0.01, 0.05, 0.8], 
    +                    reset_lagged_links=False,
    +                    link_assumptions=link_assumptions
    +                    ) #, alpha_level = 0.01)
         print(results['graph'].shape)
    -    print(results['graph'][:,3,:])
    +    # print(results['graph'][:,3,:])
    +    print(np.round(results['p_matrix'][:,:,0], 2))
    +    print(np.round(results['val_matrix'][:,:,0], 2))
    +    print(results['graph'][:,:,0])
    +
         # Plot time series graph
    -    # tp.plot_time_series_graph(
    +    # tp.plot_graph(
         #     val_matrix=results['val_matrix'],
         #     graph=results['graph'],
         #     var_names=[r'$X^0$', r'$X^1$', r'$X^2$', 'Sun'],
    @@ -3922,8 +4127,8 @@ 

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/plotting.html b/docs/_modules/tigramite/plotting.html index 5e1b12f9..e7527d0a 100644 --- a/docs/_modules/tigramite/plotting.html +++ b/docs/_modules/tigramite/plotting.html @@ -9,8 +9,10 @@ + + + - @@ -1543,12 +1545,13 @@

    Source code for tigramite.plotting

         # link_edge_colorbar_label='link_edge',
         inner_edge_curved=False,
         inner_edge_style="solid",
    -    network_lower_bound=0.2,
    +    # network_lower_bound=0.2,
         network_left_bound=None,
         show_colorbar=True,
         special_nodes=None,
         autodep_sig_lags=None,
    -    show_autodependency_lags=False
    +    show_autodependency_lags=False,
    +    transform='data',
     ):
         """Function to draw a network from networkx graph instance.
         Various attributes are used to specify the graph's properties.
    @@ -1556,6 +1559,9 @@ 

    Source code for tigramite.plotting

         customized.
         """
     
    +    if transform == 'data':
    +        transform = ax.transData
    +
         from matplotlib.patches import FancyArrowPatch, Circle, Ellipse
     
         ax.spines["left"].set_color("none")
    @@ -1715,6 +1721,7 @@ 

    Source code for tigramite.plotting

                     shrinkB=0,
                     zorder=-1,
                     capstyle="butt",
    +                transform=transform,
                 )
                 ax.add_artist(e_p)
     
    @@ -1736,6 +1743,7 @@ 

    Source code for tigramite.plotting

                   shrinkB=0,
                   zorder=-1,
                   capstyle="butt",
    +              transform=transform,
                 )  
                 ax.add_artist(e_p_back)
     
    @@ -1780,8 +1788,9 @@ 

    Source code for tigramite.plotting

                     patchB=n2,
                     shrinkA=0,
                     shrinkB=0,
    -                zorder=-1,
    +                # zorder=-1,
                     capstyle="butt",
    +                transform=transform,
                 )
                 ax.add_artist(e_p)
     
    @@ -1803,11 +1812,15 @@ 

    Source code for tigramite.plotting

                     shrinkB=0,
                     zorder=-10,
                     capstyle="butt",
    +                transform=transform,
             )
             ax.add_artist(e_p_marker)
     
    -        path = e_p_marker.get_path()
    -        vertices = path.vertices.copy()
    +        # marker_path = e_p_marker.get_path()
    +        vertices = e_p_marker.get_path().vertices.copy()
    +        # vertices = e_p_marker.get_verts()
    +        # vertices = e_p_marker.get_path().to_polygons(transform=None)[0]
    +        # print(vertices.shape)
             m, n = vertices.shape
     
             # print(vertices)
    @@ -1816,7 +1829,7 @@ 

    Source code for tigramite.plotting

     
             # This must be added to avoid rescaling of the plot, when no 'o'
             # or 'x' is added to the graph.
    -        ax.scatter(*start, zorder=-10, alpha=0)
    +        ax.scatter(*start, zorder=-10, alpha=0, transform=transform,)
     
             if outer_edge:
                 if d.get("outer_edge_type") in ["o->", "o--"]:
    @@ -1827,6 +1840,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                 elif d.get("outer_edge_type") == "<-o":
    @@ -1837,6 +1851,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("outer_edge_type") == "--o":
    @@ -1847,6 +1862,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("outer_edge_type") in ["x--", "x->"]:
    @@ -1857,6 +1873,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                 elif d.get("outer_edge_type") in ["+--", "+->"]:
    @@ -1867,6 +1884,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                 elif d.get("outer_edge_type") == "<-x":
    @@ -1877,6 +1895,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("outer_edge_type") == "<-+":
    @@ -1887,6 +1906,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("outer_edge_type") == "--x":
    @@ -1897,6 +1917,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("outer_edge_type") == "o-o":
    @@ -1907,6 +1928,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                     circle_marker_end = ax.scatter(
    @@ -1916,6 +1938,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("outer_edge_type") == "x-x":
    @@ -1926,6 +1949,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                     circle_marker_end = ax.scatter(
    @@ -1935,6 +1959,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("outer_edge_type") == "o-x":
    @@ -1945,6 +1970,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                     circle_marker_end = ax.scatter(
    @@ -1954,6 +1980,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("outer_edge_type") == "x-o":
    @@ -1964,6 +1991,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                     circle_marker_end = ax.scatter(
    @@ -1973,6 +2001,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
     
    @@ -1985,6 +2014,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                 elif d.get("inner_edge_type") == "<-o":
    @@ -1995,6 +2025,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("inner_edge_type") == "--o":
    @@ -2005,6 +2036,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("inner_edge_type") in ["x--", "x->"]:
    @@ -2015,6 +2047,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                 elif d.get("inner_edge_type") in ["+--", "+->"]:
    @@ -2025,6 +2058,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                 elif d.get("inner_edge_type") == "<-x":
    @@ -2035,6 +2069,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("inner_edge_type") == "<-+":
    @@ -2045,6 +2080,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("inner_edge_type") == "--x":
    @@ -2055,6 +2091,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("inner_edge_type") == "o-o":
    @@ -2065,6 +2102,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                     circle_marker_end = ax.scatter(
    @@ -2074,6 +2112,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("inner_edge_type") == "x-x":
    @@ -2084,6 +2123,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                     circle_marker_end = ax.scatter(
    @@ -2093,6 +2133,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("inner_edge_type") == "o-x":
    @@ -2103,6 +2144,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                     circle_marker_end = ax.scatter(
    @@ -2112,6 +2154,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
                 elif d.get("inner_edge_type") == "x-o":
    @@ -2122,6 +2165,7 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_start)
                     circle_marker_end = ax.scatter(
    @@ -2131,16 +2175,42 @@ 

    Source code for tigramite.plotting

                         facecolor="w",
                         edgecolor=facecolor,
                         zorder=1,
    +                    transform=transform,
                     )
                     ax.add_collection(circle_marker_end)
     
    +
    +
             if d["label"] is not None and outer_edge:
    +            def closest_node(node, nodes):
    +                nodes = np.asarray(nodes)
    +                node = node.reshape(1, 2)
    +                dist_2 = np.sum((nodes - node)**2, axis=1)
    +                return np.argmin(dist_2)
    +
                 # Attach labels of lags
    -            trans = None  # patch.get_transform()
    -            path = e_p.get_path()
    -            verts = path.to_polygons(trans)[0]
    -            if len(verts) > 2:
    -                label_vert = verts[1, :]
    +            # trans = None  # patch.get_transform()
    +            # path = e_p.get_path()
    +            vertices = e_p_marker.get_path().vertices.copy()
    +            verts = e_p.get_path().to_polygons(transform=None)[0]
    +            # print(verts)
    +            # print(verts.shape)
    +            # print(vertices.shape)
    +            # for num, vert in enumerate(verts):
    +            #     ax.text(vert[0], vert[1], str(num), 
    +            #         transform=transform,)
    +            # ax.scatter(verts[:,0], verts[:,1])
    +            # mid_point = np.array([(start[0] + end[0])/2., (start[1] + end[1])/2.])
    +            # print(start, end, mid_point)
    +            # ax.scatter(mid_point[0], mid_point[1], marker='x', 
    +            #     s=100, zorder=10, transform=transform,)
    +            closest_node = closest_node(vertices[int(len(vertices)/2.),:], verts)
    +            # print(closest_node, verts[closest_node])
    +            # ax.scatter(verts[closest_node][0], verts[closest_node][1], marker='x')
    +
    +            if len(vertices) > 2:
    +                # label_vert = vertices[int(len(vertices)/2.),:] #verts[1, :]
    +                label_vert = verts[closest_node] #verts[1, :]
                     l = d["label"]
                     string = str(l)
                     txt = ax.text(
    @@ -2152,6 +2222,7 @@ 

    Source code for tigramite.plotting

                         horizontalalignment="center",
                         color="w",
                         zorder=1,
    +                    transform=transform,
                     )
                     txt.set_path_effects(
                         [PathEffects.withStroke(linewidth=2, foreground="k")]
    @@ -2361,6 +2432,7 @@ 

    Source code for tigramite.plotting

                     facecolor=color_here,
                     edgecolor=color_here,
                     zorder=-ring - 1 + 2,
    +                transform=transform,
                 )
     
                 # else:
    @@ -2397,7 +2469,8 @@ 

    Source code for tigramite.plotting

                         horizontalalignment="center",
                         verticalalignment="center",
                         alpha=1.0,
    -                    zorder=5.
    +                    zorder=5.,
    +                    transform=transform,
                     )
                     if show_autodependency_lags:
                         ax.text(
    @@ -2408,7 +2481,8 @@ 

    Source code for tigramite.plotting

                             horizontalalignment="center",
                             verticalalignment="center",
                             color="black",
    -                        zorder=5.
    +                        zorder=5.,
    +                        transform=transform,
                         )
     
         # Draw edges
    @@ -2461,7 +2535,7 @@ 

    Source code for tigramite.plotting

         node_label_size=10,
         link_label_fontsize=10,
         lag_array=None,
    -    network_lower_bound=0.2,
    +    # network_lower_bound=0.2,
         show_colorbar=True,
         inner_edge_style="dashed",
         link_matrix=None,
    @@ -2506,7 +2580,9 @@ 

    Source code for tigramite.plotting

         node_pos : dictionary, optional (default: None)
             Dictionary of node positions in axis coordinates of form
             node_pos = {'x':array of shape (N,), 'y':array of shape(N)}. These
    -        coordinates could have been transformed before for basemap plots.
    +        coordinates could have been transformed before for basemap plots. You can
    +        also add a key 'transform':ccrs.PlateCarree() in order to plot graphs on 
    +        a map using cartopy.
         arrow_linewidth : float, optional (default: 30)
             Linewidth.
         vmin_edges : float, optional (default: -1)
    @@ -2545,8 +2621,6 @@ 

    Source code for tigramite.plotting

             Fontsize of tick labels.
         lag_array : array, optional (default: None)
             Optional specification of lags overwriting np.arange(0, tau_max+1)
    -    network_lower_bound : float, optional (default: 0.2)
    -        Fraction of vertical space below graph plot.
         show_colorbar : bool
             Whether to show colorbars for links and nodes.
         show_autodependency_lags : bool (default: False)
    @@ -2778,6 +2852,10 @@ 

    Source code for tigramite.plotting

             for i in range(N):
                 pos[i] = (node_pos["x"][i], node_pos["y"][i])
     
    +    if node_pos is not None and 'transform' in node_pos: 
    +        transform = node_pos['transform']
    +    else: transform = ax.transData
    +
         if cmap_nodes is None:
             node_color = None
     
    @@ -2825,12 +2903,13 @@ 

    Source code for tigramite.plotting

             label_fontsize=label_fontsize,
             link_label_fontsize=link_label_fontsize,
             link_colorbar_label=link_colorbar_label,
    -        network_lower_bound=network_lower_bound,
    +        # network_lower_bound=network_lower_bound,
             show_colorbar=show_colorbar,
             # label_fraction=label_fraction,
             special_nodes=special_nodes,
             autodep_sig_lags=autodep_sig_lags,
    -        show_autodependency_lags=show_autodependency_lags
    +        show_autodependency_lags=show_autodependency_lags,
    +        transform=transform
         )
     
         if save_name is not None:
    @@ -3021,9 +3100,6 @@ 

    Source code for tigramite.plotting

         label_fontsize=10,
         tick_label_size=6,
         alpha=1.0,
    -    label_space_left=0.1,
    -    label_space_top=0.0,
    -    network_lower_bound=0.2,
         inner_edge_style="dashed",
         link_matrix=None,
         special_nodes=None,
    @@ -3088,12 +3164,6 @@ 

    Source code for tigramite.plotting

             Fontsize of link labels.
         tick_label_size : int, optional (default: 6)
             Fontsize of tick labels.
    -    label_space_left : float, optional (default: 0.1)
    -        Fraction of horizontal figure space to allocate left of plot for labels.
    -    label_space_top : float, optional (default: 0.)
    -        Fraction of vertical figure space to allocate top of plot for labels.
    -    network_lower_bound : float, optional (default: 0.2)
    -        Fraction of vertical space below graph plot.
         inner_edge_style : string, optional (default: 'dashed')
             Style of inner_edge contemporaneous links.
         special_nodes : dict
    @@ -3338,8 +3408,8 @@ 

    Source code for tigramite.plotting

             label_fraction=0.5,
             link_colorbar_label=link_colorbar_label,
             inner_edge_curved=False,
    -        network_lower_bound=network_lower_bound,
    -        network_left_bound=label_space_left,
    +        # network_lower_bound=network_lower_bound,
    +        # network_left_bound=label_space_left,
             inner_edge_style=inner_edge_style,
             special_nodes=special_nodes,
             show_colorbar=show_colorbar,
    @@ -3417,9 +3487,6 @@ 

    Source code for tigramite.plotting

         alpha=1.0,
         node_label_size=12,
         tick_label_size=6,
    -    label_space_left=0.1,
    -    label_space_top=0.0,
    -    network_lower_bound=0.2,
         standard_color_links='black',
         standard_color_nodes='lightgrey',
     ):
    @@ -3484,12 +3551,6 @@ 

    Source code for tigramite.plotting

             Fontsize of node labels.
         link_label_fontsize : int, optional (default: 6)
             Fontsize of link labels.
    -    label_space_left : float, optional (default: 0.1)
    -        Fraction of horizontal figure space to allocate left of plot for labels.
    -    label_space_top : float, optional (default: 0.)
    -        Fraction of vertical figure space to allocate top of plot for labels.
    -    network_lower_bound : float, optional (default: 0.2)
    -        Fraction of vertical space below graph plot.
         """
         N = len(path_node_array)
         Nmaxlag = tsg_path_val_matrix.shape[0]
    @@ -3658,7 +3719,7 @@ 

    Source code for tigramite.plotting

             label_fraction=0.5,
             link_colorbar_label=link_colorbar_label,
             inner_edge_curved=True,
    -        network_lower_bound=network_lower_bound
    +        # network_lower_bound=network_lower_bound
             # inner_edge_style=inner_edge_style
         )
     
    @@ -3666,7 +3727,7 @@ 

    Source code for tigramite.plotting

             trans = transforms.blended_transform_factory(ax.transAxes, ax.transData)
             # trans = transforms.blended_transform_factory(fig.transFigure, ax.transData)
             ax.text(
    -            label_space_left,
    +            0.,
                 pos[order[i] * max_lag][1],
                 "%s" % str(var_names[order[i]]),
                 fontsize=label_fontsize,
    @@ -3681,7 +3742,7 @@ 

    Source code for tigramite.plotting

             if tau == max_lag - 1:
                 ax.text(
                     pos[tau][0],
    -                1.0 - label_space_top,
    +                1.0, # - label_space_top,
                     r"$t$",
                     fontsize=label_fontsize,
                     horizontalalignment="center",
    @@ -3691,7 +3752,7 @@ 

    Source code for tigramite.plotting

             else:
                 ax.text(
                     pos[tau][0],
    -                1.0 - label_space_top,
    +                1.0, # - label_space_top,
                     r"$t-%s$" % str(max_lag - tau - 1),
                     fontsize=label_fontsize,
                     horizontalalignment="center",
    @@ -3737,7 +3798,7 @@ 

    Source code for tigramite.plotting

         alpha=1.0,
         node_label_size=10,
         link_label_fontsize=10,
    -    network_lower_bound=0.2,
    +    # network_lower_bound=0.2,
         standard_color_links='black',
         standard_color_nodes='lightgrey',
     ):
    @@ -3775,7 +3836,9 @@ 

    Source code for tigramite.plotting

         node_pos : dictionary, optional (default: None)
             Dictionary of node positions in axis coordinates of form
             node_pos = {'x':array of shape (N,), 'y':array of shape(N)}. These
    -        coordinates could have been transformed before for basemap plots.
    +        coordinates could have been transformed before for basemap plots. You can
    +        also add a key 'transform':ccrs.PlateCarree() in order to plot graphs on 
    +        a map using cartopy.
         arrow_linewidth : float, optional (default: 30)
             Linewidth.
         vmin_edges : float, optional (default: -1)
    @@ -3810,8 +3873,6 @@ 

    Source code for tigramite.plotting

             Fontsize of node labels.
         link_label_fontsize : int, optional (default: 6)
             Fontsize of link labels.
    -    network_lower_bound : float, optional (default: 0.2)
    -        Fraction of vertical space below graph plot.
         lag_array : array, optional (default: None)
             Optional specification of lags overwriting np.arange(0, tau_max+1)
         """
    @@ -3950,6 +4011,10 @@ 

    Source code for tigramite.plotting

             for i in range(N):
                 pos[i] = (node_pos["x"][i], node_pos["y"][i])
     
    +    if node_pos is not None and 'transform' in node_pos: 
    +        transform = node_pos['transform']
    +    else: transform = ax.transData
    +
         node_rings = {
             0: {
                 "sizes": None,
    @@ -3993,9 +4058,10 @@ 

    Source code for tigramite.plotting

             label_fontsize=label_fontsize,
             link_label_fontsize=link_label_fontsize,
             link_colorbar_label=link_colorbar_label,
    -        network_lower_bound=network_lower_bound,
    +        # network_lower_bound=network_lower_bound,
             # label_fraction=label_fraction,
             # inner_edge_style=inner_edge_style
    +        transform=transform
         )
     
         # fig.subplots_adjust(left=0.1, right=.9, bottom=.25, top=.95)
    @@ -4127,9 +4193,9 @@ 

    Source code for tigramite.plotting

         label_fontsize = 10
         alpha = 1.0
         node_label_size = 10
    -    label_space_left = 0.1
    -    label_space_top = 0.0
    -    network_lower_bound = 0.2
    +    # label_space_left = 0.1
    +    # label_space_top = 0.0
    +    # network_lower_bound = 0.2
         inner_edge_style = "dashed"
     
         node_color = np.ones(N * max_lag)  # , dtype = 'object')
    @@ -4251,14 +4317,14 @@ 

    Source code for tigramite.plotting

             label_fraction=0.5,
             link_colorbar_label=link_colorbar_label,
             inner_edge_curved=True,
    -        network_lower_bound=network_lower_bound,
    +        # network_lower_bound=network_lower_bound,
             inner_edge_style=inner_edge_style,
         )
     
         for i in range(N):
             trans = transforms.blended_transform_factory(ax.transAxes, ax.transData)
             ax.text(
    -            label_space_left,
    +            0.,
                 pos[order[i] * max_lag][1],
                 "%s" % str(var_names[order[i]]),
                 fontsize=label_fontsize,
    @@ -4272,7 +4338,7 @@ 

    Source code for tigramite.plotting

             if tau == max_lag - 1:
                 ax.text(
                     pos[tau][0],
    -                1.0 - label_space_top,
    +                1.0, #- label_space_top,
                     r"$t$",
                     fontsize=int(label_fontsize * 0.7),
                     horizontalalignment="center",
    @@ -4282,7 +4348,7 @@ 

    Source code for tigramite.plotting

             else:
                 ax.text(
                     pos[tau][0],
    -                1.0 - label_space_top,
    +                1.0, # - label_space_top,
                     r"$t-%s$" % str(max_lag - tau - 1),
                     fontsize=int(label_fontsize * 0.7),
                     horizontalalignment="center",
    @@ -4369,7 +4435,7 @@ 

    Source code for tigramite.plotting

             for (i, j, tau) in zip(*np.where(graph!='')):
                 # Only consider contemporaneous links once
                 if tau > 0 or i <= j:
    -                row = [var_names[i], var_names[i], f"{tau}", graph[i,j,tau]]
    +                row = [str(var_names[i]), str(var_names[i]), f"{tau}", graph[i,j,tau]]
                     if val_matrix_exists:
                         row.append(f"{val_matrix[i,j,tau]:.{digits}}")
                     if link_attribute is not None:
    @@ -4467,43 +4533,80 @@ 

    Source code for tigramite.plotting

     
         # Complete test case
         graph = np.zeros((3,3,2), dtype='<U3')
    -    val_matrix = np.random.rand(*graph.shape)
    +    val_matrix = 0.*np.random.rand(*graph.shape)
         val_matrix[:,:,0] = 0.2
         graph[:] = ""
    -    graph[0, 1, 0] = "<-+"
    -    graph[1, 0, 0] = "+->"
    +    # graph[0, 1, 0] = "<-+"
    +    # graph[1, 0, 0] = "+->"
         graph[0, 0, 1] = "-->"
         graph[1, 1, 1] = "-->"
     
         graph[0, 1, 1] = "+->"
    -    graph[1, 0, 1] = "o-o"
    +    # graph[1, 0, 1] = "o-o"
     
    -    graph[1, 2, 0] = "<->"
    -    graph[2, 1, 0] = "<->"
    +    # graph[1, 2, 0] = "<->"
    +    # graph[2, 1, 0] = "<->"
     
    -    graph[0, 2, 0] = "x-x"
    -    graph[2, 0, 0] = "x-x"
    +    # graph[0, 2, 0] = "x-x"
    +    # graph[2, 0, 0] = "x-x"
         nolinks = np.zeros(graph.shape)
         # nolinks[range(4), range(4), 1] = 1
     
    -    fig, axes = pyplot.subplots(nrows=1, ncols=1, figsize=(3, 2))
    -    label_space_left = 0.2
    -    label_space_top = 0.
    -    network_lower_bound = 0.
    -    show_colorbar=True
    -    plot_graph(graph=graph,
    -        # fig_ax = (fig, axes),
    -        val_matrix=val_matrix,
    +    # graph = graph[:2, :2, :]
    +
    +    # fig, axes = pyplot.subplots(nrows=1, ncols=1, figsize=(6, 5))
    +
    +
    +    # import cartopy.crs as ccrs
    +    graph = np.ones((5, 5, 2), dtype='<U3')
    +    graph[:] = ""
    +    graph[3, :, 1] = '+->' 
    +
    +    # fig = pyplot.figure(figsize=(8, 6))
    +    # fig = pyplot.figure(figsize=(10, 5))
    +    # ax = fig.add_subplot(1, 1, 1, projection=ccrs.Mollweide())
    +    # make the map global rather than have it zoom in to
    +    # the extents of any plotted data
    +    # ax.set_global()
    +    # ax.stock_img()
    +    # ax.coastlines()
    +    # # ymax = 1.
    +    # node_pos = {'x':np.linspace(0, ymax, graph.shape[0]), 'y':np.linspace(0, ymax, graph.shape[0]),}
    +    # node_pos = {'x':np.array([10,-20,80,-50,80]),
    +    #             'y':np.array([-10,70,60,-40,50]), 
    +    #         'transform':ccrs.PlateCarree(), # t.PlateCarree()
    +    #         }
    +
    +    plot_time_series_graph(graph=graph,
    +        # fig_ax = (fig, ax),
    +        # val_matrix=val_matrix,
             # figsize=(5, 5),
    -        var_names = ['Var %s' %i for i in range(len(graph))],
    +        # var_names = ['Var %s' %i for i in range(len(graph))],
             # arrow_linewidth=6,
             # label_space_left = label_space_left,
             # label_space_top = label_space_top,
             # # network_lower_bound=network_lower_bound,
    -        # save_name="tsg_test.pdf"
    +        save_name="tsg_test.pdf"
             )
    +    pyplot.tight_layout()
     
    -    # axes[0,0].scatter(np.random.randn(100), np.random.randn(100))
    +    # network_lower_bound = 0.
    +    # show_colorbar=True
    +    # plot_graph(graph=graph,
    +    #     fig_ax = (fig, ax),
    +    #     node_pos = node_pos,
    +    #     node_size = 20,
    +    #     # val_matrix=val_matrix,
    +    #     # figsize=(5, 5),
    +    #     # var_names = ['Var %s' %i for i in range(len(graph))],
    +    #     # arrow_linewidth=6,
    +    #     # label_space_left = label_space_left,
    +    #     # label_space_top = label_space_top,
    +    #     # # network_lower_bound=network_lower_bound,
    +    #     save_name="tsg_test.pdf"
    +    #     )
    +    # pyplot.tight_layout()
    +    # axes[0,0].scatter(np.random.rand(100), np.random.rand(100))
     
         # plot_graph(graph=graph,
         #     fig_ax = (fig, axes[0,0]),
    @@ -4511,9 +4614,8 @@ 

    Source code for tigramite.plotting

         #     # figsize=(5, 5),
         #     var_names = ['Variable %s' %i for i in range(len(graph))],
         #     arrow_linewidth=6,
    -    #     label_space_left = label_space_left,
    -    #     label_space_top = label_space_top,
    -    #     network_lower_bound=network_lower_bound,
    +    #     # label_space_left = label_space_left,
    +    #     # label_space_top = label_space_top,
         #     # save_name="tsg_test.pdf"
         #     )
         # plot_graph(graph=graph,
    @@ -4521,31 +4623,29 @@ 

    Source code for tigramite.plotting

         #     val_matrix=val_matrix,
         #     var_names = ['Var %s' %i for i in range(len(graph))],
         #     arrow_linewidth=6,
    -    #     label_space_left = label_space_left,
    -    #     label_space_top = label_space_top,
    -    #     network_lower_bound=network_lower_bound,
    +    #     # label_space_left = label_space_left,
    +    #     # label_space_top = label_space_top,
         #     )
         # plot_graph(graph=graph,
         #     fig_ax = (fig, axes[1,0]),
         #     val_matrix=val_matrix,
         #     var_names = ['Var %s' %i for i in range(len(graph))],
         #     arrow_linewidth=6,
    -    #     label_space_left = label_space_left,
    -    #     label_space_top = label_space_top,
    -    #     network_lower_bound=network_lower_bound,
    +    #     # label_space_left = label_space_left,
    +    #     # label_space_top = label_space_top,
         #     )
         # plot_graph(graph=graph,
         #     fig_ax = (fig, axes[1,1]),
         #     val_matrix=val_matrix,
         #     var_names = ['Var %s' %i for i in range(len(graph))],
         #     arrow_linewidth=6,
    -    #     label_space_left = label_space_left,
    -    #     label_space_top = label_space_top,
    -    #     network_lower_bound=network_lower_bound,
    +    #     n
    +    #     # label_space_left = label_space_left,
    +    #     # label_space_top = label_space_top,
         #     )
    -    # pyplot.subplots_adjust(wspace=0.3, hspace=0.2)
    -    pyplot.tight_layout()
    -    pyplot.savefig("test.pdf")
    +    # # pyplot.subplots_adjust(wspace=0.3, hspace=0.2)
    +    # pyplot.tight_layout()
    +    # pyplot.savefig("test.pdf")
     
         # def lin_f(x): return x
     
    @@ -4560,10 +4660,10 @@ 

    Source code for tigramite.plotting

         # val_matrix[:,:,0] = 0.
         # write_csv(graph=graph,
         #     val_matrix=val_matrix,
    -    #     var_names=['s %d' %i for i in range(graph.shape[0])],
    +    #     var_names=[r'$X^{%d}$' %i for i in range(graph.shape[0])],
         #     link_width=np.ones(graph.shape),
         #     link_attribute = np.ones(graph.shape, dtype='<U10'),
    -    #     save_name='test.cv')
    +    #     save_name='test.csv')
     
         # # print(graph)
         # X = [(0,-1)]
    @@ -4627,8 +4727,8 @@ 

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_modules/tigramite/rpcmci.html b/docs/_modules/tigramite/rpcmci.html new file mode 100644 index 00000000..5c943291 --- /dev/null +++ b/docs/_modules/tigramite/rpcmci.html @@ -0,0 +1,565 @@ + + + + + + + + tigramite.rpcmci — Tigramite 5.2 documentation + + + + + + + + + + + + + + + + + + +
    +
    +
    + + +
    + +

    Source code for tigramite.rpcmci

    +"""Tigramite causal discovery for time series."""
    +
    +# Authors: Elena Saggioro, Sagar Simha, Matthias Bruhns, Jakob Runge <jakob@jakob-runge.com>
    +#
    +# License: GNU General Public License v3.0
    +
    +from copy import deepcopy
    +import numpy as np
    +import sklearn
    +from joblib import Parallel, delayed
    +from ortools.linear_solver import pywraplp
    +import traceback
    +
    +from tigramite.independence_tests.parcorr import ParCorr
    +from tigramite.data_processing import DataFrame
    +from tigramite.models import Prediction
    +from tigramite.pcmci import PCMCI
    +
    +
    [docs]class RPCMCI(PCMCI): + """RPCMCI class for extracting causal regimes and the associated graphs from + time series data. + + Notes + ---------- + The Regime-PCMCI causal discovery method is described in: + + Elena Saggioro, Jana de Wiljes, Marlene Kretschmer, Jakob Runge; + Reconstructing regime-dependent causal relationships from observational + time series. Chaos 1 November 2020; 30 (11): 113115. + https://doi.org/10.1063/5.0020538 + + The method iterates between two phases --a regime learning phase + (optimization-based) and a causal discovery phase (PCMCI)-- to identify + regime dependent causal relationships. A persistent discrete regime + variable is assumed that leads to a finite number of regimes within which + stationarity can be assumed. + + Parameters + ---------- + dataframe : data object + This is the Tigramite dataframe object. It has the attributes + dataframe.values yielding a numpy array of shape ( observations T, + variables N). For RPCMCI the mask will be ignored. You may use the + missing_flag to indicate missing values. + cond_ind_test : conditional independence test object + This can be ParCorr or other classes from + ``tigramite.independence_tests`` or an external test passed as a + callable. This test can be based on the class + tigramite.independence_tests.CondIndTest. + prediction_model : sklearn model object + For example, sklearn.linear_model.LinearRegression() for a linear + regression model. This should be consistent with cond_ind_test, ie, + use ParCorr() with a linear model and, eg, GPDC() with a + GaussianProcessRegressor model, or CMIknn with NearestNeighbors model. + seed : int + Random seed for annealing step. + verbosity : int, optional (default: -1) + Verbose levels -1, 0, 1, ... + + """ + def __init__(self, dataframe, cond_ind_test=None, + prediction_model=None, seed=None, verbosity=-1): + + self.verbosity = verbosity + + self.seed = seed + if self.seed is None: + self.seed = np.random.randint(0, 1000) + + # Set prediction model to be used in optimization + self.prediction_model = prediction_model + if self.prediction_model is None: + self.prediction_model = sklearn.linear_model.LinearRegression() + + # Set conditional independence test + if cond_ind_test is None: + cond_ind_test = ParCorr() + cond_ind_test.set_mask_type('y') + + if dataframe.analysis_mode != 'single': + raise ValueError("Only single time series data allowed for RPCMCI.") + + if dataframe.has_vector_data: + raise ValueError("Only scalar data allowed for RPCMCI.") + + + # Masking is not available in RPCMCI, but missing values can be specified + dataframe.mask = {0:np.zeros(dataframe.values[0].shape, dtype='bool')} + self.missing_flag = dataframe.missing_flag + + # Init base class + PCMCI.__init__(self, dataframe=dataframe, + cond_ind_test=cond_ind_test, + verbosity=0) + +
    [docs] def run_rpcmci(self, + num_regimes, + max_transitions, + switch_thres=0.05, + num_iterations=20, + max_anneal=10, + tau_min=1, + tau_max=1, + pc_alpha=0.2, + alpha_level=0.01, + n_jobs=-1, + ): + + """Run RPCMCI method for extracting causal regimes and the associated graphs from + time series data. + + Parameters + ---------- + num_regimes : int + Number of assumed regimes. + max_transitions : int + Maximum number of transitions within a single regime (persistency parameter). + switch_thres : float + Switch threshold. + num_iterations : int + Optimization iterations. + max_anneal : int + Maximum annealing runs. + tau_min : int, optional (default: 0) + Minimum time lag to test. + tau_max : int, optional (default: 1) + Maximum time lag. Must be larger or equal to tau_min. + pc_alpha : float, optional (default: 0.2) + Significance level in PCMCI. + alpha_level : float, optional (default: 0.05) + Significance level in PCMCI at which the p_matrix is thresholded to + get graph. + n_jobs : int, optional (default: -1) + Number of CPUs to use in joblib parallization. Default n_jobs=-1 + uses all available. + + Returns + ------- + regimes : array of shape (n_regimes, T) + One-hot encoded regime variable. + causal_results: dictionary + Contains result of run_pcmci() after convergence. + diff_g_f : tuple + Difference between two consecutive optimizations for all annealings and + the optimal one with minimum objective value (see paper). + error_free_annealings : int + Number of annealings that converged without error. + """ + + count_saved_ann = 0 + # initialize residuals (objective value) of MIP optimize + objmip_ann = [None] * max_anneal + parents_ann = [None] * max_anneal + causal_prediction = [None] * max_anneal + links_ann = [None] * max_anneal + gamma_ann = [None] * max_anneal + diff_g_ann = [None] * max_anneal + q_break_cycle = 5 + + data = self.dataframe.values[0] + + def _pcmci(tau_min, tau_max, pc_alpha, alpha_level): + """Wrapper around running PCMCI.""" + results = self.run_pcmci(tau_min=tau_min, tau_max=tau_max, pc_alpha=pc_alpha, alpha_level=alpha_level) + graph = results['graph'] + pcmci_parents = self.return_parents_dict(graph=graph, val_matrix=results['val_matrix']) + return results, graph, pcmci_parents + + def _optimize_gamma(resid_sq, max_transitions): + r""" + Solves the following optimization problem : + + minimize c * x + + where c = resid_sq , flattened along num_regimes dimension + x = Gamma , flattened along num_regimes dimension + + with Constraints: + (1) [\sum_{k=1,num_regimes}gamma^k(t) ]= 1 + forall t : uniqueness + (2) [\sum_{t=1:T-1} | gamma^k(t+1) - gamma^k(t) | ] <= max_transitions + forall k : persistence + + + Inputs: + resid_sq ( np.shape = (num_regimes,T) ) + max_transitions = max number of switchings allowed + + Returns: + Gamma_updated ( np.shape = (num_regimes,T) )) + """ + + num_regimes, T = resid_sq.shape + + # Create the linear solver with the GLOP backend. + solver = pywraplp.Solver.CreateSolver("GLOP") + infinity = solver.infinity() + + # Define vector of integer variables in the interval [0,1]. + G = [solver.NumVar(0, 1, f"x_{i}") for i in range(num_regimes * T)] + + # Define eta, auxiliary vars for constr. (2). + E = [solver.NumVar(0, infinity, f"eta_{i}") for i in range(num_regimes * T - 1)] + X = G + E + solver.Minimize( + sum([resid_sq[k, t] * X[k * T + t] for k in range(num_regimes) for t in range(T)]) + ) + + con_lst = [sum([X[k * T + t] for k in range(num_regimes)]) for t in range(T)] + for t in range(T): + solver.Add(con_lst[t] == 1) + + for k in range(num_regimes): + for t in range(T - 1): + # (2.1) + solver.Add( + (X[k * T + t + 1] - X[k * T + t] - X[k * T + t + num_regimes * T] <= 0) + ) + # (2.2) + solver.Add( + ( + ( + -1 * X[k * T + t + 1] + + X[k * T + t] + - X[k * T + t + num_regimes * T] + <= 0 + ) + ) + ) + # (2.3) + solver.Add( + ((sum([X[k * T + t + num_regimes * T] for t in range(T - 1)]) <= max_transitions)) + ) + + status = solver.Solve() + if status == pywraplp.Solver.OPTIMAL: + if self.verbosity > -1: + print("\nOptimal objective: reached.") + gamma = np.reshape([g.solution_value() for g in G], (num_regimes, T)) + obj_value = solver.Objective().Value() + return gamma, obj_value + else: + if self.verbosity > -1: + print("The problem does not have an optimal solution. Please change hyperparameters.") + exit(0) + + def one_annealing_step(a): + """Executes one annealing step. The random seed is self.seed + a.""" + + if self.verbosity > -1: + print(f"\n################# Annealing iteration a = {a} ####################\n") + + T = self.dataframe.T[0] + + # Initialise gamma_0 as random matrix of 1s and 0s + random_state = np.random.default_rng(self.seed + a) + gamma_opt = random_state.uniform(0, 1, size=(num_regimes, T)) # range is [0,1)! + + parents_opt = {} # [None] * num_regimes + results_opt = {} # [None] * num_regimes + links_opt = {} # [None] * num_regimes + objective_opt = 0 + + # Difference between two consecutive optimizations + diff_g = [] + + # + # Iteration over 1. causal discovery and 2. constrained optimization + # + error_flag = False + for q in range(num_iterations): + if self.verbosity > -1: + print(f"\n###### Optimization step q = {q}") + + # Initialize to 0 + residuals = np.zeros((num_regimes, T, self.N)) + + gamma_temp = deepcopy(gamma_opt) + + # + # 1. Causal discovery and prediction + # + + # Iterate over regimes + for k in range(num_regimes): + if self.verbosity > -1: + print(f"{16 * '#'} Regime k = {k}") + + # Select sample according to gamma_opt, is a bool vector + selected_samples_k = (gamma_temp[k, :] > switch_thres) + + mask_of_k = np.ones(data.shape, dtype="bool") + mask_of_k[selected_samples_k] = False + + # df_of_k = pp.DataFrame(data, mask=mask_of_k, missing_flag=self.missing_flag, + # var_names=self.var_names) + + # Change mask in dataframe for this step + self.dataframe.mask[0] = mask_of_k + + if np.any((mask_of_k == False).sum(axis=0) <= 5): + error_flag = True + if self.verbosity > -1: + print(f"*****Regime with too few samples in annealing a = {a} at iteration q = {q}.*****\n") + if self.verbosity > -1: + print("***** Break k-loop of regimes *****\n ") + break # from k-loop + + try: + # cond_ind_test = getattr(self, method)(**method_args) + # pcmci = PCMCI(dataframe=df_of_k, + # cond_ind_test=self.cond_ind_test, + # verbosity=0) + results_temp, link_temp, parents_temp = _pcmci( + # pcmci, + tau_max=int(tau_max), + pc_alpha=pc_alpha, + alpha_level=alpha_level, + tau_min=tau_min,) + except Exception: + traceback.print_exc() + error_flag = True + print(f"*****Value error in causal discovery for annealing a = {a} at iteration q = {q}.*****\n") + print("***** Break k-loop of regimes *****\n ") + break # from k-loop + + parents_opt[k] = parents_temp + results_opt[k] = results_temp + links_opt[k] = link_temp + + try: + # Prediction with causal parents + pred = Prediction( + dataframe=self.dataframe, + prediction_model=self.prediction_model, + data_transform=sklearn.preprocessing.StandardScaler(), + train_indices=range(T), + test_indices=range(T), + verbosity=0, + ) + + pred.fit( + target_predictors=parents_temp, + selected_targets=range(self.N), + tau_max=int(tau_max), + ) + # print(parents_temp) + # Compute the predicted residuals for each variable + predicted = pred.predict( + target=list(range(self.N)), + new_data=DataFrame(data, missing_flag=self.missing_flag) + ) + + original_data = np.zeros(predicted.shape) + for target in range(self.N): + # print(data.shape, predicted.shape, original_data.shape, pred.get_test_array(target).shape, mask_of_k.sum(axis=0)) + # print(pred.get_test_array(target)[0].flatten().std()) + original_data[:, target] = pred.get_test_array(target)[0].flatten() + + except Exception: + traceback.print_exc() + error_flag = True + print(f"*****Value error in prediction for annealing a = {a} at iteration q = {q}.*****\n") + print("***** Break k-loop of regimes *****\n ") + break # from k-loop + + + # Get residuals + residuals[k, int(tau_max):, :] = original_data - predicted + # print(np.abs(residuals[k, int(tau_max):, :]).mean(axis=0)) + + if error_flag: + if self.verbosity > -1: + print(f"***** Break q-loop of optimization iterations for Annealing a = {a} at iteration q = {q}." + " Go to next annealing step. *****\n") + break + + # + # 2. Regime optimization step with side constraints + # + + # Comute the resid_sq + res_sq = np.square(residuals).sum(axis=-1) + # print(res_sq.shape) + + try: + # Optimization + gamma_opt, objective_opt = _optimize_gamma(res_sq, max_transitions) + + except Exception: + traceback.print_exc() + error_flag = True + print(f"*****Value error in optimization for annealing a = {a} at iteration q = {q}.*****\n") + break + + diff_g.append(np.sum(np.abs(gamma_opt - gamma_temp))) + + if self.verbosity > -1: + print(f"Difference in abs value between the previous and current gamma " + f"(shape num_regimesxT) : {diff_g[q]}") + + # Break conditions + if diff_g[-1] == 0: + if self.verbosity > -1: + print("Two consecutive gammas are equal: (local) minimum reached. " + "Go to next annealing.\n") + break + + if (q >= q_break_cycle) and (diff_g[-1] <= (2 * num_regimes * T // 100)): + if self.verbosity > -1: + print(f"Iteration larger than {q_break_cycle} and two consecutive gammas are too similar. " + f"Go to next annealing.\n") + break + + if error_flag: + if self.verbosity > -1: + print(f"*****Annealing a = {a} failed****\n") + + return None + + return a, objective_opt, parents_opt, results_opt, links_opt, gamma_opt, diff_g + + # Parallelizing over annealing steps + all_results = Parallel(n_jobs=n_jobs)( + delayed(one_annealing_step)(a) for a in range(max_anneal)) + + # all_results = [] + # for a in range(max_anneal): + # all_results.append(one_annealing_step(a)) + + error_free_annealings = 0 + for result in all_results: + if result is not None: + error_free_annealings += 1 + a, objective_opt, parents_opt, results_opt, links_opt, gamma_opt, diff_g = result + + # Save annealing results + objmip_ann[a] = objective_opt + parents_ann[a] = parents_opt + causal_prediction[a] = results_opt + links_ann[a] = links_opt + gamma_ann[a] = gamma_opt + diff_g_ann[a] = diff_g + + if error_free_annealings == 0: + print("No annealings have converged. Run failed.") + return None + + # If annealing values are larger than the default. + # Can happen for long time series and high dimensionality + min_obj_val = np.min([a for a in objmip_ann if a is not None]) + i_best = objmip_ann.index(min_obj_val) + + # Final results based on best + # parents_f = parents_ann[i_best] + results_f = causal_prediction[i_best] + # links_f = links_ann[i_best] + gamma_f = gamma_ann[i_best] + # Convergence optimization + diff_g_f = diff_g_ann, diff_g_ann[i_best] + + final_results = {'regimes': gamma_f, + 'causal_results':results_f, + 'diff_g_f':diff_g_f, + 'error_free_annealings':error_free_annealings} + + return final_results
    +
    + +
    + +
    +
    + +
    +
    + + + + + + + \ No newline at end of file diff --git a/docs/_modules/tigramite/toymodels/structural_causal_processes.html b/docs/_modules/tigramite/toymodels/structural_causal_processes.html index 8ecaa4a2..76b23dc3 100644 --- a/docs/_modules/tigramite/toymodels/structural_causal_processes.html +++ b/docs/_modules/tigramite/toymodels/structural_causal_processes.html @@ -9,8 +9,10 @@ + + + - @@ -1233,8 +1235,8 @@

    Quick search

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/_sources/index.rst.txt b/docs/_sources/index.rst.txt index 8227942e..6ed3fa3a 100644 --- a/docs/_sources/index.rst.txt +++ b/docs/_sources/index.rst.txt @@ -31,6 +31,7 @@ TIGRAMITE Tigramite is a causal time series analysis python package. It allows to efficiently estimate causal graphs from high-dimensional time series datasets (causal discovery) and to use these graphs for robust forecasting and the estimation and prediction of direct, total, and mediated effects. Causal discovery is based on linear as well as non-parametric conditional independence tests applicable to discrete or continuously-valued time series. Also includes functions for high-quality plots of the results. Please cite the following papers depending on which method you use: +- Overview: Runge, J., Gerhardus, A., Varando, G. et al. Causal inference for time series. Nat Rev Earth Environ (2023). https://doi.org/10.1038/s43017-023-00431-y - PCMCI: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019). https://advances.sciencemag.org/content/5/11/eaau4996 @@ -38,6 +39,8 @@ Tigramite is a causal time series analysis python package. It allows to efficien - LPCMCI: Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders Advances in Neural Information Processing Systems, 2020, 33. https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html +- RPCMCI: Elena Saggioro, Jana de Wiljes, Marlene Kretschmer, Jakob Runge; Reconstructing regime-dependent causal relationships from observational time series. Chaos 1 November 2020; 30 (11): 113115. https://doi.org/10.1063/5.0020538 + - Generally: J. Runge (2018): Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310. https://aip.scitation.org/doi/10.1063/1.5025050 - Nature Communications Perspective paper: https://www.nature.com/articles/s41467-019-10105-3 @@ -60,6 +63,7 @@ Tigramite is a causal time series analysis python package. It allows to efficien tigramite.pcmci.PCMCI tigramite.lpcmci.LPCMCI + tigramite.rpcmci.RPCMCI tigramite.independence_tests.independence_tests_base.CondIndTest tigramite.independence_tests.parcorr.ParCorr tigramite.independence_tests.robust_parcorr.RobustParCorr @@ -87,13 +91,17 @@ Tigramite is a causal time series analysis python package. It allows to efficien .. autoclass:: tigramite.pcmci.PCMCI :members: - :mod:`tigramite.lpcmci`: LPCMCI =========================================== .. autoclass:: tigramite.lpcmci.LPCMCI :members: +:mod:`tigramite.rpcmci`: RPCMCI +=========================================== + +.. autoclass:: tigramite.rpcmci.RPCMCI + :members: :mod:`tigramite.independence_tests`: Conditional independence tests ================================================================================= diff --git a/docs/_static/ajax-loader.gif b/docs/_static/ajax-loader.gif new file mode 100644 index 0000000000000000000000000000000000000000..61faf8cab23993bd3e1560bff0668bd628642330 GIT binary patch literal 673 zcmZ?wbhEHb6krfw_{6~Q|Nno%(3)e{?)x>&1u}A`t?OF7Z|1gRivOgXi&7IyQd1Pl zGfOfQ60;I3a`F>X^fL3(@);C=vM_KlFfb_o=k{|A33hf2a5d61U}gjg=>Rd%XaNQW zW@Cw{|b%Y*pl8F?4B9 zlo4Fz*0kZGJabY|>}Okf0}CCg{u4`zEPY^pV?j2@h+|igy0+Kz6p;@SpM4s6)XEMg z#3Y4GX>Hjlml5ftdH$4x0JGdn8~MX(U~_^d!Hi)=HU{V%g+mi8#UGbE-*ao8f#h+S z2a0-5+vc7MU$e-NhmBjLIC1v|)9+Im8x1yacJ7{^tLX(ZhYi^rpmXm0`@ku9b53aN zEXH@Y3JaztblgpxbJt{AtE1ad1Ca>{v$rwwvK(>{m~Gf_=-Ro7Fk{#;i~+{{>QtvI yb2P8Zac~?~=sRA>$6{!(^3;ZP0TPFR(G_-UDU(8Jl0?(IXu$~#4A!880|o%~Al1tN literal 0 HcmV?d00001 diff --git a/docs/_static/alabaster.css b/docs/_static/alabaster.css index 0eddaeb0..bc420a48 100644 --- a/docs/_static/alabaster.css +++ b/docs/_static/alabaster.css @@ -1,17 +1,33 @@ + + + + + + + + + + + + + + + + + @import url("basic.css"); /* -- page layout ----------------------------------------------------------- */ body { - font-family: Georgia, serif; + font-family: 'goudy old style', 'minion pro', 'bell mt', Georgia, 'Hiragino Mincho Pro', serif; font-size: 17px; - background-color: #fff; + background-color: white; color: #000; margin: 0; padding: 0; } - div.document { width: 940px; margin: 30px auto 0 auto; @@ -28,8 +44,6 @@ div.bodywrapper { div.sphinxsidebar { width: 220px; - font-size: 14px; - line-height: 1.5; } hr { @@ -37,7 +51,7 @@ hr { } div.body { - background-color: #fff; + background-color: #ffffff; color: #3E4349; padding: 0 30px 0 30px; } @@ -58,11 +72,6 @@ div.footer a { color: #888; } -p.caption { - font-family: inherit; - font-size: inherit; -} - div.relations { display: none; @@ -79,6 +88,11 @@ div.sphinxsidebar a:hover { border-bottom: 1px solid #999; } +div.sphinxsidebar { + font-size: 14px; + line-height: 1.5; +} + div.sphinxsidebarwrapper { padding: 18px 10px; } @@ -107,7 +121,7 @@ div.sphinxsidebarwrapper p.blurb { div.sphinxsidebar h3, div.sphinxsidebar h4 { - font-family: Georgia, serif; + font-family: 'Garamond', 'Georgia', serif; color: #444; font-size: 24px; font-weight: normal; @@ -151,7 +165,7 @@ div.sphinxsidebar ul li.toctree-l2 > a { div.sphinxsidebar input { border: 1px solid #CCC; - font-family: Georgia, serif; + font-family: 'goudy old style', 'minion pro', 'bell mt', Georgia, 'Hiragino Mincho Pro', serif; font-size: 1em; } @@ -166,19 +180,6 @@ div.sphinxsidebar hr { width: 50%; } -div.sphinxsidebar .badge { - border-bottom: none; -} - -div.sphinxsidebar .badge:hover { - border-bottom: none; -} - -/* To address an issue with donation coming after search */ -div.sphinxsidebar h3.donation { - margin-top: 10px; -} - /* -- body styles ----------------------------------------------------------- */ a { @@ -197,7 +198,7 @@ div.body h3, div.body h4, div.body h5, div.body h6 { - font-family: Georgia, serif; + font-family: 'Garamond', 'Georgia', serif; font-weight: normal; margin: 30px 0px 10px 0px; padding: 0; @@ -228,17 +229,21 @@ div.body p, div.body dd, div.body li { div.admonition { margin: 20px 0px; padding: 10px 30px; - background-color: #EEE; - border: 1px solid #CCC; + background-color: #FCC; + border: 1px solid #FAA; } -div.admonition tt.xref, div.admonition code.xref, div.admonition a tt { - background-color: #FBFBFB; +div.admonition tt.xref, div.admonition a tt { border-bottom: 1px solid #fafafa; } +dd div.admonition { + margin-left: -60px; + padding-left: 60px; +} + div.admonition p.admonition-title { - font-family: Georgia, serif; + font-family: 'Garamond', 'Georgia', serif; font-weight: normal; font-size: 24px; margin: 0 0 10px 0; @@ -251,71 +256,25 @@ div.admonition p.last { } div.highlight { - background-color: #fff; + background-color: white; } dt:target, .highlight { background: #FAF3E8; } -div.warning { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.danger { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.error { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.caution { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.attention { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.important { - background-color: #EEE; - border: 1px solid #CCC; -} - div.note { background-color: #EEE; border: 1px solid #CCC; } -div.tip { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.hint { - background-color: #EEE; - border: 1px solid #CCC; -} - div.seealso { background-color: #EEE; border: 1px solid #CCC; } div.topic { - background-color: #EEE; + background-color: #eee; } p.admonition-title { @@ -327,7 +286,7 @@ p.admonition-title:after { } pre, tt, code { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; + font-family: 'Consolas', 'Menlo', 'Deja Vu Sans Mono', 'Bitstream Vera Sans Mono', monospace; font-size: 0.9em; } @@ -350,16 +309,16 @@ tt.descname, code.descname { } img.screenshot { - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; + -moz-box-shadow: 2px 2px 4px #eee; + -webkit-box-shadow: 2px 2px 4px #eee; + box-shadow: 2px 2px 4px #eee; } table.docutils { border: 1px solid #888; - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; + -moz-box-shadow: 2px 2px 4px #eee; + -webkit-box-shadow: 2px 2px 4px #eee; + box-shadow: 2px 2px 4px #eee; } table.docutils td, table.docutils th { @@ -399,18 +358,8 @@ table.field-list p { margin-bottom: 0.8em; } -/* Cloned from - * https://github.com/sphinx-doc/sphinx/commit/ef60dbfce09286b20b7385333d63a60321784e68 - */ -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - table.footnote td.label { - width: .1px; + width: 0px; padding: 0.3em 0 0.3em 0.5em; } @@ -433,7 +382,6 @@ blockquote { } ul, ol { - /* Matches the 30px from the narrow-screen "li > ul" selector below */ margin: 10px 0 10px 30px; padding: 0; } @@ -445,15 +393,16 @@ pre { line-height: 1.3em; } -div.viewcode-block:target { - background: #ffd; -} - dl pre, blockquote pre, li pre { margin-left: 0; padding-left: 30px; } +dl dl pre { + margin-left: -90px; + padding-left: 90px; +} + tt, code { background-color: #ecf0f3; color: #222; @@ -462,7 +411,7 @@ tt, code { tt.xref, code.xref, a tt { background-color: #FBFBFB; - border-bottom: 1px solid #fff; + border-bottom: 1px solid white; } a.reference { @@ -470,11 +419,6 @@ a.reference { border-bottom: 1px dotted #004B6B; } -/* Don't put an underline on images */ -a.image-reference, a.image-reference:hover { - border-bottom: none; -} - a.reference:hover { border-bottom: 1px solid #6D4100; } @@ -524,11 +468,6 @@ a:hover tt, a:hover code { margin-left: 0; } - li > ul { - /* Matches the 30px from the "ul, ol" selector above */ - margin-left: 30px; - } - .document { width: auto; } @@ -564,7 +503,7 @@ a:hover tt, a:hover code { div.documentwrapper { float: none; - background: #fff; + background: white; } div.sphinxsidebar { @@ -579,7 +518,7 @@ a:hover tt, a:hover code { div.sphinxsidebar h3, div.sphinxsidebar h4, div.sphinxsidebar p, div.sphinxsidebar h3 a { - color: #fff; + color: white; } div.sphinxsidebar a { @@ -651,51 +590,4 @@ table.docutils.citation, table.docutils.citation td, table.docutils.citation th -moz-box-shadow: none; -webkit-box-shadow: none; box-shadow: none; -} - - -/* relbar */ - -.related { - line-height: 30px; - width: 100%; - font-size: 0.9rem; -} - -.related.top { - border-bottom: 1px solid #EEE; - margin-bottom: 20px; -} - -.related.bottom { - border-top: 1px solid #EEE; -} - -.related ul { - padding: 0; - margin: 0; - list-style: none; -} - -.related li { - display: inline; -} - -nav#rellinks { - float: right; -} - -nav#rellinks li+li:before { - content: "|"; -} - -nav#breadcrumbs li+li:before { - content: "\00BB"; -} - -/* Hide certain items when printing */ -@media print { - div.related { - display: none; - } } \ No newline at end of file diff --git a/docs/_static/basic.css b/docs/_static/basic.css index 08896771..dc88b5a2 100644 --- a/docs/_static/basic.css +++ b/docs/_static/basic.css @@ -4,7 +4,7 @@ * * Sphinx stylesheet -- basic theme. * - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. + * :copyright: Copyright 2007-2017 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ @@ -15,12 +15,6 @@ div.clearer { clear: both; } -div.section::after { - display: block; - content: ''; - clear: left; -} - /* -- relbar ---------------------------------------------------------------- */ div.related { @@ -87,26 +81,10 @@ div.sphinxsidebar input { font-size: 1em; } -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; + width: 170px; } -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - img { border: 0; max-width: 100%; @@ -130,7 +108,7 @@ ul.search li a { font-weight: bold; } -ul.search li p.context { +ul.search li div.context { color: #888; margin: 2px 0 0 30px; text-align: left; @@ -221,11 +199,6 @@ table.modindextable td { /* -- general body styles --------------------------------------------------- */ -div.body { - min-width: 360px; - max-width: 800px; -} - div.body p, div.body dd, div.body li, div.body blockquote { -moz-hyphens: auto; -ms-hyphens: auto; @@ -267,25 +240,19 @@ p.rubric { font-weight: bold; } -img.align-left, figure.align-left, .figure.align-left, object.align-left { +img.align-left, .figure.align-left, object.align-left { clear: left; float: left; margin-right: 1em; } -img.align-right, figure.align-right, .figure.align-right, object.align-right { +img.align-right, .figure.align-right, object.align-right { clear: right; float: right; margin-left: 1em; } -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { +img.align-center, .figure.align-center, object.align-center { display: block; margin-left: auto; margin-right: auto; @@ -299,45 +266,30 @@ img.align-default, figure.align-default, .figure.align-default { text-align: center; } -.align-default { - text-align: center; -} - .align-right { text-align: right; } /* -- sidebars -------------------------------------------------------------- */ -div.sidebar, -aside.sidebar { +div.sidebar { margin: 0 0 0.5em 1em; border: 1px solid #ddb; - padding: 7px; + padding: 7px 7px 0 7px; background-color: #ffe; width: 40%; float: right; - clear: right; - overflow-x: auto; } p.sidebar-title { font-weight: bold; } -nav.contents, -aside.topic, - -div.admonition, div.topic, blockquote { - clear: left; -} /* -- topics ---------------------------------------------------------------- */ -nav.contents, -aside.topic, div.topic { border: 1px solid #ccc; - padding: 7px; + padding: 7px 7px 0 7px; margin: 10px 0 10px 0; } @@ -359,6 +311,10 @@ div.admonition dt { font-weight: bold; } +div.admonition dl { + margin-bottom: 0; +} + p.admonition-title { margin: 0px 10px 5px 0px; font-weight: bold; @@ -369,50 +325,13 @@ div.body p.centered { margin-top: 25px; } -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -nav.contents > :last-child, -aside.topic > :last-child, - -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -nav.contents::after, -aside.topic::after, - -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - /* -- tables ---------------------------------------------------------------- */ table.docutils { - margin-top: 10px; - margin-bottom: 10px; border: 0; border-collapse: collapse; } -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - table caption span.caption-number { font-style: italic; } @@ -428,6 +347,10 @@ table.docutils td, table.docutils th { border-bottom: 1px solid #aaa; } +table.footnote td, table.footnote th { + border: 0 !important; +} + th { text-align: left; padding-right: 5px; @@ -442,34 +365,22 @@ table.citation td { border-bottom: none; } -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - /* -- figures --------------------------------------------------------------- */ -div.figure, figure { +div.figure { margin: 0.5em; padding: 0.5em; } -div.figure p.caption, figcaption { +div.figure p.caption { padding: 0.3em; } -div.figure p.caption span.caption-number, -figcaption span.caption-number { +div.figure p.caption span.caption-number { font-style: italic; } -div.figure p.caption span.caption-text, -figcaption span.caption-text { +div.figure p.caption span.caption-text { } /* -- field list styles ----------------------------------------------------- */ @@ -487,81 +398,6 @@ table.field-list td, table.field-list th { margin: 0; } -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - /* -- other body styles ----------------------------------------------------- */ ol.arabic { @@ -584,106 +420,11 @@ ol.upperroman { list-style: upper-roman; } -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -/* Docutils 0.17 and older (footnotes & citations) */ -dl.footnote > dt, -dl.citation > dt { - float: left; - margin-right: 0.5em; -} - -dl.footnote > dd, -dl.citation > dd { - margin-bottom: 0em; -} - -dl.footnote > dd:after, -dl.citation > dd:after { - content: ""; - clear: both; -} - -/* Docutils 0.18+ (footnotes & citations) */ -aside.footnote > span, -div.citation > span { - float: left; -} -aside.footnote > span:last-of-type, -div.citation > span:last-of-type { - padding-right: 0.5em; -} -aside.footnote > p { - margin-left: 2em; -} -div.citation > p { - margin-left: 4em; -} -aside.footnote > p:last-of-type, -div.citation > p:last-of-type { - margin-bottom: 0em; -} -aside.footnote > p:last-of-type:after, -div.citation > p:last-of-type:after { - content: ""; - clear: both; -} - -/* Footnotes & citations ends */ - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dt:after { - content: ":"; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - dl { margin-bottom: 15px; } -dd > :first-child { +dd p { margin-top: 0px; } @@ -697,24 +438,23 @@ dd { margin-left: 30px; } -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { +dt:target, .highlighted { background-color: #fbe54e; } -rect.highlighted { - fill: #fbe54e; -} - dl.glossary dt { font-weight: bold; font-size: 1.1em; } +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + .versionmodified { font-style: italic; } @@ -753,13 +493,6 @@ dl.glossary dt { font-style: oblique; } -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - abbr, acronym { border-bottom: dotted 1px; cursor: help; @@ -772,69 +505,29 @@ pre { overflow-y: hidden; /* fixes display issues on Chrome browsers */ } -pre, div[class*="highlight-"] { - clear: both; -} - span.pre { -moz-hyphens: none; -ms-hyphens: none; -webkit-hyphens: none; hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; } td.linenos pre { + padding: 5px 0px; border: 0; background-color: transparent; color: #aaa; } table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; + margin-left: 0.5em; } table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; + padding: 0 0.5em 0 0.5em; } div.code-block-caption { - margin-top: 1em; padding: 2px 5px; font-size: small; } @@ -843,14 +536,8 @@ div.code-block-caption code { background-color: transparent; } -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ +div.code-block-caption + div > div.highlight > pre { + margin-top: 0; } div.code-block-caption span.caption-number { @@ -862,7 +549,21 @@ div.code-block-caption span.caption-text { } div.literal-block-wrapper { - margin: 1em 0; + padding: 1em 1em 0; +} + +div.literal-block-wrapper div.highlight { + margin: 0; +} + +code.descname { + background-color: transparent; + font-weight: bold; + font-size: 1.2em; +} + +code.descclassname { + background-color: transparent; } code.xref, a code { @@ -903,7 +604,8 @@ span.eqno { } span.eqno a.headerlink { - position: absolute; + position: relative; + left: 0px; z-index: 1; } diff --git a/docs/_static/comment-bright.png b/docs/_static/comment-bright.png new file mode 100644 index 0000000000000000000000000000000000000000..15e27edb12ac25701ac0ac21b97b52bb4e45415e GIT binary patch literal 756 zcmVgfIX78 z$8Pzv({A~p%??+>KickCb#0FM1rYN=mBmQ&Nwp<#JXUhU;{|)}%&s>suq6lXw*~s{ zvHx}3C%<;wE5CH!BR{p5@ml9ws}y)=QN-kL2?#`S5d*6j zk`h<}j1>tD$b?4D^N9w}-k)bxXxFg>+#kme^xx#qg6FI-%iv2U{0h(Y)cs%5a|m%Pn_K3X_bDJ>EH#(Fb73Z zfUt2Q3B>N+ot3qb*DqbTZpFIn4a!#_R-}{?-~Hs=xSS6p&$sZ-k1zDdtqU`Y@`#qL z&zv-~)Q#JCU(dI)Hf;$CEnK=6CK50}q7~wdbI->?E07bJ0R;!GSQTs5Am`#;*WHjvHRvY?&$Lm-vq1a_BzocI^ULXV!lbMd%|^B#fY;XX)n<&R^L z=84u1e_3ziq;Hz-*k5~zwY3*oDKt0;bM@M@@89;@m*4RFgvvM_4;5LB!@OB@^WbVT zjl{t;a8_>od-~P4 m{5|DvB&z#xT;*OnJqG}gk~_7HcNkCr0000W zanA~u9RIXo;n7c96&U)YLgs-FGlx~*_c{Jgvesu1E5(8YEf&5wF=YFPcRe@1=MJmi zag(L*xc2r0(slpcN!vC5CUju;vHJkHc*&70_n2OZsK%O~A=!+YIw z7zLLl7~Z+~RgWOQ=MI6$#0pvpu$Q43 zP@36QAmu6!_9NPM?o<1_!+stoVRRZbW9#SPe!n;#A_6m8f}|xN1;H{`0RoXQ2LM47 zt(g;iZ6|pCb@h2xk&(}S3=EVBUO0e90m2Lp5CB<(SPIaB;n4))3JB87Or#XPOPcum z?<^(g+m9}VNn4Y&B`g8h{t_$+RB1%HKRY6fjtd-<7&EsU;vs0GM(Lmbhi%Gwcfs0FTF}T zL{_M6Go&E0Eg8FuB*(Yn+Z*RVTBE@10eIOb3El^MhO`GabDll(V0&FlJi2k^;q8af zkENdk2}x2)_KVp`5OAwXZM;dG0?M-S)xE1IKDi6BY@5%Or?#aZ9$gcX)dPZ&wA1a< z$rFXHPn|TBf`e?>Are8sKtKrKcjF$i^lp!zkL?C|y^vlHr1HXeVJd;1I~g&Ob-q)& z(fn7s-KI}G{wnKzg_U5G(V%bX6uk zIa+<@>rdmZYd!9Y=C0cuchrbIjuRB_Wq{-RXlic?flu1*_ux}x%(HDH&nT`k^xCeC ziHi1!ChH*sQ6|UqJpTTzX$aw8e(UfcS^f;6yBWd+(1-70zU(rtxtqR%j z-lsH|CKQJXqD{+F7V0OTv8@{~(wp(`oIP^ZykMWgR>&|RsklFMCnOo&Bd{le} zV5F6424Qzl;o2G%oVvmHgRDP9!=rK8fy^!yV8y*4p=??uIRrrr0?>O!(z*g5AvL2!4z0{sq%vhG*Po}`a<6%kTK5TNhtC8}rXNu&h^QH4A&Sk~Autm*s~45(H7+0bi^MraaRVzr05hQ3iK?j` zR#U@^i0WhkIHTg29u~|ypU?sXCQEQgXfObPW;+0YAF;|5XyaMAEM0sQ@4-xCZe=0e z7r$ofiAxn@O5#RodD8rh5D@nKQ;?lcf@tg4o+Wp44aMl~c47azN_(im0N)7OqdPBC zGw;353_o$DqGRDhuhU$Eaj!@m000000NkvXXu0mjfjZ7Z_ literal 0 HcmV?d00001 diff --git a/docs/_static/contents.png b/docs/_static/contents.png new file mode 100644 index 0000000000000000000000000000000000000000..6c59aa1f9c8c3b754b258b8ab4f6b95971c99109 GIT binary patch literal 107 zcmeAS@N?(olHy`uVBq!ia0vp^j6kfx!2~2XTwzxLQbwLGjv*C{Q@c%>8XN?UO#1VG zcLb|!+10i0Jzf{Gv>fyFaQYL)bKk!I{mJd!3^2Uu$-u=wds-dX_E&EV { - if (document.readyState !== "loading") { - callback(); - } else { - document.addEventListener("DOMContentLoaded", callback); - } +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + +/** + * make the code below compatible with browsers without + * an installed firebug like debugger +if (!window.console || !console.firebug) { + var names = ["log", "debug", "info", "warn", "error", "assert", "dir", + "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", + "profile", "profileEnd"]; + window.console = {}; + for (var i = 0; i < names.length; ++i) + window.console[names[i]] = function() {}; +} + */ + +/** + * small helper function to urldecode strings + */ +jQuery.urldecode = function(x) { + return decodeURIComponent(x).replace(/\+/g, ' '); }; /** - * highlight a given string on a node by wrapping it in - * span elements with the given class name. + * small helper function to urlencode strings */ -const _highlight = (node, addItems, text, className) => { - if (node.nodeType === Node.TEXT_NODE) { - const val = node.nodeValue; - const parent = node.parentNode; - const pos = val.toLowerCase().indexOf(text); - if ( - pos >= 0 && - !parent.classList.contains(className) && - !parent.classList.contains("nohighlight") - ) { - let span; +jQuery.urlencode = encodeURIComponent; - const closestNode = parent.closest("body, svg, foreignObject"); - const isInSVG = closestNode && closestNode.matches("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.classList.add(className); - } +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s == 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - parent.insertBefore( - span, - parent.insertBefore( +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node) { + if (node.nodeType == 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && !jQuery(node.parentNode).hasClass(className)) { + var span = document.createElement("span"); + span.className = className; + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( document.createTextNode(val.substr(pos + text.length)), - node.nextSibling - ) - ); - node.nodeValue = val.substr(0, pos); - - if (isInSVG) { - const rect = document.createElementNS( - "http://www.w3.org/2000/svg", - "rect" - ); - const bbox = parent.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute("class", className); - addItems.push({ parent: parent, target: rect }); + node.nextSibling)); + node.nodeValue = val.substr(0, pos); } } - } else if (node.matches && !node.matches("button, select, textarea")) { - node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this); + }); + } } + return this.each(function() { + highlight(this); + }); }; -const _highlightText = (thisNode, text, className) => { - let addItems = []; - _highlight(thisNode, addItems, text, className); - addItems.forEach((obj) => - obj.parent.insertAdjacentElement("beforebegin", obj.target) - ); -}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} /** * Small JavaScript module for the documentation. */ -const Documentation = { - init: () => { - Documentation.highlightSearchWords(); - Documentation.initDomainIndexTable(); - Documentation.initOnKeyListeners(); +var Documentation = { + + init : function() { + this.fixFirefoxAnchorBug(); + this.highlightSearchWords(); + this.initIndexTable(); + }, /** * i18n support */ - TRANSLATIONS: {}, - PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), - LOCALE: "unknown", + TRANSLATIONS : {}, + PLURAL_EXPR : function(n) { return n == 1 ? 0 : 1; }, + LOCALE : 'unknown', // gettext and ngettext don't access this so that the functions // can safely bound to a different name (_ = Documentation.gettext) - gettext: (string) => { - const translated = Documentation.TRANSLATIONS[string]; - switch (typeof translated) { - case "undefined": - return string; // no translation - case "string": - return translated; // translation exists - default: - return translated[0]; // (singular, plural) translation tuple exists - } + gettext : function(string) { + var translated = Documentation.TRANSLATIONS[string]; + if (typeof translated == 'undefined') + return string; + return (typeof translated == 'string') ? translated : translated[0]; }, - ngettext: (singular, plural, n) => { - const translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated !== "undefined") - return translated[Documentation.PLURAL_EXPR(n)]; - return n === 1 ? singular : plural; + ngettext : function(singular, plural, n) { + var translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated == 'undefined') + return (n == 1) ? singular : plural; + return translated[Documentation.PLURALEXPR(n)]; }, - addTranslations: (catalog) => { - Object.assign(Documentation.TRANSLATIONS, catalog.messages); - Documentation.PLURAL_EXPR = new Function( - "n", - `return (${catalog.plural_expr})` - ); - Documentation.LOCALE = catalog.locale; + addTranslations : function(catalog) { + for (var key in catalog.messages) + this.TRANSLATIONS[key] = catalog.messages[key]; + this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); + this.LOCALE = catalog.locale; }, /** - * highlight the search words provided in the url in the text + * add context elements like header anchor links */ - highlightSearchWords: () => { - const highlight = - new URLSearchParams(window.location.search).get("highlight") || ""; - const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); - if (terms.length === 0) return; // nothing to do - - // There should never be more than one element matching "div.body" - const divBody = document.querySelectorAll("div.body"); - const body = divBody.length ? divBody[0] : document.querySelector("body"); - window.setTimeout(() => { - terms.forEach((term) => _highlightText(body, term, "highlighted")); - }, 10); - - const searchBox = document.getElementById("searchbox"); - if (searchBox === null) return; - searchBox.appendChild( - document - .createRange() - .createContextualFragment( - '" - ) - ); + addContextElements : function() { + $('div[id] > :header:first').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this headline')). + appendTo(this); + }); + $('dt[id]').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this definition')). + appendTo(this); + }); }, /** - * helper function to hide the search marks again + * workaround a firefox stupidity + * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 */ - hideSearchWords: () => { - document - .querySelectorAll("#searchbox .highlight-link") - .forEach((el) => el.remove()); - document - .querySelectorAll("span.highlighted") - .forEach((el) => el.classList.remove("highlighted")); - const url = new URL(window.location); - url.searchParams.delete("highlight"); - window.history.replaceState({}, "", url); + fixFirefoxAnchorBug : function() { + if (document.location.hash) + window.setTimeout(function() { + document.location.href += ''; + }, 10); }, /** - * helper function to focus on search bar + * highlight the search words provided in the url in the text */ - focusSearchBar: () => { - document.querySelectorAll("input[name=q]")[0]?.focus(); + highlightSearchWords : function() { + var params = $.getQueryParameters(); + var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; + if (terms.length) { + var body = $('div.body'); + if (!body.length) { + body = $('body'); + } + window.setTimeout(function() { + $.each(terms, function() { + body.highlightText(this.toLowerCase(), 'highlighted'); + }); + }, 10); + $('') + .appendTo($('#searchbox')); + } }, /** - * Initialise the domain index toggle buttons + * init the domain index toggle buttons */ - initDomainIndexTable: () => { - const toggler = (el) => { - const idNumber = el.id.substr(7); - const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); - if (el.src.substr(-9) === "minus.png") { - el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; - toggledRows.forEach((el) => (el.style.display = "none")); - } else { - el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; - toggledRows.forEach((el) => (el.style.display = "")); - } - }; - - const togglerElements = document.querySelectorAll("img.toggler"); - togglerElements.forEach((el) => - el.addEventListener("click", (event) => toggler(event.currentTarget)) - ); - togglerElements.forEach((el) => (el.style.display = "")); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + initIndexTable : function() { + var togglers = $('img.toggler').click(function() { + var src = $(this).attr('src'); + var idnum = $(this).attr('id').substr(7); + $('tr.cg-' + idnum).toggle(); + if (src.substr(-9) == 'minus.png') + $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); + else + $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); + }).css('display', ''); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { + togglers.click(); + } }, - initOnKeyListeners: () => { - // only install a listener if it is really needed - if ( - !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS - ) - return; + /** + * helper function to hide the search marks again + */ + hideSearchWords : function() { + $('#searchbox .highlight-link').fadeOut(300); + $('span.highlighted').removeClass('highlighted'); + }, - const blacklistedElements = new Set([ - "TEXTAREA", - "INPUT", - "SELECT", - "BUTTON", - ]); - document.addEventListener("keydown", (event) => { - if (blacklistedElements.has(document.activeElement.tagName)) return; // bail for input elements - if (event.altKey || event.ctrlKey || event.metaKey) return; // bail with special keys + /** + * make the url absolute + */ + makeURL : function(relativeURL) { + return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; + }, - if (!event.shiftKey) { - switch (event.key) { - case "ArrowLeft": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + /** + * get the current relative url + */ + getCurrentURL : function() { + var path = document.location.pathname; + var parts = path.split(/\//); + $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { + if (this == '..') + parts.pop(); + }); + var url = parts.join('/'); + return path.substring(url.lastIndexOf('/') + 1, path.length - 1); + }, - const prevLink = document.querySelector('link[rel="prev"]'); - if (prevLink && prevLink.href) { - window.location.href = prevLink.href; - event.preventDefault(); + initOnKeyListeners: function() { + $(document).keyup(function(event) { + var activeElementType = document.activeElement.tagName; + // don't navigate when in search box or textarea + if (activeElementType !== 'TEXTAREA' && activeElementType !== 'INPUT' && activeElementType !== 'SELECT') { + switch (event.keyCode) { + case 37: // left + var prevHref = $('link[rel="prev"]').prop('href'); + if (prevHref) { + window.location.href = prevHref; + return false; } - break; - case "ArrowRight": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const nextLink = document.querySelector('link[rel="next"]'); - if (nextLink && nextLink.href) { - window.location.href = nextLink.href; - event.preventDefault(); + case 39: // right + var nextHref = $('link[rel="next"]').prop('href'); + if (nextHref) { + window.location.href = nextHref; + return false; } - break; - case "Escape": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.hideSearchWords(); - event.preventDefault(); } } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case "/": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.focusSearchBar(); - event.preventDefault(); - } }); - }, + } }; // quick alias for translations -const _ = Documentation.gettext; +_ = Documentation.gettext; -_ready(Documentation.init); +$(document).ready(function() { + Documentation.init(); +}); \ No newline at end of file diff --git a/docs/_static/documentation_options.js b/docs/_static/documentation_options.js index b5bf05a2..8a5f4b08 100644 --- a/docs/_static/documentation_options.js +++ b/docs/_static/documentation_options.js @@ -1,14 +1,9 @@ var DOCUMENTATION_OPTIONS = { - URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '5.2', - LANGUAGE: 'en', + URL_ROOT: '', + VERSION: '4.0', + LANGUAGE: 'None', COLLAPSE_INDEX: false, - BUILDER: 'html', FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', HAS_SOURCE: true, - SOURCELINK_SUFFIX: '.txt', - NAVIGATION_WITH_KEYS: false, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: false, + SOURCELINK_SUFFIX: '.txt' }; \ No newline at end of file diff --git a/docs/_static/down-pressed.png b/docs/_static/down-pressed.png new file mode 100644 index 0000000000000000000000000000000000000000..5756c8cad8854722893dc70b9eb4bb0400343a39 GIT binary patch literal 222 zcmeAS@N?(olHy`uVBq!ia0vp^0wB!61|;P_|4#%`OFdm2Ln;`PZ^+1>KjR?B@S0W7 z%OS_REiHONoJ6{+Ks@6k3590|7k9F+ddB6!zw3#&!aw#S`x}3V3&=A(a#84O-&F7T z^k3tZB;&iR9siw0|F|E|DAL<8r-F4!1H-;1{e*~yAKZN5f0|Ei6yUmR#Is)EM(Po_ zi`qJR6|P<~+)N+kSDgL7AjdIC_!O7Q?eGb+L+qOjm{~LLinM4NHn7U%HcK%uoMYO5 VJ~8zD2B3o(JYD@<);T3K0RV0%P>BEl literal 0 HcmV?d00001 diff --git a/docs/_static/down.png b/docs/_static/down.png new file mode 100644 index 0000000000000000000000000000000000000000..1b3bdad2ceffae91cee61b32f3295f9bbe646e48 GIT binary patch literal 202 zcmeAS@N?(olHy`uVBq!ia0vp^0wB!60wlNoGJgf6CVIL!hEy=F?b*7pIY7kW{q%Rg zx!yQ<9v8bmJwa`TQk7YSw}WVQ()mRdQ;TC;* literal 0 HcmV?d00001 diff --git a/docs/_static/jquery-3.1.0.js b/docs/_static/jquery-3.1.0.js new file mode 100644 index 00000000..f2fc2747 --- /dev/null +++ b/docs/_static/jquery-3.1.0.js @@ -0,0 +1,10074 @@ +/*eslint-disable no-unused-vars*/ +/*! + * jQuery JavaScript Library v3.1.0 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright jQuery Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2016-07-07T21:44Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var document = window.document; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var concat = arr.concat; + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + + + + function DOMEval( code, doc ) { + doc = doc || document; + + var script = doc.createElement( "script" ); + + script.text = code; + doc.head.appendChild( script ).parentNode.removeChild( script ); + } +/* global Symbol */ +// Defining this global in .eslintrc would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.1.0", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }, + + // Support: Android <=4.0 only + // Make sure we trim BOM and NBSP + rtrim = /^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g, + + // Matches dashed string for camelizing + rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g, + + // Used by jQuery.camelCase as callback to replace() + fcamelCase = function( all, letter ) { + return letter.toUpperCase(); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + return num != null ? + + // Return just the one element from the set + ( num < 0 ? this[ num + this.length ] : this[ num ] ) : + + // Return all the elements in a clean array + slice.call( this ); + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !jQuery.isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + src = target[ name ]; + copy = options[ name ]; + + // Prevent never-ending loop + if ( target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = jQuery.isArray( copy ) ) ) ) { + + if ( copyIsArray ) { + copyIsArray = false; + clone = src && jQuery.isArray( src ) ? src : []; + + } else { + clone = src && jQuery.isPlainObject( src ) ? src : {}; + } + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isFunction: function( obj ) { + return jQuery.type( obj ) === "function"; + }, + + isArray: Array.isArray, + + isWindow: function( obj ) { + return obj != null && obj === obj.window; + }, + + isNumeric: function( obj ) { + + // As of jQuery 3.0, isNumeric is limited to + // strings and numbers (primitives or objects) + // that can be coerced to finite numbers (gh-2662) + var type = jQuery.type( obj ); + return ( type === "number" || type === "string" ) && + + // parseFloat NaNs numeric-cast false positives ("") + // ...but misinterprets leading-number strings, particularly hex literals ("0x...") + // subtraction forces infinities to NaN + !isNaN( obj - parseFloat( obj ) ); + }, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + + /* eslint-disable no-unused-vars */ + // See https://github.com/eslint/eslint/issues/6125 + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + type: function( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; + }, + + // Evaluates a script in a global context + globalEval: function( code ) { + DOMEval( code ); + }, + + // Convert dashed to camelCase; used by the css and data modules + // Support: IE <=9 - 11, Edge 12 - 13 + // Microsoft forgot to hump their vendor prefix (#9572) + camelCase: function( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); + }, + + nodeName: function( elem, name ) { + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // Support: Android <=4.0 only + trim: function( text ) { + return text == null ? + "" : + ( text + "" ).replace( rtrim, "" ); + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return concat.apply( [], ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // Bind a function to a context, optionally partially applying any + // arguments. + proxy: function( fn, context ) { + var tmp, args, proxy; + + if ( typeof context === "string" ) { + tmp = fn[ context ]; + context = fn; + fn = tmp; + } + + // Quick check to determine if target is callable, in the spec + // this throws a TypeError, but we will just return undefined. + if ( !jQuery.isFunction( fn ) ) { + return undefined; + } + + // Simulated bind + args = slice.call( arguments, 2 ); + proxy = function() { + return fn.apply( context || this, args.concat( slice.call( arguments ) ) ); + }; + + // Set the guid of unique handler to the same of original handler, so it can be removed + proxy.guid = fn.guid = fn.guid || jQuery.guid++; + + return proxy; + }, + + now: Date.now, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), +function( i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); +} ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = jQuery.type( obj ); + + if ( type === "function" || jQuery.isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.0 + * https://sizzlejs.com/ + * + * Copyright jQuery Foundation and other contributors + * Released under the MIT license + * http://jquery.org/license + * + * Date: 2016-01-04 + */ +(function( window ) { + +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ({}).hasOwnProperty, + arr = [], + pop = arr.pop, + push_native = arr.push, + push = arr.push, + slice = arr.slice, + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[i] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier + identifier = "(?:\\\\.|[\\w-]|[^\0-\\xa0])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + // "Attribute values must be CSS identifiers [capture 5] or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + whitespace + + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + "*" ), + + rattributeQuotes = new RegExp( "=" + whitespace + "*([^\\]'\"]*?)" + whitespace + "*\\]", "g" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + whitespace + + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + whitespace + + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + + whitespace + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\([\\da-f]{1,6}" + whitespace + "?|(" + whitespace + ")|.)", "ig" ), + funescape = function( _, escaped, escapedWhitespace ) { + var high = "0x" + escaped - 0x10000; + // NaN means non-codepoint + // Support: Firefox<24 + // Workaround erroneous numeric interpretation of +"0x" + return high !== high || escapedWhitespace ? + escaped : + high < 0 ? + // BMP codepoint + String.fromCharCode( high + 0x10000 ) : + // Supplemental Plane codepoint (surrogate pair) + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\x80-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + disabledAncestor = addCombinator( + function( elem ) { + return elem.disabled === true; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + (arr = slice.call( preferredDoc.childNodes )), + preferredDoc.childNodes + ); + // Support: Android<4.0 + // Detect silently failing push.apply + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + push_native.apply( target, slice.call(els) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + // Can't trust NodeList.length + while ( (target[j++] = els[i++]) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + + if ( ( context ? context.ownerDocument || context : preferredDoc ) !== document ) { + setDocument( context ); + } + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && (match = rquickExpr.exec( selector )) ) { + + // ID selector + if ( (m = match[1]) ) { + + // Document context + if ( nodeType === 9 ) { + if ( (elem = context.getElementById( m )) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && (elem = newContext.getElementById( m )) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[2] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( (m = match[3]) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !compilerCache[ selector + " " ] && + (!rbuggyQSA || !rbuggyQSA.test( selector )) ) { + + if ( nodeType !== 1 ) { + newContext = context; + newSelector = selector; + + // qSA looks outside Element context, which is not what we want + // Thanks to Andrew Dupont for this workaround technique + // Support: IE <=8 + // Exclude object elements + } else if ( context.nodeName.toLowerCase() !== "object" ) { + + // Capture the context ID, setting it first if necessary + if ( (nid = context.getAttribute( "id" )) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", (nid = expando) ); + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[i] = "#" + nid + " " + toSelector( groups[i] ); + } + newSelector = groups.join( "," ); + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + } + + if ( newSelector ) { + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return (cache[ key + " " ] = value); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement("fieldset"); + + try { + return !!fn( el ); + } catch (e) { + return false; + } finally { + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split("|"), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[i] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( (cur = cur.nextSibling) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return (name === "input" || name === "button") && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + // Known :disabled false positives: + // IE: *[disabled]:not(button, input, select, textarea, optgroup, option, menuitem, fieldset) + // not IE: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Check form elements and option elements for explicit disabling + return "label" in elem && elem.disabled === disabled || + "form" in elem && elem.disabled === disabled || + + // Check non-disabled form elements for fieldset[disabled] ancestors + "form" in elem && elem.disabled === false && ( + // Support: IE6-11+ + // Ancestry is covered for us + elem.isDisabled === disabled || + + // Otherwise, assume any non-
    diff --git a/docs/index.html b/docs/index.html index a40a85e8..38987cf5 100644 --- a/docs/index.html +++ b/docs/index.html @@ -4,14 +4,16 @@ - + Welcome to Tigramite’s documentation! — Tigramite 5.2 documentation + + + - @@ -48,9 +50,11 @@

    TIGRAMITEGithub repo

    Tigramite is a causal time series analysis python package. It allows to efficiently estimate causal graphs from high-dimensional time series datasets (causal discovery) and to use these graphs for robust forecasting and the estimation and prediction of direct, total, and mediated effects. Causal discovery is based on linear as well as non-parametric conditional independence tests applicable to discrete or continuously-valued time series. Also includes functions for high-quality plots of the results. Please cite the following papers depending on which method you use:

      +
    • Overview: Runge, J., Gerhardus, A., Varando, G. et al. Causal inference for time series. Nat Rev Earth Environ (2023). https://doi.org/10.1038/s43017-023-00431-y

    • PCMCI: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019). https://advances.sciencemag.org/content/5/11/eaau4996

    • PCMCI+: J. Runge (2020): Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, AUAI Press, 2020. http://auai.org/uai2020/proceedings/579_main_paper.pdf

    • LPCMCI: Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders Advances in Neural Information Processing Systems, 2020, 33. https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html

    • +
    • RPCMCI: Elena Saggioro, Jana de Wiljes, Marlene Kretschmer, Jakob Runge; Reconstructing regime-dependent causal relationships from observational time series. Chaos 1 November 2020; 30 (11): 113115. https://doi.org/10.1063/5.0020538

    • Generally: J. Runge (2018): Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310. https://aip.scitation.org/doi/10.1063/1.5025050

    • Nature Communications Perspective paper: https://www.nature.com/articles/s41467-019-10105-3

    • Causal effects: J. Runge, Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables, Advances in Neural Information Processing Systems, 2021, 34

    • @@ -68,61 +72,64 @@

      TIGRAMITE

      tigramite.lpcmci.LPCMCI(dataframe, cond_ind_test)

      LPCMCI is an algorithm for causal discovery in large-scale times series that allows for latent confounders and learns lag-specific causal relationships.

      -

      tigramite.independence_tests.independence_tests_base.CondIndTest([...])

      +

      tigramite.rpcmci.RPCMCI(dataframe[, ...])

      +

      RPCMCI class for extracting causal regimes and the associated graphs from time series data.

      + +

      tigramite.independence_tests.independence_tests_base.CondIndTest([...])

      Base class of conditional independence tests.

      -

      tigramite.independence_tests.parcorr.ParCorr(...)

      +

      tigramite.independence_tests.parcorr.ParCorr(...)

      Partial correlation test.

      -

      tigramite.independence_tests.robust_parcorr.RobustParCorr(...)

      +

      tigramite.independence_tests.robust_parcorr.RobustParCorr(...)

      Robust partial correlation test based on non-paranormal models.

      -

      tigramite.independence_tests.gpdc.GPDC([...])

      +

      tigramite.independence_tests.gpdc.GPDC([...])

      GPDC conditional independence test based on Gaussian processes and distance correlation.

      -

      tigramite.independence_tests.gpdc_torch.GPDCtorch([...])

      +

      tigramite.independence_tests.gpdc_torch.GPDCtorch([...])

      GPDC conditional independence test based on Gaussian processes and distance correlation.

      -

      tigramite.independence_tests.cmiknn.CMIknn([...])

      +

      tigramite.independence_tests.cmiknn.CMIknn([...])

      Conditional mutual information test based on nearest-neighbor estimator.

      -

      tigramite.independence_tests.cmisymb.CMIsymb([...])

      +

      tigramite.independence_tests.cmisymb.CMIsymb([...])

      Conditional mutual information test for discrete/categorical data.

      -

      tigramite.independence_tests.oracle_conditional_independence.OracleCI([...])

      +

      tigramite.independence_tests.oracle_conditional_independence.OracleCI([...])

      Oracle of conditional independence test X _|_ Y | Z given a graph.

      -

      tigramite.independence_tests.parcorr_mult.ParCorrMult([...])

      +

      tigramite.independence_tests.parcorr_mult.ParCorrMult([...])

      Partial correlation test for multivariate X and Y.

      -

      tigramite.independence_tests.gsquared.Gsquared([...])

      +

      tigramite.independence_tests.gsquared.Gsquared([...])

      G-squared conditional independence test for categorical data.

      -

      tigramite.independence_tests.parcorr_wls.ParCorrWLS([...])

      +

      tigramite.independence_tests.parcorr_wls.ParCorrWLS([...])

      Weighted partial correlation test.

      -

      tigramite.independence_tests.regressionCI.RegressionCI(...)

      +

      tigramite.independence_tests.regressionCI.RegressionCI(...)

      Flexible parametric conditional independence tests for continuous, categorical, or mixed data.

      -

      tigramite.causal_effects.CausalEffects(...)

      +

      tigramite.causal_effects.CausalEffects(...)

      Causal effect estimation.

      -

      tigramite.models.Models(dataframe, model[, ...])

      +

      tigramite.models.Models(dataframe, model[, ...])

      Base class for time series models.

      -

      tigramite.models.LinearMediation(dataframe)

      +

      tigramite.models.LinearMediation(dataframe)

      Linear mediation analysis for time series models.

      -

      tigramite.models.Prediction(dataframe, ...)

      +

      tigramite.models.Prediction(dataframe, ...)

      Prediction class for time series models.

      -

      tigramite.data_processing

      +

      tigramite.data_processing

      Tigramite data processing functions.

      -

      tigramite.toymodels.structural_causal_processes

      +

      tigramite.toymodels.structural_causal_processes

      Tigramite toymodels.

      -

      tigramite.plotting

      +

      tigramite.plotting

      Tigramite plotting package.

      @@ -172,10 +179,9 @@

      hypothetical interventions, you may better look at the causal effect estimation functionality of Tigramite.

      References

      -
      Parameters:
        @@ -282,7 +287,7 @@

        Parameters:
          -
        • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is +

        • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values, optionally adjusted if fdr_method is not ‘none’.

        • alpha_level (float, optional (default: 0.05)) – Significance level at which the p_matrix is thresholded to get graph.

        • @@ -410,7 +415,7 @@

          Parameters:
            -
          • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

          • +
          • graph (array of shape [N, N, tau_max+1]) – Causal graph, see description above for interpretation.

          • val_matrix (array-like) – Matrix of test statistic values. Must be of shape (N, N, tau_max + 1).

          • include_lagzero_parents (bool (default: False)) – Whether the dictionary should also return parents at lag @@ -610,7 +615,7 @@

            Must be greater zero.

          • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

          • save_iterations (bool, default: False) – Whether to save iteration step results such as conditions used.

          • -
          • pc_alpha (float or list of floats, default: [0.05, 0.1, 0.2, ..., 0.5]) – Significance level in algorithm. If a list or None is passed, the +

          • pc_alpha (float or list of floats, default: [0.05, 0.1, 0.2, ..., 0.5]) – Significance level in algorithm. If a list or None is passed, the pc_alpha level is optimized for every variable across the given pc_alpha values using the score computed in cond_ind_test.get_model_selection_criterion().

          • @@ -687,7 +692,7 @@

          • graph (array of shape [N, N, tau_max+1]) – Resulting causal graph, see description above for interpretation.

          • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values regarding adjacencies.

          • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values regarding adjacencies.

          • -
          • sepset (dictionary) – Separating sets. See paper for details.

          • +
          • sepsets (dictionary) – Separating sets. See paper for details.

          • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and ‘conservative’ rules, see paper for details.

          @@ -722,7 +727,7 @@

        • graph (array of shape [N, N, 1]) – Resulting causal graph, see description above for interpretation.

        • val_matrix (array of shape [N, N, 1]) – Estimated matrix of test statistic values regarding adjacencies.

        • p_matrix (array of shape [N, N, 1]) – Estimated matrix of p-values regarding adjacencies.

        • -
        • sepset (dictionary) – Separating sets. See paper for details.

        • +
        • sepsets (dictionary) – Separating sets. See paper for details.

        • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and ‘conservative’ rules, see paper for details.

        @@ -959,49 +964,6 @@

        which improves detection power for lagged links, but also leads to larger runtimes.

        Further optional parameters are discussed in [5].

        -

        Examples

        -
        >>> import numpy as np
        ->>> from tigramite.pcmci import PCMCI
        ->>> from tigramite.independence_tests import ParCorr
        ->>> import tigramite.data_processing as pp
        ->>> from tigramite.toymodels import structural_causal_processes as toys
        ->>> # Example process to play around with
        ->>> # Each key refers to a variable and the incoming links are supplied
        ->>> # as a list of format [((var, -lag), coeff, function), ...]
        ->>> def lin_f(x): return x
        ->>> links = {0: [((0, -1), 0.9, lin_f)],
        -             1: [((1, -1), 0.8, lin_f), ((0, -1), 0.8, lin_f)],
        -             2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)],
        -             3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)],
        -             }
        ->>> data, nonstat = toys.structural_causal_process(links,
        -                    T=1000, seed=7)
        ->>> # Data must be array of shape (time, variables)
        ->>> print (data.shape)
        -(1000, 4)
        ->>> dataframe = pp.DataFrame(data)
        ->>> cond_ind_test = ParCorr()
        ->>> pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)
        ->>> results = pcmci.run_pcmciplus(tau_min=0, tau_max=2, pc_alpha=0.01)
        ->>> pcmci.print_results(results, alpha_level=0.01)
        -    ## Significant links at alpha = 0.01:
        -
        -
        -
        -
        -
        Variable 0 has 1 link(s):

        (0 -1): pval = 0.00000 | val = 0.676

        -
        -
        Variable 1 has 2 link(s):

        (1 -1): pval = 0.00000 | val = 0.602 -(0 -1): pval = 0.00000 | val = 0.599

        -
        -
        Variable 2 has 2 link(s):

        (1 0): pval = 0.00000 | val = 0.486 -(2 -1): pval = 0.00000 | val = 0.466

        -
        -
        Variable 3 has 2 link(s):

        (3 -1): pval = 0.00000 | val = 0.524 -(2 0): pval = 0.00000 | val = -0.449

        -
        -
        -
        Parameters:
          @@ -1020,7 +982,7 @@

          or the links are assumed absent.

        • tau_min (int, optional (default: 0)) – Minimum time lag to test.

        • tau_max (int, optional (default: 1)) – Maximum time lag. Must be larger or equal to tau_min.

        • -
        • pc_alpha (float or list of floats, default: 0.01) – Significance level in algorithm. If a list or None is passed, the +

        • pc_alpha (float or list of floats, default: 0.01) – Significance level in algorithm. If a list or None is passed, the pc_alpha level is optimized for every graph across the given pc_alpha values ([0.001, 0.005, 0.01, 0.025, 0.05] for None) using the score computed in cond_ind_test.get_model_selection_criterion().

        • @@ -1054,7 +1016,7 @@

        • graph (array of shape [N, N, tau_max+1]) – Resulting causal graph, see description above for interpretation.

        • val_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of test statistic values regarding adjacencies.

        • p_matrix (array of shape [N, N, tau_max+1]) – Estimated matrix of p-values regarding adjacencies.

        • -
        • sepset (dictionary) – Separating sets. See paper for details.

        • +
        • sepsets (dictionary) – Separating sets. See paper for details.

        • ambiguous_triples (list) – List of ambiguous triples, only relevant for ‘majority’ and ‘conservative’ rules, see paper for details.

        @@ -1072,11 +1034,11 @@

        class tigramite.lpcmci.LPCMCI(dataframe, cond_ind_test, verbosity=0)[source]

        LPCMCI is an algorithm for causal discovery in large-scale times series that allows for latent confounders and -learns lag-specific causal relationships. The algorithm is introduced and explained in: -[1] Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. +learns lag-specific causal relationships. The algorithm is introduced and explained in:

        +

        [1] Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. Advances in Neural Information Processing Systems, 2020, 33. -https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html -NOTE: This method is still EXPERIMENTAL since the default settings of hyperparameters are still being fine-tuned. +https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html

        +

        NOTE: This method is still EXPERIMENTAL since the default settings of hyperparameters are still being fine-tuned. We actually invite feedback on which work best in applications and numerical experiments. The main function, which applies the algorithm, is ‘run_lpcmci’.

        Parameters passed to the constructor: @@ -1293,13 +1255,91 @@

        + +
        +

        tigramite.rpcmci: RPCMCI

        +
        +
        +class tigramite.rpcmci.RPCMCI(dataframe, cond_ind_test=None, prediction_model=None, seed=None, verbosity=- 1)[source]
        +

        RPCMCI class for extracting causal regimes and the associated graphs from +time series data.

        +

        Notes

        +

        The Regime-PCMCI causal discovery method is described in:

        +

        Elena Saggioro, Jana de Wiljes, Marlene Kretschmer, Jakob Runge; +Reconstructing regime-dependent causal relationships from observational +time series. Chaos 1 November 2020; 30 (11): 113115. +https://doi.org/10.1063/5.0020538

        +

        The method iterates between two phases –a regime learning phase +(optimization-based) and a causal discovery phase (PCMCI)– to identify +regime dependent causal relationships. A persistent discrete regime +variable is assumed that leads to a finite number of regimes within which +stationarity can be assumed.

        +
        +
        Parameters:
        +
          +
        • dataframe (data object) – This is the Tigramite dataframe object. It has the attributes +dataframe.values yielding a numpy array of shape ( observations T, +variables N). For RPCMCI the mask will be ignored. You may use the +missing_flag to indicate missing values.

        • +
        • cond_ind_test (conditional independence test object) – This can be ParCorr or other classes from +tigramite.independence_tests or an external test passed as a +callable. This test can be based on the class +tigramite.independence_tests.CondIndTest.

        • +
        • prediction_model (sklearn model object) – For example, sklearn.linear_model.LinearRegression() for a linear +regression model. This should be consistent with cond_ind_test, ie, +use ParCorr() with a linear model and, eg, GPDC() with a +GaussianProcessRegressor model, or CMIknn with NearestNeighbors model.

        • +
        • seed (int) – Random seed for annealing step.

        • +
        • verbosity (int, optional (default: -1)) – Verbose levels -1, 0, 1, …

        • +
        +
        +
        +
        +
        +run_rpcmci(num_regimes, max_transitions, switch_thres=0.05, num_iterations=20, max_anneal=10, tau_min=1, tau_max=1, pc_alpha=0.2, alpha_level=0.01, n_jobs=- 1)[source]
        +
        +
        Run RPCMCI method for extracting causal regimes and the associated graphs from

        time series data.

        +
        +
        +
        +
        Parameters:
        +
          +
        • num_regimes (int) – Number of assumed regimes.

        • +
        • max_transitions (int) – Maximum number of transitions within a single regime (persistency parameter).

        • +
        • switch_thres (float) – Switch threshold.

        • +
        • num_iterations (int) – Optimization iterations.

        • +
        • max_anneal (int) – Maximum annealing runs.

        • +
        • tau_min (int, optional (default: 0)) – Minimum time lag to test.

        • +
        • tau_max (int, optional (default: 1)) – Maximum time lag. Must be larger or equal to tau_min.

        • +
        • pc_alpha (float, optional (default: 0.2)) – Significance level in PCMCI.

        • +
        • alpha_level (float, optional (default: 0.05)) – Significance level in PCMCI at which the p_matrix is thresholded to +get graph.

        • +
        • n_jobs (int, optional (default: -1)) – Number of CPUs to use in joblib parallization. Default n_jobs=-1 +uses all available.

        • +
        +
        +
        Returns:
        +

          +
        • regimes (array of shape (n_regimes, T)) – One-hot encoded regime variable.

        • +
        • causal_results (dictionary) – Contains result of run_pcmci() after convergence.

        • +
        • diff_g_f (tuple) – Difference between two consecutive optimizations for all annealings and +the optimal one with minimum objective value (see paper).

        • +
        • error_free_annealings (int) – Number of annealings that converged without error.

        • +
        +

        +
        +
        +
        + +
        +

        tigramite.independence_tests: Conditional independence tests

        Base class:

        -class tigramite.independence_tests.independence_tests_base.CondIndTest(seed=42, mask_type=None, significance='analytic', fixed_thres=0.1, sig_samples=500, sig_blocklength=None, confidence=None, conf_lev=0.9, conf_samples=100, conf_blocklength=None, recycle_residuals=False, verbosity=0)[source]
        +class tigramite.independence_tests.independence_tests_base.CondIndTest(seed=42, mask_type=None, significance='analytic', fixed_thres=None, sig_samples=500, sig_blocklength=None, confidence=None, conf_lev=0.9, conf_samples=100, conf_blocklength=None, recycle_residuals=False, verbosity=0)[source]

        Base class of conditional independence tests.

        Provides useful general functions for different independence tests such as shuffle significance testing and bootstrap confidence estimation. Also @@ -1314,8 +1354,7 @@

        Explained in tutorial on masking and missing values.

      • significance (str, optional (default: 'analytic')) – Type of significance test to use. In this package ‘analytic’, ‘fixed_thres’ and ‘shuffle_test’ are available.

      • -
      • fixed_thres (float, optional (default: 0.1)) – If significance is ‘fixed_thres’, this specifies the threshold for the -absolute value of the dependence measure.

      • +
      • fixed_thres (float, optional (default: 0.1)) – Deprecated.

      • sig_samples (int, optional (default: 500)) – Number of samples for shuffle significance test.

      • sig_blocklength (int, optional (default: None)) – Block length for block-shuffle significance test. If None, the block length is determined from the decay of the autocovariance as @@ -1349,7 +1388,7 @@

        -get_bootstrap_confidence(array, xyz, dependence_measure=None, conf_samples=100, conf_blocklength=None, conf_lev=0.95, type_mask=None, verbosity=0)[source]
        +get_bootstrap_confidence(array, xyz, dependence_measure=None, conf_samples=100, conf_blocklength=None, conf_lev=0.95, data_type=None, verbosity=0)[source]

        Perform bootstrap confidence interval estimation.

        With conf_blocklength > 1 or None a block-bootstrap is performed.

        @@ -1372,7 +1411,7 @@

    -
    type_maskarray-like
    +
    data_typearray-like

    Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables.

    @@ -1391,7 +1430,7 @@

    -get_confidence(X, Y, Z=None, tau_max=0, type_mask=None)[source]
    +get_confidence(X, Y, Z=None, tau_max=0, data_type=None)[source]

    Perform confidence interval estimation.

    Calls the dependence measure and confidence test functions. The child @@ -1408,7 +1447,7 @@

    -
    type_maskarray-like
    +
    data_typearray-like

    Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables.

    @@ -1430,28 +1469,12 @@

    get_fixed_thres_significance(value, fixed_thres)[source]
    -

    Returns signficance for thresholding test.

    -

    Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 else.

    -
    -
    Parameters:
    -
      -
    • value (number) – Value of test statistic for unshuffled estimate.

    • -
    • fixed_thres (number) – Fixed threshold, is made positive.

    • -
    -
    -
    Returns:
    -

    pval – Returns 0 if numpy.abs(value) is smaller than fixed_thres and 1 -else.

    -
    -
    Return type:
    -

    bool

    -
    -
    +

    DEPRECATED Returns signficance for thresholding test.

    -get_measure(X, Y, Z=None, tau_max=0, type_mask=None)[source]
    +get_measure(X, Y, Z=None, tau_max=0, data_type=None)[source]

    Estimate dependence measure.

    Calls the dependence measure function. The child classes must specify @@ -1466,7 +1489,7 @@

    -
    type_maskarray-like
    +
    data_typearray-like

    Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables.

    @@ -1488,49 +1511,11 @@

    -get_shuffle_significance(array, xyz, value, type_mask=None, return_null_dist=False)[source]
    +get_shuffle_significance(array, xyz, value, data_type=None, return_null_dist=False)[source]

    Base class assumption that this is not implemented. Concrete classes should override when possible.

    -
    -
    -get_significance(val, array, xyz, T, dim, type_mask=None, sig_override=None)[source]
    -
    -

    Returns the p-value from whichever significance function is specified -for this test. If an override is used, then it will call a different -function then specified by self.significance

    -
    -
    valfloat

    Test statistic value.

    -
    -
    arrayarray-like

    data array with X, Y, Z in rows and observations in columns

    -
    -
    xyzarray of ints

    XYZ identifier array of shape (dim,).

    -
    -
    Tint

    Sample length

    -
    -
    dimint

    Dimensionality, ie, number of features.

    -
    -
    -
    -
    -
    type_maskarray-like
    -

    Binary data array of same shape as array which describes whether -individual samples in a variable (or all samples) are continuous -or discrete: 0s for continuous variables and 1s for discrete variables.

    -
    -
    -
    sig_overridestring

    Must be in ‘analytic’, ‘shuffle_test’, ‘fixed_thres’

    -
    -
    -
    -
    pvalfloat or numpy.nan

    P-value.

    -
    -
    -
    -
    -
    -
    abstract property measure
    @@ -1545,7 +1530,7 @@

    -run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max')[source]
    +run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None)[source]

    Perform conditional independence test.

    Calls the dependence measure and signficicance test functions. The child classes must specify a function get_dependence_measure and either or @@ -1555,11 +1540,11 @@

    Parameters:
      -
    • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

    • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag.

    • -
    • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

    • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag.

    • -
    • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

    • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index and tau the time lag.

    • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size.

    • @@ -1569,20 +1554,24 @@

      which uses the maximum of tau_max and the conditions, which is useful to compare multiple models on the same sample. Last, ‘max_lag’ uses as much samples as possible.

      +
    • alpha_or_thres (float (optional)) – Significance level (if significance=’analytic’ or ‘shuffle_test’) or +threshold (if significance=’fixed_thres’). If given, run_test returns +the test decision dependent=True/False.

    Returns:
    -

    val, pval – The test statistic value and the p-value.

    +

    val, pval, [dependent] – The test statistic value and the p-value. If alpha_or_thres is +given, run_test also returns the test decision dependent=True/False.

    Return type:
    -

    Tuple of floats

    +

    Tuple of floats and bool

    -run_test_raw(x, y, z=None, x_type=None, y_type=None, z_type=None)[source]
    +run_test_raw(x, y, z=None, x_type=None, y_type=None, z_type=None, alpha_or_thres=None)[source]

    Perform conditional independence test directly on input arrays x, y, z.

    Calls the dependence measure and signficicance test functions. The child classes must specify a function get_dependence_measure and either or @@ -1602,13 +1591,17 @@

  • z_type (array-like) – data arrays of same shape as x, y and z respectively, which describes whether variables are continuous or discrete: 0s for continuous variables and 1s for discrete variables

  • +
  • alpha_or_thres (float (optional)) – Significance level (if significance=’analytic’ or ‘shuffle_test’) or +threshold (if significance=’fixed_thres’). If given, run_test returns +the test decision dependent=True/False.

  • Returns:
    -

    val, pval – The test statistic value and the p-value.

    +

    val, pval, [dependent] – The test statistic value and the p-value. If alpha_or_thres is +given, run_test also returns the test decision dependent=True/False.

    Return type:
    -

    Tuple of floats

    +

    Tuple of floats and bool

    @@ -1704,7 +1697,7 @@

  • value (float) – Test statistic value.

  • T (int) – Sample length

  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • +
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • Returns:
    @@ -1726,7 +1719,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -1769,7 +1762,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -1870,7 +1863,7 @@

  • value (float) – Test statistic value.

  • T (int) – Sample length

  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • +
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • Returns:
    @@ -1884,7 +1877,7 @@

    -get_dependence_measure(array, xyz, type_mask=None)[source]
    +get_dependence_measure(array, xyz, data_type=None)[source]

    Return partial correlation.

    Marginals are firstly transformed to standard normal scale. Dependence Measure is then estimated as the Pearson correlation of the residuals @@ -1893,7 +1886,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -1942,7 +1935,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -2019,7 +2012,6 @@

    The null distribution of the distance correlation should be pre-computed. Otherwise it is computed during runtime.

    References

    -
    Parameters:
      @@ -2098,7 +2089,7 @@

    • value (float) – Test statistic value.

    • T (int) – Sample length

    • dim (int) – Dimensionality, ie, number of features.

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -2120,7 +2111,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -2162,7 +2153,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -2279,7 +2270,7 @@

  • value (float) – Test statistic value.

  • T (int) – Sample length

  • dim (int) – Dimensionality, ie, number of features.

  • -
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • +
  • xyz (array of ints) – XYZ identifier array of shape (dim,).

  • Returns:
    @@ -2301,7 +2292,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -2343,7 +2334,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -2366,7 +2357,7 @@

    -class tigramite.independence_tests.cmiknn.CMIknn(knn=0.2, shuffle_neighbors=5, significance='shuffle_test', transform='ranks', workers=-1, **kwargs)[source]
    +class tigramite.independence_tests.cmiknn.CMIknn(knn=0.2, shuffle_neighbors=5, significance='shuffle_test', transform='ranks', workers=- 1, model_selection_folds=3, **kwargs)[source]

    Conditional mutual information test based on nearest-neighbor estimator.

    Conditional mutual information is the most general dependency measure coming from an information-theoretic framework. It makes no assumptions about the @@ -2398,7 +2389,6 @@

    negative quantity.

    This method requires the scipy.spatial.cKDTree package.

    References

    -
    Parameters:
      @@ -2423,6 +2412,7 @@

      or transforming to uniform marginals.

    • workers (int (optional, default = -1)) – Number of workers to use for parallel processing. If -1 is given all processors are used. Default: -1.

    • +
    • model_selection_folds (int) – Number of folds in cross-validation used in model selection.

    • significance (str, optional (default: 'shuffle_test')) – Type of significance test to use. For CMIknn only ‘fixed_thres’ and ‘shuffle_test’ are available.

    • **kwargs – Arguments passed on to parent class CondIndTest.

    • @@ -2437,7 +2427,7 @@

      Parameters:
      • array (array-like) – data array with X, Y in rows and observations in columns

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,). Here only uses 0 for X and +

      • xyz (array of ints) – XYZ identifier array of shape (dim,). Here only uses 0 for X and 1 for Y.

      @@ -2458,7 +2448,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      Returns:
      @@ -2470,6 +2460,27 @@

    +
    +
    +get_model_selection_criterion(j, parents, tau_max=0)[source]
    +

    Returns a cross-validation-based score for nearest-neighbor estimates.

    +

    Fits a nearest-neighbor model of the parents to variable j and returns +the score. The lower, the better the fit. Here used to determine +optimal hyperparameters in PCMCI(pc_alpha or fixed thres).

    +
    +
    Parameters:
    +
      +
    • j (int) – Index of target variable in data array.

    • +
    • parents (list) – List of form [(0, -1), (3, -2), …] containing parents.

    • +
    • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for +different lags in X, Z, all have the same sample size.

    • +
    • Returns

    • +
    • score (float) – Model score.

    • +
    +
    +
    +
    +
    get_shuffle_significance(array, xyz, value, return_null_dist=False)[source]
    @@ -2484,7 +2495,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for unshuffled estimate.

    @@ -2546,7 +2557,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    Returns:
    @@ -2569,7 +2580,7 @@

    Parameters:
    • array (array-like) – data array with X, Y, Z in rows and observations in columns.

    • -
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • +
    • xyz (array of ints) – XYZ identifier array of shape (dim,).

    • value (number) – Value of test statistic for original (unshuffled) estimate.

    @@ -2601,7 +2612,7 @@

    Parameters:
      -
    • graph (array of shape [N, N, tau_max+1]) – Causal graph.

    • +
    • graph (array of shape [N, N, tau_max+1]) – Causal graph.

    • links (dict) – Dictionary of form {0:[(0, -1), …], 1:[…], …}. Alternatively can also digest {0: [((0, -1), coeff, func)], …}.

    • observed_vars (None or list, optional (default: None)) – Subset of keys in links definining which variables are @@ -2635,9 +2646,9 @@

      Parameters:
        -
      • X (list of tuples) – List of variables chosen for testing paths.

      • -
      • Y (list of tuples) – List of variables chosen for testing paths.

      • -
      • Z (list of tuples) – List of variables chosen for testing paths.

      • +
      • X (list of tuples) – List of variables chosen for testing paths.

      • +
      • Y (list of tuples) – List of variables chosen for testing paths.

      • +
      • Z (list of tuples) – List of variables chosen for testing paths.

      • max_lag (int, optional (default: None)) – Used here to constrain the has_path function to the graph truncated at max_lag instead of identifying the max_lag from ancestral search.

      • @@ -2696,11 +2707,11 @@

        Parameters:
          -
        • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

        • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

        • [ (Y) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

        • -
        • Z] (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

        • Z] (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

        • tau_max (int, optional (default: 0)) – Maximum time lag. This may be used to make sure that estimates for different lags in X, Z, all have the same sample size.

        • @@ -2730,20 +2741,21 @@

          -run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max', verbosity=0)[source]
          +run_test(X, Y, Z=None, tau_max=0, cut_off='2xtau_max', alpha_or_thres=None, verbosity=0)[source]

          Perform oracle conditional independence test.

          Calls the d-separation function.

          Parameters:
            -
          • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

          • X (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

          • -
          • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

          • Y (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

          • -
          • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the +

          • Z (list of tuples) – X,Y,Z are of the form [(var, -tau)], where var specifies the variable index in the observed_vars and tau the time lag.

          • tau_max (int, optional (default: 0)) – Not used here.

          • cut_off ({'2xtau_max', 'max_lag', 'max_lag_or_tau_max'}) – Not used here.

          • +
          • alpha_or_thres (float) – Not used here.

          Returns:
          @@ -2805,7 +2817,7 @@

        • value (float) – Test statistic value.

        • T (int) – Sample length

        • dim (int) – Dimensionality, ie, number of features.

        • -
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • +
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        Returns:
        @@ -2827,7 +2839,7 @@

        Parameters:
        • array (array-like) – data array with X, Y, Z in rows and observations in columns

        • -
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • +
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        Returns:
        @@ -2855,7 +2867,7 @@

        Parameters:
        • array (array-like) – data array with X, Y, Z in rows and observations in columns

        • -
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • +
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • value (number) – Value of test statistic for unshuffled estimate.

        @@ -2882,7 +2894,7 @@

        Parameters:
        • array (array-like) – data array with X, Y in rows and observations in columns

        • -
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • +
        • xyz (array of ints) – XYZ identifier array of shape (dim,).

        • standardize (bool, optional (default: True)) – Whether to standardize the array beforehand. Must be used for partial correlation.

        @@ -2915,13 +2927,11 @@

        \frac{ p(x,y |z)}{p(x|z)\cdot p(y |z)}"/>

    where n is the sample size. This is simply 2 n CMI(X;Y|Z).

    References

    -
    Parameters:
      @@ -2946,7 +2956,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns.

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      Returns:
      @@ -3012,7 +3022,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      Returns:
      @@ -3055,7 +3065,7 @@

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • value (number) – Value of test statistic for unshuffled estimate.

      @@ -3101,14 +3111,14 @@

      -get_dependence_measure(array, xyz, type_mask)[source]
      +get_dependence_measure(array, xyz, data_type)[source]

      Returns test statistic.

      Parameters:
      • array (array-like) – data array with X, Y, Z in rows and observations in columns.

      • -
      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • -
      • type_mask (array-like) – array of same shape as array which describes whether samples +

      • xyz (array of ints) – XYZ identifier array of shape (dim,).

      • +
      • data_type (array-like) – array of same shape as array which describes whether samples are continuous or discrete: 0s for continuous and 1s for discrete

      @@ -3162,7 +3172,6 @@

      See the corresponding paper [6] and tigramite tutorial for an in-depth introduction.

      References

      -
      Parameters:
        -
      • graph (array of either shape [N, N], [N, N, tau_max+1], or [N, N, tau_max+1, tau_max+1]) – Different graph types are supported, see tutorial.

      • -
      • X (list of tuples) – List of tuples [(i, -tau), …] containing cause variables.

      • -
      • Y (list of tuples) – List of tuples [(j, 0), …] containing effect variables.

      • -
      • S (list of tuples) – List of tuples [(i, -tau), …] containing conditioned variables.

      • +
      • graph (array of either shape [N, N], [N, N, tau_max+1], or [N, N, tau_max+1, tau_max+1]) – Different graph types are supported, see tutorial.

      • +
      • X (list of tuples) – List of tuples [(i, -tau), …] containing cause variables.

      • +
      • Y (list of tuples) – List of tuples [(j, 0), …] containing effect variables.

      • +
      • S (list of tuples) – List of tuples [(i, -tau), …] containing conditioned variables.

      • graph_type (str) – Type of graph.

      • -
      • hidden_variables (list of tuples) – Hidden variables in format [(i, -tau), …]. The internal graph is +

      • hidden_variables (list of tuples) – Hidden variables in format [(i, -tau), …]. The internal graph is constructed by a latent projection.

      • check_SM_overlap (bool) – Whether to check whether S overlaps with M.

      • verbosity (int, optional (default: 0)) – Level of verbosity.

      • @@ -3253,7 +3261,7 @@

        optionally a mask of the same shape and a missing values flag.

      • estimator (sklearn model object) – For example, sklearn.linear_model.LinearRegression() for a linear regression model.

      • -
      • adjustment_set (str or list of tuples) – If ‘optimal’ the Oset is used, if ‘minimized_optimal’ the minimized Oset, +

      • adjustment_set (str or list of tuples) – If ‘optimal’ the Oset is used, if ‘minimized_optimal’ the minimized Oset, and if ‘colliders_minimized_optimal’, the colliders-minimized Oset. If a list of tuples is passed, this set is used.

      • conditional_estimator (sklearn model object, optional (default: None)) – Used to fit conditional causal effects in nested regression. @@ -3284,7 +3292,7 @@

      • dataframe (data object) – Tigramite dataframe object. It must have the attributes dataframe.values yielding a numpy array of shape (observations T, variables N) and optionally a mask of the same shape and a missing values flag.

      • -
      • mediation (None, 'direct', or list of tuples) – If None, total effect is estimated, if ‘direct’ then only the direct effect is estimated, +

      • mediation (None, 'direct', or list of tuples) – If None, total effect is estimated, if ‘direct’ then only the direct effect is estimated, else only those causal paths are considerd that pass at least through one of these mediator nodes.

      • method ({'parents', 'links_coeffs', 'optimal'}) – Method to use for estimating Wright’s path coefficients. If ‘optimal’, the Oset is used, if ‘links_coeffs’, the coefficients in links_coeffs are used, @@ -3302,6 +3310,26 @@

      +
      +
      +static get_dict_from_graph(graph, parents_only=False)[source]
      +

      Helper function to convert graph to dictionary of links.

      +
      +
      Parameters:
      +
        +
      • graph (array of shape (N, N, tau_max+1)) – Matrix format of graph in string format.

      • +
      • parents_only (bool) – Whether to only return parents (’–>’ in graph)

      • +
      +
      +
      Returns:
      +

      links – Dictionary of form {0:{(0, -1): o-o, …}, 1:{…}, …}.

      +
      +
      Return type:
      +

      dict

      +
      +
      +
      +
      static get_graph_from_dict(links, tau_max=None)[source]
      @@ -3351,7 +3379,7 @@

      Parameters:
        -
      • alternative_conditions (set of tuples) – Used only internally in optimality theorem. If None, self.S is used.

      • +
      • alternative_conditions (set of tuples) – Used only internally in optimality theorem. If None, self.S is used.

      • minimize ({False, True, 'colliders_only'}) – Minimize optimal set. If True, minimize such that no subset can be removed without making it invalid. If ‘colliders_only’, only colliders are minimized.

      • @@ -3473,7 +3501,7 @@

      -fit_full_model(all_parents, selected_variables=None, tau_max=None, cut_off='max_lag_or_tau_max', return_data=False)[source]
      +fit_full_model(all_parents, selected_variables=None, tau_max=None, cut_off='max_lag_or_tau_max', empty_predictors_function=<function mean>, return_data=False)[source]

      Fit time series model.

      For each variable in selected_variables, the sklearn model is fitted with y given by the target variable, and X given by its @@ -3483,7 +3511,7 @@

      • all_parents (dictionary) – Dictionary of form {0:[(0, -1), (3, 0), …], 1:[], …} containing the parents estimated with PCMCI.

      • -
      • selected_variables (list of integers, optional (default: range(N))) – Specify to estimate parents only for selected variables. If None is +

      • selected_variables (list of integers, optional (default: range(N))) – Specify to estimate parents only for selected variables. If None is passed, parents are estimated for all variables.

      • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in all_parents is used.

      • cut_off ({'max_lag_or_tau_max', '2xtau_max', 'max_lag'}) – How many samples to cutoff at the beginning. The default is @@ -3492,6 +3520,7 @@

        sample. Other options are ‘2xtau_max’, which guarantees that MCI tests are all conducted on the same samples. Last, ‘max_lag’ uses as much samples as possible.

      • +
      • empty_predictors_function (function) – Function to apply to y if no predictors are given.

      • return_data (bool, optional (default: False)) – Whether to save the data array.

      @@ -3523,7 +3552,7 @@

      -get_general_fitted_model(Y, X, Z=None, conditions=None, tau_max=None, cut_off='max_lag_or_tau_max', return_data=False)[source]
      +get_general_fitted_model(Y, X, Z=None, conditions=None, tau_max=None, cut_off='max_lag_or_tau_max', empty_predictors_function=<function mean>, return_data=False)[source]

      Fit time series model.

      For each variable in selected_variables, the sklearn model is fitted with y given by the target variable, and X given by its @@ -3531,10 +3560,10 @@

      Parameters:
        -
      • X (lists of tuples) – List of variables for estimating model Y = f(X,Z)

      • -
      • Y (lists of tuples) – List of variables for estimating model Y = f(X,Z)

      • -
      • Z (lists of tuples) – List of variables for estimating model Y = f(X,Z)

      • -
      • conditions (list of tuples.) – Conditions for estimating conditional causal effects.

      • +
      • X (lists of tuples) – List of variables for estimating model Y = f(X,Z)

      • +
      • Y (lists of tuples) – List of variables for estimating model Y = f(X,Z)

      • +
      • Z (lists of tuples) – List of variables for estimating model Y = f(X,Z)

      • +
      • conditions (list of tuples.) – Conditions for estimating conditional causal effects.

      • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in all_parents is used.

      • cut_off ({'max_lag_or_tau_max', '2xtau_max', 'max_lag'}) – How many samples to cutoff at the beginning. The default is ‘max_lag_or_tau_max’, which uses the maximum of tau_max and the @@ -3542,6 +3571,7 @@

        sample. Other options are ‘2xtau_max’, which guarantees that MCI tests are all conducted on the same samples. Last, ‘max_lag’ uses as much samples as possible.

      • +
      • empty_predictors_function (function) – Function to apply to y if no predictors are given.

      • return_data (bool, optional (default: False)) – Whether to save the data array.

      @@ -3650,7 +3680,6 @@

    References

    -
    Parameters:
      @@ -3964,8 +3992,8 @@

    • i (int) – Index of cause variable.

    • tau (int) – Lag of cause variable.

    • j (int) – Index of effect variable.

    • -
    • k (int or list of ints) – Indices of mediator variables.

    • -
    • notk (int or list of ints) – Indices of mediator variables to exclude.

    • +
    • k (int or list of ints) – Indices of mediator variables.

    • +
    • notk (int or list of ints) – Indices of mediator variables to exclude.

    Returns:
    @@ -4036,7 +4064,7 @@

    • i (int) – Index of cause variable.

    • j (int) – Index of effect variable.

    • -
    • k (int or list of ints) – Indices of mediator variables.

    • +
    • k (int or list of ints) – Indices of mediator variables.

    Returns:
    @@ -4060,7 +4088,7 @@

  • i (int) – Index of cause variable.

  • tau (int) – Lag of cause variable.

  • j (int) – Index of effect variable.

  • -
  • k (int or list of ints) – Indices of mediator variables.

  • +
  • k (int or list of ints) – Indices of mediator variables.

  • Returns:
    @@ -4200,7 +4228,7 @@

    • target_predictors (dictionary) – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} containing the predictors estimated with PCMCI.

    • -
    • selected_targets (list of integers, optional (default: range(N))) – Specify to fit model only for selected targets. If None is +

    • selected_targets (list of integers, optional (default: range(N))) – Specify to fit model only for selected targets. If None is passed, models are estimated for all variables.

    • tau_max (int, optional (default: None)) – Maximum time lag. If None, the maximum lag in target_predictors is used.

    • @@ -4225,14 +4253,14 @@

      Parameters:
        -
      • selected_targets (list of ints, optional (default: None)) – List of variables to estimate predictors of. If None, predictors of +

      • selected_targets (list of ints, optional (default: None)) – List of variables to estimate predictors of. If None, predictors of all variables are estimated.

      • selected_links (dict or None) – Dictionary of form {0:[(0, -1), (3, -2), …], 1:[], …} specifying whether only selected links should be tested. If None is passed, all links are tested

      • steps_ahead (int, default: 1) – Minimum time lag to test. Useful for multi-step ahead predictions.

      • tau_max (int, default: 1) – Maximum time lag. Must be larger or equal to tau_min.

      • -
      • pc_alpha (float or list of floats, default: 0.2) – Significance level in algorithm. If a list or None is passed, the +

      • pc_alpha (float or list of floats, default: 0.2) – Significance level in algorithm. If a list or None is passed, the pc_alpha level is optimized for every variable across the given pc_alpha values using the score computed in cond_ind_test.get_model_selection_criterion()

      • @@ -4255,14 +4283,14 @@

        -get_test_array()[source]
        -

        Returns test array.

        +get_test_array(j)[source] +

        Returns test array for variable j.

        get_train_array(j)[source]
        -

        Returns training array.

        +

        Returns training array for variable j.

        @@ -4277,7 +4305,7 @@

        Parameters:
          -
        • target (int or list of integers) – Index or indices of target variable(s).

        • +
        • target (int or list of integers) – Index or indices of target variable(s).

        • new_data (data object, optional) – New Tigramite dataframe object with optional new mask. Note that the data will be cut off according to cut_off, see parameter cut_off below.

        • @@ -4304,9 +4332,9 @@

          Tigramite data processing functions.

          -class tigramite.data_processing.DataFrame(data, mask=None, missing_flag=None, vector_vars=None, var_names=None, type_mask=None, datatime=None, analysis_mode='single', reference_points=None, time_offsets=None, remove_missing_upto_maxlag=False)[source]
          +class tigramite.data_processing.DataFrame(data, mask=None, missing_flag=None, vector_vars=None, var_names=None, data_type=None, datatime=None, analysis_mode='single', reference_points=None, time_offsets=None, remove_missing_upto_maxlag=False)[source]
          -
          Data object containing single or multiple time series arrays and optional

          mask.

          +
          Data object containing single or multiple time series arrays and optional

          mask, as well as variable definitions.

          dataarray-like
          if analysis_mode == ‘single’:

          1) Numpy array of shape (observations T, variables N) @@ -4328,7 +4356,7 @@

          -
          type_maskarray-like
          +
          data_typearray-like

          Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables.

          @@ -4339,7 +4367,7 @@

          remove_missing_upto_maxlag=True also flags samples for all lags up to 2*tau_max (more precisely, this depends on the cut_off argument in self.construct_array(), see further below). This avoids biases, see -section on masking in Supplement of [1].

          +section on masking in Supplement of Runge et al. SciAdv (2019).

          vector_varsdict

          Dictionary of vector variables of the form, Eg. {0: [(0, 0), (1, 0)], 1: [(2, 0)], 2: [(3, 0)], 3: [(4, 0)]} @@ -4418,7 +4446,7 @@

          self.maskdictionary

          Mask internally mapped to a dictionary representation in the same way as data is mapped to self.values

          -
          self.type_maskarray-like

          Binary data array of same shape as array which describes whether +

          self.data_typearray-like

          Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables.

          @@ -4439,7 +4467,7 @@

          If reference_points is not None:

          1D numpy array holding all specified reference_points, less those smaller than 0 and larger than self.largest_time_step-1

          -
          If reference_points is None:

          Is np.array(range(self.largest_time_step))

          +
          If reference_points is None:

          Is np.array(self.largest_time_step)

          @@ -4469,7 +4497,7 @@

          -construct_array(X, Y, Z, tau_max, extraZ=None, mask=None, mask_type=None, type_mask=None, return_cleaned_xyz=False, do_checks=True, remove_overlaps=True, cut_off='2xtau_max', verbosity=0)[source]
          +construct_array(X, Y, Z, tau_max, extraZ=None, mask=None, mask_type=None, data_type=None, return_cleaned_xyz=False, do_checks=True, remove_overlaps=True, cut_off='2xtau_max', verbosity=0)[source]

          Constructs array from variables X, Y, Z from data. Data is of shape (T, N) if analysis_mode == ‘single’, where T is the time series length and N the number of variables, and of (n_ens, T, N) @@ -4477,16 +4505,16 @@

          Parameters:
            -
          • X (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of +

          • X (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class.

          • -
          • Y (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of +

          • Y (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class.

          • -
          • Z (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of +

          • Z (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class.

          • -
          • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of +

          • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), X, Y, Z can be multivariate of the form [(var1, -lag), (var2, -lag), …]. At least one varlag in Y has to be at lag zero. extraZ is only used in CausalEffects class.

          • tau_max (int) – Maximum time lag. This may be used to make sure that estimates for @@ -4497,10 +4525,10 @@

          • mask_type ({None, 'y','x','z','xy','xz','yz','xyz'}) – Masking mode: Indicators for which variables in the dependence measure I(X; Y | Z) the samples should be masked. If None, the mask is not used. Explained in tutorial on masking and missing values.

          • -
          • type_mask (array-like) – Binary data array of same shape as array which describes whether +

          • data_type (array-like) – Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables. -If it is set, then it overrides the self.type_mask assigned to the dataframe.

          • +If it is set, then it overrides the self.data_type assigned to the dataframe.

          • return_cleaned_xyz (bool, optional (default: False)) – Whether to return cleaned X,Y,Z, where possible duplicates are removed.

          • do_checks (bool, optional (default: True)) – Whether to perform sanity checks on input X,Y,Z

          • @@ -4569,9 +4597,9 @@

          Returns:
          -

          array, xyz [,XYZ], type_mask – xyz identifier array of shape (dim,) identifying which row in array +

          array, xyz [,XYZ], data_type – xyz identifier array of shape (dim,) identifying which row in array corresponds to X, Y, and Z, and the type mask that indicates which samples -are continuous or discrete. For example:: X = [(0, -1)], +are continuous or discrete. For example: X = [(0, -1)], Y = [(1, 0)], Z = [(1, -1), (0, -2)] yields an array of shape (4, n_samples) and xyz is xyz = numpy.array([0,1,2,2]). If return_cleaned_xyz is True, also outputs the cleaned XYZ lists.

          @@ -4584,36 +4612,36 @@

          -print_array_info(array, X, Y, Z, missing_flag, mask_type, type_mask=None, extraZ=None)[source]
          +print_array_info(array, X, Y, Z, missing_flag, mask_type, data_type=None, extraZ=None)[source]

          Print info about the constructed array

          Parameters:
            -
          • array (Data array of shape (dim, T)) – Data array.

          • -
          • X (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], +

          • array (Data array of shape (dim, T)) – Data array.

          • +
          • X (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), …] .

          • -
          • Y (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], +

          • Y (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), …] .

          • -
          • Z (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], +

          • Z (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), …] .

          • -
          • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], +

          • extraZ (list of tuples) – For a dependence measure I(X;Y|Z), Y is of the form [(varY, 0)], where var specifies the variable index. X typically is of the form [(varX, -tau)] with tau denoting the time lag and Z can be multivariate [(var1, -lag), (var2, -lag), …] .

          • missing_flag (number, optional (default: None)) – Flag for missing values. Dismisses all time slices of samples where missing values occur in any variable and also flags samples for all lags up to 2*tau_max. This avoids biases, see section on masking in -Supplement of [1].

          • +Supplement of [1].

          • mask_type ({'y','x','z','xy','xz','yz','xyz'}) – Masking mode: Indicators for which variables in the dependence measure I(X; Y | Z) the samples should be masked. If None, the mask is not used. Explained in tutorial on masking and missing values.

          • -
          • type_mask (array-like) – Binary data array of same shape as array which describes whether +

          • data_type (array-like) – Binary data array of same shape as array which describes whether individual samples in a variable (or all samples) are continuous or discrete: 0s for continuous variables and 1s for discrete variables.

          @@ -4650,7 +4678,7 @@

          Returns optimal block length for significance and confidence tests.

          Determine block length using approach in Mader (2013) [Eq. (6)] which improves the method of Pfeifer (2005) with non-overlapping blocks In -case of multidimensional X, the max is used. Further details in [1]. +case of multidimensional X, the max is used. Further details in [1]. Two modes are available. For mode=’significance’, only the indices corresponding to X are shuffled in array. For mode=’confidence’ all variables are jointly shuffled. If the autocorrelation curve fit fails, @@ -4662,7 +4690,7 @@

          Parameters:
          • array (array-like) – data array with X, Y, Z in rows and observations in columns

          • -
          • xyz (array of ints) – XYZ identifier array of shape (dim,).

          • +
          • xyz (array of ints) – XYZ identifier array of shape (dim,).

          • mode (str) – Which mode to use.

          @@ -4889,7 +4917,7 @@

          Helper function to convert DAG graph to dictionary of parents.

          Parameters:
          -

          dag (array of shape (N, N, tau_max+1)) – Matrix format of graph in string format. Must be DAG.

          +

          dag (array of shape (N, N, tau_max+1)) – Matrix format of graph in string format. Must be DAG.

          Returns:

          parents – Dictionary of form {0:[(0, -1), …], 1:[…], …}.

          @@ -4902,7 +4930,7 @@

          -tigramite.toymodels.structural_causal_processes.generate_structural_causal_process(N=2, L=1, dependency_funcs=['linear'], dependency_coeffs=[-0.5, 0.5], auto_coeffs=[0.5, 0.7], contemp_fraction=0.0, max_lag=1, noise_dists=['gaussian'], noise_means=[0.0], noise_sigmas=[0.5, 2.0], noise_seed=None, seed=None)[source]
          +tigramite.toymodels.structural_causal_processes.generate_structural_causal_process(N=2, L=1, dependency_funcs=['linear'], dependency_coeffs=[- 0.5, 0.5], auto_coeffs=[0.5, 0.7], contemp_fraction=0.0, max_lag=1, noise_dists=['gaussian'], noise_means=[0.0], noise_sigmas=[0.5, 2.0], noise_seed=None, seed=None)[source]

          “Randomly generates a structural causal process based on input characteristics.

          The process has the form

          @@ -5005,7 +5033,7 @@

          number of variables N. coeff must be a float and func a python callable of one argument.

        • T (int) – Sample size.

        • -
        • noises (list of callables or array, optional (default: 'np.random.randn')) – Random distribution function that is called with noises[j](T). If an array, +

        • noises (list of callables or array, optional (default: 'np.random.randn')) – Random distribution function that is called with noises[j](T). If an array, it must be of shape ((transient_fraction + 1)*T, N).

        • intervention (dict) – Dictionary of format: {1:np.array, …} containing only keys of intervened variables with the value being the array of length T with interventional values. @@ -5100,7 +5128,7 @@

          -tigramite.plotting.plot_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=8.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, node_label_size=10, link_label_fontsize=10, lag_array=None, network_lower_bound=0.2, show_colorbar=True, inner_edge_style='dashed', link_matrix=None, special_nodes=None, show_autodependency_lags=False)[source]
          +tigramite.plotting.plot_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=8.0, vmin_edges=- 1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=- 1, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, node_label_size=10, link_label_fontsize=10, lag_array=None, show_colorbar=True, inner_edge_style='dashed', link_matrix=None, special_nodes=None, show_autodependency_lags=False)[source]

          Creates a network plot.

          This is still in beta. The network is defined from links in graph. Nodes denote variables, straight links contemporaneous dependencies and curved @@ -5117,7 +5145,7 @@

          Must be of same shape as val_matrix.

        • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

        • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

        • -
        • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

        • +
        • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

        • figsize (tuple) – Size of figure.

        • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

        • link_colorbar_label (str, optional (default: 'MCI')) – Test statistic label.

        • @@ -5127,7 +5155,9 @@

        • link_attribute (array-like, optional (default: None)) – String array of val_matrix.shape specifying link attributes.

        • node_pos (dictionary, optional (default: None)) – Dictionary of node positions in axis coordinates of form node_pos = {‘x’:array of shape (N,), ‘y’:array of shape(N)}. These -coordinates could have been transformed before for basemap plots.

        • +coordinates could have been transformed before for basemap plots. You can +also add a key ‘transform’:ccrs.PlateCarree() in order to plot graphs on +a map using cartopy.

        • arrow_linewidth (float, optional (default: 30)) – Linewidth.

        • vmin_edges (float, optional (default: -1)) – Link colorbar scale lower bound.

        • vmax_edges (float, optional (default: 1)) – Link colorbar scale upper bound.

        • @@ -5149,7 +5179,6 @@

        • link_label_fontsize (int, optional (default: 6)) – Fontsize of link labels.

        • tick_label_size (int, optional (default: 6)) – Fontsize of tick labels.

        • lag_array (array, optional (default: None)) – Optional specification of lags overwriting np.arange(0, tau_max+1)

        • -
        • network_lower_bound (float, optional (default: 0.2)) – Fraction of vertical space below graph plot.

        • show_colorbar (bool) – Whether to show colorbars for links and nodes.

        • show_autodependency_lags (bool (default: False)) – Shows significant autodependencies for a node.

        @@ -5185,7 +5214,7 @@

        -tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=10, network_lower_bound=0.2, standard_color_links='black', standard_color_nodes='lightgrey')[source]
        +tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=- 1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=- 1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=10, standard_color_links='black', standard_color_nodes='lightgrey')[source]

        Creates a network plot visualizing the pathways of a mediation analysis. This is still in beta. The network is defined from non-zero entries in path_val_matrix. Nodes denote variables, straight links contemporaneous @@ -5201,7 +5230,7 @@

      • path_val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing link weight values.

      • path_node_array (array_like) – Array of shape (N,) containing node values.

      • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

      • -
      • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

      • +
      • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

      • figsize (tuple) – Size of figure.

      • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

      • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

      • @@ -5210,7 +5239,9 @@

        given by arrow_linewidth. If None, all links have same width.

      • node_pos (dictionary, optional (default: None)) – Dictionary of node positions in axis coordinates of form node_pos = {‘x’:array of shape (N,), ‘y’:array of shape(N)}. These -coordinates could have been transformed before for basemap plots.

      • +coordinates could have been transformed before for basemap plots. You can +also add a key ‘transform’:ccrs.PlateCarree() in order to plot graphs on +a map using cartopy.

      • arrow_linewidth (float, optional (default: 30)) – Linewidth.

      • vmin_edges (float, optional (default: -1)) – Link colorbar scale lower bound.

      • vmax_edges (float, optional (default: 1)) – Link colorbar scale upper bound.

      • @@ -5230,7 +5261,6 @@

      • alpha (float, optional (default: 1.)) – Opacity.

      • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

      • link_label_fontsize (int, optional (default: 6)) – Fontsize of link labels.

      • -
      • network_lower_bound (float, optional (default: 0.2)) – Fraction of vertical space below graph plot.

      • lag_array (array, optional (default: None)) – Optional specification of lags overwriting np.arange(0, tau_max+1)

      @@ -5239,7 +5269,7 @@

      -tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=8, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, tick_label_size=6, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2, standard_color_links='black', standard_color_nodes='lightgrey')[source]
      +tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=8, vmin_edges=- 1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=- 1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, tick_label_size=6, standard_color_links='black', standard_color_nodes='lightgrey')[source]

      Creates a mediation time series graph plot. This is still in beta. The time series graph’s links are colored by val_matrix.

      @@ -5249,7 +5279,7 @@

    • tsg_path_val_matrix (array_like) – Matrix of shape (N*tau_max, N*tau_max) containing link weight values.

    • path_node_array (array_like) – Array of shape (N,) containing node values.

    • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

    • -
    • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

    • +
    • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

    • figsize (tuple) – Size of figure.

    • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

    • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

    • @@ -5276,9 +5306,6 @@

    • alpha (float, optional (default: 1.)) – Opacity.

    • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

    • link_label_fontsize (int, optional (default: 6)) – Fontsize of link labels.

    • -
    • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

    • -
    • label_space_top (float, optional (default: 0.)) – Fraction of vertical figure space to allocate top of plot for labels.

    • -
    • network_lower_bound (float, optional (default: 0.2)) – Fraction of vertical space below graph plot.

    @@ -5315,7 +5342,7 @@

    -tigramite.plotting.plot_time_series_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=4, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2, inner_edge_style='dashed', link_matrix=None, special_nodes=None, standard_color_links='black', standard_color_nodes='lightgrey')[source]
    +tigramite.plotting.plot_time_series_graph(graph, val_matrix=None, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=4, vmin_edges=- 1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, tick_label_size=6, alpha=1.0, inner_edge_style='dashed', link_matrix=None, special_nodes=None, standard_color_links='black', standard_color_nodes='lightgrey')[source]

    Creates a time series graph. This is still in beta. The time series graph’s links are colored by val_matrix.

    @@ -5327,7 +5354,7 @@

    (N, N, tau_max+1, tau_max+1) describing auxADMG.

  • val_matrix (array_like) – Matrix of same shape as graph containing test statistic values.

  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

  • +
  • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

  • figsize (tuple) – Size of figure.

  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

  • link_colorbar_label (str, optional (default: 'MCI')) – Test statistic label.

  • @@ -5351,9 +5378,6 @@

  • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

  • link_label_fontsize (int, optional (default: 6)) – Fontsize of link labels.

  • tick_label_size (int, optional (default: 6)) – Fontsize of tick labels.

  • -
  • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

  • -
  • label_space_top (float, optional (default: 0.)) – Fraction of vertical figure space to allocate top of plot for labels.

  • -
  • network_lower_bound (float, optional (default: 0.2)) – Fraction of vertical space below graph plot.

  • inner_edge_style (string, optional (default: 'dashed')) – Style of inner_edge contemporaneous links.

  • special_nodes (dict) – Dictionary of format {(i, -tau): ‘blue’, …} to color special nodes.

  • @@ -5374,9 +5398,9 @@

  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

  • fig_axes (subplots instance, optional (default: None)) – Figure and axes instance. If None they are created as fig, axes = pyplot.subplots(N,…)

  • -
  • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize +

  • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize is used.

  • -
  • var_units (list of str, optional (default: None)) – Units of variables.

  • +
  • var_units (list of str, optional (default: None)) – Units of variables.

  • time_label (str, optional (default: '')) – Label of time axis.

  • grey_masked_samples (bool, optional (default: False)) – Whether to mark masked samples by grey fills (‘fill’) or grey data (‘data’).

  • @@ -5416,7 +5440,7 @@

    diff --git a/docs/search.html b/docs/search.html index 884d16ab..19da1a88 100644 --- a/docs/search.html +++ b/docs/search.html @@ -10,8 +10,10 @@ + + + - @@ -106,8 +108,8 @@

    Related Topics

    ©2023, Jakob Runge. | - Powered by Sphinx 6.1.3 - & Alabaster 0.7.13 + Powered by Sphinx 5.0.2 + & Alabaster 0.7.12
    diff --git a/docs/searchindex.js b/docs/searchindex.js index ab308e34..9315d236 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["index"], "filenames": ["index.rst"], "titles": ["Welcome to Tigramite\u2019s documentation!"], "terms": {"index": 0, "modul": 0, "search": 0, "page": 0, "github": 0, "repo": 0, "i": 0, "python": 0, "packag": 0, "It": 0, "allow": 0, "effici": 0, "estim": 0, "graph": 0, "from": 0, "high": 0, "dimension": 0, "dataset": 0, "discoveri": 0, "us": 0, "robust": 0, "forecast": 0, "direct": 0, "total": 0, "base": 0, "linear": 0, "well": 0, "non": 0, "parametr": 0, "applic": 0, "discret": 0, "continu": 0, "valu": 0, "also": 0, "includ": 0, "qualiti": 0, "result": 0, "pleas": 0, "cite": 0, "follow": 0, "paper": 0, "depend": 0, "which": 0, "method": 0, "you": 0, "j": 0, "rung": 0, "p": 0, "nowack": 0, "m": 0, "kretschmer": 0, "flaxman": 0, "d": 0, "sejdinov": 0, "detect": 0, "quantifi": 0, "associ": 0, "larg": 0, "nonlinear": 0, "sci": 0, "adv": 0, "5": 0, "eaau4996": 0, "2019": 0, "http": 0, "advanc": 0, "sciencemag": 0, "org": 0, "content": 0, "11": 0, "2020": 0, "discov": 0, "contemporan": 0, "lag": 0, "relat": 0, "autocorrel": 0, "proceed": 0, "36th": 0, "confer": 0, "uncertainti": 0, "artifici": 0, "intellig": 0, "uai": 0, "toronto": 0, "canada": 0, "auai": 0, "press": 0, "uai2020": 0, "579_main_pap": 0, "pdf": 0, "gerhardu": 0, "A": 0, "recal": 0, "latent": 0, "confound": 0, "neural": 0, "inform": 0, "system": 0, "33": 0, "neurip": 0, "cc": 0, "hash": 0, "94e70705efae423efda1088614128d0b": 0, "abstract": 0, "html": 0, "2018": 0, "network": 0, "reconstruct": 0, "theoret": 0, "assumpt": 0, "practic": 0, "chao": 0, "an": 0, "interdisciplinari": 0, "journal": 0, "scienc": 0, "28": 0, "7": 0, "075310": 0, "aip": 0, "scitat": 0, "doi": 0, "10": 0, "1063": 0, "1": 0, "5025050": 0, "natur": 0, "commun": 0, "perspect": 0, "www": 0, "com": 0, "articl": 0, "s41467": 0, "019": 0, "10105": 0, "3": 0, "necessari": 0, "suffici": 0, "graphic": 0, "optim": 0, "adjust": 0, "set": 0, "hidden": 0, "variabl": 0, "2021": 0, "34": 0, "class": 0, "et": 0, "al": 0, "2015": 0, "identifi": 0, "gatewai": 0, "complex": 0, "spatio": 0, "tempor": 0, "6": 0, "8502": 0, "1038": 0, "ncomms9502": 0, "transfer": 0, "along": 0, "pathwai": 0, "phy": 0, "rev": 0, "e": 0, "92": 0, "62829": 0, "1103": 0, "physrev": 0, "062829": 0, "cmiknn": 0, "nearest": 0, "neighbor": 0, "mutual": 0, "In": 0, "21st": 0, "intern": 0, "statist": 0, "mlr": 0, "v84": 0, "runge18a": 0, "datafram": 0, "cond_ind_test": 0, "verbos": 0, "0": 0, "sourc": 0, "framework": 0, "scale": 0, "thi": 0, "contain": 0, "sever": 0, "The": 0, "standard": 0, "address": 0, "describ": 0, "where": 0, "further": 0, "sub": 0, "variant": 0, "ar": 0, "discuss": 0, "pcmciplu": 0, "see": 0, "tutori": 0, "guidanc": 0, "appli": 0, "ha": 0, "differ": 0, "adapt": 0, "implement": 0, "mostli": 0, "hyperparamet": 0, "easi": 0, "parallel": 0, "separ": 0, "script": 0, "handl": 0, "mask": 0, "fals": 0, "control": 0, "confid": 0, "interv": 0, "note": 0, "structur": 0, "repres": 0, "shown": 0, "figur": 0, "node": 0, "defin": 0, "link": 0, "can": 0, "interpret": 0, "under": 0, "certain": 0, "assum": 0, "stationar": 0, "repeat": 0, "parent": 0, "mathcal": 0, "all": 0, "toward": 0, "blue": 0, "red": 0, "box": 0, "iter": 0, "flexibli": 0, "combin": 0, "ani": 0, "kind": 0, "its": 0, "type": 0, "These": 0, "avail": 0, "mci": 0, "particular": 0, "measur": 0, "strength": 0, "For": 0, "exampl": 0, "parcorr": 0, "normal": 0, "between": 0, "howev": 0, "interest": 0, "hypothet": 0, "intervent": 0, "mai": 0, "better": 0, "look": 0, "refer": 0, "w": 0, "paramet": 0, "object": 0, "among": 0, "other": 0, "attribut": 0, "yield": 0, "numpi": 0, "arrai": 0, "shape": 0, "observ": 0, "t": 0, "n": 0, "option": 0, "same": 0, "extern": 0, "pass": 0, "callabl": 0, "condindtest": 0, "int": 0, "default": 0, "level": 0, "all_par": 0, "dictionari": 0, "form": 0, "2": 0, "pc": 0, "algorithm": 0, "val_min": 0, "tau": 0, "float": 0, "minimum": 0, "each": 0, "pval_max": 0, "maximum": 0, "step": 0, "number": 0, "sampl": 0, "length": 0, "dict": 0, "get_graph_from_pmatrix": 0, "p_matrix": 0, "alpha_level": 0, "tau_min": 0, "tau_max": 0, "link_assumpt": 0, "none": 0, "construct": 0, "threshold": 0, "alpha": 0, "take": 0, "account": 0, "matrix": 0, "fdr_method": 0, "05": 0, "signific": 0, "get": 0, "tau_mix": 0, "delai": 0, "link_typ": 0, "specifi": 0, "about": 0, "initi": 0, "impli": 0, "valid": 0, "o": 0, "addit": 0, "middl": 0, "mark": 0, "instead": 0, "Then": 0, "adjac": 0, "must": 0, "exist": 0, "need": 0, "consist": 0, "requir": 0, "acycl": 0, "hold": 0, "If": 0, "doe": 0, "appear": 0, "absent": 0, "return": 0, "descript": 0, "abov": 0, "get_lagged_depend": 0, "selected_link": 0, "val_onli": 0, "uncondit": 0, "_": 0, "matric": 0, "correct": 0, "new": 0, "4": 0, "fdr": 0, "deprec": 0, "replac": 0, "zero": 0, "undirect": 0, "larger": 0, "equal": 0, "bool": 0, "onli": 0, "comput": 0, "str": 0, "current": 0, "benjamini": 0, "hochberg": 0, "rate": 0, "fdr_bh": 0, "val_matrix": 0, "conf_matrix": 0, "percentil": 0, "print_result": 0, "return_dict": 0, "print": 0, "output": 0, "kei": 0, "print_significant_link": 0, "ambiguous_tripl": 0, "latter": 0, "ambigu": 0, "conflict": 0, "like": 0, "list": 0, "tripl": 0, "return_parents_dict": 0, "include_lagzero_par": 0, "sort": 0, "unclear": 0, "x": 0, "whether": 0, "should": 0, "parents_dict": 0, "return_significant_link": 0, "pq_matrix": 0, "include_lagzero_link": 0, "boolean": 0, "Will": 0, "remov": 0, "futur": 0, "run_bivci": 0, "bivci": 0, "run_fullci": 0, "fullci": 0, "run_mci": 0, "max_conds_pi": 0, "max_conds_px": 0, "y": 0, "unrestrict": 0, "z": 0, "run_pc_stabl": 0, "save_iter": 0, "pc_alpha": 0, "max_conds_dim": 0, "max_combin": 0, "made": 0, "self": 0, "multi": 0, "ahead": 0, "greater": 0, "save": 0, "everi": 0, "across": 0, "given": 0, "score": 0, "get_model_selection_criterion": 0, "cardin": 0, "pc_1": 0, "origin": 0, "run_pcalg": 0, "01": 0, "lagged_par": 0, "max_conds_px_lag": 0, "mode": 0, "contemp_collider_rul": 0, "major": 0, "conflict_resolut": 0, "true": 0, "run": 0, "contemp_cond": 0, "ci": 0, "As": 0, "part": 0, "superset": 0, "pc1": 0, "conserv": 0, "rule": 0, "collid": 0, "phase": 0, "detail": 0, "lead": 0, "order": 0, "orient": 0, "when": 0, "regard": 0, "sepset": 0, "relev": 0, "run_pcalg_non_timeseries_data": 0, "simpli": 0, "call": 0, "ouput": [], "run_pcmci": 0, "wrapper": 0, "around": 0, "comprehens": 0, "analyt": 0, "numer": 0, "present": 0, "here": 0, "we": 0, "briefli": 0, "summar": 0, "two": 0, "procedur": 0, "select": 0, "tild": 0, "j_t": 0, "reduc": 0, "avoid": 0, "irrelev": 0, "momentari": 0, "i_": 0, "perp": 0, "j_": 0, "common": 0, "driver": 0, "indirect": 0, "main": 0, "free": 0, "tau_": 0, "max": 0, "chosen": 0, "accord": 0, "expect": 0, "recommend": 0, "rather": 0, "choic": 0, "peak": 0, "seen": 0, "sinc": 0, "hypothesi": 0, "do": 0, "precis": 0, "assess": 0, "role": 0, "regular": 0, "techniqu": 0, "criteria": 0, "respect": 0, "import": 0, "pp": 0, "structural_causal_process": 0, "random": 0, "seed": 0, "plai": 0, "incom": 0, "suppli": 0, "format": 0, "coeff": 0, "links_coeff": 0, "8": 0, "var_process": 0, "1000": 0, "pval": 0, "00000": 0, "val": 0, "588": 0, "606": 0, "447": 0, "618": 0, "499": 0, "run_pcmciplu": 0, "reset_lagged_link": 0, "contrast": 0, "full": 0, "up": 0, "markov": 0, "equival": 0, "faith": 0, "four": 0, "widehat": 0, "b": 0, "_t": 0, "skeleton": 0, "through": 0, "subset": 0, "conduct": 0, "motif": 0, "unshield": 0, "remain": 0, "Its": 0, "string": 0, "entri": 0, "denot": 0, "unori": 0, "could": 0, "direction": 0, "undecid": 0, "due": 0, "importantli": 0, "alwai": 0, "dag": 0, "first": 0, "one": 0, "member": 0, "averag": 0, "over": 0, "fit": 0, "anoth": 0, "togeth": 0, "fulli": 0, "mean": 0, "matter": 0, "last": 0, "restrict": 0, "found": 0, "consid": 0, "again": 0, "improv": 0, "power": 0, "runtim": 0, "np": 0, "var": 0, "def": 0, "lin_f": 0, "9": 0, "nonstat": 0, "676": 0, "602": 0, "599": 0, "486": 0, "466": 0, "524": 0, "449": 0, "001": 0, "005": 0, "025": 0, "learn": 0, "specif": 0, "relationship": 0, "introduc": 0, "explain": 0, "still": 0, "experiment": 0, "being": 0, "fine": 0, "tune": 0, "actual": 0, "invit": 0, "feedback": 0, "work": 0, "best": 0, "experi": 0, "run_lpcmci": 0, "constructor": 0, "bold": [], "some": 0, "might": 0, "potenti": 0, "smaller": 0, "than": 0, "dpag": 0, "window": 0, "taumax": [], "underli": 0, "n_preliminary_iter": 0, "determin": 0, "preliminari": 0, "correspond": 0, "k": 0, "max_cond_px": 0, "pair": 0, "s2": 0, "_run_ancestral_removal_phas": 0, "apds_t": 0, "c": 0, "g": 0, "higher": 0, "s3": 0, "_run_non_ancestral_removal_phas": 0, "napds_t": 0, "max_p_glob": 0, "max_p_non_ancestr": 0, "second": 0, "_run_dsep_removal_phas": 0, "max_q_glob": 0, "most": 0, "mani": 0, "sum": 0, "more": 0, "max_pds_set": 0, "element": 0, "opposit": 0, "prelim_with_collider_rul": 0, "pseudocod": 0, "line": 0, "22": 0, "18": 0, "directli": 0, "befor": 0, "parents_of_lag": 0, "pa": 0, "prelim_onli": 0, "stop": 0, "after": 0, "perform": 0, "break_once_separ": 0, "break": 0, "command": 0, "no_non_ancestral_phas": 0, "execut": 0, "use_a_pds_t_for_major": 0, "instruct": 0, "adj": 0, "orient_contemp": 0, "orient_comtemp": 0, "update_middle_mark": 0, "pseudoc": 0, "mmr": 0, "prelim_rul": 0, "exclud": 0, "r9": 0, "prime": 0, "r10": 0, "fix_all_edges_before_final_orient": 0, "inf": 0, "termin": 0, "although": 0, "empti": 0, "nevertheless": 0, "sound": 0, "check": 0, "appropri": 0, "forc": 0, "auto_first": 0, "pseudcod": 0, "autodepend": 0, "priorit": 0, "even": 0, "remember_only_par": 0, "been": 0, "ancestor": 0, "point": 0, "wa": 0, "later": 0, "tail": 0, "re": 0, "no_apr": 0, "apr": 0, "except": 0, "never": 0, "conveni": 0, "have": 0, "post": 0, "purpos": 0, "wildcard": 0, "ast": [], "edg": 0, "star": 0, "42": 0, "mask_typ": 0, "fixed_thr": 0, "sig_sampl": 0, "500": 0, "sig_blocklength": 0, "conf_lev": 0, "conf_sampl": 0, "100": 0, "conf_blocklength": 0, "recycle_residu": 0, "provid": 0, "shuffl": 0, "bootstrap": 0, "inherit": 0, "randomst": 0, "default_rng": 0, "xy": 0, "xz": 0, "yz": 0, "xyz": 0, "miss": 0, "shuffle_test": 0, "absolut": 0, "block": 0, "decai": 0, "autocovari": 0, "nan": 0, "side": 0, "residu": 0, "store": 0, "faster": 0, "cost": 0, "consider": 0, "memori": 0, "get_analytic_confid": 0, "df": 0, "concret": 0, "overrid": 0, "possibl": 0, "get_analytic_signific": 0, "dim": 0, "get_bootstrap_confid": 0, "dependence_measur": 0, "95": 0, "type_mask": 0, "With": 0, "row": 0, "column": 0, "get_dependence_measur": 0, "binari": 0, "individu": 0, "conf_low": 0, "conf_upp": 0, "tupl": 0, "upper": 0, "lower": 0, "bound": 0, "get_confid": 0, "child": 0, "make": 0, "sure": 0, "size": 0, "instanti": 0, "get_fixed_thres_signific": 0, "signfic": 0, "ab": 0, "els": 0, "unshuffl": 0, "fix": 0, "posit": 0, "get_measur": 0, "get_shuffle_signific": 0, "return_null_dist": 0, "get_signific": 0, "sig_overrid": 0, "whichev": 0, "ie": 0, "featur": 0, "properti": 0, "print_info": 0, "run_test": 0, "cut_off": 0, "2xtau_max": 0, "signficic": 0, "either": 0, "both": 0, "_get_single_residu": 0, "max_lag": 0, "max_lag_or_tau_max": 0, "how": 0, "cutoff": 0, "begin": 0, "guarante": 0, "compar": 0, "multipl": 0, "much": 0, "run_test_raw": 0, "x_type": 0, "y_type": 0, "z_type": 0, "input": 0, "dimens": 0, "set_datafram": 0, "flag": 0, "set_mask_typ": 0, "setter": 0, "ensur": 0, "clash": 0, "kwarg": 0, "partial": 0, "correl": 0, "ordinari": 0, "least": 0, "squar": 0, "ol": 0, "regress": 0, "pearson": 0, "To": 0, "out": 0, "beta_x": 0, "epsilon_": 0, "beta_i": 0, "rho": 0, "left": 0, "r_x": 0, "r_y": 0, "right": 0, "student": 0, "distribut": 0, "d_z": 0, "degre": 0, "freedom": 0, "argument": 0, "coeffici": 0, "eg": 0, "less": 0, "corrected_a": 0, "akaik": 0, "criterion": 0, "modulo": 0, "constant": 0, "leav": 0, "cross": 0, "asymptot": 0, "aic": 0, "target": 0, "robustparcorr": 0, "paranorm": 0, "transform": 0, "margin": 0, "firstli": 0, "phi": 0, "circ": 0, "hat": 0, "f": 0, "quantil": 0, "empir": 0, "idea": 0, "stem": 0, "literatur": 0, "nonparanorm": 0, "han": 0, "liu": 0, "john": 0, "lafferti": 0, "larri": 0, "wasserman": 0, "semiparametr": 0, "mach": 0, "2295": 0, "2328": 0, "2009": 0, "fang": 0, "ming": 0, "yuan": 0, "gaussian": 0, "copula": 0, "ann": 0, "40": 0, "2293": 0, "2326": 0, "2012a": 0, "naftali": 0, "harri": 0, "mathia": 0, "drton": 0, "machin": 0, "research": 0, "14": 0, "3365": 0, "3383": 0, "2013": 0, "afterward": 0, "now": 0, "uniform": 0, "plu": 0, "trafo2norm": 0, "thre": 0, "1e": 0, "code": 0, "small": 0, "too": 0, "close": 0, "similarli": 0, "gpdc": 0, "null_dist_filenam": 0, "gp_param": 0, "distanc": 0, "gp": 0, "scikit": 0, "kernel": 0, "let": 0, "them": 0, "automat": 0, "cython": 0, "null": 0, "precomput": 0, "generate_and_save_nulldist": 0, "npz": 0, "file": 0, "f_x": 0, "f_y": 0, "sim": 0, "sigma": 0, "bandwidth": 0, "optimz": 0, "sklearn": 0, "r": 0, "pre": 0, "otherwis": 0, "dure": 0, "gabor": 0, "szeke": 0, "maria": 0, "l": 0, "rizzo": 0, "nail": 0, "bakirov": 0, "arxiv": 0, "0803": 0, "4101": 0, "otion": 0, "path": 0, "gaussianprocessregressor": 0, "gaussprocreg": 0, "sample_s": 0, "pairwis": 0, "generate_nulldist": 0, "dist": 0, "disk": 0, "add": 0, "gauss_pr": 0, "null_dist": 0, "name": 0, "add_to_null_dist": 0, "just": 0, "load": 0, "nulldist": 0, "wide": 0, "rang": 0, "beforehand": 0, "log": 0, "likelihood": 0, "neg": 0, "gpdctorch": 0, "gpytorch": 0, "dcor": 0, "pip": 0, "gaussprocregtorch": 0, "knn": 0, "shuffle_neighbor": 0, "rank": 0, "worker": 0, "come": 0, "joint": 0, "densiti": 0, "frenzel": 0, "pomp": 0, "lett": 0, "99": 0, "204101": 0, "2007": 0, "suitabl": 0, "cmisymb": 0, "cmi": 0, "iint": 0, "frac": 0, "cdot": 0, "dx": 0, "dy": 0, "dz": 0, "psi": 0, "sum_": 0, "k_": 0, "digamma": 0, "hyper": 0, "cube": 0, "subspac": 0, "view": 0, "smooth": 0, "unlik": 0, "bia": 0, "varianc": 0, "slightli": 0, "while": 0, "quantiti": 0, "scipi": 0, "spatial": 0, "ckdtree": 0, "fraction": 0, "henc": 0, "within": 0, "surrog": 0, "processor": 0, "get_conditional_entropi": 0, "entropi": 0, "h": 0, "prl": 0, "overwrit": 0, "preserv": 0, "permut": 0, "those": 0, "x_i": 0, "x_j": 0, "z_j": 0, "niehgbor": 0, "z_i": 0, "n_symb": 0, "categor": 0, "symbol": 0, "local": 0, "mix": 0, "cmiknnmix": 0, "conting": 0, "crosstab": 0, "approxim": 0, "probabl": 0, "mass": 0, "drawn": 0, "without": 0, "oracleci": 0, "observed_var": 0, "selection_var": 0, "graph_is_mag": 0, "oracl": 0, "link_coeff": 0, "ground": 0, "truth": 0, "unit": 0, "altern": 0, "digest": 0, "func": 0, "definin": 0, "check_shortest_path": 0, "starts_with": 0, "ends_with": 0, "forbidden_nod": 0, "only_non_causal_path": 0, "check_optimality_cond": 0, "optimality_cond_des_ym": 0, "optimality_cond_i": 0, "return_path": 0, "non_rep": 0, "au_i": 0, "au_j": 0, "alreadi": 0, "truncat": 0, "breadth": 0, "start": 0, "end": 0, "veri": 0, "long": 0, "constrain": 0, "has_path": 0, "ancestr": 0, "compute_ancestor": 0, "anc_all_x": 0, "anc_all_i": 0, "anc_all_z": 0, "arrohead": 0, "compat": 0, "get_graph_from_link": 0, "mag": 0, "admg": 0, "project": 0, "oper": 0, "pearl": 0, "get_links_from_graph": 0, "case": 0, "ad": 0, "canon": 0, "richardson": 0, "spirt": 0, "2002": 0, "support": 0, "evalu": 0, "Not": 0, "dummi": 0, "parcorrmult": 0, "correlation_typ": 0, "max_corr": 0, "multivari": 0, "mult_corr": 0, "gsquar": 0, "chi2": 0, "2000": 0, "stat": 0, "formula": 0, "bishop": 0, "fienberg": 0, "holland": 0, "1975": 0, "theori": 0, "mit": 0, "cambridg": 0, "p_valu": 0, "chi": 0, "dof": 0, "use_local_knn": [], "scale_rang": [], "perc": [], "metric": [], "chang": [], "norm": [], "optin": [], "three": [], "mesner": [], "shalizi": [], "infinit": [], "categori": [], "fpinf": [], "zao": [], "2022": [], "weight": 0, "param": [], "get_dependence_measure_m": [], "messner": [], "get_dependence_measure_condit": [], "get_dependence_measure_zeroinf": [], "alter": [], "coincid": [], "causaleffect": 0, "graph_typ": 0, "hidden_vari": 0, "check_sm_overlap": 0, "backdoor": 0, "variou": 0, "wright": 0, "depth": 0, "introduct": 0, "8485ae387a981d783f8764e508151cd9": 0, "caus": 0, "overlap": 0, "check_xys_path": 0, "proper": 0, "clean": 0, "check_optim": 0, "thm": 0, "fit_bootstrap_of": 0, "method_arg": 0, "boot_sampl": 0, "boot_blocklength": 0, "construct_arrai": 0, "shift": 0, "bootsrap": 0, "predict_bootstrap_of": 0, "draw": 0, "fit_total_effect": 0, "adjustment_set": 0, "conditional_estim": 0, "data_transform": 0, "ignore_identifi": 0, "linear_model": 0, "linearregress": 0, "oset": 0, "minimized_optim": 0, "minim": 0, "colliders_minimized_optim": 0, "nest": 0, "preprocess": 0, "prior": 0, "standardscal": 0, "simpl": 0, "user": 0, "ignor": 0, "fit_wright_effect": 0, "considerd": 0, "complic": 0, "static": 0, "get_graph_from_dict": 0, "helper": 0, "convert": 0, "get_medi": 0, "get_optimal_set": 0, "alternative_condit": 0, "return_separate_set": 0, "theorem": 0, "colliders_onli": 0, "invalid": 0, "collider_par": 0, "oset_": 0, "return_individual_bootstrap_result": 0, "confidence_interv": 0, "predict_total_effect": 0, "intervention_data": 0, "conditions_data": 0, "pred_param": 0, "return_further_pred_result": 0, "aggregation_func": 0, "transform_interventions_and_predict": 0, "len": 0, "predictor": 0, "entir": 0, "invers": 0, "estimate_confid": 0, "predict_wright_effect": 0, "conditional_model": 0, "care": 0, "inverse_transform": 0, "get_coef": 0, "get_fit": [], "selected_vari": 0, "return_data": 0, "integ": 0, "fit_result": 0, "get_general_fitted_model": 0, "get_general_predict": 0, "get_val_matrix": 0, "fit_model": 0, "give": 0, "deriv": 0, "linearmedi": 0, "model_param": 0, "etc": 0, "ce": 0, "mce": 0, "ac": 0, "suscept": 0, "amc": 0, "chain": 0, "x_t": 0, "eta": 0, "y_t": 0, "x_": 0, "z_t": 0, "y_": 0, "25": 0, "37": 0, "true_par": 0, "med": 0, "get_coeff": 0, "get_c": 0, "get_mc": 0, "get_all_ac": 0, "get_all_amc": 0, "250648072987": 0, "36897445": 0, "25718002": 0, "24365041": 0, "38250406": 0, "12532404": 0, "accept": 0, "fit_model_bootstrap": 0, "boostrap": 0, "version": 0, "cube_root": 0, "from_autocorrel": 0, "generate_noise_from": 0, "root": 0, "get_ac": 0, "lag_mod": 0, "absmax": 0, "exclude_i": 0, "eman": 0, "all_lag": 0, "itself": 0, "exclude_j": 0, "affect": 0, "previou": 0, "exclude_k": 0, "exclude_self_effect": 0, "themselv": 0, "get_amc": 0, "get_bootstrap_of": 0, "function_arg": 0, "incl": 0, "get_ce_max": 0, "get_conditional_mc": 0, "notk": 0, "go": 0, "get_joint_c": 0, "count": 0, "joint_c": 0, "get_joint_ce_matrix": 0, "taui": 0, "tauj": 0, "stand": 0, "joint_ce_matrix": 0, "2d": 0, "get_joint_mc": 0, "joint_mc": 0, "minu": 0, "get_mediation_graph_data": 0, "include_neighbor": 0, "path_val_matrix": 0, "path_node_arrai": 0, "tsg_path_val_matrix": 0, "graph_data": 0, "color": 0, "get_tsg": 0, "link_matrix": 0, "analyz": 0, "sig_thr": 0, "array_lik": 0, "tsg": 0, "symmetr": 0, "error": 0, "net_to_tsg": 0, "translat": 0, "tsg_to_net": 0, "train_indic": 0, "test_indic": 0, "prediction_model": 0, "train": 0, "target_predictor": 0, "selected_target": 0, "instanc": 0, "get_predictor": 0, "steps_ahead": 0, "get_test_arrai": 0, "get_train_arrai": 0, "new_data": 0, "cut": 0, "off": 0, "below": 0, "missing_flag": 0, "vector_var": 0, "var_nam": 0, "datatim": 0, "analysis_mod": 0, "singl": 0, "reference_point": 0, "time_offset": 0, "remove_missing_upto_maxlag": 0, "OR": 0, "whose": 0, "t_i": 0, "vari": 0, "dismiss": 0, "slice": 0, "occur": 0, "bias": 0, "section": 0, "supplement": 0, "match": 0, "enumer": 0, "vector": 0, "compon": 0, "pars": 0, "timelabel": 0, "1d": 0, "rel": 0, "share": 0, "axi": 0, "creat": 0, "t_max": 0, "largest_time_step": 0, "bigger": 0, "At": 0, "align": 0, "agre": 0, "offset": 0, "_initialized_from": 0, "3d": 0, "map": 0, "represent": 0, "identifii": 0, "wai": 0, "max_": 0, "largest": 0, "latest": 0, "random_st": 0, "extraz": 0, "return_cleaned_xyz": 0, "do_check": 0, "remove_overlap": 0, "n_en": 0, "var1": 0, "var2": 0, "varlag": 0, "assign": 0, "duplic": 0, "saniti": 0, "thei": 0, "2xtau_max_futur": 0, "t_miss": 0, "principl": 0, "would": 0, "n_sampl": 0, "print_array_info": 0, "info": 0, "typic": 0, "varx": 0, "get_acf": 0, "autocorr": 0, "get_block_length": 0, "approach": 0, "mader": 0, "eq": 0, "pfeifer": 0, "2005": 0, "multidimension": 0, "jointli": 0, "curv": 0, "fail": 0, "limit": 0, "neurosci": 0, "volum": 0, "219": 0, "issu": 0, "15": 0, "octob": 0, "285": 0, "291": 0, "block_len": 0, "lowhighpass_filt": 0, "cutperiod": 0, "pass_period": 0, "low": 0, "butterworth": 0, "filter": 0, "twice": 0, "onc": 0, "forward": 0, "backward": 0, "period": 0, "act": 0, "ordinal_patt_arrai": 0, "array_mask": 0, "symbolifi": 0, "ordin": 0, "pattern": 0, "uniqu": 0, "There": 0, "faculti": 0, "symb_arrai": 0, "shorter": 0, "2011": 0, "coupl": 0, "83": 0, "12": 0, "051122": 0, "label": 0, "embed": 0, "patt": 0, "patt_mask": 0, "patt_tim": 0, "quantile_bin_arrai": 0, "bin": 0, "smooth_width": 0, "width": 0, "heavisid": 0, "rtype": 0, "nois": 0, "intervention_typ": 0, "hard": 0, "time_bin_with_mask": 0, "time_bin_length": 0, "bindata": 0, "outer": 0, "cdf": 0, "normal_data": 0, "parents_neighbors_coeff": 0, "inv_inno_cov": 0, "initial_valu": 0, "autoregress": 0, "innov": 0, "var_network": 0, "possibli": 0, "friendli": 0, "weighted_avg_and_std": 0, "deviat": 0, "std": 0, "check_stationar": 0, "stationari": 0, "dag_to_link": 0, "generate_structural_causal_process": 0, "dependency_func": 0, "dependency_coeff": 0, "auto_coeff": 0, "contemp_fract": 0, "noise_dist": 0, "noise_mean": 0, "noise_sigma": 0, "noise_se": 0, "randomli": 0, "characterist": 0, "frawn": 0, "arbitrari": 0, "factor": 0, "weibul": 0, "beta": 0, "links_to_graph": 0, "transient_fract": 0, "interven": 0, "randn": 0, "un": 0, "soft": 0, "percentag": 0, "transient": 0, "realiz": 0, "nonstationari": [], "infin": 0, "lag1": 0, "coef1": 0, "lag2": 0, "coef2": 0, "nonzero": 0, "covari": 0, "inno_cov": 0, "debug": 0, "no_nois": 0, "disabl": 0, "max_delai": 0, "true_parent_neighbor": 0, "id": 0, "parent_node_id": 0, "time_lag": 0, "plot_densityplot": 0, "setup_arg": 0, "add_densityplot_arg": 0, "selected_dataset": 0, "setup_density_matrix": 0, "add_densityplot": 0, "diagon": 0, "show": 0, "seaborn": 0, "doc": 0, "overlaid": 0, "plot_graph": 0, "fig_ax": 0, "figsiz": 0, "save_nam": 0, "link_colorbar_label": 0, "node_colorbar_label": 0, "auto": 0, "link_width": 0, "link_attribut": 0, "node_po": 0, "arrow_linewidth": 0, "vmin_edg": 0, "vmax_edg": 0, "edge_tick": 0, "cmap_edg": 0, "rdbu_r": 0, "vmin_nod": 0, "vmax_nod": 0, "node_tick": 0, "cmap_nod": 0, "orrd": 0, "node_s": 0, "node_aspect": 0, "arrowhead_s": 0, "20": 0, "curved_radiu": 0, "label_fonts": 0, "tick_label_s": 0, "node_label_s": 0, "link_label_fonts": 0, "lag_arrai": 0, "network_lower_bound": 0, "show_colorbar": 0, "inner_edge_styl": 0, "dash": 0, "special_nod": 0, "straight": 0, "arrow": 0, "maxim": 0, "magnitud": 0, "coordin": 0, "via": 0, "ax": 0, "basemap": 0, "30": 0, "linewidth": 0, "colorbar": 0, "tick": 0, "colormap": 0, "ratio": 0, "heigth": 0, "varibl": 0, "head": 0, "fancyarrowpatch": 0, "curvatur": 0, "fontsiz": 0, "opac": 0, "arang": 0, "vertic": 0, "space": 0, "plot_lagfunc": 0, "add_lagfunc_arg": 0, "lagfunct": 0, "setup_matrix": 0, "add_lagfunc": 0, "plot_mediation_graph": 0, "standard_color_link": 0, "black": 0, "standard_color_nod": 0, "lightgrei": 0, "visual": 0, "plot_mediation_time_series_graph": 0, "label_space_left": 0, "label_space_top": 0, "top": 0, "bottom": 0, "horizont": 0, "alloc": 0, "plot_scatterplot": 0, "add_scatterplot_arg": 0, "scatter": 0, "setup_scatter_matrix": 0, "add_scatterplot": 0, "plot_time_series_graph": 0, "auxiliari": 0, "auxadmg": 0, "style": 0, "inner_edg": 0, "special": 0, "plot_timeseri": 0, "var_unit": 0, "time_label": 0, "grey_masked_sampl": 0, "show_meanlin": 0, "data_linewidth": 0, "skip_ticks_data_x": 0, "skip_ticks_data_i": 0, "adjust_plot": 0, "stack": 0, "panel": 0, "subplot": 0, "fig": 0, "pyplot": 0, "grei": 0, "fill": 0, "skip": 0, "tickmark": 0, "plot_tsg": 0, "anc_x": 0, "anc_i": 0, "anc_xi": 0, "help": 0, "legend_width": 0, "legend_fonts": 0, "plot_gridlin": 0, "setup": 0, "legend": 0, "grid": 0, "matrix_lag": 0, "label_color": 0, "snskdeplot_arg": 0, "cmap": 0, "snskdeplot_diagonal_arg": 0, "depict": 0, "v": 0, "sn": 0, "kdeplot": 0, "adjustfig": 0, "show_label": 0, "x_base": 0, "y_base": 0, "lag_unit": 0, "comparison": 0, "two_sided_thr": 0, "marker": 0, "markers": 0, "po": 0, "matplotlib": 0, "savefig": 0, "scatterplot": 0, "That": 0, "edgemark": 0, "old": 0, "lag_i": 0, "background": 0, "knowledg": 0, "claim": 0, "i_t": 0, "neither": 0, "nor": 0, "impos": 0, "No": 0, "aumax": 0, "au_max": 0, "au": 0, "st": 0, "independence_tests_bas": 0, "robust_parcorr": 0, "gpdc_torch": 0, "infer": 0, "oracle_conditional_independ": 0, "parcorr_mult": 0, "parcorr_wl": 0, "parcorrwl": 0, "gt_std_matrix": 0, "expert_knowledg": 0, "heteroskedast": 0, "window_s": 0, "robustifi": 0, "wl": 0, "known": 0, "neighbour": 0, "homoskedast": 0, "term": 0, "nb_node": 0, "expert": 0, "regressionci": 0, "flexibl": 0, "notion": 0, "devianc": 0, "emploi": 0, "significantli": 0, "hypothes": 0, "univari": 0, "moreov": 0, "multinomi": 0, "fit_full_model": 0, "nonvalid": 0, "show_marginal_densities_on_diagon": 0, "show_autodependency_lag": 0, "write_csv": 0, "digit": 0, "write": 0, "csv": 0}, "objects": {"tigramite.causal_effects": [[0, 0, 1, "", "CausalEffects"]], "tigramite.causal_effects.CausalEffects": [[0, 1, 1, "", "check_XYS_paths"], [0, 1, 1, "", "check_optimality"], [0, 1, 1, "", "fit_bootstrap_of"], [0, 1, 1, "", "fit_total_effect"], [0, 1, 1, "", "fit_wright_effect"], [0, 1, 1, "", "get_graph_from_dict"], [0, 1, 1, "", "get_mediators"], [0, 1, 1, "", "get_optimal_set"], [0, 1, 1, "", "predict_bootstrap_of"], [0, 1, 1, "", "predict_total_effect"], [0, 1, 1, "", "predict_wright_effect"]], "tigramite": [[0, 2, 0, "-", "data_processing"], [0, 2, 0, "-", "plotting"]], "tigramite.data_processing": [[0, 0, 1, "", "DataFrame"], [0, 3, 1, "", "get_acf"], [0, 3, 1, "", "get_block_length"], [0, 3, 1, "", "lowhighpass_filter"], [0, 3, 1, "", "ordinal_patt_array"], [0, 3, 1, "", "quantile_bin_array"], [0, 3, 1, "", "smooth"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "time_bin_with_mask"], [0, 3, 1, "", "trafo2normal"], [0, 3, 1, "", "var_process"], [0, 3, 1, "", "weighted_avg_and_std"]], "tigramite.data_processing.DataFrame": [[0, 1, 1, "", "construct_array"], [0, 1, 1, "", "print_array_info"]], "tigramite.independence_tests.cmiknn": [[0, 0, 1, "", "CMIknn"]], "tigramite.independence_tests.cmiknn.CMIknn": [[0, 1, 1, "", "get_conditional_entropy"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.cmisymb": [[0, 0, 1, "", "CMIsymb"]], "tigramite.independence_tests.cmisymb.CMIsymb": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc": [[0, 0, 1, "", "GPDC"]], "tigramite.independence_tests.gpdc.GPDC": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc_torch": [[0, 0, 1, "", "GPDCtorch"]], "tigramite.independence_tests.gpdc_torch.GPDCtorch": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gsquared": [[0, 0, 1, "", "Gsquared"]], "tigramite.independence_tests.gsquared.Gsquared": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.independence_tests_base": [[0, 0, 1, "", "CondIndTest"]], "tigramite.independence_tests.independence_tests_base.CondIndTest": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_bootstrap_confidence"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_fixed_thres_significance"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 1, 1, "", "get_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "print_info"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "run_test_raw"], [0, 1, 1, "", "set_dataframe"], [0, 1, 1, "", "set_mask_type"]], "tigramite.independence_tests.oracle_conditional_independence": [[0, 0, 1, "", "OracleCI"]], "tigramite.independence_tests.oracle_conditional_independence.OracleCI": [[0, 1, 1, "", "check_shortest_path"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_graph_from_links"], [0, 1, 1, "", "get_links_from_graph"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.parcorr": [[0, 0, 1, "", "ParCorr"]], "tigramite.independence_tests.parcorr.ParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.parcorr_mult": [[0, 0, 1, "", "ParCorrMult"]], "tigramite.independence_tests.parcorr_mult.ParCorrMult": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "mult_corr"]], "tigramite.independence_tests.parcorr_wls": [[0, 0, 1, "", "ParCorrWLS"]], "tigramite.independence_tests.parcorr_wls.ParCorrWLS": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"]], "tigramite.independence_tests.regressionCI": [[0, 0, 1, "", "RegressionCI"]], "tigramite.independence_tests.regressionCI.RegressionCI": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.robust_parcorr": [[0, 0, 1, "", "RobustParCorr"]], "tigramite.independence_tests.robust_parcorr.RobustParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "trafo2normal"]], "tigramite.lpcmci": [[0, 0, 1, "", "LPCMCI"]], "tigramite.lpcmci.LPCMCI": [[0, 1, 1, "", "run_lpcmci"]], "tigramite.models": [[0, 0, 1, "", "LinearMediation"], [0, 0, 1, "", "Models"], [0, 0, 1, "", "Prediction"]], "tigramite.models.LinearMediation": [[0, 1, 1, "", "fit_model"], [0, 1, 1, "", "fit_model_bootstrap"], [0, 1, 1, "", "get_ace"], [0, 1, 1, "", "get_acs"], [0, 1, 1, "", "get_all_ace"], [0, 1, 1, "", "get_all_acs"], [0, 1, 1, "", "get_all_amce"], [0, 1, 1, "", "get_amce"], [0, 1, 1, "", "get_bootstrap_of"], [0, 1, 1, "", "get_ce"], [0, 1, 1, "", "get_ce_max"], [0, 1, 1, "", "get_coeff"], [0, 1, 1, "", "get_conditional_mce"], [0, 1, 1, "", "get_joint_ce"], [0, 1, 1, "", "get_joint_ce_matrix"], [0, 1, 1, "", "get_joint_mce"], [0, 1, 1, "", "get_mce"], [0, 1, 1, "", "get_mediation_graph_data"], [0, 1, 1, "", "get_tsg"], [0, 1, 1, "", "get_val_matrix"], [0, 1, 1, "", "net_to_tsg"], [0, 1, 1, "", "tsg_to_net"]], "tigramite.models.Models": [[0, 1, 1, "", "fit_full_model"], [0, 1, 1, "", "get_coefs"], [0, 1, 1, "", "get_general_fitted_model"], [0, 1, 1, "", "get_general_prediction"], [0, 1, 1, "", "get_val_matrix"]], "tigramite.models.Prediction": [[0, 1, 1, "", "fit"], [0, 1, 1, "", "get_predictors"], [0, 1, 1, "", "get_test_array"], [0, 1, 1, "", "get_train_array"], [0, 1, 1, "", "predict"]], "tigramite.pcmci": [[0, 0, 1, "", "PCMCI"]], "tigramite.pcmci.PCMCI": [[0, 5, 1, "", "N"], [0, 5, 1, "", "T"], [0, 5, 1, "", "all_parents"], [0, 1, 1, "", "get_graph_from_pmatrix"], [0, 1, 1, "", "get_lagged_dependencies"], [0, 5, 1, "", "iterations"], [0, 1, 1, "", "print_results"], [0, 1, 1, "", "print_significant_links"], [0, 5, 1, "", "pval_max"], [0, 1, 1, "", "return_parents_dict"], [0, 1, 1, "", "return_significant_links"], [0, 1, 1, "", "run_bivci"], [0, 1, 1, "", "run_fullci"], [0, 1, 1, "", "run_mci"], [0, 1, 1, "", "run_pc_stable"], [0, 1, 1, "", "run_pcalg"], [0, 1, 1, "", "run_pcalg_non_timeseries_data"], [0, 1, 1, "", "run_pcmci"], [0, 1, 1, "", "run_pcmciplus"], [0, 5, 1, "", "val_min"]], "tigramite.plotting": [[0, 3, 1, "", "plot_densityplots"], [0, 3, 1, "", "plot_graph"], [0, 3, 1, "", "plot_lagfuncs"], [0, 3, 1, "", "plot_mediation_graph"], [0, 3, 1, "", "plot_mediation_time_series_graph"], [0, 3, 1, "", "plot_scatterplots"], [0, 3, 1, "", "plot_time_series_graph"], [0, 3, 1, "", "plot_timeseries"], [0, 3, 1, "", "plot_tsg"], [0, 0, 1, "", "setup_density_matrix"], [0, 0, 1, "", "setup_matrix"], [0, 0, 1, "", "setup_scatter_matrix"], [0, 3, 1, "", "write_csv"]], "tigramite.plotting.setup_density_matrix": [[0, 1, 1, "", "add_densityplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.plotting.setup_matrix": [[0, 1, 1, "", "add_lagfuncs"], [0, 1, 1, "", "savefig"]], "tigramite.plotting.setup_scatter_matrix": [[0, 1, 1, "", "add_scatterplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.toymodels": [[0, 2, 0, "-", "structural_causal_processes"]], "tigramite.toymodels.structural_causal_processes": [[0, 3, 1, "", "check_stationarity"], [0, 3, 1, "", "dag_to_links"], [0, 3, 1, "", "generate_structural_causal_process"], [0, 3, 1, "", "links_to_graph"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "var_process"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:module", "3": "py:function", "4": "py:property", "5": "py:attribute"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "module", "Python module"], "3": ["py", "function", "Python function"], "4": ["py", "property", "Python property"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"welcom": 0, "tigramit": 0, "": 0, "document": 0, "indic": 0, "tabl": 0, "pcmci": 0, "lpcmci": 0, "independence_test": 0, "condit": 0, "independ": 0, "test": 0, "causal_effect": 0, "causal": 0, "effect": 0, "analysi": 0, "model": 0, "time": 0, "seri": 0, "mediat": 0, "predict": 0, "data_process": 0, "data": 0, "process": 0, "function": 0, "toymodel": 0, "toi": 0, "gener": 0, "plot": 0}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 57}, "alltitles": {"Welcome to Tigramite\u2019s documentation!": [[0, "welcome-to-tigramite-s-documentation"]], "Indices and tables": [[0, "indices-and-tables"], [0, "id36"]], "TIGRAMITE": [[0, "tigramite"]], "tigramite.pcmci: PCMCI": [[0, "tigramite-pcmci-pcmci"]], "tigramite.lpcmci: LPCMCI": [[0, "tigramite-lpcmci-lpcmci"]], "tigramite.independence_tests: Conditional independence tests": [[0, "tigramite-independence-tests-conditional-independence-tests"]], "tigramite.causal_effects: Causal Effect analysis": [[0, "tigramite-causal-effects-causal-effect-analysis"]], "tigramite.models: Time series modeling, mediation, and prediction": [[0, "tigramite-models-time-series-modeling-mediation-and-prediction"]], "tigramite.data_processing: Data processing functions": [[0, "module-tigramite.data_processing"]], "tigramite.toymodels: Toy model generators": [[0, "module-tigramite.toymodels.structural_causal_processes"]], "tigramite.plotting: Plotting functions": [[0, "module-tigramite.plotting"]]}, "indexentries": {"cmiknn (class in tigramite.independence_tests.cmiknn)": [[0, "tigramite.independence_tests.cmiknn.CMIknn"]], "cmisymb (class in tigramite.independence_tests.cmisymb)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb"]], "causaleffects (class in tigramite.causal_effects)": [[0, "tigramite.causal_effects.CausalEffects"]], "condindtest (class in tigramite.independence_tests.independence_tests_base)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest"]], "dataframe (class in tigramite.data_processing)": [[0, "tigramite.data_processing.DataFrame"]], "gpdc (class in tigramite.independence_tests.gpdc)": [[0, "tigramite.independence_tests.gpdc.GPDC"]], "gpdctorch (class in tigramite.independence_tests.gpdc_torch)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch"]], "gsquared (class in tigramite.independence_tests.gsquared)": [[0, "tigramite.independence_tests.gsquared.Gsquared"]], "lpcmci (class in tigramite.lpcmci)": [[0, "tigramite.lpcmci.LPCMCI"]], "linearmediation (class in tigramite.models)": [[0, "tigramite.models.LinearMediation"]], "models (class in tigramite.models)": [[0, "tigramite.models.Models"]], "n (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.N"]], "oracleci (class in tigramite.independence_tests.oracle_conditional_independence)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI"]], "pcmci (class in tigramite.pcmci)": [[0, "tigramite.pcmci.PCMCI"]], "parcorr (class in tigramite.independence_tests.parcorr)": [[0, "tigramite.independence_tests.parcorr.ParCorr"]], "parcorrmult (class in tigramite.independence_tests.parcorr_mult)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult"]], "parcorrwls (class in tigramite.independence_tests.parcorr_wls)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS"]], "prediction (class in tigramite.models)": [[0, "tigramite.models.Prediction"]], "regressionci (class in tigramite.independence_tests.regressionci)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI"]], "robustparcorr (class in tigramite.independence_tests.robust_parcorr)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr"]], "t (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.T"]], "add_densityplot() (tigramite.plotting.setup_density_matrix method)": [[0, "tigramite.plotting.setup_density_matrix.add_densityplot"]], "add_lagfuncs() (tigramite.plotting.setup_matrix method)": [[0, "tigramite.plotting.setup_matrix.add_lagfuncs"]], "add_scatterplot() (tigramite.plotting.setup_scatter_matrix method)": [[0, "tigramite.plotting.setup_scatter_matrix.add_scatterplot"]], "adjustfig() (tigramite.plotting.setup_density_matrix method)": [[0, "tigramite.plotting.setup_density_matrix.adjustfig"]], "adjustfig() (tigramite.plotting.setup_scatter_matrix method)": [[0, "tigramite.plotting.setup_scatter_matrix.adjustfig"]], "all_parents (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.all_parents"]], "check_xys_paths() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.check_XYS_paths"]], "check_optimality() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.check_optimality"]], "check_shortest_path() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.check_shortest_path"]], "check_stationarity() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.check_stationarity"]], "construct_array() (tigramite.data_processing.dataframe method)": [[0, "tigramite.data_processing.DataFrame.construct_array"]], "dag_to_links() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.dag_to_links"]], "fit() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.fit"]], "fit_bootstrap_of() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_bootstrap_of"]], "fit_full_model() (tigramite.models.models method)": [[0, "tigramite.models.Models.fit_full_model"]], "fit_model() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.fit_model"]], "fit_model_bootstrap() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.fit_model_bootstrap"]], "fit_total_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_total_effect"]], "fit_wright_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.fit_wright_effect"]], "generate_and_save_nulldists() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.generate_and_save_nulldists"]], "generate_and_save_nulldists() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.generate_and_save_nulldists"]], "generate_nulldist() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.generate_nulldist"]], "generate_nulldist() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.generate_nulldist"]], "generate_structural_causal_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.generate_structural_causal_process"]], "get_ace() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ace"]], "get_acf() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.get_acf"]], "get_acs() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_acs"]], "get_all_ace() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_ace"]], "get_all_acs() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_acs"]], "get_all_amce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_all_amce"]], "get_amce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_amce"]], "get_analytic_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_analytic_confidence"]], "get_analytic_confidence() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_analytic_confidence"]], "get_analytic_significance() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.gsquared.gsquared method)": [[0, "tigramite.independence_tests.gsquared.Gsquared.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.get_analytic_significance"]], "get_analytic_significance() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_analytic_significance"]], "get_block_length() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.get_block_length"]], "get_bootstrap_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_bootstrap_confidence"]], "get_bootstrap_of() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_bootstrap_of"]], "get_ce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ce"]], "get_ce_max() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_ce_max"]], "get_coeff() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_coeff"]], "get_coefs() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_coefs"]], "get_conditional_entropy() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_conditional_entropy"]], "get_conditional_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_conditional_mce"]], "get_confidence() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_confidence"]], "get_confidence() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_confidence"]], "get_dependence_measure() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.cmisymb.cmisymb method)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.gsquared.gsquared method)": [[0, "tigramite.independence_tests.gsquared.Gsquared.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.get_dependence_measure"]], "get_dependence_measure() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_dependence_measure"]], "get_fixed_thres_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_fixed_thres_significance"]], "get_general_fitted_model() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_general_fitted_model"]], "get_general_prediction() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_general_prediction"]], "get_graph_from_dict() (tigramite.causal_effects.causaleffects static method)": [[0, "tigramite.causal_effects.CausalEffects.get_graph_from_dict"]], "get_graph_from_links() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_graph_from_links"]], "get_graph_from_pmatrix() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.get_graph_from_pmatrix"]], "get_joint_ce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_ce"]], "get_joint_ce_matrix() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_ce_matrix"]], "get_joint_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_joint_mce"]], "get_lagged_dependencies() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.get_lagged_dependencies"]], "get_links_from_graph() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_links_from_graph"]], "get_mce() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_mce"]], "get_measure() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_measure"]], "get_measure() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_measure"]], "get_mediation_graph_data() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_mediation_graph_data"]], "get_mediators() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.get_mediators"]], "get_model_selection_criterion() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_model_selection_criterion"]], "get_model_selection_criterion() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_model_selection_criterion"]], "get_optimal_set() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.get_optimal_set"]], "get_predictors() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_predictors"]], "get_shuffle_significance() (tigramite.independence_tests.cmiknn.cmiknn method)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.cmisymb.cmisymb method)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.gpdc.gpdc method)": [[0, "tigramite.independence_tests.gpdc.GPDC.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.gpdc_torch.gpdctorch method)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr.parcorr method)": [[0, "tigramite.independence_tests.parcorr.ParCorr.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.parcorr_wls.parcorrwls method)": [[0, "tigramite.independence_tests.parcorr_wls.ParCorrWLS.get_shuffle_significance"]], "get_shuffle_significance() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.get_shuffle_significance"]], "get_significance() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.get_significance"]], "get_test_array() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_test_array"]], "get_train_array() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.get_train_array"]], "get_tsg() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_tsg"]], "get_val_matrix() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.get_val_matrix"]], "get_val_matrix() (tigramite.models.models method)": [[0, "tigramite.models.Models.get_val_matrix"]], "iterations (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.iterations"]], "links_to_graph() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.links_to_graph"]], "lowhighpass_filter() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.lowhighpass_filter"]], "measure (tigramite.independence_tests.cmiknn.cmiknn property)": [[0, "tigramite.independence_tests.cmiknn.CMIknn.measure"]], "measure (tigramite.independence_tests.cmisymb.cmisymb property)": [[0, "tigramite.independence_tests.cmisymb.CMIsymb.measure"]], "measure (tigramite.independence_tests.gpdc.gpdc property)": [[0, "tigramite.independence_tests.gpdc.GPDC.measure"]], "measure (tigramite.independence_tests.gpdc_torch.gpdctorch property)": [[0, "tigramite.independence_tests.gpdc_torch.GPDCtorch.measure"]], "measure (tigramite.independence_tests.gsquared.gsquared property)": [[0, "tigramite.independence_tests.gsquared.Gsquared.measure"]], "measure (tigramite.independence_tests.independence_tests_base.condindtest property)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.measure"]], "measure (tigramite.independence_tests.oracle_conditional_independence.oracleci property)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.measure"]], "measure (tigramite.independence_tests.parcorr.parcorr property)": [[0, "tigramite.independence_tests.parcorr.ParCorr.measure"]], "measure (tigramite.independence_tests.parcorr_mult.parcorrmult property)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.measure"]], "measure (tigramite.independence_tests.regressionci.regressionci property)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.measure"]], "measure (tigramite.independence_tests.robust_parcorr.robustparcorr property)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.measure"]], "module": [[0, "module-tigramite.data_processing"], [0, "module-tigramite.plotting"], [0, "module-tigramite.toymodels.structural_causal_processes"]], "mult_corr() (tigramite.independence_tests.parcorr_mult.parcorrmult method)": [[0, "tigramite.independence_tests.parcorr_mult.ParCorrMult.mult_corr"]], "net_to_tsg() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.net_to_tsg"]], "ordinal_patt_array() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.ordinal_patt_array"]], "plot_densityplots() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_densityplots"]], "plot_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_graph"]], "plot_lagfuncs() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_lagfuncs"]], "plot_mediation_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_mediation_graph"]], "plot_mediation_time_series_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_mediation_time_series_graph"]], "plot_scatterplots() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_scatterplots"]], "plot_time_series_graph() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_time_series_graph"]], "plot_timeseries() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_timeseries"]], "plot_tsg() (in module tigramite.plotting)": [[0, "tigramite.plotting.plot_tsg"]], "predict() (tigramite.models.prediction method)": [[0, "tigramite.models.Prediction.predict"]], "predict_bootstrap_of() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_bootstrap_of"]], "predict_total_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_total_effect"]], "predict_wright_effect() (tigramite.causal_effects.causaleffects method)": [[0, "tigramite.causal_effects.CausalEffects.predict_wright_effect"]], "print_array_info() (tigramite.data_processing.dataframe method)": [[0, "tigramite.data_processing.DataFrame.print_array_info"]], "print_info() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.print_info"]], "print_results() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.print_results"]], "print_significant_links() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.print_significant_links"]], "pval_max (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.pval_max"]], "quantile_bin_array() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.quantile_bin_array"]], "return_parents_dict() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.return_parents_dict"]], "return_significant_links() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.return_significant_links"]], "run_bivci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_bivci"]], "run_fullci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_fullci"]], "run_lpcmci() (tigramite.lpcmci.lpcmci method)": [[0, "tigramite.lpcmci.LPCMCI.run_lpcmci"]], "run_mci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_mci"]], "run_pc_stable() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pc_stable"]], "run_pcalg() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcalg"]], "run_pcalg_non_timeseries_data() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcalg_non_timeseries_data"]], "run_pcmci() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcmci"]], "run_pcmciplus() (tigramite.pcmci.pcmci method)": [[0, "tigramite.pcmci.PCMCI.run_pcmciplus"]], "run_test() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.run_test"]], "run_test() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.run_test"]], "run_test_raw() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.run_test_raw"]], "savefig() (tigramite.plotting.setup_matrix method)": [[0, "tigramite.plotting.setup_matrix.savefig"]], "set_dataframe() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.set_dataframe"]], "set_dataframe() (tigramite.independence_tests.oracle_conditional_independence.oracleci method)": [[0, "tigramite.independence_tests.oracle_conditional_independence.OracleCI.set_dataframe"]], "set_dataframe() (tigramite.independence_tests.regressionci.regressionci method)": [[0, "tigramite.independence_tests.regressionCI.RegressionCI.set_dataframe"]], "set_mask_type() (tigramite.independence_tests.independence_tests_base.condindtest method)": [[0, "tigramite.independence_tests.independence_tests_base.CondIndTest.set_mask_type"]], "setup_density_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_density_matrix"]], "setup_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_matrix"]], "setup_scatter_matrix (class in tigramite.plotting)": [[0, "tigramite.plotting.setup_scatter_matrix"]], "smooth() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.smooth"]], "structural_causal_process() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.structural_causal_process"]], "structural_causal_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.structural_causal_process"]], "tigramite.data_processing": [[0, "module-tigramite.data_processing"]], "tigramite.plotting": [[0, "module-tigramite.plotting"]], "tigramite.toymodels.structural_causal_processes": [[0, "module-tigramite.toymodels.structural_causal_processes"]], "time_bin_with_mask() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.time_bin_with_mask"]], "trafo2normal() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.trafo2normal"]], "trafo2normal() (tigramite.independence_tests.robust_parcorr.robustparcorr method)": [[0, "tigramite.independence_tests.robust_parcorr.RobustParCorr.trafo2normal"]], "tsg_to_net() (tigramite.models.linearmediation method)": [[0, "tigramite.models.LinearMediation.tsg_to_net"]], "val_min (tigramite.pcmci.pcmci attribute)": [[0, "tigramite.pcmci.PCMCI.val_min"]], "var_process() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.var_process"]], "var_process() (in module tigramite.toymodels.structural_causal_processes)": [[0, "tigramite.toymodels.structural_causal_processes.var_process"]], "weighted_avg_and_std() (in module tigramite.data_processing)": [[0, "tigramite.data_processing.weighted_avg_and_std"]], "write_csv() (in module tigramite.plotting)": [[0, "tigramite.plotting.write_csv"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["index"], "filenames": ["index.rst"], "titles": ["Welcome to Tigramite\u2019s documentation!"], "terms": {"index": 0, "modul": 0, "search": 0, "page": 0, "github": 0, "repo": 0, "python": 0, "packag": 0, "It": 0, "allow": 0, "effici": 0, "estim": 0, "graph": 0, "from": 0, "high": 0, "dimension": 0, "dataset": 0, "discoveri": 0, "us": 0, "robust": 0, "forecast": 0, "direct": 0, "total": 0, "base": 0, "linear": 0, "well": 0, "non": 0, "parametr": 0, "applic": 0, "discret": 0, "continu": 0, "valu": 0, "also": 0, "includ": 0, "qualiti": 0, "result": 0, "pleas": 0, "cite": 0, "follow": 0, "paper": 0, "depend": 0, "which": 0, "method": 0, "you": 0, "overview": 0, "rung": 0, "j": 0, "gerhardu": 0, "A": 0, "varando": 0, "g": 0, "et": 0, "al": 0, "infer": 0, "nat": 0, "rev": 0, "earth": 0, "environ": 0, "2023": 0, "http": 0, "doi": 0, "org": 0, "10": 0, "1038": 0, "s43017": 0, "023": 0, "00431": 0, "y": 0, "p": 0, "nowack": 0, "m": 0, "kretschmer": 0, "flaxman": 0, "d": 0, "sejdinov": 0, "detect": 0, "quantifi": 0, "associ": 0, "larg": 0, "nonlinear": 0, "sci": 0, "adv": 0, "5": 0, "eaau4996": 0, "2019": 0, "advanc": 0, "sciencemag": 0, "content": 0, "11": 0, "2020": 0, "discov": 0, "contemporan": 0, "lag": 0, "relat": 0, "autocorrel": 0, "proceed": 0, "36th": 0, "confer": 0, "uncertainti": 0, "artifici": 0, "intellig": 0, "uai": 0, "toronto": 0, "canada": 0, "auai": 0, "press": 0, "uai2020": 0, "579_main_pap": 0, "pdf": 0, "recal": 0, "latent": 0, "confound": 0, "neural": 0, "inform": 0, "system": 0, "33": 0, "neurip": 0, "cc": 0, "hash": 0, "94e70705efae423efda1088614128d0b": 0, "abstract": 0, "html": 0, "elena": 0, "saggioro": 0, "jana": 0, "de": 0, "wilj": 0, "marlen": 0, "jakob": 0, "reconstruct": 0, "regim": 0, "relationship": 0, "observ": 0, "chao": 0, "1": 0, "novemb": 0, "30": 0, "113115": 0, "1063": 0, "0020538": 0, "2018": 0, "network": 0, "theoret": 0, "assumpt": 0, "practic": 0, "an": 0, "interdisciplinari": 0, "journal": 0, "scienc": 0, "28": 0, "7": 0, "075310": 0, "aip": 0, "scitat": 0, "5025050": 0, "natur": 0, "commun": 0, "perspect": 0, "www": 0, "com": 0, "articl": 0, "s41467": 0, "019": 0, "10105": 0, "3": 0, "necessari": 0, "suffici": 0, "graphic": 0, "optim": 0, "adjust": 0, "set": 0, "hidden": 0, "variabl": 0, "2021": 0, "34": 0, "class": 0, "2015": 0, "identifi": 0, "gatewai": 0, "complex": 0, "spatio": 0, "tempor": 0, "6": 0, "8502": 0, "ncomms9502": 0, "transfer": 0, "along": 0, "pathwai": 0, "phy": 0, "e": 0, "92": 0, "62829": 0, "1103": 0, "physrev": 0, "062829": 0, "cmiknn": 0, "nearest": 0, "neighbor": 0, "mutual": 0, "In": 0, "21st": 0, "intern": 0, "statist": 0, "mlr": 0, "v84": 0, "runge18a": 0, "datafram": 0, "cond_ind_test": 0, "verbos": 0, "0": 0, "sourc": 0, "framework": 0, "scale": 0, "thi": 0, "contain": 0, "sever": 0, "The": 0, "standard": 0, "address": 0, "describ": 0, "where": 0, "further": 0, "sub": 0, "variant": 0, "ar": 0, "discuss": 0, "pcmciplu": 0, "see": 0, "tutori": 0, "guidanc": 0, "appli": 0, "ha": 0, "differ": 0, "adapt": 0, "implement": 0, "mostli": 0, "hyperparamet": 0, "easi": 0, "parallel": 0, "separ": 0, "script": 0, "handl": 0, "mask": 0, "fals": 0, "control": 0, "confid": 0, "interv": 0, "note": 0, "structur": 0, "repres": 0, "shown": 0, "figur": 0, "node": 0, "defin": 0, "link": 0, "can": 0, "interpret": 0, "under": 0, "certain": 0, "assum": 0, "stationar": 0, "repeat": 0, "parent": 0, "mathcal": 0, "all": 0, "toward": 0, "blue": 0, "red": 0, "box": 0, "iter": 0, "flexibl": 0, "combin": 0, "ani": 0, "kind": 0, "its": 0, "type": 0, "These": 0, "avail": 0, "mci": 0, "particular": 0, "measur": 0, "strength": 0, "For": 0, "exampl": 0, "parcorr": 0, "normal": 0, "between": 0, "howev": 0, "interest": 0, "i": 0, "hypothet": 0, "intervent": 0, "mai": 0, "better": 0, "look": 0, "refer": 0, "w": 0, "paramet": 0, "object": 0, "among": 0, "other": 0, "attribut": 0, "yield": 0, "numpi": 0, "arrai": 0, "shape": 0, "t": 0, "n": 0, "option": 0, "same": 0, "extern": 0, "pass": 0, "callabl": 0, "condindtest": 0, "int": 0, "default": 0, "level": 0, "all_par": 0, "dictionari": 0, "form": 0, "2": 0, "pc": 0, "algorithm": 0, "val_min": 0, "tau": 0, "float": 0, "minimum": 0, "each": 0, "pval_max": 0, "maximum": 0, "step": 0, "number": 0, "sampl": 0, "length": 0, "dict": 0, "get_graph_from_pmatrix": 0, "p_matrix": 0, "alpha_level": 0, "tau_min": 0, "tau_max": 0, "link_assumpt": 0, "none": 0, "construct": 0, "threshold": 0, "alpha": 0, "take": 0, "account": 0, "matrix": 0, "fdr_method": 0, "05": 0, "signific": 0, "get": 0, "tau_mix": 0, "delai": 0, "link_typ": 0, "specifi": 0, "about": 0, "initi": 0, "entri": 0, "impli": 0, "must": 0, "exist": 0, "valid": 0, "o": 0, "addit": 0, "middl": 0, "mark": 0, "instead": 0, "Then": 0, "orient": 0, "need": 0, "consist": 0, "requir": 0, "acycl": 0, "hold": 0, "If": 0, "doe": 0, "appear": 0, "absent": 0, "That": 0, "have": 0, "return": 0, "descript": 0, "abov": 0, "get_lagged_depend": 0, "selected_link": 0, "val_onli": 0, "uncondit": 0, "_": 0, "matric": 0, "correct": 0, "new": 0, "4": 0, "fdr": 0, "deprec": 0, "replac": 0, "zero": 0, "undirect": 0, "larger": 0, "equal": 0, "bool": 0, "onli": 0, "comput": 0, "str": 0, "current": 0, "benjamini": 0, "hochberg": 0, "rate": 0, "fdr_bh": 0, "val_matrix": 0, "conf_matrix": 0, "percentil": 0, "print_result": 0, "return_dict": 0, "print": 0, "output": 0, "kei": 0, "print_significant_link": 0, "ambiguous_tripl": 0, "latter": 0, "ambigu": 0, "conflict": 0, "like": 0, "list": 0, "tripl": 0, "return_parents_dict": 0, "include_lagzero_par": 0, "sort": 0, "unclear": 0, "edgemark": 0, "x": 0, "whether": 0, "should": 0, "parents_dict": 0, "return_significant_link": 0, "pq_matrix": 0, "include_lagzero_link": 0, "boolean": 0, "Will": 0, "remov": 0, "futur": 0, "run_bivci": 0, "bivci": 0, "run_fullci": 0, "fullci": 0, "run_mci": 0, "max_conds_pi": 0, "max_conds_px": 0, "unrestrict": 0, "z": 0, "run_pc_stabl": 0, "save_iter": 0, "pc_alpha": 0, "max_conds_dim": 0, "max_combin": 0, "made": 0, "self": 0, "multi": 0, "ahead": 0, "greater": 0, "save": 0, "everi": 0, "across": 0, "given": 0, "score": 0, "get_model_selection_criterion": 0, "cardin": 0, "pc_1": 0, "origin": 0, "run_pcalg": 0, "01": 0, "lagged_par": 0, "max_conds_px_lag": 0, "mode": 0, "contemp_collider_rul": 0, "major": 0, "conflict_resolut": 0, "true": 0, "run": 0, "contemp_cond": 0, "ci": 0, "As": 0, "part": 0, "superset": 0, "pc1": 0, "conserv": 0, "rule": 0, "collid": 0, "phase": 0, "detail": 0, "lead": 0, "order": 0, "when": 0, "regard": 0, "adjac": 0, "sepset": 0, "relev": 0, "run_pcalg_non_timeseries_data": 0, "simpli": 0, "call": 0, "run_pcmci": 0, "wrapper": 0, "around": 0, "comprehens": 0, "analyt": 0, "numer": 0, "present": 0, "here": 0, "we": 0, "briefli": 0, "summar": 0, "two": 0, "procedur": 0, "select": 0, "tild": 0, "j_t": 0, "reduc": 0, "avoid": 0, "irrelev": 0, "momentari": 0, "i_": 0, "perp": 0, "j_": 0, "common": 0, "driver": 0, "indirect": 0, "main": 0, "free": 0, "tau_": 0, "max": 0, "chosen": 0, "accord": 0, "expect": 0, "recommend": 0, "rather": 0, "choic": 0, "peak": 0, "seen": 0, "sinc": 0, "hypothesi": 0, "do": 0, "precis": 0, "assess": 0, "role": 0, "regular": 0, "techniqu": 0, "criteria": 0, "respect": 0, "import": 0, "pp": 0, "structural_causal_process": 0, "random": 0, "seed": 0, "plai": 0, "incom": 0, "suppli": 0, "format": 0, "coeff": 0, "links_coeff": 0, "8": 0, "var_process": 0, "1000": 0, "pval": 0, "00000": 0, "val": 0, "588": 0, "606": 0, "447": 0, "618": 0, "499": 0, "run_pcmciplu": 0, "reset_lagged_link": 0, "contrast": 0, "full": 0, "up": 0, "markov": 0, "equival": 0, "faith": 0, "four": 0, "widehat": 0, "b": 0, "_t": 0, "skeleton": 0, "through": 0, "subset": 0, "conduct": 0, "motif": 0, "unshield": 0, "remain": 0, "Its": 0, "string": 0, "denot": 0, "unori": 0, "could": 0, "direction": 0, "undecid": 0, "due": 0, "importantli": 0, "alwai": 0, "dag": 0, "first": 0, "one": 0, "member": 0, "averag": 0, "over": 0, "fit": 0, "anoth": 0, "togeth": 0, "fulli": 0, "mean": 0, "matter": 0, "last": 0, "restrict": 0, "found": 0, "consid": 0, "again": 0, "improv": 0, "power": 0, "runtim": 0, "001": 0, "005": 0, "025": 0, "learn": 0, "specif": 0, "introduc": 0, "explain": 0, "still": 0, "experiment": 0, "being": 0, "fine": 0, "tune": 0, "actual": 0, "invit": 0, "feedback": 0, "work": 0, "best": 0, "experi": 0, "run_lpcmci": 0, "constructor": 0, "old": 0, "some": 0, "might": 0, "nest": 0, "lag_i": 0, "compon": 0, "background": 0, "knowledg": 0, "possibl": 0, "correspond": 0, "claim": 0, "ancestor": 0, "i_t": 0, "neither": 0, "nor": 0, "wai": 0, "impos": 0, "automat": 0, "There": 0, "No": 0, "either": 0, "smaller": 0, "than": 0, "dpag": 0, "window": 0, "aumax": 0, "au_max": 0, "underli": 0, "n_preliminary_iter": 0, "determin": 0, "preliminari": 0, "k": 0, "max_cond_px": 0, "pair": 0, "au": 0, "s2": 0, "_run_ancestral_removal_phas": 0, "apds_t": 0, "c": 0, "higher": 0, "s3": 0, "_run_non_ancestral_removal_phas": 0, "napds_t": 0, "max_p_glob": 0, "max_p_non_ancestr": 0, "second": 0, "_run_dsep_removal_phas": 0, "max_q_glob": 0, "most": 0, "mani": 0, "sum": 0, "more": 0, "max_pds_set": 0, "element": 0, "opposit": 0, "prelim_with_collider_rul": 0, "pseudocod": 0, "line": 0, "22": 0, "18": 0, "directli": 0, "befor": 0, "parents_of_lag": 0, "pa": 0, "prelim_onli": 0, "stop": 0, "after": 0, "perform": 0, "break_once_separ": 0, "break": 0, "command": 0, "no_non_ancestral_phas": 0, "execut": 0, "use_a_pds_t_for_major": 0, "instruct": 0, "adj": 0, "orient_contemp": 0, "orient_comtemp": 0, "update_middle_mark": 0, "pseudoc": 0, "mmr": 0, "prelim_rul": 0, "exclud": 0, "r9": 0, "prime": 0, "r10": 0, "fix_all_edges_before_final_orient": 0, "np": 0, "inf": 0, "termin": 0, "although": 0, "empti": 0, "nevertheless": 0, "sound": 0, "check": 0, "appropri": 0, "forc": 0, "auto_first": 0, "pseudcod": 0, "autodepend": 0, "priorit": 0, "even": 0, "remember_only_par": 0, "been": 0, "point": 0, "wa": 0, "later": 0, "tail": 0, "re": 0, "no_apr": 0, "apr": 0, "except": 0, "never": 0, "conveni": 0, "post": 0, "purpos": 0, "wildcard": 0, "st": 0, "edg": 0, "star": 0, "prediction_model": 0, "extract": 0, "persist": 0, "finit": 0, "within": 0, "ignor": 0, "missing_flag": 0, "miss": 0, "sklearn": 0, "linear_model": 0, "linearregress": 0, "regress": 0, "ie": 0, "eg": 0, "gpdc": 0, "gaussianprocessregressor": 0, "nearestneighbor": 0, "anneal": 0, "run_rpcmci": 0, "num_regim": 0, "max_transit": 0, "switch_thr": 0, "num_iter": 0, "20": 0, "max_ann": 0, "n_job": 0, "transit": 0, "singl": 0, "switch": 0, "cpu": 0, "joblib": 0, "paral": 0, "n_regim": 0, "One": 0, "hot": 0, "encod": 0, "causal_result": 0, "converg": 0, "diff_g_f": 0, "tupl": 0, "consecut": 0, "error_free_ann": 0, "without": 0, "error": 0, "independence_tests_bas": 0, "42": 0, "mask_typ": 0, "fixed_thr": 0, "sig_sampl": 0, "500": 0, "sig_blocklength": 0, "conf_lev": 0, "9": 0, "conf_sampl": 0, "100": 0, "conf_blocklength": 0, "recycle_residu": 0, "provid": 0, "shuffl": 0, "bootstrap": 0, "inherit": 0, "randomst": 0, "default_rng": 0, "xy": 0, "xz": 0, "yz": 0, "xyz": 0, "shuffle_test": 0, "block": 0, "decai": 0, "autocovari": 0, "nan": 0, "side": 0, "residu": 0, "store": 0, "faster": 0, "cost": 0, "consider": 0, "memori": 0, "get_analytic_confid": 0, "df": 0, "concret": 0, "overrid": 0, "get_analytic_signific": 0, "dim": 0, "get_bootstrap_confid": 0, "dependence_measur": 0, "95": 0, "data_typ": 0, "With": 0, "row": 0, "column": 0, "get_dependence_measur": 0, "binari": 0, "individu": 0, "0s": 0, "1s": 0, "conf_low": 0, "conf_upp": 0, "upper": 0, "lower": 0, "bound": 0, "get_confid": 0, "child": 0, "var": 0, "make": 0, "sure": 0, "size": 0, "instanti": 0, "get_fixed_thres_signific": 0, "signfic": 0, "get_measur": 0, "get_shuffle_signific": 0, "return_null_dist": 0, "properti": 0, "print_info": 0, "run_test": 0, "cut_off": 0, "2xtau_max": 0, "alpha_or_thr": 0, "signficic": 0, "both": 0, "_get_single_residu": 0, "max_lag": 0, "max_lag_or_tau_max": 0, "how": 0, "cutoff": 0, "begin": 0, "guarante": 0, "compar": 0, "multipl": 0, "much": 0, "decis": 0, "run_test_raw": 0, "x_type": 0, "y_type": 0, "z_type": 0, "input": 0, "dimens": 0, "set_datafram": 0, "flag": 0, "set_mask_typ": 0, "setter": 0, "ensur": 0, "clash": 0, "kwarg": 0, "partial": 0, "correl": 0, "ordinari": 0, "least": 0, "squar": 0, "ol": 0, "pearson": 0, "To": 0, "out": 0, "beta_x": 0, "epsilon_": 0, "beta_i": 0, "rho": 0, "left": 0, "r_x": 0, "r_y": 0, "right": 0, "student": 0, "distribut": 0, "d_z": 0, "degre": 0, "freedom": 0, "argument": 0, "coeffici": 0, "less": 0, "featur": 0, "corrected_a": 0, "akaik": 0, "criterion": 0, "modulo": 0, "constant": 0, "leav": 0, "cross": 0, "asymptot": 0, "aic": 0, "target": 0, "unshuffl": 0, "robust_parcorr": 0, "robustparcorr": 0, "paranorm": 0, "transform": 0, "margin": 0, "firstli": 0, "phi": 0, "circ": 0, "hat": 0, "f": 0, "quantil": 0, "empir": 0, "idea": 0, "stem": 0, "literatur": 0, "nonparanorm": 0, "han": 0, "liu": 0, "john": 0, "lafferti": 0, "larri": 0, "wasserman": 0, "semiparametr": 0, "mach": 0, "2295": 0, "2328": 0, "2009": 0, "fang": 0, "ming": 0, "yuan": 0, "gaussian": 0, "copula": 0, "ann": 0, "40": 0, "2293": 0, "2326": 0, "2012a": 0, "naftali": 0, "harri": 0, "mathia": 0, "drton": 0, "machin": 0, "research": 0, "14": 0, "3365": 0, "3383": 0, "2013": 0, "afterward": 0, "now": 0, "uniform": 0, "plu": 0, "trafo2norm": 0, "thre": 0, "1e": 0, "code": 0, "small": 0, "too": 0, "close": 0, "similarli": 0, "null_dist_filenam": 0, "gp_param": 0, "distanc": 0, "gp": 0, "scikit": 0, "kernel": 0, "let": 0, "them": 0, "cython": 0, "null": 0, "precomput": 0, "generate_and_save_nulldist": 0, "npz": 0, "file": 0, "f_x": 0, "f_y": 0, "sim": 0, "sigma": 0, "bandwidth": 0, "optimz": 0, "r": 0, "pre": 0, "otherwis": 0, "dure": 0, "gabor": 0, "szeke": 0, "maria": 0, "l": 0, "rizzo": 0, "nail": 0, "bakirov": 0, "arxiv": 0, "ab": 0, "0803": 0, "4101": 0, "otion": 0, "path": 0, "gaussprocreg": 0, "sample_s": 0, "pairwis": 0, "generate_nulldist": 0, "dist": 0, "disk": 0, "add": 0, "gauss_pr": 0, "null_dist": 0, "name": 0, "add_to_null_dist": 0, "just": 0, "load": 0, "nulldist": 0, "wide": 0, "rang": 0, "beforehand": 0, "log": 0, "likelihood": 0, "neg": 0, "Is": 0, "gpdc_torch": 0, "gpdctorch": 0, "gpytorch": 0, "dcor": 0, "pip": 0, "gaussprocregtorch": 0, "knn": 0, "shuffle_neighbor": 0, "rank": 0, "worker": 0, "model_selection_fold": 0, "come": 0, "joint": 0, "densiti": 0, "frenzel": 0, "pomp": 0, "lett": 0, "99": 0, "204101": 0, "2007": 0, "suitabl": 0, "cmisymb": 0, "cmi": 0, "iint": 0, "frac": 0, "cdot": 0, "dx": 0, "dy": 0, "dz": 0, "psi": 0, "sum_": 0, "k_": 0, "digamma": 0, "hyper": 0, "cube": 0, "subspac": 0, "view": 0, "smooth": 0, "unlik": 0, "fix": 0, "bia": 0, "varianc": 0, "slightli": 0, "while": 0, "quantiti": 0, "scipi": 0, "spatial": 0, "ckdtree": 0, "fraction": 0, "henc": 0, "absolut": 0, "surrog": 0, "processor": 0, "fold": 0, "get_conditional_entropi": 0, "entropi": 0, "h": 0, "prl": 0, "overwrit": 0, "preserv": 0, "permut": 0, "those": 0, "x_i": 0, "x_j": 0, "z_j": 0, "niehgbor": 0, "z_i": 0, "n_symb": 0, "categor": 0, "symbol": 0, "local": 0, "mix": 0, "cmiknnmix": 0, "crosstab": 0, "conting": 0, "approxim": 0, "probabl": 0, "mass": 0, "drawn": 0, "oracle_conditional_independ": 0, "oracleci": 0, "observed_var": 0, "selection_var": 0, "graph_is_mag": 0, "oracl": 0, "link_coeff": 0, "ground": 0, "truth": 0, "unit": 0, "altern": 0, "digest": 0, "func": 0, "definin": 0, "check_shortest_path": 0, "starts_with": 0, "ends_with": 0, "forbidden_nod": 0, "only_non_causal_path": 0, "check_optimality_cond": 0, "optimality_cond_des_ym": 0, "optimality_cond_i": 0, "return_path": 0, "non_rep": 0, "au_i": 0, "au_j": 0, "alreadi": 0, "truncat": 0, "breadth": 0, "start": 0, "end": 0, "veri": 0, "long": 0, "constrain": 0, "has_path": 0, "ancestr": 0, "compute_ancestor": 0, "anc_all_x": 0, "anc_all_i": 0, "anc_all_z": 0, "arrohead": 0, "compat": 0, "get_graph_from_link": 0, "mag": 0, "admg": 0, "project": 0, "oper": 0, "pearl": 0, "get_links_from_graph": 0, "case": 0, "ad": 0, "canon": 0, "richardson": 0, "spirt": 0, "2002": 0, "support": 0, "evalu": 0, "els": 0, "Not": 0, "dummi": 0, "parcorr_mult": 0, "parcorrmult": 0, "correlation_typ": 0, "max_corr": 0, "multivari": 0, "mult_corr": 0, "gsquar": 0, "chi2": 0, "2000": 0, "stat": 0, "formula": 0, "bishop": 0, "fienberg": 0, "holland": 0, "1975": 0, "theori": 0, "mit": 0, "cambridg": 0, "p_valu": 0, "chi": 0, "dof": 0, "parcorr_wl": 0, "parcorrwl": 0, "gt_std_matrix": 0, "expert_knowledg": 0, "heteroskedast": 0, "window_s": 0, "robustifi": 0, "weight": 0, "wl": 0, "known": 0, "thei": 0, "neighbour": 0, "homoskedast": 0, "term": 0, "deviat": 0, "nois": 0, "nb_node": 0, "expert": 0, "regressionci": 0, "vs": 0, "notion": 0, "devianc": 0, "emploi": 0, "significantli": 0, "hypothes": 0, "accept": 0, "approach": 0, "univari": 0, "moreov": 0, "multinomi": 0, "causaleffect": 0, "graph_typ": 0, "hidden_vari": 0, "check_sm_overlap": 0, "potenti": 0, "backdoor": 0, "variou": 0, "wright": 0, "depth": 0, "introduct": 0, "8485ae387a981d783f8764e508151cd9": 0, "caus": 0, "overlap": 0, "check_xys_path": 0, "proper": 0, "clean": 0, "check_optim": 0, "thm": 0, "fit_bootstrap_of": 0, "method_arg": 0, "boot_sampl": 0, "boot_blocklength": 0, "construct_arrai": 0, "shift": 0, "bootsrap": 0, "predict_bootstrap_of": 0, "draw": 0, "fit_total_effect": 0, "adjustment_set": 0, "conditional_estim": 0, "data_transform": 0, "ignore_identifi": 0, "oset": 0, "minimized_optim": 0, "minim": 0, "colliders_minimized_optim": 0, "preprocess": 0, "prior": 0, "standardscal": 0, "simpl": 0, "user": 0, "fit_wright_effect": 0, "considerd": 0, "complic": 0, "static": 0, "get_dict_from_graph": 0, "parents_onli": 0, "helper": 0, "convert": 0, "get_graph_from_dict": 0, "get_medi": 0, "get_optimal_set": 0, "alternative_condit": 0, "return_separate_set": 0, "theorem": 0, "colliders_onli": 0, "invalid": 0, "collider_par": 0, "oset_": 0, "return_individual_bootstrap_result": 0, "confidence_interv": 0, "predict_total_effect": 0, "intervention_data": 0, "conditions_data": 0, "pred_param": 0, "return_further_pred_result": 0, "aggregation_func": 0, "transform_interventions_and_predict": 0, "len": 0, "predictor": 0, "entir": 0, "invers": 0, "estimate_confid": 0, "predict_wright_effect": 0, "conditional_model": 0, "care": 0, "inverse_transform": 0, "fit_full_model": 0, "selected_vari": 0, "empty_predictors_funct": 0, "return_data": 0, "integ": 0, "fit_result": 0, "get_coef": 0, "get_general_fitted_model": 0, "get_general_predict": 0, "get_val_matrix": 0, "fit_model": 0, "give": 0, "deriv": 0, "linearmedi": 0, "model_param": 0, "etc": 0, "ce": 0, "mce": 0, "ac": 0, "suscept": 0, "amc": 0, "chain": 0, "x_t": 0, "eta": 0, "y_t": 0, "x_": 0, "z_t": 0, "y_": 0, "25": 0, "37": 0, "true_par": 0, "med": 0, "get_coeff": 0, "get_c": 0, "get_mc": 0, "get_all_ac": 0, "get_all_amc": 0, "250648072987": 0, "36897445": 0, "25718002": 0, "24365041": 0, "38250406": 0, "12532404": 0, "fit_model_bootstrap": 0, "boostrap": 0, "version": 0, "cube_root": 0, "from_autocorrel": 0, "generate_noise_from": 0, "root": 0, "get_ac": 0, "lag_mod": 0, "absmax": 0, "exclude_i": 0, "eman": 0, "all_lag": 0, "itself": 0, "exclude_j": 0, "affect": 0, "previou": 0, "exclude_k": 0, "exclude_self_effect": 0, "themselv": 0, "get_amc": 0, "get_bootstrap_of": 0, "function_arg": 0, "incl": 0, "get_ce_max": 0, "get_conditional_mc": 0, "notk": 0, "go": 0, "get_joint_c": 0, "count": 0, "joint_c": 0, "get_joint_ce_matrix": 0, "taui": 0, "tauj": 0, "stand": 0, "joint_ce_matrix": 0, "2d": 0, "get_joint_mc": 0, "joint_mc": 0, "minu": 0, "get_mediation_graph_data": 0, "include_neighbor": 0, "path_val_matrix": 0, "path_node_arrai": 0, "tsg_path_val_matrix": 0, "graph_data": 0, "color": 0, "get_tsg": 0, "link_matrix": 0, "analyz": 0, "sig_thr": 0, "array_lik": 0, "tsg": 0, "symmetr": 0, "net_to_tsg": 0, "translat": 0, "tsg_to_net": 0, "train_indic": 0, "test_indic": 0, "train": 0, "target_predictor": 0, "selected_target": 0, "instanc": 0, "get_predictor": 0, "steps_ahead": 0, "get_test_arrai": 0, "get_train_arrai": 0, "new_data": 0, "cut": 0, "off": 0, "below": 0, "vector_var": 0, "var_nam": 0, "datatim": 0, "analysis_mod": 0, "reference_point": 0, "time_offset": 0, "remove_missing_upto_maxlag": 0, "definit": 0, "OR": 0, "whose": 0, "t_i": 0, "vari": 0, "dismiss": 0, "slice": 0, "occur": 0, "bias": 0, "section": 0, "supplement": 0, "sciadv": 0, "vector": 0, "pars": 0, "creat": 0, "match": 0, "enumer": 0, "timelabel": 0, "1d": 0, "rel": 0, "share": 0, "axi": 0, "t_max": 0, "largest_time_step": 0, "bigger": 0, "At": 0, "align": 0, "agre": 0, "offset": 0, "_initialized_from": 0, "3d": 0, "map": 0, "represent": 0, "identifii": 0, "max_": 0, "largest": 0, "latest": 0, "random_st": 0, "extraz": 0, "return_cleaned_xyz": 0, "do_check": 0, "remove_overlap": 0, "n_en": 0, "var1": 0, "var2": 0, "varlag": 0, "assign": 0, "duplic": 0, "saniti": 0, "2xtau_max_futur": 0, "t_miss": 0, "principl": 0, "would": 0, "n_sampl": 0, "print_array_info": 0, "info": 0, "typic": 0, "varx": 0, "get_acf": 0, "autocorr": 0, "get_block_length": 0, "mader": 0, "eq": 0, "pfeifer": 0, "2005": 0, "multidimension": 0, "jointli": 0, "curv": 0, "fail": 0, "limit": 0, "neurosci": 0, "volum": 0, "219": 0, "issu": 0, "15": 0, "octob": 0, "285": 0, "291": 0, "block_len": 0, "lowhighpass_filt": 0, "cutperiod": 0, "pass_period": 0, "low": 0, "butterworth": 0, "filter": 0, "twice": 0, "onc": 0, "forward": 0, "backward": 0, "period": 0, "act": 0, "ordinal_patt_arrai": 0, "array_mask": 0, "symbolifi": 0, "ordin": 0, "pattern": 0, "uniqu": 0, "faculti": 0, "symb_arrai": 0, "shorter": 0, "2011": 0, "coupl": 0, "83": 0, "12": 0, "051122": 0, "label": 0, "embed": 0, "patt": 0, "patt_mask": 0, "patt_tim": 0, "quantile_bin_arrai": 0, "bin": 0, "smooth_width": 0, "width": 0, "heavisid": 0, "rtype": 0, "intervention_typ": 0, "hard": 0, "time_bin_with_mask": 0, "time_bin_length": 0, "bindata": 0, "outer": 0, "cdf": 0, "normal_data": 0, "parents_neighbors_coeff": 0, "inv_inno_cov": 0, "initial_valu": 0, "autoregress": 0, "innov": 0, "var_network": 0, "friendli": 0, "weighted_avg_and_std": 0, "std": 0, "check_stationar": 0, "stationari": 0, "dag_to_link": 0, "generate_structural_causal_process": 0, "dependency_func": 0, "dependency_coeff": 0, "auto_coeff": 0, "contemp_fract": 0, "noise_dist": 0, "noise_mean": 0, "noise_sigma": 0, "noise_se": 0, "randomli": 0, "characterist": 0, "frawn": 0, "arbitrari": 0, "factor": 0, "weibul": 0, "def": 0, "beta": 0, "links_to_graph": 0, "transient_fract": 0, "interven": 0, "randn": 0, "un": 0, "soft": 0, "percentag": 0, "transient": 0, "realiz": 0, "nonvalid": 0, "infin": 0, "lag1": 0, "coef1": 0, "lag2": 0, "coef2": 0, "nonzero": 0, "covari": 0, "inno_cov": 0, "debug": 0, "no_nois": 0, "disabl": 0, "max_delai": 0, "true_parent_neighbor": 0, "id": 0, "parent_node_id": 0, "time_lag": 0, "plot_densityplot": 0, "setup_arg": 0, "add_densityplot_arg": 0, "selected_dataset": 0, "show_marginal_densities_on_diagon": 0, "setup_density_matrix": 0, "add_densityplot": 0, "diagon": 0, "show": 0, "seaborn": 0, "doc": 0, "overlaid": 0, "plot_graph": 0, "fig_ax": 0, "figsiz": 0, "save_nam": 0, "link_colorbar_label": 0, "node_colorbar_label": 0, "auto": 0, "link_width": 0, "link_attribut": 0, "node_po": 0, "arrow_linewidth": 0, "vmin_edg": 0, "vmax_edg": 0, "edge_tick": 0, "cmap_edg": 0, "rdbu_r": 0, "vmin_nod": 0, "vmax_nod": 0, "node_tick": 0, "cmap_nod": 0, "node_s": 0, "node_aspect": 0, "arrowhead_s": 0, "curved_radiu": 0, "label_fonts": 0, "tick_label_s": 0, "node_label_s": 0, "link_label_fonts": 0, "lag_arrai": 0, "show_colorbar": 0, "inner_edge_styl": 0, "dash": 0, "special_nod": 0, "show_autodependency_lag": 0, "straight": 0, "arrow": 0, "maxim": 0, "magnitud": 0, "posit": 0, "coordin": 0, "via": 0, "ax": 0, "basemap": 0, "ccr": 0, "platecarre": 0, "cartopi": 0, "linewidth": 0, "colorbar": 0, "tick": 0, "colormap": 0, "orrd": 0, "ratio": 0, "heigth": 0, "varibl": 0, "head": 0, "fancyarrowpatch": 0, "curvatur": 0, "fontsiz": 0, "opac": 0, "arang": 0, "plot_lagfunc": 0, "add_lagfunc_arg": 0, "lagfunct": 0, "setup_matrix": 0, "add_lagfunc": 0, "plot_mediation_graph": 0, "standard_color_link": 0, "black": 0, "standard_color_nod": 0, "lightgrei": 0, "visual": 0, "plot_mediation_time_series_graph": 0, "top": 0, "bottom": 0, "plot_scatterplot": 0, "add_scatterplot_arg": 0, "scatter": 0, "setup_scatter_matrix": 0, "add_scatterplot": 0, "plot_time_series_graph": 0, "auxiliari": 0, "auxadmg": 0, "style": 0, "inner_edg": 0, "special": 0, "plot_timeseri": 0, "var_unit": 0, "time_label": 0, "grey_masked_sampl": 0, "show_meanlin": 0, "data_linewidth": 0, "skip_ticks_data_x": 0, "skip_ticks_data_i": 0, "adjust_plot": 0, "stack": 0, "panel": 0, "subplot": 0, "fig": 0, "pyplot": 0, "grei": 0, "fill": 0, "horizont": 0, "skip": 0, "tickmark": 0, "plot_tsg": 0, "anc_x": 0, "anc_i": 0, "anc_xi": 0, "help": 0, "label_space_left": 0, "label_space_top": 0, "legend_width": 0, "legend_fonts": 0, "plot_gridlin": 0, "setup": 0, "space": 0, "alloc": 0, "vertic": 0, "legend": 0, "grid": 0, "matrix_lag": 0, "label_color": 0, "snskdeplot_arg": 0, "cmap": 0, "snskdeplot_diagonal_arg": 0, "depict": 0, "sn": 0, "kdeplot": 0, "adjustfig": 0, "show_label": 0, "x_base": 0, "y_base": 0, "lag_unit": 0, "comparison": 0, "two_sided_thr": 0, "marker": 0, "markers": 0, "po": 0, "matplotlib": 0, "savefig": 0, "scatterplot": 0, "write_csv": 0, "digit": 0, "write": 0, "csv": 0}, "objects": {"tigramite.causal_effects": [[0, 0, 1, "", "CausalEffects"]], "tigramite.causal_effects.CausalEffects": [[0, 1, 1, "", "check_XYS_paths"], [0, 1, 1, "", "check_optimality"], [0, 1, 1, "", "fit_bootstrap_of"], [0, 1, 1, "", "fit_total_effect"], [0, 1, 1, "", "fit_wright_effect"], [0, 1, 1, "", "get_dict_from_graph"], [0, 1, 1, "", "get_graph_from_dict"], [0, 1, 1, "", "get_mediators"], [0, 1, 1, "", "get_optimal_set"], [0, 1, 1, "", "predict_bootstrap_of"], [0, 1, 1, "", "predict_total_effect"], [0, 1, 1, "", "predict_wright_effect"]], "tigramite": [[0, 2, 0, "-", "data_processing"], [0, 2, 0, "-", "plotting"]], "tigramite.data_processing": [[0, 0, 1, "", "DataFrame"], [0, 3, 1, "", "get_acf"], [0, 3, 1, "", "get_block_length"], [0, 3, 1, "", "lowhighpass_filter"], [0, 3, 1, "", "ordinal_patt_array"], [0, 3, 1, "", "quantile_bin_array"], [0, 3, 1, "", "smooth"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "time_bin_with_mask"], [0, 3, 1, "", "trafo2normal"], [0, 3, 1, "", "var_process"], [0, 3, 1, "", "weighted_avg_and_std"]], "tigramite.data_processing.DataFrame": [[0, 1, 1, "", "construct_array"], [0, 1, 1, "", "print_array_info"]], "tigramite.independence_tests.cmiknn": [[0, 0, 1, "", "CMIknn"]], "tigramite.independence_tests.cmiknn.CMIknn": [[0, 1, 1, "", "get_conditional_entropy"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.cmisymb": [[0, 0, 1, "", "CMIsymb"]], "tigramite.independence_tests.cmisymb.CMIsymb": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc": [[0, 0, 1, "", "GPDC"]], "tigramite.independence_tests.gpdc.GPDC": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gpdc_torch": [[0, 0, 1, "", "GPDCtorch"]], "tigramite.independence_tests.gpdc_torch.GPDCtorch": [[0, 1, 1, "", "generate_and_save_nulldists"], [0, 1, 1, "", "generate_nulldist"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.gsquared": [[0, 0, 1, "", "Gsquared"]], "tigramite.independence_tests.gsquared.Gsquared": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.independence_tests_base": [[0, 0, 1, "", "CondIndTest"]], "tigramite.independence_tests.independence_tests_base.CondIndTest": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_bootstrap_confidence"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_fixed_thres_significance"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "print_info"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "run_test_raw"], [0, 1, 1, "", "set_dataframe"], [0, 1, 1, "", "set_mask_type"]], "tigramite.independence_tests.oracle_conditional_independence": [[0, 0, 1, "", "OracleCI"]], "tigramite.independence_tests.oracle_conditional_independence.OracleCI": [[0, 1, 1, "", "check_shortest_path"], [0, 1, 1, "", "get_confidence"], [0, 1, 1, "", "get_graph_from_links"], [0, 1, 1, "", "get_links_from_graph"], [0, 1, 1, "", "get_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "run_test"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.parcorr": [[0, 0, 1, "", "ParCorr"]], "tigramite.independence_tests.parcorr.ParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"]], "tigramite.independence_tests.parcorr_mult": [[0, 0, 1, "", "ParCorrMult"]], "tigramite.independence_tests.parcorr_mult.ParCorrMult": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "mult_corr"]], "tigramite.independence_tests.parcorr_wls": [[0, 0, 1, "", "ParCorrWLS"]], "tigramite.independence_tests.parcorr_wls.ParCorrWLS": [[0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"]], "tigramite.independence_tests.regressionCI": [[0, 0, 1, "", "RegressionCI"]], "tigramite.independence_tests.regressionCI.RegressionCI": [[0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "set_dataframe"]], "tigramite.independence_tests.robust_parcorr": [[0, 0, 1, "", "RobustParCorr"]], "tigramite.independence_tests.robust_parcorr.RobustParCorr": [[0, 1, 1, "", "get_analytic_confidence"], [0, 1, 1, "", "get_analytic_significance"], [0, 1, 1, "", "get_dependence_measure"], [0, 1, 1, "", "get_model_selection_criterion"], [0, 1, 1, "", "get_shuffle_significance"], [0, 4, 1, "", "measure"], [0, 1, 1, "", "trafo2normal"]], "tigramite.lpcmci": [[0, 0, 1, "", "LPCMCI"]], "tigramite.lpcmci.LPCMCI": [[0, 1, 1, "", "run_lpcmci"]], "tigramite.models": [[0, 0, 1, "", "LinearMediation"], [0, 0, 1, "", "Models"], [0, 0, 1, "", "Prediction"]], "tigramite.models.LinearMediation": [[0, 1, 1, "", "fit_model"], [0, 1, 1, "", "fit_model_bootstrap"], [0, 1, 1, "", "get_ace"], [0, 1, 1, "", "get_acs"], [0, 1, 1, "", "get_all_ace"], [0, 1, 1, "", "get_all_acs"], [0, 1, 1, "", "get_all_amce"], [0, 1, 1, "", "get_amce"], [0, 1, 1, "", "get_bootstrap_of"], [0, 1, 1, "", "get_ce"], [0, 1, 1, "", "get_ce_max"], [0, 1, 1, "", "get_coeff"], [0, 1, 1, "", "get_conditional_mce"], [0, 1, 1, "", "get_joint_ce"], [0, 1, 1, "", "get_joint_ce_matrix"], [0, 1, 1, "", "get_joint_mce"], [0, 1, 1, "", "get_mce"], [0, 1, 1, "", "get_mediation_graph_data"], [0, 1, 1, "", "get_tsg"], [0, 1, 1, "", "get_val_matrix"], [0, 1, 1, "", "net_to_tsg"], [0, 1, 1, "", "tsg_to_net"]], "tigramite.models.Models": [[0, 1, 1, "", "fit_full_model"], [0, 1, 1, "", "get_coefs"], [0, 1, 1, "", "get_general_fitted_model"], [0, 1, 1, "", "get_general_prediction"], [0, 1, 1, "", "get_val_matrix"]], "tigramite.models.Prediction": [[0, 1, 1, "", "fit"], [0, 1, 1, "", "get_predictors"], [0, 1, 1, "", "get_test_array"], [0, 1, 1, "", "get_train_array"], [0, 1, 1, "", "predict"]], "tigramite.pcmci": [[0, 0, 1, "", "PCMCI"]], "tigramite.pcmci.PCMCI": [[0, 5, 1, "", "N"], [0, 5, 1, "", "T"], [0, 5, 1, "", "all_parents"], [0, 1, 1, "", "get_graph_from_pmatrix"], [0, 1, 1, "", "get_lagged_dependencies"], [0, 5, 1, "", "iterations"], [0, 1, 1, "", "print_results"], [0, 1, 1, "", "print_significant_links"], [0, 5, 1, "", "pval_max"], [0, 1, 1, "", "return_parents_dict"], [0, 1, 1, "", "return_significant_links"], [0, 1, 1, "", "run_bivci"], [0, 1, 1, "", "run_fullci"], [0, 1, 1, "", "run_mci"], [0, 1, 1, "", "run_pc_stable"], [0, 1, 1, "", "run_pcalg"], [0, 1, 1, "", "run_pcalg_non_timeseries_data"], [0, 1, 1, "", "run_pcmci"], [0, 1, 1, "", "run_pcmciplus"], [0, 5, 1, "", "val_min"]], "tigramite.plotting": [[0, 3, 1, "", "plot_densityplots"], [0, 3, 1, "", "plot_graph"], [0, 3, 1, "", "plot_lagfuncs"], [0, 3, 1, "", "plot_mediation_graph"], [0, 3, 1, "", "plot_mediation_time_series_graph"], [0, 3, 1, "", "plot_scatterplots"], [0, 3, 1, "", "plot_time_series_graph"], [0, 3, 1, "", "plot_timeseries"], [0, 3, 1, "", "plot_tsg"], [0, 0, 1, "", "setup_density_matrix"], [0, 0, 1, "", "setup_matrix"], [0, 0, 1, "", "setup_scatter_matrix"], [0, 3, 1, "", "write_csv"]], "tigramite.plotting.setup_density_matrix": [[0, 1, 1, "", "add_densityplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.plotting.setup_matrix": [[0, 1, 1, "", "add_lagfuncs"], [0, 1, 1, "", "savefig"]], "tigramite.plotting.setup_scatter_matrix": [[0, 1, 1, "", "add_scatterplot"], [0, 1, 1, "", "adjustfig"]], "tigramite.rpcmci": [[0, 0, 1, "", "RPCMCI"]], "tigramite.rpcmci.RPCMCI": [[0, 1, 1, "", "run_rpcmci"]], "tigramite.toymodels": [[0, 2, 0, "-", "structural_causal_processes"]], "tigramite.toymodels.structural_causal_processes": [[0, 3, 1, "", "check_stationarity"], [0, 3, 1, "", "dag_to_links"], [0, 3, 1, "", "generate_structural_causal_process"], [0, 3, 1, "", "links_to_graph"], [0, 3, 1, "", "structural_causal_process"], [0, 3, 1, "", "var_process"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:module", "3": "py:function", "4": "py:property", "5": "py:attribute"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "module", "Python module"], "3": ["py", "function", "Python function"], "4": ["py", "property", "Python property"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"welcom": 0, "tigramit": 0, "s": 0, "document": 0, "indic": 0, "tabl": 0, "pcmci": 0, "lpcmci": 0, "rpcmci": 0, "independence_test": 0, "condit": 0, "independ": 0, "test": 0, "causal_effect": 0, "causal": 0, "effect": 0, "analysi": 0, "model": 0, "time": 0, "seri": 0, "mediat": 0, "predict": 0, "data_process": 0, "data": 0, "process": 0, "function": 0, "toymodel": 0, "toi": 0, "gener": 0, "plot": 0}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx": 56}}) \ No newline at end of file diff --git a/setup.py b/setup.py index b856e83c..b9f76811 100644 --- a/setup.py +++ b/setup.py @@ -62,7 +62,7 @@ def run(self): # Run the setup setup( name="tigramite", - version="5.2.1.23", + version="5.2.1.25", packages=["tigramite", "tigramite.independence_tests", "tigramite.toymodels"], license="GNU General Public License v3.0", description="Tigramite causal inference for time series", diff --git a/tigramite/data_processing.py b/tigramite/data_processing.py index a726afce..b2e99b67 100644 --- a/tigramite/data_processing.py +++ b/tigramite/data_processing.py @@ -18,7 +18,7 @@ class DataFrame(): """Data object containing single or multiple time series arrays and optional - mask. + mask, as well as variable definitions. Parameters ----------

    mr0 zW@UcNgLl&BeBVn50|^k3fZm>8K&iwXcsueuRA`~B?Y6O&pt}H^4`Onj5Ij!;1$nO$4jJz&WtyG?pIRHRDxh_*a{@4Dw6h z8qLNCyxOV*aO{IgR2xdw3`{{?L;Q-}|27R*!!_Da+Yp2fu94%_Wp2U!W?oq4vTh4c zn?doKj$5s>S~gh7Xmnur!6tK2@t7J&#zen zxdw$D2UrqUd!Y$`;ze~$xaSUGwdcAsGj(3dhWQv_m{ROFusV*i$_{>7Yr>u{^x}hH zb#t&wKkn&?oH3{vc>r$Yt9G0j9M<+ZD!ecp~c?ih?jgQO|Euib(nnf|Jt_EJr|9xR0#jw~ANZG4BW1zZO zWc}XTUlo>i__G*!2S8Hd;g1K0%#(RTCm6B$K4X#(3p3YILfGi`)? zhn=gM-4@zC(AS+_x7BPu7A*4S^S6v_zF;iyYnkWTj}8g3Uu2>+cEmnfLF_}59{T!X2Q0Vo{tN*# zIg^eaER9M{4}A*X0f`!^~KD#*y38V*DLNuGCr%-eo zZC@PYSzuWg-5)8Iz%m2u0{~c=EsBlOmyXOP$_RzHBEK zc3|(l#{7!qVf-}%k@=$O-s2%Qo-vrQK<DwYim^1r&tSyj>Jv+tz{dQBcmM46dgyH3yo=hyL;G{IdFJ zW`x6pkE*Gb?n*UH|LTMU!6a(*Wj{^fb2oNgg9nI2|YpQJ0yk-v%7bHf)8$Nl{0R_gmCSekxg-lNLh5^^a4} zQYMC95I~Cj@d!AN$di+1O2?KN^!O39!GeaBV?OKg0c4xd&H#L^Bu)zLV{Ac4p+%k* zBD5CTCzJi?)*lU1Spb&FesnK6DxA7xKen9AknD%=@npZ7Pyku7ANzG!Ci`uzH(>{K zb`B50j?YxGAG*?>_9a0ONerBVxm&JBve-NAsxas!VFjDV6B39m4Mgq{7yjwzWv-9Uq)C~Xp}C6Z zDl`ye;M2fVW^BSJp5=?SB2O;Ya)3P9C z7E)>tx-GaN8Zv3|!N8!rH!Ok3%;}_5t;I|C)bB-Sp42b*; z5+W5RKeY-14rf`#*l}nQf3_7nU>ObCihx-(NZJwb{Yp*zIhQ3w@V$Swv$O*%J4JW; z@ly0*dGms9(?6Tjyr)c^|lg_Zp9j6)_qX~#` zgw8ahr-{P|1?bq^n4HlQCVq6sNlSa>j#K(qXJ!;wVzYE$V;)C(vXzW4KE;?dv0bR0 z3`F+ioyP@>H&y_SDe*2A(ZO6EXl%~R1a3k+8!xngBhm2Cb3(c|p*R%hE=bLNJs&p{ zh1fnZHmZ8fuDK*y&N_+*#XqF!$wcJ@U!~T*pN-E1L|AKUzYm`qBi$E<2=2tj z)EygDy&9-{hP05?XR3QL(bbr`uK>Vial1U~ek2Yfo4O0aM|1Pi%P^i^7O4bA%I(W2 zsrq9hsW}BIJFGp=_11C=W3r|U=PMt)M zbbaRXK>mwOd=_(ytPstY2o_k#M71Z`Vj&YDFkF!{5#l@s!k~(OP*IUs{@^L$;M7 z;s1$%^GJ9kMy7P_xXEXNPg5&@UC_{SIMqpo6W4>mswD@%e$Ir(g6vXse`*UtiY{`l z5Ye^JL7AOKBlUDozyh$$PNVy2Q4!T;r?L1+hU_$ak7uWiZh&7bJB|H1JhRi9Ehu5( z*2fpz4&29x2lNWbPK$#rGdu06@$USBbZkiD^KN@TyQy&)E{>kx24~^h9dBXV*sycZ z0}rp$-gcQ=Z{rq)*P3j$tDVJdoBEo&b~(z5S(qeG?%E~s?j8iWYjG~?a@UgHCb??~ zFOb>s`Z$q-v;u{h&Qr%OfhV=6A_~gfwe3u}hxu-sm5lof<9KFUWCFG=d{;N8p-FPv z9Dq0T)ihZ((+pTFx$W4936V655`~}5XN>S);y!J-fr!|1$|cY3d_<=CTX$GsWstum zu!`nyt=!pc$l`j;vEz>j#a?HDTmI}VjH@*v#Y$PCP?!1+@FET&&m=LY)s< zP{-gp*7w@U(MRaBmqZ>H3OzX`4W%>t|ZlEjfMSCUq9=f)p?T$EPg3w|?~ zCH{yI=tmX=G7zT!vJ#-KpGLWoC0eHyaF`f3tEU+?=EP+*2vR1K`2c?>LMrif~3+(bs z7)QEX30oUlboq3M%hyrCTmCy-!a~mpz4lnp%Rt6<+sW9B1y%+!Ca{Xi*z!%3X7D$m zRmTFW{IbQ7EmXF00h1~5=}WOgni9VUrofbx_=FJzYu6Z&E&_NZrNkquJSG0mQO5Ak zASFJ&{!U7Xe=0)YOJJT<{X~2agi659XHSVA^@|m^7w0FNb*xGSiPU~oDuEBA$79}n zBU+c(^kbr7Z?Vv@OeKg9|0MZ1oBgN_=jWRUX@H;6-L5ZPiUo$*4%Yz>>Q_RI;XUJU zQSIm`RKkQ`XH{TjG%_|ggkJ3+R=tJ7qcB^D>bBKR+iAIt{R8~tQRmXpS@^KBX%xbM zBcta+UChzVm^O70Ty8zQX&8R9lEnxJ(x@7cFNFnC{ZhHzM)m1XP7~@ld9#pXRcU*k zv%S@+PSw3ZmVu8oh2j5a+^KH8vxvA2ItxvJ0X2phA`oQ6QAFkI%Zg#%d;47l4)fmI zU*7+55>|2G|YnHrTt(R&^Ew=iGcen$E8U!X>2pc=@DTlTj((e60s{yRqo(R_EeT zXBXW3&a1m$HR@d3ZOpKpCe-QfxUEId892N$&nkU79Z<_e#GXvsod4NB+2@FC)7cyGHF)XL(euw9-Lz$FY;zA|=v;8Oq+YikNneP-kV7V`S9|C5^ zLb?^WRQx7X;SSyFGPld$Kz{%ZyC*eNvgg-7o;w)P(zrWvo|B0L=#?AcM+}DDrQGIL z=G*@-&=N?;I*ujaVxx4@Xs_85aKpuJeU7mH!VN@KPA+z|GW&i#05;oc2xktMo|!on zhY?E0WzKVQ+CZ2M(QG*_7r4YERKZRE%IeIF4s2{mVsd8Y*Gv#CTnCvD_X{q|zfx#> z%q6`{?g=@S$!1fy0rCJGZa9M*2{WX#y9Mqd+%Vz69TfN&9Lcsjzfkw20~k-X5APTy zNIu_VB9i~)VkKYd`IDIBEA$*23(#{(Lh48jgc`_br#1arNP^UJmyOm0L|D&j!|=Jm zDVrG_Mm9YUvmvVIS}rK{JpHS)*d&!vmI;4!uyZN<6~_FDoxd?v_ARi4V@Kl>kKJq@ zgUr^+Igz(|=}8AVl|k0CRXd`v9Bm&-!? z-}}npujc1)>am%hltn624i5y!W+Ln6a0B7;5kqQ=VWNbw<8Qz1E0^=6n<){5kIu8{Ei_vTuyfhK3*231d|h80&G(nbfrs>{?%hL%z#8rbRcv2 z2v0DUliWT+OC-PXU|?dLfTekHU*U#1xTX;|6Pr%U>%dKpG6#WO3JaTRZFD7~E(Fx= zX!{3NLdQJsr<)hOAm@(Q7##GyD&7-+ zL`Jy!EOlQNBb1Sb6#&?NN5C{vcq9%Zn_D4BZ|+u{UKXhYMwvNl=2mPh3+>^)a(FC1 zhg02(%gZ8_DTieZj)e5rXd}_*J!K8yseR@4jd{79?p`dEMJd7TME3&Ql%`$jUZj6@ zX)%)~5hY!(xjc~nVw0c6>|(zoxh+VKR);D!arfhD?|@fF|04KA<4lCotBE@idQNEi znqq}cMk!v&)KlS5V53s%GEX~Mq7?7a^kl(s=}x?pjn4!`o+!n;aTwX$2|;*scjD7! zkxF2cnXhK<#8=8f`-^?$@YnKlIMto_@3Kf`%3&Fdh@5l?HxN6uVpwf4Oq4LTaj^^l z_itIS3Wt$LkJH_VhnGbu!Q@0Y0^5`ZUFk-oe|2Kg6_!=ASNwsw z&inAv$=#3#&9a~65e9!liKmfb+5d)j(5ZWk+0L9F{ixKUwZ0xbG^Fh;S_JHo+PCR( zv0AYNmes*#G=RD1cMi)}G^G+za9t-BswJy0O#$|1mR~5iR4tUSeybKK4@P`^(n4tX zG7Y0FW>2YNFGj$5RP5M}uR%;-g6r2S>ii`>ov`nyoZnT@D04XKy;U5qjC1^-Gx-s* zP+a2C0b#RpR#m#wj6SOcIf)p2L<7%64Dt}jN6d&qx%B+CjL0VAi|ILvc_DgkF%Vg0 zjh>I9Nro1HWtBC0L^G<-x+-fde>OvvHGGd(S^F`{Agi**ejT1w)}G#V8=Y$18;7fT z3aqjg2U}*9H7DMkxC0bM)!ue)Ukj!kIifaY3f0V0Fl}YLy9YtRv^c~3qqmUn^C-C0 zF?6)4cS6$J&kA4mneYOc4o;2}DL8bl|+DX9<#qRI<#yaa#YpFtsxxLr>w#1S&B{IKwH1QeW6ff*%x zA&zs^g*Xnv-8GH}DAh-NywG4b;BJ(i>pGl+-mf~@;#{6= zv9k;3Kw21z!`FiuEPg6if}Q({5*sMSk91oDKkNF^{*#)G4%nx$9lDhusv`pV&J z^K&>gy<)B`QkimCW>G}eui*ybRxg%?`hmW3`PRH#PEW6RSy_}4OlEU^)H}d7r9oGE z2kBoO8=dZmQ0TtTHT$nM77E4eZ-IqOt@wbg4FXV6XWCp~S0b8@Ev=9WT0VoLl)&P>{ zkTC;d%|^8a&7}z|5pW(&h^&{DZX7rBY+IiS^CJoxS`G&~>FPAiLiiNG*h=oC=swIA zgcM!mTp^-sp@VW$pGNIy(8U6<+|*wV6HCNrpxbQ<=oP+r%CM=Ai!8pW|6~+FwyDp4 z9hRH=qwV=-von|dx-_V0I@@yRs~v9?C#CU)Ruc|-wlT2HL6y0Af4#t#?|||@#t&Af zJ9ER%eyDcs)wgY!b-RF$+t@J73e|}V(^_7;It}6YLw-lv912CS-#{f>VRG|q`A^5Y z>%Dp798|O2SabI`CtFzMcB9*HAysqQJ$s|qIMCj>uz2cVM5BIqYSS%sn=&;!c1{@_v@>|T?piP84Zz`8O zukQnSj*r<eyQRpmn&7rM!Y>=c;d2kRPd(%4i~V{b0TFMENEsR zWse2$uzzK0$F^8tWguk&tEiM^z4Pl53+(dC8ArNYIV}0HFft7)b z39OMN?7@6GjlM*J4B(2Y4l=8X~GZ z)$lHqG5pg{H9S&8AqJO3;P<|Duy4VlouQ>3-^g$gOt9Ps+nznWaEqT_=s_|eWMA-J z@dhV(r;G#lNU^J-{P0GwDZuA3OBiI%d%J~>WxDn2!4`+$9DOSx2XHjHiSs$&7F1B5 z5jP7tlV0bb2RCrxV|n2coPfm#NlYE6Yzy3yK@60*BDf{q#_$PCF!e)SaDNwz;$Z_{ zl0iEJ#hh&eorBdWyc`O8s?N^4j|O-xXU=mER3RSb!E24_=D}f1RjnRy;W#ebA=QNb zAS{Hrs(6!8BO+1{z2OmQ|1e>1rubaqT1c1%d9l}r5ODZnuT(+0ZhO1ko%h=O);N%Z z_M8j%Q&n~kJ3AR4;n(26))sCCZspbY;4fB-ue~*ptc|`bF)-B4Eu{xS&QF(5PI1{+ zjGTui(f8}c4p?q3e+2V7`eUHUqgmMI#vy`0Z8zz1C3Um6i7dor|%ObwS7s{vBWw=)e;XgM|(pyiB^bTVDVpOG=% zsOil@4y2afz{Y3-BCO@L$H3_B-wh(5*CS4b~H2xxE zHVMDcUgMi$1yF&F*2Egla{GZN_h090zF0d9JMs-&Eo=yu3mb$9EwNF^{*W|BowH9HV+cUfqEwyzxie0~n69tikOS)?-M z@QJ}iQPSX1O-_7+X!bA48q5QI<@>Ml@;&{Cz;T<^*4D&;2^%kMpkO=mAEF)ywkb`# z(&I?~>hk!cdGGD7^j+n9Z+{g|obV)=I`I+rr|INLgh|(LE;r-_#=?}_4Y`q(1`J&* zo9K(|Y&JaZh3vqaq}ew)E}YGlD)9JXB~f}C=L2A6cmW%gqL_JB3g0D5{HkyR5vr$X z`pu3Os2m8w5XXfW{s_$_} zS)?-M@G*h!fhLf89g#Mo&2K1c0I%ySuiuoH*XjPohs&arV0EIufo)17uk<(4zp}r> zS_eCqPqD>VU~>Bu^Zr&AR4l-2lM-Eu&=pne()#KQ+)pKv|6vEM*{x5*maMq53U zph3rTr*WT^$3Wp3CO&K8ouTY7G6#pA6Q%u*Mk-9^&scclKN$}c;SFq5%3|iJDBJy1 zztQw%F+%Cw|B{W+1VkPu<9~4&*_;ePdUGdZ{n=`^n2a;F4iXq;=B$~MaYk8aKL!BX z?^l^dvNzx`@^LuT$=FsFsZ2Q>y@HAut7s#!SUbxa!jt;S?Ol1fo$hALltn4Q>_j&M z+mxnV>1L#Vby3b4lgN;+yIh{fJ;rlFZqMUzxtQvXVx>)nE?&&^QsGHpqf*>5&o@~r zC%swIQ?AMJjcj}-AoBPTZ^dC`n`H#y&HaeKD~nVDqs)9Y^CLc27TW*RR}TM6eh#Pl z5#KF~RHhu31(LE}O!dpMQ2$w9x%}(ATu%2Njz33jTTRSWY&js9oajGbo6?{w{fG3g z(l4gc!N}zlywF%M6i$H!7P5NM_iZ!0WC0G$^UPU*%tF3pftjZPmS&4}p=DCOk9*YZ_!JZwf`3Hu zqwLj_&eqhtQ9;jIP^tH!!@sVNa*XU`6qe<_2hLK4F7%n(C4!cf+P7#+Z%)mRdbP2? zJ?y|isYbKf_S&Kd6jo1c9e_h_)n+5%(KsHY+O}cNZB0Y*sJ7=#vzPjMBh>d$5zI1S z^OT4BR=m3hzZg9UY*XxFs8f~FLO0(v?~$4F7jeo3=adx_Q>A8KS1N%~wVxvj%DPh5 z6siP1k>X{gRfp6j+43%*HZsR00Q=D2E#*{o*3VwI(q?^aSF z)WjF$yJ@w`Gs_+QWBM@qwINgM(;;4PWi@}xe}S)T{D(v!E-IHKTR9I+ORZdOft5iS z41ra&3`VwsJ~vw6mcJMVN7=;FG}o--V>7oeKye8>I{dEx8kaNLM5L{4K|6z@D@{9T zd$t8u2GS<5vXi!#Sm2gl+BnMPO4})62?{%fzBI*!jtD6G#DAAdUP3z&zqeQr(?I;* zXeWN}v%tzg`~+4}@mtM3a7sY`A)(sGEbz-Of*kE~MewL#_2H8tE^{mK9lx228Gl4* z^mPjw8A#Tb?Ii2_7FZcbmcS}1S=px1Us~XnU#d9Dg-TT}V6vuE`qJZ&)|C1ctb$T% zN+paSSgXZ|^bLSlQcWpDmDiNoa4!79KmD3g4_7WvlWwsLt^9aVqI(f?5H^72Z}u`% zPw~r4xsJra;Q=m31h{y)At({u@#YtrEw|w{yKTpX8b)<@cGjDQ4dMl_G3_;`s-CXSJY#333(-S)ZwIGO){n@bFC?gxGU%1bgO2G-dI1a>Ql?_cL&_mp zRtD26yevtEkn*)im>--7_1Lb%Uo51|ep!W-Yk>@4X!33vfDA&DwHL$v;>UeS-Y}P<>U>gmB zvFF6QtKgREFsoL_h6mNfX0cE|je^#aLd2o<0zZBQ<}Ib*S=i9|=8X~b)8GXt3)}VDP8HUB2fP+s|1%vV((wgMabSs2KOQL-479i< z&V$+w<1(<0kOpMn(3Cnolc15CLo!3|u?U!D$Vu@BPvxOl>U4XtG?WK=wgF%u8S|cE zrB1O?rCZr6pGEFyWL=48M3b-A^rmq0brBkQIQTj?MiUU>JVnz|r+aW1p+h~)q$ig; z4HG|Fl1NK?PD7UHOA`drzp^TIsskIFC^c~nk>xAXE4Lc6CYFwW9s^O!T0sni+vgecA-CEd#)ZPZf^t%ZI{!N(vtn|_Mpdub)j3=bj99R60}-kpYx*_O z%$RcjfQ{A!L>}e-2@WHhatk(?pS@jkzM4fQLt& z3j;oxu+OR7-&fFJbGUN7RUEI3-rPM*jJWEoMC(BZgw4u1Rq0YQ`W!>4N)+o?8n7lp zk%vwZ{EX<8OZmUfNNzIBnDV3S7oz+Y1Cht1>7EJQtgrwqbK2;JTvW+*$D~=*Dnm{i zzQ=RgMlOI~ET@hAvdU=-HbP6vXFI3Ua%Y;G8_m|dThE@!cBUqiEd;R49JV2XId@lr zWHrbFnu9vB+cu4E+BDYJBf*y;)6Jq#c{0~7j(694$6PY~Z6Y(k zQ{yBFv`AqZ^W>=|aGmuip#zFgK~-SdmMk$+^d&aU}cbdC9tx~y?U($ZuxVsILao|zPVJb4b2x)1!KqK z*;{@)cWqbkXT$`3z=BQ&$GF~OCt07cz{)_f1XfYWTE*tz2+jC2LbHFhz%IXRaij~C ztz5ulUSImWa!B*~ZUA;1%xe4xG+{LN<`ehkiI5x@gT- z8*V*%I?DEvR`DNBPC>+t}6a z)7AN4dBNv{ly?a?P9_}}$Bo)a2$+fO3dIl)O%mc+#SU18>?#PDh3urpf-Cw^OhUY@ zSQ^T-rHcWuG6@kIRfaKVH=BQw zlMutik8VF|X|LRVO#jL%2~h_&HmjQ?AwI#FHL;z?$1@PwlMv5izI*th_3ONj11a@h z%UNhb#2zPV=aLN%h_{=tLU=h!Msf47RN|L# z5-_QVWfEhfs#gOg&Ul^rTQt3yXrN%TRN^alUn-YhKA5~&4 z?UhQL{?(ZoMV2@oIa+CLr?Y`_FI~+4NnoA?oF%-(7n2g=!X=j59_mfsu0mG>WQO zO5!8SLi;oTY!*1q!{JBaF!FIYH6?LNS)?-Ma3t-JsB)x@X!B)d4d9Z#^7@LryiQL^ zytyn&305=bAnHzFo6^WD-HG(C>{AkTuygqoUotlT3ZKFP3z?F5fh`s?u?m9}Iddz{ zU?56LNql9of-IvmcOqbu=u9*KcQy}F5k>x-r=y`xzA$lSxXY5;R5Z;<64W*RoJ;yTC{>LBwB?*f#~W^AF9QXNn#`mGK& zd4~V0;f{r~Ce`Be2sn>gkjpqkdW6#TW0OMo3nD1rD`=28{4(X;B1eGHt0jlczQtt7 zf(ufT@3jRXB^eo6h$LI6q)eKl+Zc2=!2+;MnxlJOQHj+h&9P8RhNL-sk0;GN;_>i{ zCC#y4hh@^-*$3Q~`E4R+sB`8*@Uo`N_1=EiXL*H3#WthNZVZ_UeP3B{TTqLyJ>KxD zvvZTpR(pJ^>CMdGwISQaHf`E8>~!038%VWrU>qu?G@peeL_wJrczroC?$ak;^zIZ@hyEwAvTx~MFegL(8sW%ZbB>rKBi;bu%{)|1+Sqjr zSS%TFHMc%K!Qy4V)2E76eqq~yyU{)kA;ODu59 zpC`sqHu0j&h3SO&6y{SSE?6tzWxtiviajBudW!|A4AKzaXeV6nv%tzgxCB;F;aW$1 z14_DRBcbBQEbz@QaC{i$3f$U|f8-M+E@?*vZ~5Q{~{N(Xd|KE3EPalY7-}7 z9e{_NDANhlvB1he+5}cnY0GwF#;65u`DKoyT&T?D0wxo!(>?V=nrMAFn23}_>x2;m zOPd&xh5=qliPnfJPqe-XWeorH6RnR4t=N+Ctasq2;XLb&_#jvK9BV&hOIn{*# zz*MK%8gaYuUvCyNv)a`IUi6-fR?Dlq9d_wMqj|u^`$nUQ*TsM&hHKJ74VQSm_E+$K zUdjFuVf7#ryEYmn|PQ_wAQyP1Scp`B+m3Uci1R)#m zSwA9!epdN|Ud6M;ql1nak@UPy89k<&%%jI4byvpCvtJ`}ClZETBk~IT#iGaTmsRvw z%0PM7h&=uv#xcR>jJpSB$KmkDc)K&5{rL5$I+UCQIBQHfm^2Ko5;-fW!wQeF4m<8G zRS41YSK7friAwF5$l2D@)B~cvpzcMYEPrXPEP0}>e-ZDl_uj)kLZ8Gt&3Wwg$?uDe zM;7`^euZ%6Z{ws21W#eR^8{iOI8*x@L_rydeORLO`f?bLqps%f`!B?zrqOmrDE}cL z&A*zH#$++`IRIZ+MD()^SS%vC5>;MF3fjsD!58{eK`xDND125d_9AMx?s{UP((c zM3pbi#!#5>Pk(84Qj%3qTBC)mCU+CxfpTm^%CZJ~kWc-byXO$%z_Rhs92vcuppnh^X?P^FudYPEEc;3d zHpcqCNsn~Nivu5k^>*m2SI|(&e&FnU?kYGHR>6!FSKNVTz|%>{^v@dqw(JRtHCQ zU}IBZdVoPD@J$%ACYB$*kAcXp#~aYgl~-15$G_l+sF=St!eX9Z&E&g(akb6n3BL#B zAedpP@|eh?7_d~?zv2T2H|$QT^4@ zUa7z7UsW;-E)hT-;9Tnb%c9iT0tqc8FWZph50hId>I=@iXh`)@1DCt1fjm4^$ zT>IRBfKApu(JjNB72)d)!wIZuS|#3(C;0A=Vma@)^=4z1Z4rc)H_@|NCqSim(pB`h z);iiu^J|*L5>TGl+OGl3E%SC-E#8JGM4NRzTIi8odj4!6=DCULexy3-_IX4=Zq>Ew;z%o;T z#}Q{ks5gDg{l{j$nbQ0^pDYM1G!LIrUo*W)oXf>xW z1*$O{`+KI_m|__`OJ0q{UV7&QKt>UWf9?%{Y~{zWB~(X3acc=lN^=+U$nvcaNR8-o z?X~!fZOOh9LW!?ehFb5UExk=!=bO`8CnS=c<{~`t>g|cG&h93rEWsbntk;0+uptXf zZCQJ#sX_U1oZ7cmlNfOAs3!s&!yDiyCSXFX&szM%ET&VbtzWrp84n_^URWG~F#(@6 zQSSQyO-}1I(3{!pPIt73je8gX>#b>dGo8f+Z>hHe@kk1j9CTZarRUd{uK}b_l>~{% z&k{e=TRRiSmPj{YfL6i_TpOj7yoV2O1sfipIZjeAoVZc=fr|PT#^X&Ww(PQ~WpThE zp?)t2_1)`;>;(G3 zFSx)fT!+b2APfQ9V|7BpNklV2fn zxjimEfqA!>vzdF(9MUHu;BaOw71T21@~a@|yaO7{?%I2ynrbgiwtoUlmB2; z(JM_N&9Uni_}6zXU$%T1{*O3X;#)$G=bO{RB!BL?0N%`(isd$)3k2db=CktylZjI4 zoGCg{>ilu;J+wCl7Hnf+$8{6&Qg0PFkk#p>S{EololW8Iy)7V8!ngtfk9li*0iI#{ zltezG(^NZf#Ij}Jx%~s8hy&nBRqw-J_@|##wLY%fNhwt!?cq|f4*>;>1JJ1K$6n6% zQ>wyKuH#NkHCxl@^Wgrp(}f}!POI7MI32IuiMT0N5QqYPgrHAn(mY#)vr#8M16*kqBx1F{UZWqez7>|6C?Ve$#?rku>+Pd>aQVS zwj_{N2c|Q1zFTym(_=#6RHmy_9iF-dKj5&O+gij06<%!O+`4J&-bw|k?Tm~K4ue!d zjhqQte+N3Xqj7cKL7^0vW{cvaM&mfJeB9{xiu@12Z39~dg71B2#?yX?#sd& z%ia0a0NBhC3Wt$Qli}9lFhaZYY_d&Gh6|HEx;w9>JeQJ$WVrONp1H$J4eq`DF0Kar z2mDv31_^HyH6RSvAscg-NSK#~nS>uE_XvN;MA|}T4*wINKuR1wVO)Vc$EMvc z0=&M);c);w4!;=%5C8Pz@aw|rn-qZ$sR@t0ei?xUhSn$of6*0Q9m^>BX;2t)hrlY- zPwY55wqNc*!ok8EKE&va44jEFyuq@KuYB?XBMN!Gg+gl5i-PQe-+?)SOT`vKK#+<< z6CA#VppnT7(4~pVMcGvdm@UerLV#J!9vp`2Qf9?jD+~sUbId!39r(YF+Z~^GZ#iph zkcEw}aUluk7C-0~=<-Yr3$jG3lZ11j-SQ_hy-pCX1z;jP>3O zfR(XcY?P*iaw~hRH|trfgPPtHK8H>=WVE-##%KZ}yfikA_AcTuLJMPN(vzdTg80!p z?RW+`alR9h%3oR*xdc|qxI`4)RZLd`XN*Up`7>g}Utbo&f0m2CwH|z)J@ip~0}dk> ze{oNRa5uKe^1-r5Wysswdma|aT3No6hF1TvEKENMfX&?6u+o|`m5nnWQ-_@hQ{e%T z|8JH>s=}H2-(_L?f;k3-OZyaQ_td z5jc!Iikp5t=H{{}C0NWR%;;t>wkcgNKE)<%_NITe#m;#pqND32wwN~ArQK_69%8#w zxDLn}<-eSPDCtD>M6tpo7eMwJ#C*(AY(jn-2%B3O=7=oE~jj0GqO21XaW&`&%8g5xk ztx{E9g@E&@3e8?pE|i#=PDpEdS3v{I;qdmv5VFmj?_d&RL36o*`!-t;aswCHR*2kM zD4^WHrGYdW6R`j+H*jg(HY%UG4P3T>&9H%s@9_=X`%nVe1}^(`SZ?4>h$F8a9KlkY zip#sLd#&lVZaPXOZuah30jEgPF{td^wt3jOdfV8rGwm(F9S2@xYH=Jx`t5CdH^6o{ zBvo&K1inxszlw6(-jPkCTZSF@4>V)GwYZ~l+g|bfJa{e=t;c6tF53gxwrLc+0*H=| z*WFp{w9%}#z47U4yMz7B!l})6)ooypyk*{V8_)uu1&`X**?E^egYGwn8$55CU33Xm zTKu1f?GE?;3p4wZok*>zaM<$7K0Byc?e71F{S{dWQwS z?f1wN_+49zC@A;Hzwr>a1b(0+UeSI9j9j)xGXNllNy4wunC4^58Edlpe>#ANEf>=( zxi(o~WpE{zz$$tr*Ybdle1Qai6D7FF0;~L&adBi#+$~K4#c7-$u_O|hLVY=jU--8C zYQIg; zVo@rR7DB(TTVR@BBKZKymB^El*O)$G;-a`V^nw2t7edlP$oDe~@)?NVf7^-Q%1e#c z4mAVu6IeyXZ$K{ODfz+;gnB1f;F(|eIQr!Z-}2P|85EZnBfCh6Ppzk|nT;O4jm}b;dI-u*xr09NBWE>J(Mb)fb_-kgW}U z;=d*4(r^nAwmU5dXdrAavlF&ASYTx!YyzvOupJ$aZBqi$CPKk?S>T#q1o;rk6~W_U z(S4sNO4(yO0sdP=_IL}S+&@}S&Or7)VJCZEvcSqf_5@Z@*;~bSPblTYGeWa(TVR)8 z+BnkXO54d?+F~0=K272>cXap*|1~ajw24sgw-yvMkh)*nN!>A*mAZNmSVg5yED~^k zj?ypOK&ba{3q147A4k7j`8!rflfNnH6C^Ho1M*G(B`$U0212!SEU0E6bDIFX#bV)N z3#<$*oxmz8b1Qc?8y=+_e?%y@%L2Fja>h|ESI&+Kw!M8K#3gJczT-D@+2W4~jj9$j zGLS0IPO1)CU}Ydx0xLVIdaea-`K5}ZT&Ps#0w&J}r*A+XhG&D{)}Xjz}%3%X6KV1bFJH$Zq7rw zMjsg{afjz1McHb zHt~ZN8lLG?@$YIL4wt9*5we0jMGG;WvKubV7KQwsITx-Tg}?F8ES<&FuMsYOigcGL z?@D)WG&mbx`y>JmSJ;dV>|B@Jh|sI)13yDNP4Rq-T6tcwY0Ohs_ssDb@;Km(L4xs2H^UQKY=%D zuZI7K6!tAZZJrk^IkPI8$nE(RfIQf6W?Id8_9=7ofsJs5g$MQwF4qOO z3=V%owNEG=DnKo`1A@&A82ivSkN~{VX*<&lY|u-)I|UUN=AgJJ2np22b?Y#It0yJ~ zcrDZB)Ks_SU;$jf_uyO=UY?kU?nO-S&cx%OL@o?u00v!c!Oa`3tIua2|fn8(>?=)u}2&S`1H0F7Hu78km@fZ6hNj@ge9)^a~hA zXtxjE9RPg&_oZGWd=~16X#W z?$>l=qDw+6ID>^`R zF4Y~y4m6o>tGTB~Nvs`Sly|;1hP*^N!U5SryLn@=12p5LbZXj@F^3Z-osilIzm|?F zB`^4W#f~kRdCMc`pmlsR2}=rJH)(BtWX2WX)vyBG4W3ZTgZl&<5QGX9vEz%Wa3sR* zz>S*0EV}mv?i;a7G5<`X*3)B7~Y_) zvpHB8>z;$RoIubF0JUbj^RVP%SCTX1i^cTO!JF^a zJJp3c+?|4z`37bns@80cIyhp!G{qBnt?Fc#-I5wx-tu)+K$~gEJKm)(BCeT^mvA z$cYIqhII5R@gW8K-F}SdPY-Ktpajv`O|2TU0d8*8v)t?^s1V0wT#Ld-<$ zS~r;da7F>1CfxD{^V%Q=MV}0_O6wr-7B*?%B2;HG*y6#<*j$Jg!c_oH+nryidn`7G z7qVd#-)St2RvR?}>E-8Yk zM7wk}D@eOeQE1npsb70lv3!y>X)Z^=tR{`zo<+ue^LP@1m3MAG0Q(|?&tAf7w{L@= zK|`hXD@99e8}3m%ol3RAuR`0&_F>TK9Du8i(dm?%v9Xf1>183kV(BF7)w&^hj+M>C zMpXrd?Dc9_08OY4vnNFG7d1Uu=&LOIcYux01Vp$BkZG;jTX7hn8bBK!IvE8#6+zQGbbFGZ1?ji0t~f{puuroN6`O?Ge60 zo%A{fJr6bl4`L1WnHku(gtcG>jqRnKSAQ2uf?4sB#0_3S1gWs^;6z|j5K~xeRP|b{ z!hS;2lZm#8@kxdK2R1$v5MhO_y%;_>C_elt97Z;U4HG`9uv)q+6*m2=bEU!>i7ioS zT{pQ@`fbLn%B|9WD!p}Hg2}1WAr8aJ$X^XVaKiPYJdktH5*6gzj$fz=pKS;NMjM!a z4Zb(O8W+8ONVXDz8CU>_xKgk%fc<^U9Dwyf($%^l5B+}XX7u8*L{c#&-b^_7KPaVT z7?WQz4)PuDm@&adRj=8N$x7r8o&NbFGQtzCRQF|K3u5NvSO9ER-!YFlS&zfWW=_JS zkD3!L<(1|n{i_#fRpj2=U&;00-rHY=Y65=;8i0>*DO#MW5cca(&t;;1)_)T<6*5tL zJ1@aT&D5JNBqyT=)IN>r(+(-o7o6WK;$tCZ^vO|GYetTN6mtk@=CLi{?!$FvtS_JL_BpJ z=duegHfCOKyAVq^b}Gzx>Bs8-b1aZNw@@V!BKb&&U{mrs>T@#bZ|D z|FJQefXHJdeu2ZtW+epiqnA`2;q0Z#kBW#$=o^QVEQdW#VI~ZVE(R$Phdr zs6MJJR38C=`?vahG!7#lS5q%tIhZazMj}DF&T@GbUokfJxxI=j#d#yS zBXW&bSgg!RXW@BFI~C3X zHY$ZK^MsORL-Tc-o^s88f6B&Z0wRy2@aH&;Y}O}C_^7gL>8@1v^smmh7Gffdx{h)w z`g4q#m0Quj%kszgeGv&^1)jT#8H+4$b=0{O5|`kLYDiGMRbDPJ>})vbL2hfkz5#xA z8&y0^yx}&C3U}LHYea03c+#8TM^xCu_?v& z#bWhU+M_Qp5m4A8Y|L+uvTd>aK+~6rIf?n>-(w>*0g=Zd{RoGV%_4yDawSf6cx0@QDN!Ti*(tVG8lGlv{jD+z-n*YssELYZB%g^kbzL>^nU6^D_{R)t9)wN+ZmD{WQ!SJ!3{ZX;V2jjL$b zn9Dvq!kCS@?ZbXfFQP zV?X1A!nwi5ei@ACX!^1kp)?rJW+OBKk;h>CAr2#(!3dK+YB02vR~n4;uO_&`FcJ1V z=0k^2F7q*G%+%cG<6zOcYq~TH1hrV&gLbk;ex73l1Zj4G0rHY6G-% zSK5H|ugN?1!;meGfq|k5+EPfgsMA>7TRVpvv#`9@8FW=t5K-4}< zQ_VvM*FH~MdTXv_r5f74x#2T*@RV@SEmqCs!MvLhu*t!^XtB%p@eQd8mYZO?FgxG} zlxV!I-U_F^h~b76g$8{0?y5Mh@KeW`~BDqP3YKpoVfq@I&o|t7ud! z{u(7fr4<7bJ1RgbvqT14iJ7!LJ{|ujki(%>H{n{#T6p8|&a*dDxIKa@iB% zQxuq>kbmuNcrB@3LhZ%y8dgzwDf|l;+uXtbNh(0wTLY)9(MMX^2k(Cs0QRnCuEcn! zIX(+DtLG|%7&3F_o6}vW+SRGT!})5*8|^d~;h9%&kIKsU9?UPDPya+37l-)wUoCto}a^Z7edh6B9JR zA77<*UgYgn>}|ijwoTuxT&7%YPL-O$Ek0KOc(XY)rUvH*B;CP)#VB!f*kt$wiQj6p zM!e>~Ar}AsQz9$V@62=u+(HQAY2Y7wG+Xx51?>2fT z{=z@~yN!;c6GzfLMj`XeJsk&u1k*g2?Ckd#U3!IAhnqiwEld_PYc>wRWgy`?u|aw{ z#MGF>2WQt>?jj4~xg8lZWA?isn8c>MhYXRrxQba(XHA0e$nS)I!lmS0goGd^ho+L; zrwJOlIVl6ypFqHDu`Cq?BamfQlIt;Tb&8E~Z?CtTLbG^)+>ehZM8sK*n>yUJ<4p%z z7~h?YIAKaJ>%L-nBQp=~0l>hD*VbcivX6Mgl9Zh@WB}waYDyyppxzkYhX8h zI1r->JryFyZ+4ty-pw%knjFA4-dA1gch?cIOT*iFJm{$s8Zh?hNSNWptlp?ob z&Vp9%I*{(;X*<)o{;r&w*1-v7H0u!;8{**orS=j&QFnL>Q{7T*Jhr7v$` zcaem zYdB`&H3$MoW%(fj&Z8_M`~$kto^uyGr?L}nlnpk;&Ke8th$*LQKAW&O64iiJPgZ+& zCd1A#o%U97yfXSr%K>BGQ3a1^CUQp^Hk-SuoIZ@cls*sFfa@E5I9?X?iRHZHpw9B0 zlrm$7o-+K3fNXAdSZrdq_7zB$%N`13;XzEK3fvN>H!4Sob@Ew}N<(`OJso->+$@wQ z>aOdAB-bqazxiiboMZ}_Wi19GGlFQ;n+6vx0LzRZ2i)X{QKvg+3g{KSZqJYrgzI~r z5p)L%F3SjFzYfccpc|BV7kQI|t~AZkP-0SMp3v>eUj3Az-NQT&z0Hz_up&#xYaM{p zDoBb?cr=c#;BBn-=`YN!Zk{BhH^;l{ zefuGmgrpR-C7HAn%||*_^HF#)qIr)jO+FN-ar0KfW`8jmhbkd6wCe!HL=wW{7t0nyXB7l zzCMhe*Nx#O-={-7>B~QYKmr5)Lqd{eyJBufn&O!V#BVqcO;f(sSzu+5@+GjcOZj?) z1#bCMzBtMXA22ZxYpz+x$2`$G%-@{1rxyIc`GDR~v-(_U}YeJ0;{M9u7DLMB_Df2==EU>%<>B#N4Q+!I|_>cv8A?8gSfn9EAaEL z7Bn)Dsn6NT)V&s18OW5tDk@Xik~HqOz%9R2ag+;{s$9Ti+J5?a_%KY{{|KxtQquMl z#ucn?Vx;?XfY;ZweH;K!+dus&@C*O+)Ak>(jIShR@P|Sdd|Ts<2-z-!f4e9a;<#{{ zZ5}SB=hZA`y@uCvJ6Hp?1qICDwoFJ`nCf&}ZXK#(bldQcIDi@CE$|t!0C;3VcpQ={ z7#a=0DUQcGjV5Uf%%x861`%G-be;7 zR2x(E?lhD@!5fO23mA_cfP)@$E|j?Qoqm87T(^vAfKWBOQ=RJ8UAVf{onHuFo6hCv zP$EJE@N7b|;smg^83D5ZPecNEmoRO<6fVV{f}1L*>TX-!V9#06zitWPx0g@&)fowY)0KEQ z9V-7!Lw)*cU8F{PaNroEAEkF5c2?keK2htf&T8Si)6>;X6?A|VHNnH}USKr+`@FD< zk?#(2Vwc+$A@GySC-6}U0-x*BbMBLSZmx}YoNdlcKw$RsEa#?ncYgfVJvUd!Z|#iS z1bgzg-2_5@)4bc6gSt$&?z*kQJ{r7jU<%)1Z#Xl-PiU224h{@ZGWVlHPHawreL(B> zq{)QUTLVYU8}2-$dz}X9UcJ?g?);?JTH4uLRd*-7I{bhL??EV^u=M;`>~9OumuF~6 zE3;O?i^vqP=W)xIExVc}Co&6;MjgczE}WZ~;03p;P;d+Q5iPkz&le3~#jS}6Q8H^{ z0!vuHpHprFE`WfE1#-Y9tFXR?a$c3-{^3D+k`UaB1J!A7dcZ}+;-~wAJHH*4O$oIV z0Lp9^wNFe{-pq_&oNK;Y?^NNQ-6>Y5d0@t!>Oc)f2W=?V$Z4oB)PmbD(2~L>;xo=x zl&!53Tm}PFgG(^L#tuwO@DfE66M^4T;fi}wGR^3YL{p=3wQsGaN^y=2y{VXQGG!P= z_n-z{6Im9{*L^TRE`&%2KjUqU5E0t75v7jw#fy%9CCVHH`}}^4=uZ!8DW?R{()oc% zDYbP}LnyUZbG@P9UtKJ{e;O233ro<$e0mdArHE+98P&Xynn%XSwV#51N3ml}){^Cs zf^WL<#Fn}l52mq{UO8c`%Qj*3p1FGt9Lw1`=KqW9fV@^4ri-wz3br3t6Z9bq>O%`o zGR#35!1=+&6Ra>v$VDhK_dc}nS|VzNPgdYUIrec4$6{vqIEwPb1QiL*_SZjYy2)ie z5r5x&u3}`(F}{b<@d=jDL8k4re52fv-nn8KI3@5uKGj~BM_z~vtP_NSv}nCTiw@24 z`Tr@FQSwZ{uMjXZATm0IGFs;G`5)Jro2olL?{>C|DzVv}R<<<8%C9nF!Rx+OgG4qnu#wk@?w zPJ($ioa7lzv-40^iwn_9qvGL=Xn%$^mIl#ZD>B+<%2;NDPa)6D`1Vq@R z)Gmh44G!?%io?ieQo@9fniMVFl_n+qtD}iD68+PCoJ;?1HfBI>{rhLWg5(wGafbJ2 zdx$`___@eov55kEY!$dK)rC0LR%e5}Bo$KmryCmvS&?{ge?vHwB|~VPISAUp-T-z1 zizc>+;@$79?SpdmtkwsM#6dBx;qaxdfR{L#S&65>IA=LygF}!Ry>n1)HZV9@Z9~mh zVmkbXguQ=-f?0m2!Bs53*q$u*z6!h9z8x4hmlK<@whQD?6LF58_ObJZMg?0KuPH<5SQ zv*!qi-~0PFxZkd=dCEdbV_RXx!^)@(<6U02u{<=l+F+&k@rL&O-Xhzz_rXG{fDE^? zwGQqo9dPSVY-!TN&+u7Tpz<>Wb?Sfq>ox#E#;MlFa4|UE5f;99c1xZ z%msb0>mbn}9c^;i*t?A7E3b|1ec87(XvEkyu2X>wCyXoM)`{X$L1AqDLJ`i{TQ{_u zGaaZI!K^MAJ8tF{F--?7XbaMyWZ?-2FAZRc3Fyf;m4nzJf^aI30?ExMFH(eAN7*>rh$7*Aplbi>Ux z;r)02C%jK2>`hcyRt1~uwogO)umjhVOhJAy+y#cQ=iRJwxx;dbgRfyWLa)998!oQX z@?6N@XF0?80beEzsJB62{Qy%~I9qMlft+GoYyi+$*`*;|aIg;srr@pS%#3DsOFCXm zrnjUQ2)i4_S_nD6)tH4)%x~D3e|}rVSV?C%@r;b|4>Y~yn&WO~V>AJgXN~Y&97eV| zE=>IB8bM2Yr4>y7>Mai%bt1x{8(1!TH)|{$xgGp-@CZ3e-$>jdX4g4{cZKnFjdjU( z+WbSsYL~Pi?_&g1SP*Q?Z$YwTcigS%$wc*I9`a||_)I|Lu^yktVPvx&g78rfIeky( zJ7tkdV3gTAmYX+ZHk6Nv3HU`>Xg|?sRvuT)}E%26n?baIbpcI1`LPmB5bj+y zG=va`hMdZf#DBmjCifla~Ns z<)H;^RGO-9Mh-?E9i|~2(14^a9o8E)9azk@_XI~H!^7G#$nyJln297sR7VL5+ZB{x z301(@#1BcmkTJw!@G>9%k2p_%MHQiU`OuKBWlZEz(YUZ%YFbp*KZe{?$@7zwy{^??cL(2RoIDMF|#Zr2(F|*9C9%4kK!&!;X=up0@0cyc&Dd*v#oWteZkeS3$ z&<(yIF(2b%{`ZUr7GsZ!xd~de*RF(Ip4Y*Dgd4(q2sZo4BfmlqpF>z?=JpEc^2ViS z+m2RxC^%6U;-Q!jObkTc1wo4^(MmuTfaP5fw0u|8BU!E-d4(SV$#5409u?ttK{(gL zFLoCM`*m2}1#u;86pssMDevtM7n-`H6%`c|Se}a-5?EEc z98pkS)Np+{y5oB_@tYY=QFZ8l61%1#{R`%esb3=;x!If}CKdc|1n_1PeysS^xyOQ| z!Opi{&w$0QbXd);noqEJ9o)2w9S)RBgBC~Iw66SfEUnth_BCrobvz0T(9- zpOjpkSF%S$YVNSWEq?`Ejw^|p83>oaDk@y-sLw%37i}a|{Gb_Ltxc(0)4CnRtC~0u!>4swi5DV7P#e?IgWCnGM5XOEFqun zsULr~2mr>j~ z-;57}RXC{Yr@+-r-aLu~yL&ri(f9*UHoDmwal7zeZ?@&N+gS2g1aJ7+s;OqH<<(g+ zd5m5hV7Zl{O)IwgDF!4la-N0CF2TORzNOkL_&={?|AZr&7%zS32M@S_OcMHmfJDXM zsvDsCFyz<5p*k!qj^{fdgw;9NZ0+ZqUuc3jOu|_`Ry-Sg@7Bmn3vMBuhDX)L0_MN6 za`91NC=xIci4GYO4dE)n8M?)p+{$Vr;BYbb81W8Gy}v&ycEED){J992?H)+Of^&X} z_5Sue6%LWAqA%$OO5r%uuv6Q*w^9K)9UI0g4#q?YYy6izh8uC=@#ewd0Sv&xzjz30 zpEwGIN0^ez0s^>pP}Z+1D+3N-X+Hqhb{_AS26Pmq0k4Eab9WZwxGof@Zal+lHTl7* z0f2{Rp&;VxwyJJp3hJb~P__CNrvlhi;k+pXg`wCgWFFup08op*3OS!xfQe{9u^$(Oh&b zF~bjybv+3rMq|?`w=DRXA93 zcl%WgL^Nk9$YzQ;B0mS$f}M3u%!{WnEM7P5x&?2lI#c!F1gZxmTfv8cx5UmGo?oTk zj1FvXEILj0o?m0U#n178#|!n@zzUulZLANg%k9q+=)515JXiow zyJ%u)1pA~l{sCuSvNgs=Rj=8tah9{MtM;gSvKXJV#YX^OvptfqEw23&P{5#W;~E@B zHd`zRZ=Tuz$g)T!Fe)jtf3z&L&+03OH|6JWYG(gsWs%C1!zTxs{nW-%*Gl;onZs@< zYf!uU%KxY3<$rp%f3qw~3HCEvA9eq*O=;?t?qB*>{}P|Q@4fw%{`?KcuW<%vPh`Ff zJS}b(2iX2Rj=hENtgxNQiCpVQkjppw9-EmhCO>=MY>XG2PV~%hpIZ21#gw9cb+KYD zU79~;20^jF#73o@XP)}999H~GO-~kFl`hTO+4xLAeAd_7O6}*EDt2cb8#YVgxAZTrnVaF&#^Wl>77I?;W>Hl)PCDpL**1YwRyGF!NTaQW?Jq5jssa`~Nkxt#6|e5@==2_`3c1K6fC=t^%O z{i_p`CO;w=IvBZ}f{Tm=BezqqKvNc>L}&}|o=Lj#W+xQ>;K6|_@t8XlXX9s^SSeA@ zg&mRxT&X_lT*nU6``7AKb`HZ1`7Psc*}A)U*4UsQR*d@*(F93iiKC5#A@^%U!DPCO zZ=5iOD54BM(Da&p<0R`<7prbmi@U`b<=W&30NlsT6C6f1uL9`{?wq+-@yN1BB`_+< zs~9Z{?X&vI;Z6BDoa$9vRu-vDIV__IXdQjq#tlZKjaaN3${N7#zViBMd3l}gTQtj} zlwftDZ-H&*zD4?1kIyx85((0EmdgqG9y7ZZQ%ZD8!U79fM(Gu{8zZtv0cJ!hkLv5P zNIwIY`SOh0-)A67Dx>t)VkKLqg5HIIO;SOldBp$5Y8#oBQ5qQNw7T9nPY4Z;&MWgk z>(w^DoukuTs6)*p2a_aOVSK2T@3tTzxs6wfK!MH4Mdn#LSMC_b+{*#{(rIIUJKO>S z-!K5aGb+yRLsHMQH(rJOolbS$8;4}h!1FXH%5ou>-Z zr-~IHS&`=B09YAD!$zfLETRh2S2P`17$sSqCOoV&vsGcDr`&Wyx3G0dx#}l#v-45L z0gKT}6a2TFiP5r4ZyXv*Qc_le3G-=1y)pPDln^U!A2LOaXio1zg?(JNPf-y+Fcr)h zS)arqDvHbYsLDgibZ7|)+9wn{6shmwp*&aU`yrNV z;=t*sS&%t7g`1OK6lG3K(9)E*l4o;-z55UmEVE#Qh}p>UR`0hRt@IqxfhxpvG$EK6 zh%9eKPb|@NU<<&qycIoY81)o&<*itzY=-hy_#Q8Bbpxt5D{sYq9{Gy@wshe~L zaqeQSVYk95#E50Ay%wLb6KL-RZ|e2%SMpiTyJ$;qWGnQ&bwXmcP;YiRkgPtj)!8L} z23Lv)*Lhc>5y#%CN;rW{{?=-ORIQH8;+`oFVVn@hf=)yYbL(BHt%sU-`~b}A1;!-c zi{_l?eSjq=a}9bkvkvrdG1(5i1%UO|w7eO-(Q2u;0;s-}lm&j!Z8esjUt7KgklrZi z5y;CZ-1^j=>U3LB>}$&Hw&5Rf+7>TcXJ>S3XX1#Hh$)nQC6)qYD>f-LALe78VPod( zSf3~XWLCk~Ba)~-E=`mnNxo}uLLp|SNT%X|Ln8hW5b?X$5owaALtYF(Zd^C*A6d(R>t7;bd zG#p&&JuWUnOwI_L#QKADRCJoI-J{TnO6^;;rT3yZ))n)s_2BqCd|PdRnc^e@Z5#jp+4~YO zxr%E4tb|NR0t6IUwB@OpKr-1d0?#~!NC1Tp10uK$ccwct-I?hgx_gog2;wd>?&E?2 zBJSe8>(l3gg8TB^cfjT8dnmZzQ=j7hoT|FZx%bw+b*j2r{eSZDCFxsrt4^Kst5d(K zTXhPqC#=?kF<5t**m@o;;zVmDgN@}h2*K>C97RO~ikLU#<{*%}g%3HGc!M`(tDAk@ z-(R=S!JFzn&{gi2GQ%MmxKJbHq!SZ-Gpm!bUhfh|FvkRqZ^Zrq8n`jlz)Svi=nplS zjWxJ55-QA-2`-qEMf8fqb7F`)_=ey_{`ol+&!bEQ5#N3y3d@8KTpD?&P%GKcNQ*E} zm@J1V`G_cE(G&FSMK=~Pf^N-&;sI*hFi3}5NcCKRvtb-TC6!$mq>6=X?qQIm$m!`= z5wqi?YB?F`Lg-|XH4x_uGf8|U69~#qvd|d=We>JP+36NiF;J$YN~3JSrI%5y;RB+r z$5_bajxZ^%UxeLT!<|BfWU+Qw-Wy?dHAl?83hNhegQoMp5L;Oo{)<5o;oB0KMsE53&3xI>4IFN%n?1Bm}j)}A5b1M-euk@bYt&=dGlbs_9m19Wt1T;k9{Ki3x9?o zEmvh09r6NOCg%0BNgu}&qqsIO0W%M5`I<1I;dpHV0~_w1Zi=l5@Qp^SfI=uAvCJoa zbcP1bt-+q6=_#=-NX2DqjWl2#Ohi{h@#U5w@*1wGL5R!%m)g1zyA4AAsJVm621{ll z#2dzsOVPX3vg<#9yu@(~qKPBZ(8WvLguCEVO|v6*;TuEx{h1!I<)|<#A&9G zpOa3Sa+?39EYUROZxiYB!rnGG-rjjW7A!s%#-0|JwLC`poc&3(@Co}l@$N$DRmJU; z@i(bBlT03}oY|FuIL8ABLX3MggD!Z|k!ie0Gs-W43W+03$ zoJGQ8$m)L1)(AwbRpE*&a9O7a!3lxa;0{g^K65}uuZ5VP@GhJ>>g>UnvDyx}c2$aS z;+4rdM8but!Xr$uK{Nt%_GnUK@s@laPdq1J@AlUA@e$`KC>Ttgzds8Tb^@0A5LTMQ!y92&BrXNmT5ib#Ir=SJDQ3Y(EQoFoWPew59mA<|)% z3hf|FmltKT{H@Ra|I^b5dWu?}p}YmV2NahUBt-04m}H|z6%p^FZHOYwBVV46-#PT5 zFXJ zN2Px99TFz$YBhIACZQ$2Sx^(ldno(I4(My5eViha4ybV*yq>qINbETh(=L&{3!mg` z5X|`7*bFlVq!gd_-V4@NsME#=q__Rbm#UORo=!*p)tA_RhJtxtNL?&E|4GgkE*ztojvXhTnnd8KoaVdN+S>*^wod|Lc#sB^>MDYE)022Dtq8aPS#VQuxY(6k&{8)N z$Ym|qYY3B|-1V#iR+0R6PP%O}f#`ptw@8c`#<=LSnkf$^YN2R663JsJq@6h@Ri0W< z7l$BZIL76og`6T>Mxdu-Gt4+fQuS#kP^fwBB&YnXT^?XgfLbJilcT7y&FJhX9+_H= z7P~*SE(0>l)s-A)QQ!-Dv+3c3z3n}*e|WD@yT(6YV!!;u7Ypj*bnc9Q_?&1VrwAAS z@MUaEN{X;RPNyjfL+o|Kfi)|n0j^9Y{1}P2ccxF>xU;zuF zlW;*s9nRc~683I-%3LHar&j}eqv&qC9i-z@GlY@1o%h(~z zgMzhdq?qXL5KO{A-lw1@i}uB{uzQL2af)zp2S;Hu%-n%eJby`Iqc2q{iHwP09Pg1J zIettKe5x<8AJ$h3Kf>L@rArcz^Q9`Tg_F@9iH(y9#L9boi9X&}D^I#wxqLC=>Ap0j zjGVg|foWQYuH_l!Z=Ga6U=sKg)#SuF{?dQeF>A2-uQE8&YE9$@kQ67$qJ@VOPY z@L+kcS|QJ)#oH%KL zTK0m8TCf|Ba*NPH^ecgUL|XW%g1RhP81t7;h!%2+aN#dEV>8V7i&8zGzkJ`9s+2^= zmW_!Dfp`3vSooK|#QyKTTKGXDow_)QR-qo7e z;4N-;8>v-Va4*S3P_I^|#U?(;I3V8~N-c;-8^#mMSnoTM#3`8_IPN(4@^QyeQgncP zOt(*5)?4Mpq1R>#3YM$ej}dn>_gpcgcNa-v(XZmYSbL#)ym3PH?zmqey!zd*mhFOY z8*P}5V2~g}sz?ga;p+-4X+aj^{`DFx*rk6RAot})4bc)yG311~N#j1$qsBRK`q@x0 zLniP(fg20W$LM{xZ4ohg(Re*UuSGYEgUZoE4)jEUMZs}UIeN$^jnbl^a$=91K~Oo& zCxgn}ffy7)<;1@@LFGpAEE0C1=ulPf<5r0%M8}J>QV_CgYTO|F&@nktb>ad%#vQug zC2;gBu4zyRj63Tm)S)L8bqKcF598L>j`|H-RfmK9@sCdZk|;nC?DZFURq8~&xo3E^ zHPLF1Kp_*sNNr;4>a(|Ta9Agw3^D@&9ie~L1M80j)(dR&IcB$TybXtPp4fOph(Rbzzoy-*^FRlm?mB0khw_+r?swS|U;JKdRy+Sb+8pfg^pf|^9Jk~)P2K>Ogn z7!i{@w2~+kO9q)Py*`Pu4bul;)sKqWlD zoIdi@KWUtf>p04LD*B$h4zcW`-*kjGzz1Y>QFT~P|SHT%&nl9mxHMF3JbL|p!j4v zC_djpDh3plRB0#&m$qOvM7WrGvOPI$Qfo* zT1zAlt-a4eYYfc2%MNolSxCjeoRTVyIl1UTKK|#dgM8IOHg}v!k^SOK4wm$*TL_~p z)>a5eMY+R_5^w25g1P^;&>#bIKeNN!A1tI|U`|P8hq(hr`9#?rb5dl#m|HGJ#qgtU z2%;?74h-{!StQQl#{^;bv(Og$9X^1U^O;uEF z;tA2$cP%7y2bmPuGsx(6xlj=~Ad54GnH0zp2}EhXwNM%ZWOv$uY<`u`vl$>$Qe{8} zJ94Pn7UC14uay>(xr0m!EJ60tdGqGa!~e{#c;$bFUzM{NGgM0s8K%0^(jka>4He(@|JHn*6ei0^#nnYNF zOyoig_?SczS%ZX0LX<$d<%=zp#(>!K?I3o&g;WfPDXG#BGa+hkw~)*oWKv+yAVb*1 z=Ndv6l>@RkW0*<#u|xs^*)0}IV}R@?JCJ?DLMjHxlvEjz84$G}TS(>(GAXcMkV$?f z9Msk{eaJzYpkX3+3TcT1g0w$dXpVujKiDB{pyqW-prlG8Ehb`QD2N{u%^hJOqdVrL z=zcLLKM#n#ZE%h%1X31lONINwd|@8x))LQ&#x`1LjDfXvP`t%l;9(Y0F}#|RDvdRm zY(|=uS`$x*zRtFg%pGA;V7~}ESRf~HG%o~D7G%p3S;JgXVI+kpZnuTv7(g4b16tQY zDhAM$RB51@eP4f?g>3FnlOp?t+98=UpCO8}SX)8!h8ZQ?(uo9dud>h|19306L)@D! zq+%dWNtH(2f=#K_TYNyY^#KdH+|ee*^^CU6apDj}S+p%DdBc1XY^gM&y{}kkkAbx> z*kSF57E&>=rld+^4F=6kRCD49(bpXolDVTz3hWtene*kLF0yD_LGy+gm2XQW68$aS z%_rjwyv>K=Eoj>+3#k}*Q&OezwqRr0x4{FVt@~TZ<&HKfu4lAmf*^z-%A##$DsPxm z!Yz|ZGU;~S+|ee5^^3NpQGAV116hlb{$ z`IEt>LKtO1w=~Ka=8;fKJSPBKG3IqjFaX6{ObL#*kct5?B~=<=W(#b`S;*!NGAXiO zkR6(hU>1TX3$*1VbC^$pEtN(9x6ML*43G9OJHS2KLMjH}lvEkOWrLG15|4<+hAm`s z2b>hyFW~N@4UZS%DT}*<)9-{?CG@h%M3?(5bjd(p*A9KpvXF{_J|$HeeFuiI2&o3+ z$3$~;7Bae{P>Svsg$D~_mx#m|>LUxjWr?g|E{QvmLKOEl3&k-Y_hviD{kw%!49F>| z(vUM7VLxjjn>*B`$bO-AD26blAwEMGWx=+bWDfI%BW$uDx{`Feh58tP`=K4+?y``I z0XQX<9pLVbhP@j$Xz3M7aGf+_YBf&dnY*JlU#FPt-c=qp;)aF{&?KC_gv5xLw;_ug*2@1%az(4}c$V zh5TIONT^EP$ncgT(WA(|8SVTTqP7Q(7mM(vgN=`1As>Z5YK=MZsPQuS*DK^-pMa#< zLnHZyBKaD7AzCk};3g~pWo{}mvr@aMDU8aLy+2gPxU2iMFg(SNc6vWgoNR^gj6 zBCs^WJs4CziU|$9?lVxzny1d8elG)=BCQWL($|*Udt18}bZebTP-)h>`&#Wi;tt*D z&JpQSw7E#{7_;adc?whw7FQTxga1JSPD@)ee9UeY+lvK(AN} zMYeHqZ&p==_5rasrvt&+$Ht(>WG*EZR96u} zgz#D$sIw!kIfQNe^~qqO5{z_O6Vu(=fCzCDy*?wVfIDu4H0pi)3BhfrYn7lY3V}*1 z`|90sxK2@&HV~Fp8Ev;Zopo_>QWhlqGK@SF+krcvMFkLmU6#_Rk2UMN>!U%l3;GEo zw4;_=?J8W$1J_7L6-)+@w>w>}QRTzC5P`na0=tON;9bxOUfct{1fuI#s_kGO+H7~L z4Hx>z3m-dh!$1Y(?}(D*GyH~8fj|)TZoSp)3}C5n15jsrYHFemC4xl3)Kt4Q1;zs- z;>(~S5VGDBU2<<7IwkIchazZ){3nS12_h>H5r4gxxGH+Jh$gsw?tqu}*Ntf`SPW1L zHBRxCL-GeG#*+N+IV6fVDjk!0ZP=}s4Y8~9e?2s`7!6nL~w;x?AZ zgAF#)x89ltfPZ~&4R|M*N8^RBH(_G+$$S7I~VEL?hH@dJISifiHcR^nt7ayd+-(ul3M_-erBzS{akS6i3g zSiHlRrj)5gkDR}TdJs(04(Rgs8F5`H_pSEdfKw6N6*VlgrX^RiN(sGK=erIx#`7`C zP5lw*tfW}45=AtO`R$Y9`)?|Pg4M#kczbGsyPh2Y>D@2Lrr?=_JJwd<|86i1H~;NF ze&ZULMmM`by@^Z~mMXeHbAv7{71T%N%0oPz&XUpO{W`?4CliR;FX=6aV_LdbbaxFc z#Y8QNjY$hG`~+})9jKP_m1F{G?F$O(bsETKMQb@lxC~@3!e*EaWJxomeMzAew7#VL zt!=%)II&w%olef7!?v5VbGRtFwWuO3+Aeci;;+TNIWNMzqz;FC3X&<6l&Kv2TXK#4vSE?)Gf$Iq=nxr zsEgB^GtBneqJ^9yTpYp=uo-3!L8(4HUoD@z{MMJMltjjEKc1uz5XX;+g%>sSXyTYB zW8wKwFppQbSoi>JhMR>;=PpP4QWe+2srd;pb1IG4dY!KZ9M@M{uXnX|`P}6+Uz$>; z&Yinpn%1#v`9}F$n=Hmif}5f$oan{J*rR|my_k_#)>Q_((^C^-Q5zmi!?!;CU@AV- zwMH6n?{x|7*q(d|KA6^`5lQGT$hP7=^ehB^wz#2;9brLC}*9w_)-Vt=Er7XGfgg-coIUA|PswQ!1A5;LdLh^^=E(T^S+XPlW~+|yTEFT`fJ`15ks zc^_YzQl`#jotUN_+_kK;{H@J46o~+*s17IE*tPEP7y8)@d?-r zGmnx~etMa@Q1{vnT>jR|G(HK=ir#nXod3qQfph2VMi>5yJy#`Dza6+6H0rj{dtn;c zZNc8Cy|u6_hm*jy>Ven~Jl=whrLZq_U%gpv?JMZ++%)Z6Y5clqZDQ)niInCRZ+ z7sA#lIztdo2-MzCP!p%GW(dS_zz#IQW6=v@|gFN zF)MydEc|6(Vt=8p7XGTcg-fRc|K&?nTnnctKQVJEjoA7Rz8Y|MUv2#-S6i1)2M(Ul zdsvRs%J@BH>fGr7rfJ=}mQ9qub$YLcO#-H(dYxFvbJ<{WW+7*b!|wDlZ#^Focc07c z-sjO>Fd_m{0lkn>kZ3)02+qwx^#0J^LNlfuCqlv6Sq3I*v1vRsnNW^L7u4j`^>&E% zaf)!E9Oq&)%qWLaJfCvZeW^-GWNg=%Tad9ReoPR2i7&DD_0_^pcDHaT<#@3#RdFr6 z0!~c^(-Ym3E5iFxrTZiWl zjRYD+r8rTD2eYB!Od-a_ky1Le7f=Xsp!e);XRg-shzgv8tkjHvV4y&Jnhg9Sa{s}nZgQtInzKPdUw8lwcfmw0u#Lw!c`is8E!A3al1L_y*1oZzUZ>&t zb)vPLB3zivo3R;Y^5+*Hk4%3p6XJJanK>Clae{ z?JekIYI714to`VNiCWYf4|;rRv#X$9r!IbuXf3A*7ix1JHp7hCC^PV>O~aR}ltji> z=24qVeTluluNJ<{-NL2R<|V#V#kFvXz8F)R*ZFF|Yx-*IH@MomoZ5WEm!_1dbEyrc zX`Q^5+LXWbP^U4JjDAIxIdPILYy`P-k_*nCKW|)k^vaR;yKvdV(%B8FKuRb}VG;*N_V!W(bTUkAmPJpNlmx++8o!US$ zc414lGhM{ln_d33bh8QKX;O|@+xVy!j^Q6s|8varP$3zE?jI}jRnKn9GR?%)E| zXwdGqre+F0j2##%fikZ6F+tnU3pxacIw+{bT#x`hGp?n~z~@?rxAZ3Bv@NhE!R57R|C%KtF0gHYU^^YHRelG%G9}B3)8etUdy#g-@0Hu zkcyr#gxjxp#s1r`xH_LDK;ld`u`f&ks*bn@PWKxNKU((y&7IUf>2*0G^RG6sk zZpNeSVxd0TTJ?;y@l6G_InjgHi#BqKaA8t!!Dg6^vr74VCiQV&s!|de+m^?qzUoWt zFZI>JUvsx`DU&@X>bqpeB6%d1U8zW+{ zM_w>A62P?Z^0Ckgp;9Q?ME(5)S}6F zATcEg=N8oF)M0jtHgbw^AqkJcW|)x#rF=d~*yBr8N+M(1@<_syeThBOR|{Y6ZsAgr zFy~8ETnookVBJRQtVjy+RPu6~%()~1)3k0~OA^Z8ssKqS z9uWyjiVAe14i90Y#F;vry%(+lD5nku%mJ?GGh+^6J+w0dbBGd%mVZ%TY|fCVR1`CZ zp9(E&mKQKl3o+x-#gsYRQ&5{l8{-c(|0mkWDZ+(0%)8i_IVk1xnZv!Xj_Bf6dbJp* zotasQlE~P$Jm#?4m)H-0g8TQOW{tarOPRyNe5s0SVYmuaor_KphhzfrRXcr&es*82 zyvx3oMA2NvhtVpRTCE^i>?Awfw|flj>PcDA>7<_)LgYQr$x z611mq$zj9L35hia%nr8#!^PQkxN5l#*A^9Q@EC||NHK;)0@3eWZ?P3Kh8K!ns9_A4 zs0EktsA9?(-ds?d(=hl3(MC=YE{x$uY=+rdgHk@9F?_<8s+2^=w&gK~|MVsHm-}kr zue)2glrj9bFI90Zd{D#~z~NDEMU#lX`afUd|Dmsz{)?-n%UQ#!w%*5bTvmqsD?{h9 z229gBcI|3I`CCVb)rP#Wkf5WeASbr)JT^L<*}`d~uyHh8Wq=T+xf^3w@2Z|UJ=|8& zQ?|7xUi4E}!F;UJd zsL83vJX*AmQ-ljoI3Jr~#uJp{`8;95m#UOR#&+fLgv)%1eMw&}{1kT!m-2*{`cf6w z!iPjWA#`@sUFD<`uk{9B4S8)}ZT==#o0l_&|L~`E33<)rb z%5WkJC$fRzOcvmi1ng$O;~m9I3vyv$2OgUVL$q0JW)StzUMM#+$ONM0|1PjEXGByg zib=!IgqAf6449}zmGR(Wy1?+)g4!(F7=M!ZvuGoy2p8fozhg`sl=At+;oew>k53Xx zB4gX~h{K>Su^$Kp_wSR$aqbo_B@Pewr7Et4<1Y`X4UfqL;;SC*OY|Lmweq>HRxYOs zbzhoNM$V-Qn5Od``cD$&Z^13yCF3DMNl}4Lyy3@eZ{G{v06Pi9uwAqZQf+0((-Zl0 zqt3!-&rHZ23z8m?1M|rQqUD$N7GW`Oc#-If8s313T8J5sEvCHTEd{l427LvCm^Zvp zw2@PU3vYNUHp6VeK`Ecl8$RhvRZ1db+wyqB*L;cnmA+c|8}1e^(sSN4CQa-@&+;Alry$62ua)TU%amH7dCcWSi%Bqh8asxis!S0BYde!Nn~tS9!pr`OY8?h z!TtLlalE^QOIgAxzEs7v@XB~2gK%}!S!Gg*$J*tq5$E*P-sid6yPPXDd}&IVJC`e9 zn%1>zxkC9{<(n9a%5b6yKViFiXPU4@% z_O--w(#u}fTkOQV;KibsX?Ou9YQbYXek=ry(N>Blq44?63CK!ryeaa49di!a1c;ld#8 z^3{OX_tn;KakX_hi}<)NO(|37vItDmx^^v#D1Ylj>+zC|cSRLBagLMO=yB#85MlwM zMUU5l>TvN2#3mIg`dnP608)YHEajE2z&V2IP-SP(>A)=@Ew~h|~!$zA6^H_+@Fk>D{@qFfSA783c5*gc-$2^YnCH874xPM6aqo( zbn@PM>B4z%F&X^VxPIZhc{{?D{2qCqyc)xboV?F3`tNC4OJ73cH=(S*u%fTE^oRf}V{vaK5&g?DbV()XB=$(zb4w*M^%~R(tn;UFg24c)E zQ7xxbC3;E*obx@)CeXbACZVKO6x`i2@|Fbl6x8YDBgcgmI7PS+vq@}*nU7TP5GF{w zq(Td5T~hg5J@Q0F6*+mLQ`yFH=0Rso1S7SH;oYrfw|G5xqgoH%9_EBK;V8C_D5U5! z^9ouG?fmIP(i?B+ZO@4P({)1G8g_(e?6$%S{K%nqtU#e0P8Beu&zWr8TV*jA87QWrx!llc-fAFO$u7%@8-HqDi zUPvMETsouo8JupI>B$E`!Tp=(EW>8F^yKozmHYeBlrnQJslYU?OV^T$^0$sI91#gZ ziVAZg4zFT+0%zi|F_@Sd4~n*}Z5)!zyXQ;=qxJ4g!N=gmqAcqD)ia{MvwMr1mm_HG}1s=xefQU;IU701EEkOk*WB!;B*+#q&AB1AVDV zNn~tS9!J>XOYF^kweX4V7B1xoJAA2%YvBYFFkUkl_9gri`fBIE)z0M{VV^HeDKqDC z1WePqbS+0Hf9r_kngJOP$v9S2kP~P4wHU`NhKfJJC%ne<@Q+uG<51D~6Z|{zd2f7Y z__1-`B9btB7H%LPrk?@y=ij%;rGuoJ#0KBFl}oID)s zOH<0ox#R)Uv<_WM9?IV$Sf&ck~usF=2S5=!hD^fQeds84oNbgkiLxCMQR8k!T;M2p7Uo!)BN{8l`wX zVYt+ns+2^=cI6RM$k{5)tE-|bm6NsOBpD)qh-B&Ar zz}3p-gyD<6G^LE3OBgUs>(I4?q5LgE7|3Wy&{0&76Ja==jSgqRaPdSiHVjA1gPF>p z_$xQcUL08G9JLF(g28y|yX&JEXs0R8y$55RN^5Vey{}#G)|+FM=G0Ko4w_@N!3}FG z-C%lnGT49o#x)^d$X*JxG?FFEBM0=vb7F@-7QlcrRA#&VH23B1)uS#vsfsb zwo^SLZCvqWeQg$PjF%vmLBai-x*UwnFk=)-`Fuw4AYZCd5*gc;$0#1+OY9T+YT=XI zEnLbd&he!xu7z#G>s;ik0Z;6!tw&sKUCt}^`_hy$buO>KG_7mb@{01ePVK>{Nk)aD zDxDa}Z^X!FF|gQw@7UfMZ|xh7PDl)nv|93v*JHptXi%^TSsqztN;fD(9vcN!0 zF5WL%$SJ~Qx#Hik8D``nsrvL`szS|cdw=;`LrfqO6BQNj)YGqJo5*>tF(Nu*Fx`a? zJ5_5|YY++x)+%AzAUb^|JnMNfM9G@ys7RjYLf7v=fYY(2m~Aw>6;eRGCfz|G0(eGS z4zrVsBXpJ1UZT%N%yL(6drs^d?ht0t_y$bumv2~nnZ7Pg$5yC`eZvAMxPKFmCD;rz z-=I{VnRt}a(qnw7N=anw^;bkUN{9|bk)2K?cpmcAgyZ{a?G3KhE+?kjeQ7G$^V369 zVaL}FP33P5F}*9nOi}SpL(?yMH8fdB@w;f>&MU;e9Sc`?D;(sPTYsJ{im;I4^HCAc zu$AKGsE8^Qp&KZ$*t~l#$`ssK6~Hr$YVoM~(<7SF2OD1ok!BCvJ>49|)x)`3 zV-DVczzZ*vf4xHdHU1QluW`pJsBjj$-7lkm{R;kdW#dlq=Uw=x8fJd90`gu9uQx8m zKg0&C(Z|E9*TK&nVHAwUmmyp3W~}E!HjKdVLiiixd9nN}PrBJ9wPv>s^keRckpFv7 z;Ox-UM5~L01{>BHT!Xu|DwD11G=vxL*2mhxWW8GxnQ(n{&D?CxQ(DH{_|6^Oxj;5< zyq;)J+(z26TQw~kZ2Xj_%$`A|-5X560xh&?|Jq73n5=EZHQ%+BPOUpV1q;MuovoK% zwzd*ft6>AfhlvH<5HIt3zP}x8+y^mwB>a(&ti~(Bu8mj0 z9||@HMVNj~wz}Et*N?X*YwH`qp4Lcv8WyzI2hCu#)vN}a*VmeRJL{)rHlMV9qCNuu z=#ICVn}<$X-vLvvgY$fQg0Wg>eWZtV4<6byv~lQ!b@0m2Nkg@$JQw=-G8nB@f1{)7al{pZX8D?s1HOM1I;N;6hm7n9QvT-KV8svIKh1iEe z2I&rNhT?gAIs^YLQDL7Hg=G}8H1Y_cUIsIYS%i7QWZAprBchDk{VL;!QvSVasc6Yb~5w5!z zPq(@-goVTB0T7l-qDqRa8NhRa$w$?4GPs0_$RcYX&KG8q_(~=ao!$F#a2=WRjXfF#60M06&0`&NYsVDf3&3 zM31OqMmyI)d4ZZ&4K_Z4g?tqL(D3w6K+^1?S^7KIfT+y#Km|8p0VreRQ~0l!A*%4_ zv*sE%D)Y6?DC zjn^jduW*8kpRiC6ILtd1J?sn(oLlR5D$`Tq9x6HaQujfK?^^gqN2IAKCC-&`Mpmm# z!N!`&TDR8jRO(GN3aSF|f~$ldi$9D>C-(O#B5|bGSh$9~8M-p{UvaL7ljMJ#d7K2| z)kF^f#9L^D$jAc>Hol-u`6^AB9oQK`hmLN^1Y(YN5i#gOijGSanByzay42gTU^Gmk z4<0BF&dPx`cPpJP?0)OOMnSkmZeqIdBXn|hNcW(|5>Zz6h2H8t{>1bdC>Yc% zCasy6o|qVWKWgoU@rQ^3vAa#EHifc80zuhr1@&5>EdJc|L(y7J5y?-{vkRtX=4O|{ z_*dIMHBpD~OmkPxF2PZBW(uZmI0}jEYEW(b7@Lv!+$0911xqlZbfxw2LFQP)TFZ(tG1tJ+f5Y_??m~eD8l^Y?fJNZQ5l4F zw~|e;+v|8?BxD|{oVmLq7fN^6$M9l?I((~!FV;;Mm*JktX0^31TJg+&lQvs2xzAJd zU6O-qrJvXl91aC*9RVh~JA#FvOzHu|69S>3f|@Ma7kB;RMf*5KB)fj&_W&P8*WZB6 zFzfnC@tH5prGY)S`%;yX$k@U2wzxjlm)Pg^)xsCLTex&DLCcq_xE8kE;(CRz23*!x zTR+X!*5x}1Ug1kq%G81YrQ{sK{x&oaV!t3rt7I{JwxqBv-@f6eAXiPBA`J z00z#mnPCpKN?S+p?b7T**t4zjox;>cyW0Q3+5~?r@!Tls_!Xq+0^#w zwm68CVmU7&2RE-D7$CSrCrMFsqF9;(McxgewlHEP2a{Co8@u(q!mLhR1dYbq$BzoF@ zXeVzEmFgyOPeZ`Vhi@n_DQBco3W$5$Yq4OL9(O=% zq)|(7dhJv|v@py~8u#x#YMjF`JR1sTI23y7@*r|^BSOYDfFtpgoM= zZaV5We7G47_QyXkY+AVaJ=j|ldDU+bGBrG@ETgP#T`dC3jkapLcMnwtYt^xuJgB^8 zHSD8@gO1V3<}m-++fJ(ticq$qB+Mtu-B+)6$5ln*#i>>(B8U%1q#;*LX4<%62tumt zovb&9vBJ*QbsO<#uwVV$h{>2Tj6rNVTQ>}yu(kq(W=f^6-c>zydbkZWi!!h_EJGFw zrN{^3w~!=VicF775t)SEHVkc6%?>a?Ojor>G+?|IREI^bO&}h*cpN0$1Zp5R>}}nM zVPj}GyRBO=mkL-DmW|izY>kDLrHFd41fkoUlHuDuY~XKKrF~Gjps3X&6R>3;^pZ+d z4W6ivjd#b|wVBnP4?Qe-D)^9S4-$2RnxVqw(8I!Pb+d2$dp-1!b~W)4f%Msj!}8n& zrPKLY2&cGLRyoo3Hmxn}PeSC_qH#EipgRe1!2~+QfBL?E`o5YRVx*7t=ljAQls!MQ zG6lmhXXdPkHlv{SnN-pr*Yf)#XK()?6wjLq794zdfG8|;oaV4RW)dnZyDwepLkzNl z$b>oNR40Rk&=WQ;skj;H(x)hl+$>GCp1*N_r zjIw}R8f6UgNT?;A6OheVsEl#+VcHI4&$f_?0Wu|(9mrm4A)7nMq{x0jwk$E93el5A z*a0$Em_foTd`PhMb_-20u=N%@Y<lY{n|n*2E3G1cJTVEg>3Hdk|O(s*NP5V?+M|P1=!Lk zW0*&ckMVN?vLj&4iaDLPOy;89b{5uzaSeD3sT05 zh#|nTAe7fL(SpL<5{|h!2r$pKP&32(ooNTm$6H9n0H%^E4a_6;E4fsyMHz{9>lW>B z2eE9PUl2b?Ohzg8wyw^sY=?Tw0dGzLVQvN9yc|TmPqR=j1H6~pf%kwy6bNqsJrSQ1%=amp=SyT?hIm1j+d&vZ%wGUWmje)`U*kSO~ z7E&=VsH93`&}@0-YZkJ(<4lU|7iY_b#|ppNg#gN;?7%Qzm_=eNeoPQ{hlRcv2>ZDm z!v16-6$4>PDm#Q7_;fzoc1M^L*)PHl%li-d5gp&qOq+Ovbn=fitHD5%gIiIP!ULF{S^sTdGbQl%lb5O&E>wTUN0UvIRK%pGJ>V9y|RD4zqUi#!e{U)Hv?%(sx;CL40j+>-NlcI<_@ut(H(PA zbibHencBq}sv`$)an3MPG<= zOi7i7nF&j~)Iu_MkV%0(gG{WBMLW(z{N#Wv&KPD=AWI|=kj+^rjRCS3+JWo_3#k|& zQ&MF>X28;-X`i*w90O^ewnN&tETm!} zO-YqTT1>}C)PeXh(cDihWOT=z6x}c8gBP}FzN0=1YFTxHM$VnW$3RRH>*|J2|FqecG zNg;~cY@s*?(AGoo7E^&!ETm#MH6>LVXlCC!&#{or9cof!zfe0QbD}RqQ5I_}Xx=cR zgj+h1Aa2}3e+Ll%;`qfH9z8Eu)< z!l5p*Xj?(^h8dM_OC=Kh{ilWg7G8$2M|`jv%T?r4+Z zdPZC3h6 zFBVd{qfH9y7j59LlF<`FHDsZ-G|Cv}kswPvCn|fWg~}N4I?)bZkF=1A0WT$08eV3T zg9|KVa|f9e*)PbJ24P5!5Ib3XEf#sgbcrqXjNs~G3oS8lHED;dr&vhEz?G6JjVqH6 z1JARN%pFxyV85t3R4iFYN~NN^gz(A2Yh@~Pm{X0E=~M!_H(02U0l6FOAopGisThz` zQl%kR&dfe(A(uPgq_}UN)$pV3p#n;ioOu$mcYx+LBRJt3w1KU_bof{ z{lY>j2KbazeDM9Rg+ECdhBdo9c^F_@o)fbigFdz~vB z1jSp-74B;x6$6Aysx%0fsF+|>iP2M{x3v}$y2DWl?iY@w0ntMBltU87-c)ShG$dsf zqT16eRLk&-r`SRATnnifkW^BoA-N1rs)m8+LcPnrO;U*d0t-pqp(z{CQ)oIB7T>p8 z9%k)tbKmL_5M80L?I7hcrd+7Iy(ap$XqoW-WUz0JHbQ+LYG3Q&dMO1-(Dk%$4p2#)VugoTyR+l zy5W7a1N-XTak!IWe|-{4P?@11xFQj>AgdQo1s#SAo%k->4&02_9Uth_$C`C`A!v4E z*=JDYt#%b|&qWiBbXpVBpsUFM@^+`IaN}Om5*UL$nCP?yAP_quuM3UBfb3}7V5(AW z2XGVLNNsluZsuz>h3p-?;}68{h?3+p9B(RcaI=m#>~;oJWcSYW6kPcTC4xk7t#7+E z1@;12@MX{p2w86m%Y#{WC?XNlUBt3`;oloD=}PBI3x_}Tn<^Zwb>L=O(e{{QZ2gy0k*IWsC6UPOw~ z?Em2c;mR)YV$#>3bLcLQ_Ih{pM~DAPJYI&dcNZ(OV zuf-U1z@gz7^9#{hP7%pVB)IoT{|cLtxXVcp?fiSBlV(WYzeW&#b+NqQ zqJ|DZkWQEc1T%RKA(2Y7{eb7_yCw(UN>#B#s6fG5hk%KH3x{x0LA@5OjUB=k(OOOs zNr%vw53e(Bm;P65hM7Z1nj!5F3ay}Z2<2}b&p|aoV^P^oeg7D?eVqILMN!=3${@~o zORkYW3$mai2p0mxmGUqzjqa3(`TtmLaK{>4kC^V%s)@;Enjs`YGm~Q$iRVP^Q;4T% zxrL6;9871Nz=Tk{T#n4J0!-A^YR(E4p>C0(?6VUsZ~D zM;No8kdE*nvBXjEnMMZ@&S08h9QTHTwbKqv)YWRvI2H?yQ_7*9kv489sLi5{G3Qt( z+Q=!wg>!7eW|(mfrTp|jz6jAt^(7w>b)Df$T}mor-f^$|jzk-v%S4)Vp|2*L-&X`Y z-WdT4)~4)_4~VKR_N6MW^?9uGX}-jMN?$Gf40j8cvd&lfQWe+2wyg6;Uk!LuUv2$1 zS6i2}&YOH`N|`#Bbz+)!aM!ZV^0zkIP$c5pit2Eporkf3<4ik`g~1Uw+$-L>rm}8b z1ku3?zJ7b{H>K~d=i`$z3h5QY_Hl}E>F&F*8D`yGDLy?RET0aH`%;yX z$k>(hrUNs+#NOLi3t#GP;nL~Ai+rhyYhl~zzzx0{@an$W`gN|hE}ss3*q5f1sdJ|T zn5K2>S~gMs*6F<(Hp$RXRId{YIe`r(=P3egv2X4fruTvA`H23awKZaLaaOeTd?aYY z?)H(|L;>Z5BfBr>)ukA^(Jm)Q4*g8MhGd=NIn&BCQL zZGTQ5Y+v)GDz5DZ@G22`zKR+= znLw<(*O%y>zFK*|tCh>i=ktAOifiQgtEp|_H!Z@(9 z_ix+xd$w)v!~*TEGmqqUdE4mA-#RRp=@N((72-5Y_z|1AInNR<6g$$5X9=0>gyrmD zM|7ywXm*fOC+(E0@^Vlc^cHjRBIOT7@6^l=Fi{ISV-{&LJNVy%nw-4P??n4JMYzlk z{)o*m?aa&$ltjjM<;@N%zQjHT3hv+R;8<*in}thf2PgVc71zS? zA|>AKO?_4>jd-gweKlZvUv2%UKG-_&r7Eti2XG9^oed-sh?U#EL~r%g%3W70m(K>C z>q}EiBR2#)z8sE}KXFbD`RVDvD}71&^1j-XF$+*COpU|kHhq^bO(}tLX91X|C1l#q z3*~Pewj=8N2}VnLdr=`yvw-ih8JhDf;Dh2@!M=JG;>Qe%!>j8i>U(M>I~St!g>W=> zcv74`9_ow-Q?*KGsy15RJ%bT`+O>(GTZg?2SOsiWz$)T6HPe#=V~_{|VQ_PMyR~l^ zveiVc#IA<`qW<9Poys`wiV)#qWS(#c9&Dr!-wnh~3Ny(bo=hMH{XuU598W2}Bf7d~ zN`Z-51RGP&f!JuN)+Q22YkyNvuM=y&Q?!;-gv$iuci0Rw`l-y2a%{8ZyC4Rhr#BI& zotX)SlE~P~ya~opzQjHP3hv(o;}~p)n}tg!7@K{mifiF`60xJzOkFmXN+Z4b5xyF5 zN?&cg-PP9RH024tG^I?POH(jS>*TdGrTnd@|2+)B1c*g4JF%i~vWFE{R&>Gn@DV^P zL_!R?%3!rVilOL&_Dl&adPI~Fw{?oiVid98nt@fmtaALf=%GS!ItM{)y zSq$A+h9p&kJJzmQTUkAmPJmzpmx;i6o!US$1m0+CdZH>B(?|^{7Q{1bcCaD{pQqyQ z!LQ0l(5YcyK8)1|fetQgO+yUA<^YE9s{~az#8}w_Cl6OgZ?8UibhO zDkYJzm3fryW?y38)K?3C#@)iDlM$ik6XGZmBfVoA311fIIqX>tDOtx}35t zdA{D?a-3FX{-sQvOW80@>*TeRt@N!6)&r^N2}8L3idXEv{feveSpp=^WE1{j4U$u+Oa;O>c5kRPLJ^M+_Au38`qX+w7LYh|k3 zFsCFmnN*_R&AshyF{fG&1#4qMV4}9W8IQJ$h5Be~)ict@GYV>R@+hZ?Hgbw^VN#F8 zW|%Q4rF=ek=dvhF)4Fvniz;H>B~5#7F7^r{m(Sj)zPGdtL^ zce36b#!bnv{G=xa>o!KjK-~_3pDa700URWrXzhcW7e-ps&7y!&193%k>`W$*Zui3i zyK+W9rK6Z6d{?Mhv+#n6S~M9CB&H;Nx})fRK>M$Oa<0$q|S<@5N~yw zFX2z^tDR4GwR1U1c%m;&DKqDi1WePqbuCFKf2#r{p?E|jC@Ct?i8_3X?eCqb!`XY` z8mMyWP{17Eq9rrt5Y|IGBQS?3foS>4-Xbh!4$l;QQNtWCQ42BS(Z!TGTvt$=({T7I z(MC=YF3jP2Y=+smqLj~P4)6D+DkYJzZF$V$7GGk2s;?IQthDvvxU<}VdH4H%AkvM zx_Vdj)al{&YDpNjwI*N(Dr`5!t*3ZIr|62!fw+9y`;rMnyFV&0E@u!_s)@P6_k?ye zs|%Q@g_QAlViFeMcLgo5cOF8EzIX-XRo-AofKgP26Iu8++ub{p1^6TZyBY9!NAc2vo~4Odwi*Zf`*qlZI!B?x!IQn5adS@!(>*!0_sV+MGtiYeXA4MYs@$ z*I+Zuh83lJK5_VfFI6dtjBU#!4xjNQ_NV)5;m^5SxRf~D>PuBz3&&p`QX3wV3B*_Z z+L!3R>Z_H1>uTk4s<8CMdjHCCR~i1VjGRjqFiq>!wN#<}txD;5NKjH#pc8L+IvXXu z;0>^oKn&YOpCr^)hCDryPdDm(R`$$<+_50(0Xf8#Odwi*aBmS7^M;L3u=c|QCTbyO zJhqtfhDR3E=G2Q$7j5Je;ldlv!e*H92BmyHZy52VDkYJzZF#(*<4f$RzFK(N-NL23 z;VNIM;#xSS2c}yYuJI-M)qS<{b*@$}=MC@mr730PT;70bTBok%4drj;@&+;iB$!5s2F-{=`bTtjN5A(24zduxH2IYXgRPRtm-FZ8QfX~0A+ zxQs^?Q^s(2L2VXoj6YHQMzoPrgbQQ%Uu=dMV^GTHGlu0a(Hn--&dd}=Nn~tW9%Hz# zFR_n;g8TQ0qJqtEvv4V6*y2l7Tnp3v3S@pmlZd}M-Iw@}=&PmAbhUIjYZ&&WDP`zf z)_`eR$F5}!FK9SaFMiVAXK3*TXTdS|w8y5aT~r)Xty$))819J-^d_JPcenK zTDs}+s@~!$W(v<1Jx{|FFi{IAP_RW2@@aNqvT*?w|^Q9`Tg;&NK8HB5&&MK2iMuXq@YQ&v=wfFB_ z?Oo0l2Ill$mgBfGv|pJ!mn&eJ*0pQ7Lit(2A!v-YQamB; zdsIP9PJQDH(LPQQF1+AuY=#*xP>SdCf>B?pQW6>4mB$OZzQn$`uNL0xZsAg1FzZWI zTni_c2sYC$Op{1ozSfucuk5R(U+rq?az^kzUz$>e&SeCcrgiFCMo|9NzzSLC=y z@KE%s6A@U?#)C5vsEctsz>7}0McWcEjK5?9yWkp>76jhz?i0bd$7_}GT73*|LkXHy zbuS8p`tHK>y+OM^0>PWGilXBY%MvosPDxUT4Q?wiI%jZH3XJ)~4}=Xg>k62tg_`j= zWBLW+_XV|Cv@!ky@mtYGP7y8~;t$viGY+AY&*u;;;Hq1lVL0u~OhuGL##MCF>1yk87IBd;O(|37 zvItDmc@Q}o`s<0U~)QAJLii_0`UIyV|*& zbu4?C-n()fR%QyJ%$&ywQCpUZ*6rOG6{r=YIC9<&tyZ$nR@IToo?@~RfpR_ zwLT3yBsL6fQt=$%dC;A1M?3?r5OZS}%Sly~T%^*7x*yV89LC&YGZd`-GJ=U(AR3QB z3qhZ>rQ!)`-&qAUIrXzMMf*5KxNwUd*bFmnp%kCu7UdqP>Pu5eB+Oq!H|!JwLFpDXPfH8Es&r$JrU3A!6ZsbwZ{~jW6si)MBSIE7Yo)&|qSJoX+bDYT|f| z%;0{5XdkBt7pL<^Y=)WBQHp0fosas`R1yhkr&9<7t%fQ>ioUjx;it+dGejrgu(bwe_v>Mv^ z(}|=vp4!`<5&Nfq6FoyiiZIdL2biq#KDMAH3nawfm(LUJ;}qdSiY~-vnDu<6_!KFc zU9h%7VSx__6k5Jir6e+*Ve@?Z6~4s2tgjY+n!ANdS9xFIOI2J8$7{J8wX3|4Lg4vk zU&6nkuXeuC)z0N>DxdJBDP`tdQh{k&m#!rhEbI3f~+6cy$~9R8J!5a%h(#$aM< zJSf_&wsAYg(djMlp|1>b-di?XQqSI>z4epz5b&OoOcA9I0U2>ofe048dIV?1V< zE&?rhg}ye6HpYD5uWXFC@PS3x3^P8Ul+Wh_NBUBglE~P$JU(!|FR=%q;Qr0^*121_ zln-q4r7Et46MP`@W71ua6ymMU^CkSF`)cR&UF}@X2PS-JN|`yA4`78nT#tY9 zC~xKqi86C8N5C{)rE(O=+mBxU))C1y12P_xajd8yC(iI9HaeU+!&$g*e3*U)&>wr> zB9{)5Y7+a-OFuNM%BhA@huj=Q?b~__wU|CU3<}n6{=!5p){KW46Z&vLK~0>oKhu>S zBihF)!i7FO4x3>{AC%(x^kK@Es+2^=cIDBBr}`56^1fR5>FyRTr4Lv8QWe+2aTwk$ z)L|tPh@X0kFVWxFS1Z5O)yn1M;gh~JrHq_Q9xzSo(6tK;+_1LN4W@@DgZ;;EToZP|Y-sUs?&5!ZbfL(pH^zc}4kKr}kjfBseOn(uslmml*jh2A1?bNed}{hpSIwtL5j! zR!a*hZiOw;vWO3fA}pl%d{o5yZKb$5D&oaZgbq*^vfZ*WY~H-5W(sZ`j?Zx2?oson zM>M4mHs(KP!Mxc6cTYD*k+{v(8guZ*6XzN)lYhNJ{5Ad*k*{&bDyZ;1*cE>n{p(lo zuPYmOia+ndKNWrY(F({LFCz*=jy@h+o>0-mMMcd&pMT%*}4jJ{8GD#m4L| zdGkt}H5GKn#jRVC!~@apj17y2dxHsJ+@PoZYcW*Sa5I>!b+#gtUt8H-2hzVk{(+ww z)i1Hi7j8e6tBPA!i@DHftG0XhP-U=I9jnO=%4=4y716JT)A`Tdc3NdntiFmA%-0F_ z)`SendiK?;-Es9mM5`Evnriati6Ay!MT*sRwyxWVKjDTk`E%nC%qj4n^5&4O8-`9; zTZykB-x^-<3$vMawboWu#8;a_d02ud5#{V`6~D!oQM_EFlPFQ9$0dqPLSq|-Kq~Q5 zMi@)BB#QsBbrV!X4$DH>o7T$jw9)qPtsCKy*sPV1B>oO8l2I_V&MT_l0$S}tShAp9 zl@>tlf#|D8CW6sDsB@aC8ZuEI8}E*_Ycs18bFt;%S`yuIc2!PiptF_S9AuRG0)Gr2 zY}^NZ+>!7{zGrH@68u8rRq%&$I|oHR@iW=#X5X`Zyfs-{-w5`!M%vRb7hNATgV7e~ zZ1ehBb8lz;)Xe6S)=$(&;2+)bR&(>vN$We{7uLbfx;+5^Z+)bPbq^leG_-N(gmv)B z&`CqJv9UO9edtDpre;pAwniZ`J3y(i8t<-vPz}QA5asOXD9ahURHr+ zAA$xO$D{t&n%nEXMfPfZ7exriu*OE({0p|CNBpP5qwYyM#MnLk)8R$#FyrvT?lIVS z2!+<{$`r1`oQCC)zm-Y{zll`qEu?yG8OkqI0E=zFwPz_mx9Uyas z86>>IheT87TWE^W?{?W?t7;(?16xWeJ8ZQrWOK)s6xlDf4g%CfQ^XKES#T{;*}@zW zUC~nlud6JS#emnd?cjB_g;Wf9DXHw>^+pTX+~Flf_6x5e-kL)QuPgxN1|+%|5$2X) z%*{c7`Ed(1Gl2OKJ79jvLMjF@l~ie99;sjWp=vG4NVNNXi*~q!ST@fuh#w@@fhhL2 zuFfokg?h^YZ%zSWZUx@F97Mf$Td0=--e22+ci}aB3eNzqk}3_}L-op+>debPw0Vey z-0onN&G8G?6?8Q=gjp7pOQVco9;v&;bE2~2EL6q-;Dexe*yhQdk(_8D6$5}usx$!2 zW+dA!WOE0Z6xlDxR*GRgUg8fClttMfh4qWJ<>aGesD&)j2I72SCgsx-2}Ea~wa^&@U!S(a*S9RBV&F?j zmB!bCbsMSH@Bz`*Pc7tfN0=1XFTz&P@7$ptav>Ie5Dzm&5Q`Fs((bWP8Utc~vV+(` z*Ls~FD5=sATL@qLsoKO7qOT(@By$Iu6xcJ!=;nz~5jh}>GlrQI$Px)eX`3yS#sJxR zDBfZYaEgUg3_qr%%76?urckv(#PAcSCp*VNGIx+kf&GGPRnCr_P#ZZ&i*tvW6w(q2 z1Zm?InqwfXYKOGF7E&>grld+E?Z9vc0M%Xmm}u@97BaeHPKxdqa|7}Ihfot)s4W(m z!gPr;^^Bv-JJDlBWAr%8>N~#RbaBC*j+amFZXzW)Ovbp0-itHC> zlKu;j;8xI36S*)0mY)x^D1j(#$#s09&4AfLDBgmZ9d02N17=F9G|Wus|G!vB<_1K}8$#LlEV-Gr{sj?l4o5{>ub{w2Lh?$3WVo9nzj+Ar%8@N~$!{VxCV9BgT)3 z=ALIEqdVrL=zcM`T)3t1bVdlIEZUYv`NBLBY>DSYV{fp~7z1lJ*kSFx7E&>=rld+^ z4VExctFz(>(bp#}By&fY6xc7q4i?Bs9QX+Vlm*$cMAk5ugc(U8iu<00;ut{tmL1T3 zVIdU*XiBOy(9EWs|7#(eJJh7eexWA6Y$i{Vg(%8mEq$Rg83xjc1aSwy+Uu;~ASm8q zR&ZYnsThb;Ql$~MAbs^LJ|Nm!Yay3A+N8Li(Uv)+s7G7shED>vR2tFVX%^aJc(+sR zuy(G6R1B;ssnS>zcZU+qi6=x~frVu5Xp;haMjH)S2nSsCXiHyXM3k0JB>KC=LVpar z?X|<(b1bA{;7v)D#@m8e#gc^J1EQ^$S;*y%HYu)Ov@MN}R_jq_dRN9fEVRVH)QxtS z`ly9e3`{Ah(wH(?Mf<#kWL#9ebn!emZ3X{j4_`^i{le=|LG;OSeLc=H5!Q)2%cPPX z`V$LXGO%~69rk`>Ar%9AN~$#W%Kh2A>-o%DXdBdD?5LlT` zC3w4!g$5aTI~aCNkcxpfB~==4^Hb47;WyFMgDs?TN1GJZFWQby1ri})MnX7c zr=*AFy%uJd=*!PS)Vjk$tqcf0(hh=8u#k!YK_yihf=g6r7plbQDbZWQLPB>qO2PfY zu{5qtsGf32;<()jv*$xnW+AG5x`k>PkbH_ABwu796$6q=sx%~*!5P6Yo)A?eNg?`s zwS}ba(3B16DKwo5+Yp5`$cbE(iiC3`B z-zbV^9i=2o~~D z_(K!v=@XDNduTR*(p+ON!~p^o+=K<7jEzs>zrKj5!k^EYYut?Q9$OYIX>iS)3Zn88 zh`lBP)g|>VqpExwD~JM+09*MCl$~db!AAND=u5Y?YXO9Ws05WLG#x~Qnygi1Xu66B zO(&u>4Go+(Uhh=k|4z3)F;S^EDME_g^ zK@XeVpx(sLZrJ@Q`)WA!L3G85=~~ep?YU8o$gDp%2QkXR*CgGLvr*z;=YIvGfDJ@A zrUej!nbeAjvGb#~HjD#e4~SsrLfw=iBoj!zNA$L}aoF?2pMzZTC z%`krr!wTBC#D%sKZ=Kc~+!M3G+WI_G_Z`Fel2r(_fEe}=B++C3&m*q_;JJuk@pYGJE5kb$n2PLYS zj+Tk=fJE)rAfBQb3LT_5m{vNAoxm%E+BHr96LqzkQ-ejQTiQ(dh_vus1$9}pFz)zo z7cJxz;nMNngUvAO_)7KsTTnjhOI1oDW75aF1?9WG#Qs)aE&P3V3zy!4@*7{O;#xR$ z(+Qz1sWj4?7v7-v9GtGG{8ikW=Rv{tFUDrL^yczgP>%AYDP?NG64JZ^)3lCV z%PY#?+GH_C65JG3;Y2T9%Jvb?^kPN^Vyz5zr>B4|0CRu`)3BNc@%$^nejo|0kw$H_ zjCO2KzEp$t!zO-n8?8meqtYF(&B$d!u@+gxJHj}yq$7t9i6u_&EiPlmu}$<~4dcK> zEijG8rNu(ylyazNq>WD~sLjbsT`1bfDZ+(wJPDg&=B1SK)0|@wqLb=NJ|gPs`cjvY z%Gkd5%I`?D0lG}2Nze4vq^I>20nc_uz=E|Y`{M(ms%w3zifery>wLQ}v2X0Fh2QCJ z;ZoLlvoBR~Eu3POWUxx55r}@vR|CG@S6hF_)z;;#^G;uyQl`#jotUN_+_kK;{H@J4 z6o~+*s17IE`EWLHoN4E=FgW7jNX0wF$FFnocSJx7)}^9I?xfE}Pl?iwdad4^9O{!< zle#w)to>YtiCPdDGYC_LxS^mni#Epd*ma_foFZHp;wEf{8AD7eKRsh0nn@uhx_9}7pl>=u5Kl<^ zo?K89r>`oU#NB;Hw2xDSOLxB;&Yccmn%1pr*+ltU zr}t{uBw#A4*NKH(#0HZy3kgIpetMCKo{#8nh*={h7iZx3u>}xUra+DAlk<%!i9#c!Dg7z5T$rN z4SAR^RVj&#?aHGeJAH|Lc3&;L%iY4IG-TYDs<;+Dyjt5GOiy%At|UDool5brhP zt3iAFYWqw3VEY&OQWe+s0~iTi4sz7s$pm8M8+?iW>b_d}b*@$}C!Zhor75P78`ob2 z?Q|KJ%WZm_FHI?%=1wRuO-sV;4$Eb@ zq_-Cp;xs#0#zuzo?BGHX=^`Zb!y@EG!R#P&|Dl`}?7)rjVIk$Sf}A?3qg|DkgV-Fa6P~Oa}U?~)=ofTlB7Ien!(PUO|Y(Y&H?Tcpx_Y>{o6yY)}cmOuT%=;+C^JfJo z`%;yX$k?vDS;3=xiG4<2Equ1Sg-d4zqrOzdwQ#%uiIseo_;@Wxu$DrI1sT?T9-6NYD-$E$Qt=g*eRu4qzk0c^2?N@r^)S z?W@kjuEVqRB|8?PbA^d874p1&XR0<@-#vo|>)W-7pj+QtQzz`})$TZKRe(PxVORX* z^yI)8Btmcu+|=G~?Sn(*&6*G-vD+bl02(M^r!pQuNgdoNA@hVoaQ4t$@~UAn&rc>0 zgC6(>J(f6pIWwhL1O;oS6qu+*urc+N2k(W^LY2r>jbs98?J))QTC_HvU>qr0%PGQT zf^k1=hS>x|nIYxaX3KX!JlL12ltji>=1nlR`x1LwUoCuwyM;?97*F!0Dz1g&Nd%rU zrd>IeMtXD0R|6*cYU_(#ZCy@Np6yFh%G9|u1=F-nUQ1KT-+KDr!w^h>SR}I(E1J&+ zqBASnDQ=ZC3Kt-ACgKHjD!bdQN!Y+Sg_}4>THS7IvS6cx=>?YWDF6~@$jxw+cL?=r z_GDtB7QV)#msx0l&lJ>U(ZZOQd|I@SQ-ljI`5ZRGjF%|Y^LfdwzEq_oGPW#_m;Bn7 z*uUzlg@5aA;Zk0*^o{zC$3e2{?r~?}S~$f$$b>4DMuvkUeKp|TP;mc3100RbaOutE zykwIvO(|37@)AtbI(98DDSzuhhT|c@N>Q;+)Zwjczu-(Awx$*{DucTxT0#El|IHhs zt(9u!Bjo+rRgIOYa>JZ*;LfBH{XVI;2#e2iJWljQ4R^pqEyRpRn8iYUw6*FPX=A6L zHYbNUCECa-!i7CdV>8VBjZ!|JJzV8WRZ1db+w$1MHNM2Yx~~?#&fUVL?BTt>RK>OM zvS>5q=IH)w=`KhL>B*n=CHyD*YUf*A?Oe_re&9<}%FMaU0n@Z@UCSKG-x`4JSK%l~ z@KE%s6FYb;8xPLxV8`CcdUF_enRbeZ!McqRF-V-b=!^z%GIXM~uhxcjh3RHd1fYSq zB06>^6Ns9ZzDaLa&ghp}U|0+VYd?Zuq83fY1Bod~xNkvi7Hy1YRY!?7a*A*v2^DOH z8A(ve=aYmjzEq_oGPW&`B%JO`>__y~!e_c$xRfLe`%)Fx!Z8(Cm%5Fbq!4d4spdf{#FG@Lh*=5P*PN&6Lna?Mu{_ZID0Sbn<%Fa z1YLzFvuI1v>GDx3PVJGjBK@R~v@$ZrH*lhYdp~B-R`-JM7bJ?}7MIaNiVc^DNlHAP&dM z8d8iQu9}{(9PTZ);tvv!7rju!7%))_F5^+flreM*YIAau7mGG>if~~Jd$Ad2o<=F3 z&lqNXsY*#?Y+D{5uhHb5hRvX@`>~6t%89b~}#1-Q5Y400IBoOTmyhU$Z&LEgsT{r*= z)_#}3L@lI@#}kwD-uEl0$)bJnWa?3^Sgf6wl`g5AmfcC6TdRc|73^ zUt*uuR|`MV-NL0j;UZtE;#&BSh$n>3j=HOybmFxx_SKMPUv1uTwRt&XxYC!Vl*w}$ z1Ey)+yOuGOzqKlFFeJbzD#M8^EMx=2nJmC33E0hmhvJKu79>xg2W$D88ALs_7s|~H zGJ$CMeFgUAjEEW1@GhZc%>n}^YEfl8xR@?5e6FB2i#Eo@;TF+GP7yA|;S1OdGvc6> z&nFJI`%;yX$k?_#;_zEvV&BzQ3*YT-;ZowT>_≈~-ge__#B0EgXM&NNspbCJ}oGP5)OH<0oxl{quv`$@170Ta&+l0d?GZ<(hXFMb*DJsy3 zH@uzg3wpsDU?+hXwu^Q_s;vxpdLo~0)S0C0nF*i=VLch%5G4>TU({QK#UCb~Ao`+) zH(;U`V#Z^ODQ}oAsLjb$wnZB`MY!;Web@{$f1{Mo=MB&Er79(nv2A(0;W}SpzpAem zzTVx!rM%(&zEs7va7+(Ow=&$~OY~3m)ykiBwQ@Oc_>nJ7DI@3d229gBbuDiwe=CdYf#`SHTlHq<427AMh9yw2 z_VWZLYQbeZs+cl{N1OI1oDW83l=!3#(gn1Ln{f7SLSeygvR?z&pKoHabxm!_1Vb6EqXX&t+k zHI%<~gmx?>=qM`4i7hN*qr;gkY!f>QaNLHk6WXl|=d^cK?Kd)r(o;+!u9j|ke1Cyy zIYVHEDZE?gR zCAG>R9CpZ!e7#{P`7HwT7Hn}`8Wl+UTH-nBWkGMT6Mu7fqUdEBUVw>O@EDID3qfPF zmEs9$-`;|noLpf?w2xDS3oqD@%`o#KO7VPN@O)pYQW6>4mB$NS?Mv)y`fB0VxLdfC z7kt2%s<;+TE)k@@IM5{0mp|i6{7?7Q(w}p+bU7oq)t9D}p>r7lrfHqJmJyV{HLwF_ z(G@xF5j+&V>O=${$Hs#*5vYrCJHQ((x<%U(Fh0B7(YOolw}24OweG$eTx8K5uT{ot z^)a~NB4}3SH5C;I42{qC2JQL?1aHDBijGGtOUOXSRgyw%aM0WJM&}HUnRSH&p&soZQvw(91 z)uGDHpwp>UD=pw5t;+VGIXVM3gtYeU47#J^mDWfDNKL_-#R@71r5@=-VvP?JfQ2)x zX4uDjgf%p)7nrDpsPPD8vU>4_f|@Ma7c-B~iuQ4eaA6)_!e*E;52biM^Z1D`RVj&# z?aE^wcl#3iH+{A6|GHbalzA+FhrZi!kgPg;+!?qQjsrt(N*%KxDa2FV*O%}|LBaj| zno+@Kxb)<5*0IHxrj(g;SqG+RUAmTal)tsrZO9}LDyq$idc2eEDx9gu&e7@i-dc6I z9aQVnutQ?Q&?Xhn0iFll>2}03I_egJX7=IaglIXD-Zh?tfAR3QB z3qhZ>rQ!)`-@byHoZM+ww2xDS3%8iTW|(;-rT7%LDECM&@TI9F66UX=8+HnTp!G=Q zZ=JZ!wuce)6jkKpj2_QMkFzs6L)`M>)d`s{HU4{Vp%y!x4+yntoDL@T$LV~fpeByT z$Z)tXiuQ4eaB({SiOn!`I!f_ur}J}Pno1%e?Q{x(pmjRsZ}rIO6jkKpbl%HGkF(P` zXHe~pstmTK;7d+3m{?O;x2|ICo^{7c8XvuO-aN88I)9K3HHW=Z-~Bl~O6eqaItN3+ z@D1m#L*~s}^VGS^<^~&=Eu1%Rc8O{^Whl{8GS1xJvupy?3t;X^YDK}_9U^ZfU`s)r z7FLL-x0{6(I7PU)#uKp_X0B1eLzp1#i3%;C^+e@w^~e(yRpjJ}ma~oJ?1|2r2u5lX z!@FC}Zt*hkMzsvQJYU)JtOu{b)jqxDZ)f| zA7HY|`?P|ZINdfwik>3c$0@?4=RX6RVb=4N;!~t(cEQ>Tg#|t!P)?>1yZlHI+MjX-b(n zmsDVy)}?DnMfqDt7mkPoAw`8b5r^Gugg6t2jlsm!cu=%kZR3z!)jek_7_E0_3cdj^ z7G+WIubvV89q}%`2{{8@X0CD=6s+BEhKX9>7>^mIi$LoNYO`o#JQFxhw2@PU3m;gI z%`oEwO8I;~aGEbwDT$12%i{y*`x5)yzFPPKcMF&Dfu=82aV?zS1Cbw-QwNelywy{D z3IF82+WD!jb}r`wFZZP>W#(KyfN5H{uH^&eZygwocLWVZFFK9=hp^G$JocX{_KM3X zJ%7~zUoKxUSedGWvV%-2(e+IQrsWKP8J_Slp=-^W0VZkzWjvOctQmZ}peBp<#T?-q zqJ5kqTsXpau^DC@K`EZk5$^J(DkYJzU3nZ~{=4;9;+RJvIJWRTeYNmHY=)bKOF6=Q ze5s0S;RF*fUNbn(m+-5h;Qs9lTkC4)a*lASFHI>k=W+y0)4FsmM<{>mh~%0984t-g zR#cD^XZQ%)3pjIzvvA+|F#QamKlZ*wE*&J*B=((`erQ;gQw^mKxjBg1o4tiv{K=sq zI;Dm_V4@al#>0#WeRz67O-_T$6{3BdB3$UhGqD+FgNsr;pFX_Gm#UOR#&+e=hqwMe z_Pzv8lA_9c?qPa{8DK!Ugv4uVpr>YfhC`6XMa~fzN5SP1+U&0E?y9M-YU-Go2FDu^ zY>(B}1rbEo^>bB36m?g{3*-{sAiW|%M^-^bQn7r}48gx{{H z{fhm341WsSKeQ6^UJI|+F2Ntnkz?n>tJlGwTbN*5U>@dP$QD^MHo4Vb!S*J|hAYY5 z0{?QRJG%kF|ku^Ost)oeP;40OD5&aO>W)NnRB_4lhue`p{`WJhb0=8YCobWvtvoA zD{jXf2T{F2rvX2Q@mPpKr|osR(<5$cqCI@cu0hAGz{bu{*D#^&)nP{_Y`?%_;HBXW zYyJMFRNEcU6S4g4>J;_;+?>az<{*LSbi{_l5E8Cfs_lm`-XDIXgRk~ZaDD9>_#u$B zB7ps=$?9g`w|=rY<*l!|+nS@TZezk*?>5}AW~1V6TJJTsx7Sb4Y&v>c#?fPgw7C7rn7{G?5S)+TkqVQA99;x0HS%LTRbPy|2n)P`aT zZtXRuefyMZN5!gI7F6ZusSW36Vf}UFRbt+Y)XiJl40XDxfmI;-SjfO5$rKc?HkOlU z9!Ca+Ras$4s|1n6w@N8tmPMGyPv)(kKO)As!mcqc)dw&0Ro z)N1&ESnGQla+xEHi)$BQPnGZ--ylh>?Va|9pPi#FJqxkuZ#68cfWKeq;cx!U%2cbS zfIlIXI{sE^$YqW{F0Lm2-o9WSgi83Y_AaEFxgF?UNnY)PDv7~8;+g%d9Dm7Vg1wT4 zH5IV;Oeh{c!c=?MBQ>N_z@CsQj=lM@sW$kV*y=du@9W4nRPdcNH@g^eRx5M03n1XlE`dMbvuUoj zfB0ed!7R~(kC=pYPJr@UF+fnNeHIJ31%61rCcg+tvwH>Kc)Hlt%az_NiXYkxM zcLoQf+LP`y96R3}ZF_j;3JmkMowEknX|XOG7u$BWti`}E;BQZ^!@JIu+ur7%E8B*U zAWC74-}$-0kv+e<{>S3c>m<88vHQJzN0xX{N7A5z#sN*#*-xbF<5#pZ0c6*Q>CvWA2LC zrP$lgOv6A2_LeNW==^J+M>QgI^sM7tuoMRSMI&4U-5L)vQAfl#1ZVm|I+d3H)?NSa zv^0XAEX@;CDPtBT+Ig|bn)fK9M-=e~h>P6M*RdjMg#+c^;;5ti8m;h5?31f_%r#^# zJDbPhu2P&78Lv*@aZ=SbgsSF_2Jja+9lKF!?#KvD#fCYbKx7BhjfMu5)+Ou{2Bcqe z`=kdXOqA7HJRlXhQ)}Q8@|raC3j@$nC|GSYI~ss$_k#r#0?-OnqgVhEhF4!C^mJRM z5)u{eXw()7ZL%fyhQ50E2y+kTE)qJ;mZ?-d96Q^ZP^VZL=@4FOOM!Fy>gx+leVxBl zsAJ1g!qqIU$N3GWNyEC7-{iklR_qfAX0nPmA`!o2J)A}-qE8|w!U-n$+^UXs*mu_P zt%>dwtP^QFpuj~R{vb(oAOyaAaKwZUhrkFGd<3PAgJiIZ=u8%Aw$TJ)|Lc2; z#E@aUi?vzFCl4k{p;)*lT7)*H-#Yve(eM))b!osOe#M9RpOn|7(zpdG!uaq%%D^&-4+~L^V(}qr`gnZEw7fJv z*?i>8DbJNjP{Rs!=Q)2*axnNqDwQB_t|L1l5Klw%ZcB-B%CqH1}}ski?s8nM&2e z;r681QjBNkCHlMi>gD&CdO3eE;#0OPC7hf(7=dZhfG*`3`EMPq-(eE?WYuKE zI);?tBVipHQiL0uuF)MG2{$(3e71CZPu7%pxUuPSR)oTI{?Zr2{*zXtO+WgBr^JK5 z&On$-FD%R-PUQa*3s#xPkFTmZSFC4&v$#+0wqSZ4hJ_;QXn^oF;MP^Ax!r5k-D<_@ zvMF!KH^5&k$37o}WjPVj_lf<<;(^(LLl5OIA9^S?-V*+pE@)fwDS7MEu-(ld44;=< zkWn!I7Cg&&+oB@HK^#v>nBGLF)$&8}=hxxi*u%*Qvob`gVY zvn%`UuX3~NQEWkKr#j`0zzQ$e2Rj0rTc;-r?08+9Tn5YcDkciExb5|vC9sl6q5@L{ zm#Wpp>Qk`+7H&Ep!Q~%q@i(mf7;$%of8a@V;xBecjDLDPKa^&8%^4?bUIQ~cu&$03 z6V1A#TIozi9|Vi;#6xz8=?E0-@vMh~d{foNh*yElqr>Zl@K1NA_;aYdVbH;pkxq4N zTYGpz8M2Q}xzi$j&5J9~?~b%Um}aZuwL}%{JUphuhBB1L{^VE2M`Z{ubRFIZm5|%d zpq`C`{NTOdy#L`L$c0jflX+PAN5bx5JluDf30iG5ycUyeq}`dRd&6rgZhO+JfOyP| zoTLaD@Cy4XI0mKj{m|~f0ztP`8DR!TBZ1CqM(eP(7VS+_`HO4n)rrZ@M9Z65V|jD( zo3JgbE#ooSoP1@ny4ipFYu%ijZ1CX*-uMpXr=&O5psQy+x-1jv;jc}aC|Kq%p)aMH z{$Ax2kJR3UBFOeCpYu!D7xcd|=>Mk}iZ#9SYiYDs#t&Q+a$U9Z6M6)XX2kU(F9_iyX~6i4z7{vhPUr(NOdLb z@5$WtA8siZQpGpC728t&6AjtSx4m(ZRd~EQ&Q?;I=OZWyvt>a>KMzM)2BHIPo^2oP?kDesLmhfDD1`aR(A;H!W8kSPn zu{#9C!~Cpj06RfLDg|r_sr0b*A`RKhvBgEUi>(!an&4B^$4(MlOGP$62S-=%l)$T| zVJroBjqAZ{r-oDt@Dft#!Rs;&+05a^MYapC{iI_XK9Z7H<45As@en^Z$6aa;g28ud zSX2Rn*XUvJ1`VkcFes#oV{kDWOQIGO&xp-FqamF+3c1jBQMi&0qxq&tLT_1+(a$4T zTKJrp>>C;;Q-Imm^)tR_s&YF%8+wLB>V43$j%#)P-ZSK7x`c8whjy znK;a%2?S@${>AFoz+xy~gRwnTLn;NF390mO_ACwA%yGs=wu>{~`OzVNA4W;6tz=jW za{C!M-r|V_bH`~|P$9M*qldZEHKbC&oRCTnbLVNuW{x>7vR%yWnV3=Xfs{nts#sn> zCx=`jm0+%|VL=7VHT5v}Y7MCrFejvnV{ZQ8)N=4QvDKS3q%ubv7uGJ?b|;gSz7>*4 z8wm6HnM6MtNgy`+fQHQ!@bx}De0@?wDg}HAsp9xrux^N24IdC|-KHUzIl{QOb`iFc z&VT!MNQIa`QSN67AQmJLqdll$GzEx#R}W%8(~wF5VnV7o#1_JoJvAG9LhSVi4av+w z#s#(vGP*Iwwu2c zirOxGOe{C1A)`6wxaf85t=I?avLa_kAQS6xFgbF^`REu)RzoDBOmd|M>Z zwvy)cGm6+2OCczd-T-rlAml>**`RB^m52u;i_hYyIg-lHLxIoi0mmeH2j z66Av@iMCa-ynaq@v_vYg;HNb#sDQUm>f!B94XG6HCZvkvZGP<9U-+BY>RTF8nWK#h zYZqqSS)n zV`90#(U8$RwsFzzqHqtk8Yr?y*0)Cze9I$Q{ahS(B!w96Tn)o1K<*`akekquN&#|0 zsyO6|4S#esWHW~v7uhb<_DXKP_FWmPP>gCJpl`0PadXz`aXDDh0p^ zsq_H%K@Hi=0mntQ3%CPgd-pMZ1v~qFNF|}SciL-yc8UKswC~g&d5O^{E)oMvDo0a z82B11eqm?*gqG*xEqyK=xPy1+v16GWb{a%^;4C~G8n3D9RO@v-J$lsZxMk-oxZp35 zdrh02yaOe{)mCiRo>y^3XClWZ1g8!1CfDd$)sMXD>H?LMR(+~Qt1fhr=9BN-9FC!r zh(Q2DvfDHjPT!2)nMsZek0ubeTtK9tC$UM6*~vONG(08nJS>=<5*W4~9JjD}ndYBa zD`J<#;e8BnnagOiS?9N1uB%tK!A)@fMV4@vgE#KNdF{urE8^C&i(pQw@}oZCk{5WL zf2}*yt>*SByWfGAPD+iWHXC?3W~Jtid5tkRX>CB17T&VCWzd2DJ8l;aEZgZE<_xVx z5nX7&-JR8X)oso2Fn~wNSE^I(ff9M+FgWf@ynGnE3e;o_Zv12yPjq)4f8rUZ1kF8p z&t}mRXm<7%4&mAH9Vi&Q&yK!H+^>m=VK}8AEPkEck~Z@jr5XN10{S;*)TaUZ@Ir|z znU*R=L=T`;y;bwgs7B-jdDg|H->NChA3s5U5dx4Jj6WjgdcQ4m38|##f5ydK6>H8^ z@x8h7&F`ofc*p%D~kDV+E`R=J<~BISscxWb^p ziYR_R^LgQMeohHiRk|~9#OpSX@#-_!wTVb;qu0f^1=}5KHac##fkYO*i#s@e*Qvq> z@R+zmK7-aqzI7=Vh$aw|pV8aq5E9(YEO1B&E+$IbLt*+e5SlfnZ6twcJDO3iQJ5TI z+Nu;`(j`_V|k!%JhOXD&@cRJX3rVpJml&6ckQY_L*@|cv*1xqEo6vo6h59@OEZ) zNnpT4^T4nOZA(J}e?&C=NJd>MEjhuNKEyOsDZ(Ted=%9v77T>xxW!xCkiy40Mu2brC@zzyf z4)CB0vte-4gyZhSdsatl-dG;(I63+f%*<6AxHM(V3y6mU(*iKIkJD^y@-B;a_y_-z zhU`Bio;b0$xC|M`-$23Av35+90<&->-{u|LpP58q(!;at{vt1VNhdN{@`NoN&HBdz%xwiLLpufG14sju@{=g)0f zO1L_ebz+*dbCxEe`vvc0L)>TL-vI&57?%o; z?k8<7cuI`6?-%6mRG~gX8MhK2}4|u zY7}FLQRByls55OZZNT|&t%~E5;4JHXqsF1Y!(Eqr^<(ZSs9SvNbxue>sGFfG-+6uvWfh+PU%&*Nx+mqSBuxzA~0W!P2h`Oq61?aMx6Xay&DmCJp^U%5ezOPo)SG z%JFPeqZs87hF7N?$J#QLkf^X<)hNdqw#0rxUp@Rna}VcI4$qdUR6V>h*ng99OIkdU z#H;PLRA~3r+dECYoliR6WXn>**{P%h)1-l2N;>l2+9$nhB+$qz#fU=erVI^Z3h~d3 zLa=Mi#Ddx)TiA}rmA5#e5iZ9qwz9`$lLH(uE=1B3;R>qNe|AX3nj6Iy*!UU1d!Z?7QJST zkd$ZwapP+P)woD}?D(q!7rt*7RVn5MW5C75J!?{dlk1xp^p$d{k(+?Yi zs)u6(AS7_b(nxDQ#FhdFLBajoqx1|^!=yFm^OU1)SxUG%m8W2uG{{SNO8#4~{cGrg z2@tbnHey8|R}MPHtmsO{ih^r3b(j%9Y9m34I6s12M=-5ZX}K`71N)KS+zoN2z&Pxb zt~NSetKrsh@4?!PQJMJlo+M<%6N#(5-nN8r`p0E4L&A43QQ8y=_k>YeLo|*i5N$8c zsMjdO?_k=h6k)=5UXE%Mi;%(%>U`&|woD}?D(q!7zVi>Z#J;|-9{xvj59jio&)71R zs)u8ohBW0^8fne<*izuGzWVxWroPVSJCEA3lyG$_-@!C#keBkE{I^~d@SUD@tOQnB z5*V?U3zcDI%wD##yV(luh2%NeKn~vw*>=WT%_&%&GL0)#Mw^{Zb1H*_6uky+k6Y!i zQ0YJuBP=VRVCn1+CQ89rxGyTU@9|j~b!liAen>u@X{b_!3Cmc6Y7}D`!u0AaW7w9d zghYistHv_6*b@7+zIu48xrcLE#<(q0sd_lZBnq>P9kvwc^wrlhroPT+8E>{_DdFl= zmVs%~z%FGO`ENbDV1G!cLsqdy)M1%2R*b2`aBM2ZDUH{gZu-{7O&j=PlGB5E8-D^K zIVZC!R<56u4;3U*iG4ql;cS&|F~J=^#q28?t-wSn#0vK?i<$YTw&EGl@#`72Y3LZT zhp#dnRf;fS5BH-Q#n^)|zB+sOcUz_s5*7BX8hiMIEwO*sR}cS}xrcMv!=AUvo1O}i zMS~9;gQ|y@2dhUm1vlXFa6wW?OMbd7;SYv_`!^r+OjN_9CFe7TV{BPUxH*+MV45_n zOPNFdTLY0^kl-QfRU>wAvvRvPW(QlgPgNTuUS+~-XAy&SLjf_^#*Yjibz4q*%!O?) z_2v!_4@~YhvW__Rn)g%)9ab&~KlTc#2c751$fNqCfw+ItQ(@i zilmTe^;KKKf2FT}zSq>x`6S^-wk##woJtZfO&ZpvBq9GT2S`G8k4R9GRiF`d7*R%v zF?Bd&JFNQ5rw$p+p*uZYj5+xA(8dVNAxI!r-t)_HXRCCHiQ$Fapl7*AQ)bV5r=33iB&soiQet2moGN;az1Z(i!DnDC#UiTOp^w6DR0PsE0s5p z{*a&~t3V^(FrbVQW8QEIjy8MVGS|H z5J@2R{cMJtRl33iWB6xgU&&YlCQ89oxK}C481BocO+&|!F?@~bs8WOpWB6B8qZnfl z##d(y|6$8iLZZUHRbvc)v?ca`_SM7xZSLV*#<17z@}{SPWYOTm#-Qrq6#-*_fJdVh zO(OB?8MefCpy2*ZNjwYHFlo#Atl_z~EF~PB${H|D8rY?*A^)v?*=R#rUr5lARge)| z_=IvCFlGxUjZL}J{wM>S6P0={*P0hsp5Gm5t>J{>gl4_jg0~#pdQrzq#k06VSUzoi z1Caz`-HF~JDx8-XV{K2u6);f>slxq9kz+4jo>7xgXq;jCsT5(t6JCL86pJmw@ajBa z&X%c!M1}pT#uNV0me}v@tB3!OxrcLk!Y#H;rRw251D@aqI~uN1(n-|%nk_}{?yJwg zZtC-V#_(fXmJ%*cWek`m4ewIMkpI@|w9b$KBdZJ}vhXrxU>K8yBOA?%H^PtDg*}(4 zTwz05%t&m3ybk8gUB0%>cDJSWE7>khdaRXV=JIKoOOSUU57iBj+s?n4%W#i*9- z3DIv&Mok*}g`Z8&WcsNTVZsg8q8i1xfiS!}H+Y^cQwfO*`&Eq_Y_%o!8GZHei_JZp z%MB)NnM&2e(Sd^4yaP=lZF$C)_}lyH=}SyKozDpV&X%Qwqf;3Hrb&aklo8~=H4y3d z2p+OtH6jAbmGNLq1gfmxcJXM2PS(1{EzO3<2Mt~f2V24JNUyWQgA=Uq{Dw)dIsr#p z;gwMQq$}7{iO=zpNp{C1@Q19Ch2;?$XunEQh!1YbaJow8nBWip!h9eZTfjsq)C%`A zMdu;z&!|m9$B;wZ%XCyJ!h}P71Jx+RA>O`V-u!v^Url&HolN}Hmd%7jg`KQMCjQHo z*uU?qtN&Ek)lv`Vl8M!K%G;m{q(#dQTZO8Jb@x|3)0P5r$j9cVKq`$FcsVEZS7bRu_K^l?r-+Imo zx-E>LC#xc(V6;LRJ;uT4RCZE|)gV-K%(32EsD&RilgzA=4;oDDPtbXFMolUaL-;%l zIU6bm}S@XA5wYFn0yA|W1hGJzlsI{9z)DClHWWE6BfW%L*aofnqG zLMf-zoQ5eKICY!dv#cGS#Q}4P1F&khTni)muUI&5-UV~K{m(DaZ<81Xb@EE@y$0{HeMwW8qW0a0xv;3pY%s>HQK zXnd4;L8S!)~j1XhuFyz*!C*7=NYeQu|s{6uecdXi($(RFP%*vvqKs+P% zyDP(mDji*d3w)W`PclG)iBjMc?lX!G0{tMPHVqv^KJWn3QKbkIKJYNAQH&1=^-%+SIe)}pRjdxm4ic%v)}7wsDI7DHW-U*`6EINHXw#2@%uO7bH+{3vX;VZUGrRw1b6DT}p z@PIAhztdMgKWOUbe2(y2Tb2@TPUQ%gCJpIQj*$P>zR@uQ(jSt3EUO?R&M>8n4r9)6 zIl75Jbd>^8nB`XBu-ssOZ3RLWxXzZPgp*Ur1Exs>x|BTR zzeUIc=@kh&vI;UH5Bn;k!>+dGgC{(8!%CdufiQm5yJ3LMok*}g@obzOh1((ObEjdQH^4RK^R`0F#M-2QwfO* z`&ErF?DkbTmQ>s$5FC1VF%;atIf(&O!_33Egu$_8Dpe0hc>!7C8BHK@YRH!8<-U4( zlc|^U3BzVvmJ&`*B@CD*4d_zBkpC7T45T+C=*TL_h%nr$9OaD(gI8@dycRo=cck5! zfeQdja4c`NF_C)O-kOTrp7bi>WZpAbepucZmH{gr8y#(fQIR&~lyuUn zzi&&C@AlQ_KQQ%qKF4_6mZgNtQ#l5vNrSwUW8}Yes6wwv@RC)u5$k9u^E@m^NVMzLW(W$#I1gN783!!F3$8}Y}sTU5tJgcJ|Mo=RTCd8`Nx zDeex6I9peW+k+xbf+A!sT0^!wR{82({;5R4wRhpO>%o4f&F_v%N-x#k3nI<#Hr{Qp zz&q#F=HLz31N#pC&sFT7$yc&`wV$ts3NOPp_KV=RU&3!!)PBW&K88Pq?H^hRd9Q`n zYnR{;=E$-0;nnNl&n--_EfD(dg=~>+uajH-5t=taHrx#R7WfzBc`N@XO}g2oUIV^a zz4qJ%kpBTFaCXCVz1e|V>88B4hbg7CIEC&^H7i~C#O+ikTJBV}C8)3;ihli36XYe6i z&M-U#FSDL|82WQ}Y#YeKb~f;0V-pO+M?#@q9nSs*QL&!3*BOQa+)Az6?u?+(hRg!&{L~yI#=aY2FY&Xadn?uU!xp+f{77$CwRZxlYuCUJ z(P&l#E&7^db+hkXKiQn}*4Nx^&Cyo3G2yLu8!n8vRNPJLy~g(T`stZXN3X9}N8y*w zWV5lUeDwM@zp{awG?5_U)DDh0VO0#?)B%Z9V*HOJtr3I}sqqg(V-6NK{y|yBuibzm_~EoR zM3pU2{( zMbTuBg$%qW_yQCUJ=!Z`QqCWy(!t+Es{1vhx-w6yU2&yEjuOvW5J5%2h zrCI`HK}J8109p8)nCuT4CQ|^}6I>ltkS)Dex%a9mfJ{iG2eN%MWHSdD7uhbzb|(zY z$4?StyZQP2EF5CtV}h`HxWq0YJ>;Vm_6i_Clilc17nl;pF_<&gJKQ!brM;I5^F2eScj&}Jb zNuq6a$~%5;4!hJG#G(tnuFkp@@b^D@_}fE6Dh2!rsp9xs%tjZf1;sOBvx79GGe;p8 z+Aa!Lrwpw6_DJGycaq!B$B`FHBlbH=!+r{w+XTgHd>x#mA(aB=gjBkiJ5xhCbIfs} z?P6{(93rFR_CA!7kYfXHVP-!g$6P#-fUd4#Kn2iE>VfWJ4XG4BC!~slZXwK#P}8v| z#9pu0kjxx#TwuF^Tb(i~De1(H@6oWM0`9KW!`+Pmy{Rpe{n?=&PcM->;?E~@rStmTrUE3tK)bd!lx(k?%!VL=7NyJ zam3A!9g6{f6Iv4rs~xzuocL0oyN4|wpuRRgW8^Sr{PeH<|wo$xN{jcr?#E51_xkSQ`H@X zO*77xwX9kC*Av!fpa9%g!}d#nXt22keqbp*|FP>sm;RMxR9SPJ{$M7vuAfuDyJ;Ry93 zFur8VR6?S{epWjI<6muw{dFS`*FFcYD|q;usD_e-^)EuCQe(;p$YvgK5&RE+stqZ=KSsZj*p1t6n1(vQQaJ#w_HmKq%NL z5nNtxQmBM2vg4Y5fg5T!wJ>2q~F*bk&`Pu_e z9~|C*`G=k98LY7ES6tdM2nRbw4sv*mjxxYOB|=!*@WaQ%O`pgBl}h)UU??{+H%Y#d zF;NQT!adoZzD)wFQk7HEiSA#?kU~TEkiFc&bXO_DguUE@Y7}EH!YS(P=v*~{{8$eW}Jl0_g08-uEcV+@6i^~KUiYd+AH0{cP12FH#o zj*c9JYM8X94oh$t_aBz#E8y(L^+Ze)0se(ykIcq zUwlAJ^+{W%QuVGH6TQQh*thl7!*`i`IG2e&WXn{l9*(h1(i_Fn2t*&VrNA%x>g(T_ z`Z}M9?)FW2KdRC#B|bWYt5caMrb#<*DHF|qYl~o_z2Zj%Q(4s;@y~OWF=fm@PYn*d zaZ2@SyMw(tOg81P&zImqt(Y}fSCT;?RnOWvythCMY2*edSUORMiBcpMrWuRShLmLR zM+88dGwL#GY9})dRf;enk*A>=#Ym(uy&j2lZJA3*RoJ^lreRyQgl+cKw;f~O=F`V3 zZJA2duWI!18e3vt)mIN+YwqD(`uK5Mrc(8Aj3O4MkGI)U;ER3r_3fs<&Zm#xw`D2e z>QwrOY0^$xN+0vzTAfC4NEe<}h7ku`rwj~Z4*0zApgQ@=t~KHoz0=)Mua4A@t=e~Y zR>L*>$#ufflkP~HizX1e?)ELYM^$)@FiJ@N7D2&M@`s619QBkQJT0Rp4gJEYo&A}9 zDn*!3zk^YYV$@FA?}UOeG{L>{m5&ExC}v?YAKuYSJB)X(|U;Bs4*5^heV2AC!d=~8Nt|JLfX4v+vNs|+J*FkcxM z#?;`_lv72W(rB|;PaPp*XJ+#C-)B#Hu$rocYrf&~gl%k(5$yXDclS7>Gwezqn2D^z zHo(#v{CCY-r`h6_3GVOhxNFvCj4h>}X-b$zY7XMBk7po7r9VwjjvJZ3B-56d zD8*;tu4xgvA~xQ{9uW=i%&1F4!;o}*nQ5p}gbC^R3aU|zbO_U{la7aNnMz1h*t2S+ z5P7s5JueP z!^&~Qn7g>-L~3Q$f-AjYZ}eodRlT^`=(u$UuM>3Of?wRhjrR>^@RHbx*MyP8(n!m` zu(x;(hd<6^EnC7xFi{HF!aY_oF4E4Z%P9O#GYwUWFySIyRHInz5~f$@B5$x|Dj`u} z&#G~eci9sA>b`pTI&%-_a*>;DnM&2eak@bQRy>hJtS{SA;Y)q>_8q3)&gUWz+Om{z zb}ARaG-+s;a*_PE$`LM7q^Bg9$tvE6Wt^>y8Do}lEHbI^5(1~h7MiAxjtrIg(8%fj zwZs_&B7S{AtU;1GDTQ119l6IZ_kyrhd++53jdnDdFZ+`haQDur8$!`ELzG`apt*tXGYw z!2)GG7*m7O6Su`UrD`K`E?i`n`VglEXKt%bJKlD$1&6uu>67Z%Hk>~R8dP$TMarc! zge|0`6O-SZ;bWDaFhLkT%1ka9bHGF?vI=)93&Eb0F0dy=zq>MO($Fs?3%4`0{$NY`+?Ezxi7tC#OI^>RLS_<=1;2`8sg2TYR&bSZVnf2%Nc$STT+I-H}74|D23 zZ+evThM^6dIGhZt8`wVS$bMdj6_T~JBYqDg8FGjxlEygjJ-N44dc?$d!xAW1IzfSn zQj8VuT#Ar}gEMN<&@cSNI*{q7QiKUAbgB6j~5NgPEXJ~2TX zZepgEj5T1Q6k~~Zk_JqZ26QQD$bW0!C}|+QAwfr0K}Lk(Bg!$rm@phM)~v&Z&64cA zu+ci)^~k9LF86R)_KbxLi&+Lbq$i#c8@{Z!xCv(+UdmdSgb84x6gY)@j3P%!bu(%* z3Vto7pGpxXOkfA9Q7nQ8!>coaH`+3lkf^X<)tJC_w#2@suO7bM+{3v{;FGpYrRw2u z7X*uIG)%=4NxZtlmI}A^)!TQOdOM#HJY>sK!r7^e0Mn#_UCIdZ-&!8+^avob-Zdft z=PCojm;@Z`)~6?3vF(9fbbCB|(42PRe$kn%?w-9#+tFhFj96>=_vQXk>B|xy{!5`? z>3jhuN>Nd`TPV7r!O5siL&xxY=V?qwUc}oM&6__D|JyZJs=Wp7fxKW&+(Djtx3Wp! z|8&%+Sl=J@Li}FQOeaX2X8v0%V;CiP%X;0YbuNndqL>SeTW789)!`~?uQGz$l-gcL zKBy;V12;FEG02D~yiLKCo>jb*LcEJNW`!444?1k$R|l`PhFd=~8u}h_A!wUVCKGp@ z-P@)Svi&oeJ0xr$6V01{k#WCzMomUdzsmGeDZ-@1H&BgYEnXO2o$bHQmZ^k9g~PfU z+kd+)vESNP5C6TnhjZEf4Yo|B>fvyBFE(2kO(1dVbGAhPOkchH1ye8Qv;1$_vXpRg zD$B<-X+W1!iTt;Y*6%P0e6ngXVjWwR;Ui%k8d5wSTsD5W?tSGC!&fQME>-fPi^mjsR+J0D)X4*uN2 z1ls~1Q1?Q%wXdE-O1ldZCb#;tx^IHNiV@w}rCy`cs(S6Y3!sz-pupL+NH0e^?TOM_ zB(2U=v(m*ozBXV5u!&^d2-3($4A(zY=+vNQ7gOyu{S{Ex`Zwz~sP zBR-y89q1bPA@~B|lsYvB33*2%3aJwUP)TTOskR?BnEl~LI?QYD1XtFsfgb|HD}n~L zFH}A*MTD-E_6hP?wt;g9Rjyg$z6loejmSP3b1^ePmGB znXIscCFY+awL&C`bEb3XQ6g=-+Bf^5{kd}O!z8Z#xm5c%*wy~>K4`y$2YcTHr9?ZJ zf1aPlgEst4@c$2XZSZbpgW4-%t#kfxOsZij)lC{wU76P^cLfbeNVRMc?eZ33zexq- zkBG%SuOZvjQrTu#x4YBR%~ofm4W|HfF6uTrz>$1@wgiTAc_85;OBiBmEK(0710iGZ zt&jxNVwTBI=b#eLh?%~lVJ3yZ`VBo`{a8aP1z-uO^nmrahHU1*;v)9}Se$YCz>xqe zwmp>rYlg;#-G87=Dph*yWl%g2GS!H6fQD2Gz!FmF0c)*>Z05k?BHIPlau$s8khO&8 z@}b9Lmj93ht>OGu@MtqV0|GshMexu@7NDr`eQEmFQgW8X#} zg1nIrZLPtSWi4;KZz<|VDZU6A| z`GZ-a2Vap1>kLA9u9#dd)jo@b+yXx&-|Sz6q}jcaBMNi1?F-m=(ydqk%2>M%f15>A z;h&ey)o#ak2mJ5h(%L!kk@YByhOlv}sC_wET8{+<;|>tb?}Rc^Z9XqX0q@%iV@_@7 ztTRu6L!jX#Xqft}Hm1AqOT!s&wx-}wY0IHg?#_|AJ2B`4zpgD0oY0(_c3W@*23&}N z2S^9nvT0Nt$8!7;JO}R0@bI+hZS8?`F077R(plGWyStoq>yC5Ixv)0Uff?F{GYW@L zSKDp&BCNu!RL95RwFVqdy{7D(>eZ*myLG5+V0*RQb?eoOp-QM0$Fr(9ObC*I8nH2( zZ~R5|d*oGbE2bbET&|)biQ#Y6h)8qL9$>A+JNQ3Wv3~^2{tSO`n3WM#e29a??9HSm zwaH$uD-)-!ac zM=D+ehGAz$p!Kz?JDt*4-EFg_3PBSKhA3gEcun$YIjx+c!^S}jtQ8-b{c>7`r7eSa zo$^S-o$}gZEOxv)fjhIsUwmVC8-|;`kvc^9;SJ@XBL?}ds}cUV)0~E<8}O+&;Wa8F zJF1n=q@R&L8W;P$hle%{LKqs`2EhvM^c!I{9m$t!auO;$sWN`Rr zv61JE=O6owj<>UOjI)M0W6g1c&aoA*JqC45a7mAGf-KIOW|>(s~I1`zwt>Hy!_yhoH&@j#ZOBPmWD}uz<3LdDT^KgBm}&Y1}F&_ zRfZnsLGfxVB4dp2zX4IeeB;w5D`^kpn<6A`DCLpF1Gagpu9YoAn}?4u}&vpwSZ{j3~t$z+1O%QWn$ zfV|h}A#YAYDh1>TsS?P;4-#sxviZ0dGR8INs*RPP>7>iLJJ4 zNM(*TF05U&?aihVW5eG*jFNy`NwfPIIo{%l#Ds6wFrfn6-k=A!Yc-@&fSZsi4!6ZA zH(-lr#AYATkj@--Txh$n+mn9_6zWvtr|bILE!d!BJdxP%HVykJVD1Zgn7dy?Dh135 zsp6Q+?@}MukjorxT-=_b&8V<&@k;)*z+YzZ%40B=owIl)Mf6~vC}EvXLwUVkyn-_F z#Vad+2*2ThN;11GR~b6B3jrmP$oeeJ?Bl;&s+4iG3iXTjo;V1bHTfdd8jv^(~Hj$5xc zceHV73;qdPWZ8^7`vVRK7{__-sykZu__REfgeMA&!#=L?*Z|&R{&kB=V(Du1W8jct zvpq!?l050Ab~!%xAm#vk#!yX-Cl^mNGTr&bzu>tvFq_q6wEOak!RaSR3#` z7+bp3`{IeWpH9^4owsX;V8Lwqc(KHgcfj7$)YWPCND@l5`)JDSz*ZLUCxsw&>uhQI=gS zf~`%U8j-_ESRcG#DL5B9V$u07g2kS^2}X?{KawcZ_RL+29azX1TW*y9*6K817WR6A z!(>d@MprJf#Y!(w_Jt_o57>-Z5vQ;sinqv@1##*~ zWoPra!#6XxT-dK&+Oif`*vEJel@pQdK1S) zS*^vJ_#(8eAKrK{;g5)hAIqpqrG*MqgpK@0rlCp^(MDdo7+#+(-pFr8HHtTKVSe>f zh`wUWTtcG40bK1Aq6ch={T(P+ZC#Rymmlnnmvc`d`mHTdQfGRGjfjX!2lDwyu%L~wk>Dxu%c;FZX~;!RWNljVxq*pN zm=^A>7BllxG9sQ49WThJ%_wf2$8=OF!la)XK{blUE#ZJT8(D;Kr8eV_h{?LPOeUl% z?BgZ8Wl@3sheYJdY>E8ZzIyrfJ@N8_!I+Qn0WsHgw#=pKVKvTqqb;#N+*dE()Eh77 za?U$!nM>8nF33`?@XfyZ`+L3ccRuHQ%$Bu;yHhzQrb#<g`K=;q83Ja*Zu(31_D= z7EF@{c`0Mbf9uqfd)22BL}gWM#8viDMwBsExj4#IU_(Y74p?-Z#Z<6Z zC8Cnp7)5wWB9%DjjtnfR^uGz3aw~I=WB?5lr3fzEjTNOS-_NK`L&uP&e3$8{QiKUj z`2ng?oTdl|sMD0kZJA3*RM@|2G-dIla!jeXNFX`%@&YKhf73flQ4Mo1=hBp?*)o@^ zm&4%`Jg0~9lvo;xTxDAd9M)HVZ|H@;^NGsIwyY)Gok~NlcGdLze6Q( z%Bt0frF=oTlQ3o}mqhopW>b`*6pB)0IHgscm}E1m{&>m&uQOwv5#3HpI0{W7erfd< zxZyZTgEeyrLBT{Ratn80MG4B~8MPU8U9V$0suW>DP_95Vig#VY0qO+h-L}jnBr5D* zHG=X{TVmhPS1*68H(t&qD0kX2m#UYeBqYAkJ(fly*LQ6x@U6c3`+;8gJD;HZ+LpD1 zyHg1Yrb)xRl%V9lwK+;q%(_zosjQlfNXj;4NEwrqQ)7G2kb#F#vs zhQkiwncPlkwArkuE*N14X>bB@_N2%5+v1My$>t8nb?{V^j1i0YaV2ETBA!TWeP@QN zRl3Fmd$^6+S~6;ZiBf8nD}%KkDF+F~ z6G^*XZ%c*2zIuG97aq^&5vSO)mT-6~kH9o(n3wX1{I{Me>mUh0vdS@{5noge{Khom zbiSO!KV(Wi1TnNBIR@dM;gUZN5kG>8@(3ye-R98lExy9pk0xu45*~qxQh*iiX^MR{Qn{0{wk-mEQhS)V%s=WpNg^SEGj^3GF3KulCs&Iw(1(5#%C~)@qvGdJJYhj~$bpnp- zs&>3Gj{D%&@2in$fyDwr$Oz({8l4RXjF02G^aohc8((HswyQfqUmpX?Zj4 zHM>ZbO4Xgf?fxS?FD80*INZ>K!wlg(LXdYDZp6c}GPp~yHBrT^{IELk*hsT6;ukP{ zR;%kp?!Sv)`n4+NQ#!hoNF|}-#GlBcm4x4wYWi1w{Y|pE*-t%5?v{&#DRS3b{C=`e zKY4NHgC}`a*|I<>KTqPyvXm^W$BR5C=sQ0Nhv1x43Hns7FgqKHR~rV)xWepAR#@T+ zvpx8^kzpM1jgvgQdwC?QpNoGZk`!X0wp|M~xl*e4%fDJfDupAIg;en)lousWB;t>V z#onwToB1)yTx1nmqYkx!u!Hj9lLXmfmdQ`&@Dk66nLeOlCWW)P-=_zxPijb|04yPu z9@9LrLXBtu|piM{> zN83`tC#mg%r^If5(2&p^b6jw{m^&nwO#AjpB5+mgT|XyBVIq}SbgzF`CcG+?V(5j>R7XQ91tbco;z-;x@c~0EnUYRyS=Nx+9GzSlyXZV1f-wIx%>Rz_ZIs02zOuLc zS2#fB*@$&d(Xg&U%sfF4sV~uxN&%@tsyI>?T(XPW5FZe0jcLebjzuo6T`caE95(Q6 zk%ZtL@yvc!4!vYDG2+WLjHm#)oqCYFQbQ^Q$O)<9keeU70uBBqwz^6~Ds#YbVeJC0 zRCG+r$5s-C&nQrY|29Wvp*M&FZqjgo0$6X*1MBBCq*4H@kSY$=ML0xA4ay%8i+xo? zHgm{wk$VbRqr$=)hEhf&YcEE|%`V884?ONKa>LN}2h!gpR0mI}w3LJYUl%IahNBkn0{g1Cyf*Xwd+hEv1XTjQ59>KCQl4iK*Kh!@# zGH$u}Gfs@*6(>*nk#z2>`NTZntG~#NH2V=L=-ixaXgb45;f*v;!GhV1G$BgylhNjl zG>-;D_i*+!%sq)~w%83dXZf>#;VoIgEnJ&B&Qur9_MUXNdk$Wb)4L&tR*-Kpsr$8ELT8Qf3So^+=@r_>y6d#&v*9)jI=&Kitd(*-wa zxQ)tye?WE}-i7(O_BOT|4XSO!Z9<|H$cKs5HoLfqR}Cj@yAwfcOu2(2P@i^@vT2FK zd+YmfUDyUF7+lTfL=xBRV4`&4K;gAR%On1!+L9C!kTz%3tbz4#9rDRcUzH-F>%>&A z-8l`_h^!OCKBp$Xb|>nL_)+x9@i(5Yfv^l*s>tgan&*1=0_o$c^PZP3{O^#nH-VQIt824@^(t2&1aJ2i~B z;!pT%fM*!Wh@xbYk}R?%DFhd<#wKawHltnKsp*jv6J@m)zs+bd^Bs+$;u+EL9T~N$ zggyb>FnYd?>8MgfG}kd4v0t3O#4ftXZ~A1{{N&25_n~q#VE91 ztPC&X&{~ZQkmIT-V51P)Saf}%e>uu@aCaoT;MHxjpbIaS#o8-avKEPA_-k`~e4Rf^ zFXFM^Y?EX#F+D^=St6DA;;Yz3Y=pDBm@g#65EEs!77u5O(A2(Jcuo8f(eROsx>O=j zBA7kIG*l_VB$z#lY7`GAc-hw=A$~Q2>N}4hz_OmJ9o>8Al zJ4`g?TbY(BMVK_@J5i0|O*!g*!QQAw@n|57uYOR# zp|;E=Bq}`Fr*=@lb8U(JoW6Q_xHn$TJt*KzTjo;ra(F6XY)N7?fyAqdEz#Y+dV0JU zp3Xle;N`ZgB^=GjL!544nl!je=|=urN9%W<1VULg88MLGu`W-eSNQ`hapEh4RA+Q& z3#>-XIOLFRzh+|xC&M}uoRz@xVA7Uv+7^q$a1Itm6LFP{KcdJ-8Q^cP(XMu8_|$~| zot>PSD6|BY(3V1P5VwAyw^$FE%==hmkT4lcl!Co*Z&&Q-#9K1z(m-7}_V{V0p-K@Z zT;}trMsY49%&*R6zG=%`LZZUnRpT;0wk7tz_0`M&-WxCHa+&|JWiC}OhgUizSFFd< zNZeZWb9n?&X_ARAloe2L|GrT6L^VuXbv~n6W6N5?-KmTQ)1*OO%4qW6I_!>4~Ex9=4 ziG3EZxrcV%8B5Co6Z!m|Q{BjO5@9Y=kH9A9D!nFI-Rw~aBs2&^eAq}an1pVFA zxFtf-t{_SZsS=wF3!TIBFB-C$Z#Lv2OQLtG)*0vUyq$aHs2F1Qh{p{dJ;{Br%OhF+ zTpVL0g+T3o4Z|rw?Q2{qRj56zA(aBugj5NrCBG6<_O<>}LpF1$aglopHKW49eXS|I zL2V9g^cUXOdQf)PoVTMjMXewPCoH!M^tG^~b)R2=8QG53r@?Qs9jy^o;O}LHZ5o~K zv^d~#22Om06-hf`FRM>WQg*RMT*g`JD+$h_zbL+ob)Vx|O=72s15~fu3g=6CNRs3s z!RcA3f5=k_JC*f=X&hPfHR0aXCofy!zIi$^4EW|RvTOAiA_e_m(r{0>YxO8BnC)5( zQHhL2x@$GQjrwnqX0gRRsTT<$r4W|@RAIIsGe>qWakx4#%a8qO1J?lTs5UCi9T_wJ z#dzHdduy<8Jp42$80^EwJrY|zF;Uivim&Kj2n+WpsbEh?d#z;DqydOS#EoNkhDJG(7*U z^2uubBf(8p@d*a4vQ7I`W!wk?7>+n2!;p@7ee&PFZyfGDD94_5n$z%b!x50zoA4TyksZ}aXA<*; zkNkVYhKJzVgqOoA0jnIu3z{Wy_jQmxescViKbdIff?Xi(|bz+2ReT)-i zan>An9NgOR3YgZxOF4K?z=2Le^?HP~%$ZNbM40dRCGrB{Z&KJ%8HLFx{QSIe;>U5y zicM6ZtZJbS|vd+HyuXZX!G{+#K)pm~!7Ozfe$<$e?If(mCPnskc_>#D< zRND`S@%M)x>64TR53Ioa%$+G7sGWu)_+h&izky^$G+t2cXcAHDJRP<4?;golD>mtL z&LW6}{~P?m+sTp>Z1cAS-j2_!MUpr{-a=#2w7U0I4&tsu@oHZ(i578W&>|*TVTrpx zmWpmsYJ)@uW{Kb_X$`NpYme9U!5%B&TCxZ`@XeB(7F!l%^z-n3EApJ!=6bufc^7xD z>Xg_=G^A3P5))D-ro@s%1u3_nd{#p?^C>YdvV_&Ae#5CZx)o8%>BA=pv85uLpMwJ| zcuL^)O$}oy%(&jC2d{tAkV*kwLMlCY{aRJFw=bLrohkeW+}9juTz0!S8wfvUd<>;!7N^qTErH@;!a+5N?W-Y`0?LF`ag;4sH$+W_4~Vs%ts$2= zu(-H(fwe67GWJc7hAaN{?C0=tC7u#XJx{|@3eoGidbm16Ln;Ma38~_^njeD|{7r0i zzJ^rhsN%xfMb+MEgDgILk^tKyp54#Nk(Nv*X6$H~Q2}z(dXRgKhExiW6H>(?w-5%Y zsPWhnVz0MoNM;T@E^r@V=a1s~=19VBRTOrR-OtHUmq;Z>{3i_~DuC`E^+5M24XG4B zC!~slZV?WaQsePQ#A098kj)%+Tx7ej+cPmt>>DGAxfRj8el`v`nnY~(0}b0LpzV8l zX#2T_R0?PlQl+46D2XltL^!Q4dyst09#Ftb|l?SS^GpLuxYigxIU1A(=U_xWJZy70#9V zMo0k`&*Wziz!DFMp>}B)Nidcb;vhExi`5>h3A1@q6;Wbhpj>msk#kjxxdTwuGv z+A}fn?%N`XuT`TRf4N@FyB3RDj#R>A~#@4XG61CZvkPZ82Lp zLyae%5t}XiwK|D4haDH%F6>rB7Y+G_NWyJdkj>A-krsJQ40fP~!4yEYFBGrA`VZBR zN&#d-syN6NtXV^ih7X9fo}(d`IlQ>IcHy;>u0r$eAOTp)?KBKv{5dh%i!@B80I)Ok z05+l_l>)$oRB?duxpH!fR?77Gl!k2PAmbw21=*f_1lAvafW?$@oB<%=6zUN_ub)x$ zo3TWKxXU!`r+~QE=pk-SLn;Nt38~_U%OA*iuZCRaXyfAc6m3R@h5MKDSL*#m?&Yn$ z6jnXt+`5}0dazV8VV!3~dA-`BJh_!$xr;LL4a#3fRNVJBbx zS;7K>g~vb~if=N$|Adz3c07NRF`nBF=Ou=B=DH29-YyTEfXn*XF^ae)TI@v*?i@V} z4p0nUaVwP(C6qJaM!kXNcCS@;tNcd1vE~%qLRD=y8^Qik9`h_K_{gi?-+u*3-2SFU zBr3GM`^mC`o40}ci5Z{`{6#i%|CC5UH>t=L3}rYY+|2zGESPQP4qHEdB1kuLKLNWH z(r?TDqa>vk-~WBk7Iy4AJ4SU&cWM-F&Vp-jSXx(f3+#+!*YVGEIU|l-jF2Nfi zEG#CNUHqG9z%n*dxP^N@6bx2jYjzV`xG^ydleAWaE!@>c>`pdzTszTkzl@qRU=VKM zehSl1r3jNP+y|f@Jx5YNWS(f3YHp-*fwPv3fmhmuK+hWw40~j%t8jGU)vh zt#US4!%muJ@RS(sMZE=Z*g(%<0G2dROzcks9nYvqrF999h7EL#>8Daew1L*j@Vdh8 z`$<%zcms_ZKi)tyZ7*%0`ETu+L?}U8RtZMU^99PDFm9eN3-(AjrFym9$vHOVbjT9z zQP~kH?Z_D_Ew?e@mA0(KQ&ivz>qpq%{%g(nEhHrPVmV<`$84;3Y&!u{Ay-) zNdw13S*^u;;6-R#pMCI}_#>j>$1>{D&@gP`H!=-XiZE&7H=`QGo47E)`Y|eBv1KkH zk)>l)9Z*A1*F9~+CsxYD&?@*2v##G}{u~*J1 z!FU{;z6KxWL@7)Q_g0IU`6(F@&xno}WYlI9x6Wfa zsuW=ow?AzZ1=_#xIAbIp<@xtR>u?$~iGj+L=o^XZ~ATdd!yyuCl5(;-kka!N7GJE(xEib~1*wmipWBNn;J35_2B-xEup2{3tP`wJ#Jbom9d^ zDe?+aj3PJw4rSD&pW4i_NyoB_t~BTQzcVo-MJ@ z?yHwy+8ZzDl8crtbE$fHx%gB*#)+SkK~hM>daW(tU)5J%U)l>_=M#%-Y*|aVI+a*p znl!viiADZftJAtc0*n0T#ZO$hBg2m>Jzs(x z+{&ye8DqjkDS8TbAVtW*_cLnJ&@Uth-(~u#6k$RRet>EeCkMj#>g3>YTjmlH751$f zIavIJ98W4P5-1M6yZ{RB-|WXyRKwiMx#Zw!w#=pK<$-`4#Lk_GCXnb~wk7&uef9K) zUU)j68k}s)TEfw()Bw|@!CguX^50sW)(H}DWR+n=4Zffp?2W0xuITYXc+$92V#DpJ z^H^|hlelrH<&NQEaGXe(Y__TwHya(d?oVa01H5syI<7n)!{zO)V93j7v6?MdDhJzS z+8HAc$>X%h5JWPWc&OD|K!#IV4c2@mbORHmh%DSCEoSzovmN3Y(ed((+Kf7**D)Pc ziZG!ZSD+fjJ0sx$b;|K>TjmlH751+h<@l&Av2Wd{ast)f2*(FexMiL&Zix}wq-5h>{Qx;Y0@Asr5*WioqBSw`c#6btcs1e$~I+0 z8FQ73qg(}!Ld>Qr8;(eF71*){XQgB@6)aYXs3cBcBs?XNN}Thw-^sD0(*Gt#MfQV& zrBf!DC`EALZmcLx*_ctAhK}Jk^LnPEN)aYB<#1G^I86}_P^T#`uw^bGQDOh8(UkLT ziG5CAy?jA$yqrr@+P2K4>g90VMe=ymSQ?33ud}7VtNZHj%X;DOe4_F$ThG0JLQ#qgr?jdQlWgmfKb|tc z>&zHWq38AzjzW`&U+&DnkV?;+ASkynzevVWFj0!!!W~#qg7RQSZ5ld;1m$~7N0lN> z2+BjKMsb279H356p0H&uAyHxfsu7eW|0&0mii-r2LoY9cg8Mghvm2^m?&Vy9a*!=^ zsd_m|LgFWC$I?jTT5n5%!M^%?s2BduCn%@bvX*dnDnY?CX_%K1l>E0gM+u5qcS<0Y zRkIOE`J!@1VN6m^jU5>)Um0?w7)5~@9=2-<21oGS{23gRGi%$u#bY>s(`2nz!aFcg z3dq9!Qjz5%ug|E-s5iQl>8DbJ3Fo*H)hON@3FE7Cj_YliOGs4Mw`!c@CR<{Eq_1B7 zcyGL%%Q^0{WiC}OhpR$j$3;gINZ0T^TcUrvub%#XFFc*kHhyEvTEfw(Yy;Dz!ClHW z^55F`WLeKh5Rz4p5qYR9BgB|IoWQTq$Qs)iDs$Sfa~&fKaAud+fk^8<>tNMVK&! zBT$XvOhGt6ohh7V%UnXD!v0lb3NN)K_PKra@`b(eaxPQo*fN)@m&3g!LqSC29~UHr zM6FA03ICeD`ug%-_&T2}Tx-i(!qur<0n?-*Udk2n-`Y>!9TJFSm1IN~o~jHHbF#p1 zLCPWv<-<8yn9(2$g)d&ZE5oNMy~p<_rE9$-4E z6k$RZ9!52alLg@bb+Yg~TjmlH751+hSy=i9Ii^%xB#<0>c@Y%czp0F6sD` zTI2VZk&%XYBC&O+w*U+0C8k+(l#mEalp?HfC$k7`N#hQGL^Ql2qb{S)gAhzhTAA;qiPT@mpKg5)Mx#5|}0p^HL&_|JGAw9V7urRyjsAVoDhx#x&wE zxQSt;+o*QhPO05#r4ooWYdCxGd&K004Ux+y2}6iHCl);Tk8=O1^m~aBh6A8r>2w4p zN>Nj|`&bBO@-4wx2zx^GJ3ON%4gJFJ&LO6sN)aa1;7C-XI5iN)SEmN2+cKAssIYI< zsKEuc#6GXDULNU*Os|dy&R4q#P5S8DWpYTW=r_j_SM&~?}e}PNx^lttR-BX zN(wMd8s4R(AnPro&U{~G#~OF$7hz}4uIP12?4Q)`d`q+8@ecik(|9rk?D1?*dt=pc z*zW0{Q~?FG9lW-1N2}VYHYS|LblK&XyljYGeCT(C5=x+OjqvRm-c#xC5|rRe%ny?B z0!)-*rf|2hI7LtKj0BMfGHTP%F{B0GVLGZ5VL}TYL^X=j0^tC4TJT$2<`NPW_OBW( zSoB|VOsTj?AUX8%d?>holMYKz4RbH&(t-nRnM>8n;T{Q$kbY$2fg_eiTJ<_x3LM&3 zf3NR_zw@cVNw%yd+?`4dFijffrPLt*t>^ck2PIg_s?vy!d|tVSFlHmC(>vVd`zD4q za5@rQ9_ruSn!kBM{~q~^dJDyHieid2TnXjCL@5>vcS%LIPF$8zlTklJI-hDhX3JW_)u~hi)1={DN;UG|Ixw?$Bq+%$%!owPlu;rf5gJlF z4tK%V-iSYbuX~&I!+ZKg;2rhdQ4J~X4vKhGSBl$%BJPJGq)@qc<-B=oUp=>Lu2kCv zT2F5ECsy7Bf8o=&z`qyF)iUk@pIz!TI<2bLp1T0@KL7>J9_3alBQUr#-ffJvOKagy zzUoBFg_}*hGOj1Vp`LQvgPY<;rd)V+r!xf$Mw*qibF+gvIm^+K=O(vq>CCy@`;%4f zw@h^(mZ)2*{fMT_UK^E<)LMdVGeYh`xHoWOq%+y_+QaxYH|UHt8{;A|cv5e+hS!YN z-LY+J2076bNu3?dk#@D>RYVbIwYpHml-t_o!5d}B&40&jzQach!s)HklkV_PdBa*i zl9y@+uObedT|o@wdy_>3nnc?2^Z#3p5eWe+)eeKIYlHB^tIctgyo3L9760d*@K5a; z_#v9-L71Plt>co_&3<_OWOK?}UvsxLM_XOE=Xt%`aKW4vchh>WvAw;1dS=tn>+97~ z_yxey*i=4xeH#$9ZW;{hPI&G00d&?KQQlY{Dj&WMUMU}4_9iC6wDkc1r)Q3-G{<0? z4F?|CChAO#5)91Mt_QtNn-7zKLoo-u<}VMA5FJOwgc}Hj^E1_k3*=$=iM~wGb8ga| zTbO~i$j6a3L#=KqZUkD6g$x`mFM;Ca1r>tckwIZEVujV>hFM7)vTvMH!aB=>jD8;e z0Ty{qY;%!a+e~qFUJ>)*{9!5`{7s~KrG`{j=6P&aU}PcHvPCpDElQ4f@kd0qH)_as zwN$p*)$Q)|bhFhNX+tpWT-0rLpr^V*fNaTpA7or)mA<+bk8imk+aumP_)bc~Yo0=!m0@j%s7d&z?|q*8#FkSY$ZV!h;`hHU1*;v(Ax z*4}BKMLvX*5L*???&suSOQaImoupwz1=t<02fH&hq*8#LkSYN?{Q9KETf`m_i@6%I znZu5YY!`L|;di%hg(TRP@JxONjxqlsG1SExhEjmmc0FjlUPCGcXbGv}&{_y%8PsI# z39;8ZG$bWx=SRZ-FGX7PCBlx}ahF8L`r%8dg$3)Wdp+`i+KE z3WyR?#Syg-##yPw*b`!}dH(;j77f>)-`XR_`I^VFY z1-GKPtqHF)H+#UyRI}2pM@N5y5#G7k#gMaFnVa2DI+#BsPt%I47x!U#x@a9W@33j^`%UFXbyA6L^ z55LW>h$=G|8}Pq;u68??dq6Z38M-d5ofCs!kHVBk?K&K!kNAiWxjvVCw!){=olt0+ z-%7Q4u|dAU<0}=I<(P1A@`o+-$73D&TF-4aEvAp&zw%AU`7pE zkYs8pYg*vz!Mx^XEI0;V{L23!6*-*Jd;8~uoQw3b_XIjErN*4TX@tJ^VcePLb^gE(|_!(6MBJj;=8Om6MbyPLWF4S zX4A|sQ}&%G;tv@9SrHeoB8mryOM>Y^u{UNN#)q5@G7*bbCmL*rOk>P**t&wrX1&rb zJ7;tuUW|G;Pu+(2D?*Ihjx_(EGfmkg6G%mylWfxRW`y0fXoO4f2L@S_m>tHBk8*RS z#|})C)ml@G9n9=hSsqk)0>R&18TG0(d;y*?cHGXiRVgAGJ8FLiuPelkyHSneu|v2* zeF5taZJA3*RM^vM3s`?+OYC1k!D`DBOuYPfZ@iqlfOX){^2Vrw=tQGX^>S=a3?VRfprbz?7l%nLnbxN-~R0621dW~qx z4axz;n5OKAEHBX`D*O|Ne&Gx{8_7owRszc#k;{xWyA9wmevh1_C}dd+Y2+k@cx0rv zpbcrt`K*acK5;NnirT`RSCowqb)yMH+fGKkMiKcUrmad5CLP#zRHJx66RuFFDYLfB zB_t~BX*HU1tu3+N*;g;WyEk6Wr754VWiC}O$EXNt(y=tss&BWYz^#4t_np1)cRo$| zfh}tZcc;=6Op^wDDNV_L>-Y#w(d#i?!UQ3ySONu0$4xO&im}37O_4*x4$i1aL%(pe<3OgL zN)aYB;t*7$IE@g-SEmt2*)o@qsIYIQ^?WjMg)M6dr>Bw$Op^wBDVfNBYk9O2B%sK8*N7G@R0f4H zEqEqdJI-hUn{z#jPNTBaEDlg`Ir=9uoTSphB{;xM%w&>*1x%Deqi{b_gadpfqb3dg zLJn{T(@&)c6Ao|>s!^N+M2#OGip;dVv{~lAwNE-iNdwI)#i)UPMA;k04Rj*58b9O0 z09;(o`FrFz#+xl?x(V~2ZlmHfyoqxDN{PgZfAT4wNF|<_KVRMgRY09+ z_kUuZkhFVDG;jCCZWDM)Z#4{C{%R<=f3qU{q8i0pzA(Q!`!CxvmyoD%R99pF&$A`= zv3>RO@xAeKF8e>*mbp~D91avFH{-<8NZgvVrGVF0f7g29?|k0>DqGeP?oQ?Xm?jPK zQi75H)+U|KlYl3y4kP;U$NtlgllWd6r!?huaM>{&7b4D3aoRIeqmrwOV0#iLB4@Cp zS28{z{HwRX^NYkcGpDA7D*VLM1R!in79;&Au}0`O~+&c6l~pi7#fzq(Q1e z%JDg736&yDJ~nPeHHuRX;U;y;@m*Wy5)u_gfg0ubsV%X8(pNA4yftdNL>OP46ui!sxr9W8eXB+a z-fm0mxAxV`f8QG~=aPaOY?({d%L4%^h;6HnCXjgbIa{KC=Kr$yCSY<@RsV4IWwLJ& z2qB#ik_luw3js_ZKo$Za3jrcq2u)9S%}iH%x`$q}h+$J8(Pkf6lwAb`ksU--R1^dR z6h#na`6Gxg%JM3x?B6-}R&~{_TUC8eRo8TUpO5F^q^FisXZhW8&)s{}(?6+)r)wt! zzmLjVhNE2*0=(xL+&vS5+HVcz34u`u3aIdVIaF4#hK!2PS-~8(UqY<8Et^l4To-iB ziSwM`$gU(T^xNW-52)_P(5J7r%P3WxG#>FOv!6#6fHysXqFht-XND4c42)|6Ms}{R zj#f)(EHLi5ro=9&hI%GoIDnoB%!IGYe!hhTJ z-ncxs#zI{$ch^h_j*rT2RCn7>3#bM*9zTRTLeb7dC45_tI(>ub^f11zofMoEm9-34 zyCwyA&okD0CIz+M8dR+W1w{D07%Cz7s9p&{04c0915OOOlFK?X0C%+rd1k<}pi)?8 z28dgShzr02Sm;sQyoRl(7dMu1Zr=g>se5p5=BuFx@Ph)n-M7@~ID(B3 z9c!xqir|%7Il4{F30Zf6F$kxpM?z2f2R&dsst3-N?6p zKkr)3s~ttyLC%oMxr3bAM!sVL$QFJNIWDqCuyx&k$!EL!cbHea4C%Jbmc-23L(ZiX z>Te^essL}y9&%&dLSC)y<6M-f76-}r&w-W^Y#+A(0minETMWOP+s9QSueo#FPHuX- zZ5n5D3a{J$fL^LrrBF=OH;o%}3{-?LQ-d7_1QlYrU=646R)*^nLg+anKtXcDrjZy} zTfqId)dAcahY98YZ!~20w}c>tm`G9rhT#-z_qUUfG28vk!XZ`-p1Z#}_bEIU>oe~K zhSu@r%Q9Ilh7ZSM%iCi7m?sX=Sf&UYG37VqVwqfQQznqM9Uar~8_e50YqI%hyWGo-m z6(`n@0&e`+OZhQn z>&H$qZj21W>WRY)!?QoiwTWb~uukthA*d8qPn?*>i8XTo3t2sJVz%x~rTlv0SP-q* z6NgXnp162__{DnS*spLsaiMf>#yz#GEflWv3cO~vEj_q5>+yfUUX1-y*<`Wk-T8MMQep{(XlCy<;Xv&Jg|W8~slZF?F$CT>p% zZah^sO|?9FxUpH^1;=uB1>!yiBY9#dKF{3h;t9PAMKGhUbeOTx=jJpD2Rql&{SiUU zGlHlY{BYyiYC4Y${@#CA>@s6Rvvi7X@73l#>D*k~EuNmP7DLL{=uV=X0C+L5r?n#_ zAX~?~p3j&`+7B1&AJY`_P|D!ygXS|F%eLzRfNzV|Hs9guPzO~W3?LO@P{oic*r3W| z0b~n5sKQ0|$RS-@40MnUwI?+ud}N3XG#)db-~g*$72x%10Amrx>|P26uXh7TMSzzf zRWNvc8bG%2@Zusz3$L+mS+WTt8D=A$kDHHjyver(;O#uXJ16zXKPWMO46uhDZ)#lI zGk{bC;2Bamf!7yW8KUvn6~SKn1duE|?6|-^2s^VGW|~8W-3UAE;BoUwjymbCV8oRH zj7W%fhX(`Qi2K#;8)$i$Hh zw-Jtq%_q$e$2+J@R-y^-3t&P5=4-Q8{v4?e9{PW&bxvIV*xBkK;3S@K0xy!9zZGr>I|uz zsO!C-XgT;>u+@P9qzaEVE^NeT<81-6CR}L6dl_xR#b-s6Id2N~`+NZV5wLbtFs!8l zNJYS!A(azrwX4)q1IQH~ZCu>CqAe6NYff|RA%TX>Y1Yqzeykb?V7rK39V3#gvjX_l zYX&o%+sjVBMj83^iiM@+|HrZ|!@vKi6D99vR;dpa4APtl*Y6nz1LO9gY#1UHu=~6En#r09{%c?iR$=3?(o}G~X@yJCIfSX;nOwC9p zBFol#z?SpX#U6!Zu3c+hJp-3}l#5!rT8Bzyx?&r_7mBv+x?uL$An(FP!LMO6tBCIg zj6I7u-V9&F`=M>cGR`jv8t&`!tpFNYg?uj4kix=V$n{SERD_iP`=c7_h1@VdeZ9x3 zsLW+Z6w!K*lcN%QU5|SCl=^tN=6a8fQJIVCWyhKhA!a%538nhHs1*2ekNSIiJ^WpJ zy~njtS<7(uHkkZdapn?u&ojugH~Pn3J@Zn>%--5>%?(gr3fS@cM5t6_7tokC$1ilM zagH&~D%M;oV^bWO>}=b!qU#26R?e}EEpcXB=EX8?aI(!Nv)2G}j1=p1NZT?HV>`xJ z*A~`kV0^Txc0N*_@FkS&>Q%unPxt_aQq4-a$fL|J9?cEB=?PQi+NwV@znF{|*90A3 z@%dT+9j$ESMW!Q#MVM^lRa8Sg8!;T<%trblTt%DlOM=P%6P3vfsg!*@fR`*$VDq9N z^5DVVn4-AIK(giK0l=6RVZwNM2&xg<%Y9}#e2fz;=Mhnvi|S=ZUMbW}j(Y-3*F~kk@jdGA_4V*~?VPh1m9-3aZ*$8z@t$X8&faj# zIcvYQy3YBMfGfYxhssBP4%VR67NPUet@eqrxX96Ozhani%r`7vR!F8wnS2iOfsTA3 z^95Mrn9Q0PDO)j#qgyyu1;bw&td0c6@GMV8;fO}|)uK z$3In>Z5+5{w<}C>feE61nF_KcB`VU|At6tZ?h4L1qP_sO(v)SaxO=22c+(TX%GH=^ znv(GOTBwkA64Q~wB1}k2q8jQU&2RucP1zKcxeSSv{Yy(zwnZiOIX&v-uhhrOHPe*q zqB0lN%U1V^ys*!4Pl#N1My0^_deq-{*Tdhn6P3rJvX4{wB3QRRYX&U1FwE#L=V?P6danH56hN2qk35wwWdV(?~ zDsveUDf^d}pzITs*t2`o%lp>H%QX{}6;YXs>ScQp;#>>vxFCMdPvT5eBJ!d0gNr2M`dDoJ^pRfYlTn&2~@4|lAS^**+G zKV!tl*u@e%NATU+BRF9e>Rwl0JX(3jRjl-Sy(0&uFiPV#{eW@LwIK$h8ez+G?QCOGRMs*a?V4@iJ@~Dsxf2Jlt4) zu^{HMvy=0tP_FNaN`>2d)Z_Qm!{fE{h{vO{mf>*MJOb}|hI!9CqV`)mdsUDEK>YZG zN+Xt%0TMcmSSjwUf_~_S;Wey%tiI`kZKlTZBWNUhHyuy9@a-C{E0p4>qI?#T|0j$M`bO;)voyi z-t!Fap7}%Vw|2AlLrArwfD%7up^}JqSiKgY>TnKZ1d!rASYE`pta>!)1~S%3ez+|Z z?K~-?j<-(oyE~{9)=7Ti-dm21m7W$);DXKXjGdt_07GnrgS{?-f8m@jpRIQ)1GOBS zpREjE;$98kgGhm^5rXBW=%apV@_WP7Fx%Rl*d1|pv=-|nx;mEiB72k+E zKIVD^oUakokAVA{o5)T9nyZ`T%`}b{hf~?w&BNhR`E0(haC&Ptnc6VjIH7GJKPj#= zS=gY#y*OOwzu7r%a0py7+trbT1L5Y*guVWmcAlwmidS;<^7mCvP<`^?gE8;i5L zw(K*1RyNZLKL9nked6PuV={MXvoAB}*VLx9(D(8N_{V?i@hU1q6i;WH-TlhVFxyY0Rf)2G| zLRDZILdIEt_MCa2Bh0uaSZeP8mLinC>A)TW8Wmgf14u={mLZiBTLX;>R>=~M0WW?{Fw-dk%tV0KNx|Ti3m_E%UWQaoc&UZ1 zF9wh;Jg~UP5d+IgRZZZ?z#70GG9Tc`GA|0y`dR=(5ukN(Flc=9!AohF!sR$4= zq;f*6x8pP{_*<~mUjj%K9$sA7XyG-u+K@J3BV(&Sd&azP)Q9|_jIUmQRxLKrioa)Pe6ud08)hq92d5(fD6UUIt|99hfRML`y=?N zCE)jloCZ^ws?w?2UE{nM7v-v5Pm=w93|iOgycl*G3_mhv69Vq%&;_fX0lz9^-Sq0N zNWHG-@ndBw)7+kSb}cr~=r#rktfOaaPUK@3KM{JFz_IE_&x~4>P75cyROeRm_~de5 zD0JrqD0Dt&YauCW@f)wJAkXL`7kCUu}P_9JA>>v~i zlUSidc@WBL)qd<48+nQG1CZFkC~M6@C+h$s<2LMaT#9v;;RuF~67>AG zmP=aEdOE%_nJsI@rY#vQo5n$bWGq+i?Aj7b77EENI7CqFNOozl=6q{WD{M^Sc6Py5@4|bqmmRzdqdUb7Y_$mHr*w{JQUM++! zM?X~67ZVAuKKlFX>w9Zj^WDH0T+Iduq|;sSrssII@|2Y!sH@>XQCs1T5RiW5^W^|o zx27jO#`LAIuupQX^y%8tO*jbRDOAHYJqc?V-TSl`yEB|SwEOzPbM8Rxw;ubyQ`!Us z`Dret7Cr;zM!n6dwDX}#)9)Z7$Y5bjbhwSNP(P#Q9oxuMteFKd7ARN305vYEfOBT> z$T#6=w|MN(3|n-8<25nZcGHS_t7pbm&tON*DvrgWMLzX0t=) zGO@`EV>-rI<4^dji9ayMCvFBAz3Vs9JBm>Pf#F6gcJ>0sp0N{ehL4^7nX|>HX^#G7CHe?eufAY zK0oRC@VP%5ij6hH3=!9rYR0G|pJ=`^1L2ar;1h;a2Y1)hw^&-CXC*6^9%&oi3?F*> zg1N-N!>$M@(R{u{i5W&{wZcv-(~rU;OxS5hHPpk7VSM^5@~u&s%aBMpC8y0IzaT2H zzuKc-zNkK4t~rbR#;D9i_43H-EOOU*74mJNY~LT18u#?5*B_{d*K5xwe>y5_8BS*z zi!;Z;d!B*bGsmg@))0FoD1gH6-B4-4axy4Fx2mSH=`t)W;N4Cd^eYuh&>K{QU2gc| zGQS)^aR$yuK2D-ka8mQ*-^^qlIRM`DgobiGp^^iP9OeC`0Qy-uz%XD;n>ZRK2N;cN zsOJE7<2#F`ukAgHW$m}dt#w7HP(b~-gesu#^?U(6l+PE5HAD9YPWFZ=Q^B+Fmqttj(6X0!T zPmlBgZ+c=zx#CdSOk&_@?=J<=&uRkn1I9hq1Q?8Js3!%6@##syq^QhgNTlprT2e4O zDzRI7)XQ`0!3!QoMvi|S=-=Ss&6a{CP-UY!t?=*RY`r`OfP)3psOd`86_wlu)+gpN6J-ivS~tV++6w)o@& zs!I>9t}jlkPJ}C2sq)AI@TMnFlxqsr12yjQ`C0%6TbaP^Oh*cfFx><9pc?9#fZ+go zCh&Mv<}xHw_Af0H_+wOJKi{KXez87Yu9*q^Gb(dYy=>b&sv6ID*bwdrQNQ09@AyF} zjz-(XD$%`xanI%U15k~yCAxMluv=8tGF|wa@?>y%^_bADAm0|;ad>?pXQdTOSpoG(EAXZ#=9H@)mCl9rK3@tIfKFukQCNgY zDH5oLdH^zvPfsbzQJKq-NZGfvl;Yf|#Qsu`dU;!Yyj(M-xF#xdQN3*SAvo4`+HVN) z>h`Ea|89?Z`p$ZIx^_bGXjIlR9POG=;62aa?wL^3erta4%2R-l-9Up+|9%E?a{mE|qnzUF_|tc{5*- zFo17Y*{$hr>mxhPU{C3P9|NBoHWrG)Th(80!>{f7JB+@I)bRhyuz{wn#4sV*?v=Q# zvbv;Mk7nb}1CwbT)IbIj6eaqW>nJu&CMiOq82-&hS`IZEBcHT)8UN=B{?FI3XnzBU zVN7d_4VUt$&qEtEc#DnQ{X=1`%{5%qsum2%4HH4%2sYO^6V1pr*VqQXyf)Xc#bt9_ z4OmfHDt9G}#ij|q0M@F3+&0v(xr}EClknr!unvV-eM60Li&$M}EQ*am)mkoCT{yf? z#N!zuI9()&pj5N?1psSfjsM>Ig8Sxt!7$*PhHRbqDtT!i3cP6*WYJB!a)*@4Vuq)EzC@{Qj5@{|?f4bb zkHW&<*+|`Y;y0*ug|^{hVkj0jem{GT!uu-zNK|Geh`(|{{qG##TiiZ7$pj{D4kdJm&$s0a6E{S!EFsM0@`O%{vZotpR%SNW`}%Ip_K<G-6yUADM)%RU{E14eEwxI}IUHxdGZ1pS6 zaOO-`2b}Z+8`C8)AIII~vPQ$zI4TH^=3=+ZQ-!jb+=j%aOuE!zJisngceFDurZerC zQgPwFwhqr>j^4B}F8YfdXRc2O!S3tyu-~ljf<02Z0&(w3mwIr9R(r56lRsCvY6t8D ztvc9tJdpFiropy{PUrETRav&{f~mhF>t5}d@kpq`^f$YhTE7`ZFyo4J-cd4gFq`O< zPdMt&zHQ!@PB(Jg=BWXHMX>QhbQ@E;g&zd=v>IG03;R{e!u^bybgI$dYAo@zhRY)y zdDg3fRi2C1D!=UktBi1jRns=|_(7BPr1=o$JroRKzX>1}0bzzzPK4Du66)muQiX>U7q+gD3dPKt=ux{N+>odhq0lGGV+-m!*+&W_~*IC5hz2d-5+k#GHg8!JkVW= zoT^=KkgBRr%h>BU>=Z1*$=cZ%)=_N5O)|!s|F{u)G6wyHFk2(*oU1{3Q3y9XsBes`VK@Mp3ls$HsZbbGbWb$xX<1g~x$t)<1Q zXI^3H@#>jZ&Wzcw=;jqcAM>JJr&rJHjZ`9crDq>x%%=2M5e*yKo>O|>hhlD<(gT5%_YF6zAN+79k8HSeIXm0F5Nplnv-}vF zmTYDN3^G*9M6)nB&L;;MM?e^_^GS5Eu0noeh8>H;xkK5pxZ3XKb9m}aT2H35TnbKi zXj+8_@3gX|kM`qlinf7{YLSvxIjVNt9#vllT2qWx0b}qN>mQY-7~xH?IIlj%XaKjg zBaJmK3dOR`=X(L_6>FkVifKt<5oV%M2dZJ4lE88UJm6-vQQ`H2d2KvA80L3QGU|tC zlZXc6mjrX25tX?Nsgx%gjj)OeD}bWp(p^D`i=tBE{7^pEPlMM9(~d4dHA4Bk&rFBM z@q%Ego1-!n)!(#vN zj2pgo_lz60-#V;bxE6we-*-a=gGprHg$@QM+j?#IA%_WU;o+Q2~F%sL1tR9@nXLrXnUT|cPXXYK!_C}zRa|xum}?%wxb$q0mAMEXMpha zf@grJ{nnCtU|jH<-#0@AhYe)Eg$@p zA(?B}n&FgZ=(C37Q`0`-!8VUahz_>vg4usu-{N8ghaWJrdjto(89q4lL)(gBfnO3d z{H@QoD5Y5n2)||;Qdoou2+yJ#Y5~D8y|eSGc1OnFqB4~sk#Z(T>&W;xDzQK4Q4fC_ z-orIJGRE%WUGOMKmI?#a!;a1hAyzr=38i_@s1%q2jC-!rYC5VBrZm^?$XFPar3_cQ zc4Xi^&%o}PZ`6KkZh$&cz>VK0LZuh?lVe2a^y2&0u&{B!y2|j{qCz3Lg{K+jN}o7y zpA@^aRHkhUwnhqC7LF8z&I|kmtiy-ZK0tv$!zI&M?rds@o4HskjI|YDxEvDmoW`EA zWh>TvhYsupVWV&S8MCgI$J^)=MlS0HsqMXG1Iw}R8>``Ao6V}(YlbF9oWhukeu1O5u^9=HyNlfjxzO*A$!9um-Cv&K* zsFe)F&{?3>B!)wEPxMpgjM`bFihl8dzr$wc}<{tI+*08>=o!VR)m8A?< zyQVgH&ojt-rZ%I$5 z^qb&KPuwY2J1Qrz{Lbe~0ra!diQh2&C@jLH6Te3_)Y1vN;hp2ZzIOL4@3r4LC?t>t zNcw#)REhsS*<~IjK7bVO!Ga1tmwai^scP2#X}Fvt1gGyoTpC&G?5?AL0u#mNX znz+c$xo*X8|1>rmd{A3CmnvoQIq&Vn@HxJn*q#&M7u!LN{R+38m{aR!{d(APtg>fy zhpU#ZY`%m6-TGk)i<_SbGaf6`s;^bgHdw&UphqH+$i3uj9#8gXHpt0VT3BEgiGRzW*0t>^KK6aMSC7vTa>1{5|k23 zjdJHem6h;4;+W?E zV4u#Xy0M|sOQ_&Z0A`hea2ppxc31kM9BvCWHYE$W?rr)s6x*_cAsbtP!`7`?nEeG8 zb~#yCgJ*RgavMMlo`(kI`9T$ki-Cm$;nsIn0}elQ6ee$Rt}=An0zWImQ{_Sd zmiQ-(2Ub^xnpbebMEB~-AUH7uv$|q;WfWAWjihRJaY#Mm?rQODw zY)pJsR|Z4cpcRs(d;wSthQnK7?s&4Z3;r0wzl8HKHo%`v#-HUv7XBJm%BK>o$nZTWmDmxod4S zD_T}#S71}vQb&UA=L`8Ee9m|QH~3{2h8DE0e4&)cY8$m|_liE1rjBH``e*;jC~b2F zY*k8@%0=^`{+0e|t+m_^{Dx!30JefB3R>0d6jwS2C-GSP9z!9pLr8w7>n zoNx8Z)wg#OZ#Z7Aj6}(cV4e;zOcpfht_;h<6yI{P9rh5;r?u{mlPY5hS}I>iC(>FM zK!Pu72h|6_(g9dUght4u6J3yGWj4c}!Ik03aw(s%F6pxnh{Mw5PB@pw#2VO=UC02; z3b|w!y)}Ye0fXj>=yB^(S5Ygc^NG!!2%(YM=B|8EOW5CJz(|!68#BcWhvbMvI#a}E z0%&1KInXQvtdLZOf<8q6K1?!#<{Dtdcrt-2r;6R{yDK~4FZfPTE8sKWS7ew5M-M3^ zH&y=xV2;AF1bE4{1N^d?&P=I$)yV0U;ayr+0_>te352!_d}JtIX@zr;6IdSfebF-G z@EZFRTuYR+PH;pC95D#4x9mB49u&gig|?J~5nizveGVB7hISF(7P))HppLV)S4I}M zz~YY0iH=NrM;87Eob}7*0hpDc#m*!YgHy{;>WZMy81^^+Gm*`wlB|8T2)Ry7btD1f z;3i%mz#vRpV6dUw)x8}YnTIBC2~5Qc>UQvTK9$L}fyc~}I~vP!vE1r-F4KuP%jT1; zxaf26dm}aImrO$m+X6ClXj%zAF)jtqY)ELG$xJqpOs5MPE6>|1qmVE92F{~y;~{5z z$4ba`D}#7Rhe8IBf%G;5ATA|J$wE6EIE~&N1>%7JOAzqjeb@w|2&c$YMhjQj?038j z+}g}Pnk&8M0E1@zb==?Q?{Ofv?F(esLLkXjAZxD&GWuIU=G}sSPK3R`%TxOF(kig? z6u$W}zPa;iAdB)qPDk?FBJ2iT={=V{u;?#v9L*Zu#L&Tjmf^9 z$-SM)yq(Frjmf%=$+?ZmxSh$jjmfs1$+eBiw4KSboyh`6TwVlrMFG&h`VC0#MEm_2 ze=(bWziQK0@fWk{HE8S?k^BY8J7`^ov;k;ch8$+`6;+E@@K*<%s;PG(`2Y4$dgFM%>*(5 z$&@3Nxt z!{gxBPmx@+9>_P5oQro^85@v=Uqg^QjMrE>`Z@k$h3Oag3riG7Vkd(279_VL8MF<^ zncxM;D7F+K;wE5`OA$hmmE~-OyVad%q>Yc=}?1|GNQ=+(X=ty2f@+y+e&jQ(sW_ik zfMnihK;|Qv+z0B3X-MYu1F|2IccH≥>(}gMnO&WKmsaOd98FO)=y(c z0oet~PGf*fKr((DkcmhJj|VaW$yrFwMY3`tkfV^So&@9=B>$ca^Rt1xgyifwK(-;-doGaKNPfL9kl!P@YCj-1AQ`wnkfBIkKLE(zkeqrT zkc~*rIS9yCk<2?7$b2M|7Xz7wWX@6``y=@TNuNW3+;|v}?;;s>IFOx?Kx?#@-XF;; zNHFK%we=UU-o9rQkRKp9Z8eZHk!)Q9hHWX9HP)WcZhXj6u?Q9*_c( zJHGz&|nR(^uaOx z79d&lLm{)lA4Q$S)!K7JZV?_UF1 z^bC+?NdEU(Apb%#;CUcJkR1F1kflflzX)VFlD@A18HD7DKLfcM$>cYHOha<}UxD0< z7OY=XKwd4qc(j76FKZrs$ADYr?NojOA?yjdC1+1 zkbcCwwk&}5mywIWT3%}?&+(*rG7GPJnQf{)qfiTn9}nanBwt~* zE4FOrPXclfk|!qvc?QW>@h&!b^z2k1ry@CMI*=tuKAQ=oUki}LEFftlFV6$=I+E0W zKst~toDXC%l9>krnTzDcg+Oja!m|Eehrq9ckf?eT9}eizU-ghjOZhDTDJ@%^1zs$t zO63Bah?Gi}i|~)(Xjqi(?dR(Iai8}^?=w5vy}u4^dJ2-~76JJalJ}MX`2fl8tAOl* z`!nJ)sFi{u9{ z0eJ|?0dD{~1j*LF134SXw6}rmjb#4EKn_CkTwn0lpOCD;W7F0k`SCCy42Qb&%+bjaNN;Nc5$~6K-83`Z9Kt_mSv_ z^FLT8iGBqCgY}Z=D-9k}H_5P62Ks)nL]G7Nh&O%-{^k^KsP4!V<|udTB+pG^pl zj&)qDK0Vm}ShLRB@~j!pvS*fhvh0ebFj&KDmBFTHOo-8f5Ulx$J>=t@A2jatsx(1| zY${*I?$+*(1(ktIjNg|+7YXa3U9m^;obIEcudypxfc{CNMT{S7){g^wxz?7BX$h5` zKc9o{S?Fog(y*a0^c8b!I@-UUPYKQ32jHWTG;{9*#xBiVVFrviZd7gB_N^FA+x~|h zee{uFt?IxFwr9;|?ocBauo|{qaMz)Wj&Ja(Fhd|7D4Y0z#n3;yA;$V@v5TQt?QclN zTA}ZL15Vh~4v3X4Pn6kgl3dB*hESXYS3Mh*tDXt&sy>FR^izR{>6yWz!)SiODHO_X z^2E3~w#~+A5BKK30i z+4u8jvi`G%fOJ|^M%*J(BknF4v7KndP+?Sv2BA0!5o1wQ&NwKzGh74m1Tl1kcE-U= zVHi3G3m5V^s0U#)t57v$Xl{a2PKwGYC)C*~6YK1hP`Hk$glvk+8KpWqV|oo|_@OW}>tb?8EZ;eAK;=<}R_`b(lR^o7jOd>n6B7S6Z9UXoT!j>TcT z%D6Q!fuU1_2Z~K_E{gGAb!s(B#5|tin(z*?8{m7zR?1Xy>F~_!&=zc@3x(&a3x0Mp z*4dO?J@n{9ZOswnY9_q{q^SBZ`(^_{@ncl~YUm}^PeX$JrL`vf zstsX22#f*q*TX-y25V)+(Hiuk<*NP{oiE+ByZu+ds%~ya@#^Mw{rkYpiVk*{?sr#5xD#{VC>>@j}k3ZCmzq(-TyvtubcZ(RPO%rcSDzYhx?JES>gvv z?%&A1*T51#a`%YbKMWYVxL+#Mg5#yTc9-uC9P8$C6t5>-E;k0}!K4K+j8|hY`Vv1s zDwpr)?sAXPEI8id8N2%rtEc->RPO$bchBeuy!`_6Hl?9mZ4rBnN|b+Vl^c0*E)91bEfXEzs699reGc`XsEqtR zGqTiB_K21OJUpJU7q0=6>X<^KsJwXf?b8QR+E9HZj#d+LG$U$%sd)8c-}8*9Qt{dm zJ31$WD;(&qPgl$Cz&POGmg`W!D61=j`B}dTI}5Ba^of1Z`JT>*zAPRXl_lphOUh+& zQ3)0lw3cCsmUq9U`!n{kcm!~-TXPmg?TNBzo`b6FeyJ>aR$@Xd^L$FE>a?gl-^x5+ z&#KNI(2kV?+Nc4(Wk@pOju_C+jLI2XgFC}DpdD2spi!OSiPZpz{zguZMmV{`>HW0@z7~HGZ+|9-TXNk5lbo*;to0hl5U}bwE-_{mexG*-o`oQ!BO)>bd zB{p|2;}tw4pbJ)>!l?opz7xZDlBHOwLxVHC+cP;_{|y(}g;J(dV+>%4Fr4%qYo1AiOP8fYE7-K}qW>&WOj>cED;fSbhzQpi3HX zEOo%Qo0G*DuG@{lzqvddfKc3Ep1(9B2HcnktClQhC%74s=W}V8ISkYAU?3bn%}*ZZ zy3J&B^Y~(JcHGnPGZ~8$X0q*-PK+By0jr_rpd>7C)4F1%L}!N0F^?r7lUbuAS<4& z-jUD3thY=X7`HRO5vD3~p%UdTSa%MmLu8Zf3)dFPTHN9G*mSs=fV)+%8-F(+KQjip zpE!f!e4B>M`7>jin8ziaU>^mYD7NRDFOZM}(uS zan3Dx^lF{T690^edYAG9Ht?|nd%bFlXq@Eq3?;Vy|E{QK%(JRGqb@W`%QCEfSh&W6 zcC?MS_p2>jBRVV*ARIjXxf(>7cZE0=q!8>q9Db#E%l!9!V^5raN0Yz05&0f2sU{aBWFr9(UCi1%{&<-is@_ z7o-u~47^&7$5z9395bPQ+XUOw6wsbvnN1z+BxeAH?X_x^VCaAq3^O0vLJ)*|#i~KH zPS`4ABUCv&&av;OGi_{-5^I8Zvwq4rSQwH+aw8B@m&;JLg$sBew@axmjAMKKiR1q| zrgprSt%XmExppjTpNNlDyDL1~{x0p7ayF}#>M#ZHfW;v=3602~MwN2^IC#qK+HSGU zICJfYK~(s3#JD(P$6K-Rr>LCqhdMhWUZW9tw~r$K-R0%qKAKT_OpGSuXV{y_=H9(m zXBW+`;i3o0~ba{dans(}MdgU%l)|+oa%YAq1L(T@On=Y2t>Lyptc_;0YS+ zW35$2S2yRguMe#Zsa|H=tqp-*iEKHI8@si`^3h6D8ut%0_Sv(BqG0>A${?7Qoy4xB zZv6=S)Cwjc>_b+9IoxbH>Hs$P9M=`IeV%p4#^BZ-O>7$X^y9QFG|{1_EgxH(X@_aw zFfaVoGp{VhaBEB4Ba(?R*>EMV4{~5|+5m}RJKPErwP?c5IftB#DL4XlVyMclybpL) zt7d&OT4WUKc7Xlspzk3GT6J}ZQ{1c1>rZ*@YZ2T$Um=^PGRWMV5w;e@ZMw^ajIm93 zQ!+KaL>_!sbm)}Q0ms7z6xy*Ci?38w*A(pk%?-|^4j$O(v2b~M|T|MUydhe3~xblw!TUzl~ z#CK)P9!5pd0^PbT#;FAo<{u4ed<*kG56VK>_|1Ai>knSL{IH`Jty;eJP$A~N6`9eS z_NZ=nW9+=FTk+-1poX$+{RU&vnD}zh06D%~jMqHk%O!ZPj`8JES-^`} zzsb}j-{5J*7jE__<4XXD!yd4pzbz)|H{qV0r$eNLy`xx_JEDrlcvq@3l@Ut89I%UL z=;8a$>vto^dw^(uE1+HjIaqKvI?K4-(MHo}u0GqX&8#MC_rrH~9Iq&oS&TIDcUVs|OQCc0&8^v^wL-#r6 z*^pEfg|f0Oyd%${TT!vNO|gob-I0Pal2gy7i=*h&Gsv6`;jDz@i;P9jd4Cx9K1^wV zq1Bw=`FlYW&oEsxDzhSd7ug`HMR<1)&zp)!Uca3#ilW!QOXl2guMg*5?_$GK z`pF)ix9KAJelT4cMc)q~b8fir2Xf!977F`;;axtTYzo!FKHkIStL1chKe`Z#p5BMd zc}MZ|TEWwq@SbiXnt+F)h@-~qPJ-QYyS#63bc2zCV)(KHCW zVuOcjGA?$ei>8Q+v1HB-$HfF58wza0FtZ~NP7_R(91-G(@R&G^Y#!AJv6n}La8XOf z!&16fig;K==G<^R@KKYvVYpg>VpDifl*l$x1;s3XP)NGT$T*cQn<6rDWX=sohB01H zDCZKbnT@H8BR+g9JQS`c8$}fgF)t{X%E-RIhAxbv@4rFj+;HEIHfjkl7c3LYO3wdH zc;`Pwwu-9ry?PK4$y^)R`%loNQS|;V$($SR{SlV;VMyOm?mrFh`j5yaQFXo7Xc4*| zXD1k@wPwuxhc1eu-`^*5Zn)o#b|V_AD}~2|!vZIV_xGL}x~0$zETU;Cc(oe^g=7ru zNf$^F15?PH8;${6t=|RbWVbu~e|&iVf1Yd<)za@*>oa9!-ycmEM$z|2k~ufr_j_7# zpP4I>gOj3gohsk|A%Qd59e6k=JRZ&_8%h-q^L(;EPX%R+oIw{*5hGtDb8a|Bg!mw5 z2X}?X!|i0FsN%stKDg!w-=zzq==<-GIXB$*LVf_|>dKa#J&7-e_y3>BhEesue|}&n zB$xj`&;?S&!0*YNJunbp;;=RMm`_m*z`~l%c687wGL{s4mTM>}YOJsbFdtT)0lo2b z#|-F^)(q&ZJOz5{o<8}qF$MZ;Wcei^0j5At2L7;Eoz2A_v>>*U)!@Q#Fg_8@9BA9L zjTWxD@sC`Dc4uM+m?dmYq@BPu-2rAn4{)*aQOwE#6tt#6uO{0_HSXCQ73YqM8!8y# z#A*+(pbMcG>kbd-zq-$Z9>aByW2=x`!;#aT7T%Ye>1I@%9=C@rrxko@(?>3UWx70y zZY_{GOI27tC=09d;NS{Xc^n#E3Lc_DNzoHkSnho9Dy$$^VLt)Gcuo&Ds<1C0%hP}a zsKS243}3Cnj+U!1d?NZPjH}*aSU`%5KM0Bss|vfHYq}#;VJ=pFi&;5T74|0CMnS4D z?xDD$g5;<-=t3yQy4M2wul`jS*PVrYZVg8jw(~TfGOMRUZG3jC?~8O9~#MLP^mRRan2TJF2kVtX3Ev%+5D| zO=$_-qEB4>a1ywxR&_QK*^dGepgKE&L4j9iu?4Xuuv0BNuQi#qZA+WN&2pWR;hWJ^ za|c>UV~gE9Elh}(lqI9fZMi5O8x-wURd@`yl2=vey(}_7BfiF>)*3HszN-MY$??WagpWHxZR~3@h+DVt;wPmx9cj^oL{0#s~BR>4C?N>SDky>ED*<8 z=gC|$yQP##C7=|vWnhPrlyl7U?(jIcgKk;H_TUMjao}YIx!m7I*Fq5=w~#qYRq#!W zMb9m$o$d)FYoeJ1rB^^m&&o$FFME+}D%Fs(uFg=h+d&4?3v@jc!So!NbHl+j%?YN~ ze7;nKeaE`I!_u(np|R8iETYNrPpl7?+{_?DX&_wvtC;e9zgq( z?V}ou*3<_;mhv)e=Fx>$gv}f>=Z3>(suMQ0MpUPkEW$Y>jy{I=@bF2K?W78yl5`~$VRSN?bHib@mlH;9na!{+vD5*}&=U59zyYT2@L;-_Y%NtVom?LWN0n}=0UpTih%h(nRCMdv$q5o zID{w*TXki%6mEu+NEL815%}c@LT`tM(BH`BQiV{WP7w04g$$~{(sfY;)$3%=4F{Ff zLMwKZ+uE|4U!^voIdltcJh0fITWD@(kfAh=u7)C%Mw2-=97?-8;TKt;lc7NvSn1kazuErm}<*Vd5kW$B2*qBb8a|Pc6EbF0*+*Gz~$rc zaQT329aXrjt{+@bbr~}MqKobdnXmQh)w>t|x6N?8HG$%v7SXhujtmbTL3bHFd(dTfMUM=c7@6~q2O2ycJW<-xMnz34PACc(5xbJ_5e+QS%ucbL_UKk01Io8+Ez9%z;lL3{b!a9T$3y; z$rlR3tg;KkF)+jF|iDuZ(a;Ha}g+|)Faif#1q>7tmblkY9EJLQ9F0vwI(qzsJhs+2Q zGUkAceGuyF;qh@f*(9p?*q4S6Q$NGvR#T^&E}j7SS}d)&>tGB8uz=ka0AXu7DzrCX+cg97oe+9LddB2Z)Xf52CeXOR3gI zM}-8Dti6n&qv+BrB4{<4bHfqTA|uGNDeC~zm%{_;EV98=fmCA=PR%;a(+D!2PNyrO zh^N!YoEwg(W*JXzOD(ekaP>^jTwq(5C|MYQxGbM`<>fDRt3kBD~&1Yps?KB9hyty#K6 z=o(rY9-NEF?of?l)BU4ZdsjLYXBtVN>L9vIir_ndao!R7fu^A9&~nXbg=9&Cy?oM% zVsfLF$ibmS=?rYJ<%mPM@UGrKH>+Y7&=N&g`{^skpbomciZIZ~oTV7l%2@PVpU-#^ zFD6VJDES6R6>|Q?6=d6}288)!l$ct|*!UVTO8l58T?*m4LZwzw%PBV{>VSVg2PBXe#zQid|5n334t zE%(Lnu-HPjhbk=Wr!>1PF|eYDshMGDs}F7?T{cA&6v>=DP!OO?#OhVy&FcUx8rZ8c z7{OS|7g8NU*UG)&k$4x`C#p!CTRT7{m`bdJg)1k4@pig+ieUUM8J1RDYn0t_X|YlQ~N<>bHzV&-J>n))FsC)vh|T zQ^J9oq4CfO@L*sOO#)nFA%j0^Ooe5v44@0Fh?Tx%&JD-Pp7vOy))g~9JZAPI8%nj3 zsj-iV2WC7Jm$9=CU2sM0%qDYgICj`*fEj1p`YRm4rY$^hQe-Qs0;k4iNuIz_>7_Y^ zF0~?R){{9m95pk&yUD{x;jLbsH|Sz2qT)3&XAe{a=#sH|b$D|=0E-6p>I_)2YWap- zPUzB^HY;=sZ4Y1(O$%*r|1O3G;lc4cvPD$Eu@521h@09;$;NN! z@+o5BDKcjdECfhat$dfKJONlVFy9>rkSuQLY!wpTk+VZrYr}v=Gzo8w4f`Nap+1=L zGQA`eHqj+hMBzZjc}GcknHBK3SGihu)JqG(yL*4SQ593(+Vzs%-7M*q6_)Fzd31pl zQ80(hS&Bt*#-itP-YG_5Vb*i2*ByXq2l+y#y=k(QRO_l5yCFH^gQvN(o3KwIj8_$w@cAfR zWJP@boN?X}@|@jG_2a1yEwv$0?8q1JBoEj)s?_1AwEi6)1@F;Ks+i@}I6PVv1#V`L zE3*HktD%UDx5=EP$n`hIqUUm-U8)emTp7w)TPCgLq+{%-&Iz6JOa>OwG>Ja%-#k}F zk7xlIIJ?s|Pz25dGUtW^XOaM%b~w1cBhgmKcP6r#+y>_=+@r$7XEoVGs#VasI>N_k z2N^^w=z1uE=x{RU9SlSaIUGdHj*c4a^za}$jclSufXHbF8AO}udMJXZOy=Bh5bY#H zBBR0Lz|O7Vv2!!oGOF0Au@fYz{_=jkO?&qIP85{E_IzcJ(Y&@o*RP9|t7f}(C7c$N}LO1lD zHW#x2#U%98Zz*L`-u;O`3-A1g=$2LNjjoXkc{$%pbvaJ`kS@9+C>|hlmg3ZXj787& zK${0yVfhhF=(8EuJ0N7pA^5+OO{E$jID)1+;f#JX^O21R`;;7BWo^WXD7Pkir5)L=G<`X?Cr#kXWxedLd(NLXc^gD zsu8G0zU>=-hiVJ6we@E|IZEu{*g8qIuP5V`3t=yReaRg8_*jcrm}MMc$_Y*B0?S|bM`<;fUX*=w}&_I z1F&ddZ_l8^il>&71uZRf^$eaDI^7-sETT!bYi&DHZQ%4{ zz@i~z*283{s6uj{KP1h(dsDV(j$@&E5*~j-7f=z8KVqDBgcN5F%fB9dsgBC(-SCco zi*8rN45!A9UhaGq@$d$jvlO3RV=Q_u$JxsP9M2w92Yx2*8#-|83M`^& z7S))P>VqFo^<^0COc!4fMq|mG8xA9L7##vID~E1K?IvIawmRX*K5M}dt8NPqfLrLsRm_%-@=udJ z0pP8@9ItMoORorxZ;?4m@#=cUqUUm^JtYju9VHF`y#OMHY-c@3Hk4`vsWE5FA3(C| zGJ1YT7hMrOzaevOIC{nk=rMay?EORo_X`b{e!wD{-1^|4(Z2Aq&qsxmiCK9++`f_tx%aeJeB@I@ai?!$0f0^{4vva=p>4 zzdk^?qu-F~-OGGy8@yZ@U&_GZ>&{F`i>H$1B5b&#wY6!fQc>vh+~QYon)R{pef@jL z`gS0i-p$3jjQ?{5`^RwoYaoz*4P05RU&koxAKu82q;rWD#Fj8gVuvzGVl3M%W<-hb zjUvh3s#W`JD_Xa3le8En5&vwd$|Z&8B2y=+UjQ1Sw=QB9&@bWt_*my0@G$Q&@8TAD zA6{{F`G+1i0-(eR5(`(%AH%pexHCj2+{l~|Ku?AO=J{`uO{MC`>6RZI(2k25N$$Ij zE|X%!yxQNZ&7OsyUiNEvb&_BMV<(;CPdJ9{CFI=ClMHf;LBCE-q8xE1l zVkUyt+f>N3ca)53+<}oVhsVfSWFx6!WWH)mBWWpvwp*+T>g+vq!! zDtYf7c4v5)e2;7Y$sKe9H^R*xG5?_B|#Td5h^E8)nPSgi-Bu z%&1M_Z(+0@Sw%CpZJUYI!fn(713Fp@7nENDL0hVF!XS6L#U`eKdTZZ?PlFa5YpDAp z#v;H>*ZPlj4_JkJLyN$f;|H9YQythKcbs8^GES}x;TpNKZDG< z;qISobAP**(+V)+2r;3grClS!z2VVt7uiUvXqe-R1~=_waNJIpP7xg6C39{#I3~G( z!%A@+mBp*!q46@=M5@rR?`0!a78v(TXjr<*!1xngHbr3kfy}w#z%a81G~Pyt7@f&d zA+y;5h!G1y*BnEEMKpr}-r0kwlMIBxbeR-^Fo4Y20|)_Hq*kMr=coZ#d;k+|`IOu} z8KOONnEJOyMy$-_v}9ow8*0G?YPdC0#;AkX%OQ+;EWW;xr*v=1J+$)?bAO z#$#mTr~+d~?U-R`C4=D+x>Sl_c$mz2M+JkkgX4qnVE7l=ICTd@Q3k_5=~5|z;axK4 zhJ#_EYh-|aPdPeFJ0Ntmu?Mh-rrpw_7#+A~GALqn$rM2`k<58V28A<991|WCYsdyt zjS?hKxI~IobjcJ!aRixj!$GmTXQb$q5{Wazqhc%BLaL~U6G8>3CdY~|&_z>(#U?W6 zhQnf4S6Il9xGg*+ZXsJo6%uIa3u5sF)lb;&j0jA+a}^bHk&9)VYlvIyhUwxe`1X z9uX&#&7)dtD0FUD^^yUxjxLuXAdV+wpndFv)audo` z%eaN1naN8x9QD5mOlwi^D_WV6t&kBZlILscWa! zfpn=9!7!i9x#3{g%dI3;SGXkjwh8HEDe1^I^5M~uC0k1s9ShVNu5N0|u_HqlQxPt0 zWX=tTi)-vC726%?xGFq4t|S{r6&;GP1GJLCa2Z`HMKD}S=G<^F#N1+s=iK1O!einQ zvW-+RVcXX>?lCnBTd$UKGBh5h3#SN;pO85>92!y&Xb!Ab$|vMd@vrc(_$S#us<2S# z0kss9A@MF3`plJ=?s>ZpT;3OA75^;C}*(s_q zYBxFAwW(pa)>=t$EL{*q+#SO>?+7aiMp_2I$@Y%$a&CBUeu-{G#WA;-pEpq%Ig*@7 z7e>*eTgjZINb&{7qUY8OOt85gGqx^XqUC+-?gqg^t`xX~Y#!Az?J~~hsh13h+vsvB z0^$}j=N%3ZC9MeS0}6$tbC>p4!UN((vU%zU2um*+5HHZ>QUt_vWX=r-#BPp~1RJtv za;}INc5vtr(F81dEdBIWOoqfjx?qZs=tt(=A_L3k+aPqvF{aG2_w zGZ+fV5ST|7ND%^a$ecYO5TN;BwLo}28i0kf1rmUTB?aHWDF6#gik{doZ1`u64a0V^ zHVnh=e@LYADLl+J*Dh?wb%tNTFm?{x6?snp5@6@BFES|cox>(9h%E(CU}rE>lvrCi zm%{ln;;vNqQZ##nP2K}~2g_Lvb_O#~26I}+fU?!%+7h%hSi692998@54Lzw{&|dwwmYJYCum1I~9~`#9z||RCM^0WX@8J_&8(Hb1muJ zEM#;QaK;%!MIw`H%R7>zzK4X)lY0S+X!2zH+#+viI5m{9@d??36-8`(NapN;jQ~l8 zm8bBK6o7@5r(D;=2pxo%X%9_boIF&A$A{KIF&JD-Ha2WP&%g@c_ z3vgt+0|nm-kAmyT7EwikeHUYA{b1Kg_Ww0>nH2s14KnA3`+wNRWWgNMa=8CD;obif z*&wR!pXSrkZBt41{u6YO6utjTGUtYSf2U0v9-<8=9waxmC*T;LM6r~1z~IyHF!+dU z8C4kAmqa?FfSYbI9{xj@O%V_8lR10fAwXxe)t}9WOarj6`m=jt+;8*a8_4-3qPYP#*a+E zBY*{Y@cC#4+xM3T+p8vtdnUn}%Wj8rm`(vkr>!CQI5!J@2)^z^wqsKr8gzaaOG&m< zNFh^lPGw9pmjqDP8jMepEv6c}me^`AC3nVUedTa=GF@K9aJG)jSqf*zGZsBJbUQqq zWJ_zZncN2FuBI1*EFtGTUqH5qDmLtAVya=ouBnWQuhJz|M8!5T=Z2$Vsu9372pu@h zqjnF;kHcf-L9(4xv2qMKj?~s)M$q@^@+%_fUNYx~BWNTGD7a{k?F-;YnEw_YEq^83 zL=`Qz!#(3_kww&1M#k%OSrw7-Dw%V`k)hn_I(|v$>Sr9Vh^FuT2y#gAjHEJNM$^Ss z#LEaW=Z53Or~Bp5@CaE>4GX^;y^NI4@?ATL0gS*-e?NIqGuc7 z*>#Ra_-LyU-j&UlO3qpDr~6^lXoGJ?rdxmnXoH`|yvI8P#x97hF=X(V?v77K(*oaB zZh=?rVc^A@=e{{8>Yzw=$!LYGdC_HkfLd+S3-M zOozoKjpRD&+jNN(6zI7b_IZg>RDiVOkv?fXRpIFyosFq1BnVhor;=G<@~OmP5#O|B?vg^X5o z?f6K92gONbE2&lo_K8GZppX=l0dfLeKt+HYOXl2gfbit7n1ad1S^>8WC)x~mq-x;Um|mEI0VMC7$FrLM|JT)cpThEwv8$d>?cEskwH>R2E*NS zu@u2@2bpuj!7!={23|`zQ1F-VDEKqkD5@yf!?U@7DB$|Y?tg_YkD~iuBy(=K`AEQ3BuT-Rw{Ry-9yHS3&O0J zL&E!hA=xmhW!|-+;Hr{gYO9lP0bM9X9PH0H?+DumPIEIwJef|L4#)E1i1B)Of49?3 ztGGSF=iFkvijs2RPt%1|^na4fS&9QEGZsD9Lm2b0pUaCqPez@mW_j?p$U`V!sRMyG^F<9f1tR4X1I zG&)q0DxeeTLMfv0IL3KLsDO;Nk!T7Qu5F#ij=Jb8;r)Fc-L#5zkx$#mUr9L{eVHz# zqW{k#bC#mf>5N6sRZB+ONV1`O+vt9fE@a#29>txk%9LnT@pp$ zy+P(I0gpF_1E9tN9-lK9fQ1FT8VfxG0FN!@9K9S)^M*~6W3a$DR!X*JVQJzy-Dh=g z?bgqS6`%UF!>B<|6(jxk$fWn#SH{8~@I_h@Z+Og_q8SUy!fEaR9z&;>TZ@$urF<%p zD|aTe9Q0~{Rl%aW!o3yG7AwQ?UQtWI?N$wzs&4J(m!MH(yEGD>Dit&hwlhs-%V~?n z`tD+7BKzGORtDZ-r~@wPN>$-IY{Xl9^TT^U-;w8Gkx_C>Avjas+$ z_hJpUg@eEQXJA%p34RPoYpHCqz*d2Fuh#!HqF1lg`gOp0b!9}Rc(i7}y}dFxk?H_d z3Rn!A$QX z3rBW=?!!x3XIC~^($;_hI*Vu~^U9(^JN&Ju*{e3A=o(zvuD1b&wbmW%AJDpg4z{uu zbnXw{(>B|+8R)>-dT`cD!$IWC7$Bb_xnL}i-Nym>9+HJS0r?e@izWa$cnXj!rUH4a z8OTmEf$Z4=0P^^wK<kVjttGW10ty=r+_ zACUhY0Oad~fsAefGHw)*oyP##WgL*E@j%W-vT7obBPRj*&txE7Q-G{!26E{vAb*$* zAiY-r zxpx(iFRli1`WhhrLNe@FAQO)VGHM-=N7n=S>|`LnO8{BW3gp{Jo=X8KZvc|d0y(Y| z$k8pz^j zfc)cGAOoKVa>xrnnqCCb?-d|d{u#)WH-OynS0IW10n+zPAU}E=$mRb8GU-DgS0kD5 z5s;;y0ZAe`eF&_ExMMt!1(Se0H5o|fR3HaW2hytr$SJdcyfP0+dOsis%?HwQAds6D z0y!ABG&l*#^NWDIzXZsnRY1OZB#=4B0=WTKTs(y2lT(0Py%or3X9D^8*MTg(8_2o$ z1G)SuAT2KfdGIA52fhL1^uGg{{x*;W9|L*5FGQu4{ee6*49MmXI<7kG4-M-`784rm-^ULtFzTyq#cCAo)3wF+d~;=-Z3RlI zGnI+2S+Z)$^6tvGVpm5dw>i#hnPR+aOQ|ED>#htrk_GQWp+el!eJMzX^`ZVE2B{WzkG6pW}CVm1LodHz@|G4c~i7w0QabyJj{Oyox zq_r*$s;68E(;hpg3$dPwLp{Se*&7KqPJEy90>C)yaP~o1MV$v#l&>WG{UYR2nYK&{ z_SsCZWwL@Kmt#HmeW>R+ry1_XDZmVhLe9ip0utqtz~z@%QTB(5l5>gsa`6{v99Fku zp}OU)CV8+b=U{KRjj43|Rs9E$P1IDmE0xT)3-3OTNyv903E}VV<83bX zZUPd?gf&+z!7^VvGJlBq%mt9oD9GZp!!?)&{cD5yuCE>7-L7m|EENMVgIZe+fVRS& z)z=TPB*s+M2pC!dkBBSA-9`bLqA4kidKy=9;C4 zP1%kQ%bZ2CBy85arIbk};LwpaOzcyd@X=c^w_OgoEyv7>_5G+7E*zgd0ki4= zYgy>a$U>_e&bUgXu)DH=hZEbw)z9Fo`ssI@pRNyPiyh^*HrPVj)3O)92ldOLQOOlP zsxAt9e(fe~z4n4OEC1Tzp}*$l!;#n~-dg?0iqIe7$r2uzBRK4Q{LX9D?<^1f9ju5j zwhLc*55IB|wD7sfR@Ln*i9&Ld@TKeEBl^YAjljROI`o&Iw~1vDZS0gWJJzqq&WbNW zXGJ|fh5G;}V3D^Nv?}lwy}erP*;0JD0*yoKDU~l2;?Ntl1pXDwa|!U!pM;JRF7r}f z^EenO)s-FCW%B@Z+3*i63;qGm^7j~a2;B%BLi`g;$e*ZDL)-_f_4}Z&iSs{#%%AO( zSTj^U0$mjYJP4}@Xxs+{AOUR z_x-cU-9LQ!8c^8&+Fosp0q*+vD%_{}D$w4QPQ?#fvvi3N#rK1^^*R4BrChAW0sx!C zjw+4sF${C_VAv{~O=qAXCa^yl`^taxrpf+uRQ4uUf$5XLPhb0%$<)7DSXEoGkfnjI zz6kpCc_CY?sNsGNd`5o-2GzLX{Ie|2Z`CXU@8YoCb{MwfpYcywTtDMh z8mKbd-;}zRA**GE*D?2YB~HP6oXMXl6WeN8gk+MVf_L^oaj!_PPF-p$fzp9kk*8s~-IQTgT20uA>|B@whuj#q*IIjA^&L;o4>NbwM zxoj{F&Zeuj_HROgxHvlkeTM%ERy_+DC8n5i)zsV0h`FtXU031&@@0?85&RI(vL)K2+z;X#0re6A{%3J+uf5)!%YsYy$^*0phv+XdM&Q3fjDU7H-_v}i4&BjT z^^ok>8I>?aRKiEzt=6rT6Gtuh}M2Ti zamMug(U)US^R=txdTLe|(aqq~pNoCXKWmuV*Mi;ZN72XNM_-K{&1ZnQ9WA$tw$Rn! zf3^PR^Y+~S7H*UOAG`V`#9JwE&o?R?yQ*8De;z;w{|th-6!LtVuNg8}85>E-!~1D~ z9sFJ6=LI(33{gPSUbp@E@F80opJIgBZz7~j(Oh72ltJZdqLEYo6GpJzLj;?4GGBMN zTieM37JbO@xFZ|JkI$7E)gJ05@DZR5e%(O2s06Rdgfs3qf%k{AD22ZA#Tyx=|1ZM( zO9<3cBFs02>ftS;T7KV`(arb06}y?g;m+x1xuyCe=xFdMgdpmmmXkp_k(SeEe-M2P ze#NLae}bpIyEvtt;o$P}mG+zNk8DEz2A~c8Ed)p^?hCxO4oU`c$tCbR49@)Pd$F_m zTTmnZ%P_!yk4^?_cVbU3&0Px3J=HCV&jRY;LjyhEQPvE)dF%gk?BHi?N}S&`T&&tV zIAFwh`*P=G))~I0e`T}!w;A#JD}OQ$-!aNO5W!4%>+Kt2A>_W&W5&;Z74fsmD4$6b zT>|8If>5Q-5JjCcG)D}_eI4PrXM=grKi*5>9pi%x=9d}W`(0mq9GJ)BW87Y=)XiZ2 z0e~Cq+>bDwpLp)ri6>HoaOGVc(5rwq_|>mRpxa9lltvZ9_B6V&YHR!kAP#=vXC4Qv zGo31df&V@r4le#|1nW%cxg;RAS_YLDn0cG%1;85o&c7A`F3X|>7`O=skGY2X1OGZe z-un3n@+X(1=mdHJ3EId~M*unaGk@Z7;Wo0>Uj)d(rx9ST?Em5!@oi?U9|g?8FWd5W z!Emyn&DvKPn4)z*5zGu#6*yiT%;$_ot9zxwAQFsB?g0}Fgmj`X<&D1-5T z7(q1>hNIHZYN`3+hxRjQJ@{)zTNln6u=!$t)ay*If)6`%b7pk;`)D`#KmT6r-??Dx z8_Nt;DYEew0p=wnC@6W|0$v0rEsPAWYk)QQp}!OXwkq>g8kFh?rO>|?+7B)wSwgW| z7D&!HFEH6+>#sy0&g0oIG)@)6?>i-IUIC23_y4uW0hD9(hXG^o_mK3V!`fJmHpJ+t zgwk&_bL2lj=7>UaVcqk_R)+GQGWFya|LX|F9cs;i(kKuAEC3Du269*wr`4rKR~pyf zW(v&rA_YcaJhLPW6t>6{7k(HZ2EX;I5zgY(5rt2#HT)Am7;GUAN6}flIuuMgmMByF z6~G$&kAEuyT#f?<<33{hOO*OQ0A%og|5}8!9BL6#ECk}E(Rcqk06vQ(BOPm1Hr6d% z1y~;C%S=`J?f)TyT5kE4fqc*30g!+A8xe>*xthbArP}J%`1kK(?$p2WcO%s0P&-Bu zPEV?T7wre1{+}a|XP4sAhE3o{0cP;0|Cb1BF~^S}rH~C<#_2Br#Ne9k2aDkV0O0^! zHny(<#Nam#&JS0{c3t(N@_zJt{yy6M_V2`TxV(-qU8xLqJ6!+pf0!at3qLWSo9QZqaa$`#Tf`MVUF`xls?_``;v(;LeG zW#it@MfYdXaPXfYv$4Vqb*=9V$GF9J*c;s~9fAF~%#C~(xseLSDG_BbNC-cKQ8($# zW>7$f2oBF?bIAP4Hu5VM0vb=deZ)i1*oHn*Vb7PCqxrwBF98U?&CxNk=aETO$DjWc zFa~cR&r>mS>SuXqvm<0p@~LZ+-j zaC>PPLhb$V9@L*_zU@DHIe;4co6M+nQs5;@g(L-B2*q+2Yt~%n?7{C6{NF^5uMWi7 zqRWBLZUpv#e~o#={}b|t6|jq%Tn@0s@-4?+|A-mNKY$En?an#=mg`Q>apPU98N>Y% z<~{%78xge2AXpCcas&9Y=wMJFv04Yx1m`dT+-L>bZ?az??61)A; zv^1=ABtQ7t%()5lR|(*^ZpZ$77AD&9Za=*mt?I%0CulVI0BPiksS{Uu*Rcj?Hc7vX zc7uQLug1pCHpv^8^v4Xw@1XhMKSuVtBH%<`6ATem{;rw~-d|@T{BuZzS9p!IbhX@a zT3%)n{Rxuj6@W7WbA;xj@yD5k|8vN~S12ySvI-^KK;Svzmzcl*BY!70clu(fc}a&} zN0Y&Sgp_~nwr)n?$g9?M_kI6mRt)%qs1u+tob%cGu7gpo9-ht0PqF~P5eg6}OlK1> zf*FdbWzZh6lEL>FhE6LkL90ne|1mTh{3OaAC?-zzsBN2hQSc9Q$$TUw^UW6?p#!s_^!yiN8hDFnr!zdRt%wYaiR)qL|RD@VGT@{#h)Afg0 zTH@F+{E-^*mWq3M^887(8C*oY9YNz{@F%1kMN5_TKZQR&_};7I?#ZxMstG|Q{_y(Y zb!n!X`~P#rYCdptPf!0c9t_-5%3^zZV#O=IYl`HvR1zb7KRagaq}B)DJDHB}(pe5= z9$&=L8Q(qZ+@bfEulzo2uRO_xQ{{Vp>bua(2j3q`T|iIn411`zw0Cpb8O>1j2VkyG z#}Bm7#Z!3ugWr$(2=AZnLBEn0dMJVM!FOwWROkp!+7CbYy;r0M7Q-0)0NM?HKmYkb z{_|=4^Yb76+=q95{=*M`AM8iP1(=_1*k6a&2j7R+TBWuhe4i4!XomhTI_Td$gNJn= zy6wM=FPlJq?+tmWxZb(j`>+n*!a>ZCETjCvAGj_xLW&H@pGOU*r&t3jO@Yuo5dY^s z9Q+}4F!&)s5q}ZafH400G5)n0o<%_4p?#NOQZhRUS-V(srb|y-1x3fed^y1WlMfR{z5l{>`VUjb041YEq;`jegS2x zx3#R$h@4<|sVBhuU3EBZ$h1eF$Q-}ClPiixMf zxA!|!NSC{__%{=&kH_QTOu_7rhat&&7U6Vz2OUKF@H{TQGdWEUdy{>{en)Vq1c!&6 zSuvW#uV$!5aoR>{j^kOtwJqfzq}W1)Bb6Xnec`F6&|iTJ?;ewdMhJ~%trzr-F?6P< zEyUX#AMR|f7clu5H_O@G;q$farwaUl+Lxtm(Fqe!j1LNhgGmZ-FfYaN7_Y#0-9I`x zDgD`kfuzg#eJ6ddmA%_rU!(P$SeWo*9 zGaxrXt%55XUb9{o@QYy&xmYvOh*bbVf!7{v7sLMScwMN4F`Z0?y>+6pUK~K292f1j z_DaSkW~1JHW-=Wg7CTBuQcRxoN%{Ej#hqeP=ZKB8>W!yg%Z)-Yu6w6*bf??dp2Hy4 z;o90$ftdmq(cvmn(sFE-*hcnLEZ!rq2Ieucj81T39kBjLSO*-9;)c_1dIYXoW_Dfg z#df4Xf^y2q2z-^kCCB1>(7xy$@8=T$GWTbFcn3SE9^wawIZXT+MyfMr%L;S$@E+({ zq0xJ5BFXNp7w?fz9MWybj3Zq1_(<3)gbToHlTK588}%i2pdo=cC1rHHLQslWCnzIXINly z9*(=Swnzk54nL@^-gw?G^VAd()mm z8qUVJ)_w}!n-;T^I~(vC^x;E@VEXTiUM@X6U7!lgX~8$JuMWeb zqBZOBD_}!@m>fsAC^6c_!0vLT)49sgCrv_74`2^46Ur5;ba2$uF}MMYhR>mr5JgpQ z3L+GsC=@kw3E?7Y;r4a`ZD(%=2PGTrx1SF5Dz@+UyT^yy#ih;7 z$+0%NG7@>IOG7GEa2e`mXw!3AL|0pngX7+O%nxpO(uFWR>jQJSOnW$*nc3`g3Y;pL zUR8*f>S^-->=2qRS&?%4_5NL`K`J0`QjSBZ6Vci6ooQ=bTDT^Jn;`(PeZrsvI>1->kPJihN;D+I^94Nw2m(H22gpceO166rL1h{k z5R_FG*v2d$Zr^^FzaTRoUVn63XDJe+j!ba z34uP-dw?3lr_LRHdZdF^|NMNVRKfdvpMbpR;HCNGlK zgfM-IJWeODaLgdqi*Ym7JZH4?UZ<}*9*DR|Xa(wCd*kM7+XXjJidToV$Vl!@Tn1oB zFa`#5f-MxXTxwVe4TMc)I9SPYRu|9|d8KQw1o=evtJfiYdk;F4wCk|qr7lb>DtJ-*qxz_9u%kJ6Cs6QB#R28LSul^qqhUu zlfvo>;kjtp?zMG&=vNq;K!6~}DO(Q%hp<$siPgbHw=P{BbxyH@dCN5nkMX?%i<(oM zfiDD7lC;>()%KDoTN2T%#xN&u_GBwWWprt3M!<%NV<-v5Pqo!t1ohg*H7u%qNY|_F z;-?`+Afk^*ksIye^0Kd)nz5f2XK&H}%pI0GvU;#m1aG$856Buy3 zuK{neKt+#o+pWl74^eI0q^K1)P@%PWrTbpHcwrrzU+3ic&wlpDi`J#htFu-hGy91yk_s3(szCJsSZfy1d}%;t_f^*x?+c zfJl0g3_91)rag6{$zVO04%8i{x9~Z*Dk&U(2a1}cZ^&U`RQK=SZ+A{QeHqF(?r-q( zv-tng=B3SN;RD?7A+Qi;__Hs3=Ckm9;6zo#dVA76&@p16%rg+7#K=}l1A+>TRxCF} zM6<;XN**<)lQ*@MzK)4H8dKZAYf~^f1T{1@HZnjs28Y6W!Yz*dNb7c3pr`#F3V4v2 zieUEhyqtVKJH#GkN>%~vz$fp?4mB%o!lIyRE4%zP6@JlDg(#*?KD$RKM1BS$C^(gY z6vcEyiAILO^Y4&`j%90dQ+3E%s_0%E1rg=23}5X443pjz8~!5M%I4VH;V0`&5jLQr zl~D-b8Sd@|C>rJ5dpR!@!2uI`J+RHF1Qlz@0xdy*1uft&hnF_TYE|slyvF)Y%S8U?tPbZq#7Mng8Rul+wpm{e8 z^H=RF&Lpks;^F4@ZVSC^Y^|*qt>^IJ5J#Y?ypboJYc?|b)_FRNA zrtU$1e=KGn)imrCh}MEDK`dU~1)`^jkV-o!zbZ*Fex;~`am3GQbHGP8>G?GAW%59I zjW3Xg+>r6txJBtGX@0^C%%ugMvyRr#LXJppa2HK;!$p&OLtY+?kDsP{D#> zab65%f46Hm@B(p22WfOVh`&M2vMsJ0f+dTQuAJ| z9^z2u)kw_8Toh!PxI=SBAtD0AdWHq}QO>tb<`pkNCCNr5r)jMV?~aIWoVJK2m=kvl z;n)dYc&O8qN~)3Q0STL=p8!LH4_kfe7#lAQ)}UoTk=T2f_R~kj*Qt*@><=EbsEB;M zxRA8B6`TpG4VtruEH5kxnWLQj61mZY>~I2gSKa@kNgLm_Jge;9yA@6Vxb`TUvd6*u z&tbs~#RUe161tUOuNU`vr#tCyW*e>JZBTjE+qpSC>G_qX$CdQ!VADDnhs8I5RU(JZ zirRXZ$8}m9ah*2rW)Lx$lzCML+fldx^9C&AZ672dQuEooD zr^i_(E#ZDo8~F9yLL((=_Lo7;-f)E@qF|4*gFZ^Q7koDa#~(lXd7wl`4p=L#607Uq zXkFdoZp1?@Zf|5VeTT?}R)Sj}<_vZZF@BMz*g3Ve;pU+Ry_-zm9m5EWLncm{VpV|bkv#NLtAh;`EC2c_~r41^+MQS z`@+V{FI{+)CKQ|s3gF$e6ySbIOYW>v;)`?;BRd8G zfQ0k)r55Nr;JJ$Cb(0onSWQGyAUCYggmKLRu%#~RGpQ}AgUEuHL&(@iVr32<0CUSz zNE|IShJ742v~FsQ@8O6SU8AX~UqdjkgctYT$Fc~={ltN4nF;RH2Mm?f~E=>xK1L_YCKyCq zoE_^ql+MCS6~3C+!3{(l4jEIxSPGI27CK_f;B&c9JX5@D*m98B4;D%ni}B!iT~@Af z!P=r`@E8|ggJ1grms}Uj4G$Q{!(Fe;25IHP4cVJFj%#DF1w|O=XsSB0uu}4cZk;I_w2>t4 z!0Vi$7lu`Yb!1msgp4O5OV?rAt>GBjX|F_5*_gVrZ9%%r*#q{8>OMg3FYQkQrvWxF zXjPHR`X7yti&Jb)k+$9Sg6kuv4%bOq?r{}funFMO$y#_eWqHIhub2U4Qx}2ezeSsr zgJ%sg*cW(ZZ}g~Z4q>gx-*;{c6K(~mlnO7 zk#DI%YKyda?`-9(I)q|*r?~J~aPw2W3+IihzKhUO0YbG#`0yjKD4SMbb#k!`m+}A& zwjY|ulL|7-a)u(PFDQ6~W|Q82U(VSx9&^kT#2cGSC>{J<^s6I|3@811JSqNM-Gj0F zGGaOdCXaXf>w|T09FJlQ6`XiO3$@6C^x`I8Tiw`rX*GkyST9CVN<>ZvRG7*pD*#m^ z?o;Rtc(#vOD>jQG+#!Mv;QB~Xh^yesKp*=e%{vLtkU)gh@y2*{UHiqa7dJLm+i>wS z=uS2)Xt~^b`rYm@Z9RlW6E&U%uD-kq0zqx+NZ`pTVca}K5X35MRXp-T5dED+VK&C@7?3zfgdQ?3 z5GDv|OTLyEC`3SEz!;be0C>Yn2DT(6=C(h}1qH|>Jmp7=wuCQ&kg&yBEw9aRME)MM zJfVaxfPPQId^nl>0ap?o0tE^T*9l=g0Sy~VkfFLW)*jbxCFO{auf~%`o@f1Boa-h+5 z1jqy=CkV>*GWck7%}#JW3uOlzbT~#TBy`DO#a#y7YY04WR^Et#3;u|`eJP){8+J)7 zbT2t=C&wmLE^;}@4!)!9iXa~AvY*St5Mm0ZJ`ra#(p7rU?QN>V)p!Wwnj-wCi}!SO z*jPvx4%ChYLj*L&&r%Ko4>>fItM*!JvK*_r0Yqttk*6Dls;f8|An9i%GG-g_91db1 zISH=@Ch~Tn&6OO|0#BGH6$A%-8mOU(Q`E$^0V04dTQXRxv zP5cEanSW`4?Fw5{f;U7Z-jXGL{qi1y;-Z498(~cB%0dZjSe$j7!Z0j;8tAbOi%|J~ z3sD&%7)ANsntcT4G(i^vBL*EPEpG6Mi_Wl4iR&kLD8=sh6XPc^<4b8s%bbywf-Iz) z;JyO~ggDvG{&b9Ni4^*pf>nuSQM2!}f%>uSXlR+;Qn{CQz`vS*f z?cDA{9UcTSKr=e&y*8bWr>zT@565GCwOJtX#~R}ER&)fjOO1k1eK6m|sjAV<$gMO^ zjW~maWdbjSQ!GPzCHm3qo7fa8A!juNp0ex6eU%3}>}tab&QZA!axZvSnE*&B3eFc* zfNsHwCQ6JAy_Euv7{sfqpbEM%lm^Z25)nGuM_K@!4~Z9Ie>hIhPs;n)KPm6a`pn)S zpDcM!)ivtVPWRax>=H}@Oj>~%1U63STX1x2YSdl=LuCp5?uyz=?f2!4)mwR=1QQT% zQ*Rq}TLc-*SUyb?@~}0*sRuSep1*9XP$w@)*gycH*+&9Z8j7!JxrUDVkgXc^tociE zDUeaMoW7&>rimD-o-D-gRmukrb`;jI*}1)flCh+IIM1jozA zA+e6b4!RPcV$W*f=q7yOD2go7@pw`&MFiW$u$Vy3Al}_Y(_v8rS71^z@@;xY9U@Q( zpd5%ZJ8Zm+^9jzp;PT4#YT~%ePe421-+AB(aRmyfDr~slczkmA5Y)GGcE8a^Wk4+w zHRo&!R*GHha1nX&pxz=Nq&~&O0U`>?sct@yRFp{rK;ENJR_7}i9hp{ld->qu67}8z z0$eFtZ}!%b!7H*XDoLZv>x=27xnMoAIo^ObKAv*RQpF*BB9C@)`LMT-OcZszn@%8s zyf&Z=EMDdLN?1l~lHU4a8eVnP8W^C!Q`8I^k+=g(A-6)KyR~_(upKagh@2aC!PnG3 z3zynW>Jsp&a4PgfuHw*!7fsGqZMNKMAS}pkVJQk+WvFajOghN@En4Ct5Ic{8EsY;u zyqx@G3^}X}vjmYPQL*?Ef*rXWO!6{PS4r#XWUgQ=cQQkT%uAAs!xXZjR3Abc_C!ic zNJV2Xh3AKSfJ@NKpU_lrRvxY_D1zmWF06F)_6`Zxd?1lXssp5K_0fn*e1HB{K}h>u z{BK+y&f(`9trVXl)02hogO`x@kH|EL7-S92r3Yc44d2mI?&2kp-`N>ql}}>V)s+^X zfRlPtkn>3RF-xVar2&u-#>jVm9X0%C!GYF{3HDsf>Q+)pA|mm(oL}PrxBiW)Cq1^~ zZve+i(k^7Cxtz^lZO7YyT5s)y7>SzD1`n_4^V>VSs?I!S`*(KUd4fF;PI1}$Iu9NX z$V!3jN+bSvayeQ%<4r_}-&YqtpF{~Y8^h(~#W@&=KEaajD+0sQ9HnYRU3`_lbvdiN z3UiGRu*PtZ+VQOvKiz{z3zcuMAHurAelKD9F|wTjOgOQS?~+jpCac-eh|`KlCyCwX zwotT!ou+F%>_GKI3&JBhW$~3}Sy2H7gAg!kXOTGInPg#@G~zeOGL2~R zH_q_I9SbAT6zw3CgU7nI7qVx5+|-PHM-HVhdDg*fcQt)py|rt~#;r(;+D?hD0z-=^ z|8MQCO7m47T6Dp{G!hZ~awZ5MkF=jh)ViKI3(~N0IvD9NWZFD83;2)d5avRXjR@5X zQ1NF236U_&B+|i!kE9?7jywL~HTFgJ2`6{WgwOTgXf#q_D`S9tBiQn9Q#)$))%dpV zrWGJj=I~pgiyIbK z4Jl`)cIYYVeMz1%!{mAcH z4-t5S@5D%E9El4MvEeN-G>>Tn=R<4kyPBXH>nCHWuuAP=h)9398b-Ui9mic=WUE4e z{s`}cPc`pEDiKg1Sj}5*Q>d$`lO7{@UT}4xun>npwu8DlBu@zPb;`N9cg#P=0kUgTcZ023iz4B7RuH}aAVW0d<};-Hg`n5 z#`~XQ4Y=!sd`c<(ae{O*99PEp{5bUJ9t#JR;f!kAInelKSkewk$Uyyu}JAW1(8XA6?TT8LDXEMTNj?S!wLQ8wek^o%;o@_<`%z`K` zlW!|4?~Ya&jtTvJYa1t6?sQ8-LqZr$g3JcxcqzDu-W^@Ha5yg|A(ko(2$eP-@~34$ zk_Egf4G^Qnm@y>rOE*ON1DD z4}Ukl8iFo~XyDztSB)JbQt^wrmvbJAEwXQ$n>pTyLnw1u+G33*;vrEkA|V??#C4RD z5p5f1+v8l$Wfm!r5z6Be1l zivaP}2F8f6_gH?7>RR$F#z&4_I0(tei5enS@`YU&56%||9y@rS(87%EMp)7fEWN0X z)EtfF@KfFdGKaX5t0AWBQ#2_MJLL=YEnBFc}9A_Md!Ptot>8=&loO3;>cR)ndf44 zLA;_tp-4$23lg6qtRM-3vMaJhFJYjh9QIMrHOiGBWlh_1>;N{@Ll-ewaN?>B5$Pw~ zgtJ09^9~Sr{2k=*nZ-y1QI`f}nhOw+HIvp!=&p8|U5$!LwV7XD*e|&^HVh=+E~`iX z5dq5kb>-ji)q>0cvfhO_>T>J;Xqnawt!_X&+f(Y#GgbM{cDAbKo%4c8u^S;F7p=9X zY&=>uMLG&9MA^OSf_h{bUwb-`=*(P_VOyiHT^UU@++46S6)GM5)^Uz6xWQR*eB%&Y z6d&}&sL?zKDtE%tGb+S?JOD)@p1ur~cBzEX+0=lYb5w#mGiT)dmEan8BmxFY*0Dzwr)0&4QEt7{0zG|iVr$lmGk>}b=u0)p9_4I>$vS(1QS znKl5z-HZzg5- zBgqBe;d9*4N-2E^Sk~y_qYje8Q^h~MQhNPGBbQV6WGJl2a6>f_8C$bEiRp?w=MYVA$b z%-n1vl#khLEQiNWFXW+^iyVV4n;^JW^LY5&(;D~4n3sUuAll(lhm{sBi?y8E7FC2J za2h_jf<>wsEHOtI{Ldo`zN^+F4n3iWVgo6qqvW2jMM((8UD?*HYHzJG`D);vx^O{r z(~@d*L+7-jhwvlF9WYMQTMej9~tDa1hH3NZnvoCU)+(4#$V~Nv1ffzhS zEc&W3-bNpQI%w}zoKoSn2dD5+48YWoQ^CA;TmF(~Ghfv!2YcVQ+Im53sp~{0U*3 zYbCiGqfZ1Ba@27>4KyL~tVMtZkMmTw0!y_U`C2+JT0xeYF9D+53)tZl#TWcwOa55v zE0R5+dadRU#2pUIc5x=T2iZoE#17$POk$d`Zk4)VqRO1@%GrQbncl$-Yi*`x&#=Jm z^;&1?RF9`Jpz(|mh4NBj6*19I|UH>o)_%e&7tCLQ>72`;HCd}9>!6%aG*2w};2 z=BqYaE6FC|?Bvz=Vz+uiRq2m_mitli&?CG^WY2>q)7qBG`8dOKXJWBYs`wcvi*q9j zqfT{;&Far0!L9YN$g(E)GGB2lc{Dil@X9h5wPk7rHAGY=MXaQH2Nqbc|FME0 z@_61pD~@mujK64p!03)ct}H^NIMl}Ht1y6mk((w}xkH>}WyQ1SM#h&ntARQ5-4PXp z2_^m@?6Q9Gxj=v#g`UkB-3TQd6<1&^WLrTELCV%yCX07ft{|hB83t>)-Lg`=F+v%2 zk(bg{*n?n~L>bdKY1z<|pv}InmD!@ZYe$P_Plb`7C-tpd^iMWOBQ%45G7REeH2fCg zl%oSO0NG4LqL|>V)kvJ82f+r0i(HURln)2VdJN{t{HEch)qFmq`7^(5e5=$rnLP8G zr}s(#0yj|**6?j3Bh|0|rB`@D2WaoEMjA(vBIynBOW7xl*e-V@PApVYuDIxFqqY+D zPk2sZ!3~2T{OP6}bM5}hUy~W@Ahew|5tXrNmhRzJQrv%muUlbGO(Y;{hVtmzdh;C* z4Qw6kS{!^P2`#WDp|2(sB5PD}u)#ERnSCAm-zxW?CJPv(KMc4a8R&pF!l(Rk#1YTq zM|;5=4`EL2S)DK{nd(V#pSh12&lL&>Um`R&?=9( z8o0oZ>lS5eNY)%QKW4CC?7b#<@{6Iw5G3$X(Rd|BBx>ZOn#jqzL+E8Hy2J`xP-|@D zGWRT}R)6b3#3pj-G|k!f}RO_hc$pO zi6?9W2agVIv29wdO(awIHdZ(}eX}V!@VNDAs3sKN)Jco)(ozNC46s^}XT##N8R;?@;2q zA!c?y@<}xBPUhI8VLI@Ro2u$aKkj89yj|S{!uoXE#p8+pGs}C|V-Rv$k1<<=b&_|f zGd_2&mjM)wErwQN!(RS+IPyYVSxfE_o2ZMbm)QBsas0J)qCtWk>BY_Q6jS)4-zSzu z>EqcexRS-Ey9;9|Dhwt`9Y?H{qTV65Bkj*5)oQe?sP(|&b{#@&pUD{HS?{`>_%0*C zJ~lL>Y~i*SWjuGF6v?^A%egH!fEEPn7>@3SbFD!|edm)pCfh@f}7H{2wMaL=bACJzXfdniMzA0F(f39*P9!M=K_1{H~N=TpjiaPm}W(G4ai>rn`+24l)ZhO)3dbW#nz%Y8o%R6Ul4hGz)p^n7Jji zx0LinQpdLx=yUk}dES6qU=x7X$7QTTOW49H>@BD+;(y~#Po z5?4t@k;K$ba35ru-WSL3Q>v8;4y99g6N#SeBi$Ay%6Cb2Rc^{jfGGEHzEwWra(M58 z`K#ANm3rWoqdc#7L7DV1N@QIo;B2`o8Sv$pik|Z2PuCizTFx_P&S(FPj$qNMtc(@lko2aYEmQI18Dp++$A{F8Ciqq%-h3e<_h_5sQ3gi-a{d#zT6>3HXuo4ZD za17u~AWL|}TPTWvBK2?aXf3<|8P9z`Ly|QTkb8DzZmcU|SV49_>V&)Bq0*|?j^p~G zH-6hSKTX?;7yoD3oHmpJ+#wcrufP;?S6DV!?S_I}TYQdueH-@;2kVMtU zP_n^ebjoJcj?V-v@XxK32!ykZ!~Q|I%+k~Y*|pzd0uOcrBUZpUG9k2u7F6y)Y=kx7 z<_}&B8B}rk%T)0_M?J!MlKr3UpKMRJeSupqDfoE%QrNX!pa4Zq;*pJHxOh3}`*oGv z;#6B3NEH8Stt9a;)#@*A)reqaCGTdnHEYGLxcWp%PiFz>W%8a$7jO zD>h^{)naf~s9iao0!-{M_@#wnD01Fop{#?GktkSaSJm=0Y$%Z8xl;B?tX=EAcK(7M zX)iV5c%JHcp6Yp?>M6cvNRp4|W+^W(m$E8Mbcs3fHuK_;xRf-02e85VDVZrbz;_Iw ziHEoQyuR7NcI5`Tvibt z#pni_Vwyto4j+vVtXl#k5Rs<4h{%}=5>SGH%IexJja`##@AN7;f0Y7gMgz-$dF{a8 z#J~>Vc#-S~9D!&odKwh-At0VDRrMeB*Eg9DNPvUXAK;a=q=&$l%`fSSE#Tlbw4mtVaN(UC4iE- zw)h$qf^q|km2vet6+VnV)!PoV86x3(5B71l37DOC^aOvf`jC@eNHC<)K93@d(s2>;6>VF=a_Osb#8)a1*TLI7AW?Mb=vAm@l+k}2f7B6RJd22VqiXmstZ)`U? z;J(NGzKlvqO9tRoh>#LBb<^=s{jssCdvncnc`rnMWlr{)I8CwKD`!uXr~P@la~x3i zTO_c|e~Q4-+0NO7jUYH+9N{Km+?^vn#3ZqWjWBA|fTKZGnRqa2>#e=x4RrUD#oK$w z#n+2>zKY+F{$CB>*Y#%>dLS>E^{rw?&xh720lZ3I?@$hjoHT(M_@7b|lOWG(&qE?< z>{Ny~>kN6DQCC{cP_N?neh-^^iNh!#^{dkweBixrLMVBh0$xExypu~ZCBJN`+`lB{ z*zH6SZ!u+*5yIZ;3_a$2ke9|&1kzwrLj4(aS5z>L;N*AQ$-othiUoysBJZ3AIJfLh zXoHEA>xMTMaIn0$#BIYtzAV$VQ+-a)`2K@s-sgG$7-9JHix~wvNCfkqTq23+Uet@2 zKRE~8=^pB7AC9{_t0SnKt4>HmJ^5S*oDz*wS)+6rYXjMuA|p88Q}Dltnk0eC`#sIj z!}7-AU={@l>$%0)>oHQYEz@C!o0I z26=s{@YbC5gZ*1ugW}cmI!cfZa)b2wwaqX&C<1K>aA}`k+uWIcn_k--oWtA2W;UZ% zpR;mT^R+SV(~!Fjn7_M$(n?O$+KI&ce+T(sXE=&3QPb#R8vqxiHP~N${dP7EXf{DOj#Kp@A(d1l5CGOoEk;3k%3xjA zA}P=ug2n`sOXJf(nSLy20wjRb=X#?-hcUq$Ul{Kn-sw$q6G#XRhd$B~rQX(?aIQo( zthGuE?;Nh;{_S+WyXX{5bs$&mTN2BQT_ls?zaUkf*~+bm%bk-MjxMAvlh1mX*cmPq z*Gb1MCx}B6p9!@w6o#a-H^xm6oFV>5SeB)CvWgx9-4++MDhpf(^GjCBG!0!P`RsX{g@Ess0OB^o5*H z`cy+Ds-=QTx-?ooZV@dh2h2faMV5?7)pc@)0!yhhOTFDMph?zQ(>5vxNn$0ER2)nK1-Fjyd{&Q(iC2T*|IGw*qLb^(3HwOaz+A6 zzC%l1<+~y7MdgkN3VRgYp_!!OwJGKlXp$~D&{!vD?x5C-OQ4ALo#vLk2XzpYm$|L? zu}g(00S(o$SOII!O;X&g@dOL53SGRFXbM05kF`u{g~ek*imM09>hV^r1K^`CxNKF3 zz9r)1?V?2j?GNE)JeKN)`#3jBJkR&vqLVfrIpiDU+ww>b_FTXl8-Zg?nZ*VoT2=M@ z2F}|PP4mxUG$b}s@PiE&OK+5O$k_{j&{K=p(P53_#pVO7T>aF>_?J3z?ZokH&H(e0 z@?v*&W86qj8|_t|D6HD2Milj*@A}Xzm1PVN zOp3MMS})#)m;P}t!ew_NVxOQAPed6^2JJaqh+9htdvnf*69GOj49y;sl-||z zZN#qfY5|-pORa-SS5Y$8yv{kz-mjlZWekx$`2=$3371Z}IV{h`V~im~DwCs8ZUd(i zoWJW95w4ZRg39s3U*Y`{z__rpulaU8qjH=H*3v`e36DtuL6~cvS|!nx4WS(5#e+Tg zZ?H+E5CG0P+SSlM;Z&7Sd=~77nwjU*v{L~((31m%98eHlpvptN;!q5;)os45n{eYM z!5e8K0;}8Zk4G8NWmKt~I$0UifcVIo^QcftjH9Yz$0t#~EGL4lg)U3}x`(46%J0<`+;xFX?WpN_Sxzxa;-o#5`Ij|(!2J_;UjD|^R%cBG85%XUMA zB$R6A$OMJJ`~KZg|DeB*qhmb{t|wERTKQei#gT%Xis}TRep;A^RV1v{k~Yz?2}F7W zKx$z)k~9HvuQWk%%K=c_UyjV&ZH`Z-s+9sU$fp9+k$-2$ESm?V5W4d$S${#i z0{p{lAge-Q+*w;g=|na99N|~ipHvUXD8(f%+X1$enz)6yQ`A%q4Q_&luAQ0H6p-LvX^KJMB+Uyu zaGcr@X^?i1+Ta3)5@0Utl_jyZ+=06l0M{T+w&g2D>y=n^t+*uC(AKTJI!CzZ5$E9u zj&IMy5!@Cl0uZ|NU>&QD)|M<^263K;BS6p!x7HI5zfOAQt<3~IKqX8LO1wa%B>RFYke?Z8hHc zB`7&!P`JRkaGC(1C^~`#cMEaO7`NL8b#AI>=iEo*H>7zX*XJoC=P4s_Ys#IC=RO+b zSfaczjy`w>pNb+Or)$@cbM++NnZ&2%qj>l1LHSwS z<~~jvnXw25C&OW5I0Be-SxdOA-837&^X=W}qo@f@05(RIW~+87Lw14f`Z|d61R(^W zxkeF)d3qi?pz^NfqOP35usc%2uFXw-_1r8yH%rgWQf%=w8(I42+$@Eu{jE{SAnr`( zX6dU^nCm!TU zT)y7Yf@8ZWJg1pxJP+Hy$rH)djhA0q4YemoxAP<6bK4uWQogmS2*zFM-1eShdvnue zDYs0@eKLjQ&a21u&JTjEj`Fuo^*CD!-=+t_RfAiV-`^efcIO1QkJs4SFuJ8SlFhC& zas5Y{yXTg(T=BhQwEVWRoEhUSdivhMbbPco(b_T^;%(J8P~AOMVK0?z2!^ovNY*Ps zdSYz5%2y~ldD(87P!ocELo*JwOXvWjd12u`(3m@+68we~&v&WkuMCId`%tS<`Lc6Q zO3jap&c0rQT(;(2vy^jTJYHkm83x~a0Y`2|ptBte#~nl_MxSxfvMRuzXfoO&QMpr1=W*;!#_zTDI9;4R_R;-IEf**k^Hx46J`&kCq}=-dMI8En?zXjbmq(CFo1` z@rv}rTbXdALLoid;{l1(&xBWAOHH+L)O9p#IW2)W=#_C)GTHnRns@H9twPDm#-;1! zh`C(Iga)BoR%%3BsnmFLdeSq7V=r=MQ$ek~oz!C(+oK@l9NhR8e=t*X%Z4h7^p0VW zyB8oTF02<9UVM4u!mWI;3Qqr(;iiI=*)VOK)$)>$$qb9@3zvDpaL^*MxJtZk&|zs4?tIxdGyNMLyHjx1fZiw&{=dhbP@0b3hp&6#LVO za7z^eH0B5r72X#$mBPRw54M<%r{PAo)VG_$D+lqyK&eoVq{Sh_vRb|F-QH1WiYqJS zrnuGdDq|W~AE2BrejoL_-61PdPwy40FR$X1)~E)dHp0@67hobuNa@(a2Aeo%ITJug z4_)$12?tNQB_%S&o;Qa5d%4)Us#i6zMmI}smGACKm&jO>L<=>+ic+4SDy3Xe5STi02dq1Am~~Dh$ZmeB z0(;pzWxXMQl9dqjetVbjUd`AN0{^IZxVgRC+Jv8D3!Kw>4j(SzL%ZEZO~S41UHpsB zsZ<@IKn*a}=3X1bGM5L^Rt`qTir-F4}DX|{LE*q}Bm7$LtbYcN%lqH?@cBqe~Ni(L+g@mkZd&b`Iqsz=~h_gxs zQ{5FOUt4a&BhbWI3${_d?3^%5X8c!Hp-^PrmMV8IQ--I(g_VICqxXAIr=->>C36p6 zGTqtT?wT%QX%}A!w_8kmN4O0LcN>jxeJ1WO@au;QI-)kmz6O7$>aTM6O83)K(+8JK~4itfjDJ!IxItbk+# z)AZ;?Om0jj8AoU+d8<1UZ2gl-SLAvHmUY=FS`(b!;(i??F%S z*NLxB;l{*u>*aOp*5;RZ$tfl8_~dwUf|Q+u;`(J)PvugOPm|#ZZcTk1uaK9Aonyo! zDX+R4t8G$vUuqmn6cT_$>cQ0nWV|Yzw3O>sfXE=#IK$oIfsXZL9_OSkMShv1=+Zkz zW{=6fWj!|2T@zP*R1h8SWgu(a?OaM}HzP|XJ)MBcH{v#p>KQmoE;*GvGec^Ofiuy_ zcqH;W#>H*MW}kR}5nqUbZVVL`N18joS3tp399>C|#WEnqJGl|>Olz0->uw?B1?N;iG9cwXhtICoH%?2MZMNq^nMLH(@+% zOm?Ae)v0Cr94D-FO37PIY8m^Tu;2Illh)Hv#8nG75|}2www9}~^RzV8$!sDXLq#KV zj0^xTmY2aNdhrEZ#mK#Hr(k6?e(~i{ixZSC4xzDJtZrI-jXxI%uQgkf8POnas04c> zL}SjNSi-BPy}L`W*v!b~hnTY zHa1lt$3n%VqV1&TipWXWPSbnPI$(&?R@;`ruZR1&!~yUqsS+4Rb$4;>Bs8VWsJyjS zy_~{J?^nv(5N?r&qx{4)D50^8b#43Ik=sN_V9EyFz9>&CeOIS4US0;X748m$>sFkXtsz8DCxS?bTKhO<&9Sb_2GrC!9kG+u#+H97wN8z3~G3oB<*V5V<)Xv(<*TU1i~McD(%%V9Ph|Y zs#uQ>1?vCc2AYh9tbbg(!%-fADq#QY>JMuhq4OO&DD_-|6OgZ{ybt%}JR z2=AXW`pWB|r>8*;ym@HVfy+=7L7)rX8K0^%wX%+*BGPpGO&qlS&RRRxZxBh=E`D%~ z;O{JI5;U<{_$?E%BmXYhqC%^k$~VhGa<;x(zG1f%CnQS2sN;(hPzM&@yYi8ZP6n#K zdoC2E@kI@{s=b~j-OE^81!mTHueZnBOl8BIHRqyD_V;A8jqc5q`q%9rHDao7VGAFH z4r{SWuqJg`hROx*rKZbqmUGN5NTEYy@GNXi3_IJv8P#2=aQm8>-nHA_MYUj5+pNb7 zDCgaw9K%)II655THU_}ju&81aWugypAB?iiwP%h<+K|K}leQ3gFLmRrV1%T#LmUD@ z*7N4@X%DBNv;KQM_$u{6_&XQ|k@dvJT*PVtJ4 zVNV`=dUk?o!$sXs)Bh25m(cFrcTvc^+k5yf!GJ;!uRnU!dh4r$z2mjpdQJ^TT?Q^J zv-db(TktU4g<5`mc!W?gTu0nHQp*4q@$K6zCWQruque{g-tF7sqRv1;eCmZvX^5~6 zL6a#6vLCYYunsxlIE5cFxJUc_MMRyxSgdmf+6cAX5M<8-{igh@3bxl#sS7pg*<;;6> zr_@n2K(N5xJ(4U@xw4VB;oa#S-|rzNV*~t;5n{D|VSJzGe^>+u#p(D&0zV8h$#cO( zsGR!R37E2fa7qM&tm_>dU?YY0uF;spS--+C4a(suj%g5$Ad*W{XLx9XSk86nlD8xQ zF*?+T^$|Bmj5`7At7%I1K zM=cB83F$MGu|63tuLGS?R5NLA;jC?poHDyVLn9Ax7tP;r)7+qrO zq1+U`2NTgw{XFZ4C^#SBx<{9fC2s$(&Qc$36} zD7FQsd!Wft>Q6CWFVo zd!W%uCgjAhi*JkAn)kLBODYnrscxKEfsG!YC$` zOToI~hL)j-7Sy}x8k+VFp!Kjt$COLigUJ0@apNPhRZyHTt~$FfCr_h1?m9 zjmRM97YKjbULb6$a>~+hY5^zrs!zqH;YYg=?v3`76eX(Zb}Q|n(ygd z4CJ)v!PheseDsdO6lzvFuz+-9z;kT~-n^ugaX~=QxP$Eyyr;91AwxA!ps+&AH1iO* z+|u`DYa^-%Pkd-gL(V+G2|i47Xmq3Q4Ds$q=mcJ?+9B3O8LE#1iahVa=P$s{SCj0V>-&2gJuH|pCp`wuABN{18b-AbL=On(Gj#nYcO<#6Gj z-{d^!CTCkrSr#PDcuK|z_Z;|cxsT;W6aOt_1bhgp0+MjTc(Vob&5z)Uwym; z7!ligr^`&2WJIMD$!PS76D>P)HT2=rjp@!XiGjjF@EL@|S@FL3J|(lwe^D3zL6)xh z5$5lY>MtCwc|Uy>y%*v48Tu^gQ#+-<&j2avL_6`r8QP}plffg|UuTArG>HHxec?`m z6Bk6EkZ}RrLF6a8B4x{nt`Y7SbWQcDzAv5)CQO1ZU@pv+}}OIUw-_T(UEVUKCI-bo+T5V6UF3+#9t&IY3_2*(xb zbUf-&iMID;`8$F^BDlZ2gt^X?ufQ(qpvFdMa8`KOEx>T{eP=vlbjC}?W)gr}!$jUt zUt?f11nr4|k_@V>WCY_a(GN^k>q;e-wgS4Ly*<`2KKoj}&qCOkb~ZOk7#%DV%EtMu zEDB2friqOF-*}UEWcb^=B)^LcFtSK&$AEJECQD?y5oYU1N z^w3T+=@>~p9-ffwlEB>bK3+?gsLKIFbEqAWPpfNQG+lZ#$+(@yu_l;vqUsVzwGtX5 z`N}Vb8{+4_pH^bH=Ddkq&Z7(kB1Pbl9kcK-Mv;U$9OKlghe(GQxRFKX8OO^hcO^pa zsz%D?VR0|q+S^WXABV@slkI1py?_6HyK~a%x5v}F&wk_n20uTG|1WJ`+I&`yWO_Vf zpFR7+XFiL-fj$DcItX!UPr3(5Kr9!~CxZ=#^Jy?CsIP);h~2ZXN|BAT#_(OiIW88( zl$UQDj}4ZbzO3sZOh62=VqFH(93WT(8zXOwkm^T_j;xuNG}mEF8dlvpL5#N)fIx=i z^xpVAI)D1m=6gJW-ygy~5hAB#rN&t{#AGq8!AF7BD|jF@X4HkJfM@SG&6PkO+6$L8 zVDrYw!2znR0s3je==BaxEir%*4(sheGN1!$Xh@1XQx<9n8A3P^Pw-vTV$JX)TME7` zoRDG-55_0cGlw)5tr-v5;H6^3fgpsFgxBdj^I?ugr*N*HhdY)+9N~@QI}?M0gnj` zl{$F)QjntoLK04&(M{!GM|z27_pr+yqaE}Q*clSDRgpT8O_YIBjHLBoj8q>hsX-;% z#T5xSVeAaTh3_81_k_#PkJB-IoE4jd8;De*mrS>^xIk#1c5q`7SY0t<_lN~3aEiJR zrGQJ4SWV%Z-*{I7IKN>LoZtBRHxQB;V=-?$N^6W8hW@D!}XdVWtn1pgn zr8QuHg3yh_0Cfn`FZF!eQ+Z0KIAh#GICRQaOX6SLh$*B=omvQKL&X0fdFl#J6F@46 z9n1mq0wi9^JY?J|DZ!<9u{&*l8lhPNL~4tInQ!f&!V*K`AmB{`;QN<0ZzCcQJ`_Sm z925(s(4DWM+z5a;Z{7Y#2?SQ6%yNLzzs>D8{4u!A2mqc1`95x^8Oib5j99hE=@H|B z)HvNi20x=FYmoC;m4w!kSk6HR8Mz=+9YXTNAw+gorUJp{;1pM^LsVN;_5366CC+i)cv-l~QuD?AA$oIVuRr5*J*NXg7q14^P(_ z)ELS<1q$50ojlKB38fVrqsk39*F5qIdsCLw33(GSM4r{EVjLs88jm3FxFpfY07QPl zVqY)rpqdNkG`tj6sExj6-xgVw{MfV=0A80RwKJ7vjC$-0?{`iS2rLvz)DshDJcT~& zL}?muIKMg%MTe`W8ey)IUsU^#G8}zYABC_H;}k(t=Z^J-+7Aq$4$^9Y_-usP=K_HAmj7CXp7a(fc^x~KjqtgpQgjXWN; z)|iJ770DYC*`1by?&{$l=;GB^KCf#Qb+w$N4R$D2D_(GEI|uzKi{p%tTOh7NIhW!= zy4tP$5V58x#=tdbUq|FZtJ7;r9t0;$JBXu4bvBlH8fvUHGzDgB2wA<6rzF{RzB1IT z#Ch7SAninaD2AF=5c}8Jq#a3^(vOS-LInqGPNvCtoH)6ODTF`C(kYaY@h>xonsO70 za!!Ix3Kih9<|YX4q?^l0Fo0*xO(=X$fLx`rI|cJT`2J2M|N2DcIM3Df5S?vAQ5`f&=haJ{M4t6Dz(cnloby;!C4O08!S zYu8Xo+z$?=-{!PVy zW=CF%o~9(g5bx^jWO!n*Oylba$W}3RCppwju0~_jS-a7OjouImH!)Od2gX7wl&Vi- z?L8gGkal=*%#3bnNWIQos3U0#HKYM7H-(5`F^5Qs2@>k2vYZ1&1X>Vk!`Zk%bx5pG z=h_RgE;s_ zb5DAEt?~rwKXiw+Qk^I%NbAMw2)g-dN~I$0-=z1E>aO`?)TuT3%%f(Wg;W%kX*(wGB!lLz6QwNp&N7{7Gm1=K%p-{y*a`LsEwJ@kWV`Sy{-lqNXler7y&Bwj*7QP+VDacO9oBOzZwJm-8@)&Oj_oX z2TAm%FdGb}F;ZQ&#uQ0Lslie%!J^hM6VqXc`R970K?fPy{f#e-_YV;mcUNnF;#L*x z@^tfMqj?kM^Wj2Z2`Xn6zA2>vD>k9E)S!?v#%yD&fG2^c1>yWipdf7nTe(Kb$QdQH zVW25nx*foM@*(PQV%(KPmb>2dkY+C)USRH?I7U7Ot}p6y)|(*406o@(5Rx%&^ytzO z3Nsd=jW6mHB%8%baXo;hc5E*Y=ogy`i-&U+J9wp5l51KSoRZchM?*UIRTa(}e#^wA zlM?)Kg*r{2$D#|xTOa|&t&S3E>JrY$2}{m55-|><^%2C(aH#!WD?Uc00!{=(`w1MU zD4{)RGg@leIbCx>cL5=qe$kr`2V-8wP6OrGUwi3$YO?%22V)3<+i$X1b(Tr~DZ|SIV*JRmna^EC|s@8nh zjAq(Yvw(6V<4Tbij@20MY8s2NlPpsDT3F>oFUEsXV6J&28Xk^OxG5FrPB&X-Q+5Fb z%3m}t#m6n&nAg6G^B=k$)|mSe-}hqTMLed{BI1Jx^sN+u&K6bNFAGNOj|DVz74!3! z?<5K`np8s^1j1R5$RR8@Lqo;FKI;EjZKVLVi&E+h#BYro{BJ^i5i~fm<#;^V~Df zZ$m^Re@hmN+J;Lj#42mZrx|+IA0&XRK4|N8i6h7dJ&pf5bnvbYxHZ< zew2x$4e#+5wQ>vM&gD(8v4Goybq&i5)av$nll}4Jv_U3Xzqy{PSopypngk;XelF8u zB(g$cROn|nVA@>b?PzTVL1Re_)e)DFe)tGPFwAp>C@GNagw?zUb<#P@0gD1s{?Y9MwN_L4LU z!r{+K@k+OvNmr#l-z6dWgt#`1r-1;nWWj1|p0NPo@`n$k9v5C}g1yU^^7;_kSSZZf z)UY(y@A=tW<7KsmLZT8Dvy_!_S>BR0l6x?up-Vc`OKw9SxnUW1 z;|5(eh?aUMhCFO?TqFUwK+Dw^=V-Ax!a0ZU6y>_t^GD19bPFbFm>J;x2LK{+j6hdg)_DQR*EmlWwWU|4Hf2O2&j@D z&g8`$B&$X4H89HvIKOs1kXo6AB>`q@TCPDMk7#fa5#lXT$wiDI1B7Di#g{jl#8|Y4 z%9nSe&#>lv4bAdfHuAXq`8$!V{JIC4-depC-m8V?Austk3ZPp_ek`0|PKzXuAe0Y> zb+c0x)n=e0G6iLp3^yYfE?>ugyoIioQt`1hOata^k(H+DG3XIrNCPl`zVFVyjJJob zx*>C&ge(lSp|8tOSt)M5@#-5mW{dYQaMzC)qQa=^BUTg&r-m#Zj_<$hT7v0BsY45A zYPt5oB$Rl9B>mNOmg8g$=DzkLfFDbb!!#Ns4h9&&5e1zKJ#~s2#TqZ9Z+Ww+2B9Qm z$VYJ=K^qwl2g|%V0WJ*VMQW*xP ztJX`ZY2rM&)BzZa8ZQ{54j51{bGVe zL1_mGdc?axcI_gM)^p)P4kT0JUgoXsUHpsBk3=kM#R(HXWW9KI6|6Q0ZgrcxY|T*N z0tthxx{S+a(5uPS3=kwE!X267Ei$tCY&cj;aQlj9m2bnln!&0G&E{qRvOHWhDGe(< z?RNB*B>j#9`)KwMLbCD3$iNJ?;Zw6UVQksB;=2IpHqoY?gMITS=u8-WQ;_GkTjEJ= zq^d-IWaO%5oTP}uH1*CICJYkuQ0d0OTPe2ze~->nE51po6-n8J=01m&si!AfiR^#1 z60ht86=Do|roAWtIb$n0LFNU8C!;~p%-Yr=;~GFZI^_7*l4annlSHQ{F3PTZN(rI! zn0grel8^20MsQS*rq~nmXf5&ILSD@$5L0i=^yYcs`g!0wW$3p+;JTv0Q(N_M9_hT?--0=MCy`jfGXVxW$a4nN0I!dRZ)sn38)(&$_`Xg8V7%61*Rqe%- zaXAAJfB)X`Sih~0L9&s?tPMAzu|_LXBz&+2Vw+$B@5RS?$VP_APWD$mHMvh=e*6Pn zt>l^`E)_sdpGvnom2dI}H59K4&q|FPArbr>;%<;-8IRN@%sHLS zr}b&CcFU_QM(@1e+nemc3BQ+`=i`sUD*ldrrZpJ$G9Luha99~(q`qpPq=&dgxc<;H z!l|59KSq29CnLlQh{m4L`to>$umHJn9jw7fCzbBuf-g9u=vr`=1sY`X)87(^uX&61=n7Pk-2Kg_sccL>^@!A$#zDJIS`k>&Qcx2-->5 zO5@ElNwrF$7iGO!!x!onDLDPiaS2?Cj~$hOk#0zpEDbJ@@{TUT;0Dk1VcsKte}=m1 zxbcJ(PucTpi7ZoyZV zyjYb>B6IyoVbYzmlRSW^%}~1s*M3_EuWmc8`OYbhp2&Nb}WF^$JMmQ2mwzK%q%=Z~}S)^1W zA2FR_8&dHFG;-N_jDk!M>7`G9%`%_osCPf~3ka?B*6!vl{0D`>@Y>zFmHG!aV46@q zd8gRr2fQokaQs~AZa0Cr1L2vwGqX8U|Mc-^JyI zy<@r5tu)w>e$$=prLv}Tu}u7PP{zWLUtwYQqkgvw6-yEnu-0(Z0ki?evOxK ztpQk6_GjcM57w3Lx0q9U;ew2|@(kLl1S@Qmq7*2VP^Yb(8%!dsGKXB1ozQY!utIy$ zx=1G+26RPxYEzjKHR`P$si6=j1G?Ya_y$T8sw&i(Kst|2|Gu;Hj;ToTu>b5(Rtob_ zp=o{RSE)btTl@jE8Qy0(f06 zj%PC#tHs@M4C#-7uL=STOXelf8FpzSSx(yvFt)Y+r#0qqZ^T@z7FQMIz#7&x^x!pp zml~0-7%mOjP`kY$E}%WpgK3kZp>17n+yLV=QJ^NatX zIe)b-cAvf2U1JTe{CH0}t~1>m;WDV%ZlC554GV|MF22~=p}|>t`Ce(wlpYVzLW%uM zf&5M*BMO%}RwRqeaLyHOM-7aKxy7nfS%M3WcvC6<><-{2pXAK=h29WXm)lKOusWGO zOXfr9t;DQ#if~UNl;HjpT2UW0d`7*VTrdPiHTnl`^-~s>Q50bbDKFq~3wTb{UF6(D zb?9)PA=1!2L}{Q<^qax0wc;fdsdUunj7~*TRVk9u05h_ON=hbu9)~KU)5oGmm?tP= zxK=KT+cbareQQ3pM)9~Z7X6+$$%fsA1UHV+9zn^nDi-E0yDFl(b%eL17K59J68PKz zS4Mn-Nua>A9%LGLSr`jx8FT6#Hb$u$-n<6t3!U4u!_K4!$A-NfC&#H&WJvNJBqg}A zk5XL6<1y|F!QEWEal18TU{UKD#A*EG)*0tVI9l8e1fVaKNl;*=mzuFDrc5~^RXah; zu!Ib0zUhA`!7EG4zrfFDTxvDQ5sJ{O9eg@Mr6_zTtoR0h0;|Z&j#Wyrdz6BWTELv> zJ?%sO&CP~JVAc3N2P2*@Hnxs)XTx)i`B9$FsX3jjl6f(r`d0E}H=>ik%_+F&UTUs~ z=U)m|L1V9uA0YOx#9}Xcbzh7!gU2P@9f0+Tg1FQXB#ALaa&vVUA>A?bnN^>RL7;Gy zs_VC|;l@l8`_F8xF#?-W>DD=??uy2)2I*jra<&5Sa-=#oIE(ugH>spI2LYm5b8UFT$9maWZI5TmIZcuTB5uw&xB!#?U#N4Q z!zj0zz&L8z4RgzoNoACHXM)oQ()K)u5hp}27Wc)NmgR?k5_eiTnJ47YTH=2~ZgSg! z-aOA?eA3{LAbFqp77haOMm7x@@f}=Cy7mfdE*wD)P$k11O=9R6kHDbF6{XrNA87;F zNbP}up0#r2No*C|9d&#mD~)6E0FU27uI z85kJ$H-f+o`gLHRb%UVvbq4>DoMpz@pv@VWaY37HG&6b-Z0)^@9TVC!CmB?A*mmugMtrd z9E#%b6e4Ib^5m#<55$)>H!x;h!F1St_V#V)Ip#!hN$FQLH_%uk%((hs-NhMa4|%T- zUcV7?)SNLaSJKwMo#NWdpM0DfW8%KY~LdQmxohEv0H{mrxN$Y}5;M@mnwFLe7n!4?6Q2Z+X;LeSk zQ1$4(4id8(8-h9Jbwvl5iFnyT+HxWw{=RUryIs)b@7Q&je+xE{`*4~RpvhclQSZvX359K%^enDiYlf5LR}n4`Ea*Ad`` zqu~@62%nNXIDzdJtuO`h)+|SyfY4s|VvkLb)YV=?i$x1mFbx05yL)}#4J;N5!;c1x!C)Q?!_S7j@M3Jk@b^WWI6wEEd-IaTDyh3GAyp>t zJ->0{@5G6S6WL4SuIXPfk_93+#Z^+c^IfqxkU4QWW&o4yq@wb`82Gnzf-xKF;vVAs zn3;K&9?8UG5eETaZ{e%z{bX0R&8d5yqC z>fwQwUc=emyh*S}(p&1xR_n#X;_)Y@gvq|U&oSz>lQv8r$;KhaZC8GWlgF#K5yV7; zIlIzxJHpsmP&DWnZhWLF zLZ(L8;{{({Sjb3(dJ+ z5^y+kKCy@_UAY$5q$*3b9}6Tfb^Ec)!Y11DRDsh!@9_PVp&}kq+>b%PJu_SqM}|6S zM+ilb>Do5cnH_MIz-&S-A2^1Iok19l-6?A=x`7=K2;w*)b>OrTIg6CC8pTV*->iyV za#{t5$LF(;QS`IDF=O%|6Bzl zSQr1-sB0XD_yKwr4UmU@D!g_fx(|6>7VJ;XWK~Yp%Qoz@sDZO;D&WEXOsGY-v`xU{ z^uYb?G`pGWd+C+h+-IT>sE7x%Te(vCZ=LO~c&@E2 z(-njE68E$g2yrVN^;JZ#?iMI$zjx|6Evr^-ka2_dJD#5cMy#35dLJvtb29zcW+uw{ zoZ&SH>dd7LR3YiPH8{wE>ypG46Iveu;V#=kN73l=L`7Pe@%F%*lgn2w>o+&EGqm-} zeV1FP;zd0!#Gtsoo#r#{GHZ62mw~O@($mVoExlfHkaBC9QTL%PBAK;kcJVeeS%(Q- zz}L$S+#am*pyCX>DX2;!+^9OyQ{8kd5Y_mY1$ahYR<@EZfW)m#?nD79W?nI!Yj%eN zCq~uVyCCDI|6qzCt!(jadR5bPrnmAu1?#-KbMcIJIt_4+Y?-9(p@@9z&r`#4_M zELkC0F-B=c#90U0skd1Wb}Ocg8bsRR7KIY^C=tH=5lPV&Jcvw;CIlVf^E6x%4lub1 zM$WZfN?E#g^Iqkx<0IVfdHR4yaLieA#9KSz`44P+4f##zM?5K3;q6z(p;;+GW@t58 zeLm(V>55Rf!10CeQm@xi#^!jd3?MI;7NCmoP9z;)QY%^@=fyYo&ZCgbMrB+THImzn zfD%wFGldjaaC(1^q&DG?YDssrBjKNsy`Na(Jia22-)O^(qf~ch4h;>KB`8cf;!8W9 ziIo;R^q;@P^B%Y6c@HRLFhd?l`C7!paF_<|RHD7ZK~{WP?OJe0TF~ZXhX~M#Mz?}k z<&-4Yw)@Zuf`T-HH2BXZqq3^_7UOrQE8OE&V_(&C%Q(c@5rWP~MVjCq4vY_aXQSDJ z;oumWmc@X?F3>6VeHRswVcjaYu!dPN>~XT=)y_N1jJuLp1e^-%agV-SePgx2qX<(! zINv`$W5^SjfMf&W=8!5$d|%Kf{VBo~V1^2(;^Cah!%ue`6(7pok`HBS?A`94%|Jm? z7b0xHdy8lLh^>(Or4jFf^aipLIM1F=07J1hM-!Nbfg1EN0}9qgQo153{`qM&_#M*?ITPzA=bn_};axFq~9@~i5H;Y!$a+Ap?m!Kzl``y;%)6`>kwfuPSB?5i6? zNLiqt80ObR0O}s+5n|N1gQGtOLTjq^d@tD9p@E?sFA=c2j~a{%=*=RMP=j$E*c+}b zr=e_YI{t7YY&$QBoa5oHZ0&fM?%@cv{Klzud=T=Gjn&)P^lD4i;{;{TElbjo-;Y>Xemz`n?vpJDq|;_>7Ic+xYb&9L zwGa&BaS#X_c|txy7remnP=qkG3>P4YKZJ*j@@-`A4hvmrugw@;yP*}JCK@U&dgFT8 z(2TWMtOJFYAe{@Ni&%h@53WWeAj%0^MMJ5bhb&H2+pz(u_^E$iI@qc0rZE`8+mGt| z0T8Ik*B1!-WYdXGRH|KD7Li-uF_?5Um0n}* zv`8E__opHLnuz@}g2KD<{nFgpWhQE1#dRfgbUX#CrdA{YuiMu{#hwt=tnMC9S5L#DX8ttxZ#iGuVgFl z79aD-oieI&)Fs#D9>b9hL5xVyz}lt6sv&Ig65G}qvE00wzI|=EHm_TfR}#koH*5Ff zzOb1#z!wSsDQ?yNqCYy7g$RgEbwANg(rXEke)t%cLa{A0=o+*+`Bt#$5qnRAvD_QV zgC(T;t7Ip4b+%o$?gY`UB zXUZEG1&~IkYH+CDytES~-wEUTX6iaU&ps2ZD}p(_I8W%qEYF0A~|TQ1od@{q}g?}WK}?~{6fYMs<4Iboi1bd%dAGqVM}%47VNB)tM7;b6W5rqQc{daGQ<);5~Gy^dO8h`#O<@u zAG6f}a9Ss6isfkCpuu4|9kMzN5DVpSz1lwO#w%yZ478g-N!26Z#bRs1)aVia!jv*B zi{eD#gjICu{n@R4l9_^v0CzUD{09J~Ea#;4d*^02}k&T%2tpOy~7rRE}k;cUf+ zSVkOA#Q_!&oYk-jj+I7k*B)G5tDwXZ&=DP8u;Lry9Fk%}a8tHcQYx{RM2y&**&F>` ztZkFUQFD`jGek(#e(4}CZU;mx?Vw%tc*YN^75WhVajwJV<~-1R|8ZxOOqBXVm3%jqLyh1Qwn(Vs9SvZ zY|3b+6FAu+m(bu`f}G;!fj$pYL&swA*!4!A5u&f$?iU{%E7EbPKwD8tGfoe9@SG0f z139vvYd&|6SUFqwX_tVd#5~8L(jf>FLtI5*WWh<-DpU!jj;AHG%P|0w^RyQh<40wc z$a*Jb)cs9Ih7n?veoCdOvi@i=JbJJ$}{}*UP z4F7fU0GO8?hK7^{g^eKl z?M_*sc*XXyOWsl{wvjU~0-4D?aj`bdwr zQo{9TP$NoV8KJgH{fv&pCg98RtkDree~3lB_8DR$VyLD|V;P{xcT28X1_yp$f`C{& zMmkbP-bZ^#;9l8F8}M!L(8hpU`$mTab+;HWk1Z10R+s=9O&N}s&m`9)5coNq_V>jz zLZZfJXD4|P%c2r?hm8$5?;Ww22-=m$hMb6Rr~$pcrR*3pRD|g`Q3+3n=<-4enRJ7b z=ii`0chkTOk!yRf_P_~l1`*_U!o(ZwJ78`DwU*Oxank(o^0)Y$$@|XBxv;xg`4OK2 zG+Q5iR9O~nq!VBbA5_i!_3^C_isU)q3y}{^`6Sy)?E=eICtHP`qgq?>!s7hQ5i?rI ziJM!@a}glqVngAA5bk%F6N1R*7F1IOY9TD4WQMZt`0W?Z%orw;%X{UxQgz=PzXg2a z#hDXOAXW*t%hyGR$GI3Xux_5)8}Cl{G;y!|y=Yr<;HBYs?J}}L8zTYBl|NTN0XESR z4Omn(kM9~k0TyR)qF&u#3-(zc)%W2HiE~}%!zI(9GPPC^rwmLjP>KyMC_ceRsU+ZY z=7^69Ny1l?`@~yhdcLp`4)$6L7O~D}#{L z=XbVRSN-BU+WOoQ0PcLhSdE;4B<5)B@_HX% zEYm-JurJ}d8b#&@V4L2a1n#A0adPSaMy3uk@$^&urq$_k7Pe_Sq#6%J{;_TQ&g@l5 zn-bgXXTl2hDG^-uuB2>5Hh>woxugi^I|uGG#r#w9GbU(E9owv#98tML=IcPXAyKY&_RLEfU_*eL|^6OC zSu&9-43Q6uS(uOY3uT;gq!qhQ6T}-CRJC!1g3glT#h3!HeI1)TkInO%^5XX6tRA|A&>!x}Ari0NZnrRM@v7I6L`TWscHknlH%vTVei-%kYYYNjR)g#LNW z(o_NAS1uPrX2meZz47=sL8F&RJo33QjR4|}bVdk!Sdw_v(4jQ zPRYgub&T1vR0N=%T=AfSJ&GcKnZpWJLbqx{oqveN;{3EYmtrxo8Q)&t#MQQlP?5-l z*NTH>J1EsNj+GY9BkpjDh>5ciC>Ho?cNoQC=E44WT=d~P(u*qk{H#U*M zxe8`&WLKKC`Ke%5rT!8QSC&#NOYILL8CJ9+3Fl36caXd+Pb6zTK1B$Jn;q;Y`jQw6GgGP{t5YW7{Kc10~9<6m)|Ej8#9 z%7}?DPMZ*Wb?wwWBS#Hd(TitL5d=$9hGtN`qK2Rcb1BQOM|gJj719t|AU{WZeGXb| zjh_+(NBOoE0hiT)PLgGuJ-+B63j z+3f2xaoKQCj%=13oh#71*T?nNbe6{P7QT-m&!GHk#VSd2hcIW?&siiRH!$&AyD)j{ zbrFk-DyfZD^A}S4N!R9uD?dF4+?9eSD9%uF{4i+v27G>V*@+;(V4Bj6NK;aE$229f z1?LsoLRAWi)??ggW)<<&HN#7Ys7keHD(q=|qt9e`Dao9x+gviztCq@R)F}<%xauN% zoeJ3eV-Ak3G^UJc2*bR}>@F+PE3*5gQaC4t2AA)7n2lP{CcFMhDutE3LKUrQjXseS znrriEp~LIaAeyX{9?3ng<_ix`@-=Qt2IlDC@#yiu*&btOaYM_j$#Td+y`+cS6V5XoWgl`J0&Ps57xK8QL-rj-?V8(zv zT{q!h`#TwqD&Ud*yOhw-bI`@b&qs^!1W=6R>RNjR z?n#~ESnyjpr@RF#WiwJ)iBR)S@@BdCmWPs23zR(e8HcEXRh%84GQr=Ir@p+RmS_n- z9RNAe)uTbFd0$w3Dx?O2g4}BLc)UWC45`rlD=tJtlpNb)@d@wFmaE+dCrIgs>lw#q z$WjkPuzJPbKqvr+T{?5giMtZe*+~TW&?s*|fiuCu8?PNKYxKJHCsU|nDr~RmGgJuT znu4pgAPsb94{)E}?i%CQayYu_zAsU!f3B69E}4uWWYfH9KQ6JHS*d(8`?TE*GLoCkUEYt8 zGsHrcWc$tPqjuv8au&k>X7bl%8VHJkYa=|kOf$TresU2Fqh5)KSGtH(i=W5UYxRrz z>Q388TA8DPq>TlAZL|;GC0`-r*~O087n{jq8R+-YzU!0pcb)z428qq zD+wp$iVU{A!N+MYD=z0bkIjqiPu}19UXV=Mu^RLDr-S|}L@e(%1J^(fX4Kg0Q?nT( zN9yX&6#5i}CLZPLgGjJ?6 z>Yh$Sq-cM7G#gJ(n@`+X8Jk$w{aUR3_; z-jDpR)BX{bQIuTl_eZj-qRn!is?8>=hFi6P_qdK}sQ1+{|LiTl8Y$*dTt@Mr0=V*R z>0A!v)dq%8JBsWme8G<>J`#>a#7u8D1Jrjn5x=mhx1}?Fp?uGoHsbq;QxU8}K$b*4 zOA9b|RkyfbAP;?2c1tl{W&!!qdMA*8(T2ruoQpUJ$Tal|fVe<9qBm~3zNt0ts!{}E!j`;)3zz)BTd07M`nOP{8H+xChZv`O z6Ktf0Uknf6f8@vEn8#+t3YgP^+bh6?sT&}FIV~FVf9;QF#l>)Nj0-7c@_f{N>rl>3 ztk_C!n-H(k{NKqsmM|{@oB-&y+c9v)wv^bb__YYV`K<~^jY|fx^FX5FWQkL@Ab2DF z^&BVa7)MHK;h;s32mXB6W#3HRMZ(seyEZV2d~1H_r3$-C_CR`DqPmFED!)XI~(~1AiHi5+tDo$NiFUD(b1rDclq^=wKwp1f&=q!!HTl} z`kbCzH~VO9t@~~1ft&+6=ZJ$un=ruKjSK=r;@wkm4TFeV>%RHAK3S!q24b)D2$zF? ztJn`^ZUk-2T4E8l^j0WUw5Yb>s{Ny=8lR!18}!_FtzfhDK*-1&9)z)_Quczy;{D-Ne3fw%&(RUoWA>72#N~dG0)bse zTy7JQAMYX!0mp$^l74-EGS?vZOTSnH9VZlT%fy>JgW-`C7mGjj7e9cp$_a_T6SLL8 zyJy(-oDMo}^lRX|OXGKu@gO&JIskDxh--fMG*w5caHG>pc1XCwW_;o{o};4Uq?N%T z1KiRWMULbk9I-QNE%~m%7ATOwHcY8%(9VoY@lDoK6~A&BZ7-oD)QQNO!}BB^h&$3! z8;F{f14(aaXF-2Ux(x)(qnkz|rp3P*N7=D_7KJ!^(b-_d*x9nBjVKi=h3>YdoY{B`BxI)wbl9X$#AfEynVrCN&1=pQx zN7w?IXAK_X!9Kc*+2!g z>n0RI(XYLFjR%Y_W`l~1s$(vKEq^!~^3G`-wFmkx#(NJTSscQ7vPTOQoySmCXgFmV zwHiT#F5osoo#hxk0_%V_;0ASqjl_^6!#T?Cn`@f@=So4lO!1xXe8(O5M*2{B=)OAr zO8Unav*An*Rc|iI8)(i6f^wx!aCaeg6um11K+oRRHs8Xi);HH| z;aNyN)L*cDp*grW8G|Lvz>j8N45B-~#mQhsYhIhTdIeH?I0&Q=_ls2F%{i6Jz#Kys z+Mu0pQtNWPR1~cm{tV^G)hO|GDL*?N9uRhqu@xRa28d!_ zaFf7rO%n?07jSdQ>vg6UR>6Yp@Kg6zHFSf3s9PUUcXn9-yY}3!|-w0#8sPC_J75&6RR7Q;+)V z?pa#LiysF^_xIBM)VzJAN~AXI9=xO~3B2YWch{}5gGIct`OE+5*S{v8pFRCq=P&*M zE)6`+fUgoyhI5B`@*8K)-sGXLuj{x!<{+pZ&R2j-rAXDf3p{q4@b z`70=<8d(=+9Iy-y8YBzNpT)_Wjt5$N=kNc@&JxT2JFZzJ7Mf&m+>;hv{*|5onMDm8 z+B6!(wyb~Rz_IgJzq0eM;|6^x828Mo=lcHJU)lM4Uq^$#@A{S-=6fW_V|a9(T8qE; z^_>M4`*#h*bZhCKhn2vZpSULf=<7S1EbEpdnT;#*_Sbj*ibZV3Zh&g(PiOqsU*Gxv zSoH5FFvoOxDBzm=+ABN1_X^7Vd#((3m>x%ZKsE?t0Nj=S{a1DtSvu`JsbdYl_R7xp zS@fG}=ibT9cVZR(3C8 zLEN5i32Tc$HrMOJS9iW(DVu^0fA)yCjgCjI(D|!7Kl)7+`dv3q;*(yG=n8!Ln>!~g zV3aR$Yaz_s0>518@o(<@Wn5bO^mmZpn0JrLpey~aeskylW@&>Af7@7a!xj90erxCVe;X~@x>aKFT)98^?VWd7&LO%(06I|5BD8UZ zw|;x)U$O8%bdZ!|l8nc$EB=4|_Rf!g2gQF)ivR547hnI{*M9JZdj@Lj9lCLvcwZL!N{-t{FpeG}=-~9hiCEY4@TfT8 zAvH7(3}6J)A2g5E8CV2dGqCT$QKs4|#PtNn^y9~R-g*o*4*nPrY;tQE&un0D6AchI z!os7JR>alWWUx;++rsrV9iSc@T9MviGV2z1ai$Z-1eXAaKmiiWo;2U#808qu1%C}k z>M9Cl6aIA52mR^686w%Xy2Za=+&;s}#7gle-QxShqX(<7p3B$I<{NLwN!Wn9rdfA{h6slJ{Wm6X9h|h*o$9w+@EQ##lvJ4EPqG?~RWSp4`*T<0|U}kB`vR zmb`%FW(?~EaLwyoXq28dYQWKM9cck4707I|zUKCa1PV4nhX|Kbhhn%7;k_eZ~1)Jc3xZVr=fj;R%O|(heeLP;( z&;Z@8N+~W4Smo>t=hd?O<;HLrv&-x+V1GSa|4odgyW3jvHV!R-qWr$Kx?XgI;oK51 zg9My!AwvW(hLKw7IEo0H6x?(;;+~2PNhkcF4-xz#oE{|0eT>75fGH%)BRzY6G#WoX z9vr}JE4XiSDtb6_@6U$4C#T<%=AQy>JWTHW8Il(WL@ZA|^NA5>&$>B-BI?hy&tO_KYOuGl-_Q5yEe^1di4(@ameo$JOX}4Qf zrh!m~g(Ei+1*V6u3QhH1~eEVJIO2cU7)KEktM2b7(=?!5_T7hIW zWQkCGnfe`|m+=9#JD5EGAM(#*(ILB5zaI$^lDB4{ z6;_F~7~l|e|D`TN{e$fGLd||QL0oHb*@;{NrghMJo5!~E34-ZS>L6Rri~^dtjyC5{ zu9hw&`~JL1-PI79EFYmaD*3m55Wsyh&w*Jg^tIB9*|Nvq?*Ai z>{x>VM(RF5ts2X3E!B42KMw+zT|0OdgmgC9h%$O^^5mE+4>&! z`@UAt1A=1rboF!05zPW@_jSyCAleF?N1QH$6CtPH69yj&H+UToe?81V@ByG1`1hDa4+zye=$+W6n0eF7)h%2GOkf7>W*CCnW+g-0;{`JhnXd81;jjybCZ%xc(F z!V*sHu*a>x?r=f}?{hSt<2m_$#%c^4$X>W@iq9CeN{L6YiT~Re=Ijm^G>z}a&F1EZy z;m(HZwCKpPhzc0R)QTh%1Egwl*hAAIIHpg7OtQ0#6M9Z2;F~9O+5J$`)-Hxd<2u6} z=Hf}YKS8Y0X>L9%#dha=%gdbjKI{otI%u#L#RKdijJzVim8W~7?R06KeX&y>UE7=m zimMW}HR&B4kN5h=0i$n2AIHWWhvHyJ^(!N0V)8@3cBExFOc$;e!`^rsRvMvI*aM>) z*T6bY#*+Z{io*zmAUql?TM zcO)PPGEN+~C0d&3!uBxo&^Nb^CybI8hMlym7<2*!1v`6cL8|RKyaagznZo*~TH?LEmCkD>~z;C|T@6`hs@WKb}E|=yEu67*DXppe^sf z`JzgtFrIiIvNJYTT05S~P=wc`cN+yYE**pkEtP_BE;)UG)6Qe~n&3oVPA#IfK9r0% zo5hxxW+$`3*#Qi^k)8|yOPb`(;v>l3Vq=5sJ}0#>mgxZI=6zr#R8)*>P^^EuQd+P% ztv?fs7pi%`(nx^&iK`&*aGnmzh!@4?fZ+>j4z2X1&_5>H1Mvp&upxc0avJ(z)Brme zO{eg~ap$&IgVSB$hHX&Ge1N@9`rtHzk&1)RbiBO8yC?2t4qZt;&}q)62mCwpiG;3RsfS8>j%PocV&eKKI~* z@(5kRNei4D#$hm`O6RRmilCC#!1qqj7b3r?jhgXM@WJECtbmF{!^0g>9e@PT(AT1i_ZdpjNO;aT}k(J|ks)<7o71z(5Rc4~{9+k$M0aRP~2EBC4)NYk{t(*a%cZ_$&2iG31a zr>__c1~0KPkEzgWw4}1LIfQ^7f+VdAwgdOlEiznvLwU*0Q=fS-Zcu@XdJ1dKRq3EK_T9b6nsCjIQ} z-1dvlaXY5w#^HoOmF>qbuD(9yRscYE$*7EJR^0y1pTXAydtwsq?e(=k`&|DN(zZ3i zaz%uwp)9LN!+Va<*yA3J?6aP-aGv^OzoTm-JH!ChAJNdjOalO8tnl3)?}zh=~fhs57Hk=g3gW}u!2V}Drma&XckK^Tn#vOdeOy9 zj~#Bw_#K>N6V60QAZjR>IC-QM7#v)Z{gcvV3DKP-_!sXnVG(?VC7+G~SB^)!^&^q) zRZVIIPO=cw&LNL@)E>AIAXx*O*ik9M5hwBXx0<%uxt%0L+CZ}?GLzc-n0)woQ#1r`ZK;6Tz;6!$oIT zDQM9n=s|)!T9#uQKZc}RZ|aAIlPVsAzz|dgT!Sj?n;^x+=u6L1^`Ad5+Zz=NjxT8) zq%RmSSoJl8EF5$p*ZUK9xa?S;J~D0{)YePlLudw)=`J9#^~r4_Kk>k^P$G29msVge z-5*Ru{}k4x+#k-H00&f2ahoXXoSdD!h?zUI4G(NAa~KPxTRav*)JCJ8(wc4zJ5e0$ za(yf38v*si9}u?fKJ!LOSteL2I=2w@fR$6T;JAv`1LXd2hs{3q%?yFF05cH z_+0jH&$eARH_uvV16nKi(wk1Uo%Bvbao_32nI8raA;Ug9yVq8A##)DlS;iY@a zj_X}cqG%(l$nT-6Ev_5f5a<@|6u1tiKA8DQv#3_LE5H3{YA4BezZ-#O!j#$B3-Gc6yFD$$ck_PM9 zPyikw*rwFPPTGM7+vp;hqK9KVzq&&VX*XMgN~ZvA!p>_(7b~+U<+Re;_9p38xJ3=G z2DfP3X~@kb-L@cOdctT#z08ijVt{EbEsBlkT_`6zqWrSt>=lhILmnra1wCK!oyd}B zCs1b$Xza~zLuDt6qBVIGGh52WcGJCCU90VOS&bb9jlHp0R#R@QVR})S4Z~s8{Bj{} zDLu$$xi_J*Du*I`*vwvCdRw=fQ9oeRFwUMd6lzk00!p z();3K=pVvyFriW9L)#6AZXc2{=$WS1{09=U8?$w%r_wLaDXbyy>PqdQv2N}iU$yPO zp1!3VVyv+gz042&I;4~WlfBhv)#;NC@Hxh z601|%am*92O>boqfGNOl$+;oO?004C*r+)vP6qj1s&H4uKK(&`$sN%3VinxR3Cz~5j7rFo@c6^;7k`}F7x+o5aAL_v(C@Pf^X+ZR5 zP7*POsIAT&=ZPp0Ta?*`Xuvxe)0YMUCas9Wh2fz@uftiYeVW&jkDqG z0fGS39Eiq{HAWnjWJgHj8Fp`Kj=I1IrAzfw*PP_~8|jax*cNJcQqwtKSk z>)a_6I!-1>#H=8^PJF8nMZrac$Yy%3(?Ml5Wfh};JmP+D+Mhf?io$RKN&Z&`u@oNC zk_(=sPo2ve74>CQl5aRXjZ=*)#Ka^`Oi{f-tu+c{)mx!E>@&wa2Q^H`B3Y4N3ja$G3rJ#G0bcBAnEN z(a$agm7;Y}s>J68LVG;DDB-r2l=b56ClOmd3y@cOP+uFGs>g`sJ510FS-M zCP@93_w*ui+o3o^+eFIyVpw$=l?B)d>G={|-o;;5aV{r%W#Cm=sgvI{cOAgKSgs&R zhTKt(6Mk}x0}3Pq6`LyTg6>aUhDe17DjC;8>7q$cMpSV9i}zigah4|-L}MDN!0x~5 z!tl$X)2|$(z%`ZNrK?`~s`3f(ZYnbhjamz@^4r9h+XJ^ffaR_X;#zK!Da*h^gm8Ne z-n4LXlZ0UhCV^HW(FqMD_Q_6V^YwE13^x5dvk6m=+LH<1nT<3_>8M*UT|u%brlEpE=a#{0JX$dH;9js|GYvUvD6 z3d1_~A#c@9#V&N=E`38DMQldOP1L94+}t|i8caQ=-X3y@-LL{Lz8@bqlr@ zO}P)Y;}U5T9P&~+LE0VXJJO~T z1dE6pc{EDgJ;DC5tc7@asOOn;Xehf1JjXMoFXKGvMV=*r#2KWiQ6yn06Z)?8)Kx>f zx^~VxM+$aHoTz@+-84b#n#XFcw>jC&`d^rP8gzF=1LGVnI-(WQq=FK%uFw)t@tjH9 zc8z;G8hc;>*!YYIf@n>P;=yP|WO5A~#{LOv zI~a+x)inHgWrAfi2j!L@r4@o#jQf>&Ej}@heWtG?hZy^r7O1sF!*!%4*f(u}#N^I! zF_-ACYB39Mbmi>NT)||s=F2BftJNY08IHsLtQNHBF&(e_D=p?oD07C4(bT^zHBvro zX5I3$QkBGA#&tv;JS~=ECultPIIWmBOQ350MOwM;h#S@GUZo9GoM_SqY2nNh0rL{6b0Y+Xuvw;#@8vHf6xJZO^L z0?GiAWh1`eRv;E{a4xZFP}tN(e}GwH(y1qZdc>d|NrZ@Ftr{qUtNeBs z;Ml%^G+Mh0AKYGD`*!%b5q_?RpWpF6*Vh*AN7v5b0+`$&$;X^k9cR+8MjVe3b9m|T z0^eE>H5{bHBq$L91@HY(Jyn&I1RU}5%aM)Tlg+W>_(q`T7dwV1-(F&P2I{rd0}so! zwblLb#|{07<#;nZOaUJn*$YM1R{NzT@s3q`f#|jACOUnu`wY@EL=Poi3d9YCf8bPe zx_Cw^d7c{CN6Ecf$Q=>FP=PdJ6^G+Py3=#=Me!e?Y2RuyU9!ryT& z7iwZver45oDbY%i?ugwxUJI7Lmy%7&XF-aJ9#zv!|GZ5z4A_w=*|0DhYkJCSbdi0g zYt}p22r1Mne5VfVR6AoP3%NVB{G&L)uQJ9c2hv^CmG0p5GDE#6bZeC|0GH=DA1)J<&?1RBz)qOG~k9ezyo6)lUW2RVWsN(BHqjt_0 zI(QX05E!_|N-~_&hyDK01Uq z55GaJg*$@ni8qCGS;oCCTv$$Ko$685wh(@deZ&z;k=iafub9#wGK-^5 zl-@331IdE?R0*8xZyT)&elOud37`?=alcr|)A&Mw1TsZZw~GS1wDEWKz33@JaT!v$Vx^F$%>)N=%d0o@GBi#i;Q z@{7tUT-ex0MOJhuE6ks>-ou(TWo6Ufa_idID=TAd#jok1XnF9bV@62W>#7UO(v`(M zT;S?P3sm7>yH6fIylAQ*muAcm}3YLgt?5s*b;{u=t1sZ-tZ-%3~tC=ex zT-bu%gSBG@Sx{mHfQ~|%CJgHFOThdzB`QIy1S*j1M6j%>DVYrTl@gIS&6X)lJ^yb> zn@vs4A+QMHK*miCJ+V}>j?68I>{Azm;4-&yjv`Hvovx`lMjw>Y$b~JA)3LFgk(6_m ztFEEF!v#x5XDlP;454MwO&Z%#ZsIWOX{d=Y8LN?(!%>yt5JQa-kekHJ02VUd(*`G4 z-RX#zjtpAD`T#dCVb}~mi|9RaK_sI!$>;?vw}tjFsQg-AD9pGR_{qXT=^WXL#bcgb zoFFAQ41PdZ;9)`Gt?s&&@v%B+IObQ`GOnCTZW)iPsD_txas5IE_D66PZYpaVU?Tvj z(0#d$-Qj&{#=Hujv8`Qg=e~L;Mru39Q2ta|$z6~@3b~-eG0eIF{jBkYItBzL;}&SR zzgfJeJh?@KhnW^dDC~Bg48h@_tUX=k&1p-xMyo}03*7oC zErKQtg95{#5r2bkz@yxDT=5%X;$WmvHN%JET6!ZdKt0aFvXd{tcB>2f;YbKts9|&7 zbn{b%7&eFt*(lWKK<;qiiKF7D;zKXlCZKt_YejMABJU}~*V{-*Ja_#TkSAA4Gl4NG zG5v2Hw5vCZ#t{Eyf{;LWRe-#zU&zSIhw|5)1zZ4-r8FV6BWb694{+t`T{p#+vNodJfzQ0ks?+Id)~ktdAYh9H2tva~JIR zm!l?%kvIi+N0e5{Y&f?$({-sqK<>gx-6_A)DD+PAwSyR%-x!OB&P$^dV=h1dWg70i za~fL+AhK=Rl9Ft8)fbB$W)=X0PSl5NS^LR=w=RLYg_yM5w~9@K&kwI-6IwcE$3&NdbhZNaZ#fvj|(^IKmxXE z?rg+sU3l%19zlTU#I)iSaVJY#HD(*tm~O+)BCGNk(nqWo`b?whlc@skOcm(u1{KI^ zT>~|-skzLwJw<7AbEpdIDVkA>bzr}j?>p{2L;8ag3jpUbFNR;Qvv@qQ<6x$`=dRcotD&9PFjIU9kg zQIQ_htT)+MD*BTfe?q8gCsa6uD5Hp;J5 zJ89z2hYR&P7!z&^_OUbxulgmKa8q{yn%e&Z1f;2 zzfMn69VbR^8rYF((6p%8mLu=|;VA*w zkGi<>qf%Cy7CU~)N?$>xg{^(ubR<_rGP18s2Vfhz5EQLBJXokq8b{p-OP9GbRetzO zGTn&0fTtV{@riVa0qJ~m>{bkIECWd1b^>M;gAkYFb^w&Y#lQolJ7Ypy7>BEFGc=<) zzngGoLcI|hCP4wm1zH}mEFyR`#LSMB+j>I8_4u3IOcns16O!G-uXJ3J+PW)c2Jg2Q zYD?PmdI~F3U=uT-nk3O?i0m&=UyNKA794@H!t6D8NTl0Ep z1JNEX;B?tR1bU0zzLPU==P=kNdbp67scV(C_z=2bRC21mQak{ngWKb{Lq-^hm?h7# zYe*{$%oD-{cYvs!fayc<$Fg3AQqmwm$qge5=AIG(-qw3r>^?$w?9Ox7r6rGGLLI?2 zts9$?@B$*|Nrng3I9~)axmEFk=5({QqVzf9IWb%YX5}&7sE=+2JQyD_*pQdOccRQ` z^q-6VbS??0jUD-}14FQd;5TVhTIb~|JXIf(R39#furrp*@8Yg?ba^$qZg~09ZbEfX zSH}Qw2M6|sg=0(hscTNIfpkrA_l`9btSW`$#XiJrD#EQ&kQdh1WskqEpex2%*);qQ zO^&Rwf|Q2HU@v!Sd6y-*&!9f8D}-_(6VL@NF+Yz(BztVeF0&?d;7q_vs?^DkH@_jE z%xAXdAAVCImt(jz`KZVXr1b_tKXh3N*#<~A0Q!@FsCAU=YZDTs79v`Nu)v|tyW<7% z{u@?U0!c;W*zjq3>|@*kzE0F_4sctdI^|QcNq?CTn<@fVN7mJPohKB)0!ohXqjzdY zNC*IMVd!wglx9ic7@njEe3~+XJZZNb%)8G%7{5H1#LLnpK~XaaQo0z#5=Qc12`E`= zgB#5p{&gj*JR!?u)nJit7Y_p!2&^pB5g7Rpf$7nTAp#N?-g9X(I8|A(%5oWp4*VIN zFF%zAs|nm9)J(wXX`Akd?9`$*)$ngt6PMpERvg?T;&T6FZ+LXZV2h-D9pu3WCBq$Q zj9PUcv8O`pfCwSY_>xlhx&XL;sat#i-+uVmKxo54AYcNglB-mL;w-?jZpaJ(`T*`6 zbc`ALnwYAk;k#sQ4-JiwZXT)H$idmjZc!*@=8&gBhZ{+LA6qmky8!$PJhaHQi) z$=X=_yaQ)UP^;JvAyMCpBdG*wY+y`(kQv-pV{8O}W^gYWat640-+t*6o`r* zVas+z`+Eq*;Yl4sR@MdaTjoZINDc}`2?BoeM-FIFtfn*>GYG_X5i^AT@&1_v?!=Hn zHiCr2BhX88PzxjC71v*0tQ4}YP`MDL(fdGEQ$Gr@&|EGV3qZFT&bi`}NuCug7L9Hz zO0P;Sa-SLLiy_QYGnh=UrxSnrp|M~ufo#1bLSk&A?(1=p@(#yJxZg?c9tMl^ewY*5}k*j9@>yk4y$Zfw79 z1}o#dPN%g$H4lx~wf$q^f!IMPM+U9h5B>JtC%Gs{X4KutBd~QLvd`afhYfh**;b7? z0fL}a)8uqB5nyUuvIM7+<{I{yRz7W2l+&6<4K|e~OCYh9Wh7RKaIREzK=r`P*W^-E zs=7XABbOz6uJGVD!6>Dc3)D1z@rRPtZlF!`@tA4 zAW~F#cW$vNg@Md$UG2r#XQ*u$*MN#U(7OxzNW$XaU?_jdkSJ}QVe`$gmX_KOR!p|g z7BsI6P1N5i7Cu_QzZ@tWuPbxNZ>d{%5tM-d!4D53(G%f1GUT5z>kqI8CUCi54Ld6i zj9jvrt5(Lns30&TW1}0`?Yc#`$2HiR*6kUBQsxERuXJh4Ocng2u9Km!o}UM%pz_O zob0n1k;vfOJj=5TB;b@Z4uD_xabF^H@A%XC@*WWJZFf=pkU7FD?+_SxA>pM_zwQnP z!qd7uz-^DfLhCMR2HKxm4_pEu-;#_Uh8q7s5_I(TrsGGrMbv>eeW};1ri8cn!aja1 zL@xB|VwGtSI6tM3n1lC&}mQh&J$xMVxdRY`DEZ)*7=lC1UjTs|Dhw1(Wv0_^cV@~R1M zr#y`K{611nz^W#f_Cg5Y7uRNQfYayl zR-?HtXhy^>+?q$wsS&aku*SmXV()0A4dXV&85_Xq0bE=TAQW(mH4B;X!Ue#WdIt85 z2H3^Jl0#vp-W0$js2gW{5Ag;~f%ki!4>>m+`8%wEblA%W!w-SU%^L?Ml;B60K{7b) zHf1u@;fSLolUgt+8)I=681mv|ChQrWFT$po!bI%^VRKF@mm1fgs>M`RrYBnDhD zaLClUup$V>A>J)qk{%!pVF=O9VY}skF>7n3c+X|ie{ZGO3Pvp*fJB$0!i<+}!#WhM zbCQ(|2OU41qd%n%|xY4S|b$Ifi#|l=lQGOPS z_py0|0ZF8d-o7Phe)}YmfdXWt%zaXyX1C@G~@RVdg?Cf@{{3fzSL9vLy_ypYL~F*NDx<{sp$+fhhUV zCPaR_%>=-U>(P%H`I$=p%g}Tky}mz~AeSWd3@{6>L3}H_dnC)UH#mJv8F)|lB+w+B zl%SYgJg&E?x_j+#ha#@2=T4T$L_hNU?5W1M0~CtR)ak&T*l=7ENOo{sZs;MvY1RR2 z!!Sk%Z=l+}JZB*odz4<(;6*?JS&1zi69n|`!fghaeskfzh%YrRWXCBjQHWVf;=GwO z^^rA2I_d8+Uv!)8Zw02v3=Mfou$cr?uPJ_ReiV;3QO%0*RHPgZMXFkCBv0nUW? z15><_Di`}eHe&<1*JdF1AW{54?h#Mt4}@Z%%|Kd!@*0ZNBErt_-~d(<$=RfyTGy?D z6$+3Y2SdX*bVb_7G>M8S^O!JJ^SDc=Y@9-ZJdUWIgqDh~Nq=j0D}^qa`#s)BF^(Jq$Pv;u@U8)Iq1H z1DG`7*fQWPwsQVC@!KBgRZ_q!AK6K)~C5ma>Zj72mGO z-oz%F_fsqZ4^v4h5v^ev++3yOL7x|~h?UYAFcd6Vxo)aPY-gCW98j%t-c_o^R2BoV zFSLa{I1zjx<)FSZwOtHO^Mahy<)>_!YoKbQfd)=orh$8(J_i~AUw`2=aPNiEz(>zS z10TJlf#*g8*C63rG*Kf}Thx5^B3agiW{bPDfQntRhCK}~qjly6S~G15!1!wK+$|ZD zo7_k!AJ#Jolk3=5x!s;Slp8YcZHS`;`1+2i5inn@YT4>gnumd~*FA38t9&*Q`HWTK9#4&hld>Ej3-ObwQ!FBl6%9S+jpHcvSTn)x_VK?X*~jk-aZ{{ za56N?%RERYQ6I7hgiWRFtKsbnOZQ>eVA?%24TdU{j1Af$Wo@ih*v@1&o}NbgqF8;b zwM(-t>#{)@CtXIHq1rCFd%9O+8Lpn)#3$#X3#rN|W`t;_S@f~d17O+r9QsdiVhG0p z>@>pJI-kcMkT{@92Z9l>3IPKn*(uLbFv|A7p(nN&db3~16IVMn*1#OBXmr?Y*wU=? zvwr4anUCX-T`EVS%6c|54)8PC{+R4pLNehpd6I89XmEK^{c~bDii9- z88mO(5Orz&tZ}?J>VjJeJxm;NkWb*Ixq}{AR+la<{L!I(VfP+RF}T0q{S-eqejWgK zK7%*4c!BoMtr7RT!C+FHBE{w- z+i1foCvw4ulVA%=)NYFVXoSWh2hGgs+zflE;sjdcSRO}(gn5Ktx~bHe^u)&t?TS;G z1pdt&wE4!ti97wz<^xKvT(CrE#9j#G8GV@^L%z+1MokX>v2K(vO7`a(^GK!P)A)p0;D`JDcq+>~^csQAcKr$TF3e2Kzfp^qEU7tbF|K2)~2tW}a+r zJY6oHY_6|AWn_l3I{XlR8hhgKlnoLVHf~HX(w|`F7Q5wSpG+cRzjK%t$76HI=`{0Y z5L;-FLst~~_i9f7NdY~mEVXNC67|`HJ{6glLjOua9~PVX)gijP6#B8y$MH3R@|6?% z_db0o^rKKvu2K2(Qs_fzdMWfp)Bnl{eX!p-{Fi9_+=Tw3XoYlN;~qjRQ&nk@Gu=I( zXB9O8-B>7~x=mKSB{^`fo?hJ|nVEKSsTaK_-T7f9Zn!dRnkmW=xwmTUNh}*uU?sC* z;1e%DtK97tvo-1s7@1dMikH{9vh z(7#jiKOf!Y&P^QeX=a)n!@H>Lukd^*psv+qiAWV6u?VS-V{S)Zz+$c?)*49`P}5S^l}O;76c0_hFu#wNDyWM zAENIfdh!s`YiJQ{hDKPGaYaP_C=dl?BSuY0!E!c2paj55k9F~smaFPuZ~zh=4M0Gs zjDzm!ps&|ogmzM3aUi@5ya#`N)We=xj$1uH*C8@ef|(G-s z6#-tO2;dOx^FwT-;#5@|A+M06p;5u1**_=|zGGW$38_E;dM>oVm_ke6bMoK(Rd0*B z42V1urU?q;g|w=Vh|!y&Ff#+SMEZ-;8nuRFQ|12vfQq9&wpg zJPM*x@m&U7t4{<~I2?ee+IpD=+m{W~b|?=&1Oyaw;RVL}XOCVL(7cXujrw4UESk{x zN)(n}m3OA0nfJ%kw~q&Lj)o5nqi2vOfcr$_|1GJRGd>UzF_OMk(3D zpVHY|9DQQO=m)L*EW@8;tf5|uUJlKr%BQGhCID?gwFP=Z$k{A1jAatHRWiP+stlDA zv0UEi3bUfJ97SS@{p&H)*-?ESo(!lWV?g3ScG7?3!tf;5nQ|=}fm~`hiXgaAVHYzT zOoIoK4m-@GCu5fZrBkoXmSMhCqO@W(T(a2v#_Uj+PnF?UXR&g8K9f)*+2}ssR2hQD zC05&>yFY754*_y0H1>0!4a3VdGW|&}VF<}&!O;YvBIhN`sKGX>?~~y@!-7~bQmuW2!GXNb@!SSpLRjGcuAyu3vR!c&S zE2dSrS)XDe1c}pL^fIl50bIYY26plbv05@~VpZ?6F1*#$9>m`-Q&L1JDPVK0&qxu6 ziOPh{5bqcGFsWDR+F@JG5jd6h4*Mi%jV)A z@1xVDCuYPqyVa$);J!ADlbJ61$FqiH7U?+a^Ej#3Da=JY(4pb`*>g##aY}<_qQM5MB8HO0Eu$d-!?|Yk zc!Xjp^^3AkhBY2LRYwUTE|;kyF_P8wBy-@-8)H%m!`Ep~0tSJAcoWVrGDUE2UMYn@ z$qZ>T0=UeV+8&j^!=#@fD@LnHv*+ubc)c4O^4F>VL3BqzoGR4zJ;-CgtojJMIf$~E zi5Zi^EK4K+Y8m`EX!A33HwMUwkz*;Ol%xs+-m6t2t800cywuE&=o;BVLsKq{auBa@KT-^a1mt1TQh*(!nFw#6F=H`_+^Z z01Ix#A_cHrI)Kd4nGJ&9S5E`bE(O39!v9r{guNp?1p+5QMiuNY%`Px6^xwyw8_huw zzlgAZESRVjZFihp3AgLKg_HId8uI^Th5LUsLjA8J%wIJ~=YDcMA^wZSvxoNs39k^^ zA8Fk@qtgq|?mb&rzmJ)^R7k&q^|ImoS>=@U#ZRNtfEEe=W{J2ankUrqg#4w3@7vgg z`}dfLiYXD8>~(NZZ)UeyG{_7zY{sElNVkTvjq(a?a=sY$f%#T&)Iu+_49q9+lCJSG(*Qynaoq?`tX`%UA`=5&e0KeV?SR8yK?l(h>>wqy z@Q`cML)h-sbP?9Pnm)pswUUxA`DraNwYb2wy1{6no3Oqk{x4NO;W$kCUrk403pIL5 z`)F=9@=T`COI5C*0cyklUTz;&f4CQ#a-c-v%)(7Ke0YIs1U2^E8t+*dcjPGAlVh)} zx2OR3WnzN}Sg=B5qpb-kexjlV*T(Y7k)orEYOLQS6CrREatvBC6uBpa_k(alI34WU z&Fq>&QX?UluCIbJAog;Tc{N4nR2R~~@s&SX!ynXN`-S$&T-x)NMxJiGFWLFj@NdVj zUuKGknQeN&nqpTKv0hB32-)j=)pJCU3e{9)Hc<)gic&7j$?VWFK9E%EmPNa(t_q8M z<;b0bDu3h*fgAdS6|hwO(XFc^Uti_S3zaD?iq8Eq^FqvRuJgACIJLhoD_mL0?sCDc zEeN0LY};_sD#ziVkTA+J%9I0WH3~Vf5yXgoaQ>iwhMWjrFx`HXvWF4YxZ`KAuetJ( z@+E3jG*&3OQM~D!rFhet^UgL>+e>SIvvM?14S9t@GUhO@hNj-f$l(z^JKZdhzse6f z^3; zo2H)_R}lCh^TPxKTH4Y!OSYt)%$k1BUo4@Eb)Z)mjRud4v)KTe2IdDF_=&hW6`iH? zCAq!}Q^76{r<^mU8o@G;v^bNpikGQ+Qfzln>i_Re$GZAXm-I8-sbDR8#Eu0#k})@FgOX6)$R7o?&wv)@NlML;HO6X_Ha4F4+Adq#EUK2SIaZ(#@<3^2zE;Dxmy~Axd(gh(CTW^R|gdkeU zQ@G5P!2X~UkGjDD(!mkgzt^4?vAOO>{O8S^@6^Ba;9sCM6=#2tDj1xMY{giqU0PeU z9$@fHd$ba&*j)5QP5v7IjI2GGCNs`uxTGzDo9lP!SWTw&0GSkW2X`9mL*HnyZX8b& zJHX43_Fkh+qCR18I510A!e-c~C$jF~9Cwu-q=PMShdDg#8eb>lM7zb-(b05pq+A}3 zFB#r(EetZ9FnwQVJ#Q%&!a6NwrSoOrZ<{SZOhMw08D8=tdE&j^AyLg%`ZSp~E4q9D z?J6g=t9lB+Ml5Mgr8<{xJ;G$U=UsF#K8C}7&i@}Tg#JB)YRt`*%!a56dz|LwVB>}X z!rW;(?jOHfsR8;kI@Qabg%pG&-B4VXFE(HP_=S~J0E2G-;2>pasUl(3>s_3I#G2wu z&eld_s8oY}m=KvOFm=lB?%3aQ+DPzD)v3kewTA2ExmD#$KVAOP6PA|K! z*MP9QfjcA+VYr&-C^g_UNAgDaGG&=IEiksFwoGPqmt1=wqmvwjE0e@co>2WlA|2$J z@=PJ{ZOY4zCaSY_vF`{c=+>SaGafTPTHTllO%gOS=^0X}h^t}*vS0-qwEo^+NMYpq zd%Gs^ll>VVXw&EAU?xx!c$sh`OpxKv0A}A5W)$S|x~k^0SUgvcYUy0@xCypw#lv^# z;44F{4v1w___{vdDZ$tE`A!Xdtxpf*Qoji#xJ8+bk8zC)2>lRw)p)5J!k~ERjBp{D zu8~YqwU4{Aj?Qp7n=nDL^aT5d2;iK~aG4u#i1Kfg`J|KgFID8ke|9Z{!Tz9A>aV5^ z?I0eE<9AIhCG)yQu|Kb=a=&_NhzQmd+sns!vHZipF5=DNyw0Ncsahc0)G<&%AfJp$ z#3u*|D61@is;*xkg>02}R9%0@^DClp{0TeTG{-8-(BO7{>EQ$2s$(}!-%hB<1LSYg zI>Ce5)=(U5{Ie=cVM!i_JA+tO|+fXt{&lqY30-w=@RJea-mzjC?U^Jgk!af|?ZXe4QY1iTWba z@9>SWd)=2(pqKW<5&b{!pUJ$?S+T=Bc9s=PhBG1Yc&^mQ^`l%a$#by-YK_~%hJWD^Z6*Jwz@@bw?iV|h(9qNfCbIp zpCt>$ma5w<;r7^R!ImnS{o-pND%G=mq9QLU)!6f#T+J-fl&_iZ)!e7jaXb|Sa}g!k z9!Vp;D2R&NH$Lm^GEVFMa;$tj;iIP|iejJqP=NMfjfU1lYke8d1$Kf08q*IED&`H^ z@O-XJBy2MCZk#8YwgDxF>=clL5t%2MmK2ukYzeYSy)|#vr4xdrYE=aA~OLlk$gf5`%Dc0pHVp|^#_ny&GYa|Q05$l1-R78985*lugQ=}a=htQ1=-#e2B65~&0R(Rl;2H0wH3%+%%Vk&S(lvL`t#2L>uG(W0ax73ra2 za`0$F@^Q(RVdd+uBG<|4X@^5f+0&igwEs9^Nc|r3qFC8dgYSclPQeTH44`iGNhP1Q zCg}xXQMle{rXxyZImcL*<%?0WErKn9OsO}QN9HCXoH4byX+IKZ3civUbpkM?SekW4Syy_ZqY>zT7HXWDwM&0yt+c(+udv2zHi~8M|=;8_k8bsTs_@Q zLB=xCffaUwjyv&ODJ@C}V;Sb1zQl{LTX%*rk1DR|y$1!_^E^!1mKgG`o1|l6wmTlo zJ1B;WAJ^5F$OJ@onHEcC85lu8Yc)raESw-;&~$(t9O0*7UPJGN6l_H)6^s|x@VCWD57)~yBij&2(NIieJ>!k0{*9_977LvzLFvloE#c{2E* zcnJZiIH0+=QK$|xS{$bnkw@QChY3|n=*3MQC?`qj&D~;N=$as-s%t{`Q>qsI^u(0i z^Rq~9;1%L~o=)_w{!8=c>0s0AzAo(G0Gr0?U2yK z9s9~kw3?N0vw9Yx2HhuJhj{n!OzK=lr}#Nvg`W$(0;rPp)bu>(ns&VNnh86(c_pvu zeLTS;SS|hLAURCDhCagt>(nhjB62MjN-1qFw<(>auoa&A@+cLXY!SwCD$fVvs;w?~ zbFX{0M&u9{A_|@fu37q`(OvbteC)u!`5||3{i9IqWd(oeW}hoo*D=p={Ifoqeb^G< zvhB<4;woHE1~zvW%We|w>^9w#s17hn$L+(b{?1L@bS{4Cgs+1#C0W zlGZA76Nq>zK{J-`^Q$392_AkRvm&{6Hu7V>UdeV{axFnJE_(&?CUu^(Fl&l4FJu&wq1E4%Dj$y%`QXGLH-!gupm&b=nu3T6?<`bc#_9sM_yUulUYZIR zVvw7asdzN@`#B?^$hu2OgB1Bt|C$vS=;MjfQUUt)=pHoen3PN?v9%6j;!y?QJStR` z2N(fCy|$b?)$zzw8jjkfoetumaSdCiHcbSAckYK}eAEIMvU$7EY2Nw0@n;(TA52N` z_1LE8FOKR!r9-%YNkHYQxZn4WS0!~q;={s{2<8y8-}LD01XU!#Lh3dG?2xMThuiw( zb}9JIO+sl_y>n2g!xQ!%6xyS~LC})rl+CyG!R^(xwblOo_CC11w$^Xo;$FKJ_u99( z->${|_AMT?YY|cW?cliHs=f8L&26-5Zli5;H(E7!qfK+bnK$RRc6;s3HjNPjzdgS- z;NQ2~Hus%Y&3&h3bL(qunpn~N9-J!!p*BxzJ#XCrwHt`Ygn!o{}m<;DLJ2{MN~ zbv#87LLWwZxC~J|fpwh7!~RjRmU@{Le>$4bi5(6*u)x4g7iD=V_iQj_RwAZg%{9hT z4m@Xjo+TrizK2n8W4r|=Vk>!pmigj6ya*mUt{Yba@y}FPTrvC=n6G%{r&HxY3j`Rl z+Q5el$*Rtt~T0RSMS+5ZF=C_ zV0!C-!IKUaNmc?I4FP-L_oi|2d$ITtN>>XzpoccySOB_QejGL>O0sWh8J)vU7y^1U zlNOViy9-ye+jFNp2|^R$-!OTEd( z*=gKI{L+4h1TPK?0UH0#dLPLXx&w13uv-?Lw^N zzkjAm1JQVYb9GhPTB#W#8${>|?wL+J3Kc12$f41L!39oM#7B?it7aD)FY<2E4IN}Mq_}$FWB}v%<~c|CwX`L^H#iod2D+b zhEOuyu*WQq3jC83T$G^^+SpjZ0}U2C8{H7{6%qu`k*W_jcjJ{iRaa&L`8Q_lN}01M zA_RO(mm6#*!x^BCzZaB$4vZiA8VpBggYuBkqw_f+KF{G5>@X$2ltWy#Tjd$m$t8Wg zqvHC?edMt}W#DAojy$=m$t8$s2grWtEhX4|e=e`dwe(l!Zttb6Xi?DNYFw?lLL%c+ zoLJR$3UW8uWD7^hIL_38^+Tjn=iU`2YS0zL?}VD%0qi^^$_%Y}4#0Uj`jdS{bF`DVeS{o2JlU%v{jkj7sD9@ z)PbmwaUL?s-r19TfvH(-uR~qe5aaE2G8Q+_h{bBeWvEwXX^f0L?N4#5`gD9!>5s6Z zk?vrOW0TXK49gcvAS`^=k}eX&h`yT+z8EqKjzC;YKfb5ZFxZcqv)W#oT8b8r_4twA z1qZ<@0>+hcrtZeALiFZL^K5N|40$r>60=XLuiwv%gSEjsd;`pi_4Yj8$V&Wp)Ym`L zf6J{R<5!gfT9tV%AuWcR;fjSJg++4faP`)G<4hoxAi*`YnGtJkXP%60tHpQ{B)48D z8+webQL7d=(R@@3*7`=K)kYGCmDVS48XF3~owVv5hqQ09tK}%C;aQ8>#;w|Kv|c~W zWU$MUWKDB&Nn)!oqOlwd2;BUL#tV^|!FsdrxhPBl;@F@+wN^) z;IcEyb@JXNI(e_569k^Nz@sd}Q;-B%qkP^^v4rR)-WsZbUea~~Nw~ZVWr-IG1bK^A zo`~Wgf2SOt8pA_ zLmCVYXr*A}&usmE>?k*N4=4+e9_s5Ts<{YM* zupCkq+Gwk8R-J3JdnB0SNMDv6Hbx|(Q& z1B7oeOk1!n#1nYjM?!pTtHsAk(ubZ<@scA9lCsP7;fKZTo?L==(Jek^xZgg^kNqKk z&CPZq^Ta};_~4-Hn=F|*w_=MXbXQ5<;(#j&gJf)dm^pH(YRpgx`%xv8j5dPsCkWW} zfZxzQk?)|`=0DNZI*UoqP?bybqxjHVHL#+rlMj7Xe6AOW1ETw3kIkD@(v&QqgHm`Y z2`ZXsNzaSB(w@4*nReA-R}l&u`YQQd_EKD{ogH%OPJl60OQk%{(JalgF|o5BpT%h-1StZ{Sr%ax*aXUi+{q<55a+CYqJ7_-A2%zC z+!#zSBjyl8qIo{F4}zh48W64Tl9!ydOvN``!fUqjnH)jvda)uu$WCQPz+EbAwOjYo z$*`hj7Lz~_W6u$9LkK3fy~&7J55vVK3;)V8fyDs<+TZn#;o{^)4Z+rc`?Dl`*%ydJ z2r-G*+(@Z}<@j+9G|X(bGaPO5(QC7!_vbx+6@PA!dTqAJDWLDyx*LbZ8#a~Kitd|- z3&m@d`LZE?=HA~Haz~AkNu^-2IG7J5Vl+|_ zwV56FbC*tpolFZJuLncD-h^tH7?k>DQJ!-B@|?(hbD}OOrybrI<198ON5Ie=Sja|^ zX$*iJBC$w<>2{tsamNP;D*|&?;G>aQo#!blX5(+)=GNBD&L*d!(5Qj9_WTseJ%2tHFS9>yVsN zw2xA4!xl?7R~3l3eU?XyY6iSSQyw#>8i`Vw@yQRIyU7Dexv#g?})nc1SPNqKNZUYWo z6W}@?ZM*m3FoGv?qc3>MHiqPe&I20Pq$k^;FYE=yvjaP=YS^j}y{Ikc9IDjS43=OI zoP;Q;c(d){ht{^$M7qT@-sk~yW| zO0kEnV~)4U0D+Z{hfpTTVEsT*+RK!RP8{x1;*m?qJAgWbKttx@8+3>&h=}Ogo}C0h z)5OXAL%8RiUZmO;+zmv*RNNK69TAy? zaYe2u+gBKoRmbveWvhE2eujDL8HuH7jq;o2yY_Wm%0PMz$qeF6hqN15ohwSX3H&le zeY0*|M-%L8k%wBSyvr1GKj|GEkN2Rlq^lYYL)V1jBg$up1|+p1baf!I@h^TyqiU=P zFm5L#;CD~KdICwQ_8*}NXJ`S|HsG@#3uY{|`nHgAIy+8$B3KKfP-mAqmCXl2P=?JS zvTvE3M^7dWTCiv`i>S@JihV76D7EJs#C3ZQhKJ%+7R($rM6CC&KN2Jt1&`9hHviNa zN_C0ChB8{4%e1f^S}@d(yr=31Acdd$NlCtF@=M^1T8?Gp{=FnBB3q?fbYPC$z3~dxXQ8&U#E`s45-tefM$hx#ynOJ@?$bUdu2GdJPph4WD7Qju6{Y zj<*rVfaJ483y4bFLh5A-5hmnx3O*<|mN)24r!(#|4=VH5Z%4xMMU_*X*V%#$e3(Pe zSMjPkN<`A0#9~l0glNqM%i?!2)aWY?M!gP|OGFKO^|Jb}J8?GH20v`)uDObh!BqM( z*G7N|)^WB-u_WD_YyR3w6HxS?!zrMaGuGydbPQa9iq;>h`T|Ah@?x!vKw0~1xbTCR zdvVSJnF~4!7K(-TgAw@@Lf%_XbfrJxf_R4Mf9ZLkL%_T*>RnD)jjjkT#ggCQMfn^O z{Z00r5{E;-6C7^r?Op$|Cem{ zo6UCRO5fpOYp%q2VRdpLmVC3%%4{{BY)0Q~#WU+1A^mH9ur__N}uPT8^( z#aB;UAlnN3*Wy}nxAMc`=rI$9ai1x$>O}rveI>t)GtGSSNFqe(s-Y%6JQ9ZnbVKbF z9&UhCeJb7!sFvI#OwJ78(vq+zM%k1A7Y)u(s6)4{9I0X1%~jcklWohS9=$}ZD`H?= zNemFGQg_p+IdkC91#ls$Up+BExU ziVH<>dO-Y{2#-MGANnJ8Ujq9W>iLswp?VXMt>&J;J7%%Rcie` zY?jf`pW@3Bh8dN1HVi`KMuHIaZ2nmR=RAD0-q3UTY1v5CTjovE>lxRpJ6wfaQ|Bgc zd?N7(CE|U`x(8iGy8SfW<9me*pnO2<}WU> zfEph!drao+EM8iK@UXUj66!ijD~Yd{E%}mo7Jo16pXT#rnFhZvUzPn7>bEa@Ay_i; zL}Y02R_;EF4>)hwyQuR6vm~g~i_Gi`X1xY~FkhX~C(J76gLVqU(hX7Tfem0RU4Rcyc6Y)l`Kn&M=4hOqV*ts~_+0+Yk*UjQ=CkW5( zz!RNFLRlGk=Q}8T1ezJboyF zrG5x_`+j$vFF?&?FMe;W1eYByhLuf^o=`u+x(^@sxxSo(yn$`>T#fI;38$jlq#ZVtD7{%R@9ArB>R8KSdL z6f5#|ff#?n!;8^Zr#JY8H`em|x_~)S>FMU29>gz~yICstemQqRBS>>U$uewb5S1@h zv(pl#Belqkhj4K2S@QU130sQnH1El$!wsQ#C0*@#^679cqotci+{e?~;3!#0714mF zEjZKltZ4#i<@VUC7StxP0m->7QD8~#5NL`Dp-AphMq$WT{^8zxHT4$XiublJNfJB# zxNGValbc1ujQKmyjNjcF;W)40oTKIrkA{kJ)3thU7Gdq&X2Z3s)m!(!c8(*h(Vuke zsW_gJS@BAS5>)aWByR&Vl@YLbQnX>od!tr50#uJ{FYfCA1GOPjbiZEAz2A^qoE7V( zgg42*jm_Rfv$Z2+t@Bx{Y{@^$)O=)yI^$IlMat4jrHu2*F6Ta$PH&8fs`L1JUyWn_ z$%`9v1(j3C{f?+&B=_n)cQW=nTxKP5M+%MG)dlCMOKK$Ku5~J)ISt>rJu|tZ=-J5q z&h4|2J34p~ZJFgpF#Lh=!PC6d2$J0ba4s)poIvVkR$?8_t{ z#(g%DKjXMH!dLXZgz8ARs_^B)HqhZ^J&Pb0+fKSTDvX1(TR8HkiyKlBNATo)0`6$s z4YhDI7J?!k^Sc8ZE55{AKX6cU;!hSFwGtRy{VvbXGHO~*|0xt{*Aij_`|nPYZP@HY z4*;uH0_Mn!T|-yJ$Qe?mSeOpqk`?t9^jWc`APMyew8%SLYt(gRO`r&t1_mEKX;c}N zSC45>#5Wqb96th23NJ1NGtlPqgx99z2|nbIIX165s3hGq@Ffm1G7ld3nX?c!$nB~HA zO2$0VrH_k56ov(5LQ!~HD(09*Dao!X;%Hi4<>+3JUU-iBOv#wTP?AifL>>~W;IIWI z2um^#{zykjK1~V2kh+E(#fWc{`3lY@TmTI3qDzTPit`rkuvH$|jgh!?)s*wmUy&?3Y#ELjq*Ld54m7Av zrBY~_r)-Iahx8vRsR|AoB0!nT?Z6V)Da(YK#6D>&s=kX?i(P(_?0Ep+!}wjDm66ICR})QWCrp#eg2Ao9CsP zl&;T*a>8hwN0%7;OUju-IXTWVnpX2alLO zJh}a5lFcYbGn2z080!pb7bc!N3Lf@OaG^krYDtb-HA7PWgI-%ymB_R&QfG9|QJia+ zR8~{};ira}A~R3?PhN$8t3%j~FiE;YbGhl#o&SQ5=&E-^rMIjBtW9w>Dl@d76#j|_|tIR(qok>WSJSLuReYT*g!RH$h< z>U0mrOgkEZBB_}YDsq6o`BBF*b)9j^p*QXgdXIRSf~+s3pF(Q8!|~BJui$tFN8c&y zwr0W7lNOgk7^T8pAiWA+%S~Ys1O5(}NajXt56WAl%R%Hyjufxb>?4f6cVQutuKP0O zeN{(gfll+GjLH~%#;~(+xP4z!86R{Hu>~+(Us(Rh+Y7p3wr=e%7N1s{0Q^+;W#a3b zxmj(7^Q|=!J6G(dXY1nq8M}}(EOpG8vry-4FA{8fQc=(^RmE&E_$=}--g}}l9iwiX z_QxH_2B8#LG8{*LB?w3Soi~`+J=;QHt1ZZ&eQb%(dF|VT{o7sE(VasT_(|@qO zaNz=p#GgEPxV|vD@Otv3k0%Sc8e8H>Nw=pnC7au;qEj~jU1B;lTthZ%!8Dl1<1Bo` z7k0MWQj@jOc3em_YsDOHOynZuS%U--q-nSxDtQ9a84AFy9q@skI4W7UZ!q-**Lmow61ffHd~d6pAqIvyp)VC@PQR(K^I z*a*9wg0>6~1i_bjN2=&ur`80$QrM5E*^W2^2Vt+#vx;8QnR`w?a`A=mk&9n_K5}T{ ztdW;2S9nRzUC2vbzc5X7>Z&8-OJHvjRq_n% z4UwpDf}{+HOBaZQjyXkZ6o=7Rvf4osjC%|-k_8`F!X0Nq4Yw= zn)e&^;WIHHL0GQITzVlK=+ak{1ATVX-5DPtL1RgoiO)~bXWqJSp{&m=va>{e!joKmdT3?NpT#T{*J_ohh?kN=F-4EMR;x$V+g|6T^IRi0D1oT!@kSjB z5{u&+`Pr3c)K0F^G%YPt0Fj)^_qh*jNva4Zy2jW-^BHyUqn0hP{ux*kJ5N}|wJXo8 zq?CCCuk+wy&y8+A+v9~^1Dn4c` zAi&qUQ9_WCYSwG(V-jAvcl(Jw;EQBaiS_wuTEg#H5&*lwD=`2*;SvK_NUV&T+C2H| zu!j^8TfM>PaTqe2m!*vrCmdCP*iM!LEY{O`ljEKlG2!49sFJ!=us$)0n zX&!e0ANJOYTceoa8XlJX(vxjmvIdB^#U`WLQ`b?uxICaI2iX`O;fi9dF*-v0rq-jS zBPtZ<6pfU?nA~SRYo@V30)7PatVG@=BEvbhb&qu-f^Pm4S8JvS&_XSx0cLbQ?!d9V zhjie$RR@Vvhr1P2mc#t=25Z3LU#1JHvRVuOrI;h#<%6INi>fyE7@gUKGslMm0UGxoxjv^yjAki z`8fD@zPOI8A>bUmma;pT=u`!xLL|Dfn`{Mn6PULg5sa4fm*u}_m;q(Gb7jb%S1JGb z3z4`#|7t4b%BxBmxjoF(@!aI5;LV@V2&cxJaJa953Em`Dzt-k=;)S~`S?8->xHGJ> z)9r3^Sc=*G^R;KSyM;wuE}8gIk$T=${fif}s(*2wtNLg-x!>;%*OgP-{i|JJlOEg5NJOlx5kcI}f_g5Zyz~oi)6f z-7)yqY@mEWuq@AlmZ|J97$tO)gxR9T*TQUzKkGU7Tc$fCo48@VHzJ{(&^|ws8$T2> zCj6Cn)}VCnjGz%RVh!rv;3N!&;vV_{U$`EW?V-eRR#k*1@L&eqA06$9k%Nop*fuW` zV%%MJ@slW~1P5DgVl7BoyqzA52$(R@QwoIdyE03zlx&h-CGbARY*6#K^A01fj@I~E z)wB}NV%A1*SBMvN1~z`s)m_)%rhV6I& z>kX%Uuy#*if8e$n-sY{wk?4VBOHi-TLyp+~5XtDf0~V#x#!Fgw9T~PbC0v8u5mOmH z<`c}L-Rzy*L+)qgO3ol)7RBSTH=@&0b)f*t)7bxdY`4Y=w?Qy63wMa_(Bk4?s6K6) zJ_IF*+z@|83-OE|ArOmT8Vq5RKY@XqzPXO7VCMjL4rzwyAb2t8XP|?;tw2Ye1HoQu zQj5e!bF_^s zYf7_gZ)Y**-^K1ceGRecnHNk3TP>aGh!PyBs6GNUA(P*$j0g|;EppLl3$zz-`?Zl@Iv3eTK4feCXK^I~PAW`}9TaWgDeP^z3@3SBl8>h_*=1 z#91awcUMU=_)0fiR~>BJ4RE0-v_ZWEu~LdH_PM6?LZW=l;kLsX%|oI5M6UIj^yw|< zWYk!Ujse_hh?||_uh+5Pko`uybOkW&C0&P}Od&R;N6q4IHjG6m>r*IDbfQ_8DSI6B zb`Kjgx!4Wvbc#RFXRh6`8GeL=S!<^)dY0Ef3(i^*W-VRe{oxR(_H|y1FE-P#Dzyio z6C`hfDP4UT3Cmh!);<@H*=R{DW^ZNBGo)N>MoQzFi>;LrTyDC4CF&4wfffac!Rk|N zo?t-FfX>P)%8y5~&-BxP{rb6;bRncuo~%ghiwdI`;Td^7xOGAaXXp5!%zRk&_&i^s z&^Rx$JSAsCNnSZUUJ7%!dUME6nD(h}{KqgL4FIR6>!{*kI`| z3#nOMc_Dtj)s^#f^rg~7yn1x$!IxLu=)~NTDAX7TJcE-ib;;3N|JH@nKlKGV>C_$u z?bA~3)Pr&Xkv)rf(8SddGB<4NRn0DWNq{5^y|s!ulLYi8v1nSd!z|-qJ+L6r0upD% zTvcp>QDCqmf$ZA28|y7!pIE*%ZMUHUx1_m6G&O-1G3@2_$fs&5ZfYf-KiUKwx%pk6 zrDIAf9*)lu*%3tcTeax4S1_Xfxa40XN(37<-Lz}Zd;ufnGa%3AU3>KQUz;5%GQkEC#yQMWsZ183mr&DuS@m5qq>l) z`dOXTPM`E>I#F~DXmcWxbl;3>st2hld)3TVJ8cZ@j&^;9Qi8(IJg#u&LBy&dTQy$c z$*P6mu|#daOuuX>xqoT7Hhw|jnH+5`i!zdGrIsvgh>5n_o<%2f zWsALpA~adC0z{@<@d!8UryQX+ zfNQ~ zcCOjwIofAzPRQpBHX7^H>+(@MpV3ZZQw`PvU-6@{E?=s>MlgV+7izQVP;WUAl zFxuE+Wvxv&+*oDGbkt8e8C@jrdt_ZH%M$W;&e3Gtu;cOv7|+44ihHk;s}s(E9H^3C zot2W2R55)Tu$6TgjVoEeP+B6RooQ!ay55oX7yCM0Kgy*=5+<6+Bt!`^uOSm3*+CYL zAs3$6bn-OGChf!aHdL)kb95-u^L=ad8aE8Ycz}S-9QGpfs05}E;0y@^ zL}OMXDv9@dusw3sKt%Kjcb0>Tfh@X&%_*Mctfa`IB~96Y!=TugI&4L6VG7?Ow%(iG z)aj6*^FAE=4`iW4!Vw9bwhK|h<1^GTR2kTO0M|Z3mT`F!j$O-}!i|5YZ2Py|_?II! zSgh&M?wU34QZH}V(q&+`Ewb< z9Kty~nuz1YTLW(Osqosz`*X-c=Ddf0=gRT~%5&6uisCuC%?B`+)J2-c zqpBY&E3Y}>ManLzR`UfM1!*qj{Ui7_s5fIa=MZj>Swj?6Hawu$x}Y|}vf!==-eJtn z@j^`!0_bi$CBi-M9o#{E#k`M4!~SU4N@MO_vNd!;n5RHL6R3D7nV`3?_r4T>fG;=NQz zNlDV?mBsc>e|HxO5whjA6q*upwKu(CkVF7pAmMGEnW7Zb$Ku4Tq=9)0S{u1ay{ONU zLSs`>iY`J)zFZ&xb{7$0*^IGeeqyp{6umOF=uU5N*yYs-|Z<35u~G3lkFjSri$(8|`jCL)rx zPyJ7POzr`rs|X9Cc8czHB}OM{5d0{%@$B+_bQaI6|9DyFnt$=4Vxu@-SJU zZ~+>$Yb`(q>5For$+$U?LL}42Uy8SBq)mN?~>&B85LegXWSZ zC-MBYx?6I$wwd#|Fj3|lOwLjz0%gK->}L&EA(|=WaIUpIOF|Tu4~P4a$_08VW0_VL zg^*vH6rDfp@Y1T{56Sh60>7Ax6LswOF#3SWhQJ*TB4(qRJ_Ncrc=h9w+{O9KBVm`b z-JOWY0f@h1q5S}d16!L|{;emv+MZB6DpJd%tR*Ng@$GFK=LENa_6C;-0(>RV7b5Z8 zZ=xd7?dHPSBDM}x!SF(RQS{kMupC9X9(+BHCi0!)-dt z?ua}PB@9eMEO~C=sBCC#FIC#)?u>MJ>32on1WlSQZ1`%y^YNrNgaYKa!r{pw)Z03o zVZ5QknixzS;7x2_?QdBmlnxSt&IVRH5Vz9L8ZHluY7Y6A(qa1d#2Zi_#Fy224jsCw zYPo&Y-7mga-Tf-{^9J2r-YFG?08#95o~Q19Rcy=Ib@!`Zr0%Xcw_cR)E||=83_dBl zK6QaSi|+oAdedpTyL$#qIet*TG@`zq(WtMSsHwS*?r;3>*;Mq0Q=kCAEA_9-P(1vC zRq<+fI(M-0UZfIkMB|uF{{{`}EQ+rPw3kZwH%|#itTKt`>#T$~4B@2`jwlgq!O-^u zjUL+S0bK!bI>}$BqWoFF!>Y3gz#$0Ob} z!o0FlsmjQnvW$jtYE3z7;yyBMBCixv%qi-s891C#BnD(On%q#WY$s#PNr!c&b9gP> zz>y!}(OIj9$49NCFm2RlfLfPm0#*ujzSS)=O7d)oeUHlWb8mHTz0j@htuK44TcemK zI6CQ>5*st><(YjYqux)-8TF9W$LZBurfYnYKg69RUode>!e{C0X0@;29PT99^VtJ- z?BHhR7dR|q1UH``VMgcDIf3;4SwLbatHG9l)Ih*88;6!44zshE)V zUiu>UD)(a61O;)rzR>{zTVG=*WIgOJy^k-wk0}?XI`<6@0mx8cKP1feWdy){rtlz4 z;KfD&fDX%{-|if&zr?H2w-+Kjf(tTrGtO%10iN@75=I|k`Le7G$s|DYtOfr{urKKE zs%kTd{|i;l=9c@~JKMHjsIzVR>*Q>!USILzoNd*6{H$xTV<^|_YZ5m>=*pA z?u4shy4m@fS(znlxjYWh4|iBr+zj&p+vl-Wo0K=ibQJd7->@=WE4V zD~ZW7c4MdXoSC?Pof{daZCl_%p?KO)wn(P6+~8QB&H10i%U92Uyl7{C4WG%+^>Gh1 zRrhAz%Y6Zy$0ySNPTTi2&Qr7Vo3T7Lg>&oU(LNG#Ayzs+5y`i}5aUi$6&U*}f)ebP z)@#75cSd!QRh~y>Wc~9}8`%~=ni(U#1%`*&pY5h@Z881}w6<#SDqBCmEAgwTfdr2+ z#$eQtJ|^H!E(`ZcaTolH+Lix8_P1qnVEBC*A6Y(MM#t>)%k5lxm*j(TuBRiruX092 zL~_C!Aw+MCdFvJ=gKz>lzZ}bFLYDiq4;TcYNgYHqeULQ9*_OTBc&uA*vA0vi*zAfe zBWFXqf7sifv`Q_o6)ZX)UE%6jEZ(-$axDgbGeN`(&2q^UQB#%G?KD&C>E}yN*Dij( zh%|fnZ>|mCkYhhUr@-OrZ5*jwktBZ+alvTjC?#3Mm83JE<-Nx1?U<_rCmzY9GxW7^ zJg|c;1r7s=toNl7S$_x^N6w z7nc{2HdYlwwVPPXAw#G zA-hUwD4RH(uRZGH@;=6!LUb|jCt^$`kE5n(MJD&&{=p%Vz4ziNDU>w5DpQ=^1?~2_ zNZTT0@(Gty=(T9K+hJO`k|e!(c%4sK41Wk!IGfpAnMkE@oUr|4qmd zD(0{;Fb+NINe763EmS0l%75L7T-iZ57dwR=C>=OUsOJD!9=sn_=(uuLHp8+_JwZpZ zINa92tS}LLBTtSL5eMagP3*IS zcB6X_9S+x!ZsK5oYXGwDrBj^jt8alJK48?|AdeW9A92_S;hY>Wp8zkoEVfQ;*f^_+ z3NT5ijxVs_LOWYa;Ow`V-oUu{ZC-i%R&fV^a_UAog5Z44!P#WVdz-gQrAgTt*r6Pj zAnRs?TPe*!rZrBlz>%dj_&fAbWrt0p;qdQm-Z^zNUT*f$BsFFnO;STf6BkB$WHMa| zcXQhRh!L!Jd3_E}Y$lm0h0Pk_wh`}umC>C{j`l&mkderT!Mi4~vR5)f3GB^k2J8m$ zP3CqxKK8r_e0(RmG0;^HDMQFK9x&c$CBB+31Z3rJOqdcH!+fzqu59E4D&%Hq3!uw@ zB-_{-ZQYG4uu2A5ojxbt>qKN%gr)J!*gMd4Qza^Lo9YpIDoQ-&{*Z?tFnd_=Bdkze z`)_Nmxwm9ZKI(%TP#otuk2qkoApuz>!^L_J8BXC?>l9f?XjUhVutyBw{ zlyVTKCD}h(to8y9!SL+2%5e4f?jM5Z;dTrOf)3DC@jgzANs05(6e3^X0y26lg>#iuIIDk$e!Mj%Uswvef zL_rV=3?FIq4QpGMUu){HW;}vhP!Fdf<`b7dXQic0e&5;P?n^Z!x(s5 zAetuzaa~sc23&*P8}+AStLF;VbErQ>?U|-rBRguCjtFMSb70&6y0dTvsLr8Vk~?0< z>4sXeny&^HF@xmk+Um;ZMPin$T}pqhufN^=GFUHjgc$3b*IA0vWEO?%vleR@wq&U#UwmI`>PM4f?3Q_9Ah z8{O7NZX!E2h`clS2?cP;QrEg`c&t1Y$L(Eu z;e4r9bs>Mlzv>ct+Uk_x0DW3INogMN`EPe%xFsdj-RNM`c6J6x znu#feq-@pHW8o})!;|AwAP89mMv$E`e@3VEy(H#3b!tUYwmV7tPkQj1;^H3B3v0Fk z!VKS{eSr%nnJTi7!zsfqu2GtF4qI>)Vv`M;`be)ZrpDgjRW-wu>wy-8?n|15QR{6~ zYh>IDaFqO0QJ-xWw?;*`Pk(G5W`^8i832yMRfB@}>_~#IlR{e%B=BjX#V4{SyrxZ0 zSHm)0?0v{B+Be-kZq%ipuH;149R#M?WYSBd9yo&U50H&;6$UB(@%=s%b+aXUzM_-2 zWZbBqS#;*$Qy#+k2UkfPNW>5wb)`{($vu6rMkSm5R(ER>ddWBOIhV-R30Em5xzuA> zX$}z7_mSH_vf@d(%2DtyjO$Z(ghCg-sL6OxaoWus>f5gOW>?x{yN&Z6pryLPZX*M9 zc=%U4Y*+=gJu3So4dh5lTdjo(5P=@y<64GT5G|@k7ZS`yP(uU{*57?tWC0@M6d&MD zsMM>${gwLj-R#Sq9P9*V=@Z!kA|}(2=@Hsh`?>6|u!`;C3U(Zks{^YS3kKwYJvs6k z@nLk;w~>aEkbsC|uvKooz)=yeOW&5NlWZ9|mpr5VjFK&wbm^=Z&RX8O@MR%sY^rId zSmx7p>;zn&CaAJ@p&GGWvuv-px>&D-dso>WS#pQCP8x0`;Pqy<>>||xWgFc?-0e8w zr3Ea43D_PSNgkEQ*zTee7=9X>>g-8$6h}xH9gya=VF@oRc)&D0b_)x!H&(QfG7SiQ zCP_WEulES&ncJ$Kyx^q6T?YM~ok33=fVgHL_3&BC0Z4Yv+2v)P;x9zp#=?aXbd^FJ z!Rs}JydYra<^^RN*#73iTg=mpo7LBRp!rx>ji2h6^tpm)jRL>`ZK=KTsFIOS8CFti zmT@5?Mi`gg8GjDrLZg5%LXr=RSjfhf{lN4k^UZcJf#T36?a)<=M@flO+IEze`%FkQ zWsH=)7n>9(oI!;9kGE3=Y0UCelB5cpqvNjJ0ynweJ?Is!50(o2C&g|19@;k!+-FQo ztHS$q(0*wgZED z*-Wv30KW<43G&Kg7pOv+0WYs59ED028mKzsrARsjlDGjy%^Z{WR4l1p+IojB*gGZ% z>#b9=K^xnH>$=xD?C zBI1VqxSz$z%{uWbaFTKFA;In*rSD@f{x{5Y3&FPUTj2`{8MG`LN$KmupM?GtZ??ZnlHTd4u|*^NY!~oGDtEin5PR|3N}p z5HZzb7NULmb$uRS(%l>Puwq61v$cn&G7*)DfyRw^M?EA}pG=6%@qsC}{V*s@3hpCN_n0-e*Y3^(%YW(l*$H=Gd=gIK1z-58)Kp4!%p@U|vvR16T&UwaJ(j zF7ry04Ro))1nNg0p#C^a^p&aZS#BaW86=y)>a*|wtH{5Dhegz2azvQf@qt84Ylx#@ z9?&>5gAp!H7v*@?>=|F`3C>Vu_P6>(?9U-U%E3&HSBpfj83-;_@Z`d0%^ZUsX-VFv4 z6tnXHSH{5cgN=B^frb7EfGZd)*;6nHgnA9B#EAN#7!Hb)AQQ819Jmika8!UtWGy*{ zNv>(5c`1%OxuppcofS^}YmT(^J$XR`gqS3!RfiChl|kq&*8g=iP#k!IEJl)+%latM zT?SaSq>R)w6Lno>72*<1y8uhm@dYkjGXrrgCbNM>oiVxHy8(kv?wm zdNKk91K zb)6u}b*uE_{YgM*95WpHx{`Cq4F#oU4I`ze&3%2=%QE{=TM~AgP5SPh9 z6mnmNSog_G5Hnr2(zF@lhBMhtl~jsF|3SRB6yFmeod^??+-^coQ=cM6$mF#mb(W;< zoXkU9s+J7|N=gpA2+XH`nj!S8URIF`f~Zi3_s657J!o4|>}Ca%=ORB3)h*PSNy-nN zO@=1oIEpJMuNh!qH%@F1jM#F#5kEQf$**>HKOG`*TUq0*TmB@|jfT_#kz+l=^K9dW z_M^H(x=uxDPhqL|=O$ybd7__7_T>0C*Og8eRL#0XGC61%9_R%*G?PM@OwGeDb81{( zVsZG?JbXryOs6Jb;Hx$@$#|QlhCHWA57mW}$cA-Rs9hbEho|a;ff3KH5}uK{3&qOlM4F)9vuS{VJ(m@#DZCg(IASvYo`kgF|{+AT{ zrz=1L18&?cSDdlK!86pWVxdW;4P*?vqfx7UMs2pLvz)IYo4}r`vfPTl`BUtXOt!~; zME<~>8}8|4@}}0R8o?{wk2^RkyN7LB*)773dW|m1n3cRS^5FYC1(qIU)J8KepN5r* zc0zsXeut+JhH1a(E+YfYa7@#3(1r5$sE>0H@MFlP3g@SfvuxsXgy-l^R+HuBMt2M) z_O-dZ8jqTih*`OFIO;HUs;U7*7oWnOvKB01B!rrb11DHY$6E-d z^~DVy8_GRC_D>n@4Flm$Znu6g+~vWgzj_>ny=2qD2eN6CY%H;F3~45`FC!N^x5%-7 zh0{AVLtb8f+a8xN^j1RFCF&voRdpHU4YBC%FZ$F1{bjpwtj&*jbV8I5^)VTdcxW_E zj-JWQKu$cTXSdqdz{3{PL&C$}F)w?@CL-yb)=NtBgv`%*X82|^{II$&gAh0+yH-Zr z%sJ6qQ`S~xWrRj4P_3QPs?gp!l=3D4JUTKQTmwnpq%G-M5I`KED>>-tj`-|p`Sh+J zDwIHHzUgOlFYlG;gd^)}pSu78;u!_ti=!@cA|DX{G8hU=e1Ze3I3YI})B?|fLiKGl z39l;xS<9SnbB)KsHUq3UHxXHIIUGJjUBQ7^m%9Ah8i5@()q9V!~!Itg=D4{08hW)7L8Zv?D(-{~a3 z>!G(~Q5c7jtZlJ?eBwY)DkJrQ2GCOJ?Y*U<5w7nldP8kpH}8{f35^EeQ4={E5Mfn; zIyXzQ1j(VRiUQ6@ZuPcD``Ccw!ol$v)l-BrGUyU~R#b+pph^5~k@)X`D+@on4;jAI z>mj2FQ!69}UxK*R1i!D&pRY%BHf-EXW@5Z3%yqW0|GXe!8&Sf!pYtjbgTxCRx zN`zfa`a9TvWWp<%O%e+@SeiqFMg23+H*!*yo7#~0f=8u(*`mZ*#cr}u>Gk-xBGii9 zoJdhjp@)<;RTO%Iu5>jFj8NX^QF;nNAx_tzPm&Yr-dGtrPB5ua)%52Ag2%`iOl`C# z5pA*@so2;t;5b*cqXFJ3%I|t{F_Gp$bB{o8LT@yo&PBRN*L9tC>?oK4pUT^Xt4l;f z1RKIzgJ8+$O>H!mNIXK~Oln6~uVlq`(*e{rK$4r`5?tEnL`WE|L})u;M_9)}p9 zQ&!cEKh%(Z8qHjMXHsoA^d?OiU?K0%Zs96x1T!M4M)ir|5AjT0FH5wcpMs>)#pi+giRQP{@Xrs(EHQ_+FPC8+ZI^bJJ2!0vvCb6cJFrGe$ ziGGmHkwL>bM9NY{C(K41*@< z6nGQ0*ysLOCcd*&9Lp@Aa&M=_uv=>-dQKjBo+Jz;-%A??mC3mPb24fUzq^I{bV+i7X%{q+{m4Wwn?o}sd(EN<^VoE5LvsC5G8Nwq%=gTOZK_7zPhpkY)x>O zd;Oo)g=(aOprRpS2=xM#NHdr01TzUv+4pz^QUY0Yi~Bf-2M-GDid_<-1tAe)0IHq= zeBWGKDmKw4!vyb{Y=W`DQj%MWY2Zrdq!>0V=OKk|O*zuME^J+c!xeh|7V8~d9vrmU z?7KAPTYRBK0N)NY1BCTL4xyNF2jf$NgYErop4oZ-#?_6h*QK5`xE`7&u_sNeXTP+M zc_40bG{F8Az+i*z@zJoOZ8L@(oa}fVRC2HlYv$m7cYUS3vT7cVd3dPbh27ER0zZI4 zq|61&6!sXl3pAorC2&sz*ExZ*ln-#OZ2S|OLdB2)vbi8z8Vj~xFb~GlCU3Dc0P=FZ zT$V^@Hc7aFkK@buEVgzqIK(uJ9s`TgdmO$FTE;&a^m(YX^BCA4J?@NlV{nf>LY(u# z`cHp>Wor*~Lv#I2P^q*_!rkxTJpIo4LPRO7Fn!qRj`t?(PZtcu3u~*NFTV1}|NL)$ z`&<0{`tx76{`#NOiEVd41O3BJ=hqKD{k`A#)-V6sFMs_n{ra!}1$!Brw%7mK#_G56 z{x`j{Deg$7panL5`t6NdO&4ax=O(dcok{s-UP_y?>Kz|wJx zwHn5goJu!z{ny{!_?N$jYJn288V{mdiNE%}jenOV{xKgfVe!lvR_5RP-p0cBQD)A| z@GOOCl%2=D?n6u&$cD*bt;U7#Z#-p`42Y!%L-tYcf^YPgCA`C&n)uiy+6VZBJ@uF^amUN58vlA zpcLn2{@)*Ly!u0w`Ago$ZvU8`rA}`Lq0QFOpZnp)Z?TZGg^pt2@{OBT;II5}<1H2l z!_flo++10;5^w)-#oNuO&)e)8%@n?(Yprbi~N z%*v}9zr!+t#+WfvbBr~{2d{2CVUfU16B#0^nJ55O`14mc{+NY> z3{l?DA9r9&2s5;{ zzxV3Kf1kbg(=_(}e|mM}f9LyvN~y0K*uI|suU9wz(vMN*pKz)v9Tc#pe(T2@H(4x` zCJjMYR^?Ye-gwF?E8eo8Y=)h0tN%wo-uRC)$R>0VMX6=Q{_c-A{)EK>*-JO7kR8*f zW##^}A8-5@EEi-z?z6B`fB(lD|B$7=r$GPu!K3ed>s!D4zCQde=C`wJCI8WnH~tYz z{=khjd;X_C-uP2IKZ0WQ;J^K&Z++{*U;YjJGyga2+tGvJKliO~9b!_Wy*(Cv_}8u5 zmw)-KZ^4Uq%MEzfa~T!E*nkspB~kZ>dJDO)2NGXFs+}X~f8)to@eZ`ZE>bt|?e$0F z(NeL2ZJPUi7^_#tNB4(tG5ucm;b@CnrhC2Otq1(^JM!-`bcwxQ8)om@ugs&x_mK;E z$Oy3aKKNDfo}R%gZX9h5`rH1lcyy_ajM3r~*d866xP`vc>mBg-D`w>nkM{8rFbog; z(d6L(PRpUzeK10+!M=y>0h!Z7XecJAdjf-7I>6kIMuSNkQ-GQs_(OpY@A2T|G0tHQ zLi13(wtGBfY0yPfS3M$aB&FJhE5zG!&q&GDK~u+_8FUQT*n%~sP{xjOzsL=Qb*PG2 zE~mDYwI=q}E3a%L2x(H>RBKEAHBTgHL!TB}gd5KY#=&UCcVbr2xVHxifq%lB8E9;@ z-Nz9agj?~rDzfF{1|YE=5>hHS!nT?!A7GWLqh>jLr2H-TMs7;;%K}%GK-K7Aj37MZ zh|kKC9h<_tr3i${r(dHe0d9Y#ExF8 z)b+7O1|hYImQu~~GW}bK1VFISuEyjjwt#cJK%pL6ZRDYb)jYx06RK)Z7W}&gqQDef zW<1d78S5Eh0QfZv9jmI^m_xz3DxBw$>d6Inv~)u#jR+tJNl6AWU(#24O`gsKJIrX55rk!O^30A%K=75 zcyl6WSWzmBZND#G+RiSb*JZkgU^O5#r2J9$tpclLn>l8HEdEBu?9mX{Nu<0{w>avs zXtQH%lDol3phlMrnHF#ocnk6V2Y(PbV%oeqqyOL!Se?oI5KuTK2;zS_U_&_D4Z;e8 z6;;pg(}fpK1qf4`y#BsFyUjE0Le%aNtUhWguC%XBG!eK(4K6R@E#rEY8|-$ z$nb12%D!MWjo34VFE9+6XPj+z(4Q3d4s9F|36Iyr=uKP*9JG`OZ zbb}v&%czz(X;(L{KO7FV^$)jn&*=bNQT4yy28J)ZC2ZkdD+)jo8MyJr~YlS6?Cz-x@;8Tgcq2;Y!}rQ8g^h{ zPQZa{-==Jt<`rUzO%pS<{kd%{M^|EMq_!4cmy}yRDk->pluUj}r1I?tLCbb^+z3S_ zDvOk;qo$D!-oAFUpQ!8!HHowb8|XTh(GH4MFcr2>5RYei`eN)ir8soDI~aANIzYfa z5|V@h2a>!$8tlZXIT_YK{9$4m;Utk0Y-}NtXiaS&uhOtslSjiztZdY)HEXpHtYD77 zKO5Yk00L#QO(CbUT57U;Jf+D*uVJ$eqc_G+^r%u$RqA2nb{T#jPBp9}auV_YoF@ zz(oY)@CHH(i4dd^>A}Ksu+X>{4{KT7Qr&SpvO^fJdO~+CD8@VFlX$COF?4sa(x~A; zlp#Uab}x3Y)8F0g>~(elK2m=UqMgcSui>ReS7u%iG&I3!9$uIzn!fuw^j=57qZzL3`Bc?BtHX~MOdW5#N5eouOHqJ5ZutO;LF78-;%45BCWx8N8D zR`vwxrNp5T27*j{yT!)!8;-7sW)$4-A6UDaG!E_|R48)600jt|JDW3<453_Z9|PiP zEyI|5I7_>G-TnRU4E-BPDXOM*{8?uUhm{_7wokSZfwNw`8F5ZkQ!FV&GC=C7mRm5g_E9l;*|^(OyT$rzLBoGxX<8&aT07N$KjIbw z*DtT3pm{{`pIW&LHiFA(zep^1Z$S79m#BWWvBZueoO~#`e~WF!a(@R97KjCeOBya! zFzD`p0l-vmoZat$VMB2r4YR4z_K(rbdt5Cuw~;j>EDs;4=`R#$a_~dGU&FD}{%1$Pz$D7Qv|{UG zfZ=d`b?w&j>gUBD7NPss0pfD}xrleTB3JUGq;}7?OEcy0uv3vbv&&3;c=Bt@^SEAz+Sndrn%WK;*M13Qi7B zCYw0g6#C*;Lcuz~92gvk2hWAOnF~pG=Mc;lJFSW z7G7JH<+!bl>W|hO8%X>Wtcf@zN=jZLs*Uh$fjsemJC@>y=eF>MSG#WGiYZD?1`h6l zK}R<{6g@)97uX>hFdlRDUJmPf=xWpY`rv5)KuX zjlYLr<9D*BHgGX;!1!XEqE`juXl?p>*hGS-LnNpxz# zdSnyq`Zx7YWpXanznf`tTIDrZM>4hajrCZS-=+MCJ_{ulz)j;LhLanJA5rQgXKPrE z`wdpCDq}vpaqIfV<@c*g%y%h*qZa1~mus#rW)F6m>Ze2TM9~IyON|FRBy&RQYG)OG zM5O`j&>FxqdHG3ebFYn&zzPOy6KmDB3lVHGEZ)P>$dq9&L7Y@441H_Wh?Nf=oYrFd zV{R9eFhpQX3m2H+Ao4~s%B!AKV$Em3)Gdfv*Q|F&(7?IRAcy*~hv0_1Bcfg0KtKT< z_xC9>iu>3-83!LD;-9KG=pFa5$(7Iwo$D}zX=v(3V}~1!t!~LcfEx79F})A~iGGAo zT=ylh@eG4J*}H^GDsHsBUUc(QdS^k7lF;tlr^EU3r?~7uN9QISu-HcFeqNLd^Y^Di zpd_0(DsTd5G<$Dhqa`n-dn9x_0M|kX9pv+$_<;4i12v~raljNSx%#en0bZ#Hrkjqy zy#$<(hkLTCfqgI-KfqQ#Z`va!AC=R#+AtTuHug=?nn3YbudD)!Ls1&&C8XZA_>+8a z?&;9>asA(XbYCQbEyEfXB^_j)v(!<)$60CwUSa(poQ{O!A84*;beLt;)o%inRuao( z#W45oH!m1vSgf|IaYZ2f;v$~A5s6vEKtohg-eC62ylZrZuNV2f6dWg|!e``gGKDg^ z(T!hPqAY)QjuRJF@nHh8ENgU)we%Tu_Z;)=DXt0F`S1rR`%H%Xa2DU03C>r37keoG7O&Zk*RtsvWM7 z0lcXs0&`1Ls&c*>boiV9>z*S>HS#QLf$306aPjIeT~@UNnJ;#Bajr}{uN?oQ z(`@o^JphQ`Ni^BIP;UC9b_*4V&pt3;<&5$~>xZ8W*qLYCC1tw=2!Ig;IVHRS;mgd# z+0#S8Sx5LG5QYkEHUZfNjD#Uo37u_#C@~XEFoWB%5S5__GDI%6sm@|66#L_%p1xVb zha8fOy)nB$?JQWI0`4qYrMK>j;Q~Ll4AiYM8Wp?D{Ux+6xhSH-;tB$GCIT;YPS=*E zL{0Ec%74$gVp-qRU}+q|=J3K750?j{(Sd9o>8=&dE#vd)uxOxiwj&OFu4Re8wkG(3 zpZd8x9G@V*SW8s@ou|yoPPbyWkinf6?xEZKi>(V6^qZWQ%(auWQCy5-r(wmLpB{$Q zWtK$ZrS_+5~e062Wq>k-1G`8dI`Cl7< zJtOc!XZb6;8wdemXqtUrJipd`Vy0V`f7+8sz#1#^?OixK8YhvZkfl>j#3>md zJbOJQ+2)Q}Hz=Fhh~q-Em=8`vh^2Ixjju0G6X3ecQ?TnMWFk9Eg6ou=&%7J|jd~2>cGdDG?B}ARJlyCWkGh9m5y0pEPzw(0PKC)VzKT|HKp> zr|IO)xR^pa$QrPR%=wx<1?wEjuv)KS%xau8H%>GvSw!RA2HGrwbcS?3IaIfRO1;7d znZlQrYLl25Q3pK@S4Tr-AbCS$rwdih8Byj_6~1{8DLgX6^{q25*|zTCMV%b(v}$~> zY|B3x_)PDjV2Z#XAp2x;i!G3OZF7F-A`Mey(3{@+Vtc>W9lDWPv(jP2MHQ}oMV{5p%M?8`@;(bjUg{2v zW~XjsM=$nN({ye+gPbegLxk%{GBzhlq#PS^+p@v56tl9rq~^WV3#5 z=8E|>st8agyFHvcItYM z`Xg+!(xdFxzz8gb9;Qoy@b9~GEe(ZAT;a!vgIX(|>TowdyI1SRMJ9T29nm48M_4M9 zh=E!gxcY`M7Y*6O&w>!btw@=>g+tlsJ%l66P%(OB0F)s6HQYrxf)%j{PpO9b`zG%c ze6anwI^NZ8^uskUER3r4887h8LS6MVcq_pR_S9RFA}|RsWEjpHZ}9NnVuL^P*>JWy z7x$0sNCJYQhuBt0!*M?s3gVgf2J|Ao0}ht#$AR!b43 ziP-qO95!Ntjs6n}c;#MCRMaTtqCi9RA;MEVYu^pa%+azl5Bg^@w}vcf2d+adZ@4dF z$6eLJXfVXE^mKa+*)_9{v3ytw|%!UaL?6s6=@(vM8MdNP}?L zy`qFLBwfVb2`6aCOKE^Z^^`7))%W*$U5M>@kpje`LKbjJK=`RVz=j&{T8PwPv`{Gs z8nrVAn_ba+J?2EVwW|#~5u;_T;158uHE>kUA7~|mhJ92ZQXg7qKe*H?1$C)}f??%U zf!3A8C=%^neJry`_G*nEKGvmW0u(HIyoN32NP$^$JFXAzZwl*3$V*#@?& zk#f|VQ&FyhD`maTdv+C&ZzU#^ixxHzza$E~D;WWn+lWG0R< zT98A&h)m#NE#o0=%v!8(iF=? zVym`vH6Es_kE}5IV>^))aZp;%Tcv{uM2@Iu$w28G{ON-2>MyJrEW1-2fD48I!^y&0 zK+d#E4(7s|f16gimH{rT)jp1=z{3D-A!Os!l%{sb-P1g1a;{&l|MD(UcKro=$)h%w zdrLE(e!B7ZnS=Cu`reX%{Y7~w`Mmxs&*Jsq$=?e3y#BX;Me=$5bZWAZYVwl~&!Z#f z*Z=WvKUdDLwHKAqtAnflkja~w#w|OQFfBYCO0HB-<@H$86;1p%LdEX;_wLrVe}yGb zNdneC)@)eFjCw!G00z@x6?ZoL&ZK|b?(Xa$nd@O!&h59*Ui z97;GMONS()6pr9k?yCAUxqq~~i$iFW^dv2dQRyNxMYP8u&*K~ryj|vKLOXm91j2!a z6ikDOo^pjQy)yt{3{-$G+IIZg#fRYK@WG-^NWQ}~4E-S<;|fkqV8-YPL7orO&u1%` zrDNt2omWb^;u%-KcYc}#aDT)=K63Y)0B^L99Txc9y=({Ze#WIGyn;zDVEtjdP-x*Q zkbFa47!6Z9ie6ej-wXxoDc|7c?vsV3g=75xgn#7+zn$pMCkv4^Yye3_F;msx`cm%U zbaCiIXHO3nBOpbyW>bSxd8o;-FadC?O+fU4!CY_M{_Wxpjv3uul%gJP5mWQ%tRQvN zu8ab%UPxFzbP2}0DkYV5fjayfkXsq6Baz`A zf=Jc4<*j2QOn6%}#pbL3Be_Nrm+2VICQYR55hNl}Z%F-5(b680^&wzc&ZlC^OgJcxOaYBI^i~X*b(2xD0?=+~4YCkNLLmUyg*+vEJP3RWb^js~ z3w%t=bRxr{7FoZaJWE@3T56^XI&%VS^+XtkpSFCCR2SRNs7z@xQdfZT>{QlBUASb8 zC%x&Tu+7~y3GA$0uR<*mSxRQep~{oGUTPu;fPr#qaz9s7%v+p78#xAZ1W@1XD zK?;MS;N2ck62o_hsU6F8BASNY@E*4NK`5B)S{Rebe4kluxbQ+fC22oC{yS8Lz}V;- zKh)4Qfrh6YxV;#)6DUw3)GXjl_Dykd(#ey=3+SzKEnl`qgX#lDfJj34Iyky*tT4-? zM4g1GNcuRX*yVk;xN;_7ByEuy{dBQpP$NJCr#Z}sB-|;Wrvc}cxgjL8B<#wWMnyY2 z4KQ}^#)2X$jD$Fm54EH9pVp-!qU@H;UYY~0rfQ-FuGh&{?*mCQgN#K^qq?L;kc=*# z@>?K68!VBm@Ft)l_nB6LybX~2BI*I5A2tv`0V`@MG6O7?rM#}(y^6}P9uWQ*oo<@p zO~g9l3M3sEDTAU#SUYZR;SCy~VXR>A3uKJhIT};n(s<77YCnl%V0?nMqxxxpBzC2$ zY!nVs4>2Fmhfh5VgB-4*MX8r5JUFtGP)wzuBOR)9LJieo3F572@+2>w&>e~@PAePO6ssv;;b;-VH41Q^y0_@}vFa)_F!n7PRmm%7BD3q=E=YhUgZC zz*$fXgH0gu2CP1nb7EQO$}YnBM4Hg|W&1y1r9y5d=SfLWB-3ogd{nZu`6v*An#Q4J zzIz@USn8WKc}{jPn>>G8n5{mOJE#R-}^-u@UMy5y#eHg^(vu^yK`-i&iLyh6`gA^5Ptzd)M0h(wh5~-p8l@ z1q4-7%cRXiPD)wkEVFVjRuE9_*G~?yD}Edal%oNQgbue{h`BOG8;67F_Lp`$da+Z$ zK)Onkwac;%>+(i3w;*e4_TJH%UtVb`QIKgs6pz8Jc)S*Fj*whyYP+8fKOM$JycV~k zLxb3)LyHwX6CJ%anJZpXVN!M{m1?IlKChU*38dz;13H4}p|j=4=)o<2x^zNuC%3dM zxivC#+T=7>1u#)Hl7ZD}9VDQd`iX$3j4{|X7_G7;Vc>#IQlN;WJdeY5P5CH9ETQ0je_B(0e@E}+BwmpsQmhBJ~L&S7yd z!le$pLL(GQi9!ea!RYXMba20;iRCXdBR%$$QUM2^G&dFhj>I|c9=pd}46lUin|hQm z4B}I6nZQL~Jm`*z>EIS27;X4wSbY$p;CQY=FOE%JLFur*%6Q%2)!Eb&b)4k$FAS%F zMpFeTr&469Ky1&~nLg98y-;kr0-bhf$c)}~Nrj5#AC{XhiOOGk8mD@X%QbY9t231A zufgWjSNb)ax{vCjBwo}y=#aVS1sQS2D4#YxriCE3@oCe>9S@!;Wkw>J?hM97xD2lz z#`Ozd+X=a8J85ui4z`bwtrl$eg)Jp04|3p9yzDj+!Rww=b7Hqs%@MT{;t{co?xjDo z_bt?fzRB+vX`LVh)x94M$`l@LZLb$79hc?xiyT7H`JW@=CI_dy6oaG zwiW|eKG4X252?WgFzTE34SU#H2tne}NYM`QQq#L+gA^?V0W!$YlprycqGDZzF+g1l z-$O%gm_$9UQK>}HP+zo3+E!I>8An=C!4f?&Xe?AF^d&GPa^-|8catfA;+e^irrQ&X)_dv5eI>d?B-Svfw$EFP})H1K&WzY7_ zFwIvPc{<$2HR6cr;6<7olcg?)+6r6mXxon4<~i=doa_EFEW~1S0S-AR!s9Vb0{`B5 zJecq|@@ZqWFt2wgf`C+bbC~w}>U9>`({pb-^8KK*v%PRHw;RwY0$*CU7qMBeNzwg*&iVS?+FAAXYW})zY=6&MJ*;HS$`F2@wH=d-h|}mI zvZ#Z&0~MGvBUy*GGtw11d8XRq-af3M4lSZV_u$#u@P%f7&x(h*{=zri0Tx8$%e}*p z*jzOM-mw1f+|A`;4F>|xfIPx(6=Fw38%>z{yR>_YtJgJZ^mftt!;VHb3b7(v8dg3- zPC|qvcR#SKZ*!sD;Xildp@FbDh7CUMs!=dYMy}676OxqzR)u3|1RlHqJ`jg;H9&SuTnWk-Naz#5DABTLVYS6;fD!2s2V63 zAM?1!m~I`}s`J1t&@+aObe-5P!-BaRcZ7K5@<;U2+p$z4D*B)@KrvarjjQXh+Tk79?{p#sVhkN#7$IZXB)?r>xwq*p z#dw)9OIU8OxoTN&ihK`mNd1v*uLL8-s$gQbIG^%ICUpeV7x=MhA`e~ zhLNfJ6Bt+TZF-9l#*^7#JZXaQ$rKpxI*fOlVSJLqc=6t*w-{l3G8>Fg?dtJJG7`av zzVv$wvqidG0*?7N@u}u35T|@YZ6ql{u2F9bF}P4yrFNtYQ#!IX5@#mQ!*B=D1dpvj zyVlgT30xoQf-uoIbE$NrH|Aae9fr+Yw~1Jyx}-7OF>29+0Y$9P(Sqy9>_RdLTz8FX z!r)BihwdjEf^y;ktVfJ9jS{D6YxkYTzN|P;|Cbon5z>IT06aCK@)0AlXAo`H$08dAf;xAl4bMN3-WI9 zaDYYYO02gVW--dgLdiiR7*z&sJmLemB(Wy21(S;^eX#S@u+}`Y%u1aQv#k!m|1?=3 zFl~6)8BNl%v9DlG9UE?PgoR`JT?mJL?ojw{DfJsf-|s@F(>Sp$>;lRqIG*1x=88`QwQ~|C`ZX<3zH84AEnEPNCe5qvGm@Byc2&tL~8xG z(wO^PWma%7Kf3gR6S+E(#HL<-r4%l1=OYsmTpy>bO2b4WJhPSPk^4YKAIgnF$Bgbm zZwd76qIe&X+&N4>GYfWwA6W>x^I3p;5w}qSqEFMB;9$X)1y9DV6}PByQ2~;ZF!^MW zj|p#sbMX+02ew?qHxux1uq?kLE6H>wOU|EO7tJQk=KT{%t16)B`7Vc_alk_!5ZtPOn;|c@=7$vEnHSL*sW0l~3Asj{h9E}p zY=vYvl9gxZ(Jg>@xhaGh5ST6t+Xl;8sGq75W-%~rjs4|wFZIK6q2ns2MqPOtDo0+& zM3Npn%{JG=G_SL9EJO*hUe`Z42lFYb{fowTMW2iKHKeI@i} z+GBtv?t;7G*co>pM`tNa_9v!1;#O+JTH243^v9FlF#wd$zuv*}p#Lyu36wxSX%LGlpmoPWXHm%U2`zja4CEED1NwqQ3&3%0 z1P3711JzIfm|W-<;Nd_x1du+?UemOt8;c2vLC-iMyrM^glh>}ULdFcEMb36``3X=E zDhI{(3?7uQdTMlm4CY(Urwphdg!#3PEr#MJ>%~P58$wYYo#>;S3sq$z2*8bwbc$ql z>d2rPLqn{E&zxBcLGrt9xXJ`4Ve|m~2_-!Cf%W_j`H@5ZWH!j37)HdloI zBsWajq`=#=c&~UptIPVyXLGe&*U&9>lZmX-*7Kv6lDG!PaShBuFdU54NQmaibfRIU zbDT|=XO+=>HK+9ylDJqV2}5R?B)%xSEj8FA52i5tQi8{-n5s41IPv^M;*G|J`xe7` znNA^)*>1Jaeu(Y3(UMtyfitX!Z&BN>F0QjQo~+V1tg^{7eJrOLLuzUWyIGfi#hzUk zBP^gxF{}UHT33r{U5xiIC)SJwQ4C+V;BGUcW1t&F&PxxokOZZw89Y=Bp~&QR5BDa+ z{v|_UYPMw)i$~vEgMrT2)3spRBnqgk6KoiJ$*^P`rmBr}1u^Ql7n&s#Xp-12`fdqi zlUd|_$?&Oa=pJV9YjQU^STjWnN-O=qrYd7QG`F9!))IT@RAZ{yfJ)G*?ugKb?#G9p zWS5pkC_Lk+Zo#3CJP_tL4X@}Rl|kd5nGW29(qNbHxMbO|@?jvs119z23G=1J z1?oWX@3F2*mnp(cv_f32^nY>Ffz!HFBzZyDz{xBP+({cqax1Zcd2E^>POZy3CjuAI z&H@5hPPz}BLC=*3+@6$?(aM)E$p$5>VS&|D!p6j;TV>Din`9LmYd+KF$;WVk90z zuX8_O7##S*xR0bb^kYn4Y@*fDyxN1eh~djP0)tpf&-6zO&E_3rNdp*6rxY~9m+9wy zo;QLxvGG~R)R1T95G>LzeuX@6v`pdP7t(Rwpw8SdOmEV%li&)yheroNSjbyL-I+nU z3)mEzyuFBeGzn=~f#sJ3c?4_Kk{>eD4`RY3N!XpZ8|9!o%8;D>cCr3;frXzuy2D3E z@aU!aR~Jj22<6*rx!hCtQ(26f8#_vJ3*^fBan9S+(@j^XB86cO+m&kD=Cs2uC|lQso-(VkFGH>uzI=jm&6%5B+%I>vSGSCrW8bUiG-~35MPbG z5PAS>#14+Sl*}B|#VPtAcqXDVl5|2Ln1wchM#uD%*fYAgMT~Oy7`x;Udla{5MGh09 z4r3~?EzDDe*o>8|N+6j5^ohVC0&F4XMv8~txT<6(Q@|oqn2kTrrVMhE^eBzc$hb{a z+vfBbN0Q_pzNw8xh{#LX6~I{$ZnqocSXS zKhZRh5p|%wn!?wzwB5L_2wO8qoVdkMCj=uPaux}2AR$vi^&f#=eMD89eWNUtbXfu= zrNi*VU~(uuN%mIc=~59dljN3Ih%;!*+0pN*gTim|nwSwJyE>i#Gn60XP$fv!|pj8MXbJY@BRma+74hK@(JD-}W+inD}sr8^%vJ5L%*%7=EU2Ak$P zA-H~^HDhd{CLjoHuP2#2^X|*uCvTGj93plZR>pRZ`|n3Rb&KV`E-Z2S#iHbz2Csz# z)`KhgOHzP6fRG%xlv1M%v=_}_7QSQtyMPp(`5FGTflU!iO^pOx&4!eO{AWZ=QsWf7 zBqj6tti?wFynfJ0V|p4Uc@T$MRg0>=>eqB%^C9vP4tdn5x{P9bsiu-Dr1^?8b%k`H zEW~vcJC}4?G;b|F0?V&aJKoVG<-A9tZ2Tr}oU2d>Y?G@}EGQsJ>~6?mp2qA3*iMbz zO?sY9cc4@+HsK?=2NpiXw0ju^dzL6zXAC}ZfsVf6s)OU>R4Wy$7^srq&`^g+y#<*k z(VW4@Sy5|qJ5(HeA}Q%Y3~i-`ipSXDs7A*Hx>#;f$lr$e&&Zgr!N@@cDOQQnysByR zBuEpZ>BkTnNM*PXU(6<->P(`^RM}D(z41y>U1X%OtncN)1=tvXnE1G83^JOI`vg!D z*kai6u{bx2VqULHi>vD-td1Hko5a8Q?GSLy(C8SX*F;3EaVo>5A2Ncgl;oD#)Dsl+ zw4UhzMZh&N6f~-&Z&;Un6;g&JXvBefxve7%IJz7(8*tGI$=;K^@9>YLiQfYRvkL-< zftOMMVRSJ41NKOw!JIG7bQVIXTmSX;0IwiO+g&ZCpt#>1>1wgW#fIu$$8juus zRCV+<|Gt)Vjl6A0%&bYnbU#fv*sI>6knoOR5coQpK3Lo!)^q`383d`ytetSq zW^FZ4jW<;?s0lHZjpXD+RaZO@10#*m}{Nx=+ZVL3e2F?5^Khp6*=NuIvBB zaLkpH;ibNC%~M|t>I3j!Inl&iw0vK?ICBzbKl8UHY9NqA z?aFU(^?v+svbLsTP0(SiBSDZosrRdRA5u5T+?v!+p3cw)WJppMztZI`q!m_sdD9?yZ7XF)LUg4gz``Q>8kfu7EiAk1NUxcW}lca}qxM37kelQ0f1QM$!fy#w?n6A(d z7IPE%gu=PkDbjGIRWqg<8BsjXd&6DImzvZa%1b}}Q_xBx-S`65(i|60+$v`a0Bj&BR044^@R$Oxec z`00$CnT2+l3>nwvnYa42_M6%!e@8M$b28YOo0HNyE|T(V0CfpE$)(*zfjGeFLt=T! ziy&Xp=p%M5hv=GjC-Sjq+S1n3m9;tOGplQJn_Bl;ox)>5> zo48lqH=&E7GD;t9_{-6H-u89g%Ohw`ldYerB{J3aFWy{=2YEwJ}oe z-2V}fmGWKZMfIMLPk3d6;2;qmo-RyJ8rY3_v2l`a$xT8-ctiCgHsJy?S4OJur}MMOQ08le z4P?ZjU)>pC*~Vdg=EoPWjrwk!9c6BtT4zFN#bfWvw`Qt43?2=?npM^?H94CfB7{NBg z{T@^k_IlB!JzsS9Q7k#`F~m3@PB48a+Tzva?d@KF(31VP)~&@i%7aW#bNb~NlM#~a zCbwgxsEq6U?c!pNKUEQf_D%k)_z9f5jtD1ph9wSGQ{|EB%ZgqM>9w7r-If@G$|zDw ze@`wthvR{SAx$J+B!n#Es5}C%;o(G%)-W`}$QS4a95yuTH!!x11|}_N!MEU8E#m_B zN~~fpN$4O#&Dn^+^!5)9nWxXr0V$GTeM$h{j&8)}AW7M{#|1Rid%ObjG>@c$aiI(& zHfZ(GwKUt7?`2ru<=vLSJIaNggPFs}SxJr&S31n6h1e*KXmbrQgllW%iuW*5DarR? zUS2QyG0a#|dzE(qj>zw!c9(fjO@H2Q#3_4NyLB&;GHW?qZj$5(OjQObqyr<+>pg*N4(m05Vs+`i#BuZAs-^UuqG0Je9s$@(f{8Y|W~Y~*_GL4Usw?}&&2aV7*%XZPHQBX)b&_O}u9iiDoLW>GSk z)i`EM4=MDfaAYI36!LCaB(9R#Oe^gYTGHyZWg)CE2;y8UD=PwOLaHOC{H*p42T`OG zgMNzURaLTGjA9#9q)X%Y{0?lo6?pA21Ep2)W`J{{robE1=0Q6sJbtw}hj^N1=a67H zf*-DY%OC3lC5MZ2%0@5CMecRe!?*mT&Z2m;qA6k|0PYBfAwg;I&T4f9f9Z1exCL(l zZa2Pwaf7x~HrdP$ zjgb{{T7!IoI7nN|Sz*KlJXuG`o$E03@5w5zjzH8Kw@f&uO|-ifSGW|pSSqrXpa9|t zHS!Ad@#<9!DxrPswz9JR{T=%y^MiC@O5p8LZ?|Qz;mDps0FkmY+J)C;Q_kguc8oW8 zQ@U)#iz`tZG&Ws>tGcYH$0esyKt#?E>Qq))Nom}wFkSLN+csgqQ+jGEYJw`;Y}ME; zhzAfRaOrU(H@eJZ-MYB4dTFuPeCM-v(fSz@WXN%dFj8Dh1ZxAT1u0B#Q0L;g(d+MO z<&`%VRk5NjNeV*haM@Rr-X|c^(AG9i9I~>c9fYc{d6A%^Bg{~m$AZDikhNXBdo;!~ z~IU9EM~^rY=RmLP}`r#^8}i z$&EHGYIuiz3)@KBjx(^pbHJgkBry`2crb!&!VyewO8g82!AZw?|Mt-sr}lPnQe>C6 z7{^_luBj+CjX>Xtx^93CE7r3|nw@hiku^#WkmlV%d#U)n z5l+isZqVTey(6fucK5*sa!8GK5&%Eusg7Q8arGBV#r4SqsnITio4;9nxP3U{$qCZe z5`2Wnj9gs&`J2lZf03MPn@zqc&oc$Q(GiN?<8U<0BQOFYYI98c2|6D@F zHo*QRJug$6vle-MqAxSHLKh9iAH|@q+((I5Js`>@qDpXz?j+~EoF;Jt-Bmp@8{zsK zY9S46y8VqLlC*-Uh6b=2-9mileT!<)-I}zN+S~TL zWe_B)7;C|ygzOWTPV#Wlym0gk^uzHfv5zKCvZas`(OzPK%zx8jB$~#3%KZ^G9s;6kWbE>Bch{H=+PzI~%N^C?Rwim`f3C75-y z;Ud82?3}D*sX%UT4;X2?y@lhONJJ&lvge$DBT03@DIv4ET9MWm!g-$JN;P5mLb0r8 z8$j-Q%)0A4Gu2<76>@rlsK3RFFWhqat8HMW1Kd@StvIt6n1&moQ5qi(+i;K*QN1DHdh2Gl4BfCVKA{boU4 ze59@fN_J=?^x6v=8LTcGFd~l(Dd#U{jC%dFozC?i8cS<7tZ_k^Ui7iNzrV1OJV4<` zN^*L3jZ2*i5J|gwF@y^~Rh8zi>~JHrH)1F^r2LL2WMSi+5?a(jf;-4ftoD+J=la38 zL5?{w5M20_T)NqKSxOF#l#H3y1_N)2eG(=kVi84In6-d`6jL%zrGwnz*LNq3a-%JG zYv<18CXNTb@@qy9LkJLeO6ae@o|9R4mL1ArmD&o@ky4ov7jL_TPbQeaiWj;R)d=<_ ztomHoR(3%N6De=nojTIkINqnAaf1uQRkwC~;K%8-CoK_9K!x&cg$tzn1Ifu$Tg6R6()7bkcglJc`JAcHTb$|BhHTYsU`4U)H~~y`0%6!mcWqD; z9$cu0XrNAzvo2`QsIQ^^KZ<*hMpZCdZl=PHN=3vR-3EYgq2!nN8nTFnySU*&u1DpR z(E3M$oIhJEi@S}4I-%x5u3yCSbHD&=;D5+w)Qy{#+k};jw)7FW=}rIw9deCYni%aS^ZwiP42#$Lh2k zpoX03i0r@%&PBcdrO=7(X+G#;Re9%3d`GB{$NAI_i+f@@x|SUG4%h+{c$M@clO z>{kpSP{wMq$RRapAb}1z@qPm=U35+&KDS}df=gESoK|y_iHeYsTK#>r4Lyfz4wsi` z#hOtXg8(l%E}-DfrPUds2W|kNks?X47}^sfA0z~jEi9DhScLJ1{n`iJUw$ix7M2}> zn}>GsC4h2c8$I>TgLf+5V&3iMrEYVb?2f#($mHL-ee!@5|=G)AC1dIxzxqT*OmOmwO>KWxwxd*lVCv|BDq=Qf#xdw>e{cN!a}|RPcof4b{OV= z>2>SK`2y0wldJZ3*M0-lp2=79evQdS<*NMV+V7&ukLRm6?p;>n_tySCYCIj+5CuKe zl%19ajzwD7fotIR*ZvWT7Z6T`^mZSSn_aO#s6BB4<^E&>Rw6ZOf!fIvwU4kwGAF^E z)s_0L6SW^^sZS+v1lc@tNP03?^b;p)7g#i*7N5Y$m3jF@?a#5yCt`5E43j*$azAyV z_B$;1Y+Oz{SEOYhSHo5P-4nI%K8dPDgsNLj9-+0TPSzG#At5}Dkg|kV0y*H-leJxz z{ZnzjSTGO_x=74AG)`y1tjJ*88r>A0G z+7nOQ{^XPR=jngfKm9#>`uTs)|Ms>2&_BKKANi+Wx2J1=-T(IHFZie4-|$a=^B4Wo zFa2l!>HqrA{nM}ivVZ#h|JpzO`meaB(e0=I^(USfzVodo8=G72RIYvD<4-(+i^tyn zVZXhzJA_fd@=s*1^m^b5uo~!YRkQQ3%)H8X14v&umb^^^FWxO|F}^{Q0>_otUxv^@ zqm>3gb=BY&=fv|n{Z=tt?I<5JY zm#$>bt*m^pDqH$f+{+=1No6&4sZj9?4YAw82%L(@9_P(ujWi-yeM?F z^^FmduThVOqZ~DtfZLG7yA)f|C74s-ri^ATeTc43i`QmE(etu}Ygwu8Y}E}wQpJP9 zae-FJ+hh^qA7oswE9=co4%BA$#;%be%exd_hLM zVOVh^7=(lkGXb<)fPRD>cR4+h~lvw4o|KW54 z(H)rK2$VtxC~c@+>=4(!a*EMJXZx5LkN!6XusVs zUq!yT=A-B7X*H_kF?O-FkI+se7hW#5viYdYyy_e0ef!$JU!OG~pk5o1G~(lEB>D z*|xAWJLPoD=M%O+YZTm$@&2?}u8Yx&E>)%cVd%gDVJ`0bWAKC4jN5&^hA z?A>W~VLgMlvb@}5A8EhAlltQ{nyx%34!4IAGRIXMj5dY2_}|!46WX+~fUvith_=^9 z4iZY_zITI#r<~cxC9#@|tUh#1``kusSZ*s?6cu7LJVBa!2`++j-Uvr2ZWQ3eTk}ta zv$}NM3l$Z{pNi%IXs?;*z}*wP4jc*l_Iba#m&i+zUgZsJ2NLld49bZx*rbsl6uSlX zU$#rBMINx*i+tem8C|pZWVBEp!+8Y40&Huyya&c!`vCrE8s!wguJ=X)2`9!L%-eNR zjY3CV@tlCLu+{5IqEZWwT7erVIxuQ?h6WGT^U|bMGeGD$B#1#a|8~1S#PJk7Tgjj` zm`7Y`b`oQE-E9+d0|=!}2v*3c3XdWKq={A#bidU{uL2ZNghDLxLlCULc!A;FDJ}Va z8k{z?XWE0xg87@{E`shrC1CFMy7REf-0j_^Utc>IT%$0$Tf6#NR>9muOrdBEb6qM3 zve)|P<^n}E8HAHuLm%K9Bto@|-!9~WQMo=BhN8ltSf5lNff^i{37Yh|jSy*Yx%m0< z@(`bO=S8NSdcCqIn|c=t0E`(jJa%|~5e?a5cKY<4yU;ieBHAVZ)WMPnyX~<+S(gaO zxCw=epqSz-Cz0XzpkQOqJvLMv@spS9A%=U^(J&4$d0HclxK$Kjv(2kf-U1I9CKNER z>cEi-QW|7j^D(bI(En3yM-CjVn`u&?PsLNX%b zwBrlHqD&bt0&W1ma`s|}{3q_1FDm>v*IvGN9ye0f_s;)#Wbb^zihr1*cfM%UJO5Lp zfECL+S53245IO}z|p6c}n2+|_m;6Ev)dsvscZ&$%zVYk@o17vRNtt?CcQHf|v z_D1f~vaz|{w%ghPbAgSc{+KL6U4?0hItXe2*0q3zt_n0@mB=jbdeS`lo_v40KcVM- z@KQrM=c~(?>FcKb_dwEL9~PR&MmbdfR-mVtm4y~fyS)`kOT=pWX%U{BE(45v5r zpwSC_6>Uc_ey*rk0ouiV&nGRF1J)0g6?MRtrNsC968@0j-d5#%El<~xIB!=vqqVzfG0&jgF5#dZuH8qmA2w(SyLM$Bto<~~ ze9Foc7m6$R7uNpeq)lUcj*wlke`W1oMX`@Mcn%{s<;N%Sqx<1!*Z%TPzXOf$?YE$U zg+BGihwU9)jo@wvcYo0Zf_ee&H{i$E??d7G$De)T2@vYKFAX^wl0t_@$6M6!9jZwI zjM1GNrtBtAxSk(DPz0<0YU56ClLqUME?&6JFJG2_mvF_g0~3_q-j|-53kuqE*(;ad z$TUnsC%ZD*>>vV>Q{HB8KUZCT>M1?+)VD{>q66Y~zC^-o@oQJ^t+Z6?Yy?fn;3-!c zwgzxRg0SA*_dg8|?JWdD9%&$*Nn<4_s#Bo!O-CAbuZzK@^aWrrR_{C6p$~N8EtIJp zY>2@vn3#9Rq_Wpg^O6Z7YzDQOyNJNCvkULMF1e>@qM5W5yp$pHurpIxTzT!)*L6z+ z(c=g1d2;+{s1YdHEL|vQ!sS6-0lWc<#XZAU$PB`307cWGxt?C`q1*CCOd{lI9XW2$ z)$ANYe4M*=ExQTvV;>11zM0*)MM0q-Uf#Gx{k7{J2G+yTgeVt49>6W>wEK1)-)I!T zoq>{!xM?|CglZMKU$l8HgXiUEvAZME_)UZeZq%>Ac<^Rxf6(sWO7s4;2ieVFyLCM+ zdOaz6{ejAds+tBueP@A7NvI*X!Lh?-=P=c^VTuDJJ}^331jxwP@iI(DG!TvDW`DPL zv(wrhR{C|gxc2MUZ_4e56AoYI1_^+-ZpF8At05QCty|ga!x0qm!}-C|=^;G2pw;kE zMnb0?g4dTW)^9AGy@fIHK4icH#Wo(AFrdazuzvJBXO8orR!D)6>mou3)ZmXdl zq3D7Z^sw(MbB}e02BOp3>|^-+8gogRPXiPKb@eq0kAt8D?=^*I0IxX8R1s| zKp9RA^63~3t<`mIKqM~ZiI`M_Cw@9&LB#j{)*j6G$@1j)3XE}Zzk-PEh;iaTdVZL6 z#K64ZZjGNY3W zxoB6nE|jYRgI`q>sbF;hN4## z5(>SI_!m3l?GMK~obd3m?Whsvod zJ;;ii;1yUoL=T+&Y1#C2F1Z3CyorwmS}u%sB8KLU6U={(qlBA78}hc81IztK<&=c; zZ)`*Eh^7!+5NRb63}}4;6901wX1?PFY4s2NL~aD$gFsl31v&7mBv-J(Cl$idaT^jj z?N!dh_>d;BXtt$}FdJtXR4X!BWcNf`rIClX=WKL#svSgT`9|d)EHWYek(;T$j{yea zA(2A0Ub8o3aStrzUAlZ%vqLNpRxudi2FOFTqE?1)Tsw5-3+oGrh?!NolpF)92t4H* zp-=9myi<6TmE_9IOV#FWo5~$bgb*4saR6fFB%b<`9i!atTPBG+sZTmZOG8nsyF-#8 zBNZGXw*A4`GZ~E{@)(4jZ|dWC?fQ+30f2_E>Z3uFENBc~!)^$F!%d5g_^7P`X5nbA zm{AP~$?tMtF0F0&CA86axMD~+y@s3sNvl{~Du_ytV-Yk?EOHp)KQSx!lmH@rj`2Xr z%pOpAP~F$lao-|oXafaWPORgl)!otdHm+Oa6Iy|mB|JY|It<%>85aJ!m1ce;lSE_7 zQH?Ff86wj8&CEFEFcVENkCUG4m#F1{;0mchFo1Jodkbr!i@kySwJ!%5H;Qu<0sGJ{ z1k5lTQy#I;%2BJ!xtSD~mrrZp3FQN}ie!yaRo|v$giTR?sBHLnG`fnSoe*5Bq`1UR zi*Ce>{8J9$mYPIxh+38i4hnUO73MMNPSoYQ(edB}M^4R}f<@>(JC6-0@?Z?Wq92b1 z5NcePlS%ljeT`79geL)2j%x5_X~>Z&;s#D8SisVg>8s-rx7zcx&`J6*@{i862;cRgciNh@8~k z(^#gVQIkKw4V~9T7&^lbm=Z1 z`Lvkt(t*#wF(@w;;#COMs*t6Qz%+bB=X9Lhv&ABdT2Jk@qQ!_4z&S1f!n!~sNhF?jRA=tCU}MS%(HBHR{uQ$|96pCu!qVJ8~#O4IP24Ef6B zJo2v~svZd@46HcC1`n_5+hC1!r3cOe0(oYUcUWnGe2Ek3q%3R@f&r2&TU_a3wFBfz zb$KCs0g}<-peoZXeoIv-=1XBN9RT?@?_A>YeqW(%>&uCm< zd3Rd=je;Z)CgNrxkfZ8E6Y&PADq0J87R$PD7a%5xnZDBk0^jB@{tRMVMEVi*21YDDMtc`qa>+ud9={v`bCg!%> zn&{x=;>7R@V}w3J_P)xnElbc#E%73G3(;l=+)&%_1ZAJ(F6I#V1$sEf%4G=ss!)LU zj>B;Ia{kf<(a?r_b-ibgl-JT%cpu44Pw+GXzs3d_LY`8;&Ez4wFrw~bNbaH(tSh^6 zp?2XCV`r$kY73zbRT|visy90OyD;tK8S~gY`*sQEy~Hal!K_?h1&pF~ddWKdZQvmu z`{yt>Q6y1P)vJ{L!M8cp*#;v+E+HgjR(TE&XYl|7{kOQ+A-ad$SUFJ9I2?^>KT9uM za*?xYE_AA7QbGJw7m+9D=fyO}Fx-WJE0$E)Qp8%~ktNzTVso2I5Oak3N_VRoy{R*$ zPOG1s&aZ>RZd9-YmluLI_geHLP>wtA(ca!+m^NHJ1sc17!VbySgwu*a#&zl|-0oJ* zADX$2VF57OLeh9D{3_R0VOMZ{^*U0suiiM;*^v|>AI~`4--iQYF7kS)wXY8cO&Nt) z{oyQA2Qrk4Jsh-VPd)DkQ(atpw4{ISXszS3uhH%;2g`L#smzQ9NC@ka7ZS%(hT>%B z(7@xlze6`V(OA1zUw_?x>BF@Xd;TH!&MNF|qNE#hQI@s9%dF-;>hWxbqk;XV@WD^* z7aTrBlJy%)SVcsYt|XpWME>veb}Hx)!?S9LRXkMAR!{Gvck8RBB3n2cX@p3aixED?Uzvc>A194O(d#lSNxaP{x=l= zOlfgSPrNAD^27fJwSVpeNj`tlV8Oj{qOuO?*sln z{i=WZ+TZa{Klp3@>1Y0~f7f0|G2%UxCu})%J+FE_U(M*hWedsvtR%SFw#BW?zE|7)}NaH5nzb z2atXP9JKb@{1v8@%)08Rn-~Gkb`jBno2#WdVg5aM*wd;McHH~BIEsAL-=fw)B61e$ zqrIz8dNM20xwB`#___b(&;F&e&z=3kBI9O!(Gg?R|Cf;mfumW>YBVRij%-|04N9jg z`wBX_6n8Q=q*q`%K0u^h2mt#G>@FRbiS(zb^IaD#0?J?dt-~UEF?)Ww^85n3|D1OJ z^X&f0*@pH1GOR#w$V1N&Z~|x88f<{uxZA(jAJRzo$^`@k+3CSWVs}r71BMF${n;x- zAA8|OAtF1`84{Nep*Yp?cqw+_L@FM)c7fRE&t=a&_xaB)J@?!fZ~|hI64$TuG);j$ zO%sOL62mdOvB(THqzV}R;h55e+g)TE2(M3Dh`N^jI?63($R;?lLX9XrcB^D&Nv(1v z!n1PCP^0K3VrEHgkJWS{T*gW9pt{pY)~z?3}UiWAIxXBqz==KlYGr`CCkGV4-6xNLaS=)-4k_!fmZOL`<Qri#r(R-EASV zz_RQHD}OpuJ4VBg$*;t(n-Lo(XH|9pU=|=nOGs@fj0U-@413VEc3@>l)v37l@Yj9| zvFx|7t%%<}NG(-@43K&Q`bP?wN5X`96{S*`N#|CU1PxA0*Lb_v#vXXNaoNlB9DviI zS-rfCu_KDHw#A|y5#JRj;RX^7w4W&2s128;_o0fgNnDOLMyuc)5($%B#E@z)SLCJK z+{n}jpC>hw_s^VIOM&?32MO5%AYU6z4q@eQ{;#$%wg@I;KT zh7OR1)kVZ;%aPK~>5R0Fie=*OQ>OHBEMEvXwp&aWB)gD)Jg=X*&NvBr<~k$JK*UCG zlaUT(*Px65Nf@~lyHRkFV7`vcY34f9K^W=Qc4O2Tp37#gGmg*T8T%XvVKlk^Pm2TIjqdBMdC z>T-6eM(NQ^w5z!^X;ALt;DZz|596t0&_vbje1T`4I{5<@j*X?~)GH;IEr|`X=LX5) zidjqD-3yPM?sQ=42%8frG zu1PNG+)-)?k4X7Tm!`-IY37>b-H!YvuVTxoi?|Buq~ctvY#~OkgD#1xq*B|R)X`w( znj|Q8(hmL@Rz0IFx)jV@lY%Tbb4?n+up?$_BBjn;lVC9qwW7BHG~XLBsF=AX3Bg<_ zqG#rsG;>W7+L*Z}iRTp#_`+Pj9bA(brjk0O4urI$tS(EA!?uYyeV5u_&^~P%VBQQv zDjTS&jV{ElfI2kXFnYy|XyXi2Nsra4U`q1~1C-MO!2H4t-x%zZDH)D%@G?;29lg{X ze+maLgVh*}cl64RcJMMd-ZZh?(MtlDjdAcY5aQ`o+3$=7aF3e#d-<4e(H-2(-zzwQ zVY`_5d)eBFCGn%4_1yfS^7nf5Dz}*j*<+0ISh;nmjxzf02uEL*P`!7-9$I}WEJ<$Fu$>#gnVvPxYXuntcUb=nF z7b}&jw6t%v?>kX@PF&0;R0~H^SLt&nYU`}@Y_ZZ&-f3SuQTrKI{l28C`Ka-o_^5sS zH@xrJKl)AowDa5k>H6>br{DNJ|Mb`XXaDpw|Eqf%-QENkMB;yXqPN=4ev^4m|BJW2 zO?}i{xc%FRDZhwB78+I`j#m(a_u;0|X>a=Q`w|d`0g*#Q{w5R)E|C8nrU`)uzhpqm zcAO^(vI6(E5ZL~q!}N=aP$sVrl671Q~*-gN4f^aM}`Au;*G^uuUvtbObAZk zlCH(U*#*k2TOKXM7|;%+;ernt=@DT*98Gri>0H@>M^&>exftMJCn2dAFcg>)SPGnG z?=9cuc|;U~+wavEUq*lv#1?us``Ru%vDO4Rl?5aS9Wa-uhS3K)5h7s~2Gk1AnR8V$ z`qrs2bO4Re6nT`=emUT=IqJjMTsnpm3scRwsYMWF4e(Dbed=$9-XK32=1dc;V|rn> z{&oXq)X4IwN!ApRI$k(y_4f8hJ`I2j++5anT3vdawV>f|A|@PC8L>UOw+$qPWp)=H zO1l}~=x`g^&C}KH{yiM95a1k4&_`R~po@Lo1_d?S^h;x;3%%JvtfYGkh()PNT;UWH z+_L}!N$(g-0ao~Jk{O2TZz+(V8sReFrRFdc=tdyr6z@{a-6Y|XGmZ#!d9=5Q_%b+Q zOMiVKx*!Z(Tv?2(iKtS|I=y*N9SSz@$|8-i>-?>)L8JlR@-Tn~SVyelCEK7U-OSN0 zEYKbCO4>Suho!_&97056P>GC!>O1J@5nYBW+a~d5V9K{pTX_z7VX2&p7E5VJ3@)Bv zkbTismfFC}f|DE!qL7`mQeD%<2?c@?6atMqYz7m_wCyY4+rq|jq$krDyJWhSEXsir zK3l7pnCwa}FcZ2ed2iDqc2Ok-ipU#R z(guOBwBcR>!N^@Cw}@a}bOECg8;93Fb#~Qu0lDMV+R0Fzy_778Vg*ggM_wI~9;F)_*{f&->N)1> z_L~#Cm~M0qGtq|Q7@&cP7rjr}YJAkEbw6s4bKHVR$n7coDYviiC%+LX-*VeGU-09Z z6!*iZ=c;{Xful@h;<-zvO*u6cd1jR(WNC1%>{m%86_2^FpIA|@J9f8nue~3l zy$XPh`Stm?N|>QG=KeK6u1f0wS$QR5?EG6%EH)|TN3qHfpM}Qanuv5C`s&OhtR);J zVsPPt0q0&PR`EU2?rbFxvo1k*G6JMjXhP!X$>NiqYs8;u4e@~BK&xbw%&F|a`;B)0 zE>jj1WRlnmEDAEJomR zGVv7SQ94kD7R4||iiR$8M7eIDqs?a621>^#r=h?YIYTjareg!8p(ZaDLrtEER~6+K zKa_I3hb2`Y2QZw6OBDl1BKO-wvm3-r${_4DBCV&%VkDfhqyM(|ZzuIm&CSqvwZR1= z(is06SPdca7=gXU@b215tGS5XuZRKcd*U|}u*7Y}h{x}kCOc$>^cb2O)vqJE`r5E9 zHJKb+7{c}$#2Y!4Jp=j=Y=Av2>sz`Hvy^L!7jVqRfkTJxcIq#M09m8130=A5A*`;S zQ=VMLp3yLuVQ2N#T;;ICmJE~YihMbXj&!0!7z++&_mTolfC-N>=?6JlY#JEiSi^Kn zlsEC^j$RYtQdtYpS9lOf8g3y6jB`4oq%~pT`jRQ?6I<^@T&*grsN?Do`6u;DrE(Sy z3ER;gLDX3nog*fNs1#KBK}$2NXoT*74}(^P&SDrvHanV*!eE6k=h$$VTFxs~ta+ml8-j|fR)B-O3=y43AT|mb9YRQ?0*rx`_(_;< zI?~WyM5gv*$(o?#2LVyJK!p-nJapV#2l)D8fVFBp5#9jf({+jqEr_e4&q_h0?7=WI z*l4edmo*o6iOdG5g$>AsqqXLVjL<(_q5?E+CG-~~CARNXPCYZ=&SK>ZMI|C)5J^|9 zd@hgzJCd!h(s59DZi2)3xJJJ9sIn?5(}}YrmULcv=Kt|V8^?4e?;y@^r@h9ybvVWw0;;zv!w~wS{giEb^pSyYl z+btqqZD6;3e|Od+(fv&5FGv&5Eu8BFD!@8W?VY6z}~{gTPiq>rW+syYp4@61 zl8X_mt>JV~8-56>(uQ&76%A1VgN`|w7t9@F;EHK3ECW;Qq%V~3qc%3ai~hZV-eLIg z0?xejm^V16C~{Wy&r#B@UmEsTT3?lak6rilX+?8%_}M|4*S2I_P1aS8#-j?D4nbI~ zAA2s{FjQ&f#-~)ji0e8>bai=_0iJiYdP3B9AA-v8HP72BS1(OT@UK7`UpU z9W;wOru&a%D7mFb&RWs&;$=14$7|_`KZSwtVLu{TdpnR7a{A8GmcTVW%RC=uZN$;&^j`hpir=HsCAPhLp~E4oedFv~^(w}Bgt@FhQ(1o+li7l8C-eo8xvW47rk*7xvt_8! z5dbN$IPSC%ci$Us>QE1dy9_NaPGKA))xn99or=Al_bdKlTfJXZ5in&av@P4ts0 z=Dc47hah7mRL`ktwgyO0w}}EVyB|UB8|$cl|*Y7mNTb;?-wwBHD9y zlS71&*8R&5n8OXf?d&zajvSCeK5EUKiib+=J}HMQf6MgL?zp;%g?qQ%go!AG#jy5h zt*$_C-5RJd|E*hMv7ToVaxYkJ!y@3kf^(1^wp+MWgyn$iQ@?&~v0uM#U24PVxwYSd zQE+$bkh9LYML&4AuEUH|19*H~eQ>kW+8$O2Ed#ileWbM*I=rlxu63thE#)JF-QK7J z1FsgX?3TQlogS%Q1M6^BLPPe?zeTz?+N0Ajfhq4Co4(o-`)wHB3m$U%ehdXP492|) z_V?9l_WHdR?hO#n8!`IYjqFuq0%_m7*TY>JHiOGBQ_t3_*^7-k?SAj=b6HIy@3Bq1 z7VvJDBg*)*A+kmP;F#58@P6RwUD)n$xIZ{|=1il1(0;qx>+hU_3&ok`FDyS-eST$m zMQ7kjdXbSEl-;t~t(@MTK6)c%)Bd1=V2x91tDIUxUwqe=*r!k5fn&_hAPa}c^Ul6w z0F@3h$H=~p`(ZtQIcqH0qNx{wA-kgxUI%mDzKpFOjBBVyg*;T^=*rAxa(YaUi8k36 zdfhFEC8SfW%o}MZr*MmNApBXdVAp1Vd@tA&FXzbBu7jWxFGt;J%(zKhHvQwwtZn+n z74S%o1~0NYFHI$9yLurFbt4k z4Ay=Oe3o0 zj12aslywPn%A#Qw>}krH#f2Vj*lqHsgf+!kqfGy{9F`v`*BOl!I|j6>$v}eaQsZpG z@gLu$pPj0q$cu`_%P7{RVFhf2c_|w!tKA$2C=p@%Ci&M5;~6T)wcAjgVpm8zZ++Ro z%h*mg0^tqIWZ}+?&0{3bjLlO{Z#16sVhDEU!p}%a1rssH`IuI`X!S$x8WB2nnqaI} zJc5lieG@@2HU$e%$XClDMFw6UUOQ}?IpcdVnsUM#mq1Qn<4^CILAGsz1;UtQJs~t> zRoOu}byD!Ad;>_bmD-f^N76u$0V(j<>u)!UYz~*7SPru}F0r*MU3Tv5lPp&p6Y`F# zA}GvkSi`Nf?6J0xOpJL*8&;b(gLwR<8CxS_&3y2TS(RFy9^FP92(^stVx#F~oqJ$M z{55>q3`GQAu4h(K7xOy!XX%9}Zp4lfP<0i~>@@v^@KQoF+Jo$dQ>LoPB6J~9VoVgH zdwX_GbQj2-sdnEkd)?h&>n&D`;yIzmqdn9TJqiOaR3L#v1v7vucOkD5O*&#U^xD39 zLYp^?wo8o<nla;_NuH(`>?q_@VdT$PQVyU7h~T7DTt!E*5)qCmk=IN$t(-G-G3f z51^gqI9a5`9^RHBImQv}Hl~l15l2LpzHn7yyANqmC7qcS#>@&MTUvqVOXWG(=bptw zwK}uH@SArw)(XRy7{AcRn>UphHbv6d7-zpk9D~zisv@{5hEQ_7?v>clw(^qg=1#2e zml^p>4izahor!q1;FkP~F{t3O62YGCysUfPd+Vh^PteHo7qJV%F@@80?K<2(a8EXD zZ?|zW)-K`Tt1iM7n$|Bw15=a+5KaqV*g&j(G*^tYFBiXZ!wR0v^zQAgU|h<31B3AR z(*JnsGfQ zw!AfvrfWI|6KX0q;QFolbt!4&TU;l-ZY70GqhDAEHCN})zxnEXfD&^CV#*7eWuY^j zBHT&6VBi=N6GEjTETI%W+Dr&wGRaxfWqcBXcin&!^A1uRgC#InAlY@q`d`LF3)HwhM#G$`H$Pxmy&nHgD96}TZ;DbwrOIv1bo z-O)Aza7x^Zc&SUQ2**4OL}6tWe-JiQE|*TRQUko`Vm_qJa*p=L2K0f*!6j>8fx(Wu zv7bor0I>;5Z{8h~d@R|qVs1#m!1Ma#Fpz9|Mk|!T%H@b|i@{P61r_`rzVFxvu{m$! zf#H%Whj7JjflX>@l~&=3{8#=dZSJe7CqRX({pV)uQlk-53x{z z>EhJeOyYJLR$5_Z!H)3L3wbA1>97Pu0dZL6qW|L@j?D-4E`n17teg%vT@0nxk5tYmdVskXKEM^9I;DC$ALEsS=&;Dz=z#d!!nV>`ct!VN8@_XIWzvJ} zj2_CRF@)r*F6Vr6U4LX#Gdrqc@GchP$5|I$E?B?Q^g<5%2@e|^AB(U~u?{A#YTU63 zlp^xisgl57tl)Oue2Bk%j4;Do9e4gMFALb+qP<2K8l8pIX*CdnY-Cnkp?!(2&P2U# zb_GeFwV!(God@q!zV$<|a4x;UrZ@C+Vfa_pE+Fvyr_v&ck(Dd>(%N+t{7hQVvuukO z>I!eH{S*o>j451Xy{_7yU;DREO=F;2e?@k}xf!C97yk#Y{Lk0E=L9M|n{Q`=0$pn& zD?sh@toqN#Rb9aSKjB}&_a)7kP`h)Yw$EzcM-nreNe8okqW05#`Eh+&g2dWiI8pm6 zEb_xrWDNFdfAvJ|ud|d8a@9(WLtE_^PSk#tdPZpRyXkAlsX;y77Pa$=YXF^kbnLqIPnxPo1otZ!u2;$k_+C}z+-#q+I%$~5bFgXjcZ_C169u>VKME*BYLBQ1TgCjkl zHn>ZA+LTf`!}L&-%8tkm&{x8I(9DTPluho5@dc7p&JiM7&i$e%PFXyONb1!5ez?); zZWgIuv48c575ZrVYsb6osVtv^w7Vn>`MdD7h zlgWLtavf2Fet11ZjBH};Os5`w&m2QMVbA- zD(9sJckkGwLgF zX`uF7C5jS{)#z{J>>#normN*z3!V_iX%gmh;%8My$lm_y=a#2yveRE(uC7GqU9)^0 zn1PvCO32+164&CkQ39Gpcfc`6m}L-%QV`EP)0&O`%ri~HXP?s(K)9SHyNI0Nb@7Y6 z526%Kl|dj{c**Kl)0EP%NuP^yys`tAE&s2Fkdc3gIc0<66uJr{- z{Li;(P6Iy#VQ}>WNb_>rULC?#4_LXkP!+xw*@J1x!+gmkrh2GlOQqR*yS)W3h{Jsv zIL&X3nvHqdg=usAT5S*NW=o1}1+-*C!TnK)ch(yXk)OVQX62<+C43n36F z0oJA4@^nxg_9_WHI8VAl#aH1#Lu0(q5Q$&Mk|(lD+c3&`gJ!cfrbVWW&uYj$-R3LN z%B;2eU8F_8VR0y72I5;A&P~@1mdB?ERjvzLJ%nG3=7u#iQt#eN%xe3}74d+qmw%gwuDh1Q-Fr*QnL6B;C<#um!Vk_uzwd8B%QVeA^+VGZAM81g_E5Dy+Q@JcIzqOn2;)z{&5*3wxDX!I|U zR>QrD6U}+}{Hr%_N3j=85~gJQF(;w?)#O`g z+mX|P?-EG`>K_D#Y`Syg!5A8li6U>wPg~`ne0p_KtVTRXsd7d#2)ixR93M9B6S15N=JFb{$ zhF!ptR$uH5#ue?>Wpv;-awZ;EtYk*R2|QkP;nzXcABSJHTwE~aFR`3q=ocn}#XyTT41R$a&_Qd+FujB7UgH3vKjB215^AO7 zH&9<;^aRY+xz*`Oyx0;7^=;d1$!$b^r;o()#o4gZB3zLEh$K&UV^geKJ~Ri_Mprt17OHMGwiuO{Lnm>O8Y}RYguGU$o+qt(VkbcFky&-yCRWp{=+e3Dnd)=fY*XA*2HeN(w{8#OzkZvC?S5r!huKIQ5zgs| zljE2&m?{(kdsyld0Vr#Tcd;sdg4lvNgb1Rmsv7n47*NCNuF9ZX)v^6qSOCt-2}Z_> zJsoqAO0#?sf99N5#XN*87>2>_98S3XRs(#Y`E=w<9M|#Bn<#gu*uGmAf~i>i1Iy~b zJ;B%JUy(Zy+qu38kEQy~{s@Vjgtho3J9#n!C>1*or!9WuP97lZ(^NZqzETMnOh%tC zAHJ8Y=*w7BI?978IdugJt^%~V>}6n6b|6`Qqdi9P*5k;T!0Od#1d-L7Ed=3iNNff; z0`2$iw)&z3KU)I%bsP(ay1R5GIJlj1vI;wd{^fLT9FN~B@OESQEv!EAd+9F7ehELg zE?ru-TJ28dGTepEW~Wb!kBdsbT&YNQ*6HE+iU+6*&sHuk;PX~-=wy*$gd#5yx^KUH z6*z_yl!GdOgW=qNfMBDUitqu4f;hgMucAGKWeWm2q|ekkG?!c6PwudPSl$;Fm_tPG zL&T8Sro|6h;GQ61===tOu3)Efu_|yNb;F}4r8JL70DC=v7!4XbAu_mc+y8YO8*`GA zi%l>q%)hUi{IzAYYERIb#s~ZKI5Oq(%pr0$_kBtzC97|>8v~ts^EqiPoY_;}> z*;UQYAUZBaC2WnSBT`9eLk`sWp&qDIVfL`V+_=VfV=kj(E{^mU-ne)^d+oJa)}n&0 zv}YXc&K7cLc9@%Of@~M5P7q6Gcv#=!W>r$b?L#^0N#|BApBq_+Q8kfCzBk(0)vz!o z(JHgVG$J42h!HBpB5!XKG7224FT4`nBQS+VGPn|Y!=hVRUQS9u52d<=lz~v;RJ21T zo=QuvlFlaVq{m#_Y$x}zMIJ5pWFWcn6TiNDHcBwNID!BWE*jT4zq29L%<2v<%1mV_GRG* zPzea#Zs|=1x!fH+nGsdJ*{WW|sBSkP#Bw-wsG+Dcup&pD!h!MS5}A*BEs|k!h=mxm zRYjIcaJ?KRxF96)+Z|TIQ8uj@j`P_Fm7*c>kuH0*a<5Og31QPWPQi#$?Djs|~wieBWsK4Iu$Cf4L2 zEtj&$8e|7miT?iR&`ai!T~Nh&+=YVPJn1s)_>YtMZSvw1Rk>~=ubBlg7$I`D3JUeo zw&$|1A=(CK#^WCva-W`>zU}A{CPmUqU*-|q$;#NY;4BQC5MvgPflR|z=6rQ}DW*jm z!b?t~91DLSK0UG#lVIP+;u=O{w%cmtE>^bw)_=XGttyHM-@wv4PNRI8-N)4HOWe(yaVa zJ&$%K>7ElH??UnXh?UMfc}L30R0Jp<4(75Otv&+(K!e+c>JeO^kHAFW7;m?GBV@n? zxjqXiC7?wQ4bfIl$2Uqq8+qjIP3!VL+=Y!s20V%PNzy{ z;aK_0&c&ZFWKp6P7Q=UzKvkqAFMK>|0Vz8j2kqgE94#VEEgboRMmjkE=~-2CH3+3K zl8yT@Fsc**?tCjfV+hD3a!`O7s^A#7#+ zLMiO>wbzkGRZa+9cTHUqz&UZcj;wq!nCMzAFln-{B-B%6wl~X6pO3YCTWv0F?zlEC zA(-0%1#&eUve>{7E;8mL*HEevTCpz*=bzvtAu|33bH&bLq9dLPb6ynVyw%9}GD+(_ zCW_g0Y(*OttdeEu%sE&5T#J6h*EuAB-P=11(?;pu3g19sH(&N!93{4n_vw|flgOi> z3)N#}r9UDg{gK(|E!q4rGtoO{J4F`yqcYH2e1%!|c_BB)-d*mqkLKE#4+bN|mfR5% z(_^?wZc&c&Yd&NAhc&ajU!Jqn^2bXpeog zPekx#Y6!lg@}YY~M(S@70)4DVh=?EZbmu|`awdgw&JJ>w%2mabw`j!Gltqh+Mg|4uQ5c=)~C%o$sYU2$__0!cq7D)6WGEX-5Tb~Kxa?Hlsj z46rIUdp($bQ9aKf_>tf5EdMv=#Gm-FuT{h9EH1v%W#=wAr~ds z_%Y=F7TnvV2ko)r!1r#Ga$46}XcwI{`*#-Fh2bY=Nypvw6OHe%L*HkDuGD+!%|^f7 z*n~N<81qV0Zn4`o_cgUeh%Tx^^nh8?arnBw2ccb5Hs@MS>_#wwFa#@=ux626Xg=pf zPuS1dke~x5Z+HbS?kDCR$un zqHXJ{#xM`2J#zO7o_Y)u0``NS@jPMt!YZ-K$t}uaKA}{|MZ&mL^P)q7p$=|kVYftg z@o2y=8T*^1RiC9*k3zJ;T?Cg8dKtmZKyp(ZJFPm`ft}72gy`(!9MPrZT6$eSKA|Th zR}oNWN!4db)n`f7L!z2lQuX01sd{g7(CWXf0Xr!Y!Bcp&*NsB2JmMs?bW!A~ALiQd z^-binH)l!Ju~pGgo;xEyv!v=kLUi*#OR7HVOc1ry%SIH!wl=6 zd?m`Tu6Ce4QK@FAURzrGGV)WaW3bC??#d-O8C~fY*WN_wA1{GwW)Pm0yBgQl{v2v( zh|Uzg)hHTHxVk^J_HUx@mr7eJs{5-+98Zh(>tOxS+CK%X)rW%xM=wUXa-jZM?Icr` zf9|1Rxm51|SYdpAY8Y~xP<7!EwIj7poT&XMds2?wG7Je6SNkI;YG+t`YMhjY?s33Y zPSma(3s~%2pPQ>%??mlw0()Uv>?FXF$*LWksNE;5=N|@^%h=v^Fy^O(;ppV&YyUo5 zULI3xtZLe!^glRJ`z_Z0fkJ&pLqFi(L*G0U8*is{b^uPEtbLTp=l>)X(pn&0{I%~n zS^E)|_(W8qWZBm~b+Yy>%Y7=8v(=lf_uA6Q+65MUrljb&g%)s^|>leOPsnNy(*VGedj+uJaY!D*}8-fnNv9m>`C?US|tk2U7f8l|TSSLKN( zYt<)F<$J7(Bh249AumQ?^|$Z-KTkYy`;$-NpKtxKfBM8f^-sU@&-~M$IeEgB``aJ! zPk;5J?rC)Uj{#FRXQL%HJ68A=293m!6tK`BxFlzsnG+uUviuA)30_h!MqpwApEI`FGjd&sCS7dP*F| z>h5Z5pDIvvh>hzThs+xWG+MRQ0kHP~wJANm4={ni$Oj3DUEKJ+(@&Qq?Uc*2X@ z)xOp$K}ekrcpeafls4gQOi^4bP&w1^Z*RAU9x}ERW@UkP$oU&ys9geD$2c1jtc2{x z!1pjX{6Q=s3Gj#ksehgM0d|q`1??|&TkW0QO-up4@b10WcNbDeK!c+mukZE{>&hL} zFsGgh4*lg8)LZng5)nwyjz~~ZpOyduUctDPMfeO{1m5lS?^Lr(LwLB~K`ask=oAkv z4Z52(HW{7}RRkPva~YMS&$=#>5<6sl04Xsy3`g*L@L{G&!;5N^aHY4mkKjUAb`J;D z>}u=nYW6B(!d9~{esM87yZrph@=8`YyS)4ph_3}4ZQ?S!sR1z?nPUyw0cX+ZnJElR zILIiJd?q8YGcvEhdnhx&1i_a*UYdxk*9XN>43(R7bbjNxx9U1tkkwK&F2v*u7zArZz2`X&f(>%JDsQ0l>bl*iwjTTR5S*smPQkJ-(|=0Vm3Io;F7FF_GeK-swd z-Mrgwws2Q||I!2BQ+5@N?+@Bp<<0^E%4$DW9^7Alklln=V*UPbb>+d=*OLz4?6kIr z8&a)ur+)v&;_$%&qMQ*7zhBG$a9w}6*~c0mx@fbA{7FB2EcM-Uw^;KQQA?`2*xqUE z?J;btvcPJFb%1w)EOv1(&Hu*>5CJ4vS@p}D`#fiXp}978=N7__wzqb%%$)s(v@5_Q z^e!rk0mstT2$7VbjYTq%X2vMaS!EYPSc1xoE0o6S3$z@d(ZD`euF$Xst@Mo%Jr5QI zEAr?1jR$b}#Lz=;WrcVKCC8k*HE9#v2Fx=1Dww&5B4FMtUsyPo#oHt!hv4Bg;)FL20n@VV@^-^+gceaUaXTtYF>n(pM6!cHEn-T>$lES#9)Q362YQRI!Of4vWM7f+FPLhsNC*w zxPR`<8F+~LhO2v>eihNL27@zif8qHvBAcyzp;6r(?zv#;IjgD&zXS|ks>YJk$%)po z)M|3MdN$}&E?Y9ZBFiabG#UaoWimFZV=)^PQUb z`2sf?N|l^ksQwXr86kKv=2iT6dR*mB z5&Kg`U}_UAP^ZLXn~W^Gp>jHC%Zn#4Uh4O-QnAJa+lI=Ny_aEqI@WFgmBs5Chkl|v z5P=WI(ewCnXE2Xk50Qy8zGm|y9I7A{;#m^8KM2%hP(zkO2PWVn%JUf7jfXJKkvI*7^(zZ32=Wb=aPTP=P zTRt<_TkptyOpkbSU3V-~Zuenxg(t%S2Td)Fg{}K}GrqC~cGk7;LeUBOR@h!KObKhDobBr--qkr&Vke zC~D7X5w8?NiFxQf>S#732$b#&@AjbRX<|1(lBNc-2&Mo)nFjMMV`vOlr0DAUl#L4IKMAsE9pxX zaDMlAe`XyRdIl-2o>8dyDRhrTi(#Bo07q1JEfvUz)tWcE)^4GIvmyR6^gI=??5$RB z^R_x^3nt7$(+M?oBg}$r@ggZaS{>k5YG4f2iOQGwtLh!F_br4_l4#-BE@Fj+XeyjC z!ZA=H0+67Nd)rCS)HqN@iPPXdWa^&K(H-b-N?PJRgo^z`n^|{MgBYQD7CBI5*RJ1? za|o0JFtboeU8Na!Faw!FjI|*cIL5sKEcOI{2L6CX+j1O%v+FmaVdTV4jw~m7@+aNb z&*|SKp2Dm#z7FC4R7V3l_UkZZXY1mzMoHlPHtgaOP>BKPF5dG8Dd7mRS8z{=Elm4@cBEK#&o75h@+* zHXz$n))!Oea=EbnVoD8%DN%N_GyEtOuIk?^!tg_EqLsJI?&qHmEzm}Am9|4sA#mI0 za5%EwPfl+Q{d%*B6E$-VV>Ki4^RVB86BZTl)zCfd(X)uDzw*-3=d;tUYlC64(l}@j zU^`dE8YK!U(q1H{>X7*FX=T8W)tkM&I`{~#4D?H-A`Mgp0un31H>BTh9J=o-Zy`rg z7?9`vwhK$D+aP_n=F{z;UzySj5a&f*nuO=ksD9Im(34hlT$`9r-8zV zo3j8v9QUxf(S9p?nt83$L23~qxGr6*y>u?ail*og zUDWVEA^SLVFpJ*7ri;@sEFhp`MDZw;FZ($sIj(sadP!0N#d|;BW1t{*Cdd}tJ<=rJ zq5U++Hu{UL@#q}eTA%+WpGi5keL;ygtYV;@U74iWA5qf@^|UD!nBQ-^ch;5E#S*x{ zIKX-+E(fc#PgxCDUPi}-??u*Qs^1tvUeJPI zxvLx4-JV?mKiFRdNkD!qIUacY+F!^6INm@}spn}mUUgpNAW2G)J0NKSw3WfL?>_pr$K=`jox_U%8EsU*$WO$&z=|NGsJ;125U z7jO%}6ZL#W@W@Pb=(aU{IHBZ9Qu5w}l4qr)0d=|dit=K-Us>q`?mIGiA`{&O17L~_ zXc=3TiVbBkvmP+Zou46{ZGy;C$iclp*4%bc#1&S`z{#l7sf!+{!cDoq8qkd=nRX+U zQUdTCs;)^boxp8flMQw3zzp+~1|}f#1A_ygwLwY34-8wkkbFEa${CM*U|^~kaV5-0 z@lch_sTB;<#_5yUD4V%xd@OgTZbK{?;UgR%8{?;Vikr(~+1DR`uvx7`Pl@}(d)&Ar z=UR|+2uZsRnr7NU2y|kjO%aSNsK_ex)Ph=xkf`E{Hv|vY0bWN?IKxF7esp}}od-lR zafauO8{{*@jNgO;0n4&@c)N1-)#3r}LwoW$N^Zxs5@hw_k%+pD3HA{l-+?L;;e4_@ zO(BhOqIfDRC?@cuH}^zN;tDkR5Y~kfSpM{Slw-3<&XX%sK#mwpLW|_H?30)zIR+nT z6NKBX%D>a>u3RGd54NdQ{P(ccF*II)2yUX?lJmzcLac47O}&+_SV3HPR|+q&3UP~W zn81j3vd(eky{vx3Ex^6GAi`$0#r=H&vcHc+F6(ODph)MZG1R0>#=+ z2=F$ouU%e0;5DK}ZGEIxc^M}c-p2|brQ(IQTz8q)0%jUx%-b|YPEbJFY-w(@aKYTr z9HZ6|-X{3_=VlKrFs%qL8{tV86g9?dY59XQ`ZZB5U003GjVL-e)St8*!V$&KfT@_` z8$7X*!Pyu=aA8g5vWVes87F3UaqVv4A@lroU!Jlvy&ufRunCj)j(;SX*yysZy#)dWHsd1@rqY&9=#l~2a zQEw!DxK|f3L+6J1MKARB56{B_mI@K1OKs`Nf5T>RF+2BGI5@ErUQ+-V`7@S-o|X?R z-5(|Wkqc*`;|V=?oEvQZqHu~mnLP&~97BmA74%5Eu(1+rEAk3nmNa)FMJ@9B^#&?f zLa6ZZyHmta=ZM*oyNd=asEftVg~cnq!9OGcT2x~jRLw0+RA4_#AZlrYeR7AFLYjfr zYcwQ>c)Od>0zuAU&pW{7;IOq{c&C7!=&Fr5ow07jV$W1rUx@TLWth=sUe`G@T@E@d z+85cL#jr4FWm*S?zU1_?JV+Z|Ekq|bHs(LF%94INjuNUuPn*sO>k=pausVM9t!4lN zZMo{;3;izqzVwX&yxSbrT2Z*#w(jCj2{f$PL7OoMo465y z^8y%Cp%gFgV4V#csCqPWT)z@f7eZoriE-=;)~KuNwCt(#x*uT z{RCk%VluROx@eDWDB}?lH!$`Yhs6k6sT7g)44q2Tae0u^RdxMw{FqnMUUPih!{~&8 zA8Vu$xBU)}nE+0Mn}viK7`avD(jldOCudF-V?m($(=+&#*XGn=&4OelxHkf4ad(Il zLMudPuHgO>fy*4Ypn(Ik{7U88H?J>5C*X-^s>~1|D;6gd`8%Cufo#nTg!}%P6=*&& zpC@~eEz1U}CukcAm*9%LxE|r*s#xR-R!49PjQo57oWaPp!!v_p?i z@1}F?uU1R$?QJl#Yj?k4MdF+3);*8sU&ZO{+Wp)6+TF*4Xb*7F?u4HzyqhWuV$6^V zIjTnJH)xY0+MAbPVBW8sn)Z%9s3BrP%Dw~d=wa)r?guo`@VlgKYY^;pH^W-Q13k#Z zgD#THcqzQc^F@4JdY-`T>gZf~FMc#?s1LaMz0rov;PLxV}qstdyP!>u?M# zY1YHS1W3CFo zYyrUA_*{Ci-`46A4npn(cyK5pwY#kIBQ6rE1GpTCh?p8#2%Ms&j0FM>JNaLVIMSYE z8O^(;@^h{e{&8<#&;-Cz#j93uQANcSbT@{`a&XEjRG|i#O>YR`bWMKza!Dlo$IU5h zmhxq-C8v6W4Jqw&F!h*l=}yWw_R#jSRboqMh5hk^;IZ9+EM|MTBR({8(9BdStc4cX z#RWM_RQ4bv7qEjVSt(Oy?Pak0TuJ(I{JxYUHyHpG5a?sl5c{k%(AcL(CCAcSWU*+I za->t<1ZWBCs9tCOImCFN!Ck$+2gO#s?(9URK^MZoVp+(K5~;v`lC)_U&I=OWCMc+WQWlcM`Dh0o*r(DHS)H&}Cjs@E=GB$u<>hfL*Ec)8tvk;As?6U)CbZ zf#-h)wN&AlTjwnjF5B)REjYjXRJb>(**$oFoUyKDoY`nvGVt+!Zkya3l zZm;oa)^4sf5S`{@?wxlmaxb^m?&IaB{Y$cVci9xK4PDU(YyW*zlqHKAOIP%_*8Xo4 z{fvXkqMq}`tH2fhC$;Mgr1WD^=}2<+`Xwz~yLqDapRn}PQR#9fB~>!&Vc;Ttm&q;LezMJ;#sx69W2huHHpN z9|{#d#L5}o#O(BN>jI@4Ihqr~z~}4~SP~fs1|!so9udn&SPUdz8t}i{SUv*F;`#U> z84nrDM}S44FQ$&=QxY3UU=bM(2;^zlU5>!Gie6z&r0zz@Xf9LCy!UTPIDq5C9=o zL6nh|;#WBQ1q)}TMR9}_YSd+)y^csT9fT)9$O1%i!Cs83-+_jg-~;AMCXfQXSFWhW zm3JS9RB(vZnFxKE?;VH?t{AO;A2ZCr2Mmrj4<{hUP#v?0w^wNXLE@zYO8v*f(AKAo z6~K`{f?xr>x{D-J^cY9H(jG@TpBE|0(y)F99-0>RAi5)@F}a;U+g+kRw?A$ji* z$ZhO9;NA&)7WIHs9X^hF#~onexjOnxl%tl_vSUbomP-ry*@~=4XruuTQ{9UvhBxru z1UNNF!~rga#};zHa|b9Wl#3Z>dAA`43{aTN=qZ`F_)F=jF;vV?Veb18wF{G*|KW)G zHt#_J1wDnR-|X;ObkT99gaOr2U<3DK;Gi6;t8gk(m-uG#9j1LL`8+j^(vKWM{QFc% z<)!c{A1bF1t+R(HZ;*+U6FS!Dwq$sEVt?=V_8?SmH4bTfG|tA6oj=t8G(;=tLjo7c zYY%m3^NsCHeug1aEcQ+YMj^%H!5a@mXC`-0ozivyl987)TA2mY1WFm}OHLUYG%*}R zq7BmM8FwboYxR4$)u2foo;Dks?G7TDVK*N5xIjcjPHf;$InjYX>DGNLBZJ2szTjca z1};oK$~b~URz2c{pTvo$4zDgSO~IFXnHQI#Uu14sq-5X0ZB>V{SGZ!VjiMGD7ySbW zlRPUyS<9TIkibCpu0E-^0&h6#)FB3IPxW7G0rvz$C~`H;Td>sh%Y8Ac&>oQ%Ra7HI z3weXTAEZRS3VA4;%63Cp-nM9T#nRP6-4pLpx;7& zbP%ihXCg<0F>im+a=t2IGPqFd`?!zUufGkuMO*`~M?0mP*DDC^+UPK&r;n|+f0|b~ z`wP&Ow-|1Rcvfp3A6Ym?^$sIlV&oX3Q}k2tO&KY4o53@ASrMn7}eE=Uk1DoffpB6SXipbAhwZuy^8 z2$;Qv?2P*4;W?>Ys4P{TY3nfn6?+i?flR0G(S!~yD-=)qN5G7RS)-e{oSnh%iFBrg zVc@Wx|}g$8S@pz3=dUXE)i+m(L+H}EI7_E1)T^MXa0j=3OOy!SqRUhfo( z#iE3AXGPB2l~y0@aSzUN4a9n-wkkH$=Bf2uhO1=n>_&DW27+1&%#~r7jC|EG?x22K zc&<7Hz?}n_gu`1kdtGiUmHRYt_W-{E)Mh;Iervyj@VW@>8>~j5q1YQC1OxBPoTYi( zaqqtuY|h_TnJDTCS)UWTxVuAh5c)(MGsG3*zCk+NZo^$du=md5zvsBmh7C~LV`UvQLcIW*xhScJhri2Y zVSaF~?zebw@D>4ROWj&T!W5;{y}AJ9D#M{mIw})8EzIBnd7_D1J5#vO#EL}?5XO$=d5~WMma)~_TJ6jgr#G{Ni z{R)9zHdWl^_$W6?gcOeh4|1^4hG`6&_rLf?7AVi~JFp?-zQ3S_r}<3LI!@DK7C2+@YWrmA%7xW5`8faXH#H>1Xo z?hZ?KpeiJ7x!OWo{w{Q|5PMF9s4X~_`0;}R81;nIl-SXTAp-wd5RT6$PO=|2agiSY zFVLjB7{CUv~ zsdg%79Aa&frCuqqahhTW9dZ`8drZr6>$EYSvY=81)#K?{}bbf8@9m;y>H>->h@ z5S@<;>gOeN+@_M*dtoL<)$6#>l>{0%3-COE1U(Snk-taMH8AN)4sr|#^PY6ZrO#l8 zLL1UOL8i!Fl?}6}EDVmKgH9(&Xsk7*%7K)`v=l@nez_M9Qg^V(s4|EvHV>qCY=gT! zL~nBqNBM@EbUPzIav3Rh*4-YY>GK7r}8gd;Y8d@j@d{B@_272po{?rH&aH^Om_1 z3rWadrjn^EEyc?WZa*h)sKbjpP{ketb26CJc5y|HC>hJu&$**eu(6GeWyR`NK+)(H z8?MAb;?|6HBteK%i`vO0NcTv@Bu5tL_2c^mRRP}HfE@?|h7NEdZ$Y;n*cdPD&;#UB zcos!ZFIPV=z2b}>Yz%o|Ovb6Kw6d|hs3A=^SReNX)g?YeJ{^aXD5#MLg|%bfr{geVU?C=0sSl9-51DK0op$$*j?jusZ7)30ELeKtsaNvT z5|vM>xiC$FNmn_0;d5(0347V^_b+n>!{^sFoUyJ{Ef@QpW$#;Se+gx2(Pm{GrzuIj zx%P8wzlG92>Pwf&unz8Tul*C0{HQDG^R4nnvFQDqpYYbZf9=!$>HqzV+4265KO%O# zFHE%K?ICFpTt#qq=Z!Z-?(o*WuJg{b8?%J6Tse6*(g*J7m#(O%QwGlJ0YT=rZ*e3Of zwVH4`!+P4qI|D<=v@pTibvoe-9bDgI$COa{Tv3?4);6GO($gJ%futM5-6{gqiIu(p z!)3F#CXn?4Fvz7vu?O-c&vir;DHY(V^pgEJfPjJ?ia~n|3;sO6Y2xpS>9hXN9 zSO15Stqv(%5HlZn(tu6C$u=qmN#=V|awsk&kTgF8+-YzN$o_eg8(IdGnj6YN*G9kq z(r~jy@9(q@DYv_UVs#+m8?(f^NKD>9SMOS^zHdG<>jYULD_y4(EOO;gXCZTu^cdS|>_i3?m$n7Z5-PFF<7$c>4_xQk)GL^s zaWQ6~NxRHD$iDMuneafa(39qNlaQ?Ha4Gz z&6`aZ9*VkIzE$lAwuoL=oJKC5e?<-T1S*7br0~S;CAb9qXP8eCVOL#N!`k^*k_Hr9 z4sim;MJosu;^tLR#%Xb;Q2&Si_El8(g1uo1qB}u=3NaJL{ z@`LVJQoQ1TuDZXDrYV_$uheN%f|SC08oU**s{VU~I>>q#M|*pRA)R|H{q5s`sgy6$ zp6q>fSS!i;MH)R#aF>F+pc`ZmpOA}odm;CY$I>jq^VK7Q?gb1BW|LMgz#Xs);IE1P zt9XRbX~cD6zuQB05^I6NhmiH?gxv?`~wht*sIBB0G79J*JNg=&P^8fwn_d_zfEZ zo7*5lL?0p#0t#D2MZS?m5s(YW690A`nUV|;OuV?-Ku9>=@{A6u&=Wl*^(7cZ>Xoaw zzB=14Duw_WTIS2~%^yt=SJCrlv0R>w;&MZoPTXM2Mu~vhx$LDb12<^PtW4n;-o>qM z6r+V(pATci>MG%Lqt`ruXCux*(kcoTo}g#~h2I;NX&O48t*)fC`^ex^VnT zQTjwn@h&R%vOl;g%D0h4uaFCv+~SfF=Om?IAjVw zkIF@I3O?mwUOf`xxlKDNT`cPhCrzt)|fgkV01?gkNnczx+0VAq90!Y zTd)*Aa=aM_?8m8OiU9U+5oYDGh9ENHcM}8CJ!|Uvf}0kQ*wOQHeW`qAt{>e`c2k_; zRF~o*NzZp1;9<16;A)KJOs7ln-W1VpEyhhKy~8NjSfMZwc3Uiv%LCV9);ge*yy*Fd zxX>D>$e`^tLeO;Us!Im6;qJf{&aSC?!|9oE-Q4ap(U|-iO*1(BS6UsYkW46`By-qq z!Bt#4>2gD>KG$_on4C?HFn1ABRJZLFyQI76wto-S2tfEl6!3g7Iap;@V zZeml09-1J53+8))*4WNtY*)pg*fQ8sLjdgt!UojgvIolA}JMV*;%4^66UWZ;BB~k&yR9q^76pqzq+_mumudULOFgts8TQjN91>&A$*5~zeK$%U-YN}jhC{C=$sM} z{bi{BR0<$%T3L#=#1K}Z7ek^-M+v3|CU-%@aZb3T;T=uoxv-1NT}^VmLIBBP^IEXL zuY!imP&Ejv;3BK?$C8voi_;zmn5*`SAx-~3?r(4G? z>epMe;&W@6rN-0SG;2C;C%3No>Zr9X)gAT0qNwVk{Bar@n**MH;Tsm1quXEowCM{Y zd}X~U{nN$D?XSMpG&^l6*Ld`stnZSLlxHn+l<;q&CG{9LRo@%zrpa|Gr|(^_);wQ- zOgpxWarzCLL+5AC?f71*!wwrOjf`c=j^Qc2xR2lQ%UZgTYz&k3KPnr>?0@-=+1g5W zw!jN@ILF;Hedj#!+D2Kyh|&#o`u);vatVY4CG6{XzExU1-6JVKiy=P5@dmC|2JkHR z0y)n0kPMpxCra<(Y$stT5pQ-M-d0fSl*gm=2(-WMDrGw1+p#w8syzL<&Oz#Ros$b@ zCkqcO6c*cZTP>AjiFHG$N+Q(g+Pu6&G11^`8rGbxOplf~au75?zKCoC zI#HMjJ@%j*^xJE9pgbAexd##tEez7arkYfyAw4CDby6fPjN2_pnFL>yvfP zuj!#5>t@f?N|Z$)X&$9Pwh?dz&;sKCNS2#q!K24t*l3jgC#t~T&+c&D0Xg?`OKvd` z&4Xl!{xEIKvE&%-78SUVr*!BM{V_X%whgnt-d(T>r92}tB9k9aDPowD)T}x3@(3p3 zy5$^Nji}XeO@raCC+vIZX^G5pN%;g8n6c*qk2Of|y3acF+_6TaUPHPl0K^8nt5y%u zxsTOxBJ$hBdLLfO;BRpDCzr&eFlHjrhOl+*Z8CIND=;Jl*`niUHW&g6T#`$%ANKadAO$wqp`3tCQ(<#I~kwcqXuw-tYN2VxuEQQX!jGeq-KcA_=} zB*q*d{i<6dey0+K9~R4HtB9Tp?*UG8yeFM-znq};vARWBkkHhUg;ZR`1kqc(jPO;w zej0bI9K7}`aKKpQi-u%7!atEQ0UIUeiVZ7aM`e|`3zyI7pxIq#j*q10aZ^rMEz0rU zdVeEdUM{KuL$w^By*j?I7pm)kDXd2WgCIp-3G4(vN*zcF@NPi|f)0GtG%*N?z4XNYJ> zbqRyTcZcaqbwZ;KC=^>L2LB^0=1UE5QZRf^@`CJ0!5uRiz@=znNq$%wvZ|3_*)4@a z8^fIl#MDH9l#H1#{Rc>AL;pW}?-m6=jl)@Xork&lzUV_l9K&X%qLM)6}!3B4S8&=$` zKxnxEAv6*fXobWTTp+~l2=P4c;XC|?a5xXu)jbv6m5%uT@BF>r`@QGau!%wt@niBZ zzyOw~ez-|vtyTlFAl7Xhg*U)qM1G>x!YD*ggk@XKZqa4jkLR`)hhhLiy88S<_}#Ef z5aq34wIT7EJ$;`=x?s-TV z6_+Sgo(na?`UM$8jqCyuph>rbeCLL|5a9&|EdZoWJ{J^Rqzm}W0t^NBOb7c(?l{B) zT4!2@ZTpq;)M4K~J;zMT5$POktr%K0Kp+6uq=iwukmRl_PkcQ{7sFX;f*xoU;^Y;v~a%vLruJx{i&ME>!pf8aiQ}wBD}|JNa^0JqLGZ z;ljc$f?}M)3+2HUBl-Z1WBTy7b#wi`(n4tyv$+<4I}~qa5m?$jCs-NQyAWUqp;~76w0~o5vn_5|4ezRPRlLB3 zq1r3@-}4tLjKT3=@Gh&$3@rZtIt6i&=me3dq(Ul{TPqd<(~@vN#&OuZO56<0UU!g| z5qR0Pr=MdrP0bxzTPX(nNSfF0l3ed@lQ}Vq#bmWXZhXM}!Lh|)RL)EMb5jWj#g9BH zzFgr;kjXm_Ao{XHoT$fr*d}`U5+vW+1vle~|2qFP;Al=tjzhmG#&DmnTv?HmOg#wT-n{o2+GP)lU+n zBQD1iZAAr?&Xbp<{o-Pa0MIQFdmVAK zoi1^ANJeHY3cY^No5DunObmTVNg!~Z8qEt05DuA{D}?b&u$O6_)LPBl=~^YMk>c?cXPem zUEW4_v;3ZB(To~GMqQ1fW$thm9qqV%bQssh=G{_#-3Y0u<4X=e4JXtj@ql>)r3dis zAC-kKH^-2kY}04<_+WKU(yCAUy$QnPipAG9+{U6H1t;LJ&x~q7eMD%7*oa}0&EgX< zF%XoHQ0@(BSJB%+Mii0xn8rTD2B9WzazbAU)m@W0LGXm$D6EEvaa?`?Z3m)MPm6a} zSBuB;FVLX=p!fkl_~)_wn+QkwaO?2{DXINz!Bt7T2BO&LF@;YATQUE@sK=v-ncqK| zkm5hYMFD?v8Kl4+T%aJ>(Nqr9>LNDr9>rHFe#oW##2?f-$}EX|;IHS?g9S=&=aHDI zB!aOyg$i^vQ>jAYq7s&ohx?mU)hiG1E0=OO%Jcm=Ux*R+JV8=4I-t4?mIiR;9WLQ7 zBF>Eua9)=Eakd4@XK#4D` zceFUGZ{#ra^&%zW-*H#^^5KMV8FG>X?{&9p-?9~bUC}#vtE6tgDGO_XXH^mO#+#dO zN*l>#Cf5(~OZRx}_KiG@dlO6%8zq+<7u|eb1$!oVljFiHYg|oEj^L_FIVn*Q&;`-} zpc^h6HWgb&|CowFfk=dTgHXCmtkx-1`^|p*6Nt7rU(hwF+YKfV*4=B>UuLyWar<^~ z|5lnXW=04Cy4;k0mzIScGcDSP=!tU&s>IZ}1CASQ8AuIPIzt$>r0RD64D}Gi4#?Ry zyi$Wi8y4(IBt3lYfUPHF;M7nlJ&{z!^9*8xa0qjV^x7D4183&#@-*NQe3RYHwbj^&n-?nF~1iaT5Hn(ftIunH~q zq)07v7mkiJSJ^GC%YRvy_@G*|p-XlcRwH%;(5UT2`q07oQiMw2VPtshzwYHM!W+Yo z6PWU*=ZFZ5SN)u)L4kh_?uJ5W;1As@iF}^SpwSgEIc=USdox)tP--v`CSDKfTq=G- zF|H3nnb_*B389jJ_Hur0X=VMlYOs>N<@dCcE$xAwaRt&Y8uye@UV>?si(O_c-(qnS z0evQj025`eDUoYv7kRMDBjxYK1Wr?$4{?YXbCQS&2mmky&dUPoLd9$T?)Lw^{!Rn-%g_1Ap7L?#d$Zw8i{3oC)i`U!D0pZ)B-F98Q_ zuW&_*Os71I)`>!^cY73mSafl)hXVBn}p=tWXKs>5HR5 zVh{7q>zk%QZmHWwyqd{RVHsdt^TaKPxGG{N1eR0cP*gCYV#PZj-=o+F4FrY^!YcSd zB{5*3*C_Yc&{}02z}C)KWurl#%}t~uX(%NmR7zxIG>sg|z#MRHrQA%MJ3oP}DuXoT zk;(d!vlDV?p0)xfleO^z=q#DEQQ=wJ&cKwW463ho`E>5!xe^LHpKxpt{pg&}ZA`eQ z@~~#HP8>#=+#=~uE;2yP(sDEX$Of<`7v;ZL&3Ldm>ByO@_@YTkW$qFa=^7IB!h$Fv zm-@_A=R&P$NJyNnvUy{KqH2UogEOsxbh&h?U=aQJ8a6i(+N%8$I>`31 zwzc`$lC-VJqOkw|ux10~+N`eGw{z{CuIFZd>leSsS05`nzfkaE%MYs`;pnT|$Zdb| zppX8(^{byRzJPwd{4WIXzp0fEfdA{T^d-QjiUNWJQAdF;h?u(yt^j-JOpVm2z9uxI z2#n{T*~;bWlx+E9m2Qz%b5%d}u%bJuZNFC=6YaL%l9+F zqEI%Mu2y9Un#Ia!P~=dJ781>XK;EU<_AUcIK_L~$Yi>HgSiP}9Wqv++IGG}$12{BL zPxFA>jD`>d1010om6gIFE(+0H35U}(qY=kOjYWRLVX|@FjV}N;lxaCWY6cN*`LnDZ z>jiQ$qgQ>iQh9XaIN8iOpU_K6Xf_Lb*cxWvbi5lzQu|mgaYynAYuLP+;lKqOp4x^v z#us_U5@|>2q~*AM#$bHc8jCy&kc6#!X#f&>m=8Fb0V5~hxIz9womw+HxpyCv8w3F% zvVbh7Kr@iA;YGrzm}|)~4K|as$=zIU+yt#kN+Z<8^s z6Gl7+w+Yka$Ft8Ar7=J3q3B~5M%UXF&g@efVM;&FS}jO2^UIA6C?QyZb;@mT)~JJg zgZwWWpLXP5_ypA1ka$V|YsLj?s@Qx1dGSP+P_l0H66L>v1F$a6@1vwHv3iSQz>1tO z!@*(qV;Iyf&#@j=lgpWV;{gqHqoIi7hHuXX3Z4yx3&NzEYtM_DP;MT{qaE(g#1f1t5@=JV`fB-_59oQtJ=93k z@DpaBNZU-wUaKT{t~XR;c+@BdRAYvtv1A3KL4$qG;MO3`jnrhJMLw97l15>!SKbHU z>)dfbT~+j!uTTy7t$>w}Qg9r`T?s*76HLKc)56)X>NyB6ADFY4qll0(A55tS1n0d4 z=S#+jKdl}`Z;HiMfQ9KY&E8=V9Ojcl1_yw5kHtt`iakaiF!IAml`THW*H!AF7q=D) zZB(1by2@K^b`JA3uORj=rn@Ebsfk_0VelgtF0*lTj}MR?a{nM0v(K!=s?}`|b5Z*( z{M<#ZSX-k9!JLR;`r{Ip&I4QaPxL#qm92psFU!ALz8;pmT(!*x=<*8M@a#re=KLWF z-5l2A9QjJx*S3C%ef{0$)`37r|soYY8&N7=_rzKk5{r$q_L}k{#7~QumOR4Z?x! zX${Sx^LQZ<2f_;1g_j_N@Z$m>To5utab59;>3xDFs5P<7HyB=k-OVne8e|QQY6C%U zc6_Ogzh$toP6(Tu+X3istN%Ll?j8c=K$O0*ab)=gAkQ(_QY1Ocl-+paLEbU@tK7EW1mRDGUzdUwlsR&lCF{TkV#^v3X|et zD;+N{BgGH>ZIOXTzicGH%;rjNGiX#q3!xWe?kS@Ec$FHg*5@IJ2*ROdPDO}#kIoM^ z@GG@5`Vs+0#$>CVgA8HgRI`F(B>4g0;(AT_n|MFRS#F_v*$dih$wtTzZUQ>U;K1>m z6bNq?OL5wj>h~7&t%1ZDFhjpEV}XQB6c<=CzzNODM2WgK(n+RABNXMlQ$s{7T6RJ{<~8P3%c)>MKrrI&Dw2ZB6cLabLQ=3H9>Y!HagI9{ zgI^GOt{8ZEbHxEtOe6jIV0T)(KY?lx&tN z>S>w}!8eLl6~c0xzza0yw{0k6} z8br$FLCzeKH-c4=9-H)4Ip*+M{3}Gj>`~ghC5m=hHB_%1;`1K-&1XLN?|uu;eU2Mz z7bq_x=f1XF&6&@u;%33QZaVXF(9pV?oYtKAi!@f={^YkF=-L^4ccN8wVrZv!jgpm= zuiw~-u8iga2iIB|pm&lsYWhCu*5)MUW4fiF! z3>5w>f`vE)`5F=g5#J-Qg1E%Di5HnduzSPsb1gV*!bM4kkw$6dq8FiX$s&>> z`kvLRPt)nE!@qOPo5gJIccJS?(``wHBgpM|oCif@VScJ&C!b0xSi`gWI6FwQ9=2w& zxC`M~zZiqNWO#8I0KhR65J6pR-oB*`bW;;0EvBedNf#yPVvWTcX zz#P_DC4*_3w$UQt=_L1$jU|~47TjCP!7Dis<)}T?#mou|%^p_6F3MO!7lOB?8o?p2 z)P$HwxgpNQ!{y!2MK7|EHUqbQLRg*g;nB%)KPCnAq@Q5~Qjh;stgWIui?vs+gPUwd zNWIXso5hwR<%I&Z0`JDswdR41rOT#m6x>$A@x_sx6PGU()SZ)U(XJC|OG3HGeO|sw zzb)hnz(tbp3C+Me!{CS4$`CRCDR&3#0oCIHDHbE70w9RwY?S18Y$0IaePOoKnC`y+ zYI@|E70Zof#9KLO66EqRsQ~P6ePEIqz|#i|qG(V?R+BeT+&|{Xml&qln0lZ{@+Fd@ zJ6?Ld0}?_tRi(^{p*5m1AA6c%{x^$+!=1_;dANAP#DTdi${A>GNd=is|6?Pk;20wo z)IiM=0uQ;kg=7@mgytxL=5;Q+OLx`5-e3n%J9(5iep8Hk*n5PFq4yZR5IvII*}CW1 z_z2quicD#V4Lt0f!HeQiKgwWw%prGH49Do3hh>E#Y?^{3G}JdmtnxPC8pz7LGy;|P zrQoi3=W6Cm;VHtl5*@xo0@bl?g+P}_`<&E-KC}k( z(!h3!G=Vhmh%pr*EY|co@d(V%KrDh)!F56rxu%a$iVrUyB3OGeHG?N z&2ydbdFzyRuPeo=2%HIPr{psdGlq)JqnPzJg2IK>4`WqIrzO!7cUM|zP>K7kN z<2cgPl8Xgnz{}+`nebKt4h8zgB^T!FNXQu#U1nsU2<&L&jppG0UL4=+wBUE#?5{O9 z+oXi3oUi1v>LlM+5;l;^dWk|_!+KWQ1i+ZB*c?WTo?Kyev&U-~_doCFvv+4uamU_UNh>G}oS za9K2KbBTwkXysk!twq8;%q9IIBm|Vf^QmU5@|>oDi)hC?s?p;5@Y2a9DiYS5AH(NT zGS(HZLhmD9=X_P$m@i0VP^w~h$BaZ{*F7T7EtGmJ32?$NN%WHD&d9GB*a== zFVDa&N3Km|7WzC*_yP#n8MXm$M}11FlNoRc7Bz%^>1jsCgVyh2MdX=iUm)4&n(iV> z(8Q>a&My!hmRe&!vpyxWOBc6P4H0z#vcZAzm}hXo(DNG|95|qP1_xQI3teCI%7yk6 z-2_w+U^)s`p$_Yk3d_}yCgWuOXiz>Kq>bJ=Iqr`4_Bu<~PVMPZ-0-l?!HTMLC6@qx z(w_h~9YRsk+kpfkRiD-9nZo#Qfa_F|ccvP1HvHuX95z-qSE}mKE!B@Qz1uRF87N^P z*atUMnB)Z#7Lc}KzFNXFd15l$xQ`c9`m?=jh8G_Yjov2>+t{ zdnZTOeh8WNhU4CGE^4^PB_Klpg6kL>N(i%13Ax^6jqvhlRer~5Wjrph?ws1GzpxDN zi{`)RhCoA#z@15GZo$-4;y^@D@-@g_ZRJ%NcvNp2w~R1uFej~MHW6=PJ%2;Ac_qRN z9||BMuwHyxrD+JOS&^h7nhTH*kP8?O>Dfvl@O3hB$4hFYF3+N8PprOn0G3WPvFM6`D&9y%sM z%JI;*0RM;Wx$p(BUeaPEQhY?bm8$`A7m)@_DppY*Q;2>DGLb2>^XRF&gS|ambT9{j zMog{sv49Z!LYsYnoYVqf)7~L+0rU=u+NXo3$Yd49ZyOzcTQ=wL8*qoskjo%EBd|B! z1xeEx^8X8q(r=LGW+L;jd{KthRffD#eD*Cz--enJ{9VP=RtDHy<}ZeI4H%c`7=dO2 z&ZU7}z`6D#VA6Pz0L(sttHUw18pPZxBA=IloewiLo&uwWa6BV96fZ8LspRy`X@zAZ zQ~(y<9XNo31tVEDXJa=|nFd!t@tXHD4vmM?FD=;*-1WFp7yKD#3~S8xTYEI6e|AV)_<_@m48cUBB|T* z7VHHNf?VJb1`WFaeRCk)nGE2n1SZ0+bQoO0mW>&?5UJd`z5GHC^Z29Q6r3AOA)rg1 zPEQVn8NmerLrVIT`0NI}2M*C>f45x}fRP;>QmdHUw6Ntl8Ny}{1k?mTq=~}ZDzqMu zU@(XgfDO47yLb;FB`2+gb z40tM0W}Ih+`t3MhvRfk*0;({#E*9udM%jf$@Wx{X_FP!Vfx&QEY5+Lw?|~STP$`-$ z(tb<^`v>|0Fv|7>0_Dq9fTDc47PUa=G_)i=zf$(rn7g!NoBjyUF|ooq_RhG!hg6%iY$Ve@fy^pn{S#e;DbekWLTq5SjG8PXN(Z!M zt@Z04(9ZPc^$${W=UXaN*x}g(Ig3I#$rJ+sHybD-Ifg? z$Su%P8V4OzA4DEKB#qsT=TmG%ke!qTDF>uh5Ak7pkQTyQa>(HptxpF#2XH5x!czL~ z(SRm=#kDI}uBG#MA49%=bNz#9u>cxzLAnz9$63s|Ftgs!}SY&!|5+{ZO?Le+RCfr2at zOMMx$OD%WGCw$?vw-z9emvnYyc4a@?yBu}`MMO%9+I~h(%`lqo{ox7N6pY3vyY$Xy zZ!Nu^iidH)1XoFUT2deO_H%sF-`z)cZuChB_m)h2g|lA8E4me$NNgWi5`Ys68<2(vCAkgDS3orDmnHaF_{ekfs_`0N z7bAZI#~T0O2*e&DfuuEyBH1cF!T_=Vyr)X$?DjG=#c*SC2J+ik0BQ@%hZTU+V}2;S z&-rG>(hGVbNBzEHIbnZ6^-Y0rj6q&~+MkFy4zK%Z(dzHVtIRv}zY7ZR*q(W@$CX3~uTT^7%o z4+=~E5Q3~h{aUfLYOrX^ny|ABz5y8llChTHn{5k1sVXAtKrlg2f=-B;1c|)6@L(;V zm72JB?B@cz`B5@f-d8EOZpm&yCXQ3fT*Vjz{{X=)J(z17vWbzz<84!2RKYo04IR46os^<2n$?yok-GgS_h}E#udFX z_qPLkopZiuNJnkb_p-K z7`&mI7UNtfY#8LP8$i6X`ex%ABmi80a(*4xfKgg1_=q%F4hgDduN>t1bw~?mfL?`$ zpuJDHoAb|6V+UTf0acz~ujVXSrJ1Lxb`@7Eu$1@7hjmKF{s(_j1;~w8P2TaN0P7EefMZGJ`&}N3I{_|~#tkaKKLTNrf>)xyRN6fppNLwX*G zpH^4N06sKpMI&$%wv}%eQIqVhLAZgb>UHDb38FqhQu!uvQr4tJVGCf!Bt;abz>O9{ zETzvXXD+mqiGPGSPUIm`G6U_Q8smHN~+n^T2x{9fw<_=wG z2({j)Y_M^#j`n2*Gucm42s?%NY09LBrO-1dc%Nc`X{(h9x*&4C zy1Y_|@UJ6cyvR97)vY!1Aj$b&EIx-?WB{P)k4_FfcwRIhi*j0pe~?5Emre3H=|gQV zLMR%R1^Y8%2I(w}dXW{Nw}-hWd}|=Lz|rO*moVj`-H#$ItUg;ifuw3Oln@Izv+2$F z(Rh3$8XYO;s~5)^dXd;HMF)g`^b3>oGdCgWkTiU5=6JcDdsGu?e zZN2{Al6mdL>RL=tTc!x8X;+KI$IRVElnwnIyrQ=eXyq{jtC%}-#87E9h^KWe0PI^R zDw0u~-uoVPbvvg)bgI;vd?PT!4#RA)*Wr5-Gd4Vv*}|z)X3;%5ws(sJ0rg$@KiiKMzvt!IaLYjCZ`1ME{QH4GL#Nb*H%d{W~CU zuXq~o72!$scfc_9E5zPpCE<#i0*!yKeHcR(IZ+slYjd1N6ekxQVD)|)2ZmSA1v(TW zHnr#kOk0XD3-m$S3mIJ0HllXWSRqmUdYGl=Q@L0KIgrG%cv#yWR|ste6kdPTycth| zY>F<2t8X2AGYptiX&xhcR{{^j3#3m#=tAgGCD1rr8#2l^=)YJX{b&zp9-S~pxT*;1 z;ggK?db7BeE!mRarG1nM_bk zZ(sql3JZA2B1SiXW2pCOB{wP#2C$(S1*!&$V$Dg2S58DL_tVfxYkauYYu}*@va#1OH4b{_DQ^Taandx z&x9^OoRrMPw1xbV0pa47O>f-B87M`#HH(0BM&TSDG4W#WXojyE|2>;eaBc4-iD#RO zyF+@1KEEpsp~2ZS7CrN!7ILPt_mGk_u7`?L(?DajMH56-j}SPTuwiFpc?7Jg8|E~T zv4H2(@^kDMJD+pcSo9)0$MP54Jyw}}2U+;}cag2kxs%P85gW<3P~FG*y!?@J$4|!1 z`y7bxU+uw+8QGeT+XeSG?5!-%x8-<-oddQcT^W9#)g+Ge?X1d+Z=CH6;U_B8FU=yo zWct^IzybL}@F-^bj;@m*XMh6-mPFv2Hz#s05)=pHA<{lNAyL~oFj1JAO_kT8_tA`< zF3d8_h4VO(238@Rqkk8AIE){7l3Vrc`&H2`+rxbYf zVqi;BzIJ5Kx$QLNscknO`*UtrLm$sM_Qo{{*b0oi=paOB5YFIfinHn4V#MYl4)Szt^so(t1rBsuEohZi-va5{x@r>Nt9*J5Pp?t_dyT*Fiod>+`Wf8| z!ek3Apa3ix^tDFH=oBBzmm9alwqx3nZW9VQYo?R^N=gYVn0J7Z>Cy>-SgnxwEtiFN z@}H3&(F)*bx5rZeL+4s(O7CCk3lq{Vm1;yr=GsIYdHwW8kF^=;Jc$W7MM-HrQ=WJF)TR{pICiu|-JYw%`vo zhERj&jz9!!GwK6$>V%STloPOac(QX{I>7lEL=#z)Z5j|s#ne|#8uw;x?!U0v!FCGB zTx`yyUi(r1Y}zs%xE^ft2Sr~99yMugwT@u=E+!|mfk&<|%B*nrA8UzD8^ zyzD1^QFd*s^RK4df!vf5^XZY!WQ)m>%dHMTz^v7g~APZJ@Yi5p`%r zd#x^~0R-$@e0!ztrNfca1SwRGYQu5i*x$FyyiVzip>TW7{Wx~G7WQDqE(ipajLXUw zQQhX~zGs^&0G&tq-{?5jqgu+4Z#DrRtRjp`bT*5HujsHeeI_&89gin+CF)$Q2j~*J zr?Qf`0Bqg)3^rWd)2$5{9Qfw)>6w-+7d+eAEEPQUlI}&p9nnMil&9&wQr7yEvy^e1 z6>xPZ4dUt6QyqZ~7?&Yz5GlzDx9N0WX$C{_`P?au%#K@QnBLmzl!xWjn_~6WR=;1V z-W0Gm-E!R&`4@AQb(ep$F68xDNB;y&faPhE9>Cw$!sUbUVgE8hpY3-a_AcKXKN%q! z)$a6iq!PaV_x_9j@fG=e^>yn{e#;Se+dRU*e)z>7fA5vsmu_GFH@^Op-wtoPz*2+b zZr5I4y?uz+eFxg*1^#v{AUI!~mq12{ z>%Nuz)7$?v>rO5&PxNbL{@dIC8_N8h+SW=%|M~4dN72Q+Xf4*Uw*SBN-B(d#A+Lec zN%Os~yY|zFP%EtOy}JHSSmSTyHIkggR`9=hb^U)~!MKzeWn`uP?A7(%@1az(AExZ~ z{=T>VAF@DPObw8dAsj3FAAN8AcfX%C=8^KOz~BD<`fV2YoiKQ@RM&t>R%ZSC>py3i zaPhZc%8ghem2gm2e)|3Of0N~ZFK@FchJ)4mx4ysr@32;~I%$*wEA{VwfBjEcD(-z9 z@nD7j@%PvN$`4TZZ-#-Cj7hEBZ~b8X4VKFr6#_&l61f|!@X`;~|9ckxS3;v40r0=E zq*m;o{b2onVzIyE#lC*{_+NPCmD_(sAOAoo5G(sV1wHGj7IBmef(pZK?xckJ8A!|Q+V)mM(c{*&d%bkd^I z<68-JH*MoE(%-y$h$t~%w>JK-%dflwCikB6sqis8nZhA{cQD;y(2Fyn#3baOay)G@ zk%sBh$uZL0tQCLUdo#;)6S% zA;R{EsfLPAPPQo*wRgqix7t@;drjElZg=m5w$xy+oh=rS^q7iTYPvHxf<376&18P3 zuh|cnqT&sB=+Tisnx2KX$QnF?kNwm-lSsAsI(3;g&Rf0#%I?-^_a4aO*Iv`mBA@go zH?WNBSjATI+DOz176~Pe2bd#QyAQt^+KLN-P12UDKM<2uI9;0^ipeP0WO#+$sx$)a zECwQxu;3?RCa~iPl58M)1MIe$1ZMj46ChovY(M_!uF}|({yrW|ISPu`rnp)fh7&*r z>vt&GGay+&-NEh&;u_c}@6g0u?sQ>R3 zATB^Ge}N1>J>;2xv-kor{szbc(*4E8SH%}G+{$KNbTccuX+HFtF%Qe=gT)HA8Tbo! zpdsp*-M12$Oa?c54VB2FH?Ku-Xcsp$ot-CB>BYSfXYCY-2uGN|-B=QHA>E)QYdrxw ztTc84aEBE3wts+5-0m=>PBt;_WYV34WPs@C7ZQ1sFOqnhpG*9TWU{sp46i}22@Ev> z91@C`EOWH^&w6rS0zM4FgbQhOsD7<$kMKwg<+Fp-}uw_cgP+$m<2y^_AzP}-=~ zSEa2DLLru;ayra}oaIID#1&r&>z0f@YZWlR1Z07G%5eKq7?6~MG`vd#Xl7@p3?hH) zns003iHj>-6m zJ4Oi>qZpkiUY@rAN04A5=jZXVH|h948%SvGt&HOM&Gf{3>lr2-VVVJT!rynB@)6?`RzR*<)z9F9PYumOGmYrweL z6Sf(ocG&GbO4uzP*9@MAie3}a3ytWOEwdDobvmxLRakWXPzuaFrJVJavvuv zOqwiNssy?*(CzUUVPR{cK1X3EyWuCv_ms9l1go>y?&F&3A7Gi<#kxfml5n7SoDI5$ zGD-%R9;aC&6k`J=kaU3A5Dk5Ebn^hvr{`#vpkJ6D(6SPOd4tR=rnI6)1ZTG+?rY zz^({mldV85kkggLzY8WRsheb|Pa8vwa}PYpjq%ahbudw|V?+$LXSZy15ox5A(qn;TRYwQd+}N>J9hX!|Cz#=Pg|R zP-%m89_@+{l?{Y}u?<4E*4rH)v$!{w!?xmp4!jswrAla{YC#r?hB8S%lp<#DWkHkzfiOLcbKNTR>NctK?7tYbh$t+2luv zR@Kk>Y0>u#b_Spi66F70;Euun3!@wQKXX=~OxDP#$=?#;iqi)vtDIm;x+t+vT$bMq zT0s{+k{dRw0D=fJh>NQl2^$Mi5maQm!zJS9VpkFs1-z0vF!rzuNt>ZD=wX-WMPK7e zDcx76Ak(p(ZZca-;YaXGX?ye)=6m++t>9J*%}7VeS}2luj9YW(QLCk+Op!g)SKh;M z)Sk09z(DtwP1nU`z`~?$N++!?A>+Xa!WckqNmBLt6GSMlci_>a46ep&DVF69+oDlQ zB^;&VYVAu-tA0%;Xh;E-}SOmnT)e;WBrg~(#0i+rN_BpV{choJ3?(eAE0C@9Iw}dx=#S#^Jh16jr z4|z+~6}zg%!X-g=g?WoB0xudE(tLm~U|{HDXltBzButlT(K4c4z`>>~fV=$Og+)4U(?Lm7F3Jru41%H?h zMz0Q5=7NBfN53RH8K{U)mtn@1RaoRG&}EW5K_|tF%Pw$UTID&j5R2IDj3Q@sMOX|S zq`vUf5w($QZh~;W6T5x=uFWSC*&ZDu=YnrSCv!sHaB?4qxmg&t=G|1uUH1SAtYkyA z%f;e-OwD9_M)Z>BPi})h=ICt=-~h#VT5| zR1F|@KfHVE259=-lO0A>85ba zM=hhP2TG?+#^|hlZ~3y2k1a42mo5c41NVxb8a}8wo_?-1$=OzIuI}Fj!lJ3w+G4bbg(~Sa(mcxcrK!p{>XwxZ30n5VI5m4mr~e4AmUiA)*awxn8<*v33UgT}_KMr7`_p z8wkW7T(}`gy$Uj6|M(y_mOQ*rgV7vQ#ua`he5afm2m#`f!`I(P4mrll%e00gr4qJ> zaeE$8w~%5_=%iLvL5kwcITr6R&}GuiJ4nZulNs{(5*X;@oY%Geq%g?x#gUKIZZ9?h8pbb|uqesv z$iWl3dXR#iAGagZ9mSH?6u#+nR*x=D2&4j6cD<)$`beWp z*iCw*#ODPn6EAX&2{%GREUtGpLwk7D-2^~2+O0^b zTRxg^mLqssxPB(4KOa-$TFLzwb&G`O%)}rDRa! z%_jzi-({ua*{%P~nUxMmvB_7K?F#If*={ghmWN^q93Hi4Tf-pZ5LD1s%dK;7;_>^m zW|TTmjjK7ZT=ZrE%x*#thy4M}c=>1wTA}lne1%pTWJ8z8i9VD-hWexp6=siWkjZEt z24N`Af0QcQIUJxUxZoQg*C^6%NmFc@pT(RLhYZg-0J7Yry!2AosqW6zD_5>WO4&$P z#=O;`Y2aQI(s57{me@k@dAuLgeQ6NsNU>0Y*IY8;Hl{7sYH;?P9QKB-7TQ=Tew5&R z)`BpO1{mKl{V;7 zS(9;Q87VeH+3Mfl@*_b4;u6G0f*7qzM01&Ix`k% z`L(a$> zAra@fpz{d^0apGW-2O)>|JT#^R*x!c=^Da9TB+k05t9ULC?R=!PcBS-xm_-U*ZQ$~(}{<`M=NW4vmD`Bc` zh2V^KEqker`Rmi+c>gSWFT^h(hoK;lk~lc8>>w07THcmVE|ymk$gc8hl+oSao#)rl#h>z-uX7MSq4J;G_L960xBKQNOXOpD}C04J;?G zY~}qBQl9ef$zc0Lyl1H7;2ZcY9E_3EkSQa!e*B;dt%ac0o=SCC1Z+e}BG87J>u^Bl z0*JSJ(=+4+9z&`DM_Jl+^_c<@@c^hwnJ6LA+lFqV;7z=WED={Mb39yX6n9ZjF5_Qr zi@s)xdvi!rx|m>oDn1Yxj*RZc`YrUjZ4M0@uW&Hh8J@tAkQPT{E(qKf4o?6h?kr@B z<6;mPeXWAURYePm)4JG-NQP5enUJ54OCdf|2DL}9IqAVGOUa*FA0E^IV2XDZ=nCN8 z9t0&?K6=@F0JO0A%lpg4??LuejEXO)G&*WMMes`bD*xcY>B`wJ@$d^AgK+ujor{9F z(szELg$k7V>K7=FzhCS?PlU&3@=$vg3qf}s8j0(WOf9Z8U2#<2!n48MNG98*)$uBq~IOVZ%}T;dSh5iL6bTd z9l;k%PG)gevtPqY2}Y6XS%%X&q>-i_)3B|sVit`TLTemjTF6@DESomhJsyEz{^{J%oc=|x*X*(52XWF zF9x5Z+A=$coR|3IU^IEL8__kh?UbrH?u2zv9Kz*ukzUXwR5R!((Yz4nmLyuYhw%Wh zO{?IF;^#DZofdx8UjATJRI|B$)({vwF5v<`N)Q=;@}uXm(bs_I+{#?kUnLpJH!Nc& z(^O}K8p#ka*y13YyF%!S6a`WdHK|OWGJ*@RFbzi`1PG?->Jveu?*Qbm(-;npifcDl zb&aQRf2Hv_Tyb%%faMTze}wqOPr*u`9pcLwzMMY7ms6Uy-vi+Q^q(}Bl7%1z;n0Of zwoe8_$;^Gs`%T-1l?HTFeV|N;`zZ;To@|49_3Mn&TqIV%-+3ArKnB^}TB$Z zQXsP_4GU`*A10CNRd%rgcoN%#A_Q=<2U>9agrGZQf+?O>8b=X?p04@{4Hj1ZD&VZp zDMW$f0D!@EgfNs-QXoGzA{vseLfARBGMn4U1}9nUZm7GtXM(4@-XXkG!BUOkyQg`( z&^+>bixYZS6TKah(ea+3yZ#cke+lO#Ru|riuW{_A2<#w+GEdv&tho)eQ)Uk9q%BzJ zv$_t&v(zUSi`v5VdpidiYlICDXSJsz2@wAjpz#zA0>yi$$`Pz0v=#6y1b!=tZyCY$ zsnECpK45to#>ePD0t;&D7%qY3az1tkl+6u5fdANfI*md;Lf_#geEe9#*zVBD=0+mI zWXXXj!RWbgxVij#7SWQg`Eh1ny7V8y`De{);rOqEF2uFhpibj)LoXtbNb1FdilOCa zKQ>kVwpvu1@qwY4(iB-6x!w=@JC6|0^$FHwbQXPK&G(gDH_ZqoHT|?*4BFs>w6uEh zr(;;Ob)|a;>q&$JfSiwEb#L>1(cQx^4{WfNQ=t0x`i588qY&ObQeh<>V}*$xZQ%w^vvv zWnhkhGP_y`|Av>QKDG0qo8?4%tw7k=3DcpTW9uU5{)npeS~Ed?z9fHuJ9|5zd4Pxz z(F6!R3=yje!J^63av7Kq=}VZ;Qq6u#Y#!f|{BLL*u-F^!K&%6060as3Yk2Qt$Gr_< z9JTZ|@qAI^Vj~EP8M*m_#{=N1YF&@lUYiv*m*bUD1VtSJG%<9pJbV^aV7Z}+0ui!| zBMrrCMN^%jbSoOaAF3@vsxbrL0i)`Z^Hqe-(zy{DnGXsUr3=XOc$cXflHbyP+S`NC z_z+U*)~JI^?x+LJ8zj{dPF5lDX+k6U6KR*0FBqfH4J|Mm;J3x&8inkrm~-xo62wfx zd?@L7FA*sKD$v2xtz!g*d;rUllYakcKk)~Eo^~4ruC%YciK3UTw0|U{;x3tm$tRerIkoveH|yD}paC-q^*A`L8Gz6Jqa`paG3lzm?U z$u&7%QmEEPsrs!u={*r&2+$eo{ySGm?2T&Ne#;@Cq;C7s?caym=eNUKmtdIQs&o4` zUjNZvQFD|0OSP`li3ir=o89(QQ{A-MHi5{#XBY z^6%~T_S?juvzeKMRvll0^FUwK8&@wvghYL25laz}fM+%-?{u8e`aggQvo zfy}H3h=X}3;}&xCUjI{hTHlJ7A%B>fC@6+01r7WBqq{9@#tszYg?-*1>>u#1MzqDN@_rM4k|06O+irZnYNXkyfgkL1z9*q#$5`?I*N{A+)d`g^; zM&RODuric>Lw5v?jfXRnzFJ!75uBgUB$(6@XT3c>nK)lstL*sA4OoWVP1Z;Q^{ims zL0L%*CJogC68msGebnDYdy$k-2Pqii$pQC`D00sn-uVcW^_5>Nrd zBvWK#SfvhZ5`d0srQ(ap!T5_|fA6?8=|Z